# Universal Style Transfer

Via feature transforms

# Presentation Agenda



# What is "Universal Style Transfer?"



#### Previous Works

#### Optimization based method

- Minimizes style & content loss
- Can generalize
- Very slow style transfer

#### Trained Feed Forward method

- It will adjust mean & variance
- Faster style transfer
- Limited to fixed number of styles

Trade off between Generalization, Quality & Efficiency

## Previous Works

#### Optimization based method



















# Proposed Algorithm

- Reconstruction decoder
- Whitening & Coloring Transform
- Multi level stylization

# Reconstruction Decoder



## VGG Architecture



#### Loss function

$$L = ||I_o - I_i||_2^2 + \lambda ||\Phi(I_o) - \Phi(I_i)||_2^2$$

# Whitening & Coloring Transforms



#### Whitening



$$f_c \ f_c^ op = E_c D_c E_c^ op.$$
 and  $(\hat{f}_c \hat{f}_c^ op = I)$ 

$$\hat{f}_c = E_c D_c^{-\frac{1}{2}} E_c^{\mathsf{T}} f_c ,$$





#### Coloring

$$(\hat{f_{cs}} \, \hat{f_{cs}}^{\top} = f_s \, f_s^{\top})$$
  $\hat{f_{cs}} = \hat{f_{cs}} + m_s$ 

$$\hat{f_{cs}} = E_s D_s^{\frac{1}{2}} E_s^{\top} \hat{f_c}$$

# Multi Level Stylization





# Multi Level Stylization



# Multi Level Stylization



### Textures & Masks









# Our Work

#### Style Transfer



Content Image



Style Image



Style Transfer

## Masking

















Original Content Image



#### Masked Output



#### **Texture Transformation**



Noise Image



Style Image



Texture Image

# Thank you,

Goutham 20172063 Sathis 20172092 Sai Charan 20172086 Sai Alekhya 20172102