

Bayes optimal rule

Ideal goal: Construct prediction rule $f^*: \mathcal{X} \to \mathcal{Y}$ $f^* = \arg\min_{f} \mathbb{E}_{XY} [\operatorname{loss}(Y, f(X))]$ Bayes optimal rule

Best possible performance:

Bayes Risk $R(f^*) \leq R(f)$ for all fBUT... Optimal rule is not computable - depends on unknown P_{XY} !

3

4

For C classes

If $P(\omega_i|x) = \max_{j=1,\dots,c} P(\omega_j|x)$, $\omega = \omega_i$ If $P(x|\omega_i)P(\omega_i) = \max_{j=1,\dots,c} P(x|\omega_j)P(\omega_j)$, $\omega = \omega_i$ $P(c) = \sum_{j=1}^{c} \int_{R_j} P(x|\omega_j)P(\omega_j)dx$ P(e)=1-P(c)

Example: 1-d Decision

Boundaries

• Gaussian class conditional densities (1-dimension/feature) $P(X = x | Y = y) = \frac{1}{\sqrt{2\pi\sigma_y^2}} \exp\left(-\frac{(x - \mu_y)^2}{2\sigma_y^2}\right)$ $P(Y = \bullet)P(X = x | Y = \bullet)$ Decision Boundary

11

Properties of Multivariate Gaussian (II)

- hyper-elliptical surface of constant probability density for a Gaussian, i.e. $(x-\mu)^t \Sigma^{-1}(x-\mu)$ =constant
- Noncorrelation=independence
- Marginal distribution is Gaussian
- Conditional distribution is also Gaussian
- Linear transformation is still Gaussian
- Linear combination is still Gaussian

Discriminant function and decision boundary

Discriminant function

$$g_i(x) = \ln p(x \mid \omega_i) + \ln P(\omega_i)$$

$$= -\frac{1}{2}(x - \mu_i)^t \Sigma_i^{-1}(x - \mu_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i| + \ln P(\omega_i)$$

• Decision boundary $g_{i}(x) = g_{i}(x)$

$$-\frac{1}{2}[(x-\mu_i)^t \Sigma_i^{-1}(x-\mu_i) - (x-\mu_j)^t \Sigma_j^{-1}(x-\mu_j)] - \frac{1}{2} \ln \frac{|\Sigma_i|}{|\Sigma_j|} + \ln \frac{P(\omega_i)}{P(\omega_j)} = 0$$

15

Case 1: $\Sigma_i = \sigma^2 I$

$$\begin{split} g_{i}(x) &= -\frac{1}{2\sigma^{2}}(x - \mu_{i})^{t}(x - \mu_{i}) + \ln P(\omega_{i}) \\ &= -\frac{1}{2\sigma^{2}}(x^{t}x - 2\mu_{i}^{t}x + \mu_{i}^{t}\mu_{i}) + \ln P(\omega_{i}) \end{split}$$

Linear discriminant function:

$$\begin{split} g_i(x) &= w_i^t x + w_{i0} \\ \text{where } w_i &= \frac{\mu_i}{\sigma^2}; \quad w_{i0} = -\frac{1}{2\sigma^2} \mu_i^t \mu_i + \ln P(\omega_i) \end{split}$$

It is a function that is a linear combination of the components of \boldsymbol{x} where \boldsymbol{w} is the weight vector and \boldsymbol{w}_0 the bias

Decision boundary:

$$w^t(x-x_0)=0$$

where $w = \mu_i - \mu_j$;

$$x_0 = \frac{1}{2}(\mu_i + \mu_j) - \frac{\sigma^2}{\|\mu_i - \mu_j\|^2} \ln \frac{P(\omega_i)}{P(\omega_j)} (\mu_i - \mu_j)$$

- $P(\omega_i) = P(\omega_i)$
- $P(\omega_i) \neq P(\omega_j)$

17

18

Minimum distance classifier

Discriminant function: $g_i(x) = -\|x - \mu_i\|^2$

$$g_i(x) = \max_{i=1}^{n} g_i(x) \longrightarrow \omega = \omega_i$$

Each mean vector is thought of as being an ideal prototype or template for patterns in its class (template-matching procedure)

Class Prediction

ach box predicts the classes the using multilabel classification.

Case 2: $\Sigma_i = \Sigma$

Linear discriminant function:

$$g_i(x) = -\frac{1}{2}(x - \mu_i)^t \Sigma^{-1}(x - \mu_i) + \ln P(\omega_i) = w_i^t x + w_{i0}$$

where $w_i = \Sigma^{-1} \mu_i$; $w_{i0} = -\frac{1}{2} \mu_i^t \Sigma^{-1} \mu_i + \ln P(\omega_i)$

Decision boundary:

$$w^{t}(x-x_{0})=0$$

here $w = \Sigma^{-1}(\mu_{i} - \mu_{j});$

$$x_{0} = \frac{1}{2} (\mu_{i} + \mu_{j}) - \frac{\ln[P(\omega_{i}) / P(\omega_{j})]}{(\mu_{i} - \mu_{j})' \Sigma^{-1} (\mu_{i} - \mu_{j})} (\mu_{i} - \mu_{j})$$

19

21 22

