Machine Learning with TensorFlow

Bok, Jong Soon javaexpert@nate.com https://github.com/swacademy

TensorFlow Project에서 만나는 문제

- Version
 - https://github.com/tensorflow/tensorflow/releases
- Optimization
- SI적 관점으로 Deep Learning Project에 접근하는 개발 문화
 - SI → Solution
 - We → Optimization

TensorFlow Project에서 만나는 문제 (Cont.)

- Deprecated
 - Tensorflow1.0.0
 - tf.multiply, tf.subtract, tf.negative 가 추가되고 tf.mul, tf.sub, tf.neg 는 deprecated
 - tf.scalar_summary, tf.histogram_summary 같은 summary 연산자가 삭제되고 tf.summary.scalar, tf.summary.histogram 이 추가
 - TensorFlow 1.2.0-rc1
- https://github.com/tensorflow/tensorflow/releases
- 적용 스크립트
 - http://github.com/Finfra/TensorflowInstallMultiVersionWithJupyter

TensorFlow Execution Environment

GPU 장치를 찾았습니다. 장치 : /device:GPU:0

Jupyter Notebook

```
1 import tensorflow as tf
2
3 tf.__version__
'1.14.0'
```

Google Colaboratory

```
device_name = tf.test.gpu_device_name()
if device_name != '/device:GPU:O':
   raise SystemError('GPU 장치를 찾지 못했습니다.')
print('GPU 장치를 찾았습니다. 장치 : {}'.format(device_name))
```

TensorFlow

- Data Flow Graph를 사용하여 수치 연산을 하는 Open Source Library
- Graph의 Node는 수치 연산을 나타내고 Edge는 Node 사이를 이동하는 다차원 Data 배열(=Tensor)을 나타낸다.
- 유연한 Architecture로 한 번 작성하면 코드 수정 없이 Desktop, Server, 혹은 Mobile device에서 CPU나 GPU를 사용하여 연산 구동.
- TernsorFlow는 Machine Learning과 Deep Learning을 위해 Google에서 만든 Open Source Library(2005. 11월 Open)
- Cross Platform

TensorFlow (Cont.)

■ Edges와 Nodes로 구조화된 Graph로 프로그램이 구성됨.


```
import tensorflow as tf
a = tf.constant(1)
print(a)
with tf.Session() as sess:
    print(a.eval())
Tensor("Const 170:0", shape=(), dtype=int32)
```

TensorFlow (Cont.)

- All TensorFlow codes contain two important parts:
 - Part 1: building the *GRAPH*, it represents the data flow of the computations
 - Part 2: running a SESSION, it executes the operations in the graph

TensorFlow Code의 시작

- 필요한 Library를 import 하자.
 - 가장 많이 쓰는 library 3개
 - tensorflow, numpy, matplotlib

```
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
```

Computational Graph 정의와 실행의 분리 이해

- a = a + 1인 Graph 정의하여, 1,2,3 값을 출력하기
- Lazy Computing

```
# computational graph 정의와 실행(session run)의 차이
# computational graph 정의: a = a +1
                                                        a=0
a = tf.Variable(0) # a = 0
                                                       a=a+1
a = tf.add(a, tf.constant(1)) # a = a+1
# 정의된 computational graph 실행
                                                      a=a+1로
sess = tf.Session() # sess란 이름의 세션 선언
                                                     업데이트하는
for in range(3): # for문은 쓰는 건 일단 이렇게 보고 넘어가시죠
                                                      그래프를
   print(sess.run(a)) # sess.run을 통해 수행되며 해당값을 찍음
                                                     3번 반복하기
                  # 꼭 써야함!!!!! 안 그럼 메모리 차요
sess.close()
```

Computational Graph 정의와 실행의 분리 이해 (Cont.)

■ a = a + 1인 Graph 정의하여, 1,2,3 값을 출력하기

```
FailedPreconditionError
                                         Traceback (most recent call last)
<ipython-input-5-210999db8592> in <module>()
      7 sess = tf.Session() # sess란 이름의 세션 선언
      8 for in range(3): # for문은 쓰는 건 일단 이렇게 보고 넘어가시죠
           print(sess.run(a)) # sess.run을 통해 수행되며 해당값을 찍음
/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc in run(self, fetc
hes, feed dict, options, run metadata)
    764
    765
             result = self. run(None, fetches, feed dict, options ptr,
--> 766
                                run metadata ptr)
    767
             if run metadata:
    768
               proto data = tf session.TF GetBuffer(run metadata ptr)
/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc in run(self, han
dle, fetches, feed dict, options, run metadata)
           if final fetches or final targets:
    962
    963
             results = self. do run(handle, final targets, final fetches,
--> 964
                                    feed dict string, options, run metadata)
```

Variable 사용시 반드시 초기화(Initialization)

- 다른 Operation이 수행되기 전에 명시적으로 초기화해야 함.
- 모든 Variable들을 초기화시키는 명령어 활용
- sess 선언 바로 뒤에
 - sess.run(tf.global_variables_initializer())

```
# computational graph 정의와 실행(session run)의 차이
# computational graph 정의: a = a +1
a = tf.Variable(0)
a = tf.add(a, tf.constant(1))

# 정의된 computational graph 실행
sess = tf.Session ()
sess.run(tf.global variables initializer()) # 초기화!!!! 꼭 해야해요!
for _ in range(3):
    print(sess.run(a))
sess.close()
```

Variable 사용시 반드시 초기화(Initialization) (Cont.)

■ 다른 Operation이 수행되기 전에 명시적으로 초기화해야 함.

그 이 나 하는 나는 나는 다 가 가 수 없는 수 .

```
# computational graph 정의와 실행(session run)의 차이
# computational graph 정의: a = a +1
a = tf.Variable(0)
a = tf.add(a, tf.constant(1))
# 정의된 computational graph 실행
sess = tf.Session ()
sess.run(tf.global_variables_initializer()) # 초기화!!!! 꼭 해야해요!
for _ in range(3):
    print(sess.run(a))
sess.close()
```

Variable 사용시 반드시 초기화(Initialization) (Cont.)

■ 다른 Operation이 수행되기 전에 명시적으로 초기화해야 함.

```
모드·/^;^니^드은 大기치시키느 旧려시 하요
    # computational graph 정의와 실행(session run)의 차이
Set # computational graph 정의: a = a +1
a = tf.Variable(0) # a = 0
 temp = tf.add(a, tf.constant(1)) # assign을 위해 temp 정의: temp = a+1
    update = tf.assign(a, temp) # a <- temp; a = a+1;
     # 정의된 computational graph 실행
     sess = tf.Session ()
     sess.run(tf.global_variables_initializer()) # 초기화
     for _ in range(3):
        sess.run(update) # update를 실행
        print(sess.run(a)) # a값 출력을 실행
     sess.close()
```

Terminology

Tensor

- 원래 의미는 2차원 이상, 임의의 차원을 가진 배열을 뜻한다.
- TensorFlow는 방향성이 있는 Graph 구조로 model을 구성
- Graph는 0개 이상의 입출력을 갖는 Node들의 연결체
- Node는 Operation의 Instance라고 할 수 있음.

Operation

- TensorFlow에서 계산이 일어나는 단계를 의미
- Tensor를 만들고 흐름을 구성하면서 흐름과 흐름 사이에서 자료의 곱셈이나 더하기, 뺄셈 등의 계산을 하는 단계
- 다양한 속성 값(attribute)을 가질 수 있다.

Terminology (Cont.)

Variable

- 학습을 통해 변화하는 배열 값을 저장하기 위한 프로그램적인 구 조물
- TensorFlow가 학습할 때 다양한 Device에 설치 및 실행되며, 분산 하여 처리되어 명시적 type(대부분은 실수형)을 지정해 준다.

Session

- TensorFlow에서 Graph를 구성한 후, 실제 graph를 수행을 할 수 있게 만들어 주는 프로그램을 의미
- TensorFlow는 다양한 실행 환경(CPU, GPU, TPU, 원격 분산처리)에서 graph를 생성하고 이를 실행하기 위해 Client에서 Session을 만들어 전달한다.

Terminology (Cont.)

- GPU 가속 Computing
 - https://kr.nvidia.com/object/what-is-gpu-computing-kr.html
 - GPU와 CPU를 함께 이용하여 과학, 분석,공학, 소비자 및 기업 애 플리케이션의 처리속도를 높이는 것
 - NVIDIA에 의해 2007년 개척
 - Application의 연산 집약적인 부분을 GPU로 넘기고 나머지 코드만을 CPU에서 처리하는 GPU 가속 컴퓨팅은 강력한 성능을 제공
 - CPU와의 차이는 그 작업 처리 방식을 비교해 보면, 하나의 CPU는 직렬 처리에 최적화된 몇 개의 Core로 구성된 반면, GPU는 병렬 처리용으로 설계된 수 천 개의 보다 소형이고 효율적인 Core로 구성되어 있다.

Terminology (Cont.)

- GPU 가속 Computing
 - TensorFlow Python API는 Python 2.7과 Python 3.3+를 지원
 - GPU 버전은 Linux만 지원하다가 현재는 MacOS, Windows, Linux 모두 지원
 - TensorFlow에서 학습 속도를 획기적으로 늘릴 수 있다.
 - 예를 들어 GPU없이 CPU만으로 며칠을 걸릴 기계학습도 GPU로는 단 몇 십분 만에 끝낼 수 있다.

What is a Tensor?

- TensorFlow programs use a data structure called tensor to represent all the data.
- TensorFlow에서 다양한 수학식을 계산하기 위한 가장 기본 적이고 중요한 자료형.
- Simply, a *Tensor* is a multi-dimensional array.
 - 0-D tensor: scalar, rank 0
 - 1-D tensor: vector, rank 1
 - 2-D tensor: matrix, rank 2
 - 3이상이면 n-Tensor or n차원 Tensor

What is a Tensor? (Cont.)

- Hence, TensorFlow is simply referring to the flow of the Tensors in the computational graph.
- Rank와 Shape 개념

```
#rank가 0인 tensor, shape []
[1., 2., 3.] #rank가 1인 tensor, shape는 [3]
[[1., 2., 3.], [4., 5., 6.]]
                #rank가 2인 tensor, shape는 [2,3]
[[[1., 2., 3.]], [[7., 8., 9.]]]
                #rank가 3인 tensor, shape는 [2,1,3]
```

GRAPH

- The biggest ideas are expressed as a computational *graph*.
- In other words, the backbone of any TensorFlow program is a *Graph*.
- A computational graph is a series of TensorFlow operations arranged into a graph of nodes
- A graph is just an arrangement of nodes that represent the operations in your model.

■ Suppose, $f(x,y)=x^2y+y+2$.

- The graph is composed of a series of *nodes* connected to each other by *edges*.
- Each *node* in the graph is called op(Operation).
- So one node for each operation.
 - Either for operations on tensors (like math operations)
 - or
 - Generating tensors (like variables and constants).
- Each node takes zero or more tensors as inputs and produces a tensor as an output.

```
import tensorflow as tf
a = 2
b = 3
c = tf.add(a, b, name='Add')
print(c)
Scala
```

Graph

Tensor("Add:0", shape=(), dtype=int32)

Variables

- Therefore,
 - A TensorFlow Graph is something like a function definition in Python.
 - It WILL NOT do any computation.
 - It *ONLY* defines computation operations.

SESSION

- To compute anything, a graph must be launched in a session.
- Technically, *session* places the graph ops on hardware such as CPUs or GPUs.
- Session provides methods to execute them.

```
sess = tf.Session()
print(sess.run(c))
sess.close()
```

SESSION (Cont.)

with을 사용해서 close()를 별도로 하지 않기

파이썬 기본

```
x= 0
for i in range(5):
    x = x+ 1
    print(x)

1
2
3
4
5
```

```
import tensorflow as tf

x = tf.Variable(0, name='x')

model = tf.global_variables_initializer()

with tf.Session() as session:
    for i in range(5):
        session.run(model)
        x = x + 1
        print(session.run(x))
```

SESSION (Cont.)

Remember to close the session at the end of the session.

```
with tf.Session() as sess:
    print(sess.run(c))
```

5

Example

```
import tensorflow as tf
    x = 2
    y = 3

add_op = tf.add(x, y, name = 'Add')
mul_op = tf.multiply(x, y, name = 'Multiply')
pow_op = tf.pow(add_op, mul_op, name = 'Power')
useless_op = tf.multiply(x, add_op, name = 'Useless')

with tf.Session() as sess:
    pow_out, useless_out = sess.run([pow_op, useless_op])

print(pow_out, useless_out)
```

15625 10

Graph

Variables

```
If x = {int} 2
If y = {int} 3
If add_op = {Tensor} Tensor("Add:0", shape=(), dtype=int32)
If mul_op = {Tensor} Tensor("Multiply:0", shape=(), dtype=int32)
If pow_op = {Tensor} Tensor("Power:0", shape=(), dtype=int32)
If useless_op = {Tensor} Tensor("Useless:0", shape=(), dtype=int32)
If pow_out = {int32} 15625
If useless_out = {int32} 10
```

TenforFlow 실행 구조

Session은 fetch와 feed 2가지 방법으로 처리

fetch: 한개 실행예시

■ Tensor에 할당되어야 실제 Session에서 실행됨.


```
import tensorflow as tf

with tf.Session() as sess:
    print(tf.add(1,1).eval())
```

Tensor를 기준으로 실행하 면 operation 영역을 실행 해서 결과를 보여줌

fetch: 여러 개 실행 예시

Session.run()에 list로 여러 개 실행되는 Tensor 처리

TensorFlow feed 실행 예시

■ Session은 *feed*일 경우는 반드시 **feed_dict**로 처리 값을 할당해야 함.

```
import tensorflow as tf
a = tf.placeholder('float')
b = tf.placeholder('float')
y = tf.multiply(a, b)
z = tf.add(y, y)
elems = tf.Variable([1.0, 2.0, 2.0, 2.0])
with tf.Session() as sess:
   sess.run(tf.global_variables_initializer())
   # feed로 호출하기
   print(sess.run(y, feed_dict={a:3, b:3}))
   #placeholder를 다시 사용할 때는 재할당 필요
   print(sess.run(z, feed_dict={a:4, b:4}))
   # fetch로 호출하기
   print(sess.run(elems))
```

9.0 32.0 [1. 2. 2. 2.]

feed

Session.run()에 list로 실행되는 Tensor 처리


```
import tensorflow as tf

input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
output = tf.multiply(input1, input2)

with tf.Session() as sess:
    print(sess.run([output], feed_dict={input1:[7,], input2:[2.]}))
```

[array([14.], dtype=float32)]

Tensor Types in TensorFlow

- TensorFlow does have its own data structure.
- TensorFlow programs use a tensor data structure to represent all data
- Only tensors are passed between operations in the computation graph.
- Commonly used in creating neural network models are namely Constant, Variable, and Placeholder.

Tensor Types in TensorFlow - Constant

- Is used as constants.
- Create a node
 - Takes value
 - Does not change.
- Can simply create a constant tensor using tf.constant.

```
tf.constant(value, dtype=None, shape=None, name='Const', verify_shape=False)
```

Tensor Types in TensorFlow – Constant (Cont.)

```
# create graph
a = tf.constant(2)
b = tf.constant(3)
c = a + b
# Launch the graph in a session
with tf.Session() as sess:
    print(sess.run(c))
```

5

Graph

Variables

```
a = {Tensor} Tensor("Const:0", shape=(), dtype=int32)
b = {Tensor} Tensor("Const_1:0", shape=(), dtype=int32)
c = {Tensor} Tensor("add:0", shape=(), dtype=int32)
```

Tensor Types in TensorFlow – Constant (Cont.)

```
# create graph
a = tf.constant(2, name='A')
b = tf.constant(3, name='B')
c = tf.add(a, b, name='Sum')
# Launch the graph in a session
with tf.Session() as sess:
    print(sess.run(c))
```

5

Graph

Variables

```
a = {Tensor} Tensor("A:0", shape=(), dtype=int32)
b = {Tensor} Tensor("B:0", shape=(), dtype=int32)
c = {Tensor} Tensor("Sum:0", shape=(), dtype=int32)
```

Tensor Types in TensorFlow – Constant (Cont.)

```
s = tf.constant(2.3, name='scalar', dtype=tf.float32)
m = tf.constant([[1, 2], [3, 4]], name='matrix')
# Launch the graph in a session
with tf.Session() as sess:
    print(sess.run(s))
    print(sess.run(m))
```

```
2.3
[[1 2]
[3 4]]
```

- Is stateful nodes which output their current value.
- Graph를 최적화하는 용도로 TensorFlow가(좀 더 정확히는 학습 함수들이) 학습한 결과를 갱신하기 위해 사용하는 변수
- 이 변수의 값들이 신경망의 성능을 좌우하게 됨.
- By default, gradient updates (used in all neural networks) will apply to all variables in graph.
- In fact, variables are the things that want to tune in order to minimize the loss.
- Creating a variables is an operation.

Create Variables

■ To create a variable, we should use tf. Variable as:

```
# Create a variable.
w = tf.Variable(<initial-value>, name=<optional-name>)
```

Some examples of creating scalar and matrix variables are as follows:

```
s = tf.Variable(2, name="scalar")
m = tf.Variable([[1, 2], [3, 4]], name="matrix")
W = tf.Variable(tf.zeros([784,10]))
```

Create Variables

- Calling tf. Variable to create a variable is the old way of creating a variable.
- TensorFlow recommends to use the tf.get_variable.

Create Variables

Some examples are as follows:

```
s = tf.get_variable("scalar", initializer=tf.constant(2))
m = tf.get_variable("matrix", initializer=tf.constant([[0, 1], [2, 3]]))
W = tf.get_variable("weight_matrix", shape=(784, 10), initializer=tf.zeros_initializer())
```

Initialize Variables

- Just like most programming languages, Variables need to be initialized before being used.
- To initialize variables, have to :
 - Invoke *a variable initializer* operation
 - Run the operation on the session.

Initialize Variables

Create two variables and add them together.

```
a = tf.get_variable(name="var_1", initializer=tf.constant(2))
b = tf.get_variable(name="var_2", initializer=tf.constant(3))
c = tf.add(a, b, name="Add1")

# Launch the graph in a session
with tf.Session() as sess:
    # now Let's evaluate their value
    print(sess.run(a))
    print(sess.run(b))
    print(sess.run(c))
```

FailedPreconditionError: Attempting to use uninitialized value

Initialize Variables

```
# create graph
a = tf.get_variable(name="A", initializer=tf.constant(2))
b = tf.get variable(name="B", initializer=tf.constant(3))
c = tf.add(a, b, name="Add")
# add an Op to initialize global variables
init op = tf.global variables initializer()
# launch the graph in a session
with tf.Session() as sess:
    # run the variable initializer operation
    sess.run(init op)
    # now let's evaluate their value
    print(sess.run(a))
    print(sess.run(b))
    print(sess.run(c))
```

Initialize Variables

Graph

Variables

```
a = {Variable} <tf.Variable 'A:0' shape=(2, 2) dtype=int32_ref>
b = {Variable} <tf.Variable 'B:0' shape=(2, 2) dtype=int32_ref>
c = {Tensor} Tensor("Add:0", shape=(2, 2), dtype=int32)
init_op = {Operation} name: "init"\nop: "NoOp"\ninput: "^A/A
```

biases = [0. 0. 0.]

```
# create graph
weights = tf.get variable(name="W", shape=[2,3], initializer=tf.truncated normal i
nitializer(stddev=0.01))
biases = tf.get_variable(name="b", shape=[3], initializer=tf.zeros_initializer())
# add an Op to initialize global variables
init op = tf.global variables initializer()
# launch the graph in a session
with tf.Session() as sess:
   # run the variable initializer
   sess.run(init op)
   # now we can run our operations
   W, b = sess.run([weights, biases])
    print('weights = {}'.format(W))
   print('biases = {}'.format(b))
weights = [[-0.00376599 -0.00506956 0.00082394]
```

Tensor Types in TensorFlow – Placeholder

- Is simply a variable to assign data in a future time.
- Graph에 사용할 입력값을 나중에 받기 위해 사용하는 매개 변수
- Is nodes whose value is fed in at execution time.

```
a = tf.placeholder(tf.float32, shape=[5])
b = tf.placeholder(dtype=tf.float32, shape=None, name=None)
X = tf.placeholder(tf.float32, shape=[None, 784], name='input')
Y = tf.placeholder(tf.float32, shape=[None, 10], name='label')
```

Tensor Types in TensorFlow – Placeholder (Cont.)

Create a constant vector and a placeholder and add them together.

```
a = tf.constant([5, 5, 5], tf.float32, name='A')
b = tf.placeholder(tf.float32, shape=[3], name='B')
c = tf.add(a, b, name="Add")
with tf.Session() as sess:
    print(sess.run(c))
```

■ InvalidArgumentError: You must feed a value for placeholder tensor 'B' with dtype float and shape [3] error

Tensor Types in TensorFlow – Placeholder (Cont.)

```
a = tf.constant([5, 5, 5], tf.float32, name='A')
b = tf.placeholder(tf.float32, shape=[3], name='B')
c = tf.add(a, b, name="Add")

with tf.Session() as sess:
    # create a dictionary:
    d = {b: [1, 2, 3]}
    # feed it to the placeholder
    print(sess.run(c, feed_dict=d))
```

[6. 7. 8.]

Tensor Types in TensorFlow – Placeholder (Cont.)

Graph

Variables

```
a = {Tensor} Tensor("A:0", shape=(3,), dtype=float32)
b = {Tensor} Tensor("B:0", shape=(3,), dtype=float32)
c = {Tensor} Tensor("Add:0", shape=(3,), dtype=float32)
d = {dict} {<tf.Tensor 'B:0' shape=(3,) dtype=float32>: [1, 2, 3]}
```

TensorFlow Strings

■ Python3에서는 문자열(str) unicode가 기본이므로 str에서 encoding 처리를 통해 bytes → Unicode 변환

```
import tensorflow as tf
sess = tf.Session()
hello = tf.constant('Hello, TensorFlow')
print(sess.run(hello))
print(str(sess.run(hello),encoding="utf-8"))
b'Hello, TensorFlow'
Hello, TensorFlow
```

TensorFlow 빌딩 / 실행 구조

■ TensorFlow는 빌딩구조와 실행구조에 대한 처리 순서

- 1. tensorflow 모듈을 가져 와서 tf 호출
- 2. x라는 상수 값을 만들고 숫자 값 35를 지정.
- 3. y라는 변수를 만들고 방정식 x + 5로 정의
- 4. global_variables_initializer로 변수를 초기화
- 5. 값을 계산하기 위한 세션 만들기
- 6. 4에서 만든 모델 실행
- 7. 변수 y 만 실행하고 현재 값을 출력

```
import tensorflow as tf
x = tf.constant(35, name='x')
y = tf.Variable(x + 5, name='y')
model = tf.global variables initializer()
with tf.Session() as session:
    session.run(model)
    print(session.run(y))
```

TensorFlow 빌딩 / 실행 구조

- TensorFlow는 빌딩구조와 실행구조가 분리
- Lazy Evaluation 방식
 - tensor와 tensor들이 연산들을 먼저 정의하여 Graph를 만들고, 그후 필요할 때 연산을 실행하는 코드를 넣어 '원하는 시점'에 실제 연산을 수행하도록 한다.
 - 함수형 언어에서 많이 사용
 - 실제 계산은 C++로 구현한 Core Library에서 수행하므로 비록 Python code이지만, 매우 뛰어난 성능을 얻을 수 있다.
 - Model 구성과 실행을 분리하여 프로그램을 좀더 깔끔하게 작성.

TensorFlow 빌딩 / 실행 구조

■ Graph의 실행은 Session안에서 이루어져야 하며, Session 객체와 run()을 사용

```
import tensorflow as tf
x2 = tf.linspace(-1.0, 1.0, 10)
print(x2)
g = tf.get default graph()
print([op.name for op in g.get operations()])
sess = tf.Session()
print(sess.run(x2))
sess.close()
Tensor("LinSpace:0", shape=(10,), dtype=float32)
['x', 'LinSpace/start', 'LinSpace/stop', 'LinSpace/num', 'LinSpace']
             -0.77777779 -0.55555558 -0.333333331 -0.11111111 0.11111116
  0.33333337 0.55555558 0.77777779 1.
```

TensorBoard 실행하기

```
import tensorflow as tf
2 \mid a = tf.add(1,2)
3 \mid b = tf.multiply(a, 3)
4 c = tf.add(4, 5)
5 \mid d = tf.multiply(c, 6)
6 \mid e = tf.multiply(4, 5)
7 \mid f = tf.math.divide(c, 6)
8 \mid g = tf.add(b, d)
9 g = tf.cast(g, dtype=tf.float64)
  h = tf.multiply(g, f)
   with tf.Session() as sess:
        writer = tf.summary.FileWriter(r'./graphs/sample', sess.graph)
12
        print(sess.run(h))
13
        writer.close()
14
```

TensorBoard 실행하기 (Cont.)

C:\PythonHome>tensorboard --logdir="./graphs/sample" --port 6007

assert 처리하기

■ assert()는 error가 발생할 때만 출력

```
assert 2 + 2 == 4, "Houston we've got a problem"
assert 2 + 2 == 3, "Houston we've got a problem"
```

AssertionError: Houston we've got a problem

assert 처리하기 (Cont.)

■ assert()는 operation 처리이므로 조건에 맞아 error 없이

처리됨.

```
import tensorflow as tf
   #tf.assert_negative(x, data=None, summarize=None, message=None, name=None)
   x = tf.constant([-2.25, -3.25])
   y = tf.assert_negative(x)
6
   #tf.assert_positive(x, data=None, summarize=None, message=None, name=None)
   xp = tf.constant([2.25, 3.25])
   yp = tf.assert_positive(xp)
10
   with tf.Session() as sess:
       print('y ', type(y))
       print(y.run())
       print('yp ', type(yp))
       print(yp.run())
```

```
y <class 'tensorflow.python.framework.ops.Operation'>
None
yp <class 'tensorflow.python.framework.ops.Operation'>
None
```

assert 처리하기 (Cont.)

■ assert()는 operation 처리이므로 조건에 맞지 않으면

error 처리됨.

```
import tensorflow as tf

#tf.assert_negative(x, data=None, summarize=None, message=None, name=None)

x = tf.constant([-2.25, -3.25])
y = tf.assert_negative(x)

#tf.assert_positive(x, data=None, summarize=None, message=None, name=None)
xp = tf.constant([-2.25, 3.25])
yp = tf.assert_positive(xp)

with tf.Session() as sess:
    print('y', type(y))
    print(y.run())
    print('yp', type(yp))
    print('yp', type(yp))
    print(yp.run())

y <class 'tensorflow.python.framework.ops.Operation'>
```

TensorFlow vs NumPy

- TensorFlow의 연산에서 사실상 많은 함수들이 numpy와 거의 비슷한 이름을 사용하고 있다.
- 따라서 numpy를 잘 안다는 것은 TensorFlow 연산을 잘 안다는 뜻이 된다.
- 또한, 실제 TensorFlow 연산은 많은 부분이 numpy와 같이 이루어지고 있어서 TensorFlow를 잘 쓰기 위해서는 numpy 공부도 할 필요가 있다.
- 다음 표는 TensorFlow의 형식과 연산에 대한 유사성을 표로 표시한 것이다.
- 또한, 이들 연산이 모두 행렬연산이라는 데 중요한 공통성이 있다.

TensorFlow vs NumPy (Cont.)

NumPy	TensorFlow
ndarray	tensor
a = np.zeros((2,2)); b = np.ones((2,2))	a = tf.zeros((2,2)); b = tf.ones((2,2))
a.shape	a.get_shape()
np.reshap(a, (1,4))	tf.reshape(a, (1, 4))
numpy.sum(b, axis=1)	tf.reduce_sum(a, reduction_indices[1])
numpy.mean()	tf.reduce_mean()
numpy.subtract()	tf.subtract()
numpy.sqrt()	tf.sqrt()
numpy.argmax()	tf.math.argmax()
numpy.argmin()	tf.math.argmin()
np.dot(a, b)	tf.matmul(a, b)

TensorFlow vs NumPy (Cont.)

■ 행렬에 대한 열축(reduction_indices = 1) 합산

```
import numpy as np
a = np.zeros((2,2))
print(a)
b = np.ones((2,2))
print(b)
# 열단위로 합산
print( np.sum(b, axis=1))
print(a.shape)
print(np.reshape(a, (1,4)))
[[ 0. 0.]
[ 0. 0.]]
[[1. 1.]]
 [ 1. 1.]]
[ 2. 2.]
(2, 2)
[[ 0. 0. 0. 0.]]
```

```
import tensorflow as tf
sess = tf.InteractiveSession()
a = tf.zeros((2,2))
b = tf.ones((2,2))
print(tf.reduce_sum(b, reduction_indices=1).eval())
print(a.get shape())
print(tf.reshape(a, (1, 4)).eval())
sess.close()
2. 2.
(2, 2)
[[ 0. 0. 0. 0.]]
```

TensorFlow vs NumPy (Cont.)

■ TensorFlow는 작성과 실행영역이 분리 되어 있음.

Python

```
c = 1
v = c + 10
print(v)
```

TensorFlow

```
import tensorflow as tf

c = tf.constant(1)
c10 = tf.constant(10)
v = tf.add(c,c10)

sess = tf.Session()
print(sess.run(v))
sess.close()
```

```
import tensorflow as tf

c = tf.constant(1)
c10 = tf.constant(10)
v = tf.Variable(0)
ca = tf.add(c,c10)
va = tf.add(v,ca)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
print(sess.run(va))

sess.close()
```

출력 지정하기

■ Session에서 실행된 결과를 출력 format에 맞춰서 출력하기

```
import tensorflow as tf
x = tf.placeholder(tf.float32)
y = tf.placeholder(tf.float32)
bias = tf.Variable(1.0)
y pred = x ** 2 + bias \# x -> x^2 + bias
loss = (y - y pred)**2  # L2 Loss?
with tf.Session() as session:
   #변수 초기화
    session.run(tf.global variables initializer())
   # OK, print 1.000 = (3**2 + 1 - 9)**2
    print('Loss(x,y) = \%.3f' \% session.run(loss, {x: 3.0, y: 9.0}))
    # OK, print 10.000; for evaluating y_pred only, input to y is not required
    print('pred_y(x) = \%.3f' \% session.run(y_pred, {x: 3.0}))
    # OK, print 1.000 bias evaluates to 1.0
    print('bias = %.3f' % session.run(bias))
Loss(x,y) = 1.000
```

Loss(x,y) = 1.000pred_y(x) = 10.000bias = 1.000

Introduction to TensorBoard

- Is a visualization software
- Comes with any standard TensorFlow installation.
- In Google's words:

"The computations you'll use TensorFlow for (like training a massive deep neural network) can be complex and confusing. To make it easier to understand, debug, and optimize TensorFlow programs, we've included a suite of visualization tools called TensorBoard."

- Was created as a way to help understand the flow of tensors in model → Can debug and optimize it.
- It is generally used for two main purposes:
 - Visualizing the Graph
 - Writing Summaries to Visualize Learning

- Need to add a very few lines of code to it.
- This will export the TensorFlow operations into a file, called event file (or event log file).
- TensorBoard is able to read this file and give insight into the model graph and its performance.

```
import tensorflow as tf

# create graph
a = tf.constant(2)
b = tf.constant(3)
c = tf.add(a, b)
# Launch the graph in a session
with tf.Session() as sess:
    print(sess.run(c))
```

- To visualize the program with TensorBoard, need to write log files of the program.
- To write event files, we first need to create a writer for those logs, using this code:

```
writer = tf.summary.FileWriter([logdir], [graph])
```

- [logdir]
 - Is the folder where want to store those log files.
 - Can choose [logdir] to be something meaningful such as './graphs'.
- [graph]
 - Is the graph of the program we're working on.

Visualizing the Graph

- There are two ways to get the graph:
- Call the graph using tf.get_default_graph()
 - Returns the default graph of the program
- Set it as sess.graph
 - Returns the session's graph (note that this requires us to already have created a session).

Visualizing the Graph

```
import tensorflow as tf
tf.reset default graph() # To clear the defined variables and operations of the
previous cell
# create graph
a = tf.constant(2)
b = tf.constant(3)
c = tf.add(a, b)
# creating the writer out of the session
# writer = tf.summary.FileWriter('./graphs', tf.get_default_graph())
# Launch the graph in a session
with tf.Session() as sess:
   # or creating the writer inside the session
   writer = tf.summary.FileWriter('./graphs', sess.graph)
    print(sess.run(c))
```

Visualizing the Graph

Now if run this code, it creates a directory inside your current directory (beside your Python code) which contains the *event file*.

Visualizing the Graph

- Next, go to Terminal and make sure that the present working directory.
 - \$ cd ~/PythonHome/tensorboard
- Then run:
 - \$ tensorboard --logdir="./graphs" --port
 6006

Visualizing the Graph

http://localhost:6006/

Visualizing the Graph

```
import tensorflow as tf
tf.reset_default_graph() # To clear the defined variables and operations of the
previous cell
# create graph
a = tf.constant(2, name="a")
b = tf.constant(3, name="b")
c = tf.add(a, b, name="addition")
# creating the writer out of the session
# writer = tf.summary.FileWriter('./graphs', tf.get default graph())
# Launch the graph in a session
with tf.Session() as sess:
    # or creating the writer inside the session
    writer = tf.summary.FileWriter('./graphs', sess.graph)
    print(sess.run(c))
```

Visualizing the Graph

Writing Summaries to Visualize Learning

- A special operation called *summary* to visualize the model parameters (like weights and biases of a neural network), metrics (like loss or accuracy value), and images (like input images to a network).
- Summary is a special TensorBoard operation
- Takes in a regular tenor
- Outputs the summarized data to your disk (i.e. in the event file).

Writing Summaries to Visualize Learning

- There are three main types of summaries:
- tf.summary.scalar
 - Used to write a single scalar-valued tensor (like classification loss or accuracy value)
- tf.summary.histogram
 - Used to plot histogram of all the values of a non-scalar tensor (like weight or bias matrices of a neural network)
- tf.summary.image
 - Used to plot images (like input images of a network, or generated output images of an autoencoder or a GAN)

Writing Summaries to Visualize Learning: tf.summary.scalar

- Writing the values of a scalar tensor that changes over time or iterations.
- In the case of neural networks (say a simple network for classification task), it's usually used to monitor the changes of loss function or classification accuracy.

Linear Regression

선형 회귀(Linear Regression)

- 시험 공부하는 시간을 늘리면 늘릴 수록 성적이 잘 나온다. 하루에 걷는 횟수를 늘릴 수록 몸무게는 줄어든다. 집의 평수가 클수록 집의 매매 가격은 비싼 경향이 있다.
- 위의 경우는 수학적으로 생각해보면 <u>어떤 요인의 수치에 따라서 특</u>정 요인의 수치가 영향을 받고 있다고 말할 수 있다.
- 즉, <u>어떤 변수의 값에 따라서 특정 변수의 값이 영향을 받고 있다</u>고 볼 수 있다.
- 다른 변수의 값을 변하게 하는 변수를 x, 변수 x에 의해서 값이 종속 적으로 변하는 변수 y라고 해보자.

선형 회귀(Linear Regression) (Cont.)

- 이때 변수 x의 값은 독립적으로 변할 수 있는 것에 반해, y값은 계속 해서 x의 값에 의해서, 종속적으로 결정되므로 x를 독립 변수, y를 종속 변수라고 한다.
- 앞의 예에서 시험 공부 시간은 독립 변수 x, 성적은 종속 변수 y라고 할 수 있다.
- 선형 회귀는 종속 변수 y와 한 개 이상의 독립 변수 x와의 선형 관계를 모델링하는 분석 기법이다.

단순 선형 회귀 분석(Simple Linear Regression Analysis)

■ 아래의 수식은 단순 선형 회귀의 수식이다.

$$y = Wx + b$$

- 여기서 독립 변수 x와 곱해지는 값 W를 Machine Learning에서는 가 중치(Weight), 별도로 더해지는 값 b를 편향(Bias)이라고 한다.
- 직선 방정식에서는 각각 <mark>직선의 기울기와 절편</mark>을 의미. W와 b가 왜 필요할까요? W와 b가 없이 y와 x란 수식은 y는 x와 같다는 하나의 식밖에 표현하지 못합니다.

단순 선형 회귀 분석(Simple Linear Regression

Analysis) (Cont.)

- W와 b가 왜 필요할까?
 - W와 b가 없이 y와 x란 수식은 y는 x와 같다는 하나의 식밖에 표현하지 못하기 때문이다.

$$y = x$$

- 여러 다양한 직선을 표현하기 위해서는 W와 b가 필요하다.
- W와 b가 x와 y의 관계를 모델링하는 값이다.
- W와 b의 값을 엉망으로 찾으면 x와 y의 관계를 찾아내지 못한다.
- 반대로 W와 b의 값을 제대로 찾으면 x와 y의 관계를 제대로 찾아내게 된다.

다중 선형 회귀 분석(Multiple Linear Regression Analysis)

- 가설 :
 - 집의 매매 가격은 단순히 집의 평수가 크다고 결정되는 게 아니다.
 - 집의 층의 수, 방의 개수, 지하철 역과의 거리와도 영향이 있는 것 같다.
 - 즉, 다수의 요소를 가지고 집의 매매 가격을 예측해본다면 보고 싶다면.
- y는 여전히 1개이지만 이제 x는 1개가 아니라 여러 개가 된다.
- 이것을 다중 선형 회귀 분석이라고 한다.

가설(Hypothesis) 세우기

- 어떤 학생이 공부 시간에 따라 다음과 같은 점수를 얻었다는 데이터 가 있다.
- 공부시간이 x라면, 점수는 y이다.

hours(x)	score(y)		
2	25		
3	50		
4	42		
5	61		

■ 좌표 평면에 그려보자.

단, 아래의 그래프에서 x와 y에 붙은 숫자는 서로 다른 독립 변수와
 종속 변수를 의미하는 것이 아니라, 단순 선형 회귀에서의 서로 다른

값을 의미한다.

- 이미 제시된 데이터로부터 x와 y의 관계를 유추하고, 이 학생이 6시 간을 공부하였을 때의 성적, 그리고 7시간, 8시간을 공부하였을 때의 성적을 예측해보고 싶다.
- x와 y의 관계를 유추하기 위해서 수학적으로 식을 세워보게 되는데 이 때 머신 러닝에서는 y와 x간의 관계를 유추한 식을 가설 (Hypothesis)이라고 한다.
- 아래의 H(x)에서 H는 Hypothesis를 의미한다.

$$H(x) = Wx + b$$

- 앞의 그림은 W와 b의 값에 따라서 천차만별로 그려지는 직선의 모습을 보여준다.
- 결국 선형 회귀는 주어진 데이터로부터 y와 x의 관계를 가장 잘 나타 내는 직선을 그리는 일을 말한다.
- 그리고 어떤 직선인지 결정하는 것은 W와 b의 값이므로 선형 회귀에서 해야 할 일은 결국 적절한 W와 b를 찾아내는 일이다.
- 그렇다면, 어떻게 적절한 W와 b를 찾을 수 있을까?

비용 함수(Cost function) : 평균 제곱 오차(MSE)

- Machine Learning은 W와 b를 찾기 위해서 <u>실제값과 가설로부터 얻</u>
 은 예측값의 오차를 계산하는 식을 세우고, 이 식의 값을 최소화하는 최적의 W와 b를 찾아낸다.
- 이 때 실제값과 예측값에 대한 오차에 대한 식을 목적 함수(Objective function) 또는 비용 함수(Cost function) 또는 손실 함수(Loss function)라고 한다.
- 목적 함수(Objective Function)
 - 함수의 값을 최소화하거나, 최대화하거나 하는 목적을 가진 함수
- 비용함수(Cost Function) or 손실함수(Loss Function)
 - 그 값을 최소화하려는 함수.

- 비용 함수는 단순히 실제값과 예측값에 대한 오차를 표현하면 되는 것이 아니라, 예측값의 오차를 줄이는 일에 최적화 된 식이어야 한다.
- 주로 평균 제곱 오차(Mean Squared Error, MSE)가 사용

- 처음에는 랜덤으로 선을 그린다.
- 이제 이 직선으로부터 서서히 W와 b의 값을 바꾸면서 정답인 직선을 찾아나간다.
- 사실 y와 x의 관계를 가장 잘 나타내는 직선을 그린다는 것은 앞의 그림에서 모든 점들과 위치적으로 가장 가까운 직선을 그린다는 것 과 같은 의미이다.
- 오차는 주어진 데이터에서 각 x에서의 실제값 y와 앞의 직선에서 예 측하고 있는 H(x)값의 차이를 말한다.
- 앞의 그림에서 ↓는 각 점에서의 오차의 크기를 보여준다.
- 이 오차를 줄여가면서 W와 b의 값을 찾아내기 위해서는 오차의 크기를 측정할 방법이 필요하게 된다.

- 오차의 크기를 측정하기 위한 가장 기본적인 방법은 각 오차를 모두 더하는 방법이 있다.
- 위의 y = 13x + 1 직선이 예측한 예측값을 각각 실제값으로부터 오 차를 계산하여 표를 만들어보면 아래와 같다.

hours(x)	2	3	4	5
실제값	25	50	42	61
예측값	27	40	53	66
오차	-2	10	-7	-5

- 그런데, 수식적으로 단순히 실제값 예측값을 수행하면 오차값이 음수가 나오는 경우가 생길 수 있다.
- 이럴 경우, 오차를 모두 더하면 제대로 된 오차의 크기를 측정할 수 없기 때문에, 보통 오차의 크기를 측정하기 위해서 모든 오차를 제곱 하여 더하는 방법을 사용한다.
- 앞의 그림에서의 모든 점과 직선 사이의 ↑ 거리를 제곱하고 모두 더 한다.
- 이를 수식으로 표현하면 아래와 같습니다.
- 단, 여기서 n은 갖고 있는 데이터의 개수를 의미합니다.

$$\sum_{i}^{n}\left[y_{i}-H(x_{i})
ight]^{2}$$

- 이 수식을 실제로 계산하면 각 오차를 제곱하여 더하면 되므로 4 + 100 + 49 + 25 = 178이 된다.
- 이때 데이터의 개수인 n으로 나누면, 오차의 제곱합에 대한 평균을 구할 수 있는데 이를 평균 제곱 오차(Mean Squared Error, MSE)라고 한다.

$$rac{1}{n}\sum_{i}^{n}\left[y_{i}-H(x_{i})
ight]^{2}$$

- 이를 실제로 계산하면 178을 4로 나눈 값인 44.5가 된다.
- 이는 y = 13x + 1의 예측값과 실제값의 평균 제곱 오차의 값이 44.5 임을 의미하는 것이다.
- 평균 제곱 오차는 적절한 W와 b를 찾기 위한 최적화된 식이다.
- 평균 제곱 오차를 W와 b에 의한 비용 함수(Cost function)로 재정의 해보면 다음과 같다.

$$cost(W,b) = \frac{1}{n} \sum_{i}^{n} \left[y_i - H(x_i) \right]^2$$

- 모든 점들과의 오차가 클 수록 평균 제곱 오차는 커지며, 오차가 작아 질 수록 평균 제곱 오차는 작아진다.
- 그러므로 이 평균 최곱 오차. 즉, Cost(W,b)를 최소가 되게 만드는 W 와 b를 구하면 결과적으로 y와 x의 관계를 가장 잘 나타내는 직선을 그릴 수 있게 된다.

 $W,b \rightarrow minimize\ cost(W,b)$

- 선형 회귀를 포함한 수많은 ML, DL의 학습은 결국 비용 함수를 최소 화하는 매개 변수인 W와 b을 찾기 위한 작업을 수행한다.
- 이때 사용되는 것이 옵티마이저(Optimizer) Algorithm이다.
- 최적화 알고리즘이라고도 부른다.
- 그리고 이 Optimizer Algorithm을 통해 적절한 W와 b를 찾아내는 과 정을 ML에서는 학습(Taining)이라고 부른다.
- 여기서는 가장 기본적인 Optimizer Algorithm인 경사 하강법 (Gradient Descent)에 대해서 다뤄보자.

- 경사 하강법을 이해하기 위해서 cost와 기울기 W와의 관계를 이해해 야 한다.
- W는 ML 용어로는 가중치라고 불리지만, 직선의 방정식 관점에서 보면 직선의 기울기를 의미한다.

- 앞의 그림에서 보면, 노란색선은 기울기 W가 20일 때, 초록색선은 기울기 W가 1일 때를 보여주고 있다.
- 이를 수식으로 바꾸면, 각각 y = 20x, y = x에 해당되는 직선이다.
- ↑는 각 점에서의 실제값과 두 직선의 예측값과의 오차를 보여준다.
- 기울기가 지나치게 크면 실제값과 예측값의 오차가 커지고, 기울기가 지나치게 작아도 실제값과 예측값의 오차가 커지는 것을 알 수 있다.
- 사실 b 또한 마찬가지인데 b가 지나치게 크거나 작으면 오차가 커지 게 된다.

- 간단하게 설명하기 위해, 편향 b가 없이 단순히 가중치 W만을 사용하면 y = Wx라는 가설 H(x)를 가지고, 경사하강법을 수행해보자.
- 비용 함수의 값 cost(W)는 cost라고 줄여서 표현해서 W와 cost의 관계를 그래프로 표현하면 오른쪽 그림과 같 다.

- 기울기 W가 무한대로 커지면 커질 수록 cost의 값 또한 무한대로 커지 고, 반대로 기울기 W가 무한대로 작아져도 cost의 값은 무한대로 커 지게 된다.
- 아래의 그래프에서 cost가 가장 작을 때는 맨 아래의 볼록한 부분이다.
- 기계가 해야할 일은 cost가 가장 최 소값을 가지게 하는 W를 찾는 일 이므로, 맨 아래의 볼록한 부분의 W의 값을 찾아야 한다.

- 기계는 임의의 랜덤값 W값을 정한 뒤에, 맨 아래의 볼록한 부분을 향 해 점차 W의 값을 수정해나간다.
- 옆의 그림은 W값이 점차 수정되는 과정을 보여준다.
- 이를 가능하게 하는 것이 경사 하 강법(Gradient Descent)이라고 한 다.
- 경사 하강법은 한 점에서의 순간 변화율 또는 다른 표현으로는 접선 에서의 기울기의 개념을 사용한다.

- 주목할 것은 맨 아래의 볼록한 부분으로 갈수록 접선의 기울기가 점 차 작아진다는 점이다.
- 결국, 맨 아래의 볼록한 부분에서는 결국 접선의 기울기가 0이 된다.
- 그래프 상으로는 초록색 화살표가 수평이 되는 지점을 말한다.
- 즉, cost가 최소화가 되는 지점은 접선의 기울기가 0이 되는 지점이며, 또한 미분값이 0이 되는 지점이다.
- 경사 하강법의 아이디어는 비용 함수(Cost function)를 미분하여 현재 W에서의 접선의 기울기를 구하고, 접선의 기울기가 낮은 방향으로 W의 값을 변경하고 다시 미분하고 이 과정을 접선의 기울기가 0인 곳을 향해 W의 값을 변경하는 작업을 반복하는 것에 있다.

옵티마이저(Optimizer) : 경사하강법(Gradient Descent) (Cont.)

■ 기존의 비용 함수(Cost function)는 다음과 같았다.

$$cost(W) = rac{1}{n} \sum_{i}^{n} \left[y_i - H(x_i)
ight]^2$$

- 이제 cost를 최소화하는 W를 구하기 위한 식은 다음과 같다.
- 해당 식은 접선의 기울기가 0이 될 때까지 반복한다.

$$W := W - \alpha \frac{\partial}{\partial W} cost(W)$$

옵티마이저(Optimizer) : 경사하강법(Gradient Descent) (Cont.)

- 앞의 식은 현재 W에서의 접선의 기울 기와 α와 곱한 값을 현재 W에서 빼서 새로운 W의 값으로 한다는 것을 의미 한다.
- α는 여기서 학습률(learning rate)이라 고 한다.
- 학습률 α은 W의 값을 변경할 때, 얼마 나 크게 변경할지를 결정하는 역할을 한다.

케라스로 구현하는 선형 회귀

- 앞의 식은 현재 W에서의 접선의 기울기와 α와 곱한 값을 현재 W에서 배서 새로운 W의 값으로 한다는 것을 의미한다.
- α는 여기서 학습률(learning rate)이라고 한다.
- 학습률 α은 W의 값을 변경할 때, 얼마나 크게 변경할지를 결정하는 역할을 한다.

Logistic Regression

로지스틱 회귀(Logistic Regression) - 이진 분류

■ 개요

- 일상 속 풀고자 하는 많은 문제 중에서는 두 개의 선택지 중에서 정답을 고르는 문제가 많다.
- 예를 들어 시험을 봤는데 이 시험 점수가 합격인지 불합격인지가 궁금할 수도 있고, 어떤 메일을 받았을 때 이게 정상 메일인지 스 팸 메일인지를 분류하는 문제도 그렇다.
- 이렇게 둘 중 하나를 결정하는 문제를 이진 분류(Binary Classification)이라고 하고, 이런 문제를 풀기 위한 대표적인 알고리즘으로 로지스틱 회귀(Logistic Regression)가 있다.

이진 분류(Binary Classification)

- 다음의 예를 보자.
 - 학생들이 시험 성적에 따라서 다음과 같은 결과를 얻었다는 데이터가 있다고 가정해보자.
 - 시험 성적이 x라면, 합격과 불합격 결과는 y가된다.
 - 이 시험의 커트라인은 공개되지 않았는데 이 데이터로부터 특정 점수를 얻었을 때의 합격, 불합격 여부를 판정하는 모델을 만들려고 한다.

score(x)	result(y)
45	불합격
50	불합격
55	불합격
60	합격
65	합격
70	합격

이진 분류(Binary Classification) (Cont.)

앞의 데이터에서 합격을 1, 불합격을 0이라고 하였을 때 그래프를 그려보면 아래와 같다.

이진 분류(Binary Classification) (Cont.)

- 이러한 점들을 표현하는 그래프는 알파벳의 S자 형태로 표현된다.
- 또한 이번 예제의 경우 실제값 y가 0 또는 1이라는 두 가지 값밖에 가지지 않으므로, 이 문제를 풀기 위해서는 예측값이 0과 1사이의 값을 가지도록 하는 것이 보편적이다.
- 즉, 0과 1사이의 값을 확률로 해석하면 문제를 풀기가 훨씬 용이해진 다.
- 0과 1사이의 값을 가지면서, S자 형태로 그려지는 이러한 조건을 충족하는 유명한 함수가 존재하는데, 바로 시그모이드 함수(Sigmoid function)이다.

시그모이드 함수(Sigmoid function)

- 이 문제에서 사용하게 될 Sigmoid 함수의 방정식은 아래와 같다.
- 종종 σ로 축약해서 표현하기도 한다.
- 이것은 앞의 문제를 풀기 위한 가설(Hypothesis)식이기도 하다.

$$H(X) = rac{1}{1 + e^{-(Wx+b)}} = sigmoid(Wx+b) = \sigma(Wx+b)$$

여기서 구해야 할 것은 여전히 주어진 데이터에 가장 적합한 가중치 W(weight)
 와 편향 b(bias)이다.

- Sigmoid 함수를 Python의 Matplotlib을 통해서 Graph로 표현하면 다음과 같다.
- 아래의 그래프는 W는 1, b는 0임을 가정한 그래프입니다.

```
import numpy as np # 념파이 사용
import matplotlib.pyplot as plt # 맷플롯립 사용
%matplotlib inline
def sigmoid(x):
   return 1/(1+np.exp(-x))
x = np.arange(-5.0, 5.0, 0.1)
y = sigmoid(x)
plt.plot(x, y, 'g')
plt.plot([0,0],[1.0,0.0], ':') # 가운데 점선 추가
plt.title('Sigmoid Function')
plt.show()
```


- 앞의 그래프를 통해 알 수 있는 것은 Sigmoid 함수는 출력값을 0과 1 사이의 값으로 조정하여 반환한다는 것이다.
- 마치 S자의 모양을 연상시킨다.
- x가 0일 때 0.5의 값을 가진다.
- x가 증가하면 1에 수렴한다.

■ W 의 값을 변화시키고 이에 따른 그래프를 확인해보자.

```
import numpy as np # 넘파이 사용
import matplotlib.pyplot as plt # 맷플롯립 사용
def sigmoid(x):
    return 1/(1+np.exp(-x))
x = np.arange(-5.0, 5.0, 0.1)
y1 = sigmoid(0.5*x)
y2 = sigmoid(x)
y3 = sigmoid(2*x)
plt.plot(x, y1, 'r', linestyle='--') # W의 값이 0.5일때
plt.plot(x, y2, 'g') # W의 값이 1일때
|plt.plot(x, y3, 'b', linestyle='--') # W의 값이 2일때
plt.plot([0,0],[1.0,0.0], ':') # 가운데 점선 추가
plt.title('Sigmoid Function')
plt.show()
```


- 앞의 그래프는
 - W의 값이 0.5일때 빨간색선,
 - W의 값이 1일때는 초록색선,
 - W의 값이 2일때 파란색선
- 이 나오도록 하였다.
- <u>W의 값이 커지면 경사가 커지고 W의 값이 작아지면 경사가</u> <u>작아진다</u>.

■ b의 값에 따라서 그래프가 어떻게 변하는지 확인해보자.

```
import numpy as np # 넘파이 사용
import matplotlib.pyplot as plt # ツ플旲림 사용
def sigmoid(x):
    return 1/(1+np.exp(-x))
x = np.arange(-5.0, 5.0, 0.1)
y1 = sigmoid(x+0.5)
y2 = sigmoid(x+1)
y3 = sigmoid(x+1.5)
plt.plot(x, y1, 'r', linestyle='--') \# x + 0.5
plt.plot(x, y2, 'g') \# x + 1
plt.plot(x, y3, 'b', linestyle='--') \# x + 1.5
plt.plot([0,0],[1.0,0.0], ':') # 가운데 점선 추가
plt.title('Sigmoid Function')
plt.show()
```


- 앞의 그래프는 b의 값에 따라서 그래프가 이동하는 것을 보여준다.
- 정리
 - Sigmoid 함수는 입력값이 커지면 1에 수렴하고, 입력값이 작아지면 0에 수렴한다.
 - 0부터의 1까지의 값을 가진다.
 - 출력값이 0.5 이상이면 1(True), 0.5이하면 0(False)로 만들면 이진 분류 문제로 사용할 수 있다.