Системы типизации лямбда-исчисления

Лекция 4. Просто типизированное лямбда-исчисление

Денис Москвин

06.03.2011

CS Club при ПОМИ РАН

Предварительные замечания (1)

Типы представляют собой объекты синтаксической природы и могут быть присвоены лямбда-термам.

Если M — терм и тип α присвоен M, то пишут

 $M:\alpha$

Например, в большинстве систем $\mathbf{I}: \alpha \to \alpha$, то есть тождественной функции может быть приписан тип $\alpha \to \alpha$. Если α , являющийся аргументом функции \mathbf{I} , имеет тип α , то значение \mathbf{I} α тоже имеет тип α .

В общем случае $\alpha \to \beta$ является типом функции из α в β .

Предварительные замечания (2)

Есть два семейства систем типов.

Системы в стиле Карри: Термы те же, что и в бестиповой теории. Каждый терм обладает множеством различных типов (пустое, одно- или многоэлементное, бесконечное).

Системы в стиле Чёрча: Термы — аннотированные версии бестиповых термов. Каждый терм имеет тип (обычно уникальный), выводимый из способа, которым терм аннотирован.

Иногда используют такую терминологию:

Системы в стиле Карри — лямбда-исчисление *с присваива*нием типов.

Системы в стиле Чёрча — системы *типизированного* лямбдаисчисления.

Предварительные замечания (3)

Програмистский подход: термы интерпретируются как программы, а типы — как их частичные спецификации.

Системы в стиле Карри: неявная типизация (например, Haskell, Ocaml).

Системы в стиле Чёрча: явная типизация (большинство типизированных языков).

Логический подход: типы интерпретируются как высказывания, а термы — как их доказательства.

Типы системы $\lambda \rightarrow$ (1)

Самая простая система — это *просто типизированное* λ -исчисление (λ — или Simple Type Theory (STT)).

Множество типов $\mathbb T$ системы $\lambda \! \to \!$ определяется индуктивно:

$$lpha$$
, eta , . . . $\in \mathbb{T}$ (переменные типа)

 $\sigma, au \in \mathbb{T} \Rightarrow (\sigma {
ightarrow} au) \in \mathbb{T}$ (типы пространства функций)

В абстрактном синтаксисе:

$$\mathbb{T} ::= \mathbb{V} \mid \mathbb{T} \! \to \! \mathbb{T}$$

Здесь $\mathbb{V} = \{\alpha, \beta, \ldots\}$ — множество типовых переменных.

Соглашение: α , β , γ используем для типовых переменных, а σ , τ , ρ — для произвольных типов.

Типы системы $\lambda \rightarrow$ (2)

Стрелка правоассоциативна: если $\sigma_1, \ldots, \sigma_n \in \mathbb{T}$, то

$$\sigma_1 \rightarrow \sigma_2 \rightarrow \ldots \rightarrow \sigma_n \equiv (\sigma_1 \rightarrow (\sigma_2 \rightarrow \ldots \rightarrow (\sigma_{n-1} \rightarrow \sigma_n) \ldots))$$

Примеры типов

$$(\alpha \rightarrow \beta) \equiv \alpha \rightarrow \beta$$

$$(\alpha \rightarrow (\beta \rightarrow \gamma)) \equiv \alpha \rightarrow \beta \rightarrow \gamma$$

$$((\alpha \rightarrow \beta) \rightarrow \gamma) \equiv (\alpha \rightarrow \beta) \rightarrow \gamma$$

$$((\alpha \rightarrow \beta) \rightarrow ((\beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \gamma))) \equiv (\alpha \rightarrow \beta) \rightarrow (\beta \rightarrow \gamma) \rightarrow \alpha \rightarrow \gamma$$

$$((\alpha \rightarrow \beta) \rightarrow (((\alpha \rightarrow \beta) \rightarrow \beta) \rightarrow \beta)) \equiv (\alpha \rightarrow \beta) \rightarrow ((\alpha \rightarrow \beta) \rightarrow \beta) \rightarrow \beta$$

Всякий тип в $\lambda \rightarrow$ может быть записан в виде

$$\sigma_1 \rightarrow \sigma_2 \rightarrow \ldots \rightarrow \sigma_n \rightarrow \alpha$$

Как типизировать термы? (1)

Если терм переменная — как угодно:

$$x:\alpha$$
, $y:\alpha \to \beta$, $z:(\alpha \to \beta) \to ((\alpha \to \beta) \to \beta) \to \beta$.

Если терм *аппликация* MN, то

- ▶ M должно быть функцией, то есть иметь стрелочный тип $M\!:\!\sigma\!\to\!\tau;$
- ▶ N должно быть «подходящим» аргументом, то есть иметь тип N: σ ;
- **b** вся аппликация должна иметь тип результата применения функции: (M N): τ .

Например, для $x:\alpha$, $y:\alpha \to \beta$ имеем $(yx):\beta$.

Добавив $z:\beta \to \gamma$, получим $z(yx):\gamma$.

А какие должны иметь типы x и y, чтобы $x(yx):\beta$?

Как типизировать термы? (2)

Если терм *абстракция* $\lambda x. M$, то тип должен быть стрелочным $(\lambda x. M): \sigma \to \tau$, причём тип аргумента $x: \sigma$ и тип тела абстракции $M:\tau$.

Например, для $x:\alpha$ имеем $(\lambda x. x):\alpha \rightarrow \alpha$.

А надо ли здесь отдельно указывать, что $x:\alpha$?

Если не указать, то допустимо и $(\lambda x. x): \beta \to \beta$ и даже $(\lambda x. x): (\alpha \to \beta) \to (\alpha \to \beta)$ — стиль Карри.

Если указать $(\lambda x : \alpha. x) : \alpha \to \alpha$, то тип терма определяется однозначно — стиль Чёрча.

Типизируйте по Чёрчу: λx :?. λy :?. x (y x):?

Как типизировать термы? (3)

Правила ассоциативности для типов (вправо), аппликации (влево) и абстракции (вправо) хорошо согласованы друг с другом:

F:
$$\alpha \rightarrow (\beta \rightarrow (\gamma \rightarrow \delta))$$
 $(M:\alpha, N:\beta, P:\gamma)$
 $(FM):\beta \rightarrow (\gamma \rightarrow \delta)$
 $((FM)N):\gamma \rightarrow \delta$
 $(((FM)N)P):\delta$
Q: ρ
 $(\lambda y:\tau, Q):\tau \rightarrow \rho$
 $(\lambda x:\sigma, (\lambda y:\tau, Q)):\sigma \rightarrow (\tau \rightarrow \rho)$

Зелёные скобки опускаются.

Предтермы системы $\lambda \rightarrow$ а ля Карри

Множество *предтермов* (или *псевдотермов*) Λ строится из переменных из $V = \{x, y, z, \ldots\}$ с помощью аппликации и абстракции:

$$x \in V \Rightarrow x \in \Lambda$$
 $M, N \in \Lambda \Rightarrow (MN) \in \Lambda$
 $M \in \Lambda, x \in V \Rightarrow (\lambda x. M) \in \Lambda$

В абстрактном синтаксисе

$$\Lambda ::= V \mid (\Lambda \Lambda) \mid (\lambda V. \Lambda)$$

То есть предтермы — это термы бестипового λ -исчисления.

Множество *предтермов* $\Lambda_{\mathbb{T}}$ строится из переменных из $V = \{x,y,z,\ldots\}$ с помощью аппликации и аннотированной типами абстракции:

$$x \in V \Rightarrow x \in \Lambda_{\mathbb{T}}$$
 $M, N \in \Lambda_{\mathbb{T}} \Rightarrow (M N) \in \Lambda_{\mathbb{T}}$
 $M \in \Lambda_{\mathbb{T}}, x \in V, \sigma \in \mathbb{T} \Rightarrow (\lambda x : \sigma. M) \in \Lambda_{\mathbb{T}}$

В абстрактном синтаксисе

$$\Lambda_{\mathbb{T}} ::= V \mid (\Lambda_{\mathbb{T}} \Lambda_{\mathbb{T}}) \mid (\lambda V : \mathbb{T} . \Lambda_{\mathbb{T}})$$

Все соглашения о скобках и ассоциативности те же, что в Λ .

Примеры предтермов

Система $\lambda \rightarrow$ а ля Карри:

$$\lambda x y. x$$
 $\lambda f g x. f (g x)$
 $\lambda x. x x$

Система $\lambda \rightarrow$ а ля Чёрч:

$$\lambda x : \alpha. \lambda y : \beta. x \equiv \lambda x^{\alpha} y^{\beta}. x$$

$$\lambda x : \alpha. \lambda y : \alpha. x \equiv \lambda x^{\alpha} y^{\alpha}. x$$

$$\lambda f : \alpha. \lambda g : \beta. \lambda x : \gamma. f(gx) \equiv \lambda f^{\alpha} g^{\beta} x^{\gamma}. f(gx)$$

$$\lambda f : (\beta \rightarrow \gamma). \lambda g : (\alpha \rightarrow \beta). \lambda x : \alpha. f(gx) \equiv \lambda f^{\beta \rightarrow \gamma} g^{\alpha \rightarrow \beta} x^{\alpha}. f(gx)$$

$$\lambda x : \alpha. x x \equiv \lambda x^{\alpha}. x x$$

Утверждение о типизации

Утверждение (о типизации) в $\lambda \! \to \! \ll \! \mathsf{a}$ ля Карри $\! \gg \! \mathsf{u}$ меет вид $\! M \! : \! \tau \!$

где $M \in \Lambda$ и $\tau \in \mathbb{T}$. Тип τ иногда называют *предикатом*, а терм M — *субъектом* утверждения.

$$(\lambda x. x): \alpha \to \alpha$$
 $(\lambda x. x): (\alpha \to \beta) \to \alpha \to \beta$ $(\lambda x. y. x): \alpha \to \beta \to \alpha$

Для $\lambda o \ll$ а ля Чёрч \gg надо лишь заменить Λ на $\Lambda_{\mathbb{T}}$

$$(\lambda x : \alpha. x) : \alpha \to \alpha \qquad (\lambda x^{\alpha \to \beta}. x) : (\alpha \to \beta) \to \alpha \to \beta \qquad (\lambda x^{\alpha} y^{\beta}. x) : \alpha \to \beta \to \alpha$$

Объявления

Объявление — это утверждение (о типизации) с термовой переменной в качестве субъекта.

$$x:\alpha$$

$$f: \alpha \rightarrow \beta$$

$$g:(\alpha \rightarrow \beta) \rightarrow \gamma$$

Контексты

Контекст — это множество объявлений с *различными* переменными в качестве субъекта.

$$\Gamma = \{x_1:\sigma_1, x_2:\sigma_2, \ldots, x_n:\sigma_n\}$$

(контекст иногда называют базисом или окружением) Фигурные скобки множества иногда опускают:

$$\Gamma = x:\alpha, y:\beta, f:\alpha \rightarrow \beta, g:(\alpha \rightarrow \beta) \rightarrow \gamma$$

Контексты можно *расширять*, добавляя объявление *новой* переменной:

$$\Delta = \Gamma, z: \alpha \rightarrow \gamma = x: \alpha, y: \beta, f: \alpha \rightarrow \beta, g: (\alpha \rightarrow \beta) \rightarrow \gamma, z: \alpha \rightarrow \gamma$$

Контекст можно рассматривать как (частичную) функцию из множества переменных V в множество типов \mathbb{T} .

Правила типизации $\lambda \rightarrow$ «а ля Карри»

Утверждение $M: \tau$ называется **выводимым** в контексте Γ , обозначение

$$\Gamma \vdash M:\tau$$

если его вывод может быть произведен по правилам:

$$(x:\sigma) \in \Gamma \implies \Gamma \vdash x:\sigma$$

$$\Gamma \vdash M:\sigma \rightarrow \tau, \Gamma \vdash N:\sigma \implies \Gamma \vdash (MN):\tau$$

$$\Gamma, x:\sigma \vdash M:\tau \implies \Gamma \vdash (\lambda x. M):\sigma \rightarrow \tau$$

Если существуют Γ и τ , такие что $\Gamma \vdash M:\tau$, то предтерм M называют (допустимым) термом.

Правила типизации $\lambda \rightarrow$ «а ля Карри» (2)

$$\begin{array}{ll} \hbox{ (аксиома)} & \Gamma \vdash x \hbox{:} \sigma, \ \text{если} \ (x \hbox{:} \sigma) \in \Gamma \\ \\ \hbox{ (удаление} \ \rightarrow) & \frac{\Gamma \vdash M \hbox{:} \sigma \! \rightarrow \! \tau \quad \Gamma \vdash N \hbox{:} \sigma}{\Gamma \vdash (M \, N) \hbox{:} \tau} \\ \\ \hbox{ (введение} \ \rightarrow) & \frac{\Gamma, x \hbox{:} \sigma \vdash M \hbox{:} \tau}{\Gamma \vdash (\lambda x. \, M) \hbox{:} \sigma \! \rightarrow \! \tau} \\ \end{array}$$

Пример дерева вывода типа для $\lambda x y. x$

$$\frac{x:\alpha,y:\beta\vdash x:\alpha}{x:\alpha\vdash(\lambda y.x):\beta\rightarrow\alpha}$$
$$\vdash(\lambda x.y.x):\alpha\rightarrow\beta\rightarrow\alpha$$

То есть для любых α , $\beta \in \mathbb{T}$ верно $\vdash (\lambda x y. x): \alpha \rightarrow \beta \rightarrow \alpha$.

Правила типизации $\lambda \rightarrow$ «а ля Чёрч»

$$\begin{array}{ll} \hbox{ (аксиома)} & \Gamma \vdash x \hbox{:} \sigma, \ \text{если} \ (x \hbox{:} \sigma) \in \Gamma \\ \\ \hbox{ (удаление} \to) & \dfrac{\Gamma \vdash M \hbox{:} \sigma \! \to \! \tau \quad \Gamma \vdash N \hbox{:} \sigma}{\Gamma \vdash (M \, N) \hbox{:} \tau} \\ \\ \hbox{ (введение} \to) & \dfrac{\Gamma, x \hbox{:} \sigma \vdash M \hbox{:} \tau}{\Gamma \vdash (\lambda x \hbox{:} \sigma, M) \hbox{:} \sigma \! \to \! \tau} \\ \end{array}$$

Вывод типа для $\lambda x^{\alpha} y^{\beta}$. x проще

$$\frac{x:\alpha, y:\beta \vdash x:\alpha}{x:\alpha \vdash (\lambda y:\beta. x):\beta \rightarrow \alpha} \\
\vdash (\lambda x:\alpha. \lambda y:\beta. x):\alpha \rightarrow \beta \rightarrow \alpha$$

То есть для каждых α , $\beta \in \mathbb{T}$ верно $\vdash (\lambda x^{\alpha} y^{\beta}. x) : \alpha \rightarrow \beta \rightarrow \alpha$.

Правила для $\lambda \rightarrow$ «а ля Карри»: естественный вывод

Правила типизации в терминах естественного вывода (отбрасываемые допущения зачёркиваются):

Правило удаления $ ightarrow$	Правило введения $ ightarrow$
	$[x:\sigma]$
	i i
$M: \sigma \to \tau$ $N: \sigma$	M:τ
$\overline{(M N):\tau}$	$\overline{(\lambda x. M): \sigma \rightarrow \tau}$

$$\frac{[x:\alpha]^2 \quad [y:\beta]^1}{x:\alpha}$$

$$\frac{x:\alpha}{(\lambda y. x):\beta \to \alpha}$$

$$\frac{(\lambda y. x):\beta \to \alpha}{(\lambda x. y. x):\alpha \to \beta \to \alpha}$$

Правила для $\lambda \rightarrow$ «а ля Чёрч»: естественный вывод

Правила типизации в терминах естественного вывода (отбрасываемые допущения зачёркиваются):

Правило удаления $ ightarrow$	Правило введения $ ightarrow$
	$[x:\sigma]$
	i i
$M: \sigma \rightarrow \tau$ $N: \sigma$	M:τ
$\overline{(MN):\tau}$	$\overline{(\lambda x : \sigma. M) : \sigma \rightarrow \tau}$

$$\frac{[x:\alpha]^2 \quad [y:\beta]^1}{x:\alpha}$$

$$\frac{x:\alpha}{(\lambda y:\beta. x):\beta \to \alpha}$$

$$\frac{(\lambda y:\beta. x):\beta \to \alpha}{(\lambda x:\alpha. \lambda y:\beta. x):\alpha \to \beta \to \alpha}$$

Типизируем $\lambda f g x. g (f x)$ и $S = \lambda x y z. x z (y z)$ а ля Карри

$$\frac{[g:\beta\rightarrow\gamma]^2}{\frac{g\,(f\,x):\gamma}{\lambda x.\,g\,(f\,x):\alpha\rightarrow\gamma}1} \frac{\frac{g\,(f\,x):\gamma}{\lambda x.\,g\,(f\,x):\alpha\rightarrow\gamma}1}{\frac{\lambda g\,x.\,g\,(f\,x):(\beta\rightarrow\gamma)\rightarrow\alpha\rightarrow\gamma}{\lambda f\,g\,x.\,g\,(f\,x):(\beta\rightarrow\gamma)\rightarrow\alpha\rightarrow\gamma}^2} \frac{3}{\lambda f\,g\,x.\,g\,(f\,x):(\alpha\rightarrow\beta)\rightarrow(\beta\rightarrow\gamma)\rightarrow\alpha\rightarrow\gamma}^3$$

$$\frac{[x:\alpha\rightarrow\beta\rightarrow\gamma]^3\quad[z:\alpha]^1}{x\,z:\beta\rightarrow\gamma} \frac{[y:\alpha\rightarrow\beta]^2\quad[z:\alpha]^1}{y\,z:\beta}$$

$$\frac{\frac{x\,z\,(y\,z):\gamma}{\lambda z.\,x\,z\,(y\,z):(\alpha\rightarrow\beta)\rightarrow\alpha\rightarrow\gamma}^1}{\frac{\lambda y\,z.\,x\,z\,(y\,z):(\alpha\rightarrow\beta)\rightarrow\alpha\rightarrow\gamma}{\lambda x\,y\,z.\,x\,z\,(y\,z):(\alpha\rightarrow\beta\rightarrow\gamma)\rightarrow(\alpha\rightarrow\beta)\rightarrow\alpha\rightarrow\gamma}^3$$

Типизируем $\lambda f g x. g (f x)$ и $S = \lambda x y z. x z (y z)$ а ля Чёрч

$$\frac{[g:\beta\rightarrow\gamma]^2 \qquad \frac{[f:\alpha\rightarrow\beta]^3 \quad [x:\alpha]^1}{f\,x:\beta}}{\frac{g\,(f\,x):\gamma}{\lambda x\,:\alpha.\,g\,(f\,x):\alpha\rightarrow\gamma}1} \\ \frac{\frac{g\,(f\,x):\gamma}{\lambda g\,:\beta\rightarrow\gamma.\,\lambda x\,:\alpha.\,g\,(f\,x):(\beta\rightarrow\gamma)\rightarrow\alpha\rightarrow\gamma}2}{\lambda f\,:\alpha\rightarrow\beta.\,\lambda g\,:\beta\rightarrow\gamma.\,\lambda x\,:\alpha.\,g\,(f\,x):(\alpha\rightarrow\beta)\rightarrow(\beta\rightarrow\gamma)\rightarrow\alpha\rightarrow\gamma}3 \\ \frac{[x:\alpha\rightarrow\beta\rightarrow\gamma]^3 \quad [z:\alpha]^1}{x\,z:\beta\rightarrow\gamma} \qquad \frac{[y:\alpha\rightarrow\beta]^2 \quad [z:\alpha]^1}{y\,z:\beta} \\ \frac{\frac{x\,z\,(y\,z):\gamma}{\lambda z\,:\alpha.\,x\,z\,(y\,z):\alpha\rightarrow\gamma}1}{\lambda y\,:\alpha\rightarrow\beta.\,\lambda z\,:\alpha.\,x\,z\,(y\,z):(\alpha\rightarrow\beta)\rightarrow\alpha\rightarrow\gamma}2 \\ \frac{\lambda y\,:\alpha\rightarrow\beta.\,\lambda z\,:\alpha.\,x\,z\,(y\,z):(\alpha\rightarrow\beta)\rightarrow\alpha\rightarrow\gamma}{\lambda x\,:\alpha\rightarrow\beta\rightarrow\gamma.\,\lambda y\,:\alpha\rightarrow\beta.\,\lambda z\,:\alpha.\,x\,z\,(y\,z):(\alpha\rightarrow\beta\rightarrow\gamma)\rightarrow(\alpha\rightarrow\beta)\rightarrow\alpha\rightarrow\gamma}3$$

Примеры: стираем термы

$$\frac{[\beta \to \gamma]^2 \qquad \frac{[\alpha \to \beta]^3 \quad [\alpha]^1}{\beta} \qquad \frac{[\alpha \to \beta \to \gamma]^3 \quad [\alpha]^1}{\beta \to \gamma} \qquad \frac{[\alpha \to \beta]^2 \quad [\alpha]^1}{\beta}}{\frac{\gamma}{\beta}} \qquad \frac{[\alpha \to \beta \to \gamma]^3 \quad [\alpha]^1}{\beta} \qquad \frac{[\alpha \to \beta]^2 \quad [\alpha]^2}{\beta} \qquad \frac{[\alpha \to \beta]^2 \quad [\alpha]^2}{\beta} \qquad \frac{[\alpha \to \beta]^2}{\beta} \qquad \frac{[\alpha \to \beta]^2}{\beta$$

Что вышло?

Деревья вывода в системе минимальной пропозициональной логики PROP! (слева — закон силлогизма)

Система минимальной пропозициональной логики

Система PROP состоит из:

► Импликационных утверждений, задаваемых следующим абстрактным синтаксисом: Prop ::= Var | (Prop→Prop)

▶ Правил вывода

Правило удаления $ ightarrow$	Правило введения $ ightarrow$
	$\left[\sigma ight]^{\dot{j}}$
	i i
$\sigma ightarrow au$ σ	τ
τ	$\overline{\sigma\! ightarrow\! au}$)

Здесь σ и τ — утверждения, σ в правиле введения — промежуточное (отбрасываемое на j-ом шаге).

Вывод утверждения σ из множества неотброшенных (существенных) допущений Δ обозначают $\Delta \vdash_{PROP} \sigma$.

Соответствие Карри-Говарда

Имеется естественное взаимно-однозначное соответствие между утверждениями в минимальной пропозициональной логики PROP и типизируемыми термами в $\lambda \rightarrow$. Утверждение

$$x_1:\tau_1,\ldots,x_n:\tau_n\vdash_{\lambda\to}M:\sigma$$

может быть прочитано так: M есть доказательство σ , исходящее из предположений τ_1, \ldots, τ_n .

Подробнее [ITT 3.3]

Домашнее задание

Сконструируйте терм типа

$$(\delta \longrightarrow \delta \longrightarrow \alpha) \longrightarrow (\alpha \longrightarrow \beta \longrightarrow \gamma) \longrightarrow (\delta \longrightarrow \beta) \longrightarrow \delta \longrightarrow \gamma$$

►
$$(\delta \rightarrow \delta \rightarrow \alpha) \rightarrow (\gamma \rightarrow \alpha) \rightarrow (\alpha \rightarrow \beta) \rightarrow \delta \rightarrow \gamma \rightarrow \beta$$
 (2 штуки)

$$\blacktriangleright ((\alpha \longrightarrow \beta) \longrightarrow \alpha) \longrightarrow (\alpha \longrightarrow \alpha \longrightarrow \beta) \longrightarrow \alpha$$

$$\blacktriangleright ((\alpha \rightarrow \beta) \rightarrow \alpha) \rightarrow (\alpha \rightarrow \alpha \rightarrow \beta) \rightarrow \beta$$

Добавьте типы в λ-абстракцию и постройте дерево естественного вывода типа для терма

$$\lambda x. \lambda y. y (\lambda z. y x): (\gamma \rightarrow \epsilon) \rightarrow ((\gamma \rightarrow \epsilon) \rightarrow \epsilon) \rightarrow \epsilon$$

Литература (1)

LCWT гл. 3

Henk Barendregt, Lambda calculi with types, Handbook of logic in computer science (vol. 2), Oxford University Press, 1993

ITT гл. 3

Herman Geuvers, Introduction to Type Theory
Alfa Lernet Summer school 2008, Uruguay
http://www.cs.ru.nl/H.Geuvers/Uruguay2008SummerSchool.html/

Литература (2)

TAPL гл. 9

Benjamin C. Pierce, Types and Programming Languages, MIT Press, 2002

http://www.cis.upenn.edu/bcpierce/tapl

I2FP гл. 4.1

John Harrison, Introduction to Functional Programming http://www.cl.cam.ac.uk/teaching/Lectures/funprog-jrh-1996/русский перевод: http://code.google.com/p/funprog-ru/