Bausatz

Erweiterungsplatine DISP-SW

für den Raspberry PI *

Ingenieurbüro Binder Fernecker Tal 21 79364 Malterdingen

Email: dennis.binder@gmx.de

Es wird keine Gewährleistung für dieses Produkt übernommen.

^{*} Der Aufbau, die Benutzung und Inbetriebnahme dieses Bausatzes erfolgt auf eigene Verantwortung und Gefahr. Der Ersteller dieser Dokumentation wie auch der Ersteller des Bausatzes übernehmen keinerlei Verantwortung für etwaige Folgekosten die sich durch die Benutzung oder den Zusammenbau dieses Bausatzes ergeben.

Inhaltsverzeichnis

1Einleitung und Überblick	3
1.1Funktionsumfang und Ausstattung	
2Montage des Bausatz	4
2.1Notwendiges Werkzeug	4
2.2Löten	4
2.3Bestückung der Platine	5
2.3.1Widerstände	5
2.3.2Kondensatoren	6
2.3.37-Segment Anzeige.	6
2.3.4Transistoren	7
2.3.5Weitere ICs	7
2.3.6Encoder.	8
2.3.7Buchsenleiste.	8
2.3.8Drehknopf	8
2.3.9Abstandhalter	
2.4Optische Überprüfung der Platine.	9
3Ausschalten des Raspberry Pi und Stecken der Erweiterungsplatine	10
4Vorbereiten des Raspberry Pi	
4.1Installieren der Bibliothek wiringPi	10
4.2Installieren der Bibliothek dispsw	10
5Inbetriebnahme der Erweiterungsplatine	11
5.1Python Beispiel 1	11
5.2Python Beispiel 2	
5.3C Beispiel 1	12
5.4C Beispiel 2	12
6Schaltung	13

1 Einleitung und Überblick

Durch diesen Bausatz wird der Einsatzbereich eines Raspberry Pi erweitert. Der Bausatz verfügt über eine Anzeigeeinheit (bestehend aus 47-Segment Elementen) sowie einem Drehencoder mit integriertem Schalter.

Durch die Anzeigeeinheit kann der Raspberry aktuelle Informationen direkt sichtbar machen.

In Verbindung mit dem Drehencoder sind komplexe Menuimplementierungen möglich, die eine vollständige Steuerung des Raspberry ermöglichen.

Video verfügbar auf Youtube: https://www.youtube.com/watch?v=MtWn9esdVoY

1.1 Funktionsumfang und Ausstattung

Technische Daten:

- Abmessungen (L x B x H) 53 x 49 x 33
- Gewicht 30g
- Spannungsversorgung: 3.3V
- Aufgenommene Leistung: P = 120 mW
- CPU Last in Betrieb < 5%
- Kompatibel mit Raspberry Pi B+, A+ und Raspberry Pi 2

Ausstattung:

- 4 7-Segment Anzeigen
- 1 Drehencoder
- 1 Schalter (integriert im Drehencoder)
- 40 pol. Buchsenleiste zur direkten Verbindung mit dem Raspberry Pi
- vollständig steuerbar durch Programmierung vom Raspberry Pi
- Bibliothek zur Ansteuerung der Platine verfügbar
- Beispielanwendung vorhanden für die Programmiersprachen Python und C.

Lieferumfang:

- unbestückte Platine DISP-SW
- alle zum Aufbau und Betrieb notwendigen Bauteile (ohne Raspberry Pi)

2 Montage des Bausatz

Der folgende Abschnitt beschreibt den Zusammenbau der Erweiterungsplatine.

Lesen Sie dieses Kapitel bitte zuerst vollständig durch, bevor Sie mit dem Zusammenbau beginnen.

2.1 Notwendiges Werkzeug

Für die Montage des Distanzmoduls werden folgende Werkzeuge benötigt:

- Lötkolben mit Schwämmchen
- Elektroniklötzinn
- Entlötlitze
- Multimeter (mit Durchgangsprüfer)
- Seitenschneider

2.2 Löten

Zum Löten sollten Sie am besten einen Lötkolben oder eine Lötstation mit 50 Watt und feiner Spitze verwenden. Falls Sie eine regelbare Lötstation benutzen, sollten Sie eine hohe Temperatur von 370 °C wählen, da die Platine wie alle heutigen Platinen bleifrei verzinnt ist. Als Lötdraht sollten Sie flussmittelhaltiges Elektroniklötzinn mit einem Durchmesser von 0,5 mm verwenden. Die Lötzeit sollte nur wenige Sekunden betragen, da die meisten Bauteile empfindlich auf die hohe Temperatur reagieren.

2.3 Bestückung der Platine

In diesem Abschnitt wird die Bestückung der Platine mit den vorhandenen Bauteilen beschrieben. Es ist wichtig, dass Sie diese Reihenfolge einhalten, da niedrige Bauteile unbedingt zuerst bestückt werden sollten.

2.3.1 Widerstände

Bauteile	R1, R7	R2,	R3,	R4,	R5,	R6,
Bauteilwert	120	Ohm				

Es werden die Widerstände R1, R2, R3, R4, R5, R6 und R7 eingelötet.

Bauteile	R8, R9. R10. R11
Bauteilwert	75 kOhm

Es werden die Widerstände R8, R9, R10, R11 eingelötet.

Bauteile	R12, R13
Bauteilwert	4,7 kOhm

Es werden die Widerstände R12, R13 eingelötet.

Bauteile	R14
Bauteilwert	13 kOhm

Es wird der Widerstand R14 eingelötet.

2.3.2 Kondensatoren

Bauteile	C1
Bauteilwert	100nF

Es wird der Kondensator C1 eingelötet.

2.3.3 7-Segment Anzeige

Bauteile	IC3, IC4, IC5, IC6
Bauteilwert	Kingbright 7-Segment

Es werden die 7-Segment Displays eingelötet.

2.3.4 Transistoren

ĺ	Bauteile	IC1
	Bauteilwert	CD4511

Es werden die Transistoren Q1, Q2, Q3 und Q4 eingelötet.

Achtung: Die abgeschrägte Seite des Transistorgehäuses muss mit dem Aufdruck der Platine übereinstimmen!

2.3.5 Weitere ICs

Bauteile	IC1			
Bauteilwert	CD451	1		
E c	wind	dac	TC1	CD/1511

Es wird das IC1 CD4511 eingelötet.

Achtung: Das IC muss wie im Bild dargestellt in die Platine eingesetzt werden. Einkerbung des IC mit dem Aufdruck der Platine vergleichen!

2.3.6 Encoder

Bauteile	S1
Bauteilwert	AB-Encoder

Es wird der AB Encoder eingelötet.

2.3.7 Buchsenleiste

Bauteile	JP1
Bauteilwert	40 pol. Buchsenleiste

Es wird die Buchsenleiste eingelötet.

Achtung: Die Buchsenleiste wird auf der Platinenunterseite gesteckt und auf der Oberseite gelötet.!

2.3.8 Drehknopf

Bauteile	Drehknopf
Bauteilwert	-

Der Drehknopf wird auf den Encoder gesteckt.

2.3.9 Abstandhalter

Bauteile	Korkabstandshalter
Bauteilwert	-

Der Abstandshalter wird auf die Unterseite gedrückt. Der Abstandshalter muss wie im Bild veranschaulicht positioniert werden !

2.4 Optische Überprüfung der Platine

Bevor die Platine erstmalig auf den Raspberry Pi gesteckt wird, müssen erst sämtliche Bauteile auf die richtige Bestückung überprüft werden.

Dazu müssen zunächst sämtliche Bauteilwerte überprüft werden. Anschliesend müssen der korrekte Einbau und insbesondere die richtige Orientierung beziehungsweise Polung überprüft werden.

Danach sollte man alle Lötstellen auf Kurzschlusse prüfen und sich vergewissern, dass weder auf der Ober- noch auf der Unterseite der Platine Lötzinn- oder Drahtreste vorhanden sind.

3 Ausschalten des Raspberry Pi und Stecken der Erweiterungsplatine

Die Erweiterungsplatine darf nur im Auszustand des Raspberry PI auf die 40 pol. Steckerleiste gesteckt werden.

4 Vorbereiten des Raspberry Pi

Für die Ansteuerung des Raspberry Pi ist es notwendig 2 Bibliotheken zu installieren, die Sie über eine funktionierende Netzwerkverbindung mit dem Internet bekommen.

4.1 Installieren der Bibliothek wiringPi

Installieren Sie die Bibliothek wiringPi auf Ihrem Raspberry Pi wie folgt.

```
pi@raspberry $ cd ~
pi@raspberry $ git clone git://git.drogon.net/wiringPi
pi@raspberry $ cd wiringPi
pi@raspberry $ sudo ./build
```

Die Bibliothek wiringPi ist nun installiert und kann verwendet werden.

4.2 Installieren der Bibliothek dispsw

```
Installieren Sie die Bibliothek dispsw auf Ihrem Raspberry Pi wie folgt. pi@raspberry $ cd ~
```

```
pi@raspberry $ git clone https://github.com/debind/dispsw
```

```
pi@raspberry $ cd dispsw
```

```
pi@raspberry $ make all
```

```
pi@raspberry $ sudo make install
```

Die Bibliothek dispsw ist nun installiert und kann verwendet werden.

5 Inbetriebnahme der Erweiterungsplatine

Alle notwendigen Voraussetzungen für die Inbetriebnahme der Platine sind nun abgeschlossen. Jetzt kann die Platine nach eigenem Gusto gesteuert werden.

Da aller Anfang schwer ist befinden sich zusätzlich zur Bibliothek dispsw zwei Beispielanwendungen im gleichen Ordner (~/dispsw) wie die Quellen der Bibliothek.

Die Beispiele sind jeweils in Python oder C verfügbar.

5.1 Python Beispiel 1

pi@raspberry \$ cd ~/dispsw

pi@raspberry \$ sudo python example1.py

Daraufhin erscheinen auf dem Display die Zahlen 1, 2, 3, 4. Das Drücken des Encoders aktiviert das Blinken des Displays oder schaltet dieses wieder aus.

Alle Aktivitäten am Encoder (Drücken, Drehen) werden auf der Console ausgegeben.

5.2 Python Beispiel 2

pi@raspberry \$ cd ~/dispsw

pi@raspberry \$ sudo python example2.py

Beispiel 2 implementiert ein Menu mit einer Menutiefe von 9. Durch Drehen am Drehencoder kann ein entsprechendes Menu ausgewählt werden. Durch Drücken wird der Editiermodus des Menu betreten und die einzustellende Zahl beginnt zu blinken. Durch nochmaliges Drehen kann nun der Zahlenwert geändert werden. Nochmaliges Drücken ermöglicht das Beenden der Eingabe und den Wechsel zu einem weiteren Menu.

Auch hier werden alle Aktivitäten am Drehencoder auf der Console widergegeben.

5.3 C Beispiel 1

```
pi@raspberry $ cd ~/dispsw
pi@raspberry $ gcc example1.c -ldispsw -o example1
pi@raspberry $ sudo ./example1
```

Daraufhin erscheinen auf dem Display die Zahlen 1, 2, 3, 4. Das Drücken des Encoders aktiviert das Blinken des Displays oder schaltet dieses wieder aus.

Alle Aktivitäten am Encoder (Drücken, Drehen) werden auf der Console ausgegeben.

5.4 C Beispiel 2

```
pi@raspberry $ cd ~/dispsw
pi@raspberry $ gcc example2.c -ldispsw -o example2
pi@raspberry $ sudo ./example2
```

Beispiel 2 implementiert ein Menu mit einer Menutiefe von 9. Durch Drehen am Drehencoder kann ein entsprechendes Menu ausgewählt werden. Durch Drücken wird der Editiermodus des Menu betreten und die einzustellende Zahl beginnt zu blinken. Durch nochmaliges Drehen kann nun der Zahlenwert geändert werden. Nochmaliges Drücken ermöglicht das Beenden der Eingabe und den Wechsel zu einem weiteren Menu.

Auch hier werden alle Aktivitäten am Drehencoder auf der Console widergegeben.

6 Schaltung

Bauteilliste:

Widerstand (braun - rot - braun - gold) Widerstand (blau - grau - orange - gold)	R1, R2, R3, R4, R5, R6, R7 R8, R9, R10, R11	120 Ohm 68k Ohm
Widerstand (gelb - lila - schwarz - braun)	R12, R13	4.7k Ohm
Widerstand (braun - orange - schwarz - rot)	R14	13 kOhm
Kondensator	C1	100nF
Transistor	Q1, Q2, Q3, Q4	2N7000A
Integrierte Schaltung	IC1	CD4511BE
7-Segment Anzeige	IC3, IC4, IC5, IC6	-
Buchsenleiste 2 x 20	JP1	-
Drehencoder + Schalter	S1	-
Drehknopf	Schwarz, Roter Strich	-
Gummi Abstandshalter	-	-