# SAR TEST REPORT

**Reference No.** .....: WTS19S12086775W001 V1

FCC ID.....: YETK03100100

Applicant .....: Nextivity Incorporated

USA

Manufacturer .....: Nextivity Incorporated

USA

Product .....: CEL FI COMPASS

Model(s).....: K03-100-100

**Standards** ...... FCC 47 CFR Part2(2.1093)

ANSI/IEEE C95.1-2006

IEEE 1528-2013 & Published RF Exposure KDB Procedures

Date of Receipt sample .... : 2019-12-12

**Date of Test** ..... : 2019-12-13 to 2019-12-19

**Date of Issue** ..... : 2019-12-23

Test Result .....: Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

#### Prepared By:

#### Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Approved by:

Ford Wang / Project Engineer

# 2 Contents

|    |                                                         | Page |
|----|---------------------------------------------------------|------|
| 1  | COVER PAGE                                              | 1    |
| 2  | CONTENTS                                                | 2    |
| 3  | REVISION HISTORY                                        | 3    |
| 4  | GENERAL INFORMATION                                     | 4    |
|    | 4.1 GENERAL DESCRIPTION OF E.U.T. 4.2 DETAILS OF E.U.T. |      |
| 5  | EQUIPMENT USED DURING TEST                              | 6    |
|    | 5.1 EQUIPMENT LIST                                      |      |
| 6  | SAR INTRODUCTION                                        | 7    |
|    | 6.1 Introduction                                        |      |
| 7  | SAR MEASUREMENT SETUP                                   | 8    |
| 8  | EXPOSURE LIMIT                                          | 17   |
| 9  | SYSTEM AND LIQUID VALIDATION                            | 18   |
|    | 9.1 System validation                                   |      |
|    | 9.2 LIQUID VALIDATION                                   |      |
| 10 | TYPE A MEASUREMENT UNCERTAINTY                          | 28   |
| 11 | OUTPUT POWER VERIFICATION                               | 31   |
| 12 | EXPOSURE CONDITIONS CONSIDERATION                       | 84   |
| 13 | SAR TEST RESULTS                                        | 86   |
| 14 | SAR MEASUREMENT REFERENCE                               | 99   |
|    | MAXIMUM SAR MEASUREMENT PLOTS                           | 100  |
| 15 | CALIBRATION REPORTS-PROBE AND DIPOLE                    | 113  |
| 16 | RE-CALIBRATION FOR DIPOLE                               |      |
| 17 | SAR SYSTEM PHOTOS                                       |      |
| 18 | SETUP PHOTOS                                            | 188  |
| 19 | EUT PHOTOS                                              | 189  |

Reference No.: WTS19S12086775W001 V1 Page 3 of 190

3 Revision History

| Test report No.           | Date of<br>Receipt<br>sample | Date of Test                    | Date of<br>Issue | Purpose   | Comment | Approved |
|---------------------------|------------------------------|---------------------------------|------------------|-----------|---------|----------|
| WTS19S12086<br>775W001    | 2019-12-12                   | 2019-12-13<br>to 2019-12-<br>19 | 2019-12-23       | original  | -       | Replaced |
| WTS19S12086<br>775W001 V1 | 2019-12-12                   | 2019-12-13<br>to 2019-12-<br>19 | 2019-12-30       | Version 1 | Updated | Valid    |

#### 4 General Information

### 4.1 General Description of E.U.T.

Product: CEL FI COMPASS

Model(s): K03-100-100

Model Description: N/A

WCDMA Band(s): FDD Band II/IV/V

FDD Band 2/4/5/7/12/13/25/26

LTE Band(s): TDD Band 38/41

Bluetooth Version: Bluetooth v4.0 with BLE

Hardware Version: 591NK03NEXT1NEXT7M01r07

Software Version: 700N036-064-001

#### 4.2 Details of E.U.T.

Operation Frequency: WCDMA Band II: 1850~1910MHz

WCDMA Band V: 824~849MHz
WCDMA Band IV:1710~1755MHz
LTE Band 2: 1850~1910MHz
LTE Band 4: 1710~1755MHz
LTE Band 5: 824~849MHz
LTE Band 7: 2500~2570MHz
LTE Band 12: 699~716MHz

LTE Band 25 1850~1915MHz LTE Band 26(Part 90): 814~824MHz

LTE Band 26(Part 22): 824~849MHz

LTE Band 38: 2570~2620MHz LTE Band 41: 2496~2690MHz Bluetooth: 2402~2480MHz

LTE Band 13: 777~787MHz

BLE:2402-2480MHz

Max. RF output power: WCDMA Band II: 25dBm

WCDMA Band V: 25dBm WCDMA Band IV: 25dBm

LTE Band 2: 25dBm
LTE Band 4: 25dBm
LTE Band 5: 25dBm
LTE Band 7: 25dBm
LTE Band 12: 25dBm
LTE Band 13: 25dBm
LTE Band 25: 25dBm
LTE Band 26: 25dBm
LTE Band 38: 25dBm

Reference No.: WTS19S12086775W001 V1 Page 5 of 190

LTE Band 41: 25dBm Bluetooth: 0.34dBm

Max.SAR: 1.90 W/Kg 10g Extremity SAR

Max Simultaneous SAR 1.95 W/Kg 10g Extremity SAR

Type of Modulation: WCDMA: BPSK

LTE: QPSK, 16QAM

Bluetooth: GFSK, Pi/4 DQPSK,8DPSK

Antenna installation: Dipole

Antenna Gain: WCDMA Band II: 0dBi

WCDMA Band V: 1.0dBi WCDMA Band IV: 0dBi

LTE Band 2: 0dBi LTE Band 4: 0dBi LTE Band 5: 1dBi LTE Band 7: -5dBi LTE Band 12: 1dBi LTE Band 13: 1dBi LTE Band 25: 0dBi LTE Band 26: 1dBi LTE Band 41: -5dBi

Bluetooth: 0dBi

Ratings: Battery DC 3.7V, 8000mAh

DC 5V, 3A, charging from adapter

(Adapter Input: 100-240V~50/60Hz 0.6A)

Adapter: Manufacturer: SHENZHEN UNIONTOP ELECTRONIC CO.,LTD

Model No.: UT20-050300W

# 5 Equipment Used during Test

# 5.1 Equipment List

| Name of<br>Equipment                       | Manufacturer         | Type/Model                | Serial Number             | Calibration<br>Date | Calibration<br>Due |
|--------------------------------------------|----------------------|---------------------------|---------------------------|---------------------|--------------------|
| 6 AXIS ROBOT                               | KUKA                 | KR6 R900<br>SIXX          | 502635                    | N/A                 | N/A                |
| SATIMO Test<br>Software                    | MVG                  | OPENSAR                   | OPENSAR<br>V_4_02_27      | N/A                 | N/A                |
| PHANTOM<br>TABLE                           | MVG                  | N/A                       | SAR_1215_01               | N/A                 | N/A                |
| SAM PHANTOM                                | MVG                  | SAM118                    | SN 11/15<br>SAM118        | N/A                 | N/A                |
| MultiMeter                                 | Keithley             | MiltiMeter 2000           | 4073942                   | 2019-02-27          | 2020-02-26         |
| Data Acquisition<br>Electronics            | MVG                  | DAE4                      | 915                       | 2019-02-27          | 2020-02-26         |
| S-Parameter<br>Network<br>Analyzer         | Agilent              | 8753E                     | JP38160684                | 2019-09-17          | 2020-09-16         |
| Universal Radio<br>Communication<br>Tester | ROHDE&SCHW<br>ARZ    | CMU200                    | 114798                    | 2019-09-17          | 2020-09-16         |
| Wideband Radio<br>Communication<br>Tester  | ROHDE&SCHW<br>ARZ    | CMW500                    | 1                         | 2019-09-17          | 2020-09-16         |
| E-Field Probe                              | MVG                  | SSE5                      | SN 07/15<br>EP247         | 2019-08-20          | 2020-08-19         |
| DIPOLE 750                                 | MVG                  | SID750                    | SN 09/15 DIP<br>0G750-357 | 2018-02-28          | 2020-02-27         |
| DIPOLE 835                                 | MVG                  | SID835                    | SN 09/15 DIP<br>0G835-358 | 2018-02-28          | 2020-02-27         |
| DIPOLE 1800                                | MVG                  | SID1800                   | SN 09/15 DIP<br>1G800-360 | 2018-02-28          | 2020-02-27         |
| DIPOLE 1900                                | MVG                  | SID1900                   | SN 09/15 DIP<br>1G900-361 | 2018-02-28          | 2020-02-27         |
| DIPOLE 2600                                | MVG                  | SID2600                   | SN 16/15 DIP<br>2G600-376 | 2018-02-28          | 2020-02-27         |
| Limesar<br>Dielectric Probe                | MVG                  | SCLMP                     | SN 11/15<br>OCPG 69       | 2019-02-28          | 2020-02-27         |
| Power Amplifier                            | BONN                 | BLWA 0830<br>-160/100/40D | 128740                    | 2019-09-17          | 2020-09-16         |
| Signal Generator                           | R&S                  | SMB100A                   | 105942                    | 2019-09-17          | 2020-09-16         |
| Power Meter                                | R&S                  | NRP2                      | 102031                    | 2019-09-17          | 2020-09-16         |
| Power Meter                                | R&S                  | NRVD                      | 102284                    | 2019-09-17          | 2020-09-16         |
| USB Wideband<br>Power Sensor               | Malaysia<br>Keysight | U2021XA                   | MY54340009                | 2019-04-19          | 2020-04-18         |
| USB Wideband<br>Power Sensor               | Malaysia<br>Keysight | U2021XA                   | MY54340010                | 2019-04-19          | 2020-04-18         |

## 5.2 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

#### 6 SAR Introduction

#### 6.1 Introduction

This measurement report shows compliance of the EUT with ANSI/IEEE C95.1-2006 and FCC 47 CFR Part2 (2.1093). The test procedures, as described in IEEE 1528-2013 Standard for IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques(300MHz~6GHz) and Published RF Exposure KDB Procedures

## 6.2 SAR Definition

- SAR : Specific Absorption Rate
- The SAR characterize the absorption of energy by a quantity of tissue
- This is related to a increase of the temperature of these tissues during a time period.

DAS = 
$$\frac{d}{dt} \left( \frac{dW}{dm} \right) = \frac{d}{dt} \left( \frac{dW}{\rho dV} \right)$$

$$DAS = \frac{\sigma E^2}{\rho}$$
DAS =  $\frac{d}{dt} \left( \frac{dW}{dt} \right)$ 

$$DAS = c_h \frac{dT}{dt} \Big|_{t=0}$$

$$SAR = \frac{\sigma E^2}{\rho}$$

- SAR : Specific Absorption Rate
  - σ : Liquid conductivity

$$oe_r = e' - je''$$
 (complex permittivity of liquid)

$$\circ \sigma = \frac{\varepsilon'' \omega}{\varepsilon_0}$$

ρ: Liquid density

$$\rho = 1000 \text{ g/L} = 1000 \text{Kg/m}^3$$

where:

 $\sigma$  = conductivity of the tissue (S/m)

 $\rho$  = mass density of the tissue (kg/m3)

E = rms electric field strength (V/m)

# 7 SAR Measurement Setup

# SAR bench sub-systems



# Scanning System (robot)

- It must be able to scan all the volume of the phantom to evaluate the tridimensional distribution of SAR.
- Must be able to set the probe orthogonal of the surface of the phantom (±30°).
- Detects stresses on the probe and stop itself if necessary to keep the integrity of the probe.



# SAM Phantom (Specific Anthropomorphic Mannequin)

- The probe scanning of the E-Field is done in the 2 half of the normalized head.
- The normalized shape of the phantom corresponds to the dimensions of 90% of an adult head size.
- The materials for the phantom should not affect the radiation of the device under test (DUT)
  - Permittivity < 5</li>
- The head is filled with tissue simulating liquid.
- The hand holding the DUT does not have to be modeled.



Blustration du fantôme donnant les points de référence des oreilles, RE et LE, le point de référence de la bouche, M, la ligne de référence M-F et la bande centrale



Bi-section sagittale du fantôme avec périmètre étendu (montrée sur le côté comme lors des essais de DAS de l'appareil)



Reference No.: WTS19S12086775W001 V1 Page 10 of 190

# The OPENSAR system for performing compliance tests consist of the following items:

- 1. A standard high precision 6-axis robot (KUKA) with controller and software.
- 2. KUKA Control Panel (KCP).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- 4. The functions of the PC plug-in card are to perform the time critical task such as signal filtering, surveillance of the robot operation fast movement interrupts.
- 5. A computer operating Windows 7.
- 6. OPENSAR software.
- 7. Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.
- 8. The SAM phantom enabling testing left-hand right-hand and body usage.
- 9. The Position device for handheld EUT.
- 10. Tissue simulating liquid mixed according to the given recipes (see Application Note).
- 11. System validation dipoles to validate the proper functioning of the system.

#### **Data Evaluation**

The OPENSAR software automatically executes the following procedure to calculate the field units from the microvolt readings at the probe connector. The parameters used in the valuation are stored in the configuration modules of the software:

| Probe              | - Sensitivity             | Norm <sub>i</sub> |
|--------------------|---------------------------|-------------------|
| Parameters         | - Conversion factor       | ConvFi            |
|                    | - Diode compression point |                   |
|                    | Dcpi                      |                   |
| Device             | - Frequency               | f                 |
| Parameter          | - Crest factor            | cf                |
| Media<br>Parametrs | - Conductivity            | σ                 |
| 1 didilicits       | - Density                 | ρ                 |

These parameters must be set correctly in the software. They can either be found in the component documents or be imported into the software from the configuration files issued for the OPENSAR components.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

Where  $V_i$  = Compensated signal of channel  $i$  ( $i$  =  $x$ ,  $y$ ,  $z$ )

 $U_i$  = Input signal of channel  $i$  ( $i$  =  $x$ ,  $y$ ,  $z$ )

 $cf$  = Crest factor of exciting field (DASY parameter)

 $dcp_i$  = Diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: 
$$E_{i} = \sqrt{\frac{V_{i}}{Norm_{i} \cdot ConvF}}$$
H-field probes: 
$$H_{i} = \sqrt{Vi} \cdot \frac{a_{i10} + a_{i11}f + a_{i12}f^{2}}{f}$$
Where  $V_{i}$  = Compensated signal of channel i (i = x, y, z)
$$Norm_{i} = Sensor\ sensitivity\ of\ channel\ i\ (i = x, y, z)$$

$$\mu V/(V/m) 2\ for\ E0 field\ Probes$$

$$ConvF = Sensitivity\ enhancement\ in\ solution$$

$$a_{ij} = Sensor\ sensitivity\ factors\ for\ H-field\ probes$$

f = Carrier frequency (GHz)

 $E_i$  = Electric field strength of channel i in V/m

H<sub>i</sub> = Magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_z^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR - E_{ist}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

where SAR = local specific absorption rate in mW/g

 $E_{tot}$  = total field strength in V/m

 $\sigma$  = conductivity in [mho/m] or [siemens/m]

 $\rho$  = equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

The power flow density is calculated assuming the excitation field as a free space field.

$$P_{pw} = \frac{E_{ss}^2}{3770}$$
 or  $P_{pw} = H_{ss}^2 \cdot 37.7$ 

where  $P_{pwe}$  = Equivalent power density of a plane wave in mW/cm2

 $E_{tot}$  = total electric field strength in V/m  $H_{tot}$  = total magnetic field strength in A/m

#### SAR Evaluation – Peak Spatial - Average

The procedure for assessing the peak spatial-average SAR value consists of the following steps

#### Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

#### Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines implemented in OPENSAR software can find the maximum locations even in relatively coarse grids. The scan area is defined by an editable grid. This grid is anchored at the grid reference point of the selected section in the phantom. When the area scan's property sheet is brought-up, grid was at to 15 mm by 15 mm and can be edited by a user.

Reference No.: WTS19S12086775W001 V1 Page 13 of 190

#### Zoom Scan

Zoom scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default zoom scan measures 5 x 5 x 7 points within a cube whose base faces are centered around the maximum found in a preceding area scan job within the same procedure. If the preceding Area Scan job indicates more then one maximum, the number of Zoom Scans has to be enlarged accordingly (The default number inserted is 1).

#### Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have OPENSAR software stop the measurements if this limit is exceeded.

#### SAR Evaluation – Peak SAR

The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1528 standard. It can be conducted for 1 g and 10 g. The OPENSAR system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maximum searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

### Extrapolation

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. They are used in the Cube Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the fourth order least square polynomial method for extrapolation. For a grid using 5x5x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1 g and 10 g cubes.

#### **Definition of Reference Points**

#### **Ear Reference Point**

Figure 6.2 shows the front, back and side views of the SAM Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERPs are 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 6.1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 6.1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].



Figure 6.1 Close-up side view of ERP's



Figure 6.2 Front, back and side view of SAM

#### **Device Reference Points**

Two imaginary lines on the device need to be established: the vertical centerline and the horizontal line. The test device is placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Fig. 6.3). The "test device reference point" is than located at the same level as the center of the ear reference point. The test device is positioned so that the "vertical centerline" is bisecting the front surface of the device at it's top and bottom edges, positioning the "ear reference point" on the outer surface of both the left and right head phantoms on the ear reference point [5].



Figure 6.3 Handset Vertical Center & Horizontal Line Reference Points

### Test Configuration – Positioning for Cheek / Touch

1. Position the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure below), such that the plane defined by the vertical center line and the horizontal line of the device is approximately parallel to the sagittal plane of the phantom



Figure 7.1 Front, Side and Top View of Cheek/Touch Position

- 2. Translate the device towards the phantom along the line passing through RE and LE until the device touches the ear.
- 3. While maintaining the device in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to MB-NF including the line MB (called the reference plane).
- 4. Rotate the device around the vertical centerline until the device (horizontal line) is symmetrical with respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE and maintaining the device contact with the ear, rotate the device about the line NF until any point on the device is in contact with a phantom point below the ear (cheek). See Figure below.



Figure 7.2 Side view w/ relevant markings

### Test Configuration – Positioning for Ear / 15° Tilt

With the test device aligned in the Cheek/Touch Position":

- 1. While maintaining the orientation of the device, retracted the device parallel to the reference plane far enough to enable a rotation of the device by 15 degrees.
- 2. Rotate the device around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the device, move the device parallel to the reference plane until any part of the device touches the head. (In this position, point A is located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact is at any location other than the pinna, the angle of the device shall be reduced. The tilted position is obtained when any part of the device is in contact with the ear as well as a second part of the device is in contact with the head (see Figure below).



Figure 7.3 Front, Side and Top View of Ear/15° Tilt Position

#### Test Position – Body Configurations

**Body Worn Position** 

- (a) To position the device parallel to the phantom surface with either keypad up or down.
- (b) To adjust the device parallel to the flat phantom.
- (c) To adjust the distance between the device surface and the flat phantom to 1.0 cm or holster surface and the flat phantom to 0 cm.



# 8 Exposure limit

In order for users to be aware of the body-worn operating requirements for meeting RF exposure compliance, operating instructions and cautions statements are included in the user's manual.

#### **Uncontrolled Environment**

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

#### **Controlled Environment**

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 8.1 Human Exposure Limits

|                                                              | UNCONTROLLED ENVIRONMENT<br>General Population<br>(W/kg) or (mW/g) | CONTROLLED ENVIROMENT Professional Population (W/kg) or (mW/g) |
|--------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------|
| SPATIAL PEAK SAR <sup>1</sup><br>Brain                       | 1.60                                                               | 8.00                                                           |
| SPATIAL AVERAGE SAR <sup>2</sup><br>Whole Body               | 0.08                                                               | 0.40                                                           |
| SPATIAL PEAK SAR <sup>3</sup><br>Hands, Feet, Ankles, Wrists | 4.00                                                               | 20.00                                                          |

<sup>&</sup>lt;sup>1</sup> The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

<sup>&</sup>lt;sup>2</sup> The Spatial Average value of the SAR averaged over the whole body.

<sup>&</sup>lt;sup>3</sup> The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

# 9 System and liquid validation

### 9.1 System validation



The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

- Signal Generator
- 2. Amplifier
- 3. Directional Coupler
- 4. Power Meter
- 5. Calibrated Dipole

The output power on dipole port must be calibrated to 30 dBm (1000 mW) before dipole is connected.

# Numerical reference SAR values (W/kg) for reference dipole and flat phantom

| Frequency<br>(MHz) | 1g SAR | 10g SAR | Local SAR at<br>surface(above<br>feed-point) | Local SAR at surface(y = 2 cm offset from feedpoint) |
|--------------------|--------|---------|----------------------------------------------|------------------------------------------------------|
| 300                | 3.02   | 2.04    | 4.40                                         | 2.10                                                 |
| 450                | 4.92   | 3.28    | 7.20                                         | 3.20                                                 |
| 750                | 8.49   | 5.55    | 12.6                                         | 4.59                                                 |
| 835                | 9.56   | 6.22    | 14.1                                         | 4.90                                                 |
| 900                | 10.9   | 6.99    | 16.4                                         | 5.40                                                 |
| 1450               | 29.0   | 16.0    | 50.2                                         | 6.50                                                 |
| 1800               | 38.4   | 20.1    | 69.5                                         | 6.80                                                 |
| 1900               | 39.7   | 20.5    | 72.1                                         | 6.60                                                 |
| 2000               | 41.1   | 21.1    | 74.6                                         | 6.50                                                 |
| 2450               | 52.4   | 24.0    | 104                                          | 7.70                                                 |
| 2600               | 55.3   | 24.6    | 113                                          | 8.29                                                 |
| 3000               | 63.8   | 25.7    | 140                                          | 9.50                                                 |

Table 1: system validation (1q)

| Measurement<br>Date | Frequency<br>(MHz) | Liquid Type<br>(head/body) | 1W Target<br>SAR10g<br>(W/kg) | Measured<br>SAR10g<br>(W/kg) | 1W<br>Normalized<br>SAR10g<br>(W/kg) | Deviation<br>(±10%) |
|---------------------|--------------------|----------------------------|-------------------------------|------------------------------|--------------------------------------|---------------------|
| 2019-12-13          | 750                | body                       | 5.74                          | 0.0540                       | 5.40                                 | -5.9                |
| 2019-12-13          | 835                | body                       | 6.39                          | 0.0585                       | 5.85                                 | -8.5                |
| 2019-12-16          | 1800               | body                       | 20.84                         | 0.1952                       | 19.52                                | -6.3                |
| 2019-12-17          | 1900               | body                       | 20.84                         | 0.1929                       | 19.29                                | -7.4                |
| 2019-12-19          | 2600               | body                       | 24.62                         | 0.2280                       | 22.80                                | -7.4                |

#### 9.2 liquid validation

The dielectric parameters were checked prior to assessment using the HP85070C dielectric probe kit. The dielectric parameters measured are reported in each correspondent section.

#### **KDB 865664 recommended Tissue Dielectric Parameters**

The head and body tissue parameters given in this below table should be used to measure the SAR of transmitters operating in 100 MHz to 6 GHz frequency range. The tissue dielectric parameters of the tissue medium at the test frequency should be within the tolerance required in this document. The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

The head tissue dielectric parameters recommended by IEEE Std 1528-2013 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in 1528 are derived from tissue dielectric parameters computed from the 4-Cole-Cole equations described above and extrapolated according to the head parameters specified in 1528.

| Target Frequency | Head | Tissue   | Body <sup>*</sup> | Tissue   |
|------------------|------|----------|-------------------|----------|
| MHz              | εr   | O' (S/m) | εr                | O' (S/m) |
| 150              | 52.3 | 0.76     | 61.9              | 0.80     |
| 300              | 45.3 | 0.87     | 58.2              | 0.92     |
| 450              | 43.5 | 0.87     | 56.7              | 0.94     |
| 835              | 41.5 | 0.90     | 55.2              | 0.97     |
| 900              | 41.5 | 0.97     | 55.0              | 1.05     |
| 915              | 41.5 | 0.98     | 55.0              | 1.06     |
| 1450             | 40.5 | 1.20     | 54.0              | 1.30     |
| 1610             | 40.3 | 1.29     | 53.8              | 1.40     |
| 1800-2000        | 40.0 | 1.40     | 53.3              | 1.52     |
| 2450             | 39.2 | 1.80     | 52.7              | 1.95     |
| 2600             | 39.0 | 1.96     | 52.5              | 2.16     |
| 3000             | 38.5 | 2.40     | 52.0              | 2.73     |
| 5800             | 35.3 | 5.27     | 48.2              | 6.00     |

#### **Tissue Dielectric Parameters for Head and Body Phantoms**

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness Power drifts in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

**Table 2: Recommended Dielectric Performance of Tissue** 

|                      | Recommended Dielectric Performance of Tissue |       |       |      |      |      |       |      |      |      |      |      |  |
|----------------------|----------------------------------------------|-------|-------|------|------|------|-------|------|------|------|------|------|--|
| Ingredients<br>(% by | Frequency (MHz)                              |       |       |      |      |      |       |      |      |      |      |      |  |
| weight)              | 75                                           | 50    | 835   |      | 18   | 1800 |       | 1900 |      | 2450 |      | 2600 |  |
| Tissue               | Head                                         | Body  | Head  | Body | Head | Body | Head  | Body | Head | Body | Head | Body |  |
| Water                | 40.52                                        | 51.83 | 41.45 | 52.4 | 55.2 | 70.2 | 54.9  | 40.4 | 62.7 | 73.2 | 54.8 | 68.1 |  |
| Salt (Nacl)          | 1.61                                         | 1.52  | 1.45  | 1.4  | 0.3  | 0.4  | 0.18  | 0.5  | 0.5  | 0.04 | 0.1  | 0.01 |  |
| Sugar                | 57.67                                        | 46.45 | 56.0  | 45.0 | 0.0  | 0.0  | 0.0   | 58.0 | 0.0  | 0.0  | 0.0  | 0.0  |  |
| HEC                  | 0.1                                          | 0.1   | 1.0   | 1.0  | 0.0  | 0.0  | 0.0   | 1.0  | 0.0  | 0.0  | 0.0  | 0.0  |  |
| Bactericide          | 0.1                                          | 0.1   | 0.1   | 0.1  | 0.0  | 0.0  | 0.0   | 0.1  | 0.0  | 0.0  | 0.0  | 0.0  |  |
| Triton x-100         | 0.0                                          | 0.0   | 0.0   | 0.0  | 0.0  | 0.0  | 0.0   | 0.0  | 36.8 | 0.0  | 0.0  | 0.0  |  |
| DGBE                 | 0.0                                          | 0.0   | 0.0   | 0.0  | 44.5 | 29.4 | 44.92 | 0.0  | 0.0  | 26.7 | 45.1 | 31.8 |  |
| Dielectric           | 40.93                                        | 54.32 | 42.54 | 56.1 | 40.0 | 53.3 | 39.9  | 54.0 | 39.8 | 52.5 | 39.0 | 52.5 |  |
| Conductivity         | 0.87                                         | 0.95  | 0.91  | 0.95 | 1.40 | 1.52 | 1.42  | 1.45 | 1.88 | 1.78 | 1.96 | 2.15 |  |

Table 3: Dielectric Performance of Body Tissue Simulating Liquid

| Temperature: 21°0  |                | efformance of Body Tissue<br>: 57%,Measured Date: 20 |                        | 9                     |
|--------------------|----------------|------------------------------------------------------|------------------------|-----------------------|
| Frequency(MHz)     | Measured Date  | Description                                          | Dielectric P           | arameters             |
| 1 requericy(Wiriz) | Wiedsuled Date | Description                                          | εr                     | σ(s/m)                |
| 700                | 2019-12-13     | Target Value<br>±5% window                           | 55.2<br>52.63 — 57.75  | 0.97<br>0.922 — 1.018 |
|                    |                | Measurement Value                                    | 53.61                  | 0.98                  |
| 750                | 2019-12-13     | Target Value<br>±5% window                           | 55.2<br>52.63 — 57.75  | 0.97<br>0.922 — 1.018 |
| . 66               | 2010 12 10     | Measurement Value                                    | 53.63                  | 0.98                  |
| 835                | 2019-12-13     | Target Value<br>±5% window                           | 55.2<br>52.63 — 57.75  | 0.97<br>0.922 — 1.018 |
|                    | 2010 12 10     | Measurement Value                                    | 55.78                  | 0.99                  |
| 1700               | 2019-12-16     | Target Value<br>±5% window                           | 53.30<br>50.64 — 55.97 | 1.52<br>1.44 — 1.60   |
|                    | 2010 12 10     | Measurement Value                                    | 53.72                  | 1.50                  |
| 1800               | 2019-12-16     | Target Value<br>±5% window                           | 53.30<br>50.64 — 55.97 | 1.52<br>1.44 — 1.60   |
|                    |                | Measurement Value                                    |                        | 1.50                  |
| 1900               | 2019-12-17     | Target Value<br>±5% window                           | 53.30<br>50.64 — 55.97 | 1.52<br>1.44 — 1.60   |
|                    |                | Measurement Value                                    | 53.66                  | 1.51                  |
| 2600               | 2019-12-19     | Target Value<br>±5% window                           | 52.50<br>49.88 — 55.12 | 2.16<br>2.06 — 2.26   |
|                    |                | Measurement Value                                    | 52.70                  | 2.14                  |

# System Verification Plots Product Description: Dipole

Model: SID750 Test Date: 2019-12-13

| Medium(liquid type)                   | MSL_750                               |
|---------------------------------------|---------------------------------------|
| Frequency (MHz)                       | 750.000000                            |
| Relative permittivity (real part)     | 53.63                                 |
| Conductivity (S/m)                    | 0.98                                  |
| Input power                           | 100mW                                 |
| E-Field Probe                         | SN 07/15 EP247                        |
| Duty cycle                            | 1:1                                   |
| Conversion Factor                     | 4.94                                  |
| Sensor-surface                        | 4mm                                   |
| Area Scan                             | dx=8mm dy=8mm                         |
| Zoom Scan                             | 5x5x7,dx=8mm dy=8mm dz=5mm            |
| Variation (%)                         | -2.76                                 |
| SAR 10g (W/Kg)                        | 0.054000                              |
| SAR 1g (W/Kg)                         | 0.086185                              |
| SURFACE SAR                           | VOLUME SAR                            |
| Sid Frankristen Impleed Streetun      | SAR Visualization Graphical Interface |
| 10   10   10   10   10   10   10   10 | 0.007100   90-                        |
|                                       |                                       |

**Product Description: Dipole** 

Model: SID835 Test Date: 2019-12-13

| Medium(liquid type)                   | MSL 835                                    |
|---------------------------------------|--------------------------------------------|
| Frequency (MHz)                       | 835.00000                                  |
| Relative permittivity (real part)     | 55.78                                      |
| Conductivity (S/m)                    | 0.99                                       |
| Input power                           | 10mW                                       |
| E-Field Probe                         | SN 07/15 EP247                             |
| Duty cycle                            | 1:1                                        |
| Conversion Factor                     | 5.18                                       |
| Sensor-surface                        | 4mm                                        |
| Area Scan                             | dx=8mm dy=8mm                              |
| Zoom Scan                             | 5x5x7,dx=8mm dy=8mm dz=5mm                 |
| Variation (%)                         | -2.06                                      |
| SAR 10g (W/Kg)                        | 0.058533                                   |
|                                       | 0.100079                                   |
| SAR 1g (W/Kg)                         |                                            |
| SURFACE SAR                           | VOLUME SAR                                 |
| 10   10   10   10   10   10   10   10 | (C) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 |
|                                       |                                            |

Product Description: Dipole Model: SID1800

Test Date: 2019-12-16

| Medium(liquid type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MSL 1800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1800.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Relative permittivity (real part)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 53.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Conductivity (S/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Input power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| E-Field Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SN 07/15 EP247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Duty cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Conversion Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sensor-Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Area Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dx=8mm dy=8mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Zoom Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5x5x7,dx=8mm dy=8mm dz=5mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Variation (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SAR 10g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.195216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SAR 1g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.401390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SURFACE SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VOLUME SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| IN Translation Implication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IN TOURISM TO A STATE OF THE ST |
| Stafferd but and Defening                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Volume Sudienal Interests - Inter Service Sudienal Interests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100 | # 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Product Description: Dipole Model: SID1900

Test Date: 2019-12-17

| Medium(liquid type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MSL_1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1900.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Relative permittivity (real part)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 53.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Conductivity (S/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Input power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| E-Field Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SN 07/15 EP247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Duty cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Conversion Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sensor-Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Area Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dx=8mm dy=8mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Zoom Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5x5x7,dx=8mm dy=8mm dz=5mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Variation (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -2.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SAR 10g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.192866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SAR 1g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.405792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SURFACE SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VOLUME SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Surface State Stat | Caller Stole  One Service  One |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Product Description: Dipole Model: SID2600

Model: SID2600 Test Date: 2019-12-19

| Medium(liquid type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MSL_2600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2600.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Relative permittivity (real part)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Conductivity (S/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Input power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| E-Field Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SN 07/15 EP247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Duty cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Conversion Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sensor-Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Area Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dx=8mm dy=8mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Zoom Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5x5x7,dx=8mm dy=8mm dz=5mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Variation (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -3.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SAR 10g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.227966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SAR 1g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.542814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SURFACE SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VOLUME SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Sub-Street | The first control of the control o |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

# 10 Type a Measurement Uncertainty

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table below:

| Uncertainty<br>Distribution | Normal | Rectangle | Triangular | U Shape |
|-----------------------------|--------|-----------|------------|---------|
| Multi-plying<br>Factor(a)   | 1/k(b) | 1 / √3    | 1 / √6     | 1 / √2  |

- (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
- (b) κ is the coverage factor

Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type -sumby taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %.

The COMOSAR Uncertainty Budget is show in below table:

| UNCERTAINTY F                                                                          | OR SY          | STEM           | PERFO        | RMANC          | E CHEC         | K                |                 |      |
|----------------------------------------------------------------------------------------|----------------|----------------|--------------|----------------|----------------|------------------|-----------------|------|
| а                                                                                      | С              | d              | e=<br>f(d,k) | f              | g              | h=<br>c*f/e      | i=<br>c*g/e     | k    |
| Uncertainty Component                                                                  | Tol<br>(+- %)  | Prob.<br>Dist. | Div.         | Ci<br>(1g)     | Ci<br>(10g)    | 1g Ui<br>(+-%)   | 10g Ui<br>(+-%) | Vi   |
| Measurement System                                                                     | <b>,</b> , , , | •              | !            |                | , , , , ,      | <b>,</b> , , , , | 1 \ /           |      |
| Probe calibration                                                                      | 5.8            | N              | 1            | 1              | 1              | 5.80             | 5.80            | ∞    |
| Axial Isotropy                                                                         | 3.5            | R              | √3           | (1_Cp)^1/<br>2 | (1_Cp)^1/<br>2 | 1.43             | 1.43            | 8    |
| Hemispherical Isotropy                                                                 | 5.9            | R              | √3           | (Cp)^1/2       | (Cp)^1/2       | 2.41             | 2.41            | ∞    |
| Boundary effect                                                                        | 1.0            | R              | √3           | 1              | 1              | 0.58             | 0.58            | ∞    |
| Linearity                                                                              | 4.7            | R              | √3           | 1              | 1              | 2.71             | 2.71            | ∞    |
| System detection limits                                                                | 1.0            | R              | √3           | 1              | 1              | 0.58             | 0.58            | ∞    |
| Modulation response                                                                    | 0.00           | N              | 1            | 1              | 1              | 0.00             | 0.00            | ∞    |
| Readout Electronics                                                                    | 0.50           | N              | 1            | 1              | 1              | 0.50             | 0.50            | ∞    |
| Reponse Time                                                                           | 0.0            | R              | √3           | 1              | 1              | 0.00             | 0.00            | ∞    |
| Integration Time                                                                       | 1.4            | R              | √3           | 1              | 1              | 0.81             | 0.81            | ∞    |
| RF ambient Conditions - Noise                                                          | 3.0            | R              | √3           | 1              | 1              | 1.73             | 1.73            | ∞    |
| RF ambient Conditions - Reflections                                                    | 3.0            | R              | √3           | 1              | 1              | 1.73             | 1.73            | ∞    |
| Probe positioner Mechanical Tolerance                                                  | 1.4            | R              | √3           | 1              | 1              | 0.81             | 0.81            | 8    |
| Probe positioning with respect to Phantom Shell                                        | 1.40           | R              | √3           | 1              | 1              | 0.81             | 0.81            | ∞    |
| Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation  Dipole | 2.3            | R              | √3           | 1              | 1              | 1.33             | 1.33            | ∞    |
| Deviation of experimental source from                                                  | 4.00           | N              | 1            | 1              | 1              | 4.00             | 4.00            | - 00 |
| numerical source                                                                       |                |                |              |                |                |                  |                 |      |
| Input power and SAR drift measurement                                                  | 5.00           | R              | √3           | 1              | 1              | 2.89             | 2.89            | 8    |
| Dipole axis to liquid Distance                                                         | 2.00           | R              | √3           | 1              | 1              | 1.15             | 1.15            | ∞    |
| Phantom and Tissue Parameters                                                          | 4.00           |                | 1 /0         |                | 1 4            | 0.04             | 0.04            | _    |
| Phantom Uncertainty (Shape and thickness tolerances)                                   | 4.00           | R              | √3           | 1              | 1              | 2.31             | 2.31            | ∞    |
| Uncertainty in SAR correction for deviation (in permittivity and conductivity)         | 2.00           | N              | 1            | 1              | 1              | 2.00             | 1.68            | ∞    |
| Liquid conductivity (temperature uncertainty)                                          | 2.50           | N              | 1            | 0.78           | 0.71           | 1.95             | 1.77            | ∞    |
| Liquid conductivity - measurement uncertainty                                          | 4.00           | N              | 1            | 0.23           | 0.26           | 0.92             | 1.04            | М    |
| Liquid permittivity (temperature                                                       | 2.50           | N              | 1            | 0.78           | 0.71           | 1.95             | 1.77            | ∞    |
| uncertainty) Liquid permittivity - measurement                                         | 5.00           | N              | 1            | 0.23           | 0.26           | 1.15             | 1.30            | М    |
| uncertainty Combined Standard Uncertainty                                              |                | RSS            |              |                |                | 10.21            | 10.12           |      |
| Expanded Uncertainty                                                                   | <u> </u>       | k              |              |                |                | 19.91            | 19.73           |      |
| (95% Confidence interval)                                                              |                |                |              |                |                | 10.01            | 15.76           |      |

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

| UNCERTAINTY E                                                                  | VALUA1        | TION F         | OR HAI | NDSET :                  | SAR TI                   | EST            |                 |     |
|--------------------------------------------------------------------------------|---------------|----------------|--------|--------------------------|--------------------------|----------------|-----------------|-----|
| а                                                                              | С             | d              | e=     | f                        | g                        | h=             | i=              | k   |
| ü                                                                              |               | "              | f(d,k) | '                        | 9                        | c*f/e          | c*g/e           | IX. |
| Uncertainty Component                                                          | Tol<br>(+- %) | Prob.<br>Dist. | Div.   | Ci<br>(1g)               | Ci<br>(10g)              | 1g Ui<br>(+-%) | 10g Ui<br>(+-%) | Vi  |
| Measurement System                                                             | , , ,         | •              |        | , , , ,                  | , , ,                    |                | /               |     |
| Probe calibration                                                              | 5.8           | N              | 1      | 1                        | 1                        | 5.80           | 5.80            | ∞   |
| Axial Isotropy                                                                 | 3.5           | R              | √3     | (1_Cp)^<br>1/2           | (1_Cp)^<br>1/2           | 1.43           | 1.43            | ∞   |
| Hemispherical Isotropy                                                         | 5.9           | R              | √3     | (Cp) <sup>^</sup><br>1/2 | (Cp) <sup>^</sup><br>1/2 | 2.41           | 2.41            | 8   |
| Boundary effect                                                                | 1.0           | R              | √3     | 1                        | 1                        | 0.58           | 0.58            | 8   |
| Linearity                                                                      | 4.7           | R              | √3     | 1                        | 1                        | 2.71           | 2.71            | ∞   |
| System detection limits                                                        | 1.0           | R              | √3     | 1                        | 1                        | 0.58           | 0.58            | 8   |
| Modulation response                                                            | 3.00          | N              | 1      | 1                        | 1                        | 3.00           | 3.00            | 8   |
| Readout Electronics                                                            | 0.50          | N              | 1      | 1                        | 1                        | 0.50           | 0.50            | ∞   |
| Reponse Time                                                                   | 0.0           | R              | √3     | 1                        | 1                        | 0.00           | 0.00            | 8   |
| Integration Time                                                               | 1.4           | R              | √3     | 1                        | 1                        | 0.81           | 0.81            | 8   |
| RF ambient Conditions - Noise                                                  | 3.0           | R              | √3     | 1                        | 1                        | 1.73           | 1.73            | ∞   |
| RF ambient Conditions - Reflections                                            | 3.0           | R              | √3     | 1                        | 1                        | 1.73           | 1.73            | ∞   |
| Probe positioner Mechanical Tolerance                                          | 1.4           | R              | √3     | 1                        | 1                        | 0.81           | 0.81            | ∞   |
| Probe positioning with respect to Phantom Shell                                | 1.40          | R              | √3     | 1                        | 1                        | 0.81           | 0.81            | ∞   |
| Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation | 2.3           | R              | √3     | 1                        | 1                        | 1.33           | 1.33            | ∞   |
| Test sample Related                                                            |               |                |        |                          |                          |                |                 |     |
| Test sample positioning                                                        | 2.60          | N              | 1      | 1                        | 1                        | 2.60           | 2.60            | N-1 |
| Device Holder Uncertainty                                                      | 3.00          | N              | 1      | 1                        | 1                        | 3.00           | 3.00            | N-1 |
| Output power Variation - SAR drift                                             | 5.00          | R              | √3     | 1                        | 1                        | 2.89           | 2.89            | ∞   |
| measurement                                                                    |               |                | . •    |                          |                          |                |                 |     |
| SAR scaling                                                                    | 2.00          | R              | √3     | 1                        | 1                        | 1.15           | 1.15            | ∞   |
| Phantom and Tissue Parameters                                                  |               |                |        |                          |                          |                |                 |     |
| Phantom Uncertainty (Shape and thickness tolerances)                           | 4.00          | R              | √3     | 1                        | 1                        | 2.31           | 2.31            | ∞   |
| Uncertainty in SAR correction for deviation                                    | 2.00          | N              | 1      | 1                        | 1                        | 2.00           | 1.68            | ∞   |
| (in permittivity and conductivity) Liquid conductivity (temperature            | 2.50          | N              | 1      | 0.78                     | 0.71                     | 1.95           | 1.77            | ∞   |
| uncertainty) Liquid conductivity - measurement                                 | 4.00          | N              | 1      | 0.23                     | 0.26                     | 0.92           | 1.04            | М   |
| uncertainty Liquid permittivity (temperature                                   | 2.50          | N              | 1      | 0.78                     | 0.71                     | 1.95           | 1.77            | ∞   |
| uncertainty)                                                                   |               |                |        |                          |                          |                |                 |     |
| Liquid permittivity - measurement uncertainty                                  | 5.00          | N              | 1      | 0.23                     | 0.26                     | 1.15           | 1.30            | М   |
| Combined Standard Uncertainty                                                  |               | RSS            |        |                          |                          | 10.63          | 10.54           |     |
| Expanded Uncertainty (95% Confidence interval)                                 |               | k              |        |                          |                          | 20.73          | 20.56           |     |

# 11 Output Power Verification

#### **Test Condition:**

Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The base station simulator was connected to the antenna terminal.

2 Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz – 40GHz is ±1.5dB.

3 Environmental Conditions Tem

Temperature 23°C
Relative Humidity 53%
Atmospheric Pressure 1019mbar

4 Test Date: 2019-12-13~2019-12-19

Tested By: Andy Feng

#### **Test Procedures:**

#### **CEL FI COMPASS radio output power measurement**

1. The transmitter output port was connected to base station emulator.

- 2. Establish communication link between emulator and EUT and set EUT to operate at maximum output power all the time.
- 3. Select lowest, middle, and highest channels for each band and different possible test mode.
- 4. Measure the conducted peak burst power and conducted average burst power from EUT antenna port.

#### Other radio output power measurement:

The output power was measured using power meter at low, mid, and hi channels.

#### **Source-based Time Averaged Burst Power Calculation:**

For TDMA, the following duty cycle factor was used to calculate the source-based time average power

| Number of Time slot | 1        | 2        | 3        | 4        |
|---------------------|----------|----------|----------|----------|
| Duty Cycle          | 1:8      | 1:4      | 1:2.66   | 1:2      |
| Duty cycle factor   | -9.03 dB | -6.02 dB | -4.26 dB | -3.01 dB |
| Crest Factor        | 8        | 4        | 2.66     | 2        |

**Remark:** <u>Time slot duty cycle factor = 10 \* log (Time Slot Duty Cycle)</u>

Source based time averaged power = Maximum burst averaged power (1 Uplink) – 9.03 dB Source based time averaged power = Maximum burst averaged power (2 Uplink) – 6.02 dB Source based time averaged power = Maximum burst averaged power (3 Uplink) – 4.26 dB Source based time averaged power = Maximum burst averaged power (4 Uplink) – 3.01 dB

# **Test Result:**

| WCDMA - Average Power (dBm) |        |                                       |           |      |              |       |       |                                 |  |  |
|-----------------------------|--------|---------------------------------------|-----------|------|--------------|-------|-------|---------------------------------|--|--|
| Band                        |        | WCDM                                  | A Band II |      | WCDMA Band V |       |       |                                 |  |  |
| Channel                     | 9262   | 9262 9400 9538 Tune up Power tolerant |           |      | 4132         | 4183  | 4233  | Tune<br>up<br>Power<br>tolerant |  |  |
| Frequency<br>(MHz)          | 1852.4 | 1880                                  | 1907.6    | 1    | 826.4        | 836.6 | 846.6 | 1                               |  |  |
| RMC<br>12.2k                | 23.88  | 23.79                                 | 23.76     | 23±1 | 23.86        | 23.81 | 23.76 | 23±1                            |  |  |

| WCDMA - Average Power (dBm) |        |                |        |      |  |  |  |  |  |
|-----------------------------|--------|----------------|--------|------|--|--|--|--|--|
| Band WCDMA Band             |        |                |        |      |  |  |  |  |  |
| Channel                     | 1312   | 1312 1413 1513 |        |      |  |  |  |  |  |
| Frequency (MHz)             | 1712.4 | 1732.6         | 1752.6 | /    |  |  |  |  |  |
| RMC 12.2k                   | 23.82  | 23.74          | 23.64  | 23±1 |  |  |  |  |  |

Reference No.: WTS19S12086775W001 V1 Page 33 of 190

#### **LTE Power Reduction**

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3

| Modulation | Cha        | Channel bandwidth / Transmission bandwidth (RB) |     |      |      |      |     |  |  |  |  |
|------------|------------|-------------------------------------------------|-----|------|------|------|-----|--|--|--|--|
|            | 1.4<br>MHz |                                                 |     |      |      |      |     |  |  |  |  |
| QPSK       | >5         | >4                                              | > 8 | > 12 | > 16 | > 18 | ≤ 1 |  |  |  |  |
| 16 QAM     | ≤ 5        | ≤4                                              | 8 ≥ | ≤ 12 | ≤ 16 | ≤ 18 | ≤ 1 |  |  |  |  |
| 16 QAM     | >5         | >4                                              | > 8 | > 12 | > 16 | > 18 | ≤ 2 |  |  |  |  |

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signalling Value of "NS\_01".

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

| Network<br>Signalling<br>value | Requirements<br>(sub-clause) | E-UTRA Band                | Channel<br>bandwidth<br>(MHz) | Resources<br>Blocks (N <sub>RB</sub> ) | A-MPR (dB)     |
|--------------------------------|------------------------------|----------------------------|-------------------------------|----------------------------------------|----------------|
| NS_01                          | 6.6.2.1.1                    | Table 5.5-1                | 1.4, 3, 5, 10,<br>15, 20      | Table 5.6-1                            | NA             |
|                                |                              |                            | 3                             | >5                                     | ≤ 1            |
|                                |                              | 2, 4,10, 23, 25,<br>35, 36 | 5                             | >6                                     | ≤ 1            |
| NS_03                          | 6.6.2.2.1                    |                            | 10                            | >6                                     | ≤ 1            |
|                                |                              |                            | 15                            | >8                                     | ≤ 1            |
|                                |                              |                            | 20                            | >10                                    | ≤ 1            |
| NS_04                          | 6.6.2.2.2                    | 41                         | 5                             | >6                                     | ≤ 1            |
| 140_04                         | 0.0.2.2.2                    | 71                         | 10, 15, 20                    | 10, 15, 20 See Table                   |                |
| NS_05                          | 6.6.3.3.1                    | 1                          | 10,15,20                      | ≥ 50                                   | ≤ 1            |
| NS_06                          | 6.6.2.2.3                    | 12, 13, 14, 17             | 1.4, 3, 5, 10                 | Table 5.6-1                            | n/a            |
| NS_07                          | 6.6.2.2.3<br>6.6.3.3.2       | 13                         | 10                            | Table 6.2.4-2                          | Table 6.2.4-2  |
| NS_08                          | 6.6.3.3.3                    | 19                         | 10, 15                        | > 44                                   | ≤3             |
| NS_09                          | 6.6.3.3.4                    | 21                         | 10, 15                        | > 40<br>> 55                           | ≤ 1<br>≤ 2     |
| NS 10                          |                              | 20                         | 15, 20                        | Table 6.2.4-3                          | Table 6.2.4-3  |
| NS_11                          | 6.6.2.2.1                    | 23                         | 1.4, 3, 5, 10                 | Table 6.2.4-5                          | Table 6.2.4-5  |
|                                |                              |                            |                               |                                        |                |
| NS_32                          | -                            | -                          | -                             | -                                      | -              |
| Note 1: A                      | pplies to the lower l        | block of Band 23, i.e.     | . a carrier place             | d in the 2000-20                       | 10 MHz region. |

#### LTE Band 2:

| BW(MHz)               | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up limited(dBm) | MPR<br>(dB) |        |        |        |
|-----------------------|-------|-----------|-------|---------------------|-----------------|------------------------|----------------------|-------------|--------|--------|--------|
|                       |       |           |       | 1                   | 0               | 23.08                  | 23.0±1               | 1           |        |        |        |
|                       |       |           |       | 1                   | 2               | 22.82                  | 23.0±1               | 1           |        |        |        |
|                       |       |           |       | 1                   | 5               | 22.97                  | 23.0±1               | /           |        |        |        |
|                       |       |           | QPSK  | 3                   | 0               | 23.12                  | 23.0±1               | 1           |        |        |        |
|                       |       |           |       | 3                   | 1               | 23.26                  | 23.0±1               | /           |        |        |        |
|                       |       |           |       | 3                   | 2               | 23.07                  | 23.0±1               | 1           |        |        |        |
|                       | 18607 | 1850.7    |       | 6                   | 0               | 22.10                  | 22.5±1               | 0.5         |        |        |        |
|                       | 10007 | 1650.7    |       | 1                   | 0               | 22.97                  | 22.5±1               | 0.5         |        |        |        |
|                       |       |           |       | 1                   | 2               | 23.26                  | 22.5±1               | 0.5         |        |        |        |
|                       |       |           |       | 1                   | 5               | 22.97                  | 22.5±1               | 0.5         |        |        |        |
|                       |       |           | 16QAM | 3                   | 0               | 23.17                  | 22.5±1               | 0.5         |        |        |        |
|                       |       |           |       | 3                   | 1               | 23.29                  | 22.5±1               | 0.5         |        |        |        |
|                       |       |           |       | 3                   | 2               | 23.41                  | 22.5±1               | 0.5         |        |        |        |
|                       |       |           |       | 6                   | 0               | 22.27                  | 22.5±1               | 0.5         |        |        |        |
|                       |       |           |       | 1                   | 0               | 22.95                  | 23.0±1               | 1           |        |        |        |
|                       |       |           |       | 1                   | 2               | 22.89                  | 23.0±1               | /           |        |        |        |
|                       |       |           | QPSK  | 1                   | 5               | 23.02                  | 23.0±1               | /           |        |        |        |
|                       |       |           |       | 3                   | 0               | 23.22                  | 23.0±1               | /           |        |        |        |
|                       |       |           |       | 3                   | 1               | 23.37                  | 23.0±1               | 1           |        |        |        |
|                       |       |           |       | 3                   | 2               | 23.25                  | 23.0±1               | /           |        |        |        |
| 1.4MHz                | 10000 | 1000      | 1880  | 1880                |                 | 6                      | 0                    | 22.35       | 21.5±1 | 1.5    |        |
| 1. <del>4</del> 1VI⊓∠ | 18900 | 18900     | 18900 |                     | 1880            | 1000                   |                      | 1           | 0      | 21.90  | 21.5±1 |
|                       |       |           |       |                     | 1               | 2                      | 21.90                | 21.5±1      | 1.5    |        |        |
|                       |       |           |       | 1                   | 5               | 21.85                  | 21.5±1               | 1.5         |        |        |        |
|                       |       |           | 16QAM | 3                   | 0               | 22.35                  | 21.5±1               | 1.5         |        |        |        |
|                       |       |           |       |                     | 3               | 1                      | 22.22                | 21.5±1      | 1.5    |        |        |
|                       |       |           |       | 3                   | 2               | 22.26                  | 21.5±1               | 1.5         |        |        |        |
|                       |       |           |       | 6                   | 0               | 20.96                  | 21.5±1               | 1.5         |        |        |        |
|                       |       |           |       | 1                   | 0               | 21.82                  | 22.0±1               | 1           |        |        |        |
|                       |       |           |       | 1                   | 2               | 21.93                  | 22.0±1               | /           |        |        |        |
|                       |       |           |       | 1                   | 5               | 21.85                  | 22.0±1               | /           |        |        |        |
|                       |       |           | QPSK  | 3                   | 0               | 22.34                  | 22.0±1               | 1           |        |        |        |
|                       |       |           |       | 3                   | 1               | 22.47                  | 22.0±1               | /           |        |        |        |
|                       |       |           |       | 3                   | 2               | 22.39                  | 22.0±1               | /           |        |        |        |
|                       | 10102 | 1000.3    |       | 6                   | 0               | 21.30                  | 21.5±1               | 0.5         |        |        |        |
|                       | 19193 | 1909.3    |       | 1                   | 0               | 21.81                  | 21.5±1               | 0.5         |        |        |        |
|                       |       |           |       | 1                   | 2               | 22.05                  | 21.5±1               | 0.5         |        |        |        |
|                       |       |           |       | 1                   | 5               | 21.88                  | 21.5±1               | 0.5         |        |        |        |
|                       |       |           | 16QAM | 3                   | 0               | 22.36                  | 21.5±1               | 0.5         |        |        |        |
|                       |       |           |       | 3                   | 1               | 22.41                  | 21.5±1               | 0.5         |        |        |        |
|                       |       |           |       |                     |                 |                        | 3                    | 2           | 22.38  | 21.5±1 | 0.5    |
|                       |       |           |       | 6                   | 0               | 21.14                  | 21.5±1               | 0.5         |        |        |        |

| BW(MHz) | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |
|---------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|
| 3MHz    |       |           |       | 1                   | 0               | 22.98                  | 23.0±1                  | 1           |
|         | 18615 | 1851.5    | QPSK  | 1                   | 8               | 23.17                  | 23.0±1                  | 1           |
|         |       |           |       | 1                   | 14              | 22.98                  | 23.0±1                  | 1           |
|         |       |           |       | 6                   | 0               | 22.09                  | 22.5±1                  | 0.5         |
|         |       |           |       | 6                   | 4               | 22.10                  | 22.5±1                  | 0.5         |
|         |       |           |       | 6                   | 9               | 22.00                  | 22.5±1                  | 0.5         |
|         |       |           |       | 15                  | 0               | 21.97                  | 22.5±1                  | 0.5         |
|         |       |           | 16QAM | 1                   | 0               | 22.78                  | 22.5±1                  | 0.5         |
|         |       |           |       | 1                   | 8               | 23.16                  | 22.5±1                  | 0.5         |
|         |       |           |       | 1                   | 14              | 23.04                  | 22.5±1                  | 0.5         |
|         |       |           |       | 6                   | 0               | 22.12                  | 22.5±1                  | 0.5         |
|         |       |           |       | 6                   | 4               | 22.18                  | 22.5±1                  | 0.5         |
|         |       |           |       | 6                   | 9               | 22.17                  | 22.5±1                  | 0.5         |
|         |       |           |       | 15                  | 0               | 22.14                  | 22.5±1                  | 0.5         |
|         |       |           | QPSK  | 1                   | 0               | 23.05                  | 23.0±1                  | 1           |
|         | 18900 |           |       | 1                   | 8               | 23.31                  | 23.0±1                  | 1           |
|         |       |           |       | 1                   | 14              | 23.02                  | 23.0±1                  | 1           |
|         |       |           |       | 6                   | 0               | 22.18                  | 22.0±1                  | 1.0         |
|         |       | 1880      |       | 6                   | 4               | 22.32                  | 22.0±1                  | 1.0         |
|         |       |           |       | 6                   | 9               | 22.27                  | 22.0±1                  | 1.0         |
|         |       |           |       | 15                  | 0               | 22.23                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 0               | 21.74                  | 22.0±1                  | 1.0         |
|         |       |           | 16QAM | 1                   | 8               | 21.92                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 14              | 21.83                  | 22.0±1                  | 1.0         |
|         |       |           |       | 6                   | 0               | 21.03                  | 22.0±1                  | 1.0         |
|         |       |           |       | 6                   | 4               | 20.84                  | 22.0±1                  | 1.0         |
|         |       |           |       | 6                   | 9               | 21.12                  | 22.0±1                  | 1.0         |
|         |       |           |       | 15                  | 0               | 21.12                  | 22.0±1                  | 1.0         |
|         | 19185 | 1908.5    | QPSK  | 1                   | 0               | 21.43                  | 22.0±1                  | 1           |
|         |       |           |       | 1                   | 8               | 21.72                  | 22.0±1                  | 1           |
|         |       |           |       | 1                   | 14              | 21.75                  | 22.0±1                  | 1           |
|         |       |           |       | 6                   | 0               | 21.15                  | 21.0±1                  | 1.0         |
|         |       |           |       | 6                   | 4               | 21.11                  | 21.0±1                  | 1.0         |
|         |       |           |       | 6                   | 9               | 21.22                  | 21.0±1                  | 1.0         |
|         |       |           |       | 15                  | 0               | 21.21                  | 21.0±1                  | 1.0         |
|         |       |           | 16QAM | 1                   | 0               | 21.84                  | 21.0±1                  | 1.0         |
|         |       |           |       | 1                   | 8               | 21.87                  | 21.0±1                  | 1.0         |
|         |       |           |       | 1                   | 14              | 21.87                  | 21.0±1                  | 1.0         |
|         |       |           |       | 6                   | 0               | 21.08                  | 21.0±1                  | 1.0         |
|         |       |           |       | 6                   | 4               | 21.10                  | 21.0±1                  | 1.0         |
|         |       |           |       | 6                   | 9               | 21.13                  | 21.0±1                  | 1.0         |
|         |       |           |       | 15                  | 0               | 21.29                  | 21.0±1                  | 1.0         |

| BW(MHz) | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |
|---------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|
| 5MHz    |       |           |       | 1                   | 0               | 23.00                  | 23.0±1                  | 1           |
|         | 18625 | 1852.5    | QPSK  | 1                   | 12              | 23.13                  | 23.0±1                  | 1           |
|         |       |           |       | 1                   | 24              | 23.00                  | 23.0±1                  | 1           |
|         |       |           |       | 12                  | 0               | 22.09                  | 22.5±1                  | 0.5         |
|         |       |           |       | 12                  | 6               | 22.19                  | 22.5±1                  | 0.5         |
|         |       |           |       | 12                  | 11              | 22.20                  | 22.5±1                  | 0.5         |
|         |       |           |       | 25                  | 0               | 22.16                  | 22.5±1                  | 0.5         |
|         |       |           | 16QAM | 1                   | 0               | 22.91                  | 22.5±1                  | 0.5         |
|         |       |           |       | 1                   | 12              | 23.11                  | 22.5±1                  | 0.5         |
|         |       |           |       | 1                   | 24              | 22.86                  | 22.5±1                  | 0.5         |
|         |       |           |       | 12                  | 0               | 22.00                  | 22.5±1                  | 0.5         |
|         |       |           |       | 12                  | 6               | 22.23                  | 22.5±1                  | 0.5         |
|         |       |           |       | 12                  | 11              | 22.28                  | 22.5±1                  | 0.5         |
|         |       |           |       | 25                  | 0               | 22.11                  | 22.5±1                  | 0.5         |
|         | 18900 | 1880      | QPSK  | 1                   | 0               | 22.91                  | 23.0±1                  | 1           |
|         |       |           |       | 1                   | 12              | 23.20                  | 23.0±1                  | 1           |
|         |       |           |       | 1                   | 24              | 23.13                  | 23.0±1                  | 1           |
|         |       |           |       | 12                  | 0               | 22.08                  | 22.0±1                  | 1.0         |
|         |       |           |       | 12                  | 6               | 22.28                  | 22.0±1                  | 1.0         |
|         |       |           |       | 12                  | 11              | 22.29                  | 22.0±1                  | 1.0         |
|         |       |           |       | 25                  | 0               | 22.05                  | 22.0±1                  | 1.0         |
|         |       |           | 16QAM | 1                   | 0               | 21.59                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 12              | 22.15                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 24              | 21.84                  | 22.0±1                  | 1.0         |
|         |       |           |       | 12                  | 0               | 20.91                  | 22.0±1                  | 1.0         |
|         |       |           |       | 12                  | 6               | 21.00                  | 22.0±1                  | 1.0         |
|         |       |           |       | 12                  | 11              | 21.12                  | 22.0±1                  | 1.0         |
|         |       |           |       | 25                  | 0               | 21.31                  | 22.0±1                  | 1.0         |
|         | 19175 | 1907.5    | QPSK  | 1                   | 0               | 21.70                  | 22.0±1                  | 1           |
|         |       |           |       | 1                   | 12              | 22.29                  | 22.0±1                  | 1           |
|         |       |           |       | 1                   | 24              | 21.57                  | 22.0±1                  | 1           |
|         |       |           |       | 12                  | 0               | 21.10                  | 21.0±1                  | 1.0         |
|         |       |           |       | 12                  | 6               | 21.26                  | 21.0±1                  | 1.0         |
|         |       |           |       | 12                  | 11              | 20.97                  | 21.0±1                  | 1.0         |
|         |       |           |       | 25                  | 0               | 21.30                  | 21.0±1                  | 1.0         |
|         |       |           | 16QAM | 1                   | 0               | 21.74                  | 21.0±1                  | 1.0         |
|         |       |           |       | 1                   | 12              | 22.00                  | 21.0±1                  | 1.0         |
|         |       |           |       | 1                   | 24              | 21.81                  | 21.0±1                  | 1.0         |
|         |       |           |       | 12                  | 0               | 20.92                  | 21.0±1                  | 1.0         |
|         |       |           |       | 12                  | 6               | 21.02                  | 21.0±1                  | 1.0         |
|         |       |           |       | 12                  | 11              | 21.05                  | 21.0±1                  | 1.0         |
|         |       |           |       | 25                  | 0               | 21.22                  | 21.0±1                  | 1.0         |

| BW(MHz)    | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |
|------------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|
|            |       |           |       | 1                   | 0               | 22.96                  | 23.0±1                  | 1           |
|            |       |           |       | 1                   | 24              | 23.78                  | 23.0±1                  | /           |
|            |       |           |       | 1                   | 49              | 22.67                  | 23.0±1                  | /           |
|            |       |           | QPSK  | 25                  | 0               | 22.39                  | 22.0±1                  | 1.0         |
|            |       |           |       | 25                  | 12              | 22.58                  | 22.0±1                  | 1.0         |
|            |       |           |       | 25                  | 24              | 22.07                  | 22.0±1                  | 1.0         |
|            | 18650 | 1855      |       | 50                  | 0               | 22.20                  | 22.0±1                  | 1.0         |
|            | 10000 | 1655      |       | 1                   | 0               | 23.03                  | 23.0±1                  | 1           |
|            |       |           |       | 1                   | 24              | 23.75                  | 23.0±1                  | 1           |
|            |       |           |       | 1                   | 49              | 22.79                  | 22.0±1                  | 1.0         |
|            |       |           | 16QAM | 25                  | 0               | 22.09                  | 22.0±1                  | 1.0         |
|            |       |           |       | 25                  | 12              | 22.31                  | 22.0±1                  | 1.0         |
|            |       |           |       | 25                  | 24              | 22.19                  | 22.0±1                  | 1.0         |
|            |       |           |       | 50                  | 0               | 21.98                  | 22.0±1                  | 1.0         |
|            |       |           |       | 1                   | 0               | 22.98                  | 23.0±1                  | /           |
|            |       |           |       | 1                   | 24              | 23.50                  | 23.0±1                  | 1           |
|            |       |           | 1     | 49                  | 22.95           | 23.0±1                 | /                       |             |
|            |       |           | QPSK  | 25                  | 0               | 22.19                  | 22.0±1                  | 1.0         |
|            |       |           |       | 25                  | 12              | 22.29                  | 22.0±1                  | 1.0         |
|            |       |           |       | 25                  | 24              | 22.19                  | 22.0±1                  | 1.0         |
| 10MHz      | 18900 | 1880      |       | 50                  | 0               | 22.14                  | 22.0±1                  | 1.0         |
| I UIVII IZ | 10900 | 1000      |       | 1                   | 0               | 21.88                  | 22.0±1                  | 1.0         |
|            |       |           |       | 1                   | 24              | 21.84                  | 22.0±1                  | 1.0         |
|            |       |           |       | 1                   | 49              | 21.85                  | 22.0±1                  | 1.0         |
|            |       |           | 16QAM | 25                  | 0               | 21.35                  | 22.0±1                  | 1.0         |
|            |       |           |       | 25                  | 12              | 21.36                  | 22.0±1                  | 1.0         |
|            |       |           |       | 25                  | 24              | 21.33                  | 22.0±1                  | 1.0         |
|            |       |           |       | 50                  | 0               | 21.17                  | 22.0±1                  | 1.0         |
|            |       |           |       | 1                   | 0               | 22.03                  | 22.0±1                  | 1           |
|            |       |           |       | 1                   | 24              | 21.87                  | 22.0±1                  | 1           |
|            |       |           |       | 1                   | 49              | 21.78                  | 22.0±1                  | 1           |
|            |       |           | QPSK  | 25                  | 0               | 21.12                  | 21.0±1                  | 1.0         |
|            |       |           |       | 25                  | 12              | 21.30                  | 21.0±1                  | 1.0         |
|            |       |           |       | 25                  | 24              | 21.21                  | 21.0±1                  | 1.0         |
|            | 10150 | 1005      |       | 50                  | 0               | 21.14                  | 21.0±1                  | 1.0         |
|            | 19150 | 1905      |       | 1                   | 0               | 21.79                  | 21.0±1                  | 1.0         |
|            |       |           |       | 1                   | 24              | 21.72                  | 21.0±1                  | 1.0         |
|            |       |           |       | 1                   | 49              | 21.76                  | 21.0±1                  | 1.0         |
|            |       |           | 16QAM | 25                  | 0               | 21.18                  | 21.0±1                  | 1.0         |
|            |       |           |       | 25                  | 12              | 21.28                  | 21.0±1                  | 1.0         |
|            |       |           |       | 25                  | 24              | 21.22                  | 21.0±1                  | 1.0         |
|            |       |           |       | 50                  | 0               | 21.24                  | 21.0±1                  | 1.0         |

| BW(MHz)    | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |   |       |        |
|------------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|---|-------|--------|
|            |       |           |       | 1                   | 0               | 22.92                  | 23.0±1                  | 1           |   |       |        |
|            |       |           |       | 1                   | 37              | 23.44                  | 23.0±1                  | /           |   |       |        |
|            |       |           |       | 1                   | 74              | 22.20                  | 23.0±1                  | 1           |   |       |        |
|            |       |           | QPSK  | 36                  | 0               | 22.39                  | 22.0±1                  | 1.0         |   |       |        |
|            |       |           |       | 36                  | 16              | 22.31                  | 22.0±1                  | 1.0         |   |       |        |
|            |       |           |       | 36                  | 35              | 21.92                  | 22.0±1                  | 1.0         |   |       |        |
|            | 40075 | 4057.5    |       | 75                  | 0               | 22.17                  | 22.0±1                  | 1.0         |   |       |        |
|            | 18675 | 1857.5    |       | 1                   | 0               | 22.95                  | 22.0±1                  | 1.0         |   |       |        |
|            |       |           |       | 1                   | 37              | 23.49                  | 23.0±1                  | 1           |   |       |        |
|            |       |           |       | 1                   | 74              | 22.60                  | 22.0±1                  | 1.0         |   |       |        |
|            |       |           | 16QAM | 36                  | 0               | 22.13                  | 22.0±1                  | 1.0         |   |       |        |
|            |       |           |       | 36                  | 16              | 22.33                  | 22.0±1                  | 1.0         |   |       |        |
|            |       |           |       | 36                  | 35              | 22.15                  | 22.0±1                  | 1.0         |   |       |        |
|            |       |           |       |                     |                 |                        |                         | 75          | 0 | 22.02 | 22.0±1 |
|            |       |           |       | 1                   | 0               | 22.79                  | 23.0±1                  | /           |   |       |        |
|            |       |           |       | 1                   | 37              | 23.19                  | 23.0±1                  | 1           |   |       |        |
|            |       |           |       | 1                   | 74              | 22.92                  | 23.0±1                  | /           |   |       |        |
|            |       |           | QPSK  | 36                  | 0               | 22.23                  | 22.0±1                  | 1.0         |   |       |        |
|            |       |           |       | 36                  | 16              | 22.12                  | 22.0±1                  | 1.0         |   |       |        |
|            |       |           |       | 36                  | 35              | 21.98                  | 22.0±1                  | 1.0         |   |       |        |
| 15MHz      | 18900 | 1880      |       | 75                  | 0               | 22.27                  | 22.0±1                  | 1.0         |   |       |        |
| 1 SIVII 1Z | 10900 | 1000      |       | 1                   | 0               | 21.72                  | 22.0±1                  | 1.0         |   |       |        |
|            |       |           |       | 1                   | 37              | 21.69                  | 22.0±1                  | 1.0         |   |       |        |
|            |       |           |       | 1                   | 74              | 21.90                  | 22.0±1                  | 1.0         |   |       |        |
|            |       |           | 16QAM | 36                  | 0               | 21.23                  | 22.0±1                  | 1.0         |   |       |        |
|            |       |           |       | 36                  | 16              | 21.29                  | 22.0±1                  | 1.0         |   |       |        |
|            |       |           |       | 36                  | 35              | 21.12                  | 22.0±1                  | 1.0         |   |       |        |
|            |       |           |       | 75                  | 0               | 21.15                  | 22.0±1                  | 1.0         |   |       |        |
|            |       |           |       | 1                   | 0               | 21.90                  | 22.0±1                  | 1           |   |       |        |
|            |       |           |       | 1                   | 37              | 21.50                  | 22.0±1                  | 1           |   |       |        |
|            |       |           |       | 1                   | 74              | 21.58                  | 22.0±1                  | 1           |   |       |        |
|            |       |           | QPSK  | 36                  | 0               | 21.07                  | 21.0±1                  | 1.0         |   |       |        |
|            |       |           |       | 36                  | 16              | 21.09                  | 21.0±1                  | 1.0         |   |       |        |
|            |       |           |       | 36                  | 35              | 20.98                  | 21.0±1                  | 1.0         |   |       |        |
|            | 19125 | 1902.5    |       | 75                  | 0               | 21.25                  | 21.0±1                  | 1.0         |   |       |        |
|            | 19125 | 1802.3    |       | 1                   | 0               | 21.67                  | 21.0±1                  | 1.0         |   |       |        |
|            |       |           |       | 1                   | 37              | 21.83                  | 21.0±1                  | 1.0         |   |       |        |
|            |       |           |       | 1                   | 74              | 21.79                  | 21.0±1                  | 1.0         |   |       |        |
|            |       |           | 16QAM | 36                  | 0               | 21.11                  | 21.0±1                  | 1.0         |   |       |        |
|            |       |           |       | 36                  | 16              | 21.25                  | 21.0±1                  | 1.0         |   |       |        |
|            |       |           |       | 36                  | 35              | 21.18                  | 21.0±1                  | 1.0         |   |       |        |
|            |       |           |       | 75                  | 0               | 21.20                  | 21.0±1                  | 1.0         |   |       |        |

| BW(MHz) | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset    | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB)                                     |
|---------|-------|-----------|-------|---------------------|--------------------|------------------------|-------------------------|-------------------------------------------------|
|         |       |           |       | 1                   | 0                  | 23.00                  | 23.0±1                  | / // // 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
|         |       |           |       | 1                   | 49                 | 23.80                  | 23.0±1                  | 1                                               |
|         |       |           |       | 1                   | 99                 | 22.72                  | 23.0±1                  | /                                               |
|         |       |           | QPSK  | 50                  | 0                  | 22.53                  | 22.0±1                  | 1.0                                             |
|         |       |           |       | 50                  | 24                 | 22.32                  | 22.0±1                  | 1.0                                             |
|         |       |           |       | 50                  | 49                 | 21.99                  | 22.0±1                  | 1.0                                             |
|         | 18700 | 1860      |       | 100                 | 0                  | 22.19                  | 22.0±1                  | 1.0                                             |
|         | 18700 | 1800      |       | 1                   | 0                  | 22.97                  | 22.0±1                  | 1.0                                             |
|         |       |           |       | 1                   | 49                 | 24.64                  | 24.0±1                  | 1                                               |
|         |       |           |       | 1                   | 99                 | 22.96                  | 22.0±1                  | 1.0                                             |
|         |       |           | 16QAM | 50                  | 0                  | 22.17                  | 22.0±1                  | 1.0                                             |
|         |       |           |       | 50                  | 24                 | 22.60                  | 22.0±1                  | 1.0                                             |
|         |       |           |       | 50                  | 50 49 22.25 22.0±1 | 1.0                    |                         |                                                 |
|         |       |           |       | 100                 | 0                  | 22.04                  | 22.0±1                  | 1.0                                             |
|         |       |           |       | 1                   | 0                  | 22.94                  | 23.0±1                  | 1                                               |
|         |       |           |       | 1                   | 49                 | 23.20                  | 23.0±1                  | 1                                               |
|         |       |           | 1     | 99                  | 22.65              | 23.0±1                 | 1                       |                                                 |
|         |       |           | QPSK  | 50                  | 0                  | 22.31                  | 22.0±1                  | 1.0                                             |
|         |       |           |       | 50                  | 24                 | 22.09                  | 22.0±1                  | 1.0                                             |
|         |       |           |       | 50                  | 49                 | 21.79                  | 22.0±1                  |                                                 |
| 20MHz   | 18900 | 1880      |       | 100                 | 0                  | 22.26                  | 22.0±1                  | 1.0                                             |
| ZOWINZ  | 10000 | 1000      |       | 1                   | 0                  | 21.81                  | 22.0±1                  |                                                 |
|         |       |           |       | 1                   | 49                 | 21.74                  | 22.0±1                  | 1.0                                             |
|         |       |           |       | 1                   | 99                 | 21.95                  | 22.0±1                  |                                                 |
|         |       |           | 16QAM | 50                  | 0                  | 21.26                  | 22.0±1                  | 1.0                                             |
|         |       |           |       | 50                  | 24                 | 21.26                  | 22.0±1                  | 1.0                                             |
|         |       |           |       | 50                  | 49                 | 21.18                  | 22.0±1                  |                                                 |
|         |       |           |       | 100                 | 0                  | 21.19                  | 22.0±1                  | 1.0                                             |
|         |       |           |       | 1                   | 0                  | 21.88                  | 22.0±1                  |                                                 |
|         |       |           |       | 1                   | 49                 | 21.93                  | 22.0±1                  |                                                 |
|         |       |           |       | 1                   | 99                 | 21.85                  | 22.0±1                  |                                                 |
|         |       |           | QPSK  | 50                  | 0                  | 21.25                  | 21.0±1                  |                                                 |
|         |       |           |       | 50                  | 24                 | 21.22                  | 21.0±1                  |                                                 |
|         |       |           |       | 50                  | 49                 | 21.17                  | 21.0±1                  |                                                 |
|         | 19100 | 1900      |       | 100                 | 0                  | 21.09                  | 21.0±1                  |                                                 |
|         | 19100 |           |       | 1                   | 0                  | 21.84                  | 21.0±1                  |                                                 |
|         |       |           |       | 1                   | 49                 | 21.89                  | 21.0±1                  | 1.0                                             |
|         |       |           |       | 1                   | 99                 | 21.88                  | 21.0±1                  | 1.0                                             |
|         |       |           | 16QAM | 50                  | 0                  | 21.28                  | 21.0±1                  | 1.0                                             |
|         |       |           |       | 50                  | 24                 | 21.21                  | 21.0±1                  | 1.0                                             |
|         |       |           |       | 50                  | 49                 | 21.23                  | 21.0±1                  | 1.0                                             |
|         |       |           |       | 100                 | 0                  | 21.12                  | 21.0±1                  | 1.0                                             |

LTE Band 4:

| BW(MHz)   | 4:<br>Ch | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB)                                                       |
|-----------|----------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------------------------------------------------------------|
|           |          |           |       | 1                   | 0               | 23.04                  | 23.0±1                  | (dB)  /  /  /  /  1.0  /  /  /  1.0  /  /  /  1.0  /  /  1.0  1.0 |
|           |          |           |       | 1                   | 2               | 23.12                  | 23.0±1                  | 1                                                                 |
|           |          |           |       | 1                   | 5               | 23.21                  | 23.0±1                  | 1                                                                 |
|           |          |           | QPSK  | 3                   | 0               | 23.18                  | 23.0±1                  | 1                                                                 |
|           |          |           |       | 3                   | 1               | 23.37                  | 23.0±1                  | 1                                                                 |
|           |          |           |       | 3                   | 2               | 23.41                  | 23.0±1                  | 1                                                                 |
|           | 19957    | 1710.7    |       | 6                   | 0               | 22.41                  | 22.0±1                  | 1.0                                                               |
|           | 19931    | 1710.7    |       | 1                   | 0               | 23.03                  | 23.0±1                  | /                                                                 |
|           |          |           |       | 1                   | 2               | 23.11                  | 23.0±1                  | /                                                                 |
|           |          |           |       | 1                   | 5               | 23.14                  | 23.0±1                  | /                                                                 |
|           |          |           | 16QAM | 3                   | 0               | 23.06                  | 23.0±1                  | 1                                                                 |
|           |          |           |       | 3                   | 1               | 23.31                  | 23.0±1                  | /                                                                 |
|           |          |           |       | 3                   | 2               | 23.25                  | 23.0±1                  | /                                                                 |
|           |          |           |       | 6                   | 0               | 22.17                  | 22.0±1                  | 1.0                                                               |
|           |          |           |       | 1                   | 0               | 22.97                  | 23.0±1                  | 1                                                                 |
|           |          |           |       | 1                   | 2               | 23.11                  | 23.0±1                  | 1                                                                 |
|           |          |           |       | 1                   | 5               | 23.02                  | 23.0±1                  | 1                                                                 |
|           |          |           | QPSK  | 3                   | 0               | 23.04                  | 23.0±1                  | /                                                                 |
|           |          |           |       | 3                   | 1               | 23.27                  | 23.0±1                  | 1                                                                 |
|           |          |           |       | 3                   | 2               | 23.24                  | 23.0±1                  | /                                                                 |
| 1.4MHz    | 20175    | 1732.5    |       | 6                   | 0               | 22.23                  | 22.0±1                  | 1.0                                                               |
| 1.7111112 | 20175    | 1732.5    |       | 1                   | 0               | 21.94                  | 22.0±1                  | 1.0                                                               |
|           |          |           |       | 1                   | 2               | 22.07                  | 22.0±1                  | 1.0                                                               |
|           |          |           |       | 1                   | 5               | 21.96                  | 22.0±1                  | 1.0                                                               |
|           |          |           | 16QAM | 3                   | 0               | 22.47                  | 22.0±1                  | 1.0                                                               |
|           |          |           |       | 3                   | 1               | 22.59                  | 22.0±1                  | 1.0                                                               |
|           |          |           |       | 3                   | 2               | 22.43                  | 22.0±1                  | 1.0                                                               |
|           |          |           |       | 6                   | 0               | 21.45                  | 22.0±1                  | 1.0                                                               |
|           |          |           |       | 1                   | 0               | 21.76                  | 22.0±1                  | 1                                                                 |
|           |          |           |       | 1                   | 2               | 22.03                  | 22.0±1                  | /                                                                 |
|           |          |           |       | 1                   | 5               | 21.77                  | 22.0±1                  | 1                                                                 |
|           |          |           | QPSK  | 3                   | 0               | 22.44                  | 22.0±1                  | 1                                                                 |
|           |          |           |       | 3                   | 1               | 22.41                  | 22.0±1                  |                                                                   |
|           |          |           |       | 3                   | 2               | 22.44                  | 22.0±1                  |                                                                   |
|           | 20202    | 1754.9    |       | 6                   | 0               | 21.26                  | 21.0±1                  | 1.0                                                               |
|           | 20393    | 1754.3    |       | 1                   | 0               | 21.72                  | 21.0±1                  | 1.0                                                               |
|           |          |           |       | 1                   | 2               | 21.84                  | 21.0±1                  | 1.0                                                               |
|           |          |           |       | 1                   | 5               | 21.70                  | 21.0±1                  | 1.0                                                               |
|           |          |           | 16QAM | 3                   | 0               | 22.29                  | 22.0±1                  | 1                                                                 |
|           |          |           |       | 3                   | 1               | 22.53                  | 22.0±1                  | 1                                                                 |
|           |          |           |       | 3                   | 2               | 22.48                  | 22.0±1                  | 1                                                                 |
|           |          |           | 6     | 0                   | 21.42           | 21.0±1                 | 1.0                     |                                                                   |

| BW(MHz)  | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |
|----------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|
|          |       |           |       | 1                   | 0               | 23.14                  | 23.0±1                  | /           |
|          |       |           |       | 1                   | 8               | 23.26                  | 23.0±1                  | /           |
|          |       |           |       | 1                   | 14              | 23.07                  | 23.0±1                  | /           |
|          |       |           | QPSK  | 6                   | 0               | 22.36                  | 22.0±1                  | 1.0         |
|          |       |           |       | 6                   | 4               | 22.35                  | 22.0±1                  | 1.0         |
|          |       |           |       | 6                   | 9               | 22.23                  | 22.0±1                  | 1.0         |
|          | 19965 | 1711.5    |       | 15                  | 0               | 22.41                  | 22.0±1                  | 1.0         |
|          | 19903 | 1711.5    |       | 1                   | 0               | 23.10                  | 23.0±1                  | 1           |
|          |       |           |       | 1                   | 8               | 23.09                  | 23.0±1                  | 1           |
|          |       |           |       | 1                   | 14              | 23.16                  | 23.0±1                  | 1           |
|          |       |           | 16QAM | 8                   | 0               | 22.24                  | 22.0±1                  | 1.0         |
|          |       |           |       | 8                   | 4               | 22.26                  | 22.0±1                  | 1.0         |
|          |       |           |       | 8                   | 9               | 22.14                  | 22.0±1                  | 1.0         |
|          |       |           |       | 15                  | 0               | 22.16                  | 22.0±1                  | 1.0         |
|          |       |           |       | 1                   | 0               | 23.06                  | 23.0±1                  | /           |
|          |       |           |       | 1                   | 8               | 22.77                  | 23.0±1                  | /           |
|          |       |           |       | 1                   | 14              | 22.97                  | 23.0±1                  | 1           |
|          |       |           | QPSK  | 6                   | 0               | 22.12                  | 22.0±1                  | 1.0         |
|          |       |           |       | 6                   | 4               | 22.07                  | 22.0±1                  | 1.0         |
|          |       |           |       | 6                   | 9               | 22.12                  | 22.0±1                  | 1.0         |
| 3MHz     | 20175 | 1732.5    |       | 15                  | 0               | 22.13                  | 22.0±1                  | 1.0         |
| JIVII IZ | 20173 | 1732.3    |       | 1                   | 0               | 21.95                  | 22.0±1                  | 1.0         |
|          |       |           |       | 1                   | 8               | 21.88                  | 22.0±1                  | 1.0         |
|          |       |           |       | 1                   | 14              | 21.98                  | 22.0±1                  | 1.0         |
|          |       |           | 16QAM | 6                   | 0               | 21.21                  | 22.0±1                  | 1.0         |
|          |       |           |       | 6                   | 4               | 21.29                  | 22.0±1                  | 1.0         |
|          |       |           |       | 6                   | 9               | 21.26                  | 22.0±1                  | 1.0         |
|          |       |           |       | 15                  | 0               | 21.37                  | 22.0±1                  | 1.0         |
|          |       |           |       | 1                   | 0               | 21.80                  | 22.0±1                  | 1           |
|          |       |           |       | 1                   | 8               | 21.76                  | 22.0±1                  | 1           |
|          |       |           |       | 1                   | 14              | 21.77                  | 22.0±1                  | 1           |
|          |       |           | QPSK  | 6                   | 0               | 21.14                  | 21.0±1                  | 1.0         |
|          |       |           |       | 6                   | 4               | 21.10                  | 21.0±1                  | 1.0         |
|          |       |           |       | 6                   | 9               | 21.16                  | 21.0±1                  | 1.0         |
|          | 20205 | 1750 5    |       | 15                  | 0               | 21.30                  | 21.0±1                  | 1.0         |
|          | 20385 | 1753.5    |       | 1                   | 0               | 21.61                  | 21.0±1                  | 1.0         |
|          |       |           |       | 1                   | 8               | 21.73                  | 21.0±1                  | 1.0         |
|          |       |           |       | 1                   | 14              | 21.82                  | 21.0±1                  | 1.0         |
|          |       |           | 16QAM | 8                   | 0               | 21.10                  | 21.0±1                  | 1.0         |
|          |       |           |       | 8                   | 4               | 21.00                  | 21.0±1                  | 1.0         |
|          |       |           |       | 8                   | 9               | 21.04                  | 21.0±1                  | 1.0         |
|          |       |           |       | 15                  | 0               | 21.30                  | 21.0±1                  | 1.0         |

| BW(MHz)  | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |
|----------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|
|          |       |           |       | 1                   | 0               | 23.07                  | 23.0±1                  | /           |
|          |       |           |       | 1                   | 49              | 22.84                  | 23.0±1                  | /           |
|          |       |           |       | 1                   | 99              | 22.91                  | 23.0±1                  | 1           |
|          |       |           | QPSK  | 12                  | 0               | 22.43                  | 22.0±1                  | 1.0         |
|          |       |           |       | 12                  | 24              | 22.25                  | 22.0±1                  | 1.0         |
|          |       |           |       | 12                  | 49              | 22.23                  | 22.0±1                  | 1.0         |
|          | 19975 | 1712.5    |       | 25                  | 0               | 22.27                  | 22.0±1                  | 1.0         |
|          | 19975 | 17 12.3   |       | 1                   | 0               | 22.99                  | 22.0±1                  | 1.0         |
|          |       |           |       | 1                   | 49              | 23.18                  | 23.0±1                  | 1           |
|          |       |           |       | 1                   | 99              | 23.13                  | 23.0±1                  | 1           |
|          |       |           | 16QAM | 12                  | 0               | 22.16                  | 22.0±1                  | 1.0         |
|          |       |           |       | 12                  | 24              | 22.23                  | 22.0±1                  | 1.0         |
|          |       |           |       | 12                  | 49              | 22.32                  | 22.0±1                  | 1.0         |
|          |       |           |       | 25                  | 0               | 22.15                  | 22.0±1                  | 1.0         |
|          |       |           |       | 1                   | 0               | 23.08                  | 23.0±1                  | 1           |
|          |       |           |       | 1                   | 49              | 23.09                  | 23.0±1                  | 1           |
|          |       |           |       | 1                   | 99              | 22.85                  | 23.0±1                  | 1           |
|          |       |           | QPSK  | 12                  | 0               | 22.22                  | 22.0±1                  | 1.0         |
|          |       |           |       | 12                  | 24              | 22.14                  | 22.0±1                  | 1.0         |
|          |       |           |       | 12                  | 49              | 22.13                  | 22.0±1                  | 1.0         |
| 5MHz     | 20175 | 1732.5    |       | 25                  | 0               | 22.29                  | 22.0±1                  | 1.0         |
| JIVII IZ | 20173 | 1702.0    |       | 1                   | 0               | 21.94                  | 22.0±1                  | 1.0         |
|          |       |           |       | 1                   | 49              | 22.25                  | 22.0±1                  | 1.0         |
|          |       |           |       | 1                   | 99              | 21.89                  | 22.0±1                  | 1.0         |
|          |       |           | 16QAM | 12                  | 0               | 21.27                  | 22.0±1                  | 1.0         |
|          |       |           |       | 12                  | 24              | 21.24                  | 22.0±1                  | 1.0         |
|          |       |           |       | 12                  | 49              | 21.13                  | 22.0±1                  | 1.0         |
|          |       |           |       | 25                  | 0               | 21.35                  | 22.0±1                  | 1.0         |
|          |       |           |       | 1                   | 0               | 21.82                  | 22.0±1                  | 1           |
|          |       |           |       | 1                   | 49              | 22.26                  | 22.0±1                  | 1           |
|          |       |           |       | 1                   | 99              | 21.80                  | 22.0±1                  | /           |
|          |       |           | QPSK  | 12                  | 0               | 21.13                  | 21.0±1                  | 1.0         |
|          |       |           |       | 12                  | 24              | 21.16                  | 21.0±1                  | 1.0         |
|          |       |           |       | 12                  | 49              | 21.11                  | 21.0±1                  | 1.0         |
|          | 20375 | 1752.5    |       | 25                  | 0               | 21.10                  | 21.0±1                  | 1.0         |
|          | 20010 | 1102.0    |       | 1                   | 0               | 21.68                  | 21.0±1                  | 1.0         |
|          |       |           |       | 1                   | 49              | 21.92                  | 21.0±1                  | 1.0         |
|          |       |           |       | 1                   | 99              | 21.97                  | 21.0±1                  | 1.0         |
|          |       |           | 16QAM | 12                  | 0               | 21.20                  | 21.0±1                  | 1.0         |
|          |       |           |       | 12                  | 24              | 21.06                  | 21.0±1                  | 1.0         |
|          |       |           |       | 12                  | 49              | 21.25                  | 21.0±1                  | 1.0         |
|          |       |           |       | 25                  | 0               | 21.27                  | 21.0±1                  | 1.0         |

| BW(MHz) | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |
|---------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|
|         |       |           |       | 1                   | 0               | 23.23                  | 23.0±1                  | 1           |
|         |       |           |       | 1                   | 49              | 23.69                  | 23.0±1                  | /           |
|         |       |           |       | 1                   | 99              | 22.79                  | 23.0±1                  | 1           |
|         |       |           | QPSK  | 25                  | 0               | 23.86                  | 23.0±1                  | 1           |
|         |       |           |       | 25                  | 24              | 22.55                  | 22.0±1                  | 1.0         |
|         |       |           |       | 25                  | 49              | 22.20                  | 22.0±1                  | 1.0         |
|         | 20000 | 4745      |       | 50                  | 0               | 22.43                  | 22.0±1                  | 1.0         |
|         | 20000 | 1715      |       | 1                   | 0               | 22.96                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 49              | 23.83                  | 23.0±1                  | 1           |
|         |       |           |       | 1                   | 99              | 22.83                  | 22.0±1                  | 1.0         |
|         |       |           | 16QAM | 25                  | 0               | 22.31                  | 22.0±1                  | 1.0         |
|         |       |           |       | 25                  | 24              | 22.47                  | 22.0±1                  | 1.0         |
|         |       |           |       | 25                  | 49              | 22.25                  | 22.0±1                  | 1.0         |
|         |       |           |       | 50                  | 0               | 22.14                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 0               | 22.86                  | 23.0±1                  | 1           |
|         |       |           |       | 1                   | 49              | 23.43                  | 23.0±1                  | 1           |
|         |       |           |       | 1                   | 99              | 22.65                  | 23.0±1                  | /           |
|         |       |           | QPSK  | 25                  | 0               | 22.41                  | 22.0±1                  | 1.0         |
|         |       |           |       | 25                  | 24              | 22.31                  | 22.0±1                  | 1.0         |
|         |       |           |       | 25                  | 49              | 22.13                  | 22.0±1                  | 1.0         |
| 10MHz   | 20175 | 1732.5    |       | 50                  | 0               | 22.24                  | 22.0±1                  | 1.0         |
| IUIVITZ | 20175 | 1732.5    |       | 1                   | 0               | 22.09                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 49              | 22.20                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 99              | 22.09                  | 22.0±1                  | 1.0         |
|         |       |           | 16QAM | 25                  | 0               | 21.51                  | 22.0±1                  | 1.0         |
|         |       |           |       | 25                  | 24              | 21.40                  | 22.0±1                  | 1.0         |
|         |       |           |       | 25                  | 49              | 21.32                  | 22.0±1                  | 1.0         |
|         |       |           |       | 50                  | 0               | 21.53                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 0               | 21.80                  | 22.0±1                  | 1           |
|         |       |           |       | 1                   | 49              | 22.06                  | 22.0±1                  | 1           |
|         |       |           |       | 1                   | 99              | 21.84                  | 22.0±1                  | 1           |
|         |       |           | QPSK  | 25                  | 0               | 21.34                  | 21.0±1                  | 1.0         |
|         |       |           |       | 25                  | 24              | 21.43                  | 21.0±1                  | 1.0         |
|         |       |           |       | 25                  | 49              | 21.33                  | 21.0±1                  | 1.0         |
|         | 20350 | 1750      |       | 50                  | 0               | 21.20                  | 21.0±1                  | 1.0         |
|         | 20000 | 1750      |       | 1                   | 0               | 21.94                  | 21.0±1                  | 1.0         |
|         |       |           |       | 1                   | 49              | 21.85                  | 21.0±1                  | 1.0         |
|         |       |           | -     | 1                   | 99              | 22.10                  | 22.0±1                  | 1           |
|         |       | 16        | 16QAM | 25                  | 0               | 21.27                  | 21.0±1                  | 1.0         |
|         |       |           |       | 25                  | 24              | 21.25                  | 21.0±1                  | 1.0         |
|         |       |           |       | 25                  | 49              | 21.30                  | 21.0±1                  | 1.0         |
|         |       |           |       | 50                  | 0               | 21.15                  | 21.0±1                  | 1.0         |

| BW(MHz) | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up limited(dBm) | MPR<br>(dB) |
|---------|-------|-----------|-------|---------------------|-----------------|------------------------|----------------------|-------------|
|         |       |           |       | 1                   | 0               | 23.11                  | 23.0±1               | 1           |
|         |       |           |       | 1                   | 49              | 23.76                  | 23.0±1               | /           |
|         |       |           |       | 1                   | 99              | 22.72                  | 23.0±1               | 1           |
|         |       |           | QPSK  | 36                  | 0               | 23.66                  | 23.0±1               | 1.0         |
|         |       |           |       | 36                  | 24              | 22.58                  | 22.0±1               | 1.0         |
|         |       |           |       | 36                  | 49              | 22.26                  | 22.0±1               | 1.0         |
|         | 20025 | 4747.5    |       | 75                  | 0               | 22.59                  | 22.0±1               | 1.0         |
|         | 20025 | 1717.5    |       | 1                   | 0               | 22.97                  | 22.0±1               | 1.0         |
|         |       |           |       | 1                   | 49              | 24.91                  | 24.0±1               | /           |
|         |       |           |       | 1                   | 99              | 22.88                  | 22.0±1               | 1.0         |
|         |       |           | 16QAM | 36                  | 0               | 22.33                  | 22.0±1               | 1.0         |
|         |       |           |       | 36                  | 24              | 22.46                  | 22.0±1               | 1.0         |
|         |       |           |       | 36                  | 49              | 22.39                  | 22.0±1               | 1.0         |
|         |       |           |       | 75                  | 0               | 22.25                  | 22.0±1               | 1.0         |
|         |       |           |       | 1                   | 0               | 23.15                  | 23.0±1               | 1           |
|         |       |           |       | 1                   | 49              | 23.34                  | 23.0±1               | 1           |
|         |       |           |       | 1                   | 99              | 22.74                  | 23.0±1               | 1           |
|         |       |           | QPSK  | 36                  | 0               | 22.58                  | 22.0±1               | 1.0         |
|         |       |           |       | 36                  | 24              | 22.29                  | 22.0±1               | 1.0         |
|         |       |           |       | 36                  | 49              | 22.07                  | 22.0±1               | 1.0         |
| 15NU -  | 20475 | 4700 E    |       | 75                  | 0               | 22.27                  | 22.0±1               | 1.0         |
| 15MHz   | 20175 | 1732.5    |       | 1                   | 0               | 21.99                  | 22.0±1               | 1.0         |
|         |       |           |       | 1                   | 49              | 21.95                  | 22.0±1               | 1.0         |
|         |       |           |       | 1                   | 99              | 21.95                  | 22.0±1               | 1.0         |
|         |       |           | 16QAM | 36                  | 0               | 21.43                  | 22.0±1               | 1.0         |
|         |       |           |       | 36                  | 24              | 21.42                  | 22.0±1               | 1.0         |
|         |       |           |       | 36                  | 49              | 21.45                  | 22.0±1               | 1.0         |
|         |       |           |       | 75                  | 0               | 21.48                  | 22.0±1               | 1.0         |
|         |       |           |       | 1                   | 0               | 21.84                  | 22.0±1               | 1           |
|         |       |           |       | 1                   | 49              | 21.74                  | 22.0±1               | 1           |
|         |       |           |       | 1                   | 99              | 21.78                  | 22.0±1               | 1           |
|         |       |           | QPSK  | 36                  | 0               | 21.27                  | 21.0±1               | 1.0         |
|         |       |           |       | 36                  | 24              | 21.26                  | 21.0±1               | 1.0         |
|         |       |           |       | 36                  | 49              | 21.20                  | 21.0±1               | 1.0         |
|         | 20225 | 1747 5    |       | 75                  | 0               | 21.30                  | 21.0±1               | 1.0         |
|         | 20325 | 1747.5    |       | 1                   | 0               | 22.06                  | 22.0±1               | 1.0         |
|         |       |           |       | 1                   | 49              | 21.97                  | 21.0±1               | 1.0         |
|         |       |           |       | 1                   | 99              | 22.05                  | 22.0±1               | 1           |
|         |       |           | 16QAM | 36                  | 0               | 21.35                  | 21.0±1               | 1.0         |
|         |       |           |       | 36                  | 24              | 21.26                  | 21.0±1               | 1.0         |
|         |       |           |       | 36                  | 49              | 21.33                  | 21.0±1               | 1.0         |
|         |       |           |       | 75                  | 0               | 21.27                  | 21.0±1               | 1.0         |

| BW(MHz)   | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |
|-----------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|
|           |       |           |       | 1                   | 0               | 22.98                  | 23.0±1                  | /           |
|           |       |           |       | 1                   | 49              | 23.61                  | 23.0±1                  | /           |
|           |       |           |       | 1                   | 99              | 22.79                  | 23.0±1                  | /           |
|           |       |           | QPSK  | 50                  | 0               | 23.45                  | 23.0±1                  | /           |
|           |       |           |       | 50                  | 24              | 22.67                  | 22.0±1                  | 1.0         |
|           |       |           |       | 50                  | 49              | 22.37                  | 22.0±1                  | 1.0         |
|           | 20050 | 1720      |       | 100                 | 0               | 22.51                  | 22.0±1                  | 1.0         |
|           | 20050 | 1720      |       | 1                   | 0               | 22.46                  | 22.0±1                  | 1.0         |
|           |       |           |       | 1                   | 49              | 24.89                  | 24.0±1                  | /           |
|           |       |           |       | 1                   | 99              | 23.18                  | 23.0±1                  | /           |
|           |       |           | 16QAM | 50                  | 0               | 22.42                  | 22.0±1                  | 1.0         |
|           |       |           |       | 50                  | 24              | 22.53                  | 22.0±1                  | 1.0         |
|           |       |           |       | 50                  | 49              | 22.36                  | 22.0±1                  | 1.0         |
|           |       |           |       | 100                 | 0               | 22.25                  | 22.0±1                  | 1.0         |
|           |       |           |       | 1                   | 0               | 23.14                  | 23.0±1                  | /           |
|           |       |           |       | 1                   | 49              | 23.89                  | 23.0±1                  | /           |
|           |       |           | 1     | 99                  | 22.00           | 23.0±1                 | /                       |             |
|           |       |           | QPSK  | 50                  | 0               | 22.19                  | 22.0±1                  | 1.0         |
|           |       |           |       | 50                  | 24              | 22.41                  | 22.0±1                  | 1.0         |
|           |       |           |       | 50                  | 49              | 21.89                  | 22.0±1                  | 1.0         |
| 20MHz     | 20175 | 1732.5    |       | 100                 | 0               | 22.42                  | 22.0±1                  | 1.0         |
| ZUIVII IZ | 20175 | 1732.5    |       | 1                   | 0               | 22.11                  | 22.0±1                  | 1.0         |
|           |       |           |       | 1                   | 49              | 22.17                  | 22.0±1                  | 1.0         |
|           |       |           |       | 1                   | 99              | 22.07                  | 22.0±1                  | 1.0         |
|           |       |           | 16QAM | 50                  | 0               | 21.57                  | 22.0±1                  | 1.0         |
|           |       |           |       | 50                  | 24              | 21.52                  | 22.0±1                  | 1.0         |
|           |       |           |       | 50                  | 49              | 21.55                  | 22.0±1                  | 1.0         |
|           |       |           |       | 100                 | 0               | 21.61                  | 22.0±1                  | 1.0         |
|           |       |           |       | 1                   | 0               | 21.72                  | 22.0±1                  | 1           |
|           |       |           |       | 1                   | 49              | 22.01                  | 22.0±1                  | 1           |
|           |       |           |       | 1                   | 99              | 21.96                  | 22.0±1                  | /           |
|           |       |           | QPSK  | 50                  | 0               | 21.35                  | 21.0±1                  | 1.0         |
|           |       |           |       | 50                  | 24              | 21.33                  | 21.0±1                  | 1.0         |
|           |       |           |       | 50                  | 49              | 21.33                  | 21.0±1                  | 1.0         |
|           | 20300 | 1745      |       | 100                 | 0               | 21.18                  | 21.0±1                  | 1.0         |
|           | 20000 | 1143      |       | 1                   | 0               | 22.05                  | 22.0±1                  | 1           |
|           |       |           |       | 1                   | 49              | 21.71                  | 21.0±1                  | 1.0         |
|           |       |           |       | 1                   | 99              | 21.87                  | 21.0±1                  | 1.0         |
|           |       |           | 16QAM | 50                  | 0               | 21.49                  | 21.0±1                  | 1.0         |
|           |       |           |       | 50                  | 24              | 21.38                  | 21.0±1                  | 1.0         |
|           |       |           |       | 50                  | 49              | 21.36                  | 21.0±1                  | 1.0         |
|           |       |           |       | 100                 | 0               | 21.53                  | 21.0±1                  | 1.0         |

#### LTE Band 5:

| BW(MHz)                 | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |
|-------------------------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|
|                         |       |           |       | 1                   | 0               | 23.01                  | 23.0±1                  | 1           |
|                         |       |           |       | 1                   | 2               | 23.23                  | 23.0±1                  | 1           |
|                         |       |           |       | 1                   | 5               | 23.38                  | 23.0±1                  | 1           |
|                         |       |           | QPSK  | 3                   | 0               | 23.47                  | 23.0±1                  | 1           |
|                         |       |           |       | 3                   | 1               | 23.50                  | 23.0±1                  | 1           |
|                         |       |           |       | 3                   | 2               | 23.46                  | 23.0±1                  | 1           |
|                         | 20407 | 824.7     |       | 6                   | 0               | 22.50                  | 22.0±1                  | 1.0         |
|                         | 20407 | 024.7     |       | 1                   | 0               | 23.25                  | 23.0±1                  | 1           |
|                         |       |           |       | 1                   | 2               | 23.30                  | 23.0±1                  | 1           |
|                         |       |           |       | 1                   | 5               | 23.18                  | 23.0±1                  | 1           |
|                         |       |           | 16QAM | 3                   | 0               | 23.33                  | 23.0±1                  | 1           |
|                         |       |           |       | 3                   | 1               | 23.36                  | 23.0±1                  | 1           |
|                         |       |           |       | 3                   | 2               | 23.37                  | 23.0±1                  | 1           |
|                         |       |           |       | 6                   | 0               | 22.28                  | 22.0±1                  | 1.0         |
|                         |       |           |       | 1                   | 0               | 23.29                  | 23.0±1                  | 1           |
|                         |       |           |       | 1                   | 2               | 23.36                  | 23.0±1                  | 1           |
|                         |       |           | 1     | 5                   | 23.31           | 23.0±1                 | 1                       |             |
|                         |       |           | QPSK  | 3                   | 0               | 23.41                  | 23.0±1                  | 1           |
|                         |       |           |       | 3                   | 1               | 23.44                  | 23.0±1                  | 1           |
|                         |       |           |       | 3                   | 2               | 23.33                  | 23.0±1                  | 1           |
| 1.4MHz                  | 20525 | 836.5     |       | 6                   | 0               | 22.48                  | 22.0±1                  | 1.0         |
| 1. <del>4</del> 1VII 12 | 20323 | 636.5     |       | 1                   | 0               | 21.99                  | 22.0±1                  | 1.0         |
|                         |       |           |       | 1                   | 2               | 22.21                  | 22.0±1                  | 1.0         |
|                         |       |           |       | 1                   | 5               | 22.07                  | 22.0±1                  | 1.0         |
|                         |       |           | 16QAM | 3                   | 0               | 22.63                  | 22.0±1                  | 1.0         |
|                         |       |           |       | 3                   | 1               | 22.52                  | 22.0±1                  | 1.0         |
|                         |       |           |       | 3                   | 2               | 22.73                  | 22.0±1                  | 1.0         |
|                         |       |           |       | 6                   | 0               | 21.28                  | 22.0±1                  | 1.0         |
|                         |       |           |       | 1                   | 0               | 22.11                  | 22.0±1                  | 1           |
|                         |       |           |       | 1                   | 2               | 22.10                  | 22.0±1                  | 1           |
|                         |       |           |       | 1                   | 5               | 21.88                  | 22.0±1                  | 1           |
|                         |       |           | QPSK  | 3                   | 0               | 22.49                  | 22.0±1                  | 1           |
|                         |       |           |       | 3                   | 1               | 22.29                  | 22.0±1                  | 1           |
|                         |       |           |       | 3                   | 2               | 22.41                  | 22.0±1                  | 1           |
|                         | 20624 | 040.0     |       | 6                   | 0               | 21.31                  | 21.0±1                  | 1.0         |
|                         | 20634 | 848.3     |       | 1                   | 0               | 22.02                  | 22.0±1                  | 1.0         |
|                         |       |           |       | 1                   | 2               | 21.94                  | 21.0±1                  | 1.0         |
|                         |       |           |       | 1                   | 5               | 21.79                  | 21.0±1                  | 1.0         |
|                         |       |           | 16QAM | 3                   | 0               | 22.62                  | 22.0±1                  | 1           |
|                         |       |           |       | 3                   | 1               | 22.46                  | 22.0±1                  | 1           |
|                         |       |           |       | 3                   | 2               | 22.60                  | 22.0±1                  | 1           |
|                         |       |           |       | 6                   | 0               | 21.29                  | 21.0±1                  | 1.0         |

| BW(MHz)  | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |
|----------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|
|          |       |           |       | 1                   | 0               | 23.47                  | 23.0±1                  | 1           |
|          |       |           |       | 1                   | 8               | 23.49                  | 23.0±1                  | 1           |
|          |       |           |       | 1                   | 14              | 23.30                  | 23.0±1                  | 1           |
|          |       |           | QPSK  | 6                   | 0               | 22.60                  | 22.0±1                  | 1.0         |
|          |       |           |       | 6                   | 4               | 22.51                  | 22.0±1                  | 1.0         |
|          |       |           |       | 6                   | 9               | 22.58                  | 22.0±1                  | 1.0         |
|          | 20415 | 925 5     |       | 15                  | 0               | 22.55                  | 22.0±1                  | 1.0         |
|          | 20415 | 825.5     |       | 1                   | 0               | 23.40                  | 23.0±1                  | /           |
|          |       |           |       | 1                   | 8               | 23.32                  | 23.0±1                  | /           |
|          |       |           |       | 1                   | 14              | 23.04                  | 23.0±1                  | 1           |
|          |       |           | 16QAM | 8                   | 0               | 22.43                  | 22.0±1                  | 1.0         |
|          |       |           |       | 8                   | 4               | 22.51                  | 22.0±1                  | 1.0         |
|          |       |           |       | 8                   | 9               | 22.31                  | 22.0±1                  | 1.0         |
|          |       |           |       | 15                  | 0               | 22.32                  | 22.0±1                  | 1.0         |
|          |       |           |       | 1                   | 0               | 23.47                  | 23.0±1                  | 1           |
|          |       |           |       | 1                   | 8               | 23.57                  | 23.0±1                  | /           |
|          |       |           |       | 1                   | 14              | 23.27                  | 23.0±1                  | 1           |
|          |       |           | QPSK  | 6                   | 0               | 22.56                  | 22.0±1                  | 1.0         |
|          |       |           |       | 6                   | 4               | 22.48                  | 22.0±1                  | 1.0         |
|          |       |           |       | 6                   | 9               | 22.45                  | 22.0±1                  | 1.0         |
| 3MHz     | 20525 | 836.5     |       | 15                  | 0               | 22.51                  | 22.0±1                  | 1.0         |
| JIVII IZ | 20323 | 030.5     |       | 1                   | 0               | 22.09                  | 22.0±1                  | 1.0         |
|          |       |           |       | 1                   | 8               | 22.01                  | 22.0±1                  | 1.0         |
|          |       |           |       | 1                   | 14              | 21.73                  | 22.0±1                  | 1.0         |
|          |       |           | 16QAM | 6                   | 0               | 21.39                  | 22.0±1                  | 1.0         |
|          |       |           |       | 6                   | 4               | 21.47                  | 22.0±1                  | 1.0         |
|          |       |           |       | 6                   | 9               | 21.46                  | 22.0±1                  | 1.0         |
|          |       |           |       | 15                  | 0               | 21.55                  | 22.0±1                  | 1.0         |
|          |       |           |       | 1                   | 0               | 22.17                  | 22.0±1                  | 1           |
|          |       |           |       | 1                   | 8               | 22.06                  | 22.0±1                  | 1           |
|          |       |           |       | 1                   | 14              | 22.06                  | 22.0±1                  | 1           |
|          |       |           | QPSK  | 6                   | 0               | 21.32                  | 21.0±1                  | 1.0         |
|          |       |           |       | 6                   | 4               | 21.23                  | 21.0±1                  | 1.0         |
|          |       |           |       | 6                   | 9               | 21.28                  | 21.0±1                  | 1.0         |
|          | 20635 | Q17 E     |       | 15                  | 0               | 21.56                  | 21.0±1                  | 1.0         |
|          | 20035 |           |       | 1                   | 0               | 22.14                  | 22.0±1                  | 1           |
|          |       |           |       | 1                   | 8               | 22.09                  | 22.0±1                  | 1           |
|          |       |           |       | 1                   | 14              | 22.07                  | 22.0±1                  | 1           |
|          |       |           | 16QAM | 8                   | 0               | 21.28                  | 21.0±1                  | 1.0         |
|          |       |           |       | 8                   | 4               | 21.31                  | 21.0±1                  | 1.0         |
|          |       |           |       | 8                   | 9               | 21.44                  | 21.0±1                  | 1.0         |
|          |       |           |       | 15                  | 0               | 21.49                  | 21.0±1                  | 1.0         |

| BW(MHz)  | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB)                           |
|----------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|---------------------------------------|
|          |       |           |       | 1                   | 0               | 23.41                  | 23.0±1                  | / / / / / / / / / / / / / / / / / / / |
|          |       |           |       | 1                   | 49              | 23.43                  | 23.0±1                  | 1                                     |
|          |       |           |       | 1                   | 99              | 23.24                  | 23.0±1                  | 1                                     |
|          |       |           | QPSK  | 12                  | 0               | 22.68                  | 22.0±1                  | 1.0                                   |
|          |       |           |       | 12                  | 24              | 22.56                  | 22.0±1                  | 1.0                                   |
|          |       |           |       | 12                  | 49              | 22.49                  | 22.0±1                  | 1.0                                   |
|          | 20425 | 826.5     |       | 25                  | 0               | 22.55                  | 22.0±1                  | 1.0                                   |
|          | 20425 | 020.5     |       | 1                   | 0               | 23.11                  | 23.0±1                  | 1                                     |
|          |       |           |       | 1                   | 49              | 23.29                  | 23.0±1                  | 1                                     |
|          |       |           |       | 1                   | 99              | 23.15                  | 23.0±1                  | 1                                     |
|          |       |           | 16QAM | 12                  | 0               | 22.48                  | 22.0±1                  | 1.0                                   |
|          |       |           |       | 12                  | 24              | 22.46                  | 22.0±1                  | 1.0                                   |
|          |       |           |       | 12                  | 49              | 22.46                  | 22.0±1                  | 1.0                                   |
|          |       |           |       | 25                  | 0               | 22.41                  | 22.0±1                  | 1.0                                   |
|          |       |           |       | 1                   | 0               | 23.13                  | 23.0±1                  | 1                                     |
|          |       |           |       | 1                   | 49              | 23.40                  | 23.0±1                  | 1                                     |
|          |       |           |       | 1                   | 99              | 23.33                  | 23.0±1                  | 1                                     |
|          |       |           | QPSK  | 12                  | 0               | 22.45                  | 22.0±1                  | 1.0                                   |
|          |       |           |       | 12                  | 24              | 22.58                  | 22.0±1                  | 1.0                                   |
|          |       |           |       | 12                  | 49              | 22.37                  | 22.0±1                  | 1.0                                   |
| 5MHz     | 20525 | 836.5     |       | 25                  | 0               | 22.39                  | 22.0±1                  | 1.0                                   |
| SIVII IZ | 20020 | 030.3     |       | 1                   | 0               | 21.87                  | 22.0±1                  | 1.0                                   |
|          |       |           |       | 1                   | 49              | 22.31                  | 22.0±1                  | 1.0                                   |
|          |       |           |       | 1                   | 99              | 21.55                  | 22.0±1                  | 1.0                                   |
|          |       |           | 16QAM | 12                  | 0               | 21.45                  | 22.0±1                  | 1.0                                   |
|          |       |           |       | 12                  | 24              | 21.44                  | 22.0±1                  | 1.0                                   |
|          |       |           |       | 12                  | 49              | 21.23                  | 22.0±1                  | 1.0                                   |
|          |       |           |       | 25                  | 0               | 21.48                  | 22.0±1                  | 1.0                                   |
|          |       |           |       | 1                   | 0               | 21.85                  | 22.0±1                  | 1                                     |
|          |       |           |       | 1                   | 49              | 22.36                  | 22.0±1                  | 1                                     |
|          |       |           |       | 1                   | 99              | 21.96                  | 22.0±1                  | 1                                     |
|          |       |           | QPSK  | 12                  | 0               | 21.36                  | 21.0±1                  | 1.0                                   |
|          |       |           |       | 12                  | 24              | 21.21                  | 21.0±1                  | 1.0                                   |
|          |       |           |       | 12                  | 49              | 21.20                  | 21.0±1                  | 1.0                                   |
|          | 20005 | 040 5     |       | 25                  | 0               | 21.43                  | 21.0±1                  | 1.0                                   |
|          | 20625 | 846.5     |       | 1                   | 0               | 21.95                  | 21.0±1                  | 1.0                                   |
|          |       |           |       | 1                   | 49              | 22.52                  | 22.0±1                  | 1                                     |
|          |       |           |       | 1                   | 99              | 21.96                  | 21.0±1                  | 1.0                                   |
|          |       |           | 16QAM | 12                  | 0               | 21.43                  | 21.0±1                  | 1.0                                   |
|          |       |           |       | 12                  | 24              | 21.30                  | 21.0±1                  | 1.0                                   |
|          |       |           | -     | 12                  | 49              | 21.26                  | 21.0±1                  | 1.0                                   |
|          |       |           | 25    | 0                   | 21.25           | 21.0±1                 | 1.0                     |                                       |

| BW(MHz)  | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB)                           |
|----------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|---------------------------------------|
|          |       |           |       | 1                   | 0               | 23.51                  | 23.0±1                  | / / / / / / / / / / / / / / / / / / / |
|          |       |           |       | 1                   | 49              | 23.53                  | 23.0±1                  | /                                     |
|          |       |           |       | 1                   | 99              | 23.04                  | 23.0±1                  | /                                     |
|          |       |           | QPSK  | 25                  | 0               | 22.61                  | 22.0±1                  | 1.0                                   |
|          |       |           |       | 25                  | 24              | 22.66                  | 22.0±1                  | 1.0                                   |
|          |       |           |       | 25                  | 49              | 22.28                  | 22.0±1                  | 1.0                                   |
|          | 20450 | 829       |       | 50                  | 0               | 22.38                  | 22.0±1                  | 1.0                                   |
|          | 20430 | 029       |       | 1                   | 0               | 23.22                  | 23.0±1                  | /                                     |
|          |       |           |       | 1                   | 49              | 24.00                  | 23.0±1                  | 1                                     |
|          |       |           |       | 1                   | 99              | 23.03                  | 23.0±1                  | 1                                     |
|          |       |           | 16QAM | 25                  | 0               | 22.57                  | 22.0±1                  | 1.0                                   |
|          |       |           |       | 25                  | 24              | 22.53                  | 22.0±1                  | 1.0                                   |
|          |       |           |       | 25                  | 49              | 22.33                  | 22.0±1                  | 1.0                                   |
|          |       |           |       | 50                  | 0               | 22.43                  | 22.0±1                  | 1.0                                   |
|          |       |           |       | 1                   | 0               | 23.30                  | 23.0±1                  | /                                     |
|          |       |           |       | 1                   | 49              | 23.54                  | 23.0±1                  | /                                     |
|          |       |           |       | 1                   | 99              | 23.00                  | 23.0±1                  | /                                     |
|          |       |           | QPSK  | 25                  | 0               | 22.51                  | 22.0±1                  | 1.0                                   |
|          |       |           |       | 25                  | 24              | 22.45                  | 22.0±1                  | 1.0                                   |
|          |       |           |       | 25                  | 49              | 22.35                  | 22.0±1                  | 1.0                                   |
| 10MHz    | 20525 | 836.5     |       | 50                  | 0               | 22.43                  | 22.0±1                  | 1.0                                   |
| TUIVITIZ | 20020 | 030.5     |       | 1                   | 0               | 22.12                  | 22.0±1                  | 1.0                                   |
|          |       |           |       | 1                   | 49              | 22.04                  | 22.0±1                  | 1.0                                   |
|          |       |           |       | 1                   | 99              | 22.06                  | 22.0±1                  | 1.0                                   |
|          |       |           | 16QAM | 25                  | 0               | 21.59                  | 22.0±1                  | 1.0                                   |
|          |       |           |       | 25                  | 24              | 21.53                  | 22.0±1                  | 1.0                                   |
|          |       |           |       | 25                  | 49              | 21.33                  | 22.0±1                  | 1.0                                   |
|          |       |           |       | 50                  | 0               | 21.30                  | 22.0±1                  | 1.0                                   |
|          |       |           |       | 1                   | 0               | 22.06                  | 22.0±1                  | 1                                     |
|          |       |           |       | 1                   | 49              | 21.98                  | 22.0±1                  | 1                                     |
|          |       |           |       | 1                   | 99              | 21.94                  | 22.0±1                  | 1                                     |
|          |       |           | QPSK  | 25                  | 0               | 21.52                  | 21.0±1                  | 1.0                                   |
|          |       |           |       | 25                  | 24              | 21.65                  | 21.0±1                  | 1.0                                   |
|          |       |           |       | 25                  | 49              | 21.41                  | 21.0±1                  | 1.0                                   |
|          | 20600 | 011       |       | 50                  | 0               | 21.48                  | 21.0±1                  | 1.0                                   |
|          | 20600 | 844       |       | 1                   | 0               | 22.17                  | 22.0±1                  | /                                     |
|          |       |           |       | 1                   | 49              | 22.01                  | 22.0±1                  | /                                     |
|          |       |           |       | 1                   | 99              | 21.99                  | 21.0±1                  | 1.0                                   |
|          |       |           | 16QAM | 25                  | 0               | 21.50                  | 21.0±1                  | 1.0                                   |
|          |       |           |       | 25                  | 24              | 21.32                  | 21.0±1                  | 1.0                                   |
|          |       |           |       | 25                  | 49              | 21.31                  | 21.0±1                  | 1.0                                   |
|          |       |           |       | 50                  | 0               | 21.44                  | 21.0±1                  | 1.0                                   |

### LTE Band 7:

| BW(MHz) | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |
|---------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|
|         |       |           |       | 1                   | 0               | 22.80                  | 23.0±1                  | 1           |
|         |       |           |       | 1                   | 49              | 23.05                  | 23.0±1                  | 1           |
|         |       |           |       | 1                   | 99              | 22.57                  | 23.0±1                  | 1           |
|         |       |           | QPSK  | 12                  | 0               | 22.05                  | 22.0±1                  | 1.0         |
|         |       |           |       | 12                  | 24              | 22.10                  | 22.0±1                  | 1.0         |
|         |       |           |       | 12                  | 49              | 21.89                  | 22.0±1                  | 1.0         |
|         | 20775 | 2502.5    |       | 25                  | 0               | 22.04                  | 22.0±1                  | 1.0         |
|         | 20113 | 2502.5    |       | 1                   | 0               | 22.89                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 49              | 23.05                  | 23.0±1                  | 1           |
|         |       |           |       | 1                   | 99              | 22.73                  | 22.0±1                  | 1.0         |
|         |       |           | 16QAM | 12                  | 0               | 22.05                  | 22.0±1                  | 1.0         |
|         |       |           |       | 12                  | 24              | 22.03                  | 22.0±1                  | 1.0         |
|         |       |           |       | 12                  | 49              | 21.93                  | 22.0±1                  | 1.0         |
|         |       |           |       | 25                  | 0               | 21.96                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 0               | 22.89                  | 23.0±1                  | 1           |
|         |       |           |       | 1                   | 49              | 22.99                  | 23.0±1                  | /           |
| 5MU-    |       |           |       | 1                   | 99              | 22.75                  | 23.0±1                  | /           |
|         |       |           | QPSK  | 12                  | 0               | 22.28                  | 22.0±1                  | 1.0         |
|         |       |           |       | 12                  | 24              | 22.11                  | 22.0±1                  | 1.0         |
|         |       |           |       | 12                  | 49              | 21.97                  | 22.0±1                  | 1.0         |
|         | 21100 | 2535      |       | 25                  | 0               | 22.20                  | 22.0±1                  | 1.0         |
| 5MHz    | 21100 | 2555      |       | 1                   | 0               | 21.62                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 49              | 21.91                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 99              | 21.60                  | 22.0±1                  | 1.0         |
|         |       |           | 16QAM | 12                  | 0               | 21.04                  | 22.0±1                  | 1.0         |
|         |       |           |       | 12                  | 24              | 21.09                  | 22.0±1                  | 1.0         |
|         |       |           |       | 12                  | 49              | 20.77                  | 21.0±1                  | 2.0         |
|         |       |           |       | 25                  | 0               | 21.08                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 0               | 21.71                  | 22.0±1                  | 1           |
|         |       |           |       | 1                   | 49              | 22.04                  | 22.0±1                  | /           |
|         |       |           |       | 1                   | 99              | 21.66                  | 22.0±1                  | 1           |
|         |       |           | QPSK  | 12                  | 0               | 20.93                  | 21.0±1                  | 1.0         |
|         |       |           |       | 12                  | 24              | 21.01                  | 21.0±1                  | 1.0         |
|         |       |           |       | 12                  | 49              | 20.99                  | 21.0±1                  | 1.0         |
|         | 21/25 | 2567.5    |       | 25                  | 0               | 21.00                  | 21.0±1                  | 1.0         |
|         | 21425 | 2567.5    | 5     | 1                   | 0               | 21.60                  | 21.0±1                  | 1.0         |
|         |       |           |       | 1                   | 49              | 22.00                  | 21.0±1                  | 1.0         |
|         |       |           |       | 1                   | 99              | 21.78                  | 21.0±1                  | 1.0         |
|         |       |           | 16QAM | 12                  | 0               | 21.05                  | 21.0±1                  | 1.0         |
|         |       |           |       | 12                  | 24              | 21.10                  | 21.0±1                  | 1.0         |
|         |       |           |       | 12                  | 49              | 20.91                  | 21.0±1                  | 1.0         |
|         |       |           |       | 25                  | 0               | 21.17                  | 21.0±1                  | 1.0         |

| BW(MHz) | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB)                             |
|---------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-----------------------------------------|
|         |       |           |       | 1                   | 0               | 22.91                  | 23.0±1                  | /                                       |
|         |       |           |       | 1                   | 49              | 23.45                  | 23.0±1                  | 1                                       |
|         |       |           |       | 1                   | 99              | 22.64                  | 23.0±1                  | /                                       |
|         |       |           | QPSK  | 25                  | 0               | 22.24                  | 22.0±1                  | 1.0                                     |
|         |       |           |       | 25                  | 24              | 22.18                  | 22.0±1                  | 1.0                                     |
|         |       |           |       | 25                  | 49              | 21.97                  | 22.0±1                  | 1.0                                     |
|         | 20800 | 2505      |       | 50                  | 0               | 22.17                  | 22.0±1                  | 1.0                                     |
|         | 20000 | 2303      |       | 1                   | 0               | 23.07                  | 23.0±1                  | 1                                       |
|         |       |           |       | 1                   | 49              | 23.71                  | 23.0±1                  | 1                                       |
|         |       |           |       | 1                   | 99              | 22.64                  | 22.0±1                  | 1.0                                     |
|         |       |           | 16QAM | 25                  | 0               | 22.34                  | 22.0±1                  | 1.0                                     |
|         |       |           |       | 25                  | 24              | 22.20                  | 22.0±1                  | 1.0                                     |
|         |       |           |       | 25                  | 49              | 21.94                  | 22.0±1                  | 1.0                                     |
|         |       |           |       | 50                  | 0               | 22.06                  | 22.0±1                  | 1.0                                     |
|         |       |           |       | 1                   | 0               | 23.04                  | 23.0±1                  | 1                                       |
|         |       |           |       | 1                   | 49              | 23.38                  | 23.0±1                  | 1                                       |
|         |       |           |       | 1                   | 99              | 22.38                  | 23.0±1                  | 1                                       |
|         |       |           | QPSK  | 25                  | 0               | 22.42                  | 22.0±1                  | 1.0                                     |
|         |       |           |       | 25                  | 24              | 22.36                  | 22.0±1                  | 1.0                                     |
|         |       |           |       | 25                  | 49              | 22.10                  | 22.0±1                  | 1.0                                     |
| 10MHz   | 21100 | 2535      |       | 50                  | 0               | 22.20                  | 22.0±1                  | 1.0                                     |
| 1011112 | 21100 | 2000      |       | 1                   | 0               | 21.62                  | 22.0±1                  | 1.0                                     |
|         |       |           |       | 1                   | 49              | 21.88                  | 22.0±1                  | 1.0                                     |
|         |       |           |       | 1                   | 99              | 21.76                  | 22.0±1                  |                                         |
|         |       |           | 16QAM | 25                  | 0               | 20.97                  | 21.0±1                  | 2.0                                     |
|         |       |           |       | 25                  | 24              | 21.11                  | 22.0±1                  | 1.0                                     |
|         |       |           |       | 25                  | 49              | 21.09                  | 22.0±1                  | 1.0                                     |
|         |       |           |       | 50                  | 0               | 21.20                  | 22.0±1                  | 1.0                                     |
|         |       |           |       | 1                   | 0               | 21.86                  | 22.0±1                  | 1                                       |
|         |       |           |       | 1                   | 49              | 21.93                  | 22.0±1                  | 1                                       |
|         |       |           |       | 1                   | 99              | 21.82                  | 22.0±1                  | 1                                       |
|         |       |           | QPSK  | 25                  | 0               | 21.13                  | 21.0±1                  |                                         |
|         |       |           |       | 25                  | 24              | 21.01                  | 21.0±1                  | 1.0                                     |
|         |       |           |       | 25                  | 49              | 21.05                  | 21.0±1                  | 1.0                                     |
|         | 21400 | 2565      |       | 50                  | 0               | 21.10                  | 21.0±1                  | 1.0                                     |
|         |       |           |       | 1                   | 0               | 21.77                  | 21.0±1                  | 1.0                                     |
|         |       |           |       | 1                   | 49              | 21.77                  | 21.0±1                  | 1.0                                     |
|         |       |           |       | 1                   | 99              | 21.87                  | 21.0±1                  | 1.0                                     |
|         |       |           | 16QAM | 25                  | 0               | 21.20                  | 21.0±1                  | 1.0                                     |
|         |       |           |       | 25                  | 24              | 21.08                  | 21.0±1                  | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
|         |       |           |       | 25                  | 49              | 21.22                  | 21.0±1                  |                                         |
|         |       |           |       | 50                  | 0               | 21.06                  | 21.0±1                  | 1.0                                     |

| BW(MHz) | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |
|---------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|
|         |       |           |       | 1                   | 0               | 23.02                  | 23.0±1                  | /           |
|         |       |           |       | 1                   | 49              | 23.39                  | 23.0±1                  | /           |
|         |       |           |       | 1                   | 99              | 22.72                  | 23.0±1                  | /           |
|         |       |           | QPSK  | 36                  | 0               | 22.25                  | 22.0±1                  | 1.0         |
|         |       |           |       | 36                  | 24              | 22.17                  | 22.0±1                  | 1.0         |
|         |       |           |       | 36                  | 49              | 21.96                  | 22.0±1                  | 1.0         |
|         | 20005 | 0507.5    |       | 75                  | 0               | 22.18                  | 22.0±1                  | 1.0         |
|         | 20825 | 2507.5    |       | 1                   | 0               | 23.04                  | 23.0±1                  | /           |
|         |       |           |       | 1                   | 49              | 23.39                  | 23.0±1                  | /           |
|         |       |           |       | 1                   | 99              | 22.63                  | 22.0±1                  | 1.0         |
|         |       |           | 16QAM | 36                  | 0               | 22.37                  | 22.0±1                  | 1.0         |
|         |       |           |       | 36                  | 24              | 22.33                  | 22.0±1                  | 1.0         |
|         |       |           |       | 36                  | 49              | 21.96                  | 22.0±1                  | 1.0         |
|         |       |           |       | 75                  | 0               | 22.22                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 0               | 23.05                  | 23.0±1                  | /           |
|         |       |           |       | 1                   | 49              | 23.39                  | 23.0±1                  | 1           |
|         |       |           |       | 1                   | 99              | 22.66                  | 23.0±1                  | /           |
|         |       |           | QPSK  | 36                  | 0               | 22.38                  | 22.0±1                  | 1.0         |
|         |       |           |       | 36                  | 24              | 22.26                  | 22.0±1                  | 1.0         |
|         |       |           |       | 36                  | 49              | 22.00                  | 22.0±1                  | 1.0         |
| 15MHz   | 21100 | 2535      |       | 75                  | 0               | 22.26                  | 22.0±1                  | 1.0         |
| TOMINZ  | 21100 | 2000      |       | 1                   | 0               | 21.77                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 49              | 21.81                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 99              | 21.44                  | 22.0±1                  | 1.0         |
|         |       |           | 16QAM | 36                  | 0               | 21.09                  | 22.0±1                  | 1.0         |
|         |       |           |       | 36                  | 24              | 21.08                  | 22.0±1                  | 1.0         |
|         |       |           |       | 36                  | 49              | 21.10                  | 22.0±1                  | 1.0         |
|         |       |           |       | 75                  | 0               | 21.30                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 0               | 21.72                  | 22.0±1                  | 1           |
|         |       |           |       | 1                   | 49              | 21.87                  | 22.0±1                  | 1           |
|         |       |           |       | 1                   | 99              | 21.83                  | 22.0±1                  | 1           |
|         |       |           | QPSK  | 36                  | 0               | 21.21                  | 21.0±1                  | 1.0         |
|         |       |           |       | 36                  | 24              | 21.14                  | 21.0±1                  | 1.0         |
|         |       |           |       | 36                  | 49              | 21.18                  | 21.0±1                  | 1.0         |
|         | 21375 | 2562.5    |       | 75                  | 0               | 21.16                  | 21.0±1                  | 1.0         |
|         | 210/0 | 2002.0    |       | 1                   | 0               | 21.90                  | 21.0±1                  | 1.0         |
|         |       |           |       | 1                   | 49              | 21.95                  | 21.0±1                  | 1.0         |
|         |       |           |       | 1                   | 99              | 21.97                  | 21.0±1                  | 1.0         |
|         |       |           | 16QAM | 36                  | 0               | 21.16                  | 21.0±1                  | 1.0         |
|         |       |           |       | 36                  | 24              | 21.21                  | 21.0±1                  | 1.0         |
|         |       |           |       | 36                  | 49              | 21.14                  | 21.0±1                  | 1.0         |
|         |       |           |       | 75                  | 0               | 21.20                  | 21.0±1                  | 1.0         |

| BW(MHz)   | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB)                                     |
|-----------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------------------------------------------|
|           |       |           |       | 1                   | 0               | 22.88                  | 23.0±1                  | / // // 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
|           |       |           |       | 1                   | 49              | 23.55                  | 23.0±1                  | 1                                               |
|           |       |           |       | 1                   | 99              | 22.75                  | 23.0±1                  | /                                               |
|           |       |           | QPSK  | 50                  | 0               | 22.27                  | 22.0±1                  | 1.0                                             |
|           |       |           |       | 50                  | 24              | 22.39                  | 22.0±1                  | 1.0                                             |
|           |       |           |       | 50                  | 49              | 22.09                  | 22.0±1                  | 1.0                                             |
|           | 20850 | 2510      |       | 100                 | 0               | 22.10                  | 22.0±1                  | 1.0                                             |
|           | 20000 | 2510      |       | 1                   | 0               | 23.05                  | 23.0±1                  | 1                                               |
|           |       |           |       | 1                   | 49              | 23.73                  | 23.0±1                  | 1                                               |
|           |       |           |       | 1                   | 99              | 22.62                  | 22.0±1                  | 1.0                                             |
|           |       |           | 16QAM | 50                  | 0               | 22.37                  | 22.0±1                  | 1.0                                             |
|           |       |           |       | 50                  | 24              | 22.34                  | 22.0±1                  | 1.0                                             |
|           |       |           |       | 50                  | 49              | 21.96                  | 22.0±1                  | 1.0                                             |
|           |       |           |       | 100                 | 0               | 22.21                  | 22.0±1                  | 1.0                                             |
|           |       |           |       | 1                   | 0               | 23.02                  | 23.0±1                  | 1                                               |
|           |       |           |       | 1                   | 49              | 23.87                  | 23.0±1                  | 1                                               |
|           |       |           |       | 1                   | 99              | 22.47                  | 23.0±1                  | 1                                               |
|           |       |           | QPSK  | 50                  | 0               | 22.42                  | 22.0±1                  | 1.0                                             |
|           |       |           |       | 50                  | 24              | 22.38                  | 22.0±1                  | 1.0                                             |
|           |       |           |       | 50                  | 49              | 22.03                  | 22.0±1                  | 1.0                                             |
| 20MHz     | 21100 | 2535      |       | 100                 | 0               | 22.24                  | 22.0±1                  | 1.0                                             |
| ZUIVII IZ | 21100 | 2333      |       | 1                   | 0               | 21.73                  | 22.0±1                  | 1.0                                             |
|           |       |           |       | 1                   | 49              | 22.02                  | 22.0±1                  | 1.0                                             |
|           |       |           |       | 1                   | 99              | 21.79                  | 22.0±1                  | 1.0                                             |
|           |       |           | 16QAM | 50                  | 0               | 21.30                  | 22.0±1                  | 1.0                                             |
|           |       |           |       | 50                  | 24              | 21.21                  | 22.0±1                  | 1.0                                             |
|           |       |           |       | 50                  | 49              | 21.04                  | 22.0±1                  | 1.0                                             |
|           |       |           |       | 100                 | 0               | 21.13                  | 22.0±1                  | 1.0                                             |
|           |       |           |       | 1                   | 0               | 21.87                  | 22.0±1                  | 1                                               |
|           |       |           |       | 1                   | 49              | 22.02                  | 22.0±1                  | 1                                               |
|           |       |           |       | 1                   | 99              | 21.64                  | 22.0±1                  | 1                                               |
|           |       |           | QPSK  | 50                  | 0               | 21.33                  | 21.0±1                  | 1.0                                             |
|           |       |           |       | 50                  | 24              | 21.20                  | 21.0±1                  | 1.0                                             |
|           |       |           |       | 50                  | 49              | 21.16                  | 21.0±1                  | 1.0                                             |
|           | 21250 | 2560      |       | 100                 | 0               | 21.25                  | 21.0±1                  | 1.0                                             |
|           | 21350 | 2500      |       | 1                   | 0               | 21.85                  | 21.0±1                  | 1.0                                             |
|           |       |           |       | 1                   | 49              | 21.93                  | 21.0±1                  | 1.0                                             |
|           |       |           |       | 1                   | 99              | 21.77                  | 21.0±1                  | 1.0                                             |
|           |       |           | 16QAM | 50                  | 0               | 21.27                  | 21.0±1                  | 1.0                                             |
|           |       |           |       | 50                  | 24              | 21.24                  | 21.0±1                  | 1.0                                             |
|           |       |           |       | 50                  | 49              | 21.18                  | 21.0±1                  | 1.0                                             |
|           |       |           |       | 100                 | 0               | 21.18                  | 21.0±1                  | 1.0                                             |

#### LTE Band 12:

| BW(MHz)                 | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB)                                                        |
|-------------------------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|--------------------------------------------------------------------|
|                         |       |           |       | 1                   | 0               | 23.22                  | 23.5±1                  | /                                                                  |
|                         |       |           |       | 1                   | 2               | 23.50                  | 23.5±1                  | 1                                                                  |
|                         |       |           |       | 1                   | 5               | 23.34                  | 23.5±1                  | 1                                                                  |
|                         |       |           | QPSK  | 3                   | 0               | 23.62                  | 23.5±1                  | /                                                                  |
|                         |       |           |       | 3                   | 1               | 23.56                  | 23.5±1                  | /                                                                  |
|                         |       |           |       | 3                   | 2               | 23.46                  | 23.5±1                  | /                                                                  |
|                         | 23017 | 699.7     |       | 6                   | 0               | 22.54                  | 22.5±1                  | 1.0                                                                |
|                         | 23017 | 099.7     |       | 1                   | 0               | 23.42                  | 23.5±1                  | 1                                                                  |
|                         |       |           |       | 1                   | 2               | 23.64                  | 23.5±1                  | 1                                                                  |
|                         |       |           |       | 1                   | 5               | 23.54                  | 23.5±1                  | 1                                                                  |
|                         |       |           | 16QAM | 3                   | 0               | 23.44                  | 23.5±1                  | 1                                                                  |
|                         |       |           |       | 3                   | 1               | 23.61                  | 23.5±1                  | 1                                                                  |
|                         |       |           |       | 3                   | 2               | 23.65                  | 23.5±1                  | /                                                                  |
|                         |       |           |       | 6                   | 0               | 22.55                  | 22.5±1                  | 1.0                                                                |
|                         |       |           |       | 1                   | 0               | 23.22                  | 23.5±1                  | 1                                                                  |
|                         |       |           |       | 1                   | 2               | 23.39                  | 23.5±1                  | /                                                                  |
| 1.4MHz                  |       |           |       | 1                   | 5               | 23.49                  | 23.5±1                  | 1                                                                  |
|                         |       |           | QPSK  | 3                   | 0               | 23.40                  | 23.5±1                  | 1                                                                  |
|                         |       |           |       | 3                   | 1               | 23.49                  | 23.5±1                  | 1                                                                  |
|                         |       |           |       | 3                   | 2               | 23.48                  | 23.5±1                  | /                                                                  |
|                         | 23095 | 707.5     |       | 6                   | 0               | 22.47                  | 22.5±1                  | 1.0                                                                |
| 1. <del>7</del> 1VII 12 | 23093 | 707.5     |       | 1                   | 0               | 22.20                  | 22.5±1                  | 1.0                                                                |
|                         |       |           |       | 1                   | 2               | 22.21                  | 22.5±1                  | 1.0                                                                |
|                         |       |           |       | 1                   | 5               | 22.01                  | 22.5±1                  | 1.0                                                                |
|                         |       |           | 16QAM | 3                   | 0               | 22.82                  | 22.5±1                  | 1.0                                                                |
|                         |       |           |       | 3                   | 1               | 22.64                  | 22.5±1                  | 1.0                                                                |
|                         |       |           |       | 3                   | 2               | 22.60                  | 22.5±1                  | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>2.0               |
|                         |       |           |       | 6                   | 0               | 21.47                  | 21.5±1                  | 2.0                                                                |
|                         |       |           |       | 1                   | 0               | 21.96                  | 22.0±1                  | 1                                                                  |
|                         |       |           |       | 1                   | 2               | 22.20                  | 22.0±1                  | /                                                                  |
|                         |       |           |       | 1                   | 5               | 21.91                  | 22.0±1                  | /                                                                  |
|                         |       |           | QPSK  | 3                   | 0               | 22.71                  | 22.0±1                  | /                                                                  |
|                         |       |           |       | 3                   | 1               | 22.78                  | 22.0±1                  | 1                                                                  |
|                         |       |           |       | 3                   | 2               | 22.68                  | 22.0±1                  | /                                                                  |
|                         | 22472 | 745.0     |       | 6                   | 0               | 21.46                  | 21.0±1                  | 1.0                                                                |
|                         | 23173 | 715.3     |       | 1                   | 0               | 22.07                  | 22.0±1                  | /                                                                  |
|                         |       |           |       | 1                   | 2               | 22.18                  | 22.0±1                  | /<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/ |
|                         |       |           |       | 1                   | 5               | 21.95                  | 21.0±1                  | 1.0                                                                |
|                         |       |           | 16QAM | 3                   | 0               | 22.68                  | 22.0±1                  | / / / / / / / / / / / / / / / / / / /                              |
|                         |       |           |       | 3                   | 1               | 22.59                  | 22.0±1                  | /                                                                  |
|                         |       |           |       | 3                   | 2               | 22.61                  | 22.0±1                  | /                                                                  |
|                         |       |           |       | 6                   | 0               | 21.31                  | 21.0±1                  | 1.0                                                                |

| BW(MHz)  | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB)                             |
|----------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-----------------------------------------|
|          |       |           |       | 1                   | 0               | 23.57                  | 23.5±1                  |                                         |
|          |       |           |       | 1                   | 8               | 23.49                  | 23.5±1                  | /                                       |
|          |       |           |       | 1                   | 14              | 23.28                  | 23.5±1                  | /                                       |
|          |       |           | QPSK  | 8                   | 0               | 22.39                  | 22.5±1                  | 1.0                                     |
|          |       |           |       | 8                   | 4               | 22.43                  | 22.5±1                  | 1.0                                     |
|          |       |           |       | 8                   | 9               | 22.46                  | 22.5±1                  | 1.0                                     |
|          | 23025 | 700.5     |       | 15                  | 0               | 22.50                  | 22.5±1                  | 1.0                                     |
|          | 23023 | 700.5     |       | 1                   | 0               | 23.47                  | 23.5±1                  | 1                                       |
|          |       |           |       | 1                   | 8               | 23.62                  | 23.5±1                  | 1                                       |
|          |       |           |       | 1                   | 14              | 23.36                  | 23.5±1                  | 1                                       |
|          |       |           | 16QAM | 8                   | 0               | 22.54                  | 22.5±1                  | 1.0                                     |
|          |       |           |       | 8                   | 4               | 22.59                  | 22.5±1                  | 1.0                                     |
|          |       |           |       | 8                   | 9               | 22.51                  | 22.5±1                  | 1.0                                     |
|          |       |           |       | 15                  | 0               | 22.54                  | 22.5±1                  | 1.0                                     |
|          |       |           |       | 1                   | 0               | 23.38                  | 23.5±1                  | 1                                       |
|          |       |           |       | 1                   | 8               | 23.18                  | 23.5±1                  | /                                       |
|          |       |           |       | 1                   | 14              | 23.27                  | 23.5±1                  | 1                                       |
|          |       |           | QPSK  | 8                   | 0               | 22.47                  | 22.5±1                  | 1.0                                     |
|          |       |           |       | 8                   | 4               | 22.33                  | 22.5±1                  | 1.0                                     |
|          |       |           |       | 8                   | 9               | 22.35                  | 22.5±1                  | 1.0                                     |
| 3MHz     | 23095 | 707.5     |       | 15                  | 0               | 22.47                  | 22.5±1                  | 1.0                                     |
| JIVII IZ | 23093 | 707.5     |       | 1                   | 0               | 22.07                  | 22.5±1                  | 1.0                                     |
|          |       |           |       | 1                   | 8               | 21.96                  | 22.5±1                  | 1.0                                     |
|          |       |           |       | 1                   | 14              | 22.14                  | 22.5±1                  | 1.0                                     |
|          |       |           | 16QAM | 8                   | 0               | 21.18                  | 21.5±1                  | 2.0                                     |
|          |       |           |       | 8                   | 4               | 21.32                  | 21.5±1                  | 2.0                                     |
|          |       |           |       | 8                   | 9               | 21.53                  | 21.5±1                  | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
|          |       |           |       | 15                  | 0               | 21.71                  | 21.5±1                  | 2.0                                     |
|          |       |           |       | 1                   | 0               | 22.06                  | 22.0±1                  | 1                                       |
|          |       |           |       | 1                   | 8               | 21.95                  | 22.0±1                  | 1                                       |
|          |       |           |       | 1                   | 14              | 22.04                  | 22.0±1                  | 1                                       |
|          |       |           | QPSK  | 8                   | 0               | 21.23                  | 21.0±1                  | 1.0                                     |
|          |       |           |       | 8                   | 4               | 21.22                  | 21.0±1                  | 1.0                                     |
|          |       |           |       | 8                   | 9               | 21.37                  | 21.0±1                  | 1.0                                     |
|          | 00465 | 7145      |       | 15                  | 0               | 21.66                  | 21.0±1                  | 1.0                                     |
|          | 23165 | 714.5     |       | 1                   | 0               | 21.88                  | 21.0±1                  | 1.0                                     |
|          |       |           |       | 1                   | 8               | 22.15                  | 22.0±1                  | 1                                       |
|          |       |           |       | 1                   | 14              | 21.99                  | 21.0±1                  | 1.0                                     |
|          |       |           | 16QAM | 8                   | 0               | 21.17                  | 21.0±1                  | 1.0                                     |
|          |       |           |       | 8                   | 4               | 21.23                  | 21.0±1                  | 1.0                                     |
|          |       |           |       | 8                   | 9               | 21.23                  | 21.0±1                  | 1.0                                     |
|          |       |           |       | 15                  | 0               | 21.28                  | 21.0±1                  | 1.0                                     |

| BW(MHz)  | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |
|----------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|
|          |       |           |       | 1                   | 0               | 23.37                  | 23.5±1                  | 1           |
|          |       |           |       | 1                   | 49              | 23.30                  | 23.5±1                  | /           |
|          |       |           |       | 1                   | 99              | 23.47                  | 23.5±1                  | /           |
|          |       |           | QPSK  | 12                  | 0               | 22.44                  | 22.5±1                  | 1.0         |
|          |       |           |       | 12                  | 24              | 22.49                  | 22.5±1                  | 1.0         |
|          |       |           |       | 12                  | 49              | 22.47                  | 22.5±1                  | 1.0         |
|          | 00005 | 704.5     |       | 25                  | 0               | 22.43                  | 22.5±1                  | 1.0         |
|          | 23035 | 701.5     |       | 1                   | 0               | 23.24                  | 23.5±1                  | /           |
|          |       |           |       | 1                   | 49              | 23.81                  | 23.5±1                  | /           |
|          |       |           |       | 1                   | 99              | 23.18                  | 23.5±1                  | /           |
|          |       |           | 16QAM | 12                  | 0               | 22.47                  | 22.5±1                  | 1.0         |
|          |       |           |       | 12                  | 24              | 22.66                  | 22.5±1                  | 1.0         |
|          |       |           |       | 12                  | 49              | 22.43                  | 22.5±1                  | 1.0         |
|          |       |           |       | 22.5±1              | 1.0             |                        |                         |             |
|          |       |           |       | 1                   | 0               | 23.32                  | 23.5±1                  | /           |
|          |       |           |       | 1                   | 49              | 23.22                  | 23.5±1                  | 1           |
|          |       |           |       | 1                   | 99              | 22.80                  | 23.5±1                  | /           |
|          |       |           | QPSK  | 12                  | 0               | 22.44                  | 22.5±1                  | 1.0         |
|          |       |           |       | 12                  | 24              | 22.35                  | 22.5±1                  | 1.0         |
|          |       |           |       | 12                  | 49              | 22.26                  | 22.5±1                  | 1.0         |
| 5MHz     | 23095 | 707.5     |       | 25                  | 0               | 22.45                  | 22.5±1                  | 1.0         |
| SIVII IZ | 23093 | 707.5     |       | 1                   | 0               | 22.02                  | 22.5±1                  | 1.0         |
|          |       |           |       | 1                   | 49              | 22.34                  | 22.5±1                  | 1.0         |
|          |       |           |       | 1                   | 99              | 22.07                  | 22.5±1                  | 1.0         |
|          |       |           | 16QAM | 12                  | 0               | 21.45                  | 21.5±1                  | 2.0         |
|          |       |           |       | 12                  | 24              | 21.55                  | 22.5±1                  | 1.0         |
|          |       |           |       | 12                  | 49              | 21.40                  | 21.5±1                  | 2.0         |
|          |       |           |       | 25                  | 0               | 21.55                  | 22.5±1                  | 1.0         |
|          |       |           |       | 1                   | 0               | 22.00                  | 22.0±1                  | 1           |
|          |       |           |       | 1                   | 49              | 22.60                  | 22.0±1                  | 1           |
|          |       |           |       | 1                   | 99              | 21.88                  | 22.0±1                  | 1           |
|          |       |           | QPSK  | 12                  | 0               | 21.45                  | 21.0±1                  | 1.0         |
|          |       |           |       | 12                  | 24              | 21.51                  | 21.0±1                  | 1.0         |
|          |       |           |       | 12                  | 49              | 21.17                  | 21.0±1                  | 1.0         |
|          | 23155 | 713.5     |       | 25                  | 0               | 21.64                  | 21.0±1                  | 1.0         |
|          | 20100 | 1 13.3    |       | 1                   | 0               | 22.05                  | 22.0±1                  | 1           |
|          |       |           |       | 1                   | 49              | 22.30                  | 22.0±1                  | 1           |
|          |       |           |       | 1                   | 99              | 22.01                  | 22.0±1                  | 1           |
|          |       |           | 16QAM | 12                  | 0               | 21.27                  | 21.0±1                  | 1.0         |
|          |       |           |       | 12                  | 24              | 21.45                  | 21.0±1                  | 1.0         |
|          |       |           |       | 12                  | 49              | 21.18                  | 21.0±1                  | 1.0         |
|          |       |           |       | 25                  | 0               | 21.35                  | 21.0±1                  | 1.0         |

| BW(MHz) | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB)                           |
|---------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|---------------------------------------|
|         |       |           |       | 1                   | 0               | 23.19                  | 23.5±1                  | / / / / / / / / / / / / / / / / / / / |
|         |       |           |       | 1                   | 49              | 23.97                  | 23.5±1                  | /                                     |
|         |       |           |       | 1                   | 99              | 23.27                  | 23.5±1                  | /                                     |
|         |       |           | QPSK  | 25                  | 0               | 22.42                  | 22.5±1                  | 1.0                                   |
|         |       |           |       | 25                  | 24              | 22.68                  | 22.5±1                  | 1.0                                   |
|         |       |           |       | 25                  | 49              | 22.48                  | 22.5±1                  | 1.0                                   |
|         | 00000 | 704       |       | 50                  | 0               | 22.46                  | 22.5±1                  | 1.0                                   |
|         | 23060 | 704       |       | 1                   | 0               | 23.25                  | 23.5±1                  | /                                     |
|         |       |           |       | 1                   | 49              | 24.30                  | 23.5±1                  | /                                     |
|         |       |           |       | 1                   | 99              | 22.87                  | 22.5±1                  | 1.0                                   |
|         |       |           | 16QAM | 25                  | 0               | 22.66                  | 22.5±1                  | 1.0                                   |
|         |       |           |       | 25                  | 24              | 22.80                  | 22.5±1                  | 1.0                                   |
|         |       |           |       | 25                  | 49              | 22.41                  | 22.5±1                  | 1.0                                   |
|         |       |           |       | 50                  | 0               | 22.47                  | 22.5±1                  | 1.0                                   |
|         |       |           |       | 1                   | 0               | 23.36                  | 23.5±1                  | /                                     |
|         |       |           |       | 1                   | 49              | 24.01                  | 23.5±1                  | /                                     |
|         |       |           |       | 1                   | 99              | 22.72                  | 23.5±1                  | /                                     |
|         |       |           | QPSK  | 25                  | 0               | 22.73                  | 22.5±1                  | 1.0                                   |
|         |       |           |       | 25                  | 24              | 22.57                  | 22.5±1                  | 1.0                                   |
|         |       |           |       | 25                  | 49              | 22.39                  | 22.5±1                  | 1.0                                   |
| 40141-  | 22005 | 707.5     |       | 50                  | 0               | 22.41                  | 22.5±1                  | 1.0                                   |
| 10MHz   | 23095 | 707.5     |       | 1                   | 0               | 22.04                  | 22.5±1                  | 1.0                                   |
|         |       |           |       | 1                   | 49              | 22.14                  | 22.5±1                  | 1.0                                   |
|         |       |           |       | 1                   | 99              | 22.02                  | 22.5±1                  | 1.0                                   |
|         |       |           | 16QAM | 25                  | 0               | 21.51                  | 21.5±1                  | 2.0                                   |
|         |       |           |       | 25                  | 24              | 21.59                  | 21.5±1                  | 2.0                                   |
|         |       |           |       | 25                  | 49              | 21.49                  | 21.5±1                  | 2.0                                   |
|         |       |           |       | 50                  | 0               | 21.61                  | 21.5±1                  | 2.0                                   |
|         |       |           |       | 1                   | 0               | 22.06                  | 22.0±1                  | 1                                     |
|         |       |           |       | 1                   | 49              | 22.28                  | 22.0±1                  | 1                                     |
|         |       |           |       | 1                   | 99              | 22.11                  | 22.0±1                  | 1                                     |
|         |       |           | QPSK  | 25                  | 0               | 21.60                  | 21.0±1                  | 1.0                                   |
|         |       |           |       | 25                  | 24              | 21.55                  | 21.0±1                  | 1.0                                   |
|         |       |           |       | 25                  | 49              | 21.39                  | 21.0±1                  | 1.0                                   |
|         | 23130 | 711       |       | 50                  | 0               | 21.50                  | 21.0±1                  | 1.0                                   |
|         | 23130 | 711       |       | 1                   | 0               | 22.23                  | 22.0±1                  | 1                                     |
|         |       |           |       | 1                   | 49              | 22.25                  | 22.0±1                  | 1                                     |
|         |       |           |       | 1                   | 99              | 21.94                  | 21.0±1                  | 1.0                                   |
|         |       |           | 16QAM | 25                  | 0               | 21.63                  | 21.0±1                  | 1.0                                   |
|         |       |           |       | 25                  | 24              | 21.54                  | 21.0±1                  | 1.0                                   |
|         |       |           |       | 25                  | 49              | 21.46                  | 21.0±1                  | 1.0                                   |
|         |       |           |       | 50                  | 0               | 21.41                  | 21.0±1                  | 1.0                                   |

### LTE Band 13:

| BW(MHz)  | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |
|----------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|
|          |       |           |       | 1                   | 0               | 23.68                  | 23.5±1                  | 1           |
|          |       |           |       | 1                   | 49              | 23.28                  | 23.5±1                  | 1           |
|          |       |           |       | 1                   | 99              | 23.63                  | 23.5±1                  | 1           |
|          |       |           | QPSK  | 12                  | 0               | 22.62                  | 22.5±1                  | 1.0         |
|          |       |           |       | 12                  | 24              | 22.61                  | 22.5±1                  | 1.0         |
|          |       |           |       | 12                  | 49              | 22.55                  | 22.5±1                  | 1.0         |
|          | 23205 | 779.5     |       | 25                  | 0               | 22.65                  | 22.5±1                  | 1.0         |
|          | 23203 | 779.5     |       | 1                   | 0               | 23.67                  | 22.5±1                  | 1.0         |
|          |       |           |       | 1                   | 49              | 23.85                  | 22.5±1                  | 1.0         |
|          |       |           |       | 1                   | 99              | 23.82                  | 22.5±1                  | 1.0         |
|          |       |           | 16QAM | 12                  | 0               | 22.54                  | 22.5±1                  | 1.0         |
|          |       |           |       | 12                  | 24              | 22.74                  | 22.5±1                  | 1.0         |
|          |       |           |       | 12                  | 49              | 22.72                  | 22.5±1                  | 1.0         |
|          |       |           |       | 25                  | 0               | 22.60                  | 22.5±1                  | 1.0         |
|          |       |           |       | 1                   | 0               | 23.62                  | 23.5±1                  | 1           |
|          |       |           |       | 1                   | 49              | 24.13                  | 23.5±1                  | 1           |
|          |       |           |       | 1                   | 99              | 23.75                  | 23.5±1                  | 1           |
|          |       |           | QPSK  | 12                  | 0               | 22.52                  | 22.5±1                  | 1.0         |
|          |       |           |       | 12                  | 24              | 22.67                  | 22.5±1                  | 1.0         |
|          |       |           |       | 12                  | 49              | 22.65                  | 22.5±1                  | 1.0         |
| 5MHz     | 23230 | 782.0     |       | 25                  | 0               | 22.58                  | 22.5±1                  | 1.0         |
| JIVII IZ | 23230 | 702.0     |       | 1                   | 0               | 22.19                  | 22.5±1                  | 1.0         |
|          |       |           |       | 1                   | 49              | 22.60                  | 22.5±1                  | 1.0         |
|          |       |           |       | 1                   | 99              | 21.89                  | 22.5±1                  | 1.0         |
|          |       |           | 16QAM | 12                  | 0               | 21.54                  | 22.5±1                  | 1.0         |
|          |       |           |       | 12                  | 24              | 21.56                  | 22.5±1                  | 1.0         |
|          |       |           |       | 12                  | 49              | 21.61                  | 22.5±1                  | 1.0         |
|          |       |           |       | 25                  | 0               | 21.68                  | 22.5±1                  | 1.0         |
|          |       |           |       | 1                   | 0               | 22.11                  | 23.5±1                  | 1           |
|          |       |           |       | 1                   | 49              | 22.29                  | 23.5±1                  | 1           |
|          |       |           |       | 1                   | 99              | 22.04                  | 23.5±1                  | 1           |
|          |       |           | QPSK  | 12                  | 0               | 21.66                  | 22.5±1                  | 1.0         |
|          |       |           |       | 12                  | 24              | 21.64                  | 22.5±1                  | 1.0         |
|          |       |           |       | 12                  | 49              | 21.50                  | 22.5±1                  | 1.0         |
|          | 23255 | 784.5     |       | 25                  | 0               | 21.72                  | 22.5±1                  | 1.0         |
|          | 20200 | , 04.0    | 84.5  | 1                   | 0               | 22.23                  | 22.5±1                  | 1.0         |
|          |       | 16QAM     | 1     | 49                  | 22.44           | 22.5±1                 | 1.0                     |             |
|          |       |           |       | 1                   | 99              | 22.19                  | 22.5±1                  | 1.0         |
|          |       |           | 16QAM | 12                  | 0               | 21.48                  | 21.5±1                  | 2.0         |
|          |       |           |       | 12                  | 24              | 21.55                  | 22.5±1                  | 1.0         |
|          |       |           |       | 12                  | 49              | 21.31                  | 21.5±1                  | 2.0         |
|          |       |           |       | 25                  | 0               | 21.51                  | 22.5±1                  | 1.0         |

| BW(MHz) | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |
|---------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|
|         |       |           |       | 1                   | 0               | 23.60                  | 23.5±1                  | 1           |
|         |       |           |       | 1                   | 49              | 23.95                  | 23.5±1                  | 1           |
|         |       |           |       | 1                   | 99              | 23.62                  | 23.5±1                  | 1           |
|         |       |           | QPSK  | 25                  | 0               | 22.53                  | 22.5±1                  | 1.0         |
|         |       |           |       | 25                  | 24              | 22.71                  | 22.5±1                  | 1.0         |
|         |       |           |       | 25                  | 49              | 22.50                  | 22.5±1                  | 1.0         |
| 10MHz   | 23230 | 782.0     |       | 50                  | 0               | 22.58                  | 22.5±1                  | 1.0         |
| IOIVITZ | 23230 | 702.0     |       | 1                   | 0               | 22.30                  | 22.5±1                  | 1.0         |
|         |       |           |       | 1                   | 49              | 22.34                  | 22.5±1                  | 1.0         |
|         |       |           |       | 1                   | 99              | 22.31                  | 22.5±1                  | 1.0         |
|         |       |           | 16QAM | 25                  | 0               | 21.59                  | 22.5±1                  | 1.0         |
|         |       |           |       | 25                  | 24              | 21.58                  | 22.5±1                  | 1.0         |
|         |       |           |       | 25                  | 49              | 21.60                  | 22.5±1                  | 1.0         |
|         |       |           |       | 50                  | 0               | 21.70                  | 22.5±1                  | 1.0         |

### LTE Band 25:

| BW(MHz)   | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB)                           |
|-----------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|---------------------------------------|
|           |       |           |       | 1                   | 0               | 22.98                  | 23.0±1                  | / / / / / / / / / / / / / / / / / / / |
|           |       |           |       | 1                   | 2               | 23.33                  | 23.0±1                  | /                                     |
|           |       |           |       | 1                   | 5               | 23.09                  | 23.0±1                  | /                                     |
|           |       |           | QPSK  | 3                   | 0               | 23.34                  | 23.0±1                  | /                                     |
|           |       |           |       | 3                   | 1               | 23.46                  | 23.0±1                  | /                                     |
|           |       |           |       | 3                   | 3               | 23.54                  | 23.0±1                  | /                                     |
|           | 26047 | 1850.7    |       | 6                   | 0               | 22.48                  | 22.0±1                  | 1.0                                   |
|           | 20047 | 1650.7    |       | 1                   | 0               | 23.09                  | 23.0±1                  | 1                                     |
|           |       |           |       | 1                   | 2               | 23.45                  | 23.0±1                  | 1                                     |
|           |       |           |       | 1                   | 5               | 23.26                  | 23.0±1                  | 1                                     |
|           |       |           | 16QAM | 3                   | 0               | 23.47                  | 23.0±1                  | /                                     |
|           |       |           |       | 3                   | 1               | 23.81                  | 23.0±1                  | /                                     |
|           |       |           |       | 3                   | 3               | 23.58                  | 23.0±1                  | /                                     |
|           |       |           |       | 6                   | 0               | 22.46                  | 22.0±1                  | 1.0                                   |
|           |       |           |       | 1                   | 0               | 23.06                  | 23.0±1                  | 1                                     |
|           |       |           |       | 1                   | 2               | 22.65                  | 23.0±1                  | 1                                     |
|           |       |           |       | 1                   | 5               | 22.00                  | 23.0±1                  | 1                                     |
|           |       |           | QPSK  | 3                   | 0               | 22.75                  | 23.0±1                  | 1                                     |
|           |       |           |       | 3                   | 1               | 22.56                  | 23.0±1                  | /                                     |
|           |       |           |       | 3                   | 3               | 22.20                  | 23.0±1                  | /                                     |
| 1.4MHz    | 00005 | 4000 5    |       | 6                   | 0               | 22.37                  | 22.0±1                  | 1.0                                   |
| 1.4101112 | 26365 | 1882.5    |       | 1                   | 0               | 21.93                  | 22.0±1                  | 1.0                                   |
|           |       |           |       | 1                   | 2               | 22.16                  | 22.0±1                  | 1.0                                   |
|           |       |           |       | 1                   | 5               | 22.11                  | 22.0±1                  | 1.0                                   |
|           |       |           | 16QAM | 3                   | 0               | 22.53                  | 22.0±1                  | 1.0                                   |
|           |       |           |       | 3                   | 1               | 22.66                  | 22.0±1                  | 1.0                                   |
|           |       |           |       | 3                   | 3               | 22.77                  | 22.0±1                  | 1.0                                   |
|           |       |           |       | 6                   | 0               | 21.34                  | 22.0±1                  | / / / / / / / / / / / / / / / / / / / |
|           |       |           |       | 1                   | 0               | 21.95                  | 23.0±1                  | 1                                     |
|           |       |           |       | 1                   | 2               | 22.10                  | 23.0±1                  | /                                     |
|           |       |           |       | 1                   | 5               | 22.06                  | 23.0±1                  | 1                                     |
|           |       |           | QPSK  | 3                   | 0               | 22.69                  | 23.0±1                  | 1                                     |
|           |       |           |       | 3                   | 1               | 22.67                  | 23.0±1                  | 1                                     |
|           |       |           |       | 3                   | 3               | 22.57                  | 23.0±1                  | /                                     |
|           | 26602 | 1014.2    |       | 6                   | 0               | 21.51                  | 22.0±1                  | 1.0                                   |
|           | 26683 | 1914.3    |       | 1                   | 0               | 21.94                  | 22.0±1                  | 1.0                                   |
|           |       |           |       | 1                   | 2               | 21.98                  | 22.0±1                  | 1.0                                   |
|           |       |           |       | 1                   | 5               | 21.34                  | 22.0±1                  | 1.0                                   |
|           |       |           | 16QAM | 3                   | 0               | 21.97                  | 22.0±1                  | 1.0                                   |
|           |       |           |       | 3                   | 1               | 21.79                  | 22.0±1                  | 1.0                                   |
|           |       |           |       | 3                   | 3               | 21.90                  | 22.0±1                  | 1.0                                   |
|           |       |           |       | 6                   | 0               | 21.58                  | 22.0±1                  | 1.0                                   |

| BW(MHz) | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB)                                      |
|---------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|--------------------------------------------------|
|         |       |           |       | 1                   | 0               | 23.43                  | 23.0±1                  | (dB)  /  /  1.0  1.0  1.0  1.0  1.0  /  1.0  1.0 |
|         |       |           |       | 1                   | 8               | 23.53                  | 23.0±1                  | 1                                                |
|         |       |           |       | 1                   | 4               | 23.42                  | 23.0±1                  | 1                                                |
|         |       |           | QPSK  | 8                   | 0               | 22.54                  | 22.0±1                  | 1.0                                              |
|         |       |           |       | 8                   | 4               | 22.57                  | 22.0±1                  | 1.0                                              |
|         |       |           |       | 8                   | 7               | 22.56                  | 22.0±1                  | 1.0                                              |
|         | 26055 | 1851.5    |       | 15                  | 0               | 22.60                  | 22.0±1                  | 1.0                                              |
|         | 20055 | 1051.5    |       | 1                   | 0               | 23.19                  | 23.0±1                  | 1                                                |
|         |       |           |       | 1                   | 8               | 23.66                  | 23.0±1                  | 1                                                |
|         |       |           |       | 1                   | 4               | 23.36                  | 23.0±1                  | 1                                                |
|         |       |           | 16QAM | 8                   | 0               | 22.62                  | 22.0±1                  | 1.0                                              |
|         |       |           |       | 8                   | 4               | 22.64                  | 22.0±1                  | 1.0                                              |
|         |       |           |       | 8                   | 7               | 22.61                  | 22.0±1                  | 1.0                                              |
|         |       |           |       | 15                  | 0               | 22.52                  | 22.0±1                  | 1.0                                              |
|         |       |           |       | 1                   | 0               | 23.60                  | 23.0±1                  | 1                                                |
|         |       |           |       | 1                   | 8               | 23.00                  | 23.0±1                  | 1                                                |
|         |       |           |       | 1                   | 4               | 21.78                  | 22.0±1                  | 1.0                                              |
|         |       |           | QPSK  | 8                   | 0               | 23.57                  | 23.0±1                  | /                                                |
|         |       |           |       | 8                   | 4               | 22.25                  | 22.0±1                  | 1.0                                              |
|         |       |           |       | 8                   | 7               | 22.24                  | 22.0±1                  | 1.0                                              |
| 3MHz    | 26265 | 1000 5    |       | 15                  | 0               | 22.94                  | 22.0±1                  | 1.0                                              |
| SIVITZ  | 26365 | 1882.5    |       | 1                   | 0               | 22.14                  | 22.0±1                  | 1.0                                              |
|         |       |           |       | 1                   | 8               | 22.21                  | 22.0±1                  | 1.0                                              |
|         |       |           |       | 1                   | 4               | 22.10                  | 22.0±1                  | 1.0                                              |
|         |       |           | 16QAM | 8                   | 0               | 21.26                  | 22.0±1                  | 1.0                                              |
|         |       |           |       | 8                   | 4               | 21.26                  | 22.0±1                  | 1.0                                              |
|         |       |           |       | 8                   | 7               | 21.37                  | 22.0±1                  | 1.0                                              |
|         |       |           |       | 15                  | 0               | 21.48                  | 22.0±1                  | 1.0                                              |
|         |       |           |       | 1                   | 0               | 22.14                  | 23.0±1                  | 1                                                |
|         |       |           |       | 1                   | 8               | 22.12                  | 23.0±1                  | 1                                                |
|         |       |           |       | 1                   | 4               | 22.25                  | 23.0±1                  | 1                                                |
|         |       |           | QPSK  | 8                   | 0               | 21.35                  | 22.0±1                  | 1.0                                              |
|         |       |           |       | 8                   | 4               | 21.38                  | 22.0±1                  | 1.0                                              |
|         |       |           |       | 8                   | 7               | 21.45                  | 22.0±1                  | 1.0                                              |
|         | 26675 | 1012 5    |       | 15                  | 0               | 21.57                  | 22.0±1                  | 1.0                                              |
|         | 26675 | 1913.5    |       | 1                   | 0               | 22.18                  | 22.0±1                  | 1.0                                              |
|         |       |           |       | 1                   | 8               | 22.08                  | 22.0±1                  | 1.0                                              |
|         |       |           |       | 1                   | 4               | 20.33                  | 21.0±1                  | 2.0                                              |
|         |       |           | 16QAM | 8                   | 0               | 21.35                  | 22.0±1                  | 1.0                                              |
|         |       |           |       | 8                   | 4               | 21.36                  | 22.0±1                  | 1.0                                              |
|         |       |           |       | 8                   | 7               | 21.35                  | 22.0±1                  | 1.0                                              |
|         |       |           |       | 15                  | 0               | 21.66                  | 22.0±1                  | 1.0                                              |

| BW(MHz) | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB)                                               |
|---------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-----------------------------------------------------------|
|         |       |           |       | 1                   | 0               | 23.35                  | 23.0±1                  | m) (dB)  /  /  /  1.0  1.0  1.0  1.0  1.0  /  /  1.0  1.0 |
|         |       |           |       | 1                   | 12              | 23.44                  | 23.0±1                  | 1                                                         |
|         |       |           |       | 1                   | 24              | 23.54                  | 23.0±1                  | /                                                         |
|         |       |           | QPSK  | 12                  | 0               | 22.59                  | 22.0±1                  | 1.0                                                       |
|         |       |           |       | 12                  | 6               | 22.55                  | 22.0±1                  | 1.0                                                       |
|         |       |           |       | 12                  | 13              | 22.61                  | 22.0±1                  | 1.0                                                       |
|         | 00005 | 4050.5    |       | 25                  | 0               | 22.58                  | 22.0±1                  | 1.0                                                       |
|         | 26065 | 1852.5    |       | 1                   | 0               | 23.39                  | 23.0±1                  | /                                                         |
|         |       |           |       | 1                   | 12              | 23.50                  | 23.0±1                  | 1                                                         |
|         |       |           |       | 1                   | 24              | 23.32                  | 23.0±1                  | /                                                         |
|         |       |           | 16QAM | 12                  | 0               | 22.58                  | 22.0±1                  | 1.0                                                       |
|         |       |           |       | 12                  | 6               | 22.73                  | 22.0±1                  | 1.0                                                       |
|         |       |           |       | 12                  | 13              | 22.49                  | 22.0±1                  | 1.0                                                       |
|         |       |           |       | 25                  | 0               | 22.53                  | 22.0±1                  | 1.0                                                       |
|         |       |           |       | 1                   | 0               | 23.47                  | 23.0±1                  | 1                                                         |
|         |       |           |       | 1                   | 12              | 23.27                  | 23.0±1                  | 1                                                         |
|         |       |           |       | 1                   | 24              | 21.73                  | 22.0±1                  | 1.0                                                       |
|         |       |           | QPSK  | 12                  | 0               | 21.36                  | 22.0±1                  | 1.0                                                       |
|         |       |           |       | 12                  | 6               | 22.41                  | 22.0±1                  | 1.0                                                       |
|         |       |           |       | 12                  | 13              | 22.09                  | 22.0±1                  | 1.0                                                       |
| 5MHz    | 26365 | 1882.5    |       | 25                  | 0               | 22.55                  | 22.0±1                  | 1.0                                                       |
| SIVITZ  | 20303 | 1002.5    |       | 1                   | 0               | 22.02                  | 22.0±1                  | 1.0                                                       |
|         |       |           |       | 1                   | 12              | 22.63                  | 22.0±1                  | 1.0                                                       |
|         |       |           |       | 1                   | 24              | 22.04                  | 22.0±1                  | 1.0                                                       |
|         |       |           | 16QAM | 12                  | 0               | 21.28                  | 22.0±1                  | 1.0                                                       |
|         |       |           |       | 12                  | 6               | 21.55                  | 22.0±1                  | 1.0                                                       |
|         |       |           |       | 12                  | 13              | 21.53                  | 22.0±1                  | 1.0                                                       |
|         |       |           |       | 25                  | 0               | 21.43                  | 22.0±1                  | 1.0                                                       |
|         |       |           |       | 1                   | 0               | 21.75                  | 22.0±1                  | 1                                                         |
|         |       |           |       | 1                   | 12              | 22.55                  | 22.0±1                  | 1                                                         |
|         |       |           |       | 1                   | 24              | 22.10                  | 22.0±1                  | 1                                                         |
|         |       |           | QPSK  | 12                  | 0               | 21.37                  | 21.0±1                  | 1.0                                                       |
|         |       |           |       | 12                  | 6               | 21.51                  | 21.0±1                  | 1.0                                                       |
|         |       |           |       | 12                  | 13              | 21.53                  | 21.0±1                  | 1.0                                                       |
|         | 26665 | 1912.5    |       | 25                  | 0               | 21.49                  | 21.0±1                  | 1.0                                                       |
|         | 20000 | 1812.0    |       | 1                   | 0               | 22.13                  | 22.0±1                  | 1                                                         |
|         |       | 16QAN     |       | 1                   | 12              | 22.54                  | 22.0±1                  | 1                                                         |
|         |       |           |       | 1                   | 24              | 21.13                  | 21.0±1                  | 1.0                                                       |
|         |       |           | 16QAM | 12                  | 0               | 21.47                  | 21.0±1                  | 1.0                                                       |
|         |       |           |       | 12                  | 6               | 21.57                  | 21.0±1                  | 1.0                                                       |
|         |       |           |       | 12                  | 13              | 21.34                  | 21.0±1                  | 1.0                                                       |
|         |       |           |       | 25                  | 0               | 21.57                  | 21.0±1                  | 1.0                                                       |

| BW(MHz)    | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |
|------------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|
|            |       |           |       | 1                   | 0               | 23.55                  | 23.0±1                  | 1           |
|            |       |           |       | 1                   | 24              | 23.94                  | 23.0±1                  | /           |
|            |       |           |       | 1                   | 49              | 23.14                  | 23.0±1                  | /           |
|            |       |           | QPSK  | 25                  | 0               | 22.69                  | 22.0±1                  | 1.0         |
|            |       |           |       | 25                  | 12              | 22.75                  | 22.0±1                  | 1.0         |
|            |       |           |       | 25                  | 25              | 22.53                  | 22.0±1                  | 1.0         |
|            | 26000 | 1855.0    |       | 50                  | 0               | 22.58                  | 22.0±1                  | 1.0         |
|            | 26090 | 1855.0    |       | 1                   | 0               | 23.32                  | 23.0±1                  | /           |
|            |       |           |       | 1                   | 24              | 23.83                  | 23.0±1                  | 1           |
|            |       |           |       | 1                   | 49              | 23.40                  | 23.0±1                  | 1           |
|            |       |           | 16QAM | 25                  | 0               | 22.57                  | 22.0±1                  | 1.0         |
|            |       |           |       | 25                  | 12              | 22.77                  | 22.0±1                  | 1.0         |
|            |       |           |       | 25                  | 25              | 22.54                  | 22.0±1                  | 1.0         |
|            |       |           |       | 50                  | 0               | 22.58                  | 22.0±1                  | 1.0         |
|            |       |           |       | 1                   | 0               | 22.86                  | 23.0±1                  | 1           |
|            |       |           |       | 1                   | 24              | 24.55                  | 24.0±1                  | 1           |
|            |       |           |       | 1                   | 49              | 21.38                  | 22.0±1                  | 1.0         |
|            |       |           | QPSK  | 25                  | 0               | 23.99                  | 23.0±1                  | 1           |
|            |       |           |       | 25                  | 12              | 22.63                  | 22.0±1                  | 1.0         |
|            |       |           |       | 25                  | 25              | 22.32                  | 22.0±1                  | 1.0         |
| 10MHz      | 26365 | 1882.5    |       | 50                  | 0               | 22.46                  | 22.0±1                  | 1.0         |
| I OIVII IZ | 20303 | 1002.5    |       | 1                   | 0               | 22.31                  | 22.0±1                  | 1.0         |
|            |       |           |       | 1                   | 24              | 22.12                  | 22.0±1                  | 1.0         |
|            |       |           |       | 1                   | 49              | 22.09                  | 22.0±1                  | 1.0         |
|            |       |           | 16QAM | 25                  | 0               | 21.76                  | 22.0±1                  | 1.0         |
|            |       |           |       | 25                  | 12              | 21.51                  | 22.0±1                  | 1.0         |
|            |       |           |       | 25                  | 25              | 21.60                  | 22.0±1                  | 1.0         |
|            |       |           |       | 50                  | 0               | 21.56                  | 22.0±1                  | 1.0         |
|            |       |           |       | 1                   | 0               | 22.12                  | 22.0±1                  | 1           |
|            |       |           |       | 1                   | 24              | 22.25                  | 22.0±1                  | 1           |
|            |       |           |       | 1                   | 49              | 22.21                  | 22.0±1                  | 1           |
|            |       |           | QPSK  | 25                  | 0               | 21.58                  | 21.0±1                  | 1.0         |
|            |       |           |       | 25                  | 12              | 21.63                  | 21.0±1                  | 1.0         |
|            |       |           |       | 25                  | 25              | 21.51                  | 21.0±1                  | 1.0         |
|            | 26640 | 1910.0    |       | 50                  | 0               | 21.60                  | 21.0±1                  | 1.0         |
|            | 20040 | 1910.0    |       | 1                   | 0               | 22.16                  | 22.0±1                  | 1           |
|            |       |           |       | 1                   | 24              | 22.30                  | 22.0±1                  | 1           |
|            |       |           |       | 1                   | 49              | 22.03                  | 22.0±1                  | 1           |
|            |       |           | 16QAM | 25                  | 0               | 21.52                  | 21.0±1                  | 1.0         |
|            |       |           |       | 25                  | 12              | 21.56                  | 21.0±1                  | 1.0         |
|            |       |           | -     | 25                  | 25              | 21.41                  | 21.0±1                  | 1.0         |
|            |       |           |       | 50                  | 0               | 21.53                  | 21.0±1                  | 1.0         |

| BW(MHz)    | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |
|------------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|
|            |       |           |       | 1                   | 0               | 23.59                  | 23.0±1                  | 1           |
|            |       |           |       | 1                   | 38              | 23.86                  | 23.0±1                  | /           |
|            |       |           |       | 1                   | 74              | 22.92                  | 23.0±1                  | /           |
|            |       |           | QPSK  | 36                  | 0               | 22.78                  | 22.0±1                  | 1.0         |
|            |       |           |       | 36                  | 18              | 22.71                  | 22.0±1                  | 1.0         |
|            |       |           |       | 36                  | 39              | 22.33                  | 22.0±1                  | 1.0         |
|            | 26115 | 1857.5    |       | 75                  | 0               | 22.61                  | 22.0±1                  | 1.0         |
|            | 20115 | 1007.5    |       | 1                   | 0               | 23.26                  | 23.0±1                  | /           |
|            |       |           |       | 1                   | 38              | 23.66                  | 23.0±1                  | 1           |
|            |       |           |       | 1                   | 74              | 23.36                  | 23.0±1                  | 1           |
|            |       |           | 16QAM | 36                  | 0               | 22.44                  | 22.0±1                  | 1.0         |
|            |       |           |       | 36                  | 18              | 22.81                  | 22.0±1                  | 1.0         |
|            |       |           |       | 36                  | 39              | 22.44                  | 22.0±1                  | 1.0         |
|            |       |           |       | 75                  | 0               | 22.57                  | 22.0±1                  | 1.0         |
|            |       |           |       | 1                   | 0               | 23.06                  | 23.0±1                  | 1           |
|            |       |           |       | 1                   | 38              | 24.12                  | 24.0±1                  | 1           |
|            |       |           |       | 1                   | 74              | 21.46                  | 22.0±1                  | 1.0         |
|            |       |           | QPSK  | 36                  | 0               | 23.45                  | 23.0±1                  | 1           |
|            |       |           |       | 36                  | 18              | 22.75                  | 22.0±1                  | 1.0         |
|            |       |           |       | 36                  | 39              | 22.52                  | 22.0±1                  | 1.0         |
| 15MHz      | 26365 | 1882.5    |       | 75                  | 0               | 22.49                  | 22.0±1                  | 1.0         |
| I JIVII IZ | 20303 | 1002.5    |       | 1                   | 0               | 22.37                  | 22.0±1                  | 1.0         |
|            |       |           |       | 1                   | 38              | 22.01                  | 22.0±1                  | 1.0         |
|            |       |           |       | 1                   | 74              | 22.16                  | 22.0±1                  | 1.0         |
|            |       |           | 16QAM | 36                  | 0               | 21.61                  | 22.0±1                  | 1.0         |
|            |       |           |       | 36                  | 18              | 21.69                  | 22.0±1                  | 1.0         |
|            |       |           |       | 36                  | 39              | 21.69                  | 22.0±1                  | 1.0         |
|            |       |           |       | 75                  | 0               | 21.58                  | 22.0±1                  | 1.0         |
|            |       |           |       | 1                   | 0               | 22.12                  | 22.0±1                  | 1           |
|            |       |           |       | 1                   | 38              | 22.20                  | 22.0±1                  | 1           |
|            |       |           |       | 1                   | 74              | 22.27                  | 22.0±1                  | 1           |
|            |       |           | QPSK  | 36                  | 0               | 21.65                  | 21.0±1                  | 1.0         |
|            |       |           |       | 36                  | 18              | 21.50                  | 21.0±1                  | 1.0         |
|            |       |           |       | 36                  | 39              | 21.65                  | 21.0±1                  | 1.0         |
|            | 26615 | 1907.5    |       | 75                  | 0               | 21.62                  | 21.0±1                  | 1.0         |
|            | 20013 | 1907.5    |       | 1                   | 0               | 22.41                  | 22.0±1                  | 1           |
|            |       |           |       | 1                   | 38              | 22.11                  | 22.0±1                  | 1           |
|            |       |           |       | 1                   | 74              | 22.43                  | 22.0±1                  | 1           |
|            |       |           | 16QAM | 36                  | 0               | 21.68                  | 21.0±1                  | 1.0         |
|            |       |           |       | 36                  | 18              | 21.44                  | 21.0±1                  | 1.0         |
|            |       |           | -     | 36                  | 39              | 21.58                  | 21.0±1                  | 1.0         |
|            |       |           |       | 75                  | 0               | 21.53                  | 21.0±1                  | 1.0         |

| BW(MHz) | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |
|---------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|
|         |       |           |       | 1                   | 0               | 23.50                  | 23.0±1                  | /           |
|         |       |           |       | 1                   | 49              | 23.80                  | 23.0±1                  | /           |
|         |       |           |       | 1                   | 99              | 23.02                  | 23.0±1                  | /           |
|         |       |           | QPSK  | 50                  | 0               | 23.31                  | 23.0±1                  | /           |
|         |       |           |       | 50                  | 25              | 22.81                  | 22.0±1                  | 1.0         |
|         |       |           |       | 50                  | 50              | 22.07                  | 22.0±1                  | 1.0         |
|         | 26140 | 1860.0    |       | 100                 | 0               | 22.72                  | 22.0±1                  | 1.0         |
|         | 26140 | 1660.0    |       | 1                   | 0               | 23.08                  | 23.0±1                  | 1           |
|         |       |           |       | 1                   | 49              | 23.24                  | 23.0±1                  | /           |
|         |       |           |       | 1                   | 99              | 23.23                  | 23.0±1                  | /           |
|         |       |           | 16QAM | 50                  | 0               | 22.52                  | 22.0±1                  | 1.0         |
|         |       |           |       | 50                  | 25              | 23.00                  | 22.0±1                  | 1.0         |
|         |       |           |       | 50                  | 50              | 22.37                  | 22.0±1                  | 1.0         |
|         |       |           |       | 100                 | 0               | 22.57                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 0               | 23.46                  | 23.0±1                  | 1           |
|         |       |           |       | 1                   | 49              | 23.44                  | 23.0±1                  | /           |
|         |       |           |       | 1                   | 99              | 21.48                  | 22.0±1                  | 1.0         |
|         |       |           | QPSK  | 50                  | 0               | 23.87                  | 23.0±1                  | /           |
|         |       |           |       | 50                  | 25              | 22.76                  | 22.0±1                  | 1.0         |
|         |       |           |       | 50                  | 50              | 22.59                  | 22.0±1                  | 1.0         |
| 20MHz   | 26365 | 1882.5    |       | 100                 | 0               | 22.54                  | 22.0±1                  | 1.0         |
| ZUIVITZ | 20303 | 1002.5    |       | 1                   | 0               | 22.27                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 49              | 22.31                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 99              | 22.22                  | 22.0±1                  | 1.0         |
|         |       |           | 16QAM | 50                  | 0               | 21.68                  | 22.0±1                  | 1.0         |
|         |       |           |       | 50                  | 25              | 21.62                  | 22.0±1                  | 1.0         |
|         |       |           |       | 50                  | 50              | 21.71                  | 22.0±1                  | 1.0         |
|         |       |           |       | 100                 | 0               | 21.61                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 0               | 22.30                  | 22.0±1                  | 1           |
|         |       |           |       | 1                   | 49              | 22.37                  | 22.0±1                  | 1           |
|         |       |           |       | 1                   | 99              | 22.16                  | 22.0±1                  | /           |
|         |       |           | QPSK  | 50                  | 0               | 21.69                  | 21.0±1                  | 1.0         |
|         |       |           |       | 50                  | 25              | 21.62                  | 21.0±1                  | 1.0         |
|         |       |           |       | 50                  | 50              | 21.57                  | 21.0±1                  | 1.0         |
|         | 26500 | 1005.0    |       | 100                 | 0               | 21.62                  | 21.0±1                  | 1.0         |
|         | 26590 | 1905.0    |       | 1                   | 0               | 22.25                  | 22.0±1                  | /           |
|         |       |           |       | 1                   | 49              | 22.23                  | 22.0±1                  | /           |
|         |       |           |       | 1                   | 99              | 21.03                  | 21.0±1                  | 1.0         |
|         |       |           | 16QAM | 50                  | 0               | 21.55                  | 21.0±1                  | 1.0         |
|         |       |           |       | 50                  | 25              | 21.70                  | 21.0±1                  | 1.0         |
|         |       |           |       | 50                  | 50              | 21.53                  | 21.0±1                  | 1.0         |
|         |       |           |       | 100                 | 0               | 21.53                  | 21.0±1                  | 1.0         |

# LTE Band 26(Part 90S):

| BW(MHz)                 | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |
|-------------------------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|
|                         |       |           |       | 1                   | 0               | 23.40                  | 23.0±1                  | /           |
|                         |       |           |       | 1                   | 2               | 23.31                  | 23.0±1                  | /           |
|                         |       |           |       | 1                   | 5               | 23.17                  | 23.0±1                  | /           |
|                         |       |           | QPSK  | 3                   | 0               | 23.38                  | 23.0±1                  | /           |
|                         |       |           |       | 3                   | 1               | 23.57                  | 23.0±1                  | /           |
|                         |       |           |       | 3                   | 3               | 23.58                  | 23.0±1                  | 1           |
|                         | 00007 | 044.7     |       | 6                   | 0               | 22.51                  | 22.0±1                  | 1.0         |
|                         | 26697 | 814.7     |       | 1                   | 0               | 23.57                  | 23.0±1                  | /           |
|                         |       |           |       | 1                   | 2               | 23.57                  | 23.0±1                  | /           |
|                         |       |           |       | 1                   | 5               | 23.59                  | 23.0±1                  | /           |
|                         |       |           | 16QAM | 3                   | 0               | 23.70                  | 23.0±1                  | /           |
|                         |       |           |       | 3                   | 1               | 23.73                  | 23.0±1                  | /           |
|                         |       |           |       | 3                   | 3               | 23.90                  | 23.0±1                  | /           |
|                         |       |           |       | 6                   | 0               | 22.72                  | 22.0±1                  | 1.0         |
|                         |       |           |       | 1                   | 0               | 23.44                  | 23.0±1                  | /           |
|                         |       |           |       | 1                   | 2               | 23.65                  | 23.0±1                  | /           |
|                         |       |           |       | 1                   | 5               | 23.44                  | 23.0±1                  | /           |
|                         |       |           | QPSK  | 3                   | 0               | 23.66                  | 23.0±1                  | /           |
|                         |       |           |       | 3                   | 1               | 23.82                  | 23.0±1                  | 1           |
|                         |       |           |       | 3                   | 3               | 23.83                  | 23.0±1                  | /           |
| 1.4MHz                  | 26740 | 819.0     |       | 6                   | 0               | 22.63                  | 22.0±1                  | 1.0         |
| 1. <del>1</del> 1VII 12 | 20740 | 819.0     |       | 1                   | 0               | 22.19                  | 22.0±1                  | 1.0         |
|                         |       |           |       | 1                   | 2               | 22.28                  | 22.0±1                  | 1.0         |
|                         |       |           |       | 1                   | 5               | 22.24                  | 22.0±1                  | 1.0         |
|                         |       |           | 16QAM | 3                   | 0               | 22.65                  | 22.0±1                  | 1.0         |
|                         |       |           |       | 3                   | 1               | 22.59                  | 22.0±1                  | 1.0         |
|                         |       |           |       | 3                   | 3               | 22.61                  | 22.0±1                  | 1.0         |
|                         |       |           |       | 6                   | 0               | 21.51                  | 22.0±1                  | 1.0         |
|                         |       |           |       | 1                   | 0               | 22.21                  | 22.0±1                  | 1           |
|                         |       |           |       | 1                   | 2               | 22.23                  | 22.0±1                  | 1           |
|                         |       |           |       | 1                   | 5               | 22.07                  | 22.0±1                  | 1           |
|                         |       |           | QPSK  | 3                   | 0               | 22.91                  | 22.0±1                  | 1           |
|                         |       |           |       | 3                   | 1               | 22.95                  | 22.0±1                  | 1           |
|                         |       |           |       | 3                   | 3               | 22.79                  | 22.0±1                  | 1           |
|                         | 26783 | 823.3     |       | 6                   | 0               | 21.68                  | 21.0±1                  | 1.0         |
|                         | 20103 | 023.3     |       | 1                   | 0               | 22.28                  | 22.0±1                  | 1           |
|                         |       |           |       | 1                   | 2               | 22.36                  | 22.0±1                  | 1           |
|                         |       |           |       | 1                   | 5               | 22.16                  | 22.0±1                  | 1           |
|                         |       |           | 16QAM | 3                   | 0               | 22.87                  | 22.0±1                  | 1           |
|                         |       |           |       | 3                   | 1               | 22.86                  | 22.0±1                  | /           |
|                         |       |           |       | 3                   | 3               | 22.78                  | 22.0±1                  | 1           |
|                         |       |           |       | 6                   | 0               | 21.67                  | 21.0±1                  | 1.0         |

| BW(MHz) | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |
|---------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|
|         |       |           |       | 1                   | 0               | 23.54                  | 23.0±1                  | /           |
|         |       |           |       | 1                   | 8               | 23.55                  | 23.0±1                  | 1           |
|         |       |           |       | 1                   | 14              | 23.53                  | 23.0±1                  | 1           |
|         |       |           | QPSK  | 8                   | 0               | 22.66                  | 22.0±1                  | 1.0         |
|         |       |           |       | 8                   | 4               | 22.53                  | 22.0±1                  | 1.0         |
|         |       |           |       | 8                   | 7               | 22.50                  | 22.0±1                  | 1.0         |
|         | 26705 | 015 5     |       | 15                  | 0               | 22.58                  | 22.0±1                  | 1.0         |
|         | 20705 | 815.5     |       | 1                   | 0               | 23.58                  | 23.0±1                  | 1           |
|         |       |           |       | 1                   | 8               | 23.75                  | 23.0±1                  | /           |
|         |       |           |       | 1                   | 14              | 23.64                  | 23.0±1                  | 1           |
|         |       |           | 16QAM | 8                   | 0               | 22.79                  | 22.0±1                  | 1.0         |
|         |       |           |       | 8                   | 4               | 22.73                  | 22.0±1                  | 1.0         |
|         |       |           |       | 8                   | 7               | 22.69                  | 22.0±1                  | 1.0         |
|         |       |           |       | 15                  | 0               | 22.69                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 0               | 23.62                  | 23.0±1                  | /           |
|         |       |           |       | 1                   | 8               | 23.70                  | 23.0±1                  | 1           |
|         |       |           |       | 1                   | 14              | 23.22                  | 23.0±1                  | 1           |
|         |       |           | QPSK  | 8                   | 0               | 22.77                  | 22.0±1                  | 1.0         |
|         |       |           |       | 8                   | 4               | 22.76                  | 22.0±1                  | 1.0         |
|         |       |           |       | 8                   | 7               | 22.70                  | 22.0±1                  | 1.0         |
| 01411-  | 00740 | 040.0     |       | 15                  | 0               | 22.72                  | 22.0±1                  | 1.0         |
| 3MHz    | 26740 | 819.0     |       | 1                   | 0               | 22.18                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 8               | 22.16                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 14              | 22.19                  | 22.0±1                  | 1.0         |
|         |       |           | 16QAM | 8                   | 0               | 21.45                  | 22.0±1                  | 1.0         |
|         |       |           |       | 8                   | 4               | 21.42                  | 22.0±1                  | 1.0         |
|         |       |           |       | 8                   | 7               | 21.39                  | 22.0±1                  | 1.0         |
|         |       |           |       | 15                  | 0               | 21.51                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 0               | 22.36                  | 22.0±1                  | /           |
|         |       |           |       | 1                   | 8               | 22.29                  | 22.0±1                  | 1           |
|         |       |           |       | 1                   | 14              | 22.28                  | 22.0±1                  | /           |
|         |       |           | QPSK  | 8                   | 0               | 21.89                  | 21.0±1                  | 1.0         |
|         |       |           |       | 8                   | 4               | 21.59                  | 21.0±1                  | 1.0         |
|         |       |           |       | 8                   | 7               | 21.58                  | 21.0±1                  | 1.0         |
|         | 00775 | 000 5     |       | 15                  | 0               | 21.93                  | 21.0±1                  | 1.0         |
|         | 26775 | 822.5     |       | 1                   | 0               | 22.10                  | 22.0±1                  | /           |
|         |       |           |       | 1                   | 8               | 22.27                  | 22.0±1                  | /           |
|         |       |           |       | 1                   | 14              | 22.06                  | 22.0±1                  | /           |
|         |       |           | 16QAM | 8                   | 0               | 21.58                  | 21.0±1                  | 1.0         |
|         |       |           |       | 8                   | 4               | 21.62                  | 21.0±1                  | 1.0         |
|         |       |           |       | 8                   | 7               | 21.68                  | 21.0±1                  | 1.0         |
|         |       |           |       | 15                  | 0               | 21.84                  | 21.0±1                  | 1.0         |

| BW(MHz)  | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |
|----------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|
|          |       |           |       | 1                   | 0               | 23.43                  | 23.0±1                  | 1           |
|          |       |           |       | 1                   | 12              | 23.71                  | 23.0±1                  | /           |
|          |       |           |       | 1                   | 24              | 23.53                  | 23.0±1                  | /           |
|          |       |           | QPSK  | 12                  | 0               | 22.64                  | 22.0±1                  | 1.0         |
|          |       |           |       | 12                  | 6               | 22.58                  | 22.0±1                  | 1.0         |
|          |       |           |       | 12                  | 13              | 22.68                  | 22.0±1                  | 1.0         |
|          | 26715 | 816.5     |       | 25                  | 0               | 22.60                  | 22.0±1                  | 1.0         |
|          | 20/15 | 010.3     |       | 1                   | 0               | 23.42                  | 23.0±1                  | /           |
|          |       |           |       | 1                   | 12              | 23.83                  | 23.0±1                  | /           |
|          |       |           |       | 1                   | 24              | 23.29                  | 23.0±1                  | /           |
|          |       |           | 16QAM | 12                  | 0               | 22.74                  | 22.0±1                  | 1.0         |
|          |       |           |       | 12                  | 6               | 22.83                  | 22.0±1                  | 1.0         |
|          |       |           |       | 12                  | 13              | 22.71                  | 22.0±1                  | 1.0         |
|          |       |           |       | 25                  | 0               | 22.65                  | 22.0±1                  | 1.0         |
|          |       |           |       | 1                   | 0               | 23.30                  | 23.0±1                  | 1           |
|          |       |           |       | 1                   | 12              | 23.67                  | 23.0±1                  | /           |
|          |       |           |       | 1                   | 24              | 23.18                  | 23.0±1                  | 1           |
|          |       |           | QPSK  | 12                  | 0               | 22.70                  | 22.0±1                  | 1.0         |
|          |       |           |       | 12                  | 6               | 22.62                  | 22.0±1                  | 1.0         |
|          |       |           |       | 12                  | 13              | 22.65                  | 22.0±1                  | 1.0         |
| 5MHz     | 26740 | 819.0     |       | 25                  | 0               | 22.75                  | 22.0±1                  | 1.0         |
| JIVII IZ | 20740 | 019.0     |       | 1                   | 0               | 22.11                  | 22.0±1                  | 1.0         |
|          |       |           |       | 1                   | 12              | 22.50                  | 22.0±1                  | 1.0         |
|          |       |           |       | 1                   | 24              | 22.05                  | 22.0±1                  | 1.0         |
|          |       |           | 16QAM | 12                  | 0               | 21.56                  | 22.0±1                  | 1.0         |
|          |       |           |       | 12                  | 6               | 21.52                  | 22.0±1                  | 1.0         |
|          |       |           |       | 12                  | 13              | 21.42                  | 22.0±1                  | 1.0         |
|          |       |           |       | 25                  | 0               | 21.52                  | 22.0±1                  | 1.0         |
|          |       |           |       | 1                   | 0               | 22.25                  | 22.0±1                  | 1           |
|          |       |           |       | 1                   | 12              | 22.50                  | 22.0±1                  | 1           |
|          |       |           |       | 1                   | 24              | 22.25                  | 22.0±1                  | /           |
|          |       |           | QPSK  | 12                  | 0               | 21.72                  | 21.0±1                  | 1.0         |
|          |       |           |       | 12                  | 6               | 21.70                  | 21.0±1                  | 1.0         |
|          |       |           |       | 12                  | 13              | 21.41                  | 21.0±1                  | 1.0         |
|          | 26765 | 821.5     |       | 25                  | 0               | 21.61                  | 21.0±1                  | 1.0         |
|          | 20700 | 021.0     |       | 1                   | 0               | 22.13                  | 22.0±1                  | 1           |
|          |       |           |       | 1                   | 12              | 22.67                  | 22.0±1                  | 1           |
|          |       |           |       | 1                   | 24              | 21.78                  | 21.0±1                  | 1.0         |
|          |       |           | 16QAM | 12                  | 0               | 21.51                  | 21.0±1                  | 1.0         |
|          |       |           |       | 12                  | 6               | 21.67                  | 21.0±1                  | 1.0         |
|          |       |           |       | 12                  | 13              | 21.61                  | 21.0±1                  | 1.0         |
|          |       |           |       | 25                  | 0               | 21.58                  | 21.0±1                  | 1.0         |

| BW(MHz)    | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |
|------------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|
|            |       |           |       | 1                   | 0               | 23.42                  | 23.0±1                  | 1           |
|            |       |           |       | 1                   | 24              | 24.07                  | 24.0±1                  | 1           |
|            |       |           |       | 1                   | 49              | 23.27                  | 23.0±1                  | 1           |
|            |       |           | QPSK  | 25                  | 0               | 22.79                  | 22.0±1                  | 1.0         |
|            |       |           |       | 25                  | 12              | 22.85                  | 22.0±1                  | 1.0         |
|            |       |           |       | 25                  | 25              | 22.66                  | 22.0±1                  | 1.0         |
| 10 MHz     | 26740 | 819.0     |       | 50                  | 0               | 22.64                  | 22.0±1                  | 1.0         |
| 10 1011 12 | 20740 | 619.0     |       | 1                   | 0               | 22.34                  | 22.0±1                  | 1.0         |
|            |       |           |       | 1                   | 24              | 22.40                  | 22.0±1                  | 1.0         |
|            |       |           |       | 1                   | 49              | 22.40                  | 22.0±1                  | 1.0         |
|            |       |           | 16QAM | 25                  | 0               | 21.57                  | 22.0±1                  | 1.0         |
|            |       |           |       | 25                  | 12              | 21.70                  | 22.0±1                  | 1.0         |
|            |       |           |       | 25                  | 25              | 21.66                  | 22.0±1                  | 1.0         |
|            |       |           |       | 50                  | 0               | 21.56                  | 22.0±1                  | 1.0         |

# LTE Band 26(Part 22H):

| BW(MHz)   | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |
|-----------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|
|           |       |           |       | 1                   | 0               | 23.11                  | 23.0±1                  |             |
|           |       |           |       | 1                   | 2               | 23.25                  | 23.0±1                  | /           |
|           |       |           |       | 1                   | 5               | 23.34                  | 23.0±1                  | /           |
|           |       |           | QPSK  | 3                   | 0               | 23.47                  | 23.0±1                  | 1           |
|           |       |           |       | 3                   | 1               | 23.49                  | 23.0±1                  | /           |
|           |       |           |       | 3                   | 2               | 23.47                  | 23.0±1                  | /           |
|           | 06707 | 004.7     |       | 6                   | 0               | 22.39                  | 22.0±1                  | 1.0         |
|           | 26797 | 824.7     |       | 1                   | 0               | 23.43                  | 23.0±1                  | /           |
|           |       |           |       | 1                   | 2               | 23.49                  | 23.0±1                  | /           |
|           |       |           |       | 1                   | 5               | 23.37                  | 23.0±1                  | /           |
|           |       |           | 16QAM | 3                   | 0               | 23.64                  | 23.0±1                  | 1           |
|           |       |           |       | 3                   | 1               | 23.65                  | 23.0±1                  | 1           |
|           |       |           |       | 3                   | 2               | 23.57                  | 23.0±1                  | /           |
|           |       |           |       | 6                   | 0               | 22.48                  | 22.0±1                  | 1.0         |
|           |       |           |       | 1                   | 0               | 23.18                  | 23.0±1                  | 1           |
|           |       |           |       | 1                   | 2               | 23.42                  | 23.0±1                  | 1           |
|           |       |           |       | 1                   | 5               | 23.00                  | 23.0±1                  | 1           |
|           |       |           | QPSK  | 3                   | 0               | 23.40                  | 23.0±1                  | 1           |
|           |       |           |       | 3                   | 1               | 23.43                  | 23.0±1                  | 1           |
|           |       |           |       | 3                   | 2               | 23.42                  | 23.0±1                  | 1           |
| 1.4MHz    | 26915 | 836.5     |       | 6                   | 0               | 22.47                  | 22.0±1                  | 1.0         |
| 1.7111112 | 20313 | 030.5     |       | 1                   | 0               | 22.08                  | 22.0±1                  | 1.0         |
|           |       |           |       | 1                   | 2               | 22.14                  | 22.0±1                  | 1.0         |
|           |       |           |       | 1                   | 5               | 22.12                  | 22.0±1                  | 1.0         |
|           |       |           | 16QAM | 3                   | 0               | 22.56                  | 22.0±1                  | 1.0         |
|           |       |           |       | 3                   | 1               | 22.63                  | 22.0±1                  | 1.0         |
|           |       |           |       | 3                   | 2               | 22.49                  | 22.0±1                  | 1.0         |
|           |       |           |       | 6                   | 0               | 21.41                  | 22.0±1                  | 1.0         |
|           |       |           |       | 1                   | 0               | 22.22                  | 22.0±1                  | 1           |
|           |       |           |       | 1                   | 2               | 22.27                  | 22.0±1                  | 1           |
|           |       |           |       | 1                   | 5               | 22.15                  | 22.0±1                  | 1           |
|           |       |           | QPSK  | 3                   | 0               | 22.63                  | 22.0±1                  | 1           |
|           |       |           |       | 3                   | 1               | 22.64                  | 22.0±1                  | 1           |
|           |       |           |       | 3                   | 2               | 22.62                  | 22.0±1                  | /           |
|           | 27033 | 848.3     |       | 6                   | 0               | 21.28                  | 21.0±1                  | 1.0         |
|           | 21033 | 040.3     |       | 1                   | 0               | 22.08                  | 22.0±1                  | /           |
|           |       |           |       | 1                   | 2               | 22.18                  | 22.0±1                  | 1           |
|           |       |           |       | 1                   | 5               | 22.00                  | 22.0±1                  | 1           |
|           |       |           | 16QAM | 3                   | 0               | 22.76                  | 22.0±1                  | /           |
|           |       |           |       | 3                   | 1               | 22.59                  | 22.0±1                  | /           |
|           |       |           |       | 3                   | 2               | 22.53                  | 22.0±1                  | 1           |
|           |       |           |       | 6                   | 0               | 21.35                  | 21.0±1                  | 1.0         |

| BW(MHz) | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB)                             |
|---------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-----------------------------------------|
|         |       |           |       | 1                   | 0               | 23.32                  | 23.0±1                  | 1                                       |
|         |       |           |       | 1                   | 8               | 23.38                  | 23.0±1                  | /                                       |
|         |       |           |       | 1                   | 14              | 23.51                  | 23.0±1                  | /                                       |
|         |       |           | QPSK  | 6                   | 0               | 22.50                  | 22.0±1                  | 1.0                                     |
|         |       |           |       | 6                   | 4               | 22.50                  | 22.0±1                  | 1.0                                     |
|         |       |           |       | 6                   | 9               | 22.46                  | 22.0±1                  | 1.0                                     |
|         | 26905 | 825.5     |       | 15                  | 0               | 22.53                  | 22.0±1                  | 1.0                                     |
|         | 26805 | 025.5     |       | 1                   | 0               | 23.35                  | 23.0±1                  | /                                       |
|         |       |           |       | 1                   | 8               | 23.37                  | 23.0±1                  | /                                       |
|         |       |           |       | 1                   | 14              | 23.37                  | 23.0±1                  | /                                       |
|         |       |           | 16QAM | 8                   | 0               | 22.44                  | 22.0±1                  | 1.0                                     |
|         |       |           |       | 8                   | 4               | 22.40                  | 22.0±1                  | 1.0                                     |
|         |       |           |       | 8                   | 9               | 22.45                  | 22.0±1                  | 1.0                                     |
|         |       |           |       | 15                  | 0               | 22.46                  | 22.0±1                  | 1.0                                     |
|         |       |           |       | 1                   | 0               | 23.42                  | 23.0±1                  | 1                                       |
|         |       |           |       | 1                   | 8               | 23.27                  | 23.0±1                  | 1                                       |
|         |       |           |       | 1                   | 14              | 23.13                  | 23.0±1                  | 1                                       |
|         |       |           | QPSK  | 6                   | 0               | 22.59                  | 22.0±1                  | 1.0                                     |
|         |       |           |       | 6                   | 4               | 22.51                  | 22.0±1                  | 1.0                                     |
|         |       |           |       | 6                   | 9               | 22.38                  | 22.0±1                  | 1.0                                     |
| 3MHz    | 26915 | 836.5     |       | 15                  | 0               | 22.46                  | 22.0±1                  | 1.0                                     |
| OWIT IZ | 20010 | 000.0     |       | 1                   | 0               | 22.04                  | 22.0±1                  | 1.0                                     |
|         |       |           |       | 1                   | 8               | 22.03                  | 22.0±1                  | 1.0                                     |
|         |       |           |       | 1                   | 14              | 22.08                  | 22.0±1                  | 1.0                                     |
|         |       |           | 16QAM | 6                   | 0               | 21.13                  | 22.0±1                  | 1.0                                     |
|         |       |           |       | 6                   | 4               | 21.35                  | 22.0±1                  | 1.0                                     |
|         |       |           |       | 6                   | 9               | 21.45                  | 22.0±1                  | 1.0                                     |
|         |       |           |       | 15                  | 0               | 21.44                  | 22.0±1                  | 1.0                                     |
|         |       |           |       | 1                   | 0               | 22.04                  | 22.0±1                  | 1                                       |
|         |       |           |       | 1                   | 8               | 22.15                  | 22.0±1                  | 1                                       |
|         |       |           |       | 1                   | 14              | 21.98                  | 22.0±1                  | 1                                       |
|         |       |           | QPSK  | 6                   | 0               | 21.16                  | 21.0±1                  | 1.0                                     |
|         |       |           |       | 6                   | 4               | 21.26                  | 21.0±1                  | 1.0                                     |
|         |       |           |       | 6                   | 9               | 21.21                  | 21.0±1                  | 1.0                                     |
|         | 27025 | 847.5     |       | 15                  | 0               | 21.57                  | 21.0±1                  | 1.0                                     |
|         | 21023 | 047.0     |       | 1                   | 0               | 22.03                  | 22.0±1                  | 1                                       |
|         |       |           |       | 1                   | 8               | 21.95                  | 21.0±1                  | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
|         |       | 16QAM     | 1     | 14                  | 22.03           | 22.0±1                 | 1                       |                                         |
|         |       |           | 16QAM | 8                   | 0               | 21.21                  | 21.0±1                  | 1.0                                     |
|         |       |           |       | 8                   | 4               | 21.20                  | 21.0±1                  | 1.0                                     |
|         |       |           |       | 8                   | 9               | 21.26                  | 21.0±1                  | 1.0                                     |
|         |       |           |       | 15                  | 0               | 21.41                  | 21.0±1                  | 1.0                                     |

| BW(MHz)  | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB)                               |
|----------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------------------------------------|
|          |       |           |       | 1                   | 0               | 23.14                  | 23.0±1                  | 1                                         |
|          |       |           |       | 1                   | 49              | 23.45                  | 23.0±1                  | 1                                         |
|          |       |           |       | 1                   | 99              | 23.12                  | 23.0±1                  | /                                         |
|          |       |           | QPSK  | 12                  | 0               | 22.56                  | 22.0±1                  | 1.0                                       |
|          |       |           |       | 12                  | 24              | 22.47                  | 22.0±1                  | 1.0                                       |
|          |       |           |       | 12                  | 49              | 22.37                  | 22.0±1                  | 1.0                                       |
|          | 00045 | 996 5     |       | 25                  | 0               | 22.44                  | 22.0±1                  | 1.0                                       |
|          | 26815 | 826.5     |       | 1                   | 0               | 23.25                  | 23.0±1                  | 1                                         |
|          |       |           |       | 1                   | 49              | 23.64                  | 23.0±1                  | 1                                         |
|          |       |           |       | 1                   | 99              | 23.31                  | 23.0±1                  | /                                         |
|          |       |           | 16QAM | 12                  | 0               | 22.41                  | 22.0±1                  | 1.0                                       |
|          |       |           |       | 12                  | 24              | 22.48                  | 22.0±1                  | 1.0                                       |
|          |       |           |       | 12                  | 49              | 22.34                  | 22.0±1                  | 1.0                                       |
|          |       |           |       | 25                  | 0               | 22.42                  | 22.0±1                  | 1.0                                       |
|          |       |           |       | 1                   | 0               | 23.27                  | 23.0±1                  | 1                                         |
|          |       |           |       | 1                   | 49              | 23.42                  | 23.0±1                  | 1                                         |
|          |       |           |       | 1                   | 99              | 22.86                  | 23.0±1                  | 1                                         |
|          |       |           | QPSK  | 12                  | 0               | 22.55                  | 22.0±1                  | 1.0                                       |
|          |       |           |       | 12                  | 24              | 22.33                  | 22.0±1                  | 1.0                                       |
|          |       |           |       | 12                  | 49              | 22.29                  | 22.0±1                  | 1.0                                       |
| 5MHz     | 26915 | 836.5     |       | 25                  | 0               | 22.48                  | 22.0±1                  | 1.0                                       |
| JIVII IZ | 20913 | 030.3     |       | 1                   | 0               | 22.03                  | 22.0±1                  | 1.0                                       |
|          |       |           |       | 1                   | 49              | 22.41                  | 22.0±1                  | 1.0                                       |
|          |       |           |       | 1                   | 99              | 21.93                  | 22.0±1                  | 1.0                                       |
|          |       |           | 16QAM | 12                  | 0               | 21.42                  | 22.0±1                  | 1.0                                       |
|          |       |           |       | 12                  | 24              | 21.35                  | 22.0±1                  | 1.0                                       |
|          |       |           |       | 12                  | 49              | 21.35                  | 22.0±1                  | 1.0                                       |
|          |       |           |       | 25                  | 0               | 21.34                  | 22.0±1                  | 1.0                                       |
|          |       |           |       | 1                   | 0               | 21.86                  | 22.0±1                  | 1                                         |
|          |       |           |       | 1                   | 49              | 22.42                  | 22.0±1                  | 1                                         |
|          |       |           |       | 1                   | 99              | 21.76                  | 22.0±1                  | 1                                         |
|          |       |           | QPSK  | 12                  | 0               | 21.29                  | 21.0±1                  | 1.0                                       |
|          |       |           |       | 12                  | 24              | 21.23                  | 21.0±1                  | 1.0                                       |
|          |       |           |       | 12                  | 49              | 21.36                  | 21.0±1                  | 1.0                                       |
|          | 27015 | 846.5     |       | 25                  | 0               | 21.44                  | 21.0±1                  | 1.0                                       |
|          | 2.010 | 0.10.0    |       | 1                   | 0               | 22.02                  | 22.0±1                  | 1                                         |
|          |       |           |       | 1                   | 49              | 22.51                  | 22.0±1                  | 1                                         |
|          |       |           |       | 1                   | 99              | 22.04                  | 22.0±1                  | / 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
|          |       | 16QAM     | 12    | 0                   | 21.42           | 21.0±1                 |                         |                                           |
|          |       |           |       | 12                  | 24              | 21.40                  | 21.0±1                  | 1.0                                       |
|          |       |           |       | 12                  | 49              | 21.24                  | 21.0±1                  |                                           |
|          |       |           |       | 25                  | 0               | 21.36                  | 21.0±1                  | 1.0                                       |

| BW(MHz)   | Ch    | Freq(MHz)          | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |
|-----------|-------|--------------------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|
|           |       |                    |       | 1                   | 0               | 23.26                  | 23.0±1                  | /           |
|           |       |                    |       | 1                   | 49              | 23.78                  | 23.0±1                  | /           |
|           |       |                    |       | 1                   | 99              | 23.00                  | 23.0±1                  | /           |
|           |       |                    | QPSK  | 25                  | 0               | 22.69                  | 22.0±1                  | 1.0         |
|           |       |                    |       | 25                  | 24              | 22.72                  | 22.0±1                  | 1.0         |
|           |       |                    |       | 25                  | 49              | 22.46                  | 22.0±1                  | 1.0         |
|           | 26840 | 829.0              |       | 50                  | 0               | 22.44                  | 22.0±1                  | 1.0         |
|           | 20040 | 029.0              |       | 1                   | 0               | 23.17                  | 23.0±1                  | /           |
|           |       |                    |       | 1                   | 49              | 23.84                  | 23.0±1                  | /           |
|           |       |                    |       | 1                   | 99              | 22.84                  | 22.0±1                  | 1.0         |
|           |       |                    | 16QAM | 25                  | 0               | 22.58                  | 22.0±1                  | 1.0         |
|           |       |                    |       | 25                  | 24              | 22.71                  | 22.0±1                  | 1.0         |
|           |       |                    |       | 25                  | 49              | 22.26                  | 22.0±1                  | 1.0         |
|           |       |                    |       | 50                  | 0               | 22.55                  | 22.0±1                  | 1.0         |
|           |       |                    |       | 1                   | 0               | 23.29                  | 23.0±1                  | 1           |
|           |       |                    |       | 1                   | 49              | 23.94                  | 23.0±1                  | 1           |
|           |       |                    |       | 1                   | 99              | 22.77                  | 23.0±1                  | 1           |
|           |       |                    | QPSK  | 25                  | 0               | 22.67                  | 22.0±1                  | 1.0         |
|           |       |                    |       | 25                  | 24              | 22.57                  | 22.0±1                  | 1.0         |
|           |       |                    |       | 25                  | 49              | 22.25                  | 22.0±1                  | 1.0         |
| 10MHz     | 26915 | 8365               |       | 50                  | 0               | 22.43                  | 22.0±1                  | 1.0         |
| 10IVII IZ | 20313 | 0303               |       | 1                   | 0               | 22.04                  | 22.0±1                  | 1.0         |
|           |       |                    |       | 1                   | 49              | 22.15                  | 22.0±1                  | 1.0         |
|           |       |                    |       | 1                   | 99              | 22.12                  | 22.0±1                  | 1.0         |
|           |       |                    | 16QAM | 25                  | 0               | 21.46                  | 22.0±1                  | 1.0         |
|           |       |                    |       | 25                  | 24              | 21.60                  | 22.0±1                  | 1.0         |
|           |       |                    |       | 25                  | 49              | 21.50                  | 22.0±1                  | 1.0         |
|           |       |                    |       | 50                  | 0               | 21.56                  | 22.0±1                  | 1.0         |
|           |       |                    |       | 1                   | 0               | 22.32                  | 22.0±1                  | 1           |
|           |       |                    |       | 1                   | 49              | 22.24                  | 22.0±1                  | 1           |
|           |       |                    |       | 1                   | 99              | 22.14                  | 22.0±1                  | 1           |
|           |       |                    | QPSK  | 25                  | 0               | 21.33                  | 21.0±1                  | 1.0         |
|           |       |                    |       | 25                  | 24              | 21.55                  | 21.0±1                  | 1.0         |
|           |       |                    |       | 25                  | 49              | 21.43                  | 21.0±1                  | 1.0         |
|           | 26990 | 844.0              |       | 50                  | 0               | 21.47                  | 21.0±1                  | 1.0         |
|           | 20990 | U <del>44</del> .U |       | 1                   | 0               | 22.15                  | 22.0±1                  | 1           |
|           |       |                    |       | 1                   | 49              | 21.84                  | 21.0±1                  | 1.0         |
|           |       |                    |       | 1                   | 99              | 21.96                  | 21.0±1                  | 1.0         |
|           |       |                    | 16QAM | 25                  | 0               | 21.35                  | 21.0±1                  | 1.0         |
|           |       |                    |       | 25                  | 24              | 21.51                  | 21.0±1                  | 1.0         |
|           |       |                    |       | 25                  | 49              | 21.49                  | 21.0±1                  | 1.0         |
|           |       |                    |       | 50                  | 0               | 21.55                  | 21.0±1                  | 1.0         |

| BW(MHz) | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |
|---------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|
|         |       |           |       | 1                   | 0               | 23.39                  | 23.0±1                  | /           |
|         |       |           |       | 1                   | 49              | 23.74                  | 23.0±1                  | /           |
|         |       |           |       | 1                   | 99              | 22.77                  | 23.0±1                  | /           |
|         |       |           | QPSK  | 36                  | 0               | 22.62                  | 22.0±1                  | 1.0         |
|         |       |           |       | 36                  | 24              | 22.67                  | 22.0±1                  | 1.0         |
|         |       |           |       | 36                  | 49              | 22.44                  | 22.0±1                  | 1.0         |
|         | 26065 | 024 5     |       | 75                  | 0               | 22.47                  | 22.0±1                  | 1.0         |
|         | 26865 | 831.5     |       | 1                   | 0               | 23.20                  | 23.0±1                  | /           |
|         |       |           |       | 1                   | 49              | 23.68                  | 23.0±1                  | /           |
|         |       |           |       | 1                   | 99              | 22.89                  | 22.0±1                  | 1.0         |
|         |       |           | 16QAM | 36                  | 0               | 22.60                  | 22.0±1                  | 1.0         |
|         |       |           |       | 36                  | 24              | 22.63                  | 22.0±1                  | 1.0         |
|         |       |           |       | 36                  | 49              | 22.31                  | 22.0±1                  | 1.0         |
|         |       |           |       | 75                  | 0               | 22.46                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 0               | 23.26                  | 23.0±1                  | 1           |
|         |       |           |       | 1                   | 49              | 23.70                  | 23.0±1                  | 1           |
|         |       |           |       | 1                   | 99              | 22.71                  | 23.0±1                  | 1           |
|         |       |           | QPSK  | 36                  | 0               | 22.70                  | 22.0±1                  | 1.0         |
|         |       |           |       | 36                  | 24              | 22.54                  | 22.0±1                  | 1.0         |
|         |       |           |       | 36                  | 49              | 22.42                  | 22.0±1                  | 1.0         |
| 15MHz   | 26915 | 836.5     |       | 75                  | 0               | 22.59                  | 22.0±1                  | 1.0         |
| TOWNIZ  | 20010 | 000.0     |       | 1                   | 0               | 21.95                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 49              | 22.06                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 99              | 22.06                  | 22.0±1                  | 1.0         |
|         |       |           | 16QAM | 36                  | 0               | 21.45                  | 22.0±1                  | 1.0         |
|         |       |           |       | 36                  | 24              | 21.47                  | 22.0±1                  | 1.0         |
|         |       |           |       | 36                  | 49              | 21.47                  | 22.0±1                  | 1.0         |
|         |       |           |       | 75                  | 0               | 21.48                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 0               | 22.17                  | 22.0±1                  | 1           |
|         |       |           |       | 1                   | 49              | 22.24                  | 22.0±1                  | 1           |
|         |       |           |       | 1                   | 99              | 22.14                  | 22.0±1                  | 1           |
|         |       |           | QPSK  | 36                  | 0               | 21.56                  | 21.0±1                  | 1.0         |
|         |       |           |       | 36                  | 24              | 21.42                  | 21.0±1                  | 1.0         |
|         |       |           |       | 36                  | 49              | 21.46                  | 21.0±1                  | 1.0         |
|         | 26965 | 841.5     |       | 75                  | 0               | 21.39                  | 21.0±1                  | 1.0         |
|         | 20900 | 041.0     |       | 1                   | 0               | 22.07                  | 22.0±1                  | 1           |
|         |       |           |       | 1                   | 49              | 22.12                  | 22.0±1                  | 1           |
|         |       |           |       | 1                   | 99              | 22.10                  | 22.0±1                  | 1           |
|         |       |           | 16QAM | 36                  | 0               | 21.53                  | 21.0±1                  | 1.0         |
|         |       |           |       | 36                  | 24              | 21.49                  | 21.0±1                  | 1.0         |
|         |       |           |       | 36                  | 49              | 21.44                  | 21.0±1                  | 1.0         |
|         |       |           |       | 75                  | 0               | 21.42                  | 21.0±1                  | 1.0         |

# LTE Band 38:

| BW(MHz)  | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |
|----------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|
|          |       |           |       | 1                   | 0               | 23.39                  | 23.0±1                  | 1           |
|          |       |           |       | 1                   | 12              | 23.55                  | 23.0±1                  | 1           |
|          |       |           |       | 1                   | 24              | 23.46                  | 23.0±1                  | /           |
|          |       |           | QPSK  | 12                  | 0               | 22.53                  | 22.0±1                  | 1.0         |
|          |       |           |       | 12                  | 6               | 22.51                  | 22.0±1                  | 1.0         |
|          |       |           |       | 12                  | 13              | 22.44                  | 22.0±1                  | 1.0         |
|          | 37775 | 2572.5    |       | 25                  | 0               | 22.44                  | 22.0±1                  | 1.0         |
|          | 31113 | 2572.5    |       | 1                   | 0               | 23.35                  | 23.0±1                  | /           |
|          |       |           |       | 1                   | 12              | 23.78                  | 23.0±1                  | /           |
|          |       |           |       | 1                   | 24              | 23.40                  | 23.0±1                  | /           |
|          |       |           | 16QAM | 12                  | 0               | 22.48                  | 22.0±1                  | 1.0         |
|          |       |           |       | 12                  | 6               | 22.54                  | 22.0±1                  | 1.0         |
|          |       |           |       | 12                  | 13              | 22.47                  | 22.0±1                  | 1.0         |
|          |       |           |       | 25                  | 0               | 22.47                  | 22.0±1                  | 1.0         |
|          |       |           |       | 1                   | 0               | 23.32                  | 23.0±1                  | 1           |
|          |       |           |       | 1                   | 12              | 23.63                  | 23.0±1                  | 1           |
|          |       |           |       | 1                   | 24              | 23.49                  | 23.0±1                  | 1           |
|          |       |           | QPSK  | 12                  | 0               | 22.45                  | 22.0±1                  | 1.0         |
|          |       |           |       | 12                  | 6               | 22.36                  | 22.0±1                  | 1.0         |
|          |       |           |       | 12                  | 13              | 22.41                  | 22.0±1                  | 1.0         |
| 5MHz     | 38000 | 2595.0    |       | 25                  | 0               | 22.43                  | 22.0±1                  | 1.0         |
| JIVII IZ | 30000 | 2595.0    |       | 1                   | 0               | 22.03                  | 22.0±1                  | 1.0         |
|          |       |           |       | 1                   | 12              | 22.24                  | 22.0±1                  | 1.0         |
|          |       |           |       | 1                   | 24              | 21.74                  | 22.0±1                  | 1.0         |
|          |       |           | 16QAM | 12                  | 0               | 21.40                  | 22.0±1                  | 1.0         |
|          |       |           |       | 12                  | 6               | 21.48                  | 22.0±1                  | 1.0         |
|          |       |           |       | 12                  | 13              | 21.31                  | 22.0±1                  | 1.0         |
|          |       |           |       | 25                  | 0               | 21.40                  | 22.0±1                  | 1.0         |
|          |       |           |       | 1                   | 0               | 21.94                  | 22.0±1                  | 1           |
|          |       |           |       | 1                   | 12              | 22.28                  | 22.0±1                  | 1           |
|          |       |           |       | 1                   | 24              | 21.99                  | 22.0±1                  | 1           |
|          |       |           | QPSK  | 12                  | 0               | 21.43                  | 21.0±1                  | 1.0         |
|          |       |           |       | 12                  | 6               | 21.42                  | 21.0±1                  | 1.0         |
|          |       |           |       | 12                  | 13              | 21.37                  | 21.0±1                  | 1.0         |
|          | 38225 | 2617.5    |       | 25                  | 0               | 21.35                  | 21.0±1                  | 1.0         |
|          | 30223 |           |       | 1                   | 0               | 21.95                  | 21.0±1                  | 1.0         |
|          |       |           |       | 1                   | 12              | 22.14                  | 22.0±1                  | /           |
|          |       |           |       | 1                   | 24              | 21.91                  | 21.0±1                  | 1.0         |
|          |       |           | 16QAM | 12                  | 0               | 21.37                  | 21.0±1                  | 1.0         |
|          |       |           |       | 12                  | 6               | 21.25                  | 21.0±1                  | 1.0         |
|          |       |           |       | 12                  | 13              | 21.36                  | 21.0±1                  | 1.0         |
|          |       |           |       | 25                  | 0               | 21.26                  | 21.0±1                  | 1.0         |

| BW(MHz) | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |
|---------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|
|         |       |           |       | 1                   | 0               | 23.62                  | 23.0±1                  | /           |
|         |       |           |       | 1                   | 24              | 23.75                  | 23.0±1                  | /           |
|         |       |           |       | 1                   | 49              | 23.25                  | 23.0±1                  | /           |
|         |       |           | QPSK  | 25                  | 0               | 22.66                  | 22.0±1                  | 1.0         |
|         |       |           |       | 25                  | 12              | 22.58                  | 22.0±1                  | 1.0         |
|         |       |           |       | 25                  | 25              | 22.34                  | 22.0±1                  | 1.0         |
|         | 27000 | 2575.0    |       | 50                  | 0               | 22.44                  | 22.0±1                  | 1.0         |
|         | 37800 | 2575.0    |       | 1                   | 0               | 23.38                  | 23.0±1                  | /           |
|         |       |           |       | 1                   | 24              | 23.89                  | 23.0±1                  | 1           |
|         |       |           |       | 1                   | 49              | 23.25                  | 23.0±1                  | 1           |
|         |       |           | 16QAM | 25                  | 0               | 22.52                  | 22.0±1                  | 1.0         |
|         |       |           |       | 25                  | 12              | 22.53                  | 22.0±1                  | 1.0         |
|         |       |           |       | 25                  | 25              | 22.37                  | 22.0±1                  | 1.0         |
|         |       |           |       | 50                  | 0               | 22.45                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 0               | 23.26                  | 23.0±1                  | /           |
|         |       |           |       | 1                   | 24              | 23.73                  | 23.0±1                  | /           |
|         |       |           |       | 1                   | 49              | 23.17                  | 23.0±1                  | /           |
|         |       |           | QPSK  | 25                  | 0               | 22.58                  | 22.0±1                  | 1.0         |
|         |       |           |       | 25                  | 12              | 22.43                  | 22.0±1                  | 1.0         |
|         |       |           |       | 25                  | 25              | 22.30                  | 22.0±1                  | 1.0         |
| 10MHz   | 38000 | 2595.0    |       | 50                  | 0               | 22.39                  | 22.0±1                  | 1.0         |
| TUIVITZ | 36000 | 2595.0    |       | 1                   | 0               | 22.12                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 24              | 22.08                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 49              | 22.08                  | 22.0±1                  | 1.0         |
|         |       |           | 16QAM | 25                  | 0               | 21.49                  | 22.0±1                  | 1.0         |
|         |       |           |       | 25                  | 12              | 21.54                  | 22.0±1                  | 1.0         |
|         |       |           |       | 25                  | 25              | 21.42                  | 22.0±1                  | 1.0         |
|         |       |           |       | 50                  | 0               | 21.37                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 0               | 22.09                  | 22.0±1                  | 1           |
|         |       |           |       | 1                   | 24              | 22.19                  | 22.0±1                  | 1           |
|         |       |           |       | 1                   | 49              | 22.03                  | 22.0±1                  | 1           |
|         |       |           | QPSK  | 25                  | 0               | 21.37                  | 21.0±1                  | 1.0         |
|         |       |           |       | 25                  | 12              | 21.43                  | 21.0±1                  | 1.0         |
|         |       |           |       | 25                  | 25              | 21.55                  | 21.0±1                  | 1.0         |
|         | 38200 | 2615.0    |       | 50                  | 0               | 21.31                  | 21.0±1                  | 1.0         |
|         | 30200 | 2010.0    |       | 1                   | 0               | 21.94                  | 21.0±1                  | 1.0         |
|         |       |           |       | 1                   | 24              | 22.22                  | 22.0±1                  | 1           |
|         |       |           |       | 1                   | 49              | 22.01                  | 22.0±1                  | 1           |
|         |       |           | 16QAM | 25                  | 0               | 21.50                  | 21.0±1                  | 1.0         |
|         |       |           |       | 25                  | 12              | 21.40                  | 21.0±1                  | 1.0         |
|         |       |           |       | 25                  | 25              | 21.37                  | 21.0±1                  | 1.0         |
|         |       |           |       | 50                  | 0               | 21.34                  | 21.0±1                  | 1.0         |

| BW(MHz)    | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |
|------------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|
|            |       |           |       | 1                   | 0               | 23.54                  | 23.0±1                  | /           |
|            |       |           |       | 1                   | 38              | 23.65                  | 23.0±1                  | /           |
|            |       |           |       | 1                   | 74              | 23.20                  | 23.0±1                  | /           |
|            |       |           | QPSK  | 36                  | 0               | 22.51                  | 22.0±1                  | 1.0         |
|            |       |           |       | 36                  | 18              | 22.56                  | 22.0±1                  | 1.0         |
|            |       |           |       | 36                  | 39              | 22.41                  | 22.0±1                  | 1.0         |
|            | 37825 | 2577.5    |       | 75                  | 0               | 22.41                  | 22.0±1                  | 1.0         |
|            | 37023 | 2577.5    |       | 1                   | 0               | 23.41                  | 23.0±1                  | /           |
|            |       |           |       | 1                   | 38              | 23.66                  | 23.0±1                  | 1           |
|            |       |           |       | 1                   | 74              | 23.29                  | 23.0±1                  | 1           |
|            |       |           | 16QAM | 36                  | 0               | 22.53                  | 22.0±1                  | 1.0         |
|            |       |           |       | 36                  | 18              | 22.57                  | 22.0±1                  | 1.0         |
|            |       |           |       | 36                  | 39              | 22.40                  | 22.0±1                  | 1.0         |
|            |       |           |       | 75                  | 0               | 22.50                  | 22.0±1                  | 1.0         |
|            |       |           |       | 1                   | 0               | 23.36                  | 23.0±1                  | 1           |
|            |       |           |       | 1                   | 38              | 23.53                  | 23.0±1                  | /           |
|            |       |           |       | 1                   | 74              | 23.24                  | 23.0±1                  | 1           |
|            |       |           | QPSK  | 36                  | 0               | 22.56                  | 22.0±1                  | 1.0         |
|            |       |           |       | 36                  | 18              | 22.51                  | 22.0±1                  | 1.0         |
|            |       |           |       | 36                  | 39              | 22.31                  | 22.0±1                  | 1.0         |
| 15MHz      | 38000 | 2595.0    |       | 75                  | 0               | 22.37                  | 22.0±1                  | 1.0         |
| 1 SIVII 12 | 36000 | 2595.0    |       | 1                   | 0               | 22.21                  | 22.0±1                  | 1.0         |
|            |       |           |       | 1                   | 38              | 22.07                  | 22.0±1                  | 1.0         |
|            |       |           |       | 1                   | 74              | 21.86                  | 22.0±1                  | 1.0         |
|            |       |           | 16QAM | 36                  | 0               | 21.42                  | 22.0±1                  | 1.0         |
|            |       |           |       | 36                  | 18              | 21.36                  | 22.0±1                  | 1.0         |
|            |       |           |       | 36                  | 39              | 21.35                  | 22.0±1                  | 1.0         |
|            |       |           |       | 75                  | 0               | 21.44                  | 22.0±1                  | 1.0         |
|            |       |           |       | 1                   | 0               | 22.10                  | 22.0±1                  | 1           |
|            |       |           |       | 1                   | 38              | 21.95                  | 22.0±1                  | 1           |
|            |       |           |       | 1                   | 74              | 21.98                  | 22.0±1                  | 1           |
|            |       |           | QPSK  | 36                  | 0               | 21.47                  | 21.0±1                  | 1.0         |
|            |       |           |       | 36                  | 18              | 21.34                  | 21.0±1                  | 1.0         |
|            |       |           |       | 36                  | 39              | 21.47                  | 21.0±1                  | 1.0         |
|            | 38175 | 2612.5    |       | 75                  | 0               | 21.43                  | 21.0±1                  | 1.0         |
|            | 30173 | 2612.5    |       | 1                   | 0               | 22.27                  | 22.0±1                  | /           |
|            |       |           |       | 1                   | 38              | 21.82                  | 21.0±1                  | 1.0         |
|            |       |           |       | 1                   | 74              | 22.05                  | 22.0±1                  | 1           |
|            |       |           | 16QAM | 36                  | 0               | 21.32                  | 21.0±1                  | 1.0         |
|            |       |           |       | 36                  | 18              | 21.44                  | 21.0±1                  | 1.0         |
|            |       |           |       | 36                  | 39              | 21.27                  | 21.0±1                  | 1.0         |
|            |       |           |       | 75                  | 0               | 21.30                  | 21.0±1                  | 1.0         |

| BW(MHz) | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |
|---------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|
|         |       |           |       | 1                   | 0               | 23.48                  | 23.0±1                  | 1           |
|         |       |           |       | 1                   | 49              | 23.86                  | 23.0±1                  | 1           |
|         |       |           |       | 1                   | 99              | 23.03                  | 23.0±1                  | 1           |
|         |       |           | QPSK  | 50                  | 0               | 22.55                  | 22.0±1                  | 1.0         |
|         |       |           |       | 50                  | 25              | 22.64                  | 22.0±1                  | 1.0         |
|         |       |           |       | 50                  | 50              | 22.34                  | 22.0±1                  | 1.0         |
|         | 07050 | 2500.0    |       | 100                 | 0               | 22.47                  | 22.0±1                  | 1.0         |
|         | 37850 | 2580.0    |       | 1                   | 0               | 23.32                  | 23.0±1                  | 1           |
|         |       |           |       | 1                   | 49              | 23.88                  | 23.0±1                  | 1           |
|         |       |           |       | 1                   | 99              | 23.12                  | 23.0±1                  | 1           |
|         |       |           | 16QAM | 50                  | 0               | 22.55                  | 22.0±1                  | 1.0         |
|         |       |           |       | 50                  | 25              | 22.57                  | 22.0±1                  | 1.0         |
|         |       |           |       | 50                  | 50              | 22.36                  | 22.0±1                  | 1.0         |
|         |       |           |       | 100                 | 0               | 22.40                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 0               | 23.44                  | 23.0±1                  | /           |
|         |       |           |       | 1                   | 49              | 23.68                  | 23.0±1                  | 1           |
|         |       |           |       | 1                   | 99              | 23.14                  | 23.0±1                  | /           |
|         |       |           | QPSK  | 50                  | 0               | 22.59                  | 22.0±1                  | 1.0         |
|         |       |           |       | 50                  | 25              | 22.57                  | 22.0±1                  | 1.0         |
|         |       |           |       | 50                  | 50              | 22.32                  | 22.0±1                  | 1.0         |
| 20MHz   | 38000 | 2595.0    |       | 100                 | 0               | 22.41                  | 22.0±1                  | 1.0         |
| ZUIVITZ | 36000 | 2595.0    |       | 1                   | 0               | 22.20                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 49              | 22.41                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 99              | 21.91                  | 22.0±1                  | 1.0         |
|         |       |           | 16QAM | 50                  | 0               | 21.38                  | 22.0±1                  | 1.0         |
|         |       |           |       | 50                  | 25              | 21.38                  | 22.0±1                  | 1.0         |
|         |       |           |       | 50                  | 50              | 21.30                  | 22.0±1                  | 1.0         |
|         |       |           |       | 100                 | 0               | 21.42                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 0               | 21.92                  | 22.0±1                  | 1           |
|         |       |           |       | 1                   | 49              | 22.17                  | 22.0±1                  | 1           |
|         |       |           |       | 1                   | 99              | 21.98                  | 22.0±1                  | 1           |
|         |       |           | QPSK  | 50                  | 0               | 21.38                  | 21.0±1                  | 1.0         |
|         |       |           |       | 50                  | 25              | 21.33                  | 21.0±1                  | 1.0         |
|         |       |           |       | 50                  | 50              | 21.42                  | 21.0±1                  | 1.0         |
|         | 38150 | 2610.0    |       | 100                 | 0               | 21.48                  | 21.0±1                  | 1.0         |
|         | 30130 | 2610.0    |       | 1                   | 0               | 22.17                  | 22.0±1                  | 1           |
|         |       |           |       | 1                   | 49              | 22.19                  | 22.0±1                  | 1           |
|         |       |           |       | 1                   | 99              | 22.03                  | 22.0±1                  | 1           |
|         |       |           | 16QAM | 50                  | 0               | 21.45                  | 21.0±1                  | 1.0         |
|         |       |           |       | 50                  | 25              | 21.33                  | 21.0±1                  | 1.0         |
|         |       |           |       | 50                  | 50              | 21.26                  | 21.0±1                  | 1.0         |
|         |       |           |       | 100                 | 0               | 21.39                  | 21.0±1                  | 1.0         |

LTE Band 41:

| BW(MHz)  | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |
|----------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|
|          |       |           |       | 1                   | 0               | 23.42                  | 23.0±1                  | 1           |
|          |       |           |       | 1                   | 12              | 23.78                  | 23.0±1                  | 1           |
|          |       |           |       | 1                   | 24              | 23.60                  | 23.0±1                  | /           |
|          |       |           | QPSK  | 12                  | 0               | 22.62                  | 22.0±1                  | 1.0         |
|          |       |           |       | 12                  | 6               | 22.67                  | 22.0±1                  | 1.0         |
|          |       |           |       | 12                  | 11              | 22.53                  | 22.0±1                  | 1.0         |
|          | 40065 | 2537.5    |       | 25                  | 0               | 22.58                  | 22.0±1                  | 1.0         |
|          | 40000 | 2557.5    |       | 1                   | 0               | 23.46                  | 23.0±1                  | 1           |
|          |       |           |       | 1                   | 12              | 23.91                  | 23.0±1                  | 1           |
|          |       |           |       | 1                   | 24              | 23.57                  | 23.0±1                  | 1           |
|          |       |           | 16QAM | 12                  | 0               | 22.61                  | 22.0±1                  | 1.0         |
|          |       |           |       | 12                  | 6               | 22.61                  | 22.0±1                  | 1.0         |
|          |       |           |       | 12                  | 11              | 22.42                  | 22.0±1                  | 1.0         |
|          |       |           |       | 25                  | 0               | 22.53                  | 22.0±1                  | 1.0         |
|          |       |           |       | 1                   | 0               | 23.42                  | 23.0±1                  | 1           |
|          |       |           |       | 1                   | 12              | 23.47                  | 23.0±1                  | 1           |
|          |       |           |       | 1                   | 24              | 23.27                  | 23.0±1                  | 1           |
|          |       |           | QPSK  | 12                  | 0               | 22.53                  | 22.0±1                  | 1.0         |
|          |       |           |       | 12                  | 6               | 22.47                  | 22.0±1                  | 1.0         |
|          |       |           |       | 12                  | 11              | 22.44                  | 22.0±1                  | 1.0         |
| 5MHz     | 40740 | 2605.0    |       | 25                  | 0               | 22.52                  | 22.0±1                  | 1.0         |
| JIVII IZ | 40740 | 2003.0    |       | 1                   | 0               | 22.11                  | 22.0±1                  | 1.0         |
|          |       |           |       | 1                   | 12              | 22.16                  | 22.0±1                  | 1.0         |
|          |       |           |       | 1                   | 24              | 22.08                  | 22.0±1                  | 1.0         |
|          |       |           | 16QAM | 12                  | 0               | 21.51                  | 22.0±1                  | 1.0         |
|          |       |           |       | 12                  | 6               | 21.64                  | 22.0±1                  | 1.0         |
|          |       |           |       | 12                  | 11              | 21.49                  | 22.0±1                  | 1.0         |
|          |       |           |       | 25                  | 0               | 21.55                  | 22.0±1                  | 1.0         |
|          |       |           |       | 1                   | 0               | 22.03                  | 22.0±1                  | 1           |
|          |       |           |       | 1                   | 12              | 22.22                  | 22.0±1                  | 1           |
|          |       |           |       | 1                   | 24              | 21.92                  | 22.0±1                  | 1           |
|          |       |           | QPSK  | 12                  | 0               | 21.41                  | 21.0±1                  | 1.0         |
|          |       |           |       | 12                  | 6               | 21.40                  | 21.0±1                  | 1.0         |
|          |       |           |       | 12                  | 11              | 21.32                  | 21.0±1                  | 1.0         |
|          | 11015 | 2652.5    |       | 25                  | 0               | 21.51                  | 21.0±1                  | 1.0         |
|          | 41215 | 2002.0    |       | 1                   | 0               | 22.14                  | 22.0±1                  | 1           |
|          |       |           |       | 1                   | 12              | 22.38                  | 22.0±1                  | 1           |
|          |       |           |       | 1                   | 24              | 21.99                  | 21.0±1                  | 1.0         |
|          |       |           | 16QAM | 12                  | 0               | 21.40                  | 21.0±1                  | 1.0         |
|          |       |           |       | 12                  | 6               | 21.40                  | 21.0±1                  | 1.0         |
|          |       |           |       | 12                  | 11              | 21.34                  | 21.0±1                  | 1.0         |
|          |       |           |       | 25                  | 0               | 21.40                  | 21.0±1                  | 1.0         |

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

| BW(MHz) | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |
|---------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|
|         |       |           |       | 1                   | 0               | 23.61                  | 23.0±1                  | /           |
|         |       |           |       | 1                   | 24              | 23.85                  | 23.0±1                  | /           |
|         |       |           |       | 1                   | 49              | 23.48                  | 23.0±1                  | 1           |
|         |       |           | QPSK  | 25                  | 0               | 22.62                  | 22.0±1                  | 1.0         |
|         |       |           |       | 25                  | 12              | 22.72                  | 22.0±1                  | 1.0         |
|         |       |           |       | 25                  | 24              | 22.50                  | 22.0±1                  | 1.0         |
|         | 40000 | 0500.0    |       | 50                  | 0               | 22.66                  | 22.0±1                  | 1.0         |
|         | 40290 | 2560.0    |       | 1                   | 0               | 23.48                  | 23.0±1                  | /           |
|         |       |           |       | 1                   | 24              | 23.86                  | 23.0±1                  | /           |
|         |       |           |       | 1                   | 49              | 23.24                  | 23.0±1                  | /           |
|         |       |           | 16QAM | 25                  | 0               | 22.68                  | 22.0±1                  | 1.0         |
|         |       |           |       | 25                  | 12              | 22.62                  | 22.0±1                  | 1.0         |
|         |       |           |       | 25                  | 24              | 22.46                  | 22.0±1                  | 1.0         |
|         |       |           |       | 50                  | 0               | 22.57                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 0               | 23.57                  | 23.0±1                  | 1           |
|         |       |           |       | 1                   | 24              | 23.78                  | 23.0±1                  | /           |
|         |       |           |       | 1                   | 49              | 23.28                  | 23.0±1                  | 1           |
|         |       |           | QPSK  | 25                  | 0               | 22.70                  | 22.0±1                  | 1.0         |
|         |       |           |       | 25                  | 12              | 22.60                  | 22.0±1                  | 1.0         |
|         |       |           |       | 25                  | 24              | 22.38                  | 22.0±1                  | 1.0         |
| 10MHz   | 40740 | 2605.0    |       | 50                  | 0               | 22.59                  | 22.0±1                  | 1.0         |
| TOWNIZ  | 40740 | 2003.0    |       | 1                   | 0               | 22.16                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 24              | 22.29                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 49              | 22.19                  | 22.0±1                  | 1.0         |
|         |       |           | 16QAM | 25                  | 0               | 21.58                  | 22.0±1                  | 1.0         |
|         |       |           |       | 25                  | 12              | 21.62                  | 22.0±1                  | 1.0         |
|         |       |           |       | 25                  | 24              | 21.55                  | 22.0±1                  | 1.0         |
|         |       |           |       | 50                  | 0               | 21.57                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 0               | 22.24                  | 22.0±1                  | 1           |
|         |       |           |       | 1                   | 24              | 22.29                  | 22.0±1                  | 1           |
|         |       |           |       | 1                   | 49              | 22.08                  | 22.0±1                  | 1           |
|         |       |           | QPSK  | 25                  | 0               | 21.54                  | 21.0±1                  | 1.0         |
|         |       |           |       | 25                  | 12              | 21.49                  | 21.0±1                  | 1.0         |
|         |       |           |       | 25                  | 24              | 21.56                  | 21.0±1                  | 1.0         |
|         | 41190 | 2650.0    |       | 50                  | 0               | 21.43                  | 21.0±1                  | 1.0         |
|         | 71130 | 2000.0    |       | 1                   | 0               | 22.17                  | 22.0±1                  | 1           |
|         |       |           |       | 1                   | 24              | 22.34                  | 22.0±1                  | 1           |
|         |       |           |       | 1                   | 49              | 22.05                  | 22.0±1                  | 1           |
|         |       |           | 16QAM | 25                  | 0               | 21.55                  | 21.0±1                  | 1.0         |
|         |       |           |       | 25                  | 12              | 21.56                  | 21.0±1                  | 1.0         |
|         |       |           |       | 25                  | 24              | 21.55                  | 21.0±1                  | 1.0         |
|         |       |           |       | 50                  | 0               | 21.49                  | 21.0±1                  | 1.0         |

| BW(MHz) | Ch    | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |
|---------|-------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|
|         |       |           |       | 1                   | 0               | 23.40                  | 23.0±1                  | 1           |
|         |       |           |       | 1                   | 37              | 23.68                  | 23.0±1                  | 1           |
|         |       |           |       | 1                   | 74              | 23.22                  | 23.0±1                  | 1           |
|         |       |           | QPSK  | 36                  | 0               | 22.61                  | 22.0±1                  | 1.0         |
|         |       |           |       | 36                  | 16              | 22.56                  | 22.0±1                  | 1.0         |
|         |       |           |       | 36                  | 35              | 22.51                  | 22.0±1                  | 1.0         |
|         | 40045 | 0500.5    |       | 75                  | 0               | 22.54                  | 22.0±1                  | 1.0         |
|         | 40315 | 2562.5    |       | 1                   | 0               | 23.49                  | 23.0±1                  | /           |
|         |       |           |       | 1                   | 37              | 23.69                  | 23.0±1                  | /           |
|         |       |           |       | 1                   | 74              | 23.23                  | 23.0±1                  | 1           |
|         |       |           | 16QAM | 36                  | 0               | 22.72                  | 22.0±1                  | 1.0         |
|         |       |           |       | 36                  | 16              | 22.62                  | 22.0±1                  | 1.0         |
|         |       |           |       | 36                  | 35              | 22.44                  | 22.0±1                  | 1.0         |
|         |       |           |       | 75                  | 0               | 22.57                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 0               | 23.48                  | 23.0±1                  | /           |
|         |       |           |       | 1                   | 37              | 23.63                  | 23.0±1                  | /           |
|         |       |           |       | 1                   | 74              | 23.37                  | 23.0±1                  | /           |
|         |       |           | QPSK  | 36                  | 0               | 22.69                  | 22.0±1                  | 1.0         |
|         |       |           |       | 36                  | 16              | 22.55                  | 22.0±1                  | 1.0         |
|         |       |           |       | 36                  | 35              | 22.41                  | 22.0±1                  | 1.0         |
| 451411  | 40740 | 0005.0    |       | 75                  | 0               | 22.57                  | 22.0±1                  | 1.0         |
| 15MHz   | 40740 | 2605.0    |       | 1                   | 0               | 22.15                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 37              | 22.08                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 74              | 22.07                  | 22.0±1                  | 1.0         |
|         |       |           | 16QAM | 36                  | 0               | 21.45                  | 22.0±1                  | 1.0         |
|         |       |           |       | 36                  | 16              | 21.39                  | 22.0±1                  | 1.0         |
|         |       |           |       | 36                  | 35              | 21.47                  | 22.0±1                  | 1.0         |
|         |       |           |       | 75                  | 0               | 21.47                  | 22.0±1                  | 1.0         |
|         |       |           |       | 1                   | 0               | 22.31                  | 22.0±1                  | /           |
|         |       |           |       | 1                   | 37              | 21.93                  | 22.0±1                  | /           |
|         |       |           |       | 1                   | 74              | 22.11                  | 22.0±1                  | /           |
|         |       |           | QPSK  | 36                  | 0               | 21.69                  | 21.0±1                  | 1.0         |
|         |       |           |       | 36                  | 16              | 21.65                  | 21.0±1                  | 1.0         |
|         |       |           |       | 36                  | 35              | 21.63                  | 21.0±1                  | 1.0         |
|         | 4440= | 0047.7    |       | 75                  | 0               | 21.52                  | 21.0±1                  | 1.0         |
|         | 41165 | 2647.5    |       | 1                   | 0               | 22.12                  | 22.0±1                  | 1           |
|         |       |           |       | 1                   | 37              | 22.05                  | 22.0±1                  | /           |
|         |       |           |       | 1                   | 74              | 21.93                  | 21.0±1                  | 1.0         |
|         |       |           | 16QAM | 36                  | 0               | 21.57                  | 21.0±1                  | 1.0         |
|         |       |           |       | 36                  | 16              | 21.42                  | 21.0±1                  | 1.0         |
|         |       |           |       | 36                  | 35              | 21.42                  | 21.0±1                  | 1.0         |
|         |       |           |       | 75                  | 0               | 21.57                  | 21.0±1                  | 1.0         |

| BW(MHz)   | Ch     | Freq(MHz) | Mode  | UL RB<br>Allocation | UL RB<br>Offset | Average<br>Power (dbm) | Tune up<br>limited(dBm) | MPR<br>(dB) |
|-----------|--------|-----------|-------|---------------------|-----------------|------------------------|-------------------------|-------------|
|           |        |           |       | 1                   | 0               | 23.33                  | 23.0±1                  | /           |
|           |        |           |       | 1                   | 49              | 23.81                  | 23.0±1                  | 1           |
|           |        |           |       | 1                   | 99              | 23.14                  | 23.0±1                  | 1           |
|           |        |           | QPSK  | 50                  | 0               | 22.54                  | 22.0±1                  | 1.0         |
|           |        |           |       | 50                  | 24              | 22.66                  | 22.0±1                  | 1.0         |
|           |        |           |       | 50                  | 49              | 22.46                  | 22.0±1                  | 1.0         |
|           | 40340  | 2565.0    |       | 100                 | 0               | 22.56                  | 22.0±1                  | 1.0         |
|           | 40340  | 2505.0    |       | 1                   | 0               | 23.39                  | 23.0±1                  | 1           |
|           |        |           |       | 1                   | 49              | 23.81                  | 23.0±1                  | 1           |
|           |        |           |       | 1                   | 99              | 23.07                  | 23.0±1                  | 1           |
|           |        |           | 16QAM | 50                  | 0               | 22.65                  | 22.0±1                  | 1.0         |
|           |        |           |       | 50                  | 24              | 22.62                  | 22.0±1                  | 1.0         |
|           |        |           |       | 50                  | 49              | 22.47                  | 22.0±1                  | 1.0         |
|           |        |           |       | 100                 | 0               | 22.57                  | 22.0±1                  | 1.0         |
|           |        |           |       | 1                   | 0               | 23.48                  | 23.0±1                  | 1           |
|           |        |           |       | 1                   | 49              | 23.85                  | 23.0±1                  | 1           |
|           |        |           |       | 1                   | 99              | 23.07                  | 23.0±1                  | 1           |
|           |        |           | QPSK  | 50                  | 0               | 22.62                  | 22.0±1                  | 1.0         |
|           |        |           |       | 50                  | 24              | 22.64                  | 22.0±1                  | 1.0         |
|           |        |           |       | 50                  | 49              | 22.43                  | 22.0±1                  | 1.0         |
| 20MHz     | 40740  | 2605.0    |       | 100                 | 0               | 22.57                  | 22.0±1                  | 1.0         |
| ZOIVII IZ | 40740  | 2005.0    |       | 1                   | 0               | 21.96                  | 22.0±1                  | 1.0         |
|           |        |           |       | 1                   | 49              | 22.31                  | 22.0±1                  | 1.0         |
|           |        |           |       | 1                   | 99              | 21.91                  | 22.0±1                  | 1.0         |
|           |        |           | 16QAM | 50                  | 0               | 21.46                  | 22.0±1                  | 1.0         |
|           |        |           |       | 50                  | 24              | 21.49                  | 22.0±1                  | 1.0         |
|           |        |           |       | 50                  | 49              | 21.44                  | 22.0±1                  | 1.0         |
|           |        |           |       | 100                 | 0               | 21.43                  | 22.0±1                  | 1.0         |
|           |        |           |       | 1                   | 0               | 22.20                  | 22.0±1                  | 1           |
|           |        |           |       | 1                   | 49              | 22.27                  | 22.0±1                  | 1           |
|           |        |           |       | 1                   | 99              | 21.90                  | 22.0±1                  | 1           |
|           |        |           | QPSK  | 50                  | 0               | 21.49                  | 21.0±1                  | 1.0         |
|           |        |           |       | 50                  | 24              | 21.43                  | 21.0±1                  | 1.0         |
|           |        |           |       | 50                  | 49              | 21.45                  | 21.0±1                  | 1.0         |
|           | 41140  | 2645.0    |       | 100                 | 0               | 21.55                  | 21.0±1                  | 1.0         |
|           | 111-40 | 20-0.0    |       | 1                   | 0               | 22.13                  | 22.0±1                  | 1           |
|           |        |           |       | 1                   | 49              | 22.34                  | 22.0±1                  | 1           |
|           |        |           |       | 1                   | 99              | 21.90                  | 21.0±1                  | 1.0         |
|           |        |           | 16QAM | 50                  | 0               | 21.51                  | 21.0±1                  | 1.0         |
|           |        |           |       | 50                  | 24              | 21.49                  | 21.0±1                  | 1.0         |
|           |        |           |       | 50                  | 49              | 21.43                  | 21.0±1                  | 1.0         |
|           |        |           |       | 100                 | 0               | 21.52                  | 21.0±1                  | 1.0         |

# **Bluetooth Measurement Result**

| Mode     | Frequency (MHz) | Average Output<br>Power(dBm) | Tune up limited(dBm) |
|----------|-----------------|------------------------------|----------------------|
|          | 2402            | 3.41                         | 4.0±1                |
| GFSK     | 2441            | 3.52                         | 4.0±1                |
|          | 2480            | 3.17                         | 4.0±1                |
|          | 2402            | 4.35                         | 4.0±1                |
| π/4DQPSK | 2441            | 4.49                         | 4.0±1                |
|          | 2480            | 4.23                         | 4.0±1                |
|          | 2402            | 4.74                         | 4.0±1                |
| 8DPSK    | 2441            | 4.86                         | 4.0±1                |
|          | 2480            | 4.66                         | 4.0±1                |

# **BLE Measurement Result**

| Channel number | Frequency (MHz) | Average Output<br>Power(dBm) | Tune up limited(dBm) |
|----------------|-----------------|------------------------------|----------------------|
| 0              | 2402            | 0.49                         | 0±1                  |
| 19             | 2440            | 0.76                         | 0±1                  |
| 39             | 2480            | 0.37                         | 0±1                  |

Page 84 of 190 Reference No.: WTS19S12086775W001 V1

# 12 Exposure Conditions Consideration

- This will allow for handheld use only and extremity 10-gram SAR testing is required.
   Test all four sides of the device for 10-gram extremity SAR with the device placed flat against the phantom (0mm gap) and the dipole antennas in parallel with the flat phantom.

# **RF Exposure**

## **Standard Requirement:**

According to §15.247 (i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]  $\cdot [\sqrt{f_{(GHz)}}] \le 3.0$  for 1-g SAR and  $\le 7.5$  for 10-g extremity SAR, 16 where

- f<sub>(GHz)</sub> is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation<sup>17</sup>
- The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is  $\leq 50$  mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is  $\leq 5$  mm, a distance of 5 mm is applied to determine SAR test exclusion.

Routine SAR evaluation refers to that specifically required by § 2.1093, using measurements or computer simulation. When routine SAR evaluation is not required, portable transmitters with output power greater than the applicable low threshold require SAR evaluation to qualify for TCB approval.

Exclusion Thresholds =  $P\sqrt{F}/D$ 

P= Maximum turn-up power in mW

F= Channel frequency in GHz

D= Minimum test separation distance in mm

Test Distance (5mm)

| Mode      | MAX<br>Power<br>(dBm) | Tune Up<br>Power (dBm) | Max Tune Up<br>Power (dBm) | Max Tune Up<br>Power (mW) | Exclusion<br>Thresholds | Limit |
|-----------|-----------------------|------------------------|----------------------------|---------------------------|-------------------------|-------|
| Bluetooth | 4.86                  | 4.0±1                  | 5                          | 3.16                      | 0.987                   | 7.5   |
| BLE       | 0.76                  | 0±1                    | 1                          | 1.26                      | 0.394                   | 7.5   |

Result: BT SAR measurement is not required.

Reference No.: WTS19S12086775W001 V1 Page 86 of 190

## 13 SAR Test Results

### **Test Condition:**

SAR Measurement

The distance between the EUT and the antenna of the emulator is more than 50 cm and the output power radiated from the emulator antenna is at least 30 dB less than the output power of EUT.

2 Environmental Conditions Temperature 23°C

Relative Humidity 57% Atmospheric Pressure 1019mbar

3 Test Date: 2019-12-13~2019-12-19

Tested By: Andy Feng

# **Generally Test Procedures:**

- 1. Establish communication link between EUT and base station emulation by air link.
- 2. Place the EUT in the selected test position. (Cheek, tilt or flat)
- 3. Perform SAR testing at middle or highest output power channel under the selected test mode. If the measured 1-g SAR is ≤ 0.8 W/kg, then testing for the other channel will not be performed.
- 4. When SAR is<0.8W/kg, no repeated SAR measurement is required

#### For WCDMA test:

- KDB941225 D01-Body SAR is not required for HSDPA when the average output of each RF channel with HSDPA active is less than 0.25dB higher than measured without HSDPA using 12.2kbps RMC or the maximum SAR for 12.2kbps RMC<75% of the SAR limit.</li>
- 2. KDB941225 D01-Body SAR is not required for handset with HSPA capabilities when the maximum average output of each RF channel with HSUPA/HSDPA active is less than 0.25dB higher than that measure without HSUPA/HSDPA using 12.2kbps RMC AND THE maximum SAR for 12.2kbps RMC is<75% of the SAR limit

#### For LTE test:

- 1. According to FCC KDB 941225 D05v02r05:
  - a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
- i. The required channel and offset combination with the highest maximum output power is required for SAR.
  - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
  - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
  - b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
  - c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.
  - d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.
  - e. A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

# **SAR Summary Test Result:**

Table 4: SAR Values of WCDMA BAND V

| Toot Docit      |               | Cha  | innel | Test            | Power                            | (dBm)                      | Extremity SAR 10g(W/Kg), Limit(4.0W/kg) |                            | Plot |
|-----------------|---------------|------|-------|-----------------|----------------------------------|----------------------------|-----------------------------------------|----------------------------|------|
| Test Posit      | Front         |      | MHz   | Mode            | Maximum<br>Turn-up<br>Power(dBm) | Measured output power(dBm) | Measured<br>SAR<br>10g(W/kg)            | Scaled<br>SAR<br>10g(W/kg) | No.  |
|                 | Front side    | 4132 | 826.4 | RMC<br>12.2kbps | 24                               | 23.86                      | 0.085                                   | 0.09                       | I    |
| Hotopot         | Back<br>side  | 4132 | 826.4 | RMC<br>12.2kbps | 24                               | 23.86                      | 0.070                                   | 0.08                       |      |
| Hotspot<br>(0mm | Left<br>Edge  | 4132 | 826.4 | RMC<br>12.2kbps | 24                               | 23.86                      | 0.105                                   | 0.11                       |      |
| Separation)     | Right<br>Edge | 4132 | 826.4 | RMC<br>12.2kbps | 24                               | 23.86                      | 0.196                                   | 0.20                       |      |
|                 | Top<br>Edge   | 4132 | 826.4 | RMC<br>12.2kbps | 24                               | 23.86                      | 1.844                                   | 1.90                       | 1    |

**Table 5: SAR Values of WCDMA BAND** 

| Took Dooit          | •                      | Cha  | annel  | Test            | Power                            | (dBm)                      | 10g(V                        | ity SAR<br>V/Kg),<br>.0W/kg) | Plot |
|---------------------|------------------------|------|--------|-----------------|----------------------------------|----------------------------|------------------------------|------------------------------|------|
| rest Posit          | Test Positions CH. MHz |      | MHz    | Mode            | Maximum<br>Turn-up<br>Power(dBm) | Measured output power(dBm) | Measured<br>SAR<br>10g(W/kg) | Scaled<br>SAR<br>10g(W/kg)   | No.  |
|                     | Front side             | 9262 | 1852.4 | RMC<br>12.2kbps | 24                               | 23.88                      | 0.254                        | 0.26                         | 1    |
| Hotspot             | Back<br>side           | 9262 | 1852.4 | RMC<br>12.2kbps | 24                               | 23.88                      | 0.152                        | 0.16                         | 1    |
| (0mm<br>Separation) | Left<br>Edge           | 9262 | 1852.4 | RMC<br>12.2kbps | 24                               | 23.88                      | 0.305                        | 0.31                         | 1    |
| Coparation)         | Right<br>Edge          | 9262 | 1852.4 | RMC<br>12.2kbps | 24                               | 23.88                      | 0.394                        | 0.41                         |      |
|                     | Top<br>Edge            | 9262 | 1852.4 | RMC<br>12.2kbps | 24                               | 23.88                      | 1.289                        | 1.33                         | 2    |

**Table 6: SAR Values of WCDMA BAND IV** 

| Toot Por                       | Test Positions Co |      | Channel |                 | Power                            | (dBm)                      | Extrem<br>10g(V<br>Limit(4.  | Plot                       |     |
|--------------------------------|-------------------|------|---------|-----------------|----------------------------------|----------------------------|------------------------------|----------------------------|-----|
| Test For                       |                   |      | MHz     | Mode            | Maximum<br>Turn-up<br>Power(dBm) | Measured output power(dBm) | Measured<br>SAR<br>10g(W/kg) | Scaled<br>SAR<br>10g(W/kg) | No. |
|                                | Front side        | 1312 | 1712.4  | RMC<br>12.2kbps | 24                               | 23.82                      | 0.104                        | 0.11                       |     |
| Hotopot                        | Back<br>side      | 1312 | 1712.4  | RMC<br>12.2kbps | 24                               | 23.82                      | 0.085                        | 0.09                       |     |
| Hotspot<br>(0mm<br>Separation) | Left<br>Edge      | 1312 | 1712.4  | RMC<br>12.2kbps | 24                               | 23.82                      | 0.089                        | 0.09                       |     |
| ocparation)                    | Right<br>Edge     | 1312 | 1712.4  | RMC<br>12.2kbps | 24                               | 23.82                      | 0.122                        | 0.13                       |     |
|                                | Top<br>Edge       | 1312 | 1712.4  | RMC<br>12.2kbps | 24                               | 23.82                      | 1.151                        | 1.20                       | 3   |

Table 7: SAR Values of LTE BAND 2 . 20MHz .QPSK

|              |                                                 | Table 7: SAR Values of LTE BAND                                                   |                                                      |                                         |                                                        |                                                                      |                                 |                                                                                                                |                                                                                 |             |  |
|--------------|-------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------|--|
| Test         | Test Posit                                      | ions                                                                              | Char                                                 | nnel                                    | Power                                                  |                                                                      | MPR                             | 10g(\<br>Limit(4                                                                                               | nity SAR<br>W/Kg),<br>4.0W/kg)                                                  | Plot        |  |
| Mode         | 10011 0011                                      |                                                                                   | СН.                                                  | MHz                                     | Maximum<br>Turn-up<br>Power(dBm)                       | Measured<br>output<br>power(dBm)                                     | (dB)                            | Measured<br>SAR<br>10g(W/kg)                                                                                   | Scaled SAR<br>10g(W/kg)                                                         | No.         |  |
|              |                                                 | Front side                                                                        | 18700                                                | 1860                                    | 24                                                     | 23.80                                                                | 0                               | 0.089                                                                                                          | 0.09                                                                            |             |  |
|              | Hotspot                                         | Back<br>side                                                                      | 18700                                                | 1860                                    | 24                                                     | 23.80                                                                | 0                               | 0.052                                                                                                          | 0.06                                                                            |             |  |
| 1RB<br>#49   | (0mm<br>Separation)                             | Left<br>Edge                                                                      | 18700                                                | 1860                                    | 24                                                     | 23.80                                                                | 0                               | 0.101                                                                                                          | 0.11                                                                            |             |  |
|              | Separation)                                     | Right<br>Edge                                                                     | 18700                                                | 1860                                    | 24                                                     | 23.80                                                                | 0                               | 0.145                                                                                                          | 0.15                                                                            |             |  |
|              |                                                 | Top<br>Edge                                                                       | 18700                                                | 1860                                    | 24                                                     | 23.80                                                                | 0                               | 0.526                                                                                                          | 0.55                                                                            | 4           |  |
|              |                                                 | Front side                                                                        | 18700                                                | 1860                                    | 23                                                     | 22.53                                                                | 1                               | 0.050                                                                                                          | 0.06                                                                            |             |  |
|              | Hotspot                                         | Back<br>side                                                                      | 18700                                                | 1860                                    | 23                                                     | 22.53                                                                | 1                               | 0.041                                                                                                          | 0.05                                                                            |             |  |
| 50%RB<br>#0  | (0mm<br>Separation)                             | Left<br>Edge                                                                      | 18700                                                | 1860                                    | 23                                                     | 22.53                                                                | 1                               | 0.080                                                                                                          | 0.09                                                                            |             |  |
|              | Separation)                                     | Right<br>Edge                                                                     | 18700                                                | 1860                                    | 23                                                     | 22.53                                                                | 1                               | 0.101                                                                                                          | 0.11                                                                            |             |  |
|              |                                                 | Top<br>Edge                                                                       | 18700                                                | 1860                                    | 23                                                     | 22.53                                                                | 1                               | 0.454                                                                                                          | 0.51                                                                            |             |  |
|              | <u> </u>                                        |                                                                                   |                                                      | SAR                                     | Values of LTE                                          | BAND 2 , 20MH                                                        | 1z ,16Q                         |                                                                                                                |                                                                                 |             |  |
|              |                                                 |                                                                                   |                                                      |                                         |                                                        |                                                                      |                                 | Evtron                                                                                                         |                                                                                 |             |  |
| Test         |                                                 |                                                                                   | Char                                                 | nnel                                    | Power                                                  | (dBm)                                                                | MPR                             | 10g(                                                                                                           | nity SAR<br>W/Kg),<br>4.0W/ka)                                                  | Plot        |  |
| Test<br>Mode | Test Posit                                      | ions                                                                              | Char                                                 | nnel<br>MHz                             | Maximum<br>Turn-up                                     | Measured output                                                      | MPR<br>(dB)                     | 10g(<br>Limit(4<br>Measured<br>SAR                                                                             | W/Kg),<br>4.0W/kg)<br>Scaled SAR                                                | Plot<br>No. |  |
|              | Test Posit                                      |                                                                                   |                                                      |                                         | Maximum                                                | Measured                                                             |                                 | 10g(\<br>Limit(4<br>Measured                                                                                   | W/Kg),<br>4.0W/kg)                                                              |             |  |
|              | Test Posit                                      | Front side                                                                        |                                                      |                                         | Maximum<br>Turn-up                                     | Measured output                                                      |                                 | 10g(<br>Limit(4<br>Measured<br>SAR                                                                             | W/Kg),<br>4.0W/kg)<br>Scaled SAR                                                |             |  |
| Mode         |                                                 | Front<br>side<br>Back<br>side                                                     | CH.                                                  | MHz                                     | Maximum<br>Turn-up<br>Power(dBm)                       | Measured<br>output<br>power(dBm)                                     | (dB)                            | 10g(<br>Limit(4<br>Measured<br>SAR<br>10g(W/kg)                                                                | W/Kg),<br>4.0W/kg)<br>Scaled SAR<br>10g(W/kg)                                   | No.         |  |
|              | Hotspot<br>(0mm                                 | Front side Back side Left Edge                                                    | <b>CH.</b> 18700                                     | <b>MHz</b> 1860                         | Maximum<br>Turn-up<br>Power(dBm)                       | Measured<br>output<br>power(dBm)<br>24.64                            | ( <b>dB</b> )                   | 10g(<br>Limit(4<br>Measured<br>SAR<br>10g(W/kg)<br>0.077                                                       | W/Kg),<br>4.0W/kg)<br>Scaled SAR<br>10g(W/kg)                                   | No.         |  |
| Mode<br>1RB  | Hotspot                                         | Front side Back side Left Edge Right Edge                                         | <b>CH.</b> 18700                                     | MHz<br>1860<br>1860                     | Maximum<br>Turn-up<br>Power(dBm)<br>25                 | Measured output power(dBm) 24.64 24.64                               | (dB)<br>0                       | 10g(<br>Limit(4<br>Measured<br>SAR<br>10g(W/kg)<br>0.077                                                       | W/Kg),<br>4.0W/kg)<br>Scaled SAR<br>10g(W/kg)<br>0.08<br>0.06                   | <br>        |  |
| Mode<br>1RB  | Hotspot<br>(0mm                                 | Front side Back side Left Edge Right Edge Top Edge                                | <b>CH.</b> 18700 18700 18700                         | MHz<br>1860<br>1860<br>1860             | Maximum<br>Turn-up<br>Power(dBm)<br>25<br>25           | Measured output power(dBm) 24.64 24.64 24.64                         | 0<br>0<br>0                     | 10g(<br>Limit(4<br>Measured<br>SAR<br>10g(W/kg)<br>0.077<br>0.060<br>0.085                                     | W/Kg), 4.0W/kg)  Scaled SAR 10g(W/kg)  0.08  0.06  0.09                         | <br>        |  |
| Mode<br>1RB  | Hotspot<br>(0mm                                 | Front side Back side Left Edge Right Edge Top Edge Front side                     | CH.<br>18700<br>18700<br>18700<br>18700              | MHz<br>1860<br>1860<br>1860<br>1860     | Maximum Turn-up Power(dBm) 25 25 25 25                 | Measured output power(dBm) 24.64 24.64 24.64 24.64                   | 0<br>0<br>0                     | 10g(<br>Limit(4<br>Measured<br>SAR<br>10g(W/kg)<br>0.077<br>0.060<br>0.085<br>0.123                            | W/Kg), 4.0W/kg)  Scaled SAR 10g(W/kg)  0.08  0.06  0.09  0.13                   | <br>        |  |
| 1RB<br>#49   | Hotspot<br>(0mm<br>Separation)                  | Front side Back side Left Edge Right Edge Top Edge Front side Back side           | CH.<br>18700<br>18700<br>18700<br>18700              | MHz<br>1860<br>1860<br>1860<br>1860     | Maximum Turn-up Power(dBm) 25 25 25 25 25              | Measured output power(dBm) 24.64 24.64 24.64 24.64 24.64             | 0<br>0<br>0<br>0                | 10g(<br>Limit(4<br>Measured<br>SAR<br>10g(W/kg)<br>0.077<br>0.060<br>0.085<br>0.123<br>0.490                   | W/Kg), 4.0W/kg)  Scaled SAR 10g(W/kg)  0.08  0.06  0.09  0.13  0.53             |             |  |
| Mode<br>1RB  | Hotspot<br>(0mm<br>Separation)  Hotspot<br>(0mm | Front side Back side Left Edge Right Edge Top Edge Front side Back side Left Edge | CH.<br>18700<br>18700<br>18700<br>18700<br>18700     | MHz  1860 1860 1860 1860 1860           | Maximum Turn-up Power(dBm)  25  25  25  25  25  23     | Measured output power(dBm)  24.64  24.64  24.64  24.64  24.64  22.60 | 0<br>0<br>0<br>0<br>0           | 10g(<br>Limit(4<br>Measured<br>SAR<br>10g(W/kg)<br>0.077<br>0.060<br>0.085<br>0.123<br>0.490<br>0.070          | W/Kg), 4.0W/kg)  Scaled SAR 10g(W/kg)  0.08  0.06  0.09  0.13  0.53  0.08       |             |  |
| 1RB<br>#49   | Hotspot<br>(0mm<br>Separation)                  | Front side Back side Left Edge Right Edge Top Edge Front side Back side Left      | CH.  18700  18700  18700  18700  18700  18700  18700 | MHz  1860  1860  1860  1860  1860  1860 | Maximum Turn-up Power(dBm)  25  25  25  25  25  23  23 | Measured output power(dBm) 24.64 24.64 24.64 24.64 24.64 22.60 22.60 | 0<br>0<br>0<br>0<br>0<br>1<br>1 | 10g(<br>Limit(4<br>Measured<br>SAR<br>10g(W/kg)<br>0.077<br>0.060<br>0.085<br>0.123<br>0.490<br>0.070<br>0.052 | W/Kg), 4.0W/kg)  Scaled SAR 10g(W/kg)  0.08  0.06  0.09  0.13  0.53  0.08  0.06 |             |  |

Table 8: SAR Values of LTE BAND 4. 20MHz .QPSK

|              |                                                   |                                                                              |                                                  | Table 0.                                                            | SAR Values of                                          | R Values of LTE BAND 4, 20MHz ,QPSK                                  |                                 |                                                                                                                |                                                                                 |             |
|--------------|---------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------|
| Test         | Test Posit                                        | ions                                                                         | Cha                                              | nnel                                                                | Power                                                  |                                                                      | MPR                             | 10g(\<br>Limit(4                                                                                               | nity SAR<br>W/Kg),<br>1.0W/kg)                                                  | Plot        |
| Mode         |                                                   |                                                                              | CH.                                              | MHz                                                                 | Maximum<br>Turn-up<br>Power(dBm)                       | Measured<br>output<br>power(dBm)                                     | (dB)                            | Measured<br>SAR<br>10g(W/kg)                                                                                   | Scaled SAR<br>10g(W/kg)                                                         | No.         |
|              |                                                   | Front side                                                                   | 20175                                            | 1732.5                                                              | 24                                                     | 23.89                                                                | 0                               | 0.052                                                                                                          | 0.05                                                                            |             |
|              | Hotspot                                           | Back<br>side                                                                 | 20175                                            | 1732.5                                                              | 24                                                     | 23.89                                                                | 0                               | 0.036                                                                                                          | 0.04                                                                            |             |
| 1RB<br>#49   | (0mm<br>Separation)                               | Left<br>Edge                                                                 | 20175                                            | 1732.5                                                              | 24                                                     | 23.89                                                                | 0                               | 0.024                                                                                                          | 0.02                                                                            |             |
|              | Separation)                                       | Right<br>Edge                                                                | 20175                                            | 1732.5                                                              | 24                                                     | 23.89                                                                | 0                               | 0.082                                                                                                          | 0.08                                                                            |             |
|              |                                                   | Top<br>Edge                                                                  | 20175                                            | 1732.5                                                              | 24                                                     | 23.89                                                                | 0                               | 0.817                                                                                                          | 0.84                                                                            | 5           |
|              |                                                   | Front side                                                                   | 20175                                            | 1732.5                                                              | 23                                                     | 22.41                                                                | 1                               | 0.047                                                                                                          | 0.05                                                                            |             |
|              | Hotspot                                           | Back<br>side                                                                 | 20175                                            | 1732.5                                                              | 23                                                     | 22.41                                                                | 1                               | 0.023                                                                                                          | 0.03                                                                            |             |
| 50%RB<br>#24 | (0mm<br>Separation)                               | Left<br>Edge                                                                 | 20175                                            | 1732.5                                                              | 23                                                     | 22.41                                                                | 1                               | 0.012                                                                                                          | 0.01                                                                            |             |
|              | Separation)                                       | Right<br>Edge                                                                | 20175                                            | 1732.5                                                              | 23                                                     | 22.41                                                                | 1                               | 0.075                                                                                                          | 0.09                                                                            |             |
|              |                                                   | Top<br>Edge                                                                  | 20175                                            | 1732.5                                                              | 23                                                     | 22.41                                                                | 1                               | 0.702                                                                                                          | 0.80                                                                            |             |
|              |                                                   |                                                                              |                                                  | SAR Val                                                             | ues of LTE BAI                                         | 1, ND 4, 20MHz                                                       | 6QAM                            | _                                                                                                              |                                                                                 |             |
|              |                                                   |                                                                              |                                                  |                                                                     |                                                        |                                                                      |                                 | Extren                                                                                                         | nity SAR                                                                        |             |
| Toot         |                                                   |                                                                              | Cha                                              | nnel                                                                | Power                                                  | (dBm)                                                                | MDD                             | 10g(                                                                                                           | W/Kg),                                                                          | Diet        |
| Test         | Test Posit                                        | ions                                                                         | Cha                                              | nnel                                                                |                                                        |                                                                      | MPR                             | 10g(\<br>Limit(4                                                                                               |                                                                                 | Plot        |
| Test<br>Mode | Test Posit                                        | ions                                                                         | Cha                                              | nnel<br>MHz                                                         | Power  Maximum  Turn-up  Power(dBm)                    | Measured<br>output<br>power(dBm)                                     | MPR<br>(dB)                     | 10g(                                                                                                           | W/Kg),                                                                          | Plot<br>No. |
|              | Test Posit                                        | Front side                                                                   |                                                  |                                                                     | Maximum<br>Turn-up                                     | Measured output                                                      |                                 | 10g(<br>Limit(4<br>Measured<br>SAR                                                                             | W/Kg),<br>4.0W/kg)<br>Scaled SAR                                                |             |
| Mode         |                                                   | Front side Back side                                                         | CH.                                              | MHz                                                                 | Maximum<br>Turn-up<br>Power(dBm)                       | Measured<br>output<br>power(dBm)                                     | (dB)                            | 10g(<br>Limit(4<br>Measured<br>SAR<br>10g(W/kg)                                                                | W/Kg),<br>4.0W/kg)<br>Scaled SAR<br>10g(W/kg)                                   | No.         |
|              | Hotspot<br>(0mm                                   | Front side Back side Left Edge                                               | <b>CH</b> .                                      | <b>MHz</b> 1720.0                                                   | Maximum<br>Turn-up<br>Power(dBm)                       | Measured<br>output<br>power(dBm)<br>24.89                            | ( <b>dB</b> )                   | 10g(<br>Limit(4<br>Measured<br>SAR<br>10g(W/kg)<br>0.039                                                       | W/Kg),<br>4.0W/kg)<br>Scaled SAR<br>10g(W/kg)                                   | No.         |
| Mode<br>1RB  | Hotspot                                           | Front side Back side Left Edge Right Edge                                    | <b>CH.</b> 20050 20050                           | MHz<br>1720.0<br>1720.0                                             | Maximum<br>Turn-up<br>Power(dBm)<br>25                 | Measured output power(dBm) 24.89 24.89                               | 0<br>0                          | 10g(<br>Limit(4<br>Measured<br>SAR<br>10g(W/kg)<br>0.039                                                       | W/Kg),<br>4.0W/kg)<br>Scaled SAR<br>10g(W/kg)<br>0.04<br>0.02                   | No.<br>     |
| Mode<br>1RB  | Hotspot<br>(0mm                                   | Front side Back side Left Edge Right Edge Top Edge                           | CH.<br>20050<br>20050<br>20050                   | MHz<br>1720.0<br>1720.0<br>1720.0                                   | Maximum Turn-up Power(dBm) 25 25 25                    | Measured output power(dBm) 24.89 24.89 24.89                         | 0<br>0<br>0                     | 10g(<br>Limit(4<br>Measured<br>SAR<br>10g(W/kg)<br>0.039<br>0.020                                              | W/Kg),<br>4.0W/kg)<br>Scaled SAR<br>10g(W/kg)<br>0.04<br>0.02                   | <br>        |
| Mode<br>1RB  | Hotspot<br>(0mm                                   | Front side Back side Left Edge Right Edge Top Edge Front side                | CH.<br>20050<br>20050<br>20050<br>20050          | MHz<br>1720.0<br>1720.0<br>1720.0<br>1720.0                         | Maximum Turn-up Power(dBm) 25 25 25 25                 | Measured output power(dBm) 24.89 24.89 24.89 24.89                   | (dB)<br>0<br>0<br>0             | 10g(<br>Limit(4<br>Measured<br>SAR<br>10g(W/kg)<br>0.039<br>0.020<br>0.020                                     | W/Kg),<br>4.0W/kg)<br>Scaled SAR<br>10g(W/kg)<br>0.04<br>0.02<br>0.02<br>0.08   | <br><br>    |
| 1RB<br>#49   | Hotspot<br>(0mm<br>Separation)                    | Front side Back side Left Edge Right Edge Top Edge Front side Back side      | CH.<br>20050<br>20050<br>20050<br>20050<br>20050 | MHz<br>1720.0<br>1720.0<br>1720.0<br>1720.0<br>1720.0               | Maximum Turn-up Power(dBm)  25  25  25  25  25         | Measured output power(dBm)  24.89  24.89  24.89  24.89  24.89        | (dB)<br>0<br>0<br>0<br>0        | 10g(<br>Limit(4<br>Measured<br>SAR<br>10g(W/kg)<br>0.039<br>0.020<br>0.020<br>0.077                            | W/Kg), 4.0W/kg)  Scaled SAR 10g(W/kg)  0.04  0.02  0.02  0.08  0.76             | <br><br>    |
| Mode<br>1RB  | Hotspot<br>(0mm<br>Separation)<br>Hotspot<br>(0mm | Front side Back side Left Edge Top Edge Front side Back side Left Edge       | CH. 20050 20050 20050 20050 20050 20175          | MHz 1720.0 1720.0 1720.0 1720.0 1720.0 1732.5                       | Maximum Turn-up Power(dBm)  25  25  25  25  25  23     | Measured output power(dBm)  24.89  24.89  24.89  24.89  24.89  22.53 | 0<br>0<br>0<br>0<br>0           | 10g(<br>Limit(4<br>Measured<br>SAR<br>10g(W/kg)<br>0.039<br>0.020<br>0.020<br>0.077<br>0.744<br>0.032          | W/Kg), 4.0W/kg)  Scaled SAR 10g(W/kg)  0.04  0.02  0.02  0.08  0.76  0.04       | No          |
| 1RB<br>#49   | Hotspot<br>(0mm<br>Separation)                    | Front side Back side Left Edge Right Edge Top Edge Front side Back side Left | CH. 20050 20050 20050 20050 20175 20175          | MHz  1720.0  1720.0  1720.0  1720.0  1720.0  1720.0  1732.5  1732.5 | Maximum Turn-up Power(dBm)  25  25  25  25  25  23  23 | Measured output power(dBm) 24.89 24.89 24.89 24.89 24.89 24.89 22.53 | 0<br>0<br>0<br>0<br>0<br>1<br>1 | 10g(<br>Limit(4<br>Measured<br>SAR<br>10g(W/kg)<br>0.039<br>0.020<br>0.020<br>0.077<br>0.744<br>0.032<br>0.015 | W/Kg), 4.0W/kg)  Scaled SAR 10g(W/kg)  0.04  0.02  0.02  0.08  0.76  0.04  0.02 | No          |

Table 9: SAR Values of LTE BAND 5, 20MHz, QPSK

|             |                                |               |         | ubic o. | ie 9. SAR values of LTE BAND 5, 2 |                            |      | <u>;</u>                                      |                         |      |  |
|-------------|--------------------------------|---------------|---------|---------|-----------------------------------|----------------------------|------|-----------------------------------------------|-------------------------|------|--|
| Test        | I LAST PASITIONS               |               | Channel |         | Power(dBm)                        |                            | MPR  | Extremity SAR<br>10g(W/Kg),<br>Limit(4.0W/kg) |                         | Plot |  |
| Mode        | Test Posit                     | 10115         | СН.     | MHz     | Maximum<br>Turn-up<br>Power(dBm)  | Measured output power(dBm) | (dB) | Measured<br>SAR<br>10g(W/kg)                  | Scaled SAR<br>10g(W/kg) | No.  |  |
|             |                                | Front side    | 20525   | 836.5   | 24                                | 23.54                      | 0    | 0.056                                         | 0.06                    |      |  |
|             | Hotopot                        | Back<br>side  | 20525   | 836.5   | 24                                | 23.54                      | 0    | 0.026                                         | 0.03                    |      |  |
| 1RB<br>#49  | Hotspot<br>(0mm<br>Separation) | Left<br>Edge  | 20525   | 836.5   | 24                                | 23.54                      | 0    | 0.032                                         | 0.04                    |      |  |
|             | Separation)                    | Right<br>Edge | 20525   | 836.5   | 24                                | 23.54                      | 0    | 0.123                                         | 0.14                    |      |  |
|             |                                | Top<br>Edge   | 20525   | 836.5   | 24                                | 23.54                      | 0    | 1.712                                         | 1.90                    | 6    |  |
|             |                                | Front side    | 20525   | 836.5   | 23                                | 22.51                      | 1    | 0.045                                         | 0.05                    |      |  |
|             | Hotopot                        | Back<br>side  | 20525   | 836.5   | 23                                | 22.51                      | 1    | 0.022                                         | 0.03                    |      |  |
| 50%RB<br>#0 | Hotspot<br>(0mm<br>Separation) | Left<br>Edge  | 20525   | 836.5   | 23                                | 22.51                      | 1    | 0.030                                         | 0.03                    |      |  |
|             | Separation)                    | Right<br>Edge | 20525   | 836.5   | 23                                | 22.51                      | 1    | 0.120                                         | 0.13                    |      |  |
|             |                                | Top<br>Edge   | 20525   | 836.5   | 23                                | 22.51                      | 1    | 1.425                                         | 1.60                    |      |  |

Table 10: SAR Values of LTE BAND 7, 20MHz, QPSK

| Test        | POSITIONS                      |               | Channel |      | Power                            | MPR                        | Extremity SAR<br>10g(W/Kg),<br>Limit(4 <sub>-</sub> 0W/kg) |                              | Plot                       |     |
|-------------|--------------------------------|---------------|---------|------|----------------------------------|----------------------------|------------------------------------------------------------|------------------------------|----------------------------|-----|
| Mode        | Test Posit                     | ions          | СН.     | MHz  | Maximum<br>Turn-up<br>Power(dBm) | Measured output power(dBm) | (dB)                                                       | Measured<br>SAR<br>10g(W/kg) | Scaled<br>SAR<br>10g(W/kg) | No. |
|             |                                | Front side    | 21100   | 2535 | 24                               | 23.87                      | 0                                                          | 0.012                        | 0.01                       |     |
|             | Untanat                        | Back<br>side  | 21100   | 2535 | 24                               | 23.87                      | 0                                                          | 0.008                        | 0.01                       |     |
| 1RB<br>#49  | Hotspot<br>(0mm<br>Separation) | Left<br>Edge  | 21100   | 2535 | 24                               | 23.87                      | 0                                                          | 0.006                        | 0.01                       |     |
|             | Separation)                    | Right<br>Edge | 21100   | 2535 | 24                               | 23.87                      | 0                                                          | 0.007                        | 0.01                       |     |
|             |                                | Top<br>Edge   | 21100   | 2535 | 24                               | 23.87                      | 0                                                          | 0.267                        | 0.28                       | 7   |
|             |                                | Front side    | 21100   | 2535 | 23                               | 22.42                      | 1                                                          | 0.010                        | 0.01                       |     |
|             | Hotspot                        | Back<br>side  | 21100   | 2535 | 23                               | 22.42                      | 1                                                          | 0.005                        | 0.01                       |     |
| 50%RB<br>#0 | (0mm<br>Separation)            | Left<br>Edge  | 21100   | 2535 | 23                               | 22.42                      | 1                                                          | 0.005                        | 0.01                       |     |
|             | Ocparation)                    | Right<br>Edge | 21100   | 2535 | 23                               | 22.42                      | 1                                                          | 0.004                        | 0.01                       |     |
|             |                                | Top<br>Edge   | 21100   | 2535 | 23                               | 22.42                      | 1                                                          | 0.214                        | 0.24                       |     |

Table 11: SAR Values of LTE BAND 12, 10MHz, QPSK

| Test        | I Det Positions                |               | Channel |       | Power(dBm)                       |                                  | MPR  | 10g(V                        | ity SAR<br>V/Kg),<br>.0W/kg) | Plot |
|-------------|--------------------------------|---------------|---------|-------|----------------------------------|----------------------------------|------|------------------------------|------------------------------|------|
| Mode        | Test Posi                      | tions         | СН.     | MHz   | Maximum<br>Turn-up<br>Power(dBm) | Measured<br>output<br>power(dBm) | (dB) | Measured<br>SAR<br>10g(W/kg) | Scaled<br>SAR<br>10g(W/kg)   | No.  |
|             |                                | Front side    | 23095   | 707.5 | 24.5                             | 24.01                            | 0    | 0.025                        | 0.03                         |      |
|             | Hatanat                        | Back<br>side  | 23095   | 707.5 | 24.5                             | 24.01                            | 0    | 0.018                        | 0.02                         |      |
| 1RB<br>#49  | Hotspot<br>(0mm<br>Separation) | Left<br>Edge  | 23095   | 707.5 | 24.5                             | 24.01                            | 0    | 0.016                        | 0.02                         |      |
|             | Separation)                    | Right<br>Edge | 23095   | 707.5 | 24.5                             | 24.01                            | 0    | 0.011                        | 0.01                         |      |
|             |                                | Top<br>Edge   | 23095   | 707.5 | 24.5                             | 24.01                            | 0    | 0.304                        | 0.34                         | 8    |
|             |                                | Front side    | 23095   | 707.5 | 23.5                             | 22.73                            | 1    | 0.020                        | 0.02                         |      |
|             | Hatanat                        | Back<br>side  | 23095   | 707.5 | 23.5                             | 22.73                            | 1    | 0.015                        | 0.02                         |      |
| 50%RB<br>#0 | Hotspot<br>(0mm                | Left<br>Edge  | 23095   | 707.5 | 23.5                             | 22.73                            | 1    | 0.007                        | 0.01                         |      |
|             | Separation)                    | Right<br>Edge | 23095   | 707.5 | 23.5                             | 22.73                            | 1    | 0.009                        | 0.01                         |      |
|             |                                | Top<br>Edge   | 23095   | 707.5 | 23.5                             | 22.73                            | 1    | 0.287                        | 0.34                         |      |

Table 12: SAR Values of LTE BAND 13, 10MHz, QPSK

| Test         | Test Positions                 |               | Channel Test Positions |       | Power(dBm)                       |                                  | MPR  | Extremity SAR<br>10g(W/Kg),<br>Limit(4.0W/kg) |                            | Plot |
|--------------|--------------------------------|---------------|------------------------|-------|----------------------------------|----------------------------------|------|-----------------------------------------------|----------------------------|------|
| Mode         | Test Posi                      | tions         | СН.                    | MHz   | Maximum<br>Turn-up<br>Power(dBm) | Measured<br>output<br>power(dBm) | (dB) | Measured<br>SAR<br>10g(W/kg)                  | Scaled<br>SAR<br>10g(W/kg) | No.  |
|              |                                | Front side    | 23230                  | 782.0 | 24.5                             | 23.95                            | 0    | 0.111                                         | 0.13                       |      |
|              | Llotopot                       | Back<br>side  | 23230                  | 782.0 | 24.5                             | 23.95                            | 0    | 0.102                                         | 0.12                       |      |
| 1RB<br>#49   | Hotspot<br>(0mm<br>Separation) | Left<br>Edge  | 23230                  | 782.0 | 24.5                             | 23.95                            | 0    | 0.045                                         | 0.05                       |      |
|              | Separation)                    | Right<br>Edge | 23230                  | 782.0 | 24.5                             | 23.95                            | 0    | 0.058                                         | 0.07                       |      |
|              |                                | Top<br>Edge   | 23230                  | 782.0 | 24.5                             | 23.95                            | 0    | 0.912                                         | 1.04                       | 9    |
|              |                                | Front side    | 23230                  | 782.0 | 23.5                             | 22.71                            | 1    | 0.100                                         | 0.12                       |      |
|              | Hatanat                        | Back<br>side  | 23230                  | 782.0 | 23.5                             | 22.71                            | 1    | 0.085                                         | 0.10                       |      |
| 50%RB<br>#24 | Hotspot<br>(0mm                | Left<br>Edge  | 23230                  | 782.0 | 23.5                             | 22.71                            | 1    | 0.040                                         | 0.05                       |      |
|              | Separation)                    | Right<br>Edge | 23230                  | 782.0 | 23.5                             | 22.71                            | 1    | 0.052                                         | 0.06                       |      |
|              |                                | Top<br>Edge   | 23230                  | 782.0 | 23.5                             | 22.71                            | 1    | 0.874                                         | 1.05                       |      |

|              |                                      |                                                                        |                                                    | 1 abie 13:                                               | SAR Values of                                | LIE BAND 25                                                                | , ZUIVIM              | z ,QPSK                                                                         |                                                     |      |
|--------------|--------------------------------------|------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------|-----------------------------------------------------|------|
| Test         | Test Posit                           | ions                                                                   | Cha                                                | innel                                                    | Power                                        |                                                                            | MPR                   | 10g(\<br>Limit(4                                                                | nity SAR<br>W/Kg),<br>4.0W/kg)                      | Plot |
| Mode         | 163(1 63)(                           |                                                                        | СН.                                                | MHz                                                      | Maximum<br>Turn-up<br>Power(dBm)             | Measured<br>output<br>power(dBm)                                           | (dB)                  | Measured<br>SAR<br>10g(W/kg)                                                    | Scaled SAR<br>10g(W/kg)                             | No.  |
|              |                                      | Front side                                                             | 26140                                              | 1860.0                                                   | 24                                           | 23.80                                                                      | 0                     | 0.450                                                                           | 0.47                                                |      |
|              | Hatanat                              | Back<br>side                                                           | 26140                                              | 1860.0                                                   | 24                                           | 23.80                                                                      | 0                     | 0.389                                                                           | 0.41                                                |      |
| 1RB<br>#49   | Hotspot<br>(0mm<br>Separation)       | Left<br>Edge                                                           | 26140                                              | 1860.0                                                   | 24                                           | 23.80                                                                      | 0                     | 0.256                                                                           | 0.27                                                |      |
|              | Separation)                          | Right<br>Edge                                                          | 26140                                              | 1860.0                                                   | 24                                           | 23.80                                                                      | 0                     | 0.331                                                                           | 0.35                                                |      |
|              |                                      | Top<br>Edge                                                            | 26140                                              | 1860.0                                                   | 24                                           | 23.80                                                                      | 0                     | 1.226                                                                           | 1.28                                                | 10   |
|              |                                      | Front side                                                             | 26140                                              | 1860.0                                                   | 24                                           | 23.31                                                                      | 1                     | 0.414                                                                           | 0.49                                                |      |
|              | Llatonat                             | Back<br>side                                                           | 26140                                              | 1860.0                                                   | 24                                           | 23.31                                                                      | 1                     | 0.401                                                                           | 0.47                                                |      |
| 50%RB<br>#0  | Hotspot<br>(0mm<br>Separation)       | Left<br>Edge                                                           | 26140                                              | 1860.0                                                   | 24                                           | 23.31                                                                      | 1                     | 0.203                                                                           | 0.24                                                |      |
|              | Separation)                          | Right<br>Edge                                                          | 26140                                              | 1860.0                                                   | 24                                           | 23.31                                                                      | 1                     | 0.299                                                                           | 0.35                                                |      |
|              |                                      | Top<br>Edge                                                            | 26140                                              | 1860.0                                                   | 24                                           | 23.31                                                                      | 1                     | 1.101                                                                           | 1.29                                                |      |
|              |                                      |                                                                        | 1                                                  | SAR Va                                                   | lues of LTE BA                               | AND 25, 10MHz                                                              | ,QPSK                 |                                                                                 |                                                     |      |
| Test         |                                      | _                                                                      | Cha                                                | nnel                                                     | Power                                        | (dBm)                                                                      | MPR                   | 10g(                                                                            | nity SAR<br>W/Kg),<br>4.0W/kg)                      | Plot |
| Mode         | Test Posit                           | ions                                                                   | <b></b>                                            |                                                          | Maximum                                      | Measured                                                                   | (dB)                  | Measured                                                                        |                                                     | No.  |
|              |                                      |                                                                        | CH.                                                | MHz                                                      | Turn-up<br>Power(dBm)                        | output<br>power(dBm)                                                       | (42)                  | SAR<br>10g(W/kg)                                                                | Scaled SAR<br>10g(W/kg)                             | 140. |
|              |                                      | Front side                                                             | 26365                                              | MHz<br>1882.5                                            |                                              | output                                                                     | 0                     | SAR                                                                             |                                                     |      |
|              | Hatanat                              |                                                                        |                                                    |                                                          | Power(dBm)                                   | output<br>power(dBm)                                                       |                       | SAR<br>10g(W/kg)                                                                | 10g(W/kg)                                           |      |
| 1RB<br>#49   | Hotspot<br>(0mm                      | side<br>Back                                                           | 26365                                              | 1882.5                                                   | Power(dBm)                                   | output<br>power(dBm)<br>24.55                                              | 0                     | SAR<br>10g(W/kg)<br>0.401                                                       | <b>10g(W/kg)</b><br>0.44                            |      |
|              |                                      | side<br>Back<br>side<br>Left                                           | 26365<br>26365                                     | 1882.5<br>1882.5                                         | 25<br>25                                     | output<br>power(dBm)<br>24.55<br>24.55                                     | 0                     | SAR<br>10g(W/kg)<br>0.401<br>0.356                                              | 0.44<br>0.39                                        |      |
|              | (0mm                                 | side Back side Left Edge Right                                         | 26365<br>26365<br>26365                            | 1882.5<br>1882.5<br>1882.5                               | 25<br>25<br>25<br>25                         | output<br>power(dBm)<br>24.55<br>24.55<br>24.55                            | 0 0                   | SAR<br>10g(W/kg)<br>0.401<br>0.356<br>0.241                                     | 0.44<br>0.39<br>0.27                                |      |
|              | (0mm                                 | side Back side Left Edge Right Edge Top                                | 26365<br>26365<br>26365<br>26365                   | 1882.5<br>1882.5<br>1882.5<br>1882.5                     | 25<br>25<br>25<br>25<br>25                   | output<br>power(dBm)<br>24.55<br>24.55<br>24.55                            | 0 0 0                 | SAR<br>10g(W/kg)<br>0.401<br>0.356<br>0.241<br>0.325                            | 0.44<br>0.39<br>0.27<br>0.36                        |      |
| #49          | (0mm<br>Separation)                  | side Back side Left Edge Right Edge Top Edge Front side Back side      | 26365<br>26365<br>26365<br>26365<br>26365          | 1882.5<br>1882.5<br>1882.5<br>1882.5<br>1882.5           | 25<br>25<br>25<br>25<br>25<br>25<br>25       | output<br>power(dBm)<br>24.55<br>24.55<br>24.55<br>24.55                   | 0 0 0 0               | SAR<br>10g(W/kg)<br>0.401<br>0.356<br>0.241<br>0.325<br>1.102                   | 0.44<br>0.39<br>0.27<br>0.36<br>1.22                |      |
|              | (0mm<br>Separation)  Hotspot<br>(0mm | side Back side Left Edge Right Edge Top Edge Front side Back           | 26365<br>26365<br>26365<br>26365<br>26365          | 1882.5<br>1882.5<br>1882.5<br>1882.5<br>1882.5<br>1882.5 | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>24 | output<br>power(dBm)<br>24.55<br>24.55<br>24.55<br>24.55<br>24.55<br>23.99 | 0<br>0<br>0<br>0<br>0 | SAR<br>10g(W/kg)<br>0.401<br>0.356<br>0.241<br>0.325<br>1.102<br>0.389          | 0.44<br>0.39<br>0.27<br>0.36<br>1.22<br>0.39        |      |
| #49<br>50%RB | (0mm<br>Separation)                  | side Back side Left Edge Right Edge Top Edge Front side Back side Left | 26365<br>26365<br>26365<br>26365<br>26365<br>26365 | 1882.5<br>1882.5<br>1882.5<br>1882.5<br>1882.5<br>1882.5 | 25 25 25 25 25 25 24 24                      | output power(dBm)  24.55  24.55  24.55  24.55  24.55  23.99  23.99         | 0<br>0<br>0<br>0<br>0 | SAR<br>10g(W/kg)<br>0.401<br>0.356<br>0.241<br>0.325<br>1.102<br>0.389<br>0.312 | 10g(W/kg)  0.44  0.39  0.27  0.36  1.22  0.39  0.32 |      |

Table 14: SAR Values of LTE BAND 26(Part 22H), 15MHz ,QPSK

|             |                     |               | Tubic   | 1-1. 0/1 | N values of Li                   | _ D, D LO(1 al                   | ,    |                                               |                         |             |
|-------------|---------------------|---------------|---------|----------|----------------------------------|----------------------------------|------|-----------------------------------------------|-------------------------|-------------|
| Test        | Test Posit          | ione          | Channel |          | Power(dBm)                       |                                  | MPR  | Extremity SAR<br>10g(W/Kg),<br>Limit(4.0W/kg) |                         | Plot<br>No. |
| Mode        | Test Fosit          | 10113         | СН.     | MHz      | Maximum<br>Turn-up<br>Power(dBm) | Measured<br>output<br>power(dBm) | (dB) | Measured<br>SAR<br>10g(W/kg)                  | Scaled SAR<br>10g(W/kg) | No.         |
|             |                     | Front side    | 26865   | 831.5    | 24                               | 23.74                            | 0    | 0.101                                         | 0.11                    |             |
|             | Hotspot             | Back<br>side  | 26865   | 831.5    | 24                               | 23.74                            | 0    | 0.052                                         | 0.06                    |             |
| 1RB<br>#49  | (0mm<br>Separation) | Left<br>Edge  | 26865   | 831.5    | 24                               | 23.74                            | 0    | 0.032                                         | 0.03                    |             |
|             | oeparation)         | Right<br>Edge | 26865   | 831.5    | 24                               | 23.74                            | 0    | 0.136                                         | 0.14                    |             |
|             |                     | Top<br>Edge   | 26865   | 831.5    | 24                               | 23.74                            | 0    | 1.489                                         | 1.58                    | 11          |
|             |                     | Front side    | 26865   | 831.5    | 23                               | 22.67                            | 1    | 0.089                                         | 0.10                    |             |
|             | Hotspot             | Back<br>side  | 26865   | 831.5    | 23                               | 22.67                            | 1    | 0.026                                         | 0.03                    |             |
| 50%RB<br>#0 | (0mm<br>Separation) | Left<br>Edge  | 26865   | 831.5    | 23                               | 22.67                            | 1    | 0.030                                         | 0.03                    |             |
|             | Geparation)         | Right<br>Edge | 26865   | 831.5    | 23                               | 22.67                            | 1    | 0.125                                         | 0.13                    |             |
|             |                     | Top<br>Edge   | 26865   | 831.5    | 23                               | 22.67                            | 1    | 1.402                                         | 1.51                    |             |

Table 15: SAR Values of LTE BAND 38, 20MHz ,QPSK

| Test Test Posi                 |                            | iono         | Cha                        | innel  | Power                        | MPR                     | Extremity SAR<br>10g(W/Kg),<br>Limit(4.0W/kg) |       | Plot |    |
|--------------------------------|----------------------------|--------------|----------------------------|--------|------------------------------|-------------------------|-----------------------------------------------|-------|------|----|
| Mode                           | ode CH. MHz Turn-up output |              | Measured output power(dBm) | (dB)   | Measured<br>SAR<br>10g(W/kg) | Scaled SAR<br>10g(W/kg) | No.                                           |       |      |    |
|                                |                            | Front side   | 37850                      | 2580.0 | 24                           | 23.86                   | 0                                             | 0.008 | 0.01 |    |
|                                | Hatanat                    | Back<br>side | 37850                      | 2580.0 | 24                           | 23.86                   | 0                                             | 0.005 | 0.01 |    |
| 1RB Hotspot (0mm Separation)   | Left<br>Edge               | 37850        | 2580.0                     | 24     | 23.86                        | 0                       | 0.011                                         | 0.01  |      |    |
|                                | Right<br>Edge              | 37850        | 2580.0                     | 24     | 23.86                        | 0                       | 0.025                                         | 0.03  |      |    |
|                                |                            | Top<br>edge  | 37850                      | 2580.0 | 24                           | 23.86                   | 0                                             | 0.105 | 0.11 | 12 |
|                                |                            | Front side   | 37850                      | 2580.0 | 23                           | 22.64                   | 1                                             | 0.006 | 0.01 |    |
|                                | Hotopot                    | Back<br>side | 37850                      | 2580.0 | 23                           | 22.64                   | 1                                             | 0.002 | 0.01 |    |
| 50%RB Hotspot (0mm Separation) | Left<br>Edge               | 37850        | 2580.0                     | 23     | 22.64                        | 1                       | 0.010                                         | 0.01  |      |    |
|                                | Right<br>Edge              | 37850        | 2580.0                     | 23     | 22.64                        | 1                       | 0.024                                         | 0.03  |      |    |
|                                |                            | Top<br>Edge  | 37850                      | 2580.0 | 23                           | 22.64                   | 1                                             | 0.089 | 0.10 |    |

Table 16: SAR Values of LTE BAND 41, 20MHz ,QPSK

| Test Test Positions            |              | iono          | Char  | nnel | Power(dBm)                       |                 | MPR   | Extremity SAR<br>10g(W/Kg),<br>Limit(4.0W/kg) |                         | Plot |
|--------------------------------|--------------|---------------|-------|------|----------------------------------|-----------------|-------|-----------------------------------------------|-------------------------|------|
| Mode                           | Test Fosit   | 10115         | СН.   | MHz  | Maximum<br>Turn-up<br>Power(dBm) | Measured output |       | Measured<br>SAR<br>10g(W/kg)                  | Scaled SAR<br>10g(W/kg) | No.  |
|                                |              | Front side    | 40740 | 2605 | 24                               | 23.85           | 0     | 0.001                                         | 0.01                    |      |
|                                | Hotopot      | Back<br>side  | 40740 | 2605 | 24                               | 23.85           | 0     | 0.001                                         | 0.01                    |      |
| 1RB Hotspot (0mm               | Left<br>Edge | 40740         | 2605  | 24   | 23.85                            | 0               | 0.002 | 0.01                                          |                         |      |
|                                | Separation)  | Right<br>Edge | 40740 | 2605 | 24                               | 23.85           | 0     | 0.002                                         | 0.01                    |      |
|                                |              | Top<br>edge   | 40740 | 2605 | 24                               | 23.85           | 0     | 0.058                                         | 0.06                    | 13   |
|                                |              | Front side    | 40740 | 2605 | 23                               | 22.64           | 1     | 0.001                                         | 0.01                    |      |
|                                | Hotopot      | Back<br>side  | 40740 | 2605 | 23                               | 22.64           | 1     | 0.001                                         | 0.01                    |      |
| 50%RB Hotspot (0mm Separation) | Left<br>Edge | 40740         | 2605  | 23   | 22.64                            | 1               | 0.001 | 0.01                                          |                         |      |
|                                | Geparation)  | Right<br>Edge | 40740 | 2605 | 23                               | 22.64           | 1     | 0.001                                         | 0.01                    |      |
|                                |              | Top<br>Edge   | 40740 | 2605 | 23                               | 22.64           | 1     | 0.036                                         | 0.04                    |      |

Reference No.: WTS19S12086775W001 V1 Page 97 of 190

# Simultaneous Transmission SAR Analysis.

#### **List of Mode for Simultaneous Multi-band Transmission:**

| No. | Configurations                 | Hotspot SAR |
|-----|--------------------------------|-------------|
| 1   | WCDMA (Data) + Bluetooth(Data) | Yes         |
| 2   | LTE (Date) + Bluetooth(Data)   | Yes         |

#### Remark:

- 1. WCDMA/LTE share the same antenna, and cannot transmit simultaneously.
- 2. According to the KDB 447498 D01 v06, when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]· $[\sqrt{f(GHz)/x}]$  W/kg for test separation distances  $\leq$ 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01 v06 as below:

#### Bluetooth:

| Tune-Up<br>Power (dBm) | Max. Power (mW) | Distance (mm) | Frequency<br>(GHz) | X     | SAR(10g)<br>5mm |
|------------------------|-----------------|---------------|--------------------|-------|-----------------|
| 5.0                    | 3.16            | 5/10          | 2.441              | 18.75 | 0.05            |

5. The maximum SAR summation is calculated based on he same configuration and test position

# Hotspot SAR Simultaneous WWAN and BT

|          | WWAN ( maxim     | num )                | BT(5mm)              | 0 1015               |
|----------|------------------|----------------------|----------------------|----------------------|
| Position | Band             | Scaled SAR<br>(W/kg) | Scaled SAR<br>(W/kg) | Summed SAR<br>(W/kg) |
| Top Edge | WCDMA Band V     | 1.90                 | 0.05                 | 1.95                 |
| Top Edge | WCDMA Band II    | 1.33                 | 0.05                 | 1.38                 |
| Top Edge | WCDMA Band IV    | 1.20                 | 0.05                 | 1.25                 |
| Top Edge | LTE BAND 2(1RB)  | 0.55                 | 0.05                 | 0.60                 |
| Top Edge | LTE BAND 4(1RB)  | 0.84                 | 0.05                 | 0.89                 |
| Top Edge | LTE BAND 5(1RB)  | 1.90                 | 0.05                 | 1.95                 |
| Top Edge | LTE BAND 7(1RB)  | 0.28                 | 0.05                 | 0.33                 |
| Top Edge | LTE BAND 12(1RB) | 0.34                 | 0.05                 | 0.39                 |
| Top Edge | LTE BAND 13(1RB) | 1.04                 | 0.05                 | 1.09                 |
| Top Edge | LTE BAND 25(1RB) | 1.28                 | 0.05                 | 1.33                 |
| Top Edge | LTE BAND 26(1RB) | 1.58                 | 0.05                 | 1.63                 |
| Top Edge | LTE BAND 38(1RB) | 0.11                 | 0.05                 | 0.16                 |
| Top Edge | LTE BAND 41(1RB) | 0.06                 | 0.05                 | 0.11                 |

**Remark:** BT the 10g SAR value is not being captured by the measurement system, the 1g-SAR value is conservatively used for simultaneous transmission analysis.

Page 99 of 190

## 14 SAR Measurement Reference

#### References

- 1. FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- 2. IEEE Std. C95.1-2005, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300GHz", 2005
- 3. IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices:Measurement Techniques", June 2013
- 4. IEC 62209-2, "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices—Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate(SAR) for wireless communication devices used in close proximity to the human body(frequency range of 30MHz to 6GHz)", April 2010
- 5. FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 23<sup>th</sup>, 2015
- 6. FCC KDB 941225 D01 v03r01, "3G SAR Measurement Procedures", Oct 23th, 2015
- 7. FCC KDB 941225 D05 v02r05, "SAR Evaluation Considerations for LTE Devices", Dec 16th, 2015
- 8. FCC KDB 941225 D06 v02r01, "SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities", Oct 23<sup>th</sup>, 2015
- 9. FCC KDB865664 D01 v01r04, "SAR Measurement Requirements 100MHz to 6GHz", Aug 7<sup>th</sup>, 2015
- 10. FCC KDB865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations", Oct 23<sup>th</sup>, 2015
- 11. FCC KDB648474 D04 v01r03, "SAR Evaluation Considerations for Wireless Handsets", Oct 23<sup>th</sup>", 2015

# **Maximum SAR measurement Plots**

Plot 1: WCDMA BAND V, Low channel (Hotspot, Top Edge) Product Description: CEL FI COMPASS

| Modium/liquid typo)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MCI 050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Medium(liquid type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MSL_850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 826.4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Relative permittivity (real part)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Conductivity (S/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WCDMA (Duty cycle: 1:1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| E-Field Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SN 07/15 EP247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Conversion Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sensor-Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Area Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dx=8mm dy=8mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Zoom Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5x5x7,dx=8mm dy=8mm dz=5mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Variation (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SAR 10g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.843813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SAR 1g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.027890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SURFACE SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VOLUME SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Self-freedowning traplocal interface Serfees had and intensity See Selfeet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAM Wavahination Graphical Interface  Volume Reducted Intensity Ion In/Oct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2 check   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   10 | 2 1 160/2007 2 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 100/2007 3 1 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Plot 2: WCDMA BAND , Low channel (Hotspot, Top Edge) Product Description: CEL FI COMPASS Test Date: 2019-12-17

| Medium(liquid type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MSL_1900                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1852.4000                                               |
| Relative permittivity (real part)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 53.66                                                   |
| Conductivity (S/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.51                                                    |
| Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WCDMA(Duty cycle: 1:1)                                  |
| E-Field Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SN 07/15 EP247                                          |
| Conversion Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.83                                                    |
| Sensor-Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4mm                                                     |
| Area Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dx=8mm dy=8mm                                           |
| Zoom Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5x5x7,dx=8mm dy=8mm dz=5mm                              |
| Variation (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2.76                                                   |
| SAR 10g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.289315                                                |
| SAR 1g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.497274                                                |
| SURFACE SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VOLUME SAR  (Sal 19 regularation (regional) Later force |
| 2 (100 m)  2 (100 m)  3 (100 m)  4 (100 m)  4 (100 m)  5 (100 m)  5 (100 m)  6 (100 m)  6 (100 m)  7 (100 m) | 2. Commit                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |

Plot 3: WCDMA BAND IV, Low channel (Hotspot, Top Edge) Product Description: CEL FI COMPASS

| Medium(liquid type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HSL_1700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1712.4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Relative permittivity (real part)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 53.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Conductivity (S/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WCDMA(Duty cycle: 1:1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| E-Field Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SN 07/15 EP247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Conversion Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sensor-Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Area Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dx=8mm dy=8mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Zoom Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5x5x7,dx=8mm dy=8mm dz=5mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Variation (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -2.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SAR 10g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.151436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SAR 1g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.124128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SURFACE SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VOLUME SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 58 the publication despited Listerfore Settlem Salaria Delegate Set Settlem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (iii) Venderation Regional Interface  Website Indianal Internation See Selfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2-15   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   10 | 217 Count   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Plot 4:LTE BAND 2, Low channel (Hotspot, Top Edge) Product Description:CEL FI COMPASS

| Medium(liquid type)               | MSL 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency (MHz)                   | 1860.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Relative permittivity (real part) | 53.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Conductivity (S/m)                | 1.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Signal                            | Duty cycle: 1:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| E-Field Probe                     | SN 07/15 EP247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Conversion Factor                 | 4.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Bandwidth(MHz)                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RB Allocation                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RB Offset                         | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Area Scan                         | dx=8mm dy=8mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Zoom Scan                         | 5x5x7,dx=8mm dy=8mm dz=5mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Variation (%)                     | -2.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SAR 10g (W/Kg)                    | 0.526236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                   | 1.060822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SAR 1g (W/Kg)                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SURFACE SAR                       | VOLUME SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Substant Section (Section 1)    1 | Colore   Deduce   D |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Plot 5:LTE BAND 4, Middle channel (Hotspot, Top Edge) Product Description:CEL FI COMPASS

| Medium(liquid type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MSL 1800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1732.5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Relative permittivity (real part)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 53.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Conductivity (S/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Duty cycle: 1:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| E-Field Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SN 07/15 EP247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Conversion Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Bandwidth(MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RB Allocation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RB Offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Area Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dx=8mm dy=8mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Zoom Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5x5x7,dx=8mm dy=8mm dz=5mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Variation (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SAR 10g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.816813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SAR 1g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.519352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SURFACE SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VOLUME SAR  Salt timestrantion (regional) toterfuse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Self-res 2 pick   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100 | Policy Strict  (Strict Strict |

Plot 6: LTE BAND 5, Middle channel (Hotspot,Top Edge) Product Description: CEL FI COMPASS
Test Date: 2019-12-13

| Test Date: 2019-12-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Medium(liquid type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MSL_850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 836.5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Relative permittivity (real part)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 55.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Conductivity (S/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Duty cycle: 1:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| E-Field Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SN 07/15 EP247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Conversion Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Bandwidth(MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| RB Allocation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| RB Offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Sensor-Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Area Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dx=8mm dy=8mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Zoom Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5x5x7,dx=8mm dy=8mm dz=5mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Variation (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| SAR 10g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.711795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| SAR 1g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.757877                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| SURFACE SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VOLUME SAR  500 Visculitation Graphical Interfaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Colore   State   Colore   Co | Vertune Radisted Intendity  Colors Scale (0/Ap)  2 0000000  2 0000000  2 0000000  2 0000000  3 000000  3 000000  4 000000  5 000000  1 000000  1 000000  1 000000  1 000000  1 000000  1 000000  1 000000  1 000000  1 000000  1 000000  1 000000  1 000000  1 000000  1 000000  1 000000  1 000000  1 000000  1 000000  1 0000000  1 000000  1 000000  1 000000  1 000000  1 000000  1 0000000  1 000000  1 000000  1 000000  1 000000  1 000000  1 000000  1 000000  1 000000  1 000000  1 000000  1 000000  1 000000  1 0000000  1 0000000  1 0000000  1 0000000  1 00000000 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |

Plot 7:LTE BAND 7, Mid channel (Hotspot, Top Edge) Product Description:CEL FI COMPASS

| Medium(liquid type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MSL 2600                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2535.0000                              |
| Relative permittivity (real part)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52.70                                  |
| Conductivity (S/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.14                                   |
| Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Duty cycle: 1:1                        |
| E-Field Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SN 07/15 EP247                         |
| Conversion Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.28                                   |
| Bandwidth(MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                     |
| RB Allocation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                      |
| RB Offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 49                                     |
| Area Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dx=8mm dy=8mm                          |
| Zoom Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5x5x7,dx=8mm dy=8mm dz=5mm             |
| Variation (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.86                                   |
| SAR 10g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.266834                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.597365                               |
| SAR 1g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
| SURFACE SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VOLUME SAR                             |
| Glater State    State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State | ### ### ### ### ### ### ### ### ### ## |

Plot 8:LTE BAND 12, Middle channel (Hotspot,Top Edge) Product Description:CEL FI COMPASS

| Medium(liquid type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MSL 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 707.5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Relative permittivity (real part)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 53.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Conductivity (S/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Duty cycle: 1:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| E-Field Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SN 07/15 EP247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Conversion Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Bandwidth(MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RB Allocation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RB Offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Area Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dx=8mm dy=8mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Zoom Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5x5x7,dx=8mm dy=8mm dz=5mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Variation (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SAR 10g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.304490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.619443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SAR 1g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SURFACE SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VOLUME SAR  Sali 9 realization to spinoil. Interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| See from Bull and Directly  Col or 2 Date  See From See F | Velocity   State   S |

Plot 9:LTE BAND 13, Middle channel (Hotspot, Top Edge) Product Description:CEL FI COMPASS

| Medium(liquid type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HSL 750                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 782.0000                          |
| Relative permittivity (real part)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 53.63                             |
| Conductivity (S/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.98                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
| Signal Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Duty cycle: 1:1<br>SN 07/15 EP247 |
| E-Field Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |
| Conversion Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.94                              |
| Bandwidth(MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20                                |
| RB Allocation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                 |
| RB Offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 49                                |
| Area Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dx=8mm dy=8mm                     |
| Zoom Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5x5x7,dx=8mm dy=8mm dz=5mm        |
| Variation (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -2.76                             |
| SAR 10g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.911691                          |
| SAR 1g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.487837                          |
| SURFACE SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VOLUME SAR                        |
| The following beautiful from the point of the following to the following t |                                   |

Plot 10: LTE BAND 25, Low channel (Hotspot, Top Edge) Product Description: CEL FI COMPASS

| Test Date: 2019-12-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Medium(liquid type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MSL_1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1860.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Relative permittivity (real part)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 53.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Conductivity (S/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Duty cycle: 1:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| E-Field Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SN 07/15 EP247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Conversion Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Bandwidth(MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RB Allocation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RB Offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sensor-Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Area Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dx=8mm dy=8mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Zoom Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5x5x7,dx=8mm dy=8mm dz=5mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Variation (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SAR 10g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.225757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SAR 1g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.425412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SURFACE SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VOLUME SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Second   S | Vehicle Study  Vehicl |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Plot 11: LTE BAND 26, Low channel (Hotspot, Top Edge) Product Description: CEL FI COMPASS

| Test Date: 2019-12-13  Medium(liquid type) | MSL_850                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Frequency (MHz)                            | 831.5000                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Relative permittivity (real part)          | 55.78                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Conductivity (S/m)                         | 0.98                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Signal                                     | Duty cycle: 1:1                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| E-Field Probe                              | SN 07/15 EP247                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Conversion Factor                          | 5.18                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Bandwidth(MHz)                             | 10                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| RB Allocation                              | 1                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| RB Offset                                  | 49                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Sensor-Surface                             | 4mm                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Area Scan                                  | dx=8mm dy=8mm                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Zoom Scan                                  | 5x5x7,dx=8mm dy=8mm dz=5mm                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Variation (%)                              | -0.56                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| SAR 10g (W/Kg)                             | 1.489207                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| SAR 1g (W/Kg)                              | 2.460944                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| SURFACE SAR                                | VOLUME SAR                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| SM Finalization (regional Interface        | SAL Visualisation Graphical Interface                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| # # # # # # # # # # # # # # # # # # #      | 2 567780 2 13090 2 14090 2 1090000 1 1900000 1 1900000 1 1900000 1 1900000 1 1900000 1 1900000 1 1900000 1 1900000 1 1900000 1 1900000 1 1900000 1 1900000 1 1900000 1 1900000 1 1900000 1 1900000 1 1900000 1 1900000 1 1900000 1 1900000 1 1900000 1 1900000 1 1900000 1 1900000 1 1900000 1 1900000 1 1900000 1 1900000 1 19000000 1 19000000 1 19000000 1 190000000 1 190000000 1 190000000000 |  |  |  |  |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |

Plot 12:LTE BAND 38, Low channel (Hotspot, Top Edge) Product Description:CEL FI COMPASS

Test Date: 2019-12-19

| Medium(liquid type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MSL_2600                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2580.0000                  |
| Relative permittivity (real part)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52.70                      |
| Conductivity (S/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.14                       |
| Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Duty cycle: 1:1            |
| E-Field Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SN 07/15 EP247             |
| Conversion Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.28                       |
| Bandwidth(MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                         |
| RB Allocation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                          |
| RB Offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49                         |
| Area Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dx=8mm dy=8mm              |
| Zoom Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5x5x7,dx=8mm dy=8mm dz=5mm |
| Variation (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.31                       |
| SAR 10g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.105210                   |
| SAR 1g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.227918                   |
| SURFACE SAR (84) Winsplantin in spanial Interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VOLUME SAR                 |
| Colore State   Colore   Colo | Culter   Deale             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |

Plot 13:LTE BAND 41, Middle channel (Hotspot, Top Edge) Product Description:CEL FI COMPASS

Test Date: 2019-12-19

| Medium(liquid type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MSL_2600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2605.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Relative permittivity (real part)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Conductivity (S/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Duty cycle: 1:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| E-Field Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SN 07/15 EP247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Conversion Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Bandwidth(MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RB Allocation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RB Offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Area Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dx=8mm dy=8mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Zoom Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5x5x7,dx=8mm dy=8mm dz=5mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Variation (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SAR 10g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.058097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SAR 1g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.104371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SURFACE SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VOLUME SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (M. Condition in Replaced Interfere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sid. Frontineron Replaced Interfere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| State   Stat | Colors Strike   Son Suffer   Son Suffer |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

# 15 Calibration Reports-Probe and Dipole



# **COMOSAR E-Field Probe Calibration Report**

Ref: ACR.318.1.19.SATU.A

# WALTEK SERVICES (SHENZHEN) CO., LTD

1/F, FUKANGTAI BUILDING, WEST BAIMA ROAD,SONGGANG STREET, BAOAN DISTRICT SHENZHEN (518105), CHINA

# MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 07/15 EP247

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144





Calibration Date: 8/20/19

# Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in MVG USA using the CALISAR / CALIBAIR test bench, for use with a COMOSAR system only. All calibration results are traceable to national metrology institutions.



Ref: ACR.318.1.19.SATU.A

|               | Name          | Function        | Date      | Signature      |
|---------------|---------------|-----------------|-----------|----------------|
| Prepared by : | Jérôme LUC    | Product Manager | 8/21/2019 | 75             |
| Checked by:   | Jérôme LUC    | Product Manager | 8/21/2019 | JES            |
| Approved by : | Kim RUTKOWSKI | Quality Manager | 8/21/2019 | Hum Purthowshi |

|                | Customer Name                        |
|----------------|--------------------------------------|
| Distribution : | Waltek Services<br>(Shenzhen)Co.,Ltd |

| Issue | Date      | Modifications   |
|-------|-----------|-----------------|
| A     | 8/21/2019 | Initial release |
|       |           |                 |
|       |           |                 |
|       |           | -               |
|       |           | P.              |

Page: 2/9



Ref: ACR.318.1.19.SATU.A

## TABLE OF CONTENTS

| 1 | Dev  | vice Under Test              |   |
|---|------|------------------------------|---|
| 2 | Pro  | duct Description4            |   |
|   | 2.1  | General Information          | 4 |
| 3 | Me   | asurement Method4            |   |
|   | 3.1  | Linearity                    | 4 |
|   | 3.2  | Sensitivity                  | 5 |
|   | 3.3  | Lower Detection Limit        | 5 |
|   | 3.4  | Isotropy                     | 5 |
|   | 3.5  | Boundary Effect              | 5 |
| 4 | Me   | asurement Uncertainty5       |   |
| 5 | Cal  | ibration Measurement Results |   |
|   | 5.1  | Sensitivity in air           | 6 |
|   | 5.2  | Linearity                    | 7 |
|   | 5.3  | Sensitivity in liquid        | 7 |
|   | 5.4  | Isotropy                     | 8 |
| 6 | List | of Equipment9                |   |

Page: 3/9



Ref: ACR 318.1.19.SATU.A

## 1 DEVICE UNDER TEST

| Device Under Test                        |                                  |  |  |  |
|------------------------------------------|----------------------------------|--|--|--|
| Device Type                              | COMOSAR DOSIMETRIC E FIELD PROBE |  |  |  |
| Manufacturer                             | MVG                              |  |  |  |
| Model                                    | SSE5                             |  |  |  |
| Serial Number                            | SN 7/15 EP247                    |  |  |  |
| Product Condition (new / used)           | Used                             |  |  |  |
| Frequency Range of Probe                 | 0.7 GHz-3GHz                     |  |  |  |
| Resistance of Three Dipoles at Connector | Dipole 1: R1=0.213 MΩ            |  |  |  |
| ō.                                       | Dipole 2: R2=0.208 MΩ            |  |  |  |
|                                          | Dipole 3: R3=0.213 MΩ            |  |  |  |

A yearly calibration interval is recommended.

## 2 PRODUCT DESCRIPTION

# 2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.



Figure 1 - MVG COMOSAR Dosimetric E field Dipole

| Probe Length                               | 330 mm |
|--------------------------------------------|--------|
| Length of Individual Dipoles               | 4.5 mm |
| Maximum external diameter                  | 8 mm   |
| Probe Tip External Diameter                | 5 mm   |
| Distance between dipoles / probe extremity | 2.7 mm |

## 3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

# 3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/9



Ref: ACR 318 L19 SATU A

## 3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

## 3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

### 3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis  $(0^{\circ}-180^{\circ})$  in  $15^{\circ}$  increments. At each step the probe is rotated about its axis  $(0^{\circ}-360^{\circ})$ .

# 3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

# 4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

| ERROR SOURCES             | Uncertainty<br>value (%) | Probability<br>Distribution | Divisor    | ci | Standard<br>Uncertainty (%) |
|---------------------------|--------------------------|-----------------------------|------------|----|-----------------------------|
| Incident or forward power | 3.00%                    | Rectangular                 | √3         | 1  | 1.732%                      |
| Reflected power           | 3.00%                    | Rectangular                 | $\sqrt{3}$ | 1  | 1.732%                      |
| Liquid conductivity       | 5,00%                    | Rectangular                 | $\sqrt{3}$ | 1  | 2.887%                      |
| Liquid permittivity       | 4.00%                    | Rectangular                 | √3 1.      | 1  | 2.309%                      |
| Field homogeneity         | 3.00%                    | Rectangular                 | $\sqrt{3}$ | 1  | 1.732%                      |
| Field probe positioning   | 5.00%                    | Rectangular                 | $\sqrt{3}$ | 1  | 2.887%                      |

Page: 5/9



Ref: ACR.318.1.19.SATU.A

| Field probe linearity                               | 3,00% | Rectangular | $\sqrt{3}$ | 1 | 1.732% |
|-----------------------------------------------------|-------|-------------|------------|---|--------|
| Combined standard uncertainty                       |       |             |            |   | 5.831% |
| Expanded uncertainty<br>95 % confidence level k = 2 |       |             |            |   | 12.0%  |

## 5 CALIBRATION MEASUREMENT RESULTS

| Calibration Parameters |       |  |
|------------------------|-------|--|
| Liquid Temperature     | 21 °C |  |
| Lab Temperature        | 21 °C |  |
| Lab Humidity           | 45 %  |  |

## 5.1 SENSITIVITY IN AIR

|                                    |                            | Normz dipole        |
|------------------------------------|----------------------------|---------------------|
| $1 \left( \mu V / (V/m)^2 \right)$ | 2 (μV/(V/m) <sup>2</sup> ) | $3 (\mu V/(V/m)^2)$ |
| 5.51                               | 5.53                       | 6.41                |

| DCP dipole 1 | DCP dipole 2 | DCP dipole 3 |
|--------------|--------------|--------------|
| (mV)         | (mV)         | (mV)         |
| 95           | 95           | 95           |

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$



Page: 6/9



Ref: ACR.318.1.19.SATU.A

# 5.2 LINEARITY



Linearity: II+/-1.50% (+/-0.07dB)

# 5.3 SENSITIVITY IN LIQUID

| Liquid | Frequency<br>(MHz +/-<br>100MHz) | Permittivity | Epsilon (S/m) | ConvF |
|--------|----------------------------------|--------------|---------------|-------|
| HL750  | 750                              | 42.09        | 0.91          | 4.80  |
| BL750  | 750                              | 55.69        | 0.95          | 4.94  |
| HL850  | 835                              | 42.71        | 0.89          | 4.99  |
| BL850  | 835                              | 57.52        | 1.03          | 5.18  |
| HL900  | 900                              | 41.94        | 0.93          | 4.95  |
| BL900  | 900                              | 52.87        | 1.09          | 5.14  |
| HL1800 | 1800                             | 40.62        | 1.39          | 4.29  |
| BL1800 | 1800                             | 53.22        | 1.47          | 4.43  |
| HL1900 | 1900                             | 41.22        | 1.37          | 4.73  |
| BL1900 | 1900                             | 50.99        | 1.52          | 4.83  |
| HL2000 | 2000                             | 40.39        | 1.36          | 4.56  |
| BL2000 | 2000                             | 54.39        | 1.54          | 4.69  |
| HL2300 | 2300                             | 38.10        | 1.74          | 4.59  |
| BL2300 | 2300                             | 53.33        | 1.86          | 4.77  |
| HL2450 | 2450                             | 40.46        | 1.87          | 4.46  |
| BL2450 | 2450                             | 54.62        | 1.95          | 4.61  |
| HL2600 | 2600                             | 38.46        | 2.01          | 4.16  |
| BL2600 | 2600                             | 51.98        | 2.16          | 4.28  |

LOWER DETECTION LIMIT: 7mW/kg

Page: 7/9



Ref: ACR.318.1.19.SATU.A

# 5.4 ISOTROPY

# HL900 MHz

- Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.07 dB



# HL1800 MHz

- Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.08 dB



Page: 8/9



Ref: ACR.318.1.19.SATU.A

# 6 LIST OF EQUIPMENT

|                                  | Equi                    | pment Summary S    | Sheet                                         |                                               |
|----------------------------------|-------------------------|--------------------|-----------------------------------------------|-----------------------------------------------|
| Equipment<br>Description         | Manufacturer /<br>Model | Identification No. | Current<br>Calibration Date                   | Next Calibration<br>Date                      |
| Flat Phantom                     | MVG                     | SN-20/09-SAM71     | Validated. No cal required.                   | Validated. No ca<br>required.                 |
| COMOSAR Test Bench               | Version 3               | NA                 | Validated. No cal<br>required.                | Validated. No ca<br>required.                 |
| Network Analyzer                 | Rhode & Schwarz<br>ZVA  | SN100132           | 02/2019                                       | 02/2022                                       |
| Reference Probe                  | MVG                     | EP 94 SN 37/08     | 10/2018                                       | 10/2019                                       |
| Multimeter                       | Keithley 2000           | 1188656            | 01/2017                                       | 01/2020                                       |
| Signal Generator                 | Agilent E4438C          | MY49070581         | 01/2017                                       | 01/2020                                       |
| Amplifier                        | Aethercomm              | SN 046             | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |
| Power Meter                      | HP E4418A               | US38261498         | 01/2017                                       | 01/2020                                       |
| Power Sensor                     | HP ECP-E26A             | US37181460         | 01/2017                                       | 01/2020                                       |
| Directional Coupler              | Narda 4216-20           | 01386              | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |
| Waveguide                        | Mega Industries         | 069Y7-158-13-712   | Validated. No cal required.                   | Validated. No cal<br>required.                |
| Waveguide Transition             | Mega Industries         | 069Y7-158-13-701   | Validated. No cal required.                   | Validated. No cal required.                   |
| Waveguide Termination            | Mega Industries         | 069Y7-158-13-701   | Validated. No cal required.                   | Validated. No cal required.                   |
| Temperature / Humidity<br>Sensor | Control Company         | 150798832          | 11/2017                                       | 11/2020                                       |

Page: 9/9



# SAR Reference Dipole Calibration Report

Ref: ACR.93.2.18.SATU.A

# WALTEK SERVICES(SHENZHEN) CO.,LTD 1/F., FUKANGTAI BUILDING,WEST BAIMA ROAD, SONGGANG STREET BAOAN DISTRICT,SHENZHEN GUANGDONG 518105,CHINA

# MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 750 MHZ

SERIAL NO.: SN 09/15 DIP 0G750-357

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144



Calibration Date: 02/28/2018

## Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.



# SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.93.2.18.SATU.A

| 5             | Name          | Function        | Date      | Signature      |
|---------------|---------------|-----------------|-----------|----------------|
| Prepared by : | Jérôme LUC    | Product Manager | 3/14/2018 | JES            |
| Checked by:   | Jérôme LUC    | Product Manager | 3/14/2018 | JS             |
| Approved by : | Kim RUTKOWSKI | Quality Manager | 3/14/2018 | nem Prethouski |

|                | Customer Name                            |
|----------------|------------------------------------------|
| Distribution : | Waltek Services<br>(Shenzhen)Co.,<br>Ltd |

| Issue | Date      | Modifications   |  |
|-------|-----------|-----------------|--|
| A     | 3/14/2018 | Initial release |  |
|       |           |                 |  |
|       |           |                 |  |
|       |           |                 |  |

Page: 2/11



# SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.93.2.18.SATU.A

## TABLE OF CONTENTS

| 1 | inti | oduction4                                |    |
|---|------|------------------------------------------|----|
| 2 | De   | vice Under Test                          |    |
| 3 | Pro  | duct Description4                        |    |
|   | 3.1  | General Information                      | 4  |
| 4 | Me   | asurement Method5                        |    |
|   | 4.1  | Return Loss Requirements                 | 5  |
|   | 4.2  | Mechanical Requirements                  | 5  |
| 5 | Me   | asurement Uncertainty5                   |    |
|   | 5.1  | Return Loss                              | 5  |
|   | 5.2  | Dimension Measurement                    | 5  |
|   | 5.3  | Validation Measurement                   | 5  |
| 6 | Cal  | ibration Measurement Results 6           |    |
|   | 6.1  | Return Loss and Impedance In Head Liquid | 6  |
|   | 6.2  | Return Loss and Impedance In Body Liquid | 6  |
|   | 6.3  | Mechanical Dimensions                    | 6  |
| 7 | Val  | lidation measurement7                    |    |
|   | 7.1  | Head Liquid Measurement                  | 7  |
|   | 7.2  | SAR Measurement Result With Head Liquid  | 8  |
|   | 7.3  | Body Liquid Measurement                  | 9  |
|   | 7.4  | SAR Measurement Result With Body Liquid  | 10 |
| 8 | Lie  | t of Equipment                           |    |

Page: 3/11



#### SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 93.2.18 SATU A

### 1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

### 2 DEVICE UNDER TEST

| Device Under Test              |                                  |  |
|--------------------------------|----------------------------------|--|
| Device Type                    | COMOSAR 750 MHz REFERENCE DIPOLE |  |
| Manufacturer                   | MVG                              |  |
| Model                          | SID750                           |  |
| Serial Number                  | SN 09/15 DIP 0G750-357           |  |
| Product Condition (new / used) | Used                             |  |

A yearly calibration interval is recommended.

## 3 PRODUCT DESCRIPTION

## 3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.



Figure 1 - MVG COMOSAR Validation Dipole

Page: 4/11