

On the principal eigenvalue of a Robin problem with a large parameter

Michael Levitin

Department of Mathematics, Heriot-Watt University

Riccarton, Edinburgh EH14 4AS, U. K.

email M.Levitin@ma.hw.ac.uk

Leonid Parnovski

Department of Mathematics, University College London

Gower Street, London WC1E 6BT, U. K.

email Leonid@math.ucl.ac.uk

Dedicated to Viktor Borisovich Lidskii on the occasion of his 80th birthday

17 January 2005

Abstract

We study the asymptotic behaviour of the principal eigenvalue of a Robin (or generalised Neumann) problem with a large parameter in the boundary condition for the Laplacian in a piecewise smooth domain. We show that the leading asymptotic term depends only on the singularities of the boundary of the domain, and give either explicit expressions or two-sided estimates for this term in a variety of situations.

1 Introduction

Let Ω be an open bounded set in \mathbb{R}^m ($m \geq 1$) with piecewise smooth, but not necessarily connected, boundary $\Gamma := \partial\Omega$. We investigate the spectral boundary value problem

$$-\Delta u = \lambda u \quad \text{in } \Omega, \tag{1.1}$$

$$\frac{\partial u}{\partial n} - \gamma Gu = 0 \quad \text{on } \Gamma. \tag{1.2}$$

In (1.1), (1.2), $\frac{\partial}{\partial n}$ denotes the outward unit normal derivative, λ is the spectral parameter, γ is a positive parameter (which we later on assume to be large), and $G : \Gamma \rightarrow \mathbb{R}$ is a given continuous function. We will always assume that

$$\sup_{y \in \Gamma} G(y) > 0. \quad (1.3)$$

We treat the problem (1.1), (1.2) in the variational sense, associating it with the Rayleigh quotient

$$\mathcal{J}(v; \gamma, G) := \frac{\int_{\Omega} |\nabla v|^2 dx - \gamma \int_{\Gamma} G |v|^2 ds}{\int_{\Omega} |v|^2 dx}, \quad v \in H^1(\Omega), \quad v \not\equiv 0. \quad (1.4)$$

For every fixed γ , the problem (1.1), (1.2) has a discrete spectrum of eigenvalues accumulating to $+\infty$. By

$$\Lambda(\Omega; \gamma, G) := \inf_{v \in H^1(\Omega), \quad v \not\equiv 0} \mathcal{J}(v; \gamma, G) \quad (1.5)$$

we denote the bottom of the spectrum of (1.1), (1.2).

Our aim is to study the asymptotic behaviour of $\Lambda(\Omega; \gamma, G)$ as $\gamma \rightarrow +\infty$ and its dependence upon the singularities of the boundary Γ .

The problem (1.1)–(1.2) naturally arises in the study of reaction-diffusion equation where a distributed absorption competes with a boundary source, see [2, 3] for details.

Remark 1.1. Sometimes, we shall also consider (1.1)–(1.2) for an *unbounded* domain Ω . In this case, we can no longer guarantee either the discreteness of the spectrum of (1.1)–(1.2), or its semi-boundedness below. We shall still use, however, the notation (1.5), allowing, in principle, for $\Lambda(\Omega; \gamma, G)$ to be equal to $-\infty$.

2 Basic properties of the principal eigenvalue

We shall mostly concentrate our attention on the case of constant boundary weight $G \equiv 1$; in this case, we shall denote for brevity

$$\mathcal{J}(v; \gamma) := \mathcal{J}(v; \gamma, 1), \quad \Lambda(\Omega; \gamma) := \Lambda(\Omega; \gamma, 1).$$

See Remark 3.3 for the discussion of the case of an arbitrary smooth $G \not\equiv 1$.

We start with citing the following simple result of [3]:

Lemma 2.1. *For any bounded and sufficiently smooth $\Omega \subset \mathbb{R}^m$, $\Lambda(\Omega; \gamma)$ is a real analytic concave decreasing function of $\gamma \geq 0$, $\Lambda|_{\gamma=0} = 0$, and*

$$\frac{d}{d\gamma} \Lambda(\Omega; \gamma) \Big|_{\gamma=0} = -\frac{|\Gamma|_{m-1}}{|\Omega|_m}.$$

The problem (1.1)–(1.2) with $G \equiv 1$ admits a solution by separation of variables in several simple cases.

Example 2.2. For a ball $B_m(0, 1) = \{|x| < 1\} \subset \mathbb{R}^m$, $\Lambda = \Lambda(B_m(0, 1); \gamma)$ is given implicitly by

$$\begin{aligned} \sqrt{-\Lambda} \tanh \sqrt{-\Lambda} &= \gamma, \quad m = 1, \\ \sqrt{-\Lambda} \frac{I_{m/2}(\sqrt{-\Lambda})}{I_{m/2-1}(\sqrt{-\Lambda})} &= \gamma, \quad m \geq 2, \end{aligned}$$

where I denotes a modified Bessel function. This implies that for any ball $B(a, R) := \{x : |x - a| < R\} \subset \mathbb{R}^m$,

$$\Lambda(B(a, R); \gamma) = -\gamma^2 + O(\gamma^2), \quad \gamma \rightarrow +\infty$$

(independently of the dimension m and radius R); it may be shown that the same asymptotics holds for an annulus $A_m(R_1, R) = \{|x| \in (R_1, R)\}$.

Example 2.3. For a parallelepiped $P(l_1, \dots, l_m) := \{|x_j| < l_j : j = 1, \dots, m\} \subset \mathbb{R}^m$ we get

$$\Lambda(P(l_1, \dots, l_m); \gamma) = -\sum_{j=1}^m \frac{\mu_j^2}{l_j^2},$$

where $\mu_j > 0$ solves a transcendental equation

$$\mu_j \tanh \mu_j = \gamma l_j.$$

Thus we obtain

$$\Lambda(P(l_1, \dots, l_m); \gamma) = -m\gamma^2 + O(\gamma^2), \quad \gamma \rightarrow +\infty.$$

Example 2.4. Let $\Omega = (0, +\infty)$, and $\Gamma = \{0\}$. It is easy to see that the bottom of the spectrum is an eigenvalue $\Lambda((0, +\infty); \gamma) = -\gamma^2$, the corresponding eigenfunction being $\exp(-\gamma x)$. Thus we arrive at a useful (and well-known) inequality

$$\int_0^\infty |v'(x)|^2 dx - \gamma(v(0))^2 \geq -\gamma^2 \int_0^\infty |v(x)|^2 dx, \quad (2.1)$$

valid for all $v \in H^1((0, +\infty))$.

A slightly more complicated example is that of a planar angle $U_\alpha := \{z = x + iy \in \mathbb{C} : |\arg z| < \alpha\}$ of size 2α .

Example 2.5. Let $\Omega = U_\alpha$ with $\alpha < \pi/2$. Again the spectrum is not purely discrete; moreover, the separation of variable does not produce a complete set of generalised eigenfunctions. However, one can find an eigenfunction $u_0(x, y) = \exp(-\gamma x / \sin \alpha)$ and compute an eigenvalue $\lambda = -\gamma^2 \sin^{-2} \alpha$ explicitly. Thus $\Lambda(U_\alpha; \gamma) \leq -\gamma^2 \sin^{-2} \alpha$. We shall now prove that this eigenvalue is in fact the bottom of the spectrum.

Lemma 2.6. *If $\alpha < \pi/2$,*

$$\Lambda(U_\alpha; \gamma) = -\gamma^2 \sin^{-2} \alpha. \quad (2.2)$$

Proof. It is sufficient to show that for all $v \in H^1(U_\alpha)$, we have

$$\int_{U_\alpha} |\nabla v|^2 dz - \gamma \int_{\partial U_\alpha} |v|^2 ds \geq -\gamma^2 (\sin^{-2} \alpha) \int_{U_\alpha} |v|^2 dz. \quad (2.3)$$

As $ds = dy / \sin \alpha$, the left-hand side of (2.3) is bounded below by

$$\int dy \left(\int \left| \frac{\partial v}{\partial x} \right|^2 dx - \frac{\gamma}{\sin \alpha} |v|^2 \right).$$

For each y the integrand is not smaller than $-\gamma^2 (\sin^{-2} \alpha) \int |v|^2 dx$ by (2.1). Integrating over y gives (2.3). \square

Example 2.7. Let us now consider the case of an angle U_α with $\alpha \in [\pi/2, \pi)$.

Lemma 2.8. *If $\alpha \geq \pi/2$,*

$$\Lambda(U_\alpha; \gamma) = -\gamma^2. \quad (2.4)$$

Proof. To prove an estimate above, we for simplicity consider a rotated angle $\tilde{U}_\alpha := \{z = x + iy \in \mathbb{C} : 0 < \arg z < 2\alpha\}$. In order to get an upper bound $\Lambda(\tilde{U}_\alpha; \gamma) \leq -\gamma^2$, we construct a test function in the following manner. Let $\psi(s)$ be a smooth nonnegative function such that $\psi(s) = 1$ for $|s| < 1/2$, and $\psi(s) = 0$ for $|s| > 1$. Set now

$$\chi_\tau(s) = \begin{cases} 1, & \text{if } |s| < \tau - 1, \\ \psi(|s| - (\tau - 1)), & \text{if } \tau - 1 \leq |s| < \tau, \\ 0, & \text{otherwise} \end{cases}$$

(a parameter τ is assumed to be greater than 1). Consider the function

$$v_\tau(x, y) = e^{-\gamma y} \chi_\tau(x\gamma - \tau).$$

Then one can easily compute that

$$\begin{aligned} \mathcal{J}(v_\tau; \gamma) &= \gamma^2 \left(-1 + \frac{\int_{-\infty}^{\infty} |\chi'_\tau(s)|^2 ds}{\int_{-\infty}^{\infty} |\chi_\tau(s)|^2 ds} \right) \\ &= \gamma^2 \left(-1 + \frac{\int_{-1}^1 |\psi'(s)|^2 ds}{\int_{-1}^1 |\psi(s)|^2 ds + 2(\tau - 1)} \right), \end{aligned}$$

and therefore $\mathcal{J}(v_\tau; \gamma) \rightarrow -\gamma^2$ as $\tau \rightarrow \infty$. Thus, $\Lambda(U_\alpha; \gamma) = \Lambda(\tilde{U}_\alpha; \gamma) \leq -\gamma^2$.

To finish the proof, we need only to show that for $v \in H^1(U_\alpha)$,

$$\int_{U_\alpha} |\nabla v|^2 dz - \gamma \int_{\partial U_\alpha} |v|^2 ds \geq -\gamma^2 \int_{U_\alpha} |v|^2 dz. \quad (2.5)$$

Denote $V_\alpha = \{z : \alpha - \pi/2 < |\arg z| < \alpha\} \subset U_\alpha$. The estimate (2.5) will obviously be proved if we establish

$$\int_{V_\alpha} |\nabla v|^2 dz - \gamma \int_{\partial U_\alpha} |v|^2 ds \geq -\gamma^2 \int_{V_\alpha} |v|^2 dz.$$

But this can be done as in the proof of Lemma 2.6, by integrating first along ∂U_α , and then using one-dimensional inequalities (2.1) in the direction orthogonal to ∂U_α . \square

We now consider a generalization of two previous examples to the multi-dimensional case.

Example 2.9. Let $K \subset \mathbb{R}^m = \{x : x/|x| \in M\}$ be a cone with the cross-section $M \subset S^{m-1}$. Any homothety $f : x \mapsto ax$ ($x \in \mathbb{R}^m$, $a > 0$) maps K onto itself. Then, as easily seen by a change of variables $w = \gamma^{-1}x$,

$$\Lambda(K; \gamma) = \gamma^2 \Lambda(K; 1). \quad (2.6)$$

In particular, if K contains a half-space, then, repeating the argument of Lemma 2.8 with minor adjustments, one can show that $\Lambda(K, 1) = -1$ and so

$$\Lambda(K; \gamma) = -\gamma^2. \quad (2.7)$$

All the above examples suggest that in general one can expect

$$\Lambda(\Omega; \gamma) = -C_\Omega \gamma^2 + O(\gamma^2), \quad \gamma \rightarrow +\infty. \quad (2.8)$$

Some partial progress towards establishing (2.8) was already achieved in [3]. In particular, the following Theorems were proved.

Theorem 2.10. *Let $\Omega \subset \mathbb{R}^m$ be a domain with piecewise smooth boundary Γ . Then*

$$\limsup_{\gamma \rightarrow +\infty} \frac{\Lambda(\Omega; \gamma, 1)}{\gamma^2} \leq -1.$$

Theorem 2.11. *Let $\Omega \subset \mathbb{R}^m$ be a domain with smooth boundary $\partial\Omega$. Then*

$$\Lambda(\Omega; \gamma) = -\gamma^2(1 + o(1)), \quad \gamma \rightarrow +\infty.$$

Remark 2.12. The actual statements in [3] are slightly weaker than the versions above, but the proofs can be easily modified. Note that the proof of Theorem 2.10 can be done by constructing a test function very similar to the one used in the proof of Lemma 2.8.

The situation, however, becomes more intriguing even in dimension two, if Γ is not smooth. Suppose that $\Omega \subset \mathbb{R}^2$ is a planar domain with n corner points y_1, \dots, y_n on its boundary Γ . The following conjecture was made in [3]:

Conjecture 2.13. Let $\Omega \subset \mathbb{R}^2$ be a planar domain with n corner points y_1, \dots, y_n on its boundary Γ and let α_j , $j = 1, \dots, n$ denote the inner half-angles of the boundary at the points y_j . Assume that $0 < \alpha_j < \frac{\pi}{2}$. Then (2.8) holds with

$$C_\Omega = \max_{j=1, \dots, n} \left\{ \sin^{-2}(\alpha_j) \right\}.$$

This conjecture was proved in [3] only in the model case when Ω is a triangle.

As we shall see later on, formula (2.8) does not, in general, hold if we allow Γ to have zero angles (i.e., outward pointing cusps, see Example 3.4). We shall thus restrict ourselves to the case when Ω is piecewise smooth in a suitable sense, see below for the precise definition. Under this assumption, we first of all prove that the asymptotic formula (2.8) holds. Moreover, we compute C_Ω explicitly in the planar case, thus proving Conjecture 2.13. In the case of dimension $m \geq 3$, we give some upper and lower bounds on C_Ω , which, in some special cases, amount to a complete answer.

3 Reduction to the boundary

We shall only consider the case when Ω is piecewise smooth in the following sense: for each point $y \in \Gamma$ there exists an infinite “model” cone K_y such that for a small enough ball $B(y, r)$ of radius r centred at y there exists an infinitely smooth diffeomorphism $f_y : K_y \cap B(0, r) \rightarrow \Omega \cap B(y, r)$ with $f_y(0) = y$ and the derivative of f_y at 0 being the identity matrix (we shall write in this case that $\Omega \sim K_y$ near a point $y \in \Gamma$). For example, if y is a regular point of Γ , then K_y is a half-space.

We require additionally that Ω satisfies the uniform interior cone condition [1], i.e. there exists a fixed cone K with non-empty interior such that each K_y contains a cone congruent to K . (See Example 3.4 for a discussion of a case where this condition fails.)

Definition 3.1. Let $\Omega \sim K_y$ near a point $y \in \Gamma$. We denote $C_y := -\Lambda(K_y; 1)$.

Our main result indicates that the asymptotic behaviour of $\Lambda(\Omega; \gamma, 1)$ is in a sense “localised” on the boundary.

Theorem 3.2. *Let Ω be piecewise smooth in the above sense and satisfy the uniform interior cone condition. Then*

$$\Lambda(\Omega; \gamma) = -\gamma^2 \sup_{y \in \Gamma} C_y + o(\gamma^2), \quad \gamma \rightarrow +\infty. \quad (3.1)$$

Remark 3.3. This result can be easily generalised for the case of our original setting of a non-constant boundary weight $G(y)$ satisfying (1.3):

$$\Lambda(\Omega; \gamma, G) = -\gamma^2 \sup_{\substack{y \in \Gamma \\ G(y) > 0}} \{G(y)^2 C_y\} + o(\gamma^2), \quad \gamma \rightarrow +\infty.$$

Example 3.4. Formula (2.8) does not, in general, hold if Γ is allowed to have outward pointing cusps. In particular, for a planar domain

$$\Upsilon_p = \{(x, y) \in \mathbb{R}^2 : x > 0, |y| < x^p\}, \quad p > 1$$

one can show that

$$\Lambda(\Upsilon_p; \gamma) \leq -\text{const} \begin{cases} \gamma^{2/(2-p)} & \text{for } 1 < p < 2, \\ \gamma^N & \text{with any } N > 0 \end{cases}$$

by choosing the test function $v = \exp(-\gamma x^{q_p})$ with $q_p = 2 - p$ for $1 < p < 2$ and $q_p = 2$ for $p \geq 2$.

In order to provide the explicit asymptotic formula for $\Lambda(\Omega; \gamma)$ in the piecewise smooth case it remains to obtain the information on the dependence of the constants C_y upon the local geometry of Γ at y .

It is easy to do this, firstly, in the case of a regular boundary in any dimension, and, secondly, in the two-dimensional case, where the necessary information is already contained in Lemmas 2.6 and 2.8.

Theorem 3.5. *Let Γ be smooth at y . Then $C_y = 1$.*

Moreover, $C_y = 1$ whenever there exists an $(m - 1)$ -dimensional hyperplane H_y passing through y such that for small r , $B(y, r) \cap H_y \subset \bar{\Omega}$.

Theorem 3.6. *Let $\Omega \subset \mathbb{R}^2$ and let $y \in \Gamma$ be such that $\Omega \sim U_\alpha$ near y . Then*

$$C_y = \begin{cases} 1, & \text{if } \alpha \geq \pi/2; \\ \sin^{-2} \alpha, & \text{if } \alpha \leq \pi/2. \end{cases}$$

Theorems 3.2, 3.5, and 3.6 prove the validity of Conjecture 2.13.

In more general cases, we are only able to provide the two-sided estimates on C_y , and obtain the precise formulae only under rather restrictive additional assumptions. These results are collected in Section 5.

4 Proof of Theorem 3.2

We proceed via a sequence of auxiliary Definitions and Lemmas.

Definition 4.1. Let $K \subset \mathbb{R}^m$ be a cone with cross-section $M \subset S^{m-1}$, and let $r > 0$. By $\mathfrak{K}_r = \mathfrak{K}_r(K)$ we denote the family of “truncated” cones $K_{r,R}$ such that

$$K_{r,R} = \{x \in \mathbb{R}^m : \theta := x/|x| \in M \subset S^{m-1}, |x| < rR(\theta)\},$$

where $R : M \rightarrow [1, m]$ is a piecewise smooth function. Thus, for any $K_{r,R} \in \mathfrak{K}_r$ we have

$$K \cap B(0, r) \subset K_{r,R} \subset K \cap B(0, mr).$$

Let $K_{r,R} \in \mathfrak{K}_r$, and let \sharp be an index assuming values D or N (which in turn stand for Dirichlet or Neumann boundary conditions). By $\Lambda^\sharp(K_{r,R}; \gamma)$ we denote the bottom of the spectrum of the boundary value problem (1.1) considered in $K_{r,R}$ with boundary conditions (1.2) on $\partial K_{r,R} \cap \partial K = \{x \in \partial K_{r,R} : x/|x| \in \partial M\}$ and with the boundary condition defined by \sharp on the rest of the boundary $\{x : x/|x| \in M, |x| = R(\theta)\}$ (this boundary value problem is of course considered in the variational sense).

It is important to note that a simple change of variables as in Example 2.9 leads to the re-scaling relations

$$\Lambda^\sharp(K_{r,R}; \gamma) = \gamma^2 \Lambda^\sharp(K_{r\gamma,R}; 1). \quad (4.1)$$

These formulae show that the bottoms of the spectra $\Lambda^\sharp(K_{r,R}; \gamma)$ are determined (modulo a multiplication by γ^2) by a single parameter $\mu := r\gamma$ via $\Lambda^\sharp(K_{\mu,R}; 1)$. It is therefore the latter which we proceed to study.

The first Lemma gives a relation between the bottoms of the spectra for an infinite cone K and its finite “cut-offs”.

Lemma 4.2. *Let $K_{r,R} \in \mathfrak{K}_r(K)$ and let $\mu = r\gamma$. Then, as $\mu \rightarrow \infty$,*

$$\frac{\Lambda^\sharp(K_{r,R}; \gamma)}{\gamma^2} = \Lambda(K; 1) + o(1).$$

Proof of Lemma 4.2. By (4.1), we need to prove that

$$\lim_{\mu \rightarrow \infty} \Lambda^\sharp(K_{\mu,R}; 1) = \Lambda(K; 1).$$

This can be done by considering a function $v \in H^1(K)$ and comparing the Rayleigh quotients $J(v; 1)$ with “truncated” quotients $J(v\psi(\cdot/\mu); 1)$, where ψ is the same as in the proof of Lemma 2.8. An easy but somewhat tedious computation which we omit shows that as $\mu \rightarrow +\infty$, we have $J(v\psi(\cdot/\mu); 1) \rightarrow J(v; 1)$, which finishes the proof. \square

Let $y \in \Gamma$, and let K_y be a cone with cross-section M such that $\Omega \sim K_y$ near y . Let $r > 0$ and $K_{y,r,R} \in \mathfrak{K}_r(K_y)$. We define $\Omega_{y,r,R} := f_y(K_{y,r,R})$, and introduce the numbers $\Lambda^\sharp(\Omega_{y,r,R}; \gamma)$ similarly to $\Lambda^\sharp(K_{y,r,R}; \gamma)$.

Lemma 4.3. *Let $\mu > 0$ be fixed. Then*

$$\lim_{r \rightarrow +0} \frac{\Lambda^\sharp(K_{y,r,R}; \mu/r)}{\Lambda^\sharp(\Omega_{y,r,R}; \mu/r)} = 1 \quad (4.2)$$

uniformly over $y \in \Gamma$.

Proof of Lemma 4.3. Let us denote by $\tilde{\Omega}_{y,r,R}$ an image of $\Omega_{y,r,R}$ under the homothety $h_{y,r} : z \mapsto y + r^{-1}(z - y)$. Conditions imposed on the mapping f_y imply that as $r \rightarrow +0$, $\tilde{\Omega}_{y,r,R} \rightarrow K_{y,1,R}$ in the following sense. The volume element of $\tilde{\Omega}_{y,r,R}$ at a point $(h_{y,r} \circ f_y)(xr)$ tends to the volume element of $K_{y,1,R}$ at point x , and the analogous statement holds for the area element of the boundary. Since μ is fixed, this implies that the bottoms of the spectra $\Lambda^\sharp(\tilde{\Omega}_{y,r,R}; \mu)$ (with boundary conditions as described above) converge to $\Lambda^\sharp(K_{y,1,R}; \mu)$ as $r \rightarrow +0$. Now the same re-scaling arguments as before imply (4.2). A simple compactness argument shows that this convergence is uniform in $y \in \Gamma$. \square

Remark 4.4. It is easy to see that the estimates of Lemmas 4.2 and 4.3 are uniform in R if we assume that all first partial derivatives of R are bounded by a given constant.

We can now conclude the proof of Theorem 3.2 itself. First of all, given an arbitrary positive ϵ and $y \in \Gamma$, we use Lemma 4.2 to find a positive $\mu(y)$ such that

$$|\gamma^{-2} \Lambda^\#(K_{y,r,R}; \gamma) + C_y| < \frac{\epsilon}{2}, \quad (4.3)$$

whenever $\gamma \geq r^{-1}\mu(y)$. It is easy to see that $\mu(y)$ can be chosen to be continuous on each smooth component of the boundary. Therefore, there exists $\tilde{\mu} = \sup_{y \in \Gamma} \mu(y)$. Let us fix this value of $\tilde{\mu}$ for the rest of the proof.

Formula (3.1) splits into two asymptotic inequalities. The inequality

$$\Lambda(\Omega; \gamma) \leq -\gamma^2 \sup_{y \in \Gamma} C_y + \epsilon \gamma^2, \quad \gamma \rightarrow +\infty$$

follows immediately from formula (4.3), Lemma 4.3 (with $\sharp = D$ and $\mu = \tilde{\mu}$) and the obvious inequality

$$\Lambda(\Omega; \gamma) \leq \Lambda^D(\Omega_{y,r,R}; \gamma).$$

In order to prove the opposite inequality

$$\Lambda(\Omega; \gamma) \geq -\gamma^2 \sup_{y \in \Gamma} C_y + \epsilon \gamma^2, \quad \gamma \rightarrow +\infty, \quad (4.4)$$

we consider a partition $\overline{\Omega} = \overline{\bigsqcup_{\ell=0}^N Q_\ell}$ by disjoint sets Q_ℓ satisfying the following properties: $Q_0 \Subset \Omega$ (i.e. $Q_0 \cap \Gamma = \emptyset$), and for each $\ell \geq 1$, $Q_\ell = \Omega_{y,r,R} = f_y(K_{r,R})$ with some $r > 0$, $y \in \Gamma$, and $K_{r,R} \in \mathfrak{K}_r(K_y)$, such that $\Omega \sim K_y$ near y . Such a partition can be constructed for each sufficiently small $r > 0$ by considering, for example, a partition of \mathbb{R}^m into cubes of size r , and including into Q_0 all the cubes which lie strictly inside Ω . Note that $\Gamma = \overline{\bigcup_{\ell=1}^N (\Gamma \cap Q_\ell)}$.

Now we use the following inequality: assuming that $J(v; \gamma)$ is negative for

some $v \in H^1(\Omega) \setminus \{0\}$, we have

$$\begin{aligned}
 J(v; \gamma) &= \frac{\int_{\Omega} |\nabla v|^2 dx - \gamma \int_{\Gamma} |v|^2 ds}{\int_{\Omega} |v|^2 dx} \geq \frac{\int_{\Omega \setminus Q_0} |\nabla v|^2 dx - \gamma \int_{\Gamma} |v|^2 ds}{\int_{\Omega \setminus Q_0} |v|^2 dx} \\
 &= \frac{\sum_{\ell=1}^N \int_{Q_\ell} |\nabla v|^2 dx - \gamma \sum_{\ell=1}^N \int_{\Gamma \cap Q_\ell} |v|^2 ds}{\sum_{\ell=1}^N \int_{Q_\ell} |v|^2 dx} \\
 &\geq \min_{\ell=1 \dots N} \frac{\int_{Q_\ell} |\nabla v|^2 dx - \gamma \int_{\Gamma \cap Q_\ell} |v|^2 ds}{\int_{Q_\ell} |v|^2 dx}.
 \end{aligned} \tag{4.5}$$

Note that the last expression in (4.5) is bounded below by $\inf \Lambda^N(\Omega_{y,r,R}; \gamma)$, where the infimum is taken over all $y \in \Gamma$ and all functions R admissible in the sense of Definition 4.1.

Finally, taking the size of the partition $r \rightarrow +0$, and using formula (4.3) and Lemma 4.2 with $\mu = \tilde{\mu}$, we obtain (4.4).

5 Estimates in the general case

Let us now discuss the general case. As we have already shown, the problem of computing the constant $C_\Omega = \sup_{y \in \Gamma} C_y$ in (2.8) is reduced to calculating the bottoms of the spectra $\Lambda(K_y; 1) = -C_y$ for infinite model cones K_y . We have also shown that $C_y = 1$ when Γ is smooth at y . We now consider a case when Γ is singular at y .

Let j be the co-dimension of a singularity of Γ at y . By this we mean that $K_y = \mathbb{R}^{m-j} \times \tilde{K}$, with $\tilde{K} = \{z \in \mathbb{R}^j : z/|z| \in \tilde{M}\}$, with the singular cross-section $\tilde{M} \subset S^{j-1}$. If $j \geq 3$, we restrict our analysis to the case when the closure of \tilde{M} is contained in open hemisphere $\{\theta \in S^{j-1} : \theta_1 > 0\}$. For simplicity, we assume that \tilde{M} is convex (this stronger requirement may be relaxed, see Remark 5.2).

The case $j = 1$ corresponds to a regular point $y \in \Gamma$. The case $j = 2$ is treated in exactly the same way as the planar case, as in this situation $\tilde{K} = U_\alpha$ and the constant C_y is the same as in Theorem 3.6.

Consider now the case $j \geq 3$. It might seem natural to introduce the spherical coordinates on \tilde{K} at this stage. Unfortunately, such an approach is not likely to succeed — although the variables separate, the resulting lower-dimensional problems are coupled in a complicated way. Indeed, Example 2.5 shows that the principal eigenfunction is not easily expressed in spherical coordinates. Therefore, we will try to choose a coordinate frame more suitable for this problem. Once more, Example 2.5 gives us a helpful insight into what this coordinate frame should be.

We need more notation. Let $w \in \tilde{K}$ with $\theta = w/|w| \in \tilde{M}$. We define Π_θ as a $(j - 1)$ -dimensional hyperplane passing through θ and orthogonal to w . Let $P_\theta = \Pi_\theta \cap \partial \tilde{K}$. We need to consider only the points θ such that P_θ is bounded and $\theta \in P_\theta$. Such directions θ always exist due to the convexity of \tilde{M} .

We now introduce the coordinates $(\xi, \eta) \in \mathbb{R} \times \mathbb{R}^{j-1}$ of a point $z \in \mathbb{R}^j$, such that $\xi = z \cdot \theta$ is a coordinate along θ and $\eta = z - \xi\theta$ represent coordinates along the plane Π_θ .

We also need the spherical coordinates (ρ, φ) with the origin at θ on Π_θ , such that $\rho = |\eta|$ and $\varphi = \eta/|\eta| \in S^{j-2}$. We define a function $b(\varphi) = b_\theta(\varphi)$ in such a way that $P_\theta = \{(\rho, \varphi) : \rho = b(\varphi)\}$.

In these coordinates,

$$\tilde{K} = \{(\xi, \rho, \varphi) : \xi > 0, \rho < \xi b_\theta(\varphi)\} \quad (5.1)$$

and

$$\partial \tilde{K} = \{(\xi, \rho, \varphi) : \xi > 0, \rho = \xi b_\theta(\varphi)\}. \quad (5.2)$$

Denote

$$\sigma_\theta(\varphi) := \sqrt{1 + b_\theta^{-2}(\varphi) + (b'_\theta(\varphi))^2 b_\theta^{-4}(\varphi)}. \quad (5.3)$$

We are ready now to formulate a general statement in the case $j = 3$.

Theorem 5.1. *Let $y \in \Gamma$ be a singular point of co-dimension three in the above sense. Then the constant C_y satisfies the following two-sided estimates:*

$$\sup_\theta \left(\frac{\int_{S^1} b_\theta^2(\varphi) \sigma_\theta(\varphi) d\varphi}{\int_{S^1} b_\theta^2(\varphi) d\varphi} \right)^2 \leq C_y \leq \inf_\theta \sup_\varphi \sigma_\theta^2(\varphi) \quad (5.4)$$

Remark 5.2. Theorem 5.1 can be extended to the case of non-convex \widetilde{M} . Then, the function $b_\theta(\varphi)$ (which defines the boundary) may become multivalued. In that case we need to treat the integrals in the left-hand side of (5.4) separately along each branch of b_θ , and count them with a plus or minus sign.

Proof of Theorem 5.1. The separation of variables shows that $C_y = -\Lambda(\widetilde{K}; 1)$. We start by estimating C_y below (and thus $\Lambda(\widetilde{K}; 1)$ above). Let us fix $\theta \in \widetilde{M}$ satisfying the above conditions; for brevity we shall omit the subscript θ in all the intermediate calculations.

Consider the following test function

$$v(z) = \exp(-a\xi), \quad z = (\xi, \rho, \varphi) \in \widetilde{K}, \quad (5.5)$$

where a is a positive parameter to be chosen later.

Then we explicitly calculate

$$\int_{\widetilde{K}} v^2(z) dz = \int_0^\infty \exp(-2a\xi) d\xi \int_{S^1} d\varphi \int_0^{\xi b(\varphi)} \rho d\rho = \frac{1}{8a^3} \int_{S^1} b^2(\varphi) d\varphi \quad (5.6)$$

and

$$\int_{\widetilde{K}} |\nabla v(z)|^2 dz = a^2 \int_{\widetilde{K}} v^2(z) dz = \frac{1}{8a} \int_{S^1} b^2(\varphi) d\varphi. \quad (5.7)$$

Let us now calculate the integral along the boundary $\partial\widetilde{K}$. For each $\tilde{\eta} = (\tilde{\rho}, \tilde{\varphi}) \in \mathbb{R}^2$ there exists a unique point $z = (\tilde{\xi}, \tilde{\eta}) = (\tilde{\xi}(\tilde{\eta}), \tilde{\eta}) \in \partial\widetilde{K}$, where one can easily compute $\tilde{\xi}(\tilde{\eta}) = \frac{\tilde{\rho}}{b(\tilde{\varphi})}$. Thus the area element of the boundary ds can

be expressed as $\frac{1}{\cos \beta} d\tilde{\eta}$, where β is an angle between two planes. One of these planes is Π_θ and the other one is the plane containing the origin and the straight line L which lies in Π_θ and is tangent to P_θ at the point $\xi = 1$, $\rho = b(\tilde{\varphi})$, $\varphi = \tilde{\varphi}$. Without loss of generality we assume now that $\tilde{\varphi} = 0$, otherwise we just rotate the picture. Then the equation of L in cartesian coordinates $\eta = (\eta_1, \eta_2)$ on P_θ becomes $L = \{\eta_1 = b(0) + tb'(0), \eta_2 = b(0)t : t \in \mathbb{R}\}$. It is a simple geometric exercise to show that the base of the perpendicular dropped from the origin onto L corresponds to the parameter value $t^* = -\frac{b(0)b'(0)}{b(0)^2 + (b'(0))^2}$ and therefore this base point is given by $(\eta_1^*, \eta_2^*) = \frac{b(0)^2}{b(0)^2 + (b'(0))^2}(b(0), -b'(0))$. Another geometric exercise shows that $\cot \beta$ is equal to the length of the vector

(η_1^*, η_2^*) , and therefore

$$\frac{1}{\cos \beta} = \sqrt{1 + \cot^{-2} \beta} = \sqrt{1 + b^{-2}(0) + (b'(0))^2 b^{-4}(0)}.$$

Thus, the area element, with account of (5.3), is

$$ds = \frac{1}{\cos \beta} d\tilde{\eta} = \sqrt{1 + b^{-2}(\tilde{\varphi}) + (b'(\tilde{\varphi}))^2 b^{-4}(\tilde{\varphi})} d\tilde{\eta} = \sigma(\tilde{\varphi}) d\tilde{\eta}, \quad (5.8)$$

and we can evaluate the boundary contribution as

$$\begin{aligned} \int_{\partial \tilde{K}} v^2(z) ds &= \int_{\mathbb{R}^2} \exp(-2a\tilde{\xi}) \sigma(\tilde{\varphi}) d\tilde{\eta} \\ &= \int_{S^1} d\tilde{\varphi} \sigma(\tilde{\varphi}) \int_0^\infty \tilde{\rho} \exp(-2a\tilde{\rho}/b(\tilde{\varphi})) d\tilde{\rho} \\ &= \frac{1}{4a^2} \int_{S^1} b^2(\varphi) \sigma(\varphi) d\varphi. \end{aligned} \quad (5.9)$$

Combining now (5.6), (5.7), and (5.9), we obtain

$$J(v; 1) = a^2 - \frac{2a \int_{S^1} b^2(\varphi) \sigma(\varphi) d\varphi}{\int_{S^1} b^2(\varphi) d\varphi}.$$

Optimising with respect to a gives

$$a = \frac{\int_{S^1} b_\theta^2(\varphi) \sigma(\varphi) d\varphi}{\int_{S^1} b_\theta^2(\varphi) d\varphi}, \quad (5.10)$$

and further optimization with respect to θ produces the desired lower bound in (5.4).

Let us now prove the upper bound on C_y in (5.4), which corresponds to the lower bound on $\Lambda(\tilde{K}; 1)$. We need to show that for any $v \in H^1(\tilde{K})$ and any $\theta \in \widetilde{M}$ the following inequality holds:

$$\int_{\tilde{K}} |\nabla v(z)|^2 dz - \int_{\partial \tilde{K}} |v(z)|^2 ds \geq - \left(\sup_{\varphi} \sigma(\varphi) \right)^2 \int_{\tilde{K}} |v(z)|^2 dz. \quad (5.11)$$

Using the obvious estimate

$$\int_{\tilde{K}} |\nabla v|^2 dz \geq \int_{\tilde{K}} |\partial_\xi v|^2 dz,$$

formula (5.8) for the area element, and inequality (2.1) in the variable ξ for each value of η , we arrive at (5.11). This completes the proof. \square

Remark 5.3. In the case of a three-edged corner (i.e. when \tilde{M} is a two-dimensional spherical triangle) the left- and right-hand sides of (5.4) in fact coincide, so Theorem 5.1 gives the exact expression for C_y . The same is true if \tilde{M} is a spherical polygon which has an inscribed circle (i.e., a circle touching all the sides of \tilde{M}). Indeed, in this case the supremum in the left-hand side and the infimum in the right-hand side of (5.4) are equal and are attained when θ is the centre of the inscribed circle. This immediately follows from the fact that in this case and for this choice of θ , $\sigma \equiv \text{const}$. Moreover, it is easy to see that the test function (5.5) with the parameter a given by (5.10) is an eigenfunction with the eigenvalue at the bottom of the spectrum $\Lambda(\tilde{K}; 1)$.

Thus, Theorems 3.5, 3.6, and 5.1 provide an exact asymptotics of $\Lambda(\Omega; \gamma)$ whenever $m = 3$ and each vertex of Ω has three edges coming from it.

Assume now that $j > 3$. This case is pretty much similar to the previous one (in particular, the test function used in obtaining the estimate below on C_y is still given by (5.5)), the only difference being that the area element of the boundary now becomes a volume element of co-dimension one and is much more cumbersome to calculate. We skip the detailed calculations.

In order to state the result, we need more notation. Define a $(j - 2)$ -dimensional vector $\zeta_\theta(\varphi) := b_\theta(\varphi) \nabla_\varphi b_\theta(\varphi)$ and $(j - 2) \times (j - 2)$ matrix $Z_\theta(\varphi) := b_\theta^2(\varphi) I + (\nabla_\varphi \otimes \nabla_\varphi) b_\theta(\varphi)$. Now put $\Psi_\theta(\varphi) := (Z_\theta^{-1}(\varphi) \zeta_\theta(\varphi))$ and

$$\Sigma_\theta(\varphi) := \sqrt{1 + ((b_\theta(\varphi) - \Psi_\theta(\varphi) \cdot \nabla_\varphi b_\theta(\varphi))^2 + b_\theta^2(\varphi) |\Psi_\theta(\varphi)|^2)^{-1}}. \quad (5.12)$$

Theorem 5.4. *Let $y \in \Gamma$ be a singular point of co-dimension $j \geq 4$ in the above sense. Then the constant C_y satisfies the following two-sided estimates:*

$$\sup_\theta \left(\frac{\int_{S^{j-2}} b_\theta^{j-1}(\varphi) \Sigma_\theta(\varphi) d\varphi}{\int_{S^{j-2}} b_\theta^{j-1}(\varphi) d\varphi} \right)^2 \leq C_y \leq \inf_\theta \sup_\varphi \Sigma_\theta^2(\varphi). \quad (5.13)$$

Remark 5.5. It is easily seen that Theorem 5.1 is in fact a partial case of Theorem 5.4 if we formally set $j = 3$ in the latter. Indeed, for $j = 3$ all the quantities depend upon a scalar parameter φ , and we obtain

$$\zeta_\theta(\varphi) = b_\theta(\varphi)b'_\theta(\varphi), \quad Z_\theta(\varphi) = b_\theta^2(\varphi) + (b'_\theta(\varphi))^2, \quad \Psi_\theta(\varphi) = \frac{b_\theta(\varphi)b'_\theta(\varphi)}{b_\theta^2(\varphi) + (b'_\theta(\varphi))^2},$$

giving

$$\begin{aligned} \Sigma_\theta(\varphi) &= \sqrt{1 + \left(\left(b_\theta(\varphi) - \frac{b_\theta(\varphi)(b'_\theta(\varphi))^2}{b_\theta^2(\varphi) + (b'_\theta(\varphi))^2} \right)^2 + b_\theta^2(\varphi) \frac{(b'_\theta(\varphi))^2}{(b_\theta^2(\varphi) + (b'_\theta(\varphi))^2)^2} \right)^{-1}} \\ &= \sqrt{1 + \frac{b_\theta^2(\varphi) + (b'_\theta(\varphi))^2}{b_\theta^4(\varphi)}} = \sigma_\theta(\varphi), \end{aligned}$$

so that formula (5.13) becomes (5.4).

Remark 5.6. As before, the estimates (5.13) give the precise value of C_y whenever M is a $(j - 1)$ -dimensional spherical polyhedron which admits an inscribed ball (for example when M has exactly j faces). Moreover, the bottom of the spectrum is again an eigenvalue corresponding to the eigenfunction (5.5).

Acknowledgements: our collaboration was partially supported by the EP-SRC Spectral Theory Network.

References

- [1] Gilbarg, D. and Trudinger, N. S. *Elliptic partial differential equations of second order*, Springer, Berlin (1983).
- [2] Lacey, A. A., Ockendon, J. R., Sabina, J., and Salazar, D. Perturbation analysis of a semilinear parabolic problem with nonlinear boundary conditions. *Rocky Mountain J. Math.* **26** (1996), no. 1, 195–212.
- [3] Lacey, A. A., Ockendon, J. R., and Sabina, J. Multidimensional reaction diffusion equations with nonlinear boundary conditions. *SIAM J. Appl. Math.* **58** (1998), no. 5, 1622–1647.