Zagadnienia

- 1. definicja i sposób oznaczenia masowego wskaźnika szybkości płynięcia
- 2. czynniki wpływające na wartość wskaźnika szybkości płynięcia
- 3. znaczenie wskaźnika szybkości płyniecia w technologii polimerów
- 4. stany fizyczne polimerów termoplastycznych opis
- 5. charakterystyczne temperatury przemian fazowych
- 6. charakterystyka PP oraz PE

Odpowiedzi

1. Definicja i sposób oznaczenia masowego wskaźnika szybkości płynięcia

Masowy wskaźnik szybkości płynięcia, MFR - obok objętościowego wskaźnika szybkości płynięcia (MVF) jedna z wielkości charakteryzujących szybkość płynięcia tworzyw termoplastycznych w procesie przetwórstwa. Wyrażana jest jako liczba gramów tworzywa wytłoczonego:

- w czasie 10 min
- przez dyszę o określonej średnicy
- w określonej temperaturze
- pod określonym obciążeniem

Sposób oznaczania. Po jego uprzednim ogrzaniu (temperaturę utrzymuje się przez 15 min przed badaniem i w jego trakcie), próbkę tworzywa uplastycznienia się w cylindrze plastometru. Przez dyszę wytłacza się pręt, który jest odcinany po upływie określonego czasu (10 min) i ważony. Wartość MFR wyznacza się ze wzoru:

$$MRF(\theta, m_{nom})[\frac{g}{10min}] = \frac{t_{ref}[\frac{s}{10min}]m[g]}{t[s]} = \frac{600[\frac{s}{10min}]m[g]}{t[s]}$$

gdzie MFR – masowy wskaźnik szybkości płynięcia, θ – temperatura oznaczania [°C], m_{nom} – nominalne obciążenie [kg], m – średnia masa wytłoczonego odcinka tworzywa [g], t_{ref} – czas odniesienia, t – czas wypływu wytłoczonego odcinka tworzywa (odstęp czasu odcinania) [s].

- 1 płytka podtrzymująca dyszę
- 2 płytka izolująca
- 3 dysza
- 4 cylinder
- 5 izolacja cieplna
- 6 obciążnik
- 7 termometr kontrolny

RYSUNEK 1. Schemat aparatury do oznaczania wskaźnika szybkości płynięcia

- 2. Czynniki wpływające na wartość wskaźnika szybkości płynięcia:
 - temperatura
 - obciążenie
 - kształt i rozmiar dyszy
 - właściwości tworzywa
 - średni ciężar cząsteczkowy
 - stopień usieciowania

Kształt dyszy, a także temperaturę i obciążenie dla danego tworzywa określa norma. Jeżeli pomiar wykonujemy zgodnie z normą to (chyba!) nie można powiedzieć, że te czynniki wpływają na wartość wskaźnika.

3. Znaczenie wskaźnika szybkości płynięcia w technologii polimerów

Wskaźniki szybkości płynięcia służą do szybkiej i praktycznej oceny płynności tworzywa w warunkach technicznych. Wskaźniki charakteryzują średnią prędkość płynięcia przy ustalonych wartościach podstawowych parametrów procesu przetwórstwa - temperatury i ciśnienia.

Tzn. (chyba!) że jak mamy jakiś proces technologiczny i znamy ciśnienie i temperaturę przetwarzania polimeru w tym procesie to możemy sobie wyznaczyć MFR/MVR dla tej temperatury i dla obciążenia opowiadającego temu ciśnieniu i mieć jakie takie pojęcie o szybkości płynięcia polimeru w aparaturze.

Ważny komentarz, który nie pasuje gdzie indziej: im wyższa płynność tworzywa tym mniejsza jego lepkość.

4. Stany fizyczne polimerów termoplastycznych - opis:

- 1. szklisty występuje w nim pewien stopień uporządkowania bliskiego zasięgu sąsiadujących makrocząsteczek lub ich fragmentów. Makrocząsteczki nie są zdolne do przemieszczania się względem siebie. Pod wpływem działania siły zewnętrznej występują bardzo niewielkie, sprężyste odkształcenia.
- 2. lepkosprężysty (elastyczny) występuje znaczna ruchliwość segmentów łańcucha. Pod wpływem działania siły zewnętrznej odkształca się sprężyście. Odkształcenia są duże (mały moduł sprężystości). W tym stanie zachodzą zjawiska relaksacji naprężeń oraz odkształceń
- 3. plastyczny (lepkociekły) oddziaływanie siły zewnętrznej odkształca polimer nieodwracalnie, nie wywołując naprężeń. Makrocząsteczki, zmieniające względem siebie położenie, nie mogą być połączone wiązaniami. Ważnym parametrem w przetwórstwie polimerów termoplastycznych jest lepkość w stanie stopionym η .

5. Temperatury przemian (niekoniecznie) fazowych

Temperatury przemian (które niekoniecznie można nazwać fazowymi ale o jakie inne tu miałoby chodzić), są średnią temperaturą zakresu, w którym zachodzi zmiana stanu polimeru.

Temperatura zeszklenia, T_g

czynnik (ceteris paribus)	wpływ na T_g
mocniejsze oddziaływanie międzycząsteczkowe	7
większy ciężar cząsteczkowy	→ (od pewnej wartości krytycznej stały)
większa giętkość makrocząsteczki (mniej sztywne podstawniki boczne)	>
polarność	7
obecność plastyfikatora	``

Temperatura płynięcia, T_p

czynnik (ceteris paribus)	wpływ na T_p	

czynnik (ceteris paribus)	wpływ na T_p
większy ciężar cząsteczkowy	7
większa giętkość makrocząsteczki (mniej sztywne podstawniki boczne)	¥

6. Polimery

1. PP, polipropylen,

- 1. Właściwości
- Oddziaływania steryczne między podstawnikami $-CH_3$ powodują ich odchylenie od płaszczyzny wyznaczonej pozostałymi atomami węgla. Każda grupa metylowa jest przesunięta względem poprzedniej o kąt 120° . Powstaje w ten sposób struktura helikalna (śrubowa)

Rodzaj właściwości	PP	PE-HD
gęstość [g/dm³]	900-920	940-965
temperatura topnienia [K]	433-443	393-408
naprężenie zrywające [MPa]	26-40	22-36
naprężenie zrywające po zorientowaniu [MPa]	245-390	
wydłużenie względne przy zerwaniu [%]	200-800	200-900
maksymalna temperatura stosowania [K]	419	353
	263-268	173-223
temperatura kruchości [K]	0.01	0.03-0.04
absorbcja wody po 30 dniach w temp. 297 K [%] oporność elektryczna właściwa skrośna [Ω·m]	1015	1015

2. Rodzaje:

- izotaktyczny grupy metylowe przy asymetrycznym atomie węgla znajdują się po tej samej stronie łańcucha
- syndiotaktyczny gr. met. przy a.a.w. występują na przemian po jednej i po drugiej stronie łańcucha
- ataktyczny przypadkowe rozmieszczenie grup metylowych

3. Zastosowania

- sprzęt medyczny wymagający sterylizacji termicznej
- rury do ciepłej wody
- zbiorniki i pojemniki dużych rozmiarów
- wyposażenie mieszkań (futryny, drzwi, wanny)
- elementy produkcji samochodów
- po procesie orientacji:
 - bardzo wytrzymałe włókna liny okrętowe, tkaniny, wykładziny, materiały wchłaniające wodę
 - cienkie folie opakowania spożywcze, folia izolacyjna w elektronice, folie termokurczliwe

2. PE, polietylen, $(-CH_2-CH_2-)_n$

1. Właściwości:

- obojętny fizjologicznie
- odporny na działanie związków chemicznych
- właściwości dielektryczne
- bardziej odporny na starzenie atmosferyczne i termiczne niż inne termoplasty

2. Rodzaje:

- polietylen małej gęstości, PE-LD
- polietylen dużej gęstości, PE-HD
- polietylen liniowy małej gęstości, PE-LLD

Rodzaj właściwości	PE-LD	PE-LLD	PE-HD
gęstość [g/dm³]	910-925	912-935	940-965
temperatura topnienia [K]	378-383	387-400	393-408
arazenie zrywające [MPa]	10-15	18-36	20-36
wydłużenie względne przy zerwaniu [%]	150-600	450-900	200-900
twardość wg Brinella	13-25	20-35	44-57
maksymalna temp. stosowania [K]	333	343	353
oporność skrośna [Ω·m]	1015	1015	1015

3. Zastosowania

- opakowania (metoda wtryskiwania/wtryskiwania z rozdmuchiwaniem)
- folie (wytłaczanie)
- węże, rury, przewody i kable (wytłaczanie)