- A sorting machine $Sorter_n$, for each $n \ge 0$, is capable of sorting n-length sequences of positive integers
- Suppose $Sorter_n$ has sort $\{in, \overline{out}\}$
 - It must accept exactly n intergers one by one at in;
 - Then it must deliver them up one by one in descending order at \overline{out} , terminated by a zero;
 - After that, it must return to its start state

Specification:

$$Sortspec_n \stackrel{\text{def}}{=} in \ x_1. \cdots. in \ x_n. Hold_n\{x_1, \dots, x_n\}$$
 $Hold_n(S) \stackrel{\text{def}}{=} \overline{out}(max \ S). Hold_n(S - \{max \ S\}) \ (S \neq \emptyset)$
 $Hold_n(\emptyset) \stackrel{\text{def}}{=} \overline{out} \ 0. Sortspec_n$

where S ranges over multisets, and max S, min S are the maximum and minimum elements of S

Implementation

$$Sorter_n \stackrel{\text{def}}{=} \overbrace{C \cap \cdots \cap C \cap B}^{n \text{ times}}$$

where

$$C \stackrel{\text{def}}{=} in(x).C'(x)$$

$$C'(x) \stackrel{\text{def}}{=} \overline{down}(x).C + up(y).C''(x,y)$$

$$C'''(x,y) \stackrel{\text{def}}{=} \overline{out}(max\{x,y\}).C'''(min\{x,y\})$$

$$C'''(x) \stackrel{\text{def}}{=} if \ x = 0 \ then \ \overline{out}(0).C \ else \ C'(x)$$

$$B \stackrel{\text{def}}{=} \overline{out}(0).B$$

Note: The sorter is of fixed size

- B is a single barrier cell
- Assume C as a hardware component of fixed finite size which can be used to build sorting machines of any size
- C is independent of n

The idea in designing C is as follows:

- C should have storage capacity for two numbers, and be able to compare them
- Its behaviors must have two phases:
 - First phase: It receives inputs at in and put them out at down
 - Second phase: it receives inputs at up and (using comparison) puts them out at out
- For independence of the size of the sorter, it must be ready to change at any moment to its second phase
- Some cells will still be in the first phase while others are in the second

The defining equation of $Sortspec_{n+1}$ can be rewritten as follows:

$$Sortspec_{n+1} = in \, x_1 \cdot \dots \cdot in \, x_{n+1} \cdot Hold_{n+1} \{ x_1, \dots, x_{n+1} \}$$

$$Hold_{n+1} \{ y_1, \dots, y_{n+1} \} = \overline{out} \, y_1 \cdot \dots \cdot \overline{out} \, y_{n+1} \cdot \overline{out} \, 0. Sortspec_{n+1}$$

assuming that $y_1 \ge ... \ge y_{n+1}$.

Observational Equivalence

Content

- Introduction
- Strong Bisimulation
- Weak Bisimulation
- More Observational Equivalence

Introduction

Observational Equivalence

Basic Idea

- Two processes are observationally equivalent if no processes can observe any difference between the two processes
- To observe is to interact
- To observe is to be observed

An Example

Consider two agents *A* and *B*:

$$A \stackrel{\text{def}}{=} a.A_1$$
 $B \stackrel{\text{def}}{=} a.B_1 + a.B_1'$
 $A_1 \stackrel{\text{def}}{=} b.A_2 + c.A_3$ $B_1 \stackrel{\text{def}}{=} b.B_2$ $B_1' \stackrel{\text{def}}{=} c.B_3$
 $A_2 \stackrel{\text{def}}{=} 0$ $B_2 \stackrel{\text{def}}{=} 0$
 $A_3 \stackrel{\text{def}}{=} d.A$ $B_3 \stackrel{\text{def}}{=} d.B$

Automata View

If A and B are thought of as finite-state automata over the set A, then their transition graphs are as follows:

Trace Equivalence

If A2 and B2 are taken to be the accepting states, then A and B denote the same language:

$$A = a.(b.0 + c.d.A)$$
 by substitution
= $a.b.0 + a.c.d.A$ using the distributive law

Hence
$$A = (a.c.d)^*.a.b.0$$

Similarly
$$B = a.b.0 + a.c.d.B$$

And therefore
$$B = (a.c.d)^*.a.b.0$$

An Example: A Refined View

A and B may interact with their environment through the ports a, b, c, d.

At start:

After the *a*-button is fired a difference emerges between *A* and *B*:

Nondeterminism

In our observational theory we shall differentiate between a deterministic choice and a nondeterministic choice

Deadlock

We shall also be able to detect deadlock

But

We shall want to equate the processes whose trees are as follows

Strong Bisimulation

Basic Idea

- All Actions, Including the τ Actions, are Treated Equally
- Strong Equivalence is the Core of All Equivalences

Bisimulation Property

P and Q are equivalent iff, for every action λ , every λ derivative of P is equivalent to some λ -derivative of Q, and conversely.

It can be written formally as follows, using ~ for our equivalence relation:

P~Q iff, for all $\lambda \in A$,

- (i) If $P \xrightarrow{\lambda} P'$ then, for some Q', $Q \xrightarrow{\lambda} Q'$ and P'~Q' (ii) If $Q \xrightarrow{\lambda} Q'$ then, for some P', $P \xrightarrow{\lambda} P'$ and P'~Q'

Strong Bisimulation

Definition: A binary relation $S \subseteq P \times P$ over processes is a strong bisimulation if $(P,Q) \in S$ implies that, for all $\lambda \in A$,

- (i) If $P \xrightarrow{\lambda} P'$ then, for some Q', $Q \xrightarrow{\lambda} Q'$ and $(P', Q') \in S$
- (ii) If $Q \xrightarrow{\lambda} Q'$ then, for some P', $P \xrightarrow{\lambda} P'$ and $(P', Q') \in S$

Notice that any relation ~ which satisfies (*) is a strong bisimulation.

An Example

$$A \stackrel{\text{def}}{=} a.A'$$
 $B \stackrel{\text{def}}{=} c.B'$
 $A' \stackrel{\text{def}}{=} \overline{c}.A$ $B' \stackrel{\text{def}}{=} \overline{b}.B$

$$S = \{ ((A \mid B) \setminus c, C_1),$$

$$((A' \mid B) \setminus c, C_3),$$

$$((A \mid B') \setminus c, C_0),$$

$$((A' \mid B') \setminus c, C_2) \}$$

is a bisimulation.

$$C_0 \stackrel{\text{def}}{=} \overline{b}.C_1 + a.C_2$$

$$C_1 \stackrel{\text{def}}{=} a.C_3$$

$$C_2 \stackrel{\text{def}}{=} \overline{b}.C_3$$

$$C_3 \stackrel{\text{def}}{=} \tau.C_0$$

$$\mathbf{c_1} \stackrel{\mathbf{c_0}}{=} \mathbf{c_0}$$

$$\mathbf{c_1} \stackrel{\mathbf{c_0}}{=} \mathbf{c_0}$$

Equivalence Property

The converse R^{-1} of a binary relation and the composition $\mathcal{R}_1 \hat{\mathcal{R}}_2$ wo binary relations are defined by

$$\mathcal{R}^{-1} = \{(y,x) : (x,y) \in \mathcal{R}\}$$

$$\mathcal{R}_1 \mathcal{R}_2 = \{(x,z) : \text{for some } y, (x,y) \in \mathcal{R}_1 \text{ and } (y,z) \in \mathcal{R}_2\}$$

Property:

Assume that each S_i (i = 1, 2, ...) is a strong bisimulation.

Then the following relations are all strong bisimulations:

- (1) $Id_{\mathcal{P}}$ (3) $\mathcal{S}_1\mathcal{S}_2$ (2) \mathcal{S}_i^{-1} (4) $\cup_{i\in I}\mathcal{S}_i$

Strong Bisimilarity

Definition:

P and Q are strongly bisimilar, written $P \sim Q$, if $(P,Q) \in S$ for some strong bisimulation S. This may be equivalently expressed as follows:

 $\sim = \bigcup \{S : S \text{ is a strong bisimulation}\}\$

Proposition

- (1) \sim is the largest strong bisimulation.
- (2) \sim is an equivalence relation.

Strong Bisimilarity, Continued

Definition:

 $P \sim' Q \text{ iff, for all } \lambda \in A$,

- (i) Whenever $P \xrightarrow{\lambda} P'$ then for some Q', $Q \xrightarrow{\lambda} Q'$ and P' $\sim Q'$
- (ii) Whenever $Q \xrightarrow{\lambda} Q'$ then for some P', $P \xrightarrow{\lambda} P'$ and P' $\sim Q'$

Property: $P \sim Q$ implies $P \sim Q$ (#)

Strong Bisimilarity, Continued

Lemma The relation ~' is a strong bisimulation.

Proof. Let $P \sim' Q$, and let $P \xrightarrow{\lambda} P'$. It will be enough, for the lemma, to find Q' so that $Q \xrightarrow{\lambda} Q'$ and $P' \nearrow' Q'$. But by the definition of \sim' we can indeed find Q' so that $Q \xrightarrow{\lambda} Q'$ and $P' \nearrow' Q'$; hence also $P' \sim' Q'$ by (\sharp) , and we are done.

Strong Bisimilarity, Continued

~ satisfies the (*) property:

 $P \sim Q \text{ iff, for all } \lambda \in A$,

- (i) Whenever $P \xrightarrow{\lambda} P'$ then for some Q', $Q \xrightarrow{\lambda} Q'$ and P' ~ Q'
- (ii) Whenever $Q \xrightarrow{\lambda} Q'$ then for some P', $P \xrightarrow{\lambda} P'$ and P' ~ Q'

How to Prove Processes Equivalent

- We are to prove P ~ Q
 - Construct some binary relation R on processes such that (P,Q)∈ R
 - 2. Show that R is a strong bisimulation
 - 3. Conclude that $P \sim Q$