CMSC 510 – L13 Regularization Methods for Machine Learning

Instructor:

Dr. Tom Arodz

Regularization

- In general, we can introduce a penalty Ω over the space of classifiers
- Regularized empirical risk minimization:

empirical risk of h() + penalty based on form of h()
(based on training data) (based on assumptions, not on training data)

$$h^* = \arg\min_h \hat{R}_{S_m}(h) + \lambda \Omega(h)$$

• Specifically, for linear classifiers $h(x)=w^Tx$

$$w^* = \arg\min_{w} \hat{R}_{S_m}(w) + \lambda \Omega(w)$$

$$\widehat{R}_{S_m}(h) = \frac{1}{m} \sum_{i=1}^{m} \ell(h, \mathbf{z}_i)$$
$$\ell : \mathcal{H} \times \mathcal{Z} \mapsto \mathbb{R}_+$$

$$\mathcal{Z} = \mathcal{X} \times \{-1, +1\}$$

What mathematical properties should we enforce on our choices of Ω?

Regularization

Regularized empirical risk minimization:

empirical risk of h() + penalty based on form of h()
(based on training data) (based on assumptions, not on training data)

$$h^* = \arg\min_h \hat{R}_{S_m}(h) + \lambda \Omega(h)$$

• Specifically, for linear classifiers $h(x)=w^Tx$

$$w^* = \arg\min_{w} \hat{R}_{S_m}(w) + \lambda \Omega(w)$$

$$\widehat{R}_{S_m}(h) = \frac{1}{m} \sum_{i=1}^{m} \ell(h, \mathbf{z}_i)$$
$$\ell : \mathcal{H} \times \mathcal{Z} \mapsto \mathbb{R}_+$$

$$\mathcal{Z} = \mathcal{X} \times \{-1, +1\}$$

If the regularized classification problem is to have no local minima, we want Ω to be convex!

Fused Lasso

- Desired penalty structure:
 - If f_i is important for classification, f_{i-1} and f_{i+1} likely to be important, too
 - What we would like to have is a classifier where either both neighboring features are selected (non-zero w_i and w_{i+1}) or both are not selected ($w_i=w_{i+1}=0$)
 - That's impossible, unless all features are selected or no feature is selected
 - But we prefer fewer changes between neighbors

f5

f6

Fused L₁

Regularized empirical risk minimization (e.g. logistic regression): $w^* = \arg\min_w \hat{R}_{S_m}(w) + \lambda \Omega(w)$

$$\Omega(w) = \sum_{f=2}^{F} |w_f - w_{f-1}|$$

- Fused L₁ penalty (fused lasso, fused logistic regression, etc.)
 - Sometimes also called: total variation
- Here's the shape of $\Omega(w)$ if we have two features
- $\Omega(w)$ is sum of convex $|w_f-w_{f-1}| => \Omega$ is convex Why term $|w_f-w_{f-1}|$ is convex?
 - If
 h(w) and g(w) are convex,
 then
 f(w)=max(h(w),g(w)) is convex
 - What is f, h & g here?

Fused L₁ regularization

Regularized empirical risk minimization (e.g. logistic regression): $w^* = \arg\min_w \hat{R}_{S_m}(w) + \lambda \Omega(w)$

$$\Omega(w) = \sum_{f=2}^{F} |w_f - w_{f-1}|$$

- Fused L₁ penalty (fused lasso, fused logistic regression, etc.)
 - Sometimes also called: total variation
- $\Omega(w)$ is convex. Why?
 - If h(w) and g(w) are convex, then f(w)=max(h(w),g(w)) is convex
 - $h(w)=w_f w_{f-1}$ linear => convex
 - $g(w) = -(w_f w_{f-1}) = -h(w)$ linear => convex
 - $f(w) = |w_f w_{f-1}| = |h(w)| = max(h(w), -h(w))$
 - h(w) and -h(w) convex => f(w) convex => $\Omega(w)$ convex

Fused L₁ regularization

 Fused L₁ regularized empirical risk minimization (e.g. logistic regression):

$$w^* = \arg\min_{w} \hat{R}_{S_m}(w) + \lambda_1 \sum_{f=2}^{F} |w_f - w_{f-1}| + \lambda_2 \sum_{f=1}^{F} |w_f|$$

How to obtain minimum of regularized risk?

Non-differentiable

Ω = fused L₁ penalty + L₁ penalty

Problem: minimize regularized empirical risk: $R_s(w) + \Omega(w)$

$$\Omega(w) = \sum_{f=2}^{F} |w_f - w_{f-1}| + \sum_{f=1}^{F} |w_f|$$

MM iterations toward minimum: f=2

Gradient step:

$$V_{n+1} = W_n - \nabla R_S(W_n)/L$$

Proximal step:

$$W_{n+1} = prox_{\Omega,L/2}(V_{n+1})$$

4

Proximal gradient method

Problem: minimize convex $R(\Phi) + \Omega(\Phi)$

Proximal operator: $prox_{\Omega,b}(\Psi) = argmin_{\Phi} \Omega(\Phi) + b||\Phi - \Psi||^2$

MM iteration:

Gradient step:

$$\Psi_{t+1} = \Phi_t - \nabla R(\Phi_t)/L$$

Proximal step:

$$\Phi_{t+1} = prox_{\Omega,L/2}(\Psi_{t+1})$$

Different variables names, but that's just inconsequential cosmetics:

$$v = \Psi$$

 $w = \Phi$

n = t

Problem: minimize convex $R(\Phi) + \Omega(\Phi)$

Proximal operator: $prox_{\Omega,b}(\Psi) = argmin_{\Phi} \Omega(\Phi) + b||\Phi - \Psi||^2$

MM iteration:

Gradient step:

$$\Psi_{t+1} = \Phi_t - \nabla R(\Phi_t)/L$$

Proximal step:

$$\Phi_{t+1} = prox_{\Omega,L/2}(\Psi_{t+1})$$

Penalty: GRAPH+LASSO

Problem: minimize convex $R(\Phi) + \Omega(\Phi)$

Proximal operator: $prox_{\Omega,b}(\Psi) = argmin_{\Phi} \Omega(\Phi) + b||\Phi - \Psi||^2$

MM iteration:

Gradient step:

$$\Psi_{t+1} = \Phi_t - \nabla R(\Phi_t)/L$$

Proximal step:

$$\Phi_{t+1} = prox_{\Omega,L/2}(\Psi_{t+1})$$

Penalty: GRAPH+LASSO

Problem: minimize convex $R(\Phi) + \Omega(\Phi)$

Proximal operator: $prox_{\Omega,b}(\Psi) = argmin_{\Phi} \Omega(\Phi) + b||\Phi - \Psi||^2$

MM iteration:

Gradient step:

$$\Psi_{t+1} = \Phi_t - \nabla R(\Phi_t)/L$$

Proximal step:

$$\Phi_{t+1} = prox_{\Omega,L/2}(\Psi_{t+1})$$

Problem: minimize convex $R(\Phi) + \Omega(\Phi)$

Proximal operator: $prox_{\Omega,b}(\Psi) = argmin_{\Phi} \Omega(\Phi) + b||\Phi - \Psi||^2$

MM iteration:

Gradient step:

$$\Psi_{t+1} = \Phi_t - \nabla R(\Phi_t)/L$$

Proximal step:

$$\Phi_{t+1} = prox_{\Omega,L/2}(\Psi_{t+1})$$

Ω = fused L₁ penalty + L₁ penalty

Problem: minimize regularized empirical risk: $R_S(w) + \Omega(w)$

$$\Omega(w) = \sum_{f=2}^{F'} |w_f - w_{f-1}| + \sum_{f=1}^{F'} |w_f|$$

Proximal operator:

$$\begin{aligned} &\text{prox}_{\Omega,b}(v) = \text{ argmin}_w \ \boldsymbol{\Sigma}|w_f \text{-} \ w_{f\text{-}1} \ | \ + \ \boldsymbol{\Sigma}|w_f| \ + b \ \boldsymbol{\Sigma} \ (w_f \text{-} \ v_f)^2 \\ &\text{prox}_{\Omega,b}(v) = \text{ argmin}_w \ \boldsymbol{\Sigma}|w_f \text{-} \ w_{f\text{-}1} \ | \ + \ \boldsymbol{\Sigma}|w_f| \ + b \boldsymbol{\Sigma} w_f^2 \ + b \boldsymbol{\Sigma} v_f^2 - 2b \boldsymbol{\Sigma} v_f w_f \\ &\text{prox}_{\Omega,b}(v) = \text{ argmin}_w \ \boldsymbol{\Sigma}|w_f \text{-} \ w_{f\text{-}1} \ | \ + \ \boldsymbol{\Sigma}|w_f| \ + b \boldsymbol{\Sigma} w_f^2 - 2b \boldsymbol{\Sigma} v_f w_f \end{aligned}$$

Ω = fused L₁ penalty + L₁ penalty

Problem: minimize regularized empirical risk: $R_S(w) + \Omega(w)$

$$\Omega(w) = \sum_{f=2}^{F} |w_f - w_{f-1}| + \sum_{f=1}^{F} |w_f|$$

MM iterations:

Gradient step:

$$V_{n+1} = W_n - \nabla R_S(W_n)/L$$

Proximal step:

$$W_{n+1} = prox_{\Omega,L/2}(v_{n+1})$$

Ω is not separable, so we can't treat each coordinate separately!

Proximal operator:

 $\operatorname{prox}_{\Omega,b}(\mathsf{v}) = \frac{-1.0}{-1.0}$ $\operatorname{argmin}_{\mathsf{w}} \mathbf{\Sigma} |\mathsf{w}_{\mathsf{f}} - \mathsf{w}_{\mathsf{f}-1}| + \mathbf{\Sigma} |\mathsf{w}_{\mathsf{f}}| + \mathbf{b} \mathbf{\Sigma} (\mathsf{w}_{\mathsf{f}} - \mathsf{v}_{\mathsf{f}})^2$

Prox for fused L₁: dealing with |.|

- Shape of the objective function:
 - Linear with linear constraints:

minimize c^Tx subject to: $Ax \le b$

x – vector of unknown real numbers

- Efficiently solvable:
 - Black box: just use CPLEX/Gurobi
- Tricks: objective function can contain terms: c_i max(a_ix_i, b_ix_i)
 - as long as c_i>0, we can add more constraints and transform it into:

minimize: $c_i z_i$ subject to: $a_i x_i \le z_i$ $b_i x_i \le z_i$

we can deal with absolute values this way: c_i | x_i | = c_i max(x_i, -x_i)

Prox for fused L_1 : dealing with (.)²

- Shape of the objective function: $5x^2 + 8xy + 5y^2 = \begin{bmatrix} x \ y \end{bmatrix} \begin{vmatrix} 5 & 4 \ 4 & 5 \end{vmatrix} \begin{vmatrix} x \ y \end{vmatrix}$
 - Quadratic (and convex) with linear constraints:

minimize
$$x^TQx+c^Tx$$

subject to: $Ax \le b$

Q – symmetric and positive (definite) definite matrix (thus convex shape)

- Efficiently solvable:
 - Standard packages: CPLEX, Gurobi
 - Black box: we don't need to care about the details
 - Specialized solvers for a given QP problem may be faster then black box
- Problems:
 - Q should not be badly conditioned

(semidefinite)

(indefinite)

QP: $\Sigma |W_f - W_{f-1}| + \Sigma |W_f| + b\Sigma W_f^2 - 2b\Sigma V_f W_f$

minimize
$$\lambda_1 \sum_{f=2}^{F} |w_f - w_{f-1}| + \lambda_2 \sum_{f=1}^{F} |w_f| + w^T (\frac{L}{2}I)w + (-Lv)^T w$$

Expanded vector of variables $\ \omega = [w\ e\ z]$, new constraints: minimize $\omega^T Q \omega + c^T \omega$

minimize
$$\omega^T Q \omega + c^T \omega$$

subject to $[w \, c - w \, c \,] < e \, c$

minimize $\omega^T Q \omega + c^T \omega$

Q is positive semidefinite

subject to $A\omega \leq b$

Fused Lasso – view involving sets

- Desired penalty structure:
 - If f_i is important for classification, f_{i-1} and f_{i+1} likely to be important, too
 - What we would like to have is a classifier where either both neighboring features are selected (non-zero w_i and w_{i+1}) or both are not selected ($w_i=w_{i+1}=0$)
 - $[W_i] = [W_{i+1}]$
 - Support of a real-valued variable x is:

$$[x] = \operatorname{supp}(x) = |\operatorname{sign}(x)|$$

- Support of x is 1 if x is non-zero, and is 0 otherwise
- Similarly, for a vector w, support is the corresponding vector of 0's and 1's (1's for non-zero coordinates, 0 elsewhere)

$$[w] = \text{supp}(w) = ([w_1], [w_2], ..., [w_F])$$

Fused Lasso – view involving sets

- If f_i is important for classification, f_{i-1} and f_{i+1} likely to be important, too
- We want a classifier where either both neighboring features are selected (non-zero w_i and w_{i+1}) or both are not selected (w_i=w_{i+1}=0):

$$\Omega(w) = \sum_{f=2}^{F} |[w_{f-1}] - [w_f]|$$

$$[x] = \text{supp}(x) = |\text{sign}(x)|$$

- Ω now is essentially a function defined on a set, not on a vector
 - Set of features with non-zero feature weights w_f
 - E.g. $\Omega(\{f_2, f_3, f_4\})=2$ or $\Omega(\{f_2, f_4\})=4$
 - Detailed values of weights are not what matters to us

Set functions

- $lue{}$ Ω now is essentially a function defined on a set
 - Set of features with non-zero feature weights w_f
 - E.g. $\Omega(\{f_2, f_3, f_4\})=2$
- We have a large set V (the universe),
 Ω is defined for any subset of V, i.e., Ω: 2^V -> R
 (2^V denotes a set of all subsets of V, including V itself, and empty set Ø)
 - V has an element corresponding to each feature, $V=\{f_1, f_2, f_3, f_4,...\}$
- How is Ω defined?
 - We have a graph with V as nodes
 - For an input set S: $\Omega(S) = \text{number of edges between S and V-S}$

