```
In [1]: # imports
   import tensorflow as tf
   import numpy as np
   import matplotlib.pyplot as plt
   %matplotlib inline
   # draw plots in notebook not new window
```

```
Extracting ./FASHION_DATA/train-images-idx3-ubyte.gz
Extracting ./FASHION_DATA/train-labels-idx1-ubyte.gz
Extracting ./FASHION_DATA/t10k-images-idx3-ubyte.gz
Extracting ./FASHION_DATA/t10k-labels-idx1-ubyte.gz
```

In [38]: print('shape of image is: ', mn.train.images[0].shape) # image
 is a long flat vector
 # plt.imshow(mn.train.images[23].reshape(28,28), cmap="Greys") # ref
 ormat long flat img vector in to 28x28 square img
 plt.imshow(mn.train.images[2].reshape(28,28), cmap="Greys") # reform
 at long flat img vector in to 28x28 square img

shape of image is: (784,)

Out[38]: <matplotlib.image.AxesImage at 0x11db6d6a0>


```
In [4]: # define generator/faker net with own var scope
        def gen(z, reuse=None, extra layer=0):
            input: takes random seed z
            outputs: a 784 pixel img vector
            with tf.variable_scope('gen', reuse=reuse):
                leaky relu const = 0.01 # using RELU (sparse activation) causes
         instability, use leaky relu
                hid1 = tf.layers.dense(inputs=z, units=128)
                hid1 = tf.maximum(leaky relu const*hid1, hid1)
                hid2 = tf.layers.dense(inputs=hid1, units=128)
                hid2 = tf.maximum(leaky_relu_const*hid2, hid2)
                if extra layer:
                    hid3 = tf.layers.dense(inputs=hid2, units=256)
                    hid3 = tf.maximum(leaky_relu_const*hid3, hid3)
                    outl = tf.layers.dense(hid3, units=784, activation=tf.nn.tan
        h)
                else:
                    outl = tf.layers.dense(hid2, units=784, activation=tf.nn.tan
        h)
                return outl
In [5]: # define descriminator/judge net with own var scope
        def judge(x, reuse=None, extra_layer=0):
            input: a 784 pixel img vector (either generated by the faker or a re
        al example from MNIST)
            output: tuple (Boolean (0 or 1) where 1 = image is real (MNIST) and
         not generated, prediction proability)
            with tf.variable scope('jud', reuse=reuse):
                hid1 = tf.layers.dense(inputs=x, units=128)
                leaky relu const = 0.01
                hid1 = tf.maximum(leaky relu const*hid1, hid1)
                hid2 = tf.layers.dense(inputs=hid1, units=128)
                hid2 = tf.maximum(leaky relu const*hid2, hid2)
                if extra layer:
                    hid3 = tf.layers.dense(inputs=hid2, units=256)
                    hid3 = tf.maximum(leaky relu const*hid3, hid3)
                    logits = tf.layers.dense(hid3, units=1)
                else:
                    logits = tf.layers.dense(hid2, units=1)
                outl = tf.sigmoid(logits)
                return outl, logits
```

```
In [6]: # define placeholders
    extra_layer=False # use 1 for fashion, 0 for MNIST
    real_img = tf.placeholder(tf.float32, shape=[None, 784])
z= tf.placeholder(tf.float32, shape=[None, 100]) # random seed for the
    faker
G = gen(z, extra_layer=extra_layer) # initate a faker
```

```
In [7]: JoutReal, JlogitsReal = judge(real_img, extra_layer=extra_layer)
          is a tensorFlow node, this version takes in real MNIST images
         JoutFake, JlogitsFake = judge(G, reuse=True, extra_layer=extra_layer) #
          this is a tensorFlow node, this version takes in faked images
 In [8]: # losses: how "off" was the model?
         def lossfunc (logitsin, yin):
             for each 0/1 prediction, calculate the error, and return the average
          for the batch
             return tf.reduce mean(tf.nn.sigmoid cross entropy with logits(logits
         =logitsin, labels=yin))
 In [9]: # define labels (either 0 or 1 because we know if the image is a fake or
          real MNIST data)
         JlossReal = lossfunc(JlogitsReal, tf.ones_like(JlogitsReal)*0.90)
         tf.ones like(JlogitsReal) *0.9 is applying a smoothing factor to real ima
         qes (lablel = 1)
         so the model genearlize better
         , , ,
         JlossFake = lossfunc(JlogitsFake, tf.zeros_like(JlogitsFake))
         Jloss = JlossReal + JlossFake # overall error for the judge-net
         overall error for the faker net, it doesn't care about loss on real MNIS
         T images
         is labeled 1 (a lil counter-intuitive maybe):
         - but since if the judge thinks the image is real, it'll output value
         - then the generator won, we want to label genenerator images with 1
         (other wise we would be punishing the generator for it's sucess)
         Gloss=lossfunc(JlogitsFake, tf.ones like(JlogitsFake))
In [10]: # define visualizer function
         skip = 5
         def visualize sample(imgarray, pos, greyscale=0):
             img = imgarray.reshape(28,28)
             fig = plt.figure()
             fig.suptitle("after {} epochs".format(pos), fontsize=14, fontweight=
             if greyscale == 1:
                 plt.imshow(img, cmap='Greys')
             else:
                 plt.imshow(img)
```

```
In [11]: # define pipeline parameters
         batchsz=100 # number of images processed before we make a update
         rounds = 256 # number of times we train over the whole data-set
         samples = [] # a array to store the random samples at each epoch
         lr = 0.001 # learning rate
         # define what to optimize
         allvars = tf.trainable_variables()
         jvars = [var for var in allvars if 'jud' in var.name]
         gvars = [var for var in allvars if 'gen' in var.name]
         jtrain = tf.train.AdamOptimizer(lr).minimize(Jloss, var_list=jvars) # tr
         ain judge only
         gtrain = tf.train.AdamOptimizer(lr).minimize(Gloss, var_list=gvars) # tr
         ain generator only
         init = tf.global_variables_initializer()
In [36]: with tf.Session() as sess:
             sess.run(init)
             for e in range(rounds):
                 nbatch = mn.train.num examples // batchsz
                 # train the network for 1 batch (there are # of Images/Bach size
          batches in each epoch)
                 for i in range(nbatch):
                     batch = mn.train.next batch(batchsz) # get the next batch of
          training data
                     batchimgs = batch[0].reshape((batchsz, 784))
                     batchimgs = batchimgs * 2 - 1 # adjust values for tanh activ
         ation, batch imgs are pre-normalized
                     batch z = np.random.uniform(-1,1,size=(batchsz,100)) # gener
         ate random seed batch for faker
                     sess.run(jtrain, feed_dict={real_img: batchimgs, z: batch_z
         }) # train one batch on judge
                     sess.run(gtrain, feed dict={z:batch z}) # train one batch on
          faker
                 print("on epoch {}".format(e))
                 samplez = np.random.uniform(-1,1,size=(1,100)) # make random se
         ed vector for sampling
                 fakeimg = sess.run(gen(z, reuse=True, extra layer=extra layer),
         feed dict={z: samplez}) # make fake images
                 samples.extend(fakeimg)
```

```
In [45]: for pos, imgs in enumerate(loaded_samples):
    if pos%skip ==0 or pos==250-1:
        visualize_sample(imgs, pos)
```

/Users/mengningshang/Desktop/Dev_Env/carAI/CarND-Alexnet-Feature-Extrac tion/wcd-ml-b2/lib/python3.6/site-packages/matplotlib/pyplot.py:524: Ru ntimeWarning: More than 20 figures have been opened. Figures created th rough the pyplot interface (`matplotlib.pyplot.figure`) are retained un til explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).

max_open_warning, RuntimeWarning)

after 0 epochs

after 5 epochs

after 10 epochs

after 15 epochs

after 20 epochs

after 25 epochs

after 30 epochs

after 35 epochs

after 40 epochs

after 45 epochs

after 50 epochs

after 55 epochs

after 60 epochs

after 65 epochs

after 70 epochs

after 75 epochs

after 80 epochs

after 85 epochs

after 90 epochs

after 95 epochs

after 100 epochs

after 105 epochs

after 110 epochs

after 115 epochs

after 120 epochs

after 125 epochs

after 130 epochs

after 135 epochs

after 140 epochs

after 145 epochs

after 150 epochs

after 155 epochs

after 160 epochs

after 165 epochs

after 170 epochs

after 175 epochs

after 180 epochs

after 185 epochs

after 190 epochs

after 195 epochs

after 200 epochs

after 205 epochs

after 210 epochs

after 215 epochs

after 220 epochs

after 225 epochs

after 230 epochs

after 235 epochs

after 240 epochs

after 245 epochs

after 249 epochs

after 250 epochs

after 255 epochs

In [15]: len(samples)

Out[15]: 256