

VERSION 2

APR 13, 2023

(HTTM: Illumina library preparation V.2

Antoine Champie¹

¹Université de Sherbrooke

Antoine Champie

ABSTRACT

Part of the HTTM protocol dedicated to the preparation of Illumina sequencing libraries.

OPEN ACCESS

dx.doi.org/10.17504/protocol s.io.n2bvj8oowgk5/v2

External link:

https://doi.org/10.1371/journa l.pone.0283990

Protocol Citation: Antoine Champie 2023. HTTM: Illumina library preparation. protocols.io

https://dx.doi.org/10.17504/p rotocols.io.n2bvj8oowgk5/v2

MANUSCRIPT CITATION:

Champie A, Grandmaison AD, Jeanneau S, Grenier F, Jacques P, Rodrigue S (2023) Enabling low-cost and robust essentiality studies with highthroughput transposon mutagenesis (HTTM). PLoS ONE 18(4): e0283990. doi: 10.1371/journal.pone.028399

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

MATERIALS

Preparation of Nextera Adaptaters:

Created: Aug 24, 2022

Nextera (NxT) adapters are prepared by hybridisation of the following primers:

Last Modified: Apr 13, 2023

PROTOCOL integer ID: 69139

	A	В
Nxt-XTv2- B-N701-T CAAGCAGAAGACGGCATACGAGATTCG GAGATGTGTATAAGAGACAGT		CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTCTCGTGGGCTCG GAGATGTGTATAAGAGACAGT
	Nxt-XTv2- B-3R-ac3- 5phos	/5Phos/CTGTCTCTATACACATCTCCGAGCCCACGAGAC/3InvdT/

- Preparation of the 5X annealing buffer (5X Tris NaCl buffer : 50 mM Tris, pH 7.5-8, 250 mM NaCl) :
- 500 µl Tris-HCl 1M pH 7.5
- 500 µl NaCl 5M
- 9 ml H20 mol.-grade
- Preparation of the adapters (40 μ M 50 μ L) :
- Resuspend both primers in water to obtain 100 μM stocks
- Mix 20 μl of each (Nxt-XTv2-B-N7XX-T and Nxt-XTv2-B-3R-ac3-phos5')
- Add 10 µl of 5X annealing buffer
- Annealing reaction in a thermocycler (decrease temperature from 98 to 4C (-0.1C/cycle(10s/cycle)))

Primers used for the first PCR:

A	В
Nxt_A	AATGATACGGCGACCACCGAGATCTACAC
Nxt_B CAAGCAGAAGACGGCATACGAGAT	

Primers template for barcoding PCR:

	A	В
Nxt_i5_barco ding AATGATACGGCGACCACCGAGATCTACAC [8 Nu Index] TCGTCGGCAGCGTCAGATGTGTA Nxt_i7_barco ding CAAGCAGAAGACGGCATACGAGAT [8 Nu Index] GTCTCGTGGGCTCGGAGATGTGTATAAG		AATGATACGGCGACCACCGAGATCTACAC [8 Nu Index] TCGTCGGCAGCGTCAGATGTGTA
		CAAGCAGAAGACGGCATACGAGAT [8 Nu Index] GTCTCGTGGGCTCGGAGATGTGTATAAG

BEFORE START INSTRUCTIONS

All steps and master mixes need to be kept on ice as much as possible. Thermocyclers need to be cooled at 4C before inserting sample plate.

Libraries

1h 34m

- 1 Transfer 2.5µl of DNA from the DNA extraction plate to a new PCR plate.
- 2 Prepare a fragmentation master mix with:

A	В
NEB Ultra II FS buffer	77 µl
NEB Ultra II FS enzyme	22 µl
Molecular grade water	11 µl

- 3 Add $\underline{\mathsf{A}}$ 1 μL of the fragmentation master mix to each well.
- 4 Incubate in a thermocycler with the following protocol:

45m

- 00:15:00 at \$\ \$\ 37 \cdot \cdot
- 00:30:00 at \$\cdot 65 \cdot C
- Add \triangle 1 μ L of 4 μ M Nextera (NxT) adaptors to each well.
- 6 Prepare a ligation master mix with :

A	В
NEB Ultra II ligation master mix	377.4 µl
NEB Ultra II ligation enhancer	12.1 µl

- 7 Add \underline{A} 3.5 μL of ligation master mix to each well.
- 8 Incubate in a thermocycler with the following protocol:

•	© 00:30:00	at	₿ 20 °C
•	(:) 00:10:00	at	\$ 65 °C

9 Prepare a PCR master mix with:

A	В
NxT_A primer 20 μM	880 µl
Nxt_B primer 20 µM	880 µl
Molecular grade water	8360 µl
PCR Mix 2X	11000 µl

- 10 Add \perp 192 μ L of PCR master mix to each well.
- 11 Split the PCR reaction into 4 different plates (50µl per plate).
- 12 Incubate each plate in a thermocycler with the following cycles :

■ 👏 00:00:30 at 🖔 98 °C

■ 00:00:15 at \$\ 98 °C

■ 00:00:30 at \$ 72°C

■ Repeat from step 2 for 20~25 cycles*

40m

3m 15s

■ 00:02:00 **\$** 72 °C

- Pool the 4 PCR replicates together in a.
- 14 Transfer $\mathbb{Z}_{2\mu L}$ of DNA from the pool plate to a new PCR plate.
- 15 Add \underline{A} 2 μL of each barcoding primer to the DNA :
 - Nxt_i5_barcoding
 - Nxt_i7_barcoding
- 16 Prepare a PCR master mix with:

Α	В
Molecular grade water	2090 μΙ
PCR mix 2X	2750 μΙ

- 17 Add $\underline{\mathbb{Z}}$ 44 μL of the PCR master mix to each well of the plate.
- 18 Incubate in a thermocycler with the following protocol:

3m 45s

- Ø 00:00:30 at \$ 98 °C
- 🕙 00:00:15 at ឺ 98 °C
- Repeat from step 2 for 5 cycles
- **③** 00:02:00 at **⑤** 72 °C

- 19 Pool together $\angle 2 \mu L$ of each sample.
- 20 Purify with SPRI beads using a 0.8 ratio. Resuspend with \pm 50 μL of molecular grade water.
- 21 Proceed with QC and sequencing.