UNIVERSITY DEPARTMENT OF MATHEMATICS TMBU, Bhagalpur

Due Date: 30–05-19 Linear Algebra Session: 2018–20

- 1. Problems on system of linear equation
 - (a) Solve the following system of linear equation using Gaussian elimination method and describe the type of system of linear equations using solutions

$$i.$$
 $2x + y + 3z = 1$ $ii.$ $x + 2y - 3z + w = -2$ $2x + 6y + 8z = 3$ $3x - y - 2z - 4w = 1$ $6x + 8y + 18z = 5$ $2x + 3y - 5z + w = -3$

$$iii.$$
 $x + y + 2z = -2$ $iv.$ $2x + 3y - 5z + w = -3$ $3x - y + 14z = 6$ $3x - y - 2z - 4w = 1$ $x + 2y = -5$

(b) For what value of k does the following system of linear equation has infinitely many solutions

$$x + ky + z = 1$$
$$y + z = 2$$
$$x + y + 2 = 3$$

- 2. Problem on finding coordinate in given vector space
 - (a) Find the coordinate of x = (8, -9, 6) w.r.t the basis $\beta = \{(1, -1, 3), (-3, 4, 9), (2, -2, 4)\}$ of \mathbb{R}^3 .
 - (b) Let \mathcal{P}_3 be the set of all polynomial of degree less than or equal to 3. Find the coordinate of the vector $f(x) = 1 + x + x^2 + x^3$ and $g(x) = -3 + 2x^3$ relative to the following basis of \mathcal{P}_3

$$\beta = \{1 - x, 1 + x, x^2 - x^3, x^2 + x^3\}$$

(c) Consider the the vector space of all 2×2 matrices of real numbers with basis

$$\beta = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\}.$$

Find the coordinate of $A = \begin{pmatrix} 5 & 4 \\ 3 & 2 \end{pmatrix}$ and $B = \begin{pmatrix} 8 & 6 \\ 2 & 2 \end{pmatrix}$, with relative to β .

- 3. Problem on matrix of linar transformation
 - (a) Let T be the linear map from $\mathbb{R}^3 \to \mathbb{R}^3$ is defined by

$$T(x, y, z) = (3x + 2y + z, x + 3z, y + 4z),$$

then find the matrix of linear transformation given by standard basis.

- (b) Find the matrix of linear transformation that reflects any vector along the the line inclined at an angle θ with x-axis.
- (c) Find the matrix of linear transformation that rotates any vector at an angle θ .

(d) For an integer n > 0, let \mathcal{P}_n denote the vector space of polynomials with real coefficients of degree n or less. Define the map $T : \mathcal{P}_2 \to \mathcal{P}_4$ by

$$T(f)(x) = f(x^2).$$

- i. Determine if T is a linear transformation.
- ii. If it is, find the matrix representation for T relative to the basis $B = \{1, x, x^2\}$ of \mathcal{P}_2 and $C = \{1, x, x^2, x^3, x^4\}$ of \mathcal{P}_4 .
- (e) Let \mathcal{P}_1 be the vector space of all real polynomials of degree 1 or less. Consider the linear transformation $T: \mathcal{P}_1 \to \mathcal{P}_1$ defined by

$$T(ax + b) = (3a + b)x + a + 3,$$

- i. With respect to the basis B = 1, x, find the matrix of the linear transformation T.
- ii. Find a basis B of the vector space \mathcal{P}_1 such that the matrix of T with respect to B is a diagonal matrix.
- iii. Express f(x) = 5x + 3 as a linear combination of basis vectors of B.