Reading Quiz Section 7.1

- 1. A relation $\mathcal{R} \subseteq A \times B$ is _____
 - (a) a nonempty subset of $A \times B$
 - (b) a proper subset of $A \times B$
 - (c) a function from *A* to *B*
 - (d) a subset of $A \times B$
- 2. If $A \subseteq \mathbb{R}$, then the graph of a symmetric relation $\mathcal{R} \subseteq A \times A$ has what kind of symmetry?
 - (a) reflection symmetry across the *x*-axis
 - (b) reflection symmetry across the *y*-axis
 - (c) reflection symmetry across the line y = x
 - (d) symmetry across the origin
- 3. True or False: if \mathcal{R} is symmetric, then it must contain an even number of elements.

Practice Problems Section 7.1

- 1. Given constants a, b, c, let $L_{a,b,c} = \{(x,y) : ax + by = c\} \subseteq \mathbb{R}^2$.
 - (a) Describe $L_{a,b,c}$ geometrically.
 - (b) Let $A = \mathbb{R}^2$ and $B = \{L_{a,b,c} : a,b,c \in \mathbb{R}\}$. Define $\mathcal{R} \subseteq A \times B$ by

$$(x,y) \mathcal{R} L_{a,b,c} \iff ax + by = c$$

Determine whether each of the following is true or false.

- i. $(1,0) \mathcal{R} L_{1,1,1}$
- ii. $(3,-2) \mathcal{R} L_{1,1,1}$
- iii. If $(x, y) \mathcal{R} L_{a,b,c}$ and $(x, y) \mathcal{R} L_{d,e,f}$ for some (x, y) then $L_{a,b,c} = L_{d,e,f}$
- iv. Suppose $(x, y) \mathcal{R} L_{a,b,c}$. Then there exists $d, e, f \in \mathbb{R}$ such that

$$(x,y) \mathcal{R} L_{d,e,f}$$
 and $L_{a,b,c} \cap L_{d,e,f} = \emptyset$

- 2. Let *X* be a set. Let $\mathcal{R} \subseteq \mathcal{P}(X) \times \mathcal{P}(X)$ be the relation $A \mathcal{R} B \iff A \subseteq B$.
 - (a) Show that $A (\mathcal{R} \cap \mathcal{R}^{-1})$ B implies A = B.
 - (b) If $X = \{a, b\}$, compute \mathcal{R}^{-1} explicitly as a set of ordered pairs.