Tarea seis.

Teoría de números uno.

Contreras Mendoza Ximena de la Luz

12 de mayo de 2020

Proposición 1.

Sea m = 6. Veamos que los números primos son congruentes a 1 ó a 5 (módulo 6), salvo 2 y 3 que son congruentes a 2 y 3 respectivamente.

En efecto sea p primo con $p \ge 5$. Si $p = 5 \Rightarrow p \equiv 5 \pmod{6}$ supongamos p > 5, en particular p es impar entonces p no puede ser de la forma 6k + 2, 6k + 4 ni 6k.

Si p es de la forma 6k + 2 = 2(3k + 1) entonces p es par ¡contradicción!.

Si p es de la forma 6k + 4 = 2(3k + 2) entonces p es par jcontradicción!.

Si p es de la forma 6k = 2(3k) entonces p es par ¡contradicción!.

Entonces a p le queda ser de la forma 6k + 1, 6k + 3 ó 6k + 5. Observemos que sí p es de la forma

 $6k + 3 = 3(3k + 1) \Rightarrow 3 \mid p$;contradicción! pues p > 5. Por lo tanto si p es un primo impar debe de ser de la forma 6k + 1 ó 6k + 5. Solo para confirmar veamos que, efectivamente los números de la forma 6k + 1 ó 6k + 5 son impares. 6k + 1 = 2(3k) + 1 número impar y 6k + 5 = 2(3k + 1) + 1 número impar. \star

Ejercicio 1. Pruebe que hay una infinidad de primos p que son congruentes a 5 módulo 6, es decir $\#\{p \in \mathbb{P} : p \equiv 5 \pmod{6}\} = \infty$

Demostración. Supongamos que hay una cantidad finita de primos p congruentes a 5 módulo 6.

Sea $\mathbb{P}_{\equiv 5} := \{p_1, ..., p_t\}$ donde $p_1 = 5$ y para toda $i \geq 2$, $p_i > 5$. Sea $N = 6(p_2 \cdot ... \cdot p_t) + 5$. Como N > 1 $\exists q \in \mathbb{P}$ tal que $q \mid N$.

Observación 1. $q \neq 5$

Si $q = 5 \Rightarrow 5 \mid N = 6(p_2 \cdot ... \cdot p_t) + 5$ como $5 \mid 5 \Rightarrow 5 \mid 6(p_2 \cdot ... \cdot p_t) \Rightarrow 5 \mid 6 \circ 5 \mid p_1 \circ ... \circ 5 \mid p_t$ ¡contradicción!. Por lo tanto $q \neq 5$.

Observación 2. $q \notin \mathbb{P}_{\equiv 5}$

Si $q \in \mathbb{P}_{\equiv 5} \Rightarrow q = p_i$ para alguna $i \in \{2, ..., t\}$ y de esta manera $q \mid 6(p_2 \cdot ... \cdot p_t) \Rightarrow q \mid N - 6(p_2 \cdot ... \cdot p_t) = 5$ jcontradicción!.

Concluimos que $q \in \mathbb{P}$ tal que $q \notin \mathbb{P}_{\equiv 5}$. Entonces por la **Proposición 1.** debe suceder que $q \equiv 1 \pmod{6}$. Hemos probado que todos los divisores primos de N son congruentes a 1 módulo 6. Sea $N = q_1, ..., q_n$ factorización en primos de N. Por lo anterior tenemos que

$$5 \equiv 0 + 5 \equiv 6(p_2 \cdot ... \cdot p_t) + 5 \equiv N \equiv q_1, ..., q_n \equiv 1 \pmod{6}$$

Por lo tanto $5 \equiv 1 \pmod{6}$ ¡contradicción!. Por lo tanto N no puede existir. Esta contradicción surge de suponer que $\mathbb{P}_{\equiv 5}$ es finito. Por lo tanto $\mathbb{P}_{\equiv 5}$ debe ser infinito.

Ejercicio 2. Sea $n \in \mathbb{Z}^+$ con expansión decimal $n = a_s \cdot ... \cdot a_0$ es decir $n = a_0 + 10a_1 + ... + 10^s a_s$. Pruebe que $11 \mid n \iff 11 \mid a_0 - a_1 + ... + a_s(-1)^s$

Demostración. Sea $n \in \mathbb{Z}^+$ con expansión decimal $n = a_0 + 10a_1 + ... + 10^s a_s$. Por otro lado, observemos que $10 \equiv -1 \pmod{11} \Rightarrow 10^k \equiv (-1)^k \pmod{11}$ para toda k > 0. Entonces

$$n \equiv a_0 + 10a_1 + \dots + 10^s a_s \equiv a_0 - a_1 + \dots + (-1)^s a_s \pmod{11}$$

 \therefore $n \equiv a_0 - a_1 + \dots + (-1)^s a_s \pmod{11}$ Por lo tanto

$$11 \mid n \Longleftrightarrow n \equiv 0 \pmod{11} \Longleftrightarrow a_0 - a_1 + \ldots + (-1)^s a_s \equiv 0 \pmod{11} \Longleftrightarrow 11 \mid a_0 - a_1 + \ldots + (-1)^s a_s \equiv 0 \pmod{11}$$

Ejercicio 3. Pruebe que la ecuación $7x^3 + 2 = y^3$ no tiene solución en los enteros.

Demostración. Tomemos la ecuación

$$7x^3 + 2 = y^3 \tag{1}$$

Supongamos $\exists x_0, y_0 \in \mathbb{Z}$ tal que son solución a la ecuación (1) es decir $7(x_0)^3 - (y_0)^3 + 2 = 0$ entonces la congruencia $7(x_0)^3 - (y_0)^3 + 2 \equiv 0 \pmod{m}$ se satisface para cualquier m > 0. Consideremos m = 7 entonces

$$(y_0)^3 \equiv 7(x_0)^3 + 2 \equiv 2 \pmod{7}$$

Veamos que ningún entero cumple la congruencia

$$x^3 \equiv 2 \pmod{7} \tag{2}$$

0	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	31	32	33	34
35	36	37	38	39	40	41

Cuadro 1: Congruencias del siete.

Tenemos los siguientes valores 0, 1, 2, 3, 4, 5 y 6. Sustituimos en la ecuación (2) tenemos:

$$\begin{array}{lll} 0^3 \equiv 0 \pmod{7} \\ 1^3 \equiv 1 \pmod{7} \\ 2^3 = 8 \equiv 1 \pmod{7} \\ 3^3 = 27 \equiv 6 \pmod{7} \\ 4^3 = (16)(4) \equiv (2)(4) \equiv 8 \equiv 1 \pmod{7} \\ 5^3 = (25)(5) \equiv (4)(5) \equiv 20 \equiv 6 \pmod{7} \\ 6^3 = (36)(6) \equiv (1)(6) \equiv 6 \pmod{7} \end{array}$$

Por lo tanto ningún entero elevado al cubo puede ser congruente con dos módulo siete. Por lo tanto nuestra solución no es entera i.e. $x_0, y_0 \notin \mathbb{Z}$

Ejercicio 4. Sea f un polinomio con coeficientes enteros y sea m > 1 fijo. Pruebe que podemos descomponer una ecuación módulo m en varias ecuaciones módulo potencias de primos según la factorización de m.

 $\begin{aligned} & Demostraci\'on. \ \text{Escribimos lo que queremos probar. Sea } m > 1 \ \text{fijo con factorizaci\'on en primos } m = p_1^{\beta_1} \cdots p_s^{\beta_s}. \end{aligned} \\ & \text{Pruebe que } \exists x_0 \in \mathbb{Z} \ \text{tal que } f(x_0) \equiv 0 \pmod{m} \iff \exists x_0 \in \mathbb{Z} \ \text{tal que } f(x_0) \equiv 0 \pmod{p_i^{\beta_i}} \ \forall i = 1, ..., s \end{aligned}$

 \Rightarrow) Sea $f(x) \in \mathbb{Z}[x]$. Por hipótesis $\exists x_0 \in \mathbb{Z}$ tal que

$$f(x_0) \equiv 0 \pmod{m} \Leftrightarrow m \mid f(x_0) - 0 \Rightarrow f(x_0) = mk = (p_1^{\beta_1} \cdots p_s^{\beta_s})k$$

Podemos factorizar alguna $p_i^{\beta_i}$ con $1 \le i \le s$ es decir

$$f(x_0) = p_i^{\beta_i}(p_1^{\beta_1} \cdots (p_{i-1}^{\beta_{i-1}})(p_{i+1}^{\beta_{i+1}}) \cdots p_s^{\beta_s})k \quad \Rightarrow \quad p_i^{\beta_i} \mid f(x_0) \Leftrightarrow f(x_0) \equiv 0 \pmod{p_i^{\beta_i}} \ \forall \ i=1,...,s.$$

 \Leftarrow) Sea $f(x) \in \mathbb{Z}[x]$. Consideremos el Mínimo Común Múltiplo de $p_1^{\beta_1},...,p_s^{\beta_s}$

$$[p_1^{\beta_1},...,p_s^{\beta_s}] = \frac{p_1^{\beta_1} \cdots p_s^{\beta_s}}{(p_1^{\beta_1},...,p_s^{\beta_s})} = \frac{m}{1}$$

Por hipótesis $\exists x_0 \in \mathbb{Z}$ tal que $f(x_0) \equiv 0 \pmod{p_i^{\beta_i}} \ \forall i = 1, ..., s \Longleftrightarrow p_i^{\beta_i} \mid f(x_0) \quad \forall i$. Entonces por definición de Mínimo Común Múltiplo

$$m = [p_1^{\beta_1}, ..., p_s^{\beta_s}] \mid f(x_0) \iff f(x_0) \equiv 0 \pmod{m}$$