Let V be a vector space over the field  $\mathbb{F}$ , and S a (non-empty) set. Let  $\mathcal{F}(S,V) = \{f : S \to V\}$  be the set of V-valued functions.

We define addition and scaling on  $\mathcal{F}(S, V)$  pointwise:

$$(f+g)(s) = f(s) + g(s)$$
$$(cf)(s) = cf(s)$$

We will verify some of the vector space axioms required to prove that  $\mathcal{F}(S,V)$  is a vector space over  $\mathbb{F}$ .

- (a) Why do these operations make sense?
- (b) Prove (using only the definitions above, and the fact that V is a vector space) that c(f+g)=cf+cg for all  $f,g\in\mathcal{F}(S,V)$  and  $c\in\mathbb{F}$ .
- (c) Prove that for all  $f \in \mathcal{F}(S, V)$  there exists  $g \in \mathcal{F}(S, V)$ , so that f + g = 0. (Here  $0: S \to V$  is the constant function defined by  $0(s) = 0_V$  for  $s \in S$ .)

Proof.

(a):

To show that these operations are well defined, notice that  $f(s), g(s) \in V$ , so by the axiom of closure on V we have that

$$(f+g)(s) = f(s) + g(s) \in V \text{ and } (cf)(s) = cf(s) \in V$$

(b):

We will do this by showing that for all  $s \in S$ , we have c(f(s) + g(s)) = cf(s) + cg(s). Fix  $s \in S$ . It follows that  $f(s), g(s) \in V$ , so by the axiom of distributivity in V, we have that

$$c(f(s) + g(s)) = cf(s) + cg(s)$$

(c)

Let  $f \in \mathcal{F}(S, V)$ . Choose  $g = (-1 \cdot f)$ . Then for all  $s \in S$ ,

$$f(s) + g(s) = f(s) + (-f(s)) = 0$$

as needed.

 $\Box$ 

Let 
$$W = \left\{ (x, y, z, w) \in \mathbb{Q}^4 \middle| \begin{array}{l} x + 5w = y + 5z \\ y = 4w - 3z \\ x + y + z = 3w \end{array} \right\}$$

Do not use Q3 to solve this problem. This problem is a "warm up" for Q3.

- (a) Rearrange the equations defining W to show that W is the set of solutions to a homogeneous system of equations.
- (b) Solve the system using row-reduction and express the general solution as a linear combination of the "basic solutions".
- (c) Show that  $W = \operatorname{span} S$ , for some set  $S \subseteq \mathbb{Q}^4$ .
- (d) Deduce that W is a subspace of  $\mathbb{Q}^4$ .

Proof.

(a):

Rearranging, the equations become

$$\begin{cases} x - y - 5z + 5w = 0 \\ y + 3z - 4w = 0 \\ x + y + z - 3w = 0 \end{cases}$$

(b):

The augmented matrix associated with this system of equations is

$$\begin{pmatrix}
1 & -1 & -5 & 5 & 0 \\
0 & 1 & 3 & -4 & 0 \\
1 & 1 & 1 & -3 & 0
\end{pmatrix}$$

Row reducing this, we get

$$\begin{pmatrix} 1 & -1 & -5 & 5 & 0 \\ 0 & 1 & 3 & -4 & 0 \\ 1 & 1 & 1 & -3 & 0 \end{pmatrix} \xrightarrow{r_3 \to r_3 - r_1} \begin{pmatrix} 1 & -1 & -5 & 5 & 0 \\ 0 & 1 & 3 & -4 & 0 \\ 0 & 2 & 6 & -8 & 0 \end{pmatrix} \xrightarrow{r_1 \to r_1 + r_2} \begin{pmatrix} 1 & 0 & -2 & 1 & 0 \\ 0 & 1 & 3 & -4 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

We parameterize z and w to obtain that

$$x = 2s - t$$

$$y = -3s + 4t$$

$$z = s$$

$$x = t$$

so the general solution of this system of equations is given by

$$\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = s \begin{pmatrix} 2 \\ -3 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ 4 \\ 0 \\ 1 \end{pmatrix}$$

Let 
$$S = \left\{ \begin{pmatrix} 2 \\ -3 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 4 \\ 0 \\ 1 \end{pmatrix} \right\}$$
. Let  $\vec{v} \in \text{span}S$ . It follows that

$$\vec{v} = s \begin{pmatrix} 2 \\ -3 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ 4 \\ 0 \\ 1 \end{pmatrix}$$

for some  $s, t \in \mathbb{Q}$ . But notice that this is actually a solution to the system in W, so  $\vec{v} \in W$ . Now let  $\vec{w} \in W$ , so  $\vec{w}$  solves the system of equations in W, but this means that we can write  $\vec{w}$  as a linear combination of the vectors in S, so  $\vec{w} \in \text{span}S$ , so W = spanS.

# (d):

By the previous part, W is actually a spanning set, and we know that all spanning sets are subspaces, so we conclude that W is a subspace of  $\mathbb{Q}^4$ .

 $\Box$ 

We now generalize Q2. Consider a linear system with m equations and n unknowns:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0$$

We saw in Week 3 that any solution  $x = (x_1, x_2, ..., x_n) \in \mathbb{F}^n$  can be expressed as  $x = \sum_{i=1}^k t_i x_i$ , where  $t_i \in \mathbb{F}$  are the parameters, and  $x_i \in \mathbb{F}^n$  are the "basic solutions". Let W be the set of solutions to this system.

- (a) Prove that  $W = \operatorname{span} S$  for some set S, and hence that W is a subspace of  $\mathbb{F}^n$ .
- (b) Prove that the set  $\{x_1, x_2, \dots, x_k\}$  is linearly independent. (Hint: Think about the variables which correspond to the choice of parameters. There is exactly one vector for each such parameter. Use the corresponding entry to show that if  $t_1x_1 + t_2x_2 + \dots + t_kx_k = 0$  then  $t_i = 0$  for each i.)
- (c) Find a basis for W.

Proof.

(a):

Let  $S = \{x_1, ..., x_k\}$ . We note that any linear combination of the vectors in S form a solution to the system, but not only that, any solution to the system can be written as a linear combination of these vectors, so span S = W.

(b)

Suppose that  $\sum_{i=1}^{k} t_i x_i = 0$ .

(c):

From part (a) and part (b), the set  $S = \{x_1, ..., x_k\}$  spans W and is linearly independent, which by definition forms a basis of W.

Is the set  $S = \{e_1 + 2e_2 - 3e_3, e_1 + e_2 - e_3, e_2 - e_3\} \subseteq \mathbb{Q}^3$  a basis for  $\mathbb{Q}^3$ ? Justify your answer

*Proof.* We claim that S is indeed a basis for  $\mathbb{Q}^3$ . For convenience, denote the vectors in S by  $v_1, v_2, v_3$  respectively. Notice that

$$e_1 = v_2 - v_3, \ e_2 = -v_1 + v_2 + 2v_3, \ e_3 = -v_1 + v_2 + v_3.$$

Thus, for any  $x \in \mathbb{Q}^3$ , since  $\{e_1, e_2, e_3\}$  is a basis for  $\mathbb{Q}^3$ , for some  $a, b, c \in \mathbb{Q}$ , we have that

$$x = ae_1 + be_2 + ce_3 = a(v_2 - v_3) + b(-v_1 + v_2 + 2v_3) + c(-v_1 + v_2 + v_3)$$

$$\implies x = (-b - c)v_1 + (a + b + c)v_2 + (-a + c)v_3$$

which shows that S spans  $\mathbb{Q}^3$ 

Now, for constants  $p, q, r \in \mathbb{Q}$ , suppose that

$$0 = pv_1 + qv_2 + rv_3$$

SUbstituting back our values, we get that

$$0 = p(e_1 + 2e_2 - 3e_3) + q(e_1 + e_2 - e_3) + r(e_2 - e_3)$$
  
=  $(p+q)e_1 + (2p+q+r)e_2 + (-3p-q-r)e_3$ 

By the linear independence of the standard vectors, we have that

$$p+q = 0$$

$$2p+q+r = 0$$

$$-3p-q-r = 0$$

We can solve for p, q, r to get that p = q = r = 0.

Thus we can conclude that S is a basis for  $\mathbb{Q}^3$ .

Γ

Let V be a finite dimensional vector space over a field  $\mathbb{F}$ .

- (a) Prove that if  $W \subseteq V$  is a subspace with basis  $\beta_W$ , then there exists a linearly independent set  $\alpha$  so that  $\beta = \beta_W \cup \alpha$  is a basis for V. (We say that  $\beta$  "extends"  $\beta_W$ . So you are proving that "every basis of a subspace W can be extended to a basis of V".)
- (b) Prove that for any linearly independent set I and spanning set S, we have  $|I| \leq \dim V \leq |S|$ .

Proof.

(a):

Let  $\gamma$  be a basis for V. Since  $\beta_W$  is linearly independent, we apply the Replacement Theorem to get that there exists a subset  $\alpha \subseteq \gamma$  such that  $\beta_W \cup \alpha$  is a basis for V, and we are done.

(b):

Let I be a linearly independent set. Then W = span(I) is a subspace of V with basis I. By part (a), we can extend I to a basis  $\beta$  of V, where  $\beta = I \cup \alpha$ . Since  $|\alpha| \ge 0$ , we have that

$$\dim V = |\beta| = |I| + |\alpha| \ge |I|$$

Now, let S be a spanning set of V. If dim V = 0, then  $V = \{0\}$  and its basis is  $\beta = \emptyset$ . S must be either  $\emptyset$  or  $\{0\}$ , so dim  $V \leq |S|$ .

If dim V > 0, it contains a non-zero vector, so S also contains a non-zero vector. Pick  $s_0 \in S$ , and note that  $S_0 = \{s_0\}$  is linearly independent.

If there are no elements  $w_i$  in S such that  $\{s_1, w_i\}$  is linearly independent, that is,  $s = c_i w_i$  for some  $c_i \in \mathbb{F}$ , then for all  $v \in V$ , because S is a spanning set, for m vectors in S we have that

$$v = \sum_{i=1}^{m} a_i w_i = \sum_{i=1}^{m} a_i \cdot c_i s_0$$

which implies that  $\operatorname{span}(\{s_0\}) = V$ , and the result that we want follows immediately after. If not, we can find another non-zero vector  $s_1$  so that  $S_1 = \{s_0, s_1\}$  is linearly independent. We repeat this process until we have a linearly independent set  $S_n = \{s_0, ..., s_n\}$ , where  $n = \dim V$ . We claim that  $S_n$  is a basis for V, and it suffices to show that  $S_n$  spans V. First, if  $S_n = S$ , then our result is immediate. Otherwise, let  $s_j \in S$  so that  $s_j \notin S_n$ . Consider the set  $S_n \cup \{s_j\}$ , whose number of elements is greater than dim V. By the first half of this proof, we know that no linearly independent set can have a size larger than dim V, so it must be true that  $S_n \cup \{s_j\}$  is linearly dependent. In particular, for constants  $a_j, a_{ij} \in \mathbb{F}$  not all zero,

$$0 = a_j s + \sum_{i=1}^n a_{ij} s_i.$$

Notice that  $a_i \neq 0$ , for if not, then we get that

$$0 = \sum_{i=1}^{n} a_{ij} s_i$$

which implies that every  $a_{ij} = 0$ : a contradiction. Thus we can rearrange for s to obtain

$$s = a_j^{-1} \sum_{i=1}^n a_{ij} s_i$$

Now, let  $v \in V$ . Since S spans V, we have that for m vectors  $s_i \in S$  and non-zero  $c_i \in \mathbb{F}$ ,

$$v = \sum_{j=1}^{m} c_j s_j = \sum_{j=1}^{m} \left( c_j \cdot a_j^{-1} \sum_{i=1}^{n} a_{ij} s_i \right)$$

which shows that v is a linear combination of the vectors in  $S_n$ , so  $S_n$  is a linearly independent spanning set for V. Therefore we can conclude that  $S_n$  is a basis for V and we are done.

П

Consider a matrix  $M \in \mathcal{M}_{n \times n}(\mathbb{F})$ . Given  $p \in \{1, \dots, n\}$  we can split M into "blocks":

$$M = \left(\begin{array}{c|c} A & B \\ \hline C & D \end{array}\right)$$

where A is  $k \times k$ , B is  $k \times (n-k)$ , C is  $(n-k) \times k$  and D is  $(n-k) \times (n-k)$ . For example, if n=5 and k=2, then such a block matrix would be of the form

$$M = \begin{pmatrix} 1 & 2 & 3 & 2 & 3 \\ -5 & 3 & 3 & 1 & 1 \\ \hline 1 & 2 & 0 & -1 & 1 \\ 3 & 1 & 3 & -1 & 7 \\ 1 & 0 & -1 & 3 & 5 \end{pmatrix}$$

where 
$$A = \begin{pmatrix} 1 & 2 \\ -5 & 3 \end{pmatrix}$$
,  $B = \begin{pmatrix} 3 & 2 & 3 \\ 3 & 1 & 1 \end{pmatrix}$ ,  $C = \begin{pmatrix} 1 & 2 \\ 3 & 1 \\ 1 & 0 \end{pmatrix}$ ,  $D = \begin{pmatrix} 0 & -1 & 1 \\ 3 & -1 & 7 \\ -1 & 3 & 5 \end{pmatrix}$ .

Prove that if  $M = \begin{pmatrix} A & B \\ \hline C & D \end{pmatrix}$  and  $N = \begin{pmatrix} A' & B' \\ \hline C' & D' \end{pmatrix}$ , then

$$\alpha M + N = \left( \begin{array}{c|c} \alpha A + A' & \alpha B + B' \\ \hline \alpha C + C' & \alpha D + D' \end{array} \right)$$

Proof.

Let  $W = \left\{ A \in \mathcal{M}_{2n \times 2n}(\mathbb{F}) \mid A = \left( \frac{X - X^T}{O_n} \middle| \frac{O_n}{X + X^T} \right) \text{ with } X \in \mathcal{M}_{n \times n}(\mathbb{F}) \right\}$ . (Assume char(\mathbb{F}) \neq 2.)

- (a) Let n=2. Find a basis for W.
- (b) Now generalize to arbitrary n. Find a basis for W, and use it to compute dim W.

Proof.

(a):

Let n=2. We claim that a basis for W is given by

For convenience, we label these matrices in order as  $f_1$ ,  $f_2$ ,  $f_3$ , and  $f_4$ . It is pretty clear that  $\beta$  is linear independent. To show that  $\beta$  is spanning, let  $A \in W$ . Then

$$A = \begin{pmatrix} X - X^T & 0_n \\ 0_n & X + X^T \end{pmatrix}, \text{ for some } X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_{n \times n}(\mathbb{F}).$$

We substitute a, b, c, d to get

$$A = \begin{pmatrix} 0 & b-c & 0 & 0\\ c-b & 0 & 0 & 0\\ 0 & 0 & 2a & b+c\\ 0 & 0 & b+c & 2d \end{pmatrix} = 2af_1 + bf_2 + cf_3 + 2df_4$$

so we can conclude that W is spanned by  $\beta$ 

(b):

Let  $n \in \mathbb{N}$ . We define  $e_{ij}$  to be the  $n \times n$  matrix with all its entries equal to 0 except the entry at the *i*th row and *j*th column. We claim that

$$\beta = \left\{ \left( \frac{e_{ij} - e_{ij}^T \mid 0_n}{0_n \mid e_{ij} - e_{ij}^T} \right), 1 \le i, j \le n \right\}$$

is a basis for W.

Similarly to the previous part, define each matrix associated with  $e_{ij}$  by  $f_{ij}$ . Let  $A \in W$ , so

$$A = \begin{pmatrix} X - X^T & 0_n \\ 0_n & X + X^T \end{pmatrix}, \text{ for an } n \times n \text{ matrix } X.$$

We can write X in terms of the basis for  $\mathcal{M}_{n\times n}(\mathbb{F})$  to obtain that

$$X = \sum_{i,j=1}^{n} c_{ij} e_{ij}.$$

By the linearity of matrix transposition, it follows that

$$A = \begin{pmatrix} \frac{\sum_{i,j=1}^{n} c_{ij} e_{ij} - \left(\sum_{i,j=1}^{n} c_{ij} e_{ij}\right)^{T} & 0_{n} \\ 0_{n} & \sum_{i,j=1}^{n} c_{ij} e_{ij} + \left(\sum_{i,j=1}^{n} c_{ij} e_{ij}\right)^{T} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{\sum_{i,j=1}^{n} c_{ij} e_{ij} - \sum_{i,j=1}^{n} c_{ij} e_{ij}^{T} & 0_{n} \\ 0_{n} & \sum_{i,j=1}^{n} c_{ij} e_{ij} + \sum_{i,j=1}^{n} c_{ij} e_{ij}^{T} \end{pmatrix}$$

$$= \sum_{i,j=1}^{n} c_{ij} \begin{pmatrix} e_{ij} - e_{ij}^{T} & 0_{n} \\ 0_{n} & e_{ij} + e_{ij}^{T} \end{pmatrix}$$

$$= \sum_{i,j=1}^{n} c_{ij} f_{ij}$$

so W is spanned by  $\beta$ .

To show independence, for constants  $c_{ij} \in \mathbb{F}$ , let

$$\sum_{i,j=1}^{n} c_{ij} f_{ij} = 0$$

We get that

$$\sum_{i,j=1}^{n} c_{ij} \left( \frac{e_{ij} - e_{ij}^{T} \mid 0_{n}}{0_{n} \mid e_{ij} + e_{ij}^{T}} \right) = 0$$

In order for this to be true, we must have that

$$\sum_{i,j=1}^{n} c_{ij} (e_{ij} - e_{ij}^{T}) = 0$$

and

$$\sum_{i,j=1}^{n} c_{ij} (e_{ij} + e_{ij}^{T}) = 0$$

We add both equations together to see that

$$2\sum_{i,j=1}^{n} c_{ij}e_{ij} = 0.$$

Since the  $e_{ij}$ 's form a basis on  $\mathcal{M}_{n\times n}(\mathbb{F})$ , it follows that  $c_{ij}=0$  for all i,j, and we are done.

- (a) Prove that if  $W_1, W_2 \subseteq V$  are subspaces, then  $W_1 + W_2$  is a subspace.
- (b) Let  $W_1 = \{(x, y, x + y) \in \mathbb{F}^3 \mid x, y \in \mathbb{F}\}$ . Find two subspaces  $W_2, W_3$  so that:
  - $W_1 + W_2 = \mathbb{F}^3$  but  $\mathbb{F}^3 \neq W_1 \oplus W_2$ .
  - $W_1 \oplus W_3 = \mathbb{F}^3$ .
- (c) Find another subspace  $U \subseteq \mathbb{F}^3$  so that  $W_1 \oplus U = \mathbb{F}^3$

Proof.

(a):

Let  $W_1, W_2$  be subspaces of V. We verify that  $W_1 + W_2$  is also a subspace of V. First, note that  $0 \in W_1, W_2$ , so  $0 + 0 = 0 \in W_1 + W_2$ . Next, let  $c \in \mathbb{F}$ ,  $\vec{v}, \vec{w} \in W_1 + W_2$ . Then  $\vec{v} = \vec{v}_1 + \vec{v}_2$  and  $\vec{w} = \vec{w}_1 + \vec{w}_2$ , for some  $\vec{v}_1, \vec{w}_1 \in W_1$  and  $\vec{v}_2, \vec{w}_2 \in W_2$ . Since  $W_1, W_2$  are subspaces, it is true that

$$c\vec{v_1} + \vec{w_1} \in W_1 \text{ and } c\vec{v_2} + \vec{w_2} \in W_2$$

which implies that

$$\vec{v} + \vec{w} = (c\vec{v_1} + \vec{w_1}) + (c\vec{v_2} + \vec{w_2}) \in W_1 + W_2,$$

verifying that  $W_1 + W_2$  is indeed a subspace

(b):

Let  $W_2 = \mathbb{F}^3$ ,  $W_3 = \operatorname{span}\{e_3\}$ . We start by showing that  $\mathbb{F}^3 = W_1 + W_2$ . The backward direction is instant so we will only show that  $\mathbb{F}^3 \subseteq W_1 + W_2$ .

Let  $x \in \mathbb{F}^3$ . We know that x is the same as 0 + x, and  $0 \in W_1$  and  $x \in W_2$ , so  $x \in W_1 + W_2$ . However,  $W_1 \subseteq W_2$ , so  $W_1 \cap W_2 = W_1 \neq \{0\}$ , so  $\mathbb{F}^3$  is not a direct sum of  $W_1$  and  $W_2$ .

Now, we will show that  $W_1 \oplus W_3 = \mathbb{F}^3$ . Again, the fact that  $W_1 + W_3 \subseteq \mathbb{F}^3$  is obvious. To show that  $\mathbb{F}^3 \subseteq W_1 + W_3$ , let  $(x, y, z) \in \mathbb{F}^3$ . Notice that

$$(x, y, z) = (x, y, x + y) + (0, 0, z - x - y)$$

and

$$(x, y, x + y) \in W_1$$
 and  $(0, 0, z - x - y) \in W_3$ 

so  $(x, y, z) \in W_1 + W_3$ .

Now let  $(a, b, c) \in W_1 \cap W_3$ . Then we have that a = b = 0, but this implies that c = a + b = 0, so (a, b, c) = 0. Thus  $W_1 \cap W_3 = \{0\}$  and we can conclude that  $\mathbb{F}^3 = W_1 \oplus W_2$ .

(c):

Let  $U = \text{span}\{(0,1,2)\}$ . We follow the same structure as before in part (b). Let  $(x,y,z) \in \mathbb{F}^3$ . We rewrite

$$(x,y,z) = (x,x+2y-z,2x+2y-z) + (0,-x-y+z,2(-x-y+z))$$

and note that  $(x, x + 2y - z, 2x + 2y - z) \in W_1$  and  $(0, -x - y + z, 2(-x - y + z)) \in W_2$ , so  $(x, y, z) \in W_1 + W_2$ .

Now, let  $(a, b, c) \in W_1 \cap W_2$ . Since  $(a, b, c) \in W_2$ , it must be true that a = 0 and 2b = c. At the same time, since  $(a, b, c) \in W_1$  we have that a + b = c, which implies that b = c, which can only be true if b = c = 0, so (a, b, c) = 0, thus showing that  $W_1 \oplus W_2 = \mathbb{F}^3$ .

12

Let V be a finite dimensional vector space over  $\mathbb{F}$ , and  $W_1, W_2 \subseteq V$  subspaces with bases  $\beta_1, \beta_2$  respectively. Prove that  $V = W_1 \oplus W_2$  if and only if  $\beta = \beta_1 \cup \beta_2$  is a basis for V.

*Proof.* Let  $m = |\beta_1|, k = |\beta_2|$ .

Suppose that  $V = W_1 \oplus W_2$ . We will show that  $\beta = \beta_1 \cup \beta_2$  is a basis for V.

Let  $x \in V$ . By our assumption,  $x = w_1 + w_2$ , for some  $w_1 \in W_1$  and  $w_2 \in W_2$ . These vectors can in turn be written as

$$w_1 = \sum_{i=1}^{m} a_i v_i \text{ and } w_2 = \sum_{i=1}^{k} b_i w_i$$

where  $v_i \in \beta_1$  and  $w_i \in \beta_2$ . Thus x can be written as a linear combination of vectors in  $\beta$ :

$$x = \sum_{i=1}^{m} a_i v_i + \sum_{i=1}^{k} b_i w_i$$

so  $\beta$  spans V.

To show that  $\beta$  is linearly independent, suppose that

$$\sum_{i=1}^{m} a_i v_i + \sum_{i=1}^{k} b_i w_i = 0$$

We put the vectors of each subspace on each side to get

$$\sum_{i=1}^{m} a_i v_i = -\sum_{i=1}^{k} b_i w_i$$

By the closure property of subspaces,  $\sum_{i=1}^{m} a_i v_i \in W_1$  and  $\sum_{i=1}^{k} b_i w_i \in W_2$ , but since they are equal, it must be true that  $\sum_{i=1}^{m} a_i v_i = \sum_{i=1}^{k} b_i w_i \in W_1 \cap W_2 = \{0\}$ , so  $\sum_{i=1}^{m} a_i v_i = \sum_{i=1}^{k} b_i w_i = 0$ . Since  $\beta_1, \beta_2$  are linearly independent, it must be true that  $a_i = 0$  and  $b_i = 0$ , which was what we wanted to show. Therefore  $\beta$  is indeed a basis for V.

Conversely, suppose that  $\beta$  is a basis for V. We want to show that  $V = W_1 \oplus W_2$ . It is obvious that  $W_1 + W_2 \subseteq V$ , so it suffices to prove that  $V \subseteq W_1 \oplus W_2$  and  $W_1 \cap W_2 = \{0\}$ . Let  $x \in V$ . Then since  $\beta$  is a basis, we have that

$$x = \sum_{i=1}^{m} a_i v_i + \sum_{i=1}^{k} b_i w_i$$
, for  $a_i, b_i \in \mathbb{F}, v_i \in \beta_1$ , and  $w_i \in \beta_2$ .

By closure, we have that  $\sum_{j=1}^{m} a_i v_i \in W_1$  and  $\sum_{j=1}^{k} b_i w_i \in W_2$ , so we see that  $x \in W_1 + W_2$ . Thus  $V = W_1 + W_2$ .

To show that  $W_1 \cap W_2 = \{0\}$ , it suffices to show that if  $x \in W_1 \cap W_2$ , then it must be true that x = 0. Indeed, if  $x \in W_1 \cap W_2$ , we can write it as a two linear combinations of vectors in either  $\beta_1$  or  $\beta_2$ :

$$x = \sum_{i=1}^{m} a_i v_i = \sum_{i=1}^{k} b_i w_i$$

$$\implies \sum_{i=1}^{m} a_i v_i - \sum_{i=1}^{k} b_i w_i = 0$$

By the linear independence of  $\beta$ , we have that  $a_i = 0$ , for all i, which means that x = 0, as desired, and the proof is complete.

1 /

Let 
$$J = \begin{pmatrix} O & -I_2 \\ \hline I_2 & O \end{pmatrix}$$
 and  $\mathbb{F} = \mathbb{C}$ 

- 1. Verify that  $J^2 = -I_4$ .
- 2. Find all  $X \in \mathcal{M}_{4\times 4}(\mathbb{F})$  so that XJ = JX.
- 3. Show that  $sp_4 = \{X \in \mathcal{M}_{4\times 4}(\mathbb{F}) | XJ = JX\}$  is a subspace of  $\mathcal{M}_{4\times 4}(\mathbb{F})$ .
- 4. Find dim  $sp_4$  by finding a basis for  $sp_4$ .

### Question 11.

Determine if the statements below are true or false. If true, give a proof. If false, explain why, and/or provide a counterexample.

- (a) Let V be a finite dimensional vector space over  $\mathbb{F}$ . If  $I \subseteq V$  is a linearly independent set so that for any  $x \in V \setminus I$ , the set  $I \cup \{x\}$  is linearly dependent, then I is a basis for V
- (b) Let V be a finite dimensional vector space over  $\mathbb{F}$ . If  $S \subseteq V$  is a spanning set so that  $|S| = \dim V$ , then S is a basis for V.
- (c) Let V be a finite dimensional vector space over  $\mathbb{F}$ . If  $W \subseteq V$  a subspace, then there exists a unique subspace  $U \subseteq V$  so that  $V = W \oplus V$ .