Neutral Beam Injector (NBI)

Introduction

Neutral Beam Injection (NBI) is a key technique used in tokamak fusion devices to heat the plasma and drive current. In NBI systems, neutral atoms—typically hydrogen or deuterium—are accelerated to high energies and injected into the plasma. Because charged particles would be deflected by the magnetic fields in the tokamak, the ions are first neutralized before injection. Once inside the plasma, these fast neutrals transfer their energy to the plasma particles through collisions, increasing the plasma temperature and contributing to the overall performance of the fusion experiment. NBI is valued for its ability to deliver precise and controllable heating, making it an essential tool in plasma physics research and fusion reactor development.

Neutral Beam Injectors on TCV

D /	NIDI 1	NIDI o	DNIDI	
Parameter	NBI-1	NBI-2	DNBI	Comment
Beam				
NB power	501100	2501100	$7090~\mathrm{kW}$	14% of losses in the beam duct excluded
range in	kW	kW		for NBI-1
TCV				
NB energy	728 keV	2951	4850	DNBI with lower (up to 25-30 keV)
range	(1)	keV	keV	possible
NB energy	$\pm 100 \text{ eV}$	$\pm 100~{\rm eV}$	$\pm 600~{\rm eV}$	
stability				
Power losses	15-20~%	2-5 %	<2%	NBI-1 size in horizontal direction
in beam duct				mismatch specification
Beam main	DO (2)	DO	HO (3)	•
species	()		()	
Max. NB	$1.1~\mathrm{MJ}$	$2 \mathrm{MJ}$	50 kJ (5)	
energy per	(4)		· ,	
shot	,			

Parameter	NBI-1	NBI-2	DNBI	Comment
Max. NB pulse duration	0.82.0 s (4)	2 sec	1.4 s (5,6)	
Neutral beam energy fraction (in % of power)	73:22:05 %	59:33:8	78.5:8.5:13.0 %	at [1:1/2:1/3] of NB energy for nominal beam energy: 25/47/49 keV for NBI-1(D)/NBI-2(D)/DNBI(H)
Low energy fraction (in % of power) Modulation	<0.1 %	<0.4%	<0.3%	with $1/(1216)$ of NB energy
Power sweep during TCV shot	full power range	full power range	not available	few sweeps for NBIs possible
Power sweep response dP/dt	$\frac{25}{40}$ MW/s	$\frac{25}{40}$ MW/s	not available	slope limit of NBI power (up/down)
Full power modulation on-time	2.5 ms 2 s	3.5 ms 2 s	630 ms	Min. DNBI modulation on-time is limited by current rise time
Minimal modulation off-time	5 ms	4.5 ms	8 ms	limited by delay between suppression grid modulation and beam current
Modulation rise/fall time	13 ms	1.53.5 ms	1.52.5 ms/250 mks	shorter DNBI time planned after upgrade of power supply
Fast modulation Geometry be- fore/from August 2019	100300 Hz	100 Hz	50 Hz	NBIs at reduced power and higher divergence
Grids (IOS) aperture	$\emptyset 250~\mathrm{mm}$	$\emptyset 250~\mathrm{mm}$	ø87.2 mm	area of grids with beamlet apertures
Beam divergence, mrad (deg.)	36x8 (2.06x0.46)(/ 23.6x9.9 (1.35x0.57)	13.8x5.1 (7(0.79x0.30)	9.25 (0.53)/9.20(NBIs (horizontal) x (vertical) according 0t53)neasurement

Parameter	NBI-1	NBI-2	DNBI	Comment
Focal length	3.20 m (7) / 3.76(h)/3.98	4.20(h)/4.2 m B(v)	5(4:)00 / 1.80 m	according to measurement
	m			
Distance from IOS to port exit in TCV	4.05 m	4.28 m	3.81 m	along beam axis
TCV port size (horizontal x vertical)	$220x170$ mm^2	210x160 mm	ø160 mm	NBIs: rectangular, DNBI: circular
NB tangency radius	736.0 mm	736.0 mm	235.3 mm	distance from NB axis to TCV machine vertical axis
Beam diameter in TCV (hor. x vert.)	24.37x10.22 cm / 21.6x9.4 cm	13.2x5.2 cm	8.02 / 12.1 cm	(1/e) level, NBIs in horizontal cutted by port size

$$\mathrm{DCD_{NBI-2}} = (r_d, Z_d, \phi_d, \theta_d, tv_d) = (5.2123, -0.0025, 212, 6947 \cdot \pi/180, 0, -8.4896 \cdot \pi/180)$$