1 General discussion of dielectric function

1.1 Fourier transform of dielectric components

We can start by looking at some basic relationships between **D**, **E**. In SI units, and writing ϵ instead of ϵ_r to avoid unnecessary subscripts,

$$\mathbf{D}_{\alpha}(r) = \int d^{d}r' \,\epsilon_{\alpha\beta}(r, r') \epsilon_{0} \mathbf{E}_{\beta}(r'). \tag{1}$$

We can start by making the large assumption that the system is isotropic, and thus, the position dependence for ϵ must be of the form $\epsilon_{\alpha\beta}(r-r')$. This justifies the following:

$$\mathbf{D}_{\alpha}(r) = \int d^{d}r' \,\epsilon_{\alpha\beta}(r - r')\epsilon_{0} \mathbf{E}_{\beta}(r') \tag{2}$$

$$= \int d^d r' \, \epsilon_{\alpha\beta}(r - r') \epsilon_0 \mathbf{E}_{\beta}(r') e^{ikr'} e^{-ikr'} \tag{3}$$

$$= \int d^d r' \, \epsilon_{\alpha\beta}(r - r') \epsilon_0 \mathbf{E}_{\beta}(r') e^{ikr'} e^{-ikr'} \tag{4}$$

$$= \int d^d r' \, \epsilon_{\alpha\beta}(r - r') e^{ikr'} \epsilon_0 \mathbf{E}_{\beta}(r') e^{-ikr'} \tag{5}$$

$$\mathbf{D}_{\alpha}(r)e^{-ikr} = \int d^{d}r' \,\epsilon_{\alpha\beta}(r-r')e^{ikr'}e^{-ikr}\epsilon_{0}\mathbf{E}_{\beta}(r')e^{-ikr'} \tag{6}$$

$$\mathbf{D}_{\alpha}(r)e^{-ikr} = \int d^{d}r' \,\epsilon_{\alpha\beta}(r - r')e^{-ik(r - r')}\epsilon_{0}\mathbf{E}_{\beta}(r')e^{-ikr'} \tag{7}$$

If we integrate this over r, and recognise our Fourier transforms, this becomes

$$D_{\alpha}(k) = \epsilon_{\alpha\beta}(k)\epsilon_0 E_{\beta}(k) \tag{8}$$

This is a fair result for the assumption of isotropy. We have an implicit sum over β here to look at. This serves as a useful working definition of $\epsilon(k)$.

One more assumption proves useful: for a given \mathbf{k} , we can look at the components of \mathbf{E} and \mathbf{D} parallel (longitudinal) and perpendicular (transverse) to \mathbf{k} . We may assume that only the parallel component of \mathbf{E} affects the parallel component of \mathbf{D} , and same for the perpendicular components. Specifically, this leads to

include brief derivation of dielectric components

$$\epsilon_{\alpha\beta}(\mathbf{k}) = \epsilon_{\parallel}(\mathbf{k})\hat{k}_{\alpha}\hat{k}_{\beta} + \epsilon_{\perp}(\mathbf{k})(\delta_{\alpha\beta} - \hat{k}_{\alpha}\hat{k}_{\beta}). \tag{9}$$

A moment's reflection shows that this leads to two independent components of $\epsilon_{\alpha\beta}(\mathbf{k})$ (as can be seen by assuming \mathbf{k} points in the x direction). Also note that that for the transverse case, this explicitly only couples y to y and z to z; there are no couplings between y and z.

Fill in these

details

1.2 Electron gas densities and longitudinal eqs

To begin looking at an actual electron gas, with some external charge density ρ_{ext} imposed on it, we can start with Gauss's law:

$$\nabla \cdot \mathbf{D}(\mathbf{r}) = \rho_{ext}(r) \tag{10}$$

This external charge density induces a charge density in the gas:

$$\rho(r) = \rho_{ind}(r) + \rho_{ext}(r) \tag{11}$$

We can define some scalar potentials Φ and Φ_{ext} , and therewith write

$$\mathbf{E}(r) = -\nabla \Phi(r) \tag{12}$$

$$\mathbf{D}(r) = -\epsilon_0 \mathbf{\nabla} \Phi_{ext}(r) \tag{13}$$

Going Fourier with it leads to

$$\mathbf{E}(k) = -i\mathbf{k}\Phi(k) \tag{14}$$

$$\mathbf{D}(k) = -i\epsilon_0 \mathbf{k} \Phi_{ext}(k) \tag{15}$$

These are the components of \mathbf{E} and \mathbf{D} parallel to \mathbf{k} , which means that these are really the *longitudinal* components.

Relating Gauss's laws to the scalar components, we get

$$\rho_{ext}(\mathbf{k}) = \nabla \cdot \mathbf{D}(\mathbf{k}) \tag{16}$$

$$= \nabla \cdot (-i\epsilon_0 \mathbf{k} \Phi_{ext}(\mathbf{k})) \tag{17}$$

$$\rho_{ext}(\mathbf{k}) = \epsilon_0 k^2 \Phi_{ext}(\mathbf{k}) \tag{18}$$

Similarly, for **E** and ρ , we get

$$\rho(\mathbf{k}) = \epsilon_0 k^2 \Phi(\mathbf{k}). \tag{19}$$

Because of (8), we should be able to write

$$\Phi_{ext}(\mathbf{k}) = \epsilon_{\parallel}(\mathbf{k})\Phi(\mathbf{k}) \tag{20}$$

Skipping over some details to fill in later (which involve defining potential energies $V=-e\Phi$ and using number densities defined by $\rho=-en$, we end up with

 $\frac{1}{\epsilon_{\parallel}(k,\omega)} = 1 + \frac{4\pi e^2}{k^2} \Pi(k,\omega), \tag{21}$

where $\Pi(k,\omega)$ is a response function satisfying

$$n_{ind}(k,\omega) = \Pi(k,\omega)V_f(k,\omega)$$
 (22)

Here n_{ind} is the number density of induced electrons, and V_f is the voltage created by any free electrons in the metal (which isn't quite the same as an external voltage, but I think you might be able to ignore that difference).

There's no reason for $\Pi(\mathbf{k}, \omega)$ to be simple. In general, it describes the complete induced density reponse to any external potential.