Total No. of Questions—8]

[Total No. of Printed Pages—6

Seat	
No.	

[5152]-133

S.E. (E&TC/Electronics) (I Sem.) EXAMINATION, 2017 NETWORK THEORY

(2012 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- **N.B.** :— (i) Neat diagrams must be drawn wherever necessary.
 - (ii) Figures to the right indicate full marks.
 - (iii) Your answers will be valued as a whole.
 - (iv) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
 - (v) Assume suitable data, if necessary.
- 1. (a) Find the current passing through the impedance (1 + j1) in the circuit shown below, using Nortons theorem. [6]

P.T.O.

(b) What is meant by oriented graph? Find the voltage drop equations for the oriented graph shown below. [6]

2. (a) State Norton's theorem and find the Norton's equivalent circuit at the terminals xy of the circuit shown below. [6]

(b) Explain the tree with example and determine the possible numbers of tree of a incidence matrix [A] of a graph is given by:

$$[A] = \begin{bmatrix} -1 & 0 & 0 & 1 \\ 1 & -1 & 1 & 0 \\ 0 & 1 & -1 & -1 \end{bmatrix}_{3\times4}$$

- (b) For a parallel rersonant circuit, find
 - (i) Specify the value of the circuit capacitor
 - (ii) Resistance of the circuit at parallel resonance
 - (iii) What is the absolute bandwidth of the resonant circuit ?
 - (iv) The bandwidth of the circuit, when it is matched with the generator impedance.

When Q = 75, $L = 120 \mu H$ and resonating frequency of 1 MHz. [6]

Or

4. (a) The series resonant circuit has a lagging phase angle of 30° at $\omega_{\rm H}$ = 12000 rad/sec. at what frequency will be leading by 30° . [6]

[5152]-133 P.T.O.

(b) The circuit shown below find, the current flowing through the inductor, when switch is at position 'A' and 'B'. [6]

- 5. (a) Design a HPF, 'T' and ' π ' section to work into impedance $500~\Omega$, and have a cut-off frequency of 1 kHz. For this, calculate the phase angle ' β ' at frequency 1.5 kHz and attenuation ' α ' in neper at frequency of 0.9 kHz.
 - (b) A symmetrical 'T' attenuator shown below. Find OC & SC impedance, Z_0 . attenuation conatant in dB: [6]

[5152]-133

- 6. (a) Design a constant 'K' Π section HPF to have a design impedance of 600 Ω The filter must have attenuation of 8.11 dB at 4.5 kHz and for this design calculate, phase angle in degree at frequency 5.5 kHz.
 - (b) Find the image and iterative impedance for the asymmetrical Υ section whose series arm impedance is 400 Ω and shunt arm impedance is 600 Ω . Derive the formula used. [7]
- 7. (a) What is meant by poles and zeros? For the network shown below find the Z(s): [7]

(b) The Z-parameter of a circuit are given by: $\begin{bmatrix} 4 & 1 \\ 3 & 3 \end{bmatrix}$.

Obtain the transmission parameters

- 8. (a) Derive the condition of Reciprocity and symmetry for the ABCD parameter. [6]
 - (b) Determine the Y parameters for the Network. [7]

[5152]-133