

Devoir maison n°16

à rendre le 20/05

Le but de cet exercice est l'étude de l'application Φ définie sur $\mathbb{R}_n[X]$ avec n un entier fixé non nul par :

$$\Phi: P(X) \mapsto P(X+1) - P(X)$$

afin de permettre le calcul de somme d'entiers.

On note pour tout k entier non nul Φ^k la composée k-ième de l'application Φ .

- 1. (a) Donner la formule du binôme de Newton.
 - (b) Soit *k* un entier non nul. Montrer que :

$$(X+1)^k = \sum_{i=0}^k \binom{k}{i} X^i.$$

(c) On considère les polynômes $P_0(X) = 1$, $P_1(X) = X$, $P_2(X) = X^2$ et $P_3(X) = X^3$. Montrer que :

$$\Phi\left(P_{0}\right) \left(X\right) =0,$$

$$\Phi\left(P_{1}\right)\left(X\right)=1,$$

$$\Phi(P_2)(X) = 2X + 1,$$

$$\Phi(P_3)(X) = 3X^2 + 3X + 1.$$

- (d) Calculer $\Phi^2(P_2)(X)$ et $\Phi^3(P_2)(X)$.
- (e) Montrer que Φ est un endomorphisme de $\mathbb{R}_n[X]$.
- (f) Montrer que pour tout polynôme non constant P de degré k avec k un entier non nul, $\Phi(P)$ est un polynôme de degré k-1.
- (g) Calculer le noyau de Φ .
- (h) Donner l'image de Φ .
- (i) Soient P et Q deux éléments de $\mathbb{R}_n[X]$, tels que $\Phi(Q) = P$. Montrer que :

$$\sum_{i=0}^{n} P(i) = Q(n+1) - Q(0).$$

2. (a) Considérons la famille $(H_i)_{i \in [0,n]}$ de $\mathbb{R}_n[X]$ où pour chaque i non nul,

$$H_i(X) = \frac{X(X-1)\cdots(X-i+1)}{i!} = \frac{\prod_{k=0}^{i-1} (X-k)}{i!}$$

et $H_0(X) = P_0$ le polynôme constant égal à 1.

Prouver que $(H_i)_{i \in [\![0,n]\!]}$ est une base de $\mathbb{R}_n[X]$.

- (b) Montrer que pour tout i entier entre 1 et n, $H_i(0) = 0$.
- (c) Montrer que pour tout i entier entre 1 et n, $\Phi(H_i) = H_{i-1}$.
- (d) Montrer que pour tout i entier entre 1 et n, $\Phi^{i}(H_{i}) = 1$.
- (e) Soit P un polynôme de $\mathbb{R}_n[X]$ tel que $P(X) = \sum_{k=0}^n a_k H_k(X)$, avec a_k réel pour tout k entier entre 0 et n.

Montrer que $P(0) = a_0$ et que pour tout l, un entier fixé entre 1 et n, $a_l = \Phi^l(P)(0)$.

(f) En déduire que tout polynôme P de $\mathbb{R}_n[X]$ peut s'écrire (de manière unique) sous la forme :

$$P(X) = \sum_{k=0}^{n} \Phi^{k}(P)(0) H_{k}(X).$$

- (g) Vérifier que $X = 0 \times H_0(X) + 1 \times H_1(X)$.
- (h) Déduire à l'aide de 1.(i), de 2.(c) et de 2.(g) que :

$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2}.$$

- (i) Vérifier que $X^2 = 0 \times H_0(X) + 1 \times H_1(X) + 2 \times H_2(X)$.
- (j) En déduire que $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$.
- (k) Proposer en Python une fonction qui renvoie la valeur de la somme des cubes des *n* premiers entiers prenant en argument un entier naturel *n* passé en paramètre.