Running A.I

정원석

1st 함께하는 딥러닝 컨퍼런스 06.28

소개

정원석

뉴욕시립대 - Baruch college (Data Science Major)

ConnexionAl Freelance Researcher

모두의연구소 CTRL (Contest in RL) 랩장

DeepLearningCollege 강화학습 연구원

Github:

https://github.com/wonseokjung

Facebook:

https://www.facebook.com/ws.jung.798

Blog:

https://wonseokjung.github.io/

순서

- 1. Reinforcement Learning
- 2. Atari
- 3. SuperMario
- 4. Sonic
- 5. Prosthetics
- 6.Latest trend

The Rise of Reinforcemet Learning

By Wonseok Jung

Reinforcement learning

아기는 어떻게 배울까?

바라본다

만진다

웃는다

운다

아기가 자라면서, 주위를 바라보고, 팔을 들고, 노는 행동을 누군가가 가르쳐서 하는 것은 아닐것이다.

아이가 학습하는 과정

수학적인분석, 계산 실험

아이가 환경과 상호작용을 하며 배우는 방법과 같이 수학적인 분석과, computation 실험으로 학습하는 방법을 'Reinforcement learning(강화학습)'이라고 한다.

Reward를 최대로 하는 action 선택

1. 반지를 준다

2. 영화를 보자고 한다.

3.생각에 잠긴다.

4. 택시를 잡는다.

Reinforcement learning은 Reward(보상)을 최대화 하는 action(행동)을 선택한다.

Fail and Success

Learner(배우는자)는 여러 action을 해보며, reward를 가장 높게 받는 action을 찾는다.

https://goo.gl/images/GoHQYh

Reinforcement Learning

선택된 action이 당장의 reward 뿐만 아닌,

다음의 상황 또는 다음 일어나게 될 reward에도 영향을 끼칠수도 있다.

Exploration and Exploitation

Agent

Exploration

Agent는 reward를 더 많이 받는 action을 선택하기 위해 exploitation을 해야 하지만, 여러가지 action을 골고루 해보며 많은 상황을 경험하기 위해서는 exploration을 해야한 다.

Markov Decision process

수 `t+ l Agent는 MDP를 통해 env와 상호작용을 하며 배운다.

Atari

High dimensional state

Discrete actions

Deeplearning

딥러닝의 등장인해 으로 high dimensional data를 input으로 받는것이 가능해졌다.

Deep learning+Reinforcement Learning

deep network와 reinforcement learning이 결합한 알고리즘

Deepmind, DQN

Deeplearning을 강화학습에 적용하여, 사람보다 플레이를 잘하는 인공지능을 만듬

Human-level control through deep reinforcement learning

Volodymyr Nnih¹*, Kosay Kawakeuoglu¹*, Bavid Silver¹*, Andrei A. Rusa¹, Joel Veness¹, Marc G. Bellemare¹, Alex Graves¹, Martia Riedmiller¹, Andrees K. Fidjeland¹, Georg Ostrovski¹, Stig Petersen¹, Charles Beattie¹, Amr Sadik¹, Ioannis Antonoglou¹, Holen King¹, Dharshan Kumaran¹, Daan Wierstaa¹, Shane Legg¹ & Demis Hassakis¹

Deep Q network Architecture

Atari에서 DQN의 한계

성능이 상위권인 환경

성능이 중 하위권인 환경

Skiing Chopper command

배경이 변하는 환경에서는 학습 성능이 떨어진다.

Result

JamesBond

Result Skiing

Result

Command chopper

더 복잡한 state와 더 많은 action이 있는 환경에서는 ?

High dimensional state

SuperMario

Discrete actions Complex Environment

First challenge - SuperMario Bros

1985 Nintendo

강화학습으로 똑똑한 Mario를 만들어보자

벽돌깨기와 슈퍼마리오의 Goal의 비교

벽돌을 모두 없애는 것이 목표

슈퍼마리오는 깃발을 잡는것이 목표

Reward - Breakout

State

State: 화면, [210, 260, 3]

Action: None, 왼쪽, 오른쪽

Reward: 벽돌 격파

벽돌을 없앨수록 높은 Reward를 받는다.

Reward - 슈페마리오

State

State: 화면

Action : 상, 하 , 좌, 우,점프,달리기, action의 조합

Reward: 앞으로 전진할때 Reward +1, 뒤로가면 -1

Transition Probability: 1

도착지인 깃발에 가까이 갈수록 높은 reward를 받는다.

DQN을 사용하여 학습

계속되는 실패...

https://youtu.be/zRf_7Xa_MSE

원인이 무엇일까?

Reward 설정

Penalty, Bonus reward本計

목표달성하지 못하면 -

시간이 지날때마다 -

깃발에서 멀어지면 -

깃발에 가까워지면 +

목표에 도착하면 +

Deep learning model

VGG model and regular 비교

더 깊게 쌓아보자

https://goo.gl/images/s8XrCK

https://goo.gl/images/eoXooC

Level 1 통과!

After

7000Episodes

6 Days

https://youtu.be/WILBRsgSFt8

풀리지 않은 문제들

각 Level의 화면이 다르기 때문에 General agent를 만들기가 어렵다.

레벨 2를 학습시키는 도중..

Exploration??

https://youtu.be/EvyM4ZUhDpE

Sonic High dimensional state Discrete actions

More Complex Environment

Skills

OpenAl Retro challenge

OpenAI에서 개최한 Sonic Contest에 참여

더 어려워진 난이도와 많아진 action 조합

action의 조합 + skill

또한 복잡성이 높아짐

최신 DQN 알고리즘을 사용해보자

To the Rainbow

Rainbow: Combining Improvements in Deep Reinforcement Learning

Matteo Hessel	Joseph Modayil	Hado van Hasselt	Tom Schaul	Georg Ostrovski
DeepMind	DeepMind	DeepMind	DeepMind	DeepMind
Will Dabney DeepMind	Dan Horgan	Bilal Piot	Mohammad Azar	David Silver
	DeepMind	DeepMind	DeepMind	DeepMind

2017년 10월 Deepmind에서 Rainbow DQN을 발표

Extension to DQN

- 1.Double Q-learning.
- 2.Prioritized replay.
- 3. Dueling networks. + 7. A3C

https://wonseokjung.github.io//reinforcementlearning/update/RL-Totherb7/

- 4.Multi-step learning.
- 6.Distributional RL.

5, Noisy Nets.

참고 :

https://github.com/wonseokjung/wonseokjung.github.io/blob/master/_posts/2018-05-23-RL-Totherb7.md

Deep Q network

To the Rainbow-2

DQN계열의 알고리즘6개와 A3C를 조합하여 만든 강화학습 알고리즘이다.

Atari환경에서의 성능비교

Rainbow를 사용하여 Sonic을 학습

Sonic -Rainbow DQN(with noisy network, epsilon =0)

https://contest.openai.com/videos/132.mp4

상위 10%로 OpenAl 대회 마무리!

게임이 아닌 더 많은 action을 가진 agent도

강화학습으로 학습이 가능할까?

A.I Prosthetics

High dimensional state
Continuous actions

NIPS 2018: Al for Prosthetics Challenge

Action in Real world

Discrete Action

Continuos Action

https://twitter.com/iamruj

DQN solved High dimensional state, but not continues action

Two methods of choosing action

- 1 action-value:
 - Learning the action value
 - Estimate action value을 바탕으로 action을 선택한다.
 - Policies would not even exist without the action-value estimates

$$q^{\pi}(s, a) = E_{\pi}[G_t \mid S_t = s, A_t = a]$$

- 2. Parameterized policy:
 - select actions without consulting value function
 - Value function still be used to learn policy parameter
 - Value function이 action을 선택하는 기준으로 사용되지 않는다

$$J(heta)$$
 : Performance measure $heta_{t+1} = heta_t + lpha \widehat{igtriangledown J(heta)}$

Select action using PG Method

Continuos Action

https://www.cs.ubc.ca/~gberseth/blog/demystifying-the-many-deep-reinforcement-learning-algorithms.html

https://www.youtube.com/watch?v=hx_bgoTF7bs&t=98s

너무 웃기잖아...

Community에 올라온 글중..

강화학습에서 풀어야할 문제들

Latest trends

DeepMimic

Reference Motion을 보고 따라하는 에이전트

더이상 과음은 하지 않 도록..

This virtual stuntman could improve video game physics

https://www.youtube.com/watch?v=XCLSkFKTWyg

이런 시뮬레이션 환경을 개인이 만들수 있을까?

Unity ml-agent

Unity Machine Learning Agents를 사용하여 개인이 환경을 제작하는 것이 가능

Unity ml-agent

Imitation learning

사람이 플레이한것을 정답으로 학습

https://www.youtube.com/watch?v=kpb8ZkMBFYs&feature=youtu.be

Unity ml-agent

Curriculum learning

https://youtu.be/vRPJAefVYEQ

Very easy

Very hard

Exploration? Sparse Reward?

Exploration

Playing hard exploration games by watching YouTube

Yusuf Aytar", Tobias Pfaff", David Budden, Tom Le Paine, Ziyu Wang, Nando de Freitas

 $\label{eq:condition} DecpMind, London, UK \\ \{yusufeytar, tpfaff, budden, tpaine, ziyu, nandodefreitas\} \\ @google.com$

(a) An example path

(b) Aligned frames

(c) Our embedding

(d) Pixel embedding

Summary

- 1. Reinforcement Learning
- 2. Atari
- 3. SuperMario
- 4.Sonic
- 5. Prosthetics
- 6.Latest trend

The Rise of Reinforcemet Learning

By Wonseok Jung

감사합니다.

Github:

https://github.com/wonseokjung

Facebook:

https://www.facebook.com/ws.jung.798

Blog:

https://wonseokjung.github.io/