CERN practical days - RF 09:00

Ruben Heine Marvin Noll

14.03.2022

Outline

- Forenoon Session
 - Band Pass Filter
 - Strip-Line BPM
 - RF Cavaties
- 2 Afternoon Session
 - Useless Repetition
 - Coupling of an RF Cavity
- 3 Resume

Band Pass Filter (1) - Transmission S_{12} , S_{21}

 $BW = 2.015 \,\text{GHz}, \quad f = 2.66 \,\text{GHz} \dots 4.67 \,\text{GHz}$ $S_{21} \approx S_{12} \Rightarrow \text{Reciprocal}$

Band Pass Filter (2) - Input/Output Reflection S_{11} , S_{22}

 $S_{11} \neq S_{22} \Rightarrow \text{Non symmetric}$

Band Pass Filter (3) - Phase $\angle S_{12}$

$$t_g = -\frac{\mathrm{d}}{\mathrm{d}\omega} \angle S_{12} \approx -\frac{\Delta \angle S_{12} \; [\mathrm{rad}]}{\Delta\omega} = \frac{2.297 \, \mathrm{rad}}{1.002 \, \mathrm{GHz}} = zuwenig$$

eine, Noll Practical Days - RF March 13, 2022

Band Pass Filter (3) - Group Delay t_g

From group delay plot: $t_q = 608.87 \,\mathrm{ps}$

Strip-Line BPM (1) - Intro

Reflectometry for $500~\mathrm{MHz}$ and $50~\mathrm{Ohm}$

- a Connector
- b Strip line
 - ▶ Four 14cm strips
 - ▶ Short-circuit termination

Strip-Line BPM (2) - Time Domain Reflectometry

- Measuring S11 in time domain to check acceptance criteria
 - a Connector: +0.5b Strip line: -/+0.2
- Repeat for all strip lines

Strip-Line BPM (3) - Frequency Domain Characterization

- Strip-line length from S11
- Comparision with group delay
- Cross-talk from S21
 - ▶ Minimum at Hz

RF - cavaties (1) - Intro

- Multi cell cavity in X-band
- Operating mode at 11.424 GHz
- Under coupled antenna

RF - cavaties (2) - Transmission measurement

- Identify different modes
- \bullet Calculated Q from the 3dB bandwidth
- Cross-talk from S21
 - ▶ Minimum at Hz

Useless Repetition (Manfred Wendt)

- Stuff
- More Stuff

RF Cavity, Coupling, Smith Chart (Fritz Caspers)

- Two Antennas in cavaty
 - ▶ Longitudinal field antenna
 - ► Coupling loop
- Under-, over- and critical coupling

(a) Under Coupled

(b) Critically Coupled

(c) Over Coupled

Resume

- Last session with Michele
- We learned, that...
- Whatever ...