Spéciales $MP^* - 22/23 - Préparation à l'oral$

Sauf mention contraire, les énoncés qui suivent ont été posés à l'oral CC-INP en MP en 2022.

Algèbre générale

- 1. (IMT MP) On note \mathbb{U}_n le groupe des racines n-ièmes de l'unité. Soit $f: \mathbb{U}_n \longrightarrow \mathbb{U}_n, z \longmapsto z^2$.
 - **a.** Pour quels $n \in \mathbb{N}^*$, f est-elle bijective?
 - **b.** Pour quels $n \in \mathbb{N}^*$ a-t-on $f \circ f = \operatorname{Id}$?
- **2.** (IMT MP) Soit A un anneau commutatif. On dit qu'un idéal I de A est premier si et seulement si $\forall (x,y) \in A^2 \quad xy \in I \Longrightarrow (x \in I \text{ ou } y \in I).$
 - a. Dans le cas $A = \mathbb{Z}$, rappeler quels sont les idéaux de \mathbb{Z} ; lesquels sont premiers?
 - **b.** Soit A un anneau commutatif dont tous les idéaux sont premiers; montrer que A est un anneau intègre, puis que A est un corps.
- 3. a. Énoncer le théorème de Rolle.
 - **b.** Soit $P \in \mathbb{R}[X]$. Si a est une racine d'ordre k de P, quel est son ordre dans P'? Justifier.
 - c. Montrer que si P est scindé sur \mathbb{R} , alors P' l'est aussi.

Algèbre linéaire élémentaire

- **4.** Soit E un espace vectoriel de dimension finie; soit $(f,g) \in \mathcal{L}(E)^2$. Montrer que $\operatorname{rg}(f+g) = \operatorname{rg} f + \operatorname{rg} g \iff [\operatorname{Im} f \cap \operatorname{Im} g = \{0_E\} \text{ et } \operatorname{Ker} f + \operatorname{Ker} g = E].$
- **5.** Soit E un \mathbb{K} -espace vectoriel de dimension finie.
 - **a.** Soit p un endomorphisme de E vérifiant $p^2 = p$. Montrer que $\operatorname{Ker} p \oplus \operatorname{Im} p = E$ et que p est la projection sur $\operatorname{Im} p$ de direction $\operatorname{Ker} p$.
 - **b.** Soit $f \in \mathcal{L}(E)$. Montrer que l'on a équivalence entre les deux énoncés :
 - i. $E = \operatorname{Ker} f \oplus \operatorname{Im} f$;
 - ii. il existe $g \in \mathcal{L}(E)$ tel que $f \circ g = 0$ et $f + g \in GL(E)$.
- **6.** Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finie. Soit $(u,v) \in \mathcal{L}(E,F)^2$. En étudiant la restriction de u à $\operatorname{Ker}(u+v)$, montrer que $\operatorname{dim} \operatorname{Ker}(u+v) \leqslant \operatorname{dim} (\operatorname{Ker} u \cap \operatorname{Ker} v) + \operatorname{dim} (\operatorname{Im} u \cap \operatorname{Im} v)$.
- 7. Soit E un \mathbb{R} -espace vectoriel de dimension finie n et f un endomorphisme de E vérifiant : $f^2 = -\mathrm{Id}_E$.
 - a. Montrer que f n'admet pas de valeur propre réelle, et qu'il est bijectif.
 - ${f b}$. Montrer que n est pair.
 - c. Soit u un vecteur non nul. Montrer que Vect(u, f(u)) est stable par f.
 - **d.** On prend ici n=4. Montrer l'existence de deux vecteurs u et v tels que (u, f(u), v, f(v)) soit une base de E.
 - e. Généraliser ce dernier résultat.
- 8. (IMT PSI) Soit $A = (a_{ij}) \in GL_n(\mathbb{R})$; on pose $A^{-1} = (b_{ij})$. Soit $J \in \mathcal{M}_n(\mathbb{R})$ la matrice dont tous les coefficients valent 1.
 - a. Donner les coefficients de $M = JA^{-1}$; déterminer son rang.
 - **b.** Montrer que $\det(A-J) = \left(1 \sum_{i=1}^{n} \sum_{j=1}^{n} b_{ij}\right) \det A$.

Réduction des endomorphismes

- **9.** Soit $n \ge 2$, et $A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & 0 & 0 \\ \vdots & 0 & \ddots & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$
 - **a.** La matrice A est-elle diagonalisable?

- b. Dans le cas n=2, déterminer les valeurs propres et les vecteurs propres de A.
- c. On suppose désormais $n \ge 3$. Montrer que 1 est valeur propre de A, et donner une base du sous-espace propre associé.
- **d.** Montrer que, si $\lambda \neq 1$ est valeur propre de A, alors $(\lambda 1)^2 = n 1$.
- e. Calculer $\det A$.
- 10. (CC-INP PSI) Soit E un espace vectoriel de dimension finie $n \ge 2$; soit φ une forme linéaire non nulle sur E. Pour tout $x \in E$, on pose $f(x) = \varphi(x)a - \varphi(a)x$.
 - **a.** Montrer que $f \in \mathcal{L}(E)$. Que vaut f(a)?
 - **b.** Trouver les éléments propres de f; à quelle condition f est-elle diagonalisable?
- 11. Soit $E = \mathbb{R}_n[X]$; soit u l'endomorphisme de E qui, à un polynôme P, associe le polynôme P(1-X).
 - **a.** Calculer $u \circ u$. En déduire les valeurs propres de u. Que peut-on dire de u?
 - **b.** Soit f une fonction de \mathbb{R} dans \mathbb{R} , vérifiant f(1-x)=-f(x) pour tout $x\in\mathbb{R}$. Que peut-on dire du graphe de f?
 - c. En déduire les sous-espaces propres de u. Est-ce que u est diagonalisable?
- 12. Soit $E = \mathbb{R}_n[X]$. Soient F et G deux polynômes de degré n+1. On note f l'application qui, à un polynôme $P \in E$, associe le reste de la division euclidienne de FP par G.
 - **a.** Montrer que f est un endomorphisme de E.
 - b. Dans quels cas f est-il un automorphisme de E? On pourra commencer par étudier cas où F et Gsont premiers entre eux.
 - c. On suppose que F et G sont premiers entre eux, et que G est scindé à racines simples. Trouver les valeurs propres de f. L'endomorphisme f est-il diagonalisable?
- **13.** Soient $a, b, c, d \in \mathbb{C}$ tels que $a^2 + b^2 \neq 0$ et $M = \begin{pmatrix} a & -b & -c & -d \\ b & a & d & -c \\ c & -d & a & b \\ d & c & -b & a \end{pmatrix}$.
 - **a.** Calculer MM^T . En déduire $\det(M)$.
 - **b.** Si $a^2 + b^2 + c^2 + d^2 \neq 0$, montrer que rg(M) = 4. Si $a^2 + b^2 + c^2 + d^2 = 0$, montrer que rg(M) = 2.
 - **c.** Soit $w \in \mathbb{C}$ tel que $w^2 = b^2 + c^2 + d^2$. Quelles sont les valeurs propres de M?
 - ${f d}.$ Montrer que M est diagonalisable.
- **14.** a. Soit $A = \begin{pmatrix} 0 & b \\ a & 0 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$.

Montrer que A est diagonalisable dans $\mathcal{M}_2(\mathbb{R})$ si et seulement si [ab > 0 ou a = b = 0].

b. On suppose n pair. Soit $A = \begin{pmatrix} 0 & \cdots & 0 & a_n \\ \vdots & \ddots & \ddots & 0 \\ 0 & \ddots & \ddots & \vdots \\ a_1 & 0 & \cdots & 0 \end{pmatrix}$. Déterminer un plan stable par A. Donner une condition nécessaire et sufficante par

- 15. On note f l'endomorphisme de $\mathcal{M}_n(\mathbb{R})$ défini par $f: M \longmapsto aM + bM^T$ où a et b sont des réels fixés.
 - a. Montrer que $\mathcal{M}_n(\mathbb{R})$ est somme directe de l'espace \mathcal{S} des matrices symétriques et de l'espace \mathcal{A} des matrices antisymétriques.
 - b. Exprimer f en fonction de p et q, où p est la projection sur S parallèlement à A et q la projection sur \mathcal{A} parallèlement à \mathcal{S} .
 - **c.** Exprimer f^2 en fonction de f et Id.
 - d. Donner une condition nécessaire et suffisante sur a et b pour que f soit un automorphisme; exprimer dans ce cas f^{-1} en fonction de f et Id.
- **16.** Soit $A \in GL_6(\mathbb{R})$ telle que $A^3 3A^2 + 2A = 0$ et tr(A) = 8.
 - **a.** Quelles sont les valeurs propres possibles de A?
 - **b.** La matrice A est-elle diagonalisable?

- c. Déterminer le polynôme caractéristique de A.
- 17. Soit E un espace vectoriel de dimension finie n. Soit $u \in \mathcal{L}(E)$ admettant n valeurs propres distinctes.
 - a. Soit $v \in \mathcal{L}(E)$. Montrer que $v \circ u = u \circ v$ si et seulement si u et v admettent une base commune de vecteurs propres.
 - **b.** Soient \mathcal{B} une base de E et A la matrice de u dans \mathcal{B} . Discuter le nombre de solutions de l'équation $X^2 = A$, d'inconnue $X \in \mathcal{M}_n(\mathbb{R})$.
- 18. Soient E un espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$.
 - a. On suppose que f est diagonalisable. Montrer que f^2 est diagonalisable et que $\operatorname{Ker} f = \operatorname{Ker} f^2$.
 - **b.** On suppose que f^2 est diagonalisable et que f est inversible.
 - i. On note $\lambda_1, \ldots, \lambda_p$ les valeurs propres distinctes de f^2 . Montrer que le polynôme $\prod_{i=1}^p (X^2 \lambda_i)$ est un polynôme annulateur de f.
 - ii. En déduire que f est diagonalisable.
 - c. On suppose que f^2 est diagonalisable et que $\operatorname{Ker} f = \operatorname{Ker} f^2$. Montrer que f est diagonalisable.
 - **d.** Montrer que, si f^2 est diagonalisable, f ne l'est pas forcément.
- **19.** (*IMT MP*)
 - **a.** Soit $X = \begin{pmatrix} 1 & 0 & \cdots & 0 \end{pmatrix}^T \in \mathcal{M}_{n,1}(\mathbb{R})$. Soit F l'ensemble des matrices $M \in \mathcal{M}_n(\mathbb{R})$ pour lesquelles X est un vecteur propre. Montrer que F est un sous-espace vectoriel de $M \in \mathcal{M}_n(\mathbb{R})$, et donner sa dimension.
 - ${f b}.$ Même question avec X colonne non nulle quelconque.

Espaces euclidiens

- **20.** Soit $E = \mathbb{R}_2[X]$. Pour $P = \sum_{i=0}^2 a_i X^i$ et $Q = \sum_{i=0}^2 b_i X^i$, on pose $(P|Q) = \sum_{i=0}^2 a_i b_i$. On admet que (.|.) définit un produit scalaire sur E. Soit $F = \{P \in E \mid P(1) = 0\}$.
 - a. F est-il un sous-espace vectoriel de E? Si oui, donner une base de F.
 - **b.** Soit P = X. Déterminer d(P, F) (on pourra chercher une base orthonormée de F).
- **21.** Soit E un espace euclidien de dimension $n \ge 2$. Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E.

On note $\mathcal{B}'=(u_1,\ldots,u_n)$ la base orthonormée obtenue en appliquant le procédé de Gram-Schmidt à la base \mathcal{B}

- a. On note $\mathcal{M}_{\mathcal{B}'}(\mathcal{B})$ la matrice de passage de \mathcal{B}' à \mathcal{B} . Prouver que $\det \mathcal{M}_{\mathcal{B}'}(\mathcal{B}) = \prod_{i=1}^n (e_i \mid u_i)$.
- **b.** Montrer que, pour toute base \mathcal{C} orthonormale de E, on a $|\det \mathcal{M}_{\mathcal{C}}(\mathcal{B})| \leq \prod_{i=1}^{n} ||e_{i}||$.
- c. Prouver que l'inégalité précédente est une égalité si et seulement si la base \mathcal{B} est orthogonale.
- **22.** Soit E un espace euclidien de dimension $n \ge 1$. Soit p un projecteur orthogonal de E.
 - **a.** Montrer que, pour tout $(A, B) \in \mathcal{M}_n(\mathbb{R})^2$, $\operatorname{tr}(AB) = \operatorname{tr}(BA)$. En déduire que deux matrices semblables ont la même trace.
 - **b.** Montrer que, pour tout $x \in E$, $\langle x, p(x) \rangle = \langle p(x), p(x) \rangle$.
 - **c.** Montrer que $\operatorname{tr} p = \operatorname{rg} p$.
 - **d.** Soit \mathcal{B} une base orthonormée de E; soit $A = (a_{ij})$ la matrice de p dans \mathcal{B} . Montrer que $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{2} = \operatorname{rg} p$.
- 23. Soit E un espace euclidien. Pour tout sous-espace F de E, on note p_F la projection orthogonale sur F.
 - **a.** Soit F un sous-espace de E. Montrer que, pour tout $x \in E$, $||p_F(x)|| \leq ||x||$, et qu'on a égalité si et seulement si $x \in F$.
 - **b.** Soit F un sous-espace de E. Montrer que $\forall (x,y) \in E^2$ $(x \mid p(y)) = (p(x) \mid y)$. Qu'en conclut-on?
 - **c.** On suppose trouvés 3 sous-espaces F, G et H tels que $p_F \circ p_G = p_H$. Montrer que $H = F \cap G$, puis que $p_F \circ p_G = p_G \circ p_F$.
 - **d.** Réciproquement, on suppose trouvés F et G tels que $p_F \circ p_G = p_G \circ p_F$. Montrer qu'il existe un sous-espace H tel que $p_F \circ p_G = p_H$.

- **24.** Soit E un espace euclidien de dimension $n \ge 1$. Soient p et q deux projecteurs orthogonaux de E.
 - a. Montrer que tout projecteur orthogonal est un endomorphisme autoadjoint.
 - **b.** Montrer que $p \circ q \circ p$ est un endomorphisme autoadjoint.
 - **c.** Montrer que $(\operatorname{Ker} q + \operatorname{Im} p)^{\perp} = \operatorname{Im} q \cap \operatorname{Ker} p$.
 - **d.** Montrer que $p \circ q$ est diagonalisable.
- **25.** On note E l'espace $C^0([-1,1],\mathbb{R})$. Pour tout $(f,g) \in E^2$, on pose $\varphi(f,g) = \int_{-1}^1 f(t)g(t) dt$. On note \mathcal{P} le sous-espace vectoriel constitué des fonctions paires, et \mathcal{I} celui des fonctions impaires.
 - **a.** Montrer $\mathcal{P} \oplus \mathcal{I} = E$.
 - **b.** Montrer que φ est un produit scalaire sur E; on suppose dans la suite E muni de ce produits scalaire.
 - **c.** Montrer que $\mathcal{P}^{\perp} = \mathcal{I}$.
 - **d.** Pour $f \in E$, exprimez l'image de f par la symétrie orthogonale par rapport à \mathcal{P} .
- **26.** Soit $n \in \mathbb{N}^*$. On munit $\mathcal{M}_n(\mathbb{R})$ du produit scalaire défini par $\forall (A, B) \in \mathcal{M}_n(\mathbb{R})^2$ $(A|B) = \operatorname{tr}(A^T B)$. On note $\mathcal{S}_n(\mathbb{R})$ l'ensemble des matrices symétriques de $\mathcal{M}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R}) = \{M \in \mathcal{M}_n(\mathbb{R}) \mid M^T = -M\}$ l'ensemble des matrices antisymétriques.
 - **a.** Montrer que $\mathcal{A}_n(\mathbb{R})$ et $\mathcal{S}_n(\mathbb{R})$ sont supplémentaires dans $\mathcal{M}_n(\mathbb{R})$.
 - **b.** Montrer que $S_n(\mathbb{R}) = A_n(\mathbb{R})^{\perp}$.
 - **c.** On pose $M = \begin{pmatrix} 0 & 2 & -1 \\ 2 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix}$. Calculer la distance de M à $\mathcal{S}_3(\mathbb{R})$.
 - **d.** Soit $H = \{M \in \mathcal{M}_n(\mathbb{R}) \mid \operatorname{tr}(M) = 0\}$. Montrer que H est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$, et déterminer sa dimension.
 - e. On note J la matrice de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients valent 1. Calculer la distance de J à H.
- 27. Soit E un espace euclidien. On note $\mathcal{A}(E)$ l'ensemble des endomorphismes antisymétriques de E, c'està-dire des endomorphismes $u \in \mathcal{L}(E)$ vérifiant $u^* = -u$.
 - **a.** Soit $u \in \mathcal{L}(E)$. Montrer que $u \in \mathcal{A}(E) \iff \forall x \in E, \ \langle u(x)|x \rangle = 0$. Quelles sont les valeurs propres possibles pour un endomorphisme antisymétrique?
 - **b.** Caractériser les endomorphismes de $\mathcal{A}(E)$ à l'aide de leur matrice dans une base orthonormée. Dans toute la suite de l'exercice, u est un endomorphisme antisymétrique fixé.
 - c. Soit F un sous-espace stable par u. Montrer que F^{\perp} est stable par u.
 - **d.** Montrer que u^2 est un endomorphisme symétrique.
 - e. Soit x un vecteur propre de u^2 . Montrer que Vect(x, u(x)) est un sous-espace stable par u.
 - f. On suppose maintenant que $\operatorname{Ker}(u)=\{0\}$. Montrer qu'il existe une base orthonormée $\mathcal B$ de E telle que :

$$\operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} 0 & -\lambda_1 \\ \lambda_1 & 0 & & (0) \\ & 0 & -\lambda_2 \\ & & \lambda_2 & 0 \\ & & & \ddots \\ & & & 0 & -\lambda_p \\ & & & \lambda_p & 0 \end{pmatrix}$$

où $\lambda_1, \ldots, \lambda_p$ sont des réels non nuls.

- **28.** Soient E un espace euclidien, et $u \in \mathcal{L}(E)$.
 - **a.** On suppose que u possède deux valeurs propres de signes opposés. Montrer qu'il existe $x \in E \setminus \{0_E\}$ tel que (x|u(x)) = 0.
 - **b.** On suppose que u est autoadjoint et de trace nulle. Montrer qu'il existe $x \in E \setminus \{0_E\}$ tel que (x|u(x)) = 0.
 - c. On suppose seulement tr u=0. En étudiant $u+u^*$, obtenir la même conclusion.
- **29.** Soient E un espace euclidien, et $u \in \mathcal{L}(E)$ tel que $u^2 = 0$. Montrer que $\operatorname{Ker}(u + u^*) = \operatorname{Ker} u \cap \operatorname{Ker}(u^*)$.

Espaces vectoriels normés

- **30.** (IMT MP) Pour tout $n \in \mathbb{N}$ et tout $P \in \mathbb{R}[X]$, on pose $\theta_n(P) = \int_0^1 t^n P(t) dt$.
 - **a.** Pour tout $P \in \mathbb{R}[X]$, montrer que $N(P) = \sup\{|\theta_n(P)|; n \in \mathbb{N}\}$ est bien défini.
 - **b.** Montrer que N est une norme sur $\mathbb{R}[X]$.
- **31.** Soit E un espace vectoriel normé; soit A une partie de E. Soit $f: E \longrightarrow \mathbb{R}$ telle que, pour tout $x \in E$, f(x) = 1 si $x \in A$, et f(x) = 0 sinon (fonction indicatrice de A).
 - **a.** Montrer que E est connexe par arcs.
 - **b.** Montrer que f est continue sur E si et seulement si A est à la fois ouverte et fermée.
 - c. Quelles sont les parties de E qui sont à la fois ouvertes et fermées?
- **32. a.** Soit $(E, ||\ ||)$ un espace vectoriel normé, et K un compact de E. Montrer que K est fermé et borné. On étudie l'espace $E = C^0([0, 2\pi], \mathbb{C})$, muni de la norme $||\ ||_2$, définie par $||f||_2 = \sqrt{\int_0^{2\pi} |f(x)|^2 dx}$.
 - **b.** On admet dans un premier temps que $||.||_2$ est une norme sur E. Pour $n \in \mathbb{N}$ et $x \in [0, 2\pi]$, on pose $f_n(x) = e^{inx}$.
 - i. Montrer que pour tous entiers n et p distincts, $||f_n f_p||_2 = 2\sqrt{\pi}$.
 - ii. En déduire que la boule fermée $\overline{B}(0,1)$ n'est pas compacte.
 - **c.** i. Démontrer, pour tout $(u,v) \in \mathbb{C}^2$, l'inégalité $|uv| \leqslant \frac{|u|^2}{2} + \frac{|v|^2}{2}$. En déduire que, pour tout $(f,g) \in E^2$ et tout $\lambda \in \mathbb{R}_+^*$, $\int_0^{2\pi} |fg| \leqslant \frac{\lambda^2}{2} \int_0^{2\pi} |f|^2 + \frac{1}{2\lambda^2} \int_0^{2\pi} |g|^2$.
 - ii. Soit $(f,g) \in E^2$. En étudiant la fonction $h: \lambda \in \mathbb{R}_+^* \longmapsto \frac{\lambda^2}{2} \int_0^{2\pi} |f|^2 + \frac{1}{2\lambda^2} \int_0^{2\pi} |g|^2$, démontrer que $\int_0^{2\pi} |fg| \le ||f||_2 ||g||_2$.
 - iii. En déduire que $|| \ ||_2$ vérifie l'inégalité triangulaire, puis que c'est une norme.

Suites et séries numériques

- **33.** (CC-INP PSI) On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=1$ et $\forall n\in\mathbb{N}$ $u_{n+1}=\frac{1}{1+u_n}$.
 - a. Montrer que la suite (u_n) est bien définie, qu'elle converge, et déterminer sa limite.
 - **b.** Définir par récurrence deux suites d'entiers $(p_n)_{n\in\mathbb{N}}$ et $(q_n)_{n\in\mathbb{N}}$ telles que $\forall n\in\mathbb{N}$ $u_n=\frac{p_n}{a_n}$.
 - **c.** Trouver une expression de u_n en fonction de n.
- **34.** (ENSEA MP) Pour tout $n \in \mathbb{N}^*$, on note (E_n) l'équation $\sum_{k=1}^n x^k = 1$.
 - **a.** Pour tout $n \in \mathbb{N}^*$, montrer que (E_n) admet une et une seule solution x_n dans \mathbb{R}_+ , et que $x_n \in [1/2, 1]$.
 - **b.** Montrer que la suite $(x_n)_{n\in\mathbb{N}^*}$ converge.
 - c. Déterminer sa limite.
- **35.** (*IMT MP*)
 - **a.** Montrer que, pour tout $n \in \mathbb{N}^*$, l'équation $\cos x = nx$ a une et une seule solution dans \mathbb{R}_+ ; on note x_n cette solution.
 - **b.** Étudier le sens de variation et la convergence de la suite (x_n) .
 - **c.** Donner un développement asymptotique à deux termes de x_n .
- **36.** (CC-INP PSI) Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0\in]0,\pi/2[$ et $\forall n\in\mathbb{N}$ $u_{n+1}=\sin(u_n).$
 - a. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie, qu'elle converge, et déterminer sa limite.
 - **b.** Montrer que la série $\sum u_n^3$ converge; on pourra étudier $u_{n+1} u_n$.
 - **c.** Étudier la convergence de la série $\sum u_n^2$; on pourra étudier $\ln(u_{n+1}) \ln(u_n)$.
- 37. (IMT MP) Nature de la série $\sum_{n \geq 1} \frac{(-1)^n}{n^{3/4} + \sin n}$?

38. Soit $\alpha > 0$. On définit la suite (u_n) par la donnée de $u_1 > 0$ et $\forall n \ge 1$ $u_{n+1} = \frac{(-1)^{n+1}}{(n+1)^{\alpha}} \sum_{k=1}^{n} u_k$.

Pour tout $n \ge 1$, on pose $S_n = \sum_{k=1}^n u_k$

- **a.** Montrer que $\ln(S_n)$ est bien défini pour tout n. Exprimer $\ln(S_{n+1})$ en fonction de $\ln(S_n)$.
- **b.** Donner un développement asymptotique à deux termes de $\ln\left(1+\frac{(-1)^n}{n^{\alpha}}\right)$.
- c. Montrer que, si $\alpha > 1/2$, alors la série $\sum u_n$ converge. Et si $\alpha \leqslant 1/2$?

Intégration

- **39.** On note E l'ensemble $C^0(\mathbb{R}^+, \mathbb{R})$. Pour $f \in E$, on définit l'application u(f) par $u(f)(x) = \frac{1}{x} \int_0^x f(t) dt$ si x > 0, et u(f)(0) = f(0).
 - **a.** Soit $f \in E$. Montrer que u(f) est continue sur \mathbb{R}^+ , et dérivable sur \mathbb{R}^{+*} ; déterminer u(f)'.
 - **b.** Montrer que u est un endomorphisme injectif de E. Est-il surjectif?
 - c. Déterminer les éléments propres de u.
- **40.** (IMT MP) Pour $n \in \mathbb{N}$, on pose $I_n = \int_n^\infty \frac{e^{-t}}{t} dt$.
 - **a.** Pour quels $n \in \mathbb{N}$, l'intégrale I_n est-elle convergente?
 - **b.** Étudier la convergence de la série $\sum u_n$.
- **41.** Pour tout $n \in \mathbb{N}$ et tout $t \in \mathbb{R}_+$, on pose $f_n(t) = \frac{e^{-t}}{(t+1)^n}$ et $J_n = \int_0^{+\infty} f_n(t) dt$.
 - **a.** Pour tout $n \in \mathbb{N}$, justifier l'existence de J_n . Déterminer la limite de la suite (J_n) .
 - **b.** Calculer f'_n pour tout n. En déduire une relation entre J_n et J_{n+1} , puis un équivalent de J_n quand n tend vers $+\infty$.
- **42.** Pour tout t > 0, on pose $f(t) = \frac{\ln t}{(1+t)^2}$.
 - a. Montrer que f est intégrable sur $]0, +\infty[$.
 - **b.** Calculer $\int_0^1 f(t) dt$ et $\int_1^{+\infty} f(t) dt$.
- **43. a.** Soit $\alpha \in \mathbb{R}_+^*$. Montrer que $\int_1^{+\infty} \frac{e^{it}}{t^{\alpha}} dt$ converge.
 - **b.** En déduire la nature de $\int_{1}^{+\infty} \sin(t^2) dt$.
 - **c.** Montrer que $\int_{1}^{+\infty} \frac{\sqrt{t} \sin t}{t + \cos t} dt$ converge.
- **44. a.** Montrer que l'intégrale $I = \int_0^{+\infty} \frac{t \sin t}{t^2 + 1} dt$ est convergente.
 - **b.** Pour tout $x \in \mathbb{R}$, on pose $J(x) = \int_0^x \frac{t|\sin t|}{t^2 + 1} dt$.

Montrer que $\forall n \in \mathbb{N}^*$ $J(n\pi) = \sum_{k=0}^{n-1} \int_0^{\pi} (u+k\pi) \frac{\sin u}{(u+k\pi)^2+1} du$.

- \mathbf{c} . L'intégrale I est-elle absolument convergente?
- **45.** Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^{\pi/2} \frac{\sin((2n+1)t)}{\sin(t)} dt$ et $J_n = \int_0^{\pi/2} \frac{\sin((2n+1)t)}{t} dt$.
 - a. Justifiez l'existence de ces intégrales.
 - **b.** Montrer que la suite (I_n) est constante; on pourra considérer $I_n I_{n-1}$.
 - c. Soit φ une fonction de classe \mathcal{C}^1 sur $[0,\pi/2]$. Montrer que $\lim_{n\to+\infty}\int_0^{\pi/2}\varphi(t)\sin((2n+1)t)\,\mathrm{d}t=0$.
 - **d.** Montrer que $\lim_{n\to+\infty} (I_n J_n) = 0$ et en déduire la valeur de $\lim_{n\to+\infty} J_n$.

Intégrales dépendant d'un paramètre

46. (CC-INP PSI)

Soit $a \in [0, 1]$. Pour tout $n \in \mathbb{N}$ et tout $x \in]0, 1]$, on pose $f_n(x) = \frac{1 - e^{-nx}}{x^a(1 + x^n)}$ et $I_n = \int_0^1 f_n(x) dx$.

- **a.** Montrer que la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur [0,1], et déterminer sa limite. Existe-t-il des valeurs de a pour lesquelles la suite converge uniformément sur [0,1]?
- **b.** Montrer que I_n est bien définie pour tout $n \in \mathbb{N}$.
- **c.** Si $a \in [0,1[$, montrer que la suite $(I_n)_{n \in \mathbb{N}}$ converge.
- **d.** Ce résultat reste-t-il vrai pour a = 1?
- **47.** Pour $n \in \mathbb{N}^*$, on pose $I_n = \int_0^{+\infty} \frac{dt}{(1+t^4)^n}$.
 - **a.** Montrer que I_n existe pour tout $n \in \mathbb{N}^*$.
 - **b.** Montrer que la suite (I_n) converge, et déterminer sa limite.
 - **c.** Pour $n \in \mathbb{N}^*$, exprimer I_{n+1} en fonction de I_n .
 - **d.** En déduire une autre méthode pour déterminer $\lim I_n$.
- **48.** Soit $F: x \in \mathbb{R} \longmapsto \int_0^{+\infty} \frac{\arctan(xt)}{t(1+t^2)} dt$.
 - **a.** Montrer que, pour tout $u \in \mathbb{R}$, $|\arctan u| \leq |u|$.
 - **b.** Déterminer le domaine de définition et le domaine de dérivabilité de F.
 - c. Donner une expression simple de F', puis de F.
- **49.** Soit $f: x \in \mathbb{R} \longmapsto \int_0^{+\infty} \frac{e^{(ix-1)t}}{\sqrt{t}}$.
 - a. On donne $\int_0^{+\infty} e^{-t^2} dt = \sqrt{\pi}/2$. Calculer f(0), après avoir justifié son existence.
 - **b.** Montrer que f est définie et de classe C^1 sur \mathbb{R} .
 - **c.** Montrer que $\forall x \in \mathbb{R}$ 2(x+i)f'(x) = -f(x), puis donner l'expression de f.

Suites et séries de fonctions

50. On pose
$$S(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+x}$$
 pour tout $x > 0$.

- **a.** Montrer que S est définie et de classe C^1 sur \mathbb{R}_+^* .
- **b.** Étudier le sens de variation de S.
- **c.** Montrer que $\forall x > 0$ $S(x+1) S(x) = \frac{1}{x}$: en déduire un équivalent simple de S en 0^+ .
- **d.** Déterminer la limite de S en $+\infty$.
- **51.** Pour $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$, on pose $u_n(x) = (-1)^n \frac{e^{-nx}}{n}$. On pose $f = \sum_{n=1}^{+\infty} u_n$.
 - **a.** Montrer que f est définie sur \mathbb{R}_+ .
 - **b.** Montrer la convergence uniforme de $\sum u_n$ sur \mathbb{R}_+ ; en déduire que f est continue sur \mathbb{R}_+ . Y a-t-il convergence normale sur \mathbb{R}_+ ?
 - **c.** Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R}_+^* , et donner, pour x>0, une expression explicite de f'(x).
 - **d.** Déterminer f; en déduire la valeur de $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n}$.
- **52.** Soit $S: x \in \mathbb{R} \longmapsto \sum_{n=0}^{+\infty} e^{-x^2 n^2}$.
 - a. Quel est l'ensemble de définition D de S?
 - **b.** Montrer la continuité de S sur D (on pourra travailler sur un segment).

- c. Déterminer $\lim_{x \to +\infty} S(x)$.
- **d.** i. Calculer $\int_0^{+\infty} e^{-x^2t^2} dt$ pour $x \in \mathbb{R}_+^*$. On rappelle que $\int_0^{+\infty} e^{-t^2/2} dt = \sqrt{\frac{\pi}{2}}$.
 - ii. Donner un équivalent de S(x) en 0.
- **53.** Pour $(p,q) \in \mathbb{N}^2$, on pose $I_{p,q} = \int_0^1 x^p (\ln x)^q dx$.
 - **a.** Pour $(p,q) \in \mathbb{N}^2$, étudier la convergence de $I_{p,q}$.
 - **b.** Pour $(p,q) \in \mathbb{N}^2$, calculer $I_{p,q}$.
 - **c.** Calculer $\int_{0}^{1} \exp(x \ln x) dx$.
- **54.** (CC-INP PSI) Pour $n \ge 2$ et $x \in \mathbb{R}_+^*$, on pose $u_n(x) = \frac{\ln x}{x^n \ln n}$.
 - a. Déterminer le domaine D de convergence simple de la série $\sum_{n\geqslant 2}u_n$.
 - **b.** La convergence est-elle normale sur D?
 - **c.** Montrer que $\forall n \ge 2 \quad \forall x \in D \quad \left| \sum_{k=n+1}^{+\infty} u_n(x) \right| \le \frac{1}{\ln(n+1)}$.

La somme S de la série est-elle continue sur D?

- **d.** La fonction S est-elle intégrable sur D?
- **55.** Soit $\Gamma: x \longmapsto \int_0^{+\infty} t^{x-1} e^{-t} dt$.
 - a. Montrer que Γ est bien définie sur $]0, +\infty[$.
 - **b.** Montrer que Γ est de classe \mathcal{C}^1 sur $]0,+\infty[,$ et Γ' sous forme intégrale.
 - **c.** Montrer que $\forall x > 1$ $\forall \lambda \in]-1,1[$ $\int_0^{+\infty} \frac{t^{x-1}e^{-t}}{1-\lambda e^{-t}} dt = \sum_{n=0}^{+\infty} \frac{\lambda^n \Gamma(x)}{(n+1)^x}$

Séries entières

56. a. Soit $f: x \longmapsto \sum_{n=1}^{+\infty} \ln n \, x^n$.

Déterminer le domaine de définition I de f.

b. Soit $g: x \mapsto \sum_{n=1}^{+\infty} a_n x^n$ avec $a_1 = -1$ et $\forall n \ge 2$ $a_n = -\ln(1 - \frac{1}{n}) - \frac{1}{n}$.

Déterminer le domaine de définition J de g.

- **c.** Montrer que $\forall x \in I \quad g(x) = (1-x)f(x) + \ln(1-x)$.
- **d.** Montrer que $f(x) \sim -\frac{\ln(1-x)}{1-x}$ quand x tend vers 1^- .
- e. Déterminer un équivalent de f en $(-1)^+$.
- **57.** Pour tout $n \in \mathbb{N}$, on pose $a_n = \int_0^1 \frac{dt}{(2+t^2)^{n+1}}$. On étudie la série entière $\sum_{n \ge 0} a_n x^n$.
 - a. Montrer que le rayon de convergence R de cette série entière vérifie $R \geqslant 2$
 - **b.** Calculer la somme de la série pour $x \in]-2,2[$; puis montrer que R=2.
- **58.** Pour tout $n \in \mathbb{N}^*$, soit $f_n : x \longmapsto \frac{e^{i2^n x}}{n^n}$. Soit $S = \sum_{n=1}^{+\infty} f_n$.
 - **a.** Montrer que S est de classe \mathcal{C}^{∞} sur \mathbb{R} .
 - **b.** Quel est le rayon de convergence de la série entière $\sum_{k\geqslant 0}\frac{2^{k^2}}{k!k^k}x^k$?

- \mathbf{c} . Quel est le rayon de convergence de la série de Taylor de S en 0?
- **59. a.** Calculer $I_n = \int_0^\pi \sin^{2n}(x) \ dx$ pour tout $n \in \mathbb{N}$.
 - **b.** Montrer que $\forall u \in]-1,1[$ $\frac{1}{\sqrt{1-u}} = \sum_{n\geqslant 0} \frac{1}{4^n} \binom{2n}{n} u^n$.
 - **c.** On pose $f(x) = \int_0^{\pi} \frac{1}{\sqrt{1 x^2 \sin^2 t}} dt$.

Justifier que f est développable en série entière sur]-1,1[, et exprimer ce développement.

Équations différentielles

- **60.** (CC-INP PSI) On considère l'équation différentielle (E): 4xy'' + 2y' y = 0. Trouver l'unique solution développable en série entière à l'origine respectant la condition y(0) = 1.
- **61.** Soit $(E): (x^2-1)y''+2xy'-2y=0.$
 - a. Déterminer ses solutions polynômiales.
 - **b.** En déduire l'ensemble des solutions sur]-1,1[.
- **62.** Résoudre le système $\begin{cases} x' = z + \cos t \\ y' = y + e^{3t} \\ z' = x + \sin t \end{cases}$

Y a-t-il des solutions telles que x et z soient bornées sur \mathbb{R}_+ et que x(0)=z(0) ?

Fonctions de plusieurs variables

63. (IMT PSI) Étudier la continuité en (0,0) de chacune des fonctions suivantes, toutes supposées nulles en (0,0), et définies respectivement, pour tout $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$, par :

$$f(x,y) = \frac{x^3y}{x^2 + y^2}$$
 ; $g(x,y) = \frac{xy}{x^2 + y^2}$; $h(x,y) = \frac{x^3y}{x^2 + y^2 + xy}$

- **64.** Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ définie par $f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}} \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right)$ si $(x,y) \neq (0,0)$, et f(0,0) = 0.
 - **a.** Prouver que f est continue sur \mathbb{R}^2 .
 - **b.** Pour $\theta \in]-\pi,\pi]$, on pose $u_{\theta}=(\cos\theta,\sin\theta)$. Trouver les θ pour lesquels f admet une dérivée suivant le vecteur u_{θ} en (0,0).
 - **c.** La fonction f admet-elle des dérivées partielles en (0,0)?
 - **d.** Pour $(x,y) \neq (0,0)$, calculer $\frac{\partial f}{\partial x}(x,y)$.
 - e. La fonction f admet-elle des dérivées partielles d'ordre 2 sur \mathbb{R}^2 ?
- **65.** Soit $\Omega = \{(x,y) \in \mathbb{R}^2 \mid x > 0 \text{ et } y > 0\}$. Soit $\Phi : (x,y) \longmapsto (xy,x/y)$.
 - a. Montrer que Φ réalise une bijection de Ω dans lui-même, et déterminer sa réciproque.
 - **b.** Soit f une fonction de classe C^2 de Ω dans \mathbb{R} , et $F = f \circ \Phi$.

Exprimer $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial^2 x}$ et $\frac{\partial^2 f}{\partial y^2}$ en fonction des dérivées partielles de F.

- **c.** Résoudre sur Ω $x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) 2f(x,y) + 2 = 0.$
- **d.** Résoudre sur Ω $x^2 \frac{\partial^2 f}{\partial^2 x} y^2 \frac{\partial^2 f}{\partial^2 y} = 0$.

Probabilités

- **66.** Soient X, Y deux variables aléatoires indépendantes suivant la loi géométrique de paramètre $p \in]0, 1[$. On pose $U = \min(X, Y)$ et $V = \max(X, Y)$.
 - **a.** Pour $n \in \mathbb{N}^*$, donner $P(X \leq n)$ et $P(X \geq n)$.
 - **b.** Pour $n \in \mathbb{N}^*$, donner P(U = n) et P(V = n).
 - **c.** Soit $n \in \mathbb{N}^*$. Que peut-on dire des événements $(X = n) \cap (Y = n)$ et $(U = n) \cap (V = n)$? Les événements U et V sont-ils indépendants?
 - **d.** Donner l'espérance de U et de V.
- 67. Soient A_1, A_2 et A_3 trois personnes arrivant en même temps à la poste, dans laquelle il n'y a que deux guichets; A_3 doit donc attendre que A_1 ou A_2 ait fini avant de passer au guichet. Pour tout i, le temps passé au guichet par A_i est donné par une variable X_i suivant la loi géométrique de paramètre $p \in]0,1[$. Soit Y le temps d'attente de A_3 avant d'accéder à un guichet. Soit Z le temps total passé par A_3 (temps d'attente pour accéder à un guichet attendre le guichet et temps passé au guichet).
 - **a.** Calculer, pour tout $k \in \mathbb{N}$, P(Y > k); en déduire la loi de Y.
 - **b.** Déterminer la loi de Z.
 - c. Déterminer le temps moyen passé par A_3 à la poste.
- **68.** Soient $a \in]0,1[$ et $b \in \mathbb{R}_+^*$. Soit (X,Y) un couple de variables aléatoires à valeurs dans \mathbb{N}^2 , dont la loi conjointe est donnée par $\forall (n,k) \in \mathbb{N}^2$ $P(X=n,Y=k) = \frac{e^{-b}b^n}{k!(n-k)!} a^k (1-a)^{n-k}$ si $n \geq k$, et P(X=n,Y=k) = 0 si n < k.
 - a. Déterminer les lois de X et de Y; ces deux variables sont-elles indépendantes?
 - **b.** Déterminer la loi de X Y; vérifier que X Y et Y sont indépendantes.
- **69.** (IMT MP) Une urne contient n boules numérotées de 1 à n. On en tire k boules simultanément. Soit X la variable aléatoire donnant le plus petit des numéros tirés.
 - **a.** Donner la loi de X.
 - **b.** Calculer $\sum_{i=1}^{n-k+1} \binom{n-i}{k-1}.$
 - c. Calculer l'espérance de X.
- 70. (CC-INP PSI) Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires, mutuellement indépendantes, suivant toutes une loi de Bernoulli de paramètre p.

Pour tout
$$n \in \mathbb{N}^*$$
, on pose $Y_n = X_{n+1} + X_n$ et $M_n = \frac{Y_1 + \dots + Y_n}{n}$.

- a. Énoncer la loi faible des grands nombres.
- **b.** Les variables $(Y_n)_{n\in\mathbb{N}}$ sont-elles indépendantes?
- **c.** Pour tout $n \in \mathbb{N}^*$, calculer l'espérance et la variance de M_n .
- **d.** Montrer que, pour tout $\varepsilon > 0$, $\lim_{n \to +\infty} P(|M_n 2p| \ge \varepsilon) = 0$

Indications

- 1. Pour les deux questions, on se simplifie la vie en passant dans $\mathbb{Z}/n\mathbb{Z}$ grâce à l'isomorphisme usuel.
- **2. b.** Pour intègre : $\{0\}$ est un idéal. Pour corps : prendre $x \neq 0$, et considérer par exemple l'idéal engendré par x^2 .
- **3. b.** On a $P = (X a)^k Q$, avec $Q(a) \neq 0$.
- **4.** Commencer par noter que, dans tous les cas, $\text{Im}(f+g) \subset \text{Im}\, f + \text{Im}\, g$.
- **5.** b. i. \Longrightarrow ii. : prendre pour g une projection bien choisie. ii. \Longrightarrow i. : décomposer x en [x-g(x)]+g(x).
- **7. d.** Prendre $u \neq 0_E$ et montrer que (u, f(u)) est libre. Prendre ensuite $v \notin \text{Vect}(u, f(u))$ et montrer que (u, f(u), v, f(v)) est libre. **e.** Montrer que l'on peut répéter la construction du **d.**
- **9.** d. Si X est vecteur propre, examiner la première coordonnée de $(A I_n)^2 X$, après avoir montré que la première coordonnée de X n'est pas nulle. e. Montrer que, si $\lambda \neq 1$, alors $\operatorname{rg}(A \lambda I_n) \geqslant n 1$.
- 10. b. Les deux valeurs propres trouvées sont-elles distinctes?
- 11. b. et c. On se ramène à un problème de parité par translation sur la variable.
- 12. b. Dans le cas où F et G ne sont pas premiers entre eux, les décomposer sous la forme $F = DF_1$ et $G = DG_1$, où $D = F \wedge G$. c. Les vecteurs propres associés à λ sont les éléments du noyau de l'endomorphisme obtenu en remplaçant F par $F \lambda$; utiliser b. pour déterminer les λ pour lesquels on a bien des solutions non nulles.
- **21. a.** Noter que $\mathcal{M}_{\mathcal{B}'}(\mathcal{B})$ est triangulaire. **b.** Exprimer $\mathcal{M}_{\mathcal{C}}(\mathcal{B})$ en fonction de $\mathcal{M}_{\mathcal{B}'}(\mathcal{B})$ et $\mathcal{M}_{\mathcal{C}}(\mathcal{B}')$.
- **22.** c. Écrire la matrice de p dans une base bien choisie. d. Le nombre étudié est $\sum ||p(e_j)||^2$ (avec des notations évidentes). Utiliser b, puis c.
- **24.** d. Les vecteurs de $\operatorname{Im} q \cap \operatorname{Ker} p$ et de $\operatorname{Ker} q$ sont des vecteurs propres pour $p \circ q$. Montrer que $\operatorname{Im} p$ admet une base de vecteurs propres pour $p \circ q \circ p$.
- **26.** c. Décomposer M sous la forme S+A. e. Déterminer le projeté de J sur H^{\perp} .
- **27.** a. Pour le sens \Leftarrow , penser à la démonstration des formules de polarisation. f. Récurrence sur dim E, en utilisant e. et c.
- **29.** Montrer que $\operatorname{Im} u$ et $\operatorname{Im} u^*$ sont orthogonaux.
- **31. b.** Pour le sens direct, utiliser l'image réciproque par une fonction continue; pour la réciproque, montrer que, pour tout $x \in E$, f est constante sur une boule de centre x.

 c. Image continue d'un connexe par arcs.
- **34. b.** Étudier le sens de variation de la suite. **c.** Utiliser $x_n \ge \ell$.
- **42. b.** Choisir la bonne primitive dans l'intégration par parties.
- **44. c.** Dans la somme précédente, minorer chaque terme en minorant simplement l'intégrale sur $[\pi/4, 3\pi/4]$ par exemple.
- **46.** c. Convergence dominée. d. Minorer l'intégrale en majorant le terme $1 + x^n$, puis poser u = nx.
- **47. c.** Intégration par parties dans I_n , en primitivant le facteur 1. **d.** Écrire I_n sous forme d'un produit et passer au logarithme.
- **56.** d. et e. La fonction g a des limites finies en 1 et -1.
- **66.** b. Commencer par calculer $P(U \ge n)$.
- **69. c.** Utiliser $p\binom{q}{p} = q\binom{q-1}{p-1}$ pour faire apparaître la somme du b.