Below is a **high-level summary** of the multi-agent solution for **decentralized drone coverage** with **truly local rewards**. We break down **what** each file does, **how** it does it, and provide some background on the **theory** underpinning this approach.

Solution Overview

We are tackling a **multi-drone coverage** task on an N×NN \times NN×N grid. Each drone has a coverage radius, and we measure how many cells of the grid each drone covers. The **key** aspects here are:

- 1. **Decentralized Setting:** Each drone is controlled by **its own** DQN agent.
- 2. **Local Observations:** Each drone observes **only its own** position (row, col) plus a global coverage fraction (optional).
- 3. **Local Rewards:** Each drone's reward is how many *new* cells it covers (i.e., cells that weren't already covered by other drones).
- Learning Algorithm: Each drone trains a DQN policy using a neural network for function approximation, storing transitions in a replay buffer and performing Qlearning style updates.

This setup encourages drones to spread out so that each can earn a local reward from covering unique areas of the grid.

File Summaries

1) multi_drone_env.py

- Purpose: Defines the multi-drone coverage environment. In a standard single-agent Gym environment, you have one observation, one action, and one reward. Here, we have a multi-agent environment returning:
 - o A dict of observations: obs[i] for drone iii.
 - o A dict of rewards: reward[i] for drone iii.
 - o A dict of actions is expected: action[i] for drone iii.
- Key Components:
- 1. **Initialization** (__init__):
 - Sets up a N×NN \times NN×N grid (grid_size).
 - Creates num_drones drones, each with a coverage radius (coverage_radii).
 - Sets a maximum step limit (max_steps).
 - Defines the action space as a dict of size num_drones, each drone having 5 discrete moves.

 Defines the observation space as a dict of dimension (row, col, coverage_frac) for each drone.

2. **Reset** (reset()):

- Randomly positions each drone in the grid.
- Returns the initial dictionary of observations, keyed by drone ID.

3. **Step** (step(action_dict)):

- Each drone's action is interpreted and executed (moving the drone).
- Coverage sets are computed for each drone.
- The environment calculates local rewards: each drone's reward is how many new cells it uniquely covers.
- Checks if the episode is done (full coverage or step limit).
- Returns {drone_id: observation}, {drone_id: local_reward}, done, and info

4. **Render** (render()):

- Prints a simple textual representation of the grid.
- Marks coverage with "*" and drones with labels like "D0", "D1", etc.

• Local Reward Computation Theory:

o For each drone iii, define:

 $coverage_i = \{(r,c) \mid dist((r,c), dronei) \leq radiusi\}. \text\{coverage_i\} = \ \ \ (r,c) \mid dist((r,c), dronei) \leq radiusi\}. \text\{drone\}_i) \mid e \mid dist((r,c), dronei) \leq radiusi\}.$

- Let coverage_minus_i=Uj≠icoverage_j\text{coverage_minus_i} = \bigcup_{j \neq i} \text{coverage_j}coverage_minus_i=Uj²=icoverage_j.
- o Newly contributed cells by drone iii is

new_i=coverage_i \ coverage_minus_i. \text{new_i} = \text{coverage_i} \; \setminus \;
\text{coverage_minus_i}.new_i=coverage_i\coverage_minus_i.

The reward for drone iii is |new_i|\lvert \text{new_i} \rvert|new_i| (possibly normalized by the total grid size). This ensures each drone only gets credit for coverage that wouldn't exist without it.

2) agent.py

• **Purpose:** Implements a **DQN agent** that each drone uses to decide actions and learn via replay-buffer Q-learning.

• Key Components:

1. **Initialization** (__init__):

- Builds a neural network (policy_net) mapping observations (3(3(3-dim)→) \to)→ Q-values (5(5(5-dim()).
- Creates an Adam optimizer, a mean squared error loss, and sets up a replay buffer.

2. Action Selection (act(obs)):

- ε\epsilonε-greedy: pick a random action with probability ε\epsilonε, else pick the action that maximizes the Q-network.
- 3. **Memory Storage** (step(obs, action, reward, next_obs, done)):
 - Stores transitions in a replay buffer for offline training.
- 4. Learning (learn()):
 - Samples minibatches from the replay buffer.
 - Current Q: Qθ(obs,action)Q_\theta(\text{obs}, \text{action})Qθ (obs,action).
 - Target Q: reward+γmax@a'Qθ(next_obs,a')\text{reward} + \gamma \max_{a'} Q_\theta(\text{next_obs}, a')reward+γmaxa'Qθ(next_obs,a') if not done.
 - Minimizes MSE loss between current and target Q via backprop.
 - Decays ε\epsilonε after each training step.

DQN Theory:

o **Q-Learning** is a temporal-difference method:

 $Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma max^{(0)}a'Q(s',a') - Q(s,a)].$ $Q(s,a) \cdot Q(s,a) \cdot (s,a) \cdot$

- o **DQN** (Deep Q-Network) parameterizes $Q\theta Q_{\text{theta}}Q\theta$ with a neural net.
- o Replay Buffer ensures i.i.d. training data and stabilizes learning.
- o This agent code is replicated for **each** drone, so each drone has **its own** DQN.

3) training.py

- **Purpose:** The **coordinator** script that instantiates the environment and the multiple DQN agents (one per drone). It then runs a training loop over multiple episodes.
- Key Components:
 - 1. train_multi_drone(...)
 - Creates the environment (MultiDroneCoverageEnv).
 - Creates one DroneDQNAgent per drone.
 - For each **episode**:

- Reset the env, get initial obs_dict.
- For each time-step until done:
 - Ask each agent for an action based on its local observation.
 - 2. Call env.step(action_dict), receiving (next_obs_dict, reward_dict, done, info).
 - 3. Each agent stores (obs, action, reward, next_obs, done) in its own replay buffer.
 - 4. Each agent calls learn() once, sampling from its buffer.
 - 5. Update obs_dict = next_obs_dict.
- Track average local reward (or some metric) and print progress.
- Returns the trained agents and the reward history.

2. demo_run(...)

- Runs a single test episode with the learned policies (still ϵ) greedy, but you could set ϵ =0\epsilon=0 ϵ =0 for pure exploitation).
- Prints out the environment's textual rendering each step.

• Multi-Agent Reinforcement Learning Theory:

- We're using a decentralized approach: each agent has its own policy and sees its own observation.
- Agents have separate replay buffers and do not share parameters or experiences. They learn in **parallel** within the same environment.
- The environment dispatches local rewards, so each agent's objective is to maximize its own discounted return. In this scenario, local reward is newly contributed coverage.
- In principle, the combination of local rewards can also lead to a good global coverage if the drones learn to coordinate by not overlapping too much (since overlapping coverage yields zero additional local reward).

Technical/ Theoretical Details

1. State Space & Observations

- Each drone's observation is a 3D vector: (row,col,coverage_frac)(row, col, coverage_frac)(row,col,coverage_frac).
- o If we wanted a more **realistic** partial-map input, we could expand the observation with local coverage data or sensor readings.

2. Action Space

- Each drone chooses one of 5 moves: UP, DOWN, LEFT, RIGHT, or STAY.
- The environment combines these into a **dict** of actions to step all drones simultaneously.

3. Local Rewards for Coverage

- The environment determines for each drone iii the set of cells it covers (coverage_i), then subtracts the union of coverage from all other drones to find newly contributed coverage.
- This local reward structure is shaping each drone to maximize its unique coverage area.

4. DQN / Q-Learning

- \circ Each drone's policy πί\pi_iπi is derived from a neural net Qθi(s,a)Q_{\text{heta}_i}(s,a)Qθi(s,a).
- O The **TD target** for each transition is ri+γmax@a'Qθi(s',a')r_i + \gamma \max_{a'} Q_{\text{theta_i}(s', a')ri+γmaxa'Qθi(s',a').
- Over time, ε\epsilonε decays, moving from exploration to exploitation.

5. Decentralized vs. Centralized

- Here, we call it "decentralized" because each drone sees only its own local state and gets its own local reward.
- The environment is technically centralized in the sense that it calculates coverage sets for all drones. But from the agent's perspective, no drone sees other drones' states or shares parameters.

6. Scalability

- Because we use function approximation (PyTorch networks), we can, in principle, handle bigger grids than a tabular Q-table.
- However, if the grid becomes very large (e.g., 50×50, 100×100, etc.), we may need more advanced neural architectures (e.g., CNNs) or more sophisticated multi-agent RL methods (QMIX, MADDPG, etc.).

In Summary

- **multi_drone_env.py**: Multi-agent environment logic, local coverage sets, local reward calculation.
- **agent.py**: Single-agent DQN class, including neural net, replay buffer, ε\epsilonε-greedy strategy, and Q-learning updates.

• **training.py**: A coordinator script that (1) instantiates multiple DQN agents (one per drone), (2) runs training episodes (collecting transitions, doing learning steps), and (3) demonstrates the learned policies.

The overall approach is a decentralized multi-agent DQN solution that incentivizes drones to discover non-overlapping coverage because each drone only gains reward from the coverage it uniquely provides.