Dynamic Urban Economics

Brian Greaney, Andrii Parkhomenko, and Stijn Van Nieuwerburgh

Discussion by Gabriel Ahlfeldt, Humboldt University CURE Conference, London School of Economics

Summary Context HSR Case Study What's next

Summary

- ► Contribution: Dynamic QSM that features heterogenous welfare effects by
 - ► time
 - ► groups (including housing tenure)
 - locations

► Highlights:

- Dynamic model bridges quantitative spatial and macro-housing literatures
- ► tractable mixed-time computation.
- ► Forward-looking behavior, homeownership, and costly migration
- ► Clever computation design to reduce state space

► Improvements:

► At this stage, not for me to decide or to suggest...

Dynamic Urban Economics 2 / 14

Contribution

- ► Static QSMs: rich geography
 - ▶ no transition path
 - ► no spatial incidence
 - no welfare effect by housing tenure
- Dynamic model adds costly migration, tenure choice, and intertemporal welfare
 - ► Dynamic QUM original even without tenure
 - ► Enables long-run vs short-run welfare comparisons
 - ► Can rationalize opposition to long-run beneficial projects
 - ► Technically impressive
- ► Host of potential applications that will keep the field busy for many years

Dynamic Urban Economics 3 / 14

HSR Case Study: Setup and Findings

- ► Four new HSR stations integrated into Bay Area commuting network.
 - ► Improves accessibility, reshapes residence-workplace patterns.
 - ► Adjustment gradual—multi-decade reallocation.
 - Gains concentrated near stations;
 heterogeneous across tenure and age
 - ► Welfare gain: 0.45% (closed-"city" case)
- ► How do the welfare effects in the dynamic QUM compare to the static model?
 - ► Compare our new toy with what we have!
 - ► Let's do the analysis in the MRRH model!

Simulating the HSR in the MRRH model

- ► Download data from AABPL-toolkit (prime locations) AABPL-toolkit
 - ► San Francisco and San Jose metro areas
- - ► We will do 10x10 km and 2x2 km squares
- ► Use TTMATRIX-toolkit to compute bilateral travel times for grids TTMATRIX-toolkit
 - ► Choose on-HSR and off-HSR speeds and compute travel times with and without HSR
- ▶ Read grid data and travel time matrices in MMRH-toolkit and simulate HSR
 - ► Quantify the model (all automatic)
 - ▶ Define relative change in commuting times as the forcing variable and simulate
 - ► Simulate and inspect results (welfare, maps of changes, etc.) MRRH-toolkit

Dynamic Urban Economics 5 / 14

Change in travel times (15x15 km grid)

 Summary
 Context
 HSR Case Study
 What's next

 ○
 ○
 ○○
 ○○
 ○○

Simulated HSR, DSM vs. MRRH 15x15 km grid: Employment

Welfare effect: +0.45% (closed-"city")

Welfare effect: +1.32%

Dynamic Urban Economics 7 / 14

Simulated HSR, DSM vs. MRRH 15x15 km grid: Population

Welfare effect: +0.45% (closed-"city")

Welfare effect: +1.32%

Dynamic Urban Economics 8 / 14

 Summary
 Context
 HSR Case Study
 What's next

 ○
 ○
 ○
 ○
 ○
 ○

Simulated HSR, DSM vs. MRRH 15x15 km grid: Rent

Welfare effect: +0.45% (closed-"city")

Welfare effect: +1.32%

Dynamic Urban Economics 9 / 14

MRRH 15x15 km grid vs. MRRH 2x2 km grid

MRRH 15x15 km grid

Welfare effect: +1.32%

MRRH 2x2 km grid

Welfare effect: +2.44%

Dynamic Urban Economics 10 / 14

MRRH 15x15 km grid vs. MRRH 2x2 km grid

- ► Welfare effect substantially larger with a smaller grid
 - ► A variant of the **MAUP** (modifiable areal unit problem)
 - ► A coarse grid makes it harder to capture fine-grained accessibility gains
- ▶ Is it feasible to quantify and simulate the model truly micro-geographically?
 - ► 2x2 km grid has 1,271 locations vs. 55 in DQUM (183 for NY).
 - ► "Thousands" of bilaterals ≠ "millions" of bilaterals
 - ► Getting rid of workplace as a state variable helps, but is it enough?
- ▶ Is there a role for the static model when micro-geography matters?

Dynamic Urban Economics 11 / 14

What's next I (estimation)

- ▶ DQUM gives lower welfare estimates, does it?
 - ► The same shock to a primitive should trigger a smaller response than in SQUM
- ► But what if we consider **estimation**?
 - ► At some point we will want to estimate parameters from quasi-experimental variation, e.g. a HSR shock
 - We rationalize observed variation in endogenous outcomes through the lens if a quant model (GMM or indirect inference)
 - ► SQUM assumes we observe long-run transition ⇒ small change in forcing primitive
 - ▶ DQUM understands that just part of the transition is completed ⇒ larger change in forcing primitive
- ► If we infer the change in primitive from the shock
 - ▶ Not so clear which model will deliver the larger welfare effect...

Dynamic Urban Economics 12 / 14

Summary Context HSR Case Study What's next

What's next II (tradable goods)

▶ Careful

- ► HSR unlike to affect trade cost in ways that are proportionate to travel time reductions!
- Closed region does not make sense when modelling trade!
- Welfare effect will shrink as we increase the study area and model model trade effect realistically
- ► This is just to make a point...

MRRH: HSR used for commuting & trade

Welfare effect: +7.68%

Someone will have to write a DQSM w commuting and fricitonal trade...

Dynamic Urban Economics 13 / 14

Takeaways

- ► Welcome to a new age of urban economics!
- ► Agenda for the new age
 - ► Go through the obvious QSM applications where spatial incidence matters
 - Structural transformation, upzoning, transport, gentrification, place-based policies, etc.
 - Structural estimation
 - Use GMM or indirect inference to recover primitives from changes over time in DQSM-consistent ways
 - ► Add frictional trade

Download from www.ahlfeldt.com \rightarrow presentations \rightarrow Slides: Discussion

Dynamic Urban Economics 14 / 14