Czech ACM Student Chapter

Charles University in Prague Slovak University of Technology University of Žilina Matej Bel University in Banská Bystrica

Czech Technical University in Prague

Technical University of Ostrava Pavol Jozef Šafárik University in Košice Masaryk University University of West Bohemia

CTU Open Contest 2011

Simple Polygon

polygon.c, polygon.C, polygon.java, polygon.p

A polygon P determined by points p_1, p_2, \ldots, p_n is a closed chain of line segments (called edges) $p_1p_2, p_2p_3, \ldots, p_np_1$ in the plane. Polygon P is simple, if no two edges have any points in common, with the obvious exception of two consecutive segments having one common point (called vertex). Note however, that if a vertex is part of any other (third) edge, the polygon is no longer simple.

Any polygon that is not simple is called *self-intersecting*. In two example figures below, the first polygon is simple, the second one is self-intersecting.

Your task is to determine whether a given polygon is simple or self-intersecting.

Input Specification

The input contains several test cases. Each test case corresponds to one polygon. First line of the test case contains N, the number of points $(1 \le N \le 40\,000)$. Each of the following N lines contains coordinates of point P_i , that is X_i , Y_i separated by space, $1 \le X_i$, $Y_i \le 30\,000$.

The last test case is followed by a line containing zero.

Output Specification

For each test case output either "YES" (the polygon is simple) or "NO" (the polygon is self-intersecting).

Sample Input

5

1 6

5 7

9 4

2 3

6 1

7

1 6

5 7

9 4

4 3

7 4

4 6

3 1

7

1 1

1 4

1 3

2 2

3 1

3 3

2 2

0

Output for Sample Input

NO

YES

NO