ANSWERS REAL ANALYSIS Q1

Exercise 3.3: Assume $d: M \times M \to \mathbb{R}$ satisfies

- (1) d(a,b) = 0 if and only if a = b
- (2) for all $a, b, c \in M$, $d(a, b) \le d(a, c) + d(b, c)$.

We show that d satisfies the properties (i), (ii), (iii), (iv) of the definition of a metric. Here (ii) is clear from the assumption (1).

(i): Let $x, y \in M$ be arbitrary. Taking a = b = x and c = y in (2) gives

$$0 \stackrel{(1)}{=} d(x,x) \stackrel{(2)}{\leq} d(x,y) + d(x,y) = 2d(x,y).$$

Therefore, d(x, y) > 0.

(iii): Let $x, y \in M$ be arbitrary. Taking a = x and b = y and c = x gives

$$d(x,y) \stackrel{(2)}{\leq} d(x,x) + d(y,x) \stackrel{(1)}{=} d(y,x).$$

This implies $d(x,y) \leq d(y,x)$. Reversing the roles of x and y, we obtain $d(y,x) \leq$ d(x,y) as well, and thus (iii) follows.

(iv). This follows from

$$d(x,y) \stackrel{(2)}{\leq} d(x,z) + d(y,z) \stackrel{\text{(iii)}}{=} d(x,z) + d(z,x).$$

Exercise 3.18: We first check that for $x \in \mathbb{R}^n$, $||x||_{\infty} \le ||x||_1 \le ||x||_1$. To prove the first estimate note that for each $k \in \{1, ..., n\}$, one has

$$|x_k| \le \left(\sum_{j=1}^n |x_j|^2\right)^{1/2} = ||x||_2.$$

Therefore, $\|x\|_{\infty} = \max_{k \in \{1,\dots,n\}} |x_k| \le \|x\|_2$. To prove $\|x\|_2 \le \|x\|_1$, first note that the case $\|x\|_1 = 0$ is clear. If $\|x\|_1 > 0$, we can use a so-called homogeneity argument. Let $\lambda = ||x||_1$. Consider the vector $y = \lambda^{-1}x$. Then by the properties of a norm we obtain $||y||_1 = \lambda^{-1}||x||_1 = 1$. Therefore, $|y_k| \le 1$ for all $k \in \{1, ..., n\}$. It follows that $|y_k|^2 \le |y_k|$, and thus

$$||y||_1^2 = \sum_{k=1}^n |y_k|^2 \le \sum_{k=1}^n |y_k| = ||y||_1 = 1.$$

We can conclude that $||y||_2 \le 1$. Since $x = \lambda y$, we obtain

$$||x||_2 = |\lambda| ||y||_2 \le |\lambda| = ||x||_1.$$

Next we will show that $||x||_1 \le n||x||_{\infty}$. Observe that for all $k \in \{1, ..., n\}$, one has $|x_k| \leq ||x||_{\infty}$. Summing over all $k \leq n$, we find that

$$||x||_1 = \sum_{k=1}^n |x_k| \le n||x||_{\infty}.$$

Finally we check that $||x||_1 \leq \sqrt{n}||x||_2$. From the Cauchy–Schwarz inequality we obtain

$$\|x\|_1 = \sum_{k=1}^n |x_i| \le \sum_{k=1}^n |x_i| \cdot 1 \le \left(\sum_{i=1}^n |x_i|^2\right)^{1/2} \left(\sum_{i=1}^n 1^2\right)^{1/2} = \sqrt{n} \|x\|_2.$$

Exercise 3.22: The estimate $||x||_{\infty} \le ||x||_2$ can be proved as in Exercise 3.18. To obtain $||x||_2 \le ||x||_1$ note that

$$||x||_2 = \lim_{n \to \infty} \left(\sum_{k=1}^n |x_k|^2\right)^{1/2} \stackrel{\text{Ex 3.18}}{\leq} \lim_{n \to \infty} \sum_{k=1}^n |x_k| = ||x||_1.$$

Exercise 3.29: We prove that A is bounded \Leftrightarrow diam $(A) < \infty$.

" \Rightarrow " Assume A is bounded. Then we can find $x \in M$ and r > 0 such that $A \subseteq B(x,r)$. Thus for all $a,b \in A$, we have $a,b \in B(x,r)$, and thus

$$d(a,b) \le d(a,x) + d(x,b) < r + r = 2r.$$

Thus diam $(A) = \sup_{a,b \in A} d(a,b) \le 2r < \infty$.

" \Leftarrow " Assume diam $(A) < \infty$. Let r = diam(A) + 1 and fix $x \in A$. For all $a \in A$, one has $d(a, x) \leq \text{diam}(A) < r$. Therefore, $A \subseteq B(x, r)$ and we can conclude that A is bounded.

Exercise 3.33: Assume $x_n \to x$ and $x_n \to y$. If $x \neq y$, then d(x,y) > 0 and we will use this to deduce a contraction. Let $\varepsilon = \frac{1}{2}d(x,y)$. Choose $N_1 \in \mathbb{N}$ such that for all $n \geq N_1$, $d(x,x_n) < \varepsilon$. Choose $N_2 \in \mathbb{N}$ such that for all $n \geq N_2$, $d(y,x_n) < \varepsilon$. Letting $n = \max\{N_1, N_2\}$, we find

$$d(x,y) \le d(x,x_n) + d(x_n,y) < 2\varepsilon = d(x,y).$$

This cannot be true, and hence x = y.

Exercise 3.41: Below we use the fact that $\langle x, y \rangle - \langle x, z \rangle = \langle x, y - z \rangle$. Assume $x^{(k)} \to x$ and $y^{(k)} \to y$. Then

$$\begin{aligned} |\langle x, y \rangle - \langle x^{(k)}, y^{(k)} \rangle| &\leq |\langle x, y \rangle - \langle x, y^{(k)} \rangle| + |\langle x, y^{(k)} \rangle - \langle x^{(k)}, y^{(k)} \rangle| \\ &= |\langle x, y - y^{(k)} \rangle| + |\langle x - x^{(k)}, y^{(k)} \rangle| \\ &\leq \|x\|_2 \|y - y^{(k)}\|_2 + \|x - x^{(k)}\|_2 \|y^{(k)}\|_2 \end{aligned}$$

where we used the Cauchy–Schwarz inequality in the last step. Since $(y^{(k)})_{k\geq 1}$ is convergent it is bounded (see Exercise 3.36) by some constant M. It follows that

$$|\langle x, y \rangle - \langle x^{(k)}, y^{(k)} \rangle| \le ||x||_2 ||y - y^{(k)}||_2 + M||x - x^{(k)}||_2.$$

Since the right-hand side tends to zero as $k \to \infty$, the required result follows.

Exercise 4.4: Let $A \subseteq M$. In the lectures we have proved that for any $x \in M$, the set $M \setminus \{x\}$ is open. Thus the result follows if we prove $A = \bigcap_{x \in A^c} M \setminus \{x\}$.

¹To prove this you could first look again at the prove that the limit of a product equal the products of the limits for real numbers. The exercise is a generalization of this fact

To prove this claim, first let $a \in A$. Then for all $x \in A^c$, we have $x \neq a$ so $a \in M \setminus \{x\}$. Thus $a \in \bigcap_{x \in A^c} M \setminus \{x\}$. For the converse we use contraposition. If $a \notin A$, then $a \in A^c$ and $a \notin M \setminus \{a\}$. Therefore $a \notin \bigcap_{x \in A^c} M \setminus \{x\}$.

Exercise 4.11: Let $F = \{e^{(k)} : k \ge 1\}$. By Theorem 4.9 it suffices to take a sequence (x_n) in A such that $x_n \to x$ for some $x \in \ell^1$ and show that $x \in F$.

Convergent sequences in this set F are a bit special as we will see! Indeed, for $n \neq m$ we have $\|e^{(n)} - e^{(m)}\|_1 = 2$. Since $x_n \in F$ for every $n \geq 1$, for every $n, m \geq 1$ we have either $x_n = x_m$ or $\|x_n - x_m\|_1 = 2$ (*). Since $(x_n)_{n \geq 1}$ is a Cauchy sequence, (*) can only happen for finitely many m, n. Therefore, there is an index $N \geq 1$ such that $x_n = x_N$ for all $n \geq N$. It follows that $x = x_N$, and hence $x \in F$ as required.

Exercise 4.15: We first show that A is closed. Let $y \in A^c$, so d(x,y) > r. Let $\varepsilon = d(x,y) - r$. We claim that $B_{\varepsilon}(y) \subseteq A^c$. Indeed, if $z \in B_{\varepsilon}(y)$, then

$$d(y,x) - d(x,z) \le |d(y,x) - d(x,z)| \le d(y,z) < \varepsilon.$$

This implies $d(x,z) > d(y,x) - \varepsilon = r$. Therefore, $z \in A^c$.

Next we an example such that $\overline{B_r(x)} \neq A$. Let M be any set consisting of at least 2 elements. Let d be the discrete metric on M. Let $x \in M$ and r = 1. Then A = M. On the other hand $B_1(x) = \{x\}$. As $\{x\}$ is closed, it follows that $\overline{B_1(x)} = \overline{\{x\}} = \{x\}$. Since A = M contains at least two elements, we find that $\overline{B_1(x)} \neq A$.

Exercise 4.33: A limit point is also called accumulation point. Let x be a limit point of A. Let U be a neighborhood of x. We will construct a sequence (x_n) of distinct points in $U \cap A$ in a recursive way. Let $\varepsilon_1 > 0$ be such that $B_{\varepsilon_1}(x) \subseteq U$. Since x is a limit point of A, we can find $x_1 \in (B_{\varepsilon_1}(x) \setminus \{x\}) \cap A$. Let

$$\varepsilon_2 = d(x_1, x) \} > 0.$$

Applying the definition of a limit point to x again but this time with ε_2 , it follows that we can find $x_2 \in (B_{\varepsilon_2}(x) \setminus \{x\}) \cap A$. Let $\varepsilon_3 = d(x_2, x)$, etc... In this way we find a sequence of real numbers (ε_n) and (x_n) in A such that $0 < \varepsilon_{n+1} < \varepsilon_n$ and

$$0 < d(x_{n+1}, x) < \varepsilon_n = d(x_n, x).$$

In particular, $x_n \neq x_m$ if $n \neq m$, and for every $n \geq 1$, $x_n \in B_{\varepsilon_n}(x) \subseteq B_{\varepsilon_1}(x) \subseteq U$. This shows that $U \cap A$ contains infinitely many distinct points in A, concluding the proof.

Exercise 4.40: The first assertion follows from the negation of the definition of x being a limit point of A. The second part we explain in detail. Let $A \subseteq \mathbb{R}$. Let $S \subseteq A$ be the set of isolated points of A. For each $x \in S$ let $\varepsilon_x > 0$ be such that $(B_{\varepsilon_x}(x) \setminus \{x\}) \cap A = \emptyset$. For every $x \in S$ choose $q_x \in \mathbb{Q} \cap B_{\varepsilon_x/2}(x)$. We claim that $q_x \neq q_y$ whenever $x, y \in S$ with $x \neq y$. To prove the claim, let $x, y \in S$ with $x \neq y$. Renaming x and y we can assume that $\varepsilon_x \geq \varepsilon_y$. Since $(B_{\varepsilon_x}(x) \setminus \{x\}) \cap A = \emptyset$, we have $y \notin (x - \varepsilon_x, x + \varepsilon_x)$. Therefore, $|x - y| \geq \varepsilon_x$. It follows that

$$\varepsilon_x \leq |x-y| \leq |x-q_x| + |q_x-q_y| + |q_y-y| < \frac{\varepsilon_x}{2} + |q_x-q_y| + \frac{\varepsilon_y}{2} \leq |q_x-q_y| + \varepsilon_x.$$

This clearly implies $q_x \neq q_y$ and the claim follows.

The countability of \mathbb{Q} implies that $T:=\{q_x:x\in S\}$ is at most countable. Let $\phi:T\to\mathbb{N}$ be an injection. The claim yields that mapping $\psi:S\to T$ given by $\psi(x)=q_x$ is an injection (it is even a bijection). Therefore, the composition $\phi\circ\psi$ is an injection from S into \mathbb{N} . This implies that S is at most countable.

Exercise 4.50: Recall that the family of subsets of \mathbb{N} (this is the power set) is uncountable. For $I \subseteq \mathbb{N}$, let $e_I : \mathbb{N} \to \{0,1\}$ be given by $e_I(i) = 1$ if $i \in I$ and $e_I(i) = 0$ if $i \notin I$. Then each e_I is a sequence of numbers in $\{0,1\}$. Moreover, if $I \neq J$, then e_I and e_J differ by at least one coordinate and it follows that $\|e_I - e_J\|_{\infty} = 1$. Now assume A is such that A is dense in ℓ^{∞} . We will show that A has to be uncountable. Since A is dense, it follows that for every $I \subseteq \mathbb{N}$ there is an element in A, say x_I such that $\|x_I - e_I\| < 1/4$. We claim that $x_I \neq x_J$ for $I \neq J$. Indeed,

 $1 = \|e_I - e_J\|_{\ell^\infty} \leq \|e_I - x_I\|_{\ell^\infty} + \|x_I - x_J\|_{\ell^\infty} + \|x_J - e_J\|_{\ell^\infty} < \|x_I - x_J\|_{\ell^\infty} + 1/2.$ Therefore, $\|x_I - x_J\|_{\ell^\infty} > 1/2$. In particular, this gives $x_I \neq x_J$. It follows that all the elements $x_I \in A$ for $I \subseteq \mathbb{N}$ are distinct, and hence A is uncountable.