Complex Variable, Laplace & Z- transformation

Lecture 05

Inverse Laplace Transform using partial fraction and inverse of Unit Step function

This Lecture Covers-

- 1. Inverse Laplace transformation using partial fraction with type unrepeated, repeated and complex or irrational factors.
- 2. Inverse Laplace transformation associated with unit step function.

Inverse Laplace Transformation Using Partial Fraction

Example on type Unrepeated Factors

Example: 01

$$\mathcal{L}^{-1} \left\{ \frac{1}{s^2 - 5s + 6} \right\}$$
$$= \mathcal{L}^{-1} \left\{ \frac{1}{(s - 3)(s - 2)} \right\}$$

Let,
$$\frac{1}{(s-3)(s-2)} \equiv \frac{A}{s-3} + \frac{B}{s-2}$$

$$\Rightarrow 1 = A(s-2) + B(s-3)$$

If
$$s = 2$$
, $B = -1$ and if $s = 3$, $A = 1$

Now

$$= \mathcal{L}^{-1} \left\{ \frac{1}{(s-3)(s-2)} \right\}$$

$$= \mathcal{L}^{-1} \left\{ \frac{1}{(s-3)} - \frac{1}{(s-2)} \right\}$$

$$= e^{3t} - e^{2t}.$$

To Practice-

1.
$$F(s) = \frac{s+1}{s(s-2)(s+3)}$$
,

2.
$$F(s) = \frac{6}{(s+2)(s-4)}$$
,

3.
$$F(s) = \frac{6s-17}{s^2-5s+6}$$
.

Inverse Laplace Transformation Using Partial Fraction

Example on type Repeated Factors

Example: 01

$$\mathcal{L}^{-1} \left\{ \frac{4s+5}{(s-1)^2(s+2)} \right\}$$
Let,
$$\frac{4s+5}{(s-1)^2(s+2)} \equiv \frac{A}{s-1} + \frac{B}{(s-1)^2} + \frac{C}{s+2}$$

$$4s + 5 \equiv A(s - 1)(s + 2) + B(s + 2) + c(s - 1)^2$$

Equating coefficients of s^2 ,

$$A + C = 0$$
,

Equating coefficients of *s*,

$$A + B - 2C = 4$$

Equating constant term only,

$$-2A + 2B + C = 5$$

Solving the equations, we get

$$A = \frac{1}{3}$$
, $B = 3$ and $C = -\frac{1}{3}$.

Now,

$$\mathcal{L}^{-1} \left\{ \frac{4s+5}{(s-1)^2(s+2)} \right\}$$

$$= \mathcal{L}^{-1} \left\{ \frac{1/3}{s-1} + \frac{3}{(s-1)^2} - \frac{1/3}{s+2} \right\}$$

$$= \frac{1}{3} \mathcal{L}^{-1} \left\{ \frac{1}{s-1} \right\} + 3\mathcal{L}^{-1} \left\{ \frac{1}{(s-1)^2} \right\} - \frac{1}{3} \mathcal{L}^{-1} \left\{ \frac{1}{s+2} \right\}$$

$$= \frac{1}{3} e^t + 3e^t \mathcal{L}^{-1} \left\{ \frac{1}{s^2} \right\} - \frac{1}{3} e^{-2t}$$

$$= \frac{1}{3}e^t + 3t e^t - \frac{1}{3}e^{-2t}.$$

To Practice-

1.
$$F(s) = \frac{s}{(s+1)^2}$$
,

$$2. F(s) = \frac{7 s^2 + 14 s - 9}{(s - 1)^2 (s - 2)}.$$

Inverse Laplace Transformation Using Partial Fraction

Example on type of irreducible Factors

Example: 01

$$\mathcal{L}^{-1}\left\{\frac{3s^2 + 13s + 26}{s(s^2 + 4s + 13)}\right\}$$

Let,
$$\frac{3s^2+13s+26}{s(s^2+4s+13)} \equiv \frac{A}{s} + \frac{Bs+C}{s^2+4s+13}$$

$$3s^2 + 13s + 26$$

= $A(s^2 + 4s + 13) + (Bs + C)s$

Equating coefficients of s^2 ,

$$A + B = 3$$
,

Equating coefficients of s

$$4A + C = 13$$

Equating constant term,

$$13A = 26$$

Solving the equations, we get

$$A = 2$$
, $B = 1$ and $C = 5$.

Now,

$$\mathcal{L}^{-1} \left\{ \frac{3s^2 + 13s + 26}{s(s^2 + 4s + 13)} \right\}$$

$$= \mathcal{L}^{-1} \left\{ \frac{2}{s} + \frac{s + 5}{(s + 2)^2 + 3^2} \right\}$$

$$= \mathcal{L}^{-1} \left\{ \frac{2}{s} + \frac{s + 2}{(s + 2)^2 + 3^2} + \frac{3}{(s + 2)^2 + 3^2} \right\}$$

$$= 2 + e^{-2t} \mathcal{L}^{-1} \left\{ \frac{s}{s^2 + 3^2} \right\} + e^{-2t} \mathcal{L}^{-1} \left\{ \frac{3}{s^2 + 3^2} \right\}$$

$$= 2 + e^{-2t} \cos 3t + e^{-2t} \sin 3t$$

To Practice-

1.
$$F(s) = \frac{20}{(s^2+4s+1)(s+1)}$$
,

$$2.F(s) = \frac{s}{(s^2+4)(s-1)}.$$

Formula

•
$$\mathcal{L}^{-1}\left\{\frac{e^{-as}}{s}\right\} = u(t-a),$$

•
$$\mathcal{L}^{-1}\{e^{-as}F(s)\} = f(t-a)u(t-a).$$

Example 1:

Find and sketch f(t),

where
$$f(t) = \mathcal{L}^{-1}\left\{\frac{e^{-3s}}{s}\right\}$$
.

Solution: we know that

•
$$\mathcal{L}^{-1}\{e^{-as}F(s)\} = f(t-a)u(t-a)$$
. $\mathcal{L}^{-1}\left\{\frac{e^{-as}}{s}\right\} = u(t-a) = u_a(t)$

So,

$$f(t) = \mathcal{L}^{-1} \left\{ \frac{e^{-3s}}{s} \right\}$$

$$= u(t-3) = u_3(t) = \begin{cases} 0, & t < 3 \\ 1, & t > 3 \end{cases}$$

Example 2:

Find and sketch f(t), where $f(t) = \mathcal{L}^{-1}\left\{\frac{e^{-s}}{s^2}\right\}$.

Solution:

Let
$$F(s) = \frac{1}{s^2}$$
 and $\mathcal{L}^{-1}\left\{\frac{1}{s^2}\right\} = t = f(t)$.

We know that,

$$\mathcal{L}^{-1}\{e^{-as}F(s)\}=f(t-a)u_a(t)$$

So,
$$\mathcal{L}^{-1}\left\{\frac{e^{-s}}{s^2}\right\} = f(t-1)u_1(t) = (t-1)u_1(t)$$
$$= \begin{cases} 0, & t < 1\\ t-1, & t > 1 \end{cases}$$

Example 3:

Find and sketch f(t), where $f(t) = \mathcal{L}^{-1} \left\{ \frac{e^{-\pi s}}{s^2 + 1} \right\}$.

Solution:

Let
$$F(s) = \frac{1}{s^2 + 1}$$
 and $\mathcal{L}^{-1}\left\{\frac{1}{s^2 + 1}\right\} = \sin t = f(t)$.

We know that,

$$\mathcal{L}^{-1}\{e^{-as}F(s)\} = f(t-a)u_a(t)$$

So,
$$\mathcal{L}^{-1}\left\{\frac{e^{-\pi s}}{s^2+1}\right\} = f(t-\pi)u_{\pi}(t)$$

= $\sin(t-\pi)u_{\pi}(t)$

$$= \begin{cases} 0, & t < \pi \\ -\sin(\pi - t), & t > \pi \end{cases}$$

$$= \begin{cases} 0, & t < \pi \\ -\sin t, & t > \pi \end{cases}$$

To Practice

1.
$$F(s) = 3\left(\frac{e^{-5s}}{s}\right)$$

$$2. F(s) = 4\left(\frac{e^{-3s}}{s^2}\right)$$

$$3. F(s) = \frac{se^{-\pi s}}{s^2 + 25}$$

4.
$$F(s) = \frac{2(e^{-3s} - 3e^{-4s})}{s}$$

5.
$$F(s) = \frac{5(e^{-\pi s} + e^{-2\pi s})}{s^2 + 25}$$

Learning Outcomes

After completing this lecture you will know how to evaluate inverse Laplace transformation using partial fraction and also inverse Laplace transformation associated with unit step function.

Sample MCQ

1.
$$\mathcal{L}^{-1}\left\{\frac{6}{(s+2)(s-4)}\right\} = ?$$

(a)
$$e^t - e^{-2t}$$

(b)
$$e^{4t} - e^{-2t}$$

(c)
$$e^{4t} - e^{2t}$$

(d)
$$e^{3t} - e^{-2t}$$

2.
$$\mathcal{L}^{-1}\left\{\frac{s}{(s+1)^2}\right\} = ?$$

(a)
$$e^{-t} - t e^{-t}$$
 (b) $e^{t} - t e^{-t}$

(b)
$$e^{t} - t e^{-t}$$

(c)
$$e^{-t} - e^{-t}$$

(d)
$$e^{-t} - t e^{t}$$

3.
$$\mathcal{L}^{-1}\left\{\frac{s}{(s^2+4)(s-1)}\right\} = ?$$

(a)
$$\frac{2}{5}\sin 2t - \frac{1}{5}\cos 2t + \frac{1}{5}e^t$$

(c)
$$\sin 2t - \frac{1}{5}\cos 2t + \frac{1}{5}e^t$$

(b)
$$\frac{2}{3}\sin 2t - \frac{1}{5}\cos 2t + \frac{1}{5}e^t$$

(d)
$$\frac{2}{5}\sin 2t + \frac{1}{5}\cos 2t + \frac{1}{5}e^t$$