Capstone Project Report

Title: Classification Model to Predict Mobile Purchase (Japanese Dataset)

Name: Mandar Kajbaje Platform: Internshala

Objective:

To build a classification model using the Japanese dataset to predict whether an individual is likely to **purchase a new phone**, based on attributes like age, gender, annual income, and car age.

Dataset Used:

- Dataset Name: Japanese Dataset (CSV format)
- Attributes used:
 - **CURR_AGE** Current age of the individual
 - **GENDER** Gender (male/female)
 - **ANN_INCOME** Annual income (in local currency)
 - **AGE_CAR** Age of owned car
 - **PURCHASE** Target column (0 = No Purchase, 1 = Purchased)

Steps Followed:

- 1. Loaded the dataset using Pandas.
- 2. **Cleaned data**: Converted 'ANN_INCOME' from string to float (removed commas).
- 3. Selected features (X): ['CURR_AGE', 'GENDER', 'ANN_INCOME', 'AGE_CAR']
- 4. Target variable (y): PURCHASE
- 5. Converted categorical data (e.g., gender) using one-hot encoding.
- 6. **Split the data**: 80% for training, 20% for testing.
- 7. Model Used: Random Forest Classifier (sklearn).
- 8. Trained the model and made predictions on test data.
- 9. Evaluated using:
 - Accuracy Score
 - Classification Report (Precision, Recall, F1-score)

Results:

- Model Accuracy: 67.13%
- Precision/Recall (Class 1 Purchase):
- Precision: 0.72
- Recall: 0.72
- F1-score: 0.72

Justification of Model Choices:

- Random Forest was chosen for its ability to handle both categorical and numeric data, and for being robust against overfitting.
- Preprocessing steps, such as encoding categorical values and cleaning numeric data, were performed based on standard data science practices.

Files Included:

- capstone_project_model.ipynb- Jupyter notebook with full code
- japan_dataset.csv- Original dataset used
- Capstone Project Report—This report