Probability and simulations using games part I

Overview

Lab 3 discussion

Discussion of chapter 3 of Astroball

Discussion of probability

Big League Baseball

Simulating big league baseball

Object oriented programming

Lab 3: questions?

How did it go?

Please be sure to mark your pages on Gradescope

• A few points will be deducted if pages are not marked

Lab 3: questions?

Using data from 2019 to get probabilities

Using data from 1988 to get probabilities

Probability of a come back from down by 6 in the 6th using data from 1988 is: 3.28% vs. 2.2% for 2019

Astroball discussion

Let's discuss the chapter for 6 minutes in breakout rooms and then have a larger conversation as a group

• Discuss your quote and reaction to chapter 3

Thoughts on the chapter 3 of Astroball?

Drafting Correa 2012

Correa projected statistics, pg 70

• BA: .272-.287

• HR: 35-40 HR

Carlos Correa

Position: Shortstop

Bats: Right • **Throws:** Right 6-4, 220lb (193cm, 99kg) **Team:** Houston Astros (majors)

More bio, uniform, draft, salary info ▼

SUMMARY	WAR	AB	н	HR	BA	R	RBI	SB	OBP	SLG	OPS	OPS+
2020	1.8	201	53	5	.264	22	25	0	.326	.383	.709	92
Career	26.3	2269	626	107	.276	334	397	33	.353	.480	.833	126

Year	Age	Tm	Lg	G	PA	AB	R	Н	2B	3B	HR	RBI	SB	CS	BB	so	BA	OBP	SLG	OPS	OPS+	ТВ	GDP	HBP	SH	SF	IBB	Pos	Awards
2015	20	HOU	AL	99	432	387	52	108	22	1	22	68	14	4	40	78	.279	.345	.512	.857	135	198	10	1	0	4	2	6	MVP-24, RoY-1
2016	21	HOU	AL	153	660	577	76	158	36	3	20	96	13	3	75	139	.274	.361	.451	.811	124	260	12	5	0	3	5	*6/H	
2017 *	22	HOU	AL	109	481	422	82	133	25	1	24	84	2	1	53	92	.315	.391	.550	.941	155	232	12	2	0	4	5	6/D	AS,MVP-17
2018	23	HOU	AL	110	468	402	60	96	20	1	15	65	3	0	53	111	.239	.323	.405	.728	99	163	17	2	0	11	3	*6/D	
2019	24	<u>HOU</u>	AL	75	321	280	42	78	16	1	21	59	1	0	35	75	.279	.358	.568	.926	137	159	8	2	0	4	0	6	
2020	25	HOU	AL	58	221	201	22	53	9	0	5	25	0	0	16	49	.264	.326	.383	.709	92	77	4	3	0	1	2	*6/H	
6 Yrs				604	2583	2269	334	626	128	7	107	397	33	8	272	544	.276	.353	.480	.833	126	1089	63	15	0	27	17		
162 Ga	me A	<u>vg.</u>		162	693	609	90	168	34	2	29	106	9	2	73	146	.276	.353	.480	.833	126	292	17	4	0	7	5		

Drafting Correa 2012

Correa projected statistics, pg 70

• BA: .272-.287

• HR: 35-40 HR

Carlos Correa

Position: Shortstop

Bats: Right • **Throws:** Right 6-4, 220lb (193cm, 99kg) **Team:** Houston Astros (majors)

More bio, uniform, draft, salary info ▼

SUMMARY	WAR	AB	н	HR	BA	R	RBI	SB	OBP	SLG	OPS	OPS+
2020	1.8	201	53	5	.264	22	25	0	.326	.383	.709	92
Career	26.3	2269	626	107	.276	334	397	33	.353	.480	.833	126

Byron Buxton

Position: Centerfielder

Bats: Right • **Throws:** Right 6-2, 190lb (188cm, 86kg)

Team: Minnesota Twins (majors)

F

Kevin Gausman

Position: Pitcher

Bats: Left • **Throws:** Right 6-2, 190lb (188cm, 86kg)

Team: San Francisco Giants (majors)

More bio, uniform, draft, salary info ▼

SUMMARY	WAR	AB	н	HR	BA	R	RBI	SB	OBP	SLG	OPS	OPS+
2020	2.1	130	33	13	.254	19	27	2	.267	.577	.844	124
Career	11.9	1380	329	51	.238	204	172	62	.289	.430	.719	91

More bio, uniform, draft, salary info ▼

SUMMARY	WAR	W	L	ERA	G	GS	sv	IP	so	WHIP
2020	1.3	3	3	3.62	12	10	0	59.2	79	1.106
Career	11.2	50	66	4.26	203	164	0	985.1	934	1.329

Drafting Correa 2012

More info on the 2012 draft

- Wikipedia
- Baseball reference

Enos Cabell

Positions: Third Baseman, First Baseman and Outfielder

Bats: Right • Throws: Right 6-4, 170lb (193cm, 77kg)

Born: October 8, 1949 (Age: 71-142d) in Fort Riley, KS

More bio, uniform, draft, salary info ▼

SUMMARY	WAR	AB	Н	HR	BA	R	RBI	SB	OBP	SLG	OPS	OPS+
Career	11.3	5952	1647	60	.277	753	596	238	.308	.370	.678	93

Byron Buxton

Position: Centerfielder Bats: Right • Throws: Right 6-2, 190lb (188cm, 86kg)

Team: Minnesota Twins (majors)

Kevin Gausman

Position: Pitcher

Bats: Left • Throws: Right 6-2, 190lb (188cm, 86kg)

Team: San Francisco Giants (majors)

More bio, uniform, draft, salary info ▼

SUMMARY	WAR	W	L	ERA	G	GS	sv	IP	so	WHIP
2020	1.3	3	3	3.62	12	10	0	59.2	79	1.106
Career	11.2	50	66	4.26	203	164	0	985.1	934	1.329

More bio, uniform, draft, salary info ▼

SUMMARY	WAR	AB	н	HR	BA	R	RBI	SB	OBP	SLG	OPS	OPS+
2020	2.1	130	33	13	.254	19	27	2	.267	.577	.844	124
Career	11.9	1380	329	51	.238	204	172	62	.289	.430	.719	91

Trusting a model...

"It's one thing to get somebody with college-level statistics to create a model" Sig said. "It's another for the decision-makers to really use it. I don't mean use it as a tiebreaker, or to throw the analyst a bone late in the draft. I mean really *use* it, from the first pick. That's what Jeff did."

Probability is a way of measuring the likelihood that an event will occur

Probability models can be used to:

- Determine the likelihood of an event
- Simulate events

Probability models assigns a number between 0 and 1 to the outcome of an event occurring:

Pr(event) = 0 if there is no chance of an event occurring

• E.g., The probability that a Mookie Betts will hit 100 home runs in a game

Pr(event) = 1 if the event will definitely occur

• E.g., The probability that a strike will be thrown in the 2021 baseball season

 $Pr(event) \in [0, 1]$ if there is some possibility that an event will occur

 E.g. the probability that Mookie Betts will hit a home run on his first plate appearance this season

One way to interpret probability is in terms of the **relative frequency** of an event.

If we repeat an experiment N times, we can get an estimate of the probability:

$$Pr(event) \approx \frac{number\ of\ times\ an\ event\ occurs}{N}$$

If we repeated this infinitely many times, we would get the true probability of the event

• i.e.,
$$N \rightarrow \infty$$

For example, we can estimate the probability that Mike Trout will hit a home.

$$Pr(HR) \approx \frac{Number\ of\ HR}{Number\ of\ PA}$$

Random variables

Often we map the random outcomes into numbers:

- HR: X = 1
- Not a home run: X = 0

These random numbers are called random variables

• They are often denoted with capital letters such as X

We then refer to the probability of getting a particular number

• Pr(HR) = Pr(X = 1) = .10

Parametric probability distributions

The possible outcomes are called the **sample space**The sum of the probability measures over all outcomes must equal 1

Example of rolling a die

Example: If we roll a fair 6-sided die:

What is the sample space?

What are the probability of the outcomes?

Roll: X	1	2	3	4	5	6
Probability: Pr(X)						

Example of rolling a die

Example: If we roll a fair 6-sided die:

What is the sample space?

What are the probability of the outcomes?

Roll: X	1	2	3	4	5	6
Probability: Pr(X)	1/6	1/6	1/6	1/6	1/6	1/6

Probability rules - Additive rule

If there are two events A, and B, then the probability of A or B happening is:

Example 1: what is the probability of rolling a 1 or 2?

- Pr(A) = Pr(rolling X = 1) = 1/6
- Pr(B) = Pr(rolling X = 2) = 1/6
- Pr(A and B) = Pr(rolling X = 1 and 2) = 0

Probability rules - Additive rule

If there are two events A, and B, then the probability of A or B happening is:

Example 2:

- Suppose we replace the 6 on a die with the number 1 and 2
- What is the probability of getting a 1 or a 2?

$$Pr(X = 1) + Pr(X = 2) - Pr(X = 1 \text{ and } 2)$$

$$2/6 + 2/6 - 1/6 = 3/6 = 1/2$$

Big league baseball was a board game from the 1960's

Events in a baseball game were modeled as the outcome of rolling dice

Rules for Big League Baseball

A single die is rolled:

- If a 2 or 3 occurs: a ball is pitched
- If a 4 or 5 occurs: a strike is pitched
- If a 1 or 6 occurs: a ball is hit in fair play

Rules for Big League Baseball

If a fair ball is hit (1 or 6 rolled first) then two dice are rolled in sequence and the following table indicates the outcome of the play:

2nd Die

	U
ت	7
	_
st	
_	-

	1	2	3	4	5	6
1	Single	Out	Out	Out	Out	Error
2	Out	Double	Single	Out	Single	Out
3	Out	Single	Triple	Out	Out	Out
4	Out	Out	Out	Out	Out	Out
5	Out	Single	Out	Out	Out	Single
6	Error	Out	Out	Out	Single	Home run

If a fair ball is hit, what is the probability of the following events:

- A home run?
- A out?
- A single?
- A hit?

2nd Die

1st Die

	1	2	3	4	5	6
1	Single	Out	Out	Out	Out	Error
2	Out	Double	Single	Out	Single	Out
3	Out	Single	Triple	Out	Out	Out
4	Out	Out	Out	Out	Out	Out
5	Out	Single	Out	Out	Out	Single
6	Error	Out	Out	Out	Single	Home run

If a fair ball is hit, what is the probability of the following events:

• A home run? 1/36

• A out? 24/36

• A single? 7/36

• A hit? 10/36

2nd Die

1st Die

	1	2	3	4	5	6
1	Single	Out	Out	Out	Out	Error
2	Out	Double	Single	Out	Single	Out
3	Out	Single	Triple	Out	Out	Out
4	Out	Out	Out	Out	Out	Out
5	Out	Single	Out	Out	Out	Single
6	Error	Out	Out	Out	Single	Home run

Let's play an inning of Big League Baseball

- Keep score with the scorecard: https://baseball-scorecard.pdffiller.com/
- Dice rolling simulator: https://www.random.org/dice/
- Rules of Big League Baseball and a pdf of a scorecard are also on Canvas

Limitations of Big League Baseball

A few limitations of Big League Baseball?

- All batters have the same ability
- All pitchers have the same ability
- Balls and strikes are equally likely
 - In real baseball many more strikes are thrown

Big League baseball probability distribution if a ball is hit in play

Q: why is this a valid probability distribution?

A: All values are between 0 and 1 and the sum is 1

Suppose we want to calculate the probability of a home run, without assuming that a ball was hit in play

What are the sequences of events that would lead to a home run?

- 1) We need to hit a ball in play (role a 1 or a 6)
 - Pr(ball in play) = 1/3
- 2) We need to hit a home run (role two 6's)
 - Pr(home run | ball in play) = 1/36

We somehow need to combine these events to get a total probability

Multiplicative Rule

The probability of two events A *and* B occurring is:

- The probability of A occurring given that B has occurred... times ...
- The probability of B occurring

$$Pr(A, B) = Pr(A|B) \times Pr(B)$$

E.g., Suppose we draw 2 cards from a 52 card deck. What is the probability they are both diamonds?

$$Pr(D1, D2) = Pr(D1) \times Pr(D2 | D1)$$

= 13/52 × 12/51 = 0.12

Special Case: Multiplicative Rule for independent events

Two events are independent if:

$$Pr(A, B) = Pr(A) \times Pr(B)$$

Q: what is the probability of getting two strikes in a row in Big League baseball at the start of a plate appearance?

Pr(Strike, Strike) = Pr(Strike) x Pr(Strike) =
$$1/3$$
 x $1/3$ = $1/9$

What is the probability one would strike out on three straight pitches?

• Answer: $(1/3)^3 = 1/27$

At the start of an inning, what is the probability one would strike out on 4 pitches?

- Probability of a strike is 1/3
- Probability of a ball is 1/3
- Number of ways to strike out on 4 pitches is:
 - B,S,S,S or
 - S,B,S,S or
 - S,S,B,S
- Probability is: $(1/3)^4 + (1/3)^4 + (1/3)^4 = 1/27$

Simulating rolls of the dice in Python:

import numpy as np

np.random.choice(np.arange(1, 7))

Conditional statements:

```
if (X == 1) or (Y == 2):
    # do stuff

elif (X == 3) or (Y == 4):
    # do different stuff

else:
```

do this stuff

A dictionary maps a set of "keys" to a set of "values".

There are a few different ways to create dictionaries in Python, but for our purposes we will use this syntax:

```
my_dictionary = {}
my_dictionary['key1'] = 'value1'
my_dictionary['key2'] = 'value2'
...
```

A dictionary maps a set of "keys" to a set of "values".

There are a few different ways to create dictionaries in Python, but for our purposes we will use this syntax:

```
my_dictionary = {}
my_dictionary[(v1, v2)] = 'value1'
my_dictionary['key2'] = 'value2'
...
```

Let's take a quick look at Lab 4, Exercise 2 where you will generate plays using the rules of Big Data Baseball...

Keeping track of the state of a game

If we want to do a full simulation of a Big League Baseball game it will be useful to keep track of the game after every event

We can use Object-oriented programming (OOP) to do this!

Object-oriented programming (OOP) is a programming paradigm based on the concept of "objects", which can contain:

- 1. data: in the form of fields
 - often known as attributes or properties
- 2. methods: functions that operate on the data

Have we seen any objects in this class yet?

```
my_table = Table() # constructor
my_table.select("my_column") # method
```

A class defines what the object is

• i.e., classes have code that lists the types of data stored and the methods

An **object** is a realization of classes (often called an instance of a class)

- Stores actual data that can be manipulated with methods
- E.g., my_table.where()

A constructor defines what should happen when an object is created

In Python the constructor is defined with the __init__(self) method

```
class Baseball_Game:

# Constructor
def __init__(self):

self.end_of_game = False
self.inning = 1
```

```
# create an instance of an object
my_object = Baseball_Game()
```

The <u>str</u> method defines what should happen when the <u>print()</u> function is called on the object

```
# str method
def __str__(self):
    'I am an object'
```

```
# create an instance of an object
my_object = Baseball_Game()

# print the object
print(my_object)
```

Let's begin on Exercise 3 where you will create an object to keep track of the state of the baseball game

For exercise 3, spend 1 hour on it

• If you are totally stuck, I will send you the answer so you can go on to part 4