Functions
Εμπετιοπε
Intensity transformation functions are essential tools for
adjusting pixel intensity values to improve image guality,
enhance features, or extract meaningful information from
digital images.
3.2.1 Image Negatives
Image negatives invert pixel intensity values, transforming
bright areas into dark ones and vice versa. For example, a
negative image of a photograph can highlight details that may
not be readily apparent in the original.
3.2.2 Log Transformations
S.L.L LOY IFWIS FORMALIONS
Log transformations enhance contrast in images by
compressing higher intensity values while expanding lower
ones. This technique is commonly used to reveal details in
shadowed areas or dark regions, as seen in medical imaging
applications such as X-rays.
277
2 2 2 Post / 1/6 - 1
3,2,3 Power-Law (Gamma)

Functions

Intensity transformation functions are essential tools for adjusting pixel intensity values to improve image quality, enhance features, or extract meaningful information from digital images.

3.2.1 Image Negatives

Image negatives invert pixel intensity values, transforming bright areas into dark ones and vice versa. For example, a negative image of a photograph can highlight details that may not be readily apparent in the original.

3.2.2 Log Transformations

Log transformations enhance contrast in images by compressing higher intensity values while expanding lower ones. This technique is commonly used to reveal details in shadowed areas or dark regions, as seen in medical imaging applications such as X-rays.

3.2.3 Power-Law (Gamma)

Transformations
Power-law transformations adjust the overall brightness and contrast of an image using a non-linear mapping function. They are particularly effective for enhancing images with varying illumination conditions or low
contrast, such as astronomical images.
3.2.4 Piecewise-Linear Mransformation Functions
Piecewise-linear transformation functions enable selective enhancement of specific intensity ranges in an image while preserving others. For instance, contrast stretching can be applied to improve the visual appearance of satellite imagery by enhancing specific features while maintaining overall image integrity. Histogram Processing
Histogram processing techniques manipulate the distribution of pixel intensities in an image to achieve desired contrast enhancements or histogram equalization.
3,3,1 Histogram Equalization Histogram equalization redistributes pixel intensities to

achieve a more uniform histogram distribution, resulting
in enhanced contrast and improved visualization of image
details. This technique is commonly used in medical
imaging for better diagnosis and analysis.
3,3,2 Histogram Matching (Specification)
Histogram matching adjusts the intensity distribution of
an image to match a specified target histogram, facilitating
standardized contrast enhancement and normalization
across multiple images. It is often employed in remote
sensing applications for consistent image interpretation.
3.3.3 Local Histogram Processing
Local histogram processing applies histogram-based
techniques to small image regions, enabling localized
contrast adjustments and enhancing specific features
while preserving global image characteristics. This approach
is beneficial for enhancing fine details in microscopy
images or satellite imagery.
3,3.4 Using Histogram Statistics for Image Enhancement
Histogram statistics, such as mean and variance, are
utilized to guide image enhancement operations, enabling
adaptive adjustments based on the image's statistical

properties for optimal visual guality. For example, dynamic
range compression techniques utilize histogram statistics
to enhance the visibility of both bright and dark areas in
an image.
Fundamentals of Spatial Filtering
·
Spatial filtering techniques operate on image neighborhoods
to modify pixel values and achieve various image
enhancement effects.
3.4.1 The Mechanics of Spatial Filtering
Spatial filtering involves convolving an image with a filter
mask to compute weighted sums of pixel values, thereby
modifying the image's appearance or characteristics. This
process is fundamental to numerous image processing
operations, including edge detection, noise reduction, and
feature extraction.
3.4.2 Spatial Correlation and Convolution
Spatial correlation and convolution are mathematical
operations used in spatial filtering to apply filter masks
to image pixels, resulting in blurred, sharpened, or
otherwise modified images. These operations are essential

For implementing a wide range of spatial filtering techniques,
From simple smoothing to complex edge detection algorithms.
3,4,3 Vector Representation of Linear Filtering
Linear Filtering operations can be represented using vector
notation, providing a concise and efficient way to describe
spatial filter masks and their effects on images. This
representation simplifies the implementation and analysis of
linear filtering algorithms, making them easier to
understand and optimize for specific applications.
3.4.4 Generating Spatial Filter Masks
Spatial filter masks define the weights used in spatial
Filtering operations, determining how neighboring pixel values
are combined to produce the filtered output. These masks
can be designed to achieve specific image enhancement goals,
such as blurring, sharpening, or edge detection. Commonly
used filter masks include Gaussian filters for smoothing
and Laplacian filters for edge detection.
Smoothing Spatial Filters
Smoothing filters reduce image noise and blur image details,

resulting in a smoother appearance and improved image
quality.
3.5.1 Smoothing Linear Filters
Smoothing linear filters, such as averaging or Gaussian
Filters, compute the local average of pixel values within a
neighborhood, effectively reducing noise and producing a
smoother image. These filters are widely used in applications such as image denoising, where preserving image details while
removing unwanted noise is essential for accurate analysis
and interpretation.
3.5.2 Order-Statistic (Nonlinear) Filters
Order-statistic filters, such as median filters, replace pixel
values with specific order statistics from neighboring pixels,
making them robust against outliers and highly effective for
noise reduction, especially in salt-and-pepper noise scenarios.
These filters are particularly useful in applications such as
medical imaging and remote sensing, where preserving image
details and removing noise artifacts are critical for reliable
diagnosis and analysis.

