Erdős-Szekeres Problem of Convex Polygons

Where there is love there is life. - Mahatma Gandhi, Indian leader, 1869 - 1948

Warm Up. Consider a finite set of points *S* in the plane, and ask, for example, this question: Is it true that there will always be a set of three points in *S* that are the vertices of a triangle?

Points in General Position in Plane. We say that the set of points A in the plane is in general position if there is no line that contains three points from A. See Figure 1.

Figure 1: Which of the two sets is a set of points in general position?

Problem. For any integer $n \ge 3$, determine the smallest positive integer N(n) such that any set of at least N(n) points in general position in the plane (i.e., no three of the points are on a line) contains n points that are the vertices of a convex n-gon.

Convex n-gon. A convex n-gon is an \overline{n} -gon with the property that if two points A and B are inside of the n-gon then the whole segment \overline{AB} is inside of the n-gon. See Figure 3.

Figure 2: A convex quadrilateral and a non-convex quadrilateral

Example 0.1. N(3) = 3.

Example 0.2. n = 4. In 1932 Esther Klein made the following observation: Among any five points in general position in the Euclidean plane, it is always possible to select four points that form the vertices of a convex quadrilateral.

Proof: The **convex hull** of a set of points *S* in the Euclidean plane is the smallest convex polygon that encloses all points from *S*.

Figure 3: Five points and three cases: Types (5,0), (4,1), and (3,2). Here "Type (n,m)" means that the convex hull is an n-gon.

Question 0.3. *Is it possible to find four points in the plane that do not form a convex quadrilateral?*

Therefore... N(4) =

n = 5. See Figures 4 and 5.

Figure 4: Eight points in general position.

Figure 5: No! - A few cases.

Therefore... $N(5) \ge 9$.

 $n = 5 \dots \text{Part II Let } S$ be a set of nine points in the plane in general position. Let \overline{S} be the convex hull of S.

1. If \overline{S} has **five or more** vertices, we are done. See Figure 6.

Figure 6: The convex hull of *S* has six points.

- 2. Let the convex hull \overline{S} , the convex hull of S, has three or four vertices. Then the set $T = S \setminus \overline{S}$ contains six or five (remaining) points of S and they are all inside of \overline{S} . Let \overline{T} be the convex hull of T.
- 3. If $|\overline{T}| = 5$ or $|\overline{T}| = 6$... Done! See Figure 7.

Figure 7: Example: $|S| = |\{A, B, ..., I\}| = 9$, $|\overline{S}| = |\{A, B, C\}| = 3$, $|T| = |\{D, E, ..., I\}| = 6$, and $|\overline{T}| = |\{D, E, F, G, H\}| = 5$.

4. For the remaining cases see Figure 8.

Figure 8: Four remaining cases.

Configuration of the type (3, 3, 2).

1. Consider the inside triangle and the line segment.

- The line that contains the line segment intersects two sides of the triangle.
- Notice the vertex where those two sides of the triangle intersect.
- Draw rays starting at the end points of the line segment as on Figure 9

Figure 9: A triangle, a line segment, and four rays.

Three regions. Notice the three open regions in the plane on the Figure 10:

- None of the three regions intersects the interior of the triangle
- Region 1 and Region 2 intersect (part of the plane 'above' the top vertex.)
- Region 3 does not intersect either Region 1 or Region 2.

Figure 10: Three regions.

Three points outside of the triangle. Note that the remaining three points in the configuration 3 - 3 - 2 cannot be on the boundary of any of Regions 1-3. (Why?) See Figure 11.

One of the *outside points* belongs to Region 3. None of the *outside points* belongs to Region 3.

Figure 11: There is a convex pentagon!

Configuration of the type (3, 3, 3). Note that the configuration the 8-point configuration (3, 3, 2) is contained in the configuration (3, 3, 3). See Figure 12.

Figure 12: Type (3, 3, 3) contains Type (3, 3, 2).

Therefore the configuration of the type (3, 3, 3) contains a convex pentagon.

Configuration of the type (4, 3, 1).

1. Consider a triangle and a single point inside of it, and note three regions, Figure 13.

Figure 13: Type (*, 3, 1).

2. By the Pigeonhole Principle, at least two of the remaining four points must belong to the same region, say Region 2. See Figure 14.

Figure 14: There is a convex pentagon!

Configuration of the type (4, 4, 1). Note that the configuration (4, 4, 1) contains the configuration (4, 3, 1). See Figure 15.

Figure 15: The configuration of the type (4, 4, 1) contains a convex pentagon..

Configuration of the type (4, 3, 2). Note that the configuration (4, 3, 2) contains the configuration (4, 3, 1). See Figure 16.

Figure 16: The configuration of the type (4, 3, 2) contains a convex pentagon..

Configuration of the type (3, 4, 2). Consider the inside quadrilateral and the line segment. See Figures 17 - 19.

Figure 17: Case 1: The line that contains the line segment intersects the adjacent sides of the quadrilateral.

Figure 18: Case 2: The line that contains the line segment intersects the opposite sides of the quadrilateral.

Figure 19: Case 2: There is a convex pentagon!

Therefore

$$N(5) = 9.$$