logo_uteq.png

PRÁCTICA No. XX TÍTULO DE LA PRÁCTICA

Manual de Prácticas de Laboratorio

Física Moderna — Ingeniería en Nanotecnología

DATOS GENERALES DE LA P<u>RÁCTICA</u>

Número de Práctica: XX Unidad Temática: Unidad X

Tema/Subtema: Subtema específico

Duración: XX minutos

Modalidad: Presencial asistida por tec-

nología

Simulador Principal: Nombre del si-

mulador

Tipo de Actividad: Trabajo colabora-

tivo

Tamaño de Equipo: 3-4 estudiantes

1. OBJETIVOS DE APRENDIZAJE

OBJETIVOS DE APRENDIZAJE

Al finalizar esta práctica, el estudiante será capaz de:

- Objetivo específico 1
- Objetivo específico 2
- Objetivo específico 3
- Objetivo específico 4
- Objetivo específico 5

2. COMPETENCIAS A DESARROLLAR

COMPETENCIAS A DESARROLLAR

Competencias Disciplinares: Competencias Transversales:

petencia disci<mark>plinar 1 Competencia transversal 1</mark>

petencia disci<mark>plinar 2 Competencia transversal 2</mark>

petencia disci<mark>plinar 3 Competencia transversal 3</mark>

Competencias Profesionales: Competencias Tecnológicas:

petencia profe<mark>sional 1 Competencia tecnológica 1 Competencia 1 Competencia tecnológica 1 Compet</mark>

petencia profe<mark>sional 2 Competencia tecnológica 2</mark>

petencia profe<mark>sional 3 Competencia tecnológica 4 Competencia 4 Compet</mark>

3. MATERIALES Y RECURSOS

MATERIALES Y RECURSOS

Recursos Tecnológicos:

Recursos Digitales:

- Computadora/tablet con navegador actualizado
- Conexión a Hatrangiesta galine específica

Simulador específico

Recurso complementario

Herramienta adicional

Materiales de Trabajo:

- Calculadora científica
- Hoja de trabajo impresa
- Material para gráficas

Documentos de Apoyo:

Manual de usuario del simulador

Simulador PhET: [URL específico]

- Tablas de constantes físicas
- Guía de análisis de datos

Material específico

Documento específico

4. MARCO TEÓRICO

MARCO TEÓRICO

Conceptos Fundamentales:

[Aquí se incluye una explicación concisa de los conceptos teóricos necesarios para la práctica, incluyendo:]

- Definiciones clave
- Ecuaciones fundamentales
- Principios físicos involucrados
- Relaciones matemáticas importantes

Ecuaciones Principales:

Ecuación 1:	$[Ecuaci\'on condescripci\'on]$	(1)
Ecuación 2:	$[Ecuaci\'on condescripci\'on]$	(2)
Ecuación 3:	$[Ecuaci\'on condescripci\'on]$	(3)

Conexión con Nanotecnología:

[Explicación de cómo los conceptos se relacionan con aplicaciones en nanotecnología]

5. INSTRUCCIONES GENERALES

INSTRUCCIONES

Antes de comenzar:

- 1. Formen equipos de 3-4 integrantes
- 2. Revisen el marco teórico y los objetivos de la práctica
- 3. Verifiquen el acceso al simulador: [URL específico]
- 4. Preparen los materiales de trabajo necesarios
- 5. Designen roles dentro del equipo (coordinador, secretario, analista, etc.)

Durante la práctica:

- 1. Sigan cuidadosamente las instrucciones de cada parte
- 2. Registren todas las observaciones y mediciones
- 3. Discutan los resultados en equipo antes de continuar
- 4. Consulten dudas con el instructor cuando sea necesario
- 5. Mantengan un registro ordenado de sus datos

Al finalizar:

- 1. Completen todas las secciones de análisis
- 2. Elaboren las conclusiones correspondientes
- 3. Preparen una breve presentación de sus resultados
- 4. Entreguen todos los materiales solicitados

6. DESARROLLO DE LA PRÁCTICA

6.1. PARTE 1: [TÍTULO DE LA PRIMERA PARTE]

6.1.1. Procedimiento:

Paso 1 detallado

Paso 2 detallado

Paso 3 detallado

Paso 4 detallado

Paso 5 detallado

6.1.2. Tabla de datos:

Parámetro 1	Parámetro 2	Parámetro 3	Resultado

6.1.3. Análisis de resultados:

cción	de	ana	lisis	J

acción de análisis 2

cción de análisis 3

cción de análisis 4

	PREGUNTAS DE ANÁLISIS		
	Preguntas de Análisis - Parte 1:		
regunta conce	eptual 1		
- 10	F		
regunta conce	ntual 2		
reguma conce	epiuai 2		
<u>.</u>			
gunta de aplic	ación 1		
Pregunta de sí	ntesis 1		
•			

6.2. PARTE 2: [TÍTULO DE LA SEGUNDA PARTE]

6.2.1. Procedimiento:

Paso 1 detallado

Paso 2 detallado

Paso 3 detallado

Paso 4 detallado

6.2.2. Tabla de datos:

Variable 1	Variable 2	Observación	Cálculo

	PREGUNTAS DE ANÁLISIS	
	Preguntas de Análisis - Parte 2:	
nta específica	parte 2	
Pregunta de	relación	
aplicación tecr	ológica	

6.3. PARTE 3: [TÍTULO DE LA TERCERA PARTE]

[Estructura similar para las partes adicionales que requiera la práctica]

7. APLICACIONES Y CASOS PRÁCTICOS

7.1. Aplicación en Nanotecnología:

[Descripción de cómo los conceptos estudiados se aplican específicamente en nanotecnología]

7.2. Caso de Estudio:

[Presentación de un caso real donde se utilicen los principios estudiados]

PREGUNTAS DE ANÁLISIS

Análisis del Caso de Estudio:

- 1. ¿Cómo se relacionan los resultados obtenidos con el caso presentado?
- 2. ¿Qué aplicaciones adicionales podrían derivarse de estos principios?
- 3. ¿Cuáles serían las ventajas y limitaciones de esta aplicación?

8. EVALUACIÓN FORMATIVA

EVALUACIÓN Y CRITERIOS

Autoevaluación: Marca con una X tu nivel de comprensión

Criterio	Excelente	Bueno	Regular	Necesito ayu	ıda
Comprendo los conceptos teóricos					
fundamentales					
Puedo utilizar el simulador co-					
rrectamente					
Analizo correctamente los datos					
obtenidos					
Relaciono la teoría con las aplica-					
ciones prácticas					
Trabajo efectivamente en equipo					

Coevaluación del Equipo:

- ¿Cómo calificarían el trabajo colaborativo del equipo? _____
- ¿Qué aspectos pueden mejorar para la siguiente práctica? _____
- ¿Todos los miembros participaron activamente? _____

9. CONCLUSIONES Y REFLEXIÓN

CONCLUSIONES Y REFLEXIÓN Síntesis de Resultados:

Conexión con Objetivos de Aprendizaje:

¿Cómo esta práctica contribuyó al logro de los objetivos planteados?

Elaboren un párrafo que resuma los principales hallazgos de la práctica:

Aplicaciones en Ingeniería en Nanotecnología:

¿Cómo pueden aplicar estos conocimientos en su futura práctica profesional?

Reflexión Personal:

¿Qué fue lo más interesante o desafiante de esta práctica?

10. ENTREGABLES Y CRITERIOS DE EVALUA-CIÓN

10.1. Entregables:

- 1. Hoja de trabajo completada con todos los datos y análisis
- 2. Gráficas elaboradas (digitales o manuales)
- 3. Reporte de conclusiones (máximo 1 página)

4. Presentación breve de resultados (3-5 minutos)

10.2. Criterios de Evaluación:

Criterio	Puntuación máxima	Puntuación obtenida
Recolección precisa de datos	20 puntos	
Análisis correcto de resultados	25 puntos	
Calidad de gráficas y presentación	15 puntos	
Respuestas a preguntas de análisis	25 puntos	
Conclusiones y reflexiones	15 puntos	
TOTAL	100 puntos	

11. RECURSOS COMPLEMENTARIOS

11.1. Enlaces y Simuladores:

■ Simulador principal: [URL específico]

complementario 1

complementario 2

complementario 3

11.2. Lecturas Recomendadas:

ncia bibliográfica 1

ncia bibliográfica 2

ncia bibliográfica 3

11.3. Videos Educativos:

ado 1 con duración

ado 2 con duración

ado 3 con duración

12. CONSTANTES Y FÓRMULAS DE REFEREN-CIA

NOTA IMPORTANTE

Constantes Físicas Fundamentales:

- Constante de Planck: $h = 6,626 \times 10^{-34} \text{ J} \cdot \text{s}$
- Constante de Boltzmann: $k_B = 1,381 \times 10^{-23} \text{ J/K}$
- Velocidad de la luz: $c = 3,00 \times 10^8$ m/s Conversión útil específica
- \bullet Carga del electrón: $e=1{,}602\times 10^{-19}~\mathrm{C}$
- \bullet Masa del electrón: Constante específica 2 $10^{-31}~{\rm kg}$

oecífica de la <mark>práctica</mark>

Constante específica 3

Universidad Tecnológica de Querétaro — Manual de Prácticas de Laboratorio Física Moderna — Cuatrimestre Mayo-Agosto 2025