Genomic Analyses from Non-invasive Prenatal Testing Reveal Genetic Associations, Patterns of Viral Infections, and Chinese Population History

Human genome project&reference genome

Human Genome Project

- 70% come from a male donor. The remainders are from one American male donor and two American female donor.
- 3 billion US dollars & 15 years.
- Chinese scientists sequenced 1% of the reference genome.

How to get our genome data?

"Genomic number"

@ SQ	SN:1	LN:249250621
@SQ	SN:2	LN:243199373
@SQ	SN:3	LN:198022430
@SQ	SN:4	LN:191154276
@SQ	SN:5	LN:180915260
@SQ	SN:6	LN:171115067
@SQ	SN:7	LN:159138663
@ SQ	SN:8	LN:146364022
@SQ	SN:9	LN:141213431
@SQ	SN:10	LN:135534747
@SQ	SN:11	LN:135006516
@ SQ	SN:12	LN:133851895
@SQ	SN:13	LN:115169878
@SQ	SN:14	LN:107349540
@SQ	SN:15	LN:102531392
@SQ	SN:16	LN:90354753
@SQ	SN:17	LN:81195210
@ SQ	SN:18	LN:78077248
@ SQ	SN:19	LN:59128983
@ SQ	SN:20	LN:63025520
@ SQ	SN:21	LN:48129895
@ SQ	SN:22	LN:51304566
@ SQ	SN:X	LN:155270560
@ SQ	SN:Y	LN:59373566

Allele frequency calculation for a population

Allele Frequency Calculation

Why not simply count the number of "A,T,C,G"?

Because of sequencing errors, systemic bias, etc, the probability should be incorporated.

Allele frequency calculation

Maximum Likelihood estimation

idea: given observations (sequenced reads from different individuals), MLE attempts to find the parameters of probabilistic model to maximize the likelihood L(p)

For N unrelated individuals with a single read covering the position, the likelihood function for the read data D_i , for a single variant candidate site in individual i, of the allele frequency $p = (p_A, p_C, p_G, p_T)$, is defined as:

$$L(p) = \prod_{i=1}^{N} P(D_i \mid p) = \prod_{i=1}^{N} \sum_{b \in \{A,C,G,T\}} p(b \mid p) p(D_i \mid b)$$
(1)

where $p(b|p) = p_b$ and the genotype likelihood assuming a haploid model is $p(D_i|b) = \{1 - \varepsilon_i \text{ if } D_i = b \text{ and } \varepsilon_i/3, \text{if } D_i \neq b. \varepsilon_i \text{ corresponds to the GATK-recalibrated error rate converted from the PHRED-scale base quality.}$

Allele frequency calculation

EM algorithm

EM is an iterative method to find maximum likelihood estimates of parameters in statistical model, where the model depends on unobserved latent variables.

We obtain the maximum likelihood estimate $\hat{p} = argmax_p L(p)$ using the EM algorithm with starting value computed by the observed allele frequency:

$$p_b = \frac{\sum D_i = b}{N} \tag{2}$$

In the E step, we compute the posterior probability of allele b for individual i at a site j as one of the four A/C/G/T bases:

$$P(b \mid D_i) = \frac{p(b \mid p)p(D_i \mid b)}{\sum_{b' \in \{A,C,G,T\}} p(b' \mid p)p(D_i \mid b'))}$$
(3)

We compute the updated allele frequency p' in the M step as

$$\rho_b' = \frac{\sum_{i=1}^{N} P(b \mid D_i)}{N}$$
 (4)

When the change in the maximum likelihood is less than 0.001, we terminate the algorithm.

Allele frequency calculation

Fitness test

Decision of allelic type

Method: log-likelihood ratio test

Fitness test

$$H_{0}: \theta = \theta_{0}$$

$$H_{1}: \theta = \theta_{ML}$$

$$LR = 2(\log L(O|\theta_{ML}) - \log L(O|\theta))$$

$$LR \sim \chi^{2}(1)$$

Decision of allelic type

1. iteratively set the allele frequency of one of the four nucleotides to zero to obtain models of tri-allelic loci.

$$LRT_{4vs3} = -2log\left(\frac{\widehat{f_3}(p_x = 0)}{\widehat{f_4}}\right)$$

where x is one of the 4 bases, f is likelihood functior $L(p) = \prod_{i=1}^{N} P(D_i \mid p) = \prod_{i=1}^{N} \sum_{b \in \{A,C,G,T\}} p(b \mid p) p(D_i \mid b)$

2. If the p values of $LRT_{4\nu s3}$ test are significant, the variant will be classified as a tetra-allelic loci (H₀ is rejected). If not, we further to testify:

$$LRT_{3vs2} = -2log\left(\frac{\widehat{f_2}\left(p_x = 0, p_y = 0\right)}{\widehat{f_3}\left(p_x = 0\right)}\right)$$

where x is the base which makes the p value of LRT_{4vs3} maximum, y is one of the rest 3 bases.

Decision of allelic type

$$LRT_{3vs2} = -2log\left(\frac{\widehat{f_2}\left(p_x = 0, p_y = 0\right)}{\widehat{f_3}\left(p_x = 0\right)}\right)$$

3. Similarly, if p value of LRT_{3vs2} is significant, this loci is classified as tri-allelic loci. Otherwise, we choose the base y which makes p value of LRT_{3vs2} maximum, to continue test the bi-allelic versus mono-allelic assumption:

$$LRT_{2vs1} = -2log\left(\frac{\widehat{f_1}(p_x = 0, p_y = 0, p_z = 0)}{\widehat{f_2}(p_x = 0, p_y = 0)}\right)$$