Кислород

Характеристика элемента

$$z(O)=+8$$
; $p(O)=8$; $e(O)=8$; $n(O)=8,9,10$

$$M(O) = 16 \frac{c}{MOJb}$$

Валентности: 2,3,4

СТОК: -2 В оксидах

-1 В пероксидах (H_2O_2 - перекись)

+1,+2 В соединениях с фтором ($F_2^ O^{+2}^-$ - фторид кислорода)

Распространенность элемента

 O_2 — в воздухе, H_2O , в оксидах, в солях...

Простое вещество

 O_2 — кислород

О₃ — озон

О₄ - тетракислород

↑ <u>аллотропные модификации</u> элемента «О»

 O_2 — Парамагнитен — втягивается в магнитное поле.

=> есть неспаренные электроны

Тип кристаллической решетки: молекулярная => Общие физические свойства: летучий, легкоплавкий.

Реальные Физические свойства:

- Газ
- Цвет отсутствует
- Вкуса нет
- Запаха нет
- Растворяется в воде ограничено

Чистый кислород можно собрать вытеснением воды из пробирки.

Кислород тяжелее воздуха.
$$D_{\text{no воздуху}}(O_2) = \frac{M(O_2)}{M(\text{воздуха})} = \frac{32}{29} > 1$$

Кислород обнаруживают по вспыхиванию тлеющей лучинки.

$$C + O_2 \rightarrow C^{+4}O_2^{-2} +$$
 выделяется тепло

Распространение О2 в природе:

 O_2 входит в состав воздуха($V_{\text{проценты}}$): 70-80% - азот

21% - O2

≈1% -инертные газы

Получение кислорода:

1.
$$2H_2O \xrightarrow{9J,mok} 2H_2 + O_2$$

2.
$$H_2O_2 \xrightarrow{MgO_2} H_2O + \frac{1}{2}O_2$$

3.
$$2 KMnO_4 \xrightarrow{T_1} MnO_2 + K_2 MnO_4 + O_2$$

4.
$$KClO_3 \xrightarrow{T_1} KCL + \frac{1}{2}O_2$$

5.
$$KNO_3 \stackrel{T_1}{\rightarrow} KNO_2 + \frac{1}{2}O_2$$

Химические свойства кислорода:

В атмосфере кислорода проходят процессы горения (окисления)

$$C+O_2 \rightarrow C^{+4}O_2^{-2}$$

 $C+O_2 \rightarrow C^{+4}O_2^{-2}$
 $4P+5O_2 \rightarrow 2P_2^{+5}O_5^{-2}$

В атмосфере кислорода горят неметаллы, про этом образуются соответствующий оксид.

Чем выше концентрация кислорода, тем быстрее будет проходить процесс горения => Быстрее в жидком $O_2 \rightarrow B$ воздухе

 O_2 способен окислять металлы.

$$2Cu + O_2 \rightarrow 2CuO$$

$$2Mg + O_2 \rightarrow 2MgO$$

$$Fe + O_2 \rightarrow Fe_3O_4 (Fe^{+2}O \cdot Fe_2^{+3}O_3)$$

Кислород окисляет большинство простых веществ и при этом образует оксиды. Исключения:

- 1. О₂ не реагирует с галогенами и благородными металлами (Pt,Au...)
- 2. N_2 с O_2 в обычных условиях не реагируют

$$N_2 + O_2 \stackrel{1500^{\circ}}{\to} 2 NO$$

3. Щелочные металлы ниже Li не образуют оксиды, образуют пероксиды 2Na + O_2 \rightarrow Na_2O_2

Горение сложных веществ в кислороде:

При горении сложных веществ в O_2 образуются оксиды элементов входящих в состав вещества (т.е. Те которые получаются при горении простых).

$$CH_4 + O_2 \rightarrow CO_2 + 2H_2O$$

 $2PH_3 + 4O_2 \rightarrow P_2O_5 + 3H_{3O}$
 $2FeS_2 + \frac{11}{2}O_2 \rightarrow Fe_2O_3 + 4SO_2$
 $2NH_3 + \frac{3}{2}O_2 \rightarrow N_2 + 3H_2O$!!!

Оксиды элементов с промежуточным СТОК доокисляются в ${\rm O}_2$ до максимального. Оксиды в максимальной СТОК более не горят.

$$2S^{+4}O_2 \rightarrow 2SO_3$$
$$2C^{+2}O_2 \rightarrow CO_2$$