Develop New Transformer Architecture For Question and Answering(QandA)

Nirbhay P. Tandon

Contents

Lis	st of	Figures	3	
Lis	st of	Tables	4	
1	Intr	oduction	5	
	1.1	Background Of The Study	5	
	1.2	Aims And Objectives	5	
	1.3	Scope Of The Study	5	
	1.4	Significance Of The Study	5	
	1.5	Structure Of The Study	5	
2	Lite	rature Review	6	
	2.1	Question Answering Using Neural Nets	6	
	2.2	Question Answering Using LSTMs	6	
	2.3	Question Answering Using Transformers	6	
	2.4	Comparison Of Techniques	7	
	2.5	Summary	7	
3	Research Methodology			
	3.1	Data Selection	8	
	3.2	Data Pre-processing And Transformation	8	
	3.3	Existing Models And Benchmarks	8	
4	Architecture Creation			
	4.1	Drawbacks Of Current Architectures	9	
	4.2	Proposed Architecture Improvements	9	
	4.3	Architecture Refinement	9	

Appendices	10
Bibliography	12

List of Figures

List of Tables

Chapter 1 Introduction

- $^{?\langle c1 \rangle?}$ 1.1 Background Of The Study
- $^{?\langle11\rangle?}$ 1.2 Aims And Objectives
- $^{?\langle12\rangle?}$ 1.3 Scope Of The Study
- $^{?\langle 13 \rangle?}1.4$ Significance Of The Study
- $^{?\langle 14 \rangle?}$ 1.5 Structure Of The Study

?(15)?

Chapter 2

Literature Review

- ?(c2)? 2.1 Question Answering Using Neural Nets
- $^{?\langle 21\rangle?}$ 2.2 Question Answering Using LSTMs
- $?\langle 22\rangle$? 1. Hochreiter et al. (2001)
 - 2. Schmidhuber and Hochreiter (1997)
 - 3. Schmidhuber (2015)
 - 4. Tan et al. (2015)
 - 5. Wang and Jiang (2016)
 - 6. Gennaro et al. (2020)
 - 7. Weissenborn et al. (2017)

2.3 Question Answering Using Transformers

- $?\langle 23\rangle$? 1. Vaswani et al. (2017)
 - 2. Devlin et al. (2018)
 - 3. Lan et al. (2019)
 - 4. Liu et al. (2019)

- 5. Sanh et al. (2019)
- 6. Rajpurkar
- 7.
- 8.

2.4 Comparison Of Techniques

 $^{?\langle 24\rangle?}$ 2.5 Summary

?(25)? (Corsair, 2021)

Chapter 3 Research Methodology

?(c3)? DONT DO ANY ANALYSIS HERE

- 3.1 Data Selection
- ?(c31)? 3.2 Data Pre-processing And Transformation
- $^{?\langle c32\rangle?}$ 3.3 Existing Models And Benchmarks

?⟨c33⟩?

Chapter 4 Architecture Creation

- ^{?(c4)}? 4.1 Drawbacks Of Current Architectures
- $^{?\langle c41 \rangle?}4.2$ Proposed Architecture Improvements
- $^{?\langle c42\rangle?}$ 4.3 Architecture Refinement

?⟨c43⟩?

Appendices

Bibliography

roberta

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

albert

Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut. Albert: A lite bert for self-supervised learning of language representations. *arXiv* preprint arXiv:1909.11942, 2019.

haighextractive

M. Tan, B. Xiang, and B. Zhou. Lstm-based deep learning models for non-factoid answer selection. *CoRR*, abs/1511.04108, 2015. URL http://arxiv.org/abs/1511.04108.

mhu2016question

S. Wang and J. Jiang. Machine comprehension using match-lstm and answer pointer. CoRR, abs/1608.07905, 2016. URL http://arxiv.org/abs/1608.07905.

distil

V. Sanh, L. Debut, J. Chaumond, and T. Wolf. Distilbert, a distilled version of BERT: smaller, faster, cheaper and lighter. *CoRR*, abs/1910.01108, 2019. URL http://arxiv.org/abs/1910.01108.

bert

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

RAM

Corsair. Vengeance® lpx 8gb (1 x 8gb) ddr4 dram 2400mhz c14 memory kit - black, 2021. URL https://www.corsair.com/uk/en/Categories/Products/Memory/VENGEANCE-LPX/p/CMK8GX4M1A2400C14. Accessed: 2021-04-16.

atayl

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

lstmintent

G. D. Gennaro, A. Buonanno, A. D. Girolamo, A. Ospedale, and F. A. N. Palmieri. Intent classification in question-answering using LSTM architectures. *CoRR*, abs/2001.09330, 2020. URL https://arxiv.org/abs/2001.09330.

squad

P. Rajpurkar. Squad2.0. URL https://rajpurkar.github.io/SQuAD-explorer/.

lstm

S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber, et al. Gradient flow in recurrent nets: the difficulty of learning long-term dependencies, 2001.

schmid

J. Schmidhuber. Deep learning in neural networks: An overview. *Neural networks*, 61:85–117, 2015.

fastQA

D. Weissenborn, G. Wiese, and L. Seiffe. Fastqa: A simple and efficient neural architecture for question answering. *CoRR*, abs/1703.04816, 2017. URL http://arxiv.org/abs/1703.04816.

lstmoriginal

J. Schmidhuber and S. Hochreiter. Long short-term memory. *Neural Comput*, 9(8):1735–1780, 1997.