) 问题

- n次插值构造的插值求积公式至少有n次代数精确度.那么,最高能达多少次,又如何达到.
- 。 考虑

$$\int_{a}^{b} f(x)dx \approx \sum_{k=1}^{n} A_{k} f(x_{k})$$

。 代入1,x, x^2 ,…, x^m 看左右相等最高的m是多少。这里 x_k , A_k 待定。乃有:

$$A_{1}x_{1} + A_{2}x_{2} + \dots + A_{n}x_{n} = \mu_{1}$$

$$A_{1}x_{1}^{2} + A_{2}x_{2}^{2} + \dots + A_{n}x_{n}^{2} = \mu_{2},$$

$$\dots$$

$$A_{1}x_{1}^{m} + A_{2}x_{2}^{m} + \dots + A_{n}x_{n}^{m} = \mu_{m}$$

$$\mu_{k} = \int_{a}^{b} x^{k} dx, k = 0,1, \dots m$$

- 最高代数精确度的插值求积公式
 - 。 当m = 2n 1时方程数等于未知数个数。可望有解(此前节点指定,系数待定时,m = n 1有解)。求得n个节点2n 1次代数精确度的插值求积公式。

练习 试构造高斯求积公式 $\int_{-1}^{1} f(x) dx \approx w_0 f(x_0) + w_1 f(x_1)$.

$$\begin{cases} w_0 + w_1 = 2, \\ w_0 x_0 + w_1 x_1 = 0, \\ w_0 x_0^2 + w_1 x_1^2 = \frac{2}{3}, \end{cases} \Rightarrow \int_{-1}^{1} f(x) dx \approx f(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}}).$$

$$\begin{cases} w_0 x_0^3 + w_1 x_1^2 = 0, \\ w_0 x_0^3 + w_1 x_1^3 = 0. \end{cases}$$

- **最高代数精确度的插值求积公式**
 - 。 一般地

$$\int_{a}^{b} w(x)f(x)dx \approx \sum_{k=1}^{n} A_{k}f(x_{k})$$

(其中权函数 $w(x) \ge 0$,与各次多项式乘积的积分存在,a,b皆可取∞)也能得到n个节点2n - 1次代数精确度的插值求积公式.

- 。 定义: 若一组节点 $a \le x_1 < x_2 < \cdots < x_n \le b$,使插值型求积公式具有2n-1次代数精度,则称此组节点为高斯点,并称此求积公式为高斯求积公式。
- 利用正交多项式可方便地给出结果

定理

。 设有插值求积公式

$$\int_{a}^{b} w(x)f(x)dx \approx \sum_{k=1}^{n} A_{k}f(x_{k})$$

则它有2n-1次代数精确度的充分必要条件是对一切次数不超过n-1多项式q(x)有

$$\int_{a}^{b} w(x)\omega(x)q(x)dx = 0, \omega(x) = \prod_{k=1}^{n} (x - x_k)$$

。 n次正交多项式在[a,b]恰有n个互异零点。取其零点作插值求积公式。

定理: 高斯求积公式的求积系数全是正的

推论: 高斯求积公式是稳定的。

高斯求积公式的特点:

- (1) 代数精度达到最高2n+1次;
- (2) 节点是区间[a,b]上的n+1次正交多项式的n+1个零点.

 $\int_{a}^{b} \rho_{n}(x)\omega_{n+1}^{2}(x)dx > 0$ $\text{III} \sum w_{k}\omega_{n+1}^{2}(x_{k}) = 0$

▶ 定理: 设 $f(x) \in C^{2n}_{[a,b]}$, 则Gauss型求积公式的截断 误差为

$$R(f) = \int_{a}^{b} w(x)f(x)dx - \sum_{k=1}^{n} A_{k}f(x_{k})$$
$$= \frac{f^{(2n)}(\eta)}{(2n)!} \int_{a}^{b} w(x)\omega_{n}^{2}(x)dx$$

▶ Gauss-Legendre求积公式

$$\int_{-1}^{1} f(x)dx \approx \sum_{k=1}^{n} A_k f(x_k)$$

$$R(f) = \frac{2^{2n+1} (n!)^4}{(2n+1)[(2n)!]} f^{(2n)}(\xi), |\xi| < 1$$

 x_k (Legendre多项式的零点), A_k 皆可查表.

· 一般区间[
$$a,b$$
]可由变换 $x = \frac{a+b}{2} + \frac{b-a}{2}t$ 将其化成[$-1,1$]

Legendre多项式

$$P_n(x) = \frac{1}{2^n} \frac{d^n}{dx^n} (x^2 - 1)^n$$

legendre polynomials

gauss点 个数 n	gauss 点 x_i	权重 A_i	精度
1	x_1 =0	A ₁ =2	1
2	$\mathit{x}_{1,2} = \pm 1/\sqrt{3}$	$A_1=A_2=1$	3
3	$egin{aligned} x_1 &= -\sqrt{3/5} \ x_2 &= 0 \ x_3 &= \sqrt{3/5} \end{aligned}$	$A_1 = 5/9 \ A_2 = 8/9 \ A_3 = 5/9$	5
4	$egin{aligned} x_1 &= -\sqrt{rac{15+2\sqrt{30}}{35}} \ x_2 &= -\sqrt{rac{15-2\sqrt{30}}{35}} \ x_3 &= \sqrt{rac{15-2\sqrt{30}}{35}} \ x_4 &= \sqrt{rac{15+2\sqrt{30}}{35}} \end{aligned}$	$A_1 = rac{90 - 5\sqrt{30}}{180} \ A_2 = rac{90 + 5\sqrt{30}}{180} \ A_3 = rac{90 + 5\sqrt{30}}{180} \ A_4 = rac{90 - 5\sqrt{30}}{180}$	7

▶ 数值求积 $\int_0^1 \cos(x) dx = 0.841470984807897$

积分数值点	结果
1	0.877582561890373
2	0.841269847638218
3	0.841471416802676
4	0.841470984317385
5	0.841470984808241
6	0.841470984807896

和分精度要和计算量之间取得平衡

Gauss-Laguerre求积公式

▶ Gauss-Laguerre求积公式

$$\int_0^\infty e^{-x} f(x) dx \approx \sum_{k=1}^n A_k f(x_k)$$

$$R(f) = \frac{(n!)^2}{(2n)!} f^{(2n)}(\xi), \xi > 0$$

 x_k (Laguerre多项式的零点), A_k 皆可查表.

Laguerre多项式

$$L_n(x) = e^x \frac{d^n}{dx^n} (x^n e^{-x})$$

Gauss-Hermite求积公式

▶ Gauss-Hermite求积公式

$$\int_{-\infty}^{\infty} e^{-x^2} f(x) dx \approx \sum_{k=1}^{n} A_k f(x_k)$$

$$(n!)\sqrt{\pi}$$

 $R(f) = \frac{(n!)\sqrt{\pi}}{2^n(2n)!} f^{(2n)}(\xi), \xi > 0$

 x_k (Hermite多项式的零点), A_k 皆可查表.

▶ Hermite多项式

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} (e^{-x^2})$$

Gauss-Chebyshev求积公式

Gauss- Chebyshev求积公式

$$\int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^2}} dx \approx \frac{\pi}{n} \sum_{k=1}^{n} f\left(\cos\frac{2k-1}{2n}\pi\right)$$
$$R(f) = \frac{2\pi}{2^{2n}(2n)!} f^{(2n)}(\xi), |\xi| < 1$$

$$R(f) = \frac{2\pi}{2^{2n}(2n)!} f^{(2n)}(\xi), |\xi| < 1$$

 x_k (Chebyshev多项式的零点).

Chebyshev多项式

$$T_n(x) = \cos(n \arccos(x)), -1 \le x \le 1$$

Gauss-Chebyshev求积公式

$$T_0(x)=1$$
 $T_1(x)=x$
 $T_2(x)=2x^2-1$
 $T_3(x)=4x^3-3x$
 $T_4(x)=8x^4-8x^2+1$
 $T_5(x)=16x^5-20x^3+5x$
 $T_6(x)=32x^6-48x^4+18x^2-1$
 $T_7(x)=64x^7-112x^5+56x^3-7x$
 $T_8(x)=128x^8-256x^6+160x^4-32x^2+1$
 $T_9(x)=256x^9-576x^7+432x^5-120x^3+9x$
 $T_{10}(x)=512x^{10}-1280x^8+1120x^6-400x^4+50x^2-1$
 $T_{11}(x)=1024x^{11}-2816x^9+2816x^7-1232x^5+220x^3-11x$

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$

常用正交多项式

w(t)	[<i>a</i> , <i>b</i>]	Orth. Pol.	Notation	α_k	β_k
1	[-1,1]	Legendre	P_n	0	$2 (k = 0)$ $(4 - k^{-2})^{-1} (k > 0)$
$(1-t^2)^{-\frac{1}{2}}$	[-1,1]	Chebyshev #1	T_n	0	$\pi (k = 0)$ $\frac{1}{2} (k = 1)$ $\frac{1}{4} (k > 1)$
$(1-t^2)^{\frac{1}{2}}$	[-1,1]	Chebyshev #2	U_n	0	$\frac{1}{2}\pi \ (k=0)$ $\frac{1}{4} \ (k>0)$
$(1-t)^{\alpha} (1+t)^{\beta}$ $\alpha > -1, \beta > -1$	[-1,1]	Jacobi	$P_n^{(\alpha,\beta)}$	known	known
$t^{\alpha} e^{-t}, \alpha > -1$	$[0,\infty]$	Laguerre	$L_n^{(\alpha)}$	$2k + \alpha + 1$	$\Gamma(1 + \alpha) (k = 0)$ $k(k + \alpha) (k > 0)$
e^{-t^2}	$[-\infty,\infty]$	Hermite	H_n	0	$\sqrt{\pi} \ (k=0)$ $\frac{1}{2}k \ (k>0)$