Расчетно графическая работа по функциональному анализу. Задание № 1

Выполнил студент группы М80-308Б-22 МАИ Цирулев Николай.

1 Задание

Задание I Докажите, что приведённое ниже отображение $T:C[0;1] \to C[0;1]$ (либо его степень) является сжимающим. Определите число итераций, необходимое для поиска неподвижной точки этого отображения с точностью $\varepsilon \in \left\{10^{-1},10^{-2},10^{-3}\right\}$ с помощью метода сжимающих отображений. С помощью вычислительной техники постройте график функции, являющейся неподвижной точкой отображения T. Проверьте результаты при различных значениях ε и различных начальных приближениях в методе сжимающих отображений. Продемонстрируйте несколько графиков, получающихся при промежуточных вычислениях.

Номер по списку 22, k = 8, l = 5

Вариант

$$\mathbf{T}(\mathbf{x}) = \begin{cases} \frac{1}{1+k} x(3t) - \frac{l}{2}, & 0 \leqslant t \leqslant \frac{1}{3}; \\ f(t), & \frac{1}{3} < t < \frac{2}{3}; \text{ где } \mathbf{f}(\mathbf{t})\text{- аффинная функция такая, что} \\ \frac{1}{1+k} x(3t-2), & \frac{2}{3} \leqslant t \leqslant 1, \end{cases}$$

Т(х)- непрерывная функция

2 Решение

2.1 Доказательство и поиск коэффициента сжатия

Докажем, что заданное отображение $T:C[0,1]\to C[0,1]$ является сжимающим.

Пространство $(C[0,1], \rho)$ рассматривается с метрикой:

$$\rho(x,y) = \max_{t \in [0,1]} |x(t) - y(t)|.$$

Определение оператора T(x):

$$T(x)(t) = \begin{cases} \frac{1}{9}x(3t) - \frac{5}{2}, & 0 \le t \le \frac{1}{3}; \\ f(t), & \frac{1}{3} < t < \frac{2}{3}; \\ \frac{1}{9}x(3t - 2), & \frac{2}{3} \le t \le 1. \end{cases}$$

По определению отображение T(x) является сжимающим, если $\exists \ \alpha \in [0,1)$:

$$\rho(T(x), T(y)) \le \alpha \cdot \rho(x, y), \quad \forall x, y \in C[0, 1].$$

Рассмотрим три области отдельно.

1. Область $0 \le t \le \frac{1}{3}$

$$T(x)(t) = \frac{1}{9}x(3t) - \frac{5}{2},$$

$$T(y)(t) = \frac{1}{9}y(3t) - \frac{5}{2}.$$

Тогда:

$$|T(x)(t) - T(y)(t)| = \left| \frac{1}{9}x(3t) - \frac{5}{2} - \left(\frac{1}{9}y(3t) - \frac{5}{2} \right) \right| = \frac{1}{9}|x(3t) - y(3t)|.$$

Так как $|x(3t)-y(3t)| \leq \rho(x,y),$ то если $s=3t, t \in [0;\frac{1}{3}] => s \in [0;1],$ тогда:

$$\max_{s \in [0,1]} |T(x)(s) - T(y)(s)| \le \frac{1}{9} \rho(x, y).$$

2. Область $\frac{2}{3} \le t \le 1$

$$T(x)(t) = \frac{1}{9}x(3t - 2),$$

$$T(y)(t) = \frac{1}{9}y(3t-2).$$

Аналогично если $s=3t-2, t\in [\frac{2}{3};1]=>s\in [0;1],$ тогда:

$$|T(x)(t) - T(y)(t)| = \frac{1}{9}|x(3t - 2) - y(3t - 2)| \le \frac{1}{9}\rho(x, y).$$

3. Область $\frac{1}{3} < t < \frac{2}{3}$ Функция T(x) здесь аффинная и непрерывная. Из конструкции T(x) видно, что на этом интервале максимум отклонений также не превосходит $\frac{1}{9}\rho(x,y)$.

Вывод Объединяя оценки для всех трёх областей, получаем:

$$\rho(T(x),T(y)) = \max_{t \in [0,1]} |T(x)(t) - T(y)(t)| \le \frac{1}{9}\rho(x,y).$$

Следовательно, T является сжимающим отображением с коэффициентом $\alpha = \frac{1}{9}$.

Определение числа итераций и построение графиков

По теореме Банаха, так, как метрическое пространство полное, то $\exists ! x_*$ отображения Т. Тогда определим число итераций для поиска неподвижной точки и построим графики.

Сначала оценим f(t):

Поскольку T(x) должно быть непрерывным по условию, функция f(t) в интервале $\left(\frac{1}{3},\frac{2}{3}\right)$ должна быть линейной и соединять значения T(x) на границах $t=\frac{1}{3}$ и $t=\frac{2}{3}$. То есть, $\mathbf{f}(\mathbf{t}):f(t)=at+b$

Найдем коэффициенты a и b. Пусть $A = T(x) \left(\frac{1}{3}\right)$ и $B = T(x) \left(\frac{2}{3}\right)$, тогда система уравнений:

$$A = a \cdot \frac{1}{3} + b$$
$$B = a \cdot \frac{2}{3} + b$$

Решая систему, получаем:

$$a = \frac{B-A}{\frac{2}{3} - \frac{1}{3}} = 3(B-A)$$
$$b = A - a \cdot \frac{1}{3} = A - (B-A) = 2A - B.$$

Тогда:

$$f(t) = 3(B - A)t + (2A - B)$$

Теперь оценим число итераций:

$$n > \frac{\ln\left(\varepsilon \cdot (1-\alpha)/\rho(x_1-x_0)\right)}{\ln\alpha}$$

Где: -
$$\alpha = \frac{1}{9}$$
, - $x_0(t) = t$, - $\rho(x_1 - x_0) = \frac{5}{2}$.

Для различных ε :

ε	n
10^{-1}	2
10^{-2}	3
10^{-3}	4

3 Код, графики и выводы

3.1 Код на Python

```
return (1 / (1 + k)) * x(3 * t) - 1 / 2
    elif t >= 2/3:
        return (1 / (1 + k)) * x(3 * t - 2)
    else:
        #
        A = T(x, 1/3)
        B = T(x, 2/3)
        return 3 * (B - A) * t + (2 * A - B)
                                    Т
def iterate_T(x0, num_iter=10, num_points=1000):
    t_values = np.linspace(0, 1, num_points)
    x_values = x0(t_values)
    history = [x_values.copy()]
    for _ in range(num_iter):
        x_values_new = np.array([T(lambda t: np.interp(t,
            t_values, x_values), t) for t in t_values])
        history.append(x_values_new.copy())
        x_values = x_values_new
    return t_values, history
def compute_error(history, alpha=1/9):
    errors = []
    rho_0 = np.max(np.abs(history[0] - history[1]))
    for n in range(1, len(history)):
        error = (alpha ** n) * rho_0 / (1 - alpha)
        errors.append(error)
    return errors
                                                  LaTeX-
x0_list = [
    (lambda t: t, r'$x_0(t)_{\square}=_{\square}t$'),
    (lambda t: np.sin(2 * np.pi * t), r'^x_0(t) = |\sin(2\pi)|
    (lambda t: np.exp(-t), r'$x_0(t)_{\square}=_{\square}e^{-t}$')
]
for x0, formula in x0_list:
    t_values, history = iterate_T(x0, num_iter=5)
    errors = compute_error(history)
    plt.figure(figsize=(8, 5))
    for i, x_values in enumerate(history):
        plt.plot(t_values, x_values, label=f'
```

```
⊔{i}')
plt.title(f')
                              ⊔ [formula]', fontsize
    =14)
plt.xlabel(r'$t$', fontsize=12)
plt.ylabel(r'$x(t)$', fontsize=12)
plt.legend()
plt.grid(True)
plt.show()
                                                        eps
print(f'
                                                 _{\sqcup}\{	extsf{formula}
   }:\n')
print(f'{"
                             ":^10}_{\sqcup}{"x(0.5)}":^15}_{\sqcup}{"}
                 ⊔eps":^15}')
print('-' * 40)
for i, x_values in enumerate(history):
    x_mid = x_values[len(x_values) // 2]
    eps = errors[i - 1] if i > 0 else 0
    print(f'\{i:^10\}_{\sqcup}\{x\_mid:^15.5f\}_{\sqcup}\{eps:^15.5f\}')
print('\n' + '=' * 40 + '\n')
```

3.2 Графики

Таблица 1: Значения для $x_0(t)=t$

Итерация	x(0.5)	Ошибка ε
0	0.50050	0.00000
1	-1.19086	0.34028
2	-1.37940	0.03781
3	-1.40035	0.00420
4	-1.40267	0.00047
5	-1.40293	0.00005

Таблица 2: Значения для $x_0(t) = \sin(2\pi t)$

Итерация	x(0.5)	Ошибка ε
0	-0.00314	0.00000
1	-1.24625	0.45139
2	-1.38555	0.05015
3	-1.40103	0.00557
4	-1.40275	0.00062
5	-1.40294	0.00007

Таблица 3: Значения для $x_0(t) = e^{-t}$

Итерация	x(0.5)	Ошибка ε
0	0.60623	0.00000
1	-1.17015	0.42361
2	-1.37710	0.04707
3	-1.40009	0.00523
4	-1.40265	0.00058
5	-1.40293	0.00006

3.3 Выводы

Мы доказали, что T — сжимающее отображение строго по определению, нашли коэффициент сжатия, вычислили число итераций для различных ε и реализовали метод сжимающих отображений на Python с графической интерпретацией.