Logic (Knowledge Representation and Reasoning) Finals Questions Bank

Mostafa Hassanein 18 January 2024

6-1

Using the FOPL system of natural deduction introduced in class, prove the following.

a.

$$\left\{ \forall x \left[P(x) \implies Q(x) \right], \forall x \left[Q(x) \implies R(x) \right] \right\} \vdash \forall x \left[P(x) \implies R(x) \right].$$

Proof.

$$\begin{array}{lll} 1.\forall x \, [P(x) \implies Q(x)] & (\text{Premise}) \\ 2.\forall x \, [Q(x) \implies R(x)] & (\text{Premise}) \\ 3.P(t) \implies Q(t) & (1,\forall \text{-elim}) \\ 4.Q(t) \implies R(t) & (2,\forall \text{-elim}) \\ *5.P(t) & (\text{Assumption}) \\ *6.Q(t) & (3,5,\implies \text{-elim}) \\ *7.R(t) & (4,6,\implies \text{-elim}) \\ 8.P(t) \implies R(t) & (5,7,\implies \text{-intro}) \\ 9.\forall x \, [P(x) \implies R(x)] & (8,\forall \text{-intro}). \end{array}$$

b.

$$\left\{ \forall x \left[P(x) \vee Q(x) \right], \forall x \left[\left[\neg P(x) \wedge Q(x) \right] \implies R(x) \right] \right\} \vdash \forall x \left[\neg R(x) \implies P(x) \right].$$

Proof.

$1.\forall x \left[P(x) \lor Q(x) \right]$	(Premise)
$2.\forall x [[\neg P(x) \land Q(x)] \implies R(x)]$	(Premise)
$3.P(t) \lor Q(t)$	$(1, \forall \text{-elim})$
$4. \left[\neg P(t) \land Q(t) \right] \implies R(t)$	$(2, \forall \text{-elim})$
$*5.\neg R(t)$	(Assumption)
$**6.\neg P(t)$	(Assumption)
**7.Q(t)	$(3,6,\vee\text{-elim})$
$**8.\neg P(t) \land Q(t)$	$(6,7, \land \text{-intro})$
**9.R(t)	$(4, 8, \Longrightarrow -\text{elim})$
$**10.\neg R(t) \land R(t)$	$(5, 9, \land \text{-elim})$
* 11. $\neg \neg P(t)$	$(6, 10, \neg\text{-intro})$
*12.P(t)	$(11, \neg\text{-elim})$
$13. \neg R(t) \implies P(t)$	$(5, 12, \Longrightarrow -intro)$
$14.\forall x \left[\neg R(x) \implies P(x) \right]$	$(13, \forall \text{-intro}).$

c.

$$\left\{ \forall x \left[P(x) \vee Q(x) \right], \forall x \left[\neg Q(x) \vee S(x) \right], \forall x \left[R(x) \implies \neg S(x) \right], \exists x \left[\neg P(x) \right] \right\} \vdash \exists x \left[\neg R(x) \right].$$
 Proof.

$1.\forall x \left[P(x) \lor Q(x) \right]$	(Premise)
$2.\forall x \left[\neg Q(x) \lor S(x)\right]$	(Premise)
$3. \forall x \left[R(x) \implies \neg S(x) \right]$	(Premise)
$4.\exists x \left[\neg P(x) \right]$	(Premise)
$5.\neg P(c)$	$(4, \exists \text{-elim})$
$6.P(c) \lor Q(c)$	$(1, \forall \text{-elim})$
$7.\neg Q(c) \lor S(c)$	$(2, \forall \text{-elim})$
$8.R(c) \implies \neg S(c)$	$(3, \forall \text{-elim})$
9.Q(c)	$(5,6,\lor\text{-elim})$
10.S(c)	$(7, 9, \vee\text{-elim})$
*11.R(c)	(Assumption)
$*12.\neg S(c)$	$(8,11, \Longrightarrow -\text{elim})$
$* 13.S(c) \land \neg S(c)$	$(10, 12, \land\text{-intro})$
$14. \neg R(c)$	$(13, \neg\text{-intro})$
$15.\exists x \left[\neg R(c) \right]$	$(14, \exists \text{-intro}).$

 $\mathbf{d}.$

$$\vdash [\neg [\exists x P(x)]] \iff \forall x [\neg P(x)].$$

Proof.

 \Longrightarrow :

$$\begin{array}{lll} 1.\neg \left[\exists x P(x)\right] & (\text{Premise}) \\ * 2.P(t) & (\text{Assumption}) \\ * 3.\exists x P(x) & (2, \exists \text{-intro}) \\ * 4.\neg \left[\exists x P(x)\right] \land \exists x P(x) & (1, 3, \land \text{-intro}) \\ 5.\neg P(t) & (4, \neg \text{-intro}) \\ 6.\forall x \left[\neg P(x)\right] & (4, \forall \text{-intro}) \\ 7.\left[\neg \left[\exists x P(x)\right]\right] \implies \forall x \left[\neg P(x)\right] & (1, 6, \implies \text{-intro}). \end{array}$$

⇐= :

$$i.\forall x \, [\neg P(x)] \qquad \qquad (\text{Premise})$$

$$* ii.\neg [\neg [\exists x P(x)]] \qquad (\text{Assumption})$$

$$* iii.\exists x P(x) \qquad (ii, \neg\text{-elim})$$

$$* iv.P(c) \qquad (iii, \exists\text{-elim})$$

$$* v.\neg P(c) \qquad (i, \forall\text{-elim})$$

$$* vi.P(c) \land \neg P(c) \qquad (iv, v, \land\text{-intro})$$

$$vii.\neg [\neg [\neg [\exists x P(x)]]] \qquad (ii, vi, \neg\text{-intro})$$

$$viii.\neg [\exists x P(x)] \qquad (vii\neg\text{-elim})$$

$$ix.\forall x \, [\neg P(x)] \implies [\neg [\exists x P(x)]] \qquad (i, viii, \implies\text{-intro}).$$

<u>←⇒:</u>

$$\vdash \left[\neg \left[\exists x P(x) \right] \right] \iff \forall x \left[\neg P(x) \right] \tag{7, ix, } \Longleftrightarrow \text{-intro}).$$

e.

$$\vdash \exists x [P(x) \lor Q(x)] \iff \exists x P(x) \lor \exists x Q(x)$$

Proof.

 \Longrightarrow :

$$\begin{array}{ll} *\ 1.\exists x \left[P(x) \lor Q(x) \right] & \text{(Assumption)} \\ *\ 2.P(c) \lor Q(c) & \text{(1, \exists-elim)} \\ *\ 3.\exists x P(x) \lor Q(c) & \text{(2, \exists-intro)} \\ *\ 4.\exists x P(x) \lor \exists x Q(x) & \text{(3, \exists-intro)} \\ 5.\exists x \left[P(x) \lor Q(x) \right] \implies \exists x P(x) \lor \exists x Q(x) & \text{(1, 4, \Longrightarrow-intro)}. \end{array}$$

<u></u> =:

$$\begin{array}{lll} *i.\exists x P(x) \vee \exists x Q(x) & \text{(Assumption)} \\ **ii.\neg \left[\exists x \left[P(x) \vee Q(x)\right]\right] & \text{(Assumption)} \\ **iii.\neg \left[P(c) \vee Q(c)\right] & \text{(ii, \exists-elim)} \\ **iv.\neg \left[\exists x P(x) \vee Q(c)\right] & \text{(iii, \exists-intro)} \\ **v.\neg \left[\exists x P(x) \vee \exists x Q(x)\right] & \text{(iv, \exists-intro)} \\ *vi.\neg\neg \left[\exists x \left[P(x) \vee Q(x)\right]\right] & \text{(i, ii, v, \neg-intro)} \\ *vii.\exists x \left[P(x) \vee Q(x)\right] & \text{(vi, \neg-elim)} \\ viii.\exists x P(x) \vee \exists x Q(x) \implies \exists x \left[P(x) \vee Q(x)\right] & \text{(i, vii, \Longrightarrow-intro)}. \end{array}$$

 \Longrightarrow :

$$\exists x [P(x) \lor Q(x)] \iff \exists x P(x) \lor \exists x Q(x)$$
 (5, viii, \iff -intro).