

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11)

EP 0 290 388 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent:10.12.1997 Bulletin 1997/50
- (51) Int CI.9: **C08K 5/34**, C08K 3/22, C08L 23/02
- (21) Application number: 88810267.0
- (22) Date of filing: 26.04.1988
- (54) Polyethylene stabilizer compositions comprising compounds with piperidine groups and metal compounds

Polyäthylen-Stabilisatorzusammensetzungen aus Verbindungen mit Piperidingruppen und Metallverbindungen

Compositions stabilisantes de polyéthylène à base de composés avec des groupements de pipéridine et composés de métal

- (84) Designated Contracting States: **DE FR GB IT**
- (30) Priority: 05.05.1987 IT 2037587
- (43) Date of publication of application: 09.11.1988 Bulletin 1988/45
- (73) Proprietors:
 - Ciba Specialty Chemicals Holding Inc. 4057 Basel (CH)
 Designated Contracting States:
 DE FR GB
 - Ciba Speciality Chemicals S.p.A. 40037 Sasso Marconi (BO) (IT) Designated Contracting States: IT

- (72) Inventor: Masina, Franca Anzola Emilia (Bologna) (IT)
- (56) References cited: GB-A- 2 132 621
 - PATENT ABSTRACTS OF JAPAN, vol. 11, no. 124 (C-416)[2571], 17th April 1987; & JP-A-61 261 332 (SUMITOMO NAUGATUCK CO., LTD) 19-11-1986

P 0 290 388 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

The present invention relates to a novel method for stabilizing polyethylene against photooxidative degradation by using mixtures of 2,2,6,6-tetramethylpiperidine derivatives and particular metal compounds.

Polyethylene is here to be understood as meaning linear or branched polymers of ethylene of low, medium and high density, their mixtures in any proportions and also ethylene copolymers with aliphatic C_3 - C_{12} - α -olefines containing up to 20% of di- α -olefine.

Of particular interest are branched low-density polyethylene, generally known as LDPE, and linear low-density polyethylene, generally designated as LLDPE, and their mixtures in any proportion.

It is known that polyethylene undergoes a progressive decrease in mechanical strength up to embrittlement when it is exposed to sunlight, as a result of photooxidative degradation caused by ultraviolet radiation.

To overcome this drawback it is necessary to add to the polymer suitable light stabilizers, for example certain derivatives of benzophenone and benzotriazole, nickel complexes, esters of substituted benzoic acids or sterically hindered amines.

Certain 2,2,6,6-tetramethylpiperidine derivatives of relatively high molecular weight have recently shown remarkable efficacy; nevertheless, the results obtained with these compounds have not been completely satisfactory, so that a further improvement was desirable.

It has now been found surprisingly that, when particular mixtures of one or more 2,2,6,6-tetramethylpiperidine derivatives with one or more metal compounds are used, light stability values are obtained which are significantly higher than those given by the use of piperidine compounds alone.

In particular, the present invention relates to a novel method for stabilizing polyethylene, which comprises the use of synergistic mixtures composed of

(A) one or more compounds with groups of the formula (I) or (Ia)

25

30

35

40

45

50

55

10

15

20

$$H_3$$
C CH_3 H_3 C CH_3 CH_2 CH_3 CH_3 CH_3 CH_3

in which R is hydrogen, C₁-C₄-alkyl, allyl, benzyl, acetyl, acryloyl, 2-hydroxyethyl or 2-hydroxypropyl, said piperidine group of formula (I) not being bound in the 4-position to an oxygen atom, preferably hydrogen or methyl, and (B) one or more metal compounds selected from oxides and hydroxides of Al, Mg and Zn, preferably Mg and Zn.

If appropriate, the following can be added to the mixtures of (A)+(B):

(C) one or more salts of Al, Ba, Ca, Mg, Sr and Zn with C_1 - C_{22} -carboxylic acids, preferably the salts of Al, Ca, Mg or Zn with C_{12} - C_{18} -carboxylic acids. The use of certain 2,2,6,6-tetramethylpiperidine derivatives mixed with oxides or hydroxides of Mg or Zn as stabilizers for polymers was already known, but was restricted to the stabilization of polyurethanes.

In particular, Japanese Patent 82-34,155, published on 24.2.1982, claims the stabilization of polyurethanes with mixtures comprising esters of 2,2,6,6-tetramethyl-4-piperidinol, oxides or hydroxides of Mg or Zn and organic phosphites. The said mixtures do not give satisfactory results when used for stabilizing polyethylene.

D.S. Carr and B. Baum (Modern Plastics, 7/1981, p. 64-68; C.A. <u>95</u>, 81924) describe a light stabilizing system based on the combination of zinc dimethyl- or diethyl-dithiocarbamate and zinc oxide for use in plastics.

On the other hand, British Patent 2,132,621 describes the use of mixtures of zinc oxide and esters of 2,2,6,6-tetramethyl-4-piperidinol as photodegrading agents for polyolefines, in particular polyethylene and polypropylene.

The synergistic light stabilizing effect, obtained with the mixtures of the present invention, on polyethylene is therefore surprising.

Compounds (A) which contain the group of the formula (I) or (Ia) and can be used according to the present invention are:

(A1) The compounds claimed in US Patent 4,086,204, preferably those of the formula (II)

$$\begin{bmatrix}
N & N & N & R_4 & N & R_4 & R_3 & R_4 & R_4 & R_4 & R_4 & R_4 & R_5 & R_5$$

10

15

30

35

40

45

50

55

in which R_1 is C_1 - C_8 -alkyl, cyclohexyl, 2,2,6,6-tetramethyl-4-piperidyl or 1,2,2,6,6-pentamethyl-4-piperidyl, R_2 is hydrogen or C_1 - C_8 -alkyl, R_3 is hydrogen or methyl, R_4 is C_2 - C_6 -alkylene and n is a number from 2 to 20; (A2) The compounds claimed in US Patent 4,104,248, preferably those of the formula (III)

in which R_1 is hydrogen or methyl, R_2 is C_2 - C_6 -alkylene, R_3 is C_2 - C_6 -alkylene, 2-hydroxytrimethylene or xylylene and n is a number from 2 to 20;

(A3) The compounds claimed in US Patents 4,108,829 and 4,263,434, preferably those of the formula (IV)

$$\begin{bmatrix} R_1 & CH_3 & R_2 & R_3 & R_4 & R_5 & R$$

in which $\rm R_1$ is hydrogen or methyl, $\rm R_2$ is hydrogen, $\rm C_1$ -C₆-alkyl, cyclohexyl, 2,2,6,6-tetramethyl-4-piperidyl or 1,2,2,6,6-pentamethyl-4-piperidyl, n is 2, 3 or 4 and $\rm R_3$ is the radical of an n-valent polyamine; (A4) The compounds claimed in US Patent 4,233,412, preferably those of the formula (V)

in which R is C_2 - C_8 -alkylene and n is a number from 2 to 30; (A5) The compounds claimed in European Patent 22,080, preferably those of the formula (VI)

in which R_1 is hydrogen or methyl, n is 1 or 2, with n = 1 X is C_1 - C_{12} -alkyl, benzyl or - CH_2CH_2OH and Y is hydrogen or a group

and with n = 2 X is C₂-C₆-alkylene, xylylene or a group

where m is 1 or 2 and Z is a group of the formula

and Y is hydrogen or a group

55

20

25

(A6) The compounds claimed in European Patent 29,522, preferably those of the formula (VII)

in which I, m, n are 2 or 3, p and q are zero or 1 and X is a group

where R_1 is hydrogen or methyl, R_2 is C_2 - C_3 -alkylene and Y is OH, C_1 - C_8 -alkoxy, dimethylamino or diethylamino; (A7) The compounds claimed in US Patent 4,288,593, preferably those of the formula (VIII)

$$Q \longrightarrow Q \qquad (A111)$$

in which Q is a group of the formula

or a group of the formula

where R_1 is hydrogen or methyl and R_2 is C_1 - C_8 -alkyl; (A8) The compounds claimed in US Patent 4,315,859, preferably those of the formula (IX)

in which R₁ is hydrogen or methyl, X is C₂-C₆-alkylene, A is -0-, -NH- or

m is 1 or 2, R_2 is morpholino, hexamethyleneimino, -OR $_3$ or

where R_3 is C_1 - C_8 -alkyl allyl, cyclohexyl, phenyl or benzyl and R_4 and R_5 which can be identical or different are C_1 - C_8 -alkyl which may be interrupted by an oxygen atom, allyl, cyclohexyl, 2-hydroxyethyl, benzyl or a group

and R₅ can also be hydrogen;

15

20

25

30

35

45

50

55

(A9) The compounds claimed in US Patent 4,331,586, preferably those of the formula (X)

in which R_1 is hydrogen or methyl, R_2 is C_2 - C_6 -alkylene and n is a number from 2 to 20; (A10) The compounds claimed in European Patent 24,338, preferably those of the formula (XI)

in which R_1 is hydrogen or methyl, R_2 is C_2 - C_3 -alkylene, X is C_1 - C_8 -alkoxy, dimethylamino or diethylamino, R_3 is C_2 - C_6 -alkylene and n is a number from 2 to 20;

(All) The compounds claimed in European Patent 42,554, preferably those of the formula (XII)

in which R_1 is $C_1 \cdot C_8$ -alkyl, $C_5 \cdot C_8$ -cycloalkyl, $(C_1 \cdot C_4)$ -alkoxy propyl, dimethylaminopropyl or diethylaminopropyl, R_2 is $C_2 \cdot C_6$ -alkylene and n is a number from 2 to 20;

(A12) The compounds claimed in European Patent 44,499, preferably those of the formula (XIII)

in which n is 2 or 3 and X is a group of the formula

R -N -NH

H₃C CH₃

R -N -NH

H₃C CH₃

where R is hydrogen, C₁-C₈-alkyl, C₂-C₄-alkyl substituted by C₁-C₄-alkoxy or by di(C₁-C₄-alkyl)amino, or is cyclohexyl;

(A12) The corresponde element in Function Related 70 CRC and each to the court of the formula (NI) in the correspondence of the court of the

(A13) The compounds claimed in European Patent 70,386, preferably those of the formula (XIV)

in which R_1 is allyloxy, allylamino or diallylamino, R_2 is C_1 - C_4 -alkoxy, allyloxy, allylamino, diallylamino, C_1 - C_8 -alkylamino, C_2 - C_8 -dialkylamino, morpholino or a group

R₃ is hydrogen or methyl, R₅ is hydrogen, C₁-C₈-alkyl or a group

and R₄ is C₂-C₆-alkylene;

(A14) The polymers claimed in US Patents 4,413,093 and 4,435,555, obtained from compounds of the formula (XIV);

(A15) The compounds claimed in European Patent 72,009, preferably those of the formula (XV)

in which R_1 is hydrogen or methyl, R_2 is hydrogen, C_1 - C_8 -alkyl, $(C_1$ - $C_4)$ -alkoxypropyl, dimethylaminopropyl, diethylaminopropyl, cyclohexyl or a group

(A16) The compounds claimed in European Patent 75,849, preferably those of the formulae (XVI) and (XVII)

in which R_1 is hydrogen or methyl, R_2 is hydrogen, C_1 - C_8 -alkyl, cyclohexyl, C_2 - C_4 -alkyl substituted by OH, C_1 - C_4 -alkoxy, dimethylamino or diethylamino, and n is a number from 2 to 6; (A17) The compounds claimed in European Patent 82,244, preferably those of the formula (XVIII)

$$R_1 \xrightarrow{N} N \xrightarrow{R_3} N \xrightarrow{H_3C} CH_3$$

$$R_2 \xrightarrow{R_3} H_3C \xrightarrow{CH_3} CH_3$$

$$(XVIII)$$

in which R_1 is allyloxy, allylamino or diallylamino, R_2 is the same as R_1 or is C_1 - C_8 -alkylamino, di(C_1 - C_4 -alkyl)-amino, morpholino or a group

R₃ is hydrogen, C₁-C₈-alkyl or a group

and R_4 is hydrogen or methyl; (A18) The compounds claimed in European Patent 94,048, preferably those of the formulae (XIX) and (XX)

in which n is a number from 1 to 10, R_1 is hydrogen or methyl, R_2 and R_3 which can be identical or different are C_1-C_8 -alkyl or a group

A₁ and A'₁ are hydrogen or a group

and A_2 and A_2' are a group

or A₂ is a group

and A'2 is a group

10

(A19) The compounds claimed in European Patent 107,615, preferably those of the formula (XXI)

in which R_1 is C_1 - C_8 -alkyl, cyclohexyl, benzyl or C_2 - C_4 -alkyl substituted by C_1 - C_4 -alkoxy or dimethylamino or diethylamino, R_2 is hydrogen or methyl, X is morpholino or a group

-OR₅ or a group

45

50

where R₃ and R₄ which can be identical or different are C₁-C₈-alkyl, cyclohexyl, benzyl or C₂-C₄-alkyl substituted by OH, C₁-C₄-alkoxy, dimethylamino or diethylamino, R₄ can also be hydrogen and R₅ is C₁-C₈-alkyl, allyl, cyclohexyl or benzyl;

(A20) The compounds claimed in US Patent 4,477,615, preferably those of the formula (XXII)

in which m and n which can be identical or different are numbers from 2 to 6; p is a number from 2 to 20, R_1 is hydrogen or methyl, R_2 is hydrogen, C_1 - C_8 -alkyl, cyclohexyl or benzyl, R_3 is hydrogen or a group of the formula

R₄ is C₂-C₆-alkylene, xylylene, 2-hydroxytrimethylene or a group of the formula

where R_5 is C_1 - C_8 -alkoxy, phenoxy, C_1 - C_8 -alkylamino, di(C_1 - C_4 -alkyl)amino, cyclohexylamino, morpholino or a group

(A21) The compounds claimed in US Patent 4,533,688, preferably those of the formula (XXIII)

in which X is a group of the formula

5 ·

where R₁ is hydrogen, C₁-C₈-alkyl, C₃-C₈-alkoxyalkyl, benzyl or a group

R₂ is hydrogen or methyl and Y is hydrogen or a group

(A22) The compounds claimed in US Patent 4,540,728, preferably those of the formula (XXIV)

$$(CH_2=CH-CH_2) = N \xrightarrow{R_2} N \xrightarrow{R_3C} CH_3$$

$$R_2=H \xrightarrow{R_3C} CH_3 H_3C \xrightarrow{CH_3} CH_3$$

$$R_2=H \xrightarrow{R_3C} CH_3$$

$$R_2=H \xrightarrow{R_3C} CH_3$$

$$R_3=H \xrightarrow{R_3C} CH_3$$

in which R_1 is hydrogen or methyl and R_2 is hydrogen or C_1 - C_8 alkyl, and also the corresponding polymers of a

molecular weight between 800 and 5,000;

(A23) The compounds claimed in European Patent 176,106, preferably those of the formula (XXV)

in which X is a group

where R₁ is hydrogen or methyl and R₂ is hydrogen or C₁-C₈-alkyl.

Preferred compounds (A) are those of the formulae (II), (III), (IV), (V), (X) and (XXI).

Particularly preferred compounds (A) are those of the formula (II) in which R_1 is C_2 - C_8 -alkyl or cyclohexyl, R_2 is hydrogen or C_2 - C_8 -alkyl, R_3 is hydrogen or methyl, R_4 is -(CH₂)₂₋₆ and n is a number from 2 to 10, those of the formula (III) in which R_1 is hydrogen or methyl, R_2 is -(CH₂)₆-, R_3 is -(CH₂)₂₋₆ and n is a number from 2 to 10, those of the formula (IV) in which R_1 is hydrogen or methyl, R_2 is C_1 - C_4 -alkyl, n is 2, 3 or 4 and R_3 is a group of the formula -NH (CH₂)₂₋₆NH- for n = 2,

NH- for n = 3 and

30

35

40

50

for n = 4, those of the formula (V) in which R is -(CH₂)₂₋₆- and n is a number from 2 to 20, those of the formula (X) in which R₁ is hydrogen or methyl, R₂ is -(CH₂)₂₋₆- and n is a number from 2 to 10, and those of the formula (XXI) in which R₁ is C₁-C₆-alkyl, R₂ is hydrogen or methyl and X is a group

Compounds (A) of particular interest are:

$$\overline{M}_n = 2000-4000$$

$$\begin{array}{c} H_3C \xrightarrow{CH_3} (n) \xrightarrow{C_4H_9} (n) \xrightarrow{C_4H_9} (n) \xrightarrow{H_3C} (n) \xrightarrow{CH_3} (n) (n$$

The said compounds can be used by themselves or as a mixture with one another.

Compounds (B) which can be used according to the present invention are preferably the oxides and hydroxides of Mg and Zn.

The oxides of Mg and Zn are particularly preferred, and they can be used by themselves or as a mixture with one another.

The compounds (C) which can be used according to the present invention, if desired, are preferably salts of Al, Ca, Mg and Zn with C₁₂-C₁₈-carboxylic acids.

The stearates of Ca, Mg and Zn, which can be used by themselves or as a mixture with one another, are particularly preferred.

The percentages by weight, relative to the weight of the polyethylene, of compounds (A), (B) and (C) are: 0.025 to 2%, preferably 0.05 to 1%, for compounds (A), 0.005 to 1%, preferably 0.025 to 0.5%, for compounds (B) and 0.005 to 1%, preferably 0.025 to 0.5%, for compounds (C).

The compounds (A), (B) and (C) can be mixed with one another before they are added to the polymer, or they can be added separately to the polymer, using any one of the known processes.

If desired, other additives conventional for polyethylene, such as phenolic antioxidants, phosphites, UV absorbers and other types of light stabilizers, can be added to the compounds (A), (B) and (C) of the present invention.

Examples of additives which can be mixed with the compounds (A) (B) and (C) are:

Phenolic antioxidants from the following classes:

15

20

25

Alkylated monophenols, for example 2,6-di-t-butyl-4-methyl-phenol, 2-t-butyl-4,6-dimethylphenol, 2,6-di-t-butyl-4-ethyl-phenol, 2,6-di-t-butyl-4-isobutyl-phenol, 2,6-di-cyclopentyl-4-methylphenol, 2,6-di-t-butyl-4-methyl-cyclohexyl)-4,6-dimethylphenol, 2,6-di-t-butyl-4-methylphenol, 2,6-di-t-butyl-4-methylphenol and 2,6-dinonyl-4-methylphenol.

<u>Alkylated hydroquinones</u>, for example 2,6-di-1-butyl-4-methoxyphenol, 2,5-di-1-butylhydroquinone, 2,5-di-1-amyl-hydroquinone and 2,6-diphenyl-4-octadecyloxyphenol.

Thiobisphenois, for example 2,2'-thio-bis-(6-t-butyl-4-methylphenol), 2,2'-thio-bis-(4-octylphenol), 4,4'-thio-bis-(6-t-butyl-3-methylphenol) and 4,4'-thio-bis-(6-t-butyl-2-methylphenol).

Alkylidene-bisphenols, for example 2,2'-methylene-bis-(6-t-butyl-4-methylphenol), 2,2'-methylene-bis-(6-t-butyl-4-ethylphenol), 2,2'-methylene -bis-(4-methyl-6-(\alpha-methylchenol), 2,2'-methylene-bis-(4-methyl-6-cy-clohexylphenol), 2,2'-methylene-bis-(6-nonyl-4-methylphenol), 2,2'-methylene-bis-(4,6-di-t-butylphenol), 2,2'-ethyli-

dene-bis-(4,6-di-t-butylphenol), 2,2'-ethylidene-bis-(6-t-butyl-4-isobutylphenol), 2,2'-methylene-bis-(6-(\alpha-methylben-zyl)-4-nonylphenol), 2,2'-methylene-bis-(6-(\alpha-di-t-butyl-phenol), 4,4'-methylene-bis-(6-t-butyl-2-methylphenol), 1,1-bis-(5-t-butyl-4-hydroxy-2-methylphenyl)-butane, 2,6-bis-(3-t-butyl-5-methyl-2-hydroxybenzyl)-4-methylphenol, 1,1,3-tris-(5-t-butyl-4-hydroxy-2-methylphenyl)-butane, 1,1-bis-(5-t-butyl-4-hydroxy-2-methylphenyl)-butane, 1,1-bis-(5-t-butyl-4-hydroxy-2-methylphenyl)-3-n-dodecylmercaptobutane, ethylene glycol bis-C3,3-bis-(3't-butyl-4'hydroxy-phenyl)-butyrate), bis-(3-t-butyl-4-hydroxy-5-methylphenyl)-dicyclopentadiene and bis-[2-(3'-t-butyl-2'-hydroxy-5'-methylphenyl] terephthalate.

Benzyl compounds, for example 1,3,5-tris-(3,5-di-t-butyl-4-hydroxybenzyl)-2,4,6-trimethylbenzene, bis-(3,5-di-t-butyl-4-hydroxybenzyl) sulfide, isooctyl 3,5-di-t-butyl-4-hydroxybenzyl-mercaptoacetate, bis-(4-t-butyl-3-hydroxy-2,6-dimethylbenzyl) dithiolterephthalate, 1,3,5-tris-(3,5-di-t-butyl-4-hydroxy-benzyl) isocyanurate, 1,3,5-tris-(4-t-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanurate, dioctadecyl 3,5-di-t-butyl-4-hydroxybenzylphosphonate, calcium monoethyl 3,5-di-t-butyl-4-hydroxybenzylphosphonate and 1,3,5-tris-(3,5-dicyclohexyl-4-hydroxybenzyl) isocyanurate.

Acylaminophenols, for example lauric acid 4-hydroxyanilide, stearic acid 4-hydroxyanilide, 2,4-bis-(octylmercap-to)-6-(3,5-di-t-butyl-4-hydroxyanilino)-s-triazine and octyl N-(3,5-di-t-butyl-4-hydroxyphenyl)-carbamate.

Esters of \$\(\beta\)-(3,5-di-t-butyl-4-hydroxyphenyl)-propionic acid with monohydric or polyhydric alcohols, for example methanol, diethylene glycol, octadecanol, triethylene glycol, 1,6-hexanediol, pentaerythritol, neopentyl glycol, tris-(hydroxy-ethyl) isocyanurate, thiodiethylene glycol and N,N'-bis-(hydroxyethyl)-oxamide.

Esters of β-(5-t-butyl-4-hydroxy-3-methylphenyl)-propionic acid with monohydric or polyhydric alcohols, for example methanol, diethylene glycol, octadecanol, triethylene glycol, 1,6-hexanediol, pentaerythritol, neopentyl glycol, tris-(hydroxyethyl) isocyanurate, thiodiethylene glycol and N,N'-bis-(hydroxyethyl)-oxamide.

Esters of β-(3,5-dicyclohexyl-4-hydroxyphenyl)-propionic acid with monohydric or polyhydric alcohols, for example methanol, diethylene glycol, -octadecanol, triethylene glycol, 1,6-hexanediol, pentaerythritol, neopentyl glycol, tris-(hydroxy-ethyl) isocyanurate, thiodiethylene glycol and N,N'-bis-(hy-droxyethyl)-oxamide.

Amides of β-(3,5-di-t-butyl-4-hydroxyphenyl)-propionic acid, for example N,N'-bis-(3,5-di-t-butyl-4-hydroxyphenyl-propionyl)--hexamethylenediamine, N,N'-bis-(3,5-di-t-butyl-4-hydroxy-phenylpropionyl)-trimethylenediamine and N, N'-bis-(3,5-di-t-butyl-4-hydroxyphenylpropionyl)-hydrazine.

UV absorbers and light stabilizers

20

2-(2'-Hydroxyphenyl)-benzotriazoles, for example the 5'-methyl, 3',5'-di-t-butyl, 5'-t-butyl, 5'-(1,1,3,3-tetramethyl-butyl), 5-chloro-3',5'-di-t-butyl, 5-chloro-3'-t-butyl-5'-methyl, 3'-sec.-butyl-5'-t-butyl, 4'-octoxy-3',5'-di-t-amyl and 3',5'-bis-(α,α-dimethylbenzyl) derivatives.

2-Hydroxybenzophenones, for example the 4-hydroxy, 4-methoxy, 4-octoxy, 4-decyloxy, 4-dodecyloxy, 4-benzy-loxy, 4,2',4'-trihydroxy and 2'-hydroxy-4,4'-dimethoxy derivatives.

Esters of various substituted benzoic acids, for example 4-t-butylphenyl salicylate, phenyl salicylate, octylphenyl salicylate, dibenzoylresorcinol, bis-(4-t-butylbenzoyl)-resorcinol, benzoylresorcinol, 2,4-di-t-butylphenyl 3,5-di-t-butyl-4-hydroxybenzoate and hexadecyl 3,5-di-t-butyl-4-hydroxybenzoate.

<u>Acrylates</u>, for example ethyl α-cyano-β,β-diphenyl-acrylate, isooctyl α-cyano-β,β-diphenylacrylate, methyl α-carbomethoxycinnamate, methyl α-cyano-β-methyl-p-methoxycinnamate, butyl α-cyano-β-methyl-p-methoxycinnamate, methyl α-carbomethoxy-p-methoxycinnamate and N-(β-carbomethoxy-β-cyanovinyl)-2-methyl-indoline.

Nickel compounds, for example nickel complexes of 2,2'-thio-bis-[4-(1,1,3,3bis-[4-(1,1,3,3-tetramethylbutyl)-phenol], such as the 1:1 or 1:2 complexes, which may contain additional ligands such as n-butylamine, triethanolamine or N-cyclohexyldiethanolamine, nickel dibutyldithiocarbamate, nickel salts of monoalkyl esters of 4-hydroxy-3,5-di-t-butylbenzylphosphonic acid, such as the methyl or ethyl esters, nickel complexes of ketoximes such as 2-hydroxy-4-methylphenyl undecyl ketoxime and nickel complexes of 1-phenyl-4-lauroyl-5-hydroxypyrazole, with or without additional ligands.

Oxalic acid diamides, for example 4,4'-dioctyloxyoxanilide, 2,2'-dioctyloxy-5,5'-di-t-butyloxanilide, 2,2'-didodecy-loxy-5,5'-di-t-butyloxanilide, 2-ethoxy-2'-ethyloxanilide, N,N'-bis-(3-dimethylaminopropyl)-oxamide, 2-ethoxy-5-t-butyl-2'-ethyloxanilide and its mixtures with 2-ethoxy-2'-ethyl-5,4'-di-t-butyloxanilide, and mixtures of ortho- and paramethoxyand also o- and p-ethoxy-disubstituted oxanilides.

<u>Phosphites and phosphonites</u>, for example triphenyl phosphite, diphenyl alkyl phosphites, phenyl dialkyl phosphites, tris-(nonylphenyl) phosphite, triaduryl phosphite, trioctadecyl phosphite, distearyl pentaerythritol diphosphite, tris-(2,4-di-t-butylphenyl) phosphite, diisodecyl pentaerythritol diphosphite, bis-(2,4-di-t-butylphenyl) pentaerythritol diphosphite, tristearyl sorbitol triphosphite, tetrakis-(2,4-di-t-butylphenyl) 4,4'-diphenylenediphosphonite and 3,9-bis-(2,4-di-t-butylphenoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane.

The use of the stabilizer mixtures according to the present invention is illustrated by the examples which follow; these are given by way of illustration only and do not imply any restriction.

EXAMPLES 1 - 10

5

10

15

20

25

30

35

40

45

55

10 kg of low-density polyethylene powder of melt index 0.6 (Fertene EF 3-2000, a product from Soc. Enichem Polimeri) are mixed in a slow mixer with the compounds indicated in Table 1.

The mixtures are then extruded at a temperature of 190°C and converted into granules, from which stretched films of 150 um thickness are obtained by blow extrusion using a Dolci pilot extruder (screw diameter = 45/26 D and head diameter = 100 mm) under the following working conditions:

body temperature = 170-190-200°C

head temperature = 200-200-200-190°C

The films obtained are exposed outdoors at 45°, facing south, on pinewood at Pontecchio Marconi (Bologna) (about 110 kly/year). The residual elongation is measured on samples, taken after various times of exposure by means of a constant-speed tensometer.

The energy received (expressed in kilolangleys) needed to halve the initial elongation value is then calculated (T_{50}). The results obtained are shown in Table 1.

TABLE 1

		TABLE 1		
Example No.	Compound A (g)	Compound B (g)	Compound C (g)	T ₅₀ elongation (kly)
1	Compound 1 (20)	. •	•	117
2	•	MgO (10)	-	168
. 3		ZnO (10)	•	138
4		MgO (10)	Ca stearate (10)	193
5	•	ZnO (10)	•	161
6	Compound 2 (20)	-	•	128
7	•	MgO (10)	-	175
8	•	ZnO (10)	-	154
9	•	MgO (10)	Ca stearate (10)	192
10	• .	ZnO (10)		186

Examples 11-18

10 kg of low-density polyethylene powder of melt index 0.1 (Fertene EF 3-2000, a product from Soc. ENICHEM POLIMERI) are mixed in a slow mixer with the compounds indicated in Table 2.

The mixtures are then extruded at a temperature of 190°C and converted into granules, from which stretched films of 150 µm thickness are obtained by blow extrusion using a Dolci pilot extruder (screw diameter = 45/26D and head diameter = 100 mm) under the following working conditions:

body temperature = 170 - 190 - 200°C

head temperature = 200 - 200 - 200 - 190°C

The films obtained are exposed in a model 65 WR Weather - O-meter (ASTM G 26 - 77) with a black panel temperature of 63°C. The residual elongation is measured on samples, taken after various times of exposure to light, by means of a constant speed tensometer; the exposure time in hours (T₅₀) needed to halve the initial elongation value is then calculated. The results obtained are shown in Table 2:

Table 2

Example N°	Compound A (g)	'Compound B (g)	Compound C (c)	T ₅₀ (hours)
11	compound 1 (10)	•	-	3900
12	•	ZnO (5)	Ca stearate (5)	> 4500
13	compound 3 (10)	•	-	3600
14 .		ZnO (5)	Ce stearate (5)	> 4500
15	compound 5 (10)	<u>.</u>	-	3140
16		ZnO (5)	Ca stearate (5)	4100
17	compound 6 (10)	-	-	3040
18	•	ZnO (5)	Ca stearate (5)	> 4500

30 Examples 19-21

· 5

10

20

35

50

55

10 kg of linear low-density polyethylene (LLDPE) powder of melt index 0.9 (Dowlex 2045, a product from Dow Chemical) are mixed in a slow mixer with 2 g of pentaerythritol-tetrakis [3-(3,5-di-t-butyl-4-hydroxy-phenyl)propionate], 8 g of tris-(2,4-di-t-butyl-phenyl)phosphite and with the compounds indicated in Table 3.

The mixtures are then extruded to give stretched films of 150 µm thickness by blow extrusion using a Dolci pilot extruder (screw diameter = 45/26D and head diameter = 100 mm) under the following working conditions:

body temperature: 180 - 220 - 220°C

40 head temperature: 220 - 220 - 220 - 220°C

The films obtained are exposed outdoors at 45°, facing south, on pinewood at Pontecchio Marconi (Bologna) (about 110 kly/ year). The residual elongation is measured on samples, taken after various times of exposure by means of a constant speed tensometer.

45 The energy received (express in Kilolangleys) needed to halve the initial elongation value is then calculated (T₅₀). The results obtained are shown in Table 3.

Table 3

Compound A Compound B Compound C T₅₀ elongation Example No. (g) **(g) (g)** (Klys) 19 compound 1 (30)20 MgO 135 (10)ZnO 21 127 (10)

Claims

5

10

15

20

25

30

35

50

55

1. A light stabilizer composition for polyethylene, comprising:

(A) one or more compounds with piperidine groups of the formula (I) or (Ia)

in which R is hydrogen, C₁-C₄-alkyl, allyl, benzyl, acetyl, acryloyl, 2-hydroxyethyl or 2-hydroxypropyl, said piperidine group of formula (I) not being bound in the 4-position to an oxygen atom, and (B) one or more metal compounds selected from an oxide or hydroxide of Al, Mg and Zn.

- A light stabilizer composition for polyethylene, comprising, in addition to compounds (A) and (B) of claim 1:
 (C) one or more salts of Al, Ba, Ca, Mg, Sr and Zn with a C₁-C₂₂-carboxylic acid.
- A light stabilizer composition according to claim 1, wherein the compound (A) is selected from the group comprising the compounds of the formulae

in which R_1 is C_1 - C_8 -alkyl, cyclohexyl, 2,2,6,6-tetramethyl-(-piperidyl or 1,2,2,6,6-pentamethyl-4-piperidyl, R_2 is hydrogen or C_1 - C_8 -alkyl, R_3 is hydrogen or methyl, R_4 is C_2 - C_6 -alkylene and n is a number from 2 to 20;

in which R₁ is hydrogen or methyl, R₂ is C₂-C₆-alkylene, R₃ is C₂-C₆-alkylene, 2-hydroxytrimethylene or xylylene and n is a number from 2 to 20;

in which R_1 is hydrogen or methyl, R_2 is hydrogen, C_1 - C_8 -alkyl, cyclohexyl, 2,2,6,6-tetramethyl-4-piperidyl or 1,2,2,6,6-pentamethyl-4-piperidyl, n is 2, 3 or 4 and R_3 is the radical of an n-valent polyamine;

in which R is C2-C8-alkylene and n is a number from 2 to 30;

so
$$R_2$$
 R_3 R_4 R_5 R_5 R_7 R_7 R_7 R_8 R_8 R_7 R_8 R_9 R

in which $\rm H_1$ is hydrogen or methyl, $\rm H_2$ is $\rm C_2\text{-}C_6\text{-}$ alkylene and n is a number from 2 to 20; and

in which R_1 is C_1 - C_8 -alkyl, cyclohexyl, benzyl or C_2 - C_4 -alkyl substituted by C_1 - C_4 -alkoxy or dimethylamino or diethylamino, R_2 is hydrogen or methyl, X is morpholino or a group

-OR5 or a group

10

15

20

25

40

45

50

- where R₃ and R₄ which can be identical or different are C₁-C₈-alkyl, cyclohexyl, benzyl or C₂-C₄-alkyl substituted by OH, C₁-C₄-alkoxy, dimethylamino or diethylamino, R₄ can also be hydrogen and R₅ is C₁-C₈-alkyl, allyl, cyclohexyl or benzyl.
- A light stabilizer composition according to claim 1, wherein the compound (A) is selected from the group comprising compounds of the formula (II) in which R₁ is C₂-C₈-alkyl or cyclohexyl, R₂ is hydrogen or C₂-C₈-alkyl, R₃ is hydrogen or methyl, R₄ is (CH₂)₂₋₆- and n is a number from 2 to 10.
 - A light stabilizer composition according to claim 1, wherein the compound (A) is selected from the group comprising
 the compounds of the formula (III) in which R₁ is hydrogen or methyl, R₂ is -(CH₂)₆-, R₃ is -(CH₂)₂₋₆- and n is a
 number from 2 to 10.
 - 6. A light stabilizer composition according to claim 1, wherein the compound (A) is selected from the group comprising the compounds of the formula (IV), in which R₁ is hydrogen or methyl, R₂ is C₁-C₄-alkyl, n is 2, 3 or 4, and R₃ is a group of the formula -NH(CH₂)₂₋₆NH- for n = 2,

for n = 3 and

20

25

30

35

45

50

55

(CH2)2-3NH-

for n = 4

- A light stabilizer composition according to claim 1, wherein the compound (A) is selected from the group comprising the compounds of the formula (V), in which R is -(CH₂)₂₋₆-and n is a number from 2 to 20.
 - 8. A light stabilizer composition according to claim 1, wherein the compound (A) is selected from the group comprising the compounds of the formula (X), in which R₁ is hydrogen or methyl, R₂ is -(CH₂)₂₋₆ and n is a number from 2 to 10.
 - A light stabilizer composition according to claim 1, wherein the compound (A) is selected from the group comprising the compounds of the formula (XXI), in which R₁ is C₁-C₈-alkyl, R₂ is hydrogen or methyl and X is a group

10. A light stabilizer composition according to claim 1, wherein the compound (A) is that of the formula

of a molecular weight between 2,000 and 4,000.

11. A light stabilizer composition according to claim 1, wherein the compound (A) is that of the formula

12. A light stabilizer composition according to claim 1, wherein the compound (A) is that of the formula

13. A light stabilizer composition according to claim 1, wherein the compound (A) is that of the formula

of a molecular weight between 2,000 and 4,000.

15

45

55

14. A light stabilizer composition according to claim 1, wherein the compound (A) is that of the formula

of a molecular weight between 2,000 and 4,000.

- 30 15. A light stabilizer composition according to claim 1, wherein the compound (B) is an oxide or hydroxide of Mg or Zn.
 - 16. A light stabilizer composition according to claim 1, wherein the compound (B) is an oxide of Mg or Zn.
- A light stabilizer composition according to claim 2, wherein the compound (C) is a salt of Al, Ca, Mg or Zn with
 C₁₂-C₁₈-carboxylic acid.
 - 18. A light stabilizer composition according to claim 2, wherein the compound (C) is a salt of Ca, Mg or Zn with stearic acid
- 40 19. Stabilized polyethylene containing a light stabilizer composition according to claim 1 or 2.
 - 20. Stabilized polyethylene according to claim 19, wherein the percentages by weight, relative to the weight of the polyethylene, of compounds (A) and (B) are: 0.025 to 2%, preferably 0.05 to 1%, for compound (A) and 0.005 to 1%, preferably 0.025 to 0.5%, for compound (B).
 - 21. Stabilized polyethylene according to claim 19, wherein the percentage by weight, relative to the polyethylene, of compound (C) is 0.005 to 1%, preferably 0.025 to 0.5%.
- 22. Stabilized polyethylene according to claim 19, which is low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE) or a mixture thereof.
 - 23. A film, prepared from low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE) or a mixture thereof, stabilized with a light stabilizer composition of claim 1 or 2.

Patentansprüche

1. Lichtsteilisator-Zusammensetzung für Polyethylen, umfassend

(A) eine oder mehrere Verbindungen mit Piperidingruppen der Formel (I) oder (Ia)

worin R Wasserstoff, C₁₋₄-Alkyl, Allyl, Benzyl, Acetyl, Acryloyl, 2-Hydroxyethyl oder 2-Hydroxypropyl bedeutet, wobei die Piperidingruppe der Formel (I) nicht in 4-Stellung an ein Sauerstoffatom gebunden ist, und (B) eine oder mehrere Metallverbindungen, ausgewählt unter einem Oxid oder Hydroxid von Al, Mg und Zn.

- Lichtstabilisator-Zusammensetzung für Polyethylen, umfassend zusätzlich zu den Verbindungen (A) und (B) von Anspruch 1
 - (C) ein oder mehrere Salze von Al, Ba, Ca, Mg, Sr und Zn mit einer C₁₋₂₂-Carbonsäure.

10

20

25

30

35

40

50

65

 Lichtstabilisator-Zusammensetzung gemäß Anspruch 1, worin die Verbindung (A) ausgewählt ist aus der Gruppe, umfassend die Verbindungen der Formeln

worin R_1 C_{1-8} -Alkyl, Cyclohexyl, 2,2,6,6-Tetramethyl-4-piperidyl oder 1,2,2,6,6-Pentamethyl-4-piperidyl bedeutet, R_2 Wasserstoff oder C_{1-8} -Alkyl ist, R_3 für Wasserstoff oder Methyl steht, R_4 für C_{2-6} -Alkylen steht und n eine Zahl von 2 bis 20 ist;

worin R_1 Wasserstoff oder Methyl bedeutet, R_2 C_{2-6} -Alkylen ist, R_3 für C_{2-6} -Alkylen, 2-Hydroxytrimethylen oder Xylylen steht und n eine Zahl von 2 bis 20 ist;

$$\begin{bmatrix} R_1 + & CH_3 & R_2 & & & \\ R_1 + & CH_3 & & & & \\ H_3C & CH_3 & & & & \\ H_3C & & & & & \\ H_3C & & & \\ H_3C$$

worin R₁ Wasserstoff oder Methyl bedeutet, R₂ Wasserstoff, C₁₋₈-Alkyl, Cyclohexyl, 2,2,6,6-Tetramethyl-4-piperidyl oder 1,2,2,6,6-Pentamethyl-4-piperidyl ist, n für 2, 3 oder 4 steht und R₃ den Rest eines n-wertigen Polyamins wiedergibt;

worin R C₂₋₈-Alkylen ist und n für eine Zahl von 2 bis 30 steht;

10

15

30

55

worin R₁ Wasserstoff oder Methyl bedeutet, R₂ für C₂₋₆-Alkylen steht und n eine Zahl von 2 bis 20 ist; und

worin R_1 C_{1-8} -Alkyl, Cyclohexyl, Benzyl oder C_{2-4} -Alkyl, substituiert durch C_{1-4} -Alkoxy oder Dimethylamino oder Diethylamino, ist, R_2 für Wasserstoff oder Methyl steht, X Morpholino oder eine Gruppe

-OR₅ oder eine Gruppe

5

10

15

20

25

35

40

45

50

H₃C CH₃

-N - R

R

H₃C CH₃

bedeutet, worin R_3 und R_4 , die identisch oder verschieden sein können, C_{1-8} -Alkyl, Cyclohexyl, Benzyl oder C_{2-4} -Al-kyl, substituiert durch OH, C_{1-4} -Alkoxy, Dimethylamino oder Diethylamino, sind, R_4 auch Wasserstoff sein kann und R_5 für C_{1-8} -Alkyl, Allyl, Cyclohexyl oder Benzyl steht.

- Lichtstabilisator-Zusamzensetzung gemäß Anspruch 1, worin die Verbindung (A) ausgewählt ist aus der Gruppe, umfassend die Verbindungen der Formel (II), worin R₁ C₂₋₈-Alkyl oder Cyclohexyl bedeutet, R₂ Wasserstoff oder C₂₋₈-Alkyl ist, R₃ für Wasserstoff oder Methyl steht, R₄ für -(CH₂)₂₋₆- steht und n eine Zahl von 2 bis 10 ist.
- Lichtstabilisator-Zusazmensetzung gemäß Anspruch 1, worin die Verbindung (A) ausgewählt ist aus der Gruppe, umfassend die Verbindungen der Formel (III), worin R₁ Wasserstoff oder Methyl bedeutet, R₂ für -(CH₂)₆- steht, R₃ für -(CH₂)₂₋₆- steht und n eine Zahl von 2 bis 10 ist.
- 50 6. Lichtstabilisator-Zusammensetzung gemäß Anspruch 1, worin die Verbindung (A) ausgewählt ist aus der Gruppe, umfassend die Verbindungen der Formel (IV), worin R₁ Wasserstoff oder Methyl bedeutet, R₂ für C₁₋₄-Alkyl steht, n für 2, 3 oder 4 steht und R₃ eine Gruppe der Formel -NH(CH₂)₂₋₆NH- für n = 2,

für n = 3 und

fūr n = 4 ist.

- Lichtstabilisator -Zusannensetzung gemäß Anspruch 1, worin die Verbindung (A) ausgewählt ist aus der Gruppe, umfassend die Verbindungen der Formel (V), worin R für -(CH₂)₂₋₆- steht und n eine Zahl von 2 bis 20 ist.
- Lichtstabilisator-Zusammensetzung gemäß Anspruch 1, worin die Verbindung (A) ausgewählt ist aus der Gruppe, umfassend die Verbindungen der Formel (X), worin R₁ Wasserstoff oder Methyl bedeutet, R₂ für -(CH₂)₂₋₆- steht und n eine Zahl von 2 bis 10 ist.
- Lichtstabilisator-Zusammensetzung gemäß Anspruch 1, worin die Verbindung (A) ausgewählt ist aus der Gruppe, umfassend die Verbindungen der Formel (XXI), worin R₁ C₁₋₈-Alkyl ist, R₂ Wasserstoff oder Methyl bedeutet und X eine Gruppe

H₃C CH₃

wiedergibt.

5

10

15

25

30

35

45

50

55

10. Lichtstabilisator-Zusammensetzung gemäß Anspruch 1, worin die Verbindung (A) diejenige der Formel

H₃C - CH₃

H₃C - CH₃

CH₃

H₃C - CH₃

CH₃

CH₃

H₃C - CH₃

CH₃

H₃C - CH₃

CH₃

CH₃

H₃C - CH₃

CH

mit einem Molekulargewicht zwischen 2000 und 4000 ist.

11. Lichtstabilisator-Zusammensetzung gemäß Anspruch 1, worin die Verbindung (A) diejenige der Formel

ist.

12. Lichtstabilisator-Zusammensetzung gemäß Anspruch 1, worin die Verbindung (A) diejenige der Formel

ist.

13. Lichtstabilisator-Zusammensetzung gemäß Anspruch 1, worin die Verbindung (A) diejenige der Formel

30

35

10

15

mit einem Molekulargewicht zwischen 2000 und 4000 ist.

14. Lichtstabilisator-Zusammensetzung gemäß Anspruch 1, worin die Verbindung (A) diejenige der Formel

- mit einem Molekulargewicht zwischen 2000 und 4000 ist.
 - 15. Lichtstabilisator-Zusammensetzung gemäß Anspruch 1, worin die Verbindung (B) ein Oxid oder Hydroxid von Mg oder Zn ist.
- 50 16. Lichtstabilisator-Zusammensetzung gemäß Anspruch 1, worin die Verbindung (B) ein Oxid von Mg oder Zn ist.
 - Lichtstabilisator-Zusammensetzung gemäß Anspruch 2, worin die Verbindung (C) ein Salz von Al, Ca, Mg oder Zn mit einer C₁₂₋₁₈-Carbonsäure ist.
- 55 18. Lichtstabilisator-Zusammensetzung gemäß Anspruch 2, worin die Verbindung (C) ein Salz von Ca, Mg oder Zn mit Stearinsäuze ist.
 - 19. Stabilisiertes Polyethylen, enthaltend eine Lichtstabilisator-Zusammensetzung gemäß Anspruch 1 oder 2.

- 20. Stabilisiertes Polyethylen gemäß Anspruch 19, worin die Gewichtsprozentanteile, bezogen auf das Gewicht des Polyethylens,der Verbindungen (A) und (B) sind: 0,025 bis 2%, bevorzugt 0,05 bis 1%, für Verbindung (A) und 0,005 bis 1%, bevorzugt 0,025 bis 0,5%, für Verbindung (B).
- Stabilisiertes Polyethylen gemäß Anspruch 19, worin der Gewichtsprozentanteil, bezogen auf das Polyethylen, der Verbindung (C) 0,005 bis 1%, bevorzugt 0,025 bis 0,5%, beträgt.
 - 22. Stabilisiertes Polyethylen gemäß Anspruch 19, bei dem es sich um Polyethylen niedriger Dichte (LDPE), lineares Polyethylen niedriger Dichte (LLDPE) oder eine Mischung hiervon handelt.
 - 23. Film, hergestellt aus Polyethylen niedriger Dichte (LDPE), linearem Polyethylen niedriger Dichte (LLDPE) oder einer Mischung hiervon, stabilisiert mit einer Lichtstabilisator-Zusammensetzung gemäß Anspruch 1 oder 2.

15 Revendications

10

20

25

30

40

45

50

55

- 1. Composition de photostabilisants pour le polyéthylène comprenant
 - (A) un ou plusieurs composés comportant des groupes pipéridino de formule (I) ou (Ia)

$$H_3^{C}$$
 CH_3
 CH_3^{C}
 CH_3
 CH_3^{C}
 CH_3^{C

- dans lesquelles R est l'hydrogène, alkyle en C₁-C₄, allyle, benzyle, acétyle, acryloyle, 2-hydroxyéthyle ou-2-hydroxypropyle, ledit groupe pipéridino de formule (I) n'étant pas lié en position 4 à un atome d'oxygène, et (B) un ou plusieurs composés métalliques pris parmi un oxyde ou un hydroxyde d'Al, de Mg et de Zn.
- 2. Composition de photostabilisants pour le polyéthylène comprenant en plus des composés (A) et (B) de la revendication 1 :
 - (C) un ou plusieurs sels d'Al, Ba, Ca, Mg, Sr et Zn avec un acide carboxylique en C1-C22.
 - Composition de photostabilisants selon la revendication 1, où le composé (A) est pris dans le groupe comprenant les composés de formules

$$\begin{bmatrix}
N & H_3C &$$

dans laquelle $\rm R_1$ est alkyle en $\rm C_1$ - $\rm C_8$, cyclohexyle, 2,2,6,6-tétraméthyl-4-pipéridyle ou 1,2,2,6,6-pentaméthyl-4-pipéridyle, $\rm R_2$ est l'hydrogène ou alkyle en $\rm C_1$ - $\rm C_8$, $\rm R_3$ est l'hydrogène ou méthyle, $\rm R_4$ est alkylène en $\rm C_2$ - $\rm C_6$ et n est un nombre de 2 à 20;

dans laquelle R_1 est l'hydrogène ou méthyle, R_2 est alkylène en C_2 - C_6 , R_3 est alkylène en C_2 - C_6 , R_3 est alkylène en R_2 - R_3 est alkylène en R_3 - R_3 est alkylène en R_3 - R_3 -

$$\begin{bmatrix} R_1 & CH_3 & R_2 & R_3 & R_4 & R_5 & R$$

dans laquelle R_1 est l'hydrogène ou méthyle, R_2 est l'hydrogène, alkyle en C_1 - C_8 , cyclohexyle, 2,2,6,6-tétraméthyl-4-pipéridyle ou 1,2,2,6,6-pentaméthyl-4-pipéridyle, n vaut 2, 3 ou 4 et R_3 est le radical n-valent d'une polyamine ;

dans laquelle R est alkylène en $C_2\text{-}C_8$ et n est un nombre de 2 à 30 ;

dans laquelle R₁ est l'hydrogène ou méthyle, R₂ est alkylène en C₂-C₆ et n est un nombre de 2 à 20 ; et

10

dans laquelle R_1 est alkyle en C_1 - C_8 , cyclohexyle, benzyle ou alkyle en C_2 - C_4 substitué par alcoxy en C_1 - C_4 ou diméthylamino ou diéthylamino, R_2 est l'hydrogène ou méthyle, X est morpholino ou un groupe

15

20

-OR₅ ou un groupe

30

25

dans laquelle R_3 et R_4 qui peuvent être identiques ou différents sont alkyle en C_1 - C_8 , cyclohexyle, benzyle ou alkyle en C_2 - C_4 substitués par OH, alcoxy en C_1 - C_4 , diméthylamino ou diéthylamino, R_4 peut être aussi l'hydrogène et R_5 est alkyle en C_1 - C_8 , allyle, cyclohexyle ou benzyle.

- 35 4. Composition de photostabilisants selon la revendication 1 où le composé (A) est pris dans le groupe comprenant des composés de formule (II) dans laquelle R₁ est alkyle en C₂-C₈ ou cyclohexyle, R₂ est l'hydrogène ou alkyle en C₂-C₈. R₃ est l'hydrogène ou méthyle, R₄ est -(CH₂)_{2,6}- et n est un nombre de 2 à 10.
- 5. Composition de photostabilisants selon la revendication 1 dans laquelle le composé (A) est pris dans le groupe comprenant les composés de formule (III) dans lesquels R₁ est l'hydrogène ou méthyle, R₂ est -(CH₂)₆-, R₃ est -(CH₂)₂₋₆- et n est un nombre de 2 à 10.
 - 6. Composition de photostabilisants selon la revendication 1, dans laquelle le composé (A) est pris dans le groupe comprenant les composés de formule (IV) dans lesquels R₁ est l'hydrogène ou méthyle, R₂ est alkyle en C₁-C₄, n vaut 2, 3 ou 4, et R₃ est un groupe de formule -NH(CH₂)₂₋₆NH- pour n = 2,

50

45

pour n = 3 et

-NH (CH₂)
$$_{2-3}$$
N (CH₂) $_{2}$ N- (CH₂) $_{2-3}$ NH-

55

pour n = 4.

- Composition de photostabilisants selon la revendication 1 dans laquelle le composé (A) est pris dans le groupe comprenant les composés de formule (V) dans lesquels R est -(CH₂)₂₋₆- et n est un nombre de 2 à 20.
- Composition de photophotostabilisants selon la revendication 1, dans laquelle le composé (A) est pris dans le groupe comprenant les composés de formule (X) dans lesquels R₁ est l'hydrogène ou méthyle, R₂ est -(CH₂)₂₋₆et n est un nombre de 2 à 10.
- Composition de photostabilisants selon la revendication 1, dans laquelle le composé (A) est pris dans le groupe comprenant les composés de formule (XXI) dans lesquels R₁ est alkyle en C₁-C₈, R₂ est l'hydrogène ou méthyle et X est un groupe

10. Composition de photostabilisants selon la revendication 1, dans laquelle le composé (A) répond à la formule

ayant une masse moléculaire comprise entre 2000 et 4000.

10

15

25

30

35

40

50

55

11. Composition de photostabilisants selon la revendication 1, dans laquelle le composé (A) répond à la formule

12. Composition de photostabilisants selon la revendication 1, dans laquelle le composé (A) répond à la formule

13. Composition de photostabilisants selon la revendication 1, dans laquelle le composé (A) répond à la formule

ayant une masse moléculaire comprise entre 2000 et 4000.

15

20

25

35

40

45

50

30 14. Composition de photostabilisants selon la revendication 1, dans laquelle le composé (A) répond à la formule

ayant une masse moléculaire comprise entre 2000 et 4000.

- 15. Composition de photostabilisante selon la revendication 1, dans laquelle le composé (B) est un oxyde ou un hydroxyde de Mg ou de Zn.
- Composition de photostabilisants selon la revendication 1, dans laquelle le composé (B) est un oxyde de Mg ou de Zn.
- Composition de photostabilisants selon la revendication 2, dans laquelle le composé (C) est un sel d'Al, Ca, Mg
 ou Zn avec un acide dicarboxylique en C₁₂-C₁₆.
 - 18. Composition de photostabilisante selon la revendication 2, dans laquelle le composé (C) est un sel de Ca, Mg ou Zn avec l'acide stéarique.
- 55 19. Polyéthylène stabilisé contenant une composition de photostabilisants selon la revendication 1 ou 2.
 - 20. Polyéthylène stabilisé selon la revendication 19, dans lequel les pourcentages en poids des composés (A) et (B), par rapport au poids du polyéthylène, sont : de 0,025 à 2 %, de préférence de 0,05 à 1 % pour le composé (A) et

de 0,005 à 1%, de préférence de 0,025 à 0,5 % pour le composé (B) .

- 21. Polyéthylène stabilisé selon la revendication 19, dans lequel le pourcentage en poids du composé (C), par rapport au polyéthylène, est de 0,005 à 1 %, de préférence de 0,025 à 0,5 %.
- 22. Polyéthylène stabilisé selon la revendication 19 lequel est le polyéthylène basse densité (LDPE), le polyéthylène basse densité linéaire (LLDPE) ou un mélange de ces deux composés.
- 23. Film préparé à partir du polyéthylène basse densité (LDPE), du polyéthylène basse densité linéaire (LLDPE) ou de mélanges des deux, stabilisé par une composition de photostabilisants de la revendication 1 ou 2.