Partite Graphs

Definition: Partite Set

Let G be a graph and let $\{S_i : 1 \le i \le k\}$ be a partition of V(G). The S_i are called the *partite* sets of the partition.

Definition: Independent Set

Let G be a graph and let $S \subseteq V(G)$. To say that S is an *independent set* means that none of the vertices in S are adjacent:

$$\forall u, v \in S, uv \notin E(G)$$

Definition: Bipartite

Let G be a graph whose vertices are partitioned into partite sets U and W. To say that G is bipartite, denoted by G = B(U, W), means that U and W are independent sets:

$$\forall uw \in E(G), u \in U \text{ and } w \in W$$

Definition: *k***-Partite**

Let G be a graph and let $\{S_i : 1 \leq i \leq k\}$ be a partition of V(G). To say that G is k-partite, denoted by $G(S_1, S_2, \ldots, S_k)$, means that every induced subgraph $G[S_i \cup S_j], i \neq j$ is bipartite.

Examples

Definition: Complete Bipartite

Let B(U,W) be a bipartite graph such that |U|=r and |W|=s. To say that B is complete

bipartite, denoted $K_{r,s}$, means that every vertex in U is adjacent to every vertex in W:

$$E(B) = \{uw \mid u \in U \text{ and } w \in W\}$$

Definition: Complete *k***-Partite**

Let $G(S_1, S_2, \dots, S_k)$ be a k-partite graph such that $|S_i| = n_i$. To say that G is complete k-partite, denoted K_{n_1, n_2, \dots, n_k} , means that every induced subgraph $G[S_i \cup S_j], i \neq j$ is complete bipartite K_{n_i, n_j} .

Examples

Note that $K_{1,1,\ldots,1}$ is the complete graph K_k .

Definition: Star

The complete graph $K_{1,n-1}$ is called a *star* graph, denote by S_n .

Examples

Theorem

Let G be a a non-trivial graph:

G is bipartite \iff G has no odd cycles.

Proof.

 \implies Assume G is bipartite.

Let
$$G = B(U, W)$$
.

ABC: G contains an odd cycle $(u_1, u_2, \ldots, u_{2k+1}, u_1)$ for some $k \in \mathbb{N}$.

AWLOG: $u_1 \in U$.

Since G is bipartite, adjacent vertices must alternate between U and W:

$$u_i \in \begin{cases} U, & i \text{ odd} \\ W, & i \text{ even} \end{cases}$$

But this means that $u_1, u_{2k+1} \in U$ and $u_1u_{2k+1} \in E(G)$, contradicting the bipartiteness of G.

 \therefore G contains no odd cycles.

 \iff Assume G has no odd cycles.

Case 1: G is connected.

Assume $u \in V(G)$ and let:

$$U = \{v \in V(G) \,|\, d(u,v) \text{ is even}\}$$

$$W = \{v \in V(G) \,|\, d(u,v) \text{ is odd}\}$$

Note that $u \in U$ since d(u, u) = 0 is even. Thus, $\{U, W\}$ is a partition of V(G).

Claim: G = B(U, W) is bipartite.

ABC: There exists $u_1, u_2 \in U$ such that $u_1u_2 \in E(G)$ or there exists $w_1, w_2 \in W$ such that $w_1w_2 \in E(G)$.

Case a: There exists $u_1, u_2 \in U$ such that $u_1u_2 \in E(G)$.

Let P be a $u-u_1$ geodesic and let P' be a $u-u_2$ geodesic. Both are even paths. Let u_i be the last vertex in common between P and P'.

Case i: $u_i \in U$

And so $d(u,u_i)$ is even. This means that $d(u_i,u_1)$ and $d(u_i,u_2)$ are both even, and thus the cycle $u_i,\ldots,u_1,u_2,\ldots,u_i$ is an odd cycle, contradicting the assumption.

Case ii: $u_i \in W$

And so $d(u, u_i)$ is odd. This means that $d(u_i, u_1)$ and $d(u_i, u_2)$ are both odd, and thus the cycle $u_i, \ldots, u_1, u_2, \ldots, u_i$ is an odd cycle, contradicting the assumption.

Case b: There exists $w_1, w_2 \in W$ such that $w_1w_2 \in E(G)$.

Let P be a $u-w_1$ geodesic and let P' be a $u-w_2$ geodesic. Both are odd paths. Let u_i be the last vertex in common between P and P'.

Case i: $u_i \in U$

And so $d(u,u_i)$ is even. This means that $d(u_i,w_1)$ and $d(u_i,w_2)$ are both odd, and thus the cycle $u_i,\ldots,w_1,w_2,\ldots,u_i$ is an odd cycle, contradicting the assumption.

Case ii: $u_i \in W$

And so $d(u,u_i)$ is odd. This means that $d(u_i,w_1)$ and $d(u_i,w_2)$ are both even, and thus the cycle $u_i,\ldots,w_1,w_2,\ldots,u_i$ is an odd cycle, contradicting the assumption.

 $\therefore G = B(U, W)$ is bipartite.

Case 2: G is disconnected.

This means that G is composed of k connected components G_1, G_2, \ldots, G_k . But since G contains no odd cycles, none of the G_i can contain any odd cycles, and so by the first case, each G_i is bipartite. So let $G_i = B(U_i, W_i)$ be the k bipartite components and let:

$$U = \bigcup_{1 \le i \le k} U_i$$
$$W = \bigcup_{1 \le i \le k} W_i$$

Now assume $u \in U$. Then $u \in U_i$ for some i. Furthermore, assume $uw \in E(G)$. Then $w \in W_i \subseteq W$ and thus $w \in W$.

 $\therefore G = B(U, W)$ is bipartite.

Corollary

Let G be a graph with k components:

G is bipartite \iff each component G_i is bipartite.

Proof. G is bipartite \iff G contains no odd cycles \iff every component G_i has no odd cycles \iff each component G_i is bipartite.