

# M2177.003100 Deep Learning

[8: Convolutional Neural Nets (Part 3)]

Electrical and Computer Engineering Seoul National University

© 2019 Sungroh Yoon. this material is for educational uses only. some contents are based on the material provided by other paper/book authors and may be copyrighted by them.

(last compiled at 20:32:00 on 2019/10/13)

### Outline

#### **CNN Architectures**

AlexNet VGG

GoogLeNet

ResNet

Improving ResNet

Recent Architectures

#### Summary

### References

- Deep Learning by Goodfellow, Bengio and Courville Link
  - ▶ Chapter 9
- online resources:

  - ► Dive into Deep Learning ► Link

### Outline

#### **CNN Architectures**

AlexNe

VGG

GoogLeNet

ResNet

Improving ResNet

Recent Architectures

Summary

### Classic: LeNet-5



(source: LeCun, 1998)

- CONV-POOL-CONV-POOL-FC-FC
  - ▶  $5 \times 5$  conv filters (stride 1)
  - ▶  $2 \times 2$  pooling layers (stride 2)

# ImageNet challenge winners



## Outline

#### **CNN Architectures**

#### AlexNet

VGG

GoogLeNet

ResNe

Improving ResNet

Recent Architectures

Summary

# ImageNet challenge winners



### **AlexNet**

- Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton (2012)
  - ▶ ILSVRC 2012 winner



(source: yuchao.us)

#### Architecture



```
227×227×3
             INPUT
 55×55×96
             CONV1
                             96 11×11 filters at stride 4, pad 0

    total number of parameters

 27×27×96
             MAX POOL1
                             3x3 filters at stride 2
 27×27×96
             NORM1
                             normalization layer
                                                                     ▶ 60M
27×27×256
             CONV2
                             256 5x5 filters at stride 1, pad 2
13×13×256
             MAX POOL2
                             3x3 filters at stride 2
13×13×256
             NORM2
                             normalization layer

    59 M for just FC layers!

13×13×384
             CONV3
                             384 3x3 filters at stride 1, pad 1
13×13×384
             CONV4
                             384 3x3 filters at stride 1, pad 1
                                                                     FC6: 38M
                             256 3x3 filters at stride 1, pad 1
13×13×256
             CONV5
  6x6x256
             MAX POOL3
                             3x3 filters at stride 2
                                                                     ► FC7: 17M
     4096
             FC6
                             4096 neurons
     4096
                             4096 neurons
                                                                     FC8: 4M
     1000
             FC8
                             1000 neurons (class scores)
```

- details:
  - ▶ first use of ReLU
  - used normalization (NORM) layers (not common anymore)
  - heavy data augmentation
  - ▶ dropout: 0.5
  - ▶ batch size: 128
  - ▶ SGD + momentum (0.9)
  - learning rate:  $10^{-2}$ 
    - (reduced by 10 manually when validation accuracy plateaus)
  - ▶ L2 weight decay:  $5 \times 10^{-4}$
  - ▶ 7 CNN ensemble:  $18.2\% \rightarrow 15.4\%$
- trained on GTX 580 GPU (only 3GB memory)
  - ▶ network spread across 2 GPUs

# ImageNet challenge winners



## ZFNet (Zeiler and Fergus, 2013)



- the same as AlexNet but
  - ► CONV1: change from (11x11 stride 4) to (7x7 stride 2)
  - ▶ CONV3, 4, 5: instead of 384, 384, 256 filters use 512, 1024, 512
  - ▶ ImageNet top 5 error:  $16.4\% \rightarrow 11.7\%$

## Outline

#### **CNN Architectures**

AlexNet

VGG

GoogLeNet

ResNet

Improving ResNet

Recent Architectures

Summary

# ImageNet challenge winners



### VGG

• Simonyan and Zisserman (2014)

key idea: filters, networks

only

3x3 CONV stride 1, pad 1

2x2 MAX POOL stride 2

- ILSVRC top 5 error
  - ▶ 11.7% (ZFNet, 2013)
    - $\rightarrow$  7.3% (VGG, 2014)
- two versions: VGG16. VGG19
  - VGG19 only slightly better (use more memory)



## Why use smaller filters?

- consider stacking three 3x3 conv (stride 1) layers
- benefits
  - ▶ its effective receptive field
  - = that of one \_\_\_ conv layer
  - but deeper
  - ⇒ more non-linearities
  - ▶ and fewer parameters¹:

$$3 \times (3^2 \, C^2)$$
 vs  $7^2 \, C^2$ 





 $<sup>^{1}</sup>$ assuming C channels per layer and C filters per layer

# Architecture (VGG16)

| layer type dimension men | mory (96MB/image) | parameters (138M total)    |
|--------------------------|-------------------|----------------------------|
| INPUT 224×224×3          | 224*224*3=150K    | 0                          |
| CONV3-64 224×224×64      | 224*224*64=3.2M   | (3*3*3)*64 = 1,728         |
| CONV3-64 224x224x64      | 224*224*64=3.2M   | (3*3*64)*64 = 36,864       |
| POOL2 112×112×64         | 112*112*64=800K   | 0                          |
| CONV3-128 112×112×128    | 112*112*128=1.6M  | (3*3*64)*128 = 73,728      |
| CONV3-128 112×112×128    | 112*112*128=1.6M  | (3*3*128)*128 = 147,456    |
| POOL2 56×56×128          | 56*56*128=400K    | 0                          |
| CONV3-256 56×56×256      | 56*56*256=800K    | (3*3*128)*256 = 294,912    |
| CONV3-256 56×56×256      | 56*56*256=800K    | (3*3*256)*256 = 589,824    |
| CONV3-256 56×56×256      | 56*56*256=800K    | (3*3*256)*256 = 589,824    |
| POOL2 28x28x256          | 28*28*256=200K    | 0                          |
| CONV3-512 28×28×512      | 28*28*512=400K    | (3*3*256)*512 = 1,179,648  |
| CONV3-512 28×28×512      | 28*28*512=400K    | (3*3*512)*512 = 2,359,296  |
| CONV3-512 28x28x512      | 28*28*512=400K    | (3*3*512)*512 = 2,359,296  |
| POOL2 14×14×512          | 14*14*512=100K    | 0                          |
| CONV3-512 14×14×512      | 14*14*512=100K    | (3*3*512)*512 = 2,359,296  |
| CONV3-512 14×14×512      | 14*14*512=100K    | (3*3*512)*512 = 2,359,296  |
| CONV3-512 14×14×512      | 14*14*512=100K    | (3*3*512)*512 = 2,359,296  |
| POOL2 7x7x512            | 7*7*512=25K       | 0                          |
| FC 1×1×4096              | 4096              | 7*7*512*4096 = 102,760,448 |
| FC 1×1×4096              | 4096              | 4096*4096 = 16,777,216     |
| FC 1×1×1000              | 1000              | 4096*1000 = 4,096,000      |

most memory: in early \_\_\_\_\_

most parameters: in late

FC 1000 FC 4096 FC 4096 Pool Input

VGG16

- ILSVRC'14 ranking: 2nd in classification, 1st in localization
- details:
  - similar training procedure as AlexNet
  - no local response normalization (LRN)
  - use ensembles for best results
  - ► FC7 features \_\_\_\_ well to other tasks



## Outline

#### **CNN Architectures**

AlexNet

VGG

#### GoogLeNet

ResNet

Improving ResNet

Recent Architectures

Summary

# ImageNet challenge winners



# GoogLeNet

- Szegedy et al. (2014)
- key idea: deeper networks with computational efficiency
  - ▶ 22 layers
  - ▶ efficient " " module
  - minimal use of FC layers
  - only 5 million parameters! (12x less than AlexNet)
  - ▶ ILSVRC'14 classification winner (6.7% top 5 error)





(source: Warner Bros. Pictures, http://knowyourmeme.com/memes/we-need-to-go-deeper)

- inception module
  - design a good local network topology (\_\_\_\_\_\_ within a network)
  - then stack these modules



## Naïve inception module



- apply parallel filter operations on the input
  - ▶ multiple receptive field sizes (1x1, 3x3, 5x5) for convolution
  - ▶ pooling (3x3)
- concatenate all filter outputs together:

• problem with this idea:



- output size after filter concatenation: 529k
  - $28 \times 28 \times (128 + 192 + 96 + 256) = 28 \times 28 \times 672$
- total number of convolution operations: 854M

$$\underbrace{ \underbrace{28 \times 28 \times 128 \times 1 \times 1 \times 256}_{\uparrow} + \underbrace{28 \times 28 \times 192 \times 3 \times 3 \times 256}_{\uparrow} + \underbrace{28 \times 28 \times 96 \times 5 \times 5 \times 256}_{\uparrow} }_{\uparrow}$$

$$\underbrace{(1 \times 1 \text{ conv, } 128)}_{\uparrow} (3 \times 3 \text{ conv, } 192) (5 \times 5 \text{ conv, } 96)$$

⇒ very expensive to compute



- another challenge:
  - pooling layer preserves feature depth
  - $\Rightarrow$  total depth after concatenation  $\rightarrow$  can only grow at every layer
- solution
  - bottleneck" layers

    to reduce feature depth

## Inception module

#### comparison:

#### naïve inception module





inception module with

- ▶ 1x1 conv "bottleneck" layers
- ▶ the same setup as on page 25: 845M ops  $\rightarrow$  358M ops

## GoogLeNet

- stacked inception modules
  - with dimension reduction on top of each other





(source: Szegedy et al., 2014)

• full GoogLeNet architecture:



(source: Szegedy et al., 2014)

- (1) stem network: CONV-POOL-2xCONV-POOL
- (2) stacked modules
- (3) classifier output

• full GoogLeNet architecture:



(source: Szegedy et al., 2014)

- (4) auxiliary classification outputs: AvgPOOL-1x1CONV-FC-FC-SOFTMAX
  - ▶ to inject additional at lower layers
- total 22 layers with weights
  - ▶ parallel layers count as 1 layer ⇒ 2 layers per inception module
  - auxiliary output layers: not counted in

## Outline

#### **CNN Architectures**

**AlexNet** 

VGC

GoogLeNet

ResNet

Improving ResNet

Summary

# ImageNet challenge winners



### **ResNet**

- He et al. (2015)
- key idea: very deep nets using \_\_\_\_\_ connections
  - ▶ 152-layer model for ImageNet
  - ► ILSVRC'15 classification winner<sup>2</sup> (3.57% top 5 error)





 $<sup>^2</sup>$ swept all classification and detection competitions in ILSVRC'15 and COCO'15

- intuition:
  - if trained appropriately, deeper models should be able to perform
    - > at least as well as shallower models
- a solution by construction:
  - copy the learned layers from the shallower model
  - ► set additional layers to mapping

### Residual block

- use network layers to fit a \_\_\_\_\_\_ mapping:  $F(\mathbf{x}) = \overbrace{H(\mathbf{x}) \mathbf{x}}^{\text{"residual"}}$ 
  - lacktriangle instead of directly trying to fit a desired underlying mapping  $H(\mathbf{x})$

#### "plain" layers



#### residual block



#### two nice properties of residual block:

- 1. adds interpretation to L2 regularization<sup>3</sup> in conv net context
  - ▶ set all weights in RB to zero ⇒ it computes identity
  - ⇒ it is easy for the model to learn not to use the layers that it does not need
  - driving parameters towards zero
    - ▷ in standard conv nets: makes no sense
    - ▶ in ResNet: encourages the model not to learn the layers not needed
- 2. has nice gradient flow in backward pass
  - residual connections = gradient super highway
  - ⇒ much easier/faster training
- \* managing gradient flow
  - super important in ML: will be revisited many times

<sup>&</sup>lt;sup>3</sup>recall: L2 regularization drives all parameters to zero

#### Architecture

- stack residual blocks
- every residual block
  - ▶ has two 3x3 conv layers
- periodically
  - ▶ double # filters
  - downsample spatially (stride 2)
- at the beginning
  - additional conv layer
- no FC layers at the end
  - only FC1000 to output classes





(source: cs231n)



➤ 34, 50, 101, or 152 layers for ImageNet



- for deeper nets (50+ layers)
  - use "\_\_\_\_\_" layers to improve efficiency (similar to GoogLeNet)



- training details:
  - batch normalization after every CONV layer
  - **\rightarrow** Xavier initialization: initial weight  $\sim \mathcal{N}(0,1/n)$  where n=# neurons
  - ► SGD + momentum (0.9)
  - ▶ learning rate: 0.1 (divided by 10 when validation error plateaus)
  - ▶ mini-batch size: 256
  - ▶ weight decay: 10<sup>-5</sup>
  - no dropout used
- results
  - ▶ ILSVRC 2015 winner in all five main tracks (3.6% top 5 error)

better than "\_\_\_\_\_ performance" (Russakovsky, 2014)

# Comparison<sup>4</sup>





(source: Canziani et al., 2017)

- ▶ Inception-v4: ResNet + Inception
- VGG: highest memory, most operations
- : most efficient
- ► AlexNet: smaller compute, still memory heavy, lower accuracy
- moderate efficiency depending on model, highest accuracy

 $<sup>^4</sup>$ (in left figure) x-axis: amount of operations for a single forward pass; circle size  $\propto \#$  parameters

#### Outline

#### **CNN Architectures**

AlexNet

VGC

GoogLeNet

ResNet

Improving ResNet

Recent Architectures

Summary

## Improving ResNets

- ideas:
  - improved residual block
  - wide ResNet
  - ResNeXt
  - stochastic depth
  - multi-scale ensembling
  - feature recalibration (SENet)

## Identity mappings in deep residual networks (He et al., 2016)

- improved ResNet block design
  - creates a more direct path for propagating info throughout net
  - i.e. moves \_\_\_\_\_ to residual mapping pathway



(source: He et al.)

## Wide ResNet (Zagoruyko et al., 2016)

- the authors argue: residuals are the important factor, not depth
- user wider residual blocks
  - i.e.  $F \times k$  filters instead of F filters in each layer
    - ▶ 50-layer wide ResNet outperforms 152-layer original ResNet
- computational benefit
  - increasing width (instead of depth)
  - ⇒ more computationally efficient (



(source: cs231n)

## ResNeXt (Xie et al., 2016)

- aggregated residual transformations
  - ▶ increases width of residual block through multiple pathways ↑
    similar in spirit to inception module



## Stochastic depth (Huang et al., 2016)

- motivation:
  - reduce vanishing gradients and training time through short networks during training
- details:
  - randomly \_\_\_\_ a subset of layers during each training pass
  - bypass with identity function
  - use full deep network at test time



(source: cs231n)

# ImageNet challenge winners



## Multi-scale ensembling (Shao et al., 2016)

- ILSVRC'16 classification winner<sup>5</sup>
  - "Good Practices for Deep Feature Fusion"
- idea: multi-scale of
  - inception, inception-ResNet, ResNet, wide ResNet models



| method                        | error (%)    |
|-------------------------------|--------------|
| Resnet-200<br>Inception-v3    | 4.26<br>4.20 |
| Inception-v4                  | 4.01         |
| Inception-Resnet-v2           | 3.52         |
| Fusion (val)<br>Fusion (test) | 2.92<br>2.99 |

(source: Shao et al.)

<sup>&</sup>lt;sup>5</sup>the authors: The Third Research Institute of the Ministry of Public Security, China

## ImageNet challenge winners



# Squeeze-and-Excitation Networks (SENet) (Hu et al., 2017)

- ILSVRC'17 classification winner
  - base architecture: ResNeXt-152
  - introduces SE block (applicable to a variety of nets)
    - squeeze: global information embedding
    - excitation: adaptive recalibration
- main idea:
  - improve representational power of a network

by modeling interdependencies between \_\_\_\_\_ of conv features



(source: Hu et al.)



•  $\mathbf{F}_{tr}: \mathbf{X}^{H' \times W' \times C'} \mapsto \mathbf{U}^{H \times W \times C}$ 

(a conv operation)

- $\mathbf{F}_{sa}: \mathbf{U}^{H \times W \times C} \mapsto \mathbf{Z}^{1 \times 1 \times C}$ 
  - ightharpoonup global average pooling (each feature map ightharpoonup a scalar; depth maintained)
  - "global information embedding" (squeeze)
- $\mathbf{F}_{ex}: \mathbf{Z}^{1 \times 1 \times C} \mapsto \mathbf{S}^{1 \times 1 \times C}$ 
  - $\underbrace{\mathsf{FC} \to \mathsf{ReLU}}_{\mathsf{compress}} \to \underbrace{\mathsf{FC} \to \mathsf{Sigmoid}}_{\mathsf{decompress}}$
  - ▶ to calculate scale for each feature map
- $\mathbf{F}_{scale} = \mathbf{S}^{1 \times 1 \times C} \odot \mathbf{U}^{1 \times 1 \times C} = \widetilde{\mathbf{X}}$ 
  - reweight feature maps
  - "adaptive feature recalibration" (excitation)



# After 2017: no more ImageNet challenge (moved to Kaggle)



#### Outline

#### **CNN** Architectures

AlexNet

VG0

ogLeNet

ResNet

Improving ResNet

Recent Architectures

Summary

## Recent developments

- beyond ResNets:
  - ultra-deep neural networks without residuals (FractalNet)
  - densely connected CNNs (DenseNet)
- efficient networks:
  - Caffe2Go (Facebook), TensorRT (NVIDIA), Core ML (Apple)
  - SqueezeNet, MobileNet
- meta/automated learning:
  - neural architecture search (NAS) and efficient NAS (ENAS)
  - Cloud AutoML (Google)

### FractalNet (Larsson et al., 2017)

- ultra-deep neural networks without residuals
- argue:
  - key is transitioning effectively from shallow to deep
  - ⇒ residual representations are not necessary

(source: Hajimiri et al.)

- propose: \_\_\_\_\_ architecture
  - ▶ both shallow/deep paths to output
  - trained with dropping out subpaths
  - full network at test time



(source: Larsson et al.)

### DenseNet (Huang et al., 2017)

- densely connected convolutional networks
- idea: dense blocks
  - each layer is connected to
    layer in feedforward fashion
- benefits:
  - alleviates vanishing gradient
  - strengthens feature propagation
  - encourages feature reuse



(source: cs231n)

## SqueezeNet (landola et al., 2017)

- AlexNet-level accuracy with 50x fewer parameters and <0.5Mb model size</li>
- architecture:



- benefits: memory footprints
  - model size: 510x smaller than AlexNet.



## MobileNet (Howard et al., 2017)

- efficient CNNs for mobile vision applications
  - ▶ uses depthwise separable conv ⇒ more efficient (little accuracy loss)



(source: Google Al Blog)

- ullet previous work (e.g. SqueezeNet): focused on reducing # of parameters
  - ▶ more recent methods: reduce # of & actual measured latency
- related approaches
  - ➤ ShuffleNet (Zhang et al., 2017): group conv + channel shuffle ops
  - ▶ MobileNetV2 (Sandler et al., 2018): bottleneck + skip connection
  - MobileNetV3 (Howard et al., 2019): NAS based

# Neural architecture search (NAS) with RL (Zoph et al., 2016)

- a controller net (RNN)
  - ▶ learns to design a good architecture using REINFORCE (Williams, 1992)
  - ▶ a design ⇔ a reward ⇔ accuracy
- the controller net iterates:
  - 1. sample an arch from search space
  - 2. train the arch to get reward R
  - 3. compute gradient of sample probability and scale it by  ${\cal R}$
  - 4. update controller parameters
  - *i.e.* increase likelihood of good arch decrease likelihood of bad arch





• efficient NAS (ENAS; Pham et al., 2018): 1000x speedup

# Google Cloud AutoML



#### How AutoML Natural Language BETA works



(source: Google)

#### Outline

#### **CNN** Architectures

AlexNe

GoogLeNet

ResNet

Improving ResNet

Recent Architectures

#### Summary

## Summary

- famous four
  - AlexNet
  - VGG
  - GoogLeNet
  - ResNet
- beyond ResNet
  - FractalNet
  - DenseNet

- improving ResNet
  - wide ResNet
  - ResNeXt
  - stochastic depth
  - SENet
- other ideas
  - MobileNet
  - autoML

- remarks
  - reasonable defaults: ResNet and SENet
  - many popular architectures available in model zoos
  - recent trends: meta-learning and autoML