Graphical representation of the frequency distribution

Graphs for Frequency Distributions

Graphs allow one

- to visualize the main characteristics of the frequency distribution
- to display anomalous values or relevant patterns in the data
- to compare the distribution of different subgroups of the sample

Hence graphs are an effective way to summarise and communicate the information in the data

Graphs for numerical variables: Vertical lines

Put the X values $x_1, ..., x_k$ on the abscissa axis and the corresponding frequencies $n_1, ..., n_k$ on the y axis. Draw for each x_i a vertical line up to (x_i, n_i)

A similar graph can be made using relative frequencies (or percentages)

Frequency and relative frequency distributions have the same shape, only the y-axis scale changes

Graphs for numerical variables: histograms

A histogram is a graph suitable for representing a grouped frequency distribution.

It is obtained by reporting the

class endpoints on the x-axis and the *frequency densities* on the y-axis and drawing a rectangular bar over each class.

The height of the bar is equal to the *class frequency density*.

Therefore, the area of each bar equals the class frequency.

Histogram bars

The ratio

$$h_i = \frac{n_i}{d_i}$$

is called the frequency density

Plotting the frequencies instead of frequency density on the vertical axis produces misleading effects when the classes have different widths

Graphs for categorical variables: bar charts

In the bar chart categories are displayed in the y-axis (or x-axis).

Each category is represented by a bar whose length (or height) equals the corresponding sample frequency

Graphs for categorical variables: pie charts

A circle is divided into sections.

Each section represents a category of the variable.

The size of each section is proportional to the frequency of the corresponding variable's class.

Sectors are coloured using different colours.

Classes of age frequency distribution

Graphs for comparing frequency distributions

Consider the relative frequency distribution (rfd) of a given variable (say Y) within a particular subgroup (say $X = \tilde{\mathbf{x}}_{\mathbf{i}}$)

$$p_{j|i} = \frac{n_{ij}}{n_{i}}$$

(conditional frequency distribution)

where $n_{i\cdot} = \sum_{j=1}^{t} n_{ij}$ is the overall number of units in category $i\cdot$

Bar charts corresponding to different rfd allow one to compare different distribution shapes across different groups.

