

Introduction

Goal

Predict if a person in tech will seek mental health treatment, based on specific factors such as remote work, family history, etc.

Importance

Guides tech companies, specifically HR teams, in creating more supportive and inclusive environments by identifying key factors for mental health treatments.

Task type

> Binary classification using survey dataset from Kaggle

ML Models Used

- > k-Nearest Neighbors (kNN) → simple, good baseline
- ➤ Naïve Bayes (Gaussian vs Categorical) → Fast, works with categorical data
- > Support Vector Machine (SVM) → works well with high-dimensions

Dataset & Features

Dataset Used

- Kaggle Mental Health in the Tech Workplace in 2014
- ➤ ~1,200 responses
- Loaded in as survey.csv (see below)

Features

- Overall: remote work, benefits, family history, anonymity, etc.
- ightharpoonup Target: treatment (yes = 1, no = 0)

[3]:		Timestamp	Age	Gender	Country	state	self_employed	family_history	treatment	work_interfere	no_employees	 leave	mental_hea
	0	2014-08- 27 11:29:31	37	Female	United States	IL	NaN	No	Yes	Often	6-25	 Somewhat easy	
	1	2014-08- 27 11:29:37	44	М	United States	IN	NaN	No	No	Rarely	More than 1000	 Don't know	
	2	2014-08- 27 11:29:44	32	Male	Canada	NaN	NaN	No	No	Rarely	6-25	 Somewhat difficult	
	3	2014-08- 27 11:29:46	31	Male	United Kingdom	NaN	NaN	Yes	Yes	Often	26-100	 Somewhat difficult	
	4	2014-08- 27 11:30:22	31	Male	United States	TX	NaN	No	No	Never	100-500	 Don't know	

5 rows × 27 columns

k-Nearest Neighbors (kNN)

kNN Summary

- \succ a simple, distance-based algorithm that classifies samples based on their nearest neighbors (k)
- > easy to interpret, especially for small to medium datasets
- > normalize data for fair distance comparisons, test different values of k for optimization
- > applied PCA to reduce the feature space and plotted the predicted clusters in 2D (as seen in next slide)

k-NN Evaluation (k = 5): Accuracy: 0.7103174603174603 Precision: 0.6953125 Recall: 0.723577235778 F1 Score: 0.7091633466135459 Confusion Matrix:

[[90 39] [34 89]]

k-Nearest Neighbors (kNN)

Naïve Bayes (GaussianNB)

Naïve Bayes Summary

- Probabilistic classifier based on Bayes' Theorem
- Assumes features are conditionally independent given the class
- > Chosen for being fast, lightweight, and effective on small to medium datasets

GaussianNB

- X GaussianNB assumes continuous, normally distributed features (Invalid)
- → (Overfitted) Confidently misclassify nearly everything (ignoring ~122 yes)!
 - Misleading statistical patterns, because invalid assumptions
- → Performed EXTREMELY poor :(

Naïve Bayes Evaluation:
Accuracy: 0.5158730158730159
Precision: 1.0
Recall: 0.008130081300813009
F1 Score: 0.016129032258064516
Confusion Matrix:
[[129 0]
[122 1]]

Naïve Bayes (CategoricalNB)

CategoricalNB

Switched to CategoricalNB because it works better with yes/no and other simple category data

- → Assumptions
 - each feature is independent
 - features are categories turned into numbers ("yes" = 1, "no" = 0)
 - it learns from how often each value shows up for each class
- → Used columns with a small number of options and turned words into numbers using label encoding

CategoricalNB Evaluation:
Accuracy: 0.805555555555556
Precision: 0.7846153846153846
Recall: 0.8292682926829268
F1 Score: 0.8063241106719368
Confusion Matrix:
[[101 28]
[21 102]]

GaussianNB vs CategoricalNB

Support Vector Machine (SVM)

SVM Summary

- a classification model that finds the best boundary between two classes (yes/no)
- handles complex, non-linear patterns well using kernel functions (rbf, sigmoid, poly, etc)
- Assumptions
 - data can be separated and most important points are near the boundary (support vectors)
- tested different kernels (like RBF), tuned parameters like C and gamma, and scaled the features
- compare its results with k-NN and Naïve Bayes using accuracy, precision, recall, and F1 score \triangleright

SVM Evaluation:

Accuracy: 0.6904761904761905 Precision: 0.6923076923076923 Recall: 0.6585365853658537

F1 Score: 0.675 Confusion Matrix:

[42 81]]

[[93 36]

Support Vector Machine (SVM) w/PCA

> applied PCA to reduce the feature space and plotted the predicted decision boundaries in 2D (refer below)

Conclusion & Key Takeaways

- Categorical Naïve Bayes performed best out of the 3 models
 - o Accuracy: 80.6%, F1: 80.6%
- k-NN (k=5) was a strong baseline
 - Accuracy: 71.0%, F1: 70.9%
- GaussianNB overfitted (all predictions for "no treatment") due to poor fit for categorical dataset
 - Accuracy: 51.6%, F1: 1.6% :((
- PCA visualizations showed clear class separation and supported model interpretation

Challenges & Future Improvement

Challenges

- > Data cleaning, inconsistent categories, erasing null values
- > Poor fit of GaussianNB on categorical data:(

Future Improvement

- Don't pick Naïve Bayes (Gaussian) for categorical data!!! <a>(Gaussian)
- Use Random Forest or Boosting
- Apply GridSearchCV for tuning
- Analyze feature importance

Github link to my code: https://github.com/IceyGirl424/CS5-machine-learning

