PERTURBATION THEORY FOR GENERIC HAMILTONIAN IN THE LANDAU LEVEL LIMIT

D.B.

We consider a Hamiltonian

$$H = p_x^2 + p_y^2 + \lambda \sum_{n=2}^{\infty} \lambda_{1,n} p_x^{2n} + \lambda_{2,n} p_y^{2n},$$

with p_i appropriately scaled momentum variables and λ , $\lambda_{i,n}$ are generic constants. In the Landau gauge, with $\mathbf{A} = (0, Bx)$ and $k_v = 0$, this is

$$H(B, \{\lambda\}) = p_x^2 + (x/\ell^2)^2 + \lambda \sum_{n=2}^{\infty} \lambda_{1,n} p_x^{2n} + \lambda_{2,n} (x/\ell^2)^{2n}$$

where $\ell = 1/\sqrt{eB}$ is the magnetic length. ($\hbar = c = 1$). Rescaling H in terms of $\xi = x/\ell$,

For $\lambda = 0$, the eigenvalues of $H(\ell, \lambda = 0)$ are

with eigenstates $|n;\ell\rangle$ and wavefunctions $\langle x|n;\ell\rangle = \phi(\xi;\ell)$. For $\lambda \neq 0$, we can write these as Taylor series in λ ,

$$E_n(\ell,\lambda) = E_n(\ell) + \sum_{k=1}^{\infty} \frac{\lambda^k}{k!} \left[\frac{\partial^k}{\partial \lambda^k} E_n(\ell,\lambda) \right]_{\lambda=0}$$
 (1)

$$|n;\ell,\lambda\rangle = |n;\ell\rangle + \sum_{k=1}^{\infty} \frac{\lambda^k}{k!} \left[\frac{\partial^k}{\partial \lambda^k} |n;\ell,\lambda\rangle \right]_{\lambda=0}$$
 (2)

As described in [1], we can resolve the derivatives of the energies and states in terms of matrix elements $\langle m; \ell | \partial H | n; \ell \rangle$ with

$$\begin{split} \partial H &= \frac{\partial H}{\partial \lambda} = \sum_{n=2}^{\infty} \ell^{-2n} \left(\lambda_{1,n} p_{\xi}^{2n} + \lambda_{2,n} \xi^{2n} \right) \\ &= \ell^{-4} \sum_{n=2}^{\infty} \ell^{-2(n-2)} \left(\lambda_{1,n} p_{\xi}^{2n} + \lambda_{2,n} \xi^{2n} \right) \\ &\equiv \ell^{-4} h(p_{\xi}, \xi, \{\lambda_{i,n}\}) \end{split}$$

We're assuming that the $\lambda_{i,n}$ are constants, but note that so long as $\lambda_{i,n}$ is at most $O(\ell^{2n-4})$, $h(p_{\xi}, \xi, \{\lambda_{i,n}\})$ will be at most O(1) in ℓ . With this in mind, we write

$$\langle m; \ell | \partial H | n; \ell \rangle = \ell^{-4} \langle m; \ell | h(p_{\xi}, \xi, \{\lambda_{i,n}\}) | n; \ell \rangle$$

$$\equiv \ell^{-4} h_{nm}$$

Date: August 3, 2016.

2 D.B.

We also need to keep track of energy denominators $\Delta_{nm} = E_n(\ell) - E_m(\ell)$ for this resolution. Since $E_n \sim \ell^{-2}$, $\Delta_{nm}^k \sim O(\ell^{-2k})$. In the Taylor series for the eigenstates, each factor of h_{nm} is accompanied by a factor of Δ_{nm} in the denominator. For example,

$$\left[\frac{\partial^{2}}{\partial \lambda^{2}} | n; \ell, \lambda \rangle\right]_{\lambda=0} = 2 \sum_{m \neq n, k \neq n} \frac{\ell^{-8} h_{mk} h_{kn}}{\Delta_{nm} \Delta_{nk}} | m \rangle - 2 \sum_{m \neq n} \frac{\ell^{-8} h_{mn} h_{nn}}{\Delta_{nm}^{2}} | m \rangle - \sum_{m \neq n} \frac{\ell^{-8} h_{nm} h_{mn}}{\Delta_{nm}^{2}} | m \rangle$$

$$\sim O(\ell^{-4}).$$

In fact, the k-th derivative term in the expansion (2) is $O(\ell^{-2k})$. [TODO: Provide more justification for this. It's "obvious" from dimensional analysis, but a proof would be nice.]

This lets us write

$$|n; \ell, \lambda\rangle = |n; \ell\rangle + \sum_{k=1}^{\infty} \frac{\lambda^k}{k!} \ell^{-2k} |\psi_k\rangle.$$

The state $|\psi_k\rangle$ appearing in each order of the expansion will be a complicated superposition of Landau levels, but to lowest order it will be independent of ℓ . From here we can see that in the limit $\ell \to \infty$ corresponding to $B \to 0$, corrections to the energy eigenstates from terms in the Hamiltonian of higher than quadratic order will vanish. More precisely, what we need is $\lambda \ell^{-2} \to 0$. Similar considerations apply to the energy eigenvalues. [i.e., I'll add that bit soon.]

REFERENCES

[1] https://en.wikipedia.org/wiki/Perturbation_theory_(quantum_mechanics)#Hellman.E2.80. 93Feynman_theorems

Keeping Quartic Terms $H(e) = H' = P_s^2 + S^2 + A_y \left(\frac{P_x^4}{e^2} + \frac{P_y^4}{e^2} \right).$ 2 = l2 $E^{\circ}(\ell) = n + 1/2 \qquad \frac{\lambda_{\eta}}{\ell^{2}} \leq 1$ Can safely neglent 14 for. $\lambda_{y} < 0 \mid P_{x}^{4} + P_{y}^{4} \mid 0 \rangle \sim C_{1}$ $\lambda_4 < 0 \mid P_n^{\eta} + e_y^{\eta} \mid n > \sim C_2$ Rough Bounds on lowest order corrections to Cose I:- $H = P_n^n + P_y^n + \sum_{n=6}^{\infty} \lambda_n \left(P_n^n + \cdots\right)$ gener orlize to the most general quantic up to rescale + d; (P2+ Pg2+ -) Case 71: - H = 1, + - - -

																		\blacksquare
	_																	_
																		_
		-																\perp
		-																
																		_
	+																	
		+																
		_																
	-																	
\vdash	+																	+
	+																	