Computer Network and Distributed Systems

Spread Spectrum

Why Spread Spectrum?

				a	narrowband	signal	is	good
enou	igh to c	arry เ	users data.					
	. •	•	1 • 1		• • •	•	•	

☐But in wireless or mobile communication air being the medium of transmission, user data gets corrupt due to interference.

Spread Spectrum address this issue

Principles of Spread Spectrum

- ☐ The basic principle of Spread Spectrum is to spread the bandwidth of the information signal to a it's several orders of magnitude greater than the minimum required signal bandwidth
- ☐ It converts the information signal as noise like signal. And noise like signals are less susceptible to narrowband interference
- ☐ Spread signals are much wider, they are transmitted in lesser power density.
- Lesser power means lesser energy, lesser interference and greater capacity

Feature of Spread Spectrum

□ Frequency range of the transmitted signal is deliberately varied, resulting in a much greater bandwidth than the signal would have if its frequency were not varied. Variation is done according to spreading sequences
□ Power of the spread signal is the same as of the narrowband signal, resulting in a lower power spectral density (due to the higher bandwidth)
☐Spread spectrum is very bandwidth inefficient for a single user
☐But many users can simultaneously use the same bandwidth without significantly interfering with one another

Effects of spreading and interference

Classification

Direct Sequence Spread Spectrum (DSSS)

Frequency Hopping Spread Spectrum (FHSS)

☐ Signal is spread during modulation ☐ Carrier frequency is rapidly changed according to a hopping sequence

Direct Sequence Spread Spectrum (DSSS)

- DSSS systems take a user bit stream and perform an (XOR) with a so-called chipping sequence (the code) and transmit
- ☐While each user bit has a duration tb, the chipping sequence consists of smaller pulses, called chips, with a duration tc.
- ☐ The spreading factor s = tb/tc determines the bandwidth of the resulting signal.
- ☐If the original signal needs a bandwidth w, the resulting signal needs s*w after spreading

Direct Sequence Spread Spectrum (DSSS) contd

Spreading Factor/Gain (Process Gain) =Chip Rate / Data Rate

- ☐ In every system, the chip rate is fixed, hence data rate varies based on the size of spreading code
- ☐ Such that higher the size of the code used for spreading, lower the data rate achieved.
- □At receiver, it takes the received chip stream and perform an (XOR) with a chipping sequence (the code) and generates the original user bit stream
- Hence sender and receiver has to be exact synchronization

DSSS Spreading with a Chin Sequence (hipplar representation)

DSSS Transmission and Reception process

Correlation of Code Sequences

Correlation:

- Concept of determining how much similarity one set of data has with another
- Correlation is defined with a range of between -1 and 1 with the following meanings

Correlation Valu	<u>e</u> <u>Interpretation</u>
1	The second sequence matches the first sequence exactly
0	There is not relation at all between the two sequences
-1	The two sequences are mirror images of each other

Note: A spread spectrum sequence should have good correlation properties

Correlation of Code Sequences contd

Auto Correlation:

Correlation of a code sequence Ci of N elements with all phase shifts of itself

$$\Phi_{ii}[n] = \frac{1}{N} \sum_{m=1}^{N} c_i[m] c_i[m+n]$$
with $n = 1..N$

Cross Correlation:

Correlation of two code sequences Ci and Cj

$$\Phi_{ij}[n] = \frac{1}{N} \sum_{m=1}^{N} c_i[m] c_j[m+n]$$
with $n = 1..N$

Auto-correlation

- A code has a good auto-correlation if the inner product with itself is large and its inner product with the same, but shifted code is small
- Good auto-correlation is essential to achieve synchronization between sender and receiver

Example: **Barker code** +1,-1,+1,+1,-1,+1,+1,-1,-1

n	$c_i[0], c_i[0+n]$	$\Phi_{ii}[n]$
0	(+1, -1,+1,+1, -1,+1,+1,+1, -1, -1, -1) (+1, -1,+1,+1, -1,+1,+1,+1, -1, -1, -1)	1
1	(+1, -1,+1,+1, -1,+1,+1,+1, -1, -1, -1) (-1,+1,+1, -1,+1,+1,+1, -1, -1, -1,+1)	-1/11
2	(+1, -1,+1,+1, -1,+1,+1,+1, -1, -1, -1) (+1,+1, -1,+1,+1,+1, -1, -1, -1,+1, -1)	-1/11

The Barker code has good auto-conferation. This is used for spreading in 802.11

Cross-correlation

- ☐ Two codes have a low cross-correlation if their product is low for all shift combinations
- ☐ Low cross-correlation between a sequence and noise is useful to the receiver in filtering out noise
- ☐ Low cross-correlation between two sequences is useful to the receiver to discriminate among signals generated by different users
- ☐ If the cross-correlation between two sequences is **0**, the sequences are said to be **full orthogonal**

Cross-correlation between c1 and c2 is 4/8 = 0.5

C3 and C4 is are **orthogonal**, because their cross-correlation is 0

$$c_1$$
: +1 +1 +1 +1 -1 +1 -1
 c_2 : -1 +1 -1 +1 -1 -1 +1 -1 -1 =4

$$c_3$$
: -1 -1 -1 +1 +1 -1 +1 +1
 c_4 : -1 -1 +1 -1 +1 +1 -1 =0

DSSS CDMA system

CDMA systems use codes with certain characteristics to separate different users in code space and to enable access to a shared medium without interference.

But how to find such good codes?

These code for a certain user should have a **good auto-correlation** and should be **orthogonal** to other codes (**cross-correlation is 0**)

$$\sum_{k=0}^{\underline{M}-1} c_i[k] c_i[k] = 1$$

$$\sum_{j=0}^{M-1} c_i[k]c_j[k] = 0 \quad \text{for } i \neq j$$

Note: For CDM, each k=0 quence as a spreading code, thereby providing zero cross correlations among all users.

Example of such codes are Walsh codes, OVSF(Orthogonal Variable Spreading Factor)

CDMA transmission and reception analogy

Tx 1: Information Signal S1, Spreading Code C1. Transmits (S1.C1) over the air

Tx 2: Information Signal S2, Spreading Code C2. Transmits (S2.C2) over the air

From Spreading code's auto-correlation and orthogonal property -

$$C1.C1 = 1$$

$$C2.C2 = 1$$

$$C1.C2 = 0$$

When signal transmitted from two source, over the air it becomes -

$$(S1.C1 + S2.C2)$$

Rx 1 : Despreading on reception (S1.C1 + S2.C2).C1 = S1.C1.C1 + S2.C2.C1 = S1

Rx 2 : Despreading on reception (S1.C1 + S2.C2).C2 = S1.C1.C2 + S2.C2.C2 = S2

Walsh Codes

- ☐ Set of Walsh codes of length n consists of the rows of a n×n Hadamard matrix
- \square Matrix is recursively defined as: $W_1 = \begin{pmatrix} +1 \end{pmatrix}$ $W_{2n} = \begin{pmatrix} W_n & W_n \\ W_n & \overline{W}_n \end{pmatrix}$
 - Where n is the dimension of the matrix and the overscore denotes the logical NOT of the bits in the matrix

Example for n=2,4:
$$W_2 = \begin{pmatrix} +1 & +1 \\ +1 & -1 \end{pmatrix} \qquad W_4 = \begin{pmatrix} +1 & +1 & +1 & +1 \\ +1 & -1 & +1 & -1 \\ +1 & +1 & -1 & -1 \\ +1 & -1 & -1 & +1 \end{pmatrix}$$

All users using a set of orthogonal codes must be synchronized, because the
cross-correlation between different shifts of Walsh sequences is not zero
cross-correlation between different shifts of Walsh sequences is not zero
cross-correlation between different shifts of Walsh sequences is not zero
cross-correlation between different shifts of Walsh sequences is not zero
cross-correlation between different shifts of Walsh sequences is not zero
cross-correlation between different shifts of Walsh sequences is not zero

IS-95 uses 64x64 Walsh code

Generating chip sequences using Walsh Code

$$W_1 = \begin{bmatrix} +1 \end{bmatrix}$$
 $W_{2N} = \begin{bmatrix} W_N & W_N \\ W_{2N} & W_N \end{bmatrix}$

Orthogonal chip sequences

•Encoding rules:

- -If station has to send data bit 0: transmit signal -1
- -If station has to send data bit 1: transmit signal +1
- -If station does not have data to send: transmit signal 0

$$A$$
 B C D

CDMA Multiplexer

CDMA De-Multiplexer

For your study

- ✓ Orthogonal Variable Spreading Factor (OVSF)
- ✓ Frequency Hopping Spread Spectrum (FHSS)

Reference

- ☐ Mobile Communication, Jochen Schiller
- □ Data Communications & Networking, 5th Edition, Behrouz A. Forouzan