GROUP TEST S.-T YAU COLLEGE MATH CONTESTS 2012

Probability and Statistics

Please solve 5 out of the following 6 problems.

- 1. Let (X_n) be a sequence of i.i.d. random variables.
- 1) Assume that each X_n satisfies the exponential distribution with parameter 1 (i.e. $P(X_n \ge x) = e^{-x}, x \ge 0$). Prove that
- (a) $P(X_n > \alpha \log n, i.o.) = 0$, if $\alpha > 1$; $P(X_n > \alpha \log n, i.o.) = 1$, if $\alpha \le 1$.

Here "i.o" stands for "infinitely often", and A_n , i.o. stands $\limsup_{n\to\infty} A_n$.

- (b) Let $L = \limsup_{n \to \infty} (X_n / \log n)$, then P(L = 1) = 1.
- 2) Assume that each X_n satisfies the Poisson distribution with parameter λ (i.e. $P(X_n = k) = \frac{\lambda^k}{k!} e^{-\lambda}, k = 0, 1, 2, \cdots$.) Put

$$L = \limsup_{n \to \infty} (X_n \log \log n / \log n).$$

Prove that P(L=1)=1.

- **2.** Let X_i be i.i.d exponential r.v with rate one, $i \geq 1$. Let N be a geometric random variable with success probability p, $0 , i.e. <math>P(N = k) = (1-p)^{k-1}p$, $k = 1, 2, \cdots$, and independent of all X_i , $i \geq 1$. Find the distribution of $\sum_{i=1}^{N} X_i$.
- **3.** Let X and Y be i.i.d real valued r.v's. Prove that $P(|X+Y| < 1) \le 3P(|X-Y| < 1)$.
- **4.** Suppose $S = X_1 + X_2 + \cdots + X_n$, a sum of independent random variables with X_i distributed Binomial $(1, p_i)$. Show that $\mathbb{P}(S \ even) = 1/2$ if and only if at least one p_i equals 1/2.
- **5.** Let B_{θ} denote the closed unit ball in \mathbb{R}^2 with center θ . Suppose X_1, X_2, \dots, X_n are independently and uniformly distributed on B_{θ} , for an unknown θ in \mathbb{R}^2 . Denote that maximum likelihood estimator by $\hat{\theta}$. Show that $|\hat{\theta} \theta| = O_p(1/n)$.
- **6.** Suppose that X_1, \dots, X_n are a random sample from the Bernoulli distribution with probability of success p_1 and Y_1, \dots, Y_n be an independent random sample from the Bernoulli distribution with probability of success p_2 .

(a) Derive the maximum likelihood ratio test statistic for

$$H_0: p_1 = p_2 \longleftrightarrow H_1: p_1 \neq p_2.$$

(Note: No simplification of the resulting test statistic is required. However, you need to give the asymptotic null.)

(b) Compute the asymptotic power of the test with critical region

$$|\sqrt{n}(\hat{p}_1 - \hat{p}_2)/\sqrt{2\hat{p}\hat{q}}| \geqslant z_{1-\alpha}$$

when $p_1 = p$ and $p_2 = p + n^{-1/2}\Delta$, where $\hat{p} = 0.5.\hat{p}_1 + 0.5\hat{p}_2$.