

USING MACHINE LEARNING TO REDUCE HOSPITAL READMISSIONS

By Aaron Bastian

- 1. Introduction
- 2. Project Goals
- Data
- 4. Methods and Models
- 5. Results
- 6. Value and Application
- 7. Conclusion

THE PROBLEM OF HOSPITAL READMISSIONS FOR DIABETES PATIENTS

 Hospital readmissions within 30 days of discharge are a common problem, particularly for patients with chronic conditions such as diabetes

- Hospital readmissions...
 - Negatively impact patient outcomes
 - Increase healthcare costs
 - Strain healthcare system capacity

• In response to this problem, Medicare established the Hospital Readmissions Reduction Program (HRRP), which financially penalizes hospitals with higher-than-expected rates of readmissions

A SOLUTION USING MACHINE LEARNING

- Machine learning models can identify patients who are at risk for 30-day readmissions
- Key features and patterns used by the model can inform treatment plans, reducing the likelihood of readmissions
- Real-time use of the model can predict the probability of a patient's readmission and enable providers to modify treatment plans dynamically

PROJECT GOALS

- 1. **Develop** a machine learning model to predict < 30-day readmission based on patient treatment and discharge data
- 2. **Identify** key patient and treatment features that are most predictive of readmissions
- 3. **Provide recommendations** to help reduce the number of preventable readmissions

OVERVIEW

- Source
 - University of California Irvine, Machine Learning Repository
 - "Diabetes 130-US hospitals for years 1999-2008"

 Represents 10 years of clinical care at 130 US hospitals and integrated delivery networks

- It includes **101,766 instances** with over **50 features** such as...
 - Demographic Information
 - Health History Information
 - Admission Information
 - Treatment Information
 - Discharge Information

DEFINING OUR TARGET VARIABLE

- The dataset contains three classes for readmission:
 - NO: Not readmitted
 - >30: Readmitted more than 30 days later
 - <30: Readmitted within 30 days
- To simplify the analysis, the target was transformed into a **binary classification**:
 - Class 0: Includes NO and >30 readmissions
 - Class 1: Includes < 30 readmissions

PREPARING DATA FOR MODELING

The data was preprocessed by:

- De-noising
- Feature Engineering
- Undersampling to Address Class Imbalance

METHODS AND MODELS

MODELS USED

SIMPLE

Random Forest

SVC (Support Vector Classifier)

LightGBM & CatBoost (Gradient Boosting)

Recurrent Neural Network (RNN)

COMPLEX

EVALUATION METHODS

- The data was split into **Train (80%)** and **Validation (20%)** sets
 - Models learn the train set
 - Models evaluated on validation set performance
- Models were evaluated on their...
 - Accuracy percent correct
 - F-1 Score how accurate a machine learning model is at correctly identifying positive cases, while also minimizing errors

RESULTS

MODEL PERFORMANCE

IMPORTANT FEATURES

IMPORTANT FEATURES CONTINUED

- Correlation, not causation
- Many of these are often secondary to a patient's health status, which may be the primary predictor of readmission risk
 - Hospital visits
 - Number of diagnoses
 - Number of medications
 - Discharge facility
- Interestingly, more procedures are associated with a lower risk of readmission

DISCHARGE FACILITIES BY READMISSION PROBABILITY

- Rehab facilities had the highest predicted readmission probability
- Discharge home had the lowest predicted readmission probability
- Transferring to inpatient care at the same hospital was associated with a lower readmission probability than transferring to a different hospital
- Again, these findings demonstrate correlation, not causation

VALUE AND APPLICATION

DEPLOYMENT AND APPLICATION

 The model can be integrated with electronic health record (EHR)

Assess patients' risk of readmission in real-time

 Allow healthcare providers to intervene early and provide targeted interventions and informed care plans

BENEFITS OF A 30-DAY READMISSION PREDICTION MODEL

- 1. Real-time risk assessment
- 2. Informed care and discharge plans for high-risk patients
- 3. Optimized resource allocation
- 4. Quality improvement (QI) initiatives

(T)

CONCLUSION

- Hospital Readmissions...
 - Negatively impact patient outcomes
 - Decrease profits via Medicare's HRRP
 - Increase healthcare costs
 - Strain healthcare system capacity
- Our model can help providers...
 - identify high-risk patients
 - **improve** patient outcomes
 - **reduce** healthcare costs
 - optimize resource allocation

THANK YOU!

QUESTIONS?

Presenter Information:

Aaron Bastian, B.S.

P: (818) 282-3868

E: aaronbastian31@gmail.com

