

EE141-Spring 2012 Digital Integrated Circuits

Lecture 21 Sequential + Timing

EECS141 Lecture #21

Administrativia

□ Phase 2 due next We!

Writing into a Static Latch

Use the clock as a decoupling signal, that distinguishes between the transparent and opaque states

Converting into a MUX

Forcing the state (can implement as NMOS-only)

EECS141 Lecture #21

Mux-Based Latch

(a) Schematic diagram

(b) Non overlapping clocks

NMOS only

Non-overlapping clocks

EECS141

Lecture #21

8

Master-Slave (Edge-Triggered) Register

Two opposite latches trigger on edge Also called master-slave latch pair

EECS141 Lecture #21 1

Master-Slave Register

Multiplexer-based latch pair

Why not route the pulse?

Clock Nonidealities

□ Clock skew

 Spatial variation in temporally equivalent clock edges; deterministic + random, t_{SK}

□ Clock jitter

- Temporal variations in consecutive edges of the clock signal; modulation + random noise
- Cycle-to-cycle (short-term) t_{JS}
- Long term *t_{JL}*

□ Variation of the pulse width

Important for level sensitive clocking

