# Simulation analysis

2025-08-08 leios-2025w32

### Experiments

### Draft scenarios for CIP

https://github.com/input-output-hk/ouroboros-leios/blob/main/analysis/sims/2025w32/analysis.ipynb

- Linear Leios
- Conservative allocation of resources
  - 4 vCPU/node
  - 10 Mb/s bandwidth
- 7 slot/stage, each for L<sub>vote</sub> and L<sub>diff</sub>
- Maximum of 12 MB of transaction references per EB
- 1500 B/Tx
- Normal frequency of Plutus

## Spatial efficiency

Spatial efficiency (size of txs on ledger / size of non-tx persisted data)
Rust, linear-with-tx-references, topology-v2, 4 vCPU/node, 10 Mb/s, 7 slot/stage, 12 MB/EB, 1500 B/Tx



## Temporal efficiency



### Data volume



Rust, linear-with-tx-references, topology-v2, 4 vCPU/node, 10 Mb/s, 7 slot/stage, 12 MB/EB, 1500 B/Tx



### Network

Network

Rust, linear-with-tx-references, topology-v2, 4 vCPU/node, 10 Mb/s, 7 slot/stage, 12 MB/EB, 1500 B/Tx



### **Network**





### Mean CPU

Mean CPU
Rust, linear-with-tx-references, topology-v2, 4 vCPU/node, 10 Mb/s, 7 slot/stage, 12 MB/EB, 1500 B/Tx



### CPU breakdown

#### Mean CPU load among all nodes

Rust, linear-with-tx-references, topology-v2, 4 vCPU/node, 10 Mb/s, 7 slot/stage, 12 MB/EB, 1500 B/Tx



### Peak CPU

#### Peak CPU load among all nodes



### EB diffusion





### **RB** diffusion





### Vote diffusion



### Transaction diffusion



### Mempool to EB



### Mempool to ledger



### EB size



### Included vs discarded blocks



### Findings

- Modest resources (4 vCPU/node, 10 Mb/s bandwidth) are adequate up to at least 0.3 TxMB/s.
  - o It wasn't studied here, but it is likely that Plutus-heavy workloads could also be supported.
- Stage length of 7 slots allows for diffusion while having a low probability of discarding an EB.
- Maximum of 12 MB of transactions in an EB allows for occasional fully utilized EBs to "catch up" on throughput when sortition is unlucky.
  - At lower TPS, most of these blocks are small.
  - Maximum block size could be reduced at the expense of longer waits when sortition is unlucky.
- This experiment raised questions about whether the mempool rules are adequate.