Job No.: Waiuku Pistol Club Address: 706 Whiriwhiri Road,, Otaua, New Zealand Date: 7/29/2022 Latitude: -37.316122 Longitude: 174.683009 Elevation: 116 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N0	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	1	Subsoil Category	D	Exposure Zone	D
Importance Level	1	Ultimate wind ARI	100 Years	Max Height	3.6 m
Wind Region	NZ1	Terrain Category	2.0	Design Wind Speed	44.36 m/s
Wind Pressure	1.18 KPa	Lee Zone	NO	Ultimate ARI	100 Years
Wind Category	Very High				

Pressure Coefficients and Pressues

Shed Type = Mono Enclosed

For roof Cp, i = -0.3

For roof CP,e from 0 m To 1.70 m Cpe = -1 pe = -1.11 KPa pnet = -1.11 KPa

For roof CP,e from 1.70 m To 3.40 m Cpe = -0.83 pe = -0.88 KPa pnet = -0.88 KPa

For wall Windward $Cp_i = -0.3$ side Wall $Cp_i = -0.3$

For wall Windward and Leeward CP,e from 0 m To 5 m Cpe = 0.7 pe = 0.74 KPa pnet = 1.09 KPa

For side wall CP,e from 0 m To 3.40 m Cpe = pe = -0.69 KPa pnet = -0.69 KPa

Maximum Upward pressure used in roof member Design = 1.11 KPa

Maximum Downward pressure used in roof member Design = 0.46 KPa

Maximum Wall pressure used in Design = 1.1 KPa

Maximum Racking pressure used in Design = 1.143 KPa

Design Summary

Purlin Design

Purlin Spacing = 750 mm Purlin Span = 4800 mm Try Purlin 290x45 SG6 Wet

Moisture Condition = Wet (Moisture in timber is less than 25%)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.90

K8 Upward =0.51 S1 Downward =15.23 S1 Upward =24.88

First Page

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 7.5 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{1.35D}$	0.73 Kn-m	Capacity	2.06 Kn-m	Passing Percentage	282.19 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	1.97 Kn-m	Capacity	2.75 Kn-m	Passing Percentage	139.59 %
$M_{0.9D\text{-W}n\text{Up}}$	-1.91 Kn-m	Capacity	-1.92 Kn-m	Passing Percentage	100.52 %
$V_{1.35D}$	0.61 Kn	Capacity	12.59 Kn	Passing Percentage	2063.93 %
$V_{1.2D+1.5L\ 1.2D+Sn\ 1.2D+WnDn}$	1.37 Kn	Capacity	16.79 Kn	Passing Percentage	1225.55 %
$V_{0.9D\text{-W}nUp}$	-1.59 Kn	Capacity	-20.98 Kn	Passing Percentage	1319.50 %

Deflections

Modulus of Elasticity = 4800 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 3

Deflection under Dead and Live Load = 10.04 mm Limit by AS1170.0 Table C1 Span/250 = 19.20 mm Deflection under Dead and Service Wind = 11.57 mm Limit by AS1170.0 Table C1 Span/120 = 40.00 mm

Reactions

Maximum downward = 1.37 kn Maximum upward = -1.59 kn

Number of Blocking = 1 if 0 then no blocking required, if 1 then one midspan blocking required

Rafter Design Internal

Internal Rafter Load Width = 5000 mm Internal Rafter Span = 4850 mm Try Rafter 2x290x45 SG8 Wet

Moisture Condition = Wet (Moisture in timber is less than 25%)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 7.47 S1 Upward = 7.47

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 11.7 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M _{1.35D}	4.96 Kn-m	Capacity	7.96 Kn-m	Passing Percentage	160.48 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	11.17 Kn-m	Capacity	10.6 Kn-m	Passing Percentage	94.90 %
$M_{0.9D\text{-W}nUp}$	-13.01 Kn-m	Capacity	-13.26 Kn-m	Passing Percentage	101.92 %
V _{1.35D}	4.09 Kn	Capacity	25.18 Kn	Passing Percentage	615.65 %
V _{1.2D+1.5L} 1.2D+Sn 1.2D+WnDn	9.21 Kn	Capacity	33.58 Kn	Passing Percentage	364.60 %

Second page

V_{0.9D-WnUp} -10.73 Kn Capacity -41.96 Kn Passing Percentage **391.05 %**

Deflections

Modulus of Elasticity = 4400 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 3

Deflection under Dead and Live Load = 19.97 mm Limit by AS1170.0 Table C1 Span/250 = 20.00 mm Deflection under Dead and Service Wind = 24.775 mm Limit by AS1170.0 Table C1 Span/120 = 41.67 mm

Reactions

Maximum downward = 9.21 kn Maximum upward = -10.73 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters = J5 Joint Group for Pole = J5

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 60 mm

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 14.9 fpj = 12.9 Mpa for Rafter with effective thickness = 90 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Capacity under short term loads = 13.65 Kn > -10.73 Kn

Rafter Design External

External Rafter Load Width = 2500 mm External Rafter Span = 4816 mm Try Rafter 290x45 SG8 Wet

Moisture Condition = Wet (Moisture in timber is less than 25%)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.90

K8 Upward =0.90 S1 Downward =15.23 S1 Upward =15.23

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 11.7 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M _{1.35D}	2.45 Kn-m	Capacity	3.22 Kn-m	Passing Percentage	131.43 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	5.51 Kn-m	Capacity	4.29 Kn-m	Passing Percentage	77.86 %
$M_{0.9D\text{-W}nUp}$	-6.41 Kn-m	Capacity	-5.36 Kn-m	Passing Percentage	83.62 %
V _{1.35D}	2.03 Kn	Capacity	12.59 Kn	Passing Percentage	620.20 %
V1.2D+1.5L 1.2D+Sn 1.2D+WnDn	4.58 Kn	Capacity	16.79 Kn	Passing Percentage	366.59 %
$ m V_{0.9D ext{-}WnUp}$	-5.33 Kn	Capacity	-20.98 Kn	Passing Percentage	393.62 %

Deflections

Modulus of Elasticity = 4400 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 3

Deflection under Dead and Live Load = 21.49 mm

Deflection under Dead and Service Wind = 24.77 mm

Limit by AS1170.0 Table C1 Span/250 = 20.00 mm

Limit by AS1170.0 Table C1 Span/120 = 41.67 mm

Reactions

Maximum downward = 4.58 kn Maximum upward = -5.33 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters = J5 Joint Group for Pole = J5

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 14.9 fpj = 12.9 Mpa for Rafter with effective thickness = 45 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Eccentric Load check

V = phi x k1 x k4 x k5 x fs x b x ds (Eq 4.12) = -21.73 kn > -5.33 Kn

Single Shear Capacity under short term loads = -6.83 Kn > -5.33 Kn

Girt Design Front and Back

Girt's Spacing = 900 mm

Girt's Span = 5000 mm

Try Intermediate 290x45 SG6 Wet

Moisture Condition = Wet (Moisture in timber is less than 25%)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.90

K8 Upward =0.48 S1 Downward =15.23 S1 Upward =25.39

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 7.5 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 1.55 Kn-m Capacity 1.84 Kn-m Passing Percentage 118.71 % V0.9D-WnUp 1.24 Kn-m Capacity 20.98 Kn-m Passing Percentage 1691.94 %

Deflections

Modulus of Elasticity = 4800 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 9.18 mm Limit by AS1170.0 Table C1 Span/120 = 41.67 mm Sag during installation = 65.31 mm

Reactions

Maximum = 1.24 kn

Girt Design Sides

Girt's Spacing = 900 mm Girt's Span = 5000 mm Try Intermediate 290x45 SG6 Wet

Moisture Condition = Wet (Moisture in timber is less than 25%)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.90

K8 Upward =0.48 S1 Downward =15.23 S1 Upward =25.39

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 7.5 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 1.55 Kn-m Capacity 1.84 Kn-m Passing Percentage 118.71 % V_{0.9D-WnUp} 1.24 Kn-m Capacity 20.98 Kn-m Passing Percentage 1691.94 %

Deflections

Modulus of Elasticity = 4800 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 9.18 mm Limit by AS1170.0 Table C1 Span/120 = 41.67 mm Sag during installation =65.31 mm

Reactions

Maximum = 1.24 kn

Middle Pole Design

Geometry

150 SED H5 (Minimum 200 dia. at Floor Level)	Dry Use	Height	3300 mm
Area	31400 mm2	As	23550 mm2
Ix	78500000 mm4	Zx	785000 mm3
Iy	78500000 mm4	Zx	785000 mm3
Lateral Restraint	900 mm c/c		

Loads

Total Area over Pole = 12.5 m^2

Dead	3.13 Kn	Live	3.13 Kn
Wind	5.75 Kn	Snow	0.00 Kn
Moment wind	Kn-m		
Phi	0.8	K8	1.00
K1 snow	0.8	K1 Dead	0.6
K1 wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
$\mathbf{ft} =$	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	452.16 Kn	PhiMnx Wind	22.80 Kn-m	PhiVnx Wind	55.77 Kn
PhiNcx Dead	271.30 Kn	PhiMnx Dead	13.68 Kn-m	PhiVnx Dead	33.46 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.63 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.40 < 1 OK$

Deflection at top under service lateral loads = 31.82 mm < 44.00 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For Middle Bay Pole

Ds = 600 mm Pile Diameter

L= 1600 mm Pile embedment length

f1 = 2700 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 13.85 Kn-m Shear Wind = 5.13 Kn

Pile Properties

Safety Factory 0.55

Hu = 8.49 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 13.91 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 1.00 < 1 OK

End Pole Design

Geometry For End Bay Pole

Ds = 600 mm Pile Diameter

L= 1600 mm Pile embedment length

f1 = 2700 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Total Area over Pole = 6.25 m^2

Moment Wind = 6.93 Kn-m Shear Wind = 2.57 Kn

Pile Properties

Safety Factory 0.55

Hu = 8.49 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 13.91 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.50 < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For End Bay Pole

Ds = 600 mm Pile Diameter

L= 1600 mm Pile embedment length

f1 = 2700 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 6.93 Kn-m Shear Wind = 2.57 Kn

Pile Properties

Safety Factory 0.55

Hu = 8.49 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 13.91 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.50 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1600) x Ks(1.5) x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1600)

Skin Friction = 20.68 Kn

Weight of Pile + Pile Skin Friction = 25.09 Kn

Uplift on one Pile = 11.06 Kn

Uplift is ok