Содержание

Ι	Многомерный анализ	4
1	Норма линейного оператора $\mathbb{R}^m \to \mathbb{R}^n$; $\ cA\ $; $\ AX\ _n \le c \ X\ _m \implies \dots$	4
2	$ A + B \le \dots; AX \le A \cdot X $	4
3	$ BA \le \dots; A \le (\dots)^{\frac{1}{2}}$	5
4	Определение частных производных второго и последующих порядков; теорема о смешанных производных в \mathbb{R}^2	6
5	Теорема о смешанных производных для функций на множествах $E\subset \mathbb{R}^{n\geq 2}$	7
6	Определение классов $\mathcal{C}^r(E)$; теорема о частных производных функций из $\mathcal{C}^r(E)$	8
7	Теорема о производных сложной функции специального вида	9
8	Формула Тейлора для функции нескольких переменных с остатком в форме Лагранжа	11
9	Формула Тейлора для функций нескольких переменных с остатком в форме Пеано	12
10	Дифференциалы функции порядка ≥ 2 ; их вид	12
11	Вычисление второго дифференциала; положительно и отрицательно определённые квадратичные формы, их свойства; неопределённые формы	13
12	Достаточное условие наличия или отсутствия локального экстремума функции	14
13	Неравенство Лагранжа для вектор функции	16
14	Теорема об обратимости линейного оператора, близкого по норме разности к обратимому оператору	17
15	Теорема об обратимом отображении: выбор множества ${\cal U}$	18
16	Теорема об обратимом отображении: взаимная однозначность $\left.F\right _{U}$	18
17	Теорема об обратимом отображении: отображение ${\cal F}$ открыто	20
18	Теорема об обратимом отображении: отображение Φ дифференцируемо $\forall y \in V$	23
19	Теорема об обратимом отображении: $\Phi \in \mathcal{C}^1ig(Vig)$	25
20	Теорема об открытом отображении	25
21	Теорема о неявной функции (отображении): линейный вариант	26
22	Общий случай теоремы о неявной функции (отображении)	26
23	Вычисление матрицы Якоби отображения, заданного неявно	29
24	Определение условного локального экстремума; теорема о множителях Лагранжа	30
II	Функциональные последовательности и ряды	32
25	Определение равномерной сходимости функциональной последовательности и функционального ряда	32

26	Критерий Коши равномерной сходимости функциональной последовательности и функционального ряда	33
27	Признак Вейерштрасса равномерной сходимости функциональных рядов	34
28	Признак Дирихле равномерной сходимости функциональных рядов	34
29	Признак Абеля равномерной сходимости функциональных рядов	36
30	Теорема о переходе к пределу в равномерно сходящейся функциональной последовательности	36
31	Теорема о непрерывности в точке предела равномерно сходящейся функциональной последовательности и суммы равномерно сходящегося функционального ряда	37
32	Интегрирование равномерно сходящейся функциональной последовательности и равномерно сходящегося функционального ряда	38
33	Дифференцирование равномерно сходящейся функциональной последовательности и равномерно сходящегося функционального ряда	39
34	Пример Ван дер Вардена	41
35	Определение равномерной сходимости семейства функций; критерий Коши равномерной сходимости семейства функций	44
36	Теорема о переходе к пределу в равномерно сходящемся семействе функций	45
37	Непрерывность предельной функции равномерно сходящегося семейства функций	45
38	Теорема о непрерывности интеграла, зависящего от параметра	46
39	Теорема о производной интеграла, зависящего от параметра	46
40	Теорема об интегрировании по параметру интеграла, зависящего от параметра	47
41	Равномерная сходимость несобственного интеграла, зависящего от параметра; критерий Коши равномерной сходимости несобственного интеграла от параметра	48
42	Признак Вейерштрасса равномерной сходимости несобственного интеграла от параметра	48
43	Признак Абеля равномерной сходимости несобственного интеграла от параметра	48
44	Признак Дирихле равномерной сходимости несобственного интеграла от параметра	49
45	Предел несобственного интеграла, зависящего от параметра	50
46	Определённый интеграл от интеграла, зависящего от параметра	50
47	Производная несобственного интеграла, зависящего от параметра	51
48	Несобственный интеграл по параметру от несобственного интеграла от параметра	52
49	Вычисление интеграла Дирихле	53
50	Вычисление интеграла Эйлера—Пуассона	54
51	Числовые и функциональные ряды с комплексными слагаемыми; абсолютная и равномерная сходимость; признак Вейерштрасса равномерной сходимости	55
52	Степенные ряды; лемма Абеля	56
53	Определение радиуса сходимости и круга сходимости степенного ряда	57

54	Свойства круга сходимости	57
55	Вычисление радиуса сходимости	58
	Интервал сходимости вещественного степенного ряда, его свойства	59
57	Теорема Абеля о вещественном степенном ряде	5 9
58	Производная вещественного степенного ряда	60
	Старшие производные вещественного степенного ряда; степенной ряд как ряд Тейлора своей суммы	61
60	Интегрирование вещественного степенного ряда	62
61	Разложение в степенной ряд функций $\ln(1+x)$ и $\arctan x$	62
62	Формула Тейлора с интегральным остатком	62
63	Разложение в степенные ряды e^x , $\cos x$, $\sin x$	63
64	Разложение в степенной ряд $(1+x)^r$	64
65	\mathbf{P} азложение в степенной ряд $\arcsin x$	65
III	I Криволинейные интегралы	65
66	Спрямляемые кривые, длина кривой, аддитивность длины кривой	65
67	Непрерывность длины кривой как функции от параметра	66
68	Вычисление длины гладкой кривой	66
	Определение криволинейного интеграла первого рода; суммы Римана криволинейного интеграла первого рода; криволинейный интеграл первого рода как предел сумм Римана	69
70	Ориентация кривой, ориентированные кривые	70
	Определение криволинейного интеграла второго рода; суммы Римана криволинейного интеграла второго рода; криволинейный интеграл второго рода как предел интегральных сумм	71
72	Зависимость криволинейного интеграла второго рода от ориентации кривой	73
73	Свойства криволинейного интеграла второго рода	73
IV	Теория функции комплексной переменной	7 5
74	Определение аналитической в области функции	7 5
7 5	Свойства частных производных комплекснозначных функций	7 6
7 6	Формула для дифференцируемой функции	7 6
77	Первые свойства и первые примеры аналитических функций	77
7 8	Эквивалентные определения аналитических функций	78
7 9	Аналитичность суперпозиции аналитических функций; производная суперпозиции	80
80	Вычисление $(e^z)'$, $(\ln z)'$, $(z^\alpha)'$	81

Часть I

Многомерный анализ

1. Норма линейного оператора $\mathbb{R}^m \to \mathbb{R}^n$; $\|cA\|$; $\|AX\|_n \le c \|X\|_m \Longrightarrow \dots$

Определение 1.
$$A:\mathbb{R}^{m\geq 1}\to\mathbb{R}^{n\geq 1}$$

$$\|A\|\coloneqq\sup_{\substack{X\in\mathbb{R}^m\\\|X\|_m\leq 1}}\|AX\|_n$$

Свойства.

1. $c \in \mathbb{R}$

$$||cA|| = |c| \cdot ||A||$$

 $2. \ c > 0, \qquad \forall X \in \mathbb{R}^m \quad \left\| AX \right\|_n \leq c \cdot \left\| X \right\|_m$

$$\implies ||A|| \le c \tag{1}$$

Доказательство.

$$1. \ \|cA\| = \sup_{\substack{X \in \mathbb{R}^m \\ \|X\|_m \leq 1}} \|(cA)X\|_n \xrightarrow[\text{линейность}]{} \sup \|c(AX)\|_n = \sup |c| \cdot \|AX\|_n = |c| \sup \|AX\|_n = |c| \cdot \|A\|$$

2. Возьмём $\forall X \in \mathbb{R}^m,$ такое, что $\left\|X\right\|_m \leq 1$

$$\|AX\|_n \leq c \cdot \|X\|_m \overset{\mathrm{def}}{\leq} c \quad \overset{\mathrm{def \, sup}}{\Longleftrightarrow} \quad \sup_{\|X\| \leq 1} \|AX\|_n \leq c$$

2. $||A + B|| \le \dots$; $||AX|| \le ||A|| \cdot ||X||$

Свойства.

1. $A, B: \mathbb{R}^m \to \mathbb{R}^n$

$$||A + B|| \le ||A|| + ||B||$$

2.

$$||AX|| \le ||A|| \cdot ||X|| \quad \forall X \in \mathbb{R}^m \tag{2}$$

Доказательство.

1.

$$\|A + B\| = \sup \|(A + B)X\|_n = \sup_{\text{линейность}} \sup \|AX + BX\| \le \sup (\|AX\| + \|BX\|) \le$$

$$\le \sup \|AX\| + \sup \|BX\| = \frac{\det \|A\|, \|B\|}{\det \|A\|, \|B\|} \|A\| + \|B\|$$

- 2. Если $X = \mathbb{O}_m$, то это очевидно
 - Пусть $X \neq \mathbb{O}_m$ Тогда $t \coloneqq \|X\|_m > 0$

Рассмотрим
$$Y := \frac{1}{t}X$$

$$\begin{split} \|Y\|_m &= \left\|\frac{1}{t}X\right\| \underset{t>0}{=} \frac{1}{t} \left\|X\right\| \stackrel{\underline{\det t}}{==} 1 \\ \|AY\|_n &\leq \sup_{\substack{U \in \mathbb{R}^m \\ \|U\| < 1}} \|AU\|_n = \|A\| \end{split}$$

$$\|AX\|_n \xrightarrow[X=tY]{} \|A(tY)\|_n = t \cdot \|AY\| \le t \, \|A\| \xrightarrow{\det t} \|A\| \cdot \|X\|$$

3. $||BA|| < \dots; ||A|| < (\dots)^{\frac{1}{2}}$

Свойства.

1.
$$A = \begin{bmatrix} a_{11} & . & a_{1m} \\ . & . & . \\ a_{n1} & . & a_{nm} \end{bmatrix}$$

$$\implies ||A|| \le \left(\sum_{i=1}^n \sum_{j=1}^m a_{ij}^2\right)^{1/2} \tag{3}$$

2.
$$\mathbb{R}^{n\geq 1}$$
, $\mathbb{R}^{m\geq 1}$, $\mathbb{R}^{k\geq 1}$,

$$2. \ \mathbb{R}^{n\geq 1}, \mathbb{R}^{m\geq 1}, \mathbb{R}^{k\geq 1}, \qquad A: \mathbb{R}^m \to \mathbb{R}^n, \quad B: \mathbb{R}^m \to \mathbb{R}^k, \qquad BA: \mathbb{R}^m \to \mathbb{R}^k$$

$$\implies \|BA\| \le \|B\| \cdot \|A\|$$

Доказательство.

1. Пусть

$$X \coloneqq \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}, \qquad \|X\|_m \le 1$$

Тогда

$$AX = \begin{bmatrix} a_{11}x_1 + \dots + a_{1m}x_m \\ \vdots \\ a_{n1}x_1 + \dots + a_{nm}x_m \end{bmatrix}$$

$$\tag{4}$$

Напоминание. Неравенство КБШ:

$$|(A, X)| \le |a_1| \cdot |x_1| + \dots + |a_n| \cdot |x_n| \le \sqrt{a_1^2 + \dots + a_n^2} \cdot \sqrt{x_1^2 + \dots + x_n^2} = ||A|| \cdot ||X||$$

$$||AX||_n^2 = \sum_{i=1}^n \left(\sum_{j=1}^m a_{ij}x_j\right)^2 \le \sup_{KBIII} \sum_{i=1}^n \left(\sum_{j=1}^m a_{ij}^2\right) \left(\sum_{j=1}^m \underbrace{x_j^2}_{\text{def}}\right) \le \sum_{i=1}^n \sum_{j=1}^m a_{ij}^2$$

2. Возьмём $X \in \mathbb{R}^m$, такой, что $\left\|X\right\|_m \leq 1$ Пусть $Y = AX \in \mathbb{R}^n$

Тогда $BA(X) \stackrel{\text{def } BA}{=\!=\!=\!=} B(AX) \stackrel{\text{def } X}{=\!=\!=\!=} BY$

$$\begin{split} & \|BA(X)\|_k = \|BY\|_k \underset{\text{\tiny CB-BO}}{\leq} \|B\| \cdot \|Y\|_n \\ & \|Y\|_n \xrightarrow{\stackrel{\text{def } Y}{=}} \|AX\|_n \underset{\text{\tiny CB-BO}}{\leq} \|A\| \cdot \|X\|_m \underset{\|X\| \leq 1}{\leq} \|A\| \end{split} \right\} \implies \|BA(X)\|_k \leq \underbrace{\|B\| \cdot \|A\|}_{:=c_0} \end{split}$$

Применяя свойство (1), получаем нужное утверждение.

4. Определение частных производных второго и последующих порядков; теорема о смешанных производных в \mathbb{R}^2

Определение 2. $\Omega\subset\mathbb{R}^{n\geq 2}$ — открытое, $\Omega\neq\emptyset,\qquad f:\Omega\to\mathbb{R},\qquad 1\leq i\leq n,\qquad \exists\,f'_{x_i}(X)\quad\forall X\in\Omega$

 $X_0 \in \Omega, \qquad 1 \le j \le n$

Получается новая функция $f'_{x_i}: \Omega \to \mathbb{R}$

Пусть $\exists (f'_{x_i})'_{x_i}(X_0)$

Говорят, что существует частная производная второго порядка

$$f_{x_i x_j}^{"}(X_0) := (f_{x_i}^{\prime})_{x_j}^{\prime}(X_0)$$

Определение 3. Пусть $\forall X \in \Omega \quad \exists f_{x_i x_i}''(X)$

Рассмотрим $1 \leq k \leq n$ и $X_0 \in \Omega$

Пусть $\exists (f''_{x_i x_i})'_{x_k}(X_0)$

Будем говорить, что существует частная производная третьего порядка

$$f_{x_i x_j x_k}^{\prime\prime\prime}(X_0) = (f_{x_i x_j}^{\prime\prime})_{x_k}^{\prime}(X_0)$$

. . . .

Пусть для $l \geq 3$ определено понятие $f_{x_i x_j \ldots x_s}^{(l)}(X_0)$

Пусть $\forall X \in \Omega \exists f_{x_i...x_s}^{(l)}(X)$

Возьмём $1 \le t \le n$

Предположим, что $\exists (f_{x_1...x_s}^{(l)})'_{x_t}(X_0)$

Такую частную производную будем назвывать частной производной порядка l+1

$$f_{x_i...x_s,x_t}^{(l+1)}(X_0) := (f_{x_i...x_s}^{(l)})'_{x_t}(X_0)$$

Теорема 1. $G=\mathsf{B}_r(x_1^0,x_2^0), \qquad X_0=\begin{bmatrix}x_1^0\\x_2^0\end{bmatrix}, \qquad f:G\to\mathbb{R}, \qquad f\in\mathcal{C}(G)$

 $orall X\in G$ $\exists f'_{x_1}(X),\ f'_{x_2}(X)\in \mathcal{C}(G),$ $\forall X\in G$ $\exists f''_{x_1x_2}(X),\ f''_{x_2x_1}(X)$ непрерывные в X_0

$$\implies f_{x_1x_2}''(X_0) {=} f_{x_2x_1}''(X_0)$$

Доказательство. Возьмём $0 < h < \frac{r}{\sqrt{2}}$

Тогда $(x_1^0 + h, x_2^0 + h) \in G$

Рассмотрим функцию

$$g(h) := \frac{f(x_1^0 + h, x_2^0 + h) - f(x_1^0 + h, x_2^0) - f(x_1^0, x_2^0 - h) + f(x_1^0, x_2^0)}{h^2}$$

Определим

$$\varphi(x_2) := \frac{f(x_1^0 + h, x_2) - f(x_1^0, x_2)}{h}, \qquad x_2 \in [x_2^0, x_2^0 + h]$$

Заметим, что

$$\frac{\varphi(x_2^0+h)-\varphi(x_2^0)}{h} \stackrel{\text{def } \varphi}{=\!=\!=\!=} \frac{f(x_1^0+h,x_2^0+h)-f(x_1^0,x_2^0+h)-f(x_1^0+h,x_2^0)+f(x_1^0,x_2^0)}{h^2} = g(h) \qquad (5)$$

$$\forall x_2 \in [x_2^0, x_2^0 + h] \quad \exists \, \varphi'(x_2) \xrightarrow{\det \varphi} \frac{f'_{x_2}(x_1^0 + h, x_2) - f'_{x_2}(x_1^0, x_2)}{h} \tag{6}$$

Применим к φ теорему Лагранжа:

$$\exists 0 < h_2 < h : \varphi(x_2^0 + h) - \varphi(x_2^0) = \varphi'(x_2^0 + h_2) \cdot h \implies$$

$$\implies \frac{\varphi(x_2^0 + h) - \varphi(x_2^0)}{h} = \varphi'(x_2^0 + h_2) = \frac{f'_{x_2}(x_1^0 + h_2, x_2^0 + h_2) - f'_{x_2}(x_1^0, x_2^0 + h_2)}{h}$$
(7)

Рассмотрим отдельно выражение $f'_{x_2}(x_1^0+h,x_2^0+h_2)-f'_{x_2}(x_1^0,x_2^0+h_2)$ Рассмотрим функцию $l(x_1)\coloneqq f'_{x_2}(x_1,x_2^0+h_2)$

По условию, наложенному на первые производные, она непрерывна при $x \in [x_1^0, x_1^0 + h]$ и

$$\forall x_1 \in [x_1^0, x_1^0 + h] \quad \exists l'(x_1) = f''_{x_0 x_1}(x_1, x_2^0 + h_2) \tag{8}$$

Применим теорему Лагранжа к l:

$$\exists 0 < h_1 < h : l(x_1^0 + h) - l(x_1^0) = l'(x_1^0 + h_1) \cdot h \Longrightarrow$$

$$\Longrightarrow \frac{l(x_1^0 + h) - l(x_1^0)}{h} \stackrel{\text{def}}{=} \frac{f'_{x_2}(x_1^0 + h, x_2^0 + h_2) - f'_{x_2}(x_1^0, x_2^0 + h_2)}{h} =$$

$$= l'(x_1^0 + h_1) \stackrel{\text{def}}{=} f''_{x_2x_1}(x_1^0 + h_1, x_2^0 + h_2) \quad (9)$$

$$g(h) \underset{(5)}{=} \frac{\varphi(x_2^0 + h) - \varphi(x_2^0)}{h} \underset{(7)}{=} \frac{f'_{x_2}(x_1^0 + h, x_2^0 + h_2) - f'_{x_2}(x_1^0, x_2^0 + h_2)}{h} \underset{(9)}{=} = f''_{x_2x_1}(x_1^0 + h_1, x_2^0 + h_2), \qquad 0 < h_1, h_2 < h \quad (10)$$

Рассмотрим функцию

$$\psi(x_1) := \frac{f(x_1, x_2^0 + h) - f(x_1, x_2^0)}{h}$$

$$\frac{\psi(x_1^0 + h) - \psi(x_1^0)}{h} = \frac{f(x_1^0 + h, x_2^0 + h) - f(x_1^0 + h, x_2^0) - f(x_1^0, x_2^0 + h) + f(x_1^0, x_2^0)}{h^2} = g(h)$$
(11)

$$\forall x_1 \in [x_1^0, x_1^0 + h] \quad \exists \, \psi'(x_1) = \frac{f'_{x_1}(x_1, x_2^0 + h) - f'_{x_1}(x_1, x_2^0)}{h} \tag{12}$$

По теореме Лагранжа

$$\exists 0 < \overline{h_1}, \overline{h_2} < h : \frac{\psi(x_1^0 + h) - \psi(x_1^0)}{h} = \psi'(x_1 + \overline{h_1}) \stackrel{=}{=} \frac{f'_{x_1^0}(x_1^0 + \overline{h_1}, x_2^0 + h) - f'_{x_1}(x_1^0 + \overline{h_1}, x_2^0)}{h} = f''_{x_1 x_2}(x_1^0 + \overline{h_1}, x_2^0 + \overline{h_2}) \quad (13)$$

$$g(h) \stackrel{=}{\underset{(11)}{=}} \frac{\psi(x_1^0 + h) - \psi(x_1^0)}{h} \stackrel{=}{\underset{(13)}{=}} f''_{x_1 x_2}(x_1^0 + \overline{h_1}, x_2^0 + \overline{h_2})$$

$$\stackrel{\longrightarrow}{\underset{(10)}{=}} f''_{x_2 x_1}(x_1^0 + h_1, x_2^0 + h_2) = f''_{x_1 x_2}(x_1^0 + \overline{h_1}, x_2^0 + \overline{h_2})$$

$$(14)$$

Устремим h к нулю справа и слева

По условию теоремы,

$$f''_{x_2x_1}(x_1^0 + h_1, x_2^0 + h_2) \xrightarrow[h \to +0]{} f''_{x_2x_1}(x_1^0, x_2^0)$$
$$f''_{x_1x_2}(x_1^0 + \overline{h_1}, x_2^0 + \overline{h_2}) \xrightarrow[h \to -0]{} f''_{x_1x_2}(x_1^0, x_2^0)$$

По соотношению (14), это одна и та же функция, а значит, она имеет единственный предел.

5. Теорема о смешанных производных для функций на множествах $E \subset \mathbb{R}^{n \geq 2}$

Следствие (для
$$n>2$$
). $X_0\in\mathbb{R}^{n\geq 3}, \qquad X_0=(x_1^0,...,x_i^0,...,x_j^0,...,x_n^0), \qquad f:B_r(X_0)\to\mathbb{R}$
$$f\in\mathcal{C}\big(B_r(X_0)\big), \qquad \forall X\in B_r(X_0)\quad \exists\, f'_{x_i}(X),\ f'_{x_j}(X)\in\mathcal{C}\big(B_r(X_0)\big)$$

$$\forall X\in B_r(X_0)\quad \exists\, f''_{x_ix_j}(X), f''_{x_jx_i}(X)-\text{Henp. B }X_0$$

$$\Longrightarrow f''_{x_ix_j}(X_0)=f''_{x_jx_i}(X_0)$$

Доказательство.

$$\begin{split} F(x_i, x_j) &\coloneqq f(x_1^0, ..., x_i, ..., x_j, ..., x_n^0) \\ F''_{x_i x_j}(x_i, x_j) &= f''_{x_i x_j}(x_1^0, ..., x_i, ..., x_j, ..., x_n^0) \end{split}$$

Утверждение 1. $\Omega \subset \mathbb{R}^{n \geq 2}$,

$$i \neq j, \qquad \mathbf{f} \in \mathbf{G}$$

 $i \neq j, \qquad f \in \mathcal{C}(\Omega), \qquad \forall X \in \Omega \quad f'_{x_i}(X), f'_{x_j}(X) \in \mathcal{C}(\Omega)$

$$orall X \in \Omega \quad \exists \, oldsymbol{f_{x_i x_j}''(X)}, \, \, oldsymbol{f_{x_j x_i}''(X)} \in \mathcal{C}ig(\Omegaig)$$

По следствию,

$$\forall X \in \Omega \quad f_{x_i x_i}^{\prime\prime}(X) = f_{x_i x_i}^{\prime\prime}(X)$$

Утверждение 2. $\Omega\subset\mathbb{R}^{n\geq 2},\quad i\neq j,\quad k$ Рассмотрим $f'''_{x_ix_jx_k}(X),\quad f'''_{x_jx_ix_k}(X),\quad f'''_{x_ix_kx_j}(X)$ Пусть они все непрерывны на Ω

Все производные первого и второго порядков существуют и непрерывны на Ω

Тогда, по следствию

$$f_{x_i x_j}'' = f_{x_j x_i}'' \implies (f_{x_i x_j}')_{x_k}' = (f_{x_j x_i}')_{x_k}'$$
$$(f_{x_i}')_{x_k x_j}'' = (f_{x_i}')_{x_j x_k}''$$

Тем самым мы доказали, что у такой функции все частные производные третьего порядка совпадают

6. Определение классов $C^{r}(E)$; теорема о частных производных функций из $\mathcal{C}^r(E)$

Определение 4. $r \in \mathbb{N}$, $E \subset \mathbb{R}^{n \geq 2}$, E открыто, $f \in \mathcal{C}(E)$

- $\bullet \ \forall x_1,...,x_n \quad \forall X \in E \quad \exists \, f'_{x_i}(X), \qquad f'_{x_i}(X) \in \mathcal{C} \left(E \right)$ Говорят, что $f \in \mathcal{C}^1(E)$
- Пусть $f \in \mathcal{C}^1(E)$

$$\forall 1 \leq k \leq r \quad \forall x_{i_1}, ..., x_{i_k} \quad \forall X \in E \quad \exists \, f_{x_{i_1} ... x_{i_k}}^{(k)}(X) \in \mathcal{C}\left(E\right)$$

Тогда говорят, что $f \in \mathcal{C}^r(E)$

 $E \subset \mathbb{R}^{n \geq 2}$, E открытое, Tеорема 2. $r \geq 2$, $f \in \mathcal{C}^r(E), \quad i_1, ..., i_r, \quad j_1, ..., j_r$

$$\forall X \in E \quad \boldsymbol{f_{x_{i_1}...x_{i_r}}^{(r)}(X)} = \boldsymbol{f_{x_{j_1}...x_{j_r}}^{(r)}(X)}$$

Доказательство. Докажем по индукции

- **База.** r = 2 доказано в утв. 1.
- Переход. Пусть $f \in C^{r+1}(E)$

 $j_k \neq j_{k+1}$

Рассмотрим частные производные:

$$f_{x_{j_1}...x_{j_k}x_{j_{k+1}}...x_{j_{r+1}}}^{(r+1)}(X), \qquad f_{x_{j_1}...x_{j_{k+1}}x_{j_k}...x_{j_{r+1}}}^{(r+1)}(X)$$

Обозначим $g(X) := f_{x_{j_1} \dots x_{j_{k-1}}}^{(k-1)}(X)$

$$f_{x_{j_1}...x_{j_{k-1}}x_{j_k}x_{j_{k+1}}}^{(k+1)}(X) = g_{x_{j_k}x_{j_{k+1}}}''(X),$$
(15)

$$f_{x_{j_1} \dots x_{j_{k+1}} x_{j_k}}^{(k+1)}(X) = g_{x_{j_{k+1}} x_{j_k}}^{"}(X)$$
(16)

По следствию к теореме о смешанных производных, получаем

$$(15), (16) \implies g_{x_{j_k} x_{j_{k+1}}}'' = g_{x_{j_{k+1}} x_{j_k}}''(X) \tag{17}$$

$$(15) \implies f_{x_{j_1}...x_{j_k}x_{j_{k+1}}...x_{j_{r+1}}}^{(r+1)}(X) = g_{x_{j_k}x_{j_{k+1}}...x_{j_{r+1}}}^{(r-k+2)} \quad \forall X \in E$$

$$(16) \implies f_{x_{j_1}...x_{j_{k+1}}}^{(r+1)}(X) = g_{x_{j_{k+1}}x_{j_k}...x_{j_{r+1}}}^{(r-k+2)} \quad \forall X \in E$$

$$(19)$$

$$(17), (18), (19) \implies f_{x_{j_1} \dots x_{j_k} x_{j_{k+1}} \dots x_{j_{r+1}}}^{(r+1)}(X) = f_{x_{j_1} \dots x_{j_{k+1}} x_{j_k} \dots x_{j_{r+1}}}^{(r+1)}(X) \quad \forall X \in E$$

Всякая перестановка индексов есть произведение транспозиций $(j_k, j_{k+1}) \to (j_{k+1}, j_k)$. Каждый раз будет справедливо последнее равенство, а значит, все частные производные будут равны.

7. Теорема о производных сложной функции специального вида

Теорема 3.
$$E \subset \mathbb{R}^{n \geq 2}$$
 — открытое, $f \in \mathcal{C}^{r \geq 1}(E)$, $Y \in E$, $H \in \mathbb{R}^n$, $t \in (-a,a)$

$$Y+tH \in E \quad \forall t \in (-a,a), \qquad g(t) := f(Y+tH)$$

$$\implies g^{(r)}(0) = \sum_{|\alpha|=r} C_r^{\alpha} \partial^{\alpha} f(Y) H^{\alpha}$$

Доказательство. Докажем по индукции:

• База. r = 1

To есть, $|\alpha| = 1$

Если $\alpha=(\alpha_1,...,\alpha_n),$ то $\alpha_1+\cdots+\alpha_n=1,$ $\alpha_i\in\mathbb{Z},$ $\alpha_i\geq 0$

Значит,

$$\exists \nu : \begin{cases} \alpha_{\nu} = 1 \\ \alpha_{j} = 0, \quad j \neq \nu \end{cases}$$

$$\alpha = (0, ..., \frac{1}{\nu}, ..., 0) := e_{\nu}, \qquad 1 \le \nu \le n$$

$$C_{1}^{e_{\nu}} = \frac{1!}{0! \cdots 1! \cdots 0!} = 1$$

$$\partial^{e_{\nu}} f(X) = f'_{x}(X)$$

Если
$$H = egin{bmatrix} h_1 \\ \vdots \\ h_n \end{bmatrix}$$
 , то $H^{e_{
u}} = h_{
u}$

Всё это означает, что нужно доказать, что

$$g'(0) \stackrel{?}{=} \sum_{\nu=1}^{n} f'_{x_{\nu}}(Y)h_{\nu} \tag{20}$$

По условию, $f \in \mathcal{C}^1(E)$, а значит, по достаточному условию, f диффер. в $X \quad \forall X \in E$ Рассмотрим отображение

$$\Psi: (-a, a) \to \mathbb{R}^n, \qquad \Psi(t) = Y + tH$$

$$g(t) \stackrel{\text{def}}{=} f(\Psi(t)), \qquad f: E \to \mathbb{R}^1$$

То есть, $g:(-a,a)\to\mathbb{R}^1$ и можно применить теорему о дифференцируемости суперпозиции дифференцируемых отображений:

$$\mathcal{D}g(t) = \mathcal{D}f(V)\big|_{V=Y+tH} \cdot \mathcal{D}\Psi(t) \tag{21}$$

Матрица Якоби для отображения $\mathbb{R}^1 \to \mathbb{R}^1$ — матрица 1×1 :

$$\mathcal{D}g(t) = g'(t) \tag{22}$$

 $f: \mathbb{R}^n \to \mathbb{R}^1$, значит, её матрица Якоби— это вектор-строка:

$$\mathcal{D}f(V)\big|_{V=Y+tH} = \left(f'_{x_1}(Y+tH), \dots, f'_{x_n}(Y+tH)\right)$$
 (23)

$$\mathcal{D}\Psi(t) = \begin{bmatrix} h_1 \\ \vdots \\ h_n \end{bmatrix} \tag{24}$$

$$(21), (22), (23), (24) \implies g'(t) = \sum_{\nu=1}^{n} f'_{x_{\nu}}(Y + tH)h_{\nu}, \qquad t \in (-a, a)$$
(25)

Подставляя t = 0, получаем (20)

• Переход.

 $f \in \mathcal{C}^{r+1}(E)$

Рассмотрим мультииндекс $\beta = (\beta_1, ..., \beta_n), \qquad |\beta| = r + 1$

$$\beta = (0, ..., \beta_{i_1}, 0, ..., \beta_{i_r}, ..., 0), \quad \beta_{i_r} \neq 0, \quad 1 < k < 0$$

То есть, некоторые члены не равны нулю, остальные — нули Π усть

$$\alpha^{(1)} = (0, ..., 0, \beta_{i_1} - 1, \beta_{i_2}, ..., \beta_{i_l}, ..., 0)$$

$$\alpha^{(2)} = (0, ..., \beta_{i_1}, 0, ..., \beta_{i_2} - 1, ..., \beta_{i_l}, ..., 0)$$

.

$$\alpha^{(l)} = (0, ..., \beta_{i_1}, 0, ..., \beta_{i_2}, ..., \beta_{i_l} - 1, ..., 0)$$

 $|\alpha| = r$, $\alpha + e_{\nu} = \beta$ для некоторого ν .

 $\nu \in \{i_1, ..., i_l\}$ (иначе на месте одного из нулей была бы 1).

По индукционному предположению,

$$g^{(r)}(Y+tH) = \sum_{|\alpha|=r} C_r^{(\alpha)} \partial^{\alpha} f(Y+tH) H^{\alpha}$$
(26)

$$\underset{(25)}{\Longrightarrow} g^{(r+1)}(Y+tH) = \sum_{|\alpha|=r} C_r^{\alpha} H^{\alpha} \left(\underbrace{\partial^{\alpha} f(Y+tH)}_{\in \mathcal{C}^1(E)} \right)'$$
(27)

Воспользуемся базой индукции для f_{α} :

$$(27) = \sum_{|\alpha|=r} C_r^{\alpha} H^{\alpha} \left(\sum_{\nu=1}^n (\partial^{\alpha} f x_{\nu})'(Y+tH) h_{\nu} \right) = \sum_{|\alpha|=1} \sum_{\nu=1}^n C_r^{\alpha} H^{\alpha} h_{\nu} \left(\partial^{\alpha} f(Y+tH) \right)'_{x_{\nu}}$$
(28)

$$\alpha = (l_1, ..., l_{\nu}, ..., l_n)$$

$$\left(\partial^{\alpha} f(X)\right)_{x_{\nu}}' \stackrel{\text{def}}{=} f_{\underbrace{x_{1} \dots x_{1}}_{l_{1}} \dots \underbrace{x_{\nu} \dots x_{\nu}}_{l_{\nu}} \dots \underbrace{x_{n} \dots x_{n}}_{l_{n}} x_{\nu}(X) \xrightarrow{T. \text{ o kJaccax } \mathcal{C}^{r}} = f_{\underbrace{x_{1} \dots x_{1}}_{l_{1}} \dots \underbrace{x_{\nu} \dots x_{\nu}}_{l_{\nu}} \dots \underbrace{x_{\nu} \dots x_{\nu}}_{l_{\nu}} \dots \underbrace{x_{n} \dots x_{n}}_{l_{\nu}}(X) \stackrel{\text{def}}{=} \partial^{\alpha + e_{\nu}} f(X) \quad (29)$$

$$H^{\alpha}h_{\nu} = h_1^{e_1}...h_{\nu}^{e_{\nu}}...h_n^{e_n} \mathbf{h}_{\nu} = h_1^{e_1}...h_{\nu}^{e_{\nu}+1}...h_n^{e_n} = H^{\alpha + e_{\nu}}$$
(30)

$$(28) = \sum_{(26),(29)} \sum_{|\alpha|=r} \sum_{\nu=1}^{n} C_r^{\alpha} H^{\alpha+e_{\nu}} \partial^{\alpha+e_{\nu}} f(Y+tH)$$
(31)

При этом, $\alpha + e_{\nu} = \beta$, $|\beta| = r + 1$

$$(31) = \sum_{|\beta|=r+1} \partial^{\beta} f(Y+tH) H^{\beta} \sum_{\alpha,\nu:\alpha+e_{\nu}=\beta} C_{r}^{\alpha}$$

$$(32)$$

$$\alpha^{(\mu)} := (0, \dots, \beta_{i_1}, 0, \dots, \beta_{i_{\mu}} - 1, 0, \dots, \beta_{i_l}, 0, \dots)$$
$$\alpha^{(\mu)} + e_{i_{\mu}} = \beta, \qquad 1 \le \mu \le l$$

$$\implies \sum_{\alpha+e_{\nu}=\beta} C_{r}^{\alpha} = \sum_{\mu=1}^{l} C_{r}^{\alpha^{(\mu)}} \stackrel{\text{def}}{=} \sum_{\mu=1}^{l} \frac{r!}{\beta_{i_{1}}!...(\beta_{i_{\mu}}-1)!...\beta_{i_{l}}!} = \frac{r!}{\beta_{i_{1}}!...\beta_{i_{l}}!} \sum_{\mu=1}^{l} \beta_{i_{\mu}} \stackrel{\text{def}}{=}$$

$$= \frac{r!}{\beta!} |\beta| = \frac{r!}{\beta!} (r+1) = \frac{(r+1)!}{\beta!} = C_{r+1}^{\beta}$$

$$\implies (32) = g^{(r+1)}(t) = \sum_{|\beta|=r+1} \partial^{\beta} f(Y+tH) H^{\beta} C_{r+1}^{\beta}$$

8. Формула Тейлора для функции нескольких переменных с остатком в форме Лагранжа

Теорема 4. $E \subset \mathbb{R}^{n \geq 2}$ — открытое, $X_0 \in E$, $\mathsf{B}_{\delta}(X_0) \subset E$, $f \in \mathcal{C}^{r+1}(\mathsf{B}_{\delta})$ $H \in \mathbb{R}^n$. $\|H\| < \delta$

$$\implies \exists \, 0 < c < 1 : f(X_0 + H) = f(X_0) + \sum_{k=1}^r \sum_{|\alpha| = k} \frac{1}{\alpha!} \partial^{\alpha} f(X_0) H^{\alpha} + \sum_{|\alpha| = r+1} \frac{1}{\alpha!} \partial^{\alpha} f(X_0 + cH) H^{\alpha}$$

Доказательство. Рассмотрим $g(t) := f(X_0 + tH)$

$$g(1) = f(X_0 + H),$$
 $g(0) = f(X_0)$
 $g \in C^{r+1}((-a, a)),$ $a > 1$

так как $\|H\| < \delta \implies$ для некоторого $a>1 \quad \|aH\| = a \, \|H\| < \delta$ Для функции g можно применить теорему Лагранжа для одной переменной:

$$\begin{split} g(1) &= g(0) + \sum_{k=1}^r \frac{g^{(k)}(0)}{k!} \cdot 1^k + \frac{1}{(r+1)!} g^{(r+1)}(c) \cdot 1^{r+1} = \\ &= g(0) + \sum_{k=1}^r \frac{1}{k!} g^{(k)}(0) + \frac{1}{(r+1)!} g^{(r+1)}(c) \xrightarrow{\text{формула для k-й производной}} \\ &= f(X_0) + \sum_{k=1}^r \frac{1}{k!} \sum_{|\alpha|=k} C_k^\alpha \partial^\alpha f(X_0) H^\alpha + \frac{1}{(r+1)!} \sum_{|\alpha|=r+1} C_{r+1}^\alpha \partial^\alpha f(X_0 + cH) H^\alpha = \\ &= f(X_0) + \sum_{k=1}^r \sum_{|\alpha|=k} \frac{1}{\alpha!} \partial^\alpha f(X_0) H^\alpha + \sum_{|\alpha|=r+1} \frac{1}{\alpha!} \partial^\alpha f(X_0 + cH) H^\alpha \end{split}$$

9. Формула Тейлора для функций нескольких переменных с остатком в форме Пеано

Теорема 5.
$$f: E \to \mathbb{R}$$
, $E \subset \mathbb{R}^{n \geq 2}$, $X_0 \in \omega \subset E$, $f \in \mathcal{C}^{r \geq 1}(\omega)$

$$\implies f(X_0 + H) = f(X_0) + \sum_{k=1}^r \sum_{|\alpha| = k} \frac{1}{\alpha!} \partial^{\alpha} f(X_0) H^{\alpha} + \rho(H)$$
(33)

где

$$\frac{\rho(H)}{\|H\|^r} \xrightarrow[H \to \mathbb{O}_n]{} 0 \tag{34}$$

Доказательство. Применим к функции f формулу Тейлора с остатком в форме Лагранжа для r-1:

$$\exists c \in (0,1) : f(X_0 + H) =
= f(X_0) + \sum_{k=1}^{r-1} \sum_{|\alpha|=k} \frac{1}{\alpha!} \partial^{\alpha} f(X_0) H^{\alpha} + \sum_{|\alpha|=r} \frac{1}{\alpha!} \partial^{\alpha} f(X_0 + cH) H^{\alpha} \underset{\pm \sum \frac{1}{\alpha!} \partial^{\alpha} f(X_0) H^{\alpha}}{=}
= f(X_0) + \sum_{k=1}^{r-1} \sum_{|\alpha|=k} \frac{1}{\alpha!} \partial^{\alpha} f(X_0) H^{\alpha} + \sum_{|\alpha|=r} \frac{1}{\alpha!} \partial^{\alpha} f(X_0) H^{\alpha} + \sum_{|\alpha|=r} \frac{1}{\alpha!} \left(\partial^{\alpha} f(X_0 + cH) - \partial^{\alpha} f(X_0) \right) H^{\alpha}
\xrightarrow{\rho(h)}$$
(35)

Получили соотношение (33). Осталось доказать (34).

$$f \in \mathcal{C}^r(\omega) \stackrel{\text{def }\mathcal{C}}{\Longrightarrow} \partial^{\alpha} f(X_0 + H) - \partial^{\alpha} f(X_0) \xrightarrow[H \to \mathbb{O}_n]{} 0 \qquad \forall \alpha : |\alpha| = r$$
 (36)

$$H^{\alpha} \xrightarrow{\operatorname{def} x^{\alpha}} h_{1}^{\alpha_{1}} \cdots h_{n}^{\alpha_{n}} \implies |H^{\alpha}| \leq ||H||^{\alpha_{1}} \cdots ||H||^{\alpha_{n}} = ||H||^{|\alpha|} = ||H||^{r} \implies \frac{|H^{\alpha}|}{||H||^{r}} \leq 1$$
 (37)

$$\left| \frac{\rho(H)}{\|H\|^r} \right| \xrightarrow{(35)} \left| \frac{\left(\partial^{\alpha} f(X_0 + H) - \partial^{\alpha} f(X_0) \right) H^{\alpha}}{\|H\|^r} \right| \overset{\leq}{\underset{(37)}{\leq}} \left| \partial^{\alpha} f(X_0 + cH) - \partial^{\alpha} f(X_0) \right| \xrightarrow[H \to \mathbb{O}_n]{(36)} 0$$

10. Дифференциалы функции порядка ≥ 2 ; их вид

Будем иметь дело с некоторым открытым $\Omega \subset \mathbb{R}^{n \geq 1}$

Определение 5.
$$f\in\mathcal{C}^1ig(\Omegaig), \qquad X\in\omega, \qquad H\in\mathbb{R}^n, \qquad H=egin{bmatrix} h_1\\ \vdots\\ h_n \end{bmatrix}$$

$$d^{1} f(X, H) := d f(X, H) \stackrel{\text{def}}{=} \sum_{k=1}^{n} f'_{x_{k}}(X) h_{k}$$

.

Пусть для некоторого $r \geq 1$ для функции $f \in \mathcal{C}^r(\Omega)$ для любых X и ω определена функция

$$\mathrm{d}^r\,f(X,H)=\sum_{|\alpha|=r}A_{r,\alpha}\partial^{\alpha}f(X)H^{\alpha},\qquad A_{r,\alpha}$$
— некоторые **определённые** коэффициенты

$$A_{1,\alpha} = 1 \quad \forall \alpha : |\alpha| = 1$$

Определим дифференциал порядка r+1:

$$d^{r+1} f(X, H) := \sum_{|\alpha| = r} A_{r,\alpha} d\left(\partial^{\alpha} f(X), H\right) H^{\alpha} = \sum_{|\alpha| = r+1} A_{r+1,\alpha} \partial^{\alpha} f(X) H^{\alpha}$$

11. Вычисление второго дифференциала; положительно и отрицательно определённые квадратичные формы, их свойства; неопределённые формы

Пример (переход от дифференциала порядка 1 к дифференциалу порядка 2).

Воспользуемся тем, что $C_1^{\alpha}=1 \quad \forall \alpha: |\alpha|=1$

Выпишем дифференциал первого порядка:

$$d^{1} f(X, H) = \sum_{k=1}^{n} f'_{x_{k}}(X) h_{k}$$

$$d^{2} f(X, H) \xrightarrow{\operatorname{def d}^{r+1}} \sum_{k=1}^{n} d\left(f'_{x_{k}}(X), H\right) h_{k} \xrightarrow{\operatorname{def d}} \sum_{k=1}^{n} \left(\sum_{l=1}^{n} f''_{x_{k} x_{l}}(X) h_{l}\right) h_{k} =$$

$$= \sum_{k=1}^{n} \sum_{l=1}^{n} f''_{x_{k} x_{l}}(X) h_{l} h_{k} \xrightarrow{f''_{x_{k} x_{l}} = f''_{x_{l} x_{k}}} \sum_{k=1}^{n} f''_{x_{k} x_{k}}(X) h_{k}^{2} + 2 \sum_{k < l} f''_{x_{k} x_{l}}(X) h_{k} h_{l} \quad (38)$$

Возьмём $\alpha: |\alpha| = 2$:

•
$$\alpha = (0, ..., \frac{2}{k}, ..., 0)$$

$$\partial^{\alpha} f(X) = f_{x_k x_l}^{"}$$

$$C_2^{\alpha} \stackrel{\text{def}}{=} \frac{2!}{0! \quad 2! \quad 0!} = 1$$

•
$$\alpha = (0, ..., \frac{1}{k}, ..., \frac{1}{l}, ..., 0)$$

$$\partial^{\alpha}f=f_{x_kx_l}^{\prime\prime}$$

$$C_2^{\alpha}\stackrel{\mathrm{def}}{=}\frac{2!}{0!...1!...0!}=2$$

Теперь можно записать, что

$$(38) = \sum_{|\alpha|=2} C_2^{\alpha} \partial^{\alpha} f(X) H^{\alpha}$$

To есть, $A_{2,\alpha} = C_2^{\alpha}$

Теорема 6. $A_{r,\alpha} = C_r^{\alpha}$

Доказательство. Будем доказывать **индукцией** по r:

- База. r = 1, 2 только что проверили
- **Переход.** Пусть это верно для $r \geq 2$. Докажем для r+1: По **предположению индукции**,

$$d^{r+1} f(X, H) \xrightarrow{\operatorname{def} d^{r+1}} \sum_{|\alpha|=1} C_r^{\alpha} d\left(\partial^{\alpha} f(X), H\right) H^{\alpha} = \sum_{|\alpha|=r} C_r^{\alpha} \left(\sum_{\nu=1}^n (\partial^{\alpha} f)'_{x_{\nu}}(X) h_{\nu}\right) H^{\alpha}$$
(39)

В доказательстве формулы для производной порядка r (в предыдущей лекции, формулы с (28)

до конца доказательства) было доказано, что

$$(39) = \sum_{|\alpha|=r+1} C_{r+1}^{\alpha} \partial^{\alpha} f(X) H^{\alpha}$$

Напоминание (классификация квадратичных форм). Квадратичная форма называется:

- 1. положительно определённой, если $\forall H \neq \mathbb{O}_n \quad A(H) > 0$
- 2. отрицательно определённой, если $\forall H \neq \mathbb{O}_n \quad A(H) < 0$
- 3. неопределённой, если $\exists H_1, H_2 \neq \mathbb{O}_n \quad A(H_1) > 0, \quad A(H_2) < 0$

Теорема 7. Если квадратичная форма A положительно определена, то

$$\exists m_1 > 0 \quad A(H) \ge m_1 \|H\|^2$$
 (40)

Если квадратичная форма отрицательно определена, то

$$\exists m_2 > 0 \quad A(H) \le -m_2 \|H\|^2$$

Доказательство. Достаточно доказать (40), т. к. для полож. определённой B, форма -B(H) отрицательно определена

Рассмотрим единичную сферу $S \coloneqq \{ H \in \mathbb{R}^n \mid ||H|| = 1 \}$

S — компакт в пространстве \mathbb{R}^n

Очевидно, что. $A(H) \in \mathcal{C}(\mathbb{R}^n)$

Значит, по второй теореме Вейерштрасса, A достигает своего минимального значения, т. е.

$$\exists H_0 \in S : \forall H \in S \quad A(H) \ge A(H_0)$$

Обозначим $m_1 := A(H_0)$

T. к. квадратичная форма положительно определена, $m_1 > 0$

Рассмотрим $\forall H \neq \mathbb{O}_n$

Пусть $t \coloneqq \|H\| > 0$ (т. к. $H \neq \mathbb{O}_n$)

Зафиксируем $H^* = \frac{1}{t}H$

$$||H^*|| = \left\|\frac{1}{t}H\right\| = \frac{1}{t}||H|| = \frac{t}{t} = 1$$

To есть, $H^* \in S$

Тогда, в силу выбора H_0 , получаем, что $A(H^*) \ge m_1$

Замечание. Легко заметить, что константа из квадратичной формы выносится в квадрате.

$$A(H^*) \xrightarrow{\text{def } H^*} A\left(\frac{1}{t}H\right) = \frac{1}{t^2}A(H) \ge m_1$$
$$A(H) \ge m_1 t^2 \xrightarrow{\text{def } t} m_1 \|H\|^2$$

12. Достаточное условие наличия или отсутствия локального экстремума функции

Теорема 8. $\omega \subset \mathbb{R}^n$ — открытое, $X_0 \in \omega, \quad f \in \mathcal{C}^2(\omega)$

Выполнено необходимое условие локального экстремума, то есть $f'_{x_j}(X_0) = 0, \quad 1 \le j \le n$

Замечание. \Longrightarrow d $f(X_0, H) = 0$ $\forall H$

- 1. если $\mathrm{d}^2\,f(X_0,H)$ положтельно определён, то X_0 строгий локальный минимум
- 2. если $d^2 f(X_0, H)$ отрицательно определён, то X_0 строгий локальный максимум
- 3. если $d^2 f(X_0, H)$ неопределён, то нет локального экстремума

Доказательство.

1. Вспомним формулу Тейлора с остатком в форме Пеано:

$$f(X_0 + H) = f(X_0) + d f(X_0, H) + \frac{1}{2} d^2 f(X_0, H) + \rho(H)$$
где $\frac{\rho(H)}{\|H\|^2} \xrightarrow{H \to \mathbb{O}_n} 0$ (41)

По замечанию, первого дифференциала нет:

$$f(X_0 + H) = f(X_0) + \frac{1}{2} d^2 f(X_0, H) + \rho(H)$$
(42)

Т. к. второй дифференциал положительно определён, то, по предыдущей теореме,

$$\exists m_1 > 0 : d^2 f(X_0, H) \ge m_1 \|H\|^2 \tag{43}$$

Соотношение (41) означает, что

$$\exists \delta > 0 : \forall 0 < \|H\| < \delta \quad \left| \frac{\rho(H)}{\|H\|^2} \right| < \frac{m_1}{4} \qquad \iff |\rho(H)| < \frac{m_1}{4} \|H\|^2$$
 (44)

$$(42) \ge f(X_0) + \frac{1}{2} d^2 f(X_0, H) - |\rho(H)| > (43), (44)$$
$$> f(X_0) + \frac{m_1}{2} ||H||^2 - \frac{m_1}{4} ||H||^2 = f(X_0) + \frac{m_1}{4} ||H||^2 > f(X_0)$$

- 2. Аналогично.
- 3. $d^2 f(X_0, H)$ неопределён означает, что

$$A(H_1) > 0, \qquad A(H_2) < 0$$

Рассмотрим $H_1^* = \frac{1}{\|H_1\|} H_1$. Очевидно, что $H_1^* \in S$

$$A(H_1^*) = A\left(\frac{1}{\|H_1\|^2}H_1\right) = \frac{1}{\|H\|^2}A(H_1) := p_1 > 0$$

Рассмотрим $H_2^* = \frac{1}{\|H_2\|} H_2$. Очевидно, что $H_2^* \in S$

$$A(H_2^*) = A\left(\frac{1}{\|H_2\|^2}H_2\right) = \frac{1}{\|H_2\|^2}A(H_2) := -p_2 > 0$$

Возьмём t>0

$$A(tH_2^*) = t^2 A(H_2^*) \xrightarrow{\text{def } p_2} -p_2 t^2$$
(45)

$$A(tH_1^*) = t^2 A(H_1^*) \xrightarrow{\text{def } p_1} p_1 t^2$$
(46)

Это было верно для любой квадратичной формы. Вернёмся к $A(H)=\mathrm{d}^2\,f(X_0,H)$ Выберем $\delta_1>0$, такое что

$$\forall \ 0 < \|H\| < \delta_1 \quad |\rho(H)| < \frac{1}{4} \min \{ p_1, p_2 \} \cdot \|H\|^2$$
(47)

Пусть $0 < t < \delta_1$

$$||tH_1^*|| = ||tH_2^*|| = t$$

Рассмотрим

$$f(X_0 + tH_1^*) = f(X_0) + \frac{1}{2} d^2 f(X_0, tH_1^*) + \rho(tH_1^*) \ge$$

$$\ge f(X_0) + \frac{1}{2} t^2 d^2 f(X_0, H_1^*) - |\rho(tH_1^*)| > \atop (46), (47)}$$

$$> f(X_0) + \frac{1}{2} p_1 t^2 - \frac{1}{4} p_1 t^2 = f(X_0) + \frac{1}{4} p_1 t^2 > f(X_0)$$

При этом, $X_0 + t H_1^*$ лежит в любой окрестности X_0 Рассмотрим

$$f(X_0 + H_2^*) \leq_{(45),(47)} f(X_0) - \frac{p_2}{2}t^2 + |\rho(H)| < f(X_0) - \frac{p_2}{2}t^2 + \frac{p_2}{4}t^2 = f(X_0) - \frac{p_2}{4}t^2 < f(X_0)$$

При этом, $X_0 + tH_2^*$ тоже лежит в любой окрестности X_0 Значит, локального экстремума нет (по определению локального экстремума).

13. Неравенство Лагранжа для вектор функции

Утверждение 3.
$$F:(a,b) \to \mathbb{R}^{n \geq 2}, \quad F(t) = \begin{bmatrix} f_1(t) \\ \vdots \\ f_n(t) \end{bmatrix}, \quad F$$
 диффер. в $t_{\circ} \in (a,b), \quad \mathcal{D}F(t_0) = \begin{bmatrix} f'_1(t_0) \\ \vdots \\ f'_n(t_0) \end{bmatrix}$

$$\|\mathcal{D}F(t_0)\| = \sup_{\substack{|h| \leq 1 \\ h \in \mathbb{R}}} \|\mathcal{D}F(t_0)h\|_n = \sup \|h\mathcal{D}F(t_0)h\|_n = \sup \|h\mathcal{D}F(t_0)\|_n = \|\mathcal{D}F(t_0)\|_n = \|\mathcal{D}F(t_0)\|_n = \|f_1'(t_0)\|_n$$

Теорема 9 (Лагранжа).
$$F:[a,b] \to \mathbb{R}^{n \geq 2}, \qquad F \in \mathcal{C} \big([a,b] \big), \qquad \forall t \in (a,b) \quad F$$
 дифф. в $t \in (a,b): \|F(b) - F(a)\|_n \leq \|\mathcal{D}F(c)\|_n \, (b-a)$

Доказательство. Возьмём

$$\varphi(t) := F(t)^T \Big(F(b) - F(a) \Big) = f_1(t) \Big(f_1(b) - f_1(a) \Big) + \dots + f_n(t) \Big(f_n(b) - f_n(a) \Big)$$

Будем считать, что $F(b) \neq F(a)$ (иначе — очевидно). $F \in \mathcal{C}([a,b]) \implies \varphi \in \mathcal{C}([a,b])$. Значит, $\forall t \in (a,b) \quad \exists \varphi'(t)$

$$\varphi'(t) = f_1'(t) \left(f_1(b) - f_1(a) \right) + \dots + f_n'(t) \left(f_n(b) - f_n(a) \right)$$
(48)

К φ можно применить теорему Лагранжа из первого семестра:

$$\exists c \in (a,b): \quad \varphi(b) - \varphi(a) = \varphi'(c)(b-a)$$

$$\varphi(b) - \varphi(a) \stackrel{\text{def } \varphi}{=} \left(f_1(b) \left(f_1(b) - f_1(a) \right) + \dots \right) - \left(f_1(a) \left(f_1(b) - f_1(a) \right) + \dots \right) =$$

$$= \left(f_1(b) - f_1(a) \right)^2 + \dots + \left(f_n(b) - f_n(a) \right)^2 = \|F(b) - F(a)\|_n^2 \quad (49)$$

Применим к (48) неравенство КБШ:

$$|\varphi'(c)| \le \left(\left(f_1'(c) \right)^2 + \dots + \left(f_n'(c) \right)^2 \right)^{\frac{1}{2}} \cdot \left(\left(f_1(b) - f_1(a) \right)^2 + \dots + \left(f_n(b) - f_n(a) \right)^2 \right)^{\frac{1}{2}} =$$

$$= \|\mathcal{D}F(c)\| \cdot \|F(b) - F(a)\|$$

$$\Longrightarrow \|F(b) - F(a)\|^2 \le \|\mathcal{D}F(c)\| \cdot \|F(b) - F(a)\|$$

14. Теорема об обратимости линейного оператора, близкого по норме разности к обратимому оператору

Вспомним две теоремы из алгебры:

Напоминание. A обратима $\iff \det A \neq 0$

Напоминание. A обратима \iff $AX \neq \mathbb{O}_n \quad \forall X \neq \mathbb{O}_n$

Теорема 10. $\mathcal{A}: \mathbb{R}^{n \geq 2} \to \mathbb{R}^n$ — линейное, т. е. $\mathcal{A}(X) = AX$, $X \in \mathbb{R}^n$, $X \in \mathbb{R}^n$

$$\left\|A^{-1}\right\| = \frac{1}{\alpha}, \quad \alpha > 0, \qquad \left\|B - A\right\| = \beta, \quad 0 < \beta < \alpha$$

 ${}$ Тогда B обратима и

$$||A^{-1} - B^{-1}|| \le \frac{\beta}{\alpha(\beta - \alpha)}$$

Доказательство.

• Докажем, что B обратима: Возьмём $X \in \mathbb{R}^n$

$$X = IX = (A^{-1}A)X = A^{-1}(AX) \implies ||X|| = ||A^{-1}(AX)|| \le$$

$$\le ||A^{-1}|| ||AX|| \stackrel{\text{def } \alpha}{=} \frac{1}{\alpha} ||AX|| \implies ||AX|| \ge \alpha ||X|| \quad (50)$$

$$BX = AX + (BX - AX) \implies ||BX|| \stackrel{\triangle}{\ge} ||AX|| - ||BX - AX||$$
 (51)

$$||BX - AX|| = ||(B - A)X|| \le ||B - A|| \, ||X||_n \tag{52}$$

$$\|BX\|_{n} \underset{(51)}{\geq} \underbrace{\alpha \|X\|}_{(50)} - \underbrace{\|B - A\| \|X\|}_{(52)} \xrightarrow{\frac{\det \beta}{}} \underbrace{(\alpha - \beta)}_{>0} \|X\| \tag{53}$$

Это означает, что B обратима (по второй теореме из алгебры)

• Докажем соотношение для $||A^{-1} - B^{-1}||$: Возьмём $\forall Y \neq \mathbb{O}_n$ и $X := B^{-1}Y$

$$||Y|| = ||B(B^{-1}Y)|| \xrightarrow{\det Y} ||BX|| \underset{(53)}{\geq} (\alpha - \beta) ||X|| \xrightarrow{\det X} (\alpha - \beta) ||B^{-1}Y||$$

$$\implies ||B^{-1}Y|| \leq \frac{1}{\alpha - \beta} ||Y|| \implies ||B^{-1}|| \leq \frac{1}{\alpha - \beta}$$
(54)

$$A(A^{-1} - B^{-1})B \xrightarrow[\text{acc.}]{} \left(A(A^{-1} - B^{-1})\right)B \xrightarrow[\text{дистр.}]{} (AA^{-1} - AB^{-1})B = (I - AB^{-1})B \xrightarrow[\text{дистр.}]{}$$

$$= IB - (AB^{-1})B \xrightarrow[\text{acc.}]{} B - A(B^{-1}B) = B - AI = B - AI$$

$$\Longrightarrow \underbrace{(A^{-1}A)}_{=I}(A^{-1} - B^{-1})\underbrace{(BB^{-1})}_{=I} = A^{-1}(B - A)B^{-1} \implies A^{-1} - B^{-1} = A^{-1}(B - A)B^{-1}$$

$$\Longrightarrow ||A^{-1} - B^{-1}|| \le ||A^{-1}|| \cdot ||B - A|| \cdot ||B^{-1}|| \le \int_{\substack{(54) \\ \text{def } \alpha, \beta}} \frac{1}{\alpha} \cdot \beta \cdot \frac{1}{\alpha - \beta}$$

15. Теорема об обратимом отображении: выбор множества U

Теорема 11. $E \subset \mathbb{R}^{n \geq 2}$, E открыто, $X_0 \in E$, $F : E \to \mathbb{R}^1$ $F \in \mathcal{C}^1(E)$, $Y_0 = F(X_0)$, $\mathcal{D}F(X_0)$ обратима

$$\implies \exists\, U - \text{окрестность}\,\, X_0,\,\, V - \text{окрестность}\,\, Y_0: \begin{cases} F\big|_U \text{ обратимо} \\ F(U) = V \\ \Phi = \left(F\big|_U\right)^{-1} \implies \Phi \in \mathcal{C}^1\big(V\big) \end{cases}$$

Доказательство (определение множества U). Обозначим $A\coloneqq \mathcal{D}F(X_0)$. По условию, она обратима

Положим
$$\lambda \coloneqq \frac{1}{4 \|A^{-1}\|}$$
 Обозначим $F = \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}$

$$\mathcal{D}F(X) = \begin{bmatrix} f'_{1x_1}(X) & \dots & f'_{1x_n}(X) \\ \vdots & \vdots & \ddots & \vdots \\ f'_{1x_1}(X) & \dots & f'_{nx_n}(X) \end{bmatrix}$$

$$\mathcal{D}F(X) - \mathcal{D}F(X_0) = \begin{bmatrix} f'_{1x_1}(X) - f'_{1x_1}(X_0) & \dots & f'_{1x_n}(X) - f'_{1x_n}(X_0) \\ \vdots & \vdots & \ddots & \vdots \\ f'_{nx_1}(X) - f'_{nx_1}(X_0) & \dots & f'_{nx_n}(X) - f'_{nx_n}(X_0) \end{bmatrix}$$

По свойству (3) нормы матрицы,

$$\|\mathcal{D}F(X) - A\| \xrightarrow{\frac{\operatorname{def} A}{\longrightarrow}} \|\mathcal{D}F(X) - \mathcal{D}F(X_0)\| \le \left(\sum_{\substack{i=1,\dots,n\\j=1,\dots,n}} \left(f'_{ix_j}(X) - f'_{ix_j}(X_0)\right)^2\right)^{\frac{1}{2}}$$

$$\xrightarrow{F \in \mathcal{C}^1} \|\mathcal{D}F(X) - \mathcal{D}F(X_0)\| \xrightarrow{X \to X_0} 0$$

$$\Rightarrow \exists r > 0: \quad \forall X \in \mathsf{B}_r(X_0) \quad \|\mathcal{D}F(X) - A\| < 2\lambda \tag{55}$$
Положим $U \coloneqq \mathsf{B}_r(X_0)$

16. Теорема об обратимом отображении: взаимная однозначность $F\big|_U$

Теорема 12.
$$E \subset \mathbb{R}^{n \geq 2}$$
, E открыто, $X_0 \in E$, $F : E \to \mathbb{R}^1$ $F \in \mathcal{C}^1(E)$, $Y_0 = F(X_0)$, $\mathcal{D}F(X_0)$ обратима
$$\Rightarrow \exists \, U - \text{окрестность} \, X_0, \, \, V - \text{окрестность} \, Y_0 : \begin{cases} F\big|_U \text{ обратимо} \\ F(U) = V \end{cases} \\ \Phi = \left(F\big|_U\right)^{-1} \Rightarrow \Phi \in \mathcal{C}^1(V)$$

Рис. 1: Выпуклость шара

Утверждение 4 (о выпуклости шара). $X_1, X_2 \in U, \qquad 0 < t < 1$

$$\implies tX_1 + (1-t)X_2 \in U$$

(см. рис. 1)

Доказательство.

$$||tX_1 + (1-t)X_2 - X_0|| = ||t(X_1 - X_0) + (1-t)(X_2 - X_0)|| \le$$

$$\le ||t(X_1 - X_0)|| + ||(1-t)(X_2 - X_0)|| < t \cdot r + (1-t) \cdot r = r$$

Следствие. $X \in U$, $X + H \in U$, 0 < t < 1

$$\implies X + tH \in U$$

Доказательство. $X_1 := X + H, \qquad X_2 := X$

$$tX_1 + (1-t)X_2 = tX + tH + (1-t)X = X + tH$$

Доказательство (Биективность F). Далее будем рассматривать F только на U (т. е. будем писать $F \coloneqq F|_U$)

Возьмём $X \in U$ и $H \neq \mathbb{O}_n$, такие что $X + H \in U$

Докажем, что $F(X+H)-F(X) \neq \mathbb{O}_n$. Это и будет означать биективность

Возьмём $t \in [0,1]$ и $P(t) \coloneqq F(X+tH) - tAH$

Это вектор-функция $P:[0,1] \to \mathbb{R}^n$

$$\mathcal{D}P(t) \stackrel{\text{def }P}{=\!=\!=\!=} \mathcal{D}\bigg(F(X+tH)\bigg) - \mathcal{D}(tAH)$$

Положим q(t) := X + tH

Теперь можно переписать последнее соотношение:

$$\mathcal{D}P(t) = \mathcal{D}\left(F(q(t))\right) - \mathcal{D}(tAH) \tag{56}$$

Напоминание. Мы уже доказали, что для $Y \in \mathbb{R}^n$ и отображения $t \mapsto tY$ выполнено $\mathcal{D}(tY) = Y$

$$\mathcal{D}(tAH) = AH, \qquad \mathcal{D}q(t) = H$$

$$\mathcal{D}F\bigg(q(t)\bigg) = \mathcal{D}F\bigg(q(t)\bigg)\mathcal{D}q(t) = \mathcal{D}F(X+tH)H$$

Подставим это в (56):

$$\mathcal{D}P(t) = \mathcal{D}F(X + tH)H - AH \tag{57}$$

$$\lambda \stackrel{\text{def}}{=} \frac{1}{4 \left\|A^{-1}\right\|} \implies \left\|A^{-1}\right\| = \frac{1}{4\lambda}$$

Возьмём $H \neq \mathbb{O}_n$

$$H = (A^{-1}A)H = A^{-1}AH \implies ||H|| = ||A^{-1}(AH)|| \le ||A^{-1}|| ||AH|| = \frac{1}{4\lambda} ||AH|| \implies ||AH|| \ge 4\lambda ||H|| \quad (58)$$

$$P(1) - P(0) \stackrel{\text{def } P}{===} F(X+H) - AH - F(X) = F(X+H) - F(X) - AH$$
 (59)

Применим к Р теорему Лагранжа для вектор-функции:

$$\exists c \in [0,1] : \|P(1) - P(0)\| \le \|\mathcal{D}P(c)\| \cdot (1-0) = \|\mathcal{D}P(c)\| \underset{(57)}{=} \left\| \left(\mathcal{D}F(X+cH) - A \right) H \right\| \le \left\| \mathcal{D}F\underbrace{(X+cH)}_{\in U} - A \right\| \|H\| \underset{(58)}{<} 2\lambda \|H\| \underset{(58)}{\le} \frac{1}{2} \|AH\|$$
 (60)

$$||F(X+H) - F(X) - AH|| = ||P(1) - P(0)|| < \frac{1}{2} ||AH||$$
 (61)

$$||F(X+H) - F(X)|| = ||AH + (F(X+H) - F(X) - AH)|| \ge$$

$$\ge ||AH|| - ||F(X+H) - F(X) - AH|| \underset{(61)}{>} ||AH|| - \frac{1}{2} ||AH|| = \frac{1}{2} ||AH|| \underset{(58)}{\ge} 2\lambda ||H|| > 0 \quad (62)$$

17. Теорема об обратимом отображении: отображение F открыто

Теорема 13. $E \subset \mathbb{R}^{n\geq 2}, \quad E$ открыто, $X_0 \in E, \quad F: E \to \mathbb{R}^1$ $F \in \mathcal{C}^1(E), \quad Y_0 = F(X_0), \quad \mathcal{D}F(X_0)$ обратима

$$\implies \exists\, U - \text{окрестность}\,\, X_0, \,\, V - \text{окрестность}\,\, Y_0 : \begin{cases} F\big|_U \text{ обратимо} \\ F(U) = V \\ \Phi = \left(F\big|_U\right)^{-1} \implies \Phi \in \mathcal{C}^1\big(V\big) \end{cases}$$

Лемма 1. $U = B_r(X_0), \qquad X_1 \in U, \qquad 0 < \rho < r - \|X_0 - X_1\|, \qquad S = \mathtt{B}_{\rho}(X_1), \qquad Y_1 = F(X_1)$

Замечание. Отсюда $S \subset U$.

$$\implies \mathsf{B}_{\lambda\rho}(Y_1) \subset F(S) \tag{63}$$

Доказательство. $X \in U$, $X + H \in U$

По соотношению (62) из второго шага доказательства,

$$||F(X+H) - F(X)|| \ge 2\lambda ||H||$$

 $\iff ||F(X_2) - F(X_3)|| \ge 2\lambda ||X_2 - X_3|| \quad \forall X_2, X_3 \in U$ (64)

По условию, $Y_1 \in F(S)$ (т. к. это образ X_1)

Возьмём $Y \neq Y_1, \quad Y \in B_{\lambda\rho}(Y_1)$

S-открытый шар

Рассмотрим функцию $k(X) := ||F(X) - Y||, \qquad X \in \overline{S}$

 \overline{S} — замкнутый шар, а значит, компакт. Поэтому $k \in \mathcal{C}(\overline{S})$

По второй теореме Вейерштрасса, k достигает минимального значения:

$$\exists X_* \in \overline{S} : k(X_*) < k(X) \quad \forall X \in \overline{S}$$

Утверждение 5. X_* не принадлежит границе \overline{S} (т. е. $X_* \in S$)

Доказательство. Действительно, если $||X_0 - X_1|| = \rho$ (т. е. X_0 лежит на границе \overline{S}), то

$$\implies \|F(X_0) - F(X_1)\| \underset{(64)}{\ge} 2\lambda \|X_1 - X_0\| = 2\lambda \rho$$

По определению, $F(X_1) = Y_1$. Подставим:

$$||F(X_0) - Y_1|| \ge 2\lambda\rho \tag{65}$$

При этом, $Y \in B_{\rho\lambda}(Y_1)$. Значит,

$$||Y - Y_1|| < \lambda \rho \tag{66}$$

$$||F(X_0) - Y|| \stackrel{\triangle}{\geq} ||F(X_0) - Y_1|| - ||Y_1 - Y|| \underset{(65),(66)}{>} 2\lambda \rho - \lambda \rho = \lambda \rho$$

В обозначениях k можно записать:

$$k(X_0) \stackrel{\text{def } k}{===} ||F(X_0) - Y|| > \lambda \rho$$

$$k(X_1) \stackrel{\text{def } k}{===} ||Y_1 - Y|| < \lambda \rho$$

$$\Rightarrow k(X_1) < k(X_0)$$

Взяли точку на границе диска (на сфере). Получили, что значение функции на границе строго больше, чем значение в центре. Значит, минимум (X_*) не может лежать на границе, т. е.

$$X_* \in S \tag{67}$$

Рассмотрим функцию $l(X) := k^2(X)$

Понятно, что её минимум совпадёт с минимумом k:

$$l(X_*) \le l(X) \quad \forall X \in \overline{S}$$
 (68)

$$l(X) \stackrel{\text{def } k}{=\!=\!=\!=} ||F(X) - Y||^2 \tag{69}$$

Пусть

$$F = \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}, \qquad Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

В этих обозначениях,

$$(69) \implies l(X) = \sum_{i=1}^{l} \left(f_i(X) - y_i \right)^2 \tag{70}$$

По условию теоремы, F, а значит и его координатные функции гладкие. Нетрудно заметить, что

$$l \in \mathcal{C}^1(U) \tag{71}$$

Вспомним необходимое условие локального экстремума:

Напоминание. Если функция имеет частный экстремум и она дифференцируема в этой точке, то все частные производные в этой точке равны нулю

Его можно применять только к внутренним точкам (именно для этого мы и проверяли, что $X_* \in S$)

$$(67), (68), (71) \implies l'_{x_j}(X_*) = 0 \qquad j = 1, ..., n$$

$$(72)$$

Из соотношения (70) понятно, как выглядят частные производные:

$$l'_{x_j}(X_*) = \sum_{i=1}^n 2\left(f_i(X_*) - y_i\right) f'_{ix_j}(X_*) = 0 \qquad j = 1, ..., n$$

Поделим на 2:

$$\sum_{i=1}^{n} \left(f_i(X_*) - y_i \right) f'_{ix_j}(X_*) = 0 \qquad j = 1, ..., n$$
 (73)

Заметим, что здесь фигурирует матрица Якоби. Чтобы её записать, введём обозначение:

$$A := \left(f_1(X_*) - y_1, \dots, f_n(X_*) - y_n \right)$$

$$A = \left(F(X_*) - Y \right)^T \tag{74}$$

Воспользуемся этими обозначениями:

$$(73) \iff A\mathcal{D}F(X_*) = \mathbb{O}_n^T \tag{75}$$

Утверждение 6.

$$\det \mathcal{D}F(X) \neq 0 \qquad \forall X \in U \tag{76}$$

П

Доказательство. Вспомним соотношение из теоремы об отображении, близком к обратимому:

$$||A|| = \frac{1}{\alpha}, \quad ||A - B|| = \beta < \alpha \implies ||B^{-1}|| \le \frac{1}{2\alpha}$$

Применим это к $\alpha = 4\lambda$, $\beta = 2\lambda$:

$$\|\mathcal{D}F(X) - \mathcal{D}F(X_0)\| < 2\lambda$$

$$\|\mathcal{D}F(X_0)\| = \frac{1}{4\lambda}$$

Отсюда следует, что $\mathcal{D}F(X_0)$ обратима и для неё выполняется неравенство:

$$\left\| \left(\mathcal{D}F(X) \right)^{-1} \right\| \le \frac{1}{2\lambda}$$

(76) позволяет нам взять обратную матрицу к $\mathcal{D}F(X_*)$:

$$\begin{pmatrix} A\mathcal{D}F(X_*) \end{pmatrix} \left(\mathcal{D}F(X_*) \right)^{-1} \xrightarrow{} \mathbb{Q}_n^T \left(\mathcal{D}F(X_*) \right)^{-1} = \mathbb{Q}_n^T
\left(A\mathcal{D}F(X_*) \right) \left(\mathcal{D}F(X_*) \right)^{-1} \xrightarrow{} \mathbb{Q}_n^T \left(\mathcal{D}F(X_*) \right) \left(\mathcal{D}F(X_*) \right)^{-1} = AI = A$$

$$\Rightarrow A = \mathbb{Q}_n^T$$

При этом,
$$A = (F(X_*) - Y)^T$$
, то есть $F(X_*) - Y = \mathbb{O}_n$ Значит, $F(X_*) = Y$ и $Y \in F(S)$

Доказательство (F открыто). Применяем лемму

Докажем, что F — открытое отображение:

• По условию, V=F(U). Докажем, что V — открытое множество: Возьмём $Y_1 \in F(U)$. Тогда $\exists \, X_1 \in U : F(X_1) = Y_1$ Возьмём $0 < \rho < r - \|X_1 - X_0\|$

Пусть $S := B_{\rho}(X_1)$

Тогда, по шагу 3,

$$B_{\lambda\rho}(Y_1) \subset F\bigg(B_{\rho}(X_1)\bigg) \subset V = F(U)$$

Это и есть определение открытого множества

$$\implies V - \text{откр.}$$

 \bullet Возьмём $\omega \in U-$ открытое. Нужно доказать, что $F(\omega)$ открыто:

Возьмём $Y_2 \in F(\omega)$

Тогда $\exists X_2 : F(X_2) = Y_2$

Поскольку $X_2 \in \omega$,

$$\exists \rho_1 > 0 : B_{\rho_1}(X_2) \subset \omega \subset U$$

Снова применяем шаг 3:

$$B_{\lambda\rho_1}(Y_2) \subset F\bigg(B_{\rho_1}(X_2)\bigg) \subset F(\omega)$$

Получили, что некоторый открытый шар полностью содержится в $F(\omega)$. Это и требовалось доказать

18. Теорема об обратимом отображении: отображение Φ дифференцируемо $\forall y \in V$

Теорема 14. $E \subset \mathbb{R}^{n\geq 2}, \quad E$ открыто, $X_0 \in E, \quad F: E \to \mathbb{R}^1$ $F \in \mathcal{C}^1(E), \quad Y_0 = F(X_0), \quad \mathcal{D}F(X_0)$ обратима

$$\implies \exists\, U - \text{окрестность}\,\, X_0,\,\, V - \text{окрестность}\,\, Y_0: \begin{cases} F\big|_U \text{ обратимо} \\ F(U) = V \\ \Phi = \left(F\big|_U\right)^{-1} \implies \Phi \in \mathcal{C}^1\big(V\big) \end{cases}$$

Доказательство (дифференцируемость Φ).

• Непрерывность

На втором шаге мы выяснили, что $F|_U$ — биекция. Для любой биекции можно определить обратное отображение:

$$\exists \Phi: V \to \mathbb{R}^n: \begin{cases} \Phi(V) = U \\ F\left(\Phi(Y)\right) = Y & \forall Y \in V \\ \Phi\left(F(X)\right) = X & \forall X \in V \end{cases}$$

Проверим, что $\Phi \in \mathcal{C}(V)$:

По определнию из топологии, нужно доказать, что $\forall \omega \subset U$ — откр. прообраз ω открыт Напишем определение прообраза ω при Φ :

$$\omega^{-1} = \{ Y \in V : \Phi(Y) \in \omega \}$$

Если F — биекция, то и Φ — биекция:

$$\Phi(Y) \in \omega \iff F\left(\Phi(Y)\right) \in F(\omega) \iff Y \in F(\omega)$$

Теперь можно переписать определение прообраза:

$$\omega^{-1} = \{ Y : Y \in F(\omega) \}$$

Из открытости $F, F(\omega)$ открыто.

• Дифференцируемость

Зафиксируем K такое, что $Y+K\in V, \qquad K\neq \mathbb{O}_n$ Обозначим $\Phi(Y):=X, \qquad \Phi(Y+K):=X+H$ Это эквивалентно тому, что $Y=F(X), \qquad Y+K=F(X+H)$

$$K = Y + K - Y = F(X + H) - F(X)$$
(77)

Из непрерывности следует, что

$$K \xrightarrow[H \to \mathbb{O}_n]{} \mathbb{O}_n, \qquad H \xrightarrow[K \to \mathbb{O}_n]{} \mathbb{O}_n$$

Также, по соотношению (62) из шага 2, $||F(X+H) - F(X)|| \ge 2\lambda ||H||$, то есть

$$(77) \implies ||K|| \ge 2\lambda \, ||H|| \tag{78}$$

Напоминание. По условию, $\mathcal{D}F(X)$ обратима и

$$\left\| \left(\mathcal{D}F(X) \right)^{-1} \right\| \le \frac{1}{2\lambda} \tag{79}$$

$$K = (77) = \mathcal{D}F(X)H + t(H),$$
 где $\frac{1}{\|H\|}t(H) \xrightarrow[H \to \mathbb{O}_n]{} \mathbb{O}_n$

Домножим на слева на $B \coloneqq \left(\mathcal{D}F(X)\right)^{-1}$:

$$BK = B\left(\mathcal{D}F(X)H\right) + Bt(H) \stackrel{\text{def }B}{=\!=\!=\!=} IH + Bt(H) = H + Bt(H)$$

$$\Longrightarrow BK - Bt(H) = H \stackrel{\text{def }B}{=\!=\!=\!=} \Phi(Y + K) - \Phi(Y) \tag{80}$$

В силу биективности F и Φ ,

$$K \neq \mathbb{O}_n \iff H \neq \mathbb{O}_n$$

Значит, можно делить на ||H||

$$\frac{\|Bt(H)\|_n}{\|K\|_n} \leq \frac{\|B\|\cdot\|t(H)\|_n}{\|K\|_n} \underset{(79)}{\leq} \frac{1}{2\lambda} \cdot \frac{\|t(H)\|_n}{\|K\|_n} = \frac{1}{2\lambda} \cdot \frac{\|t(H)\|}{\|H\|} \cdot \frac{\|H\|}{\|K\|} \underset{(78)}{\leq} \frac{1}{4\lambda^2} \frac{\|t(H)\|}{\|H\|} \xrightarrow[K \to \mathbb{O}_n]{} 0 \quad (81)$$

$$(80),(81) \implies \Phi$$
 дифф. в Y

Напоминание. Дифференцируемость Ф означает, что

$$\Phi(Y+K) - \Phi(Y) = \mathcal{D}\Phi(Y)K + r(K), \qquad \frac{\|r(K)\|}{\|K\|} \xrightarrow[K \to \mathbb{O}_n]{} 0$$

(важно, что матрица Якоби единственна)

Значит, кроме дифференцируемости, мы установили, что

(80)
$$\Longrightarrow \mathcal{D}F(Y) = \left(\mathcal{D}F(X)\right)^{-1}, \qquad X = \Phi(Y)$$
 (82)

19. Теорема об обратимом отображении: $\Phi \in \mathcal{C}^1(V)$

Теорема 15. $E \subset \mathbb{R}^{n \geq 2}, \quad E$ открыто, $X_0 \in E, \quad F: E \to \mathbb{R}^1$ $F \in \mathcal{C}^1(E), \quad Y_0 = F(X_0), \quad \mathcal{D}F(X_0)$ обратима

$$\implies \exists\, U - \text{окрестность}\,\, X_0,\,\, V - \text{окрестность}\,\, Y_0: \begin{cases} F\big|_U \text{ обратимо} \\ F(U) = V \\ \Phi = \left(F\big|_U\right)^{-1} \implies \Phi \in \mathcal{C}^1\big(V\big) \end{cases}$$

Доказательство (гладкость Φ). Пользуясь формулой (82), запишем матрицу Якоби Φ :

$$\mathcal{D}\Phi(Y) = \left(\mathcal{D}F(\Phi(Y))\right)^{-1}$$

Из курса алгебры знаем, что обратимы только неособенные матрицы:

$$\det \mathcal{D}F(X) \neq 0 \quad \forall X \in U$$

Матрица Якоби состоит из частных производных. Все они непрерывны по условию. Значит,

$$\det \mathcal{D}F(X) \in \mathcal{C}(U)$$

Два последних выражения означают, что

$$\frac{1}{\det \mathcal{D}F(X)} \in \mathcal{C}(U)$$

В силу предыдущего шага,

$$\implies \frac{1}{\det \mathcal{D}F\Big(\Phi(Y)\Big)} \in \mathcal{C}(V)$$

Алгебраические дополнения состоят из сумм и произведений частных производных в точке Y. Значит, они (дополнения) непрерывны, а значит

$$\mathcal{D}\Phi(Y) = \frac{\cdots}{\det \mathcal{D}F(\Phi(Y))} \in \mathcal{C}(V) \quad \implies \quad \Phi \in \mathcal{C}^1(V)$$

20. Теорема об открытом отображении

Теорема 16. $G \subset \mathbb{R}^n$ — открыто, $F: G \to \mathbb{R}^n$, $F \in \mathcal{C}^1(G)$, $\det \mathcal{D}F(X) \not= 0$ $\forall X \in G$ Тогда F открыто

Доказательство. Пусть $\omega \subset G$ — открыто

Пусть $S = F(\omega)$

Нужно доказать, что S открыто

Возьмём $\forall Y \in S$

Поскольку S — это образ ω ,

 $\exists X \in \omega : F(X) = Y$ (X не обязательно единственный — берём любой)

Поскольку ω открыто,

$$\exists r_0 > 0 : B_{r_0}(X) \subset \omega$$

Определим λ такое, что

$$\left\| \left(\mathcal{D}F(X) \right)^{-1} \right\| = \frac{1}{4\lambda}$$

Возьмём r, такое что

$$\forall X_1 \in \underbrace{B_r(X)}_{\subseteq G} \quad \|\mathcal{D}F(X_1) - \mathcal{D}F(X)\| < 2\lambda$$

Возьмём $0 < \rho < \min(r, r_0)$

Если мы проведём для $B_{\rho}(X)$ рассуждения из шага 4, то получим, что

$$F\left(B_{\rho}(X)\right)\supset B_{\lambda\rho}\bigg(F(X)\bigg)=B_{\lambda\rho}(Y)$$

Понятно, что $B_{\rho}(X) \subset \omega$

Таким образом, $B_{\lambda\rho}(Y) \subset F(\omega)$

В силу произвольности Y, это означает, что S открыто

21. Теорема о неявной функции (отображении): линейный вариант

Этого вопроса нет.

Рассматриваем пространства $\mathbb{R}^{n\geq 1}$, $\mathbb{R}^{m\geq 1}$, \mathbb{R}^{n+m} .

Введём обозначения:

$$X \coloneqq \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \qquad Y \coloneqq \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \qquad Z \coloneqq \begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \\ y_1 \\ \vdots \\ y_n \end{bmatrix}$$

Введём обозначение для матриц:

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix}, \qquad B = \begin{bmatrix} b_{11} & \dots & b_{1m} \\ \vdots & \vdots & \vdots \\ b_{n1} & \dots & b_{nm} \end{bmatrix}, \qquad [AB] := \begin{bmatrix} a_{11} & \dots & a_{1n} & b_{11} & \dots & b_{1m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \dots & a_{nm} & b_{1n} & \dots & b_{nm} \end{bmatrix}$$

Пусть $\det A \neq 0$ и пусть выполнено

$$[AB] \begin{bmatrix} X \\ Y \end{bmatrix} = \mathbb{O}_n \tag{83}$$

To ects, $AX + BY = \mathbb{O}_n$

$$\xrightarrow{\det A \neq 0} X = -(A^{-1}B)Y \tag{84}$$

Положим $C := -A^{-1}B$ и пусть C(Y) = CY

$$(83), (84) \implies [AB] \begin{bmatrix} C(Y) \\ Y \end{bmatrix} = \mathbb{O}_n$$

Таким образом, найдено линейное отображение $C: \mathbb{R}^m \to \mathbb{R}^n$, удовлетворяющее этому условию. Говорят, что равенство (83) задаёт X как *неявную функцию от* Y, в данном случае равную C(Y).

22. Общий случай теоремы о неявной функции (отображении)

Теорема 17.
$$\mathbb{R}^{n\geq 1}$$
, $\mathbb{R}^{m\geq 1}$, \mathbb{R}^{n+m} , $E\subset \mathbb{R}^{n+m}$ — открытое, $F:E\to \mathbb{R}^n$

$$X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \subset \mathbb{R}^n, \qquad Y = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} \subset \mathbb{R}^m, \qquad Z = \begin{bmatrix} x_1 \\ \ddots \\ x_n \\ y_1 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} X \\ Y \end{bmatrix} \subset \mathbb{R}^{n+m}, \qquad F = \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}$$

$$F \in \mathcal{C}^1ig(Eig), \qquad Z_0 = egin{bmatrix} X_0 \ Y_0 \end{bmatrix} \in E, \qquad F(Z_0) = \mathbb{O}_n, \qquad \det \mathcal{D}F(Z_0)
eq 0$$

$$\implies \exists W(Y_0) \subset \mathbb{R}^n, \quad \exists ! g : W \to \mathbb{R}^n : \begin{cases} g \in \mathcal{C}^1(W) \\ g(Y_0) = X_0 \end{cases} \\ \forall \ Y \in W \quad \begin{cases} \left[g(Y) \\ Y \right] \in E \\ F\left(\left[g(Y) \\ Y \right] \right) = \mathbb{O}_n \end{cases}$$

Доказательство. Вышишем матрицу Якоби для F:

$$\mathcal{D}F(Z_0) = \begin{bmatrix} f'_{1x_1}(Z_0) & \dots & f'_{1x_n}(Z_0) & f'_{1y_1}(Z_0) & \dots & f'_{1y_m}(Z_0) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ f'_{nx_1}(Z_0) & \dots & f'_{nx_n}(Z_0) & f'_{ny_1}(Z_0) & \dots & f'_{ny_m}(Z_0) \end{bmatrix}$$

1. Построение g, W, E

Определим отображение $\Phi(Z) \coloneqq \begin{bmatrix} F(Z) \\ Y \end{bmatrix}$

$$\Phi: E \to \mathbb{R}^{n+m}$$

$$\Phi(Z) = \Phi\left(\begin{bmatrix} X \\ Y \end{bmatrix}\right) = \begin{bmatrix} F\left(\begin{bmatrix} X \\ Y \end{bmatrix}\right) \\ F\left(\begin{bmatrix} X \\ Y \end{bmatrix}\right) \end{bmatrix} =: \begin{bmatrix} \varphi_1(Z) \\ \vdots \\ \varphi_{n+m}(Z) \end{bmatrix}$$

$$\varphi_k\left(\begin{bmatrix} X \\ Y \end{bmatrix}\right) = \begin{cases} f_k\left(\begin{bmatrix} X \\ Y \end{bmatrix}\right), & 1 \le k \le n \\ y_{k-n}, & k > n \end{cases}$$

$$\Phi \in \mathcal{C}^1(E)$$

Временно обозначим $x_{n+k} := y_k$ Напишем матрицу Якоби для Φ :

$$\mathcal{D}\Phi\left(\begin{bmatrix} X \\ Y \end{bmatrix}\right) = \begin{bmatrix} \varphi'_{1x_1}(Z) & \dots & \varphi_{1x_{n+m}}(Z) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi'_{n+mx_1}(Z) & \dots & \varphi'_{n+mx_{n+m}}(Z) \end{bmatrix} = \begin{bmatrix} f'_{1x_1} & \dots & f'_{1x_n} & f'_{1y_1} & \dots & f'_{1y_m} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ f'_{nx_1} & \dots & f'_{nx_n} & f'_{ny_1} & \dots & f'_{ny_m} \\ 0 & \dots & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 1 \end{bmatrix}$$

(черта стоит после n-го ряда) Обозначим

$$A(Z) \coloneqq \begin{bmatrix} f'_{1x_1}(Z) & \dots & f1x_n{'}(Z) \\ \vdots & \vdots & \vdots \\ f'_{nx_1}(Z) & \dots & f'_{nx_n}(Z) \end{bmatrix}, \qquad B(Z) \coloneqq \begin{bmatrix} f'_{1y_1}(Z) & \dots & f'_{1y_m}(Z) \\ \vdots & \vdots & \vdots \\ f'_{ny_1}(Z) & \dots & f'_{ny_m}(Z) \end{bmatrix}$$

В этих обозначениях

$$\mathcal{D}F(Z) = \begin{bmatrix} A(Z)B(Z) \end{bmatrix}, \qquad \mathcal{D}\Phi(Z) = \begin{bmatrix} A(Z) & B(Z) \\ \mathbb{O}_{m \times n} & I_m \end{bmatrix}$$

Найдём якобиан Ф:

Раскладывая по последней строке, получаем новую матрицу порядка $(m-1) \times (n-1)$ Будем так делать, пока внизу стоит I (т. е. m раз) Останется A(Z):

$$\det \mathcal{D}F(Z) = \det A(Z),$$
 в частности, $\det \mathcal{D}F(Z_0) = \det A(Z_0) \underset{\text{по усл.}}{
eq} 0$

То есть, матрица Якоби в Z_0 обратима. Значит, к Φ можно применить теорему об обратном отображении

Будем верхним индексом к шарам обозначать, в каком пространстве они находятся

$$\exists \, \mathtt{B}^{n+m}_r(Z_0), \quad V \coloneqq \Phiigg(\mathtt{B}^{n+m}_r(Z_0)igg), \qquad \exists \, \Psi: V o \mathtt{B}^{n+m}_r(Z_0),$$
 такое что:

$$\Psi \in \mathcal{C}^{1}(V)$$

$$\Phi\left(\Psi\left(\begin{bmatrix} S \\ T \end{bmatrix}\right)\right) = \begin{bmatrix} S \\ T \end{bmatrix} \qquad \forall \begin{bmatrix} S \\ T \end{bmatrix} \in V, \qquad S \in \mathbb{R}^{n}, \quad T \in \mathbb{R}^{m}$$
(85)

$$\Psi\left(\Phi\left(\begin{bmatrix} X\\Y\end{bmatrix}\right)\right) = \begin{bmatrix} X\\Y\end{bmatrix} \qquad \forall \begin{bmatrix} X\\Y\end{bmatrix} \in B_r^{n+m}(Z_0) \tag{86}$$

Обозначим

$$\Psi\left(\begin{bmatrix}S\\T\end{bmatrix}\right) \eqqcolon \begin{bmatrix}\psi\left(\begin{bmatrix}S\\T\end{bmatrix}\right)\\\lambda\left(\begin{bmatrix}S\\T\end{bmatrix}\right)\end{bmatrix}$$

(где ψ задаёт первые n столбцов, а λ – оставшиеся m)

$$\begin{bmatrix}
S \\ T
\end{bmatrix} \xrightarrow{\text{(85)}} \Phi \left(\Psi \left(\begin{bmatrix} S \\ T \end{bmatrix} \right) \right) \xrightarrow{\text{def } \Psi} \Phi \left(\begin{bmatrix} \psi \left(\begin{bmatrix} S \\ T \end{bmatrix} \right) \\ \lambda \left(\begin{bmatrix} S \\ T \end{bmatrix} \right) \end{bmatrix} \right) \xrightarrow{\text{def } \Phi} \begin{bmatrix} F \left(\begin{bmatrix} \psi \left(\begin{bmatrix} S \\ T \end{bmatrix} \right) \\ \lambda \left(\begin{bmatrix} S \\ T \end{bmatrix} \right) \end{bmatrix} \right) \\
\Rightarrow \lambda \left(\begin{bmatrix} S \\ T \end{bmatrix} \right) = T \xrightarrow{\text{def } \Psi} \Psi \left(\begin{bmatrix} S \\ T \end{bmatrix} \right) = \begin{bmatrix} \psi \left(\begin{bmatrix} S \\ T \end{bmatrix} \right) \end{bmatrix} \tag{87}$$

Рассмотрим случай, когда $S = \mathbb{O}_n$:

$$\Phi\left(\begin{bmatrix} \psi\left(\begin{bmatrix} \mathbb{O}_n \\ T \end{bmatrix}\right) \end{bmatrix}\right) \xrightarrow[\overline{87}]{} \Phi\left(\Psi\left(\begin{bmatrix} \mathbb{O}_n \\ T \end{bmatrix}\right)\right) \xrightarrow[\overline{85}]{} \begin{bmatrix} \mathbb{O}_n \\ T \end{bmatrix}$$

При этом,

$$\Phi\left(\begin{bmatrix} \psi\left(\begin{bmatrix} \mathbb{O}_n \\ T \end{bmatrix}\right) \end{bmatrix}\right) \stackrel{\text{def } \Phi}{=} \begin{bmatrix} F\left(\begin{bmatrix} \psi\left(\begin{bmatrix} \mathbb{O}_n \\ T \end{bmatrix}\right) \end{bmatrix}\right)$$

Из последних двух выражений следует, что

$$F\left(\begin{bmatrix} \psi\left(\begin{bmatrix} \mathbb{O}_n \\ T \end{bmatrix}\right) \end{bmatrix}\right) = \mathbb{O}_n \tag{88}$$

Из того, что V открытое и $\begin{bmatrix} \mathbb{O}_n \\ Y_0 \end{bmatrix} \in V$, следует, что

$$\exists\, \rho>0: \quad \mathsf{B}^{n+m}_\rho\left(\begin{bmatrix}\mathbb{O}_n\\Y_0\end{bmatrix}\right)\subset V$$

При этом, если $Y \in \mathtt{B}^m_{\rho}(Y_0)$, то

$$\begin{bmatrix} \mathbb{O}_n \\ Y \end{bmatrix} \in \mathsf{B}^{n+m}_{\rho} \left(\begin{bmatrix} \mathbb{O}_n \\ Y_0 \end{bmatrix} \right)$$

Поэтому (88) выполнено при $T \in \mathtt{B}^m_{\varrho}(Y_0)$

Вспомним про отображение g из формулировки теоремы. Оно действует из некоторого W Возьмём

$$W:=\mathrm{B}_{\rho}^{m}(Y_{0}), \qquad E:=\mathrm{B}_{\rho}^{n+m}\left(\begin{bmatrix}\mathbb{O}_{n}\\Y_{0}\end{bmatrix}\right), \qquad g(Y):=\psi\left(\begin{bmatrix}\mathbb{O}_{n}\\Y\end{bmatrix}\right)$$

Тогда мы действительно имеем $g:W \to \mathbb{R}^n$

$$F\left(\begin{bmatrix}g(Y)\\Y\end{bmatrix}\right) \stackrel{\text{def } g}{=\!=\!=\!=} F\left(\begin{bmatrix}\psi\left(\begin{bmatrix}\mathbb{O}_n\\Y\end{bmatrix}\right)\\Y\end{bmatrix}\right) \stackrel{\text{(88)}}{=\!=\!=\!=\!=} \mathbb{O}_n$$

2. Теперь надо выяснить, чему равно $g(Y_0)$

$$\Phi\left(\begin{bmatrix} X_0 \\ Y_0 \end{bmatrix}\right) = \begin{bmatrix} F\left(\begin{bmatrix} X_0 \\ Y_0 \end{bmatrix}\right) \\ Y_0 \end{bmatrix} = \begin{bmatrix} \mathbb{O}_n \\ Y_0 \end{bmatrix}$$
(89)

$$\Psi\left(\Phi\left(\begin{bmatrix} X_0 \\ Y_0 \end{bmatrix}\right)\right) \stackrel{}{=} \stackrel{}{=} \begin{bmatrix} X_0 \\ Y_0 \end{bmatrix} \\
\Psi\left(\Phi\left(\begin{bmatrix} X_0 \\ Y_0 \end{bmatrix}\right)\right) \stackrel{}{=} \Psi\left(\begin{bmatrix} \mathbb{O}_n \\ Y_0 \end{bmatrix}\right) \stackrel{\text{def } \Psi}{=} \begin{bmatrix} \psi\left(\begin{bmatrix} \mathbb{O}_n \\ Y_0 \end{bmatrix}\right) \end{bmatrix} \stackrel{\text{def } g}{=} \begin{bmatrix} g(Y_0) \\ Y_0 \end{bmatrix} \right) \Longrightarrow g(Y_0) = X_0$$

3. Осталось проверить единственность g Пусть есть другое $g_1 \in C^1(B_o^m(Y_0))$, такое что

$$g_1(Y_0) = X_0, \qquad F\left(\begin{bmatrix} g_1(Y) \\ Y \end{bmatrix}\right) = \mathbb{O}_n$$

(86)
$$\Longrightarrow \Psi\left(\begin{bmatrix} F\left(\begin{bmatrix} g_1(Y) \\ Y \end{bmatrix}\right) \end{bmatrix}\right) = \begin{bmatrix} g_1(Y) \\ Y \end{bmatrix}$$

При этом,

$$\Psi\left(\begin{bmatrix}\mathbb{O}_n\\Y\end{bmatrix}\right) = \begin{bmatrix}\psi\left(\begin{bmatrix}\mathbb{O}_n\\Y\end{bmatrix}\right)\\Y\end{bmatrix} = \begin{bmatrix}g(Y)\\Y\end{bmatrix}$$

Правые части равны, а значит, и левые части равны Значит, $g_1(Y)=g(Y)$

23. Вычисление матрицы Якоби отображения, заданного неявно

$$P(Y) = \begin{bmatrix} g(Y) \\ Y \end{bmatrix}, \qquad g \in \mathcal{C}^1(W), \qquad P \in \mathcal{C}^1(W)$$

По последнему утверждению из теоремы,

$$F(P(Y)) = \mathbb{O}_n \quad \forall Y \in W \quad \Longrightarrow \quad \mathcal{D}(F(P(Y))) = \mathbb{O}_{n \times m}$$

Применим теорему о матрице Якоби суперпозиции:

$$\mathcal{D}F\bigg(P(Y)\bigg)\mathcal{D}P(Y) = \mathbb{O}_{n \times m} \tag{90}$$

$$\mathcal{D}P(Y) \stackrel{\text{def } P(Y)}{=} \begin{bmatrix} \mathcal{D}g(Y) \\ I_m \end{bmatrix} \tag{91}$$

Обозначим Z := P(Y)

$$\mathcal{D}F(Z) = \left[A(Z)B(Z) \right]$$

$$\mathcal{D}F(Z)\mathcal{D}P(Y) \xrightarrow{(91)} \left[A(Z)B(Z) \right] \left[\mathcal{D}g(Y) \atop I_m \right] = A(Z)\mathcal{D}g(Y) + B(Z)I_m = A(Z)\mathcal{D}g(Y) + B(Z)$$

$$\Longrightarrow A(Z)\mathcal{D}g(Y) + B(Z) = \mathbb{O}_{n \times m} \implies \mathcal{D}g(Y) = -A^{-1}(Z)B(Z)$$

24. Определение условного локального экстремума; теорема о множителях Лагранжа

Определение 6. $E\subset \mathbb{R}^{n\geq 2}$, $M\subset E$, $X_0\in M$, $f:E\to \mathbb{R}$ Говорят, что X_0 — точка локального экстремума f при условии M, если X_0 — точка локального экстремума функции $f\big|_M$

Определение 7. $E \subset \mathbb{R}^{n+m}$ — открытое, $F: E \to \mathbb{R}^n$, $X_0 \in E$, $f(X_0) = \mathbb{O}_n$, $f: E \to \mathbb{R}$ Говорят, что X_0 — точка локального экстремума f при условии $F(X) = \mathbb{O}_n$, если X_0 — точка локального экстремума f при условии $\ker F$

Теорема 18 (о множителях Лагранжа). $E \subset \mathbb{R}^{n+m}$ — открытое, $F \in \mathcal{C}^1(E)$ rk $\mathcal{D}F(X)=n \quad \forall X \in E, \qquad X_0 \in E: \quad F(X_0)=\mathbb{O}_n$ $\Rightarrow \exists ! \Lambda = (\lambda_1,...,\lambda_n): \quad \text{для } \varphi(X,\Lambda) \coloneqq f(X) + \Lambda F(X) \qquad \nabla \varphi(X_0,\Lambda) = \mathbb{O}_{n+m}^T$

Доказательство.

• Существование

Пусть
$$X = \begin{bmatrix} x_1 \\ \vdots \\ x_{n+m} \end{bmatrix}, \qquad F = \begin{bmatrix} F_1 \\ \vdots \\ F_n \end{bmatrix}$$

Запишем матрицу Якоби для F:

$$\mathcal{D}F(X) = \begin{bmatrix} F'_{1x_1}(X) & \dots & F'_{1x_{n+m}}(X) \\ & & & & \\ F'_{nx_1}(X) & \dots & F'_{nx_{n+m}}(X) \end{bmatrix}$$

По условию, её ранг равен n при любом X. НУО считаем, что не равен нулю верхний левый минор, в том числе при X_0 :

$$\begin{vmatrix} F'_{1x_1}(X_0) & \dots & F'_{1x_n}(X_0) \\ \vdots & \vdots & \ddots & \vdots \\ F'_{nx_1}(X_0) & \dots & F'_{nx_n}(X_0) \end{vmatrix} \neq 0$$

Обозначим
$$X' := \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \quad Y = \begin{bmatrix} x_{n+1} \\ \vdots \\ x_{n+m} \end{bmatrix}$$

Определим матрицы \overline{A} и B так же, как в теореме о неявном отображении, то есть так, что

$$\mathcal{D}F(X) = \left[A(X)B(X)\right], \quad \det A(X_0) \neq 0$$

Обозначим
$$X_0' \coloneqq \begin{bmatrix} x_1^0 \\ \vdots \\ x_n^0 \end{bmatrix}, \quad Y_0 = \begin{bmatrix} x_{n+1}^0 \\ \vdots \\ x_{n+m}^0 \end{bmatrix}$$

По теореме о неявном отображении

$$\exists W \ni Y_0, \qquad \exists ! g : W \to \mathbb{R}^n : \quad g \in \mathcal{C}^1(W), \quad F\left(\begin{bmatrix} g(Y) \\ Y \end{bmatrix}\right) = \mathbb{O}_n \quad \forall Y \in W$$

Из единственности g следует, что

$$\exists U \subset E \subset \mathbb{R}^{n+m}, \ X_0 \in U: \quad \forall X \in U \quad \left(F(X) = \mathbb{O}_n \iff X = \begin{bmatrix} g(Y) \\ Y \end{bmatrix}, \quad Y \in W\right)$$

X из условия теоремы подходит под правое условие, значит,

$$\varphi(X, \Lambda) \stackrel{\operatorname{def} \varphi}{=\!=\!=\!=} f(X) + \Lambda F(X) = f(X) + \Lambda \mathbb{O}_n = f(X)$$

То есть, X_0 — т. лок. экстеремума функции $\varphi(X,\Lambda)$ $\forall \Lambda$ при условии $F(X) = \mathbb{O}_n$ (92)

Возьмём $Y \in W$

Рассмотрим функцию

$$h(Y, \Lambda) := \varphi\left(\begin{bmatrix} g(Y) \\ Y \end{bmatrix}, \Lambda\right) = f\left(\begin{bmatrix} g(Y) \\ Y \end{bmatrix}\right) + \Lambda F\left(\begin{bmatrix} g(Y) \\ Y \end{bmatrix}\right), \qquad Y_0 \in W$$
 (93)

$$\varphi(X,\Lambda)$$
 при $X \in U$ и $F(X) = \mathbb{O}_n$ $h(Y,\Lambda),$ где $X = \begin{bmatrix} g(Y) \\ Y \end{bmatrix}$

Вместе с (92) это означает, что Y_0 — точка локального экстремума h(Y) (без условий) Для h действует необходиомое условие локального экстремума:

$$\nabla h(Y_0, \Lambda) = \mathbb{O}_m^T$$

Рассмотрим теперь h как отображение в \mathbb{R}^1 Его градиент будет матрицей Якоби $n \times 1$:

$$\mathcal{D}h(Y_0, \Lambda) = \nabla h(Y_0, \Lambda) = \mathbb{O}_m^T$$
(94)

Определим отображение $P(Y) \coloneqq \begin{bmatrix} g(Y) \\ Y \end{bmatrix}$

Возьмём $Y \in W$

$$h(Y,\Lambda) \xrightarrow{} f\left(P(Y)\right) + \Lambda F\left(P(Y)\right)$$

$$\implies \mathcal{D}h(Y,\Lambda) = \mathcal{D}\left(f\left(P(Y)\right)\right) + \Lambda \mathcal{D}\left(F\left(P(Y)\right)\right)$$
(95)

Вспомним, чему равны матрицы Якоби суперпозиции:

$$\mathcal{D}\left(f(P(Y))\right) = \mathcal{D}f\left(P(Y)\right) \cdot \mathcal{D}P(Y)$$

$$\mathcal{D}\left(F(P(Y))\right) = \mathcal{D}F\left(P(Y)\right) \cdot \mathcal{D}P(Y)$$
(96)

При доказательстве теоремы о неявной функции мы получили, что

$$\mathcal{D}P(Y) = \begin{bmatrix} \mathcal{D}g(Y) \\ I_m \end{bmatrix} \tag{97}$$

$$\mathcal{D}F(X_0) = \left[A(X_0)B(X_0) \right]$$

Снова будем вместо матрицы Якоби писать градиент:

$$\mathcal{D}f(X_0) = \left(f'_{x_1}(X_0), ..., f'_{x_{x+m}}(X_0)\right)$$

Запишем его как два градиента:

$$\nabla_1 f(X_0) := \left(f'_{x_1}(X_0), ..., f'_{x_n}(X_0) \right), \qquad \nabla_2 f(X_0) := \left(f'_{x_{n+1}}(X_0), ..., f'_{x_{n+m}}(X_0) \right)$$

$$\mathcal{D}f(X_0) = \left(\nabla_1 f(X_0), \nabla_2 f(X_0) \right) \tag{98}$$

$$(96), (97) \implies \mathbb{O}_{m}^{T} \xrightarrow{} \mathcal{D}h(Y_{0}, \Lambda) \xrightarrow{} \overline{\underset{(95)}{=}}$$

$$= \underbrace{\left(\nabla_{1}f(X_{0}), \nabla_{2}f(X_{0})\right)}_{(98)} \begin{bmatrix} \mathcal{D}g(Y_{0}) \\ I_{m} \end{bmatrix} + \Lambda \left[A(X_{0})B(X_{0})\right] \begin{bmatrix} \mathcal{D}g(Y) \\ I_{m} \end{bmatrix} =$$

$$= \nabla_{1}f(X_{0})\underline{\mathcal{D}g(Y_{0})} + \nabla_{2}f(X_{0}) + \Lambda \left(A(X_{0})\underline{\mathcal{D}g(Y_{0})} + B(X_{0})\right) =$$

$$= \underbrace{\left(\nabla_{1}f(X_{0}) + \Lambda A(X_{0})\right)}_{(99)} \mathcal{D}g(Y_{0}) + \nabla_{2}f(X_{0}) + \Lambda B(X_{0}) \quad (99)$$

Хотим выбрать Λ так, чтобы скобка обратилась в 0:

$$\nabla_1 f(X_0) + \Lambda A(X_0) = \mathbb{O}_m^T$$
$$\Lambda = -\nabla_1 f(X_0) A^{-1}(X_0)$$

При таком Λ выделенная скобка равна 0, а значит из (99) остаётся только

$$\nabla_2 f(X_0) + \Lambda B(X_0) = \mathbb{O}_m^T$$

Вернёмся к полному градиенту:

$$\nabla f(X_0) + \Lambda \left[A(X_0)B(X_0) \right] = \mathbb{O}_{n+m}^T$$

"Склеивая" A и B, получаем

$$\nabla f(X_0) + \Lambda \mathcal{D}F(X_0) = \mathbb{O}_{n+m}^T$$

• Единственность Возьмём какой-то другой набор Λ

$$\nabla_1 f(X_0) + \Lambda A(X_0) = \mathbb{O}_n^T$$

Так мы определяли Λ , а значит она единственна.

Часть II

Функциональные последовательности и ряды

25. Определение равномерной сходимости функциональной последовательности и функционального ряда **Определение 8.** $f_n(x)$ **равномерно** на X сходится (стремится) к f(x), если

$$\forall \varepsilon > 0 \quad \exists N : \quad \forall n > N \quad \forall x \in X \quad |f_n(x) - f(x)| < \varepsilon$$

Обозначение. $f_n(x) \xrightarrow[n \to \infty]{x \in X} f(x)$

Определение 9. Будем говорить, что функциональный ряд **равномерно** сходится на X к сумме S(x), если

$$S_n(x) \xrightarrow[n \to \infty]{x \in X} S(x)$$

Тогда ряду приписывается значение:

$$\sum_{n=1}^{\infty} v_n(x) \coloneqq S(x)$$

26. Критерий Коши равномерной сходимости функциональной последовательности и функционального ряда

Теорема 19. Для того, чтобы функциональная последовательность **равномерно** сходилась на X к некоторой функции f, **необходимо и достаточно**, чтобы

$$\forall \varepsilon > 0 \quad \exists N : \quad \forall n > N, \ m > N \quad \forall x \in X \quad |f_n(x) - f_m(x)| < \varepsilon$$

Доказательство.

• Необходимость

Пусть
$$f_n(x) \xrightarrow[n \to \infty]{x \in X} f(x)$$

В таком случае, по определению равномерной сходиомости,

$$\forall \varepsilon > 0 \quad \exists N : \quad \forall n > N \quad \forall x \in X \quad |f_n(x) - f(x)| < \frac{\varepsilon}{2}$$

Возьмём произвольный $x \in X$

$$|f_m(x) - f_n(x)| = \frac{1}{\pm f(x)} \left| \left(f_m(x) - f(x) \right) + \left(f(x) - f_n(x) \right) \right| \leq |f_m(x) - f(x)| + |f(x) - f_n(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

• Достаточность

Фиксируем $x \in X$

Получаем **числовую** последовательность $\{f_n(x)\}_{n=1}^{\infty}$

По критерию Коши для числовых последовательностей, она имеет конечный предел:

$$\exists \lim_{n \to \infty} f_n(x) \in \mathbb{R}$$

To есть, любая точка из X является точкой сходимости:

$$E_0 = X$$

Получается, что $f_n(x)$ поточечно сходится к f(x) на X:

$$f_n(x) \xrightarrow[n \to \infty]{} f(x)$$
 (100)

При фиксированных x и ε имеем

$$|f_m(x) - f_n(x)| < \varepsilon$$

Фиксируем $\forall m > N$ и переходим к пределу по n:

$$\lim_{n \to \infty} |f_m(x) - f_n(x)| \le \varepsilon \quad \Longrightarrow_{(100)} |f_m(x) - f(x)| \le \varepsilon$$

T. к. мы брали $\forall m>N$ и $\forall x\in X,$ это и есть определение равномерной сходимости

Теорема 20. Имеется ряд

$$\sum_{n=1}^{\infty} v_n(x), \qquad x \in X$$

Для того чтобы он равномерно сходился, необходимо и достаточно, чтобы

$$\forall \varepsilon > 0 \quad \exists N : \quad \forall m > n > N \quad \forall x \in X \quad \left| \sum_{k=n+1}^{m} v_k(x) \right| < \varepsilon$$

Доказательство. По определению равномерная сходимость функционального ряда означает, что равномерно сходится последовательность $\{S_n(x)\}_{n=1}^{\infty}$

Применяя к ней критерий Коши, получаем, что для её равномерной сходимости необходимо и достаточно, чтобы

$$\forall \varepsilon > 0 \quad \exists N : \quad \forall m > n > N \quad \forall x \in X \quad |S_n(x) - S_m(x)| < \varepsilon$$

Это и есть условие теоремы.

27. Признак Вейерштрасса равномерной сходимости функциональных рядов

Теорема 21. Имеется ряд

$$\sum_{n=1}^{\infty} v_n(x) \tag{101}$$

$$\exists c_n: \sum_{n=1}^{\infty} c_n \text{ сходится}$$
 (102)

$$|v_n(x)| \le c_n \quad \forall x \in X \tag{103}$$

Тогда ряд (101) сходится равномерно

Доказательство. Вспомним критерий Коши для числовых рядов:

Возьмём $\forall \varepsilon > 0$

$$(102) \implies \exists N: \quad \forall m > n > N \quad \sum_{k=n+1}^{m} c_k < \varepsilon \tag{104}$$

Примечание. Мы не ставим модуль, поскольку c_k положительные

Зафиксируем эти m,n,N и возьмём $\forall x \in X$

$$(104) \implies \left| \sum_{k=n+1}^{m} v_k(x) \right| \stackrel{\triangle}{\leq} \sum_{k=n+1}^{m} |v_k(x)| \stackrel{\leq}{\leq} \sum_{k=n+1}^{m} c_k \stackrel{<}{<} \varepsilon$$

Применяем критерий Коши для функционального ряда

28. Признак Дирихле равномерной сходимости функциональных рядов

Теорема 22. Имеется ряд

$$\sum_{n=1}^{\infty} b_n(x) v_n(x) \tag{105}$$

$$\boldsymbol{b_n}$$
 монотонна по $n \quad \forall$ фиксированного $x \in X$ (106)

$$\boldsymbol{b_n(x)} \xrightarrow[n \to \infty]{x \in X} 0 \tag{107}$$

$$\exists c > 0: \quad \forall n \quad \forall x \in X \quad \left| \sum_{k=1}^{n} v_{k}(x) \right| \leq c \tag{108}$$

Тогда ряд (105) **равномерно** сходится на X

Доказательство. Возьмём $\forall \varepsilon > 0$

$$(107) \implies \exists N: \quad \forall n > N \quad \forall x \in X \quad |b_n(x)| < \varepsilon \tag{109}$$

$$\forall m > n \ge 1 \quad \left| \sum_{k=n+1}^{m} v_k(x) \right| = \left| \sum_{k=1}^{m} v_k(x) - \sum_{k=1}^{n} v_k(x) \right| \le \sum_{k=1}^{m} |v_k(x)| - \sum_{k=1}^{n} |v_k(x)| \le c + c = 2c \quad (110)$$

Рассмотрим сумму

$$\sum_{k=n+1}^{m} b_k(x) v_k(x)$$

Определим

$$V_n(x) : \equiv 0$$
$$V_{n+1}(x) \coloneqq v_{n+1}(x)$$

$$V_l(x) = v_{n+1}(x) + \dots + v_l(x), \qquad n+1 < l \le m$$

Тогда $v_k(x) = V_k(x) - V_{k-1}(x), \quad k \ge n+1$

Перепишем нашу сумму:

$$\sum_{k=n+1}^{m} b_k(x)v_k(x) = \sum_{k=n+1}^{m} b_k(x) \left(V_k(x) - V_{k-1}(x)\right) =$$

$$= \sum_{k=n+1}^{m} b_k(x)V_k(x) - \sum_{k=n+1}^{m} b_k(x)V_{k-1}(x) \xrightarrow{\frac{k:=k+1}{\text{BO BTOPOH CYMME}}} \sum_{k=n+1}^{m} b_k(x)V_k(x) - \sum_{k=n}^{m-1} b_{k+1}(x)V_k(x) \xrightarrow{\frac{def}{V_n \stackrel{def}{=}0}}$$

$$= b_m(x)V_m(x) + \sum_{k=n+1}^{m-1} \left(b_k(x) - b_{k+1}(x)\right)V_k(x) \quad (111)$$

$$(110) \implies |V_k(x)| \le 2c \quad \forall k \tag{112}$$

Возьмём N из (109), m > n > N и $\forall x \in X$

$$(111) \implies \left| \sum_{k=n+1}^{m} b_k(x) v_k(x) \right| \le |b_m(x)| \cdot |V_m(x)| + \sum_{k=n+1}^{m-1} |b_k(x) - b_{k+1}(x)| \cdot |V_k(x)| \le \left(\varepsilon \cdot 2c + 2c \sum_{k=n+1}^{m-1} |b_k(x) - b_{k+1}(x)| \right) \right| = 2c\varepsilon + 2c|b_{n+1}(x) - b_m(x)| \le \left(2c\varepsilon + 2c \left(\underbrace{|b_{n+1}(x)|}_{\le \varepsilon} + \underbrace{|b_m(x)|}_{\le \varepsilon} \right) \right) < 6c\varepsilon$$

Можно применить критерий Коши

29. Признак Абеля равномерной сходимости функциональных рядов

Теорема 23. Имеется ряд

$$\sum_{n=1}^{\infty} b_n(x)v_n(x) \tag{113}$$

 $\boldsymbol{b_n(x)}$ монотонна по $n \quad \forall x \in X$

$$\exists c > 0: |b_n(x)| \le c \quad \forall n \quad \forall x \in X$$

$$\sum_{n=1}^{\infty} v_n(x)$$
 равномерно **сходится** на X (114)

⇒ ряд (113) равномерно сходится

Доказательство. Применим необходимую часть критерия Коши к условию (114):

$$\forall \varepsilon > 0 \quad \exists N : \quad \forall m > n > N \quad \forall x \in X \quad \left| \sum_{k=n+1}^{m} v_k(x) \right| < \varepsilon$$
 (115)

Возьмём какое-нибудь $m_0 > n > N$

Соотношение (115) действует при $m = n + 1, ..., m_0$

Определим функции $V_k(x)$ так же, как в доказательстве признака Дирихле

Там было доказано, что

$$\sum_{k=1}^{m_0} b_k(s) v_k(x) = \sum_{k=n+1}^{m_0-1} V_k(x) \left(b_k(x) - b_{k+1}(x) \right) + b_{m_0}(x) V_{m_0}(x)$$

$$\implies \left| \sum_{k=n+1}^{m_0} b_k(x) v_k(x) \right| \stackrel{\triangle}{\leq} \left| \sum_{k=n+1}^{m_0-1} V_k(x) \left(b_k(x) - b_{k+1}(x) \right) \right| + |b_{m_0}(x)| \cdot |V_{m_0}(x)| \le$$

$$\leq \sum_{k=n+1}^{m_0-1} |V_k(x)| \cdot \left| b_k(x) - b_{k+1} \right| + |b_{m_0}(x) V_{m_0}(x)| \stackrel{\leq}{\leq} \sum_{(115)} \underbrace{|b_{m_0}(x)| \varepsilon}_{\leq c} + \varepsilon \sum_{k=n+1}^{m_0-1} |b_k(x) - b_{k+1}(x)| \le$$

$$\leq c\varepsilon + \varepsilon \left| \sum_{k=n+1}^{m_0-1} \left(b_k(x) - b_{k+1} \right) \right| = c\varepsilon + \varepsilon |b_{n+1}(x) - b_{m_0}(x)| \le 3c\varepsilon$$

30. Теорема о переходе к пределу в равномерно сходящейся функциональной последовательности

Теорема 24. X, d(x,y) — метрическое пространство, $x_0 \in X$ — точка сгущения $X \in \{f_n(x)\}_{n=1}^{\infty}$, $f_n: X \setminus \{x_0\} \to \mathbb{R}$

$$f_n(x) \xrightarrow[n \to \infty]{x \in X \setminus \{x_0\}} f(x)$$
 (116)

$$\forall x \in X \setminus \{ x_0 \} \quad \exists \lim_{x \to x_0} f_n(x) = a_n \tag{117}$$

$$\implies \begin{cases} \exists \lim_{n \to \infty} a_n = A \in \mathbb{R} \\ \exists \lim_{x \to x_0} f(x) = A \end{cases}$$
(118)
(119)

Доказательство.

• (118)

Применим критерий Коши к (116):

$$\implies \forall \varepsilon > 0 \quad \exists N: \quad \forall m, n > N \quad \forall x \in X \quad |f_m(x) - f_n(x)| < \varepsilon$$

Зафиксируем всё, кроме x, а x устремим к x_0 :

$$\implies \lim_{x \to x_0} |f_m(x) - f_n(x)| \le \varepsilon \quad \Longrightarrow \quad |a_m - a_n| \le \varepsilon \quad \Longrightarrow \quad \exists \lim_{n \to \infty} a_n = A \in \mathbb{R}$$

• (119)

Возьмём $\forall \varepsilon > 0$

Выберем N_1 такое, что

$$\forall n > N_1 \quad \forall x \in X \setminus \{x_0\} \quad |f_n(x) - f(x)| < \varepsilon \tag{120}$$

Выберем N_2 такое, что

$$\forall n > N_2 \quad |a_n - A| < \varepsilon \tag{121}$$

Выберем $N_0 := \max \{ N_1, N_2 \} + 1$

Выберем $\delta > 0$ такое, что

$$\forall y \in X \setminus \{x_0\} \quad \left(d(y, x_0) < \delta \implies |f_{N_0}(y) - a_{N_0}| < \varepsilon \right)$$
 (122)

$$f(y) - A \xrightarrow{\frac{\pm f_{N_0}(y)}{\pm f_{N_0}(y)}} f(y) - f_{N_0}(y) + f_{N_0}(y) - a_{N_0} + a_{N_0} - A$$

$$\implies |f(y) - A| \stackrel{\triangle}{\leq} \underbrace{|f(y) - f_{N_0}(y)|}_{(120)} + \underbrace{|f_{N_0}(y) - a_{N_0}|}_{(122)} + \underbrace{|a_{N_0} - A|}_{(121)} < 3\varepsilon \implies (119)$$

31. Теорема о непрерывности в точке предела равномерно сходящейся функциональной последовательности и суммы равномерно сходящегося функционального ряда

Следствие (о непрерывности в точке). $x_0 \in X, \qquad f_n : X \to \mathbb{R}, \qquad f_n(x)$ непрерывна в $x_0 \quad \forall n$

$$f_n(x) \xrightarrow[n \to \infty]{x \in X} f(x) \tag{123}$$

 $\implies f(x)$ непрерывна в $x_0 \quad \forall n$

Доказательство. Непрерывность f_n означает, что

$$\lim_{x \to x_0} f_n(x) = \underbrace{f_n(x_0)}_{a_n} \in \mathbb{R}$$

То есть, выполнено второе условие из теоремы.

$$(123) \implies f_n(x_0) \xrightarrow[n \to \infty]{} f(x_0)$$

$$\implies \exists \lim_{n \to \infty} a_n = \lim_{n \to \infty} f_n(x_0) = f(x_0)$$

$$\exists \lim_{x \to x_0} f(x) = \lim_{n \to \infty} a_n = f(x_0)$$

Следствие. X всюду плотно,

$$f_n \in \mathcal{C}(X), \qquad f_n(x) \xrightarrow[n \to \infty]{x \in X} f(x)$$

$$\implies f \in \mathcal{C}(X)$$

Теорема 25. X — метрическое пространство,

$$\left\{ v_n(x) \right\}_{n=1}^{\infty}, \qquad x_{\circ} - \text{т. cf.},$$

$$x_{\circ}$$
 — т. сг.,

имеется ряд

$$\sum_{n=1}^{\infty} v_n(x) = S(x) \tag{124}$$

1. (124) сходится равномерно на $X \setminus \{x_0\}$, $\forall n \ \exists \lim_{x \to x_0} v_n(x) = c_n$

$$\implies \begin{cases} \sum_{n=1}^{\infty} c_n \text{ сходится} \\ \exists \lim_{x \to x_0} S(x) = \sum_{n=1}^{\infty} c_n \end{cases}$$

2. (124) сходится равномерно на всём X, v_n непр. в $x_0 \, \forall n$

$$\implies S(x)$$
 непр. в x_0

(124) сходится равномерно на всём $X, \quad v_n \in \mathcal{C}(X) \quad \forall n$ $3. \, X$ всюду плотно,

$$v_n \in \mathcal{C}(X) \quad \forall n$$

$$\implies S \in \mathcal{C}(X)$$

Доказательство. $S_n(x) = v_1(x) + \cdots + v_n(x)$

Равномерная сходимость ряда (124) по определению означает, что

$$S_n(x) \xrightarrow[n \to \infty]{x \in X \setminus \{x_0\}} S(x)$$

Применимы теоремы для функциональных последовательностей.

32. Интегрирование равномерно сходящейся функциональной последовательности и равномерно сходящегося функционального ряда

Теорема 26. $\{f_n(x)\}_{n=1}^{\infty}$, $f_n \in \mathcal{C}([a,b])$, $f_n(x) \xrightarrow{x \in [a,b]} f(x)$

Замечание. В таком случае $f \in \mathcal{C} \big([a,b] \big),$ а значит $f \in \mathcal{R}[a,b]$

$$\implies \int_a^b f_n(x) dx \xrightarrow[n \to \infty]{} \int_a^b f(x) dx$$

Доказательство. Равномерная сходимость означает, что

$$\forall \varepsilon > 0 \quad \exists N : \quad \forall n > N \quad \forall x \in [a, b] \quad |f_n(x) - f(x)| < \varepsilon$$

$$\left| \int_a^b f_n(x) \, \mathrm{d}x - \int_a^b f(x) \, \mathrm{d}x \right| = \left| \int_a^b \left(f_n(x) - f(x) \right) \, \mathrm{d}x \right| \le \int_a^b \left| f_n(x) - f(x) \right| \, \mathrm{d}x < \int_a^b \varepsilon \, \mathrm{d}x = \varepsilon(b-a)$$

Это и есть определение сходимости требуемой числовой последовательности

Теорема 27.
$$\{v_n(x)\}_{n=1}^{\infty}$$
, $v_n \in \mathcal{C}([a,b])$, $\sum_{n=1}^{\infty} v_n(x)$ равномерно сходится на $[a,b]$

$$\implies \int_a^b \sum_{n=1}^\infty v_n(x) \ \mathrm{d}\, x = \sum_{n=1}^\infty \int_a^b v_n(x) \ \mathrm{d}\, x$$

Доказательство. Обозначим

$$c_n := \int_a^b v_n(x) \, \mathrm{d} x, \qquad B_n := c_1 + \dots + c_n, \qquad S_n(x) := v_1(x) + \dots + v_n(x), \qquad S(x) := \sum_{n=1}^\infty v_n(x)$$

По определению равномерной сходимости ряда,

$$S_n(x) \xrightarrow[n \to \infty]{x \in [a,b]} S(x)$$

Отсюда, по только что доказанной теореме,

$$\int_{a}^{b} S_{n}(x) dx \xrightarrow[n \to \infty]{} \int_{a}^{b} S(x) dx$$

$$\int_{a}^{b} S_{n}(x) dx = \int_{a}^{b} \left(v_{1}(x) + \dots + v_{n}(x) \right) dx = B_{n} \xrightarrow[n \to \infty]{} \int_{a}^{b} S(x) dx$$

33. Дифференцирование равномерно сходящейся функциональной последовательности и равномерно сходящегося функционального ряда

Теорема 28. $\{f_n(x)\}_{n=1}^{\infty}$, $\forall n \ \forall x \in [a,b] \ \exists f_n'(x)$

$$\exists \varphi(x) : [a,b] \to \mathbb{R} : \quad f'_n(x) \xrightarrow[n \to \infty]{x \in [a,b]} \varphi(x) \tag{125}$$

$$\exists x_0 \in [a, b]: \quad \exists \lim_{n \to \infty} f_n(x_0) \in \mathbb{R}$$
 (126)

$$\implies \exists f : [a,b] \to \mathbb{R} : \begin{cases} f_n(x) \xrightarrow{x \in [a,b]} f(x) \\ \forall x \in [a,b] \quad \exists f'(x) = \varphi(x) \end{cases}$$

$$(127)$$

Доказательство.

• Возьмём $m \neq n$ Определим функции:

$$P_{mn}(x) := f_m(x) - f_n(x)$$

Так как f_n дифференцируемы,

$$\exists P'_{mn}(x) = f'_{m}(x) - f'_{n}(x) \tag{129}$$

Значит, к P_{mn} можно применить теорему Лагранжа:

$$\forall x \in [a, b] : x \neq x_0 \quad \exists c \in (x \not x_0) : \quad P_{mn}(x) - P_{mn}(x_0) = P'_{mn}(c)(x - x_0) = \left(f'_m(c) - f'_n(c)\right)(x - x_0) \quad (130)$$

К функциональной последовательности производных применим необходимую часть критерия Коши:

$$\forall \varepsilon > 0 \quad \exists N_1: \quad \forall m > n > N_1 \quad \forall x \in [a, b] \quad |f'_m(x) - f'_n(x)| < \varepsilon$$
 (131)

$$\xrightarrow{(130)} \forall m > n > N_1 \quad \forall x \in [a, b], x \neq x_0 \quad |P_{mn}(x) - P_{mn}(x_0)| =$$

$$= |f'_m(c) - f'_n(c)| \cdot |x - x_0| < \varepsilon(b - a) \quad (132)$$

По условию (126) мы можем применить критерий Коши к $f_n(x_0)$:

$$\exists N_2: \forall m > n > N_2 \quad |f_m(x_0) - f_n(x_0)| < \varepsilon$$

Применим обозначение P_{mn} :

$$\forall m > n > N_2 \quad |P_{mn}(x_0)| < \varepsilon \tag{133}$$

Пусть $N \coloneqq \max \{ N_1, N_2 \}$. При m > n > N действуют и (132), и (133):

$$\forall x \in [a, b], x \neq x_0 \quad |P_{mn}(x)| = |P_{mn}(x) - P_{mn}(x_0) + P_{mn}(x_0)| \stackrel{\triangle}{\leq} |P_{mn}(x) - P_{mn}(x_0)| + |P_{mn}(x_0)| < (b - a)\varepsilon + \varepsilon = (b - a + 1)\varepsilon$$

При $x = x_0$ это тоже верно (т. к. у нас есть (133)), т. е.

$$\forall x \in [a, b] \quad |f_m(x) - f_n(x)| < (b - a + 1)\varepsilon$$

Значит, к функциональной последовательности $f_n(x)$ можно применить критерий Коши:

$$\implies f_n(x) \xrightarrow[n \to \infty]{x \in [a,b]} f(x) \tag{134}$$

$$f_n \in \mathcal{C}([a,b]) \implies f \in \mathcal{C}([a,b])$$

• Фиксируем произвольный $x \in [a,b]$ Рассмотрим

$$g_n: [a,b] \setminus \{x\}: \quad g_n(y) := \frac{f_n(y) - f_n(x)}{y - x}, \qquad g: [a,b] \setminus \{x\}: \quad g(y) := \frac{f(y) - f(x)}{y - x}$$

$$g_m(y) - g_n(y) = \frac{f_m(y) - f_m(x) - (f_n(y) - f_n(x))}{y - x} = \frac{\left(f_m(y) - f_n(y)\right) - \left(f_m(x) - f_n(x)\right)}{y - x} = \frac{P_{mn}(y) - P_{mn}(x)}{y - x}$$
(135)

Применим теорему Лагранжа:

$$\exists c_1 \in (y \ \) \ x) : P_{mn}(y) - P_{mn}(x) = P'_{mn}(c_1)(y - x)$$

Подставим в (135):

$$g_m(y) - g_n(y) = P'_{mn}(c_1)$$
(136)

$$P'_{mn}(c_1) = f'_{mn}(c_1) - f'_{n}(c_1)$$

$$(131), (136) \implies \forall y \in [a, b] \setminus \{x\} \quad \forall m > n > N_1 \quad |g_m(y) - g_n(y)| < \varepsilon |y - x| \le \varepsilon (b - a)$$

Применим критерий Коши:

$$\exists h : [a,b] \setminus \{x\} : \quad g_n(y) \xrightarrow[n \to \infty]{y \in [a,b] \setminus \{x\}} h(y)$$
 (137)

Зафиксируем $y \in [a,b] \setminus \{x\}$ и рассмотрим числовую последовательность:

$$\implies g_n(y) \xrightarrow[n \to \infty]{} h(y) \tag{138}$$

$$(134) \Longrightarrow \begin{cases} f_n(y) \xrightarrow[n \to \infty]{} f(y) \\ f_n(x) \xrightarrow[n \to \infty]{} f(x) \end{cases}$$

$$\xrightarrow{\overline{\det g_n}} g_n(y) \xrightarrow[n \to \infty]{} \frac{f(y) - f(x)}{y - x}$$

$$\xrightarrow{(138)} h(y) = \frac{f(y) - f(x)}{y - x}$$

$$\xrightarrow{(137)} \xrightarrow{f_n(y) - f_n(x)} \xrightarrow[n \to \infty]{} \frac{f(y) - f(x)}{y - x}$$

$$\xrightarrow{\overline{\det g_n, g}} g_n(y) \xrightarrow[n \to \infty]{} \frac{f(y) - f(x)}{y - x}$$

$$\xrightarrow{\overline{\det g_n, g}} g_n(y) \xrightarrow[n \to \infty]{} g(y)$$

$$\exists f_n' \xrightarrow{\overline{\det g_n}} \forall n \quad \exists \lim_{y \to x} g_n(y) = f_n'(x)$$

К последним двум выражениям можно применить теорему о предельном переходе в функциональной последовательности:

$$\exists \lim_{y \to x} g(y) = A, \qquad \exists \lim_{n \to \infty} f'_n(x), \qquad A = \lim_{n \to \infty} f'_n(x)$$

$$\xrightarrow{\det g} \exists \lim_{y \to x} \frac{f(y) - f(x)}{y - x} = f'(x) = A$$

$$\Longrightarrow \exists f'(x) = \lim_{n \to \infty} f'_n(x)$$

$$(125) \implies \text{для фиксированного } x \in [a, b] \quad f'_n(x) \xrightarrow[n \to \infty]{} \varphi(x) = f'(x)$$

У этой теоремы имеется вариант для функциональных рядов:

Теорема 29.
$$\{v_n(x)\}_{,=1}^{\infty}$$
 $v_n \in \mathcal{C}\big([a,b]\big), \quad \forall x \in [a,b] \ \exists \, v_n'(x)$
$$\sum_{n=1}^{\infty} v_n'(x) \text{ равномерно сходится на } [a,b] \tag{139}$$

$$\exists x_0 \in [a, b]: \sum_{n=1}^{\infty} v_n(x_0)$$
 сходится (140)

$$\implies \forall x \in [a,b] \quad \exists \left(\sum_{n=1}^{\infty} v_n(x)\right)' = \sum_{n=1}^{\infty} v_n'$$

Доказательство. Рассмотрим частичные суммы:

$$S_{n}(x) = v_{1}(x) + \dots + v_{n}(x) \quad \forall x \in [a, b] \quad \forall n$$

$$\exists S'_{n}(x) = v'_{1}(x) + \dots + v'_{n}(x)$$

$$(139) \implies \exists \varphi(x) : \quad S'_{n}(x) \implies \varphi(x)$$

$$(140) \implies S_{n}(x_{0}) \xrightarrow[n \to \infty]{} A \in \mathbb{R}$$

K функциональной последовательности частичных сумм можно применить только что доказанную теорему

34. Пример Ван дер Вардена

Теорема 30.
$$\exists f \in \mathcal{C}(\mathbb{R}): \quad \forall x \in \mathbb{R} \quad \not\exists f'(x)$$

Доказательство. Рассмотрим функцию $\varphi(x) \coloneqq 1 - |x-1|$ при $x \in [0,2]$ (рис. 2a) При $x \in [2k, 2k+2]$, где $k \neq 0 \in \mathbb{Z}$, полагаем $\varphi(x) \coloneqq \varphi(x-2k)$ (рис. 2b)

$$f(x) := \sum_{n=0}^{\infty} \left(\frac{3}{4}\right)^n \varphi(4^n x)$$

• Проверим непрерывность f(x): Воспользуемся признаком Вейерштрасса:

Очевидно, что. $\varphi(4^n x) \in \mathcal{C}(\mathbb{R})$

При этом, $0 \le \varphi(x) \le 1$

$$\implies \left(\frac{3}{4}\right)^n |\varphi(4^n x)| = \left(\frac{3}{4}\right)^n \varphi(4^n x) \le \left(\frac{3}{4}\right)^n$$
$$\sum_{n=0}^{\infty} \left(\frac{3}{4}\right)^n = \frac{1}{1 - \frac{3}{4}} = 4$$

Значит, ряд f(x) равномерно сходится на $\mathbb R$ Значит, и его сумма непрерывна

• Докажем, что производной не существует: Доказывать будем **от противного**. Пусть есть точка, в которой существует производная:

$$\exists x \in \mathbb{R} : \quad \exists f'(x) \tag{141}$$

Это эквивалентно тому, что f дифференцируема в этой точке:

$$f(y) - f(x) = f'(x)(y - x) + r(y), (142)$$

где $\frac{|r(y)|}{|y-x|} \xrightarrow{y \in x} 0$, то есть

$$\exists \delta > 0: \quad \forall y \in [x - \delta, x + \delta] \quad \frac{|r(y)|}{|y - x|} \le 1 \tag{143}$$

$$\xrightarrow{(142)} \forall y \in [x - \delta, x + \delta] \quad |f(y) - f(x)| \le |f'(x)| \cdot |y - x| + |r(y)| \le$$

$$\le \left(\underbrace{|f'(x)| + 1}_{-:A}\right) |y - x| = A|y - x|$$

Рассмотрим $x - \delta \le y_1 \le x \le y_2 \le x + \delta$

$$\implies \begin{cases} |f(y_2) - f(x)| \le A(y_2 - x) \\ |f(x) - f(y_1)| \le A(x - y_1) \end{cases}$$
 (144)

$$\implies |f(y_2) - f(y_1)| = \left| \left(f(y_2) - f(x) \right) + \left(f(x) - f(y_1) \right) \right| \stackrel{\triangle}{\leq} \\ \leq |f(y_2) - f(x)| + |f(x) - f(y_1)| \leq A(y_2 - x) + A(x - y_1) = A(y_2 - y_1)$$

Выберем $m \ge 1$ так, что

$$4^m > \frac{1}{\delta}$$

Рассмотрим число $4^m x$

Так как это какое-то конкретное вещественное число, то

$$\exists \, k \in \mathbb{Z} : \quad k \le 4^m x < k + 1$$

$$\Longrightarrow \underbrace{\underline{k \cdot 4^{-m}}}_{=:a_m} \le x < \underbrace{(\underline{k+1}) \cdot 4^{-m}}_{=:b_m}$$

$$b_m - a_m = 4^{-m} \tag{145}$$

$$4^n x = 4^{n-m} \cdot 4^m x$$

Рассмотрим числа $4^n a_m$ и $4^n b_m$

- Пусть n > m

$$4^{n}a_{m} = 4^{n-m} \cdot 4^{m}a_{m} = 4^{n-m} \cdot k$$

$$4^{n}b_{m} = 4^{n-m} \cdot 4^{m}b_{m} = 4^{n-m}(k+1) = \underbrace{4^{n-m}k}_{4^{n}a_{m}} + \underbrace{4^{n-m}}_{\text{чётное}}$$

$$\implies \varphi(4^{n}b_{m}) = \varphi(4^{n}a_{m} + \text{чётное}) = \varphi(4^{n}a_{m}) \tag{146}$$

(т. к. у функциии φ период 2)

- Пусть n=m

$$4^{m} a_{m} = k, 4^{m} b_{m} = k + 1$$

$$\varphi(4^{m} b_{m}) - \varphi(4^{m} a_{m}) = \varphi(k+1) - \varphi(k) (147)$$

Посмотрев на график φ , видим, что для всякого целого k

$$|\varphi(k+1) - \varphi(k)| = 1 \tag{148}$$

- Пусть 0 < n < m

$$4^{n}b_{m} - 4^{n}a_{n} = 4^{n-m}4^{m}(b_{m} - a_{m}) = 4^{n-m}$$
(149)

Запишем свойство $\varphi(x)$, которое видно из графика, но можно доказать и аналитически:

$$\forall y_1, y_2 \in \mathbb{R} \quad |\varphi(y_2) - \varphi(y_1)| \le |y_2 - y_1| \tag{150}$$

Рассмотрим выражение

$$f(b_{m}) - f(a_{m}) \xrightarrow{\frac{\det f}{m}} \sum_{n=0}^{\infty} \left(\frac{3}{4}\right)^{n} \varphi(4^{n}b_{m}) - \sum_{n=0}^{\infty} \left(\frac{3}{4}\right)^{n} \varphi(4^{n}b_{m}) =$$

$$= \sum_{n=0}^{m-1} \left(\frac{3}{4}\right)^{n} \left(\varphi(4^{n}b_{m}) - \varphi(4^{n}a_{m})\right) + \left(\frac{3}{4}\right)^{m} \left(\varphi(4^{m}b_{m}) - \varphi(4^{m}a_{m})\right) +$$

$$+ \sum_{n=m+1}^{\infty} \left(\frac{3}{4}\right)^{n} \left(\underbrace{\varphi(4^{n}b_{m}) - \varphi(4^{n}a_{m})}_{=0 \text{ no } (146)}\right) =$$

$$= \left(\frac{3}{4}\right)^{m} \left(\varphi(4^{m}b_{m}) - \varphi(4^{m}a_{m})\right) + \sum_{n=0}^{m-1} \left(\frac{3}{4}\right)^{n} \left(\varphi(4^{n}b_{m}) - \varphi(4^{n}a_{m})\right)$$

$$\Rightarrow |f(b_{m}) - f(a_{m})| \geq \\ \geq \left(\frac{3}{4}\right)^{m} |\varphi(4^{m}b_{m}) - \varphi(4^{m}a_{m})| - \sum_{n=0}^{m-1} \left(\frac{3}{4}\right)^{n} |\varphi(4^{n}b_{m}) - \varphi(4^{n}a_{m})| \underset{(147),(150)}{\geq} \\ \geq \left(\frac{3}{4}\right)^{m} |\varphi(k+1) - \varphi(k)| - \sum_{n=0}^{m-1} |4^{n}b_{m} - 4^{n}a_{m}| \underset{(148),(149)}{=} \left(\frac{3}{4}\right)^{m} \cdot 1 - \sum_{n=0}^{m-1} \left(\frac{3}{4}\right)^{n} \cdot 4^{n-m} = \\ = \left(\frac{3}{4}\right)^{m} - 4^{-m} \sum_{n=0}^{m-1} 3^{n} \underset{\text{reom. inporp.}}{=} \left(\frac{3}{4}\right)^{m} - 4^{-m} \cdot \frac{3^{m} - 1}{3 - 1} > \frac{1}{2} \cdot \left(\frac{3}{4}\right)^{m} \quad (151)$$

При этом, $a_m \le x < b_m$, поэтому

$$|f(b_m) - f(a_m)| \le A(b_m - a_m) = A \cdot 4^{-m}$$

$$\Longrightarrow_{\stackrel{(151)}{(151)}} 4^{-m} > \frac{1}{2} \cdot 3^m \cdot 4^{-m} \quad \Longrightarrow \quad \frac{1}{2} \cdot 3^m < A$$

При этом, A не зависит от m, а условие на m позволяет нам брать произвольно большие m, в том числе такое, что

$$\frac{1}{2}\cdot 3^m > A - \ \not$$

35. Определение равномерной сходимости семейства функций; критерий Коши равномерной сходимости семейства функций

Определение 10. y_0 — т. сг. $Y, \qquad f: E \times Y \to \mathbb{R}, \qquad f_0: E \to \mathbb{R}$ Будем говорить, что семейство функций **равномерно** сходится к f_0 при $y \to y_0$, если

$$\forall \varepsilon > 0 \quad \exists \text{ ordet. } U(y_0): \quad \forall x \in E \qquad \forall y \in \bigg(U(y_0) \cap Y\bigg) \setminus \{\ y_0\ \} \quad |f(x,y) - f_0(x)| < \varepsilon \}$$

Обозначение.
$$f(x,y) \xrightarrow[y \to y_0]{x \in E} f_0(x)$$

Теорема 31 (Критерий Коши). $f: E \times Y \to \mathbb{R}, \qquad y_0 - \mathrm{T.} \ \mathrm{cr.} \ Y$

Для того, чтобы семейство функций равномерно сходилось к некоторой функции f_0 необходимо и достаточно, чтобы

$$\forall \varepsilon > 0 \quad \exists \text{ oxpect. } U(y_0): \quad \forall y_1, y_2 \in \left(U(y_0) \cap Y\right) \setminus \{y_0\} \quad \forall x \in E \quad |f(x, y_2) - f(x, y_1)| < \varepsilon$$

Доказательство.

• Необходимость:

Пусть семейство функций $f: E \times Y \to \mathbb{R}$ равномерно сходится к f_0 при $y \to y_0$ По определению это означает, что

$$\forall \varepsilon > 0 \quad \exists \text{ orp. } U(y_0): \quad \forall y_1, y_2 \in \left(U(y_0) \cap Y\right) \setminus \{\ y_0\ \} \quad |f(x,y_{1,2}) - f_0(x)| < \frac{\varepsilon}{2}$$

$$\implies |f(x,y_2) - f(x,y_1)| \stackrel{\triangle}{\leq} |f(x,y_2) - f_0(x)| + |f_0(x) - f(x,y_1)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

• Достаточность

Фиксируем $x \in E$

Применяя критерий Коши к функции одного аругмента f(x,y), получаем, что $\exists \lim_{y \to y_0} f(x,y) \coloneqq f_0(x)$

Возьмём $\forall \varepsilon > 0$, выберем окрестность $U(y_0)$

Возьмём $\forall y_1, y_2 \in (U(y_0), \cap Y) \setminus \{x_0\}$ и зафиксируем y_1

$$\lim_{y_2 \to y_0} |f(x, y_2) - f(x, y_1)| \le \varepsilon$$

$$|f_0(x) - f(x, y_1)| \xrightarrow{\det f_0} \left| \lim_{y_2 \to y_0} \left(f(x, y_2) - f(x, y_1) \right) \right| \xrightarrow{\text{Henp. } |\cdot|} \lim_{y_2 \to y_0} |f(x, y_2) - f(x, y_1)| \le \varepsilon$$

36. Теорема о переходе к пределу в равномерно сходящемся семействе функций

Теорема 32. $f: E \times Y \to \mathbb{R}, \quad Y \subset \mathbb{R}^{n \ge 1}, \quad y_{\circ} \in \mathbb{R}^n - \text{т. сг. } Y, \quad E - \text{метр. пр-во}, \qquad x_{\circ} \in E - \text{т. сг. } E$

$$f(x,y) \xrightarrow{x \in E} f_0(x), \quad \forall y \in Y \quad \exists \lim_{x \to x_0} f(x,y) = \varphi(y)$$

Тогда $\exists \lim_{y \to y_0} \varphi(y)$ и $\exists \lim_{x \to x_0} f_0(x)$ и справедливо

$$\lim_{y \to y_0} \varphi(y) = \lim_{x \to x_0} f_0(x)$$

Доказательство. Возьмём любую последовательность $\{y_n\}_{n=1}^{\infty}, y_n \in Y, y_n \xrightarrow[n \to \infty]{} y_0$

Положим $f_n(x) \coloneqq f(x, y_n)$

$$f(x,y) \xrightarrow[y \to y_0]{x \in E} f_0(x) \implies f_n(x) \xrightarrow[n \to \infty]{x \in E} f_0(x)$$

При этом, по условию теоремы для любого n имеем

$$\varphi(y_n) = \lim_{x \to x_0} f(x, y_n) \xrightarrow{\det f_n} \lim_{x \to x_0} f_n(x)$$

Значит, можно применить аналогичную теорему для функциональной последовательности:

$$\exists \lim_{n \to \infty} \varphi(y_n) \in \mathbb{R}, \qquad \exists \lim_{x \to x_0} f_0(x), \qquad \lim_{n \to \infty} \varphi(y_n) = \lim_{x \to x_0} f_0(x)$$

В силу произвольности $\{y_n\}_{n=1}^{\infty}$ последнее утверждение доказывает теорему.

37. Непрерывность предельной функции равномерно сходящегося семейства функций

Теорема 33. E,d- метрическое пространство, $x_0\in E-$ т. сг., y_0- т. сг. $Y\subset \mathbb{R}^n$

$$f(x,y) \xrightarrow[y o y_0]{x \in E} f_0(x), \qquad orall y \in Y \quad f(x,y)$$
 непр. в $oldsymbol{x_0}$

Тогда $f_0(x)$ непр. в x_0

Доказательство. Применим предыдущую теорему:

По условию имеем $\exists \lim_{x \to x_0} f(x,y) \coloneqq \varphi(y) \quad \forall y \in Y$, при этом $\varphi(y) = f(x_0,y)$

По предыдущей теореме $\exists \lim_{y \to y_0} \varphi(y)$ и $\exists \lim_{x \to x_0} f_0(x)$ и тогда

$$\lim_{y \to y_0} f(x_0, y) = \lim_{y \to y_0} \varphi(y) = \lim_{x \to x_0} f_0(x)$$

Но $\lim_{y\to y_0} f(x_0,y) = f_0(x_0)$, что и даёт непрерывность f_0 в x_0

Следствие. $f: E \times Y \to \mathbb{R}, \qquad f(x,y) \xrightarrow[y \to y_0]{x \in E} f_0(x), \qquad \forall y \in Y \quad f(x,y) \in \mathcal{C}(E)$

$$\implies f_0 \in \mathcal{C}(E)$$

38. Теорема о непрерывности интеграла, зависящего от параметра

Теорема 34.
$$y_0$$
 — т. сг. $Y, \qquad f(x,y) \xrightarrow[y \to y_0]{x \in [a,b]} f_0(x), \qquad f(x,y) \in \mathcal{C}\left([a,b]\right) \quad \forall y \in Y$

Тогда $f_0 \in \mathcal{C}([a,b])$ и

$$I(y) := \int_a^b f(x,y) \, \mathrm{d}x \xrightarrow{y \to y_0} \int_a^b f_0(x) \, \mathrm{d}x$$

Доказательство. Непрерывность f_0 следует из следствия к предыдущей теореме, поэтому интеграл в правой части определён

По определению равномерной сходимости,

$$\forall \varepsilon > 0 \quad \exists U(y_0): \quad \forall y \in \left(U(y_0) \cap Y\right) \setminus \{y_0\} \quad |f(x,y) - f_0(x)| < \varepsilon$$

При таких y имеем

$$|I(t) - \int_a^b f_0(x) \, dx| = \left| \int_a^b \left(f(x, y) - f_0(x) \right) \, dx \right| \le \int_a^b |f(x, y) - f_0(x)| \, dx \le \int_a^b \varepsilon \, dx = \varepsilon(b - a)$$

Следствие. $Y=[p,q], \qquad f:[a,b]\times Y\to \mathbb{R}, \qquad f\in\mathcal{C}ig([a,b]\times Yig)$ $\Longrightarrow I(y)\in\mathcal{C}ig([p,q]ig)$

39. Теорема о производной интеграла, зависящего от параметра

Теорема 35.
$$f:[a,b] \times [p,q] \to \mathbb{R}, \qquad f \in \mathcal{C}\left([a,b] \times [p,q]\right)$$

$$\forall \ (x,y) \in [a,b] \times [p,q] \quad \exists \ f_y'(x,y), \qquad f_y'(x,y) \in \mathcal{C}\left([a,b] \times [p,q]\right)$$
 $\Longrightarrow \quad \forall y \in [p,q] \quad \exists \ \mathbf{I'}(y) = \int_a^b f_y'(x,y) \ \mathrm{d} \ x$

Доказательство. Поскольку f_y' непрерывна, к ней применима терема Кантора:

$$\forall \varepsilon > 0 \quad \exists \, \delta > 0 : \quad \forall (x_1, y_1), (x_2, y_2) : \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} < \delta \qquad |f_y'(x_2, y_2) - f_y'(x_1, y_1)| < \varepsilon$$

Пусть $0<|h|<\delta$, тогда

$$\exists c \in (y \ \) \ y+h): \quad f(x,y+h)-f(x,y)=f'_{y}(x,c)h$$

$$f(x,y+h) - f(x,y) = f'_y(x,y)h + \left(f'_y(x,c) - f'_y(x,y)\right)h := f'_y(x,y)h + r_h(x,y)h, \qquad |r_h(x,y)| < \varepsilon$$
 (152)

$$I(y+h) - I(y) \stackrel{\text{def}}{=} \int_a^b \left(f(x,y+h) - f(x,y) \right) dx = \frac{1}{(152)}$$

$$= \int_a^b f_y'(x,y)h dx + \int_a^b r_h(x,y)h dx = h \int_a^b f'(x,y) dx + h \int_a^b r_h(x,y) dx$$

$$\left| h \int_a^b r_h(x,y) dx \right| \le |h| \int_a^b |r_h(x,y)| dx \le |h| \int_a^b \varepsilon dx = |h|\varepsilon(b-a)$$

Отсюда следует, что I(y) дифференцируема в y и выполнено утверждение теоремы

40. Теорема об интегрировании по параметру интеграла, зависящего от параметра

Теорема 36.
$$f \in \mathcal{C}([a,b] \times [p,q]),$$
 $I(y) \coloneqq \int_a^b f(x,y) \, \mathrm{d} x, \quad K(x) \coloneqq \int_p^q f(x,y) \, \mathrm{d} y$ $\Longrightarrow \int_a^q I(y) \, \mathrm{d} y = \int_a^b K(x) \, \mathrm{d} x$

Доказательство. По теореме о непрерывности интеграла, $I(y) \in \mathcal{C} \big([a,b] \big)$ Положим

$$\varphi(y_0) \coloneqq \int_{a}^{y_0} I(y) \, \mathrm{d}y, \qquad v(y) \coloneqq \int_{a}^{b} l(x, y_0) \, \mathrm{d}x, \qquad l(x, y_0) \coloneqq \int_{a}^{y_0} f(x, y) \, \mathrm{d}y$$

 $\varphi \in \mathcal{C}([p,q])$, поскольку $I(y) \in \mathcal{C}([p,q])$

Поскольку $f \in \mathcal{C}([a,b] \times [p,q])$, то она ограничена (по первой теореме Вейерштрасса), т. е.

$$\exists M: \forall (x,y) \in [a,b] \times [p,q] \quad |f(x,y)| \leq M$$

Поэтому при $y_1, y_2 \in [p,q]$ имеем

$$|f(x, y_2) - l(x, y_1)| = \left| \int_p^{y_2} f(x, y) \, dy - \int_p^{y_1} f(x, y) \, dy \right| = \left| \int_{y_1}^{y_2} f(x, y) \, dy \right| \le$$

$$\le \left| \int_{y_1}^{y_2} |f(x, y)| \, dy \right| \le |M(y_2 - y_1)| = M|y_2 - y_1| \quad (153)$$

При фиксированном y_0 функция $l(x,y_0) \in \mathcal{C}([a,b])$, поэтому, с учётом (153) имеем

$$l(x, y_0) \in \mathcal{C}([a, b] \times [p, q])$$

По определению l, при фиксированном x получаем

$$l'_{y_0}(x,y) = f(x,y_0) \implies l'_{y_0}(x,y) \in \mathcal{C}([a,b] \times [p,q])$$

$$\implies \exists v'(y_0), \qquad v'(y_0) = \int_a^b l'_{y_0}(x,y_0) \, dx = \int_a^b f(x,y_0) \, dx = I(y_0)$$

По определению φ ,

$$\exists \varphi'(y_0), \qquad \varphi'(y_0) = I(y_0)$$

Из последних двух выражений следует, что

$$v'(y_0) = \varphi'(y_0), \quad y_0 \in [p, q]$$

Подставляя p вместо y_0 получаем

$$\varphi(p) = \int_p^p I(y) dy = 0, \qquad v(p) = \int_a^b l(x, p) dx$$

$$f(x,p) = \int_{p}^{p} f(x,y) dy = 0 \implies v(p) = 0$$

$$\implies \int_{p}^{q} I(y) \, \mathrm{d}y = \varphi(q) = \varphi(q) - \varphi(p) = \int_{p}^{q} \varphi'(y_0) \, \mathrm{d}y_0 = \int_{p}^{q} v'(y_0) \, \mathrm{d}y_0 =$$

$$= v(q) - v(p) = v(q) = \int_{q}^{b} l(x, q) \, \mathrm{d}x = \int_{q}^{b} K(x) \, \mathrm{d}x$$

41. Равномерная сходимость несобственного интеграла, зависящего от параметра; критерий Коши равномерной сходимости несобственного интеграла от параметра

Пусть $Y\subset \mathbb{R}^{n\geq 1}, \qquad f:[a,\infty)\times Y\to \mathbb{R}$ — семейство функций, $\qquad f\in \mathcal{C}ig([a,\infty)\times Yig)$ Определим функцию $F:Y\times [a,\infty)$:

$$F(y,A) := \int_a^A f(x,y) dx, \quad y \in Y, \quad A > a$$

Пусть

$$\forall y \in Y \quad \exists \lim_{A \to \infty} F(y, A) =: F_0(y)$$

Определение 11. Будем говорить, что несобственный интеграл $\int_a^\infty f(x,y) \, \mathrm{d}\, x$ равномерно сходится при $y \in Y$, если

$$F(y,A) \xrightarrow[A \to \infty]{y \in Y} F_0(y)$$

Применяя критерий Коши для семейства функций, получаем следующее утверждение:

Теорема 37. Для того, чтобы несобственнный интеграл $\int_a^\infty f(x,y) \, \mathrm{d}\, x$, зависящий от параметра, равномерно сходился при $y \in Y$, **необходимо и достаточно**, чтобы

$$\forall \varepsilon > 0 \quad \exists L > a : \quad \forall A_1, A_2 > L \quad \forall y \in Y \quad \left| \int_{A_1}^{A_2} f(x, y) \, dx \right| < \varepsilon$$

Доказательство. Заметим, что

$$F(y, A_2) - F(y, A_1) = \int_a^{A_2} f(x, y) \, dx - \int_a^{A_1} f(x, y) \, dx = \int_{A_1}^{A_2} f(x, y) \, dx$$

42. Признак Вейерштрасса равномерной сходимости несобственного интеграла от параметра

Теорема 38. $f \in \mathcal{C}([a,\infty) \times Y)$ $\forall y \in Y \quad |f(x,y)| \leq g(x) \tag{154}$

$$\int_{a}^{\infty} g(x) \, \mathrm{d}x < \infty$$

Тогда несобственный интеграл $\int_a^\infty f(x,y) \; \mathrm{d}\, x$ сходится равномерно при $y \in Y$

Доказательство. Возьмём $\forall \varepsilon>0,$ выберем L так, чтобы $\int_L^\infty g(x) \;\mathrm{d}\,x<\varepsilon.$ Тогда

$$\forall y \in Y \quad \forall A_1, A_2 > L \quad \left| \int_{A_1}^{A_2} f(x, y) \, \mathrm{d}x \right| \leq \left| \int_{A_1}^{A_2} |f(x, y)| \, \mathrm{d}x \right| \leq \left| \int_{A_2}^{A_2} |g(x)| \, \mathrm{d}x \right| \leq \int_{L_1}^{\infty} g(x) \, \mathrm{d}x < \varepsilon$$

По предыдущей теореме

$$\int_a^A f(x,y) \, dx \xrightarrow[A \to \infty]{y \in Y} \int_a^\infty f(x,y) \, dx$$

43. Признак Абеля равномерной сходимости несобственного интеграла от параметра

Теорема 39.
$$f:[a,\infty)\times Y, \qquad Y\subset\mathbb{R}^n, \qquad f\in\mathcal{C}\left([a,\infty)\times Y\right), \qquad g:[a,\infty)\times Y\to\mathbb{R}$$

$$\exists\,M:\quad |g(x,y)|\leq M\quad \forall x\in[a,\infty) \tag{155}$$

 $oldsymbol{g}(oldsymbol{x},oldsymbol{y})$ монотонна по x при $\forall y\in Y$

$$\int_{a}^{\infty} f(x,y) \, \mathrm{d}x$$
 равномерно сх. при $y \in Y$ (156)

$$\Longrightarrow \int_a^\infty f(x,y)g(x,y)\;\mathrm{d}\,x$$
 равномерно сх. при $y\in Y$

Доказательство. Возьмём $\forall \varepsilon > 0$ и воспользуемся критерием Коши для несобственных интегралов (условие (156)):

$$\exists A > a: \quad \forall A_2 > A_1 > A \quad \forall y \in Y \quad \left| \int_{A_1}^{A_2} f(x, y) \, \mathrm{d}x \right| < \varepsilon \tag{157}$$

Применим вторую теорему о среднем:

$$\int_{A_1}^{A_2} f(x,y) g(x,y) \, \mathrm{d} \, x = g(A,y) \int_{A_1}^c f(x,y) \, \mathrm{d} \, x + g(A_2,y) \int_c^{A_2} f(x,y) \, \mathrm{d} \, x$$

$$\implies \left| \int_{A_1}^{A_2} f(x,y) g(x,y) \, \mathrm{d} \, x \right| \leq |g(A,y)| \cdot \left| \int_{A_1}^c F(x,y) \, \mathrm{d} \, x \right| + |g(A_2,y)| \cdot \left| \int_c^{A_2} f(x,y) \, \mathrm{d} \, x \right| \underset{(155),(157)}{\leq} M \cdot \varepsilon + M \cdot \varepsilon = 2M \varepsilon$$

44. Признак Дирихле равномерной сходимости несобственного интеграла от параметра

Теорема 40. $f \in \mathcal{C} \big([a, \infty) \times Y \big), \qquad g : [a, \infty) \times Y \to \mathbb{R}, \qquad \boldsymbol{g}$ монотонна по x при $\forall y \in Y$

$$g(x,y) \xrightarrow[x \to \infty]{y \in Y} 0 \tag{158}$$

$$\exists L > 0: \quad \forall A > a \quad \forall y \in Y \quad \left| \int_{a}^{A} f(x, y) \, dx \right| \le L$$
 (159)

$$\implies \int_a^\infty f(x,y)g(x,y)\;\mathrm{d}\,x$$
сходится равномерно при $y\in Y$

Доказательство.

$$\forall A_{2} > A_{1} > a \quad \left| \int_{A_{1}}^{A_{2}} f(x, y) \, dx \right| = \left| \int_{a}^{A_{2}} f(x, y) \, dx - \int_{a}^{A_{1}} f(x, y) \, dx \right| \stackrel{\triangle}{\leq}$$

$$\leq \left| \int_{a}^{A_{2}} f(x, y) \, dx \right| - \left| \int_{a}^{A_{1}} f(x, y) \, dx \right| \stackrel{\triangle}{\leq} 2L \quad (160)$$

По определению равномерной сходимости,

$$(158) \implies \exists A > a: \quad \forall A_1 > A \quad \forall y \in Y \quad |g(A_1, y)| < \varepsilon \tag{161}$$

Возьмём $A_2 > A_1 > A$

49

Воспользуемся второй теоремой о среднем:

$$\exists c \in (A_1, A_2): \quad \int_{A_1}^{A_2} f(x, y) g(x, y) \, dx = g(A_1, y) \int_{A_1}^{c} f(x, y) \, dx + g(A_2, y) \int_{c}^{A_2} f(x, y) \, dx$$

$$\implies \left| \int_{A_1}^{A_2} f(x,y) g(x,y) \, \mathrm{d} \, x \right| \leq |g(A_1,y)| \cdot \left| \int_{A_1}^c F(x,y) \, \mathrm{d} \, x \right| + |g(A_2,y)| \cdot \left| \int_c^{A_2} f(x,y) \, \mathrm{d} \, x \right| \underset{(160),(161)}{\leq} \\ \leq 2L\varepsilon + 2L\varepsilon = 4L\varepsilon$$

45. Предел несобственного интеграла, зависящего от параметра

Теорема 41. $Y \subset \mathbb{R}^n$, $y_0 - \mathbf{r}$. сг. Y (не обязательно $\in Y$), $f \in \mathcal{C}([a, \infty) \times Y)$

$$I(y) \coloneqq \int_{a}^{\infty} f(x,y) \, \mathrm{d} x$$
 равномерно сходится при $y \in Y$ (162)

$$\forall x \in [a, \infty) \quad \exists \varphi(x) : \quad f(x, y) \xrightarrow[y \to y_0]{x \in [a, \infty)} \varphi(x)$$
(163)

$$\implies \int_a^\infty \varphi(x) \; \mathrm{d}\, x \; \mathbf{cxодится}, \qquad \pmb{I(y)} \xrightarrow{\pmb{y} \to \pmb{y_0}} \int_a^\infty \varphi(x) \; \mathrm{d}\, x$$

Доказательство. Рассмотрим функции:

$$F(A, y) := \int_a^A f(x, y) \, dx, \qquad \Phi(A) := \int_a^A \varphi(x) \, dx$$

 $(163)\implies \varphi\in\mathcal{C}([a,\infty)),$ значит, функция Φ корректно определена

$$(162) \iff F(A,y) \xrightarrow[A \to \infty]{y \in Y} I(y) \tag{164}$$

Можно применить теорему о пределе интеграла от параметра:

(163)
$$\Longrightarrow \forall A > a \quad \int_{a}^{A} f(x, y) \, dx \xrightarrow{y \to y_0} \int_{a}^{A} \varphi(x) \, dx$$

В обозначениях F,Φ это означает, что

$$F(A,y) \xrightarrow{y \to y_0} \Phi(A)$$
 (165)

Можно применить теорему о предельном переходе в функциональном семействе:

$$(164), (165) \implies \exists \lim_{y \to y_0} I(y), \qquad \exists \lim_{A \to \infty} \Phi(A), \qquad \lim_{A \to \infty} \Phi(A) = \lim_{y \to y_0} I(y)$$

При этом,

$$\int_{-\infty}^{\infty} \varphi(x) \, dx \xrightarrow{\det \Phi} \lim_{A \to \infty} \Phi(A)$$

46. Определённый интеграл от интеграла, зависящего от параметра

Теорема 42. $f \in \mathcal{C}([a,\infty) \times [p,q])$

$$I(y)\coloneqq\int_a^\infty f(x,y)\;\mathrm{d}\,x$$
 равномерно сх. при $y\in[p,q]$

По последнему следствию, $I(y) \in \mathcal{C}\left([p,q]\right)$, и можно рассматривать $\int_p^q I(y) \; \mathrm{d}\, y$

$$K(y) := \int_{p}^{q} f(x, y) \, \mathrm{d} y$$

K(y) — собственный интеграл от параметра, значит $k \in \mathcal{C} \big([a, \infty) \big)$

$$\implies \int_a^\infty K(x) \; \mathrm{d}\, x$$
 сходится, $\qquad \int_p^q I(y) \; \mathrm{d}\, y = \int_a^\infty K(x) \; \mathrm{d}\, x,$

или

$$\int_{p}^{q} \left(\int_{a}^{\infty} f(x, y) \, dx \right) \, dy = \int_{a}^{\infty} \left(\int_{p}^{q} f(x, y) \, dy \right) \, dx$$

Доказательство. Рассмотрим функцию

$$F(A,y) = \int_{a}^{A} f(x,y) \, \mathrm{d}x$$

 $F \in \mathcal{C} ig([a,A] imes [p,q] ig),$ значит, по теореме об интегрировании "собственного" интеграла от параметра,

$$\int_{p}^{q} F(A, y) \, \mathrm{d} \, y \xrightarrow{\det F} \int_{p}^{q} \left(\int_{a}^{A} f(x, y) \, \mathrm{d} \, x \right) \, \mathrm{d} \, y = \int_{a}^{A} \left(\int_{p}^{q} f(x, y) \, \mathrm{d} \, y \right) \, \mathrm{d} \, x \xrightarrow{\det K} \int_{a}^{A} K(x) \, \mathrm{d} \, x$$

По условию,

$$F(y) \xrightarrow[A \to \infty]{y \in [p,q]} I(y) \xrightarrow[T. \text{ o sepexore k sipercensy}]{} \int_{p}^{q} F(y) \, \mathrm{d}\, y \xrightarrow[A \to \infty]{} \int_{p}^{q} I(y) \, \mathrm{d}\, y$$

$$\implies \exists \lim_{A \to \infty} \int_{a}^{A} K(x) \, \mathrm{d}\, x \stackrel{\mathrm{def}}{=} \int_{a}^{\infty} K(x) \, \mathrm{d}\, x$$

47. Производная несобственного интеграла, зависящего от параметра

Теорема 43.
$$f \in \mathcal{C}([a,\infty) \times [p,q]), \quad \forall x \in [a,\infty) \quad \forall y \in [p,q] \quad \exists f'_y(x,y) \in \mathcal{C}([a,\infty) \times [p,q])$$

$$\forall y \in [p,q] \quad \text{сходится } I(y) \coloneqq \int_a^\infty f(x,y) \, \mathrm{d} x$$

$$\int_a^\infty f'_y(x,y) \, \mathrm{d} x \text{ равномерно сходится при } y \in [p,q] \qquad (166)$$

$$\Longrightarrow \forall y \in [p,q] \quad \exists I'(y) = \int_a^\infty f'_y(x,y) \, \mathrm{d} x$$

Доказательство. Зафиксируем $y_0 \in [p, q]$

Обозначим $Y := [p,q] \setminus \{y_0\}$

Рассмотрим функции

$$F(A,y) := \int_0^A f(x,y) \, \mathrm{d}x, \qquad G(A,y) := \frac{F(A,y) - F(A,y_0)}{y - y_0}$$

f удовлетворяет требованиям, которые накладывались на функцию в теореме о производной ин-

теграла от параметра:

$$\exists \lim_{y \to y_0} G(A, y) \stackrel{\text{def}}{=} \lim_{y \to y_0} \frac{F(A, y) - F(A, y_0)}{y - y_0} \stackrel{\text{def } F'_y}{=} F'_y(A, y_0) \stackrel{\text{упомятнутая теорема}}{=} \int_a^A f'_y(x, y_0) \, \mathrm{d}x \qquad (167)$$

(для любого фиксированного A > a)

Утверждение 7.

$$\exists \Phi(y), \quad y \in Y: \quad G(A, y) \xrightarrow[A \to \infty]{y \in Y} \Phi(y)$$
 (168)

Доказательство. Применим критерий Коши к условию (166):

$$\forall \varepsilon > 0 \quad \exists A > a : \quad \forall A_2 > A_1 > A \quad \forall y \in [p, q] \quad \left| \int_{A_1}^{A_2} f_y'(x, y) \, \mathrm{d}x \right| < \varepsilon \tag{169}$$

$$G(A_{2},y) - G(A_{1},y) \stackrel{\text{def } G}{=} \frac{F(A_{2},y) - F(A_{2},y_{0})}{y - y_{0}} - \frac{F(A_{1},y) - F(A_{1},y_{0})}{y - y_{0}} =$$

$$= \frac{\left(F(A_{2},y) - F(A_{1},y)\right) - \left(F(A_{2},y_{0}) - F(A_{1},y_{0})\right)}{y - y_{0}} \stackrel{\text{def } F}{=} \frac{\int_{A_{1}}^{A_{2}} f(x,y) \, dx - \int_{A_{1}}^{A_{2}} f(x,y_{0}) \, dx}{y - y_{0}}$$

$$(170)$$

Определим (учитывая, что A_1, A_2 фиксированы)

$$V(y) := \int_{A_1}^{A_2} F(x, y) \, \mathrm{d}x$$

$$\forall y \in [p,q] \quad \exists V'(y), \qquad V'(y) = \int_{A_{-}}^{A_{2}} f'_{y}(x,y) \, dx$$
 (171)

По теореме Лагранжа

$$\exists c \in (y, \emptyset \ y_0) : V(y) - V(y_0) = V'(c)(y - y_0) \tag{172}$$

$$G(A_{2}, y) - G(A_{1}, y) \xrightarrow{\text{def } V} \frac{V(y) - V(y_{0})}{y - y_{0}} \xrightarrow{\text{(172)}} \frac{V'(c)(y - y_{0})}{y - y_{0}} = V'(c) \xrightarrow{\text{(171)}} \int_{A_{1}}^{A_{2}} f'_{y}(x, c) \, dx$$

$$\implies |G(A_{2}, y) - G(A_{1}, y)| = \left| \int_{A_{1}}^{A_{2}} f'_{y}(x, c) \, dx \right| \leqslant \varepsilon$$

Применим теорему о предельном переходе в функциональном семействе:

(167), (168)
$$\Longrightarrow \begin{cases} \exists \lim_{y \to y_0} \Phi(y) = \int_a^\infty f_y'(x, y_0) \, dx \\ \exists \lim_{A \to \infty} \int_a^A f_y'(x, y_0) \, dx = \int_a^\infty f_y'(x, y_0) \, dx \end{cases}$$
 (173)

$$G(A,y) \xrightarrow[A \to \infty]{\text{def } G,F} \frac{I(y) - I(y_0)}{y - y_0}$$

То есть,

$$\Phi(y) = \frac{I(y) - I(y_0)}{y - y_0}$$

Вместе с (173), получаем утверждение теоремы

48. Несобственный интеграл по параметру от несобственного интеграла от параметра

Теорема 44. $f \in \mathcal{C}\left([a,\infty) \times [p,\infty)\right)$

$$I(y) := \int_{a}^{\infty} f(x, y) dx, \qquad K(x) = \int_{a}^{\infty} f(x, y) dy$$

Существует по крайней мере один из интегралов:

$$\int_{p}^{\infty} I(y) \, dy, \qquad \int_{a}^{\infty} K(y) \, dx$$

Тогда существует и второй, и справедливо равенство:

$$\int_{p}^{\infty} I(y) \, dy = \int_{a}^{\infty} K(x) \, dx$$

то есть,

$$\int_{p}^{\infty} \left(\int_{a}^{\infty} f(x, y) \, dx \right) dy = \int_{a}^{\infty} \left(\int_{p}^{\infty} f(x, y) \, dy \right) dx$$

Замечание. Важность этой теоремы заключается в том, что в ней не требуется равномерная сходимость

Доказательство. Будет доказано в четвёртом семестре

49. Вычисление интеграла Дирихле

Теорема 45.

$$\int_0^\infty \frac{\sin x}{x} \, \mathrm{d} \, x = \frac{\pi}{2}$$

Доказательство.

$$f(x,y) := \frac{\sin x}{x}, \qquad x \in [0,\infty), \quad y \in [0,\infty)$$

Интеграл, не зависящий от y равномерно сходится:

$$\int_0^\infty f(x,y) \ \mathrm{d}\, x = \int_0^\infty \frac{\sin x}{x} \ \mathrm{d}\, x \ \mathrm{paвн.} \ \mathrm{cx.} \ \mathrm{при} \ y \in [0,\infty)$$

$$g(x,y) \coloneqq e^{-xy} \text{ монот. по } x \text{ при } y \in [0,\infty)$$

$$0 < e^{-xy} \leq 1$$

Применяем признак Абеля:

$$I(y)\coloneqq\int_0^\infty \frac{\sin x}{x}e^{-xy}\;\mathrm{d}\,x$$
 равн. сх. при $y\in[0,\infty)$

$$h(x,y) \coloneqq \frac{\sin x}{x} e^{-xy} \in \mathcal{C}\left([0,\infty) \times [0,\infty)\right)$$

Применим частный случай перехода к пределу к последним двум выражениям:

$$I(0) = \lim_{y \to +0} I(y)$$

Возьмём $y \geq \delta > 0$

$$\left| \frac{\sin x}{x} e^{-xy} \right| \le e^{-\delta x}$$

$$\implies |h_y'(x,y) = -\sin x e^{-xy} \implies |h_y'(x,y)| \le e^{-xy} \le e^{-\delta x}$$

Применим теорему о производной несобственного интеграла от параметра:

$$\int_0^\infty \frac{\sin x}{x} e^{-xy} dx \operatorname{сходится}, \qquad \int_0^\infty h_y'(x,y) dx \operatorname{равномерно} \operatorname{сходится}$$

То есть, $\forall A > \delta \quad \exists I'(y)$ при $y \in [\delta, A]$

$$\implies \forall y \ge \delta \quad \exists I'(y), \qquad I'(y) = \int_0^\infty h_y'(x,y) \, \mathrm{d} x = -\int_0^\infty \sin x e^{-xy} \, \mathrm{d} x$$

Проинтегрируем по частям:

$$-\int_{0}^{\infty} \sin x e^{-xy} \, dx = \int_{0}^{\infty} e^{-xy} (\cos x)' \, dx = e^{-xy} \cos \Big|_{0}^{\infty} - \int_{0}^{\infty} \cos x (e^{-xy})'_{x} \, dx =$$

$$= -1 + y \int_{0}^{\infty} e^{-xy} \cos x \, dx = \frac{1}{\cos \operatorname{vactym}} -1 + y \int_{0}^{\infty} e^{-xy} (\sin x)' \, dx =$$

$$= -1 + y \left(\underbrace{e^{-xy} \sin x}_{=0}^{\infty} - \int_{0}^{\infty} \sin x (e^{-xy})' \, dx \right) = -1 + y^{2} \int_{0}^{\infty} e^{-xy} \sin x \, dx$$

$$\implies -(1+y^2) \int_0^\infty e^{-xy} \sin x \, dx = -1 \qquad \Longrightarrow \qquad -\int_0^\infty e^{-xy} \sin x \, dx = -\frac{1}{1+y^2}$$

$$\iff I'(y) = -\frac{1}{1+y^2}$$
(174)

Применим формулу Ньютона—Лейбница:

$$I(B) - I(\delta) = \int_{\delta}^{B} I'(y) \, \mathrm{d}y = -\int_{\delta}^{B} \frac{\mathrm{d}y}{1 + y^{2}} = -\operatorname{arctg}y \Big|_{\delta}^{B} = \operatorname{arctg}\delta - \operatorname{arctg}B$$
 (175)

При $B \to \infty$

$$|I(B)| \le \int_0^\infty e^{-Bx} \, dx = \frac{1}{B} \xrightarrow{B \to \infty} 0$$

$$(175) \implies 0 - I(\delta) = \operatorname{arctg} \delta - \frac{\pi}{2} \implies \implies I(\delta) = \frac{\pi}{2} - \operatorname{arctg} \delta$$

$$\int_0^\infty \sin x \, dx = I(0) = \lim_{\delta \to +0} I(\delta) = \lim_{\delta \to +0} \left(\frac{\pi}{2} - \operatorname{arctg} \delta\right) = \frac{\pi}{2}$$

50. Вычисление интеграла Эйлера—Пуассона

Теорема 46.

$$E := \int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

Доказательство. Рассмотрим $f(x,y)\coloneqq e^{-x^2y-y},\quad x\geq 0,\quad y\geq 0$ Понятно, что $f(x,y)\in\mathcal{C}\left([0,\infty)\times[0,\infty)\right)$

Пусть

$$I(y) \coloneqq \int_0^\infty f(x,y) \, dx, \qquad K(x) \coloneqq \int_0^\infty f(x,y) \, dy$$

$$I(y) = \int_0^\infty e^{-x^2y - y} \, dx = \frac{1}{x_1 \coloneqq x\sqrt{y}} \int_0^\infty e^{-x_1^2} \cdot \frac{1}{\sqrt{y}} \cdot e^{-y} \, dx_1 = \frac{1}{\sqrt{y}} e^{-y} \int_0^\infty e^{-x_1^2} \, dx_1 = \frac{1}{\sqrt{y}} e^{-y} E$$

$$\int_0^\infty I(y) \, dy = E \int_0^\infty \frac{1}{\sqrt{y}} e^{-y} \, dy = \frac{1}{y \coloneqq y_1^2} E \cdot \int_0^\infty \frac{1}{y_1} e^{-y_1^2} \cdot 2y_1 \, dy_1 = 2E \cdot \int_0^\infty e^{-y_1^2} \, dy_1 = 2E^2$$

Применим теорему об интегрировании несобственного интеграла по параметру:

$$\implies 2E^2 = \int_0^\infty I(y) \, \mathrm{d}y = \int_0^\infty K(x) \, \mathrm{d}x \tag{176}$$

$$K(x) = \int_0^\infty e^{-x^2y - y} \, \mathrm{d}y = \int_0^\infty e^{-(x^2 + 1)y} \, \mathrm{d}y \xrightarrow[t = (x^2 + 1)y]{} \frac{1}{1 + x^2} \cdot \int_0^\infty e^{-t} \, \mathrm{d}t = \frac{1}{1 + x^2}$$

$$\Longrightarrow 2E^2 = \int_0^\infty \frac{\mathrm{d}x}{1 + x^2} = \frac{\pi}{2}$$

При этом, E > 0.

51. Числовые и функциональные ряды с комплексными слагаемыми; абсолютная и равномерная сходимость; признак Вейерштрасса равномерной сходимости

Определение 12. Если $c_n = a_n + ib_n$, $n \ge 1$, $a_n, b_n \in \mathbb{R}$, то рядом с комплексными слагаемыми называется символ

$$\sum_{n=1}^{\infty} c_n \tag{177}$$

Определение 13. Ряд (177) по определению cxodumcs, если сходятся ряды $\sum a_n$, $\sum b_n$, при этом

$$\sum_{n=1}^{\infty} c_n := \sum_{n=1}^{\infty} a_n + i \sum_{n=1}^{\infty} b_n$$

Определение 14. Ряд (177) называют *абсолютно сходящимся*, если сходится ряд $\sum |c_n|$.

Напоминание. $|a + bi| = \sqrt{a^2 + b^2}$

Утверждение 8. Чтобы ряд (177) абсолютно сходился, необходимо и достаточно, чтобы абсолютно сходились ряды $\sum a_n$ и $\sum b_n$.

Доказательство.

- Поскольку $|a_n| \le |c_n|$ и $|b_n| \le |c_n|$, то абсолютная сходимость ряда (177) влечёт абсолютную сходимость рядов $\sum a_n$ и $\sum b_n$.
- Поскольку $|c_n| \le |a_n| + |b_n|$, то абсолютная сходимость рядов $\sum a_n$ и b_n влечёт абсолютную сходимость ряда (177).

Следствие. Если ряд (177) абсолютно сходится, то он сходится.

Доказательство. Следует из факта, что абсолютно сходящийся вещественный ряд сходится.

Определение 15. $E \neq \emptyset \subset \mathbb{C}$, $u_n : E \to \mathbb{R}$, $v_n : E \to \mathbb{R}$, $n = 1, 2, \dots$ Функциональным комплекснозначным рядом будем называть символ

$$\sum_{n=1}^{\infty} w_n(x), \qquad w_n(x) = u_n(x) + iv_n(x), \quad x \in E$$

Определение 16. Ряд $\sum w_n$ будем называть *равномерно сходящимся* на E, если равномерно сходятся на E ряды $\sum u_n$ и $\sum v_n$.

Теорема 47 (критерий Коши). Для того чтобы ряд $\sum \gamma_n$ равномерно сходился на E, необходимо и достаточно, чтобы

$$\forall \varepsilon > 0 \quad \exists N : \quad \forall m > n > N \quad \forall x \in E \quad |\gamma_{n+1}(x) + \dots + \gamma_m(x)| < \varepsilon$$

Доказательство. Можно применить критерий Коши для комплексной функциональной последовательности

Теорема 48 (признак Вейерштрасса). $\{a_n\}_{n=1}^{\infty}$, $a_n > 0$: $|\gamma_n(x)| \le a_n \quad \forall n \quad \forall x \in E$ $\sum a_n$ сходится

$$\sum_{n=1}^{\infty} a_n < \infty \tag{178}$$

$$\Longrightarrow \sum_{n=1}^{\infty} \gamma_n$$
 сходится равномерно

Доказательство. Возьмём $\forall \varepsilon > 0$

$$(178) \implies \exists N: \quad \forall m > n > N \quad a_{n+1} + \dots + a_n < \varepsilon$$

$$|\gamma_{n+1}(x) + \dots + \gamma_n(x)| \le |\gamma_{n+1}(x)| + \dots + |\gamma_m(x)| \le a_{n>0} a_{n+1} + \dots + a_m < \varepsilon$$

По критерию Коши получаем равномерную сходимость.

52. Степенные ряды; лемма Абеля

$$E = \mathbb{C}, \qquad \{ c_n \}_{n=0}^{\infty}, \qquad c_n \in \mathbb{C}, \qquad z_0 \in \mathbb{C}$$

Положим $\gamma_0(z) \coloneqq c_0, \quad \gamma_n(z) \coloneqq c_n(z-z_0)^n$

$$c_0 + \sum_{n=1}^{\infty} c_n (z - z_0)^n \tag{179}$$

Такое выражение будем называть комплексным степенным рядом с центром z_0 .

Замечание. $\{c_n\}_{n=1}^{\infty}, \qquad c_n \to c \in \mathbb{C}$

$$\implies \exists M: |c_n| \leq M \quad \forall n$$

Доказательство. Положим $c_n = a_n + ib_n$, c = a + ib

$$a_n \to a, \qquad b_n \to b$$

Дальше применяем теорему из первого семестра

Замечание (необходимый признак сходимости комплексных числовых рядов).

$$\sum_{n=1}^{\infty} \gamma_n \text{ cx.} \implies \gamma_n \xrightarrow[n \to \infty]{} 0$$

Доказательство. $c_n = \gamma_1 + \cdots + \gamma_n$

$$\begin{vmatrix} c_n \to c \\ c_{n-1} \to c \end{vmatrix} \implies \underbrace{c_n - c_{n-1}}_{\sim} \to c - c = 0$$

Следствие. $\exists M: |\gamma_n| \leq M \quad \forall n$

Лемма 2 (Абеля).
$$\exists z_1 \neq z_0: \quad (179)$$
 сходится при $z_1, \qquad R \coloneqq |z_1 - z_0|$ $\Longrightarrow \quad (179)$ сх. $\forall z: |z - z_0| < R$ $\Longrightarrow \quad \forall 0 < r < R \quad (179)$ равн. сх. при $|z - z_0| \le r$ (180)

Доказательство. Докажем (180):

Обозначим $0 < q \coloneqq \frac{r}{R} < 1$

Сходимость при z_1 , по необходимому признаку, означает, что

$$c_n(z_1-z_0)^n \xrightarrow[n\to\infty]{} 0$$

Тогда, по следствию,

$$\exists M: |c_n(z_1 - z_0)^n| \le M \iff |c_n| \cdot |z_1 - z_0|^n \le M \stackrel{\text{def } R}{\iff} |c_n| \le \frac{M}{R^n}$$
 (181)

$$|c_n(z-z_0)^n| = |c_n| \cdot |z-z_0|^n \le \frac{M}{(181), \text{def } r} \frac{M}{R^n} \cdot r^n = Mq^n$$

$$\sum_{n=1}^{\infty} Mq^n = \frac{Mq}{1-q}$$

Можно применить признак Вейерштрасса, тем самым доказывая (180)

$$(180) \implies (179)$$
 сх. абс. при $|z - z_0| < R$

53. Определение радиуса сходимости и круга сходимости степенного ряда

Определение 17.

- 1. Пусть (179) сходится только при $z=z_0$ Будем полагать радиус сходимости $R\coloneqq 0$, круг сходимости В $\coloneqq \emptyset$
- 2. (179) сходится при всех z Полагаем $R \coloneqq +\infty, \quad \mathtt{B} \coloneqq \mathbb{C}$
- 3. $\exists z_1 \neq z_0$: (179) сх. в z_1 , $\exists z_2$: (179) расх. в z_2

$$R \coloneqq \sup \left\{ \left. r \mid r = \mid z_* - z_0 \right|, \quad (179) \text{ cx. B } z_* \right. \right\}, \qquad \mathtt{B} \coloneqq \left\{ \left. z_0 \mid \mid z - z_0 \right| < R \right. \right\}$$

Положим $r_1 \coloneqq |z_1 - z_0|, \quad r_2 \coloneqq |z_2 - z_1|$

По определению R

$$R \ge r_1 > 0$$

Возьмём z_3 : $r_3 := |z_3 - z_0| > r_2$

Если бы (179) сходился при z_3 , можно было бы применить к z_3 лемму Абеля. Тогда бы (179) сходился в $z_2-\not$

To есть, в z_3 ряд расходится

Значит, $R \le r_2, \quad r_1 < r_2$

54. Свойства круга сходимости

Рассматриваем только случай, когда $0 < R < \infty$

Теорема 49.

(179) cx.
$$\forall z \in B$$

57

(179) pacx. $\forall z_2 \in \mathbb{C} \setminus \overline{B}$

Доказательство.

ullet Возьмём $r\coloneqq |z-z_0| < R$ По определению R

$$\exists z_*: |z_* - z_0| > R$$
, (179) cx. b z_*

По лемме Абеля (179) сх. в z

• Возьмём $\rho \coloneqq |\widehat{z} - z_0| > R$ Если ряд сходится, то ρ больше супремума, что невозможно

55. Вычисление радиуса сходимости

Теорема 50. Определим

$$t := \overline{\lim}_{n \to \infty} \sqrt[n]{c_n} \tag{182}$$

1. R=0, если $t=+\infty$

2. $R = +\infty$, если t = 0

3. $R = \frac{1}{t}$ иначе

Доказательство. Будем рассматривать только последний случай Определим $R_0 \coloneqq \frac{1}{t}$

• Возьмём $z_2: |z_2-z_0|>R_0$ Обозначим $\varepsilon\coloneqq |z_2-z_0|-R_0>0$ Определим

$$\delta \coloneqq \frac{\varepsilon t^2}{1 + \varepsilon t}$$

По определению верхнего предела

$$\exists \{ n_k \}_{k=1}^{\infty} : \quad {}^{n_k} \sqrt{c_{n_k}} > t - \delta \iff |c_{n_k}| > (t - \varepsilon)^{n_k}$$

$$\implies |c_{n_k} (z_2 - z_0)^{n_k}| = |c_{n_k}| \cdot |z_2 - z_0|^{n_k} > (t - \delta)^{n_k} \cdot (R_0 + \varepsilon)^{n_k} = \left((t - \delta)(R_0 + \varepsilon) \right)^{n_k}$$

$$(t - \delta)(R_0 + \varepsilon) = \left(t - \frac{\varepsilon t^2}{1 + \varepsilon t} \right) \left(\frac{1}{t} + \varepsilon \right) = \frac{t + \varepsilon t^2 - \varepsilon t^2}{1 + \varepsilon t} \cdot \frac{1 + \varepsilon t}{t} = 1$$

$$\implies |c_{n_k} (z_2 - z_0)^{n_k}| \ge 1$$

По второму замечанию ряд в z_2 расходится

• Возьмём $z_1: |z_1 - z_0| < R_0$ Пусть

$$\varepsilon_0 \coloneqq R_0 - |z_1 - z_0|, \quad \delta_0 \coloneqq \frac{1}{2} \cdot \frac{\varepsilon_0 t^2}{1 - \varepsilon_0 t}$$

По свойствам верхнего предела

$$\exists N: \forall n > N \quad \sqrt[n]{|c_n|} < t + \delta_0 \iff |c_n| < (t + \delta_0)^n$$

$$\implies \forall n > N \quad |c_n(z_1 - z_0)^n| = |c_n| \cdot |z_1 - z_0|^n < (t + \delta_0)^n \cdot (R_0 - \varepsilon_0)^n = \left((t - \delta_0)(R_0 - \varepsilon_0) \right)^n$$

$$(t + \delta_0)(R_0 - \varepsilon_0) \stackrel{\text{def } \delta}{=} \left(t + \frac{1}{2} \cdot \frac{\varepsilon_0 t^2}{1 - \varepsilon_0 t} \right) \left(\frac{1}{t} - \varepsilon_0 \right) = \frac{t - \varepsilon_0 t^2 + \frac{1}{2}\varepsilon_0 t^2}{1 - \varepsilon_0 t} \cdot \frac{1 - \varepsilon_0 t}{t} = 1 - \frac{1}{2}\varepsilon_0 t$$

$$0 < q := 1 - \frac{1}{2}\varepsilon_0 t < 1 \implies |c_n(z_1 - z_0)^n| < q^n < 1$$

Значит, ряд сходится при z_1

Теорема 51. $c_n \neq 0 \quad \forall n, \qquad \exists \lim_{n \to \infty} \frac{|c_n|}{|c_{n+1}|}$ Тогда этот предел и равен радиусу сходимости

Доказательство. Аналогично.

56. Интервал сходимости вещественного степенного ряда, его свойства

Определение 18.

$$S(x) := \sum_{n=1}^{\infty} a_n (x - x_0)^n$$

$$\tag{183}$$

Будем называть S(x) вещественным степенным рядом, если $x_0 \in \mathbb{R}, \quad a_n \in \mathbb{R}, \quad n \geq 1, \quad x \in \mathbb{R}$

Можно найти радиус сходимости и круг сходимости соответствующего комплексного степенного ряда:

- 1. R = 0, $B = \emptyset$ Ряд сходится только при $x = x_0$
- Ряд сходится при любых $z \in \mathbb{C}$, а значит, и при любых $x \in \mathbb{R}$
- 3. $0 < R < \infty$, $B \neq \emptyset$, \mathbb{C} Пусть $I \coloneqq \mathtt{B} \cap \mathbb{R}$

$$I = (x_0 - R, x_0 + R)$$

- $x \in I \implies x \in \mathbb{B} \implies$ ряд сходится в x
- $x_1 \notin \overline{I} \implies x_1 \notin \overline{\mathbb{B}} \implies$ ряд расходится в x_1

Пусть есть 0 < r < R

Рассмотрим промежуток $[x_0-r,x_0+r]\subset {\tt B}$ \implies ряд сходится равномерно на $[x_0-r,x_0+r]$

При доказательстве теоремы о радиусе сходимости для комплексных рядов мы пользовались признаком Вейерштрасса. Если перейти к вещественным рядам, то при $x \in [x_0 - r, x_0 + r]$ будет равномерно сходится ряд

$$\sum_{n=1}^{\infty} |a_n(x-x_0)^n|$$

57. Теорема Абеля о вещественном степенном ряде

Бывает, что при r = R ряд сходится

Теорема 52 (Абеля). Ряд S(x) сходится при $x_0 - R$ или при $x_0 + R$

$$S(x) := \sum_{n=1}^{\infty} a_n (x - x_0)^n$$

Тогда ряд сходится равномерно на $[x_0 - R, x_0]$ или $[x_0, x_0 + R]$, и

$$\implies \left[\begin{array}{c} S \in \mathcal{C}([x_0 - R, x_0]) \\ S \in \mathcal{C}([x_0, x_0 + R]) \end{array}\right]$$

Если ряд сходится и при $x_0 - R$, и при $x_0 + R$, то верны оба утверждения

Доказательство. Докажем для $[x_0 - R, x_0]$: Так как $x_0 - R - x_0 = -R$, $\sum_{n=1}^{\infty} a_n (-R)^n$ сходится. Пусть $x_0 - R < x < x_0$

$$\sum_{n=1}^{\infty} a_n (x - x_0)^n = \sum_{n=1}^{\infty} a_n (-R)^n \cdot \left(\frac{x - x_0}{-R}\right)^n = \sum_{n=1}^{\infty} (-R)^n \cdot \left(\frac{x_0 - x}{R}\right)^n$$

Положим

$$u_n(x) := a_n(-R)^n, \quad v_n(x) := \left(\frac{x_0 - x}{R}\right)^n$$

Тогда $\sum u_n(x)$ равномерно сходится на $[x_0 - R, x_0]$ (т. к. он не зависит от x)

$$0 \le v_n(x) \le 1,$$
 $v_n(x)$ монотонна по $n \quad \forall x \in [x_0 - R, x_0]$

По признаку Абеля, последние два утверждения влекут, что

$$S(x) \stackrel{\text{def } u_n, v_n}{=} \sum_{n=1}^{\infty} u_n(x) v_n(x)$$
 равномерно сходится при $x \in [x_0 - R, x_0]$

$$a_n(x-x_0)^n \in \mathcal{C}([x_0-R,x_0])$$

Можно применить следствие о непрерывности ряда непрерывных функций

58. Производная вещественного степенного ряда

Теорема 53. Имеется вещественный степенной ряд

$$S(x) := a_0 + \sum_{n=1}^{\infty} a_n (x - x_0)^n, \qquad R > 0$$

$$T(x)\coloneqq a_1+\sum_{n=2}^\infty na_n(x-x_0)^{n-1},\qquad R_0$$
— его радиус сх.
$$\Longrightarrow R_0=R$$

Замечание.

$$\sum_{n=1}^{\infty} n a_n (x - x_0)^n = (x - x_0) \sum_{n=1}^{\infty} n a_n (x - x_0)^{n-1}, \qquad x \neq x_0$$

Ряды слева и справа сходится или расходятся одновременно, так как они различаются умножением на ненулевую константу

Доказательство.

$$t = \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|}, \qquad t_0 = \overline{\lim}_{n \to \infty} \sqrt[n]{|na_n|}$$

Видно, что $t_0 \ge t$

$$R \stackrel{\text{def}}{=} \frac{1}{t}, \qquad R_0 \stackrel{\text{def}}{=} \frac{1}{t_0}$$

$$\implies R_0 \le R$$

Нужно доказать, что они совпадают

Возьмём x такой, что $|x - x_0| =: r < R$

Докажем, что при таком x будет сходится ряд T(x):

Возьмём $r < \rho < R$, $q \coloneqq \frac{r}{\rho}$, 0 < q < 1

Докажем, что T(x) абсолютно сходится (из этого будет следовать, что он сходится):

$$\sum_{n=1}^{\infty} n|a_n|r^n = \sum_{n=1}^{\infty} |a_n|\rho^n \cdot \left(n\frac{r^n}{\rho^n}\right) \stackrel{\text{def } q}{=} \sum |a_n|\rho^n \cdot (nq^n)$$
(184)

Рассмотрим
$$\varphi(x) \coloneqq xq^x, \quad x \ge 0$$
Понятно, что $\varphi(0) = 0, \qquad \varphi(x) \xrightarrow[x \to \infty]{} 0$
Найдём её максимум:
$$\varphi'(x) = q^x + x \ln qq^x$$

$$q^{x_0} + x_0 \ln qq^{x_0} = 0$$

$$x_0 = -\frac{1}{\ln q} = \frac{1}{\ln \frac{1}{q}} \equiv M$$

$$\implies nq^n \le M \quad \forall n$$

$$\Longrightarrow nq^n \le M \quad \forall n$$

$$\Longrightarrow nq^n \le nq^n$$

Следствие. Обозначим $u_n(x) := a_n(x-x_0)^n$ Тогда $u_n'(x) = na_n(x-x_0)^{n-1}$

Если взять $\forall 0 < r < R$, то ряд T(x) сходится равномерно при $x \in [x_0 - r, x_0 + r]$

Ряд S(x) сходится равномерно там же

$$\implies \forall x \in [x_0 - r, x_0 + r] \quad \exists S'(x) = T(x)$$

Это верно при $\forall x \in B$ (т. к. можно обозначить $|x - x_0| =: r < R$)

59. Старшие производные вещественного степенного ряда; степенной ряд как ряд Тейлора своей суммы

Рассмотрим ряд T(x) как первоначальный ряд. По теореме получаем, что радиус сходимости T'(x) будет таким же, то есть,

Следствие.

$$2a_2 + \sum_{n=3}^{\infty} n(n-1)a_n(x-x_0)^{n-2} = \left(S'(x)\right)' = S''(x)$$

Это можно продолжать. Получаем следующую теорему:

Теорема 54.

$$\forall m \quad \forall x \in I \quad \exists S^{(m)}(x) = \sum_{n=1}^{\infty} \left(a_n (x - x_0)^n \right)^{(m)}$$
(185)

Заметим, что справедливы равенства:

$$((x-x_0)^n)' = n(x-x_0)^{n-1}, \quad ((x-x_0)^n)'' = n(n-1)(x-x_0)^{n-2}, \quad \dots$$

$$\begin{cases} ((x-x_0)^n)^{(m)} = n(n-1)\cdots(n-m+1)(x-x_0)^{n-m}, & m < n \\ ((x-x_0)^n)^{(n)} = n! \\ ((x-x_0)^n)^{(n+k)} = 0, & k \ge 1 \end{cases}$$

Отсюда следует, что

$$((x-x_0)^n)^{(m)}\big|_{x=x_0} = \begin{cases} 0, & n \neq m \\ n!, & n \neq m \end{cases}$$

Рассмотрим

$$S(x) := c_0 + \sum_{n=1}^{\infty} c_n (x - x_0)^n, \quad x \in I$$

Понятно, что $S(x_0) = c_0$ Если $m \ge 1$, то, по формуле (185),

$$S^{(m)}(x_0) = 0 + c_m \cdot m!, \qquad c_m = \frac{S^{(m)}(x_0)}{m!}$$

$$\implies S(x) = S(x_0) + \sum_{n=1}^{\infty} \frac{S^{(n)}(x_0)}{n!} (x - x_0)^n$$

Этот ряд называется pядом Тейлора для функции S(x).

60. Интегрирование вещественного степенного ряда

Теорема 55. По-прежнему рассматриваем ряд S(x), $p,q \in I$ (не обязательно p < q)

$$\implies \int_{p}^{q} S(x) dx = a_0(q-p) + \sum_{n=1}^{\infty} a_n \frac{(q-x_0)^{n+1} - (p-x_0)^{n+1}}{n+1}$$

Доказательство. S равномерно сходится на $[p \ \ \ \ \]$.

Его можно интегрировать почленно, что и записано в теореме.

Утверждение 9. В частности, при $p = x_0, q = y \in I$,

$$\int_{x_0}^{y} S(x) dx = a_0(y - x_0) + \sum_{n=1}^{\infty} a_n \frac{(y - x_0)^{n+1}}{n+1}$$
(186)

61. Разложение в степенной ряд функций $\ln(1+x)$ и $\arctan x$

Рассмотрим ряд

$$1 + \sum_{n=1}^{\infty} (-1)^n x^n = \frac{1}{1+x}, \qquad x \in (-1,1)$$

Понятно, что при r < 1 ряд сходится равномерно на [-r, r].

Возьмём $|y| \le r$ и проинтегрируем по формуле (186):

$$\boxed{\ln(1+y)} = \int_0^y \frac{\mathrm{d}\,x}{1+x} = y + \sum_{n=1}^\infty (-1)^n \frac{y^{n+1}}{n+1} = \sum_{n=1}^\infty (-1)^{n-1} \frac{y^n}{n}$$

Радиус сходимости этого ряда равен 1. При y = 1 он сходится. По теореме Абеля он сходится равномерно на [0,1].

Напишем в этом равенстве x^2 вместо x:

$$1 + \sum_{n=1}^{\infty} (-1)^n x^{2n} = \frac{1}{1+x^2}$$

Рассмотрим |y| < 1:

$$\left[\operatorname{arctg} y \right] = \int_0^y \frac{\mathrm{d} x}{1 + x^2} = y + \sum_{n=1}^\infty (-1)^n \frac{y^{2n+1}}{2n+1} = \left[\sum_{n=1}^\infty \frac{y^{2n-1}}{2n-1} \right]$$

При y=1 этот рад сходится как знакочередующийся. По теореме Абеля он непрерывен на [0,1]

62. Формула Тейлора с интегральным остатком

Теорема 56.
$$f \in \mathcal{C}^n((a,b)), \quad x, x_0 \in (a,b), \quad x \neq x_0$$

$$\implies f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x-x_0) + \dots + \frac{f^{(n-1)}(x_0)}{(n-1)!}(x-x_0)^{n-1} + \frac{1}{(n-1)!} \int_{x_0}^x (x-t)^{n-1} f^{(n)}(t) \, dt$$

Доказательство. Докажем по индукции.

• База. n = 1

$$f(x) \stackrel{?}{=} f(x_0) + \int_{x_0}^x f'(t) dt$$

Это — формула Ньютона—Лейбница.

• Переход. $n \rightarrow n+1$

$$f \in \mathcal{C}^{n+1}((a,b))$$

Проинтегрируем по частям по t:

$$\left(-\frac{(x-t)^n}{n}\right)_t' = (x-t)^{n-1}$$

$$\int_{x_0}^x \left(-\frac{(x-t)^n}{n} \right)' dt f^{(n)}(t) = \left(-\frac{(x-t)^n}{n} f^{(n)}(t) \right) \Big|_{x_0}^x - \int_{x_0}^x \left(-\frac{(x-t)^n}{n} \right) f^{(n+1)}(t) dt =$$

$$= \frac{(x-x_0)^n}{n} f^{(n)}(x_0) + \frac{1}{n} \int_{x_0}^x \frac{(x-t)^n}{n} f^{(n+1)}(t) dt$$

$$\xrightarrow{\text{предп.}} f(x) = f(x_0) +
+ \frac{f'(x_0)}{1!} (x - x_0) + \dots + \frac{f^{(n-1)}(x_0)}{(n-1)!} (x - x_0)^{n-1} + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + \frac{1}{n!} \int_{x_0}^x \frac{(x - t)^n}{n} f^{(n+1)}(t) dt$$

63. Разложение в степенные ряды e^x , $\cos x$, $\sin x$

Рассматриваем $x_0 = 0$

1. e^x

$$(e^{x})^{(n)} = e^{x}$$

$$(e^{x})^{(n)}\big|_{x=0} = 1$$

$$e^{0} = 1$$

$$e^{x} \stackrel{T}{=} 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + e^{c} \cdot \frac{x^{n+1}}{(n+1)!}, \qquad c < |x|, \quad cx > 0$$

$$\left| e^{c} \frac{x^{n+1}}{(n+1)!} \right| \le e^{|x|} \cdot \frac{|x|^{n+1}}{(n+1)!} \xrightarrow[n \to \infty]{} 0$$

$$\xrightarrow{(187)} e^{x} = 1 + \sum_{n=1}^{\infty} \frac{x^{n}}{n!}, \qquad x \in \mathbb{R}$$

При x = 1 получаем

$$e = 2 + \sum_{n=2}^{\infty} \frac{1}{n!}$$

 $2. \cos x$

$$(\cos x)' = -\sin x$$
$$(\cos x)'' = -\cos x$$
$$(\cos x)''' = \sin x$$

$$(\cos x)^{(4)} = \cos x$$

$$(\cos x)^{(2n-1)}\big|_{x=0} = 0$$

$$(\cos x)^{(2n)}\big|_{x=0} = (-1)^n$$

$$\cos x \stackrel{T}{=} 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} \pm \sin c \cdot \frac{x^{2n+1}}{(2n+1)!}$$

$$\xrightarrow{\text{\tiny JEMMA}} \boxed{\cos x = 1 + \sum_{n=1}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}}$$

 $3. \sin x$

$$(\sin x)' = \cos x$$

$$(\sin x)'' = -\sin x$$

$$(\sin x)''' = -\cos x$$

$$(\sin x)^{(4)} = \sin x$$

$$(\sin x)^{(2n)}|_{x=0} = 0$$

$$(\sin x)^{2n-1}|_{x=0} = (-1)^{n-1}$$

$$\sin x \stackrel{T}{=} x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} \pm \sin c \cdot \frac{x^{2n}}{2n!}$$

$$\implies \sin x = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!}$$

64. Разложение в степенной ряд $(1+x)^r$

 $(1+x)^r, \qquad r \notin \mathbb{N}, \quad r \neq 0$ (чтобы была нетривиальность)

$$\left((1+x)^r \right)' = r(1+x)^{r-1}$$

$$\left((1+x)^r \right)'' = r(r-1)(1+x)^{r-2}$$

$$\left((1+x)^r \right)^{(n)} = r(r-1)(r-2)\dots(r-n+1)(1+x)^{r-n}$$

$$\left((1+x)^r \right)^{(n)} \Big|_{x=0} = r(r-1)\dots(r-n+1)$$

Применим формулу Тейлора с остатком в форме Коши:

$$(1+x)^{r} = 1 + \frac{rx}{1!}x + \frac{r(r-1)}{2!}x^{2} + \dots + \frac{r(r-1)\dots(r-n+1)}{n!}x^{n} + \underbrace{\frac{1}{n!}\int_{0}^{x}(x-t)^{n}r(r-1)\dots(r-n)(1+t)^{r-n-1}\,\mathrm{d}t}_{I_{n}}$$

$$(x-t)^{n}(1+t)^{-n} = \left(\frac{x-t}{1+t}\right)^{n}$$

$$(x-t)^{n}(1+t)^{-n} = \left(\frac{x-t}{1+t}\right)^{n}$$

Всё это верно при $0 \le |t| \le x$, $tx \ge 0$

•
$$x > 0$$

$$0 \le \frac{x - t}{1 + t} \le x$$
• $x < 0$

$$\frac{x - t}{1 + t} = \frac{-|x| + |t|}{1 - |t|} \implies \left| \frac{x - t}{1 + t} \right| = \frac{|x| - |t|}{1 - |t|} \le |x|$$

Объединим последние два выражения:

$$\left| \frac{x-t}{1+t} \right| \le |x|,$$
 при $|t| \le |x|,$ $tx \ge 0$

$$\implies |I_n| \le \frac{|r(r-1)\dots(r-n)|}{n!} \left| \int_0^x \left| \frac{x-t}{1+t} \right|^n \cdot (1+t)^{r-1} \, \mathrm{d}t \right| \le \frac{|r(r-1)\dots(r-n)|}{n!} |x^n| \left| \int_0^x (1+t)^{r-1} \, \mathrm{d}t \right|$$

Обозначим

$$\alpha_n \coloneqq \frac{|r(r-1)\dots(r-n)|}{n!}|x|^n$$

Считаем, что n > r + 1

$$\frac{\alpha_{n+1}}{\alpha_n} = \frac{1}{n+1} \cdot |r - n - 1| \cdot |x|$$

$$|r - n + 1| = n + 1 - r$$

$$\implies \frac{\alpha_{n+1}}{\alpha_n} = \frac{n+1-r}{n+1} \cdot |x| = \left(1 - \frac{r}{n+1}\right) |x| \xrightarrow[n \to \infty]{} |x|$$
(189)

Обозначим

$$q\coloneqq \frac{1+|x|}{2}, \qquad q<1, \quad |x|< q$$

В новых обозначениях,

$$\frac{\alpha_{n+1}}{\alpha_n} \leq q \quad \forall n \geq \text{ некторого } n_0$$

Значит, при $n > n_0, \ \alpha_n > 0, \ \alpha_n$ монотонно убывает

$$\implies \exists \lim_{n \to \infty} \alpha_n =: \alpha \ge 0 \tag{190}$$

$$(189) \iff \alpha_{n+1} = \alpha_n \left(1 - \frac{r}{n+1} \right) \cdot |x|$$

$$\implies \alpha = \alpha |x| \implies \alpha = 0$$

$$\implies (1+x)^r = 1 + \frac{rx}{1!} + \frac{r(r-1)x^2}{2!} + \dots + \frac{r(r-1)\dots(r-n+1)}{n!} x^n + \dots$$
(191)

65. Разложение в степенной ряд $\arcsin x$

Этого вопроса нет. Подставим в (191) $x = -y^2$, 0 < |y| < 1, $r = \frac{1}{2}$:

$$(1-y^2)^{-\frac{1}{2}} = 1 + \left(-\frac{1}{2}\right)(-y^2) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}y^4 + \dots + (-1)^n \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\dots\left(-\frac{2n-1}{2}\right)}{n!}y^{2n} + \dots = 1 + \frac{y^2}{2} + \frac{1 \cdot 3}{2^2 \cdot 2!}y^4 + \dots + \frac{1 \cdot 3 \cdots (2n-1)}{2^n n!}y^{2n} + \dots$$

$$\implies \arcsin x = \int_0^\infty \frac{\mathrm{d}y}{\sqrt{1 - y^2}} = \int_0^x \left(1 + \frac{y^2}{2} + \frac{1 \cdot 3}{2^2 \cdot 2!} y^4 + \dots + \frac{1 \cdot 3 \cdot \dots (2n - 1)}{2^n n!} y^{2n} + \dots \right) \mathrm{d}y =$$

$$= x + \frac{1}{2 \cdot 3} x^3 + \frac{1 \cdot 3}{2^2 \cdot 2! \cdot 5} x^5 + \dots + \frac{1 \cdot 3 \cdot \dots (2n - 1)}{2^n \cdot n! (2n + 1)} x^{2n + 1} + \dots$$

Часть III

Криволинейные интегралы

66. Спрямляемые кривые, длина кривой, аддитивность длины кривой

Определение 19. $\Gamma:[a,b]\to\mathbb{R}^{n\geq 2}, \qquad \Gamma\in\mathcal{C}\left([a,b]\right)$ Γ будем называть разомкнутой кривой, если оно биективно

Образ $\Gamma([a,b])$ будем называть кривой и обозначать Γ

P
$$a = t_0 < t_1 < \dots < t_m = b$$

Множество точек $\{\Gamma(t_k)\}_{k=1}^m$ будем называть разбиением

$$l\bigg(\left\{\left.\Gamma(t_{k})\right.\right\}_{k=1}^{m}\bigg)\coloneqq\sum_{k=0}^{m-1}\left\|\Gamma(t_{k+1})-\Gamma(t_{k})\right\|_{n}$$

Рассмотрим величину

$$\sup_{\{ \Gamma(t_k) \}} l \left(\{ \Gamma(t_k) \}_{k=1}^m \right)$$

Если $\sup < \infty,$ то Γ будем называть спрямляемой, а $\sup -$ длиной Γ

$$\Gamma_{[a,c]}(t) \coloneqq \Gamma(t) \big|_{[a,c]}, \qquad \Gamma_{[c,b]}(t) \coloneqq \Gamma(t) \big|_{[c,b]}$$

Утверждение 10. Если Γ спрямляема, то $\Gamma_{[a,c]}$ и $\Gamma_{[c,b]}$ тоже спрямляемы, и

$$l\bigg(\Gamma([a,b])\bigg) = l\bigg(\Gamma([a,c])\bigg) + l\bigg(\Gamma([c,b])\bigg)$$

Доказательство. Возьмём $c \in (t_{k_0}, t_{k_0+1})$

$$\|\Gamma(t_{k+1}) - \Gamma(t_k)\| \le \|\Gamma(t_{k+1}) - \Gamma(c)\| + \|\Gamma(c) - \Gamma(t_k)\|$$

$$l\left(\{\Gamma(t_k)\}_{k=1}^m\right) \le l\left(\{\Gamma(t_k) \cup \Gamma(c)\}_{k=1}^\infty\right)$$

$$l\left(\{\Gamma(t_k)\}_{k=1}^m \cup \Gamma(c)\right) = l\left(\{\Gamma(t_k)\}_{k=1}^{k_0} \cup \Gamma(c)\right) + l\left(\{\Gamma(t_k)\}_{k=k_0}^m \cup \Gamma(c)\right)$$

Далее нужно перейти к супремуму в левой и правой частях.

67. Непрерывность длины кривой как функции от параметра

Свойство. $\Gamma(t)$ спрямляема. Тогда

$$\lim_{c \to b^-} l\bigg(\Gamma[a,c]\bigg) = l\bigg(\Gamma([a,b]\bigg)$$

Доказательство. Если $a < c_1 < c_2 < b$, то по последнему свойству,

$$l(\Gamma[a, c_2]) > l(\Gamma[a, c_1]), \qquad l(\Gamma[a, c_2]) + l(\Gamma[c_2, b]) = l(\Gamma[a, b])$$

Поэтому функция $f:(a,b) \to \mathbb{R}$: $f=l\big(\Gamma[a,c]\big)$ возрастает и $f< l\big(\Gamma[a,b]\big)$ $\forall c< b$. Значит, $\exists \lim_{c\to b^-} l\big(\Gamma[a,c]\big) \le l\big(\Gamma[a,b]\big)$

Предположим, что $\lim_{c \to b^-} l \left(\Gamma[a,c] \right) < l \left(\Gamma[a,b] \right)$ и положим

$$\delta := l(\Gamma[a, b]) - \lim_{c \to b^{-}} l(\Gamma[a, c]) > 0$$

Поскольку $l \left(\Gamma[a,c] \right) \leq \lim_{c \to b^-} l \left(\Gamma[a,c] \right)$, то $\forall c: \ a < c < b \ \ l \left(\Gamma[c,b] \right) \geq \delta$.

68. Вычисление длины гладкой кривой

Лемма 3. $F:[a,b] o \mathbb{R}^n, \qquad F \in \mathcal{C}ig([a,b]ig)$

$$F(t) = \begin{bmatrix} f_1(t) \\ \vdots \\ f_n(t) \end{bmatrix}$$

Определим символ:

$$\int_a^b F(t) \, dt \coloneqq \begin{bmatrix} \int_a^b f_1(t) \, dt \\ \vdots \\ \int_a^b f_n(t) \, dt \end{bmatrix}$$

Тогда справедливо соотношение:

$$\left\| \int_a^b F(t) \, dt \right\| \le \int_a^b \|F(t)\| \, dt$$

Доказательство. Будем считать, что $\int_a^b F(t) \; \mathrm{d}\, t \neq \mathbb{O}_n$ (иначе — очевидно)

Обозначим $q\coloneqq \left\|\int_a^b F(t)\;\mathrm{d}\,t\right\|>0$

Введём числа

$$\alpha_k \coloneqq \int_a^b f_k(t) \, dt, \qquad a_k \coloneqq \frac{\alpha_k}{q}$$

Рассмотрим сумму

$$\sum_{k=1}^{n} a_k \alpha_k \xrightarrow{\det a_k} \sum \frac{\alpha_k}{q} \alpha_k = \frac{1}{q} \sum \alpha_k^2 \xrightarrow{\det \alpha_k, q} \frac{q^2}{q} = q$$

$$\implies q = \sum_{k=1}^{n} a_k \alpha_k = \sum a_k \int_a^b f_k(t) \, dt = \int_a^b \sum a_k f_k(t) \, dt \leq \int_a^b \left(\sum a_k^2\right)^{\frac{1}{2}} \left(\sum f_k^2(t)\right)^{\frac{1}{2}} \, dt = \left(\sum a_k^2\right)^{\frac{1}{2}} \cdot \int_a^b \left(\sum f_k^2(t)\right)^{\frac{1}{2}} \, dt = \left(\sum a_k^2\right)^{\frac{1}{2}} \int_a^b \|F(t)\| \, dt$$

$$\sum a_k^2 \stackrel{\text{def } a_k}{=} \sum \frac{\alpha_k^2}{q^2} = \frac{1}{q^2} \sum \alpha_k^2 = \frac{q^2}{q^2} = 1$$

$$\left\| \int_a^b F(t) \, dt \right\| = q \leq 1 \cdot \int_a^b F(t) \, dt$$

Теорема 57. $\Gamma \in \mathcal{C}^1([a,b])$

$$\implies l(\Gamma) = \int_a^b \|\mathcal{D}\Gamma(t)\| dt$$

Доказательство.

• $l \leq \int$ Пусть имеется любое разбиение любой $\Gamma \quad \{ \Gamma(t_k) \}_{k=1}^{\infty}$

$$\Gamma(t_{k+1}) - \Gamma(t_k) = \begin{bmatrix} \gamma_1(t_{k+1}) - \gamma_1(t_k) \\ \vdots \\ \gamma_n(t_{k+1}) - \gamma_n(t_k) \end{bmatrix} \xrightarrow{\bigoplus_{\mathbf{H}. \to \mathbf{Jeй6huцa}}} \begin{bmatrix} \int_{t_k}^{t_{k+1}} \gamma_1'(t) \ \mathrm{d} \, t \\ \vdots \\ \int_{t_k}^{t_{k+1}} \gamma_n'(t) \ \mathrm{d} \, t \end{bmatrix} \xrightarrow{\bigoplus_{\mathbf{JeMMA}}} \int_{t_k}^{t_{k+1}} \mathcal{D}\Gamma(t) \ \mathrm{d} \, t$$

$$\implies \sum_{k=0}^{m-1} \|\Gamma(t_{k+1}) - \Gamma(t_k)\| \leq \sum \int_{t_k}^{t_{k+1}} \|\mathcal{D}(t)\| \, \operatorname{d} t = \int_a^b \|\mathcal{D}\Gamma(t)\| \, \operatorname{d} t$$

Перепишем в обозначениях длины:

$$l\bigg(\left\{\left.\Gamma(t_k)\right.\right\}_{k=1}^\infty\bigg) \leq \int_a^b \|\mathcal{D}\Gamma(t)\| \, \,\mathrm{d}\,t \implies l(\Gamma) \leq \int_a^b \|\mathcal{D}\Gamma(t)\| \, \,\mathrm{d}\,t$$

• $l \geq \int$

$$\Gamma \in \mathcal{C}^1 \implies \gamma_k' \in \mathcal{C}([a,b])$$

То есть,

$$\forall \varepsilon > 0 \quad \exists \, \delta > 0 : \quad \forall t'', t' \in [a, b] \quad \left(|t'' - t'| < \delta \implies |\gamma_1'(t'') - \gamma_k'(t')| < \frac{\varepsilon}{\sqrt{n}} \right), \qquad k = 1, \dots, n$$

$$\implies \sqrt{\left(\gamma_1'(t'') - \gamma_1'(t')\right)^2 + \dots + \left(\gamma_n'(t'') - \gamma_n'(t')\right)^2} < \sqrt{\frac{\varepsilon^2}{n}} \cdot n = \varepsilon$$

$$\iff \|\mathcal{D}\Gamma(t'') - \mathcal{D}\Gamma(t')\| < \varepsilon$$

Возьмём разбиение $\{\Gamma(t_k)\}_{k=1}^m$ такое, что $t_{k-1}-t_k<\delta$ $k=0,\dots,m-1$ Для $\forall t\in[t_k,t_{k+1}]$ имеем соотношение

$$\|\mathcal{D}\Gamma(t)\| \stackrel{\triangle}{\leq} \|\mathcal{D}\Gamma(t) - \mathcal{D}\Gamma(t_k)\| + \|\mathcal{D}\Gamma(t_k)\| < \|\mathcal{D}\Gamma(t_k)\| + \varepsilon \tag{192}$$

Рассмотрим выражение

$$\Gamma(t_{k+1}) - \Gamma(t_k) - (t_{k+1} - t_k)\mathcal{D}\Gamma(t_k) = \begin{bmatrix} \int_{t_k}^{t_{k+1}} \gamma_1'(t) \, \mathrm{d}t \\ \vdots \\ \int_{t_k}^{t_{k+1}} \gamma_n'(t) \, \mathrm{d}t \end{bmatrix} - \begin{bmatrix} (t_{k+1} - t_k)\gamma_1'(t_k) \\ \vdots \\ (t_{k+1} - t_k)\gamma_n'(t) \end{bmatrix} = \\ = \begin{bmatrix} \int_{t_k}^{t_{k+1}} \left(\gamma_1'(t) - \gamma_1'(t_k) \right) \, \mathrm{d}t \\ \vdots \\ \int_{t_k}^{t_{k+1}} \left(\gamma_n'(t) - \gamma_n'(t_k) \right) \, \mathrm{d}t \end{bmatrix} \xrightarrow{\frac{\mathrm{def} \int F}{t_k}} \int_{t_k}^{t_{k+1}} \mathcal{D}\Gamma(t) - \mathcal{D}\Gamma(t_k) \, \mathrm{d}t$$

Применим лемму:

$$\|\Gamma(t_{k+1}) - \Gamma(t_k) - (t_{k+1} - t_k)\mathcal{D}\Gamma(t_k)\| \le \int_{t_k}^{t_{k+1}} \|\mathcal{D}\Gamma(t) + \mathcal{D}\Gamma(t_k)\| dt \le \int_{t_k}^{t_{k+1}} \varepsilon dt = \varepsilon(t_{k+1} + t_k)$$

$$\implies \|\Gamma(t_{k+1}) - \Gamma(t_k)\| \stackrel{\triangle}{\ge} \|(t_{k+1} - t_k)\mathcal{D}\Gamma(t_k)\| - \varepsilon(t_{k+1} - t_k) \tag{193}$$

$$(t_{k+1} - t_k) \|\mathcal{D}\Gamma(t_k)\| = \sqrt{(t_{k+1} - t_k)^2 \left(\gamma_1'(t_k)\right)^2 + \dots + (t_{k+1} - t_k)^2 \left(\gamma_n'(t_k)\right)^2}$$
(194)

Если взять $t \in [t_k, t_{k+1}]$, то

$$\|\mathcal{D}\Gamma(t_k)\| \ge \|\mathcal{D}\Gamma(t)\| - \|\mathcal{D}\Gamma(t_k) - \mathcal{D}\Gamma(t)\| > \|\mathcal{D}\Gamma(t)\| - \varepsilon$$

Проинтегрируем:

$$\int_{t_k}^{t_{k+1}} \|\mathcal{D}\Gamma(t_k)\| \, dt > \int_{t_k}^{t_{k+1}} \|\mathcal{D}\Gamma(t)\| \, dt - \varepsilon \int_{t_k}^{t_{k+1}} \, dt$$
$$(t_{k+1} - t_k) \|\mathcal{D}\Gamma(t_k)\| \ge \int_{t_k}^{t_{k+1}} \|\mathcal{D}\Gamma(t)\| \, dt - \varepsilon (t_{k+1} - t_k)$$

$$\frac{1}{(193),(194)} \|\Gamma(t_{k+1}) - \Gamma(t_k)\| > \int_{t_k}^{t_{k+1}} \|\mathcal{D}\Gamma(t)\| \, \mathrm{d}\, t - \varepsilon(t_{k+1} - t_k)$$

$$\Rightarrow \sum_{k=0}^{m-1} \|\Gamma(t_{k+1}) - \Gamma(t_k)\| > \sum_{k=0}^{m-1} \int_{t_k}^{t_{k+1}} \|\mathcal{D}\Gamma(t)\| \, \mathrm{d}\, t - \varepsilon \sum_{k=0}^{m-1} (t_{k+1} - t_k) = \int_a^b \|\mathcal{D}\Gamma(t)\| \, \mathrm{d}\, t - \varepsilon(b - a)$$

$$\Leftrightarrow l\left(\left\{ \Gamma(t_k) \right\}_{k=0}^m \right) > \int_a^b \|\mathcal{D}\Gamma(t)\| \, \mathrm{d}\, t - \varepsilon(b - a)$$

$$\Rightarrow l(\Gamma) > \int_a^b \|\mathcal{D}\Gamma(t)\| \, \mathrm{d}\, t - \varepsilon(b - a) \quad \Rightarrow \quad l(\Gamma) \ge \int_a^b \|\mathcal{D}\Gamma(t)\| \, \mathrm{d}\, t$$

69. Определение криволинейного интеграла первого рода; суммы Римана криволинейного интеграла первого рода; криволинейный интеграл первого рода как предел сумм Римана

Определение 20. $\Gamma:[a,b]\to\mathbb{R}^n, \qquad \Gamma\in C^1, \qquad f\in\mathcal{C}\left(\Gamma\right)$ Криволинейным интегралом первого рода по кривой Γ называется

$$\int\limits_{\Gamma} f(M) \; \mathrm{d} \, l(M) \coloneqq \int_a^b f\big(\Gamma(t)\big) \, \|\mathcal{D}\Gamma(t)\| \; \mathrm{d} \, t$$

Определение 21. $\Gamma_{\circ}: [a,b] \to \mathbb{R}, \qquad c_0 = a < c_1 < \cdots < c_m = b, \qquad f \in \mathcal{C}(\Gamma_0)$

$$\forall [c_k, c_{k+1}] \quad \Gamma_{\circ}([c_k, c_{k+1}]) - C^1$$
-кривая

Криволинейный интеграл первого рода для "кусочной" кривой определяется как

$$\int_{\Gamma_0} f(M) \, dl(M) = \sum_{k=0}^{m-1} \int_{\Gamma_0([c_k, c_{k+1}])} f(M) \, dl(M)$$

Определение 22. $\Gamma:[a,b] \to \mathbb{R}^n - C^1$ -кривая, $f \in \mathcal{C}\left(\Gamma\right)$ $\mathbf{T} = \left\{ \left. t_k \right. \right\}_{k=1}^m$, $a = t_0 < t_1 < \dots < t_m = b$ — разбиение, $\mathbf{P} = \left\{ \left. \tau_k \right. \right\}_{k=1}^m$, $\tau_k \in [t_{k-1},t_k]$ — оснащение

$$\mathtt{S}_{\Gamma}(f,\mathtt{T},\mathtt{P}) \coloneqq \sum_{k=1}^m f\big(\Gamma(\tau_k)\big) l\big(\Gamma([t_{k-1},t_k])\big)$$

Теорема 58. $\Gamma \in \mathcal{C}^1$

$$\forall \varepsilon > 0 \quad \exists \, \delta > 0 : \quad \forall \mathtt{T} : t_k - t_{k-1} < \delta \quad \forall \mathtt{P} \quad \left| \mathtt{S}_{\Gamma}(f, \mathtt{T}, \mathtt{P}) - \int\limits_{\Gamma} f(M) \, \operatorname{d}l(M) \right| < \varepsilon$$

To есть, $\mathtt{S}(f,\mathtt{T},\mathtt{P}) \to \int\limits_{\mathtt{T}} f(M) \; \mathrm{d}\, l(M)$

Доказательство. $\Gamma([a,b])$ — компакт в \mathbb{R}^n $f\in\mathcal{C}\left(\Gamma\right) \xrightarrow[\text{т. Кантора}]{} f$ равномерно непрерывна на Γ , т. е.

$$\forall \varepsilon > 0 \quad \exists \lambda > 0: \quad \forall M', M'' \in \Gamma: \quad \|M'' - M'\| < \lambda \implies |f(M'') - f(M')| < \varepsilon \tag{195}$$

$$\Gamma(t) =: \begin{bmatrix} \gamma_1(t) \\ \vdots \\ \gamma_n(t) \end{bmatrix}, \qquad \Gamma \in \mathcal{C}^1 \implies \gamma_k'(t) \in \mathcal{C}\left([a,b]\right)$$

$$\xrightarrow{\text{I.t. Beñepurrpacca}} \exists c_1 : |\gamma_k'(t)| \le c_1 \quad \forall t \in [a,b] \quad \forall k$$

Рассмотрим любые два значения $t', t'' \in [a, b]$ и применим теорему Лагранжа:

$$|\gamma_k(t'') - \gamma_k(t')| = |\gamma_k'(\widetilde{t})(t'' - t')| \le c_1|t'' - t'|$$

$$\Rightarrow \sqrt{\left(\gamma_1(t'') - \gamma_1(t')\right)^2 + \dots + \left(\gamma_n(t'') - \gamma_n(t')\right)^2} \le \sqrt{nc^2|t'' - t'|^2} = \sqrt{nc_1}|t'' - t'|$$

$$\iff \|\Gamma(t'') - \Gamma(t')\| < \sqrt{nc_1}|t'' - t'| \tag{196}$$

Выберем δ :

$$\delta \coloneqq \frac{\lambda}{\sqrt{n}c_1}$$

$$(195), (196) \xrightarrow{\det \delta} \text{ при } |t'' - t'| < \delta \quad |f(\Gamma(t'')) - f(\Gamma(t'))| < \varepsilon$$
(197)

Обозначим $M_k \coloneqq \Gamma(\tau_k)$

$$\implies |f(M_k) - f(M)| < \varepsilon$$
 (198)

$$\begin{split} \mathbf{S}_{\Gamma}(f,\mathbf{T},\mathbf{P}) &- \int\limits_{\Gamma} f(M) \; \mathrm{d}\, l(M) = \sum_{k=1}^m f \left(\Gamma(c_k) \right) l \left(\Gamma([t_{k-1},t_k]) \right) - \sum \int\limits_{\Gamma([t_{k-1},t_k])} f(M) \; \mathrm{d}\, l(M) = \\ &= \sum \int\limits_{\Gamma([t_{k-1},t_k])} f(M_k) \; \mathrm{d}\, l(M) - \sum \int\limits_{\Gamma([t_{k-1},t_k])} f(M) \; \mathrm{d}\, l(M) = \sum \int\limits_{\Gamma([t_{k-1},t_k])} \left(f(M_k) - f(M) \right) \; \mathrm{d}\, l(M) \end{split}$$

$$\implies |S_{\Gamma}(f, \mathbf{T}, \mathbf{P}) - \int_{\Gamma} f(M) \, \mathrm{d} \, l(M)| \stackrel{\triangle}{\leq} \sum_{k=1}^{m} \left| \int_{\Gamma([t_{k-1}, t_{k}])} \left(f(M_{k}) - f(M) \right) \, \mathrm{d} \, l(M) \le$$

$$\leq \sum \int_{\Gamma([t_{k-1}, t_{k}])} |f(M_{k}) - f(M)| \, \mathrm{d} \, l(M) \underset{(198)}{\leq} \sum \int_{\Gamma(t_{k-1}, t_{k})} \varepsilon \, \mathrm{d} \, l(M) = \varepsilon l \left(\Gamma([t_{k-1}, t_{k}]) \right) = \varepsilon l(\Gamma)$$

70. Ориентация кривой, ориентированные кривые

Определение 23. $\Gamma: [a,b] \to \mathbb{R}^{n \ge 2}$ — разомкнутая или замкнутая кривая.

 $\Gamma(a)$ называется началом кривой, $\Gamma(b)$ — концом.

Начало и конец задают ориентацию кривой.

$$a < c_1 < \dots < c_m < b$$

Точки $\Gamma(a), \Gamma(c_1), \dots, \Gamma(c_m), \Gamma(b)$ проходятся в соответствии с выбранной ориентацией.

Рассмотрим образ кривой:

$$\Gamma \subset \mathbb{R}^n$$

$$\Gamma(a) =: A, \qquad \Gamma(b) =: B, \qquad \Gamma(c_k) =: M_n$$

Точки A, M_1, \ldots, M_m, B проходятся в соответствии с выбранной ориентацией. Можно выбрать т. н. обратную ориентацию:

$$\Gamma_1: [a,b] \to \mathbb{R}^n$$

$$\Gamma_1(t) := \Gamma(a+b-t)$$

$$\Gamma_1(a) = \Gamma(b), \qquad \Gamma_1(b) = \Gamma(a)$$

При определении длины кривой мы вводили следующие суммы (записанные теперь через образ):

$$\sum_{k=0}^{m} \|M_{k+1} - M_k\|$$

Рассмотрим противоположную ориентацию:

$$M_k' = M_{m+1-k}$$

Поменяем индексы:

$$\sum_{k=0}^{m} \|M_{k+1} - M_k\| = \sum_{k=0}^{m} \|M_{m+1-k} - M_{m-k}\| = \sum_{k=0}^{m} \|M'_{k+1} - M'_k\|$$

Таким образом мы доказали, что

Утверждение 11. Длина кривой не зависит от ориентации.

Другая формулировка. Длина кривой зависит только от её образа.

Рассмотрим $\Gamma \subset \mathbb{R}^n$ — образ замкнутой кривой.

Пусть даны разбиение $T = \{ t_k \}$ и оснащение $P = \{ \tau_i \}$.

$$\Gamma(a) = A,$$
 $\Gamma(b) = B,$ $\Gamma(t_k) = M_k$
$$A = B,$$
 $\Gamma(\tau_i) =: N_i$

Можно переписать суммы Римана в новых обозначениях:

$$\mathtt{S}(f,\mathtt{T},\mathtt{P}) = \sum_{k=1}^m f(N_k) l\bigg(\Gamma(M_{k-1},M_k)\bigg)$$

Они (при стремлении диаметра разбиения к нулю) стремились к интегралу первого рода. Аналогично длине кривой, здесь можно поменять индексы определённым образом. Таким образом верно следующее:

Утверждение 12. Криволинейный интеграл первого рода не зависит от ориентации кривой.

71. Определение криволинейного интеграла второго рода; суммы Римана криволинейного интеграла второго рода; криволинейный интеграл второго рода как предел интегральных сумм

Определение 24.

$$\overset{\smile}{\Gamma}(t)=egin{bmatrix} \gamma_1(t) \ dots \ \gamma_n(t) \end{bmatrix}-C^1$$
-кривая, $f\in\mathcal{C}ig(\Gammaig)$

Криволинейным интегралом второго рода по ориентированной кривой функции f называется

$$\int\limits_{\mathfrak{S}} f(M) \, \mathrm{d} \, x_j \coloneqq \int_a^b f\big(\Gamma(t)\big) \gamma_j' \, \, \mathrm{d} \, t$$

Определение 25.

$$c_0 = a < c_1 < \dots < c_m < b = c_{m+1}$$

$$\stackrel{\smile}{\Gamma}[a,b], \qquad \Gamma([c_{k-1},c_k])-C^1$$
-кривая при $k=1,\ldots,m+1$

Тогда

$$\int_{\Gamma} f(M) \, \mathrm{d} x_j := \sum_{k=1}^{m+1} \int_{\Gamma([c_{k-1}, c_k])} f(M) \, \mathrm{d} x_j$$

Определение 26. $\Gamma-C^1$ -кривая, $f\in\mathcal{C}\left(\Gamma\right)$, $\mathbf{T}=\left\{\,t_k\,\right\}_{k=0}^m$, $\mathbf{P}=\left\{\,\tau_k\,\right\}_{k=1}^m$, $\tau_k\in[t_{k-1},t_k]$ Суммой Римана для интеграла второго рода будем называть

$$\mathbf{S}_{\overset{\frown}{\Gamma}}(f, \mathtt{T}, \mathtt{P}, j) = \sum_{k=1}^m f \big(\Gamma(\tau_k) \big) \bigg(\gamma_j(t_k) - \gamma_j(t_{k-1}) \bigg)$$

Теорема 59. $\overset{\smile}{\Gamma} - C^1$ -кривая

$$\implies \forall \varepsilon > 0 \quad \exists \, \delta > 0 : \quad \forall \mathtt{T} : t_{k+1} - t_k < \delta \quad \forall \mathtt{P} \quad \left| \mathtt{S}_{\overset{\smile}{\Gamma}}(f, \mathtt{T}, \mathtt{P}, j) - \int\limits_{\overset{\smile}{\Gamma}} f(M) \ \mathrm{d} \, x_j \right| < \varepsilon$$

To ecth, $S \to \int$.

Доказательство. $\gamma'_{\nu} \in \mathcal{C}([a,b])$

$$c_1 > 0 \quad |\gamma'_n(t)| \le c_1 \quad \forall t \in [a, b], \quad \nu = 1, \dots, n$$

$$\int_a^b f(\Gamma(t)) \gamma_j'(t) dt \stackrel{\text{def}}{=} \sum_{k=1}^m \int_{t_{k-1}}^{t_k} f(\Gamma(t)) dt$$

$$\Longrightarrow S(\dots) - \int_{a}^{b} f\left(\Gamma(t)\right) \gamma_{j}'(t) dt \xrightarrow{\text{def S}}$$

$$= \sum_{k=1}^{m} \left(f\left(\Gamma(\tau_{k})\right) \left(\gamma_{j}(t_{k}) - \gamma_{j}(t_{k})\right) - \int_{t_{k-1}}^{t_{k}} f\left(\Gamma(t)\right) \gamma_{j}'(t) dt \right) \xrightarrow{\text{ф. Ньютона-Лейбница}}$$

$$= \sum_{k=1}^{m} \left(f\left(\Gamma(\tau_{k})\right) \int_{t_{k-1}}^{t_{k}} \gamma_{j}'(t) dt - \int_{t_{k-1}}^{t_{k}} f\left(\Gamma(t)\right) \gamma_{j}'(t) dt \right) \xrightarrow{\text{в первом слагаемом вносим константу}}$$

$$= \sum_{k=1}^{m} \int_{t_{k-1}}^{t_{k}} \left(f\left(\Gamma(\tau_{k})\right) - f\left(\Gamma(t)\right) \right) \gamma_{j}'(t) dt \quad (199)$$

По теореме Кантора f равномерно непрерывна на Γ :

$$\exists \lambda > 0: \quad \forall M', M'' \in \Gamma \quad \left(\|M'' - M'\| < \lambda \implies |f(M'') - f(M')| < \varepsilon \right)$$
 (200)

В конце прошлой лекции мы выяснили, что

$$|t'' - t'| < \delta \implies ||\Gamma(t'') - \Gamma(t')|| \le c_1 \sqrt{n\delta}$$
(201)

 c_1 играло ту же роль, что сейчас ε .

Выберем δ так, чтобы выполнялось

$$c_1\sqrt{n}\delta = \lambda \tag{202}$$

Если $t_k - t_{k-1} < 0$, то при $t \in [t_{k-1}, t_k], \quad \tau \in [t_{k-1}, t_k]$ выполнено

$$|t - \tau| < \delta, \qquad k = 1, \dots, m$$

Тогда

$$(200), (201), (202) \implies \left| f(\Gamma(\tau_k)) - f(\Gamma(t)) \right| < \varepsilon$$

$$\frac{1}{(199)} \left| \mathbf{S}_{\Gamma}(\dots) - \int_{\Gamma} f(M) \, \mathrm{d} \, x_j \right| \stackrel{\triangle}{\leq} \sum_{k=1}^m \left| \int_{t_{k-1}}^{t_k} \left(f(\Gamma(\tau_k)) - f(\Gamma(t)) \right) \gamma_j' \, \mathrm{d} \, t \right| \leq \\
\leq \sum_{k=1}^m \int_{t_{k-1}}^{t_k} \left| f(\Gamma(\tau_k)) - f(\Gamma(t)) \right| \cdot |\gamma_j'| \, \mathrm{d} \, t < \sum_{k=1}^m \int_{t_{k-1}}^{t_k} \varepsilon |\gamma_j'(t) \, \mathrm{d} \, t = \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\
= \varepsilon \int_a^b |\gamma_j'(t)| \, \mathrm{d} \, t \leq$$

72. Зависимость криволинейного интеграла второго рода от ориентации кривой

Следствие.

$$\Gamma(t_k) =: M_k = \begin{bmatrix} x_{1k} \\ \vdots \\ x_{nk} \end{bmatrix}, \qquad \Gamma(\tau_k) =: N_k$$

$$\implies x_{jk} = \gamma_j(t_k)$$

$$\implies \mathbf{S}_{\Gamma}(f, \mathbf{T}, \mathbf{P}, j) = \sum_{k=1}^m f(N_k)(x_{jk} - x_{j-k-1})$$

 N_k лежит на дуге $\Gamma(M_{k-1},M_k)$

В этой формуле нет отображения. Есть только образ и ориентация.

Значит, криволинейный интеграл второго рода зависит только от образа и ориентации кривой.

Свойство. Определим $t_{\nu}' \coloneqq t_{m-\nu}, \quad \tau_{\nu}' \coloneqq \tau_{m-\nu+1}$

$$T' := \{ t_k \}_{k=0}^m, \qquad P' := \{ \tau_k \}_{m=1}^m, \qquad M'_{\nu} = M_{m-\nu}, \qquad N'_{\nu} = N_{m-\nu+1}$$

В соответствии с выбранной ориентацией проходились точки M_0,\ldots,M_m

Точки M_0', \dots, M_m' — это те же самые точки, проходимые в обратном порядке. То есть мы имеем дело с противоположной ориентацией $\overset{\longleftarrow}{\Gamma}$

$$x'_{j\nu} = x_{j\ m-\nu}$$

$$\begin{split} \widetilde{\mathbf{S}} &= \sum_{k=1}^{m} f(N_{k}')(x_{jk}' - x_{j\ k-1}') = \left[\mathbf{S}_{\widetilde{\Gamma}}(f, \mathbf{T}', \mathbf{P}', j)\right] = \sum_{k=1}^{m} f(N_{m-k+1})(x_{j\ m-k} - x_{j\ m-k+1}) = \\ &= -\sum_{k=1}^{m} f(N_{m-k+1})(x_{j\ m-k+1} - x_{j\ m-k}) \xrightarrow[m-k+1=:\nu]{} - \sum_{\nu=m}^{1} f(N_{\nu})(x_{j\nu} - x_{j\ \nu-1}) \xrightarrow[k:=\nu]{} - \mathbf{S}_{\widetilde{\Gamma}}(f, \mathbf{T}, \mathbf{P}, j) \end{split}$$

73. Свойства криволинейного интеграла второго рода

Свойства.

$$1.\ \stackrel{\smile}{\Gamma}=\bigcup_{j=1}^l\stackrel{\smile}{\Gamma}_j,\qquad \stackrel{\smile}{\Gamma}_j-C^1\text{-кривая},\qquad f\in\mathcal{C}\big(\Gamma\big)$$

$$\Longrightarrow \int\limits_{\smile} f(M)\;\mathrm{d}\,x_j=-\int\limits_{\smile} f(M)\;\mathrm{d}\,x_j$$

2.
$$\Gamma: [a, b] \to \mathbb{R}^n$$
, $\Gamma(t) \in \mathcal{C}([a, b])$, $c \in \mathbb{R}$

$$\Gamma(t) = \begin{bmatrix} \gamma_1(t) \\ \vdots \\ \gamma_n(t) \end{bmatrix}$$

$$\implies \int c \, dx_j = c(\gamma_j(b) - \gamma_j(a))$$

В частности, если $\Gamma(a) = \Gamma(b)$, то

$$\int_{\bigcirc} = \mathrm{d}\,x_j 0$$

3.
$$\Gamma = \bigcup_{\nu=1}^{l} \Gamma_{\nu}, \qquad f \in \mathcal{C}(\Gamma)$$

$$\left| \int_{\Gamma} f(M) \, \mathrm{d}x_j \right| \leq \int_{\Gamma} |f(M)| \, \mathrm{d}l(M)$$

Доказательство.

1. • Докажем для C^1 -кривой:

$$\forall \varepsilon > 0 \quad \exists \, \delta > 0 : \quad \forall \mathtt{T} \quad \forall \mathtt{P} : t_k - t_{k-1} < \delta \quad \left| \mathtt{S}_{\overset{\frown}{\Gamma}}(f, \mathtt{T}, \mathtt{P}, j) - \int\limits_{\overset{\frown}{\Gamma}} f(M) \; \mathrm{d} \, x_j \right| < \varepsilon$$

В силу свойства о зависимости от ориентации,

$$\left| \mathbb{S}_{\widetilde{\Gamma}}(f, \mathbf{T}', \mathbf{P}', j) - \int_{\widetilde{\Gamma}} f(M) \, dx_j \right| < \varepsilon$$

$$\begin{split} \left| \int\limits_{\Gamma} f(M) \, \mathrm{d} \, x_j + \int\limits_{\Gamma} f(M) \, \mathrm{d} \, x_j \right| &= \\ &= \left| \left(\int\limits_{\Gamma} f(M) \, \mathrm{d} \, x_j - \mathrm{S}_{\Gamma}(f, \mathsf{T}, \mathsf{P}, j) \right) + \left(\int\limits_{\Gamma} f(M) \, \mathrm{d} \, x_j - \mathrm{S}_{\Gamma}(f, \mathsf{T}', \mathsf{P}', j) \right) \right| \stackrel{\triangle}{\leq} \\ &\leq \left| \int\limits_{\Gamma} f(M) \, \mathrm{d} \, x_j - \mathrm{S}_{\Gamma}(f, \mathsf{T}, \mathsf{P}, j) \right| + \left| \int\limits_{\Gamma} f(M) \, \mathrm{d} \, x_j - \mathrm{S}_{\Gamma}(f, \mathsf{T}', \mathsf{P}', j) \right| < \varepsilon + \varepsilon = 2\varepsilon \end{split}$$

• Общий случай:

$$\overset{\smile}{\Gamma} = \bigcup_{\nu=1}^{l} \overset{\smile}{\Gamma}_{\nu} \quad \Longleftrightarrow \quad \overset{\smile}{\Gamma} = \bigcup_{\nu=1}^{l} \overset{\smile}{\Gamma}_{\nu}$$

$$\int_{\Gamma} f(M) \, dx_j \stackrel{\text{def}}{=} \sum_{\nu=1}^{l} \int_{\Gamma_{\nu}} f(M) \, dx_j = \sum_{\nu=1}^{l} \left(- \int_{\Gamma_{\nu}} f(M) \, dx_j \right) =$$

$$= - \sum_{\nu=1}^{l} \int_{\Gamma} f(M) \, dx_j \stackrel{\text{def}}{=} \int_{\Gamma} f(M) \, dx_j$$

2. •
$$C^1$$
-кривая

$$\int\limits_{\bigcap} \stackrel{\mathrm{def}}{=} \mathrm{d}\, x_j \int_a^b c \gamma_j'(t) \; \mathrm{d}\, t \xrightarrow[\Phi. \text{ Ньютона}-\mathrm{Лейбница}]{} c \big(\gamma_j(b) - \gamma_j(a) \big)$$

$$ullet$$
 $\overset{\smile}{\Gamma} = \bigcup_{
u=1}^l \overset{\smile}{\Gamma}_
u, \qquad \Gamma([t_{k-1},t_k]) - C^1$ -кривая

$$\int_{\Gamma} c \, \mathrm{d} x_j \stackrel{\mathrm{def}}{=} \sum_{\nu=1}^l \int_{\Gamma[t_{\nu-1}, t_{\nu}]} = \mathrm{d} x_j \sum_{\nu=1}^l c \left(\gamma(t_{\nu}) - \gamma(t_{\nu-1}) \right) = c \left(\gamma(t_l) - \gamma(t_0) \right) \stackrel{\mathrm{def} t_0, t_l}{=} c \left(\gamma(b) - \gamma(a) \right)$$

3. • $\Gamma \in C^1$

$$\begin{split} \left| \int\limits_{\Gamma} f(M) \, \mathrm{d} \, x_j \right| & \stackrel{\mathrm{def}}{=} \left| \int_a^b f \big(\Gamma(t) \big) \gamma_j'(t) \, \mathrm{d} \, t \right| \leq \int_a^b |f| \big(\Gamma(t) \big) \big| \cdot |\gamma_j'(t)| \, \mathrm{d} \, t \leq \\ & \leq \int_a^b \left| f \big(\Gamma(t) \big) \big| \, \| \mathcal{D} \Gamma(t) \|_n \, \, \mathrm{d} \, t \stackrel{\mathrm{def}}{=} \int\limits_{\Gamma} f(M) \, \, \mathrm{d} \, l(M) \end{split}$$

$$ullet$$
 $\Gamma = igcup_{
u=1}^l \ \Gamma_
u, \qquad \Gamma_
u - C^1$ -кривая

$$\left| \int_{\Gamma} f(M) \, \mathrm{d} x_j \right| \stackrel{\text{def}}{=} \left| \sum_{\nu=1}^l \int_{\Gamma_{\nu}} f(M) \, \mathrm{d} x_j \right| \le \sum_{\nu=1}^l \left| \int_{\Gamma_{\nu}} f(M) \, \mathrm{d} x_j \right| \stackrel{\triangle}{\le}$$

$$\le \sum_{\nu=1}^l \int_{\Gamma_{\nu}} |f(M)| \, \mathrm{d} l(M) = \int_{\Gamma} f(M) \, \mathrm{d} l(M)$$

Часть IV

Теория функции комплексной переменной

74. Определение аналитической в области функции

Определение 27. $E \subset \mathbb{C}$ — область, $f(z) = u(x,y) + iv(x,y) : E \to \mathbb{C}$, $u,v: E* \to \mathbb{R}$ Будем говорить, что $f \in \mathcal{C}^1(E)$, если $u \in \mathcal{C}^1(E^*)$ и $v \in \mathcal{C}^1(E^*)$

Утверждение 13. $f \in \mathcal{C}^1(E)$

Тогда f дифференцируема в $\forall z \in E$.

Доказательство. По определению $u, v \in \mathcal{C}^1(E^*)$, поэтому по достаточному условию дифференциуемости функции u, v дифференцируемы для $\forall (x, y) \in E$.

Тогда, по определению, $f^*(x,y)$ дифференцируема $\forall (x,y) \in E$.

Значит, f дифференцируема для $\forall z \in E$.

Определение 28. $E\subset \mathbb{C}$ — область, $f:E o \mathbb{C}$

 Φ ункцию f будем называть аналитической, если

- 1. $f \in C^1(E)$;
- 2. $\forall z \in E \quad f_{\overline{z}}' = 0$.

Замечание. По предыдущему утверждению f(z) дифференцируема $\forall z \in E$, поэтому для $\forall z \in E$ определены $f_x'(z), f_y'(z), f_z'(z), f_{\overline{z}}'(z)$.

Обозначение. Множество всех функций, аналитических в E, будем обозначать A(E).

75. Свойства частных производных комплекснозначных функций

Свойства. $E\subset \mathbb{C}$ — область, $z\in E,$ f,g дифференцируемы в z, λ — любой из символов $x,y,z,\overline{z}.$

1.
$$\left(cf(z)\right)'_{\lambda} = cf'_{\lambda}(z)$$

2.
$$\left(f(z) + g(z)\right)'_{\lambda} = f'_{\lambda}(z) + g'_{\lambda}(z)$$

3.
$$\left(f(z)g(z)\right)_{\lambda}' = f_{\lambda}'(z)g(z) + f(z)g_{\lambda}'(z)$$

4. $f(z) \neq 0$

$$\left(\frac{1}{f(z)}\right)_{\lambda}' = -\frac{f_{\lambda}'(z)}{f^2(z)}$$

5. $f(z) \neq 0$

$$\left(\frac{g(z)}{f(z)}\right)_{\lambda}' = \frac{g_{\lambda}'(z)f(z) - g(z)f_{\lambda}'(z)}{f^{2}(z)}$$

Доказательство. Доказательства проводятся проверкой возникающих тождеств. Докажем для примера 4 при $\lambda = x$ и при $\lambda = \overline{z}$.

Пусть f(z) = u(x,y) + iv(x,y), $f'_x(z) = u'_x + iv'_x$ (далее не будем писать аргументы).

$$\frac{1}{f} = \frac{1}{u + iv} = \frac{u - iv}{u^2 + v^2} = \frac{u}{u^2 + v^2} - i\frac{v}{u^2 + v^2}$$

$$\begin{split} \left(\frac{1}{f}\right)_x' &= \left(\frac{u}{u^2+v^2}\right)_x' - i\left(\frac{v}{u^2+v^2}\right)_x' = \frac{u_x'(u^2+v^2) - 2u(uu_x'+vv_x')}{(u^2+v^2)^2} - i\frac{v_x'(u^2+v^2) - 2v(uu_x'+vv_x')}{(u^2+v^2)^2} = \\ &= \frac{u_x'v^2 - 2uvv_x' - u^2ux' - i(v_x'u^2 - 2uvu_x'-v^2v_x')}{(u^2+v^2)^2} = \frac{(u_x'+iv_x')(v^2-u^2) - 2uv(v_x'-iu_x')}{(u^2+v^2)^2} = \\ &= \frac{f_x'(v^2-u^2) + 2uvi(u_x'+iv_x')}{(u^2+v^2)^2} = f_x' \cdot \frac{v^2-u^2 + 2uvi}{(u^2+v^2)^2} = f_x' \cdot \frac{(v+iu)^2}{(u^2+v^2)^2} = -f_x' \cdot \frac{(u-iv)^2}{(u^2+v^2)^2} = \\ &= -f_x' \cdot \frac{((u-iv)^2)}{(u-iv)^2(u+iv)^2} = -f_x' \cdot \frac{1}{(u+iv)^2} = -\frac{f_x'}{f^2} \\ &\left(\frac{1}{f}\right)_z' = \frac{1}{2} \left(\left(\frac{1}{f}\right)_x' + i\left(\frac{1}{f}\right)_y'\right) = \frac{1}{2} \left(-\frac{f_x'}{f^2} - i\frac{f_y'}{f^2}\right) = -\frac{1}{2} \cdot \frac{1}{f^2} (f_x' + if_y') = -\frac{f_z'}{f^2} \end{split}$$

76. Формула для дифференцируемой функции

Пусть $\sigma \coloneqq s+it, \qquad E \subset \mathbb{C}$ — область, $\qquad z_\circ \in E, \qquad z_\circ + \sigma \in E, \qquad z_\circ \leftrightarrow (x_\circ, y_\circ)$ Предположим, что f(z) дифференцируема в точке z_\circ .

$$f(z_{\circ} + \sigma) - f(z_{\circ}) = f^{*}(x_{\circ} + s, y_{\circ} + t) - f^{*}(x_{\circ}, y_{\circ}) = \left(u(x_{\circ} + s, y_{\circ} + t) - u(x_{\circ}, y_{\circ})\right) + i\left(v(x_{\circ} + s, y_{\circ} + t) - v(x_{\circ}, y_{\circ})\right)$$
(203)

76

В силу дифференцируемости f

$$u(x_{\circ} + s, y_{\circ} + t) - u(x_{\circ}, y_{\circ}) = u'_{x}(x_{\circ}, y_{\circ})s + u'_{y}(x_{\circ}, y_{\circ})t + r_{1}(s, t), \qquad \frac{|r_{1}(s, t)|}{\sqrt{s^{2} + t^{2}}} = \frac{|r_{1}(s, t)|}{|\sigma|} \xrightarrow{\overline{\sigma \to 0}} 0$$

$$v(x_{\circ} + s, y_{\circ} + t) - v(x_{\circ}, y_{\circ}) = v'_{x}(x_{\circ}, y_{\circ})s + v'_{y}(x_{\circ}, y_{\circ})t + r_{2}(s, t), \qquad \frac{|r_{2}(s, t)|}{|\sigma|} \xrightarrow{\overline{\sigma \to 0}} 0$$

Отсюда

$$(203) = \left(u'_x(x_\circ, y_\circ)s + u'_y(x_\circ, y_\circ)t + r_1(s, t)\right) + i\left(v'_x(x_\circ, y_\circ)s + v'_y(x_\circ, y_\circ)t + r_2(s, t)\right) =$$

$$= \left(u'_x(x_\circ, y_\circ) + iv'_x(x_\circ, y_\circ)\right)s + \left(u'_y(x_\circ, y_\circ) + iv'_y(x_\circ, y_\circ)\right)t + r_1(s, t) + ir_2(s, t) =$$

$$= f'_x(z_\circ)s + f'_y(z_\circ)t + r_1(s, t) + ir_2(s, t)$$

Положим $\rho(\sigma) := r_1(s,t) + i r_2(s,t)$. Тогда

$$\frac{|\rho(\sigma)|}{|\sigma|} = \frac{\sqrt{r_1^2(s,t) + r_2^2(s,t)}}{|\sigma|} = \sqrt{\left(\frac{r_1(s,t)}{|\sigma|}\right)^2 + \left(\frac{r_2(s,t)}{|\sigma|}\right)^2} \xrightarrow[\sigma \to 0]{} 0 \tag{204}$$

Понятно, что

$$s = \frac{1}{2}(\sigma + \overline{\sigma}), \qquad t = \frac{1}{2i}(\sigma - \overline{\sigma}) = -\frac{i}{2}(\overline{\sigma} - \sigma)$$

Поэтому

$$f(z_{\circ} + \sigma) - f(z_{\circ}) = f'_{x}(z_{\circ}) \cdot \frac{1}{2} (\sigma + \overline{\sigma}) + \frac{i}{2} f'_{y}(z_{\circ}) (\overline{\sigma} - \sigma) + \rho(\sigma) =$$

$$= \frac{1}{2} \left(f'_{x}(z_{\circ}) - i f'_{y}(z_{\circ}) \right) \sigma + \frac{1}{2} \left(f'_{x}(z_{\circ}) + i f'_{y}(z_{\circ}) \right) \overline{\sigma} + \rho(\sigma) = f'_{z}(z_{\circ}) \sigma + f'_{\overline{z}}(z_{\circ}) \overline{\sigma} + \rho(\sigma) \quad (205)$$

где для $\rho(\sigma)$ выполнено (204).

77. Первые свойства и первые примеры аналитических функций

Свойства. $f, g \in A(E), \qquad c \in E$

- 1. $cf \in A(E)$
- $2. \ f+g \in A(E)$
- 3. $fg \in A(E)$
- 4. $f(z) \neq 0 \implies \frac{1}{f} \in A(E)$
- 5. $f(z) \neq 0 \implies \frac{g}{f} \in A(E)$

Доказательство. Следует из свойств частных производных, например, 4:

$$\left(\frac{1}{f(z)}\right)'_{\overline{z}} = -\frac{f'_{\overline{z}}(z)}{f^2(z)} = \frac{0}{f^2(z)} = 0$$

Примеры.

1.
$$f(z) \equiv c$$
, $c \in \mathbb{C}$

$$c'_x = c'_y \equiv 0 \implies c'_{\overline{z}} \equiv 0$$

2. $f(z) \equiv z$

Уже проверено, что $z_{\overline{z}}' \equiv 0$

3. Пользуясь свойствами аналитических функций 1., 2., 3. и предыдущими примерами, получаем

$$z^2 \in A(\mathbb{C}), \quad z^3 \in A(\mathbb{C}), \quad \dots, \quad z^n \in A(\mathbb{C})$$

$$P(z) = c_0 + c_1 z + \dots + c_n z^n \in A(\mathbb{C})$$

4. Для z=x+iy положим $e^z\coloneqq e^y\cos y+ie^x\sin y$. Тогда

$$(e^z)_x' = (e^x \cos y)_x' + i(e^x \sin y)_x' = e^x \cos y + ie^x \sin y$$
$$(e^z)_y' = (e^x \cos y)_y' + i(e^x \sin y)_y' = -e^x \sin y + ie^x \cos y$$
$$(e^z)_{\overline{z}}' = \frac{1}{2} \left((e^z)_x' + i(e^z)_y' \right) = \frac{1}{2} \left(e^x \cos y + ie^x \sin y + i(-e^x \sin y + ie^x \cos y) \right) = 0$$

5. Пусть $P(z) = c_0 + c_1 z + \dots + c_n z^n$, $Q(z) = b_0 + b_1 z + \dots + b_m z^m$, $m \ge 1$, $\alpha_1, \dots, \alpha_k \in \mathbb{C} -$ все различные корни уравнения Q(z) = 0, $k \le m$.

Тогда по примеру 3. и свойству 5.

$$\frac{P(z)}{Q(z)} \in A(\mathbb{C} \setminus \bigcup_{j=1}^{k} \{ \alpha_j \})$$

6. Пусть $D=\mathbb{C}\setminus (-\infty,0],$ для $z\in D$ пусть φ — аргумент $z, \quad -\pi<\varphi<\pi.$ Положим $\ln z\coloneqq \ln|z|+i\varphi$ для $z\in D.$

Если $z=x+iy,\quad |z|>0,\quad z\in D,$ то φ может быть определён разными формулами при x>0, при $y\geq 0$ или при $y\leq 0.$

Например, при x > 0 $\varphi = \operatorname{arctg} \frac{y}{x}$ и тогда

$$\ln z = \ln \sqrt{x^2 + y^2} = i \operatorname{arctg} \frac{y}{x} = \frac{1}{2} \ln(x^2 + y^2) = i \operatorname{arctg} \frac{y}{x}$$

Тогда

$$(\ln z)_x' = \left(\frac{1}{2}\ln(x^2+y^2)\right)_x' + i\left(\arctan\frac{y}{x}\right)_x' = \frac{x}{x^2+y^2} + i\left(-\frac{y}{x^2} \cdot \frac{1}{1+(\frac{y}{x})^2}\right) = \frac{x}{x^2+y^2} - i\frac{y}{x^2+y^2}$$

$$(\ln z)_y' = \left(\frac{1}{2}\ln(x^2+y^2)\right)_y' + i\left(\arctan\frac{y}{x}\right)_y' = \frac{y}{x^2+y^2} + i\left(\frac{1}{x} \cdot \frac{1}{1+(\frac{y}{x})^2}\right) = \frac{y}{x^2+y^2} + i\frac{x}{x^2+y^2}$$

$$(\ln z)_z' = \frac{1}{2}\left((\ln z)_x' + i(\ln z)_y'\right) = \frac{1}{2}\left(\frac{x}{x^2+y^2} - i\frac{y}{x^2+y^2} + i\left(\frac{y}{x^2+y^2} + i\frac{x}{x^2+y^2}\right)\right) = 0$$

Аналогично, $(\ln z)'_{\overline{z}} = 0$ при $y \ge 0$ и при $y \le 0$. Получаем

$$ln z \in A(D)$$

Утверждение 14. $f\in A(E), \qquad E$ — область, $z\in E, \qquad \sigma\in\mathbb{C}, \quad z+\sigma\in\mathbb{C}$ Тогда

$$f(z+\sigma) - f(z) = f'_z(z)\sigma + \rho(\sigma), \qquad \frac{|\rho(\sigma)|}{|\sigma|} \xrightarrow[\sigma \to 0]{} 0$$
 (206)

Доказательство. Из (205) и того, что $f \in A(E)$ следует, что

$$f(z-\sigma)-f(z)=f'_z(z)\sigma+f'_{\overline{z}}(z)\overline{\sigma}+\rho(\sigma)=f'_z(z)\sigma+\rho(\sigma)$$

где выполнено (204).

78. Эквивалентные определения аналитических функций

Теорема 60.
$$E \subset \mathbb{C}$$
 — область, $f \in \mathcal{C}^1(E)$, $f(z) = u(x,y) + iv(x,y)$

Следующие условия эквивалентны:

1.
$$f'_{\overline{z}}(z) = 0 \quad \forall z \in E$$

2.
$$f(z+\sigma) = f'_z(z)\sigma + \rho(\sigma) \quad \forall z \in E, \qquad \frac{|\rho(\sigma)|}{|\sigma|} \xrightarrow[\sigma \to 0]{} 0$$

3. $\forall z=x+iy$ выполнены уравнения Коши—Римана:

$$\left. \begin{array}{l} u_x'(x,y) = v_y'(x,y) \\ u_y'(x,y) = -v_x'(x,y) \end{array} \right\}$$

4.

$$\forall z \in E \quad \exists \lim_{\sigma \to 0} \frac{f(z+\sigma) - f(z)}{\sigma} \in \mathbb{C}$$

Этот предел называется комплексной призводной функции f в точке z и обозначается f'(z).

Доказательство.

- Из (206) следует, что 1. \implies 2.
- Если выполнено 2., то

$$\frac{f(z+\sigma)-f(z)}{\sigma}=f_z'(z)+\frac{\rho(\sigma)}{\sigma}\xrightarrow[\sigma\to 0]{}f_z'(z),$$

поэтому 2. \implies 4., при этом получаем равенство

$$f'(z) = f_z'(z)$$

• Предположим, что выполнено 4. Положим

$$\frac{f(z+\sigma) - f(z)}{\sigma} := f'(z) = \delta(\sigma)$$

$$\implies f(z+\sigma) - f(z) = f'(z)\sigma + \sigma\delta(\sigma)$$

Положим $\rho_{\circ}(\sigma) := \sigma \delta(\sigma)$. Тогда

4.
$$\Longrightarrow \frac{|\rho_{\circ}(\sigma)|}{|\sigma|} = |\delta(\sigma)| \xrightarrow[\sigma \to 0]{} 0$$

Запишем для f формулу (205):

$$f(z+\sigma) - f(z) = f_z'(z)\sigma + f_{\overline{z}}'(z)\overline{\sigma} + \rho(\sigma), \qquad \frac{|\rho(\sigma)|}{|\sigma|} \xrightarrow[\sigma \to 0]{} 0$$

Вычитая из неё предыдущую формулу, получаем

$$f'_z(z)\sigma + f'_z(z)\overline{\sigma} + \rho(\sigma) - f'(z)\sigma - \rho_o(\sigma) = 0$$

Делим на σ :

$$f'_z(z) - f'(z) + f'_{\overline{z}}(z) \frac{\overline{\sigma}}{\sigma} + \frac{\rho(\sigma)}{\sigma} - \frac{\rho_{\circ}(\sigma)}{\sigma} = 0$$

или

$$f_{\overline{z}}'(z) \frac{\overline{\sigma}}{\sigma} = f'(z) - f_z'(z) + \frac{\rho_{\circ}(\sigma)}{\sigma} - \frac{\rho(\sigma)}{\sigma}$$

$$f'(z) - f'_z(z) + \frac{\rho_o(\sigma)}{\sigma} - \frac{\rho(\sigma)}{\sigma} \xrightarrow[\sigma \to 0]{} f'(z) - f'_z(z)$$

Следовательно, существует $\lim_{\sigma \to 0} f'_{\overline{z}}(z) \frac{\overline{\sigma}}{\sigma} =: A.$

Если $\sigma = s > 0$, то $\overline{\sigma} = \sigma$ и

$$a = \lim_{\sigma \to 0^+} f'_{\overline{z}}(z) \cdot 1 = f'_{\overline{z}}(z)$$

Если положить $\sigma=it,\quad t>0,$ то $\overline{\sigma}=-it,$ и

$$A = \lim_{t \to 0^+} f'_{\overline{z}} \cdot \frac{-it}{it} = -f'_{\overline{z}}$$

$$\implies f'_{\overline{z}} = A = 0$$

To есть, $4. \implies 1.$ и

$$f_z'(z) = f'(z)$$

• Далее,

$$f'_x(z) = u'_x(x,y) + iv'_x(x,y), \qquad f'_y(z) = u'_y(x,y) + iv'_y(x,y)$$

$$\begin{split} f'_{\overline{z}} &= \frac{1}{2} \bigg(f'_x(z) + i f'_y(z) \bigg) = \frac{1}{2} \bigg(\big(u'_x(x,y) + i v'_x(x,y) \big) + i \big(u'_y(x,y) + i v'_y(x,y) \big) \bigg) = \\ &= \frac{1}{2} \bigg(\big(u'_x(x,y) - v'_y(x,y) \big) + i \big(v'_x(x,y) + u'_y(x,y) \big) \bigg) \end{split}$$

Отсюда 1. ⇔ 3.

Следствие. $f \in A(E)$

$$\implies f'(z) = f'_x(z), \qquad z \in E$$

Доказательство. Имеем

$$\begin{split} f_z' &= \frac{1}{2} \big(f_x' - i f_y' \big), \qquad f_{\overline{z}}' = \frac{1}{2} \big(f_x' + i f_y' \big) \\ &\implies f_x' = f_z' + f_{\overline{z}}' \\ f &\in A(E) \implies f_x' = f_z' + 0 = f_z' = f' \end{split}$$

79. Аналитичность суперпозиции аналитических функций; про-изводная суперпозиции

Теорема 61. $E,G\subset\mathbb{C}$ — области, $f\in A(E), \quad f(z)\in G \quad \forall z\in E, \qquad \varphi\in A(G)$ $F:E\to\mathbb{C}, \qquad F(z)\coloneqq\varphi\big(f(z)\big)$ $\Longrightarrow F\in A(E)$

Доказательство. По определению $f \in \mathcal{C}^1(E), \quad \varphi \in \mathcal{C}^1(G).$

Поэтому, по теореме о матрице Якоби, выполнено соотношение

$$F(z) = \varphi(f(z)) \in \mathcal{C}^1(E)$$

Фиксируем $\forall z \in E$.

Пусть $\sigma \in \mathbb{C}$, $\sigma \neq 0$, $z + \sigma \in E$.

Пусть $w \coloneqq f(z), \quad w \in G.$

Будем использовать теорему об эквивалентных определениях аналитических функций.

Пусть $\lambda \in \mathbb{C}$, $\lambda \neq 0$, $w + \lambda \in G$.

Из условия следует соотношение

$$\varphi(w+\lambda) - \varphi(w) = \varphi'(w)\lambda + r(\lambda), \qquad \frac{|r(\lambda)|}{|\lambda|} \xrightarrow[\lambda \to 0]{} 0$$

Положим $r(\lambda) =: \lambda \delta(\lambda)$. Тогда $\delta(\lambda) \xrightarrow[\lambda \to 0]{} 0$.

Положим $\delta(0) := 0$. Тогда можно не рассматривать ограничение $\lambda \neq 0$ при следующей записи:

$$\varphi(w + \lambda) - \varphi(w) = \varphi'(w)\lambda + \lambda\delta(\lambda)$$

(в этих формулах мы пользовались соотношением $\varphi_w'(w)=\varphi'(w)$). Положим $\lambda\coloneqq f(z+\sigma)-f(z).$ Тогда $f(z+\sigma)=f(z)+\lambda=w+\lambda$

$$F(z+\sigma) - F(z) = \varphi(f(z+\sigma)) - \varphi(f(z)) = \varphi(w+\lambda) - \varphi(w) = \varphi'(w)\lambda + \lambda\delta(\lambda) =$$

$$= \varphi'(w)\lambda + \left(f(z+\sigma) - f(z)\right)\delta\left(f(z+\sigma) - f(z)\right)$$

$$\lambda = f(z+\sigma) - f(z) = f'(z)\sigma + \rho(\sigma), \qquad \frac{|\rho(\sigma)|}{|\sigma|}$$

Получаем:

$$F(z+\sigma) - F(z) = \varphi'(w) \left(f'(z)\sigma + \rho(\sigma) \right) + \left(f(z+\sigma) - f(z) \right) \delta \left(f(z+\sigma) - f(z) \right) =$$

$$= \varphi'(2) f'(z)\sigma + \underbrace{\varphi'(w)\rho(\sigma) + \left(f(z+\sigma) - f(z) \right) \delta \left(f(z+\sigma) - f(z) \right)}_{R(\sigma)}$$

$$\frac{R(\sigma)}{\sigma} = \varphi'(w)\frac{\rho(\sigma)}{\sigma} + \frac{f(z+\sigma) - f(z)}{\sigma}\delta\bigg(f(z+\sigma) - f(z)\bigg) \xrightarrow[\sigma \to 0]{} \varphi'(w) \cdot 0 + f'(z) \cdot 0 = 0$$

Значит, $F \in A(E)$.

Следствие. Из последних двух выражений и теоремы о равносильных определениях аналитичности получаем равенство

$$F'(z) = \left(\varphi(f(z))\right)' = \varphi'(f(z)) \cdot f'(z) \tag{207}$$

80. Вычисление $(e^z)'$, $(\ln z)'$, $(z^{\alpha})'$

Примеры.

- 1. Если $P(z) = c_0 + c_1 z + \dots + c_n z^n$, то $e^{P(z)} \in A(\mathbb{C})$
- 2. Пусть $D=\mathbb{C}\setminus (-\infty,0],\quad \alpha\in\mathbb{C},\quad \alpha\neq 0$ Уже проверено, что

$$\ln z \in A(D) \implies \alpha \ln z \in A(D) \implies e^{\alpha \ln z} \in A(D)$$

Далее полагаем при $z \in D$ $z^{\alpha} \coloneqq e^{\alpha \ln z}$.

Рассмотрим случай $\alpha=1$.

$$\ln z \stackrel{\text{def}}{=} \ln |z| + i\varphi$$

$$e^{\ln z} = e^{\ln|z| + i\varphi} \stackrel{\text{def}}{=} e^{\ln|z|} \cdot (\cos\varphi + i\sin\varphi) = |z|(\cos\varphi + i\sin\varphi) = z$$

Полагая $\ln z = f(z), \quad e^w = \varphi(w), \text{ из (207) находим}$

$$(e^{\ln z})' = (e^w)' \cdot (\ln z)'$$

Пусть w = u + iv

$$(e^w)' = (e^w)'_u = (e^u \cos v + ie^u \sin v)'_u = e^u \cos v + ie^u \sin v = e^w$$

Если $w = \ln z$, то

$$(e^w)' = e^w = e^{\ln z} = z$$
$$\implies (e^{\ln z})' = z(\ln z)'$$

Ho
$$e^{\ln z} = z$$
 $\implies (e^{\ln z})' = z' = z'_x = (x + iy)'_x = 1$

Поэтому

$$z(\ln z)' = 1,$$
 $(\ln z)' = \frac{1}{z},$ $z \in D$

Находим при $\alpha \neq 0, 1, \quad z \in D$:

$$(z^{\alpha})' = (e^{\alpha \ln z})' = (e^w)'_{w=\alpha \ln z} \cdot (\alpha \ln z)' = e^{\alpha \ln z} \cdot (\alpha \ln z)'_{x} = \alpha e^{\alpha \ln z} \cdot (\ln z)'_{x} = \alpha e^{\alpha \ln z} \cdot (\ln z)' = \alpha e^{\alpha \ln z} \cdot \frac{1}{z} = \alpha e^{\alpha \ln z} \cdot e^{-\ln z} = \alpha \cdot e^{(\alpha - 1) \ln z} = \alpha z^{\alpha - 1}$$

Здесь использовалась формула $\frac{1}{e^w} = e^{-w}$. Действительно, если w = u + iv, то

$$\frac{1}{e^w} = \frac{1}{e^u(\cos v + i\sin v)} = e^{-u} \cdot \frac{1}{\cos v + i\sin v} = e^{-u} \cdot \frac{\cos v - i\sin v}{\cos^2 v + \sin^2 v} = e^{-u} \left(\cos(-v) + i\sin(-v)\right) = e^{-u-iv} = e^{-w}$$

81. Аналитичность суммы степенного ряда

Теорема 62. Пусть дан степенной ряд

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_{\circ})^n$$

R>0— его радиус сходимости, \quad В — круг сходимости, $\quad z\in$ В. Тогда $f\in A(\mathsf{B}).$

Существует комплексная производная f'(z):

$$f'(z) = \sum_{n=0}^{\infty} nc_n (z - z_0)^{n-1}$$
(208)

Доказательство.

• Рассмотрим сначала случай, когда $z_0 = 0$.

Поскольку |z| < R, $\exists r : |r| + r < R$. Зафиксируем z и r. Так как |z| + r < R,

$$\sum_{n=0}^{\infty} |c|(|z|+r)^n < \infty \tag{209}$$

и $\overline{B}_r(z) \subset B$, то есть

$$\forall w \in \mathbb{C}: |w| \leq r \quad z+w \in \mathtt{B} \quad \Longrightarrow \ f(z+w) \ \mathrm{abc.} \ \mathrm{cxoдutcs}$$

Докажем, что при $w\to 0$ дробь $\frac{f(z+w)-f(z)}{w}$ стремится к правой части (208) с $z_0=0$, то есть к сумме $A\coloneqq \sum nc_nz^{n-1}$.

Для этого надо показать, что при $w \to 0$ бесконечно мала разность

$$\Delta w := \frac{f(z+w) - f(z)}{w} - A = \frac{1}{w} \sum_{n} c_n ((z+w)^n - z^n) - A = \sum_{n} c_n \left(\frac{(z+w)^n - z^n}{w} - nz^{n-1} \right)$$

В полученном ряде слагаемые, соответствующие n=0,1, нулевые. Поэтому

$$|\Delta w| = \left| \sum_{n=2}^{\infty} c_n \left(\frac{(z+w)^n - z^n}{w} - nz^{n-1} \right) \right| \le \sum_{n=2}^{\infty} |c_n| \cdot \left| \underbrace{\frac{(z+w)^n - z^n}{w} - nz^{n-1}}_{\varrho_n(w)} \right|$$

Теперь надо оценить разности $\rho_n(w)$ при $n \geq 2$. Воспользуемся биномом Ньютона:

$$\rho_n(w) = \frac{1}{w} \left(\sum_{k=0}^n C_n^k z^{n-k} w^k - z^n \right) - nz^{n-1} = \frac{1}{w} \sum_{k=1}^n C_n^k z^{n-k} w^k - nz^{n-1} = \frac{1}{w} \sum_{k=2}^n C_n^k z^{n-k} w^k$$

Поскольку $|w| \le r$, отсюда следует нужная нам оценка:

$$|rho_n(w)| = \left| w \sum_{k=2}^n C_n^k z^{n-k} w^{k-2} \right| \le |w| \sum_{k=2}^n C_n^k |z|^{n-k} |w|^{k-2} \le |w| \sum_{k=2}^n C_n^k |z|^{n-k} r^{k-2} \le \frac{|w|}{r^2} (|z| + r)^n$$

Таким образом,

$$|\Delta w| \le \sum_{n=0}^{\infty} |c_n| \cdot |\rho_n(w)| \le \frac{|w|}{r^2} \sum_{n=0}^{\infty} |c_n| \cdot (|z| + r)^n$$

Благодаря неравенству (209), отсюда вытекает, что $\Delta w \xrightarrow[w \to 0]{} 0$.

• Пусть теперь $z_{\circ} \neq 0$. Положим $\widetilde{z} \coloneqq z - \widetilde{z}_{\circ}$.

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n = \sum_{n=0}^{\infty} c_n \widetilde{z}^n =: \widetilde{f}(\widetilde{z}), \qquad f(z + w) = \widetilde{z} + w$$

Ряд $\widetilde{f}(\widetilde{z})-$ это первый случай. Продиффиренцируем его:

$$\frac{f(z+w)-f(z)}{w} = \frac{\widetilde{f}(\widetilde{z}+w)-\widetilde{f}(\widetilde{z})}{w} \xrightarrow[w\to 0]{} \widetilde{f}'(\widetilde{z}) = \sum_{n=0}^{\infty} nc_n \widetilde{z}^{n-1} = \sum_{n=0}^{\infty} nc_n (z-z_0)^{n-1}$$