

BAUELEMENTE UND SCHALTUNGEN II

ES2: Operationsverstärker

Studien- und Vorbereitungsaufgaben

Autor: Richard Grünert

4.5.2020

1 Vorbereitungsaufgaben

1.1 Kenngrößen des Operationsverstärkers

-Spannungsgrenze -Leerlaufverstärkung -CMRR, Gleichtakt/Gegentaktverstärkung

1.2 Rückkopplung

Abbildung 1: OPV-Kennlinie ohne Rückkopplung (ideal)

Abbildung 2: OPV-Kennlinie mit Rückkopplung

Durch Rückführung eines Teils des Ausgangs- auf das Eingangssignal durch ein Rückkopplungsnetzwerk wird der Operationsverstärker in einen linearen Arbeitsbereich gebracht, wodurch die Verstärkung nicht mehr den Wert der der Leerlaufverstärkung (Abb. 1), sondern einen kontrollierten Verstärkungswert (Abb. 2) annimmt.

1.3 Invertierender Operationsverstärker

Abbildung 3: Invertierende Verstärkerschaltung

$$U_a = V_0(U_p - U_n)$$
$$U_p = 0 V$$
$$U_a = -V_0 \cdot U_n$$

Bestimmung von U_n durch Überlagerung der Eingangs- und Ausgangswirkung:

$$U_n = U'_n + U''_n$$

$$U'_n = U_n|_{U_a=0}$$

$$= U_e \cdot \frac{R_2}{R_1 + R_2}$$

$$U''_n = U_n|_{U_e=0}$$

$$= U_a \cdot \frac{R_1}{R_1 + R_2}$$

$$U_a = -V_0 \cdot U_e \cdot \frac{R_2}{R_1 + R_2} - V_0 \cdot U_a \cdot \frac{R_1}{R_1 + R_2}$$

$$U_a(1 + V_0 \cdot \frac{R_1}{R_1 + R_2}) = -V_0 \cdot U_e \cdot \frac{R_2}{R_1 + R_2}$$

$$\frac{U_a}{U_e} = V = -\frac{V_0 \cdot \frac{R_2}{R_1 + R_2}}{1 + V_0 \cdot \frac{R_1}{R_1 + R_2}} = -\frac{V_0}{(R_1 + R_2) + V_0 \cdot R_1}$$

$$V = -\frac{R_2}{\frac{R_1 + R_2}{V_0} + R_1}$$

für $V_0 \to \infty$

$$V = -\frac{R_2}{R_1}$$

1.4 Beispielhafte Übertragungskennlinie

Abbildung 4: Kennlinie eines (idealen) OPV mit einer Verstärkung von $V_u=-10$ und einer Versorgungsspannung von $U_s=\pm 15\,{\rm V}$

1.5 Nichtinvertierender Operationsverstärker

Abbildung 5: Nichtinvertierende Verstärkerschaltung

$$U_{a} = V_{0}(U_{p} - U_{n})$$

$$U_{a} = V_{0}(U_{e} - U_{n})$$

$$U_{n} = U_{a} \frac{R_{1}}{R_{1} + R_{2}}$$

$$U_{a} = V_{0}(U_{e} - U_{a} \frac{R_{1}}{R_{1} + R_{2}})$$

$$U_{a}(1 + V_{0} \frac{R_{1}}{R_{1} + R_{2}}) = V_{0}U_{e}$$

$$\frac{U_{a}}{U_{e}} = V = \frac{V_{0}}{1 + V_{0} \frac{R_{1}}{R_{1} + R_{2}}}$$
für $V_{0} \to \infty$

 ${\bf 1.6}\quad {\bf Beispielhafte}\ \ddot{\bf U}bertragungskennlinie$