2019 年度応用数理 D 第 2 回レポート解答例

中安淳

2019年10月17日

問題 1

方程式 $\cos x = x$ を考える。

- (1) 方程式 $\cos x = x$ は [-1,1] 上で解を持つことを示せ。
- (2) 反復法 $x_{n+1} = \cos x_n$ により定められる数列 x_n は、初期推定がどのような実数 x_0 であっても収束することを示せ。

問題1の解答

- (1) $f(x) = \cos x x$ とおくと、f は連続関数で $f(-1) = \cos(-1) + 1 \geq 0$, $f(1) = \cos(1) 1 \leq 0$ より中間値定理から、f(a) = 0 となる $a \in [-1,1]$ が存在する。したがって $\cos x = x$ は [-1,1] の範囲で解 a を持つ。
- (2) J = [-1,1] とおくと $x_1 = \cos x_0 \in J$ である。 $x \in J$ に対して、

$$\cos' x = -\sin x$$

であり、 $\sin x$ は J 上単調増加で $1 < \pi/2$ に注意すると、

$$|\cos' x| \le \max\{|\sin(1)|, |\sin(-1)|\} = \sin(1) < 1$$

である。よって授業で習った不動点反復に関する定理を x_1 を初期推定として用いることで、部分列 $(x_n)_{n=1}^\infty$ は ((1) の解 a に) 収束することがわかり、元の反復列 $(x_n)_{n=0}^\infty$ も収束する。

問題 2

 $\sqrt{5}$ の値を $f(x)=x^2-5$ に対するニュートン法で求めることを考える。ただし、初期推定は $x_0=3$ とする。

- (1) 反復列 x_n が満たす漸化式を求めよ。
- (2) x_1, x_2, x_3, x_4 を分数の形で求めよ。
- (3) x_4 は小数点以下何桁まで正しい数字を与えるか答えよ。ただし、 $\sqrt{5}=2.23606$ 79774 99789 69640 91736 \dots である。

問題1の解答

(1) f'(x) = 2x より、

$$x_{n+1} = x_n + \frac{x_n^2 - 5}{2x_n} = \frac{x_n^2 + 5}{2x_n}.$$

- (2) $x_1 = 7/3$, $x_2 = 47/21$, $x_3 = 2207/987$, $x_4 = 4870847/2178309$.
- (3) 電卓を使うと $x_4=2.236067977499978\cdots$ がわかるので、小数点以下 12 桁まで一致する。