Schur Decomposition

Theorem 4. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$, and let $\lambda_1, \dots, \lambda_n$ be its eigenvalues. The matrix \mathbf{A} admits a decomposition

$$\mathbf{A} = \mathbf{U}\mathbf{T}\mathbf{U}^H$$
,

for some unitary $\mathbf{U} \in \mathbb{C}^{n \times n}$ and for some upper triangular $\mathbf{T} \in \mathbb{C}^{n \times n}$ with $t_{ii} = \lambda_i$ for all i. If \mathbf{A} is real and $\lambda_1, \ldots, \lambda_n$ are all real, \mathbf{U} and \mathbf{T} can be taken as real.

(requires a proof; complexity of computing the factorization is $\mathcal{O}(n^3)$)

- we will call the above decomposition the Schur decomposition or Schur (unitary) triangularization ($\mathbf{U}^H \mathbf{A} \mathbf{U} = \mathbf{T}$ called the Schur form of \mathbf{A}) in the sequel
- exists for any $\mathbf{A} \in \mathbb{C}^{n \times n}$ and can be viewed as a generalization of the eigendecomposition for \mathbf{A} not diagonalizable
- some insight: Suppose **A** can be written as $\mathbf{A} = \mathbf{U}\mathbf{T}\mathbf{U}^H$ for some unitary **U** and upper triangular **T**, but it's not known if $t_{ii} = \lambda_i$. Then

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \det(\mathbf{T} - \lambda \mathbf{I}) = \prod_{i=1}^{n} (t_{ii} - \lambda)$$

This implies that t_{11}, \ldots, t_{nn} are the eigenvalues of **A**

• insight: eigenvalues of a triangular matrix are the diagonal entries of the matrix

Schur Decomposition

- the Schur decomposition is a powerful tool
- \bullet e.g., we can use it to show that for any square **A** (with or without eigendec.),
 - $-\det(\mathbf{A}) = \prod_{i=1}^n \lambda_i$
 - $-\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i$
 - the eigenvalues of \mathbf{A}^k are $\lambda_1^k, \dots, \lambda_n^k$
- we may use it to prove the convergence of the power method (to be shown later)
 when eigendecomposition does not exist
- the Jordan canonical form, which we will not cover, requires the Schur decomposition as the first key step

Implications of the Schur Decomposition

- proof of Theorem 3:
 - let ${\bf A}$ be Hermitian, and let ${\bf A}={\bf U}{\bf T}{\bf U}^H$ be its Schur decomposition. Observe

$$\mathbf{0} = \mathbf{A} - \mathbf{A}^H = \mathbf{U}\mathbf{T}\mathbf{U}^H - \mathbf{U}\mathbf{T}^H\mathbf{U}^H = \mathbf{U}(\mathbf{T} - \mathbf{T}^H)\mathbf{U}^H \quad \Longleftrightarrow \quad \mathbf{0} = \mathbf{T} - \mathbf{T}^H$$

- since ${f T}$ is upper triangular and ${f T}^H$ is lower triangular, ${f T}={f T}^H$ implies that ${f T}$ is diagonal; thus, the Schur decomposition is also the eigendecomposition
- note: ${f T}={f T}^H$ also implies that t_{ii} 's are real; so the proof also confirms that λ_i 's are real
- similar results apply to real symmetric A, except that we use real T, U

Implications of the Schur Decomposition

ullet even though ${f A}$ does not admit an eigendecomposition, it is not hard to find an approximation of ${f A}$ which admits an eigendecomposition

Proposition 1. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$. For every $\varepsilon > 0$, there exists a matrix $\tilde{\mathbf{A}} \in \mathbb{C}^{n \times n}$ such that the n eigenvalues of $\tilde{\mathbf{A}}$ are distinct and

$$\|\mathbf{A} - \tilde{\mathbf{A}}\|_F \leq \varepsilon.$$

- ullet Implication: for any square ${\bf A}$, we can always find an $\tilde{{\bf A}}$ that is arbitrarily close to ${\bf A}$ and admits an eigendecomposition
- proof:
 - let $\mathbf{D} = \operatorname{Diag}(d_1, \dots, d_n)$ where d_1, \dots, d_n are chosen such that $|d_i| \leq \left(\frac{\varepsilon}{n}\right)^{1/2}$ for all i and such that $t_{11} + d_1, \dots, t_{nn} + d_n$ are distinct
 - let $\mathbf{U}\mathbf{T}\mathbf{U}^H$ be the Schur decomposition of \mathbf{A} , and let $\tilde{\mathbf{A}}=\mathbf{U}(\mathbf{T}+\mathbf{D})\mathbf{U}^H$
 - we have $\|\mathbf{A} \tilde{\mathbf{A}}\|_F^2 = \|\mathbf{D}\|_F^2 \leq \varepsilon$

Implications of the Schur Decomposition

- ullet skew-Hermitian matrices: ${f A}$ is said to be skew-Hermitian if ${f A}^H=-{f A}$
 - example:

$$\mathbf{A} = egin{bmatrix} m{j}1 & 0 & -0.7 + m{j}3 \ 0 & -m{j}2 & 1 + m{j}0.9 \ 0.7 + m{j}3 & -1 + m{j}0.9 & 0 \end{bmatrix}$$

- ${f A}$ is Hermitian if and only if ${m j}{f A}$ is skew-Hermitian
- ullet skew-symmetric matrices: ${f A}$ is said to be skew-symmetric if ${f A}^T=-{f A}$
 - example:

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & -0.7 \\ 0 & 0 & 1 \\ 0.7 & -1 & 0 \end{bmatrix}$$

- real skew-Hermitian is simply real skew-symmetric
- by the Schur decomposition, we can show that any skew-Hermitian (or real skew-symmetric) A admits an eigendecomposition with unitary V and the eigenvalues are (purely) imaginary (and possibly zero)

Eigenvalue-Revealing Factorizations

- ullet eigenvalue-revealing factorizations of matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$
 - unitary diagonalization (eigendec.) $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^H$ with unitary \mathbf{V} (normal \mathbf{A} , i.e., $\mathbf{A}^H \mathbf{A} = \mathbf{A} \mathbf{A}^H$, including unitary, circ., Herm., and skew-Herm. matrices)
 - diagonalization (eigendec.) ${f A}={f V}{f \Lambda}{f V}^{-1}$ (nondefective ${f A}$)
 - unitary triangularization (Schur dec.) $\mathbf{A} = \mathbf{U}\mathbf{T}\mathbf{U}^H$ with unitary \mathbf{U} (any \mathbf{A})
 - Jordan canonical/normal form (Jordan dec.) ${\bf A}={\bf SJS}^{-1}$ (any ${\bf A}$), where ${\bf J}$ is block diagonal as

$$\mathbf{J} = egin{bmatrix} \mathbf{J}_1 & & & & \\ & \mathbf{J}_2 & & & \\ & & & \ddots & \\ & & & \mathbf{J}_k \end{bmatrix}$$
 with a square $\mathbf{J}_i = egin{bmatrix} \lambda_i & 1 & & & \\ & \lambda_i & \ddots & & \\ & & & \ddots & 1 \\ & & & & \lambda_i \end{bmatrix}$

- In general, Schur decomposition is used, because
 - unitary matrices are involved, so algorithm tends to be more stable

Real Schur Decomposition

• if A is real, a factorization with real matrices exists:

$$\mathbf{A} = \mathbf{U}\mathbf{T}\mathbf{U}^T$$

where ${f U}$ is orthogonal and ${f T}$ is block-triangular:

$$\mathbf{T} = egin{bmatrix} \mathbf{T}_{11} & \mathbf{T}_{12} & \dots & \mathbf{T}_{1k} \ & \mathbf{T}_{22} & \dots & \mathbf{T}_{2k} \ & & \ddots & dots \ & & \mathbf{T}_{kk} \end{bmatrix}$$

with the diagonal blocks \mathbf{T}_{ii} are 1×1 or 2×2

- ullet the scalar diagonal blocks are real eigenvalues of ${f A}$
- ullet the eigenvalues of the 2×2 diagonal blocks are complex eigenvalues (in conjugate pairs) of ${f A}$

Similarity Transformation

A matrix $\mathbf{B} \in \mathbb{C}^{n \times n}$ is said to be similar to another matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ if there exists a nonsingular $\mathbf{S} \in \mathbb{C}^{n \times n}$ such that

$$\mathbf{B} = \mathbf{S}^{-1} \mathbf{A} \mathbf{S},$$

and $S^{-1}AS$ called a similarity transformation of A via S.

- It is easy to verify that similar matrices have the following properties:
 - If B is similar to A, A is also similar to B.
 - If A, B are similar, then rank(A) = rank(B).
 - If A, B are similar, their characteristic polynomials are the same

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \det(\mathbf{S}^{-1}(\mathbf{A} - \lambda \mathbf{I})\mathbf{S}) = \det(\mathbf{B} - \lambda \mathbf{I}).$$

- If A, B are similar, then tr(A) = tr(B), det(A) = det(B).
- If ${f A},\ {f B}$ are similar, they have the same spectrum with the same algebraic multiplicity and geometric multiplicity
- ullet if S is unitary, we say B is unitarily similar to A (cf. the cases of Schur decomp. and eigendecomp. for normal matrices)

Similarity Transformation

we are more interested in whether a matrix can be similar to a diagonal matrix,
i.e., diagonalizable by a similarity—obviously because diagonal matrices are easy
to deal with

A matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is said to be diagonalizable if it is similar to a diagonal matrix; i.e., there exists a nonsingular $\mathbf{S} \in \mathbb{C}^{n \times n}$ and a diagonal $\mathbf{D} \in \mathbb{C}^{n \times n}$ such that

$$\mathbf{D} = \mathbf{S}^{-1} \mathbf{A} \mathbf{S},$$

or equivalently,

$$\mathbf{A} = \mathbf{SDS}^{-1}.$$

- definition of "diagonalizable" based on similarity transformation
- ullet the above equation can be equivalently rewritten as $\mathbf{AS} = \mathbf{SD}$ or

$$\mathbf{A}\mathbf{s}_i = d_i\mathbf{s}_i, \quad i = 1, \dots, n,$$

where d_i denotes the (i, i)th entry of \mathbf{D} . Hence, every (\mathbf{s}_i, d_i) must be an eigen-pair of \mathbf{A} .

- any square matrix is similar to a block diagonal (bidiag.) matrix (cf. Jordan dec.)
- \bullet if S is unitary, we say A is unitarily diagonalizable (i.e., normal matrices)

- given $\mathbf{A} \in \mathbb{C}^{n \times n}$
 - spectrum of A: $\sigma(\mathbf{A}) = \{\lambda \in \mathbb{C} \mid \det(\mathbf{A} \lambda \mathbf{I}) = 0\}$
 - spectral radius of A: $\rho(\mathbf{A}) = \max_{z \in \sigma(\mathbf{A})} |z|$
 - numerical range (field of values) of A: $W(\mathbf{A}) = \{\mathbf{x}^H \mathbf{A} \mathbf{x} \mid \mathbf{x} \in \mathbb{C}^n, \|\mathbf{x}\|_2 = 1\}$
 - * range of the Rayleigh quotient (to be defined later); obviously $\sigma(\mathbf{A}) \subseteq W(\mathbf{A})$
 - * (Toeplitz-Hausdorff Theorem) $W(\mathbf{A})$ is convex and compact for any $\mathbf{A} \in \mathbb{C}^{n \times n}$

- numerical radius of A: $r(\mathbf{A}) = \max_{z \in W(\mathbf{A})} |z|$
 - $* \rho(\mathbf{A}) \le r(\mathbf{A})$

we can easily get the following properties on $W(\mathbf{A})$:

- for $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $a, b \in \mathbb{C}$, $W(a\mathbf{A} + b\mathbf{I}) = aW(\mathbf{A}) + b$
- $\bullet \ \text{ for } \mathbf{A} \in \mathbb{C}^{n \times n} \text{, } W(\mathbf{A}^T) = W(\mathbf{A}) \text{ and } W(\mathbf{A}^H) = W(\mathbf{A}^*) = W(\mathbf{A})^*$
 - specially, if $\mathbf{A} \in \mathbb{R}^{n \times n}$, then $W(\mathbf{A})$ is symmetric with respect to the real axis
- for A, $B \in \mathbb{C}^{n \times n}$, $W(A + B) \subseteq W(A) + W(B)$
- for $\mathbf{A} \in \mathbb{C}^{n \times n}$, $W(\mathbf{A}) \subset \mathbb{R}$ iff $\mathbf{A} \in \mathbb{H}^n$; in this case, $W(\mathbf{A})$ is a line segment and the endpoints of $W(\mathbf{A})$ coincide with the smallest and the largest eigenvalues of \mathbf{A} (will be proved later via Rayleigh-Ritz theorem)

note: the first and second properties also apply to $\sigma(\mathbf{A})$; we also have if $\mathbf{A} \in \mathbb{R}^{n \times n}$, then $\sigma(\mathbf{A})$ is symmetric with respect to the real axis, i.e., complex eigenvalues of real matrices appear in conjugate pairs

ullet for any $\mathbf{A} \in \mathbb{C}^{n \times n}$, it can be decomposed as

$$A = H + S$$

where $\mathbf{H} = \frac{1}{2}(\mathbf{A} + \mathbf{A}^H)$ is Hermitian (with real eigenvalues) and $\mathbf{S} = \frac{1}{2}(\mathbf{A} - \mathbf{A}^H)$ is skew-Hermitian (with purely imaginary eigenvalues)

- when n=1, it becomes a=h+s with $h=\Re(a)$ and $s=\mathbf{j}\Im(a)$

Property 4. If **H** and **S** are the Hermitian part and the skew-Hermitian part of $\mathbf{A} \in \mathbb{C}^{n \times n}$, respectively, then

$$\Re(W(\mathbf{A})) = W(\mathbf{H})$$
 and $\Im(W(\mathbf{A})) = -\mathbf{j}W(\mathbf{S}) = W(-\mathbf{j}\mathbf{S})$.

 $(\Re(\cdot))$ and $\Im(\cdot)$ are used to denote the real and imaginary parts of a set, respectively.)

Property 5. Denote the spectrum of \mathbf{A} , \mathbf{H} , and \mathbf{S} as $\sigma(\mathbf{A})$, $\sigma(\mathbf{H})$, and $\sigma(\mathbf{S})$, and then we have $\lambda_{\min}(\mathbf{H}) \leq \Re(\lambda_i(\mathbf{A})) \leq \lambda_{\max}(\mathbf{H})$ and $\lambda_{\min}(-j\mathbf{S}) \leq \Im(\lambda_i(\mathbf{A})) \leq \lambda_{\max}(-j\mathbf{S})$ for all i.

- it can be hard to compute all the eigenvalues of a matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$, especially in the large-scale case
- Implications: we can estimate the geometrical locations or to find approximations of eigenvalues for any $\mathbf{A} \in \mathbb{C}^{n \times n}$ based on the extreme (i.e., largest and samllest) eigenvalues of \mathbf{H} , $-j\mathbf{S} \in \mathbb{H}^n$

Variational Characterizations: Highlights

• let $A \in \mathbb{H}^n$, and let $\lambda_1(A), \ldots, \lambda_n(A)$ be the eigenvalues of A with ordering

$$\lambda_{\max}(\mathbf{A}) = \lambda_1(\mathbf{A}) \ge \lambda_2(\mathbf{A}) \ge \cdots \ge \lambda_n(\mathbf{A}) = \lambda_{\min}(\mathbf{A})$$

where $\lambda_{\min}(\mathbf{A})$ and $\lambda_{\max}(\mathbf{A})$ denote the min. and max. eigenvalues of \mathbf{A} , resp.

• variational characterizations of $\lambda_{\min}(\mathbf{A})$ and $\lambda_{\max}(\mathbf{A})$:

$$\lambda_{\max}(\mathbf{A}) = \max_{\mathbf{x} \in \mathbb{C}^n, \|\mathbf{x}\|_2 = 1} \mathbf{x}^T \mathbf{A} \mathbf{x}, \qquad \lambda_{\min}(\mathbf{A}) = \min_{\mathbf{x} \in \mathbb{C}^n, \|\mathbf{x}\|_2 = 1} \mathbf{x}^T \mathbf{A} \mathbf{x}$$

• (Courant-Fischer) for $k \in \{1, ..., n\}$,

$$\lambda_k(\mathbf{A}) = \min_{\mathcal{S}_{n-k+1} \subseteq \mathbb{C}^n} \max_{\mathbf{x} \in \mathcal{S}_{n-k+1}, \|\mathbf{x}\|_2 = 1} \mathbf{x}^T \mathbf{A} \mathbf{x} = \max_{\mathcal{S}_k \subseteq \mathbb{C}^n} \min_{\mathbf{x} \in \mathcal{S}_k, \|\mathbf{x}\|_2 = 1} \mathbf{x}^T \mathbf{A} \mathbf{x}$$

where \mathcal{S}_k denotes a subspace of dimension k

ullet real case: the same results apply; replace $\mathbb C$ by $\mathbb R$, $\mathbb H$ by $\mathbb S$, and "H" by "T"

Variational Characterizations of Eigenvalues of Hermitian Matrices

Notation and Conventions:

• $\lambda_1(\mathbf{A}), \dots, \lambda_n(\mathbf{A})$ denote the eigenvalues of a given $\mathbf{A} \in \mathbb{H}^n$ with ordering

$$\lambda_{\max}(\mathbf{A}) = \lambda_1(\mathbf{A}) \ge \lambda_2(\mathbf{A}) \ge \ldots \ge \lambda_n(\mathbf{A}) = \lambda_{\min}(\mathbf{A}),$$

where $\lambda_{\min}(\mathbf{A})$ and $\lambda_{\max}(\mathbf{A})$ denote the smallest and largest eigenvalues, resp.

• if not specified, $\lambda_1, \ldots, \lambda_n$ will be used to denote the eigenvalues of $\mathbf{A} \in \mathbb{H}^n$; they also follow the ordering

$$\lambda_{\max} = \lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_n = \lambda_{\min}.$$

Also, $\mathbf{V}\mathbf{\Lambda}\mathbf{V}^H$ will be used to denote the eigendecomposition of $\mathbf{A}\in\mathbb{H}^n$

Variational Characterizations of Eigenvalues

- let $\mathbf{A} \in \mathbb{H}^n$.
- for any $\mathbf{x} \in \mathbb{C}^n$ with $\mathbf{x} \neq \mathbf{0}$, the ratio

$$R(\mathbf{x}) = \frac{\mathbf{x}^H \mathbf{A} \mathbf{x}}{\mathbf{x}^H \mathbf{x}}$$

is called the Rayleigh quotient.

• our interest: quadratic optimization such as

$$\max_{\mathbf{x} \in \mathbb{C}^{n}, \mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^{H} \mathbf{A} \mathbf{x}}{\mathbf{x}^{H} \mathbf{x}} = \max_{\mathbf{x} \in \mathbb{C}^{n}, \|\mathbf{x}\|_{2} = 1} \mathbf{x}^{H} \mathbf{A} \mathbf{x}$$

$$\min_{\mathbf{x} \in \mathbb{C}^{n}, \mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^{H} \mathbf{A} \mathbf{x}}{\mathbf{x}^{H} \mathbf{x}} = \min_{\mathbf{x} \in \mathbb{C}^{n}, \|\mathbf{x}\|_{2} = 1} \mathbf{x}^{H} \mathbf{A} \mathbf{x}$$

• Rayleigh quotient can be used for computing the eigenvalues of A

Variational Characterizations of Eigenvalues: Rayleigh-Ritz

Theorem 5 (Rayleigh-Ritz Theorem). Let $\mathbf{A} \in \mathbb{H}^n$. It holds that

$$\lambda_{\min} \|\mathbf{x}\|_{2}^{2} \leq \mathbf{x}^{H} \mathbf{A} \mathbf{x} \leq \lambda_{\max} \|\mathbf{x}\|_{2}^{2}$$

$$\lambda_{\min} = \min_{\mathbf{x} \in \mathbb{C}^{n}, \|\mathbf{x}\|_{2} = 1} \mathbf{x}^{H} \mathbf{A} \mathbf{x}, \quad \lambda_{\max} = \max_{\mathbf{x} \in \mathbb{C}^{n}, \|\mathbf{x}\|_{2} = 1} \mathbf{x}^{H} \mathbf{A} \mathbf{x}$$

- ullet provides information about λ_1 and λ_n for ${f A}$
- proof:
 - by a change of variable $\mathbf{y} = \mathbf{V}^H \mathbf{x}$, we have

$$\mathbf{x}^{H}\mathbf{A}\mathbf{x} = \mathbf{y}^{H}\mathbf{\Lambda}\mathbf{y} = \sum_{i=1}^{n} \lambda_{i}|y_{i}|^{2} \le \lambda_{1}\sum_{i=1}^{n} |y_{i}|^{2} = \lambda_{1}\|\mathbf{V}^{H}\mathbf{x}\|_{2}^{2} = \lambda_{1}\|\mathbf{x}\|_{2}^{2}$$

- we thus have $\max_{\|\mathbf{x}\|_2=1} \mathbf{x}^H \mathbf{A} \mathbf{x} \leq \lambda_1$
- since $\mathbf{v}_1^H \mathbf{A} \mathbf{v}_1 = \lambda_1$, the above equality is attained
- the results $\mathbf{x}^H \mathbf{A} \mathbf{x} \geq \lambda_n \|\mathbf{x}\|_2^2$ and $\min_{\|\mathbf{x}\|_2=1} \mathbf{x}^H \mathbf{A} \mathbf{x} = \lambda_n$ are proven by the same way

Variational Characterizations of Eigenvalues: Courant-Fischer

Question: how about λ_k for any $k \in \{1, ..., n\}$? Do we have a similar variational characterization as that in the Rayleigh-Ritz theorem?

Theorem 6 (Courant-Fischer Minimax Theorem). Let $\mathbf{A} \in \mathbb{H}^n$, and let \mathcal{S}_k denote any subspace of \mathbb{C}^n and of dimension k. For any $k \in \{1, \ldots, n\}$, it holds that

$$\lambda_k = \min_{\mathcal{S}_{n-k+1} \subseteq \mathbb{C}^n} \max_{\mathbf{x} \in \mathcal{S}_{n-k+1}, \|\mathbf{x}\|_2 = 1} \mathbf{x}^H \mathbf{A} \mathbf{x}$$
$$= \max_{\mathcal{S}_k \subseteq \mathbb{C}^n} \min_{\mathbf{x} \in \mathcal{S}_k, \|\mathbf{x}\|_2 = 1} \mathbf{x}^H \mathbf{A} \mathbf{x}$$

(requires a proof)

• Rayleigh-Ritz Theorem 5 is a special case of the Courant-Fischer minimax theorem when k=1 and k=n

Some consequences and variants (like eigenvalue inequalities) of the Courant-Fischer theorem: for any $\mathbf{A}, \mathbf{B} \in \mathbb{H}^n$, $\mathbf{z} \in \mathbb{C}^n$,

- (Weyl) $\lambda_k(\mathbf{A}) + \lambda_n(\mathbf{B}) \le \lambda_k(\mathbf{A} + \mathbf{B}) \le \lambda_k(\mathbf{A}) + \lambda_1(\mathbf{B})$ for $k = 1, \dots, n$
- (interlacing) $\lambda_{k+1}(\mathbf{A}) \leq \lambda_k(\mathbf{A} \pm \mathbf{z}\mathbf{z}^H)$ for $k = 1, \dots, n-1$, and $\lambda_k(\mathbf{A} \pm \mathbf{z}\mathbf{z}^H) \leq \lambda_{k-1}(\mathbf{A})$ for $k = 2, \dots, n$
- if $\operatorname{rank}(\mathbf{B}) \leq r$, then $\lambda_{k+r}(\mathbf{A}) \leq \lambda_k(\mathbf{A} + \mathbf{B})$ for $k = 1, \dots, n-r$ and $\lambda_k(\mathbf{A} + \mathbf{B}) \leq \lambda_{k-r}(\mathbf{A})$ for $k = r+1, \dots, n$
- (Weyl) $\lambda_{j+k-1}(\mathbf{A} + \mathbf{B}) \le \lambda_j(\mathbf{A}) + \lambda_k(\mathbf{B})$ for $j, k \in \{1, \dots, n\}$ with $j + k \le n + 1$
- for any $\mathcal{I}=\{i_1,\ldots,i_r\}\subseteq\{1,\ldots,n\}$, $\lambda_{k+n-r}(\mathbf{A})\leq\lambda_k(\mathbf{A}_{\mathcal{I}})\leq\lambda_k(\mathbf{A})$ for $k=1,\ldots,r$
- for any semi-unitary $\mathbf{U} \in \mathbb{C}^{n \times r}$, $\lambda_{k+n-r}(\mathbf{A}) \leq \lambda_k(\mathbf{U}^H \mathbf{A} \mathbf{U}) \leq \lambda_k(\mathbf{A})$ for $k=1,\ldots,r$
- many more...

- we have considerd maximization or minimization of a Rayleigh quotient
- sometimes, we are interested in the problem of a sum of Rayleigh quotients:

$$\max_{\substack{\mathbf{U} \in \mathbb{C}^{n \times r} \\ \mathbf{u}_i \neq \mathbf{0} \ \forall i, \ \mathbf{u}_i^H \mathbf{u}_j = 0 \ \forall i \neq j}} \sum_{i=1}^r \frac{\mathbf{u}_i^H \mathbf{A} \mathbf{u}_i}{\mathbf{u}_i^H \mathbf{u}_i}$$

where we want the vectors $\mathbf{u}_1, \dots \mathbf{u}_r$ $(r \leq n)$ to be orthogonal to each other

- it finds applications in matrix factorization and PCA (cf. SVD Topic)
- the Rayleigh quotients can be rewriten as

$$\max_{\mathbf{u}_{i} \neq \mathbf{0} \ \forall i, \ \mathbf{u}_{i}^{H} \mathbf{u}_{j} = 0 \ \forall i \neq j} \sum_{i=1}^{r} \frac{\mathbf{u}_{i}^{H} \mathbf{A} \mathbf{u}_{i}}{\mathbf{u}_{i}^{H} \mathbf{u}_{i}} = \max_{\substack{\mathbf{U} \in \mathbb{C}^{n \times r} \\ \|\mathbf{u}_{i}\|_{2} = 1 \ \forall i, \ \mathbf{u}_{i}^{H} \mathbf{u}_{j} = 0 \ \forall i \neq j}} \sum_{i=1}^{r} \mathbf{u}_{i}^{H} \mathbf{A} \mathbf{u}_{i}$$
$$= \max_{\mathbf{U} \in \mathbb{C}^{n \times r} \\ \mathbf{U}^{H} \mathbf{U} = \mathbf{I}} \operatorname{tr}(\mathbf{U}^{H} \mathbf{A} \mathbf{U}),$$

where ${f U}$ is semi-unitary

Then, we get an extension of the variational characterization to a sum of eigenvalues:

Theorem 7. Let $\mathbf{A} \in \mathbb{H}^n$. it holds that

$$\sum_{i=1}^{r} \lambda_i = \max_{\substack{\mathbf{U} \in \mathbb{C}^{n \times r} \\ \|\mathbf{u}_i\|_2 = 1 \ \forall i, \ \mathbf{u}_i^H \mathbf{u}_i = 0 \ \forall i \neq j}} \sum_{i=1}^{r} \mathbf{u}_i^H \mathbf{A} \mathbf{u}_i = \max_{\substack{\mathbf{U} \in \mathbb{C}^{n \times r} \\ \mathbf{U}^H \mathbf{U} = \mathbf{I}}} \operatorname{tr}(\mathbf{U}^H \mathbf{A} \mathbf{U})$$

- can be proved by the eigenvalue inequality $\lambda_k(\mathbf{U}^H\mathbf{A}\mathbf{U}) \leq \lambda_k(\mathbf{A})$
- can also be proved by convex optimization

(requires a proof)

Some more results (the proofs require more than just the Courant-Fischer theorem):

• (Cachy interlacing) Let

$$\mathbf{A} = egin{bmatrix} \mathbf{B} & \mathbf{y} \ \mathbf{y}^H & a \end{bmatrix} \in \mathbb{H}^n.$$
 Then, $\lambda_1(\mathbf{A}) \geq \lambda_1(\mathbf{B}) \geq \lambda_2(\mathbf{A}) \geq \cdots \geq \lambda_{n-1}(\mathbf{B}) \geq \lambda_n(\mathbf{A}).$

ullet (von Neumann) Let $\mathbf{A}, \mathbf{B} \in \mathbb{H}^n$. It holds that

$$\sum_{i=1}^{n} \lambda_i(\mathbf{AB}) = \operatorname{tr}(\mathbf{AB}) \le \sum_{i=1}^{n} \lambda_i(\mathbf{A})\lambda_i(\mathbf{B}).$$

• (Lidskii) Let $\mathbf{A}, \mathbf{B} \in \mathbb{H}^n$. For any $1 \leq i_1 \leq i_2 \leq \cdots \leq i_k$,

$$\sum_{j=1}^k \lambda_{i_j}(\mathbf{A} + \mathbf{B}) \le \sum_{j=1}^k \lambda_{i_j}(\mathbf{A}) + \sum_{j=1}^k \lambda_j(\mathbf{B}).$$