Applied Biostatistics

https://moodle.epfl.ch/course/view.php?id=15590

- Research process
- Basic experimental design ideas
- Analysis of variance
- ANOVA modeling with R

Research process

- Question of scientific interest
- Decide : what data to collect (and how)
- Collect and *analyze* the data
- Conclusions, generalizations : inference about the population of interest
- Communication and diffusion of results

Generic Question : Does a'treatment' cause an 'effect'?

Exemples:

- Does smoking cause cancer, cardiac illness, etc?
- Does consuming oat bran decrease cholesterol?
- Does echinacea prevent illness?
- Does exercise slow the aging process?

Approach the question

- One simple method for resolving this type of question is to Une méthode simple pour résoudre ce type de question consiste à compare two groups of study subjects :
 - Control group: gives a base level for comparison
 - Treatment group: group receiving the 'treatment'

Types of studies

- Experimental studies: subjects assigned to groups (treatment, control) by the investigator
 - randomization : protects against bias in group assignments
 - 'blind', 'double-blind': protects against bias in the evaluation of results
 - placebo: artificial treatment
- Observational study: subjets 'assign' themselves to groups
 - Confounding factor: a factor associated with both the treatment and the result

Comments

- With a well-planned and executed controlled experiment, it is possible to infer *causation*
- This is *NOT possible* with observational studies due to the presence of confounding factors
- When there are confounding factors, it is not possible to say whether the observed difference between the groupsis due to the *treatment* or to the *confounding factor*
- However, it is not always possible to carry out an experimental study, for pratical and/or ethical reasons

Example: Hibernation

- General question : How do changes in an animal's environment induce hibernation?
- What changes should be studied ??
 - temperature
 - photoperiod (daylight duration)
- What measures to take?
 - nerve enzymatic activity (Na+K+ATP-ase)
- What animal to study?
 - golden hamster, 2 organs

Specific question

- General question : How do changes in an animal's environment induce hibernation?
- Specific question: What is effect of changing daylight duration on the enzyme concentration of the sodium pump in two golden hamster organs?

Sources of variability

- Variability due to the conditions of interest (wanted)
 - Duration (long or short)
 - Organ (heart or brain)
- Variability of the response (NOT wanted) : measurement error
 - Preparation of the enzyme suspension
 - Instrument calibration/standardization
- Variability in experimental units (NOT wanted)
 - biological differences between hamsters
 - environmental differences

Types of variability

- Systematic, expected (wanted)
- Random variation (can manage this)
- Systematic, unexpected (NOT wanted)
 - biased results
 - e.g., what time the measurements are made

Questions for the hibernation study

- Long or short : Is there an effect of daylight duration on enzyme concentration?
- Heart vs. Brain : Are the concentrations differents?
- Interaction : Is the difference in enzyme concentration (long/short) different for heart and brain?
- Hamsters: Variability between hamsters?
- Measurement error: What is the error due to the measurement process for enzyme concentration?

Completely randomized experiment

- Concentrated on 1 organ (heart, for example)
- Randomization: use a random mechanism to assign hamsters to long or short days
- 'Random' ≠ 'haphazard' or 'arbitrary'
- Balanced: assign the same number of hamsters to long and short days
- Example (8 hamsters): Long: 4, 1, 7, 2 SHort: 3, 8, 5, 6

(Complete) Randomized block design

- Assume that the hamsters have come from 4 different litters,
 2 hamsters per litter
- We expect that hamsters born in the same litter are more similar to each other than hamsters from a different litter
- For each pair of hamsters {colitrandomly assign short or long to one member of each pair
- Example (toss a fair coin, for example) : S, L // L, S // S, L // S, L

Factorial experiment

- Compare two (or more) sets of conditions in the same experiment: long/ short AND heart/brain
- In this example, there are 4 combinations of conditions :
 - Long/Heart, Long/Brain, Short/Heart, Short/Brain
- Example (2 coin tosses, for example) :

```
L/H: 7, 2 L/B: 4, 1
S/H: 3, 5 S/B: 8, 6
```

Replication, Randomization, Blocking

- These are the 'big three' of experimental design
- Replication –to reduce random variation of the test statistic, increases generalizability
- Randomisation to reduce/remove bias
- Blocking to reduce unwanted variation
- Idea here is that units within a block are similar to each other, but different between blocks
- 'Block what you can, randomize what you cannot'

Trees

- A study is carried out to examine the growth of a certain type of tree at an altitude of 675 meters
- The variable of interest is the measure of the base (in cm) during a period of 10 years
- According to a theory, the mean should be at least 1.75
- For a random sample of 10 measures (trees), we have $\overline{x}=2$ cm, $s_x=0.5$ cm

Steps in hypothesis testing (I)

- I Identify the population parameter Here, the parameter of interest is the population mean of the base measure during 10 years
- 2 Formulate the NULL and ALT hypotheses

 $H: \mu = 1.75$

 $A: \mu > 1.75$

Calculate the TS

$$t_{obs} = (2 - 1.75)/(.5/\sqrt{10}) = 1.58$$

Steps in hypothesis testing (II)

4 Calculate the *p*-value

$$p_{obs} = P(T_9 > 1.58) = .07$$

 $(t_{9,0.90} = 1.383 < t_{obs} < t_{9,0.95} = 1.833)$

[5] (Optional) Decision rule: REJECT the NULL hypothesis H if $p_{obs} \leq \alpha$ $\alpha = 0.05$, thus DO NOT REJECT H (barely!)

More trees

- Now, suppose that we are interested in knowing whether the mean base measure is the same for trees at 675 meters and 825 meters
- We have another random sample of 10 trees at 825 meters, for which $\overline{y} = 2.65$ cm, $s_v = 1.15$ cm
- How could we test the null hypothesis that the means are equal, against the alternative that they are different? ...

Review: Test for comparing 2 (independent) means

Supposing equal variances:

- $T = \text{obs. diff} / \text{SE(obs. diff)} = \Delta / \sqrt{Var(\hat{\Delta})};$ $\hat{\Delta} = \bar{y} - \bar{x}; Var(\hat{\Delta}) = \sigma^2 / n + \sigma^2 / m = \frac{n+m}{nm} \sigma^2$
- We can estimate the variances *separately* :

$$s_x^2 = ((x_1 - \bar{x})^2 + \dots + (x_n - \bar{x})^2)/(n-1)$$

$$s_y^2 = ((y_1 - \bar{y})^2 + \dots + (y_m - \bar{y})^2)/(m-1)$$

When the variances are *equal*, we can combine the two estimators : $s_p^2 = ((n-1)s_x^2 + (m-1)s_y^2)/(n+m-2)$

$$\implies t_{obs} = rac{ar{y} - ar{x}}{\sqrt{s_p^2(n+m)/(nm)}} \sim t_{n+m-2}$$
 under H

Trees one more time!

- You guessed it!! Now we are also interested in trees at 975 meters
- We want to make a *three-way* comparison
- We have another random sample (n=10), with $\overline{z}=2.5$ cm, $s_z=1$ cm
- How could we test the null hypothesis that the three means are equal, against the alternative that they are not equal? (Suppose that we have not done the two-way test) ...

ANOVA

- Abbreviation for *AN*alysis *Of VA*riance
- BUT : it is a test of difference between *means*
- The idea :

Principle

- The total variation (sum of squares of differences from the mean) has 2 components :
 - individual fluctuations : within-groupe variability (due to error)
 - Fluctuations between the groups : inter-groupe variability (due to the treatment)
- Within-group variability > Between-group variability ⇒ at least 2 means are different
- General principle :
 - Decompose the total sum of squared deviations into 2 parts
 - Test whether the mean square between is (significantly) bigger than the mean square within

Hypothesis test

- Notation :
 - k groups
 - n_i is the sample size for group i
 - observations x_{ij} (observation j of group i)
- $H: \mu_1 = \mu_2 = \cdots = \mu_k$ $A: \exists \mu_i \neq \mu_i$ (at least one mean is different from the others)
- ANOVA is a rather *robust* test (results not greatly affected by mild deviation from assumptions)

The models

- \bullet $\epsilon_{ij} \sim \text{ iid } N(0, \sigma^2)$
- Under *H*, the model is :

$$x_{ij} = \mu + \epsilon_{ij}$$

Under A, the model is :

$$x_{ij} = \mu + \alpha_i + \epsilon_{ij},$$

where α_i est the effect of level i of factor A on the variable X

Model is overparameterized :

Uses more parameters than necessary

Need to introduce a constraint so that the model is *identifiable*, such as $\sum_i \alpha_i = 0$ (sum to zero contrasts) or $\alpha_1 = 0$ (treatment contrasts)

Sum of Squares

- Goal : test difference between means of two (or more) groups
 - Between SS measures the difference
- The difference must be measured relative to the variance within the groups
 - Within SS
- *F-test* : considers the ratio of B/W
- The larger *F* is, the more significant the difference

The ANOVA procedure

- Subdivide observed total sum of squares into several components
- lacktriangle Pick appropriate significance point for a chosen Type I error lpha from an F table
- Compare the observed components to test the NULL hypothesis

PAUSE

Parameter estimation

■ Under $H: x_{ij} = \mu + \epsilon_{ij}:$

$$\hat{\mu} = \overline{x} = \frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{n_i} x_{ij}, \quad n = \sum_{i=1}^{k} n_i$$

■ Under $A: x_{ij} = \mu + \alpha_i + \epsilon_{ij}:$

$$\hat{\mu} + \hat{\alpha}_i = \overline{x}_i = \frac{1}{n_i} \sum_{i=1}^{n_i} x_{ij},$$

which gives us
$$\hat{\alpha} = \overline{x}_i - \overline{x}$$

 $\hat{\epsilon}_{ij} = x_{ij} - \hat{x}_{ij} = x_{ij} - \hat{\mu} - \hat{\alpha}_i = x_{ij} - \overline{x} - (\overline{x}_i - \overline{x}) = x_{ij} - \overline{x}_i$

Decomposition of the total variation

- The model under $A: x_{ij} = \mu + \alpha_i + \epsilon_{ij}$
- with estimators : $x_{ij} = \overline{x} + (\overline{x}_i \overline{x}) + (x_{ij} \overline{x}_i)$
- $\implies (x_{ij} \overline{x}) = (\overline{x}_i \overline{x}) + (x_{ij} \overline{x}_i)$
- with sum of squares :

$$(x_{ij}-\overline{x})^2=(\overline{x}_i-\overline{x})^2+(x_{ij}-\overline{x}_i)^2+2(\overline{x}_i-\overline{x})(x_{ij}-\overline{x}_i)$$

 \blacksquare and sums for individuals (j):

$$\sum_{j=1}^{n_i} (x_{ij} - \bar{x})^2 = n_i (\bar{x}_i - \bar{x})^2 + \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2 + 2(\bar{x}_i - \bar{x}) \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2$$

Décomposition, cont.

- Thus, $2(\overline{x}_i \overline{x}) \sum_{j=1}^{n_i} (x_{ij} \overline{x}_i)$, since $\sum_{j=1}^{n_i} (x_{ij} \overline{x}_i) = 0$ $(E(\epsilon_{ij} = 0))$
- Therefore,

$$\sum_{j=1}^{n_i} (x_{ij} - \overline{x})^2 = n_i (\overline{x}_i - \overline{x})^2 + \sum_{j=1}^{n_i} (x_{ij} - \overline{x}_i)^2$$

with the sums for the factor levels :

$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (x_{ij} - \overline{x})^2 = \sum_{i=1}^{k} n_i (\overline{x}_i - \overline{x})^2 + \sum_{i=1}^{k} \sum_{j=1}^{n_i} (x_{ij} - \overline{x}_i)^2$$

 \blacksquare \Longrightarrow SSE_{total} = $SSE_{treatments}$ + SSE_{error}

Principle of the test

- 1-way (1 factor) analysis of variance tests the effect of the factor A having k levels on the means of a quantitative (continuous) variable X
- The tested hypotheses :

```
H: \mu_1 = \mu_2 = \cdots \quad \mu_k = \mu \text{ vs. } A: \exists \mu_i \neq \mu_j
```

- Test whether the ratio of the 2 estimators for the variance is close to 1
- The associated variance estimators (or *mean squares*) sont :
 - Total variance : $SS_{total}/(n-1)$
 - Variance due to factor $A(MS_{trts})$: $SS_{trts}/(k-1)$
 - \implies estimator of σ^2 if H is true
 - Residual variance (MS_{error}) : $SS_{errorr}/(n-k)$
 - \implies estimator of σ^2 for either model

Test statistic

- Under H, $SS_{trts}/(k-1)$ and $SS_{error}/(n-k)$ \implies estimators of the same parameter σ^2
- Thus, (under H), the ratio $\frac{SS_{trts}/(k-1)}{SS_{error}/(n-k)} \approx 1$
- Under A, at least one $\alpha_i \neq 0$ and $SS_{error}/(n-k)$ is a unique estimator of σ^2 ; $SS_{trts}/(k-1) >> SS_{error}/(n-k)$
- Thus, (under A), the ratio $\frac{SS_{trts}/(k-1)}{SS_{error}/(n-k)}$ much bigger than 1
- ⇒ 1-sided test
- $F_{obs} = \frac{SS_{trts}/(k-1)}{SS_{error}/(n-k)} = MS_{trts}/MS_{error}$
- Null distribution of this test statistic is the Fisher distribution with k-1 (num) and n-k (denom) degrees of freedom (df)

ANOVA table

Tableau d'ANOVA

Tableau a / 11 O / / 1					
source	df	SS	MS (=SS/df)	F	<i>p</i> -value
treatments	k-1	SS _{trts}	$SS_{trts}/(k-1)$	MS_{trts}/MS_{error}	$P(F_{obs} > F_{k-1,n-k})$
error	n-k	SSerror	$SS_{error}/(n-k)(=\hat{\sigma}^2)$, , , , , , , , , , , , , , , , , , ,
total (corr.)	n-1	SS _{total}			

What does it mean when we reject H?

- The null hypothesis *H* is a joint one : that *all* population means are equal
- When we reject the null hypothesis, it does NOT mean that all means are different!
- It means that at least one mean is different
- In order to find out which is/are different, we can carry out 'post-hoc'/a posteriori tests (pairs of t-tests, Tukey's Honest Significant Difference, etc.)

Model formulas in R

- A simple model formula in R looks something like: yvar ~ xvar1 + xvar2 + xvar3
- We could write this model (algebraically) as $Y = a + b_1 * x_1 + b_2 * x_2 + b_3 * x_3$
- By default, an intercept is included in the model - you don't have to include a term in the model formula
- If you want to leave the intercept out:

```
yvar ~ -1 + xvar1 + xvar2 + xvar3
```

More on model formulas

 We can also include interaction terms in a model formula:

```
yvar ~ xvar1 + xvar2 + xvar3
Examples
-yvar ~ xvar1 + xvar2 + xvar3 +
    xvar1:xvar2
-yvar ~ (xvar1 + xvar2 + xvar3)^2
-yvar ~ (xvar1 * xvar2 * xvar3)
```

More on model formulas

- The generic form is response ~ predictors
- The predictors can be numeric or factor
- Other symbols to create formulas with combinations of variables (e.g. interactions)
 - + to add more variables
 - to leave out variables
 - : to introduce interactions between two terms
 - * to include both interactions and the terms
 - (a*b is the same as a+b+a:b)
 - **^n** adds all terms including interactions up to order n
 - I () treats what's in () as a mathematical expression

Interpreting R output

```
> chicks.aov <- aov(Weight ~ House + Protein*LP*LS)
> summary(chicks.aov)
             Df Sum Sq Mean Sq F value Pr(>F)
              1 708297 708297 15.8153 0.0021705 **
House
Protein
              1 373751 373751 8.3454 0.0147366 *
LP
              2 636283 318141 7.1037 0.0104535 *
              1 1421553 1421553 31.7414 0.0001524 ***
T.S
Protein:LP
              2 858158 429079 9.5808 0.0038964 **
                          7176 0.1602 0.6966078
Protein:LS
                7176
              2 308888
LP:LS
                        154444 3.4485 0.0687641 .
              2 50128 25064 0 5596 0 5868633
Protein:LP:LS
Residuals
             11 492640 44785
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
```

Numerical and graphical analysis

Tables of group means:

		Groundnut	Soybean	Mean
Level of	0	6676	7452	7064
protein	1	6893	6961	7927
	2	6719	6624	6671
Mean		6763	7012	6887

		G-nut	Soy	Level of protein			Mean
				0	1	2	
Level of	0	6537	6752	6750	6595	6588	6644
fish	1	6989	7273	7379	7259	6755	7131
Mean		6763	7012	7064	6927	6671	6887

Pairs of tests: why not?

Why do ANOVA instead of performing tests (z or t) for each pair of samples?

- For m (independent) comparisons, the probability of rejecting at least one H is given by : $\alpha_m = 1 (1 \alpha)^m$
- For $\alpha = 0.05$, we have :
 - 3 tests \implies P(Type I error) = 0.14
 - 5 tests \implies P(Type I error) = 0.23
 - $-10 \text{ tests} \implies P(\text{Type I error}) = 0.4$
 - 21 tests \implies P(Type I error) = 0.66

Assumptions

- Independance: The k samples are independent; the set of n is allocated randomly entre les k levels of the factor A, with n_i individuals receiving treatment i.
- Homoscedasticity: The k populations have the same variance; the factor A acts only on the mean of the variable X and doesn't change its variance
- Normality: The quantitative variable X is normally distributed in the k populations (or CLT applies for n_i 'sufficiently large')

Model assessment : Normality

- Boxplots of the observations (or residuals) should be symmetric
- Graph of sample means vs. sample variances should not show any pattern
- QQ-plot (normal) of the observations (or residuals) should fall on a straight line
- Look to see whether there are any outliers or unusual observations

Model assessment : Homogeneity of variance

- Boxplots of the observations should have a similar variability
- Variability of the residuals should be similar in the graph of residuals vs. group means
- There are also formal hypothesis tests (e.g., Bartlett, Levene), but they are not very useful as diagnostics

Some diagnostic graphs

Model assessment : Independence

- Graph: residuals vs. group means, might be able to indicate autocorrelation (for example)
- Typically this issue is treated during experiment planning, by randomization and/or other methods

Summary: numerical and graphical analysis

- Design plot
- Boxplots of outcome for each factor
- Interaction plots
- Write out model, assumptions, define all parameters
- anova table
- Plots for assumption checking/model assessment

R output – ANOVA

ANOVA: after the test

- Once the ANOVA conditions have been verified and the analysis carried out, two conclusions are possible :
 - REJECT H
 - there is not enough evidence to reject H (DO NOT REJECT)
- If we do not reject H, we conclude that there are no significant differences in the means of the groups
- If we do reject H, we want to identify the levels of the factor that lead to the significant results

Multiple comparisons

- Comparison of means for pairs of treatments
- These are made *after* a significant ANOVA
- Types of comparisons
 - planned (a priori): independent of the ANOVA results;
 the theory predicts which treatments should be different
 - unplanned (a posteriori): comparisons are determined based on the ANOVA results
- $H: \mu_i = \mu_j$ vs. $A: \mu_i \neq \mu_j$
- Test statistic

$$t = \frac{\overline{y}_i - \overline{y}_j}{\sqrt{\hat{\sigma}^2 \left(1/n_i + 1/n_j\right)}}$$

• $(\hat{\sigma}^2 = MS_{error})$; df = df_{error}

Method of Bonferroni – global control

- For k comparisons, the probability of not rejecting a true null $H = (1 \alpha)^k$
- \implies we must control the (total) error α while adjusting for the number comparisons
- To maintain the global α_e at level α , we must adjust α for each comparison by the number of comparisons
- In this way, α_e becomes independent of the number of comparisons
- The most simple : Bonferroni method

$$\alpha' = \alpha/k$$
,

where k = number of comparisons (tests)

- $p_{adjusted} = \min(kp, 1)$
- The method of Bonferronni assures that *the global level is at most the desired level*

Multiple comparisons: Tukey Honest Significant Differences

- Interested in simultaneous confidence intervals or tests for differences in the mean outcome X for pairs of levels of a factor
- To test all pairwise comparisons among means using the Tukey HSD, calculate HSD for each pair of means:

$$q_s = \frac{M_i - M_j}{\sqrt{MSW/n_{group}}},$$

where M_k is the mean of group k, $M_i > M_i$

- For hypothesis testing, the value q_s is compared to a q value from the studentized range distribution (difference between largest and smallest sample means divided by pooled sample $SD_{\sqrt{2/n}}$
- Reject the null at level α if $q_s > q_\alpha$

■ CI :
$$(\overline{y}_i - \overline{y}_j) \pm \frac{q_{\alpha;k;N-k}}{\sqrt{2}} \hat{\sigma}_e \sqrt{\frac{2}{n}}$$
; $i,j = 1, \ldots, k, i \neq j$
■ $k = \text{number of populations}$; $N = \text{total sample size}$

Factorial crossing

- Compare 2 (or more) sets of conditions in the same experiment
- Designs with factorial treatment structure allow you to measure *interaction* between two (or more) sets of conditions that influence the response
- Factorial designs may be either observational or experimental

Interaction

- Interaction is very common (and very important) in science
- Interaction is a difference of differences
- Interaction is present if the effect of one factor is different for different levels of the other factor
- Main effects can be difficult to interpret in the presence of interaction, because the effect of one factor depends on the level of the other factor

Two-way ANOVA

- Simultaneously study factor A with I levels and factor B with
 J levels
- For each pair of levels (A, B):
 - there is a sample
 - all samples are of the same size n (balanced design)
- Assumptions :
 - measures in each population are normally distributed
 - variances in each population are equal (homoscedasticity)
 - samples are obtained independently at random from the populations

Full model

- Full model : with interactions
- $y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk}$
- $E[\epsilon_{ijk}] = 0$, $Var(\epsilon_{ijk}) = \sigma^2$, $Cov(\epsilon_{ijk}, \epsilon_{i'j'k'}) = 0$ si $(ijk) \neq (i'j'k')$

ANOVA table

source	df	SS	MS	F
A	I - 1	$nJ\sum_{i=1}^{I}(\overline{y}_{i}-\overline{y})^{2}$	SS_A/df_A	MS_A/MS_{err}
В	J-1	$nI \sum_{i=1}^{J} (\overline{y}_{\cdot j} - \overline{y}_{\cdot \cdot \cdot})^2$	SS_B/df_B	MS_B/MS_{err}
AB	(I-1)(J-1)	$n \sum_{j=1}^{J} \sum_{i=1}^{I} (y_{ij} \overline{y}_{i} - \overline{y}_{.j}. + \overline{y}_{})^2$	SS_{AB}/df_{AB}	MS_{AB}/MS_{err}
error	IJ(n-1)	$\sum_{k=1}^{n} \sum_{j=1}^{J} \sum_{i=1}^{I} (y_{ijk} - \overline{y}_{ij.})^{2}$	SS _{err} / df _{err}	
total (corr.)	nIJ-1	$\sum_{k=1}^{n} \sum_{j=1}^{J} \sum_{i=1}^{I} (y_{ijk} - \overline{y}_{})^2$		

Two-way ANOVA

- Associated with each sum of squares (SS)
 - Corresponding degrees of freedom (df)
 - Corresponding mean square (MS) = SS/df
- The mean squares are compared using F ratios to test various effects
 - First test for a significant interaction between the factors
 - If there is an interaction, it may not be reasonable to test for significant risk or age differences

Hypothesis tests

- Test for interaction $H: \gamma_{ii} = 0, i = 1, ..., I, j = 1, ..., J$
- Test statistic : $F_{AB} = MS_{AB}/MS_{error} \sim F_{(I-1)(J-1),IJ(n-1)}$ under H
- Test for effect of factor A $H: \alpha_i = 0, i = 1, ..., I$
- Test statistic : $F_A = MS_A/MS_{error} \sim F_{I-1,IJ(n-1)}$ under H
- Test for effect of factor B $H: \beta_j = 0, j = 1, ..., J$
- Test statistic : $F_B = MS_B/MS_{error} \sim F_{J-1,JJ(n-1)}$ under H

Additive model

- Additive model: without interactions
- $y_{ijk} = \mu + \alpha_i + \beta_j + \epsilon_{ijk}$
- $E[\epsilon_{ijk}] = 0$, $Var(\epsilon_{ijk}) = \sigma^2$, $Cov(\epsilon_{ijk}, \epsilon_{i'j'k'}) = 0$ if $(ijk) \neq (i'j'k')$

ANOVA table

source	df	SS	MS	F
A	I - 1	$nJ\sum_{i=1}^{I}(\overline{y}_{i}-\overline{y})^{2}$	SS_A/df_A	MS_A/MS_{err}
В	J-1	$nI \sum_{i=1}^{J} (\overline{y}_{\cdot i} - \overline{y}_{\cdot \cdot \cdot})^2$	SS_B/df_B	MS _B /MS _{err}
error	nIJ - I - J + 1	$\sum_{k=1}^{n} \sum_{j=1}^{J} \sum_{i=1}^{I} (y_{ijk} - \overline{y}_{i} - \overline{y}_{.j.} + \overline{y}_{})^2$	SS_{err}/df_{err}	
total (corr.)	nIJ-1	$\sum_{k=1}^{n} \sum_{j=1}^{J} \sum_{i=1}^{I} (y_{ijk} - \bar{y})^{2}$		

Example: ToothGrowth

"The response is the length of odontoblasts (teeth) in each of 10 guinea pigs at each of three dose levels of Vitamin C (0.5, 1, and 2 mg) with each of two delivery methods (orange juice or ascorbic acid)."

Boxplots of Tooth Growth Data

Example: ToothGrowth, cont.

Given : supp

ToothGrowth data: length vs dose, given type of supplement

Example: ToothGrowth, cont.

Example: ToothGrowth, cont.

Unbalanced designs

- When all sample sizes are equal, the main effects and interactions can be estimated independently
- That's because of the orthogonality of the sub-spaces that correspond to the different model effects
- This is no longer the case when the sample sizes are different (unbalance case)
- For an unbalanced design, effect estimation must be adjusted (for the other effects in the model): the estimated values depend on the other terms in the model and their order of entry

Example: ToothGrowth (unbalanced)

	L	М	Н
VC	4.2 11.5 7.3	16.5 16.5 15.2 17.3	23.6 18.5
OJ	15.2 21.5 17.6 9.7	19.7 23.3	25.5 26.4 22.4 24.5

Example: supp

```
> # full interaction model with
> # supp entering first
>
> fit1 <-
  lm(len ~ supp + doselev + supp:doselev,
    data=toothun)
> anova(fit1)
Analysis of Variance Table
Response: len
            Df Sum Sq Mean Sq F value Pr(>F)
            1 174.46 174.46 17.3664 0.0011049
supp
          2 375.75 187.87 18.7012 0.0001495
doselev
supp:doselev 2 17.70 8.85 0.8808 0.4377931
Residuals 13 130.60 10.05
```

Example: doselev

```
> # full interaction model with doselev
> # entering first
>
> fit2 <-
  lm(len ~ doselev + supp + supp:doselev,
    data=toothun)
> anova(fit2)
Analysis of Variance Table
Response: len
            Df Sum Sq Mean Sq F value Pr(>F)
            2 396.08 198.04 19.7131 0.0001158
doselev
gque
            1 154.13 154.13 15.3428 0.0017685
doselev:supp 2 17.70 8.85 0.8808 0.4377931
Residuals 13 130.60 10.05
```