

CURVE FITTING GUI WITH BOUNDARY CONDITIONS

Final Project – ME396P

TEAM PYNAPPLES (G03)

Anastasia Timoshenko, John Tanir, Jahnavi Valivi Reddy

The University of Texas at Austin

Project Objectives

Design of a Curve-fitting GUI Tool that enables user inputs for fit parameters (order, custom equation, etc.) to fit a set of points by detecting the specified boundary conditions.

Project Requirements:

- 1. User Interface Design
- 2. Functionality:
 - Enables data input methods,
 - Selection of fit parameters,
 - Data Visualization,
 - Multi-use/Multi-click
- 3. Documentation

Approach

- Packages:
 - PyQt5, Random; Numpy; Matplotlib.pyplot; Pandas;
 Matplotlib.backends.backend_qt5agg, Scipy.optimize (curve_fit);
 Sklearn.metrics (r2_score)
- Delegation of effort:
 - GUI Design, extracting user inputs and code combination, BC 2: Jahnavi
 - Boundary Condition (BC 1), curve fitting, and text input algorithm: *Anastasia*
 - Evaluation of Fit (Prediction and Confidence Intervals): John

Approach

- Algorithms:
 - A few distinct algorithms had to be developed:
 - Boundary condition location.
 - Detecting type of Boundary condition.
 - Conversion of text input into a usable function (custom equation).
 - Curve Fitting for different types of curves (polynomials of different degrees/custom equation).

Curve Fitting

- 2 Basic Cases:
 - Polynomial fit.
 - Utilized np.polyfit(x, y, deg).
 - User selects degree and type of BC fits based on the boundary condition.
 - Custom equation fit.
 - Utilized Scipy.optimise.curve_fit(func, x, y)
 - Converted the custom equation into a usable function with x and
 *nums (tuple of coeff. values) as the only inputs.
 - Performs curve fitting using the provided equation and x and y points.

Curve Fitting

- Custom function from user input.
- Utilizes exec() to convert str to variable name.
- Utilizes eval() to evaluate str expression as an equation.
- In [1]: runfile(...Final Project')
- Out [1]: 18

```
text = 'y = m^*x^2 + c^*x + b'
text = text.replace('^', '**')
def func(x, *nums):
    # Make a list of possible coefficent names without x and e:
    alph = list(map(chr, range(97, 123)))
    alph.remove('e')
    alph.remove('x')
    # Pulls in the text input from global. Need to be careful not to change the text variable
in the code.
    global text
    # Split off the 'y = ' from the text:
    eq = text.split('= ')[1]
    i = 0
    # For each character in the text, if the character is in the alphabet list (coefficient
assign the next value in the coefficients tuple (*nums) to it and create a cariable.
    for char in eq:
        if char in alph:
            exec(f"{char} = {nums[i]}")
            i = i + 1
    # Use eval on the text to evaluate the equation and return the result.
    result = eval(eq)
    return result
xval = 3
solved = func(xval, 1, 2, 3)
print(solved)
```


Boundary Conditions

Two types of boundary conditions:

- Maximum/minimum point on a curve.
 - Utilized moving average to "smooth" the data.
 - Max/min point of the "smooth" data used as BC.
- Discontinuous point on the curve.
 - Significant gaps in the data were identified.
 - The "threshold value" (TV) determines the BC.
 - TV is user-specified or auto-generated (from standard deviation of errors).

Boundary Conditions

- Utilized pandas, numpy to run moving average and standard deviations:
 - Moving average isn't perfectly accurate.
 - Multiple averages improve the fit.
 - Perfect fits and BC identification remain challenging.

```
# Make the x and y sets into numpy arrays:
x_{arr} = np.array(x)
y_arr = np.array(y_noisy)
# Convert them to a pandas dataframe:
data = pd.DataFrame({'x': x arr, 'y': y arr})
# Apply moving average using average data rolling from pandas:
data_smooth = data.rolling(window = 5).mean()
data smooth2 = data smooth.rolling(window = 8).mean()
# Plot the smoothed data sets:
plt.plot(x, data_smooth['y'], 'r-', label = 'Smooth Data 1')
plt.plot(x-1, data_smooth2['y'], 'b-', label = 'Smooth Data 2')
# Find the maximum point - the boundary condition - in the smoothed data set,
and plot it to check:
max_id = list(data_smooth2[['y']].idxmax())[0]
plt.plot(list(data_smooth2['x'])[max_id], list(data_smooth2['y'])[max_id],
'xr', ms = 10)
plt.legend()
# Split the original data set using the new max id index:
x_1 = x[:max_id+1].copy()
x_r = x[max_id:].copy()
```


Evaluation of Fit

Techniques:

- Sum of squares errors, error of the estimate, and r^2 were calculated.
- Checks how closely the data matches the fitted polynomial
- Statistical analysis: To determine the *confidence* and prediction intervals.
- Confidence interval: Provides an interval estimate with a measure of reliability about the mean
- Prediction interval is for reliability about future observations.

GUI Design:

	Object	Functioning
1.	QPushButton (auto default)	self.Button.clicked.connect(self.fun)
2.	QTextEdit	self.Text.toPlainText() self.Text.setText()
3.	QPushButton (default)	Same as 1
4.	Qlabel	Labelling
5.	QSpinBox	self.SpinBox.value()
6.	QCheckBox	self.CheckBox.state.connect(self.fun)
7.	QGraphicsView	self.graphicsView.setScene(self.scene)

Project Results:

(Demo)

Go to code

Project Links:

- Github https://github.com/Jaanv99/Team-Pynapples.git
- Code Documentation and required files in the repository

References

- https://learnpython.com/blog/average-in-matplotlib/
- https://learnpython.com/blog/filter-rows-select-in-pandas/
- https://stackoverflow.com/questions/74364841/how-to-find-peaks-in-a-noisy-signal-or-estimate-its-number
- https://www.geeksforgeeks.org/how-to-calculate-moving-average-in-a-pandas-dataframe/
- https://stackoverflow.com/questions/13728392/moving-average-or-running-mean
- https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.rolling.html
- https://pandas.pydata.org/docs/getting-started/intro-tutorials/03-subset-data.html
- https://stackoverflow.com/questions/29949757/creating-pandas-dataframe-between-two-numpy-arrays-then-draw-scatter-plot
- https://www.geeksforgeeks.org/get-the-index-of-maximum-value-in-dataframe-column/
- https://stackoverflow.com/questions/16060899/alphabet-range-in-python
- https://stackoverflow.com/questions/9685946/math-operations-from-string
- <u>https://www.geeksforgeeks.org/convert-string-into-variable-name-in-python/</u>
- https://doc.gt.io/qtforpython-6/tutorials/datavisualize/index.html
- https://stackoverflow.com/questions/30964669/qt-designer-qgraphicsview-load-image
- https://www.appsloveworld.com/coding/python3x/6/how-to-get-confidence-intervals-from-curve-fit?expand_article=1

Thank you!

Questions?