数字逻辑与部件设计

8. 锁存器、触发器

为什么需要存储元件?

```
assign q = 0;
assign q = 1;
多驱动!
```

```
1 // 翻转
2 module Flip
3 (input logic clk,
4 output logic q); //reg
5 always @(posedge clk)
7 q = ~q;
8 endmodule
```


锁存器、触发器

① SR锁存器

② \$\bar{S}\bar{R}\$锁存器

③门控D锁存器

④ SR触发器

⑥ JK触发器

⑦T触发器

5 D触发器

latch 锁存器、触发器 flip-flop

- Latches and Flip-flops are used as data storage elements.
- Flip-flops can be either simple or clocked (synchronous or edge-triggered).
- The simple ones are commonly called latches. The word latch is mainly used for storage elements, while clocked devices are described as flip-flops.

时序逻辑电路

结构: ① 包含<u>锁存器</u> 或 <u>触发器</u>

② 有反馈, 电路输出由: 输入+反馈共同决定

特点: 电路具有记忆功能

记忆的标准

为了实现记忆1位二值信号的功能, 记忆器必须具有以下2个基本特点:

- ① 具有能**保持稳定**的状态,用来保持二进制数的0、1.
- ② 可以置0或置1.

如何记忆?

1个或非门:

- 当 $v_1 = 0$,输出 v_3 将随 v_2 而变,无法保存
- 当 $v_1 = 1$, 输出 $v_3 \equiv 0$: 只有1个结果

v_1	v_2	v_3	效果
0	0	1	v_3 将随
0	1	0	v_1 而变
1	0	0	
1	1	0	$v_3 \equiv 0$

如何记忆?

- 当 $v_1 = 0$,输出 v_3 将随 v_2 而变,无法保存
- 当 $v_1 = 1$, 输出 $v_3 \equiv 0$: 只有1个结果

• 2个或非门:

- 当 $v_2 = 0$,输出 $v_4 = \overline{v_3} = v_1$,无法保存

v_1	v_2	v_3	v_4	效果
0	0	1	0	v ₄ 将随
1	0	0	1	v_1 而变
0	1	_	0	0
1	1	_	0	$v_4 \equiv 0$

如何记忆?

• 2个或非门首尾相连

v_1	v_2	v_3	v_4	效果
1	0	0	1	置0
0	1	1	0	置1
····	Λ	0	1	/口 北土
0	0	1	0	保持
1	1	0	0	禁用

对输出均不起作用,需看两输出原来值,若两输出是相反的,则能够自动维持原状态不变。

- $Q与\overline{Q}$ 都=0,相互矛盾
- 既非1状态,也非0状态
- 因两或非门延迟不同,次态是0还是1无法确定。

双稳态电路

电路具有0、1两种逻辑状态,一旦进入其中一种状态,就能长期保持不变。

双非门反馈电路没有输入端,无法改变或控制。不实用。

更简单的双稳态电路

锁存器的基本特性

锁存器:一种对电平敏感的双稳态电路,具有0和1两个稳定状态。

一旦状态被确定,就能自行保持,

直到外部输入脉冲电平作用,才有可能改变状态。

- ① 具有两个稳定的状态: "1"状态 (Q=1, $\bar{Q}=0$)、"0"状态 (Q=0, $\bar{Q}=1$)
- ② 在输入信号的作用下,可以从一个稳定状态转换到另一个稳定状态。

现态 PS: 输入信号变化之前的状态 (Q^n, \bar{Q}^n) 次态 NS: 输入信号变化之后的状态 (Q^{n+1}, \bar{Q}^{n+1})

③ 有两个互补的输出端 $Q \setminus \overline{Q}$ 。

SR锁存器 Set-Reset

		$Q^{n+1}=0,$	置 0 (复位)
--	--	--------------	----------

②
$$R = 0, S = 1$$
 $Q^{n+1} = 1$, 置 1(置位)

③
$$R = 0, S = 0$$

$$\left\{ \begin{array}{l} Q = 0, & \text{if } Q^{n+1} = 0 \\ Q = 1, & \text{if } Q^{n+1} = 1 \end{array} \right\} Q^{n+1} = Q$$

R
 S

$$Q^{n+1}$$
 \bar{Q}^{n+1}
 效果

 1
 0
 0
 1
 置0

 0
 1
 0
 置1

 0
 0
 1
 (保持

 1
 0
 0
 禁用

$$Q^{n+1} = Q$$

保持原来状态不变 双稳态电路

$$4 R = 1, S = 1$$

④ R = 1, S = 1 $Q \setminus \bar{Q}$ 都=0,不满足输出互补要求

SR 锁存器

功能表

输 S	入 R	输 Q ⁿ⁺¹	出 $ar{Q}^{n+1}$	说明
1	0	1	0	置 1
0	1	0	1	置 0
0	0	Q^n	$ar{Q}^n$	保持
1	1	d	d	禁用

状态(转换)图

状态表

TII 太 On	次态 Q^{n+1}				
现态 <i>Q</i> ⁿ	SR = 00	SR = 01	SR = 10	SR = 11	
0	0	0	1	d	
1	1	0	1	d	

状态图

反映状态之间转移关系的有向图。

- **圆圈**: 稳定状态
- 有向线段: 状态转移的方向
 - 起点: 现态
 - 终点: 次态
 - 触发条件

SR 锁存器

功能表

输 <i>S</i>	入 R	输 Q ⁿ⁺¹	出 \bar{Q}^{n+1}	说明
1	0	1	0	置 1
0	1	0	1	置 0
0	0	Q^n	$ar{Q}^n$	保持
1	1	d	d	禁用

状态表

现态 Q^n	次态 Q^{n+1}				
	SR = 00	SR = 01	SR = 10	SR = 11	
0	0	0	1	d	
1	1	0	1	d	

SR 锁存器

特征方程
$$Q^{n+1} = S + \bar{R}Q^n$$
 $S \cdot R = 0$ 约束条件

$$Q^{n+1} = f(输入信号, Q^n)$$

【例1】画出SR锁存器的输出波形图

ĪR 锁存器

19 / 52

\overline{SR} 锁存器

功能表

输 S	入 雇	输 Q ⁿ⁺¹	出 $ar{Q}^{n+1}$	说明
0	0	1	1	禁止
0	1	1	0	置1
1	0	0	1	置0
1	1	Q^n	$ar{Q}^n$	保持

$$Q^{n+1} = \overline{\bar{S} \cdot \bar{R} \cdot Q^n}$$

特征方程: $Q^{n+1} = \bar{S} + \bar{R}Q^n$

约束条件: $\bar{S} + \bar{R} = 1$

\overline{SR} 锁存器

功能表

输 s	入 R	输 Q ⁿ⁺¹	出 $ar{Q}^{n+1}$	说明
0	0	1	1	禁止
0	1	1	0	置1
1	0	0	1	置0
1	1	Q^n	$ar{Q}^n$	保持

状态图

状态表

III ★ ∩n	次态 Q^{n+1}				
现态 Q^n	$\bar{S}\bar{R} = 00$	$\bar{S}\bar{R} = 01$	$\bar{S}\bar{R}=10$	$\bar{S}\bar{R}=11$	
0	d	1	0	0	
1	d	1	0	1	

21 / 52

四个 *S R* 锁存器 74LS279

INPUT			OUTPUT
s ₁	s ₂	R	(Q)
L	L	L	h
L	X	Н	Н Н
Χ	L	Н	н
Н	Н	L	L
Н	H	Н	No Change

【例2】画出 \overline{SR} 锁存器的输出波形图

带有使能 SR 锁存器

En	S	R	$oldsymbol{Q}^{\star}$	$\overline{m{Q}}^{\star}$
0	X	X	Q	$\overline{m{Q}}$
1	0	0	Q	$\overline{m{Q}}$
1	0	1	0	1
1	1	0	1	0
1	1	1	1	1

【例3】画出门控SR锁存器的输出波形图

En	S	R	$oldsymbol{Q}^{\star}$	$\overline{m{Q}}^{\star}$
0	X	X	Q	$\overline{m{Q}}$
1	0	0	Q	$\overline{m{Q}}$
1	0	1	0	1
1	1	0	1	0
1	1	1	1	1

门控D锁存器

En	S	R	Q *	$\overline{m{Q}}^*$
0	X	X	Q	\overline{Q}
1	0	0	Q	\overline{Q}
1	0	1	0	1
1	1	0	1	0
1	1	1	1	1

En	D	$oldsymbol{Q}^{\star}$	$\overline{m{Q}}^{\star}$
0	X	Q	$\overline{m{Q}}$
1	0	0	1
1	1	1	0

门控 D 锁存器

输 En	入 D	输 $m{Q^{n+1}}$	出 $ar{Q}^{n+1}$	说明
1	0	0	1	置0
1	1	1	0	置1
0	Χ	Q^n	$ar{Q}^n$	保持

当En = 1时,D锁存器是透明的

【例4】画出门控D锁存器的输出波形图

En	D	Q^{n+1}
1	0	0
1	1	1
0	Χ	Q^n

空翻:同一个En有效作用期间,锁存器状态发生两次或两次以上变化的现象。

电平、边沿触发

• 当*En* = 1期间,空翻造成状态的不确定和系统工作的混乱! 因为此时输入信号直接控制锁存器状态的变化。

• 为了提高锁存器工作的**可靠性**,改用**边沿触发**方式。 缩短时钟有效时间

边沿触发器

仅在时钟上升沿或下降沿时刻响应输入信号的触发器。

- · 仅在clk某一约定跳变到来时,才接受输入信号;
- 在*clk*=0或*clk*=1期间输入信号变化不会引起输出状态的变化。 不仅克服了空翻现象,且大大提高抗干扰能力。

SR触发器

- 虽然没有实际的产品,但却是D触发器和JK触发器的基础。
- SR触发器与门控SR锁存器的不同: 前者有一个窄脉冲转换器。
 - ✓ 时钟 clk 控制触发器何时转换状态。
 - ✓ 输入信号控制触发器向什么方向转换。

SR触发器

输 Clk	〕 S	R	输 Q ⁿ⁺¹	出 $ar{Q}^{\mathrm{n+1}}$	说明
X	0	0	Q^n	$ar{Q}^n$	保持
\uparrow	1	0	1	0	置1
\uparrow	0	1	0	1	置0
\uparrow	1	1	?	?	不稳

- $Clk = \times$, SR = 00时, $\overline{SR} = 11$, 则 $Q^{n+1} = Q$
- $Clk = \uparrow$, SR = 10时, $\overline{SR} = 01$, 则 $Q^{n+1} = 1$
- $Clk=\uparrow$, SR=01时, $\bar{S}\bar{R}=10$,则 $Q^{n+1}=0$
- $Clk = \uparrow$, SR = 11时, $\bar{S}\bar{R} = 00$,则 $Q^{n+1} = \bar{Q}^{n+1} = 0$

D触发器

Clk	D	Q n+1	$ar{Q}^{n+1}$	说明
↑	1	1	0	置位
\uparrow	0	0	1	复位

S和R不会同时为高,避免了SR触发器不稳定问题。

当时钟CLK = 1时,D触发器特征方程:

$$Q^{n+1}=D$$

【例3.2】锁存器、触发器输出波形比较

【例5】画出**D触发器**的输出波形图

上升沿触发

波形图画法

- 以clk的作用沿为基准,划分时间间隔
- clk作用沿到来之前为**现态**,作用沿到来之后为**次态**。
- 每个clk作用沿到来之后,根据**功能表**,或**状态方程**确定次态。
- 异步直接**置0、置1**.

D	Q(t+1)	说明
1	1	置1
0	0	置0

用双D锁存器构造 下降沿D触发器

前沿采样,后沿定局

• Clk = 1: **主**锁存器Y = D,从锁存器不工作

• Clk = 0: 主锁存器不工作,从锁存器 Q = Y

即:Q只在Clk从1到0的变化瞬间才改变。

Clk	D	Q *	$ar{Q}^{\star}$	说明
\downarrow	1	1	0	置位
\downarrow	0	0	1	复位

用3个 \$\overline{S}\overline{R}\overline{\text{\tint{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tiliex{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\text{

用 $3 \cap \overline{SR}$ 锁存器构造 上升沿D触发器 -2

用 $3 \cap \overline{SR}$ 锁存器构造 上升沿D触发器 -3

用3个ĪR锁存器构造 上升沿D触发器 -4

- ① Clk = 0 时输出锁存器的 $\overline{S} = 1$ 、 $\overline{R} = 1$,使输出保持不变.
- ② If D = 0 when Clk = 1, $(\overline{RS} = 1)$ \overline{R} changes to 0 causing a reset state and making Q = 0.
- ② If D = 1 when Clk = 1, $(\mathbb{R} \mathbb{R} = 1)$ \mathbb{S} changes to \mathbb{O} causing the circuit to go to the set state making $\mathbb{Q} = 1$
- ③ If **D 0**→**1** while Clk = 1, (原 \overline{S} =1) \overline{R} remains at **0**, 不影响输出.

用 $3 \cap \overline{SR}$ 锁存器构造 上升沿D触发器 -5

CLK	D	Q *	$\overline{m{Q}}^{\star}$	说明
↑	0	0	1	复位
\uparrow	1	1	0	置位

- ① Clk = 0 时输出锁存器的 $\overline{S} = 1$ 、 $\overline{R} = 1$,使输出保持不变.
- ② If D = 0 when Clk = 1, $(\overline{R}S = 1)$ \overline{R} changes to 0 causing a reset state and making Q = 0.
- ② If D = 1 when Clk = 1, $(\mathbb{R} \mathbb{R} = 1)$ \mathbb{S} changes to \mathbb{O} causing the circuit to go to the set state making $\mathbb{Q} = 1$
- ③ If **D 0**→**1** while Clk = 1, (原 \overline{S} =1) \overline{R} remains at **0**, 不影响输出.
- ③ If **D** 1→0 while Clk = 1, (原 \overline{R} =1) \overline{S} remains at 0, 不影响输出.

带有异步Reset 的D触发器

 $\overline{Reset} = \mathbf{0}$,强迫 $\overline{Q} = \mathbf{1}$ 同时迫使 $S = \mathbf{1}$,故 $Q = \mathbf{0}$

异步:强迫立即进入某状态

Reset	Clk	D	Q *	$\overline{m{Q}}^{\star}$
0	Х	X	0	1
1	\uparrow	0	0	1
1	\uparrow	1	1	0

JK 触发器

输	i 入	\	输	出	2× □□
Clk	J	K	Q^{n+1}	\overline{Q}^{n+1}	说明
1	0	0	Q^n	$ar{Q}^n$	保持
1	1	0	1	0	置1
1	0	1	0	1	置0
1	1	1	$\overline{m{Q}}^{m{n}}$	Q^n	翻转

当clk有效时,

$$Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$$

$$Q^{n+1} = J\bar{Q}^n + \overline{Q^nK} + \overline{Q^n}$$

$$= J\bar{Q}^n + \overline{Q^nK} \cdot Q^n$$

$$= J\bar{Q}^n + (\bar{Q}^n + \overline{K}) \cdot Q^n$$

$$= J\bar{Q}^n + \overline{K}Q^n + Q^n\bar{Q}^n$$

$$= J\bar{Q}^n + \overline{K}Q^n$$

JK 触发器

输	j)		输	出) ; ; ; ; ;
Clk	J	K	Q^{n+1}	\overline{Q}^{n+1}	说明
1	0	0	Q^n	$ar{Q}^n$	保持
1	1	0	1	0	置1
1	0	1	0	1	置0
1	1	1	$\overline{m{Q}}^{m{n}}$	Q^n	翻转

现太 on	次态 Q^{n+1}			
现态 <i>Qⁿ</i>	JK = 00	JK = 01	JK = 10	JK = 11
0	0	0	1	1
1	1	0	1	0

【例6】画74HC112负沿JK触发器输出波形图

没有影响

用D触发器构造JK触发器

因为
$$D = J\bar{Q}^n + \bar{K}Q^n$$

故,
$$Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$$

T触发器 (Toggle)

常用来构成计数器。

T	Q(t+1)	说明
0	Q(t)	保持
1	$\overline{Q}(t)$	翻转

构造方法

触发器的特征表、特征方程

D	Q(t+1)	说明
1	1	置1
0	0	置0

$$Q(t+1)=D$$

J	K	Q(t+1)	说明
0	0	Q(t)	保持
1	0	1	置1
0	1	0	置0
1	1	$\overline{Q}(t)$	翻转

$$Q(t+1) = J\overline{Q}(t) + \overline{K}Q(t)$$

T	Q(t+1)	说明
1	$\overline{Q}(t)$	翻转
0	Q(t)	保持

$$Q(t+1) = T\overline{Q}(t) + \overline{T}Q(t)$$

TTL存储元件

器件	模块数量	模块功能
74LS73A	2	下降沿触发JK触发器,带清除
7474	2	上升沿触发D触发器,带预置和清除
74LS75	4	D锁存器,带使能
7476	2	脉冲触发JK触发器,带预置和清除
74111	2	主从JK触发器,带预置、清除和数据锁存输出
74112	2	JK触发器,带异步置0、异步置1
74116	2	4比特无竞争D锁存器,带清除和双使能
74175	4	上升沿触发D触发器,带清除

触发器的应用

- 分频器: 下一级的脉冲频率是上一级脉冲频率的1/2。使用级联
- **寄存器**: *n*个触发器,一次能够**并行存储***n*位比特数据。
- 计数器: n个触发器按串行方式连接构成n位计数器,

记忆时钟脉冲的个数。

• 时钟脉冲产生器:产生固定顺序的循环型脉冲序列,由计数器改造而来。