# 编译原理参考答案

齐王璟 周 帆

# 第三章 词法分析

- 1. 构造下列正规式相应的 DFA。
- (2) 1(1010\*|1(010)\*1)\*0
- (4)  $b((ab)^*|bb)^*ab$

答:

(2)正规式1(1010\*|1(010)\*1)\*0对应的 NFA 如下:



#### 用子集法将此 NFA 确定化的状态转换表如下:

|                        | 1 . | I                       | T                                  |
|------------------------|-----|-------------------------|------------------------------------|
| 状态集T                   | 符号a | Move(T,a)               | $\varepsilon$ -closure(Move(T, a)) |
| T = (C)                | 0   | Ø                       | Ø                                  |
| $T_0 = \{S\}$          | 1   | { <i>A</i> }            | $\{A\} = \frac{T_1}{}$             |
| T = (A)                | 0   | { <i>Z</i> }            | $\{Z\} = \frac{T_2}{}$             |
| $T_1 = \{A\}$          | 1   | $\{B,E\}$               | $\{B,E\} = T_3$                    |
| <b>T</b> - (7)         | 0   | Ø                       | Ø                                  |
| $T_2 = \{Z\}$          | 1   | Ø                       | Ø                                  |
| T = (D, E)             | 0   | { <i>C</i> , <i>F</i> } | $\{C,F\} = \frac{T_4}{}$           |
| $T_3 = \{B, E\}$       | 1   | { <i>A</i> }            | $\{A\} = \frac{T_1}{}$             |
| T = (C, E)             | 0   | Ø                       | Ø                                  |
| $T_4 = \{C, F\}$       | 1   | $\{D,G\}$               | $\{A, D, G\} = T_5$                |
| T = (A D C)            | 0   | $\{Z,D,E\}$             | $\{Z, A, D, E\} = \frac{T_6}{}$    |
| $T_5 = \{A, D, G\}$    | 1   | $\{B,E\}$               | $\{B,E\} = \frac{T_3}{}$           |
| T = (A D E Z)          | 0   | $\{Z,D,F\}$             | $\{Z,A,D,F\}=T_7$                  |
| $T_6 = \{A, D, E, Z\}$ | 1   | $\{B, E, A\}$           | $\{B,E,A\}=T_8$                    |
| T = (A D E 7)          | 0   | { <i>Z</i> , <i>D</i> } | $\{Z,A,D\}=T_9$                    |
| $T_7 = \{A, D, F, Z\}$ | 1   | $\{B, E, G\}$           | $\{B,E,G\}=T_{10}$                 |

| $T_{8} = \{A, B, E\}$       | 0 | $\{Z,C,F\}$             | $\{Z,C,F\}=T_{11}$           |
|-----------------------------|---|-------------------------|------------------------------|
| $\frac{1}{8} = \{A, D, L\}$ | 1 | $\{B, E, A\}$           | $\{B, E, A\} = \frac{T_8}{}$ |
| T = (A D 7)                 | 0 | $\{Z,D\}$               | $\{Z,A,D\}=T_9$              |
| $T_9 = \{A, D, Z\}$         | 1 | $\{B,E\}$               | $\{B,E\} = \frac{T_3}{}$     |
| T = (P F C)                 | 0 | $\{C, F, E\}$           | $\{C, F, E\} = T_{12}$       |
| $T_{10} = \{B, E, G\}$      | 1 | { <i>A</i> }            | $A = T_1$                    |
| T = (C E 7)                 | 0 | Ø                       | Ø                            |
| $T_{11} = \{C, F, Z\}$      | 1 | { <i>D</i> , <i>G</i> } | $\{D,A,G\}=T_5$              |
| T = (C E E)                 | 0 | { <i>F</i> }            | $ \{F\} = T_{13}$            |
| $T_{12} = \{C, E, F\}$      | 1 | $\{D,A,G\}$             | $\{D,A,G\}=\frac{T_5}{}$     |
| T - (E)                     | 0 | Ø                       | Ø                            |
| $T_{13} = \{F\}$            | 1 | { <i>G</i> }            | $\{G\} = T_{14}$             |
| T = (C)                     | 0 | { <i>E</i> }            | $\{E\} = T_{15}$             |
| $T_{14} = \{G\}$            | 1 | Ø                       | Ø                            |
| T - (F)                     | 0 | { <i>F</i> }            | $\{F\} = T_{13}$             |
| $T_{15} = \{E\}$            | 1 | { <i>A</i> }            | $A\} = T_1$                  |

## 生成的DFA如下为:



# (4)正规式 $b((ab)^*|bb)^*ab$ 对应的 NFA 如下:



## 用子集法将此 NFA 确定化的状态转换表如下:

| 状态集T            | 符号a | Move(T,a) | $\varepsilon$ -closure(Move(T, a)) |
|-----------------|-----|-----------|------------------------------------|
| T = (0)         | а   | Ø         | Ø                                  |
| $T_0 = \{0\}$   | b   | {1}       | {1}                                |
| T = (1)         | а   | {2,5}     | {2,5}                              |
| $T_1 = \{1\}$   | b   | {4}       | {4}                                |
| T = (2.5)       | а   | Ø         | Ø                                  |
| $T_2 = \{2,5\}$ | b   | {1,3}     | {1,3}                              |
| T = (A)         | а   | Ø         | Ø                                  |
| $T_3 = \{4\}$   | b   | {1}       | {1}                                |
| T = (1.2)       | а   | {2,5}     | {2,5}                              |
| $T_4 = \{1,3\}$ | b   | {4}       | {4}                                |

## 生成的DFA如下为:



## 4. 把图 3.17(a)和(b)中的NFA分别确定化和最小化



#### 答: (a) 用子集法将此 NFA 确定化的状态转换表如下:

| 状态集T            | 符号a | Move(T,a) | $\varepsilon$ -closure(Move(T,a)) |
|-----------------|-----|-----------|-----------------------------------|
| T = (0)         | а   | {0,1}     | {0,1}                             |
| $T_0 = \{0\}$   | b   | {1}       | {1}                               |
| T = (0.1)       | а   | {0,1}     | {0,1}                             |
| $T_1 = \{0,1\}$ | b   | {1}       | {1}                               |
| T = (1)         | а   | {0}       | {0}                               |
| $T_2 = \{1\}$   | b   | Ø         | Ø                                 |

#### 生成的DFA如下图为示:



# 分割法最小化 $\Pi = \{T_0, T_1\}\{T_2\}$



#### (b) 已经是DFA, 无需确定化

#### 分割法最小化:

 $\Pi = \{0\}\{1,2,3,4,5\}$ 

 $\Pi = \{0\}\{4\}\{1,2,3,5\}$ 

 $\Pi = \{0\}\{1,5\}\{2,3\}\{4\}$ 

 $\Pi = \{0\}\{1,5\}\{2\}\{3\}\{4\}$ 

#### 最小化的DFA:



5. 构造一个 DFA, 它接受 $\Sigma = \{0,1\}$ 上所有满足如下条件的字符串: 每个 1 都有 0 直接跟在右边。然后构造该语言的正规文法。

#### 答:

满足条件的正规式: (0|10)\*,且其对应的 DFA 如下:



#### 正规文法 G[S]为:

 $S \rightarrow 0S$ 

 $S \rightarrow 10S$ 

 $S \to \varepsilon$ 

#### 6. 设无符号数的正规式为 $\theta$ :

 $\theta = dd^*|dd^*.dd^*|.dd^*|dd^*10(s|\varepsilon)dd^*$  $|10(s|\varepsilon)dd^*|.dd^*10(s|\varepsilon)dd^*$  $|dd^*.dd^*10(s|\varepsilon)dd^*$ 

化简 $\theta$ , 画出 $\theta$ 的 DFA, 其中 $d = \{0, 1, 2, \dots, \}, s = \{+, -\}$ 

答: θ的各个候选式如下, 左对齐后发现它们都是以dd\*结尾的

| $dd^*$                           |
|----------------------------------|
| $dd^*$ . $dd^*$                  |
| . <b>dd</b> *                    |
| $dd^*10(s \varepsilon)dd^*$      |
| $10(s \varepsilon)dd^*$          |
| $.dd^*10(s \varepsilon)dd^*$     |
| $dd^*.dd^*10(s \varepsilon)dd^*$ |

## 正规式 $\theta$ 对应的 NFA 如下:



#### 用子集法将此 NFA 确定化的状态转换表如下:

| 状态集T                   | 符号a | Move(T,a)   | $\varepsilon$ -closure(Move(T,a)) |
|------------------------|-----|-------------|-----------------------------------|
| $T = (V \land C E)$    | d   | $\{A,C,Y\}$ | $\{A,C,Y\}$                       |
|                        | 10  | {D}         | $\{D,E\}$                         |
| $T_0 = \{X, A, C, E\}$ | S   | Ø           | Ø                                 |
|                        | •   | {B}         | { <i>B</i> , <i>E</i> }           |

|                     |    | 1                       | 1                       |
|---------------------|----|-------------------------|-------------------------|
|                     | d  | $\{A,C,Y\}$             | $\{A,C,Y\}$             |
| $T_1 = \{A, C, Y\}$ | 10 | { <i>D</i> }            | $\{D,E\}$               |
| $I_1 - \{A, C, I\}$ | S  | Ø                       | Ø                       |
|                     |    | {B}                     | $\{B,E\}$               |
|                     | d  | {Y}                     | {Y}                     |
| T = (D, E)          | 10 | Ø                       | Ø                       |
| $T_2 = \{D, E\}$    | S  | { <i>E</i> }            | { <i>E</i> }            |
|                     |    | Ø                       | Ø                       |
|                     | d  | $\{C,Y\}$               | $\{C,Y\}$               |
| T = (D, E)          | 10 | Ø                       | Ø                       |
| $T_3 = \{B, E\}$    | S  | { <i>E</i> }            | { <i>E</i> }            |
|                     |    | Ø                       | Ø                       |
|                     | d  | {Y}                     | {Y}                     |
| T = (V)             | 10 | Ø                       | Ø                       |
| $T_4 = \{Y\}$       | S  | Ø                       | Ø                       |
|                     |    | Ø                       | Ø                       |
|                     | d  | {Y}                     | {Y}                     |
| T (F)               | 10 | Ø                       | Ø                       |
| $T_5 = \{E\}$       | S  | Ø                       | Ø                       |
|                     |    | Ø                       | Ø                       |
|                     | d  | { <i>C</i> , <i>Y</i> } | { <i>C</i> , <i>Y</i> } |
| T. (C.V.)           | 10 | Ø                       | Ø                       |
| $T_6 = \{C, Y\}$    | S  | Ø                       | Ø                       |
|                     |    | Ø                       | Ø                       |

# 生成的DFA如下为:



#### 7. 为正规文法G[S]

 $S \to aA|bQ$ 

 $A \to aA|bB|b$ 

 $B \rightarrow bD|aQ$ 

 $Q \to aQ|bD|b$ 

 $D \rightarrow bB|aA$ 

 $E \to \alpha B | b F$ 

 $F \to bD|aE|b$ 

构造相应的最小的DFA。

#### 答:

## 构造的 NFA 如下:



#### 用子集法将此 NFA 确定化的状态转换表如下:

| 状态集T             | 符号a | Move(T,a)               | $\varepsilon$ -closure(Move(T, a)) |
|------------------|-----|-------------------------|------------------------------------|
| $T_0 = \{S\}$    | а   | { <i>A</i> }            | { <i>A</i> }                       |
| $I_0 - \{3\}$    | b   | { <i>Q</i> }            | $\{Q\}$                            |
| T = (A)          | а   | { <i>A</i> }            | $\{A\}$                            |
| $T_1 = \{A\}$    | b   | { <i>B</i> , <i>T</i> } | $\{B,T\}$                          |
| $T_2 = \{Q\}$    | а   | { <i>Q</i> }            | { <i>Q</i> }                       |
| $I_2 - \{Q\}$    | b   | $\{T,D\}$               | $\{T,D\}$                          |
| T = (P, T)       | а   | { <i>Q</i> }            | $\{Q\}$                            |
| $T_3 = \{B, T\}$ | b   |                         | $\{D\}$                            |
| T = (D, T)       | а   | { <i>A</i> }            | { <i>A</i> }                       |
| $T_4 = \{D, T\}$ | b   | {B}                     | $\{B\}$                            |
| T = (D)          | а   | { <i>A</i> }            | { <i>A</i> }                       |
| $T_5 = \{D\}$    | b   | {B}                     | $\{B\}$                            |
| T = (D)          | а   | { <i>Q</i> }            | { <i>Q</i> }                       |
| $T_6 = \{B\}$    | b   | {D}                     | $\{D\}$                            |

## 生成的DFA如下为:



#### 分割法最小化:

 $\Pi = \{T_0, T_1, T_2, T_5, T_6\} \{T_3, T_4\}$ 

 $\Pi = \{T_0\}\{T_5, T_6\}\{T_1, T_2\}\{T_3, T_4\}$ 

令 $S_0 = \{T_0\}, S_1 = \{T_5, T_6\}, S_2 = \{T_1, T_2\}, S_3 = \{T_3, T_4\},$ 则最小化的**DFA**:



8. 给出下述正规文法所对应的正规式:

$$S \rightarrow 0A|1B$$

$$A \rightarrow 1S|1$$

$$B \rightarrow 0S|0$$

#### 答:

将A、B产生式的右部带入S中

S = 01S|01|10S|10 = (01|10)S|(01|10)

所以:  $S = (01|10)^*(01|10)$ 

- 11. 有一种用以证明两个正规表达式等价的方法, 那就是构造他们的最小 DFA, 表明这两个 DFA 是一样的 (除了状态名不同外)。使用此方法, 证明下面的正规表达式是等价的。
  - (1)  $(a|b)^*$
  - (2)  $(a^*|b^*)^*$
  - (3)  $((\varepsilon|a)b^*)^*$

#### 答:

画出(1)的 DFA:



显然是最小 DFA。 画出(2)的 NFA:



| 状态集T                | 符号a | Move(T,a)    | $\varepsilon$ -closure(Move(T, a)) |
|---------------------|-----|--------------|------------------------------------|
| T = (A B C)         | а   | {B}          | $\{A,B,C\}$                        |
| $T_0 = \{A, B, C\}$ | b   | { <i>C</i> } | $\{A,B,C\}$                        |

## 转换成等价的 DFA:



画出(3)的 NFA:



| 状态集T             | 符号a | Move(T,a)    | $\varepsilon$ -closure(Move(T, a)) |
|------------------|-----|--------------|------------------------------------|
| T = (A D)        | а   | {B}          | { <i>A</i> , <i>B</i> }            |
| $T_0 = \{A, B\}$ | b   | { <i>B</i> } | $\{A,B\}$                          |

## 转换成 DFA:



综上, (1) (2) (3) 构造的最小 DFA 是一样的,由此可得它们是等价正规表达式。

- 12. 文法 G[<单词>]为
  - <单词>→<标识符>|<整数>
  - <标识符>→<标识符><字母>|<标识符><数字>|<字母>
  - <整数>→<整数><数字>|<数字>
  - <字母>→A|B|···|Y|Z
  - <数字>→0|1|2|···|8|9
  - (1) 改写 G 为 G',使 G'为与 G 等价的正规文法。
- (2) 给出相应的有穷自动机。

#### 答:

(1) 令 W=<单词>, I=<标识符>, D=<整数>, a 为代表字母的终结符, b 为代表数字的终结符, 则有

G[W]:

 $W \rightarrow I|D$ 

 $I \rightarrow Ia|Ib|a$ 

 $D \rightarrow Db|b$ 

将I和D改造成右线性文法,则有

G'[W]:

 $W \rightarrow I|D$ 

 $I \rightarrow aI'$ 

 $I' \rightarrow (a|b)I'| \varepsilon$ 

 $D \rightarrow bD'$ 

 $D' \rightarrow bD' | \varepsilon$ 

构造的 NFA 为:



## 子集法将 NFA 转换成 DFA:

| 状态集T                | 符号a | Move(T,a) | $\varepsilon$ -closure(Move(T, a)) |
|---------------------|-----|-----------|------------------------------------|
| T = (C I D)         | а   | $\{I'\}$  | $\{I',Z\}$                         |
| $T_0 = \{S, I, D\}$ | b   | $\{D'\}$  | $\{D',Z\}$                         |
| T = (I', Z)         | а   | $\{I'\}$  | $\{I',Z\}$                         |
| $T_1 = \{I', Z\}$   | b   | $\{I'\}$  | $\{I',Z\}$                         |
| T = (D', T)         | а   | Ø         | Ø                                  |
| $T_2 = \{D', Z\}$   | b   | $\{D'\}$  | $\{D',Z\}$                         |

## DFA 为:



## PPT 作业 1: 将下图所示的 NFA 确定化



#### 答:

## 用子集法将此 NFA 确定化的状态转换表如下:

| 状态集T                      | 符号a | Move(T,a) | $\varepsilon$ -closure(Move(T,a)) |
|---------------------------|-----|-----------|-----------------------------------|
| T = (0.1.2.4.7)           | а   | {3,8}     | {1,2,3,4,6,7,8}                   |
| $T_0 = \{0,1,2,4,7\}$     | b   | {5,}      | {1,2,4,5,6,7}                     |
| T = (1224670)             | а   | {3,8}     | {1,2,3,4,6,7,8}                   |
| $T_1 = \{1,2,3,4,6,7,8\}$ | b   | {5,9}     | {1,2,4,5,6,7,9}                   |
| T = (1.24  F  6.7)        | а   | {3,8}     | {1,2,3,4,6,7,8}                   |
| $T_2 = \{1,2,4,5,6,7\}$   | b   | {5}       | {1,2,4,5,6,7}                     |
| T = (1245670)             | а   | {3,8}     | {1,2,3,4,6,7,8}                   |
| $T_3 = \{1,2,4,5,6,7,9\}$ | b   | {5}       | {1,2,4,5,6,7}                     |

#### 生成的DFA如下:



#### 分割法最小化

 $\Pi = \{T_0, T_2\}\{T_1\}\{T_3\}$ 



## PPT 作业 2: 将如下图所示的ε-NFA, 采用子集法确定化



#### 炫.

用子集法将此 NFA 确定化的状态转换表如下:

| 状态集T                | 符号a | Move(T,a)    | $\varepsilon$ -closure(Move(T,a)) |
|---------------------|-----|--------------|-----------------------------------|
| $T_0 = \{S, A, B\}$ | а   | <i>{S}</i>   | $\{S,A,B\}$                       |
|                     | b   | { <i>A</i> } | $\{A,B\}$                         |
|                     | c   | {B}          | $\{A,B\}$                         |
| $T_1 = \{A, B\}$    | а   | Ø            | Ø                                 |
|                     | b   | { <i>A</i> } | $\{A,B\}$                         |
|                     | c   | {B}          | $\{A,B\}$                         |

## 生成的DFA如下:



PPT 作业 3: 将如下图所示的ε-NFA,采用子集法确定化



#### 答:

#### 用子集法将此 NFA 确定化的状态转换表如下:

| 状态集T                | 符号a | Move(T,a) | $\varepsilon$ -closure(Move(T,a)) |
|---------------------|-----|-----------|-----------------------------------|
| $T_0 = \{0\}$       | а   | {0,1}     | {0,1}                             |
|                     | b   | {0}       | {0}                               |
| $T_1 = \{0,1\}$     | а   | {0,1,2}   | {0,1,2}                           |
|                     | b   | {0,1}     | {0,1}                             |
| $T_2 = \{0,1,2\}$   | a   | {0,1,2}   | {0,1,2}                           |
|                     | b   | {0,1,2,3} | {0,1,2,3}                         |
| $T_3 = \{0,1,2,3\}$ | а   | {0,1,2}   | {0,1}                             |
|                     | b   | {0,1,2,3} | {0,1,2,3}                         |

## 生成的DFA如下:

