MATH 524: Lecture 15 (10/07/2025)

Today: * simplicial approximation * subdivision

Recall h: |K| -> |L| satisfies star condition: h(stv) < st w

Def Let $h: |K| \rightarrow |L|$ be a continuous map. If $f: K \rightarrow L$ is a simplicial map such that $h(Stv) \subset Stf(v) + v \in K^{(o)}$. Then f is called a **Simplicial approximation** to h.

Intuitively, f is "close to" h in the following sense: given $\overline{x} \in [K]$, $\overline{\exists} a$ simplex $\overline{\tau}$ of L s.t. $h(\overline{x})$, $f(\overline{x}) \in \overline{\tau}$. We formalize this concept now.

Lemma 4.2 [n] Let $f:K \to L$ be a simplicial approximation to $h:|K| \to |L|$. Given $\overline{X} \in |K|$, there exists a simplex $T \in L$ such that $h(\overline{X}) \in Int T$, $f(\overline{X}) \in T$.

Proof Follows from Lemma 4.1 (a).

We an also compose simplicial approximations to get a simplicial approximation for the composition of continuous maps.

Theorem 14.3 [M] Let $h: |K| \rightarrow |L|$ and $k: |L| \rightarrow |M|$ have simplicial approximations $f: K \rightarrow L$ and $g: L \rightarrow M$, respectively. Then $g \circ f$ is a simplicial approximation to $k \circ h$.

Proof 1. gof is a simplicual map.

2. If $v \in K^{(0)}$, then $h(Stv) \subset Stf(v)$, as f is a simplicial approximation to h. Hence $k(h(Stv)) \subset k(Stf(v)) \subset St(g(f(v))$, as g is a simplicial approximation to k.

Example

h(st(a,K)) & st(v,L) for any vEL(0)

We consider K to be the 1-complex made of 3 1-simplies, and L to be the 2-complex that models an annulus. Let $h: |K| \rightarrow |L|$ map all of |K| to the loop on |L| as shown. We also consider a "refinement" of K by adding several more vertices to obtain K' such that |K| = |K'|. Hence, K' applies without change to K'.

If is clear that h does not satisfy the star condition relative to K and L. Indeed, notice that $St(a,K)=K-\{lg,l,g\}$, and there is no vertex in L such that h(St(a,K)) is a subset of its Star in L.

But h does satisfy the star condition relative to K' and L. So h has a simplicial approximation $f:K' \to L$, and one such approximation is shown.

If $h:|K| \rightarrow |L|$ satisfies the star condition relative to K and L, there exists a well defined homomorphism $h_*: H_p(K) \rightarrow H_p(L)$ for all p obtained by setting $h_* = f_*$, where $f \leq a$ Simplicial approximation to A.

Not surprisingly, we can extend the star condition to the level of relative homology.

Lemma 44 [M] Let $h: |k| \rightarrow |L|$ satisfy the star condition relative to k & L, and suppose h maps $|k_0|$ into $|L_0|$.

- (a) Any simplicial approximation $f:K \to L$ to halso maps $|K_0|$ into $|L_0|$. Also, the restriction of f to K_0 is a simplicial approximation to the restriction of h to $|K_0|$.
- (b) Any two simplicial approximations f and g to h are contiguous as maps of pairs.

Subdivision

We had seen in the example that h: |K| > |L| did not Satisfy the star condition relative to K and L, but it did relative to K'and L where K' is a "finer" or "refined" worsion of K. We formalize this idea now, and talk about subdivisions.

We first formally define a subdivision. We then introduce barycentric subdivision as a "canonical" subdivision.

Def let K be a geometric complex in IRd. A complex K'is Said to be a Subdivision of K if

- 1. each simplex of K' is contained in a simplex of K, and 2. each simplex of K is the union of finitely many simplices of K.

The conditions \Rightarrow |K| and |K'| are equal as sets. The finiteness condition in 2. guarantees that |K| and |K'| are equal as topological spaces.

Examples

In I and 2 above, K' is a subdivision of K.

K: [0,1] (1-simplex and its vertices)

 $K': \begin{bmatrix} \frac{1}{n+1}, \frac{1}{n} \end{bmatrix} \forall n \in \mathbb{Z}_{70}$, and their vertices, and the vertex o.

|K|=|K'| as sets, but they are not equal as topological Spaces, as the finiteness requirement in Condition 2 is violated. Hence K' is not a subdivision of K.

We get some results directly from the definition of subdivision.

Properties

- 1. If K' is a subdivision of K, and K' is a subdivision of K, then K' is a subdivision of K.
- 2. If K' is a subdivision of K, and KoCK is a subcomplex, then the collection of simplices of K' that lie in |Ko| is automatically a subdivision of Ko. We call this subdivision the subdivision of Ko induced by K'.

Subdivision satisfy a sort of "stoor condition", as the following lemma describes.

Lemma 15.1 [M] Let K'be a subdivision of K. Then for every $\overline{w} \in K'^{(0)}$, there exists a vertex $\overline{v} \in K^{(0)}$ such that $St(\overline{v}, K') \subset St(\overline{v}, K).$

Indeed, if σ is a simplex in K S.t. $\bar{w} \in Int \sigma$, then this inclusion holds precisely when \bar{v} is a vertex of σ .

Example

Here, $St(h,K') \subset St(a,K)$, for instance.

Proof (\Longrightarrow) (Straightforward). $\overline{w} \in St(\overline{w}, K')$ by definition. Hence by the given inclusion, \bar{w} belongs to some open simplex of K, which has \bar{v} as a vertex.

(=) Let w ∈ Into, and v be a vertex of o. Then we show that $|K| - St(\overline{v}, K) \subset |K| - St(\overline{w}, K')$

Notice that $|K| - St(\bar{v}, K)$ is the union of all simplices, in K that do not have \bar{v} as a vertex. This is also a collection of simplices T in K'. No such T can have \overline{w} as a vertex, as $\overline{w} \in \text{Int} \sigma \subset \text{St}(\overline{v}, K)$. Hence any such T lies in $|K|-St(\overline{w},K')$.