Temps de réponse maximal

Antoine Groudiev

22 décembre 2022

On modélise le freinage dans le pire cas tel que la vitesse reste constante, égale à v, sur une distance d_f , puis passant instantanément à 0.

1 Constantes

On pose:

- 1. v, la vitesse de la voiture, maximale dans le pire cas
- 2. d_f , la distance de freinage de la voiture, maximale dans le pire cas
- 3. d_d , la distance de détection du panneau, minimale dans le pire cas

2 Inconnues

On cherche à déterminer :

- 1. τ_{max} , le temps aloué pour traiter une image, qu'on cherche à maximiser
- $2.\,\,f$, la fréquence de rafraichissement de la détection de panneau, qu'on cherche à minimiser

On a la relation:

$$f = \frac{1}{\tau_{max}}$$

3 Cahier des charges

On veut détecter le panneau de telle sorte que la voiture s'arrête avant le panneau. Ainsi, la distance allouée à l'algorithme pour traiter l'image est de :

$$d = d_d - d_f$$

En divisant par v:

$$\tau_{max} = \frac{d_d - d_f}{v}$$

on a également :

$$f = \frac{v}{d_d - d_f}$$

4 Application numérique

On utilise les valeurs expérimentales suivantes :

- 1. $v = 25 \, km.h^{-1}$
- 2. $d_f = 0.50 m$ dans le pire cas
- 3. $d_d = 3,1 m$

L'application numérique donne $\tau_{max} = 0.36s$ et f = 2.8Hz.