Unit Root & Augmented Dickey-Fuller (ADF) Test

How to check whether the given time series is stationary or integrated?

Covariance Stationary series

- We know the statistical basis for our estimation and forecasting depends on series being covariance stationary.
- Actually we have modeled some non-stationary behavior. What kind?
- Models with deterministic trends. e.g. ARMA(1,1) with constant and trend:

$$y_t = c + \beta_1 * t + \phi y_{t-1} + \theta \varepsilon_{t-1} + \varepsilon_t$$

• Essentially we are using OLS to "detrend" the series so that the remaining stochastic process is stationary. $y_{t} - \beta_{1} * t = c + \phi y_{t-1} + \theta \varepsilon_{t-1} + \varepsilon_{t}$

Non-stationary series

- An alternative that describes well some economic, financial and business data is to allow a random (stochastic) trend.
- Turns out that data having such trends may need to be handled in a different way.

The random walk

The simplest example of a non-stationary variable

$$y_{t} = y_{t-1} + \varepsilon_{t}$$

$$\varepsilon_{t} : WN(0, \sigma^{2})$$

• This is an AR(1) process but with the one *root* of the process, phi, equal to one.

$$y_{t} = \phi y_{t-1} + \varepsilon_{t}$$

$$where \ \phi = 1$$

- Remember that for covariance stationarity, we said all roots of the autoregressive lag polynomial must be greater than 1
 - i.e, inverse roots "within the unit circle."

Unit Roots

$$y_{t} = y_{t-1} + \varepsilon_{t}$$

$$\varepsilon_{t} : WN(0, \sigma^{2})$$

- Because the autoregressive lag polynomial has one root equal to one, we say it has a *unit root*.
- Note that there is no tendency for mean reversion, since any epsilon shock to y will be carried forward completely through the unit lagged dependent variable.

The random walk

• Note that the RW is covariance stationary when differenced once. (Why?)

$$y_{t} = y_{t-1} + \varepsilon_{t}$$

$$\varepsilon_{t} : \overline{WN(0, \sigma^{2})}$$

$$y_{t} - y_{t-1} = y_{t-1} + \varepsilon_{t} - y_{t-1}$$

$$\beta y_{t} \Delta y_{t} = y_{t-1} + \varepsilon_{t} - y_{t-1} = \varepsilon_{t}$$

Integrated series

- Terminology: we say that y_t is **integrated of order** 1, $\underline{I}(1)$ "eye-one", because it has to be differenced once to get a stationary time series.
- In general a series can be I(d), if it must be differenced d times to get a stationary series.
- Some I(2) series occur (the price level may be one), but most common are I(1) or I(0) (series that are already cov. stationary without any differencing.)

Random walk with drift

Random walk with drift (<u>stochastic trend</u>)

$$y_{t} = \underbrace{\delta}_{t} + y_{t-1} + \varepsilon_{t}$$

$$\varepsilon_{t} : WN(0, \sigma^{2})$$

- Why is this analogous to a deterministic trend?
 - because y equals its previous value plus an additional δ increment each period.
- It is called a **stochastic trend** because there is non-stationary random behavior too

Problems with Unit Roots

- Because they are not covariance stationary unit roots require some special treatment.
 - Statistically, the existence of unit roots can be problematic because OLS estimate of the AR(1) coef. ϕ is biased.
 - In multivariate frameworks, one can get spurious regression results
 - So to identify the correct underlying time series model, we must test whether a unit root exists or not.

Unit root tests

• Recall the AR(1) process: $y_t = \phi y_{t-1} + \varepsilon_t$

$$y_{t-1} = \phi y_{t-1} - y_{t-1} + \varepsilon_t \qquad \varepsilon_t \sim N(0, \sigma^2)$$

• We want to test whether ϕ is equal to 1. Subtracting y_{t-1} from both sides, we can rewrite the AR(1) model as:

By or
$$\Delta(y_t) = y_t - y_{t-1} = (\phi - 1)y_{t-1} + \varepsilon_t$$

• And now a test of $\phi = 1$ is a simple t-test of whether the parameter on the "lagged level" of y is equal to zero. This is called a **Dickey-Fuller test.**

Dickey-Fuller Tests

- If a constant or trend belong in the equation we must also use D-F test stats that adjust for the impact on the distribution of the test statistic (* see problem set 3 where we included the drift/linear trend in the Augmented D-F test).
- The D-F is generalized into the Augmented D-F test to accommodate the general ARIMA and ARMA models.

Augmented Dickey-Fuller Tests

• If there are higher-order AR dynamics (or ARMA dynamics that can be approximated by longer AR terms). Suppose an AR(3)

$$y_{t} - \phi_{1}y_{t-1} - \phi_{2}y_{t-2} - \phi_{3}y_{t-3} = \varepsilon_{t}$$

• This can be written as a function of just y_{t-1} and a series of differenced lag terms:

$$y_{t} = (\phi_{1} + \phi_{2} + \phi_{3})y_{t-1} - (\phi_{2} + \phi_{3})(y_{t-1} - y_{t-2}) - \phi_{3}(y_{t-2} - y_{t-3}) + \varepsilon_{t}$$
$$y_{t} = \rho_{1}y_{t-1} + \rho_{2}\Delta y_{t-1} + \rho_{3}\Delta y_{t-2} + \varepsilon_{t}$$

Augmented Dickey-Fuller Tests

Note that the AR(3) equation

$$y_{t} - \phi_{1}y_{t-1} - \phi_{2}y_{t-2} - \phi_{3}y_{t-3} = \varepsilon_{t}$$

can be written in the backshift operator as:

$$\left(1 - \phi_1 B - \phi_2 B^2 - \phi_3 B^3\right) y_t = \varepsilon_t$$

Therefore the existence of a unit root B=1 means literally that B=1 is a solution of the AR polynomial equation: $1-\phi_1B-\phi_2B^2-\phi_3B^3=0$ Thus plugging in B=1 we have:

$$\rho_1 = \phi_1 + \phi_2 + \phi_3 = 1$$

Augmented Dickey-Fuller Tests

• So having a unit root means:

$$\rho_1 = 1$$

in
$$y_t = \rho_1 y_{t-1} + \rho_2 \Delta y_{t-1} + \rho_3 \Delta y_{t-2} + \varepsilon_t$$

Or equivalently,

$$1 - \rho_1 = 0$$

in:
$$\Delta y_t = (\rho_1 - 1)y_{t-1} + \sum_{j=2}^p \rho_j (\Delta y_{t-j+1}) + \varepsilon_t$$

• This is called the **augmented Dickey-Fuller** (ADF) test and implemented in many statistical and econometric software packages.

Unit root test, take home message

- It is not always easy to tell if a unit root exists because these tests have *low power* against near-unit-root alternatives (e.g. $\phi = 0.95$)
- There are also *size* problems (false positives) because we cannot include an infinite number of augmentation lags as might be called for with MA processes.
- However, the truth is that the ADF test is a critical tool we use to identify the underlying time series model. That is, do we have: ARMA, or trend + ARMA, or ARIMA?
- And if ARIMA, what is the order of the integration, d?
- In addition, as we have shown, we use an AR(k) to approximate an ARMA(p,q). And the ADF can help us zoom in to the right order of approximation, k.
- Please see Problem set 3 for ADF test in r.