

Взаимосвязь кинетики и гидродинамики

Рассмотрим кинетическое уравнение

$$\frac{\partial}{\partial t} f(r, \Gamma, t) + v(\Gamma) \frac{\partial}{\partial r} (f(r, \Gamma, t)) + F(r, t) \frac{\partial}{\partial \Gamma} (f(r, \Gamma, t)) =
= \sum_{p'} (W(\Gamma | \Gamma') f(r, \Gamma', t) - W(\Gamma' | \Gamma) f(r, \Gamma, t)) = (\operatorname{St} f)_{\text{in}} - (\operatorname{St} f)_{\text{out}} = I_{st}.$$

Напишем уравнения на плотность, плотность импульса, плотность энергии...

$$n\bar{A}(\mathbf{r},t) = \int d\Gamma f(\mathbf{r},\Gamma,t) A(\Gamma)$$

$$\frac{\partial}{\partial t} \int Af d\Gamma + \int A v(\Gamma) \frac{\partial}{\partial r} f d\Gamma + \int AF \frac{\partial}{\partial \Gamma} f d\Gamma = \int I_{st} d\Gamma.$$

$$A = 1,$$
 $A = p_i,$
 $A = \varepsilon(p),$

$$\frac{\partial}{\partial t} \int Af d\Gamma + \int A v(\Gamma) \frac{\partial}{\partial q} f d\Gamma + \int AF \frac{\partial}{\partial \Gamma} f d\Gamma = \int AI_{st} d\Gamma.$$

$$\int A \mathbf{v}(\Gamma) \frac{\partial}{\partial r} f d\Gamma = \frac{\partial}{\partial r} \int A \mathbf{v}(\Gamma) f d\Gamma = \operatorname{div}(\mathbf{j}_A).$$

$$\int AF \frac{\partial}{\partial \Gamma} f d\Gamma = F \int A \frac{\partial}{\partial \Gamma} f d\Gamma = -F \int f \frac{\partial}{\partial \Gamma} A d\Gamma.$$

$$\frac{\partial}{\partial t} \left(n \overline{A} \right) + \operatorname{div} \left(\mathbf{j}_{A} \right) = Fn \left\langle \frac{\partial A}{\partial \Gamma} \right\rangle + \int A I_{st} d\Gamma.$$

Подведем предварительные итоги:

$$\frac{\partial}{\partial t} \left(n \overline{A} \right) + \operatorname{div} \left(\mathbf{j}_{A} \right) = Fn \left\langle \frac{\partial A}{\partial \Gamma} \right\rangle + \int A I_{st} d\Gamma.$$

$$\mathbf{j}_A = \int A \, \mathbf{v}(\Gamma) f d\Gamma.$$

$$|n\langle A\rangle = \int Af d\Gamma.$$

$$A = 1,$$
 $A = p_i,$
 $A = \varepsilon(p),$

$$\int AI_{st} d\Gamma = ???$$

Пусть
$$A=1$$
.

Тогда
$$\int AI_{st} \, d\Gamma = 0$$
,

Действительно, распишем интеграл столкновений виде суммы:

$$\sum_{\Gamma,\Gamma'} (W(\Gamma | \Gamma') f(r,\Gamma',t) - W(\Gamma' | \Gamma) f(r,\Gamma,t)) = \sum_{\Gamma} I_{st} = 0.$$

$$n\langle A\rangle = \int Af d\Gamma.$$

В общем случае:
$$n\langle A \rangle = \int Af d\Gamma$$
. $\mathbf{j}_A = \int A \operatorname{v}(\Gamma) f d\Gamma$.

$$\frac{\partial}{\partial t} \left(n \overline{A} \right) + \operatorname{div} \left(\mathbf{j}_{A} \right) = Fn \left\langle \frac{\partial A}{\partial \Gamma} \right\rangle + \int A I_{st} d\Gamma.$$

Таким образом, если A = 1.

Тогда $\int AI_{st} \, d\Gamma = 0$, $j_A = j$, $\frac{\partial A}{\partial \Gamma} = 0$, и мы получаем в итоге известное соотношение:

$$\frac{\partial}{\partial t}n + \operatorname{div}(\mathbf{j}) = 0.$$

Чтобы упростить

$$\frac{\partial}{\partial t} \left(n \overline{A} \right) + \operatorname{div} \left(\mathbf{j}_{A} \right) = Fn \left\langle \frac{\partial A}{\partial \Gamma} \right\rangle + \int A I_{st} d\Gamma.$$

при менее тривиальных "А", нам придется рассмотреть конкретные интегралы столкновения. Ответ будет зависеть от типа столкновений...

Столкновения с примесями или тяжелыми частицами

уход
$$\int$$
 1-f(t,r, Γ ') $f(t,r,\Gamma')$ приход $d\sigma = \frac{w_{\Gamma \to \Gamma'}}{n \mathrm{V}} d\Gamma'$

$$\frac{\partial}{\partial t} f(r, p, t) + v(p) \frac{\partial}{\partial r} (f(r, p, t)) + F(r, t) \frac{\partial}{\partial p} (f(r, p, t)) =
= \sum_{p'} w_{p \to p'} (f(r, p', t) (1 - f(r, p, t)) - f(r, p, t) (1 - f(r, p', t))) =
\sum_{p'} w_{p \to p'} (f(r, p', t) - f(r, p, t)), \qquad w_{p \to p'} = w_{p' \to p}.$$

$$I_{st} = \sum_{p'} w_{p \to p'} (f(r, p', t) - f(r, p, t)), \qquad w_{p \to p'} = w_{p' \to p}.$$

$$\int AI_{st} d\Gamma = \sum_{p, p'} A(p) w_{p \to p'} (f(r, p', t) - f(r, p, t)).$$

$$\int AI_{st} d\Gamma = \sum_{p,p'} A(p) w_{p \to p'} (f(r,p',t) - f(r,p,t)) =$$

$$= \sum_{p,p'} A(p') w_{p' \to p} (f(r,p,t) - f(r,p',t)) =$$

$$= \frac{1}{2} \sum_{p,p'} (A(p) - A(p')) w_{p \to p'} (f(r,p',t) - f(r,p,t)).$$

Упругое рассеяние на примесях импульс, очевидно не сохраняется, а энергия сохраняется:

$$w_{p \to p'} \sim \delta(\varepsilon_p - \varepsilon_{p'})$$

$$A = 1,$$

$$A = p_{i},$$

$$A = \varepsilon(p),$$

$$A = \varepsilon(p),$$

$$A = \varepsilon(p)I_{st}d\Gamma = \frac{1}{2}\sum_{p,p'}(\varepsilon(p) - \varepsilon(p'))w_{p \to p'}(f(r, p', t) - f(r, p, t)) = 0.$$

В итоге, для упругого рассеяния на примесях

$$\frac{\partial}{\partial t} \left(n \overline{A} \right) + \operatorname{div} \left(\mathbf{j}_{A} \right) = Fn \left\langle \frac{\partial A}{\partial \Gamma} \right\rangle + \int A I_{st} d\Gamma.$$

$$\mathbf{j}_A = \int A \, \mathbf{v}(\Gamma) f d\Gamma.$$

$$n\langle A\rangle = \int Af d\Gamma.$$

$$A = 1,$$
 $A = p_i,$
 $A = \varepsilon(p),$

$$\int I_{st} d\Gamma = 0,$$

$$\int p_i I_{st} d\Gamma \neq 0,$$

$$\int \varepsilon(p) I_{st} d\Gamma = 0$$

Парные столкновения (фермионов на фермионах)

Парные столкновения, $\int AI_{st} d\Gamma = ?$

$$\frac{\partial}{\partial t} f(r, \Gamma, t) + v(\Gamma) \frac{\partial}{\partial r} (f(r, \Gamma, t)) + F(r, t) \frac{\partial}{\partial \Gamma} (f(r, \Gamma, t)) =$$

$$= \sum_{\Gamma_1, \Gamma', \Gamma'_1} w(\Gamma \Gamma_1 | \Gamma' \Gamma'_1) f(r, \Gamma', t) f(r, \Gamma'_1, t) (1 - f(r, \Gamma_1, t)) (1 - f(r, \Gamma, t)) -$$

$$- \sum_{\Gamma_1, \Gamma', \Gamma'_1} w(\Gamma' \Gamma'_1 | \Gamma \Gamma_1) (1 - f(r, \Gamma', t)) (1 - f(r, \Gamma'_1, t)) f(r, \Gamma_1, t) f(r, \Gamma, t).$$

Пусть $A = A(\Gamma)$ какая-то функция состояния одной молекулы. Рассмотрим интеграл:

$$\int I_{st} A(\Gamma) d\Gamma = \sum_{\Gamma, \Gamma_1, \Gamma', \Gamma'_1} A(\Gamma) w \Big(\Gamma \Gamma_1 | \Gamma' \Gamma'_1 \Big) f(r, \Gamma', t) f(r, \Gamma'_1, t) \Big(1 - f(r, \Gamma_1, t) \Big) \Big(1 - f(r, \Gamma, t) \Big) - \sum_{\Gamma, \Gamma_1, \Gamma', \Gamma'_1} A(\Gamma) w \Big(\Gamma' \Gamma'_1 | \Gamma \Gamma_1 \Big) \Big(1 - f(r, \Gamma', t) \Big) \Big(1 - f(r, \Gamma', t) \Big) f(r, \Gamma_1, t) f(r, \Gamma, t).$$

Из соображений симметрии интеграла, такой же результат получится, если бы A зависело от Γ_1 .

$$\int I_{st} A(\Gamma) d\Gamma = \sum_{\Gamma, \Gamma_1, \Gamma', \Gamma'_1} A(\Gamma_1) w \Big(\Gamma \Gamma_1 | \Gamma' \Gamma'_1 \Big) f(r, \Gamma', t) f(r, \Gamma'_1, t) \Big(1 - f(r, \Gamma_1, t) \Big) \Big(1 - f(r, \Gamma, t) \Big) - \sum_{\Gamma, \Gamma_1, \Gamma', \Gamma'_1} A(\Gamma_1) w \Big(\Gamma' \Gamma'_1 | \Gamma \Gamma_1 \Big) \Big(1 - f(r, \Gamma', t) \Big) \Big(1 - f(r, \Gamma', t) \Big) f(r, \Gamma_1, t) f(r, \Gamma, t).$$

Возьмем полусумму этих интегралов:

Пусть $A = A(\Gamma)$ какая-то функция состояния одной молекулы. Рассмотрим интеграл:

$$\begin{split} &\int I_{st}A(\Gamma)d\Gamma = \frac{1}{2}\sum_{\Gamma,\Gamma_{1},\Gamma',\Gamma'_{1}}\Big(A(\Gamma) + A(\Gamma_{1})\Big)w\Big(\Gamma\Gamma_{1}\,|\,\Gamma'\Gamma'_{1}\Big)f(r,\Gamma',t)f(r,\Gamma'_{1},t)\Big(1 - f(r,\Gamma_{1},t)\Big)\Big(1 - f(r,\Gamma,t)\Big) - \\ &-\frac{1}{2}\sum_{\Gamma,\Gamma_{1},\Gamma',\Gamma'_{1}}\Big(A(\Gamma) + A(\Gamma_{1})\Big)w\Big(\Gamma'\Gamma'_{1}\,|\,\Gamma\Gamma_{1}\Big)\Big(1 - f(r,\Gamma',t)\Big)\Big(1 - f(r,\Gamma',t)\Big)f(r,\Gamma_{1},t)f(r,\Gamma,t). \end{split}$$

Сделаем замену переменных: . $\Gamma \longleftrightarrow \Gamma', \quad \Gamma_1 \longleftrightarrow \Gamma'_1.$

$$\int I_{st} A(\Gamma) d\Gamma = \frac{1}{2} \sum_{\Gamma,\Gamma_1,\Gamma',\Gamma'_1} \left(A(\Gamma') + A(\Gamma'_1) \right) w \left(\Gamma' \Gamma'_1 \mid \Gamma \Gamma_1 \right) \left(1 - f(r,\Gamma',t) \right) \left(1 - f(r,\Gamma'_1,t) \right) f(r,\Gamma_1,t) f(r,\Gamma,t) - \frac{1}{2} \sum_{\Gamma,\Gamma_1,\Gamma',\Gamma'_1} \left(A(\Gamma') + A(\Gamma'_1) \right) w \left(\Gamma \Gamma_1 \mid \Gamma' \Gamma'_1 \right) f(r,\Gamma',t) f(r,\Gamma',t) \left(1 - f(r,\Gamma_1,t) \right) \left(1 - f(r,\Gamma,t) \right).$$

Возьмем полусумму этих интегралов:

Пусть $A = A(\Gamma)$ какая-то функция состояния одной молекулы. Рассмотрим интеграл:

$$\int I_{st} A(\Gamma) d\Gamma = \frac{1}{4} \sum_{\Gamma,\Gamma_1,\Gamma',\Gamma'_1} \left(A(\Gamma) + A(\Gamma_1) - A(\Gamma') - A(\Gamma'_1) \right) w \left(\Gamma \Gamma_1 | \Gamma' \Gamma'_1 \right) f(r,\Gamma',t) f(r,\Gamma',t) \left(1 - f(r,\Gamma_1,t) \right) \left(1 - f(r,\Gamma,t) \right) - \frac{1}{4} \sum_{\Gamma,\Gamma_1,\Gamma',\Gamma'_1} \left(A(\Gamma) + A(\Gamma_1) - A(\Gamma') - A(\Gamma'_1) \right) w \left(\Gamma' \Gamma'_1 | \Gamma \Gamma_1 \right) \left(1 - f(r,\Gamma',t) \right) \left(1 - f(r,\Gamma',t) \right) f(r,\Gamma_1,t) f(r,\Gamma,t).$$

изменение аддитивных интегралов движения за счет столкновений равно нулю

$$A = 1,$$
 $A = p_i,$
 $A = \varepsilon(p).$

$$\int I_{st} d\Gamma = 0,$$

$$\int \mathbf{p} I_{st} d\Gamma = 0,$$

$$\int \varepsilon(p) I_{st} d\Gamma = 0.$$

Предварительные выводы:

$$\begin{split} &\int AI_{st}d\Gamma = 0, \\ &\int \mathbf{p}I_{st}d\Gamma \sim -\int \mathbf{p}\frac{f - f_{eq}}{\tau}d\Gamma = -n\left\langle A\right\rangle/\tau \neq 0, \\ &\int \varepsilon(p)I_{st}d\Gamma = \frac{1}{2}\sum_{p,p'} \left(\varepsilon(p) - \varepsilon(p')\right)w_{p \to p'} \left(f(r,p',t) - f(r,p,t)\right) = 0, \\ &w_{p \to p'} = w_{p' \to p} \end{split}$$

$$\begin{array}{ll}
A = 1, \\
A = p_i, \\
A = \varepsilon(p).
\end{array}$$

$$\int I_{st} d\Gamma = 0, \\
\int \mathbf{p} I_{st} d\Gamma = 0.$$

$$\frac{\partial}{\partial t} \left(n \overline{A} \right) + \operatorname{div} \left(\mathbf{j}_{A} \right) = Fn \left\langle \frac{\partial A}{\partial \Gamma} \right\rangle + \int A I_{st} d\Gamma.$$

$$\mathbf{j}_A = \int A \, \mathbf{v}(\Gamma) f d\Gamma.$$

$$n\langle A\rangle = \int Af d\Gamma.$$

$$A = 1,$$
 $A = p_i,$
 $A = \varepsilon(p),$

 $A = p_i$

$$\frac{\partial}{\partial t} \left(n \overline{A} \right) + \operatorname{div} \left(\mathbf{j}_{A} \right) = Fn \left\langle \frac{\partial A}{\partial \Gamma} \right\rangle + \int A I_{st} d\Gamma.$$

$$\frac{\partial}{\partial t} (n \langle p_i \rangle) + \nabla_j \int p_i \, \mathbf{v}_j(\Gamma) f d\Gamma = n F_j \left\langle \frac{\partial p_i}{\partial p_j} \right\rangle + \int p_i I_{st} d\Gamma.$$

$$\frac{\partial}{\partial t} (n \langle p_i \rangle) + \nabla_j \int p_i \, \mathbf{v}_j(\Gamma) f d\Gamma = n F_j \left\langle \frac{\partial p_i}{\partial p_j} \right\rangle + \int p_i I_{st} d\Gamma.$$

$$\frac{\partial}{\partial t} (n \langle p_i \rangle) + \nabla_k \int p_i \, \mathbf{v}_k(\Gamma) f d\Gamma = nF_i + \int p_i I_{st} d\Gamma.$$

$$\frac{\partial}{\partial t}\rho v_i = -\frac{\partial \Pi_{ik}}{\partial x_k}$$

Обсуждалось в лекции про гидродинамику

- в отсутствии внешних сил F, и считая,
- что столкновения сохраняют импульс.

Можно сделать вывод:

$$\Pi_{ik} = \int p_i \, \mathbf{v}_k(\Gamma) f d\Gamma.$$

Мы ввели тензор. Проверим, насколько это адекватно гидрожинамике.

$$\Pi_{ik} = \int p_i \, \mathbf{v}_k(\Gamma) f d\Gamma.$$

$$\frac{\partial}{\partial t} (n \langle p_i \rangle) + \nabla_k \int p_i \, \mathbf{v}_k(\Gamma) f d\Gamma = nF_i + \int p_i I_{st} d\Gamma.$$

$$\frac{\partial}{\partial t}\rho v_i = -\frac{\partial \Pi_{ik}}{\partial x_k}$$

Парные столкновения в жидкости сохраняют импульс. Тогда $\int p_i I_{st} d\Gamma = 0$.

$$\frac{\partial}{\partial t} \left(nm \left\langle \mathbf{v}_{i} \right\rangle \right) + \nabla_{k} \Pi_{ik} = nF_{i}.$$

А эта формула из учебника по гидродинамике:

$$\frac{\partial}{\partial t}\rho v_i = -\frac{\partial \Pi_{ik}}{\partial x_k}$$

Выводы

$$\Pi_{ik} = \int p_i \, \mathbf{v}_k(\Gamma) f d\Gamma.$$

Где же вязкость???

$$\Pi_{ik} = \int p_i \, \mathbf{v}_k(\Gamma) f d\Gamma.$$

$$\Pi_{ik} = \int p_i \left(\langle \mathbf{v}_k \rangle + \mathbf{u}_k(\Gamma) \right) f d\Gamma.$$

средняя скорость

"Тепловая" скорость

$$\Pi_{ik} = \langle \mathbf{v}_k \rangle \int p_i f d\Gamma + \int p_i u_k(\Gamma) f d\Gamma =$$

$$= n \langle p_i \rangle \langle \mathbf{v}_k \rangle + \int p_i u_k(\Gamma) f d\Gamma.$$

$$\Pi_{ik} = \langle \mathbf{v}_k \rangle \int p_i f d\Gamma + \int p_i u_k(\Gamma) f d\Gamma =$$

$$= n \langle p_i \rangle \langle \mathbf{v}_k \rangle + \int p_i u_k(\Gamma) f d\Gamma.$$

давление

В гидродинамике было:

$$\Pi_{ik} = P\delta_{ik} + n\langle p_i \rangle \langle v_k \rangle - \sigma'_{ik}.$$

Тогда, в кинетике, должно выполняться:

$$\sigma'_{ik} = P\delta_{ik} - \int p_i u_k(\Gamma) f d\Gamma.$$

Итак, тензор вязких напряжений

$$\sigma'_{ik} = P\delta_{ik} - \int p_i u_k(\Gamma) f d\Gamma.$$

$$\sigma'_{ik} = P\delta_{ik} - \int (p_i(\Gamma) - \langle p_i \rangle) (\mathbf{v}_k(\Gamma) - \langle \mathbf{v}_k \rangle) f d\Gamma,$$

$$\int u_k(\Gamma) f d\Gamma = 0,$$

$$u_k(\Gamma) = v_k(\Gamma) - \langle v_k \rangle.$$

Тензор вязких напряжений слабонеидеального газа

Тензор вязких напряжений слабонеидеального газа

$$\sigma'_{ik} = P\delta_{ik} - m \int u_i(\Gamma) u_k(\Gamma) f d\Gamma,$$

$$u_k(\Gamma) = v_k(\Gamma) - \langle v_k \rangle.$$

$$f=f^0+\delta f,$$
 $f^0=rac{1}{\expigg(rac{arepsilon(p)-arepsilon_F(t,r)}{T(t,r)}igg)\pm 1},$ квантовый случай, $f^0\propto n(r,t)\expigg(-rac{rac{1}{2}mu^2}{T(t,r)}igg),$ классический случай.

Для локально-равновесного распределения постулируется:

$$\int f^{0}d\Gamma \equiv \int fd\Gamma = n,$$

$$\int p_{i}(\Gamma)f^{0}d\Gamma \equiv \int p_{i}(\Gamma)fd\Gamma = n\langle p_{i}\rangle.$$

Тензор вязких напряжений слабонеидеального газа

$$\sigma'_{ik} = P\delta_{ik} - m \int u_i(\Gamma) u_k(\Gamma) f d\Gamma,$$

$$u_k(\Gamma) = v_k(\Gamma) - \langle v_k \rangle,$$

$$m\int u_i(\Gamma)u_k(\Gamma)f^0d\Gamma = nm\left\langle u_i(\Gamma)u_k(\Gamma)\right\rangle_0 = \delta_{ik}nm\frac{1}{d}\left\langle u^2\right\rangle_0,$$

d -- размерность пространства.

$$\sigma'_{ik} = P\delta_{ik} - \delta_{ik}nm\frac{1}{d}\langle u^2\rangle_0 - m\int u_i(\Gamma)u_k(\Gamma)\delta f d\Gamma.$$

В идеальном газе (с любой степенью вырождения):

$$\frac{1}{d}m\langle u^2\rangle = \frac{2}{d}\langle \epsilon\rangle = P/n$$

Лев Давидович Ландау и Евгений Михайлович Лифшиц СТАТИСТИЧЕСКАЯ ФИЗИКА

$$\Omega = -\frac{2}{3} \frac{gV m^{3/2}}{2^{1/2} \pi^2 \hbar^3} \int_0^\infty \frac{\varepsilon^{3/2} d\varepsilon}{e^{(\varepsilon - \mu)/T} \pm 1}.$$
 (56,6)

Это выражение совпадает с точностью до множителя — 2/3 с полной энергией газа, равной

$$E = \int_0^\infty \varepsilon \, dN_\varepsilon = \frac{gV m^{3/2}}{2^{1/2} \pi^2 \hbar^3} \int_0^\infty \frac{\varepsilon^{3/2} \, d\varepsilon}{e^{(\varepsilon - \mu)/T} \pm 1}. \tag{56,7}$$

Имея также в виду, что $\Omega = -PV$, получаем, таким образом, следующее соотношение:

$$PV = \frac{2}{3}E.$$
 (56,8)

$$\sigma'_{ik} = P\delta_{ik} - nm \frac{1}{d} \langle u^2 \rangle_0 \, \delta_{ik} - m \int u_i(\Gamma) u_k(\Gamma) \delta f d\Gamma.$$

$$\frac{1}{d}m\langle u^2\rangle = \frac{2}{d}\langle \epsilon\rangle = P/n$$

$$\sigma'_{ik} = -m \int u_i(\Gamma) u_k(\Gamma) \delta f d\Gamma.$$

Подведем итоги: мы получили из кинетического уравнения

$$\frac{\partial}{\partial t} (n \langle p_i \rangle) + \nabla_k \Pi_{ik} = nF_i + \int p_i I_{st} d\Gamma.$$

$$\Pi_{ik} = P\delta_{ik} + n\langle p_i \rangle \langle v_k \rangle - \sigma'_{ik}.$$

для слабо неидеального газа:

$$\sigma'_{ik} = -m \int u_i(\Gamma) u_k(\Gamma) \delta f d\Gamma.$$

 δf — отклонение функции распределения от локального равновесия

$$\sigma'_{ik} = -m \int u_i(\Gamma) u_k(\Gamma) \delta f d\Gamma.$$

$$\begin{split} \frac{\partial f^0}{\partial t} + \frac{\boldsymbol{p}}{m} \cdot \frac{\partial f^0}{\partial \boldsymbol{r}} + \boldsymbol{F} \cdot \frac{\partial f^0}{\partial \boldsymbol{p}} &= \left(-\frac{\partial f^0}{\partial \varepsilon} \right) \left\{ \frac{\varepsilon(\varGamma) - h}{\varGamma} \, \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{T} + m \, v_\alpha v_\beta \, \mathcal{Q}_{\alpha\beta} \right. \\ &+ \frac{h - T c_p - \varepsilon(\varGamma)}{c_V / k_{\mathrm{B}}} \, \boldsymbol{\nabla} \cdot \boldsymbol{V} - \boldsymbol{F} \cdot \boldsymbol{v} \right\}, \end{split}$$

$$Q_{\alpha\beta} = \frac{1}{2} \left(\frac{\partial V_{\alpha}}{\partial x_{\beta}} + \frac{\partial V_{\beta}}{\partial x_{\alpha}} \right).$$

Этот слайд – забегая вперед на следующую лекцию...

ТЕОРЕТИЧЕСКАЯ ФИЗИКА

VI

Л.Д ЛАНДАУ Е.М. ЛИФШИЦ

ГИДРОДИНАМИКА

теоретическая физика

Е.М. ЛИФШИЦ Л.П. ПИТАЕВСКИЙ

ФИЗИЧЕСКАЯ КИНЕТИКА

Lecture Notes on Nonequilibrium Statistical Physics (A Work in Progress)

Daniel Arovas
Department of Physics
University of California, San Diego

October 22, 2018

Спасибо за внимание