macauff:

Matching Across Catalogues using the Astrometric Uncertainty Function and Flux; or, how to get robust source counterpart identification in the crowded LSST sky

Nearest neighbour matching

Right Ascension / degrees

Not going to work with LSST!

macauff:

Matching Across Catalogues using the Astrometric Uncertainty Function and Flux; or, how to get robust source counterpart identification in the crowded LSST sky

Use probabilistic ————— Why should you use our Bayesian cross-match service? matching instead!

macauff:

Matching Across Catalogues using the Astrometric Uncertainty Function and Flux; or, how to get robust source counterpart identification in the crowded LSST sky

Why is this important for LSST?

3) Extension to include unknown proper motions, crucial for LSST on long timelines

Why should you use our Bayesian cross-match service?

- 4) Real time alert matches important to model astrometry of bright and faint sources right!
- 5) We will provide information on how much contamination sources suffer
- 6) Many LSST-to-your-catalogue matches planned let me know your favourites!
- Blended star contamination causes positional shifts
- WISE objects are up to 30% flux contaminated, with LSST suffering similar blending in the future
- Disentangle this information with proper treatment of the cross-match algorithm
- Reject false matches by considering the relative photometry of the potential counterparts
- Open source code development ongoing at https://github.com/Onoddil/macauff

Wilson & Naylor, 2017, MNRAS, 468, 2517 Wilson & Naylor, 2018a, MNRAS, 473, 5570 Wilson & Naylor, 2018b, MNRAS, 481, 2148

Wilson & Naylor (in prep.)

Gaia eDR3 - Gaia Collaboration, Brown A. G. A., et al. (2021)