EXERCISES 4.3

Evaluate the limits in Exercises 1-32.

$$1. \lim_{x \to 0} \frac{3x}{\tan 4x}$$

2.
$$\lim_{x \to 2} \frac{\ln(2x-3)}{x^2-4}$$

3.
$$\lim_{x \to 0} \frac{\sin ax}{\sin bx}$$

4.
$$\lim_{x \to 0} \frac{1 - \cos ax}{1 - \cos bx}$$

5.
$$\lim_{x \to 0} \frac{\sin^{-1} x}{\tan^{-1} x}$$

6.
$$\lim_{x \to 1} \frac{x^{1/3} - 1}{x^{2/3} - 1}$$

7.
$$\lim_{x \to 0} x \cot x$$

8.
$$\lim_{x \to 0} \frac{1 - \cos x}{\ln(1 + x^2)}$$

9.
$$\lim_{t\to\pi}\frac{\sin^2 t}{t-\pi}$$

10.
$$\lim_{x \to 0} \frac{10^x - e^x}{x}$$

11.
$$\lim_{x \to \pi/2} \frac{\cos 3x}{\pi - 2x}$$

12.
$$\lim_{x \to 1} \frac{\ln(ex) - 1}{\sin \pi x}$$

13.
$$\lim_{x \to \infty} x \sin \frac{1}{x}$$

14.
$$\lim_{x \to 0} \frac{x - \sin x}{x^3}$$

$$15. \lim_{x \to 0} \frac{x - \sin x}{x - \tan x}$$

16.
$$\lim_{x \to 0} \frac{2 - x^2 - 2\cos x}{x^4}$$

17.
$$\lim_{x \to 0+} \frac{\sin^2 x}{\tan x - x}$$

$$18. \lim_{r \to \pi/2} \frac{\ln \sin r}{\cos r}$$

$$19. \lim_{t \to \pi/2} \frac{\sin t}{t}$$

20.
$$\lim_{x \to 1^{-}} \frac{\arccos x}{x - 1}$$

21.
$$\lim_{x \to \infty} x(2 \tan^{-1} x - \pi)$$

21.
$$\lim_{x \to \infty} x(2 \tan^{-1} x - \pi)$$
 22. $\lim_{t \to (\pi/2)^{-}} (\sec t - \tan t)$

23.
$$\lim_{t \to 0} \left(\frac{1}{t} - \frac{1}{te^{at}} \right)$$
 24. $\lim_{x \to 0+} x^{\sqrt{x}}$

24.
$$\lim_{x \to 0^+} x^{\sqrt{x}}$$

1 25.
$$\lim_{x \to 0+} (\csc x)^{\sin^2 x}$$

1 26.
$$\lim_{x \to 1+} \left(\frac{x}{x-1} - \frac{1}{\ln x} \right)$$

127.
$$\lim_{t \to 0} \frac{3 \sin t - \sin 3t}{3 \tan t - \tan 3t}$$

$$\blacksquare 28. \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^{1/x^2}$$

1 29.
$$\lim_{t\to 0} (\cos 2t)^{1/t^2}$$

132.
$$\lim_{x \to 0} (1 + \tan x)^{1/x}$$

33. (A Newton quotient for the second derivative) Evaluate
$$\lim_{h\to 0} \frac{f(x+h)-2f(x)+f(x-h)}{h^2}$$
 if f is a twice differentiable function

34. If f has a continuous third derivative, evaluate

$$\lim_{h \to 0} \frac{f(x+3h) - 3f(x+h) + 3f(x-h) - f(x-3h)}{h^3}$$

■ 35. (Proof of the second l'Hôpital Rule) Fill in the details of the following outline of a proof of the second l'Hôpital Rule (Theorem 4) for the case where a and L are both finite. Let a < x < t < b and show that there exists c in (x, t) such that

$$\frac{f(x) - f(t)}{g(x) - g(t)} = \frac{f'(c)}{g'(c)}.$$

Now juggle the above equation algebraically into the form

$$\frac{f(x)}{g(x)} - L = \frac{f'(c)}{g'(c)} - L + \frac{1}{g(x)} \left(f(t) - g(t) \frac{f'(c)}{g'(c)} \right).$$

It follows that

$$\begin{aligned} & \left| \frac{f(x)}{g(x)} - L \right| \\ & \leq \left| \frac{f'(c)}{g'(c)} - L \right| + \frac{1}{|g(x)|} \left(|f(t)| + |g(t)| \left| \frac{f'(c)}{g'(c)} \right| \right). \end{aligned}$$

Now show that the right side of the above inequality can be made as small as you wish (say, less than a positive number ϵ) by choosing first t and then x close enough to a. Remember, you are given that $\lim_{c\to a+} \left(f'(c)/g'(c) \right) = L$ and $\lim_{x \to a+} |g(x)| = \infty.$

EXERCISES 4.4

In Exercises 1–17, determine whether the given function has any local or absolute extreme values, and find those values if possible.

1.
$$f(x) = x + 2$$
 on $[-1, 1]$

1.
$$f(x) = x + 2$$
 on $[-1, 1]$ 2. $f(x) = x + 2$ on $(-\infty, 0]$

3.
$$f(x) = x + 2$$
 on $[-1, 1)$ 4. $f(x) = x^2 - 1$

4.
$$f(x) = x^2 - 1$$

5.
$$f(x) = x^2 - 1$$
 on $[-2, 3]$ 6. $f(x) = x^2 - 1$ on $(2, 3)$

6.
$$f(x) = x^2 - 1$$
 on (2.3)

7.
$$f(x) = x^3 + x - 4$$
 on $[a, b]$

8.
$$f(x) = x^3 + x - 4$$
 on (a, b)

9.
$$f(x) = x^5 + x^3 + 2x$$
 on $(a, b]$

10.
$$f(x) = \frac{1}{x-1}$$

11.
$$f(x) = \frac{1}{x-1}$$
 on $(0,1)$

12.
$$f(x) = \frac{1}{x-1}$$
 on [2, 3] 13. $f(x) = |x-1|$ on [-2, 2]

13.
$$f(x) = |x - 1|$$
 on $[-2, 2]$

14.
$$|x^2 - x - 2|$$
 on $[-3,$

14.
$$|x^2 - x - 2|$$
 on $[-3, 3]$ **15.** $f(x) = \frac{1}{x^2 + 1}$

16.
$$f(x) = (x+2)^{2/3}$$

17.
$$f(x) = (x-2)^{1/3}$$

In Exercises 18-40, locate and classify all local extreme values of the given function. Determine whether any of these extreme values are absolute. Sketch the graph of the function.

18.
$$f(x) = x^2 + 2x$$

$$19. \ f(x) = x^3 - 3x - 2$$

20.
$$f(x) = (x^2 - 4)^2$$

21.
$$f(x) = x^3(x-1)^2$$

22.
$$f(x) = x^2(x-1)^2$$
 23. $f(x) = x(x^2-1)^2$

23.
$$f(x) = x(x^2 - 1)^2$$

24.
$$f(x) = \frac{x}{x^2 + 1}$$
 25. $f(x) = \frac{x^2}{x^2 + 1}$

25.
$$f(x) = \frac{x^2}{x^2 + 1}$$

26.
$$f(x) = \frac{x}{\sqrt{x^4 + 1}}$$

27.
$$f(x) = x\sqrt{2-x^2}$$

28.
$$f(x) = x + \sin x$$

29.
$$f(x) = x - 2\sin x$$

30.
$$f(x) = x - 2 \tan^{-1} x$$

31.
$$f(x) = 2x - \sin^{-1} x$$

32.
$$f(x) = e^{-x^2/2}$$

33.
$$f(x) = x 2^{-x}$$

34.
$$f(x) = x^2 e^{-x^2}$$

35.
$$f(x) = \frac{\ln x}{x}$$

36.
$$f(x) = |x+1|$$

37.
$$f(x) = |x^2 - 1|$$

38.
$$f(x) = \sin|x|$$

39.
$$f(x) = |\sin x|$$

1 40.
$$f(x) = (x-1)^{2/3} - (x+1)^{2/3}$$

In Exercises 41-46, determine whether the given function has absolute maximum or absolute minimum values. Justify your answers. Find the extreme values if you can.

41.
$$\frac{x}{\sqrt{x^2+1}}$$

42.
$$\frac{x}{\sqrt{x^4 + 1}}$$

43.
$$x\sqrt{4-x^2}$$

44.
$$\frac{x^2}{\sqrt{4-x^2}}$$

1 45.
$$\frac{1}{x \sin x}$$
 on $(0, \pi)$ **1** 46. $\frac{\sin x}{x}$

$$\blacksquare 46. \frac{\sin x}{x}$$

- **3** 47. If a function has an absolute maximum value, must it have any local maximum values? If a function has a local maximum value, must it have an absolute maximum value? Give reasons for your answers.
- Θ 48. If the function f has an absolute maximum value and g(x) = |f(x)|, must g have an absolute maximum value? Justify your answer.
- **3** 49. (A function with no max or min at an endpoint) Let

$$f(x) = \begin{cases} x \sin \frac{1}{x} & \text{if } x > 0 \\ 0 & \text{if } x = 0. \end{cases}$$

Show that f is continuous on $[0, \infty)$ and differentiable on $(0, \infty)$ but that it has neither a local maximum nor a local minimum value at the endpoint x = 0.

EXERCISES 4.9

In Exercises 1-10, find the linearization of the given function about the given point.

1.
$$x^2$$
 about $x = 3$

2.
$$x^{-3}$$
 about $x = 2$

3.
$$\sqrt{4-x}$$
 about $x=0$

4.
$$\sqrt{3 + x^2}$$
 about $x = 1$

5.
$$1/(1+x)^2$$
 about $x=2$

6.
$$1/\sqrt{x}$$
 about $x=4$

7.
$$\sin x$$
 about $x = \pi$

8.
$$\cos(2x)$$
 about $x = \pi/3$

9.
$$\sin^2 x$$
 about $x = \pi/6$

10.
$$\tan x$$
 about $x = \pi/4$

11. By approximately how much does the area of a square increase if its side length increases from 10 cm to 10.4 cm?