Ruslan Salakhutdinov

Курс Deep Learning Tutorial (слайды и видео) http://www.cs.toronto.edu/~rsalakhu/

Exploiting Image-trained CNN Architectures for Unconstrained Video Classification http://arxiv.org/pdf/1503.04144v3.pdf

Hamming Distance Metric Learning

http://www.cs.toronto.edu/~rsalakhu/papers/hamm_distance_metric_learning.pdf

Geoffrey E. Hinton

Kypc **Advanced Machine Learning** http://www.cs.toronto.edu/~hinton/csc2535/index.html http://www.cs.toronto.edu/~tijmen/csc321/

Berkeley Vision and Learning Center (BVLC)

Pieter Abbeel; Dan Klein

- Курс введения в машинное обучение (системы поиска, биомедицинские технологии и видео-игры) https://www.edx.org/course/artificial-intelligence-uc-berkeleyx-cs188-1x#.VKuKQmTF_og
- Байесовские сети, дереьвья принятия решений и нейронные сети https://courses.edx.org/courses/BerkeleyX/CS188x_1/1T2013/20021a0a32d14a31b 087db8d4bb582fd/

Pieter Abbeel; Sandy Huang; Zoe McCarthy

Kypc Advanced Robotics (создание беспилотных автомобилей и роботов)
 http://www.cs.berkeley.edu/~pabbeel/cs287-fa15/

Pieter Abbeel; John Schulman

Deep Reinforcement Learning
 http://rll.berkeley.edu/deeprlcourse/
 http://rll.berkeley.edu/deeprlcourse/docs/2015.08.26.Lecture01Intro.pdf

Trevor Darrell

- Caffe http://caffe.berkeleyvision.org/
- LRCN http://jeffdonahue.com/lrcn/
- LSDA http://lsda.berkeleyvision.org/
- Raptor http://raptor.berkeleyvision.org/
- Interactive Adaptation of Real-Time Object Detectors http://hera.inf-cv.uni-jena.de:6680/pdf/Goehring14:ITR
- Caffe: Convolutional Architecture for Fast Feature Embedding http://ucb-icsi-vision-group.github.io/caffe-paper/caffe.pdf

Alexei (Alyosha) Efros

• Разглядывать машинки http://web.cs.ucdavis.edu/~yjlee/iccv2013.html

Michael I. Jordan (IEEE Neural Networks Pioneer Award, 2006)

On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes http://machinelearning.wustl.edu/mlpapers/paper-files/nips02-AA28.pdf

Distance Metric Learning, with Application to Clustering with Side-Information http://machinelearning.wustl.edu/mlpapers/paper_files/AA03.pdf

Jitendra Malik

Analyzing the Performance of Multilayer Neural Networks for Object Recognition http://http.cs.berkeley.edu/Research/Projects/CS/vision/papers/PulkitECCV2014.pdf Еще пример на машинках

http://http.cs.berkeley.edu/Research/Projects/CS/vision/shape/frome-sc3d.pdf

Joseph E. Gonzalez

Optimistic Concurrency Control for Distributed Unsupervised Learning http://arxiv.org/pdf/1307.8049v1.pdf ImageNet Large-Scale Visual Recognition Challenge 2014 Going deeper with convolutions http://arxiv.org/pdf/1409.4842v1.pdf

Andrew Ng

Classification with Hybrid Generative/Discriminative Models http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2003_AA69.pdf

Похожее сравнение сетей есть у **Michael I. Jordan**, кстати статью Distance Metric Learning, with Application to Clustering with Side-Information они писали вместе.

Self-Taught Learning: Transfer Learning from Unlabeled Data http://machinelearning.wustl.edu/mlpapers/paper_files/icml2007_RainaBLPN07.pdf

Large-scale Deep Unsupervised Learning using Graphics Processors http://ai.stanford.edu/~ang/papers/icml09-LargeScaleUnsupervisedDeepLearningGPU.pdf

Tiled convolutional neural networks http://ai.stanford.edu/~ang/papers/nips10-TiledConvolutionalNeuralNetworks.pdf

Yann LeCun

Мега-статья про выделение и классификацию объектов на картинке

Learning Hierarchical Features for Scene Labeling http://yann.lecun.com/exdb/publis/pdf/farabet-pami-13.pdf

Efficient BackProp http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
Boxlets: a fast convolution algorithm for neural networks and signal processing http://yann.lecun.com/exdb/publis/pdf/simard-99.pdf
Understanding Deep Architectures using a Recursive Convolutional Network http://yann.lecun.com/exdb/publis/pdf/eigen-iclr-14.pdf

Yangging Jia

Trace Ratio Problem Revisited http://daggerfs.com/assets/pdf/tnn traceratio.pdf

Normalized Tree Partitioning for Image Segmentation http://daggerfs.com/assets/pdf/cvpr08 ntp.pdf

Словарь сокращений

Caffe — Convolutional Architecture for Fast Feature Embedding

ICA — Independent Components Analysis

CNN — Convolutional neural network

DCNN — Deep convolutional neural network

LRCN — Long-term Recurrent Convolutional Networks

LSDA — Large Scale Detector Adaptation

ML — Machine learning

MNN — Multylayer neural network

Raptor — Realtime adAPtive detecTOR

RL — Reinforcement Learning