Fundamentos Físicos y Tecnológicos

Tema 5. Fundamentos de Electrónica Digital

Isabel M. Tienda Luna

Departamento de Electrónica y Tecnología de Computadores
Universidad de Granada

isabelt@ugr.es

Grado en Informática Curso 2012-2013 Introducción

2 Caracterización de un circuito lógico

3 Puertas Lógicas básicas con tecnología MOSFET

Introducción

2 Caracterización de un circuito lógico

Puertas Lógicas básicas con tecnología MOSFET

Señales Analógicas y Señales Digitales

- Una señal analógica es aquella que puede tomar infinitos valores a lo largo del tiempo, esto es, que cambia de forma continua.
- Una señal digital es aquella que tiene un número finito de valores definidos y cambia de valor por saltos. A esos valores se les llama estados o niveles lógicos.
- ¿Por qué se ha impuesto la electrónica digital?
 - Inmunidad frente al ruido.
 - Menor complejidad en el diseño.
 - Facilidad de acoplamiento de unos bloques con otros.
 - Integración. Escalas de integración:
 - SSI: 100 componentes/chip
 - MSI: 100-1000 componentes/chip
 - LSI: 1000-10000 componentes/chip
 - VLSI: más de 10000 componentes/chip

Álgebra de Boole

- George Boole desarrolló un álgebra para investigar las leyes fundamentales de las operaciones de la mente humana que rigen los razonamientos (Álgebra de Boole).
- Objetivo: definir una serie de símbolos para representar objetos o fenómenos que, encadenados convenientemente, dan lugar a expresiones matemáticas más complejas (funciones ⇒ tabla de verdad).
- Herramientas: relaciones lógicas.
- Variables binarias: pueden tomar sólo dos valores distintos, verdadero (1) y falso (0). El 1 y el 0 no expresan cantidades sino estados de las variables.

George Boole

Álgebra de Boole

ullet Operadores en álgebra de Boole (+), (·) y ($\overline{}$

Α	В	A+B
1	1	1
1	0	1
0	1	1
0	0	0

Α	В	A·B
1	1	1
1	0	0
0	1	0
0	0	0

Ā
0
1

- Propiedad conmutativa: A + B = B + A y $A \cdot B = B \cdot A$
- $\bullet \ \, \text{Propiedad distributiva:} \ \, A \cdot (B+C) = A \cdot B + A \cdot C \,\, \text{y} \,\, A + B \cdot C = (A+B) \dot (A+C) \,\,$
- Elementos neutros: A + 0 = A y $A \cdot 1 = A$
- \bullet Propiedades del operador ($\overline{}$): $A+\overline{A}=1$ y $A\cdot\overline{A}=0$
- Propiedad de los elementos nulos: A+1=1 y $A\cdot 0=0$
- \bullet Propiedad de idempotencia: A+A=A y $A\cdot A=A$
- \bullet Propiedad de involución: $A+A\cdot B=A$ y $A\cdot (A+B)=A$
- \bullet $\overline{\overline{A}} = A$

Funciones Lógicas: ejemplos.

$$S = a \cdot b$$

$$S = a + b$$

Función Igualdad a

Funciones Lógicas: representación. Puertas Lógicas

Links interesantes: http: //www.autoshop101.com/trainmodules/logicgate/101.html,

 $http://www.opamp-electronics.com/tutorials/digital_theory_ch_007.htm$

Familias Lógicas

- En este tema estudiaremos los circuitos básicos que constituyen las familias lógicas.
- En el tema anterior ya vimos cómo se comportaban inversores básicos creados con BJTs y MOSFETs.
- Estudiaremos las características estáticas y dinámicas de esos inversores.
- Normalmente trabajaremos con lógicas positivas: al mayor valor lógico se le asocia un 1.

Introducción

2 Caracterización de un circuito lógico

3 Puertas Lógicas básicas con tecnología MOSFET

Niveles lógicos

- Para un inversor ideal la transición desde el estado alto (que llamaremos V_H) al bajo (que llamaremos V_L) es abrupta.
- ullet El estado alto, V_H , representa el 1 lógico.
- ullet El estado bajo, V_L , representa el 0 lógico.

Característica de transferencia de un inversor ideal:

Para cuantificar la inmunidad al ruido de un circuito lógico:

- Margen de ruido de estado alto: $NM_H = V_H V_M$
- Margen de ruido en estado bajo: $NM_L = V_M V_L$

 La diferencia no tendría que ser elevada, pero la posibilidad de que se superpongan ruidos obliga a que este margen lógico sea más elevado para garantizar la fiabilidad de la puerta.

• Característica de transferencia de un inversor real:

Para cuantificar la inmunidad al ruido de un circuito lógico:

• Margen de ruido de estado alto:

$$NM_H = V_{OH} - V_{IH}$$

• Margen de ruido en estado bajo: $NM_L = V_{LL} - V_{OL}$

• Es necesario que $V_{OL} < V_{IL}$ y que $V_{IH} < V_{OH}$ para asegurar que el nivel de salida de una puerta lógica es un nivel de entrada apropiado para una segunda puerta.

- Debido a la no idealidad del inversor básico, las transiciones entre los estados alto y bajo, cuando la señal de entrada es un pulso, no son instantáneas, sino graduales debido a las capacidades parásitas de los dispositivos.
- Se pueden definir algunos tiempos característicos para cuantificar el retardo producido por dichas capacidades:
 - ① Tiempo de bajada o de caída t_f .
 - $oldsymbol{2}$ Tiempo de subida t_r .
 - 3 Tiempo de propagación del nivel alto al bajo t_{PHL} .
 - Tiempo de propagación del nivel bajo al alto t_{PLH}.
 - 5 Tiempo de propagación $t_P = 0.5 \cdot (t_{PHL} + t_{PLH})$

- Debido a la no idealidad del inversor básico, las transiciones entre los estados alto y bajo, cuando la señal de entrada es un pulso, no son instantáneas, sino graduales debido a las capacidades parásitas de los dispositivos.
- Se pueden definir algunos tiempos característicos para cuantificar el retardo producido por dichas capacidades:
 - $oldsymbol{0}$ Tiempo de bajada o de caída t_f .
 - $oldsymbol{2}$ Tiempo de subida t_r .
 - 3 Tiempo de propagación del nivel alto al bajo t_{PHL} .
 - Tiempo de propagación del nivel bajo al alto t_{PLH}.
 - 5 Tiempo de propagación $t_P = 0.5 \cdot (t_{PHL} + t_{PLH})$

- Debido a la no idealidad del inversor básico, las transiciones entre los estados alto y bajo, cuando la señal de entrada es un pulso, no son instantáneas, sino graduales debido a las capacidades parásitas de los dispositivos.
- Se pueden definir algunos tiempos característicos para cuantificar el retardo producido por dichas capacidades:
 - $oldsymbol{0}$ Tiempo de bajada o de caída t_f .
 - $oldsymbol{2}$ Tiempo de subida t_r .
 - 3 Tiempo de propagación del nivel alto al bajo t_{PHL} .
 - Tiempo de propagación del nivel bajo al alto t_{PLH}.
 - **5** Tiempo de propagación $t_P = 0.5 \cdot (t_{PHL} + t_{PLH})$

- Debido a la no idealidad del inversor básico, las transiciones entre los estados alto y bajo, cuando la señal de entrada es un pulso, no son instantáneas, sino graduales debido a las capacidades parásitas de los dispositivos.
- Se pueden definir algunos tiempos característicos para cuantificar el retardo producido por dichas capacidades:
 - $oldsymbol{0}$ Tiempo de bajada o de caída t_f .
 - $oldsymbol{2}$ Tiempo de subida t_r .
 - 3 Tiempo de propagación del nivel alto al bajo t_{PHL} .
 - Tiempo de propagación del nivel bajo al alto t_{PLH}.
 - **5** Tiempo de propagación $t_P = 0.5 \cdot (t_{PHL} + t_{PLH})$

Fan-in y Fan-out

Característica de entrada: Fan-in

- Número máximo de puertas que se pueden conectar a la entrada sin estropear el funcionamiento.
- Si se excede este valor la puerta lógica producirá una salida es un estado indeterminado o incorrecto.
- La señal de entrada puede resultar deteriorada por la carga excesiva.

Característica de salida: Fan-out

- Número máximo de puertas que se pueden conectar a la salida de la puerta.
- Debido a la energía máxima que una puerta puede absorber o consumir se impone un límite en el número máximo de salidas que puede tener una puerta lógica.
- El fan-out depende de la cantidad de corriente que una puerta es capaz de suministrar o consumir al estar conectada a otras puertas.
- Un fan-out mayor que el recomendado puede producir aumento de la temperatura del dispositivo (perjudicando su funcionamiento), aumento de los tiempos de subida y bajada, aumento del retardo, etc..

Otras características de los circuitos lógicos

- Disipación de potencia. Potencia estática y potencia dinámica.
 - Ventajas de tipo funcional : fuentes menos costosas, mayor autonomía, menor coste en refrigeración.
 - Cuanto más reducido sea el consumo por puerta, más puertas se podrán integrar en un mismo circuito manteniendo constante la capacidad de disipación de calor del mismo.
- Producto retardo-potencia.
 - Cuando uno de ellos aumenta el otro disminuye y viceversa.
 - Parámetro que resume las características mas relevantes de una determinada tecnología.
 - Interesan valores tan pequeños como sea posible.
- Área de Silicio.

Introducción

2 Caracterización de un circuito lógico

3 Puertas Lógicas básicas con tecnología MOSFET

Lógica MOS

- Es una de las cuatro tecnologías más utilizadas para hacer circuitos digitales.
- Permite implementar con una mayor densidad: Cada transistor NMOS utilizado ocupa un espacio inferior al de los bipolares.
- Simplicidad de la topología.
- Para entender el funcionamiento de esta lógica conviene ver el NMOS como interruptor.

Recordando el inversor NMOS

- Se cumple que: $V_i = V_{GS}$ y $V_o = V_{DS}$.
- La carga puede ser:
 - Una resistencia.
 - Un NMOS.
 - Un PMOS: lógica CMOS.

El inversor NMOS. Circuito como interruptor.

Análisis Abierto

- Si $V_i = 0$ lógico $\Rightarrow V_{GS} < V_T \Rightarrow I_D \simeq 0$
- $V_o = 1$ lógico
- Interruptor Abierto

Análisis Cerrado

- Si $V_i = 1$ lógico $\Rightarrow V_{GS} > V_T \Rightarrow I_D \neq 0$
- $V_o = 0$ lógico
- Dos posibilidades: $V_{DS} < V_{GS} V_T$ (Lineal) o $V_{DS} > V_{GS} V_T$ (Saturación)
- Interruptor Cerrado

El inversor NMOS. Resistencia como carga.

- **1** Si $V_i = V_{GS} < V_T \Rightarrow \mathsf{NMOS} \ \mathsf{OFF} \Rightarrow I_D \simeq 0 \Rightarrow V_o = V_{DD} = V_{OH}$.
- ② Si $V_i = V_{GS} > V_T$ hay dos posibilidades:
 - **NMOS Saturación**: al principio, $V_i = V_{GS} > V_T$ (sólo un poco) \Rightarrow NMOS ON $\Rightarrow V_o = V_{DS} > V_{GS} V_T = V_i V_T \Rightarrow$ NMOS en Saturación.

$$I_D = \frac{k}{2} (V_{GS} - V_T)^2 = \frac{V_{DD} - V_o}{R_D} \Rightarrow V_o = V_{DD} - \frac{kR_D}{2} (V_i - V_T)^2$$

9 NMOS Lineal: sigue aumentando $V_i \Rightarrow V_o$ disminuye hasta que $V_o = V_{DS} = V_{GS} - V_T = V_i - V_T \Rightarrow$ el transistor pasa a la región lineal donde $V_o = V_{DS} < V_{GS} - V_T = V_i - V_T$.

$$I_{D} = \frac{k}{2} \left[2 \left(V_{GS} - V_{T} \right) V_{DS} - V_{DS}^{2} \right] = \frac{V_{DD} - V_{o}}{R_{D}} \Rightarrow$$

$$V_{o} = \frac{1 + kR_{D} (V_{i} - V_{T})}{kR_{D}} - \frac{\sqrt{(1 + kR_{D} (V_{i} - V_{T}))^{2} - 2kR_{D} V_{DD}}}{kR_{D}}$$

El inversor NMOS. Resistencia como carga.

Puntos de interés:

① Paso de saturación a lineal. Ocurre cuando $V_{DS}=V_o=V_{GS}-V_T=V_i-V_T.$ Llamo a V_o en el que se produce la transición V_o^* y a V_i en el que se produce la transición V_i^* .

$$V_o^* = V_{DD} - R_D I_D = V_{DD} - \frac{kR_D}{2} (V_i^* - V_T)^2$$

$$V_o^* = V_i^* - V_T$$

$$V_o^* = \frac{-1 + \sqrt{1 + 2kR_D V_{DD}}}{kR_D}$$

② En la región Lineal, calculo V_{OL} como V_o en el que $V_i = V_{OH} = V_{DD}$:

$$V_{OL} = \frac{1 + kR_D(V_{DD} - V_T)}{kR_D} - \frac{\sqrt{(1 + kR_D(V_{DD} - V_T))^2 - 2kR_DV_{DD}}}{kR_D}$$

- Nos interesa V_{OL} pequeño.
- ullet Con R_D grandes: se tienen potencias disipadas pequeñas pero causa problemas de integración.

El inversor NMOS. Resistencia como carga.

Transistor M₁:

- Actúa como carga
- $V_{GS1} = V_{DS1} \Rightarrow V_{DS1} > V_{GS1} V_T$
- Si M₁ conduce siempre lo hace en saturación:

$$I_{D1} = \frac{k_1}{2} (V_{GS1} - V_{T1})^2$$

$$I_{D1} = \frac{k_1}{2} (V_{DD} - V_o - V_{T1})^2$$

Transistor M₂:

Funciona como inversor.

•
$$V_{DS2} = V_o \Rightarrow V_{GS2} = V_i$$

Analizamos el comportamiento del inversor.

- **1** Si $V_i < V_{T2} \Rightarrow M_2$ OFF $\Rightarrow I_{D2} = I_{D1} = 0 \Rightarrow I_{D1} = \frac{k_1}{2} (V_{DD} V_o V_{T1})^2 = 0 \Rightarrow V_o = V_{DD} V_{T1} = V_{OH}$
- ② Si $V_i > V_{T2}$ (sólo un poco mayor) \Rightarrow M₂ ON (En Saturación) \Rightarrow

$$I_{D2} = \frac{k_2}{2} (V_i - V_{T2})^2$$

$$I_{D2} = I_{D1}$$

$$\frac{k_2}{2} (V_i - V_{T2})^2 = \frac{k_1}{2} (V_{DD} - V_o - V_{T1})^2$$

lacktriangledown Si sigo aumentando $V_i \Rightarrow V_o$ disminuye \Rightarrow M_2 pasa a Lineal

$$\begin{split} I_{D2} &=& \frac{k_2}{2} \left[2 \left(V_i - V_{T2} \right) V_o - V_o^2 \right] \\ I_{D2} &=& I_{D1} \\ \frac{k_2}{2} \left[2 \left(V_i - V_{T2} \right) V_o - V_o^2 \right] &=& \frac{k_1}{2} \left(V_{DD} - V_o - V_{T1} \right)^2 \end{split}$$

Si comparamos el inversor NMOS con la resistencia como carga y el inversor NMOS con el transistor como carga, éste último tiene como:

- Ventaja: que ocupa menos área
- Inconveniente: que V_{OH} es menor

¿Cómo construimos una puerta lógica con NMOS?

Regla

Seguimos la filosofía de ver el NMOS como un interruptor. Vemos cuando queremos la salida a 0 y colocamos la red NMOS adecuada teniendo en cuenta que multiplicar es colocar transistores en serie y sumar es colocarlos en paralelo.

Puerta NAND

Puerta NOR

Lógica CMOS

- Con esta construcción se pretende que el consumo de potencia sea reducido.
- Como carga del CMOS se coloca un PMOS de manera que en reposo (es decir, cuando la salida es 0 o 1 pero no en las transiciones) la potencia consumida sea aproximadamente 0 al poner una corriente aproximadamente igual a 0.
- Esto se consigue gracias a que cuando el transistor NMOS conduce, el PMOS está en corte y viceversa.
- Estudiaremos la conficuración más básica: el inversor.

El inversor CMOS

- La carga del transistor NMOS (M_1) es un PMOS (M_2) .
- $\begin{tabular}{ll} \bf & Recordamos que el PMOS \\ & funciona como el NMOS \\ & usando |V_{GS}|, |V_{DS}|, \\ & |V_{Tp}|, |I_D|. \\ \end{tabular}$

Modo de operación de los transistores en el inversor CMOS

Transistor M_1 (NMOS)

Ecuaciones Generales (analizamos el circuito):

$$V_{GS} = V_i$$

$$V_{DS} = V_o$$

- M_1 en **OFF** si $V_{GS} < V_{Tn} \Rightarrow V_i < V_{Tn}$.
- M_1 en **ON** si $V_{GS} > V_{Tn} \Rightarrow V_i > V_{Tn}$. El transistor puede estar en Lineal o en Saturación:
 - Lineal si $V_{DS} < V_{GS} V_{Tn} \Rightarrow V_o < V_i V_{Tn} \Rightarrow V_i > V_o + V_{Tn}$ $I_D = \frac{k_n}{2} \left[2 \left(V_i V_{Tn} \right) V_o V_o^2 \right]$
 - Saturación si $V_{DS} > V_{GS} V_{Tn} \Rightarrow V_o > V_i V_{Tn} \Rightarrow V_i < V_o + V_{Tn}$ $I_D = \frac{k_n}{2} \left(V_i V_{Tn} \right)^2$

Modo de operación de los transistores en el inversor CMOS

Transistor M_2 (PMOS)

Ecuaciones Generales (analizamos el circuito):

$$V_{GS} = V_i - V_{DD} \Rightarrow |V_{GS}| = V_{DD} - V_i$$

 $V_{DS} = V_o - V_{DD} \Rightarrow |V_{DS}| = V_{DD} - V_o$

- M_2 en **OFF** si $|V_{GS}| < |V_{Tp}| \Rightarrow V_{DD} V_i < |V_{Tp}| \Rightarrow V_i > V_{DD} |V_{Tp}|$.
- M_2 en **ON** si $|V_{GS}| > |V_{Tp}| \Rightarrow V_i < V_{DD} |V_{Tp}|$. El transistor puede estar en Lineal o en Saturación:
 - Lineal si $|V_{DS}| < |V_{GS}| |V_{Tp}| \Rightarrow V_{DD} V_o < V_{DD} V_i |V_{Tp}| \Rightarrow V_i < V_o |V_{Tp}|$

$$I_D = \frac{k_p}{2} \left[2 \left(V_{DD} - V_i - |V_{Tp}| \right) \left(V_{DD} - V_o \right) - \left(V_{DD} - V_o \right)^2 \right]$$

• Saturación si $|V_{DS}| > |V_{GS}| - |V_{Tp}| \Rightarrow V_i > V_o + |V_{Tp}|$

$$I_D = \frac{k_p}{2} (V_{DD} - V_i - |V_{Tp}|)^2$$

Característica de transferencia del inversor CMOS

Región I

- Si $V_i < V_{Tn} \Rightarrow M_1$ está **OFF** $\Rightarrow I_{D1} = 0$.
- Si $I_{D1} = 0 \Rightarrow I_{D2} = 0$.
- ¿En que modo se encuentra M_2 ?
 - No está en corte porque su condición de corte ($V_i > V_{DD} |V_{Tp}|$) no se cumple.
 - No está en Saturación porque: $I_{D2}=rac{k_p}{2}\left(V_{DD}-V_i-|V_{Tp}|\right)^2
 eq 0$
 - Por tanto, M_2 está en Lineal:

$$I_{D2} = \frac{k_p}{2} \left[2 \left(V_{DD} - V_i - |V_{Tp}| \right) \left(V_{DD} - V_o \right) - \left(V_{DD} - V_o \right)^2 \right]$$

Para que se cumpla que $I_{D2}=0$, $V_o=V_{DD}$

Región II

- ullet Si V_i aumenta hasta $V_i > V_{Tn} \Rightarrow M_1$ está en Saturación.
- M₂ sigue en Lineal.
- Usando que $I_{D1} = I_{D2}$:

$$\frac{k_n}{2} (V_i - V_{Tn})^2 = \frac{k_p}{2} \left[2 (V_{DD} - V_i - |V_{Tp}|) (V_{DD} - V_o) - (V_{DD} - V_o)^2 \right]$$

• Al despejar V_o en función de V_i , se obtiene una función decreciente. Esto es, si V_i aumenta, V_o disminuye.

Región III

- Si V_i aumenta M_1 sigue en Saturación.
- M₂ pasa de Lineal a Saturación.
- Usando que $I_{D1} = I_{D2}$:

$$\frac{k_n}{2} (V_i - V_{Tn})^2 = \frac{k_p}{2} (V_{DD} - V_i - |V_{Tp}|)^2$$

• Sólo existe un único valor de $V_i(=V_i^*)$ para el que los dos transistores están saturados:

$$V_i^* = \frac{V_{DD} - |V_{Tp}| + V_{Tn} \sqrt{\frac{k_n}{k_p}}}{1 + \sqrt{\frac{k_n}{k_p}}}$$

ullet CMOS simétrico si $V_i^*=V_{DD}/2$. Ocurre cuando $V_{Tn}=|V_{Tp}|$ y $k_n=k_p$.

Región IV

- Si $V_i > V_i^*$ M_1 pasa a Lineal.
- M_2 sigue en Saturación.
- Usando que $I_{D1} = I_{D2}$:

$$\frac{k_n}{2} \left[2 (V_i - V_{Tn}) V_o - V_o^2 \right] = \frac{k_p}{2} (V_{DD} - V_i - |V_{Tp}|)^2$$

- ullet Si despejamos V_o en función de V_i , obtenemos una función decreciente. Esto es, si aumentamos V_i , V_o disminuye.
- V_o va a disminuir hasta que M_2 entra en Corte.

Región V

- Si $V_i > V_i^*$ sigue aumentando, M_1 sigue en Lineal.
- Al aumentar V_i , baja V_o hasta que M_2 entra en Corte $\Rightarrow I_{D2} = 0$.
- Usando que $I_{D1} = I_{D2}$:

$$I_{D1} = I_{D2} = 0$$

• De la ecuación anterior, $V_o = 0$.

¿Cómo construimos puertas lógicas con CMOS?

- La idea es similar a la lógica NMOS.
- Cuando queremos sintetizar una función:
 - Vemos los 0 que tiene la función e implementamos con la red de NMOS la NOT de la función que queremos.
 - Colocamos una red de transistores PMOS en la carga con una topología complementaria a la de los NMOS.
 - Hay que tener en cuenta que en una red NMOS, los productos se hacen con NMOS en serie y las sumas con NMOS en paralelo.
 - Hay que tener en cuenta que en una red PMOS, los productos se hacen con PMOS en paralelo y las sumas con PMOS en serie.
- Cuando queremos obtener la función lógica que implementa un circuito:
 - Vemos los NMOS y los PMOS como interruptores.
 - Para cada combinación de entradas se ve si hay un camino hasta tierra o si es hacia la fuente, sabiendo que por la topología de esta lógica sólo puede irse a uno de los dos.

Ejemplos

¿Cómo construimos puertas lógicas con CMOS?

Algebra de Boole: Algunas reglas útiles.

Identidades OR	Identidades AND
A + 0 = A	$A \cdot 0 = 0$
A + 1 = 1	$A \cdot 1 = A$
A + A = A	$A \cdot A = A$
$A + \overline{A} = A$	$A \cdot \overline{A} = 0$
$\overline{\overline{A}} = A$	
A + B = B + A	$A \cdot B = B \cdot A$
A + (B+C) = (A+B) + C	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$
$\overline{(A+B)} = \overline{A} \cdot \overline{B}$	$\overline{(A \cdot B)} = \overline{A} + \overline{B}$
$A + A \cdot B = A$	$A + \overline{A} \cdot B = A + B$

- Dibujar el circuito que realiza la función: $Y = \overline{A \cdot B}$
- Dibujar el circuito que realiza la función: $Y = \overline{A+B}$
- Dibujar el circuito que realiza la función: $Y = \overline{A \cdot (B + C \cdot D)}$
- Dibujar el circuito que realiza la función: $Y = \overline{A + B} + \overline{A} \cdot \overline{C}$
- Dibujar el circuito que realiza la función: $Y = (\overline{A} + \overline{B}) \cdot C$

Puerta NAND

$$V_o = \overline{A \cdot B}$$

Α	В	M ₁	M ₂	M ₃	M ₄	v _o
0	0	ON	ON	OFF	OFF	1
0	1	ON	OFF	OFF	ON	1
1	0	OFF	ON	ON	OFF	1
1	1	OFF	OFF	ON	ON	0

Puerta NOR

$$V_o = \overline{A + B}$$

Α	В	M ₁	M ₂	M ₃	M ₄	V _o
0	0	ON	ON	OFF	OFF	1
0	1	ON	OFF	OFF	ON	0
1	0	OFF	ON	ON	OFF	0
1	1	OFF	OFF	ON	ON	0

$$Y = \overline{A \cdot (B + C \cdot D)}$$

$$Y = \overline{A \cdot (B + C \cdot D)}$$

$$Y = \overline{A + B} + \overline{A} \cdot \overline{C}$$

$$\begin{array}{rcl} Y & = & \overline{A+B}+\overline{A}\cdot\overline{C} \\ \overline{Y} & = & \overline{\overline{A+B}}+\overline{A}\cdot\overline{\overline{C}} \\ \overline{Y} & = & \overline{A+B}\cdot\overline{A}\cdot\overline{\overline{C}} \\ \overline{Y} & = & (A+B)\cdot(\overline{A}+\overline{\overline{C}}) \\ \overline{Y} & = & (A+B)\cdot(A+C) \\ \overline{Y} & = & A\cdot A+A\cdot C+B\cdot A+B\cdot C \\ \overline{Y} & = & A\cdot (A+B+C)+B\cdot C \\ \overline{Y} & = & A+B\cdot C \end{array}$$

$$Y = (\overline{A} + \overline{B}) \cdot C$$

$$\begin{array}{rcl} Y & = & (\overline{A} + \overline{B}) \cdot C \\ \overline{Y} & = & \overline{(\overline{A} + \overline{B}) \cdot C} \\ \overline{Y} & = & \overline{(\overline{A} + \overline{B})} + \overline{C} \\ \overline{Y} & = & A \cdot B + \overline{C} \end{array}$$