MATH 254: Introduction to Statistics

Mintaek Lee

Glossary of Statistical Terms

Corresponding Workbook Modules: 3 – 6

FOR EXAM 2:

Following terms are usually associated with hypothesis testing and/or confidence intervals for both means and proportions.

- H_0 : null hypothesis (always has '=' sign, like $\mu = 10$)
- H_A : alternative hypothesis (has '\neq', '<', or '>' sign based on problems, like $\mu > 10$)
- α : significance level (for hypothesis testing), usually $\alpha = 0.01$ or 0.05, but it can vary
- z: z-test statistic (calculate it using values like: n, σ , etc.)
- t: t-test statistic (calculate it using values like: n, s, etc.)
- d.f.: degrees of freedom (only used for t). For one-sample and paired two sample, it is n-1. For independent two-sample (not paired), it is $\min\{n_1-1, n_2-1\}$.
- z^* : z critical value (used in the z-confidence interval, find it from the t table)
- t^* : t critical value (used in the t-confidence interval, find it from the t table)
- m: margin of error (the one to the right of '±' in the confidence interval)

Following terms are usually associated with inference for a single mean (Module 3).

- N: population size
- n: sample size
- μ : population mean
- μ_0 : hypothesized population mean for hypothesis testing (values from hypotheses)
- \bar{x} : sample mean
- σ : population standard deviation (if known, use z. otherwise, use t.)
- s: sample standard deviation (calculate it from sample)

Following terms are usually associated with inference for a single proportion (Module 4).

- p: population proportion
- \hat{p} : sample proportion $\left(\frac{x}{n}\right)$ where x is the number of successes.
- p_0 : hypothesized population proportion for hypothesis testing (values from hypotheses)
- p^* : given population proportion for the sample size calculation for a desired margin of error (usually one of 0.5, p_0 , or p from the context. it depends on problems)

Lesson 0

FOR EXAM 3:

Note that n, μ, \bar{x}, σ , and s can have subscripts for two-sample means cases (Activity 5-1).

- If they have 1 or 2 as subscripts, it means they are for the two independent groups. For example, μ_1 and μ_2 would be the population means of first and second group.
- If they have D as subscripts, it means they are for the paired (dependent) groups. For example, \bar{x}_D would be the sample mean of differences of observations between two paired groups.
- For definitions of n, μ, \bar{x}, σ , and s, see the front page.

Following terms are usually associated with two-sample proportions cases (Activity 5-3).

- p_1 : population proportion for the first group
- p_2 : population proportion for the second group
- \hat{p}_1 : sample proportion for the first group $\left(\frac{x_1}{n_1}\right)$
- \hat{p}_2 : sample proportion for the second group $\left(\frac{x_2}{n_2}\right)$
- \hat{p} : pooled sample proportion $\left(\frac{x_1+x_2}{n_1+n_2}\right)$ (used only in the hypothesis testing. notice that this is not the same as \hat{p} from the one sample proportion cases)

Following terms are associated with regressions (Module 6).

- x: the explanatory (or independent) variable
- y: the observed response (or dependent) variable (obtained from the data)
- \hat{y} : the predicted response variable (calculated from the regression model)
- $y \hat{y}$: residual (the vertical distance between y and \hat{y})
- β_0 : population slope of the regression line (usually unknown)
- β_1 : population y-intercept of the regression line (usually unknown)
- b_0 : sample slope of the regression line
- b_1 : sample y-intercept of the regression line (Excel outputs under "Coefficients" give both b_0 and b_1)
- r: correlation coefficient, measures the strength and direction of a linear relationship (see workbook page 148 for more information) (*Excel output "Multiple R"* is the same as |r|, but be careful when r < 0!)
- r^2 : r squared, interpretation of this is: the percent of variation in y that is due to (or explained by) the variation in x. (Excel output "R Square" is the same as r^2)