Approximate Proximity Problems in High Dimensions via Locality-Sensitive Hashing Piotr Indyk

Closest Pair

 We have seen several algorithms for the closest pair problem over n points in R^d

```
    d=2: O(n log n)
    d>2: d<sup>O(d)</sup> n (or O(dn<sup>2</sup>))
```

- The exponential dependence on d, a.k.a. "curse of dimensionality", is a very common phenomenon
 - See talk by Nina Amenta, 4pm, Kiva/Star
- Next few lectures: how to get around this problem

Nearest Neighbor

- For a set P of n points in Rd
 - Nearest Neighbor: for any query q, returns a point p∈P minimizing ||p-q||
 - r-Near Neighbor: for any query q, returns a point p∈P s.t. ||p-q|| ≤ r (if it exists)
- · If we have data structure with
 - Construction time T(n)
 - Query time Q(n) then we can solve r-Close Pair in time [T(n) + n Q(n)] log n
- Unfortunately, no algorithm with small T(n) and Q(n) is known

Approximate Near Neighbor

- c-Approximate r-Near Neighbor: build data structure which, for any query q:
 - If there is a point $p \in P$, $||p-q|| \le r$
 - it returns p'∈P, ||p-q|| ≤ cr

Reductions:

- c-Approx r-Close Pair
- c-Approx Nearest Neighbor reduces to c-Approx Near Neighbor (log overhead)
- One can enumerate all approx near neighbors
- → can solve exact near neighbor problem
- Other apps: c-approximate Minimum Spanning Tree, clustering, etc.

Today

- A c-Approx r-Near Neighbor:
 - Preprocessing: dn¹+¹/c
 - Query time: dn^{1/c}
 - ...for binary vectors
- Sketch how to improve 1/c to 1/c²+δ

Locality-Sensitive Hashing

 Idea: construct hash functions g: R^d → U such that for any points p,q:

- If ||p-q|| >cr, then Pr[g(p)=g(q)] is "small"

Then we can solve the problem by hashing

LSH [Indyk-Motwani'98]

- A family H of functions h: R^d → U is called (P₁,P₂,r,cr)-sensitive, if for any p,q:
 - $\text{ if } ||p-q|| < r \text{ then } Pr[h(p)=h(q)] > P_1$
 - $\text{ if } ||p-q|| > \text{cr then Pr}[h(p)=h(q)] < P_2$
- Example: Hamming distance
 - LSH functions: h(p)=p_i, i.e., the i-th bit of p
 - Probabilities: Pr[h(p)=h(q)] = 1-D(p,q)/d

```
p=10010010
q=11010110
```

LSH Algorithm

We use functions of the form

$$g(p) = \langle h_1(p), h_2(p), ..., h_k(p) \rangle$$

- Preprocessing:
 - Select g₁...g₁
 - For all p∈P, hash p to buckets $g_1(p)...g_1(p)$
- Query:
 - Retrieve the points from buckets $g_1(q)$, $g_2(q)$, ..., until
 - Either the points from all L buckets have been retrieved, or
 - Total number of points retrieved exceeds 3L
 - Answer the query based on the retrieved points
 - Total time: O(dL)

Analysis

- Lemma1: LSH solves c-approximate NN with:
 - Number of hash fun: L=n^ρ,ρ=log(1/P1)/log(1/P2)
 - Constant success probability per query q
- Lemma 2: for LSH functions as seen earlier we have ρ=1/c

Proof of Lemma 1 by picture

- Points in {0,1}^d
- Collision prob. for k=1..3, L=1..3 (recall: L=#indices, k=#h's)
- Distance ranges from 0 to d=10

Proof

- Define:
 - p: a point such that $||p-q|| \le r$
 - $-FAR(q)=\{ p' \in P: ||p'-q|| > c r \}$
 - $B_i(q) = \{ p' \in P: g_i(p') = g_i(q) \}$
- Will show that both events occur with >0 probability:
 - $-E_1: g_i(p)=g_i(q)$ for some i=1...L
 - $-E_2$: $\Sigma_i |B_i(q) \cap FAR(q)| < 3L$

Proof ctd.

- Set k=log_{1/P2} n
- For p'∈FAR(q),

$$Pr[g_i(p')=g_i(q)] \le P_2^k = 1/n$$

- $E[|B_i(q) \cap FAR(q)|] \le 1$
- $E[\Sigma_i | B_i(q) \cap FAR(q) |] \le L$
- $Pr[\Sigma_i | B_i(q) \cap FAR(q) | \ge 3L] \le 1/3$

Proof, ctd.

- $Pr[g_i(p)=g_i(q)] \ge 1/P_1^k = 1/n^p = 1/L$
- $Pr[g_i(p)\neq g_i(q), i=1..L] \le (1-1/L)^L \le 1/e$

Proof, end

- Pr[E₁ not true]+Pr[E₂ not true]
 ≤ 1/3+1/e =0.7012.
- $Pr[E_1 \cap E_2] \ge 1-(1/3+1/e) \approx 0.3$

Proof of Lemma 2

Statement: for

- -P1=1-r/d
- P2=1-cr/d

we have $\rho = \log(P1)/\log(P2) \le 1/c$

- Proof:
 - Need P1^c ≥ P2
 - But $(1-x)^c \ge (1-cx)$ for any 1>x>0, c>1

For the curious...

Projection-based LSH

[Datar-Immorlica-Indyk-Mirrokni'04]

- Define $h_{X,b}(p) = \lfloor (p^*X+b)/w \rfloor$:
 - $w \approx r$
 - $X=(X_1...X_d)$, where X_i is chosen from:
 - Gaussian distribution (for I₂ norm)
 - b is a scalar

Analysis

- Need to:
 - Compute Pr[h(p)=h(q)] as a function of ||p-q||
 and w; this defines P₁ and P₂
 - For each c choose w that minimizes

$$\rho = \log_{1/P_2}(1/P_1)$$

- Method:
 - For |₂: computational
 - For general I_s: analytic

$\rho(w)$ for various c's: I_1

$\rho(w)$ for various c's: l_2

ρ (c) for I_2

New LSH scheme

[Andoni-Indyk'06]

- Instead of projecting onto R¹, project onto R^t, for constant t
- Intervals → lattice of balls
 - Can hit empty space, so hash until a ball is hit
- Analysis:
 - $\rho = 1/c^2 + O(\log t / t^{1/2})$
 - Time to hash is t^{O(t)}
 - Total query time: dn¹/c²+o(¹)
- [Motwani-Naor-Panigrahy'06]: LSH in I_2 must have $\rho \ge 0.45/c^2$

New LSH scheme, ctd.

- How does it work in practice ?
- The time t^{O(t)}dn^{1/c²+f(t)} is not very practical
 - Need t≈30 to see some improvement
- Idea: a different decomposition of R^t
 - Replace random balls by Voronoi diagram of a lattice
 - For specific lattices, finding a cell containing a point can be very fast
 →fast hashing

Leech Lattice LSH

- Use Leech lattice in R²⁴, t=24
 - Largest kissing number in 24D: 196560
 - Conjectured largest packing density in 24D
 - 24 is 42 in reverse…
- Very fast (bounded) decoder: about 519 operations [Amrani-Beery'94]
- Performance of that decoder for c=2:

```
- 1/c^2 \\ - 1/c \\ - \text{Leech LSH, any dimension:} \qquad 0.25 \\ - \text{Leech LSH, 24D (no projection):} \qquad \rho \approx 0.36 \\ \rho \approx 0.26
```

Experiments

Experiments (with '04 version)

- E²LSH: Exact Euclidean LSH (with Alex Andoni)
 - Near Neighbor
 - User sets r and P = probability of NOT reporting a point within distance r (=10%)
 - Program finds parameters k,L,w so that:
 - Probability of failure is at most P
 - Expected query time is minimized
- Nearest neighbor: set radius (radiae) to accommodate 90% queries (results for 98% are similar)
 - 1 radius: 90%
 - 2 radiae: 40%, 90%
 - 3 radiae: 40%, 65%, 90%
 - 4 radiae: 25%, 50%, 75%, 90%

Data sets

- MNIST OCR data, normalized (LeCun)
 - d=784
 - n=60,000
- Corel hist
 - d=64
 - n=20,000
- Corel uci
 - d=64
 - n=68,040
- Aerial data (Manjunath)
 - d=60
 - n=275,476

Other NN packages

- ANN (by Arya & Mount):
 - Based on kd-tree
 - Supports exact and approximate NN
- Metric trees (by Moore et al):
 - Splits along arbitrary directions (not just x,y,..)
 - Further optimizations

Running times

	MNIST	Speedup	Corel_hist	Speedup	Corel_uci	Speedup	Aerial	Speedup
E2LSH-1	0.00960							
E2LSH-2	0.00851		0.00024		0.00070		0.07400	
E2LSH-3			0.00018		0.00055		0.00833	
E2LSH-4							0.00668	
ANN	0.25300	29.72274	0.00018	1.011236	0.00274	4.954792	0.00741	1.109281
MT	0.20900	24.55357	0.00130	7.303371	0.00650	11.75407	0.01700	2.54491

LSH vs kd-tree (MNIST)

Caveats

- For ANN (MNIST), setting $\varepsilon = 1000\%$ results in:
 - Query time comparable to LSH
 - Correct NN in about 65% cases, small error otherwise
- However, no guarantees
- LSH eats much more space (for optimal performance):

- LSH: 1.2 GB

Kd-tree: 360 MB

Conclusions

- Locality-Sensitive Hashing
 - Very good option for near neighbor
 - Worth trying for nearest neighbor
- E²LSH [DIIM'04] available check my web page for more info