热力学基础(一)

一、选择题

1. 有两个相同的容器,容积保持不变,一个盛有氦气,另一个盛有氧气,他们的压强和温	
度都相同,现将 10J 的热量传给氧气,使氧气温度升高,如果要使氦气升高同样的温度,则	
应向氦气传热()	
(A) 12J (B) 10J (C) 6J (D) 4J	
2. 对一定量的理想气体,下列所述过程中不可能发生的是()	
(A) 从外界吸热,但温度降低 (B) 对外做功且同时吸热	
(C) 吸热且同时提及被压缩 (D) 升温的绝热膨胀	
3. 质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使	
其体积增加一倍,则气体温度的改变(绝对值)在(
(A)绝热过程中最大,等压过程中最小;	
(B)绝热过程中最大,等温过程中最小; (C)等温过程中最大,绝热过程中最小;	
(D)等压过程中最大,等温过程中最小	
4. 双原子分子理想气体在等压膨胀时,系统对外所做的功与从外界吸收的热量之比 W/Q	
等于(
(A) $1/3$ (B) $1/4$ (C) $2/5$ (D) $2/7$	
5. 热力学第一定律表明: () (A) 系统对外做的功不可能大于系统从外界吸收的热量; (B) 系统内能的增量等于从外界吸收的热量; (C) 经过一个循环过程, 外界对系统做的功等于系统传给外界的热量; (D) 热机效率不可能等于 1	
二、填空题	
1. 一个气缸内储有 10mol 的单原子理想气体,在压缩过程中外界做功 209J,气体温度升	

高了 1K,则气体吸收热量 Q=____。

2.	某容器储有 2mol 单原子理想气体,在压缩过程中外界做功 100J,气体升温 1K,此过程
中气作	体内能的增量为,气体传给外界的热量为。
3. —	·定量理想气体,从同一状态开始把其体积由 V_0 压缩到 $\dfrac{1}{2}V_0$,分别经历以下三种过程:
(1) 설	等压过程; (2) 等温过程; (3) 绝热过程. 其中:
(1)	于应过生,(2) 守证过生,(3) 怎然过生,六十
4. 🕏	热力学第一定律也可表述为:第类永动机不可能制成。
	-/>.
5. A	生热力学中,"做功"是通过来完成的,"传递热量"是通过来完
成的。	

三、计算题

- 1. 1 mol 氢气,在 1 标准大气压、温度 $20 \text{ } \mathbb{C}$ 时,先使其等温膨胀至原体积的 2 倍,然后保持体积不变,加热到 $60 \text{ } \mathbb{C}$ 。试计算过程中气体吸收的热量、气体对外所做的功和气体内能的增量。
- 2. 一空气泡自深为H的海底浮出海面,海水的绝对温度T与深度h的关系为 $T = T_0 \frac{a}{H}h$ 。已知在海面上气泡体积为 V_0 ,压强为 p_0 ,海水的密度为 ρ ,求气泡上浮过程中对外做的功以及吸收的热量。(不计气泡的表面张力因素,设气泡内气体当作双原子理想气体。)