Syntax Analysis (Part 2)

Martin Sulzmann

Bottom-Up Parsing

Idea

- Build right-most derivation.
- Scan input and seek for matching right hand sides.

Terminology

- If $S \to^* \beta$ then β is a sentential form of G.
- *Right sentential form* = right most reduction of non-terminal symbols.
- $Handle = Right hand side \alpha$ of a production $A \to \alpha$ where α is part of a right sentential form $S \Rightarrow^* \beta$.

Example

Consider

The sentence abbcde can be reduced to S:

Rule	Sentential form
3	a <u>b</u> bcde
2	a <u>Abc</u> de
4	aA <u>d</u> e
1	<u>aABe</u>
	S

$$(S \Rightarrow aA\underline{B}e)$$

 $\Rightarrow a\underline{A}de$
 $\Rightarrow a\underline{A}bcde$
 $\Rightarrow abbcde$
right-most derivation

Marked forms are the *handles*.

Another Example

Consider

$$E \rightarrow E + E \mid E * E \mid (E) \mid id$$

Right-most derivation:

$$E \Rightarrow E + E \Rightarrow E + E * E \Rightarrow E + E * id_3 \Rightarrow E + id_2 * id_3 \Rightarrow id_1 + id_2 * id_3$$
 Consider how the input string is "reduced":

right-sentential form	Handle	reducing production
$id_1 + id_2 * id_3$	id_1	E o id
$E + id_2 * id_3$	id_2	E o id
$E + E * id_3$		
		$E \rightarrow E * E$
E + E	E + E	$E \rightarrow E + E$
Ε		
E + E E	E + E	$\mid E \rightarrow E + E \mid$

Handle Pruning (=Shift/Reduce Parsing)

Goal

Scan input, recognize handles and replace (if match found) by left-hand side until we reach the start symbol.

Shift-Reduce Approach

Make use of stack to keep track of "partial" handles.

- Shift:
 - Seek for handle.
 - "Shift" input symbols on some stack.
- Reduce:
 - Match for handle detected.
 - Replace right hand by left hand side.
 - For $A \rightarrow \beta$:
 - "pop" $|\beta|$ symbols
 - "pus" A onto stack

Example

Consider

$$E \rightarrow E + E \mid E * E \mid (E) \mid id$$

Stack	Input	Action
\$	(id * id)\$	shift
\$(id * id)\$	shift
\$(<i>id</i>	*id)\$	reduce $E o id$
\$(<i>E</i>	*id)\$	shift
\$(<i>E</i> ∗	id)\$	shift
\$(<i>E</i> * id)\$	reduce $E o id$
\$(<i>E</i> * <i>E</i>)\$	reduce $E \rightarrow E * E$
\$(<i>E</i>)\$	shift
\$(<i>E</i>)	\$	reduce $E \rightarrow (E)$
\$ <i>E</i>	\$	accept

$$E \Rightarrow (E) \Rightarrow (E * E) \Rightarrow (E * id) \Rightarrow (id * id)$$

Martin Sulzmann

LR Parsing

Approach

Instance of shift-reduce parser where we employ FSA to recognize handles.

Method

- Build a right-most derivation in reverse $w \Leftarrow^* S$.
- Maintain stack of *viable prefixes*, i.e. forms α such that $S \Rightarrow^* \alpha w$ for some $w \in V_t^*$.
- Shift action: Move token from input w to stack.
- Reduce action: Apply grammar rule (in reverse) to top section of stack.

Skeleton LR Parser

Algorithm

```
push s0
token:= next_token()
repeat
 s:= top of stack
  if action[s,token] = "shift si" then
   push si
   token:= next_token()
 else if action[s,token] = ''reduce A->beta'' then
       pop |beta| states
        s':= top of stack
       push goto[s',A]
 else if action[s,token] = 'accept' then done
 else error
```

Example

$$\begin{array}{cccc} S & \rightarrow & E \\ E & \rightarrow & T+E \mid T \\ T & \rightarrow & F*T \mid F \\ F & \rightarrow & id \end{array}$$

state		ac	tion		goto		
	id	+	*	\$	Ε	Т	F
0	s4	-	-	-	1	2	3
1	_	_	_	acc	-	_	-
2	_	<i>s</i> 5	_	r3	-	_	-
	_	<i>r</i> 5	<i>s</i> 6	<i>r</i> 5	-	_	-
4	_	r6	r6	r6	_	_	-
5	<i>s</i> 4	-	-	-	7	2	3
6	s4	_	_	_	_	8	3
7	_	-	-	r2 r4	-	-	-
8	-	r4	_	r4	-	_	-

Stack	Input	Action
\$ 0	id * id + id\$	s4
\$ 0 4	*id + id\$	r6
\$03	*id + id\$	<i>s</i> 6
\$036	id + id\$	s4
\$0364	+id\$	r6
\$0363	+id\$	<i>r</i> 5
\$0368	+id\$	r4
\$02	+id\$	<i>s</i> 5
\$025	id\$	s4
\$0254	\$	r6
\$0253	\$	<i>r</i> 5
\$0252	\$	r3
\$0257	\$	r2
\$01	\$	acc

LR(k) Grammars

Idea

A grammar G is LR(k) if given a right-most derivation

$$S = \gamma_0 \Rightarrow_R \gamma_1 \Rightarrow_R \ldots \Rightarrow_R \gamma_n = w$$

we can, for each right-sentential form in the derivation:

- isolate the handle of each right-sentential form, and
- determine the production by which to reduce

by scanning γ_i from left to right, going at most k symbols beyond the right end of the handle of γ_i .

LR(k) Items

LR(k) Items

The table construction algorithm uses sets of LR(k) items or configurations to represent the possible states in a parse.

A LR(k) item is a pair $[\alpha, \beta]$ where

- ullet α is a production from G with a ullet at some position in the rhs, marking how much of the rhs of a production has already been seen
- ullet eta is a lookahead string containing k symbols (terminals or \$)

As we will see, the two cases of interest are k=0 and k=1.

Example

The • indicates how much of an item we have seen at a given state in the parse:

 $[A \rightarrow \bullet XYZ]$ indicates that the parser is looking for a string that can be derived from XYZ.

 $[A \rightarrow XY \bullet Z]$ indicates that the parser has seen a string derived from XY and is looking for one derivable from Z.

LR(0) items (no lookahead):

 $A \rightarrow XYZ$ generates 4 LR(0) items:

1.
$$[A \rightarrow \bullet XYZ]$$
 2. $[A \rightarrow X \bullet YZ]$

3.
$$[A \rightarrow XY \bullet Z]$$
 4. $[A \rightarrow XYZ \bullet]$

The CFSM

The Characteristic Finite State Machine (CFSM) for a grammar is a DFA which recognizes *viable prefixes* of right-sentential forms (Recall: A viable prefix is any prefix that does not extend beyond the handle).

It accepts when a handle has been discovered and needs to be reduced.

To construct the CFSM we need two functions:

- closureO(I) to build its states
- goto0(I,X) to determine its transitions

closure0

Given an item $[A \to \alpha \bullet B\beta]$, its closure contains the item itself and any other item that can generate legal substrings to follow α .

Thus, if the parser has viable prefix α on the stack, the input should reduce to $B\beta$ (or γ for other item $[B \to \bullet \gamma]$ in the closure).

```
\label{eq:closure0} \begin{array}{c} \texttt{closure0(I):} \\ \texttt{repeat} \\ \texttt{if} \ [A \to \alpha \bullet B\beta] \in I \ \texttt{and} \ B \to \gamma \ \texttt{is a rule} \\ \texttt{then add} \ [B \to \bullet \gamma] \ \texttt{to I} \\ \texttt{until no more items can be added to I} \\ \texttt{return I} \end{array}
```

goto0(I,X) is the closure of the set of all items [$A \to \alpha X \bullet \beta$] such that [$A \to \alpha \bullet X\beta$] $\in I$.

If I is the set of valid items fro some viable prefix γ , then goto0(I,X) is the set of valid items for the viable prefix γX .

gotoO(I,X) represents the state after recognizing X in state I.

```
goto0(I,X): let J be the set of items [A \to \alpha X \bullet \beta] such that [A \to \alpha \bullet X \beta] \in I return closure0(J)
```

Example

Consider

$$\begin{array}{ccc} P & \rightarrow & \mathit{CP} \mid \epsilon \\ C & \rightarrow & \mathit{agBe} \mid \mathit{ae} \\ B & \rightarrow & \mathit{acB} \mid \mathit{a} \end{array}$$

Assume $I = \{[C \rightarrow ag \bullet Be]\}$. Then (I omit [and] for simplicity)

$$closure0(I) = \left\{ egin{array}{ll} C
ightarrow ag ullet Be, \ B
ightarrow ullet acB, \ B
ightarrow ullet a \end{array}
ight\}$$

Assume $I = \{[P \rightarrow \bullet], [P \rightarrow \bullet CP]\}$. Then

$$goto0(I,C) = \left\{ \begin{array}{l} P \rightarrow C \bullet P, \\ P \rightarrow \bullet CP, \\ P \rightarrow \bullet, \\ C \rightarrow \bullet agBe, \\ C \rightarrow \bullet ae \end{array} \right\}$$

Constructing the LR(0) Item Sets

We introduce a new start symbol S' where $S' \to S$ (some presentations assume $S' \to S$ \$.)

```
States = \{closure0(\{S' \rightarrow \bullet S\})\}\ while we can keep making changes for each I \in States and symbol X
I' = goto0(I,X)
if I \notin States then States = States \cup \{I'\}
```

LR(0) Example

```
Grammar:  \begin{array}{ccc} S & \rightarrow & E \ (1) \\ E & \rightarrow & E + T \ (2) \mid T \ (3) \\ T & \rightarrow & id \ (4) \mid (E) \ (5) \\ \end{array}
```

CFSM:


```
LR(0) items:
  I_0: S \to \bullet E
                                     I_4: T \rightarrow id \bullet
             E \rightarrow \bullet E + T
                                           I_5: T \rightarrow (\bullet E)
                                                         E \rightarrow \hat{\bullet}E + T
             T \rightarrow \bullet id
                                                         E \rightarrow \bullet T
            T \rightarrow \bullet(E)
                                              T \rightarrow \bullet id
   I_1: S \rightarrow E \bullet
                                          T \to \bullet(E)
                                             I_6: T \to (E \bullet)

E \to E \bullet + T
             E \rightarrow E \bullet + T
   I_2: E \rightarrow E + \bullet T
           T 	o ullet{id}
                                              I_7: T \to (E) \bullet
           T \rightarrow \bullet(E)
                                              I_8: E \rightarrow T \bullet
   I_3: E \rightarrow E + T \bullet
```

Constructing the Parsing Table

We have constructed LR(0) items and CFSM (state i of the CFSM is constructed from I_i).

- If $A \to \alpha \bullet a\beta \in I_i$ and goto0(I_i,a)= I_i then action(i,a)=shift j.
- If $A \to \alpha \bullet \in I$ then $action(I,a) = reduce(A \to \alpha)$ for all a.
- If $S' \to S \bullet \in I$ then action(I,\$) = accept.
- If $goto0(I_i,A) = I_j$ (where $A \in V_n$) then goto(i,A)=j.
- Set undefined entries in action and goto to "error".
- Set initial state of parser to closure0([$S' \rightarrow \bullet S$]).

LR(0) Example

state			actio	7			goto	
	id	()	+	\$	S	Ε	Т
0	s4	<i>s</i> 5					1	8
1					acc			
2	s4	<i>s</i> 5						3
3	r2	r2	r2	r2	r2			
4	r4	r4	r4	r4	r4			
5	<i>s</i> 4	<i>s</i> 5					6	8
6			<i>s</i> 7	<i>s</i> 2				
7	r5	<i>r</i> 5	<i>r</i> 5	<i>r</i> 5	<i>r</i> 5			
8	r3	r3	r3	r3	r3			

Another Example

Consider

Is this grammar LR(0)?

Another Example (2)

Grammar:

LR(0) items:

$$I_{0}: S' \rightarrow \bullet S \qquad I_{3}: S \rightarrow B \bullet c$$

$$S \rightarrow \bullet A \qquad I_{4}: S \rightarrow Bc \bullet$$

$$S \rightarrow \bullet Bc \qquad I_{5}: S \rightarrow D \bullet$$

$$S \rightarrow \bullet D \qquad I_{6}: A \rightarrow a \bullet$$

$$A \rightarrow \bullet a \qquad B \rightarrow a \bullet$$

$$A \rightarrow \bullet b \qquad I_{7}: A \rightarrow b \bullet$$

$$B \rightarrow \bullet a \qquad D \rightarrow b \bullet c$$

$$D \rightarrow b c \qquad \dots$$

$$I_{1}: S' \rightarrow S \bullet$$

$$b: S \rightarrow A \bullet$$

Another Example (3)

 $D \rightarrow bc$

LR(0) items:

$$I_0: S' \to \bullet S \qquad I_3: S \to B \bullet c$$

$$S \to \bullet A \qquad I_4: S \to Bc \bullet$$

$$S \to \bullet Bc \qquad I_5: S \to D \bullet$$

$$S \to \bullet D \qquad I_6: A \to a \bullet \qquad \text{reduce}$$

$$A \to \bullet a \qquad B \to a \bullet \qquad \text{reduce conflict!}$$

$$A \to \bullet b \qquad I_7: A \to b \bullet$$

$$B \to \bullet a \qquad D \to b \bullet c$$

 $D \rightarrow \bullet bc$ $I_1: S' \rightarrow S \bullet$ $I_2: S \rightarrow A \bullet$

Another Example (4)

Grammar:

LR(0) items:

 $I_2: S \rightarrow A \bullet$

Above grammar is not LR(0).

LR Parsing

Short Summary

If LR(0) parsing tables contains multiply-defined action entries then G is not LR(0).

There are two possible types of conflicts:

- shift-reduce
- reduce-reduce

Conflicts can be resolved by looking ahead.

SLR(1): Simple Lookahead LR

SLR(1)

Add lookaheads after building LR(0) item sets. We construct the SLR(1) parsing table as follows:

- If $A \to \alpha$ $a\beta \in I$ ($a \in V_t$) and $goto0(I,a)=I_i$ then action(I,a)=shift i.
- If $A \to \alpha \bullet \in I$ then $action(I,a) = reduce(A \to \alpha)$ for all $a \in Follow(A)$.
- If $S' \to S \bullet \in I$ then action(I,\$) = accept.
- If $goto0(I_i,A) = I_j$ (where $A \in V_n$) then goto(i,A)=j.
- Set undefined entries in action and goto to "error".
- ullet Set initial state of parser to closure0([S'
 ightarrow ullet S]).

SLR(1) but not LR(0) Example

$$\begin{array}{lll} S & \to & A \ (1) \ | \ Bc \ (2) \ | \ bc \ (3) & Follow(S) = \{\$\} \\ A & \to & a \ (4) \ | \ b \ (5) & Follow(A) = \{\$\} \\ B & \to & a \ (6) & Follow(B) = \{c\} \end{array}$$

SLR(1) Parsing Table

state			goto)			
	а	b	С	\$	S	Α	В
0	<i>s</i> 5	<i>s</i> 6			1	2	3
1				acc			
2				r1			
2 3			<i>s</i> 4				
4				r2 r4			
5			<i>r</i> 6	r4			
6			<i>s</i> 7				
7				r2			

Limitations of SLR(1)

Consider

$$\begin{array}{ccc} S' & \rightarrow & S \\ S & \rightarrow & L = R \mid R \\ L & \rightarrow & *R \mid id \\ R & \rightarrow & L \end{array}$$

LR(0) items:

$$I_0: S' o ullet S$$
 $S o ullet L = R$
 $S o ullet R$
 $S o ullet R$
 $L o ullet R$
 $L o ullet A$
 $L o ullet A$
 $R o ullet A$
 $R o ullet A$
 $R o ullet A$
 $R o ullet A$

Limitations of SLR(1) (cont'd)

Examples shows that it can be insufficient to consider Follow sets.

Assume we are parsing id = id.

In item 2, the shift action is the only correct choice (to reduce L to R gets us nowhere).

Note that item $R \to L \bullet$ came via $S' \Rightarrow S \Rightarrow R \Rightarrow L$ (each symbol can only be "followed" by \$).

Hence, we need to make an effort to remember the actual right context.

LR(1) Items Revisited

Idea

We can incorporate the extra right-context information into items.

An LR(1) item is of the form $[A \to \alpha \bullet \beta, t]$ where $t \in V_t \cup \{\$\}$.

An item $[A \to \alpha \bullet, a]$ calls for the reduction $A \to \alpha$ only if the next input symbol is a.

LR(1) Items Revisited (cont'd)

closure1 with Context

```
closure1(I): while new items can be added if [A \to \alpha \bullet B\gamma, c] \in I and B \to \delta is a rule then for each b \in First(\gamma c) add [B \to \bullet \delta, b] to I
```

goto1 with Context

```
goto1(I,X):

let J be the set of items [A \to \alpha X \bullet \beta, a]

such that [A \to \alpha \bullet X\beta, a] \in I

return closure0(J)
```

Initial State

LR(1) Parsing Table

Algorithm

For each set I_i of LR(1) items:

- If $[A \to \alpha \bullet a\beta] \in I_i$ and goto1 $(I_i,a)=I_j$ then action(i,a)=shift j.
- If $[A \to \alpha \bullet, b] \in I_i \ (A \neq S')$ then $action(i,b) = reduce(A \to \alpha)$.
- If $[S' \to S \bullet, \$] \in I_i$ then action(i,\$) = accept.
- If $goto1(I_i,A) = I_j$ (where $A \in V_n$) then goto(i,A)=j.

All remaining entries are set to "error".

Initial state contains $[S' \rightarrow \bullet S, \$]$.

Recall Example

Consider

$$\begin{array}{ccc} S' & \rightarrow & S \\ S & \rightarrow & L = R \mid R \\ L & \rightarrow & *R \mid id \\ R & \rightarrow & L \end{array}$$

LR(1) items:

$$I_0: [S' \to \bullet S, \$]$$
 $[S \to \bullet L = R, \$]$
 $[S \to \bullet R, \$]$
 $[L \to \bullet * R, =]$
 $[L \to \bullet id, =]$
 $[R \to \bullet L, \$]$
 $I_1: [S' \to S \bullet, \$]$
 $I_2: [S \to L \bullet = R, \$]$
 $[R \to L \bullet, \$]$
 $[R \to L \bullet, \$]$

Another Example

Grammar:

state	action			go	oto
	С	d	\$	S	С
0	<i>s</i> 3	s4		1	2
1			acc		
2 3	<i>s</i> 6	<i>s</i> 7			5
3	<i>s</i> 3	<i>s</i> 4			8
4	r3	r3			
5			r1		
6	<i>s</i> 6	<i>s</i> 7			9
7			r3		
8	r2	r2			
9			r2		

LR(1) items:

Another Example (2)

Grammar:

$$\begin{array}{ccc} S' & \rightarrow & S (0) \\ S & \rightarrow & CC (1) \\ C & \rightarrow & cC (2) \mid d (3) \end{array}$$

state		actio	1		oto
	С	d	\$	S	С
0	<i>s</i> 3	<i>s</i> 4		1	2
1			acc		
1 2 3	<i>s</i> 6	<i>s</i> 7			5
	<i>s</i> 3	s4			8
4 5	r3	r3			
			r1		
6	<i>s</i> 6	<i>s</i> 7			9
7			r3		
8	r2	r2			
9			r2		

LR(1) items:

 \emph{I}_{3} and \emph{I}_{6} have the same "core"!

LALR: Lookahead LR

Idea

Define the *core* of a set of LR(1) items to be the set of LR(0) items derived by ignoring the lookahead symbols.

E.g. the two sets

•
$$\{[C \rightarrow c \bullet C, c \mid d], [C \rightarrow \bullet cC, c \mid d], [C \rightarrow \bullet d, c \mid d]\}$$

$$\bullet \ \{[C \rightarrow c \bullet C, \$], [C \rightarrow \bullet cC, \$], [C \rightarrow \bullet d, \$]\}$$

have the same core.

Key idea: If two sets of LR(1) items, I_i and I_j , have the same core, we can merge the states that represent them in the action and goto tables.

LALR(1) algorithm

Algorithm

- Construct LR(1) items.
- Find all cores among sets of LR(1) items, replace these sets by their union, update goto function (incrementally).
- For each Ii
 - If $[A \to \alpha \bullet a\beta, b] \in I_i$ and goto1 $(I_i, a) = I_j$ then action(i, a) = shift j.
 - If $[A \to \alpha \bullet, b] \in I_i \ (A \neq S')$ then $action(i,b) = reduce(A \to \alpha)$.
 - If $[S' \to S \bullet, \$] \in I_i$ then action(i,\$) = accept.
- If $goto1(I_i,A) = I_j$ (where $A \in V_n$) then goto(i,A)=j.

All remaining entries are set to "error".

 ${\sf Initial\ state} = {\it closure1}(\{[S' \to \bullet S, \$]\}).$

More efficient LALR construction possible, see textbook.

Recall Example

Grammar:

state		action			oto
	С	d	\$	S	С
0	<i>s</i> 3	<i>s</i> 4		1	2
1			acc		
2	<i>s</i> 6	<i>s</i> 7			5
3	<i>s</i> 3	<i>s</i> 4			8
4	r3	r3			
5			r1		
6	<i>s</i> 6	<i>s</i> 7			9
7			r3		
8	r2	r2			
9			r2		

LR(1) items:

Recall Example (2)

Grammar:

$$S' \rightarrow S(0)$$

$$S \rightarrow CC(1)$$

$$C \rightarrow cC(2) \mid d(3)$$

state		actio	7		oto
	С	d	\$	S	С
0	<i>s</i> 3	<i>s</i> 4		1	2
1			acc		
2	<i>s</i> 6	<i>s</i> 7			5
2 3 4	<i>s</i> 3	<i>s</i> 4			8
4	r3	r3			
5			r1		
6	<i>s</i> 6	<i>s</i> 7			9
7			r3		
8	r2	r2			
9			r2		

LR(1) items:

$$\begin{array}{lll} \text{LK(1) items:} & & l_4: & C \rightarrow d \bullet, c \mid d \\ & S \rightarrow \bullet CC, \$ & l_5: & S \rightarrow CC \bullet, \$ \\ & C \rightarrow \bullet cC, c \mid d & l_6: & C \rightarrow c \bullet C, \$ \\ & C \rightarrow \bullet c, c \mid d & C \rightarrow \bullet cC, \$ \\ & l_1: & S' \rightarrow S \bullet, \$ & C \rightarrow \bullet cC, \$ \\ & l_2: & S \rightarrow C \bullet C, \$ & l_7: & C \rightarrow d \bullet, \$ \\ & C \rightarrow \bullet cC, \$ & l_8: & C \rightarrow cC \bullet, c \mid d \\ & C \rightarrow \bullet cC, c \mid d \\ & C \rightarrow \bullet cC, c \mid d \\ & C \rightarrow \bullet d, c \mid d \end{array}$$

Merged states:

$$\begin{array}{lll} I_{36}: & C \rightarrow c \bullet C, c \mid d \mid \$ \\ & C \rightarrow \bullet cC, c \mid d \mid \$ \\ & C \rightarrow \bullet d, c \mid d \mid \$ \\ I_{47}: & C \rightarrow d \bullet, c \mid d \mid \$ \\ I_{89}: & C \rightarrow cC \bullet, c \mid d \mid \$ \end{array}$$

Recall Example (3)

Grammar:

$$\begin{array}{ccc} S' & \rightarrow & S(0) \\ S & \rightarrow & CC(1) \\ C & \rightarrow & cC(2) \mid d(3) \end{array}$$

Updated table:

state		action				
	С	d	\$	S	С	
0	<i>s</i> 36	s47		1	2	
1			acc			
2	s36	s47			5 89	
36 47	s36	s47			89	
	r3	r3	r3			
5 89			r1			
89	r2	r2	r2			

LR(1) items:

$$\begin{array}{llll} R(1) \text{ items:} & & & & \\ I_0: & S' \to \bullet S, \$ & & & \\ & S \to \bullet CC, \$ & & & \\ & C \to \bullet cC, c \mid d & & & \\ C \to \bullet d, c \mid d & & & \\ I_1: & S' \to S\bullet, \$ & & & \\ I_2: & S \to C\bullet C, \$ & & \\ I_2: & S \to C\bullet C, \$ & & \\ I_3: & C \to \bullet cC, \$ & & \\ I_3: & C \to c \bullet C, c \mid d & \\ I_3: & C \to c \bullet C, c \mid d & \\ \end{array}$$

Merged states:

$$\begin{array}{lll} I_{36}: & C \rightarrow c \bullet C, c \mid d \mid \$ \\ & C \rightarrow \bullet cC, c \mid d \mid \$ \\ & C \rightarrow \bullet d, c \mid d \mid \$ \\ I_{47}: & C \rightarrow d \bullet, c \mid d \mid \$ \\ I_{80}: & C \rightarrow cC \bullet, c \mid d \mid \$ \end{array}$$

 $C \rightarrow \bullet cC, c \mid d$ $C \rightarrow \bullet d, c \mid d$

Summary

- LR more powerful than LL.
- ANTLR is a "pretty cool" Java-based LL parser.
- LALR good enough in practice (see yacc).
- Precedence can also be used to resolve shift/reduce conflicts.
 E.g. higher precedence ⇒ shift, left associative ⇒ reduce.
- Error recovery important (but no time!), please consult text book.