In [1]: import pandas as pd
df=pd.read_csv('Titanic-Dataset.csv')

In [2]: df.head()

Out[2]: Passengerld Survived Pclass SibSp Parch Ticket Fare Cabin Embarked Name Sex Age 0 1 0 3 Braund, Mr. Owen Harris male 22.0 0 A/5 21171 7.2500 NaN S Cumings, Mrs. John 2 PC 17599 71.2833 C85 С 1 1 1 Bradley (Florence Briggs 38.0 0 female 1 Th... STON/O2. 2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 7.9250 S NaN 3101282 Futrelle, Mrs. Jacques 3 0 S 4 1 1 female 35.0 1 113803 53.1000 C123 Heath (Lily May Peel) 4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S

In [3]: df.tail()

Out[3]: Pclass Passengerld Survived Name SibSp Parch Ticket Fare Cabin Embarked Sex Age 886 887 0 2 Montvila, Rev. Juozas 27.0 0 0 211536 13.00 NaN S male 887 888 1 Graham, Miss. Margaret Edith female 19.0 0 0 112053 30.00 B42 S Johnston, Miss. Catherine W./C. 0 S 888 889 female NaN 1 2 23.45 NaN Helen "Carrie" 6607 889 890 Behr, Mr. Karl Howell male 26.0 0 111369 30.00 C148 С 890 891 0 3 Dooley, Mr. Patrick 32.0 0 370376 Q 0 7 75 NaN male

In [4]: df.shape

Out[4]: (891, 12)

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns):

Ducu	cocamins (cocac 12 cocamins):								
#	Column	Non-Null Count	Dtype						
0	PassengerId	891 non-null	int64						
1	Survived	891 non-null	int64						
2	Pclass	891 non-null	int64						
3	Name	891 non-null	object						
4	Sex	891 non-null	object						
5	Age	714 non-null	float64						
6	SibSp	891 non-null	int64						
7	Parch	891 non-null	int64						
8	Ticket	891 non-null	object						
9	Fare	891 non-null	float64						
10	Cabin	204 non-null	object						
11	Embarked	889 non-null	object						
<pre>dtypes: float64(2), int64(5), object(5)</pre>									

memory usage: 83.7+ KB

In [6]: df.describe()

Out[6]: Passen

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

```
Out[7]: PassengerId
         Survived
         Pclass
                          0
         Name
                          0
         Sex
                          0
         Age
                         177
         SibSp
                          0
         Parch
                          0
         Ticket
                          0
         Fare
                          0
         Cabin
                         687
         Embarked
         dtype: int64
 In [8]: df['Age']=df['Age'].fillna(value=df['Age'].mean())
 In [9]: df.isnull().sum()
 Out[9]: PassengerId
         Survived
                          0
         Pclass
                          0
                          0
         Name
         Sex
                          0
                          0
         Age
         SibSp
         Parch
                          0
         Ticket
         Fare
                          0
         Cabin
         Embarked
         dtype: int64
In [10]: import seaborn as sns
         import matplotlib.pyplot as plt
In [28]: plt.subplot(1,2,1)
         plt.title("Boxplot for Age")
         sns.boxplot(data=df,x='Age')
         plt.subplot(1,2,2)
         plt.title("Boxplot for Fare")
         sns.boxplot(data=df,x="Fare")
         #for having space between the subplots
         plt.tight_layout()
         plt.show()
```



```
In [34]: print("Conculsion for above plots are : ")
         print("1) Almost all people belongs to age group 20-40 ")
         print("2) Almost all people paid fare between 0-50")
        Conculsion for above plots are :
```

1) Almost all people belongs to age group 20-40

2) Almost all people paid fare between 0-50

0

In [30]: #1 represents survived while 0 represents dead plt.subplot(2,2,1)

```
sns.boxplot(data=df, x='Sex', y='Age')
plt.subplot(2,2,2)
sns.boxplot(data=df, x='Survived', y='Age')
plt.subplot(2,2,3)
sns.boxplot(data=df, x='Sex', y='Fare')
plt.subplot(2,2,4)
sns.boxplot(data=df, x='Survived', y='Fare')
plt.tight_layout()
plt.show()
```



```
In [35]: print("Conclusion from above plots are : ")
    print("1) 75% males and females are in age group 30-40")
    print("2) 75% people who died and survived belongs to age group 30-40")
    print("3) More number of females had paid more fare compare to males ")
    print("4) People who paid more fare has more survival rate ")
```

Conclusion from above plots are :

- 1) 75% males and females are in age group 30-40
- 2) 75% people who died and survived belongs to age group 30-40
- 3) More number of females had paid more fare compare to males
- 4) People who paid more fare has more survival rate

```
In [29]: #Sex vs Age vs Survived
sns.boxplot(data=df,x='Sex',y='Age',hue='Survived')
```

Out[29]: <Axes: xlabel='Sex', ylabel='Age'>


```
In [31]: print("Conclusion from above is : ")
print("Less males survived compared to dead males in age group 30-40 ")
```

```
print("More females survived from age group 30-40")
```

Conclusion from above is : Less males survived compared to dead males More females survived comopared to dead females

In [32]: sns.boxplot(data=df,x='Survived',y='Age',hue='Sex')

Out[32]: <Axes: xlabel='Survived', ylabel='Age'>

In [33]: print('Conclusion from above plot is : ')
print("More number of Males died compared to females ")

Conclusion from above plot is :
More number of Males died compared to females

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js