

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C07D 277/14, 417/04, 417/06, 417/12, 417/14, A61K 31/44

A1

(11) International Publication Number:

WO 96/20936

(43) International Publication Date:

11 July 1996 (11.07.96)

(21) International Application Number:

PCT/KR95/00183

(22) International Filing Date:

29 December 1995 (29.12.95)

(30) Priority Data:

1994/38787

29 December 1994 (29.12.94) KR Keun, Ho [KR/KR]; Jugong 2 Area Apartment 118-402, Maetan-dong, Suwon-si, Kyungki-do 442-370 (KR). PARK, Jeong, Ho [KR/KR]; 568-15, Pajang-dong, Jangan-ku, Suwon-si, Kyungki-do 440-290 (KR).

Gwonsun-ku, Suwon-si, Kyungki-do 441-390 (KR). RYU,

(74) Agent: HUH, Sang, Hoon; Namyoung Building, 5th floor, 809-16, Yeoksam-dong, Kangnam-ku, Seoul 135-707 (KR).

(81) Designated States: AU, BR, CA, CN, HU, JP, NO, PL, RU, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): PARK, Pyeong-Uk [KR/KR]; Hyundai Apartment 20-603, Apgujong-dong, Kangnam-ku, Seoul 135-110 (KR). PYO, Sungsoo [KR/KR]; Jugong Apartment 702-402, Byulyang-dong, Gwacheon-si, Kyungki-do 427-040 (KR). LEE, Ki-Seung [KR/KR]; Dongsin Apartment 206-409, Jungja-1 dong, Jangan-ku, Suwon-si, Kyungki-do 440-301 (KR). GAM, Jongsik [KR/KR]; Jugong Apartment 254-101, 4, Wonmoon-dong, Gwacheon-si, Kyungki-do 427-030 (KR). SUNG, Jin, Heung [KR/KR]; Dosigyebal Apartment 901-106, Gayang-dong, Kangseo-ku, Seoul 157-200 (KR). PARK, Jung, Soo [KR/KR]; 40-14, Jungja-2 dong, Janganku, Suwon-si, Kyungki-do 440-302 (KR). PARK, Don, Soo [KR/KR]; Samsung Apartment 7-206, Gwonsun-dong,

(71) Applicant (for all designated States except US): SUNKYONG

Jangan-ku, Suwon-si, Kyungki-do 440-301 (KR).

INDUSTRIES CO., LTD. [KR/KR]; 600, Jungja-1 dong,

Published

With international search report. With amended claims.

(54) Title: NOVEL THIAZOLIDIN-4-ONE DERIVATIVES

(57) Abstract

The present invention relates to novel thiazolidin-4-one derivatives having formula (I), which inhibit platelet-activating factor and/or 5-lipoxygenase for the prevention or treatment of inflammatory and allergic disorders mediated by platelet-activating factor and/or leukotrienes, and to pharmaceutical compositions containing these compounds, and to the use thereof to inhibit PAF and/or leukotriene. A process for preparing these compounds is also included in the present invention, wherein n, T, Q, R¹, R², R³, R⁴, R⁵, R⁶, R⁷ and R⁸ are respectively as defined in the description.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

			•		
AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
ΑÜ	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP.	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SID	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI.	Côte d'Ivoire	ш	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
cs	Czechoslovakia	LT	Lithuania	TD	Chad
cz	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
n	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA.	Gabon	MR	Mauritania	VN	Viet Nam
UA.					

10

15

20

25

NOVEL THIAZOLIDIN-4-ONE DERIVATIVES

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to novel thiazolidin-4-one derivatives having the following formula(I), which inhibit platelet-activating factor and/or 5-lipoxygenase for the prevention or treatment of inflammatory and allergic disorders mediated by platelet-activating factor and/or leukotrienes, and to pharmaceutical compositions containing these compounds, and to the use thereof to inhibit PAF and/or leukotriene.

A process for preparing these compounds is also included in the present invention.

wherein, n, T, Q, R¹, R², R³, R⁴, R⁵, R⁶, R⁷ and R⁸ are respectively defined as the below.

Description of the Related Art

Benveniste et al. found a factor in 1972 which strongly induces platelet aggregation from rabbit basophils. This factor was named platelet-activating factor (hereinafter referred to PAF). Hanahan et al. indentified the factor in 1980 as a phosphoglyceride of the alkyl ether type having an acetyl group in the 2-position, i. e. 1-O-hexadecyl or octadecyl-2-acetyl-sn-glyceryl-3-phosphocholine.

The physiological roles of PAF have been intensively investigated, and it is known that PAF is an important factor acting on platelet aggregation, reduction in blood pressure, immediate allergic reaction, contraction of smooth muscle, inflammation, pain, edema, and alternation in the respiratory and circulatory systems.

Therefore, PAF-antagonistic activity-possessing compounds are very useful for

10

15

20

25

treating various PAF-induced diseases, such as inflammatory diseases, allergic diseases, anaphylatic shocks, septic shocks, vascular diseases as DIC, myocardinal diseases, asthma, pulmonary edema, and adult respiratory diseases.

Leukotrienes, like PAF, are potent lipid mediators of a variety of topical and systemic diseases and disorders. A 5-lipoxygenase in cytoplasm catalyzes the conversion of arachidonic acid to leukotriene A4 which is the precursor of leukotriene B4 and C4. Leukotriene B4 and C4 are oxygenated metabolites that contribute to the pathogenosis of such inflammatory disorders as arthritis, asthma, psoriasis, and thrombotic disease. Leukotrienes are released concomitantly from leukocytes with PAF from a common phospholipid precursor upon cellular activation and act synergistically with PAF in many biological models.

It has been demonstrated by O'Donnell and Lewis et al. that a physical combination of a PAF antagonist and leukotriene inhibitor is significantly more effective than either agent alone in treating athma in an animal model [Therapeutic Approaches to inflammatory Diseases, Lewis et al., Elsevier, New York, 1989, pp 169~193]. Shen et al. and Page et al. pointed out that single compounds which possess the dual inhibitory activity of PAF and leukotriene inhibition would have greater anti-inflammatory activities than a physical combination of a PAF and a leukotriene inhibitor. [PAF and Related Lipid Mediators, Plenum Pub., N.Y., 164 (1987); Trends in Pharmacol. Sci., 10(1989)].

Moreover, the chemical combination of PAF and 5-lipoxygenase inhibitory activities in one molicule has advantages over drug combinations in terms of optical pharmacokinetics, clinical applications and developmental costs.

Under these circumstances, various thiazolidin-4-one derivatives have been synthesized. But thiazolidin-4-one compounds simutaniously possessing PAF-antagonistic activity and leukotriene inhibition activity have not been known at this time.

Reports related to thiazolidin-4-one derivatives are as followings: N-(phenyl,

10

15

20

pyridyl)-2-pyridyl-thiazolidin-4-one derivatives for agricultural chemicals [Japanese Patent Kokai No. 145679/79]; N-(phenyl, benzyl, cycloalkyl)-2-pyridyl-thiazolidin-4one derivatives for agricultural chemicals [Japanese Patent Kokai No. 55184/80]; N-(carboxycyclohexylmethyl)-2-pyridyl-thiazolidin-4-one derivatives anticomplementary activity [Japanese Patent Application Kokai No. 85380/82]; N-(carboxymethylphenyl)-2-pyridyl-thiazolidin-4-one derivatives inflammatory and analgesic activity [Japanese Patent Kokai No. 88170/82]; N-(pyrazinyl)-2-pyridyl-thiazolidin-4-one derivatives for agricultural chemicals [Japanese Patent Kokai No. 183689/83]; N-(phenyl)-2-pyridyl-thiazolidin-4-one derivatives for intermediates in synthesis [U.S. Patent No. 4,501,746]; N-(carbamoyloxy)-2-pyridyl-thiazolidin-4-one derivatives for cardiotonic[Japanese Patent Kokai No. 103883/86]; N-(alkyl, aminoalkyl)-2-pyridyl-thiazolidin-4-one derivatives for PAF-antagonist [Japanese Patent Kokai No. 126391/87, 139304/87, 160481/87, 12379/88 and European Patent Application No. 292305/88] etc..

Because of the large number of diseases and disorders which are mediated by PAF and leukotrienes, synthesis of new compounds which possess leukotriene or PAF inhibitory activity, and preferably compounds which possess both inhibitory activity will be very useful as active ingredients in the prevention and/or treatement of those diseases and disorders.

Accordingly, the present inventors have conducted long term investigations and studies on thiazolidin-4-one derivatives which have PAF antagonistic activity and/ or leukotrienes inhibitory activity. The present invention has been accomplished based on these findings.

25 SUMMARY OF THE INVENTION

It is an object of this invention to provide novel thiazolidin-4-one derivatives which act as PAF antagonists and/or inhibit biosynthesis of leukotrienes via the 5-lipoxygenase pathway, the pharmaceutical uses of these derivatives, and a process for

preparing them.

The present invention relates to the novel thiazolidin-4-one derivatives having the following formula(I), which act as PAF antagonists and/or inhibit biosynthesis of leukotrienes via the 5-lipoxygenase pathway.

wherein.:

5

10

15

20

n is 0, 1, 2 or 3;

Q is $C_1 \sim C_{10}$ alkyl group, phenyl group that is optionally substituted with one or more suitable substituents selected from methoxy group and nitro group, or pyridiyl group that is optionally substituted with one or more methyl group;

 R^{3} , R^{2} and R^{3} are independently hydrogen atom, $C_{1} \sim C_{10}$ alkyl group, $C_{3} \sim C_{6}$ cycloalkyl group, or phenyl group that is optionally substituted with one or more methoxy group;

R⁴, R⁵, R⁶, R⁷ and R⁸ are independently hydrogen atom, hydroxyl group, halogen atom, $C_1 - C_{10}$ alkyl group, $C_1 - C_{10}$ alkoxy group, nitro group, amino group that is optionally substituted with one or more suitable substituents selected from $C_1 - C_{10}$ alkyl group and $C_3 - C_6$ cycloalkyl group, phenyl group that is optionally substituted with one or more suitable substituents selected from methoxy group and nitro group, $C_1 - C_{10}$ haloalkyl group, $O_1 - (CH_2)m^2O_2$, $O_2 - (CH_2)m^2O_3$, $O_3 - (CH_2)m^2O_4$, $O_4 - (CH_2)m^2O_5$, $O_5 - (CH_2)m^2O_5$, $O_6 - (CH_2)m^2O_5$, $O_7 - (CH_2)m^2O_7$,

or $-(CH_2)_m - NR^{13}R^{14}$ (in which, m is 1, 2, 3 or 4; R^9 is hydrogen atom, phenyl group that is optionally substituted with one or more suitable substituents selected from $C_1 \sim C_6$ alkyl group and $C_1 \sim C_6$ alkoxy group, or a pyridyl group; R^{10} is hydrogen atom, $C_1 \sim C_{10}$ alkyl group, or $C_1 \sim C_4$ alkanoyl group; R^{11} is $C_1 \sim C_{10}$ alkyl group, $C_1 \sim C_{10}$ alkoxy group, or amino group that is optionally substituted with one or more suitable substituents selected from $C_1 \sim C_{10}$ alkyl group and $C_3 \sim C_6$ cycloalkyl group; R^{12} is $C_1 \sim C_{10}$ alkyl group or phenyl group; R^{13} is hydrogen atom, $C_1 \sim C_{10}$ alkyl group, or $C_1 \sim C_{10}$ alkanoyl group; R^{14} is hydrogen atom or $C_1 \sim C_{10}$ alkyl group or when taken together, connecting R^{13} and R^{14} , a substituted or unsubstituted four- to seven-membered cycloamino group, or a cycloamino group having another hetero atoms; and R^{16} is hydrogen atom or $C_1 \sim C_{10}$ alkyl group.

The present invention also includes pharmaceutically acceptable salts of the formula(I), including, for example, salts with mineral acids such as, e.g., hydrochloric acid, hydrobromic acid, phosphoric acid or sulfuric acid, or salts with organic carboxylic acid such as, e.g., formic acid, acetic acid, malic acid, citric acid, maleinic acid, fumalic acid or tartaric acid.

And the compounds according to the invention, as well as the pharmacuetically acceptable salts thereof, may be existed geometrical or optical isomerism. Thus the present invention includes isomer in each case the isomerism and hydrate of the compounds.

25

15

20

DETAILED DESCRIPTION OF THE INVENTION

It is to be understood that both the foregoing general description and the following detailed description are examplary and explanatory, and are intended to

15

20

provide further explanation of the invention as claimed.

Novel compounds(I) of the present invention can be prepared by reacting compound of formula(II)

$$\begin{array}{c}
T \\
H \\
Q
\end{array}$$
(II)

wherein, T and Q are defined as in the formula(I);

with compound of formula(III)

wherein, n, R¹, R², R³, R⁴, R⁵, R⁶, R⁷ and R⁸ are defined as in the formual(I);

in the presence of base and solvent at -78 °C to reflux temperature, via the formula (I-1) as an intermidate

$$T-N = \begin{bmatrix} R^1 & OH & R^3 & R^4 \\ R^2 & R^8 & R^6 \end{bmatrix}$$

$$R^5 = \begin{bmatrix} R^5 & R^6 & R^6 & R^6 \end{bmatrix}$$

$$R^7 = \begin{bmatrix} R^6 & R^6 & R^6 & R^6 \end{bmatrix}$$

wherein, n, T, Q, R¹, R², R³, R⁴, R⁵, R⁶, R⁷ and R⁸ are defined as in formula(I).

The reaction of compound(II) with compound(III) is preferably carried out in a suitable solvent which at least one selected from inert organic solvents such as, e.g., tetrahydrofuran, benzene, toluene, dichloromethane or dichloroethane, and polar organic solvents such as, e.g., methanol, ethanol, dimethylsulfoxide, N,N dimethylformamide or acetic acid. The basic medium for the reaction of compound (II) and (III) is preferably metal hydride such as, e.g., sodium hydride, potassium hydride or calcium hydride, lithium diisopropylamide, methyl lithium, butyl lithium, phenyl lithium, sodium methoxide, sodium ethoxide, sodium acetate, sodium

10

15

hydroxide, potassium hydroxide, or organic base such as, e.g., triethyl amine, piperidine or morpholine, etc..

Without isolation of the compound of formula(I-1) which is as an intermediate of the reaction mixtures, the reaction mixture can be reacted with an acid or alkali to immediately obtain compound of the formula(I).

$$T - N \qquad \qquad R^1 \qquad R^3 \qquad R^4 \qquad R^5 \qquad \qquad (1)$$

wherein, n, T, Q, R¹, R², R³, R⁴, R⁵, R⁶, R⁷ and R⁸ are defined as the above.

Suitable preferred acids are inorganic acid such as, e.g., hydrochloric acid, hydrochloric acid/methanol or hydrochloric acid/ethanol, or organic acid such as, e.g., acetic acid or p-toluenesulfonic acid, etc.. And suitable preferred alkalis are sodium hydroxide, potassium hydroxide, sodium methoxide or sodium ethoxide, etc..

If the reaction of compound(II) with compound(III) is carried out at -78 $^{\circ}$ to 0 $^{\circ}$, the formula(I-1) as intermidate may be isolated from the reaction mixture in a high yield.

Also, according to the present invention the compound of formula(I) can be prepared by reacting compound of formula(II-1)

$$\begin{array}{c} T \\ \\ H \\ \\ Q \end{array} \qquad (II-1)$$

wherein, T and Q are defined as in the formula(I), and X is halogen atom; with compound of formula(III)

wherein, n, R¹, R², R³, R⁴, R⁵, R⁶, R⁷ and R⁸ are defined as in the formula(I); in the presence of zinc and an organic solvent in which tetrahydrofuran, benzene, toluene or trimethoxyborane at -78 °C to reflux temperature, to obtain the formula (I-1) as intermidate

wherein, n, T, Q, R¹, R², R³, R⁴, R⁵, R⁶, R⁷ and R⁸ are defined as in the formula(I); and reacting the compound of formula(I-1) with the said acid or alkali.

Also, the present invention relates to process for preparing compound of formula(II-1)

10

5

wherein, T and Q are as defined in formula(I), and X is halogen atom; reacting compound of formula(II)

$$\begin{array}{c} T \\ \\ H \\ \\ Q \end{array}$$

wherein, T and Q are defined as in formula(I);

with halide such as, e.g., bromine, iodine, chlorine, N-bromosuccinimide, N-bromophthalimide, N-chlorosuccinimide or N-chlorophthalimide in an organic solvents such as, e.g., ether, tetrahydrofuran, chloroform, carbon tetrachloride, dichloromethane, benzene, toluene, dimethyl formamide or etc. at 0 °C to reflux temperature.

Also, the present invention relates to process for preparing compound of formula(II)

wherein, T and Q are defined as in formula(I);

by dehydrating the compound of Q-CHO(wherein, Q is defined as in the formula(I)) with compound of T-NH₂(wherein, T is defined in the formula(I)) and mercaptoacetic acid(HSCH₂CO₂H) in an organic solvent such as, e.g., benzene, toluene, xylene and etc..

It is to be understood that application of the teaching of the present invention to a specific problem or environment will be within the capabilities of one having ordinary skill in the art in light of the teachings contained herein. Examples of the products of the present invention and a representative process for their preparation and recovery appear in the following examples.

EXAMPLE 1.

10

15

20

25

Preparation of 3-(2-dimethylaminoethyl)-2-(3-pyridyl)-thiazolidin-4-one < Method A >

A solution of 3-pyridinecarboxaldehyde(1.0 g, 9.15 mmol) and N,N-dimethylethylenediamine(0.822 g, 9.15 mmol) in toluene(30mL) was dehydrated under reflux for 1 h. The reaction mixture was allowed to cool to room temperature and evaporated to give 1.63 g(100 %) of N-nicotinylidene-N',N'-dimethylethylenediamine.

¹H NMR(300 MHz, CDCl₃) δ : 8.86(d, J=2.4Hz, 1H), 8.64(dd, J=4.8Hz, $\Delta \nu$ = 15Hz), 8.35(s, 1H), 8.11(m, 1H), 7.33(m, 1H), 3.78 (td, J=6.9, 1.2Hz, 2H), 2.68(t, J=6.9Hz, 2H), 2.34 (s, 6H).

To a stirred solution of N-nicotinylidene-N', N'-dimethylethylenediamine (1.63 g) in toluene (30mL) was added mercaptoacetic acid (0.64 mL, 9.15 mmol) and dehydrated at reflux for 1 h. The reaction mixture was allowed to cool to room temperature and evaporated to dryness. The residue was purified by flash column chromatography on silica gel to give 2.14 g (93 %) of 3-(2-dimethylaminoethyl)-2-(3-pyridyl)-thiazolidin-4-one.

¹H NMR(300 MHz, CDCl₃) δ : 8.63(m, 1H), 8.56(d, J=2.1Hz, 1H), 7.68(m, 1H), 7.36(m, 1H), 5.93(s, 1H), 3.85~3.77(m, 3H), 2.74~2.69(m, 1H), 2.48~2.44(m, 1H), 2.29~2.21(m, 1H), 2.15(s, 6H).

< Method B >

10

20

25

A solution of 3-pyridinecarboxaldehyde(1.0 g, 9.15 mmol) and N,N-dimethylethylenediamine(0.822 g, 9.15 mmol) in toluene(30 mL) was dehydrated under reflux for 1 h. To reaction mixture was added mercaptoacetic acid(0.64 mL, 9.15 mmol) and dehydrated under reflux for 1 h. The reaction mixture was allowed to cool to room temperature and evaporated to dryness. The residue was purified by flash column chromatography on silica gel to give 2.24 g(98 %)of 3-(2-dimethylaminoethyl)-2-(3-pyridyl)-thiazolidin-4-one.

< Method C >

A solution of 3-pyridinecarboxaldehyde(1.0 g, 9.15 mmol), N,N-dimethylethylenediamine(0.822 g, 9.15 mmol) and mercaptoacetic acid(0.64 mL, 9.15 mmol) in toluene(50 mL) was dehydrated under reflux for 2 h. The reaction mixture was allowed to cool to room temperature and evaporated to dryness. The residue was purified by flash column chromatography on silica gel to give 2.22 g(97 %) of 3-(2-dimethylaminoethyl)-2-(3-pyridyl)-thiazolidin-4-one.

The intermediate compounds of formula(II) as shown in Table 1 were prepared in the same manner as described in EXAMPLE 1.

Table 1

$$\begin{array}{c} T \\ \\ H \\ \\ Q \end{array}$$

¹H NMR(300 MHz, CDCl₃) δ Example · **T** Q 8.63(m, 1H), 8.56(d, J=2.1Hz, 1H), 7.68 (m, 1H), 7.36(m, 1H), 5.93(s, 1H), 3.85~3.77(m, 3H), 2.74~ 2.69(m, 1H), 1-1 5 2.48~2.44(m, 1H), 2.29~2.21(m, 1H), 2.15(s, 6H) 8.62(m, 1H), 8.55(m, 1H), 7.68(m, 1H), 7.38(m, 1H), 5.98(s, 1H), $3.65 \sim 3.85(m, 1H)$ 10 1-2 2H), 2.60~2.79(m, 2H), 2.33~2.57(m, 5H), 0.97(t, J=7.2Hz, 6H)8.62(m, 1H), 8.60(m, 1H), 7.66(m, 1H), 7.35(m, 1H), 5.94(s, 1H), 3.84(m, 1H), 15 1-3 3.78(m, 2H), 2.74(m, 2H), 2.41(m, 5H), 1.74(m, 4H)8.62(m, 1H), 8.55(m, 1H), 7.67(m, 1H), 7.35(m, 1H), 5.98(s, 1H), $3.72 \sim 3.88(m, 1H)$. 20 3H), 2.78(m, 1H), 2.51 (m, 1H), 2.29(m, 5H), 1.54(m, 4H), 1.42(m, 2H)

Example	Т	Q	¹ H NMR(300 MHz, CDCl ₃) δ
1-5	o N-CH₂CH₂—		8.63(m, 1H), 8.55(m, 1H), 7.68(m, 1H), 7.36(m, 1H), 5.89(s, 1H), 3.74~3.87(m, 3H), 3.67(m, 4H), 2.78(m, 1H), 2.48(m, 1H), 2.37(m, 5H)
1-6	HN N-CH ₂ CH ₂ —	\text{\text{N}}	8.63(m, 1H), 8.55(m, 1H), 7.68(m, 1H), 7.36(m, 1H), 5,92(s, 1H), 3.82(m, 1H), 3.78(m, 2H), 2.87(m, 4H), 2.77(m, 1H), 2.50(m, 1H), 2.35(m, 5H)
C ₆ 1-7 C ₆	$N-CH_2CH_2$	-CN	8.57(m, 1H), 8.52(m, 1H), 7.64(m, 1H), 7.10~7.44(m, 1H), 5.93(s, 1H), 4.21(s 1H), 3.77(m, 3H), 2.73(m, 1H), 2.55(m, 1H), 2.39(m, 9H)
C _G 1-8 C _G !	^Н 5 → О — N − СН ₂ С!	H ₂ -	N

	Example	T	Q	¹ H NMR(300 MHz, CDCl ₃) δ
5	1-10	CH ₂ CH ₂ -		8.61(m, 1H), 8.53(m, 1H), 8.46(m, 1H), 7.64(m, 2H), 7.34(m, 1H), 7.19(m, 2H), 5.54(s, 1H), 4.02(m, 1H), 3.70(m, 2H), 2.80~3.20(m, 3H)
10	1-11	H ₃ CO- Н ₃ CO − СН ₂ СН ₂ −		8.61(m, 1H), 8.41(m, 1H), 7.57(m, 1H), 7.33(m, 1H), 6.80(d, J=8.1Hz, 1H), 6.64 (m, 1H), 6.62(s, 1H), 5.25(s, 1H), 3.90 (m, 1H), 3.87(s, 3H), 3.85(s, 3H), 3.75 (m, 2H), 2.85(m, 2H), 2.68(m, 1H)
	1-12 H	H ₃ C CHCH ₂ ————————————————————————————————————	CH ₂ -	z
15	1-13	O CH ₂ —	→ N	8.63(m, 1H), 8.44(d, J=1.8Hz, 1H), 7.64 (m, 1H), 7.34(m, 1H), 6.70(d, J=7.8Hz, 1H), 6.62(s, 1H), 6.45(d, J=7.8Hz, 1H), 5.95(s, 2H), 5.42(s, 1H), 4.25(ABq, Δ ν =467, J_{AB} = 15.0Hz, 2H), 3.84(ABq, Δ ν =40.0, J_{AB} = 15.6Hz, 2H)
25	1-14	CH ₂ -	\bigvee_{N}	8.60(m, 1H), 8.51(m, 1H), 7.60~ 7.76(m, 2H), 7.34(m, 1H), 7.19(m, 1H), 5.83(s, 1H), 5.04(d, Jgem= 15.3Hz, 1H), 3.90 (m, 2H), 3.81(d, Jgem=15.3Hz, 1H)

	Example	Т	Q	¹H NMR(300 MHz, CDCl₃) δ
5	1-15	CH₃CH₂CH₂-O—	\times_N	
	1-16	CH ₂ CH ₂ -	\bigvee_{N}	
10	1-17	H ₃ C N CH ₂ CH ₂ −		
15	1-18	H ₂ N CH ₂ CH ₂ -		
20	1-19	H_NCH2-		8.63(m, 1H), 8.49(m, 1H), 7.34(m, 1H), 7.24(m, 1H), 5.89(s, 1H), 4.25(ABq, 2H), 3.98(ABq, 2H)
25	1-20	₹	N N	8.61(m, 1H), 8.46(m, 1H), 8.22(m, 1H), 8.10(d, J=8.4Hz, 1H), 7.67(m, 2H), 7.25 (m, 1H), 7.01(m, 1H), 6.87(s, 1H), 3.95 (ABq, $\Delta \nu = 56.7$ Hz, J_{AB} =16,2Hz, 2H)

	Example	Т	Q	¹ H NMR(300 MHz, CDCl ₃) δ
5	1-21	CH ₃ CH ₂ CH ₂ -		8.52(m, 1H), 8.40(m, 1H), 7.52(m, 1H), 7.51(s, 1H), 7.18(m, 1H), 5.45 (s, 1H), 4.62(m, 1H), 4.37(m, 1H), 3.87(m, 1H), 3.80(dd, 2H), 3.60(s, 3H), 3.40(m, 1H), 3.34(s, 3H)
10	1-22	ОН		8.57(s, 2H), 8.05(s, 1H), 7.78(d, J= 7.8Hz, 1H), 7.33(m, 2H), 5.79(s, 1H), 3.66(s, 2H)
15	1-23	CH ₃ -(CH ₂) ₃ —	→ N	8.64(m, 1H), 8.55(m, 1H), 7.68(m, 1H), 7.37(m, 1H), 5.65(d, J=1.5Hz, 1H), 3.70 (m, 1H), 2.64(m, 1H), 1.44(m, 2H), 1.27 (m, 2H), 0.87(t, J=7.5Hz, 3H)
	1-24	H ₃ C CH-CH ₂ CH ₂ —	\bigvee_{N}	
20	1-25	СН3—		
25	н ₃ с 1-26 н ₃ с	N-CH ₂ CH ₂ — CH ₃ -(CH ₂) ₇ –	4.78(dd, J=6.3, 1.8Hz, 1H), 3.82(td, J=7.2, 7.2Hz, 1H), 3.54(ABq, 2H), 3.07(td, J=7.2Hz, 2H), 2.35(m, 2H), 2.26(s, 6H), 1.92(m, 1H), 1.63(m, 1H), 1.18~1.46(m, 12H), 0.89(t, J=6.6Hz, 3H)

	Example	Т	Q	¹ H NMR(300 MHz, CDCl ₃) δ
5	1-27	СН3—	CH ₃ -(CH ₂) ₇ -	4.57(m, 1H), 3.56(dd, 2H), 2.90(s, 3H), 1.84~1.99(m, 1H), 1.57~1.80 (m, 1H), 1.05~1.55(m, 12H), 0.89(t, J=6.6Hz, 3H)
10	1-28	CH ₃ —	CH ₃ -(CH ₂) ₅ -	4.58(m, 1H), 3.57(ABq, 2H), 2.89 (s, 3H), 1.90(m, 1H), 1.72(m, 1H), 1.32(m, 8H), 0.89(t, J=6.6Hz, 3H)
	1-29	СН3—	CH ₃ -(CH ₂) ₂ -	4.58(m, 1H), 3.54(ABq, $\Delta \nu = 28$, JAB= 15.6Hz, 2H), 2.90(s, 3H), 1.83~1.99(m, 1H), 1.61~1.79(m, 1H), 1.32~1.52(m, 2H), 0.98(t, J=7.2Hz, 3H)
15	1-30	СН	2-	
20	H ₃ C 1-31 H ₃ C	N-CH ₂ CH ₂	- OCH3	6.52(s, 2H), 5.80(s, 1H), 3.86(s, 9H), 3.79(m, 1H), 3.77(m, 2H), 2.86(m, 1H), 13 2.46(m, 1H), 2.34(m, 1H), 2.21(s, 6H)
25	Н ₃ і 1-32 Н ₃ і	С N-СН₂СН	OCH ₃	·1 ₃

Example	T	Q	1H NMR(300 MHz, CDCl3) δ
1-33	H ₃ C N-CH ₂ CH ₂ —	J _{NO}	2
1-34	CH ₃ OCH ₂ CH ₂ -	N	
1-35	CH ₃ CH ₂ OCH ₂ CH ₂ -	N	
1-36	H ₃ C OCH₂CH₂—	Z	8.61(m, 2H), 7.68(m, 1H), 7.37(m, 1H) 5.81(d, J=0.9Hz, 1H), 3.76(m, 3H), 3.6 (s, 3H), 3.06(m, 1H), 3.71(m, 1H), 2.4 (m, 1H)
1-37	H ₃ CO CH₂CH₂—	Z	8.63(m, 2H), 7.70(m, 1H), 7.38(m, 1H) 5.81(s, 1H), 3.78(m, 3H), 3.67(s, 3H) 3.05(m, 1H), 2.71(m, 1H), 2.46(m, 1H)
1-38	C ₂ H ₅ O CH ₂ CH ₂ —		8.61(m, 1H), 8.57(m, 1H), 7.82(m, 1H), 7.45(m, 1H), 5.90(d, J=1.2Hz, 1H), 4.00(q, J=7.2Hz, 2H), 3.92 (dd, J=15.6Hz, 1H), 3.67(d, J=15.6Hz, 1H), 3.61~3.73 (m, 1H), 2.87(m, 1H), 2.54(m, 1H)
			1H), 2.40(m, 1H), 1.15(t, J=7.2Hz, 3H)

]	Example	Т	Q	¹ H NMR(300 MHz, CDCl ₃) δ
	1-39	H ₃ C N-CH ₂ CH ₂ -		
	1-40	N-CH ₂ CH ₂ -		
	1-41	H ₃ C N CH ₂ CH ₂ -	N	
	1-42	CH ₂ CH ₂ -	\bigcup_{N}	
	1-43	CH ₂ CH ₂ -	N	8.47(dd, J=4.8, 1.2Hz, 1H), 7.45 (dd, J=
	1-44	H_3C $N-CH_2CH_2 H_3C$	CH ₃	7.8, 1.5Hz, 1H), 7.21(m, 1H), 6.21(s 1H), 3.85(td, J=7.8, 1.8Hz, 1H), 3.72(s 2H), 2.72(m, 1H), 2.59(s, 3H), 2.52(m
	1-45	N-CH ₂ CH ₂ —	СН	1H), 2.31(m, 1H), 2.13(s, 3H)
	1-46	H_3C $N-CH-CH_2 H_3C$ CH_3		8.63(m, 1H), 8.56(d, J=2.1Hz, 1H), 7.68 (m, 1H), 7.36(m, 1H), 5.93(s, 1H) 3.85~3.77(m, 3H), 2.74~2.69 (m, 1H) 2.48~2.44(m, 1H), 2.15(s, 6H), 1.22(d)
				J=7.2Hz, 3H)

	Example	Т	Q	'H NMR(300 MHz, CDCl 3) δ
5	1-47	HO CH ₂ -	→ N	DMSO-d; 8.60(d, J=1.8Hz, 1H), 8.55 (dd, J=4.2, 1.8Hz, 1H), 7.85(m, 1H), 7.43(m, 1H), 5.85(s, 1H), 3.85 (ABq, Δ ν =72, J _{AB} =15.6Hz, 2H), 3.74(ABq, Δ ν =219, J _{AB} =17.Hz, 2H)
10	1-48	CH ₃ —	CH ₂ -	8.53(m, 2H), 7.55(d, J=7.8Hz, 1H), 7.25 m, 1H), 4.79(m, 1H), 3.17 (ABq, 2H), 3.04(s, 3H)
15	1-49	CH ₃ -	н ₂ СН ₂ СН ₂ -] N	8.47(m, 2H), 7.50(m, 1H), 7.23(m, 1H), 4.60(dd, J=1.8, 5.1Hz), 3.55 (m, 2H), 2.86(s, 3H), 2.68(t, J= 5.7Hz, 2H), 1.62~1.98(m, 4H)
20	1-50	HO CH ₂ CH ₂ —		12.34(brs, 1H), 8.60(m, 1H), 8.58 (m, 1H), 7.83(m, 1H), 7.45(m, 1H), 5.91(d, J=1.2Hz, 1H), 3.92 (dd, J=15.6, 1.2Hz, 1H), 3.67(d, J=15.6Hz, 1H), 3.63(m, 1H), 2.83(m, 1H), 2.54(m, 1H), 2.29(m, 1H)

	Example	Т	Q	'H NMR(300 MHz, CDCl ₃) δ
			-	8.61(m, 1H), 8.56(m, 1H), 7.86(m, 1H),
5			•	7.42(m, 1H), 5.86(s, 1H), 4.14(d, J=
				17.4Hz, 1H), 4.02(d, J= 15.6Hz, 1H),
	1-51	C ₂ H ₅ O CH ₂ —	N	3.01(q, J=7.2Hz, 2H), 3.74(d, J=15.6Hz,
				1H), 3.58(d, J= 17.4Hz, 1H), 1.13(t, J=
				7.2Hz, 3H)
10				
				10.51(s, 1H), 8.80(s, 1H), 8.59(m, 2H),
				7.82(m, 1H), 7.46(m, 1H), 5.88(s, 1H),
	1-52	HO CH2-CH2-	N	3.93(d, J=15.3Hz, 1H), 3.63(m, 1H),
		n		3.67(d, J=15.3Hz, 1H), 2.80(m, 1H),
15				2.29(m, 1H), 2.07(m, 1H)

EXAMPLE 2.

Preparation of 3-(2-dimethylaminoethyl)-5-(α -hydroxybenzyl)-2-(3-pyridyl)-thiazolidin-4-one

< Method A >

5

10

15

25

To a solution of diisopropylamine (0.142 mL, 0.796 mmol) in tetrahydrofuran (10 mL) was added n-BuLi (1.6 M solution, 0.5 mL, 0.80 mmol) at -78 °C. After stirried for 1 h. To the reaction mixture was added 3-(2-dimethylaminoethyl)-2-(3-pyridyl)-thiazolidin-4-one(0.20 g, 0.796 mmol) dissolved in tetrahydrofuran(1.5 mL). After stirried for 30 min, to the reaction mixture was added benzaldehyde(98 μ l, 0.950 mmol) and stirred for 1 h and allowed to warm to room temperature. The reaction mixture was poured into brine(2 mL) and it was then extracted by using ethyl acetate(30 mL).

The ethyl acetate phase was dried over anhydrous magnesium sulfate and evaporated to dryness. The residure was purified by flash column chromatography on silica gel to give 0.253 g(89 %) of 3-(2-dimethylaminoethyl)-5-(α-hydroxybenzyl)-2-(3-pyridyl)-thiazolidin-4-one.

¹H NMR(300 MHz, CDCl₃)δ: 8.62(m, 2H), 7.81(m, 1H), 7.36(m, 1H), 7.29~7.26 (m, 5H), 5.84(s, 1H), 5.18(s, 1H), 4.52(s, 1H), 4.20 (m, 1H), 2.75~2.35(m, 3H), 2.17(s, 6H).

20 < Method B >

To a solution of 3-(2-dimethylaminoethyl)-2-(3-pyridyl)-thiazolidin-4-one (0.35 g, 1.39 mmol) in carbon tetrachloride (30 mL) was added N-bromosuccinimide (0.260 g, 1.46 mmol) and benzoyl peroxide(1 mg). The reaction mixture was heated under reflux for 5 h in the dark and filtered off precipitate. The filtrate was evaporated to give crude 5-bromo-3-(2-dimethylaminoethyl)-2-(3-pyridyl)-thiazolidin-4-one.

¹H NMR(300 MHz, CDCl₃) δ : 8.62~8.58(m, 2H), 7.70(d, J=8.1Hz, 1H), 7.36~7.33 (m, 1H), 5.94(s, 1H), 5.21(s, 1H), 4.68~4.80(m, 1H),

2.82(m, 1H), 2.61~2.43(m, 2H), 2.28(s, 6H).

To a solution of Zn(0.136 g, 2.09 mmol), CuBr(15 mg, 0.670 mmol) and diethylaluminium chloride (0.184 mg, 1.53 mmol) in mixture of tetrahydrofuran and hexane (10 mL/10 mL) was slowly added 5-bromo-3-(2-dimethylaminoethyl)-2-(3-pyridyl)-thiazolidin-4-one and benzaldehyde (0.162 g, 1.53 mmol) dissolved in tetrahydrofuran at -20 °C for 5 min. After stirred for 2 h, to the reaction mixture was added pyridine (1 mL) warmed to room temperature, diluted with water (10 mL) and extracted with ethyl acetate(80 mL). The combined organic phase was dried over anhydrous magnesium sulfate, filtered, and evaporated to dryness. The residue was purified by flash column chromatography on silica gel to give 0.468 g (94 %) of 3-(2-dimethylaminoethyl)-5-(α-hydroxybenzyl)-2-(3-pyridyl)-thiazolidin-4-one.

EXAMPLE 3.

10

20

25

Preparation of 3-(2-dimethylaminoethyl)-5-phenylmethylene-2-(3-pyridyl)-thiazolidin-4-one.

15 < Method A >

A solution of 3-(2-dimethylaminoethyl)-2-(3-pyridyl)-thiazoldin-4-one(0.130 g, 0.517 mmol) in tetrahydrofuran(10 mL) was cooled to 0 °C and added potassium hydride(51 mg, 1.29 mmol). After stirred for 5 min, to the reaction mixture was added benzaldehyde(64 \(\mu \), 0.621 mmol) and warmed to room temperature. After stirred at room temperature for 1h, the reaction mixture was cooled to 0 °C, poured into water(0.2 mL), and extrated with ethyl acetate(20 mL). The combined organic phase was dried over anhydrous magnesium sulfate, filtered, and evaporated to dryness. The residue was purified by flash column chromatography on silica gel to give 0.166 g (95 %) of 3-(2-dimethylaminoethyl)-5-phenylmethylene-2-(3-pyridyl)-thiazolidin-4-one.

¹H NMR(300 MHz, CDCl₃) δ : 8.65~8.61(m, 2H), 7.66(d, J=8.1Hz, 1H), 7.53(s, 1H), 7.44~7.34(m, 5H), 6.18(s, 1H), 4.08~3.97(m, 1H), 2.78~2.82(m, 1H), 2.63~2.53(m, 1H),

10

15

20

25

2.40~2.35(m, 1H), 2.19(s, 6H).

< Method B >

To a solution of 3-(2-dimethylaminoethyl)-2-(3-pyridyl)-thiazoldin-4-one (0.126 g, 0.501 mmol) in acetic acid(10 mL) was added sodium acetate (0.165 g, 20.1 mmol) and benzaldehyde(80 mg, 0.751 mmol). The reaction mixture was heated under reflux for 8 h and evaporated to dryness. The residue was dissolved in water(5 mL) and extrated with ethyl acetate(30 mL). The combined organic phase was dried over anhydrous magnesium sulfate, filtered, and evaporated to dryness. The residue was purified by flash column chromatography on silica gel to give 0.144 g (85 %) of 3-(2-dimethylaminoethyl)-5-phenylmethylene-2-(3-pyridyl)-thiazolidin-4-one.

< Method C >

To a solution of 3-(2-dimethylaminoethyl)-5-(α-hydroxybenzyl)-2-(3-pyridyl)-thiazolidin-4-one(0.20 g) in toluene(10 mL) was added p-toluenesulfonic acid(10 mg). The reaction mixture was dehydrated under reflux for 2 h, cooled to room temperature, and evaporated. The residue was purified by flash column chromatography on silica gel to give 0.188 g (99 %) of 3-(2-dimethylaminoethyl)-5-phenylmethylene-2-(3-pyridyl)-thiazolidin-4-one.

< Method D >

A solution of 3-(2-dimethylaminoethyl)-5-(α-hydroxybenzyl)-2-(3-pyridyl)-thiazoldin-4-one(0.40 g) dissolved in 28 % HCl-ethanol (5 mL) was stirred for 10 min at room temperature and evaporated. The residue was purified by flash column chromatography on silica gel to give 0.345 g (91 %) of 3-(2-dimethylaminoethyl)-5-phenylmethylene-2-(3-pyridyl)-thiazolidin-4-one.

EXAMPLE 4.

Preparation of 3-(2-dimethylaminoethyl)-5-phenylmethylene-2-(3-pyridyl)-thiazolidin-4-one hydrochloride salt (Compound No. 1).

A solution of 3-(2-dimethylaminoethyl)-5-phenylmethylene-2-(3-pyridyl)-thiazolidin-4-one (0.50g) dissolved in 28 % HCl-ethanol (2 mL) was stirred for 3 h at room

10

15

20

25

temperature and filtered the precipitate. The precipitate was dried under vac. to give 0.537 g(97 %) of 3-(2-dimethylaminoethyl)-5-phenylmethylene-2-(3-pyridyl)-thiazolidin-4-one hydrochloride salt.

¹H NMR(300 MHz, DMSO-d₆) δ : 9.70(s, 1H), 8.79(s, 1H), 8.69(d, J=4.5Hz, 1H), 7.97(d, J=8.1Hz, 1H), 7.60-7.55(m, 6H), 6.39(s, 1H), 4.20-4.12(m, 1H), 3.21-3.00(m, 3H), 2.82(d, J=3.9Hz, 6H).

The compounds of formula(I), wherein R⁴, R⁵, R⁶, R⁷ or R⁸ is an hydroxyl group, can be prepared in the following EXAMPLE 5, introducing protecting group such as methoxyethoxymethyl group.

EXAMPLE 5.

Preparation of 3-(2-N, N-dimethylaminoethyl)-5-(3,5-dimethyl-4-hydroxy-phenylmethylene)-2-(3-pyridyl)-thiazolidin-4-one hydrochloride salt (Compound No. 10)

A solution of 3,5-dimethyl-4-hydroxybenzaldehyde (10.0 g, 66.6 mmol) in tetrahydrofuran(100 mL) was cooled to 0 °C and added 80 % NaH (2.40 g, 79.9 mmol). After stirred for 10 min at 0 °C, to the reaction mixture was added 2-methoxyethoxymethyl chloride (11.6 g, 93.2 mmol) and warmed to room temperature. After stirred for 4 h, the reaction mixture was cooled to 0 °C and added methanol (10 mL). When no more evolution of hydrogen gas the reaction mixture was warmed to room temperature added water(20 mL) and extracted with ethyl acetate(2 x 100 mL). The combined organic phase was dried over anhydrous magnesium sulfate, filtered, and evaporated to dryness. The residue was purified by flash column chromatography on silica gel to give 13.6 g(86%) of 3,5-dimethyl-4-(2-methoxyethoxymethyloxy)-benzaldehyde.

¹H NMR(300 MHz, CDCl₃) δ : 9.87(s, 1H), 7.55(s, 2H), 5.12(s, 2H), 3.95(t, J= 4.5Hz, 2H), 3.60(t, J=4.5Hz, 2H), 3.39(s, 3H), 2.35 (s, 6H)

10

15

20

25

To a solution of 3-(2-N,N-dimethylaminoethyl)-2-(3-pyridyl)-thiazolidin-4-one (1.00 g, 3.98 mmol) in tetrahydrofuran(50 mL) was added lithium diisopropylamide (1.5M solution, 3.18 mL) at -78 °C and stirred for 10 min. To the reaction mixture was slowly added 3,5-dimethyl-4-(2-methoxyethoxymethyloxy)-benzaldehyde(1.13 g, 4.77 mmol) dissolved in tetrahydrofuran(5 mL). After stirred at -78 °C for 2 h, to the reaction mixture was added acetic acid(2 mL) and warmed to room temperature. The reaction mixture was neutralized with saturated sodium bicarbonate solution and extracted with ethyl acetate(3 x 30 mL). The combined organic phase was dried over anhydrous magnesium sulfate, filtered, and evaporated to dryness. residue was dissolved in 30% HCl-ethanol solution(5 mL), stirred for 3 h and then neutralized with saturated sodium bicarbonate solution and extracted with ethyl acetate $(2 \times 50 \text{ mL})$. The combined organic phase was dried over anhydrous magnesium sulfate, filtered, and evaporated to dryness. The residue was purified by flash column chromatography on silica gel to give 1.32 g(87 %) of 3-(2-N,Ndimethylaminoethyl)-5-(3,5-dimethyl-4-hydroxy-phenylemthylene)-2-(3-pyridyl)thiazolidin-4-one.

¹H NMR(300 MHz, CDCl₃)δ: 8.63~8.61(m, 2H), 7.75(m, 1H), 7.54(s, 1H), 7.35 (m, 1H), 7.21(s, 2H), 6.17(s, 1H), 4.15(m, 1H), 2.85 (m, 1H), 2.60(m, 1H), 2.38(m, 1H), 2.18(s, 6H)

To a solution of 3-(2-N,N-dimethylaminoethyl)-5-(3,5-dimethyl-4-hydroxy-phenylemthylene)-2-(3-pyridyl)-thiazolidin-4-one(1.32 g, 3.44 mmol) in ethanol(4 mL) was added 30 % HCl-ethanol solution(0.94 mL) and stirred at room temperature for 30 min. To the reaction mixture was added ethyl acetate(30 mL), filtered, and dried to give 1.49 g(95 %) of 3-(2-N,N-dimethylaminoethyl)-5-(3,5-dimethyl-4-hydroxy-phenylemthylene)-2-(3-pyridyl)-thiazolidin-4-one hydrochloride salt.

¹H NMR(300 MHz, DMSO-d₆) δ : 9.60(brs, 1H), 8.80(s, 1H), 8.68(d, J=4.5Hz, 1H), 8.01(m, 1H), 7.61(m, 1H), 7.38(s, 1H), 7.16(s, 2H), 6.26(s, 1H), 4.20(m, 1H), 3.31~3.01(m, 3H), 2.82(d,

J=3.8Hz, 6H), 2.36(s, 6H)

The thiazolidin-4-one derivatives of formula(I) as shown in Table 2 were prepared in the same manner as described in EXAMPLE 1 to EXAMPLE 5.

5

10

15

20

			¥		·	
5	Comp. No	o. Q	T	R1	Ar	Salt
	1		H ₃ C N-CH ₂ CH ₂ —	Н	O	HCI
10	2	N	H ₃ C N-CH ₂ CH ₂ —	Н	OCH ₃	
	3	N	H ₃ C N-CH ₂ CH ₂ —	н	OCH ₃	
15	4	N	H ₃ C N-CH ₂ CH ₂ —	Н	CI	HCl
20	5	N N	H ₃ C N-CH ₂ CH ₂ —	Н	CH ₃	HCI
	6	N	H ₃ C N-CH ₂ CH ₂ —	Н	ОН	HCI
25	7		H ₃ C N-CH ₂ CH ₂ —	н	N C ₂ H	

	Comp. No.	Q	Т	R ¹	Ar	Salt
5	8	_N	H ₃ C N-CH ₂ CH ₂ —	н	Çı	
	9	\rightarrow \text{N} \rightarrow \text{N}	H ₃ C N-CH ₂ CH ₂ —	Н	ОН	HCI
10	10	\bigcup_{N}	H ₃ C N-CH ₂ CH ₂ —	Н	CH ₃ OH	HCl
15	11	N	H ₃ C N-CH ₂ CH ₂ —	Н	OH t-C ₄ H ₉	
	12	Z	H ₃ C N-CH ₂ CH ₂ —	Н	OCH ₃	
20	13		H ₃ C N-CH ₂ CH ₂ —	Н	CI	
	14	\bigvee_{N}	H ₃ C N-CH ₂ CH ₂ —	Н	ОН	HCI

Comp. No.	Q	Т	\mathbb{R}^{1}	Ar	Salt
15		H ₃ C N-CH ₂ CH ₂ —	Н	ОН	HCI
16	\rightarrow \text{N}	H ₃ С N-СН ₂ СН ₂ —	Н	ОН	HCI
17	→ N	H ₃ C N-CH ₂ CH ₂ —	н	O-CH ₂ -C	
18	$\sum_{n=1}^{\infty}$	H ₃ C N-CH ₂ CH ₂ —	Н	OCH ₃ O-n-C ₃ H ₇	HCI
19	\rightarrow N	H ₃ C N-CH ₂ CH ₂ —	н	OC ₂ H ₅	
20	\times_N	H ₃ C N-CH ₂ CH ₂ —	Н	OH OH	HCl
21	N	H ₃ C N-CH ₂ CH ₂ ——	Н	OCH ₃ OH OCH ₃	HCI

	Comp. No.	Q	Т	R1	Ar	Salt
5	22	N	H ₃ C N-CH ₂ CH ₂ —	Н	OCH ₃	HCl
	23	\bigcup_{N}	H ₃ C N-CH ₂ CH ₂ —	Н	O-n-C ₃ H ₇ O-n-C ₃ H ₇	HCl
10	24	Z	H ₃ C N-CH ₂ CH ₂ —	Н	i-C ₃ H ₇ OH i-C ₃ H ₇	
15	25	N	H ₃ C N-CH ₂ CH ₂ —	H	CI	
	26	N	H ₃ C N-CH ₂ CH ₂ —	Н	H OH N CH3 OCH3	ı
20	27	N	H ₃ C N-CH ₂ CH ₂ —	Н	Н ОН N N С2H5 ОСН3	
	28	N	H ₃ C N-CH ₂ CH ₂ —	н	H OH OCH ₃ OCH ₃	7
25						

	Comp. No.	Q	Т	R ¹	Ar Salt
5	29	N	H ₃ C N-CH ₂ CH ₂ —	H	H OH N n-C ₄ H ₉ OCH ₃
	30	N N	H ₃ C N-CH ₂ CH ₂ —	н	H OH N CH ₃ O-n-C ₃ H ₇
10	31		H ₃ C N-CH ₂ CH ₂ —	Н	H OH N C ₂ H ₅ O-n-C ₃ H ₇
15	32	\bigcup_{N}	H ₃ C N-CH ₂ CH ₂ —	н	H OH N N n-C ₃ H ₇ O-n-C ₃ H ₇
·	33	N N	H ₃ C N-CH ₂ CH ₂ ——	н	H OH N n-C ₄ H ₉ O-n-C ₃ H ₇
20	34	N N	H ₃ C N-CH ₂ CH ₂ —	н.	OCH ₃ Q
-	35	N	H ₃ C N-CH ₂ CH ₂ —	Н	OCH ₃
25					

	Comp. No.	Q	Т	R¹	Ar Salt
5	36		H ₃ C N-CH ₂ CH ₂ —	н	OH O-n-C ₃ H ₇
	37	_N	H ₃ C N-CH ₂ CH ₂ —	н	OH H N n-C ₄ H ₉ O-n-C ₃ H ₇
10	38	N	C_2H_5 $N-CH_2CH_2$ C_2H_5	Н	CH ₃ OH CH ₃
15	39	\bigcup_{N}	C_2H_5 $N-CH_2CH_2$ C_2H_5	н	он нсі
	40	N	C_2H_5 N-CH ₂ CH ₂ —	Н	OCH ₃
20	41	\bigvee_{N}	N-CH ₂ CH ₂ —	Н	OCH ₃
<u>2</u> 5	42	\bigcup_{N}	N-CH ₂ CH ₂ —	Н	ОН

	Comp. No.	Q	Т	R¹	Ar	Salt
5	43	\bigvee_{N}	N-CH ₂ CH ₂ —	н	t-C ₄ H ₉ OH	
	44	\bigcup_{N}	N-CH ₂ CH ₂ -	н	CH ₃	
10	45		N-CH ₂ CH ₂ —	Н	OH OH	
15	46		N-CH ₂ CH ₂ —	Н	CI	
	47	N N	N-CH ₂ CH ₂ —	Н	OCH ₃	
20	48	N	N-CH ₂ CH ₂ —	Н	OH 1-C ₄ H ₉	
	49	N	N-CH ₂ CH ₂ —	H	CH ₃ OH	
25					.	

	Comp. No.	Q	T	R¹	Ar Salt
5	50		ON-CH ₂ CH ₂ —	н	OCH ₃
	51		ON-CH ₂ CH ₂ —	н	CH ₃ OH
0	52	N	O_N-CH ₂ CH ₂ —	н	0H t-C ₄ H ₉
5	53	N	HN_N-CH ₂ CH ₂ —	Н	OCH ₃
	54		HN N-CH ₂ CH ₂ —	Н	ОН
20	55	N	HN N-CH ₂ CH ₂ —	H	CH ₃ OH
25	56		HN N-CH ₂ CH ₂ —	н	OH- t-C ₄ H ₉

	Comp. No.	Q	Т	R¹	Ar	Salt
5	57		C_6H_5 N N C_6H_5 N	Н	ОН	
	58	\bigvee_{N}	C_6H_5 N - CH_2CH_2	Н	OCH ₃	
10	59	N	C_6H_5 C_6H_5 N - CH_2CH_2	Н	OCH₃	
15	60	√ _N	C_6H_5 N	н	0H 1-C ₄ H ₉	
	61	N	C_6H_5 C_6H_5 N - CH_2CH_2	Н	OH 1-C4H9	
20	62	N	C_6H_5 C_6H_5 $N-CH_2CH_2-$	Н	CH ₃	
.25	63	N	H ₃ C N-CH ₂ CH ₂ CH ₂ —	н	OCH ₃ OCH ₃	HCI

	Comp. No.	Q	T	R ¹	Ar	Salt
5	64		H ₃ C N-CH ₂ CH ₂ CH ₂ —	Н	OCH ₃	HCl
	65	\bigvee_{N}	H ₃ C N-CH ₂ CH ₂ CH ₂ —	н	0H	
10	66	\bigcup_{N}	H ₃ C N-CH ₂ CH ₂ CH ₂ —	Н	ОН	
15	67		CH ₂ CH ₂ -	Н	ОН	HCl
	68	\bigvee_{N}	CH ₂ CH ₂ -	Н	OCH ₃	HCl
20	69	\bigcup_{N}	CH ₂ CH ₂ -	Н	OCH ₃	HCl
25	70	N	CH ₂ CH ₂ -	н	OCH ₃	НСІ
25			•			

	Comp. No.	Q	T	R ¹	Ar	Salt
5	71		CH ₂ CH ₂ -	Н	OH t-C ₄ H ₉	HCl
	72	N	H ₃ CO-CH ₂ CH ₂ -	н	OCH ₃	
10	73	Z	H ₃ CO — СН ₂ СН ₂ -	H	ОН	HCI
15	74	\rightarrow \text{N}	H ₃ CO− Н ₃ CO − СН ₂ СН ₂ −	н	CH ₃	
	75	N	H ₃ CO — СН ₂ СН ₂ - Н ₃ СО	Н	OH 1-C ₄ H ₉	
20	76	N _{H3}	°C CCCCHCH2 CCCCCCCCCCCCCCCCCCCCCCCCCCCC	- н	ОН	
25	77	NH ₃	CCCHCH2-CH2CH2	- н	OCH ₃	

	Comp. No.	Q	T	R ¹	Ar	Salt
5	78	N	CH ₂ —	Н	OCH ₃	
	79	N	O CH2-	Н	ОН	HCI
10	80	N	O CH2-	Н	OH t-C ₄ H ₉	HCl
15	81	→ N	\sim CH ₂ —	Н	OCH ₃	
	82	\rightarrow \text{N}	\sim CH ₂ $-$	Н	OCH ₃	
20	83	N	\sim CH ₂ —	Н	OCH ₃ OCH ₃	
25	84	\bigvee_{N}	CH_2	Н	ОН	HCl

	Comp. No.	Q	T	R ¹	Ar	Salt
5	85	\bigvee_{N}	CH₃CH₂CH₂-O ──	н	OCH ₃ OCH ₃	HCI
	86	\sum_{N}	CH ₂ CH ₂ —	Н	OCH ₃	
10	87	N	\sim CH ₂ CH ₂ —	Н	OCH ₃	
. 15	88	- Z	CH ₂ CH ₂ —	Н	OCH3	
13	89	Z	\sim CH ₂ CH ₂ —	Н	CH ₃	HCì
20	90	\rightarrow N \	H ₃ C → CH ₂ CH ₂ − OH	Н	OCH ₃ OCH ₃	
	91	\sum_{N}	H ₃ C N CH ₂ CH ₂ −	Н	OCH ₃	НСІ
25						

	Comp. No.	Q	T	R¹	Ar	Salt
5	92	N	CH ₂ CH ₂ CH ₂ -OH	н	OCH ₃	
	93	\int_{N}	H_NCH2CH2-	н	OCH ₃	HCl
10	94	N	H_NCH2—	н	OCH ₃	
	95	\bigcup_{N}		н	OCH ₃	
15	96	\sum_{N}^{∞}		Н	OCH ₃ OCH ₃	
20	97	\bigvee_{N}	N N	Н	OCH ₃	
	98	N	CH ₃ CH ₂ CH ₂ -	Н	OCH ₃	
25						

	Comp. No.	Q	T	R ¹	Ar	Salt
5	99		ОН	. H	OCH ₃ OCH ₃	
	100	\rightarrow N	ОН	н	CH ₃	HCI
10	101	N	ОН	Н	OCH ₃	
15	102	\times_N	ОН	Н	CI	HCI
	103	N	ОН	Н	ОН	НСІ
20	104	N	ОН	н	C_2H_5 C_2H_5	НСІ
25	105	N	ОН	н	CF ₃	

	Come No	Q	T	R ¹	Ar	Salt
5	Comp. No.	√ N	ОН	Н	N	HCI
	107		ОН	Н	OH t-C ₄ H ₉	
10	108	\bigvee_{N}	ОН	н	ОН	НСІ
	109	N	CH ₃ -(CH ₂) ₃	н	OCH ₃ OC ₂ H ₅	
15	110	\bigcup_{N}	CH ₃ -(CH ₂) ₃	Н	OCH ₃	HCl
20	111	N	CH ₃ -(CH ₂) ₃	н	ОН	HCl
	112		CH ₃ -(CH ₂) ₃	Н	O-n-C ₃ H	7

	Comp. No). Q	Т	\mathbb{R}^1	Ar	Salt
5	113	N N	H ₃ C CH-CH ₂ CH ₂ —	Н	OCH ₃	
	114		H ₃ C CH-CH ₂ CH ₂ —	Н	ОН	
10	115	Z	СН3-	Н	OCH ₃	
15	116	N	СН3-	н	ОН	HCI
	117	N	СН₃≠	Н	OCH ₃	HCI
20	118 c	CH ₃ -(CH ₂) ₇	$- \frac{\text{H}_{3}\text{C}}{\text{H}_{3}\text{C}} \text{N-CH}_{2}\text{CH}_{2} -$	Н	ОН	
	119 c	CH ₃ -(CH ₂) ₇	$- \sum_{H_3C}^{H_3C} N\text{-}CH_2CH_2 -$	Н	OCH ₃	
25						

120	CH ₃ -(CH ₂) ₇	СН3-	н	ОН	
121	СН ₃ -(СН ₂) ₇ —	СН3-	Н	OCH ₃	
122	CH ₃ -(CH ₂) ₅	СН3-	н	ОН	
123	CH ₃ -(CH ₂) ₅	СН3-	н	OCH ₃	
124	CH ₃ -(CH ₂) ₂ —	CH ₃ -	Н	ОН	
125	CH ₃ -(CH ₂) ₂	CH ₃ -	Н	OCH ₃	
126	0 (CH ₂ —	Н	0H t-C ₄ H ₉	HCl

	Comp. No.	Q	Т	R¹	Ar	Salt
5	127		CH_2	Н	ОН	
	128		\sim CH ₂ —	н		
10	129		CH ₂ —	н	OCH ₃	
15	130	OCH ₃	N-CH ₂ CH ₂ —	- н	OCH ₃	
	131	ОСН ₃	H ₃ C N-CH ₂ CH ₂ —	н	ОН	HCI
20	132	OCH ₃	H ₃ C N-CH ₂ CH ₂ —	H	CH ₃	HCI
25	133	OCH ₃	H ₃ C N-CH ₂ CH ₂ -	Н	ОН	HCI

	Comp. No.	Q	Т	R ¹	Ar	Salt
5	134	OCH ₃	H ₃ C N-CH ₂ CH ₂ -	- н	OCH ₃	
	135	COCH₃	H ₃ C N-CH ₂ CH ₂ -	- н	ОН	
0	136	NO ₂	H ₃ C N-CH ₂ CH ₂ -	– H	ОН	
15	137	NO ₂	H ₃ C N-CH ₂ CH ₂ − H ₃ C	- н	OH (-C ₄ H ₉	
	138	N	CH ₃ OCH ₂ CH ₂ -	Н	OCH ₃	
20	139	N	CH ₃ CH ₂ OCH ₂ CH ₂ ·	- н	OCH ₃	
	140	N	H ₃ C OCH ₂ CH ₂ -	- н	OCH ₃	
25						

	Comp. No.	Q	Т	\mathbb{R}^1	Ar	Salt
5	. 141	\bigvee_{N}	CH₃CH₂O CH₂CH₂—	Н	OCH ₃	
	142	\bigvee_{N}	C ₂ H ₅ O CH ₂ CH ₂ —	н	CH ₃ OH	
10	143	N	H ₃ C N CH ₂ CH ₂ −	н	OCH ₃	
15	144	\rightarrow N	N-CH ₂ CH ₂ -	Н	OCH ₃	
	145	\times_N	H ₃ C N CH ₂ CH ₂ —	Н	OCH ₃	
20	146	N	CH ₂ CH ₂ -	н	OCH ₃	
25	147		CH ₂ CH ₂ -	Н	OCH ₃	

10

15

20

25

EXAMPLE 6.

Preparation of 3-(2-N, N-dimethylaminoethyl)-2-(3-pyridyl)-5-(4-hydroxy-3-methoxyphenylallyliden)-thiazolidine-4-one hydrochloride salt(Compound No. 148)

A solution of 4-hydroxy-3-methoxy-cinnamaldehyde(2.0 g, 11.2 mmol) in tetrahydrofuran(20 mL) was cooled to 0 °C and added 80 % NaH(0.404 g, 13.5 mmol). After stirred for 10 min at () °C, to the reaction mixture was added 2-methoxyethoxymethyl chloride (1.68 g, 13.5 mmol) and warmed to room temperature. After stirred for 3 h, the reaction mixture was cooled to 0 °C and added methanol(4 mL). When no more evolution of hydrogen gas the reaction mixture was warmed to room temperature added water(10 mL), and extracted with ethyl acetate(2 x 50 mL). The combined organic phase was dried over anhydrous magnesium sulfate, filtered, and evaporated to dryness. The residue was purified by flash column chromatography on silica gel to give 2.74 g(92 %) of 3-methoxy-4-(2-methoxyethoxymethyloxy)-cinnamaldehyde.

¹H NMR(3(0) MHz, CDCl₃) δ : 9.66(d, J=7.8Hz, 1H), 7.42(d, J=15.9Hz, 1H), 7.24 (d, J=8.4Hz, 1H), 7.13(dd, J=8.4, 2.1Hz, 1H), 7.09 (d, J=2.1Hz, 1H), 6.62(dd, J=15.9, 7.8Hz, 1H), 5.38(s, 2H), 3.89(s, 3H), 3.85(m, 2H), 3.55(m, 2H), 3.37(s, 3H)

To a solution of 3-(2-N,N-dimethylaminoethyl)-2-(3-pyridyl)-thiazolidin-4-one (1.00g, 3.98 mmol) in tetrahydrofuran(30 mL) was added lithium diisopropylamide (1.5M solution, 3.18 mL) at -78 °C and stirred for 10 min. To the reaction mixture was slowly added 3-methoxy-4-(2-methoxyethoxymethyloxy)-cinnamaldehyde(1.27 g, 4.77 mmol) dissolved in tetrahydrofuran(5 mL). After stirred at -78 °C for 3 h, the reaction mixture was added acetic acid(4 mL) and allowed to warm to room temperature. The reaction mixture was neutralized with saturated sodium bicarbonate solution and extracted with ethyl acetate(2 x 50 mL). The combined organic phase was dried over anhydrous magnesium sulfate, filtered, and evaporated to

10

15

25

dryness. The residue was dissolved in 30% HCl-ethanol solution(10 mL) stirred at room temperature for 3h and then neutralized with saturated sodium bicarbonate solution, extracted with ethyl acetate(2 x 50 mL). The combined organic phase was dried over anhydrous magnesium sulfate, filtered, and evaporated to give pale yellow solids. The residue was purified by flash column chromatography on silica gel to give 1.35 g (83 %) of 3-(2-N,N-dimethylaminoethyl)-2-(3-pyridyl)-5-(4-hydroxy-3-methoxyphenylallylidene) thiazolidin-4-one.

¹H NMR(300 MHz, CDCl₃) δ: 8.62(m, 2H), 7.65(m, 1H), 7.38(m, 1H), 7.23(d, J= 11,1Hz, 1H), 6.98(d, J=8.4Hz, 1H), 6.92(s, 1H), 6.85(d, J=8.4Hz, 1H), 6.75(d, J=15.3Hz, 1H), 6.58 (dd, J=15.3, 11.1Hz, 1H), 6.15(s, 1H), 3.92(m, 1H), 3.91(s, 3H), 2.83(m, 1H), 2.59(m, 1H), 2.28(m, 1H), 2.20(s, 6H)

To a solution of 3-(2-N,N-dimethylaminoethyl)-2-(3-pyridyl)-5-(4-hydroxy-3-methoxyphenylallylidene)thiazolidin-4-one(1.35 g, 3.28 mmol) in ethanol(4 mL) was added 30 % HCl-ethanol solution(0.98 mL) and stirred at room temperature for 1 h. To the reaction mixture was added ethyl acetate(30 mL), filtered, and evaporated to give 1.53 g(97 %) of 3-(2-N,N-dimethylaminoethyl)-2-(3-pyridyl)-5-(4-hydroxy-3-methoxyphenylallylidene)-thiazolidine-4-one hydrochloride salt.

20 EXAMPLE 7.

Preparation of 3-(2-N,N-dimethylaminoethyl)-2-(3-pyridyl)-5-(3,5-diemthyl-4-hydroxyphenylallylidene)-thiazolidine-4-one (Compound No. 150)

A solution of 3,5-dimethyl-4-hydroxycinnamaldehyde(2.0 g, 11.4 mmol) in tetrahydrofuran(25 mL) was cooled to () °C and added 80 % NaH(0.425 g, 14.2 mmol). After stirred for 15 min at () °C, to the reaction mixture was added 2-methoxyethoxymethyl chloride(2.12 g, 17.0 mmol) and warmed to room temperature. After stirred for 4 h, the reaction mixture was cooled to 0 °C, added methanol(10 mL) and then warmed to room temperature, added water(20 mL), and extracted with ethyl

20

25

acetate(2 x 40 mL). The combined organic phase was dried over anhydrous magnesium sulfate, filtered, and evaporated to dryness. The residue was purified by flash column chromatography on silica gel to give 2.34 g(78 %) of 3,5-dimethyl-4-(2-methoxyethoxymethyloxy)-cinnamaldehyde.

5 1 H NMR(300 MHz, CDCl₃) δ : 9.65(d, J=7.8Hz, 1H), 7.36(d, J=15.6Hz, 1H), 7.24 (s, 2H), 6.02(dd, J=15.6, 7.8Hz, 1H), 5.09(s, 2H), 3.95(m, 2H), 3.62(m, 2H), 3.40(s, 3H), 2.31(s, 6H)

To a solution of 3-(2-N,N-dimethylaminoethyl)-2-(3-pyridyl)-thiazolidin-4-one (0.193g, 0.768 mmol) in tetrahydrofuran(8 mL) was added lithium diisopropylamide (1.5M solution, 1.0 mL) at -78 °C and stirred for 5 min. To the reaction mixture was slowly added 3,5-dimethyl-4-(2-methoxyethoxymethyloxy)-cinnamaldehyde(0.225 g, 0.683 mmol) dissolved in tetrahydrofuran(1 mL). After stirred at -35 °C ~ -40 °C for 1 h, the reaction mixture was added acetic acid(1 mL), allowed to warm to room temperature, and evaporated. To the residue was added 30 % HCl-ethanol solution(5 mL), stirred at room temperature for 2 h and it was then neutralized with saturated sodium bicarbonate solution and extracted with ethyl acetate(2 x 25 mL). The combined organic phase was dried over anhydrous magnesium sulfate, filtered, and evaporated to dryness. The residue was purified by flash column chromatography on silica gel to give 0.14 g (45 %) of 3-(2-N, N-dimethylaminoethyl)-2-(3-pyridyl)-5-(3,5-diemthyl-4-hydroxyphenylallylidene)-thiazolidine-4-one.

¹H NMR(300 MHz, CDCl₃) δ : 8.64-8.59(m, 2H), 7.69~7.66(m, 1H), 7.37~7.33(m, 1H), 7.22(d, J=11.1Hz, 1H), 7.09(s, 2H), 6.72(d, J=15.3Hz, 1H), 6.55(dd, J=15.3, 11.1Hz, 3.98~3.90 (m, 1H), 2.86~2.77(m, 1H), 2.60~2.51(m, 1H), 2.37~2.28(m, 1H), 2.24(s, 6H), 2.18(s, 6H)

EXAMPLE 8.

Preparation of 3-(2-N,N-dimethylaminoethyl)-2-(3-pyridyl)-5-(3,5-diemthyl-4-ethoxycarbonyloxyphenylallylidene)-thiazolidine-4-one (Compound No. 175)

WO 96/20936 PCT/KR95/00183

51

To a solution of 3-(2-N,N-dimethylaminoethyl)-2-(3-pyridyl)-5-(3,5-diemthyl-4-hydroxyphenylallylidene)-thiazolidine-4-one(0.537 g,1.31 mmol) in pyridine(5 mL) was added ethyl chloroformate(0.284 g, 2.62 mmol), stirred at room temperature for 3 h, and evaporated. The residue was neutralized with saturated sodium bicarbonate solution and extracted with ethyl acetate(4 x 20 mL). The combined organic phase was dried over anhydrous magnesium sulfate, filtered, and evaporated to dryness. The residue was purified by flash column chromatography on silica gel to give 1.35 g (83 %) of 3-(2-N, N-dimethylaminoethyl)-2-(3-pyridyl)-5-(3,5-diemthyl-4-ethoxycarbonyloxyphenylallylidene)-thiazolidine-4-one.

10 HNMR(300) MHz, CDCl₃) δ : 8.65~8.61(m, 2H), 7.68(m, 1H), 7.35(m, 1H), 7.21 (d, J=11.1Hz, 1H), 7.10(s, 2H), 6.72(d, J=15.3Hz, 1H), 6.55(dd, J=15.3, 11.1Hz, 1H), 3.99(m, 1H), 3.53(q, J=7.6Hz, 2H), 2.83(m, 1H), 2.65(m, 1H), 2.30(m, 1H), 2.24(s, 6H), 2.19(s, 6H), 1.25(t, J=7.6Hz, 3H)

The thiazolidin-4-one derivatives of formula(I) as shown in Table 3, Table 4, and Table 5 were prepared in the same manner as described in EXAMPLE 6 to EXAMPLE 8 using the intermediates of formula(II).

Table 3

	Comp. No.	Q	T	R	Ar Salt
10	148	N N	H ₃ C N-CH ₂ CH ₂ —	Н	OCH ₃
	149	Ŭ _N	H ₃ C N-CH ₂ CH ₂ —	Н	ОН
15	150	→ N	H ₃ C N-CH ₂ CH ₂ —	Н	CH ₃
20	151	\bigcup_{N}	H ₃ C N-CH ₂ CH ₂ —	Н	OCH ₃ OH OCH ₃
	152	N	H ₃ C N-CH ₂ CH ₂ —	Н	i-C ₃ H ₇ OH i-C ₃ H ₇
25	153	N	H ₃ C N-CH ₂ CH ₂ —	Н	0H t-C ₄ H ₉

	Comp. No.	Q	T	R	Ar	Salt
5	154	\bigvee_{N}	H ₃ C N-CH ₂ CH ₂ —	н	C ₂ H ₅	
	155	N	H ₃ C N-CH ₂ CH ₂ —	Н	CI	
10	156	\int_{Σ}	H ₃ C N-CH ₂ CH ₂ —	н	OH NH ₂	
15	157	Ŭ _N	H ₃ C N-CH ₂ CH ₂ —	H	CH ₂ NI OH	H ₂
. 2	158	N F	H ₅ C ₆ CH-NN-CH ₂ CF	н ₂ — Н	ОН ОН	
20	159	$\sum_{n=1}^{\infty}$	N-CH ₂ CH ₂ —	Н	ОН ОН	
	160		N-CH₂CH₂—	Н	ОСН3	
25						

	Comp. No.	Q	Т	R	Ar	Salt
5	161	√n	H ₃ C N-CH ₂ CH ₂ CH ₂ CH ₂	,— Н	OCH ₃	3
	162	N	H ₃ C N-CH ₂ CH ₂ CH ₂ CH ₂	.— н	OCH	·13
10	163	N	N-CH ₂ CH ₂ —	CH ₃ CH ₂ -	OCH	13
15	164	\bigcup_{N}	H ₃ C N-CH ₂ CH ₂ —	- 00	CH3 OH	:H ₃
	165		N-CH ₂ CH ₂ —	н	OCH ₃	CH ₃
20	166	\bigvee_{N}	C ₂ H ₅ N-CH ₂ CH ₂	— н	CH ₃	°OC ₂ H ₅
25	167		C ₂ H ₅ N-CH ₂ CH ₂	— н		t-Bu OH

Comp. No	. Q	Т	R	Ar Sa
168	\bigvee_{N}	H ₃ C N-CH ₂ CH ₂ —	CH₃CH₂-	OCH ₃
169	N	N-CH₂CH₂—	Н	OH OCH3
170	Z	N-CH ₂ CH ₂ —	Н	CH ₃ OH
171		C_2H_5 N - CH_2CH_2 C_2H_5	н	CH ₃
172	\bigvee_{N}	C_2H_5 $N-CH_2CH_2$	Н	OCH ₃
173	N	C_2H_5 $N-CH_2CH_2$ C_2H_5	Н	OH OCH3
174	\rightarrow N	H ₃ C N-CH ₂ CH ₂ —	OCH	OCH ₃
		•		

	Comp. No.	Q	T	R	Ar Salt
5	175	N	H ₃ C N-CH ₂ CH ₂ —	Н	CH ₃ OC ₂ H ₅
	176	N	N-CH ₂ CH ₂ —	н	CH ₃ OC ₂ H ₅
10	177	N	H ₃ C N·CH ₂ CH ₂ —	Н	CH ₃ OH
	178	N	H ₃ C N-CH ₂ CH ₂ —	Н	CH ₃ CH ₃ OH
15	179	N	H ₃ C N-CH ₂ CH ₂ —	Н	CH ₃ CH ₃ OH
20	180	\bigcup_{N}	H ₃ C N-CH ₂ CH ₂ —	Н	CH ₃
	181	\bigcup_{N}	H ₃ C N-CH ₂ CH ₂ —	Н	

	Comp. No.	Q	T	R	Ar	Salt
5	182	\bigvee_{N}	H ₃ C N-CH ₂ CH ₂ —	Н	OCH ₃	
	183	_N	H ₃ C N-CH ₂ CH ₂ —	н	ОН	
10	184	N	CH ₃ -	Н	ОН	
15	185	CH ₂ -	СН3-	Н		СН ₃
	186	N	H ₃ C N-CH ₂ CH ₂ —	CH₃CH₂CH₂-		сн₃ н
20	187		H ₃ C N-CH ₂ CH ₂ —	CH₃CH₂-	OCH ₃	CH₃ H
	188	(CH ₂) ₂ -CI	Н ₂ - СН ₃ -	Н		OCH ₃
25						

	Comp. No.	Q	Т	R	Ar Salt
5	189	N CI	H ₃ C N-CH ₂ CH ₂ —	Н	CH ₃
	190	N C	H ₃ C N-CH ₂ CH ₂ —	Н	CH ₃ OC ₂ H ₅
10	191 [N	CH ₃ N-CH ₂ CH ₂ —	н	CH ₃
15	192	C	H ₃ N-CH ₂ CH ₂ —	Н	CH ₃ OC ₂ H ₅
	193	N	H ₃ C N-CH ₂ CH ₂ —	Н	OCH ₃ OC ₂ H ₅

Table 4

_	Comp. No.	Q	T	R	Ar	Salt
	194	\bigvee_{N}	H ₃ C N-CH ₂ CH ₂ —	СН3-	CH ₃ OH	
	195	N	H ₃ C N-CH ₂ CH ₂ ——	CH₃CH₂-	CH ₃	
	196	N	H ₃ C N-CH ₂ CH ₂ — H ₃ C	CH₃CH₂CH₂	CH ₃	
	197	N	H ₃ C N-CH ₂ CH ₂ —	СН3-	OCH ₃	
	198	N	H ₃ C N-CH ₂ CH ₂ —	СН3-	OCH ₃	
	199	N	H ₃ C N-CH ₂ CH ₂ —	CH₃CH₂-	ОН ОН	

	Comp. No.	Q	Т	R	Ar	Salt
5	200	N	H ₃ C N-CH ₂ CH ₂ - H ₃ C	— CH₃CH₂CH₂-	T 00	CH₃ H
	201	\bigvee_{N}	N-CH ₂ CH ₂	сн ₃ -		CH₃
10	202	N	N-CH₂CH	₂ CH₃CH ₂ -	CH ₃	CH ₃
15	203	N	N-CH ₂ CH	₂ — CH₃CH ₂ CH	2- CH ₃	_сн₃ `он
	204		N-CH ₂ CH	₂ CH ₃ -	CH ₃	H ₃ O OC₂H ₅
20	205	\bigvee_{N}^{C}	N-CH ₂ CH	I ₂ — СН ₃ -	CI	СН ₃
	206	C	² H ₃	н ₂ — СН ₃ -	CH ₃	.CH ₃ O O OC ₂ H ₅
25						

	Comp. No.	Q	Т	R	Ar	Salt
5	207	N	H ₃ C N-CH ₂ CH ₂ —	CH₃CH₂CH₂-	OCH ₃	
	208	N	H ₃ C N-CH ₂ CH ₂ —	CH₃CH₂-	OCH ₃	
10	209	CH ₃	H ₃ C N-CH ₂ CH ₂ —	СН ₃ -	CH ₃	
15	210	CH ₃	H ₃ C N-CH ₂ CH ₂ —	СН3-	CH ₃ OC ₂ F	ł ₅

Table 5

$$T-N = Q$$

$$H = H$$

$$H = A$$

5

	Comp. No.	Q	Т	Ar
0	211	\bigcup_{N}	H ₃ C N-CH ₂ CH ₂ —	CH ₃
	212	\bigcup_{N}	H ₃ C N-CH ₂ CH ₂	OCH ₃

15

Also NMR datas of the compounds of formula(I) according to the present invention were listed as shown in Table 6.

NMR solvent; CDCl₃

DMSO-d₆(Hydrochloride salts of formula(I))

20

Table 6

Comp. No.	'H NMR(300 MHz) δ
1	9.70(s, 1H), 8.79(s, 1H), 8.69(d, J=4.5Hz, 1H), 7.97(d, J=8.1Hz, 1H),
	7.60~7.55(m, 6H), 6.39(s, 1H), 4.20~4.12(m, 1H), 3.21~3.00(m, 3H),
	2.82(d, <i>J</i> =3.9Hz, 6H)
2	8.65(m, 2H), 7.70(m, 1H), 7.50(s, 1H), 7.38(m, 1H), 7.18(d, J=8.4Hz,
	1H), 7.05(s, 1H), 6.85(d, J=8.4Hz, 1H), 6.18(s, 1H), 4.05(m, 1H), 3.90
	(s, 3H), 3.89(s, 3H), 2.82(m, 1H), 2.59(m, 1H), 2.38(m, 1H), 2.18(s, 6H)
3	8.63(m, 2H), 7.66(m, 1H), 7.50(s, 1H), 7.36(m, 1H), 6.74(s, 2H), 6.18(s,
	1H), 3.98(m, 1H), 3.87(s, 3H), 3.86(s, 3H), 3.85(s, 3H), 2.82(m, 1H),
	2.69(m, 1H), 2.38(m, 1H), 2.18(s, 6H)
4	9.70(brs, 1H), 8.74(s, 1H), 8.64(m, 1H), 7.84(m, 1H), 7.80(m, 1H), 7.66
	(s, 1H), 7.58(m, 2H), 7.49(m, 1H), 6.38(s, 1H), 4.15(m, 1H), 3.38(m,
	1H), 3.00~3.20(m, 2H), 2.82(s, 6H)
6	10.14(brs, 1H), 9.95(s, 1H), 8.79(d, J=4.5Hz, 1H), 8.22(d, J=8.1Hz,
	1H), 7.78(dd, J=8.1, 4.5Hz, 1H), 7.31(s, 1H), 6.97(s, 1H), 6.85(s, 2H),
	6.46(s, 1H), 4.15(m, 1H), 3.65(m, 1H), 3.40(m, 1H), 3.15(m, 1H), 2.87
	(d, $J=3.6$ Hz, 6H)
7	8.62(m, 2H), 7.68(m, 1H), 7.50(s, 1H), 7.37(d, $J=9.0$ Hz, 2H), 7.35(m,
	1H), $6.67(d, J=9.0Hz, 2H)$, $6.11(s, 1H)$, $3.97(m, 1H)$, $3.38(q, J=7.2Hz$,
	4H), $2.85(m, 1H)$, $2.55(m, 1H)$, $2.14(m, 1H)$, $2.18(s, 6H)$, $1.17(t, J=$
	7.2Hz, 6H)
8	8.60(m, 2H), 7.95(s, 1H), 7.70(m, 2H), 7.54(m, 2H), 7.42(m, 1H), 7.38
	(m, 1H), 6.17(s, 1H), 4.10(m, 1H), 2.85(m, 1H), 2.60(m, 1H), 2.37(m,
	1H), 2.18(s, 6H)

Comp. No.	¹ H NMR(300 MHz) ه
9	10.02(m, 2H), 8.88(brs, 1H), 8.77(brs, 1H), 8.13(m, 1H), 7.74(s, 2H), 7.15(d, J=8.7Hz, 1H), 6.45(s, 1H), 6.39(m, 1H), 6.32(m, 1H), 4.62(brs,
	1H), 4.12(m, 1H), 3.40(m, 1H), 3.15(m, 2H), 2.80(s, 6H)
10	9.87(brs, 1H), 8.86(d, $J=1$ Hz, 1H), 8.75(d, $J=4.5$ Hz, 1H), 8.17(d, $J=$
	7.6Hz 1H), 7.75(dd, J=7.6, 4.5Hz, 1H), 7.34(s, 1H), 7.12(s, 2H), 6.39(s,
	1H), 4.05(m, 1H), 3.15(m, 3H), 2.81(s, 6H), 2.17(s, 6H)
11	8.61(m, 2H), 7.75(m, 1H), 7.54(s, 1H), 7.41(s, 2H), 7.38(m, 1H), 6.15(s,
	1H), 4.20(m, 1H), 2.85(m, 1H), 2.62(m, 1H), 2.38(m, 1H), 2.19(s, 6H),
	1.43(s, 18H)
12	8.62(m, 2H), 7.68(m, 1H), 7.54(s, 1H), 7.45(d, J=9.0Hz, 2H), 7.27(m,
	1H), $6.94(d, J=9.0)$ Hz, 2H), $6.15(s, 1H)$, $3.98(m, 1H)$, $3.83(s, 3H)$, 2.85
	(m, 1H)
13	8.65(m, 1H), 8.61(m, 1H), 7.86(s, 1H), 7.66(m, 1H), 7.43~7.55(m, 2H),
	7.30(m, 1H), 7.26(m, 1H), 6.19(s, 1H), 4.01(m, 1H), 2.87(m, 1H), 2.59
	(m, 1H), 2.36(m, 1H), 2.19(s, 6H)
14	9.79(brs, 1H), 8.82(s, 1H), 8.72(m, 1H), 8.03(m, 1H), 7.83(s, 1H), 7.65
	(m, 1H), 6.83(m, 2H), 6.72(m, 1H), 6.35(s, 1H), 4.14(m, 1H), 3.42(m,
	1H), 3.10(m, 2H), 2.82(m, 6H)
15	9.72(brs, 1H), 9.43(brs, 1H), 8.80(brs, 1H), 8.70(brs, 1H), 7.98(m, 1H),
	7.75(s, 1H), 7.62(m, 1H), 6.82(m, 1H), 6.75(m, 1H), 6.62(m, 1H), 6.35(s,
	1H), 4.15(m, 1H), 3.40(m, 1H), 3.10(m, 2H), 2.82(m, 6H)
16	9.50(brs, 1H), 9.00(brs, 1H), 8.72(m, 1H), 8.66(m, 1H), 7.88(m, 1H)
	7.78(s, 1H), 7.50(m, 1H), 6.72(d, $J=8.7$ Hz, 1H), 6.40(d, $J=8.7$ Hz, 1H)
	6.25(s, 1H), 4.12(m, 1H), 3.36(m, 1H), 3.08(m, 2H), 2.80(m, 6H)

Comp. No.	¹H NMR(300 MHz) δ
17	8.65(m, 1H), 8.60(m, 1H), 7.66(m, 1H), 7.39~7.49(m, 5H), 7.20~7.39
	(m, 7H), $7.09(d, J=1.8Hz, 1H)$, $7.03(m, 1H)$, $6.94(m, 1H)$, $6.12(s, 1H)$,
	5.19(s, 2H), 5.17(s, 2H), 3.98(m, 1H), 2.84(m, 1H), 2.54(m, 1H), 2.33(m,
	1H), 2.18(s, 6H)
22	10.09(brs, 1H), 8.99(s, 1H), 8.82(d, J=4.8Hz, 1H), 8.29(d, J=8.1Hz,
	1H), 7.83(dd, J=7.8, 5.4Hz, 1H), 7.45(s, 1H), 7.38(t, J=7.8Hz, 1H), 7.10
	(d, $J=7.8$ Hz, 1H), 7.06(s, 1H), 6.94(dd, $J=8.4$, 1.8Hz, 1H), 6.52(s, 1H),
	4.15(m, 1H), 3.82(s, 3H), 3.04~3.27(m, 2H), 2.81(s, 6H)
23	9.77(brs, 1H), 8.82(m, 1H), 8.74(m, 1H), 8.02(m, 1H), 7.64(m, 1H), 7.43
	(s, 1H), 6.82 (s, 2H), 6.38 (s, 1H), 4.15 (m, 1H), 3.93 (t, $J=6.3$ Hz, 4H),
	3.86(t, J=6.3Hz, 2H), 2.96~3.37(m, 3H), 2.81(s, 6H), 1.73(m, 4H), 1.65
	(m, 2H), 0.98(m, 9H)
38	8.59(m, 2H), 7.62(m, 1H), 7.47(s, 1H), 7.32(m, 1H), 7.16(s, 2H), 6.21(s,
	1H), $3.82(m, 1H)$, $2.85(m, 2H)$, $2.45(m, 5H)$, $2.29(s, 6H)$, $0.95(t, J=$
	6.9Hz, 6H)
39	10.1(brs, 1H), 8.93(s, 1H), 8.81(m, 1H), 8.24(m, 1H), 7.79(m, 1H), 7.31
	(s, 1H), 6.96(s, 1H), 6.83(m, 2H), 6.24(s, 1H), 4.04(m, 1H), 3.24(m, 2H),
	3.13(m, 4H), 1.17(t, <i>J</i> =7.2Hz, 6H)
40	8.62(m, 2H), 7.68(m, 2H), 7.53(s, 1H), 7.35(m, 1H), 7.08(d, $J=8.2$ Hz,
	1H), $7.05(s, 1H)$, $6.90(d, J=8.2Hz, 1H)$, $6.19(s, 1H)$, $4.01(m, 1H)$, 3.90
	(s, 3H), 3.89(s, 3H), 2.80~3.02(m, 2H), 2.48(m, 5H), 1.77(m, 4H)

Comp. No.	¹H NMR(300 MHz)δ
47	8.63(m, 2H), 7.67(m, 1H), 7.53(s, 1H), 7.35(m, 1H), 7.08(d, J=8.4Hz,
	1H), $7.05(s, 1H)$, $6.90(d, J=8.4Hz, 1H)$, $6.21(s, 1H)$, $3.95(m, 1H)$, 3.90
	(s, 6H), 2.91 (m, 1H), 2.82(m, 1H), 2.35(m, 5H), 1.57(m, 1H), 1.44(m,
	2H)
50	8.65(m, 1H), 8.61(m, 1H), 7.71(m, 1H), 7.53(s, 1H), 7.36(m, 1H), 7.09
	(d, $J=8.4$ Hz, 1H), 7.05(s, 1H), 6.91(d, $J=8.4$ Hz, 1H), 6.14(s, 1H), 3.96
	(m, 1H), 3.90(s, 3H), 3.89(s, 3H), 3.69(m, 4H), 2.93(m, 1H), 2.61(m,
	1H), 2.43(m, 1H), 2.41(m, 4H)
67	8.81(s, 1H), 8.76(d, $J=4.8$ Hz, 1H), 8.08(d, $J=8.1$ Hz, 1H), 7.73(m, 1H),
	7.16~7.29(m, 6H), 6.95(s, 1H), 6.83(s, 2H), 6.22(s, 1H), 3.92(m, 1H),
	3.05(m, 1H), 2.95(m, 1H), 2.89(m, 1H)
69	8.60(s, 1H), 8.59(s, 1H), 7.72(d, $J=7.8$ Hz, 1H), 7.45(m, 1H), 7.40(s,
	1H), 6.99~7.27(m, 8H), 6.03(s, 1H), 3.95(m, 1H), 3.80(s, 3H), 3.79(s,
	3H), 2.80~3.05(m, 2H), 2.60~2.80(m, 1H)
71	8.79(s, 1H), 8.75(d, $J=4.8$ Hz, 1H), 8.08(d, $J=8.1$ Hz, 1H), 7.72(m, 1H),
	7.39(s, 1H), 7.27(s, 2H), 7.17(m, 5H), 6.20(s, 1H), 4.05(m, 1H), 3.05(m,
	1H), 2.92(m, 1H), 2.85(m, 1H), 1.37(s, 18H)
72	8.62(d, $J=5.1$ Hz, 1H), 8.39(s, 1H), 7.61~7.51(m, 2H), 7.40~7.30(m, 1H),
	7.07(dd, $J=8.1$, 2.1Hz, 1H), 7.03(d, $J=2.1$ Hz, 1H), 6.91(d, $J=8.1$ Hz,
	1H), $6.83(d, J=8.1Hz, 1H)$, $6.68(dd, J=8.1, 1.5Hz, 1H)$, $6.64(d, J=8.1, 1.5Hz, 1H)$
	1.5Hz, 1H), 5.26(s, H), 4.10(m, 1H), 3.90(s, 3H), 3.89(s, 3H), 3.88(s,
	3H), 3.82(s, 3H), 3.05~2.70(m, 3H)

Comp. No.	¹H NMR(300 MHz) δ
74	8.76(m, 2H), 8.05(m, 1H), 7.71(m, 1H), 7.40(s, 1H), 7.11(s, 1H), 7.05(s, 1H), 6.83(d, J=8.4Hz), 6.73(s, 1H), 6.65(d, J=8.4Hz), 6.15(s, 1H), 4.05
	(m, 1H), 3.78(s, 3H), 3.76(s, 3H), 3.05(m, 1H), 2.80(m, 1H), 2.65(m, 1H), 2.17(s, 6H)
78	8.65(d, J =3.9Hz, 1H), 8.50(s, 1H), 7.70(d, J =8.1Hz, 1H), 7.61(s, 1H), 7.40(m, 1H), 7.10(d, J =6.9Hz, 1H), 7.04(s, 1H), 6.89(d, J =8.1Hz, 1H),
	6.70(d, $J=7.8$ Hz, 1H), 6.67(s, 1H), 6.52(d, $J=7.8$ Hz), 5.96(s, 2H), 5.61 (s, 1H), 4.44(ABq, $\Delta \nu = 477$, $J_{AB}=14.4$ Hz, 2H), 3.90(s, 3H), 3.89(s, 3H)
79	8.72(m, 2H), 8.06(d, J=6.2Hz, 1H), 7.71(m, 1H), 7.36(s, 1H), 6.95(s, 1H), 6.79(m, 3H), 6.69(s, 1H), 6.58(d, J=7.8Hz, 1H), 6.13(s, 1H), 5.97
80	(s, 2H), 4.43(ABq, $\Delta \nu = 228$, $J_{AB}=15.3$ Hz, 2H) 8.78~8.76(m, 2H), 8.15(d, $J=8.1$ Hz), 7.77(dd, $J=8.1$, 5.4Hz, 1H), 7.51(s,
	1H), 7.30(s, 2H), 6.78(d, J =8.1Hz, 1H), 6.70(s, 1H), 6.58(d, J =8.1Hz, 1H), 6.17(s, 1H), 5.99(s, 2H), 4.45(ABq, $\Delta \nu$ =205.5, J_{AB} =15Hz, 2H),
81	1.38(s, 18H) 8.60(m, 2H), 8.52(m, 1H), 7.71(m, 1H), 7.66(m, 1H), 7.60(s, 1H), 7.46
	(d, J=8.7Hz, 2H), 7.35(m, 1H), 7.22(m, 1H), 6.94(d, J=8.7Hz, 2H), 6.04 (s, 1H), 5.21(d, J=15.3Hz, 1H), 4.04(d, J=15.3Hz, 1H), 3.83(s, 3H)
82	8.56~8.67(m, 2H), 8.52(m, 1H), 7.72(m, 1H), 7.65(m, 1H), 7.59(s, 1H), 7.34(m, 1H), 7.27(d, <i>J</i> =6.6Hz, 1H), 7.20(m, 1H), 7.10(m, 1H), 7.06(m, 1H), 6.01(d, <i>J</i> =6.6Hz, 1H), 5.22(d, <i>J</i> =15.2Hz, 1H), 4.02(d, <i>J</i> =15.2Hz, 1H), 4
	1H), 6.91(d, J=6.6Hz, 1H), 6.04(s, 1H), 5.22(d, J=15.3Hz, 1H), 4.03(d, J=15.3Hz, 1H), 3.91(s, 3H), 3.90(s, 3H)

	Comp. No.	¹H NMR(300 MHz) δ
	83	8.62(m, 2H), 8.53(m, 2H), 7.73(m, 1H), 7.66(m, 1H), 7.56(s, 1H), 7.35
5		(m, 1H), $7.21(m, 1H)$, $6.76(s, 2H)$, $6.07(s, 1H)$, $5.22(d, J=15.3Hz, 1H)$,
		4.04(d, J=15.3Hz, 1H). 3.87(s, 9H)
	84	8.82(s, 1H). 8.73(m, 1H), 8.55(m, 1H), 8.20(m, 1H), 7.95(m, 1H), 7.74
		(m, 1H), 7.43(m, 2H), 7.35(s, 1H), 6.98(m, 1H), 6.85(m, 2H), 6.36(s,
		1H), 5.01(d, $J=16.2$ Hz, 1H), 4.36(d, $J=16.2$ Hz, 1H)
10	85	8.70(m, 2H), 7.90(m, 1H), 7.58(m, 1H), 7.43(s, 1H), 6.85(s, 2H), 6.30(s,
		1H), 3.42(m, 11H), 1.42(m, 2H), 0.98(t, J=7.6Hz, 3H)
	86	8.62(m, 1H), 8.53(m, 1H), 8.49(m, 1H), 7.61(m, 2H), 7.50(s, 1H), 7.33
		(m, 1H), 7.19(m, 2H), 7.07(m, 1H), 7.02(m, 1H), 6.90(m, 1H), 5.65(s,
		1H), 4.20(m, 1H), 3.90(s, 3H), 3.89(s, 3H), 3.31(m, 1H), 3.14(m, 1H),
15		3.06(m, 1H)
	87	8.61(m, 1H), 8.44-8.57(m, 2H), 7.6()-7.74(m, 2H), 7.51(s, 1H),
		7.18~7.37(m, 4H), 7.07(d, J=7.5Hz, 1H), 7.01(s, 1H), 6.90(m, 1H), 5.73
		(s, 1H), 4,21(m, 1H), 3.81(s, 3H), 3.30(m, 1H), 3.17(m, 2H)
	88	8.62(m, 1H), 8.53(m, 1H), 8.48(m, 1H), 7.56~7.70(m, 2H), 7.51(s, 1H),
20		7.43(d, $J=8.7$ Hz, 2H), 7.29~7.37(m, 1H), 7.12~7.23(m, 2H), 6.93(d, $J=$
		8.7Hz, 2H), 5.63(s, 1H), 4.21(m, 1H), 3.82(s, 3H), 3.30(m, 1H), 3.15(m,
		1H), 3.05(m, 1H)
	89	8.72(m, 2H), 8.25(m, 1H), 7.93(m, 1H), 7.74(m, 2H), 7.60(m, H), 7.21(s,
		1H), 7.07(s, 2H), 6,33(s, 1H), 4.12(m, 1H), 3.20(m, 3H), 2.16(s, 6H)

Comp. No.	¹H NMR(300 MHz) δ
90	8.69(m, 2H), 8.37(s, 1H), 7.78(d, <i>J</i> =7.8Hz, 1H), 7.50(s, 1H). 7.41(m,
	1H), 6.74(s, 2H), 5.99(s, 1H), 4.40(m, 1H), 4.13(m, 1H), 3.87(s, 9H),
	3.17(d, $J=14.4$ Hz, 1H), 3.05(d, $J=14.4$ Hz, 1H), 2.04(s, 3H)
91	9.90(brs, 1H), $8.89(s, 1H)$, $8.78(m, 1H)$, $8.20(d, \ne 7.6Hz, 1H)$, $7.79(m, 1H)$
	1H), 7.42(s, 1H), 7.08(m, 3H), 6.35(s, 1H), 3.89(m, 1H), 3.85(m, 1H),
	3.78(s, 3H), 3.77(s, 3H), 3.61(m, 1H), 3.00(m, 1H), 1.94(s, 3H)
92	8.68(s, 2H), 8.42(s, 1H). 7.78(d, $J=7.6$ Hz, 1H), 7.52(s, 1H), 7.41(m,
	1H), $7.10(d, J=8.4Hz, 1H)$, $7.03(s, 1H)$, $6.90(d, J=8.4Hz, 1H)$, $6.00(s, 1H)$
	1H), 5,20(brs, 2H), 4.08(m, 2H), 3.91(s, 3H), 3.89(s, 3H), 3.14(m, 2H)
93	10.54(s, 1H), 8.83(s, 1H), 8.64(m, 1H), 7.77(d, $J=7.8$ Hz, 1H), 7.48(m,
	1H), 7.44(s, 1H), 6.88(s, 2H), 6.24(s, 1H), 3.86(m, 1H), 3.79(s, 6H), 3.69
	(s, 3H), 3.02(m, 1H), 2.38(m, 1H), 2.15(m, 1H)
94	8.64(s, 1H), 8.49(d, J =2.4Hz, 1H), 7.74(d, J =7.5Hz, 1H), 7.42(s, 1H),
	6.96(d, J =8.4Hz, 1H), 6.93(s, 1H), 6.78(d, J =8.4Hz, 1H), 6.12(s, 1H),
	4.38(d, $J=15.9$ Hz, 1H), 3.89(s, 3H), 3.84(s, 3H), 3.54(d, $J=15.9$ Hz, 1H)
95	8.71(s, 1H), 8.50(m, 1H), 8.32(d, J=8.4Hz, 1H), 8.24(s, 1H), 7.72(m,
	3H), 7.26(m, 1H), 7.09(m, 4H), 6.92(d, J=8.4Hz, 1H), 3.92(s, 6H)
96	8.70(m, 1H), 8.47(m, 1H), 8.26(m, 2H), 7.69(m, 3H), 7.20(m, 1H), 7.07
	(s, 1H), 7.05(m, 1H), 6.79(s, 2H), 3.83(s, 3H), 3.82(s, 3H), 3.78(s, 3H)
97	8.72(m, 1H), 8.43(m, 1H), 8.24(m, 1H), 8.09(m), 7.67(m, 2H), 7.39(d,
	J=8.4Hz, 2H), 7.20(m, 1H), 7.07(s, 1H), 7.05(m, 1H), 6.71(d, $J=8.4$ Hz,
	2H), 6.49(s, 1H), 3.84(s, 3H)

Comp. No.	¹H NMR(300 MHz)δ
98	8.53(m, 1H), 8.46(s, 1H), 7.52(m, 3H), 7.17(m, 1H), 7.07(d, J=8.1Hz, 1H), 7.02(s, 1H), 6.91(d, J=8.1Hz, 1H), 5.62(s, 1H), 4.79(m, 1H), 4.40
	(m, 1H), 4.15(m, 1H), 3.92(s, 3H), 3.90(s, 3H), 3.61(s, 3H),
99	8.62(m, 2H), 8.05(s, 1H), 7.82(d, $J=7.8$ Hz, 1H), 7.49(s, 1H), 7.38(m,
	1H), 7.03(s, 2H), 6.00(s, 1H), 3.90(s, 3H), 3.89(s, 3H), 3.88(s, 3H)
100	9.56(s, 1H), 8.81(s, 1H), 8.71(m, 1H), 8.20(d, $J=8.1$ Hz, 1H), 7.74(m,
	1H), 7.22(s, 1H), 7.08(s, 2H), 6.26(s, 1H), 2.17(s, 6H)
101	8.65(m, 2H), 8.06(s, 1H), 7.82(m, 1H), 7.50(s, 1H), 7.39(m, 1H), 7.09(d,
	J=8.3Hz, 2H), 6.89(d, $J=8.3$ Hz, 2H), 6.01(s, 1H), 3.91(s, 3H)
102	9.97(s, 1H), 8.83(s, 1H), 8.73(d, $J=5.1$ Hz, 1H), 8.20(d, $J=7.8$ Hz), 7.76
	(s, 1H), 7.74(m, 1H), 7.56(s, 3H), 6.36(s, 1H)
103	9.56(s, 1H), 8.81(d, $J=1.5$ Hz, 1H), 8.72(d, $J=4.8$ Hz), 8.19(d, $J=8.1$ Hz,
	1H), 7.75(m, 1H), 7.20(s, 1H), 6.93(s, 1H), 6.81(s, 2H), 6.26(s, 1H)
107	DMSO-d ₆ ; 9.56(s, 1H), 8.80(d, $J=1.5$ Hz, 1H), 8.71(d, $J=4.2$ Hz, 1H),
	8.15(d, $J=8.1$ Hz, 1H), 7.73(dd, $J=7.8$, 5.1Hz, 1H), 7.33(s, 1H), 7.27(s,
	2H), 6.25(s, 1H), 4.8(brs, 1H), 1.38(s, 18H)
109	8.65(m, 1H), 8.61(m, 1H), 7.68(m, 1H), 7.53(s, 1H), 7.36(m, 1H), 7.04
	(m, 2H), 6.90 (m, 1H), 5.82 (s, 1H), 4.13 (q, $J=6.9$ Hz, 2H), 3.89 (s, 3H),
	3.88(m, 1H), $2.79(m, 1H)$, $1.52(m, 2H)$, $1.47(t, J=6.9Hz, 3H)$, $1.28(m, 1H)$
	2H), $0.89(t, J=7.5Hz, 3H)$
110	8.80(s, 1H), 8.72(m, 1H), 8.06(m, 1H), 7.66(m, 1H), 7.42(s, 1H),
	7.01~7.17(m, 3H), 6.33(s, 1H), 3.78(s, 3H), 3.77(s, 3H), 3.68(m, 1H),
	2.79(m, 1H), 1.42(m, 2H), 1.20(m, 2H), 0.83(t, <i>J</i> =4.5Hz, 3H)

Comp. No.	¹ H NMR(300 MHz) δ
111	8.83(s, 1H), 8.74(s, 1H), 8.10(brs, 1H), 7.74(brs, 1H), 7.28(s, 1H), 6.95
	(s, 1H), 6.81(m, 2H), 6.32(s, 1H), 4.25(brs, 2H), 3.75(m, 1H), 2.78(m,
	1H), 1.43(m, 2H), 1.22(m, 2H), 0.85(t, J=6.3Hz, 3H)
112	8.63(m, 2H), 7.67(m, 1H), 7.53(s, 1H), 7.38(m, 1H), 7.05(d, J=8.4Hz,
	1H), 7.04(s, 1H), 6.89(d, $J=8.4$ Hz, 1H), 5.82(s, 1H), 4.00(t, $J=6.9$ Hz,
	2H), 3.92(m, 1H), 3.88(s, 3H), 2.80(m, 1H), 1.88(m, 2H), 1.52(m, 2H),
	1.32(m, 2H), 1.01(t, $J=7.2$ Hz, 3H), 0.89(t, $J=7.5$ Hz, 3H)
115	8.66(d, J =3.6Hz, 1H), 8.62(d, J =1.5Hz, 1H), 7.68(d, J =8.1Hz, 1H),
	7.54(s, 1H), 7.37(dd, $J=8.1$, 3.6Hz, 1H), 7.10(dd, $J=8.4$, 1.8Hz, 1H),
	7.05(s, 1H), 6.91(d, J =8.4Hz, 1H), 5.72(s, 1H), 3.90(s, 6H), 2.91(s, 3H)
116	9.39(s, 1H), 9.18(s, 1H), 8.61~8.60(m, 2H), 7.74(d, $J=8.1$ Hz, 1H), 7.47
	(dd, $J=8.1$, 4.8Hz, 1H), 7.27(s, 1H), 6.97(d, $J=1.5$ Hz), 6.85(dd, $J=8.4$,
	1.5Hz, 1H), $6.80(d, J=8.4Hz, 1H)$, $6.12(s, 1H)$, $3.34(s, 2H)$, $2.80(s, 3H)$
117	8.92(d, $J=1.2$ Hz, 1H), 8.44(d, $J=4.8$ Hz, 1H), 8.28(d, $J=8.1$ Hz, 1H),
	7.89(dd, J =8.1, 4.8Hz, 1H), 7.49(s, 1H), 7.11(d, J =1.8Hz, 1H), 6.98(dd,
	J=8.4, 1.8Hz, 1H), 6.88(d, $J=8.4$ Hz, 1H), 6.28(s, 1H), 5.40(brs, 3H),
	3.78(s, 3H), 2.84(s, 3H)
118	7.26(s, 1H), 6.99(s, 1H), 6.87(d, $J=8.4$ Hz, 1H), 6.78(d, $J=8.4$ Hz, 1H),
	4.96(d, J =6.3Hz, 1H), 4.1(brs, 2H, 2OH), 3.25(m, 1H), 2.66(m, 2H),
	2.39(s, 6H), 1.87~2.05(m, 1H), 1.56~1.79(m, 1H), 1.31~1.50(m, 12H),
	0.87(t, <i>J</i> =6.6Hz, 3H)

Comp. No.	¹ H NMR(300 MHz) ه
119	7.42(s, 1H), 7.14(d, J=8.4Hz, 1H), 7.09(s, 1H), 6.92(d, J=8.4Hz, 1H),
	5.05(dd, J=8.1, 2.1Hz, 1H), 3.98(m, 1H), 3.93(s, 3H), 3.91(s, 3H), 3.30
	(m, 1H), 2.50(m, 1H), 2.29(s, 6H), 1.92(m, 1H), 1.74(m, 1H), 1.14~1.53
	(m, 12H), ().88(t, J=6.3Hz, 3H)
120	7.36(s, 1H), 7.12(d, $J=1.8$ Hz, 1H), 6.98(d, $J=1.8$ Hz, 1H), 6.91(d, $J=1.8$ H
	8.1Hz, 1H), 4.77(dd, $J=8.4$, 1.8Hz, 1H), 3.06(s, 3H), 1.95~2.13(m, 1H),
	1.65~1.82(m, 1H), 1.13~1.48(m, 12H), ().88(t, J=6.6Hz, 3H)
121	7.43(s, 1H), 7.14(dd, $J=8.4$, 1.5Hz, 1H), 7.09(d, $J=1.5$ Hz, 1H), 6.92(d,
	J=8.4Hz, 1H), 4.80(dd, $J=8.1$, 1.8Hz, 1H), 3.93(s, 3H), 3.91(s, 3H), 3.07
	(s, 3H), 1.97-2.13(m, 1H), 1.66-1.83(m, 1H), 1.15-1.52(m, 12H), 0.88
	(t, J=6.6Hz, 3H)
122	7.36(s, 1H), 7.12(d, $J=1.8$ Hz, 1H), 7.98(dd, $J=8.4$, 1.8Hz, 1H), 6.91(d,
	J=8.4Hz), 4.77(dd, $J=8.4$, 2.7Hz, 1H), 3.06(s, 3H), 1.91~2.12(m, 1H),
•	1.63-1.81(m, 1H), $1.09-1.52$ (m, 8H), 0.88 (t, $J=6.6$ Hz, 3H)
123	7.43(s, 1H), 7.14(dd, $J=8.4$, 1,8Hz, 1H), 7.09(d, $J=1.8$ Hz, 1H), 6.94(d,
	J=8.4Hz, 1H), 4.80(m, 1H), 3.93(s, 3H), 3.91(s, 3H), 3.07(s, 3H), 2.05
	(m, 1H), 1.72(m, 1H), 1.30(m, 8H), 0.89(t, J=6.6Hz, 3H)
124	8.03(brs, 2H), 7.33(s, 1H), 7.09(d, \neq 1.8Hz, 1H), 6.96(dd, \neq 1.8Hz, 1.8Hz,
	1H), $6.89(d, J=8.4Hz, 1H)$, $4.79(dd, J=8.1, 2.7Hz, 1H)$, $3.06(s, 3H)$
	1.95~2.12(m, 1H), 1.65~1.82(m, 1H), 1.32~1.55(m, 2H), 0.98(t, J=
	7.2Hz, 3H)

Comp. No.	¹H NMR(300 MHz) δ
125	7.43(s, 1H), 7.14(dd, J=8.4, 1.8Hz, 1H), 7.09(d, J=1.8Hz, 1H), 6.92(d,
	J=8.4Hz, 1H), 4.80(dd, J=8.1, 2.7Hz, 1H), 3.93(s, 3H), 3.91(s, 3H), 3.07
	(s, 3H), 1.83~2.11(m, 1H), 1.64~1.84(m, 1H), 1.34~1.55(m, 2H), 0.99(t, J=7.2Hz, 3H)
126	8.59(s, 1H), 8.02(brs, 1H), 7.31~7.52(m, 10H), 6.19(s, 1H), 4.63(ABq,
	$\Delta \nu = 224$, $J_{AB} = 16.2$ Hz, 2H), 1.38(s, 18H)
130	7.51(s, 1H), 7.12(d, $J=8.4$ Hz, 1H), 7.06(s, 1H), 6.91(d, $J=8.4$ Hz, 1H),
	6.55(s, 2H), 6.01(s, 1H), 4.01(m, 1H), 3.90(s, 6H), 3.85(s, 9H), 3.00(m,
	1H), 2.58(m, 1H), 2.47(m, 1H), 2.26(s, 6H)
131	9.42(s, 1H), 9.21(s, 1H), 7.27(s, 1H), 6.97(s, 1H), 6.84(m, 2H), 6.76(s,
	2H), 6.12(s, 1H), 4.12(m, 1H), 3.78(s, 6H), 3.67(s, 3H), 3.26(m, 3H),
	2.81(s, 6H)
132	12.37(brs, 1H), 7.43(s, 1H), 7.16(s, 2H), 6.70(s, 2H), 6.10(s, 1H), 4.00
	(m, 1H), 3.87(s, 6H), 3.85(s, 3H), 3.68(m, 1H), 3.08~3.13(m, 2H), 2.87
	(d, $J=4.2$ Hz, 3H), 2.79(d, $J=3.9$ Hz, 3H), 2.26(s, 6H)
133	10.0(s, 1H), 9.76(s, 1H), 9.41(brs, 1H), 7.71(s, 1H), 7.18(d, J=8.7Hz,
	1H), 6.75(s, 2H), 6.40(s, 1H), 6.30(d, $J=8.7$ Hz, 1H), 6.07(s, 1H), 4.05
	(m, 1H), 3.78(s, 6H), 2.25(s, 6H)
138	8.63(m, 2H), 7.69(d, J=7.8Hz, 1H), 7.54(s, 1H), 7.35(m, 1H), 7.03~7.16
	(m, 2H), $6.91(d, J=8.4Hz, 1H)$, $6.12(s, 1H)$, $4.03(m, 1H)$, $3.91(s, 3H)$,
	3.90(s, 3H), 3.62(m, 1H), 3.52(m, 1H), 3.32(s, 3H), 2.94(m, 1H)

Comp. No.	¹H NMR(300 MHz) δ
139	8.62(m, 2H), 7.69(d, J=8.1Hz, 1H), 7.54(s, 1H), 7.35(m, 1H), 7.03~7.16
	(m, 2H), $6.91(d, J=8.4Hz, 1H)$, $6.17(s, 1H)$, $4.05(m, 1H)$, $3.91(s, 3H)$,
	3.90(s, 3H), 3.67(m, 1H), 3.40-3.58(m, 3H), 2.93(m, 1H), 1.92(t, $J=$
	7.2Hz, 3H)
140	8.65(m, 2H), 7.68(d, J =8.1Hz, 1H), 7.54(s, 1H), 7.37(m, 1H), 7.09(d, J =
	8.4Hz, 1H), 7.04(s, 1H), 6.90(d, J=8.4Hz, 1H), 5.96(s, 1H), 4.30(m, 1H),
	4.17(m, 2H), 3.91(s, 3H), 3.90(s, 3H), 3.05(m, 1H), 2.05(s, 3H)
141	8.66(brs, 2H), 7.69(m, 1H), 7.52(s, 1H), 7.36(m, 1H), 7.08(dd, $J=8.4$,
	1.8Hz, 1H), 7.04(d, $J=1.8$ Hz, 1H), 6.90(d, $J=8.4$ Hz, 1H), 6.05(s, 1H),
	4.14(q, $J=7.2$ Hz, 2H), 3.91(m, 1H), 3.90(s, 3H), 3.89(s, 3H), 3.19(m,
	1H), 2.82(m, 1H), 2.50(m, 1H), 1.25(t, J=7.2Hz, 3H)
145	8.71(m, 1H), 8.61(m, 1H), 7.73(m, 1H), 7.50(s, 1H), 7.33(m, 1H), 7.09
	(d, $J=8.4$ Hz, 1H), 7.05(s, 1H), 6.90(d, $J=8.4$ Hz, 1H), 6.27(s, 1H), 3.90
	(s, 3H), 3.89(s, 3H), 3.78(m, 1H), 3.35(m, 1H), 3.00(m, 1H), 2.97(s, 3H),
	2.94(s, 3H), 2.50(m, 1H)
146	DMSO-d ₆ ; 8.64(m, 1H), 8.60(m, 1H), 7.75(m, 1H), 7.44(m, 1H), 7.41(s,
	1H), 7.12~7.05(m, 3H), 6.32(s, 1H), 3.78(s, 3H), 3.77(s, 3H), 3.30~3.21
	(m, 5H), 3.05(m, 1H), 2.67(m, 1H), 2.39(m, 1H), 1.77(m, 4H)
148	8.62(m, 2H), 7.65(m, 1H), 7.38(m, 1H), 7.23(d, J=11.1Hz, 1H), 6.98(d,
	J=8.4Hz, 1H), 6.92(s, 1H), 6.85(d, $J=8.4$ Hz, 1H), 6.75(d, $J=15.3$ Hz,
	1H), 6.58 (dd, $J=15.3$, 11.1 Hz, 1 H), 6.15 (s, 1 H), 3.92 (m, 1 H), 3.91 (s,
	3H), 2.83(m, 1H), 2.59(m, 1H), 2.28(m, 1H), 2.20(s, 6H)

Comp. No.	¹H NMR(300 MHz) δ
149	8.60(m, 2H), 7.70(d, J=7.6Hz, 1H), 7.67(s, 1H), 7.39(dd, J=7.6, 4.2Hz,
	1H), $7.14(d, J=11.1Hz, 1H)$, $6.97(s, 1H)$, $6.78(s, 2H)$, $6.70(d, J=15.3Hz$,
	1H), 6.48(dd, $J=15.3$, 11.1Hz, 1H), 6.17(s, 1H), 3.90(m, 1H), 2.80(m,
	1H), 2.50(m, 1H), 2.35(m, 1H), 2.17(s, 6H)
150	8.64-8.59(m, 2H), $7.69-7.66$ (m, 1H), $7.37-7.33$ (m, 1H), 7.22 (d, $J=$
	11.1Hz, 1H), 7.09(s, 2H), 6.72(d, $J=15.3$ Hz, 1H), 6.55(dd, $J=15.3$,
	11.1Hz, 1H), 3.98~3.90(m, 1H), 2.86~2.77(m, 1H), 2.60~2.51(m, 1H),
	2.37~2.28(m, 1H), 2.24(s, 6H), 2.18(s, 6H)
151	8.63(m, 2H), 7.67(m, 1H), 7.36(m, 1H), 7.23(d, J=11.1Hz, 1H), 6.75(d,
	J=15.6Hz, 1H), 6.68 (s, 2H), 6.59 (dd, $J=15.6$, 11.2Hz, 1H), 6.16 (s, 1H),
	3.97(m, 1H), 3.91(s, 6H), 2.84(m, 1H), 2.55(m, 1H), 2.35(m, 1H), 2.18(s,
	6H)
152	8.62(m, 2H), 7.69(m, 1H), 7.41(m, 1H), 7.23(s, 2H), 7.08(d, J=11.2Hz,
	1H), 6.91(d, $J=15.2$ Hz, 1H), 6.53(dd, $J=15.2$, 11.2Hz, 1H), 6.24(s, 1H),
	5.37(s, 1H), 3.94(m, 1H), 2.82(m, 1H), 2.57(m, 1H), 3.31(m, 2H), 2.31
	(m, 1H), 2.18(s, 6H), 1.21(d, J=7.2Hz, 12H)
153	8.61(m, 2H), 7.69(dt, $J=7.8$, 1.8Hz, 1H), 7.38(m, 1H), 7.25(s, 2H), 7.09
	(d, $J=11.1$ Hz, 1H), 6.92(d, $J=15$ Hz, 1H), 6.54(dd, $J=15.0$, 11.1Hz, 1H),
	6.25(s, 1H), 5.37(s, 1H), 3.92(m, 1H), 2.82(m, 1H), 2.56(m, 1H), 2.31(m,
	1H), 2.18(s, 6H), 1.45(s, 18H)

Comp. No.	¹H NMR(300 MHz)δ
158	8.62(m, 2H), 7.65(m, 1H), 7.38(m, 1H), 7.23(d, J=11.1Hz, 1H), 7.11(m,
	10H), 6.98(d, J =8.4Hz, 1H), 6.92(s, 1H), 6.85(d, J =8.4Hz, 1H), 6.75(d,
	J=15.2Hz, 1H), 6.58(dd, $J=15.2$, 11.1Hz, 1H), 6.25(s, 1H), 4.25(s, 1H),
	3.92(m, 1H), 3.91(s, 3H), 2.83(m, 3H), 2.65(m, 8H)
159	8.62(m, 2H), 7.58(m, 1H), 7.42(m, 1H), 7.24(d, J=11.2Hz, 1H), 6.97(d, J=11.2Hz, 1H)
	J=8.4Hz, 1H), 6.91(s, 1H), 6.82(d, $J=8.4$ Hz, 1H), 6.72(d, $J=15.3$ Hz,
	1H), 6.55 (dd, $J=15.3$, 11.2 Hz, 1H), 6.20 (s, 1H), 3.95 (m, 1H), 3.92 (s,
	3H), 2.83(m, 1H), 2.59(m, 6H), 1.82(m, 4H), 0.98(m, 2H)
160	8.64(m, 2H), 7.62(m, 1H), 7.40(m, 1H), 7.24(d, J=11.1Hz, 1H), 6.98(d, J=11.1Hz, 1H)
	J=8.4Hz, 1H), 6.92(s, H), 6.85(d, $J=8.4$ Hz, 1H), 6.76(d, $J=15.3$ Hz, 1H),
	6.57(dd, $J=15.3$, 11.1Hz, 1H), 6.15(s, 1H), 3.95(m, 5H), 3.91(s, 3H),
	3.62(m, 5H), 2.83(m, 1H), 2.59(m, 1H)
161	8.61(m, 2H), 7.68(m, 1H), 7.34(m, 1H), 7.22(d, J=11.1Hz, 1H), 6.71(d, J=11.1Hz, 1H)
	J=15.6Hz, 1H), 6.68 (s, 2H), 6.57 (dd, $J=15.6$, 11.1 Hz, 1H), 5.93 (s, 1H).
	3.92(s, 6H), 3.82(m, 1H), 2.86(m, 1H), 2.20~2.40(m, 2H), 2.24(s, 6H)
	1.50~1.90(m, 2H)
162	8.63(m, 2H), 7.69(m, 1H), 7.35(m, 1H), 7.23(d, J=11.2Hz, 1H), 6.98(d)
	J=8.2Hz, 1H), 6.93(s, 1H), 6.87(d, $J=8.2$ Hz, 1H), 6.73(d, $J=15.6$ Hz
	1H), 6.57(dd, $J=15.6$, 11.2Hz, 1H), 5.90(s, 1H), 3.92(s, 3H), 3.79(m
	1H), 2.88(m, 1H), 2.26(m, 2H), 2.20(s, 6H), 1.55-1.95(m, 2H)

Comp. No.	¹H NMR(300 MHz) δ
163	8.62(m, 2H), 7.65(m, 1H), 7.45(d, J=12.0Hz, 1H), 7.33(m, 1H), 6.98(d,
	J=8.4Hz, 1H), 6.85(d, $J=8.4$ Hz, 1H), 6.73(s, 1H), 6.18(d, $J=12$ Hz, 1H),
	6.12(s, 1H), 4.15(m, 1H), 3.89(s, 3H), 2.79(m, 5H), 2.51(m, 4H), 1.74(m,
	4H), 1.07(t, <i>J</i> =7.6Hz, 3H)
164	8.64(m, 2H), 7.75(m, 1H), 7.33(m, 1H), 7.25(m, 2H), 6.92(t, $J=8.4$ Hz,
	1H), 6.82(m, 4H), 6.49(t, 1H), 6.12(s, 1H), 3.89(m, 1H), 3.79(s, 3H),
	3.76(s, 3H), 2.82(m, 1H), 2.52(m, 1H), 2.31(m, 1H), 2.16(s, 6H)
165	8.63(m, 1H), 8.59(m, 1H), 7.66(m, 1H), 7.36(m, 1H), 7.23(d, \neq 11.1Hz,
	1H), 6.75(d, J=15.3Hz, 1H), 6.67(s, 2H), 6.56(dd, J=15.3, 11.1 Hz, 1H),
	6.17(s, 1H), 3.98(m, 1H), 3.91(s, 6H), 2.84(m, 2H), 2.45(m, 5H), 1.76(m,
•	4H)
166	8.64(m, 1H), 8.59(m, 1H), 7.66(m, 1H), 7.37(m, 1H), 7.22(d, $J=10.5$ Hz,
	1H), 7.14(s, 2H), $6.60 \sim 6.80$ (m, 2H), 6.22 (s, 1H), 4.32 (q, $J=7.2$ Hz, 2H),
	3.85(m, 1H), 2.68~2.92(m, 2H), 2.16~2.63(m, 5H), 2.20(s, 6H), 1.38(t,
	$J=7.2$ Hz, 3H), $0.99(\iota, J=7.2$ Hz, 6H)
168	8.61(m, 2H), 7.66(m, 1H), 7.45(d, $J=12H$, 1H), 7.34(m, 1H), 6.98(d, $J=12H$, 1H), 7.34(m, 1H), 6.98(d, $J=12H$, 1H), 7.45(d, $J=12H$, 1H), 7.34(m, 1H), 6.98(d, $J=12H$, 1H), 7.45(d,
	8.4Hz, 1H), 6.89(d, J =8.4Hz, 1H), 6.73(s, 1H), 6.19(d, J =12Hz, 1H),
	6.13(s, 1H), 3.90(s, 3H), 3.89(m, 1H), 2.76(m, 3H), 2.57(m, 1H), 2.21(m,
	1H), 2.18(s, 6H), 1.22(t, <i>J</i> =7.6Hz, 3H)
169	8.63(m, 1H), 8.57(m, 1H), 7.64(m, 1H), 7.38(m, 1H), 7.19(d, $J=11.4$ Hz,
	1H), $6.95(d, J=8.4Hz, 1H)$, $6.91(s, 1H)$, $6.83(d, J=8.4Hz, 1H)$, $6.73(d, J=8.4Hz, 1H)$
	J=15.3Hz, 1H), 6.52 (dd, $J=15.3$, 11.4 Hz, 1H), 6.15 (s, 1H), 4.05 (m, 1H),
	3.90(s, 3H), 2.82(m, 2H), 2.45(m, 5H), 1.76(m, 4H)

	Comp. No.	¹H NMR(300 MHz) δ
	170	8.63(m, 1H), 8.60(m, 1H), 7.68(m, 1H), 7.37(m, 1H), 7.23(d, J=11.1Hz, 1H)
5		1H), 7.08(s, 2H), 6.72(d, $J=15.3$ Hz, 1H), 6.56(dd, $J=15.3$, 11.1Hz, 1H),
		6.14(s, 1H), 3.96(m, 1H), 2.83(m, 2H), 2.44(m, 4H), 2.24(s, 6H), 1.75(m,
	171	4H) 8.63(m, 1H), 8.59(m, 1H), 7.66(m, 1H), 7.35(m, 1H), 7.22(d, J=10.8Hz,
		1H), $7.09(s, 2H)$, $6.72(d, J=15.2Hz, 1H)$, $6.58(dd, J=15.2, 10.8Hz, 1H)$,
10		6.20(s, 1H), 3.84(m, 1H), 2.68~2.92(m, 2H), 2.33~2.60(m, 6H), 2.24(s,
		6H), 0.99(t, <i>J</i> =7.2Hz, 6H)
	173	8.64(m, 1H), 8.59(m, 1H), 7.66(m, 1H), 7.36(m, 1H), 7.21(d, $J=11.2$ Hz,
		1H), 6.93(d, $J=8.2$ Hz, 1H), 6.93(s, 1H), 6.86(d, $J=8.2$ Hz, 1H), 6.75(d,
		J=15.2Hz, 1H), 6.57(dd, $J=15.2$, 11.2Hz, 1H), 6.22(s, 1H), 3.91(s, 3H),
15		3.85(m, 1H), 2.82(m, 2H), 2.52(m, 5H), 0.99(t, J=7.2Hz, 6H)
	175	8.65-8.61(m, 2H), 7.68(m, 1H), 7.35(m, 1H), 7.21(d, J=11.1Hz, 1H),
		7.10(s, 2H), 6.72(d, J=15.3Hz, 1H), 6.55(dd, J=15.3, 11.1Hz, 1H), 3.99
		(m, 1H), 6.21 (s, 1H), 4.32 (q, $J=7.6$ Hz, 2H), 2.83 (m, 1H), 2.65 (m, 1H),
		2.30(m, 1H), 2.24(s, 6H), 2.19(s, 6H), 1.25(t, J=7.6Hz, 3H)
20	176	8.64(m, 1H), 8.61(m, 1H), 7.65(m, 1H), 7.36(m, 1H), 7.22(d, $J=10.5$ Hz,
		1H), 7.14(s, 1H), 6.75(d, $J=14.3$ Hz, 1H), 6.64(dd, $J=14.3$, 10.5Hz, 1H),
		6.16(s, 1H), 4.32(q, J=6.9Hz, 2H), 3.99(m, 1H), 2.83(m, 2H), 2.43(m, 2H)
		5H), 2.19(s, 6H), 1.75(m, 4H), 1.38(t, J=6.9Hz, 3H)

	Comp. No.	¹H NMR(300 MHz)δ
	. 177	8.64~8.59(m, 2H), 7.70(m, 1H), 7.35(m, 1H), 7.23(d, <i>J</i> =14.7Hz, 1H),
5		7.21(s, 1H), 7.14(s, 1H), 6.77(d, $J=16.5$ Hz, 1H), 6.51(dd, $J=16.5$, 14.7Hz, 1H), 6.13(s, 1H), 3.94(m, 1H), 2.82(m, 1H), 2.55(m, 1H), 2.33
		(m, 1H), 2.48(s, 3H), 2.18(s, 6H), 1.41(s, 9H)
	178	8.61(m, 2H), 7.67(m, 1H), 7.34(m, 1H), 7.27(d, $J=10.8$ Hz, 1H), 7.18(s,
		1H), $7.10(d, J=15Hz, 1H)$, $6.48(dd, J=15, 10.8Hz, 1H)$, $6.14(s, 1H)$,
10		3.95(m, 1H), 2.82(m, 1H), 2.58(m, 1H), 2.40(m, 1H), 2.26(s, 3H), 2.22
		(s, 3H), 2.21(s, 3H), 2.18(s, 6H)
	179	8.64(m, 1H), $8.58(m, 1H)$, $7.68(m, 1H)$, $7.36(m, 1H)$, $7.27(d, J=11.2Hz$,
		1H), $6.89(d, J=15.6Hz, 1H)$, $6.50(s, 1H)$, $6.17(dd, J=15.6, 11.2Hz, 1H)$,
		6.12(s, 1H), 3.95(m, 1H), 2.80(m, 1H), 2.50(m, 1H), 2.30(m, 1H), 2.24(s,
15		3H), 2.28(s, 3H), 2.18(s, 6H), 2.15(s, 3H)
	180	8.53~8.47(m, 2H), 7.64~7.73(m, 1H), 7.36(dd, J=7.8, 4.8Hz, 1H), 7.21
		(s, 1H), $7.02 \sim 7.12$ (m, 2H), $6.64 \sim 6.71$ (m, 1H), 6.63 (s, 1H), 6.40 (dd, $J=$
		15.3, 11.1Hz, 1H), 6.11(s, 1H), 3.96~4.08(m, 1H), 2.72~2.87(m, 1H),
		2.49~2.60(m, 1H), 2.36~2.49(m, 1H), 2.25(s, 9H)
20	181	8.65(m, 1H), 8.60(m, 1H), 7.68(m, 1H), 7.44(m, 2H), 7.22~7.41(m, 4H),
		6.65-6.92(m, 2H), 6.16(s, 1H), 3.94(m, 1H), 2.82(m, 1H), 2.53(m, 1H),
		2.32(m, 1H), 2.17(s, 6H)
	182	8.60~8.65(m, 2H), 7.67 ~7.69(m, 1H), 7.35 ~7.41(m, 1H), 7.24 (d, J =
		11.4Hz, 1H), 7.00(d, $J=8.1$ Hz), 6.82(d, $J=8.1$ Hz, 1H), 6.78(d, $J=8.1$ Hz, 1Hz, 1H), 6.78(d, $J=8.1$ Hz, 1Hz, 1Hz, 1Hz, 1Hz, 1Hz, 1Hz, 1Hz, 1
25		15.1Hz), 6.59(dd, J=15.1, 11.4Hz, 1H), 6.15(s, 1H), 3.93(m, 1H), 3.91(s,
		3H), 3.90(s, 3H), 2.84(m, 1H), 2.58(m, 1H), 2.33(m, 1H), 2.20(s, 6H)

	Comp. No.	¹H NMR(300 MHz) δ
5	183	9.10(brs, 1H), 8.62(m, 2H), 7.67(m, 1H), 7.38(m, 1H), 7.30(d, J=8.4Hz, 2H), 7.19(d, J=11.2Hz, 1H), 6.81(d, J=8.4Hz, 2H), 6.76(d, J=15.0Hz, 1H), 6.53(dd, J=15.0, 11.2Hz, 1H), 6.15(s, 1H), 3.91(m, 1H), 2.83(m, 1H), 6.53(dd, J=15.0, 11.2Hz, 1H), 6.15(s, 1H), 3.91(m, 1H), 2.83(m, 1H), 6.53(dd, J=15.0, 11.2Hz, 1H), 6.15(s, 1H), 3.91(m, 1H), 2.83(m, 1H), 6.53(dd, J=15.0, 11.2Hz, 1H), 6.15(s, 1H), 3.91(m, 1H), 2.83(m, 1H), 6.15(s, 1H), 3.91(m, 1H), 2.83(m, 1H), 6.15(s, 1H), 3.91(m, 1H), 2.83(m, 1H), 6.15(s, 1H), 6
		1H), 2.54(m, 1H), 2.32(m, 1H), 2.18(s, 6H)
	184	8.65(dd, J=4.8, 1.5Hz, 1H), 8.60(d, J=2.1Hz, 1H), 7.68(td, J=7.8, 1.8Hz, 1H), 7.40(m, 1H), 7.24(d, J=11.4Hz, 1H), 7.01(dd, J=8.1, 1.5Hz, 1.5Hz
10		1H), 6.93(d, J=1.5Hz, 1H), 6.88(d, J=8.1Hz, 1H), 6.78(d, J=15.3Hz, 1H), 6.55(dd, J=15.3, 11.4Hz, 1H), 5.70(s, 1H), 3.92(s, 3H), 2.87(s, 3H)
	185	8.55(m, 2H), 7.60(m, 1H), 7.29(m, 1H), 7.10(d, <i>J</i> =11.4Hz, 1H), 6.97(m, 2H), 6.93(m, 1H), 6.87(d, <i>J</i> =8.4Hz, 1H), 6.71(d, <i>J</i> =15.3Hz, 1H), 6.51 (dd, <i>J</i> =15.3, 11.4Hz, 1H), 5.74(s, 1H), 4.96(dd, <i>J</i> =9.0, 3.6Hz, 1H), 3.94
15		(s, 3H), 3.46(dd, $J=13.5$, 3.6Hz, 1H), 3.17(s, 3H), 2.90(dd, $J=13.5$, 9.0Hz, 1H)
	188	8.46(m, 2H), 7.51(m, 1H), 7.24(m, 1H), 7.14(d, $J=11.1$ Hz, 1H), 7.02(m, 1H), 6.95(s, 1H), 6.88(d, $J=8.1$ Hz, 1H), 6.73(d, $J=15.3$ Hz, 1H), 6.59(dd,
20	189	J=15.3, 11.1Hz, 1H), 5.81(s, 1H), 4.80(m, 1H), 3.94(s, 3H), 2.99(s, 3H), 2.69(m, 2H), 2.01(m, 1H), 1.82(m, 2H), 1.67(m, 1H) 8.47(d, J=3.3Hz, 1H), 7.46(d, J=7.8Hz, 1H), 7.20(m, 2H), 7.07(s, 2H),
		6.70(d, J=15.3Hz, 1H), 6.50(dd, J=15.3, 11.1Hz, 1H), 4.02(m, 1H), 2.80 (m, 1H), 2.62(s, 3H), 2.59(m, 1H), 2.3(m, 1H), 2.34(s, 6H), 2.15(s, 6H)

Comp. No.	¹H NMR(300 MHz)δ
190	8.47(m, 1H), 7.46(m, 1H), 7.20(m, 2H), 7.07(s, 2H), 6.68(d, $J=15.3$ Hz,
	1H), $6.50(dd, J=15.3, 11.1Hz, 1H)$, $4.31(q, J=7.6Hz, 2H)$, $4.02(m, 1H)$,
	2.80(m, 1H), 2.62(s, 3H), 2.59(m, 1H), 2.30(m, 1H), 2.34(s, 6H), 2.15(s,
•	6H), 1.25(t, <i>J</i> =7.6Hz, 3H)
193	8.64(m, 1H), 8.60(m, 1H), 7.77(m, 1H), 7.35(m, 1H), 7.24(d, $J=11.1$ Hz,
	1H), $7.08-7.00$ (m, 3H), 6.81 (d, $J=15.3$ Hz, 1H), 6.67 (dd, $J=15.3$,
	11.1Hz, 1H), 6.16(s, 1H), 4.31(q, $J=7.2$ Hz, 2H), 3.94(m, 1H), 3.87(s,
	3H), 2.82(m, 1H), 2.56(m, 1H), 2.31(m, 1H), 2.17(s, 6H), 1.38(ι , J =
	7.2Hz, 3H)
194	8.63~8.58(m, 2H), 7.66(m, 1H), 7.35(m, 1H), 7.24(s, 1H), 6.96(s, 2H),
	6.65(s, 1H), 6.07(s, 1H), 3.95(m, 1H), 2.83(m, 1H), 2.55(m, 1H), 2.30(m,
	1H), 2.24(s, 6H), 2.17(s, 6H), 2.15(s, 3H)
195	8.63(m, 2H), 7.69(m, 1H), 7.34(m, 1H), 7.19(s, 1H), 6.95(s, 2H), 6.61(s,
	1H), 6.08(s, 1H), 3.95(m, 1H), 2.85(m, 1H), 2.60~2.30(m, 2H), 2.95(m,
	1H), 2.24(s, 6H), 2.17(s, 6H), 1.18(t, $J=7.6$ Hz, 3H)
196	8.63~8.58(m, 2H), 7.68(m, 1H), 7.35(m, 1H), 7.20(s, 1H), 6.93(s, 2H),
	6.63(s, 1H), 6.07(s, 1H), 3.90(m, 1H), 2.85(m, 1H), 2.60~2.20(m, 4H),
	2.24(s, 6H), 2.17(s, 6H), 1.69-1.22(m, 2H), 0.96(t, J=8.7Hz, 3H)
197	8.57~8.67(m, 2H), 7.62 ~7.73(m, 1H), 7.31 ~7.40(m, 1H), 7.26 (d, J =
	2.7Hz, 1H), 6.82~6.96(m, 2H), 6.73(s, 1H), 6.08(s, 1H), 5.29(s, 1H),
	3.90~4.05(m, 1H), 3.89(s, 3H), 3.88(s, 3H), 2.77~2.93(m, 1H),
	2.48~2.64(m, 1H), 2.27~2.40(m, 1H), 2.19(s, 6H), 2.22(d, J=0.9Hz, 3H)

Comp. No.	۱ h nmr(300 mHz) ه
198	8.58~8.64(m, 2H), 7.65~7.68(m, 1H), 7.34~7.37(m, 1H), 7.24(d, J=
	7.5Hz, 1H), 6.80-6.87(m, 4H), 6.69(s, 1H), 6.07(s, 1H), 3.98-4.01 (m,
	1H), 3.88(s, 3H), 2.77~2.92(m, 1H), 2.48~2.64(m, 1H), 2.27~2.39 (m,
	1H), 0.21(s, 3H), 2.19(s, 6H)
199	8.59(m, 2H), 7.62(m, 1H), 7.38(m, 1H), 7.20(s, 1H), 6.87(m, 2H), 6.85(s,
	1H), 6.09(s, 1H), 5.29(s, 1H), 3.88(s, 3H), 3.85(m, 1H), 2.85(m, 1H),
	2.52(m, 3H), 2.25(m; 1H), 2.17(s, 6H), 1.27(t, J=6.8Hz, 3H)
200	8.62(m, 2H), 7.64(m, 1H), 7.38(m, 1H), 7.19(s, 1H), 6.83(m, 3H), 6.66(s,
	1H), 6.08(s, 1H), 3.98(m, 1H), 3.87(s, 3H), 2.85(m, 1H), 2.47(m, 4H),
	2.19(s, 6H), 1.65(m, 2H), 0.94(t, J=6.8Hz, 3H)
207	8.6()(m, 2H), 7.68(m, 1H), 7.35(m, 1H), 7.20(s, 1H), 6.65(s, 1H), 6.55 (s,
,	2H), 6.10(s, 1H), 3.95(m, 1H), 3.87(s, 6H), 2.85(m, 1H), 2.30~2.60 (m,
	4H), 2.18(s, 6H), 1.21(t, $J=7.6$ Hz, 3H)
208	8.62(m, 2H), 7.65(m, 1H), 7.38(m, 1H), 7.20(s, 1H), 6.65(s, 1H), 6.55(s,
	2H), 6.10(s, 1H), 3.97(m, 1H), 3.88(s, 6H), 2.80(m, 1H), 2.54(m, 2H),
	2.35(m, 2H), 2.19(s, 6H), 1.23(t, J=7.6Hz, 3H)
211	8.63(d, $J=4.3$ Hz, 1H), 8.59(d, $J=1.8$ Hz, 1H), 7.62~7.73(m, 1H), 7.36 dd,
	J=7.8, 4.8Hz, 1H), 7.13(d, $J=7.8$ Hz, 1H), 7.06(s, 2H), 6.59(m, 3H), 6.21
	(dd, $J=13.8$, 11.7Hz, 1H), 6.13(s, 1H), 3.98(m, 1H), 2.82(m, 1H), 2.59
	(m, 1H), 2.38(m, 1H), 2.23(s, 6H), 2.17(s, 6H)

The present invention further relates to pharmaceutical compositions containing these compounds or acceptable salts thereof and the use of these compounds as antagonist of the PAF and/or inhibitor of the leukotriene. As stated above, compounds of the present invention possess activity of PAF-antagonist and/or

WO 96/20936 PCT/KR95/00183

leukotriene-inhibition. Thus compounds of the invention may be used for the treatment and prophylaxis of diseases mediated or effected by PAF and leukotriene. The typical diseases for which the compounds of the present invention may be used as a therapeutic and propylactic agent include inflammation (for example, arthritis, nephritis), circulatory diseases(for example, shock, thrombosis, transplant rejection, cerebral anemia, etc.) and allergic diseases (for example, asthma, psoriasis).

5

10

15

20

25

The compounds according to the invention, as well as the pharmaceutically acceptable salts thereof, have potent PAF-antagonistic and leukotriene-inhibitory activity. Accordingly the novel compounds may be used in pharmaceutical composition comprising a pharmaceutically effective amount of one of the compounds defined above and a pharmaceutically acceptable carrier. The inventive compounds are particularly useful as anti-allergic agents, anti-asthmatic agents, anti-psoriasis agents, anti-anaphylactic shock agents, anti-septic shock agents, anti-arthritic agents, anti-nephritic agents, anti-thromboplastic agents, anti-transplant rejection agents and anti-cerebral anemic agents.

The compounds accroding to the present invention, as well as the pharmaceutically acceptable salt thereof, may be incorporated into convenient dosage forms such as capsules, tablets, or injectable preparations. Solid or liquid pharmaceutically acceptable carriers may also be employed. Solid carriers include starch, lactose, calcium sulphate dihydrate, terra alba, sucrose, talc, gelatin, agar, pectin, acacia, magnesium stearate and stearic acid. Liquid carriers include syrup, peanut oil, olive oil, saline solution and water.

The carrier or diluent may include any prolonged release material, such as glyceryl monostearate or glyceryl distearate, alone or with wax. When a liquid carrier is used, the preparation may be in the form of a syrup, elixir, emulsion, soft gelatin capsule, sterile injectable liquid(e.g. solution) or a nonaqueous or aqueous liquid suspension.

The pharmaceutical preparations are prepared conventional techniques of the

pharmaceutical chemist.

5

10

15

20

25

Compounds according to the present invention may be administrated orally topically, parenterally, by inhalation spray or rectally in dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvants and vehicles.

The term parenteral as used herein includes subcutaneous injections, intravenous injection, intramuscular injection, intrasternal injection or infusion techniques.

An examplary daily dosage employed depends on the type of disease, the degree of symptom and age. The dosage levels of the compound in the above-indicated compositions may, of course, he varied and may conveniently be between about 0.01mg to about 200 mg per kilogram of the weight.

Pharmaceutical compositions containing compounds according to the invention may be in any form suitable for oral use, for example, as tablets, troches, lozenges, aqueous or oily suspensions, dispensable powders or granules, emulsion, hard or soft capsules, syrups or elixirs.

The tablets, capsules and the like may also contain a binder such as, e.g., lactose, saccharose, sorbitol, mannitol, starch, amylopectin, cellulose or gelatin; excipients such as, e.g., dicalcium phosphate; a disintegrating agent such as, e.g., com starch or potato starch; a lubricant such as, e.g., magnesium stearate, calcium stearate, sodium stearylfumalate or polyethylene glycol wax. When the dosage unit form is a capsule, it may further contain, in addition to the types of materials described above, a liquid carrier such as e.g., a fatty oil.

These active compounds according to the present invention may also be administered parenterally. A solution or suspension of the active compounds may be prepared in water, optionally mixed with stabilizer or buffering agents. The dosages for parenteral administration are preferably as ampule or vial type.

These active compounds according to the invention may also be administered

PCT/KR95/00183

by any known process of administrating the dose including topically, for example, an ointment, cream, jelly, solution, suspension or pachydematous patch; rectally, for example, suppository; intranasally or intrathoracally by inhalation spray.

Accordingly, the present invention provides pharmaceutical compositions comprising a pharmaceutically effective amount of thiazolidin-4-one derivatives and a pharmaceutically acceptable salt thereof. The present invention also provides the pharmaceutical uses of these compounds and compositions, especially for the prevent or treatment of various PAF- and/or leukotriene- induced diseases.

[pharmaceutical compositions]

10 Orally administration(Tablet):

5

15

25

Composition	mg/Tablet	mg/Table
Active Ingredient	100	500
Lactose	122	113
Com starch/water	30	40
Corn starch	45	40
Magnesium stearate	3	7
Total	300	700

Parenteral administration:

20	Composition	mg/vial	mg/vial
	sterile active ingredient powder	100	500

Sterile water may be added to the above composition for intravenous injection.

The compounds of this invention were tested for pharmacological activity as described in the following pharmacology examples.

10

15

20

25

Pharmacology Example 1: PAF-induced rabbit platelet aggregation.

Blood was collected from the ear artery of a male New Zealand white rabbit and mixed with 3.8 % sodium citrate in a 9:1 volume ratio. Platelet rich plasma(PRP) was obtained by centrifugation of blood at 150 g for 10 min at room temperature. The number of platelets was adjusted to 3 x 10^s platelets/mL with platelet poor plasma. Platelet aggregation was monitored by continuous recording of light transmission in a dual-channel aggregometer(Chrono-Log 560-VS) coupled with a two channel recorder(Chrono-Log 707). Stirred PRP was treated with various concentration of test compounds or vehicle(0.5 % DMSO) for 2 min and then PAF(5 x 10⁻⁹ M) was added to induce platelet aggregation.

Inhibition values were calculated by comparing the extent of aggregation obtainted in the presence of the vehicle alone(0.5 % DMSO) and in the presence of a test compound. Log concentration-response curves were generated and the IC50 values were determined by regression analysis.

Pharmacology Example 2: Inhibitory activity for LTB₄ biosynthesis

A suspension of rat basophillic leukemia-1 cell in phosphoric acid buffer solution with a concentration of $5 \times 10^6/\text{mL}$ was allowed at 37% for 5 min and added the compound of thiazolidin-4-one. After allowed for 5 min, to the mixture was added arachidonic acid($25 \,\mu/\text{mL}$) and calcium ionophore A23187($1 \,\mu/\text{mL}$). After allowed for 15 min, the reaction mixture was quenched with 0.1N cooled hydrochloric acid and centrifuged with 3,300 rpm for 5 min. The supernatant solution was extracted with ethyl acetate and concentrated under nitrogen gas. The residue was dissolved in mobile phase and a amount of LTB₄ was determined with HPLC.

Table 7 lists result from this assay for inhibition of PAF-induced rabbit platelet aggregation and of LTB₄ biosynthesis for illustrative examples of the compounds of this invention.

Table 7: Inhibitory activity of PAF-induced rabbit platelet aggregation and LTB₄ biosynthesis

	Diosynthesis		
·	Compound	PAF IC ₅₀	Inhibition of LTB ₄ biosynthesis
5	No.	(μ M)	(%, 10 μM)
•			
	1	1.741	30
	2	0.058	47
	3	0.079	54
10	4	0.211	67
	6	1.901	85
	7	0.065	74
	8	1.348	45
	9	15.21	63
15	10	0.535	92
	11	0.496	89
	12	0.141	42
	13	0.329	37
	14	.4.21	75
20	15	2.101	47
	16	3.21	25
	17	0.721	43
	18	0.071	62
	19	0.046	65
25	20	3.37	43
	21	1.021	89

	Compound	PAF IC ₅₀	Inhibition of LTB ₄ biosynthesis
	No.	(μΜ)	(%, 10 μM)
	22	0.274	41
	23	0.058	57
	38	2.123	92
	39	7.21	99
	40	0.501	42
	63	0.258	39
	64	0.526	47
	67 -	3.21	100
	68	1.37	100
	69	1.21	65
	7 0	4.74	75
	71	2.53	67
	72	4.21	17
	73	5.22	1(X)
	74	4.72	100
)	78	3.73	45
	79	6.73	100
	80	7.21	65
	81	25.7	25
	82	4.21	30

	Compound	PAF IC ₅₀	Inhibition of LTB ₄ biosynthesis
_	No.	(μM)	(%, 10 μM)
	83	12.7	36
	84	25.8	100
	85	12.1	35
	86	15.7	40
	87	25.1	50
	88	30.2	48
	89	22.7	100
	90	4.21	42
	91	13.72	65
	92	12.71	38
	93	12.71	43
	94	27.2	17
	95	11.7	49
	96	10.5	37
	97	13.5	27
	98	- 12.8	42
	99	12.5	52
	100	13.7	100
	101	14.2	42
	102	12.6	37

WO 96/20936 PCT/KR95/00183

	Compound	PAF IC ₅₀	Inhibition of LTB ₄ biosynthesis
	No.	(μΜ)	(%, 10 μM)
_			
	103	13.8	100
	104	14.7	48
	105	12.7	47
	106	21.6	38
	107	9.76	63
	108	12.1	63
	109	13.6	57
	110	12.7	37
	111	12.4	100
	112	11.3	67
	115	12.5	28
	116	13.7	98
	117	13.4	42
	118	15.4	98
	119	9.78	45
	120	7.21	100
	121	8.47	72
	122	8.52	100
	123	27.2	52
	124	25.7	100

Compound	PAF IC ₅₀	Inhibition of LTB ₄ biosynthesis
 No.	(μΜ)	(%, 10 μM)
125	23.2	60
126	21.8	95
127	23.7	100
128	20.5	47
129	18.7	62
130	12.5	20
131	14.2	95
132	12.7	72
133	13.5	25
138	15.8	32
139	14.8	27
140	15.6	42
148	0.046	82
149	1.21	93
150	0.023	100
151	2.32	85
152	0.125	52
153	0.577	42
158	4.21	100
159	6.38	92

Compound	PAF IC ₅₀	Inhibition of LTB ₄ biosynthesis
 No.	(μΜ)	(%, 10 μM)
161	9.82	60
162	3.71	59
163	0.087	40
164	0.227	45
165	4.82	75
169	0.115	63
170	0.025	100
171	0.050	100
173	1.25	65
175	0.018	100
176	0.020	100
178	0.059	50
179	0.194	10
182	0.155	30
184	7.8	100
185	8.2	100
189	0.012	100
190	0.010	100
191	0.015	100
193	().()42	80

	Compound	PAF IC ₅₀	Inhibition of LTB ₄ biosynthesis
	No.	(μΜ)	(%, 10 μΜ)
	194	0.010	100
5	195	0.042	80
	198	0.116	54
	201	0.012	100
	204	0.010	100
	205	0.005	1(X)
10	209	0.002	100
	211	0.132	100
	212	1.25	100

10

15

20

WHAT IS CLAIMED IS:

1. A compound of the following formula(I) or a pharmaceutically acceptable salt thereof

wherein,

n is 0, 1, 2 or 3;

- Q is $C_1 \sim C_{10}$ alkyl group, phenyl group that is optionally substituted with one or more suitable substituents selected from methoxy group and nitro group, or pyridiyl group that is optionally substituted with one or more methyl group;
- R^1 , R^2 and R^3 are independently hydrogen atom, $C_1 \sim C_{10}$ alkyl group, $C_3 \sim C_6$ cycloalkyl group or phenyl group that is optionally substituted with one or more methoxy group;
- R⁴, R⁵, R⁶, R⁷ and R⁸ are independently hydrogen atom, hydroxyl group, halogen atom, $C_1 \sim C_{10}$ alkyl group, $C_1 \sim C_{10}$ alkoxy group, nitro group, amino group that is optionally substituted with one or more suitable substituents selected from $C_1 \sim C_{10}$ alkyl group and $C_3 \sim C_6$ cycloalkyl group, phenyl group that is optionally substituted with one or more suitable substituents selected from methoxy group and nitro group, $C_1 \sim C_{10}$ haloalkyl group, $C_1 \sim C_{10}$

10

15

20

-CO₂H, OCH₂OCH₂CH₂OCH₃, -OC-R¹⁵, -OCO-R¹⁵, -C-R¹⁵, -C-NHR¹⁵, -C-NHR¹⁵, -C-OR¹⁵, -NHC-R¹⁵, -CH₂NH-R¹⁵, -N(OH)-C-NHR¹⁵, -C-N(OH)R¹⁵, -NHC-N(OH)R¹⁵, -CH₂NHC-N(OH)-R¹⁵, -OC-NR¹⁵R¹⁵, -OC(R¹⁶)₂-C-OR¹⁵, -OCH₂-O-C-R¹⁵, O-C-(CH₂)_m-C-OH, or -O-C-(CH₂)_m-C-OR¹⁵ (in which R¹⁵ is

 $C_1 \sim C_{10}$ alkyl group; and m is 1, 2, 3 or 4); and

T is hydrogen atom, hydroxyl group, $C_1 \sim C_{10}$ alkyl group,

 $-(CH_2)_m - R^9, -(CH_2)_m - O - R^{10}, -(CH_2)_m - \overset{\square}{C} - R^{11},$ $-(CH_2)_m - NH\overset{\square}{C} - R^{12}; -(CH_2)_m - N(OH)\overset{\square}{C} - R^{16}, -(CH_2)_m - N(OH)\overset{\square}{C} NH_2,$ $-(CH_2)_m - \overset{\square}{C} N(OH) - R^{16} \text{ or } -(CH_2)_m - NR^{13}R^{14} \text{ (in which, m is 1, 2, 3}$ or 4; R⁹ is hydrogen atom, phenyl group that is optionally substituted with one or more suitable substituents selected from $C_1 \sim C_6$ alkyl group and $C_1 \sim C_6$ alkoxy group, or a pyridyl group; R¹⁰ is hydrogen atom, $C_1 \sim C_{10}$ alkyl group or $C_1 \sim C_4$ alkanoyl group; R¹¹ is $C_1 \sim C_{10}$ alkyl group, $C_1 \sim C_{10}$ alkoxy group, or amino group that is optionally substituted with one or more suitable substituents selected from $C_1 \sim C_{10}$ alkyl group and $C_3 \sim C_6$ cycloalkyl group; R¹² is $C_1 \sim C_{10}$ alkyl group or phenyl group; R¹³ is hydrogen atom, $C_1 \sim C_{10}$ alkyl group, or $C_1 \sim C_{10}$ alkanoyl group; R¹⁴ is hydrogen atom or $C_1 \sim C_{10}$ alkyl group or when taken together, connecting R¹³ and R¹⁴, a substituted or unsubstituted four- to seven-membered cycloamino group, or a cycloamino group having another hetero atoms; and R¹⁶ is hydrogen atom or $C_1 \sim C_{10}$ alkyl group.

25 2. A pharmaceutical composition including a compound of the following formula

(I) or a pharmaceutically acceptable salt thereof in combination with a pharmaceutically acceptable carrier

$$T = N$$

$$R^{1}$$

$$R^{2}$$

$$R^{8}$$

$$R^{7}$$

$$R^{6}$$

$$R^{1}$$

$$R^{2}$$

$$R^{8}$$

$$R^{7}$$

$$R^{6}$$

wherein, n, Q, T, R¹, R², R³, R⁴, R⁵, R⁶, R⁷ and R⁸ are respectively as definded in claim 1.

5

3. A process for treating PAF- and/or leukotriene-induced diseases which comprises the step of administering an effect amount of compound of formula (I) as claimed in claim 1 or pharmaceutically acceptable salt thereof, to a host in need of such treatement.

10

20

- 4. The process for treating PAF- and/or leukotriene-induced diseases as claimed in claim 3, the said diseases are arthritis, nephritis, anaphylactic shock, septic shock, thrombosis, transplant rejection, cerebral anemia, asthma or psoriasis.
- 15 5. A process for preparing compound of the following formula(I) or acceptable salt thereof

wherein, n, T, Q, R¹, R², R³, R⁴, R⁵, R⁶, R⁷ and R⁸ are respectively as definded in claim 1; reacting compound of the following formula(II)

$$\begin{array}{c} T \\ \\ H \\ \\ Q \end{array}$$

wherein, T and Q are as in definded 1; with compound of the following formula(III)

5

wherein, n, R¹, R², R³, R⁴, R⁵, R⁶, R⁷ and R⁴ are respectively as definded in claim 1.

6. A process for preparing compound of the following formula(I) or

pharmaceutically acceptable salt thereof

wherein, n, T, Q, R¹, R², R³, R⁴, R⁵, R⁶, R⁷ and R⁸ are respectively as definded in claim 1; reacting compound of the following formula(II-1)

15

wherein, T and Q are as definded in claim 1, and X is halogen atom; with compound of the following formula(III)

$$\begin{array}{c|c}
R^1 & R^3 & R^4 \\
R^2 & R^8 & R^6
\end{array}$$
(III)

wherein, n, R¹, R², R³, R⁴, R⁵, R⁶, R⁷ and R⁸ are respectively as definded in claim 1;

to obtain compound of the following formula (I-1)

$$T-N$$
 R^{1}
 R^{1}
 R^{3}
 R^{4}
 R^{5}
 R^{2}
 R^{8}
 R^{6}
 R^{6}

wherein, n, R¹, R², R³, R⁴, R⁵, R⁶, R⁷ and R⁸ are respectively as definded in claim 1; and

reacting the compound of the above formual(I-1) with an acid or alkali.

7. A process for preparing a compound having the following formual(II-1) by

$$\begin{array}{c} T \\ \\ H \\ \\ Q \end{array} \qquad \qquad (II-1)$$

wherein, T and Q are as definded in claim 1, and X is halogen atom; reacting compound of the following formula(II)

wherein, T and Q are as definded in claim 1; with halides.

5 8. A process for preparing compound of the following formula(II) by

wherein, T and Q are definded as defined in claim 1; dehydrating compound of Q-CHO(wherein, Q is as definded in claim 1) with compound of T-NH₂ (wherein, T is as definded in claim 1) and mercaptoacetic acid (HSCH₂CO₂H).

15

WO 96/20936

AMENDED CLAIMS

[received by the International Bureau on 3 May 1996 (03.05.96); original claim 6 cancelled; remainning claims unchanged (1 page)].

$$\begin{array}{c} T \\ H \\ \hline \end{array}$$

wherein, T and Q are as definded in claim 1; with halides.

INTERNATIONAL SEARCH REPORT

International application No. PCT/KR 95/00183

A. CLASSIFICATION OF SUBJECT MATTER

IPC⁶: C 07 D 277/14,417/04,417/06,417/12,417/14; A 61 K 31/44

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC⁶: C 07 D 277/00, 417/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

AT, Chemical Abstracts

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Questel - DARC, CAS

Form PCT/ISA/210 (second sheet) (July 1992)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 292 305 A1 (SUMITOMO) 23 November 1988 (23.11.88), example 63; page 2, lines 6-50; claim 1.	1-4
A	Chemical Abstracts, Vol.112, No.7, 12 February 1990 (Columbus, Ohio, USA), page 772, column 2, abstract No.55851q, ENOMOTO, M. et al.: "Optically active thiazolidin-4-ones as platelet activating factor (PAF) antagonists", Jpn. Kokai Tokkyo Koho JP 01,190,679.	1-4
Α	Chemical Abstracts, Vol.96, No.21, 24 May 1982 (Columbus, Ohio, USA), page 704, column 1, abstract No.181185q, DASH, B. et al.:"Thiazolidone derivatives", J. Indian Chem. Soc. 1981, 58(12), 1184-6 (Eng).	1
A	Chemical Abstracts, Vol.76, No.11, 13 March 1972 (Columbus, Ohio, USA), page 460, column 2, abstract No.59509v, SNIDER, R.H. et al.:"Friedel-Crafts reaction with 5-arylidene-4-thiazolidinones", Int. J. Sulfur Chem., Part A 1971, 1(3), 191-6 (Eng).	1

	Int. J. Sulfur Chem., Part A 19	
X	Further documents are listed in the continuation of Box C.	
E	Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing date	ree bunche or remin ancertains me rancerton
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be
р	document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed	combined with one or more other such documents, such combination
Date	of the actual completion of the international search	Date of mailing of the international search report
	01 March 1996 (01.03.96)	15 March 1996 (15.03.96)
	e and mailing address of the ISA/AT AUSTRIAN PATENT OFFICE Kohlmarkt 8-10 A-1014 Vienna imile No. 1/53424/535	Authorized officer Hammer Telephone No. 1/5337058/44

INTERNATIONAL SEARCH REPORT

International application No. PCT/KR 95/00183

8
0
8
8
8
7 olo-,
7
8
8

INTERNATIONAL SEARCH REPORT Information on patent family members

International application No. PCT/KR 95/00183

angeführtes Patent d in sear Document d	erchenbericht 5 Patentdokument focument cited 1 ch report fe brevet cité port de recherche	Datum der Veröffentlichung Publication date Date de publication	Patenti Patent membe Membre(s famille d	family er(s) i) de la le brevets	Datum der Veröffentlichung Publication date Date de publication	
EF A1	292305	23-11-86		76521 765167 3873168 3873168 2781188 27812741 2042741 2042745 27202455 2720456 27206862 45106863	155-09-7-22 05-09-7-88-9-7-155-09-7-155-09-7-9-7-9-7-9-7-128-9-7-128-9-7-128-9-9-121-9-11-9-5	
EP A1	316723	24-05-89	N OF NO THE PROPERTY OF NO OO OF NO OO OF NO OO	38253286052246-699944522233900-134767 289957788273311402117553449235360 1444755066-62539914402111111900-649050 89217735115888850-6866667726860-73691 66368443088 2 168112 6901233	2925025089248893312259398894518566+2534 	