Answers to Odd-Numbered Exercises and Tests

Chapter 1

Section 1.1 (page 9)

Vocabulary Check (page 9)

- **1.** (a) v (b) vi (c) i (d) iv (e) iii (f) ii
- 2. Cartesian 3. Distance Formula
- 4. Midpoint Formula
- **1.** A: (2, 6), B: (-6, -2), C: (4, -4), D: (-3, 2)
- 3.

- 7. (-3, 4)
- 9. (-5, -5)
- 11. Quadrant IV
- 13. Quadrant II
- 15. Quadrant III or IV
- 17. Quadrant III
- 19. Quadrant I or III

- **23.** 8 **25.** 5
- **27.** (a) 4, 3, 5 (b) $4^2 + 3^2 = 5^2$
- (b) $10^2 + 3^2 = (\sqrt{109})^2$ **29.** (a) 10, 3, $\sqrt{109}$
- **31.** (a)

- (b) 10

33. (a)

- (b) 17
- (c) $(0, \frac{5}{2})$

- 35. (a)
- (b) $2\sqrt{10}$
- (c) (2,3)

- **37.** (a)

- **39.** (a)
- (b) $\sqrt{110.97}$ (c) (1.25, 3.6)
- **41.** $(\sqrt{5})^2 + (\sqrt{45})^2 = (\sqrt{50})^2$
- **43.** $(2x_m x_1, 2y_m y_1)$
- **47.** $2\sqrt{505} \approx 45$ yards
- **49.** \$3803.5 million
- **51.** (0, 1), (4, 2), (1, 4)
- **53.** (-3, 6), (2, 10), (2, 4), (-3, 4)
- **55.** \$3.31 per pound; 2001
- **57.** ≈ 250%

- **59.** (a) The number of artists elected each year seems to be nearly steady except for the first few years. From six to eight artists will be elected in 2008.
 - (b) The Rock and Roll Hall of Fame was opened in 1986.
- **61.** 1998: \$19,384.5 million; 2000: \$20,223.0 million; 2002: \$21,061.5 million

63.
$$\sqrt[3]{\frac{4.47}{\pi}} \approx 1.12$$
 inches

- **65.** Length of side = 43 centimeters; area = 800.64 square centimeters
- **67.** (a)
- (b) l = 1.5w; p = 5w
- (c) $7.5 \text{ meters} \times 5 \text{ meters}$
- **69.** (a) (b) 2002 Pieces of mail (in billions) 210 205 200 195 190 185 180 9 10 11 12 13 Year $(6 \leftrightarrow 1996)$
 - (c) Answers will vary. Sample answer: Technology now enables us to transport information in many ways other than by mail. The Internet is one example.

- (a) The point is reflected through the y-axis.
- (b) The point is reflected through the *x*-axis.
- (c) The point is reflected through the origin.
- 73. False. The Midpoint Formula would be used 15 times.
- 75. No. It depends on the magnitudes of the quantities measured.
- **77.** b **78.** c
- **79.** d
- **80.** a
- **81.** x = 1

- **83.** $x = 2 \pm \sqrt{11}$
- **85.** $x < \frac{3}{5}$
- **87.** 14 < x < 22

Section 1.2 (page 22)

Vocabulary Check (page 22)

- 1. solution or solution point
- 2. graph

- 3. intercepts
- **4.** y-axis
- 6. numerical
- **5.** circle; (*h*, *k*); *r*

- **1.** (a) Yes (b) Yes
- **3.** (a) No
- (b) Yes

5.	x	-1	0	1	2	$\frac{5}{2}$
	у	7	5	3	1	0
	(x, y)	(-1, 7)	(0, 5)	(1, 3)	(2, 1)	$\left(\frac{5}{2},0\right)$

7.	х	-1	0	1	2	3
	у	4	0	-2	-2	0
	(x, y)	(-1, 4)	(0, 0)	(1, -2)	(2, -2)	(3, 0)

- 9. x-intercepts: $(\pm 2, 0)$ y-intercept: (0, 16)
- **13.** *x*-intercept: (-4, 0)
 - y-intercept: (0, 2)
- **17.** *x*-intercepts: (0, 0), (2, 0)
 - y-intercept: (0, 0)
- 11. x-intercept: $(\frac{6}{5}, 0)$ y-intercept: (0, -6)
- **15.** *x*-intercept: $(\frac{7}{3}, 0)$ y-intercept: (0, 7)
- **19.** *x*-intercept: (6, 0) y-intercepts: $(0, \pm \sqrt{6})$

- 23.
- **25.** *y*-axis symmetry
- 27. Origin symmetry
- 29. Origin symmetry
- **31.** *x*-axis symmetry

35.

37.

41.

43.

45.

47.

Intercepts: (6, 0), (0, 3)

49.

51.

Intercept: (0, 0)

Intercept: (0, 0)

55.

Intercepts: (-3, 0), (0, 3)

57.
$$x^2 + y^2 = 16$$
 59. $(x - 2)^2 + (y + 1)^2 = 16$

61.
$$(x + 1)^2 + (y - 2)^2 = 5$$

63.
$$(x-3)^2 + (y-4)^2 = 25$$

67. Center: (1, -3); Radius: 3

69. Center: $(\frac{1}{2}, \frac{1}{2})$; Radius: $\frac{3}{2}$

73. (a)

- (e) A regulation NFL playing field is 120 yards long and $53\frac{1}{3}$ yards wide. The actual area is 6400 square yards.
- **75.** (a) and (b)

- (c) 66.0 years (d) 2005: 77.0 years; 2010: 77.1 years
- (e) Answers will vary.

- 77. False. A graph is symmetric with respect to the x-axis if, whenever (x, y) is on the graph (x, -y) is also on the graph.
- 79. The viewing window is incorrect. Change the viewing window. Answers will vary.
- **81.** $9x^5$, $4x^3$, -7**83.** $2\sqrt{2x}$
- **85.** $\frac{10\sqrt{7x}}{x}$

Section 1.3 (page 34)

Vocabulary Check (page 34)

- 1. linear 2. slope
- 3. parallel 4. perpendicular 5. rate or rate of change
- **6.** linear extrapolation
- **7.** a. iii b. i c. v d. ii e. iv
- **1.** (a) L_2 (b) L_3 (c) L_1
- 3. m = -3
- 5. $\frac{3}{2}$ **7.** -4
- **9.** m = 5; y-intercept: (0, 3)
- y-intercept: (0, 4)

11. $m = -\frac{1}{2}$;

- 13. m is undefined.
 - There is no y-intercept.

15. $m = -\frac{7}{6}$;

17. m = 0;

- **19.** m is undefined.
 - There is no y-intercept.

-1 -6

21.

m = 2

m is undefined.

23.

- $m = -\frac{1}{7}$
- m = 0.15
- **29.** (0, 1), (3, 1), (-1, 1)
- **31.** (6, -5), (7, -4), (8, -3)
- **33.** (-8,0), (-8,2), (-8,3)
- **35.** (-4, 6), (-3, 8), (-2, 10)
- **37.** (9, -1), (11, 0), (13, 1)
- **39.** y = 3x 2
- **41.** y = -2x

43. $y = -\frac{1}{3}x + \frac{4}{3}$

45. x = 6

47. *y* =

49. y = 5x + 27.3

51. $y = -\frac{3}{5}x + 2$

53. x = -8

55. $y = -\frac{1}{2}x + \frac{3}{2}$

57. $y = -\frac{6}{5}x - \frac{18}{25}$

59. y = 0.4x + 0.2

61. y = -1

- **65.** Perpendicular **67.** Parallel
- **69.** (a) y = 2x 3
- (b) $y = -\frac{1}{2}x + 2$
- **71.** (a) $y = -\frac{3}{4}x + \frac{3}{8}$ (b) $y = \frac{4}{3}x + \frac{127}{72}$
- **73.** (a) y = 0 (b) x = -1
- **75.** (a) x = 2 (b) y = 5
- **77.** (a) y = x + 4.3 (b) y = -x + 9.3
- **79.** 3x + 2y 6 = 0 **81.** 12x + 3y + 2 = 0
- **83.** x + y 3 = 0
- **85.** Line (b) is perpendicular to line (c).

87. Line (a) is parallel to line (b).

Line (c) is perpendicular to line (a) and line

Line (c) is perpendicular to line (a) and line (b).

- **89.** 3x 2y 1 = 0 **91.** 80x + 12y + 139 = 0
- 93. (a) Sales increasing 135 units per year
 - (b) No change in sales
 - (c) Sales decreasing 40 units per year
- **95.** (a) Salary increased greatest from 1990 to 1992; Least from 1992 to 1994
 - (b) Slope of line from 1990 to 2002 is about 2351.83
 - (c) Salary increased an average of \$2351.83 over the 12 years between 1990 and 2002
- **97.** 12 feet **99.** V(t) = 3165 125t
- **101.** b; The slope is -20, which represents the decrease in the amount of the loan each week. The *y*-intercept is (0, 200) which represents the original amount of the loan.
- **102.** c; The slope is 2, which represents the hourly wage per unit produced. The *y*-intercept is (0, 8.50) which represents the initial hourly wage.
- **103.** a; The slope is 0.32, which represents the increase in travel cost for each mile driven. The *y*-intercept is (0, 30) which represents the amount per day for food.

- **104.** d; The slope is -100, which represents the decrease in the value of the word processor each year. The *y*-intercept is (0,750) which represents the initial purchase price of the computer.
- **105.** y = 0.4825t 2.2325; $y(18) \approx 6.45 ; $y(20) \approx 7.42
- **107.** V = -175t + 875
- **109.** (a) y(t) = 179.5t + 40,571

(b)
$$y(8) = 42,007$$
; $y(10) = 42,366$ (c) $m = 179.5$

- **111.** S = 0.85L
- **113.** (a) C = 16.75t + 36,500 (b) R = 27t
 - (c) P = 10.25t 36,500 (d) $t \approx 3561$ hours
- 115. (a) (b) y = 8x + 50

- (d) m = 8, 8 meters
- **117.** C = 0.38x + 120
- **119.** (a) and (b)

- (c) Answers will vary. Sample answer: y = 11.72x 14.1
- (d) Answers will vary. Sample answer: The *y*-intercept indicates that initially there were −14.1 million subscribers which doesn't make sense in the context of this problem. Each year, the number of cellular phone subscribers increases by 11.72 million.
- (e) The model is accurate.
- (f) Answers will vary. Sample answer: 196.9 million
- **121.** False. The slope with the greatest magnitude corresponds to the steepest line.
- **123.** Find the distance between each two points and use the Pythagorean Theorem.
- **125.** No. The slope cannot be determined without knowing the scale on the *y*-axis. The slopes could be the same.
- 127. V-intercept: initial cost; Slope: annual depreciation
- **129.** d **130.** c **131.** a **132.** b
- **133.** -1 **135.** $\frac{7}{2}$, 7 **137.** No solution

139. Answers will vary.

Section 1.4 (page 48)

Vocabulary Check (page 48)

- 1. domain; range; function
- 2. verbally; numerically; graphically; algebraically
- **3.** independent; dependent **4.** piecewise-defined
- **5.** implied domain **6.** difference quotient
- **1.** Yes **3.** No
- 5. Yes, each input value has exactly one output value.
- **7.** No, the input values of 7 and 10 each have two different output values.
- 9. (a) Function
 - (b) Not a function, because the element 1 in A corresponds to two elements, -2 and 1, in B.
 - (c) Function
 - (d) Not a function, because not every element in *A* is matched with an element in *B*.
- **11.** Each is a function. For each year there corresponds one and only one circulation.
- **13.** Not a function **15.** Function
 - 5. Function 17. Function
- **19.** Not a function **21.** Function
- **23.** Not a function
- **25.** (a) -1 (b) -9 (c) 2x 5
- **27.** (a) 36π (b) $\frac{9}{2}\pi$ (c) $\frac{32}{3}\pi r^3$
- **29.** (a) 1 (b) 2.5 (c) 3 2|x|
- **31.** (a) $-\frac{1}{9}$ (b) Undefined (c) $\frac{1}{y^2 + 6y}$
- **33.** (a) 1 (b) -1 (c) $\frac{|x-1|}{x-1}$
- **35.** (a) -1 (b) 2 (c) 6
- **37.** (a) -7 (b) 4 (c) 9

39.	x	-2	-1	0	1	2
	f(x)	1	-2	-3	-2	1

41.	t	-5	-4	-3	-2	-1
	h(t)	1	$\frac{1}{2}$	0	$\frac{1}{2}$	1

43.	х	-2	-1	0	1	2
	f(x)	5	9/2	4	1	0

- **45.** 5 **47.** $\frac{4}{3}$ **49.** ± 3 **51.** $0, \pm 1$ **53.** 2, -1
- **55.** 3, 0 **57.** All real numbers
- **59.** All real numbers t except t = 0
- **61.** All real numbers y such that $y \ge 0$
- **63.** All real numbers x such that $-1 \le x \le 1$
- **65.** All real numbers x except x = 0, -2

- **67.** All real numbers s such that $s \ge 1$ except s = 4
- **69.** All real numbers x such that x > 0
- **71.** $\{(-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4)\}$
- **73.** $\{(-2, 4), (-1, 3), (0, 2), (1, 3), (2, 4)\}$
- **75.** $g(x) = cx^2$; c = -2 **76.** f(x) = cx; $c = \frac{1}{4}$
- **77.** $r(x) = \frac{c}{x}$; c = 32 **78.** $h(x) = c\sqrt{|x|}$; c = 3

- **79.** $3 + h, h \neq 0$ **81.** $3x^2 + 3xh + h^2 + 3, h \neq 0$ **83.** $-\frac{x+3}{9x^2}, x \neq 3$ **85.** $\frac{\sqrt{5x} 5}{x 5}$ **87.** $A = \frac{P^2}{16}$
- 89. (a) The maximum volume is 1024 cubic centimeters.

Yes, V is a function of x.

(c)
$$V = x(24 - 2x)^2$$
, $0 < x < 12$

91.
$$A = \frac{x^2}{2(x-2)}, x > 2$$

- 93. Yes, the ball will be at a height of 6 feet.
- **95.** 1990: \$27,300
- **97.** (a) C = 12.30x + 98,000
- 1991: \$28,052
- (b) R = 17.98x
- 1992: \$29,168
- (c) P = 5.68x 98,000
- 1993: \$30,648
- 1994: \$32,492
- 1995: \$34,700
- 1996: \$37,272
- 1997: \$40,208
- 1998: \$41,300
- 1999: \$43,800
- 2000: \$46,300
- 2001: \$48,800
- 2002: \$51,300
- **99.** (a) $R = \frac{240n n^2}{20}, n \ge 80$

(b)

n	90	100	110	120	130	140	150
R(n)	\$675	\$700	\$715	\$720	\$715	\$700	\$675

The revenue is maximum when 120 people take the trip.

(b)
$$h = \sqrt{d^2 - 3000^2}, d \ge 3000$$

- **103.** False. The range is $[-1, \infty)$.
- 105. The domain is the set of inputs of the function, and the range is the set of outputs.
- **107.** (a) Yes. The amount you pay in sales tax will increase as the price of the item purchased increases.
 - (b) No. The length of time that you study will not necessarily determine how well you do on an exam.
- **111.** $-\frac{1}{5}$ **113.** 2x 3y 11 = 0
- **115.** 10x + 9y + 15 = 0

Section 1.5 (page 61)

Vocabulary Check (page 61)

- 1. ordered pairs 2. Vertical Line Test
- 3. zeros **4.** decreasing
- 5. maximum 6. average rate of change; secant
- 7. odd 8. even
- **1.** Domain: $(-\infty, -1]$, $[1, \infty)$ 3. Domain: [-4, 4]Range: $[0, \infty)$ Range: [0, 4]
- **5.** (a) 0 (b) -1(c) 0 (d) - 2
- 7. (a) -3 (b) 0 (c) 1 (d) -39. Function
- 13. Function 15. $-\frac{5}{2}$, 6 **11.** Not a function
- **19.** $0, \pm \sqrt{2}$ **21.** $\pm \frac{1}{2}$, 6 23. $\frac{1}{2}$
- 25.

33. Increasing on $(-\infty, 0)$ and $(2, \infty)$ Decreasing on (0, 2)

- **35.** Increasing on $(-\infty, 0)$ and $(2, \infty)$; Constant on (0, 2)
- **37.** Increasing on $(1, \infty)$; Decreasing on $(-\infty, -1)$ Constant on (-1, 1)

Constant on $(-\infty, \infty)$

41.

Decreasing on $(-\infty, 0)$ Increasing on $(0, \infty)$

43.

Increasing on $(-\infty, 0)$ Decreasing on $(0, \infty)$

45.

47.

Decreasing on $(-\infty, 1)$

51.

Relative minimum:

Relative maximum: (1.5, 0.25)

53.

Relative maximum: (-1.79, 8.21)

Relative minimum: (1.12, -4.06)

55.

57.

 $(-\infty, -1], [0, \infty)$

59.

61.

 $[1,\infty)$

f(x) < 0 for all x

- **63.** The average rate of change from $x_1 = 0$ to $x_2 = 3$ is -2.
- **65.** The average rate of change from $x_1 = 1$ to $x_2 = 5$ is 18.
- **67.** The average rate of change from $x_1 = 1$ to $x_2 = 3$ is 0.
- **69.** The average rate of change from $x_1 = 3$ to $x_2 = 11$ is $-\frac{1}{4}$.
- **71.** Even; *y*-axis symmetry **73.** Odd; origin symmetry
- 75. Neither even nor odd; no symmetry

77.
$$h = -x^2 + 4x - 3$$
 79. $h = 2x - x^2$

81.
$$L = \frac{1}{2}y^2$$
 83. $L = 4 - y^2$

85. (a) 6000

(b) 30 watts

87. (a) Ten thousands (b) Ten millions (c) Percents

89. (a) ²²⁰⁰

- (b) The average rate of change from 2002 to 2007 is 408.56. The estimated revenue is increasing each year at a fast pace.
- **91.** (a) $s = -16t^2 + 64t + 6$

(b)

- (c) Average rate of change = 16
- (d) The slope of the secant line is positive.
- (e) Secant line: 16t + 6

(f)

- **93.** (a) $s = -16t^2 + 120t$
 - (b) 270
 - (c) Average rate of change = -8
 - (d) The slope of the secant line is negative.
 - (e) Secant line: -8t + 240
 - (f) 270
- **95.** (a) $s = -16t^2 + 120$
 - (b) 140
 - (c) Average rate of change = -32
 - (d) The slope of the secant line is negative.
 - (e) Secant line: -32t + 120
 - (f) 140 0
- **97.** False. The function $f(x) = \sqrt{x^2 + 1}$ has a domain of all real numbers.
- **99.** (a) Even. The graph is a reflection in the x-axis.
 - (b) Even. The graph is a reflection in the y-axis.
 - (c) Even. The graph is a vertical translation of f.
 - (d) Neither. The graph is a horizontal translation of f.
- **101.** (a) $(\frac{3}{2}, 4)$ (b) $(\frac{3}{2}, -4)$
- **103.** (a) (-4, 9) (b) (-4, -9)
- 105. (a) 4 (b) 4 (c) 4 (d) 4

All the graphs pass through the origin. The graphs of the odd powers of x are symmetric with respect to the origin, and the graphs of the even powers are symmetric with respect to the y-axis. As the powers increase, the graphs become flatter in the interval -1 < x < 1.

- **107.** 0, 10 **109.** 0, ± 1
- **111.** (a) 37 (b) -28 (c) 5x 43
- **113.** (a) -9 (b) $2\sqrt{7} 9$
 - (c) The given value is not in the domain of the function.
- **115.** h + 4, $h \neq 0$

Section 1.6 (page 71)

Vocabulary Check (page 71)

- 1. g 2. i 3. h 4. a 5. b
- **6.** e **7.** f **8.** c **9.** d
- **1.** (a) f(x) = -2x + 6 **3.** (a) f(x) = -3x + 11 (b)

5. (a) f(x) = -1 (b)

-3 -2

7. (a) $f(x) = \frac{6}{7}x - \frac{45}{7}$

15.

17.

19.

21.

23.

25.

27.

29. (a) 2 (b) 2 (c) -4

33. (a) 6 (b) -11 (c) 6 (d) -22

35. (a) -10 (b) -4 (c) -1

37.

39.

(d) 3

(d) 41

41.

43.

45.

47.

49.

51. (a)

Range: [0, 2)

(c) Sawtooth pattern

53. (a)
$$f(x) = |x|$$
 (b) $g(x) = |x + 2| - 1$

55. (a)
$$f(x) = x^3$$
 (b) $g(x) = (x - 1)^3 - 2$

57. (a)
$$f(x) = 2$$
 (b) $g(x) = 2$

59. (a)
$$f(x) = x$$
 (b) $g(x) = x - 2$

61. (a)

63. (a)

65. (a) W(30) = 360; W(40) = 480; W(45) = 570; W(50) = 660

(b)
$$W(h) = \begin{cases} 12h, & 0 < h \le 45 \\ 18(h - 45) + 540, & h > 45 \end{cases}$$

67. (a) $f(x) = \begin{cases} 0.505x^2 - 1.47x + 6.3, & 1 \le x \le 6 \\ -1.97x + 26.3, & 6 < x \le 12 \end{cases}$

Answers will vary. Sample answer: The domain is determined by inspection of a graph of the data with the two models.

- (c) f(5) = 11.575, f(11) = 4.63; These values represent the revenue for the months of May and November, respectively.
- (d) These values are quite close to the actual data values.
- **69.** False. A piecewise-defined function is a function that is defined by two or more equations over a specified domain. That domain may or may not include *x* and *y*-intercepts.

71.
$$f(x) = \begin{cases} -\frac{4}{3}x + 6, & 0 \le x \le 3\\ -\frac{2}{5}x + \frac{16}{5}, & 3 < x \le 8 \end{cases}$$

73. $x \le 1$

75. Neither

Section 1.7 (page 79)

Vocabulary Check (page 79)

- 1. rigid
- **2.** -f(x); f(-x)
- 3. nonrigid
- 4. horizontal shrink; horizontal stretch
- **5.** vertical stretch; vertical shrink
- **6.** (a) iv
- (b) ii
- (c) iii
- (d) i

7. (a)

(b)

(c)

(d)

(e)

(f)

(g)

9. (a) $y = x^2 - 1$ (b) $y = 1 - (x + 1)^2$

(c)
$$y = -(x-2)^2 + 6$$
 (d) $y = (x-5)^2 - 3$

11. (a) y = |x| + 5 (b) y = -|x + 3|

(c)
$$y = |x - 2| - 4$$
 (d) $y = -|x - 6| - 1$

13. Horizontal shift of $y = x^3$; $y = (x - 2)^3$

15. Reflection in the x-axis of $y = x^2$; $y = -x^2$

17. Reflection in the x-axis and vertical shift of $y = \sqrt{x}$; $y = 1 - \sqrt{x}$

19. (a) $f(x) = x^2$

(b) Reflection in the *x*-axis, and vertical shift 12 units upward, of $f(x) = x^2$

(c)

21. (a) $f(x) = x^3$

(b) Vertical shift seven units upward, of $f(x) = x^3$

(c)

23. (a) $f(x) = x^2$

(b) Vertical shrink of two-thirds, and vertical shift four units upward, of $f(x) = x^2$

(c)

25. (a) $f(x) = x^2$

(b) Reflection in the *x*-axis, horizontal shift five units to the left, and vertical shift two units upward, of $f(x) = x^2$

- **27.** (a) $f(x) = \sqrt{x}$
 - (b) Horizontal shrink of $\frac{1}{3}$, of $f(x) = \sqrt{x}$

- **29.** (a) $f(x) = x^3$
 - (b) Vertical shift two units upward, and horizontal shift one unit to the right, of $f(x) = x^3$

(d) g(x) = 2 - f(x + 5)

(d) g(x) = f(3x)

- **31.** (a) f(x) = |x|
 - (b) Reflection in the *x*-axis, and vertical shift two units downward, of f(x) = |x|

- **33.** (a) f(x) = |x|
 - (b) Reflection in the *x*-axis, horizontal shift four units to the left, and vertical shift eight units upward, of f(x) = |x|

- **35.** (a) f(x) = [x]
 - (b) Reflection in the *x*-axis, and vertical shift three units upward, of $f(x) = [\![x]\!]$

- **37.** (a) $f(x) = \sqrt{x}$
 - (b) Horizontal shift of nine units to the right, of $f(x) = \sqrt{x}$

(d) g(x) = f(x - 9)

- **39.** (a) $f(x) = \sqrt{x}$
 - (b) Reflection in the *y*-axis, horizontal shift of seven units to the right, and vertical shift two units downward, of $f(x) = \sqrt{x}$

- **41.** (a) $f(x) = \sqrt{x}$
 - (b) Horizontal stretch, and vertical shift four units downward, of $f(x) = \sqrt{x}$

43.
$$f(x) = (x-2)^2 - 8$$
 45. $f(x) = (x-13)^3$

47.
$$f(x) = -|x| - 10$$
 49. $f(x) = -\sqrt{-x+6}$

51. (a)
$$y = -3x^2$$
 (b) $y = 4x^2 + 3$

53. (a)
$$y = -\frac{1}{2}|x|$$
 (b) $y = 3|x| - 3$

55. Vertical stretch of
$$y = x^3$$
; $y = 2x^3$

57. Reflection in the *x*-axis and vertical shrink of
$$y = x^2$$
; $y = -\frac{1}{2}x^2$

59. Reflection in the y-axis and vertical shrink of
$$y = \sqrt{x}$$
; $y = \frac{1}{2}\sqrt{-x}$

61.
$$y = -(x-2)^3 + 2$$
 63. $y = -\sqrt{x} - 3$

67. (a) Horizontal stretch of 0.035 and a vertical shift of 20.6 units upward.

- (b) 0.77-billion-gallon increase in fuel usage by trucks each year
- (c) $f(t) = 20.6 + 0.035(t + 10)^2$. The graph is shifted 10 units to the left.
- (d) 52.1 billion gallons. Yes.

69. True.
$$|-x| = |x|$$

71. (a)
$$g(t) = \frac{3}{4}f(t)$$
 (b) $g(t) = f(t) + 10,000$

(c)
$$g(t) = f(t-2)$$

73.
$$(-2,0), (-1,1), (0,2)$$
 75. $\frac{4}{x(1-x)}$

77.
$$\frac{3x-2}{x(x-1)}$$
 79. $\frac{(x-4)\sqrt{x^2-4}}{x^2-4}$

81.
$$5(x-3), x \neq -3$$

83. (a) 38 (b)
$$\frac{57}{4}$$
 (c) $x^2 - 12x + 38$

85. All real numbers
$$x$$
 except $x = 1$

87. All real numbers x such that
$$-9 \le x \le 9$$

Section 1.8 (page 89)

Vocabulary Check (page 89)

- 1. addition; subtraction; multiplication; division
- 2. composition **3.** g(x)4. inner; outer

5. (a)
$$2x$$
 (b) 4 (c) $x^2 - 4$

(d)
$$\frac{x+2}{x-2}$$
; all real numbers x except $x=2$

7. (a)
$$x^2 + 4x - 5$$

7. (a)
$$x^2 + 4x - 5$$
 (b) $x^2 - 4x + 5$ (c) $4x^3 - 5x^2$

(c)
$$4x^3 - 5x^2$$

(d)
$$\frac{x^2}{4x-5}$$
; all real numbers x except $x = \frac{5}{4}$

- **9.** (a) $x^2 + 6 + \sqrt{1-x}$ (b) $x^2 + 6 \sqrt{1-x}$
 - (c) $(x^2 + 6)\sqrt{1-x}$
 - (d) $\frac{(x^2+6)\sqrt{1-x}}{1-x}$; all real numbers x such that x < 1
- **11.** (a) $\frac{x+1}{x^2}$ (b) $\frac{x-1}{x^2}$ (c) $\frac{1}{x^3}$
 - (d) x; all real numbers x except x = 0
- **13.** 3 **15.** 5
 - 17. $9t^2 3t + 5$
- **19.** 74

- 23. $\frac{3}{5}$ **21.** 26
- 25.
- 27.
- 29.
 - f(x), g(x)
- (b) $x^2 1$ (c) x^4 **31.** (a) $(x-1)^2$
- **33.** (a) x (b) x (c) $\sqrt[3]{\sqrt[3]{x-1}-1}$
- **35.** (a) $\sqrt{x^2+4}$ (b) x+4

Domains of f and $g \circ f: x \ge -4$

Domains of g and $f \circ g$: all real numbers

37. (a) x + 1 (b) $\sqrt{x^2 + 1}$

Domains of f and $g \circ f$: all real numbers

Domains of g and $f \circ g$: all real numbers x such that $x \ge 0$

39. (a) |x + 6| (b) |x| + 6

Domains of f, g, $f \circ g$, and $g \circ f$: all real numbers

41. (a) $\frac{1}{r+3}$ (b) $\frac{1}{r}+3$

Domains of f and $g \circ f$: all real numbers x except x = 0Domains of g: all real numbers

Domains of $f \circ g$: all real numbers x except x = -3

- **43.** (a) 3 (b) 0 **45.** (a) 0
- **47.** $f(x) = x^2$, g(x) = 2x + 1
- **49.** $f(x) = \sqrt[3]{x}$, $g(x) = x^2 4$
- **51.** $f(x) = \frac{1}{x}$, g(x) = x + 2
- **53.** $f(x) = \frac{x+3}{4+x}$, $g(x) = -x^2$

55. $T = \frac{3}{4}x + \frac{1}{15}x^2$

- **57.** (a) $c(t) = \frac{p(t) + b(t) d(t)}{p(t)} \times 100$
 - (b) c(5) is the population change in the year 2005.
- **59.** (a) $(A + N)(t) = 5.31t^2 102.0t + 1338$

$$(A + N)(4) = 1014.96$$

$$(A + N)(8) = 861.84$$

$$(A + N)(12) = 878.64$$

(b) $(A - N)(t) = 1.41t^2 - 17.6t + 132$

$$(A - N)(4) = 84.16$$

$$(A - N)(8) = 81.44$$

$$(A - N)(12) = 123.84$$

61. (a)
$$y_1 = 10.20t + 92.7$$

$$y_2 = 3.357t^2 - 26.46t + 379.5$$

 $y_3 = -0.465t^2 + 9.71t + 7.4$

(b) $y_1 + y_2 + y_3 = 2.892t^2 - 6.55t + 479.6$; this amount represents the amount spent on health care in the United States.

- (d) In 2008, \$1298.708 billion is estimated to be spent on health services and supplies, and in 2010, \$1505.4 billion is estimated.
- **63.** (a) $r(x) = \frac{x}{2}$ (b) $A(r) = \pi r^2$
 - (c) $(A \circ r)(x) = \pi \left(\frac{x}{2}\right)^2$; $(A \circ r)(x)$ represents the area of the circular base of the tank on the square foundation with side length x.
- **65.** (a) $N(T(t)) = 30(3t^2 + 2t + 20)$ This represents the number of bacteria in the food as a function of time.
 - (b) t = 2.846 hours
- **67.** g(f(x)) represents 3 percent of an amount over \$500,000.
- **69.** False. $(f \circ g)(x) = 6x + 1$ and $(g \circ f)(x) = 6x + 6$
- 73. 3 75. $\frac{-4}{x(x+h)}$ 71. Answers will vary.

77.
$$3x - y - 10 = 0$$

79.
$$3x + 2y - 22 = 0$$

Section 1.9 (page 99)

Vocabulary Check (page 99)

- **1.** inverse; *f*-inverse 2. range; domain
- **3.** y = x4. one-to-one 5. horizontal
- **1.** $f^{-1}(x) = \frac{1}{6}x$ **3.** $f^{-1}(x) = x 9$
- **5.** $f^{-1}(x) = \frac{x-1}{3}$ **7.** $f^{-1}(x) = x^3$
- **9.** c **10.** b **11.** a **12.** d
- **13.** (a) $f(g(x)) = f\left(\frac{x}{2}\right) = 2\left(\frac{x}{2}\right) = x$

$$g(f(x)) = g(2x) = \frac{(2x)}{2} = x$$

15. (a) $f(g(x)) = f\left(\frac{x-1}{7}\right) = 7\left(\frac{x-1}{7}\right) + 1 = x$ $g(f(x)) = g(7x + 1) = \frac{(7x + 1) - 1}{7} = x$

17. (a)
$$f(g(x)) = f(\sqrt[3]{8x}) = \frac{(\sqrt[3]{8x})^3}{8} = x$$

 $g(f(x)) = g(\frac{x^3}{8}) = \sqrt[3]{8(\frac{x^3}{8})} = x$

23. (a)
$$f(g(x)) = f\left(-\frac{5x+1}{x-1}\right) = \frac{-\left(\frac{5x+1}{x-1}\right) - 1}{-\left(\frac{5x+1}{x-1}\right) + 5}$$
$$= \frac{-5x-1-x+1}{-5x-1+5x-5} = x$$
$$g(f(x)) = g\left(\frac{x-1}{x+5}\right) = \frac{-5\left(\frac{x-1}{x+5}\right) - 1}{\frac{x-1}{x+5} - 1}$$
$$= \frac{-5x+5-x-5}{x-1-x-5} = x$$

- **25.** No
- 27.

х	-2	0	2	4	6	8
$f^{-1}(x)$	-2	-1	0	1	2	3

- **29.** Yes **31.** No
- 33.

The function has

The function does not have an inverse.

an inverse. **37.** 20

The function does not have an inverse.

39. (a) $f^{-1}(x) = \frac{x+3}{2}$

- (c) The graph of f^{-1} is the reflection of the graph of f in the line y = x.
- (d) The domains and ranges of f and f^{-1} are all real numbers.
- **41.** (a) $f^{-1}(x) = \sqrt[5]{x+2}$

(b)

- (c) The graph of f^{-1} is the reflection of the graph of f in the line y = x.
- (d) The domains and ranges of f and f^{-1} are all real numbers.
- **43.** (a) $f^{-1}(x) = x^2, x \ge 0$

- (c) The graph of f^{-1} is the reflection of the graph of f in the line y = x.
- (d) The domains and ranges of f and f^{-1} are all real numbers x such that $x \ge 0$.
- **45.** (a) $f^{-1}(x) = \sqrt{4 x^2}$, $0 \le x \le 2$

- (c) The graph of f^{-1} is the same as the graph of f.
- (d) The domains and ranges of f and f^{-1} are all real numbers x such that $0 \le x \le 2$.

47. (a)
$$f^{-1}(x) = \frac{4}{x}$$

- (c) The graph of f^{-1} is the same as the graph of f.
- (d) The domains and ranges of f and f^{-1} are all real numbers x except x = 0.

49. (a)
$$f^{-1}(x) = \frac{2x+1}{x-1}$$

- (c) The graph of f^{-1} is the reflection of the graph of f in the line y = x.
- (d) The domain of f and the range of f^{-1} are all real numbers x except x = 2. The domain of f^{-1} and the range of f are all real numbers x except x = 1.
- **51.** (a) $f^{-1}(x) = x^3 + 1$

(b)

- (c) The graph of f^{-1} is the reflection of the graph of f in the line y = x.
- (d) The domains and ranges of f and f^{-1} are all real numbers.

53. (a)
$$f^{-1}(x) = \frac{5x - 4}{6 - 4x}$$

(b)

- (c) The graph of f^{-1} is the reflection of the graph of f in the line y = x.
- (d) The domain of f and the range of f^{-1} are all real numbers x except $x = -\frac{5}{4}$. The domain of f^{-1} and the range of f are all real numbers x except $x = \frac{3}{2}$.
- **55.** No inverse **57.** $g^{-1}(x) = 8x$ **59.** No inverse
- **61.** $f^{-1}(x) = \sqrt{x} 3$ **63.** No inverse
- **65.** No inverse **67.** $f^{-1}(x) = \frac{x^2 3}{2}, \quad x \ge 0$
- **69.** 32 **71.** 600 **73.** $2\sqrt[3]{x+3}$
- 75. $\frac{x+1}{2}$ 77. $\frac{x+1}{2}$

- **79.** (a) $f^{-1}(108,209) = 11$
 - (b) f^{-1} represents the year for a given number of households in the United States.
 - (c) y = 1578.68t + 90,183.63

(d)
$$f^{-1} = \frac{t - 90,183.63}{1578.68}$$
 (e) $f^{-1}(117,022) = 17$

- (f) $f^{-1}(108,209) = 11.418$; the results are similar.
- **81.** (a) Yes
 - (b) f^{-1} yields the year for a given number of miles traveled by motor vehicles.
 - (c) $f^{-1}(2632) = 8$
 - (d) No. f(t) would not pass the Horizontal Line Test.

83. (a)
$$y = \sqrt{\frac{x - 245.50}{0.03}}$$
, 245.5 < x < 545.5

x = degrees Fahrenheit; y = % load

- (c) 0 < x < 92.11
- 85. False. $f(x) = x^2$ has no inverse.
- 87. Answers will vary.
- 89. x 1 3 4 6 y 1 2 6 7

х	1	2	6	7
$f^{-1}(x)$	1	3	4	6

91.	x	-2	-1	3	4
	у	6	0	-2	-3

x	-3	-2	0	6
$f^{-1}(x)$	4	3	-1	-2

93.
$$k = \frac{1}{4}$$
 95. ± 8 **97.** $\frac{3}{2}$ **99.** $3 \pm \sqrt{5}$ **101.** $5, -\frac{10}{3}$ **103.** $16, 18$

Section 1.10 (page 109)

Vocabulary Check (page 109)

- 1. variation; regression 2. sum of square differences
- 3. correlation coefficient
- 4. directly proportional
- **5.** constant of variation
- **6.** directly proportional
- 7. inverse 8. combined
- 9. jointly proportional

The model is a good fit for the actual data.

7. (a) and (b)

- (c) y = 1.03t + 130.27
- (d) The models are similar.
- (e) Part (b): 238 feet; Part (c): 241.51 feet
- (f) Answers will vary.

The model is a good fit.

- (d) 2005: \$800 million; 2007: \$876.8 million
- (e) Each year the annual gross ticket sales for Broadway shows in New York City increase by \$38.4 million.
- 11. Inversely

3.	x	2	4	6	8	10
	$y = kx^2$	4	16	36	64	100

15.	x	2	4	6	8	10
	$y = kx^2$	2	8	18	32	50
	у ф					
	50 -			•		
	40 +					
	30 +		•			

17.	

x	2	4	6	8	10
$y = k/x^2$	$\frac{1}{2}$	$\frac{1}{8}$	1 18	$\frac{1}{32}$	<u>1</u> 50

x	2	4	6	8	10
$y = k/x^2$	<u>5</u>	<u>5</u> 8	<u>5</u>	<u>5</u> 32	$\frac{1}{10}$

21.
$$y = \frac{5}{x}$$
 23. $y = -\frac{7}{10}x$ **25.** $y = \frac{12}{5}x$

27.
$$y = 205x$$
 29. $I = 0.035P$

31. Model: $y = \frac{33}{13}x$; 25.4 centimeters, 50.8 centimeters

33.
$$y = 0.0368x$$
; \$7360

35. (a) 0.05 meter (b) $176\frac{2}{3}$ newtons

37. 39.47 pounds **39.**
$$A = kr^2$$
 41. $y = \frac{k}{x^2}$

43.
$$F = \frac{kg}{r^2}$$
 45. $P = \frac{k}{V}$ **47.** $F = \frac{km_1m_2}{r^2}$

- **49.** The area of a triangle is jointly proportional to its base and height.
- **51.** The volume of a sphere varies directly as the cube of its radius.
- **53.** Average speed is directly proportional to the distance and inversely proportional to the time.

55.
$$A = \pi r^2$$
 57. $y = \frac{28}{x}$ **59.** $F = 14rs^3$

61.
$$z = \frac{2x^2}{3y}$$
 63. ≈ 0.61 mile per hour **65.** 506 feet

67. 1470 joules **69.** The velocity is increased by one-third.

71. (a)
$$C$$

$$(a) = 0$$

$$(b) = 0$$

$$(c) = 0$$

$$(c) = 0$$

$$(d) = 0$$

$$(d$$

(b) Yes.
$$k_1 = 4200, k_2 = 3800, k_3 = 4200,$$

 $k_4 = 4800, k_5 = 4500$

(c)
$$C = \frac{4300}{d}$$

(e) ≈ 1433 meters

- **75.** False. *y* will increase if *k* is positive and *y* will decrease if *k* is negative.
- 77. True. The closer the value of |r| is to 1, the better the fit.
- 79. The accuracy is questionable when based on such limited data.

5. (a)

- (b) 5 (c) $\left(-1, \frac{13}{2}\right)$

7. (a)

- (b) 9.9
- (c) (2.8, 4.1)

- **9.** (2, 5), (4, 5), (2, 0), (4, 0)
- **11.** \$656.45 million
- 13. Radius ≈ 22.5 centimeters
- 15.

х	-2	-1	0	1	2
у	-11	-8	-5	-2	1

- 17. 0 2 3 1 4 х -2-20 4

19.

21.

23.

- **25.** *x*-intercept: $\left(-\frac{7}{2}, 0\right)$ y-intercept: (0, 7)
- **27.** *x*-intercepts: (1, 0), (5, 0)y-intercept: (0, 5)
- 29. No symmetry
- **31.** *y*-axis symmetry

35. No symmetry

33. No symmetry

- **37.** Center: (0, 0);

Radius: 3

39. Center: (-2, 0);

Radius: 4

41. Center: $(\frac{1}{2}, -1)$; Radius: 6

- **43.** $(x-2)^2 + (y+3)^2 = 13$
- **45.** (a) 12 16 20 F 0 5 10 15 20 25

- (c) 12.5 pounds
- **47.** slope: 0

49. slope: 3

53.

-4.5, 6)

(2.1, 3)

51.

55. $y = \frac{3}{2}x - 5$

57. $y = -\frac{1}{2}x + 2$

- **61.** $y = -\frac{4}{3}x + \frac{8}{3}$ **59.** x = 0
- **63.** (a) $y = \frac{5}{4}x \frac{23}{4}$ (b) $y = -\frac{4}{5}x + \frac{2}{5}$
- **65.** $V = 850t + 7400, \ 6 \le t \le 11$
- **71.** (a) 5 (b) 17 (c) $t^4 + 1$ (d) $t^2 + 2t + 2$
- 73. All real numbers x such that $-5 \le x \le 5$

75. All real numbers x except x = 3, -2

- 77. (a) 16 feet per second (b) 1.5 seconds (c) -16 feet per second
- **79.** 4x + 2h + 3, $h \neq 0$ **81.** Function
- **85.** $\frac{7}{3}$, 3 83. Not a function 87. $-\frac{3}{8}$
- **89.** Increasing on $(0, \infty)$ Decreasing on $(-\infty, -1)$ Constant on (-1, 0)

93.

95. 4 **97.** $\frac{1-\sqrt{2}}{2}$

99. Neither even nor odd

101. Odd

103. f(x) = -3x

105.

107.

109.

y 6 + 4 + 3 + 4 + 4 + 4 + 5 + x 2 + 1 + 1 + 1 + 1 + 3 + 5 + x 1 + 1 + 1 + 1 + 1 + 3 + 5 + x

111.

113.

115. $y = x^3$

117. (a)
$$f(x) = x^2$$

(b) Vertical shift of nine units downward

(d)
$$h(x) = f(x) - 9$$

119. (a)
$$f(x) = \sqrt{x}$$

(b) Horizontal shift of seven units to the right

(d)
$$h(x) = f(x - 7)$$

- **121.** (a) $f(x) = x^2$
 - (b) Reflection in the *x*-axis, horizontal shift of three units to the left, and vertical shift of one unit upward

(d)
$$h(x) = -f(x+3) + 1$$

- **123.** (a) f(x) = [x]
 - (b) Reflection in the *x*-axis and vertical shift of six units upward

(d)
$$h(x) = -f(x) + 6$$

- **125.** (a) f(x) = |x|
 - (b) Reflections in the x-axis and the y-axis, horizontal shift of four units to the right, and vertical shift of six units upward

(d)
$$h(x) = -f(-x + 4) + 6$$

- **127.** (a) f(x) = [x]
 - (b) Horizontal shift of nine units to the right and vertical stretch

- (d) h(x) = 5 f(x 9)
- **129.** (a) $f(x) = \sqrt{x}$
 - (b) Reflection in the *x*-axis, vertical stretch, and horizontal shift of four units to the right

- (d) h(x) = -2f(x-4)
- **131.** (a) $x^2 + 2x + 2$ (b) $x^2 2x + 4$
 - (c) $2x^3 x^2 + 6x 3$
 - (d) $\frac{x^2 + 3}{2x 1}$; all real numbers x except $x = \frac{1}{2}$
- **133.** (a) $x \frac{8}{3}$ (b) x 8

Domains of f, g, $f \circ g$, and $g \circ f$: all real numbers

- **135.** $f(x) = x^3, g(x) = 6x 5$
- **137.** (a) $(v + d)(t) = -36.04t^2 + 804.6t 1112$

- (c) (v + d)(10) = 3330
- **139.** $f^{-1}(x) = x + 7$
- **141.** The function has an inverse.

143.

The function has an inverse.

The function has an inverse.

147. (a) $f^{-1}(x) = 2x + 6$

(b)

- (c) The graph of f^{-1} is the reflection of the graph of f in the line y = x.
- (d) Both f and f^{-1} have domains and ranges that are all real numbers.
- **149.** (a) $f^{-1}(x) = x^2 1$, $x \ge 0$

(b)

- (c) The graph of f^{-1} is the reflection of the graph of f in the line y = x.
- (d) f has a domain of $[-1, \infty)$ and a range of $[0, \infty)$; f^{-1} has a domain of $[0, \infty)$ and a range of $[-1, \infty)$.
- **151.** $x \ge 4$; $f^{-1}(x) = \sqrt{\frac{x}{2}} + 4$

153. (a)

- (b) The model is a good fit for the actual data.
- **155.** Model: $m = \frac{8}{5}k$; 3.2 kilometers, 16 kilometers
- **157.** A factor of 4 **159.** \approx 2 hours, 26 minutes

161. False. The graph is reflected in the x-axis, shifted nine units to the left, and then shifted 13 units downward.

- **163.** True. If y is directly proportional to x, then y = kx, so x = (1/k)y. Therefore, x is directly proportional to y.
- **165.** A function from a set *A* to a set *B* is a relation that assigns to each element x in the set A exactly one element y in the set B.

Chapter Test (page 123)

Midpoint: $(2, \frac{5}{2})$; Distance: $\sqrt{89}$

- **2.** \approx 11.937 centimeters
- **3.** No symmetry

5. y-axis symmetry

- **6.** $(x-1)^2 + (y-3)^2 = 16$ **7.** 2x + y 1 = 0
- **8.** 17x + 10y 59 = 0
- **9.** (a) 4x 7y + 44 = 0 (b) 7x + 4y 53 = 0
- **10.** (a) $-\frac{1}{8}$ (b) $-\frac{1}{28}$ (c) $\frac{\sqrt{x}}{x^2 18x}$
- **11.** $-10 \le x \le 10$
- **12.** (a) $0, \pm 0.4314$

- (c) Increasing on $(-0.31, 0), (0.31, \infty)$ Decreasing on $(-\infty, -0.31)$, (0, 0.31)
- (d) Even
- **13.** (a) 0, 3

- (c) Increasing on $(-\infty, 2)$ Decreasing on (2, 3)
- (d) Neither even nor odd
- **14.** (a) -5

- (c) Increasing on $(-5, \infty)$ Decreasing on $(-\infty, -5)$
- (d) Neither even nor odd

16. Reflection in the *x*-axis of y = [x]

17. Reflection in the *x*-axis, horizontal shift, and vertical shift of $y = \sqrt{x}$

18. (a)
$$2x^2 - 4x - 2$$
 (b) $4x^2 + 4x - 12$

(c)
$$-3x^4 - 12x^3 + 22x^2 + 28x - 35$$

(d)
$$\frac{3x^2 - 7}{-x^2 - 4x + 5}$$
, $x \neq -5, 1$

(e)
$$3x^4 + 24x^3 + 18x^2 - 120x + 68$$

(f)
$$-9x^4 + 30x^2 - 16$$

19. (a)
$$\frac{1+2x^{3/2}}{x}$$
, $x > 0$ (b) $\frac{1-2x^{3/2}}{x}$, $x > 0$

(c)
$$\frac{2\sqrt{x}}{x}$$
, $x > 0$ (d) $\frac{1}{2x^{3/2}}$, $x > 0$

(e)
$$\frac{\sqrt{x}}{2x}$$
, $x > 0$ (f) $\frac{2\sqrt{x}}{x}$, $x > 0$

20.
$$f^{-1}(x) = \sqrt[3]{x-8}$$
 21. No inverse

22.
$$f^{-1}(x) = \left(\frac{1}{3}x\right)^{2/3}, \ x \ge 0$$
 23. $v = 6\sqrt{s}$

24.
$$A = \frac{25}{6}xy$$
 25. $b = \frac{48}{6}$

Problem Solving (page 125)

1. (a)
$$W_1 = 2000 + 0.07S$$
 (b) $W_2 = 2300 + 0.05S$

Both jobs pay the same monthly salary if sales equal \$15,000

(d) No. Job 1 would pay \$3400 and job 2 would pay \$3300.

3. (a) The function will be even.

(b) The function will be odd.

(c) The function will be neither even nor odd.

5.
$$f(x) = a_{2n}x^{2n} + a_{2n-2}x^{2n-2} + \dots + a_2x^2 + a_0$$
$$f(-x) = a_{2n}(-x)^{2n} + a_{2n-2}(-x)^{2n-2} + \dots + a_2(-x)^2 + a_0$$
$$= f(x)$$

7. (a) $81\frac{2}{3}$ hours (b) $25\frac{5}{7}$ miles per hour

(c)
$$y = \frac{-180}{7}x + 3400$$

Domain:
$$0 \le x \le \frac{1190}{9}$$

Range: $0 \le y \le 3400$

9. (a) $(f \circ g)(x) = 4x + 24$ (b) $(f \circ g)^{-1}(x) = \frac{1}{4}x - 6$

(c)
$$f^{-1}(x) = \frac{1}{4}x$$
; $g^{-1}(x) = x - 6$

(d) $(g^{-1} \circ f^{-1})(x) = \frac{1}{4}x - 6$

(e) $(f \circ g)(x) = 8x^3 + 1$; $(f \circ g)^{-1}(x) = \frac{1}{2}\sqrt[3]{x-1}$; $f^{-1}(x) = \sqrt[3]{x-1}$; $g^{-1}(x) = \frac{1}{2}x$; $(g^{-1} \circ f^{-1})(x) = \frac{1}{2}\sqrt[3]{x-1}$

(f) Answers will vary. (g) $(f \circ g)^{-1}(x) = (g^{-1} \circ f^{-1})(x)$

- 13. Proof
- **15.** (a) [

X	-4	-2	0	4
$f(f^{-1}(x))$	-4	-2	0	4
	$\frac{x}{f(f^{-1}(x))}$	$ \begin{array}{c cc} x & -4 \\ \hline f(f^{-1}(x)) & -4 \end{array} $	x	

(b)	x	-3	-2	0	1
	$(f+f^{-1})(x)$	5	1	-3	-5

(c)	x	-3	-2	0	1
	$(f\circ f^{-1})(x)$	4	0	2	6

(d)	x	-4	-3	0	4
	$ f^{-1}(x) $	2	1	1	3

Chapter 2

Section 2.1 (page 134)

Vocabulary Check (page 134)

- 1. nonnegative integer; real 2. quadratic; parabola
- 3. axis 4. positive; minimum
- 5. negative; maximum
- **1.** g **2.** c **3.** b **4.** h
- **5.** f **6.** a **7.** e **8.** d

9. (a) (b)

Vertical shrink and reflection in the *x*-axis

Vertical stretch

Vertical stretch and reflection in the x-axis

Horizontal shift

Horizontal shrink and vertical shift

Horizontal stretch and vertical shift

Horizontal shift

13.

Vertex: (0, -5)Axis of symmetry: y-axis *x*-intercepts: $(\pm \sqrt{5}, 0)$

Vertex: (0, -4)Axis of symmetry: y-axis x-intercepts: $(\pm 2\sqrt{2}, 0)$

19.

Vertex: (-5, -6)

Axis of symmetry: x = -5x-intercepts: $(-5 \pm \sqrt{6}, 0)$ x-intercept: (4, 0)

Vertex: (4, 0)

Axis of symmetry: x = 4

21.

Vertex: $(\frac{1}{2}, 1)$

Axis of symmetry: $x = \frac{1}{2}$ Axis of symmetry: x = 1No x-intercept

25.

Vertex: $(\frac{1}{2}, 20)$ Axis of symmetry: $x = \frac{1}{2}$

29.

Vertex: (4, -16)

Axis of symmetry: x = 4x-intercepts: (-4, 0), (12, 0)

Vertex: (-1, 4)

Axis of symmetry: x = -1x-intercepts: (1, 0), (-3, 0)

31.

Vertex: (-4, -5)

Axis of symmetry: x = -4x-intercepts: $(-4 \pm \sqrt{5}, 0)$

Vertex: (4, -1)

Axis of symmetry: x = 4x-intercepts: $\left(4 \pm \frac{1}{2}\sqrt{2}, 0\right)$ 35.

Vertex: (-2, -3)

Axis of symmetry: x = -2x-intercepts: $(-2 \pm \sqrt{6}, 0)$

37. $y = (x - 1)^2$ **39.** $y = -(x + 1)^2 + 4$

41.
$$y = -2(x+2)^2 + 2$$
 43. $f(x) = (x+2)^2 + 5$

45.
$$f(x) = -\frac{1}{2}(x-3)^2 + 4$$

47.
$$f(x) = \frac{3}{4}(x-5)^2 + 12$$

49.
$$f(x) = -\frac{24}{49}(x + \frac{1}{4})^2 + \frac{3}{2}$$
 51. $f(x) = -\frac{16}{3}(x + \frac{5}{2})^2$

51.
$$f(x) = -\frac{16}{2}(x + \frac{5}{2})^2$$

53.
$$(\pm 4, 0)$$
 55. $(5, 0), (-1, 0)$

57.

59.

(0,0), (4,0)

(7,0), (-1,0)

67. $f(x) = x^2 - 10x$

 $g(x) = -x^2 + 10x$

 $\left(-\frac{5}{2},0\right)$, (6, 0)

65.
$$f(x) = x^2 - 2x - 3$$

 $g(x) = -x^2 + 2x + 3$

69.
$$f(x) = 2x^2 + 7x + 3$$

 $g(x) = -2x^2 - 7x - 3$

71. 55, 55 **73.** 12, 6

75. (a)
$$A = \frac{8x(50 - x)}{3}$$

b)	х	5	10	15	20	25	30
	A	600	1067	1400	1600	1667	1600

 $x = 25 \text{ feet}, y = 33\frac{1}{3} \text{ feet}$

 $x = 25 \text{ feet}, y = 33\frac{1}{3} \text{ feet}$

- (d) $A = -\frac{8}{3}(x 25)^2 + \frac{5000}{3}$
- (e) They are identical.
- **79.** 20 fixtures **77.** 16 feet 81. 350,000 units
- **83.** (a) \$14,000,000; \$14,375,000; \$13,500,000
- (b) 24; \$14,400

85. (a) 5000

- (b) 4299; answers will vary.
- (c) 8879; 24

(b) 69.6 miles per hour

- 89. True. The equation has no real solutions, so the graph has no x-intercepts.
- **91.** $f(x) = a\left(x + \frac{b}{2a}\right)^2 + \frac{4ac b^2}{4a}$
- 93. Yes. A graph of a quadratic equation whose vertex is on the x-axis has only one x-intercept.
- **95.** $y = -\frac{1}{3}x + \frac{5}{3}$ **97.** $y = \frac{5}{4}x + 3$
- **103.** 109 105. Answers will vary.

Section 2.2 (page 148)

(page 148) **Vocabulary Check**

- 2. Leading Coefficient Test 1. continuous
- **3.** n; n-1**4.** (a) solution; (b) (x - a); (c) x-intercept
- 5. touches; crosses
- 6. standard
- 7. Intermediate Value
- **1.** c **2.** g **3.** h **4.** f
 - **8.** b **6.** e **7.** d

- 13. Falls to the left, rises to the right
- 15. Falls to the left, falls to the right
- 17. Rises to the left, falls to the right
- 19. Rises to the left, falls to the right
- 21. Falls to the left, falls to the right
- 23.

- **27.** (a) ± 5
 - (b) odd multiplicity; number of turning points: 1

- **29.** (a) 3
 - (b) even multiplicity; number of turning points: 1

- **31.** (a) -2, 1
 - (b) odd multiplicity; number of turning points: 1

- **33.** (a) $0, 2 \pm \sqrt{3}$
 - (b) odd multiplicity; number of turning points: 2

- **35.** (a) 0, 2
 - (b) 0, odd multiplicity; 2, even multiplicity; number of turning points: 2

- **37.** (a) $0, \pm \sqrt{3}$
 - (b) 0, odd multiplicity; $\pm \sqrt{3}$, even multiplicity; number of turning points: 4

- 39. (a) No real zeros
 - (b) number of turning points: 1

- **41.** (a) ± 2 , -3
 - (b) odd multiplicity; number of turning points: 2

- (b) x-intercepts: $(0, 0), (\frac{5}{2}, 0)$ (c) $x = 0, \frac{5}{2}$
- (d) The answers in part (c) match the x-intercepts.

- (b) x-intercepts: $(0, 0), (\pm 1, 0), (\pm 2, 0)$
- (c) x = 0, 1, -1, 2, -2
- (d) The answers in part (c) match the x-intercepts.

47.
$$f(x) = x^2 - 10x$$
 49. $f(x) = x^2 + 4x - 12$

- **51.** $f(x) = x^3 + 5x^2 + 6x$
- **53.** $f(x) = x^4 4x^3 9x^2 + 36x$
- **55.** $f(x) = x^2 2x 2$ **57.** $f(x) = x^2 + 4x + 4$
- **59.** $f(x) = x^3 + 2x^2 3x$ **61.** $f(x) = x^3 3x$
- **63.** $f(x) = x^4 + x^3 15x^2 + 23x 10$
- **65.** $f(x) = x^5 + 16x^4 + 96x^3 + 256x^2 + 256x$
- 67. (a) Falls to the left, rises to the right
 - (b) $0, \pm 3$ (c) Answers will vary.

- 69. (a) Rises to the left, rises to the right
 - (b) No zeros (c) Answers will vary.

- 71. (a) Falls to the left, rises to the right
 - (b) 0, 3 (c) Answers will vary.

- 73. (a) Falls to the left, rises to the right
 - (b) 0, 2, 3 (c) Answers will vary.

(d)

- 75. (a) Rises to the left, falls to the right
 - (b) -5, 0 (c) Answers will vary.

(d)

- 77. (a) Falls to the left, rises to the right
 - (b) 0, 4 (c) Answers will vary.

(d)

- 79. (a) Falls to the left, falls to the right
 - (b) ± 2 (c) Answers will vary.

(d) (-2,0) (2,0) (3,0) (2,0) (3,0)

81.

Zeros: $0, \pm 2$, odd multiplicity

Zeros: -1, even multiplicity; $3, \frac{9}{2}$, odd multiplicity

85.
$$[-1, 0], [1, 2], [2, 3]; \approx -0.879, 1.347, 2.532$$

- **87.** $[-2, -1], [0, 1]; \approx -1.585, 0.779$
- **89.** (a) $V = l \times w \times h$ = (36 - 2x)(36 - 2x)x= $x(36 - 2x)^2$
 - (b) Domain: 0 < x < 18

(c)

x	1	2	3	4	5	6	7
V	1156	2048	2700	3136	3380	3456	3388

6 inches \times 24 inches \times 24 inches

(d) 3600

$$x = 6$$

- **91.** (a) $A = -2x^2 + 12x$ (b) $V = -384x^2 + 2304x$
 - (c) 0 inches < x < 6 inches

(d)	Х	Į¥1	
	0422456	0 1920 3072 3456 3072 1920 0	
	X=0		

When x = 3, the volume is maximum at V = 3456; dimensions of gutter are 3 inches \times 6 inches \times 3 inches.

The maximum value is the same.

(f) No. Answers will vary.

The model is a good fit.

- **95.** Region 1: 259,370 Region 2: 223,470 Answers will vary.
- **97.** (a)

- (b) $t \approx 15$ (c) Vertex: (15.22, 2.54)
- (d) The results are approximately equal.

- 99. False. A fifth-degree polynomial can have at most four turning points.
- 101. True. The degree of the function is odd and its leading coefficient is negative, so the graph rises to the left and

- (a) Vertical shift of two units; Even
- (b) Horizontal shift of two units; Neither even nor odd
- (c) Reflection in the y-axis; Even
- (d) Reflection in the x-axis; Even
- (e) Horizontal stretch: Even
- (f) Vertical shrink; Even
- (g) $g(x) = x^3$; Neither odd nor even

(h)
$$g(x) = x^{16}$$
; Even

105.
$$(5x - 8)(x + 3)$$
 107. $x^2(4x + 5)(x - 3)$

109.
$$-\frac{7}{2}$$
, 4 **111.** $-\frac{5}{4}$, $\frac{1}{3}$ **113.** $1 \pm \sqrt{22}$

115.
$$\frac{-5 \pm \sqrt{185}}{4}$$

117. Horizontal translation four units to the left of $y = x^2$

119. Horizontal translation one unit left and vertical translation five units down of $y = \sqrt{x}$

121. Vertical stretch by a factor of 2 and vertical translation nine units up of v = [x]

Section 2.3 (page 159)

Vocabulary Check (page 159)

- 1. dividend; divisor; quotient; remainder
- **2.** improper; proper 3. synthetic division
- **4.** factor 5. remainder
- 1. Answers will vary.
- 3.

5. 2x + 4

7.
$$x^2 - 3x + 1$$
 9. $x^3 + 3x^2 - 1$ 11. $7 - \frac{11}{x+2}$

13.
$$3x + 5 - \frac{2x - 3}{2x^2 + 1}$$
 15. $x^2 + 2x + 4 + \frac{2x - 11}{x^2 - 2x + 3}$

17.
$$x + 3 + \frac{6x^2 - 8x + 3}{(x - 1)^3}$$
 19. $3x^2 - 2x + 5$

21.
$$4x^2 - 9$$
 23. $-x^2 + 10x - 25$

25.
$$5x^2 + 14x + 56 + \frac{232}{x - 4}$$

27.
$$10x^3 + 10x^2 + 60x + 360 + \frac{1360}{x - 6}$$

29.
$$x^2 - 8x + 64$$

31.
$$-3x^3 - 6x^2 - 12x - 24 - \frac{48}{x - 2}$$

33.
$$-x^3 - 6x^2 - 36x - 36 - \frac{216}{x - 6}$$

35.
$$4x^2 + 14x - 30$$

37.
$$f(x) = (x - 4)(x^2 + 3x - 2) + 3$$
, $f(4) = 3$

39.
$$f(x) = (x + \frac{2}{3})(15x^3 - 6x + 4) + \frac{34}{3}, \quad f(-\frac{2}{3}) = \frac{34}{3}$$

41.
$$f(x) = (x - \sqrt{2})[x^2 + (3 + \sqrt{2})x + 3\sqrt{2}] - 8,$$

 $f(\sqrt{2}) = -8$

43.
$$f(x) = (x - 1 + \sqrt{3})[-4x^2 + (2 + 4\sqrt{3})x + (2 + 2\sqrt{3})]$$

 $f(1 - \sqrt{3}) = 0$

47. (a) 97 (b)
$$-\frac{5}{3}$$
 (c) 17 (d) -199

- **49.** (x-2)(x+3)(x-1); Zeros: 2, -3, 1
- **51.** (2x-1)(x-5)(x-2); Zeros: $\frac{1}{2}$, 5, 2
- **53.** $(x + \sqrt{3})(x \sqrt{3})(x + 2)$; Zeros: $-\sqrt{3}$, $\sqrt{3}$, -2
- **55.** $(x-1)(x-1-\sqrt{3})(x-1+\sqrt{3})$; Zeros: 1, $1 + \sqrt{3}$, $1 - \sqrt{3}$
- **57.** (a) Answers will vary. (b) 2x 1
 - (c) f(x) = (2x 1)(x + 2)(x 1) (d) $\frac{1}{2}$, -2, 1

(e)

- **59.** (a) Answers will vary. (b) (x-1), (x-2)
 - (c) f(x) = (x 1)(x 2)(x 5)(x + 4)
 - (d) 1, 2, 5, -4

- **61.** (a) Answers will vary. (b) x + 7
 - (c) f(x) = (x + 7)(2x + 1)(3x 2)
 - (d) $-7, -\frac{1}{2}, \frac{2}{3}$

(e)

- **63.** (a) Answers will vary. (b) $(x \sqrt{5})$
 - (c) $f(x) = (x \sqrt{5})(x + \sqrt{5})(2x 1)$ (d) $\pm \sqrt{5}, \frac{1}{2}$

(e)

- **65.** (a) Zeros are 2 and $\approx \pm 2.236$.
 - (b) x = 2 (c) $f(x) = (x 2)(x \sqrt{5})(x + \sqrt{5})$
- **67.** (a) Zeros are -2, ≈ 0.268 , and ≈ 3.732 .
 - (b) x = -2
 - (c) $h(t) = (t+2)[t-(2+\sqrt{3})][t-(2-\sqrt{3})]$
- **69.** $2x^2 x 1$, $x \neq \frac{3}{2}$ **71.** $x^2 + 3x$, $x \neq -2$, -1
- **73.** (a) and (b)

$$M = -0.242x^3 + 12.43x^2 - 173.4x + 2118$$

(c)

(-)						
t	3	4	5	6	7	8
M(t)	1703	1608	1531	1473	1430	1402
		10		10	1.0	
t	9	10	11	12	13	
M(t)	1388	1385	1392	1409	1433	

Answers will vary.

- (d) 1614 thousand. No, because the model will approach negative infinity quickly.
- **75.** False. $-\frac{4}{7}$ is a zero of f.
- 77. True. The degree of the numerator is greater than the degree of the denominator.
- **79.** $x^{2n} + 6x^n + 9$ **81.** The remainder is 0.
- **83.** c = -210 **85.** 0; x + 3 is a factor of f.
- 87. $\pm \frac{5}{3}$ 89. $-\frac{7}{5}$, 2 91. $\frac{-3 \pm \sqrt{3}}{2}$
- **93.** $f(x) = x^3 7x^2 + 12x$
- **95.** $f(x) = x^3 + x^2 7x 3$

Section 2.4 (page 167)

Vocabulary Check (page 167)

- **1.** (a) iii (b) i (c) ii 2. $\sqrt{-1}$; -1
- 3. complex numbers; a + bi
- 4. principal square
- 5. complex conjugates
- **1.** a = -10, b = 6 **3.** a = 6, b = 5
- 7. $2-3\sqrt{3}i$ 9. $5\sqrt{3}i$ 11. 8
- **13.** -1 6i **15.** 0.3i **17.** 11 i **19.** 4
- **21.** $3 3\sqrt{2}i$ **23.** -14 + 20i **25.** $\frac{1}{6} + \frac{7}{6}i$
- **27.** 5 + i **29.** 12 + 30i **31.** 24 **33.** -9 + 40i
- **35.** −10 **37.** 6 - 3*i*, 45 **39.** -1 + $\sqrt{5}i$, 6
- **41.** $-2\sqrt{5}i$, 20 **43.** $\sqrt{8}$, 8 **45.** -5i
- **47.** $\frac{8}{41} + \frac{10}{41}i$ **49.** $\frac{4}{5} + \frac{3}{5}i$ **51.** -5 6i **53.** $-\frac{12}{1681} \frac{27}{1681}i$ **55.** $-\frac{1}{2} \frac{5}{2}i$ **57.** $\frac{62}{949} + \frac{297}{949}i$
- **59.** $-2\sqrt{3}$ **61.** -10
- **63.** $(21 + 5\sqrt{2}) + (7\sqrt{5} 3\sqrt{10})i$ **65.** $1 \pm i$
- **67.** $-2 \pm \frac{1}{2}i$ **69.** $-\frac{5}{2}, -\frac{3}{2}$ **71.** $2 \pm \sqrt{2}i$
- **73.** $\frac{5}{7} \pm \frac{5\sqrt{15}}{7}$ **75.** -1 + 6i
- **77.** -5i **79.** $-375\sqrt{3}i$
- **83.** (a) $z_1 = 9 + 16i, z_2 = 20 10i$ (b) $z = \frac{11,240}{877} + \frac{4630}{877}i$
- **85.** (a) 16 (b) 16 (c) 16 (d) 16
- 87. False. If the complex number is real, the number equals its conjugate.

$$i^{44} + i^{150} - i^{74} - i^{109} + i^{61} = 1 - 1 + 1 - i + i = 1$$

93.
$$-x^2 - 3x + 12$$
 95. $3x^2 + \frac{23}{2}x - 2$

$$+\frac{23}{2}x-2$$

99.
$$\frac{27}{2}$$

99.
$$\frac{27}{2}$$
 101. $a = \frac{\sqrt{3V\pi b}}{2\pi b}$ **103.** 1 liter

Section 2.5 (page 179)

Vocabulary Check (page 179)

- 1. Fundamental Theorem of Algebra
- 2. Linear Factorization Theorem 3. Rational Zero
- 4. conjugate 5. irreducible over the reals
- 7. lower; upper
- **6.** Descartes' Rule of Signs

5.
$$-6, \pm i$$
 7. $\pm 1, \pm 3$

1. 0, 6 **3.** 2, -4 **5.** -6,
$$\pm i$$
 7. ± 1 , ± 3 **9.** ± 1 , ± 3 , ± 5 , ± 9 , ± 15 , ± 45 , $\pm \frac{1}{2}$, $\pm \frac{3}{2}$, $\pm \frac{5}{2}$, $\pm \frac{9}{2}$, $\pm \frac{15}{2}$, $\pm \frac{45}{2}$

9.
$$\pm 1, \pm 3, \pm 3, \pm 9, \pm 13, \pm 43, \pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}$$

11. 1, 2, 3 **13.** 1, -1, 4 **15.** -1, -10 **17.**
$$\frac{1}{2}$$
, -1 **19.** -2, 3, $\pm \frac{2}{3}$ **21.** -1, 2 **23.** -6, $\frac{1}{2}$, 1

25. (a)
$$\pm 1, \pm 2, \pm 4$$

(c) $-\frac{1}{4}$, 1, 3

(c) $-\frac{1}{2}$, 1, 2, 4

(c) $1, \frac{3}{4}, -\frac{1}{8}$

27. (a) $\pm 1, \pm 3, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{1}{4}, \pm \frac{3}{4}$

29. (a) $\pm 1, \pm 2, \pm 4, \pm 8, \pm \frac{1}{2}$

31. (a) $\pm 1, \pm 3, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{1}{4}, \pm \frac{3}{4}, \pm \frac{1}{8}, \pm \frac{3}{8}, \pm \frac{1}{16}, \pm \frac{3}{16}, \pm \frac{1}{32}, \pm \frac{3}{32}$

33. (a) ± 1 , $\approx \pm 1.414$

(b)
$$f(x) = (x+1)(x-1)(x+\sqrt{2})(x-\sqrt{2})$$

35. (a) $0, 3, 4, \approx \pm 1.414$

(b)
$$h(x) = x(x-3)(x-4)(x+\sqrt{2})(x-\sqrt{2})$$

- **37.** $x^3 x^2 + 25x 25$ **39.** $x^3 + 4x^2 31x 174$
- **41.** $3x^4 17x^3 + 25x^2 + 23x 22$
- **43.** (a) $(x^2 + 9)(x^2 3)$
 - (b) $(x^2 + 9)(x + \sqrt{3})(x \sqrt{3})$
 - (c) $(x + 3i)(x 3i)(x + \sqrt{3})(x \sqrt{3})$
- **45.** (a) $(x^2 2x 2)(x^2 2x + 3)$

(b)
$$(x-1+\sqrt{3})(x-1-\sqrt{3})(x^2-2x+3)$$

(c)
$$(x-1+\sqrt{3})(x-1-\sqrt{3})(x-1+\sqrt{2}i)$$

 $(x-1-\sqrt{2}i)$

- **47.** $-\frac{3}{2}, \pm 5i$ **49.** $\pm 2i, 1, -\frac{1}{2}$ **51.** $-3 \pm i, \frac{1}{4}$
- **53.** 2, $-3 \pm \sqrt{2}i$, 1 **55.** $\pm 5i$; (x + 5i)(x 5i)
- **57.** $2 \pm \sqrt{3}$; $(x-2-\sqrt{3})(x-2+\sqrt{3})$
- **59.** $\pm 3, \pm 3i$; (x + 3)(x 3)(x + 3i)(x 3i)
- **61.** $1 \pm i$; (z 1 + i)(z 1 i)
- **63.** $2, 2 \pm i; (x-2)(x-2+i)(x-2-i)$
- **65.** -2, $1 \pm \sqrt{2}i$; $(x + 2)(x 1 + \sqrt{2}i)(x 1 \sqrt{2}i)$
- **67.** $-\frac{1}{5}$, $1 \pm \sqrt{5}i$; $(5x+1)(x-1+\sqrt{5}i)(x-1-\sqrt{5}i)$
- **69.** 2, $\pm 2i$; $(x-2)^2(x+2i)(x-2i)$
- **71.** $\pm i, \pm 3i; (x + i)(x i)(x + 3i)(x 3i)$
- **73.** $-10, -7 \pm 5i$ **75.** $-\frac{3}{4}, 1 \pm \frac{1}{2}i$
- 77. $-2, -\frac{1}{2}, \pm i$ 79. No real zeros
- **81.** No real zeros **83.** One positive zero
- **85.** One or three positive zeros
- **87.** Answers will vary. 89. Answers will vary.
- **91.** 1, $-\frac{1}{2}$ **93.** $-\frac{3}{4}$ **95.** $\pm 2, \pm \frac{3}{2}$ **97.** $\pm 1, \frac{1}{4}$
- **102.** c
- **99.** d **100.** a **101.** b

(b) V = x(9 - 2x)(15 - 2x)

Domain:
$$0 < x < \frac{9}{2}$$

- Length of sides of squares removed
- 1.82 centimeters \times 5.36 centimeters \times 11.36 centimeters (d) $\frac{1}{2}$, $\frac{7}{2}$, 8; 8 is not in the domain of V.
- **105.** $x \approx 38.4$, or \$384,000

- **107.** (a) $V = x^3 + 9x^2 + 26x + 24 = 120$ (b) 4 feet by 5 feet by 6 feet
- **109.** $x \approx 40$, or 4000 units
- 111. No. Setting p = 9,000,000 and solving the resulting equation yields imaginary roots.
- 113. False. The most complex zeros it can have is two, and the Linear Factorization Theorem guarantees that there are three linear factors, so one zero must be real.
- **115.** r_1, r_2, r_3 **117.** $5 + r_1, 5 + r_2, 5 + r_3$
- **119.** The zeros cannot be determined.
- **121.** (a) 0 < k < 4 (b) k = 4
 - (c) k < 0
- 123. Answers will vary. There are infinitely many possible functions for f. Sample equation and graph:

$$f(x) = -2x^3 + 3x^2 + 11x - 6$$

- 125. Answers will vary.
- **127.** (a) $x^2 + b$ (b) $x^2 - 2ax + a^2 + b^2$
- 131. 20 + 40i**129.** -11 + 9i
- 133. (2, 2)(4, 2)

Section 2.6 (page 193)

Vocabulary Check (page 193)

- 1. rational functions
- 2. vertical asymptote
- 3. horizontal asymptote
- 4. slant asymptote

1. (a)	x	f(x)	X	f(x)	x	f(x)
	0.5	-2	1.5	2	5	0.25
	0.9	-10	1.1	10	10	0.1
	0.99	-100	1.01	100	100	0.01
	0.999	-1000	1.001	1000	1000	0.001

- (b) Vertical asymptote: x = 1Horizontal asymptote: y = 0
- (c) Domain: all real numbers x except x = 1
- **3.** (a)

x	f(x)	х	f(x)	x	f(x)
0.5	-1	1.5	5.4	5	3.125
0.9	-12.79	1.1	17.29	10	3.03
0.99	-147.8	1.01	152.3	100	3.0003
0.999	-1498	1.001	1502	1000	3

- (b) Vertical asymptotes: $x = \pm 1$ Horizontal asymptote: y = 3
- (c) Domain: all real numbers x except $x = \pm 1$
- **5.** Domain: all real numbers x except x = 0

Vertical asymptote: x = 0

Horizontal asymptote: y = 0

7. Domain: all real numbers x except x = 2

Vertical asymptote: x = 2

Horizontal asymptote: y = -1

9. Domain: all real numbers x except $x = \pm 1$ Vertical asymptotes: $x = \pm 1$

11. Domain: all real numbers *x*

Horizontal asymptote: y = 3

15. c **16.** b

- **13.** d **14.** a
- **17.** 1 **19.** 6
- **21.** Domain: all real numbers x except $x = \pm 4$; Vertical asymptote: x = -4; horizontal asymptote: y = 0
- **23.** Domain: all real numbers x except x = -1, 3; Vertical asymptote: x = 3; horizontal asymptote: y = 1
- **25.** Domain: all real numbers x except $x = -1, \frac{1}{2}$; Vertical asymptote: $x = \frac{1}{2}$; horizontal asymptote: $y = \frac{1}{2}$
- **27.** (a) Domain: all real numbers x except x = -2
 - (b) y-intercept: $(0, \frac{1}{2})$
 - (c) Vertical asymptote: x = -2

Horizontal asymptote: y = 0

- **29.** (a) Domain: all real numbers x except x = -2
 - (b) y-intercept: $(0, -\frac{1}{2})$
 - (c) Vertical asymptote: x = -2Horizontal asymptote: y = 0

- **31.** (a) Domain: all real numbers x except x = -1
 - (b) *x*-intercept: $\left(-\frac{5}{2}, 0\right)$ *y*-intercept: (0, 5)
 - (c) Vertical asymptote: x = -1Horizontal asymptote: y = 2

- **33.** (a) Domain: all real numbers *x*
 - (b) Intercept: (0, 0)
 - (c) Horizontal asymptote: y = 1

- **35.** (a) Domain: all real numbers s
 - (b) Intercept: (0, 0) (c) Horizontal asymptote: y = 0

- 37. (a) Domain: all real numbers x except $x = \pm 2$
 - (b) x-intercepts: (1, 0) and (4, 0) y-intercept: (0, -1)
 - (c) Vertical asymptotes: $x = \pm 2$ Horizontal asymptote: y = 1

- **39.** (a) Domain: all real numbers x except $x = \pm 1, 2$
 - (b) *x*-intercept: $(3, 0), (-\frac{1}{2}, 0)$ *y*-intercept: $(0, -\frac{3}{2})$
 - (c) Vertical asymptotes: x = 2, $x = \pm 1$ Horizontal asymptote: y = 0

- **41.** (a) Domain: all real numbers x except x = 2, -3
 - (b) Intercept: (0, 0)
 - (c) Vertical asymptote: x = 2Horizontal asymptote: y = 1

CHAPTER 2

- **43.** (a) Domain: all real numbers x except $x = -\frac{3}{2}$, 2
 - (b) *x*-intercept: $(\frac{1}{2}, 0)$ *y*-intercept: $(0, \frac{1}{3})$
 - (c) Vertical asymptote: $x = -\frac{3}{2}$ Horizontal asymptote: y = 1

- **45.** (a) Domain: all real numbers t except t = -1
 - (b) *t*-intercept: (1, 0) *y*-intercept: (0, -1)
 - (c) Vertical asymptote: None Horizontal asymptote: None

- **47.** (a) Domain of f: all real numbers x except x = -1 Domain of g: all real numbers x
 - (b) x 1; Vertical asymptotes: none

(c)

х	-3	-2	-1.5	-1	-0.5	0	1
f(x)	-4	-3	-2.5	Undef.	-1.5	-1	0
g(x)	-4	-3	-2.5	-2	-1.5	-1	0

- (e) Because there are only a finite number of pixels, the graphing utility may not attempt to evaluate the function where it does not exist.
- **49.** (a) Domain of f: all real numbers x except x = 0, 2Domain of g: all real numbers x except x = 0

(b)
$$\frac{1}{x}$$
; Vertical asymptote: $x = 0$

(c)

x	-0.5	0	0.5	1	1.5	2	3
f(x)	-2	Undef.	2	1	<u>2</u> 3	Undef.	$\frac{1}{3}$
g(x)	-2	Undef.	2	1	$\frac{2}{3}$	$\frac{1}{2}$	1/3

- (e) Because there are only a finite number of pixels, the graphing utility may not attempt to evaluate the function where it does not exist.
- **51.** (a) Domain: all real numbers x except x = 0
 - (b) *x*-intercepts: (2, 0), (-2, 0)
 - (c) Vertical asymptote: x = 0Slant asymptote: y = x

- **53.** (a) Domain: all real numbers x except x = 0
 - (b) No intercepts
 - (c) Vertical asymptote: x = 0Slant asymptote: y = 2x

- **55.** (a) Domain: all real numbers x except x = 0
 - (b) No intercepts
 - (c) Vertical asymptote: x = 0Slant asymptote: y = x

- **57.** (a) Domain: all real numbers t except t = -5
 - (b) *y*-intercept: (0, -0.2)
 - (c) Vertical asymptote: t = -5Slant asymptote: y = -t + 5

- **59.** (a) Domain: all real numbers x except $x = \pm 1$
 - (b) Intercept: (0, 0)
 - (c) Vertical asymptotes: $x = \pm 1$ Slant asymptote: y = x

- **61.** (a) Domain: all real numbers x except x = 1
 - (b) y-intercept: (0, -1)
 - (c) Vertical asymptote: x = 1Slant asymptote: y = x

- **63.** (a) Domain: all real numbers x except x = -1, -2
 - (b) *y*-intercept: (0, 0.5) *x*-intercepts: (0.5, 0), (1, 0)

(c) Vertical asymptote: x = -2Slant asymptote: y = 2x - 7

65.

Domain: all real numbers x except x = -3

Vertical asymptote:
$$x = -3$$

Slant asymptote: $y = x + 2$

Domain: all real numbers x except x = 0

Vertical asymptote:
$$x = 0$$

Slant asymptote: $y = -x + 3$

Siant asymptote:
$$y = -x + y = -x + 3$$

69. (a)
$$(-1, 0)$$
 (b) -1

71. (a)
$$(1,0)$$
, $(-1,0)$ (b) ± 1

- (b) \$28.33 million; \$170 million; \$765 million
- (c) No. The function is undefined at p = 100.
- **75.** (a) 333 deer, 500 deer, 800 deer (b) 1500 deer
- 77. (a) Answers will vary. (b) $(4, \infty)$

11.75 inches \times 5.87 inches

CHAPTER 2

- 79. (a) Answers will vary.
 - (b) Vertical asymptote: x = 25Horizontal asymptote: y = 25

(d)	x	30	35	40	45	50	55	60
	у	150	87.5	66.7	56.3	50	45.8	42.9

- (e) Yes. You would expect the average speed for the round trip to be the average of the average speeds for the two parts of the trip.
- (f) No. At 20 miles per hour you would use more time in one direction than is required for the round trip at an average speed of 50 miles per hour.
- 81. False. Polynomials do not have vertical asymptotes.
- **83.** Answers will vary. Sample answer: $f(x) = \frac{2x^2}{x^2 + 1}$
- **85.** (x-7)(x-8)
- **87.** (x-5)(x+2i)(x-2i)
- **89.** $x \ge \frac{10}{3}$
- **91.** -3 < x < 7

93. Answers will vary.

Section 2.7 (page 204)

Vocabulary Check (page 204)

- 1. critical; test intervals
- 2. zeros; undefined values
- 3. P = R C
- **1.** (a) No
- (b) Yes (b) No
- (c) Yes
- (d) No

- **3.** (a) Yes
- (c) No (d) Yes
- 5. 2, $-\frac{3}{2}$ 7. $\frac{7}{2}$, 5
- **9.** [-3, 3]

11. (-7, 3)

$$-7$$
 3 -8 -6 -4 -2 0 2 4

13. $(-\infty, -5] \cup [1, \infty)$

17.
$$(-3, 1)$$

21.
$$(-1, 1) \cup (3, \infty)$$

- **29.** $[-2, 0] \cup [2, \infty)$ **31.** $[-2, \infty)$
- 33. 6

- (a) $x \le -1, x \ge 3$
- (a) $-2 \le x \le 0$, $2 \le x < \infty$
- (b) $0 \le x \le 2$
- $2 \le x <$ (b) $x \le 4$
- 37. $(-\infty, -1) \cup (0, 1)$

- **41.** (5, 15)
- 43. $\left(-5, -\frac{3}{2}\right) \cup \left(-1, \infty\right)$
- **45.** $\left(-\frac{3}{4}, 3\right) \cup [6, \infty)$
- 47. $(-3, -2] \cup [0, 3)$
- **49.** $(-\infty, -1) \cup \left(-\frac{2}{3}, 1\right) \cup (3, \infty)$

- 51. 8
- 53.
- (a) $0 \le x < 2$
- (a) $|x| \ge 2$
- (b) $2 < x \le 4$
- (b) $-\infty < x < \infty$

- **55.** [-2, 2] **57.** $(-\infty, 3] \cup [4, \infty)$
- **59.** $(-5,0] \cup (7,\infty)$ **61.** (-3.51, 3.51)
- **63.** (-0.13, 25.13)
 - **65.** (2.26, 2.39)
- **67.** (a) t = 10 seconds (b) 4 seconds < t < 6 seconds
- **69.** 13.8 meters $\leq L \leq$ 36.2 meters
- **71.** $40,000 \le x \le 50,000; 50.00 \le p \le 55.00$
- **73.** (a)

- (b) 24 32 26 28 30 34 C70.5 71.6 72.9 74.6 76.8 79.6
 - 2011
- (c) $t \approx 31$

(d)	t	36	37	38	39
	C	83.2	85.4	87.8	90.5

t	40	41	42	43
С	93.5	96.8	100.4	104.4

2016 to 2021

- (e) $37 \le t \le 41$ (f) Answers will vary.
- **75.** $R_1 \ge 2$ ohms
- 77. True. The test intervals are $(-\infty, -3)$, (-3, 1), (1, 4), and
- **79.** $(-\infty, -4] \cup [4, \infty)$ **81.** $(-\infty, -2\sqrt{30}] \cup [2\sqrt{30}, \infty)$
- **83.** (a) If a > 0 and $c \le 0$, b can be any real number. If a > 0and c > 0, $b < -2\sqrt{ac}$ or $b > 2\sqrt{ac}$.
 - (b) 0
- **85.** $(2x + 5)^2$
- **87.** (x + 3)(x + 2)(x 2)
- **89.** $2x^2 + x$

Review Exercises (page 208)

1. (a)

Vertical stretch

Vertical stretch and reflection in the x-axis (c) -4 -3 -2 -1

Vertical shift

3. $g(x) = (x-1)^2 - 1$

Vertex: (1, -1)Axis of symmetry: x = 1

x-intercepts: (0, 0), (2, 0)

Vertex: (-4, -6)Axis of symmetry: x = -4x-intercepts: $(-4 \pm \sqrt{6}, 0)$

9. $h(x) = 4(x + \frac{1}{2})^2 + 12$ 7. $f(t) = -2(t-1)^2 + 3$

Vertex: $(-\frac{1}{2}, 12)$ Vertex: (1, 3) Axis of symmetry: $x = -\frac{1}{2}$ Axis of symmetry: t = 1

Vertex: $\left(-\frac{5}{2}, -\frac{41}{4}\right)$

Vertex: $\left(-\frac{5}{2}, -\frac{41}{12}\right)$

No x-intercept

Axis of symmetry: $x = -\frac{5}{2}$ Axis of symmetry: $x = -\frac{5}{2}$ x-intercepts: $\left(\frac{\pm\sqrt{41}-5}{2},0\right)$ x-intercepts: $\left(\frac{\pm\sqrt{41}}{2}\right)$

15.
$$f(x) = -\frac{1}{2}(x-4)^2 + 1$$

17.
$$f(x) = (x-1)^2 - 4$$

(b) y = 100 - x

(c)
$$y = 100 - x$$

 $A = 100x - x^2$
(c) $x = 50$, $y = 50$

(c)
$$x = 50$$
, $y = 50$

21. 1091 units

25.

27.

- 29. Falls to the left, falls to the right
- 31. Rises to the left, rises to the right
- **33.** $-7, \frac{3}{2}$, odd multiplicity; turning point: 1
- **35.** $0, \pm \sqrt{3}$, odd multiplicity; turning points: 2
- 37. 0, even multiplicity; $\frac{5}{3}$, odd multiplicity; turning points: 2
- **39.** (a) Rises to the left, falls to the right (b) -1
 - (c) Answers will vary.

(d)

- **41.** (a) Rises to the right, rises to the left (b) -3, 0, 1
 - (c) Answers will vary.

43. (a)
$$[-1, 0]$$
 (b) ≈ -0.900

45. (a)
$$[-1, 0], [1, 2]$$
 (b) $\approx -0.200, \approx 1.772$

47.
$$8x + 5 + \frac{2}{3x - 2}$$
 49. $5x + 2$

51.
$$x^2 - 3x + 2 - \frac{1}{x^2 + 2}$$

53.
$$6x^3 + 8x^2 - 11x - 4 - \frac{8}{x - 2}$$

55.
$$2x^2 - 11x - 6$$

61. (a) Answers will vary. (b)
$$(x + 7), (x + 1)$$

(c)
$$f(x) = (x + 7)(x + 1)(x - 4)$$
 (d) $-7, -1, 4$

63. (a) Answers will vary. (b)
$$(x + 1), (x - 4)$$

(c)
$$f(x) = (x + 1)(x - 4)(x + 2)(x - 3)$$

$$(d) -2, -1, 3, 4$$

(e)

65.
$$6 + 2i$$
 67. $-1 + 3i$ **69.** $3 + 7i$

71.
$$40 + 65i$$
 7

73.
$$-4 - 46i$$
 75. $\frac{23}{17} + \frac{10}{17}i$

77.
$$\frac{21}{13} - \frac{1}{13}i$$

79.
$$\pm \frac{\sqrt{3}}{3}$$

79.
$$\pm \frac{\sqrt{3}}{3}i$$
 81. $1 \pm 3i$

83. 0, 2 **85.** 8, 1 **87.**
$$-4$$
, 6, $\pm 2i$

89.
$$\pm 1, \pm 3, \pm 5, \pm 15, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \pm \frac{15}{2}, \pm \frac{1}{4}, \pm \frac{3}{4}, \pm \frac{5}{4}, \pm \frac{15}{4}$$

97.
$$3x^4 - 14x^3 + 17x^2 - 42x + 24$$

99.
$$4, \pm i$$
 101. $-3, \frac{1}{2}, 2 \pm i$

103. 0, 1,
$$-5$$
; $f(x) = x(x-1)(x+5)$

105.
$$-4$$
, $2 \pm 3i$; $g(x) = (x + 4)^2(x - 2 - 3i)(x - 2 + 3i)$

- **107.** Two or no positive zeros, one negative zero
- 109. Answers will vary.
- 111. Domain: all real numbers x except x = -12
- 113. Domain: all real numbers x except x = 6, 4
- 115. Vertical asymptote: x = -3Horizontal asymptote: y = 0
- 117. Vertical asymptote: x = -3

Horizontal asymptote: y = 0

- **119.** (a) Domain: all real numbers x except x = 0
 - (b) No intercepts
 - (c) Vertical asymptote: x = 0Horizontal asymptote: y = 0

- **121.** (a) Domain: all real numbers x except x = 1
 - (b) x-intercept: (-2, 0)y-intercept: (0, 2)
 - (c) Vertical asymptote: x = 1Horizontal asymptote: y = -1

- **123.** (a) Domain: all real numbers x (b) Intercept: (0, 0)
 - (c) Horizontal asymptote: y = 1

- **125.** (a) Domain: all real numbers x (b) Intercept: (0, 0)
 - (c) Horizontal asymptote: y = 0

- **127.** (a) Domain: all real numbers x (b) Intercept: (0, 0)
 - (c) Horizontal asymptote: y = -6

- **129.** (a) Domain: all real numbers x except $x = 0, \frac{1}{3}$
 - (b) *x*-intercept: (1.5, 0)
 - (c) Vertical asymptote: x = 0Horizontal asymptote: y = 2

- **131.** (a) Domain: all real numbers x
 - (b) Intercept: (0, 0) (c) Slant asymptote: y = 2x

- **133.** (a) Domain: all real numbers x except $x = \frac{4}{3}$
 - (b) *y*-intercept: (0, -0.5)*x*-intercepts: $(\frac{2}{3}, 0), (1, 0)$
 - (c) Vertical asymptote: $x = \frac{4}{3}$ Slant asymptote: $y = x - \frac{1}{3}$

135. \$0.50 is the horizontal asymptote of the function.

2 in. 2 in.

(b)
$$(x-4)(y-4) = 30$$

 $y = \frac{4x+14}{x-4}$
Area = $x(\frac{4x+14}{x-4})$
= $\frac{2x(2x+7)}{x-4}$

- (c) $4 < x < \infty$
- (d) 200

 $9.48 \text{ inches} \times 9.48 \text{ inches}$

- **139.** $\left(-\frac{4}{3}, \frac{1}{2}\right)$ **141.** $[-4, 0] \cup [4, \infty)$
- **143.** $[-5, -1) \cup (1, \infty)$ **145.** $[-4, -3] \cup (0, \infty)$
- **147.** 4.9%
- **149.** False. A fourth-degree polynomial can have at most four zeros, and complex zeros occur in conjugate pairs.
- **151.** Find the vertex of the quadratic function and write the function in standard form. If the leading coefficient is positive, the vertex is a minimum. If the leading coefficient is negative, the vertex is a maximum.
- **153.** An asymptote of a graph is a line to which the graph becomes arbitrarily close as x increases or decreases without bound.

Chapter Test (page 212)

- **1.** (a) Reflection in the *x*-axis followed by a vertical translation
 - (b) Horizontal translation
- **2.** $y = (x 3)^2 6$
- **3.** (a) 50 feet
 - (b) 5. Yes, changing the constant term results in a vertical translation of the graph and therefore changes the maximum height.
- 4. Rises to the left, falls to the right

- **5.** $3x + \frac{x-1}{x^2+1}$ **6.** $2x^3 + 4x^2 + 3x + 6 + \frac{9}{x-2}$
- 7. $(4x 1)(x \sqrt{3})(x + \sqrt{3})$; Solutions: $\frac{1}{4}, \pm \sqrt{3}$
- **8.** (a) -3 + 5i (b) 7 **9.** 2 i
- **10.** $f(x) = x^4 9x^3 + 28x^2 30x$
- **11.** $f(x) = x^4 6x^3 + 16x^2 24x + 16$
- 12. $-2, \pm \sqrt{5}i$ 13. $-2, 4, -1 \pm \sqrt{2}i$
- **14.** *x*-intercepts: (-2, 0), (2, 0)

No y-intercept

Vertical asymptote: x = 0

Horizontal asymptote: y = -1

15. *x*-intercept: (-1.5, 0) *y*-intercept: (0, 0.75)

Vertical asymptote: x = -4

Horizontal asymptote: y = 2

16. No *x*-intercept y-intercept: (0, -2) Vertical asymptote: x = 1

Slant asymptote: y = x + 1

17. x < -4 or $x > \frac{3}{2}$

 $\frac{3}{2}$

Problem Solving (page 215)

- 1. Answers will vary.
- 3. 2 inches \times 2 inches \times 5 inches
- **5.** (a) and (b) $y = -x^2 + 5x 4$
- 7. (a) $f(x) = (x-2)x^2 + 5 = x^3 2x^2 + 5$

(b)
$$f(x) = -(x+3)x^2 + 1 = -x^3 - 3x^2 + 1$$

9.
$$(a + bi)(a - bi) = a^2 + abi - abi - b^2i^2$$

= $a^2 + b^2$

- 11. (a) As |a| increases, the graph stretches vertically. For a < 0, the graph is reflected in the *x*-axis.
 - (b) As |b| increases, the vertical asymptote is translated. For b > 0, the graph is translated to the right. For b < 0, the graph is reflected in the *x*-axis and is translated to the left.

Chapter 3

Section 3.1 (page 226)

Vocabulary Check (page 226)

- 1. algebraic
- 2. transcendental
- 3. natural exponential; natural
- **4.** $A = P\left(1 + \frac{r}{n}\right)^{n}$

- 5. $A = Pe^{rt}$
- 1. 946.852
- **3.** 0.006 **9.** a
- **5.** 1767.767

- **7.** d
- **8.** c
- **10.** b
- 7. u 11.

х	-2	-1	0	1	2
f(x)	4	2	1	0.5	0.25

13.	х	-2	-1	0	1	2
	f(x)	36	6	1	0.167	0.028

15.	x	-2	-1	0	1	2
	f(x)	0.125	0.25	0.5	1	2

- **17.** Shift the graph of *f* four units to the right.
- **19.** Shift the graph of *f* five units upward.
- **21.** Reflect the graph of *f* in the *x*-axis and *y*-axis and shift six units to the right.

- **27.** 0.472 **29.** 3.857×10^{-22}
- **31.** 7166.647

33.	x	-2	-1	0	1	2
	f(x)	0.135	0.368	1	2.718	7.389

35.	x	-8	-7	-6	-5	-4
	f(x)	0.055	0.149	0.406	1.104	3

37.	x	-2	-1	0	1	2
	f(x)	4.037	4.100	4.271	4.736	6

45.
$$x = 2$$
 47. $x = -3$ **49.** $x = \frac{1}{3}$ **51.** $x = 3, -1$ **53.** $n \mid 1 \mid 2 \mid 4 \mid A \mid \$3200.21 \mid \$3205.09 \mid \3207.57

n	12	365	Continuous
A	\$3209.23	\$3210.06	\$3210.06

55.	n	1	2	4
	A	\$4515.28	\$4535.05	\$4545.11

n	12	365	Continuous	
A	\$4551.89	\$4555.18	\$4555.30	

57.	t	10	20	30	
	A	\$17,901.90	\$26,706.49	\$39,841.40	

t	40	50
A	\$59,436.39	\$88,668.67

59.	t	10	20	30
	A	\$22,986.49	\$44,031.56	\$84,344.25

t	40	50
A	\$161,564.86	\$309,484.08

- **61.** \$222,822.57 **63.** \$35.45
- **65.** (a) V(1) = 10,000.298 (b) V(1.5) = 100,004.47
 - (c) V(2) = 1,000,059.6
- **67.** (a) 25 grams (b) 16.21 grams

69.	(a)	110
	. ,	
		0 120
		0

(b)	x	0	25	50	75	100
	Model	12.5	44.5	81.82	96.19	99.3
	Actual	12	44	81	96	99

- (c) 63.14% (d) 38 masses
- 71. True. As $x \to -\infty$, $f(x) \to -2$ but never reaches -2.
- **73.** f(x) = h(x) **75.** f(x) = g(x) = h(x)

As
$$x \to \infty$$
, $f(x) \to g(x)$.
As $x \to -\infty$, $f(x) \to g(x)$.

81.
$$y = \pm \sqrt{25 - x^2}$$

Answers to Odd-Numbered Exercises and Tests

85. Answers will vary.

Section 3.2 (page 236)

Vocabulary Check (page 236)

- 1. logarithmic
- **2.** 10
- 3. natural; e
- **4.** $a^{\log_a x} = x$
 - **5.** x = y
- 1. $4^3 = 64$
- 3. $7^{-2} = \frac{1}{40}$ 5. $32^{2/5} = 4$
- 7. $36^{1/2} = 6$
- 9. $\log_5 125 = 3$ **11.** $\log_{81} 3 = \frac{1}{4}$
- **13.** $\log_6 \frac{1}{36} = -2$ **15.** $\log_7 1 = 0$
- **17.** 4 **19.** 0

29. 1

- **21.** 2 **23.** -0.0972
- **25.** 1.097 **27.** 4
 - Domain: $(0, \infty)$
 - x-intercept: (1, 0)
 - Vertical asymptote: x = 0

- 31.

33.

Domain: $(0, \infty)$

x-intercept: (9, 0)Vertical asymptote: x = 0

35.

Domain: $(-2, \infty)$

- *x*-intercept: (-1, 0)
- Vertical asymptote: x = -2

37.

Domain: $(0, \infty)$

x-intercept: (5, 0)

- Vertical asymptote: x = 0
- **40.** f **41.** d **43.** b **44.** a
- **45.** $e^{-0.693...} = \frac{1}{2}$ **47.** $e^{1.386...} = 4$
- **49.** $e^{5.521...} = 250$ **51.** $e^0 = 1$
- **53.** ln 20.0855 . . . = 3 **55.** ln 1.6487 . . . = $\frac{1}{2}$
- **57.** $\ln 0.6065 ... = -0.5$ **59.** $\ln 4 = x$ **61.** 2.913
- 67. $-\frac{2}{3}$ **63.** -0.575**65.** 3
- 69.
- Domain: $(1, \infty)$
- x-intercept: (2, 0)
- Vertical asymptote: x = 1

- - Domain: $(-\infty, 0)$ *x*-intercept: (-1, 0)
 - Vertical asymptote: x = 0
- 73.
- 75.
- 77.
- **79.** x = 3**81.** x = 7**83.** x = 4**85.** x = -5, 5
- **87.** (a) 30 years; 20 years (b) \$396,234; \$301,123.20
 - (c) \$246,234; \$151,123.20
 - (d) x = 1000; The monthly payment must be greater than \$1000.

- (b) 80
- (c) 68.1
- (d) 62.3
- **91.** False. Reflecting g(x) about the line y = x will determine the graph of f(x).

The functions f and gare inverses.

The functions f and gare inverses.

g(x); The natural log function grows at a slower rate than the square root function.

g(x); The natural log function grows at a slower rate than the fourth root function.

99. (a) False (b) True (c) True

(d) False

101. (a)

(b) Increasing: $(1, \infty)$

Decreasing: (0, 1)

- (c) Relative minimum: (1, 0)
- **103.** 15 **105.** 4300 **107.** 1028

Section 3.3 (page 243)

Vocabulary Check (page 243)

- 1. change-of-base
- **3.** c **4.** a **5.** b
- **1.** (a) $\frac{\log x}{\log 5}$ (b) $\frac{\ln x}{\ln 5}$ **3.** (a) $\frac{\log x}{\log \frac{1}{5}}$ (b) $\frac{\ln x}{\ln \frac{1}{5}}$

- **5.** (a) $\frac{\log \frac{3}{10}}{\log x}$ (b) $\frac{\ln \frac{3}{10}}{\ln x}$ **7.** (a) $\frac{\log x}{\log 2.6}$ (b) $\frac{\ln x}{\ln 2.6}$
- **9.** 1.771 **11.** -2.000 **13.** -0.417
- **15.** 2.633
- 17. $\frac{3}{2}$ 19. $-3 \log_5 2$ 21. $6 + \ln 5$

- 25. $\frac{3}{4}$
- **23.** 2
- **27.** 2.4 **29.** -9 is not in the domain of $\log_3 x$. **31.** 4.5 **33.** $-\frac{1}{2}$ **35.** 7 **37.** 2
- **39.** $\log_4 5 + \log_4 x$ **41.** $4 \log_8 x$ **43.** $1 - \log_5 x$
- **45.** $\frac{1}{2} \ln z$ **47.** $\ln x + \ln y + 2 \ln z$
- **49.** $\ln z + 2 \ln(z 1)$ **51.** $\frac{1}{2} \log_2(a 1) 2 \log_2 3$
- **53.** $\frac{1}{3} \ln x \frac{1}{3} \ln y$ **55.** $4 \ln x + \frac{1}{2} \ln y 5 \ln z$
- **57.** $2 \log_5 x 2 \log_5 y 3 \log_5 z$
- **59.** $\frac{3}{4} \ln x + \frac{1}{4} \ln(x^2 + 3)$ **61.** $\ln 3x$ **63.** $\log_4 \frac{z}{v}$
- **65.** $\log_2(x+4)^2$ **67.** $\log_3 \sqrt[4]{5x}$ **69.** $\ln \frac{x}{(x+1)^3}$
- 71. $\log \frac{xz^3}{y^2}$ 73. $\ln \frac{x}{(x^2-4)^4}$ 75. $\ln \sqrt[3]{\frac{x(x+3)^2}{x^2-1}}$
- 77. $\log_8 \frac{\sqrt[3]{y(y+4)^2}}{y-1}$ 79. $\log_2 \frac{32}{4} = \log_2 32 \log_2 4$; Property 2
- **81.** $\beta = 10(\log I + 12)$; 60 dB **83.** ≈ 3
- **85.** $y = 256.24 20.8 \ln x$
- **87.** False. $\ln 1 = 0$ **89.** False. $\ln(x-2) \neq \ln x - \ln 2$
- **91.** False. $u = v^2$ 93. Answers will vary
- **95.** $f(x) = \frac{\log x}{\log 2} = \frac{\ln x}{\ln 2}$

99. $f(x) = \frac{\log x}{\log 11.8} = \frac{\ln x}{\ln 11.8}$

101. f(x) = h(x); Property 2

103.
$$\frac{3x^4}{2y^3}$$
, $x \neq 0$ **105.** $1, x \neq 0, y \neq 0$

107.
$$-1, \frac{1}{3}$$
 109. $\frac{-1 \pm \sqrt{97}}{6}$

Section 3.4 (page 253)

Vocabulary Check (page 253)

- 1. solve
- (b) x = y (c) x (d) x**2.** (a) x = y
- 3. extraneous
- **1.** (a) Yes (b) No
- 3. (a) No (b) Yes (c) Yes, approximate
- **5.** (a) Yes, approximate (b) No (c) Yes
- 7. (a) No (b) Yes (c) Yes, approximate
- **9.** 2 **11.** -5 **13.** 2
 - **15.** $\ln 2 \approx 0.693$
- **17.** $e^{-1} \approx 0.368$ **19.** 64 **21.** (3, 8)
- **25.** 2, -1 **27.** ≈ 1.618 , ≈ -0.618
- **29.** $\frac{\ln 5}{\ln 3} \approx 1.465$ **31.** $\ln 5 \approx 1.609$ **33.** $\ln 28 \approx 3.332$
- 35. $\frac{\ln 80}{2 \ln 3} \approx 1.994$ 37. 2 39. 4
- **41.** $3 \frac{\ln 565}{\ln 2} \approx -6.142$ **43.** $\frac{1}{3} \log \left(\frac{3}{2} \right) \approx 0.059$
- **45.** $1 + \frac{\ln 7}{\ln 5} \approx 2.209$ **47.** $\frac{\ln 12}{3} \approx 0.828$
- **49.** $-\ln\frac{3}{5}\approx 0.511$ **51.** 0 **53.** $\frac{\ln\frac{8}{3}}{3\ln 2}+\frac{1}{3}\approx 0.805$

23. (9, 2)

- **55.** $\ln 5 \approx 1.609$ **57.** $\ln 4 \approx 1.386$
- **59.** $2 \ln 75 \approx 8.635$ **61.** $\frac{1}{2} \ln 1498 \approx 3.656$
- **63.** $\frac{\ln 4}{365 \ln \left(1 + \frac{0.065}{365}\right)} \approx 21.330$
- **65.** $\frac{\ln 2}{12 \ln \left(1 + \frac{0.10}{12}\right)} \approx 6.960$

-0.42771. 12.207

- **75.** $e^{-3} \approx 0.050$ **77.** $\frac{e^{2.4}}{2} \approx 5.512$ **79.** 1,000,000
- **81.** $\frac{e^{10/3}}{5} \approx 5.606$ **83.** $e^2 2 \approx 5.389$
- **85.** $e^{-2/3} \approx 0.513$ **87.** $2(3^{11/6}) \approx 14.988$
- **89.** No solution **91.** $1 + \sqrt{1 + e} \approx 2.928$
- **95.** 7 **97.** $\frac{-1+\sqrt{17}}{2}\approx 1.562$ **93.** No solution
- **101.** $\frac{725 + 125\sqrt{33}}{8} \approx 180.384$ **99.** 2

- **107.** (a) 8.2 years (b) 12.9 years
- **109.** (a) 1426 units (b) 1498 units
- **111.** (a) (b) V = 6.7; The yield will approach 6.7 million cubic feet per acre. (c) 29.3 years
- **113.** 2001
- **115.** (a) y = 100 and y = 0; The range falls between 0% and
 - (b) Males: 69.71 inches Females: 64.51 inches
- **117.** (a) 0.2 0.4 0.6 0.8 1.0 162.6 78.5 52.5 40.5 33.9

The model appears to fit the data well.

- (c) 1.2 meters
- (d) No. According to the model, when the number of g's is less than 23, x is between 2.276 meters and 4.404 meters, which isn't realistic in most vehicles.
- **119.** $\log_b uv = \log_b u + \log_b v$ True by Property 1 in Section 5.3.
- **121.** $\log_b(u v) = \log_b u \log_b v$ False.
 - $1.95 \approx \log(100 10) \neq \log 100 \log 10 = 1$
- 123. Yes. See Exercise 93.
- **125.** Yes. Time to double: $t = \frac{\ln 2}{\pi}$;

Time to quadruple: $t = \frac{\ln 4}{r} = 2\left(\frac{\ln 2}{r}\right)$

127. $4|x|y^2\sqrt{3y}$ **129.** $5\sqrt[3]{3}$

131.

133.

135. 1.226 137. -5.595

Section 3.5 (page 264)

Vocabulary Check (page 264)

- 1. $y = ae^{bx}$; $y = ae^{-bx}$
- **2.** $y = a + b \ln x$; $y = a + b \log x$
- **3.** normally distributed
- 4. bell; average value
- 5. sigmoidal

1.	c 2. e	3. b 4. a	5. d	6. f
	Initial	Annual	Time to	Amount After
	Investment	% Rate	Double	10 years
7.	\$1000	3.5%	19.8 yr	\$1419.07
9.	\$750	8.9438%	7.75 yr	\$1834.36
11.	\$500	11.0%	6.3 yr	\$1505.00
13.	\$6376.28	4.5%	15.4 yr	\$10,000.00

- **15.** \$112,087.09
- **17.** (a) 6.642 years (b) 6.330 years
 - (c) 6.302 years (d) 6.301 years

19.	r	2%	4%	6%	8%	10%	12%
	t	54.93	27.47	18.31	13.73	10.99	9.16
21.							

21.	r	2%	4%	6%	8%	10%	12%
	t	55.48	28.01	18.85	14.27	11.53	9.69

23. Amount (in dollars)

29. 24,100

A	Continuous compounding
$A = e^{0.07t}$	
1.75	
1.50	
1.25	
A = 1 + 0.075 [[t]]	
2 4 6 8 10	

Half-life	Initial	Amount After
(years)	Quantity	1000 Years
25. 1599	10 g	6.48 g
27. 5715	2.26 g	2 g

2.1 g

2.16 g

- **31.** $y = e^{0.7675x}$ **33.** $y = 5e^{-0.4024x}$
- **35.** (a) Decreasing due to the negative exponent.
 - (b) 2000: population of 2430 thousand 2003: population of 2408.95 thousand
 - (c) 2018
- **37.** k = 0.2988; $\approx 5,309,734$ hits **39.** 3.15 hours
- **41.** (a) \approx 12,180 years old (b) ≈ 4797 years old
- **43.** (a) V = -6394t + 30,788(b) $V = 30,788e^{-0.268t}$

The exponential model depreciates faster.

(d)	t	1	3
	V = -6394t + 30,788	24,394	11,606
	$V = 30,788e^{-0.268t}$	23,550	13,779

- (e) Answers will vary.
- **45.** (a) $S(t) = 100(1 e^{-0.1625t})$

- **49.** (a) 203 animals (b) 13 years
 - (c) 1200

Horizontal asymptotes: y = 0, y = 1000. The population size will approach 1000 as time increases.

- **51.** (a) $10^{7.9} \approx 79,432,823$ (b) $10^{8.3} \approx 199,526,231$ (c) $10^{4.2} \approx 15,849$
- **53.** (a) 20 decibels (b) 70 decibels (c) 40 decibels (d) 120 decibels
- **57.** 4.64 **55.** 95% **59.** 1.58×10^{-6} moles per liter
- **63.** 3:00 A.M. **61.** 10^{5.1}
- **65.** (a) 150,000

(b) \approx 21 years; Yes

- 67. False. The domain can be the set of real numbers for a logistic growth function.
- **69.** False. The graph of f(x) is the graph of g(x) shifted upward five units.
- 71. (a) Logarithmic
 - (b) Logistic (e) None of the above
- (c) Exponential

(f) Exponential

(d) Linear

- **73.** (a)
- (b) $\sqrt{10}$

(b) $\sqrt{146}$

(b) $\sqrt{\frac{1}{8}}$

(d) 1

(c) $(\frac{5}{8}, -\frac{1}{8})$

4

- (c) $\left(-\frac{1}{2}, \frac{7}{2}\right)$ (d) 3
- **75.** (a)
- (14, -2)
- **77.** (a)
- **79.**

83.

- 2

81.

87.

89.

91.

93. Answers will vary.

Review Exercises (page 271)

- 1. 76.699
- **3.** 0.337
- **5.** 1456.529

10. b

- **7.** c **8.** d
- **9.** a
- **11.** Shift the graph of *f* one unit to the right.
- **13.** Reflect *f* in the *x*-axis and shift two units to the left.
- 15. -10 2 3 5 8 4.25 f(x)4.063 4.016

17. -20 2 х -1-7.023-0.377-1-2.65-18.61f(x)

19.	x	-1	0	1	2	3
	f(x)	4.008	4.04	4.2	5	9

21.	x	-2	-1	0	1	2	
	f(x)	3.25	3.5	4	5	7	

23.
$$x = -4$$
 25. $x = \frac{22}{5}$ **27.** 2980.958 **29.** 0.183

20. %					5 27. 2700.750		
31.	х	-2	-1	0	1	2	
	h(x)	2.72	1.65	1	0.61	0.37	

33.	x	-3	-2	-1	0	1
	f(x)	0.37	1	2.72	7.39	20.09

35.	n	1	2	4	12
	A	\$6569.98	\$6635.43	\$6669.46	\$6692.64

n	365	Continuous
A	\$6704.00	\$6704.39

- **37.** (a) 0.154 (b) 0.487 (c) 0.811
- **39.** (a) \$1,069,047.14 (b) 7.9 years
- **41.** $\log_4 64 = 3$ **43.** $\ln 2.2255 \dots = 0.8$
- **45.** 3 **47.** -3 **49.** x = 7 **51.** x = -5
- **53.** Domain: $(0, \infty)$ **55.** Domain: $(0, \infty)$ x-intercept: (1, 0) x-intercept: (3, 0) Vertical asymptote: x = 0

57. Domain: $(-5, \infty)$ *x*-intercept: (9995, 0)Vertical asymptote: x = -5

- **59.** 3.118 **61.** -12 **63.** 2.034
- **65.** Domain: $(0, \infty)$ *x*-intercept: $(e^{-3}, 0)$ Vertical asymptote: x = 0
- **67.** Domain: $(-\infty, 0)$, $(0, \infty)$ *x*-intercept: $(\pm 1, 0)$

Vertical asymptote: x = 0

- **69.** 53.4 inches
- **71.** 1.585
- **73.** -2.322
- **75.** $\log 2 + 2 \log 3 \approx 1.255$
- 77. $2 \ln 2 + \ln 5 \approx 2.996$

- **79.** $1 + 2 \log_5 x$ **81.** $1 + \log_3 2 \frac{1}{3} \log_3 x$
- **83.** $2 \ln x + 2 \ln y + \ln z$ **85.** $\ln(x+3) - \ln x - \ln y$
- **89.** $\ln \frac{x}{\sqrt[4]{v}}$ **91.** $\log_8 y^7 \sqrt[3]{x+4}$ **87.** $\log_2 5x$
- **93.** $\ln \frac{\sqrt{2x-1}}{(x+1)^2}$
- **95.** (a) $0 \le h < 18,000$

Vertical asymptote: h = 18,000

- (c) The plane is climbing at a slower rate, so the time required increases.
- (d) 5.46 minutes
- **97.** 3 **99.** $\ln 3 \approx 1.099$ **101.** 16
- **103.** $e^4 \approx 54.598$ **105.** $\ln 12 \approx 2.485$ **107.** x = 1, 3
- **109.** $\frac{\ln 22}{\ln 2} \approx 4.459$ **111.** $\frac{\ln 17}{\ln 5} \approx 1.760$
- **113.** $\ln 2 \approx 0.693$, $\ln 5 \approx 1.609$

117. -12

- 7.480; 0.392
- 2.447
- **119.** $\frac{1}{3}e^{8.2} \approx 1213.650$ **121.** $\frac{1}{4}e^{7.5} \approx 452.011$
- **125.** $e^4 1 \approx 53.598$ **123.** $3e^2 \approx 22.167$
- **127.** No solution
- **129.** 0.900

133.

1.643

- No solution
- 135. 15.2 years **137.** e **138.** b **139.** f
- **140.** d **141.** a **142.** c
- **143.** $y = 2e^{0.1014x}$

(b) 71

- **145.** 2008 **147.** (a) 13.8629%
- (b) \$11,486.98
- **149.** (a) 0.05

- 151. $10^{-3.5}$ watt per square centimeter
- **153.** True by the inverse properties
- **155.** b and d are negative. a and c are positive. Answers will vary.

Chapter Test (page 275)

- **1.** 1123.690
 - **2.** 687.291
- **3.** 0.497
- **4.** 22.198

x	-1	$-\frac{1}{2}$	0	$\frac{1}{2}$	1
f(x)	10	3.162	1	0.316	0.1

6.

х	-1	0	1	2	3
f(x)	-0.005	-0.028	-0.167	-1	-6

7.

х	-1	$-\frac{1}{2}$	0	$\frac{1}{2}$	1
f(x)	0.865	0.632	0	-1.718	-6.389

- **8.** (a) -0.89 (b) 9.2
- 9.

•	x	$\frac{1}{2}$	1	$\frac{3}{2}$	2	4
	f(x)	-5.699	-6	-6.176	-6.301	-6.602

Vertical asymptote: x = 0

x	5	7	9	11	13
f(x)	0	1.099	1.609	1.946	2.197

-1	1	

Ĵ	x	-5	-3	-1	0	1
	f(x)	1	2.099	2.609	2.792	2.946

Vertical asymptote: x = -6

Vertical asymptote: x = 4

- **12.** 1.945
- **13.** 0.115 **14.** 1.328
- **15.** $\log_2 3 + 4 \log_2 |a|$
- **16.** $\ln 5 + \frac{1}{2} \ln x \ln 6$
- 17. $(\log 7 + 2 \log x) (\log y + 3 \log z)$
- **18.** $\log_3 13y$ **19.** $\ln \frac{x^4}{v^4}$ **20.** $\ln \frac{x^2(x-5)}{v^3}$
- **21.** x = -2 **22.** $x = \frac{\ln 44}{-5} \approx -0.757$
- **23.** $\frac{\ln 197}{4} \approx 1.321$
- **24.** $e^{1/2} \approx 1.649$
- **25.** $e^{-11/4} \approx 0.0639$
- **26.** $\frac{800}{501} \approx 1.597$
- **27.** $y = 2745e^{0.1570x}$
- 28. 55%
- **29.** (a)
- \boldsymbol{x} 1 2 4 5 6 58.720 75.332 86.828 103.43 110.59 117.38

(b) 103 centimeters; 103.43 centimeters

Cumulative Test for Chapters 1–3 (page 276)

- **1.** (a) Midpoint: $(1, \frac{3}{2})$; Distance: $\sqrt{41}$
- 2.

5. y = 2x + 2

- **6.** For some values of x there correspond two values of y.
- (b) Division by 0 is undefined. (c) $\frac{s+2}{c}$
- **8.** (a) Vertical shrink by $\frac{1}{2}$
 - (b) Vertical shift of two units upward
 - (c) Horizontal shift of two units to the left
- **9.** (a) 5x 2 (b) -3x 4 (c) $4x^2 11x 3$
 - (d) $\frac{x-3}{4x+1}$; Domain: all real numbers x except $x=-\frac{1}{4}$
- **10.** (a) $\sqrt{x-1} + x^2 + 1$ (b) $\sqrt{x-1} x^2 1$
 - (c) $x^2\sqrt{x-1} + \sqrt{x-1}$
 - (d) $\frac{\sqrt{x-1}}{x^2+1}$; Domain: all real numbers x such that $x \ge 1$
- **11.** (a) 2x + 12 (b) $\sqrt{2x^2 + 6}$ Domain of $f \circ g$: all real numbers x such that $x \ge -6$ Domain of $g \circ f$: all real numbers
- **12.** (a) |x| 2 (b) |x 2|

Domain of $f \circ g$ and $g \circ f$: all real numbers

- **13.** Yes; $h^{-1}(x) = \frac{1}{5}(x+2)$
- 14. 2438.65 kilowatts
- **15.** $y = -\frac{3}{4}(x+8)^2 + 5$
- 16.

19.
$$-2, \pm 2i; (x + 2)(x + 2i)(x - 2i)$$

20.
$$-7, 0, 3; x(x)(x-3)(x+7)$$

21.
$$4, -\frac{1}{2}, 1 \pm 3i; (x-4)(2x+1)(x-1+3i)(x-1-3i)$$

22.
$$3x - 2 - \frac{3x - 2}{2x^2 + 1}$$

23.
$$2x^3 - x^2 + 2x - 10 + \frac{25}{x+2}$$

24.

25. Intercept: (0, 0)

Vertical asymptotes: $x = \pm 3$ Horizontal asymptote: y = 0

26. *y*-intercept: (0, -1)

x-intercept: (1, 0)

Horizontal asymptote: y = 1

Vertical asymptote: x = -1

27. *y*-intercept: (0, 6)

x-intercepts: (-2, 0), (-3, 0)

Slant asymptote: y = x + 4

Vertical asymptote: x = -1

28.
$$x \le -2$$
 or $0 \le x \le 2$

29. All real numbers x such that x < -5 or x > -1

30. Reflect *f* in the *x*-axis and *y*-axis, and shift three units to the right.

31. Reflect *f* in the *x*-axis, and shift four units upward.

- **32.** 1.991 **33.** -0.067 **34.** 1.717 **35**.
- **36.** $\ln(x+4) + \ln(x-4) 4 \ln x, x > 4$

37.
$$\ln \frac{x^2}{\sqrt{x+5}}$$
, $x > 0$ **38.** $x = \frac{\ln 12}{2} \approx 1.242$

- **39.** $\ln 3 \approx 1.099 \text{ or } 3 \ln 2 \approx 2.079$
- **40.** $e^6 2 \approx 401.429$

(b)
$$S = 0.274t^2 - 4.08t + 50.6$$

The model is a good fit for the data.

(d) 65.9 Yes, this is a reasonable answer.

Problem Solving (page 279)

- 3. As $x \to \infty$, the graph of e^x increases at a greater rate than the graph of x^n .
- 5. Answers will vary.

 $y = 0.5^x$ and $y = 1.2^x$ $0 \le a \le 1.44$

$$f^{-1}(x) = \ln\left(\frac{x + \sqrt{x^2 + 4}}{2}\right)$$

11. c 13.
$$t = \frac{\ln c_1 - \ln c_2}{\left(\frac{1}{k_2} - \frac{1}{k_1}\right) \ln \frac{1}{2}}$$

15. (a)
$$y_1 = 252,606(1.0310)^t$$

(b) $y_2 = 400.88t^2 - 1464.6t + 291,782$

- (d) The exponential model is a better fit. No, because the model is rapidly approaching infinity.

19.
$$y_4 = (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 - \frac{1}{4}(x-1)^4$$

The pattern implies that

$$\ln x = (x-1)^{2} - \frac{1}{2}(x-1)^{2} + \frac{1}{3}(x-1)^{3} - \cdots$$

21.

17.7 cubic feet per minute

23. (a)

Answers will vary.

(b)-(e)Answers will vary.

Chapter 4

Section 4.1 (page 290)

Vocabulary Check (page 290)

- 1. Trigonometry
- 2. angle
- 3. coterminal

7. degree

- 4. radian
 - 5. acute; obtuse
- **6.** complementary; supplementary
- 8. linear 9. angular
- **10.** $A = \frac{1}{2}r^2\theta$

- 1. 2 radians
- 3. -3 radians
- 5. 1 radian
- 7. (a) Quadrant I
- (b) Quadrant III
- 9. (a) Quadrant IV
- (b) Quadrant III
- 11. (a) Quadrant III
- (b) Quadrant II

13. (a)

15. (a)

17. (a)
$$\frac{13\pi}{6}$$
, $-\frac{11\pi}{6}$ (b) $\frac{17\pi}{6}$, $-\frac{7\pi}{6}$

(b)
$$\frac{17\pi}{6}$$
, $-\frac{7\pi}{6}$

19. (a)
$$\frac{8\pi}{3}$$
, $-\frac{4\pi}{3}$ (b) $\frac{25\pi}{12}$, $-\frac{23\pi}{12}$

(b)
$$\frac{25\pi}{12}$$
, $-\frac{23\pi}{12}$

21. (a) Complement:
$$\frac{\pi}{6}$$
; Supplement: $\frac{2\pi}{3}$

(b) Complement: none; Supplement: $\frac{\pi}{4}$

23. (a) Complement: $\frac{\pi}{2} - 1 \approx 0.57$;

Supplement: $\pi - 1 \approx 2.14$

(b) Complement: none; Supplement: $\pi - 2 \approx 1.14$

25. 210°

27.
$$-60^{\circ}$$

31. (a) Quadrant II

33. (a) Quadrant III

35. (a)

37. (a)

39. (a)
$$405^{\circ}$$
, -315°

(b)
$$324^{\circ}$$
, -396°

(b)
$$180^{\circ}, -540^{\circ}$$

(b) Complement: none; Supplement: 30°

47. (a)
$$\frac{\pi}{6}$$
 (b) $\frac{5\pi}{6}$

47. (a)
$$\frac{\pi}{6}$$
 (b) $\frac{5\pi}{6}$ **49.** (a) $-\frac{\pi}{9}$ (b) $-\frac{4\pi}{3}$

51. (a)
$$270^{\circ}$$
 (b) 210°

(b)
$$-66^{\circ}$$

61. -0.014

67.
$$-756.000^{\circ}$$

69.
$$-114.592^{\circ}$$
 71. (a)

71. (a)
$$54.75^{\circ}$$
 (b)

71. (a)
$$54.75^{\circ}$$
 (b) -128.5°

59. 9.285

73. (a)
$$85.308^{\circ}$$
 (b) 330.007°

75. (a)
$$240^{\circ}36'$$
 (b) $-145^{\circ}48'$

(b)
$$-3^{\circ} 34' 48''$$

79.
$$\frac{6}{5}$$
 radians

77. (a)
$$2^{\circ}30'$$
 (b) $-3^{\circ}34'48''$
79. $\frac{6}{5}$ radians **81.** $\frac{32}{7}$ radians **83.** $\frac{2}{9}$ radian

85.
$$\frac{50}{29}$$
 radians

87.
$$15\pi$$
 inches ≈ 47.12 inches

91.
$$\frac{8\pi}{3}$$
 square inches ≈ 8.38 square inches

97.
$$0.071 \text{ radian} \approx 4.04^{\circ}$$

99.
$$\frac{5}{12}$$
 radian

(b) 4576 radians per minute

103. (a) $10,400\pi$ radians per minute

 \approx 32,672.56 radians per minute

(b) $9425\pi/3$ feet per minute ≈ 9869.84 feet per minute

105. (a) $[400\pi, 1000\pi]$ radians per minute

(b) $[2400\pi, 6000\pi]$ centimeters per minute

107.

 $A = 476.39\pi$ square meters ≈ 1496.62 square meters

109. False. A measurement of 4π radians corresponds to two complete revolutions from the initial to the terminal side of an angle.

- **111.** False. The terminal side of the angle lies on the x-axis.
- 113. Increases. The linear velocity is proportional to the radius.
- **115.** The arc length is increasing. If θ is constant, the length of the arc is proportional to the radius $(s = r\theta)$.

117.
$$\frac{\sqrt{2}}{2}$$
 119. $2\sqrt{10}$

123.

Section 4.2 (page 299)

Vocabulary Check (page 299)

- 1. unit circle
- 2. periodic
- 3. period
- 4. odd; even

1.
$$\sin \theta = \frac{15}{17}$$
 $\csc \theta = \frac{17}{15}$ $\cos \theta = -\frac{8}{17}$ $\sec \theta = -\frac{17}{8}$ $\cot \theta = -\frac{8}{15}$
3. $\sin \theta = -\frac{5}{13}$ $\csc \theta = -\frac{13}{5}$

3.
$$\sin \theta = -\frac{5}{13}$$
 $\csc \theta = -\frac{1}{3}$ $\csc \theta = \frac{13}{12}$ $\cot \theta = -\frac{5}{12}$ $\cot \theta = -\frac{5}{12}$

$$\cos \theta = \frac{12}{13} \qquad \sec \theta = \frac{13}{12}$$

$$\tan \theta = -\frac{5}{12} \qquad \cot \theta = -\frac{11}{5}$$

5.
$$\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$$
 7. $\left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$

7.
$$\left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$$

9.
$$\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$$

11.
$$(0, -1)$$

13.
$$\sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}$$
 $\cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$

$$\cos\frac{\pi}{4} = \frac{\sqrt{2}}{2}$$

$$\tan\frac{\pi}{4} = 1$$

17.
$$\sin\left(-\frac{7\pi}{4}\right) = \frac{\sqrt{2}}{2}$$
 19. $\sin\frac{11\pi}{6} = -\frac{1}{2}$

$$\cos\left(-\frac{7\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

$$\tan\left(-\frac{7\pi}{4}\right) = 1$$

19.
$$\sin \frac{11\pi}{6} = -\frac{1}{2}$$

15. $\sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2}$

 $\cos\left(-\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$

 $\tan\left(-\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{3}$

$$\cos\frac{11\pi}{6} = \frac{\sqrt{3}}{2}$$
$$\tan\frac{11\pi}{6} = -\frac{\sqrt{3}}{3}$$

21.
$$\sin\left(-\frac{3\pi}{2}\right) = 1$$

$$\cos\left(-\frac{3\pi}{2}\right) = 0$$

$$\tan\left(-\frac{3\pi}{2}\right) \text{ is undefined.}$$

23.
$$\sin \frac{3\pi}{4} = \frac{\sqrt{2}}{2}$$
 $\csc \frac{3\pi}{4} = \sqrt{2}$ $\csc \frac{3\pi}{4} = -\sqrt{2}$ $\sec \frac{3\pi}{4} = -\sqrt{2}$ $\cot \frac{3\pi}{4} = -1$

25.
$$\sin\left(-\frac{\pi}{2}\right) = -1$$
 $\csc\left(-\frac{\pi}{2}\right) = -1$ $\cos\left(-\frac{\pi}{2}\right) = 0$ $\sec\left(-\frac{\pi}{2}\right)$ is undefined. $\tan\left(-\frac{\pi}{2}\right)$ is undefined.

$$\begin{array}{ll}
\mathbf{27.} & \sin\left(\frac{4\pi}{3}\right) = -\frac{\sqrt{3}}{2} & \csc\left(\frac{4\pi}{3}\right) = -\frac{2\sqrt{3}}{3} \\
\cos\left(\frac{4\pi}{3}\right) = -\frac{1}{2} & \sec\left(\frac{4\pi}{3}\right) = -2 \\
\tan\left(\frac{4\pi}{3}\right) = \sqrt{3} & \cot\left(\frac{4\pi}{3}\right) = \frac{\sqrt{3}}{3}
\end{array}$$

29.
$$\sin 5\pi = \sin \pi = 0$$
 31. $\cos \frac{8\pi}{3} = \cos \frac{2\pi}{3} = -\frac{1}{2}$

33.
$$\cos\left(-\frac{15\pi}{2}\right) = \cos\frac{\pi}{2} = 0$$

35.
$$\sin\left(-\frac{9\pi}{4}\right) = \sin\frac{7\pi}{4} = -\frac{\sqrt{2}}{2}$$

37. (a)
$$-\frac{1}{3}$$
 (b) -3 **39.** (a) $-\frac{1}{5}$ (b) -5

41. (a)
$$\frac{4}{5}$$
 (b) $-\frac{4}{5}$ **43.** 0.7071 **45.** 1.0378

53. (a)
$$-1$$
 (b) -0.4

57. (a)

t	0	$\frac{1}{4}$	$\frac{1}{2}$	<u>3</u>	1
у	0.25	0.0138	-0.1501	-0.0249	0.0883

(b) $t \approx 5.5$ (c) The displacement decreases.

- **59.** False. $\sin(-t) = -\sin t$ means that the function is odd, not that the sine of a negative angle is a negative number.
- **61.** (a) y-axis symmetry (b) $\sin t_1 = \sin(\pi t_1)$ $(c) \cos(\pi - t_1) = -\cos t_1$

63.
$$f^{-1}(x) = \frac{2}{3}(x+1)$$
 65. $f^{-1}(x) = \sqrt{x^2+4}$, $x \ge 0$ **67.**

Section 4.3 (page 308)

Vocabulary Check (page 308)

- **1.** (a) v (b) iv (c) vi (d) iii (e) i (f) ii
- 2. opposite; adjacent; hypotenuse
- 3. elevation; depression
- 1. $\sin \theta = \frac{3}{5}$ $\csc \theta = \frac{5}{3}$ $\csc \theta = \frac{5}{4}$ $\sec \theta = \frac{5}{4}$ $\cot \theta = \frac{3}{4}$
- 3. $\sin \theta = \frac{9}{41}$ $\csc \theta = \frac{41}{9}$ $\csc \theta = \frac{40}{40}$ $\sec \theta = \frac{40}{40}$ $\cot \theta = \frac{9}{40}$
- 5. $\sin \theta = \frac{1}{3}$ $\csc \theta = 3$ $\cos \theta = \frac{2\sqrt{2}}{3}$ $\sec \theta = \frac{3\sqrt{2}}{4}$ $\tan \theta = \frac{\sqrt{2}}{4}$ $\cot \theta = 2\sqrt{2}$

The triangles are similar, and corresponding sides are proportional.

7. $\sin \theta = \frac{3}{5}$ $\csc \theta = \frac{5}{3}$ $\cos \theta = \frac{4}{5}$ $\sec \theta = \frac{5}{4}$ $\tan \theta = \frac{3}{4}$ $\cot \theta = \frac{4}{3}$

The triangles are similar, and corresponding sides are proportional.

$$\cos \theta = \frac{\sqrt{7}}{4} \quad \sec \theta = \frac{4\sqrt{7}}{7}$$

$$\tan \theta = \frac{3\sqrt{7}}{7} \quad \cot \theta = \frac{\sqrt{7}}{3}$$

$$\csc \theta = \frac{4}{3}$$

$$\sin \theta = \frac{\sqrt{3}}{2} \qquad \csc \theta = \frac{2\sqrt{3}}{3}$$

$$\cos \theta = \frac{1}{2} \qquad \cot \theta = \frac{\sqrt{3}}{3}$$

$$\tan \theta = \sqrt{3}$$

- 17. $\frac{\pi}{6}$; $\frac{1}{2}$ 19. 60°; $\sqrt{3}$ 21. 60°; $\frac{\pi}{3}$ 23. 30°; $\frac{\sqrt{3}}{2}$ 25. 45°; $\frac{\pi}{4}$ 27. (a) $\sqrt{3}$ (b) $\frac{1}{2}$ (c) $\frac{\sqrt{3}}{2}$ (d) $\frac{\sqrt{3}}{3}$
- **29.** (a) $\frac{2\sqrt{13}}{13}$ (b) $\frac{3\sqrt{13}}{13}$ (c) $\frac{2}{3}$ (d) $\frac{\sqrt{13}}{2}$
- **31.** (a) 3 (b) $\frac{2\sqrt{2}}{3}$ (c) $\frac{\sqrt{2}}{4}$ (d) $\frac{1}{3}$
- **33–41.** Answers will vary. **43.** (a) 0.1736 (b) 0.1736
- **45.** (a) 0.2815 (b) 3.5523
- **47.** (a) 1.3499 (b) 1.3432
- **49.** (a) 5.0273 (b) 0.1989
- **51.** (a) 1.8527 (b) 0.9817
- **53.** (a) $30^\circ = \frac{\pi}{6}$ (b) $30^\circ = \frac{\pi}{6}$
- **55.** (a) $60^\circ = \frac{\pi}{3}$ (b) $45^\circ = \frac{\pi}{4}$
- **57.** (a) $60^{\circ} = \frac{\pi}{3}$ (b) $45^{\circ} = \frac{\pi}{4}$
- **59.** $30\sqrt{3}$ **61.** $\frac{32\sqrt{3}}{3}$
- **63.** 443.2 meters; 323.3 meters **65.** $30^{\circ} = \frac{\pi}{6}$
- **67.** (a) 371.1 feet (b) 341.6 feet
 - (c) Moving down line at 61.8 feet per second Dropping vertically at 24.2 feet per second
- **69.** $(x_1, y_1) = (28\sqrt{3}, 28)$ $(x_2, y_2) = (28, 28\sqrt{3})$

(e)

(d) The side of the triangle labeled h will become shorter.

)	Angle, θ	80°	70°	60°	50°
	Height	19.7	18.8	17.3	15.3
	Angle, θ	40°	30°	20°	10°
	Height	12.9	10.0	6.8	3.5

(f) As $\theta \rightarrow 0^{\circ}$, $h \rightarrow 0$.

- **73.** True, csc $x = \frac{1}{\sin x}$. **75.** False, $\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \neq 1$.
- 77. False, $1.7321 \neq 0.0349$.
- **79.** Corresponding sides of similar triangles are proportional.
- **81.** (a)

θ	0.1	0.2	0.3	0.4	0.5
$\sin \theta$	0.0998	0.1987	0.2955	0.3894	0.4794

- (b) θ (c) As θ approaches 0, $\sin \theta$ approaches 0.
- **83.** $\frac{x}{x-2}$, $x \neq \pm 6$ **85.** $\frac{2(x^2-5x-10)}{(x-2)(x+2)^2}$

Section 4.4 (page 318)

Vocabulary Check (page 318)

- **1.** $\frac{y}{r}$ **2.** $\csc \theta$ **3.** $\frac{y}{x}$ **4.** $\frac{r}{x}$ **5.** $\cos \theta$
- **6.** $\cot \theta$ **7.** reference
- **1.** (a) $\sin \theta = \frac{3}{5}$ (b) $\sin \theta = -\frac{15}{17}$ $\cos \theta = \frac{8}{17}$ $\cos \theta = \frac{4}{5}$ $\tan \theta = -\frac{15}{8}$ $\csc \theta = -\frac{17}{15}$ $\sec \theta = \frac{17}{8}$ $\tan \theta = \frac{3}{4}$ $\csc \theta = \frac{5}{3}$ $\sec \theta = \frac{5}{4}$
- $\cot \theta = -\frac{8}{15}$ $\cot \theta = \frac{4}{3}$ (b) $\sin \theta = \frac{\sqrt{17}}{17}$ 3. (a) $\sin \theta = -\frac{1}{2}$ $\cos \theta = -\frac{\sqrt{3}}{2}$ $\cos \theta = -\frac{4\sqrt{17}}{17}$ $\tan \theta = -\frac{1}{4}$ $\tan \theta = \frac{\sqrt{3}}{3}$ $\csc \theta = \sqrt{17}$ $\csc \theta = -2$ $\sec \theta = -\frac{2\sqrt{3}}{3} \qquad \qquad \sec \theta = -\frac{\sqrt{17}}{4}$ $\cot \theta = -4$ $\cot \theta = \sqrt{3}$
- 5. $\sin \theta = \frac{24}{25}$ $\csc \theta = \frac{25}{24}$ $\cos \theta = \frac{7}{25}$ $\sec \theta = \frac{25}{7}$ $\tan \theta = \frac{24}{7}$ $\cot \theta = \frac{7}{24}$

7.
$$\sin \theta = \frac{5\sqrt{29}}{29}$$
 $\csc \theta = \frac{\sqrt{29}}{5}$
 $\cos \theta = -\frac{2\sqrt{29}}{29}$ $\sec \theta = -\frac{\sqrt{29}}{2}$
 $\tan \theta = -\frac{5}{2}$ $\cot \theta = -\frac{2}{5}$
9. $\sin \theta = \frac{68\sqrt{5849}}{5849}$ $\csc \theta = \frac{\sqrt{5849}}{68}$
 $\cos \theta = -\frac{35\sqrt{5849}}{5849}$ $\sec \theta = -\frac{\sqrt{5849}}{35}$
 $\tan \theta = -\frac{68}{35}$ $\cot \theta = -\frac{35}{68}$

- 11. Quadrant III 13. Quadrant II
- **15.** $\sin \theta = \frac{3}{5}$ $\csc \theta = \frac{5}{3}$ $\cos \theta = -\frac{4}{5}$ $\sec \theta = -\frac{5}{4}$ $\tan \theta = -\frac{3}{4}$ $\cot \theta = -\frac{4}{3}$ 17. $\sin \theta = -\frac{15}{17}$ $\csc \theta = -\frac{17}{15}$
- $\cos \theta = \frac{8}{17} \qquad \sec \theta = \frac{17}{8}$ $\tan \theta = -\frac{15}{8} \qquad \cot \theta = -\frac{8}{15}$
- **19.** $\sin \theta = -\frac{\sqrt{10}}{10}$ $\csc \theta = -\sqrt{10}$ $\cos \theta = \frac{3\sqrt{10}}{10} \qquad \sec \theta = \frac{\sqrt{10}}{3}$ $\tan \theta = -\frac{1}{2}$ $\cot \theta = -3$
- 21. $\sin \theta = \frac{\sqrt{3}}{2}$ $\csc \theta = \frac{2\sqrt{3}}{2}$ $\cos \theta = -\frac{1}{2}$ $\sec \theta = -2$ $\tan \theta = -\sqrt{3} \qquad \cot \theta = -\frac{\sqrt{3}}{2}$
- **23.** $\sin \theta = 0$ $\csc \theta$ is undefined. $\cos \theta = -1$ $\sec \theta = -1$ $\tan \theta = 0$ $\cot \theta$ is undefined.
- **25.** $\sin \theta = \frac{\sqrt{2}}{2}$ $\csc \theta = \sqrt{2}$ $\cos \theta = -\frac{\sqrt{2}}{2}$ $\sec \theta = -\sqrt{2}$ $\tan \theta = -1 \qquad \cot \theta = -1$ 27. $\sin \theta = -\frac{2\sqrt{5}}{5} \qquad \csc \theta = -\frac{\sqrt{5}}{2}$
- $\cos \theta = -\frac{\sqrt{5}}{5}$ $\sec \theta = -\sqrt{5}$ $\tan \theta = 2$ $\cot \theta = \frac{1}{2}$

29. 0 31. Undefined

33. 1 35. Undefined

37. $\theta' = 23^{\circ}$

39.
$$\theta' = 65^{\circ}$$

41.
$$\theta' = \frac{\pi}{3}$$

45.
$$\sin 225^\circ = -\frac{\sqrt{2}}{2}$$
 $\cos 225^\circ = -\frac{\sqrt{2}}{2}$

 $\tan 225^{\circ} = 1$

47.
$$\sin 750^\circ = \frac{1}{2}$$

$$\cos 750^\circ = \frac{\sqrt{3}}{2}$$

$$\tan 750^\circ = \frac{\sqrt{3}}{2}$$

49.
$$\sin(-150^\circ) = -\frac{1}{2}$$

$$\cos(-150^\circ) = -\frac{\sqrt{3}}{2}$$

$$\tan(-150^\circ) = \frac{\sqrt{3}}{3}$$

51.
$$\sin \frac{4\pi}{3} = -\frac{\sqrt{3}}{2}$$

$$\cos \frac{4\pi}{3} = -\frac{1}{2}$$

$$\tan \frac{4\pi}{3} = \sqrt{3}$$

53.
$$\sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2}$$
 55. $\sin\frac{11\pi}{4} = \frac{\sqrt{2}}{2}$ $\cos\left(-\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$ $\cos\frac{11\pi}{4} = -\frac{\sqrt{3}}{4}$ $\tan\frac{11\pi}{4} = -1$

55.
$$\sin \frac{11\pi}{4} = \frac{\sqrt{2}}{2}$$

$$\cos \frac{11\pi}{4} = -\frac{\sqrt{2}}{2}$$

$$\tan \frac{11\pi}{4} = -1$$

57.
$$\sin\left(-\frac{3\pi}{2}\right) = 1$$

$$\cos\left(-\frac{3\pi}{2}\right) = 0$$

$$\tan\left(-\frac{3\pi}{2}\right) \text{ is undefir}$$

$$\cos\left(-\frac{3\pi}{2}\right) = 0$$

$$\tan\left(-\frac{3\pi}{2}\right) \text{ is undefined.}$$

59.
$$\frac{4}{5}$$
 61. $-\frac{\sqrt{13}}{2}$ **63.** $\frac{8}{5}$ **65.** 0.1736

67. -0.3420**69.** −1.4826 **71.** 3.2361 **73.** 4.6373 **75.** 0.3640 77. -0.6052

79. -0.4142

81. (a) $30^{\circ} = \frac{\pi}{6}$, $150^{\circ} = \frac{5\pi}{6}$ (b) $210^{\circ} = \frac{7\pi}{6}$, $330^{\circ} = \frac{11\pi}{6}$

83. (a) $60^{\circ} = \frac{\pi}{3}$, $120^{\circ} = \frac{2\pi}{3}$ (b) $135^{\circ} = \frac{3\pi}{4}$, $315^{\circ} = \frac{7\pi}{4}$

85. (a) $45^{\circ} = \frac{\pi}{4}$, $225^{\circ} = \frac{5\pi}{4}$ (b) $150^{\circ} = \frac{5\pi}{6}$, $330^{\circ} = \frac{11\pi}{6}$

87. (a) $N = 22.099 \sin(0.522t - 2.219) + 55.008$ $F = 36.641\sin(0.502t - 1.831) + 25.610$

(b) February: $N = 34.6^{\circ}$, $F = -1.4^{\circ}$

March: $N = 41.6^{\circ}$, $F = 13.9^{\circ}$

May: $N = 63.4^{\circ}$, $F = 48.6^{\circ}$

June: $N = 72.5^{\circ}, F = 59.5^{\circ}$

August: $N = 75.5^{\circ}$, $F = 55.6^{\circ}$

September: $N = 68.6^{\circ}$, $F = 41.7^{\circ}$

November: $N = 46.8^{\circ}$, $F = 6.5^{\circ}$

(c) Answers will vary.

89. (a) 2 centimeters (b) 0.14 centimeter

(c) -1.98 centimeters

91. 0.79 ampere

93. False. In each of the four quadrants, the signs of the secant function and cosine function will be the same, because these functions are reciprocals of each other.

95. As θ increases from 0° to 90° , x decreases from 12 cm to 0 cm and y increases from 0 cm to 12 cm. Therefore, $\sin \theta = y/12$ increases from 0 to 1 and $\cos \theta = x/12$ decreases from 1 to 0. Thus, $\tan \theta = y/x$ and increases without bound. When $\theta = 90^{\circ}$, the tangent is undefined.

97.

x-intercept: (-2,0)y-intercept: (0, 8) Domain: all real numbers x

x-intercept: (7, 0)

y-intercept: $(0, -\frac{7}{4})$

Vertical asymptote:

x = -2

Horizontal asymptote:

y = 0

Domain: all real numbers

x except x = -2

103.

y-intercept: $(0, \frac{1}{2})$

Horizontal asymptote:

y = 0

Domain: all real numbers x

105.

x-intercepts: $(\pm 1, 0)$

Vertical asymptote: x = 0

Domain: all real numbers x except x = 0

Section 4.5 (page 328)

Vocabulary Check (page 328)

- 1. cycle
- 2. amplitude
- 3. $\frac{2\pi}{b}$
- 4. phase shift
- 5. vertical shift
- 1. Period: π Amplitude: 3
- 3. Period: 4π Amplitude: $\frac{5}{2}$
- **5.** Period: 6 Amplitude: $\frac{1}{2}$

- 7. Period: 2π
- 9. Period: $\frac{\pi}{5}$
- Amplitude: 3
- Amplitude: 3
- 11. Period: 3π Amplitude: $\frac{1}{2}$
- 13. Period: 1
 Amplitude: $\frac{1}{4}$
- **15.** g is a shift of $f \pi$ units to the right.
- 17. g is a reflection of f in the x-axis.
- **19.** The period of f is twice the period of g.
- **21.** g is a shift of f three units upward.
- **23.** The graph of g has twice the amplitude of the graph of f.
- **25.** The graph of g is a horizontal shift of the graph of f π units to the right.

49.

51.

53.

55.

57.

59.

61.

63. a = 2, d = 1

65.
$$a = -4, d = 4$$

67.
$$a = -3, b = 2, c = 0$$
 69. $a = 2, b = 1, c = -\frac{\pi}{4}$

71.

$$x = -\frac{\pi}{6}, -\frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$$

73. (a) 6 seconds (b) 10 cycles per minute

(c) 1.00 0.75 0.50 -1.00 -

75. (a)
$$C(t) = 56.55 + 26.95 \cos\left(\frac{\pi}{6}t - 3.67\right)$$

(b)

The model is a good fit.

The model is a good fit.

(d) Tallahassee: 77.90°; Chicago: 56.55° The constant term gives the annual average temperature.

(e) 12; yes; one full period is one year.

(f) Chicago; amplitude; the greater the amplitude, the greater the variability in temperature.

124 < t < 252

77. (a) $\frac{1}{440}$ second (b) 440 cycles per second

79. (a) 365; answers will vary.

(b) 30.3 gallons; the constant term

(c)

81. False. The graph of $f(x) = \sin(x + 2\pi)$ translates the graph of $f(x) = \sin x$ exactly one period to the left so that the two graphs look identical.

83. True. Because $\cos x = \sin\left(x + \frac{\pi}{2}\right)$, $y = -\cos x$ is a reflection in the x-axis of $y = \sin\left(x + \frac{\pi}{2}\right)$.

Conjecture: $\sin x = \cos\left(x - \frac{\pi}{2}\right)$

87. (a)

The graphs appear to coincide from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$.

(b)

The graphs appear to coincide from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$.

(c) $-\frac{x^7}{7!}$, $-\frac{x^6}{6!}$

The interval of accuracy increased.

- **89.** $\frac{1}{2} \log_{10}(x-2)$ **91.** $3 \ln t \ln(t-1)$
- **93.** $\log_{10} \sqrt{xy}$ **95.** $\ln \frac{3x}{y^4}$ **97.** Answers will vary.

Section 4.6 (page 339)

Vocabulary Check (page 339)

- 1. vertical 2. reciprocal 3. damping
- **4.** π **5.** $x \neq n\pi$ **6.** $(-\infty, -1] \cup [1, \infty)$
- 7. 2π
- **1.** e, π **2.** c, 2π **3.** a, 1 **4.** d, 2π
- **5.** f, 4 **6.** b, 4

29.

31.

33.

35.

37.

39.

43.
$$-\frac{4\pi}{3}, -\frac{\pi}{3}, \frac{2\pi}{3}, \frac{5\pi}{3}$$

45. $-\frac{4\pi}{3}$, $-\frac{2\pi}{3}$, $\frac{2\pi}{3}$, $\frac{4\pi}{3}$

47. $-\frac{7\pi}{4}$, $-\frac{5\pi}{4}$, $\frac{\pi}{4}$, $\frac{3\pi}{4}$

49. Even

51. (a)

(b) $\frac{\pi}{6} < x < \frac{5\pi}{6}$

(c) f approaches 0 and g approaches $+\infty$ because the cosecant is the reciprocal of the sine.

53.

The expressions are equivalent except that when $\sin x = 0$, y_1 is undefined.

55.

The expressions are equivalent.

57. d, $f \rightarrow 0$ as $x \rightarrow 0$.

58. a, $f \rightarrow 0$ as $x \rightarrow 0$.

59. b, $g \to 0$ as $x \to 0$.

60. c, $g \to 0$ as $x \to 0$.

61.

63.

The functions are equal.

The functions are equal.

67.

As $x \to \infty$, $f(x) \to 0$.

As $x \to \infty$, $g(x) \to 0$.

71.

As $x \to 0$, $y \to \infty$.

73.

As $x \to 0$, f(x) oscillates between 1 and -1.

75. $d = 7 \cot x$

25. 0.32

- **77.** (a) 50,000
 - (b) As the predator population increases, the number of prey decreases. When the number of prey is small, the number of predators decreases.
 - (c) C: 24 months; R: 24 months
- **79.** (a) *H*: 12 months; *L*: 12 months
 - (b) Summer; winter (c) 1 month
- **81.** True. For a given value of x, the y-coordinate of $\csc x$ is the reciprocal of the y-coordinate of $\sin x$.
- 83. As x approaches $\pi/2$ from the left, f approaches ∞ . As x approaches $\pi/2$ from the right, f approaches $-\infty$.
- **85.** (a)

0.7391

(b) 1, 0.5403, 0.8576, 0.6543, 0.7935, 0.7014, 0.7640, 0.7221, 0.7504, 0.7314, . . . ; 0.7391

The graphs appear to coincide on the interval $-1.1 \le x \le 1.1.$

- **89.** $\frac{\ln 54}{2} \approx 1.994$ **91.** $-\ln 2 \approx -0.693$
- **93.** $\frac{2+e^{73}}{2} \approx 1.684 \times 10^{31}$
- **95.** $\pm \sqrt{e^{3.2}-1} \approx \pm 4.851$ **97.** 2

Section 4.7 (page 349)

Vocabulary Check (page 349)

- 1. $y = \sin^{-1} x$; $-1 \le x \le 1$
- **2.** $y = \arccos x$; $0 \le y \le \pi$
- 3. $y = \tan^{-1} x$; $-\infty < x < \infty$; $-\frac{\pi}{2} < y < \frac{\pi}{2}$
- 1. $\frac{\pi}{6}$ 3. $\frac{\pi}{3}$ 5. $\frac{\pi}{6}$ 7. $\frac{5\pi}{6}$ 9. $-\frac{\pi}{3}$
- 11. $\frac{2\pi}{3}$ 13. $\frac{\pi}{3}$ 15. 0

- **19.** 1.29 **21.** -0.85**23.** -1.25 **31.** 0.85 **33.** 1.29
- **27.** 1.99 **29.** 0.74
- 35. $-\frac{\pi}{3}$, $-\frac{\sqrt{3}}{3}$, 1 37. $\theta = \arctan \frac{x}{4}$
- **39.** $\theta = \arcsin \frac{x+2}{5}$ **41.** $\theta = \arccos \frac{x+3}{2x}$
- **43.** 0.3 **45.** -0.1 **47.** 0 **49.** $\frac{3}{5}$ **51.** $\frac{\sqrt{5}}{5}$
- 53. $\frac{12}{13}$ 55. $\frac{\sqrt{34}}{5}$ 57. $\frac{\sqrt{5}}{3}$ 59. $\frac{1}{x}$
- **61.** $\sqrt{1-4x^2}$ **63.** $\sqrt{1-x^2}$ **65.** $\frac{\sqrt{9-x^2}}{r}$
- 67. $\frac{\sqrt{x^2+2}}{}$
- 69.

Asymptotes: $y = \pm 1$

- 71. $\frac{9}{\sqrt{x^2+81}}$, x>0; $\frac{-9}{\sqrt{x^2+81}}$, x<0

The graph of g is a horizontal shift one unit to the right of f.

85.

87.

89.
$$3\sqrt{2}\sin\left(2t + \frac{\pi}{4}\right)$$

The graph implies that the identity is true.

91. (a)
$$\theta = \arcsin \frac{5}{s}$$

93. (a)

(b) 2 feet (c) $\beta = 0$; As x increases, β approaches 0.

95. (a)
$$\theta \approx 26.0^{\circ}$$
 (b) 24.4 feet

97. (a)
$$\theta = \arctan \frac{x}{20}$$
 (b) $14.0^{\circ}, 31.0^{\circ}$

99. False. $\frac{5\pi}{4}$ is not in the range of the arctangent.

101. Domain:
$$(-\infty, \infty)$$

Range: $(0, \pi)$

103. Domain: $(-\infty, -1] \cup [1, \infty)$ Range: $[-\pi/2, 0) \cup (0, \pi/2]$

105. (a) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ (c) 1.25 (d) 2.0

107. (a)
$$f \circ f^{-1}$$

-π 2 π

(b) The domains and ranges of the functions are restricted. The graphs of $f \circ f^{-1}$ and $f^{-1} \circ f$ differ because of the domains and ranges of f and f^{-1} .

 $\cos \theta = \frac{\sqrt{7}}{4} \quad \sec \theta = \frac{4\sqrt{7}}{7}$ $\tan \theta = \frac{3\sqrt{7}}{7} \quad \cot \theta = \frac{\sqrt{7}}{3}$ $\csc \theta = \frac{4}{3}$

 $\sin \theta = \frac{\sqrt{11}}{6} \quad \sec \theta = \frac{6}{5}$ $\tan \theta = \frac{\sqrt{11}}{5} \quad \cot \theta = \frac{5\sqrt{11}}{11}$ $\csc \theta = \frac{6\sqrt{11}}{11}$

117. Eight people

(d) \$21,286.01

Section 4.8 (page 359)

Vocabulary Check (page 359)

elevation; depression
 bearing

- **1.** $a \approx 3.64$ $c \approx 10.64$
- **3.** *a* ≈ 8.26 $c \approx 25.38$
- **5.** $c \approx 11.66$ $A \approx 30.96^{\circ}$

- $B = 70^{\circ}$ **7.** *a* ≈ 49.48
- $A = 19^{\circ}$
- $B \approx 59.04^{\circ}$ 11. 2.56 inches

- $A \approx 72.08^{\circ}$ $B \approx 17.92^{\circ}$
- **9.** $a \approx 91.34$ $b \approx 420.70$ $B = 77^{\circ}45'$
- 13. 19.99 inches
- **15.** 107.2 feet
- 17. 19.7 feet

19. (a)

- (b) $h = 50(\tan 47^{\circ}40' \tan 35^{\circ})$
 - (c) 19.9 feet

- 21. 2236.8 feet
- (b) $\tan \theta = \frac{12\frac{1}{2}}{17\frac{1}{3}}$ (c) 35.8° **23.** (a) $12\frac{1}{2}$ ft
- **25.** 2.06° **27.** 0.73 mile
- 29. 554 miles north; 709 miles east
- **31.** (a) 58.18 nautical miles west: 104.95 nautical miles south
 - (b) S 36.7° W; distance = 130.9 nautical miles
- **33.** (a) N 58° E
- (b) 68.82 meters
- **35.** N 56.31° W
 - 37. 1933.3 feet
- **39.** \approx 3.23 miles or \approx 17,054 feet
- **41.** 78.7°
- **43.** 35.3°
- **45.** 29.4 inches
- **47.** $y = \sqrt{3}r$
- **49.** $a \approx 12.2, b \approx 7$
- **51.** $d = 4 \sin(\pi t)$
- **53.** $d = 3 \cos\left(\frac{4\pi t}{3}\right)$
- **55.** (a) 4 (b) 4 (c) 4 (d) $\frac{1}{16}$

- **57.** (a) $\frac{1}{16}$ (b) 60 (c) 0 (d) $\frac{1}{120}$
- **59.** $\omega = 528\pi$

61. (a)

63. (a)

Base 1	Base 2	Altitude	Area
8	$8 + 16 \cos 30^{\circ}$	8 sin 30°	59.7
8	$8 + 16 \cos 40^{\circ}$	8 sin 40°	72.7
8	$8 + 16 \cos 50^{\circ}$	8 sin 50°	80.5
8	$8 + 16 \cos 60^{\circ}$	8 sin 60°	83.1
8	$8 + 16 \cos 70^{\circ}$	8 sin 70°	80.7
8	$8 + 16 \cos 80^{\circ}$	8 sin 80°	74.0
8	$8 + 16 \cos 90^{\circ}$	8 sin 90°	64.0

(b)	Base 1	Base 2	Altitude	Area
	8	$8 + 16 \cos 56^{\circ}$	8 sin 56°	82.73
	8	$8 + 16 \cos 58^{\circ}$	8 sin 58°	83.04
	8	$8 + 16 \cos 59^{\circ}$	8 sin 59°	83.11
	8	$8 + 16 \cos 60^{\circ}$	8 sin 60°	83.14
	8	$8 + 16 \cos 61^{\circ}$	8 sin 61°	83.11
	8	$8 + 16 \cos 62^{\circ}$	8 sin 62°	83.04

83.14 square feet

- (c) $A = 64(1 + \cos \theta)(\sin \theta)$
- (d) 100

 ≈ 83.1 square feet when $\theta = 60^{\circ}$

The answers are the same.

- 65. False. The tower is leaning, so it is not perfectly vertical and does not form a right angle with the ground.
- **67.** No. N 24° E means 24 degrees east of north.
- **69.** y = 4x + 6
- 71. $y = -\frac{4}{5}x + \frac{22}{5}$

Review Exercises (page 365)

1. 0.5 radian

(b) Quadrant II

(c)
$$\frac{3\pi}{4}$$
, $-\frac{5\pi}{4}$

(b) Quadrant II

(c)
$$\frac{2\pi}{3}$$
, $-\frac{10\pi}{3}$

7. (a)

9. (a)

(b) Quadrant I

(c)
$$430^{\circ}$$
, -290°

(c)
$$250^{\circ}$$
, -470°

11. 8.378 **13.** −0.589

17.
$$-200.535^{\circ}$$
 19. 478.17 inches

- 21. (a) $66\frac{2}{3}\pi$ radians per minute
- (b) 400π inches per minute
- 23. Area = 339.28 square inches

25.
$$\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$
 27. $\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$

29.
$$\sin \frac{7\pi}{6} = -\frac{1}{2}$$
 $\csc \frac{7\pi}{6} = -2$ $\cos \frac{7\pi}{6} = -\frac{\sqrt{3}}{2}$ $\sec \frac{7\pi}{6} = -\frac{2\sqrt{3}}{3}$ $\tan \frac{7\pi}{6} = \frac{\sqrt{3}}{3}$ $\cot \frac{7\pi}{6} = \sqrt{3}$

31.
$$\sin\left(-\frac{2\pi}{3}\right) = -\frac{\sqrt{3}}{2} \qquad \csc\left(-\frac{2\pi}{3}\right) = -\frac{2\sqrt{3}}{3}$$
$$\cos\left(-\frac{2\pi}{3}\right) = -\frac{1}{2} \qquad \sec\left(-\frac{2\pi}{3}\right) = -2$$
$$\tan\left(-\frac{2\pi}{3}\right) = \sqrt{3} \qquad \cot\left(-\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{3}$$

33.
$$\sin \frac{11\pi}{4} = \sin \frac{3\pi}{4} = \frac{\sqrt{2}}{2}$$

35.
$$\sin\left(-\frac{17\pi}{6}\right) = \sin\frac{7\pi}{6} = -\frac{1}{2}$$

41.
$$\sin \theta = \frac{4\sqrt{41}}{41}$$
 $\cos \theta = \frac{5\sqrt{41}}{41}$
 $\tan \theta = \frac{4}{5}$
 $\csc \theta = \frac{\sqrt{41}}{4}$
 $\sec \theta = \frac{\sqrt{41}}{5}$
 $\cot \theta = \frac{5}{4}$
 $\cot \theta = \frac{5}{4}$
 $\cot \theta = \frac{\sqrt{3}}{3}$

45. (a) 3 (b)
$$\frac{2\sqrt{2}}{3}$$
 (c) $\frac{3\sqrt{2}}{4}$ (d) $\frac{\sqrt{2}}{4}$

47. (a)
$$\frac{1}{4}$$
 (b) $\frac{\sqrt{15}}{4}$ (c) $\frac{4\sqrt{15}}{15}$ (d) $\frac{\sqrt{15}}{15}$
49. 0.6494 **51.** 0.5621 **53.** 3.6722 **55.** 71.3 meters

57. $\sin \theta = \frac{4}{5}$ $\csc \theta = \frac{5}{4}$

$$\sin \theta = \frac{3}{5} \qquad \csc \theta = \frac{3}{4}$$

$$\cos \theta = \frac{3}{5} \qquad \sec \theta = \frac{5}{3}$$

$$\tan \theta = \frac{4}{3} \qquad \cot \theta = \frac{3}{4}$$

59.
$$\sin \theta = \frac{15\sqrt{241}}{241}$$
 $\csc \theta = \frac{\sqrt{241}}{15}$ $\cos \theta = \frac{4\sqrt{241}}{241}$ $\sec \theta = \frac{\sqrt{241}}{4}$ $\tan \theta = \frac{15}{4}$ $\cot \theta = \frac{4}{15}$

61.
$$\sin \theta = \frac{9\sqrt{82}}{82}$$
 $\csc \theta = \frac{\sqrt{82}}{9}$

$$\cos \theta = \frac{-\sqrt{82}}{82} \qquad \sec \theta = -\sqrt{82}$$

$$\tan \theta = -9 \qquad \cot \theta = -\frac{1}{9}$$

63.
$$\sin \theta = \frac{4\sqrt{17}}{17}$$
 $\csc \theta = \frac{\sqrt{17}}{4}$ $\cos \theta = \frac{\sqrt{17}}{17}$ $\sec \theta = \sqrt{17}$

$$\tan \theta = 4 \qquad \cot \theta = \frac{1}{4}$$

65.
$$\sin \theta = -\frac{\sqrt{11}}{6}$$
 $\cos \theta = \frac{5}{6}$
 $\tan \theta = -\frac{\sqrt{11}}{5}$
 $\csc \theta = -\frac{6\sqrt{11}}{11}$
 $\cot \theta = -\frac{5\sqrt{11}}{11}$
 $\cot \theta = -\frac{5\sqrt{11}}{3}$

69.
$$\sin \theta = \frac{\sqrt{21}}{5}$$

$$\tan \theta = -\frac{\sqrt{21}}{2}$$

$$\csc \theta = \frac{5\sqrt{21}}{21}$$

$$\sec \theta = -\frac{5}{2}$$

$$\cot \theta = -\frac{2\sqrt{21}}{21}$$

71.
$$\theta' = 84^{\circ}$$

75.
$$\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$$
; $\cos \frac{\pi}{3} = \frac{1}{2}$; $\tan \frac{\pi}{3} = \sqrt{3}$
77. $\sin \left(-\frac{7\pi}{3} \right) = -\frac{\sqrt{3}}{2}$; $\cos \left(-\frac{7\pi}{3} \right) = \frac{1}{2}$; $\tan \left(-\frac{7\pi}{3} \right) = -\sqrt{3}$

79.
$$\sin 495^\circ = \frac{\sqrt{2}}{2}$$
; $\cos 495^\circ = -\frac{\sqrt{2}}{2}$; $\tan 495^\circ = -1$

81.
$$\sin(-240^\circ) = \frac{\sqrt{3}}{2}; \cos(-240^\circ) = -\frac{1}{2};$$

 $\tan(-240^\circ) = -\sqrt{3}$

As
$$x \to +\infty$$
, $f(x) \to +\infty$

109.
$$-\frac{\pi}{6}$$
 111. 0.41 **113.**

127.
$$\frac{4}{5}$$
 129. $\frac{13}{5}$ **131.** $\frac{\sqrt{4-x^2}}{x}$ **133.** 66.8°

- **135.** 1221 miles, 85.6°
- 137. False. The sine or cosine function is often useful for modeling simple harmonic motion.
- **139.** False. For each θ there corresponds exactly one value of y.
- **141.** d; The period is 2π and the amplitude is 3.
- **143.** b; The period is 2 and the amplitude is 2.
- **145.** The function is undefined because $\sec \theta = 1/\cos \theta$.
- 147. The ranges of the other four trigonometric functions are $(-\infty, \infty)$ or $(-\infty, -1] \cup [1, \infty)$.

149. (a)
$$A = 0.4r^2, r > 0$$
; $s = 0.8r, r > 0$

(b)
$$A = 50\theta, \theta > 0;$$

$$s=0.8r, r>0$$

$$s = 10\theta, \, \theta > 0$$

The area function increases more rapidly.

Chapter Test (page 369)

1. (a)

- (b) $\frac{13\pi}{4}$, $-\frac{3\pi}{4}$
- (c) 225°

- 2. 3000 radians per minute
- 3. \approx 709.04 square feet

4.
$$\sin \theta = \frac{3\sqrt{10}}{10}$$
 $\csc \theta = \frac{\sqrt{10}}{3}$

$$\csc \theta = \frac{\sqrt{10}}{3}$$

$$\cos \theta = -\frac{\sqrt{10}}{10} \qquad \sec \theta = -\sqrt{10}$$

$$\sec \theta = -\sqrt{10}$$

$$\tan \theta = -3$$

$$\tan \theta = -3 \qquad \cot \theta = -\frac{1}{3}$$

$$5. \text{ For } 0 \le \theta < \frac{\pi}{2}$$

For
$$\pi \leq \theta < \frac{3\pi}{2}$$

5. For
$$0 \le \theta < \frac{\pi}{2}$$
: For $\pi \le \theta < \frac{3\pi}{2}$: $\sin \theta = \frac{3\sqrt{13}}{13}$ $\sin \theta = -\frac{3\sqrt{13}}{13}$

$$\sin\theta = -\frac{3\sqrt{13}}{13}$$

$$\cos \theta = \frac{2\sqrt{1}}{13}$$

$$\cos \theta = \frac{2\sqrt{13}}{13} \qquad \cos \theta = -\frac{2\sqrt{13}}{13}$$

$$\csc \theta = \frac{\sqrt{13}}{3} \qquad \csc \theta = -\frac{\sqrt{13}}{3}$$

$$\csc \theta = \frac{\sqrt{13}}{3}$$

$$\csc \theta = -\frac{\sqrt{13}}{3}$$

$$\sec \theta = \frac{\sqrt{13}}{2}$$

$$\sec \theta = \frac{\sqrt{13}}{2} \qquad \qquad \sec \theta = -\frac{\sqrt{13}}{2}$$

$$\cot \theta = \frac{2}{3} \qquad \cot \theta = \frac{2}{3}$$

$$\cot \theta = \frac{2}{3}$$

6.
$$\theta' = 70^{\circ}$$

- 7. Quadrant III
- **8.** 150°, 210°
- **9.** 1.33, 1.81

10.
$$\sin \theta = -\frac{4}{5}$$

$$\tan \theta = -\frac{4}{3}$$

$$\csc \theta = -\frac{5}{4}$$

11.
$$\sin \theta = \frac{15}{17}$$

$$\cos \theta = -\frac{8}{17}$$

$$\tan \theta = -\frac{15}{8}$$

$$\sec \theta = -\frac{5}{3}$$

$$\csc \theta = \frac{17}{15}$$

$$\cot \theta = -\frac{3}{4}$$

$$\cot \theta = -\frac{8}{15}$$
13.

14.

Period: 2

Not periodic

16.
$$a = -2, b = \frac{1}{2}, c = -\frac{\pi}{4}$$

17.
$$\frac{\sqrt{5}}{2}$$

18.

- **19.** 310.1°
- **20.** $d = -6 \cos \pi t$

Problem Solving (page 371)

- **1.** (a) $\frac{11\pi}{2}$ radians or 990° (b) ≈ 816.42 feet

- **3.** (a) 4767 feet (b) 3705 feet
 - (c) w = 2183 feet.

$$\tan 63^\circ = \frac{w + 3705}{3000}$$

5. (a)

(b)

Even

Even

7.
$$h = 51 - 50 \sin\left(8\pi t + \frac{\pi}{2}\right)$$

9. (a)

(b)

- (c) P(7369) = 0.631E(7369) = 0.901
 - I(7369) = 0.945
- **11.** (a) 3.35, 7.35 (b) -0.65
 - (c) Yes. There is a difference of nine periods between the values.
- **13.** (a) 40.5° (b) $x \approx 1.71$ feet; $y \approx 3.46$ feet
 - (c) ≈ 1.75 feet
 - (d) As you move closer to the rock, d must get smaller and smaller. The angles θ_1 and θ_2 will decrease along with the distance y, so d will decrease.

Chapter 5

Section 5.1 (page 379)

Vocabulary Check (page 379)

- 1. $\tan u$ 2. $\cos u$ 3. $\cot u$
- **1.** $\tan u$ **2.** $\cos u$ **3.** $\cot u$ **4.** $\csc u$ **5.** $\cot^2 u$ **6.** $\sec^2 u$ **7.** $\cos u$ **8.** $\csc u$
- **9.** $\cos u$ **10.** $-\tan u$

1.
$$\sin x = \frac{\sqrt{3}}{2}$$

$$3. \sin \theta = -\frac{\sqrt{2}}{2}$$

$$\cos x = -\frac{1}{2}$$

$$\cos\,\theta = \frac{\sqrt{2}}{2}$$

$$\tan x = -\sqrt{3}$$

$$\tan \theta = -1$$

$$\csc x = \frac{2\sqrt{3}}{3}$$

$$\sec \theta = \sqrt{2}$$
$$\csc \theta = -\sqrt{2}$$

$$\sec x = -2$$
$$\cot x = -\frac{\sqrt{3}}{2}$$

$$\cot \theta = -1$$

5.
$$\sin x = -\frac{5}{13}$$

7.
$$\sin \phi = -\frac{\sqrt{5}}{3}$$

$$\cos x = -\frac{12}{13}$$

$$\cos\phi = \frac{2}{3}$$

$$\tan x = \frac{5}{12}$$

$$\tan \phi = -\frac{\sqrt{5}}{2}$$

$$\sec x = -\frac{13}{12}$$

$$\sec \phi = \frac{3}{2}$$

$$\csc x = -\frac{13}{5}$$

$$\csc \phi = -\frac{3\sqrt{5}}{5}$$

$$\cot x = \frac{12}{5}$$

$$\cot \phi = -\frac{2\sqrt{5}}{5}$$

9.
$$\sin x = \frac{1}{3}$$

 $\cos x = -\frac{2\sqrt{2}}{3}$

11.
$$\sin \theta = -\frac{2\sqrt{5}}{5}$$

$$\tan x = -\frac{\sqrt{2}}{4}$$

$$\cos \theta = -\frac{\sqrt{5}}{5}$$
$$\tan \theta = 2$$

$$\csc x = 3$$

$$\csc \theta = -\frac{\sqrt{5}}{2}$$

$$\sec x = -\frac{3\sqrt{2}}{4}$$

$$\sec \theta = -\sqrt{5}$$

$$\cot x = -2\sqrt{2}$$

$$\cot \theta = \frac{1}{2}$$

$$13. \sin \theta = -1$$

$$\cos \theta = 0$$

tan θ is undefined.

$$\cot\,\theta=0$$

$$\csc \theta = -1$$

sec θ is undefined.

- **15.** d **16.** a
- **17.** b **18.** f
- **19.** e
 - . e **20**. c
- **21.** b **22.** c **23.** f **24.** a **25.** e **26. 27.** $\csc \theta$ **29.** $\cos^2 \phi$ **31.** $\cos x$ **33.** $\sin^2 x$
- **35.** 1 **37.** $\tan x$ **39.** $1 + \sin y$ **41.** $\sec \beta$
- 33. 1 37. tan x 32. 1 + sm y 41. see p
- **43.** $\cos u + \sin u$ **45.** $\sin^2 x$ **47.** $\sin^2 x \tan^2 x$
- **49.** $\sec x + 1$ **51.** $\sec^4 x$ **53.** $\sin^2 x \cos^2 x$
- **55.** $\cot^2 x(\csc x 1)$ **57.** $1 + 2 \sin x \cos x$
- **59.** $4 \cot^2 x$ **61.** $2 \csc^2 x$ **63.** $2 \sec x$
- **65.** $1 + \cos y$ **67.** $3(\sec x + \tan x)$

х	0.2	0.4	0.6	0.8	1.0
y_1	0.1987	0.3894	0.5646	0.7174	0.8415
<i>y</i> ₂	0.1987	0.3894	0.5646	0.7174	0.8415

х	1.2	1.4
y_1	0.9320	0.9854
<i>y</i> ₂	0.9320	0.9854

 $y_1 - y_1$

71.	х	0.2	0.4	0.6	0.8	1.0
	y_1	1.2230	1.5085	1.8958	2.4650	3.4082
	y_2	1.2230	1.5085	1.8958	2.4650	3.4082

х	1.2	1.4		
y_1	5.3319	11.6814		
y_2	5.3319	11.6814		

 $y_1 = y_2$

- **73.** $\csc x$ **75.** $\tan x$ **77.** $3 \sin \theta$ **79.** $3 \tan \theta$
- **81.** 5 sec θ **83.** 3 cos $\theta = 3$; sin $\theta = 0$; cos $\theta = 1$

85.
$$4 \sin \theta = 2\sqrt{2}$$
; $\sin \theta = \frac{\sqrt{2}}{2}$; $\cos \theta = \frac{\sqrt{2}}{2}$

- **87.** $0 \le \theta \le \pi$ **89.** $0 \le \theta < \frac{\pi}{2}, \frac{3\pi}{2} < \theta < 2\pi$
- **91.** $\ln|\cot x|$ **93.** $\ln|\csc t \sec t|$
- **95.** (a) $\csc^2 132^\circ \cot^2 132^\circ \approx 1.8107 0.8107 = 1$

(b)
$$\csc^2 \frac{2\pi}{7} - \cot^2 \frac{2\pi}{7} \approx 1.6360 - 0.6360 = 1$$

97. (a) $\cos(90^{\circ} - 80^{\circ}) = \sin 80^{\circ} \approx 0.9848$

(b)
$$\cos\left(\frac{\pi}{2} - 0.8\right) = \sin 0.8 \approx 0.7174$$

- 99. $\mu = \tan \theta$
- **101.** True. For example, $\sin(-x) = -\sin x$.
- **103.** 1, 1 **105.** ∞ , 0
- **107.** Not an identity because $\cos \theta = \pm \sqrt{1 \sin^2 \theta}$

- **109.** Not an identity because $\frac{\sin k\theta}{\cos k\theta} = \tan k\theta$
- 111. An identity because $\sin \theta \cdot \frac{1}{\sin \theta} = 1$
- **113.** Answers will vary. **115.** x 25

117.
$$\frac{x^2+6x-8}{(x+5)(x-8)}$$

119.
$$\frac{-5x^2 + 8x + 28}{(x^2 - 4)(x + 4)}$$

121.

Section 5.2 (page 387)

Vocabulary Check (page 387)

- **1.** identity **2.** conditional equation **3.** tan *u*
- **4.** $\cot u$ **5.** $\cos^2 u$
- **6.** sin *u*
- 7. $-\csc u$

- **8.** sec *u*
- 1–37. Answers will vary.

39. (a)

Identity

- (c) Answers will vary.
- **41.** (a)

Not an identity

- (c) Answers will vary.
- **43.** (a)

Identity

(c) Answers will vary.

45. (a)

(b)

Not an identity

(c) Answers will vary.

47 and 49. Answers will vary. **51.** 1

53. 2

- **55.** Answers will vary.
- 57. False. An identity is an equation that is true for all real values of θ .
- **59.** The equation is not an identity because $\sin \theta =$ $\pm\sqrt{1-\cos^2\theta}$.

Possible answer: $\frac{7\pi}{4}$

61. $2 + (3 - \sqrt{26})i$ **63.** -8 + 4i

67. $1 \pm \sqrt{5}$ **65.** $-3 \pm \sqrt{21}$

Section 5.3 (page 396)

Vocabulary Check (page 396)

- 1. general
- 2. quadratic
- 3. extraneous
- **1–5.** Answers will vary. **7.** $\frac{2\pi}{3} + 2n\pi, \frac{4\pi}{3} + 2n\pi$
- 9. $\frac{\pi}{2} + 2n\pi$, $\frac{2\pi}{2} + 2n\pi$ 11. $\frac{\pi}{6} + n\pi$, $\frac{5\pi}{6} + n\pi$
- 13. $n\pi, \frac{3\pi}{2} + 2n\pi$ 15. $\frac{\pi}{3} + n\pi, \frac{2\pi}{3} + n\pi$
- 17. $\frac{\pi}{8} + \frac{n\pi}{2}, \frac{3\pi}{8} + \frac{n\pi}{2}$ 19. $\frac{n\pi}{3}, \frac{\pi}{4} + n\pi$
- **21.** $0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$ **23.** $0, \pi, \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$
- **25.** $\frac{\pi}{3}$, $\frac{5\pi}{3}$, π **27.** No solution **29.** π , $\frac{\pi}{3}$, $\frac{5\pi}{3}$
- 31. $\frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{7\pi}{6}$, $\frac{11\pi}{6}$ 33. $\frac{\pi}{2}$ 35. $\frac{\pi}{6} + n\pi$, $\frac{5\pi}{6} + n\pi$
- 37. $\frac{\pi}{12} + \frac{n\pi}{3}$ 39. $\frac{\pi}{2} + 4n\pi, \frac{7\pi}{2} + 4n\pi$ 41. -1 + 4n
- **43.** -2 + 6n, 2 + 6n**45.** 2.678, 5.820
- **47.** 1.047, 5.236 **49.** 0.860, 3.426
- **51.** 0, 2.678, 3.142, 5.820
- **53.** 0.983, 1.768, 4.124, 4.910
- **55.** 0.3398, 0.8481, 2.2935, 2.8018
- **57.** 1.9357, 2.7767, 5.0773, 5.9183
- **59.** $\frac{\pi}{4}, \frac{5\pi}{4}$, arctan 5, arctan 5 + π **61.** $\frac{\pi}{2}, \frac{5\pi}{2}$

(b) $\frac{\pi}{4} \approx 0.7854$

$$\frac{5\pi}{4} \approx 3.9270$$

Maximum: (0.7854, 1.4142) Minimum: (3.9270, -1.4142)

- **65.** 1
- **67.** (a) All real numbers x except x = 0
 - (b) y-axis symmetry; Horizontal asymptote: y = 1
 - (c) Oscillates (d) Infinitely many solutions
 - (e) Yes, 0.6366
- 69. 0.04 second, 0.43 second, 0.83 second
- 71. February, March, and April **73.** 36.9°, 53.1°
- **75.** (a) Between t = 8 seconds and t = 24 seconds
 - (b) 5 times: t = 16, 48, 80, 112, 144 seconds
- (b) 0.6 < x < 1.1**77.** (a)
 - $A \approx 1.12$
- 79. True. The first equation has a smaller period than the second equation, so it will have more solutions in the interval $[0, 2\pi).$
- **83.** $C = 24^{\circ}$ **81.** 1 $a \approx 54.8$ $b \approx 50.1$
- **85.** $\sin 390^\circ = \frac{1}{2}$ **87.** $\sin(-1845^\circ) = -\frac{\sqrt{2}}{2}$ $\cos 390^{\circ} = \frac{\sqrt{3}}{2}$ $\cos(-1845^{\circ}) = \frac{\sqrt{2}}{2}$ $\tan 390^{\circ} = \frac{\sqrt{3}}{2}$ $\tan(-1845^{\circ}) = -1$
- **89.** 1.36° 91. Answers will vary.

Section 5.4 (page 404)

Vocabulary Check (page 404)

- 1. $\sin u \cos v \cos u \sin v$
- 2. $\cos u \cos v \sin u \sin v$
- $3. \frac{\tan u + \tan v}{1 \tan u \tan v}$
- 4. $\sin u \cos v + \cos u \sin v$
- 5. $\cos u \cos v + \sin u \sin v$
- 6. $\frac{\tan u \tan v}{1 + \tan u \tan v}$
- 1. (a) $\frac{-\sqrt{2}-\sqrt{6}}{4}$ (b) $\frac{-1+\sqrt{2}}{2}$

3. (a)
$$\frac{\sqrt{2} - \sqrt{6}}{4}$$
 (b) $\frac{\sqrt{2} + 1}{2}$

5. (a)
$$\frac{1}{2}$$
 (b) $\frac{-\sqrt{3}-1}{2}$

7.
$$\sin 105^\circ = \frac{\sqrt{2}}{4} (\sqrt{3} + 1)$$

$$\cos 105^\circ = \frac{\sqrt{2}}{4} \left(1 - \sqrt{3} \right)$$

$$\tan 105^{\circ} = -2 - \sqrt{3}$$

9.
$$\sin 195^\circ = \frac{\sqrt{2}}{4} (1 - \sqrt{3})$$

$$\cos 195^{\circ} = -\frac{\sqrt{2}}{4} (\sqrt{3} + 1)$$

$$\tan 195^{\circ} = 2 - \sqrt{3}$$

11.
$$\sin \frac{11\pi}{12} = \frac{\sqrt{2}}{4} (\sqrt{3} - 1)$$

$$\cos\frac{11\pi}{12} = -\frac{\sqrt{2}}{4}(\sqrt{3} + 1)$$

$$\tan\frac{11\pi}{12} = -2 + \sqrt{3}$$

13.
$$\sin \frac{17\pi}{12} = -\frac{\sqrt{2}}{4} (\sqrt{3} + 1)$$

$$\cos\frac{17\pi}{12} = \frac{\sqrt{2}}{4} (1 - \sqrt{3})$$

$$\tan \frac{17\pi}{12} = 2 + \sqrt{3}$$

15.
$$\sin 285^\circ = -\frac{\sqrt{2}}{4}(\sqrt{3}+1)$$

$$\cos 285^\circ = \frac{\sqrt{2}}{4} \left(\sqrt{3} - 1\right)$$

$$\tan 285^{\circ} = -(2 + \sqrt{3})$$

17.
$$\sin(-165^\circ) = -\frac{\sqrt{2}}{4}(\sqrt{3}-1)$$

$$\cos(-165^{\circ}) = -\frac{\sqrt{2}}{4}(1+\sqrt{3})$$

$$\tan(-165^{\circ}) = 2 - \sqrt{3}$$

19.
$$\sin \frac{13\pi}{12} = \frac{\sqrt{2}}{4} (1 - \sqrt{3})$$

$$\cos\frac{13\pi}{12} = -\frac{\sqrt{2}}{4}(1+\sqrt{3})$$

$$\tan\frac{13\pi}{12} = 2 - \sqrt{3}$$

21.
$$\sin\left(-\frac{13\pi}{12}\right) = \frac{\sqrt{2}}{4}(\sqrt{3} - 1)$$

$$\cos\left(-\frac{13\pi}{12}\right) = -\frac{\sqrt{2}}{4}\left(\sqrt{3} + 1\right)$$

$$\tan\left(-\frac{13\,\pi}{12}\right) = -2 + \sqrt{3}$$

31.
$$-\frac{\sqrt{3}}{2}$$
 33. $\frac{\sqrt{3}}{2}$ 35. -1 37. $-\frac{63}{65}$

39.
$$\frac{16}{65}$$
 41. $-\frac{63}{16}$ **43.** $\frac{65}{56}$ **45.** $\frac{3}{5}$ **47.** $-\frac{44}{117}$ **49.** $\frac{5}{3}$ **51.** 1 **53.** 0 **55–63.** Answers will vary.

49.
$$\frac{5}{3}$$
 51. 1 **53.** 0 **55–63.** Answers will vary

65.
$$-\sin x$$
 67. $-\cos \theta$ **69.** $\frac{\pi}{2}$ **71.** $\frac{5\pi}{4}, \frac{7\pi}{4}$

73.
$$\frac{\pi}{4}, \frac{7\pi}{4}$$

75. (a)
$$y = \frac{5}{12}\sin(2t + 0.6435)$$

(b)
$$\frac{5}{12}$$
 feet (c) $\frac{1}{\pi}$ cycle per second

77. False.
$$\sin(u \pm v) = \sin u \cos v \pm \cos u \sin v$$

$$\cos\left(x - \frac{\pi}{2}\right) = \cos x \cos\frac{\pi}{2} + \sin x \sin\frac{\pi}{2} = \sin x$$

85. (a)
$$\sqrt{2} \sin \left(\theta + \frac{\pi}{4}\right)$$
 (b) $\sqrt{2} \cos \left(\theta - \frac{\pi}{4}\right)$

87. (a)
$$13 \sin(3\theta + 0.3948)$$
 (b) $13 \cos(3\theta - 1.1760)$

89.
$$2 \cos \theta$$
 91. Proof **93.** 15°

$$\sin^2\!\left(\theta + \frac{\pi}{4}\right) + \sin^2\!\left(\theta - \frac{\pi}{4}\right) = 1$$

97.
$$f^{-1}(x) = \frac{x+15}{5}$$

99. Because f is not one-to-one, f^{-1} does not exist.

101.
$$4x - 3$$
 103. $6x - 3$

Section 5.5 (page 415)

Vocabulary Check (page 415)

$$2 \sin u \cos u$$
 2. $\cos^2 u$

3.
$$\cos^2 u - \sin^2 u = 2 \cos^2 u - 1 = 1 - 2 \sin^2 u$$

1.
$$2 \sin u \cos u$$
 2. $\cos^2 u$
3. $\cos^2 u - \sin^2 u = 2 \cos^2 u - 1 = 1 - 2 \sin^2 u$
4. $\tan^2 u$ 5. $\pm \sqrt{\frac{1 - \cos u}{2}}$

$$6. \frac{1-\cos u}{\sin u} = \frac{\sin u}{1+\cos u}$$

7.
$$\frac{1}{2}[\cos(u-v)+\cos(u+v)]$$

8.
$$\frac{1}{2} [\sin(u+v) + \sin(u-v)]$$

9.
$$2\sin\left(\frac{u+v}{2}\right)\cos\left(\frac{u-v}{2}\right)$$

10.
$$-2\sin\left(\frac{u+v}{2}\right)\sin\left(\frac{u-v}{2}\right)$$

1.
$$\frac{\sqrt{17}}{17}$$

3.
$$\frac{15}{17}$$

5.
$$\frac{8}{15}$$

1.
$$\frac{\sqrt{17}}{17}$$
 3. $\frac{15}{17}$ 5. $\frac{8}{15}$ 7. $\frac{17}{8}$ 9. $0, \frac{\pi}{3}, \pi, \frac{5\pi}{3}$

11.
$$\frac{\pi}{12}$$
, $\frac{5\pi}{12}$, $\frac{13\pi}{12}$, $\frac{17\pi}{12}$ 13. 0 , $\frac{2\pi}{3}$, $\frac{4\pi}{3}$

13.
$$0, \frac{2\pi}{3}, \frac{4\pi}{3}$$

15.
$$\frac{\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{3\pi}{2}, \frac{11\pi}{6}$$
 17. $0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$

17.
$$0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$$

19. $3 \sin 2x$ **21.** $4 \cos 2x$

23.
$$\sin 2u = \frac{24}{25}$$

 $\cos 2u = -\frac{7}{25}$
 $\tan 2u = -\frac{24}{7}$

25.
$$\sin 2u = \frac{24}{25}$$
 $\cos 2u = \frac{7}{25}$
 $\tan 2u = \frac{24}{7}$

27.
$$\sin 2u = -\frac{4\sqrt{21}}{25}$$

27.
$$\sin 2u = -\frac{4\sqrt{21}}{25}$$
 29. $\frac{1}{8}(3 + 4\cos 2x + \cos 4x)$

$$\cos 2u = -\frac{17}{25}$$

$$\tan 2u = \frac{4\sqrt{21}}{17}$$

31.
$$\frac{1}{8}(1 - \cos 4x)$$

33.
$$\frac{1}{16}(1 + \cos 2x - \cos 4x - \cos 2x \cos 4x)$$

35.
$$\frac{4\sqrt{17}}{17}$$
 37. $\frac{1}{4}$ **39.** $\sqrt{17}$

37.
$$\frac{1}{4}$$

39.
$$\sqrt{17}$$

41.
$$\sin 75^\circ = \frac{1}{2}\sqrt{2 + \sqrt{3}}$$

 $\cos 75^\circ = \frac{1}{2}\sqrt{2 - \sqrt{3}}$

$$\tan 75^\circ = 2 + \sqrt{3}$$

43.
$$\sin 112^{\circ} 30' = \frac{1}{2}\sqrt{2 + \sqrt{2}}$$

 $\cos 112^{\circ} 30' = -\frac{1}{2}\sqrt{2 - \sqrt{2}}$

$$\tan 112^{\circ} 30' = -1 - \sqrt{2}$$

45.
$$\sin \frac{\pi}{8} = \frac{1}{2}\sqrt{2 - \sqrt{2}}$$
 47. $\sin \frac{3\pi}{8} = \frac{1}{2}\sqrt{2 + \sqrt{2}}$

47.
$$\sin \frac{3\pi}{8} = \frac{1}{2}\sqrt{2 + \sqrt{2}}$$

$$\cos\frac{\pi}{8} = \frac{1}{2}\sqrt{2 + \sqrt{2}}$$

$$\cos\frac{\pi}{8} = \frac{1}{2}\sqrt{2 + \sqrt{2}}$$
 $\cos\frac{3\pi}{8} = \frac{1}{2}\sqrt{2 - \sqrt{2}}$

$$\tan\frac{\pi}{8} = \sqrt{2} - 1$$

$$\tan\frac{\pi}{8} = \sqrt{2} - 1$$
 $\tan\frac{3\pi}{8} = \sqrt{2} + 1$

49.
$$\sin \frac{u}{2} = \frac{5\sqrt{26}}{26}$$

$$\cos \frac{u}{2} = \frac{\sqrt{26}}{26}$$

49.
$$\sin \frac{u}{2} = \frac{5\sqrt{26}}{26}$$

$$\cos \frac{u}{2} = \frac{\sqrt{26}}{26}$$

$$\cos \frac{u}{2} = -\sqrt{\frac{89 - 8\sqrt{89}}{178}}$$

$$\cos \frac{u}{2} = -\sqrt{\frac{89 + 8\sqrt{89}}{178}}$$

$$\tan\frac{u}{2} = 5$$

$$\tan\frac{u}{2} = \frac{8 - \sqrt{89}}{5}$$

53.
$$\sin \frac{u}{2} = \frac{3\sqrt{10}}{10}$$

$$\cos \frac{u}{2} = -\frac{\sqrt{10}}{10}$$

$$\tan\frac{u}{2} = -3$$

55.
$$|\sin 3x|$$
 57. $-|\tan 4x|$

61.
$$\frac{\pi}{3}$$
, π , $\frac{5\pi}{3}$

63.
$$3\left(\sin\frac{\pi}{2} + \sin 0\right)$$

63.
$$3\left(\sin\frac{\pi}{2} + \sin 0\right)$$
 65. $5(\cos 60^{\circ} + \cos 90^{\circ})$

67.
$$\frac{1}{2}(\sin 10\theta + \sin 2\theta)$$
 69. $\frac{5}{2}(\cos 8\beta + \cos 2\beta)$

69.
$$\frac{5}{2}(\cos 8\beta + \cos 2\beta)$$

71
$$\frac{1}{2}(\cos 2y - \cos 2x)$$

71.
$$\frac{1}{2}(\cos 2y - \cos 2x)$$
 73. $\frac{1}{2}(\sin 2\theta + \sin 2\pi)$

75.
$$2\cos 4\theta \sin \theta$$

77.
$$2 \cos 4x \cos 2x$$

79.
$$2\cos\alpha\sin\beta$$

79.
$$2 \cos \alpha \sin \beta$$
 81. $-2 \sin \theta \sin \frac{\pi}{2}$

83.
$$\frac{\sqrt{3}+1}{2}$$
 85. $-\sqrt{2}$

85.
$$-\sqrt{2}$$

87.
$$0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi, \frac{5\pi}{4}, \frac{3\pi}{2}, \frac{7\pi}{4}$$

89.
$$\frac{\pi}{6}, \frac{5\pi}{6}$$

91. $\frac{25}{169}$

93.
$$\frac{4}{13}$$

115.

- **117.** $2x\sqrt{1-x^2}$ **119.** 23.85°
- **121.** (a) π (b) 0.4482
 - (c) 760 miles per hour; 3420 miles per hour

(d)
$$\theta = 2 \sin^{-1} \left(\frac{1}{M} \right)$$

123. False. For u < 0,

$$\sin 2u = -\sin(-2u)$$

$$= -2\sin(-u)\cos(-u)$$

$$= -2(-\sin u)\cos u$$

$$= 2\sin u\cos u.$$

125. (a)

Maximum: $(\pi, 3)$

- **127.** (a) $\frac{1}{4}(3 + \cos 4x)$ (b) $2\cos^4 x 2\cos^2 x + 1$
 - (c) $1 2\sin^2 x \cos^2 x$ (d) $1 \frac{1}{2}\sin^2 2x$
 - (e) No. There is often more than one way to rewrite a trigonometric expression.

(b) π

129. (a)

- (b) Distance = $2\sqrt{10}$ (c) Midpoint: (2, 3)

131. (a)

- (b) Distance = $\frac{2}{3}\sqrt{13}$ (c) Midpoint: $(\frac{2}{3}, \frac{3}{2})$
- 133. (a) Complement: 35°; supplement: 125°
 - (b) No complement; supplement: 18°
- 135. (a) Complement: $\frac{4\pi}{9}$; supplement: $\frac{17\pi}{18}$
 - (b) Complement: $\frac{\pi}{20}$; supplement: $\frac{11\pi}{20}$
- 137. September: \$235,000; October: \$272,600
- **139.** ≈ 127 feet

Review Exercises (page 420)

- **1.** sec *x*

7.
$$\tan x = \frac{3}{4}$$

7.
$$\tan x = \frac{3}{4}$$
 $\cos x = \frac{5}{3}$
 $\sec x = \frac{5}{4}$
9. $\cos x = \frac{\sqrt{2}}{2}$
 $\tan x = -1$
 $\csc x = -\sqrt{2}$
 $\sec x = \frac{5}{4}$
 $\cot x = -1$

$$\csc x = \frac{5}{3}$$

$$\tan x = -1$$

$$\csc x = \frac{1}{3}$$

$$\csc x = -\sqrt{2}$$

$$\frac{\sec x - 4}{4}$$

- **11.** $\sin^2 x$ **13.** 1 **15.** $\cot \theta$ **17.** $\cot^2 x$
- **19.** $\sec x + 2 \sin x$
- **21.** $-2 \tan^2 \theta$
- 23-31. Answers will vary.

33.
$$\frac{\pi}{3} + 2n\pi, \frac{2\pi}{3} + 2n\pi$$
 35. $\frac{\pi}{6} + n\pi$

- 37. $\frac{\pi}{3} + n\pi$, $\frac{2\pi}{3} + n\pi$ 39. $0, \frac{2\pi}{3}, \frac{4\pi}{3}$ 41. $0, \frac{\pi}{2}, \pi$

- 43. $\frac{\pi}{8}, \frac{3\pi}{8}, \frac{9\pi}{8}, \frac{11\pi}{8}$
- **45.** $0, \frac{\pi}{8}, \frac{3\pi}{8}, \frac{5\pi}{8}, \frac{7\pi}{8}, \frac{9\pi}{8}, \frac{11\pi}{8}, \frac{13\pi}{8}, \frac{15\pi}{8}$
- **49.** $\arctan(-4) + \pi$, $\arctan(-4) + 2\pi$, $\arctan 3$, π + arctan 3
- **51.** $\sin 285^\circ = -\frac{\sqrt{2}}{4}(\sqrt{3}+1)$

$$\cos 285^\circ = \frac{\sqrt{2}}{4} \left(\sqrt{3} - 1\right)$$

$$tan 285^\circ = -2 - \sqrt{3}$$

53. $\sin \frac{25\pi}{12} = \frac{\sqrt{2}}{4} (\sqrt{3} - 1)$

$$\cos\frac{25\pi}{12} = \frac{\sqrt{2}}{4}(\sqrt{3} + 1)$$

$$\tan\frac{25\pi}{12} = 2 - \sqrt{3}$$

- **55.** $\sin 15^{\circ}$ **57.** $\tan 35^{\circ}$ **59.** $-\frac{3}{52}(5+4\sqrt{7})$ **61.** $\frac{1}{52}(5\sqrt{7}+36)$ **63.** $\frac{1}{52}(5\sqrt{7}-36)$

- **65–69.** Answers will vary. **71.** $\frac{\pi}{4}, \frac{7\pi}{4}$ **73.** $\frac{\pi}{6}, \frac{11\pi}{6}$

- 75. $\sin 2u = \frac{24}{25}$ $\cos 2u = -\frac{7}{25}$ $\tan 2u = -\frac{24}{7}$
- 77.
- **79.** $\frac{1-\cos 4x}{1+\cos 4x}$ **81.** $\frac{3-4\cos 2x+\cos 4x}{4(1+\cos 2x)}$
- **83.** $\sin(-75^\circ) = -\frac{1}{2}\sqrt{2+1}$ $\cos(-75^{\circ}) = \frac{1}{2}\sqrt{2-\sqrt{3}}$
 - $tan(-75^{\circ}) = -2 \sqrt{3}$

85.
$$\sin \frac{19\pi}{12} = -\frac{1}{2}\sqrt{2 + \sqrt{3}}$$
 87. $\sin \frac{u}{2} = \frac{\sqrt{10}}{10}$

87.
$$\sin \frac{u}{2} = \frac{\sqrt{10}}{10}$$

$$\cos\frac{19\pi}{12} = \frac{1}{2}\sqrt{2 - \sqrt{3}} \qquad \qquad \cos\frac{u}{2} = \frac{3\sqrt{10}}{10}$$

$$\cos\frac{u}{2} = \frac{3\sqrt{10}}{10}$$

$$\tan\frac{19\pi}{12} = -2 - \sqrt{3}$$

$$\tan\frac{u}{2} = \frac{1}{3}$$

89.
$$\sin \frac{u}{2} = \frac{3\sqrt{14}}{14}$$
 91. $-|\cos 5x|$

91.
$$-|\cos 5x|$$

$$\cos\frac{u}{2} = \frac{\sqrt{70}}{14}$$

$$\tan\frac{u}{2} = \frac{3\sqrt{5}}{5}$$

93.
$$\frac{1}{2}\sin\frac{\pi}{3}$$
 95. $\frac{1}{2}(\cos 2\theta + \cos 8\theta)$ **97.** $2\cos 3\theta\sin\theta$

97.
$$2\cos 3\theta\sin\theta$$

99.
$$-2 \sin x \sin \frac{\pi}{6}$$
 101. $\theta = 15^{\circ} \text{ or } \frac{\pi}{12}$

101.
$$\theta = 15^{\circ} \text{ or } \frac{\pi}{12}$$

105. $\frac{1}{2}\sqrt{10}$ feet

107. False. If $(\pi/2) < \theta < \pi$, then $\cos(\theta/2) > 0$. The sign of $\cos(\theta/2)$ depends on the quadrant in which $\theta/2$ lies.

109. True.
$$4 \sin(-x) \cos(-x) = 4(-\sin x) \cos x$$

= $-4 \sin x \cos x$

$$= -2(2\sin x \cos x)$$
$$= -2\sin 2x$$

111. Reciprocal identities:

$$\sin \theta = \frac{1}{\csc \theta}, \cos \theta = \frac{1}{\sec \theta}, \tan \theta = \frac{1}{\cot \theta},$$

$$\csc \theta = \frac{1}{\sin \theta}, \sec \theta = \frac{1}{\cos \theta}, \cot \theta = \frac{1}{\tan \theta}$$

Quotient identities: $\tan \theta = \frac{\sin \theta}{\cos \theta}$, $\cot \theta = \frac{\cos \theta}{\sin \theta}$

Pythagorean identities: $\sin^2 \theta + \cos^2 \theta = 1$,

2. 1

3. 1

4. $\csc \theta \sec \theta$

$$1 + \tan^2 \theta = \sec^2 \theta, 1 + \cot^2 \theta = \csc^2 \theta$$

- **113.** $-1 \le \sin x \le 1$ for all x **115.** $y_1 = y_2 + 1$
- **117.** -1.8431, 2.1758, 3.9903, 8.8935, 9.8820

Chapter Test (page 423)

1.
$$\sin \theta = -\frac{3\sqrt{13}}{13}$$
 $\cos \theta = -\frac{2\sqrt{13}}{13}$

$$\csc\theta = -\frac{\sqrt{13}}{3}$$

$$\sec \theta = -\frac{\sqrt{13}}{2}$$

$$\cot \theta = \frac{2}{3}$$

5.
$$\theta = 0, \frac{\pi}{2} < \theta \le \pi, \frac{3\pi}{2} < \theta < 2\pi$$

7-12. Answers will vary.

$$y_1 = y_2$$

13. $\frac{1}{16} \left(\frac{10 - 15\cos 2x + 6\cos 4x - \cos 6x}{1 + \cos 2x} \right)$ 14. $\tan 2\theta$

15.
$$2(\sin 6\theta + \sin 2\theta)$$
 16. $-2\cos \frac{7\theta}{2}\sin \frac{\theta}{2}$

17.
$$0, \frac{3\pi}{4}, \pi, \frac{7\pi}{4}$$
 18. $\frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}, \frac{3\pi}{2}$

19.
$$\frac{\pi}{6}$$
, $\frac{5\pi}{6}$, $\frac{7\pi}{6}$, $\frac{11\pi}{6}$ **20.** $\frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{3\pi}{2}$

21.
$$-2.938$$
, -2.663 , 1.170 **22.** $\frac{\sqrt{2} - \sqrt{6}}{4}$

23.
$$\sin 2u = \frac{4}{5}$$
, $\tan 2u = -\frac{4}{3}$, $\cos 2u = -\frac{3}{5}$

- **24.** Day 123 to day 223
- **25.** t = 0.26 minute
 - 0.58 minute
 - 0.89 minute
 - 1.20 minutes
 - 1.52 minutes
 - 1.83 minutes

Problem Solving (page 427)

1. (a)
$$\cos \theta = \pm \sqrt{1 - \sin^2 \theta}$$

$$\tan \theta = \pm \frac{\sin \theta}{\sqrt{1 - \sin^2 \theta}}$$

$$\sqrt{1 - \sin^2 \theta}$$

$$\cot \theta = \pm \frac{\sqrt{1 - \sin^2 \theta}}{\sin \theta}$$

$$\sec \theta = \pm \frac{1}{\sqrt{1 - \sin^2 \theta}}$$

$$\csc \theta = \frac{1}{\sin \theta}$$

(b)
$$\sin \theta = \pm \sqrt{1 - \cos^2 \theta}$$

 $\tan \theta = \pm \frac{\sqrt{1 - \cos^2 \theta}}{\cos \theta}$

$$\csc \theta = \pm \frac{1}{\sqrt{1 - \cos^2 \theta}}$$

$$\sec \theta = \frac{1}{\cos \theta}$$

$$\cot \theta = \pm \frac{\cos \theta}{\sqrt{1 - \cos^2 \theta}}$$

- **3.** Answers will vary. **5.** u + v = w

7.
$$\sin \frac{\theta}{2} = \sqrt{\frac{1 - \cos \theta}{2}}$$

$$\cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \theta}{2}}$$

$$\tan \frac{\theta}{2} = \frac{\sin \theta}{1 + \cos \theta}$$

- **9.** (a) 20
 - (b) t = 91, t = 274; Spring Equinox and Fall Equinox
 - (c) Seward; The amplitudes: 6.4 and 1.9
 - (d) 365.2 days

11. (a)
$$\frac{\pi}{6} \le x \le \frac{5\pi}{6}$$
 (b) $\frac{2\pi}{3} \le x \le \frac{4\pi}{3}$

(c)
$$\frac{\pi}{2} < x < \pi, \frac{3\pi}{2} < x < 2\pi$$

(d)
$$0 \le x \le \frac{\pi}{4}, \frac{5\pi}{4} \le x \le 2\pi$$

13. (a)
$$\sin(u + v + w)$$

= $\sin u \cos v \cos w - \sin u \sin v \sin w$
+ $\cos u \sin v \cos w + \cos u \cos v \sin w$

(b)
$$\tan(u + v + w)$$

$$= \frac{\tan u + \tan v + \tan w - \tan u \tan v \tan w}{1 - \tan u \tan v - \tan u \tan w - \tan v \tan w}$$

(b) 233.3 times per second

Chapter 6

Section 6.1 (page 436)

Vocabulary Check (page 436)

- 1. oblique
- 2. $\frac{b}{\sin B}$ 3. $\frac{1}{2}ac \sin B$

1.
$$C = 105^{\circ}, b \approx 28.28, c \approx 38.64$$

3.
$$C = 120^{\circ}, b \approx 4.75, c \approx 7.17$$

5.
$$B \approx 21.55^{\circ}$$
, $C \approx 122.45^{\circ}$, $c \approx 11.49$

7.
$$B = 60.9^{\circ}, b \approx 19.32, c \approx 6.36$$

9.
$$B = 42^{\circ}4', a \approx 22.05, b \approx 14.88$$

11.
$$A \approx 10^{\circ}11', C \approx 154^{\circ}19', c \approx 11.03$$

13.
$$A \approx 25.57^{\circ}, B \approx 9.43^{\circ}, a \approx 10.53$$

15.
$$B \approx 18^{\circ}13', C \approx 51^{\circ}32', c \approx 40.06$$

17.
$$C = 83^{\circ}, a \approx 0.62, b \approx 0.51$$

19.
$$B \approx 48.74^{\circ}, C \approx 21.26^{\circ}, c \approx 48.23$$

- 21. No solution
- 23. Two solutions:

$$B \approx 72.21^{\circ}, C \approx 49.79^{\circ}, c \approx 10.27$$

 $B \approx 107.79^{\circ}, C \approx 14.21^{\circ}, c \approx 3.30$

25. (a)
$$b \le 5$$
, $b = \frac{5}{\sin 36^{\circ}}$ (b) $5 < b < \frac{5}{\sin 36^{\circ}}$

(c)
$$b > \frac{5}{\sin 36^{\circ}}$$

27. (a)
$$b \le 10.8, b = \frac{10.8}{\sin 10^{\circ}}$$
 (b) $10.8 < b < \frac{10.8}{\sin 10^{\circ}}$

(c)
$$b > \frac{10.8}{\sin 10^{\circ}}$$

- **29.** 10.4 **31.** 1675.2
 - **33.** 3204.5
- 35. 15.3 meters
- **37.** 16.1° **39.** 77 meters
- **41.** (a)
- (b) 22.6 miles (c) 21.4 miles
- (d) 7.3 miles

- **43.** 3.2 miles
- **45.** True. If an angle of a triangle is obtuse (greater than 90°), then the other two angles must be acute and therefore less than 90°. The triangle is oblique.
- **47.** (a) $\alpha = \arcsin(0.5 \sin \beta)$

Domain: $0 < \beta < \pi$

Range: $0 < \alpha < \frac{\pi}{6}$

(c)
$$c = \frac{18 \sin[\pi - \beta - \arcsin(0.5 \sin \beta)]}{\sin \beta}$$

Domain: $0 < \beta < \pi$ Range: 9 < c < 27

(e)	β	0.4	0.8	1.2	1.6
	α	0.1960	0.3669	0.4848	0.5234
	С	25.95	23.07	19.19	15.33

β	2.0	2.4	2.8
α	0.4720	0.3445	0.1683
с	12.29	10.31	9.27

As β increases from 0 to π , α increases and then decreases, and c decreases from 27 to 9.

49. $\cos x$ **51.** $\sin^2 x$

Section 6.2 (page 443)

Vocabulary Check (page 443)

1. Cosines

2.
$$b^2 = a^2 + c^2 - 2ac \cos B$$

3. Heron's Area Formula

1.
$$A \approx 23.07^{\circ}, B \approx 34.05^{\circ}, C \approx 122.88^{\circ}$$

3.
$$B \approx 23.79^{\circ}$$
, $C \approx 126.21^{\circ}$, $a \approx 18.59$

5.
$$A \approx 31.99^{\circ}, B \approx 42.39^{\circ}, C \approx 105.63^{\circ}$$

7.
$$A \approx 92.94^{\circ}, B \approx 43.53^{\circ}, C \approx 43.53^{\circ}$$

9.
$$B \approx 13.45^{\circ}, C \approx 31.55^{\circ}, a \approx 12.16$$

11.
$$A \approx 141^{\circ}45', C \approx 27^{\circ}40', b \approx 11.87$$

13.
$$A = 27^{\circ}10', C = 27^{\circ}10', b \approx 56.94$$

15.
$$A \approx 33.80^{\circ}, B \approx 103.20^{\circ}, c \approx 0.54$$

	a	b	c	d	θ	ϕ
17.	5	8	12.07	5.69	45°	135.1°
19.	10	14	20	13.86	68.2°	111.8°

21. 15 16.96 25

23. 16.25 **25.** 10.4 **27.** 52.11

N 37.1° E, S 63.1° E

102.8°

- **31.** 373.3 meters
- **33.** 72.3°
- **35.** 43.3 miles

77.2°

- **37.** (a) N 58.4° W
- (b) S 81.5° W
- **39.** 63.7 feet

- **41.** 24.2 miles
- **43.** $\overline{PQ} \approx 9.4$, $\overline{QS} = 5$, $\overline{RS} \approx 12.8$

45.	d (inches)	9	10	12	13	14
	θ (degrees)	60.9°	69.5°	88.0°	98.2°	109.6°
	s (inches)	20.88	20.28	18.99	18.28	17.48

d (inches)	15	16
θ (degrees)	122.9°	139.8°
s (inches)	16.55	15.37

- 47. 46,837.5 square feet 49. \$83,336.37
- **51.** False. For s to be the average of the lengths of the three sides of the triangle, s would be equal to (a + b + c)/3.
- **53.** False. The three side lengths do not form a triangle.
- **55.** (a) 570.60 (b) 5910 (c) 177
- **57.** Answers will vary.

59.
$$-\frac{\pi}{2}$$
 61. $\frac{\pi}{3}$ **63.** $-\frac{\pi}{3}$

65.
$$\frac{1}{\sqrt{1-4x^2}}$$
 67. $\frac{1}{x-2}$

67.
$$\frac{1}{x-2}$$

69.
$$\cos \theta = 1$$

$$\sec \theta = 1$$

 $\csc \theta$ is undefined.

71.
$$\tan \theta = -\frac{\sqrt{3}}{3}$$

$$\sec \theta = \frac{2\sqrt{3}}{3}$$

$$\csc \theta = -2$$

73.
$$-2 \sin \frac{7\pi}{12} \sin \frac{\pi}{4}$$

Section 6.3 (page 456)

Vocabulary Check (page 456)

- 1. directed line segment
- 2. initial; terminal
- 3. magnitude 4. vector
- 5. standard position 6. unit vector
- 7. multiplication; addition 8. resultant
- 9. linear combination; horizontal; vertical
- 1. $\|\mathbf{u}\| = \|\mathbf{v}\| = \sqrt{17}$, slope_u = slope_v = $\frac{1}{4}$ \mathbf{u} and \mathbf{v} have the same magnitude and direction, so they are

3.
$$\mathbf{v} = \langle 3, 2 \rangle; \|\mathbf{v}\| = \sqrt{13}$$
 5. $\mathbf{v} = \langle -3, 2 \rangle; \|\mathbf{v}\| = \sqrt{13}$

7.
$$\mathbf{v} = \langle 0, 5 \rangle; \|\mathbf{v}\| = 5$$
 9. $\mathbf{v} = \langle 16, 7 \rangle; \|\mathbf{v}\| = \sqrt{305}$

11.
$$\mathbf{v} = \langle 8, 6 \rangle; \|\mathbf{v}\| = 10$$
 13. $\mathbf{v} = \langle -9, -12 \rangle; \|\mathbf{v}\| = 15$

15. 17.

21. (a) $\langle 3, 4 \rangle$

(b) $\langle 1, -2 \rangle$

(c) $\langle 1, -7 \rangle$

23. (a) $\langle -5, 3 \rangle$

(c) $\langle -10, 6 \rangle$

25. (a) 3i - 2j

(b) -i + 4j

(c) -4i + 11j

27. (a) 2i + j

(b) $2\mathbf{i} - \mathbf{j}$

(c) 4i - 3j

29. $\langle 1, 0 \rangle$ **31.** $\left\langle -\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right\rangle$ **33.** $\frac{3\sqrt{10}}{10}\mathbf{i} - \frac{\sqrt{10}}{10}\mathbf{j}$

35. j 37.
$$\frac{\sqrt{5}}{5}i - \frac{2\sqrt{5}}{5}j$$
 39. $\left\langle \frac{5\sqrt{2}}{2}, \frac{5\sqrt{2}}{2} \right\rangle$

41.
$$\left\langle \frac{18\sqrt{29}}{29}, \frac{45\sqrt{29}}{29} \right\rangle$$
 43. $7\mathbf{i} + 4\mathbf{j}$ **45.** $3\mathbf{i} + 8\mathbf{j}$

49.
$$\mathbf{v} = \langle 4, 3 \rangle$$

51.
$$\mathbf{v} = \langle \frac{7}{2}, -\frac{1}{2} \rangle$$

53.
$$\|\mathbf{v}\| = 3$$
; $\theta = 60^{\circ}$

55.
$$\|\mathbf{v}\| = 6\sqrt{2}$$
; $\theta = 315^{\circ}$

57.
$$\mathbf{v} = \langle 3, 0 \rangle$$

59.
$$\mathbf{v} = \left\langle -\frac{7\sqrt{3}}{4}, \frac{7}{4} \right\rangle$$

61.
$$\mathbf{v} = \left\langle -\frac{3\sqrt{6}}{2}, \frac{3\sqrt{2}}{2} \right\rangle$$

63.
$$\mathbf{v} = \left\langle \frac{\sqrt{10}}{5}, \frac{3\sqrt{10}}{5} \right\rangle$$

- **65.** $\langle 5, 5 \rangle$
 - **67.** $\langle 10\sqrt{2} 50, 10\sqrt{2} \rangle$ **69.** 90°
- **71.** 62.7°
- **73.** 12.8°; 398.32 newtons
- **75.** 71.3°; 228.5 pounds
- 77. Vertical component: $70 \sin 35^{\circ} \approx 40.15$ feet per second Horizontal component: $70 \cos 35^{\circ} \approx 57.34$ feet per second
- **79.** $T_{AC} \approx 1758.8$ pounds $T_{BC} \approx 1305.4 \text{ pounds}$
- **81.** 3154.4 pounds
- 83. N 21.4° E; 138.7 kilometers per hour
- 85. 1928.4 foot-pounds
- **87.** True. See Example 1.
- **89.** (a) 0° (b) 180°
 - (c) No. The magnitude is at most equal to the sum when the angle between the vectors is 0° .
- 91. Answers will vary. **93.** $\langle 1, 3 \rangle$ or $\langle -1, -3 \rangle$
- **97.** 6 sec θ **95.** 8 tan θ

99.
$$\frac{\pi}{2} + n\pi$$
, $\pi + 2n\pi$ **101.** $n\pi$, $\frac{\pi}{6} + 2n\pi$, $\frac{11\pi}{6} + 2n\pi$

Section 6.4 (page 467)

Vocabulary Check (page 467)

- 1. dot product
- 2. $\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$
- 3. orthogonal

19. 13

27. 143.13°

9. 8: scalar

- 5. $\|\operatorname{proj}_{\overrightarrow{PQ}}\mathbf{F}\| \|\overrightarrow{PQ}\|; \mathbf{F} \cdot \overrightarrow{PQ}\|$
- **1.** -9 **3.** −11
- **5.** 6 **7.** −12
- 11. $\langle -6, 8 \rangle$; vector
- 13. $\langle -66, -66 \rangle$; vector
- 15. $\sqrt{5} 1$; scalar
- **17.** 4; scalar
- **21.** $5\sqrt{41}$
 - **25.** 90° **23.** 6
 - 33. $\frac{5\pi}{12}$
- **29.** 60.26°
- **31.** 90°

35.

- **39.** 26.57°, 63.43°, 90°
- **41.** 41.63°, 53.13°, 85.24°
- **43.** -20
 - **45.** -229.1
- 47. Parallel
 - 49. Neither
- **51.** Orthogonal **53.** $\frac{1}{37}$ $\langle 84, 14 \rangle, \frac{1}{37} \langle -10, 60 \rangle$
- **55.** $\frac{45}{229}\langle 2, 15 \rangle, \frac{6}{229}\langle -15, 2 \rangle$ **57.** 0
- **59.** $\langle -5, 3 \rangle, \langle 5, -3 \rangle$
- **61.** $\frac{2}{3}$ **i** + $\frac{1}{2}$ **j**, $-\frac{2}{3}$ **i** $\frac{1}{2}$ **j**
- 65. (a) \$58,762.50; This value gives the total revenue that can be earned by selling all of the units.
 - (b) 1.05v
- **67.** (a) Force = $30,000 \sin d$

(b)

d	0°	1°	2°	3°	4°	5°
Force	0	523.6	1047.0	1570.1	2092.7	2614.7

d	6°	7°	8°	9°	10°
Force	3135.9	3656.1	4175.2	4693.0	5209.4

- (c) 29,885.8 pounds
- **69.** 735 newton-meters
- **71.** 779.4 foot-pounds
- **73.** 21,650.64 foot-pounds
- **75.** False. Work is represented by a scalar.
- 77. (a) $\theta = \frac{\pi}{2}$ (b) $0 \le \theta < \frac{\pi}{2}$ (c) $\frac{\pi}{2} < \theta \le \pi$
- 79. Answers will vary.
- **81.** $12\sqrt{7}$ **83.** $-2\sqrt{6}$
- **85.** $0, \frac{\pi}{6}, \pi, \frac{11\pi}{6}$ **87.** $0, \pi$ **89.** $-\frac{253}{325}$ **91.** $\frac{204}{325}$

Section 6.5 (page 478)

Vocabulary Check (page 478)

- 1. absolute value
- 2. trigonometric form; modulus; argument
- **3.** DeMoivre's
- **4.** *n*th root

7.
$$3\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$$
 9. $\sqrt{10}(\cos 5.96 + i\sin 5.96)$

$$3\sqrt{2}\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right)$$
15. Imaginary axis

$$5\left(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}\right)$$

$$\sqrt{65}(\cos 2.62 + i \sin 2.62)$$
 $7(\cos 0 + i \sin 0)$

$$2\sqrt{3}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) \qquad \sqrt{10}(\cos 3.46 + i\sin 3.46)$$

$$\sqrt{29}(\cos 0.38 + i \sin 0.38)$$
 $\sqrt{139}(\cos 3.97 + i \sin 3.97)$

$$2.8408 + 0.9643i$$

43.
$$-2.9044 + 0.7511i$$

The absolute value of each is 1.

47.
$$12\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$

47.
$$12\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right)$$
 49. $\frac{10}{9}(\cos 200^{\circ}+i\sin 200^{\circ})$

51.
$$0.27(\cos 150^{\circ} + i \sin 150^{\circ})$$
 53. $\cos 30^{\circ} + i \sin 30^{\circ}$

53.
$$\cos 30^{\circ} + i \sin 30^{\circ}$$

55.
$$\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$$
 57. $4(\cos 302^{\circ} + i \sin 302^{\circ})$

57.
$$4(\cos 302^{\circ} + i \sin 302^{\circ})$$

59. (a)
$$\left[2\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)\right]\left[\sqrt{2}\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right)\right]$$

(b)
$$4(\cos 0 + i \sin 0) = 4$$
 (c) 4

61. (a)
$$\left[2 \left(\cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2} \right) \right] \left[\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) \right]$$

(b)
$$2\sqrt{2}\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right) = 2 - 2i$$

(c)
$$-2i - 2i^2 = -2i + 2 = 2 - 2i$$

63. (a)
$$[5(\cos 0.93 + i \sin 0.93)] \div \left[2\left(\cos \frac{5\pi}{3} + i \sin \frac{5\pi}{3}\right)\right]$$

(b)
$$\frac{5}{2}(\cos 1.97 + i \sin 1.97) \approx -0.982 + 2.299i$$

(c)
$$\approx -0.982 + 2.299i$$

65. (a)
$$[5(\cos 0 + i \sin 0)] \div [\sqrt{13}(\cos 0.98 + i \sin 0.98)]$$

(b)
$$\frac{5}{\sqrt{13}}(\cos 5.30 + i \sin 5.30) \approx 0.769 - 1.154i$$

(c)
$$\frac{10}{13} - \frac{15}{13}i \approx 0.769 - 1.154i$$

71.
$$-4 - 4i$$
 73. $-32i$ **75.** $-128\sqrt{3} - 128i$

77.
$$\frac{125}{2} + \frac{125\sqrt{3}}{2}i$$
 79. -1

85.
$$\frac{81}{2} + \frac{81\sqrt{3}}{2}i$$
 87. 32*i*

89. (a)
$$\sqrt{5} (\cos 60^{\circ} + i \sin 60^{\circ})$$

 $\sqrt{5} (\cos 240^{\circ} + i \sin 240^{\circ})$

(c)
$$\frac{\sqrt{5}}{2} + \frac{\sqrt{15}}{2}i$$
, $-\frac{\sqrt{5}}{2} - \frac{\sqrt{15}}{2}i$

91. (a)
$$2\left(\cos\frac{2\pi}{9} + i\sin\frac{2\pi}{9}\right)$$

 $2\left(\cos\frac{8\pi}{9} + i\sin\frac{8\pi}{9}\right)$
 $2\left(\cos\frac{14\pi}{9} + i\sin\frac{14\pi}{9}\right)$

(c)
$$1.5321 + 1.2856i$$
, $-1.8794 + 0.6840i$, $0.3473 - 1.9696i$

- 93. (a) $5\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$ (b) Imaginary axis $5\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right)$ (c) $-\frac{5\sqrt{2}}{2} + \frac{5\sqrt{2}}{2}i$ $\frac{5\sqrt{2}}{2} \frac{5\sqrt{2}}{2}i$
- 95. (a) $5\left(\cos\frac{4\pi}{9} + i\sin\frac{4\pi}{9}\right)$ $5\left(\cos\frac{10\pi}{9} + i\sin\frac{10\pi}{9}\right)$ $5\left(\cos\frac{16\pi}{9} + i\sin\frac{16\pi}{9}\right)$

- (c) 0.8682 + 4.9240i, -4.6985 1.7101i, 3.8302 3.2140i
- 97. (a) $2(\cos 0 + i \sin 0)$ $2\left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}\right)$ $2(\cos \pi + i \sin \pi)$ $2\left(\cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2}\right)$

(c) 2, 2i, -2, -2i

- 99. (a) $\cos 0 + i \sin 0$ $\cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5}$ (b) Imaginary axis $\cos \frac{4\pi}{5} + i \sin \frac{4\pi}{5}$ $\cos \frac{6\pi}{5} + i \sin \frac{6\pi}{5}$ $\cos \frac{8\pi}{5} + i \sin \frac{8\pi}{5}$
 - (c) 1, 0.3090 + 0.9511i, -0.8090 + 0.5878i, -0.8090 0.5878i, 0.3090 0.9511i
- 101. (a) $5\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$ $5(\cos\pi + i\sin\pi)$ $5\left(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\right)$

- (c) $\frac{5}{2} + \frac{5\sqrt{3}}{2}i$, -5, $\frac{5}{2} \frac{5\sqrt{3}}{2}i$
- 103. (a) $2\sqrt{2}\left(\cos\frac{3\pi}{20} + i\sin\frac{3\pi}{20}\right)$ $2\sqrt{2}\left(\cos\frac{11\pi}{20} + i\sin\frac{11\pi}{20}\right)$ $2\sqrt{2}\left(\cos\frac{19\pi}{20} + i\sin\frac{19\pi}{20}\right)$ $2\sqrt{2}\left(\cos\frac{27\pi}{20} + i\sin\frac{27\pi}{20}\right)$ $2\sqrt{2}\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right)$

(c) 2.5201 + 1.2841i, -0.4425 + 2.7936i, -2.7936 + 0.4425i, -1.2841 - 2.5201i, 2 - 2i

105.
$$\cos \frac{3\pi}{8} + i \sin \frac{3\pi}{8}$$
$$\cos \frac{7\pi}{8} + i \sin \frac{7\pi}{8}$$
$$\cos \frac{11\pi}{8} + i \sin \frac{11\pi}{8}$$
$$\cos \frac{15\pi}{8} + i \sin \frac{15\pi}{8}$$

107.
$$3\left(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}\right)$$
$$3\left(\cos\frac{3\pi}{5} + i\sin\frac{3\pi}{5}\right)$$
$$3\left(\cos\pi + i\sin\pi\right)$$
$$3\left(\cos\frac{7\pi}{5} + i\sin\frac{7\pi}{5}\right)$$
$$3\left(\cos\frac{9\pi}{5} + i\sin\frac{9\pi}{5}\right)$$

109.
$$2\left(\cos\frac{3\pi}{8} + i\sin\frac{3\pi}{8}\right)$$
$$2\left(\cos\frac{7\pi}{8} + i\sin\frac{7\pi}{8}\right)$$
$$2\left(\cos\frac{11\pi}{8} + i\sin\frac{11\pi}{8}\right)$$
$$2\left(\cos\frac{15\pi}{8} + i\sin\frac{15\pi}{8}\right)$$

111.
$$\sqrt[6]{2} \left(\cos \frac{7\pi}{12} + i \sin \frac{7\pi}{12}\right)$$
 $\sqrt[6]{2} \left(\cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4}\right)$
 $\sqrt[6]{2} \left(\cos \frac{23\pi}{12} + i \sin \frac{23\pi}{12}\right)$
 $\sqrt[6]{2} \left(\cos \frac{23\pi}{12} + i \sin \frac{23\pi}{12}\right)$

- 113. True, by the definition of the absolute value of a complex number
- **115.** True. $z_1 z_2 = r_1 r_2 [\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)] = 0$ if and only if $r_1 = 0$ and/or $r_2 = 0$.
- **117.** Answers will vary.
- **119.** (a) r^2 (b) $\cos 2\theta + i \sin 2\theta$
- 121. Answers will vary.
- **123.** (a) $2(\cos 30^{\circ} + i \sin 30^{\circ})$ (b) 8i $2(\cos 150^{\circ} + i \sin 150^{\circ})$ $2(\cos 270^{\circ} + i \sin 270^{\circ})$
- **125.** $B = 68^{\circ}, b \approx 19.80, c \approx 21.36$
- **127.** $B = 60^{\circ}, a \approx 65.01, c \approx 130.02$
- **129.** $B = 47^{\circ}45', a \approx 7.53, b \approx 8.29$
- **131.** 16; 2 **133.** $\frac{1}{16}$; $\frac{4}{5}$ **135.** $3(\sin 11\theta + \sin 5\theta)$

Review Exercises (page 482)

- **1.** $C = 74^{\circ}, b \approx 13.19, c \approx 13.41$
- **3.** $A = 26^{\circ}, a \approx 24.89, c \approx 56.23$
- **5.** $C = 66^{\circ}, a \approx 2.53, b \approx 9.11$
- 7. $B = 108^{\circ}, a \approx 11.76, c \approx 21.49$
- **9.** $A \approx 20.41^{\circ}, C \approx 9.59^{\circ}, a \approx 20.92$
- **11.** $B \approx 39.48^{\circ}, C \approx 65.52^{\circ}, c \approx 48.24$
- **13.** 7.9 **15.** 33.5
- **17.** 31.1 meters **19.** 31.01 feet
- **21.** $A \approx 29.69^{\circ}, B \approx 52.41^{\circ}, C \approx 97.90^{\circ}$
- **23.** $A \approx 29.92^{\circ}, B \approx 86.18^{\circ}, C \approx 63.90^{\circ}$
- **25.** $A = 35^{\circ}, C = 35^{\circ}, b \approx 6.55$
- **27.** $A \approx 45.76^{\circ}, B \approx 91.24^{\circ}, c \approx 21.42$
- **29.** $\approx 4.3 \text{ feet}, \approx 12.6 \text{ feet}$
- **31.** 615.1 meters **33.** 9.80 **35.** 8.36
- 37. $\|\mathbf{u}\| = \|\mathbf{v}\| = \sqrt{61}$, slope_u = slope_v = $\frac{5}{6}$
- **39.** (7, -5) **41.** (7, -7) **43.** $(-4, 4\sqrt{3})$
- **45.** (a) $\langle -4, 3 \rangle$ (b) $\langle 2, -9 \rangle$ (c) $\langle -3, -9 \rangle$
 - (d) $\langle -11, -3 \rangle$
- **47.** (a) $\langle -1, 6 \rangle$ (b) $\langle -9, -2 \rangle$ (c) $\langle -15, 6 \rangle$ (d) $\langle -17, 18 \rangle$
- **49.** (a) $7\mathbf{i} + 2\mathbf{j}$ (b) $-3\mathbf{i} 4\mathbf{j}$ (c) $6\mathbf{i} 3\mathbf{j}$ (d) $20\mathbf{i} + \mathbf{j}$
- **51.** (a) $3\mathbf{i} + 6\mathbf{j}$ (b) $5\mathbf{i} 6\mathbf{j}$ (c) $12\mathbf{i}$ (d) $18\mathbf{i} + 12\mathbf{j}$
- **53.** $\langle 22, -7 \rangle$

- 57. -3i + 4j 59. 6i + 4j
- **61.** $10\sqrt{2}(\cos 135^{\circ} \mathbf{i} + \sin 135^{\circ} \mathbf{j})$
- **63.** $\|\mathbf{v}\| = 7$; $\theta = 60^{\circ}$ **65.** $\|\mathbf{v}\| = \sqrt{41}$; $\theta = 38.7^{\circ}$
- **67.** $\|\mathbf{v}\| = 3\sqrt{2}$; $\theta = 225^{\circ}$
- **69.** The resultant force is 133.92 pounds and 5.6° from the 85-pound force.
- **71.** 422.30 miles per hour; 130.4° **73.** 45
- **75.** -2 **77.** 50; scalar **79.** (6, -8); vector
- **81.** $\frac{11\pi}{12}$ **83.** 160.5°
- **85.** Orthogonal **87.** Neither
- **89.** $-\frac{13}{17}\langle 4,1\rangle, \frac{16}{17}\langle -1,4\rangle$ **91.** $\frac{5}{2}\langle -1,1\rangle, \frac{9}{2}\langle 1,1\rangle$
- **93.** 48 **95.** 72,000 foot-pounds

97. Imaginary axis

10

8

7i

6

4

2

-6

-4

-2

2

4

Real axis

101.
$$5\sqrt{2}\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right)$$

103.
$$6\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$$

105. (a)
$$z_1 = 4\left(\cos\frac{11\pi}{6} + i\sin\frac{11\pi}{6}\right)$$

 $z_2 = 10\left(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}\right)$
(b) $z_1z_2 = 40\left(\cos\frac{10\pi}{3} + i\sin\frac{10\pi}{3}\right)$

(b)
$$z_1 z_2 = 40 \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}\right)$$

$$\frac{z_1}{z_2} = \frac{2}{5} \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}\right)$$

107.
$$\frac{625}{2} + \frac{625\sqrt{3}}{2}i$$
 109. 2035 - 828*i*

111. (a)
$$3\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$

 $3\left(\cos\frac{7\pi}{12} + i\sin\frac{7\pi}{12}\right)$
 $3\left(\cos\frac{11\pi}{12} + i\sin\frac{11\pi}{12}\right)$
 $3\left(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}\right)$
 $3\left(\cos\frac{19\pi}{12} + i\sin\frac{19\pi}{12}\right)$
 $3\left(\cos\frac{23\pi}{12} + i\sin\frac{23\pi}{12}\right)$

(c)
$$\frac{3\sqrt{2}}{2} + \frac{3\sqrt{2}}{2}i$$
, $-0.7765 + 2.898i$, $-2.898 + 0.7765i$, $-\frac{3\sqrt{2}}{2} - \frac{3\sqrt{2}}{2}i$, $0.7765 - 2.898i$, $2.898 - 0.7765i$

113. (a)
$$2(\cos 0 + i \sin 0)$$

 $2\left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}\right)$
 $2\left(\cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}\right)$

(c)
$$2, -1 + \sqrt{3}i, -1 - \sqrt{3}i$$

115. $3\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) = \frac{3\sqrt{2}}{2} + \frac{3\sqrt{2}}{2}i$
 $3\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right) = -\frac{3\sqrt{2}}{2} + \frac{3\sqrt{2}}{2}i$
 $3\left(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}\right) = -\frac{3\sqrt{2}}{2} - \frac{3\sqrt{2}}{2}i$
 $3\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right) = \frac{3\sqrt{2}}{2} - \frac{3\sqrt{2}}{2}i$

- 119. True. sin 90° is defined in the Law of Sines.
- **121.** True. By definition, $\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$, so $\mathbf{v} = \|\mathbf{v}\|\mathbf{u}$.
- **123.** False. The solutions to $x^2 8i = 0$ are x = 2 + 2i and x = -2 - 2i.
- **125.** $a^2 = b^2 + c^2 2bc \cos A$, $b^2 = a^2 + c^2 2ac \cos B$, $c^2 = a^2 + b^2 - 2ab\cos C$
- 127. A and C
- **129.** If k > 0, the direction is the same and the magnitude is k times as great.

If k < 0, the result is a vector in the opposite direction and the magnitude is |k| times as great.

131. (a)
$$4(\cos 60^{\circ} + i \sin 60^{\circ})$$
 (b) -64° $4(\cos 180^{\circ} + i \sin 180^{\circ})$ $4(\cos 300^{\circ} + i \sin 300^{\circ})$

133.
$$z_1 z_2 = -4; \frac{z_1}{z_2} = \cos(2\theta - \pi) + i\sin(2\theta - \pi)$$

= $-\cos 2\theta - i\sin 2\theta$

Chapter Test (page 486)

- 1. $C = 88^{\circ}, b \approx 27.81, c \approx 29.98$
- **2.** $A = 43^{\circ}, b \approx 25.75, c \approx 14.45$
- **3.** Two solutions:

$$B \approx 29.12^{\circ}, C \approx 126.88^{\circ}, c \approx 22.03$$

 $B \approx 150.88^{\circ}, C \approx 5.12^{\circ}, c \approx 2.46$

- **5.** $A \approx 39.96^{\circ}, C \approx 40.04^{\circ}, c \approx 15.02$ **4.** No solution
- **6.** $A \approx 23.43^{\circ}, B \approx 33.57^{\circ}, c \approx 86.46$
- **7.** 2052.5 square meters **8.** 606.3 miles; 29.1°

9.
$$\langle 14, -23 \rangle$$
 10. $\left\langle \frac{18\sqrt{34}}{17}, -\frac{30\sqrt{34}}{17} \right\rangle$

12. (10, 4)

14. $\langle \frac{4}{5}, -\frac{3}{5} \rangle$

20.
$$5\sqrt{2}\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right)$$
 21. $-3 + 3\sqrt{3}i$

22.
$$-\frac{6561}{2} - \frac{6561\sqrt{3}}{2}i$$
 23. 5832*i*

24.
$$4\sqrt[4]{2} \left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right)$$

 $4\sqrt[4]{2} \left(\cos\frac{7\pi}{12} + i\sin\frac{7\pi}{12}\right)$
 $4\sqrt[4]{2} \left(\cos\frac{13\pi}{12} + i\sin\frac{13\pi}{12}\right)$
 $4\sqrt[4]{2} \left(\cos\frac{19\pi}{12} + i\sin\frac{19\pi}{12}\right)$

25.
$$3\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$
$$3\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$$
$$3\left(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}\right)$$

(page 487) **Cumulative Test for Chapters 4–6**

(e)
$$\sin(-120^\circ) = -\frac{\sqrt{3}}{2}$$
 $\csc(-120^\circ) = -\frac{2\sqrt{3}}{3}$
 $\cos(-120^\circ) = -\frac{1}{2}$ $\sec(-120^\circ) = -2$
 $\tan(-120^\circ) = \sqrt{3}$ $\cot(-120^\circ) = \frac{\sqrt{3}}{3}$

2.
$$134.6^{\circ}$$
 3. $\frac{3}{5}$

6.

9. 6.7

10. $\frac{3}{4}$

8.

11.
$$\sqrt{1-4x^2}$$

13.
$$2 \tan \theta$$

17.
$$\frac{\pi}{3}, \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{3}$$

18.
$$\frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$$
 19. $\frac{3\pi}{2}$ **20.** $\frac{16}{63}$ **21.** $\frac{4}{3}$

19.
$$\frac{3\pi}{2}$$

20.
$$\frac{16}{63}$$

21.
$$\frac{4}{3}$$

22.
$$\frac{\sqrt{5}}{5}, \frac{2\sqrt{5}}{5}$$

22.
$$\frac{\sqrt{5}}{5}$$
, $\frac{2\sqrt{5}}{5}$ **23.** $\frac{5}{2} \left(\sin \frac{5\pi}{2} - \sin \pi \right)$

24.
$$2 \cos 6x \cos 2x$$

25.
$$B \approx 26.39^{\circ}, C \approx 123.61^{\circ}, c \approx 15.0$$

12. 1

26.
$$B \approx 52.48^{\circ}$$
, $C \approx 97.52^{\circ}$, $a \approx 5.04$

27.
$$B = 60^{\circ}, a \approx 5.77, c \approx 11.55$$

28.
$$A = 26.38^{\circ}, B \approx 62.72^{\circ}, C \approx 90.90^{\circ}$$

31.
$$3\mathbf{i} + 5\mathbf{j}$$
 32. $\left\langle \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right\rangle$ **33.** -5

34.
$$-\frac{1}{13}\langle 1, 5 \rangle; \frac{21}{13}\langle 5, -1 \rangle$$

35.
$$2\sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$$
 36. $-12\sqrt{3} + 12i$

37.
$$\cos 0 + i \sin 0 = 1$$

$$\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$$
$$\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$$

38.
$$3\left(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}\right)$$
$$3\left(\cos\frac{3\pi}{5} + i\sin\frac{3\pi}{5}\right)$$
$$3(\cos\pi + i\sin\pi)$$
$$3\left(\cos\frac{7\pi}{5} + i\sin\frac{7\pi}{5}\right)$$
$$3\left(\cos\frac{9\pi}{5} + i\sin\frac{9\pi}{5}\right)$$

39. ≈ 395.8 radians per minute; ≈ 8312.6 inches per minute

40. Area =
$$63.67$$
 square yards **41.** 5 feet **42.** 22.6°

43.
$$d = 4 \cos \frac{\pi}{4} t$$
 44. 32.6°; 543.9 kilometers per hour

45. 425 foot-pounds

Problem Solving (paae 493)

1. 2.01 feet

(b) Station A: 27.45 miles; Station B: 53.03 miles

(c) 11.03 miles; S 21.7° E

(iv) 1

5. (a) (i) $\sqrt{2}$ (ii) $\sqrt{5}$

> (v) 1 (vi) 1

(ii) $3\sqrt{2}$ (iii) $\sqrt{13}$ (b) (i) 1

(iv) 1 (v) 1

(vi) 1

(iii) 1

(iii) $\frac{\sqrt{85}}{.}$ (c) (i) $\frac{\sqrt{5}}{2}$ (ii) $\sqrt{13}$

(iv) 1 (d) (i) $2\sqrt{5}$

(vi) 1 (ii) $5\sqrt{2}$

(iii) $5\sqrt{2}$ (iv) 1 (v) 1 (vi) 1r

7. $\mathbf{w} = \frac{1}{2}(\mathbf{u} + \mathbf{v}); \mathbf{w} = \frac{1}{2}(\mathbf{v} - \mathbf{u})$

9. (a)

The amount of work done by \mathbf{F}_1 is equal to the amount of work done by \mathbf{F}_2 .

The amount of work done by \mathbf{F}_2 is $\sqrt{3}$ times as great as the amount of work done by \mathbf{F}_1 .

Chapter 7

Section 7.1 (page 503)

Vocabulary Check (page 503)

- 1. system of equations 2. solution
- **3.** solving 4. substitution
- **5.** point of intersection

6. break-even

- 1. (a) No (b) No (c) No (d) Yes
- **3.** (a) No (b) Yes (c) No (d) No
- **5.** (2, 2) 7. (2, 6), (-1, 3)
- **11.** (0,0), (2,-4)**9.** (0, -5), (4, 3)
- 17. $(\frac{1}{2}, 3)$ **13.** (0, 1), (1, -1), (3, 1)**15.** (5, 5)
- **21.** $\left(\frac{20}{3}, \frac{40}{3}\right)$ **19.** (1, 1) 23. No solution
- **25.** (-2, 4), (0, 0) **27.** No solution **29.** (4, 3)
- **31.** $(\frac{5}{2}, \frac{3}{2})$ **33.** (2, 2), (4, 0) **35.** (1, 4), (4, 7)
- 37. $(4, -\frac{1}{2})$ 39. No solution **41.** (4, 3), (-4, 3)
- 43.

- $(0, -13), (\pm 12, 5)$
- **51.** $(-2,0), (\frac{29}{10},\frac{21}{10})$ **49.** (1, 2) **53.** No solution
- **55.** (0.287, 1.751) **57.** (-1,0), (0,1), (1,0)
- **59.** $(\frac{1}{2}, 2), (-4, -\frac{1}{4})$ **61.** 192 units
- **63.** (a) 781 units (b) 3708 units
- 65. (a) 8 weeks

. ,	o weeks				
(b)		1	2	3	4
	360 - 24x	336	312	228	264
	24 + 18x	42	60	78	96
		5	6	7	8
	360 - 24x	240	216	192	168
	24 + 18x	114	132	150	168

67. More than \$11,666.67

Decreases; Interest is fixed.

- (c) \$5000
- **71.** (a) Solar: $0.1429t^2 4.46t + 96.8$ Wind: 16.371t - 102.7

- (c) Point of intersection: (10.3, 66.01). Consumption of solar and wind energy are equal at this point in time in the year 2000.
- (d) t = 10.3, 135.47
- (e) The results are the same, but due to the given parameters, t = 135.47 is not of significance.
- (f) Answers will vary.
- **73.** 6 meters \times 9 meters **75.** 9 inches \times 12 inches
- 77. $8 \text{ kilometers} \times 12 \text{ kilometers}$
- 79. False. To solve a system of equations by substitution, you can solve for either variable in one of the two equations and then back-substitute.
- **81.** 1. Solve one of the equations for one variable in terms of the other.
 - 2. Substitute the expression found in Step 1 into the other equation to obtain an equation in one variable.
 - 3. Solve the equation obtained in Step 2.
 - 4. Back-substitute the value obtained in Step 3 into the expression obtained in Step 1 to find the value of the other variable.
 - 5. Check that the solution satisfies each of the original equations.
- **83.** (a) y = 2x (b) y = 0 (c) y = x 2
- **85.** 2x + 7y 45 = 0**87.** y - 3 = 0
- **89.** 30x 17y 18 = 0
- **91.** Domain: All real numbers x except x = 6Horizontal asymptote: y = 0Vertical asymptote: x = 6
- 93. Domain: All real numbers x except $x = \pm 4$ Horizontal asymptote: y = 1Vertical asymptotes: $x = \pm 4$

Section 7.2 (page 515)

Vocabulary Check (page 515)

- 1. elimination 2. equivalent
- 3. consistent; inconsistent
- 4. equilibrium point

5. No solution

9. $(\frac{1}{3}, -\frac{2}{3})$

- **13.** (3, 4) **15.** (4, -1) **17.** $(\frac{12}{7}, \frac{18}{7})$ **11.** $(\frac{5}{2}, \frac{3}{4})$
- **19.** No solution **21.** $(\frac{18}{5}, \frac{3}{5})$
- **23.** Infinitely many solutions: $\left(a, -\frac{1}{2} + \frac{5}{6}a\right)$
- **25.** $\left(\frac{90}{31}, -\frac{67}{31}\right)$ **27.** $\left(-\frac{6}{35}, \frac{43}{35}\right)$ **29.** (5, -2)
- 31. b; one solution; consistent
- **32.** a; infinitely many solutions; consistent
- 33. c; one solution; consistent
- 34. d; no solutions; inconsistent
- **41.** $\left(\frac{43}{6}, \frac{25}{6}\right)$ **35.** (4, 1) **37.** (2, -1)**39.** (6, -3)
- **43.** 550 miles per hour, 50 miles per hour
- **45.** (80, 10) **47.** (2,000,000, 100)
- 49. Cheeseburger: 310 calories; fries: 230 calories

51. (a)
$$\begin{cases} x + y = 10 \\ 0.2x + 0.5y = 3 \end{cases}$$

- (c) 20% solution: $6\frac{2}{3}$ liters 50% solution: $3\frac{1}{3}$ liters
- Decreases
- **53.** \$6000 55. 400 adult, 1035 student
- **57.** y = 0.97x + 2.1
 - **59.** y = 0.32x + 4.1
- **61.** y = -2x + 4
- **63.** (a) y = 14x + 19 (b) 41.4 bushels per acre
- 65. False. Two lines that coincide have infinitely many points of intersection.
- 67. No. Two lines will intersect only once or will coincide, and if they coincide the system will have infinitely many solutions.
- 69. (39,600, 398). It is necessary to change the scale on the axes to see the point of intersection.
- **71.** k = -4
- 73. $x \leq -\frac{22}{3}$

- 77. -2 < x < 18
- **81.** ln 6*x*
- **83.** $\log_9 \frac{12}{r}$ **85.** No solution
- 87. Answers will vary.

Section 7.3 (page 527)

Vocabulary Check (page 527)

- 1. row-echelon
- 2. ordered triple
- 3. Gaussian
- 4. row operation
- 5. nonsquare
- 6. position
- **1.** (a) No (d) Yes (b) No (c) No
- **3.** (a) No (b) No
- (c) Yes **5.** (1, -2, 4) **7.** (3, 10, 2)
- (d) No
- 11. $\int x 2y + 3z = 5$ y - 2z = 9-3z = 0

First step in putting the system in row-echelon form

- **13.** (1, 2, 3) **15.** (-4, 8, 5) **17.** (5, -2, 0)
- **19.** No solution **21.** $\left(-\frac{1}{2}, 1, \frac{3}{2}\right)$

- **23.** (-3a + 10, 5a 7, a) **25.** (-a + 3, a + 1, a)
- **27.** (2a, 21a 2, 8a) **29.** $\left(-\frac{3}{2}a + \frac{1}{2}, -\frac{2}{3}a + 1, a\right)$

- **31.** (1, 1, 1, 1) **33.** No solution **35.** (0, 0, 0)
- **37.** (9*a*, -35*a*, 67*a*) **39.** *s*
- **39.** $s = -16t^2 + 144$
- **41.** $s = -16t^2 32t + 500$
- **43.** $y = \frac{1}{2}x^2 2x$
- **45.** $y = x^2 6x + 8$

- -6
- **47.** $x^2 + y^2 4x = 0$
- **49.** $x^2 + y^2 + 6x 8y = 0$

- **51.** 6 touchdowns, 6 extra-point kicks, and 1 field goal
- **53.** \$300,000 at 8% \$400,000 at 9% \$75,000 at 10%
- **55.** $250,000 \frac{1}{2}s$ in certificates of deposit $125,000 + \frac{1}{2}s$ in municipal bonds 125,000 s in blue-chip stocks
 - s in growth stocks
- **57.** Brand X = 4 lb
- **59.** Vanilla = 2 lb
- Brand Y = 9 lb
- Hazelnut = 4 lb
- Brand Z = 9 lb
- French Roast = 4 lb
- **61.** Television = 30 ads Radio = 10 ads
 - Newspaper = 20 ads
- **63.** (a) Not possible
 - (b) No gallons of 10%, 6 gallons of 15%, 6 gallons of 25%
 - (c) 4 gallons of 10%, No gallons of 15%, 8 gallons of 25%
- **65.** $I_1 = 1$, $I_2 = 2$, $I_3 = 1$
- **67.** $y = x^2 x$ **69.** $y = -\frac{5}{24}x^2 \frac{3}{10}x + \frac{41}{6}$
- **71.** (a) $y = -0.0075x^2 + 1.3x + 20$

(c)	х	100	120	140
	у	75	68	55

The values are the same.

- (d) 24.25% (e) 156 females
- 73. Touchdowns = 8; Field goals = 2;

Two-point conversions = 1; Extra-point kicks = 5

- **79.** False. Equation 2 does not have a leading coefficient of 1.
- **81.** No. Answers will vary.

83.
$$\begin{cases} 3x + y - z = 9 \\ x + 2y - z = 0 \\ -x + y + 3z = 1 \end{cases} \begin{cases} x + y + z = 5 \\ x - 2z = 0 \\ 2y + z = 0 \end{cases}$$

85.
$$\begin{cases} x + 2y - 4z = -5 \\ -x - 4y + 8z = 13 \\ x + 6y + 4z = 7 \end{cases} \begin{cases} x + 2y + 4z = 9 \\ y + 2z = 3 \\ x - 4z = -4 \end{cases}$$

- **87.** 6.375 **89.** 80,000 **91.** 11 + *i*
- **93.** 22 + 3i **95.** $\frac{7}{2} + \frac{7}{2}i$
- **97.** (a) -4, 0, 3

99. (a) $-4, -\frac{3}{2}, 3$

101.	х	-2	0	2	4	5
	у	-5	-4.996	-4.938	-4	-1

103.

х	-2	-1	0	1	2
у	5.793	4.671	4	3.598	3.358

105. (40, 40) 107. Answers will vary.

Section 7.4 (page 539)

(page 539) **Vocabulary Check**

- 1. partial fraction decomposition
- improper
- 3. linear; quadratic; irreducible
- 4. basic equation

5.
$$\frac{A}{r} + \frac{B}{r-14}$$
 7. $\frac{A}{r} + \frac{B}{r^2} + \frac{C}{r-10}$

9.
$$\frac{A}{x-5} + \frac{B}{(x-5)^2} + \frac{C}{(x-5)^3}$$
 11. $\frac{A}{x} + \frac{Bx+C}{x^2+10}$

11.
$$\frac{A}{x} + \frac{Bx + C}{x^2 + 10}$$

13.
$$\frac{A}{x} + \frac{Bx + C}{x^2 + 1} + \frac{Dx + E}{(x^2 + 1)^2}$$
 15. $\frac{1}{2} \left(\frac{1}{x - 1} - \frac{1}{x + 1} \right)$

15.
$$\frac{1}{2} \left(\frac{1}{x-1} - \frac{1}{x+1} \right)$$

17.
$$\frac{1}{x} - \frac{1}{x+1}$$
 19. $\frac{1}{x} - \frac{2}{2x+1}$

19.
$$\frac{1}{x} - \frac{2}{2x+1}$$

21.
$$\frac{1}{x-1} - \frac{1}{x+2}$$

21.
$$\frac{1}{x-1} - \frac{1}{x+2}$$
 23. $-\frac{3}{x} - \frac{1}{x+2} + \frac{5}{x-2}$

25.
$$\frac{3}{x} - \frac{1}{x^2} + \frac{1}{x+1}$$

25.
$$\frac{3}{x} - \frac{1}{x^2} + \frac{1}{x+1}$$
 27. $\frac{3}{x-3} + \frac{9}{(x-3)^2}$

29.
$$-\frac{1}{x} + \frac{2x}{x^2 + 1}$$

29.
$$-\frac{1}{r} + \frac{2x}{r^2 + 1}$$
 31. $-\frac{1}{r - 1} + \frac{x + 2}{r^2 - 2}$

33.
$$\frac{1}{6} \left(\frac{2}{r^2 + 2} - \frac{1}{r + 2} + \frac{1}{r - 2} \right)$$

35.
$$\frac{1}{8} \left(\frac{1}{2x+1} + \frac{1}{2x-1} - \frac{4x}{4x^2+1} \right)$$

37.
$$\frac{1}{x+1} + \frac{2}{x^2 - 2x + 3}$$
 39. $1 - \frac{2x+1}{x^2 + x + 1}$

41.
$$2x - 7 + \frac{17}{x+2} + \frac{1}{x+1}$$

43.
$$x + 3 + \frac{6}{x-1} + \frac{4}{(x-1)^2} + \frac{1}{(x-1)^3}$$

45.
$$\frac{3}{2x-1} - \frac{2}{x+1}$$
 47. $\frac{2}{x} - \frac{1}{x^2} - \frac{2}{x+1}$

47.
$$\frac{2}{x} - \frac{1}{x^2} - \frac{2}{x+1}$$

49.
$$\frac{1}{x^2+2} + \frac{x}{(x^2+2)^2}$$

49.
$$\frac{1}{x^2+2} + \frac{x}{(x^2+2)^2}$$
 51. $2x + \frac{1}{2} \left(\frac{3}{x-4} - \frac{1}{x+2} \right)$

53. (a)
$$\frac{3}{x} - \frac{2}{x - 4}$$

$$y = \frac{x - 12}{x(x - 4)}$$

$$y = \frac{3}{x}, y = -\frac{2}{x - 4}$$
(b)

(c) The vertical asymptotes are the same.

55. (a)
$$\frac{3}{x-3} + \frac{5}{x+3}$$

$$y = \frac{2(4x-3)}{x^2-9}$$

$$y = \frac{3}{x - 3}, y = \frac{5}{x + 3}$$

(c) The vertical asymptotes are the same

57. (a)
$$\frac{2000}{7-4x} - \frac{2000}{11-7x}$$
, $0 < x \le 1$

(b) Ymax =
$$\left| \frac{2000}{7 - 4x} \right|$$

Ymin = $\left| \frac{-2000}{11 - 7x} \right|$

(d) Maximum: 400°F Minimum: 266.7°F

59. False. The partial fraction decomposition is

$$\frac{A}{x+10} + \frac{B}{x-10} + \frac{C}{(x-10)^2}$$

61.
$$\frac{1}{2a} \left(\frac{1}{a+x} + \frac{1}{a-x} \right)$$
 63. $\frac{1}{a} \left(\frac{1}{y} + \frac{1}{a-y} \right)$

65.

67.

69.

Section 7.5 (page 548)

Vocabulary Check (page 548)

- 1. solution
- 2. graph
- 3. linear
- 4. solution
- 5. consumer surplus

1.

-

5.

7

9.

11.

13.

15.

17.

19.

21.

23.

25.

27. $y \le \frac{1}{2}x + 2$

(d) Yes

- **31.** (a) No
- (b) No
- (c) Yes (d) Yes
- **33.** (a) Yes (b) No (c
- (c) Yes

35.

37.

39.

41.

No solution

43.

45.

47.

49.

51.

53.

57.
$$\begin{cases} y \ge 4 - x \\ y \ge 2 - \frac{1}{4}x \\ x \ge 0, \ y \ge 0 \end{cases}$$

 $y \ge 0$

3.
$$\begin{cases} y \le \frac{3}{2}x \\ y \le -x + 1 \\ y \ge 0 \end{cases}$$

(b) Consumer surplus: \$1600 Producer surplus: \$400

65. (a)

67. (a)

160

140

100

■ Consumer Surplus □ Producer Surplus

p = 80 + 0.00001x

p = 140 - 0.00002x

(2,000,000, 100)

2,000,000

75. (a) $(20x + 10y \ge 300)$ $15x + 10y \ge 150$ $10x + 20y \ge 200$ ≥ 0 $y \ge 0$

(c) Answers will vary.

(c) Total retail sales = $\frac{h}{2}(a + b)$ = \$821.3 billion

79. True. The figure is a rectangle with a length of 9 units and a width of 11 units.

81. The graph is a half-line on the real number line; on the rectangular coordinate system, the graph is a half-plane.

- (c) The line is an asymptote to the boundary. The larger the circles, the closer the radii can be and the constraint will still be satisfied.
- **85.** d **86.** b

87. c

88. a

- **89.** 5x + 3y 8 = 0**91.** 28x + 17y + 13 = 0
- **93.** x + y + 1.8 = 0
- **95.** (a) $y_1 = 2.17t + 22.5$ $y_2 = -0.241t^2 + 7.23t - 3.4$ $y_3 = 27(1.05^t)$

- (c) The quadratic model is the best fit for the data.
- (d) \$48.66

Section 7.6 (page 558)

Vocabulary Check (page 558)

- 1. optimization
- 2. linear programming
- 3. objective
- 4. constraints; feasible solutions
- 5. vertex
- **1.** Minimum at (0, 0): 0 Maximum at (5, 0): 20
- **5.** Minimum at (0, 0): 0 Maximum at (3, 4): 17
- **9.** Minimum at (0, 0): 0
- Maximum at (60, 20): 740
- **11.** Minimum at (0, 0): 0 Maximum at any point on the line segment connecting (60, 20) and (30, 45): 2100

- Minimum at (0,0): 0 Maximum at (5, 0): 30
- 15. (0, 2)(0, 0)

3. Minimum at (0, 0): 0

7. Minimum at (0, 0): 0

Maximum at (0, 5): 40

Maximum at (4, 0): 20

- Minimum at (0,0): 0
- Maximum at (0, 2): 48

Minimum at (5, 3): 35

No maximum

- Minimum at (24, 8): 104 Maximum at (40, 0): 160
- **25.** Maximum at (3, 6): 12
- **29.** Maximum at (0, 5): 25
- 33.

- 19. (0.8)(5, 3)
- Minimum at (10, 0): 20

No maximum

- Minimum at (36, 0): 36
- Maximum at (24, 8): 56
- **27.** Maximum at (0, 10): 10 **31.** Maximum at $(\frac{22}{3}, \frac{19}{6})$: $\frac{271}{6}$

The maximum, 5, occurs at any point on the line segment connecting (2, 0) and $(\frac{20}{19}, \frac{45}{19})$.

The constraint $x \le 10$ is extraneous. Maximum at (0, 7): 14

The constraint $2x + y \le 4$ is extraneous.

Maximum at (0, 1): 4

- 39. 750 units of model A 1000 units of model B Optimal profit: \$83,750
- **43.** Three bags of brand X Six bags of brand Y Optimal cost: \$195
- **47.** \$62,500 to type A \$187,500 to type B Optimal return: \$23,750
- Optimal profit: \$8640 45. 0 tax returns 12 audits Optimal revenue: \$30,000

41. 216 units of \$300 model

0 units of \$250 model

- **49.** True. The objective function has a maximum value at any point on the line segment connecting the two vertices.
- **51.** (a) $t \ge 9$ (b) $\frac{3}{4} \le t \le 9$
- **53.** z = x + 5y **55.** z = 4x + y **57.** $\frac{9}{2(x + 3)}$, $x \neq 0$
- **59.** $\frac{x^2 + 2x 13}{x(x 2)}$, $x \neq \pm 3$ **61.** $\ln 3 \approx 1.099$
- **63.** $4 \ln 38 \approx 14.550$ **65.** $\frac{1}{3}e^{12/7} \approx 1.851$
- **67.** (-4, 3, -7)

Review Exercises (page 563)

- **1.** (1, 1)
- **3.** (0.25, 0.625)
- **5.** (5, 4)
- 7. (0, 0), (2, 8), (-2, 8)
- 9. (4, -2)
- **11.** (1.41, -0.66), (-1.41, 10.66)
- 13.

(0, -2)

- 15. 3847 units
- **17.** 96 meters \times 144 meters **19.** $(\frac{5}{2}, 3)$
- **25.** $(\frac{8}{5}a + \frac{14}{5}, a)$ **21.** (-0.5, 0.8)**23.** (0, 0)
- 27. d, one solution, consistent
- 28. c, infinite solutions, consistent
- 29. b, no solution, inconsistent
- 30. a, one solution, consistent

- 37. (3a + 4, 2a + 5, a)
- **39.** (a-4, a-3, a) **41.** $y = 2x^2 + x 5$
- **43.** $x^2 + y^2 4x + 4y 1 = 0$
- **45.** (a) $y = 3x^2 14.3x + 117.6$

(c) 195.2; yes.

- The model is a good fit.
- **47.** \$16,000 at 7% \$13,000 at 9% \$11,000 at 11%

- **49.** $\frac{A}{x} + \frac{B}{x+20}$ **51.** $\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x-5}$
- **53.** $\frac{3}{x+2} \frac{4}{x+4}$ **55.** $1 \frac{25}{8(x+5)} + \frac{9}{8(x-3)}$
- **57.** $\frac{1}{2} \left(\frac{3}{x-1} \frac{x-3}{x^2+1} \right)$ **59.** $\frac{3x}{x^2+1} + \frac{x}{(x^2+1)^2}$

(b) Consumer surplus: \$4,500,000 Producer surplus: \$9,000,000

79.

y
27 (0, 25)
24 (0, 25)
21 (15, 15)
12 (15, 0)
3 6 9 12 15 18 21 24 27

Minimum at (0, 0): 0 Maximum at (5, 8): 47 Minimum at (15, 0): 26.25 No maximum

Minimum at (0, 0): 0 Maximum at (3, 3): 48

83. 72 haircuts 0 permanents Optimal revenue: \$1800 **85.** Three bags of brand X Two bags of brand Y Optimal cost: \$105

87. False. To represent a region covered by an isosceles trapezoid, the last two inequality signs should be ≤.

89.
$$\begin{cases} x + y = 2 & 91 \\ x - y = -14 & \end{cases}$$

91.
$$\begin{cases} 3x + y = 7 \\ -6x + 3y = 1 \end{cases}$$

93.
$$\begin{cases} x + y + z = 6 \\ x + y - z = 0 \\ x - y - z = 2 \end{cases}$$

95.
$$\begin{cases} 2x + 2y - 3z = 7 \\ x - 2y + z = 4 \\ -x + 4y - z = -1 \end{cases}$$

97. An inconsistent system of linear equations has no solution.

99. Answers will vary.

Chapter Test (page 567)

(3, 2)

2.
$$(0, -1), (1, 0), (2, 1)$$

4. y
8 + (3, 2)
2 + (2, 4, 6, 10)

(1, 12), (0.034, 8.619)

9. (2, -3, 1) 2 3

10. No solution

11.
$$-\frac{1}{x+1} + \frac{3}{x-2}$$

12. $\frac{2}{x^2} + \frac{3}{2-x}$

13.
$$-\frac{5}{x} + \frac{3}{x+1} + \frac{3}{x-1}$$

14. $-\frac{2}{x} + \frac{3x}{x^2 + 2}$

18. Maximum at (12, 0): 240

Minimum at (0, 0): 0

21. 0 units of model I, 5300 units of model II Optimal profit: \$212,000

Problem Solving (page 569)

8.5%: \$30,000

$$a = 8\sqrt{5}, b = 4\sqrt{5}, c = 20$$

 $(8\sqrt{5})^2 + (4\sqrt{5})^2 = 20^2$

Therefore, the triangle is a right triangle.

- 3. $ad \neq bc$ **5.** (a) One (b) Two (c) Four
- **7.** 10.1 feet high; ≈ 252.7 feet long **9.** \$12.00
- **11.** (a) (3, -4) (b) $\left(\frac{2}{-a+5}, \frac{1}{4a-1}, \frac{1}{a}\right)$
- **13.** (a) $\left(\frac{-5a+16}{6}, \frac{5a-16}{6}, a\right)$
 - (b) $\left(\frac{-11a+36}{14}, \frac{13a-40}{14}, a\right)$
 - (c) (-a + 3, a 3, a) (d) Infinitely many
- **15.** $\begin{cases} a + & t \le 32 \\ 0.15a & \ge 1.9 \end{cases}$ $193a + 772t \ge 11,000$

17. (a) $\begin{cases} x + y \le 200 \\ x \ge 35 \\ 0 < y \le 130 \end{cases}$

- (c) No, because the total cholesterol is greater than 200 milligrams per deciliter.
- (d) LDL: 140 milligrams per deciliter HDL: 50 milligrams per deciliter Total: 190 milligrams per deciliter
- (e) (50, 120); $\frac{170}{50} = 3.4 < 4$; answers will vary.

Chapter 8

Section 8.1 (page 582)

Vocabulary Check (page 582)

- 1. matrix 2. square 3. main diagonal
- 4. row; column 5. augmented 6. coefficient
- 7. row-equivalent 8. reduced row-echelon form
- 9. Gauss-Jordan elimination

1.
$$1 \times 2$$
 3. 3×1 5. 2×2 7. $\begin{bmatrix} 4 & -3 & \vdots & -5 \\ 5 & -3 & \vdots & -3 \end{bmatrix}$ 9. $\begin{bmatrix} 1 & 10 \\ 5 & -3 & \vdots \\ 5 & -3 & \vdots \\ \end{bmatrix}$

1.
$$1 \times 2$$
 3. 3×1 **5.** 2×2
7. $\begin{bmatrix} 4 & -3 & \vdots & -5 \\ -1 & 3 & \vdots & 12 \end{bmatrix}$ **9.** $\begin{bmatrix} 1 & 10 & -2 & \vdots & 2 \\ 5 & -3 & 4 & \vdots & 0 \\ 2 & 1 & 0 & \vdots & 6 \end{bmatrix}$
11. $\begin{bmatrix} 7 & -5 & 1 & \vdots & 13 \\ 19 & 0 & -8 & \vdots & 10 \end{bmatrix}$ **13.** $\begin{cases} x + 2y = 7 \\ 2x - 3y = 4 \end{cases}$
15. $\begin{cases} 2x & +5z = -12 \end{cases}$

11.
$$\begin{bmatrix} 7 & -5 & 1 & \vdots & 13 \\ 19 & 0 & -8 & \vdots & 10 \end{bmatrix}$$

13.
$$\begin{cases} x + 2y = 7 \\ 2x - 3y = 4 \end{cases}$$

15.
$$\begin{cases} 2x & +5z = -12 \\ y - 2z = 5 \\ 6x + 3y = 2 \end{cases}$$

17.
$$\begin{cases} 9x + 12y + 3z &= 0\\ -2x + 18y + 5z + 2w &= 10\\ x + 7y - 8z &= -4\\ 3x &+ 2z &= -10 \end{cases}$$

19.
$$\begin{bmatrix} 1 & 4 & 3 \\ 0 & 2 & -1 \end{bmatrix}$$

21.
$$\begin{bmatrix} 1 & 1 & 4 & -1 \\ 0 & 5 & -2 & 6 \\ 0 & 3 & 20 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 & 4 & -1 \\ 0 & 1 & -\frac{2}{5} & \frac{6}{5} \\ 0 & 3 & 20 & 4 \end{bmatrix}$$

- 23. Add 5 times Row 2 to Row 1.
- 25. Interchange Row 1 and Row 2.

Add 4 times new Row 1 to Row 3.

27. (a)
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -5 & -10 \\ 3 & 1 & -1 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -5 & -10 \\ 0 & -5 & -10 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -5 & -10 \\ 0 & 0 & 0 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

(e)
$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

The matrix is in reduced row-echelon form.

- 29. Reduced row-echelon form
- 31. Not in row-echelon form

33.
$$\begin{bmatrix} 1 & 1 & 0 & 5 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$
 35.
$$\begin{bmatrix} 1 & -1 & -1 & 1 \\ 0 & 1 & 6 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

33.
$$\begin{bmatrix} 1 & 1 & 0 & 5 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$
35.
$$\begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & 6 \\ 0 & 0 & 0 \end{bmatrix}$$
37.
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
39.
$$\begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
41.
$$\begin{bmatrix} 1 & 0 & 3 & 16 \\ 0 & 1 & 2 & 12 \end{bmatrix}$$
43.
$$\begin{cases} x - 2y = 4 \\ y = -3 \end{cases}$$

41.
$$\begin{bmatrix} 1 & 0 & 3 & 16 \\ 0 & 1 & 2 & 12 \end{bmatrix}$$
 43.
$$\begin{cases} x - 2y = \\ y = -\\ (-2, -3) \end{cases}$$

45.
$$\begin{cases} x - y + 2z = 4 \\ y - z = 2 \\ z = -2 \end{cases}$$

(8, 0, -2)

53.
$$(-5, 6)$$
 55. $(-1, -4)$ **57.** Inconsistent

59.
$$(4, -3, 2)$$
 61. $(7, -3, 4)$ **63.** $(-4, -3, 6)$

65.
$$(2a + 1, 3a + 2, a)$$

67.
$$(4 + 5b + 4a, 2 - 3b - 3a, b, a)$$
 69. Inconsistent

71.
$$(0, 2 - 4a, a)$$
 73. $(1, 0, 4, -2)$

75.
$$(-2a, a, a, 0)$$
 77. Yes; $(-1, 1, -3)$ **79.** No

81.
$$\begin{bmatrix} 1 & 3 & \frac{3}{2} & \vdots & 4 \\ 0 & 1 & \frac{7}{4} & \vdots & -\frac{3}{2} \\ 0 & 0 & 1 & \vdots & 2 \end{bmatrix}, \begin{bmatrix} 1 & 3 & 1 & \vdots & 3 \\ 0 & 1 & 2 & \vdots & -1 \\ 0 & 0 & 1 & \vdots & 2 \end{bmatrix}$$

83.
$$\frac{4x^2}{(x+1)^2(x-1)} = \frac{1}{x-1} + \frac{3}{x+1} - \frac{2}{(x+1)^2}$$

89. (a)
$$y = -0.004x^2 + 0.367x + 5$$

(c) 13 feet, 104 feet (d) 13.418 feet, 103.793 feet

(e) The results are similar.

91. (a)
$$x_1 = s$$
, $x_2 = t$, $x_3 = 600 - s$, $x_4 = s - t$, $x_5 = 500 - t$, $x_6 = s$, $x_7 = t$
(b) $x_1 = 0$, $x_2 = 0$, $x_3 = 600$, $x_4 = 0$, $x_5 = 500$, $x_6 = 0$, $x_7 = 0$
(c) $x_1 = 0$, $x_2 = -500$, $x_3 = 600$, $x_4 = 500$, $x_5 = 1000$, $x_6 = 0$, $x_7 = -500$

- **93.** False. It is a 2×4 matrix.
- 95. False. Gaussian elimination reduces a matrix until a row-echelon form is obtained; Gauss-Jordan elimination reduces a matrix until a reduced row-echelon form is obtained.
- **97.** (a) There exists a row with all zeros except for the entry in the last column.
 - (b) There are fewer rows with nonzero entries than there are variables and no rows as in (a).
- 99. They are the same.

103.

Section 8.2 (page 597)

Vocabulary Check (page 597)

1. equal **2.** scalars **3.** zero; *O* **4.** identity

5. (a) iii (b) iv (c) i (d) v (e) ii **6.** (a) ii (b) iv (c) i (d) iii

1.
$$x = -4$$
, $y = 22$ **3.** $x = 2$, $y = 3$ **5.** (a) $\begin{bmatrix} 3 & -2 \\ 1 & 7 \end{bmatrix}$ (b) $\begin{bmatrix} -1 & 0 \\ 3 & -9 \end{bmatrix}$ (c) $\begin{bmatrix} 3 & -3 \\ 6 & -3 \end{bmatrix}$

(a)
$$\begin{bmatrix} 1 & 7 \end{bmatrix}$$
 (b) $\begin{bmatrix} 3 & -9 \end{bmatrix}$ (d) $\begin{bmatrix} -1 & -1 \\ 8 & -19 \end{bmatrix}$

7. (a)
$$\begin{bmatrix} 7 & 3 \\ 1 & 9 \\ -2 & 15 \end{bmatrix}$$
 (b) $\begin{bmatrix} 5 & -5 \\ 3 & -1 \\ -4 & -5 \end{bmatrix}$ (c) $\begin{bmatrix} 18 & -3 \\ 6 & 12 \\ -9 & 15 \end{bmatrix}$

(d)
$$\begin{bmatrix} 16 & -11 \\ 8 & 2 \\ -11 & -5 \end{bmatrix}$$

9. (a)
$$\begin{bmatrix} 3 & 3 & -2 & 1 & 1 \\ -2 & 5 & 7 & -6 & -8 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 1 & 0 & -1 & 1 \\ 4 & -3 & -11 & 6 & 6 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 6 & 6 & -3 & 0 & 3 \\ 3 & 3 & -6 & 0 & -3 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 4 & 4 & -1 & -2 & 3 \\ 9 & -5 & -24 & 12 & 11 \end{bmatrix}$$

11. (a), (b), and (d) not possible

$$(c) \begin{bmatrix} 18 & 0 & 9 \\ -3 & -12 & 0 \end{bmatrix}$$

13.
$$\begin{bmatrix} -8 & -7 \\ 15 & -1 \end{bmatrix}$$
 15. $\begin{bmatrix} -24 & -4 & 12 \\ -12 & 32 & 12 \end{bmatrix}$

17.
$$\begin{bmatrix} 10 & 8 \\ -59 & 9 \end{bmatrix}$$
 19. $\begin{bmatrix} -17.143 & 2.143 \\ 11.571 & 10.286 \end{bmatrix}$

21.
$$\begin{bmatrix} -1.581 & -3.739 \\ -4.252 & -13.249 \\ 9.713 & -0.362 \end{bmatrix}$$
 23.
$$\begin{bmatrix} -6 & -9 \\ -1 & 0 \\ 17 & -10 \end{bmatrix}$$

25.
$$\begin{vmatrix} 3 & 3 \\ -\frac{1}{2} & 0 \\ -\frac{13}{2} & \frac{11}{2} \end{vmatrix}$$
 27. Not possible

29.
$$\begin{bmatrix} 3 & -4 \\ 10 & 16 \\ 26 & 46 \end{bmatrix}$$
 31.
$$\begin{bmatrix} 3 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & -10 \end{bmatrix}$$
 Order: 3×2 Order: 3×3

33.
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 35.
$$\begin{bmatrix} 41 & 7 & 7 \\ 42 & 5 & 25 \\ -10 & -25 & 45 \end{bmatrix}$$

Order: 3×3

37.
$$\begin{bmatrix} 151 & 25 & 48 \\ 516 & 279 & 387 \\ 47 & -20 & 87 \end{bmatrix}$$
 39. Not possible

41. (a)
$$\begin{bmatrix} 0 & 15 \\ 6 & 12 \end{bmatrix}$$
 (b) $\begin{bmatrix} -2 & 2 \\ 31 & 14 \end{bmatrix}$ (c) $\begin{bmatrix} 9 & 6 \\ 12 & 12 \end{bmatrix}$

43. (a)
$$\begin{bmatrix} 0 & -10 \\ 10 & 0 \end{bmatrix}$$
 (b) $\begin{bmatrix} 0 & -10 \\ 10 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 8 & -6 \\ 6 & 8 \end{bmatrix}$

45. (a)
$$\begin{bmatrix} 7 & 7 & 14 \\ 8 & 8 & 16 \\ -1 & -1 & -2 \end{bmatrix}$$
 (b) [13] (c) Not possible

47.
$$\begin{bmatrix} 5 & 8 \\ -4 & -16 \end{bmatrix}$$
 49. $\begin{bmatrix} -4 & 10 \\ 3 & 14 \end{bmatrix}$

51. (a)
$$\begin{bmatrix} -1 & 1 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$
 (b) $\begin{bmatrix} 4 \\ 8 \end{bmatrix}$

53. (a)
$$\begin{bmatrix} -2 & -3 \\ 6 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -4 \\ -36 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} -7 \\ 6 \end{bmatrix}$$

55. (a)
$$\begin{bmatrix} 1 & -2 & 3 \\ -1 & 3 & -1 \\ 2 & -5 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 9 \\ -6 \\ 17 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$

57. (a)
$$\begin{bmatrix} 1 & -5 & 2 \\ -3 & 1 & -1 \\ 0 & -2 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -20 \\ 8 \\ -16 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} -1 \\ 3 \\ -2 \end{bmatrix}$$

59.
$$\begin{bmatrix} 84 & 60 & 30 \\ 42 & 120 & 84 \end{bmatrix}$$

61. (a)
$$A = \begin{bmatrix} 125 & 100 & 75 \\ 100 & 175 & 125 \end{bmatrix}$$

The entries represent the numbers of bushels of each crop that are shipped to each outlet.

(b) B = [\$3.50 \$6.00]

The entries represent the profits per bushel of each crop.

(c) $BA = [\$1037.50 \ \$1400 \ \$1012.50]$

The entries represent the profits from both crops at each of the three outlets.

The entries represent the wholesale and retail values of the inventories at the three outlets.

$$65. \ P^{3} = \begin{bmatrix} 0.300 & 0.175 & 0.175 \\ 0.308 & 0.433 & 0.217 \\ 0.392 & 0.392 & 0.608 \end{bmatrix}$$

$$P^{4} = \begin{bmatrix} 0.250 & 0.188 & 0.188 \\ 0.315 & 0.377 & 0.248 \\ 0.435 & 0.435 & 0.565 \end{bmatrix}$$

$$P^{5} = \begin{bmatrix} 0.225 & 0.194 & 0.194 \\ 0.314 & 0.345 & 0.267 \\ 0.461 & 0.461 & 0.539 \end{bmatrix}$$

$$P^{6} = \begin{bmatrix} 0.213 & 0.197 & 0.197 \\ 0.311 & 0.326 & 0.280 \\ 0.477 & 0.477 & 0.523 \end{bmatrix}$$

$$P^{7} = \begin{bmatrix} 0.206 & 0.198 & 0.198 \\ 0.308 & 0.316 & 0.288 \\ 0.486 & 0.486 & 0.514 \end{bmatrix}$$

$$P^{8} = \begin{bmatrix} 0.203 & 0.199 & 0.199 \\ 0.305 & 0.309 & 0.292 \\ 0.492 & 0.492 & 0.508 \end{bmatrix}$$

Approaches the matrix

$$\begin{bmatrix} 0.2 & 0.2 & 0.2 \\ 0.3 & 0.3 & 0.3 \\ 0.5 & 0.5 & 0.5 \end{bmatrix}$$

The entries represent the total sales and profits for each type of milk.

The entries represent the total calories burned.

- **71.** True. The sum of two matrices of different orders is undefined.
- **73.** Not possible **75.** Not possible **77.** 2×2

79.
$$2 \times 3$$
 81. $AC = BC = \begin{bmatrix} 2 & 3 \\ 2 & 3 \end{bmatrix}$

83. *AB* is a diagonal matrix whose entries are the products of the corresponding entries of *A* and *B*.

85.
$$-8, \frac{4}{3}$$
 87. $0, \frac{-5 \pm \sqrt{37}}{4}$ **89.** $4, \pm \frac{\sqrt{15}}{3}i$

Section 8.3 (page 608)

Vocabulary Check (page 608)

- 1. square 2. inverse
- **3.** nonsingular; singular **4.** $A^{-1}B$

1–9.
$$AB = I$$
 and $BA = I$

11.
$$\begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{3} \end{bmatrix}$$
 13. $\begin{bmatrix} -3 & 2 \\ -2 & 1 \end{bmatrix}$ 15. $\begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$

- **17.** Does not exist
- 19. Does not exist

21.
$$\begin{bmatrix} 1 & 1 & -1 \\ -3 & 2 & -1 \\ 3 & -3 & 2 \end{bmatrix}$$
 23.
$$\begin{bmatrix} 1 & 0 & 0 \\ -\frac{3}{4} & \frac{1}{4} & 0 \\ \frac{7}{20} & -\frac{1}{4} & \frac{1}{5} \end{bmatrix}$$

25.
$$\begin{bmatrix} -\frac{1}{8} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 & -\frac{1}{5} \end{bmatrix}$$
 27.
$$\begin{bmatrix} -175 & 37 & -13 \\ 95 & -20 & 7 \\ 14 & -3 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 & -\frac{1}{5} \end{bmatrix}$$
27.
$$\begin{bmatrix} 95 & -20 & 7 \\ 14 & -3 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -1.5 & 1.5 & 1 \\ 4.5 & -3.5 & -3 \\ -1 & 1 & 1 \end{bmatrix}$$
31.
$$\begin{bmatrix} -12 & -5 & -9 \\ -4 & -2 & -4 \\ -8 & -4 & -6 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 1 & 1 \\ -1 & 1 & 0.90 \\ 0 & -1.81 & 0.90 \\ -10 & 5 & 5 \end{bmatrix}$$

 $10 - 2.\overline{72} - 3.\overline{63}$

35. Does not exist

37.
$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 2 \end{bmatrix}$$

$$\mathbf{39.} \begin{bmatrix} \frac{3}{19} & \frac{2}{19} \\ -\frac{2}{19} & \frac{5}{19} \end{bmatrix}$$

41. Does not exist **43.**
$$\begin{bmatrix} \frac{16}{59} & \frac{15}{59} \\ -\frac{4}{59} & \frac{70}{59} \end{bmatrix}$$

- **45.** (5, 0) **47.** (-8, -6) **49.** (3, 8, -11)
- **51.** (2, 1, 0, 0) **53.** (2, -2) 55. No solution
- 57. (-4, -8)**59.** (-1, 3, 2)
- **61.** $\left(\frac{5}{16}a + \frac{13}{16}, \frac{19}{16}a + \frac{11}{16}, a\right)$ **63.** (-7, 3, -2)
- **65.** (5, 0, -2, 3)
- **67.** \$7000 in AAA-rated bonds \$1000 in A-rated bonds \$2000 in B-rated bonds
- 69. \$9000 in AAA-rated bonds \$1000 in A-rated bonds \$2000 in B-rated bonds

71. (a)
$$I_1 = -3$$
 amperes (b) $I_1 = 2$ amperes $I_2 = 8$ amperes $I_3 = 5$ amperes $I_3 = 5$ amperes

- **73.** True. If B is the inverse of A, then AB = I = BA.
- 75. Answers will vary.

77.
$$x \ge -5$$
 or $x \le -9$

79.
$$\frac{2 \ln 315}{\ln 3} \approx 10.472$$
 81. $2^{6.5} \approx 90.510$

83. Answers will vary.

Section 8.4 (page 616)

Vocabulary Check (page 616)

- 1. determinant 2. minor
- 4. expanding by cofactors 3. cofactor
- 1. 5 **3.** 5 **5.** 27 **7.** 0 **9.** 6 **11.** -9

13. 72 **15.**
$$\frac{11}{6}$$
 17. -0.002 **19.** -4.842 **21.** 0

23. (a)
$$M_{11} = -5, M_{12} = 2, M_{21} = 4, M_{22} = 3$$

(b)
$$C_{11} = -5$$
, $C_{12} = -2$, $C_{21} = -4$, $C_{22} = 3$

25. (a)
$$M_{11} = -4$$
, $M_{12} = -2$, $M_{21} = 1$, $M_{22} = 3$

(b)
$$C_{11} = -4$$
, $C_{12} = 2$, $C_{21} = -1$, $C_{22} = 3$

27. (a)
$$M_{11} = 3$$
, $M_{12} = -4$, $M_{13} = 1$, $M_{21} = 2$, $M_{22} = 2$, $M_{23} = -4$, $M_{31} = -4$, $M_{32} = 10$, $M_{33} = 8$

(b)
$$C_{11} = 3$$
, $C_{12} = 4$, $C_{13} = 1$, $C_{21} = -2$, $C_{22} = 2$, $C_{23} = 4$, $C_{31} = -4$, $C_{32} = -10$, $C_{33} = 8$

29. (a)
$$M_{11} = 30, M_{12} = 12, M_{13} = 11, M_{21} = -36,$$
 $M_{22} = 26, M_{23} = 7, M_{31} = -4, M_{32} = -42, M_{33} = 12$

(b)
$$C_{11} = 30$$
, $C_{12} = -12$, $C_{13} = 11$, $C_{21} = 36$, $C_{22} = 26$, $C_{23} = -7$, $C_{31} = -4$, $C_{32} = 42$, $C_{33} = 12$

- **31.** (a) -75 (b) -75 **33.** (a) 96 (b) 96
- **35.** (a) 170 (b) 170 **37.** 0 **39.** 0 **41.** −9
- **43.** -58 **45.** -30 **47.** -168 **49.** 0
- **51.** 412 **53.** -126 **55.** 0 **57.** -336

61. (a)
$$-3$$
 (b) -2 (c) $\begin{bmatrix} -2 & 0 \\ 0 & -3 \end{bmatrix}$ (d) 6

63. (a)
$$-8$$
 (b) 0 (c) $\begin{bmatrix} -4 & 4 \\ 1 & -1 \end{bmatrix}$ (d) 0

65. (a)
$$-21$$
 (b) -19 (c) $\begin{bmatrix} 7 & 1 & 4 \\ -8 & 9 & -3 \\ 7 & -3 & 9 \end{bmatrix}$ (d) 399

67. (a) 2 (b)
$$-6$$
 (c) $\begin{bmatrix} 1 & 4 & 3 \\ -1 & 0 & 3 \\ 0 & 2 & 0 \end{bmatrix}$ (d) -12

- **75.** -1, 4 **77.** -1, -4 **69–73.** Answers will vary.
- **81.** e^{5x} **83.** $1 - \ln x$ **79.** 8uv - 1
- 85. True. If an entire row is zero, then each cofactor in the expansion is multiplied by zero.
- **87.** Answers will vary.
- 89. A square matrix is a square array of numbers. The determinant of a square matrix is a real number.

91. (a) Columns 2 and 3 of A were interchanged.
$$|A| = -115 = -|B|$$

- (b) Rows 1 and 3 of A were interchanged. |A| = -40 = -|B|
- **93.** (a) Multiply Row 1 by 5.
 - (b) Multiply Column 2 by 4 and Column 3 by 3.
- **95.** All real numbers x

- **97.** All real numbers x such that $-4 \le x \le 4$
- **99.** All real numbers t such that t > 1

101.

105. Does not exist

Section 8.5 (page 628)

Vocabulary Check (page 628)

- 1. Cramer's Rule
- 2. collinear
- 4. cryptogram
- 5. uncoded; coded
- 1. (2, -2)**3.** Not possible
- 5. $\left(\frac{32}{7}, \frac{30}{7}\right)$

- **7.** (-1, 3, 2)
- **9.** (-2, 1, -1) **11.** $(0, -\frac{1}{2}, \frac{1}{2})$
- **13.** (1, 2, 1)
- **15.** 7 **17.** 14
- 19. $\frac{33}{8}$
- **23.** 28 **25.** $y = \frac{16}{5}$ or y = 0
- **27.** y = -3 or y = -11 **29.** 250 square miles
- **31.** Collinear **33.** Not collinear
- 35. Collinear
- **37.** y = -3
- **39.** 3x 5y = 0**41.** x + 3y - 5 = 0
- **43.** 2x + 3y 8 = 0
- **45.** Uncoded: [20 18 15], [21 2 12], [5 0 9], [14 0 18], [9 22 5], [18 0 3], [9 20 25]

Encoded: -52 10 27 -49 3 34 -49 13 27 -94 22 54 1 1 -7 0 -12 9 -121 41 55

- **47.** -6 -35 -69 11 20 17 6 -16 -58 46 79 67
- **49.** -5 -41 -87 91 207 257 11 -5 -41 40 80 84 76 177 227
- 51. HAPPY NEW YEAR
- 53. CLASS IS CANCELED
- **55.** SEND PLANES **57.** MEET ME TONIGHT RON
- 59. False. The denominator is the determinant of the coefficient matrix.
- **61.** False. If the determinant of the coefficient matrix is zero, the system has either no solution or infinitely many solutions.
- **63.** (-6, 4)**65.** (-1, 0, -3)

67. (0.5)(6, 4)

Minimum at (0,0): 0 Maximum at (6, 4): 52

Review Exercises (page 632)

- **3.** 1 × 1
- 7. $\begin{cases} 5x + y + 7z = -9 \\ 4x + 2y = 10 \end{cases}$ 9. $\begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$ 9x + 4y + 2z = 3
- **11.** $\int x + 2y + 3z = 9$ **13.** $\int x 5y + 4z = 1$ (5, 2, 0)(-40, -5, 4)
- **15.** (10, -12) **17.** $\left(-\frac{1}{5}, \frac{7}{10}\right)$ **19.** (5, 2, -6)
- **21.** $\left(-2a+\frac{3}{2},2a+1,a\right)$ **23.** (1, 0, 4, 3)
- **27.** (2, 3, -1) **29.** (2, 6, -10, -3)**25.** (2, -3, 3)
- **31.** x = 12, y = -7**33.** x = 1, y = 11

- 100 2207

55.
$$\begin{bmatrix} 44 & 4 \\ 20 & 8 \end{bmatrix}$$
 57. $\begin{bmatrix} 24 & -8 \\ 36 & -12 \end{bmatrix}$ **59.** $\begin{bmatrix} 1 & 17 \\ 12 & 36 \end{bmatrix}$ **61.** $\begin{bmatrix} 14 & -22 & 22 \\ 19 & -41 & 80 \\ 42 & -66 & 66 \end{bmatrix}$ **63.** $\begin{bmatrix} 76 & 114 & 133 \\ 38 & 95 & 76 \end{bmatrix}$

65. [\$274,150 \$303,150]

The merchandise shipped to warehouse 1 is worth \$274,150 and the merchandise shipped to warehouse 2 is worth \$303,150.

67–69.
$$AB = I$$
 and $BA = I$

71.
$$\begin{bmatrix} 4 & -5 \\ 5 & -6 \end{bmatrix}$$
 73. $\begin{bmatrix} 13 & 6 & -4 \\ -12 & -5 & 3 \\ 5 & 2 & -1 \end{bmatrix}$
75. $\begin{bmatrix} \frac{1}{2} & -1 & -\frac{1}{2} \\ \frac{1}{2} & -\frac{2}{3} & -\frac{5}{6} \\ 0 & \frac{2}{3} & \frac{1}{3} \end{bmatrix}$ 77. $\begin{bmatrix} -3 & 6 & -5.5 & 3.5 \\ 1 & -2 & 2 & -1 \\ 7 & -15 & 14.5 & -9.5 \\ -1 & 2.5 & -2.5 & 1.5 \end{bmatrix}$

79.
$$\begin{bmatrix} 1 & -1 \\ 4 & -\frac{7}{2} \end{bmatrix}$$
 81. $\begin{bmatrix} 2 & \frac{20}{3} \\ \frac{1}{10} & \frac{1}{6} \end{bmatrix}$ **83.** (36, 11)

85.
$$(-6, -1)$$
 87. $(2, -1, -2)$ **89.** $(6, 1, -1)$

99. (a)
$$M_{11} = 4$$
, $M_{12} = 7$, $M_{21} = -1$, $M_{22} = 2$
(b) $C_{11} = 4$, $C_{12} = -7$, $C_{21} = 1$, $C_{22} = 2$

101. (a)
$$M_{11} = 30, M_{12} = -12, M_{13} = -21,$$
 $M_{21} = 20, M_{22} = 19, M_{23} = 22, M_{31} = 5,$

$$M_{32} = -2, M_{33} = 19$$

(b) $C_{11} = 30, C_{12} = 12, C_{13} = -21,$
 $C_{21} = -20, C_{22} = 19, C_{23} = -22,$

$$C_{21} = -20, C_{22} = 19, C_{23} = -$$

 $C_{31} = 5, C_{32} = 2, C_{33} = 19$
80 **105.** 279 **107.** (4, 7)

111. 16 **113.** 10 115. Collinear

117.
$$x - 2y + 4 = 0$$
 119. $2x + 6y - 13 = 0$

- **123.** SEE YOU FRIDAY
- **125.** False. The matrix must be square.
- 127. The matrix must be square and its determinant nonzero.
- **129.** No. The first two matrices describe a system of equations with one solution. The third matrix describes a system with infinitely many solutions.
- **131.** $\lambda = \pm 2\sqrt{10} 3$

Chapter Test (page 637)

$$\mathbf{1.} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{2.} \begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

3.
$$\begin{bmatrix} 4 & 3 & -2 & \vdots & 14 \\ -1 & -1 & 2 & \vdots & -5 \\ 3 & 1 & -4 & \vdots & 8 \end{bmatrix}, (1, 3, -\frac{1}{2})$$

4. (a)
$$\begin{bmatrix} 1 & 5 \\ 0 & -4 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 15 & 12 \\ -12 & -12 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 7 & 14 \\ -4 & -12 \end{bmatrix}$$

$$(d) \begin{bmatrix} 4 & -5 \\ 0 & 4 \end{bmatrix}$$

5.
$$\begin{bmatrix} 1 & \frac{3}{5} \end{bmatrix}$$
6. $\begin{bmatrix} -\frac{5}{2} & 4 & -3 \\ 5 & -7 & 6 \\ 4 & -6 & 5 \end{bmatrix}$

11.
$$(-3,5)$$
 12. $(-2,4,6)$ **13.** 7

15. 75 liters of 60% solution 25 liters of 20% solution

Problem Solving (page 639)

1. (a)
$$AT = \begin{bmatrix} -1 & -4 & -2 \\ 1 & 2 & 3 \end{bmatrix}$$

 $AAT = \begin{bmatrix} -1 & -2 & -3 \\ -1 & -4 & -2 \end{bmatrix}$

A represents a counterclockwise rotation.

(b) AAT is rotated clockwise 90° to obtain AT. AT is then rotated clockwise 90° to obtain T.

A180 Answers to Odd-Numbered Exercises and Tests

- **3.** (a) Yes (b) No (c) No (d) No
- 5. (a) Gold Cable Company: 28,750 subscribers Galaxy Cable Company: 35,750 subscribers Nonsubscribers: 35,500 Answers will vary.
 - (b) Gold Cable Company: 30,813 subscribers Galaxy Cable Company: 39,675 subscribers Nonsubscribers: 29,513 Answers will vary.
 - (c) Gold Cable Company: 31,947 subscribers Galaxy Cable Company: 42,329 subscribers Nonsubscribers: 25,724 Answers will vary.
 - (d) Cable companies are increasing the number of subscribers, while the nonsubscribers are decreasing.
- **9–11.** Answers will vary.
- 13. Sulfur: 32 atomic mass units Nitrogen: 14 atomic mass units Fluorine: 19 atomic mass units

15.
$$A^{T} = \begin{bmatrix} -1 & 2 \\ 1 & 0 \\ -2 & 1 \end{bmatrix}$$
 $B^{T} = \begin{bmatrix} -3 & 1 & 1 \\ 0 & 2 & -1 \end{bmatrix}$ $(AB)^{T} = \begin{bmatrix} 2 & -5 \\ 4 & -1 \end{bmatrix} = B^{T}A^{T}$

- **17.** (a) $A^{-1} = \begin{bmatrix} 1 & -2 \\ 1 & -3 \end{bmatrix}$
 - (b) JOHN RETURN TO BASE
- **19.** |A| = 0

Chapter 9

Section 9.1 (page 649)

Vocabulary Check (page 649)

- 1. infinite sequence
- 2. terms
- 3. finite
- 4. recursively
- 5. factorial **6.** summation notation
 - 7. index; upper; lower
- 8. series **9.** *n*th partial sum
- **1.** 4, 7, 10, 13, 16 **3.** 2, 4, 8, 16, 32
- **5.** -2, 4, -8, 16, -32 **7.** 3, 2, $\frac{5}{3}$, $\frac{3}{7}$, $\frac{7}{5}$
- **9.** 3, $\frac{12}{11}$, $\frac{9}{13}$, $\frac{24}{47}$, $\frac{15}{37}$ **11.** 0, 1, 0, $\frac{1}{2}$, 0 **13.** $\frac{5}{3}$, $\frac{17}{9}$, $\frac{53}{27}$, $\frac{161}{81}$, $\frac{485}{243}$
- **15.** $1, \frac{1}{2^{3/2}}, \frac{1}{3^{3/2}}, \frac{1}{8}, \frac{1}{5^{3/2}}$ **17.** $-1, \frac{1}{4}, -\frac{1}{9}, \frac{1}{16}, -\frac{1}{25}$
- **19.** $\frac{2}{3}$, $\frac{2}{3}$, $\frac{2}{3}$, $\frac{2}{3}$, $\frac{2}{3}$ **21.** 0, 0, 6, 24, 60 **23.** -73 **25.** $\frac{44}{236}$

27.

- 31.
- **33.** c **34.** b **35.** d **36.** a **37.** $a_n = 3n 2$ **39.** $a_n = n^2 1$ **41.** $a_n = \frac{(-1)^n(n+1)}{n+2}$
- **43.** $a_n = \frac{n+1}{2n-1}$ **45.** $a_n = \frac{1}{n^2}$ **47.** $a_n = (-1)^{n+1}$
- **49.** $a_n = 1 + \frac{1}{n}$ **51.** 28, 24, 20, 16, 12
- **53.** 3, 4, 6, 10, 18 **55.** 6, 8, 10, 12, 14
- $a_n = 2n + 4$ **59.** 1, 3, $\frac{9}{2}$, $\frac{9}{2}$, $\frac{27}{8}$ **57.** 81, 27, 9, 3, 1 $a_n = \frac{243}{2n}$
- **61.** $1, \frac{1}{2}, \frac{1}{6}, \frac{1}{24}, \frac{1}{120}$ **63.** $1, \frac{1}{2}, \frac{1}{24}, \frac{1}{720}, \frac{1}{40,320}$
- **65.** $\frac{1}{30}$ **67.** 90 **69.** n+1
- **71.** $\frac{1}{2n(2n+1)}$ **73.** 35 **75.** 40 **77.** 30
- **79.** $\frac{9}{5}$ **81.** 88 **83.** 30 **85.** 81 **87.** $\frac{47}{60}$
- **89.** $\sum_{i=1}^{9} \frac{1}{3i}$ **91.** $\sum_{i=1}^{8} \left[2\left(\frac{i}{8}\right) + 3 \right]$ **93.** $\sum_{i=1}^{6} (-1)^{i+1} 3^i$
- **95.** $\sum_{i=1}^{20} \frac{(-1)^{i+1}}{i^2}$ **97.** $\sum_{i=1}^{5} \frac{2^i-1}{2^{i+1}}$ **99.** $\frac{75}{16}$ **101.** $-\frac{3}{2}$
- **107.** (a) $A_1 = $5100.00, A_2 = $5202.00, A_3 = $5306.04,$ $A_4 = $5412.16, A_5 = $5520.40, A_6 = $5630.81,$ $A_7 = \$5743.43, A_8 = \5858.30
 - (b) $A_{40} = \$11,040.20$
- **109.** (a) $b_n = 60.57n 182$ (b) $c_n = 1.61n^2 + 26.8n - 9.5$
 - n 11 10 12 13 311 357 419 481 548 608 a_n b_n 303 363 424 484 545 605 C_n 308 362 420 480 544 611

The quadratic model is a better fit.

(d) The quadratic model; 995

111. (a) $a_0 = \$3102.9, a_1 = \$3644.3, a_2 = \$4079.6,$ $a_3 = \$4425.3, a_4 = \$4698.2, a_5 = \$4914.8,$ $a_6 = $5091.8, a_7 = $5245.7, a_8 = $5393.2,$ $a_9 = $5550.9, a_{10} = $5735.5, a_{11} = $5963.5,$ $a_{12} = $6251.5, a_{13} = 6616.3

- (b) The federal debt is increasing.
- 113. True by the Properties of Sums
- **115.** 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 $1, 2, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{8}, \frac{21}{13}, \frac{34}{21}, \frac{55}{34}, \frac{89}{55}$
- **117.** \$500.95 **119.** Answers will vary.

121.
$$x, \frac{x^2}{2}, \frac{x^3}{6}, \frac{x^4}{24}, \frac{x^5}{120}$$

123.
$$-\frac{x^2}{2}, \frac{x^4}{24}, -\frac{x^6}{720}, \frac{x^8}{40,320}, -\frac{x^{10}}{3,628,800}$$

125.
$$f^{-1}(x) = \frac{x+3}{4}$$
 127. $h^{-1}(x) = \frac{x^2-1}{5}, x \ge 0$

129. (a)
$$\begin{bmatrix} 8 & 1 \\ -2 & 6 \end{bmatrix}$$
 (b) $\begin{bmatrix} -26 & 1 \\ 12 & -21 \end{bmatrix}$

(c)
$$\begin{bmatrix} 18 & 9 \\ 10 & 7 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 4 & 2 \\ 24 & 21 \end{bmatrix}$$

133. 26 **135.** -194

Section 9.2 (page 659)

Vocabulary Check (page 659)

- 1. arithmetic; common
- **2.** $a_n = dn + c$
- 3. sum of a finite arithmetic sequence
- 1. Arithmetic sequence, d = -2
- 3. Not an arithmetic sequence
- **5.** Arithmetic sequence, $d = -\frac{1}{4}$
- 7. Not an arithmetic sequence
- **9.** Not an arithmetic sequence
- **11.** 8, 11, 14, 17, 20 Arithmetic sequence, d = 3
- **13.** 7, 3, -1, -5, -9 Arithmetic sequence, d = -4

15. -1, 1, -1, 1, -1

Not an arithmetic sequence

17. $-3, \frac{3}{2}, -1, \frac{3}{4}, -\frac{3}{5}$

Not an arithmetic sequence

- **19.** $a_n = 3n 2$
- **21.** $a_n = -8n + 108$
- **23.** $a_n = 2xn x$ **25.** $a_n = -\frac{5}{2}n + \frac{13}{2}$
- **27.** $a_n = \frac{10}{3}n + \frac{5}{3}$ **29.** $a_n = -3n + 103$
- **31.** 5, 11, 17, 23, 29 **33.** -2.6, -3.0, -3.4, -3.8, -4.2
- **35.** 2, 6, 10, 14, 18
- **37.** −2, 2, 6, 10, 14
- **39.** 15, 19, 23, 27, 31; d = 4; $a_n = 4n + 11$
- **41.** 200, 190, 180, 170, 160; d = -10; $a_n = -10n + 210$
- **43.** $\frac{5}{8}$, $\frac{1}{2}$, $\frac{3}{8}$, $\frac{1}{4}$, $\frac{1}{8}$; $d = -\frac{1}{8}$; $a_n = -\frac{1}{8}n + \frac{3}{4}$
- **45.** 59 **47.** 18.6
 - - **49.** b
- **50.** d **51.** c
 - **52.** a

55.

- **57.** 620
- **59.** 17.4
- **61.** 265
- **63.** 4000

- **65.** 10,000
- **67.** 1275
- **69.** 30,030
 - **79.** 10,120 **77.** 2725

71. 355

- **73.** 160,000 **81.** (a) \$40,000
- **75.** 520 (b) \$217,500
 - 83. 2340 seats
- **85.** 405 bricks **87.** 490 meters
- **89.** (a) $a_n = -25n + 225$ (b) \$900
- **91**. \$70,500; answers will vary.
- **93.** (a)

	Month	1	2	3	4	5	6
	Monthly payment	\$220	\$218	\$216	\$214	\$212	\$210
	Unpaid balance	\$1800	\$1600	\$1400	\$1200	\$1000	\$800

- (b) \$110
- **95.** (a) $a_n = 1098n + 17,588$
 - (b) $a_n = 1114.9n + 17,795$; the models are similar.

(d) 2004: \$32,960 2005: \$34,058

- (e) Answers will vary.
- **97.** True. Given a_1 and a_2 , $d = a_2 a_1$ and $a_n = a_1 + (n-1)d.$
- 99. Answers will vary.

- (c) The graph of y = 3x + 2 contains all points on the line. The graph of $a_n = 2 + 3n$ contains only points at the positive integers.
- (d) The slope of the line and the common difference of the arithmetic sequence are equal.

103. 4

105. Slope: $\frac{1}{2}$; y-intercept: $(0, -\frac{3}{4})$ 107. Slope: undefined;

109. x = 1, y = 5, z = -1

111. Answers will vary.

Section 9.3 (page 669)

Vocabulary Check (page 669)

- 1. geometric; common
- **2.** $a_n = a_1 r^{n-1}$
- 3. $S_n = a_1 \left(\frac{1 r^n}{1 r} \right)$
- 4. geometric series

5.
$$S = \frac{a_1}{1 - r}$$

- 1. Geometric sequence, r = 3
- 3. Not a geometric sequence
- **5.** Geometric sequence, $r = -\frac{1}{2}$
- 7. Geometric sequence, r = 2
- 9. Not a geometric sequence

- **11.** 2, 6, 18, 54, 162 **13.** $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}$ **15.** $5, -\frac{1}{2}, \frac{1}{20}, -\frac{1}{200}, \frac{1}{2000}$ **17.** $1, e, e^2, e^3, e^4$ **19.** $2, \frac{x}{2}, \frac{x^2}{8}, \frac{x^3}{32}, \frac{x^4}{128}$
- **21.** 64, 32, 16, 8, 4; $r = \frac{1}{2}$; $a_n = 128(\frac{1}{2})^n$

- **23.** 7, 14, 28, 56, 112; r = 2; $a_n = \frac{7}{2}(2)^n$ **25.** 6, $-9, \frac{27}{2}, -\frac{81}{4}, \frac{243}{8}$; $r = -\frac{3}{2}$; $a_n = -4(-\frac{3}{2})^n$
- **27.** $a_n = 4\left(\frac{1}{2}\right)^{n-1}; \frac{1}{128}$ **29.** $a_n = 6\left(-\frac{1}{3}\right)^{n-1}; -\frac{2}{3^{10}}$
- **31.** $a_n = 100e^{x(n-1)}$; $100e^{8x}$

44. c

- **33.** $a_n = 500(1.02)^{n-1}$; ≈ 1082.372
- **37.** 50,388,480
- **39.** $a_3 = 9$
 - **41.** $a_6 = -2$

- **43.** a
- **45.** b
- **46.** d

- **53.** 511 **55.** 171
- **57.** 43
- **63.** 592.647 **61.** 29,921.311
- **65.** 2092.596
- **69.** 6.400 **71.** 3.750

- **79.** 2

- **89.** 32 **91.** Undefined

- 97.

Horizontal asymptote: y = 12

Corresponds to the sum of the series

- **99.** (a) $a_n = 1190.88(1.006)^n$
 - (b) The population is growing at a rate of 0.6% per year.
 - (c) 1342.2 million. This value is close to the prediction.
 - (d) 2007
- **101.** (a) \$3714.87
- (b) \$3722.16
- (c) \$3725.85
- (d) \$3728.32 (e) \$3729.52
- **103.** \$7011.89 105. Answers will vary.
- **107.** (a) \$26,198.27
- (b) \$26,263.88
- **109.** (a) \$118,590.12 (b) \$118,788.73
- 111. Answers will vary.
- **113.** \$1600
- **115.** ≈ \$2181.82
- 117. 126 square inches
- **119.** \$3,623,993.23
- 121. False. A sequence is geometric if the ratios of consecutive terms are the same.
- **123.** Given a real number r between -1 and 1, as the exponent n increases, r^n approaches zero.

125. $x^2 + 2x$ **127.** $3x^2 + 6x + 1$

129. x(3x + 8)(3x - 8) **131.** (3x + 1)(2x - 5)

133. $\frac{3x}{x-3}$, $x \neq -3$ **135.** $\frac{2x+1}{3}$, $x \neq 0$, $-\frac{1}{2}$

137. $\frac{5x^2 + 9x - 30}{(x+2)(x-2)}$ **139.** Answers will vary.

Section 9.4 (page 681)

Vocabulary Check (page 681)

1. mathematical induction 2. first

3. arithmetic **4.** second

1.
$$\frac{5}{(k+1)(k+2)}$$
 3. $\frac{(k+1)^2(k+2)^2}{4}$

5–33. Answers will vary. **35.** $S_n = n(2n - 1)$

37.
$$S_n = 10 - 10 \left(\frac{9}{10}\right)^n$$
 39. $S_n = \frac{n}{2(n+1)}$

41. 120 **43.** 91 **45.** 979 **47.** 70 **49.** -3402

51. 0, 3, 6, 9, 12, 15 First differences: 3, 3, 3, 3, 3 Second differences: 0, 0, 0, 0 Linear

53. 3, 1, -2, -6, -11, -17

First differences: -2, -3, -4, -5, -6

Second differences: -1, -1, -1, -1

Ouadratic

55. 2, 4, 16, 256, 65,536, 4,294,967,296 First differences: 2, 12, 240, 65,280, 4,294,901,760 Second differences: 10, 228, 65,040, 4,294,836,480 Neither

57. $a_n = n^2 - n + 3$ **59.** $a_n = \frac{1}{2}n^2 + n - 3$

61. (a) 2.2, 2.4, 2.2, 2.3, 0.9

(b) A linear model can be used. $a_n = 2.2n + 102.7$

(c) $a_n = 2.08n + 103.9$

(d) Part b: $a_n = 142.3$; Part c: $a_n = 141.34$ These are very similar.

63. True. P_7 may be false.

65. True. If the second differences are all zero, then the first differences are all the same and the sequence is arithmetic.

67. $4x^4 - 4x^2 + 1$ **69.** $-64x^3 + 240x^2 - 300x + 125$

71. (a) Domain: all real numbers x except x = -3

(b) Intercept: (0,0)

(c) Vertical asymptote: x = -3Horizontal asymptote: y = 1

73. (a) Domain: all real numbers t except t = 0

(b) t-intercept: (7, 0)

(c) Vertical asymptote: t = 0Horizontal asymptote: y = 1

Section 9.5 (page 688)

Vocabulary Check (page 688)

1. binomial coefficients

2. Binomial Theorem; Pascal's Triangle

3. $\binom{n}{r}$; ${}_{n}C_{r}$ 4. expanding a binomial

1. 10 **3.** 1 **5.** 15,504 **7.** 210 **9.** 4950

11. 56 **13.** 35 **15.** $x^4 + 4x^3 + 6x^2 + 4x + 1$

17. $a^4 + 24a^3 + 216a^2 + 864a + 1296$

19. $v^3 - 12v^2 + 48v - 64$

21. $x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5$

23. $r^6 + 18r^5s + 135r^4s^2 + 540r^3s^3 + 1215r^2s^4 + 1458rs^5 + 729s^6$

25. $243a^5 - 1620a^4b + 4320a^3b^2 - 5760a^2b^3 + 3840ab^4 - 1024b^5$

27. $8x^3 + 12x^2y + 6xy^2 + y^3$

29. $x^8 + 4x^6y^2 + 6x^4y^4 + 4x^2y^6 + y^8$

31. $\frac{1}{x^5} + \frac{5y}{x^4} + \frac{10y^2}{x^3} + \frac{10y^3}{x^2} + \frac{5y^4}{x} + y^5$

33. $2x^4 - 24x^3 + 113x^2 - 246x + 207$

35. $32t^5 - 80t^4s + 80t^3s^2 - 40t^2s^3 + 10ts^4 - s^5$

37.
$$x^5 + 10x^4y + 40x^3y^2 + 80x^2y^3 + 80xy^4 + 32y^5$$

39.
$$120x^7v^3$$
 41. $360x^3v^2$ **43.** $1.259.712x^2v^7$

$$50,000x^4y^8$$
 47. 1,732,104

55.
$$x^2 + 12x^{3/2} + 54x + 108x^{1/2} + 81$$

57.
$$x^2 - 3x^{4/3}y^{1/3} + 3x^{2/3}y^{2/3} - y$$

59.
$$3x^2 + 3xh + h^2, h \neq 0$$
 61. $\frac{1}{\sqrt{x+h} + \sqrt{x}}, h \neq 0$

g is shifted four units to the left of f.

$$g(x) = x^3 + 12x^2 + 44x + 48$$

79. (a)
$$f(t) = 0.0025t^3 - 0.015t^2 + 0.88t + 7.7$$

(c)
$$g(t) = 0.0025t^3 + 0.06t^2 + 1.33t + 17.5$$

- (e) f(t): 33.26 gallons; g(t): 33.26 gallons; yes
- (f) The trend is for the per capita consumption of bottled water to increase. This may be due to the increasing concern with contaminants in tap water.
- 81. True. The coefficients from the Binomial Theorem can be used to find the numbers in Pascal's Triangle.
- 83. False. The coefficient of the x^{10} -term is 1,732,104 and the coefficient of the x^{14} -term is 192,456.

- 87. The signs of the terms in the expansion of $(x y)^n$ alternate between positive and negative.
- 89-91. Answers will vary.

93.

95.

$$g(x) = (x - 3)^2$$

$$g(x) = \sqrt{x+2} + 1$$

97.
$$\begin{bmatrix} 4 & -5 \\ 5 & -6 \end{bmatrix}$$

Section 9.6 (page 698)

Vocabulary Check (page 698)

- 1. Fundamental Counting Principle 2. permutation
- **4.** distinguishable permutations
- 5. combinations
- 1. 6 **3.** 5 **5.** 3 **7.** 8 **9.** 30 **11.** 30
- **13.** 64 **15.** 175,760,000
- **17.** (a) 900 (b) 648 (c) 180 (d) 600
- **19.** 64,000 **21.** (a) 40,320 (b) 384 **23.** 24
- **25.** 336 **27.** 120 **29.** n = 5 or n = 6
- **33.** 970,200 **35.** 15,504 **31.** 1,860,480 **37.** 120
- **39.** 11,880 **41.** 420 **43.** 2520
- 45. ABCD, ABDC, ACBD, ACDB, ADBC, ADCB, BACD, BADC, CABD, CADB, DABC, DACB, BCAD, BDAC, CBAD, CDAB, DBAC, DCAB, BCDA, BDCA, CBDA, CDBA, DBCA, DCBA
- **47.** 1,816,214,400 **49.** 5,586,853,480
- 51. AB, AC, AD, AE, AF, BC, BD, BE, BF, CD, CE, CF, DE, DF. EF
- **53.** 324,632 (b) 63 (c) 203 **55.** (a) 35
- **57.** (a) 3744 (b) 24 **59.** 292,600
- **61.** 5 **63.** 20
- **65.** (a) 146,107,962
 - (b) If the jackpot is won, there is only one winning
 - (c) There are 28,989,675 possible winning numbers in the state lottery, which is considerably less than the possible number of winning Powerball numbers.
- **67.** False. It is an example of a combination.
- 69. They are equal.
- **71–73.** Proof
- **75.** No. For some calculators the number is too great.
- **77.** (a) 35 (b) 8 (c) 83
- **79.** (a) -4(b) 0 (c) 0
- **81.** 8.30 **83.** 35

Section 9.7 (page 709)

Vocabulary Check (page 709)

- experiment; outcomes
 sample space
- **3.** probability **4.** impossible; certain
- **5.** mutually exclusive **6.** independent
- **7.** complement **8.** (a) iii (b) i (c) iv (d) ii
- **1.** $\{(H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6), (T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)\}$
- **3.** {ABC, ACB, BAC, BCA, CAB, CBA}
- **5.** {AB, AC, AD, AE, BC, BD, BE, CD, CE, DE}
- 7. $\frac{3}{8}$ 9. $\frac{7}{8}$ 11. $\frac{3}{13}$ 13. $\frac{3}{26}$ 15. $\frac{1}{12}$ 17. $\frac{11}{12}$
- **19.** $\frac{1}{3}$ **21.** $\frac{1}{5}$ **23.** $\frac{2}{5}$ **25.** 0.3 **27.** $\frac{3}{4}$ **29.** 0.86
- **31.** $\frac{18}{35}$ **33.** (a) 58% (b) 95.6% (c) 0.4%
- **35.** (a) 243 (b) $\frac{1}{50}$ (c) $\frac{16}{25}$
- **37.** (a) $\frac{112}{209}$ (b) $\frac{97}{209}$ (c) $\frac{274}{627}$
- **39.** $P(\{\text{Taylor wins}\}) = \frac{1}{2}$ $P(\{\text{Moore wins}\}) = P(\{\text{Jenkins wins}\}) = \frac{1}{4}$
- **41.** (a) $\frac{21}{1292}$ (b) $\frac{225}{646}$ (c) $\frac{49}{323}$
- **43.** (a) $\frac{1}{120}$ (b) $\frac{1}{24}$ **45.** (a) $\frac{5}{13}$ (b) $\frac{1}{2}$ (c) $\frac{4}{13}$
- **47.** (a) $\frac{14}{55}$ (b) $\frac{12}{55}$ (c) $\frac{54}{55}$ **49.** 0.4746
- **51.** (a) 0.9702 (b) 0.9998 (c) 0.0002
- **53.** (a) $\frac{1}{16}$ (b) $\frac{1}{8}$ (c) $\frac{15}{16}$
- **55.** (a) $\frac{1}{38}$ (b) $\frac{9}{19}$ (c) $\frac{10}{19}$ (d) $\frac{1}{1444}$ (e) $\frac{729}{6859}$
 - (f) The probabilities are slightly better in European roulette.
- **57.** True. Two events are independent if the occurrence of one has no effect on the occurrence of the other.
- 59. (a) As you consider successive people with distinct birthdays, the probabilities must decrease to take into account the birth dates already used. Because the birth dates of people are independent events, multiply the respective probabilities of distinct birthdays.
 - (b) $\frac{365}{365} \cdot \frac{364}{365} \cdot \frac{363}{365} \cdot \frac{362}{365}$ (c) Answers will vary.
 - (d) Q_n is the probability that the birthdays are *not* distinct, which is equivalent to at least two people having the same birthday.

(e)	n	10	15	20	23	30	40	50
	P_n	0.88	0.75	0.59	0.49	0.29	0.11	0.03
	Q_n	0.12	0.25	0.41	0.51	0.71	0.89	0.97

(f) 23

- **61.** No real solution **63.** $0, \frac{1 \pm \sqrt{13}}{2}$ **65.** -4
- **67.** $\frac{11}{2}$ **69.** -10

Review Exercises (page 715)

- **1.** 8, 5, 4, $\frac{7}{2}$, $\frac{16}{5}$ **3.** 72, 36, 12, 3, $\frac{3}{5}$ **5.** $a_n = 2(-1)^n$
- **7.** $a_n = \frac{4}{n}$ **9.** 120 **11.** 1 **13.** 30 **15.** $\frac{205}{24}$
- **17.** 6050 **19.** $\sum_{k=1}^{20} \frac{1}{2k}$ **21.** $\frac{5}{9}$ **23.** $\frac{2}{99}$
- **25.** (a) $A_1 = \$10,067, A_2 = \$10,134, A_3 = \$10,201,$ $A_4 = \$10,269, A_5 = \$10,338, A_6 = \$10,407,$ $A_7 = \$10,476, A_8 = \$10,546, A_9 = \$10,616,$ $A_{10} = \$10,687$
 - (b) $A_{120} = $22,196.40$
- **27.** Arithmetic sequence, d = -2
- **29.** Arithmetic sequence, $d = \frac{1}{2}$ **31.** 4, 7, 10, 13, 16
- **33.** 25, 28, 31, 34, 37 **35.** $a_n = 12n 5$
- **37.** $a_n = 3ny 2y$ **39.** $a_n = -7n + 107$
- **41.** 80 **43.** 88 **45.** 25,250
- **47.** (a) \$43,000 (b) \$192,500
- **49.** Geometric sequence, r = 2
- **51.** Geometric sequence, r = -2 **53.** 4, $-1, \frac{1}{4}, -\frac{1}{16}, \frac{1}{64}$
- **55.** 9, 6, 4, $\frac{8}{3}$, $\frac{16}{9}$ or 9, -6, 4, $-\frac{8}{3}$, $\frac{16}{9}$
- **57.** $a_n = 16\left(-\frac{1}{2}\right)^{n-1}$; $\approx -3.052 \times 10^{-5}$
- **59.** $a_n = 100(1.05)^{n-1}$; ≈ 252.695
- **61.** 127 **63.** $\frac{15}{16}$ **65.** 31 **67.** 24.85
- **69.** 5486.45 **71.** 8 **73.** $\frac{10}{9}$ **75.** 12
- **77.** (a) $a_t = 120,000(0.7)^t$ (b) \$20,168.40
- **79–81.** Answers will vary. **83.** $S_n = n(2n + 7)$
- **85.** $S_n = \frac{5}{2} \left[1 \left(\frac{3}{5} \right)^n \right]$ **87.** 465
- **91.** 5, 10, 15, 20, 25 First differences: 5, 5, 5, 5 Second differences: 0, 0, 0 Linear
- 93. 16, 15, 14, 13, 12

 First differences: -1, -1, -1, -1

 Second differences: 0, 0, 0

 Linear
- **95.** 15 **97.** 56 **99.** 35 **101.** 28
- **103.** $x^4 + 16x^3 + 96x^2 + 256x + 256$
- **105.** $a^5 15a^4b + 90a^3b^2 270a^2b^3 + 405ab^4 243b^5$
- **107.** 41 + 840*i* **109.** 11 **111.** 10,000 **113.** 720
- **115.** 56 **117.** $\frac{1}{9}$ **119.** (a) 43% (b) 82%

121.
$$\frac{1}{216}$$
 123. $\frac{3}{4}$

125. True.
$$\frac{(n+2)!}{n!} = \frac{(n+2)(n+1)n!}{n!} = (n+2)(n+1)$$

- 127. True by Properties of Sums
- **129.** False. When r equals 0 or 1, then the results are the same.
- 131. In the sequence in part (a), the odd-numbered terms are negative, whereas in the sequence in part (b), the evennumbered terms are negative.
- 133. Each term of the sequence is defined in terms of preceding terms

Chapter Test (page 719)

1.
$$-\frac{1}{5}, \frac{1}{8}, -\frac{1}{11}, \frac{1}{14}, -\frac{1}{17}$$
 2. $a_n = \frac{n+2}{n!}$

3. 50, 61, 72; 140 **4.**
$$a_n = 0.8n + 1.4$$

10.
$$x^4 + 8x^3y + 24x^2y^2 + 32xy^3 + 16y^4$$
 11. $-108,864$

14. 26,000 **15.** 720 **16.**
$$\frac{1}{15}$$
 17. 3.908 × 10⁻¹⁰

Cumulative Test for Chapters 7–9 (page 720)

1.
$$(1, 2), \left(-\frac{3}{2}, \frac{3}{4}\right)$$
 2. $(2, -1)$

Maximum at (4, 4): z = 20

Minimum at (0, 0): z = 0

8. \$0.75 mixture: 120 pounds; \$1.25 mixture: 80 pounds

9.
$$y = \frac{1}{3}x^2 - 2x + 4$$

10.
$$\begin{bmatrix} -1 & 2 & -1 & \vdots & 9 \\ 2 & -1 & 2 & \vdots & -9 \\ 3 & 3 & -4 & \vdots & 7 \end{bmatrix}$$
11. $(-2, 3, -1)$
12.
$$\begin{bmatrix} 3 & 3 \\ 0 & 2 \end{bmatrix}$$
13.
$$\begin{bmatrix} 2 & -6 \\ -2 & 0 \end{bmatrix}$$
14.
$$\begin{bmatrix} 6 & -6 \\ -3 & 2 \end{bmatrix}$$

2.
$$\begin{bmatrix} 3 & 3 \\ 0 & 2 \end{bmatrix}$$
 13. $\begin{bmatrix} 2 & -6 \\ -2 & 0 \end{bmatrix}$ **14.** $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

15.
$$\begin{bmatrix} -4 & 12 \\ 3 & -3 \end{bmatrix}$$
 16. 84 **17.** $\begin{bmatrix} -175 & 37 & -13 \\ 95 & -20 & 7 \\ 14 & -3 & 1 \end{bmatrix}$

22.
$$\frac{1}{5}$$
, $-\frac{1}{7}$, $\frac{1}{9}$, $-\frac{1}{11}$, $\frac{1}{13}$ **23.** $a_n = \frac{(n+1)!}{n+3}$

24. 920 **25.** (a) 65.4 (b)
$$a_n = 3.2n + 1.4$$

26. 3, 6, 12, 24, 48 **27.**
$$\frac{13}{9}$$
 28. Answers will vary.

29.
$$z^4 - 12z^3 + 54z^2 - 108z + 81$$
 30. 210 **31.** 600

36. 720 **37.**
$$\frac{1}{4}$$

Problem Solving (page 725)

1. 1, 1.5, 1.416, 1.414215686, 1.414213562, 1.414213562, . . . x_n approaches $\sqrt{2}$.

(b)	If <i>n</i> is odd, $a_n = 2$, and
	if <i>n</i> is even, $a_n = 4$.

(c)	n	1	10	101	1000	10,001
	a_n	2	4	2	4	2

- (d) It is not possible to find the value of a_n as n approaches infinity.
- **5.** (a) 3, 5, 7, 9, 11, 13, 15, 17; $a_n = 2n + 1$
 - (b) To obtain the arithmetic sequence, find the differences of consecutive terms of the sequence of perfect cubes. Then find the differences of consecutive terms of this sequence.
 - (c) 12, 18, 24, 30, 36, 42, 48; $a_n = 6n + 6$
 - (d) To obtain the arithmetic sequence, find the third sequence obtained by taking differences of consecutive terms in consecutive sequences.

(e) 60, 84, 108, 132, 156, 180;
$$a_n = 24n + 36$$

7.
$$s_n = \left(\frac{1}{2}\right)^{n-1}$$

$$a_n = \frac{\sqrt{3}}{4} s_n^2$$

- 9. Answers will vary.
- **11.** (a) Answers will vary. (b) 17,710

13.
$$\frac{1}{3}$$
 15. (a) $-\$0.71$ (b) 2.53, 24 turns

Chapter 10

Section 10.1 (page 732)

Vocabulary Check (page 732)

- 1. inclination

- 4. $\frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}$

- 3. -1 5. $\sqrt{3}$
- **7.** 3.2236
- 9. $\frac{3\pi}{4}$ radians, 135° 11. $\frac{\pi}{4}$ radian, 45°
- 13. 0.6435 radian, 36.9°
- **15.** 1.0517 radians, 60.3°
- **17.** 2.1112 radians, 121.0°
- **19.** 1.2490 radians, 71.6°
- **21.** 2.1112 radians, 121.0°
- 23. 1.1071 radians, 63.4°
- **25.** 0.1974 radian, 11.3°
- 27. 1.4289 radians, 81.9°
- **29.** 0.9273 radian, 53.1°
- **31.** 0.8187 radian, 46.9°
- 33. $(2, 1) \leftrightarrow (4, 4)$: slope = $\frac{3}{2}$
 - $(4, 4) \leftrightarrow (6, 2)$: slope = -1
 - $(6, 2) \leftrightarrow (2, 1)$: slope = $\frac{1}{4}$
 - (2, 1): 42.3°; (4, 4): 78.7°; (6, 2): 59.0°
- **35.** $(-4, -1) \leftrightarrow (3, 2)$: slope = $\frac{3}{7}$
 - $(3, 2) \leftrightarrow (1, 0)$: slope = 1
 - $(1,0) \leftrightarrow (-4,-1)$: slope = $\frac{1}{5}$
 - (-4, -1): 11.9°; (3, 2): 21.8°; (1, 0): 146.3°
- **37.** 0

- **39.** $\frac{7}{5}$ **41.** 7 **43.** $\frac{8\sqrt{37}}{37} \approx 1.3152$
- 45.
- (a)

47.

- (c) 8 (b) 4

- **49.** $2\sqrt{2}$ **51.** 0.1003, 1054 feet
- **55.** $\alpha \approx 33.69^{\circ}$; $\beta \approx 56.31^{\circ}$
- 57. True. The inclination of a line is related to its slope by $m = \tan \theta$. If the angle is greater than $\pi/2$ but less than π , then the angle is in the second quadrant, where the tangent function is negative.

59. (a)
$$d = \frac{4}{\sqrt{m^2 + 1}}$$

- (c) m = 0
- (d) The graph has a horizontal asymptote at d = 0. As the slope becomes larger, the distance between the origin and the line y = mx + 4, becomes smaller and approaches 0.
- **61.** *x*-intercept: (7, 0) y-intercept: (0, 49)
- **63.** *x*-intercepts: $(5 \pm \sqrt{5}, 0)$ y-intercept: (0, 20)
- **65.** x-intercepts: $\left(\frac{7 \pm \sqrt{53}}{2}, 0\right)$
 - y-intercept: (0, -1)
- **67.** $f(x) = 3(x + \frac{1}{3})^2 \frac{49}{3}$
- **69.** $f(x) = 5(x + \frac{17}{5})^2 \frac{324}{5}$ Vertex: $(-\frac{17}{5}, -\frac{324}{5})$
- Vertex: $\left(-\frac{1}{3}, -\frac{49}{3}\right)$ 71. $f(x) = 6\left(x \frac{1}{12}\right)^2 \frac{289}{24}$ Vertex: $\left(\frac{1}{12}, -\frac{289}{24}\right)$
- **73.**
- 75.

Section 10.2 (page 740)

Vocabulary Check (page 740)

- 1. conic 2. locus
- 3. parabola; directrix; focus
- 4. axis 5. vertex
- 6. focal chord
 - 7. tangent
- 1. A circle is formed when a plane intersects the top or bottom half of a double-napped cone and is perpendicular to the axis of the cone.
- 3. A parabola is formed when a plane intersects the top or bottom half of a double-napped cone, is parallel to the side of the cone, and does not intersect the vertex.
- **5.** e
- **8.** f
- **10.** c

Focus: $(-\frac{3}{2}, 0)$

13. Vertex: (0, 0)

- **11.** Vertex: (0, 0)
 - Focus: $(0,\frac{1}{2})$
 - Directrix: $y = -\frac{1}{2}$

6. b

15. Vertex: (0, 0)

Focus: $(0, -\frac{3}{2})$

Directrix: $y = \frac{3}{2}$

17. Vertex: (1, -2)

Focus: (1, -4)

Directrix: y = 0

19. Vertex: $\left(-\frac{3}{2}, 2\right)$

Focus: $(-\frac{3}{2}, 3)$

Directrix: y = 1

21. Vertex: (1, 1)

Focus: (1, 2)

Directrix: y = 0

23. Vertex: (-2, -3)

Focus: (-4, -3)

Directrix: x = 0

25. Vertex: (-2, 1)

Focus: $(-2, -\frac{1}{2})$

Directrix: x = -2

27. Vertex: $(\frac{1}{4}, -\frac{1}{2})$

Focus: $(0, -\frac{1}{2})$

Directrix: $x = \frac{1}{2}$

- **29.** $x^2 = \frac{3}{2}y$
- **31.** $x^2 = -6y$ **33.** $y^2 = -8x$
- **35.** $x^2 = 4y$ **37.** $y^2 = -8x$ **39.** $y^2 = 9x$
- **41.** $(x-3)^2 = -(y-1)$ **43.** $y^2 = 4(x+4)$

- **45.** $(y-2)^2 = -8(x-5)$ **47.** $x^2 = 8(y-4)$
- **49.** $(y-2)^2 = 8x$ **51.** $y = \sqrt{6(x+1)} + 3$
- 53.

(2, 4)

- **55.** 4x y 8 = 0; (2, 0)
- **57.** 4x y + 2 = 0; $\left(-\frac{1}{2}, 0\right)$ **61.** $y = \frac{1}{18}x^2$

x = 106 units

- **63.** (a) $y = -\frac{1}{640}x^2$ (b) 8 feet
- **65.** (a) $17,500\sqrt{2}$ miles per hour $\approx 24,750$ miles per hour
 - (b) $x^2 = -16,400(y 4100)$
- **67.** (a) $x^2 = -64(y 75)$ (b) 69.3 feet
- 69. False. If the graph crossed the directrix, there would exist points closer to the directrix than the focus.
- **71.** (a) p = 3 p = 2 21

As p increases, the graph becomes wider.

- (b) (0, 1), (0, 2), (0, 3), (0, 4) (c) 4, 8, 12, 16; 4|p|
- (d) Easy way to determine two additional points on the graph
- **73.** $m = \frac{x_1}{2p}$ **75.** $\pm 1, \pm 2, \pm 4$
- 77. $\pm \frac{1}{2}$, ± 1 , ± 2 , ± 4 , ± 8 , ± 16
- **79.** $f(x) = x^3 7x^2 + 17x 15$
- **81.** $\frac{1}{2}$, $-\frac{5}{3}$, ± 2
- **83.** $B \approx 23.67^{\circ}, C \approx 121.33^{\circ}, c \approx 14.89$
- **85.** $C = 89^{\circ}, a \approx 1.93, b \approx 2.33$
- **87.** $A \approx 16.39^{\circ}, B \approx 23.77^{\circ}, C \approx 139.84^{\circ}$
- **89.** $B \approx 24.62^{\circ}$, $C \approx 90.38^{\circ}$, $a \approx 10.88$

Section 10.3 (page 750)

Vocabulary Check (page 750)

- 1. ellipse; foci
- 2. major axis; center
- **3.** minor axis
- 4. eccentricity

1. b **2.** c 7. Ellipse

Center: (0, 0) Vertices: $(\pm 5, 0)$

3. d

Foci: $(\pm 3, 0)$

Eccentricity: $\frac{3}{5}$

- **5.** a **6.** e
- 9. Circle

4. f

Center: (0, 0)

Radius: 5

11. Ellipse

Center: (0, 0)

Vertices: $(0, \pm 3)$

Foci: $(0, \pm 2)$ Eccentricity: $\frac{2}{3}$

13. Ellipse

Center: (-3, 5)

Vertices:

(-3, 10), (-3, 0)

Foci: (-3, 8), (-3, 2)

Eccentricity: $\frac{3}{5}$

15. Circle

Center: (0, -1)

Radius: $\frac{2}{3}$

17. Ellipse

Center: (-2, -4)

Vertices:

$$(-3, -4), (-1, -4)$$

Foci: $\left(\frac{-4 \pm \sqrt{3}}{2}, -4\right)$

Eccentricity: $\frac{\sqrt{3}}{2}$

19. Ellipse

Center: (-2, 3)

Vertices: (-2, 6), (-2, 0)

Foci: $(-2, 3 \pm \sqrt{5})$

Eccentricity:

21. Circle

Center: (1, -2)

Radius: 6

23. Ellipse

Center: (-3, 1)

Vertices: (-3, 7), (-3, -5)

Foci: $(-3, 1 \pm 2\sqrt{6})$

Eccentricity: $\frac{\sqrt{6}}{2}$

25. Ellipse

Center: $\left(3, -\frac{5}{2}\right)$

Foci: $(3 \pm 3\sqrt{3}, -\frac{5}{2})$

Eccentricity: $\frac{\sqrt{3}}{2}$

27. Circle

Center: (-1, 1)

29. Ellipse

Center: (2, 1)

Vertices: $\left(\frac{7}{3}, 1\right), \left(\frac{5}{3}, 1\right)$

Foci: $(\frac{34}{15}, 1), (\frac{26}{15}, 1)$

Eccentricity: $\frac{4}{5}$

31.

- 33.
- Center: (0, 0) Vertices: $(0, \pm \sqrt{5})$ Foci: $(0, \pm \sqrt{2})$
- Center: $(\frac{1}{2}, -1)$ Vertices: $(\frac{1}{2} \pm \sqrt{5}, -1)$ Foci: $(\frac{1}{2} \pm \sqrt{2}, -1)$
- **35.** $\frac{x^2}{4} + \frac{y^2}{16} = 1$ **37.** $\frac{x^2}{36} + \frac{y^2}{32} = 1$ **39.** $\frac{x^2}{36} + \frac{y^2}{11} = 1$

- **41.** $\frac{21x^2}{400} + \frac{y^2}{25} = 1$ **43.** $\frac{(x-2)^2}{1} + \frac{(y-3)^2}{9} = 1$
- **45.** $\frac{(x+2)^2}{16} + \frac{(y-3)^2}{9} = 1$
- **47.** $\frac{(x-2)^2}{4} + \frac{(y-4)^2}{1} = 1$ **49.** $\frac{x^2}{48} + \frac{(y-4)^2}{64} = 1$

- **51.** $\frac{x^2}{16} + \frac{(y-4)^2}{12} = 1$ **53.** $\frac{(x-2)^2}{4} + \frac{(y-2)^2}{1} = 1$
- **55.** $\frac{x^2}{25} + \frac{y^2}{16} = 1$
- **57.** (a)

- **59.** (a) $\frac{x^2}{321.84} + \frac{y^2}{20.89} = 1$
 - (b)
- (b) $\frac{x^2}{625} + \frac{y^2}{100} = 1$
- (c) Aphelion: 35.29 astronomical units Perihelion:

- 0.59 astronomical unit
- **61.** (a) $\frac{x^2}{0.04} + \frac{y^2}{2.56} = 1$

(c) The bottom half

63.

65.

- **67.** False. The graph of $x^2/4 + y^4 = 1$ is not an ellipse. The degree of y is 4, not 2.
- **69.** (a) $A = \pi a (20 a)$ (b) $\frac{x^2}{196} + \frac{y^2}{36} = 1$

(c)	а	8	9	10	11	12	13
	A	301.6	311.0	314.2	311.0	301.6	285.9

- a = 10, circle

The shape of an ellipse with a maximum area is a circle. The maximum area is found when a = 10(verified in part c) and therefore b = 10, so the equation produces a circle.

- 71. Geometric
- 73. Arithmetic
- **75.** 547
- **77.** 340.15

Section 10.4 (page 760)

Vocabulary Check (page 760)

- 1. hyperbola; foci
- 2. branches

4. d

- **3.** transverse axis; center
- 4. asymptotes
- 5. $Ax^2 + Cy^2 + Dx + Ey + F = 0$

3. a

- **1.** b **2.** c
- **5.** Center: (0, 0)
 - Vertices: $(\pm 1, 0)$ Foci: $(\pm\sqrt{2},0)$
- Asymptotes: $y = \pm x$
- 7. Center: (0, 0)
 - Vertices: $(0, \pm 5)$
 - Foci: $(0, \pm \sqrt{106})$
 - Asymptotes: $y = \pm \frac{5}{9}x$

- **9.** Center: (1, -2)
 - Vertices: (3, -2), (-1, -2)
 - Foci: $(1 \pm \sqrt{5}, -2)$

Asymptotes:
$$y = -2 \pm \frac{1}{2}(x - 1)$$

CHAPTER 10

11. Center: (2, -6)

Vertices:

$$\left(2, -\frac{17}{3}\right), \left(2, -\frac{19}{3}\right)$$
Foci: $\left(2, -6 \pm \frac{\sqrt{13}}{6}\right)$

Asymptotes:

$$y = -6 \pm \frac{2}{3}(x - 2)$$

13. Center: (2, -3)

Vertices: (3, -3), (1, -3)

Foci: $(2 \pm \sqrt{10}, -3)$

Asymptotes:

$$y = -3 \pm 3(x - 2)$$

15. The graph of this equation is two lines intersecting at (-1, -3).

Vertices: $(\pm \sqrt{3}, 0)$ Foci: $(\pm\sqrt{5},0)$

Asymptotes: $y = \pm \frac{\sqrt{6}}{2}x$

19. Center: (1, -3)

Vertices: $(1, -3 \pm \sqrt{2})$

Foci: $(1, -3 \pm 2\sqrt{5})$

Asymptotes:

$$y = -3 \pm \frac{1}{3}(x - 1)$$

- **21.** $\frac{y^2}{4} \frac{x^2}{12} = 1$ **23.** $\frac{x^2}{1} \frac{y^2}{25} = 1$
- **25.** $\frac{17y^2}{1024} \frac{17x^2}{64} = 1$ **27.** $\frac{(x-4)^2}{4} \frac{y^2}{12} = 1$
- **29.** $\frac{(y-5)^2}{16} \frac{(x-4)^2}{9} = 1$ **31.** $\frac{y^2}{9} \frac{4(x-2)^2}{9} = 1$
- 33. $\frac{(y-2)^2}{4} \frac{x^2}{4} = 1$ 35. $\frac{(x-2)^2}{1} \frac{(y-2)^2}{1} = 1$
- 37. $\frac{(x-3)^2}{9} \frac{(y-2)^2}{4} = 1$
- **39.** (a) $\frac{x^2}{1} \frac{y^2}{169/3} = 1$ (b) ≈ 2.403 feet
- **43.** $(12(\sqrt{5}-1),0)\approx (14.83,0)$ **41.** (3300, -2750)
- 45. Circle
- **47.** Hyperbola
- **49.** Hyperbola

- 51. Parabola 53. Ellipse 55. Parabola
- **57.** Ellipse 59. Circle
- **61.** True. For a hyperbola, $c^2 = a^2 + b^2$. The larger the ratio of b to a, the larger the eccentricity of the hyperbola, e = c/a.
- **63.** Answers will vary.

65.
$$y = 1 - 3\sqrt{\frac{(x-3)^2}{4} - 1}$$

67.
$$x(x+4)(x-4)$$

69.
$$2x(x-6)^2$$
 71. $2(2x+3)(4x^2-6x+9)$

73.

Section 10.5 (page 769)

Vocabulary Check (page 769)

- 1. rotation of axes
- **2.** $A'(x')^2 + C'(y')^2 + D'x' + E'y' + F' = 0$
- **3.** invariant under rotation
- 4. discriminant
- **1.** (3,0) **3.** $\left(\frac{3+\sqrt{3}}{2}, \frac{3\sqrt{3}-1}{2}\right)$
- 7. $\frac{(y')^2}{2} \frac{(x')^2}{2} = 1$ 9. $y' = \pm \frac{\sqrt{2}}{2}$

11.
$$\frac{(x'-3\sqrt{2})^2}{16} - \frac{(y'-\sqrt{2})^2}{16} = 1$$

15.
$$(y')^2 = -x'$$

17.
$$(x'-1)^2 = 6(y'+\frac{1}{6})$$

$$\theta = 45^{\circ}$$

$$\theta \approx 26.57^{\circ}$$

21.

$$\theta \approx 31.72^{\circ}$$

28. f

$$\theta \approx 33.69^{\circ}$$

33. (a) Parabola

(b)
$$y = \frac{(8x - 5) \pm \sqrt{(8x - 5)^2 - 4(16x^2 - 10x)}}{2}$$

35. (a) Ellipse

(b)
$$y = \frac{6x \pm \sqrt{36x^2 - 28(12x^2 - 45)}}{14}$$

37. (a) Hyperbola

(b)
$$y = \frac{6x \pm \sqrt{36x^2 + 20(x^2 + 4x - 22)}}{-10}$$

(c)

39. (a) Parabola

(b)
$$y = \frac{-(4x-1) \pm \sqrt{(4x-1)^2 - 16(x^2 - 5x - 3)}}{9}$$

(c)

41.

45. (2, 2), (2, 4)

51.
$$(0,4)$$
 53. $(1,\sqrt{3}), (1,-\sqrt{3})$

57.
$$(0,\frac{3}{2}), (-3,0)$$

59. True. The graph of the equation can be classified by finding the discriminant. For a graph to be a hyperbola, the discriminant must be greater than zero. If $k \ge \frac{1}{4}$, then the discriminant would be less than or equal to zero.

61. Answers will vary.

63.

67.

69.

71. Area = 45.11 square units

73. Area = 48.60 square units

CHAPTER 10

Section 10.6 (page 776)

Vocabulary Check (page 776)

- 1. plane curve; parametric; parameter
- 2. orientation
- **3.** eliminating the parameter

1. (a)	t	0	1	2	3	4
	х	0	1	$\sqrt{2}$	$\sqrt{3}$	2
	ν	3	2	1	0	-1

The graph of the rectangular equation shows the entire parabola rather than just the right half.

The graph of the rectangular equation continues the graph into the second and third quadrants.

3. (a)

(b)
$$y = \frac{2}{3}x + 3$$

(b)
$$y = 16x^2$$

(b)
$$y = x^2 - 4x + 4$$

11. (a)

13. (a)

(b)
$$y = \left| \frac{x}{2} - 3 \right|$$

15. (a)

17. (a)

(b)
$$\frac{x^2}{16} + \frac{y^2}{4} =$$

(b)
$$\frac{(x-4)^2}{4} + (y+1)^2 =$$

19. (a)

21. (a)

(b)
$$y = \frac{1}{x^3}$$

(b)
$$y = \ln x$$

23. Each curve represents a portion of the line y = 2x + 1.

Domain

Orientation

- (a) $(-\infty, \infty)$
- Left to right
- (b) [-1, 1]
- Depends on θ
- (c) $(0, \infty)$
- Right to left
- (d) $(0, \infty)$
- Left to right
- **25.** $y y_1 = m(x x_1)$ **27.** $\frac{(x h)^2}{a^2} + \frac{(y k)^2}{b^2} = 1$
- **29.** x = 6t

- **31.** $x = 3 + 4 \cos \theta$
- y = -3t
- $y = 2 + 4 \sin \theta$
- **33.** $x = 4 \cos \theta$ $y = \sqrt{7} \sin \theta$
- **35.** $x = 4 \sec \theta$ $y = 3 \tan \theta$
- **37.** (a) x = t, y = 3t 2 (b) x = -t + 2, y = -3t + 4
- **39.** (a) $x = t, y = t^2$ (b) $x = -t + 2, y = t^2 4t + 4$
- **41.** (a) x = t, $y = t^2 + 1$ (b) x = -t + 2, $y = t^2 4t + 5$
- **43.** (a) $x = t, y = \frac{1}{t}$ (b) $x = -t + 2, y = -\frac{1}{t 2}$
- **45.** 34

47.

49.

51.

- **53.** b
 - Domain: [-2, 2]
 - Range: $\begin{bmatrix} -1, 1 \end{bmatrix}$
- **57.** (a) 100

- **55.** d
 - Domain: $(-\infty, \infty)$
 - Range: $(-\infty, \infty)$
- Maximum height: 90.7 feet
- Range: 209.6 feet

(b)

- Maximum height: 204.2 feet
- Range: 471.6 feet

(c) 100

- Maximum height: 60.5 feet
- Range: 242.0 feet

- (d) 200
- Maximum height: 136.1 feet
- Range: 544.5 feet
- **59.** (a) $x = (146.67 \cos \theta)t$

$$y = 3 + (146.67 \sin \theta)t - 16t^2$$

(b)

Yes

No

- (d) 19.3°
- **61.** Answers will vary.
- **63.** $x = a\theta b\sin\theta$
 - $y = a b \cos \theta$
- **65.** True

$$x = t$$

$$y = t^2 + 1 \Longrightarrow y = x^2 + 1$$

$$x = 3t$$

$$y = 9t^2 + 1 \Longrightarrow y = x^2 + 1$$

- 67. Parametric equations are useful when graphing two functions simultaneously on the same coordinate system. For example, they are useful when tracking the path of an object so that the position and the time associated with that position can be determined.
- **69.** (5, 2) **71.** (1, -2, 1)
- **73.** $\theta' = 75^{\circ}$
- **75.** $\theta' = \frac{\pi}{2}$

CHAPTER 10

Section 10.7 (page 783)

Vocabulary Check (page 783)

- 2. directed distance; directed angle
- **3.** polar
- **4.** $x = r \cos \theta$

$$\tan \theta = \frac{y}{r}$$

$$y = r \sin \theta$$

$$r^2 = x^2 + y^2$$

1.

3.

$$\left(4,\frac{5\pi}{3}\right),\left(-4,-\frac{4\pi}{3}\right)$$

$$\left(0,\frac{5\pi}{6}\right),\left(0,-\frac{13\pi}{6}\right)$$

$$(\sqrt{2}, 8.64), (-\sqrt{2}, -0.78)$$

$$(\sqrt{2}, 8.64), (-\sqrt{2}, -0.78)$$
 $(2\sqrt{2}, 10.99), (-2\sqrt{2}, 7.85)$

9.
$$(0,3)$$
 11. $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ **13.** $\left(-\sqrt{2}, \sqrt{2}\right)$

13.
$$(-\sqrt{2}, \sqrt{2})$$

15.
$$(-1.1340, -2.2280)$$
 17. $(\sqrt{2}, \frac{\pi}{4})$

17.
$$\left(\sqrt{2}, \frac{\pi}{4}\right)$$

19.
$$(6, \pi)$$

21. (5, 2.2143) **23.**
$$\left(\sqrt{6}, \frac{5\pi}{4}\right)$$
 25. $\left(3\sqrt{13}, 0.9828\right)$

$$(3\sqrt{13}, 0.9828)$$

27.
$$(\sqrt{13}, 5.6952)$$
 29. $(\sqrt{7}, 0.8571)$

31.
$$(\frac{7}{6}, 0.4900)$$
 33. $r = 3$ **35.** $r = 4 \csc \theta$

29. (
$$\sqrt{7}$$
, 0.8571

33.
$$r = 3$$

37.
$$r = 10 \sec \theta$$
 39. $r = \frac{-2}{3 \cos \theta - \sin \theta}$

37.
$$r = 10 \sec \theta$$

39.
$$r = \frac{2}{3\cos\theta - s}$$

41.
$$r^2 = 16 \sec \theta \csc \theta = 32 \csc 2\theta$$

43.
$$r = \frac{4}{1 - \cos \theta}$$
 or $-\frac{4}{1 + \cos \theta}$

1 -
$$\cos \theta$$
 1 + $\cos \theta$
45. $r = a$ 47. $r = 2a \cos \theta$

49.
$$x^2 + y^2 - 4y = 0$$

51.
$$\sqrt{3}x + y = 0$$
 53. $x^2 + y^2 = 16$

3.
$$x^2 + y^2 = 1$$

55.
$$y = 4$$
 57. $x^2 + y^2 - x^{2/3} = 0$

59.
$$(x^2 + y^2)^2 = 6x^2y - 2y^3$$
 61. $x^2 + 4y - 4 = 0$

63.
$$4x^2 - 5y^2 - 36y - 36 = 0$$

65. The graph of the polar equation consists of all points that are six units from the pole.

$$x^2 + y^2 = 36$$

67. The graph of the polar equation consists of all points on the line that make an angle of $\pi/6$ with the positive polar axis.

$$-\sqrt{3}x + 3y = 0$$

69. The graph of the polar equation is not evident by simple inspection, so convert to rectangular form.

$$x - 3 = 0$$

71. True. Because r is a directed distance, the point (r, θ) can be represented as $(r, \theta \pm 2\pi n)$.

73.
$$(x - h)^2 + (y - k)^2 = h^2 + k^2$$

Radius: $\sqrt{h^2 + k^2}$

Center: (h, k)

75. (a) Answers will vary.

(b)
$$(r_1, \theta_1), (r_2, \theta_2)$$
 and the pole are collinear.

$$d = \sqrt{r_1^2 + r_2^2 - 2r_1r_2} = |r_1 - r_2|$$

This represents the distance between two points on the line $\theta = \theta_1 = \theta_2$.

(c)
$$d = \sqrt{r_1^2 + r_2^2}$$

This is the result of the Pythagorean Theorem.

(d) Answers will vary. For example:

Points: $(3, \pi/6), (4, \pi/3)$

Distance: 2.053

Points: $(-3, 7\pi/6), (-4, 4\pi/3)$

Distance: 2.053

77.
$$2\log_6 x + \log_6 z - \log_6 3 - \log_6 y$$

79.
$$\ln x + 2 \ln(x+4)$$
 81. $\log_7 \frac{x}{3y}$ **83.** $\ln \sqrt{x}(x-2)$

81.
$$\log_7 \frac{x}{3}$$

83.
$$\ln \sqrt{x}(x-2)$$

87.
$$\left(\frac{8}{7}, \frac{88}{35}, \frac{8}{5}\right)$$

89.
$$(2, -3, 3)$$

Section 10.8 (page 791)

Vocabulary Check (page 791)

- **1.** $\theta = \frac{\pi}{2}$
- 2. polar axis
- 3. convex limaçon

- 4. circle
- 5. lemniscate
- 6. cardioid
- 1. Rose curve with 4 petals
- 3. Limaçon with inner loop
- **5.** Rose curve with 4 petals
- 7. Polar axis

- 9. $\theta = \frac{\pi}{2}$
- 11. $\theta = \frac{\pi}{2}$, polar axis, pole
- 13. Maximum: |r| = 20 when $\theta = \frac{3\pi}{2}$

Zero:
$$r = 0$$
 when $\theta = \frac{\pi}{2}$

15. Maximum: |r| = 4 when $\theta = 0$, $\frac{\pi}{3}$, $\frac{2\pi}{3}$

Zero:
$$r = 0$$
 when $\theta = \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}$

17.

19.

21.

23.

25.

27.

29.

31.

33.

35.

37.

39.

41.

43.

45.

47.

 $0 \le \theta < 4\pi$

 $0 \le \theta < \pi$

53.

55.

57. True. For a graph to have polar axis symmetry, replace (r, θ) by $(r, -\theta)$ or $(-r, \pi - \theta)$.

59. (a)

Upper half of circle

Lower half of circle

(c)

(d)

Full circle

Left half of circle

- 61. Answers will vary.

63. (a)
$$r = 2 - \frac{\sqrt{2}}{2} (\sin \theta - \cos \theta)$$
 (b) $r = 2 + \cos \theta$

- (c) $r = 2 + \sin \theta$ (d) $r = 2 \cos \theta$

65. (a)

67.

k = 0, circle

k = 1, convex limaçon

k = 2, cardioid

k = 3, limaçon with inner loop

71. $\frac{13}{5}$ **69.** ±3

Section 10.9 (page 797)

Vocabulary Check (page 797)

- 1. conic
- 2. eccentricity; e
- 3. vertical; right

- **4.** (a) iii
- (b) i
 - (c) ii

1.
$$e = 1$$
: $r = \frac{4}{1 + \cos \theta}$, parabola

$$e = 0.5$$
: $r = \frac{2}{1 + 0.5 \cos \theta}$, ellipse

$$e = 1.5$$
: $r = \frac{6}{1 + 1.5 \cos \theta}$, hyperbola

3.
$$e = 1$$
: $r = \frac{4}{1 - \sin \theta}$, parabola

$$e = 0.5$$
: $r = \frac{2}{1 - 0.5 \sin \theta}$, ellipse

$$e = 1.5$$
: $r = \frac{6}{1 - 1.5 \sin \theta}$, hyperbola

5. f **6.** c **7.** d **9.** a **10.** b 11. Parabola

13. Parabola

15. Ellipse

17. Ellipse

19. Hyperbola

21. Hyperbola

23. Ellipse

25.

Parabola

27.

Ellipse

29.

31.

33.
$$r = \frac{1}{1 - \cos \theta}$$
 35. $r = \frac{1}{2 + \sin \theta}$

35.
$$r = \frac{1}{2 + \sin \theta}$$

37.
$$r = \frac{2}{1 + 2\cos\theta}$$
 39. $r = \frac{2}{1 - \sin\theta}$

39.
$$r = \frac{2}{1 - \sin \theta}$$

41.
$$r = \frac{10}{1 - \cos x}$$

41.
$$r = \frac{10}{1 - \cos \theta}$$
 43. $r = \frac{10}{3 + 2\cos \theta}$ **45.** $r = \frac{20}{3 - 2\cos \theta}$ **47.** $r = \frac{9}{4 - 5\sin \theta}$

45.
$$r = \frac{20}{3 - 2\cos\theta}$$

47.
$$r = \frac{9}{4 - 5\sin\theta}$$

49. Answers will vary.

51.
$$r = \frac{9.5929 \times 10^7}{1 - 0.0167 \cos \theta}$$

Perihelion: 9.4354×10^7 miles Aphelion: 9.7558×10^7 miles

53.
$$r = \frac{1.0820 \times 10^8}{1 - 0.0068 \cos \theta}$$

Perihelion: 1.0747×10^8 kilometers Aphelion: 1.0894×10^8 kilometers

55.
$$r = \frac{1.4039 \times 10^8}{1 - 0.0934 \cos \theta}$$

Perihelion: 1.2840×10^8 miles Aphelion: 1.5486×10^8 miles

57.
$$r = \frac{0.624}{1 + 0.847 \sin \pi/2}$$
; $r = 0.338$ astronomical unit

59. True. The graphs represent the same hyperbola.

61. True. The conic is an ellipse because the eccentricity is less than 1.

65.
$$r^2 = \frac{24,336}{169 - 25\cos^2\theta}$$

67.
$$r^2 = \frac{144}{25\cos^2\theta - 9}$$
 69. $r^2 = \frac{144}{25\sin^2\theta - 16}$

69.
$$r^2 = \frac{144}{25 \sin^2 \theta - 16}$$

71. (a) Ellipse

(b) The given polar equation, r, has a vertical directrix to the left of the pole. The equation, r_1 , has a vertical directrix to the right of the pole, and the equation, r_2 , has a horizontal directrix below the pole.

73.
$$\frac{\pi}{6} + n\pi$$
 75. $\frac{\pi}{3} + n\pi, \frac{2\pi}{3} + n\pi$

77.
$$\frac{\pi}{2} + n\pi$$
 79. $\frac{\sqrt{2}}{10}$ 81. $\frac{7\sqrt{2}}{10}$

83.
$$\sin 2u = -\frac{24}{25}$$
 $\cos 2u = -\frac{7}{25}$
 $\tan 2u = \frac{24}{7}$

85.
$$a_n = -\frac{1}{4}n + \frac{1}{4}$$
 87. $a_n = 9n$ **89.** 220 **91**. 720

Review Exercises (page 801)

1.
$$\frac{\pi}{4}$$
 radian, 45° 3. 1.1071 radians, 63.43°

9.
$$2\sqrt{2}$$
 11. Hyperbola

17.
$$y = -2x + 2$$
; (1, 0) **19.** $8\sqrt{6}$ meters

21.
$$\frac{(x-2)^2}{25} + \frac{y^2}{21} = 1$$
 23. $\frac{(x-2)^2}{4} + (y-1)^2 = 1$

25. The foci occur 3 feet from the center of the arch on a line connecting the tops of the pillars.

27. Center:
$$(-2, 1)$$

Vertices: $(-2, 11), (-2, -9)$

Foci: $(-2, 1 \pm \sqrt{19})$

Eccentricity: $\frac{\sqrt{19}}{10}$

29. Center: $(1, -4)$

Vertices: $(1, 0), (1, -8)$

Foci: $(1, -4 \pm \sqrt{7})$

Eccentricity: $\frac{\sqrt{7}}{4}$

Eccentricity:
$$\frac{10}{10}$$

31.
$$y^2 - \frac{x^2}{8} = 1$$
 33. $\frac{5(x-4)^2}{16} - \frac{5y^2}{64} = 1$

33.	3
x -11 -8 -5 -2 1 4	7

(b)
$$y = 2x$$

(b)
$$y = \sqrt[4]{x}$$

(b) $x^2 + y^2 = 36$

61.
$$x = 5 + 6 \cos \theta$$

 $y = 4 + 6\sin\theta$

63.
$$x = 3 \tan \theta$$

$$y = 4 \sec \theta$$

$$\left(2,\frac{9\pi}{4}\right),\left(-2,\frac{5\pi}{4}\right)$$

$$(7, 1.05), (-7, 10.47)$$

69.
$$\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$$
 71. $\left(-\frac{3\sqrt{2}}{2}, \frac{3\sqrt{2}}{2}\right)$ **73.** $\left(2, \frac{\pi}{2}\right)$

75.
$$(2\sqrt{13}, 0.9828)$$
 77. r

75.
$$(2\sqrt{13}, 0.9828)$$
 77. $r = 7$ **79.** $r = 6 \sin \theta$ **81.** $r^2 = 10 \csc 2\theta$ **83.** $x^2 + y^2 = 25$ **87.** $x^2 + y^2 = y^{2/3}$

89. Symmetry:
$$\theta = \frac{\pi}{2}$$
, polar axis, pole

Maximum value of |r|: |r| = 4 for all values of θ No zeros of r

91. Symmetry:
$$\theta = \frac{\pi}{2}$$
, polar axis, pole

Maximum value of |r|: |r| = 4 when $\theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$

Zeros of r: r = 0 when $\theta = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$

93. Symmetry: polar axis

Maximum value of |r|: |r| = 4 when $\theta = 0$

Zeros of r: r = 0 when $\theta = \pi$

CHAPTER 10

95. Symmetry: $\theta = \frac{\pi}{2}$

Maximum value of |r|: |r| = 8 when $\theta = \frac{\pi}{2}$

Zeros of r: r = 0 when $\theta = 3.4814, 5.9433$

97. Symmetry: $\theta = \frac{\pi}{2}$, polar axis, pole

Maximum value of |r|: |r| = 3 when $\theta = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$

Zeros of r: r = 0 when $\theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$

99. Limaçon

101. Rose curve

103. Hyperbola

105. Ellipse

111.
$$r = \frac{7978.81}{1 - 0.937 \cos \theta}$$
; 11,011.87 miles

- 113. False. When classifying an equation of the form $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$, its graph can be determined by its discriminant. For a graph to be a parabola, its discriminant, $B^2 - 4AC$, must equal zero. So, if B = 0, then A or C equals 0.
- 115. False. The following are two sets of parametric equations for the line.

$$x = t$$
, $y = 3 - 2t$
 $x = 3t$, $y = 3 - 6t$

- 117. 5. The ellipse becomes more circular and approaches a circle of radius 5.
- 119. (a) The speed would double.
 - (b) The elliptical orbit would be flatter; the length of the major axis would be greater.
- 121. (a) The graphs are the same.
 - (b) The graphs are the same.

Chapter Test (page 805)

- 1. 0.2783 radian, 15.9°
- 2. 0.8330 radian, 47.7°
- **4.** Parabola: $y^2 = 4(x 1)$

Vertex: (1, 0)

Focus: (2, 0)

5. Hyperbola: $\frac{(x-2)^2}{4} - y^2 = 1$

Center: (2, 0)

Vertices: (0, 0), (4, 0)

Foci: $(2 \pm \sqrt{5}, 0)$

Asymptotes: $y = \pm \frac{1}{2}(x - 2)$

6. Ellipse: $\frac{(x+3)^2}{16} + \frac{(y-1)^2}{9} = 1$

Center: (-3, 1)

Vertices: (1, 1), (-7, 1)

Foci: $(-3 \pm \sqrt{7}, 1)$

7. Circle: $(x-2)^2 + (y-1)^2 = \frac{1}{2}$ Center: (2, 1)

- **8.** $(x-3)^2 = \frac{3}{2}(y+2)$ **9.** $\frac{5(y-2)^2}{4} \frac{5x^2}{16} = 1$
- **10.** (a) 45°

(b)

11.

$$\frac{(x-2)^2}{9} + \frac{y^2}{4} = 1$$

- **13.** $(\sqrt{3}, -1)$
- **14.** $\left(2\sqrt{2}, \frac{7\pi}{4}\right), \left(-2\sqrt{2}, \frac{3\pi}{4}\right), \left(2\sqrt{2}, -\frac{\pi}{4}\right)$
- **15.** $r = 4 \sin \theta$

16.

17.

Parabola

18.

19.

Limaçon with inner loop

Rose curve

- **20.** Answers will vary. For example: r =
- 21. Slope: 0.1511; Change in elevation: 789 feet
- 22. No; Yes

Problem Solving (page 809)

- 1. (a) 1.2016 radians
- (b) 2420 feet, 5971 feet
- 3. $y^2 = 4p(x+p)$
- **5.** (a) Since $d_1 + d_z \le 20$, by definition, the outer bound that the boat can travel is an ellipse. The islands are the foci.
 - (b) Island 1: (-6, 0); Island 2: (6, 0)
 - (c) 20 miles; Vertex: (10, 0)
 - (d) $\frac{x^2}{100} + \frac{y^2}{64} = 1$
- 7. Answers will vary.
- 9. Answers will vary. For example:

$$x = \cos(-t)$$
$$y = 2\sin(-t)$$

11. (a) $y^2 = x^2 \left(\frac{1-x}{1+x} \right)$ (b) $r = \cos 2\theta \sec \theta$

13. Circle

For $n \ge 1$, a bell is produced.

For $n \leq -1$, a heart is produced.

For n = 0, a rose curve is produced.

Appendix A

Appendix A.1 (page A8)

Vocabulary Check (page A8)

- 1. rational
- 2. irrational
- 3. absolute value
- 4. composite
- 5. prime
- 6. variables; constants

- 7. terms
- 8. coefficient
- 9. Zero-Factor Property
- **1.** (a) 5, 1, 2 (b) 0, 5, 1, 2
 - (c) -9, 5, 0, 1, -4, 2, -11
 - (d) $-\frac{7}{2}, \frac{2}{3}, -9, 5, 0, 1, -4, 2, -11$ (e) $\sqrt{2}$
- **3.** (a) 1 (b) 1 (c) -13, 1, -6
 - (d) 2.01, -13, 1, -6, 0.666...
 - (e) 0.010110111 . . .
- **5.** (a) $\frac{6}{3}$, 8 (b) $\frac{6}{3}$, 8 (c) $\frac{6}{3}$, -1, 8, -22
 - (d) $-\frac{1}{3}, \frac{6}{3}, -7.5, -1, 8, -22$ (e) $-\pi, \frac{1}{2}\sqrt{2}$
- 7. 0.625 9. $0.\overline{123}$ 11. -1 < 2.5

- **19.** (a) $x \le 5$ denotes the set of all real numbers less than or
- (c) Unbounded
- **21.** (a) x < 0 denotes the set of all real numbers less than 0. (b) $\xrightarrow{-2} \xrightarrow{-1} \xrightarrow{0} \xrightarrow{1} \xrightarrow{2} x$ (c) Unbounded
- **23.** (a) $[4, \infty)$ denotes the set of all real numbers greater than or equal to 4.
- (c) Unbounded
- **25.** (a) -2 < x < 2 denotes the set of all real numbers greater than -2 and less than 2.
- (c) Bounded
- 27. (a) $-1 \le x < 0$ denotes the set of all real numbers greater than or equal to -1 and less than 0.
- (c) Bounded

- **29.** (a) [-2, 5] denotes the set of all real numbers greater than
 - or equal to -2 and less than 5.
 - (c) Bounded
- **31.** $-2 < x \le 4$
 - **33.** $y \ge 0$
 - **39.** 10 **41.** 5
- **35.** $10 \le t \le 22$ **43.** -1

- **37.** W > 65**47.** −1

 - **49.** |-3| > -|-3|
 - **51.** -5 = -|5|
 - 57. $\frac{5}{2}$ 59. $\frac{128}{75}$
- **53.** -|-2| = -|2|
- **55.** 51 **61.** |\$113,356 - \$112,700| = \$656 > \$5000.05(\$112,700) = \$5635

Because the actual expenses differ from the budget by more than \$500, there is failure to meet the "budget variance test."

63. |\$37,335 - \$37,640| = \$305 < \$5000.05(\$37,640) = \$1882

> Because the difference between the actual expenses and the budget is less than \$500 and less than 5% of the budgeted amount, there is compliance with the "budget variance test."

65. (a) [

1	Year	Expenditures (in billions)	Surplus or deficit (in billions)
	1960	\$92.2	\$0.3 (s)
	1970	\$195.6	\$2.8 (d)
	1980	\$590.9	\$73.8 (d)
	1990	\$1253.2	\$221.2 (d)
	2000	\$1788.8	\$236.4 (s)

- **67.** $|x-5| \le 3$ **69.** $|y| \ge 6$
- **71.** |326 351| = 25 miles
- 73. 7x and 4 are the terms; 7 is the coefficient.
- 75. $\sqrt{3}x^2$, -8x, and -11 are the terms; $\sqrt{3}$ and -8 are the coefficients.
- 77. $4x^3$, x/2, and -5 are the terms; 4 and $\frac{1}{2}$ are the coefficients.
- **79.** (a) -10 (b) -6
- **81.** (a) 14 (b) 2
- **83.** (a) Division by 0 is undefined. (b) 0
- 85. Commutative Property of Addition
- 87. Multiplicative Inverse Property
- 89. Distributive Property
- 91. Multiplicative Identity Property

A204 Answers to Odd-Numbered Exercises and Tests

- 93. Associative Property of Addition
- 95. Distributive Property
- 97. $\frac{1}{2}$ 99. $\frac{3}{8}$ 103. $\frac{5x}{12}$ **101.** 48
- **105.** (a) [0.5 0.0001 0.000001 0.01 5/n5 10 50,000 5,000,000 500
 - (b) The value of 5/n approaches infinity as n approaches 0.
- **107.** False. If a < b, then $\frac{1}{a} > \frac{1}{b}$, where $a \neq b \neq 0$.
- 109. (a) No. If one variable is negative and the other is positive, the expressions are unequal.
 - (b) $|u + v| \le |u| + |v|$

The expressions are equal when u and v have the same sign. If u and v differ in sign, |u + v| is less than |u| + |v|.

- **111.** The only even prime number is 2, because its only factors are itself and 1.
- **113.** (a) Negative (b) Negative
- **115.** Yes. |a| = -a if a < 0.

Appendix A.2 (page A20)

Vocabulary Check (page A20)

- 1. exponent; base
- 2. scientific notation
- 3. square root
- **4.** principle *n*th root

- 5. index; radicand
- 6. simplest form
- 7. conjugates 9. power; index
- 8. rationalizing
- 1. $8 \times 8 \times 8 \times 8 \times 8$
- **3.** 4.9⁶ **5.** (a) 27 (b) 81
- **7.** (a) 1 (b) -9 **9.** (a) $\frac{243}{64}$
- **11.** (a) $\frac{5}{6}$ (b) 4 **13.** -1600 **15.** 2.125
- **17.** −24 **19.** 6 **21.** -54 **23.** 1
- **25.** (a) $-125z^3$ (b) $5x^6$ **27.** $24y^2$ (b) $3x^2$

(b) -1

- **29.** (a) $\frac{7}{r}$ (b) $\frac{4}{3}(x+y)^2$ **31.** (a) 1 (b) $\frac{1}{4r^4}$
- **33.** (a) $-2x^3$ (b) $\frac{10}{r}$ **35.** (a) 3^{3n} (b) $\frac{b^5}{a^5}$
- **37.** 5.73×10^7 square miles
- **39.** 8.99×10^{-5} gram per cubic centimeter
- **41.** 4,568,000,000 ounces
- **43.** 0.0000000000000000016022 coulomb
- **45.** (a) 50,000 (b) 200,000
- **47.** (a) 954.448 (b) 3.077×10^{10}
- **49.** (a) 67,082.039 (b) 39.791
- **51.** (a) 3 (b) $\frac{3}{2}$ **53.** (a) $\frac{1}{8}$ (b) $\frac{27}{8}$
- **55.** (a) -4 (b) 2 **57.** (a) 7.550 (b) -7.225

- **59.** (a) -0.011 (b) 0.005 **61.** (a) 4 (b) $2\sqrt[5]{3}x$

- **63.** (a) $2\sqrt{2}$ (b) $3\sqrt[3]{2}$ **65.** (a) $6x\sqrt{2x}$ (b) $\frac{18\sqrt{z}}{z^2}$

- **67.** (a) $2x\sqrt[3]{2x^2}$ (b) $\frac{5|x|\sqrt{3}}{v^2}$
- **69.** (a) $34\sqrt{2}$ (b) $22\sqrt{2}$ **71.** (a) $2\sqrt{x}$ (b) $4\sqrt{y}$
- **73.** (a) $13\sqrt{x+1}$ (b) $18\sqrt{5x}$
- **75.** $\sqrt{5} + \sqrt{3} > \sqrt{5+3}$ **77.** $5 > \sqrt{3^2+2^2}$
- 79. $\frac{\sqrt{3}}{3}$ 81. $\frac{5+\sqrt{3}}{11}$ 83. $\frac{2}{\sqrt{2}}$
- **85.** $\frac{2}{3(\sqrt{5}-\sqrt{3})}$ **87.** $9^{1/2}$ **89.** $\sqrt[5]{32}$
- **91.** $(-216)^{1/3}$ **93.** $81^{3/4}$ **95.** $\frac{2}{r}$ **97.** $\frac{1}{r^3}$, x > 0
- **99.** (a) $\sqrt{3}$ (b) $\sqrt[3]{(x+1)^2}$
- **101.** (a) $2\sqrt[4]{2}$ (b) $\sqrt[8]{2x}$ **103.** $\frac{\pi}{2} \approx 1.57$ seconds
- **105.** (a)

h	0	1	2	3	4	5	6
t	0	2.93	5.48	7.67	9.53	11.08	12.32

h	7	8	9	10	11	12
t	13.29	14.00	14.50	14.80	14.93	14.96

(b)
$$t \to 8.64\sqrt{3} \approx 14.96$$

- 107. True. When dividing variables, you subtract exponents.
- **109.** $a^0 = 1, a \neq 0$, using the property $\frac{a^m}{a^n} = a^{m-n}$: $\frac{a^m}{^m} = a^{m-m} = a^0 = 1.$
- 111. When any positive integer is squared, the units digit is 0, 1, 4, 5, 6, or 9. Therefore, $\sqrt{5233}$ is not an integer.

Appendix A.3 (page A31)

Vocabulary Check (page A31)

- **1.** $n; a_n; a_0$
- 2. descending
- **3.** monomial; binomial; trinomial
- 4. like terms
- 5. First terms; Outer terms; Inner terms; Last terms
- **6.** factoring 7. completely factored
- **3.** b **4.** a **2.** e **5.** f
- 7. $-2x^3 + 4x^2 3x + 20$ 9. $-15x^4 + 1$
- **11.** (a) $-\frac{1}{2}x^5 + 14x$
 - (b) Degree: 5; Leading coefficient: $-\frac{1}{2}$
 - (c) Binomial

- **13.** (a) $-3x^4 + 2x^2 5$
 - (b) Degree: 4; Leading coefficient: -3
 - (c) Trinomial
- **15.** (a) $x^5 1$
 - (b) Degree: 5; Leading coefficient: 1
 - (c) Binomial
- **17.** (a) 3
 - (b) Degree: 0; Leading coefficient: 3
 - (c) Monomial
- **19.** (a) $-4x^5 + 6x^4 + 1$
 - (b) Degree: 5; Leading coefficient: −4
 - (c) Trinomial
- **21.** (a) $4x^3y$
 - (b) Degree: 3; Leading coefficient: 4
 - (c) Monomial
- **23.** Polynomial: $-3x^3 + 2x + 8$
- **25.** Not a polynomial because it includes a term with a negative exponent
- **27.** Polynomial: $-y^4 + y^3 + y^2$ **29.** -2x 10
- **31.** $3x^3 2x + 2$ **33.** $8.3x^3 + 29.7x^2 + 11$
- **35.** 12z + 8 **37.** $3x^3 6x^2 + 3x$ **39.** $-15z^2 + 5z$
- **41.** $-4x^4 + 4x$ **43.** $7.5x^3 + 9x$ **45.** $-\frac{1}{2}x^2 12x$
- **47.** $x^2 + 7x + 12$ **49.** $6x^2 7x 5$
- **51.** $x^4 + x^2 + 1$ **53.** $x^2 100$ **55.** $x^2 4y^2$
- **57.** $4x^2 + 12x + 9$ **59.** $4x^2 20xy + 25y^2$
- **61.** $x^3 + 3x^2 + 3x + 1$ **63.** $8x^3 12x^2y + 6xy^2 y^3$
- **65.** $16x^6 24x^3 + 9$ **67.** $m^2 n^2 6m + 9$
- **69.** $x^2 + 2xy + y^2 6x 6y + 9$ **71.** $4r^4 25$
- **73.** $\frac{1}{4}x^2 3x + 9$ **75.** $\frac{1}{9}x^2 4$
- **77.** $1.44x^2 + 7.2x + 9$ **79.** $2.25x^2 16$
- **81.** $2x^2 + 2x$ **83.** $u^4 16$ **85.** x y
- **87.** $x^2 2\sqrt{5}x + 5$ **89.** 3(x + 2)
- **91.** $2x(x^2-3)$ **93.** (x-1)(x+6)
- **95.** (x+3)(x-1) **97.** $\frac{1}{2}(x+8)$
- **99.** $\frac{1}{2}x(x^2+4x-10)$ **101.** $\frac{2}{3}(x-6)(x-3)$
- **103.** (x + 9)(x 9) **105.** 2(4y 3)(4y + 3)
- **107.** $(4x + \frac{1}{3})(4x \frac{1}{3})$ **109.** (x + 1)(x 3)
- **111.** (3u + 2v)(3u 2v) **113.** $(x 2)^2$
- **115.** $(2t + 1)^2$ **117.** $(5y 1)^2$ **119.** $(3u + 4v)^2$
- **121.** $(x-\frac{2}{3})^2$ **123.** $(x-2)(x^2+2x+4)$
- **125.** $(y + 4)(y^2 4y + 16)$
- **127.** $(2t-1)(4t^2+2t+1)$
- **129.** $(u + 3v)(u^2 3uv + 9v^2)$ **131.** (x + 2)(x 1)
- **133.** (s-3)(s-2) **135.** -(y+5)(y-4)
- **137.** (x-20)(x-10) **139.** (3x-2)(x-1)
- **141.** (5x + 1)(x + 5) **143.** -(3z 2)(3z + 1)
- **145.** $(x-1)(x^2+2)$ **147.** $(2x-1)(x^2-3)$
- **149.** $(3 + x)(2 x^3)$ **151.** $(3x^2 1)(2x + 1)$
- **153.** (x + 2)(3x + 4) **155.** (2x 1)(3x + 2)
- **157.** (3x 1)(5x 2) **159.** 6(x + 3)(x 3)

- **161.** $x^2(x-4)$ **163.** $(x-1)^2$ **165.** $(1-2x)^2$
- **167.** -2x(x+1)(x-2) **169.** (9x+1)(x+1)
- **171.** $\frac{1}{81}(x+36)(x-18)$ **173.** $(3x+1)(x^2+5)$
- **175.** $x(x-4)(x^2+1)$ **177.** $\frac{1}{4}(x^2+3)(x+12)$
- **179.** (t+6)(t-8) **181.** (x+2)(x+4)(x-2)(x-4)
- **183.** $5(x+2)(x^2-2x+4)$ **185.** (3-4x)(23-60x)
- **187.** $5(1-x)^2(3x+2)(4x+3)$
- **189.** $(x-2)^2(x+1)^3(7x-5)$
- **191.** $3(x^6 + 1)^4(3x + 2)^2(33x^6 + 20x^5 + 3)$
- **193.** -14, 14, -2, 2 **195.** -11, 11, -4, 4, -1, 1
- **197.** Two possible answers: 2, -12
- **199.** Two possible answers: -2, -4
- **201.** (a) $P = 22x 25{,}000$ (b) \$85,000
- **203.** (a) $500r^2 + 1000r + 500$

(b)	r	$2\frac{1}{2}\%$	3%	4%
	$500(1+r)^2$	\$525.31	\$530.45	\$540.80

r	$4\frac{1}{2}\%$	5%
$500(1+r)^2$	\$546.01	\$551.25

- (c) The amount increases with increasing r.
- **205.** (a) $V = 4x^3 88x^2 + 468x$

(b)	x (cm)	1	2	3
	$V (cm^3)$	384	616	720

207. 44x + 308 **209.** (a) $3x^2 + 8x$ (b) $30x^2$

- **215.** $4\pi(r+1)$ **217.** 4(6-x)(6+x)
- **219.** (a) $\pi h(R-r)(R+r)$ (b) $V=2\pi \left[\left(\frac{R+r}{2}\right)(R-r)\right]h$
- **221.** False. $(4x^2 + 1)(3x + 1) = 12x^3 + 4x^2 + 3x + 1$

223. True.
$$a^2 - b^2 = (a + b)(a - b)$$
 225. $m + n$

227.
$$-x^3 + 8x^2 + 2x + 7$$
 229. $(x^n + y^n)(x^n - y^n)$

231.
$$x^{3n} - y^{2n}$$
 is completely factored.

233. Answers will vary. Sample answer:
$$x^2 - 3$$

Appendix A.4 (page A42)

Vocabulary Check (page A42)

- 2. rational expression
- 3. complex 4. smaller 5. equivalent **6.** difference quotient
- 1. All real numbers 3. All nonnegative real numbers
- 5. All real numbers x such that $x \neq 2$
- 7. All real numbers x such that $x \ge -1$

11.
$$\frac{3x}{2}$$
, $x \neq 0$

11.
$$\frac{3x}{2}$$
, $x \neq 0$ 13. $\frac{3y}{y+1}$, $x \neq 0$ 15. $\frac{-4y}{5}$, $y \neq \frac{1}{2}$

15.
$$\frac{-4y}{5}$$
, $y \neq \frac{1}{2}$

17.
$$-\frac{1}{2}$$
, $x \neq 5$ **19.** $y - 4$, $y \neq -4$

21.
$$\frac{x(x+3)}{x-2}$$
, $x \neq -2$ **23.** $\frac{y-4}{y+6}$, $y \neq 3$

25.
$$\frac{-(x^2+1)}{(x+2)}$$
, $x \neq 2$ **27.** $z-2$

29.	x	0	1	2	3	4	5	6
	$\frac{x^2-2x-3}{x-3}$	1	2	3	Undef.	5	6	7
	x + 1	1	2	3	4	5	6	7

The expressions are equivalent except at x = 3.

31. The expression cannot be simplified.

33.
$$\frac{\pi}{4}$$
, $r \neq 0$ **35.** $\frac{1}{5(x-2)}$, $x \neq 1$

37.
$$\frac{r+1}{r}$$
, $r \neq 1$ **39.** $\frac{t-3}{(t+3)(t-2)}$, $t \neq -2$

41.
$$\frac{(x+6)(x+1)}{x^2}$$
, $x \neq 6$ **43.** $\frac{x+5}{x-1}$ **45.** $\frac{6x+13}{x+3}$

47.
$$-\frac{2}{x-2}$$
 49. $-\frac{x^2+3}{(x+1)(x-2)(x-3)}$

51.
$$\frac{2-x}{x^2+1}$$
, $x \neq 0$

53. The error was incorrect subtraction in the numerator.

55.
$$\frac{1}{2}$$
, $x \neq 2$ **57.** $x(x+1)$, $x \neq -1$, 0

59.
$$\frac{2x-1}{2x}$$
, $x > 0$ **61.** $\frac{x^7-2}{x^2}$ **63.** $\frac{-1}{(x^2+1)^5}$

65.
$$\frac{2x^3 - 2x^2 - 5}{(x-1)^{1/2}}$$
 67. $\frac{3x-1}{3}$, $x \neq 0$

69.
$$\frac{-1}{x(x+h)}$$
, $h \neq 0$

71.
$$\frac{-1}{(x-4)(x+h-4)}$$
, $h \neq 0$ 73. $\frac{1}{\sqrt{x+2}+\sqrt{x}}$

75.
$$\frac{1}{\sqrt{x+h+1}+\sqrt{x+1}}$$
, $h \neq 0$

77.
$$\frac{x}{2(2x+1)}$$
, $x \neq 0$

79. (a)
$$\frac{1}{16}$$
 minute (b) $\frac{x}{16}$ minute(s) (c) $\frac{60}{16} = \frac{15}{4}$ minutes

81. (a) 9.09% (b)
$$\frac{288(MN-P)}{N(MN+12P)}$$
; 9.09%

t	12	14	16	18	20	22
T	41.7	41.3	41.1	40.9	40.7	40.6

- (b) The model is approaching a T-value of 40.
- 85. False. In order for the simplified expression to be equivalent to the original expression, the domain of the simplified expression needs to be restricted. If n is even, $x \neq -1$, 1. If *n* is odd, $x \neq 1$.
- 87. Completely factor each polynomial in the numerator and in the denominator. Then conclude that there are no common factors.

Appendix A.5 (page A56)

Vocabulary Check (page A56)

- 1. equation 2. solve 3. identities; conditional
- **4.** ax + b = 05. extraneous
- 6. quadratic equation
- 7. factoring; extracting square roots; completing the square; Quadratic Formula
- 1. Identity 3. Conditional equation 5. Identity
- **7.** Identity 9. Conditional equation **11.** 4
- **13.** -9 **15.** 5 **17.** 9 19. No solution
- 23. $-\frac{6}{5}$ **21.** -4 **25.** 9
- **27.** No solution. The *x*-terms sum to zero. **29.** 10
- **31.** 4 **33.** 3 **35.** 0
- 37. No solution. The variable is divided out.
- **39.** No solution. The solution is extraneous.
- **41.** 2 **43.** No solution. The solution is extraneous.
- **47.** All real numbers *x* **45.** 0
- **49.** $2x^2 + 8x 3 = 0$ **51.** $x^2 6x + 6 = 0$
- **53.** $3x^2 90x 10 = 0$ **55.** $0, -\frac{1}{2}$ **57.** 4, -2
- **59.** -5 **61.** 3, $-\frac{1}{2}$ **63.** 2, -6 **65.** $-\frac{20}{3}$, -4 **67.** -a **69.** ± 7 **71.** $\pm \sqrt{11}$ **73.** $\pm 3\sqrt{3}$

- **75.** 8, 16 **77.** $-2 \pm \sqrt{14}$ **79.** $\frac{1 \pm 3\sqrt{2}}{2}$
- **81.** 2 **83.** 4, -8 **85.** $\sqrt{11}$ 6, $-\sqrt{11}$ 6
- 87. $1 \pm \frac{\sqrt{6}}{3}$ 89. $2 \pm 2\sqrt{3}$ 91. $\frac{-5 \pm \sqrt{89}}{4}$
- **93.** $\frac{1}{2}$, -1 **95.** $\frac{1}{4}$, $-\frac{3}{4}$ **97.** $1 \pm \sqrt{3}$
- **99.** $-7 \pm \sqrt{5}$ **101.** $-4 \pm 2\sqrt{5}$ **103.** $\frac{2}{3} \pm \frac{\sqrt{7}}{3}$
- **105.** $-\frac{4}{3}$ **107.** $-\frac{1}{2} \pm \sqrt{2}$ **109.** $\frac{2}{7}$ **111.** $2 \pm \frac{\sqrt{6}}{2}$
- **113.** $6 \pm \sqrt{11}$ **115.** $-\frac{3}{8} \pm \frac{\sqrt{265}}{8}$ **117.** 0.976, -0.643
- **119.** 1.355, -14.071 **121.** 1.687, -0.488
- **123.** -0.290, -2.200 **125.** $1 \pm \sqrt{2}$ **127.** 6, -12
- **129.** $\frac{1}{2} \pm \sqrt{3}$ **131.** $-\frac{1}{2}$ **133.** $\frac{3}{4} \pm \frac{\sqrt{97}}{4}$
- **135.** $0, \pm \frac{3\sqrt{2}}{2}$ **137.** ± 3 **139.** -6 **141.** -3, 0
- **143.** 3, 1, -1 **145.** ± 1 **147.** $\pm \sqrt{3}$, ± 1
- **149.** $\pm \frac{1}{2}$, ± 4 **151.** 1, -2 **153.** 50
- **157.** -16 **159.** 2, -5 **161.** 0 **163.** 9
- **165.** $-3 \pm 16\sqrt{2}$ **167.** $\pm \sqrt{14}$ **169.** 1 **171.** 2, $-\frac{3}{2}$
- 173. $\frac{-3 \pm \sqrt{21}}{6}$ 175. 4, -5 177. $\frac{1 \pm \sqrt{31}}{3}$
- **179.** 3, -2 **181.** $\sqrt{3}$, -3 **183.** 3, $\frac{-1 \sqrt{17}}{2}$
- **185.** (a) 61.2 inches
 - (b) Yes. The estimated height of a male with a 19-inch femur is 69.4 inches.

(c)	Height,	Female femur length	Male femur length
	60	15.48	14.79
	70	19.80	19.28
	80	24.12	23.77
	90	28.44	28.26
	100	32.76	32.75
	110	37.08	37.24

100 inches

- (d) $x \approx 100.59$; There would not be a problem because it is not likely for either a male or a female to be 100 inches tall (which is 8 feet 4 inches tall).
- **187.** y = -0.25t + 8; after about 28 hours
- **189.** 6 inches \times 6 inches \times 2 inches
- **191.** $\frac{20\sqrt{3}}{3} \approx 11.55$ inches
- **193.** (a) 1998 (b) During 2007

- 195. 500 units
- **197.** False. x(3 x) = 10 $3x - x^2 = 10$

The equation cannot be written in the form ax + b = 0.

199. False. See Example 14 on page A55.

- 201. Equivalent equations have the same solution set, and one is derived from the other by steps for generating equivalent equations.
 - 2x = 5, 2x + 3 = 8
- **203.** Yes. The student should have subtracted 15x from both sides to make the right side of the equation equal to zero. Factoring out an x shows that there are two solutions, x = 0 and x = 6.
- **205.** $x^2 3x 18 = 0$ **207.** $x^2 22x + 112 = 0$
- **209.** $x^2 2x 1 = 0$ **211.** a = 9, b = 9
- **213.** (a) $x = 0, -\frac{b}{a}$ (b) x = 0, 1

Appendix A.6 (page A66)

Vocabulary Check (page A66)

- 1. solution set 2. graph 3. negative
- 4. solution set 5. double 6. union
- 1. $-1 \le x \le 5$. Bounded
- 3. x > 11. Unbounded
- 5. x < -2. Unbounded
- **7.** b **8.** f
 - **9.** d
- **10.** c
- **11.** e **12.** a (d) No
- **13.** (a) Yes (b) No (c) Yes
- **15.** (a) Yes (b) No
 - (c) No (d) Yes
- **17.** (a) Yes (b) Yes (c) Yes (d) No **21.** $x < \frac{3}{2}$
- **19.** x < 3

23. $x \ge 12$

10 11 12 13 14

27.
$$x \ge \frac{2}{7}$$

31. $x \ge 4$

35. $x \ge -4$ **39.** $-\frac{9}{2} < x < \frac{15}{2}$

43.
$$10.5 \le x \le 13.5$$

45.
$$-6 < x < 6$$

49. No solution

47.
$$x < -2, x > 2$$

53.
$$x \le -\frac{3}{2}, x \ge 3$$

$$-\frac{3}{2}$$

55.
$$x \le -5$$
, $x \ge 11$

57.
$$4 < x < 5$$

59.
$$x \le -\frac{29}{2}, \ x \ge -\frac{11}{2}$$

x > 2

 $x \leq 2$

 $-6 \le x \le 22$

71.

(a) $x \ge 2$

(a)
$$-2 \le x \le 4$$

(b) $x \le 4$

(b) $x \le \frac{3}{2}$ 73.

(a) $1 \le x \le 5$

(b)
$$x \le -1, x \ge 7$$

77. $[-3, \infty)$ 79. $(-\infty, \frac{7}{2}]$ **75.** $[5, \infty)$

81. All real numbers within eight units of 10

83. $|x| \leq 3$

85. $|x-7| \ge 3$ **87.** |x-12| < 10

89.
$$|x+3| > 4$$
 91. $x > 6$

95.
$$x \ge 36$$

97.
$$134 \le x \le 234$$

99. (a)

(b)
$$x \ge 129$$

101. (a)
$$1 \le t \le 10$$
 (b) $t > 16$

103.
$$106.864$$
 square inches \leq area \leq 109.464 square inches

109.
$$20 \le h \le 80$$

111. False. c has to be greater than zero.

Appendix A.7 (page A75)

Vocabulary Check (page A75)

1. numerator 2. reciprocal

1. Change all signs when distributing the minus sign.

$$2x - (3y + 4) = 2x - 3y - 4$$

3. Change all signs when distributing the minus sign.

$$\frac{4}{16x - (2x + 1)} = \frac{4}{14x - 1}$$

5. z occurs twice as a factor.

$$(5z)(6z) = 30z^2$$

7. The fraction as a whole is multiplied by a, not the numerator and denominator separately.

$$a\left(\frac{x}{y}\right) = \frac{ax}{y}$$

9. $\sqrt{x+9}$ cannot be simplified.

11. Divide out common factors, not common terms.

$$\frac{2x^2+1}{5x}$$
 cannot be simplified.

13. To get rid of negative exponents:

$$\frac{1}{a^{-1} + b^{-1}} = \frac{1}{a^{-1} + b^{-1}} \cdot \frac{ab}{ab} = \frac{ab}{b+a}.$$

15. Factor within grouping symbols before applying exponent

$$(x^2 + 5x)^{1/2} = [x(x + 5)]^{1/2} = x^{1/2}(x + 5)^{1/2}$$

17. To add fractions, first find a common denominator.

$$\frac{3}{x} + \frac{4}{y} = \frac{3y + 4x}{xy}$$

19.
$$3x + 2$$
 21. $2x^2 + x + 15$ **23.** $\frac{1}{3}$ **25.**

27.
$$\frac{1}{2x^2}$$
 29. $\frac{25}{9}, \frac{49}{16}$ **31.** 1, 2 **33.** 1 – 5x

35.
$$1 - 7x$$
 37. $3x - 1$ **39.** $3x^2(2x - 1)^{-3}$

41.
$$\frac{4}{3}x^{-1} + 4x^{-4} - 7x(2x)^{-1/3}$$
 43. $\frac{16}{x} - 5 - x$

45.
$$4x^{8/3} - 7x^{5/3} + \frac{1}{x^{1/3}}$$
 47. $\frac{3}{x^{1/2}} - 5x^{3/2} - x^{7/2}$

49.
$$\frac{-7x^2 - 4x + 9}{(x^2 - 3)^3(x + 1)^4}$$
 51. $\frac{27x^2 - 24x + 2}{(6x + 1)^4}$

53.
$$\frac{-1}{(x+3)^{2/3}(x+2)^{7/4}}$$
 55. $\frac{4x-3}{(3x-1)^{4/3}}$ **57.** $\frac{x}{x^2+4}$

59.
$$\frac{(3x-2)^{1/2}(15x^2-4x+45)}{2(x^2+5)^{1/2}}$$

(b)
$$x = 0.5$$
 mile

(c)
$$\frac{3x\sqrt{x^2 - 8x + 20} + (x - 4)\sqrt{x^2 + 4}}{6\sqrt{x^2 + 4}\sqrt{x^2 - 8x + 20}}$$

63. True.
$$x^{-1} + y^{-2} = \frac{1}{x} + \frac{1}{y^2} = \frac{y^2 + x}{xy^2}$$

65. True.
$$\frac{1}{\sqrt{x}+4} = \frac{1}{\sqrt{x}+4} \cdot \frac{\sqrt{x}-4}{\sqrt{x}-4} = \frac{\sqrt{x}-4}{x-16}$$

- **67.** Add exponents when multiplying powers with like bases. $x^n \cdot x^{3n} = x^{4n}$
- **69.** When a binomial is squared, there is also a middle term. $(x^n + y^n)^2 = x^{2n} + 2x^ny^n + y^{2n} \neq x^{2n} + y^{2n}$
- The two answers are equivalent and can be obtained by factoring.

Index

Α	negative, 282	Axis (axes)
A1 1 4 1	obtuse, 283	imaginary, 470
Absolute value	positive, 282	of a parabola, 129, 736
of a complex number, 470	radian, 283	polar, 779
inequality, solution of, A63	reference, 314	real, 470
properties of, A4	of repose, 351	rotation of, 763
of a real number, A4	standard position, 282	of symmetry, 129
Acute angle, 283	supplementary, 285	D
Addition	terminal side, 282	В
of a complex number, 163	vertex, 282	Back-substitution, 497
of fractions	Angular speed, 287	Base, A11
with like denominators, A7	Aphelion distance, 798	natural, 222
with unlike denominators, A7	Arc length, 287	Basic equation, 534
of matrices, 588	Arccosine function, 345	guidelines for solving, 538
vector, 449	Arcsine function, 343, 345	Basic Rules of Algebra, A6
properties of, 451	Arctangent function, 345	Bearings, 355
resultant of, 449	Area	Bell-shaped curve, 261
Additive identity	common formulas for, 7	Binomial, 683, A23
for a complex number, 163	of an oblique triangle, 434	coefficient, 683
for a matrix, 591	of a sector of a circle, 289	cube of, A25
for a real number, A6	of a triangle, 622	expanding, 686
Additive inverse, A5	Heron's Area Formula, 442, 491	square of, A25
for a complex number, 163	Argument of a complex number, 471	Binomial Theorem, 683, 724
for a real number, A6	Arithmetic combination, 84	Book value, 32
Adjacent side of a right triangle, 301	Arithmetic sequence, 653	Bounded, A60
Adjoining matrices, 604	common difference of, 653	Bounded intervals, A2
Algebraic expression, A5	nth partial sum, 657	Branches of a hyperbola, 753
domain of, A36	nth term of, 654	Break-even point, 501
equivalent, A36	recursion form, 654	Butterfly curve, 810
evaluate, A5	sum of a finite, 656, 723	Buttering curve, 616
term of, A5	Associative Property of Addition	C
Algebraic function, 218	for complex numbers, 164	
Algebraic tests for symmetry, 19	for matrices, 590	Cardioid, 789
Alternative definition of conic, 793	for real numbers, A6	Cartesian plane, 2
Alternative form of Law of Cosines, 439,	Associative Property of Multiplication	Center
490	for complex numbers, 164	of a circle, 20
Amplitude of sine and cosine curves, 323	for matrices, 590, 594	of an ellipse, 744
Angle(s), 282	for real numbers, A6	of a hyperbola, 753
acute, 283	Associative Property of scalar	Central angle of a circle, 283 Change-of-base formula, 239
between two lines, 729	multiplication for matrices, 594	Characteristics of a function from set A
between two vectors, 461, 492	Astronomical unit, 796	to set B , 40
central, 283	Asymptote(s)	Circle, 20, 789
complementary, 285	horizontal, 185	arc length of, 287
conversions between radians and	of a hyperbola, 755	center of, 20
degrees, 286	oblique, 190	central angle, 283
coterminal, 282	of a rational function, 186	classifying
degree, 285	slant, 190	by discriminant, 767
of depression, 306	vertical, 185	by general equation, 759
of elevation, 306	Augmented matrix, 573	radius of, 20
initial side, 282	Average rate of change, 59	sector of, 289
measure of, 283	Average value of a population, 261	area of, 289

A212 Index

standard form of the equation of, 20	Associative Property of	Continuous function, 139, 771
unit, 294	Multiplication, 164	Conversions between degrees and
Circumference, common formulas for, 7	Commutative Property of Addition,	radians, 286
Classification of conics	164	Convex limaçon, 789
by the discriminant, 767	Commutative Property of	Coordinate(s), 2
by general equation, 759	Multiplication, 164	polar, 779
Coded row matrices, 625	Distributive Property, 164	Coordinate axes, reflection in, 76
Coefficient	equality of, 162	Coordinate conversion, 780
binomial, 683	imaginary part of, 162	Coordinate system, polar, 779
correlation, 104	modulus of, 471	Correlation coefficient, 104
equating, 536	nth root of, 475, 476	Correspondence, one-to-one, A1
leading, A23	nth roots of unity, 477	Cosecant function, 295, 301
of a polynomial, A23	polar form, 471	of any angle, 312
of a variable term, A5	product of two, 472	graph of, 335, 338
Coefficient matrix, 573	quotient of two, 472	Cosine curve, amplitude of, 323
Cofactor(s)	real part of, 162	Cosine function, 295, 301
expanding by, 614	standard form of, 162	of any angle, 312
of a matrix, 613	subtraction of, 163	common angles, 315
Cofunction identities, 374	trigonometric form of, 471	domain of, 297
Collinear points, 13, 623	Complex plane, 470	graph of, 325, 338
test for, 623	imaginary axis, 470	inverse, 345
Column matrix, 572	real axis, 470	period of, 324
Combination of n elements taken r at a	Complex zeros occur in conjugate pairs,	range of, 297
time, 696	173	special angles, 303
Combined variation, 107	Component form of a vector v , 448	Cotangent function, 295, 301
Common difference, 653	Components, vector, 463, 464	of any angle, 312
Common formulas	Composite number, A7	graph of, 334, 338
area, 7	Composition, 86	Coterminal angles, 282
circumference, 7	Compound interest	Cramer's Rule, 619, 620
perimeter, 7	continuous compounding, 223	Critical numbers, 197, 201
volume, 7	formulas for, 224	Cross multiplying, A48
Common logarithmic function, 230	Conditional equation, A46	Cryptogram, 625
Common ratio, 663	Conic(s) or conic section(s), 735	Cube of a binomial, A25
Commutative Property of Addition	alternative definition, 793	Cube root, A14
for complex numbers, 164	classifying	Cubic function, 68
for matrices, 590	by the discriminant, 767	Curtate cycloid, 778
for real numbers, A6	by general equation, 759	Curve
Commutative Property of Multiplication	degenerate, 735	butterfly, 810
for complex numbers, 164	eccentricity of, 793	plane, 771
for real numbers, A6	locus of, 735	rose, 788, 789
Complement	polar equations of, 793, 808	sine, 321
of an event, 708	rotation of axes, 763	Cycloid, 775
probability of, 708	Conjugate, 173, A17	curate, 778
Complementary angles, 285	of a complex number, 165	D
Completely factored, A26	Conjugate axis of a hyperbola, 755	U
Completing the square, A49	Consistent system of linear equations,	Damping factor, 337
Complex conjugates, 165	510	Decreasing function, 57
Complex fraction, A40	Constant, A5	Defined, 47
Complex number(s), 162	function, 57, 67	Definitions of trigonometric functions of
absolute value of, 470	of proportionality, 105	any angle, 312
addition of, 163	term, A5, A23	Degenerate conic, 735
additive identity, 163	of variation, 105	Degree, 285
additive inverse, 163	Constraints, 552	conversion to radians, 286
argument of, 471	Consumer surplus, 546	of a polynomial, A23
Associative Property of Addition, 164	Continuous compounding, 223	DeMoivre's Theorem, 474

Denominator, A5	Domain	graph of, 14
rationalizing, 384, A16, A17	of an algebraic expression, A36	identity, A46
Dependent system of linear equations,	of cosine function, 297	of a line, 25
510	of a function, 40, 47	general form, 33
Dependent variable, 42, 47	implied, 44, 47	intercept form, 36
Depreciated costs, 32	of a rational function, 184	point-slope form, 29, 33
Descartes's Rule of Signs, 176	of sine function, 297	slope-intercept form, 25, 33
Determinant	Dot product, 460	summary of, 33
of a matrix, 606, 611, 614	properties of, 460, 492	two-point form, 29, 33, 624
of a 2×2 matrix, 611	Double-angle formulas, 407, 425	linear, 16
Diagonal matrix, 601, 618	Double inequality, A63	in one variable, A46
Diagonal of a polygon, 700	Doyle Log Rule, 505	in two variables, 25
Difference	,	parametric, 771
common, 653	E	position, 525
of functions, 84		quadratic, 16, A49
quotient, 46, A42	Eccentricity	second-degree polynomial, A49
of two squares, A27	of a conic, 793	solution of, 14, A46
of vectors, 449	of an ellipse, 748, 793	solution point, 14
Differences	of a hyperbola, 793	system of, 496
first, 680	of a parabola, 793	in two variables, 14
second, 680	Effective yield, 251	Equilibrium point, 514, 546
Dimpled limaçon, 789	Elementary row operations, 574	Equivalent
Direct variation, 105	Eliminating the parameter, 773	equations, A47
as an <i>n</i> th power, 106	Elimination	generating, A47
Directed line segment, 447	Gaussian, 520	
	with back-substitution, 578	expressions, A36
initial point, 447	Gauss-Jordan, 579	fractions, A7
length of, 447	method of, 507, 508	generate, A7
magnitude, 447	Ellipse, 744, 793	inequalities, A61
terminal point, 447	center of, 744	systems, 509
Direction angle of a vector, 453	classifying	operations that produce, 520
Directly proportional, 105	by discriminant, 767	Evaluate an algebraic expression, A5
to the <i>n</i> th power, 106	by general equation, 759	Evaluating trigonometric functions of
Directrix of a parabola, 736	eccentricity of, 748, 793	any angle, 315
Discrete mathematics, 41	foci of, 744	Even function, 60
Discriminant, 767	latus rectum of, 752	trigonometric functions, 298
classification of conics by, 767	major axis of, 744	Even/odd identities, 374
Distance	minor axis of, 744	Event(s), 701
between a point and a line, 730, 806	standard form of the equation of, 745	complement of, 708
between two points	vertices of, 744	probability of, 708
in the plane, 4	Endpoints of an interval, A2	independent, 707
on the real number line, A4	Entry of a matrix, 572	probability of, 707
Distance Formula, 4	main diagonal, 572	mutually exclusive, 705
Distinguishable permutations, 695	Epicycloid, 778	probability of, 702
Distributive Property	Equal matrices, 587	the union of two, 705
for complex numbers, 164	Equality	Existence theorems, 169
for matrices, 590, 594	of complex numbers, 162	Expanding
for real numbers, A6	properties of, A6	a binomial, 686
Division	of vectors, 448	by cofactors, 614
		Expected value, 726
of fractions, A7	Equating the coefficients, 536	Experiment, 701
long, 153	Equation(s), 14, A46	outcome of, 701
of real numbers, A5	basic, 534	sample space of, 701
synthetic, 156	conditional, A46	Exponent(s), A11
Division Algorithm, 154	equivalent, A47	properties of, A11
Divisors, A7	generating, A47	rational, A18

A214 Index

Exponential decay model, 257	Formula(s)	greatest integer, 69
Exponential equation, solving, 246	change-of-base, 239	of half-angles, 407
Exponential form, A11	for compound interest, 224	Heaviside, 126
Exponential function, 218	double-angle, 407, 425	identity, 67
f with base a , 218	half-angle, 410	implied domain of, 44, 47
natural, 222	Heron's Area, 442, 491	increasing, 57
one-to-one property, 220	for the <i>n</i> th term of a sequence, 678	inverse, 93, 94
Exponential growth model, 257	power-reducing, 409, 425	cosine, 345
Exponential notation, A11	product-to-sum, 411	sine, 343, 345
Exponentiating, 249	Quadratic, A49	tangent, 345
Expression	reduction, 402	trigonometric, 345
algebraic, A5	sum and difference, 400, 424	linear, 66
fractional, A36	sum-to-product, 412, 426	logarithmic, 229
rational, A36	Four ways to represent a function, 41	of multiple angles, 407
Extended principle of mathematical	Fractal, 726	name of, 42, 47
induction, 675	Fraction(s)	natural exponential, 222
Extracting square roots, A49	addition of	natural logarithmic, 233
Extraneous solution, A48, A54	with like denominators, A7	notation, 42, 47
· · · · · · · · · · · · · · · · · · ·	with unlike denominators, A7	objective, 552
F	complex, A40	odd, 60
	division of, A7	one-to-one, 96
Factor Theorem, 157, 213	equivalent, A7	period of, 297
Factorial, 644	generate, A7	periodic, 297
Factoring, A26	multiplication of, A7	piecewise-defined, 43
completely, A26	operations of, A7	polynomial, 128
by grouping, A30	partial, 533	power, 140
polynomials, guidelines for, A30	-	product of, 84
solving a quadratic equation by, A49	decomposition, 533	quadratic, 128
special polynomial forms, A27	properties of, A7	quotient of, 84
Factors	rules of signs for, A7	range of, 40, 47
of an integer, A7	subtraction of	rational, 184
of a polynomial, 173, 214	with like denominators, A7	reciprocal, 68
Family of functions, 75	with unlike denominators, A7	secant, 295, 301
Far point, 216	Fractional expression, A36	sine, 295, 301
Feasible solutions, 552	Frequency, 356	square root, 68
Finding a formula for the <i>n</i> th term of a	Function(s), 40, 47	squaring, 67
sequence, 678	algebraic, 218	step, 69
Finding intercepts of a graph, 17	arithmetic combination of, 84	sum of, 84
Finding an inverse function, 97	characteristics of, 40	summary of terminology, 47
Finding an inverse matrix, 604	common logarithmic, 230	tangent, 295, 301
Finding test intervals for a polynomial,	composition, 86	transcendental, 218
197	constant, 57, 67	trigonometric, 295, 301, 312
Finite sequence, 642	continuous, 139, 771	undefined, 47
Finite series, 647	cosecant, 295, 301	value of, 42, 47
First differences, 680	cosine, 295, 301	Vertical Line Test, 55
Fixed cost, 31	cotangent, 295, 301	zero of, 56
	cubic, 68	Fundamental Counting Principle, 692
Fixed point, 397	decreasing, 57	Fundamental Theorem
Focal chord	defined, 47	of Algebra, 169
latus rectum, 738	difference of, 84	of Arithmetic, A7
of a parabola, 738	domain of, 40, 47	Fundamental trigonometric identities,
Focus (foci)	even, 60	304, 374
of an ellipse, 744	exponential, 218	•
of a hyperbola, 753	family of, 75	G
of a parabola, 736	four ways to represent, 41	Gaussian elimination, 520
FOIL Method, A24	graph of, 54	with back-substitution, 578
	<u> </u>	, ,

Gaussian model, 257	Horizontal asymptote, 185	Index
Gauss-Jordan elimination, 579	Horizontal components of v, 452	of a radical, A14
General form of the equation of a line,	Horizontal line, 33	of summation, 646
33	Horizontal Line Test, 96	Indirect proof, 568
Generalizations about <i>n</i> th roots of real	Horizontal shift, 74	Inductive, 614
numbers, A15	Horizontal shrink, 78	Inequality (inequalities), A2
Generate equivalent fractions, A7	of a trigonometric function, 324	absolute value, solution of, A63
Generating equivalent equations, A47	Horizontal stretch, 78	double, A63
Geometric sequence, 663	of a trigonometric function, 324	equivalent, A61
common ratio of, 663	Horizontal translation of a trigonometric	graph of, 541, A60
nth term of, 664	function, 325	linear, 542, A62
sum of a finite, 666, 723	Human memory model, 235	properties of, A61
Geometric series, 667	Hyperbola, 185, 753, 793	satisfy, A60
sum of an infinite, 667	asymptotes of, 755	solution of, 541, A60
Graph, 14	branches of, 753	solution set of, A60
of cosecant function, 335, 338	center of, 753	symbol, A2
		-
of cosine function, 325, 338	classifying by discriminant, 767	Infinite geometric series, 667 sum of, 667
of cotangent function, 334, 338	-	
of an equation, 14	by general equation, 759	Infinite sequence, 642
of a function, 54	conjugate axis of, 755	Infinite series, 647
of an inequality, 541, A60	eccentricity of, 793	Infinite wedge, 545
in two variables, 541	foci of, 753	Infinity
intercepts of, 17	standard form of the equation of, 753	negative, A3
of inverse cosine function, 345	transverse axis of, 753	positive, A3
of an inverse function, 95	vertices of, 753	Initial point, 447
of inverse sine function, 345	Hypocycloid, 810	Initial side of an angle, 282
of inverse tangent function, 345	Hypotenuse of a right triangle, 301	Integer(s)
		1 C 4.7
of a line, 25		divisors of, A7
point-plotting method, 15	I	factors of, A7
point-plotting method, 15 of a rational function, guidelines for		
point-plotting method, 15 of a rational function, guidelines for analyzing, 187	Idempotent square matrix, 639	factors of, A7 irreducible over, A26 Intercept form of the equation of a line.
point-plotting method, 15 of a rational function, guidelines for	Idempotent square matrix, 639 Identity, A46	factors of, A7 irreducible over, A26 Intercept form of the equation of a line, 36
point-plotting method, 15 of a rational function, guidelines for analyzing, 187	Idempotent square matrix, 639 Identity, A46 of the complex plane, 470	factors of, A7 irreducible over, A26 Intercept form of the equation of a line.
point-plotting method, 15 of a rational function, guidelines for analyzing, 187 of secant function, 335, 338	Idempotent square matrix, 639 Identity, A46 of the complex plane, 470 function, 67	factors of, A7 irreducible over, A26 Intercept form of the equation of a line, 36
point-plotting method, 15 of a rational function, guidelines for analyzing, 187 of secant function, 335, 338 of sine function, 325, 338	Idempotent square matrix, 639 Identity, A46 of the complex plane, 470 function, 67 matrix of order n, 594	factors of, A7 irreducible over, A26 Intercept form of the equation of a line. 36 Intercepts, 17
point-plotting method, 15 of a rational function, guidelines for analyzing, 187 of secant function, 335, 338 of sine function, 325, 338 special polar, 789	Idempotent square matrix, 639 Identity, A46 of the complex plane, 470 function, 67 matrix of order n, 594 Imaginary axis of the complex plane,	factors of, A7 irreducible over, A26 Intercept form of the equation of a line. 36 Intercepts, 17 finding, 17
point-plotting method, 15 of a rational function, guidelines for analyzing, 187 of secant function, 335, 338 of sine function, 325, 338 special polar, 789 symmetry, 18	Idempotent square matrix, 639 Identity, A46 of the complex plane, 470 function, 67 matrix of order n, 594 Imaginary axis of the complex plane, 470	factors of, A7 irreducible over, A26 Intercept form of the equation of a line. 36 Intercepts, 17 finding, 17 Intermediate Value Theorem, 146
point-plotting method, 15 of a rational function, guidelines for analyzing, 187 of secant function, 335, 338 of sine function, 325, 338 special polar, 789 symmetry, 18 of tangent function, 332, 338	Idempotent square matrix, 639 Identity, A46 of the complex plane, 470 function, 67 matrix of order n, 594 Imaginary axis of the complex plane, 470 Imaginary number, 162	factors of, A7 irreducible over, A26 Intercept form of the equation of a line. 36 Intercepts, 17 finding, 17 Intermediate Value Theorem, 146 Interval
point-plotting method, 15 of a rational function, guidelines for analyzing, 187 of secant function, 335, 338 of sine function, 325, 338 special polar, 789 symmetry, 18 of tangent function, 332, 338 Graphical interpretations of solutions,	Idempotent square matrix, 639 Identity, A46 of the complex plane, 470 function, 67 matrix of order n, 594 Imaginary axis of the complex plane, 470 Imaginary number, 162 pure, 162	factors of, A7 irreducible over, A26 Intercept form of the equation of a line. 36 Intercepts, 17 finding, 17 Intermediate Value Theorem, 146 Interval bounded, A2
point-plotting method, 15 of a rational function, guidelines for analyzing, 187 of secant function, 335, 338 of sine function, 325, 338 special polar, 789 symmetry, 18 of tangent function, 332, 338 Graphical interpretations of solutions, 510 Graphical method, 500	Idempotent square matrix, 639 Identity, A46 of the complex plane, 470 function, 67 matrix of order n, 594 Imaginary axis of the complex plane, 470 Imaginary number, 162 pure, 162 Imaginary part of a complex number,	factors of, A7 irreducible over, A26 Intercept form of the equation of a line. 36 Intercepts, 17 finding, 17 Intermediate Value Theorem, 146 Interval bounded, A2 on the real number line, A2
point-plotting method, 15 of a rational function, guidelines for analyzing, 187 of secant function, 335, 338 of sine function, 325, 338 special polar, 789 symmetry, 18 of tangent function, 332, 338 Graphical interpretations of solutions, 510 Graphical method, 500 Graphical tests for symmetry, 18	Idempotent square matrix, 639 Identity, A46 of the complex plane, 470 function, 67 matrix of order n, 594 Imaginary axis of the complex plane, 470 Imaginary number, 162 pure, 162 Imaginary part of a complex number, 162	factors of, A7 irreducible over, A26 Intercept form of the equation of a line, 36 Intercepts, 17 finding, 17 Intermediate Value Theorem, 146 Interval bounded, A2 on the real number line, A2 unbounded, A3
point-plotting method, 15 of a rational function, guidelines for analyzing, 187 of secant function, 335, 338 of sine function, 325, 338 special polar, 789 symmetry, 18 of tangent function, 332, 338 Graphical interpretations of solutions, 510 Graphical method, 500	Idempotent square matrix, 639 Identity, A46 of the complex plane, 470 function, 67 matrix of order n, 594 Imaginary axis of the complex plane, 470 Imaginary number, 162 pure, 162 Imaginary part of a complex number, 162 Imaginary unit <i>i</i> , 162	factors of, A7 irreducible over, A26 Intercept form of the equation of a line, 36 Intercepts, 17 finding, 17 Intermediate Value Theorem, 146 Interval bounded, A2 on the real number line, A2 unbounded, A3 Invariant under rotation, 767 Inverse
point-plotting method, 15 of a rational function, guidelines for analyzing, 187 of secant function, 335, 338 of sine function, 325, 338 special polar, 789 symmetry, 18 of tangent function, 332, 338 Graphical interpretations of solutions, 510 Graphical method, 500 Graphical tests for symmetry, 18 Greatest integer function, 69 Guidelines	Idempotent square matrix, 639 Identity, A46 of the complex plane, 470 function, 67 matrix of order n, 594 Imaginary axis of the complex plane, 470 Imaginary number, 162 pure, 162 Imaginary part of a complex number, 162 Imaginary unit <i>i</i> , 162 Implied domain, 44, 47	factors of, A7 irreducible over, A26 Intercept form of the equation of a line, 36 Intercepts, 17 finding, 17 Intermediate Value Theorem, 146 Interval bounded, A2 on the real number line, A2 unbounded, A3 Invariant under rotation, 767 Inverse additive, A5
point-plotting method, 15 of a rational function, guidelines for analyzing, 187 of secant function, 335, 338 of sine function, 325, 338 special polar, 789 symmetry, 18 of tangent function, 332, 338 Graphical interpretations of solutions, 510 Graphical method, 500 Graphical tests for symmetry, 18 Greatest integer function, 69 Guidelines for analyzing graphs of rational	Idempotent square matrix, 639 Identity, A46 of the complex plane, 470 function, 67 matrix of order n, 594 Imaginary axis of the complex plane, 470 Imaginary number, 162 pure, 162 Imaginary part of a complex number, 162 Imaginary unit <i>i</i> , 162 Implied domain, 44, 47 Improper rational expression, 154	factors of, A7 irreducible over, A26 Intercept form of the equation of a line, 36 Intercepts, 17 finding, 17 Intermediate Value Theorem, 146 Interval bounded, A2 on the real number line, A2 unbounded, A3 Invariant under rotation, 767 Inverse additive, A5 multiplicative, A5
point-plotting method, 15 of a rational function, guidelines for analyzing, 187 of secant function, 335, 338 of sine function, 325, 338 special polar, 789 symmetry, 18 of tangent function, 332, 338 Graphical interpretations of solutions, 510 Graphical method, 500 Graphical tests for symmetry, 18 Greatest integer function, 69 Guidelines for analyzing graphs of rational functions, 187	Idempotent square matrix, 639 Identity, A46 of the complex plane, 470 function, 67 matrix of order n, 594 Imaginary axis of the complex plane, 470 Imaginary number, 162 pure, 162 Imaginary part of a complex number, 162 Imaginary unit <i>i</i> , 162 Implied domain, 44, 47 Improper rational expression, 154 Inclination, 728	factors of, A7 irreducible over, A26 Intercept form of the equation of a line, 36 Intercepts, 17 finding, 17 Intermediate Value Theorem, 146 Interval bounded, A2 on the real number line, A2 unbounded, A3 Invariant under rotation, 767 Inverse additive, A5 multiplicative, A5 Inverse function, 93
point-plotting method, 15 of a rational function, guidelines for analyzing, 187 of secant function, 335, 338 of sine function, 325, 338 special polar, 789 symmetry, 18 of tangent function, 332, 338 Graphical interpretations of solutions, 510 Graphical method, 500 Graphical tests for symmetry, 18 Greatest integer function, 69 Guidelines for analyzing graphs of rational functions, 187 for factoring polynomials, A30	Idempotent square matrix, 639 Identity, A46 of the complex plane, 470 function, 67 matrix of order n, 594 Imaginary axis of the complex plane, 470 Imaginary number, 162 pure, 162 Imaginary part of a complex number, 162 Imaginary unit <i>i</i> , 162 Implied domain, 44, 47 Improper rational expression, 154 Inclination, 728 and slope, 728, 806	factors of, A7 irreducible over, A26 Intercept form of the equation of a line, 36 Intercepts, 17 finding, 17 Intermediate Value Theorem, 146 Interval bounded, A2 on the real number line, A2 unbounded, A3 Invariant under rotation, 767 Inverse additive, A5 multiplicative, A5 Inverse function, 93 cosine, 345
point-plotting method, 15 of a rational function, guidelines for analyzing, 187 of secant function, 335, 338 of sine function, 325, 338 special polar, 789 symmetry, 18 of tangent function, 332, 338 Graphical interpretations of solutions, 510 Graphical method, 500 Graphical tests for symmetry, 18 Greatest integer function, 69 Guidelines for analyzing graphs of rational functions, 187 for factoring polynomials, A30 for solving the basic equation, 538	Idempotent square matrix, 639 Identity, A46 of the complex plane, 470 function, 67 matrix of order n, 594 Imaginary axis of the complex plane, 470 Imaginary number, 162 pure, 162 Imaginary part of a complex number, 162 Imaginary unit <i>i</i> , 162 Implied domain, 44, 47 Improper rational expression, 154 Inclination, 728 and slope, 728, 806 Inclusive or, A7	factors of, A7 irreducible over, A26 Intercept form of the equation of a line. 36 Intercepts, 17 finding, 17 Intermediate Value Theorem, 146 Interval bounded, A2 on the real number line, A2 unbounded, A3 Invariant under rotation, 767 Inverse additive, A5 multiplicative, A5 Inverse function, 93 cosine, 345 definition of, 94
point-plotting method, 15 of a rational function, guidelines for analyzing, 187 of secant function, 335, 338 of sine function, 325, 338 special polar, 789 symmetry, 18 of tangent function, 332, 338 Graphical interpretations of solutions, 510 Graphical method, 500 Graphical tests for symmetry, 18 Greatest integer function, 69 Guidelines for analyzing graphs of rational functions, 187 for factoring polynomials, A30 for solving the basic equation, 538 for verifying trigonometric identities,	Idempotent square matrix, 639 Identity, A46 of the complex plane, 470 function, 67 matrix of order n, 594 Imaginary axis of the complex plane, 470 Imaginary number, 162 pure, 162 Imaginary part of a complex number, 162 Imaginary unit i, 162 Implied domain, 44, 47 Improper rational expression, 154 Inclination, 728 and slope, 728, 806 Inclusive or, A7 Inconsistent system of linear equations,	factors of, A7 irreducible over, A26 Intercept form of the equation of a line. 36 Intercepts, 17 finding, 17 Intermediate Value Theorem, 146 Interval bounded, A2 on the real number line, A2 unbounded, A3 Invariant under rotation, 767 Inverse additive, A5 multiplicative, A5 Inverse function, 93 cosine, 345 definition of, 94 finding, 97
point-plotting method, 15 of a rational function, guidelines for analyzing, 187 of secant function, 335, 338 of sine function, 325, 338 special polar, 789 symmetry, 18 of tangent function, 332, 338 Graphical interpretations of solutions, 510 Graphical method, 500 Graphical tests for symmetry, 18 Greatest integer function, 69 Guidelines for analyzing graphs of rational functions, 187 for factoring polynomials, A30 for solving the basic equation, 538 for verifying trigonometric identities, 382	Idempotent square matrix, 639 Identity, A46 of the complex plane, 470 function, 67 matrix of order n, 594 Imaginary axis of the complex plane, 470 Imaginary number, 162 pure, 162 Imaginary part of a complex number, 162 Imaginary unit <i>i</i> , 162 Implied domain, 44, 47 Improper rational expression, 154 Inclination, 728 and slope, 728, 806 Inclusive or, A7 Inconsistent system of linear equations, 510	factors of, A7 irreducible over, A26 Intercept form of the equation of a line. 36 Intercepts, 17 finding, 17 Intermediate Value Theorem, 146 Interval bounded, A2 on the real number line, A2 unbounded, A3 Invariant under rotation, 767 Inverse additive, A5 multiplicative, A5 Inverse function, 93 cosine, 345 definition of, 94 finding, 97 graph of, 95
point-plotting method, 15 of a rational function, guidelines for analyzing, 187 of secant function, 335, 338 of sine function, 325, 338 special polar, 789 symmetry, 18 of tangent function, 332, 338 Graphical interpretations of solutions, 510 Graphical method, 500 Graphical tests for symmetry, 18 Greatest integer function, 69 Guidelines for analyzing graphs of rational functions, 187 for factoring polynomials, A30 for solving the basic equation, 538 for verifying trigonometric identities,	Idempotent square matrix, 639 Identity, A46 of the complex plane, 470 function, 67 matrix of order n, 594 Imaginary axis of the complex plane, 470 Imaginary number, 162 pure, 162 Imaginary part of a complex number, 162 Imaginary unit i, 162 Implied domain, 44, 47 Improper rational expression, 154 Inclination, 728 and slope, 728, 806 Inclusive or, A7 Inconsistent system of linear equations, 510 Increasing annuity, 668	factors of, A7 irreducible over, A26 Intercept form of the equation of a line. 36 Intercepts, 17 finding, 17 Intermediate Value Theorem, 146 Interval bounded, A2 on the real number line, A2 unbounded, A3 Invariant under rotation, 767 Inverse additive, A5 multiplicative, A5 Inverse function, 93 cosine, 345 definition of, 94 finding, 97 graph of, 95 Horizontal Line Test, 96
point-plotting method, 15 of a rational function, guidelines for analyzing, 187 of secant function, 335, 338 of sine function, 325, 338 special polar, 789 symmetry, 18 of tangent function, 332, 338 Graphical interpretations of solutions, 510 Graphical method, 500 Graphical tests for symmetry, 18 Greatest integer function, 69 Guidelines for analyzing graphs of rational functions, 187 for factoring polynomials, A30 for solving the basic equation, 538 for verifying trigonometric identities, 382	Idempotent square matrix, 639 Identity, A46 of the complex plane, 470 function, 67 matrix of order n, 594 Imaginary axis of the complex plane, 470 Imaginary number, 162 pure, 162 Imaginary part of a complex number, 162 Imaginary unit i, 162 Implied domain, 44, 47 Improper rational expression, 154 Inclination, 728 and slope, 728, 806 Inclusive or, A7 Inconsistent system of linear equations, 510 Increasing annuity, 668 Increasing function, 57	factors of, A7 irreducible over, A26 Intercept form of the equation of a line. 36 Intercepts, 17 finding, 17 Intermediate Value Theorem, 146 Interval bounded, A2 on the real number line, A2 unbounded, A3 Invariant under rotation, 767 Inverse additive, A5 multiplicative, A5 Inverse function, 93 cosine, 345 definition of, 94 finding, 97 graph of, 95 Horizontal Line Test, 96 sine, 343, 345
point-plotting method, 15 of a rational function, guidelines for analyzing, 187 of secant function, 335, 338 of sine function, 325, 338 special polar, 789 symmetry, 18 of tangent function, 332, 338 Graphical interpretations of solutions, 510 Graphical method, 500 Graphical tests for symmetry, 18 Greatest integer function, 69 Guidelines for analyzing graphs of rational functions, 187 for factoring polynomials, A30 for solving the basic equation, 538 for verifying trigonometric identities, 382 H Half-angle formulas, 410	Idempotent square matrix, 639 Identity, A46 of the complex plane, 470 function, 67 matrix of order n, 594 Imaginary axis of the complex plane, 470 Imaginary number, 162 pure, 162 Imaginary part of a complex number, 162 Imaginary unit i, 162 Implied domain, 44, 47 Improper rational expression, 154 Inclination, 728 and slope, 728, 806 Inclusive or, A7 Inconsistent system of linear equations, 510 Increasing annuity, 668 Increasing function, 57 Independent events, 707	factors of, A7 irreducible over, A26 Intercept form of the equation of a line. 36 Intercepts, 17 finding, 17 Intermediate Value Theorem, 146 Interval bounded, A2 on the real number line, A2 unbounded, A3 Invariant under rotation, 767 Inverse additive, A5 multiplicative, A5 Inverse function, 93 cosine, 345 definition of, 94 finding, 97 graph of, 95 Horizontal Line Test, 96 sine, 343, 345 tangent, 345
point-plotting method, 15 of a rational function, guidelines for analyzing, 187 of secant function, 335, 338 of sine function, 325, 338 special polar, 789 symmetry, 18 of tangent function, 332, 338 Graphical interpretations of solutions, 510 Graphical method, 500 Graphical tests for symmetry, 18 Greatest integer function, 69 Guidelines for analyzing graphs of rational functions, 187 for factoring polynomials, A30 for solving the basic equation, 538 for verifying trigonometric identities, 382 H Half-angle formulas, 410 Half-life, 225	Idempotent square matrix, 639 Identity, A46 of the complex plane, 470 function, 67 matrix of order n, 594 Imaginary axis of the complex plane, 470 Imaginary number, 162 pure, 162 Imaginary part of a complex number, 162 Imaginary unit i, 162 Implied domain, 44, 47 Improper rational expression, 154 Inclination, 728 and slope, 728, 806 Inclusive or, A7 Inconsistent system of linear equations, 510 Increasing annuity, 668 Increasing function, 57 Independent events, 707 probability of, 707	factors of, A7 irreducible over, A26 Intercept form of the equation of a line. 36 Intercepts, 17 finding, 17 Intermediate Value Theorem, 146 Interval bounded, A2 on the real number line, A2 unbounded, A3 Invariant under rotation, 767 Inverse additive, A5 multiplicative, A5 Inverse function, 93 cosine, 345 definition of, 94 finding, 97 graph of, 95 Horizontal Line Test, 96 sine, 343, 345 tangent, 345 Inverse of a matrix, 602
point-plotting method, 15 of a rational function, guidelines for analyzing, 187 of secant function, 335, 338 of sine function, 325, 338 special polar, 789 symmetry, 18 of tangent function, 332, 338 Graphical interpretations of solutions, 510 Graphical method, 500 Graphical tests for symmetry, 18 Greatest integer function, 69 Guidelines for analyzing graphs of rational functions, 187 for factoring polynomials, A30 for solving the basic equation, 538 for verifying trigonometric identities, 382 H Half-angle formulas, 410 Half-life, 225 Harmonic motion, simple, 356, 357	Idempotent square matrix, 639 Identity, A46 of the complex plane, 470 function, 67 matrix of order n, 594 Imaginary axis of the complex plane, 470 Imaginary number, 162 pure, 162 Imaginary part of a complex number, 162 Imaginary unit i, 162 Implied domain, 44, 47 Improper rational expression, 154 Inclination, 728 and slope, 728, 806 Inclusive or, A7 Inconsistent system of linear equations, 510 Increasing annuity, 668 Increasing function, 57 Independent events, 707 probability of, 707 Independent system of linear equations,	factors of, A7 irreducible over, A26 Intercept form of the equation of a line. 36 Intercepts, 17 finding, 17 Intermediate Value Theorem, 146 Interval bounded, A2 on the real number line, A2 unbounded, A3 Invariant under rotation, 767 Inverse additive, A5 multiplicative, A5 Inverse function, 93 cosine, 345 definition of, 94 finding, 97 graph of, 95 Horizontal Line Test, 96 sine, 343, 345 tangent, 345 Inverse of a matrix, 602 finding an, 604
point-plotting method, 15 of a rational function, guidelines for analyzing, 187 of secant function, 335, 338 of sine function, 325, 338 special polar, 789 symmetry, 18 of tangent function, 332, 338 Graphical interpretations of solutions, 510 Graphical method, 500 Graphical tests for symmetry, 18 Greatest integer function, 69 Guidelines for analyzing graphs of rational functions, 187 for factoring polynomials, A30 for solving the basic equation, 538 for verifying trigonometric identities, 382 H Half-angle formulas, 410 Half-life, 225	Idempotent square matrix, 639 Identity, A46 of the complex plane, 470 function, 67 matrix of order n, 594 Imaginary axis of the complex plane, 470 Imaginary number, 162 pure, 162 Imaginary part of a complex number, 162 Imaginary unit i, 162 Implied domain, 44, 47 Improper rational expression, 154 Inclination, 728 and slope, 728, 806 Inclusive or, A7 Inconsistent system of linear equations, 510 Increasing annuity, 668 Increasing function, 57 Independent events, 707 probability of, 707	factors of, A7 irreducible over, A26 Intercept form of the equation of a line. 36 Intercepts, 17 finding, 17 Intermediate Value Theorem, 146 Interval bounded, A2 on the real number line, A2 unbounded, A3 Invariant under rotation, 767 Inverse additive, A5 multiplicative, A5 Inverse function, 93 cosine, 345 definition of, 94 finding, 97 graph of, 95 Horizontal Line Test, 96 sine, 343, 345 tangent, 345 Inverse of a matrix, 602

A216 Index

of natural logarithms, 234	slope of, 25, 27	Main diagonal of a square matrix, 572
of trigonometric functions, 347	vertical, 33	Major axis of an ellipse, 744
Inverse trigonometric functions, 345	Linear combination of vectors, 452	Marginal cost, 31
Inverse variation, 107	Linear depreciation, 32	Mathematical induction, 673
Inversely proportional, 107	Linear equation, 16	extended principle of, 675
Invertible matrix, 603	general form, 33	Principle of, 674
Irrational number, A1	in one variable, A46	Matrix (matrices), 572
Irreducible	intercept form, 36	addition, 588
over the integers, A26	point-slope form, 29, 33	properties of, 590
over the rationals, 174	slope-intercept form, 25, 33	additive identity, 591
over the reals, 174	summary of, 33	adjoining, 604
_	two-point form, 29, 182, 624	augmented, 573
J	in two variables, 25	coded row, 625
Joint variation, 108	Linear extrapolation, 33	coefficient, 573
Jointly proportional, 108	Linear Factorization Theorem, 169, 214	cofactor of, 613
Johnty proportional, 108	Linear function, 66	column, 572
K	Linear inequality, 542, A62	determinant of, 606, 611, 614
.,	Linear interpolation, 33	diagonal, 601, 618
Kepler's Laws, 796	Linear programming, 552	elementary row operations, 574
Key points	problem, solving, 553	entry of a, 572
of the graph of a trigonometric	Linear speed, 287	equal, 587
function, 322	Local maximum, 58	idempotent, 639
intercepts, 322	Local minimum, 58	identity, 594
maximum points, 322	Locus, 735	inverse of, 602
minimum points, 322	Logarithm(s)	invertible, 603
_	change-of-base formula, 239	minor of, 613
L	natural, properties of, 234, 240, 278	multiplication, 592
Latus rectum	inverse, 234	properties of, 594
of an ellipse, 752	one-to-one, 234	nonsingular, 603
of a parabola, 738	power, 240, 278	order of a, 572
Law of Cosines, 439, 490	product, 240, 278	in reduced row-echelon form, 576
alternative form, 439, 490	quotient, 240, 278	representation of, 587
standard form, 439, 490	properties of, 230, 240, 278	row, 572
Law of Sines, 430, 489	inverse, 230	in row-echelon form, 576
Law of Trichotomy, A3	one-to-one, 230	row-equivalent, 574
Leading coefficient of a polynomial, A23	power, 240, 278	scalar identity, 590
Leading Coefficient Test, 141	product, 240, 278	scalar multiplication, 588
Least squares regression line, 104	quotient, 240, 278	singular, 603
Lemniscate, 789	Logarithmic equation, solving, 246	square, 572
Length of a directed line segment, 447	Logarithmic function, 229	stochastic, 599
Length of a vector, 448	with base <i>a</i> , 229	transpose of, 640
Like radicals, A17	common, 230	uncoded row, 625
Like terms of a polynomial, A24	natural, 233	zero, 591
Limaçon, 786, 789	Logarithmic model, 257	Measure of an angle, 283
convex, 789	Logistic	degree, 285
dimpled, 789	curve, 262	radian, 283
with inner loop, 789	growth model, 257	Method
Line(s) in the plane	Long division, 153	of elimination, 507, 508
graph of, 25	Lower bound, 177	of substitution, 496
horizontal, 33	Lower limit of summation, 646	Midpoint Formula, 5, 124
inclination of, 728	NA.	Midpoint of a line segment, 5
least squares regression, 104	М	Minor axis of an ellipse, 744
parallel, 30	Magnitude	Minor of a matrix, 613
perpendicular, 30	of a directed line segment, 447	Minors and cofactors of a square matrix,
r Pendicular, C o	of a vector, 448	613

Modulus of a complex number, 471	<i>n</i> th term	symmetry, 18
Monomial, A23	of an arithmetic sequence, 654	Orthogonal vectors, 462
Multiplication	recursion form, 654	Outcome, 701
of fractions, A7	of a geometric sequence, 664	outcome, 701
of matrices, 592	of a sequence, finding a formula for,	Р
scalar, 588	678	D 1 1 100 E04 E00
Multiplicative identity of a real number,	Number(s)	Parabola, 128, 736, 793
A6	complex, 162	axis of, 129, 736
Multiplicative inverse, A5	composite, A7	classifying
for a matrix, 602	critical, 197, 201	by discriminant, 767
of a real number, A6	imaginary, 162	by general equation, 759 directrix of, 736
Multiplicity, 143	pure, 162	eccentricity of, 793
Multiplier effect, 671	irrational, A1	focal chord of, 738
Mutually exclusive events, 705	nonnegative, A1	focus of, 736
N.	prime, A7	latus rectum of, 738
N	rational, A1	reflective property, 738
n factorial, 644	real, A1	standard form of the equation of, 736,
Name of a function, 42, 47	Number of permutations of n elements,	807
Natural base, 222	693	tangent line, 738
Natural exponential function, 222	taken r at a time, 694	vertex of, 129, 133, 736
Natural logarithm	Number of solutions of a linear system,	Parallel lines, 30
properties of, 234, 240, 278	522	Parallelogram law, 449
inverse, 234	Numerator, A5	Parameter, 771
one-to-one, 234	0	eliminating the, 773
power, 240, 278	U	Parametric equation, 771
product, 240, 278	Objective function, 552	Partial fraction, 533
quotient, 240, 278	Oblique asymptote, 190	decomposition, 533
Natural logarithmic function, 233	Oblique triangles, 430	Pascal's Triangle, 685
Near point, 216	area of, 434	Perfect
Negation, properties of, A6	Obtuse angle, 283	cube, A15
Negation, properties of, A6 Negative	Odd function, 60	square, A15
Negation, properties of, A6 Negative angle, 282	Odd function, 60 trigonometric functions, 298	square, A15 square trinomial, A27, A28
Negation, properties of, A6 Negative angle, 282 infinity, A3	Odd function, 60 trigonometric functions, 298 One cycle of a sine curve, 321	square, A15 square trinomial, A27, A28 Perihelion distance, 798
Negation, properties of, A6 Negative angle, 282 infinity, A3 of a vector, 449	Odd function, 60 trigonometric functions, 298 One cycle of a sine curve, 321 One-to-one correspondence, A1	square, A15 square trinomial, A27, A28 Perihelion distance, 798 Perimeter, common formulas for, 7
Negation, properties of, A6 Negative angle, 282 infinity, A3 of a vector, 449 Newton's Law of Cooling, 268	Odd function, 60 trigonometric functions, 298 One cycle of a sine curve, 321 One-to-one correspondence, A1 One-to-one function, 96	square, A15 square trinomial, A27, A28 Perihelion distance, 798 Perimeter, common formulas for, 7 Period
Negation, properties of, A6 Negative angle, 282 infinity, A3 of a vector, 449 Newton's Law of Cooling, 268 Nonnegative number, A1	Odd function, 60 trigonometric functions, 298 One cycle of a sine curve, 321 One-to-one correspondence, A1 One-to-one function, 96 One-to-one property	square, A15 square trinomial, A27, A28 Perihelion distance, 798 Perimeter, common formulas for, 7 Period of a function, 297
Negation, properties of, A6 Negative angle, 282 infinity, A3 of a vector, 449 Newton's Law of Cooling, 268 Nonnegative number, A1 Nonrigid transformation, 78	Odd function, 60 trigonometric functions, 298 One cycle of a sine curve, 321 One-to-one correspondence, A1 One-to-one function, 96 One-to-one property of exponential functions, 220	square, A15 square trinomial, A27, A28 Perihelion distance, 798 Perimeter, common formulas for, 7 Period of a function, 297 of sine and cosine functions, 324
Negation, properties of, A6 Negative angle, 282 infinity, A3 of a vector, 449 Newton's Law of Cooling, 268 Nonnegative number, A1 Nonrigid transformation, 78 Nonsingular matrix, 603	Odd function, 60 trigonometric functions, 298 One cycle of a sine curve, 321 One-to-one correspondence, A1 One-to-one function, 96 One-to-one property of exponential functions, 220 of logarithms, 230	square, A15 square trinomial, A27, A28 Perihelion distance, 798 Perimeter, common formulas for, 7 Period of a function, 297 of sine and cosine functions, 324 Periodic function, 297
Negation, properties of, A6 Negative angle, 282 infinity, A3 of a vector, 449 Newton's Law of Cooling, 268 Nonnegative number, A1 Nonrigid transformation, 78 Nonsingular matrix, 603 Nonsquare system of linear equations,	Odd function, 60 trigonometric functions, 298 One cycle of a sine curve, 321 One-to-one correspondence, A1 One-to-one function, 96 One-to-one property of exponential functions, 220 of logarithms, 230 of natural logarithms, 234	square, A15 square trinomial, A27, A28 Perihelion distance, 798 Perimeter, common formulas for, 7 Period of a function, 297 of sine and cosine functions, 324 Periodic function, 297 Permutation, 693
Negation, properties of, A6 Negative angle, 282 infinity, A3 of a vector, 449 Newton's Law of Cooling, 268 Nonnegative number, A1 Nonrigid transformation, 78 Nonsingular matrix, 603 Nonsquare system of linear equations, 524	Odd function, 60 trigonometric functions, 298 One cycle of a sine curve, 321 One-to-one correspondence, A1 One-to-one function, 96 One-to-one property of exponential functions, 220 of logarithms, 230 of natural logarithms, 234 Operations of fractions, A7	square, A15 square trinomial, A27, A28 Perihelion distance, 798 Perimeter, common formulas for, 7 Period of a function, 297 of sine and cosine functions, 324 Periodic function, 297 Permutation, 693 distinguishable, 695
Negation, properties of, A6 Negative angle, 282 infinity, A3 of a vector, 449 Newton's Law of Cooling, 268 Nonnegative number, A1 Nonrigid transformation, 78 Nonsingular matrix, 603 Nonsquare system of linear equations, 524 Normally distributed, 261	Odd function, 60 trigonometric functions, 298 One cycle of a sine curve, 321 One-to-one correspondence, A1 One-to-one function, 96 One-to-one property of exponential functions, 220 of logarithms, 230 of natural logarithms, 234 Operations of fractions, A7 Operations that produce equivalent	square, A15 square trinomial, A27, A28 Perihelion distance, 798 Perimeter, common formulas for, 7 Period of a function, 297 of sine and cosine functions, 324 Periodic function, 297 Permutation, 693 distinguishable, 695 of <i>n</i> elements, 693
Negation, properties of, A6 Negative angle, 282 infinity, A3 of a vector, 449 Newton's Law of Cooling, 268 Nonnegative number, A1 Nonrigid transformation, 78 Nonsingular matrix, 603 Nonsquare system of linear equations, 524 Normally distributed, 261 Notation	Odd function, 60 trigonometric functions, 298 One cycle of a sine curve, 321 One-to-one correspondence, A1 One-to-one function, 96 One-to-one property of exponential functions, 220 of logarithms, 230 of natural logarithms, 234 Operations of fractions, A7 Operations that produce equivalent systems, 520	square, A15 square trinomial, A27, A28 Perihelion distance, 798 Perimeter, common formulas for, 7 Period of a function, 297 of sine and cosine functions, 324 Periodic function, 297 Permutation, 693 distinguishable, 695 of <i>n</i> elements, 693 taken <i>r</i> at a time, 694
Negation, properties of, A6 Negative angle, 282 infinity, A3 of a vector, 449 Newton's Law of Cooling, 268 Nonnegative number, A1 Nonrigid transformation, 78 Nonsingular matrix, 603 Nonsquare system of linear equations, 524 Normally distributed, 261 Notation exponential, A11	Odd function, 60 trigonometric functions, 298 One cycle of a sine curve, 321 One-to-one correspondence, A1 One-to-one function, 96 One-to-one property of exponential functions, 220 of logarithms, 230 of natural logarithms, 234 Operations of fractions, A7 Operations that produce equivalent systems, 520 Opposite side of a right triangle, 301	square, A15 square trinomial, A27, A28 Perihelion distance, 798 Perimeter, common formulas for, 7 Period of a function, 297 of sine and cosine functions, 324 Periodic function, 297 Permutation, 693 distinguishable, 695 of <i>n</i> elements, 693 taken <i>r</i> at a time, 694 Perpendicular lines, 30
Negation, properties of, A6 Negative angle, 282 infinity, A3 of a vector, 449 Newton's Law of Cooling, 268 Nonnegative number, A1 Nonrigid transformation, 78 Nonsingular matrix, 603 Nonsquare system of linear equations, 524 Normally distributed, 261 Notation	Odd function, 60 trigonometric functions, 298 One cycle of a sine curve, 321 One-to-one correspondence, A1 One-to-one function, 96 One-to-one property of exponential functions, 220 of logarithms, 230 of natural logarithms, 234 Operations of fractions, A7 Operations that produce equivalent systems, 520 Opposite side of a right triangle, 301 Optimal solution of a linear	square, A15 square trinomial, A27, A28 Perihelion distance, 798 Perimeter, common formulas for, 7 Period of a function, 297 of sine and cosine functions, 324 Periodic function, 297 Permutation, 693 distinguishable, 695 of <i>n</i> elements, 693 taken <i>r</i> at a time, 694 Perpendicular lines, 30 Phase shift, 325
Negation, properties of, A6 Negative angle, 282 infinity, A3 of a vector, 449 Newton's Law of Cooling, 268 Nonnegative number, A1 Nonrigid transformation, 78 Nonsingular matrix, 603 Nonsquare system of linear equations, 524 Normally distributed, 261 Notation exponential, A11 function, 42, 47	Odd function, 60 trigonometric functions, 298 One cycle of a sine curve, 321 One-to-one correspondence, A1 One-to-one function, 96 One-to-one property of exponential functions, 220 of logarithms, 230 of natural logarithms, 234 Operations of fractions, A7 Operations that produce equivalent systems, 520 Opposite side of a right triangle, 301 Optimal solution of a linear programming problem, 552	square, A15 square trinomial, A27, A28 Perihelion distance, 798 Perimeter, common formulas for, 7 Period of a function, 297 of sine and cosine functions, 324 Periodic function, 297 Permutation, 693 distinguishable, 695 of <i>n</i> elements, 693 taken <i>r</i> at a time, 694 Perpendicular lines, 30 Phase shift, 325 Piecewise-defined function, 43
Negation, properties of, A6 Negative angle, 282 infinity, A3 of a vector, 449 Newton's Law of Cooling, 268 Nonnegative number, A1 Nonrigid transformation, 78 Nonsingular matrix, 603 Nonsquare system of linear equations, 524 Normally distributed, 261 Notation exponential, A11 function, 42, 47 scientific, A13 sigma, 646 summation, 646	Odd function, 60 trigonometric functions, 298 One cycle of a sine curve, 321 One-to-one correspondence, A1 One-to-one function, 96 One-to-one property of exponential functions, 220 of logarithms, 230 of natural logarithms, 234 Operations of fractions, A7 Operations that produce equivalent systems, 520 Opposite side of a right triangle, 301 Optimal solution of a linear	square, A15 square trinomial, A27, A28 Perihelion distance, 798 Perimeter, common formulas for, 7 Period of a function, 297 of sine and cosine functions, 324 Periodic function, 297 Permutation, 693 distinguishable, 695 of <i>n</i> elements, 693 taken <i>r</i> at a time, 694 Perpendicular lines, 30 Phase shift, 325
Negation, properties of, A6 Negative angle, 282 infinity, A3 of a vector, 449 Newton's Law of Cooling, 268 Nonnegative number, A1 Nonrigid transformation, 78 Nonsingular matrix, 603 Nonsquare system of linear equations, 524 Normally distributed, 261 Notation exponential, A11 function, 42, 47 scientific, A13 sigma, 646 summation, 646 nth partial sum, 647	Odd function, 60 trigonometric functions, 298 One cycle of a sine curve, 321 One-to-one correspondence, A1 One-to-one function, 96 One-to-one property of exponential functions, 220 of logarithms, 230 of natural logarithms, 234 Operations of fractions, A7 Operations that produce equivalent systems, 520 Opposite side of a right triangle, 301 Optimal solution of a linear programming problem, 552 Optimization, 552	square, A15 square trinomial, A27, A28 Perihelion distance, 798 Perimeter, common formulas for, 7 Period of a function, 297 of sine and cosine functions, 324 Periodic function, 297 Permutation, 693 distinguishable, 695 of <i>n</i> elements, 693 taken <i>r</i> at a time, 694 Perpendicular lines, 30 Phase shift, 325 Piecewise-defined function, 43 Plane curve, 771
Negation, properties of, A6 Negative angle, 282 infinity, A3 of a vector, 449 Newton's Law of Cooling, 268 Nonnegative number, A1 Nonrigid transformation, 78 Nonsingular matrix, 603 Nonsquare system of linear equations, 524 Normally distributed, 261 Notation exponential, A11 function, 42, 47 scientific, A13 sigma, 646 summation, 646 nth partial sum, 647 of an arithmetic sequence, 657	Odd function, 60 trigonometric functions, 298 One cycle of a sine curve, 321 One-to-one correspondence, A1 One-to-one function, 96 One-to-one property of exponential functions, 220 of logarithms, 230 of natural logarithms, 234 Operations of fractions, A7 Operations that produce equivalent systems, 520 Opposite side of a right triangle, 301 Optimal solution of a linear programming problem, 552 Optimization, 552 Order of a matrix, 572 on the real number line, A2	square, A15 square trinomial, A27, A28 Perihelion distance, 798 Perimeter, common formulas for, 7 Period of a function, 297 of sine and cosine functions, 324 Periodic function, 297 Permutation, 693 distinguishable, 695 of <i>n</i> elements, 693 taken <i>r</i> at a time, 694 Perpendicular lines, 30 Phase shift, 325 Piecewise-defined function, 43 Plane curve, 771 orientation of, 772
Negation, properties of, A6 Negative angle, 282 infinity, A3 of a vector, 449 Newton's Law of Cooling, 268 Nonnegative number, A1 Nonrigid transformation, 78 Nonsingular matrix, 603 Nonsquare system of linear equations, 524 Normally distributed, 261 Notation exponential, A11 function, 42, 47 scientific, A13 sigma, 646 summation, 646 nth partial sum, 647 of an arithmetic sequence, 657 nth root(s)	Odd function, 60 trigonometric functions, 298 One cycle of a sine curve, 321 One-to-one correspondence, A1 One-to-one function, 96 One-to-one property of exponential functions, 220 of logarithms, 230 of natural logarithms, 234 Operations of fractions, A7 Operations that produce equivalent systems, 520 Opposite side of a right triangle, 301 Optimal solution of a linear programming problem, 552 Optimization, 552 Order of a matrix, 572 on the real number line, A2 Ordered pair, 2	square, A15 square trinomial, A27, A28 Perihelion distance, 798 Perimeter, common formulas for, 7 Period of a function, 297 of sine and cosine functions, 324 Periodic function, 297 Permutation, 693 distinguishable, 695 of <i>n</i> elements, 693 taken <i>r</i> at a time, 694 Perpendicular lines, 30 Phase shift, 325 Piecewise-defined function, 43 Plane curve, 771 orientation of, 772 Point of diminishing returns, 151 equilibrium, 514, 546
Negation, properties of, A6 Negative angle, 282 infinity, A3 of a vector, 449 Newton's Law of Cooling, 268 Nonnegative number, A1 Nonrigid transformation, 78 Nonsingular matrix, 603 Nonsquare system of linear equations, 524 Normally distributed, 261 Notation exponential, A11 function, 42, 47 scientific, A13 sigma, 646 summation, 646 nth partial sum, 647 of an arithmetic sequence, 657 nth root(s) of a, A14	Odd function, 60 trigonometric functions, 298 One cycle of a sine curve, 321 One-to-one correspondence, A1 One-to-one function, 96 One-to-one property of exponential functions, 220 of logarithms, 230 of natural logarithms, 234 Operations of fractions, A7 Operations that produce equivalent systems, 520 Opposite side of a right triangle, 301 Optimal solution of a linear programming problem, 552 Optimization, 552 Order of a matrix, 572 on the real number line, A2 Ordered pair, 2 Ordered triple, 519	square, A15 square trinomial, A27, A28 Perihelion distance, 798 Perimeter, common formulas for, 7 Period of a function, 297 of sine and cosine functions, 324 Periodic function, 297 Permutation, 693 distinguishable, 695 of n elements, 693 taken r at a time, 694 Perpendicular lines, 30 Phase shift, 325 Piecewise-defined function, 43 Plane curve, 771 orientation of, 772 Point of diminishing returns, 151 equilibrium, 514, 546 Point-plotting method, 15
Negation, properties of, A6 Negative angle, 282 infinity, A3 of a vector, 449 Newton's Law of Cooling, 268 Nonnegative number, A1 Nonrigid transformation, 78 Nonsingular matrix, 603 Nonsquare system of linear equations, 524 Normally distributed, 261 Notation exponential, A11 function, 42, 47 scientific, A13 sigma, 646 summation, 646 nth partial sum, 647 of an arithmetic sequence, 657 nth root(s) of a, A14 of a complex number, 475, 476	Odd function, 60 trigonometric functions, 298 One cycle of a sine curve, 321 One-to-one correspondence, A1 One-to-one function, 96 One-to-one property of exponential functions, 220 of logarithms, 230 of natural logarithms, 234 Operations of fractions, A7 Operations that produce equivalent systems, 520 Opposite side of a right triangle, 301 Optimal solution of a linear programming problem, 552 Optimization, 552 Order of a matrix, 572 on the real number line, A2 Ordered pair, 2 Ordered triple, 519 Orientation of a curve, 772	square, A15 square trinomial, A27, A28 Perihelion distance, 798 Perimeter, common formulas for, 7 Period of a function, 297 of sine and cosine functions, 324 Periodic function, 297 Permutation, 693 distinguishable, 695 of n elements, 693 taken r at a time, 694 Perpendicular lines, 30 Phase shift, 325 Piecewise-defined function, 43 Plane curve, 771 orientation of, 772 Point of diminishing returns, 151 equilibrium, 514, 546 Point-plotting method, 15 Point-slope form, 29, 33
Negation, properties of, A6 Negative angle, 282 infinity, A3 of a vector, 449 Newton's Law of Cooling, 268 Nonnegative number, A1 Nonrigid transformation, 78 Nonsingular matrix, 603 Nonsquare system of linear equations, 524 Normally distributed, 261 Notation exponential, A11 function, 42, 47 scientific, A13 sigma, 646 summation, 646 nth partial sum, 647 of an arithmetic sequence, 657 nth root(s) of a, A14 of a complex number, 475, 476 generalizations about, A15	Odd function, 60 trigonometric functions, 298 One cycle of a sine curve, 321 One-to-one correspondence, A1 One-to-one function, 96 One-to-one property of exponential functions, 220 of logarithms, 230 of natural logarithms, 234 Operations of fractions, A7 Operations that produce equivalent systems, 520 Opposite side of a right triangle, 301 Optimal solution of a linear programming problem, 552 Optimization, 552 Order of a matrix, 572 on the real number line, A2 Ordered pair, 2 Ordered triple, 519 Orientation of a curve, 772 Origin, 2	square, A15 square trinomial, A27, A28 Perihelion distance, 798 Perimeter, common formulas for, 7 Period of a function, 297 of sine and cosine functions, 324 Periodic function, 297 Permutation, 693 distinguishable, 695 of <i>n</i> elements, 693 taken <i>r</i> at a time, 694 Perpendicular lines, 30 Phase shift, 325 Piecewise-defined function, 43 Plane curve, 771 orientation of, 772 Point of diminishing returns, 151 equilibrium, 514, 546 Point-plotting method, 15 Point-slope form, 29, 33 Points of intersection, 500
Negation, properties of, A6 Negative angle, 282 infinity, A3 of a vector, 449 Newton's Law of Cooling, 268 Nonnegative number, A1 Nonrigid transformation, 78 Nonsingular matrix, 603 Nonsquare system of linear equations, 524 Normally distributed, 261 Notation exponential, A11 function, 42, 47 scientific, A13 sigma, 646 summation, 646 nth partial sum, 647 of an arithmetic sequence, 657 nth root(s) of a, A14 of a complex number, 475, 476	Odd function, 60 trigonometric functions, 298 One cycle of a sine curve, 321 One-to-one correspondence, A1 One-to-one function, 96 One-to-one property of exponential functions, 220 of logarithms, 230 of natural logarithms, 234 Operations of fractions, A7 Operations that produce equivalent systems, 520 Opposite side of a right triangle, 301 Optimal solution of a linear programming problem, 552 Optimization, 552 Order of a matrix, 572 on the real number line, A2 Ordered pair, 2 Ordered triple, 519 Orientation of a curve, 772	square, A15 square trinomial, A27, A28 Perihelion distance, 798 Perimeter, common formulas for, 7 Period of a function, 297 of sine and cosine functions, 324 Periodic function, 297 Permutation, 693 distinguishable, 695 of n elements, 693 taken r at a time, 694 Perpendicular lines, 30 Phase shift, 325 Piecewise-defined function, 43 Plane curve, 771 orientation of, 772 Point of diminishing returns, 151 equilibrium, 514, 546 Point-plotting method, 15 Point-slope form, 29, 33

origin of, 779	of an event, 702	Q
pole, 779	of independent events, 707	Quadrant, 2
Polar coordinates, 779	of the union of two events, 705	Quadratic equation, 16, A49
conversion to rectangular, 780	Producer surplus, 546	solving
quick tests for symmetry in, 787	Product	by completing the square, A49
test for symmetry in, 786	of functions, 84	by extracting square roots, A49
Polar equations of conics, 793, 808	of trigonometric functions, 407	by factoring, A49
Polar form of a complex number, 471	of two complex numbers, 472	using Quadratic Formula, A49
Pole, 779	Product property	using Square Root Principle, A49
Polynomial(s), A23	of logarithms, 240, 278	Quadratic Formula, A49
coefficient of, A23	of natural logarithms, 240, 278	Quadratic function, 128
completely factored, A26	Product-to-sum formulas, 411	standard form, 131
constant term, A23	Projection, of a vector, 464	Quick tests for symmetry in polar
degree of, A23	Proof, 124	coordinates, 787
equation, second-degree, A49	by contradiction, 568	Quotient
factors of, 173, 214	indirect, 568	difference, 46
finding test intervals for, 197	without words, 638	of functions, 84
guidelines for factoring, A30	Proper rational expression, 154	of two complex numbers, 472
irreducible, A26	Properties	Quotient identities, 304, 374
leading coefficient of, A23	of absolute value, A4	Quotient property
like terms, A24	of the dot product, 460, 492	of logarithms, 240, 278
long division of, 153	of equality, A6	of natural logarithms, 240, 278
prime, A26	of exponents, A11	or natural logarithms, 210, 270
prime factor, 174	of fractions, A7	R
standard form of, A23	of inequalities, A61	
synthetic division, 156	of inverse trigonometric functions,	Radian, 283
test intervals for, 144	347	conversion to degrees, 286
Polynomial function, 128	of logarithms, 230, 240, 278	Radical(s)
real zeros of, 143 standard form, 142	inverse, 230	index of, A14
,		like, A17
test intervals, 197	one-to-one, 230	properties of, A15
of x with degree n , 128	power, 240, 278	simplest form, A16
Position equation, 525 Positive	product, 240, 278	symbol, A14
angle, 282	quotient, 240, 278	Radicand, A14
infinity, A3	of matrix addition and scalar	Radius of a circle, 20
Power, A11	multiplication, 590	Random selection
Power function, 140	of matrix multiplication, 594	with replacement, 691
Power property	of natural logarithms, 234, 240, 278	without replacement, 691
of logarithms, 240, 278	inverse, 234	Range of a function, 40, 47
of natural logarithms, 240, 278	one-to-one, 234	Rate, 31
Power-reducing formulas, 409, 425	power, 240, 278	Rate of change, 31
Prime	product, 240, 278	average, 59
factor of a polynomial, 174	quotient, 240, 278	Ratio, 31
factorization, A7	of negation, A6	Rational exponent, A18
number, A7	one-to-one, exponential functions, 220	Rational expression(s), A36
polynomial, A26	of radicals, A15	improper, 154
Principal <i>n</i> th root	reflective, 738	proper, 154 Rational function, 184
of a , A14	of sums, 646, 722	
of a number, A14	of vector addition and scalar	asymptotes of, 186
Principal square root of a negative	multiplication, 451	domain of, 184
number, 166	of zero, A7	graph of, guidelines for analyzing, 187
Principle of Mathematical Induction, 674	Pure imaginary number, 162	
Probability	Pythagorean identities, 304, 374	test intervals for, 187
of a complement, 708	Pythagorean Theorem, 4, 370	Rational inequality, test intervals, 201
	- J govern 2110010111, 1, 010	Rational number, A1

Rational Zero Test, 170	Rose curve, 788, 789	Simplest form, A16
Rationalizing a denominator, 384, A16,	Rotation	Sine curve, 321
A17	of axes, 763	amplitude of, 323
Real axis of the complex plane, 470	to eliminate an xy-term, 763	one cycle of, 321
Real number(s), A1	invariants, 767	Sine function, 295, 301
absolute value of, A4	Row-echelon form, 519	of any angle, 312
division of, A5	of a matrix, 576	common angles, 315
subset of, A1	reduced, 576	curve, 321
subtraction of, A5	Row-equivalent, 574	domain of, 297
Real number line, A1	Row matrix, 572	graph of, 325, 338
bounded intervals on, A2	Row operations, 520	inverse, 343, 345
distance between two points, A4	Rules of signs for fractions, A7	period of, 324
interval on, A2	runes of signs for muchons, i.i.	range of, 297
order on, A2	S	special angles, 303
origin, A1	•	Sines, cosines, and tangents of special
unbounded intervals on, A3	Sample space, 701	angles, 303
Real part of a complex number, 162	Satisfy the inequality, A60	Singular matrix, 603
	Scalar, 588	-
Real zeros of polynomial functions, 143	identity, 590	Sketching the graph of an equation by
Reciprocal function, 68	multiple, 588	point plotting, 15
Reciprocal identities, 304, 374	Scalar multiplication, 588	Sketching the graph of an inequality in
Rectangular coordinate system, 2	properties of, 590	two variables, 541
Rectangular coordinates, conversion to	of a vector, 449	Slant asymptote, 190
polar, 780	properties of, 451	Slope
Recursion form of the <i>n</i> th term of an	Scatter plot, 3	inclination, 728, 806
arithmetic sequence, 654	Scientific notation, A13	of a line, 25, 27
Recursion formula, 655	Scribner Log Rule, 505	Slope-intercept form, 25, 33
Recursive sequence, 644	Secant function, 295, 301	Solution(s)
Reduced row-echelon form of a matrix,	of any angle, 312	of an absolute value inequality, A63
576	graph of, 335, 338	of an equation, 14, A46
Reducible over the reals, 174	Secant line, 59	extraneous, A48, A54
Reduction formulas, 402	Second-degree polynomial equation, A49	of an inequality, 541, A60
Reference angle, 314	Second differences, 680	of a system of equations, 496
Reflection, 76	Sector of a circle, 289	graphical interpretations, 510
of a trigonometric function, 324	area of, 289	of a system of inequalities, 543
Reflective property of a parabola, 738	Sequence, 642	Solution point, 14
Relation, 40	arithmetic, 653	Solution set, A60
Relative maximum, 58	finite, 642	Solving
Relative minimum, 58	first differences of, 680	an absolute value inequality, A63
Remainder Theorem, 157, 213	geometric, 663	an equation, A46
Repeated zero, 143	infinite, 642	exponential and logarithmic
Representation of matrices, 587	nth partial sum, 647	equations, 246
Resultant of vector addition, 449	-	an inequality, A60
Right triangle	recursive, 644	a linear programming problem, 553
definitions of trigonometric functions,	second differences of, 680	right triangles, 306
301	terms of, 642	a system of equations, 496
hypotenuse, 301	Series, 647	Cramer's Rule, 619, 620
opposite side, 301	finite, 647	Gaussian elimination with
right side of, 301	geometric, 667	back-substitution, 578
solving, 306	infinite, 647	Gauss-Jordan elimination, 579
Rigid transformation, 78	geometric, 667	graphical method, 500
Root(s)	Sierpinski Triangle, 726	method of elimination, 507, 508
of a complex number, 475, 476	Sigma notation, 646	method of substitution, 496
cube, A14	Sigmoidal curve, 262	a system of linear equations, Gaussian
principal nth, A14	Simple harmonic motion, 356, 357	elimination, 520
square, A14	frequency, 356	Special products, A25
Coperat V (1 1 1 1	110440110 11 000	Special producto, 1120

A220 Index

Square	of square differences, 104	of a sequence, 642
of a binomial, A25	Sum and difference formulas, 400, 424	variable, A5
of trigonometric functions, 407	Sum and difference of same terms, A25	Terminal point, 447
Square matrix, 572	Sum or difference of two cubes, A27	Terminal side of an angle, 282
determinant of, 614	Summary	Test
idempotent, 639	of equations of lines, 33	for collinear points, 623
main diagonal of, 572	of function terminology, 47	for symmetry in polar coordinates
minors and cofactors of, 613	Summation	786
Square root(s), A14	index of, 646	Test intervals
extracting, A49	lower limit of, 646	for a polynomial, 144
function, 68	notation, 646	for a polynomial inequality, 197
of a negative number, 166	upper limit of, 646	for a rational function, 187
Square Root Principle, A49	Sum-to-product formulas, 412, 426	for a rational inequality, 201
Square system of linear equations, 524	Supplementary angles, 285	Transcendental function, 218
Squaring function, 67	Surplus	Transformation
Standard form	consumer, 546	nonrigid, 78
of a complex number, 162	producer, 546	rigid, 78
of the equation of a circle, 20	Symmetry, 18	Transpose of a matrix, 640
of the equation of an ellipse, 745	algebraic tests for, 19	Transverse axis of a hyperbola, 753
of the equation of a hyperbola, 753	graphical tests for, 18	Triangle
of the equation of a parabola, 736,	quick tests for, in polar coordinates,	area of, 622
807	787	oblique, 430
of Law of Cosines, 439, 490	test for, in polar coordinates, 786	area of, 434
of a polynomial, A23	with respect to the origin, 18	Trigonometric form of a complex
of a polynomial function, 142	with respect to the x-axis, 18	number, 471
of a quadratic function, 131	with respect to the y-axis, 18	argument of, 471
Standard position	Synthetic division, 156	modulus of, 471
of an angle, 282	uses of the remainder, 158	Trigonometric function
of a vector, 448	System of equations, 496	of any angle, 312
Standard unit vector, 452	equivalent, 509	evaluating, 315
Step function, 69	solution of, 496	cosecant, 295, 301
Stochastic matrix, 599	with a unique solution, 607	cosine, 295, 301
Straight-line depreciation, 32	System of inequalities, solution of, 543	cotangent, 295, 301
Strategies for solving exponential and	System of linear equations	even and odd, 298
logarithmic equations, 246	consistent, 510	horizontal shrink of, 324
Strophoid, 810	dependent, 510	horizontal stretch of, 324
Subset, A1	inconsistent, 510	horizontal translation of, 325
Substitution, method of, 496	independent, 510	inverse properties of, 347
Substitution Principle, A5	nonsquare, 524	key points, 322
Subtraction	number of solutions, 522	intercepts, 322
of a complex number, 163	row-echelon form, 519	maximum points, 322
of fractions	row operations, 520	minimum points, 322
with like denominators, A7	square, 524	product of, 407
with unlike denominators, A7	square, 524	reflection of, 324
of real numbers, A5	T	right triangle definitions of, 301
Sum(s)		secant, 295, 301
of a finite arithmetic sequence, 656,	Tangent function, 295, 301	sine, 295, 301
723	of any angle, 312	
	common angles, 315	square of, 407
of a finite geometric sequence, 666,	graph of, 332, 338	tangent, 295, 301
723	inverse, 345	unit circle definitions of, 295
of functions, 84	special angles, 303	Trigonometric identities
of an infinite geometric series, 667	Tangent line to a parabola, 738	cofunction identities, 374
nth partial, 647	Term	even/odd identities, 374
of powers of integers, 679	of an algebraic expression, A5	fundamental identities, 304, 374
properties of, 646, 722	constant, A5, A23	guidelines for verifying, 382

Pythagorean identities, 304, 374	inverse, 107	of a hyperbola, 753
quotient identities, 304, 374	joint, 108	of a parabola, 129, 133, 736
reciprocal identities, 304, 374	in sign, 176	Vertical asymptote, 185
Trigonometric values of common angles,	Vary directly, 105	Vertical asymptote, 163 Vertical components of v, 452
315	as nth power, 106	Vertical line, 33
Trigonometry, 282	Vary inversely, 107	Vertical Line Test, 55
Trinomial, A23		Vertical shift, 74
	Vary jointly, 108	,
perfect square, A27, A28	Vector(s)	Vertical shrink, 78
Two-point form of the equation of a line,	addition, 449	Vertical stretch, 78
29, 33, 624	properties of, 451	Volume, common formulas for, 7
U	resultant of, 449	W
O	angle between two, 461, 492	VV
Unbounded, A60	component form of, 448	With replacement, 691
Unbounded intervals, A3	components, 463, 464	Without replacement, 691
Uncoded row matrices, 625	difference of, 449	Work, 466
Undefined, 47	directed line segment of, 447 direction angle of, 453	
Unit circle, 294	dot product of, 460	X
definitions of trigonometric functions,	properties of, 460, 492	
295	equality of, 448	x-axis, 2
Unit vector, 448, 621	horizontal component of, 452	symmetry, 18
in the direction of v, 451	length of, 448	x-coordinate, 2
standard, 452	linear combination of, 452	Υ
Upper bound, 177	magnitude of, 448	'
Upper limit of summation, 646	negative of, 449	y-axis, 2
Upper and Lower Bound Rules, 177	orthogonal, 462	symmetry, 18
Uses of the remainder in synthetic	parallelogram law, 449	y-coordinate, 2
division, 158	projection, 464	
20000000	resultant, 449	Z
V	scalar multiplication of, 449,	
	properties of, 451	Zero(s)
Value of a function, 42, 47	standard position of, 448	of a function, 56
Variable, A5	unit, 448, 621	matrix, 591
dependent, 42, 47	in the direction of \mathbf{v} , 451	multiplicity of, 143
independent, 42, 47	standard, 452	of a polynomial function, 143
Variable term, A5	v in the plane, 447	bounds for, 177
Variation	vertical component of, 452	real, 143
combined, 107	zero, 448	properties of, A7
constant of, 105	Vertex (vertices)	repeated, 143
direct, 105	of an angle, 282	vector, 448
as an <i>n</i> th power, 106	of an ellipse, 744	Zero-Factor Property, A7

Definition of the Six Trigonometric Functions

Right triangle definitions, where $0 < \theta < \pi/2$

Circular function definitions, where θ is any angle

$$\sin \theta = \frac{y}{r} \qquad \csc \theta = \frac{r}{y}$$

$$\cos \theta = \frac{x}{r} \qquad \sec \theta = \frac{r}{x}$$

$$\Rightarrow x \qquad \tan \theta = \frac{y}{r} \qquad \cot \theta = \frac{x}{y}$$

$$\tan \theta = \frac{y}{x} \qquad \cot \theta = \frac{x}{y}$$

Reciprocal Identities

$$\sin u = \frac{1}{\csc u} \qquad \cos u = \frac{1}{\sec u} \qquad \tan u = \frac{1}{\cot u}$$

$$\csc u = \frac{1}{\sin u} \qquad \sec u = \frac{1}{\cos u} \qquad \cot u = \frac{1}{\tan u}$$

Quotient Identities

$$\tan u = \frac{\sin u}{\cos u} \qquad \cot u = \frac{\cos u}{\sin u}$$

Pythagorean Identities

$$\sin^2 u + \cos^2 u = 1$$

$$1 + \tan^2 u = \sec^2 u$$
 $1 + \cot^2 u = \csc^2 u$

Cofunction Identities

$$\sin\left(\frac{\pi}{2} - u\right) = \cos u \qquad \cot\left(\frac{\pi}{2} - u\right) = \tan u$$

$$\cos\left(\frac{\pi}{2} - u\right) = \sin u \qquad \sec\left(\frac{\pi}{2} - u\right) = \csc u$$

$$\tan\left(\frac{\pi}{2} - u\right) = \cot u \qquad \csc\left(\frac{\pi}{2} - u\right) = \sec u$$

Even/Odd Identities

$$\sin(-u) = -\sin u$$
 $\cot(-u) = -\cot u$
 $\cos(-u) = \cos u$ $\sec(-u) = \sec u$
 $\tan(-u) = -\tan u$ $\csc(-u) = -\csc u$

Sum and Difference Formulas

$$\sin(u \pm v) = \sin u \cos v \pm \cos u \sin v$$

$$\cos(u \pm v) = \cos u \cos v \mp \sin u \sin v$$

$$\tan(u \pm v) = \frac{\tan u \pm \tan v}{1 \mp \tan u \tan v}$$

Double-Angle Formulas

$$\sin 2u = 2 \sin u \cos u$$

$$\cos 2u = \cos^2 u - \sin^2 u = 2 \cos^2 u - 1 = 1 - 2 \sin^2 u$$

$$\tan 2u = \frac{2 \tan u}{1 - \tan^2 u}$$

Power-Reducing Formulas

$$\sin^2 u = \frac{1 - \cos 2u}{2}$$
$$\cos^2 u = \frac{1 + \cos 2u}{2}$$
$$\tan^2 u = \frac{1 - \cos 2u}{1 + \cos 2u}$$

Sum-to-Product Formulas

$$\sin u + \sin v = 2 \sin\left(\frac{u+v}{2}\right) \cos\left(\frac{u-v}{2}\right)$$

$$\sin u - \sin v = 2 \cos\left(\frac{u+v}{2}\right) \sin\left(\frac{u-v}{2}\right)$$

$$\cos u + \cos v = 2 \cos\left(\frac{u+v}{2}\right) \cos\left(\frac{u-v}{2}\right)$$

$$\cos u - \cos v = -2 \sin\left(\frac{u+v}{2}\right) \sin\left(\frac{u-v}{2}\right)$$

Product-to-Sum Formulas

$$\sin u \sin v = \frac{1}{2} [\cos(u - v) - \cos(u + v)]$$

$$\cos u \cos v = \frac{1}{2} [\cos(u - v) + \cos(u + v)]$$

$$\sin u \cos v = \frac{1}{2} [\sin(u + v) + \sin(u - v)]$$

$$\cos u \sin v = \frac{1}{2} [\sin(u + v) - \sin(u - v)]$$

FORMULAS FROM GEOMETRY

Triangle:

$$h = a \sin \theta$$

Area =
$$\frac{1}{2}bh$$

$$c^2 = a^2 + b^2 - 2ab \cos \theta$$
 (Law of Cosines)

Sector of Circular Ring:

Area = $\theta p w$

p = average radius,

w =width of ring,

 θ in radians

Right Triangle:

Pythagorean Theorem
$$c^2 = a^2 + b^2$$

Ellipse:

Area =
$$\pi ab$$

Circumference
$$\approx 2\pi \sqrt{\frac{a^2 + b^2}{2}}$$

Equilateral Triangle:

$$h = \frac{\sqrt{3}s}{2}$$

Cone:

Volume =
$$\frac{Ah}{3}$$

$$A =$$
area of base

Parallelogram:

Area =
$$bh$$

Right Circular Cone:

Volume =
$$\frac{\pi r^2 h}{3}$$

Lateral Surface Area = $\pi r \sqrt{r^2 + h^2}$

Trapezoid:

Area =
$$\frac{h}{2}(a + b)$$

Frustum of Right Circular Cone:

$$Volume = \frac{\pi(r^2 + rR + R^2)h}{3}$$

Lateral Surface Area = $\pi s(R + r)$

Circle:

Area =
$$\pi r^2$$

Circumference = $2\pi r$

Right Circular Cylinder:

Volume =
$$\pi r^2 h$$

Lateral Surface Area = $2\pi rh$

Sector of Circle:

Area =
$$\frac{\theta r^2}{2}$$

$$s = r\theta$$

 θ in radians

Sphere:

Volume =
$$\frac{4}{3}\pi r^3$$

Surface Area = $4\pi r^2$

Circular Ring:

Area =
$$\pi(R^2 - r^2)$$

= $2\pi pw$

 $= 2\pi p w$ p = average radius,

w =width of ring

Wedge:

$$A = B \sec \theta$$

A =area of upper face,

B = area of base

GRAPHS OF PARENT FUNCTIONS

Linear Function

$$f(x) = mx + b$$

Domain: $(-\infty, \infty)$ Range: $(-\infty, \infty)$ x-intercept: (-b/m, 0)y-intercept: (0, b)Increasing when m > 0Decreasing when m < 0

Greatest Integer Function

$$f(x) = [\![x]\!]$$

Domain: (-∞, ∞)
Range: the set of integers *x*-intercepts: in the interval [0, 1) *y*-intercept: (0, 0)
Constant between each pair of
consecutive integers
Jumps vertically one unit at
each integer value

Absolute Value Function

$$f(x) = |x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Domain: $(-\infty, \infty)$ Range: $[0, \infty)$ Intercept: (0, 0)Decreasing on $(-\infty, 0)$ Increasing on $(0, \infty)$ Even function y-axis symmetry

Quadratic (Squaring) Function

$$f(x) = ax^2$$

Domain: $(-\infty, \infty)$ Range (a > 0): $[0, \infty)$ Range (a < 0): $(-\infty, 0]$ Intercept: (0, 0)Decreasing on $(-\infty, 0)$ for a > 0Increasing on $(0, \infty)$ for a > 0Increasing on $(-\infty, 0)$ for a < 0Decreasing on $(0, \infty)$ for a < 0Even function y-axis symmetry Relative minimum (a > 0), relative maximum (a < 0),

or vertex: (0,0)

Square Root Function

$$f(x) = \sqrt{x}$$

Domain: $[0, \infty)$ Range: $[0, \infty)$ Intercept: (0, 0)Increasing on $(0, \infty)$

Cubic Function

$$f(x) = x^3$$

Domain: $(-\infty, \infty)$ Range: $(-\infty, \infty)$ Intercept: (0, 0)Increasing on $(-\infty, \infty)$ Odd function Origin symmetry

Rational (Reciprocal) Function

$$f(x) = \frac{1}{x}$$

Domain: $(-\infty, 0) \cup (0, \infty)$ Range: $(-\infty, 0) \cup (0, \infty)$

No intercepts

Decreasing on $(-\infty, 0)$ and $(0, \infty)$

Odd function Origin symmetry

Vertical asymptote: *y*-axis Horizontal asymptote: *x*-axis

Sine Function

$$f(x) = \sin x$$

Domain: $(-\infty, \infty)$

Range: [-1, 1]Period: 2π

x-intercepts: $(n\pi, 0)$ *y*-intercept: (0, 0)

Odd function

Origin symmetry

Exponential Function

$$f(x) = a^x, \ a > 0, \ a \neq 1$$

Domain: $(-\infty, \infty)$

Range: $(0, \infty)$

Intercept: (0, 1)

Increasing on $(-\infty, \infty)$

for $f(x) = a^x$

Decreasing on $(-\infty, \infty)$

for $f(x) = a^{-x}$

Horizontal asymptote: *x*-axis

Continuous

Cosine Function

$$f(x) = \cos x$$

Domain: $(-\infty, \infty)$

Range: [-1, 1]

Period: 2π

x-intercepts: $\left(\frac{\pi}{2} + n\pi, 0\right)$

y-intercept: (0, 1) Even function y-axis symmetry

Logarithmic Function

$$f(x) = \log_a x, \ a > 0, \ a \neq 1$$

Domain: $(0, \infty)$

Range: $(-\infty, \infty)$

Intercept: (1, 0)

Increasing on $(0, \infty)$ Vertical asymptote: *y*-axis

Continuous

Reflection of graph of $f(x) = a^x$

in the line y = x

Tangent Function

$$f(x) = \tan x$$

Domain: all $x \neq \frac{\pi}{2} + n\pi$

Range: $(-\infty, \infty)$

Period: π

x-intercepts: $(n\pi, 0)$

y-intercept: (0, 0)

Vertical asymptotes:

$$x = \frac{\pi}{2} + n\pi$$

Odd function Origin symmetry

Cosecant Function

$$f(x) = \csc x$$

Domain: all $x \neq n\pi$

Range: $(-\infty, -1] \cup [1, \infty)$

Period: 2π No intercepts

Vertical asymptotes: $x = n\pi$

Odd function Origin symmetry

Inverse Sine Function

$$f(x) = \arcsin x$$

Domain: [-1, 1]

Range: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Intercept: (0, 0)
Odd function
Origin symmetry

Secant Function

$$f(x) = \sec x$$

Domain: all $x \neq \frac{\pi}{2} + n\pi$

Range: $(-\infty, -1] \cup [1, \infty)$

Period: 2π y-intercept: (0, 1) Vertical asymptotes:

$$x = \frac{\pi}{2} + n\pi$$

Even function *y*-axis symmetry

Inverse Cosine Function

$$f(x) = \arccos x$$

Domain: [-1, 1]

Range: $[0, \pi]$

y-intercept: $\left(0, \frac{\pi}{2}\right)$

Cotangent Function

$$f(x) = \cot x$$

Domain: all $x \neq n\pi$ Range: $(-\infty, \infty)$

Period: π

x-intercepts: $\left(\frac{\pi}{2} + n\pi, 0\right)$

Vertical asymptotes: $x = n\pi$

Odd function Origin symmetry

Inverse Tangent Function

$$f(x) = \arctan x$$

Domain: $(-\infty, \infty)$

Range:
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

Intercept: (0, 0)

Horizontal asymptotes:

$$y = \pm \frac{\pi}{2}$$

Odd function Origin symmetry