Тема III: Комплексные числа

3. Показательная форма Извлечение корней

М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2024/2025 учебный год

Как определить степень с комплексным показателем?

Определение степени с комплексным показателем дал в 1740 г. Леонард Эйлер (1707–1783) Эйлер исходил из известных к тому времени представлений функций e^x , $\cos x$ и $\sin x$ в виде *степенных рядов*.

Для любого действительного числа x выполнены равенства:

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + \frac{x^{6}}{6!} + \frac{x^{7}}{7!} + \frac{x^{8}}{8!} + \cdots,$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \frac{x^{8}}{8!} + \cdots,$$

$$\sin x = \frac{x}{1!} - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \cdots.$$

Как определить степень с комплексным показателем? (2)

Если подставить ix вместо x в равенство

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!} + \frac{x^7}{7!} + \frac{x^8}{8!} + \cdots$$

и учесть, что $i^2=-1$, $i^3=-i$, $i^4=1$, $i^5=i$, и т.д., получим

$$e^{ix} = 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{(ix)^5}{5!} + \frac{(ix)^6}{6!} + \frac{(ix)^7}{7!} + \frac{(ix)^8}{8!} + \cdots$$

$$= 1 + ix - \frac{x^2}{2!} - \frac{ix^3}{3!} + \frac{x^4}{4!} + \frac{ix^5}{5!} - \frac{x^6}{6!} - \frac{ix^7}{7!} + \frac{x^8}{8!} + \cdots$$

$$= \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \cdots\right) + i\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots\right)$$

$$= \cos x + i \sin x.$$

Как определить степень с комплексным показателем? (3)

Придем к тому же выражению для e^{ix} , используя только замечательные пределы и формулу Муавра.

Для любого действительного числа x

$$e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n.$$

Подставим ix вместо x в это равенство:

$$e^{ix} = \lim_{n \to \infty} \left(1 + \frac{ix}{n} \right)^n.$$

Чтобы подсчитать предел в правой части, запишем число $1+\frac{ix}{n}$ в тригонометрической форме:

$$1 + i\frac{x}{n} = r_n(\cos\varphi_n + i\sin\varphi_n),$$

где $r_n = \sqrt{1+rac{x^2}{n^2}}$ – модуль этого числа, а $arphi_n$ – его аргумент. По формуле Муавра

$$(r_n(\cos\varphi_n + i\sin\varphi_n))^n = r_n^n(\cos n\varphi_n + i\sin n\varphi_n).$$

Как определить степень с комплексным показателем? (4)

Подсчитаем предел $\lim_{n\to\infty} r_n^n$.

$$r_n^n = \left(1 + \frac{x^2}{n^2}\right)^{\frac{n}{2}} = \left[\left(1 + \frac{x^2}{n^2}\right)^{\frac{n^2}{x^2}}\right]^{\left(\frac{x^2}{n^2}\right)\frac{n}{2}} = \left[\left(1 + \frac{x^2}{n^2}\right)^{\frac{n^2}{x^2}}\right]^{\frac{x^2}{2n}}.$$

При $n \to \infty$ выражение $\left(1+\frac{x^2}{n^2}\right)^{\frac{n^2}{x^2}}$ стремится к e. Поэтому $\lim_{n\to\infty}r_n^n=\lim_{n\to\infty}e^{\frac{x^2}{2n}}=1$ при каждом x.

Подсчитаем предел $\lim_{n\to\infty} n\varphi_n$. Мы знаем, что $\cos\varphi_n=\frac{1}{r_n}$ стремится к 1 при $n\to\infty$, поэтому выбирая то значение аргумента, которое лежит в первой четверти, можем считать, что φ_n стремится к 0 при $n\to\infty$.

$$\lim_{n \to \infty} n\varphi_n = \lim_{n \to \infty} n \sin \varphi_n \cdot \lim_{n \to \infty} \frac{\varphi_n}{\sin \varphi_n} = \lim_{n \to \infty} \frac{x}{r_n} \cdot \lim_{n \to \infty} \frac{\varphi_n}{\sin \varphi_n} = x.$$

Итак,

$$\lim_{n \to \infty} \left(1 + \frac{ix}{n} \right)^n = \lim_{n \to \infty} r_n^n (\cos n\varphi_n + i \sin n\varphi_n) = \cos x + i \sin x.$$

Формула Эйлера

Есть и другие аргументы, обосновывающие данное Эйлером определение, которое обычно называют *формулой Эйлера*.

$$e^{ix} = \cos x + i\sin x$$

Формула Эйлера повсеместно используется в математике, физике, химии и инженерии. Ричард Фейнман назвал это уравнение «жемчужиной» и «самой замечательной формулой в математике».

Полагая $x=\pi$, получаем равенство, связывающие все пять главных математических констант:

$$e^{i\pi} + 1 = 0$$

Для произвольного комплексного показателя имеем

$$e^{a+bi} = e^a e^{bi} = e^a (\cos b + i \sin b).$$

Показательная форма комплексного числа

Определение

Если r — модуль, а φ — аргумент комплексного числа, то запись $re^{i\varphi}$ называется показательной формой этого числа.

Показательная форма – более компактная (и потому более удобная) запись тригонометрической формы.

Умножение и деление комплексных чисел, записанных в показательной форме, выполняется совсем просто: если $z_1=r_1e^{i\varphi_1}$ и $z_2=r_2e^{i\varphi_2}$, то $z_1z_2=r_1r_2e^{i(\varphi_1+\varphi_2)}$, а $\frac{z_1}{z_2}=\frac{r_1}{r_2}e^{i(\varphi_1-\varphi_2)}$.

Формула Муавра тоже превращается в обычное правило возведения в степень:

$$\left(re^{i\varphi}\right)^n = r^n e^{in\varphi}.$$

Натуральный логарифм комплексного числа

В силу равенства $z=re^{i\varphi}$ естественно определить натуральный логарифм комплексного числа z формулой

$$\ln z := \ln r + i\varphi.$$

Отметим, что натуральный логарифм комплексного числа — многозначная функция (в силу многозначности аргумента). Попытка выбрать какое-то одно «правильное» значение логарифма разрушит самое полезное свойство этой функции, а именно, $\ln(z_1z_2) = \ln z_1 + \ln z_2$.

Пример: $\ln(-1) = \pi i + 2\pi k i$, $k \in \mathbb{Z}$, а $\ln 1 = 2\pi k i$, $k \in \mathbb{Z}$. (-1)(-1) = 1, но если бы мы договорились, что $\ln 1 = 0$, и взяли бы какое-то одно конкретное значение для $\ln(-1)$ (скажем, πi), то равенство $\ln(-1) + \ln(-1) = \ln 1$ не было бы верным.

Степень любого ненулевого комплексного числа α с любым комплексным показателем β естественно определить так:

$$\alpha^{\beta} := e^{\beta \ln \alpha}.$$

Отметим, что и это - многозначная функция.

Упражнение: Подсчитать i^i . (Ответ может удивить.)

Извлечение корней из комплексных чисел

Перейдем к вопросу об извлечении корней из комплексных чисел.

Определение

Пусть n – натуральное число. Корнем степени n из комплексного числа z называется комплексное число w такое, что $w^n=z$.

Из определения не вытекает, что корень n-й степени из z существует. Тем более не ясно, сколько значений может он принимать, если существует. Вспомним, как обстоит дело в поле \mathbb{R} . Корень n-й степени из $x \in \mathbb{R}$:

- существует и определен однозначно, если либо n нечетно, либо x=0 (в последнем случае корень равен 0 независимо от n);
- существует и имеет ровно два (противоположных по знаку) значения, если n четно и x>0;
- не существует, если n четно и x < 0.

В поле $\mathbb C$ все намного проще. Если z=0, то, очевидно, для любого натурального n корень n-й степени из z в поле $\mathbb C$ существует и определен однозначно (а именно, равен 0). Если же $z\neq 0$, то, как мы сейчас докажем, для любого натурального n корень n-й степени из z в $\mathbb C$ существует и имеет ровно n различных значений.

Извлечение корней из комплексных чисел (2)

Пусть
$$z=r(\cos\varphi+i\sin\varphi)$$
, $w=q(\cos\psi+i\sin\psi)$ и $w^n=z$.
Тогда
$$q^n(\cos n\psi+i\sin n\psi)=r(\cos\varphi+i\sin\varphi).$$

Получаем равенства $q^n=r$ и $n\psi=\varphi+2\pi k$, где k – некоторое целое число. Поскольку q и r – положительные действительные числа, это означает, что $q=\sqrt[n]{r}$. Для аргумента числа w справедливо равенство $\psi=\frac{\varphi+2\pi k}{n}$. В частности, мы видим, что корень n-й степени из числа z всегда существует.

Выясним теперь, сколько значений может иметь корень из комплексного числа. Все корни n-й степени из числа z задаются формулой

$$w_k = \sqrt[n]{r} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right), \tag{1}$$

где k – целое число. Ясно, что $w_k=w_\ell$ тогда и только тогда, когда $\frac{\varphi+2\pi k}{n}=\frac{\varphi+2\pi\ell}{n}+2\pi m$ при некотором целом m. Последнее равенство равносильно равенству $\frac{k-\ell}{n}=m$. Иными словами, числа w_k и w_ℓ совпадают тогда и только тогда, когда k и ℓ имеют одинаковые остатки при делении на n. Поэтому все различные значения корня получаются по формуле (1) при $k=0,1,\ldots,n-1$.

Извлечение корней из комплексных чисел (3)

Таким образом,

• если $z=r(\cos\varphi+i\sin\varphi)$ – произвольное комплексное число, отличное от 0, а n – произвольное натуральное число, то корень n-й степени из z имеет ровно n различных значений, которые могут быть вычислены по формуле

$$\sqrt[n]{r}\left(\cos\frac{\varphi+2\pi k}{n}+i\sin\frac{\varphi+2\pi k}{n}\right)$$
, где $k=0,1,\ldots,n-1$. (2)

Отдельно выделим случай *корней из единицы*. Если z=1, то |z|=1, а $\arg z=0$. Подставляя эти данные в (2), получаем следующий факт:

• корень n-й степени из 1 имеет ровно n различных значений $\varepsilon_0, \varepsilon_1, \dots, \varepsilon_{n-1}$, которые могут быть вычислены по формуле

$$arepsilon_k = \cosrac{2\pi k}{n} + i\sinrac{2\pi k}{n},$$
 где $k=0,1,\ldots,n-1.$

Корни из единицы

Корни n-й степени из 1 располагаются в вершинах правильного n-угольника, вписанного в единичную окружность $\{z\in\mathbb{C}:|z|=1\}.$

Корни 7-й степени из 1

Свойства корней из 1

Корни n-й степени из 1:

$$arepsilon_k = \cos rac{2\pi k}{n} + i \sin rac{2\pi k}{n},$$
 где $k = 0, 1, \dots, n-1.$

- Произведение и частное двух корней n-й степени из 1 снова корень n-й степени из 1. (Корни n-й степени из 1 образуют *группу*.)
- $oldsymbol{Q}$ Все корни n-й степени из 1 суть степени корня $arepsilon_1 = \cos rac{2\pi}{n} + i \sin rac{2\pi}{n}.$
- lacktriangle Сумма всех корней n-й степени из 1 равна 0.

Свойства 1 и 2 понятны; докажем свойство 3.

$$\sum_{k=0}^{n-1} \varepsilon_k = \sum_{k=0}^{n-1} \varepsilon_1^k = \frac{\varepsilon_1^n - 1}{\varepsilon_1 - 1} = \frac{1-1}{\varepsilon_1 - 1} = 0.$$

Формула Кардано, revisited

Вспомним проблему, приведшую к необходимости рассмотрения комплексных чисел. Решая уравнение $x^3-x=0$ (корни которого, очевидно, суть $x_1=1,\ x_2=0,\ x_3=-1$) по формуле Кардано

$$x = u + v = \sqrt[3]{-\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}} + \sqrt[3]{-\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}},$$

мы пришли к выражению

$$\sqrt[3]{\sqrt{-\frac{1}{27}}} + \sqrt[3]{-\sqrt{-\frac{1}{27}}}.$$

Теперь мы можем разобраться со смыслом этого выражения. Имеем

$$\sqrt{-\frac{1}{27}} = \frac{1}{3\sqrt{3}}i = \frac{1}{3\sqrt{3}}(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}).$$

Извлечем из числа $\frac{1}{3\sqrt{3}}(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2})$ кубический корень.

Формула Кардано, revisited (2)

Три значения кубического корня из

$$\frac{1}{3\sqrt{3}}(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}) = \frac{1}{3\sqrt{3}}(\cos\frac{5\pi}{2} + i\sin\frac{5\pi}{2}) = \frac{1}{3\sqrt{3}}(\cos\frac{9\pi}{2} + i\sin\frac{9\pi}{2}):$$

$$u_1 = \frac{1}{\sqrt{3}}(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}) = \frac{1}{\sqrt{3}}\left(\frac{\sqrt{3}}{2} + i\frac{1}{2}\right) = \frac{1}{2} + i\frac{1}{2\sqrt{3}},$$

$$u_2 = \frac{1}{\sqrt{3}}(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}) = \frac{1}{\sqrt{3}}\left(-\frac{\sqrt{3}}{2} + i\frac{1}{2}\right) = -\frac{1}{2} + i\frac{1}{2\sqrt{3}},$$

$$u_3 = \frac{1}{\sqrt{3}}(\cos\frac{9\pi}{6} + i\sin\frac{9\pi}{6}) = -i\frac{1}{\sqrt{3}}.$$

Аналогично, три значения кубического корня из
$$-\sqrt{-\frac{1}{27}}=-\frac{1}{3\sqrt{3}}i=$$
 $=\frac{1}{3\sqrt{3}}(\cos\frac{3\pi}{2}+i\sin\frac{3\pi}{2})=\frac{1}{3\sqrt{3}}(\cos\frac{7\pi}{2}+i\sin\frac{7\pi}{2})=\frac{1}{3\sqrt{3}}(\cos\frac{11\pi}{2}+i\sin\frac{11\pi}{2})$: $v_1=\frac{1}{\sqrt{3}}(\cos\frac{3\pi}{6}+i\sin\frac{3\pi}{6})=i\frac{1}{\sqrt{3}},$ $v_2=\frac{1}{\sqrt{3}}(\cos\frac{7\pi}{6}+i\sin\frac{7\pi}{6})=\frac{1}{\sqrt{3}}\left(-\frac{\sqrt{3}}{2}-i\frac{1}{2}\right)=-\frac{1}{2}-i\frac{1}{2\sqrt{3}},$ $v_3=\frac{1}{\sqrt{3}}(\cos\frac{11\pi}{6}+i\sin\frac{11\pi}{6})=\frac{1}{\sqrt{3}}\left(\frac{\sqrt{3}}{2}-i\frac{1}{2}\right)=\frac{1}{2}-i\frac{1}{2\sqrt{3}}.$

Формула Кардано, revisited (3)

Итак, имеем три значения для u и три значения для v:

$$\begin{split} u_1 &= \frac{1}{2} + i \frac{1}{2\sqrt{3}}, & v_1 &= i \frac{1}{\sqrt{3}}, \\ u_2 &= -\frac{1}{2} + i \frac{1}{2\sqrt{3}}, & v_2 &= -\frac{1}{2} - i \frac{1}{2\sqrt{3}}, \\ u_3 &= -i \frac{1}{\sqrt{3}}, & v_3 &= \frac{1}{2} - i \frac{1}{2\sqrt{3}}. \end{split}$$

Какие из них нужно скомбинировать, чтобы получить решение исходного уравнения $x^3-x=0$? Вспомним: при выводе формулы Кардано на u и v налагалось условие 3uv+p=0. В нашем случае p=-1, т.е. 3uv=1. Исходя из этого равенства, u_1 соответствует v_3 , u_2 соответствует v_2 , а u_3 соответствует v_1 . Поэтому получаем три решения уравнения $x^3-x=0$:

$$\begin{aligned} x_1 &= u_1 + v_3 = \frac{1}{2} + i \frac{1}{2\sqrt{3}} + \frac{1}{2} - i \frac{1}{2\sqrt{3}} = 1, \\ x_2 &= u_2 + v_2 = -\frac{1}{2} + i \frac{1}{2\sqrt{3}} - \frac{1}{2} - i \frac{1}{2\sqrt{3}} = -1, \\ x_3 &= u_3 + v_1 = -i \frac{1}{\sqrt{3}} + i \frac{1}{\sqrt{3}} = 0. \end{aligned}$$

Заключительные замечания

Вспомним, наши запросы к $\mathbb C$ были довольно скромными: мы хотели извлекать квадратные корни из отрицательных действительных чисел. Внезапно обнаружилось, что в $\mathbb C$ существуют корни любой степени из любого комплексного числа и логарифмы любых ненулевых чисел! Но поле комплексных чисел обладает гораздо более сильным свойством: в $\mathbb C$ есть корни у алгебраического уравнения любой степени с произвольными комплексными коэффициентами. Это — основная теорема алгебры комплексных чисел, впервые доказанная

«королем математиков» Карлом Фридрихом Гауссом (1777—1855) в 1799 г.

GN448010088

Омлете Визбалом

Омлете Визбалом

Сомлете Визбалом

Омлете Визбалом

Омлет