Triangle-degree and triangle-distinct graphs

Jan Miksa

30.11.2023

Abstract

In the presented work authors introduce an algorithm for construction of triangle-distinct graphs and several theorems about their structural properties. I will provide an example implementation of their method and its complexity analysis. After that I will go through their theoretical findings and illustrate them with appropriate examples.

Notation

```
G(V,E) - graph (V vertices set, E - edges set) V(G) - vertices of G, E(G) - edges of G n(G) = |V(G)|, e(G) = |E(G)| N_G(v) - vertices adjacent to v, N_G[v] = N_G(v) \cup \{v\} d_G(v) = |N_G(v)|, t_G(v) - triangle degree of vertex v G[S] - subgraph induced on S \subseteq V(G), \overline{G} - complement of graph \overline{S} = V(G) \setminus S, G - S = G[V(G) \setminus S] E_G(V_1, V_2) - set of edges with ends in disjoint sets V_1, V_2 e_G(V_1, V_2) = |E_G(V_1, V_2)|
```

Intro

Complement Graph - graph over the same vertices to given where two distinct vertices are adjacent if and only if they are not adjacent in given graph

Triangle - complete K_3 graph

Triangle-Degree - number of triangles in G that contain given vertex

Triangle-Distinct Graph - graph where each vertex a has different triangle-degree

Triangle-Degree Formula

$\mathsf{Theorem}$

 $v \in G$

$$t_G(v) = e(G[N_G(v)])$$

Proof

Let's consider all vertices used to build triangles with v - T.

First we notice that $\forall_{u \in T}(v, u) \in E(G)$. So $T = N_G(v)$.

Next we can notice that in order to build a triangle with v other vertices $u_1, u_2 \in T$ have to be adjacent.

Now it's easy to notice that the triangle-degree of v is the number of edges ending in it's neighbours.

Triangle-Degree Formula

Smallest Triangle-Distinct Graph - G_7

Through computer-search we can see that we need at least 7 vertices to build a triangle-distinct graph.

It has 7 vertices, 15 edges. Sequences of vertices degrees and triangle-degrees ordered by labels are: (6, 5, 5, 4, 4, 3, 3) and (9, 7, 6, 5, 4, 3, 2).

Construction of G_n

Note: Family constructed below does not cover all triangle-distinct graphs.

Starting with G_7 we define G_n graphs for all n.

Let's suppose that G_n has been defined for some odd $n \ge 7$ with vertices labeled so that $t(v_1) > \ldots > t(v_n)$.

Let $1 \le k \le n$ be the smallest integer such that $d_n(v_k)$ is the minimum degree in G_n .

- To construct G_{n+1} add a vertex labeled v_{n+1} and edge (v_k, v_{n+1}) to G_n .
- To construct G_{n+2} relabel each vertex in G_{n+1} , increasing each subscript by 1. Then add a single vertex v_1 and edges (v_1, v_i) for $2 \le i \le n+1$.

Construction of G_n

Implementation & Complexity Analysis

Implementation presented below uses adjacency matrix for graph representation.

- $O(n^3)$ to check whether a graph is triangle-distinct
- $O(n^2)$ to calculate triangle-degree for given vertex
- $O(n^2)$ to construct G_n
- O(n) neighbours lookup
- lacksquare O(n) to add v_1 or v_n+1 vertex
- O(1) to add new edge

Add New Vertex

```
def prepend_vertex(self) -> None:
    for 1 in self.matrix:
        1.insert(0, [])
    self.N += 1
    self.matrix.insert(0, [False]*self.N)
def append_vertex(self) -> int:
    for 1 in self.matrix:
        1.append([])
    self.N += 1
    self.matrix.append([False]*self.N)
    return self.N-1
```

Get Neighbours & Traingle-Degree

```
def get_neighbours(self, i: int) -> List[int]:
   return [ j for j, x in
enumerate(self.matrix[i]) if x == True ]
def get_traingle_degree(self, i: int) -> int:
    neighbours = self.get_neighbours(i)
    sub_matrix = [ self.matrix[x] for x in neighbours ]
    for i, l in enumerate(sub_matrix):
        sub_matrix[i] = [ l[x] for x in neighbours ]
    sub_graph = Graph(sub_matrix)
    return sum(map(sub_graph.get_degree,
list(range(len(sub_graph)))))//2
```

Triangle-Distinct Check

```
def check_traingle_distinct(graph: Graph) -> bool:
    R = True
    tdegs = set()
    for i in range(len(graph)):
        tdeg = graph.get_traingle_degree(i)
        if tdeg in tdegs:
            R = False
            break
        tdegs.add(tdeg)
    return R
```

Construction

```
def construct(N: int) -> Optional[Graph]:
    if N <= 7:
        return Graph.G7() if N == 7 else None
    else:
        graph = Graph.G7()
        k = 5
        for i in range(8, N+1):
            if i \% 2 == 0: # G n+1
                 j = graph.append_vertex()
                 graph.add_edge(k, j)
                k = j
            else: # G_{-}n+2
                 graph.prepend_vertex()
                 for j in range(1, len(graph)):
                     graph.add_edge(0, j)
        return graph
                                  4 D > 4 A > 4 B > 4 B > B 9 9 0
```

G_n are Triangle-Distinct

Theorem

Each G_n where $n \ge 7$ is triangle-distinct, $t_n(v_1) > \ldots > t_n(v_n)$ and $d_n(v_1) \ge \ldots d_n(v_n)$. If n is odd, $t_n(v_n) > 0$, $d_n(v_n) > 0$, $e(G_n) = t_n(v_1) + dn(v_1)$, and G_n is not regular.

Proof

First, we can quickly verify above properties for G_7 . For induction, suppose that for some odd $n \geq 7$, G_n has all of the properties stated in the theorem. We will prove that G_{n+1} and G_n+2 both satisfy the conditions in the theorem. -> Based on the construction of G_{n+1} , we have $t_{n+1}(v_{n+1})=0$, $d_{n+1}(v_{n+1})=1$, $t_{n+1}(v_k)=t_n(v_k)$, and $d_{n+1}(v_k)=d_n(v_k)+1$. Also for all $1\leq i\leq n, i\neq k$ $t_{n+1}(v_i)=t_n(v_i)$ and $d_{n+1}(v_i)=d_n(v_i)$.

G_n are Triangle-Distinct

Proof

Recall that $t_n(v_n) > 0$ which gives us the following: $t_{n+1}(v_1) > t_{n+1}(v_2) > \ldots > t_{n+1}(v_{n+1}) = 0.$ Based on choice of k and $d_n(v_n) > 0$ we have: $d_{n+1}(v_1) > d_{n+1}(v_2) > \ldots > d_{n+1}(v_{n+1}) = 1.$ -> Now let's consider G_{n+2} . Since G_n is not regular $k \neq 1$ so $t_{n+1}(v_1) = t_n(v_1)$ and $d_{n+1}(v_1) = d_n(v_1)$. Observe that for each $2 \le i \le n+2$ we have $t_{n+2}(v_i) = t_{n+1}(v_{i-1}) + d_{n+1}(v_{i-1})$. After adding new v_1 each vertex forms new triangles with it's neighbours. Substituting above into our result from G_{n+1} about triangle-degrees sequence we get: $t_{n+2}(v_2) > t_{n+2}(v_3) > ... > t_{n+2}(v_{n+2}) = 1$. Because $t_{n+1}(v_1) = e(G_{n+1}) = e(G_n) + 1$ and $t_{n+2}(v_2) = t_{n+1}(v_1) + d_{n+1}(v_1) = t_n(v_1) + d_n(v_1) = e(G_n)$ we get $t_{n+2}(v_1) > t_{n+2}(v_2)$ which completes our sequence.

G_n are Triangle-Distinct

Proof

For sequence of degrees we can notice that $d_{n+2}(v_1)=n+1$ and for the rest $d_{n+2}(v_i)=d_{n+1}(v_i)+1$. So: $d_{n+2}(v_1)\geq d_{n+2}(v_2)\geq \ldots \geq d_{n+2}(v_{n+2})=2$. Also notice how $t_{n+2}(v_1)+d_{n+2}(v_1)=e(G_{n+1})+n+1=e(G_{n+2})$ which was another property we desired. To show that G_{n+2} is not regular we can use $t_{n+2}(v_1)>t_{n+2}(v_{n+2})=1$ and the fact that vertex with triangle degree of at least 2 has degree of at least 3. Which concludes that v_1 and v_{n+2} have different degrees.

Based on proof above it's easy to see that we can get k while constructing G_n by updating it to n+1 in each even step.

Theorem (Lemma 1)

Let G be a graph on n vertices and $u \in V(G)$. If G has two distinct vertices u and v with the same degree and

$$t_{\bar{G}}(u) + e_{\bar{G}}\left(N_G(u), \overline{N_G[u]}\right) = t_{\bar{G}}(v) + e_{\bar{G}}\left(N_G(v), \overline{N_G[v]}\right)$$

then G is not triangle-distinct.

Proof

Note that $\operatorname{t}_{\bar{G}}(u)$ counts the number of edges xy in \bar{G} with $x,y\notin N_G(u)$. $\binom{n-1-d_G(u)}{2}=|\{xy\notin E(G):x,y\notin N_G[u]\}|+|\{xy\in E(G):x,y\notin N_G[u]\}|=\operatorname{t}_{\bar{G}}(u)+e\left(G-N_G[u]\right)$

Proof

Let's write e(G) as sum of: edges between u and it's neighbourhood, edges between neighbours of u, edges between neighbourhood of u and rest of graph (excluding u) and edges between vertices not adjacent to u.

$$\begin{split} &e_G\left(u,N_G(u)\right) + e\left(G\left[N_G(u)\right]\right) + e_G\left(N_G(u),\overline{N_G[u]}\right) + e\left(G-N_G[u]\right) \\ &= &\operatorname{d}_G(u) + \operatorname{t}_G(u) + e_G\left(N_G(u),\overline{N_G[u]}\right) + \left(\binom{n-1-d_G(u)}{2}\right) - \operatorname{t}_{\bar{G}}(u)) \\ &\operatorname{Solving the above equation for } \operatorname{t}_G(u), \text{ we find:} \\ &\operatorname{t}_G(u) = e(G) - d_G(u) - e_G\left(N_G(u),\overline{N_G[u]}\right) - \binom{n-1-d_G(u)}{2} + \operatorname{t}_{\bar{G}}(u) \\ &\operatorname{Based on the construction of a graph complement,} \end{split}$$

 $n-1-d_G(u)=d_{\bar{G}}(u)$. Now let's consider a bipartite graph with one set of size $d_G(u)$ and the other of size $d_{\bar{G}}(u)$:

Proof

$$\begin{split} &d_{\bar{G}}(u)d_G(u)=e_G\left(N_G(u),\overline{N_G[u]}\right)+e_{\bar{G}}\left(N_G(u),\overline{N_G[u]}\right)\\ &\text{The intuition is as follows: number of edges in complete bipartite graph - size of one set times size of another, since they correlate with degree of u in G and \overline{G} , so number of adjacent and not adjacent nodes in G we can sum edges between adjacent and not adjacent vertices. Substituting, we get: $(*)\mathbf{t}_G(u)=e(G)-d_G(u)-\left(d_{\bar{G}}(u)d_G(u)-e_{\bar{G}}\left(N_G(u),\overline{N_G[u]}\right)\right)-\left(d_{\bar{G}}(u)-d_{\bar{G}}(u)\right)+\mathbf{t}_{\bar{G}}(u)=e(G)-(1+d_{\bar{G}}(u))d_G(u)-\left(d_{\bar{G}}(u)-d_{\bar{G}}(u)\right)+\mathbf{t}_{\bar{G}}(u)+e_{\bar{G}}\left(N_G(u),\overline{N_G[u]}\right)\\ &\mathrm{Now let's consider two distinct vertices } u,v \ \text{with the same degree and fulfilling assumptions of this lemma:}\\ &\mathbf{t}_{\bar{G}}(u)+e_{\bar{G}}\left(N_G(u),\overline{N_G[u]}\right)=\mathbf{t}_{\bar{G}}(v)+e_{\bar{G}}\left(N_G(v),\overline{N_G[v]}\right) \end{split}$$$

Proof

Since $d_G(u) = d_G(v)$ and consequently $d_{\bar{G}}(u) = d_{\bar{G}}(v)$, then: $e(G) - (1 + d_{\bar{G}}(u)) d_G(u) - \binom{d_{\bar{G}}(u)}{2} = e(G) - (1 + d_{\bar{G}}(v)) d_G(v) - \binom{d_{\bar{G}}(v)}{2}$

And finally based on (*) we get that they have the same triangle-degree.

Theorem

Let G be a graph of order $n \ge 3$. Then we have the following:

- (a)If $\Delta(G) \leq \sqrt{2n}$, then G has distinct vertices $u, v \in V(G)$ with $t_G(u) = t_G(v)$.
- (b) If $\delta(G) > n 1 (2n/3)^{1/3}$, then G has two distinct vertices $u, v \in V(G)$ with d(u) = d(v) and $t_G(u) = t_G(v)$.
- (c) If G is d-regular and triangle-distinct, then $\sqrt{2n} < d \le n \sqrt{2n/3}$

Proof

For (a), note that for each vertex $v \in V(G)$, there are at most $\binom{\sqrt{2n}}{2}$ edges in $G[N_G(v)]$. Since $\binom{\sqrt{2n}}{2} < n-1$, the triangle-degree for each vertex is between 0 and n-2.

Proof

However, the graph G has n vertices, the Pigeonhole Principle guarantees us two vertices with the same triangle-degree. For (b), since $\delta(G) > n-1-(2n/3)^{1/3}$, we have $\Delta(\bar{G}) < (2n/3)^{1/3}$. Because the degree in \bar{G} of each vertex is in $\left\{0,1,\ldots,(2n/3)^{1/3}-1\right\}$, there are at least $\left(\frac{3}{2}\right)^{1/3}n^{2/3}$ vertices with the same degree in \bar{G} . Let v be an arbitrary one of these vertices. Observe:

 $\operatorname{t}_{\bar{G}}(v) + e_{\bar{G}}\left(N_G(v), \overline{N_G(v)}\right) \le \left(\frac{(2n/3)^{1/3}}{2}\right) + (2n/3)^{2/3} < \left(\frac{3}{2}\right)^{1/3} n^{2/3}$

By the Pigeonhole Principle, we can find two distinct vertices which satisfy the hypotheses in Lemma 1, so G is not triangle-distinct.

Proof

For (c), the lower bound follows directly from (a). We now show the upper bound. Suppose for contradiction that $d>n-\sqrt{2n/3}$. Every vertex in \bar{G} has degree $n-1-d<\sqrt{2n/3}$. Thus, for each vertex v, we have:

$$\mathrm{t}_{\bar{G}}(v) + e_{\bar{G}}\left(N_G(v),\overline{N_G(v)}\right) < \left(\sqrt{\frac{2n/3}{2}}\right) + \left(\sqrt{2n/3}\right)^2 < n$$
 By the Pigeonhole Principle, there are two distinct vertices which satisfy the conditions in Lemma 1, so G is not triangle-distinct, a contradiction.

Now we turn our attention from triangle-degrees to the number of edges in a triangle-distinct graph. Following theorem is introduced.

Theorem

Let G be a triangle-distinct graph of order n. Then

$$\frac{\sqrt{2}}{3}n^{3/2}(1-o(1)) < e(G) \leq \binom{n}{2} - \omega(n)$$

Since a planar graph can have at most 3n-6 edges as a consequence of above theorem no triangle-distinct graph is planar.

Open problems

- Does there exist a regular graph that is triangle-distinct?
- Are $\frac{\sqrt{2}}{3}n^{3/2}(1-o(1)) < e(G) \le \binom{n}{2} \omega(n)$ tight? If not how can we sharpen them?

Bibliography

Zhanar Berikkyzy, Beth Bjorkman, Heather Smith Blake, Sogol Jahanbekam, Lauren Keough, Kevin Moss, Danny Rorabaugh, Songling Shan: Triangle-degree and triangle-distinct graphs