Import Modules

Import libraries required for ETL and Feature Selection

```
In [1]: # Set the seed value for the notebook so the results are reproducible
    from numpy.random import seed
    seed(42)

import numpy as np
import pandas as pd

import warnings
warnings.simplefilter('ignore', FutureWarning)

%matplotlib inline
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
    from tensorflow.keras.utils import to_categorical
    from sklearn.preprocessing import LabelEncoder, StandardScaler, MinMaxScaler,
    RobustScaler, minmax_scale, MaxAbsScaler, Normalizer, QuantileTransformer, Pow
erTransformer
```

Method Definitions

Plot Histogram Method

```
In [3]: # Code to prep X and y
        def prepData(data, scaler):
            # drop the dependent column from the independent columns
            X = data.drop(dependent, axis=1)
            # set the dependent column to y
            y = data[dependent]
            # Make a copy of the independent field matrix
            copyData = X.copy()
            # call pandas get dummies to convert to 1's and 0's in separate columns
            X = pd.get dummies(copyData)
            # Split the data into test and train groups
            X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42,
        stratify=y)
            # Save data out for use in other Jupyter Notebooks
            X_train_csv = X_train.to_csv ('X_train.csv', index = None, header=True)
            X_test_csv = X_test.to_csv ('X_test.csv', index = None, header=True)
            y_train_csv = y_train.to_csv ('y_train.csv', index = None, header=True)
            y_test_csv = y_test.to_csv ('y_test.csv', index = None, header=True)
            # Apply a scalar, first train then scale test and train data
            # TO DO: Insert function to select scalar
            X scaler = scaler.fit(X train)
            X train scaled = X scaler.transform(X train)
            X_test_scaled = X_scaler.transform(X_test)
            # Label encode the dependent variable, then Hot encode it
            label_encoder = LabelEncoder()
            label_encoder.fit(y_train)
            y train categorical = to categorical(label encoder.transform(y train))
            y_test_categorical = to_categorical(label_encoder.transform(y_test))
            return X, y, X train scaled, X test scaled, y train categorical, y test ca
        tegorical
```

Arythmia - Cleveland Data Set

Create standard csv with header

```
In [4]: ####### Dependent variable (column) in our dataset #########
        # Arythmia data set: We will use the binary sick/healthy column buff as our o
        utput and remove the 'healthy' column
        dependent = 'buff'
        remove = 'healthy'
        # Set the original file and new file names
        originalFile = 'cleve.csv'
        csvFile = 'cleveland.csv'
        clean_csv = 'cleveland_clean.csv'
        scalers = {"Robust": RobustScaler(),
                    "Standard": StandardScaler(),
                    "MinMax": MinMaxScaler(),
                    "MaxAbs": MaxAbsScaler(),
                    "Normalizer": Normalizer(),
                    "Quantile": QuantileTransformer(),
                    "Power": PowerTransformer()}
In [5]: # Open the Cleveland original file, add a header and convert to csv
        with open(originalFile) as fin, open(csvFile,'w') as fout:
            fout.write("age,sex,chestPain,trestBps,cholesterol,bloodSugar,ecg,maxHeart
        Rate, exerciseInducedAngina, oldPeak, slope, vesselsColored, thal, buff, healthy \n")
            for line in fin:
                fout.write( ",".join(line.split()) + "\n" )
```

Describe the data and look for unique values, remove bad data and any columns not needed

```
In [6]: # Describe the continuous data and look for any anomalies
    data = pd.read_csv(csvFile)
    data.describe()
```

Out[6]:

oldPeak	maxHeartRate	cholesterol	trestBps	age	
303.000000	303.000000	303.000000	303.000000	303.000000	count
1.039604	149.646865	246.264026	131.623762	54.366337	mean
1.161075	22.905161	51.830751	17.538143	9.082101	std
0.000000	71.000000	126.000000	94.000000	29.000000	min
0.000000	133.500000	211.000000	120.000000	47.500000	25%
0.800000	153.000000	240.000000	130.000000	55.000000	50%
1.600000	166.000000	274.500000	140.000000	61.000000	75%
6.200000	202.000000	564.000000	200.000000	77.000000	max

```
In [7]: # determine column names to be able to look at all unique values for classific
         ation columns
         data.columns
Out[7]: Index(['age', 'sex', 'chestPain', 'trestBps', 'cholesterol', 'bloodSugar',
                 'ecg', 'maxHeartRate', 'exerciseInducedAngina', 'oldPeak', 'slope',
                 'vesselsColored', 'thal', 'buff', 'healthy'],
               dtype='object')
In [8]: data['sex'].value_counts()
Out[8]: male
                 207
         fem
                  96
         Name: sex, dtype: int64
         data['chestPain'].value_counts()
In [9]:
Out[9]: asympt
                   143
                    87
         notang
         abnang
                     50
                    23
         angina
         Name: chestPain, dtype: int64
In [10]: data['bloodSugar'].value counts()
Out[10]: fal
                 258
         true
                  45
         Name: bloodSugar, dtype: int64
In [11]: | data['ecg'].value_counts()
Out[11]: norm
                 152
                 147
         hyp
         abn
                   4
         Name: ecg, dtype: int64
In [12]:
         data['exerciseInducedAngina'].value counts()
Out[12]: fal
                 204
                  99
         true
         Name: exerciseInducedAngina, dtype: int64
In [13]: data['slope'].value_counts()
Out[13]: up
                 142
         flat
                 140
         down
                  21
         Name: slope, dtype: int64
```

```
In [14]: | data['vesselsColored'].value_counts()
Out[14]: 0.0
                175
         1.0
                 65
         2.0
                 38
         3.0
                 20
                  5
         ?
         Name: vesselsColored, dtype: int64
In [15]: | # drop the data with rows where ? appear
         data.drop(data[data.vesselsColored == '?'].index, inplace=True)
In [16]: data['thal'].value_counts()
Out[16]: norm
                 163
         rev
                 115
         fix
                  18
                   2
         Name: thal, dtype: int64
In [17]: # drop the data with rows where ? appear
         data.drop(data[data.thal == '?'].index, inplace=True)
In [18]: data['buff'].value_counts()
Out[18]: buff
                 160
         sick
                 136
         Name: buff, dtype: int64
In [19]: | data['healthy'].value_counts()
Out[19]: H
               160
         S1
                53
         S2
                35
         S3
                35
         S4
                13
         Name: healthy, dtype: int64
In [20]: |# We determined we were discarding this column and using the binary column 'bu
         ff' instead to indicate healthy vs sick
         # so delete this column
         data = data.drop(remove, axis=1)
```

In [21]: #display the data without ? rows data

Out[21]:

	age	sex	chestPain	trestBps	cholesterol	bloodSugar	ecg	maxHeartRate	exerciseIndu
0	63.0	male	angina	145.0	233.0	true	hyp	150.0	
1	67.0	male	asympt	160.0	286.0	fal	hyp	108.0	
2	67.0	male	asympt	120.0	229.0	fal	hyp	129.0	
3	37.0	male	notang	130.0	250.0	fal	norm	187.0	
4	41.0	fem	abnang	130.0	204.0	fal	hyp	172.0	
298	48.0	male	notang	124.0	255.0	true	norm	175.0	
299	57.0	male	asympt	132.0	207.0	fal	norm	168.0	
300	49.0	male	notang	118.0	149.0	fal	hyp	126.0	
301	74.0	fem	abnang	120.0	269.0	fal	hyp	121.0	
302	54.0	fem	notang	160.0	201.0	fal	norm	163.0	

296 rows × 14 columns

Save our cleaned data set

```
In [22]: # overwrite the csv so we have a clean copy
     export_csv = data.to_csv (clean_csv, index = None, header=True)
```

Now plot each continuous column in a histogram to examine the distribution

These can be referenced when selecting machine learning options

In [23]: plotHistogram(data['age'], 'Age')

In [24]: plotHistogram(data['trestBps'], 'Trest Bps')

In [25]: plotHistogram(data['cholesterol'], 'Cholesterol')

In [26]: plotHistogram(data['maxHeartRate'], 'Max Heart Rate')

In [27]: plotHistogram(data['oldPeak'], 'Old Peak')

Let's Try Some Feature Selection Techniques

This is an attempt to limit the number of features used in the models to simplify and remove noise

NOTE: These three methods and code were obtained from the following website:

https://towardsdatascience.com/feature-selection-techniques-in-machine-learning-with-python-f24e7da3f36e (https://towardsdatascience.com/feature-selection-techniques-in-machine-learning-with-python-f24e7da3f36e)

First we need to create our X and y

Out[28]:

	age	trestBps	cholesterol	maxHeartRate	oldPeak	sex_fem	sex_male	chestPain_abnang
0	63.0	145.0	233.0	150.0	2.3	0	1	0
1	67.0	160.0	286.0	108.0	1.5	0	1	0
2	67.0	120.0	229.0	129.0	2.6	0	1	0
3	37.0	130.0	250.0	187.0	3.5	0	1	0
4	41.0	130.0	204.0	172.0	1.4	1	0	1
298	48.0	124.0	255.0	175.0	0.0	0	1	0
299	57.0	132.0	207.0	168.0	0.0	0	1	0
300	49.0	118.0	149.0	126.0	0.8	0	1	0
301	74.0	120.0	269.0	121.0	0.2	1	0	1
302	54.0	160.0	201.0	163.0	0.0	1	0	0

296 rows × 28 columns

Univariate Selection using ChiSquare

```
Specs
                                  Score
27
                     thal_rev 34.200294
17 exerciseInducedAngina true 33.418728
9
             chestPain_asympt 32.604218
                    thal_norm 28.482451
26
           vesselsColored 0.0 21.540903
21
                     slope up 18.872001
20
19
                   slope flat 15.823077
    exerciseInducedAngina_fal 14.756322
16
             chestPain abnang 14.126050
7
             chestPain_notang 13.687783
10
23
           vesselsColored 2.0 12.695136
5
                      sex_fem 12.124316
22
           vesselsColored_1.0 11.352036
                      oldPeak 10.745139
4
24
           vesselsColored 3.0 7.004118
6
                     sex_male 5.700838
13
                      ecg abn 3.529412
8
             chestPain_angina 2.826471
15
                     ecg_norm 2.605742
                 maxHeartRate 1.955725
3
14
                      ecg_hyp 1.548633
                          age 0.975826
0
                     thal_fix 0.741422
25
18
                   slope down 0.684007
                     trestBps 0.355538
1
2
                  cholesterol 0.136939
12
              bloodSugar true 0.022368
```

Feature Importance

```
In [30]: from sklearn.ensemble import ExtraTreesClassifier
    import matplotlib.pyplot as plt
    model = ExtraTreesClassifier()
    model.fit(X_train_scaled,y_train_categorical)
    print(model.feature_importances_) #use inbuilt class feature_importances of tr
    ee based classifiers
    #plot graph of feature importances for better visualization
    feat_importances = pd.Series(model.feature_importances_, index=X.columns)
    feat_importances.nlargest(15).plot(kind='barh')
    plt.show()
```

```
[0.03502496 0.04442578 0.03073113 0.04561243 0.0516222 0.01905353 0.03392827 0.00337018 0.0093416 0.13287963 0.03397756 0.0074519 0.01069452 0.00024183 0.02261995 0.02012887 0.01899636 0.06371845 0.01080309 0.02556698 0.04095077 0.08324723 0.04526443 0.0121062 0.01591545 0.00653634 0.08058911 0.09520124]
```


Correlation Matrix with Heatmap

Notice that only continuous variables are plotted and there are no variables with a high correlation in our dataset

```
In [31]: import seaborn as sns

#get correlations of each features in dataset
corrmat = data.corr()
top_corr_features = corrmat.index
plt.figure(figsize=(5,5))

#plot heat map
g=sns.heatmap(data[top_corr_features].corr(),annot=True,cmap="RdYlGn")
corrmat
```

Out[31]:

	age	trestBps	cholesterol	maxHeartRate	oldPeak
age	1.000000	0.288701	0.200920	-0.395989	0.199373
trestBps	0.288701	1.000000	0.126705	-0.051817	0.196793
cholesterol	0.200920	0.126705	1.000000	-0.001947	0.042144
maxHeartRate	-0.395989	-0.051817	-0.001947	1.000000	-0.346742
oldPeak	0.199373	0.196793	0.042144	-0.346742	1.000000

In []: