PHẦN MỘT – CƠ HỌC.

Chương I – Động học chất điểm.

Bài 2: Chuyển động thẳng biến đổi đều.

Gia tốc của chuyển động: $a = \frac{v - v_0}{t}$ (m/s²)

- Quãng đường trong chuyền động: $S = v_0 t + \frac{at^2}{2}$
- Phương trình chuyền động: $x = x_{0+} v_{0}t_{+} \frac{1}{2} at^{2}$
- Công thức độc lập thời gian: $v^2 v_0^2 = 2 a.s$

Bài 3: Sự rơi tự do.

Với gia tốc: $a = g = 9.8 \text{ m/s}^2 (= 10 \text{ m/s}^2).$

- Công thức:
 - Vận tốc: v = g.t (m/s)
 - Chiều cao (quãng đường): $h = \frac{gt^2}{2}(m) \Rightarrow t = \sqrt{\frac{2h}{g}}(s)$

Bài 4: Chuyển động tròn đều.

• Vận tốc trong chuyển động tròn đều:

$$v = \frac{s}{t} = \omega r = \frac{2\pi . r}{T} = 2\pi . r. f$$
 (m/s)

- Vân tốc góc: $\omega = \frac{\alpha}{T} = \frac{v}{r} = \frac{2\pi}{T} = 2\pi . f$ (rad/s)
- Chu kì: (Kí hiệu: T) là khoảng thời gian (giây) vật đi được một vòng.
- Tần số (Kí hiệu: f): là số vòng vật đi được trong một giây.

$$f = \frac{1}{T}$$
 (Hz)

• Độ lớn của gia tốc hướng tâm: $\frac{v^2}{r} = \omega^2 . r \frac{(m/s^2)}{r}$.

Chương II – Đông lực học chất điểm.

Bài 9: Tổng hợp và phân tích lực. Điều kiện cần bằng của chất điểm.

- Tổng hợp và phân tích lực.
- 1. Hai lực bằng nhau tạo với nhau một góc α : $F = 2.F_{1.}\cos\frac{\alpha}{2}$
- 2. Hai lực không bằng nhau tạo với nhau một góc α : $F = F_1^2 + F_2^2 + 2 \cdot F_1 F_2 \cos \alpha$
- Điều kiện cân bằng của chất điểm: $\vec{F}_1 + \vec{F}_2 + ... + \vec{F}_n = 0$

Bài 10: Ba định luật Niu-tơn:

- Định luật 2: $\overrightarrow{F} = m \cdot \overrightarrow{a}$
- Định luật 3: $\overrightarrow{F}_{B \to A} = -\overrightarrow{F}_{A \to B} \iff \overrightarrow{F}_{BA} = -\overrightarrow{F}_{AB}$.

Bài 11: Lực hấp dẫn. Định luật vạn vật hấp dẫn.

• Biểu thức: $F_{hd} = \frac{G.m_1.m_2}{R^2}$ Trong đó: $G = 6,67.10^{-11} \left(\frac{N.m^2}{kg^2}\right)$

1

m₁, m₂. Khối lượng của hai vật.

R: khoảng cách giữa hai vật.

Gia tốc trọng trường:
$$g = \frac{G..M}{(R+h)^2}$$

 $ightharpoonup M = 6.10^{24} - Khối lượng Trái Đất.$

Arr R = 6400 km = 6.400.000m – Bán kính Trái Đất.

> h: đô cao của vật so với mặt đất.

✓ Vật ở mặt đất: $\mathbf{g} = \frac{G.M}{R^2}$

$$g = \frac{G.M}{R^2}$$

✓ Vật ở độ cao "h": $g' = \frac{G.M}{(R+h)^2}$

$$\mathbf{g'} = \frac{G.M}{(R+h)^2}$$

$$\Rightarrow \mathbf{g'} = \frac{g.R^2}{(R+h)^2}$$

Bài 12: Lực đàn hồi của lò xo. Định luật Húc.

Biểu thức:

$$F_{dh} = k$$
. $|\Delta V|$

Trong đó:

k – là độ cứng của lò xo.

 $|\Delta V|$ – độ biến dạng của lò xo.

Lực đàn hồi do trọng lực:

$$P = F_{dh}$$

$$\Leftrightarrow m.g = k \mid \Delta l \mid$$

$$\Leftrightarrow k = \frac{m.g}{|\Delta l|}$$

$$\Leftrightarrow |\Delta| = \frac{m.g}{k}$$

Bài 13: Lực ma sát.

Biểu thức:

$$\mathbf{F}_{\text{ms}} = \boldsymbol{\mu} N$$

Trong đó:

 μ_{-} hệ số ma sát

N – Áp lực (lực nén vật này lên vật khác)

Vật đặt trên mặt phẳng nằm ngang:

$$F_{ms} = \mu P = \mu m.g$$

Vật chuyển động trên mặt phẳng nằm ngang chịu tác dụng của 4 lực.

Ta có:
$$\overrightarrow{F} = \overrightarrow{P} + \overrightarrow{N} + \overrightarrow{F}_{k\acute{e}o} + \overrightarrow{F}_{ms}$$

$$V\hat{e}$$
 độ lớn: $F = F_{k\acute{e}o}$ - F_{ms}

$$\begin{cases} F_{k\acute{e}o} = m.a \\ F_{ms} = \mu .m.g \end{cases}$$

=> Khi vật chuyển động theo quán tính: $F_{k\acute{e}o} = 0$ $\Leftrightarrow a = -\mu.g$

$$\Gamma_{\text{k\'eo}} = 0$$

 $\alpha = -11.9$

Vật chuyền động trên mp nằm ngang với lực kéo hớp với mp 1 góc lpha

Ta có:
$$\overrightarrow{F}_{K\acute{e}o} + \overrightarrow{N} + \overrightarrow{P} = 0$$

 $\Leftrightarrow F_{k\acute{e}o}.Sin\alpha + N - P = 0$
 $\Leftrightarrow N = P - F_{k\acute{e}o}.Sin\alpha$

• Vật chuyển động trên mặt phẳn nghiêng.

Vật chịu tác dụng của 3 lực:
$$\Rightarrow \stackrel{\rightarrow}{F}_{HL} = \stackrel{\rightarrow}{N} + \stackrel{\rightarrow}{P} + \stackrel{\rightarrow}{F}_{ms}$$

 $\Rightarrow F_{HL} = F - F_{ms}$

Từ hình vẽ ta có:
$$N = P.Cos \alpha$$

$$F = P.Sin\alpha$$

Ta có theo đinh nghĩa:
$$F_{\text{ma sát}} = \mu N = \mu P.Cos \alpha$$

$$\Rightarrow F_{HL} = F - F_{ms} = P.Sin\alpha - \mu.P.Cos\alpha$$
 (1)

Theo định luật II Niu-ton:
$$F_{hop luc} = m.a$$
 $P = m.g$

$$T\dot{\mathbf{u}}(1) \Longrightarrow m.a = m.g.Sin\alpha - \mu m.g.Cos\alpha$$
$$\Leftrightarrow a = g(Sin\alpha - \mu.Cos\alpha)$$

Bài 14: Lực hướng tâm.

• Biểu thức:
$$F_{ht} = m \cdot \frac{v^2}{r} = m \cdot \omega^2 \cdot r$$

• Trong nhiều trường hợp lực hấp dẫn cũng là lực hướng tâm:

$$F_{hd} = F_{ht} \Leftrightarrow \frac{G..m_1.m_2}{(R+h)^2} = \frac{m.v^2}{R+h}$$

Bài 15: Bài toán về chuyền động ném ngang.

Chuyền động ném ngang là một chuyền động phức tạp, nó được phân tích thành hai thành phần

• Thành phần theo phương thẳng đứng Oy.

$$\checkmark$$
 a_v = g (= 9.8 m/s²), $v = g.t$

$$\checkmark$$
 Độ cao: $h = \frac{g \cdot t^2}{2} \Rightarrow t = \sqrt{\frac{2h}{g}}$

✓ Phương trình quỹ đạo:
$$y = \frac{g \cdot t^2}{2} = \frac{g \cdot x^2}{2v_0^2}$$

⇒ Quỹ đạo là nửa đường Parabol

Vận tốc khi chạm đất:
$$v^2 = v_x^2 + v_y^2$$

$$\Leftrightarrow v = \sqrt{v_x^2 + v_y^2} = \sqrt{v_0^2 + (gt)^2}$$

Chương III – Cân bằng và chuyền động của vật rắn.

Bài 17: Cân bằng của vật rắn chịu tác dụng của 2 lực và của 3 lực không song song.

A, Cân bằng của vật rắn chịu tác dụng của 2 lực không song song.

$$\vec{F}_1 + \vec{F}_2 = 0 \Leftrightarrow \vec{F}_1 = -\vec{F}_2$$

Điều kiện:

1. Cùng giá

- 2. Cùng độ lớn
- 3. Cùng tác dụng vào một vật
- 4. Ngược chiều

B, Cần bằng của vật chịu tác dụng của 3 lực không song song.

$$\vec{F}_1 + \vec{F}_2 + \vec{F}_3 = 0 \Leftrightarrow \vec{F}_{12} + \vec{F}_3 = 0 \Leftrightarrow \vec{F}_{12} = -\vec{F}_3$$

Điều kiên:

- 1. Ba lực đồng phẳng
- 2. Ba lực đồng quy
- 3. Hợp lực của 2 lực trực đối với lực thứ 3

Bài 18: Cân bằng của một vật có trục quay cố định. Momen lực

- Vật cân bằng phụ thuộc vào 2 yếu tố.
 - 1. Lực tác dụng vào vật
 - 2. Khoảng cách từ lực tác dụng đến trục quay Biểu thức: M = F.d (Momen lực)

Trong đó: F – lực làm vật quay

d - cánh tay đòn (khoảng cách từ lực đến trục quay)

Quy tắc tổng hợp lực song song cùng chiều.

Biểu thức:
$$F = F_1 + F_2$$

$$\Rightarrow \frac{F_1}{F_2} = \frac{d_2}{d_1} \text{ (chia trong)}$$

$$\Leftrightarrow F_1.d_1 = F_2.d_2$$

Chương IV – Các định luật bào toàn.

Bài 23: Động lượng. Định luật bảo toàn động lượng.

Động lượng:
$$\overrightarrow{P} = m.\overrightarrow{v} \left(\frac{kg.m}{s} \right)$$

• Xung của lực: là độ biến thiên động lượng trong khoảng thời gian 🕰

$$\Delta \overrightarrow{p} = \overrightarrow{F} \cdot \Delta t$$

- Đinh luật bảo toàn đông lương (trong hệ cô lập).
 - 1. Va chạm mềm: sau khi va chạm 2 vật dính vào nhau và chuyển động cùng vận tốc \overrightarrow{v} .

Biểu thức:
$$m_1 \cdot \vec{v}_1 + m_2 \cdot \vec{v}_2 = (m_1 + m_2) \vec{v}$$

Va chạm đàn hồi: sau khi va chạm 2 vật không đính vào nhau là chuyển đồng với vận tốc mới

Biểu thức:
$$m_1$$
. $\overrightarrow{v}_1 + m_2$. $\overrightarrow{v}_2 = m_1$. $\overrightarrow{v}_1 + m_2$. \overrightarrow{v}_2

2. Chuyển động bằng phản lực.

Biểu thức:
$$m.\overrightarrow{v} + M.\overrightarrow{V} = \overrightarrow{0}$$

 $\Leftrightarrow \overrightarrow{V} = -\frac{m}{M}.\overrightarrow{v}$

Trong đó: $m, \stackrel{\rightarrow}{\mathcal{V}} - khối lượng khí phụt ra với vận tốc <math>\mathcal{V}$

M, \overrightarrow{V} – khối lượng M của tên lửa chuyền động với vận tốc \overrightarrow{V} sau khi đã

phụt khí

Bài 24: Công và Công suất.

• Công: $A = F.s.\cos\alpha$

Trong đó: F – lực tác dụng vào vật

 α – góc tạo bởi lực F và phương chuyền dời (nằm ngang) và s là chiều dài quãng đường chuyền đông (m)

• Công suất: $P = \frac{A}{t}$ (w) với t là thời gian thực hiện công (giây – s)

Bài 25, 26, 27: Động năng – Thế năng – Cơ năng.

• Động năng: là năng lượng của vật có được do chuyển động.

Biểu thức: $w_D = \frac{1}{2} .m.v^2$

Định lí động năng (công sinh ra): $A = \Delta W = \frac{1}{2} .m. v_2^2 - \frac{1}{2} .m. v_1^2$

• Thế năng:

1. Thế năng trọng trường: $W_t = m.g.h$

Trong đó: m – khối lượng của vật (kg)

 $h - d\hat{o}$ cao của vật so với gốc thế năng. (m)

 $g = 9.8 \text{ or } 10 \text{ (m/s}^2\text{)}$

Định lí thế năng (Công A sinh ra): $A = \Delta W = m.g.h_0 - m.g.h_{sau}$

2. Thế năng đàn hồi: $W_t = \frac{1}{2} k (|\Delta t|)^2$

Định lí thế năng (Công A sinh ra): $A = \Delta W = \frac{1}{2} k(|\Delta l_1|)^2 - \frac{1}{2} k(|\Delta l_2|)^2$

• Cơ năng:

Cơ năng của vật chuyển động trong trường:

 $\mathbf{W} = \mathbf{W}_{d} + \mathbf{W}_{t}$

- $\Leftrightarrow \frac{1}{2}.m.v^{2} + m.g.h$
- 2. Cơ năng của vật chịu tác dụng của lực đàn hồi:

$$\mathbf{W} = \mathbf{W_d} + \mathbf{W_t} \Longleftrightarrow \frac{1}{2} .m. \overrightarrow{v^2} + \frac{1}{2} .k. (|\Delta V|)^2$$

Trong một hệ cô lập cơ năng tại mọi điểm được bảo toàn.

Mở rộng: Đối với con lắc đơn.

1.
$$v_A = \sqrt{2.g.l.(1-\cos\alpha_0)}$$

$$T_A = m.g.(3 - 2\cos\alpha_0)$$

2.
$$v_B = \sqrt{2.g.l.(\cos\alpha - \cos\alpha_0)}$$

$$T_A = m.g.(3\cos\alpha - 2\cos\alpha_0)$$

Trong đó: v_A , v_B — vận tốc của con lắc tại mỗi vị trí A,B... T_A , T_B — lực căng dây T tại mỗi vị trí. m — khối lượng của con lắc (kg)

PHÀN HAI – NHIỆT HỌC

Chương V – Chất khí.

Định luật Bôi-lơ – Ma-ri-ốt (Quá trình đẳng nhiệt)

$$p \sim \frac{1}{V}$$
 hay $pV = const \Rightarrow p_1V_1 = p_2V_2$

• Định luật Sác-lợ (Quá trình đẳng nhiệt)

$$\frac{p}{T} = const \Rightarrow \frac{p_1}{T_1} = \frac{p_2}{T_2}$$

• Phương trình trạng thái khí lí tưởng

Biểu thức:
$$\frac{p_1.V_1}{T_1} = \frac{p_2.V_2}{T_2} \Rightarrow \frac{p.V}{T} = const$$
Trong đó: $P - \text{Áp suất khí}$

$$V - \text{Thể tích khí}$$

$$T = t^0 c + 273 \text{ [nhiệt độ khí ($^0 K$)]}$$

Chương VI – Cơ sở của nhiệt đông lực học

Bài 32: Nội năng và Sự biến thiên nội năng.

• Nhiệt lượng: số đo độ biến thiên của nội năng trong quá trình truyền nhiệt là <u>nhiệt lượng.</u> $\Delta U = Q$

Biểu thức:
$$Q = m.c.\Delta t \rightarrow \sum_{\substack{Q_{tòa} = \\ M}} Q_{thu}$$

Trong đó: $Q - là nhiệt lượng thu vào hay tỏa ra (J) m - là khối lượng (kg)

 $c - là nhiệt dung riêng của chất $\left(\frac{J}{kg.K}\right)$
 $\Delta t - là độ biến thiên nhiệt độ (°C hoặc °K)$$$

• Thuc hiện công: $\Delta U = A$

Biểu thức:
$$A = p.\Delta V = \Delta U$$

Trong đó: $P - \text{Áp suất của khí.} \left| \frac{N}{m^2} \right|$
 $\Delta V - \text{Đô biến thiên thể tích (m³)}$

❖ Cách đổi đơn vị áp suất:
$$- 1 \frac{N}{m^2} = 1 \text{ pa (Paxcan)}$$

$$- 1 \text{ atm} = 1,013.10^5 \text{ pa}$$

$$- 1 at = 0.981.10^5 pa$$

$$-$$
 1 mmHg = 133 pa = 1 tor

$$1 \text{ HP} = 746 \text{ w}$$

Bài 33: Các nguyên lí của nhiệt động lực học.

• Nguyên lí một: Nhiệt động lực học.

Biểu thức:
$$\Delta U = A + Q$$

❖ Các quy ước về dấu:
$$Q > 0$$
: Hệ nhận nhiệt lượng $Q < 0$: Hệ truyền nhiệt lượng $A > 0$: Hệ nhận công $A < 0$: Hện thực hiện công

Chương VII – Chất rắn và chất lỏng. Sư chuyển thế

Bài 34: Chất rắn kết tinh. Chất rắn vô định hình.

	Chất kết tinh		Chất vô định hình
Khái niệm Tính chất	 Có cấu tạo tinh thể Hình học xác định Nhiệt độ nóng chảy xác định 		Ngược chất kết tinh
Phân loại	Đơn tinh thể Dị hướng	Đa tinh thể Đẳng hướng	Đẳng hướng

Bài 35: Biến dạn cơ của vật rắn.

A, Biến dạng đàn hồi

• Độ biến dạng tỉ đối:
$$\varepsilon = \frac{|l - l_0|}{l_0} = \frac{|\Delta l|}{l_0}$$

Trong đó: l_0 – chiều dài ban đầu

l — chiều dài sau khi biến dạng

 $\Delta I - d\hat{0}$ biến thiên chiều dài ($\bar{d}\hat{0}$ biến dạng).

• Úng suất:
$$\sigma = \frac{F}{S} \left| \frac{N}{m^2} \right|$$

Định luật Húc về biến dạng cơ của vật rắn:

Biểu thức:
$$\varepsilon = \frac{|\Delta l|}{l_0} = \alpha.\sigma$$

Với α – là hệ số tỉ lệ phu thuộc chất liêu vật rắn.

• Lực đàn hồi:

Ta có:
$$\sigma = \frac{F}{S} = E \frac{|\Delta l|}{l_0}$$

Biểu thức:
$$F_{dh} = k \mid \Delta l \mid = E \frac{S}{l_0} \mid \Delta L \mid$$

Trong đó:
$$E = \frac{1}{\alpha} \Rightarrow \alpha = \frac{1}{E}$$
 (E gọi là suất đàn hồi hay suất Y-âng)
 $k = E \frac{S}{L}$ và S là tiết diện của vật.

<u>Bài 36: Sự nở vì nhiệt của vật rắn</u>

Gọi: l_0, V_0, S_0, D_0 lần lượt là: độ dài – thể tích – diện tích – khối lượng riêng ban đầu của vật. l, V, S, D lần lượt là: độ dài – thể tích – diện tích – khối lượng riêng của vật ở nhiệt độ t⁰C. $\Delta l, \Delta V, \Delta S, \Delta l$ lần lượt là độ biến thiên(phần nở thêm) độ dài – thể tích – diện tích – nhiệt độ của vật sau khi nở.

• Sự nở dài:
$$l=l_0.(1+\alpha.\Delta t)\Rightarrow \Delta l=l_0.\alpha.\Delta t$$

Với α là hệ số nở dài của vật rắn. Đơn vị: $\frac{1}{K}=K^{-1}$

• Sự nở khối:
$$V = V_0.(1 + \beta.\Delta t) = V_0.(1 + 3.\alpha.\Delta t)$$

$$\Rightarrow \Delta V = V_0.3\alpha.\Delta t$$
Với $\beta = 3.\alpha$

• Sự nở tích (diện tích):
$$S = S_0.(1 + 2.\alpha.\Delta t)$$

$$\Rightarrow \Delta S = S.2\alpha.\Delta t$$

$$\Rightarrow d^{2} = d_{0}^{2} (1 + 2\alpha . \Delta t) \Leftrightarrow \Delta t = \frac{\frac{d^{2}}{d_{0}^{2}} - 1}{2\alpha}$$

Với d là đường kính tiết diện vật rắn.

Sự thay đổi khối lượng riêng:

•
$$\frac{1}{D} = \frac{1}{D_0} (1 + 3\alpha . \Delta t) \Rightarrow D = \frac{D_0}{1 + 3\alpha . \Delta t}$$

Bài 37: Các hiện tường của các chất.

• Lực căn bề mặt: $f = \sigma l$ (N)

Trong đó:
$$\sigma$$
 – hệ số căng bề mặt. $\binom{N}{m}$

 $l = \pi d$ – chu vi đường tròn giới hạn mặt thoáng chất lỏng. (m)

• Khi nhúng một chiếc vòng vào chất lỏng sẽ có 2 lực căng bề mặt của chất lỏng lên chiếc vòng.

1. Tổng các lực căng bề mặt của chất lỏng lên chiếc vòng

$$F_{\text{căng}} = F_{\text{c}} = F_{\text{k\'eo}} - P \quad (N)$$

Với F_{kéo} lực tác dụng để nhắc chiếc vòng ra khổi chất lỏng (N) P là trong lương của chiếc vòng.

2. Tổng chu vi ngoài và chu vi trong của chiếc vòng.

$$l = \pi(D + d)$$

Với D đường kính ngoài

D đường kính trong

3. Giá trị hệ số căng bề mặt của chất lỏng.

$$\sigma = \frac{Fc}{\pi(D+d)}$$

• Chú ý: Một vật nhúng vào xà phòng luôn chịu tác dụng của hai lực căng bề mặt