$learning_rate = -1.00, reg_par = -1.00$ 



3.0 3.0 2.5 2.5

 $learning_rate = -1.44$ ,  $reg_par = -1.44$ 



R<sup>2</sup> explained variance

3.0

 $learning_rate = -1.89$ ,  $reg_par = -1.89$ 



3.0 2.00 1.75 2.5 1.50 2.0 1.25

 $learning_rate = -2.33, reg_par = -2.33$ 



2.00 -

learning rate = -2.78, reg par = -2.78



3.0 2.00 1.75 2.5

 $learning_rate = -3.22, reg_par = -3.22$ 



3.0 -

 $learning_rate = -3.67, reg_par = -3.67$ 



 $learning_rate = -4.11, reg_par = -4.11$ 4.0 3.0 3.5 2.5 3.0 2.0 1.5



3.0 3.0 2.5 2.5 2.0 2.0

learning rate = -4.56, reg par = -4.56



R<sup>2</sup> explained variance

### 2.00 -

learning rate = -5.00, reg par = -5.00



8 8 -6 6

 $learning_rate = -1.00, reg_par = -1.00$ 



3.0 -

 $learning_rate = -1.44$ ,  $reg_par = -1.44$ 



 $learning_rate = -1.89$ ,  $reg_par = -1.89$ 3.0 3.0 2.5 2.5 2.0 2.0



 $learning_rate = -2.33, reg_par = -2.33$ 2.00 3.0 1.75 2.5 1.50 2.0 1.25



2.00 -

learning rate = -2.78, reg par = -2.78



2.00 3.0 1.75 2.5 1.50 2.0

 $learning_rate = -3.22, reg_par = -3.22$ 



2.00

 $learning_rate = -3.67, reg_par = -3.67$ 



#### $learning_rate = -4.11, reg_par = -4.11$ 2.00 4.0 1.75 3.5 1.50 3.0 - 2.5 <sup>°</sup> 1.25 counts 1.00



learning\_rate = -4.56, reg\_par = -4.56

2.00
1.75
2.5-



#### 2.00 -

learning rate = -5.00, reg par = -5.00



 $learning_rate = -1.00, reg_par = -1.00$ 



3.0 3.0 2.5 2.5 2.0 2.0

learning\_rate = -1.44, reg\_par = -1.44



R<sup>2</sup> explained variance

3.0 3.0 2.5 2.5 2.0 2.0

 $learning_rate = -1.89$ ,  $reg_par = -1.89$ 



learning rate = -2.33, reg par = -2.332.00 2.00 1.75 1.75 1.50 1.50 1.25 1.25



R<sup>2</sup> explained variance Mean Squared Error [AUC<sup>2</sup>]

2.00

 $learning_rate = -2.78$ ,  $reg_par = -2.78$ 



2.00 - 2.00 - 1.75 -

learning rate = -3.22, reg par = -3.22



 $learning_rate = -3.67, reg_par = -3.67$ 2.00 3.0 1.75 2.5 1.50 2.0 1.25



# learning\_rate = -4.11, reg\_par = -4.11 2.00 1.75



2.00 -

learning rate = -4.56, reg par = -4.56



## 2.00 -

 $learning_rate = -5.00, reg_par = -5.00$ 



5 5 -4 -

 $learning_rate = -1.00, reg_par = -1.00$ 



learning\_rate = -1.44, reg\_par = -1.44

2.00
4.0
1.75



4.0 3.0 3.5 2.5 3.0

 $learning_rate = -1.89$ ,  $reg_par = -1.89$ 



R<sup>2</sup> explained variance

 $learning_rate = -2.33, reg_par = -2.33$ 2.00 3.0 1.75 2.5 1.50 2.0 1.25



learning\_rate = -2.78, reg\_par = -2.78



2.00 3.0 1.75 2.5 -1.50 2.0 1.25

 $learning_rate = -3.22, reg_par = -3.22$ 



R<sup>2</sup> explained variance

4.0 3.0 3.5 2.5 3.0 2.0

 $learning_rate = -3.67, reg_par = -3.67$ 



#### 3.0 2.00

 $learning_rate = -4.11, reg_par = -4.11$ 



 $learning_rate = -4.56$ ,  $reg_par = -4.56$ 2.00 3.0 1.75 2.5 1.50 2.0 1.25



R<sup>2</sup> explained variance

### 2.00 -

learning rate = -5.00, reg par = -5.00



 $learning_rate = -1.00, reg_par = -1.00$ 



learning\_rate = -1.44, reg\_par = -1.44



 $learning_rate = -1.89$ ,  $reg_par = -1.89$ 3.0 4.0 3.5 2.5 3.0 2.0



learning rate = -2.33, reg par = -2.332.00 2.00 1.75 1.75 1.50 1.50 1.25 1.25



Mean Squared Error [AUC<sup>2</sup>] R<sup>2</sup> explained variance 2.00

learning rate = -2.78, reg par = -2.78



 $learning_rate = -3.22, reg_par = -3.22$ 3.0 3.0 2.5 2.5 2.0 2.0



 $learning_rate = -3.67, reg_par = -3.67$ 2.00 3.0 1.75 2.5 1.50 2.0 1.25



R<sup>2</sup> explained variance

 $learning_rate = -4.11, reg_par = -4.11$ 3.0 3.0 2.5 2.5 2.0 2.0 1.5



learning\_rate = -4.56, reg\_par = -4.56

2.00
1.75-



# 2.00 - 3.0 -

 $learning_rate = -5.00, reg_par = -5.00$ 



## 4.0

 $learning_rate = -1.00, reg_par = -1.00$ 



learning\_rate = -1.44, reg\_par = -1.44



3.0 3.0 2.5 2.5 2.0 2.0

 $learning_rate = -1.89$ ,  $reg_par = -1.89$ 



3.0 3.0 2.5 2.5 2.0 2.0

learning rate = -2.33, reg par = -2.33



learning\_rate = -2.78, reg\_par = -2.78

2.00
3.0-



 $learning_rate = -3.22, reg_par = -3.22$ 2.00 3.0 1.75 2.5 1.50 2.0 1.25



3.0

 $learning_rate = -3.67, reg_par = -3.67$ 



# learning\_rate = -4.11, reg\_par = -4.11 3.0 2.00-



3.0 -

 $learning_rate = -4.56$ ,  $reg_par = -4.56$ 



## 2.00 - 3.0 -

 $learning_rate = -5.00, reg_par = -5.00$ 



 $learning_rate = -1.00, reg_par = -1.00$ 



5 6 -5

learning\_rate = -1.44, reg\_par = -1.44



R<sup>2</sup> explained variance

 $learning_rate = -1.89$ ,  $reg_par = -1.89$ 1.0 3.0 2.5 8.0 2.0



2.00 -1.75 -1.50

learning rate = -2.33, reg par = -2.33



2.00

learning rate = -2.78, reg par = -2.78



2.00 -

learning rate = -3.22, reg par = -3.22



 $learning_rate = -3.67, reg_par = -3.67$ 3.0 3.0 2.5 2.5 2.0 2.0



### learning rate = -4.11, reg par = -4.112.00 2.00 1.75 1.75



R<sup>2</sup> explained variance

learning\_rate = -4.56, reg\_par = -4.56

2.00
2.00-



### 2.00 -

learning rate = -5.00, reg par = -5.00



 $learning_rate = -1.00, reg_par = -1.00$ 



4.0

 $learning_rate = -1.44$ ,  $reg_par = -1.44$ 



3.0 3.0 2.5 2.5 2.0 2.0

 $learning_rate = -1.89$ ,  $reg_par = -1.89$ 



 $learning_rate = -2.33$ ,  $reg_par = -2.33$ 3.0 3.0 2.5 2.5 2.0 2.0



3.0

 $learning_rate = -2.78$ ,  $reg_par = -2.78$ 



2.00 -

learning rate = -3.22, reg par = -3.22



 $learning_rate = -3.67, reg_par = -3.67$ 2.00 3.0 1.75 2.5 1.50 2.0 1.25



 $learning_rate = -4.11, reg_par = -4.11$ 2.00 3.0 1.75 2.5 1.50 2.0 1.25 1.00 1.5



3.0 3.0 2.5 2.5 2.0 2.0

 $learning_rate = -4.56$ ,  $reg_par = -4.56$ 



## learning\_rate = -5.00, reg\_par = -5.00 2.00



 $learning_rate = -1.00, reg_par = -1.00$ counts 6 -



learning\_rate = -1.44, reg\_par = -1.44



 $learning_rate = -1.89$ ,  $reg_par = -1.89$ 3.0 3.0 2.5 2.5 2.0 2.0



 $learning_rate = -2.33, reg_par = -2.33$ 2.00 3.0 1.75 2.5 1.50 2.0 1.25 1.00 1.5



3.0

learning rate = -2.78, reg par = -2.78



 $learning_rate = -3.22, reg_par = -3.22$ 3.0 3.0 2.5 2.5 2.0 2.0



 $learning_rate = -3.67, reg_par = -3.67$ 3.0 4.0 3.5 2.5 3.0 2.0 1.5



 $learning_rate = -4.11, reg_par = -4.11$ 3.0 3.0 2.5 2.5 2.0 2.0



 $learning_rate = -4.56$ ,  $reg_par = -4.56$ 4.0 4.0 3.5 3.5 3.0 3.0



 $learning_rate = -5.00, reg_par = -5.00$ 3.0 3.0 2.5 2.5 2.0 2.0



 $learning_rate = -1.00, reg_par = -1.00$ counts 6 -



 $learning_rate = -1.44$ ,  $reg_par = -1.44$ 6 -



 $learning_rate = -1.89$ ,  $reg_par = -1.89$ 



 $learning_rate = -2.33$ ,  $reg_par = -2.33$ counts 5 



 $learning_rate = -2.78$ ,  $reg_par = -2.78$ 



 $learning_rate = -3.22, reg_par = -3.22$ 



learning\_rate = -3.67, reg\_par = -3.67



 $learning_rate = -4.11, reg_par = -4.11$ counts w 4 -

R<sup>2</sup> explained variance

Mean Squared Error [AUC<sup>2</sup>]



 $learning_rate = -5.00, reg_par = -5.00$ 

