

Christoffer Sloth

chsl@mmmi.sdu.dk

SDU Robotics

The Maersk Mc-Kinney Moller Institute University of Southern Denmark

Agenda

Introduction

Observability

Full Order Observer

Observer Design

Observer Based Control

Curriculum for Reguleringsteknik (REG)

Matematiske og grafiske metoder til syntese af lineære tidsinvariante systemer:

- ► diskret og kontinuert tilstandsbeskrivelse
- analyse i tid og frekvens
- stabilitet, reguleringshastighed, følsomhed og fejl
- ► digitale PI, PID, LEAD og LAG regulatorer (serieregulatorer)
- ► tilstandsregulering, pole-placement og tilstands-estimering (observer)
- ► optimal regulering (least squares) og optimal tilstands-estimation (Kalman-filter)

Færdigheder:

Efter gennemførelse af kurset kan den succesfulde studerende:

 kunne analysere, dimensionere og implementere såvel kontinuert som tidsdiskret regulering af lineære tidsinvariante og stokastiske systemer

Kompetencer:

Efter gennemførelse af kurset kan den succesfulde studerende:

 anvende og implementere klassiske og moderne reguleringsteknikker for at kunne styre og regulere en robot hurtig og præcist

¹ Based on https://fagbesk.sam.sdu.dk/?fag_id=39673

The twelve lectures of the course are

- ► Lecture 1: Introduction to Linear Time-Invariant Systems
- ► Lecture 2: Stability and Performance Analysis
- ► Lecture 3: Introduction to Control
- ► Lecture 4: Design of PID Controllers
- ► Lecture 5: Root Locus
- ► Lecture 6: The Nyquist Plot
- ► Lecture 7: Dynamic Compensators and Stability Margins
- ► Lecture 8: Implementation
- ► Lecture 9: State Feedback
- ► Lecture 10: Observer Design
- ► Lecture 11: Optimal Control (Linear Quadratic Control)
- ► Lecture 12: The Kalman Filter

Introduction

Observability

Full Order Observer

Observer Design

Observer Based Contro

A continuous time system

$$\dot{x}(t) = Ax(t), \quad y(t) = Cx(t)$$

is said to be *observable* iff $y(t) \equiv 0 \Rightarrow x(t) \equiv 0$.

A discrete time system

$$x_{k+1} = \Phi x_k \,, \quad y_k = C x_k$$

is said to be *observable* iff $y_k \equiv 0 \Rightarrow x_k \equiv 0$.

We consider the discrete time system

$$x_{k+1} = \Phi x_k \,, \quad y_k = C x_k \,, \quad x_0 = x_0$$

$$x_0 = x_0 \qquad y_0 = Cx_0$$

We consider the discrete time system

$$x_{k+1} = \Phi x_k \,, \quad y_k = C x_k \,, \quad x_0 = x_0$$

We consider the discrete time system

$$x_{k+1} = \Phi x_k \,, \quad y_k = C x_k \,, \quad x_0 = x_0$$

We consider the discrete time system

$$x_{k+1} = \Phi x_k \,, \quad y_k = C x_k \,, \quad x_0 = x_0$$

We consider the discrete time system

$$x_{k+1} = \Phi x_k \,, \quad y_k = C x_k \,, \quad x_0 = x_0$$

We consider the discrete time system

$$x_{k+1} = \Phi x_k \,, \quad y_k = C x_k \,, \quad x_0 = x_0$$

We consider the discrete time system

$$x_{k+1} = \Phi x_k \,, \quad y_k = C x_k \,, \quad x_0 = x_0$$

We consider the discrete time system

$$x_{k+1} = \Phi x_k$$
, $y_k = C x_k$, $x_0 = x_0$

$$x_0 = x_0 y_0 = Cx_0$$
 $x_1 = \Phi x_0 y_1 = C\Phi x_0$
 $x_2 = \Phi^2 x_0 y_2 = C\Phi^2 x_0$
 \vdots
 $x_{n-1} = \Phi x_{n-2}$

We consider the discrete time system

$$x_{k+1} = \Phi x_k$$
, $y_k = C x_k$, $x_0 = x_0$

$$x_0 = x_0 y_0 = Cx_0$$
 $x_1 = \Phi x_0 y_1 = C\Phi x_0$
 $x_2 = \Phi^2 x_0 y_2 = C\Phi^2 x_0$
 \vdots
 $x_{n-1} = \Phi x_{n-2}$

We consider the discrete time system

$$x_{k+1} = \Phi x_k$$
, $y_k = C x_k$, $x_0 = x_0$

$$\begin{array}{rclrcl}
x_0 & = & x_0 & y_0 & = & Cx_0 \\
x_1 & = & \Phi x_0 & y_1 & = & C\Phi x_0 \\
x_2 & = & \Phi^2 x_0 & y_2 & = & C\Phi^2 x_0 \\
& \vdots & & & & & \\
x_{n-1} & = & \Phi^{n-1} x_0 & y_{n-1} & = & C\Phi^{n-1} x_0
\end{array}$$

Writing the equations

$$y_k = C\Phi^k x_0, k = 0, \dots, n-1$$

in matrix form we obtain:

Condition for Observability (2)

Writing the equations

$$y_k = C\Phi^k x_0, k = 0, \dots, n-1$$

in matrix form we obtain:

$$\begin{bmatrix}
C \\
C\Phi \\
\vdots \\
C\Phi^{n-1}
\end{bmatrix} x_0 = \begin{bmatrix}
0 \\
0 \\
\vdots \\
0
\end{bmatrix}$$

Observability matrix

Condition for Observability (2)

Writing the equations

$$y_k = C\Phi^k x_0, k = 0, \dots, n-1$$

in matrix form we obtain:

$$\begin{bmatrix} C \\ C\Phi \\ \vdots \\ C\Phi^{n-1} \end{bmatrix} \quad x_0 = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

When is this equation solvable for some $x_0 \neq 0$?

THEOREM. A system

continuous time	discrete time
$\Sigma : \left\{ \begin{array}{l} \dot{x}(t) &= Ax(t) \\ y(t) &= Cx(t) \end{array} \right.$	$\Sigma : \left\{ \begin{array}{rcl} x_{k+1} & = & \Phi x_k \\ y_k & = & C x_k \end{array} \right.$

where $x \in \mathbb{R}^n$, $y \in \mathbb{R}^p$, is observable if and only if

$$\operatorname{rank} \mathcal{O} = \operatorname{rank} \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix} = n$$

Example: Series Connection (1)

State and output equations:

$$\left\{
\begin{array}{ccc}
\dot{x}_1 & = & -x_1 \\
\dot{x}_2 & = & -x_2 + x_1 \\
y & = & x_1
\end{array}
\right\}$$

State space model:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Example: Series Connection (2)

For the state space matrices:

$$A = \begin{bmatrix} -1 & 0 \\ 1 & -1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

the observability matrix $\ensuremath{\mathcal{O}}$ becomes:

$$\mathcal{O} = \begin{bmatrix} C \\ CA \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}$$

Example: Series Connection (2)

For the state space matrices:

$$A = \begin{bmatrix} -1 & 0 \\ 1 & -1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

the observability matrix \mathcal{O} becomes:

$$\mathcal{O} = \begin{bmatrix} C \\ CA \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}$$

 $\det \mathcal{O} = 0 \implies$ system is unobservable.

Example: Series Connection (3)

State and output equations:

$$\left\{
\begin{array}{ccc}
\dot{x}_1 & = & -x_1 \\
\dot{x}_2 & = & -x_2 + x_1 \\
y & = & x_2
\end{array}
\right\}$$

State space model:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Example: Series Connection (4)

For the state space matrices:

$$A = \begin{bmatrix} -1 & 0 \\ 1 & -1 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

the observability matrix \mathcal{O} becomes:

$$\mathcal{O} = \begin{bmatrix} C \\ CA \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$$

Example: Series Connection (4)

For the state space matrices:

$$A = \begin{bmatrix} -1 & 0 \\ 1 & -1 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

the observability matrix \mathcal{O} becomes:

$$\mathcal{O} = \begin{bmatrix} C \\ CA \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$$

 $\det \mathcal{O} = -1 \neq 0 \implies$ system is observable.

Full Order Observer

Introduction

Observability

Full Order Observer

Observer Design

Observer Based Contro

System:
$$\dot{x} = Ax + Bu$$

 $y = Cx$

Observer:
$$\dot{\hat{x}} = A\hat{x} + Bu + L(C\hat{x} - y)$$
 $\hat{y} = C\hat{x}$

System:
$$\dot{x} = Ax + Bu$$

 $y = Cx$

Observer:
$$\dot{\hat{x}} = A\hat{x} + Bu + L(C\hat{x} - y)$$

 $\dot{y} = C\hat{x}$

Error,
$$e = \hat{x} - x$$
:

$$\dot{e} = \frac{\dot{\hat{x}}}{\hat{x}} - \dot{x} = A\hat{x} + Bu + L(C\hat{x} - y) - (Ax + Bu)$$

System:
$$\dot{x} = Ax + Bu$$

 $y = Cx$

Observer:
$$\dot{\hat{x}} = A\hat{x} + Bu + L(C\hat{x} - y)$$

 $\dot{y} = C\hat{x}$

Error,
$$e = \hat{x} - x$$
:

$$\dot{e} = \dot{\hat{x}} - \dot{x} = A\hat{x} + Bu + L(C\hat{x} - y) - (Ax + Bu)$$
$$= A(\hat{x} - x) + L(C\hat{x} - Cx)$$

System:
$$\dot{x} = Ax + Bu$$

 $y = Cx$

Observer:
$$\dot{\hat{x}} = A\hat{x} + Bu + L(C\hat{x} - y)$$

 $\dot{y} = C\hat{x}$

Error,
$$e = \hat{x} - x$$
:

$$\dot{e} = \dot{\hat{x}} - \dot{x} = A\hat{x} + Bu + L(C\hat{x} - y) - (Ax + Bu)$$

$$= A(\hat{x} - x) + L(C\hat{x} - Cx)$$

$$= (A + LC)(\hat{x} - x) = (A + LC)e$$

THEOREM. A full order observer for the system

with observer gain L is stable, if and only if the eigenvalues of the matrix A + LC all have negative real part.

Moreover, such an L always exists, if (A, C) is observable.

Full Order Observer Observable Canonical Form (1)

Any observable *single output* system can be written in the form:

$$\dot{x}_o = A_o x_o$$
, $y = C_o x_o$, $x_o \in \mathbb{R}^n$, $y \in \mathbb{R}$

where

$$A_o = \left[\begin{array}{c} a & I_{n-1} \\ \hline 0_{1\times(n-1)} \end{array} \right], \quad C_o = \left[\begin{array}{c} 1 & 0_{1\times(n-1)} \end{array} \right]$$

and where $a \in \mathbb{R}^{n \times 1}$, $a^T = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$. It can be shown that

$$\det(\lambda I - A_o) = \lambda^n - a_1 \lambda^{n-1} - \dots - a_n$$

Full Order Observer Observable Canonical Form (2)

For n=3 the observable canonical form becomes:

$$A_o = \begin{bmatrix} a_1 & 1 & 0 \\ a_2 & 0 & 1 \\ a_3 & 0 & 0 \end{bmatrix}, C_o = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

which is indeed observable:

$$\mathcal{O}_o = \begin{bmatrix} C_o \\ C_o A_o \\ C_o A_o^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ a_1 & 1 & 0 \\ a_1^2 + a_2 & a_1 & 1 \end{bmatrix}$$

 $\det(\mathcal{O}) = 1 \neq 0 \Longrightarrow$ system is observable.

Full Order Observer Observable Canonical Form (3)

Consider a system:

$$\dot{x} = Ax$$
, $y = Cx$, $x \in \mathbb{R}^n$, $y \in \mathbb{R}$

For n=3, the observable canonical form for this system can be found through the following procedure:

1. Compute
$$t_3 = \mathcal{O}^{-1} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 where $\mathcal{O} = \begin{bmatrix} C \\ CA \\ CA^2 \end{bmatrix}$

Observable Canonical Form (3)

1. Compute
$$t_3 = \mathcal{O}^{-1} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 where $\mathcal{O} = \begin{bmatrix} C \\ CA \\ CA^2 \end{bmatrix}$

2. Compute $t_2 = At_3$, $t_1 = At_2$.

Observable Canonical Form (3)

1. Compute
$$t_3 = \mathcal{O}^{-1} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 where $\mathcal{O} = \begin{bmatrix} C \\ CA \\ CA^2 \end{bmatrix}$

- **2.** Compute $t_2 = At_3$, $t_1 = At_2$.
- **3.** Define $T = \begin{bmatrix} t_1 & t_2 & t_3 \end{bmatrix}$

Full Order Observer Observable Canonical Form (3)

1. Compute
$$t_3 = \mathcal{O}^{-1} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 where $\mathcal{O} = \begin{bmatrix} C \\ CA \\ CA^2 \end{bmatrix}$

- **2.** Compute $t_2 = At_3$, $t_1 = At_2$.
- **3.** Define $T = \begin{bmatrix} t_1 & t_2 & t_3 \end{bmatrix}$
- 4. The state space matrices for the observable canonical form are now given by $A_o=T^{-1}AT$, and $C_o=CT$.

Example: Observable Canonical Form (1)

We consider the system

$$\dot{x} = \begin{bmatrix} 2 & -3 \\ 4 & -5 \end{bmatrix} x + \begin{bmatrix} 2 \\ 3 \end{bmatrix} u$$

$$y = \begin{bmatrix} -3 & 2 \end{bmatrix} x$$

having the observability matrix

$$\mathcal{O} = \begin{bmatrix} C \\ CA \end{bmatrix} = \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix}, \quad \det(\mathcal{O}) = -1 \neq 0$$

Example: Observable Canonical Form (2)

We compute the columns of T by

$$t_2 = \mathcal{O}^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
$$t_1 = At_2 = \begin{bmatrix} 2 & -3 \\ 4 & -5 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -5 \\ -7 \end{bmatrix}$$

Thus,

$$T = \begin{bmatrix} -5 & 2 \\ -7 & 3 \end{bmatrix} \implies T^{-1} = \begin{bmatrix} -3 & 2 \\ -7 & 5 \end{bmatrix}$$

Example: Observable Canonical Form (3)

Eventually, we have

$$A_o = T^{-1}AT = \begin{bmatrix} -3 & 2 \\ -7 & 5 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ 4 & -5 \end{bmatrix} \begin{bmatrix} -5 & 2 \\ -7 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} -3 & 1 \\ -2 & 0 \end{bmatrix}$$

Example: Observable Canonical Form (3)

Eventually, we have

$$A_o = T^{-1}AT = \begin{bmatrix} -3 & 2 \\ -7 & 5 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ 4 & -5 \end{bmatrix} \begin{bmatrix} -5 & 2 \\ -7 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} -3 & 1 \\ -2 & 0 \end{bmatrix}$$

Example: Observable Canonical Form (3)

Eventually, we have

$$A_o = T^{-1}AT = \begin{bmatrix} -3 & 2 \\ -7 & 5 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ 4 & -5 \end{bmatrix} \begin{bmatrix} -5 & 2 \\ -7 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} -3 & 1 \\ -2 & 0 \end{bmatrix}$$

$$C_o = CT = \begin{bmatrix} -3 & 2 \end{bmatrix} \begin{bmatrix} -5 & 2 \\ -7 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

Example: Observable Canonical Form (3)

Eventually, we have

$$A_o = T^{-1}AT = \begin{bmatrix} -3 & 2 \\ -7 & 5 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ 4 & -5 \end{bmatrix} \begin{bmatrix} -5 & 2 \\ -7 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} -3 & 1 \\ -2 & 0 \end{bmatrix}$$

$$C_o = CT = \begin{bmatrix} -3 & 2 \end{bmatrix} \begin{bmatrix} -5 & 2 \\ -7 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

Example: Observable Canonical Form (3)

Eventually, we have

$$A_o = T^{-1}AT = \begin{bmatrix} -3 & 2 \\ -7 & 5 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ 4 & -5 \end{bmatrix} \begin{bmatrix} -5 & 2 \\ -7 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} -3 & 1 \\ -2 & 0 \end{bmatrix} \Rightarrow \det(\lambda I - A) = \lambda^2 + 3\lambda + 2$$

$$C_o = CT = \begin{bmatrix} -3 & 2 \end{bmatrix} \begin{bmatrix} -5 & 2 \\ -7 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

Example: Observable Canonical Form (3)

Eventually, we have

$$A_o = T^{-1}AT = \begin{bmatrix} -3 & 2 \\ -7 & 5 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ 4 & -5 \end{bmatrix} \begin{bmatrix} -5 & 2 \\ -7 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} -3 & 1 \\ -2 & 0 \end{bmatrix} \Rightarrow \det(\lambda I - A) = (\lambda + 1)(\lambda + 2)$$

$$C_o = CT = \begin{bmatrix} -3 & 2 \end{bmatrix} \begin{bmatrix} -5 & 2 \\ -7 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

Introduction

Observability

Full Order Observer

Observer Design

Observer Based Contro

Observer Design Observer gain design (1)

For a single output system in observable canonical form, an observer state matrix takes a particular simple form:

$$A_o = \begin{bmatrix} a_1 & 1 & 0 \\ a_2 & 0 & 1 \\ a_3 & 0 & 0 \end{bmatrix}, C_o = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

Applying the observer gain

$$L_o = \begin{bmatrix} \ell_1 \\ \ell_2 \\ \ell_3 \end{bmatrix}$$

Observer Design Observer Gain Design (2)

we obtain:

$$A_o + L_o C_o = \begin{bmatrix} a_1 & 1 & 0 \\ a_2 & 0 & 1 \\ a_3 & 0 & 0 \end{bmatrix} + \begin{bmatrix} \ell_1 \\ \ell_2 \\ \ell_3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} a_1 + \ell_1 & 1 & 0 \\ a_2 + \ell_2 & 0 & 1 \\ a_3 + \ell_3 & 0 & 0 \end{bmatrix}$$

Thus, the characteristic polynomial has been changed from

$$\det(\lambda I - A_o) = \lambda^n - a_1 \lambda^{n-1} - \dots - a_n$$

to

$$\det(\lambda I - (A_o + L_o C_o)) = \lambda^n - (a_1 + \ell_1)\lambda^{n-1} - \dots - (a_n + \ell_n)$$

By choosing ℓ_1, \dots, ℓ_n appropriately, *any* observer pole configuration can be obtained. This is known as *observer pole assignment*.

Let $A \in \mathbb{R}^{n \times n}$, $C \in \mathbb{R}^{1 \times n}$ be given.

1. Choose desired observer polynomial $\det(\lambda I - (A + LC)) = \lambda^n - a_{\mathsf{obs},1}\lambda^{n-1} - \ldots - a_{\mathsf{obs},n}.$

Let $A \in \mathbb{R}^{n \times n}$, $C \in \mathbb{R}^{1 \times n}$ be given.

- 1. Choose desired observer polynomial $\det(\lambda I (A + LC)) = \lambda^n a_{\mathsf{obs},1}\lambda^{n-1} \ldots a_{\mathsf{obs},n}.$
- **2.** Determine T, such that $A_o = T^{-1}AT$ and $C_o = CT$ are in observable canonical form.

Observer Pole Assignment

Let $A \in \mathbb{R}^{n \times n}$, $C \in \mathbb{R}^{1 \times n}$ be given.

- 1. Choose desired observer polynomial $\det(\lambda I (A + LC)) = \lambda^n a_{\mathsf{obs},1}\lambda^{n-1} \ldots a_{\mathsf{obs},n}.$
- **2.** Determine T, such that $A_o = T^{-1}AT$ and $C_o = CT$ are in observable canonical form.
- 3. Determine open loop polynomial $det(\lambda I A) = \lambda^n a_1 \lambda^{n-1} \ldots a_n$

Let $A \in \mathbb{R}^{n \times n}$, $C \in \mathbb{R}^{1 \times n}$ be given.

- 1. Choose desired observer polynomial $\det(\lambda I (A + LC)) = \lambda^n a_{\text{obs},1}\lambda^{n-1} \ldots a_{\text{obs},n}$.
- **2.** Determine T, such that $A_o = T^{-1}AT$ and $C_o = CT$ are in observable canonical form.
- **3.** Determine open loop polynomial $det(\lambda I A) = \lambda^n a_1 \lambda^{n-1} \ldots a_n$

4. Define
$$L_o = \begin{bmatrix} a_{\mathsf{obs},1} - a_1 \\ \vdots \\ a_{\mathsf{obs},n} - a_n \end{bmatrix}$$
.

Observer Design Observer Pole Assignment

Let $A \in \mathbb{R}^{n \times n}$, $C \in \mathbb{R}^{1 \times n}$ be given.

- 1. Choose desired observer polynomial $\det(\lambda I (A + LC)) = \lambda^n a_{\mathsf{obs},1}\lambda^{n-1} \ldots a_{\mathsf{obs},n}.$
- **2.** Determine T, such that $A_o = T^{-1}AT$ and $C_o = CT$ are in observable canonical form.
- **3.** Determine open loop polynomial $det(\lambda I A) = \lambda^n a_1 \lambda^{n-1} \ldots a_n$

4. Define
$$L_o = \begin{bmatrix} a_{\mathsf{obs},1} - a_1 \\ \vdots \\ a_{\mathsf{obs},n} - a_n \end{bmatrix}$$
.

5. Compute resulting observer gain $L = TL_o$.

Example: Observer Pole Assignment (1)

We consider again the system

$$\dot{x} = \begin{bmatrix} 2 & -3 \\ 4 & -5 \end{bmatrix} x + \begin{bmatrix} 2 \\ 3 \end{bmatrix} u$$

$$y = \begin{bmatrix} -3 & 2 \end{bmatrix} x$$

for which we would like to assign observer poles to $\{-4, -5\}$, i.e. to design L such that A + LC has eigenvalues in $\{-4, -5\}$.

Observer Design Example: Observer Pole Assignment (2)

1. Desired closed loop polynomial: $\lambda^2 + 9\lambda + 20$

Example: Observer Pole Assignment (2)

1. Desired closed loop polynomial: $\lambda^2 + 9\lambda + 20$

2.
$$T = \begin{bmatrix} -5 & 2 \\ -7 & 3 \end{bmatrix} \Rightarrow A_o = \begin{bmatrix} -3 & 1 \\ -2 & 0 \end{bmatrix}, C_o = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

Example: Observer Pole Assignment (2)

1. Desired closed loop polynomial: $\lambda^2 + 9\lambda + 20$

2.
$$T = \begin{bmatrix} -5 & 2 \\ -7 & 3 \end{bmatrix} \Rightarrow A_o = \begin{bmatrix} -3 & 1 \\ -2 & 0 \end{bmatrix}, C_o = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

3. Open loop polynomial: $\lambda^2 + 3\lambda + 2$

Example: Observer Pole Assignment (2)

1. Desired closed loop polynomial: $\lambda^2 + 9\lambda + 20$

2.
$$T = \begin{bmatrix} -5 & 2 \\ -7 & 3 \end{bmatrix} \Rightarrow A_o = \begin{bmatrix} -3 & 1 \\ -2 & 0 \end{bmatrix}, C_o = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

3. Open loop polynomial: $\lambda^2 + 3\lambda + 2$

4.
$$L_o = \begin{bmatrix} -9 - (-3) \\ -20 - (-2) \end{bmatrix} = \begin{bmatrix} -6 \\ -18 \end{bmatrix}$$

Example: Observer Pole Assignment (2)

1. Desired closed loop polynomial: $\lambda^2 + 9\lambda + 20$

2.
$$T = \begin{bmatrix} -5 & 2 \\ -7 & 3 \end{bmatrix} \Rightarrow A_o = \begin{bmatrix} -3 & 1 \\ -2 & 0 \end{bmatrix}, C_o = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

3. Open loop polynomial: $\lambda^2 + 3\lambda + 2$

4.
$$L_o = \begin{bmatrix} -9 - (-3) \\ -20 - (-2) \end{bmatrix} = \begin{bmatrix} -6 \\ -18 \end{bmatrix}$$

5.
$$L = TL_o = \begin{bmatrix} -5 & 2 \\ -7 & 3 \end{bmatrix} \begin{bmatrix} -6 \\ -18 \end{bmatrix} = \begin{bmatrix} -6 \\ -12 \end{bmatrix}$$

Observer Design The Full Order Observer

Observer Design Example: Observer Pole Assignment

Observer Based Control

Introduction

Observability

Full Order Observer

Observer Design

Observer Based Control

System:
$$\begin{array}{cccc} \dot{x} & = & Ax & + & Bu \\ y & = & Cx \end{array}$$

Observer:
$$\dot{\hat{x}} = A\hat{x} + Bu + L(C\hat{x} - y)$$

 $\hat{y} = C\hat{x}$

Feedback:
$$u = F\hat{x}$$

System:
$$\begin{array}{cccc} \dot{x} & = & Ax & + & Bu \\ y & = & Cx \end{array}$$

Observer:
$$\dot{\hat{x}} = A\hat{x} + Bu + L(C\hat{x} - y)$$

 $\hat{y} = C\hat{x}$

Feedback:
$$u = F\hat{x}$$

Error,
$$e = \hat{x} - x$$
:

System:
$$\begin{array}{cccc} \dot{x} & = & Ax & + & Bu \\ y & = & Cx \end{array}$$

Observer:
$$\dot{\hat{x}} = A\hat{x} + Bu + L(C\hat{x} - y)$$

 $\hat{y} = C\hat{x}$

Feedback:
$$u = F\hat{x}$$

Error,
$$e = \hat{x} - x$$
:

$$\dot{e} = \frac{\dot{\hat{x}}}{\hat{x}} - \dot{x}$$

$$= \frac{A\hat{x}}{\hat{x}} + \frac{BF\hat{x}}{\hat{x}} + \frac{L(C\hat{x} - y) - (Ax + BF\hat{x})}{\hat{x}}$$

System:
$$\begin{array}{cccc} \dot{x} & = & Ax & + & Bu \\ y & = & Cx \end{array}$$

Observer:
$$\dot{\hat{x}} = A\hat{x} + Bu + L(C\hat{x} - y)$$

 $\hat{y} = C\hat{x}$

Feedback:
$$u = F\hat{x}$$

Error,
$$e = \hat{x} - x$$
:

$$\dot{e} = \frac{\dot{\hat{x}}}{\hat{x}} - \dot{x}$$

$$= \frac{A\hat{x}}{\hat{x}} + \frac{BF\hat{x}}{\hat{x}} + \frac{L(C\hat{x} - y) - (Ax + BF\hat{x})}{\hat{x}}$$

$$= A(\hat{x} - x) + \frac{L(C\hat{x} - Cx)}{\hat{x}}$$

System:
$$\begin{array}{cccc} \dot{x} & = & Ax & + & Bu \\ u & = & Cx \end{array}$$

Observer:
$$\dot{\hat{x}} = A\hat{x} + Bu + L(C\hat{x} - y)$$

 $\dot{\hat{y}} = C\hat{x}$

Feedback:
$$u = F\hat{x}$$

Error, $e = \hat{x} - x$:

$$\begin{split} \dot{e} &= \dot{\hat{x}} - \dot{x} \\ &= A\hat{x} + BF\hat{x} + L(C\hat{x} - y) - (Ax + BF\hat{x}) \\ &= A(\hat{x} - x) + L(C\hat{x} - Cx) \\ &= (A + LC)(\hat{x} - x) = (A + LC)e \end{split}$$

Observer Based Control The Separation Principle (1)

Combining the two equations:

$$\dot{x} = Ax + Bu = Ax + BF\hat{x} = Ax + BF(e+x)$$
$$= (A+BF)x + BFe$$

and

$$\dot{e} = (A + \mathbf{L}C)e$$

gives:

$$\begin{bmatrix} \dot{x} \\ \dot{e} \end{bmatrix} = \begin{bmatrix} A + BF & BF \\ 0 & A + \mathbf{L}C \end{bmatrix} \begin{bmatrix} x \\ e \end{bmatrix}$$

Observer Based Control The Separation Principle (2)

THEOREM. An observer based controller for the system

$$\begin{array}{lclcrcl} \dot{x} & = & Ax & + & Bu & , & x \in \mathbb{R}^n \\ y & = & Cx & & & \end{array}$$

with observer gain L and feedback gain F results in 2n closed loop poles, coinciding with the eigenvalues of the two matrices:

$$A + BF$$
 and $A + LC$

Observer Based Control

Example: Observer Based Control (1)

We consider again the system

$$\dot{x} = \begin{bmatrix} 2 & -3 \\ 4 & -5 \end{bmatrix} x + \begin{bmatrix} 2 \\ 3 \end{bmatrix} u$$

$$y = \begin{bmatrix} -3 & 2 \end{bmatrix} x$$

for which we apply an observer based controller with

$$\mathbf{L} = \begin{bmatrix} -6 \\ -12 \end{bmatrix} \quad \text{and} \quad F = \begin{bmatrix} 42 & -30 \end{bmatrix}$$

Observer Based Control

Example: Observer Based Control (2)

The transfer function of the controller becomes:

$$K(s) = -F (sI - A - BF - LC)^{-1} L$$
$$= -108 \frac{s + \frac{7}{3}}{s^2 + 15s + 74}$$

The closed loop transfer function becomes:

$$G(s) (I - K(s)G(s))^{-1} = \frac{s^2 + 15s + 74}{(s+5)^2(s+4)^2}$$

Observer Based Control Example: Observer Based Control (3)

