

INSTITUTO DE COMPUTAÇÃO UNIVERSIDADE FEDERAL DE ALAGOAS - UFAL

LÍVIA ANDRESSA DA SILVA SANTOS

Lista 1

MACEIÓ 2024

Questão 1 -

	História de	Dívida	Garantia	Renda	Risco
	Crédito				
E1	Ruim	Alta	Nenhuma	\$0 a \$15k	Alto
E2	Desconhecida	Alta	Nenhuma	\$0 a \$15k	Alto
E3	Desconhecida	Baixa	Nenhuma	\$15 a \$35k	Moderado
E4	Desconhecida	Baixa	Nenhuma	\$0 a \$15k	Alto
E5	Desconhecida	Baixa	Nenhuma	Acima de \$35k	Baixo
E6	Desconhecida	Baixa	Adequada	Acima de \$35k	Baixo
E7	Ruim	Baixa	Nenhuma	\$0 a \$15k	Alto
E8	Ruim	Baixa	Adequada	Acima de \$35k	Moderado
E9	Воа	Baixa	Nenhuma	Acima de \$35k	Baixo
E10	Boa	Alta	Adequada	Acima de \$35k	Baixo
E11	Воа	Alta	Nenhuma	\$0 a \$15k	Alto
E12	Boa	Alta	Nenhuma	\$15 a \$35k	Moderado
E13	Воа	Alta	Nenhuma	Acima de \$35k	Baixo
E14	Ruim	Alta	Nenhuma	\$15 a \$35k	Alto

Passo 1:

	Risco
E1	Alto
E2	Alto
E3	Modera
	do
E4	Alto
E5	Baixo
E6	Baixo
E7	Alto
E8	Modera
	do
E9	Baixo
E10	Baixo
E11	Alto
E12	Modera
	do
E13	Baixo
E14	Alto

 $Entropia(Risco) = -(6/14) * log_2(6/14) - (3/14) * log_2(3/14) - (5/14)$

^{*} $log_2(5/14) = 1.530$

Ganho de informação com o atributo Renda:

Risco
Alto
Alto
Moderado
Alto
Baixo
Baixo
Alto
Moderado
Baixo
Baixo
Alto
Moderado
Baixo
Alto

Renda: de \$0 a \$15k

 $Renda = \$0 \ a \ \$15k \ (5/14), \ tendo \ S \ \$0 \ a \ \$15k \ < - \ [5 \ alto \ , 0 \ moderado \ , 0 \ baixo \] \ Entropia(S \ \$0 \ a \ 15k \) = - \ (5/5)log \ 2 \ (5/5) = 0$

Renda: \$15 a \$35k

 $Renda = \$15 \ a \ \$30k \ (3/14), \ tendo \ S \ \$0 \ a \ \$15k < - \ [1 \ alto \ , 2 \ moderado \ , 0 \ baixo \] \ Entropia(s \ \$15 \ a \ 30k \) = - \ (1/3)log \ 2 \ (1/3) \ - \ (2/3)log \ 2 \ (2/3) = 0.91829$

Renda: Acima de 35k

 $Renda = Acima \ de \ \$30k \ (6/14), \ tendo \ S \ acima \ de \ 30k \ < - \ [0 \ alto \ , 1 \ moderado \ , 5 \ baixo \] \ Entropia (s \ Acima \ de \ 30k \) = - (1/6)log \ 2 \ (1/6) \ - (5/6)log \ 2 \ (5/6) = 0.65002$

Entropia para o atributo Renda:

 $Entropia(S \$ 0 \ a \ 15k) = 0$

 $Entropia(s $15 \ a \ 30k) = 0.91829$

 $Entropia(s\ Acima\ de\ 30k\)=0.\ 65002$

$$Ganho(S, Renda) = 1.53061 - (5/14) * 0 - (3/14) * 0.91829 - (6/14)$$

Garantia	Risco
Nenhuma	Alto
Nenhuma	Alto
Nenhuma	Moderado
Nenhuma	Alto
Nenhuma	Ваіхо
Adequada	Baixo
Nenhuma	Alto
Adequada	Moderado
Nenhuma	Baixo
Adequada	Baixo
Nenhuma	Alto
Nenhuma	Moderado
Nenhuma	Ваіхо
Nenhuma	Alto

,Garantia: Nenhuma

 $Garantia = Nenhuma \ (11/14), \ tendo \ S_{Nenhuma} < - \ [6_{alto}, \ 3_{moderado}, \ 4_{baixo}]$ $Entropia(S\ Nenhuma\) = - \ (6/11)log\ 2\ (6/11) - \ (3/11)log\ 2\ (3/11) - \ (4/11)log\ 2\ (4/11) = 1.\ 51890$

Garantia: Adequada

Garantia = Adequada (3/14), tendo S Nenhuma <- [0 alto , 2 moderado , 1 baixo]Entropia(S Adequada) = - (2/3)log 2 (2/3) - (1/3)log 2 (1/3) = 0.91829

Entropia para o atributo Garantia:

Entropia(S Nenhuma) = 1.51890

Entropia(SAdequada) = 0.91829

Ganho(S, Garantia) = 1.53061 - (11/14) * 1.51890 - (3/14) * 0.91829 = 0.1404

Ganho de atributo com Dívida:

Risco	Dívida
Alto	Alta
Alto	Alta
Moderado	Baixa
Alto	Baixa
Baixo	Baixa
Baixo	Baixa
Alto	Baixa
Moderado	Baixa
Baixo	Baixa
Baixo	Alta
Alto	Alta
Moderado	Alta
Baixo	Alta
Alto	Alta

Dívida: Alta

 $D\'ivida = Alta~(7/14),~tendo~S_{Alta} < -~[4_{alto},~1_{moderado},~2_{baixo}]$

Entropia(SAlta) = -(4/7)log 2 (4/7) - (1/7)log 2 (1/7) - (2/7)log 2 (2/7) = 1.37878

Dívida: Baixa

Divida = Baixa (7/14), $tendo\ S\ baixa \leftarrow [2\ alto\ , 2\ moderado\ , 3\ baixo\]$ $Entropia(S\ baixa\) = -(2/7)log\ 2$ (2/7) $-(2/7)log\ 2$ (2/7) $-(3/7)log\ 2$ (3/7) =1.55665

Entropia para o atributo Dívida: E

ntropia(S Alta) = 1. 37878

Entropia(S Baixa) = 1. 55665

Ganho(S, Divida) = 1.53061 - (7/14) * 1.37878 - (7/14) * 1.55665 = 0.062895

Ganho de atributo com **História de crédito**:

Risco	História de Crédito
Alto	Ruim
Alto	Desconhecida
Moderad o	Desconhecida
Alto	Desconhecida
Baixo	Desconhecida
Baixo	Desconhecida
Alto	Ruim
Moderad 0	Ruim
Baixo	Boa
Baixo	Boa
Alto	Boa
Moderad o	Boa
Baixo	Boa
Alto	Ruim

História: Desconhecida

História = Desconhecida (5/14), tendo S Desconhecida <- [2 alto, 1 moderado, 2 baixo]

 $Entropia(S\ Desconhecida\) = -(2/5)log\ 2\ (2/5)\ -(1/5)log\ 2\ (1/5)\ -(2/5)log\ 2\ (2/5)\ =\ 1.\ 52192$

História: Ruim

 $Hist \acute{o}ria = Ruim (4/14), tendo S Ruim < - [3 alto , 1 moderado , 0 baixo) Entropia(S Ruim) = - (3/14)log 2 (3/14) - (1/3)log 2 (1/3) = 1.00454$

História: Boa

 $Hist \acute{o}ira = Boa~(5/14), tendo~S~Boa < -~[1~alto~,~1~moderado~,~3~baixo~]~Entropia(S~Boa~) = -~(1/5)log~2~(1/5) -~(1/5)log~2~(1/5) -~(3/5)log~2~(3/5) = 1.~37095$

Entropia para o atributo História de Crédito:

Entropia(S Desconhecida) = 1.52192

Entropia(S Ruim) = 1.00454

Entropia(S Boa) = 1.37095

Ganho(S, Hist'oria) = 1.53061 - (5/14) * 1.52192 - (4/14) * 1.00454 - (5/4) * 1.37095 = -1.01363

Temos que:

Ganho(S, Garantia) = 0.14041

Ganho(S, Renda) = 1.05525

Ganho(S, Divida) = 0.062895

Ganho(S, História) = − 1. 01363

O atributo a ser escolhido deve ser Renda. Renda: \$0 a

15k

	História de Crédito	Dívida	Garantia	Renda	Risco
E1	Ruim	Alta	Nenhuma	\$0 a \$15k	Alto
E2	Desconhecida	Alta	Nenhuma	\$0 a \$15k	Alto
E4	Desconhecida	Baixa	Nenhuma	\$0 a \$15k	Alto
E7	Ruim	Baixa	Nenhuma	\$0 a \$15k	Alto
E11	Воа	Alta	Nenhuma	\$0 a \$15k	Alto

Todos apontam para risco Alto.

Renda:\$15k a \$35k

	História de Crédito	Dívida	Garantia	Renda	Risco
E3	Desconhecida	Baixa	Nenhuma	\$15 a \$35k	Moderado
E12	Воа	Alta	Nenhuma	\$15 a \$35k	Moderado
E14	Ruim	Alta	Nenhuma	\$15 a \$35k	Alto

 $Entropia(15k - 35k) = 0 - (2/3)log_2(2/3) - (1/3)log_2(1/3) = 0.91829$

$$Entropia(Garantia\ Nenhuma\) = -(2/3)log\ 2\ (2/3)\ -(1/3)log\ 2\ (1/3)\ = 0.\ 91829$$

$$Ganho(Garantia\) = 0.\ 91829\ -(3/3)\ *\ 0.\ 91829\ = 0$$

$$Entropia(Divida\ Baixa\) = -(1/3)log\ 2\ (1/3) = 0$$

$$Entropia(Divida\ Alta\) = -(1/3)log\ 2\ (1/3) - (1/3)log\ 2\ (1/3) = 1.\ 05664$$

$$Ganho(Divida\) = 0.\ 91829 - (1/3)\ *\ 0 - (2/3)\ *\ 1.\ 05664 = 0.\ 21386$$

Entropia(História Desconhecida) =
$$-(1/3)log \ 2 \ (1/3) = 0$$

Entropia(História Ruim) = $-(1/3)log \ 2 \ (1/3) = 0$
Entropia(História Boa) = $-(1/3)log \ 2 \ (1/3) = 0$
anho(História) = $0.91829 - (1/3) * 0 - (1/3) * 0 - (1/3) * 0 = 0.91829$

O atributo a ser escolhido deve ser <u>Dívida</u>. <u>Dívida</u>:

	História de Crédito	Garantia	Dívida	Risco
E3	Desconhecida	Nenhuma	Baixa	Moderado
E12	Воа	Nenhuma	Alta	Moderado
E14	Ruim	Nenhuma	Alta	Alto

Para a dívida Baixa, o risco é Moderado.

Dívida Alta:

	História de Crédito	Dívida	Garantia	Risco
E12	Воа	Alta	Nenhuma	Moderado
E14	Ruim	Alta	Nenhuma	Alto

$$Entropia(Alta) = -(1/2)log 2 (1/2) - (1/2)log 2 (1/2) = 1$$

$$Entropia(Garantia) = -(1/2)log 2 (1/2) - (1/2)log 2 (1/2) = 1$$

Ganho(Garantia) = 0

 $Entropia(Hist\'oria\ Boa\) = -(1/1)log\ 2\ (1/1) = 0$

 $Entropia(Hist\'oria\ Ruim\) = -(1/1)log\ 2\ (1/1) = 0$

 $Ganho(Hist\'{o}ria) = 1$

O atributo a ser escolhido deve ser História, e, como se vê pela tabela, história boa gera um risco Moderado e história ruim gera um risco Alto.

Renda: Acima de \$35k

	História de Crédito	Dívida	Garantia	Renda	Risco
E5	Desconhecida	Baixa	Nenhuma	Acima de \$35k	Baixo
E6	Desconhecida	Baixa	Adequada	Acima de \$35k	Baixo
E8	Ruim	Baixa	Adequada	Acima de \$35k	Moderado
E9	Воа	Baixa	Nenhuma	Acima de \$35k	Baixo
E10	Воа	Alta	Adequada	Acima de \$35k	Baixo
E13	Воа	Alta	Nenhuma	Acima de \$35k	Baixo

Entropia(*Garantia Nenhuma*) = 0

Entropia(Garantia Adequada) = -(2/3)log 2 (2/3) - (1/3)log 2 (1/3) = 0.91829

Ganho(Garantia) = 0.65002 - (3/3) * 0 - (3/3) * 0.91829 = -0.26827

 $Entropia(Divida\ Baixa) = -(3/4)log\ 2\ (3/4) - (1/4)log\ 2\ (1/4) = 0.\ 81127$

Entropia(Dívida Alta) = 0

Ganho(Divida) = 0.65002 - (4/6) * 0.81127 - (2/6) * 0 = 0.10917

Entropia(História Desconhecida) = 0

Entropia(História Ruim) = 0

Entropia(História Boa) = 0

Ganho(Hist'oria) = 0.65002

O atributo a ser escolhido deve ser <u>História</u>.

	História de Crédito	Dívida	Garantia	Risco
E5	Desconhecida	Baixa	Nenhuma	Baixo
E6	Desconhecida	Baixa	Adequada	Baixo
E8	Ruim	Baixa	Adequada	Moderado
E9	Boa	Baixa	Nenhuma	Baixo
E10	Воа	Alta	Adequada	Baixo
E13	Воа	Alta	Nenhuma	Baixo

Vê-se pela tabela que História Desconhecida gera Risco Baixo, História Ruim gera risco Moderado e História Boa gera risco Baixo.

Portanto, esta deve ser a Árvore de Decisão para o algoritmo ID3:

Árvore gerada rodando o algoritmo ID3 na aplicação WEKA:

```
Classifier output
=== Run information ===
Scheme:
              weka.classifiers.trees.Id3
Relation:
              tabela (2)
Instances:
              14
Attributes:
               História de Crédito
              Dívida
              Garantia
              Renda
              Risco
Test mode:
              10-fold cross-validation
=== Classifier model (full training set) ===
Id3
Renda = $0 a $15k: Alto
Renda = $15 a $35k
    História de Crédito = Ruim: Alto
    História de Crédito = Desconhecida: Moderado
    História de Crédito = Boa: Moderado
Renda = Acima de $35k
    História de Crédito = Ruim: Moderado
    História de Crédito = Desconhecida: Baixo
    História de Crédito = Boa: Baixo
```

Algoritmo C4.5

Para começar, é calculado primeiramente a entropia de Risco.

$$Entropia(Risco) = - (6/14) * log (6/14) - (3/14) * log (3/14) - (5/14)$$

$$2 \qquad \qquad 2$$

$$* log (5/14) = 1.53061$$

Agora, precisamos calcular as taxas de ganhos:

$$GainRatio(A) = Gain(A) / SplitInfo(A)$$

 $SplitInfo(A) = -\sum |Dj|/|D| \times log|Dj|/|D|$

Calculando o atributo de dívida:

 $\label{eq:Gain(Decision, Dívida) = 0} $$\operatorname{Entropia}(\operatorname{Risco}) - \sum [p(\operatorname{Risco}|\operatorname{Dívida}) * \operatorname{Entropia}(\operatorname{Risco},\operatorname{Dívida})] \ Gain(\operatorname{Risco},\operatorname{Dívida}) = $$\operatorname{Entropia}(\operatorname{Risco}) - [p(\operatorname{Risco}|\operatorname{Dívida=Baixa}) * \operatorname{Entropia}(\operatorname{Risco}|\operatorname{Dívida=Baixa})] + $$$[p(\operatorname{Risco}|\operatorname{Dívida=Alta}) * \operatorname{Entropia}(\operatorname{Risco}|\operatorname{Dívida=Alta})]$$$

Entropia(Risco | Dívida=Baixa)

$$-p(Baixo) * logp(Baixo) - p(Moderado) * logp(Moderado) - p(Alto) * logp(Alto)$$

$$= -3/7 * log(3/7) - 2/7 * log(2/7) - 2/7 * log(2/7)$$

$$= 1.55$$

Entropia(Risco | Dívida=Alta)

$$= -2/7 * log(2/7) - 1/7 * log(1/7) - 4/7 * log(4/7)$$
$$= 1.37$$

Gain(Risco, Dívida)

SplitInfo(Risco, Dívida)

$$= -(7/14) * log(7/14) - (7/14) * log(7/14) = 1$$

GainRatio(Risco, Dívida)

Gain(Risco, Divida) / SplitInfo(Risco, Divida) = 0.07 / 1 = 0.07

Calculando o atributo de garantia:

Gain(Decision, Garantia) =

Entropia(Risco) - ∑[p(Risco|Garantia) * Entropia(Risco, Garantia)] Gain(Risco,

Garantia) = Entropia(Risco) - [p(Risco|Garantia=Nenhuma) *

Entropia(Risco | Garantia=Nenhuma)] + [p(Risco | Garantia=Adequada) *

Entropia(Risco | Garantia=Adequada)]

Entropia(Risco | Garantia=Nenhuma)

$$= -p(Baixo) * logp(Baixo) - p(Moderado) * logp(Moderado) - p(Alto) * logp($$

$$= -(3/11) * log(3/11) - (2/11) * log(2/11) - 6/11 * log(6/11)$$

= 1.43

Entropia(Risco | Garantia=Adequada)

$$= -(2/3) * log(2/3) - (1/3) * log(1/3)$$

= 0.91

Gain(Risco, Garantia)

$$1.53 - (11/14) * 1.43 - 3/14 * 0.91 = 0.14$$

SplitInfo(Risco, Garantia)

$$-(11/14) * log(11/14) - (3/14) * log(3/14) = 0.74$$

GainRatio(Risco, Garantia)

Gain(Risco, Garantia) / SplitInfo(Risco, Garantia) = 0.14 / 0.74 = 0.07

Calculando o atributo de História de Crédito:

Gain(Decision, História) =

Entropia(Risco) - ∑[p(Risco|História) * Entropia(Risco, História)] Gain(Risco, História)

= Entropia(Risco) - [p(Risco|História=Ruim) * Entropia(Risco|História=Ruim)] +

[p(Risco|História=Desconhecida) * Entropia(Risco|História=Desconhecida)] +

[p(Risco|História=Boa) * Entropia(Risco|História=Boa)]

Entropia(Risco | História=Desconhecida)

$$= -p(Baixo) * logp(Baixo) - p(Moderado) * logp(Moderado) - p(Alto) * logp($$

$$= -(2/5)log(2/5) - (1/5)log(1/5) - (2/5)log(2/5)$$

$$= 1.52$$

Entropia(Risco | História=Ruim)

$$= -(3/14)log(3/14) - (1/3)log(1/3)$$
$$= 1$$

Entropia(Risco | História=Boa)

$$= -(1/5)log(1/5) - (1/5)log(1/5) - (3/5)log(3/5)$$
$$= 1. 37$$

$$Gain(Risco, História) = 1.5 - (5/14) * 1.5 - (4/14) * 1 - (5/4) * 1.3 = -1$$

SplitInfo(Risco, História)

$$-(4/14) * log(4/14) - (5/14) * log(5/14) - (5/14) * log(5/14) = 1.57$$

GainRatio(Risco, História)

Calculando o atributo de Renda:

Gain(Decision, Renda) =

Entropia(Risco) - \sum [p(Risco|Renda) * Entropia(Risco, Renda)] Gain(Risco, Renda) = Entropia(Risco) - [p(Risco|Renda=0 a 15k) * Entropia(Risco|História=Renda=0 a 15k)] + [p(Risco|Renda=15 a 35k) * Entropia(Risco|Renda=15 a 35k)] + [p(Risco|Renda=>35k) * Entropia(Risco|Renda=>35k)]

Entropia(Risco | Renda=0 a 15k)

$$-(5/5)log(5/5) = 0$$

Entropia(Risco | Renda=15 a 35k)

$$-(1/3)log(1/3) - (2/3)log(2/3) = 0.91$$

Entropia(Risco | Renda = >35k)

$$-(1/6)log(1/6) - (5/6)log(5/6) = 0.65$$

SplitInfo(Risco, História)

$$-(4/14) * log(4/14) - (4/14) * log(4/14) - (6/14) * log(6/14) = 1.55$$

GainRatio(Risco, História)

Gain(Risco, História) / SplitInfo(Risco, História) = 1. 05 /1. 55 = 0. 67

Atributo	buto Ganho	
História de Crédito	-1	-0.63
Dívida	0.07	0.07
Garantia	0.14	0.189189189
Renda	1.05	1.55

Baseando-se na taxa de ganho, o atributo **Renda** será o nó da nossa árvore.

Tendo isto em conta, separando a tabela de acordo com a renda, temos: Renda = \$0 a \$15k

	História de Crédito	Dívida	Garantia	Renda	Risco
E1	Ruim	Alta	Nenhuma	\$0 a \$15k	Alto
E4	Desconhecida	Baixa	Nenhuma	\$0 a \$15k	Alto
E7	Ruim	Baixa	Nenhuma	\$0 a \$15k	Alto
E11	Воа	Alta	Nenhuma	\$0 a \$15k	Alto

Independentemente da história de crédito ou dívida, não existirá garantia e o risco será sempre alto.

Renda = \$15k a \$35k

	História de Crédito	Dívida	Garantia	Renda	Risco
E2	Desconhecida	Alta	Nenhuma	\$15k a \$35k	Alto
E3	Desconhecida	Baixa	Nenhuma	\$15k a \$35k	Moderado
E12	Воа	Alta	Nenhuma	\$15k a \$35k	Moderado
E14	Ruim	Alta	Nenhuma	\$15k a \$35k	Alto

Mesmo com um aumento considerável da renda em comparação ao anterior, ainda existem altos (e moderados) riscos, sem nenhuma garantia e dívidas altas.

Renda = Acima de \$35k

	História de Crédito	Dívida	Garantia	Renda	Risco
E5	Desconhecida	Baixa	Nenhuma	Acima de \$35k	Baixo
E6	Desconhecida	Baixa	Adequada	Acima de \$35k	Baixo
E8	Ruim	Baixa	Adequada	Acima de \$35k	Moderado
E9	Воа	Baixa	Nenhuma	Acima de \$35k	Baixo
E10	Воа	Alta	Adequada	Acima de \$35k	Baixo
E13	Boa	Alta	Nenhuma	Acima de \$35k	Baixo

O risco tende sempre a apontar para "Baixo", a menos que a história de crédito seja ruim.

Árvore gerada rodando o algoritmo C4.5 na aplicação WEKA:

```
=== Classifier model (full training set) ===

J48 pruned tree

Renda = $0 a $15k: Alto (5.0)
Renda = $15 a $35k: Moderado (3.0/1.0)
Renda = Acima de $35k: Baixo (6.0/1.0)

Number of Leaves : 3

Size of the tree : 4
```

	História de Crédito	Dívida	Garantia	Renda	Risco
E1	Ruim	Alta	Nenhuma	\$0 a \$15k	Alto
E2	Desconhecida	Alta	Nenhuma	\$0 a \$15k	Alto
E3	Desconhecida	Baixa	Nenhuma	\$15 a \$35k	Moderado
E4	Desconhecida	Baixa	Nenhuma	\$0 a \$15k	Alto
E5	Desconhecida	Baixa	Nenhuma	Acima de \$35k	Baixo
E6	Desconhecida	Baixa	Adequada	Acima de \$35k	Baixo
E7	Ruim	Baixa	Nenhuma	\$0 a \$15k	Alto
E8	Ruim	Baixa	Adequada	Acima de \$35k	Moderado
E9	Boa	Baixa	Nenhuma	Acima de \$35k	Baixo
E10	Boa	Alta	Adequada	Acima de \$35k	Baixo
E11	Воа	Alta	Nenhuma	\$0 a \$15k	Alto
E12	Boa	Alta	Nenhuma	\$15 a \$35k	Moderado
E13	Boa	Alta	Nenhuma	Acima de \$35k	Baixo
E14	Ruim	Alta	Nenhuma	\$15 a \$35k	Alto

Passo 1: Calcular o Índice Gini para Risco:

$$Gini(D) = 1 - (5/14)^2 - (3/14)^2 - (6/14)^2 = 0.64285$$

Passo 2: Calcular o Índice Gini para os demais atributos:

 $Gini\ k\ (D) = \sum |D\ i\ |/|D| * Gini(D\ i\), para\ i = 1\ at\'en, onde\ D\ i\ \'en uma\ partição\ de\ D$ Então, para o atributo História de Crédito:

Gini História (D) = (5/14) * Gini(D História=Desconhecida) + (4/14) * Gini(D História=Ruim) + (5/14) * Gini(D História=Boa)

Gini História (D) =
$$(5/14) * [1 - (2/5)^2 - (1/5)^2 - (2/5)^2] + (4/14) * [1 - (0/3)^2 - (1/3)^2 - (2/3)^2] + (5/14) * [1 - (3/5)^2 - (1/5)^2 - (1/5)^2] = 0.5555$$

Para o atributo Dívida:

$$Gini\ D(vida\ (D) = (7/14)*Gini(D\ D(vida=baixa\) + (7/14)*Gini(D\ D(vida=Alta\)$$

$$Gini\ D(vida\ (D) = (7/14)*[1 - (3/7)^2 - (2/7)^2] + (7/14)*[1 - (2/7)^2 - (1/7)^2 - (4/7)^2] = 0.\ 61224$$

Gini Garantia (D) =
$$(11/14) *$$
 Gini(D Garantia=nenhuma) + $(3/14) *$ Gini(D Garantia=adequadaGini Garantia (D) = $(11/14) *$ [1 - $(4/11)^2$ - $(3/11)^2$ - $(6/11)^2$] + $(3/14) *$ [1 - $(1/3)^2$ - $(2/3)^2$ - $(0/3)^2$] = 0. 48484

Para o atributo Renda:

Gini Renda (D) =
$$(5/14) *$$
 Gini(D Renda= $$0-15k$) + $(3/14) *$ Gini(D Renda= $$15k-35k$) + $(6/14) *$ Gini(D Renda= $$35k-$) Gini Renda (D) = $(5/14) *$ [1 - $(5/5)^2$] + $(3/14) *$ [1 - $(2/3)^2$ - $(1/3)^2$] + $(6/14) *$ [1 - $(5/6)^2$ - $(1/6)^2$] = 0. 214528

Passo 3: Escolher como nó raiz o atributo que apresentou o menor Índice Gini: Renda

No caso da classe \$0 a \$15k, todas as opções apontam para Risco Alto. Renda: \$15k a \$35k

	História de Crédito	Dívida	Garantia	Renda	Risco
E3	Desconhecida	Baixa	Nenhuma	\$15 a \$35k	Moderado
E12	Воа	Alta	Nenhuma	\$15 a \$35k	Moderado
E14	Ruim	Alta	Nenhuma	\$15 a \$35k	Alto

$$Gini\ Hist\'oria\ (D) = (1/3) * Gini(D\ Hist\'oria=Desconhecida) + (1/3) * Gini(D\ Hist\'oria=Ruim) + (1/3) * Gini(D\ Hist\'oria=Boa)$$

$$Gini\ Hist\'oria\ (D) = (1/3)*[1-(1)^2] + (1/3)*(1-1^2) + (1/3)*(1-1^2) = 0$$

$$Gini\ D\'ivida\ (D) = (1/3)*Gini(D\ D\'ivida=baixa\) + (2/3)*Gini(D\ D\'ivida=Alta\)\ Gini\ D\'ivida\ (D) = (1/3)*[1-1/3)*[1-1/3)*[1-(1/3)^2-(1/3)^2] = 0.51851$$

Gini Garantia (D) =
$$(3/3) * Gini(D Garantia=nenhuma)$$

Gini Garantia (D) = $1 * [1 - (2/3)^2 - (1/3)^2] = 0.44444$

O próximo nó deve ser, portanto, História, cujos filhos estão trivialmente dados na tabela.

Renda: Acima de \$35k

	História de Crédito	Dívida	Garantia	Renda	Risco
E5	Desconhecida	Baixa	Nenhuma	Acima de \$35k	Baixo
E6	Desconhecida	Baixa	Adequada	Acima de \$35k	Baixo
E8	Ruim	Baixa	Adequada	Acima de \$35k	Moderado
E9	Воа	Baixa	Nenhuma	Acima de \$35k	Baixo
E10	Воа	Alta	Adequada	Acima de \$35k	Baixo
E13	Boa	Alta	Nenhuma	Acima de \$35k	Baixo

 $Gini\ Hist\'oria\ (D) = (2/6) * Gini(D\ Hist\'oria=Desconhecida) + (1/6) * \\ Gini(D\ Hist\'oria=Ruim) + (3/6) * Gini(D\ Hist\'oria=Boa)$

$$Gini\ Hist\'oria\ (D) = (2/6) * [1 - (1)^2] + (1/6) * (1 - 1^2) + (3/3) * (1 - 1^2) = 0$$

$$Gini\ D\'(vida\ (D) = (4/6) * Gini(D\ D\'(vida=baixa\) + (2/6) * Gini(D\ D\'(vida=Alta\)$$
 $Gini\ D\'(vida\ (D) = (4/6) * [1 - (3/4)^2 - (1/4)^2] + (2/6) * [1 - 1^2] = 0.$ 25

Gini Garantia (D) =
$$(3/6)$$
 * Gini(D Garantia=nenhuma) + $(3/6)$ * Gini(D Garantia=Adequada) Gini Garantia (D) = $1 * [1 - 1^2] + (3/6) * [1 - (2/3)^2 - (1/3)^2] = 0.22222$

O próximo nó deve ser História, cujos filhos estão trivialmente dados na tabela. Portanto, esta deve ser a Árvore de Decisão formada pelo algoritmo Cart:

Renda=(Acima de \$35k): Baixo(5.0/1.0) Renda!=(Acima de \$35k): Alto(6.0/2.0)

Number of Leaf Nodes: 2

Size of the Tree: 3

```
=== Classifier model (full training set) ===

Prism rules tmo Prism:

If come = pouco then magro

If vegetariano = sim then magro

If come = muito then gordo

If come = médio and vegetariano = não then gordo
```

Regras de classificação utilizando o algoritmo OneR:

```
=== Classifier model (full training set) ===

come:

pouco -> magro
médio -> gordo
muito -> gordo
(7/8 instances correct)
```

Árvore de decisão utilizando o algoritmo ID3:

```
Id3

come = pouco: magro
come = médio
| vegetariano = sim: magro
| vegetariano = não: gordo
come = muito: gordo
```

A partir da árvore, podem-se extrair as seguintes regras:

- 1. IF COME=POUCO THEN CLASSE=MAGRO
- 2. IF COME=MÉDIO AND VEGETARIANO=SIM THEN CLASSE=MAGRO
- 3. IF COME=MÉDIO AND VEGETARIANO=NÃO THEN CLASSE=GORDO
- 4. IF COME=MUITO THEN CLASSE=GORDO

As regras 1, 3 e 4 também se encontram na classificação do algoritmo Prism. Árvore de decisão utilizando o algoritmo C4.5:

```
J48 pruned tree

vegetariano = sim: magro (3.0)
vegetariano = não: gordo (5.0/1.0)

Number of Leaves : 2

Size of the tree : 3
```

A partir da árvore, podem-se extrair as seguintes regras:

- SE VEGETARIANO=SIM THEN CLASSE=MAGRO
- SE VEGETARIANO=NÃO THEN CLASSE=GORDO

Questão 3:

Encadeamento para frente:

```
class <u>InferenceEngineF</u>:
    def __init__(self):
        self.facts = {}
    def add_fact(self, fact, value):
        self.facts[fact] = value
    def evaluate_risk(self):
        income = self.facts.get('income', 0)
        credit_history = self.facts.get('credit_history', 'Unknown')
        debt = self.facts.get('debt', '2')
        warranty = self.facts.get('warranty', 'Proper')
        if 0 <= income <= 15000:
            self.facts['risk'] = 'ALTO'
        elif 15000 < income <= 35000:
            if credit_history == 1:
                self.facts['risk'] = 'MODERADO'
            elif credit_history == 2:
                self.facts['risk'] = 'ALTO'
            elif credit_history == 3:
                if debt == 1:
                    self.facts['risk'] = 'ALTO'
                elif debt == 2:
                   self.facts['risk'] = 'MODERADO'
        elif income > 35000:
            if warranty == 1 or warranty == 2:
                self.facts['risk'] = 'BAIXO'
                self.facts['risk'] = 'DESCONHECIDO'
            self.facts['risk'] = 'DESCONHECIDO'
engine = InferenceEngineF()
engine.add_fact('income', int(input('Insira a Renda: ')))
engine.add_fact('credit_history', int(input('\nQual a Histórico de Crédito: \n1: Bom\n
2: Ruim\n3: Desconhecido\n\n')))
engine.add_fact('debt', int(input('\nQual a Divida: \n1: Alta\n2: Baixa\n\n')))
engine.add_fact('warranty', int(input('\nQual a Garantia: \n1: Nenhuma\n2: Adequada\n\n'
engine.evaluate_risk()
print('Resultado da avaliação de risco:', engine.facts.get('risk'))
```

Resultado:

```
PS C:\Users\paulo\área de Trabalho> python3 .\questao3.py
Insira a Renda: 32500

Qual a Histórico de Crédito:
1: Bom
2: Ruim
3: Desconhecido

3

Qual a Divida:
1: Alta
2: Baixa

2

Qual a Garantia:
1: Nenhuma
2: Adequada

2

Resultado da avaliação de risco: MODERADO
```

Encadeamento para trás:

```
def inference_engine(income, credit_history, debt, warranty, risk):
    if 0 <= income <= 15000:
        if risk == 1:</pre>
    elif 15000 < income <= 35000:
         if credit_history == 1:
         elif credit_history == 2:
                  return True
          elif credit_history == 3:
              if debt == 1:
    if risk == 1:
                        return True
              elif debt == 2:
                         return True
     elif income > 35000:
         if warranty == 1 or warranty == 2:
    if risk == 2:
              else:
                   return False
     elif income == None:
if risk == 1:
              if credit_history == 3:
                   if debt == 1:
    if warranty == None:
        return print('Renda entre 0 a 35k')
     print('Dados inválidos')
```

```
def main():
    risk = int(input('Informe o risco: \n1 - Alto\n2 - Baixo\n3 - Moderado\n
4 - Desconhecido\n')
    income = int(input('Insira a Renda: '))
credit_history = int(input('\nQual o Histórico de Crédito: \n1 - Bom\n2 - Ruim\n
3 - Desconhecido\n\n'))
    debt = int(input('\nQual a Divida: \n1 - Alta\n2 - Baixa\n3 - Desconhecida\n\n'))
warranty = int(input('\nQual a Garantia: \n1: Nenhuma\n2: Adequada\n3 - Desconhecida
    if risk not in [1, 2, 3]:
    risk = None
if credit_history not in [1, 2, 3]:
         credit_history = None
     if debt not in [1, 2]:
        debt = None
    if warranty not in [1, 2]:
        warranty = None
    if inference_engine(income, credit_history, debt, warranty, risk):
        print('Dados consistentes')
         print('Dados inconsistentes')
main()
```

Resultado:

```
PS C:\Users\paulo\área de Trabalho> python3 .\questao3b.py
Informe o risco:

1 - Alto
2 - Baixo
3 - Moderado
4 - Desconhecido

1
Insira a Renda: 1500

Qual o Histórico de Crédito:
1 - Bom
2 - Ruim
3 - Desconhecido

3

Qual a Divida:
1 - Alta
2 - Baixa
3 - Desconhecida

1

Qual a Garantia:
1 - Nenhuma
2 - Adequada
3 - Desconhecida

3

Dados consistentes
```

Questão 4:

```
class InferenceEngineF:
   def __init__(self):
    self.facts = {}
    def add_fact(self, fact, value):
        self.facts[fact] = value
    def evaluate_risk(self):
        renda = self.facts.get('renda', 0)
         historico_credito = self.facts.get('historico_credito', 'Desconhecida')
divida = self.facts.get('divida', 'Baixa')
         if 0 <= renda <= 15000:
             self.facts['risco'] = 'ALTO'
         elif 15000 < renda <= 35000:
             if historico_credito == 1:
             self.facts['risco'] = 'MODERADO'
elif historico_credito == 2:
    self.facts['risco'] = 'ALTO'
              elif historico_credito == 3:
                 if divida == 1:
                     self.facts['risco'] = 'ALTO'
                  elif divida == 2:
                    self.facts['risco'] = 'MODERADO'
         elif renda > 35000:
            self.facts['risco'] = 'BAIXO'
              self.facts['risco'] = 'DESCONHECIDO'
```

```
class InferenceEngineT:
   def __init__(self):
        self.facts = {}
   def add_fact(self, fact, value):
       self.facts[fact] = value
    def infer_from_risk(self, risco):
        if risco == 1:
           self.facts['renda'] = 'Renda entre 0 a 35k'
            self.facts['historico_credito'] = 'Ruim ou Desconhecida'
            self.facts['divida'] = 'Alta ou Desconhecida'
        elif risco == 2:
            self.facts['renda'] = 'Renda entre 15k a 35k'
            self.facts['historico_credito'] = 'Boa ou Desconhecido'
            self.facts['divida'] = 'Baixa ou Desconhecida'
        elif risco == 3:
            self.facts['renda'] = 'Renda maior que 35k'
        else:
            self.facts['renda'] = None
self.facts['historico_credito'] = None
self.facts['divida'] = None
```

```
inferencia = int(input('Selecione uma opção: \n1: Encadeamento para Frente\n2: Encadeamento para Trás\n\n'))
if inferencia == 1:
    engine = InferenceEnginef()
    engine.add_fact('enda', int(input('Qual a Renda: ')))
    engine.add_fact('bistorico_credito', int(input('\nQual a Histórico de Crédito: \n1: Bom\n2: Ruim\n3: Desconhecido\n\n')))
    engine.add_fact('divida', int(input('\nQual a Divida: \n1: Alta\n2: Baixa\n\n')))
    engine.evaluate_risk()
    print("\nResultado da avaliacão de risco:")
    print("\nResultado da avaliacão de risco:")
    print("Fisco: (engine.facts.get('risco')}")

elif inferencia == 2:
    engine = InferenceEnginef()
    engine.infer_from_risk(int(input('\nRisco: \n1: Alto\n2: Moderado\n3: Baixo\n\n')))
    print("\nInferência a partir do Risco:")
    print("\nInferência a capatir do Risco:")
    print("Fenda: (engine.facts.get('renda'))")
    print(f'Historia de Crédito: (engine.facts.get('historico_credito'))")
    print(f'Divida: (engine.facts.get('divida'))")
```

Resultados:

```
PS C:\Users\paulo\área de Trabalho> python3 .\questao4.py
Selecione uma opção:
1: Encadeamento para Frente
2: Encadeamento para Trás

1
Qual a Renda: 35000
Qual a Histórico de Crédito:
1: Bom
2: Ruim
3: Desconhecido

1
Qual a Divida:
1: Alta
2: Baixa

2
Resultado da avaliação de risco:
Risco: MODERADO
```

```
PS C:\Users\paulo\área de Trabalho> python3 .\questao4.py
Selecione uma opção:
1: Encadeamento para Frente
2: Encadeamento para Trás

2

Risco:
1: Alto
2: Moderado
3: Baixo

1

Inferência a partir do Risco:
Renda: Renda entre 0 a 35k
História de Crédito: Ruim ou Desconhecida
Dívida: Alta ou Desconhecida
```

Questão 5:

Para essa questão, foi usada a ferramenta Expert Sinta com as seguintes regras:

Exemplo de uso 1:

Exemplo de uso 2:

