

#7
FILE COPY
NO. 2

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

REPORT No. 776

THE THEORY OF PROPELLERS II—METHOD FOR CALCULATING THE AXIAL INTERFERENCE VELOCITY

By THEODORE THEODORSEN

THIS DOCUMENT ON LOAN FROM THE FILES OF

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
LANGLEY MEMORIAL AERONAUTICAL LABORATORY
LANGLEY FIELD, HAMPTON, VIRGINIA

RETURN TO THE ABOVE ADDRESS.

REQUESTS FOR PUBLICATIONS SHOULD BE ADDRESSED
AS FOLLOWS:

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
1724 I STREET, N.W.
WASHINGTON 25, D.C.

1944

NASA FILE COPY

Loan expires on last
date stamped on back cover.

PLEASE RETURN TO
REPORT DISTRIBUTION SECTION
LANGLEY RESEARCH CENTER
NATIONAL AERONAUTICS AND
SPACE ADMINISTRATION
Langley AFB, Virginia

AERONAUTIC SYMBOLS

1. FUNDAMENTAL AND DERIVED UNITS

	Symbol	Metric		English	
		Unit	Abbreviation	Unit	Abbreviation
Length	<i>l</i>	meter	m	foot (or mile)	ft (or mi)
Time	<i>t</i>	second	s	second (or hour)	sec (or hr)
Force	<i>F</i>	weight of 1 kilogram	kg	weight of 1 pound	lb
Power	<i>P</i>	horsepower (metric)		horsepower	hp
Speed	<i>V</i>	{kilometers per hour meters per second}	kph mps	{miles per hour feet per second}	mph fps

2. GENERAL SYMBOLS

<i>W</i>	Weight = mg	Kinematic viscosity
<i>g</i>	Standard acceleration of gravity = 9.80665 m/s^2 or 32.1740 ft/sec^2	Density (mass per unit volume)
<i>m</i>	Mass = $\frac{W}{g}$	Standard density of dry air, $0.12497 \text{ kg-m}^{-4} \text{-s}^2$ at 15° C and 760 mm; or $0.002378 \text{ lb-ft}^{-4} \text{ sec}^2$
<i>I</i>	Moment of inertia = mk^2 . (Indicate axis of radius of gyration k by proper subscript.)	Specific weight of "standard" air, 1.2255 kg/m^3 or 0.07651 lb/cu ft
μ	Coefficient of viscosity	

3. AERODYNAMIC SYMBOLS

<i>S</i>	Area	i_w	Angle of setting of wings (relative to thrust line)
<i>S_w</i>	Area of wing	i_t	Angle of stabilizer setting (relative to thrust line)
<i>G</i>	Gap	<i>Q</i>	Resultant moment
<i>b</i>	Span	Ω	Resultant angular velocity
<i>c</i>	Chord	<i>R</i>	Reynolds number, $\rho \frac{Vl}{\mu}$ where l is a linear dimension (e.g., for an airfoil of 1.0 ft chord, 100 mph, standard pressure at 15° C , the corresponding Reynolds number is 935,400; or for an airfoil of 1.0 m chord, 100 mps, the corresponding Reynolds number is 6,865,000)
<i>A</i>	Aspect ratio, $\frac{b^2}{S}$	α	Angle of attack
<i>V</i>	True air speed	ϵ	Angle of downwash
<i>q</i>	Dynamic pressure, $\frac{1}{2}\rho V^2$	α_0	Angle of attack, infinite aspect ratio
<i>L</i>	Lift, absolute coefficient $C_L = \frac{L}{qS}$	α_i	Angle of attack, induced
<i>D</i>	Drag, absolute coefficient $C_D = \frac{D}{qS}$	α_a	Angle of attack, absolute (measured from zero-lift position)
<i>D₀</i>	Profile drag, absolute coefficient $C_{D0} = \frac{D_0}{qS}$	γ	Flight-path angle
<i>D_t</i>	Induced drag, absolute coefficient $C_{Dt} = \frac{D_t}{qS}$		
<i>D_p</i>	Parasite drag, absolute coefficient $C_{Dp} = \frac{D_p}{qS}$		
<i>C</i>	Cross-wind force, absolute coefficient $C_c = \frac{C}{qS}$		

REPORT No. 776

THE THEORY OF PROPELLERS II—METHOD FOR CALCULATING THE AXIAL INTERFERENCE VELOCITY

By THEODORE THEODORSEN

Langley Memorial Aeronautical Laboratory

Langley Field, Va.

1

National Advisory Committee for Aeronautics

Headquarters, 1500 New Hampshire Avenue NW., Washington 25, D. C.

Created by act of Congress approved March 3, 1915, for the supervision and direction of the scientific study of the problems of flight (U. S. Code, title 49, sec. 241). Its membership was increased to 15 by act approved March 2, 1929. The members are appointed by the President, and serve as such without compensation.

JEROME C. HUNSAKER, Sc. D., Cambridge, Mass., *Chairman*

- LYMAN J. BRIGGS, Ph. D., *Vice Chairman*, Director, National Bureau of Standards.
- CHARLES G. ABBOT, Sc. D., *Vice Chairman*, Executive Committee, Secretary, Smithsonian Institution.
- HENRY H. ARNOLD, General, United States Army, Commanding General, Army Air Forces, War Department.
- WILLIAM A. M. BURDEN, Special Assistant to the Secretary of Commerce.
- VANNEVAR BUSH, Sc. D., Director, Office of Scientific Research and Development, Washington, D. C.
- WILLIAM F. DURAND, Ph. D., Stanford University, California.
- OLIVER P. ECHOLS, Major General, United States Army, Chief of Maintenance, Matériel, and Distribution, Army Air Forces, War Department.
- AUBREY W. FITCH, Vice Admiral, United States Navy, Deputy Chief of Operations (Air), Navy Department.
- WILLIAM LITTLEWOOD, M. E., Jackson Heights, Long Island, N. Y.
- FRANCIS W. REICHELDERFER, Sc. D., Chief, United States Weather Bureau.
- LAWRENCE B. RICHARDSON, Rear Admiral, United States Navy, Assistant Chief, Bureau of Aeronautics, Navy Department.
- EDWARD WARNER, Sc. D., Civil Aeronautics Board, Washington, D. C.
- ORVILLE WRIGHT, Sc. D., Dayton, Ohio.
- THEODORE P. WRIGHT, Sc. D., Administrator of Civil Aeronautics, Department of Commerce.

GEORGE W. LEWIS, Sc. D., *Director of Aeronautical Research*

JOHN F. VICTORY, LL. M., *Secretary*

HENRY J. E. REID, Sc. D., Engineer-in-Charge, Langley Memorial Aeronautical Laboratory, Langley Field, Va.

SMITH J. DEFRAZEE, B. S., Engineer-in-Charge, Ames Aeronautical Laboratory, Moffett Field, Calif.

EDWARD R. SHARP, LL. B., Manager, Aircraft Engine Research Laboratory, Cleveland Airport, Cleveland, Ohio

CARLTON KEMPER, B. S., Executive Engineer, Aircraft Engine Research Laboratory, Cleveland Airport, Cleveland, Ohio

TECHNICAL COMMITTEES

AERODYNAMICS

OPERATING PROBLEMS

POWER PLANTS FOR AIRCRAFT

MATERIALS RESEARCH COORDINATION

AIRCRAFT CONSTRUCTION

Coordination of Research Needs of Military and Civil Aviation

Preparation of Research Programs

Allocation of Problems

Prevention of Duplication

LANGLEY MEMORIAL AERONAUTICAL LABORATORY
Langley Field, Va.

AMES AERONAUTICAL LABORATORY
Moffett Field, Calif.

AIRCRAFT ENGINE RESEARCH LABORATORY, Cleveland Airport, Cleveland, Ohio
Conduct, under unified control, for all agencies, of scientific research on the fundamental problems of flight

OFFICE OF AERONAUTICAL INTELLIGENCE, Washington, D. C.

Collection, classification, compilation, and dissemination of scientific and technical information on aeronautics

E R R A T U M

NACA REPORT No. 776

THE THEORY OF PROPELLERS
II - METHOD FOR CALCULATING THE
AXIAL INTERFERENCE VELOCITY

By Theodore Theodorsen
1944

Page 11, figure 10(a): The sublegend should contain $\tau = 60^\circ$ instead of $r = 60^\circ$. The main legend should read "Function $-x \frac{dP}{dx} \dots$ " instead of "Function $- \frac{dP}{dx} \dots$ "

REPORT No. 776

THE THEORY OF PROPELLERS. II—METHOD FOR CALCULATING THE AXIAL INTERFERENCE VELOCITY

By THEODORE THEODORSEN

SUMMARY

A technical method is given for calculating the axial interference velocity of a propeller. The method involves the use of certain weight functions P , Q , and F . Numerical values for the weight functions are given for two-blade, three-blade, and six-blade propellers.

INTRODUCTION

It has formerly been the practice to use the Glauert-Lock simplified assumption that the interference velocity is proportional to the loading at the point considered. This assumption is obviously inadequate since the interference flow depends on the slope and curvature of the loading function as well as on the local magnitude. A method is developed herein for calculating the axial interference flow for any loading. The method is accurate to the first order and therefore gives the interference flow in ratio to the loading for small loadings. It can be shown that this accuracy is adequate for all technical applications.

The present paper is the second in a series on the theory of propellers. Part I deals with a method for obtaining the circulation function for dual-rotating propellers. (See reference 1.)

SYMBOLS

v_1	axial interference velocity at x_1 [$v_2(x_1)$]
w	rearward displacement velocity of helical vortex surface (at infinity)
V	advance velocity of propeller
p	number of blades
n	order number of blade ($0 \leq n \leq p-1$)
ω	angular velocity of propeller
Γ	circulation at radius x
K	circulation coefficient to first order ($\frac{p\Gamma\omega}{2\pi Vw}$)
x	nondimensional radius in terms of tip radius
x_1	reference point at which interference velocity is calculated
θ	angular distance of vortex element from propeller advance ratio ($V/\omega R$)
R	tip radius of propeller
$P_1(x)$	function defined in equation (1)
$Q_1(x)$	function defined in equation (3)
P	used for $P_1(x)$ in tables and figures; refers to other blades ($n \neq 0$)
Q	used for $Q_1(x)$ in tables and figures; refers to blade itself ($n=0$)
	phase angle of n th blade ($\frac{2n\pi}{p}$)

φ_1

helix angle at x_1 ($\tan^{-1} \frac{\lambda}{x_1}$)

WEIGHT FUNCTION $P_1(x)$

It can be shown that the axial interference flow is given by the expression

$$\frac{v_1}{1/w} = \frac{1}{p} \sum_n \int \frac{dK}{dx} x \frac{dP_1(x)}{dx} dx$$

where the summation is over the number of blades 0 to $p-1$. The important function $P_1(x)$ is defined as

$$P_1(x) = \int_0^\infty \frac{d\frac{\theta}{2\pi}}{\sqrt{\frac{1}{4\pi^2\lambda^2} [x^2 + x_1^2 - 2xx_1 \cos(\theta + \frac{2n\pi}{p})] + \left(\frac{\theta}{2\pi}\right)^2}}$$

where $n=0, 1, 2, \dots, p-1$, the number of the particular blade. The problem is thus essentially solved by giving the function $P_1(x)$ for each point along the radius.

It is convenient to make $P_1(x)$ finite by subtracting a quantity that is independent of x . The function $P_1(x)$ may therefore be redefined as

$$P_1(x) = \int_0^\infty \left\{ \frac{1}{\sqrt{\frac{1}{4\pi^2\lambda^2} [x^2 + x_1^2 - 2xx_1 \cos(\theta + \frac{2n\pi}{p})] + \left(\frac{\theta}{2\pi}\right)^2}} - \frac{1}{\sqrt{1 + \left(\frac{\theta}{2\pi}\right)^2}} \right\} d\frac{\theta}{2\pi} \quad (1)$$

It is noticed that, in the integral $P_1(x)$, the integrand changes from $+\infty$ to $-\infty$ at $x=x_1$ for $\theta=0$. This difficulty, which occurs only for $n=0$ (that is, for the blade itself), is overcome in the following manner: The expression

$$\int_0^\infty \left[\frac{1}{\sqrt{\frac{1}{4\pi^2\lambda^2} [(x-x_1)^2 + \left(\frac{xx_1}{\lambda^2} + 1\right) \left(\frac{\theta}{2\pi}\right)^2]}} - \frac{1}{\sqrt{\frac{1}{4\pi^2\lambda^2} + \left(\frac{xx_1}{\lambda^2} + 1\right) \left(\frac{\theta}{2\pi}\right)^2}} \right] d\frac{\theta}{2\pi} \quad (2)$$

which is integrable and equal to

$$-\sqrt{\frac{\lambda^2}{\lambda^2 + xx_1}} \log |x - x_1|$$

may be subtracted from $P_1(x)$ to yield a finite and smooth

integrand. Thus, by subtraction, a quantity

$$Q_1(x) = \int_0^\infty \left[\frac{1}{\sqrt{\frac{1}{4\pi^2\lambda^2}(x^2+x_1^2-2xx_1 \cos \theta) + \left(\frac{\theta}{2\pi}\right)^2}} - \frac{1}{\sqrt{1+\left(\frac{\theta}{2\pi}\right)^2}} - \frac{1}{\sqrt{\frac{1}{4\pi^2\lambda^2}(x-x_1)^2 + \left(\frac{xx_1}{\lambda^2}+1\right)\left(\frac{\theta}{2\pi}\right)^2}} + \frac{1}{\sqrt{\frac{1}{4\pi^2\lambda^2} + \left(\frac{xx_1}{\lambda^2}+1\right)\left(\frac{\theta}{2\pi}\right)^2}} \right] d\frac{\theta}{2\pi} \quad (3)$$

is obtained. Finally, for the blade itself ($n=0$),

$$P_1(x) = Q_1(x) + F$$

where

$$F = -\sqrt{\frac{\lambda^2}{\lambda^2+xx_1}} \log |x-x_1|$$

The integral $Q_1(x)$ is convenient for graphical integration and is, in fact, small in comparison with the function F .

No discontinuities arise in the P functions for the other blades ($n \neq 0$). The P functions are therefore used directly in the calculation for the other blades. It should be noted that the functions P , Q , and F are all symmetrical in x and x_1 . The use of the subscript, which has been used to indicate reference to the point x_1 , is therefore discontinued. In the following discussion, the functions Q and F refer to the blade itself and P refers to the other blades.

Since the weight function is needed in the form $x \frac{dP}{dx}$, it is written as

$$x \frac{dP}{dx} = x \frac{dQ}{dx} + x \frac{dF}{dx}$$

It is to be noted that by far the largest contribution comes from the logarithmic function F since it really represents the entire field in the neighborhood of the point considered. In developed form,

$$x \frac{dF}{dx} = -\frac{1}{\sqrt{1+\frac{xx_1}{\lambda^2}}} \frac{x}{x-x_1} + \frac{1}{2} \frac{xx_1}{\sqrt{\left(1+\frac{xx_1}{\lambda^2}\right)^3}} \log |x-x_1| \quad (4)$$

NUMERICAL EVALUATION OF WEIGHT FUNCTIONS Q , F , AND P

The weight functions Q , F , and P are shown in a series of tables and figures. The first step of integrating against the angle θ is omitted for simplicity. The functions $\frac{dQ}{dx}$ and $\frac{dP}{dx}$ have been obtained by graphical differentiation of the Q and P functions with actual calculation at the end points $x=0$ and 1 for accuracy. It should be noted that these functions and their derivatives are continuous and smooth. The results are given in the following order:

- (1) Table I and figure 1: Q against x ($0 \leq x \leq 1.00$; $0.1564 \leq x_1 \leq 1.00$; $\lambda = \frac{1}{2}, 1$, and 2), obtained from equation (3)
- (2) Table II and figure 2: $\frac{dQ}{dx}$ against x ($0 \leq x \leq 1.00$; $0.1564 \leq x_1 \leq 1.00$; $\lambda = \frac{1}{2}, 1$, and 2), where $\frac{dQ}{dx}$ is ob-

tained by graphical differentiation of Q except for $x=0$ and 1, for which $\frac{dQ}{dx}$ is obtained analytically

- (3) Table III and figure 3: $-x \frac{dQ}{dx}$ against x ($0 \leq x \leq 1.00$; $0.1564 \leq x_1 \leq 1.00$; $\lambda = \frac{1}{2}, 1$, and 2), obtained by multiplying values in table II by $-x$
- (4) Table IV: $x \frac{dF}{dx}$ against x ($0 \leq x \leq 1.00$; $0 \leq x_1 \leq 1.00$; $\lambda = \frac{1}{2}, 1$, and 2), obtained from equation (4)
- (5a) Table V: P against x for $\tau = 60^\circ$ ($0 \leq x \leq 1.00$; $0.1564 \leq x_1 \leq 1.00$; $\lambda = \frac{1}{2}, 1$, and 2), obtained from equation (1)
- (5b) Figure 4: $P(x) - P(1)$ against x for $\tau = 60^\circ$ ($0 \leq x \leq 1.00$; $0.1564 \leq x_1 \leq 1.00$; $\lambda = \frac{1}{2}, 1$, and 2)
- (6a) Table VI: same as table V for $\tau = 120^\circ$
- (6b) Figure 5: same as figure 4 for $\tau = 120^\circ$
- (7a) Table VII: same as table V for $\tau = 180^\circ$
- (7b) Figure 6: same as figure 4 for $\tau = 180^\circ$
- (8a) Table VIII: same as table V for $\tau = 240^\circ$
- (8b) Figure 7: same as figure 4 for $\tau = 240^\circ$
- (9a) Table IX: same as table V for $\tau = 300^\circ$
- (9b) Figure 8: same as figure 4 for $\tau = 300^\circ$
- (10) Table X: $\frac{dP}{dx}$ against τ for $\lambda = \frac{1}{2}$ ($\tau = 60^\circ, 120^\circ, 180^\circ, 240^\circ$, and 300° ; $x=0$ and 1.00; $0.1564 \leq x_1 \leq 1.00$), obtained analytically
- (11) Table XI: same as table X for $\lambda = 1$
- (12) Table XII: same as table X for $\lambda = 2$
- (13) Table XIII and figure 9: $-x \frac{dP}{dx}$ against x for $\lambda = \frac{1}{2}$ ($\tau = 60^\circ, 120^\circ, 180^\circ, 240^\circ$, and 300° ; $0.1564 \leq x \leq 1.00$; $0.1564 \leq x_1 \leq 1.00$), obtained by multiplying values in table X by $-x$
- (14) Table XIV and figure 10: same as table XIII and figure 9 for $\lambda = 1$
- (15) Table XV and figure 11: same as table XIII and figure 9 for $\lambda = 2$
- (16) Table XVI and figure 12: $\sum -x \frac{dP}{dx}$ against x for three-blade and six-blade propellers ($\tau = 120^\circ$ and 240° for three-blade propeller; $\tau = 60^\circ, 120^\circ, 180^\circ, 240^\circ$, and 300° for six-blade propeller; $0.1564 \leq x \leq 1.00$; $0 \leq x_1 \leq 1.00$; $\lambda = \frac{1}{2}, 1$, and 2); it may be noted that these values for two-blade propellers are given by $-x \frac{dP}{dx}$ for $\tau = 180^\circ$ in tables XIII to XV and in figures 9 to 11

APPLICATION OF METHOD

Steps to obtain the induced velocity expressed as $\frac{v_1}{2w}$ are as follows:

- (1) Plot the quantity $x \frac{dQ}{dx}$ against the circulation coefficient K and perform graphically the integration

$$\int x \frac{dQ}{dx} dK$$

(2a) Plot similarly the functions $x \frac{dF}{dx}$ against K and perform the integration

$$\int x \frac{dF}{dx} dK$$

Since $x \frac{dF}{dx}$ becomes infinite at $x=x_1$, it is necessary to exclude a gap from $x_1 - \frac{1}{2}\Delta x$ to $x_1 + \frac{1}{2}\Delta x$ and to consider this gap separately by use of a Taylor expansion.

(2b) The contribution from the gap Δx becomes

$$\Delta = -b \left[x_1 K'' + \left(1 - \frac{1}{2}c \log \frac{\Delta x}{2} \right) K' \right] \Delta x$$

where

$$\Delta x = 2|x - x_1|$$

$$b = \frac{\lambda}{\sqrt{\lambda^2 + x_1^2}} = \sin \phi_1$$

$$c = \frac{x_1^2}{\lambda^2 + x_1^2} = \cos^2 \phi_1$$

and K' and K'' are the derivatives of K with respect to x .

(3) Finally, there is a contribution from the other blades. This contribution is obtained by plotting $x \frac{dP}{dx}$ against K for the other blades. Since the value $\sum -x \frac{dP}{dx}$ can be taken directly from the tables, this work contains only one step with a single graphical integration

$$\int \sum x \frac{dP}{dx} dK$$

By addition of the results of steps (1) to (3), the total interference velocity v_1 in the axial direction is obtained. The relationship between the axial interference velocity v_1 at the radius x_1 to the axial displacement velocity w of the vortex sheet may be seen from the sketch in figure 13. The relation is

$$v_1 = \frac{1}{2}w \cos^2 \phi_1$$

or, conversely, the displacement velocity w of the vortex sheet may be obtained from the calculated axial interference velocity v_1 by the relation

$$\frac{1}{2}w = \frac{v_1}{\cos^2 \phi_1}$$

which gives the axial displacement velocity at the propeller disk. For the case of the ideal loading this axial displacement velocity must come out as a constant, thus permitting a check on the weight functions. Cases of nonideal loading are evidently of more practical concern. It is the purpose of this paper to give a method for calculation of the axial interference and displacement velocity for any (light) loading.

LANGLEY MEMORIAL AERONAUTICAL LABORATORY,
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,
LANGLEY FIELD, VA., September 19, 1944.

REFERENCE

- Theodorsen, Theodore: The Theory of Propellers. I—Determination of the Circulation Function and the Mass Coefficient for Dual-Rotating Propellers. NACA Rep. No. 775, 1944.

(a) $\lambda = \frac{1}{2}$ (b) $\lambda = 1$, (c) $\lambda = 2$.

FIGURE 1.—Function Q against x .

$$(a) \lambda = \frac{1}{2}$$

$$(b) \lambda = 1$$

FIGURE 2.—Function dQ/dx against x .

FIGURE 2.—Concluded.

FIGURE 3.—Function $-x \frac{dQ}{dx}$ against x .

FIGURE 3.—Continued.

FIGURE 3.—Concluded.

FIGURE 4.—Continued.

FIGURE 4.—Continued.

FIGURE 4.—Continued.

FIGURE 5.— $P(x) - P(1)$ against x for $\tau = 120^\circ$.

FIGURE 5.—Continued.

FIGURE 5.—Continued.

FIGURE 5.—Continued.

FIGURE 5.—Continued.

FIGURE 5.—Concluded.

(a) $\lambda = \frac{1}{2}$.FIGURE 6.— $P(x) - P(1)$ against x for $\tau = 180^\circ$.(c) $\lambda = 2$.

FIGURE 6.—Continued.

(a) $\lambda = \frac{1}{2}$ —Concluded.
FIGURE 6.—Continued.(c) $\lambda = 2$ —Concluded.
FIGURE 6.—Concluded.(b) $\lambda = 1$.
FIGURE 6.—Continued.(a) $\lambda = \frac{1}{2}$.
FIGURE 7.— $P(x) - P(1)$ against x for $\tau = 240^\circ$.

(a) $\lambda = \frac{1}{2}$ —Concluded.
FIGURE 7.—Continued.(a) $\lambda = \frac{1}{2}$.
FIGURE 8.— $P(x) - P(1)$ against x for $\tau = 300^\circ$.(b) $\lambda = 1$.
FIGURE 7.—Continued.(c) $\lambda = 2$.
FIGURE 7.—Concluded.(a) $\lambda = \frac{1}{2}$ —Concluded.
FIGURE 8.—Continued.

(b) $\lambda=1$.
FIGURE 8.—Continued.

(c) $\lambda=2$.
FIGURE 8.—Concluded.

(a) $\tau=60^\circ$.
FIGURE 9.—Function $-x \frac{dP}{dx}$ against x for $\lambda=\frac{1}{2}$.

(b) $\tau=120^\circ$.
FIGURE 9.—Continued.

(c) $\tau=180^\circ$.
FIGURE 9.—Continued.

(d) $\tau = 240^\circ$. (e) $\tau = 300^\circ$.

FIGURE 9.—Concluded.

(a) $\tau = 60^\circ$.FIGURE 10.—Function $-\frac{dP}{dx}$ against x for $\lambda=1$.(b) $\tau = 120^\circ$.
FIGURE 10.—Continued.(c) $\tau = 180^\circ$.
FIGURE 10.—Continued.(d) $\tau = 240^\circ$.

FIGURE 10.—Continued.

(e) $\tau = 300^\circ$.
FIGURE 10.—Concluded.

(a) $\tau = 60^\circ$.
FIGURE 11.—Function $-x \frac{dP}{dx}$ against x for $\lambda = 2$.

(b) $\tau = 120^\circ$.
FIGURE 11.—Continued.

(c) $\tau = 180^\circ$. (d) $\tau = 240^\circ$.
FIGURE 11.—Continued.

(e) $\tau = 300^\circ$.
FIGURE 11.—Concluded.

FIGURE 12.—Values of $\sum -x \frac{dP}{dx}$ against x for three-blade and six-blade propellers.

FIGURE 12.—Continued.

FIGURE 12.—Continued.

FIGURE 12.—Continued.

FIGURE 12.—Continued.

FIGURE 12.—Concluded.

w axial displacement velocity ($\frac{1}{2}w$ at propeller)
 v_1 actual axial interference velocity ($\frac{1}{2}w \cos^2 \varphi_1$ at propeller)
 φ_1 helix angle at radius x

FIGURE 13.—Velocity diagram.

TABLE I.—FUNCTION Q AGAINST x

$x_1 \backslash x$	0	0.1564	0.3090	0.4540	0.5878	0.7071	0.8000	0.8910	0.9511	0.9877	1.00
$\lambda = \frac{1}{2}$											
0.1564	0.11826	0.12420	0.11817	0.10898	0.09334	0.07351	0.06051	0.04820	0.03937	0.03429	0.03252
.3090	.11826	.11817	.10580	.08696	.06259	.03851	.01679	-.02264	-.01646	-.02407	-.02729
.4540	.11826	.10989	.08696	.06101	.02926	-.0072	-.02257	-.04633	-.06370	-.07355	-.07720
.5878	.11826	.09334	.06259	.02926	-.0169	-.03644	-.06191	-.08528	-.10315	-.11315	-.11755
.7071	.11826	.07351	.03851	.0072	-.03644	-.07081	-.09533	-.12238	-.14059	-.15029	-.15430
.8090	.11826	.06051	.01679	-.02257	-.06191	-.09533	-.12420	-.14934	-.16703	-.17761	-.18246
.8910	.11826	.04820	-.00264	-.04633	-.08528	-.12238	-.14934	-.16900	-.18837	-.20063	-.20496
.9511	.11826	.03937	-.01646	-.06370	-.10315	-.14059	-.16703	-.18837	-.20752	-.21634	-.22098
.9877	.11826	.03429	-.02407	-.07355	-.11315	-.15029	-.17761	-.20003	-.21634	-.22633	-.23283
1.00	.11826	.03252	-.02729	-.07720	-.11755	-.15430	-.18246	-.20496	-.22098	-.23233	-.23724
$\lambda = 1$											
0.1564	0.06390	0.05804	0.04915	0.04323	0.03635	0.02954	0.02318	0.01727	0.01236	0.01021	0.01111
.3090	.06390	.04915	.03428	.02244	.01054	-.00262	-.01301	-.02336	-.03059	-.03352	-.03425
.4540	.06390	.04323	.02244	.00444	-.01419	-.03213	-.04733	-.05956	-.06941	-.07376	-.07401
.5878	.06390	.03635	.01054	-.01419	-.03715	-.05761	-.07560	-.09053	-.10235	-.10847	-.10903
.7071	.06390	.02954	-.00262	-.03213	-.05761	-.08155	-.10030	-.11704	-.13087	-.13861	-.13974
.8090	.06390	.02318	-.01301	-.04733	-.07560	-.10030	-.12049	-.13758	-.15259	-.16012	-.16143
.8910	.06390	.01727	-.02336	-.05956	-.09053	-.11704	-.13758	-.15528	-.16920	-.17850	-.18026
.9511	.06390	.01236	-.03059	-.06941	-.10235	-.13087	-.15259	-.16920	-.18140	-.19344	-.19590
.9877	.06390	.01021	-.03352	-.07376	-.10847	-.13861	-.16012	-.17850	-.19344	-.20407	-.20406
1.00	.06390	.01111	-.03425	-.07401	-.10903	-.13974	-.16140	-.18026	-.19590	-.20496	-.20486
$\lambda = 2$											
0.1564	0.02794	0.02524	0.02008	0.01748	0.01426	0.01102	0.00792	0.00521	0.00301	0.00305	0.00310
.3090	.02794	.02008	.01370	.00697	-.00084	-.01432	-.02246	-.02941	-.03612	-.04060	-.04210
.4540	.02794	.01748	.00697	-.00182	-.01432	-.02785	-.03786	-.04536	-.05329	-.05897	-.06145
.5878	.02794	.01426	-.00084	-.01432	-.02246	-.03786	-.05035	-.05964	-.06815	-.07407	-.07713
.7071	.02794	.01102	-.00624	-.02246	-.03786	-.05329	-.07314	-.08246	-.08781	-.09040	-.09199
.8090	.02794	.00792	-.01128	-.02941	-.04336	-.05329	-.06815	-.08246	-.09277	-.10019	-.10284
.8910	.02794	.00521	-.01605	-.03612	-.05329	-.07314	-.08781	-.10019	-.10970	-.11211	-.11318
.9511	.02794	.00301	-.01970	-.04060	-.05897	-.07407	-.08781	-.10019	-.10970	-.11211	-.11318
.9877	.02794	.00305	-.02072	-.04210	-.06081	-.07713	-.09040	-.10284	-.11211	-.11582	-.11708
1.00	.02794	.00310	-.02064	-.04251	-.06145	-.07820	-.09199	-.10437	-.11318	-.11708	-.11779

TABLE II.—FUNCTION $\frac{dQ}{dx}$ AGAINST x

$x_1 \backslash x$	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
$\lambda = \frac{1}{2}$											
0.1564	0.05000	0.0175	-.0150	-.0470	-.0800	-.1100	-.1340	-.1470	-.1520	-.1568	-.15974
.3090	.00250	-.0320	-.0672	-.1025	-.1396	-.1748	-.1984	-.2120	-.2184	-.2220	-.22254
.4540	-.06293	-.0975	-.1300	-.1648	-.1928	-.2168	-.2340	-.2448	-.2544	-.25584	-.25584
.5878	-.16149	-.1825	-.2000	-.2150	-.2300	-.2425	-.2555	-.2655	-.2720	-.2750	-.26922
.7071	-.28838	-.2648	-.2550	-.2548	-.2576	-.2665	-.2752	-.2840	-.2880	-.2875	-.27642
.8090	-.42038	-.3255	-.2880	-.2740	-.2700	-.2750	-.2840	-.2915	-.2952	-.2950	-.28349
.8910	-.53863	-.3352	-.3140	-.3024	-.2970	-.2952	-.2978	-.3020	-.3060	-.3160	-.31319
.9511	-.63559	-.4620	-.3744	-.3375	-.3160	-.3030	-.3020	-.3060	-.3100	-.3165	-.32400
.9877	-.69631	-.5100	-.4040	-.3525	-.3264	-.3150	-.3100	-.3135	-.3165	-.3248	-.33100
1.00	-.71759	-.5240	-.4144	-.3590	-.3320	-.3190	-.3150	-.3160	-.3220	-.3290	-.3360
$\lambda = 1$											
0.1564	-0.04690	-0.0475	-0.0480	-0.0500	-0.0520	-0.0530	-0.0550	-0.0575	-0.0600	-0.0630	-0.06727
.3090	-.08960	-.0900	-.0902	-.0920	-.0930	-.0955	-.0980	-.1014	-.1050	-.1090	-.11586
.4540	-.14818	-.1390	-.1360	-.1350	-.1370	-.1375	-.1400	-.1426	-.1465	-.1500	-.15343
.5878	-.19884	-.1800	-.1720	-.1680	-.1670	-.1675	-.1685	-.1712	-.1740	-.1770	-.17918
.7071	-.25298	-.2265	-.2120	-.2030	-.1980	-.1960	-.1950	-.1940	-.1936	-.1936	-.19592
.8090	-.30136	-.2620	-.2396	-.2270	-.2196	-.2140	-.2108	-.2090	-.2080	-.2100	-.21471
.8910	-.34255	-.2955	-.2712	-.2560	-.2450	-.2380	-.2280	-.2225	-.2200	-.2225	-.22800
.9511	-.37091	-.3187	-.2920	-.2748	-.2620	-.2508	-.2416	-.2350	-.2336	-.2370	-.24250
.9877	-.39041	-.3298	-.3010	-.2822	-.2680	-.2575	-.2480	-.2420	-.2390	-.2420	-.24700
1.00	-.39689	-.3322	-.3025	-.2837	-.2700	-.2600	-.2505	-.2438	-.2410	-.2435	-.24850
$\lambda = 2$											
0.1564	-0.02960	-0.0295	-0.0294	-0.0291	-0.0290	-0.0288	-0.0284	-0.0280	-0.0276	-0.0270	-0.02641
.3090	-.04857	-.0492	-.0499	-.0500	-.0500	-.0500	-.0498	-.0491	-.0482	-.04712	-.04712
.4540	-.07063	-.0712	-.0720	-.0725	-.0730	-.0730	-.0730	-.0725	-.0715	-.07058	-.07058
.5878	-.09199	-.0929	-.0937	-.0940	-.0940	-.0939	-.0936	-.0931	-.0930	-.0929	-.09270
.7071	-.11265	-.1114	-.1100	-.1090	-.1084	-.1080	-.1078	-.1078	-.1078	-.1078	-.10800
.8090	-.13155	-.1291	-.1269	-.1243	-.1220	-.1200	-.1188	-.1178	-.1170	-.1167	-.11700
.8910	-.14748	-.1450	-.1420	-.1387	-.1356	-.1327	-.1300	-.1281	-.1270	-.1266	-.12705
.9511	-.15874	-.1560	-.1534	-.1508	-.1480	-.1454	-.1430	-.1410	-.1396	-.1390	-.14034
.9877	-.16554	-.1600	-.1561	-.1530	-.1501	-.1478	-.1456	-.1434	-.1420	-.1416	-.14240
1.00	-.16757	-.1616	-.1571	-.1538	-.1510	-.1486	-.1460	-.1440	-.1428	-.1420	-.14320

TABLE II.—FUNCTION $\frac{dQ}{dx}$ AGAINST x —CONCLUDED

$x_1 \backslash x$	0	0.1564	0.3090	0.4540	0.5878	0.7071	0.8090	0.8910	0.9511	0.9877	1.00
$\lambda = \frac{1}{2}$											
0.1564	0.05000	-0.0010	-0.0501	-0.0970	-0.1315	-0.1475	-0.1540	-0.1565	-0.1595	-0.1600	-0.15974
.3090	.00250	-.0520	-.1060	-.1598	-.1960	-.2130	-.2200	-.2240	-.2255	-.2255	-.22254
.4540	-.06293	-.1165	-.1665	-.2065	-.2330	-.2470	-.2551	-.2580	-.2575	-.2565	-.25584
.5878	-.16149	-.1930	-.2170	-.2370	-.2545	-.2665	-.2740	-.2750	-.2735	-.2700	-.26922
.7071	-.28838	-.2580	-.2540	-.2630	-.2750	-.2840	-.2880	-.2890	-.2845	-.2780	-.27642
.8090	-.42088	-.3010	-.2735	-.2730	-.2830	-.2925	-.2965	-.2955	-.2915	-.2860	-.28349
.8910	-.53863	-.3575	-.3120	-.2990	-.2950	-.2980	-.3025	-.3060	-.3110	-.3115	-.31319
.9511	-.63599	-.4040	-.3350	-.3085	-.3020	-.3060	-.3100	-.3155	-.3200	-.3235	-.32400
.9877	-.69631	-.4420	-.3495	-.3190	-.3100	-.3135	-.3185	-.3240	-.3280	-.3301	-.33100
1.00	-.71759	-.4535	-.3560	-.3240	-.3150	-.3175	-.3230	-.3280	-.3325	-.3350	-.33600
$\lambda = 1$											
0.1564	-0.04690	-0.0477	-0.0505	-0.0526	-0.0550	-0.0575	-0.0600	-0.0625	-0.0650	-0.0669	-0.06727
.3090	-.08960	-.0900	-.0922	-.0947	-.0978	-.1020	-.1051	-.1085	-.1123	-.1149	-.11586
.4540	-.14818	-.1368	-.1351	-.1373	-.1398	-.1430	-.1468	-.1498	-.1522	-.1530	-.15343
.5878	-.19684	-.1748	-.1678	-.1670	-.1683	-.1718	-.1742	-.1765	-.1776	-.1790	-.17918
.7071	-.25298	-.2170	-.2027	-.1972	-.1950	-.1940	-.1936	-.1936	-.1949	-.1952	-.19592
.8090	-.30136	-.2475	-.2265	-.2168	-.2110	-.2088	-.2080	-.2098	-.2120	-.2132	-.21471
.8910	-.34255	-.2805	-.2550	-.2395	-.2285	-.2225	-.2200	-.2223	-.2250	-.2275	-.22800
.9511	-.37091	-.3020	-.2732	-.2560	-.2423	-.2345	-.2336	-.2365	-.2400	-.2420	-.24250
.9877	-.39041	-.3123	-.2810	-.2625	-.2495	-.2418	-.2390	-.2412	-.2445	-.2465	-.24700
1.00	-.39689	-.3135	-.2822	-.2645	-.2518	-.2436	-.2410	-.2428	-.2465	-.2480	-.24850
$\lambda = 2$											
0.1564	-0.02960	-0.0295	-0.0291	-0.0290	-0.0285	-0.0280	-0.0273	-0.0270	-0.0267	-0.0264	-0.02641
.3090	-.04857	-.0497	-.0500	-.0500	-.0500	-.0498	-.0490	-.0483	-.0478	-.0472	-.04712
.4540	-.07063	-.0718	-.0726	-.0730	-.0730	-.0730	-.0723	-.0718	-.0711	-.0708	-.07058
.5878	-.09199	-.0933	-.0940	-.0940	-.0937	-.0931	-.0930	-.0929	-.0928	-.0927	-.09270
.7071	-.11265	-.1108	-.1090	-.1081	-.1078	-.1078	-.1078	-.1078	-.1080	-.1080	-.10800
.8090	-.13155	-.1279	-.1241	-.1210	-.1189	-.1177	-.1169	-.1167	-.1168	-.1170	-.11700
.8910	-.14748	-.1432	-.1384	-.1340	-.1304	-.1280	-.1269	-.1266	-.1268	-.1270	-.12705
.9511	-.15874	-.1546	-.1505	-.1467	-.1432	-.1409	-.1396	-.1390	-.1393	-.1400	-.14034
.9877	-.16554	-.1578	-.1528	-.1490	-.1459	-.1433	-.1420	-.1416	-.1419	-.1422	-.14240
1.00	-.16757	-.1589	-.1534	-.1497	-.1463	-.1439	-.1428	-.1420	-.1424	-.1429	-.14320

TABLE III.—FUNCTION $-x \frac{dQ}{dx}$ AGAINST x

$x_1 \backslash x$	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
$\lambda = \frac{1}{2}$											
0.1564	0	-0.00175	0.00300	0.01410	0.03200	0.05500	0.08040	0.10290	0.12160	0.14112	0.15974
.3090	0	.00320	.01344	.03075	.05584	.08740	.11904	.14840	.17472	.19980	.22254
.4540	0	.00975	.02600	.04944	.07712	.10840	.14040	.17136	.20352	.23202	.25584
.5878	0	.01825	.04000	.06450	.09200	.12125	.15192	.18585	.21760	.24750	.26922
.7071	0	.02648	.05100	.07644	.10304	.13325	.16512	.19880	.23040	.25875	.27642
.8090	0	.03255	.05760	.08220	.10800	.13750	.17040	.20405	.23616	.26550	.28349
.8910	0	.04000	.06704	.09420	.12096	.14850	.17712	.20846	.24160	.27612	.31319
.9511	0	.04620	.07488	.10125	.12640	.15250	.18120	.21240	.24800	.28440	.32400
.9877	0	.05100	.08080	.10575	.13056	.15750	.18600	.21945	.25320	.29232	.33100
1.00	0	.05240	.08288	.10770	.13280	.15950	.18900	.22120	.25760	.29610	.33600
$\lambda = 1$											
0.1564	0	0.00475	0.00960	0.01500	0.02080	0.02650	0.03300	0.04025	0.04800	0.05670	0.06727
.3090	0	.00900	.01804	.02760	.04050	.05840	.06875	.08400	.09840	.09810	.11586
.4540	0	.01390	.02720	.04140	.05215	.07290	.09360	.04380	.05110	.05800	.06435
.5878	0	.01800	.03440	.05040	.06680	.08375	.10110	.11984	.13920	.15930	.17918
.7071	0	.02265	.04240	.06090	.07920	.09800	.11700	.13580	.15488	.17424	.19592
.8090	0	.02620	.04792	.06810	.08784	.10700	.12648	.14630	.16640	.18900	.21471
.8910	0	.02955	.05424	.07680	.09800	.11900	.13680	.15575	.17600	.20025	.22800
.9511	0	.03187	.05840	.08244	.10480	.12540	.14496	.16450	.18688	.21330	.24250
.9877	0	.03298	.06020	.08466	.10720	.12875	.14880	.16940	.19120	.21780	.24700
1.00	0	.03322	.06050	.08511	.10800	.13000	.15030	.17066	.19280	.21915	.24850
$\lambda = 2$											
0.1564	0	0.00295	0.00588	0.00873	0.01160	0.01440	0.01704	0.01960	0.02208	0.02430	0.02641
.3090	0	.00492	.00998	.01500	.02000	.02500	.03000	.03486	.03928	.04338	.04712
.4540	0	.00712	.01440	.02175	.02920	.03650	.04380	.05110	.05800	.06435	.07058
.5878	0	.00929	.01874	.02820	.03760	.04695	.05616	.06517	.07440	.08361	.09270
.7071	0	.01114	.02200	.03270	.04336	.05400	.06468	.07646	.08624	.09702	.10800
.8090	0	.01291	.02538	.03729	.04880	.06000	.07128	.08246	.09360	.10503	.11700
.8910	0	.01450	.02840	.04161	.05424	.06635	.07800	.08967	.10160	.11394	.12705
.9511	0	.01560	.03068	.04524	.05920	.07270	.08550	.09870	.11168	.12510	.14034
.9877	0	.01600	.03122	.04590	.06004	.07390	.08736	.10038	.11360	.12744	.14240
1.00	0	.01616	.03142	.04614	.06040	.07430	.08760	.10080	.11424	.12780	.14320

TABLE III.—FUNCTION $-x \frac{dQ}{dx}$ AGAINST x —CONCLUDED

x_1	x	0	0.1564	0.3090	0.4540	0.5878	0.7071	0.8090	0.8910	0.9511	0.9877	1.00
$\lambda = \frac{1}{2}$												
0.1564	0	0.00016	0.01548	0.04404	0.07730	0.10430	0.12459	0.13944	0.15170	0.15803	0.15974	
.3090	0	.00813	.03275	.07255	.11521	.15061	.17798	.19780	.21305	.22075	.22254	
.4540	0	.01822	.05145	.09375	.12696	.17465	.20638	.22988	.24491	.25335	.25584	
.5878	0	.03019	.06705	.10760	.14960	.18844	.22167	.24502	.26013	.26668	.26922	
.7071	0	.04035	.07849	.11940	.16164	.20082	.23299	.25750	.27059	.27458	.27642	
.8090	0	.04708	.08451	.12394	.16635	.20683	.23987	.26329	.27725	.28248	.28349	
.8910	0	.05591	.09641	.13575	.17340	.21072	.24472	.27265	.29579	.30767	.31319	
.9511	0	.06319	.10351	.14006	.17752	.21637	.25079	.28111	.30435	.31952	.32400	
.9877	0	.06913	.10800	.14483	.18222	.22168	.25767	.28868	.31196	.32604	.33100	
1.00	0	.07093	.11000	.14710	.18516	.22450	.26131	.29225	.31624	.33058	.33600	
$\lambda = 1$												
0.1564	0	0.00746	0.01560	0.02388	0.03233	0.04066	0.04854	0.05569	0.05182	0.05608	0.06727	
.3090	0	.01408	.02849	.04299	.05749	.07212	.08503	.09667	.10681	.11349	.11586	
.4540	0	.02140	.04175	.06233	.08217	.10112	.11876	.13347	.14476	.15112	.15343	
.5878	0	.02734	.05185	.07582	.09893	.12148	.14093	.15726	.16892	.17680	.17918	
.7071	0	.03394	.06263	.08593	.11462	.13718	.15662	.17250	.18537	.19280	.19592	
.8090	0	.03871	.06999	.09843	.12403	.14764	.16827	.18693	.20163	.21058	.21471	
.8910	0	.04387	.07380	.10873	.13431	.15733	.17798	.19807	.21400	.22470	.22800	
.9511	0	.04723	.08442	.11622	.14242	.16581	.18898	.21072	.22826	.23902	.24250	
.9877	0	.04884	.08683	.11917	.14666	.17093	.19335	.21491	.22254	.23445	.24347	.24700
1.00	0	.04903	.08720	.12008	.14801	.17225	.19497	.21633	.24495	.24850		
$\lambda = 2$												
0.1564	0	0.00461	0.00899	0.01317	0.01675	0.01980	0.02209	0.02406	0.02539	0.02608	0.02641	
.3090	0	.00777	.01545	.02270	.02939	.03521	.03964	.04304	.04546	.04662	.04712	
.4540	0	.01123	.02243	.03314	.04291	.05162	.05849	.06397	.06762	.06993	.07058	
.5878	0	.01459	.02905	.04268	.05508	.06583	.07524	.08277	.08826	.09156	.09270	
.7071	0	.01733	.03368	.04908	.06336	.07623	.08721	.09605	.10272	.10667	.10800	
.8090	0	.02000	.03835	.05493	.06989	.08223	.09457	.10398	.11109	.11556	.11700	
.8910	0	.02240	.04277	.06084	.07665	.09051	.10266	.11280	.12060	.12544	.12705	
.9511	0	.02418	.04650	.06660	.08417	.09963	.11294	.12385	.13249	.13828	.14034	
.9877	0	.02468	.04722	.06765	.08576	.10133	.11488	.12617	.13496	.14045	.14240	
1.00	0	.02485	.04740	.06796	.08600	.10175	.11553	.12652	.13544	.14114	.14320	

TABLE IV.—FUNCTION $x \frac{dF}{dx}$ AGAINST x

x_1	x	0	0.1564	0.3090	0.4540	0.5878	0.7071	0.8090	0.8910	0.9511	0.9877	1.00
$\lambda = \frac{1}{2}$												
0	0	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
.1564	0	$\pm\infty$	-1.99303	-1.46458	-1.26170	-1.19621	-1.06855	-1.01614	-0.98157	-0.96187	-0.95540	
.3090	0	.79883	$\pm\infty$	-2.78366	-1.80906	-1.45440	-1.26665	-1.15397	-1.08539	-1.04803	-1.03613	
.4540	0	.34549	1.42781	$\pm\infty$	-3.41645	-2.10410	-1.64634	-1.41821	-1.29261	-1.22783	-1.20769	
.5878	0	.21336	.63897	1.99871	$\pm\infty$	-4.03919	-2.43710	-1.89999	-1.64972	-1.53080	-1.49506	
.7071	0	.16030	.41011	.93133	2.61274	$\pm\infty$	-4.81641	-2.90544	-2.29684	-2.04745	-1.97675	
.8090	0	.13685	.31447	.61779	1.26965	3.38854	$\pm\infty$	-5.98509	-3.67916	-3.01834	-2.85105	
.8910	0	.12688	.26841	.48398	.87241	1.72629	4.53529	$\pm\infty$	-8.07131	-5.23205	-4.69950	
.9511	0	.12189	.24512	.41901	.70492	1.24095	2.45465	6.55772	$\pm\infty$	-12.97115	-9.87489	
.9877	0	.12017	.23403	.38579	.63067	1.05355	1.88986	3.90597	11.31495	$\pm\infty$	-37.32797	
1.00	0	.11974	.23074	.37922	.60914	1.00201	1.75072	3.42125	8.32837	35.30113	∞	
$\lambda = 1$												
0	0	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
.1564	0	∞	-2.02000	-1.51292	-1.33779	-1.24658	-1.19054	-1.15399	-1.13052	-1.11731	-1.11302	
.3090	0	.95868	∞	-3.04334	-2.02983	-1.68390	-1.50919	-1.40738	-1.34642	-1.31349	-1.30302	
.4540	0	.46900	1.88440	∞	-4.09131	-2.72121	-2.06744	-1.82101	-1.68705	-1.61849	-1.59724	
.5878	0	.31308	.92928	2.82641	∞	-5.50622	-3.21099	-2.54673	-2.24206	-2.09846	-2.05546	
.7071	0	.24131	.62835	1.41541	3.87876	∞	-6.66344	-4.05123	-3.23335	-2.90145	-2.80771	
.8090	0	.20322	.49077	.97474	1.98748	5.20307	∞	-8.68248	-5.35062	-4.40589	-4.16788	
.8910	0	.18179	.41840	.77603	1.40438	2.75532	7.12155	∞	-12.11751	-7.84804	-7.05128	
.9511	0	.16974	.37883	.67518	1.15039	2.02152	3.96099	10.43287	∞	-19.95323	-15.16694	
.9877	0	.16360	.35885	.62006	1.03526	1.73314	3.09010	6.32119	18.08469	∞	-58.44076	
1.00	0	.16171	.35272	.61123	1.00149	1.65306	2.87394	5.56464	13.39780	56.18133	∞	
$\lambda = 2$												
0	0	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
.1564	0	∞	-2.02393	-1.52266	-1.35649	-1.27453	-1.22695	-1.19742	-1.17919	-1.16922	-1.16602	
.3090	0	1.00761	∞	-3.10970	-2.08915	-1.75281	-1.58947	-1.49766	-1.44428	-1.41600	-1.40710	
.4540	0	.51046	2.06247	∞	-4.31441	-2.73708	-2.22626	-1.97925	-1.85005	-1.78491	-1.76488	
.5878	0	.34911	1.05685	3.22439	∞	-5.73646	-3.53335	-2.82827	-2.51033	-2.36233	-2.31828	
.7071	0	.27224	.73259	1.67673	4.50422	∞	-7.55951	-4.61041	-3.70046	-3.33496	-3.23228	
.8090	0	.22951	.57977	1.18224	2.43642	6.35690	∞	-10.17771	-6.27367	-5.17695	-4.90194	
.8910	0	.20419	.49669	.95382	1.75803	3.46676	8.90569	∞	-14.59886	-9.43808	-8.47927	
.9511	0	.18920	.44984	.83532	1.45735	2.58738	5.06961	13.24395	∞	-24.56797	-18.64159	
.9877	0	.18124	.42561	.77664	1.31929	2.23798	4.00223	8.15130	23.10187	∞	-73.19713	
1.00	0	.17874	.41808	.75876	1.27851	2.14041	3.73593	7.20978	17.22166	71.52164	∞	

TABLE V.—FUNCTION P AGAINST x FOR $\tau=60^\circ$

x_1	x	0	0.1564	0.3090	0.5878	0.8090	0.9511	1.00
$\lambda = \frac{1}{2}$								
$\lambda = 1$								
0.1564	2.2478	1.9613	1.4980	0.8830	0.5696	0.4113	0.3600	
.3090	1.5673	1.4980	1.2413	.7046	.4963	.3580	.3046	
.5878	.9259	.8830	.7646	.5146	.3280	.2230	.1866	
.8090	.6084	.5696	.4963	.3280	.1946	.1146	.0826	
.9511	.4482	.4113	.3580	.2230	.1146	.0446	.0213	
1.00	.3986	.3600	.3046	.1866	.0826	.0213	0	
$\lambda = 2$								
0.1564	2.2463	2.0200	1.5000	0.8834	0.5700	0.4200	0.3734	
.3090	1.5655	1.5000	1.3134	.8267	.5300	.3800	.3300	
.5878	.9228	.8834	.8267	.6069	.3900	.2567	.2134	
.8090	.6039	.5700	.5300	.3900	.2400	.1367	.1000	
.9511	.4425	.4200	.3800	.2567	.1367	.0667	.0267	
1.00	.3924	.3734	.3300	.2134	.1000	.0267	0	

TABLE VII.—FUNCTION P AGAINST x FOR $\tau=180^\circ$

x_1	x	0	0.1564	0.3090	0.5878	0.8090	0.9511	1.00
$\lambda = \frac{1}{2}$								
$\lambda = 1$								
0.1564	2.1518	1.5686	1.1586	0.7106	0.4653	0.3220	0.2786	
.3090	1.4713	1.1586	.9320	.5973	.3920	.2753	.2320	
.5878	.8299	.7106	.5973	.3986	.2573	.1736	.1386	
.8090	.5124	.4653	.3920	.2573	.1600	.0986	.0680	
.9511	.3522	.3220	.2753	.1736	.0986	.0470	.0220	
1.00	.3026	.2786	.2320	.1356	.0680	.0220	0	
$\lambda = 2$								
0.1564	2.3063	1.6867	1.2667	0.8100	0.5600	0.4100	0.3634	
.3090	1.6255	1.2667	.9934	.6534	.4534	.3300	.2934	
.5878	.9828	.8100	.6534	.4367	.2934	.2034	.1767	
.8090	.6639	.5600	.4534	.2934	.1834	.1100	.0834	
.9511	.5025	.4100	.3300	.2034	.1100	.0433	.0200	
1.00	.4524	.3634	.2934	.1767	.0834	.0200	0	

TABLE VI.—FUNCTION P AGAINST x FOR $\tau=120^\circ$

x_1	x	0	0.1564	0.3090	0.5878	0.8090	0.9511	1.00
$\lambda = \frac{1}{2}$								
$\lambda = 1$								
0.1564	2.1727	2.2333	1.5200	0.8667	0.5333	0.3667	0.3133	
.3090	1.4928	1.5200	1.2667	.7700	.4900	.3367	.2867	
.5878	.8488	.8667	.7700	.5367	.3667	.2500	.2067	
.8090	.5295	.5333	.4900	.3667	.2433	.1467	.1067	
.9511	.3678	.3667	.3367	.2500	.1467	.0600	.0267	
1.00	.3177	.3133	.2867	.2067	.1067	.0267	0	
$\lambda = 2$								
0.1564	2.2825	1.6693	1.2393	0.8000	0.5377	0.3960	0.3547	
.3090	1.6020	1.2393	.9860	.6460	.4360	.3160	.2813	
.5878	.9606	.8000	.6460	.4280	.2777	.1893	.1640	
.8090	.6431	.5377	.4360	.2777	.1693	.0977	.0777	
.9511	.4829	.3960	.3160	.1893	.0977	.0360	.0167	
1.00	.4333	.3547	.2813	.1640	.0777	.0167	0	
$\lambda = 1$								
0.1564	2.4163	1.8234	1.3900	0.9067	0.6500	0.5100	0.4600	
.3090	1.7355	1.3934	1.1100	.7567	.5300	.4134	.3634	
.5878	.1.0928	.9067	.7567	.4967	.3434	.2534	.2067	
.8090	.7739	.6500	.5300	.3434	.2067	.1300	.0934	
.9511	.6125	.5100	.4134	.2534	.1300	.0634	.0300	
1.00	.5624	.4600	.3634	.2067	.0934	.0300	0	
$\lambda = 2$								
0.1564	2.4794	1.8934	1.5133	1.0267	0.7267	0.5600	0.5067	
.3090	1.7985	1.5133	1.2800	.8800	.6067	.4534	.4000	
.5878	1.1555	1.0267	.8800	.6000	.3934	.2667	.2200	
.8090	.8362	.7267	.6067	.3934	.2334	.1334	.1000	
.9511	.6745	.5600	.4534	.2667	.1334	.0534	.0267	
1.00	.6244	.5067	.4000	.2200	.1000	.0267	0	

TABLE VIII.—FUNCTION P AGAINST x FOR $\tau=240^\circ$

x_1	x	0	0.1564	0.3090	0.5878	0.8090	0.9511	1.00
$\lambda = \frac{1}{2}$								
$\lambda = 1$								
0.1564	1.8785	1.4720	1.1153	0.5693	0.2800	0.1220	0.0680	
.3090	1.1980	1.1153	.9320	.5450	.2853	.1287	.0720	
.5878	.5566	.5693	.5453	.4066	.2413	.1220	.0773	
.8090	.2391	.2800	.2853	.2413	.1573	.0787	.0453	
.9511	.0789	.1220	.1287	.1220	.0787	.0320	.0120	
1.00	.0293	.0680	.0720	.0773	.0453	.0120	0	
$\lambda = 2$								
0.1564	2.0296	1.5867	1.1833	0.6767	0.3967	0.2400	0.1833	
.3090	1.3482	1.1833	.9633	.5933	.3600	.2234	.1767	
.5878	.7071	.6767	.5933	.4067	.2567	.1633	.1267	
.8090	.3872	.3967	.3600	.2567	.1567	.0900	.0633	
.9511	.2258	.2400	.2234	.1633	.0900	.0433	.0200	
1.00	.1757	.1833	.1767	.1267	.0633	.0200	0	

TABLE IX.—FUNCTION P AGAINST x FOR $\tau = 300^\circ$

$x_1 \backslash x$	0	0.1564	0.3090	0.5878	0.8090	0.9511	1.00
$\lambda = \frac{1}{2}$							
0.1564	1.4198	1.4933	0.9400	0.3100	-0.0600	-0.2734	-0.3400
.3090	.7393	.9400	1.0566	.4566	.0766	-.1534	-.2434
.5878	.0979	.3100	.4566	.4400	.2233	.0233	-.0634
.8090	-.2196	-.0600	.0766	.2233	.2100	.0866	.0133
.9511	-.3798	-.2634	-.1534	.0233	.0866	.0466	.0066
1.00	-.4294	-.3400	-.2434	-.0634	.0133	.0066	0
$\lambda = 1$							
0.1564	1.4296	1.3467	0.9567	0.2433	-0.0967	-0.2700	-0.3200
.3090	.7488	.9567	.9067	.4100	.0333	-.1600	-.2133
.5878	.1061	.2433	.4100	.4333	.1833	.0167	-.0367
.8090	-.2128	-.0967	.0333	.1833	.1900	.0900	.0367
.9511	-.3742	-.2700	-.1600	.0167	.0900	.0567	.0200
1.00	-.4243	-.3200	-.2133	-.0367	.0367	.0200	0
$\lambda = 2$							
0.1564	1.6794	1.0600	1.3000	0.5534	0.1734	-0.0100	-0.0600
.3090	.9985	1.3000	1.1200	.6334	.2834	.0867	.0234
.5878	.3555	.5534	.6334	.5234	.3000	.1434	.0800
.8090	.0362	.1734	.2834	.3000	.1434	.0967	.0534
.9511	-.1255	-.0100	.0867	.1434	.0967	.0467	.0200
1.00	-.1756	-.0500	.0234	.0800	.0534	.0200	0

TABLE X.—FUNCTION $\frac{dP}{dx}$ AGAINST τ FOR $\lambda = \frac{1}{2}$

$x_1 \backslash \tau$	(deg)	60	120	180	240	300
$x=0$						
0.1564	2.2667	-3.3333	-6.0000	-2.2667	3.3333	
.3090	-.2667	-.8667	-.19333	-.2667	1.8667	
.4540						
.5878	-.4133	-.10267	-.8333	-.4133	1.0267	
.7071						
.8090	-.3300	-.7333	-.4800	-.3300	.7333	
.8910						
.9511	-.3017	-.5733	-.3000	.3017	.5733	
.9877						
1.00	-.2600	-.5400	-.2600	.2600	.5400	
$x=1.00$						
0.1564	-.09367	-.08633	-.09333	-.01033	-.1190	
.3090	-.8767	-.7467	-.7933	-.9967	-.1340	
.4540						
.5878	-.7300	-.5800	-.6183	-.8533	-.4133	
.7071						
.8090	-.5850	-.4700	-.4867	-.6650	-.1567	
.8910						
.9511	-.5033	-.4100	-.4000	-.4733	-.6700	
.9877						
1.00	-.4767	-.3967	-.3693	-.4333	-.4333	

TABLE XI.—FUNCTION $\frac{dP}{dx}$ AGAINST τ FOR $\lambda = 1$

$x_1 \backslash \tau$	(deg)	60	120	180	240	300
$x=0$						
0.1564	5.0667	-8.6667	-10.3333	-5.0667	8.6667	
.3090	.7667	-.9333	-.34667	-.7667	1.9333	
.4540						
.5878	-.2133	-.9667	-.1000	-.2133	.9667	
.7071						
.8090	-.0533	-.6933	-.7500	.0533	.6933	
.8910						
.9511	-.1400	-.6400	-.5200	.1400	.6400	
.9877						
1.00	-.1667	-.6200	-.4800	.1667	.6200	
$x=1.00$						
0.1564	-0.9567	-0.8533	-0.8400	-0.9533	-1.0300	
.3090	-.9733	-.7933	-.7600	-.8667	-.10733	
.4540						
.5878	-.8133	-.6267	-.5767	-.6600	-.9533	
.7071						
.8090	-.6633	-.5100	-.4600	-.4833	-.6467	
.8910						
.9511	-.5967	-.4633	-.4100	-.4033	-.3333	
.9877						
1.00	-.5533	-.4467	-.3800	-.3633	-.2900	

TABLE XII.—FUNCTION $\frac{dP}{dx}$ AGAINST τ FOR $\lambda = 2$

$x_1 \backslash \tau$	(deg)	60	120	180	240	300
$x=0$						
0.1564	11.3333	-8.833	-16.3333	-11.3333	8.833	
.3090	2.8000	-.2400	-.56667	-.28000	2.400	
.4540						
.5878	-.6833	-.9333	-.12000	-.6833	.9333	
.7071						
.8090	-.2533	-.6667	-.7667	-.2533	.6667	
.8910						
.9511	-.2000	-.5867	-.6333	-.2000	.5867	
.9877						
1.00	-.1600	-.5467	-.5667	-.1600	.5467	
$x=1.00$						
0.1564	-0.9733	-0.9067	-0.7733	-0.7467	-0.8000	
.3090	-1.0533	-.7600	-.6400	-.7200	-.8400	
.4540						
.5878	-.9467	-.6600	-.5000	-.4800	-.7200	
.7071						
.8090	-.7200	-.5667	-.4867	-.4067	-.5467	
.8910						
.9511	-.6200	-.5000	-.4500	-.3600	-.4267	
.9877						
1.00	-.5600	-.4867	-.3800	-.3400	-.2333	

TABLE XIII.—FUNCTION $-x \frac{dP}{dx}$ AGAINST x FOR $\lambda = \frac{1}{2}$

x_1	x	0.1564	0.3090	0.5878	0.8090	0.9511	1.00
$\tau = 60^\circ$							
0.1564	0.399	0.890	1.044	0.964	0.933	0.9367	
.3090	.194	.570	.877	.787	.810	.8767	
.5878	.105	.261	.526	.623	.695	.7300	
.8090	.074	.159	.375	.460	.532	.5850	
.9511	.055	.124	.309	.379	.448	.5033	
1.00	.050	.111	.280	.347	.417	.4767	
$\tau = 120^\circ$							
0.1564	0.526	0.662	0.785	0.834	0.859	0.8633	
.3090	.316	.457	.609	.690	.731	.7467	
.5878	.162	.269	.411	.508	.562	.5800	
.8090	.117	.200	.321	.406	.453	.4700	
.9511	.085	.154	.266	.342	.391	.4100	
1.00	.075	.142	.249	.328	.375	.3967	
$\tau = 180^\circ$							
0.1564	0.507	0.679	0.736	0.823	0.908	0.9333	
.3090	.264	.465	.611	.663	.752	.7933	
.5878	.118	.238	.394	.482	.579	.6183	
.8090	.064	.149	.273	.377	.454	.4867	
.9511	.044	.106	.208	.285	.358	.4000	
1.00	.041	.101	.184	.260	.334	.3693	
$\tau = 240^\circ$							
0.1564	0.397	0.6999	0.924	0.987	1.0090	1.0133	
.3090	.147	.431	.771	.905	.973	.9967	
.5878	.008	.091	.381	.663	.816	.8533	
.8090	-.020	.025	.159	.400	.598	.6650	
.9511	-.018	.002	.059	.228	.4015	.4733	
1.00	-.014	-.008	.042	.194	.363	.4333	
$\tau = 300^\circ$							
0.1564	0.6200	0.9070	1.1330	1.216	1.209	1.1900	
.3090	-.2030	.3380	1.0800	1.3222	1.350	1.3400	
.5878	-.2074	-.1591	.3590	1.021	1.360	1.4133	
.8090	-.1372	-.2385	-.1734	.402	.970	1.1567	
.9511	-.1175	-.2148	-.2933	-.025	.465	.6700	
1.00	-.0940	-.2042	-.3245	-.067	.284	.4333	

TABLE XIV.—FUNCTION $-x \frac{dP}{dx}$ AGAINST x FOR $\lambda = 1$

x_1	x	0.1564	0.3090	0.5878	0.8090	0.9511	1.00
$\tau = 60^\circ$							
0.1564	0.450	0.943	1.020	0.990	0.964	0.9567	
.3090	.130	.463	.970	.918	.940	.9733	
.5878	.050	.163	.568	.778	.811	.8133	
.8090	.038	.117	.348	.602	.660	.6633	
.9511	.035	.105	.290	.468	.570	.5967	
1.00	.029	.099	.270	.427	.523	.5533	
$\tau = 120^\circ$							
0.1564	0.515	0.711	0.817	0.849	0.853	0.8533	
.3090	.318	.480	.640	.725	.778	.7933	
.5878	.167	.292	.466	.559	.610	.6267	
.8090	.124	.228	.375	.464	.501	.5100	
.9511	.106	.191	.336	.426	.460	.4633	
1.00	.095	.179	.318	.404	.440	.4467	
$\tau = 180^\circ$							
0.1564	0.513	0.668	0.770	0.814	0.834	0.840	
.3090	.307	.470	.622	.7105	.748	.760	
.5878	.162	.283	.419	.510	.560	.577	
.8090	.110	.191	.319	.403	.4496	.460	
.9511	.087	.158	.2705	.350	.395	.410	
1.00	.080	.147	.2505	.326	.369	.380	
$\tau = 240^\circ$							
0.1564	0.442	0.733	0.890	0.937	0.9505	0.9533	
.3090	.205	.460	.688	.794	.8500	.8667	
.5878	.068	.198	.415	.565	.6400	.6600	
.8090	.022	.095	.256	.379	.456	.4833	
.9511	.002	.052	.163	.274	.364	.4033	
1.00	.0006	.039	.134	.235	.324	.3633	
$\tau = 300^\circ$							
0.1564	0.241	0.967	1.1580	1.1033	1.0533	1.0300	
.3090	-.051	.298	1.1266	1.2224	1.1300	1.0733	
.5878	-.175	-.259	.516	.995	1.0330	.9533	
.8090	-.128	-.244	-.205	.314	.6067	.6467	
.9511	-.108	-.230	-.330	-.087	.215	.3333	
1.00	-.109	-.214	-.308	-.080	.185	.2900	

TABLE XV.—FUNCTION $-x \frac{dP}{dx}$ AGAINST x FOR $\lambda=2$

x_1	x	0.1564	0.3090	0.5878	0.8090	0.9511	1.00
$\tau = 60^\circ$							
$\tau = 120^\circ$							
0.1564	0.880	1.019	1.061	1.040	0.9985	0.9733	
.3090	.097	.723	.834	.939	1.023	1.0533	
.5878	.035	.282	.448	.642	.861	.9467	
.8090	.027	.110	.305	.509	.6615	.7200	
.9511	.021	.081	.235	.422	.568	.6200	
1.00	.017	.067	.210	.384	.514	.5600	
$\tau = 180^\circ$							
0.1564	0.551	0.707	0.752	0.740	0.7550	0.7733	
.3090	.373	.516	.581	.612	.631	.6400	
.5878	.220	.327	.419	.465	.491	.5000	
.8090	.153	.256	.332	.379	.451	.4867	
.9511	.124	.200	.281	.327	.394	.4500	
1.00	.122	.197	.262	.301	.351	.3800	
$\tau = 240^\circ$							
0.1564	0.439	0.689	0.893	0.914	0.832	0.7467	
.3090	.208	.406	.708	.814	.788	.7200	
.5878	.077	.200	.460	.646	.585	.4800	
.8090	.043	.119	.322	.489	.452	.4067	
.9511	.033	.100	.278	.3996	.391	.3600	
1.00	.029	.091	.262	.381	.376	.3400	
$\tau = 300^\circ$							
0.1564	0.847	1.087	1.202	1.121	0.943	0.8000	
.3090	.046	.482	1.000	1.118	1.039	.8400	
.5878	-.149	-.040	.481	.862	.837	.7200	
.8090	-.127	-.161	.162	.498	.5585	.5467	
.9511	-.107	-.160	.045	.281	.412	.4267	
1.00	-.100	-.140	-.008	.166	.230	.2333	

TABLE XVI.—VALUES OF $\sum -x \frac{dP}{dx}$ AGAINST x FOR 3-BLADE AND 6-BLADE PROPELLERS[For 3-blade propeller, $\tau = 120^\circ$ and 240° ; for 6-blade propeller, $\tau = 60^\circ, 120^\circ, 180^\circ, 240^\circ$, and 300°]

x_1	x	0.1564	0.3090	0.5878	0.8090	0.9511	1.00
3-blade propeller; $\lambda = \frac{1}{2}$							
3-blade propeller; $\lambda = 1$							
0.1564	0.957	1.444	1.707	1.786	1.8035	1.8066	
.3090	.523	.940	1.328	1.5235	1.628	1.660	
.5878	.235	.490	.881	1.124	1.250	1.2867	
.8090	.146	.323	.631	.843	.957	.9933	
.9511	.108	.243	.499	.700	.824	.8666	
1.00	.0956	.218	.452	.639	.764	.8100	
3-blade propeller; $\lambda = 2$							
0	0	0	0	0	0	0	
.1564	.912	1.344	1.749	1.836	1.750	1.6534	
.3090	.468	.886	1.489	1.696	1.6075	1.5067	
.5878	.219	.501	1.043	1.396	1.285	1.1400	
.8090	.160	.358	.764	1.049	1.0295	.9734	
.9511	.1365	.321	.657	.8616	.886	.8600	
1.00	.1232	.301	.620	.822	.853	.8267	
6-blade propeller; $\lambda = \frac{1}{2}$							
0	0	0	0	0	0	0	
.1564	2.4490	3.837	4.622	4.824	4.918	4.9366	
.3090	.718	2.261	3.948	4.367	4.616	4.7534	
.5878	.1856	.6999	2.071	3.297	4.012	4.1949	
.8090	.0978	.2945	.9546	2.045	3.007	3.3634	
.9511	.0485	.1712	.5487	1.209	2.0635	2.4566	
1.00	.0580	.1418	.4305	1.062	1.773	2.1093	
6-blade propeller; $\lambda = 1$							
0	0	0	0	0	0	0	
.1564	2.166	4.022	4.655	4.6933	4.6548	4.6333	
.3090	.909	2.171	4.0466	4.3654	4.446	4.4666	
.5878	.272	.677	2.334	3.407	3.654	3.6303	
.8090	.166	.387	1.093	2.162	2.6733	2.7633	
.9511	.122	.276	.7295	1.431	2.004	2.2066	
1.00	.0956	.250	.6645	1.312	1.846	2.0333	
6-blade propeller; $\lambda = 2$							
0	0	0	0	0	0	0	
.1564	3.190	4.157	4.764	4.737	4.4465	4.200	
.3090	.984	2.607	3.904	4.365	4.3005	4.040	
.5878	.325	1.070	2.391	3.365	3.474	3.3067	
.8090	.213	.563	1.563	2.435	2.7005	2.7268	
.9511	.1745	.442	1.218	1.8916	2.260	2.3567	
1.00	.1622	.425	1.034	1.673	1.948	2.000	

Positive directions of axes and angles (forces and moments) are shown by arrows

Axis		Force (parallel to axis) symbol	Moment about axis			Angle		Velocities	
Designation	Symbol		Designation	Symbol	Positive direction	Designation	Symbol	Linear component along axis	Angular
Longitudinal.....	X	X	Rolling.....	L	$Y \rightarrow Z$	Roll.....	φ	u	p
Lateral.....	Y	Y	Pitching.....	M	$Z \rightarrow X$	Pitch.....	θ	v	q
Normal.....	Z	Z	Yawing.....	N	$X \rightarrow Y$	Yaw.....	ψ	w	r

Absolute coefficients of moment

$$C_i = \frac{L}{qbS} \quad C_m = \frac{M}{qcS} \quad C_n = \frac{N}{qbS}$$

(rolling) (pitching) (yawing)

Angle of set of control surface (relative to neutral position), δ . (Indicate surface by proper subscript.)

4. PROPELLER SYMBOLS

D	Diameter	P	Power, absolute coefficient $C_P = \frac{P}{\rho n^3 D^5}$
p	Geometric pitch		
p/D	Pitch ratio		
V'	Inflow velocity	C_s	Speed-power coefficient $= \sqrt[5]{\frac{\rho V^5}{P n^2}}$
V_s	Slipstream velocity	η	Efficiency
T	Thrust, absolute coefficient $C_T = \frac{T}{\rho n^2 D^4}$	n	Revolutions per second, rps
Q	Torque, absolute coefficient $C_Q = \frac{Q}{\rho n^2 D^5}$	Φ	Effective helix angle $= \tan^{-1} \left(\frac{V}{2\pi r n} \right)$

5. NUMERICAL RELATIONS

$$1 \text{ hp} = 76.04 \text{ kg-m/s} = 550 \text{ ft-lb/sec}$$

1 metric horsepower = 0.9863 hp

1 mph = 0.4470 mps

1 mps=2.2369 mph

$$1 \text{ lb} = 0.4536 \text{ kg}$$

1 kg = 2.2046 lb

$$1 \text{ mi} = 1,609.35 \text{ m} = 5,280 \text{ ft}$$

$$1 \text{ m} = 3.2808 \text{ ft}$$

NASA FILE COPY

Loan expires on last
date stamped on back cover.

PLEASE RETURN TO
REPORT DISTRIBUTION SECTION
LANGLEY RESEARCH CENTER
NATIONAL AERONAUTICS AND
SPACE ADMINISTRATION

Langley AFB, Virginia