

CLAIM AMENDMENTS

1. **(Previously Presented)** A method of inhibiting histone deacetylation activity in cells comprising contacting the cells with an effective amount of a compound of formula (I), thereby treating one or more disorders mediated by histone deacetylase; said compound having the following formula:

wherein

A is a cyclic moiety selected from the group consisting of aryl, or heteroaryl; the cyclic moiety being optionally substituted with alkyl, alkenyl, alkynyl, alkoxy;

each of Y¹ and Y², independently, is a bond;

L is a straight C₂₋₁₂ hydrocarbon chain containing at least one double bond, at least one triple bond, or at least one double bond and one triple bond; said hydrocarbon chain being optionally substituted with C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ alkoxy, hydroxyl, halo, amino, nitro, cyano, C₃₋₅ cycloalkyl, 3-5 membered heterocycloalkyl, monocyclic aryl, 5-6 membered heteroaryl, C₁₋₄ alkylcarbonyloxy, C₁₋₄ alkyloxycarbonyl, C₁₋₄ alkylcarbonyl, or formyl; and further being optionally interrupted by -O-, -N(R^e)-, -N(R^e)-C(O)-O-, -O-C(O)-N(R^e)-, -N(R^e)-C(O)-N(R^f)-, or -O-C(O)-O-; each of R^e and R^f, independently, being hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl;

X¹ is O or S; and

X² is -OR¹, -SR¹, -NR³-OR¹, -NR³-SR¹, -C(O)-OR¹, -CHR⁴-OR¹, -N=N-C(O)-N(R³)₂, or -O-CHR⁴-O-C(O)-R⁵, where each of R¹ and R², independently, is hydrogen, alkyl, hydroxylalkyl, haloalkyl, or a hydroxyl protecting group; R³ is hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, haloalkyl, or an amino protecting group; R⁴ is hydrogen, alkyl, hydroxylalkyl, or haloalkyl; and R⁵ is alkyl, hydroxylalkyl, or haloalkyl;

or a salt thereof; and

determining whether the level of acetylated histones in the treated cells is higher than in untreated cells under the same conditions.

2. **(Original)** The method of claim 1, wherein X¹ is O.
3. **(Withdrawn)** The method of claim 1, wherein X¹ is S.
4. **(Original)** The method of claim 1, wherein X² is -OR¹, -NR³-OR¹, -C(O)-OR¹, -CHR⁴-OR¹, or -O-CHR⁴-O-C(O)-R⁵.
5. **(Original)** The method of claim 1, wherein X² is -OR¹, -NR³-OR¹, -C(O)OR¹, or -O-CHR⁴-O-C(O)-R⁵.
6. **(Original)** The method of claim 1, wherein each of Y¹ and Y², independently, is -CH₂-, -O-, -N(R^c)-, or a bond.
7. **(Original)** The method of claim 1, wherein each of Y¹ and Y², independently, is -CH₂- or a bond.
8. **(Canceled)**
9. **(Canceled)**
10. **(Original)** The method of claim 1, wherein L is an unsaturated hydrocarbon chain containing at least one double bond and no triple bond.
11. **(Withdrawn)** The method of claim 10, wherein L is an unsaturated C₄₋₈ hydrocarbon chain substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or -N(C₁₋₂ alkyl)₂.
12. **(Original)** The method of claim 10, wherein the double bond is in trans configuration.

13. **(Withdrawn)** The method of claim 1, wherein L is an unsaturated hydrocarbon chain containing at least one double bond and one triple bond.
14. **(Withdrawn)** The method of claim 13, wherein L is an unsaturated C₄₋₈ hydrocarbon chain substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or -N(C₁₋₂ alkyl)₂.
15. **(Withdrawn)** The method of claim 13, wherein the double bond is in trans configuration.
16. **(Canceled)**
17. **(Previously Presented)** The method of claim 1, wherein A is phenyl.
18. **(Previously Presented)** The method of claim 1, wherein A is phenyl optionally substituted with alkyl alkenyl, alkynyl, or alkoxy.
19. **(Canceled)**
20. **(Canceled)**
21. **(Withdrawn)** The method of claim 18, wherein L is an unsaturated C₄₋₈ hydrocarbon chain containing at least one double bond and no triple bond, said unsaturated hydrocarbon chain optionally substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or -N(C₁₋₂ alkyl)₂.
22. **(Withdrawn)** The method of claim 21, wherein X¹ is O; X² is -OR¹, -NR³-OR¹, -C(O)OR¹, or -O-CHR⁴-O-C(O)-R⁵; and each of Y¹ and Y², independently, is -CH₂-, -O-, -N(R^c)-, or a bond.
23. **(Withdrawn)** The method of claim 18, wherein L is an unsaturated hydrocarbon chain containing at least one double bond and one triple bond, optionally substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or -N(C₁₋₂ alkyl)₂.

24. **(Withdrawn)** The method of claim 23, wherein X¹ is O; X² is -OR¹, -NR³-OR¹, -C(O)OR¹, or -O-CHR⁴-O-C(O)-R⁵; and each of Y¹ and Y², independently, is -CH₂-, -O-, -N(R^c)-, or a bond.

Claims 25-32 (Canceled)

33. **(Withdrawn)** The method of claim 32, wherein A contains only double bonds.

34. **(Withdrawn)** The method of claim 33, wherein L is a saturated C₃₋₈ hydrocarbon chain optionally substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or -N(C₁₋₂ alkyl)₂.

35. **(Withdrawn)** The method of claim 34, wherein X¹ is O; X² is -OR¹, -NR³-OR¹, -C(O)OR¹, or -O-CHR⁴-O-C(O)-R⁵; and each of Y¹ and Y², independently, is -CH₂-, -O-, -N(R^c)-, or a bond.

36. **(Withdrawn)** The method of claim 33, wherein L is an unsaturated C₄₋₈ hydrocarbon chain containing only double bonds, said unsaturated hydrocarbon chain optionally being substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or -N(C₁₋₂ alkyl)₂.

37. **(Withdrawn)** The method of claim 36, wherein X¹ is O; X² is -OR¹, -NR³-OR¹, -C(O)OR¹, or -O-CHR⁴-O-C(O)-R⁵; and each of Y¹ and Y², independently, is -CH₂-, -O-, -N(R^c)-, or a bond.

38. **(Withdrawn)** The method of claim 33, wherein L is an unsaturated C₄₋₈ hydrocarbon chain containing at least one double bond and one triple bond, said unsaturated hydrocarbon chain optionally being substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or -N(C₁₋₂ alkyl)₂.

39. **(Withdrawn)** The method of claim 38, wherein X¹ is O; X² is -OR¹, -NR³-OR¹, -C(O)OR¹, or -O-CHR⁴-O-C(O)-R⁵; and each of Y¹ and Y², independently, is -CH₂-, -O-, -N(R^c)-, or a bond.
40. **(Currently Amended)** The method of claim 1, wherein said compound is 5-phenyl-2,4-pentadienoic acid, 3-methyl-5-phenyl-2,4-pentadienoic acid, 4-methyl-5-phenyl-2,4-pentadienoic acid, 4-chloro-5-phenyl-2,4-pentadienoic acid, ~~5-(4-dimethylaminophenyl)-2,4-pentadienoic acid~~, 5-phenyl-2-en-4-yn-pentanoic acid, 6-phenyl-3,5-hexadienoic acid, 7-phenyl-2,4,6-heptatrienoic acid, 8-phenyl-3,5,7-octatrienoic acid, cinnamoylhydroxamic acid, methylcinnamoylhydroxamic acid, 5-phenyl-2,4-pentadienoylhydroxamic acid, N-methyl-5-phenyl-2,4-pentadienoylhydroxamic acid, 3-methyl-5-phenyl-2,4-pentadienoylhydroxamic acid, 4-methyl-5-phenyl-2,4-pentadienoyl hydroxamic acid, 4-chloro-5-phenyl-2,4-pentadienoylhydroxamic acid, ~~5-(4-dimethylaminophenyl)-2,4-pentadienoylhydroxamic acid~~, 5-phenyl-2-en-4-yn-pentanoylhydroxamic acid, or N-methyl-6-phenyl-3,5-hexadienoylhydroxamic acid.
41. **(Previously Presented)** The method of claim 1, wherein said compound is 5-phenyl-2,4-pentadienoic acid, 8-phenyl-3,5,7-octatrienoic acid, 5-phenyl-2,4-pentadienoylhydroxamic acid, or 7-phenyl-2,4,6-hepta-trienoylhydroxamic acid.
42. **(Original)** The method of claim 1, wherein the cells are treated with a compound of formula (I) in vivo.
43. **(Withdrawn)** The method of claim 1, wherein the cells are treated with a compound of formula (I) in vitro.
44. **(Original)** The method of claim 1, wherein the cells being treated are cancerous.
45. **(Canceled)**
46. **(Previously Presented)** The method of claim 1, wherein the disorder is cancer.

47. (Withdrawn) A method of inhibiting histone deacetylase in cells comprising contacting the cells with an effective amount of a compound of formula (I):

wherein

A is phenyl optionally substituted with alkyl alkenyl, alkynyl, alkoxy, hydroxyl, hydroxylalkyl, halo, haloalkyl, or amino;

each of Y¹ and Y², independently, is -CH₂-, -O-, -S-, -N(R^c)-, or a bond; where R^c is hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl;

L is a straight C₂₋₁₂ hydrocarbon chain optionally containing at least one double bond, at least one triple bond, or at least one double bond and one triple bond; said hydrocarbon chain being optionally substituted with C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ alkoxy, hydroxyl, halo, amino, nitro, cyano, C₃₋₅ cycloalkyl, 3-5 membered heterocycloalkyl, monocyclic aryl, 5-6 membered heteroaryl, C₁₋₄ alkylcarbonyloxy, C₁₋₄ alkyloxycarbonyl, C₁₋₄ alkylcarbonyl, or formyl; and further being optionally interrupted by -O-, -N(R^e)-, -N(R^e)-C(O)-O-, -O-C(O)-N(R^e)-, -N(R^e)-C(O)-N(R^f)-, or -O-C(O)-O-; each of R^e and R^f, independently, being hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl;

X¹ is O or S; and

X² is -OR¹, -SR¹, -NR³-OR¹, -NR³-SR¹, -C(O)-OR¹, -CHR⁴-OR¹, -N=N-C(O)-N(R³)₂, or -O-CHR⁴-O-C(O)-R⁵; where each of R¹ and R², independently, is hydrogen, alkyl, hydroxylalkyl, haloalkyl, or a hydroxyl protecting group; R³ is hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, haloalkyl, or an amino protecting group; R⁴ is hydrogen, alkyl, hydroxylalkyl, or haloalkyl; R⁵ is alkyl, hydroxylalkyl, or haloalkyl; and provided that when L is a C₂₋₃ hydrocarbon containing no double bonds and X² is -OR¹, Y¹ is not a bond and Y² is not a bond;

or a salt thereof; and

determining whether the level of acetylated histones in the treated cells is higher than in untreated cells under the same conditions.

48. **(Withdrawn)** The method of claim 47, wherein L is a saturated C₃₋₈ hydrocarbon chain substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or -N(C₁₋₂ alkyl)₂.

49. **(Withdrawn)** The method of claim 48, wherein X¹ is O; X² is -OR¹, -NR³-OR¹, -C(O)OR¹, or -O-CHR⁴-O-C(O)-R⁵; and each of Y¹ and Y², independently, is -CH₂-, -O-, -N(R^a)-, or a bond.

50. **(Withdrawn)** The method of claim 47, wherein L is an unsaturated C₄₋₈ hydrocarbon chain containing only double bonds, said unsaturated hydrocarbon chain optionally substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or -N(C₁₋₂ alkyl)₂.

51. **(Withdrawn)** The method of claim 50, wherein X¹ is O; X² is -OR¹, -NR³-OR¹, -C(O)OR¹, or -O-CHR⁴-O-C(O)-R⁵; and each of Y¹ and Y², independently, is -CH₂-, -O-, -N(R^c)-, or a bond.

52. **(Withdrawn)** The method of claim 47, wherein L is an unsaturated hydrocarbon chain containing at least one double bond and one triple bond, optionally substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or -N(C₁₋₂ alkyl)₂.

53. **(Withdrawn)** The method of claim 53, wherein X¹ is O; X² is -OR¹, -NR³-OR¹, -C(O)OR¹, or -O-CHR⁴-O-C(O)-R⁵; and each of Y¹ and Y², independently, is -CH₂-, -O-, -N(R^c)-, or a bond.

Claims 54-66 (Cancelled)

67. **(Previously Presented)** The method of claim 40, wherein said compound is 5-phenyl-2,4-pentadienoic acid.

68. **(Previously Presented)** The method of claim 40, wherein said compound is 3-methyl-5-phenyl-2,4-pentadienoic acid.
69. **(Previously Presented)** The method of claim 40, wherein said compound is 4-methyl-5-phenyl-2,4-pentadienoic acid.
70. **(Previously Presented)** The method of claim 40, wherein said compound is 4-chloro-5-phenyl-2,4-pentadienoic acid.
71. **(Withdrawn)** The method of claim 40, wherein said compound is 5-(4-dimethylaminophenyl)-2,4-pentadienoic acid.
72. **(Previously Presented)** The method of claim 40, wherein said compound is 5-phenyl-2-en-4-yn-pentanoic acid.
73. **(Previously Presented)** The method of claim 40, wherein said compound is 6-phenyl-3,5-hexadienoic acid.
74. **(Previously Presented)** The method of claim 40, wherein said compound is 7-phenyl-2,4,6-heptatrienoic acid.
75. **(Previously Presented)** The method of claim 40, wherein said compound is 8-phenyl-3,5,7-octatrienoic acid.
76. **(Previously Presented)** The method of claim 40, wherein said compound is cinnamoylhydroxamic acid.
77. **(Previously Presented)** The method of claim 40, wherein said compound is methyl-cinnamoylhydroxamic acid.

78. **(Previously Presented)** The method of claim 40, wherein said compound is 5-phenyl-2,4-pentadienoylhydroxamic acid.

79. **(Previously Presented)** The method of claim 40, wherein said compound is N-methyl-5-phenyl-2,4-pentadienoylhydroxamic acid.

80. **(Previously Presented)** The method of claim 40, wherein said compound is 3-methyl-5-phenyl-2,4-pentadienoylhydroxamic acid.

81. **(Previously Presented)** The method of claim 40, wherein said compound is 4-methyl-5-phenyl-2,4-pentadienoyl hydroxamic acid.

82. **(Previously Presented)** The method of claim 40, wherein said compound is 4-chloro-5-phenyl-2,4-pentadienoylhydroxamic acid.

83. **(Withdrawn)** The method of claim 40, wherein said compound is 5-(4-dimethylaminophenyl)-2,4-pentadienoylhydroxamic acid.

84. **(Previously Presented)** The method of claim 40, wherein said compound is 5-phenyl-2-en-4-yn-pentanoylhydroxamic acid.

85. **(Previously Presented)** The method of claim 40, wherein said compound is N-methyl-6-phenyl-3,5-hexadienoylhydroxamic acid.