ECEN 227 - Introduction to Finite Automata and Discrete Mathematics

Dr. Mahmoud Nabil mnmahmoud@ncat.edu

North Carolina A & T State University

February 28, 2020

Talk Overview

- 1 The Division Algorithm
- 2 Modular Arithmetic
- Prime factorizations
- Primality Test

Outline

- 1 The Division Algorithm
- 2 Modular Arithmetic
- Prime factorizations
- 4 Primality Test

• Why do we use numbers basically?

$$5+3=8$$
 $8-3=5$ $5\times 3=15$ $15\div 3=5$

- Why do we use numbers basically?
 - For Counting

$$5+3=8$$
 $8-3=5$ $5\times 3=15$ $15\div 3=5$

- Why do we use numbers basically?
 - For Counting
- Addition and Multiplication operations are invented to support fast counting

$$5+3=8$$
 $8-3=5$ $5\times 3=15$ $15\div 3=5$

- Why do we use numbers basically?
 - For Counting
- Addition and Multiplication operations are invented to support fast counting
- Subtraction and Division are then introduced as inverse operations for Addition and Multiplication.

$$5+3=8$$
 $8-3=5$ $5\times 3=15$ $15\div 3=5$

- Why do we use numbers basically?
 - For Counting
- Addition and Multiplication operations are invented to support fast counting
- Subtraction and Division are then introduced as inverse operations for Addition and Multiplication.
- Operations are done on the number line.

$$5+3 = 8$$
 $8-3 = 5$
 $5 \times 3 = 15$ $15 \div 3 = 5$

Division

- We will focus our study on division when investigating the properties of integers.
- As division is not always possible to result an integer. **Ex.** $9 \div 4 = 2.25$

Division

- We will focus our study on division when investigating the properties of integers.
- As division is not always possible to result an integer. **Ex.** $9 \div 4 = 2.25$
- Division is widely used in modern cryptography as an inverse operation for the multiplication.

Division

- We will focus our study on division when investigating the properties of integers.
- As division is not always possible to result an integer. **Ex.** $9 \div 4 = 2.25$
- Division is widely used in modern cryptography as an inverse operation for the multiplication.

Number theory

Number theory is a branch of mathematics concerned with the study of integers. It forms the mathematical basis for modern cryptography.

• What does it means a is divisible by b?

- What does it means a is divisible by b?
 - A naive answer if the rational number $\frac{a}{b}$ is an integer, then a is divisible by b.
- But what does it means $\frac{a}{b}$ is an integer?

- What does it means a is divisible by b?
 - A naive answer if the rational number $\frac{a}{b}$ is an integer, then a is divisible by b.
- But what does it means $\frac{a}{b}$ is an integer?
 - It means a can be as a product of two intgers one of them is b.

- What does it means a is divisible by b?
 - A naive answer if the rational number $\frac{a}{b}$ is an integer, then a is divisible by b.
- But what does it means $\frac{a}{b}$ is an integer?
 - It means a can be as a product of two intgers one of them is b.
 - Or, $a = k \times b$

- What does it means a is divisible by b?
 - A naive answer if the rational number $\frac{a}{b}$ is an integer, then a is divisible by b.
- But what does it means $\frac{a}{b}$ is an integer?
 - It means a can be as a product of two intgers one of them is b.
 - Or, $a = k \times b$
 - Then, $\frac{a}{b} = \frac{k \times b}{b} = k$

- What does it means a is divisible by b?
 - A naive answer if the rational number $\frac{a}{b}$ is an integer, then a is divisible by b.
- But what does it means $\frac{a}{b}$ is an integer?
 - It means a can be as a product of two intgers one of them is b.
 - Or, $a = k \times b$
 - Then, $\frac{a}{b} = \frac{k \times b}{b} = k$
 - We call b is factor or divisor of a.

- What does it means a is divisible by b?
 - A naive answer if the rational number $\frac{a}{b}$ is an integer, then a is divisible by b.
- But what does it means $\frac{a}{b}$ is an integer?
 - It means a can be as a product of two intgers one of them is b.
 - Or, $a = k \times b$
 - Then, $\frac{a}{b} = \frac{k \times b}{b} = k$
 - We call b is factor or divisor of a.

- What does it means a is divisible by b?
 - A naive answer if the rational number $\frac{a}{b}$ is an integer, then a is divisible by b.
- But what does it means $\frac{a}{b}$ is an integer?
 - It means a can be as a product of two intgers one of them is b.
 - Or, $a = k \times b$
 - Then, $\frac{a}{b} = \frac{k \times b}{b} = k$
 - We call b is factor or divisor of a.

Divisibality

a is divisible by b (or b divides a) denoted by $b \mid a$ if there is an integer k such that $a = k \times b$

Divisibality

- b | a read as b divides a.
- a can be divided into k groups each of size b if the division is possible.

k=5

4 D > 4 P > 4 B > 4 B > B 9 9 0

Indicate whether each expression is true or false.

8 | 40

- 8 | 40
 - True

- 8 | 40
 - True
- 7 | 50

- 8 | 40
 - True
- 7 | 50
 - False

- 8 | 40
 - True
- 7 | 50
 - False
- 6 + 36

- 8 | 40
 - True
- 7 | 50
 - False
- 6 ∤ 36
 - False

- 8 | 40
 - True
- 7 | 50
 - False
- 6 ∤ 36
 - False
- -2 | 10

- 8 | 40
 - True
- 7 | 50
 - False
- 6 ∤ 36
 - False
- -2 | 10
 - True

- 8 | 40
 - True
- 7 | 50
 - False
- 6 ∤ 36
 - False
- -2 | 10
 - True
- 3 | -10

- 8 | 40
 - True
- 7 | 50
 - False
- 6 ∤ 36
 - False
- -2 | 10
 - True
- 3 | -10
 - False

Divisibality

• What if b can not divided a?

Theorem

Let n be an integer and let d be a positive integer. Then, there are unique integers q and r, with $0 \le r \le d - 1$, such that n = qd + r.

•
$$\frac{16}{3} \Rightarrow 16 = 5(3) + 1$$

Theorem

Let n be an integer and let d be a positive integer. Then, there are unique integers q and r, with $0 \le r \le d - 1$, such that n = qd + r.

- $\frac{16}{3} \Rightarrow 16 = 5(3) + 1$
- quotient = 5 and remainder = 1

Theorem

Let n be an integer and let d be a positive integer. Then, there are unique integers q and r, with $0 \le r \le d - 1$, such that n = qd + r.

- $\frac{16}{3} \Rightarrow 16 = 5(3) + 1$
- quotient = 5 and remainder = 1

Theorem

Let n be an integer and let d be a positive integer. Then, there are unique integers q and r, with $0 \le r \le d - 1$, such that n = qd + r.

- $\frac{16}{3} \Rightarrow 16 = 5(3) + 1$
- ullet quotient =5 and remainder =1
- $\frac{-16}{3} \Rightarrow -16 = (-6)(3) + 2$

Theorem

Let n be an integer and let d be a positive integer. Then, there are unique integers q and r, with $0 \le r \le d - 1$, such that n = qd + r.

- $\frac{16}{3} \Rightarrow 16 = 5(3) + 1$
- ullet quotient = 5 and remainder = 1
- $\frac{-16}{3} \Rightarrow -16 = (-6)(3) +2$
- quotient = -6 and remainder = 2

Theorem

Let n be an integer and let d be a positive integer. Then, there are unique integers q and r, with $0 \le r \le d - 1$, such that n = qd + r.

Ex.

- $\frac{16}{3} \Rightarrow 16 = 5(3) + 1$
- ullet quotient = 5 and remainder = 1
- $\frac{-16}{3} \Rightarrow -16 = (-6)(3) + 2$
- quotient = -6 and remainder = 2

Theorem

Let n be an integer and let d be a positive integer. Then, there are unique integers q and r, with $0 \le r \le d - 1$, such that n = qd + r.

Ex.

- $\frac{16}{3} \Rightarrow 16 = 5(3) + 1$
- ullet quotient = 5 and remainder = 1
- $\frac{-16}{3} \Rightarrow -16 = (-6)(3) +2$
- quotient = -6 and remainder = 2

We say

• 16 div 3 = 5 (quotient)

Theorem

Let n be an integer and let d be a positive integer. Then, there are unique integers q and r, with $0 \le r \le d - 1$, such that n = qd + r.

Ex.

- $\frac{16}{3} \Rightarrow 16 = 5(3) + 1$
- quotient = 5 and remainder = 1
- $\frac{-16}{3} \Rightarrow -16 = (-6)(3) +2$
- quotient = -6 and remainder = 2

We say

- 16 div 3 = 5 (quotient)
- 16 mod 3 = 1 (remainder)

Theorem

Let n be an integer and let d be a positive integer. Then, there are unique integers q and r, with $0 \le r \le d - 1$, such that n = qd + r.

Ex.

- $\frac{16}{3} \Rightarrow 16 = 5(3) + 1$
- quotient = 5 and remainder = 1
- $\frac{-16}{3} \Rightarrow -16 = (-6)(3) +2$
- quotient = -6 and remainder = 2

We say

- 16 div 3 = 5 (quotient)
- 16 mod 3 = 1 (remainder)

Theorem

Let n be an integer and let d be a positive integer. Then, there are unique integers q and r, with $0 \le r \le d - 1$, such that n = qd + r.

Ex.

- $\frac{16}{3} \Rightarrow 16 = 5(3) + 1$
- quotient = 5 and remainder = 1
- $\frac{-16}{3} \Rightarrow -16 = (-6)(3) + 2$
- quotient = -6 and remainder = 2

We say

- 16 div 3 = 5 (quotient)
- 16 mod 3 = 1 (remainder)

Note that

We are dealing with positive divisors, thus the remainder is always positive

Computing div and mod.

Note that

Remainder is always positive

Computing div and mod for positive number.

Compute -11 mod
$$4 = 1$$

-11 div $4 = -3$

Note that

Remainder is always positive

1 344 mod 5

- **1** 344 mod 5
 - $344 = 68 \times 5 + 4$, so $344 \mod 5 = 4$.
- 2 344 div 5

- **1** 344 mod 5
 - $344 = 68 \times 5 + 4$, so $344 \mod 5 = 4$.
- 2 344 div 5
 - $344 = 68 \times 5 + 4$, so 344 div 5 = 68.
- 344 mod 5

- **1** 344 mod 5
 - $344 = 68 \times 5 + 4$, so $344 \mod 5 = 4$.
- 2 344 div 5
 - $344 = 68 \times 5 + 4$, so 344 div 5 = 68.
- 344 mod 5
 - $(-344) = (-69) \times 5 + 1$, so $(-344) \mod 5 = 1$.
- 4 -344 div 5

- **1** 344 mod 5
 - $344 = 68 \times 5 + 4$, so $344 \mod 5 = 4$.
- 2 344 div 5
 - $344 = 68 \times 5 + 4$, so 344 div 5 = 68.
- 344 mod 5
 - $(-344) = (-69) \times 5 + 1$, so $(-344) \mod 5 = 1$.
- 4 -344 div 5
 - $(-344) = (-69) \times 5 + 1$, so (-344) div 5 = -69.

Determine the value of n based on the given information.

• n div 7 = 11, n mod 7 = 5

- n div 7 = 11, n mod 7 = 5
 - n=11*7+5=82

- n div 7 = 11, n mod 7 = 5
 - n=11*7+5=82
- n div 5 = -10, n mod 5 = 4

- n div 7 = 11, n mod 7 = 5
 - n=11*7+5=82
- n div 5 = -10, n mod 5 = 4
 - n=-10*5+4=-46

- n div 7 = 11, n mod 7 = 5
 - n=11*7+5=82
- n div 5 = -10, n mod 5 = 4
 - n=-10*5+4=-46
- n div 10 = 2, n mod 10 = 8

- n div 7 = 11, n mod 7 = 5
 - n=11*7+5=82
- n div 5 = -10, n mod 5 = 4
 - n=-10*5+4=-46
- n div 10 = 2, n mod 10 = 8
 - n = 10*2 + 8

- n div 7 = 11, n mod 7 = 5
 - n=11*7+5=82
- n div 5 = -10, n mod 5 = 4
 - n=-10*5+4=-46
- n div 10 = 2, n mod 10 = 8
 - n = 10*2 + 8
- n div 11 = -3, n mod 11 = 7

- n div 7 = 11, n mod 7 = 5
 - n=11*7+5=82
- n div 5 = -10, n mod 5 = 4
 - n=-10*5+4=-46
- n div 10 = 2, n mod 10 = 8
 - n = 10*2 + 8
- n div 11 = -3, n mod 11 = 7
 - n = 11*(-3)+7=-26

• For which values of n is n div 7 = 3?

- For which values of n is n div 7 = 3?
 - n = 3 * 7 + r, for any integer r in the range from 0 through 6.
 n = 21, 22, 23, 24, 25, 26, and 27.

- For which values of n is n div 7 = 3?
 - n = 3 * 7 + r, for any integer r in the range from 0 through 6.
 n = 21, 22, 23, 24, 25, 26, and 27.
- For which values of n is n div 4 = 2?

- For which values of n is n div 7 = 3?
 - n = 3 * 7 + r, for any integer r in the range from 0 through 6.
 n = 21, 22, 23, 24, 25, 26, and 27.
- For which values of n is n div 4 = 2?
 - n = 2 * 4 + r, for any integer r in the range from 0 through 3. n = 8, 9, 10, 11.

- For which values of n is n div 7 = 3?
 - n = 3 * 7 + r, for any integer r in the range from 0 through 6.
 n = 21, 22, 23, 24, 25, 26, and 27.
- For which values of n is n div 4 = 2?
 - n = 2 * 4 + r, for any integer r in the range from 0 through 3. n = 8, 9, 10, 11.
- For which values of n is n div 5 = -6?

- For which values of n is n div 7 = 3?
 - n = 3 * 7 + r, for any integer r in the range from 0 through 6.
 n = 21, 22, 23, 24, 25, 26, and 27.
- For which values of n is n div 4 = 2?
 - n = 2 * 4 + r, for any integer r in the range from 0 through 3. n = 8, 9, 10, 11.
- For which values of n is n div 5 = -6?
 - n = -6 * 5 + r, for any integer r in the range from 0 through 4. n = -30, -29, -28, -27, and -26.

Divisibility and linear combinations

 A linear combination of two numbers is the sum of multiples of those numbers. For example, 3x - 7y and -2x + 4y are both linear combinations of x and y.

Divisibility and linear combinations

 A linear combination of two numbers is the sum of multiples of those numbers. For example, 3x - 7y and -2x + 4y are both linear combinations of x and y.

Theorem

if z divides x (i.e., $z \mid x$) and z divides y (i.e., $z \mid y$), then z divides any linear combination of x and y (i.e., $z \mid ax+by$).

Divisibility and linear combinations

 A linear combination of two numbers is the sum of multiples of those numbers. For example, 3x - 7y and -2x + 4y are both linear combinations of x and y.

Theorem

if z divides x (i.e., $z \mid x$) and z divides y (i.e., $z \mid y$), then z divides any linear combination of x and y (i.e., $z \mid ax+by$).

Ex.

if 2 divides 10 and 2 divides 20

Then 2 divdes any number in the form 10a+20b for any a and b.

• Does 6 divides 462 given that the number 462 is a linear combination of 12 and 18 (19*12 + 13*18 = 462).

- Does 6 divides 462 given that the number 462 is a linear combination of 12 and 18 (19*12 + 13*18 = 462).
 - Yes

Outline

- 1 The Division Algorithm
- 2 Modular Arithmetic
- Prime factorizations
- 4 Primality Test

Modular Arithmetic

- In modular arithmetic, numbers "wrap around" upon reaching a given fixed quantity (this given quantity is known as the modulus) to leave a remainder.
- Imagine we are doing the arithmetic on circle instead of the number line.
- In modulo N, the result of any arithmetic operation takes values from 0 to N-1.

The 12-hour clock: modulo 12
If the time is 9:00 now, then 4
hours later it will be 1:00

9+4 =13 13 % 12= 1

Modular Arithmetic

- 1:00 and 13:00 hours are the same
- 1:00 and 25:00 hours are the same
- $1 \equiv 13 \mod 12$
- $13 \equiv 25 \mod 12$

$a \equiv b \mod n$

- n is the modulus
- a is congruent to b modulo n
- \bullet a mod n = b mod n
- a-b is an integer multiple of n (i.e., n | (a-b))

Example

• $38 \equiv 14 \mod 12$

Example

- $38 \equiv 14 \mod 12$
 - 38-14 = 12; multiple of 12
- $38 \equiv 2 \mod 12$

- $38 \equiv 14 \mod 12$
 - 38-14 = 12; multiple of 12
- $38 \equiv 2 \mod 12$
 - 38-2 = 36; multiple of 12

The same rule apply for negative numbers.

 \bullet -8 \equiv 7 mod 5

- $38 \equiv 14 \mod 12$
 - 38-14 = 12; multiple of 12
- $38 \equiv 2 \mod 12$
 - 38-2 = 36; multiple of 12

The same rule apply for negative numbers.

- \bullet -8 \equiv 7 mod 5
- $2 \equiv -3 \mod 5$

- $38 \equiv 14 \mod 12$
 - 38-14 = 12; multiple of 12
- $38 \equiv 2 \mod 12$
 - 38-2 = 36; multiple of 12

The same rule apply for negative numbers.

- \bullet -8 \equiv 7 mod 5
- $2 \equiv -3 \mod 5$
- \bullet -3 \equiv -8 mod 5

- $38 \equiv 14 \mod 12$
 - 38-14 = 12; multiple of 12
- $38 \equiv 2 \mod 12$
 - 38-2 = 36; multiple of 12

The same rule apply for negative numbers.

- \bullet -8 \equiv 7 mod 5
- $2 \equiv -3 \mod 5$
- \bullet -3 \equiv -8 mod 5

Congurence Class Example

Integers modulo 5 can take values from $\{0, 1, 2, 3, 4\}$

```
0 \equiv 5 \equiv 10 \equiv 15 \dots \mod 5
```

$$1 \equiv 6 \equiv 11 \equiv 16 \dots \mod 5$$

$$2 \equiv 7 \equiv 12 \equiv 17 \dots \mod 5$$

$$3 \equiv 8 \equiv 13 \equiv 18 \dots \mod 5$$

$$4 \equiv 9 \equiv 14 \equiv 19 \dots \mod 5$$

We call the previous property as congurence class relation modulo 5.

Ring

Ring

The set $\{0, 1, 2, ..., m-1\}$ along with addition and multiplication mod m defines a closed mathematical system with m elements called a ring Z_m .

Ex.

Ring

Ring

The set $\{0, 1, 2, ..., m-1\}$ along with addition and multiplication mod m defines a closed mathematical system with m elements called a ring Z_m .

Ex.

- The set $Z_{13} = \{0, 1, 2, ..., 12\}$ is an arithmetic system modulo 13.
- The set $Z_{17} = \{0, 1, 2, ..., 16\}$ is an arithmetic system modulo 17.

Modular Arithmetic Operations

Addition

$$[x+y] \ \mathsf{mod} \ m = [(x \ \mathsf{mod} \ m) + (y \ \mathsf{mod} \ m)] \ \mathsf{mod} \ m$$

Multiplication

$$[x * y] \mod m = [(x \mod m) * (y \mod m)] \mod m$$

Exponentiation

 $x^n \mod m = [(x \mod m)^n] \mod m$

Calculate the following:

• $(72 \times (-65) + 211) \mod 7$

- $(72 \times (-65) + 211) \mod 7$
 - $(72 \times (-65) + 211) \mod 7 = ((72 \mod 7) \times (-65 \mod 7) + (211 \mod 7)) \mod 7 = (2 \times 5 + 1) \mod 7 = 11 \mod 7 = 4$

- $(72 \times (-65) + 211) \mod 7$
 - $(72 \times (-65) + 211) \mod 7 = ((72 \mod 7) \times (-65 \mod 7) + (211 \mod 7)) \mod 7 = (2 \times 5 + 1) \mod 7 = 11 \mod 7 = 4$
- 38⁷ mod 3

- $(72 \times (-65) + 211) \mod 7$
 - $(72 \times (-65) + 211) \mod 7 = ((72 \mod 7) \times (-65 \mod 7) + (211 \mod 7)) \mod 7 = (2 \times 5 + 1) \mod 7 = 11 \mod 7 = 4$
- 38⁷ mod 3
 - $(38 \mod 3)^7 = (2 \mod 3)^7 = (2 \mod 3)^5 * (2 \mod 3)^2 = (32 \mod 3) * (4 \mod 3) = 2 \mod 3$

- $(72 \times (-65) + 211) \mod 7$
 - $(72 \times (-65) + 211) \mod 7 = ((72 \mod 7) \times (-65 \mod 7) + (211 \mod 7)) \mod 7 = (2 \times 5 + 1) \mod 7 = 11 \mod 7 = 4$
- 38⁷ mod 3
 - $(38 \mod 3)^7 = (2 \mod 3)^7 = (2 \mod 3)^5 * (2 \mod 3)^2 = (32 \mod 3) * (4 \mod 3) = 2 \mod 3$
- 44¹² mod 6

- $(72 \times (-65) + 211) \mod 7$
 - $(72 \times (-65) + 211) \mod 7 = ((72 \mod 7) \times (-65 \mod 7) + (211 \mod 7)) \mod 7 = (2 \times 5 + 1) \mod 7 = 11 \mod 7 = 4$
- 38⁷ mod 3
 - $(38 \mod 3)^7 = (2 \mod 3)^7 = (2 \mod 3)^5 * (2 \mod 3)^2 = (32 \mod 3) * (4 \mod 3) = 2 \mod 3$
- 44¹² mod 6
 - $(44 \mod 6)^{12} = (2 \mod 6)^{12} = (2^6 \mod 6)^2 = (64 \mod 6)^2$ = $(4 \mod 6)^2 = 4$

Calculate the following:

- $(72 \times (-65) + 211) \mod 7$
 - $(72 \times (-65) + 211) \mod 7 = ((72 \mod 7) \times (-65 \mod 7) + (211 \mod 7)) \mod 7 = (2 \times 5 + 1) \mod 7 = 11 \mod 7 = 4$
- 38⁷ mod 3
 - $(38 \mod 3)^7 = (2 \mod 3)^7 = (2 \mod 3)^5 * (2 \mod 3)^2 = (32 \mod 3) * (4 \mod 3) = 2 \mod 3$
- 44¹² mod 6
 - $(44 \mod 6)^{12} = (2 \mod 6)^{12} = (2^6 \mod 6)^2 = (64 \mod 6)^2 = (4 \mod 6)^2 = 4$
- 46³⁰ mod 9

25/38

- $(72 \times (-65) + 211) \mod 7$
 - $(72 \times (-65) + 211) \mod 7 = ((72 \mod 7) \times (-65 \mod 7) + (211 \mod 7)) \mod 7 = (2 \times 5 + 1) \mod 7 = 11 \mod 7 = 4$
- 38⁷ mod 3
 - $(38 \mod 3)^7 = (2 \mod 3)^7 = (2 \mod 3)^5 * (2 \mod 3)^2 = (32 \mod 3) * (4 \mod 3) = 2 \mod 3$
- 44¹² mod 6
 - $(44 \mod 6)^{12} = (2 \mod 6)^{12} = (2^6 \mod 6)^2 = (64 \mod 6)^2 = (4 \mod 6)^2 = 4$
- 46³⁰ mod 9
 - $(46 \mod 9)^{30} \mod 9 = (1^{30}) \mod 9 = 1 \mod 9 = 1$

Compute $3^{1000} \mod 7$

Compute $3^{1000} \mod 7$

Compute $3^{1000} \mod 7$

Compute $3^{1000} \mod 7$

$$3^1 \mod 7 = 3$$

Compute $3^{1000} \mod 7$

$$3^1 \mod 7 = 3$$

$$3^2 \mod 7 = 2$$

Compute 3¹⁰⁰⁰ mod 7

$$3^1 \mod 7 = 3$$

$$3^2 \mod 7 = 2$$

$$3^3 \mod 7 = 6$$

Compute $3^{1000} \mod 7$

$$3^1 \mod 7 = 3$$

$$3^2 \mod 7 = 2$$

$$3^3 \mod 7 = 6$$

$$3^4 \mod 7 = 4$$

Compute $3^{1000} \mod 7$

$$3^1 \mod 7 = 3$$

$$3^2 \mod 7 = 2$$

$$3^3 \mod 7 = 6$$

$$3^4 \mod 7 = 4$$

$$3^5 \mod 7 = 5$$

 $3^6 \mod 7 = 1$

Compute $3^{1000} \mod 7$

```
3^{1} \mod 7 = 3 3^{1000} \mod 7 = 3^{6*166+4} \mod 7

3^{2} \mod 7 = 2 = [3^{6*166} \mod 7 \times 3^{4} \mod 7] \mod 7

3^{3} \mod 7 = 6 = [[3^{6} \mod 7]^{166} \mod 7] \times [3^{4} \mod 7] \mod 7

3^{4} \mod 7 = 4 = 1 \times [3^{4} \mod 7] \mod 7

3^{5} \mod 7 = 5 = 4
```

Outline

- 1 The Division Algorithm
- 2 Modular Arithmetic
- Prime factorizations
- 4 Primality Test

Prime VS Composite Numbers

Prime Number

A prime number p is an integer that can be divided, without a remainder, only by itself and by 1.

Ex.

2,3,5,7,11,13

Composite Number

A positive integer is composite if it has a factor/divisor other than 1 or itself.

Ex.

$$14 = 2 \times 7$$

$$10 = 2 \times 5$$

$$35 = 5 \times 7$$

The Fundamental Theorem of Arithmetic

Theorem

Every positive integer other than 1 can be expressed uniquely as a product of prime numbers where the prime factors are written in increasing order.

Ex.

$$1078 = 2 \times 7^2 \times 11$$

The factors of 1078 are 2, 7, 11

- The multiplicity of 2 is 1
- The multiplicity of 7 is 2
- The multiplicity of 11 is 1

Give the prime factorization for each number.

• 32

- 32
 - 2⁵

- 32
 - 2⁵
- 42

- 32
 - 2⁵
- 42
 - 2 × 3 × 7

- 32
 - 2⁵
- 42
 - 2 × 3 × 7
- 84

- 32
 - 2⁵
- 42
 - 2 × 3 × 7
- 84
 - $2^2 \times 3 \times 7$

- 32
 - 2⁵
- 42
 - 2 × 3 × 7
- 84
 - $2^2 \times 3 \times 7$
- 36

- 32
 - 2⁵
- 42
 - 2 × 3 × 7
- 84
 - $2^2 \times 3 \times 7$
- 36
 - $2^2 \times 3^2$

Greatest common divisor

GCD

The greatest common divisor (gcd) of non-zero integers x and y is the largest positive integer that is a factor of both x and y.

Ex.

GCD of 12 and 30

• Divisors of 12 are: 1, 2, 3, 4, 6 and 12

The Greatest Common Divisor of 12 and 30 is 6.

Greatest common divisor

GCD

The greatest common divisor (gcd) of non-zero integers x and y is the largest positive integer that is a factor of both x and y.

Ex.

GCD of 12 and 30

- Divisors of 12 are: 1, 2, 3, 4, 6 and 12
- Divisors of 30 are: 1, 2, 3, 5, 6, 10, 15 and 30

The Greatest Common Divisor of 12 and 30 is 6.

Least Common Multiple

LCM

The least common multiple (lcm) of non-zero integers x and y is the smallest positive integer that is an integer multiple of both x and y.

Ex.

LCM of 3 and 5:

• The multiples of 3 are: 3, 6, 9, 12, **15**, 18, ... etc

The Least Common Multiple of 3 and 5 is 15

Least Common Multiple

LCM

The least common multiple (lcm) of non-zero integers x and y is the smallest positive integer that is an integer multiple of both x and y.

Ex.

LCM of 3 and 5:

- The multiples of 3 are: 3, 6, 9, 12, **15**, 18, ... etc
- The multiples of 5 are: 5, 10, **15**, 20, 25, ... etc

The **Least Common Multiple** of 3 and 5 is **15**

Calculating GCD and LCM Using Prime Factors

Let x and y be two positive integers with prime factorizations expressed using a common set of primes as:

$$\mathbf{x} = p_1^{a_1} \times p_2^{a_2} \times \dots p_n^{a_n}$$
$$\mathbf{y} = p_1^{b_1} \times p_2^{b_2} \times \dots p_n^{b_n}$$

$$GCD(x, y) = p_1^{min(a_1,b_1)} \times p_2^{min(a_2,b_2)} \times \dots p_n^{min(a_n,b_n)}$$

LCM(x , y) =
$$p_1^{max(a_1,b_1)} \times p_2^{max(a_2,b_2)} \times \dots p_n^{max(a_n,b_n)}$$

Excercise

Some numbers and their prime factorizations are given below.

•
$$532 = 2^2 \times 7 \times 19$$

•
$$648 = 2^3 \times 3^4$$

•
$$1083 = 3 \times 19^2$$

•
$$15435 = 3^2 \times 5 \times 7^3$$

Use these prime factorizations to compute the following quantities.

- ① gcd(532, 15435)
- 2 gcd(648, 1083)
- Icm(532, 1083)
- Icm(1083, 15435)

Outline

- 1 The Division Algorithm
- 2 Modular Arithmetic
- 3 Prime factorizations
- Primality Test

 Primality test is an approach used to determine if a number N is prime.

- Primality test is an approach used to determine if a number N is prime.
- 1 Iterate over numbers from 2 to N-1

- Primality test is an approach used to determine if a number N is prime.
- Iterate over numbers from 2 to N-1
- If N is not divisible by any of these numbers then N is prime

- Primality test is an approach used to determine if a number N is prime.
- Iterate over numbers from 2 to N-1
- If N is not divisible by any of these numbers then N is prime

- Primality test is an approach used to determine if a number N is prime.
- 1 Iterate over numbers from 2 to N-1
- ② If N is not divisible by any of these numbers then N is prime

Ex.

- How many checks you have to do to check if 23 is prime?
- 21 checks.

Theorem

If N is a composite number, then N has a factor greater than 1 and at most \sqrt{N}

Theorem

If N is a composite number, then N has a factor greater than 1 and at most \sqrt{N}

- Iterate over numbers from 2 to \sqrt{N}
- ② If N is not divisible by any of these numbers then N is prime

Ex.

- How many checks you have to do to check if 23 is prime using this theorem?
- $\sqrt{23}$ checks ≈ 5 .
- very efficient if N is large

Questions &

