Primeiros experimentos com o SICK-BR

Bruno Ferrari Guide

Orientador: Marcos Lopes Universidade de São Paulo

bruno.guide@usp.br

3 de dezembro de 2018

Tópicos

- 🕕 Introdução
- O Corpus
- Baselines
- Maive Bayes
- Infernal
- Resultados
- Conclusões e perspectivas

Introdução

Introdução

- Trabalho desenvolvido majoritariamente com o grupo responsável pela criação do SICK-BR
- Apresentação 2 em 1:
 - Primeiras rodadas de testes com modelos simples diversos usando esse corpus
 - Replicar os testes conduzidos por Fonseca, 2018 em um corpus diferente.

O Corpus

SICK-BR

pair_ID	sentence_A	sentence_8	entailment_label	relatedness_score	entailment_AB	entailment_BA	sentence_A_original sentence_B_csentence	e_ sentence	SemEval_set
	Um grupo de crianças está brinca	ncUm grupo de meninos em um q	NEUTRAL	4.5	A_neutral_B	B_neutral_A	A group of kids is play A group of bo FLICKR	FLICKR	TRAIN
t	Um grupo de crianças está brinca			3.2	A_contradicts_B	B_neutral_A	A group of children is A group of kid FLICKR	FLICIOR	TRAIN
	Os meninos jovens estão brincare	do As crianças estão brincando ao	« ENTAILMENT	4.7	A_entails_8	B_entails_A	The young boys are pl The kids are p FLICKR	FLICIOR	TRAIN
	Os meninos jovens estão brincano	So Não tem nenhum menino brinci	CONTRADICTION	3.6	A_contradicts_B	B_contradicts_A	The young boys are pl There is no bo FLICKR	FLICKR	TRIAL
	As crianças estão brincando ao ar	E Um grupo de crianças está brino	NEUTRAL	3.4	A_neutral_B	B_neutral_A	The kids are playing o A group of kid FLICKR	FLICKR	TRAIN
	Não tem nenhum menino brincar	di Um grupo de crianças está brino	NEUTRAL	3.3	A_neutral_B	B_neutral_A	There is no boy playin A group of kid FLICKR	FLICKR	TEST
	Um grupo de meninos em um qui	nt Os meninos jovens estão brinca	* NEUTRAL	3.7	A_neutral_B	B_neutral_A	A group of boys in a y The young bo-FLICKR	FLICKR	TEST
	Um grupo de crianças está brinca	nc Os meninos jovens estão brinca	* NEUTRAL	3	A_neutral_B	B_contradicts_A	A group of children is The young bo-FLICKR	FLICION	TEST
	Os meninos jovens estão brincare	de Um grupo de crianças está brino	NEUTRAL	3.7	A_neutral_B	B_neutral_A	The young boys are pl A group of kid FLICKR	FLICKR	TRAIN
10	Um cachorro castanho está ataca	in Um cachorro castanho está ata	CENTAILMENT	4.9	A_entails_8	B_neutral_A	A brown dog is attack A brown dog i FLICKR	FLICKR	TEST
11	Um cachorro castanho está ataca	sn Um cachorro castanho está aju	d NEUTRAL	3.665	A_neutral_B	B_neutral_A	A brown dog is attack A brown dog i FLICKR	FLICKR	TEST
2	Dois cachorros estão lutando	Dois cachorros estão lutando e	s NEUTRAL	4	A_neutral_B	B_neutral_A	Two dogs are fighting Two dogs are FLICKR	FLICKR	TRAIN
a	Dois cachorros estão lutando e sa	a Não tem nenhum cachorro luta	CONTRADICTION	3.3	A_contradicts_B	B_contradicts_A	Two dogs are wrestlir There is no doFLICKR	FLICTOR	TEST
4	Um cachorro castanho está ataca	in Dois cachorros estão lutando	NEUTRAL	3.5	A_neutral_B	B_neutral_A	A brown dog is attack Two dogs are FLICKR	FLICKS	TRAIN
15	Um cachorro castanho está ataca	in Não tem nenhum cachorro luta	n NEUTRAL	2.7	A_neutral_B	B_neutral_A	A brown dog is attack There is no do FLICKR	FLICKR	TEST
16	Dois cachorros estão lutando e se	¿ Um cachorro castanho está ata	CNEUTRAL	2.9	A_neutral_B	B_neutral_A	Two dogs are wrestlir A brown dog i FLICKR	FLICKR	TEST
17	Dois cachorros estão lutando e se	e Um cachorro castanho está aju	d NEUTRAL	2.3	A_neutral_B	B_neutral_A	Two dogs are wrestlir A brown dog i FLICKR	FLICKR	TEST
18	Um cachorro castanho está ataca	sn Dois cachorros estão lutando e	s NEUTRAL	3.2	A_neutral_B	B_neutral_A	A brown dog is attack Two dogs are FLICKR	FLICKR	TRAIN
9	Uma pessoa de blusa preta está f	az Um homem com uma jaqueta p	ENTALMENT	4.9	A_entails_B	B_entails_A	A person in a black jacA man in a bla FUCKR	FLICIOR	TEST
10	Não há nerhum homem de jaque	ta Uma pessoa de blusa preta está	CONTRADICTION	3.6	A_contradicts_B	B_contradicts_A	There is no man in a b A person in a I FLICKR	FLICIOR	TEST
1	Uma pessoa de blusa preta está f	az Uma pessoa em uma motocicle	t NEUTRAL	3	A_neutral_B	B_neutral_A	A person in a black jar A person on a FLICKR	FLICKR	TEST
2	Uma pessoa habilidosa está anda	ne Uma pessoa está andando de b	KENTAILMENT	4.3	A_entails_8	B_neutral_A	A skilled person is ridi A person is rid FLICKR	FLICKR	TEST
13	Ninguém está dirigindo uma bicic	lei Uma pessoa está andando de b	CONTRADICTION	4.1	A_contradicts_B	B_contradicts_A	Nobody is riding the b.A person is rid FLICKR	FLICKR	TEST
14	Uma pessoa de blusa preta está f	az Uma pessoa habilidosa está ano	NEUTRAL	3.4	A neutral B	B neutral A	A person in a black jar A skilled persc FLICKR	FLICIOR	TRIAL
5	Ninguém está dirigindo uma bicic	lei Uma pessoa de blusa preta está	NEUTRAL	2.8	A_contradicts_B	B_neutral_A	Nobody is riding the b.A person in a FLICKR	FLICKS	TRAIN
6	Uma pessoa está andando de bici	icí Um homem com uma jaqueta p	NEUTRAL	3.7	A_neutral_B	B_neutral_A	A person is riding the A man in a bla FLICKR	FLICKR	TRAIN
17	Uma pessoa está andando de bici	icí Não há nenhum homem de jaqu	NEUTRAL	3.2	A_neutral_B	B_neutral_A	A person is riding the There is no m. FLICKR	FLICKR	TEST
8	Uma pessoa em uma motocicleta	¿ Uma pessoa está andando de b	KNEUTRAL	3,4	A neutral B	B neutral A	A person on a black or A person is rid FLICKR	FLICKR	TRAIN

Figura: Amostra dos dados contidos no SICK-BR

Baselines

Baseline Majority

• Esse modelo classifica o par de sentenças de acordo com a classe mais presente no corpus de treinamento.

Baseline Overlap

- Esse modelo extrai dois features do corpus: a quantidade de palavras exclusivas da primeira sentença e a quantidade de palavras exclusivas da segunda.
- Os features então alimentam uma SVM para fazer a classificação.

O classificador Bayesiano Ingênuo (Ou naive bayes)

Bayes

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Figura: O teorema (ou regra) de Bayes

NB - vetor de características

- Para atribuir a probabilidade de um par de frases (p) ter como relação uma categoria (c), ou seja, para calcular P(c|p), o modelo trata cada sentença como um vetor de traços (\bar{p}) .
- Esses traços são as variáveis observadas, caso as palavras daquela sentença e o valor de similaridade entre as duas sentenças.
- Cada valor possível de cada traço tem uma probabilidade relacionada a cada categoria possível.
- Essas probabilidades são extraídas do corpus.

NB e SICK-BR: características

- dois grupos de Features foram testados nessa rodada. Um é o Bag-of-Words (BOW) e o outro a similaridade.
- BOW pois as duas sentenças foram consideradas um saco de palavras, informações sintáticas foram descartadas.
- No modelo BOW, Cada item do vocabulário (palavras únicas) do corpus de treinamento foi considerado um possível feature.
- As palavras contidas num par de sentenças qualquer entram como features para a classificação daquele par.

Infernal¹

¹Slides aproveitados de uma apresentação feita por Igor Câmara para o GLiC-USP

INFERNAL

- INFERence in NAtural Language. Desenvolvido na tese de doutorado de Erick Fonseca, defendida em 2018.
- Sistema de engenharia de atributos.
- No trabalho do Erick, o corpus utilizado foi o Assin, agora replico no SICK-BR.

INFERNAL: pré-processamento

Alguns procedimentos de pré-processamento

- Anotação de árvores sintáticas.
- Lematização das palavras (um dicionário de lemas + POS Tags para desambiguação)
- Detecção de entidades nomeadas (SpaCy)
- Alinhamentos lexicais (WordNet e PPDB Lexically-Expanded Paraphrase Database)

INFERNAL: atributos

Atributos

- BLEU métrica usada para avaliação de tradução. Calcula a sobreposição de n-gramas.
- Sobreposição de dependências para identificar fenômenos como voz ativa e passiva.
- Nominalização identifica a presença de um verbo e um substantivo derivado dele (exemplo: correr e corrida).
- Proporção e tamanho proporção entre quantidade de tokens de ambas as sentenças.
- Argumentos verbais correspondência de verbo com sujeito e objeto direto nas duas sentenças.

INFERNAL: atributos

- Negação: Se um verbo alinhado nas duas sentenças está negado em uma delas.
- Quantidades: quantidades (iguais ou diferentes) são usadas para se referir a uma palavra alinhada.
- Cosseno das sentenças onde o vetor de cada sentença é a média dos vetores de word embedding das palavras que a constituem.
- TED simples: valor de TED simples, considerando o custo de toda operação como 1. TED normal; normalizado pelo tamanho de cada sentença.

INFERNAL: atributos

- TED com distância de cosseno extensão da anterior que calcula custo de substituição como $1 \cos(w_1, w_2)$.
- **Sobreposição de palavras** Proporção de lemas em comum sobre o total de palavras de *T* e de *H*.
- Sobreposição de sinônimos Igual ao anterior, mas considerando toda palavra alinhada, não só as com lema idêntico.
- Sobreposição soft Idem ao anterior, mas considerando uma medida de similaridade, avaliado pelo cosseno das word embeddings.
- Entidades nomeadas identifica entidades nomeadas alinhadas ou desalinhadas nas duas sentenças.

Resultados

Resultado - Baselines

Baselines		
	Accuracy	F1
Majority	0.6311	0.48
Overlap	0.5687	0.24

Figura: Resultados dos modelos de Baseline no SICK-BR

Resultado - Naive Bayes no SICK-BR

0.8-0.2	Precisão	Cobertura	Acurácia	F
Média Base	0,5191	0,0290	0,5790	0,0361
D_Padrão Base	0,0875	0,1277	0,0520	0,1545
Média BOW	0,5167	0,0013	0,5683	0,0026
D_Padrão BOW	0,0513	0,0004	0,0125	0,0007
Média BOW-Sim	0,8350	0,6274	0,7651	0,6881
D_Padrão BOW-Sim	0,1764	0,1160	0,0809	0,0491
Média Sim	0,9072	0,5794	0,7974	0,7070
D_Padrão Sim	0,0121	0,0160	0,0097	0,0126

Figura: Resultados das versões de Naive Bayes desenvolvidas como primeiro teste no corpus SICK-BR

Resultado - Infernal no Assin

	Validação		PT-BR		PT-PT		Geral	
Modelo	Acurácia	\mathbf{F}_1	Acurácia	\mathbf{F}_1	Acurácia	\mathbf{F}_1	Acurácia	\mathbf{F}_1
Naive Bayes	80,30%	0,68	79,05%	0,62	80,05%	0,68	79,55%	0,65
RL	85,50%	0,72	87,30%	0,71	85,75%	0,72	86,52%	0,72
RL, balanceado	85,20%	0,74	85,00%	0,69	84,60%	0,74	84,80%	0,72
Random Forest	85,20%	0,72	86,20%	0,67	86,20%	0,74	86,20%	0,71
Gradient Boost	85,80%	0,73	86,35%	0,67	86,10%	0,74	86,22%	0,71
SVM	85,60%	0,73	86,90%	0,70	85,75%	0,73	86,33%	0,72
SVM, balanceado	$80,\!20\%$	0,69	$79{,}20\%$	0,64	80,95%	0,71	80,08%	0,68
L2F/INESC-ID	_	_	85,85%	0,66	84,90%	0,71	_	
Baseline	81,40%	0,69	82,80%	0,64	81,75%	0,7	82,27%	0,67

Figura: Resultados de modelos baseados nos features do Infernal no Assin

Infernal no SICK-BR

	Gradiant Boosting Classifier		Logistic Regression		Naive Bayes - G	nussian	Random Forest		SVM	
	Accuracy	F1-macro	Accuracy	F1-macro	Accuracy	F1-macro	Accuracy	F1-macro	Accuracy	F1-macro
test	75.03%	0.708	72.77%	0.663	64.86%	0.621	74.46%	0.709	74.66%	0.696
trial	75.15%	0.708	72.53%	0.647	64.04%	0.6	76.36%	0.726	74.34%	0.689

Figura: Resultados de modelos baseados nos features do Infernal no SICK-BR

Conclusões e perspectivas

BOW e Similaridade

- Bag of Words é um modelo com desempenho fraco.
- A similaridade é uma boa variável para a tarefa, no entanto é uma medida *muito* problemática.

Assin e SICK

- Os resultados foram parecidos em ambos os corpora.
- Uma questão que aparece nessas análises iniciais é a de que o SICK-BR ganharia muito se fosse maior.
- De modo geral os resultados mostram que o SICK-BR é uma ferramenta tão boa quanto o Assin para a tarefa.

Próximos passos

- Analisar os erros e acertos do Infernal no Sick-BR
- Testar outros modelos.
- Desenvolver estratégias para aumentar o tamanho do Sick-BR de modo consistente, mantendo a qualidade do Corpus.

Obrigado!