CIR-2 21 septembre 2009

D.S. de Math n° 1 durée : 2 heures

- La calculatrice est interdite.
- Le sujet comporte une feuille <u>recto-verso</u>.
- Utilisez les brouillons à votre disposition afin de rendre des copies sans rature ni faute d'orthographe.
- Rédigez clairement et concisément vos réponses et encadrez les résultats importants.
- Les questions qui nécessitent des réponses sont précédées d'un numéro que vous reporterez sur vos copies

I. Distance entre deux droites

On se situe dans l'espace physique à trois dimensions identifié à \mathbb{R}^3 .

- 1. On donne deux points A et B et deux vecteurs <u>non-nuls</u> u et v. Calculer, en fonction de A, B, u et v, la distance entre \mathcal{D}_1 (passant par A dirigée par u) et \mathcal{D}_2 (passant par B et dirigée par v). (indication : vous traiterez à part le cas où u et v sont colinéaires...)
- 2. On définit maintenant les droites \mathcal{D}_1 et \mathcal{D}_2 par les équations cartésiennes ci-dessous; calculer la distance qui les sépare.

II. Une vague histoire de point d'équilibre

Dans ce problème, les parties ne sont pas indépendantes.

A. Définition du barycentre

Dans l'espace à deux dimensions, identifié à \mathbb{R}^2 , on donne trois points A_1, A_2 et A_3 par leurs coordonnées respectives $(x_1, y_1), (x_2, y_2)$ et (x_3, y_3) .

1. Comment peut-on tester simplement le fait que ces trois points sont alignés ou non (donner une équation simple portant sur les coordonnées)?

Hypothèse 1 : on suppose désormais que A_1, A_2 et A_3 sont non-alignés. On dit qu'ils constituent un **repère** barycentrique du plan.

On définit maintenant trois réels (appelés **poids**) : α_1, α_2 et α_3 et une fonction :

$$f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$M \mapsto \sum_{i=1}^3 \alpha_i \overrightarrow{MA_i}.$$

- 2. Montrer que si $\sum_{i=1}^{3} \alpha_i = 0$, alors f est constante.
- 3. La réciproque est-elle vraie?

Hypothèse 2 : on suppose maintenant que $\sum_{i=1}^{3} \alpha_i \neq 0$

4. Montrer qu'il existe un unique point G tel que f(G) = 0, et déterminer \overrightarrow{OG} en fonction des vecteurs $\overrightarrow{OA_i}$.

Le point G s'appelle le **barycentre** des points pondérés $(A_1, \alpha_1), (A_2, \alpha_2)$ et (A_3, α_3) .

5. Montrer qu'on ne change pas le barycentre en multipliant tous les scalaires α_i par une même constante non-nulle.

1

B. Recherche de coordonnées barycentriques

On cherche maintenant à résoudre le problème inverse : connaissant un point $M \begin{pmatrix} x \\ y \end{pmatrix}$ du plan, on cherche les poids $(\alpha_1, \alpha_2, \alpha_3)$ tels que M soit le barycentre de $(A_1, \alpha_1), (A_2, \alpha_2)$ et (A_3, α_3) .

6. Déterminez (sans résoudre) une équation vectorielle (et par suite deux équations scalaires) portant sur $(\alpha_1, \alpha_2, \alpha_3)$ pour que ce triplet soit solution du problème.

D'après la question 5 et l'hypothèse 2, on peut aussi imposer la condition $\sum_{i=1}^{3} \alpha_i = 1$. Désormais, on imposera toujours cette condition.

7. Mettre les trois équations ainsi trouvées sous forme matricielle :

$$\underbrace{\begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ 1 & 1 & 1 \end{pmatrix}}_{A} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \end{pmatrix}$$

Éléments de cours :

A est inversible \iff ses colonnes sont linéairement indépendantes \iff $\det(A) \neq 0$.

On trouve donc un unique triplet $(\alpha_1, \alpha_2, \alpha_3)$ dès que $\det(A) \neq 0$.

Les coefficients $(\alpha_1, \alpha_2, \alpha_3)$ sont alors appelés les **coordonnées barycentriques** de M dans le repère barycentrique (A_1, A_2, A_3) .

8. Par la méthode du pivot de Gauss, simplifier le déterminant de A et montrer que la condition $\det(A) \neq 0$ est équivalente à l'hypothèse 1.

C. Quelques points particuliers

- 9. Quelles sont les coordonnées barycentriques, dans le repère barycentrique (A_1, A_2, A_3) , des points suivants :
 - (a) $A_1, A_2 \text{ et } A_3,$
 - (b) les milieux des segments $[A_1A_2]$, $[A_2A_3]$ et $[A_3A_1]$,
 - (c) l'intersection des médianes du triangle $A_1A_2A_3$?
- 10. à quelle condition sur les coordonnées barycentriques $(\alpha_1, \alpha_2, \alpha_3)$ du point $M \begin{pmatrix} x \\ y \end{pmatrix}$ a-t-on M qui appartient à la droite (AB)?

D. Condition d'alignement de trois points en coordonnées barycentriques

On cherche une conditions nécessaire et suffisante sur les coordonnées barycentriques de trois points pour qu'ils soient alignés.

Poser $M_1(X_1, Y_1)$ de coordonnées barycentriques $(\alpha_1, \alpha_2, \alpha_3)$, $M_2(X_2, Y_2)$ de coordonnées barycentriques $(\beta_1, \beta_2, \beta_3)$, et $M_3(X_3, Y_3)$ de coordonnées barycentriques $(\gamma_1, \gamma_2, \gamma_3)$, et chercher.

III. Intersection des médianes d'un triangle

Dans le plan muni d'un repère orthonormé, on définit trois points :

$$A \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad B \begin{pmatrix} -3 \\ 2 \end{pmatrix} \qquad C \begin{pmatrix} -1 \\ -3 \end{pmatrix}$$

- 1. Déterminer les équations cartésiennes des médianes du triangle ABC.
- 2. Montrer qu'elles sont concourrantes et donner leur point d'intersection (comment s'appelle ce point... vous pouvez utiliser le problème II. pour vous faciliter les calculs).

Bon courage!