

UNIVERSIDAD DON BOSCO

Aplicación de Métodos Numéricos CICLO 01-2024

GUIA DE EJERCICIOS 2 – PARTE 1

INTEGRANTES:

MIRANDA RAMIREZ, RODRIGO ALEXANDER MR181415

VILLALTA, RIGOBERTO ALCIDES VV00329

3. Aproxime f(1.3675) a partir de los siguientes datos:

x	1.27	1.29	1.31	1.33	1.35	1.37
F _(x)	13.270567	13.781763	14.307413	14.847887	15.403567	15.974842

Además, calcule el valor exacto y el error de aproximación si la función es: $f(x) = 3xe^x - \cos(x)$

Para encontrar el valor de f(1.3675) ejecutaremos el script en Matlab, insertando los valores de X y f(x)

Los resultados obtenidos son:

El valor aproximado para f(1.3675) = 15.902566400768277

```
Grado del Polinomio: 5
Obteniendo las Funciones de Lagrange
    (x-1.29000000000000)(x-1.31000000000000)(x-1.33000000000000)(x-1.3500000000000)(x-1.37000000000000)
LO(x) =
(1.270000000000000-1.2900000000000)(1.270000000000000-1.3100000000000)(1.270000000000000-1.3300000000000)(1.27000000000000000)\\ L0(1.367500000000000)=0.019039154052735
    (x-1.27000000000000)(x-1.31000000000000)(x-1.33000000000000)(x-1.35000000000000)(x-1.370000000000000)
    L1(1.367500000000000)=-0.119762420654303
    (x\text{-}1.27000000000000)(x\text{-}1.29000000000000)(x\text{-}1.33000000000000)(x\text{-}1.35000000000000)(x\text{-}1.370000000000000))
    L2(1.367500000000000)=0.322837829589860
    (x\text{-}1.27000000000000)(x\text{-}1.29000000000000)(x\text{-}1.3100000000000)(x\text{-}1.3500000000000)(x\text{-}1.370000000000000))
L3(x) =
    L3(1.367500000000000)=-0.495018005371119
    L4(x)=
    L4(1.367500000000000)=0.530376434326201
    (x-1.27000000000000)(x-1.29000000000000)(x-1.3100000000000)(x-1.3300000000000)(x-1.35000000000000)
    L5(1.367500000000000)=0.742527008056625
P5(1.367500000000000)= 15.902566400768277
```

Ahora encontraremos el valor exacto y el error de aproximación para $f(x) = 3xe^x - cos(x)$ En matlab ingresado como: 3*x*exp(x) - cos(x)El valor exacto de la función es: 15.902565832686312 y el erro: 8.226104e-11

```
>> Lagrange
INTERPOLACIÓN Y POLINOMIO DE LAGRANGE
Valor a interpolar x: 1.3675
Datos [X0 X1 X2 ... Xn]: [1.27 1.29 1.31 1.33 1.35 1.37]
Valores de la función:
   1-Utilizar una función.
    2-Ingresar valores
Función f(x): 3*x*exp(x)-cos(x)
Valores de F(x): 13.270567,13.781763,14.307413,14.847887,15.403567,15.974842,
 Grado del Polinomio: 5
 Obteniendo las Funciones de Lagrange
      (x-1.29000000000000)(x-1.31000000000000)(x-1.33000000000000)(x-1.35000000000000)(x-1.370000000000000)
      L0(1.367500000000000)=0.019039154052735
      (x\text{-}1.27000000000000)(x\text{-}1.31000000000000)(x\text{-}1.3300000000000)(x\text{-}1.350000000000000)(x\text{-}1.370000000000000)
 L1(x)=
      L1(1.367500000000000)=-0.119762420654303
      (x-1.27000000000000)(x-1.29000000000000)(x-1.33000000000000)(x-1.35000000000000)(x-1.370000000000000)
 L2(x) =
      L2(1.367500000000000)=0.322837829589860
      (x\text{-}1.27000000000000)(x\text{-}1.29000000000000)(x\text{-}1.31000000000000)(x\text{-}1.35000000000000)(x\text{-}1.370000000000000)
 L3(x) = -
      L3(1.367500000000000)=-0.495018005371119
      (x-1.27000000000000)(x-1.29000000000000)(x-1.3100000000000)(x-1.3300000000000)(x-1.3300000000000)(x-1.370000000000000)
 L4(x)=-
      L4(1.367500000000000)=0.530376434326201
      (x\text{-}1.27000000000000)(x\text{-}1.29000000000000)(x\text{-}1.31000000000000)(x\text{-}1.33000000000000)(x\text{-}1.350000000000000)
      L5(1.367500000000000)=0.742527008056625
 Polinomio:
 P5(1.367500000000000) = 15.902565832768573
 Valor Exacto de la Función: 15.902565832686312
x Error: 8.226104e-11
```

5. Se realiza un experimento para definir la relación entre el esfuerzo aplicado y el tiempo para que se fracture cierto tipo de acero inoxidable. A continuación se muestran los resultados, para distintos esfuerzos:

Esfuerzo aplicado(kg/mm²)	5	10	15	20	25	30	35	40
Tiempo para la fractura(hr)	40	30	25	40	18	20	22	15

Aproxime el tiempo de fractura para un esfuerzo de 22 kg/mm². Utilice 9 decimales

Vamos a ingresar los datos al ejecutar el script de Matlab.

Nuestra trabla queda de la siguiente manera:

```
Obteniendo las Funciones de Lagrange
  L0(22.00000000000000)=-0.002396160000000
  L1(22.000000000000000)=0.023761920000000
  L2(22.000000000000000)=-0.122204160000000
  (x\text{-}5.0000000000000)(x\text{-}10.0000000000000)(x\text{-}15.00000000000000)(x\text{-}25.00000000000000)(x\text{-}30.000000000000)(x\text{-}35.00000000000000)})
  L3(22.000000000000000)=0.712857600000000
  L4(x)=-
  L4(22.00000000000000)=0.475238400000000
  L6(22.000000000000000)=0.021934080000000
  L7(x)=
  f_x L7(22.0000000000000000)=-0.002263040000000
```

Como resultado obtenemos:

```
Polinomio: P7(x) = L0(x)*F(X0) + L1(x)*F(X1) + L2(x)*F(X2) + L3(x)*F(X3) + L4(x)*F(X4) + L5(x)*F(X5) + L6(x)*F(X6) + L7(x)*F(X7) \\ P7(22.0000000000000000) = (-0.002396160000000)*(40.0000000000000) + (0.023761920000000)*(30.0000000000000) + (-0.122204160000000)*(2 P7(22.000000000000000) = 32.940533759999994
```

El tiempo de fractura para un esfuerzo de $22kg/mm^2$ es de: 32.940533759999994

March 6, 2024

8- Un objeto se suspende en un túnel de viento y se mide la fuerza para varios niveles de velocidad del viento. A continuación se presentan los siguientes resultados:

V, m/s	10	20	30	40	50	60	70	80
F, N	25	70	380	550	610	1220	830	1450

Aproxime el valor de la fuerza, cuando la velocidad sea de 248.4 km/h. Use 9 decimales.

Debe mostrarse: - Los valores de las Q construidas - El valor de aproximación de la función Solución:

Paso la velocidad a las mismas unidades de la tabla

$$248.4km/h = \frac{248,400m}{3600s} = 69m/s$$

Qx0 Qx1 Qx2 Qx3 Qx4 Qx5
$$\Box$$
 Qx6 Qx7

25.0	0.0	0.0	0.0	0.0	0.0	0.
⇔ 0		0.0				
70.0	290.5	0.0	0.0	0.0	0.0	0.
⇔ 0		0.0				
380.0	1589.0	4121.075	0.0	0.0	0.0	0.
⇔ 0		0.0				
550.0	1043.0	251.3	-3489.4825000	0.0	0.0	0.
⇔ 0		0.0				
610.0	724.0	420.95	528.395	2436.8868125	0.0	0.
⇔ 0		0.0				
1220.0	1769.0	2239.25	2784.74	3292.417625	3446.41317124	0.
⇔ 0		0.0				
830.0	869.0	914.0	958.175	1003.83912499	1049.610695	ш
→1089.55	740293	0.0				
1450.0	768.0	823.55	856.714999999	884.6165	910.845477499	ш
<i>→</i> 936.285	767374	960.371310	0106			

La fuerza aproximada cuando la velocidad es de 248.4 m/s es: 960.371310106 N.

43-guia_ejercicio_12

March 6, 2024

12 - Dados los valores de x: -1.87, -1.63, -1.27, -0.89, -0.15, 0.1, 0.18, 0.75, 0.99 y la función:

$$f(x)tan\left(\frac{\pi x}{8}\right)$$

Aproxime el valor de f(-1.435). Además, obtenga el valor exacto y el error de aproximación. Use 9 decimales.

Debe mostrarse: - Los valores de la tabla de diferencia construida - El polinomio de interpolación

```
[2]: from math import tan, pi
     from sympy import Number
     from metodos_interpolacion import diferencias_divididas
     from utils import imprimir_tabla
     datos_x = [-1.87, -1.63, -1.27, -0.89, -0.15, 0.1, 0.18, 0.75, 0.99]
     datos_y = [tan((pi *x) / 8) for x in datos_x]
     resultado = diferencias_divididas(datos_x, datos_y, -1.435)
     matriz = resultado[0]
     polinomio = resultado[1]
     valor_de_aproximacion = round(resultado[2], 9)
     lista_para_tabular = [["x", "1ad", "2ad", "3ad", "4ad", "5ad", "6ad", "7ad", "
      ⇔"8ad"]]
     for fila in matriz:
         nueva_fila = []
         for celda in fila:
             nueva_fila.append(str(celda))
         lista_para_tabular.append(nueva_fila)
     print("Los valores de la tabla de diferencia construida son:")
     imprimir_tabla(lista_para_tabular)
     print(
         "El polinomio de interpolación es: ",
```

Los valores de la tabla de diferencia construida son:

X	1ad	2ad	3ad	4ad	5ad	6ad 👝
→ 7ad	8ad					
0 0007771	0.0	0 0	0.0	0.0	0.0	0.0 🔟
	0.0	0.0	0.0	0.0	0.0	0.0 🗓
		0.0	0.0	0.0	0.0	0.0 🔲
→ 0.0	0.0					
		-0.171625	0.0	0.0	0.0	0.0 👝
	0.0					
	0.4741772	-0.110146	0.06273407	0.0	0.0	0.0 🔟
		-0.054777	0.03741111	-0.01472	0.0	0.0
→ 0.0	0.0					
0.0392901	0.39305276	-0.019973	0.02540474	-0.00694	0.0039505	0.0 👝
	0.0					
			0.0211258	-0.00295	0.0022039	-0.
	0 0.		0 00100133	0 10276	0 0014504	0
	0.40797 0002043 0.		0.02109133	-2.10376	0.0014504	-0.
			0.02403862	0.002585	0.0013863	-2.
	00011003					

```
El polinomio de interpolación es: 0.65866065*x + (-0.17162551*x - 0.320939703)*(x + 1.63) + (-0.014722651*x - 0.027531357)*(x + 0.89)*(x + 1.27)*(x + 1.63) + (-0.000851999*x - 0.001593238)*(x - 0.1)*(x + 0.15)*(x + 0.89)*(x + 1.27)*(x + 1.63) + (-3.2988e-5*x - 6.1687e-5)*(x - 0.75)*(x - 0.18)*(x - 0.1)*(x + 0.15)*(x + 0.89)*(x + 1.27)*(x + 1.63) + (0.000204356*x + 0.000382145)*(x - 0.18)*(x - 0.1)*(x + 0.15)*(x + 0.89)*(x + 1.27)*(x + 1.63) + (0.003950535*x + 0.0073875)*(x + 0.15)*(x + 0.89)*(x + 1.27)*(x + 1.63) + (0.062734067*x + 0.117312706)*(x + 1.27)*(x + 1.63) + 0.32891834 El valor de aproximación de -1.435 en la función es: -0.631866422
```

El valor exacto al evaluar -1.435 es de: -0.631868445

El error es de: 2.0E-6

44_guia-2_ejercicio_15

March 6, 2024

15- La viscosidad de un aceite varía con la temperatura, a continuación se muestran los siguientes resultados:

$\overline{T(K)}$	273	280	290	300	310	320	330	340
(Ns / m^2)	3.85	2.17	0.999	0.486	0.253	0.141	0.0836	0.0531

Aproxime la viscosidad del aceite cuando la temperatura es 304.25 K. Use 9 decimales.

Debe mostrarse: - Los valores de la tabla de diferencia construida - El polinomio de interpolación - El valor aproximado de la función

```
[4]: from sympy import Number
     from metodos_interpolacion import diferencias_divididas
     from utils import imprimir_tabla
     datos_x = [273, 280, 290, 300, 310, 320, 330, 340]
     datos_y = [3.85, 2.17, 0.999, 0.486, 0.253, 0.141, 0.0836, 0.0531]
     resultado = diferencias_divididas(datos_x, datos_y, 304.25)
     matriz = resultado[0]
     polinomio = resultado[1]
     valor_de_aproximacion = round(resultado[2], 9)
     lista_para_tabular = [["x", "1ad", "2ad", "3ad", "4ad", "5ad", "6ad", "7ad"]]
     for fila in matriz:
         nueva_fila = []
         for celda in fila:
             nueva_fila.append(str(celda))
         lista_para_tabular.append(nueva_fila)
     print("Los valores de la tabla de diferencia construida son:")
     imprimir_tabla(lista_para_tabular)
     print("\nEl valor de la viscosidad aproximada a 304.24 K es de: ", u
      ⇔valor_de_aproximacion, " Ns/m^2")
     print(
```

```
"\nEl polinomio de interpolación es: ",
polinomio.xreplace({n: round(n, 9) for n in polinomio.atoms(Number)})
)
```

Los valores de la tabla de diferencia construida son:

x	1ad	2ad	3ad	4ad	5ad L	J
→ 6ad	7ad					
3.85	0.0	0.0	0.0	0.0	0.0	J
→ 0.0	0.0					
2.17	-0.23999998	0.0	0.0	0.0	0.0	J
→ 0.0	0.0					
0.999	-0.1171	0.0072294106	0.0	0.0	0.0	J
→ 0.0	0.0					
0.486	-0.0513	0.00329	-0.00014590	0.0	0.0	J
→ 0.0	0.0					
0.253	-0.023300001	0.0014	-6.3e-05	2.2406512e	0.0	,
→ 0.0	0.0					
0.141	-0.011199999	0.0006050001	-2.6499994e	9.125001e-07	-2.8258533e	,
→ 0.0	0.0					
0.0836	-0.00574000	0.000272999	-1.1066673e	3.8583303e	-1.0533342e	ı
→ 3.109	96828e 0.0				_	
0.0531	-0.00305	0.000134500	-4.6166633e	1.6125026e	-4.4916555e	ı
	39478e3.13					

El valor de la viscosidad aproximada a 304.24 K es de: 0.364865451 Ns/m^2

```
El polinomio de interpolación es: -0.23999998*x + (7.715e-6 - 2.8e-8*x)*(x - 310)*(x - 300)*(x - 290)*(x - 280) + (0.039831818 - 0.000145904*x)*(x - 290)*(x - 280) + (2.241e-6*x - 0.000611698)*(x - 300)*(x - 290)*(x - 280) + (0.007229411*x - 1.973629088)*(x - 280) + 1.0e-9*(x - 330)*(x - 320)*(x - 310)*(x - 300)*(x - 290)*(x - 280) - 8.5e-8*(x - 320)*(x - 310)*(x - 300)*(x - 290)*(x - 280) + 69.369994372
```