1 (判断). 集合 $\{x \in \mathbb{R}^n : ||x|| \le 1\}$ 是凸集.

Answer. 是.

2 (判断). 集合 $\{x \in \mathbb{R}^n : ||x|| > 1\}$ 是凸集.

Answer. 否.

3 (判断). 有限个凸集的并集是凸集.

Answer. 否.

4 (判断). 集合 $\{x \in \mathbb{R}^n : ||x|| < 1, a^t x \le 1\}$ 是凸集,其中 $a \in \mathbb{R}^n$ 是给定的非 0 向量.

Answer. 是.

5 (判断). 集合 $\{(x,y) \in \mathbb{R}^2 : |e^a x + e^{-a} y| \le 1, -1 \le a \le 1\}$ 是凸集.

Answer. 是.

6 (判断). 凸函数一定可微.

Answer. 否.

7 (判断). 对于一元可微函数 f, f 是凸函数当且仅当 $f(y) \ge f(x) + (y-x)f'(x)$ 对任何 x, y 成立.

Answer. 否, 还要求 dom(f) 是凸集.

8 (判断). 二元函数 $f(x,y) = x^2 + 2y^2 + 3xy$ 是定义在 \mathbb{R}^2 上的凸函数.

Answer. 否.

9 (判断). 若一元函数 f(x) > 0 是开区间 (a,b) 上的凸函数,则 $\log f(x)$ 亦是 (a,b) 上的凸函数.

Answer. 否.

10 (判断). 定义在 ℝ 上的一元单调递增函数一定是凸函数.

Answer. 否.

11 (判断). 凸优化问题中, 强对偶永远成立.

Answer. 否.

12 (判断). 对于凸优化中的 QP 问题, KKT 条件永远成立.

Answer. 是.

13 (判断). 线性模型的 SVM 中,最后得到的解仅依赖于支撑向量.

Answer. 是.

14 (判断). 通过梯度下降方法求解凸优化问题, 通常可以收敛到全局极小值点.

Answer. 是.

15 (判断). 定义在集合 $\{x \in \mathbb{R}^2 : ||x|| \le 1\}$ 上的凸函数一定存在极小值点.

Answer. 是.

16 (判断). 定义在集合 $\{x \in \mathbb{R}^2 : ||x|| < 1\}$ 上的凸函数一定存在极小值点.

Answer. 否.

17 (问答). 写出 $f(x) = x \log x$ 的对偶函数.

Answer.

18 (问答). 若整数 $n \ge 0$ 使得 $f(x,y) = x^2 + xy^{n-1} + y^n$ 是 \mathbb{R}^2 上的凸函数,则 n 的所有取值是多少?

Answer.

19 (问答). 给出优化问题
$$\begin{cases} \text{minimize} & a^t x \\ \text{subject to} & x \succeq 0 \end{cases}$$
 的解,其中 $a \in \mathbb{R}^n$.

Answer. 如果 $c \succeq 0$, 则 $x^* = 0, p^* = 0$, 否则 $c_i < 0$, 当 $j \neq i$, $x_j = 0$, $x_i = \lambda c_i$, $\lambda \to -\infty$.

20 (问答). 叙述强凸函数 (strongly convex) 的定义.

Answer. $f: \mathbb{R}^n \to \mathbb{R}$, dom(f) 是凸集, $\exists m > 0$, s.t. $g(x) = f(x) - \frac{m}{2} ||x||^2$ 是凸函数,即 $g(\lambda x + (1 - \lambda)y) \le \lambda g(x) + (1 - \lambda)g(y)$.

21 (问答). 叙述严格凸函数 (strictly convex) 的定义.

Answer. $f: \mathbb{R}^n \to \mathbb{R}$, dom(f) 是凸集,并且 $f(\lambda x + (1-\lambda)y) < \lambda f(x) + (1-\lambda)f(y)$.

22 (问答). 写出 $f(x) = \frac{1}{2}x^t P x + q^t x + r$ 的极小值点和极小值,其中 $P \in \mathbb{S}_{++}^n, q \in \mathbb{R}^n, r \in \mathbb{R}$.

Answer. $\nabla f(x) = Px + q$, 令 $\nabla f(x) = 0$, 极小值点 $x^* = -P^{-1}q$, 极小值 $p^* = -\frac{1}{2}q^tP^{-1}q + r$.

23 (问答). 写出优化问题 $\begin{cases} \text{minimize} & f(x) \\ \text{subject to} & Ax = b \end{cases}$ 的拉格朗日乘子函数, 其中 $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$.

Answer. $L(x, \mu) = f(x) + \mu^t (Ax - b)$, $\sharp \vdash \mu \in \mathbb{R}^m$.

24 (问答). 写出优化问题 $\begin{cases} \text{minimize} & f(x) \\ \text{subject to} & x \leq a \end{cases}$ 的拉格朗日乘子函数, 其中 $a \in \mathbb{R}^n$.

Answer. $L(x,\lambda) = f(x) + \lambda^t(x-a)$, $\not \equiv \mathbb{R}^n$.

25 (问答). 写出优化问题 $\begin{cases} \text{minimize} & \|x\| \\ \text{subject to} & Ax = b \end{cases}$ 的拉格朗日乘子函数, 其中 $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$.

Answer. $L(x,\mu) = ||x|| + \mu^t (Ax - b), \quad \sharp \vdash \mu \in \mathbb{R}^m.$

26 (问答). 给定点集 $A \subset \mathbb{R}^n$ 以及 $B \subset \mathbb{R}^m$,定义其乘积为 $A \times B = \{(a,b) : a \in A, b \in B\}$. 证明: 若 A 和 B 皆为凸集,则 $A \times B$ 亦是凸集.

 $Proof. \ z = \lambda z_1 + (1 - \lambda)z_2 = (\lambda a_1 + (1 - \lambda)a_2, \lambda b_1 + (1 - \lambda)b_2), \ \$ 其中 $z_1, z_2 \in A \times B, z_1 = (a_1, b_1), z_2 = (a_2, b_2), a_1, a_2 \in A, b_1, b_2 \in B.$ 由于 A 是一个凸集,所以 $\lambda a_1 + (1 - \lambda)a_2 \in A$,同 理 $\lambda b_1 + (1 - \lambda)b_2 \in B$. 可得 $z_1 \in A, z_1 \in B \Longrightarrow z \in A \times B$. $A \times B$ 是一个凸集.

27 (问答). 验证函数 $||x||^2/y$ 是否是凸函数并给出理由,其中 $x \in \mathbb{R}^n$ 以及 y > 0.

Answer. $\nabla^2 f = \frac{2}{y^3} \begin{pmatrix} y^2 I & -yx \\ -yx^t & 2x^t x \end{pmatrix}, \begin{vmatrix} y^2 I & -yx \\ -yx^t & 2x^t x \end{vmatrix} = y^2 x^t x \ge 0$,所以 $\nabla^2 f \succeq 0$, $f(x,y) = \|x\|^2/y$ 是一个凸函数.

28 (问答). 证明下述问题是凸优化问题并给出 KKT 条件:

$$\begin{cases} \text{minimize} & -\sum_{i=1}^{m} a_i \log(b_i^t x) \\ \text{subject to} & 0 \le x \le 1, \sum_{i=1}^{n} x_i = n - 1 \end{cases}$$

其中 $x \in \mathbb{R}^n, a_i > 0$ 以及 $b_i \succ 0$.

Answer. 目标函数 $f(x) = -\sum_{i=1}^m a_i \log(b_i^t x)$, $\partial_{jk} f = \sum_{i=1}^m \frac{a_i b_{ij} b_{ik}}{(b_i^t x)^2} = (b_i b_i^t)_{jk} \sum_{i=1}^m \frac{a_i}{(b_i^t x)^2}$ 。所以 $\nabla^2 f(x)$ 正定,目标函数是凸函数。约束条件是仿射,所以是凸优化问题。

Lagrange 函数: $L(x, \lambda, \mu) = -\sum_{i=1}^{m} a_i \log(b_i^t x) - \lambda_1^t x + \lambda_2^t (x - \mathbf{1}) + \mu(\mathbf{1}^t x - n + 1)$ KKT 条件如下:

- $0 \le x \le 1, \sum_{i=1}^{n} x_i = n-1$
- $\lambda_1 \succ 0, \lambda_2 \succ 0$
- $\lambda_{1i}x_i = 0, \lambda_{2i}(x_i 1) = 0$

•
$$\partial_x L = 0, -\sum_{i=1}^m \frac{a_i b_i}{b_i^t x} - \lambda_1 + \lambda_2 + \mu \mathbf{1} = 0$$

29 (问答). 使用梯度下降方法(精确直线搜索)求出三元函数 $f(x,y,z) = x^2 + 2y^2 + 3z^2$ 的极小值点。假设起始点为 (1,0,0),需写出每次更新迭代的详细过程和结果.

Answer.

30 (问答). 证明下述问题是凸优化问题并求解:

$$\begin{cases} \text{minimize} & f(x,y,z) = x^2 + 2y^2 + 2z^2 + 3u^2 \\ \text{subject to} & x+y+z+u = 1 \\ & x^2+z^2 \leq 1 \end{cases}$$

Answer. 目标函数是二次函数,等式约束是仿射函数,不等约束是二次函数,QCPQ 问题是凸优化问题。

Lagrange 函数: $L(x, y, z, \lambda, \mu) = x^2 + 2y^2 + 2z^2 + 3u^2 + \lambda(x^2 + z^2 - 1) + \mu(x + y + z + u - 1)$ KKT 条件如下:

- x + y + z + u = 1, $x^2 + z^2 \le 1$
- $\lambda \geq 0$
- $\lambda(x^2 + z^2 1) = 0$
- $2x + 2\lambda x + \mu = 0, 4y + \mu = 0, 4z + 2\lambda z + \mu = 0$

根据 $\lambda(x^2 + z^2 - 1) = 0$,

- $\stackrel{\underline{\mathsf{M}}}{=} \lambda = 0$, $(x, y, z) = (\frac{2-2u}{5}, \frac{1-u}{5}, \frac{1-u}{5})$
- $\stackrel{\text{def}}{=} \lambda \neq 0 \Longrightarrow x^2 + z^2 = 1$, ... difficult.