

Accelerated Visualization of Transparent Molecular Surfaces in Molecular Dynamics

Adam Jurcik, Jiri Sochor, Barbora Kozlikova (Masaryk University)
Julius Parulek (University of Bergen)

PacificVIS 2016 April 19, Taipei

Protein Surfaces in Biochemistry

- Proteins in all living cells
- Protein features delimited by surfaces
 - Molecular surface pockets

Transport pathways – channels, tunnels

- Closed voids cavities
- Molecular Dynamics
 - Natural motion simulation
 - Surfaces change

Molecular Surface

- Solvent Accessible [Lee et al. '71]
 - Spherical patches

- Solvent Excluded [Connolly '83]
 - Spherical patches
 - Toroidal patches
 - Spherical triangles

Transparent Molecular Surface

- Molecular surface using order independent transparency [Kauker et al. '13]
 - Use fragments of all atom spheres
 - CSG operations on all fragments
 - Correct transparency
 - High depth complexity
 - 188 layers/10000 atoms

Accelerated Transparent MS

Input: Atom positions

Output: Transparent SES

PacificVIS 2016

- Contour-buildup algorithm [Totrov et al. '96]
 - Accelerated and localized computation
- Parallelization
 - Mutliple CPUs [Lindow et al. '10]
 - Single GPU [Krone et al. '11]

Cavities and patches extraction

- Observations:
 - Surfaces = isolated connected components (CC)
 - Spherical patches are enclosed with tori
 - Tori connect triangles
- Graph algorithms:
 - 1) Adjacency list
 - 2) CC analysis use BFS
 - 3) Cycles forming patches

- Individual SES patches
 - OBB splats geometry shader
 - Less rays higher performance

- A-buffer all surface fragments
- Opacity modulation
 - Overall opacity (O)
 - Entry fragments opacity suppression (K)

PacificVIS 2016

Results I

- Transparent SES visualization:
 - Static and dynamic structures PDB ID

Results II

Performance comparison

• Resolution: 1024 x 768

• GPU: NVIDIA GF GTX 680

		Our method		Kauker et al.		
PDB ID	Atoms	DL	FPS	DL	FPS	Speedup
10GZ	~650	12	48.1	117	31.0	1.55
1VIS	~2500	15	34.1	135	11.2	3.04
4ADJ	~10000	19	15.5	188	6.2	2.50

Summary

- Contribution
 - Interactive transparent dynamic SES visualization
- Limitations
 - Hard to perceive transparency in still images
 - Not detecting open pathways tunnels
- Future work
 - Detection and coloring of tunnels
 - Experiments with more efficient BFS algorithm

Thank you for your attention!