Human Brain VS Computer

Motivation

- Human mind Computer
- Good at image recognition, pattern recognition etc
- Good at arithmetic calculations

 $2574304 \times e^{354} \div \tan 5.1\pi$

Handwriting recognition

Making precise rules is difficult

Neural Networks

Neural Networks creates own complex pattern recognition rules

Pattern recognition

Training data

Future Prediction

Dataset

Fashion MNIST

We will classify images into 10 fashion items

Pullover (Pullover)

Sandal (Sandal)

Trouser (Trouser)

Sandal (Sandal)

Sneaker (Sneaker)

Course Flow

Artificial Neuron

Biological Neuron

Artificial Neuron

Artificial Neuron

Purchasing a Shirt

Color

• Blue or Not

Sleeves

• Full or half

Fabric

• Cotton or not

Purchasing a Shirt

Color

• Blue or Not

Sleeves

• Full or half

Fabric

• Cotton or not

Purchasing a Shirt

Color

• Blue or Not

Sleeves

• Full or half

Fabric

• Cotton or not

Color	Sleeves	Fabric	Calculated Sum	Threshold	Buy / Not Buy
Blue	Half	Non Cotton	7*1 + 4*0 + 2*0 = 7	8	Not buy
Blue	Full	Non Cotton	11	8	Buy
Not Blue	Full	Cotton	6	8	Not Buy

Purchasing a Shirt

Color

• Blue or Not

Sleeves

• Full or half

Fabric

• Cotton or not

Removing Binary Restriction

Standard Equation

$$Output = \begin{cases} 0, & \sum_{j} w_{j} x_{j} + b < 0 \\ 1, & \sum_{j} w_{j} x_{j} + b \ge 0 \end{cases}$$

b is called Bias

Graphical Representation

Step Activation function

Sigmoid Activation

Sigmoid Activation function

Sigmoid Activation

Sigmoid Activation function

- Sigmoid is better because it is less sensitive to individual observation
- Artificial neuron with sigmoid activation is called sigmoid or logistic neuron

$$\sigma(z) \equiv rac{1}{1+e^{-z}}, \hspace{1cm} \mathit{Output} = \hspace{1cm} rac{1}{1+\exp(-\sum_{j}w_{j}x_{j}-b)}.$$

Two types of Stacking

Parallel

Sequential

Parallel Stacking

With parallel stacking we can get multiple outputs with the same input

Sequential Stacking

Why not use a single neuron

Sequential Stacking

Single neuron can handle such linear classification problem

Sequential Stacking

Each neuron can focus on the particular features of the object instead of the final outcome

Nomenclature

Nomenclature

Feed Forward Network

One directional processing

Fully connected network — Output from a neuron goes to all neurons of next layer

Deep Learning

Such artificial neural networks primarily constitutes deep learning

Deep Learning

More number of layers => Deeper network => More complex relationships

Neural Network

How it works

Covered till Now

What is a neural network

Now we are going to learn

How does a neural network works

Problem Statement

Quick Recap

$$\sigma(z) \equiv rac{1}{1 + e^{-z}}$$

$$Output = \frac{1}{1 + \exp(-\sum_{j} w_{j} x_{j} - b)}.$$

Problem Statement

• Establish the values of weights and biases so that predicted output is as close to actual output as possible

Problem Statement

Example

Variables to be established in this neural network

- Weights W1, W2.....W6
- Biases B1, B2, B3

Total - 9 variables

Neural Network

Gradient Descent

- GD is an optimization technique to find minimum of a function
- Better than other technique such as OLS when we have large number of features and complex relationships

Gradient Descent

 Assign random W and B values Step 1 Calculate final output using these values Step 2 • Estimate error using error function Step 3 • Find those W and B which can reduce this error Step 4 Update W and B and repeat from step 2 Step 5

Initialization

Forward

Propagation

Backward

Propagation

Implementati

on of GD

Process

Neural Network

Gradient Descent

Neural Network

Gradient Descent

- 1. Start at a random point
- 2. Find out the **instantaneous slope** at that point
- 3. Slightly move in the direction of steepest slope
- 4. Reiterate

radiant Daggert

