(1)

We know that $\dim(E_{\lambda_1}) = n - 1$,

then, $\dim(E_{\lambda_2}) \geq 1$

Because A is n*n matrix, the dimension of $[L_A]_{\beta}$ is at most n.

$$=>$$
 $n \ge \dim(E_{\lambda_1}) + \dim(E_{\lambda_2}) \ge n$

$$=> \dim(E_{\lambda_1}) + \dim(E_{\lambda_2}) = n$$

By theorem 5.1, we can know that if L_A has an ordered basis $\beta = \{v_1, v_2, v_3 \dots, v_n\}$, then L_A is diagonalizable, and hence of A is diagonalizable.

(2)
$$\label{eq:U1} \mathbf{U}_1 = \mathbf{T} + \mathbf{T}^* = (\mathbf{T} + \mathbf{T}^*)^{**} = (\mathbf{T}^* + \mathbf{T}^{**})^* = (T^* + T)^* = \mathbf{U}_1^*,$$
 and

$$U_2 = TT^* = (TT^*)^{**} = (T^{**}T^*)^* = (TT^*)^* = U_2^*.$$

(3)(a)

Yes, four rules of inner product definition are satisfied.

(3)(b)

(4)

 $\left| |x+y| \right|^2 = (x+y)(x+y) = xx + xy + yx + yy = \|x\|^2 + \|y\|^2$, where x and y are orthogonal vectors in V, so their inner product is zero. then the answer $\left| |x+y| \right|^2 = \left| |x| \right|^2 + \left| |y| \right|^2$ be proved.