Homework for PHYS 266 Mathematical Methods of Physics Due date: 18 June 2020, Friday

- Starting from
- $(\partial^2 \Phi/\partial x^2) + (\partial^2 \Phi/\partial y^2) + (\partial^2 \Phi/\partial z^2) = 0$
- Derive

$$\nabla^2 \Phi = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \Phi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Phi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \Phi}{\partial \phi^2} = 0$$

- · Hint: You may use the chain rule of differentiation, and
- $x = r \sin\theta \cos\phi$, $y = r \sin\theta \sin\phi$, $z = r \cos\theta$,
- · i.e.

•
$$r = (x^2 + y^2 + z^2)^{1/2}$$
, $\theta = \tan^{-1}[(x^2 + y^2)^{1/2}/z]$ $\theta = \tan^{-1}(y/z)$