Berechnung Abschlusswiderstand differentieller I2C Bus

Abbildung Abschluss differentielles I2C aus Datenblatt PCA9615

Empfohlen vom Datenblatt bei 5V Speisespannung:

Abschlusswiderstand R2:120 Ohm Spannungsteiler R1: 600 Ohm

Dies ergibt bei passiven Leitungszuständen folgende Leitungspegel:

Leitung Positiv: $Up = \frac{Vcc}{R1 + R1 + R2} \cdot (R1 + R2) = \frac{5V}{600\Omega + 600\Omega + 120\Omega} \cdot (600\Omega + 120\Omega) = 2.727V$

Leitung Negativ: $Un = \frac{Vcc}{R1 + R1 + R2} \cdot (R1) = \frac{5V}{600\Omega + 600\Omega + 120\Omega} \cdot (600) = 2.273V$

Spannungsdifferenz: Upn = Up - Un = 2.727V - 2.273V = 0.454V

Nun wurden die Widerstände angepasst für eine 3.3V Speisespannung, so dass die Spannungsdifferenz (0.454V) und der Abschlusswiderstand (120 Ohm) gleich gross bleiben.

Spannungsdifferenz: Upn = 0.454V

Leitung Positiv: $Up = \frac{Vcc}{2} + \frac{Upn}{2} = \frac{3.3V}{2} + \frac{0.454V}{2} = 1.877V$

Leitung Negativ: $Un = \frac{Vcc}{2} - \frac{Upn}{2} = \frac{3.3V}{2} - \frac{0.454V}{2} = 1.423V$

Strom durch Spannungsteiler $I = \frac{0.454V}{1200} = 3.78mA$

Spannungsteiler R1: $R1 = \frac{1.423V}{3.78mA} = 376.123\Omega = \frac{390\Omega}{1.423}$

Rückrechnung mit R1 = 390 Ohm und R2 = 120 Ohm:

Leitung Positiv: $Up = \frac{Vcc}{R1 + R1 + R2} \cdot (R1 + R2) = \frac{3.3V}{390\Omega + 390\Omega + 120\Omega} \cdot (390\Omega + 120\Omega) = 1.87V$

Leitung Negativ: $Un = \frac{Vcc}{R1 + R1 + R2} \cdot (R1) = \frac{3.3V}{390\Omega + 390\Omega + 120\Omega} \cdot (390\Omega) = 1.43V$

Spannungsdifferenz: Upn = Up - Un = 0.44V

ursprünglicher Wert der Spannungsdifferenz war 0.454V, somit 14mV Differenz, was einer Abweichung von unter 4 Prozent entspricht und somit sehr genau ist.

Berechnung Led Vorwiderstände

Led in Schalter:

 $U_{Led} = 2.1V \ typ. (aus \ Datenblatt)$

$$U_R = Vcc - U_{Led} = 3.3V - 2.1V = 1.2V$$

I = 20mA (aus Datenblatt)

$$R = \frac{U}{I} = \frac{1.2V}{20mA} = 60 \Omega = > 62\Omega$$

Led grün:

 $U_{Led} = 2V \ typ. (aus \ Datenblatt)$

$$U_R = Vcc - U_{Led} = 3.3V - 2V = 1.3V$$

I = 15mA (aus Datenblatt)

$$R = \frac{U}{I} = \frac{1.3V}{15mA} = 60 \Omega = > 62\Omega$$

Abbildung Schema Led

Anschlüsse

Stecker Ausdehnungssensor

Stecker Pin	Signal	Farbe Kabel	Beschreibung
1	GND	Schwarz	Spannungsversorgung
2	3.3V	Rot	Spannungsversorgung
3	Analog7	Grün	Spannung über Ausdehnungssensor
4	-	-	

Abbildung Frontansicht Stecker Ausdehnungssensor 4 Pol

Tabelle Steckerbelegung Ausdehnungssensor 4 Pol

Stecker Sensoren

Stecker Pin	Signal	Farbe Kabel	Beschreibung
1	GND	Blau	Spannungsversorgung
2	3.3V	Weiss-Blau	Spannungsversorgung
3	DSDA_N	Braun	Diff. Daten Minus
4	DSDA_P	Weiss-Braun	Diff. Daten Plus
5	DSCL_P	Weiss-Grün	Diff. Clock Plus
6	DSCL_N	Grün	Diff. Clock Minus
7	Schirm	Schirm	Abschirmung
8	INT1	Weiss-Orange	Interrupt Pin

Abbildung Frontansicht Stecker Sensoren 8 Pol

Tabelle Steckerbelegung Sensoren 8 Pol

Solarstecker

Über die Solarstecker kann ein Solarpanel angeschlossen werden, das dann den Akku lädt. Das Solarpanel muss den Anforderungen in untenstehender Tabelle entsprechen, ansonsten kann das Gerät beschädigt werden.

Anforderung Solarpanel	Minimal	Maximal
Ausgangsspannung	5V	32V
Ausgansstrom	-	3A

Tabelle Anforderungen Solarpanel

Abbildung Solarstecker Plus (rechts) und Minus (links)

Mini USB-B Stecker

Mit dem USB- Stecker können das Gateway und der Sensorknoten neu programmiert werden. Der Akku wird über die USB Verbindung ebenfalls geladen, wenn das Gerät eingeschalten ist.

Stecker Pin	Signal	Farbe Kabel	Beschreibung
1	5V	Rot	Spannungsversorgung
2	D-	Weiss	Diff. Daten negativ
3	D+	Grün	Diff. Daten positiv
4	-	-	
5	GND	Schwarz	Spannungsversorgung