Aufgabe 1a): Import the files stud.data, exam.data as tibbles.

Code

exam_data <- read.csv("C:/Users/madin/Dropbox/Studium/unterricht folien/3 Semester/Statistic/Statistik2022/exam_data.csv")

view (exam_data)

*	x *	exam ‡	attempt ‡	score ‡
1		516647/Mathematics	1	75
2	2	193841/Data Bases	2	49
3	3	326761/Computer Networks	2	75
4	4	230275/Data Bases	1	73
5	5	911920/OOP	1	55
6	6	840873/Formal Languages	1	33
7	7	473291/Mathematics	2	56
8	8	412501/Mathematics	2	102
9	9	320446/Formal Languages	2	26
10	10	332749/Formal Languages	1	67
11	11	310006/Mathematics	1	25
12	12	702390/Mathematics	2	50
13	13	971258/Computer Networks	1	70
14	14	899219/Mathematics	2	50
15	15	212398/OOP	2	43
16	16	880476/Mathematics	1	76
Showing 1	to 17 of 1,	137 entries, 4 total columns		

Aufgabe 1b): Determine the scale and type of all variables.

mat.nr	matriculation number	→ Qual. Nominal
gender	sex	→ Qual. Nominal
semester	current semester	→ Quant. Ratio
course	course of study	→ Qual. Nominal
exam	matriculation number/exams	→ Qual. Nominal
attempt	number of attempt	→ Quant. Ratio
score	achieved score	→Quant. Ordinal

Aufgabe 1c): Add a variable grade that indicates the grade of the exam. The grade is derived from the score as follows: • Grade 5 if score < 50

Grade 4, if 50 _ score < 65

Grade 3, if 65 _ score < 80

• Grade 2, if 80 _ score < 90

Grade 1, if 90 _ score

Code

> ex	am da	ata		
	X	exam	attempt	score
1	1	516647/Mathematics	1	75
2	2	193841/Data Bases	2	49
3	3	326761/Computer Networks	2	75
4	4	230275/Data Bases	1	73
5	5	911920/00P	1	55
6	6	840873/Formal Languages	1	33
7	7	473291/Mathematics	2	56
8	8	412501/Mathematics	2	102
9	9	320446/Formal Languages	2	26
10	10	332749/Formal Languages	1	67
11	11	310006/Mathematics	1	25
12	12	702390/Mathematics	2	50

Matrikelnummer: 1136669

Aufgabe 1d): Split the variable exam into 2 columns containing the matricula-tion number and the exam subject.

Ausgabe:

	Χm	atriculation	subject	attempt	score
1	1	516647	Mathematics	1	75
2	2	193841	Data Bases	2	49
3	3	326761	Computer Networks	2	75
4	4	230275	Data Bases	1	73
5	5	911920	OOP	1	55
6	6	840873	Formal Languages	1	33
7	7	473291	Mathematics	2	56
8	8	412501	Mathematics	2	102
9	9	320446	Formal Languages	2	26
10	10	332749	Formal Languages	1	67
11	11	310006	Mathematics	1	25
12	12	702390	Mathematics	. 2	50
43	43	074350		4	70

Aufgabe 1e): Determine the total number of tests in each exam and the number of students articipating

#total number of tests in each exam

Code

exam_data %>% count(subject) %>% mutate(x=n())

Ausgabe

#the number of students participating

Code: exam_data %>% select(matriculation) %>% unique %>% summarise(anz.stud=n())

```
> exam_data %>% select(matriculation) %>% unique %>% summarise(anz.stud=n())
anz.stud
1 243
```

Name: Shama Shafique Matrikelnummer: 1136669

Aufgabe 1f): For each subject, determine the absolute frequencies of the grades and store the result in a tibble with the variables grade, Computer Networks, Data Bases, Formal Languages, Mathematics, OOP and Software Engineering.

Code

table(exam_data\$grade, exam_data\$subject)

Ausgabe:

	table(exam_data\$grade, exam_data\$subject)										
	Computer	Networks	Data	Bases	Formal	Languages	Mathematics	00P	Software	Engineering	
1	l	6		10		4	4	4		1	
2	2	8		12		6	16	15		19	
3	3	58		46		57	43	62		57	
4	1	53		69		75	72	69		76	
	5	61		53		48	50	46		37	
	1117 /4 40	XI.									

Aufgabe 1g): For each subject, determine the minimum, maximum, the three quartiles, the mean of the variable score, the number of participants and the dropout rates.

# A tibble: 6 x 9								
subject	minimum	maximum	q1	q2	q3	mean	no.participants	dropout.rate
<chr></chr>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<dbl></dbl>
1 Computer Networks	29	108	29	29	29	59.4	186	0.328
2 Data Bases	9	95	9	9	9	60.3	190	0.279
3 Formal Languages	18	97	18	18	18	58.9	190	0.253
4 Mathematics	19	102	19	19	19	58.6	185	0.270
5 OOP	22	102	22	22	22	60.3	196	0.235
6 Software Engineering	24	94	24	24	24	61.2	190	0.195

Aufgabe 1h): Create side by side boxplots of the score for each subject and interpret the results.

Code: boxplot(exam_data\$score~exam_data\$subject,col=c("dark red"))

Ausgabe:

Aufgabe 1h): Determine the contingency table of the variables attempt and grade and determine the indifference table and chi-square value..

exam_data\$grade										
exam_data\$attempt	exam_data\$attempt 1 2 3 4 5 Sum									
1	14	49	206	226	184	679				
2	14	21	84	142	84	345				
3	1	6	33	46	27	113				
Sum	29	76	323	414	295	1137				
Warning message:										