Chapter 4: The Structure of $U(\mathbb{Z}/n\mathbb{Z})$

Author: Meng-Gen Tsai Email: plover@gmail.com

Theorem 1. $U(\mathbb{Z}/p\mathbb{Z})$ is a cyclic group.

Proof. Let $p-1=q_1^{e_1}q_2^{e_2}\cdots q_t^{e^t}=\prod_q q^e$ be the prime decomposition of p-1. Consider the congruences

- $(1) \ x^{q^{e-1}} \equiv 1(p)$
- $(2) \ x^{q^e} \equiv 1(p)$

Therefore,

- (1) Every solution to $x^{q^{e-1}} \equiv 1$ (p) is a solution of $x^{q^e} \equiv 1$ (p).
- (2) $x^{q^e} \equiv 1$ (p) has more solutions than $x^{q^{e-1}} \equiv 1$ (p). In fact, $x^{q^{e-1}} \equiv 1$ (p) has q^{e-1} solutions and $x^{q^e} \equiv 1$ (p) has q^e solutions by Proposition 4.1.2.

Therefore, there exists $g_i \in \mathbb{Z}/p\mathbb{Z}$ generating a subgroup of $U(\mathbb{Z}/p\mathbb{Z})$ of order $q_i^{e_i}$ for all i=1,...,t. Pick $g=g_1g_2\cdots g_t\in \mathbb{Z}/p\mathbb{Z}$ generating a subgroup of $U(\mathbb{Z}/p\mathbb{Z})$ of order $q_1^{e_1}q_2^{e_2}\cdots q_t^{e^t}=p-1$. That is, $\langle g \rangle = U(\mathbb{Z}/p\mathbb{Z})$. \square

Exercise 4.1. Show that 2 is a primitive root module 29.

Proof. $2^1 \equiv 2(29)$, $2^2 \equiv 4(29)$, $2^3 \equiv 8(29)$, $2^4 \equiv 16(29)$, $2^5 \equiv 3(29)$, $2^6 \equiv 6(29)$, $2^7 \equiv 12(29)$, $2^8 \equiv 24(29)$, $2^9 \equiv 19(29)$, $2^{10} \equiv 9(29)$, $2^{11} \equiv 18(29)$, $2^{12} \equiv 7(29)$, $2^{13} \equiv 14(29)$, $2^{14} \equiv 28(29)$, $2^{15} \equiv 27(29)$, $2^{16} \equiv 25(29)$, $2^{17} \equiv 21(29)$, $2^{18} \equiv 13(29)$, $2^{19} \equiv 26(29)$, $2^{20} \equiv 23(29)$, $2^{21} \equiv 17(29)$, $2^{22} \equiv 5(29)$, $2^{23} \equiv 10(29)$, $2^{24} \equiv 20(29)$, $2^{25} \equiv 11(29)$, $2^{26} \equiv 22(29)$, $2^{27} \equiv 15(29)$, $2^{28} \equiv 1(29)$. Thus $U(\mathbb{Z}/29\mathbb{Z}) = \langle 2 \rangle$. □

Proof (A shorter version). $2^{28} \equiv 1$ (29). It suffices to show that $2^{14} \not\equiv 1$ (29) and $2^4 \not\equiv 1$ (29). Actually, $2^{14} \equiv 28$ (29) and $2^4 \equiv 16$ (29). \square

Exercise 4.11. Prove that $1^k + 2^k + \cdots + (p-1)^k \equiv 0 \ (p) \ if \ p-1 \nmid k \ and \ -1(p)$ if $p-1 \mid k$.

Proof. Write $\langle g \rangle = U(\mathbb{Z}/p\mathbb{Z})$, and $S = 1^k + 2^k + \dots + (p-1)^k \equiv g^k + (g^k)^2 + \dots + (g^k)^{p-1}(p)$.

If $p-1 \mid k, g^k \equiv 1$ (p). Thus $S \equiv 1+1+\cdots+1=p-1 \equiv -1$ (p).

If $p-1 \nmid k$, g^k is also a generator of $U(\mathbb{Z}/p\mathbb{Z})$ by Exercise 13. There are three proofs of this case.

- (1) S is the sum of a geometric series. So $(1-g^k)S = g^k(1-(g^k)^{p-1}) = g^k(1-(g^{p-1})^k) \equiv 0$ (p). Since $g^k \not\equiv 1$ (p), $S \equiv 0$ (p).
- (2) $\langle g^k \rangle = U(\mathbb{Z}/p\mathbb{Z})$. So $S \equiv g^k + (g^k)^2 + \dots + (g^k)^{p-1} \equiv 1 + 2 + \dots + (p-1) \equiv \frac{p(p-1)}{2} \equiv 0$ (p) since p is odd and thus $\frac{p-1}{2}$ is an integer. (If p=2 is even, then there does not exist any k such that $p-1 \nmid k$.)
- (3) Similar to (2), write $S \equiv 1+2+\cdots+(p-1)$ (p). Notice that the equation $x^{p-1}-1 \equiv (x-1)(x-2)\cdots(x-(p-1))$ (p) holds by Proposition 4.1.1. So $S \equiv 0$ (p) by comparing the coefficient of x^{p-2} on the both sides if p>2. (Again p=2 is impossible in this case.)

Exercise 4.12. Use the existence of a primitive root to give another proof of Wilson's theorem $(p-1)! \equiv -1$ (p).

Proof. Say p > 2. (p = 2 is trivial.) Let g be a primitive root of $U(\mathbb{Z}/p\mathbb{Z})$. So $(p-1)! \equiv g \cdot g^2 \cdots g^{p-1} \equiv g^{\frac{p(p-1)}{2}}$ (p).

The equation $x^2 \equiv 1$ (p) has exactly 2 solutions $x \equiv 1, -1$ (p) by Proposition 4.1.2. Notice that $x \equiv g^{\frac{p-1}{2}}$ (p) is a solution of the equation $x^2 \equiv 1$ (p) and $g^{\frac{p-1}{2}} \not\equiv 1$ (p) since g is a primitive root of $U(\mathbb{Z}/p\mathbb{Z})$. Therefore,

$$g^{\frac{p-1}{2}} \equiv -1 \ (p).$$

So $(p-1)! \equiv g^{\frac{p(p-1)}{2}} \equiv (-1)^p \equiv -1$ (p) since p is an odd prime. \square

Supplement 1. There are many proofs of Wilson's theorem.

- (1) Exercise 3.9. Use a reduced residue system modulo p.
- (2) Corollary of Proposition 4.1.1. $x^{p-1} 1 \equiv (x-1)(x-2) \cdots (x-p+1)(p)$.
- (3) Exercise 4.12. Use the existence of a primitive root.
- (4) Inclusion-exclusion principle (Enrique Trevio, An Inclusion-Exclusion Proof of Wilson's Theorem).

Lemma.

$$n! = \sum_{k=0}^{n} (-1)^k \binom{n}{k} (n-k)^n.$$

Proof of lemma. Consider the number of permutations on $S = \{1, 2, ..., n\}$. On the one hand, the number is n!. On the other hand, we can think of a permutation on S as a function $f: S \to S$ that is onto. The number of functions $g: S \to S$ is n^n . To find the onto functions, we have to remove whichever ones are not onto. Therefore, we must remove those that miss at least 1 value. There are $\binom{n}{1}$ ways of choosing the missed value and $(n-1)^n$ functions missing that particular value. But when we remove all of these functions, we took out some too many times, indeed, any function that misses at least 2 values was over counted. So we have to add it back in. We get $\binom{n}{2}(n-2)^n$ such functions. Continue this process. \square

Proof. Now we use the equation $n! = \sum_{k=0}^{n} (-1)^k \binom{n}{k} (n-k)^n$ by substituting n = p-1 and then get

$$(p-1)! = \sum_{k=0}^{p-1} (-1)^k \binom{p-1}{k} (p-1-k)^{p-1}.$$

Now look at the k-term in the summation.

 $\begin{array}{l} k!(p-1-k)! \equiv (-1)^k(p-k)(p-(k-1))\cdots(p-1)\cdot(p-1-k)! \equiv (-1)^k(p-1)! \\ (p). \quad \text{So} \ \binom{p-1}{k} \ = \ \frac{(p-1)!}{k!(p-1-k)!} \ \equiv \ (-1)^k \ (p). \quad \text{Also,} \ (p-1-k)^{p-1} \ \equiv \ (-1-k)^{p-1} \ \equiv \ (1+k)^{p-1} \ (p) \ \text{since} \ (-1)^{p-1} \ = \ 1 \ \text{if} \ p > 2. \ (p=2 \ \text{is} \ \text{trivial.}) \ \text{Therefore,} \end{array}$

$$(p-1)! \equiv \sum_{k=0}^{p-1} (-1)^k \cdot (-1)^k \cdot (1+k)^{p-1} \equiv \sum_{k=1}^{p-1} k^{p-1} (p).$$

(We adjust the index of the summation and notice that $p^{p-1} \equiv 0$ (p)). By Fermats Little Theorem, $k^{p-1} \equiv 1$ (p). Therefore, the right-hand sum consists of (p-1) ones and the proof is completed. \square

The original proof in the paper is not very beautiful. We don't need to use the inclusion-exclusion expression of p! and then cancel out p on the both sides. Please use (p-1)! directly.

(5) One combinatorial proof (Cheenta, Wilson's Theorem and It's Geometric proof).

Proof. Consider a circumference with p points that correspond to the vertices of a regular p-gon. There are $\frac{(p-1)!}{2}$ (non-regular or regular) polygons that we form by joining these vertices.

Now among $\frac{(p-1)!}{2}$ of them, we have $\frac{p-1}{2}$ unaltered when rotated by $\frac{2\pi}{p}$ radian. That is, there are $\frac{p-1}{2}$ regular polygons due to the rotational symmetry.

Therefore, there are $\frac{(p-1)!}{2} - \frac{p-1}{2}$ non-regular polygons. Notices that the number of non-regular polygons is divided by p since p is a prime.

So
$$\frac{(p-1)!}{2} - \frac{p-1}{2} \equiv 0$$
 (p). Hence, $(p-1)! \equiv p-1 \equiv -1$ (p) if $p>2$. $(p=2)$ is trivial.) \square

Supplement 2. Related problems.

- (1) (Project Euler 381: (prime-k) factorial). Let $S(p) = \sum_{1 \leq k \leq 5} (p-k)!$ (p) for a prime p. Find $\sum_{1 \leq p \leq 10^8} S(p)$ (by using computer programs).
- (2) Let g be a primitive root modulo the odd prime p. Prove that $g^{\frac{p-1}{2}} \equiv -1(p)$. Deduce that if g, h are primitive roots modulo the odd prime p then $g \cdot h$ cannot be a primitive root.

Exercise 4.13 (Generators of a cyclic group). Let G be a finite cyclic group and $g \in G$ is a generator. Show that all the other generators are of the form g^k , where (k, n) = 1, n being the order of G.

Proof. Suppose that $h = g^k$ with (k, n) = 1. Then clearly $\langle h \rangle \subseteq \langle g \rangle$ as a subset. For the reverse containment (\supseteq) , write rk + sn = 1 where $r, s \in \mathbb{Z}$. Then $h^r = g^{kr} = g^{1-sn} = g \cdot (g^n)^{-s} = g \cdot 1 = g$. Then again $\langle g \rangle \subseteq \langle h \rangle$ as a subset.

Now suppose that $\langle g \rangle = \langle h \rangle$. Then $h = g^k$ for some $k \in \mathbb{Z}$. Also, $g = h^r$ for some $r \in \mathbb{Z}$. So $g = h^r = g^{kr}$ or $g^{kr-1} = 1$. So n|(kr-1), or ar + ns = 1 for some $s \in \mathbb{Z}$, that is, (a, n) = 1. \square

Reference: R. C. Daileda, The Structure of $U(\mathbb{Z}/n\mathbb{Z})$.

Corollary. Let G be a finite cyclic group of order n. Then G has exactly $\phi(n)$ generators.

Corollary. $U(\mathbb{Z}/p\mathbb{Z})$ has exactly $\phi(p-1)$ generators. $U(\mathbb{Z}/p^l\mathbb{Z})$ has exactly $\phi(p^{l-1}(p-1))$ generators if p is odd.

Exercise 4.22. If a has order 3 modulo p, show that 1 + a has order 6.

Proof. Since a has order 3, $0 \equiv a^3 - 1 \equiv (a-1)(a^2 + a + 1)$ (p). Since p is a prime, $a-1 \equiv 0$ (p) or $a^2 + a + 1 \equiv 0$ (p). a cannot be 1 since a has order $3 \neq 1$. Therefore,

$$a^2 + a + 1 \equiv 0 \ (p),$$

or
$$1+a\equiv -a^2\equiv -a^{-1}$$
 (p) . So
$$(1+a)^6\equiv (-a^{-1})^6\equiv 1 \ (p),$$

$$1+a\not\equiv 1 \ (p),$$

$$(1+a)^2\equiv a\not\equiv 1 \ (p),$$

$$(1+a)^3\equiv -1\not\equiv 1 \ (p).$$

Hence 1+a has order 6. \square