Considérez une série statistique de 60 taux d'hémoglobine dans le sang, exprimés en g/L et mesurés chez des adultes présumés en bonne santé. La série est rangée par valeurs croissantes et l'ordre dans lequel les données ont été observées n'a pas été conservé.

| lequel les    |     |     |     | -   | - T | 119        | 120 | 120 | 125    | 126 |
|---------------|-----|-----|-----|-----|-----|------------|-----|-----|--------|-----|
| Femmes Hommes | 105 | 110 | 112 | 112 | 118 | 13/11/2015 | 135 | 138 | 138    | 138 |
|               | 127 | 128 | 130 | 132 | 133 | 134        | 151 | 154 | 154    | 158 |
|               | 138 | 142 | 145 | 148 | 148 | 150        | 150 | 151 | 153    | 153 |
|               | 141 | 144 | 146 | 148 | 149 | 150        | 160 | 160 | 163    | 164 |
|               | 153 | 154 | 155 | 156 | 156 | 160        | 172 | 172 | 176    | 179 |
|               | 164 | 165 | 166 | 168 | 168 | 170        | 172 |     | 100000 |     |

- 1) Créez deux vecteurs : un vecteur Femmes et un vecteur Hommes qui contiennent chacun les données brutes.
- 2) Considérez le groupement en classes suivant ;

Pour chacune des deux séries : femmes et hommes, déterminez les effectifs et les fréquences de

- 3) Effectuez une représentation graphique adaptée des deux distributions groupées en classe de
- 4) Calculez les moyennes pour chacune des trois distributions initiales : ensemble, femmes,
- 5) Calculez les moyennes des trois distributions (ensemble, femmes, hommes) après le groupement en classes de la question 2), en remplaçant chaque classe par son milieu.
- 6) Calculez les médianes pour chacune des trois distributions initiales : ensemble, femmes,
- 7) Calculez l'écart interquartile pour chacune des trois distributions initiales : ensemble, femmes, hommes.
- 8) Calculez les variances corrigées et les écarts-types corrigés des trois distributions initiales : ensemble, femmes, hommes.
- 9) Pour la distribution des femmes, calculez les caractéristiques de forme de Fisher.

1) > femmes<-

c(105,110,112,112,118,119,120,120,125,126,127,128,130,132,133,134,135,138,138,138,138,142,145,148,148,150,151,154,158)

### > femmes

[1] 105 110 112 112 118 119 120 120 125 126 127 128 130 132 133 134 135 138 138 138 138 142 145 148 148 150 151 154 158

### > Hommes<-

c(141,144,146,148,149,150,150,151,153,153,154,155,156,156,160,160,160,163,164,164,165,166,168,170,172,172,176,179)

## > Hommes

[1] 141 144 146 148 149 150 150 151 153 153 154 155 156 156 160 160 160 163 164 164 165 166 168 168 170 172 172 176 179

```
> femmes <-c(105,110,112,112,118,119,120,120,125,126,127,128,130,132,133,134,135,138,138,138,142,145,148,148,150,151,154,158)
> femmes
[1] 105 110 112 112 118 119 120 120 125 126 127 128 130 132 133 134 135 138 138 138 142 145 148 148 150 151 154 158
> Hommes <-c(141,144,146,148,149,150,150,151,153,153,154,155,156,156,160,160,163,164,164,165,166,168,168,170,172,172,176,79)
> Hommes
[1] 141 144 146 148 149 150 150 151 153 153 154 155 156 156 160 160 160 163 164 164 165 166 168 168 170 172 172 176 79
> Hommes
[4] 141 144 146 148 149 150 150 151 153 153 154 155 156 156,156,156,160,160,160,163,164,164,165,166,168,168,170,172,172,176,179)
> Hommes
[6] 141 144 146 148 149 150 150 151 153 153 154 155 156 156 160 160 160 163 164 164 165 166 168 168 170 172 172 176 179
```

2) effectifFemmes=cut(femmes, c(104,114,124,134,144,154,164,174,184))

# > effectifFemmes

[1] (104,114] (104,114] (104,114] (104,114] (114,124] (114,124] (114,124] (114,124] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (134,144]

[19] (134,144] (134,144] (134,144] (134,144] (144,154] (144,154] (144,154] (144,154] (144,154] (144,154]

Levels: (104,114] (114,124] (124,134] (134,144] (144,154] (154,164] (164,174] (174,184]

> table(effectifFemmes)

### effectifFemmes

(104,114] (114,124] (124,134] (134,144] (144,154] (154,164] (164,174] (174,184]

```
4 4 8 6 6 1 0 0

> effectiffemmes=cut(femmes, c(104,114,124,134,144,154,164,174,104))
> effectiffemmes
[1] (104,114] (104,114] (104,114] (104,114] (114,124] (114,124] (114,124] (114,124] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (124,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134] (134,134]
```

> effectifHommes=cut(Hommes, c(104,114,124,134,144,154,164,174,184))

### > effectifHommes

[1] (134,144] (134,144] (144,154] (144,154] (144,154] (144,154] (144,154] (144,154] (144,154] (154,164] (154,164] (154,164] (154,164] (154,164] (154,164] (154,164]

[19] (154,164] (154,164] (164,174] (164,174] (164,174] (164,174] (164,174] (164,174] (164,174] (174,184]

```
Levels: (104,114] (114,124] (124,134] (134,144] (144,154] (154,164] (164,174] (174,184]
> table(effectifHommes)
effectifHommes
(104,114] (114,124] (124,134] (134,144] (144,154] (154,164] (164,174] (174,184]
                                                                           7
         0
                    0
                                                                9
                                                                                      2
 effectifHommes=cut(Hommes, c(104,114,124,134,144,154,164,174,184))
> effectifformes
[1] (334,144] (344,154] (144,154] (144,154] (144,154] (144,154] (144,154] (144,154] (144,154] (144,154] (154,164] (154,164] (154,164] (154,164] (154,164] (154,164] (154,164] (154,164] (154,164] (154,164] (154,164] (154,164] (154,164] (154,164] (154,164] (154,164] (154,164] (154,164] (164,174] (164,174] (164,174] (164,174] (174,184]

Levels: (104,114] (114,124] (124,134] (134,144] (144,154] (154,164] (154,164] (164,174] (174,184]

**Table (effectifformes)
effectifHommes
(104,114] (114,124] (124,134] (134,144] (144,154] (154,164] (164,174] (174,184]
> FrequenceFemmes<-table(effectifFemmes) / 30
> FrequenceFemmes
effectifFemmes
(104,114] (114,124] (124,134] (134,144] (144,154] (154,164] (164,174] (174,184]
0.13333333 \ 0.13333333 \ 0.266666667 \ 0.200000000 \ 0.200000000 \ 0.03333333 \ 0.000000000 \ 0.000000000
> FrequenceHommes<-table(effectifHommes) / 30
> FrequenceHommes
effectifHommes
(104,114) (114,124) (124,134) (134,144) (144,154) (154,164) (164,174) (174,184)
> FrequenceFemmes<-table(effectifFemmes) / 30
 > FrequenceFemmes
 effectifFemmes
  [104,114] [114,124] [124,134] [134,144] [144,154] [154,164] [164,174] [174,184]
 > FrequenceHommes<-effectifHommes / 30
 Warning message:
 In Ops.factor(effectifHommes, 30) : '/' not meaningful for factors
 > FrequenceHommes<-table(effectifHommes) / 30
  > FrequenceHommes
 effectifHommes
  (104,114] (114,124] (124,134] (134,144] (144,154] (154,164] (164,174] (174,184]
 0.00000000 0.00000000 0.00000000 0.06666667 0.30000000 0.30000000 0.23333333 0.06666667
```

3) plot(effectifFemmes, xlab="effectif", ylab="tauxd(hémoglobine dans le sang(g/L)", main="Femmes")



> plot(effectifHommes, xlab="effectif", ylab="tauxd(hémoglobine dans le sang(g/L)", main="Hommes")





- 4) > mean(femmes)
- [1] 132.2069
- > mean(Hommes)
- [1] 159.069
- > mean(c(Hommes,femmes))
- [1] 145.6379

```
> mean(femmes)
[1] 132.2069
> mean(hommes)
Error in mean(hommes) : ob
> mean (Hommes)
[1] 159.069
> mean(c(Hommes, Femmes))
Error in mean(c(Hommes, Fe
> mean(c(Hommes, femmes))
[1] 145.6379
5)
6) > median(Hommes)
[1] 160
> median(femmes)
[1] 133
> median(c(Hommes,femmes))
[1] 148.5
  > median(Hommes)
  [1] 160
  > median(femmes)
  > median(c(Hommes, femmes))
  [1] 148.5
7) > quantile(Hommes,probs=c(0.25,0.5,0.75))
25% 50% 75%
151 160 166
> quantile(femmes,probs=c(0.25,0.5,0.75))
25% 50% 75%
120 133 142
> quantile(Hommes,femmes,probs=c(0.25,0.5,0.75))
25% 50% 75%
151 160 166
Warning message:
In if (na.rm) x <- x[!is.na(x)] else if (anyNA(x)) stop("missing values and NaN's not allowed if 'na.rm' is
FALSE"):
 la condition a une longueur > 1 et seul le premier élément est utilisé
> quantile(c(Hommes,femmes),probs=c(0.25,0.5,0.75))
 25% 50% 75%
```

# 133.25 148.50 159.50

```
> quantile(Hommes,probs=c(0.25,0.5,0.75))
25% 50% 75%
151 160 166
> quantile(femmes,probs=c(0.25,0.5,0.75))
25% 50% 75%
120 133 142
> quantile(Hommes, femmes, probs=c(0.25, 0.5, 0.75))
25% 50% 75%
151 160 166
Warning message:
In if (na.rm) x \leftarrow x[!is.na(x)] else if (anyNA(x)):
  la condition a une longueur > 1 et seul le premie:
> quantile(c(Hommes, femmes), probs=c(0.25, 0.5, 0.75))
   25% 50% 75%
133.25 148.50 159.50
8)
9)
```