Домашная работа по дискретной математике N28. Порядки

Лавренов Николай. Группа 161-2, ПМИ 6 ноября 2016 г.

№1

Дано: (A, \leq) , причем

- $\forall a \in A : a \leqslant a;$
- $\forall a, b, c \in A$: если $a \leqslant b$ и $b \leqslant c$, то $a \leqslant c$

Задается отношение (A, \sim) как $\forall x, y \in A : x \sim y \Leftrightarrow x \leqslant y$ и $y \leqslant x$. Докажем для него рефлексивность, симметричность и транзитивность.

Так как $\forall a \in A: a \leqslant a$, значит $\forall a \in A: a \leqslant a$ и $a \leqslant a \Leftrightarrow a \sim a$ - рефлексивность.

Также $\forall x,y \in A, x \sim y \Rightarrow x \leqslant y$ и $y \leqslant x \Rightarrow y \sim x$ - симметричность.

Заметим, что $\forall x,y,z\in A,x\sim y,y\sim z\Rightarrow x\leqslant y,y\leqslant x,y\leqslant z,z\leqslant y\Rightarrow$ (из транзитивности \leqslant) $x\leqslant z,z\leqslant x\Rightarrow x\sim y$ - транзитивность.

Таким образом (A, \sim) - отношение эквивалентности.

№2

В множестве из четырёх элементов может быть не более $\frac{3*4}{2}=6$ различных пар, причем все из них могут быть несравнимы. Ответ: 0,1,2,3,4,5 или 6.

№3

Для начала заметим, что подмножеств множества $\{1,2,3\}$ всего $2^3=8$. А различных делителей числа 42=2*3*7 тоже $2^3=8$. Построим биекцию между элементами множеств.

Очевидно, что любой x делитель числа 42, представим как $x=2^a*3^b*7^c$, где $a,b,c\in\{0,1\}$, причем каждой тройке a,b,c однозначно соответствует какой-то делитель. Построим по числам a,b,c такое множество $Y\subseteq\{1,2,3\}$, что $1\in Y\Leftrightarrow a=1,\,2\in Y\Leftrightarrow b=1$ и $3\in Y\Leftrightarrow c=1$. Понятно, что описанный способ построения задает биекцию между делителями числа 42 и подмножествами $\{1,2,3\}$.

Осталось показать, что при такой биекции порядки изоморфны. Пусть x,y:42|x,42|y,y|x. Это равносильно тому, что $x=2^{a_1}*3^{b_1}*7^{c_1}$ и $y=2^{a_2}*3^{b_2}*7^{c_2}$, причем $a_1\leqslant a_2,b_1\leqslant b_2,c_1\leqslant c_2$, где $a_1,a_2,b_1,b_2,c_1,c_2\in\{0,1\}$. Построим множества Y_1 и Y_2 по описанной выше процедуре. $a_1\leqslant a_2\Leftrightarrow Y_1\cap\{1\}\subseteq Y_2\cap\{1\}$. Аналогично для b и c. Равносильно получаем, что $Y_1\subseteq Y_2$. Значит данные частичные порядки изоморфны.

Ответ: изоморфны.

№4

Предположим, что линейные порядки $\mathbb{Z}+\mathbb{N}$ и $\mathbb{Z}+\mathbb{Z}$ изоморфны. Значит существует биекция $\varphi:\mathbb{Z}+\mathbb{N}\to\mathbb{Z}+\mathbb{Z}$.

Для удобства обозначим различные множества чисел как A, B, C, D, чтобы перейти к линейным порядкам A+B и $C+D(A=\mathbb{Z}, B=\mathbb{N}', C=\mathbb{Z}, D=\mathbb{Z}').$

Возьмем $a=0\in A$. Пусть $c=\varphi(a)\in C+D$. Также выберем $b=0\in B$. Обозначим $d=\varphi(b)\in C+D$. Из изоморфности и a< b следует c< d. Отрезок [a;b] (в A+B) содержит бесконечное число элементов, значит (поскольку изоморфизм порядков порождает изоморфизм отрезков) отрезок [c;d] (в C+D) также содержит бесконечное число элементов. Это возмножно, только если $c\in C$ и $d\in D$ (ведь c< d).

Поскольку $d \in D = \mathbb{Z}'$, $\exists k = d - 1 \in D$. Посмотрим на образ $p = \varphi^{-1}(k)$ в A + B, причем $k < d \Rightarrow p < b$. Поскольку $\varphi^{-1}(d) = b$, причем b - минимум в множестве B, значит $p \in A$.

Посмотрим на отрезки [a;p] и $[\varphi(a);\varphi(p)]$. Так как $a,b\in A$, отрезок [a;p] содердит конечное число элементов. Однако $\varphi(a)=c\in C$ и $\varphi(p)=k\in D\Rightarrow$ отрезок $[\varphi(a);\varphi(p)]$ содержит бесконечное число элементов. Получаем противоречие, так как изоморфизм порядков не порождает изоморфизм отрезков. Значит предположение неверно, порядки $\mathbb{Z}+\mathbb{N}$ и $\mathbb{Z}+\mathbb{Z}$ неизоморфны.

№5

Предположим, что линейные порядки $\mathbb{N} \times \mathbb{Z} = A$ и $\mathbb{Z} \times \mathbb{Z} = B$ изоморфны. Значит существует биекция $\varphi : A \to B$, задающая изоморфизм $(\forall x, y, \in A : x \leqslant y \Leftrightarrow \varphi(x) \leqslant \varphi(y))$.

Пусть $a=(0;0)\in A$. Пусть $b=\varphi(a)\in B$ и b задается как $b=(p;q); p,q\in\mathbb{Z}$ Возьмем элемент $r\in B$, который задается парой (p-1,q),r< b. Тогда отрезок в B [r;b]. Очевидно, что он содержит бесконечное число элементов. Рассмотрим изоморфный ему отрезок $(c=\varphi^{-1}(r)\in A,c< a\Rightarrow c=(0;k),k<0)$ [c;a]. Он содержит 1-k элементов, в частности конечное число элементов. Но значит эти отрезки не изоморфны. Значит наше предположение неверно и порядки A и B не изоморфны.

Ответ: линейные порядки $\mathbb{N} \times \mathbb{Z}$ и $\mathbb{Z} \times \mathbb{Z}$ не изоморфны.

№6

В этой задаче под обозначением интервала (a;b) я буду подразумевать только рациональные числа этого интервала, то есть $(a;b) \cap \mathbb{Q}$. Также под порядком на таком интервале я буду иметь в виду порядок, индуцируемый \mathbb{Q} на этот интервал.

Заметим, что частичный порядок на любом интервале рациональных чисел изоморфен частичному порядку на интервале вида $(k\sqrt{2};(k+1)\sqrt{2})$, где $k\in N$. Докажем это для интервала (0;1), для других это будет следовать из транзитивности изоморфности и того, что все интервалы в \mathbb{Q} изоморфны.

Построим биекцию $\varphi:(0;1)\to (k\sqrt{2};(k+1)\sqrt{2})$, задающую изоморфизм. Возьмем опорное число $p\in (k\sqrt{2};(k+1)\sqrt{2})$. В частности $p\in \mathbb{Q}$. Пусть $\varphi(\frac{1}{2})=p$. Возьмем последовательность $a_n=\frac{1}{n+2},\lim_{n\to\infty}a_n=0,\,a_i>a_{i+1}$ и последовательность b_n , такую, что $b_n\in (k\sqrt{2};p),\lim_{n\to\infty}b_n=k\sqrt{2}$. и $b_i>b_{i+1}$ (например можно взять последовательность уточняющих десятичных записей числа $k\sqrt{2}$ "сверху").

Для начала возьмем полуинтервалы $[a_1; \frac{1}{2})$ и $[b_1; p)$. Доопределим $\varphi()$, используя их изоморфность. Далее будем поступать итеративно, на i-ом шаге: доопределим $\varphi()$, используя изоморфность полуинтервалов $[a_{i+1}; a_i)$ и $[b_{i+1}; b_i)$. Важно, что все полуинтервалы берутся в правильном порядке, т. е. принадлежность разным интервалам однозначно определяет поряок на этих элементах (любой элемент из каждого следующего полуинтервала меньше предыдущих).

Таким образом мы определили изоморфность $(0; \frac{1}{2}]$ и $(k\sqrt{2}; p]$. Аналогичным образом определяем изоморфность $(\frac{1}{2}; 1)$ и (p; (k+1)sqrt2). Значит интервал (0; 1) изоморфен $(k\sqrt{2}; (k+1)\sqrt{2})$.

Из этого следует, что порядок на $\mathbb Q$ изоморфен порядку на $(k\sqrt{2};(k+1)\sqrt{2}),k\in N.$

Теперь покажем, что $\mathbb{N} \times \mathbb{Q}$ изоморфен \mathbb{Q} . $\mathbb{N} \times \mathbb{Q}$ изоморфен бесконечному объединению счетного количества \mathbb{Q} . Пронумеруем их натуральными числами. Заметим, что i-ый из них изоморфен $(i\sqrt{2};(i+1)\sqrt{2})$. Если взять объединение таких интервалов, то мы получим интервал (по-прежнему рациональных чисел) $(0;+\infty)$. Понятно, что он изоморфен \mathbb{Q} . По транзитивности получаем изоморфность $\mathbb{N} \times \mathbb{Q}$ и \mathbb{Q} . Что и требовалось доказать.

Ответ: изоморфны

N_{2}

Обозначим (S,<) - лексикографический порядок на множестве бесконечных невозрастающий последовательностей натуральных чисел. Заметим, что порядок линейный (действительно, всегда можно сравнить две последовательности). И у данного порядка существует минимальный элемент - последовательность вида $0,0,0,\ldots$

Докажем, что любая убывающая цепь конечна.

Докажем по индукции, что убывающая цепь из последовательностей, чисела которых, не превосходят n конечна. Заметим, что для того, чтобы все элементы цепи состояли из последовательностей, элементы которых не превосходят n достаточно, чтобы такая цепь начиналась с последовательности, первый элемент которой не превосходит n. Действительно, любой другой элемент этой последовательности не превосходит первый элемент и, следовательно, n. В то же время первые элементы остальных последовательстей не превоходят n, поскольку все эти последовательности меньше. Аналогично элементы всех таких последовательностей не могут быть больше n.

База: заметим, что если цепь начинается на $1,1,1,\ldots,1,\ldots$, то любой меньший элемент выглядит как

$$\underbrace{1,1,\ldots,1}_{p},0,0,\ldots$$

Уменьшать p можно конечное число раз, значит такая цепь будет конечна.

Шаг: предположим, что все убывающие цепи из чисел, не превосходящих k-1 конечны. Тогда рассмотрим бесконечные цепи, состоящие из чисел, не превосходящих k.

Пусть у нас есть последовательность вида

$$\underbrace{k, k, \dots, k}_{p \in \mathbb{N}}, a_1, a_2, \dots, a_n, \dots; a_n \in [0; k-1]$$

 $p \in N$ показывает, что число одинаковых k в начале последовательности счетно. Если последовательность выглядела как k, k, \ldots , то любая меньшая последовательность либо состоит из чисел меньше k, либо выглядит как представленная выше.

Заметим, что число p чисел в начале последовательности равных k уменьшится через конечное число элементов цепи. Чтобы доказать это предположим обратное. Но по предположению индукции количество убывающих цепей, начинающихся с $a_1, a_2, \ldots, a_n \ldots$ конечно. Значит через конечное количество элементов есть элемент цепи вида $0, 0, \ldots, 0$. Любой меньший элемент имеет меньшее p. Значит предположение неверно. Получаем, что через счетное количество итераций число p уменьшится. Поскольку уменьшаться натуральное число не может бесконечное число раз, то через счетное число итераций число чисел в начале, равных k станет равным 0, то есть все числа станут меньше k. Но по предположению индукции убывающая цепь, начинающаяся с этого элемента конечна.

Таким образом любая убывающая цепь S конечна. Значит порядок на S фундированный.

Ответ: фундированное.

№8

Докажем с помощью индукции по k, что любая антицепь в множестве \mathbb{N}^k с отношением координатного (\mathbb{N}^k,\leqslant) порядка конечна.

База индукции: если k=1, то отношение линейно, что означает, что антицепь состояит не более, чем из одного элемента. Значит любая антицепь конечна.

Шаг индукции: будем считать, что любое множество антицепей в порядке $(\mathbb{N}^{k-1}, \leqslant)$ конечно. Если множество антицепей пустое, то утверждение доказано. В противном случае можно выбрать

какой-нибудь опорный элемент вида (a_1, a_2, \ldots, a_k) . Выберем из всех антицепей такие, что на первом месте у них число, меньшее a_1 (то есть все цепи вида $b_1, b_2, \ldots, b_k; b_1 < a_1; \exists i \in [2; k] : b_i > a_i$, иначе это не элемент аницепи).

Заметим, что для $\forall p < a_1$ подмножество антицепей вида $p, c_1, c_2, \ldots, c_{k-1}$ конечно по предположению индукции: цепи вида $p, c_1, c_2, \ldots, c_{k-1}$ несравнимы тогда и только тогда, когда несравнимы цепи вида $c_1, c_2, \ldots, c_{k-1}$, а значит их мощность не может превышать мощность множества антицепей в порядке $(\mathbb{N}^{k-1}, \leqslant)$, а оно конечно.

Поскольку различных $p < a_1$ конечное количество, то подмножество антицепей с первым элементов, не превосходящим a_1 конечно. Повторяя данные рассуждения для всех a_2, a_3, \ldots, a_k получаем, что мы рассмотрели каждую антицепь хотя бы раз (Нерассмотренные элементы не могут входить в антицепь, так как они сравнимы с опорным элементов, ведь каждый элемент не меньше соответствуещего опорного). Значит множество всех антицепей в (\mathbb{R}^k , \leqslant) - объединение конечного числа конечных множеств антицепей. Что и требовалось доказать.

Значит, по индукции, утверждение верно для любого $k \in \mathbb{N}$.

Ответ: нет.