Electrical Technology Assignment No. 5 (Unit-5) Solutions

1. Self and Mutual Inductance

Self-Inductance (L)

• **Definition**: The property of a coil to oppose any change in current flowing through it by inducing an opposing EMF.

Mutual Inductance (M)

Γ

• **Definition**: The ability of one coil to induce an EMF in a nearby coil due to a changing current.

```
e_2 = -M \frac{dI_1}{dt}
```

2. Magnetic Circuit & Key Terms

Magnetic Circuit

A closed path followed by magnetic flux, typically made of high-permeability materials (e.g., iron).

Key Terms

1. Magnetomotive Force (MMF)

• **Definition**: The driving force that establishes magnetic flux.

```
• Formula:
```

```
\text{MMF} = N | \quad (\text{Ampere-turns})
```

2. Reluctance (S)

- **Definition**: Opposition to magnetic flux (analogous to resistance in electric circuits).
- o Formula:

```
[ S = \frac{I}{\sum A}
```

where:

- (I) = Length of magnetic path (m)
- (\mu) = Permeability(H/m)
- (A) = Cross-sectional area (m²)

3. Permeance (P)

- Definition: Reciprocal of reluctance (ease of flux passage).
- o Formula:

```
[
P = \frac{1}{S} = \frac{\mu A}{I}
]
```

3. Working Principle of Single-Phase Transformer

- A transformer operates on Faraday's Law of Electromagnetic Induction.
- Steps:
 - 1. **Primary Coil**: AC supply creates a **changing magnetic flux** in the core.
 - 2. Core: Flux links the secondary coil.
 - 3. **Secondary Coil**: Changing flux induces an **EMF** (mutual induction).
- Key Points:
 - **No electrical connection** between primary and secondary.
 - Voltage transformation depends on turns ratio:

```
[ \frac{V_1}{V_2} = \frac{N_1}{N_2} ]
```

4. Derivation of EMF Equation

For a sinusoidal supply:

```
Flux Variation: ( \phi = \phi_m \sin \omega t )
```

```
• Induced EMF:
```

```
[
e = -N \frac{d\phi}{dt} = -N \frac{d}{dt}(\phi_m \sin \omega t)
]
[
e = -N \omega \phi_m \cos \omega t
]
```

RMS Value:

```
[  E_{\text{rms}} = \frac{N \omega_{n}}{\sqrt{2}} = 4.44 \text{ f N \rhohi_m}  ] where:
```

```
o (f)=Frequency(Hz)
```

```
o (\phi_m) = Maximum flux (Wb)
```

Final EMF Equation:

```
[
E = 4.44 f N \phi_m
1
```

5. Losses in Transformer

1. Copper Losses ((I²R))

• Due to **resistance** of windings.

```
Formula:[P_{\text{Cu}} = I_1^2 R_1 + I_2^2 R_2]
```

2. Iron Losses (Core Losses)

```
Hysteresis Loss:

P_h = k_h f B_m^x
Eddy Current Loss:
P_e = k_e B_m^2 f^2 t^2

Total Iron Loss:

[
```

3. Stray & Dielectric Losses

 $P_{\text{text}} = P_h + P_e$

Minimal and often neglected.

6. Efficiency & Voltage Regulation

Efficiency (η)

Definition: Ratio of output power to input power.[
 \eta = \frac{\text{Output Power}}{\text{Input Power}} \times 100%
]

- Direct Load Test Method:
 - 1. Connect the transformer to a variable load.
 - 2. Measure input power ((P_{\text{in}})) and output power ((P_{\text{out}})).

```
3. Calculate:
    [
    \eta = \frac{P_{\text{out}}}{P_{\text{in}}} \times 100%
    ]
```

Voltage Regulation

• **Definition**: Percentage drop in secondary voltage from no-load to full-load.

```
[ % \text{Regulation} = \frac{V_{\hat{no-load}} - V_{\hat{full-load}}}{V_{\hat{no-load}}} \times 100\%
```

- Direct Load Test Method:
 - Measure no-load voltage ((V_{\text{OC}})).
 - 2. Apply full load and measure loaded voltage (($V_{\text{L}} = \{ L_{\text{L}} \} \}$)).
 - 3. Use the formula above.

Summary

Concept	Key Formula/Explanation
Self-Inductance	(L = \frac{N \phi}{I})
Mutual Inductance	(M = \frac{N_2 \phi_{12}}{I_1})
MMF	(\text{MMF} = NI)
Transformer EMF	(E = 4.44 f N \phi_m)
Copper Loss	(P_{\text{Cu}} = I_1^2 R_1 + I_2^2 R_2)
Efficiency	(\eta = \frac{P_{\text{out}}}{P_{\text{in}}} \times 100%)
Voltage Regulation	(% \text{Reg} = \frac{V_{\text{OC}} - V_{\text{FL}}}{V_{\text{OC}}} \times 100%)

This assignment covers inductance, magnetic circuits, transformer principles, losses, and performance testing.