Finite Automata

ian.mcloughlin@gmit.ie

Try running the automaton on the following strings. $aaaa,\ ababa,\ bababb,\ abaa$

Try running the automaton on the following strings. aaaa, ababa, bababb, abaa

Describe the strings that the automaton recognises.

Try running the automaton on the following strings. $aaaa,\ ababa,\ bababb,\ abaa$

Try running the automaton on the following strings. aaaa, ababa, bababb, abaa

Describe the strings that the automaton recognises.

What are the essential concepts?

Set of states: $Q = \{q_0, q_1, q_2\}$

Initial state: $q_0 \in Q$

Set of final states: $F = \{q_1\} \subseteq Q$

Alphabet: $\Sigma = \{0, 1\}$

Transition function: $\delta = \{((q_0, 0), q_0), ((q_0, 1), q_1), ((q_1, 0), q_2), \ldots\}$

Deterministic Finite Automaton (DFA) definition

A DFA is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of states,
- Σ is a finite set called the *alphabet*,
- δ is the transition function $(Q \times \Sigma \to Q)$,
- q_0 is the start state $(\in Q)$, and
- F is the set of accept states ($\subseteq Q$).

Example 1 definition

```
Q = \{q_0, q_1, q_2\}
\Sigma = \{0, 1\}
\delta = \{((q_0, 0), q_0), ((q_0, 1), q_1), ((q_1, 0), q_2), ((q_1, 1), q_1), ((q_2, 0), q_1), ((q_2, 1), q_1)\}
q_0 = q_0
F = \{q_1\}
```

Example 2 definition

```
Q = \{b_0, b_1, b_2\}
\Sigma = \{a, b\}
\delta = \{((b_0, a), b_0), ((b_0, b), b_1), ((b_1, a), b_1), ((b_1, b), b_2), ((b_2, a), b_2), ((b_2, b), b_2)\}
q_0 = b_0
F = \{b_2\}
```

Example 3 definition

```
Q = \{a_0, a_1, a_2, a_3\}
\Sigma = \{a, b\}
\delta = \{((a_0, a), a_1), ((a_0, b), a_0), ((a_1, a), a_2), ((a_1, b), a_1), ((a_2, a), a_3), ((a_2, b), a_2)\}, ((a_3, a), a_3), ((a_3, b), a_3)\}
q_0 = a_0
F = \{a_3\}
```

Non-determinism

DFAs always have exactly one state to transition to when in any given state and reading any given symbol.

Non-deterministic finite automata can have any number of arrows for each state and symbol.

The empty string ϵ is also used to label arrows that are followed without reading a character from the input, while also remaining in the original state.

Non-determinism can simplify automata but it can be shown that NFAs and DFAs recognise the same set of languages.

Try running the following strings on the automaton. 111101, 00001010, 1110, ϵ

Try running the following strings on the automaton. 111101, 00001010, 1110, ϵ

Describe in words the strings that the automaton recognises.

Try running the following strings on the automaton. 111101, 00001010, 1110, ϵ

Describe in words the strings that the automaton recognises. (Answer: all strings that contain either 11 or 101.)

Example: 010110 on the previous NFA.

Construct an NFA with alphabet $\{0,1\}$ to recognise the language $\{w|w \text{ ends with } 00\}$. Try to do it with only three states.

Construct an NFA with alphabet $\{0,1\}$ to recognise the language $\{w|w \text{ ends with } 00\}$. Try to do it with only three states.

Non-deterministic Finite Automaton (NFA) definition

An NFA is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of states,
- Σ is a finite set called the *alphabet*,
- δ is the transition function $(Q \times \Sigma_{\epsilon} \to \mathcal{P}(Q))$,
- q_0 is the start state $(\in Q)$, and
- F is the set of accept states ($\subseteq Q$).

By Σ_{ϵ} we mean $\Sigma \cup \{\epsilon\}$. e.g. When $\Sigma = \{0,1\}$, $\Sigma_{\epsilon} = \{\epsilon,0,1\}$.

Powerset example

Take any set, say $A=\{0,1,2\}$. Its powerset is the set of all its subsets, and is denoted $\mathcal{P}(A)$.

$$\mathcal{P}(A) = \left\{\; \{\}\;,\; \{0\}\;,\; \{1\}\;,\; \{2\}\;,\; \{0,1\}\;,\; \{0,2\}\;,\; \{1,2\}\;,\; \{0,1,2\}\;\right\}$$

Strings of length p

Finite means that the number of states is finite.

Let p be the number of states in an automaton.

Every string of length at least p must visit one state twice.

Try the strings 000, 001, 010, etc on the following automaton.

Example of looping a string

Consider the string 110001 on the following automaton.

1 1	0 0	0 0	0 0	0 0	0 1	
x	y	y	y	y	z	

Pumping lemma

Theorem

Let A be a regular language. There is a positive integer p such that every string s of length at least p in A may be broken into three substrings s=xyz where:

- xy^iz is in A for all non-negative integers i.
- The length of y is greater than zero (|y| > 0).
- The length of xy is less than or equal to p ($|xy| \le p$).

Pumping lemma example

Consider the string 110001 on the following automaton.

Note that |xy| must be less than p.

Pumping lemma example

Consider the string 110001 on the following automaton.

Note that |xy| must be less than p.

1	1	1	1	1	1	1	1	0	0	0	1
\boldsymbol{x}	y	y	y	y	y	y	y	\overline{z}			

No automaton recognises $\{0^i1^i\}$

Is there a finite automaton that recognises $\{0^i1^i\mid i\in\mathbb{N}\}$?

If so, it has a finite number of states — let that number be p.

The string 0^p1^p (p 0's followed by p 1's) must be accepted by the automaton.

By the pumping lemma, it can be broken into xyz where xy^iz is also accepted for all $i\in\mathbb{N}$, y is of length greater than zero and xy is no longer than p.

So, $|xy| \le p$ and |y| > 0, meaning y must be a string of 0's. However, then xyyz contains more 0's than 1's — a contradiction.