

ТЕСТ МОЖНО СДАТЬ ТОЛЬКО 1 РАЗ, НАЖАВ НА КНОПКУ "Сохранить решение"

Оптимизационная задача метода опороных векторов:

$$egin{cases} rac{1}{2}w^Tw + C\sum_{i=1}^N \xi_i
ightarrow \min_{w,w_0,\xi} \ y_i\left(w^ op x_i + w_0
ight) = M\left(x_i,y_i
ight) \geq 1 - \xi_i, i = 1,2,\dots N \ \xi_i \geq 0, i = 1,2,\dots N \end{cases}$$

Величины нарушений: ξ . Параметр C - коэффициент при штрафах за нарушения ограничений. N - число объектов обучающей выборки.

Гибкость модели- выразительная способность модели

В тестовых заданиях первая галочка — правильный ответ, вторая галочка — выбранный ответ. Цвет обозначает, правильно ли в данном пункте поставлена галочка. Если все пункты верные (галочки совпадают / все пункты зеленые), то за задание ставится полный балл, в противном случае ставится 0 баллов.

1. Рассмотрим RBF ядро в методе опорных векторов с множителем при норме, равным а:

$$K(x,z)=e^{-a||x-z||^2}$$

. Пусть вы хотите повысить гибкость модели (способность адаптироваться под обучающую выборку), чтобы уменьшить число ошибок на обучающей выборке. Для этого вам нужно увеличить а параметр а не влияет на гибкость модели уменьшить а Балл: 2.0 Комментарий к правильному ответу: 2. Решение в методе опорных векторов будет зависеть только от объектов 🗸 🗸 с отступом меньше или равным единицы □ от всех объектов □ □ с отступом строго больше единицы с отступом меньше или равным нуля с отступом строго больше нуля

Комментарий к правильному ответу:

Балл: 2.0

= 3	. Решение для метода опорных векторов
	численными методами из случайного
	начального приближения приводит к
	🔲 🔲 глобальному минимуму критерия без использования ядер Мерсера и лишь к
	локальному (не обязательно глобальному) - при их использовании
	🔲 🔲 локальному минимуму критерия, не обязательно совпадающим с глобальным
	Балл: 2.0
	Комментарий к правильному ответу:
4	. Допускает ли метод опорных векторов
	обобщение через замену скалярных
	произведений функциями ядра?
	🔲 🔲 да, через прямую задачу оптимизации (относительно весов, без ограничений)
	 метод опорных векторов не обобщается через ядра
	 да, через двойственную задачу оптимизации (относительно двойственных переменных, соответствующих ограничениям)
	Балл: 2.0
	Комментарий к правильному ответу:
5	. Построение разделяющей гиперплоскости,
	максимизирующей зазор (ширину) между
	объектами разных классов в обучающей
	выборке при бинарной классификации
	позволяет:
	ускорить процесс построения прогнозов
	повысить ожидаемую точность классификации на тестовой выборке
	сделать обучение устойчивым к наличию выбросов
	ускорить процесс обучения модели
	Балл: 2.0
	Комментарий к правильному ответу:
6	. Пусть С - коэффициент при штрафах за
	нарушение ограничений (он же - при ф-ции
	потерь в прямой задаче оптимизации) в
	методе опорных векторов. С ростом С число

опорных векторов будет

≡

✓ уменьшаться
□ число опорных векторов не будет зависеть от выбора С
увеличиваться
Балл: 2.0
Комментарий к правильному ответу:
7. Пусть мы оцениваем число ошибок метода
опорных векторов методом leave-one-out (т.е.
по кросс-валидации с числом блоков=числу
объектов), у которого М-число опорных
векторов при настройке по всей обучающей
выборке. Тогда число ошибок leave-one-out
□ Всегда больше или равно М
□ Не меньше М
✓ □ не превосходит М
Балл: 0
Комментарий к правильному ответу:
На неинформативном объекте ошибки точно нет, а при его исключении решение не
поменяется, поэтому ошибки тоже не будет. Получается, ошибки могут возникать только при исключении опорных объектов.
8. Пусть d - степень полиномиального ядра в
методе опорных векторов. Пусть вы хотите
повысить гибкость модели, чтобы уменьшить
число ошибок на обучающей выборке. Для
этого вам нужно
уменьшить d
□ ✓ параметр d не влияет на гибкость модели
✓ □ увеличить d
Балл: 0
Комментарий к правильному ответу: