The Turing language for probabilistic programming

Hong Ge¹, Kai Xu² Oct 2018

The first international conference on probabilistic programming

1: Department of Engineering, University of Cambridge 2: School of Informatics, University of Edinburgh

Probabilistic programming languages

- Probabilistic programs: computer programs represent probabilistic models with probabilistic statements:
 - Declaring random variables
 - Conditioning on observed data
- Universal probabilistic programming
 - Stochastic control flows
 - Allows representing arbitrary probabilistic models
- Generic inference engines: HMC, SMC, particle Gibbs, EP
- Two approaches to implement a PPL
 - Standalone: Stan, BUGS, Venture, etc.
 - Embedded: Anglican, infer.NET, PyMC3, Pyro, Edward, **Turing**, etc

Fig 1. Workflow & components of Turing

The modelling language in Turing

```
@model gdemo(x) = begin
   s ~ InverseGamma(2, 3)
   m ~ Normal(0, sqrt(s))
   for i = 1:length(x)
        x[i] ~ Normal(m, sqrt(s))
   end
   return s, m
end
```

Fig2: Simple Gaussian Model in Turing

The modelling language in Turing

Fig3: Illustration of Turing's syntax

Simulation-based inference

- Sample all variables using a forward simulation method
 - Sequential Monte Carlo
 - Particle MCMC
 - single-site MH, ...
- Universal: applicable to models with stochastic control flows

Gradient-based inference

- Sample all variables using a generic gradient guided algorithm, e.g.:
 - HMC (NUTS)
 - Blackbox variational inference
- Non-universal:
 - No stochastic control flows
 - No discrete variables

Compositional inference

- Combine simulation and gradient-based inference
- Generic universal engine

- Gibbs sampling for BayesHMM
 - Sample states using particle Gibbs
 - Sample initial, trans and statesmean using HMC

Basic inference in Turing

```
@model gdemo(x) = begin
s ~ InverseGamma(2,3)
m ~ Normal(0,sqrt(s))
for i=1:length(x)
    x[i] ~ Normal(m, sqrt(s))
end
return(s, m)
end
```

TODO:

mf = gdemo([1.5, 2])

alg = HMC(2000, 0.1, 10)

chain = sample(mf, alg);

- adapt Guide section in Turing's doc
- add a slide on `SampleFromPrior`

Add some details on post-sampling processing with MCMCChain

- By passing data to a compiled model, we get a generated model function `mf`.
- An inference algorithm is defined by its name and corresponding parameters.
- The `sample` function takes a generated model function and a sampling algorithm to perform inference.
- The returned value `chain` stores MCMC samples.

Compositional inference in Turing

```
# Sampler = HamiltonianMonteCarlo + ParticleGibbs
g1 = Gibbs(500, HMC(1, 0.2, 3, :m), PG(50, 1, :s))

Gibbs is defined by number of iterations and multiple sampling algorithms as its components.

HMC is specified to sample variable m.
```

Available algorithms in Turing

Move to conclusion section.

Sampler	Support discrete variables?	Require gradients?	Require adaption?	Support universal programs?	MCMC factory operator?
HMC	No	Yes	Yes	No	Yes
NUTS	No	Yes	Yes	No	Yes
IS	Yes	No	No	Yes	No
SMC	Yes	No	No	Yes	No
PG	Yes	No	No	Yes	Yes
PMMH	Yes	No	No	Yes	Yes
IPMCMC	Yes	No	No	Yes	Yes

Current supported inference algorithms in Turing

Particle Gibbs in Turing is a re-implementation of Wood (2014),
 with a more efficient mechanism for copying/forking particles.

This should really not be an image but rather a svg or pdf. It's to blurry as is.

• Compositional inference is closely related with Vikash (250=104) formative this table actually is. Maybe add this as an additional slide at the end?

Inference results

```
julia> c = sample(gdemo(1.5, 2), g)
[Info: Assume - `s` is a parameter
[Info: Assume - `m` is a parameter
[Info: Observe - `x` is an observation
[Info: Observe - `y` is an observation
[Gibbs] Sampling...100% Time: 0:00:04
[Info: [Gibbs] Finished with
[Info: Running time = 4.406516913999995;
Object of type "Turing.Chain{AbstractRange{Int64}}"

Iterations = 1:1000
Thinning interval = 1
Chains = 1
Samples per chain = 1000

[1.19424 0.0 ... 0.1 0.0; 1.76147 5.0 ... 0.1 -5.04962; ...; 0.16521 5.0 ... 0.1 -6.34745; 2.17485 5.0 ... 0.1 -5.78878]
```

I would drop this slide.

Maybe it would be more interesting to have a GP example? This way we could highlight how Turing interacts with other packages.

Inference results

Inference results

```
julia> describe(c)
Iterations = 1:1000
Thinning interval = 1
Chains = 1
Samples per chain = 1000
Empirical Posterior Estimates:
                              Naive SF
                                                MCSF
                                                            FSS
     Mean
                  SD
  m 1.159092440 0.80245398600286965695716 0.0253758231324994407152040 0.0180752920127798012706055 1000.00000
If num 4.995000000 0.15811388300841913712169 0.005000000000000044408921 0.0049999999999999827568486 1000.00000
  s 2.074526995 2.06522391559965390328557 0.0653081145154625064552789 0.0901289413221706137147038 525.05615
elapsed 0.004406517 0.04087875130208082352645 0.0012926996201814923339452 0.0018081594527423736941396 511.11872
epsilon 0.100000000 0.0000000000000013884732 0.000000000000000043907378 0.00000000000000046259293 900.90090
  lp -5.751843644 1.16059043841524767159967 0.0367010921600556330735010 0.0472090647734787552392000 604.37596
Quantiles:
                       50.0%
                                75.0%
      2.5%
              25.0%
                                         97.5%
  m -0.4156437838 0.6751308439 1.1591866244 1.6194797994 2.797401556
s 0.5592247213 1.0143592798 1.5257070660 2.3944259281 6.980157267
elapsed 0.0019876127 0.0022259065 0.0024100215 0.0026112668 0.007310805
lp -8.7877142810 -6.1846725212 -5.4480569586 -4.9603088831 -4.636854812
```

Probabilistic programming in Julia

Bayesian Deep Learning

Flux.jl

```
alpha = 0.09  # regularizatin term
sig = sqrt(1.0 / alpha) # variance of the Gaussian prior

@model bayes_nn(xs, ts) = begin
    theta ~ MvNormal(zeros(20), sig .* ones(20))

preds = nn_forward(xs, theta)
    for i = 1:length(ts)
        ts[i] ~ Bernoulli(preds[i])
    end
end
```

Turing.jl

Bayesian Deep Learning - Inference

```
Replace 'Inference results' with
 N = 5000
                                                                                           'Inference'
 ch = sample(bayes nn(hcat(xs...), ts), HMC(N, 0.05, 4))
[HMC] Sampling... 98% ETA: 0:00:01
             0.05
 €:
             0.9999819814494996
 α:
[HMC] Finished with
 Running time
                       = 60.61580677799989;
                                                      6
 Accept rate
                       = 0.9206;
 #lf / sample
                       = 3.9992;
 #evals / sample
                       = 5.999;
                                                      4
 pre-cond. diag mat = [1.0, 1.0, 1.0, 1.0, 1.0]
[HMC] Sampling...100% Time: 0:01:01
                                                     2 -
                                                     0 -
                                                    -2 -
                                                    -4
                                                    -6
                                                                            -2
                                                                                              2
                                                                                                               6
```

21

Takeaways

- * Instead of next steps: Next milestones
- * tighter integration instead of integration
- * Maybe mention that we will support
- A powerful probabilistic programming language
 - Intuitive modelling syntax
 - Support both black-box and compositional inference
 - Pure Julia code, fully hackable
- Next milestones:
 - Compositional modelling
 - Tighter integration with deep learning packages
 - Scaling up to bigger problems

Bibliography

- 1. Ge, Hong, Kai Xu, and Zoubin Ghahramani. "Turing: Composable inference for probabilistic programming." In *International Conference on Artificial Intelligence and Statistics*, pp. 1682-1690. 2018.
- 2. Carpenter, Bob, Andrew Gelman, Matthew D. Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. "Stan: A probabilistic programming language." *Journal of statistical software* 76, no. 1 (2017).
- 3. Wood, Frank, Jan Willem Meent, and Vikash Mansinghka. "A new approach to probabilistic programming inference." In *Artificial Intelligence and Statistics*, pp. 1024-1032. 2014.
- 4. Winn, John, and Tom Minka. "Probabilistic programming with Infer .NET." Machine Learning Summer School lecture notes, available at http://research. microsoft. com/~ minka/papers/ mlss2009 (2009).
- 5. Lunn, David J., Andrew Thomas, Nicky Best, and David Spiegelhalter. "WinBUGS-a Bayesian modelling framework: concepts, structure, and extensibility." *Statistics and computing* 10, no. 4 (2000): 325-337.
- 6. Tran, Dustin, Matthew D. Hoffman, Rif A. Saurous, Eugene Brevdo, Kevin Murphy, and David M. Blei. "Deep Probabilistic Programming." (2016).
- 7. Mansinghka, Vikash, Daniel Selsam, and Yura Perov. "Venture: a higher-order probabilistic programming platform with programmable inference." *arXiv preprint arXiv:1404.0099*(2014).
- 8. Hoffman, Matthew D., and Andrew Gelman. "The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo." *Journal of Machine Learning Research* 15, no. 1 (2014): 1593-1623.

Contributors

web: turing.ml

Please get in touch in you want to contribute!

Kai Xu³

Hong Ge¹

Emile Mathieu²

Martin Trapp⁴

•••

Zoubin Ghahramani¹

Will Tebbutt ¹

Wessel Bruinsma¹

Yee Whye Teh²

- 1: Department of Engineering, University of Camb
 - 2: Department of Statistics, University of Oxfor
 - 3. School of Informatics, University of Edinburg
 - 4: Austrian Research Institute for Artificial Intellige

Change my affiliation to: SPSC Lab, Graz University of Technology

or Austrian Research Institute for Artificial Intelligence