

FIG.


```
[TEMPERATURE 1 \geq 15] \rightarrow 0K

[TEMPERATURE 1 < 15] \land [PRESSURE < 1.4] \rightarrow NG

[TEMPERATURE 1 < 15] \land [PRESSURE \geq 1.4] \rightarrow 0K
```

FIG. 3

F I G. 4

SURE	EMPEKAIUKE EMPEKAIUKE 2
0.	10.4 2.0
e.	11.5
. 5	8.2 1.5
	••

FIG. 5A

RESULT	i	ذ	
•	:	•••	
PRESSURE	1.9	2.2	
TEMPERATURE 1 TEMPERATURE 2 PRESSURE	8.9	12.3	
TEMPERATURE 1	13.8	17.1	
	No. 101	No. 102	

FIG. 5B

FIG. 6

F1.G. 7

 $W_{i,j}^{k-1,k}$: WEIGHT BETWEEN J UNIT IN (k-1)TH LAYER AND I UNIT IN K LAYER

 $W_{m,i}^{k,k+1}:$ WEIGHT BETWEEN I UNIT IN k LAYER AND m UNIT IN (k+1) TH UNIT

F1 G. 8

$$R = \frac{1}{2} \sum_{i} (t_{i} - O_{i}^{n})^{2}$$

$$\Delta W_{i,j}^{k-1,k} = \varepsilon \left[-\frac{\partial R}{\partial W_{i,j}^{k-1,k}} \right] \qquad \Delta \theta_{i,j}^{k-1,k} = \varepsilon \left[-\frac{\partial R}{\partial \theta_{i,j}^{k-1,k}} \right]$$

$$= \varepsilon \left[-\frac{\partial R}{\partial I_{i}^{k}} \cdot \frac{\partial I_{i}^{k}}{\partial W_{i,j}^{k-1,k}} \right] \qquad = \varepsilon \left[-\frac{\partial R}{\partial I_{i}^{k}} \cdot \frac{\partial I_{i}^{k}}{\partial \theta_{i,j}^{k-1,k}} \right]$$

$$= \varepsilon \left[-\frac{\partial R}{\partial I_{i}^{k}} \right] \cdot O_{j}^{k-1} \qquad = \varepsilon \left[-\frac{\partial R}{\partial I_{i}^{k}} \right]$$

$$= \varepsilon \cdot \delta_{i}^{k} \cdot O_{j}^{k-1} \qquad = \varepsilon \cdot \delta_{i}^{k}$$

FIG. 9A

* IN CASE OF k = n
(FINAL STAGE)
* IN CASE OF k \neq n

$$\delta_{i}^{n} = -\frac{\partial R}{\partial I_{i}^{n}}$$

$$= -\frac{\partial R}{\partial O_{i}^{n}} \cdot \frac{\partial O_{i}^{n}}{\partial I_{i}^{n}}$$

$$= \left(t_{i} - O_{i}^{n}\right) f'(I_{i}^{n})$$

$$= \sum_{m} \frac{\partial R}{\partial I_{m}^{k+1}} \cdot \frac{\partial I_{m}^{k+1}}{\partial O_{i}^{k}} \cdot \frac{\partial O_{i}^{k}}{\partial I_{i}^{k}}$$

$$= \sum_{m} \frac{\partial R}{\partial I_{m}^{k+1}} \cdot W_{m,i}^{k,k+1} \cdot f'(I_{i}^{k})$$

$$= \sum_{m} \delta_{m}^{k+1} W_{m,i}^{k,k+1} f'(I_{i}^{k})$$

FIG. 9B

$$\Delta W_{i,j}^{k-1,k}(n) = \varepsilon \cdot \delta_i^k \cdot O_j^{k-1} + \alpha \cdot \Delta W_{i,j}^{k-1,k}(n-1)$$

$$\Delta \theta_{i,j}^{k-1,k}(n) = \varepsilon \cdot \delta_i^k + \alpha \cdot \Delta \theta_{i,j}^{k-1,k}(n-1)$$
FIG. 9C

$$f(x) = \frac{1}{1 + \exp(-x)}$$

$$\frac{df(x)}{dx} = f'(x) = f(x) \cdot \{1 - f(x)\}$$

$$\delta_i^n = (t_i - O_i^n) \cdot O_i^n \cdot (1 - O_i^n)$$

$$\delta_i^k = \sum_m \delta_m^{k+1} W_{m,i}^{k,k+1} \cdot O_i^k \cdot (1 - O_i^k)$$

FIG. 10

$$\Delta W_{i,j}^{k-1,k}(n) = \varepsilon \cdot \delta_i^k \cdot O_j^{k-1} + \alpha \cdot \Delta W_{i,j}^{k-1,k}(n-1) + S$$

$$\Delta \theta_{i,j}^{k-1,k}(n) = \varepsilon \cdot \delta_i^k + \alpha \cdot \Delta \theta_{i,j}^{k-1,k}(n-1) + S$$

$$S = -s \cdot \frac{1}{m} \operatorname{sgn} \left(W_{i,j}^{k-1,k}(n) \right) \cdot \left\{ \sum_{i=1,k}^{m} \left| W_{i,j}^{k-1,k}(n) \right| + \left| \theta_{i,j}^{k-1,k}(n) \right| \right\}$$

S: GROWTH CONTROL ITEM

s: GROWTH CONTROL COEFFICIENT

m: NUMBER OF UNITS IN (k-1)TH LAYER

 W, θ : WEIGHT, THRESHOLD

sgn(x): FUNCTION WITH SETTINGS-1 WHEN x < 0, O WHEN x = 0, +1 WHEN x > 0

FIG. 12

FIG. 13

CHANGE MARK	CHANGE	EIXED	CHANGE	••	
	TEMPERATURE 1 TEMPERATURE	TEMPERATURE 2	PRESSURE	••	RESULT
No. 101	13.8	8.9	1.9	•••	ċ

FIG. 14A

CHANGE MARK CHANGE F1XED CHANGE						
20.0 — 2.5 10.0 — 1.0 MPERATURE 1 TEMPERATURE 2 PRESSURE 13.8 8.9 1.9	CHANGE MARK		FIXED	CHANGE		
10.0 — 1.0 MPERATURE 1 TEMPERATURE 2 PRESSURE 13.8 8.9 1.9	MAXIMUM VALUE		1	2.5	•••	
TEMPERATURE 1 TEMPERATURE 2 PRESSURE 13.8 8.9 1.9	MINIMUM VALUE	10.0	ı	1.0	•••	
13.8 8.9 1.9		TEMPERATURE 1	TEMPERATURE 2	PRESSURE	•••	RESULT
	No. 101	13.8	8.9	1.9	•••	i

FIG. 14B

FIG. 15

FIG. 16

FIG. 17

F1G 18

FIG. 19

[A<15] ∧ $[B\ge1.4]$ ∧ $[C\ge10]$ ∧ $[D\ge3]$ → NG DESIRED PREDICTION VALUE = OK

 $[A < 15] \land [B \ge 1.4] \land [C \ge 10] \land [D < 3] \rightarrow 0K?$ NOT DESIRED PREDICTION VALUE

 $[A < 15] \land [B \ge 1.4] \land [C < 10] \rightarrow OK?$ NOT DESIRED PREDICTION VALUE

CHANGING RULE

 $[A < 15] \land [B < 1.4] \rightarrow OK?$ DESIRED PREDICTION VALUE

FIG. 20

FIG. 21

$$\Delta s_{i} = \varepsilon \left[-\frac{\partial E}{\partial s_{i}} \right] = \varepsilon \left[\sum_{j} \left(t_{j} - u_{j} \right) \frac{\partial u_{j}}{\partial s_{i}} \right]
\frac{\partial u_{j}}{\partial s_{i}} = \frac{df(U_{j})}{dU_{j}} \frac{\partial U_{j}}{\partial s_{i}}
= f'(U_{j}) \frac{\partial \left(\sum_{k} h_{k} W_{jk} \right)}{\partial s_{i}}
= f'(U_{j}) \sum_{k} W_{jk} \frac{\partial h_{k}}{\partial s_{i}}
= f'(U_{j}) \sum_{k} W_{jk} \frac{df(H_{k})}{dH_{k}} \frac{\partial H_{k}}{\partial s_{i}}
= f'(U_{j}) \sum_{k} W_{jk} f'(H_{k}) W_{ki}
\Delta s_{i} = \varepsilon \left[\sum_{j} \left(t_{j} - u_{j} \right) f'(U_{j}) \sum_{k} W_{jk} f'(H_{k}) W_{ki} \right]$$

FIG. 22

$$x_{i} \to x_{i} + \Delta x_{i}$$

$$\Delta x_{i} = \varepsilon \left[-\frac{\partial E}{\partial x_{i}} \right] = \varepsilon \left[(t - y) \cdot \frac{\partial y}{\partial x_{i}} \right]$$

$$\frac{\partial y}{\partial x_{i}} = \frac{\partial f(x_{i})}{\partial x_{i}} = \frac{\partial \sum_{i} A_{i} \cdot x_{i}}{\partial x_{i}} = A_{i}$$

$$\therefore \Delta x_{i} = \varepsilon \left[(t - y) \cdot A_{i} \right]$$

FIG. 23