Natural Deduction

Foundations for Programming Languages MASTER IN SOFTWARE AND SYSTEMS Universidad Politécnica de Madrid/IMDEA Software Institute

Halloween, 2017

To be turned in by November 19, 2017. Send them to me by mail to jmarino@fi.upm.es.

Lógica proposicional clásica

Usa las reglas de deducción natural (NK = NJ + DN) mostradas en la figura 1 para resolver los siguientes ejercicios.

Exercise 1. Para cada una de las siguientes proposiciones, estudia si son *tautologías*. Para las que no lo sean, proporciona un contraejemplo (una asignación de valores de verdad a sus variables proposicionales que hace falsa la fórmula).

- a. $(p \lor p) \to p$.
- b. $((p \lor q) \lor r) \leftrightarrow (p \lor (q \lor r))$.
- c. $(p \rightarrow q) \leftrightarrow \neg(\neg p \land q)$.
- d. $(p \land (p \lor q)) \leftrightarrow p$.
- e. $\neg (p \lor q) \leftrightarrow (\neg p \land \neg q)$.
- f. $p \rightarrow (q \rightarrow r) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$.
- g. $(p \rightarrow q) \rightarrow ((p \rightarrow \neg q) \rightarrow \neg p)$.
- h. $p \rightarrow \neg \neg p$.
- i. $\neg \neg p \rightarrow p$.
- j. $(p \rightarrow q) \lor (q \rightarrow p)$.
- k. $((p \rightarrow q) \rightarrow p) \rightarrow p$.
- l. $(p \rightarrow q) \leftrightarrow (\neg p \lor q)$.

Exercise 2. Da una demostración en NK para cada una de las tautologías del ejercicio anterior. ¿Qué fórmulas son demostrables en NI?

Exercise 3. Demuestra el teorema de corrección (*soundness theorem*) para la lógica proposicional clásica, es decir, muestra que si hay una demostración en NK de ϕ a partir de unas premisas Γ (formalmente $\Gamma \vdash_{NK} \phi$), entonces cualquier valoración que haga Γ cierta también hace cierta a ϕ (formalmente $\Gamma \models \phi$).

Exercise 4. NK también es *completo* para lógica proposicional clásica, es decir, si $\Gamma \models \phi$, entonces $\Gamma \vdash_{NK} \phi$. Proporciona una estrategia de demostración para este teorema de completitud.

NJ: deducción natural para lógica proposicional intuicionista.

NK: añadir una de las siguientes reglas para cubrir la lógica clásica.

$$\frac{\neg \neg \phi}{\phi}$$
 DN $\frac{}{\phi \lor \neg \phi}$ TND

Figura 1: NK: sistema de deducción natural para lógica proposicional clásica.

Lógica intuicionista vs. lógica clásica

Exercise 5. Demuestra *tertium non datur* (TND) en NJ + DN.

Exercise 6. Demuestra *double negation* (DN) en NJ + TND.

Lógica proposicional en Haskell

Exercise 7. Define un tipo de datos *Prop* para representar fórmulas de lógica proposicional.

Exercise 8. Define una función $taut :: Prop \rightarrow Bool$ que decida si una fórmula proposicional es una tautología. Aplica a las fórmulas del ejercicio 1.