Descenso de gradiente

Autor: Sanchez Sauñe, Cristhian Wiki

Aplicaciones

Aplicaciones

Aplicaciones

Intuición

Descenso de gradiente en acción

Un problema de optimización

Problema:

$$\min_{w} f(w)$$

Solución Iterativa:

$$w_{k+1} = w_k - \lambda_k \nabla f(w_k)$$

donde,

- w_{k+1} es el valor actualizado luego de k iteraciones
- w_k es el valor inicial antes de la iteración k-ésima,
- λ_k es el tamaño de paso,
- $\nabla f(w_k)$ es el gradiente de f.

Algoritmo completo

Cost Function

$$J\left(\Theta_{0},\Theta_{1}\right) = \frac{1}{2m} \sum_{i=1}^{m} [h_{\Theta}(x_{i}) - y_{i}]^{2} \prod_{\text{True Value Predicted Value}}^{\uparrow} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$

Gradient Descent

$$\Theta_{j} = \Theta_{j} - \alpha \frac{\partial}{\partial \Theta_{j}} J\left(\Theta_{0}, \Theta_{1}\right)$$
Learning Rate

Now,

$$\begin{split} \frac{\partial}{\partial \Theta} J_{\Theta} &= \frac{\partial}{\partial \Theta} \frac{1}{2m} \sum_{i=1}^{m} [h_{\Theta}(x_i) - y]^2 \\ &= \frac{1}{m} \sum_{i=1}^{m} (h_{\Theta}(x_i) - y) \frac{\partial}{\partial \Theta_j} (\Theta x_i - y) \\ &= \frac{1}{m} (h_{\Theta}(x_i) - y) x_i \end{split}$$

Therefore,

$$\Theta_j := \Theta_j - \frac{\alpha}{m} \sum_{i=1}^m [(h_{\Theta}(x_i) - y)x_i]$$

Código

```
def gradient_descent(X,y,theta,learning_rate=0.01,iterations=100):
        = Matriz de X con unidades de sesgo agregadas
        = Vector de Y
    theta=Vector de thetas np.random.randn(j,1)
    learning_rate
    iterations = número de iteraciones
   Devuelve el vector theta final y la matriz del historial de
    costos sobre el número de iteraciones
   m = len(y)
    cost_history = np.zeros(iterations)
    theta_history = np.zeros((iterations,2))
    for it in range(iterations):
        prediction = np.dot(X,theta)
        theta = theta -(1/m)*learning_rate*( X.T.dot((prediction - y)))
        theta_history[it,:] =theta.T
        cost_history[it] = cal_cost(theta,X,y)
    return theta, cost_history, theta_history
```


Descenso de gradiente en la función de coste

Descenso de gradiente en la función de coste

Error de entrenamiento Training loss vs. iterations 0.1 Train 1 Train 2 Train 3 Train 4 -0.08 Train 5 0.06 loss 0.04 0.02 10000 20000 30000 60000 40000 50000 iterations

Complejidad

El costo computacional del descenso del gradiente depende del número de iteraciones que se necesitan para converger. La complejidad del descenso por gradiente es $O(kn^2)$, así que cuando N es muy grande se recomienda utilizar el descenso de gradiente en lugar de la forma cerrada de regresión lineal.

Redes Neuronales

Deep Learning - DEMO

Demo UNI

