EXERCICE 1 On considère la matrice $A \in \mathcal{M}_n(\mathbb{R})$ de terme général :

$$a_{ij} = \frac{1}{(i+j-1)!}$$

soit

$$A = \begin{pmatrix} \frac{1}{1!} & \frac{1}{2!} & \cdots & \frac{1}{n!} \\ \frac{1}{2!} & \frac{1}{3!} & \cdots & \frac{1}{(n+1)!} \\ \vdots & \vdots & & \vdots \\ \frac{1}{n!} & \frac{1}{(n+1)!} & \cdots & \frac{1}{(2n-1)!} \end{pmatrix}$$

Soit
$$Y=\left(\begin{array}{c}y_1\\ \vdots\\ y_n\end{array}\right)\in\mathbb{R}^n$$
 vérifiant $AY=0_{\mathbb{R}^n}.$ On définit le polynôme

$$P = \sum_{k=1}^{n} \frac{y_k}{(n+k-1)!} X^{n+k-1} = \frac{y_1}{n!} X^n + \frac{y_2}{(n+1)!} X^{n+1} + \dots + \frac{y_n}{(2n-1)!} X^{2n-1}$$

1. On connait la formule

$$D\left(\frac{X^p}{p!}\right) = \begin{cases} \frac{X^{p-1}}{(p-1)!} & \text{si } p \geqslant 1\\ 0 & \text{si } p = 0 \end{cases}$$

Donc

$$D^{\ell}\left(\frac{X^{p}}{p!}\right) = \left\{ \begin{array}{l} \frac{X^{p-\ell}}{(p-\ell)!} \text{ si } p \geqslant \ell \\ 0 \text{ si } p < \ell \end{array} \right.$$

Par linéarité, on a donc, pour $\ell \in [0, n-1]$,

$$P^{(\ell)} = \sum_{k=1}^{n} y_k D^{\ell} \left(\frac{X^{n+k-1}}{(n+k-1)!} \right)$$
$$= \sum_{k=1}^{n} y_k \frac{X^{n+k-1-\ell}}{(n+k-1-\ell)!}$$

En évaluant en 1, cela donne

$$P^{(\ell)}(1) = \sum_{k=1}^{n} \frac{y_k}{(n+k-\ell-1)!}$$

Or $AY = 0_{\mathbb{R}^n}$ s'écrit, à la ligne $n - \ell$

$$\sum_{k=1}^{n} [A]_{n-\ell,k} y_k = 0 \quad \text{soit} \quad \sum_{k=1}^{n} \frac{y_k}{(n-\ell+k-1)!} = 0$$

Ainsi, naturellement

$$\forall \ell \in [0, n-1], \ P^{\ell}(1) = 0$$

2. Mais de plus

$$P = X^{n} \sum_{k=1}^{n} \frac{y_{k}}{(n+k-1)!} X^{k-1}$$

Donc 1 et 0 sont racines de P d'ordre au moins n chacun. Or deg $P \leq 2n-1$, ce qui assure que

$$P = 0$$

Les coefficients de P sont ainsi nuls, i.e. $y_1 = \cdots = y_n = 0$, soit $Y = 0_{\mathbb{R}^n}$.

Le système $AY = 0_{\mathbb{R}^n}$ n'admet que la solution nulle, donc A est inversible

PCSI 1

EXERCICE 2

Dans cet exercice, la notation f^n désigne l'itérée : $f \circ \cdots \circ f$

On cherche les fonctions f définies et continues sur \mathbb{R}^+ vérifiant :

(i)
$$f(0) = 0$$
 et (ii) $\forall x \in \mathbb{R}_+$, $f(x) = 2f(x) - x$ (soit $f(f(x)) = 2f(x) - x$)

On se donne une telle fonction f.

- **1.** Pour pouvoir définir f(f(x)), il faut que $f(x) \ge 0$: f est positive sur \mathbb{R}_+
- **2.** Si x et y positifs vérifient f(x) = f(y), alors f(f(x)) = f(f(y)), donc 2f(x) x = 2f(y) yIl en résulte immédiatement que x = y:

3. a) Supposons que f ne soit pas strictement monotone sur \mathbb{R}_+ .

On aurait alors trois réels positifs x < y < z tels que

$$\left\{ \begin{array}{l} f\left(x\right) < f\left(y\right) \\ f\left(z\right) < f\left(y\right) \end{array} \right. \quad \text{ou} \quad \left\{ \begin{array}{l} f\left(x\right) > f\left(y\right) \\ f\left(z\right) > f\left(y\right) \end{array} \right. \quad \text{(les inégalités sont strictes car } f \text{ est injective)} \right.$$

Quitte à changer f en -f, on ne perd pas de généralités en ne considérant que le premier cas.

Considérons $m = \max(f(x), f(z))$. Alors d'après le théorème des valeurs intermédiaires, m admet un antécédent par f dans [x, y] et un autre dans [y, z]. C'est contradictoire avec l'injectivité de f. Ainsi

$$f$$
 est strictement monotone sur \mathbb{R}_+

- b) Etant donné que f(0) = 0 et f positive sur \mathbb{R}_+ , f ne peut être que strictement croissante sur \mathbb{R}_+
- **4.** a) Supposons f majorée sur \mathbb{R}_+ . Alors elle aurait une limite $\ell \geqslant 0$ en $+\infty$ puisqu'elle est croissante. Par continuité de f en ℓ , on aurait

$$\lim_{x \to +\infty} f(f(x)) = f(\ell)$$

 $\lim_{x\to +\infty}f\left(f\left(x\right)\right)=f\left(\ell\right)$ Mais par ailleurs, $f\left(f\left(x\right)\right)=2f\left(x\right)-x$, donc

$$\lim_{x \to +\infty} f\left(f\left(x\right)\right) = -\infty$$

C'est contradictoire:

$$f$$
 n'est pas majorée sur \mathbb{R}_+

b) Ainsi, $\lim_{+\infty} f = +\infty$. Comme f est continue strictement croissante et que $f\left(0\right) = 0$,

$$f$$
 réalise une bijection de \mathbb{R}_+ sur \mathbb{R}_+

- **5.** a) Montrons par récurrence que $\forall n \in \mathbb{N}^*$ et $\forall x \in \mathbb{R}_+, f^n(x) x = n(f(x) x)$ H(n)
 - * H(1) est vraie car elle s'écrit $\forall x \in \mathbb{R}_{+}, \ f(x) x = f(x) x$
 - Soit $n \in \mathbb{N}$. Supposons H(n) et montrons H(n+1): si $x \in \mathbb{R}_+$, on applique H(n) au réel $f(x) \ge 0$:

$$f^{n}(f(x)) - f(x) = n(f(f(x)) - f(x))$$

Soit à l'aide de (ii):

$$f^{n+1}(x) - f(x) = n(f(x) - x)$$

Il vient facilement

$$f^{n+1}(x) - x = (n+1)(f(x) - x)$$
 CQFD.

b) Puisque f est positive, on a assez évidemment (petite récurrence?) $\forall n \in \mathbb{N}^*$ et $\forall x \in \mathbb{R}_+, \ f^n(x) \geqslant 0$. Le résultat précédent donne alors $\forall n \in \mathbb{N}^*$ et $\forall x \in \mathbb{R}_+,$

$$f(x) - x = \frac{f^n(x) - x}{n} \geqslant -\frac{x}{n}$$

Par passage à la limite quand $n \to +\infty$ (à x fixé) on obtient

$$\forall x \in \mathbb{R}_+, \ f(x) \geqslant x$$

- c) La réciproque $f^{-1}: \mathbb{R}_+ \to \mathbb{R}_+$ est continue (car f l'est), et vérifie :
 - (i) $f^{-1}(0) = 0$ (puisque f(0) = 0)
 - (ii) Si $x\in\mathbb{R}_{+}$, en appliquant (ii) à $f^{-2}\left(x\right)=f^{-1}\left(f^{-1}\left(x\right)\right)$, on obtient

$$x = 2f^{-1}(x) - f^{-2}(x)$$
 d'où $f^{-1}(f^{-1}(x)) = 2f^{-1}(x) - x$

 f^{-1} vérifie ainsi les conditions de l'énoncé.

d) Les résultats précédents s'appliquent donc à $f^{-1}: \forall x \in \mathbb{R}_+, \ f^{-1}(x) \geqslant x$. En composant par f (croissante)

$$\forall x \in \mathbb{R}_{+}, \ x \geqslant f(x)$$

6. On déduit de cette étude :

$$\forall x \in \mathbb{R}_{+}, \ f(x) = x$$

La réciproque pose peu de problèmes donc

 $\overline{\text{L'unique solution du problème est } \operatorname{id}_{\mathbb{R}_+}}$

On fixe $n\in\mathbb{N}^*$ et on considère la suite $(u_p)_{p\geqslant 1}$ définie par récurrence par **PROBLEME**

$$\begin{cases} u_1 = 2 \\ \forall p \in \mathbb{N}, \ u_{p+1} = 2 - \frac{1}{u_p} \end{cases}$$

et la matrice

$$A = \begin{pmatrix} 2 & -1 & 0 & & 0 \\ -1 & 2 & -1 & \ddots & \\ 0 & \ddots & \ddots & \ddots & 0 \\ & \ddots & -1 & 2 & -1 \\ 0 & & 0 & -1 & 2 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$$

1. Les premiers termes $u_2 = \frac{3}{2}$, $u_3 = \frac{4}{3}$, $u_4 = \frac{5}{4}$ incitent à conjecturer

$$\boxed{\forall p \in \mathbb{N}^*, \ u_p = \frac{p+1}{p}}$$

Ce résultat se montre alors par une récurrence quasi immédiate

2. Pour $(i, j) \in [1, n]^2$, le terme général de A est :

$$\boxed{[A]_{ij} = -\delta_{i-1,j} + 2\delta_{i,j} - \delta_{i+1,j}}$$

3. On définit les matrices A_1, \ldots, A_n par

$$\begin{cases} A_1 = A \\ \forall i \in [[1, n-1]], \ A_{i+1} \text{ se d\'eduit de } A_i \text{ par l'op\'eration } L_{i+1} \leftarrow L_{i+1} + \frac{1}{u_i} L_i \end{cases}$$
 de A_2 est inchangée, et sa ligne 2 vaut $L_2 + \frac{1}{2} L_1$, soit

a) La ligne 1 de A_2 est inchangée, et sa ligne 2 vaut $L_2 + \frac{1}{2}L_1$, soit

$$\left(0, \frac{3}{2}, -1, 0, \dots, 0\right)$$

Les lignes 1 et 2 de A_3 sont inchangées et sa ligne 3 est alors $L_3 + \frac{2}{3}L_2$, soit

$$\left(0,0,\frac{4}{3},-1,0,\ldots,0\right)$$

On conjecture que si $i \in [[1, n]]$ la ligne i de A_i est $(0, \dots, 0, u_i, -1, 0, \dots, 0)$, soit de terme général

$$(u_i \delta_{i,j} - \delta_{i+1,j})_{j \in [[1,n]]}$$

Preuve par récurrence : c'est clair pour i=1. Supposons le pour $i\in [1,n-1]$ et montrons le pour i+1 : La ligne i+1 de A_i est celle de A, c'est-à-dire de terme général $-\delta_{i,j}+2\delta_{i+1,j}-\delta_{i+2,j}$ (pour $j\in [\![1,n]\!]$) Par hypothèse de récurrence, l'opération $L_{i+1} \leftarrow L_{i+1} + \frac{1}{u_i}L_i$ transforme ce terme général en

$$-\delta_{i,j} + 2\delta_{i+1,j} - \delta_{i+2,j} + \frac{1}{u_i} \left(u_i \delta_{i,j} - \delta_{i+1,j} \right) = \left(2 - \frac{1}{u_i} \right) \delta_{i+1,j} - \delta_{i+2,j}$$

$$= u_{i+1} \delta_{i+1,j} - \delta_{i+2,j} \quad \text{CQFD}.$$

Ainsi, à la dernière étape, on obtient la matrice triangulaire supérieure A_n :

$$A = \begin{pmatrix} u_1 & -1 & 0 & 0 \\ 0 & u_2 & \ddots & 0 \\ \vdots & \ddots & \ddots & -1 \\ 0 & \cdots & 0 & u_n \end{pmatrix}$$

4

- b) La matrice A est ainsi équivalent en ligne à une matrice triangulaire supérieure à diagonale non nulle. Elle est donc inversible
- c) A étant symétrique, il vient aisémént que A^{-1} est symétrique ($^t(A^{-1}) = (^tA)^{-1} = A^{-1}$)
- **4.** Si Y est une colonne de terme général y_i , on définit la colonne Y' de terme général y_i' défini par

$$\begin{cases} y_1' = y_1 \\ \forall i \in \llbracket 1, n-1 \rrbracket, \ y_{i+1}' = y_{i+1} + \frac{1}{u_i} y_i' \end{cases}$$
 Montrons par récurrence que $\forall i \in \llbracket 1, n-1 \rrbracket, \ AX = Y \Longleftrightarrow A_i X = Y_i, \ \text{avec} \ Y_i = \begin{cases} y_1' \\ \vdots \\ y_i' \\ y_{i+1} \\ \vdots \\ y_n \end{cases}$ — Evident pour $i = 1$.

- Supposons le pour $i \in [1, n-1]$, et montrons le pour i+1: $y_n \in [n-1]$ L'opération $L_{i+1} \leftarrow L_{i+1} + \frac{1}{u_i}L_i$ transforme A_i en A_{i+1} et Y_i en Y_{i+1} (par définition). Donc $AX = Y \iff A_i X = Y_i \iff A_{i+1} X = Y_{i+1}$ COFD.
- a) L'unique solution du système AX=Y est $X=A^{-1}Y$. Y étant le j-ème vecteur de la base canonique de \mathbb{R}^n , X est donc la j-ème colonne de A^{-1} notée Γ_j .
- b) Montrons que $\left\{ \begin{array}{l} \forall i < j, \ y_i' = 0 \\ \forall i \geqslant j, \ y_i' = j/i \end{array} \right.$
 - * Montrons par récurrence que $\forall i < j, y'_i = 0$:

5. On fixe $j \in [1, n]$ et on pose Y le vecteur colonne de terme général $y_i = \delta_{ij}$

- · On a bien $y_1' = y_1 = 0$ (sauf pour j = 1, auquel cas il n'y a pas de $i \ / \ i < j$)
- · Si $y_i' = 0$ pour i < j-1, alors $y_{i+1}' = y_{i+1} + \frac{1}{u_i}y_i' = 0$ par hyp. de récurrence et le fait que $y_{i+1} = 0$
- * Montrons par récurrence que $\forall i \geqslant j, \ y_i' = j/i$:
 - · On a bien $y'_{j} = y_{j} + 0 = 1 = j/j$
 - · Si $y'_i = j/i$ pour $i \in [[j, n-1]]$, alors $y'_{i+1} = y_{i+1} + \frac{1}{u_i}y'_i \stackrel{\text{HDR}}{=} 0 + \frac{i}{i+1}\frac{j}{i} = \frac{j}{i+1}$
- c) Γ_j est la solution de AX=Y, i.e. de $A_nX=Y_n$, où Y_n a le terme général y_i' . Soit alors x_i le terme général de Γ_j : d'après les questions précédentes, on a le système

$$\begin{cases} u_1 x_1 - x_2 = y_1' \\ \vdots \\ u_{n-1} x_{n-1} - x_n = y_{n-1}' \\ u_n x_n = y_n' \end{cases}$$

Pour $i\geqslant j$, la ligne i de ce système est $\frac{i+1}{i}x_i-x_{i+1}=\frac{j}{i}$, en convenant que $x_{n+1}=0$ Montrons par récurrence (descendante) que $\forall i\geqslant j,\ x_i=\frac{j\left(n+1-i\right)}{n+1}\ \left(\Psi_i\right)$:

- * On a $x_n = \frac{y'_n}{u_n} = \frac{n}{n+1} \times \frac{j}{n} = \frac{j}{n+1}$, c'est-à-dire Ψ_n .
- * Supposons avoir Ψ_{i+1} pour $i \in [[j,n-1]]$: alors de $\frac{i+1}{i}x_i x_{i+1} = \frac{j}{i}$ on tire $\frac{i+1}{i}x_i = x_{i+1} + \frac{j}{i} = \frac{j(n+1-i-1)}{n+1} + \frac{j}{i} = j\frac{i(n+1-(i+1))+n+1}{i(n+1)}$

En factorisant:

$$\frac{i+1}{i}x_i = j\frac{(i+1)(n+1) - i(i+1)}{i(n+1)} = j\frac{(i+1)(n+1-i)}{i(n+1)}$$

Finalement

$$x_i = \frac{j\left(n+1-i\right)}{n+1} \quad \text{CQFD}.$$

d) On a vu que x_i est la *i*-ième ligne de la *j*-ième colonne de A^{-1} . Si b_{ij} est le terme général b_{ij} de A^{-1} , on a donc montré que

$$\forall i \geqslant j, \ b_{ij} = \frac{j(n+1-i)}{n+1}$$

Mais on a montré aussi que A^{-1} était symétrique : donc $\forall i < j, b_{ij} = b_{ji}$, soit

$$\forall i < j, \ b_{ij} = \frac{i(n+1-j)}{n+1}$$

e) Cas où n=6: cela donne

$$A^{-1} = \frac{1}{7} \begin{pmatrix} 6 & 5 & 4 & 3 & 2 & 1 \\ 5 & 10 & 8 & 6 & 4 & 2 \\ 4 & 8 & 12 & 9 & 6 & 3 \\ 3 & 6 & 9 & 12 & 8 & 4 \\ 2 & 4 & 6 & 8 & 10 & 5 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}$$

6. La question 2. a montré que par les opérations successives $L_{i+1} \leftarrow L_{i+1} + \frac{1}{u_i} L_i$, i parcourant [[1, n-1]], on ramenait la matrice A à la matrice triangulaire supérieur $U = A_n$.

En terme matriciels, si l'on pose :

$$\Lambda_i = I_n + \frac{1}{u_i} E_{i+1,i}$$

(matrice I_n à laquelle on a appliqué l'opération $L_{i+1} \leftarrow L_{i+1} + \frac{1}{u_i}L_i$), on a

$$\Lambda_{n-1}\cdots\Lambda_2\Lambda_1A=U$$

Soit

$$A = LU$$

où

$$L = \Lambda_1^{-1} \Lambda_2^{-1} \cdots \Lambda_{n-1}^{-1}$$

Or chaque matrice Λ_i est triangulaire inférieure à coefficients diagonaux égaux à 1.

Il en est donc de même de son inverse.

Par produit, on en déduit que L est triangulaire inférieure à coefficients diagonaux égaux à 1. On conclut :

Il existe une matrice triangulaire inférieure L dont les coefficients diagonaux valent 1 et une matrice triangulaire supérieure U telles que :

$$A = LU$$