Big Data Processing (ECS76P)

COURSEWORK REPORT

Submitted By:

Name: Aman Naredi Student Id: 230290873

CONTENTS ABLE

TASK 1. MERGING DATASETS

1.1 Loading Datasets	2
1.2 Joining Datasets	4
1.3 Converting Date Format	5
1.4 Verifying Datarame Structure	6
TASK 2 AGGREGATION OF DATA	
2.1 Counting trips per buisness months	8
2.2 Calculating Platform Profits per	12
Business per Month	
2.3 Calculating Driver Earnings per	15
Business per Month	
2.4 Insights	19
TASK 3 TOP K PROCESSING	
3.1 Top 5 Pickup Boroughs per Month	20
3.2 Top 5 Dropoff Boroughs per Month	23
3.3 Top 30 Earnest Routes	24
3.4 Insights	26
TASK 4 AVERAGE DATA	
4.1 Average Driver Total Pay by Time of	27
Day	
4.2 Average Trip Length by Time of Day	29
4.3 Average Earning per Mile by Time of	30
Day	
4.4 Insights	31
TASK 5 FINDING ANOMALIES	
5.1 Average Waiting Time per Day in	32
January	
5.2 Days with High Average Waiting Time	36
5 3 Insights	36

CONTENT

TASK 6 FILTERING DATA **37** 6.1 Trip Counts with Conditions 38 6.2 Evening Trip Counts by Pickup Borough **39** 6.3 Trips from Brooklyn to Staten Island **TASK 7 ROUTE ANALYSIS** 41 7.1 Top 10 Popular Routes Analysis **TASK 8 GRAPH PROCESSING** 8.1 Defining structype of vertex and edge 43 schema 8.2 Construct Edges, Vertices 44 DataFrames and Graph 8.3 Creating a graph using vertices and 46 edges 8.4 Counting connected vertices with the 47 same Borough and same service_zone 8.5 Performing page ranking on the 49 graph dataframe

Task 1 Merging Datasets

1.1 LOADING DATASETS

Steps and APIs used:

- 1. SparkSession Creation:
 - Started the coursework by importing SparkSession from pyspark.sql and used

SparkSession.builder.appName("NYC").getOrCreate() to create a SparkSession named "NYC" for interacting with Spark.

- 2. Defining helper functions:
 - To validate datasets, defined two helper functions: good_ride_line and good taxi line.
 - good_ride_line: This function takes a line of text (a row from rideshare_data.csv) and validates if it has 15 comma-separated fields. It returns True if valid, False otherwise.
 - good_taxi_line: Similar to good_ride_line, it validates if a line from taxi_zone_lookup.csv has 4 comma-separated fields and returns True if valid.
- 3. Accessing S3 data:
 - With reference to the starterkit.py, retrieved environment variables for S3 bucket details like DATA_REPOSITORY_BUCKET,
 S3_ENDPOINT_URL, BUCKET_PORT, AWS_ACCESS_KEY_ID, and AWS_SECRET_ACCESS_KEY.
 - Using this, configured Spark's Hadoop configuration to access the S3 bucket using the retrieved credentials and endpoint details.
- 4. Loading rideshare data:
 - Read the "rideshare_data.csv" file from S3 using spark.sparkContext.textFile.
 - filter (good_ride_line) applies the good_ride_line function for filtering.
 - o The data is transformed into an **RDD** (Resilient Distributed Dataset), which consists of tuples of "," separated values (rows) using map.

- The header row, that is the first row of is identified and saved as
 header ride using first and removed from the RDD using filter.
- The RDD is converted into a DataFrame named ride_df with column names specified in column_names using toDF.
- 5. Taxi zone data (taxi_zone_lookup.csv):
 - Similar steps are followed as for rideshare data to load "taxi_zone_lookup.csv from S3 and create a DataFrame named taxi df with column names in column names taxi.
- 6. Cleaning taxi zone data: API's used [regex_replace]
 - To clean taxi_daf, iterated through each column name in column_names_taxi.
 - Used regexp_replace for each column to remove double quotes (") from the corresponding column in taxi_df.
- 7. API's Used:
 - o sparkContext.textFile
 - o filter
 - o map
 - o toDF.
 - o withColumn
 - o regexp_replace

Challenges encountered:

Removing double quotes from Taxi zone data

Knowledge gained:

- The task showcases techniques for loading data from CSV files, handling headers, transforming data into DataFrames, and exploring their structure.
- Learned cleaning data by removing unwanted characters (double quotes) from a column.

1.2 JOINING DATASETS

Steps and APIs used:

- 1. Joining on pickup location:
 - Used the join function from Spark DataFrames to join the ride_df and taxi_df DataFrames.
 - The join condition is specified as ride_df.pickup_location == taxi_df.LocationID. This matches rows in the rideshare data where the pickup location matches the LocationID in the taxi zone data.
 - o The resulting DataFrame is named joined_df_pickup.
- 2. Renaming columns (pickup):
 - Used a series of withColumnRenamed functions to rename the relevant columns obtained from the taxi zone data:
 - "Borough" -> "Pickup_Borough"
 - "Zone" -> "Pickup_Zone"
 - "service_zone" -> "Pickup_service_zone"
 - Also used **drop** ("LocationID") to remove the redundant "LocationID" column from the joined data.
 - o The resulting DataFrame is named joined_df_Renamed.
- 3. *Joining on drop-off location:*
 - o Performed a second **join** using the same approach as previous step, but this time joining <code>joined_df_Renamed</code> (which now includes pickup zone information) with <code>taxi_df</code> based on the dropoff_location field in the rideshare data.
 - o The resulting DataFrame is named joined_df_dropoff.
- 4. Renaming columns (drop-off):
 - Similar to step 2, renamed the columns obtained from the taxi zone data for the drop-off location with the prefix "Dropoff_".
 - o We again remove the redundant "LocationID" column.
 - o The final enriched DataFrame is named nyc_df.
 - \circ We use **printSchema ()** to display the schema of the final DataFrame.
- 5. API'S used:
 - o join()
 - withColumnRenamed()
 - o drop()

Knowledge gained:

- Learned how to perform multi-step joins on DataFrames using the join function with appropriate join conditions.
- It showcases techniques for renaming columns and manipulating DataFrame structures.

1.3 CONVERTING DATE FORMAT

Steps and APIs used:

- 1. Accessing the date column:
 - In this task the focus is on the "date" column in the nyc_df DataFrame,
 accessed date column using nyc df.date
- 2. Converting Unix time stamp to date and its data type from string to date, thus creating a new column named date:
 - Use the from_unixtime function
 from pyspark.sql.functions with the withColumn function with
 alias date to create a new column in nyc_df named "date" to convert the
 UNIX timestamp store in the "date" column.
 - Specified the format string "yyyy-MM-dd" to indicate the desired output format.
 - date_format takes the previously converted temporary column and the desired output format string ("yyyy-MM-dd") to ensure the final column has the correct format.
 - Converted the data type of this new "date" column using to_date on nyc_df date column from string to date inside withColumn to make changes in the column.
- 3. API's used:
 - from_unixtime
 - o withColumn
 - o date format
 - to_date

Challenges encountered:

1. Ensuring the conversion of data type of date column from string to date after converting its format.

Knowledge gained:

- This task demonstrates working with date formats in Spark DataFrames.
- It highlights the use of from_unixtime, date_format and to_date functions for date and its data type conversion.

Output:

+	_					+
		p length reque	est to pickup tota	1 ride time o	n scene to pickup on scene	to dropoff time of day
					up Borough Pickup Zone Pick	
igh Dropoff Zone Dropoff						
+	+	+	+	+	+	++
		+	+	+	+	+
+						
Uber 25		9.8	299.0	2107.0	45.0	2152.0 night
04-09 51.28	36.02	15.26	60.26	3.68	Brooklyn Boerum Hill	Boro Zone
an Hudson Sq	Yellow Zone					
Uber 25	. '	3.32	221.0	945.0	121.0	1066.0 morning
4-09 25.24	13.72	11.52	46.33	4.13	Brooklyn Boerum Hill	Boro Zone
an Hudson Sq	Yellow Zone				47.01	
Uber 25		3.98	321.0	1669.0	47.0	1716.0 afternoon
4-09 30.23	20.92	9.31	43.89	5.26	Brooklyn Boerum Hill	Boro Zone
an Hudson Sq	Yellow Zone	2 (0)	276 0	2601 01	20.01	2701 01 -61
Uber 25 4-09 33.59	125 31.07	3.68	376.0	2681.0	20.0 Brooklyn Boerum Hill	2701.0 afternoon
4-09 33.59 an Hudson Sq	Yellow Zone	2.52	41.41	8.44	Brooklyn Boerum Hill	Boro Zone
Uber 25		3.6	54.0	1081.0	29.0	1110.0 morning
5-08 22.69	18.89	7.8	61.26	5.25	Brooklyn Boerum Hill	Boro Zone
an Hudson Sq	Yellow Zone	7.0	01.20	3.23	Brooklyn Boerum Hill	BOIO ZONE
Uber 25	125	3.6	92.0	1003.0	12.0	1015.0 afternoon
5-08 34.83	18.8	20.67	66.68	5.22	Brooklyn Boerum Hill	Boro Zone
an Hudson Sq	Yellow Zone	2010/	00100	31221	District Desiran Hill	2010 2010
Uber 25		3.7	1052.0	1363.0	111.0	1474.0 afternoon
5-08 21.26	20.28	0.98	49.53	5.48	Brooklyn Boerum Hill	Boro Zone
an Hudson Sq	Yellow Zone					
Uber 25	125	3.42	431.0	1015.0	16.0	1031.0 night
5-08 21.42	14.03	7.39	48.99	4.1	Brooklyn Boerum Hill	Boro Zone
an Hudson Sq	Yellow Zone	'				,
Uber 25	125	3.87	187.0	1022.0	7.0	1029.0 morning
5-09 47.48	23.9	23.58	83.62	6.18	Brooklyn Boerum Hill	Boro Zone
an Hudson Sq	Yellow Zone					
Uber 25	125	3.8	683.0	1223.0	59.0	1282.0 morning
5-09 47.22	24.27	29.24	68.15	6.39	Brooklyn Boerum Hill	Boro Zone
an Hudson Sq	Yellow Zone					

1.4 VERIFYING DATAFRAME STRUCTURE

Steps and APIs used:

- 1. Counting rows:
 - o Used count function from Spark DataFrames to get the total number of rows in nyc_df.
 - The result is printed to the console using an f-string to include informative text.
- 2. Printing schema:
 - o Printed schema (column names and data types) using printSchema function of nyc_df.
- 3. API's used:
 - o count
 - o printSchema

Knowledge gained:

- This task demonstrates using count and printSchema functions to verify DataFrame structure.
- It highlights the importance of checking data quality and consistency after data processing steps.

Output:

```
Number of rows: 69725864
root
 |-- business: string (nullable = true)
 -- pickup location: string (nullable = true)
 -- dropoff location: string (nullable = true)
 -- trip length: string (nullable = true)
 -- request to pickup: string (nullable = true)
 -- total ride time: string (nullable = true)
 -- on scene to pickup: string (nullable = true)
 -- on scene to dropoff: string (nullable = true)
 -- time of day: string (nullable = true)
 |-- date: date (nullable = true)
 |-- passenger fare: string (nullable = true)
  -- driver total pay: string (nullable = true)
 |-- rideshare profit: string (nullable = true)
 -- hourly rate: string (nullable = true)
 |-- dollars per mile: string (nullable = true)
 |-- Pickup Borough: string (nullable = true)
 |-- Pickup Zone: string (nullable = true)
 -- Pickup service zone: string (nullable = true)
 -- Dropoff Borough: string (nullable = true)
 |-- Dropoff Zone: string (nullable = true)
 |-- Dropoff service zone: string (nullable = true)
```

Task 2 Aggregation of Data

2.1 COUNTING TRIPS PER BUSINESS PER MONTH

Steps and APIs used:

- 1. Data Loading and Preparation (Covered in Task 1.1 Report)
 - o Created SparkSession.
 - Rideshare data and taxi zone lookup data are loaded from S3 using textFile and converted into DataFrames.
 - o Cleaned taxi_df using regexp replace.
 - DataFrames are joined based on pickup and dropoff locations using join and columns are renamed.
 - o The date column is formatted to "yyyy-MM-dd" format using date_format.

2. Data Aggregation and Visualization:

• Converting Data Types:

- The date column is converted to a date type using to date.
- o rideshare_profit and driver_total_pay columns are cast to float type using cast("float").

• Extracting Month:

o A new column named month is added using month to represent the month from the date.

• Counting Trips:

- o **groupBy** is used on business and month to create groups.
- o agg with count("*").alias("trip_count") aggregates the number of trips in each group and assigns an alias (trip_count) to the result.
- o trips_per_business_month DataFrame stores the aggregated data.

3. Saving to S3 Bucket:

• S3 Resource Object:

o Created a resource object for my S3 bucket using the boto3 library. This object allowed me to interact with S3 for storing and retrieving data.

• Current Date and Time:

o It retrieves the current date and time using **datetime.now()** and formats it using **strftime**. This timestamp is used to create a unique filename for the output file.

• Coalescing DataFrame:

o The **coalesce (1)** function reduces the number of output files written to S3 by merging smaller files into a single file.

• Output Path:

o Defined the S3 path to save the DataFrame. It combines the bucket name, a folder structure (aman_<date_time>), and the filename (trips_per_business_month.csv) with the .csv extension.

• Saving as CSV:

- o The write.csv method of the DataFrame is used to specify:
 - path: The S3 path constructed earlier.
 - mode: "overwrite" to replace existing files with the same name.
 - header: True to include the column names in the CSV file.

4. Copying to Local Storage:

 Copied trips_per_business_per_month.csv from S3 bucket to my local file system in output folder using command :

```
ccc method bucket cp -r bkt:aman_28-03-
2024_17:51:57/trips_per_business_month.csv/ output
```

5. Histogram Generation (Python Script):

• Data Loading:

o pandas is used to read the trips_per_business_month.csv file into a pandas DataFrame named task2_1.

• Filtering Data:

 Separate DataFrames for Uber (task2_1_uber) and Lyft (task2_1_lyft) trips are created by filtering task2_1 based on the business column.

• Histogram Creation with Matplotlib:

- o Generated two histograms(barplots) using plt.bar.
- o Each plot focuses on either Uber or Lyft trips with bars representing trip counts for each month.
- o Added titles, labels, and customization (e.g., colors) for clarity.

6. API's used (same in all 3 parts):

- o month()
- o cast("float")
- o groupBy()
- o agg()
- o count("*")
- o sum()

- o orderBy()
- o coalesce()
- o datetime.now()
- o strftime("%d-%m-%Y_%H:%M:%S")
- o boto3.resource

Challenges encountered:

• Faced problems in saving the files in bucket. Learned about coalesce functionality and merging files.

Knowledge gained:

- It highlights the use of aggregation functions like groupBy and count to calculate group-wise statistics.
- Learned the functionality of coalesce API and saving dataframes as csv files into bucket and then how to save them into our local system.

Output:

2024-03-28 17:51:57,123 INFO codegen.CodeGenerator: Code generated in 10.898244 ms

,	,		
business month trip_count			
+	+	+	
Lyft	4	8173	
Uber	5	14276372	
Uber	4	13995860	
Lyft	3	8444	
Uber	2	13280761	
Lyft	1	6887	
Uber	3	14554308	
Uber	1	13579077	
Lyft	2	6491	
Lyft	5	9491	
++-	+	+	

2024-03-28 17:52:01,481 WARN commit.AbstractS3ACommitterFactory: Using standard FileOutputCommitter to commit work. This is slow and potentiall

2.2 CALCULATING PLATFORM PROFITS PER BUSINESS PER MONTH

Steps and APIs Used:

- 1. Data Loading and Preparation (Done in part 2.1)
- 2. Calculating Platform Profits:

1. Converting Data Type:

 The rideshare_profit column is casted to an float type using cast("float") for numerical operations.

2. Profit Aggregation:

- o **groupBy** is used on business and month to create groups.
- agg with sum("rideshare_profit").alias("Platform Profit") calculates the total platform profit for each group (business-month) and assigns an alias (Platform Profit) to the result.
- o trips_per_business_month_profit DataFrame stores the aggregated data.
- 3. Saving to S3 Bucket:(similar to previous part)

• S3 Resource Object:

o Created a resource object for my S3 bucket using the boto3 library. This object allowed me to interact with S3 for storing and retrieving data.

Current Date and Time:

o It retrieves the current date and time using **datetime.now()** and formats it using **strftime**. This timestamp is used to create a unique filename for the output file.

• Coalescing DataFrame:

• The **coalesce (1)** function reduces the number of output files written to S3 by merging smaller files into a single file.

• Output Path:

o Defined the S3 path to save the DataFrame. It combines the bucket name, a folder structure (aman_<date_time>), and the filename (trips_per_business_month_profit.csv) with the .csv extension.

• Saving as CSV:

- The write.csv method of the DataFrame is used to specify:
 - path: The S3 path constructed earlier.
 - mode: "overwrite" to replace existing files with the same name.
 - header: True to include the column names in the CSV file.

4. Copying to Local Storage:

 Copied trips_per_business_per_month.csv from S3 bucket to my local file system in output folder using command :

```
ccc method bucket cp -r bkt:aman_03-04-
2024_13:05:20/trips_per_business_month_profit.csv
output
```

- 5. Visualization using Python Script(Similar to previous task):
 - Libraries:
 - Using **pandas** for data manipulation and **matplotlib.pyplot** for creating histograms.
 - Reading CSV:
 - o Read the downloaded CSV file(trips_per_business_month_profit.csv) into a pandas DataFrame (task2 2).
 - *Filtering Data:*
 - o Created separate Dataframes for Uber (task2_2_uber) and Lyft (task2_2_lyft) trips by filtering task2_2 based on the business column.
 - Histogram Creation:
 - The script uses Matplotlib to create separate histograms for Uber and Lyft platform profits, similar to the approach used for trip counts.

Output:

2024-04-03 02:12:21,555 INFO scheduler. DAGScheduler: Job & rinished: showstring at NativeMethodAccessorimpi.java:0, took 0.099491 s 2024-04-03 02:12:21,593 INFO codegen.CodeGenerator: Code generated in 14.838169 ms

+		·+
business	month	Platform Profit
+	4 5 4 3 2 1 3	-90197.13001759537 1.6313361550055724E8 1.502698201941709E8 -99403.93998675235 1.3062880563633618E8 -72633.3500049822 1.520728764191219E8 1.331971116246569E8
Lyft Lyft	2	-70064.72000297531 -107719.21000343934
+	, , }	+

2.3 CALCULATING DRIVER EARNINGS PER BUSINESS PER MONTH

Steps and APIs used:

- 1. Data Loading and Preparation (Done in part 2.1)
- 2. Calculating Driver Earnings:

• Converting Data Type:

 The driver_total_pay column is casted to an float type using cast("float") for numerical operations.

• Earnings Aggregation:

- o **groupBy** is used on business and month to create groups.
- o **agg** with sum("driver_total_pay").alias("Driver Earnings") calculates the total driver earnings for each group (business-month) and assigns an alias (Driver Earnings) to the result.
- trips_per_business_month_driver_pay DataFrame stores the aggregated data.
- 3. Saving to S3 Bucket:(similar to previous part)

• S3 Resource Object:

o Created a resource object for my S3 bucket using the boto3 library. This object allowed me to interact with S3 for storing and retrieving data.

Current Date and Time:

o It retrieves the current date and time using **datetime.now()** and formats it using **strftime**. This timestamp is used to create a unique filename for the output file.

• Coalescing DataFrame:

• The **coalesce (1)** function reduces the number of output files written to S3 by merging smaller files into a single file.

• Output Path:

o Defined the S3 path to save the DataFrame. It combines the bucket name, a folder structure (aman_<date_time>), and the filename (trips_per_business_month_profit.csv) with the .csv extension.

• Saving as CSV:

- o The write.csv method of the DataFrame is used to specify:
 - path: The S3 path constructed earlier.
 - mode: "overwrite" to replace existing files with the same name.
 - header: True to include the column names in the CSV file.

4. Copying to Local Storage:

 Copied trips_per_business_per_month.csv from S3 bucket to my local file system in output folder using command :

```
ccc method bucket cp -r bkt:aman_03-04-
2024_15:03:52/trips_per_business_month_driver_pay.cs
v output
```

- 5. Visualization using Python Script(Similar to previous task):
 - Libraries:
 - Using **pandas** for data manipulation and **matplotlib.pyplot** for creating histograms.
 - *Reading CSV:*
 - o Read the downloaded CSV file(trips_per_business_month_ driver pay.csv) into a pandas DataFrame (task2 2).
 - Filtering Data:
 - Separate Dataframes for Uber (task2_3_uber) and Lyft (task2_3_lyft) trips are created by filtering task2_3 based on the business column.
 - Histogram Creation:
 - The script uses Matplotlib to create separate histograms for Uber and Lyft driver earnings, similar to the approach used for trip counts and platform profits.

Challenges encountered:

• *Data type consistency:* Similar to previous tasks, ensuring "driver_total_pay" is an integer type is essential for accurate sum calculation.

Knowledge gained:

- This task reiterates the use of groupBy for group-wise aggregations.
- It highlights the sum function for calculating total values within a group.

Output: 2024-04-04 11:02:58,942 INFO codegen.CodeGenerator: Code generated in 14.635607 ms

business mo	onth	driver_earnings
Lyft	4	297815.3799999999
Uber		3.1300511454999596E8
Uber Lyft	3	2.9506892721999764E8 310276.5499999997
Uber	237	2.5215597709000513E8
Lyft	1	
Uber		2.9595849601000154E8
Uber		2.5025348066999513E8
Lyft Lyft	2 5	234875.53000000003 360408.09

2.4 WHEN WE ARE ANALYZING DATA, IT'S NOT JUST ABOUT GETTING RESULTS, BUT ALSO ABOUT EXTRACTING INSIGHTS TO MAKE DECISIONS OR UNDERSTAND THE MARKET. SUPPOSE YOU WERE ONE OF THE STAKEHOLDERS, FOR EXAMPLE, THE DRIVER, CEO OF THE BUSINESS, STOCKBROKER, ETC, WHAT DO YOU FIND FROM THE THREE RESULTS? HOW DO THE FINDINGS HELP YOU MAKE STRATEGIES OR MAKE DECISIONS?

Considering **trip counts** of both the businesses, **Uber** seems to have **stable ridership**, while **Lyft** experiences a **decline**. This presents a considerable **market capture** by **Uber** than Lyft.

Uber boasts significant and **increasing platform profits**, while **Lyft** faces consistent **losses**. This highlights Uber's current financial strength compared to Lyft.

Similarly to platform profits, **driver montly earnings** for **Uber** seems to be **increasing** although for **Lyft** it is **fluctuating**. This suggests a need for **Lyft** to consider strategies that **incentivize** driving during peak hours of high-demand periods to retain drivers.

These findings can inform strategic decisions for both companies:

• Uber:

- Analyze Lyft's declining market share and explore targeted campaigns to attract those customers.
- Continue focusing on strategies that are driving the increase in platform profits.

• Lyft:

- Address the decline in ridership through targeted promotions or adjustments to pricing strategy.
- Implement cost-cutting measures or explore revenue-generating strategies to address negative profits.

Task 3 Top-K Processing

3.1 TOP 5 PICKUP BOROUGHS PER MONTH

Steps and APIs used:

- 1. Data Loading and Preparation (Covered in Task 1 Report)
 - o Created SparkSession.
 - Rideshare data and taxi zone lookup data are loaded from S3 using textFile and converted into DataFrames.
 - Cleaned taxi_df using regexp replace.
 - DataFrames are joined based on pickup and dropoff locations using join and columns are renamed.
 - o The date column is formatted to "yyyy-MM-dd" format using date_format.

2. Windowing and ranking:

- Defined a window specification (windowSpec) that partitions data by "month" and sorts them by "trip_count" in descending order.
- Used row_number function with windowSpec to assign a row number to each record within its month, ranking them by trip count (highest gets 1).
- o **filter** the DataFrame to keep only rows with "row_num" less than or equal to 5 (top 5 for each month).
- o Finally, **drop** the "row_num" column as it's no longer needed.

3. Sorting:

- Used orderBy to sort the resulting DataFrame (top5_borough_monthly_pickup_trips) first by "month" (ascending) and then by "trip_count" (descending).
- This ensures the output shows the top 5 boroughs with the highest trip counts for each month.

4. Viewing results:

 Used top5_borough_monthly_trips.show(25) to display the results.

5. API's used (same in all the parts):

- window.partitionBy(): It defines how the data is partitioned before applying a window function. In this scenario, data is partitioned by month, allowing for separate rankings within each month. Used in both the top 5 pickup and dropoff borough analysis, enabling month-specific ranking.
- o concat_ws(): Used to either add a new column or replace an existing one. In this task, it's specifically used for adding the Route column and the row_num column post-window function application
- o row_number()
- o cast("float")
- o groupBy()
- o agg()
- o count("*")
- o sum()
- o orderBy()
- o coalesce()
- o datetime.now()
- o strftime("%d-%m-%Y_%H:%M:%S")
- o boto3.resource

Challenges encountered:

• Faced challenges in working with window functions and defining other utilities.

Knowledge gained:

- Learned about window functions and using them for ranking data within groups.
- This task highlights techniques for top-k retrievals using row numbering and filtering.

Output:

2024-03-28 19:25:52,197 INFO storage.BlockManagerInfo: Removed broadcast_7_piece0 on 10.133.32.138:37843 in memory (size: 11.0 KiB, free: 2.1 G iB)

, 	L	L4
Pickup_Borough	month	trip_count
Manhattan	1	5854818
Brooklyn	1	3360373
Queens	1	2589034
Bronx	1	1607789
Staten Island	1	173354
Manhattan	2	5808244
Brooklyn	2	3283003
Queens	2	2447213
Bronx	2	1581889
Staten Island	2	166328
Manhattan	3	6194298
Brooklyn	3	3632776
Queens	3	2757895
Bronx	3	1785166
Staten Island	3	191935
Manhattan	4	6002714
Brooklyn	4	3481220
Queens	4	2666671
Bronx	4	1677435
Staten Island	4	175356
Manhattan	5	5965594
Brooklyn	5	3586009
Queens	5	2826599
Bronx	5	1717137
Staten Island	5	189924
,		

3.2 TOP 5 DROPOFF BOROUGHS PER MONTH

Steps and APIs used:

1. Data Loading and Preparation (Covered in 3.1)

2. Window function:

- Similar to task 3.1, defined a window specification (windowSpec) using the window function.
- This window partitions the data by "month" and sorts them by "trip_count" in descending order.

3. Top 5 calculation:

- Used row_number with the defined window to assign a row number to each entry within each month (partition).
- o **filter** the DataFrame to keep only rows with a row number less than or equal to 5 (top 5).
- o The result is stored in top5 borough monthly dropoff trips.

4. Sorting:

 Used orderBy to sort the final results first by "month" (ascending) and then by "trip_count" (descending).

Output:

iB) = 2024-03-28 19:47:24,716 INFO storage.BlockManagerInfo: Removed broadcast_9_piece0 on 10.134.100.247:42961 in memory (size: 25.9 KiB, free: 2.1 GiB)

Dropoff_Borough	month	trip_count
Manhattan	1	5444345
Brooklyn	1	3337415
Queens	1	2480080
Bronx	1	1525137
Unknown	1	535610
Manhattan	2	5381696
Brooklyn	2	3251795
Queens	2	2390783
Bronx	2	1511014
Unknown	2	497525
Manhattan	3	5671301
Brooklyn	3	3608960
Queens	3	2713748
Bronx	3	1706802
Unknown	3	566798
Manhattan	4	5530417
Brooklyn	4	3448225
Queens	4	2605086
Bronx	4	1596505
Unknown	4	551857
Manhattan	5	5428986
Brooklyn	5	3560322
Queens	5	2780011
Bronx	5	1639180
Unknown	5	578549

3.3 TOP 30 EARNEST ROUTES

Steps and APIs used:

- 1. Creating a route column:
 - Used the concat_ws function to create a new column named "Route" that combines the "Pickup_Borough" and "Dropoff_Borough" columns separated by the string "to ".
 - o This creates a **unique identifier** for each route.
- 2. Grouping and aggregation:
 - Used groupBy on the "Route" column to group trips for each unique route.
 - Calculated the sum of "driver_total_pay" within each group using sum to represent the total driver earnings for that route.
 - o The result is stored in a new DataFrame named **route_profits** with columns "Route" and "total_profit".
- 3. Sorting and filtering:
 - Used orderBy to sort the route_profits DataFrame by the "total_profit" column in descending order (highest profits first).
 - Used the limit function to select the top 30 most profitable routes and store the result in top30_routes.
- 4. Displaying results:
 - Used show (30, truncate=False) to display the top 30 routes and their total profits without truncating route names.

Knowledge gained:

- This task demonstrates creating new columns using string manipulation functions.
- It highlights grouping, aggregation, and sorting operations for route-based profitability analysis.

Output:
2024-03-28 19:10:35,977 INFO codegen.CodeGenerator: Code generated in 10.925538 ms

Route
Brooklyn to Brooklyn
Brooklyn to Brooklyn
Queens to Queens 1.1470684719999422E8 Manhattan to Queens 1.0173842820999901E8 Queens to Manhattan 8.603540026000012E7 Manhattan to Unknown 8.010710242000188E7 Bronx to Bronx 7.414622575999315E7 Manhattan to Brooklyn 6.79904755900002E7 Brooklyn to Manhattan 6.3176161049999915E7 Brooklyn to Queens 5.045416242999964E7 Queens to Brooklyn 4.729286535999981E7 Queens to Unknown 4.629299990000313E7 Bronx to Manhattan 3.2486325169999994E7 Manhattan to Bronx 3.1978763449999884E7 Manhattan to EWR 2.3750888619999688E7 Brooklyn to Unknown 1.0848827569999939E7
Manhattan to Queens 1.0173842820999901E8 Queens to Manhattan 8.603540026000012E7 Manhattan to Unknown 8.010710242000188E7 Bronx to Bronx 7.414622575999315E7 Manhattan to Brooklyn 6.79904755900002E7 Brooklyn to Manhattan 6.3176161049999915E7 Brooklyn to Queens 5.045416242999964E7 Queens to Brooklyn 4.729286535999981E7 Queens to Unknown 4.629299990000313E7 Bronx to Manhattan 3.2486325169999994E7 Manhattan to Bronx 3.1978763449999884E7 Manhattan to EWR 2.3750888619999688E7 Brooklyn to Unknown 1.0848827569999939E7
Queens to Manhattan 8.603540026000012E7 Manhattan to Unknown 8.010710242000188E7 Bronx to Bronx 7.414622575999315E7 Manhattan to Brooklyn 6.79904755900002E7 Brooklyn to Manhattan 6.3176161049999915E7 Brooklyn to Queens 5.045416242999964E7 Queens to Brooklyn 4.729286535999981E7 Queens to Unknown 4.629299990000313E7 Bronx to Manhattan 3.2486325169999994E7 Manhattan to Bronx 3.1978763449999884E7 Manhattan to EWR 2.3750888619999688E7 Brooklyn to Unknown 1.0848827569999939E7
Manhattan to Unknown 8.010710242000188E7 Bronx to Bronx 7.414622575999315E7 Manhattan to Brooklyn 6.79904755900002E7 Brooklyn to Manhattan 6.3176161049999915E7 Brooklyn to Queens 5.04541624299964E7 Queens to Brooklyn 4.729286535999981E7 Queens to Unknown 4.629299990000313E7 Bronx to Manhattan 3.2486325169999994E7 Manhattan to Bronx 3.1978763449999884E7 Manhattan to EWR 2.3750888619999688E7 Brooklyn to Unknown 1.0848827569999939E7
Bronx to Bronx 7.414622575999315E7 Manhattan to Brooklyn 6.79904755900002E7 Brooklyn to Manhattan 6.3176161049999915E7 Brooklyn to Queens 5.045416242999964E7 Queens to Brooklyn 4.729286535999981E7 Queens to Unknown 4.629299990000313E7 Bronx to Manhattan 3.2486325169999994E7 Manhattan to Bronx 3.1978763449999884E7 Manhattan to EWR 2.3750888619999688E7 Brooklyn to Unknown 1.0848827569999939E7
Manhattan to Brooklyn 6.79904755900002E7 Brooklyn to Manhattan 6.3176161049999915E7 Brooklyn to Queens 5.045416242999964E7 Queens to Brooklyn 4.729286535999981E7 Queens to Unknown 4.629299990000313E7 Bronx to Manhattan 3.2486325169999994E7 Manhattan to Bronx 3.1978763449999884E7 Manhattan to EWR 2.3750888619999688E7 Brooklyn to Unknown 1.0848827569999939E7
Brooklyn to Manhattan 6.3176161049999915E7 Brooklyn to Queens 5.045416242999964E7 Queens to Brooklyn 4.729286535999981E7 Queens to Unknown 4.629299990000313E7 Bronx to Manhattan 3.2486325169999994E7 Manhattan to Bronx 3.197876344999988E7 Manhattan to EWR 2.3750888619999688E7 Brooklyn to Unknown 1.0848827569999939E7
Brooklyn to Queens 5.045416242999964E7 Queens to Brooklyn 4.729286535999981E7 Queens to Unknown 4.629299990000313E7 Bronx to Manhattan 3.2486325169999994E7 Manhattan to Bronx 3.197876344999988E7 Manhattan to EWR 2.3750888619999688E7 Brooklyn to Unknown 1.0848827569999939E7
Queens to Brooklyn 4.729286535999981E7 Queens to Unknown 4.629299990000313E7 Bronx to Manhattan 3.2486325169999994E7 Manhattan to Bronx 3.1978763449999884E7 Manhattan to EWR 2.3750888619999688E7 Brooklyn to Unknown 1.0848827569999939E7
Queens to Unknown 4.629299990000313E7 Bronx to Manhattan 3.2486325169999994E7 Manhattan to Bronx 3.1978763449999884E7 Manhattan to EWR 2.3750888619999688E7 Brooklyn to Unknown 1.0848827569999939E7
Bronx to Manhattan
Manhattan to Bronx 3.1978763449999884E7 Manhattan to EWR 2.3750888619999688E7 Brooklyn to Unknown 1.0848827569999939E7
Manhattan to EWR 2.3750888619999688E7 Brooklyn to Unknown 1.0848827569999939E7
Brooklyn to Unknown 1.0848827569999939E7
: -
Rrony +0 Inknowm 1 1 146481112112121212
Bronx to Queens 1.0292266500000013E7
Queens to Bronx [1.0182898729999995E7]
Staten Island to Staten Island 9686862.450000165
Brooklyn to Bronx 5848822.56
Bronx to Brooklyn 5629874.410000006
Brooklyn to EWR 3292761.7099999995
Brooklyn to Staten Island 2417853.819999999
Staten Island to Brooklyn 2265856.4599999976
Manhattan to Staten Island 2223727.370000001
Staten Island to Manhattan 1612227.72
Queens to EWR 1192758.6600000001
Staten Island to Unknown 891285.8100000016
Queens to Staten Island 865603.3800000001

3.4 SUPPOSE YOU WERE ONE OF THE STAKEHOLDERS, FOR EXAMPLE, EITHER THE DRIVER, CEO OF THE BUSINESS, OR STOCKBROKER, ETC, WHAT DO YOU FIND (I.E., INSIGHTS) FROM THE PREVIOUS THREE RESULTS? HOW DO THE FINDINGS HELP YOU MAKE STRATEGIES OR MAKE DECISIONS?

From above three results it is observable that Manhattan, Brooklyn and Queens are the most famous pickup and drop-off boroughs. Even trips within these boroughs that is Manhattan to Manhattan, Brooklyn to Brooklyn and Queens to Queens are the most profitable trips.

Companies might consider increasing the supply of drivers in these **three** boroughs, to utilize the opportunity of the **high demand**.

The businesses should develop marketing campaigns, offers on fairs or reduced fairs in boroughs like Bronkx, Statens Island and EWR. The businesses could expand their services in these boroughs to meet its specific needs, which may have different peak hours or trip purposes.

To ensure an adequate supply of drivers during peak times, the companies could offer incentives or bonuses to drivers who work during the busiest hours or in the most indemand locations.

Task 4 Average of data

4.1 Average Driver Total Pay by Time of Day

Steps and APIs used:

- 1. Data Loading and Preparation (Covered in Task 1 Report)
 - o Created SparkSession.
 - Rideshare data and taxi zone lookup data are loaded from S3 using textFile and converted into DataFrames.
 - Cleaned taxi_df using regexp replace.
 - DataFrames are joined based on pickup and dropoff locations using join and columns are renamed.
 - o The date column is formatted to "yyyy-MM-dd" format using date_format.

2. Casting data types:

- Changed the "trip_length" and "driver_total_pay" columns to float types using cast("float") to ensure accurate computation for average calculation.
- 3. Grouping and aggregation:
 - Used groupBy on the "time_of_day" column to group trips by their time period.
 - Calculated the average of "driver_total_pay" using avg within each group and stored the result in a new column named
 "average drive total pay".
 - The result is stored in **avg_drive_pay_time_day** with columns "time of day" and "average drive total pay".

4. Sorting:

Used orderBy to sort avg_drive_pay_time_day by the
 "average_drive_total_pay" column in descending order, showing the time periods with the highest average earnings first.

5. API's used (same in all the parts):

o orderBy ()

- \circ agg()
- o avg()
- o join()
- withColumn()
- o cast("float")
- o groupBy()

Challenges encountered:

• Ensuring consistent data types (e.g., float for numerical values) for aggregation operations like calculating averages.

Knowledge gained:

- Learned changing datatypes of columns using cast.
- It highlights using avg for calculating average values within groups.

Output:

```
2024-04-03 13:34:36,123 INFO codegen.CodeGenerator: Code generated in 10.831996 ms
+------+
| time_of_day | average_drive_total_pay |
+-----+
| afternoon | 21.212428755696347 |
| night | 20.08743800270718 |
| evening | 19.777427701749236 |
| morning | 19.63333279274821 |
+------+
```

4.2 AVERAGE TRIP LENGTH BY TIME OF DAY

This task calculates the average trip length for each time of day period to identify the period with the highest average trip distance.

Steps and APIs used:

- 1. Grouping and aggregation:
 - Used groupBy on the "time_of_day" column to group trips by their time period.
 - o Computed the average "trip_length" using **avg** within each group and stored the result in a new column named "average_trip_length".
 - o The result is stored in **avg_trip_length_time_day** with columns "time_of_day" and "average_trip_length".

2. *Sorting:*

 Used orderBy to sort avg_trip_length_time_day by the "average_trip_length" column in descending order, showing the time periods with the highest average trip lengths first.

Output:

2024-04-03 13:41:15,470 INFO codegen.CodeGenerator: Code generated in 9.733817 ms
+-----+

| time_of_day | average_trip_length |
+-----+

| night | 5.323984802300155 |
morning | 4.927371866627282 |
afternoon | 4.861410525884578 |
evening | 4.484750367647451 |
+-----+

4.3 AVERAGE EARNING PER MILE BY TIME OF DAY

Steps and APIs used:

- 1. Joining DataFrames:
 - Used the join function to combine
 the avg_drive_pay_time_day and avg_trip_length_time_da
 y DataFrames based on the matching "time_of_day" column.
 - This creates a new DataFrame named joined_df that includes columns from both DataFrames.
- 2. Calculating average earning per mile:
 - Added a new column named "average_earning_per_mile" to joined_df using withColumn() API.
 - The value in this column is calculated by dividing the
 "average_drive_total_pay" by "average_trip_length".
 This provides the average earnings per unit of distance traveled during each time period.
- 3. Selecting and displaying results:
 - Used the select function to choose only the "time_of_day" and "average_earning_per_mile" columns for the final result.
 - o Displayed the results using **show(truncate=False)** to display output without truncating the time-of-day values.

Knowledge gained:

- Learned joining DataFrames based on a shared column.
- It highlights creating new columns with calculations involving existing columns.

Output:

2024-04-03 13:52:07,242 INFO codegen.CodeGenerator: Code generated in 11.431698 ms

+	+
time_of_day	average_earning_per_mile
1	
afternoon	4.3634308690349854
night	3.7730081412006795
morning	3.9845445653743488
!	4.409928330553616
+	·

4.4 WHAT DO YOU FIND (I.E., INSIGHTS) FROM THE THREE RESULTS? HOW DO THE FINDINGS HELP YOU MAKE STRATEGIES OR MAKE DECISIONS?

From the three results it is observable that:

- The 'afternoon' period recorded the second highest "average driver total pay" compared to other times of the day and accounts second least "average trip length" thereby resulting into highest "average earning per mile".
- From this we can infer that **afternoon** period is a **high peak fare time** and **more profitable** period for the **company and drivers** as for **short trip length** the **pay is high**.
- Alternatively, **another** reason for **high average driver total pay** and **less average trip length** for **afternoon** period can be the number of rides in **afternoon period** being **less**, might be because of **high fares**. So here, **companies** can adjust the fares to **increase** trips in afternoon.
- The 'night' time has the "highest average trip length'. But accounts to least "average earning per mile". Thus this is the period where the companies should increase the fares to make profit.

Task 5 Finding anomalies

5.1 AVERAGE WAITING TIME PER DAY IN JANUARY

Steps and APIs used:

- 1. Data Loading and Preparation (Covered in Task 1 Report)
 - o Created SparkSession.
 - Rideshare data and taxi zone lookup data are loaded from S3 using textFile and converted into DataFrames.
 - o Cleaned taxi_df using regexp replace.
 - DataFrames are joined based on pickup and dropoff locations using join and columns are renamed.
 - o The date column is formatted to "yyyy-MM-dd" format using date_format

2. Filtering data:

- The filter function with month ("date") == 1 selects only those rides that occurred in January.
- o This creates a new DataFrame jan_df containing January data.
- 3. Grouping and aggregation:
 - o **groupBy** is used on the **dayofmonth ("date")** column, which extracts the **day of the month** from the "date" column and assigns it an alias "day".
 - Calculated the average "request_to_pickup" time using avg within each day group and stored the result in a new column named "average waiting time".
 - The result is stored in avg_waiting_time_per_day, showing average waiting time for each day in January.
- 4. Sorting and Displaying first 20 rows:
 - o **orderBy("day")** to sort **avg_waiting_time_per_day** by the "day" column, ensuring results are presented chronologically.
 - Printed first 20 rows of resulting dataframe in output using avg waiting time jan.show(20).

5. Saving to S3 Bucket:(similar to Task 2)

• S3 Resource Object:

Created a resource object for my S3 bucket using the boto3 library. This
object allowed me to interact with S3 for storing and retrieving data.

• Current Date and Time:

 It retrieves the current date and time using datetime.now() and formats it using strftime. This timestamp is used to create a unique filename for the output file.

• Coalescing DataFrame:

o The **coalesce (1)** function reduces the number of output files written to S3 by merging smaller files into a single file.

• Output Path:

o Defined the S3 path to save the DataFrame. It combines the bucket name, a folder structure (aman_<date_time>), and the filename (trips_per_business_month_profit.csv) with the .csv extension.

Saving as CSV:

- o The write.csv method of the DataFrame is used to specify:
 - path: The S3 path constructed earlier.
 - mode: "overwrite" to replace existing files with the same name.
 - header: True to include the column names in the CSV file.

6. Copying to Local Storage:

• Copied avg_waiting_time_jan.csv from S3 bucket to my local file system in output folder using command :

```
ccc method bucket cp -r bkt: aman_29-03-
2024_02:14:32/avg_waiting_time_jan.csv/ output
```

7. Visualization using Python Script(Similar to previous task):

- *Libraries*:
 - Using pandas for data manipulation and matplotlib.pyplot for creating histograms.
- Reading CSV:
 - o Downloaded and read the csv file(avg_waiting_time_jan.csv) into a pandas DataFrame (task5).
- *Histogram Creation:*
 - Genearted a Histogram (barplot) for visulaising average waiting time of January using Matplotlib library function plt.bar() with "day" on x axis and average waiting time on "y-axis".

8. API's used (same in all parts):

- o filter()
- o month()
- o groupBy()
- o agg()
- o avg()
- o dayofmonth()
- o orderBy()
- o filter()
- o write.csv()

Challenges encountered:

The challenge of saving the datafrme as a csv file into our system, which was solved while completing task2.

Knowledge gained:

- Learned data filtering methodology based on specific conditions (month).
- It highlights using dayofmonth to extract the day of the month from a date column.

2024-03-29 02:14:32,502 INFO codegen.CodeGenerator: Code generated in 8.100081 ms

 -	+
day	average_waiting_time
 -	
1	396.5318744409635
2	246.05148716456986
3	235.68026834234155
4	228.85434668408274
5	226.08877381422872
6	230.35306927438575
7	233.25699185710533
8	246.41358687741243
9	229.265944341545
10	225.65276195086662
11	224.40468798627612
12	255.17599322195403
13	239.22308233638282
14	247.49345781069232
15	268.5346481777792
16	251.55102299494047
17	240.5772885527869
18	231.90770494488552
19	272.02203820618143
20	243.43761253646377
	·

only showing top 20 rows

5.2 Days with High Average Waiting Time

Steps and APIs used:

- 1. Filtering results:
 - o Applied **filter** function on **avg_waiting_time_jan** dataframe (created in Task 5.1) to select only days where the "average_waiting_time" is greater than 300 seconds.
 - This filtered DataFrame, named day_greater_300_secs, highlights days with potentially high waiting times.
- 2. Displaying results:
 - Displayed the content of day_greater_300_secs, which includes the result of filter operation, "day" and "average_waiting_time" columns using day greater 300 secs.show().

Output:

5.3 Why was the average waiting time longer on these day(s) compared to other days?

The average wait time exceeds 300 only on 1st January, likely due to New Year celebrations. Since many individuals attend parties to ring in the New Year, there is heightened demand on this day, resulting in longer wait times compared to other days of January, where the average waiting time typically hovers around 270. This presents a reasonable anomaly in comparison to the rest of the month.

Task 6 Filtering Data

6.1 TRIP COUNTS WITH CONDITIONS

Steps and APIs used:

- 1. Data Loading and Preparation (Covered in Task 1 Report)
 - Created SparkSession.
 - Rideshare data and taxi zone lookup data are loaded from S3 using textFile and converted into DataFrames.
 - Cleaned taxi_df using regexp replace.
 - DataFrames are joined based on pickup and dropoff locations using join and columns are renamed.
 - The date column is formatted to "yyyy-MM-dd" format using date_format

2. Grouping and aggregation:

- Used **groupBy** on both "Pickup_Borough" and "time_of_day" columns.
- Count the number of trips using count within each group and store the result in a new column named "trip_count".
- o This creates **borough_time_of_day_trip_counts**, showing trip counts for each combination of pickup borough and time of day.

3. Filtering:

- Used filter with a compound condition to select only rows where
 "trip_count" is greater than 0 but less than 1,000.
- o This ensures the focus on trip counts within the specified range.

4. Displaying results:

 Displayed the filtered DataFrame filtered_trip_counts using show(truncate=False) to print without truncating column values, providing a clear view of pickup boroughs, times of day, and their corresponding trip counts.

5. API's used (same in all parts):

- o groupBy()
- \circ agg()

- o filter()
- select()
- o show()
- o count()
- o col()

Knowledge gained:

- Learned filtering DataFrames based on multiple conditions applied to columns.
- Also about grouping by two columns for the required analysis.

Output:

6.2 EVENING TRIP COUNTS BY PICKUP BOROUGH

Steps and APIs used:

- 1. Filtering data:
 - o Reused the **borough_time_of_day_trip_counts** DataFrame created in 6.1.
 - Applied filter to select only rows where the "time_of_day" column value is "evening".
 - o This ensures the focus on trips that occurred in the evening.
- 2. Displaying results:
 - Displayed the filtered Dataframe
 - **filtered_evening_trip_counts** using **show(truncate=False)** to print dataframe without truncating column values, providing a clear view of pickup boroughs and their corresponding evening trip counts.

Knowledge gained:

• Learned how to filter DataFrames based on a specific value in a column.

2024-03-28 14:34:31,664 INFO codegen.CodeGenerator: Code generated in 15.684413 ms

+	+	
Pickup_Borough	time_of_day	trip_count
Bronx Queens Manhattan Staten Island Brooklyn Unknown	evening evening evening	1380355 2223003 5724796 151276 3075616 488
⊥	L	

6.3 TRIPS FROM BROOKLYN TO STATEN ISLAND

Steps and APIs used:

- 1. Data filtering:
 - Performed filter on nyc_df1 to select trips where the "Pickup_Borough" is "Brooklyn" and the "Dropoff_Borough" is "Staten Island".
 - o This ensures the focus on trips that meet the specified origin and destination criteria.
- 2. Selecting columns:
 - Used select to choose only the "Pickup_Borough", "Dropoff_Borough", and "Pickup_Zone" columns for the results.
- 3. Displaying and counting results:
 - Used show (10) to display the first 10 rows of the filtered
 DataFrame selected df final.
 - Used count to determine the total number of trips that match the criteria and print the result using Python's print function.

Knowledge gained:

• Learned selecting specific columns using select for the output

2024-04-05 02:39:21,355 INFO scheduler.DAGScheduler: Job 4 finished: count at NativeMethodAccessorImpl.java:0, took 530.074293 s

Count of trips from Brooklyn to Staten Island: 69437
2024-04-05 02:39:21,387 INFO server.AbstractConnector: Stopped Spark@7574f7b1{HTTP/1.1,[http/1.1]}{0.0.0.0:4040}

2024-04-05 02:09:23,464 INFO codegen.CodeGenerator: Code generated in 15.135113 ms

+		++	
Pickup_Borough	Dropoff_Borough	Pickup_Zone	
+	·	++	
Brooklyn	Staten Island	Columbia Street	
Brooklyn	Staten Island	Columbia Street	
Brooklyn	Staten Island	Columbia Street	
Brooklyn	Staten Island	Columbia Street	
Brooklyn	Staten Island	Columbia Street	
Brooklyn	Staten Island	Marine Park/Mill	
Brooklyn	Staten Island	Marine Park/Mill	
Brooklyn	Staten Island	Marine Park/Mill	
Brooklyn	Staten Island	Marine Park/Mill	
Brooklyn	Staten Island	Marine Park/Mill	
+		++	

only showing top 10 rows

Task 7 Route Analysis

7.1 TOP 10 POPULAR ROUTES ANALYSIS

Steps and APIs used:

- 1. Data Loading and Preparation (Covered in Task 1 Report)
 - Created SparkSession.
 - Rideshare data and taxi zone lookup data are loaded from S3 using textFile and converted into DataFrames.
 - Cleaned taxi_df using regexp replace.
 - DataFrames are joined based on pickup and dropoff locations using join and columns are renamed.
 - o The date column is formatted to "yyyy-MM-dd" format using date_format
- 2. Creating a new 'Route' column:
 - Used concat_ws to create a new column using withColumn, named
 "Route" that combines the "Pickup_zone" and "Dropoff_zone"
 columns separated by "to".
 - This creates a unique identifier for each route.
- 3. Calculating trip counts by route and business:
 - o **filter** to separate trips for Uber and Lyft businesses.
 - Within each business group, used groupBy on "Route" and count to calculate the number of trips for each route.
 - This results in two DataFrames: route_profits_uber (Uber trips) and route_profits_lyft (Lyft trips).
- 4. Merging DataFrames:
 - Used join on the "Route" column to merge route_profits_uber and route_profits_lyft DataFra mes.
 - o This creates a DataFrame **route_profits_merged** that includes "Route", "uber_count", and "lyft_count" columns.

5. Calculating total trip count:

- Created total_count column using withColumn. This column is a result of the addition of "uber_count", and "lyft_count" columns.
- Sorted the resulting Dataframe route_profits_final using orderBy(by = "total_cont", ascending = Flase) in descending order on the basis of "total count" column

6. Displaying results:

Displayed the first 10 rows of route_profits_merged using show (10, truncate=False) to print without truncating column names, providing insights into the top 10 routes and their Uber/Lyft trip counts.

7. API's used:

- concat_ws()
- withColumn()
- o filter()
- groupBy()
- \circ agg()
- o count()
- o join()
- o orderBy()

Knowledge gained:

- Learned how to create a new column by concatenating existing columns.
- It highlights grouping and aggregation using business type and route.
- Also learned how to merge DataFrames based on a shared column.

Output:

uber_count	lyft_count	total_count
253211		 253257
202719	184	202903
155803	78	155881
151521	41	151562
126253	26	126279
107392	1770	109162
98591	100	98691
98274	300	98574
90692	75	90767
89652	19	89671
	253211 202719 155803 151521 126253 107392 98591 98274 90692	202719 184 155803 78 151521 41 126253 26 107392 1770 98591 100 98274 300 90692 75

only showing top 10 rows

Task 8 Graph Processing

8.1 DEFINING STRUCTYPE OF VERTEX AND EDGE SCHEMA

Steps and API's used:

- 1. StructType Definition (**Spark SQL Structype API**):
 - o **StructType** is used to define the schema for both vertices and edges.
 - Each schema is a list of StructField objects, specifying the **column name**, data type, and nullability.

2. Schema Definitions

- O Vertex Schema (vertex_Schema):
 - id (*StringType*, *Not Null*): Unique identifier for each vertex (taxi zone). This field cannot be null to ensure every zone has a distinct ID.
 - Borough (*StringType*, *Nullable*): Borough name where the taxi zone is located (e.g., "Manhattan", "Queens"). This field can be null if the information is unavailable.
 - Zone (*StringType*, *Nullable*): Zone identifier within the borough. This field can be null if the information is unavailable.
 - service_zone (*StringType*, *Nullable*): Service zone identifier associated with the taxi zone. This field can be null if the information is unavailable.
- o Edge Schema (edge_Schema):
 - src (*StringType*, *Not Null*): Source vertex ID (pickup location taxi zone). This field cannot be null to establish a starting point for the ride.
 - dst (*StringType*, *Not Null*): Destination vertex ID (dropoff location taxi zone). This field cannot be null to define the ride's endpoint.

Explanation:

- 1. The **vertexSchema** is established to define the structure of the vertices dataframe, which represents various locations or taxi zones.
- 2. The **edgeSchema** is defined to outline the structure of the edges dataframe, which captures the rideshare trips between locations.

Knowledge Gained:

- Learned defining schemas for vertices and edges with the Spark SQL **StructType API**.
- Learned how transform dataframes into a graph structure.

8.2 CONSTRUCT EDGES, VERTICES DATAFRAMES AND GRAPH

This section details the steps and APIs used to construct the vertices and edges DataFrames.

Steps and API's used:

- 1. Vertices DataFrame:
 - Selected the relevant columns from the taxi_df DataFrame using the **select** function. These columns represent the properties of each location (vertex) in the graph.
- 2. Edges DataFrame:
 - Selected the pickup_location and dropoff_location columns from the ride_df DataFrame using the **select** function. These columns define the connections (edges) between locations in the graph.
- 3. GraphFrame Creation:
 - The selected vertices and edges DataFrames were used to construct a GraphFrame named **graph_main** using the **GraphFrame function**. This **GraphFrame** combines the vertex and edge information for **graph** analysis.
- 4. Displaying Sample Data:
 - Utilized the **show** function on both **graph.vertices** and **graph.edges** to display the first 10 rows of each DataFrame.
- 5. API's Used:
 - select, alias
 - GraphFrame

AVATOUT IL ALLOW OVER THE OF SCHEDULE FOR DECEMBER. BOD I THILDHOU, DIOWNSHING BE MALIVERED HOUSE COORDINATE OF A COUNTY OF A 2024-03-31 21:36:00,749 INFO codegen.CodeGenerator: Code generated in 22.418454 ms id Borough Zone service zone EWR EWR 1 Newark Airport 2 Oueens | Jamaica Bay Boro Zone 3 Bronx Allerton/Pelham G... Boro Zone Manhattan Alphabet City | Yellow Zone 5|Staten Island Arden Heights Boro Zone 6 | Staten Island | Arrochar/Fort Wad... | Boro Zone Queens Astoria Boro Zone Astoria Park | Boro Zone 8 Queens 9 Queens Auburndale Boro Zone 10 Baisley Park | Boro Zone Queens only showing top 10 rows

Vertices Dataframe

```
2024-04-04 18:33:56,591 INFO codegen.CodeGenerator: Code generated in 21.367195 ms
+---+
|src|dst|
+---+
|151|244|
244 78
|151|138
|138|151|
 36 | 129
|138| 88
200 | 138
182 242
248 242
242 20
+---+
only showing top 10 rows
```

Edges Dataframe

8.3 CREATING A GRAPH USING VERTICES AND EDGES

Steps and API's used:

1. Finding Connected Vertices:

• Employed the **triplets** operation on the graph object with **distinct()** method. This operation transforms the GraphFrame into a DataFrame representation, where each row represents a connection (edge) in the graph and returns only unique rows.

2. Displaying Sample Data:

Used the show function on the resulting DataFrame from
the triplets operation using
graph.triplets.distinct().show(10,
truncate=False). Kept the truncate parameter to False to ensure all
data is displayed.

4. API's used:

- triplets
- show

Challenges:

- Finding right method to get output same as given.
- Got stuck with same similar rows, then resolved it by making use of distinct method.

Output:

2024-04-05 01:40:01,533 INFO Scheduler.DAGScheduler: JOD 4 linished: Showstring at Nativemethodaccessorimpi.java:v, COOK 427.771077 S 2024-04-05 01:40:01,584 INFO codegen.CodeGenerator: Code generated in 12.22405 ms

+	+ edge +	+
[133, Brooklyn, Kensington, Boro Zone]	[133, 124]	[124, Queens, Howard Beach, Boro Zone]
[65, Brooklyn, Downtown Brooklyn/MetroTech, Boro Zone]	[65, 124]	[124, Queens, Howard Beach, Boro Zone]
[66, Brooklyn, DUMBO/Vinegar Hill, Boro Zone]	[66, 124]	[124, Queens, Howard Beach, Boro Zone]
[133, Brooklyn, Kensington, Boro Zone]	[133, 7]	[7, Queens, Astoria, Boro Zone]
[93, Queens, Flushing Meadows-Corona Park, Boro Zone]	[93, 7]	[7, Queens, Astoria, Boro Zone]
[34, Brooklyn, Brooklyn Navy Yard, Boro Zone]	[34, 234]	[234, Manhattan, Union Sq, Yellow Zone]
[256, Brooklyn, Williamsburg (South Side), Boro Zone]	[256, 234]	[234, Manhattan, Union Sq, Yellow Zone]
[223, Queens, Steinway, Boro Zone]	[223, 200]	[200, Bronx, Riverdale/North Riverdale/Fieldston, Boro Zone]
[47, Bronx, Claremont/Bathgate, Boro Zone]	[47, 200]	[200, Bronx, Riverdale/North Riverdale/Fieldston, Boro Zone]
[230, Manhattan, Times Sq/Theatre District, Yellow Zone]	[230, 200]	[200, Bronx, Riverdale/North Riverdale/Fieldston, Boro Zone]

only showing top 10 rows

8.4 COUNTING CONNECTED VERTICES WITH THE SAME BOROUGH AND SAME SERVICE ZONE

Steps and API's used:

- 1. Extracting Graph Triples::
 - Utilized the find operation on the graph object to specify a pattern for finding connected vertices that is, (a) [e] -> (b) which represents an edge e connecting vertex a to vertex b.
- 2. Filtering by Borough and Service Zone:
 - Applied a filter (a.Borough = b.Borough AND
 a.service_zone = b.service_zone) on the result of
 the find operation. This filter expression ensures that only connections
 between vertices with the same borough and service zone are retained.
- 3. Selecting and Renaming Columns:
 - Selected the desired columns (a.id, b.id, a.Borough, and a.service_zone) from the filtered DataFrame.
- 4. Displaying Sample Data:
 - Used the **show** function on the resulting DataFrame from the select operation using

borough_service_vertices.distinct().show(10, truncate=False). Kept the truncate parameter to False to ensure all data is displayed and distinct method to get only unique values from borough_service_vertices.

- 5. Counting and Displaying Results:
 - Used count() function on borough_service_vertices to get count of total connections and stored as total_connected_vertices including duplicates. Printed it out on terminal using print command as print(f"Count of total connected vertices with the same Borough and service zone is: {total connected vertices}")

4. API's used:

- find
- filter
- select
- distinct
- show

Knowledge gained:

- Learned how to traverse a graph by using the **find** operation to identify vertices connected by specific edge patterns.
- Use of **filter** to refine the search results and focus on specific pattern relevant to the task.
- Learned to remove duplicates using the **distinct** operation.

Output:

2024-04-04 19:10:06,225 INFO scheduler.DAGScheduler: Job 5 finished: showString at NativeMethodAccessorImpl.java:0, took 527.748352 2024-04-04 19:10:06,245 INFO codegen.CodeGenerator: Code generated in 11.262327 ms

	L	-	└-
id	id	Borough	service_zone
			,
252	19	Queens	Boro Zone
206	245	Staten Island	Boro Zone
131	207	Queens	Boro Zone
111	178	Brooklyn	Boro Zone
186	90	Manhattan	Yellow Zone
64	95	Queens	Boro Zone
121	95	Queens	Boro Zone
144	158	Manhattan	Yellow Zone
37	65	Brooklyn	Boro Zone
164	68	Manhattan	Yellow Zone
L		<u> </u>	L

only showing top 10 rows

2024-04-05 01:45:53,619 INFO scheduler.TaskSchedulerImpl: Killing all running tasks in stage 15: Stage finished
2024-04-05 01:45:53,619 INFO scheduler.DAGScheduler: Job 5 finished: count at NativeMethodAccessorImpl.java:0, took 351.519515 s
Count of total connected vertices with the same Borough and service zone is: 46886992

2024-04-05 01:45:53,643 INFO server.AbstractConnector: Stopped Spark@9fe4561{HTTP/1.1,[http/1.1]}{0.0.0.0:4040} 2024-04-05 01:45:53,645 INFO ui.SparkUI: Stopped Spark web UI at http://task8-spark-app-40843c8eabe2119e-driver-svc.data-science-ec23

8.5 PERFORMING PAGE RANKING ON THE GRAPH DATAFRAME

Steps and API's used:

1. Applying PageRank:

• Utilized the **pageRank** function on the graph_main object. This function implements the PageRank algorithm, which iteratively calculates a score (PageRank) for each vertex, reflecting its relative importance based on the incoming links from other vertices

2. Setting Parameters:

- Set two parameters for the PageRank algorithm resetProbability (0.17) and tol(0.01) as intructed.
- **resetProbability** (0.17): This parameter represents the probability of a random jump to any vertex during the PageRank calculation. We used a value of 0.17.
- tol (0.01): This parameter defines the tolerance threshold for convergence. The algorithm iterates until the PageRank values for all vertices change by less than this threshold. We used a tolerance of 0.01.

3. Sorting and Displaying Results:

- Used the **sort** function on the result of the **pageRank** operation after selecting vertices.
- Sorted the vertices in descending order based on their calculated PageRank values (pagerank) using sort('pagerank', ascending=False) function.
- Then selected the columns id and pagerank using select("id", "pagerank") and displayed the first 5 rows using show with truncate=False.

4. API's used:

- pageRank
- sort
- select
- show

Knowledge gained:

• This task demonstrated understanding of PageRank algorithm which is a valuable technique for ranking vertices in a graph based on their connectivity and influence within the network.

Output: