

19CSE437 DEEP LEARNING FOR COMPUTER VISION L-T-P-C: 2-0-3-3

Feed Forward Neural Networks

- Optimization Hyper Parameter Tunings
 - Activation Functions
 - Xavier-He Initialisation

Citation Note: content, of this presentation were inspired by the awesome lectures and the material offered by Prof. <u>Mitesh M. Khapra</u> on <u>NPTEL</u>'s <u>Deep Learning</u> course

Feed Forward NN - Hyper Parameter Tunings

Algorithms

- Vanilla/Momentum /Nesterov GD
- AdaGrad
- RMSProp
- Adam

Strategies

- Batch
- Mini-Batch (32, 64, 128)
- Stochastic
- Learning rate schedule

Network Architectures

- Number of layers
- Number of neurons

Initialization Methods

- Xavier
- He

Activation Functions

- tanh (RNNs)
- relu (CNNs, DNNs)
- leaky relu (CNNs)

Regularization

- L2
- Early stopping
- Dataset augmentation
- Drop-out
- Batch Normalizat

Activation functions

Logistic/Sigmoid

Vanishing Gradient problem

always normalize the inputs (so that they lie between 0 to 1)

$$f'(x) = rac{\partial f(x)}{\partial x} = f(x) * (1 - f(x))$$

Saturation:

$$when \ f(x) = 0 \ or \ 1$$
 $and \ hence \ f'(x) = 0$

$$\underbrace{\frac{\partial \mathcal{L}(\theta)}{\partial W_{111}}}_{\text{Talk to the weight directly}} = \underbrace{\frac{\partial \mathcal{L}(\theta)}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial a_3}}_{\text{Talk to the output layer}} \underbrace{\frac{\partial a_3}{\partial h_2} \frac{\partial h_2}{\partial a_2}}_{\text{Talk to the previous hidden}} \underbrace{\frac{\partial a_2}{\partial h_1} \frac{\partial h_1}{\partial a_1}}_{\text{Drevious}} \underbrace{\frac{\partial a_1}{\partial W_{111}}}_{\text{talk to the output layer}}$$

$$\frac{\partial h_2}{\partial a_2}$$
=0 Then ∇w = 0 and hence no updation $h_0=x$ in weight happens

Gradient at some neurons vanishes and no more learning happens- Vanishing gradient

Logistic/Sigmoid

logistic function is not zero-centered

 $h_0 = x$

Remember to initialize the weights to small values (we will come back to this later)

 $a_3 = w_1 * h_{21} + w_2 * h_{22}$

$$\nabla w_1 = \frac{\partial \mathcal{L}(\mathbf{w})}{\partial y} \frac{\partial y}{h_3} \frac{\partial h_3}{\partial a_3} \frac{\partial a_3}{\partial w_1}$$
$$\nabla w_2 = \frac{\partial \mathcal{L}(\mathbf{w})}{\partial y} \frac{\partial y}{h_3} \frac{\partial h_3}{\partial a_3} \frac{\partial a_3}{\partial w_2}$$

$$\nabla w_1 = \frac{\partial \mathcal{L}(\mathbf{w})}{\partial y} \frac{\partial y}{h_3} \frac{\partial h_3}{\partial a_3} \quad h_{21}$$
$$\nabla w_2 = \frac{\partial \mathcal{L}(\mathbf{w})}{\partial y} \frac{\partial y}{h_3} \frac{\partial h_3}{\partial a_3} \quad h_{22}$$

 $abla w_1:$ Will be either all + $abla w_2:$ or all-

+/- +

The gradients w.r.t. all the weights connected to the same neuron are either all +ve or all -ve

Logistic Neuron is not zero centered which restricts the movement of gradient on training – takes time to converge

Better Activation Functions- tanh

logistic function is computationally expensive (because of
$$e^x$$

$$f(x)=rac{e^x-e^{-x}}{e^x+e^{-x}}$$

$$f'(x)=rac{\partial f(x)}{\partial x}=(1-(f(x))^2)$$

- Saturated tanh neurons cause the gradients to vanish
- tanh is zero-centered
- tanh is computationally expensive (because of e^x

Better Activation Functions- ReLU (Rectified Linear activation Unit)

$$f(x) = max(0,x)$$

$$f'(x)=rac{\partial f(x)}{\partial x}=egin{cases} 0 & if & x<0\ 1 & if & x>0 \end{cases}$$

- Does not saturate in the positive region
- Not zero-centered
- Easy to compute (no expensive e^x)

Issues with ReLU

$$abla w_1 = rac{\partial \mathscr{L}(heta)}{\partial y} \cdot rac{\partial y}{\partial a_2} \cdot rac{\partial a_2}{\partial h_1} \cdot rac{\partial h_1}{\partial a_1} \cdot rac{\partial a_1}{\partial w_1}$$

 A large fraction of ReLU units can die if the learning rate is set too high

$$egin{aligned} h_1 &= ReLU(a_1) = max(0,a_1) \ &= max(0,w_1x_1 + w_2x_2 + b) \end{aligned}$$

What happens if b takes on a large negative value due to a large negative update (∇b) at some point?

$$egin{aligned} w_1x_1+w_2x_2+b &< 0 & [if \quad b << 0] \ \implies h_1 &= 0 & [dead\ neuron] \ \implies rac{\partial h_1}{\partial a_1} &= 0 \end{aligned}$$

It is advised to initialize the bias to
 a positive value - Use other variants of ReLU

Leaky ReLU

Will not die (0.01 x ensures that at least a small gradient will flow through)

$$f(x) = max(0.01x, x)$$

$$f'(x)=rac{\partial f(x)}{\partial x}=egin{cases} 0.01 & if & x<0\ 1 & if & x>0 \end{cases}$$

Initialization of Weights and Bias

$$a_{11} = w_{11}x_1 + w_{12}x_2$$
$$a_{12} = w_{21}x_1 + w_{22}x_2$$

$$\therefore a_{11} = a_{12} = 0$$

$$h_{11} = h_{12}$$

Initialise w, bIterate over data:

till satisfied

$$egin{aligned} compute \ \hat{y} \ compute \ \mathscr{L}(w,b) \ w_{11} &= w_{11} - \eta \Delta w_{11} \ w_{12} &= w_{12} - \eta \Delta w_{12} \ \dots \dots \end{aligned}$$

$$\nabla w_{11} = \frac{\partial \mathcal{L}(\mathbf{w})}{\partial y} \cdot \frac{\partial y}{\partial h_{11}} \cdot \frac{\partial h_{11}}{\partial a_{11}} \cdot x_1$$

$$\nabla w_{21} = \frac{\partial \mathcal{L}(\mathbf{w})}{\partial y} \cdot \frac{\partial y}{\partial h_{12}} \cdot \frac{\partial h_{12}}{\partial a_{12}} \cdot x_1$$

$$but \quad h_{11} = h_{12}$$

$$and \quad a_{12} = a_{12}$$

$$\therefore \nabla w_{11} = \nabla w_{21}$$

never initialize all weights to same value

- This symmetry will never break during training (symmetry breaking problem)
- Hence weights connected to the same neuron should never be initialized to the same value

never initialize all weights to 0

Initialization of Weights and Bias

$$a_{11} = w_{11}x_1 + w_{12}x_2$$
$$a_{12} = w_{21}x_1 + w_{22}x_2$$

Blowing up a11 cause vanishing gradient

Xavier Initialization – Softmax and tanh activation

Initializing weights from a *uniform* distribution in [-1,1] and then scaling by $1/\sqrt{n}$

Xavier initialization sets a layer's weights to values chosen from a random uniform distribution that's bounded between

$$\pm \frac{\sqrt{6}}{\sqrt{n_i + n_{i+1}}}$$

where n_i is the number of incoming network connections, or "fan-in," to the layer, and n_{i+1} is the number of outgoing network connections from that layer, also known as the "fan-out."

He Initialization ReLu activation

The **he** initialization method is calculated as a random number with a Gaussian probability distribution (G) with a mean of 0.0 and a standard deviation of $\sqrt{\frac{2}{n}}$, where *n* is the number of inputs to the node.

In ReLU half the neurons are dead hence n/2

Namah Shiyaya

