Introduction to Superconductivity

Wentao Jiang

Contents

1	His	torical overview	1
	1.1	The Basic Phenomena	1
	1.2	The London Equations	1
	1.3	The Pippard Nonlocal Electrodynamics	1
	1.4	The Energy Gap and the BCS Theory \dots	1
	1.5	The Ginzburg-Landau Theory	1
	1.6	Type II Superconductors	2
	1.7	Josephson Tunneling and Flux Quantization $. $	2
	1.8	Fluctuation and Nonequilibrium Effects	2
	1.9	High-temperature Superconductivity	2

2 Introduction to Electrodynamics of Superconductivity

Historical overview

The Basic Phenomena

- perfect conductivity
- perfect diamagnetism, $H_c(T) \approx H_c(0) \left[1 (T/T_c)^2\right]$

The London Equations 1.2

$$\boldsymbol{E} = \frac{\partial}{\partial t} (\Lambda \boldsymbol{J}_S) \tag{1.1}$$

$$\boldsymbol{h} = -c\nabla \times (\Lambda \boldsymbol{J}_S) \tag{1.2}$$

$$\Lambda = \frac{4\pi\lambda^2}{c^2} = \frac{m}{n_S e^2} \tag{1.3}$$

h: microscopic flux density

 \boldsymbol{B} : macroscopic average value

 n_S : number density of superconducting electrons

Combining Maxwell equation $\nabla \times \mathbf{h} = 4\pi \mathbf{J}/c$ leads to $\nabla^2 \mathbf{h} = h/\lambda^2$, predicting penetration depth λ . Emprically:

$$\lambda(T) \approx \lambda(0) \left[1 - \left(T/T_c \right)^4 \right]^{-1/2} \tag{1.4}$$

Consider a perfect normal conductor in a uniform Efield, $d(m\mathbf{v})/dt = e\mathbf{E}, \mathbf{J} = ne\mathbf{v}$. But it's not rigorous for spacially nonuniform fields within λ , for which the LEs are most useful. It's because the response of an electron gas to \boldsymbol{E} field is nonlocal.

A more profound motivation for LEs is a quantum one by considering p = (mv + eA/c) to have zero expectancy

for ground state, i.e.,

$$\langle v_S \rangle = \frac{-eA}{mc} \tag{1.5}$$

$$\langle \mathbf{v}_S \rangle = \frac{-e\mathbf{A}}{mc}$$

$$\mathbf{J}_S = n_S e \langle \mathbf{v}_S \rangle = \frac{-\mathbf{A}}{\Lambda c}$$
(1.5)

which contains the two LEs in a compact form (it's not gauge-invariant, London gauge $\nabla \cdot \mathbf{A} = 0$ is required).

The Pippard Nonlocal Electrody-1.3 namics

Introduce the coherence length ξ to propose a nonlocal generalization of the LEs, in analogy to Chamber's nonlocal generalization of Ohm's law:

$$\boldsymbol{J}(\boldsymbol{r}) = \frac{3\sigma}{4\pi l} \int \frac{\boldsymbol{R}[\boldsymbol{R} \cdot \boldsymbol{E}(\boldsymbol{r}')]e^{-R/l}}{R^4} d\boldsymbol{r}'$$

From uncertainty principle, for electrons play a major role in superconductive phenomenon, $E \sim kT_c, \Delta p \approx$ kT_c/v_F , thus

$$\xi_0 = a \frac{\hbar v_F}{kT_c} \tag{1.7}$$

hence

2

$$J_S(\mathbf{r}) = -\frac{3}{4\pi\xi_0 \Lambda c} \int \frac{\mathbf{R}[\mathbf{R} \cdot \mathbf{A}(\mathbf{r}')]e^{-R/\xi}}{R^4} d\mathbf{r}'$$
(1.8)

instead of $J_S = n_S e \langle v_S \rangle = \frac{-A}{\Lambda c}$, where $1/\xi = 1/\xi_0 + 1/l$.

The Energy Gap and the BCS Theory

Experimental hints:

Electronic specific heat: $C_{es} \approx \gamma T_c a e^{-bT_c/T}$, while normal state $C_{en} = \gamma T$

Spectroscopic measurement gives minimum energy E_q to create excitations, while thermal one measures $E_q/2$ per statistically independent particle, suggesting pair production.

Key prediction of BCS: $E_g(0) = 2\Delta(0) = 3.528kT_c$ for $T \ll T_c$.

The Ginzburg-Landau Theory

7 years before BCS, they introduce a complex pseudowavefunction as an order parameter within Landau's general theory of 2nd order phase transitions. Eqt for ψ are obtained from a variational principle and expansion of the free energy in powers of ψ and $\nabla \psi$ with coefficients α and β :

$$n_S = |\psi(x)|^2 \tag{1.9}$$

$$\frac{1}{2m^*} \left(\frac{\hbar}{i} \nabla - \frac{e^*}{c} A\right)^2 \psi + \beta |\psi|^2 \psi = -\alpha(T)\psi \qquad (1.10)$$

$$\mathbf{J}_{S} = \frac{e^{*}\hbar}{i2m^{*}} (\psi^{*}\nabla\psi - \psi\nabla\psi^{*}) - \frac{e^{*2}}{m^{*}c} |\psi|^{2} \mathbf{A}$$
 (1.11)

GL coherence length: $\xi(T) = \frac{\hbar}{|2m^*\alpha(T)|^{1/2}}$

GL parameter: $\kappa = \frac{\lambda}{\varepsilon}$

1.6 Type II Superconductors

 $\xi < \lambda$ leads to a negative surface energy, so that subdivision proceeds until limited by the microscopic length ξ .

Another result: mixed state, or Schubnikov phase. Between H_{c1} and H_{c2} , the flux penetrates in a regular array of flux tubes carrying flux of

$$\Phi_0 = \frac{hc}{2e} = 2.07 \times 10^{-7} G/cm^2 \tag{1.12}$$

1.7 Josephson Tunneling and Flux Quantization

Phase and particle number are conjugate variables:

$$\Delta N \Delta \phi \gtrsim 1$$
 (1.13)

Josephson predicted pairs should be able to tunnel between two superconductor even at zero voltage difference:

$$J = J_c \sin(\phi_1 - \phi_2) \tag{1.14}$$

and with a voltage difference V_{12} , the phase difference $\phi = 2eV_{12}t/\hbar$ so that the current would oscillate.

Single-valuedness of $\psi=|\psi|e^{i\phi}$ requires that the fluxoid introduced by F. London:

$$\Phi' = \Phi + \frac{m^*c}{e^*} \oint \frac{J_S \cdot ds}{|\psi|^2}$$
 (1.15)

to take only integral multiples of $\Phi_0 = hc/2e$, where $\Phi = \oint \mathbf{A} \cdot d\mathbf{s}$ is the ordinary magnetic flux. For ring with thickness comparable to λ , $J_S = 0$ on the integration path, $\Phi = \Phi' = n\Phi_0$.

- 1.8 Fluctuation and Nonequilibrium Effects
- 1.9 High-temperature Superconductivity
- 2 Introduction to Electrodynamics of Superconductivity