Trajectory-based Event Detection

Purva Tendulkar

Chunhui Gu

Juan Carlos Niebles

Sinisa Todorovic

Counter Visit Detection: Task

"In a given store, for a customer, detect a counter-visit event."

A counter-visit event is defined as <Ts, Te, C>, where

Ts : start timestamp

• Te : end timestamp

• C : counter ID

Counter Visit Detection : Challenges

Multiple entries - ambiguity between event start and end timestamps

Localization errors - noise in trajectory

Confusion between nearby counters

Data

(x, y, t) trajectories only

Methods

Rule-based

State Machine

Input: x.y trajectory

Output : 4 states (out, in, enter, exit)

• Rules : Determine events from output

Two-stage model

• 3-layer hand-designed Conv nets

• Input: Fixed length x,y trajectory

Output :

Stage 1 : 4-class output (in, out, stay, background)

• Stage 2 : Pairing in and out events for the same counter

Temporal Convolution

Dilated Convolutional Layers

• Input: Fixed length x,y trajectory

• Output : Probability of event

RNN

• GRU

Input : Varying length x,y trajectories

Output : Score for presence at different counters

Methods

Rule-based

Two-stage model

Temporal Convolution

RNN

- State Machine
- Input : x.y trajectory
- Output: 4 states (out, in, enter, exit)
- Rules : Determine events from output
- 3-layer hand-designed Conv nets
- Input: Fixed length x,y trajectory
- Output :
 - Stage 1 : 4-class output (in, out, stay, background)
 - Stage 2 : Pairing in and out events for the same counter
- Dilated Convolutional Layers
- Input: Fixed length x,y trajectory
- Output : Probability of event
- GRU
- Input : Varying length x,y trajectories
- Output : Score for presence at different counters

RNN for Event Detection

Data Pre-processing

X 1	X 2	X 3	X 4	X 5	X 6	X 7	X 8	X 9	X 10	X 11	X 12	X 13	X 14
y 1	y 2	y 3	y 4	y 5	y 6	y 7	y 8	y 9	y 10	y 11	y 12	y 13	y 14

X 30	X 30	X 30
y 30	y 30	y 30

Trajectories

RNN Training Data C_{02} C_{04} C_{05} C_{06} **C**07 C_{04} C₀₅ C_{06} **C**07 C_{08} C_{01} C_{03} C_{02} C_{03} C₁₂ **C**16 **C**13 C₁₄ **C**15 C₁₆ **C**17 C₁₂ **C**13 C₁₄ C₁₅ C₁₇ C₁₈ n C_{n3} C_{n4} C_{n5} C_{n6} C_{n7} C_{n3} C_{n7} C_{n8} Co W*B Output W Cn В **GRU** W*B W Input В **X**1 **X**2 **X**3 **X**4 **X**5 **X**6 **X**7 **X**8 **X**9 **X**10 **X**11 **X**12 **X**13 **X**14 **X**15 **X**16 **X**17 **y**13 **y**17 ------

RNN Inference

C ₀₁	C ₀₂ C ₁₂	C ₀₃ C ₁₃	C ₀₄ C ₁₄	C ₀₅	C ₀₆ C ₁₆	C ₀₇	C ₀₈ C ₁₈	C ₀₉	C ₀₁₀ C ₁₁₀						C ₀₁₆ C ₁₁₆	C ₀₁₇ C ₁₁₇
C _{n1}	Cn2	Cn3	Cn4	Cn5	Cn6	Cn7	Cn8	Cn9	C _{n10}	C _{n11}	C _{n12}	C _{n13}	C _{n14}	C _{n15}	C _{n16}	C _{n17}

RNN Post-processing

argmax over probabilities

Results & Issues

Store Name	Benchmark Dates	Method	Counter Visit (tol=10s) (P/R)
CTF/beijing/xhm	20181207	Rule	0.83/0.84
		GRU	0.27/0.43

- Low performance on xy-based data
- Scalability issues
 - o Dependency on store layout
 - Separate training required for each store

Distance-based RNN

From (x,y) to Distance

Same Architecture

Results: xhm, wcc

Store Name	Benchmark Dates	Method	Counter Visit (tol=10s) (P/R)	Counter Visit (tol=30s) (P/R)
CTF/beijing/xhm	20181207	Rule	0.83/0.84	0.89/0.90
		GRU	0.88/0.91	0.95/0.98
	20181208	Rule	0.81/0.80	0.90/0.88
		GRU	0.82/0.88	0.89/0.94
	20190409	Rule	0.81/0.76	0.86/0.80
		GRU	0.83/0.81	0.87/0.88
CTF/beijing/wcc	20181006	Rule	0.79/0.78	0.86/0.85
		GRU (finetune)	0.93/0.96	0.96/0.97

Results : dfxtd, Inxsj

Store Name	Benchmark Dates	Method	Counter Visit (tol=10s) (P/R)	Counter Visit (tol=30s) (P/R)
CTF/beijing/dfxtd	20190409	Rule	0.86/0.86	0.91/0.90
		GRU (scratch)	0.71/0.73	0.78/0.81
		GRU (finetune)	0.73/0.66	0.80/0.74
		GRU (finetune + freeze)	0.79/0.78	0.87/0.86
CTF/guangzhou/Inxsj	20190409	Rule	0.76/0.79	0.85/0.89
		GRU (scratch)	0.65/0.53	0.74/0.63
		GRU (finetune)	0.76/0.68	0.82/0.74
		GRU (finetune + freeze)	0.82/0.71	0.86/0.76

Trajectory-based Intention Classification

Trajectory-based Intention Classification

"Classification of people based on intentions."

Understand Intentions

- Understanding clients
- Personalization

Learn Trends

- Mall business recommendations
- Research ideas

Motivation

Strong intention vs browsing

Specific category shopper

Intention based on previous store visits

Customer vs Staff classification

Customer-Staff Classification: Task

"Given the mall and the person's xy-trajectory, classify whether this person is a customer or staff member"

Customer Staff

Methods

Rule-based

RNN

- Adaboost
- Features (weak classifiers)
 - Hole count & percent
 - Hover count & percent
 - Retrace count & percent
 - Hole frequency
 - Hole duration
 - Total duration

- LSTM
- Features
 - Shifted (x,y)
 - Shifted t

Adaboost Features

Te - Ts **Total duration** Holes Hovering Retracing

RNN Architecture

RNN Training & Inference

Results

Methods	Metrics	Train	Val	Test
AdaBoost	P/R	0.79/0.67	0.88/0.76	0.68/0.41
	F	0.73	0.82	0.51
	Avg Accuracy	0.83	0.87	0.70
	All Accuracy	0.95	0.97	0.97
LSTM-2	P/R	0.80/0.65	0.65/0.61	0.50/0.34
	F	0.72	0.63	0.40
	Avg Accuracy	0.82	0.79	0.66
	All Accuracy	0.97	0.93	0.97

Issues & Next Steps

Issues

- Numbers not reliable; too much variation
- LSTM may be too hard to train from such less data
- Error cases not showing any trends

Next Steps

- Add some better features (e.g. visual)
- Add more training data
- Improve model or use model needing less data

Other Methods Tried (and not working well ..)

Different Architecture

- Classifier on final frame of visualization
- GRU-based
 - Making a customer/staff prediction at every timestep

Loss Function

- Exponential loss
- Features
 - \circ Shifted x, y: (Xt X0)
 - Velocity: (Xt Xt-1)
 - Smoothened velocity: (Xt Xc); c is a constant
 - \rightarrow Hovering: min (Xt Xt-k); k E K

Intention Classification: Next Directions

- Explore trajectories, and build on current setup
- Add visual information
- Use semantic information of store types
- Use layout of mall for mall-specific recommendations
- Understand intentions
 - Strong intention vs browsing
 - Specific category shopper
 - Intention based on previous store visits
 - Understanding preferences
 - Understanding typical behaviors of customers in different stores

Summary

"Set-up model architectures for handling trajectories, and set some baselines to explore interesting events."

Code

http://gitlab.aibee.cn/jcniebles/store-events http://gitlab.aibee.cn/ptendulkar/customer-staff-classification

Wiki

http://wiki.aibee.cn/pages/viewpage.action?spaceKey=EV&title=Trajectory-based+Event+Detection http://wiki.aibee.cn/pages/viewpage.action?pageId=16352152