Question 1

- 1. $a(a+b)^*a$
- 2. $(b(a+b))^*b^*$
- 3. $a^*baaa^* + a^*abaa^* + a^*aaba^* + aaa^*$
- 4. $(a+b)(a+b)^*$

Question 2

1.
$$\epsilon + a(a+b)^* + (a+b)^*aa(a+b)^*a(a+b)^*$$

2. $[ba + (a + bb)a^*b]^*$

Question 3

In fact the only condition for it to work is to satisfies this expression which correspond to having at least an a and b

 Σ^*

Let take a string that satisfies the expression

Let split this string in two pieces x and y with n a in x and m a in y and n, $m \ge 0$

If n=m then we are done the string is in the set

Let suppose n < m

Then we can move the split of the string one letter further. If the letter is a then we have n+1 a's in x and still m b's in y, if it's a b then we have still n a's in x and m-1 b's in y Then we check if the amount are the same now, if not then we can repeat this step until they match

Similarly with n > m we move the split left

Then this expression define this language and thus it's a regular language.

Question 4

We see that s_1 and s_3 are bisimilar as we have the same outgoing transition (b and c)

We also have s_4 to s_9 bisimilar as they don't have any outgoing transitions

Question 5

	ϵ	а	b	аа	bb
ϵ	Eq				
а		Eq			
b			Eq		
aa				Eq	
bb			Eqq		Eq

Nothing starts with b that is in L. All equivalent classes on a are equivalent to themselves. ax is equivalent to ax for any x.

The only equivalent classes in L are on a^st

Because a^n , $n \in N$ there are infinite equivalence classes as there is an equivalent classes for each a^n where $n \in N$, N is distinct from itself