Let K_1 and K_2 be two camera matrices. We know that the fundamental matrix corresponding to these camera matrices is of the following from:

$$F = S_b R \tag{1}$$

where S_b is the matrix

$$S_b = \begin{pmatrix} 0 & b_y & -b_z \\ -b_y & 0 & b_x \\ b_z & -b_x & 0 \end{pmatrix}$$
 (2)

Assume that $K_1 = [I|0]$ and $K_2 = [\mathbf{R}|\mathbf{b}]$, where \mathbf{R} is a 3×3 (non-singular) matrix. Prove that the last column of K_2 , denoted by \mathbf{b} , is one of the epipoles.

Solution:

$$S_b = \begin{pmatrix} 0 & b_y & -b_z \\ -b_y & 0 & b_x \\ b_z & -b_x & 0 \end{pmatrix}$$

We know that the two epipoles of any stereo system can be expressed as: Fe' = 0; $F = S_b R$ and Fe = 0; $F^T = R^T S_b^T$

Since S_b is skew-symmetric, we have $S_b^T = -S_b$. Thus, we can simply plug in **b** for e and e':

$$F^{\mathsf{T}}b = R^{\mathsf{T}} S_b^{\mathsf{T}} b$$
$$= - R^{\mathsf{T}} S_b b$$
$$= - A \mathbf{0}$$

Since $S_b b = 0$, **b** must clearly be the epipole. Hence proved