LECTURE 31

Unit IV – FP Growth Algorithm & Evaluation of Association Patterns from Textbook

LECTURE 32

Cluster Analysis

Source: Chapter 10, Data Mining: Concepts and Techniques(3rd ed.)

Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: Basic Concepts
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Evaluation of Clustering
- Summary

What is Cluster Analysis?

- Cluster: A collection of data objects
 - similar (or related) to one another within the same group
 - dissimilar (or unrelated) to the objects in other groups
- Cluster analysis (or *clustering*, data segmentation, ...)
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- Unsupervised learning: no predefined classes (i.e., learning by observations vs. learning by examples: supervised)
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

Applications of Cluster Analysis

- Data reduction
 - Summarization: Preprocessing for regression, PCA, classification, and association analysis
 - Compression: Image processing: vector quantization
- Hypothesis generation and testing
- Prediction based on groups
 - Cluster & find characteristics/patterns for each group
- Finding K-nearest Neighbors
 - Localizing search to one or a small number of clusters
- Outlier detection: Outliers are often viewed as those "far away" from any cluster

Clustering: Application Examples

- Biology: taxonomy of living things: kingdom, phylum, class, order, family, genus and species
- Information retrieval: document clustering
- Land use: Identification of areas of similar land use in an earth observation database
- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- City-planning: Identifying groups of houses according to their house type, value, and geographical location
- Earth-quake studies: Observed earthquake epicenters should be clustered along continent faults
- Climate: understanding earth climate, find patterns of atmospheric and ocean
- Economic Science: market resarch

Basic Steps to Develop a Clustering Task

- Feature selection
 - Select info concerning the task of interest
 - Minimal information redundancy
- Proximity measure
 - Similarity of two feature vectors
- Clustering criterion
 - Expressed via a cost function or some rules
- Clustering algorithms
 - Choice of algorithms
- Validation of the results
 - Validation test (also, clustering tendency test)
- Interpretation of the results
 - Integration with applications

Quality: What Is Good Clustering?

- A good clustering method will produce high quality clusters
 - high intra-class similarity: cohesive within clusters
 - low inter-class similarity: distinctive between clusters
- The quality of a clustering method depends on
 - the similarity measure used by the method
 - its implementation, and
 - Its ability to discover some or all the <u>hidden</u> patterns

Measure the Quality of Clustering

Dissimilarity/Similarity metric

- Similarity is expressed in terms of a distance function, typically metric: d(i, j)
- The definitions of distance functions are usually rather different for interval-scaled, boolean, categorical, ordinal ratio, and vector variables
- Weights should be associated with different variables based on applications and data semantics

Quality of clustering:

- There is usually a separate "quality" function that measures the "goodness" of a cluster.
- It is hard to define "similar enough" or "good enough"
 - The answer is typically highly subjective

Considerations for Cluster Analysis

Partitioning criteria

 Single level vs. hierarchical partitioning (often, multi-level hierarchical partitioning is desirable)

Separation of clusters

 Exclusive (e.g., one customer belongs to only one region) vs. nonexclusive (e.g., one document may belong to more than one class)

Similarity measure

 Distance-based (e.g., Euclidian, road network, vector) vs. connectivity-based (e.g., density or contiguity)

Clustering space

 Full space (often when low dimensional) vs. subspaces (often in high-dimensional clustering)

Requirements and Challenges

Scalability

- Clustering all the data instead of only on samples
- Ability to deal with different types of attributes
- Numerical, binary, categorical, ordinal, linked, and mixture of these
- Constraint-based clustering
- User may give inputs on constraints
- Use domain knowledge to determine input parameters
- Interpretability and usability

Others

- Discovery of clusters with arbitrary shape
- Ability to deal with noisy data
- Incremental clustering and insensitivity to input order
- High dimensionality

Major Clustering Approaches (I)

Partitioning approach:

 Construct various partitions and then evaluate them by some criterion, e.g., minimizing the sum of square errors

Typical methods: k-means, k-medoids (Partitioning Around Medoids PAM), CLARA (Clustering LARge Applications) CLARANS(Clustering Large Applications based upon RANdomized Search)

Major Clustering Approaches (II)

- Hierarchical approach:
 - Create a hierarchical decomposition of the set of data (or objects) using some criterion
- Typical methods: DIANA (Divisive ANAlysis), AGNES (AGglomerative NESting), BIRCH(Balanced Iterative Reducing and Clustering using Hierarchies), CAMELEON(Multiphase Hierarchical Clustering Using Dynamic Modeling)
- Density-based approach:
 - Based on connectivity and density functions
- Typical methods: DBSCAN(Density-Based Spatial Clustering of Applications with Noise), OPTICS(Ordering Points to Identify the Clustering Structure), DenClue(Clustering Based on Density Distribution Functions

Major Clustering Approaches (III)

- Grid-based approach:
 - based on a multiple-level granularity structure
 - Typical methods: STING, WaveCluster, CLIQUE

Major Clustering Approaches (IV)

Model-based:

- A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other
- Typical methods: EM, SOM, COBWEB

Frequent pattern-based:

- Based on the analysis of frequent patterns
- Typical methods: p-Cluster

<u>User-guided or constraint-based:</u>

- Clustering by considering user-specified or application-specific constraints
- Typical methods: COD (obstacles), constrained clustering

Link-based clustering:

- Objects are often linked together in various ways
- Massive links can be used to cluster objects: SimRank, LinkClus

Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: Basic Concepts
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Evaluation of Clustering
- Summary

Partitioning Algorithms: Basic Concept

Partitioning method: Partitioning a database D of n objects into a set of k clusters, such that the sum of squared distances is minimized (where c_i is the centroid or medoid of cluster C_i)

$$E = \sum_{i=1}^{k} \sum_{p \in C_i} (d(p, c_i))^2$$

- Given k, find a partition of k clusters that optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: k-means and k-medoids algorithms
 - <u>k-means</u> (MacQueen'67, Lloyd'57/'82): Each cluster is represented by the center of the cluster
 - <u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw'87): Each cluster is represented by one of the objects in the cluster

The K-Means Clustering Method

- Given k, the k-means algorithm is implemented in four steps:
 - Partition objects into k nonempty subsets
 - Compute seed points as the centroids of the clusters of the current partitioning (the centroid is the center, i.e., mean point, of the cluster)
 - Assign each object to the cluster with the nearest seed point
 - Go back to Step 2, stop when the assignment does not change

An Example of *K-Means* Clustering

Until no change

the cluster of its

nearest centroid

Comments on the K-Means Method

- Strength: Efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n.
 - Comparing: PAM: $O(k(n-k)^2)$, CLARA: $O(ks^2 + k(n-k))$
- Comment: Often terminates at a local optimal
- Weakness
 - Applicable only to objects in a continuous n-dimensional space
 - Using the k-modes method for categorical data
 - In comparison, k-medoids can be applied to a wide range of data
 - Need to specify k, the number of clusters, in advance (there are ways to automatically determine the best k (see Hastie et al., 2009)
 - Sensitive to noisy data and *outliers*
 - Not suitable to discover clusters with non-convex shapes

Validity of clusters

- Why validity of clusters?
 - Given some data, any clustering algorithm generates clusters
 - So, we need to make sure the clustering results are valid and meaningful.
- Measuring the validity of clustering results usually involve
 - Optimality of clusters
 - Verification of meaning of clusters

Optimality of clusters

- Optimal clusters should
 - minimize distance within clusters (intracluster)
 - maximize distance between clusters (intercluster)
- Example of intracluster measure
 - Squared error se where m_i is the mean of all instances in cluster c_i

$$se = \sum_{i=1}^{k} \sum_{p \in c_i} ||p - m_i||^2$$

Weaknesses of k-means: Problems with outliers

(B): Ideal clusters

Weaknesses of k-means (cont ...)

■ The algorithm is sensitive to initial seeds.

53

Weaknesses of k-means (cont ...)

■ If we use different seeds: good results

Weaknesses of k-means (cont ...)

■ The *k*-means algorithm is not suitable for discovering clusters that are not hyper-ellipsoids (or hyper-spheres).

(A): Two natural clusters

(B): k-means clusters

What is the problem of k-Means Method?

- The k-means algorithm is sensitive to outliers!
 - Since an object with an extremely large value may substantially distort the distribution of the data.
- K-Medoids: Instead of taking the **mean** value of the object in a cluster as a reference point, **medoids** can be used, which is the **most centrally located** object in a cluster.

Termination conditions

Several possibilities, e.g.,

- A fixed number of iterations.
- Cluster partition unchanged.
- Centroid positions don't change.

K-means: summary

- Algorithmically, very simple to implement
- *K*-means converges, but it finds a local minimum of the cost function
- Works only for numerical observations
- *K* is a user input;
- Outliers can be considerable trouble to K-means

Variations of the K-Means Method

Most of the variants of the *k-means* which differ in

- Selection of the initial k means
- Dissimilarity calculations
- Strategies to calculate cluster means

Handling categorical data: *k-modes*

- Replacing means of clusters with modes
- Using new dissimilarity measures to deal with categorical objects
- Using a <u>frequency</u>-based method to update modes of clusters
- A mixture of categorical and numerical data: k-prototype method

PAM: A Typical K-Medoids Algorithm

