Types, Variables, Operators and Expressions (I) Lecture 02

Min Zhang

zhangmin@sei.ecnu.edu.cn

2020.09.28

10:00-11:40, Monday, Room 319 Software Engineering Institute, East China Normal University

Contents of today's lecture

- Types
- Variables
- Operators
- Expression

Type

物以类聚,人以群分!

A quiz

What are the types of following items:

float

char

string

bad type

What is type?

Definition (Type)

A type is a name for a class (set) of something!

- int: a class (set) of integer numbers (Note: not all the integer numbers, why?)
- float: a class of float numbers (Note: not all the float numbers, why?)
- char: THE class of ALL the characters. (Note: this time all, how many?)
- **string**: the set of arrays of characters No string type in C language.

Constants

Definition (Constant)

A constant is an element in a set of items.

Example

- **0**, 1, 2, 3, 4
- **1**.2, 2.0, 3.5
- '0', '1', '2', '3', 'a', 'b'
- "0", "1", "2", "01", "a", "ab"

constants of int

constants of ${\it float}$

constants of char

constants of **string**

How data are represented in computers?

In computers, there are only two values: $\bf 0$ and $\bf 1$.

Question: How to represent all the data such as integers, float numbers, and characters?

We invent new approach

```
1 integer 0: 0
2 integer 1: 1
3 integer 2: 10
4 integer 3: 11
5 integer 4: 100
6 integer 5: 101
7 integer 6: 110
8 integer 7: 111
9 integer 8: 1000
10 integer 9: 1001
integer 255: 11111111
```

Bit and byte

Definition (Bit and byte)

A bit is one 0 or 1 in computer, and a byte is 8 bits.

Bit: 位

Byte: 字节

What is the range of integer numbers which can be represented by 4 byte (32 bit)?

$$0 \sim 2^{32} - 1$$
 $(2^{32} = 4, 294, 967, 296)$

or,
$$-(2^{31}) \sim 2^{31} - 1$$

Here is a problem

Question: How to represent negative integers in computer?

Example (1 byte case)

```
111111111B = 255
```

思考: 补码为什么是原码取反加1?

Click here for more details.

Here is another problem

Question: How to represent characeters in computer?

高四位			ASCII非打印控制字符										ASCII 打印字符												
		0000					0001					0010		0011 3		0100 4		0101 5		0110 6		0111			
																									十進制
		0000	0	0	BLANK NULL	^@	NUL	空	16	•	^P	DLE	数据链路转意	32		48	0	64	@	80	Р	96	`	112	р
0001	1	1	0	^ A	SOH	头标开始	17	•	^Q	DC1	设备控制 1	33	ļ	49	1	65	Α	81	Q	97	а	113	q		
0010	2	2	•	^в	STX	正文开始	18	1	^R	DC2	设备控制 2	34		50	2	66	В	82	R	98	b	114	r		
0011	3	3	٧	^ C	ETX	正文结束	19	!!	^ S	DC3	设备控制 3	35	#	51	3	67	С	83	S	99	С	115	s		
0100	4	4	٠	^ D	EOT	传输结束	20	¶	^ T	DC4	设备控制 4	36	\$	52	4	68	D	84	Т	100	d	116	t		
0101	5	5	*	^ E	ENQ	查询	21	∮	^ U	NAK	反确认	37	%	53	5	69	Е	85	U	101	е	117	u		
0110	6	6	^	^ F	ACK	确认	22	•	^ A	SYN	同步空闲	38	&	54	6	70	F	86	٧	102	f	118	V		
0111	7	7	•	^ G	BEL	震铃	23	1	^ W	ETB	传输块结束	39	1	55	7	71	G	87	w	103	g	119	w		
1000	8	8	0	^ H	BS	退格	24	1	^ X	CAN	取消	40	(56	8	72	Н	88	Х	104	h	120	х		
1001	9	9	0	^ I	TAB	水平制表符	25	1	^ Y	EM	媒体结束	41)	57	9	73	1	89	Υ	105	i	121	У		
1010	A	10	0	^ј	LF	换行/新行	26	\rightarrow	^ Z	SUB	替换	42	*	58	:	74	J	90	Z	106	i	122	z		

Solution: to use 7 bits

Please remember:

1 '0'-'9': ASCII values 48∼57

2 'a'-'z': ASCII values 97~122

3 'A'-'Z': ASCII values 65∼90

Here is another problem

What does **00110000** represent in a computer?

- 1 an integer 48
- 2 a character '0'

We have
$$'0' = =48$$
 C program!!!

$$_{\text{But,}} 0! = 48$$

Type again

Basic types:

```
int // 4 bytes integer
char // 1 byte
float // 4 bytes float numbers
double // 8 bytes float numbers
```

Type adjectives:

```
short
long
signed
unsigned
```

Complex types:

```
short int // 2 bytes integer
unsigned int // non-negative integer with 4 bytes
long unsigned int // non-negative integer with 8 bytes
```

The length of byte may be different in different compiling environment.

Variables

Definition (Variable)

A variable is something which has a type and whose value can be modified.

A variable has

- A name
- 2 A type: what kind of values can be assigned to it
- 3 A value
- 4 An address: where the value is stored

Variable declaration and definition

Note:

- remember initializing your variables before using them
- do not use keywords as variable names
- x and X are different variables

Arithmetic operators

- +: 5+2, result: 7
- -: 5-2, result: 3
- *: 5*2, result: 10
- /: 5/2, result: 2 not 2.5
- %: 5%2, result: 1

Remember:

The type of the result is ALWAYS THE SAME AS the operation of its parameters.

// 黄金定律: 结果的类型一定和<mark>根</mark>运算符的类型一致

Relational operators and logical operators

Relations operators:

- >: '0'>0, result: 1
- >=: '0'>=0, result: 1
- <: '0'<0, result: 0</p>
- <=: '0'<=0+48. result: 1</p>
- == : '0'<=0+48. result: 1
- !=: '0'!=0+48. result: 0

Logical operators:

- &&: '0'<0+48 && '1'==1+48, result: 0
- ||: '0'<0+48 || '1'==1+48. result: 1

Remarks

Remember:

The result of logical operation is only 1 or 0

Example: int i='0'-48==0;, value of i: 1

The privilege of logical operators is lower than arithmetic ones

Example: int i='0'-48==0+1;, value of i: 0

Type conversion

■ Automatic conversion: from small-size type to big-size type

```
Example: 5/2.0, result: 2.5. Here, 5 \rightarrow 5.0
```

■ Compulsory Type Conversion: to force the conversion from a type to another one

Example:

```
float pi=3.1415926;
int pi2 = (int) pi;
```

The value of pi2: 3

Summary

Today's topics:

- Data representation in computer
- 2 Types
- **3** Constants
- 4 Variables
- **5** Operators
- **6** Type conversion

Homework

- Learn how to use printf to print different types of data.
 Read this article for more details.
- Try writing programs to solve the problems 1073,1147,1828 on OJ.

What's coming next?

- Bit operators
- Privilege of operators
- 3 ++.-
- 4 Assignment operator
- **5** Conditional expression