

Operating Systems

BITS Pilani K K Birla Goa Campus

Dr. Lucy J. Gudino
Dept. of CS and IS

Last Class

- Memory protection:
 - Page to be read-write, read-only or execute only
 - Valid-invalid bit attached to each entry in the page table
 - Page Table Length Register (PTLR)
- Shared pages
- Structure of the page table
 - Hierarchical Paging
 - Hashed Page Tables
 - Inverted Page Tables

Segmentation

- Memory-management scheme that supports user view of memory
- A program is a collection of segments.
- Each segment has a distinct purpose
- A segment is a logical unit such as: main program, procedure, function, local variables, global variables, stack, symbol table, arrays etc.
- Segment may be of different sizes

User's View of a Program

Segmentation

- Memory-management scheme that supports user view of memory
- A program is a collection of segments.
- Each segment has a distinct purpose
- A segment is a logical unit such as: main program, procedure, function, local variables, global variables, stack, symbol table, arrays etc.
- Segment may be of different sizes.
- A process is loaded by loading all of its segments into dynamic partitions that need not be contiguous.
- The whole process is still loaded into memory, but the segments that make up the process do not have to be loaded contiguously into memory
 - Space within a segment is contiguous

Logical View of Segmentation

physical memory space

innovate achieve lead

Contd...

- Each segment has protection bits
 - Read-only segment (code)
 - Read-write segments (data, heap, stack)
 - Allows processes to share code and data
- Logical address consists of a two tuple: <segment-no, offset>,
- A segment table keeps track of every segment in a particular process
 - Each entry contains base and limit
 - base contains the starting physical address where the segments reside in memory
 - limit specifies the length of the segment
 - Also contains protection information (sharing allowed, read vs. read/write)

Segmentation Architecture

- Additional hardware support required:
 - Multiple base and limit registers, or
 - Segment table base pointer (points to table in memory)
- Segment-table base register (STBR) points to the segment table's location in memory
- Segment-table length register (STLR) indicates number of segments used by a program;
- segment number s is legal if s < STLR

Segmentation Hardware

Example of Segmentation

Segmentation Architecture (Cont.)

- **Protection**
 - With each entry in segment table associate:
 - validation bit = $0 \Rightarrow$ illegal segment
 - read/write/execute privileges
- Protection bits associated with segments; code sharing occurs at segment level
- Since segments vary in length, memory allocation is a dynamic storage-allocation problem

Important points to be noted

- When a process is created:
 - Allocate space in virtual memory for all of the process's segments
 - Create a (mostly empty) segment table and store it in the process's PCB
- When a context switch occurs:
 - Save the OS's segment table in the old process's PCB
 - Load OS's segment table from new process's PCB, allocating space in physical memory if first time process runs
- If there's no space in physical memory:
 - Compact memory (move segments, update bases) to make contiguous space
 - Swap one or more segments out to disk

Contd...

- Advantages of segmentation:
 - Segments don't have to be contiguous
 - Segments can be swapped independently
 - Segments allow sharing
- Disadvantages of segmentation:
 - Complex memory allocation (first-fit, etc.)
 - External fragmentation

Virtual Memory

BITS Pilani K K Birla Goa Campus

innovate achieve le

Introduction

- How to increase the degree of multiprogramming?
- Logical vs physical memory
- Virtual memory is a technique that allows the execution of processes that are not completely in memory.
- Motivation:
 - Programs often have code to handle unusual error conditions which is almost never executed.
 - Arrays, lists, and tables are often allocated more memory than they actually need.
 - Certain options and features of a program may be used rarely
 - Principle of locality
 - trashing is a condition where system spends more time in swapping than executing instructions

Contd...

Advantages:

- A program would no longer be constrained by the amount of physical memory that is available
- Because each user program could take less physical memory, more programs could be run at the same time
- increases the CPU utilization and throughput
- Less I/O would be needed to load or swap each user program into memory, so each user program would run faster

Background

- Virtual memory separation of user logical memory from physical memory.
 - Only part of the program needs to be in memory for execution
 - Logical address space can therefore be much larger than physical address space
 - Allows address spaces to be shared by several processes
 - Allows for more efficient process creation
- Virtual memory can be implemented via:
 - Demand paging
 - Demand segmentation

Virtual Memory That is Larger Than

achieve

lead

Physical Memory

Virtual-address Space

