Optimal Margin and Closest Points

Convex Hulls and Margins

Our goal for this section is to reduce the optimal margin problem for A^{\pm} to the problem of finding the closest points in the convex hulls $C(A^{\pm})$.

Solution

Optimal margin vs distance

Proposition: The optimal margin between linearly separable sets A^{\pm} is at most the distance between their convex hulls:

$$\underbrace{\tau(A^+, A^-)}_{\cdot} \le \min_{\substack{p \in C(A^+)\\ a \in C(A^-)}} \|p - q\|.$$

Proof:

- Choose a pair of functions $f^{\pm}(x) = w \cdot x B^{\pm}$ so that $f^{\pm}(x) = 0$ are supporting hyperplanes for A^{\pm} respectively.
- These are supporting hyperplanes for $C(A^{\pm})$ also.

• If
$$p$$
 and q are points in $C(A^+)$ and $C(A^-)$ then $w \cdot p - B^+ \ge 0$ and $w \cdot q - B^- \le 0$.

$$P \in C(A^-)$$

$$f = C(A^-)$$

$$f = C(A^-)$$

$$f = C(A^-)$$

$$f = C(A^-)$$

• So $w \cdot (p-q) \ge B^+ - B^- > 0$.

This is true for all w.

More on optimal margin and distance

Two Corollaries:

1. A^{\pm} are linearly separable if and only if the minimal distance between their convex hulls is greater than zero.

2. If we can find supporting hyperplanes $f^{\pm} = 0$ whose margin **equals** the minimal distance between the convex hulls, then those **must be at** the optimal margin.

Convex Hulls and Margins

Proposition: Let A^+ and A^- be two linearly separable sets.

1. There are points $p^* \in C(A^+)$ and $q^* \in C(A^-)$ so that

$$||p^* - q^*|| = D = \min_{\substack{p \in C(A^+) \ q \in C(A^-)}} ||p - q||.$$

Further, if (p_1^*, q_1^*) and (p_2^*, q_2^*) are two pairs of points with $D = ||p_1^* - q_1^*|| = ||p_2^* - q_2^*||$ then $p_1^* - q_1^* = p_2^* - q_2^*$.

Convex Hulls and Margins

2. Let

(a)
$$w = p^* - q^*$$

(b)
$$B^+ = w \cdot p^* \int$$

$$(c) B^{-} = w \cdot q^{*}.$$

(a)
$$w = p^* - q^*$$
 (b) $B^+ = w \cdot p^*$ (c) $B^- = w \cdot q^*$ (d) $f^{\pm}(x) = w \cdot x - B^{\pm}$

Then the hyperplanes $f^{\pm}(x) = 0$ are supporting hyperplanes for A^{\pm} respectively, and the associated margin

$$\tau_w(A^+, A^-) = \frac{B^+ - B^-}{\|w\|} = \|p^* - q^*\|$$

is optimal.

Solution

Closest points

Proposition: Let

$$D = \min_{\stackrel{p \in C(A^+)}{q \in C(A^-)}} \|p - q\|.$$

Then there exist points $p^* \in C(A^+)$ and $q^* \in C(A^-)$ so that $D = ||p^* - q^*||$.

Suppose further that there are two pairs of points (p_1^*, q_1^*) and (p_2^*, q_2^*) in $C(A^+) \times C(A^-)$ with $D = \|p_1^* - q_1^*\| = \|p_2^* - q_2^*\|$. Then $p_1^* - q_1^* = p_2^* - q_2^*$.

Proof of the closest point proposition

The function $f(p,q) = \|p - q\|$ on $C(A^+) \times C(A^-)$ is a continuous function on a compact set, so it attains its minimum.

Suppose
$$P_{1}^{*}, q^{*}$$
 and P_{2}^{*}, q^{*} have $D_{2}^{*}, q^{*}, q^{*} = 1$ $P_{2}^{*}, q^{*}, q^{*} = 1$ For $0 \le s \le 1$, let $p(s) = (1-s)p_{1}^{*} + sp_{2}^{*}$ $C(A^{+})$

and

$$q(s) = (1-s)q_1^* + sq_2^*$$
. $\subseteq C(A^-)$

These points are all in $C(A^+)$ and $C(A^-)$ respectively by convexity.

$$t(s) = ||p(s) - q(s)||^2.$$

We must have $t(s) \geq D^2$ for all s. On the other hand

$$\frac{d}{ds}t(s) = 2(p(s)-q(s))\frac{d}{ds}(p(s)-q(s)) = 2(p(s)-q(s))\cdot((p_2-q_2)-(p_1-q_1))$$

$$+(o) = t(v) - 0$$

$$+(s) + t(s) + t(s)$$

$$+(s) + t(s) + t(s) + t(s) + t(s)$$

Evaluate this at s = 0 and you get

$$\frac{d}{ds}t(s) = 2(\underbrace{p_1 - q_1}) \cdot ((\underbrace{p_2 - q_2}) - (\underbrace{p_1 - q_1})) = 2(v_1 \cdot v_2 - ||v_1||^2).$$
where $v_1 = \underbrace{p_1 - q_1}$ and $v_2 = p_2 - q_2$.

Remember that $||v_i||^2 = D^2$ for i = 1, 2 and note that, as a result, $v_1 \cdot v_2 \leq D^2$. Therefore

$$\begin{split} \frac{dt(s)}{ds}|_{s=0} &= 2(v_1 \cdot v_2 - \|v_1\|^2) \leq 0 \\ \|v_1 \cdot v_2\|_2 &= \|v_1\|\|v_2\|\cos \phi \leqslant D^2 \\ &= D^2 \quad \text{only if } v_1 = V_2. \end{split}$$

If the derivative of t(s) were negative, t(s) would be decreasing at s = 0 so there would be a point with s > 0 where t(s) < D. That can't happen, since D is the minimal distance, so $v_1 \cdot v_2 = D^2$ which means $v_1^* \cdot v_2^* = v_1^* \cdot v_2$

$$p_{1}^{*} - q_{1}^{*} = p_{2}^{*} - q_{2}^{*}.$$

$$p_{1}^{*} - q_{1}^{*} = p_{2}^{*} - q_{2}^{*}.$$

$$t(s) < D^{2}$$

$$t(s) < D^{2$$

Closest points yield optimal margin

Proposition: Let p and q be points in $C(A^+)$ and $C(A^-)$ respectively that minimize the distance between these two sets. Let w = p - q, $B^+ = w \cdot p$ and $B^- = w \cdot q$.

Define hyperplanes

$$f^{\pm}(x) = w \cdot x - B^{\pm} = 0.$$

Then $f^{\pm}=0$ are supporting hyperplanes for $C(A^{\pm})$ respectively and the associated margin

$$\tau_w(A^+, A^-) = \frac{B^+ - B^-}{\|w\|} = \|p - q\|$$

is optimal.

Proof of closest points yield optimal margin

First Part: $f^{\pm}(x) = 0$ are supporting hyperplanes.

Consider f^+ . If it is not a supporting hyperplane, there is a point $p' \in C(A^+)$ so that f(p') < 0.

Look at the line segment t(s) = (1 - s)p + sp' joining p to p', which lies inside $C(A^+)$.

Consider the distance $D(s) = ||t(s) - q||^2$ from points on this line segment to q.

We have

$$\frac{dD(s)}{ds}|_{s=0} = 2(p-q) \cdot (p'-p) = 2w \cdot (p'-p)$$

$$= 2((f^{+}(p') + B^{+}) - (f^{+}(p) + B^{+}))$$

$$= 2f^{+}(p')$$

$$< 0$$

As in earlier arguments, this is impossible since p is the closest point to q in $C(A^+)$.

Similarly, f^- is a supporting hyperplane.

Finishing the proof

Second Part: The margin is ||p - q||.

Remember that w = p - q. Then

$$\tau_w = \frac{B^+ - B^-}{\|w\|} = \frac{w \cdot (p - q)}{\|w\|} = \|p - q\|$$

This is as large as possible, so it is optimal.