Tabelas Verdade dos Operadores Lógicos

Tabelas-verdade das operações lógicas binárias

A	В	$A \vee B$	$A \wedge B$	$A \rightarrow B$	$A \leftrightarrow B$
V	V	V	V	V	V
V	F	V	F	F	F
F	V	V	F	V	F
F	F	F	F	V	V

Tabela-verdade da operação lógica unária de negação:

A	$\neg \mathbf{A}$
V	F
\overline{F}	V

Tabelas de Propriedades das Operações Lógicas

Equivalências da Disjunção (∨) e da Conjunção (∧)

Propriedade	Disjunção (V)	Conjunção (^)
Comutativa	$A \lor B \Leftrightarrow B \lor A$	$A \wedge B \Leftrightarrow B \wedge A$
Associativa	$(A\lor B)\lor C \Leftrightarrow A\lor (B\lor C)$	$(A \land B) \land C \Leftrightarrow A \land (B \land C)$
Distributiva	$A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$	$A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$
Elemento Neutro	$A \lor F \Leftrightarrow A$	$A \wedge V \Leftrightarrow A$
Complemento	$A \lor \neg A \Leftrightarrow V$	$A \land \neg A \Leftrightarrow F$
Idempotência	$A \lor A \Leftrightarrow A$	$A \wedge A \Leftrightarrow A$
DeMorgan:	$\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$	$\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$

Equivalências dos Demais Operadores

Dupla Negação	$\neg \neg A \Leftrightarrow A$
Equivalência da Implicação	$A \rightarrow B \Leftrightarrow \neg A \vee B$
Contraposição	$A \rightarrow B \Leftrightarrow \neg B \rightarrow \neg A$
Prova Condicional	$A \rightarrow (B \rightarrow C) \Leftrightarrow (A \land B) \rightarrow C$

Tabela de Exemplos de Simbolização em Português

Expressão em Português	Operador lógico	Expressão Lógica
e; mas; também; além disso	conjunção	$A \wedge B$
ou	disjunção	$A \wedge B$
se A, então B; A implica B	implicação	$A \rightarrow B$
A, logo B; B só se A; B somente se A	(condicional)	
B segue de A; B se A		
A se e somente se B	bi-implicação	$A \leftrightarrow B$
A é condição necessária e suficiente para B	(bicondicional)	
não A; é falso que A; não é verdade que A	negação	$\neg A$
		~A

Regras Básicas de Inferência

Inclusão de Operadores	Exclusão de Operadores	
Redução ao absurdo (raa): ¬ I P	Dupla negação (dn): ¬E ¬¬P	
$\frac{\bigcap_{Q \land \neg Q} \Box}{\neg P}$	P	
	N. J. D. () D	
Prova condicional (pc): \rightarrow I	Modus Ponens (mp): → E	
P	$P P \rightarrow Q$	
	Q	
P→Q		
Conjunção(cj): ∧ I	Simplificação(sp) : ∧E	
<u>P</u> Q	$P \land Q$ $P \land Q$	
P∧Q	P Q	
Adição(ad): ∨I	Eliminação da disjunção (-dj): ∨ E	
P P	$P \lor Q P \rightarrow R Q \rightarrow R$	
$P\lor Q$ $Q\lor P$	R	
Introdução da equivalência (+eq): ↔I	Eliminação da equivalência (-eq): ↔E	
$P \rightarrow Q Q \rightarrow P$	$P \leftrightarrow Q$ $P \leftrightarrow Q$	
	$P \rightarrow Q$ $Q \rightarrow P$	

Regras Derivadas de Inferência

$\begin{array}{c} \textit{Modus Tollens } (\textbf{mt}) \\ P \rightarrow Q \neg Q \end{array}$	Silogismo Hipotético (sh) $P \rightarrow Q Q \rightarrow R$
<u>———</u>	${P \to R}$
Silogismo Disjuntivo (\mathbf{sd}) $P \lor Q \neg P$	Dilema Construtivo (\mathbf{dc}) $P \lor Q P \rightarrow R Q \rightarrow S$
Q	R\script S
Exportação (exp) $(P \land Q) \rightarrow R$	Inconsistência (inc) P ¬P
$P \rightarrow (Q \rightarrow R)$	

Regras Derivadas de Equivalência

Expressão	Equivale a	Nome (Abreviação) da Regra
$P \vee Q$	$Q \vee P$	Comutatividade (com)
$P \wedge Q$	$Q \wedge P$	
$(P\lor Q)\lor R$	$P \lor (Q \lor R)$	Associatividade (assoc)
$(P \land Q) \land R$	$P \wedge (Q \wedge R)$	
$\neg (P \lor Q)$	$\neg P \land \neg Q$	De Morgan (dmor)
$\neg (P \land Q)$	$\neg P \lor \neg Q$	
$P \rightarrow Q$	$\neg P \lor Q$	Condicional (cond)
P	$\neg(\neg P)$	Dupla negação (eqdn)
$P \rightarrow Q$	$\neg Q \rightarrow \neg P$	Contraposição (cont)
P	$P \wedge P$	Auto-referência (auto)
$P \vee P$	Р	Auto-referência (auto)
$P \wedge (Q \vee R)$	$(P \land Q) \lor (P \land R)$	Distributividade (dist)
$P \lor (Q \land R)$	$(P\lor Q)\land (P\lor R)$	Distributividade (dist)

Regras de Inferência da Lógica de Predicados

	· · · · · · · · · · · · · · · · · · ·
Regra	Restrições de Uso
Particularização Universal (pu)	Se o novo termo <i>t</i> que substituirá a variável <i>x</i>
$(\forall x)(P(x))$	em $P(x)$ também for uma variável, então esta nova variável deve ser livre dentro da fórmula
P(t)	P(x) original.
Particularização Existencial (pe)	O novo termo <i>t</i> que substituirá a variável <i>x</i> em
$\frac{(\exists x) (P(x))}{}$	P(x), quer seja variável ou constante, não deve ter sido usado anteriormente na demonstração.
P(t)	
Generalização Universal (gu)	A fórmula $P(x)$ não pode ter sido deduzida de
P(x)	nenhuma hipótese onde <i>x</i> é uma variável livre. A fórmula P(<i>x</i>) também não pode ter sido
$(\forall x)(P(x))$	deduzida por Particularização Existencial (pe) de uma fórmula onde <i>x</i> é uma variável livre.
Generalização Existencial (ge)	Se o termo t da fórmula original $P(t)$ for um
P(t)	símbolo de uma constante do domínio, então a nova variável <i>x</i> que o substituirá não pode ter
$(\exists x) (P(x))$	aparecido anteriormente na fórmula $P(t)$.

Regras de Inferência da Igualdade

Inclusão da Igualdade	Exclusão da Igualdade		
Identidade (id): =I	Substituição (subs): =E		
	P(x) $x=t$	P(x) $t=x$	
t=t	P(t)	P(t)	