導来圈 et 導来函手 en Géométrie Algébrique

Peize Liu

10 August 2022

Contents

2
9
13
16
[YS] [Scha]
[Căld]
[Huyb] artsAG] artsRD] 李文威] [Bock]
rts rts 李フ

Prerequisites (Oxford courses):

- B2.2 Commutative Algebra
- C2.2 Homological Algebra
- C2.6 Introduction to Schemes
- C3.4 Algebraic Geometry

I will take everything from those courses for granted.

Overview

Kontsevich's homological mirror symmetry is a conjecture on the derived equivalence of the A_{∞} -categories

$$\mathsf{D}^\pi\mathsf{Fuk}(X)\simeq\mathsf{D}^\mathrm{b}\mathsf{Coh}(X^\vee)$$

for a mirror pair (X, X^{\vee}) of Calabi–Yau varieties. The left-hand side is the derived Fukaya category constructed from the symplectic geometry of X, known as the A-model, whereas the right-hand side

is the bounded derived category of coherent sheaves on X^{\vee} , known as the B-model. These notes aim to fill in the gaps between undergraduate algebraic geometry and the essential backgrounds of understanding $\mathsf{D}^{\mathsf{b}}\mathsf{Coh}(X)$ when X is a smooth projective variety.

Some topics and results in derived categories of sheaves to be covered:

- Some initial results, e.g. $\mathsf{D^bCoh}(X) \cong \mathsf{D^b_{Coh}}(\mathsf{QCoh}(X));$
- Smoothness, perfect complexes, $\mathsf{Perf}\,X = \mathsf{D}^{\mathsf{b}}_\mathsf{Coh}(X)$ for regular Noetherian scheme X;
- Serre functor, derived Serre duality;
- Grothendieck-Verdier duality:
- Ampleness, canonical bundle, Fano & Calabi-Yau varieties;
- Bondal–Orlov Theorem. Suppose that X is a projective variety with canonical bundle ω_X ample or anti-ample, and Y is a projective variety. If $\mathsf{D^bCoh}(X) \cong \mathsf{D^bCoh}(Y)$ as triangulated categories, then $X \cong Y$ as varieties;
- A_{∞} -structure on Coh(X);
- $\mathsf{D}^{\mathrm{b}}\mathsf{Coh}(\mathbb{P}^1) \cong \mathsf{D}\,\mathsf{Rep}\,Q$ for the Kronecker quiver Q;
- Derived category of projective n-spaces $\mathsf{D}^{\mathrm{b}}\mathsf{Coh}(\mathbb{P}^n) = \langle \mathcal{O}(-n), ..., \mathcal{O}(-1), \mathcal{O}(0) \rangle$;

I will continue from the notes ([YS]) *Triangulated categories and derived categories* by Jinghui Yang & Shuwei Wang. **Warning.** Currently these notes grew out from a talk and was not self-contained in nature. In the future they may be extended to a more inclusive version, where I aim to present derived categories and localisations rigourously.

0 Derived Functors

This section mainly follows [李文威]. The relevant sections are 1.8, 1.11, 3.2, 4.6–4.9, 4.12.

Recall that from an Abelian category \mathcal{A} we can build the **homotopy category** $K(\mathcal{A})$ by taking quotient by chain maps homotopic to zero in the chain complex category $Ch(\mathcal{A})$, and the **derived category** $D(\mathcal{A})$ by (Verdier) localisation on the acyclic complexes in $K(\mathcal{A})$. In particular, every quasi-isomorphism of chains in \mathcal{A} becomes an isomorphism in $D(\mathcal{A})$ (and $D(\mathcal{A})$ is universal with respect to this property by construction). In general, $K(\mathcal{A})$ and $D(\mathcal{A})$ are not Abelian, but rather **triangulated categories**. For all the technical details we refer to the notes from the previous talk. If \mathcal{A} has enough injectives, then $D^+(\mathcal{A})$ is equivalent to $\mathcal{I}_{\mathcal{A}}$, the full subcategory of injective objects of \mathcal{A} .

There is a natural way to define derived functor under the viewpoint of derived categories. First we recall the classical definition. Suppose that \mathcal{A} is an Abelian category with enough injectives. For $A \in \text{Obj}(\mathcal{A})$, let $A \to I^{\bullet}$ be an injective resolution of A. Suppose that $F \colon \mathcal{A} \to \mathcal{B}$ is a left exact functor. Then the **n-th right derived functor** of F acting on X is given by $\mathsf{R}^n F(A) := \mathsf{H}^n(F(I^{\bullet}))$.

Let \mathcal{K} and \mathcal{K}' be triangulated categories, and $Q: \mathcal{K} \to \mathcal{K}/\mathcal{N}$ and $Q': \mathcal{K}' \to \mathcal{K}'/\mathcal{N}'$ be Verdier localisations. Suppose that $F: \mathcal{K} \to \mathcal{K}'$ is a triangulated functor (i.e. preserving distinguished triangles). The naive idea is to seek for a functor G such that the following diagram commutes (and satisfies some universal properties):

$$\begin{array}{ccc}
\mathcal{K} & \xrightarrow{F} & \mathcal{K}' \\
Q \downarrow & & \downarrow Q' \\
\mathcal{K}/\mathcal{N} & \xrightarrow{G} & \mathcal{K}'/\mathcal{N}'
\end{array}$$

For this we need the Kan extension from category theory. Let's recap.

Definition 0.1. Consider functors $Q: \mathcal{C} \to \mathcal{D}$ and $F: \mathcal{C} \to \mathcal{E}$. The **left Kan extension** of F by Q consists of the following data:

- A functor $\mathsf{Lan}_Q F \colon \mathcal{D} \to \mathcal{E}$;
- A natural transformation $\eta: F \Rightarrow \mathsf{Lan}_Q F \circ Q$;

which satisfy the following universal property: for any functor $L \colon \mathcal{D} \to \mathcal{E}$ and natural transformation $\xi \colon F \Rightarrow L \circ Q$, there exists a unique $\chi \colon \mathsf{Lan}_Q F \Rightarrow L$ such that $\xi = (\chi \circ Q) \circ \eta$.

Considering left Kan extension in the opposite categories, we could define **right Kan extension**. The corresponding diagram is given by reversing all natural transformations in the above diagram.

Definition 0.2. Let $F: \mathcal{K} \to \mathcal{K}'$ as above. If the left $(resp. \ right)$ Kan extension $\mathsf{Lan}_Q(Q' \circ F)$ $(resp. \ \mathsf{Ran}_Q(Q' \circ F))$ exists and is a triangulated functor, then it is called the right $(resp. \ \mathsf{left})$ **derived functor** of F, denoted by $\mathsf{R}F$ $(resp. \ \mathsf{L}F)$.

$$\begin{array}{cccc}
\mathcal{K} & \xrightarrow{F} & \mathcal{K}' & & \mathcal{K} & \xrightarrow{F} & \mathcal{K}' \\
Q \downarrow & & \downarrow Q' & & \downarrow Q' & & \downarrow Q' \\
\mathcal{K}/\mathcal{N} & \xrightarrow{\mathsf{R}F} & \mathcal{K}'/\mathcal{N}' & & & \mathcal{K}/\mathcal{N} & \xrightarrow{\mathsf{L}F} & \mathcal{K}'/\mathcal{N}'
\end{array}$$

Remark. Suppose that $G \colon \mathcal{K} \to \mathcal{K}'$ is another triangulated functor with a natural transformation $\eta \colon F \Rightarrow G$. If the right derived functor RG exists, then there is a canonical natural transformation $RF \Rightarrow RG$ by the universal property of right Kan extension.

Then we focus on the derived categories. Note that an additive functor $F: \mathcal{A} \to \mathcal{A}'$ between Abelian categories induces the homotopy functor $\mathsf{K}F\colon \mathsf{K}(\mathcal{A}) \to \mathsf{K}(\mathcal{A}')^1$ which is triangulated. Consider the Kan extensions:

 $^{^{1}}$ The cases for K^{+} , K^{-} , and K^{b} are identical.

Assuming existence, RF (resp. LF) is called the right (resp. left) derived functor of F. Their uniqueness is ensured by the universal property. What about existence?

Definition 0.3. Let $F: A \to A'$ be as above. Let \mathcal{J} be a triangulated subcategory of K(A). We say that \mathcal{J} is F-injective (resp. F-projective), if:

- Resolution: For $X \in \text{Obj}(\mathsf{Ch}(\mathcal{A}))$ there exists $Y \in \text{Obj}(\mathcal{J})$ and a quasi-isomorphism $X \to Y$ (resp. $Y \to X$).
- Preserving null system: $F(\text{Obj}(\mathcal{N}(\mathcal{A}) \cap \mathcal{J})) \subseteq \text{Obj}(\mathcal{N}(\mathcal{A}'))$

Note that here the null system $\mathcal{N}(\mathcal{A})$ is the acyclic complexes in $\mathsf{Ch}(\mathcal{A})$.

Remark. There is a similar notion for subcategories of \mathcal{A} . Let \mathcal{I} be an additive full subcategory of \mathcal{A} . We say that \mathcal{I} is of **type I** (resp. **type P**) relative to F, if:

- For any $X \in \text{Obj}(\mathcal{A})$ there exists $Y \in \text{Obj}(\mathcal{I})$ and a monomorphism $X \to Y$ (resp. epimorphism $Y \to X$);
- For any short exact sequence $0 \to X \to Y \to Z \to 0$ in \mathcal{A} , if $X, Y \in \mathrm{Obj}(\mathcal{I})$ then $Z \in \mathrm{Obj}(\mathcal{I})$. (resp. If $Y, Z \in \mathrm{Obj}(\mathcal{I})$ then $X \in \mathrm{Obj}(\mathcal{I})$.) In this case $0 \to F(X) \to F(Y) \to F(Z) \to 0$ is also exact.

This should be considered as the generalisation of injective objects in \mathcal{A} . Indeed the subcategory $\mathcal{I}_{\mathcal{A}}$ of injective objects of \mathcal{A} is of type I relative to any additive functor F.

The terminology is taken from [李文威, 4.8.2]. In fact, this notion is what [Scha, 4.7.5] calls F-injective. The two definitions are closely related. If $\mathcal{I} \subseteq \mathcal{A}$ is of type I relative to F, then $\mathsf{K}(\mathcal{I}) \subseteq \mathsf{K}(\mathcal{A})$ is F-injective.

Proposition 0.4

Let $F: \mathcal{A} \to \mathcal{A}'$ be as above. Suppose that $K(\mathcal{A})$ has an F-injective (resp. F-projective) subcategory. Then the right (resp. left) derived functor RF (resp. LF) exists.

Proof. Let \mathcal{I} be an F-injective subcategory of $\mathsf{K}(\mathcal{A})$. By Theorem 3.5 in [YS], there is an equivalence of category $\mathsf{D}(\mathcal{A}) \simeq \mathcal{I}/(\mathcal{N}(\mathcal{A}) \cap \mathcal{I})$. Since $F(\mathsf{Obj}(\mathcal{N}(\mathcal{A}) \cap \mathcal{I})) \subseteq \mathsf{Obj}(\mathcal{N}(\mathcal{A}'))$, by the universal property of Verdier localisation there is a functor $F^{\flat} \colon \mathcal{I}/(\mathcal{N}(\mathcal{A}) \cap \mathcal{I}) \to \mathsf{D}(\mathcal{A}')$. Take $\mathsf{R}F \colon \mathsf{D}(\mathcal{A}) \to \mathsf{D}(\mathcal{A}')$ to be the functor such that the following diagram commutes:

$$\begin{array}{c}
\mathsf{D}(\mathcal{A}) & \xrightarrow{\mathsf{R}F} & \mathsf{D}(\mathcal{A}') \\
\downarrow^{i^{-1}} \downarrow \downarrow^{i} & & \downarrow^{F^{\flat}} \\
\mathcal{I}/(\mathcal{N}(\mathcal{A}) \cap \mathcal{I})
\end{array}$$

Next we need to verify that RF is indeed the Kan extension. See [李文威, Prop 1.11.2, Prop 4.6.4].

Corollary 0.5

Suppose that \mathcal{A} has enough injectives (resp. projectives). Then the right (resp. left) derived functor ${}^{+}\mathsf{R}F$ (resp. ${}^{+}\mathsf{L}F$) exists for any additive functor $F \colon \mathcal{A} \to \mathcal{A}'$.

Proof. Immediate by [YS, Prop 3.10].

Proposition 0.6

Suppose that \mathcal{A} has enough injectives. Let $F \colon \mathcal{A} \to \mathcal{A}'$ be a left exact additive functor. Then for $A \in \text{Obj}(\mathcal{A})$, we have

$$R^n F(A) = H^n \circ RF(QA),$$

where $QA \in D^+(A)$ and $H^n : D^+(A') \to Ab$ is the *n*-th cohomology functor.

Proof. Take an injective resolution $A \to I^{\bullet}$. This gives rise to a quasi-isomorphism $A \to I$ in $\mathsf{K}^+(\mathcal{A})$, where I lies in the F-injective subcategory $\mathsf{K}^+(\mathcal{I}_{\mathcal{A}})$ of $\mathsf{K}^+(\mathcal{A})$. Now we have the isomorphisms

$$RF(QA) \cong RF(QI) \cong Q'K^+F(I).$$

Applying H^n gives the result.

Proposition 0.7. Long Exact Sequence

Suppose that $F: \mathcal{A} \to \mathcal{A}'$ has a right derived functor RF. For any distinguished triangle $X \to Y \to Z \to X[1]$ in $D(\mathcal{A})$, there is a canonical long exact sequence:

$$\cdots \to \mathsf{R}^{n-1}(Z) \to \mathsf{R}^n F(X) \to \mathsf{R}^n F(Y) \to \mathsf{R}^n F(Z) \to \mathsf{R}^{n+1} F(X) \to \cdots$$

Proof. Since RF is a triangulated functor, the result follows from applying the cohomology functor H^0 .

Comparing to the classical definition, a great advantage of derived functors in this viewpoint is that they compose in a canonical way.

Proposition 0.8

Consider the additive functors among Abelian categories:

$$\mathcal{A} \xrightarrow{F} \mathcal{A}' \xrightarrow{F'} \mathcal{A}''$$

Suppose that the right derived functors $\mathsf{R}F$, $\mathsf{R}F'$ and $\mathsf{R}(F' \circ F)$ all exist. Then there is a natural transformation $\mathsf{R}(F' \circ F) \Rightarrow (\mathsf{R}F') \circ (\mathsf{R}F)$.

Moreover, if \mathcal{I} is an F-injective subcategory of $K(\mathcal{A})$ and \mathcal{I}' is an F'-injective subcategory of $K(\mathcal{A}')$ such that $F(\mathrm{Obj}(\mathcal{I})) \subseteq \mathrm{Obj}(\mathcal{I}')$, then \mathcal{I} is $F' \circ F$ -injective. And the natural transformation above is an isomorphism:

$$\mathsf{R}(F' \circ F) \cong (\mathsf{R}F') \circ (\mathsf{R}F).$$

Proof. For the first part, the natural transformation $R(F' \circ F) \Rightarrow (RF') \circ (RF)$ is induced by the universal property of left Kan extensions (*check it!*) For the second part, take $I \in Obj(\mathcal{I})$. Using the construction in Proposition 0.4 we obtain

$$(\mathsf{R}F') \circ (\mathsf{R}F)(QI) = Q'' \circ F' \circ F(I) = \mathsf{R}(F' \circ F)(QI)$$

For $X \in \mathrm{Obj}(\mathsf{K}(\mathcal{A}))$, by choosing quasi-isomorphism $X \to I$ we obtain the isomorphism $(\mathsf{R}F') \circ (\mathsf{R}F)(QX) \cong \mathsf{R}(F' \circ F)(QX)$. Finally check that this is compatible with the natural transformation given above.

Derived Bi-Functors

The tensor functor $-\otimes$ – and the Hom functor Hom(-,-) are two typical examples of bi-functors of Abelian categories. Since we are interested in these functors, it is useful to treat the derived bi-functors separately.

Definition 0.9. Let $\mathcal{K}, \mathcal{K}_1, \mathcal{K}_2$ be triangulated categories. A bi-functor $F: \mathcal{K}_1 \times \mathcal{K}_2 \to \mathcal{K}$ is triangulated, if

- F is triangulated in both slots;
- For any $A \in \mathcal{K}_1$ and $B \in \mathcal{K}_2$, the following diagram anti-commutes²:

$$F(\mathsf{T}_1A,\mathsf{T}_2B) \longrightarrow \mathsf{T}F(A,\mathsf{T}_2B)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathsf{T}F(\mathsf{T}_1A,B) \longrightarrow \mathsf{T}^2F(A,B)$$

The definition of the left/right derived functor of a triangulated bi-functor is essentially identical. We are interested in the cases where the triangulated categories are homotopy categories of Abelian categories.

Now we consider Abelian categories $\mathcal{A}, \mathcal{A}_1, \mathcal{A}_2$, where \mathcal{A} admits countable products and coproducts. Let $F: \mathcal{A}_1 \times \mathcal{A}_2 \to \mathcal{A}$ be an additive bi-functor. Let

$$\mathsf{Ch}_{\oplus}F := \mathrm{Tot}_{\oplus} \circ \mathsf{Ch}^{2}(F) \colon \mathsf{Ch}(\mathcal{A}_{1}) \times \mathsf{Ch}(\mathcal{A}_{2}) \to \mathsf{Ch}(\mathcal{A});$$

 $\mathsf{Ch}_{\Pi}F := \mathrm{Tot}_{\Pi} \circ \mathsf{Ch}^{2}(F) \colon \mathsf{Ch}(\mathcal{A}_{1}) \times \mathsf{Ch}(\mathcal{A}_{2}) \to \mathsf{Ch}(\mathcal{A}).$

Then induce the triangulated bi-functors $K_{\oplus}F$, $K_{\Pi}F$: $K(\mathcal{A}_1) \times K(\mathcal{A}_2) \to K(\mathcal{A})$.

Let $\mathcal{I}_1, \mathcal{I}_2$ be triangulated subcategories of $\mathsf{K}(\mathcal{A}_1), \mathsf{K}(\mathcal{A}_2)$ respectively. We say that $(\mathcal{I}_1, \mathcal{I}_2)$ is F-injective (resp. F-projective), if \mathcal{I}_2 is $F(A_1, -)$ -injective for any $A_1 \in \mathsf{Obj}(\mathsf{K}(\mathcal{A}_1))$, and \mathcal{I}_1 is $F(-, A_2)$ -injective for any $A_2 \in \mathsf{Obj}(\mathsf{K}(\mathcal{A}_2))$.

²The term is used in [李文威]. It means that the two composite morphisms in the square differ by a sign.

Proposition 0.10

Let $F: \mathcal{A}_1 \times \mathcal{A}_2 \to \mathcal{A}$ be as above.

- 1. If $(\mathcal{I}_1, \mathcal{I}_2)$ is F-injective, then $\mathsf{R}F := \mathsf{R}\mathsf{K}_\Pi F$ exists. We call it the right derived functor of F;
- 2. If $(\mathcal{P}_1, \mathcal{P}_2)$ is F-projective, then $\mathsf{L} F := \mathsf{L} \mathsf{K}_{\oplus} F$ exists. We call it the left derived functor of F.

Ext and R Hom

Recall that in C2.2 Homological Algebra. we define the $\operatorname{Ext}_{\mathcal{A}}^n(A,B)$ to be the n-th right derived functor of $\operatorname{Hom}_{\mathcal{A}}(A,-)$ acting on $B\in\operatorname{Obj}(\mathcal{A})$. If \mathcal{A} has enough injectives or projectives, then $\operatorname{Ext}_{\mathcal{A}}^n(A,B)$ is computed by an injective resolution $B\to I^{\bullet}$ of B or a projective resolution $P^{\bullet}\to A$ of A. By acyclic assembly lemma, $\operatorname{Ext}_{\mathcal{A}}^n(A,B)$ can also be computed as the n-th cohomology of the total complex $\operatorname{Tot}^{\Pi}(\operatorname{Hom}_{\mathcal{A}}(P_{\bullet},Q_{\bullet}))$ using projective resolutions $P_{\bullet}\to A$ and $Q_{\bullet}\to B$.

Using the derived category, the Ext group can be defined without using injective or projective resolutions:

Definition 0.11. Let \mathcal{A} be an Abelian category. For chain complexes A, B in $\mathsf{Ch}(\mathcal{A})$, we define the (hyper-)Ext group as

$$\operatorname{Ext}_{\mathcal{A}}^{n}(A,B) := \operatorname{Hom}_{\mathsf{D}(\mathcal{A})}(A,B[n]).$$

This definition gives an obvious multiplication structure on Ext:

$$\operatorname{Ext}_{\mathcal{A}}^{n}(B,C) \times \operatorname{Ext}_{\mathcal{A}}^{m}(A,B) \longrightarrow \operatorname{Ext}_{\mathcal{A}}^{n+m}(A,C)$$

$$(f,g) \longmapsto f[m] \circ g$$

In particular it makes $\operatorname{Ext}_A^{\bullet}(A, A)$ a graded ring for any $A \in \operatorname{Obj}(A)$.

Next we will consider Ext as the right derived functor of Hom bi-functor $\operatorname{Hom}_{\mathcal{A}} \colon \mathcal{A}^{\operatorname{op}} \times \mathcal{A} \to \operatorname{\mathsf{Ab}}$. It induces the functor on the double complexes:

$$\operatorname{Hom}_{\mathcal{A}}^{\bullet,\bullet}(-,-)\colon \mathsf{Ch}(\mathcal{A})^{\mathrm{op}}\times \mathsf{Ch}(\mathcal{A})\to \mathsf{Ch}(\mathsf{Ab})\times \mathsf{Ch}(\mathsf{Ab}).$$

Define $\mathsf{Ch}\,\mathsf{Hom}_{\mathcal{A}}(-,-) := \mathsf{Tot}_\Pi\,\mathsf{Hom}_{\mathcal{A}}^{\bullet,\bullet}(-,-) \colon \mathsf{Ch}(\mathcal{A})^\mathrm{op} \times \mathsf{Ch}(\mathcal{A}) \to \mathsf{Ch}(\mathsf{Ab})$. It is not hard to verify that $\mathsf{Ch}\,\mathsf{Hom}_{\mathcal{A}}$ is naturally isomorphic to the **Hom complex** $\mathsf{Hom}_{\mathcal{A}}^{\bullet}$:

$$\operatorname{Hom}_{\mathcal{A}}^{n}(A,B) := \prod_{k \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{A}}(A^{k}, B^{k+n}), \qquad \operatorname{d}_{\operatorname{Hom}}^{n}(f) := \operatorname{d}_{B} \circ f - (-1)^{n} f \circ \operatorname{d}_{A}.$$

Lemma 0.12

$$\operatorname{Hom}_{\mathsf{K}(\mathcal{A})}(A, B[n]) \cong \operatorname{H}^n(\operatorname{Hom}_{\mathcal{A}}^{\bullet}(A, B), \operatorname{d}_{\operatorname{Hom}}^{\bullet}).$$

Proof. Trivial by definition.

The bi-functor $\mathsf{Ch}\,\mathsf{Hom}_\mathcal{A}$ or $\mathsf{Hom}_\mathcal{A}^{ullet}$ induces the triangulated bi-functor

$$\mathsf{K} \operatorname{Hom}_{\mathcal{A}} \colon \mathsf{K}^{-}(\mathcal{A})^{\operatorname{op}} \times \mathsf{K}^{+}(\mathcal{A}) \to \mathsf{K}^{+}(\mathsf{Ab}).$$

If A has enough injectives or projectives, then the right derived functor

$$R \operatorname{Hom}_{\mathcal{A}} \colon D^{-}(\mathcal{A})^{\operatorname{op}} \times D^{+}(\mathcal{A}) \to D^{+}(Ab)$$

exists.

Proposition 0.13

Suppose that \mathcal{A} has enough injectives or projectives. For $A \in \mathrm{Obj}(\mathsf{D}^-(\mathcal{A}))$ and $B \in \mathrm{Obj}(\mathsf{D}^+(\mathcal{A}))$, there exists a canonical isomorphism

$$\mathrm{H}^n \, \mathsf{R} \, \mathrm{Hom}_{\mathcal{A}}(A, B) \cong \mathrm{Hom}_{\mathsf{D}(\mathcal{A})}(A, B[n]).$$

Proof. Taking the right derived functor in the previous lemma and note that the cohomology functor H^n factors through the derived functor.

Corollary 0.14

Suppose that A has enough injectives. Let $A, B \in \text{Obj}(A)$ (viewed as complexes concentrated at degree 0). Then there is a canonical isomorphism

$$\operatorname{Hom}_{\mathsf{D}(\mathcal{A})}(A, B[n]) \cong \mathsf{R}^n \operatorname{Hom}(A, -)(B)$$

Therefore the hyper-Ext is a generalisation of the usual Ext.

Tor and \otimes^L

In this part we only consider R-modules. For $A, B \in \mathsf{Ch}(R\mathsf{-Mod})$, from C3.1 Algebraic Topology we recall the tensor product of complexes is given by the total complex $A \otimes_R B := \mathsf{Tot}_{\oplus}(A^{\bullet} \otimes_R B^{\bullet})$.

Definition 0.15. For $A, B \in \mathsf{Ch}(R\operatorname{\mathsf{-Mod}})$, the **total tensor product** of A and B is the left derived functor

$$A \otimes_R^{\mathsf{L}} B := \mathsf{L}(-\otimes_R -)(A, B).$$

 $L(-\otimes_R -)$: $D^-(\mathsf{Mod}\text{-}R) \times D^-(R\text{-}\mathsf{Mod}) \to D^-(\mathsf{Ab})$ exists because $R\text{-}\mathsf{Mod}$ has enough projectives. By taking cohomology we have the **(hyper-)Tor** groups:

$$\operatorname{Tor}_n^R(A,B) := \operatorname{H}_n(A \otimes_R^{\mathsf{L}} B).^3$$

Similar as hyper-Ext, using the theory of derived functors we can verify that the hyper-Tor reduces to the usual Tor on Obj(R-Mod) (defined using projective resolutions).

Remark. In general QCoh(X) does not have enough projectives. We will have to instead use flat resolutions to compute the total tensor product. See later.

³Cohomology and homology make no difference in algebra. By convention, $H_n := H^{-n}$.

Proposition 0.16. Derived Tensor-Hom Adjunction

Let $A \in D(Mod-R)$, $B \in D(R-Mod)$, and $C \in D(Ab)$. There are canonical isomorphisms in D(Ab):

$$\mathsf{R}\operatorname{Hom}_{\mathsf{Ab}}(X\otimes^{\mathsf{L}}_RY,Z)\cong\mathsf{R}\operatorname{Hom}_{\mathsf{Mod-}R}(X,\mathsf{R}\operatorname{Hom}_{\mathsf{Ab}}(Y,Z))$$

$$\cong\mathsf{R}\operatorname{Hom}_{R\operatorname{\mathsf{-Mod}}}(Y,\mathsf{R}\operatorname{Hom}_{\mathsf{Ab}}(X,Z)).$$

1 Sheaves of Modules

Let us recall some basic algebraic geometry from C2.6 Introduction to Schemes. All rings are commutative with multiplicative identity 1.

Definition 1.1. A scheme (X, \mathcal{O}_X) is a locally ringed space such that for any $x \in X$ there exists an open neighbourhood $U \in \mathsf{Top}(X)$ of x such that $(U, \mathcal{O}_X|_U) \cong (\mathrm{Spec}\,R, \mathcal{O}_{\mathrm{Spec}\,R})$ for some ring R.

Example 1.2. A variety over a field k is a reduced⁴, separated⁵, finite type⁶ scheme over k. An affine variety is a closed subscheme of $\mathbb{A}^n := \operatorname{Spec} k[x_1, ..., x_n]$. A **projective variety** is a reduced closed subscheme of $\mathbb{P}^n := \operatorname{Proj} k[x_0, ..., x_n]$. A **quasi-projective variety** is an open subscheme of a projective variety.

Definition 1.3. Let (X, \mathcal{O}_X) be a scheme. A **sheaf of** \mathcal{O}_X -modules F on X is a sheaf $F : \mathsf{Top}(X)^{\mathrm{op}} \to \mathsf{Ab}$ such that:

- For any $U \in \mathsf{Top}(X)$, F(U) is a \mathcal{O}_U -module;
- The module structure is compatible with restrictions on X.

The category of \mathcal{O}_X -modules is denoted by \mathcal{O}_X -Mod. It is an Abelian category with enough injectives.

Recall the way we construct the affine scheme (Spec R, $\mathcal{O}_{\operatorname{Spec} R}$) from any ring R. For any R-module M, we can construct the sheaf $\widetilde{M} \in \operatorname{Obj}(\mathcal{O}_{\operatorname{Spec} R}\operatorname{\mathsf{-Mod}})$ in a similar way (see the course notes for details). In particular we have the stalks $\widetilde{M}_{\mathfrak{p}} = M_{\mathfrak{p}}$ for $\mathfrak{p} \in \operatorname{Spec} R$ and the global sections $\widetilde{M}(\operatorname{Spec} R) = M$. For a general scheme X, \widetilde{M} can be constructed from an $\mathcal{O}_X(X)$ -module M.

Definition 1.4. Let $F \in \mathcal{O}_X$ -Mod. We say that F is **quasi-coherent**, if it satisfies any of the following equivalent conditions:

1. F is **locally presented**. That is, for any $x \in X$ there exists a neighbourhood $U \in \mathsf{Top}(X)$ of x such that there exists an exact sequence of the following form:

$$\bigoplus_{i \in I} \mathcal{O}_U \longrightarrow \bigoplus_{i \in J} \mathcal{O}_U \longrightarrow F|_U \longrightarrow 0$$

- 2. For any $x \in X$ there exists an affine neighbourhood $U \cong \operatorname{Spec} R \ni x$ such that $F|_U \cong \widetilde{M}$ for some R-module M.
- 3. There exists an affine open cover $\{U_i\}_{i\in I}$ of X such that $F|_{U_i}\cong \widetilde{M}_i$ for R_i -modules M_i , where $\operatorname{Spec} R_i\cong U_i$.

⁴i.e. all rings $\mathcal{O}_X(U)$ are reduced rings.

⁵i.e. the diagonal morphism $\Delta \colon X \to X \times_{\operatorname{Spec} k} X$ is a closed immersion.

 $^{^6}$ i.e. quasi-compact and all open affine rings are finite type over k.

If additionally for each U_i in (3), $F(U_i)$ is a finitely generated \mathcal{O}_{U_i} -module, then we say that F is **coherent**. The category of quasi-coherent (resp. coherent) sheaves is denoted by $\mathsf{QCoh}(X)$ (resp. $\mathsf{Coh}(X)$).

Definition 1.5. Let $F \in \mathcal{O}_X$ -Mod. We say that F is a **vector bundle** (i.e. locally free of finite rank) if for $x \in X$ there exists an open neighbourhood $U \in \mathsf{Top}(X)$ of x such that $F|_U \cong \mathcal{O}_U^{\oplus n}$. The category of vector bundles is denoted by $\mathsf{Vect}(X)$. F is called an **invertible sheaf** (or line bundle) if additionally n = 1 for all $x \in X$.

Remark. For a coherent sheaf F on X, if the stalk takes the form $F_x \cong \mathcal{O}_{X,x}^{\oplus n(x)}$ for any $x \in X$, then F is a vector bundle. In particular, $\mathsf{Vect}(X)$ is a full subcategory of $\mathsf{Coh}(X)$ if X is locally Noetherian (i.e. every open affine ring is Noetherian).

Why do we want quasi-coherence?

- Coh(X) and QCoh(X) are Abelian categories, but Vect(X) is not Abelian in general.
- When $X = \operatorname{Spec} R$, $M \mapsto \widetilde{M}$ gives an equivalence of categories $R\operatorname{\mathsf{-Mod}} \simeq \operatorname{\mathsf{QCoh}}(X)$.
- \bullet Pull-backs preserve quasi-coherence. If X is Noetherian, then push-forwards also preserve quasi-coherence.
- If X is Noetherian, then QCoh(X) has enough injectives. (Let's prove it below!)
- If X and Y are smooth projective varieties, then $\mathsf{Coh}(X) \simeq \mathsf{Coh}(Y)$ implies $X \cong Y$ (Gabriel-Rosenberg).

Slogan. Quasi-coherent (*resp.* coherent) sheaves are the analogue of modules (*resp.* finitely generated modules) over a ring.

Functors of Sheaves of Modules

There are some constructions in \mathcal{O}_X -Mod.

- Coproduct: $\bigoplus_{i \in J} F_i$ is the sheafification of the presheaf $U \mapsto \bigoplus_{i \in J} F_i(U)$;
- Tensor product: $F \otimes_{\mathcal{O}_X} G$ is the sheafification of the presheaf $U \mapsto F(U) \otimes_{\mathcal{O}_U} G(U)$.
- Hom sheaf: $\mathcal{H}om_{\mathcal{O}_X}(F,G)$ is the presheaf $U \mapsto \operatorname{Hom}_{\mathcal{O}_U}(F|_U,G|_U)$, which is already a sheaf.
- Dual sheaf: $F^{\vee} := \mathcal{H}om_{\mathcal{O}_X}(F, \mathcal{O}_X)$.

Definition 1.6. Let $f: X \to Y$ be a morphism of schemes. Let $F \in \text{Obj}(\mathcal{O}_X\text{-Mod})$ and $G \in \text{Obj}(\mathcal{O}_Y\text{-Mod})$.

- 1. The **direct image** (or push-forward) f_*F of F is a \mathcal{O}_Y -module given by $U \mapsto F(f^{-1}(U))$;
- 2. The **pull-back** f^*G of G is a \mathcal{O}_X -module given by $f^*G = f^{-1}(G) \otimes_{f^{-1}\mathcal{O}_Y} \mathcal{O}_X$.

The key observation is the adjunction $f^* \dashv f_*$: there is a canonical isomorphism

$$\operatorname{Hom}_{\mathcal{O}_Y}(f^*G, F) \cong \operatorname{Hom}_{\mathcal{O}_Y}(G, f_*F).$$

So it is natural to talk about the derived functors of f_* and f^* .

Now let us derive some functors!

Functors	Derived functors	n-th derived functors
Global sections $\Gamma(X,-)$: $Ab(X) \to Ab$	$R\Gamma(X,-)$	Sheaf cohomology $H^n(X, -)$
$\operatorname{Hom}_{\mathcal{O}_X}(-,-) \colon (\mathcal{O}_X\operatorname{-Mod})^{\operatorname{op}} imes \mathcal{O}_X\operatorname{-Mod} o \operatorname{Ab}$	$R\operatorname{Hom}_{\mathcal{O}_X}(-,-)$	Ext group $\operatorname{Ext}_X^n(-,-)$
$\mathcal{H}\!\mathit{om}_{\mathcal{O}_X}(-,-) \colon (\mathcal{O}_X ext{-}Mod)^\mathrm{op} imes \mathcal{O}_X ext{-}Mod o \mathcal{O}_X ext{-}Mod$	$R\mathcal{H}\!\mathit{om}_{\mathcal{O}_X}(-,-)$	Ext sheaf $\operatorname{Ext}_X^n(-,-)$
$-\otimes_{\mathcal{O}_X} - \colon \mathcal{O}_X\operatorname{-Mod} imes \mathcal{O}_X\operatorname{-Mod} o \mathcal{O}_X\operatorname{-Mod}$	$-\otimes^{L}_{\mathcal{O}_X}-$	Tor group $\operatorname{Tor}_n^X(-,-)$
$f_* \colon \mathcal{O}_X ext{-}Mod o \mathcal{O}_Y ext{-}Mod$	Rf_*	Higher direct image $R^n f_*$
$f^* \colon \mathcal{O}_Y ext{-}Mod o \mathcal{O}_X ext{-}Mod$	$L f^*$	$L_n f^*$

Derived Categories of Coherent Sheaves

We will always assume that X is Noetherian⁷. A good new and a bad news.

Proposition 1.7

Let X be a Noetherian scheme. Then QCoh(X) has enough injectives.

Proof. [HartsAG, Cor III.3.6] Cover X with a finite number of affine opens $U_i = \operatorname{Spec} A_i$, and let $F|_{U_i} = \widetilde{M}_i$ for each i. Embed M_i in an injective A_i -module I_i . For each i, let $f: U_i \to X$ be the inclusion, and let $G = \bigoplus_i f_*(\widetilde{I}_i)$. For each i we have an injective map of sheaves $F|_{U_i} \to \widetilde{I}_i$. Hence we obtain a map $F \to f_*(\widetilde{I}_i)$. Taking the direct sum over i gives a map $F \to G$ which is clearly injective. Check that G is flasque⁸ and quasi-coherent. G is an injective object in $\operatorname{\mathsf{QCoh}}(X)$.

Remark. Alternatively it can also be shown that QCoh(X) is a **Grothendieck category** (see [李文威, §2.10]), thus having enough injectives.

In general Coh(X) does not have enough injectives. Think of $X = \operatorname{Spec} \mathbb{Z}$, where Coh(X) is the category of finitely generated Abelian groups. Instead of $\mathsf{D^bCoh}(X)$, we instead work with the full subcategory $\mathsf{D^b_{Coh}}(X)$ of $\mathsf{D^bQCoh}(X)$:

$$\mathrm{Obj}(\mathsf{D}^{\mathrm{b}}_{\mathsf{Coh}}(X)) := \left\{ F \in \mathsf{D}^{\mathrm{b}}\mathsf{QCoh}(X) \colon \operatorname{H}^n(F) \in \mathrm{Obj}(\mathsf{Coh}(X)); \ \operatorname{H}^i(F) = 0 \ \text{for} \ |i| \gg 0 \right\}.$$

In general for a full Abelian subcategory $\mathcal{A} \subseteq \mathcal{B}$, the derived categories $D(\mathcal{A})$ and $D_{\mathcal{A}}(\mathcal{B})$ could be quite different. However we have the following

Proposition 1.8

Let X be a Noetherian scheme. The natural functor $\mathsf{D^bCoh}(X) \to \mathsf{D^bQCoh}(X)$ defines a triangulated equivalence of categories

$$\mathsf{D}^\mathrm{b}\mathsf{Coh}(X) \simeq \mathsf{D}^\mathrm{b}_\mathsf{Coh}(X).$$

Proof. [Huyb, Prop 3.5] It is clear that $\mathsf{D^bCoh}(X) \to \mathsf{D^bQCoh}(X)$ is fully faithful. It suffices to show essential surjectivity. Consider a bounded complex of quasi-coherent sheaves with coherent cohomology:

⁷i.e. quasi-compact and every open affine ring is Noetherian.

 $^{^{8}}$ i.e. restriction maps of F are surjective.

$$0 \longrightarrow F^n \longrightarrow \cdots \longrightarrow F^m \longrightarrow 0$$

By induction suppose F^j is coherent for j > i. Consider the surjections $d^i : F^i \to \operatorname{im} d^i \subseteq F^{i+1}$ and $\ker d^i \to \operatorname{H}^i(F^{\bullet})$. We can find coherent subsheaves of $F_1^i \subseteq F^i$ and $F_2^i \subseteq \ker d^i \subseteq F^i$ such that the restrictions of the above morphisms are still surjective ([HartsAG, Ex II.5.15]). Now replace F^i by its subsheaf generated by F_1^i and F_2^i , and let F^{i-1} be the preimage under d^{i-1} of the new F^i . Clearly the inclusions induce a quasi-isomorphism of the new complex with the old one and now F^i is also coherent.

So we can resolve a coherent sheaf by quasi-coherent sheaves injective in $\mathsf{QCoh}(X)$ in order to compute $\mathsf{D^bCoh}(X)$.

Derived Functors of Coherent Sheaves

In this part we address some technical issues in passing the functors from \mathcal{O}_X -Mod to Coh(X). We follow [Huyb §3.3]. A lot of relevant results are scattered in Chapter III of [HartsAG]...

Theorem 1.9. Grothendieck Vanishing Theorem

Let X be a Noetherian topological space of dimension n. Then $\mathrm{H}^i(X,F)=0$ for all $F\in\mathrm{Obj}(\mathsf{Ab}(X))$ and i>n.

Proof. See [HartsAG Thm III.2.7].

Theorem 1.10

Let F be a coherent sheaf on a scheme X which is proper (e.g. projective) over a field k. Then $\mathrm{H}^i(X,F)$ is finite dimensional over k for all i.

Proof. See [HartsAG Thm III.5.2].

Corollary 1.11

Let X be a projective variety over a field k. The global section functor $\Gamma(X,-)$ is a left exact functor $\mathsf{Coh}(X) \to k\operatorname{\mathsf{-Mod}}^{\mathrm{fd}}$. The right derived functor $\mathsf{R}\Gamma$ can be computed via the composition $\mathsf{D^b}\mathsf{Coh}(X) \simeq \mathsf{D^b}_\mathsf{Coh}(X) \hookrightarrow \mathsf{D^b}\mathsf{QCoh}(X) \to \mathsf{D^b}(k\operatorname{\mathsf{-Mod}})$.

Theorem 1.12

- 1. Let $f: X \to Y$ be a morphism of Noetherian schemes. Let F be a quasi-coherent sheaf over X. The higher direct images $\mathsf{R}^i f_*(F) = 0$ for $i > \dim X$.
- 2. Let $f: X \to Y$ be a proper morphism of Noetherian schemes. Let F be a coherent sheaf over X. The higher direct images $\mathsf{R}^i f_*(F)$ are also coherent for all i.

Proof. See [HartsAG Thm III.8.1 III.8.8].

Corollary 1.13

Let $f: X \to Y$ be a proper morphism of Noetherian schemes. The direct image $f_*: \mathsf{Coh}(X) \to \mathsf{Coh}(Y)$ induces the right derived functor $\mathsf{R} f_*: \mathsf{D}^{\mathsf{b}}_{\mathsf{Coh}}(X) \to \mathsf{D}^{\mathsf{b}}_{\mathsf{Coh}}(Y)$.

2 Coherent Sheaves on a Smooth Projective Variety

Smoothness and Serre Duality

Let k be an algebraically closed field. Recall that in C3.4 Algebraic Geometry we define the non-singular points of a quasi-projective variety by counting the dimension of (co)tangent space at that point:

Definition 2.1. A scheme X is **non-singular** (or regular)⁹ at $x \in X$ if $\mathcal{O}_{X,x}$ is a regular local ring. That is, $\dim_{\mathcal{O}_{X,x}/\mathfrak{m}_x} \mathfrak{m}_x/\mathfrak{m}_x^2 = \dim \mathcal{O}_{X,x}$. X is non-singular if it is non-singular at all points¹⁰.

The non-singularity can be characterised by Kähler differentials, which is the algebraic analogue of the cotangent bundle.

Proposition 2.2

Let X be an irreducible variety over k. Then X is regular if and only if the sheaf of Kähler differentials $\Omega_{X/k}$ is a vector bundle over X of dimension $n = \dim X$.

Proof. See [HartsAG Thm II.8.15].

Definition 2.3. Let X be a non-singular irreducible variety over k. Let $n = \dim X$. We define the

- tangent sheaf/bundle $\mathcal{T}_X := \mathcal{H}om_{\mathcal{O}_X}(\Omega_{X/k}, \mathcal{O}_X)$, which is a vector bundle of rank n;
- canonical sheaf/bundle $\omega_X := \bigwedge^n \Omega_{X/k}$, which is a line bundle.

Perfect Complexes

Definition 2.4. Let $F \in \text{Obj}(\mathsf{D}^b_{\mathsf{Coh}}(X))$. We say that F is a **strictly perfect complex**, if F is quasi-isomorphic to a bounded complex of vector bundles on X. We say that F is a **perfect complex** if there exists an affine cover $\{U_i\}_{i\in I}$ of X such that each $F|_{U_i}$ is quasi-isomorphic to some strictly perfect complex F_i on U_i .

The perfect complexes form a full subcategory Perf(X) of $D^{b}_{Coh}(X)$.

Proposition 2.5. Smoothness via Perfect Complexes

Suppose that X is a Noetherian scheme. Then X is regular if and only if the inclusion $\mathsf{Perf}(X) \to \mathsf{D}^{\mathsf{b}}_\mathsf{Coh}(X)$ is an equivalence of categories.

⁹It is bad to use the term *smooth* here, as it is reserved for a property of morphisms.

¹⁰Equivalently at all closed points, because the stalk at any non-closed point is a localisation of the stalk at a closed point, and localisation preserves regular local rings.

Proof. Idea: On a regular scheme X, any coherent sheaf F admits a locally free resolution of length dim X. This is the generalisation of the affine result: Spec R is an n-dimensional regular affine variety if and only if every (finitely generated) R-module M admits a (finitely generated) projective resolution of length n.

Remark. For a general variety X, we may introduce the quotient category (localisation?)

$$Sing(X) := D_{Coh}^{b}(X) / Perf(X)$$

which measures how singular X is. Of course Sing(X) is trivial if X is regular.

By passing to $\mathsf{Perf}(X)$ we will be able to define the bounded version of $\mathsf{R}\mathcal{H}\!\mathit{om}$ and \otimes^L for coherent sheaves when X is a smooth projective variety. In particular, for $F \in \mathsf{Obj}(\mathsf{D}^\mathsf{b}_\mathsf{Coh}(X))$, the **derived dual**

$$F^{\vee} := \mathsf{R}\mathcal{H}\!\mathit{om}(F,\mathcal{O}_X) \in \mathsf{D}^+\mathsf{QCoh}(X)$$

is in $\mathsf{D}^{\mathsf{b}}_{\mathsf{Coh}}(X)$ when X is regular.

Serre Duality

Theorem 2.6. Serre Duality

Let X be a n-dimensional smooth projective variety over k with canonical sheaf ω_X . For $F \in \text{Obj}(\text{Vect}(X))$, there are functorial isomorphisms of vector spaces

$$\mathrm{H}^{i}(X,F)^{\vee} \cong \mathrm{Ext}_{X}^{n-i}(F,\omega_{X}) \cong \mathrm{H}^{n-i}(X,F^{\vee} \otimes_{\mathcal{O}_{X}} \omega_{X}).$$

Proof. See [HartsAG §III.7]. The second isomorphism follows from the general facts $\operatorname{Ext}_X^n(E \otimes_{\mathcal{O}_X} F, G) \cong \operatorname{Ext}^n(E, F^{\vee} \otimes_{\mathcal{O}_X} G)$ (here F needs to be a vector bundle) and $\operatorname{Ext}^n(\mathcal{O}_X, F) \cong \operatorname{H}^n(X, F)$ for \mathcal{O}_X -modules E, F, G.

Remark. If we take $F = \Omega^p := \bigwedge^p \Omega_{X/k}$ and note that $\Omega^{n-p} \cong (\Omega^p)^{\vee} \otimes_{\mathcal{O}_X} \omega_X$ ([HartsAG Ex II.5.16.(b)]), then Serre duality takes the form

$$H^q(X, \Omega^p)^{\vee} \cong H^{n-q}(X, \Omega^{n-p}),$$

which is known in complex geometry.

Corollary 2.7

Let X be a n-dimensional smooth projective variety over k. Then Coh(X) has global homological dimension n. That is, $Ext_X^i(F,G) = 0$ for i > n and any coherent sheaves F,G.

Remark. In particular, for a smooth projective curve C, Coh(C) has global homological dimension 1. It can be proven that every $F \in D^bCoh(C)$ is quasi-isomorphic to its cohomology:

$$F \cong \bigoplus_{i \in \mathbb{Z}} \mathrm{H}^i(F)[-i].$$

Serre Functor

Let us rephrase Serre duality using some category theory.

Definition 2.8. Let \mathcal{A} be a k-linear category. A **Serre functor** $S: \mathcal{A} \to \mathcal{A}$ is a k-linear equivalence such that for $A, B \in \text{Obj}(\mathcal{A})$ there exists a functorial isomorphism of vector spaces

$$\operatorname{Hom}_{\mathcal{A}}(A,B) \cong \operatorname{Hom}_{\mathcal{A}}(B,S(A)).$$

Lemma 2.9

Let \mathcal{A} and \mathcal{B} be k-linear categories with finite-dimensional Hom spaces. Suppose that they admit Serre functors $S_{\mathcal{A}}$ and $S_{\mathcal{B}}$ respectively. Then any k-linear equivalence $F: \mathcal{A} \to \mathcal{B}$ commutes with the Serre functors: $F \circ S_{\mathcal{A}} \cong S_{\mathcal{B}} \circ F$.

Proof. This is an application of the Yoneda lemma: since F is fully faithful, one has for any two objects $A, B \in \mathcal{A}$

$$\operatorname{Hom}(A, S_A B) \cong \operatorname{Hom}(FA, FS_A B), \qquad \operatorname{Hom}(B, A) \cong \operatorname{Hom}(FB, FA).$$

Together with the two isomorphisms

$$\operatorname{Hom}(A, S_{\mathcal{A}}B) \cong \operatorname{Hom}(B, A)^{\vee}, \qquad \operatorname{Hom}(FB, FA) \cong \operatorname{Hom}(FA, S_{\mathcal{B}}FB)^{\vee},$$

this yields a functorial isomorphism

$$\operatorname{Hom}(FA, FS_AB) \cong \operatorname{Hom}(FA, S_BFB).$$

Using the hypothesis that F is an equivalence and, in particular, that any object in \mathcal{B} is isomorphic to some F(A), one concludes that there exists a functor isomorphism $F \circ S_{\mathcal{A}} \cong S_{\mathcal{B}} \circ F$.

Remark. If \mathcal{A}, \mathcal{B} are triangulated categories, then the Serre functors are exact and triangulated.

In particular, Serre functors are useful in inverting adjunction pairs:

Corollary 2.10

Let \mathcal{A} and \mathcal{B} be as above. Let $F: \mathcal{A} \to \mathcal{B}$ be a k-linear functor. Then

$$G\dashv F\implies F\dashv S_{\mathcal{A}}\circ G\circ S_{\mathcal{B}}^{-1}.$$

Proof. For $A \in \text{Obj}(A)$ and $B \in \text{Obj}(B)$,

$$\operatorname{Hom}_{\mathcal{A}}(A, S_{\mathcal{A}}GS_{\mathcal{B}}^{-1}B) \cong \operatorname{Hom}_{\mathcal{A}}(GS_{\mathcal{B}}^{-1}B, A)^{\vee} \cong \operatorname{Hom}_{\mathcal{B}}(S_{\mathcal{B}}^{-1}B, FA)^{\vee} \cong \operatorname{Hom}_{\mathcal{B}}(FA, B) \quad \Box$$

Serre functors gain their name from Serre duality. Indeed, let X be a smooth projective variety. We define the functor

$$S_X \colon \mathsf{D}^{\mathrm{b}}_{\mathsf{Coh}}(X) \to \mathsf{D}^{\mathrm{b}}_{\mathsf{Coh}}(X), \qquad F \longmapsto F \otimes_{\mathcal{O}_X} \omega_X[\dim X].$$

Proposition 2.11

The functor S_X defined above is a Serre functor.

Proof. Let $n = \dim X$. let E, F be vector bundles over X. By Serre duality we have

$$\operatorname{Ext}_X^i(E,F) \cong \operatorname{H}^i(X,E^{\vee} \otimes F) \cong \operatorname{H}^{n-i}(X,E \otimes F^{\vee} \otimes \omega_X)^{\vee} \cong \operatorname{Ext}_X^{n-i}(F,E \otimes \omega_X)^{\vee}.$$

Using Corollary 0.14 we obtain

$$\operatorname{Hom}_{\mathsf{D}^{\mathsf{b}}_{\mathsf{Coh}}(X)}(E, F[i]) \cong \operatorname{Hom}_{\mathsf{D}^{\mathsf{b}}_{\mathsf{Coh}}(X)}(F[i], E \otimes \omega_{X}[n])^{\vee} \cong \operatorname{Hom}_{\mathsf{D}^{\mathsf{b}}_{\mathsf{Coh}}(X)}(F[i], S_{X}(E))^{\vee}.$$

Therefore for any $E, F \in \text{Obj}(\mathsf{D}^{\mathsf{b}}_{\mathsf{Coh}}(X))$, we have

$$\operatorname{Hom}_{\mathsf{D}^{\mathrm{b}}_{\mathsf{C},\mathsf{L}}(X)}(E,F) \cong \operatorname{Hom}_{\mathsf{D}^{\mathrm{b}}_{\mathsf{C},\mathsf{L}}(X)}(F,S_X(E))^{\vee}.$$

Grothendieck-Verdier Duality

The target is to generalise Serre duality to a relative version. Let $f: X \to Y$ be a morphism of smooth projective varieties. We define the **relative dimension** dim $f := \dim X - \dim Y$ and the **relative dualising bundle** $\omega_f := \omega_X \otimes_{\mathcal{O}_X} f^* \omega_Y^{-1}$.

It is impossible to find a right adjoint to the direct image functor $f_*: Coh(X) \to Coh(Y)$, because we have the adjunction $f^* \dashv f_*$ on the Abelian categories Coh(X) and Coh(Y). However it is possible after passing to the derived categories. We can construct $Lf^* \dashv Rf_* \dashv f^!$ by Serre functors.

Theorem 2.12. Grothendieck-Verdier Duality

Let $f: X \to Y$ be a morphism of smooth projective varieties. Then the right adjoint of $\mathsf{R} f_* \colon \mathsf{D}^{\mathsf{b}}_\mathsf{Coh}(X) \to \mathsf{D}^{\mathsf{b}}_\mathsf{Coh}(Y)$ exists and is given by

$$f^!(F) := \mathsf{L} f^*(F) \otimes_{\mathcal{O}_X} \omega_f[\dim f].$$

Proof. By the previous part it suffices to take $f! := S_X \circ \mathsf{L} f^* \circ S_Y^{-1}$.

Grothendieck-Verdier duality has a more general form, which is a functorial isomorphism

$$\mathsf{R} f_* \circ \mathsf{R} \mathcal{H} \mathit{om}_{\mathcal{O}_X}(F, \mathsf{L} f^*(E) \otimes_{\mathcal{O}_X} \omega_f[\dim f]) \cong \mathsf{R} \mathcal{H} \mathit{om}_{\mathcal{O}_Y}(\mathsf{R} f_*(F), E)$$

for $F \in \mathsf{D}^{\mathrm{b}}_\mathsf{Coh}(X)$ and $E \in \mathsf{D}^{\mathrm{b}}_\mathsf{Coh}(Y)$.

3 Reconstruction from Derived Categories

Ampleness

Let us first recall the structure of invertible sheaves on the projective space \mathbb{P}^n . Let L be an invertible sheaf on a scheme X. It is called invertible because the tensor operation with the dual sheaf gives

$$L \otimes_{\mathcal{O}_X} L^{\vee} = L \otimes_{\mathcal{O}_X} \mathcal{H}om_{\mathcal{O}_X}(L, \mathcal{O}_X) \cong \mathcal{H}om_{\mathcal{O}_X}(L, L) \cong \mathcal{O}_X.$$

Therefore the set of invertible sheaves forms a group Pic X under the tensor operation, called the **Picard group** of X. For $X = \mathbb{P}_k^n = \operatorname{Proj} S$, where $S = k[x_0, ..., x_n]$, we have the **twisting sheaf** on \mathbb{P}_k^n :

$$\mathcal{O}(1) := \widetilde{S[1]}, \qquad S[1] \text{ is a graded } S\text{-module with } S[1]_d = S_{d+1}.$$

Let $\mathcal{O}(0) := \mathcal{O}_{\mathbb{P}^n_k}$, $\mathcal{O}(n) := \mathcal{O}(1)^{\otimes n}$ for n > 0 and $\mathcal{O}(n) := \mathcal{O}(-n)^{\vee}$ for n < 0. It can be proven that $\mathcal{O}(n) = \widetilde{S[n]}$. Then we have a subgroup of $\operatorname{Pic} \mathbb{P}^n_k$ isomorphic to \mathbb{Z} . In fact it can be proven (e.g. using divisors) that all invertible sheaves on \mathbb{P}^n_k are in this form. So $\operatorname{Pic} \mathbb{P}^n_k \cong \mathbb{Z}$.

By definition, the gloval sections of $\mathcal{O}(n)$ are generated by the homogeneous elements in S of degree n. In particular, the twisting sheaf $\mathcal{O}(1)$ has global sections generated by $x_0, ..., x_n$, and $\mathcal{O}(n)$ has no global sections for n < 0.

Remark. For general X, using Čech cohomology it can be proven that $\operatorname{Pic} X \cong \check{\operatorname{H}}^1(X, \mathcal{O}_X^{\times})$, where \mathcal{O}_X^{\times} is the **sheaf of invertible functions**, that is, $\mathcal{O}_X^{\times}(U)$ is the multiplicative group of $\mathcal{O}_X(U)$ for each $U \in \operatorname{Top}(X)$.

Definition 3.1. Let X be a scheme over the field k, and L be an invertible sheaf on X. We say that L is **very ample** (relative to Spec k), if there exists a (locally closed) immersion $\iota: X \to \mathbb{P}^n_k$ such that $\iota^*(\mathcal{O}(1)) \cong L$. This is equivalent to saying that L is generated by the global sections $s_0, ..., s_n$, where $s_i := \iota^*(x_i)$.

Lemma 3.2

Let X be a projective scheme over k and let L be a very ample invertible sheaf on X. Let $F \in \text{Obj}(\mathsf{Coh}(X))$. Then for $n \gg 0$, $F \otimes_{\mathcal{O}_X} L^{\otimes n}$ is generated by finitely many global sections.

Proof. See [HartsAG Thm II.5.17].

Definition 3.3. Let X be a Noetherian scheme, and L be an invertible sheaf on X. We say that L is **ample** if for any $F \in \text{Obj}(\text{Coh}(X))$, there exists $n_0 > 0$ such that for $n \ge n_0$, $F \otimes_{\mathcal{O}_X} L^{\otimes n}$ is generated by global sections.

Theorem 3.4

Let X be a projective variety over k, and L be an invertible sheaf on X. The following are equivalent:

- L is ample;
- $L^{\otimes m}$ is ample for some m > 0;
- $L^{\otimes m}$ is very ample (relative to Spec k) for some m > 0.

Proof. See [HartsAG II.7.5, II.7.6].

Definition 3.5. Let X be a non-singular variety with canonical bundle ω_X and anti-canonical bundle ω_X^{\vee} . X is called a

- Fano variety, if ω_X^{\vee} is ample;
- Calabi–Yau variety, if $\omega_X = \mathcal{O}_X$;

• anti-Fano variety¹¹, if ω_X is ample.

Remark. Consider compact Kähler manifolds which admit projective embeddings. By the celebrated Calabi–Yau theorem, the three cases above correspond to Kähler metrics with positive, flat, and negative Ricci curvature respectively.

Remark. The projective space \mathbb{P}^n is Fano because $\omega_{\mathbb{P}^n} = \mathcal{O}(-n-1)$ ([HartsAG II.8.13, II.8.20.1]), and $\mathcal{O}(n)$ is ample if and only if n > 0.

Remark. For a smooth projective curve C with genus g, C is Fano if g = 0, Calabi–Yau if g = 1 (i.e. elliptic curve), and anti-Fano if g > 1.

Lemma 3.6

Let X be a projective variety over k, and L be an ample invertible sheaf on X. Then $X \cong \operatorname{Proj} \Gamma_*(X, L^{\otimes m})$ for some $m \in \mathbb{Z}_+$, where $\Gamma_*(X, L)$ is the graded ring $\bigoplus_{d=0}^{\infty} \Gamma(X, L^{\otimes d})$.

Proof. See math.stackexchange.com/questions/57775 or (Stacks Project Lemma 28.26.9).

Bondal-Orlov Reconstruction Theorem

The target is to explain the idea of the following result. We follows [Huyb §4.1].

Theorem 3.7. Bondal-Orlov Reconstruction Theorem

Suppose that X and Y are smooth projective varieties over k. If X is Fano or anti-Fano, and $\mathsf{D}^{\mathsf{b}}\mathsf{Coh}(X) \simeq \mathsf{D}^{\mathsf{b}}\mathsf{Coh}(Y)$, then $X \cong Y$.

The proof can be divided into the following steps:

- 1. Identify point-like and invertible objects in the derived categories which generalise the invertible sheaves and skyscraper sheaves on the variety.
- 2. Since point-like objects and invertible objects are preserved under the equivalence $F : \mathsf{D^bCoh}(X) \to \mathsf{D^bCoh}(Y)$, prove that \mathcal{O}_X is mapped to \mathcal{O}_Y , and that Y is also Fano or anti-Fano.
- 3. Prove the graded ring isomorphism $\bigoplus_{d=0}^{\infty} \Gamma(X, \omega_X^{\otimes d}) \cong \bigoplus_{d=0}^{\infty} \Gamma(Y, \omega_Y^{\otimes d})$.
- 4. By ampleness of ω_X (or ω_X^{\vee}), X can be reconstructed as $\operatorname{Proj}\left(\bigoplus_{d=0}^{\infty}\Gamma(X,\omega_X^{\otimes d})\right)$. Thus conclude that $X\cong Y$.

Definition 3.8. Let \mathcal{K} be a k-linear triangulated category with a Serre functor S. An object $P \in \text{Obj}(\mathcal{K})$ is called **point-like** of codimension d if

- 1. $S(P) \cong P[d]$;
- 2. $\text{Hom}_{\mathcal{K}}(P, P[i]) = 0 \text{ for } i < 0;$
- 3. $\kappa(P) := \operatorname{Hom}_{\mathcal{K}}(P, P)$ is a field.

Remark. Consider $\mathsf{D}^{\mathsf{b}}_{\mathsf{Coh}}(X)$ for smooth projective variety k with the Serre functor S_X . For $x \in X$, the skyscraper sheaf $\kappa(x)$ of the residue field $\kappa(x) := \mathcal{O}_{X,x}/\mathfrak{m}_x$ supported at x is a point-like object of

¹¹This non-standard terminology is used in [Bock].

codimension dim X in $\mathsf{D}^{\mathsf{b}}_{\mathsf{Coh}}(X)$. This explains the name. Moreover, we shall show that every point-like object in $\mathsf{D}^{\mathsf{b}}_{\mathsf{Coh}}(X)$ arises from them for X Fano or anti-Fano.

Lemma 3.9

Suppose that X is a smooth projective varieties over k. If X is Fano or anti-Fano, then every point-like object in $\mathsf{D}^\mathsf{b}_\mathsf{Coh}(X)$ is isomorphic to $\kappa(x)[m]$, where $x \in X$ is a closed point and $m \in \mathbb{Z}$.

Proof. See [Huyb 4.5, 4.6].

Remark. This is certain not true when X is not Fano or anti-Fano. For example, if X is Calabi–Yau, then \mathcal{O}_X is a point-like object in $\mathsf{D}^b_{\mathsf{Coh}}(X)$.

Definition 3.10. Let \mathcal{K} be a k-linear triangulated category with a Serre functor S. An object $L \in \text{Obj}(\mathcal{K})$ is called **invertible** if for any point-like object $P \in \text{Obj}(\mathcal{K})$ there exists $n \in \mathbb{Z}$ such that

$$\operatorname{Hom}_{\mathcal{K}}(L, P[i]) = \begin{cases} \kappa(P), & i = n; \\ 0, & \text{otherwise.} \end{cases}$$

Lemma 3.11

Suppose that X is a smooth projective varieties over k. Every invertible object in $\mathsf{D}^\mathsf{b}_\mathsf{Coh}(X)$ is of the form L[m] where L is an invertible sheaf on X and $m \in \mathbb{Z}$.

Conversely, if X is Fano or anti-Fano, then L[m] in an invertible object in $\mathsf{D}^{\mathsf{b}}_{\mathsf{Coh}}(X)$ for L invertible sheaf on X and $m \in \mathbb{Z}$.

Proof. See [Huyb Prop 4.9].

Lemma 3.12

Suppose that X and Y are smooth projective varieties over k. If $\mathsf{D^bCoh}(X) \simeq \mathsf{D^bCoh}(Y)$, then $\dim X = \dim Y$.

Proof. For a closed point $x \in X$, the skyscraper sheaf

$$\underline{\kappa(x)} \cong \underline{\kappa(x)} \otimes \omega_X = S_X(\underline{\kappa(x)})[-\dim X].$$

Under the equivalence $F : \mathsf{D^bCoh}(X) \to \mathsf{D^bCoh}(Y)$,

$$F(\kappa(x)) \cong F(S_X(\kappa(x))[-\dim X]) \cong S_Y(F(\kappa(X)))[-\dim X] \cong F(\kappa(x)) \otimes \omega_Y[\dim Y - \dim X].$$

Taking the cohomology sheaf of the bounded complex $F(\underline{\kappa(x)})$ and using that ω_Y commutes with cohomology, we have

$$\mathcal{H}^i(F(\underline{\kappa(x)})) \cong \mathcal{H}^{i+\dim Y - \dim X}(F(\underline{\kappa(x)})) \otimes \omega_Y.$$

By looking at the maximal and minimal i such that $\mathcal{H}^i(F(\underline{\kappa(x)})) \neq 0$, we deduce that $\dim X = \dim Y$.

Proof of Bondal-Orlov theorem assuming above lemmata.

Let $F: \mathsf{D}^{\mathsf{b}}_{\mathsf{Coh}}(X) \to \mathsf{D}^{\mathsf{b}}_{\mathsf{Coh}}(Y)$ be an exact equivalence. It is clear that F preserves invertible objects. Then $F(\mathcal{O}_X)$ is invertible and is of the form L[m] for some invertible sheaf L on Y. Then $F':=T^{-m}\circ (L^{\vee}\otimes -)\circ F$ is another exact equivalence $\mathsf{D}^{\mathsf{b}}_{\mathsf{Coh}}(X)\to \mathsf{D}^{\mathsf{b}}_{\mathsf{Coh}}(Y)$ such that $F'(\mathcal{O}_X)\cong \mathcal{O}_Y$. We simply replace F by F'.

Assume that ω_X is ample (the other case is similar). Let $n = \dim X = \dim Y$. We have for $d \in \mathbb{N}$,

$$F(\omega_X^{\otimes d}) = F(S_X^d(\mathcal{O}_X))[-dn] \cong S_Y^k(F(\mathcal{O}_X))[-dn] \cong S_Y^d(\mathcal{O}_Y)[-dn] = \omega_Y^d$$

and hence $\Gamma(X, \omega_X^d) = \operatorname{Hom}(\mathcal{O}_X, \omega_X^d) \cong \operatorname{Hom}(\mathcal{O}_Y, \omega_Y^d) = \Gamma(Y, \omega_Y^d)$. This induces an graded ring isomorphism $\bigoplus_{d=0}^{\infty} \Gamma(X, \omega_X^d) \cong \bigoplus_{d=0}^{\infty} \Gamma(Y, \omega_Y^d)$, where the multiplication is given by

$$\operatorname{Hom}(\mathcal{O}_X, \omega_X^{d_1}) \times \operatorname{Hom}(\mathcal{O}_X, \omega_X^{d_2}) \longrightarrow \operatorname{Hom}(\mathcal{O}_X, \omega_X^{d_1 + d_2})$$

$$(s_1, s_2) \longmapsto S_X^{d_1}(s_2)[-d_1 n] \circ s_1$$

Note that ω_X is ample implies that $\omega_X^{\otimes m}$ is very ample for some m > 0, which implies that $X \cong \operatorname{Proj}\left(\bigoplus_{d=0}^{\infty} \Gamma(X, \omega_X^{\otimes md})\right)$ If $\omega_Y^{\otimes m}$ is also very ample, then we may conclude that

$$X \cong \operatorname{Proj}\left(\bigoplus_{d=0}^{\infty} \Gamma(X, \omega_X^{\otimes md})\right) \cong \operatorname{Proj}\left(\bigoplus_{d=0}^{\infty} \Gamma(Y, \omega_Y^{\otimes md})\right) \cong Y.$$

Finally we prove that $\omega_Y^{\otimes m}$ is very ample. The idea is that this is equivalent to that the Zariski topology on Y has a basis of the form $\left\{V_\beta\colon \beta\in \mathrm{Hom}(\mathcal{O}_Y,\omega_Y^{\otimes md}),\ d\in\mathbb{Z}\right\}$, where $V_\beta:=\left\{y\in Y\colon \alpha_y^*\neq 0\right\}$, and $\alpha_y^*\colon \mathrm{Hom}(\omega_Y^{\otimes md},\underline{\kappa(y)})\to \mathrm{Hom}(\mathcal{O}_Y,\underline{\kappa(y)})$ is the induced map $f\mapsto f\circ\alpha$. But the equivalence F induces a homeomorphism $X\to Y$, which maps U_α in X to $V_{F(\alpha)}$ in Y. This implies that $\omega_Y^{\otimes m}$ is very ample.

Remark. By Bondal–Orlov theorem, a smooth projective curve with genus $g \neq 1$ is completely determined by its derived category of coherent sheaves. For elliptic curves, this is also true.

Theorem 3.13

Suppose that X and Y are smooth projective curves over k. If $\mathsf{D^bCoh}(X) \simeq \mathsf{D^bCoh}(Y)$, then $X \cong Y$.

Proof. See [Huyb Cor 5.46].

The theorem tells something more about the autoequivalence group of $\mathsf{D}^{\mathrm{b}}_{\mathsf{Coh}}(X)$.

Corollary 3.14

uppose that X is a smooth projective variety which is Fano or anti-Fano. Then

$$\operatorname{Aut}(\mathsf{D}^{\operatorname{b}}_{\mathsf{Coh}}(X)) \cong \mathbb{Z} \times (\operatorname{Aut} X \ltimes \operatorname{Pic} X).$$

Proof. See [Huyb Prop 4.17].

Fourier-Mukai Transforms

In analysis, an integral transform Φ_K from \mathbb{R}^n to \mathbb{R}^n with kernel $K \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{C}$ takes the form

$$\Phi_K(f)(p) := \int_{\mathbb{R}^n} f(x)K(x,p) \, \mathrm{d}x.$$

For example Φ_K is the Fourier transform when $K(x,p) = \frac{1}{2\pi} e^{-ix \cdot p}$. We generalise this idea to algebraic geometry to produce a class of functors between the derived categories.

Definition 3.15. Let X and Y be smooth projective varieties over k. Let $\pi_X \colon X \times_k Y \to X$ and $\pi_Y \colon X \times_k Y \to Y$ be the projection maps. For $E \in \mathsf{D}^b_{\mathsf{Coh}}(X \times_k Y)$, we define the **integral transform** $\Phi^E_{X \to Y}$ with kernel E to be the functor

$$\Phi_{X \to Y}^E \colon \mathsf{D}^{\mathrm{b}}_{\mathsf{Coh}}(X) \to \mathsf{D}^{\mathrm{b}}_{\mathsf{Coh}}(Y), \qquad F \longmapsto \mathsf{R}(\pi_Y)_*(\pi_X^*(F) \otimes^{\mathsf{L}} E).$$

If $\Phi_{X\to Y}^E$ is an exact equivalence of categories, then it is called a **Fourier–Mukai transform**.

A lot of derived functors we have known can be expressed as an integral transform:

- The identity functor id: $\mathsf{D}^{\mathsf{b}}_{\mathsf{Coh}}(X) \to \mathsf{D}^{\mathsf{b}}_{\mathsf{Coh}}(X)$ is isomorphic to $\Phi_{X \to X}^{\mathcal{O}_{\Delta}}$, where $\mathcal{O}_{\Delta} := \Delta_* \mathcal{O}_X$ is the push-forward by the diagonal morphism $\Delta \colon X \to X \times X$.
- For $E \in \mathsf{D}^{\mathsf{b}}_{\mathsf{Coh}}(X)$, the derived tensor product $-\otimes^{\mathsf{L}}$ is isomorphic to $\Phi_{X \to X}^{\Delta_* E}$.
- Let $f: X \to Y$ be a morphism. $\Gamma_f \subseteq X \times Y$ is the graph of f. Then $\mathcal{O}_{\Gamma_f} \in \text{Obj}(\mathsf{D}^b_{\mathsf{Coh}}(X \times Y))$. The derived direct image $\mathsf{R} f_*$ is isomorphic to $\Phi_{X \to Y}^{\mathcal{O}_{\Gamma_f}}$ and the derived pull-back $\mathsf{L} f^*$ is isomorphic to $\Phi_{Y \to X}^{\mathcal{O}_{\Gamma_f}}$.

Proposition 3.16

Let $\Phi_{X \to Y}^E \colon \mathsf{D}^{\mathsf{b}}_{\mathsf{Coh}}(X) \to \mathsf{D}^{\mathsf{b}}_{\mathsf{Coh}}(Y)$ be an integral transform with kernel $E \in \mathsf{D}^{\mathsf{b}}_{\mathsf{Coh}}(X \times Y)$. Then it admits left and right adjoints, respectively given by $\Phi_{Y \to X}^{E^{\vee} \otimes \pi_Y^* \omega_Y[\dim Y]}$ and $\Phi_{Y \to X}^{E^{\vee} \otimes \pi_X^* \omega_X[\dim X]}$, where $E^{\vee} := \mathsf{R}\mathcal{H}om(E, \mathcal{O}_{X \times Y})$.

Proof. This is a nice application of the Grothendieck–Verdier duality. For $G \in \mathsf{D}^{\mathsf{b}}_{\mathsf{Coh}}(X)$ and $F \in \mathsf{D}^{\mathsf{b}}_{\mathsf{Coh}}(Y)$,

$$\begin{split} &\operatorname{Hom}_{\mathsf{D}^{\mathrm{b}}_{\mathsf{Coh}}(X)}(\Phi_{Y \to X}^{E^{\vee} \otimes \pi_Y^* \omega_Y}[\dim Y](F), G) \\ &= \operatorname{Hom}_{\mathsf{D}^{\mathrm{b}}_{\mathsf{Coh}}(X)}(\mathsf{R}(\pi_X)_*(\pi_Y^* F \otimes^{\mathsf{L}} E^{\vee} \otimes \pi_Y^* \omega_Y[\dim Y]), G) \\ &= \operatorname{Hom}_{\mathsf{D}^{\mathrm{b}}_{\mathsf{Coh}}(X \times Y)}(\pi_Y^* F \otimes^{\mathsf{L}} E^{\vee} \otimes \pi_Y^* \omega_Y[\dim Y], \pi_X^! G) \\ &= \operatorname{Hom}_{\mathsf{D}^{\mathrm{b}}_{\mathsf{Coh}}(X \times Y)}(\pi_Y^* F \otimes^{\mathsf{L}} E^{\vee} \otimes \pi_Y^* \omega_Y[\dim Y], \mathsf{L}\pi_X^* G \otimes \pi_Y^* \omega_Y[\dim Y]) \\ &= \operatorname{Hom}_{\mathsf{D}^{\mathrm{b}}_{\mathsf{Coh}}(X \times Y)}(\pi_Y^* F \otimes^{\mathsf{L}} E^{\vee}, \mathsf{L}\pi_X^* G) \\ &= \operatorname{Hom}_{\mathsf{D}^{\mathrm{b}}_{\mathsf{Coh}}(X \times Y)}(\mathsf{L}\pi_Y^* F, E \otimes^{\mathsf{L}} \pi_X^* G) \\ &= \operatorname{Hom}_{\mathsf{D}^{\mathrm{b}}_{\mathsf{Coh}}(Y)}(F, \mathsf{R}(\pi_Y)_*(E \otimes^{\mathsf{L}} \pi_X^* G)) \\ &= \operatorname{Hom}_{\mathsf{D}^{\mathrm{b}}_{\mathsf{Coh}}(Y)}(F, \Phi_{X \to Y}^E(G)). \end{split}$$

Therefore we have $\Phi_{Y\to X}^{E^\vee\otimes\pi_Y^*\omega_Y[\dim Y]}$ \dashv $\Phi_{X\to Y}^E$. For the right adjoint of $\Phi_{X\to Y}^E$, we can use

Corollary 2.10. \Box

Proposition 3.17

For $E \in \mathsf{D}^{\mathsf{b}}_\mathsf{Coh}(X \times Y)$ and $F \in \mathsf{D}^{\mathsf{b}}_\mathsf{Coh}(Y \times Z)$, define

$$F \circ E := \mathsf{R}(\pi_{XZ})_*(\pi_{XY}^* E \otimes^\mathsf{L} \pi_{YZ}^* F),$$

where $\pi_{XY}.\pi_{YZ}.\pi_{XZ}$ are projections from $X \times Y \times Z$ to $X \times Y$, $Y \times Z$, and $X \times Z$ respectively. Then there is a natural isomorphism of functors

$$\Phi_{X\to Z}^{F\circ E}\cong\Phi_{Y\to Z}^F\circ\Phi_{X\to Y}^E.$$

Proof. The checking is straightforward. See [Huyb Prop 5.10].

There is a famous difficult result due to Orlov:

Theorem 3.18. Orlov's Theorem

Let X and Y be smooth projective varieties and let $F : \mathsf{D}^{\mathsf{b}}_{\mathsf{Coh}}(X) \to \mathsf{D}^{\mathsf{b}}_{\mathsf{Coh}}(Y)$ be a fully faithful exact functor. There exists a unique $E \in \mathsf{D}^{\mathsf{b}}_{\mathsf{Coh}}(X \times Y)$ such that $F \cong \Phi^E_{X \to Y}$.

In particular, if F is an equivalence, then it is isomorphic to a Fourier–Mukai transform with a unique kernel.

Corollary 3.19. Gabriel Reconstruction Theorem

Suppose that X and Y are smooth projective varieties over k. If $Coh(X) \cong Coh(Y)$, then $X \cong Y$.

Proof. See [Huyb Cor 5.23, 5.24].