ALSU project documentation

Idea of operation:

It's a state machine that done arithmetic and shift operations.

Every state in the machine represents an operation.

We have a state where we start from.

Start state guiding us to the chosen operation.

We go to the chosen state and do the operation then return to start state.

Test cases:

Bypass A

Bypass B

Bypass to priority that selected in this case priority was to B.

Addition operation

A+B=out

6+5=11

Full adder turned off.

Addition operation

A+B+ cin =out

6+5+1=12

Full adder is on.

Shift operation

Direction is left.

001100 becomes 011001.

Shift right.

011001 becomes 101100.

Rotate operation.

Direction is right.

111101 becomes 111110.

rotate left.

111110 becomes 111101.

multiplication operation

A*B=out

4*5=20

Invalid case

Out become 000000.

And the LEDs start to toggle.

AND operation

A&B=out

101&110=000100

Before ANDing A&B

Red_op_A was set to one and &A=000000

Then Red_op_B was set to one and &B=000000

XOR operation

A^B=out

101^110=000011

Before XORing A,B Red_op_A was set high ^A=000000 then Red_op_B was set high and ^B=000000