

2022-2023 **秋季学期金融期权** 江一鸣教授 • 数学科学学院

31 de octubre de 2022

苏可铮 2012604

1. 条件期望的性质

Teorema 1

若 $G = \{\Omega, \emptyset\}, \ \text{则 } E[X|G] = E[X]$

proof. 当 $G = \{\Omega, \emptyset\}$ 时, G 是一个 σ 域, 且只有必然事件 Ω 和不可能事件 \emptyset 是事件

a) 对于连续型随机变量:

设(X,G)是二维连续型随机变量,显然由独立性有:

$$p(x,y) = p_X(x)p_G(y)$$

其中 p(x,y), $p_X(x)$, $p_G(y)$ 分别为 (X,G) 的密度函数与边际密度函数 这时条件密度函数 $p_{X|G}(x|y)=p_X(x)$

于是当 G = y 时,由连续型随机变量的条件期望的定义有:

$$E[X|G = y] = \int_{-\infty}^{+\infty} x p_{X|G}(x|y) dx = \int_{-\infty}^{+\infty} x p_X(x) dx = E[X]$$

上式对 $\forall y \in G$ 成立

b) 对于离散性随机变量: 同理可证

综上,
$$E[X|G] = E[X]$$

Teorema 2

若 Ψ 为凸函数,且 $E[X] < \infty$, $E[\Psi(X)] < \infty$,则 $E[\Psi(X)|G] \geqslant \Psi(E[X|G])$

Teorema 3

若 G_1 , G_2 为 G 的两个子 σ -函数,且 $G_1 \subset G_2$,则 $E[E[X|G_2]|G_1] = E[X|G_1]$

proof. 显然, X 关于 G 也 σ -可积

为了证明 $E[E[X|G_2]|G_1]$ 有意义,须证 $E[X|G_2]$ 关于 G_1 为 σ — 可积 由于 X 关于 G_1 为 σ — 可积,故

$$\exists \Omega_n \in G_1, \Omega_n \uparrow \Omega, E[|X|I_{\Omega_n}] < \infty$$

又由于

$$E[E(X|G_2)I_A] = E[XI_A]$$

其中 $A \in \{A \in G_2 \mid E(|X|I_A) < \infty\}$, 并注意到 $G_1 \subset G_2$, 所以

$$E[|E(X|G_2)|I_{\Omega_n}] = E[|X|I_{\Omega_n}] < \infty$$

这表明 $E[X|G_2]$ 关于 G_1 为 σ – 可积

由于 $E[|X|I_{\Omega_n}]<\infty$, 所以由全数学期望期望可知:

$$E\left[XI_{\Omega_n}|G_1\right] = E\left[E\left(XI_{\Omega_n}|G_2\right)|G_1\right] \text{ (a.s.)}$$

因 I_{Ω_n} 为 G_1 可测, 所以有:

$$E[X|G_1] I_{\Omega_n} = E[XI_{\Omega_n}|G_1] = E[E(XI_{\Omega_n}|G_2)|G_1]$$

= $E[I_{\Omega_n}E[X|G_2]|G_1] = E[E(X|G_2)|G_1]I_{\Omega_n}$ (a.s.)

令 $n \to \infty$, 则由上式得 $E[E[X|G_2]|G_1] = E[X|G_1]$ (a.s.)

Teorema 4

若 X 关于 G 可测,则 E[X|G] = X,一般的,若 $Y \in G$ 且 XY 可积,则 E[XY|G] = YE[X|G]

proof. 由条件期望的公理化定义:

设 X 是概率空间 (Ω, F, P) 上的可积随机变量,G 是 F 的子 σ 代数,则 X 关于 G 的条件期望 E[X|G] 就是满足以下两条件的随机变量:

- a) E[X|G] 就是 G 可测的;
- b) $\int_A E[X|G]dP = \int_A XdP$, $A \in G$

则有: $E[X|G] = \int_{\Omega} X dP(\cdot|G) = \frac{E[XI_G]}{P(G)} = X$ 由 XY 可积,于是存在 a.s. 唯一的 G 可测随机变量 E[XY|G],使得

$$\forall A \in G', E[E[XY|G]I_A] = E[XYI_A]$$

这里 $G' = \{A \in G \mid E[|XY|I_A] < \infty\}$, 于是 $\forall A \in G'$,

$$E[E(XY \mid G)I_{\Omega_n}I_A] = E[XYI_{\Omega_n}I_A]$$

又因为 $E[XY|G]I_{\Omega_n}$ 为 G 可测, 所以由上式知: $E[XY|G]I_{\Omega_n}$ 就是 XYI_{Ω_n} 关于 G 的条件期望, 于是有:

$$E[XY|G]I_{\Omega_n} = E[XYI_{\Omega_n}|G]$$
 (a.s.)

由于 $XYI_{\Omega_n}=XI_{\Omega_n}YI_{\Omega_n}$, $XYI_{\Omega_n}=XI_{\Omega_n}YI_{\Omega_n}$, $E\left[|X|I_{\Omega_n}\right]<\infty$, YI_{Ω_n} 为 G 可测,所以

$$E[XYI_{\Omega_n}|G]I_{\Omega_n} = YI_{\Omega_n}E[XI_{\Omega_n}|G]$$
 (a.s.)

对于 X, 由于它关于 G 为 σ - 可积, 所以同样可以得到

$$E[XG]I_{\Omega_n} = E[XI_{\Omega_n} \mid G]$$
 (a.s.)

于是有: $YI_{\Omega_n}E\left[XI_{\Omega_n}|G\right]=YI_{\Omega_n}E[X|G]$ (a.s.) 综上得 $E[YX|G]I_{\Omega_n}=YI_{\Omega_n}E[X|G]$ (a.s.),令 $n\to\infty$,则得到: E[XY|G]=YE[X|G] 即有若 $Y\in G$ 且 XY 可积,则 E[XY|G]=YE[X|G]

Teorema 5

X 和 G 独立, 当且仅当对任意的 Borel 可测函数 f, 若 f(X) 可积,则有 E[f(X)|G] = E[f(X)]

Teorema 6

X 为 G-可测,Y 与 G 独立,可测函数 $\phi:\mathbb{R}^2\to\mathbb{R}$ 满足 $E[|\phi(X,Y)|]<\infty$,令 $\phi(x)=E[\phi(x,Y)]$,则 $E[\phi(X,Y)|G]=\phi(X)$

Teorema 7

若 $G = \sigma(B_1, B_2, ...)$,其中 $\bigcup_{i=1}^{\infty} B_i = \Omega$, $B_i \in F$, $P(B_i) > 0$,且当 $i \neq j$ 时, $B_i \cap B_j = \emptyset$,则

$$E[X|G] = \sum_{i=1}^{\infty} \frac{E[XI_{B_i}]}{P(B_i)} I_{B_i}$$

proof. 由 $\{B_i\}_{i\geqslant n}\subset\Omega$ 是一个划分且两两不相交,则由条件期望定义以及全概率公式有:

$$E[X|G] \triangleq \sum_{i=1}^{\infty} E[X|B_i]I_{B_i} = \sum_{i=1}^{\infty} \frac{E[XI_{B_i}]}{P(B_i)}I_{B_i}$$