Biological Question (depends on your hypothesis):

Is there a statistically significant difference in sub-canopy DBH between Unburned and Burned plots?

To answer that, we need to compare the **mean DBH** of Burned and Unburned plots

Find a statistical test that compares the means of two populations.

A **Student's t-test** does exactly that!

But, wait, there are two types of t-tests:

- 1. Assuming equal variances
- 2. Assuming **unequal variances** Which one can you use?

Need a statistical test to check if the variances of the two populations (Unburned and Burned) are significantly different or not!

F-test to the rescue!

Data	

Dala			
Treatment	Transect	Category	DBH (cm)
Unburned	1	subcanopy	1
Unburned	2	subcanopy	2
Unburned	3	subcanopy	5
Unburned	4	subcanopy	5
Unburned	5	subcanopy	9
Unburned	6	subcanopy	10
Burned	1	subcanopy	1
Burned	2	subcanopy	2
Burned	3	subcanopy	3
Burned	4	subcanopy	3
Burned	5	subcanopy	3
Burned	6	subcanopy	5

Is there a statistically significant difference in sub-canopy DBH between Unburned and Burned plots?

Null Hypothesis Testing

Step 1: What is your null hypothesis? Write it down.

H₀ (Null): There is **no difference** in the <u>mean</u> (or variance, etc) between Pop 1 or Pop 2

Step 2: Do your test (using a program like Excel, or by hand) [think f-test or t-test]

Be careful, Select the appropriate test for your hypothesis.

Step 3: Compare your p-value with the threshold p-value of 0.05

if, your <u>p-value < 0.05</u> you **REJECT** the null hypothesis (H₀)

Statistically, there is a difference!

else if, your p-value > 0.05 you **FAIL to REJECT** the null hypothesis (H_0)

Statistically, there is no difference!

F-test and T-test, both, are statistical tests that uses null hypothesis testing.

F-TEST: Null Hypothesis Testing

Step 1: What is your null hypothesis? Write it down.

 H_0 (Null): There is **no difference** in the *variances* of Pop 1 (Unburned) and Pop 2 (Burned) or in other words, Variance (Unburned DBH) = Variance (Burned DBH)

Step 2: Do a F-test (using excel or by hand)

Step 3: Compare your p-value with the threshold p-value of 0.05

if, your <u>p-value < 0.05</u> you **REJECT** the null hypothesis (H_0)

Statistically, there is a difference!

Or, DBH data collected in Burned and
Unburned units have UNEQUAL variances.

else if, your p-value > 0.05 you **FAIL to REJECT** the null hypothesis (H_0)

Statistically, there is no difference!

Or, DBH data collected in Burned and
Unburned units have EQUAL variances.

F-test asks, "Are the variances significantly different or not?"

T-TEST: Null Hypothesis Testing

Step 1: What is your null hypothesis? Write it down.

 H_0 (Null): There is **no difference** in the **mean** of Pop 1 (Unburned DBH) and Pop 2 (Burned DBH) or in other words, Mean (Unburned DBH) = Mean (Burned DBH)

Step 2: Do a t-test (assuming either equal variances or unequal variances)

But before that, Decide: one-tailed t-test or two-tailed t-test?

Step 3: Compare your p-value with the threshold p-value of 0.05

if, your <u>p-value < 0.05</u> you **REJECT** the null hypothesis (H_0)

Statistically, there is a difference!

Or, There is a significant difference in the mean

DBH between Burned and Unburned units.

else if, your p-value > 0.05 you **FAIL to REJECT** the null hypothesis (H_0)

Or, There is NO significant difference in the mean DBH between Burned and Unburned units.

T-test asks, "Are the **means** significantly different or not?"

When you never expected to learn stats in an Ecology lab but you finally understand what a t-test does.

