Machine learning

Introduction et utilisation non supervisée

novembre 2018 @ TELECOM Nancy T. BAGREL

Définitions

Machine learning

Apprentissage automatique / statistique (général)

- supervisé
- non supervisé

Deep learning

Réseau de neurones multicouches

Plusieurs types de deep learning

- Deep Neural Network (DNN): beaucoup de couches de neurones
- Convolutional Neural Network (CNN): découpage du problème en sous-parties, avec un cluster de neurones par sous-partie → adapté pour le traitement d'images
- Deep Belief Network (DBN): première phase non supervisée puis phase supervisée facilitée par le pré-traitement

Source: https://goo.gl/7rcjph

Neurone

Perceptron

Machine learning

Erreur et backpropagation

Important : on est ici dans le cadre de l'apprentissage supervisé

Erreur

$$\mathbf{E} = f(\mathsf{val}_{\mathsf{attendue}}, \mathsf{val}_{\mathsf{obtenue}})$$

Descente du gradient

$$\Delta w = -\eta \frac{\partial \mathbf{E}}{\partial w}$$

Clustering

(Machine learning)

Idée

Partitionner les données d'entrée sans supervision

Algorithme simple

K-mean clustering

K-mean clustering

Algorithme

Cas pratique

Points sur une surface délimitée en 2D

Description

- 1. On place (aléatoirement) autant de drapeaux (centroids) que l'on veut de groupes (clusters)
- 2. Chaque point est rattaché au drapeau le plus proche
- 3. On replace le drapeau au centre des points qui lui sont rattachés
- 4. Tant que les drapeaux ne sont pas assez stabilisés, on recommence le rattachement (étape 2)

Cas simple

étape par étape

Lancement du programme

Amélioration

Laisser l'algorithme trouver le nombre optimal de clusters?

Contraintes

- ► Trouver une définition d'une "bonne partition"
- Fixer des limites à la recherche

Définition d'une bonne partition

(subjectif)

Ma proposition

- f H Homogénéité : les groupes doivent avoir des tailles pas trop différentes (pour éviter une partition en 1 et 10^9 éléments)
- Distinction: les groupes ne doivent pas être trop proches les uns des autres pour pouvoir les distinguer
- S Stabilité : voir final_eps
- P Proximité : les éléments d'un cluster doivent être le plus proche possible de leur centroid

Comment équilibrer ces facteurs ?

Comportement idéal attendu

- H grand quand les tailles de clusters sont proches
- D 1 dès que les groupes sont assez éloignés, 0 sinon
- S "inverse" de final_eps
- P grand quand les points sont proches de leur centroid

Implémentation de ces fonctions

Code du programme

Testons!

Lancement du programme

Application à des profils de patients

Normalisation et distance

Normalisation et centrage

Dans le cas où les entrées sont vectorielles, avec des composantes non directement comparables, nécessité d'une normalisation et d'un centrage

Distance

La question la plus délicate reste celle de la distance, sans introduire de biais!

On utilise donc souvent la distance euclidienne, réputée "neutre".

Réduire la dimension des entrées

Machine learning - non supervisé

Principle Composant Analysis

Ne capturer que les composantes des vecteurs qui impactent le plus la variance des données

Singular Value Decomposition

Réduire une grande matrice d'entrée en 3 sous-matrices qui contiennent la plus grande partie des informations

Retour sur la backpropagation ?

Si il reste du temps...

Sources

Remerciements

Merci de votre attention!

- ► https://goo.gl/W3THM6
- ► https://goo.gl/Wkbkeo
- ► https://goo.gl/aJLHRo
- https://goo.gl/QACDyV
- https://goo.gl/aGquwV
- https://goo.gl/24oeED
- ► https://goo.gl/KLymMw
- https://goo.gl/amYAT2