Bearing-Based Formation Control with Optimal Motion Trajectory

Zili Wang¹, Sean B. Andersson^{1,2}, Roberto Tron^{1,2}

¹ Division of Systems Engineering, ² Department of Mechanical Engineering Boston University, MA 02155

INTRODUCTION

Problem Formulation

Given multiple mobile robots with single integrator dynamics, design a bearing-based controller that can steer the system of robots from random positions to a specific shape while minimizing the trajectory length.

Previous Work

- Distance-based formation control: non-reliable measurements when agents are far away.
- Bearing-based formation control: require distance, special graph topology, or a specific Lyapunov function.

Our Contribution

- Simplified sufficient conditions on global convergence of a bearingbased formation controller.
- Formulated an optimization problem to automatically tune the controller to minimize trajectory lengths.
- Generalizes well to new initial conditions and topologies.

EXISTING CONTROLLER (TRON, CDC 16)

- + Global convergence.
- + Allow flexible choice up to sufficient conditions, but choice was ad-hoc.

Convergence Conditions

C1.
$$f_b(1) = 0$$
,

C2.
$$f'_b(c_{ij}) = \begin{cases} \le 0, & c_{ij} = 1, \\ < 0, & \text{otherwise.} \end{cases}$$

C3.
$$f_b(c_{ij}) + (1 - c_{ij})f'_b(c_{ij}) \le 0$$

Gradient-based control law (bearing with optional range measurements).

- Might give sub-optimal trajectories.

$$arphi_{ij}(c_{ij},d_{ij})$$

$$arphi_{ij}^d = f_d(q_{ij})$$

$$u_{ij} = -$$

$$u_i = -\sum_{j:(i,j)\in E} \operatorname{grad}_{x_i} \varphi_{ij}(c_{ij}, d_{ij})$$

Agent Cost

bearing similarity

range similarity

FUNCTION INTERPOLATOR

We use a piecewise polynomial interpolator to parameterize f_b (f_d) in the controller.

$$f(\chi, \alpha) = a_k^0 + \sum_{i=1}^{k-1} (a_i^1 h + a_i^2 h^2) + a_k^1 (\chi - \chi_k)$$
$$+ a_k^2 (\chi - \chi_k)^2, \quad \chi \in [\chi_k, \chi_{k+1}]$$
$$h = \chi_{k+1} - \chi_k,$$
$$1 = \chi_1 > \chi_2 > \dots > \chi_K = -1$$

 α : minimal parameterization of $\{a_k^r\}_{k \in \{1,...,K\}}^{r \in \{0,1,2\}}$.

SIMPLIFIED CONVERGENCE CONDITIONS

We simplify the sufficient conditions to C1-C2.

- Condition: control cost increases monotonically along radial lines, except in the desired bearing direction.
- Converge asymptotically to a scaled (congruent if with distance) version of the desired formation.
- Expand the class of cost functions, and give linear constraints on function parameters.

Agent Cost

RESULTS

We solve the optimization program on 1-7 initial conditions (ICs), then test the optimized controller on 200 random ICs.

Case	Model		Tra	ining	Test		
Casc	1410 (101		$\overline{\delta path~(\%)}$	$\delta diff.$ (%)	$\overline{\delta path(\%)}$	$\delta diff. (\%)$	+%
	NoEd	7 ICs	7.26	22.04	7.87 (7.45)	15.7 (19.76)	90
Train on 5	o OneEd	7 ICs	3.75	23.03	4.09(4.32)	22.58(24.05)	90
Test on 5	SomeEd	7 ICs	11.02	53.67	9.14(9)	49.42 (52.83)	97.5
	FullEd	7 ICs	11.05	61.15	11.26 (11.73)	65.64 (67.78)	99.5

Ed: edge for distance measurements δ_{path} : change in path length +%: % of improved samples δ_{diff} : diff. of path length from a straight line

- Result from small training set improves large test set.
- Increasing training ICs gives straighter trajectories in average.

NONLINEAR OPTIMIZATION

We formulate a nonlinear optimization program, to minimize the path length and terminal cost.

$$L(\alpha, \mathbf{x}_0) = \sum_{i \in V} \int_0^T ||\dot{\mathbf{x}}_i(\mathbf{x}(t), \alpha)|| dt + \omega \varphi(\mathbf{x}(T))||_{\mathbf{x}(0) = \mathbf{x}_0}$$

$$\min_{\alpha} \sum_{\mathbf{x}_0 \in X_0} L(\alpha, \mathbf{x}_0)$$
subj. to gradient control law,
$$\text{constraints on } f_b \text{ (and } f_d)$$

- Optimize over a small training set.
- Provide analytical derivative of the objective function using sensitivity function.
- Solved using Sequential Quadratic Program.
- Gives rounder level set of agent control cost and straighter trajectories.

GENERALIZABILITY

We test the optimized controllers on different formation shape and number of agents.

Case	Model		Test			
	1/10 (101		$\overline{\delta path(\%)}$	$\delta diff.(\%)$	+%	
The in the E	NoEd	7 ICs	8.8 (8.19)	22.7 (21.9)	95.5	
Train on 5	OneEd	7 ICs	4.02(4.25)	21.56(22.11)	89	
Test on 5	SomeEd	7 ICs	7.91 (8.28)	39.12 (39.99)	94	
Alt.shape	FullEd	7 ICs	9.16 (9.52)	56.55 (59.62)	99	
	NoEd	7 ICs	8.76 (7.91)	29.38 (37.79)	93	
Train on 5	OneEd	7 ICs	5.97 (6.25)	40.5 (47.31)	92.5	
Test on 3	SomeEd	7 ICs	6.44 (6.75)	40.54 (52.07)	91	
	FullEd	7 ICs	12.66 (14.14)	87.53 (92.07)	99.5	

Yield similar trajectory improvement, and generalizes well to different topologies

FUTURE WORK

- Apply to different dynamic models
- Propose a collision avoidance solution

