LIBRARY OU_166639

AWARAII

AWARAIINN

OSMANIA UNIVERSITY LIBRARY

Call No.	Accession No.
Author	
Title	

This book should be returned on or before the date last marked below.

A DESCRIPTIVE STUDY OF THE SPECTRA OF THE A-TYPE STARS

THE UNIVERSITY OF CHICAGO PRESS CHICAGO, ILLINOIS

THE BAKER & TAYLOR COMPANY

THE CAMBRIDGE UNIVERSITY PRESS LONDON

THE MARUZEN-KABUSHIKI-KAISHA TOKYO, OBAKA, KYOTO, FUKUOKA, SENDAI

THE COMMERCIAL PRESS, LIMITED SHANGHAI

The University of Chicago

Publications of the Yerkes Observatory

VOLUME VII PART III

A DESCRIPTIVE STUDY OF THE SPECTRA OF THE A-TYPE STARS

By WILLIAM W. MORGAN

COPYRIGHT 1935 BY THE UNIVERSITY OF CHICAGO ALL RIGHTS RESERVED. PUBLISHED MAY 1935

COMPONED AND PRINTED BY THE UNIVERSITY OF CHICAGO PRESS CHICAGO, ILLINOIS, U.S.A.

TABLE OF CONTENTS

			PAGE
A GENERAL SURVEY OF THE A-TYPE SPECTRA	٠	•	1
TABLE I: ESTIMATED INTENSITIES OF LINES IN 125 STARS		•	3
THE SPECTRA OF THIRTEEN TYPE STARS			
Table II: Wave-Lengths and Identifications in Dwarfs		*	13
Table III: Wave-Lengths and Identifications in Supergiants		•	40
TABLE IV: WAVE-LENGTHS AND IDENTIFICATIONS IN PECULIAR STARS			67
Table V: Wave-Lengths and Identifications in Peculiar Stars (Continued)			84
TABLE VI: ELEMENTS PRESENT IN A-TYPE STARS		·	110
Summary			118

PLATE I

Spectra of (a) 41 Tauri (A0), (b) 5 Geminorum (A0), (c) 78 Virginis (A2_D), (d) μ Orionis (A2), Showing Range in Intensity of Ca ii K within Individual Spectral Subdivisions.

A DESCRIPTIVE STUDY OF THE SPECTRA OF THE A-TYPE STARS

BY W. W. MORGAN

1. There is probably a greater diversity in appearance among the spectra of class A than in any other type. It is well known that lines of singly ionized calcium, europium, manganese, chromium, silicon, and strontium show considerable differences in intensity between certain stars. Many of the most striking dissimilarities cannot be explained by differences in temperature or surface gravity in the stellar atmospheres and form at the present time one of the most puzzling problems in astrophysics. The observational material for most of the peculiarities is quite scanty, while for not one star can it be said to be completely satisfactory; even in the case of such much-observed objects as Algol and β Lyrae there are fields of investigation which have hardly been touched upon. It is the purpose of the present paper to give as complete a description of A-type spectra as can be made from plates of moderate dispersion. The study will be divided into the following sections: (I) a general survey of the behavior of the most abundant elements; (II) a detailed description of the spectra of thirteen type stars.

I. A GENERAL SURVEY OF THE A-TYPE SPECTRA

2. If the A stars of some subdivision, for example A0, are examined, a remarkable diversity in the appearance of the spectra is apparent. This diversity has been known since the time of Sir Norman Lockyer, and subsequent investigations have tended toward complicating the problem through the discovery of additional peculiarities. At Harvard a considerable number of spectra were found in which the lines of Si II and Sr II are exceptionally strong; the identification of peculiar lines in α Andromedae and α Canum Venaticorum with ionized manganese and europium was made by Baxandall; at Mount Wilson spectra were observed in which lines of Y II and Cr II are outstanding; Edwards has observed a number of spectra in which the K line of Ca II is abnormally weak. Additional examples of these peculiarities have been recorded at Yerkes. The variability in intensity of the lines in a number of these stars has also been established.

It is apparent that a one-dimensional system of classification cannot be satisfactory in the case of such a complex group of spectra. Former investigations have indicated that the A-type stars will not fit even into a two-dimensional scheme. Instead of limiting the number of available dimensions to those physically interpretable, an attempt will be made to describe the behavior of each of the more important elements with respect to each of the others. This method of treatment was first suggested by Struve and was applied by him to the B-type stars.¹

3. As no limitation is to be placed on the number of empirical variables which may appear, any observed quantity which changes among the spectra could be used for arranging the stars in a primary one-dimensional system. It is convenient, however, to exercise a certain selection. As the stars to be considered have already been limited to those in the Henry Draper spectral range B8–F0 it is of some advantage to have a fundamental dimension which roughly parallels the Harvard sequence and which does not pass through a maximum in the range considered. It should be noted that such a selection limits in no way the generality of the discussion as all other variations will appear later.

The use of ratios of intensity of two lines is unsatisfactory because of the uncertainty of not knowing how much each line contributes to a change in the line ratio. For this reason, in spite of

¹ Ap. J., 78, 73, 1933.

the fact that intensity ratios can probably be estimated more accurately than individual line intensities, it is preferable to investigate the behavior of the intensity of individual lines. The fundamental dimension will, therefore, be the intensity of a single line. The line should not pass through a maximum and should show a considerable difference in intensity in the range B8–F0. Practical considerations suggest that the line should be strong enough to be observable in all of the stars considered and that it should be sensibly unblended.

There are two lines which satisfy these conditions: Ca II K and Fe I 4045. The K line shows a greater range in intensity among the A stars than does any other; its one disadvantage is that it is rather far toward the violet for convenient observation on some series of slit spectrograms. Fe I 4045 is just observable at B8-B9 and increases in intensity fairly uniformly to F0. Its disadvantages are that its range in intensity is much less than K and that it is too weak to be observable in some B8 and B9 stars. In spite of its inconvenient location, K is probably the most suitable line. There is the further advantage in its use that it is one of the principal standards for spectral type in the Henry Draper system.

4. The observational material consists of all of the stars observed at Yerkes between types B8 and F0 for which good spectrograms are available. Spectra in which the absorption lines are sensibly broadened on plates of one-prism dispersion were omitted because of the difficulty of making estimates of line intensity which are consistent with those from narrow line stars. The subdivisions B8 and F0 are not complete; the B8 stars are included in Struve's paper, while the F0 spectra are being investigated by Hynek. The number of stars used is about one hundred and thirty. Almost all of these are brighter than magnitude 5.5; a few fainter objects of special interest have also been included. Most of the plates were obtained on the general radial velocity programs of the B and A stars at Yerkes and the others were taken for various special investigations during the last five years. All of the spectra used in the present section are of one-prism dispersion and have a scale of 30 A per millimeter at λ 4500.

As some of the spectra were taken as long as thirty years ago, the emulsions and treatment of the plates in development have been widely different. This introduces the principal source of uncertainty in the estimates of the line intensities. On the Eastman 40 plates used for the basis of the estimates the lines are slightly weaker systematically than on the early Seed 27 and Seed 30 plates. A fairly accurate measure of this systematic difference was made from spectra of the same star obtained on different emulsions and the difference was then allowed for.

5. The intensity of Ca II K was estimated for all of the stars on an arbitrary scale which was adjusted so that a difference of one unit is apparent to the eve but is still a comparatively small amount. On plates of good quality of the same star the intensity estimates of K rarely differ by as much as one unit; it is possible that for a few stars for which only poor spectrograms were available the uncertainty may be as much as two units, but the mean deviation of a determination of the intensity of K is considerably less than one unit. It is very improbable that any star is in a group more than two units from its correct place. Table I gives the stars in the order of intensity of K, which ranges from an intensity of 2 to 16. As the intensity 16 refers to the F5 star Procyon, which was included for purposes of comparison, there are in reality fourteen groups within the spectral limits included. No effort has been made to arrange the objects in each group in the order of intensity of K; any such differences are small and are of the same order as errors due to the difference in quality of the spectrograms. The columns in Table I give: (1) a serial number; (2) the name of the star; (3) the H.D. spectral type; (4) the intensities of Ca II K, Fe I 4045, Si II 4131, Sr II 4215, Fe II 4233, H_{γ} , He I 4471, Mg II 4481, Ti II 4501, Fe II 4508, and Cr II 4558. The intensity of λ 4233 is not given in the stars where Fe 1 is strong because Fe 11 becomes blended with a strong line due to Fe I. An o placed immediately before the name of the star denotes a c-star. Intensities placed within brackets denote that the line is variable in intensity.

TABLE I Estimated Intensities of Lines in 125 Stars

		1								7	1	
No.	Star	H.D. Spec.	Ca 11 K	Fc 1 4045	Si 11 4131	Sr 11 4215	Fe 11 4233	He 1 4471	My 11 4481	Ti 11 4501	Fr 11 4508	Cr 11 4558
1	ι Lib	A0p	2	1	5	1	1	1	2	1	1	1
2	41 Tau	A0p	$\bar{2}$	i	5	i	3	li	$\frac{5}{2}$	i	i	î
3	θAur	Aθp	2	ī	6	ī	4	0?	4	i	î	$\hat{2}$
4	β Per	B8	2	ī	2	ō	i	2	4	1:	î	ī
5	a And	A0p	$\bar{2}$	Ō	$\bar{2}$	ĭ	i	Ī	$\dot{2}$	1:	i	î
		1	_		_		_	-	_		-	•
6	α ² C Vn	A0p	[3]	1:	4	1	[3]	1:	2	1	1	1
7	τ ⁹ Eri	A0p	3	1	8	[1]	4	2	4	1	1	1
8	BS 1643	A0p	3	1	7	1	3	1	2	1	1	1
9	36 Lyn	B8	3	0	1	1	1	1	3	1	1	1
10	ω Cas	B8	3	0	2	0	1	1	2	0	1	0
11	22 Eri	B8	3	0	3	1:	1	1	2	0	0	0
12	ρ Her(br)	A0	3	1	1	1:	1	1	3	1	1	1
13	β Tau	B8	3	1:	2	0	1	2	2	2	1	1
14	ω Her	A0p	4	2	1:	2	4	0	4	1	1	2
15	φ Sgr	B8	4	1:	2	1:	1	2	5	0	1:	1:
16	11 Ori	B9	4	1	2	1	2	1	2	1	1	1
17	84 U Ma	A0p	4	1	1	2	4	1	4	1	1	3
18	γ Ari (S)	A0p	4	2	2bl.	2	3	0	3	1	1	2
19	20 Tau	B5	4	1:	1	0	1	1	1	0	1:	1:
20	30°3223 Lyr	B8	4	1:	1	0	1	1	4	1	0	1
21	ι And	B8	4	1	2	0	1	1	2	1	1	0
22	47°847 Per	B8	4	1:	3	0	1:	1	2	0	0	0
23	33°3154 Lyr	B8	4	0	2	1	1	1	2	1	0	1
24	17 Com .	A 0	-			141	[4]			١.		
		A0p	5	2	1	[4]	[4]	0	4	1	1	3
25	21 Aql	B8	5	1:	3	1	2	3	4	0	1	1
$egin{array}{c} 26 \ldots \ 27 \ldots \end{array}$	o Aur 21 Per	A0	5	3	1:	$\frac{1}{3}$	4	0	3	2	1	1
28	21 Fer 14 Cyg	A0p B8	5 5	[1-4]	5 2	0	$\begin{array}{c c} 2 \\ 2 \end{array}$	0	2	2 0	1	2
29	π Boo	A0	5	1: 0	3	1	$\frac{2}{2}$	1 1	3 4	0	0	1
30	и Воо 14 Нуа	B9	5	ő	3	0	$\frac{2}{2}$	1	3	1	0	1
31	γ Lyr	A0p	5	0	1	0	1	1	3	0	0	0
32	κ Cne		5	1:	3	1	2	1	3	0	1	
33	μ Lep	B8 A0p	5	1	3	1	$\frac{2}{2}$	i		1:	1:	1
34	γ Crv	B8	5	1	1	0	1	1	$\frac{3}{2}$	1		1
•94	γCrv	Бо	3	1	1	0	1	1	2	1	1:	1:
35	56 Tau	A0p	6	1	8	1	3	1	2	1	1	1
36	φ Her	B9p	6	1	2	1	2	1	5	ī	1	1
37	78 Vir	A2p	6	4	1	6	6	0	5	Ĩ	ī	3
38	73 Dra	A2p	6	5	1	10	[6]	0	6	[4]	1	5
39	13 Vul	A0	6	1	1	1:	2	1	3	1	1	1
40	46 Dra	A0	6	1	2	1	1	1	3	1	1	1
41	ν Her	B9	6	1:	2	1	1	1	3	1	i	0
42	108 Vir	B9	6	1	1	0	1	1	2	0	0	0
43	a Scl	B5	6	1	2	1	2	2	2	1	0	1
44	σ Psc	A2	6	1	1	1	2	1	3	1	1	0
45	45 Her	A0p	7	1	2	1	4	0	4	1	1	2
46	BS 1035	B9p	7	1:	5	0	5	4	8	1:	1	1
47	BS 1732	A0p	7	1	8	1	[3]	[1]	[3-6]	1	1	1
48	e U Ma	A0p	[7]	1	1		3	0		1	1	
49	49 Cnc	A0p	7	2	6	3	4	1	4	2	1	2
50	52 Her	A2p	7	3	1	7	3	0	3	1	1	$\tilde{2}$
51	BS 5355	A0p	7:	5	1	Var	Var	0	Var	1	1	
o52	4 Lac	B8p	7	1:	5	0	3	2	5	0	1	0
			· ·			_		_			1 -	1

TABLE 1--Continued

	1		1	1	r	1	1	i i	ī —	T	T	
No.	Star	H.D. Spec.	СанК	Fe t 4045	Si n 4131	Sr 11 421/	Fe ti 4233	He 1 4471	Му н 4481	Ti 11 4501	Fe 11 4508	Cr 11 4558
53	53 Tau	B8	8	1	3	1	1	1	4	1	1	1
54	29 Vul	A0	8	1	2	1:	2	1	3	1	1	0
55	134 Tau	B9	8	1	4	0	3	i	5	1	1	1:
56		AO	8	2	2	ő	i	ō	4	1	1	1
57		A2p	8	2	ī	7	4	ŏ	5	i	1	3
58		A2p	8	$\bar{3}$	î:	4	5	ŏ	5	2	2	3
59	BS 3082	AO	8	2	3	li	3	ĭ	4	ī	ī	1
60	1	B9	9	$\bar{3}$	3	2	4	1:	5	ĺí	î	ī
61	a C Ma	AO	9	š	$\mathbf{\tilde{2}}$	2	3	Ô	4	ī	ī	ī
o62	σCyg	AOp	9	î	4	ő	5	$\ddot{2}$	5	Ô	$\dot{2}$	$\hat{2}$
63	a Dra	A0p	9	ī	i	Ιĭ	ĭ	ī	$\ddot{3}$	ĭ:	ī:	ī
64	14 Cr B	AO	9	i	2	li	2	ó	4	i	î	Ô
65	θ Aql	AO	9	i	$\tilde{2}$	i:	2	í	4	i	i	ĭ
o66	η Leo	AOD	9	li	$\tilde{3}$	0	5	î	6	ī	i	î
67	ν Cnc	AOP	9	i	2	2	2	i	4	i	i	î
68	BS 4072	AO	9	2	$\frac{2}{2}$	2	3	i	4	i	i	i
69	21 Lyn	AO	9	$\frac{2}{2}$	$\frac{2}{2}$	1 :	$\frac{3}{2}$	i:	4	i	1:	1:
	13 Mon	A0p	9	$\frac{2}{2}$	4	0	5	1	5	î	2	1
o70	15 MOH	Aup	9	2	4	U	'		J			-
o71	13 Cep	B9p	10	0	4	0	1	5	5	0	1:	1:
72	47 Boo	AO	10	ĭ	i	ŏ	i	1	4	ĭ	1	1
73	15 Sex	AO	10:	$\hat{3}$	i	ĭ	i	ō	5	î	1	1
74	a Lyr	AO	10	2	i	î:	2	ŏ	5	i	í	î
o75	βOri	B8p	10	õ	4	ō.	$\frac{2}{2}$	5	6	i:	ī	1:
076	BS 1040	A0p	10	1:	6	ő	4	$\ddot{2}$	7	î	$\dot{\hat{2}}$	1:
77	136 Tau	AOP	10	1	1	ĭ:	2	ĩ	4	i	ī	î.
078	3 Pup	A2p	10	3	5	1	8	ō	5	2	3	$\hat{2}$
			1 1	2	2	1	1	ĭ	4	1	ĭ	ĩ
79	21 Oph	A0	10	$\frac{2}{3}$	$\frac{2}{2}$	$\frac{1}{2}$	3	0	6	$\frac{1}{2}$	1	1
80	o Peg	AO	10		$\frac{2}{2}$	$\frac{2}{2}$	2	0	5	1	i	1
81	θ Vir	A0	10	3	2	2	2	0	9	1	1	1
82	14 Peg	AO	11	1	2	1	2	1	6	1	1	0
83	βUMa	A0	11	$\bar{2}$	$ar{2}$	1	3	1:	4	1	1	1
84	ωUMa	AO	11	$\bar{2}$	$\bar{2}$	1	3	1:	4	1	1	1
085	a Cyg	A2p	ii	$\bar{2}$	4	1:	8	1:	7	2	4	3
86	a Gem(br)	AO	ii	$\bar{3}$	$\dot{2}$	$\hat{2}$	3	0	4	$\bar{2}$	i	ĩ
87	η Oph	A2	ii	4	$\bar{2}$	$\bar{3}$	4	ő	4	$\bar{2}$	ī	î
٥8	υ Sgr	B8p,	ii	i	8	2	7 -	4	8	ī	3	$\hat{3}$
0000	0 1781	F2p	**	•		~	· i	.		I	"	•
89	7 Vir	A0	11	1	1	1	1	0	4	1	1	1
، 90	μ Sgr	B8p	11	0	3	1	1 [0 .	6	0	1	1:
[91:	ι Cas	A5p	[11-15]	3	1	9	3	0	4	2	1	[3]]
92	θ Leo	A0	11	3	1	2	3	0	5	2	1	1
0.51	. ** **			_			1	and the same of th	_			0
93	2 U Ma	A0	12	7	2	6			5	2	2	2
94	γ Gem	A0	12	2	2	1	3		5	1	1	1
95	a Gem (ft)	A	12	5	2	3	[4	2	2	2
96	ηVir	A0	12	4	3	2			4	1	1	1
97	60 Leo	A0	12	5	3	5	5		6	1	2	$\frac{2}{2}$
98	ζ U Ma (seq)	A2p	12	6	1	4			6	2	1	2
99	16 Ori	A2	12	8	2	6			4	2	2	2
100	ϵ Ser	A2	12	6	1	5	}		6	2	2	2
101	47 Her	A0	12	5	1:	3			5	1	2	2
102	21 Com	A3p	13	3	1:	[6-10]	3		6	1	1	2
103	59 Her	A2	13	4	2	3	4 1		ŏ	2	2	$ar{2}$
104	υ Oph	A2	13	5	1:	2			5	ī	ī	ī
********	o cypin		-"	١ ١		-			~	- }	_	-

TABLE 1-Continued

No.	Star	H.D. Spec.	Ca ti K	Fe 1 4045	Si 11 4131	Sr 11 4215	Fe 11 4233	He 1 4473	M_{H} 11 4481	Ti 11 4501	Fe 11 4508	Cr 11 4558
105	BS 5887	A2	13	8	2	5			5	2	2	2
106	15 U Ma	A3p	13	9	2	7	l		4	3	2	2
107	55 U Ma	A2	13	3	1	2	3		4	1:	1:	ī
108		`A2	13	5	2	4	1		3	1	1	i
$109\ldots$	ψ Seo	A2	13	5	2:	5			5	2	2	1
110	BS 6455	Λ2	13	5	3	5			6	$\overline{2}$	$\bar{2}$	1
111	μ Ori	A2	13	5	2	4			5	$ar{2}$	$\frac{1}{2}$	$\hat{2}$
112	BS 5762	A2	13	7	2	5			5	$\overline{2}$	$\overline{2}$	$\bar{2}$
113	π Dra	A2	13	4	1	3			5	$ar{2}$	$\tilde{2}$	$\overline{2}$
114	19 Aur	A5p	14	4	3	4	5		6	3	3	3
115	101 Her	A3	14	7	1	4			6	3	3	2
116	2 Hya	A5	14	6	2	4			6	2	2	$\bar{2}$
117	ζ Lyr	A3	14	8	2	7			5	$\bar{2}$	$\bar{2}$	$\bar{2}$
118	δ Del	A5	14	9	1	6			3	$\bar{2}$	$\frac{1}{2}$	$\tilde{2}$
119		F0p	14	6	1	[3-6]		1	3	$\overline{2}$	1	$\bar{2}$
120		Fo	15	6	1:	5			5	2	2	$\bar{2}$
121	40 Aur	A3	15	9	1	7			4	$\bar{2}$	$\bar{2}$	$\bar{2}$
122	22 Boo	A5	15	9	1	7		1	4	3	2	$\ddot{3}$
123		A5	15	9	2	7			5	2	$\bar{2}$	1
о124	ε Aur	F5p	15	9	$\overline{2}$	8		1	8	7	7	6
125	Procyon	F5	16	10	1	6			.1	$_2$	$_2$	1

The intensities of K are plotted against Henry Draper spectral types in Figure 1. The scatter is large, especially for classes A0 and A2. An idea of the difference in intensity which K may have in a spectral subclass can be obtained from Plate I, which shows pairs of stars of the same spectral

types but having greatly different intensities for K. The K line is considerably weaker in the A2 stars 78 Virginis and 73 Draconis than in such A0 stars as γ Geminorum, Sirius, and Vega.

6. Figures 2-6 give the intensities, taken from Table I, of some of the more important elements as a function of the intensity of K. The "c"-stars are shown by open circles. Fe II 4233 (Fig. 2) is systematically stronger in the supergiants than in the other stars; the two "c"-stars having weak 4233 are the B8 supergiants β Orionis and μ Sagittarii. The abnormal strength of the K line causes these stars to be placed in a group where the general excitation is considerably lower. The intensity of 4233 is not a clear function of absolute magnitude as the line is as strong in such peculiar dwarfs as 78 Virginis and κ Piscium as it is in most of the supergiants.

Fig. 4.—Intensities of K. abscissas, and Sr ii 4215, ordinates. Open circles are c-stars

Si II 4131 (Fig. 3) shows an even greater range in intensity among stars having K of the same intensity. The line is strengthened in the "c"-stars over the normal dwarfs but reaches its greatest strength in the "silicon" stars. Previous investigations have placed these peculiar stars in a separate group which is generally considered to be discrete from the ordinary B9 and A0 dwarfs. There seems to be no well-defined line of demarcation which separates the silicon stars from other dwarfs; the intensity of Si II differs considerably among members of the so-called normal dwarfs and also among members of the silicon group. This rather uniform scatter is shown in Figure 3. If the spectra in which K has an intensity of 2 and 3 are considered, we find among the ordinary dwarfs two stars (36 Lyncis and ρ Herculis [br]) having an intensity of 1 for λ 4131, two stars (ρ Persei and ρ Cassiopeiae) having an intensity of 2, one star (22 Eridani) having an intensity of 3, one (ρ Canum

Fig. 3.—Intensities of K, abscissas, and Si ii 4131, ordinates. Open circles are c-stars

types but having greatly different intensities for K. The K line is considerably weaker in the A2 stars 78 Virginis and 73 Draconis than in such A0 stars as γ Geminorum, Sirius, and Vega.

6. Figures 2-6 give the intensities, taken from Table I, of some of the more important elements as a function of the intensity of K. The "c"-stars are shown by open circles. Fe II 4233 (Fig. 2) is systematically stronger in the supergiants than in the other stars; the two "c"-stars having weak 4233 are the B8 supergiants β Orionis and μ Sagittarii. The abnormal strength of the K line causes these stars to be placed in a group where the general excitation is considerably lower. The intensity of 4233 is not a clear function of absolute magnitude as the line is as strong in such peculiar dwarfs as 78 Virginis and κ Piscium as it is in most of the supergiants.

Fig. 4.—Intensities of K, abscissas, and Sr 11 4215, ordinates. Open circles are c-stars

Si II 4131 (Fig. 3) shows an even greater range in intensity among stars having K of the same intensity. The line is strengthened in the "c"-stars over the normal dwarfs but reaches its greatest strength in the "silicon" stars. Previous investigations have placed these peculiar stars in a separate group which is generally considered to be discrete from the ordinary B9 and A0 dwarfs. There seems to be no well-defined line of demarcation which separates the silicon stars from other dwarfs; the intensity of Si II differs considerably among members of the so-called normal dwarfs and also among members of the silicon group. This rather uniform scatter is shown in Figure 3. If the spectra in which K has an intensity of 2 and 3 are considered, we find among the ordinary dwarfs two stars (36 Lyncis and ρ Herculis [br]) having an intensity of 1 for λ 4131, two stars (β Persei and ω Cassiopeiae) having an intensity of 2, one star (22 Eridani) having an intensity of 3, one (α Canum

Venaticorum) of intensity 4, two (ι Librae and 41 Tauri) of intensity 5, one (θ Aurigae) of intensity 6, one (BS 1643) of intensity 7, and one (τ^0 Eridani) of intensity 8. It seems, therefore, that the "silicon" stars are extreme examples of the large difference in intensity Si II may have among stars of approximately the same spectral type; the present evidence suggests that they probably do not form a discrete group.

The behavior of Sr ii 4215 is shown in Figure 4. The line is very weak or absent in the A-type supergiants. Most of the peculiar "strontium" stars occur between intensities 4 and 8 for K. In only two cases among the stars included in Table I are abnormally strong silicon and strontium found in the same spectrum; Si ii is strong in 49 Cancri and 21 Persei, while Sr ii is also rather

Fig. 5.—Intensities of K, abscissas, and Fe i 4045, ordinates. Open circles are c-stars

strong, although λ 4215 is considerably weaker than in such stars as 73 Draconis and 52 Herculis. The behavior of Sr II is similar to that of Si II in that the range in intensity is large for a given intensity of K; there also seems to be no discrete grouping of the "strontium" stars with respect to the ordinary dwarfs. If the intensity of Sr II 4215 in the range of intensity K=4 to K=8 is considered we find: fourteen stars in which the line is absent or doubtfully present (these include the only two supergiants in the interval); twenty in which 4215 is of intensity 1; three (ω Herculis, 84 Ursae Majoris, and γ Arietis [s]) of intensity 2; two (21 Persei and 49 Cancri) of intensity 3; two (17 Comae and κ Piscium) of intensity 4; one (78 Virginis) of intensity 6; two (52 Herculis and μ Librae) of intensity 7; and one (73 Draconis) of intensity 10. In 73 Draconis the line varies in intensity. The distribution is very smooth when the comparatively small number of stars included is taken into consideration.

The other peculiar A-type stars show similar characteristics. The lines of Mn II, Cr II, Eu II, and the unidentified λ 4200 are intrinsically weaker than the Si II and Sr II lines, but all show the same scatter in intensity for stars having identical intensities for K. In not a single case do the spectra seem to fall into a separate group distinct from the normal stars. There are always as many transitional examples as there are cases in which the peculiarities are unusually strong.

The behavior of Fe i 4045 is shown in Figure 5. Again there is a large vertical scatter in the intensities. At K=6, for example, λ 4045 is doubtfully present in β Tauri and κ Cancri while it is a strong line in 73 Draconis and 78 Virginis. The scatter is similar to that for Si ii and Sr ii, except that the amplitude is in general somewhat less. The intensity of λ 4045 is practically independent of the intensity of K over the range K=5 to K=12.

Fig. 6.—Intensities of K, abscissas, and Mg ii 4481, ordinates. Open circles are c-stars

Figure 6 gives the intensities of Mg II 4481. In this case there is definite evidence that the line is strengthened in supergiants as compared with the other stars; there are, however, a number of dwarfs, both normal and peculiar, in which λ 4481 is as strong as in many of the "c"-stars. The same marked vertical dispersion is present as was found for the other elements investigated. The difference in intensity of λ 4481 shown by two stars having equal intensity for K and possessing similar dwarf characteristics is shown in a comparison of φ Sagittarii and 20 Tauri.

7. The failure of the one-dimensional system to define uniquely the position of an A-type spectrum is apparent. Even after the tacit introduction of a second dimension in the comparison of the dwarfs with the "c"-stars, discrepancies are still numerous. The problem will now be limited additionally by the examination of spectra which are located in the same position in a two-dimensional diagram. The primary dimension will still be the intensity of Ca 11 K while the intensity of Fe 11 4233 will be taken for the second co-ordinate. Any other of the elements which have been discussed could have been used; the selection is entirely one of convenience.

If we refer again to Figure 2, we see that there are several places on the diagram where a number of stars fall at the same position. If the stars could be made to fit a two-dimensional scheme, all of the spectra lying at a common point should be identical. An investigation of how closely spectra located at the same position resemble one another will give an indication of the number of dimensions it would be necessary to have in the classification scheme to give a unique position to every kind of spectrum observed. Several of these points at which a number of spectra are located will be examined.

- a) K=2; 4233=1; ι Lib, α And, β Per.—All of the stronger He I lines are present in Algol. They are weaker in α Andromedae and in ι Librae. Mg II 4481 is considerably stronger in Algol than in the other stars. Si II is weak in Algol, is slightly stronger in α Andromedae, and is very strong in ι Librae. The Mn II lines which distinguish the spectrum of α Andromedae are absent from Algol and are so faint as to be only doubtfully present in ι Librae. The unknown line at λ 4200 is very strong in ι Librae, weak in α Andromedae, and probably not present in Algol. ι Librae is a member of the "silicon" group. From the greatly different appearance of these three spectra it is apparent that no two dimensions can represent the observed peculiarities.
- b) K=3; 4233=1; 36 Lyn, ω Cas, 22 Eri, ρ Her.—With the exception of the Si II doublet, which is somewhat stronger in 22 Eridani than in the other stars, the spectra are similar within the errors of the plates.
- c) K=4; 4233=1; ϕ Sgr, 20 Tau, BS 6968, ι And, BS 1063, BS 6997.—There are marked anomalies in this group. Mg II is very strong in ϕ Sagittarii and very weak in 20 Tauri; its intensity is intermediate in the other stars. Si II is considerably stronger in BS 1063 than in 20 Tauri. The peculiar Mn II lines are strong in BS 6997; the two strongest lines are doubtfully present in BS 6968, while they are completely absent from the other stars.
- d) K=5; 4233=2; 21 Aql, 21 Per, π Boo (br) 14 Hya, μ Lep, κ Cnc.—Each of these stars has peculiarities which have been noted in former investigations. π Bootis, 14 Hydrae, μ Leporis, and κ Cancri belong to the group of "manganese" stars. All four stars have Si II lines of moderately strong intensity with Mg II 4481 of about the same strength in each spectrum; the lines due to Mn II are outstanding in all and the spectra are similar in other respects. The other two members of the group are, however, very different. 21 Aquilae has helium lines which vary both in intensity and in degree of sharpness; its spectrum is typical of a B8 dwarf if the line variations are not considered. Si II and Mg II have about the same intensity as in the four Mn II stars, but there is no trace of the numerous manganese lines which distinguish the spectra of the former group. The most peculiar object in the group is 21 Persei. In this one spectrum there are incorporated most of the peculiarities known among the A stars. The Si II doublet is strong, both Mn II and Eu II are well marked, Sr II 4077 and 4215 are unusually intense, and the unidentified line at λ 4200 is fairly strong.
- 8. The preceding discussion shows without any doubt that two, or even three, dimensions are insufficient for a general classification. Many other examples could be given which show the same differences in an equally convincing way. An examination of all of the stars located at the same position on two-dimensional diagrams shows conclusively that the dispersion in the intensity of different elements is not confined to those elements whose behavior has previously been considered to be peculiar. Dispersion considerably greater than can be ascribed to observational errors has been found for Ca 1, Ca 11, Mg 11, Sc 11, and Fe 1, as well as for the "peculiar" Si 11, Sr 11, Mn 11, Eu 11, Cr 11, and Y 11. Any complete scheme of classification of the A-type stars would have to be almost impossibly complex. For each spectrum to be satisfactorily located, the number of subdivisions necessary would be of the same order as the number of stars observed.

In spite of the absence of order in the behavior of the elements, or rather because of it, there are rather definite indications of a physical parameter additional to temperature and surface gravity.

The most likely explanation of the differences in intensity of certain elements from star to star is that the effective abundance is different in different objects. This is an agreement with the work of investigators of stars of other spectral types. In the O-type stars in emission, and in the late type stars in absorption, differences have been observed which can be explained only on the assumption that the actual effective amount of certain elements varies. Additional evidence is found in the A-type spectrum variables. For a number of these objects the changes cannot be interpreted in terms of changes in temperature or surface gravity but seem to be due to variations in effective abundance.

For all practical uses the original Henry Draper system of classification seems to be the most satisfactory for the A-type stars. The introduction of additional subdivisions in an attempt at greater refinement seems rather futile when there are so many outstanding cases of objects which will not fit even into a rough scheme. If the scheme of arranging the spectra in the order of intensity of K exclusively were to be adopted, the inconsistencies of other criteria would be even worse than in the Henry Draper system. Further, the good correlation between effective temperature and spectral type would probably be materially weakened.

II. THE SPECTRA OF THIRTEEN TYPE STARS

9. A group of thirteen stars which are representative of the various types of A spectra was selected for a more detailed investigation. The first subgroup includes three "normal" dwarfs: a Lvrae. y Geminorum, and 15 Ursae Majoris. Vega is representative of the higher temperature A0 dwarfs in contrast to such slightly lower-temperature objects as Sirius, \(\gamma \) Geminorum, and the brighter component of Castor. He i 4471 is represented by a faint unblended stellar line on three-prism plates of all three stars while the iron arc spectrum is considerably weaker in Vega than in the other spectra. Helium disappears in the dwarfs within the range of stars classed as A0. The point of disappearance is well shown in the two brightest components of a Geminorum. A 4471 is present in the brighter component and is absent in the fainter one, which is of slightly later spectral type. Intermediate between γ Geminorum and 15 Ursae Majoris is the spectrum of ϵ Serpentis which has been previously described.² The spectrum of 15 Ursae Majoris (A3p) is described as being composite by the Henry Draper Catalogue. The K line is only very slightly stronger than in γ Geminorum (A0) while the iron arc lines are almost as well developed as in Procvon (F5). The entire spectrum originates in one star as the radial-velocity displacements are the same for all lines. There is no possibility of accounting for the spectrum by assuming an overlapping of two stars of different spectral types. If the metallic spectrum originated in an F5 star, a very strong K line would be present. The intensity of K as actually observed is about that of the average A2 dwarf—far weaker than in such stars as Procvon.

All lines visible in the ordinary photographic region were measured for wave-length. I am indebted to Miss Christine Westgate for the measures of γ Geminorum. Three-prism plates which had been obtained on Eastman Process emulsion were used for the first two stars for wavelengths longer than λ 4340 for Vega and λ 4250 for γ Geminorum. Three-prism spectrograms were not available for 15 Ursae Majoris and one-prism plates on Eastman Process emulsion were used. The spectrum of the last star is too complex to be investigated adequately on one-prism plates, and it has only been included to show the general behavior of the elements on passing from class A0 to somewhat lower temperatures. The spectrum of γ Geminorum has been investigated by Albrecht. While the main features of the two investigations are similar, Miss Westgate has measured considerably fewer lines than were measured by Albrecht.

While the stellar wave-lengths listed in Tables II-V should be of fair accuracy, they are not intended to serve as standards for radial-velocity determinations. The mean deviation of a line of intensity 2 or greater is about ± 0.06 A. Lines of intensity 1 may occasionally be in error by as

² Ibid., 76, 299, 1932.

much as 0.3 A, while a few lines included of doubtful reality (1:) may differ from laboratory wavelengths by 0.4 A. The one-prism plates used have a scale ranging from 16 A per millimeter at K to 41 A per millimeter at $H\beta$; the three-prism dispersion gives a scale of 8 A per millimeter at $H\gamma$ to 13 A per millimeter at $H\beta$. Plates of uniform quality were not available for all of the stars, and as a result fainter lines have been measured in some spectra than in others. An effort was made to reduce all intensity estimates to the same scale. The columns in Tables II, III, IV, and V give: (1) the wave-length to the whole angstrom; (2) the decimal of the wave-length as measured in each star; (3) the estimated intensity of the line; the last column gives the identifications.

Table II gives the wave-lengths and identifications for the three dwarfs Vega, γ Geminorum, and 15 Ursae Majoris. Relative contributions to blended lines have not been shown; they may be determined in any particular case by reference to Table VI on page 110, where the behavior of the elements is summarized. As in some of the wave-length tables (particularly the supergiants), stars of very different effective excitation are included, many contributors listed in the identification column apply to only one or two of the stars, and it should not be assumed that all contributors listed occur in all of the stellar spectra included in the table. For example, the many Fe I lines of intermediate intensity listed in the supergiant identifications apply to the F5 star ϵ Aurigae alone and chance coincidences with lines in hotter stars should be disregarded; in the opposite sense, there is a faint unidentified line in ϵ Aurigae agreeing in position with He I 4713, but the identification is intended for ν Sagittarii as helium is not present in ϵ Aurigae.

TABLE II
WAVE-LENGTHS AND IDENTIFICATIONS IN DWARFS

λ	Ve	ga	γ	Gem	15 U	7 Ma	Identification
3913	.48	4	.47	3	.81	7	Ti 11 .46 (60) Fe 1 .64 (2) II Fe 1 4 .27 (1) V 11 4 .33 (20) Ti 1 4 .33 35 II
3915	. 52	1					. Zr 11 .94 (25)
3916			. 56	2	.49	8	Cr 1 .24 (12) V 11 .42 (20) Fe 1 .74 (3) IV
3918	.31	1n	. 56	2	. 66	8	Fe 1 .32 (2) Fe 1 .42 (2) IV Fe 1 .65 (4) IV Fe 1 9 .07 (2) IV Cr 1 9 .16 (35n)
3920	.66	1	.38	2-3	. 79	7n	Fe 1 .26 (6R) I ① 11 .56 (4) ① 11 .72 (4) Fe 1 .85 (1) Cr 1 1.02 (20)
3922	.88	1	.88	2	. 92	6	Fe 1 .92 (6R) I
3924	.86	1	. 93	1	.31	3	Ti 1 .51 50 II Fe 1 5 .20 (1)
3926	.13	1	5.92	1	5.84	8	Fe 1 5.65 (2) IV Fe 1 5.95 (3) IV He 1 .53 (1)
3927	.74	2	.92	2	.88	8	Fe 1 .93 (6R) I
3929			.06	1	. 44	3	Ті 1 .87 40 ІІ
3930	.41	3	.31	2	.43	7	Fe i .30 (7R) I Y ii .67 (15)
3931	.89	1:	.95	2	. 93	3:	Ti 11 2.01 (2)
3933	. 58	. 7	. 64	15	. 63	20	Ca 11 .67 (10)
3936	.02	1 .	5.91	2	5.96	5	Fe i 5.82 (4) III He i 5.91 (1) Zr ii .06 (7)
3938	. 52	1	.32	3n	.30	8	Mg 1 .43 (3r)
3941	.00	1	. 25	1-2	.03	4	Fe i 0.89 (4) II? Fe i .29 (2) Cr i .49 (20)
3942	.39	1:	.42	1-2	. 56	3	Fe 1 .38 (1) Fe 1 .45 (3) IV

TABLE II—Continued

λ	v	ega	7	Gem	15	U Ma	Identification
3943	. 97	3	. 99	3	4.14	4	Al 1 4.03 (10R)
3945	. 52	1	.18	1	. 02	5	Fe 1 4.75 (1) Fe 1 4.90 (1) IV Fe 1 .12 (1) IV Co 1 .32 15 I
3947	.24	1	.40	2n	. 45	3	Fe I .00 (2) IV O I .33 (10) O I .51 (7) Fe I .54 (2) IV O I .61 (4) Ti I .75 40 II
3949	.22	1	8.57	2	8.86	5	Ti 1 8.66 60 II Fe 1 8.78 (4) IV La 11.05 (600) Fe 1.14 (⊙ 2) Fe 1.96 (4) III
39 50	. 53	1:	. 09	1	.17	3	Y 11 .35 (200) Fe 1 1.17 4 IV
3952	. 00	1:	1.95	2			V II 1.97 (40) Fe I .61 (4) IV
3952					. 66	5n	Co 1 .92 25 II Fe 1 3.16 (2) IV
3955			. 45	1	. 23	2	Fe 1 .37 (2) IV
3956	.41	1	. 52	2	.51	9	Fe 1 5.96 (1) V Ti 1 .34 60 II Fe 1 .46 (4) IV Fe 1 .68 (6) III Fe 1 7.04 (2) IV Ca 1 7.05 10 III
3958	. 42	1:	. 19	2	.07	4	Co i 7.94 (15) II Ti i .21 80 II Zr ii .23 (50)
3960			. 12	1	9.97	3	Fe 1 9.29 (1)
3961	. 47	2	. 55	3	. 66	7	Al 1 .54 (10R)
3962			. 94	1	3.35	3	Fe i 3.12 (2) V Cr i 3.69 (30)
3964	. 20	1:	. 56	2	.51	3	Ti i 27 35 III Fe i 52 (2) V He i 73 (4)
3966	.36	1	.73	1	.32	5	Fe i .07 (5) III Fe i .53 (1) Fe i .63 (5) IV
3968	. 52	6	.36	10	.48	15	Ca 11 .46 (10)

TABLE II-Continued

3970	Vega		γG	enı	15 U Ma		Identification
	. 50	50*	.08	50	. 10	12	He .08 (6)
3971					.84	5n	Ni 1 2.16 10 I
3973	. 93	1:			4.24	6n	V 11 .64 (15) Fe 11 4.17 (*) Fe 1 4.39 (1)
3976	. 59	1		· · · · · · · · · · · · · · · · · · ·	. 59	5	Fe 1 .39 (1) Fe 1 .56 (1) Fe 1 .62 (2) IV Cr 1 .67 (25)
3978	. 66	1:			.70	2n	Fe i .47 (1) Co i .66 10 Co i 9.53 10 I
3980	. 42	1:			: 		
3981			.90	2n	. 59	3	Ti 1 .77 70r II Fe 1 .78*(3) III
3982	,				.30	3	Ti 11 .00 (tr) Ti 1 .48 30 II Y 11 .59 (150)
3983	. 60	1:	4.11	1	. 93	5-6	Fe 1 .96 (5) III
3984					.81	2	Cr 1 .34 (10) Zr 11 .75 (4)
3986	. 29	1:			.33	2	Fe 1 .18 (3) IV
3986			.78	2n	7.04	3n	Co 1 7.12 (6) I
3988					.39	3	La 11 .51 (500)
3989					. 10	2:	Sc 11 .06 (1)
3989			.87	1	0.00	4	Ti 1 .76 80r II Fe 1 .86 (2) V Fe 1 0 .38 (1) V
3991			. 25	2	.37	3	Cr 1 .12 (20) Zr 11 .14 (40) Cr 168 (10)
3992					. 97	2	Cr i .85 (15) Fe i 3.11 (\odot 2)
3994					. 09	3	Fe 1 .12 (1) V
3995	••••				. 66	5-6	Fe i .22 (1) Co i .31 60 II La ii .75 (400) Fe i .99 (\igcdot 3) IV

TABLE II--Continued

λ	Ve	ga	ү Сет		15 U Ma		Identification
3997	. 29	1	.27	4	.31	6–7n	Fe 1 6.97 (1) V V II .12 (15) Fe 1 .40 (6) III Co 1 .91 40 II Fe 1 8.06 (5) III
3999	,				.00	4n	Ti 1 8 .63 100R II Zr 11 8 .97 (30) Ti 1 .34 7n III
4000					.37	3–4	Fe i .26 (1) Fe i .46 (1) V
4001	.74	1			.81	2-3	Fe 1 .67 (3) III
4002			. 29	3n	. 60	1	Ti 1 .47 9n III V 11 .95 (10)
4003	,				. 85	1	Fe 1 .77 (1) V Ti 1 .79 10n III
4004	.82	2	5.32	5n	5.15	9	Fe i 5.25 (7) II V ii 5.71 (60)
4006	.99	1:			.81	3n	Fe 1 .31 (2) IV Fe 1 .63 (1) IV Fe 1 .77 (1)
4007					. 58	1	Fe 1 . 27 (3) IV
4008					.79	1	Fe 1 .85 [2 \odot] Ti 1 .92 35 II
4009	.77	1	.70	1n	. 71	2-3	Ti 1 .65 15 II Fe 1 .71 (5) III
4010					. 62	2	⊙ 11 .59 (3) Fe 1 .77 [2⊙] Fe 1 .95 (1)
4010					.99	1	Fe 1 1.42 (1)
4012	.35	3	.41	6	.36	6	Ti 11 .37 (4)
4013					. 99	2-3	Ti 1 .58 12n III Fe 1 .64 (1) Fe 1 .80 (2) V
4014			.32	1	. 52	3	Fe 1 .28 (©2) Sc 11 .49 (8) Fe 1 .54 (4) III
4015	.70	1	. 56	2	. 51	3-4	Ni 11 . 50 (1) ⊙ (1)? . 61 (3–3)
4016			.96	1n	7.41	4	Fe I 7. 10 (1) Fe I 7. 15 (3) III

TABLE II-Continued

TABLE 11—Communea									
λ	Vega		γG	em	15 U	Ma	Identification		
4018	. 69	1	. 20	1	. 20	4	Mn i .11 20 I Fe i .11 (2) Fe i .28 (2) Zr ii .39 (10)		
4020			. 56	1	. 28	3	Fe 1 .49 (1)		
4021	. 54	1	.87	2	.81	4			
4023			.38	2	. 21	2-3	V II .38 (50)		
4025	.12	1	4.82	4n	4.86	6n	Zr 11 4 .44 (12) Ti 1 4 .56 35 II Fe 1 4 .75 (2) Ti 11 .13 (2)		
4026	. 49	1	. 46	1n	. 25	2	Fe 1 .44 (1)		
4027					. 27	2			
4028	. 45	2	.33	5	. 2 6	4	Ti 11 .33 (7)		
4029			. 50	1	.40	1	Fe i .64 (2) V Zr ii .68 (20)		
4030	.71	1	. 64	3	. 66	6–7	Cr II .37 (pred) Fe I .51 (3) IV Mn I .76 200 I		
4031					.85	3-4	La II .70 (300) Fe I .97 (2) V		
4033	. 20	1	2.94	3	. 07	5-6	Fe i 2.64 (1) III Mn i .07 150 I		
4034			.36	2n	. 47	4	Мп г . 49 100 I		
4035			. 66	3	.73	5-6	V II .62 (40) Mn I .73 15 I		
4036			.86	1n)	7.08	2	V 11 .77 (9)		
4038			. 22	1n	7.91	2	Fe i 7.73 (1) Cr ii .04 (2)		
4038					.96	2	Fe i 8.82 (1)		
4040			.18	2	. 59	1			
4041			.33	2	.37	56n	Fe 1 . 29 (1) Mn 1 . 37 50r I		
4042			. 58	1	. 70	3	La 11 .91 (300)		

TABLE II-Continued

λ	Ve	ga	γG	em	15 U Ma		Identification
4043	.97	1	. 94	2	. 93	2	Fe 1 .90 (2) IV Fe 1 .99 (O 2)
4044			. 64	1	.94	1	Fe i .62 (2) IV Fe i 5.14 (1)
4045	.91	4	. 79	8	. 84	12	Zr II . 62 (15) Fe I . 82 (8) II
4047			. 56	1	.14	2	Fe 1 .32 (1)
4048	.73	1	.88	3	. 87	56	Zr II .67 (25) Mn I .76 15 I Fe I 9.34 (1)
4050			.30	· 1	. 41	2-3	$Zr \text{ ii . 33 (15)} \ Fe \text{ i . 68 } (\odot 2)$
4051					. 11	1	V 1 .04 (pred)
4051	.99	1:	.88	2	2.34	3-4	Fe 1 .93 (2) Cr 11 2.00 (1) Fe 1 2.31 (1)
4053	.83	1	.82	4	.87	4	Ti 11 .81 (3) Fe 1 4.19 (⊙ 2)
4055			. 09	1	. 09	4n	Fe 1 4.83 (1) Fe 1 4.88 (1) V Fe 1 .05 (1) V Mn 1 .55 20 I
4055	.90	1 .					
4056			.13	1)	.30	1 .	Ті п. 20 [1] V п. 25 (2)
4057	.74	1	50	3	. 58	4	Fe i .36 (1) V Mg i .63 (5r)
4059	.15	1:	.37	1n	8.77	- 3	Fe 1 8.77 (1) IV
4059					. 94	2	Fe 1 .73 (1) V
4061	. 46	1:			0.95	2	Fe I .12 (1)
4062	,		.45	1 ~	.35	2-3	Fe i 1.96 (1) Fe i .45 (4) III
4063					. 14	1	Fe 1 .30 (2)
4063	.46	3	. 54	5	. 61	8	Fe 1 .60 (8) II
4064			.92	1n	5.18	3	Fe I .46 (\odot 3) Ti I 5.09 15 III V II 5.09 (6r) Fe I 5.40 (1) Fe II 5.77 (pred)

TABLE II-Continued

λ	Vega		γG	ern	15	U Ma	Identification	
4066					. 47	1	Co 1 .38 15 I Fe 1 .60 (1)	
4067	. 07	1	.00	4	. 09	5-6	Fe 1 6.98 (4) III Ni 11 .04 (3) Fe 1 .28 (3) III	
4067			.95	1	8.12	2	Fe 1 7.99 (5) III	
4069					. 19	2	Fe 1 .07 (\odot 2)	
4069	.91	1:			0.19	2	Fe 1 0.28 (1)	
4070			. 72	1	.79	2	Fe 1 .78 (2) III Cr 11 .99 (2)	
4071	.72	3	.72	4	.78	5–6	Fe 1 .53 (© 2) Fe 1 .75 (7) II	
4072					. 62	1	Fe 1 .52 (1)	
4073					. 65	3-4	Fe 1 .77 4n IV	
4074					. 85	3	Fe 1 .79 (3) IV	
4075					95	2	Fe 1 .94 (1)	
4076			.68	2	. 61	2-3	Fe 1 .50 (1) Fe 1 .64 (5) IV Fe 1 .81 (1) Cr 11 .87 (pred)	
4077	. 59	3	. 66	4	.75	11	Cr II .58 (pred) Sr II .71 400r	
4079					.39	3	Mn 1 .25 12 I Fe 1 .25 (2) IV Mn 1 .43 10 I Fe 1 .85 (2) IV	
4080					. 37	2	Fe 1 .23 (2) IV)	
4081					. 25	2	Fe i 0.88 (1) Fe i .26 (⊙ 1)	
4082					. 20	2	Fe 1 .12 (1) Fe 1 .44 [⊙ 5]	
4083					.36	3-4	Fe 1 . 55 (1) Mn 1 . 64 12 I Fe 1 . 78 (1)	
4084			. 96	2	5.09	4	Fe I 5.01 (2) IV Fe I 5.31 (3) IV	
4086					.79	4n	Co 1 .31 15 II La 11 .72 (350) Fe 1 7 .10 (1) Fe 11 7 .27 (*)	

TABLE II-Continued

λ	V	egu	γ (Gem	15 U	J Ма	Identification
4088					. 80	3	Fe 1 .57 (1) Fe 11 .73 (pred) Cr 11 .85 (pred) Fe 1 9 .22 (1)
4090					.48	3	Fe 1 .09 (1) Zr 11 .52 (10) Fe 1 .98 (1)
4092				. ,	.37	3	Fe 1 .29 (1) Co 1 .40 25 I Fe 1 .52 (1)
4093					. 46	2	
4094					. 44	2	⊙ 1? .42 (2N-2)
4095					.94	3–4	Fe 1 .98 (3) IV Fe 1 6 .12 (1) Fe 1 6 .22 (3)
4098					. 29	3	Cr 1 7.65 (20n) III Cr 1 7.96 (20n) III Cr 1 .18 (20n) III Fe 1 .19 (3) II Cr II .48 (1) Ca I .55 15 III
4100					. 58	3:	Fe 1 .17 (© 2) Fe 1 .74 (2) 11 A
4101	. 94	50	. 74	50	.81	30	<i>Ηδ</i> .74 (7)
4103					. 07	3	Si 1 2.95 (5)
4104			. 42	2	3.98	3:	Fe I .14 (2) V
4105					. 50	1	V 1 .17 60 I
4106					. 29	1	Fe 1 .27 (1) Fe 1 .44 (1)
4107					. 41	34	Fe 1 . 50 (5) III
4109	.41	1:	. 60	1	.42	4	Fe 1 .07 (1) V 1 .78 50 I Fe 1 .81 (4) IV
4110	. 63	1:	. 94	1	1.11	3–4	Cr I .87 (20n) III Cr II 1.04 (2) Cr II 1.36 (20n) III Cr II 1.67 (20n) III
4112					.81	3	Fe 1 .35 (1) Ti 1 .72 20 II Fe 1 .98 (2) V Cr 11 3 .29 (1)

TABLE II-Continued

λ	v	Pga	γ (lem	15 U	J Ma	Identification
4113	. 97	1					
4114					. 71	3	Fe 1 .45 (4) IV Fe 1 .96 (1) V 1 5 .18 60 I
4116					. 59	1	V r .48 50 I
4118	.45	1	. 47	3	.51	6–7	Fe 1 .56 (6) IV Co 1 .78 50 II Fe 1 .90 (1)
4119			.49	2)	.94	2	
4120			. 21	1			Fe 1 .21 (2) IV
4121					.48	3n	Co i .33 60 II Fe i .81 (2) IV
4122	. 64	1	. 59	3	.72	3-4	Fe i .52 (2) IV Fe ii .67 (**)
4123					. 56	3-4	La 11 .23 (400) Fe 1 .74 (1) Fe 1 .76 (1)
4125	. 05	1	4.64	1	4.80	2	Y 11 4.91 (15)
4125			. 53	2n	.92	3n	Fe 1 .63 (1) Fe 1 .89 (1) Fe 1 6.19 (2) IV
4127	. 92	3	. 97	8	. 69	5–6	Fe 1 .61 (4) V Fe 1 .81 (2) V Si 11 8 .05 (8) V 1 8 .08 60 I
4129					.37	2-3	Cr 1 .37 20n III
4130	.84	3	. 77	7	. 70	3–4	Si 11 .88 (10)
4132	.38	1	1.96	3	. 26	67	
4133					. 17	1	Fe 1 2.91 (3) III
4134					. 24	2	Fe i 3.87 (2) Fe i .34 (1) Fe i .43 (1)
4134	.84	1	. 52	1	.73	4	V 1 .50 60 I Fe 1 .68 (5)
4135					.82	2	

TABLE II-Continued

λ	Ve	ga	γG	em	15 U	Ма	Identification
4137	. 07	1	6.87	1	. 25	5-6n	Fe 1 6.53 (1) Mn 11 6.91 (2) Fe 1.00 (3) IV
4138	. 53	1:	. 59	2	. 2 8	2	Fe i 7.98 Fe ii .37 (*)
4138					.87	1	
4140					. 03	3	Fe 1 9.93 (1) II A Fe 1 .40 (1)
4141	. 10	1			.08	1	
4142					.18	3	Fe I 1.86 (1) Fe I .63 1
4143	.42	2	. 61	4	. 66	8	Fe i .42 (5) III Fe i .87 (7) I
4144					. 99	2	
4145	.83	1	. 66	2	.97	3–4	Cr II .81 (3) Fe I 6.07 (2)
4147			. 42	1	. 47	4	Fe i .67 (4) III
4148	. 90	1	9.04	2	9.22	3–4	Zr II 9.21 (75) Fe I 9.37 (2) V
4150					.15	3	Fe 1 9.77 (© 2) Fe 1 .28 (2)
4151	. 20	1:			0.84	2	Zr II 0.98 (10)
4152			.12	1	.06	5–6	La II 1.95 (250) Fe I 1.96 (1) Fe I .18 (2) II A
4154	.11	1	. 26	4n	.72	8	Fe i 3.92 (4) IV Fe i .50 (4) III Fe i .82 4 IV
4155					.94	1	
4156			.44	1	.41	6	Zr II .24 (15) $\odot \text{ (i)? } .31 \text{ (2-2)}$ Fe 1 .46 (1) Fe 1 .67 (1) Fe 1 .81 (4) III
4157					.77	3	Fe I .79 (3) IV
4158			.83	1	.99	5	Fe 1 .80 (2) V
4160					.39	2	Fe 1 .56 (1)

TABLE II-Continued

λ .	v	ega	γ Ge	m	15 U	Ма	Identification
4161	.31	1	.30	3	.50	6n	Fe 1 .08 (1) Zr 11 .21 (20) Fe 1 .49 (1) Ti 11 .52 (1) Sr 11 .81 (30)
4163			. 58	5	. 59	4	Ti 11 .65 (40) Fe 1 .68 (1)
4165	.39	1			.48	3-4	Fe 1 .42 (1)
4166					. 79	1	
4167	. 46	1	. 29	3	.31	4	Mg 1 .27 10n III
4167					. 99	1	Fe 1 .86 (2) Fe 1 .96 (1)
4169					.34	1	Fe 1 8.95 (1) Fe 1 .78 (1)
4170					. 77	2-3	Fe i .91 (2) IV
4171	.97	1	.88	3	.97	4	Fe 1 .70 (2) Fe 1 .90 (2) Ti 11 .90 (30) Fe 1 2 .13 (3) IV
4173	. 45	2	. 50	5	.36	4	Fe I .32 (2) IV Fe II .48 (6) Ti II .54 (1)
4174	• • • • • • • • •				. 65	2	Fe 1 .92 (2) II A
4175			. 55	2	.57	3	Fe 1 .64 (4) III
4176					.77	2	Fe 1 .57 (2) IV
4177	. 49	1	. 65	3	. 56	6	Y II .54 (125) Fe I .60 (2) II A
4179	. 06	3	. 02	5n	. 12	6-7	Fe II 8.87 (6) Cr II .41 (2)
4180					. 69	1	
4181	.76	1	.74	2	.81	6	Fe 1 .76 (6) III Fe 1 2 .39 (2) IV
4183					.02	1	Fe i 2.79 (2) V ii .43 (35)
4183					.92	4	О п 4.00 (4)
4184		,	.42	2n	. 73	2–3	Ti II .33 (0) Fe I .90 (4) III

TABLE II-Continued

λ	v	ega	γ (Gem	15	U Ma	Identification
4185					.60	1	
4186			.90	2	.96	6-7	Fe 1 7.05 (6) III
4187	.36	1n	.80	3	.51	6-7	Fe i .59 (2) Fe i .81 (6) III
4188					.89	4	⊙ (II)? .74 (4)
4190					. 06	3	Ti m . 29 [1]
4190	.88	1					Si n .74 (3)
4191			. 44	2	.47	6–7	Fe 1 .45 (6) III Fe 1 .68 (2)
4192					.38	1	⊙ (i) .57 (2-2)
4193	.90	1			.47	2-3	
4195	.28	1	. 62	2n	. 23	5-6	Fe i .34 (3) IV Fe i .62 (2)
4196			.40	1	.37	3-4	Fe 1 .22 (2) IV Fe 1 .53 (1) La 11 .55 (250)
4198	. 41	1n	.31	3	. 43	9n	Si II .17 (2) Fe I .27 (1) Fe I .31 (6) III Fe I .65 (2) V
4199			. 16	3	.12	1	Fe i .10 (6) III Y ii .28 (5)
4200			. 76	2	. 77	2	Fe 1 .92 (1) V
4202	.02	1	.08	4	.14-	67	Fe i .03 (7) I V ii .35 (35)
4203			.90	1	4.11	. 3	Fe 1 .95 (1) Fe 1 .99 (3) III La 11 4 .03 (100) V 11 4 .19 (8)
4205			. 29	1	. 14	5-6	Y II 4.69 (10) V II .09 (30) Fe I .54 (2)
4206	.39	1			. 27	2	Mn 11 .43 (2) Fe 1 .70 (2) I A
4207			. 33	1	. 18	4	Fe i .13 (2) IV Cr ii .34 (pred)
4209	. 19	1:	8.78	1	8.79	3-4	Fe i 8.61 (2) V Zr ii 8.98 (30)

TABLE II-Continued

λ	Ve	ga	γ Ge	m	15 U	Ma	Identification
4210			.35	2	.30	4	V 11 9.80 (12) Fe 1 .36 (6) III
4211					. 76	2	Zr II .88 (12)
4212	.43	1	.03	1)	.37	2	
4213			. 61	1	. 69	2	Fe 1 .42 (2) IV Fe 1 .65 (2) IV
4215	.32	2	. 56	5	. 59	9	Fe 1 .42 (2) IV Sr 11 .52 300r
4217			. 46	2n	. 49	5	Fe 1 .56 (2) IV
4218	.75	1					
4219			.42	2n	.35	4	Fe 1 .36 (5) IV
4220					. 23	3-4	Fe 1 .35 (2) IV
4222	. 24	1:	. 26	1	.39	5-6	Fe 1 .23 (5) III
4224	.40	1	.84	2n	. 23	4	Fe i .17 (3) IV Fe i .51 (2) IV Cr ii .85 (2)
4225					.30	5-6	V II .21 (20) Fe I .46 (4) IV
4226	. 54	3	.75	4	. 68	5-6	Fe i .43 (2) IV Ca i .73 500 I
4227			. 43	2	. 42	5-6	Fe 1 .45 (7) III
4229	.96	1			. 57	2	Fe i .52 (1) Fe i .75 (1) III Cr ii .82 (pred)
4231					.33	2	Ni 1 .05 5 V
4233	.17	5	. 22	8	. 26	8	Fe II . 16 (8) Cr II . 25 (1) Fe I . 61 (6) III
4235	.98	1	.96	3	.78	6-7	Y II . 73 (20) Fe I . 95 (8) III
4237	.96	1	8.83	2	8.51	56	Fc I 8.04 (1) IV La II 8.38 (400) Fe I 8.83 (4) IV
4239					. 90	5-6	Mn 1 .73 5 II Fe 1 .85 (2) III
4242	.25	1	.40	. 4	.47	5-6	Cr II .35 (5) Mn II .37 (2) Fe I .59 (1) Fe I .73 (2)

TABLE II-Continued

λ	V	ega.	γ (Gem	15	U Ma	Identification
4243					. 60	2	Fe 1 .37 (2) ⊙ (1)? .45 (3) Fe 1 .79 (1)
4244			. 94	2n	5.27	3	Ni II .80 (1) Fe I 5.26 (2) III
4246	.85	3	.86	4	7.19	3-4n	Sc II .83 (100) Fe I 7.44 (5) III
4250 4250	. 51	2	.11 .81	2 2	.39	6-7n	Fe 1 .13 (7) III Fe 1 .79 (8) II
4252			. 67	1	. 53	3-4	Cr 11 .66 (1)
4253	. 94	1n	4.39	3	4.33	6	Cr 1 4.34 500 II
4255					. 58	2	Fe 1 .85 (1)
4256					.32	4	Fe 1 .21 (2)
4257					. 43	1	Мп і .66 5 II
4257	.97	1	8.21	3	8.18	5-6	Zr 11 8.05 (12) Fe 11 8.14 (*) Fe 1 8.39 (1) I A Fe 1 8.61 (1)
4260	. 43	1	.47	4	.28	7	Fe i 9.99 (2) Fe i .14 (2) Fe i .49 (10) III
4262	. 13	1	1.92	4	1.84	3	Cr 11 1.91 (2)
4263				· · · · · · · · · · · · · · · · · · ·	. 54	2	
4264	• • • • • • • • •				.31	1	Cr II .18 (pred) Fe I .21 (2) Fe I .74 (⊙ 2)
4267					.08	2	Fe 1 6.97 (2) IV
4267					.72	1	Fe 1 .83 (2) IV
4269	. 14	1	. 29	2	. 19	3	Fe 1 8.75 (2) IV Cr II .30 (1)
4271		3	. 17 . 79	2 4	. 50	8n	Fe 1 .17 (7) III Fe 1 .76 (8) II
4272			. 46	1			
4273			.32	2	. 21	4	Fe II .31 (1)
4275 4275	. 23		4.80 .58	2n 2	.01	5-6n	Cr 1 4.80 400 II Cr 11 .56 (1)
4277					. 01	2	Fe 1 6.67 (1)

TABLE II-Continued

							The second section of the second seco
λ	Ve	oga	γG	em	15 t	' Ma	Identification
4278	. 75	1:	.12	1	.13	2	Fe 11 . 13 (1) Fe 1 . 23 (1)
4279					. 53	1	Fe 1 .48 (1)
4280					.72	2-3	Cr II 1.08 (pred) Mn I 1.10 6 II
4282			.48	2	.49%	6	Zr II . 20 (6) Fe I . 41 (6) III
4283	. 99	1:n	4.17	3	4.36	3-4	Fe 1 .90 (\odot 2N) Cr 11 4 .24 (2)
4285			.45	1	. 62	3	Fe 1 .45 (2) IV
4286					.38	2	Ti 1 .01 25 II Fe 1 .44 (1) Zr 11 .51 (5) Fe 1 .68 (1)
4287	. 64	1	.87	3	8.00	4	Fe 1 . 15 (2) Ti 11 . 89 (2)
4290	. 34	3	. 23	6	.07	10	Cr i 9.73 (350)II Ti ii .22 (50)
4292	. 14	1			.18	2	Fe 1 . 12 (pred) Mn II . 28 (2) Fe I . 29 (1)
4293					. 19	1	
4293	.78	3	4.12	6	4.18	6	Ti 11 4 . 10 (40) Fe 1 4 . 13 (6) II
4295	· · · · · · · · · · · · · · · · · · ·				. 47	2	Cr 1 .76 (15) III
4296	. 52	2	. 59	4	.37	6-7	Fe 11 . 56 (6)
4297					.71	2	Fe 1 8.04 (2) IV
4299			. 17	2			Fe 1 .25 (7) III
4299	.98	4	0.04	6	. 73	9n	Ti 11 0.05 (60)
4300			.90	1	1.18	1	Ti 1 1.09 50 II
4302	. 07	1	1.93	3	. 21	5	Ti 11 1.93 (15) Fe 1 .19 (2)
4302			. 56	1			Ca 1 .53 60 I
4303	. 16	1	.18	5	.18	5-6	Fe II . 18 (4)
4305	.09	1	.60	1n	.47	5–6	Fe 1 . 46 (2) IV Sr 11 . 46 (40) Sc 11 . 71 (6) Ti 1 . 91 60 II

TABLE II-Continued

λ	Ve	egu .	γ (Jem	15 U	Ma	Identification
4306					. 62	1	
4308	. 05	5	7.88	8	7.85	6	Ca 1 7.74 45 I Ti 11 7.86 (40) Fe 1 7.91 (8R) II
4310	. 26	1:			9.51	6–7	Fe I 9.04 (2) Fe I 9.38 (2) IV Y II 9.62 (50)
4311					. 25	2	$ \begin{array}{ c c c c c }\hline Fe & 1 & 0 & .78 & (1) \\ Fe & 1 & .45 & (\odot & 2) \\ \hline \end{array} $
4312	. 94	1	.88	4	. 79	5-6	Ті п.87 (35)
4314			. 14	3			Sc II .09 (30)
4314	. 64	1	5.02	5	.87	7	Ti 1 .80 25 II Ti 11 .98 (40) Fe 1 5 .09 (5) III
4315			.90	1			
4316			. 80	1n	. 52	3	$egin{array}{cccccccccccccccccccccccccccccccccccc$
4317	. 93	1			. 45	2-3	
4318					.90	3	Ca 1 .65 45 II
4320	. 69	2	.84	4	.84	5-6	Sc II .73 (20) Ti II .97 (1)
4322					. 52	2	La 11 .51 (100)
4323					. 13	2	
4325 4325	. 66	3	.00 .74	2n 5	.69	8	Sc II .00 (20) Fe I .77 (9) II
4327					.38	. 3	Fe 1 .10 (2) V
4328					.73	2	
4330	. 44	1:	. 56	1	. 53	4	Ti 11 .26 (0) Ti 11 .71 (0)
4332					. 66	1	
4333			.34	3	.74	3-4	Zr 11 .27 (15) La 11 .77 (500)
4335					. 40	2-3	
4337			92	3	. 47	6-7	Fe i .05 (5) II Ti ii .32 [1] Cr i .57 (30) I Ti ii .92 (50)

TABLE II-Continued

λ	ve	nga	γ (lem	15 (U Ma	Identification
4340	.46	50	. 45	50	.47	30	Ηγ .47 (8)
4341	 		. 63	3	. 59	3:	Ti 11 .37 (1)
4342					.89	2-3	
4344	.32	1	.30	2	.31	5	Ti п .29 (2) Ст г .51 (40) I
4345	. 72	1:					
4346	.98	1:			. 55	3	Fe 1 .56 (2)
4347	.83	1:			8.12	2	Fe 1 .85 (1)
4349	.30	1:			. 29	1	Fe 1 8.95 (O 2)
4350	.44	1:	.86	1			Ті п.86 (1)
4351	. 64	4	.84	10	.82	8n	('r i .06 (20) I Fe ii .77 '(6) ('r i .77 (60) I Mg i .94 30 IV
4352	. 69	1:					Fe i .74 (4) III B
4354	. 56	1:n			.74	2n	Sc 11 .60 (5) Ca 1 5.10 25 III
4356			.82	1			
4357	.44	1	. 52	1			
4358	.44	1:			. 67	4n	Fe I .51 (2) IV Y II .73 (30)
4360	.08	1					Zr 11 9.74 (10)
4361			. 29	1	.87	3	
4362			. 20	1	.76	3	Ni II .10 (1)
4364					.49	3	
4366					.12	1	Fe I 5.90 (1)
4367	. 09	1:	.76	3n	.61	6	Fe i .58 (2) IV Ti ii .66 (15) Fe i .91 (1) III A
4368			.37	1			O 1 .30 (10)
4369	. 56	1	. 50	2n	. 64	5	Fe II .40 (*) Fe I .78 (3) III
4371	. 64	1	.30	1	.27	3	Zr II 0.95 (8) Cr I .28 (20) I

TABLE II-Continued

λ .	v	ega	γ (Jem 	15 (Ma	Identification
4372	. 86	1			. 94	2	Cr 1 3.27 (8) I
4374			. 43	3		9	Sc 11 .46 (30) Fe 1 .50 (1)
4374	.81	1:	.93	3	.83	6-7	Ті п. 83 (1) У п. 94 (300)
4375			. 97	1	.97	2	Fe 1 .93 (5) I, II
4377	.91	1:			.84	2	
4379	.35	1	. 57	1	. 65	2n	V 1 .24 150 II Zr 11 .77 (9)
4380	.38	1					Mg 1 .39 (5)
4381	. 54	1			0.97	1	
4382			. 44	1 .	. 24	2	
4383	. 54	2	. 60	5	.46	7	Fe i .55 (10) II
4384	.82	1:	. 50	2 n			Mg II .64 (8) V I .73 125 II Sc II .80 (5) Cr I .98 (20) I
4385	.48	1	.44	4	. 26	5-6	Fe II .39 (5)
4386			.11	1			
4386	. 91	1	.89	2	. 65	2	Ti 11 .86 (10)
4388	. 26	1	. 45	1	.31	5–6	Fe i 7.90 (2) IV Fe i .42 (2) IV
4390	. 53	1n	. 66	3	1.Q4	6n	V 1 9.99 100 II Mg 11 .59 (10) Fe 1 .96 (3) IV Ti 11 .98 (tr) Fe 1 1.46 (1)
4392	.94	1:					
4393	. 90	1	4.09	2	.86	2	Ti 11 4.06 (2)
4395	. 05	2	.06	5	. 04	8	Ti II .04 (60) V I .24 80 II Fe I .29 (2) Fe I .51 (1)
4395	.99	1	.92	2			Ті п.85 (2)
4396	. 97	1:			.49	1	
4398			.21	1n	7.84	5	Y II .02 (50) Ti II .32 [1]

TABLE II-Continued

λ	l v	ega	7	Gem		J Ma	Identification
4399	. 67	1	.80	3	.77	4	Ti 11 .77 (35)
4400	.45	1:	. 46	2			Sc 11 .38 (20) Ti 11 .63 (pred)
4400	.88	1	1.38	2	1.34	6-7	Fe 1 1.30 (3) Fe 1 1.45 (2) Ni 1 1.55 30 III
4403	.17	1			. 19	3	
4404	.75	1-2	.75	4	.75	6-7	Fe i .75 (8) II
4406					. 58	1	V 1 .65 80 I
4407		 	.72	1			Ti 11 .67 (1)
4408	.06	1	.42	1	.41	6n	V 1 .21 70 I Fe 1 .42 (4) III V 1 .51 90 I
4409	.11	1	.42	1			Ti II .25 (tr) Ti II .54 (tr)
4410	. 05	1			0.63	4	Fe 1 .72 (2)
4411	.11	1	.11	2			Ті п. 08 (15)
4412	. 24	1	1.98	1	1.69	3	Ti 11 1.95 (1)
4413	. 57	1n	. 59	1	. 22	2	[a Per .64 (4n)]
4415	.11	1n?	.21	3n	4.96	6–7	Fe 1 . 13 (8) II Sc 11 . 56 (20)
4416	.01	1					
4416	.78	1-2	.80	4	7.11	56	Fe 11 .81 (4)
4417	.78	1	.74	4	8.03	56	Ті н.72 (40)
4418	. 68	1	. 42	1			Ті п.34 (1)
4419	. 59	1					Mn 11 .78 (2)
4420	. 67	1:n			. 53	2	
4422	.22	1:n	1.88	2	. 52	6	Ti 11 1.95 (1) Fe 1 .57 (4) III
4422	.98	1:n	. 60	1			Y 11 .59 (40)
4423	.90	1:					Fe 1 .86 (2r)
4425			.39	1	.17	3	Ca 1 .43 50 I Fe 1 .66 (1)
4427			.47	1n	.40	5–6	Fe 1 .31 (5) I

TABLE II-Continued

λ	v	ega	γ (Gem	15 1	U Ma	Identification
4428			.02	1	. 24	1	Ti 11 7.89 (pred) Mg 11 .00 (7)
4429		<i>.</i>			.33	2	
4430	. 47	1			.28	5-6	La II 9.90 (400) Fe 1.20 (2) IV Fe 1.62 (4) III
4432					. 65	2n	Ti 11 .08 (tr) Fe 1 3 .22 (2) IV
4433			. 93	2			Mg 11 .99 (8)
4435	. 22	1	.08	1	.36	2n	Ca 1 4.95 60 I Fe 1.15 (2) II A Ca 1.67 40 I
4436	.35	1:n	.81	1n			Mg 11 .48 (5) Fe 1 .93 (2)
4437					.44	1	
4438					. 19	2	
4439	. 22	1			. 55	2	Fe 1 .89 (2) IV
4440	. 19	1					Zr п .46 (10)
4441			. 68	1	. 53	1	Ti и .73 (pred)
4442	. 05	1:	.30	1	. 50	1	Fe 1 .35 (5) III
4443	.00	1:	. 03	1			Zr 11 2.99 (25)
4443	.78	2	.84	6	. 53	8n	Fe 1 . 20 (3) III Ti 11 . 80 (50)
4444	.83	1:	. 66,	1			Ti 11 .56 (1)
4446	.37	. 1:n			. 69	. 3	Fe 1 .85 (2)
4447	.85	1	.70	1	. 44	5	Fe i .14 (2) IV Fe i .73 (5) III
4449	. 23	1:	. 65	2	.44	1	
4450	. 55	1	. 52	3	.45	4	Fe 1 .32 (2) Ti 11 .49 (10)
4451			. 54	2	. 64	2n	
4452	.38	1					
4453	.27	1			.34	1	Fe 1 .84 (⊙-2)

TABLE II-Continued

λ	ve	ода	γ (lenı	15 U	Ma	Identification
4454	.82	1:n	.84		.73	6-7	Fe 1 .39 (3) III Fe 1 .67 (1) Ca 1 .77 80 I Zr 11 .80 (10) Fe 1 5 .04 (2)
4456	.86	1			.40	2–3	Ca 1 .61 10 II Ti 11 .64 (tr)
4458	. 15	1			7.47	2	Zr II 7.42 (8) Ti 17.43 40 II Mn I 7.55 8 ? Mn I .26 12 II
4459			. 19	2	8.87	5–6	Ni 1 .05 20 III Fe 1 .13 (5) III
4461	. 29	1:					Zr 11 .23 (10)
4461			.74	2n	. 65	7	Fe 1 .21 (2) Fe 1 .66 (4) I Fe 1 2.01 (3) IV
4464	.43	1	. 54	2	.48	5	Ti II .46 (1) Mn I .68 8 II Fe I .77 (2) IV
4466	. 69	1	. 52	2	. 60	5	Fe 1 .56 (5) II Fe 1 .94 (2)
4467	. 64	1:	. 56	1			
4468	. 50	2	. 53	5	. 61	5-6	Ті п .49 (50) Ті п 9.15 (tr)
4469	. 69	1n	.40	2	.89	1	Fe 1 .39 (4) IV
4470	. 77	1	.80	1	.92	3-4	Ni 1 . 49 15 III Ti 11 . 86 (tr)
4471	. 57	1	. 63	1			He 1 .48 (6) He 1 .69 (1)
4472	.70	1	.97	2	.85	3-4	Fe i .71 (2) Fe ii .91 (pred)
4474	. 50	1			.37	1	
4475	.82	1:n	6.03	2	.97	5	Fe 1 6.02 (7) III
4477	. 24	, 1n					
4478	. 74	1n?	. 68	1			Mn II .74 (1)
4480	. 05	1			9.34	2	
4481	. 26	9	.24	15	. 25	9	$Mg \text{ II} \left\{ \begin{array}{c} .13 \\ .33 \end{array} \right\} \text{ (100)}$

TABLE II—Continued

λ	v	Pga	γG	em	15 t	' Ma	Identification
4482	.39	1:	.35	1	. 05	2	Fe I . 18 (3) I Fe I . 26 (4)
4483	41	1					
4484	. 53	1:			. 24	3-4	Fe 1 .24 (3) IV
4485					. 68	2	Fe 1 .67 (2)
4486					. 70	1	
4488	. 29	1	.28	2	. 20	1	Fe i 13 (2) Ti ii .32 (15)
4489	. 20	1	. 25	3	. 04	5	Fe 1 8.92 (2) IV Fe 11.21 (4) Fe 1.74 (3) I A
4490	. 16	1:					Mn 1 .08 5 III Fe 1 .09 (2) IV
4491	. 39	1	.36	4	.39	5	Fe II .41 (4)
4493	. 27	1	.42	1	. 83	2	Ti 11 .54 [1]
4494	. 58	1	.46	1	.35	5–6	Zr II .41 (8) Fe I .57 (5) III
4496	. 03	1	.38	1	. 59	5	
4496	. 95	1:					Cr i .86 25R I Zr ii .96 (15)
4498	.12	1:			.99	3	
4499	.84	. 1					
4500	. 56	1:			.39-	2	
4501	. 28	2	.30	6	.30	6	Ti 11 .27 (40)
4502					.97	1	
4504	.89	1					. Cr II . 54 (pred)
4506	.61	1:			. 07	2	Ті н .74 (pred)
4508	. 29	2	.32	4	.33	6	Fe 11 . 29 (8)
4511					. 67	2	
4512	. 58	1n			· · · · · · · · · · · · · · · · · · ·		Ti 1 .73 40 II
4513					. 94	1	Fe 1 4.19 (2)
4515	.38	1-2	.34	4	. 28	5	Fe II .34 (6)
4516	.90	1:	7.18	1			

TABLE II-Continued

λ	Ve	eka	γG	em	15 1	Ma	Identification
4518			.35	1	7.93	2	Fe i 7.53 (2) Ti i .03 50 H
4520	.32	2	. 24	4	. 15	56	Fe II . 24 (6)
4521			.06	1			
4521	. 50	1	.72	1			
4522	. 79	2	.61	3	.81	7	Fe II . 64 (6) Ti I . 80 40 II
4524	.70	1:	.89	2	5.07	4	Ti 11 .74 [1?] Fe 1 5.15 (3) IV Ti 11 5.25 (pred)
4526			.45	1	. 01	2	La II . 12 (200) III Cr I . 46 (15) II
4528	.75	1:	. 56	3	.83	5-6	Fe 1 . 62 (7) II
4529			. 56	2			Ti 11 .51 (1)
4531	.83	1:	. 29	1n	.42	5	Fe i .16 (5) II Fe i .64 (2)
4533			.03	1	. 20	2	Ti 1 .25 80 II
4534	. 10	2	.02	6	. 04	6–7	Ti 11 3 . 97 (30) Fe 11 . 18 (*) Mg 11 . 26 (4)
4535	. 40	1:					Ti 1 .57 50 II
4536					. 22	2	Ti 1 5.92 40 II Ti 1 .05 40 II
4536	.90	1:					
4537			.98	1n			
4539	. 55	1	.58	1	.32	2	
4541	. 43	1	.45	3	. 55	5	Fe 11 .33 (1) Fe 11 .53 (*)
4542	.82	1					
4544	.11	1			.98	2n	Ti 11 .03 (tr) Cr 11 .69 (pred)
4545	.12	1					$Ti \ 1 \ 4.70 \ 30 \ II$ $Fe \ i \ .09 \ (\odot -2)$ $Ti \ ii \ .16 \ (tr)$
4546	.96	1:	.63	1	7.37	2	Ni 1 .94 5 III Fe 1 7 .03 (2) Fe 1 7 .85 (3) V

TABLE II-Continued

λ	V.	ega	γ (iem	15 (U Ma	Identification
4549	. 50	5	. 55	10	. 59	9	Fe 11 .48 (4) Ti 11 .62 (60)
4552			.24	1	1.82	2	Ti 11 .25 (pred) Ti 1 .46 35 II
4554			.09	2	.13	6	Zr 11 3 . 96 (12) Ba 11 . 04 1000R
4554	.85	1:	.98	2			Cr 11 5.00 (2)
4555	.73	1	.90	3	.86	6	Ti 1 .49 30 II Fe 11 .90 (6) Fe 1 6 .13 (3) V
4557	. 21	1:					
4558	. 67	2	. 63	3	. 57	6	Cr II .66 (20)
4560	. 20	1:					Fe 1 .11 (2)
4561					.72	1	
4562	. 60	1:					
4563	.77	1-2	. 76	4	.80	4 .	Ті п .76 (30)
4564			.74	1			V н .59 (10)
4565	. 57	1:	.70	1	.81	3-4	Fe i .32 (2) Fe i .68 (2) Cr ii .78 (2)
4568	.18	1:			.74	2	Ті п .31 [1]
4570	. 03	1:			,		
4571	. 97	2	.98	4	2.02	7	Ті п. 97 (50)
4573	. 20	1					
4574	. 24	1:	3.94	1	.44	. 2	Fe 1 .73 (2)
4576	. 10	1	. 34	2	.39	4	Fe 11 .31 (4)
4579	. 55	1n	.85	1n	0.12	3n	Fe 1 .34 (1) Cr 1 0.06 (20) I La 11 0.08 (150) Ti 11 0.47 [1]
4581			.47	1			Ca I .41 40 II Fe I .53 (2)
4582	. 79	1	.82	1			Fe II .83 (*)
4583	.90	2	.82	5	. 53	8n	Ті п .45 [1] Fe п .84 (8)

TABLE II-Continued

λ	Ve	ga	γ Ge	tra	15 U	Ма	Identification
4585	. 80	1	.88	1	6.41	2	Ca 1 .87 50 II
4588	. 20	1	.23	3	7.94	3	Cr 11 .21 (20)
4589	.93	1	.98	2	.81	2	Cr 11 .94 (1) Ti 11 .96 (2)
4591	.92	1	2.13	2	2.21	6-7	Cr II 2.06 (2) Ni I 2.53 10 III Fe I 2.66 (4) I B
1593	. 79	1					
1595			.92	1	. 67	4	Fe 1 .37 (2) Fe 11 .69 (*) Fe 1 6.06 (2)
598					.05	2	Fe 1 .14 (2)
598	.98	1					
4600				· ••••••	.33	5-6	Fe i 9.90 (2) V ii .17 (8) Ni i .36 6 V
602			.83	1	.58	2	Fe i .01 (2) Fe i .95 (4) I B
605			.21	1	4.91	4	Ni 1 4.99 12 III Fe 1 .25 (2)
607					. 64	2	Sr i .34 600 I Fe i .66 (4) V
609					. 07	1	Ti 11 .26 (pred)
611	. 19	1:	0.96	1	.28	3	Fe 1 .29 (4) III
613					.28	3	Fe 1 . 22 (3) V La 11 . 40 (200)
616	66	1	.39	2	. 17	3-4	Cr 1 .14 (25) I Cr 11 .67 (3)
618	.82	1	.84	3	.86	6	Fe i .76 (2) Cr ii .82 (10) Fe i 9.30 (4) IV
620	. 57	1	.48	2	.41	3	Fe 11 .52 (*)
622					.37	2	
624					.74	2-3	Cr 11 . 57 (2) Fe 1 5 . 06 (4) IV
626	.00	1:	5.78	1	5.96	2	Cr 1 .19 (20) I

TABLE II--Continued

λ	v	ega	γ (Gem	15 T	^т Ма	Identification
4629	.39	2	.36	4	.35	8	Fe II .33 (4) Ti I .34 15 III
4631	.36	1:	. 47	1			
4632	.63	1					Fe 1 .92 (3) III ?
4634	.07	1	.11	3			Cr 11 .09 (10)
4635	.68	1	. 40	2			Fe 11 .35 [1]
4637	.61	1:					Fe i .51 (4) IV
4638	.21	1:	.08	1			Fe 1 .02 (4) IV
4639	. 65	1					Ti 1 .37 18 III Ti 1 .67 15 III Ti 1 .94 15 III
4640	.79	1	.84	1			
4646	. 22	1n					Cr i .17 40 I
4648			.86	1n			Fe II .32 (*) Ni I .66 15 III
4651	.70	1:					Cr 1 .30 (20) I Cr 1 2.17 (30) I
4653	.30	1		,			
4654	. 50	1	. 16	1			Fe i .50 (4) II ? Fe i .64 (3) V
4655	.32	1					
4656	.98	1:	7.07	3			Fe II 7.01 (*) Ti II 7.21 (tr)
4660	. 57	1					
4663			. 04	1			
4664	.32	1	3.83	1			Fe II 3.72 (*)
4666	. 61	1	. 64	2			Fe 11 .75 (*)
4667			.17	2n			Fe 1 .46 V
4668	.36	1					Fe I .15 (4) IV
4670	.10	1	.34	. 2			Sc 11 .40 (10)
4678			. 71	1			Fe 1 .86 (5) V
4686	. 17	1:					Ni 1 .21 5 III
4690			.40	2			Fe I .15 (2)

TABLE II-Continued

λ	Ve	តិវិទ	γ (Jem .	15 U Ma	Identification
4691	.28	1:				. Fe 1 .42 (4) IV
4693			. 14	2		
4698			.70	1		. Cr 11 .74 (pred)
4699			. 63	1		. (п)? .34 (3-2)
4701	. 16	1				
4703	. 07	1	2.94	, 4		. Mg I .00 40 V

Table III lists the wave-lengths and identifications for the four "c"-stars n Leonis (A0p), v Sagittarii (B8p, F2p), a Cygni (A2p), and ϵ Aurigae (F5p). The wave-lengths for η Leonis were determined from one-prism plates exclusively. The spectrum of the star is transitional between types B and A. All of the helium lines are faintly present, while at the same time the strongest lines of Fe I are also observed. Most of the wave-lengths in v Sagittarii have been taken from Plaskett's⁴ published measures. His wave-lengths have been extended somewhat toward the violet and have been supplemented elsewhere by a few lines due to singly ionized Argon. The Yerkes measures were made on plates of the Eastman 40 emulsion and consequently the intensity estimates are probably systematically less than for the stars measured on the Process plates. Plaskett's intensities have been reduced to a scale uniform with the other stars. The spectrum of v Sagittarii is unique in the presence of a number of lines of A 115 and in the strength of S 11. In addition, the spectrum contains many peculiarities investigated in detail by Plaskett. The wave-lengths in a Cygni depend on one-prism plates to the violet of λ 4340 and on three-prism plates to the red of that position. Struve's wave-lengths⁷ in ε Aurigae between λ 3998 and λ 4340 have been used. To the red of λ 4340 the measures were made on three-prism Eastman 40 plates; an extension was made to the violet on one-prism Eastman 40 plates. The ultra-violet spectrum of a Cygni has been investigated by Wright and Miss Applegate.8

⁴ Pubs. D.A.O., 4, 115, 1928.

⁵ Ap. J., **79,** 513, 1934.

⁶ Op. cit., 4, 1, 1927.

⁷ Pubs. Yerkes Obs., 7, Part II, 1932.

⁸ L.O.B., 10, 100, 1921; ibid., 12, 81, 1926.

TABLE III
WAVE-LENGTHS AND IDENTIFICATIONS IN SUPERGIANTS

λ	η	Leo	v S	gr	a (Cyg		Nur	Identification
3913	. 51	4	. 45	3	. 58	7	. 17	10	Ti II .46 (60)
3914	. 58	2	.58	2 - 3	. 59	3	.42	8	V 11 .33 (20)
3916	45	1n			. 36	1	.22	6	Zr 11 5.94 (25) V 11 .42 (20)
3918	. 68	1n	.38	2n	. 62	1–2	. 65	3	Fe 1 .32 (2) Fe 1 .42 (2) IV Fe 1 .65 (4) IV C 11 .98 (6) Fe 1 9 .07 (2) IV
3919	. 73	1							
3920	. 63	2	. 57	4	.85	1	.28	6	Fe 1 .26 (6R) I Сп. 68 (8)
3921	. 83	1	2.00	2			. 52	3	⊙ п.56 (4) ⊙ п.72 (4)
3923	.48	1n	. 55	2	2.80	3	2.99	7	Fe i 2.92 (6R) I S ii .43 (6)
3925					.12	1:			Fe 1 5.65 (2) IV Fe 1 5.95 (3) IV
3926	. 53	1n	. 66	4n					Не г. 53 (1)
3928	. 19	1	. 56	2:	7.94	1–2	7.88	8	Fe i 7.93 (6R) I
3929	.40	1							
3930	.30	3	.18	3	.31	4	.42	7	Fe i .30 (7R) I Y ii .67 (15)
3931	. 91	2n	.94	2-3	2.08	2			S II . 90 (5) Ti II 2.01 (2) S II 2.29 (3)
3933	. 65	12	. 54	7n	. 61	15	. 69	50	Ca 11 .67 (10)
3934	. 95	1n							
3935	. 92	3	6.00	4	.99	3	6.33	7	Fe i .82 (4) III He i .91 (1) Zr ii 6.06 (7)
3936	.89	1							
3937	. 45	1							
3938	.31	2	.60	5n	. 46	4r	.33	10	Mg 1 .43 (3r)

TABLE III-Continued

λ	ηΙ	Jeo) v 5	Sgr	a (Ув	e A	ıur	Identification
3939	. 03	1-2							
3940	. 45	1n			. 79	1	. 66	3:	Fe 1 .89 (4) II?
3942	. 45	1	. 14	1n	.08	1	1.79	2:	
.3942							.75	3	Fe 1 .38 (1) Fe 1 .45 (3) IV Fe 1 3 .35 (1) IV
3944	.00	2	3.86	1	3.99	1-2	. 04	6	Mn II 3.86 (1) Al I .03 (10R)
3945	. 17	2	.32	2	. 17	2	. 26	8	Fe 1 4.75 (1) Fe 1 4.90 (1) IV Fe 1 .12 (1) IV
3946	.12	1							
3947	.40	1n			. 28	1	. 24	4	Fe 1 .00 (2) IV O 1 .33 (19) O 1 .51 (7) Fe 1 .54 (2) IV O 1 .61 (4)
3948	.80	1					.35	7	Fe 1 .11 (3) IV Fe 1 .78 (4) IV
3950	.47	1			.02	1	.36	8	Fe I 9.96 (4) III Y II .35 (200)
3952	. 04	1	.08	2	1.98	1-2	1.94	9	Y II 1.59 (5) V II 1.97 (40)
3954	.45	1:					. 25	3	
3955	. 65	1:							
3956	.73	1:					. 19	5n	Fe 1 .46 (4) IV Fe 1 .68 (6) III
3957	.82	1:							
3958							. 19	6	Zr 11 .23 (50)
3959	. 09	1:		<i></i>			. 60	2	
3960	.86	1							
3961	. 54	1	.21	2	. 55	2	. 51	10	Al 1 . 54 (10R)
3963	. 24	1n					2.87	2	[① 1 2.86 (3)]
3964	. 60	2	. 73	5	. 70	1-2	.42	7	Fe i .52 (2) V He i .73 (4)
3966	. 25	1n	.30	4	. 61	1:	. 23	6:	Fe 1 .07 (5) III Fe 1 .63 (5) IV

TABLE III-Continued

λ	η	Leo	י ט	Sgr	a	Суд	٠.	Aur	Identification
3967	.37	1:							
3968	. 40	10	.48	5	. 54	20	. 51	50	Са и .47 (10)
3970	. 15	20	. 04	12	.13	25	.05	20	He .08 (6)
3972	.35	1?*							
3974	. 15	2	.34	9n	. 10	4	3.97	10n	V II 3.64 (15) Fe II .17 (*)
3975	. 03	1			.05	1			
3976	. 12	1							
3976	.91	1	.79	1			.43	1	Fe i .39 (1) Fe i .56 (1) Fe i .62 (2) IV
3977	.87	1			.41	1	.72	3	V II .74 (10) Fe I .75 (5) III
3978	.98	1:							
3979	. 58	2n	. 54	4n	.72	2n	. 54	3	Cr II .21 (pred) Cr II .51 (2) Fe I .64 (⊙ 3) S II .81 (4)
3980	. 73	1							
3981	. 51	1			.47	1			
3982			.18	2n	.13	1	. 10	12	Fe 1 1.78 (3) Ti 11 .00 (tr) Y 11 .59 (150)
3984							10	1	Fe i 3.96 (5) III
3986	.06	1	5.93	1					Мп п 6.01 (1)
3987				· • • • • • • •	. 75	1	60	5	[⊙ п? .61 (2)]
39 89	. 58	1			.14	1:	.98	. 1	Sc 11 .06 (1) V 11 .80 (4)
3990	.96	1:n	.98	1			1.17	6	S _{II} .90 (5) Zr _{II} 1.14 (40)
3992							.78	1	
3993	.97	1:	. 57	2					S II .49 (6) Mn II .86 (1)
3995	. 09	1	.12	2n					N п .00 (10)
3997					. 25	1	. 16	5	V II .12 (15) Fe I .40 (6) III

^{*3972.35.} Measured on two plates, but may be part of wing of $H\epsilon$.

TABLE III-Continued

λ	ηI	eo	υ 5	igr	αС	уд	e A	ur	Identification
3998	. 97	1	.92	1			9.02	5	S ₁₁ .74 (5) Zr ₁₁ .97 (30)
4000	. 28	1:				, , , , , , , , ,	. 63	1	Mn II .06 (1) Fe I .26 (1) Fe I .46 (1) V
4001	.11	1							
4002	.33	3n	. 46	5n	. 26	4n	. 06	5	Fe i 1.67 (3) III
4003	. 52	1					2.85	4	V п 2.95 (10) Cr п .33 (2) S п .87 (2)
4004			. 93	1					
4005	.70	1n	. 90	2n	. 73	2-3n	.48	12	Fe i .25 (7) II V ii .71 (60)
4006	.86	1:							
4007	.91	1:							
4009	.32	1n	. 26	5n	.30	1n	.90	2	He i .27 (1) Fe i .72 (5) III
4010	.72	. 1							. Mn 11 .84 (1)
4012	. 49	3v?	. 59	4	.37	4	.37	13	Ti 11 .37 (4)
4013	.96	1	. 79	1	. 64	1	• • • • • • • • •		. Ап87 (10)
4014	.90	1:		• • • • • • • • • • • • • • • • • • • •	. 22	1	.47	3	Sc 11 .49 (8) Fe 1 .54 (4) 111
4015	. 64	3	. 49	5	.35	2	.48	2	Ni II .50 (1)
4016			.92	1	.92	1	7.18	1	Fe 1 7.10 (1) Fe 1 7.15 (3)
4017	.49	1n		••					
4018					.34	1:	.39	2	Fe i .28 (2) Zr ii .39 (10)
4020	.06	1:	9.80	1					
4020	1.30	1:			.90	1	· · · · · · · ·		
4021					2.10	1	.96	2	Fe 1 .87 (5) III
4022	. 57	1:							
4023	. 55	1			.37	1-2	.31	4	V 11 .38 (50) He 1 .99 (1)
4024	.41	2-3	.78	1n	. 51	4	.98	12	Zr 11 .44 (12)

TABLE III—Continued

λ	7 1	.eo	ا ب	Sgr	a (Суд	e /	lur	Identification
4025					.15	1			Ті п.13 (2)
4026	.18	2-3	.28	8	. 23	1			He I .19 (5) He I .36 (1) Al II .5 (5)
4027	.38	1:							
4028	.38	1	. 56	2	.33	3	. 29	10	Ti п .33 (7) S п .74 (7)
4029					.42	1	∫.84	2	Zr 11 .68 (20)
4030	. 52	1	.42	1	. 53	1	.71	3	Cr II .37 (pred) Mn I .76 200 I
4031	.48	1)	. 47	2	.43	1	.75	1	La 11 .70 (300) Mn 1 .80 (4) Fe 1 .97 (2) V
4032	. 90	1-2	. 96	5	3.01	2-3	. 96	3	S II .77 (6) Mn I 3.07 150 I
4034	.39	1			.39	1	.44	2	Zr II . 09 (5) Mn I . 49 100 I
4035	. 55	1n	. 67	2n	. 63	1	. 64	3	N 11 .09 (4n) V 11 .62 (40)
4037	.04	1:			6.89	1	6.86	2	V 11 6.77 (9)
4038	.07	1	. 02	2n	.00	1	.12	1	Cr II .04 (2)
4040			.09	1	9.61	1	9.71	1	$Zr \text{ 11 . } .24 \text{ (4)} \ V \text{ 11 . } .59 \text{ (4)}$
4040	.00	1n			. 65	1:			
4041	. 40	1	.51	2			. 20	1	N 11 .33 (5n) Mn 1 .37 50r I
4042	.38	1:	.82	1					Ап.91 (8)
4043	.94	1n	4.08	4–5	.92	1–2	4.08	2	Fe i .90 (2) IV
4045	. 75	2–3	.87	1	.74	4	.78	12	$Zr \text{ II } .62 \text{ (15)} \ Fe \text{ I } .82 \text{ (8R) II}$
4047	.36	1:	.05	1					
4048	.72	1-2	.92	5	.81	3	.70	4	Zr II .67 (25)
4050	. 56	1:n					. 51	2	Zr 11 .33 (15)
4051			.05	2					
4051	.89	2	.96	2	.82	2-3	.95	3	Cr II 2.00 (1)

TABLE III-Continued

λ	ηI	∕eo	0.5	igr	a (УК	εA	ur	Identification
4053	.92	1-2	. 94	4	.82	4	.84	13	Ст п .45 (pred) Ті п .81 (3) Ст п 4.09 (pred)
4055					. 04	1:	. 24	1	Мп 1 .55 20 I
4056	.06	1n	. 14	1	6.03	1	6.25	2	Ti п . 20 [1] V п . 25 (2)
4057	.43	1	. 34	2n	. 54	1,	. 53	2	Mg 1 .63 (5r)
4058	. 49	1:	. 69	1					
4059					.49	1			
4060					. 55	1			
4061	. 66	1:	. 70	2	.80	1			
4063	. 60	2	.97	2n	. 63	3	. 57	10	Fe i .60 (8R) II Cr ii 4.05 (pred)
4065	.11	1d?			. 61	1:	. 20	1	V 11 .09 (6r) Fe 1 .40 (1)
4067	. 05	4	.02	8	. 06	4 :	.00	. 7	Fe i 6.98 (4) III Ni ii .04 (3) Fe i .28 (3) III
4068	. 62	1:n					. 25	2	Fe 1 7.99 (5) III
4070	.07	1	9.94	1	9.87	1:	. 04	2	Fe 1 9.28 (1) O 11 9.64 (4) O 11 9.90 (6)
4070			. 96	1	1.01	1			Cr 11 .99 (2)
4071	.61	1	.85	1:	.71	2	.75	8	Fe 1 .75 (7R) II A 11 2.01 (9)
4072	. 64	1	.70	2			. 76	1	O II . 16 (8) Fe I . 52 (1) Cr II . 63 (pred)
4073	.89	1:				<i>.</i>	.84	1	Fe 1 .77 [O 4] IV
4074					. 61	1:			Fe 1 .79 (3) IV
4075	.44	1	. 59	2n ·	. 52	1	6.00	2	Si 11 .45 (2) Cr II .66 (pred) O II .87 (10) Fe I .94 (1) Fe I 6.50 (1)
4076	.80	1			. 58	1			Fe 1 .64 (5) IV Si 11 .78 (1) Cr 11 .87 (pred)

TABLE III-Continued

λ	η	Leo	υ	Sgr	а	Cyg		Aur	Identification
4077	. 89	1	. 50	2n	. 64	3	. 70	12	Cr II .58 (pred) Sr II .71 400r
4079					.49	1:			
4080	. 08	1:	9.86	1					
4082	. 35	1	1.90	2n	.48	1:			
4085			. 69	1	6.10	1	.72	2	Fe 1 .31 (3) IV Zr 11 .69 (5) Cr 11 6.19 (1)
4087	. 50	1:	.30	1	.70	1	.29	2	Fe II .27 (*) Cr II .64 (pred)
4089			.06	1n			8.89	2	Fe 1 8.57 (1) Fe 11 8.73 (*) Cr 11 8.85 (pred) Fe 1 .22 (1)
4090							. 55	2	Zr 11 .52 (10)
4093			. 59	2n	. 23	1:	 		
4097			.29	2			6.70	1	Zr 11 6.63 (4)
4098	· · · · · · · · · · · ·		.21	3n			. 42	1	Cr II 48 (1)
4099		*.	. 97	2					S II .27 (2) S II .42 (3) Mn II 0.00 (1)
4101	.77	20	.72	7	.74	20	.77	20	Ηδ .74 (7)
4103		•••••	.77	1:			4.33	1	A 11 .91 (10) Fe 1 4.14 (2) V
4104	.99	1:	.91	1n					Mn 11 5.01 (2)
4106			.82	1n					
4108					. 10	1n	7.48	2	Fe 1 7.50 (5) III
4109	.89	1:	.74	2	. 96	1	. 75	2	Fe 1 .81 (4) IV
4111	. 10	1	0.97	1	0.95	2	0.99	4	Cr 11 .04 (2)
4111			.82	1			2.62	1	Cr 11 2.57 (pred) Fe 1 2.97 (2) V
4112	. 91	1:	· · · · · · · ·		3.02	1	3.26	3	Cr 11 3.29 (1)
4114							. 94	1	Fe i .45 (4) IV Fe i .96 (1)
4116					. 52	1:n			

TABLE III-Continued

λ	ηI	.eo	U S	øgr	α (yg	• A	ur	Identification
4118							. 57	3	Fe 1 . 56 (6) IV
4119	.28	1:	. 49	1n	.34	1	. 56	3	Оп. 22 (8)
4120	. 91	2	.79	2	.83	1	. 99	1	He i .81 (3) He i .98 (1)
4122	. 65	4	. 64	4	. 64	6	. 63	8	Fe 11 .67 (*)
4123					. 66	1:			Fe 1 .74 (1)
4124	. 71	1	.78	2	. 59	2 .	. 80	3	Y и .91 (15)
4125	. 62	1	6.30	1					Мп и .86 (1)
4128	. 13	6	. 22	7	. 09	7	. 25	8	Si II .05 (8)
4128	.76	1			. 71	2	.76	8	Fe II .73 (*)
4129	. 49	1						,	
4130	.88	6	.86	8	.87	8	.76	3-4	Si II .88 (10)
4132	.33	1			. 20	1	. 22	4	Fe 1 .06 (7) II Mn 11 .28 (1) Cr 11 .45 (1) Fe 1 .91 (3) III
4133	.39	1:							
4133							.92	1	Fe 1 .87 (2)
4134	. 67	1:			. 58	1:	. 67	2	Fe 1 .68 (5) IV
4136	.75	1	7.16	1	.02	1	.03	2	Mn 11 .91 (2) Fe 1 7 .00 (3) IV
4138	.11	1:	. 16	2	. 28	1	.35	2	Fe II .37 (*)
4139	. 04	1:							
4140					.32	1:	. 10	1	Fe 1 9 .93 (1) II A ⊙ п? .41 (3)
4141	. 26	1:							
4142	. 29	1	1.92	2 n					S 11 .24 (8)
4143	.73	3	. 69	5n	.79	2	.73	7	Fe 1 .42 (5) III He 1 .77 (2) Fe 1 .87 (7) I
4145	. 14	1:	. 55	2	.79	2	.70	3	S II .05 (8) N II .76 (3) Cr II .81 (3) Fe I 6.07 (2)
4145	.80	2							

TABLE III-Continued

λ	ŋ I	æo	ט	Sgr	a	Cyg	. A	Lur	Identification
4147	. 15	1:	. 10	1	. 10	1			S п 6.90 (5)
4147		<i>.</i>					. 73	1	Fe i .68 (4) III
4149	. 11	1:	. ,		.23	1	. 17	7	Zr 11 .21 (75) Fe 1 .37 (2) V
4150	.39	1:							
4150			. 97	2	. 76	1	. 89	2	Zr 11 .98 (10)
4151	. 62	1:							
4152							. 27	1	La II 1.95 (250) Fe I .18 (2) II A
4153	. 17	1	.00	4	. 22	1:			S II .05 (10) О II .31 (7)
4154	.80	1: .	. 67	1	. 61	1:	.38	2	Fe 1 3.92 (4) IV Cr II .29 (pred) Fe 1 .50 (4) III Fe 1 .82 (4) IV
4156	. 22	1:	. 40	1n			. 34	3	Zr II . 24 (15) Fe I . 81 (4) III
4158			.16	1n	7.98	1:	7.98	1	Fe 1 7.79 (3) IV
4158	. 50	1:					. 64	1	Fe I .81 (2) V
4160	. 67	1	. 77	2n	. 54	1			
4161					.34	1	.37	9	$Zr \ { m II} \ .21 \ (20) \ Ti \ { m II} \ .52 \ (1) \ Sr \ { m II} \ .81 \ 30$
4162	.45	1	. 55	2	. 96	1:			S п .29 (2) S п .64 (10)
4163	. 70	1-2	. 62	4	. 59	4	. 59	12	Ті н. 65 (40)
4165	.32	1	.08	1	. 25	1	.48	2	S 11 4.98 (2) S 11 .20 (3) Fe 1 .42 (1)
4167	.44	1	.08	1n	. 14	1:	. 29	2	Mg 1 .27 10n III?
4169	.03	1:	8.65	2	8.48	1			S II 8.37 (5) He I 8.97 (1)
4170	.85	1			. 58	1			Cr 11 .65 (pred)
4171	.87	1	.82	2	.93	3	.89	10	$Ti \text{ II . } .90 (30) \ Cr \text{ II . } .92 (\text{pred})$
4173	.46	5	. 61	5	.48	8	. 57	12	Fe II .48 (6) Ti II .54 (1) S II .97 (4) Ti II 4.09 (2)

TABLE III-Continued

λ	ן ח	Leo) v s	Sgr	a (Суд	e A	lur	Identification
4174	.47	1							S II . 25 (5)
4175	.76	1n			. 05	1	. 62	1	Fe i .64 (4) III
4176			.00	1	.31	1			N 11 .17 (3n)
4177	.75	2	. 68	2	. 65	3	.60	11	Y п .54 (125)
4178	.91	5	.98	6	.90	8	.98	12	V 11 .39 (10) Fe 11 .87 (6) Cr 11 9 .41 (2)
4180	.81	1			.83	1			
4181							.74	2	Fe 1 .76 (6) III
4182	. 62	1	3.25	1			3.54	2	V 11 $3.43 (35)$
4184	.19	1	.41	1	. 03	1n	.33	3-4	⊙ II .00 (4) Ti II .33 (0) Fe I .89 (4) III
4186	.10	1:							
4187 4187	.81	1	.70	4n	6.92 .72	1 1 ,	.41	3-4	Fe i .05 (6) III Fe i .81 (6) III
4189	. 60	. 1	0.21	1n	0.26	1	0.37	2	S II .68 (4) O II .79 (10) Ti II 0.29 [1] V II 0.40 (4)
4190	.88	1							Si 11 0.74 (3)
4191	.92	1	2.05	2	2.06	1	. 52	3	Fe 1 .45 (6) III Ni 11 2.07 (1)
4193			. 50	1	. 40	1			
4195			. 68	1n	. 52	1	.35	2	Fe 1 .34 (3) IV Fe 1 .62 (2)
4196							. 22	2	Fe 1 . 22 (2) IV
4198			. 24	1	. 09	1	. 60	3	Si 11 .17 (2) Fe 1 .31 (6) III
4198	. 93	1:	9.33	1	9.17	1	9.19	3	Fe 1 9.10 (6) III Y 11 9.28 (5)
4200	. 58	1	. 57	4	.40	1			Mn 11 . 25 (2)
4202	. 21	1	. 55	2	. 05	1	.17	7	Fe i .03 (7R) I V ii .35 (35)
4204	. 25	1:			3.88	1:	.11	1	Fe i 3.99 (3) III V ii .20 (8)

Table III—Continued

λ	η	Leo	υ	Sgr	α	Cyg		Aur	Identification
4205	. 27	1:	.38	2n	. 24	1	.16	4	Y 11 4 . 69 (10) V 11 . 09 (30) Mn 11? . 47 (1)
4206	.38	1:					 		Mn 11 .43 (2)
4207			,		.27	1	. 22	2	Fe i .13 (2) IV Cr ii .34 (pred)
4208					.77	1	9.00	4	Zr 11 .98 (30)
4210	.01	1:			9.81	1			V 11 9.80 (12)
4210							.36	2	Fe 1 .36 (6) III
4212	.10	1:					1.93	2 .	Zr II 1.88 (12)
4213							. 60	1	Fe 1 .65 (2) IV
4215	. 47	1	. 66	2	. 60	2	. 56	12	Sr 11 .52 300r Cr 11 .78 (pred)
4217	. 10	1	. 58	1n	. 28	1	.41	2	Cr II .09 (pred) S II .19 (4) Fe I .56 (2) IV
4218	. 37	1:							
4219	. 41	1			. 09	1	. 64	2	Fe 1 .36 (5) IV
4220	. 66	1:		· · · · · · · · ·	.16	1	.39	1	V II .04 (4) Fe I .35 (2) IV
4222					. 14	1	. 27	2	Fe 1 .23 (5) III
4222	. 99	1	.98	1					
4224	.03	1:					٠٠٠٠٠٠		
4225	.01	1	4.78	1	4.84	1	4.98	3-4	Cr II 4.85 (2) V II .21 (20) Fe I .46 4 IV
4226	. 56	1	7.50	1	7.01	1	7.02	8n	Ca 1 .73 500 I Al 11 .81 (6)
4227	. 61	1							Fe i 7.45 (7) III Al ii 7.49 (5)
4228					.37	1			[a Per. 34? (1)]
4229	.38	1					. 23	1	Fe i .52 (1)
4231	. 20	1	0.53	1	0.22	1			S II 0.94 (4)
4233	. 11	10	. 17	12	.05	12	. 19	13	Fe II .16 (8) Cr II .25 (1) Fe I .61 (6) III

[†] Possibly 1 line?

TABLE III-Continued

λ	η Ι	Leo	v !	Sgr	a (Cyg	e 2	Nur	Identification
4234					. 65	1:			
4235	. 77	1	6.49	1	. 62	1	. 97	. 4	Y п .73 (20) Fe г .95 (8) III
4236	.92	1:			.43	1:			N II .98 (6n)
4238	. 64	1	. 94	1	9.01	1	. 70	3-4	La II .38 (400) Fe I .83 (4) IV
4240							. 21	1	Fe 1 .37 (2)
4241					. 03	1:			
4242	.31	3	.28	4	.32	4	.40	6	N II 1.80 (8n) Mn II .35 (2) Cr II .35 (5)
4244	. 56	1	. 61	2	. 62	1n	. 55	1	Mn 11 .26 (1) Ni 11 .80 (1)
4245	.90	1:							
4246	. 79	2	. 77	2	.89	3	.84	13	Sc II .83 (100) Fe I 7.44 (5) III
4247	.89	1:							Mn 11 .95 (1)
4248	.46	1			.37	1:			
4250	.30	1nd‡	. 29	1	.19	1	. 56	4	S 11 9.94 (1) Fe 1.13 (7) III Fe 1.79 (8) II
4252	. 53	1r§	.75	2	. 60	1-2	. 62	3	Cr 11 .66 (1) *Mn 11 3 .02 (2)
4254	.46	1	. 55	1	. 53	1	. 47	3	Cr 1 .34 (1000) II
4255	.92	1:			6.18	1	6.18	2	Fe 1 6.21 (2) ?
4258	.19	2	.39	4n	. 21	3	.17	8	Zr 11 .05 (12) Fe 11 .14 (*) Mn 11 9 .26 2
4259					. 13	1			
4260	. 51	1			.31	1n	. 52	5	Fe i .49 (10) III
4262	.00	2	1.85	2	1.81	3-4	1.98	5	Cr II 1.81 (pred) Cr II 1.91 (2)
4263	.94	1	.76	1	.96	1	.82	1	
4265	. 57	1:		,	.43	1			

^{‡ 4250} as two lines: 4250.18 1:; 4250.75 1. § 4252. Line probably present in red wing of 4252.53 at 4263.03.

TABLE III-Continued

λ	η Ι	Leo	υ.	Sgr	a C	уд		Aur	Identification
4266			.73	1	.83	1:			Ап.53 (10) Sп.90 (4)
4267	.08	1	.41	2n					C II .02 (8) S II .27 (4) C II .27 (10) S II .76 (6)
4267					.90	1:	.51	1	Fe 1 6.97 (2) IV Fe 1 .83 (2) IV
4269	.38	1	.32	2	. 26	1-2	. 29	3	Ст и .30 (1) S и .72 (5)
4270					. 66	1			
4271	.04	1			.70	2	.70	7	Fe i .17 (7) III Fe i .76 (8R) II
4271	.82	2							
4273	. 29	2	.31	3	.32	2-3	. 39	5	Fe II .31 (1)
4274	. 50	1:							Cr 1 4.80 (300) II
4275	.40	2	. 54	2	.48	2	.41	4n	Ст п.56 (1)
4276	.87	1:			7.24	1:			
4277	.96	2	8.40	. 4n	8.21	2	8.16	3-4	Fe 11 8 . 13 (1) S 11 8 . 51 (4) V 11 8 . 92 (15)
4279	.98	1:			0.16	1:	0.48		
4282	.30	1	. 40	1	. 50	1	. 53	2	Zr 11 .20 (6) Fe 1 .41 (6) III Mn 11 .50 (3) S 11 .60 (4) Ca 1 3 .01 40 I
4284	.16	2	.12	2	.35	2	. 22	4	Mn II 3.84 (1) Cr II .24 (2)
4285	.75	1:	.02	1					
4286	.28	1	.08	1	.39	1	.33	1	Zr 11 .51 (5)
4287	.33	1:							
4287	.98	1	8.07	1	.93	1-2	.92	7	Ti 11 .89 (2)
4290	.06	1-2			.27	4	. 19	13	Cr i 9.72 (350) II Ti ii .22 (50)
4292	.17	1n	.30	1	. 23	1	.21	1	Fe 1 .13 (pred) Mn 11 .28 (2) Fe 1 .29 (1)

TABLE III-Continued

λ	ηΙ	Leo	υ	Sgr	a (Ууд	• /	Aur	Identification
4294	. 13	2	.17	4	.12	4	.18	12	Ti II .10 (40) Fe I .13 (6) II S II .39 (6) Sc II .77 (5r)
4295	. 03	1::							
4296	.86	3	. 57	4	. 54	4	. 59	8	Fe 11 .56 (6)
4297	. 68	1:		 					
4298	. 54	1:	. 20	1	.46	1:		<i>.</i>	
4300	. 03	3	.00	4	9.97	4	. 02	13	Fe i 9.25 (7) III Ti ii .05 (60) Mn ii .24 (1)
4301	. 79	1	. 65	1	.91	2	2.04	8	Ті п. 93 (15)
4303	. 17	5	.18	5	. 28	45	. 17	8	Fe II . 18 (4)
4304	. 69	1			. 69	1			
4305	.72	1:	. 57	1	. 67	1	.72	3	Sr 11 .46 40 Sc 11 .71 (6)
4306			.81	1					
4307	. 94	1-2n	.86	2	.81	3	.88	9	Ti 11 .86 (40) Fe 1 .91 (8R) II
4309	.41	1				· · · · · · · · ·	. 66	3	Y 11 .62 (50)
4310	. 17	1			.41	1:			[a Per .49 (1)]
4311	.30	1							
4312	. 79	1	.88	2	. 79	3	.89	7	Ті п. 87 (35)
4314	. 08	2	. 60	4n	.18	2	. 68	13	Sc 11 .09 (30)
4315	.01	2			.87	2			Ti II 4.98 (40) Fe I .09 (5) III
4317	.31	1n	6.76	1	6.87	1	6.94	3	Ті п 6.81 (1) Оп.16 (8) Zr п.32 (12)
4318	.86	1:)	.32	1n			. 70	1	S II .64 (4) Ca I .65 45 I
4319	.85	1	. 66	1	.30	1:			Оп. 65 (8)
4320	.82	1	1.12	1 .	.85	2n?	.85	9	Sc II .73 (20) Ti II .97 (1)
4322	.35	1:			.17	1			1

TABLE III-Continued

λ	ηΙ	Leo	v i	Sgr	a	Уg		\ur	Identification
4322					. 90	1:	. 68	1	La 11 .51 (100)
4323	.42	1	.78	1					
4324 4325		1 3	.50	4	.52	2-3n	.36	11	Sc II 5.00 (20) Fe I .77 (9R) II
4326			. 77	1					Мп п .71 (3)
432 8	. 07	1							
4330	.37	1	. 52	1	. 55	1n	. 56	7	Ti п .26 (0) Ti п .71 (0)
4331			. 27	1:					Ап. 25 (10)
4332	.03	1:	.11	1					
4333							. 70	2	$Zr \text{ II } .27 \text{ (15)} \ La \text{ II } .77 \text{ (500)}$
4335	.86	1:							
4337	.94	2	: 1 : 1 !!		. 95	1	.87	10	$Ti \text{ II } .32 [1] \ Ti \text{ II } .92 (50)$
4340	.39	20	. 46	7	. 45	20	. 70	20	$H\gamma$.47 (8)
4344	.08	1	3.66	2	3.10	1	3.29	2	Fe i 3.27 (2) Fe i 3.70 (2) Mn ii .03 (1)
4344					. 21	2	. 46	6–7	Ti 11 . 29 (2) Cr 1 . 51 40 I
4346	.09	1:							
4346							.86	1:	V 11 .89 (2)
4348	. 53	1	. 04	2–3	. 53	1	.35	1:	Fe 1 7.85 (1) A II .11 (20) Mn II .49 (1) Fe I .95 (1)
4350	.11	1:	<i>.</i>		<i>.</i>		.85	2	Ti 11 .86 (1)
4351	. 79	7	.77	7	.80	10	. 76	12	Fe 11 .77 (6) Cr 1 .77 60 I Mg 1 .94 30 IV
4354	.37	1n	. 40	1	. 23	1.	. 55	2–3	Sc 11 .60 (5)
4356	. 39	1			.06	1	5.63	1:	

 $[\]parallel$ 4337. This line was considered to be a component to $H\gamma$ by Plaskett in v Sagittarii.

TABLE III-Continued

λ	n I	Leo	U U	Sgr	a	Cyg	e /	Aur	Identification
4357	. 51	3	. 51	2	. 55	2	.47	2	[a Per .53 (2)]
4358							.77	.2	Fe i .51 (2) IV Y ii .73 (30)
4359	.22	1	. 49	1			. 69	3	Zr 11 .74 (10)
4361					.18	1:			
4361	. 40	1n	.77	4n	2.02	1	.95	1n	Ni 11 2.10 (1)
4365			. 58	1	6.14	1			Mn 11 .29 (1)
4367	.94	1	.83	1	.84	1	. 69	5	Ti 11 .66 (15) O 1 8 .30 (10) Fe 1 8 .58 (2) IV
4369	.46	2	.44	2	.39	2-3	.44	3	O II .28 (4) Fe II .40 (*) Fe I .78 (3) III
4370					.84	1	1.11	1:	Zr 11 .95 (8)
4372	. 22	1:			. 37	1:			[a Per .25 (2n)]
4373				.	.18	1:			
4374	. 64	- 1	.70	1	. 67	1-2n	. 58	6	Sc II .46 (30)
4374							.94	6	Ti н .83 (1) Y н .94 (300)
4375							.91	2	Fe i .93 (5) I, II
4376	. 79	1:	. 99	2	7.09	1:n	7.63	1	[Fe 1 7.80 (1)]
4378	. 59	1::					.86	2	
4379							. 66	3	Zr 11 .77 (9)
4380	.32	1:	. 13	1n			. 53	1:	A 11 9.74 (8) Mg 1.39 (5)
4381							.94	1:	
4383	.38	1:)			.48	2-3	. 52	6	Fe i .55 (10R) II
4384	. 25	3	.93	5n	. 33	2–3	. 23	5	⊙ 11 .32 (1) Mg 11 .64 (8) Sc 11 .80 (5)
4385	. 27	5			. 40	5	. 42	7	Fe 11 . 39 (5)
4386					.83	1	.88	4	Ті п. 86 (10)
4387	.92	2n	.76	5n _.	. 96	1	8.11	1:	Fe 1 .90 (2) IV He 1 .93 (3) Fe 1 8 .42 (2) IV

TABLE III-Continued

λ	η	Leo		Sgr	a (Cyg	6.7	Aur	Identification
4388	.84	1:			9.24	1			
4390	. 56	3	. 60	2	.65	3n	.87	3	Mg II . 59 (10) Fe I . 96 (3) IV Ti II . 98 (tr)
4391							.78	1:	
4392	. 27	1:	.18	1	. 27	1:		<i>.</i>	S II 1.81 (3)
4393	. 40	1:			.86	1	4.09	3	Ti II 4.06 (2)
4395	. 03	3	. 20	5	. 01	5	. 20	14	Ti 11 .04 (60)
4395					.86	1	.81	5:	Ti 11 .85 (2)
4396	.46	1:					.89	1:	
4397	.71	1					. 08	3	Y п 8.02 (50) Ті п 8.32 [1]
4399	.77	2	. 97	2n	. 77	3	. 77	6)	Ti 11 .77 (35)
4400							. 29	6	Sc II .38 (20) Ti II .63 (pred)
4401					. 54	1	.28	1:	Fe i .30 (3) Ni i .55 30 III
4402	57	1	. 93	2	.89	1	. 75	1:	S II . 64 (2)
4404	. 55	1			. 76	1-2	.85	4	Fe 1 .75 (8R) II
4406	.96	1:			. 61	1:			
4407					. 65	1	. 66	2	Ti 11 .67 (1) Fe 1 .72 (2) III
4408	.99	1:					.44	2	Fe 1 .42 (4) III
4409					. 51	1	.32	3	Ti 11 . 25 (tr) Ti 11 . 54 (tr)
4411	.18	1	. 04	1	.12	1-2	. 03	3	Ti п .08 (15) С п .20 (2) С п .52 (2)
4411							.91	4	Ti 11 .95 [1]
4412	.31	1:			.36	1	.83	1:	
4413	. 52	2	.70	2	. 66	1–2	. 68	4	[a Per .64 (4n)]
4415	.02	1			. 37	1	.38	7	O 11 4.89 (10) Fe 1 .13 (8R) II Sc 11 .56 (20)
4416	.91	4	.91	5n	.85	5	. 76	7	Fe II .81 (4) O II .97 (8)

TABLE III—Continued

λ	η	Leo		Sgr	a (Cyr	. /	Aur	Identification
4417					.70	1	8.09	11	Ti II .72 (40) Ti II 8.34 (1)
4418	.34	1:							
4419	. 57	1	. 46	2					Mn 11 .77 (2)
4421							. 10	1:	
4421					.98	1	. 99	3	Ti 11 .95 (1)
4422						, ,	. 58	3	Fe 1 .57 (4) III Y 11 .59 (40)
4423	. 58	1:							
4424	.80	1:					.30	1:n	
4425			. 26	1:)	,		. 49	2	Са г.43 50 І
4426			. 02	1-2					A 11 .01 (15)
4428	. 04	1	7.86	1	7.97	1	7.38	1n	Fe i 7.31 (5) I Ti ii 7.89 (pred) Mg ii .00 (7)
4430	. 05	1:	. 03	1			9.87	1:	La 11 9.90 (400) A 11 .18 (9)
4431	. 24	1	.18	2			. 76	1:	S II .00 (2) Sc II .35 (3) Ti II 2.08 (tr)
4432	.73	1:			. 60	1			
4434	.03	3	3.95	2	3.96	1	3.47	1	Fe 1 3.22 (2) IV Fe 1 3.81 (2) Mg 11 3.99 (8)
4434							.80	1:	Ca 1 .95 60 I Fe 1 5 . 15 (2) II A
4436	, 53	1	. 24	1	.41	1:			Мд и .48 (5)
4437			. 47	2n	• • • • • • • •				He i .55 (1)
4438	. 20	1:							
4440	. 01	1:	.40	1			. 14	2	Fe i 9.89 (2) IV Zr ii .46 (10)
4442	. 02	1	1.89	1	.12	1	1.70	3	Ti II 1.73 (pred) Fe I .35 (5) III
4443							. 21	2	Zr II 2.99 (25) Fe 1.20 (3) III

TABLE III-Continued

λ	η	Leo	U	Sgr	a .	Суд	()	\ur	Identification
4443	.89	3-4n	.98	3	.84	4	. 63	10:)	Ti II .80 (50)
4444	.90	1:			.46	1:	.37	7:	Ti 11 .56 (1)
4446	.25	1	. 58	1	5.96	1	.08	1	
4447			. 73	1:n	. 41	1	. 76	2	N II .04 (10) Fe I .73 (5) III
4448	. 54	1::			. 58	1			
4449					.60	1	. 24	2.	
4450	. 57	1	. 44	1	. 44	2	. 54	8	Ti 11.49 (10)
4451	.80	1	. 52	1n	. 60	1-2	. 47	1	Мп 1 .58 15 II
4452					. 53	1:	3.07	.1:	Mn 1 3.01 6 III
4453	. 30	1:			. 63	1			
4455	.01	2	. 22	1	.30	2	4.75	3	Ca 1 4.77 80 I Zr 11 4.80 (10) Mn 1 .02 5 III Mn 1 .32 6 III?
4456	. 95	1:	. 41	1	. 65	1	. 33	1	Ca I 5.88 40 I S II .39 (4) Ti II .64 (tr)
4457	. 21	1:					. 23	1:	Zr 11 .42 (8)
4458	.88	1:			.91	1:	9.20	3	Ni 1 9 .05 20 III Fe 1 9 .13 (5) III
4460					. 45	1:			
4461 4462	.24	$\left\{egin{array}{c} 1 \\ 1 \end{array} ight\}$.57	2	. 57	2 -	.51	4	Zr II . 23 (10) Fe I . 66 (4) I Mn I 2.03 20 III
4463					. 04	1:	$2.8\dot{5}$	1	
4464	.06	1 n	. 19	1:	. 45	2	.38	7	S II 3.58 (7) S II .44 (6) Ti II .46 (1)
4465	.58	1:							
4466	. 67	1:			. 46	1	.36	2	Fe 1 .56 (5) II
4468	.47	3	.46	2	.49	4	. 66	10	Ti 11 .49 (50) Ti 11 9.15 (tr) Fe 1 9.39 (4) IV
4470	. 10	1:	9.99	1					

 $[\]P$ 4461. May be one line 4461.63 int. 2n.

TABLE III-Continued

λ	η Ι	leo .	£ ن	gr	α (yg	e A	ur	Id entification
4470					.88	1	.84	5	Ti II .86 (tr)
4471	. 57	3	. 54	6	.46	1			He i .48 (6) He i .69 (1)
4472	.83	1	. 89	1	. 94	2	. 95	4	Fe 11 .91 (*)
4475			. 63	1					
4476	. 27	1			5.90	1:	.01	2n	Fe i .02 (7) III
4478			. 50	1			8.10	1:	Мп п .74 (1)
4479							. 62	1:	Fe i .61 (2)
4481	. 26	10	.12	9	. 25	12	. 22	10	Mg II $\left\{\begin{array}{c} 13 \\ 33 \end{array}\right\}$ (100)
4483			. 53	1					S II .42 (6)
4487			.14	1n					S II 6.63 (3)
4488					.36	1	.31	4	Ti 11 .32 (15)
4489	. 19	2	. 20	2	. 19	3-4	. 10	7	Fe 11 .21 (4)
4491	.32	3	. 49	2	. 40	4	.42	6	Fe 11 .41 (4)
4493	.28	1	.91	1			. 55	2	Ті п. 54 [1]
4494							. 53	2	Zr 11 .41 (8) Fe 1 .57 (5) III
4496							. 79	2	Zr 11 .97 (15)
4499			.42	1					
4501	.32	1–2	. 21	1	.28	34	.28	11	Ti 11 .27 (40)
4504			.48	1					Cr 11 .54 (pred)
4506							. 60	1:	Ti 11 .74 (pred)
4508	.32	3-4	.41	5	. 29	5	.31	10	Fe 11 . 29 (8)
4511					.74	1:	.16	1:	
4512			. 29	2					
4515	.30	4	. 39	5	.37	5	.36	10	Fe II .34 (6)
4518	. 13	1:					. 36	2	[a Per .36 (4w)]
4520	. 20	2	. 19	5	. 21	4	. 24	9	Fe 11 .24 (6)
4522	. 67	3-4	. 67	5	. 65	-5	. 66	10	Fe 11 . 64 (6)

TABLE III—Continued

λ	ηΙ	ieo.	υ 5	igr	a (уд	e A	ur	Identification
4524 :	.75	1:	5.04	1	.99	1	.92	2	S II .65 (2) Ti II .74 [1?] S II .96 (6) Fe I 5.15 (3) IV Ti II 5.25 (pred)
4526	. 15	1::			. 35	1	. 35	1	
4528		<i>.</i>			.30	1	. 57	3	Fe 1 .62 (7) II
4534	. 14	23	. 10	4	. 04	5	.11	12	Ti II 3.97 (30) Fe II .18 (*) Mg II .26 (4) S II .39 (4d)
4539			. 95	1n			. 70	2	[a Per .71 (3)]
4541	.51	2	. 52	4	. 53	3-4	. 55	5	Fe п .33 (1) Fe п .53 (*)
4544							. 06	3	Ti 11 .03 (tr)
4544			.85	1	.92	1	5.07	2	·Cr II .69 (pred) A II 5.08 (10) Ti II 5.16 (tr)
4548							. 26	1:	Fe 1 7.86 (3) V
4549	. 51	7	. 57	6	. 53	12	. 66	12	Fe 11 . 48 (4) S 11 . 56 (4) Ti 11 . 62 (60)
4552	. 71	1:	.39	1	.27	1	. 23	3	Ti II .25 (pred) S II .37 (5) N II .50 (4) Si III .61 (9)
4554							.02	3	Zr 11 3 .96 (12) Ba 11 .04 1000R
4554					.96	2	5.03	2	Cr 11 5.00 (2)
4555	. 65	3	.74	4	6.00	6	.89	9	Fe 11 .90 (6) Fe 1 6.13 (3) V
4558	. 67	3	. 68	4	. 66	6	. 73	7	Cr II .66 (20) Cr II .78 (pred)
4560					.87	1::	1.18	2	[a Per .25 (1n)] .
4561			.82	1			2.50	1	
4563	. 68	1	. 67	2	. 79	3	.91	9	Ti II .76 (30) V II 4.59 (10)
4566			.02	1	5.77	2	5.58	2	Cr 11 5.78 (2)
4568			.30	1	7.79	1:n	.33	2	Si III 7.83 (7) Ti II .31 [1]

TABLE III—Continued

λ	ηI	ieo	υ 5	gr	αC	уд	• A	lur	Identification	
4569							.92	1:		
4571	. 93	1-2	2.01	2	.97	3-4	2.00	10	Ti 11 .97 (50)	
4576	.48	2	. 26	2	.36	3	. 29	6	Fe 11 .31 (4)	
4577					.84	1				
4579	. 79	1n	.96	2	. 90	2n	0.15	3	La 11 0.08 (150) Ti 11 0.47 [1]	
4581					.36	1			[Ca 1 .41 40 II]	
4582					.82	1-2	.85	4	Fe 11 .83 (*)	
4583	.77	5v	. 68	5n	.89	8	.86	12	Ti 11 .45 [1] Fe 11 .84 (8)	
4585					. 87	1			Al 11 .82 (6)	
4588	. 27	2	.18	5	. 19	3-4	.17	6	Al II .19 (5) Cr II .21 (20) Cr II .40 (pred)	
4589			.99	1	.85	1-2	. 94	4	Cr II .89 (pred) A II .93 (9) Cr II .94 (1) Ti II .96 (2)	
4592	. 21	1	. 10	1	. 03	2	.08	3	Cr 11 .06 (2)	
4593			.86	1	.92	1	.97	2.		
4595	.77	1	.97	2	. 90	2	.88	2	Fe 11 .69 (*) Fe 1 6.06 (2) O 11 6.19 (8)	
4598	. 67	1	. 61	1	. 22	1	. 14	1		
4600					.15	1:	.11	1:	V II .17 (8) Ni I .36 6 V	
4601			. 42	2n			.33	1:	Fe 11 .38 (*) N 11 .49 (8)	
4602							.96	1		
4604							.90	1n		
4605			.04	1						
4607			.33	1		 			N II .17 (7)	
4609			.80	1			.46	1	Ti II . 26 (pred) A II . 60 (15)	
4611							.45	1		

TABLE III—Continued

λ	ηI	æo.	ν	Sgr	а	Суд		Aur	Identification
4613							. 40	1	Fe i .22 (3) V [La ii .40 200 VE]
4616	. 73	1	. 73	2	. 69	2	. 66	4	Ст п . 67 (3)
4618	.83	1-2	. 95	2	.85	2-3	.82	6	Ст п. 82 (10)
4620	. 65	1	1.29	2n	. 53	2	. 57	5	Fe п .52 (*) N п 1.41 (7) Cr п 1.48 (pred)
4623			<i></i> .		.18	1:			
4625			.81	1	. 69	1:	.89	1:	
4629	.33	2-3	. 53	4n	.34	4	.33	8	Fe 11 .33 (4) N 11 0.55 (10)
4631					.72	1	. 91	1	
4634			.08	2	.05	2	.08	5	Ст н .09 (10)
4635			.31	1	. 42	2	.36	2	Fe II .35 [1]
4637			.85	1	8.14	1			Fe 1 8.02 (4) IV
4640			.78	1					
4642			.93	1					
4648		•	. 55	1	9.02	1			S и . 14 (3) Fe и .32 (*)
4657			.11	2	.04	2	. 08	4	S II 6.75 (5) Fe II .01 (*) Ti II .21 (tr)
4659						,	. 33	1	
4660							.84	1:	
4663			.31	4	.30	2n	.77	2	Fe 11 .72 (*)
4666			.94	1	.76	2-3	.75	3	Fe II .75 (*)
4670			.39	1	. 16	2	.28	4	Sc 11 .40 (10)
4673			.47	1	2.67	1:			⊙ п 2.34 (3n)
4674					. 52	1:			
4679			. 07	1n			.01	1	
4680							.25	1	Zn I .14 (10R)
4682							. 69	1	Y 11 .32 (20)
4685							. 06	1	

TABLE III-Continued

λ	n l	Leo	υ 8	igr	a (Јуя	6 A	ur	Identification
4687							.48	1:	
4691							.30	. 1:	
4698							. 69	- 1	Sc II .28 (1) Cr I .48 (3) Cr I .62 (3) Cr II .74 (pred)
4702							.97	2	Mg 1 3.00 40 V
4707							. 44	1:	
4708							. 75	3	<i>Ti</i> 11 .66 (tr)
4710					.		.16	1	
4711							.35	,1	
4713			. 25	4			2.87	1	He i .14 (3) He i .37 (1)
4713							.99	1:	Ni 1 4.42 25 II
4716			.38	2					S n .25 (7)
4719							. 45	1n	Ті п. 51 (1)
4721							. 45	1	
4723			. 23	1			. 24	1	
4726			.96	1					Ап.91 (10)
4727							.85	1n:	[Mn 1 .46 10 III]
4731			.45	3-4			.32	5	Fe п .49 (1)
4733							. 97	1	[Fe 1 .59 (3) I B]
4736			.28	1			.89	1	A 11 5.93 (15) Fe 1.79 (5) II
4739			.72	2					Мд и .59 (5)
4742			. 56	1					
4755			.81	2					Mn II .74 (2)
4762							. 65	2	Mn 1 .38 30 III C 1 .41 (4) Ti 11 .77 (1)
4764							.23	3	Ті п? 3.90 [1] Ті п? .47 [1]
4765			. 20	1:			·		А п 4.89 (10)

TABLE III—Continued

λ	η Leo	U	Sgr	a	Cyg		Aur	Identification
4770						. 26	1	C 1 .00 (2)
4771						. 58	1	⊙ 11 .47 (3) C 1 .72 (4)
4774		83	1					
4775						. 68	1	Ст.87 (3)
4779		91	1			0.07	4	Ті п .99 (1)
4791		79	1					
4783						. 17	2	Мп і .43 50 I
4785						.71	1	[a Per .68? 1]
4788						. 21	1:	
4792						.13	1:n	
4798						. 57	5	Ті н. 52 [2]
4805						.00	6	Ті н. 11 (2)
4806			2-3					A 11 6.07 (20)
4807						. 13	2	[Ni 1 .99 4 III]
4810			,			.41	1	Zn 1 .53 (10R)
4812						.11	2	Cr 11 .37 (2)
4815		54	2					S II .52 (9)
4817						.11	1:	C 1 .33 (1)
4818						94	1:	
4819		74	1					S II .55 (2)
4820						.90	1:	Ti 11 1.01 (pred)
4824		. 12	2			3.92	9	Y II 3.31 (30) S II .03 (3) Cr II .13 (10) Mn I .52 50 I
4826		72	1					
4830		93	2			1.03	2	[Ni 1 1.19 10 III]
4833						.07	1	[Ni 1 2.70 2 V]
4836		71	1			.38	4	Cr 11 . 22 (2)
4839			1			.45	1:-	Ti 11 . 22 [1]

TABLE III-Continued

λ	η Le	20	υk	igr	a (Ууд	. /	Mır	Identification
4841							.28	1:	
4843			.36	1					
4845			.25	2					
4847			.91	1			8.27	8	Ан.78 (8) Стн 8.27 (8)
4851			.09	2			. 50	1:	Мд п. 10 (5)
4854							.82	4	<i>Y</i> п .87 (150)
4855							. 93	4	Ni 1 .42 15 III Cr 11 6.20 (1)
4861			. 20	6			. 34	11	<i>И</i> β .33 (9)
4864			:59	1			.31	7	Ст н. 38 (3)
4865							.85	4	Ti 11 .62 (tr) Ni 1 6.28 10 III
4869							. 22	1:	
4871							.43	6	Fe i .33 (8) III Fe i 2.15 (6) III
4873							. 82	7	Ti 11 4.03 (tr)
487ö			.38	2			.41	8	Cr п .42 (2) Cr п .50 (pred)
4883			. 50	1			.72	9n	Y п .69 (200)
4884			.78	1					Ст п. 61 (1)
4886							. 76	1:	
4888							.16	1:	
4891							. 13	7	Fe 1 0.77 (7) III Fe 1 .51 (9) III
4893							71	2	$ \begin{cases} \alpha \text{ Per } .78 \text{ (4w)} \\ \odot \text{ II } .82 \text{ (-1)} \end{cases} $
4895							.37	1	
4896			.36	1					
4898							.74	2	
4900							. 05	8	Y п .13 (150)
4901			. 52	2n					Cr 11 .62 (1)
4905							. 93	1:	

TABLE III-Continued

λ	λ η Leo		Sgr	а Суд	e Aur	Identification
4907		. 53	1			
4909					.09 1:	
4911					.33 9	Ті п .21 (0)
4920					.57 8	Fe 1 . 52 (10) III
4921		. 45	2			He 1 .93 (4)
4924		. 21	4		3.82 10	Fe II 3.93 (10) S II .08 (4) S II 5.32 (5)
4942		.08	1			
4948		.79	2			
4952		. 46	1n			

The wave-lengths for the three peculiar stars a Andromedae (A0p), τ^9 Eridani (A0p), and φ Herculis (B9p) are given in Table IV. Several one-prism plates of excellent quality were measured of a Andromedae, but the wave-lengths in this star are the most unsatisfactory of any included in the present discussion. Baker⁸ found that certain lines in this spectrum gave discordant velocities. The positions of rather well-defined lines differ by as much as 0.4 A on plates of the best quality. The spectrum is dominated by lines of singly ionized manganese. The star τ^9 Eridani is representative of the abnormal "silicon" group. All three stars in Table IV were measured on one-prism Process plates.

⁸ Pubs. Allegheny Obs., 1, 17, 1910.

TABLE IV
WAVE-LENGTHS AND IDENTIFICATIONS IN PECULIAR STARS

λ	αΑ	and	79	Eri	φ	Her	Identification
3982	. 63	1	. 19	2	. 74	5	Ті н .00 (tr) У н .59 (150)
3984	. 13	3	3.94	1:	.01	6	
3986	57	1	.09	1:	<i>.</i>		Mn 11 .01 (1)
3990	.46	1:		.,	.11	2	
3991			.84	1–2	.18	3	Zr II .14 (40)
3993			.86	1:	.78	1:	S II .49 (6) Mn II .86 (1)
3995	. 24	1n			.38	2-3:	N II .00 (10)
3997			. 94	2	. 62	2-3	Si n 8.00 (1n)
3998	.78	1			. 99	3	Zr 11 .976(30)
4000	.33	1	9.50	12	9.96	2	Мп и .06 (1)
4000					.85	1	
4002	.30	1		• • • • • • • • • • • • • • • • • • • •	*. 02	2:	
4003					. 41	2:	Ст п. 33 (2)
4005	.01	1:	. 22	1:	. 04	1:	Fe i .25 (7) ii
4007			.86	1:			
4008			.95	1	. 77	1:	
4009	.43	1:	.93	1-2	. 66	2-3	He 1 . 27 (1)
4010					.38	2	Мп и .84 (1)
4011			.34	1:	. 78	1:	
4012	.87	1	. 54	3	. 58	5	Ti II .37 (4)
4014	.74	1:	.00	1:	. 49	1n	Sc 11 .49 (8)
4015					. 54	1:	Ni 11 .50 (1)
4016	. 14	1					
4017	.80	1					
4018			.31	1:	43	1	Zr 11 .39 (10)
4019	. 53	1:					
4020			. 69	1	. 79	1	
4022	.35	1n	. 25	1			

TABLE IV-Continued

λ	a /	And	7,	Eri	φ	Her	Identification
4023			.36	1:			V II .38 (50)
4024	. 64	1	.42	1	. 46	1:	Zr 11 .44 (12)
4025					. 27	2:	Ti 11 .13 (2)
4026	.39	2	. 24	2	. 57	4n	He i .19 (5) He i .36 (1)
4028	. 64	1	. 17	1:	.42	4n	Ti 11 .33 (7)
4029					. 69	1	Zr 11 .68 (20)
4030	. 73	1	. 55	1:	.80	3-4	Mn 1 .76 200 I
4031			. 63	1	2.04	2	La 11 .70 (300)
4032	.78	1n	.71	1	3.11	4	S II .77 (6) Mn I 3.07 150 I
4034					. 47	1-2	Мп і .49 100 I
4035	. 79	1:					
4037	. 07	1			6.84	1:	
4037			.71	2-3	. 97	2-3	Cr II 8.04 (2)
4038	.77	1					
4039	. 69	1	. 62	1	.99	1n	Zr II 0.24 (4)
4041	.84	1			.33	1:	Mn 1 .37 50r I
4042			. 54	1	. 33	1	
4043			.88	1:	4.18	1	
4044	. 60	1-2			5.16	1:	
4046	.36	1	5.74		5.82	. 5	Fe 1 5.82 (8R) II Zr 11 .62 (15)
4047	. 20	1			. 59	1	
4048	. 95	1n	.82	3	. 91	4-5	Zr II .67 (25)
4050	.82	1:	1.00	1:	. 58	1:	Zr II .33 (15)
4052	.48	1n?			. 13	4	Cr 11 .00 (1)
4053			. 13	1			Cr ii .45 (pred)
4054	.41	1	.06	1	3.97	5	Ti II 3.81 (3) Cr II .09 (pred)

TABLE IV-Continued

λ	a .	And	τ9	Eri	φ.	Her	Identification
4055			. 13	1	.44	1-2	Мп 1 .55 20 I
4057			.28	1-2			Mg 1 .51 (5r)
4058	. 69	1n					
4059			. 10	1:	. 50	1	
4060			.36	1:			
4063			. 62	1	. 54	1	Fe 1 .60 (8R) II
4064	. 77	1					
4065			.37	1			
4066	.98	1			7.16	1:	Ni 11 7.04 (3)
4068	.85	1	.73	1:			
4069			.83	1:			is
4070			.80	1:	.86	1	Cr 11 .99 (2)
4071	. 73	1:	.92	1:			Fe 1 .75 (7R) II
4073			.35	1:n	.23	1:	
4075			.48	3	.35	1	Si 11 .45 (2)
4076			.73	3	.84	1 ·	Si 11 .78 (1)
4077	. 39	1:	. 67	2	. 79	3–4	Sr 11 .71 400r
4078	.41	1					
4079	.35	1					
4080			.06	1	. 23	1:	
4081					.16	1-2	
4081	. 66	1	2.05	1:	. 63	1:	
4083	. 40	1	4.20	1:	. 63	1:	
4085	.33	1	.83	1	.14	1	
4087	. 93	1	.35	1	.38	1	Fe 11 .27 (*)
4089			.40	1:	. 56	1	
4090	. 27	1n	1.13	1	. 75	1	Zr 11 . 52 (10)
4091					.55	1	

TABLE IV-Continued

λ	α.	And	τ9	Eri	φ !	Her	Identification
4094	.89	1n			.31	3	
4095					. 16	1-2	
4096	. 66	1			. 22	1:	
4098	.87	1?			9.23	3:	
4101	.76	50	.73	50	.71	50	Ηδ .74 (7)
4103	.61	2?					
4104					. 26	2:	
4105	.00	1					Mn 11 .01 (2)
4106	. 79	2			.76	3	
4107	.98	1:					
4108	. 54	1:	. 04	1:	.30	1-2	
4109			.37	1:	.36	1	
4110	. 66	1			.30	1:	
4110			.98	1	1.09	5	Cr 11 1.04 (2)
4113	.70	1	. 03	1	. 29	2	Ст п. 29 (1)
4116	. 28	1:			.16	1:	
4118			.47	1	. 51	1:	Fe 1 .56 (6) IV
4119			. 59	1	.81	1:	
4120	. 99	1	. 89	1:	.98	1:	He I .81 (3) He I .98 (1)
4122	.98	1	. 68	1	. 65	1	Fe II .67 (*)
4124			.91	1	.81	. 3	Уп. 91 (15)
4125	.71	1			6.06	1:	Мп п .86 (1)
4126					.96	2	
4128	. 05	5	.00	8	.02	7	Si 11 .05 (8) Fe 11 .73 (*)
4129			. 58	1	31	1	
4130	. 90	4	.85	8	.92	7	Si II .88 (10)
4132			.42	1	. 58	2	Mn II .28 (1) Cr II .45 (1)
4133	. 68	1	70	1:	. 65	1	

TABLE IV--Continued

λ	a /	And	79	Eri	φ 1	Ier	Identification
4134					. 74	1	
4137	.01	3	. 22	1:	6.80	3	Mn 11 6.91 (2)
4138			. 41	1	. 05	1	Fe 11 .37 (*)
4139					. 04	1:	
4140	. 66	2			. 57	1:	
4142			.11	1			. В п. 24 (8)
4143	.9	1n	. 52	2	.96	1-2	He i .77 (2) Fe i .87 (7) I
4145			.81	1	.82	2	Cr II .81 (3)
4147			.12	1:	6.89	1	S II 6.90 (5)
4147					. 67	1	
4148			. 70	1	9.12	2	Zr 11 9.21 (75)
4150			.36	2	. 14	2n	
4152			.01	1:			La 11 1.95 (250)
4153			. 27	1:	. 17	1:	S п .05 (10)
4154					.48	1	Cr 11 .29 (pred)
4155			. 09	1:			
4156					. 58	1-2	Zr 11 .24 (15)
4158			.90	1	. 65	1:	
4159					. 47	1	
4160			. 67	1			
4161			. 76	1–2	. 16	2-3	$Zr \text{ II } .21 (20) \ Ti \text{ II } .52 (1) \ Sr \text{ II } .81 30$
4162			.88	1-2	3.00	1:	S II . 64 (10)
4163					. 54	3	Ті п. 65 (40)
4164			.84	1:	5.08	1	S II .98 (2) S II 5.20 (3)
4165			. 93	1	6.39	1:	
4167			.17.	1-2	.01	1-2	Mg 1 .27 10n III?

TABLE IV-Continued

λ	a A	And	τ ⁹ Ε	ri	φI	ler	Identification
4168			. 84	1:	9.11	1:	S 11 .37 (5) He 1 .97 (1)
4170			.71	1:	.88	1	Cr 11 .65 (pred)
4171	. 54	2	.89	1	2.04	5	Ті п. 90 (30)
4173	. 91	1n	. 67	1–2	. 45	4	Fe II .48 (6) Ti II .54 (1) S II .97 (4)
4174					. 54	2	
4175			.83	1	. 70	1-2	Fe I .64 (4) III
4176	.35	1	. 66	1:			
4178	.31	2n	7.85	1	7.52	6	Y 11 7.54 (125)
4179			01	1-2	8.91	4	Fe II 8.87 (6) Cr II .41 (2)
4180			.88	1			
4182			.03	1	1.87	1	
4183			. 22	1:	.02	1	V 11 .43 (35)
4184	. 65	1	. 59	1:	.30	2	Ті п. 33 (0)
4185					. 55	1	
4186					. 68	1	
4187			.46	2	. 61	1	Fe 1 .81 (6) III
4189			. 10	1	8.79	1:	
4190			. 69	2-3	. 58	1	Ti II .29 [1] Si II .74 (3)
4192			.74	1:	3.04	1	
4195			.98	1n:	.08	1-2	
4196					. 64	1	
4198			.18	1	. 19	1:	Si II .17 (2) Fe I .31 (6) III
4199			. 67	1	. 26	1	Fe i .10 (6) III Y ii .28 (5)
4200	. 39	2	.93	3	. 79	1	Mn 11 .25 (2)
4202			. 17	1	.00	2	Fe i .03 (7R) I V ii .35 (35)

TABLE IV--Continued

λ	a A	And	79	Eri	γŀ	fer	Identification
4202	. 77	1					
4203			. 23	1	. 46	1.	
4204			. 13	1	. 62	1	Y 11 .69 (10)
4205			. 22	1:	.47	3	Mn 11? .47 (1)
4206	. 23	3v?	. 58	1:	.40	3	Мп п .43 (2)
4207			. 66	1	. 26	1:	Cr 11 .34 (pred)
4208					.84	2	Zr 11 .98 (30)
4210			.54	1n	.38	1:	Fe 1 .36 (6) III
4211					.94	1:	Zr II .88 (12)
4212			.85	1n:			
4213					.72	1:	υ _{(5.}
4215			. 53	1	. 43	2	Sr II .52 300r Cr II .78 (pred)
4217					05	1:	Ст п .09 (pred) S п .19 (4)
4219			21	1	.64	1:	Fe 1 .36 (5) IV
4221			.15	1:	. 44	1:	
4222					.30	1	Fe i .23 (5) III
. 4224			. 93	1	.77	1	Cr II .85 (2)
4227			. 56	1:	.15	1:	Ca 1 6.73 500 I Fe 1 .45 (7) III
4229			. 95	1			Cr н .82 (pred)
4231			. 60	1:	.31	1:	
4233	.13	2	.22	4	.18	7	Fe п .16 (8) Ст п .25 (1)
4235			. 25	1	. 79	3	Уп.73 (20)
4238	.81	2n	.85	1	. 99	2–3	Fe 1 .82 (4) IV
4240	.82	1:			.81	1	
4242	. 60	2	.49	2	.34	6	Mn II .35 (2) Cr II .35 (5)
4244	. 63	1	.86	1	.23	2	Мп п .26 (1) Ni п .80 (1)

TABLE IV-Continued

λ	a A	And	τ9	Eri	φ	Her	· Identification
4245					. 60	1:	
4246	. 16	1:	.45	1	.68	2-3	Sc 11 .83 (100)
4247	.84	1	8.10	1			Мп п .95 (1)
4248					.41	1	
4250			. 93	1:	. 67	1	Fe 1 .13 (7) III Fe 1 .79 (8) II
4251	.30	1			.47	2	Mn II .77 (2)
4253	. 20	2	2.65	1	2.88	5	Мп п .02 (2)
4254			. 67	1	. 59	2	Cr i .34 (1000) II
4255	.80	2	6.29	1	6.20	1:	
4258			.08	1	7.60	1:	Zr 11 .05 (12) Fe 11 .14 (*)
4259	. 25	2	.30	1:			Mn 11 .26 (2)
4260		•••••	. 46	1:	.44	1n	Fe 1 .49 (10) III
4262	.08	1	. 02	1–2	1.83	4	Cr II 1.81 (pred) Cr II 1.91 (2)
4262					.86	1	
426 3			.89	1	.91	1-2	
4265			. 44	1	.77	1:	
4267	. 43	2	. 41	2n	6.99	1–2n	S п 6.90 (4) С п .02 (8) S п .27 (4) С п .27 (10)
4269			.35	1-2n	8.96	- 2n	S 11 8.76 (6) Cr 11 .30 (1)
4271			. 51	1	. 51	3	Fe i .17 (7) III Fe i .76 (8R) II
4273	. 01	1	.37	1	.42	2-3	Fe II .31 (1)
4274					. 58	2	Cr 1 .80 (300) II
4275	. 59	1	. 55	1	. 58	3	Ст и .56 (1)
4277					. 24	1:	
4278	.49	1	.08	. 1	.59	1:	Fe II . 13 (1) S II . 51 (4)

TABLE IV-Continued

λ	• a A	And	. 7º I	E ri	φΙ	Her	Identification
4282	. 27	3	. 02	1:	. 23	3	Zr 11 . 20 (6) Fe 1 . 41 (6) III Mn 11 . 50 (3)
4283					. 75	2	Mn 11 .84 (1)
1284	.37	1	.08	2	. 29	. 3	Cr 11 . 24 (2)
1286					.09	1n	
1287	.88	1	.97	1	.80	2n	Ті п .89 (2)
1290			. 19	1	9.89	4n	Cr i 9.72 (350) Ti ii .22 (50)
292	.42	2	1.67	1	. 11	3	Mn 11 .28 (2)
293			. 18	1			
1294			. 15	1	. 02	3-4	Ti 11 .10 (40) Fe 1 .13 (6) II S 11 .39 (6)
297	. 01	1	6.68	2	6.56	3-4	Fe 11 . 56 (6)
298			. 25	1	.46	1:n	
300	. 53	1	. 22	2n	.03	4–5	Ti 11 .05 (60) Mn 11 .24 (1)
301			.80	1:	.85	2n	Ti 11 .93 (15)
303	.18	2	. 17	2-3	.15	3	Fe II . 18 (4)
304					. 04	1	
305					.80	1:n	Sc 11 .71 (6)
306			. 36	1			
307					.15	1	
308	.32	2	.42	1	7.98	4	Ti 11 7 .86 (40) Fe 1 7 .91 (8R) II
309				• • • • • • • • • • • • • • • • • • •	. 68	2-3	Y 11 . 62 (50)
310	.45	1 .					
311	• • • • • • • • • • • • • • • • • • • •				.33	1:	
312			. 56	1	.88	3	Ti 11 .87 (35)
314			. 79	1-2	. 27	3	Sc II .09 (30)
314					. 98	3	Ti II .98 (40) Fe I 5.09 (5) III

TABLE IV-Continued

λ	α.	And	7.9	Eri	φ	Her	Identification
4317			.02	1	6.79	1	Ti 11 6.81 (1)
4318	.		. 69	1:	.47	1:	S п .64 (4)
4319	.		.68	1:	. 64	1:	
4320					.70	34	Sc II .73 (20) Ti II .97 (1)
4321			.62	1			
4322					. 56	1	La 11 .51 150 III
4324	.91	1	5.55	2n	5.21	3n	Sc II 5.00 (20) Fe I 5.77 (9R) II
4326	.75	2	.98	1:	.72	2	Мп п .71 (3)
4330					. 67	2:	Ті п. 26 (0) Ті п. 71 (0)
4338			.47	1:	. 23	3:)	Ti 11 7.92 (50)
4340	. 47	50	. 65	50	.47	50	$H\gamma$.47 (8)
4341					.98	3:	
4342			.82	1:	. 93	1:	
4344	.01	1	3.89	1:	.40	4	Mn II .03 (1) Ti II .29 (2) Cr I .51 (40) II
4346	.12	1	5.84	1:	.39	1	
4348	. 54	1	. 59	1:	. 61	2	Мп п .49 (1)
4350			.05	1:	- 31	1:	Ti 11 .86 (1)
4351	. 67	1	2.08	2	.81	4	Fe II .77 (6) Cr I .77 (60) I
4354			.32	1	.08	1	Sc II .60 (5)
4356	.90	1			.51	1:	
4357			.68	1	.58	1	
4358		• • • • • • • • •			.72	2	Уп.73 (30)
4359			. 60	1:	. 83	1	Zr 11 .74 (10)
4361			. 14	1:			
4362	.94	1			. 47	1n	Ni 11 .10 (1)
4365	. 65	1	.89	1:	. 58	1-2	Mn II .29 (1)

TABLE IV-Continued

λ	a And		79 E	-i	φŀ	ler	Identification
4368			. 05	1:	7.93	3	Ti 11 7.66 (15)
4369	:		.44	1:	.44	2	Fe II .40 (*)
4370					.88	2	Zr 11 .95 (8)
4372			.81	1:	.78	1	
4374			.76	1	.86	4–5	Sc 11 .46 (30) Ti 11 .83 (1) Y 11 .94 (300)
4377			. 17	3-4			
4377	. 91	1			. 61	1n	
4380	.08	1	. 46	1	9.64	2	Zr 11 9.77 (9)
4381					. 70	1	
4384			. 06	1)	3.46	2)	Fe 1 3 .55 (10R) II
4385	. 54	1	.33	1)	.13	2	Mg 11 4.64 (8) Sc 11 4.80 (5) Fe 11 .39 (*)
4387					.01	1	Ti 11 .86 (10)
4388	.23	1	. 13	1:	.47	1:	Не і 7.93 (3)
4390			.78	1:	. 54	2	Mg II .59 (10) Ti II .98 (tr)
4393	. 46	1	.32	1	. 67	1	Ti 11 4.06 (2)
4395	. 55	1	. 58	1-2	4.99	2	Ti 11 .04 (60)
4396					.05	1	Ti 11 5.85 (2)
4398			.32	1:	.14	3	Y II .02 (50) Ti II .32 [1]
4399			.97	1:	0.25	3–4	Ti II .77 (35) Sc II 0 .38 (20)
4401			. 52	1:	.37	1	Ni 1 .55 30 III
4403	. 59	1:	2.76	1	.33	2	
4404			.86	1	5.18	2	Fe i .75 (8R) II
4407	• • • • • • • •				.89	1	Ті п. 67 (1)
4409			.68	1:	.08	1	Ti II .25 (tr) Ti II .54 (tr)
4411			.47	1:	.15	1	Ті п. 08 (15)

TABLE IV--Continued

λ	a ,	And	т ⁹ Е	Cri	φ1	ler	Identification
4414			. 07	1:	. 03	1:	
4415					.08	1-2	Fe it .13 (8R) II Sc ii .56 (20)
4416	.		.86	1	.86	2	Fe II .81 (4)
4417		1			.95	1	Ti II .72 (40) Ti II 8.34 (1)
4418			.99	1			
4420		1			. 67	1:	
4422			. 26	1:	66	1	Y и .59 (40)
4425					.11	1 ·	
4428					.00	1:	Mg 11 .00 (7)
4431		, ,	. 40	1			
4434	. 01	1			3.81	1	Му и 3.99 (8)
4434			. 61	1			
4436					. 76	1:	Мд и .48 (5)
4442			. 09	1:	1.73	1:	Ti п 1.73 (pred)
4442					.94	1:	Zr 11 .99 (25)
4443	. 75	1:n	4.18	1-2n	. 95	2n	Ti 11 .80 (50) Ti 11 4.56 (1)
4446	.		.39	1			
4447			.84	1	.73	1	Fe 1 .73 (5) III
4449			. 13	1			
4450			.77	1:	.62	· 1	Ti 11 .49 (10)
4452	. 15	1	1.64	1	.10	1:	,
4455			.06	1	4.91	1	Zr 11 4.80 (10)
4455					.81	1	
4456			.77	1			
4458					.80	1	Ni 1 9.05 20 III Fe 1 9.13 (5) III
4461			. 77	1-2	2.05	1	Mn 1 2.03 20 III
4462	. 61	1					

TABLE IV-Continued

λ	a A	And	τ*]	Sri	ا ع	Her	Identification
4464					. 66	1:	Ti 11 .46 (1)
4466					. 94	1;:	Fe 1 .56 (5) II
4468	.39	1	.33	1	. 43	2-3	Ti 11 .49 (50) Ti 11 9.15 (tr)
4471	.78	2	. 63	1-2	.45	2	He i .48 (6) He i .69 (1)
4473			. 25	1			Fe 11 2.91 (*)
4475	. 54	1					
4478	. 97	1-2			9.66	1	Mn 11 .74 (1)
4481	.33	5	. 28	5	.22	8	Mg 11 $\left\{\begin{array}{c} \cdot 13 \\ \cdot 33 \end{array}\right\}$ (100)
4483			.87	1:	. 07	1	Sп.42 ₆ (6)
4487			, <i>.</i>		. 24	1	
4488					.28	1-2	Ti 11 .32 (15)
4489			.23	1	.87	1	Fe 11 .21 (4)
4491	<i></i>		.34	1	. 39	1	Fe II .41 (4)
4493			. 68	1	. 10	1	Ті н. 54 [1]
4494				: ••••••	. 70	1n	Zr II .41 (8) Fe I .57 (5) III
4496					.92	1	Zr 11 .97 (15)
4497					.82	1	
4499	<i>.</i>				.73	1	
4501			.45	1	.31	3	Ті п .27 (40)
4503			. 15	1	. 77	1	
4504			.88	1	5.47	1	
4508	.78	1:	. 22	1-2	. 32	2	Fe II . 29 (8)
4509			.86	1:	0.69	1	
4511			.96	1-2	2.34	1	
4513					. 29	1	
4514			.49	1:	.11	1:	
4515	.28	1	.43	2	. 58	1	Fe 11 .34 (6)

TABLE IV-Continued

λ	a A	and	79	Eri	φ:	Her	Identification
4518					. 24	1	
4519	.72	1-2	0.15	2	0.74	2	Fe 11 0.24 (6)
4522	.78	1	. 90	2	. 68	3-4	Fe 11 . 64 (6)
4525	. 53	1			. 76	1n	
4526			. 68	1			
4528			. 54	1-2			Fe 1 .62 (7) II
4529			. 49	1-2	.40	1:	Ti 11 .51 (1)
4530	. 19	1:					
4534	.24	1n?	. 11	1	. 13	3	Ti 11 3.97 (30) Fe 11 .18 (*) Mg 11 .26 (4)
4539					. 47	1	
4541			. 41	1	. 76	1	Fe II .33 (1) Fe II .53 (*)
4544			.02	1:	.39	1 .	Ti II .03 (tr) Ст II .69 (pred)
4547					.11	1	
4549	. 50	3	.45	3	. 63	6	Fe 11 .48 (4) Ti 11 .62 (60)
4551			.14	1			
4552		,	.78	1	.42	1	Ti n .25 (pred) S n .37 (5) Si m .61 (9)
4554					.28	2	Zr II 3.96 (12) Ba II .04 1000R
4555	. 61	1	4.70 .87	1-2 2	.27	2-3n	Cr 11 .00 (2) Fe 11 .90 (6)
4556					.45	2	
4557					.71	1	
4558	. 61	1	.84	2-3	. 67	45	Cr II .66 (20) Cr II .78 (pred)
4560					. 20	1	
4561					. 51	1	
4564			. 05	1	3.59	2-3	Ti 11 3 .76 (30)

TABLE IV-Continued

			i i	E IV—Conti	<u> </u>		
λ	a A	nd	79 E	Cri	φ	Her	Identification
4565			.70	1 .	. 86	1-2	Cr 11 .78 (2)
4568			.06	1:	7.89	1:	Si III 7.83 (7) Ti II .31 [1]
4570		· · · · · · · · · · · · · · · · · · ·	.11	1:	9.56	1	
4571					.07	1	Mg 1 .11 5 IA Cr 11 .30 (pred)
4571			.82	1:	2.00	2-3	Ti II .97 (50)
4574		· · · · · · · · · · · ·			. 43	1	Si III .75 (4)
4576			1	1	. 33	2	Fe 11 .31 (4)
4578				,	. 69	1	
4579			. 66	1-2	· · · · · · · · · · · · · · · · · · ·		
4580		· · · · · · · · · · ·			. 60	1	Ti 11 .47 [1]
4582		· · · · · · · · · · · · · · · · · · ·	.85	1	. 42	1-2	Fe II .43 (*)
4583	.68	1	.74	2-3	4.02	2-3n	Fe 11 4.84 (8)
4586		· · · · · · · · · · · · · ·			.86	2	
4588	. 26	2	.36	1-2	. 24	2	Cr 11 .21 (20)
4590					. 21	2	Cr 11 9.94 (1) Ti 11 9.96 (2)
4592				· · · · · · · · · · · · · · · ·	. 22	3	Cr II .06 (2)
4593					.87	1	
4596			. 19	1	. 04	1	Fe m 5.69 (*)
4597					. 66	1	
4598			. 56	1			
4599					. 43	1	
4601	.95	2	.34	1	.38	1n	Fe 11 .38 (*) N 11 .49 (8)
4603					.91	1	
4605			.44	1	.37	1-2	
4607			.87	1:	.90	1	
4609					.75	2	
4611			.36	1:	. 79	1	

TABLE IV-Continued

λ	α.	And	τ9	Eri	φ	Her	Identification
4613					. 56	2	
4614	••••				. 74	2:	
4616			.47	1	.42	2-3	Cr 11 .67 (3)
4618			. 73	2	. 77	2–3	Cr II .82 (10)
4620			.13	1	.82	1-2	Fe 11 . 52 (*)
4621			.48	3			
4622					. 50	2	
4624			.11	1:	.86	1	
4627	. 47	2					
4629			02	1n	.36	3	Fe 11 .33 (4)
4631			. 59	1:	. 77	2	
4634			. 29	1	3.95	3	Cr 11 .09 (10)
4638	.00	3	7.87	1-2			
4640			.11	1			
4642			. 13	1			
4646			.92	1			
4648			.91	1:			
4656			.95	1-2		• • • • • • • • • •	Fe 11 7.01
4663			.18	1			
4665			.89	1			
4670			.16	1			Sc II .40 (10)
4673			. 20	1-2n			

Table V includes the additional peculiar stars θ Aurigae (A0p), a^2 Canum Venaticorum (A0p). and B Coronae Borealis (F0p). The first of these stars has a variable spectrum which has not been investigated as yet. The last two are especially remarkable for the strength of the lines of singly ionized europium. A number of investigations of the spectrum of a^2 Canum Venaticorum have been made, but it is still one of the most promising objects for further study. In spite of the fact that the effective excitation is quite high (Fe 1 is only doubtfully present), the spectrum is crowded with lines which vary in intensity. The wave-lengths in this spectrum were measured at a phase when the lines of Eu 11 had their maximum intensity. The spectrum is too complex for a dispersion of one prism and the present identifications are very incomplete. The rare earths Dy II, Gd II, and Eu II are quite strong. Kiess, from a study of plates of higher dispersion, identified a number of strong variable stellar lines with Tb 11. This identification could not be verified on Yerkes plates. The star is not included in the summary of the behavior of the elements in Table VI because of the unsatisfactory state of the identifications. A detailed high-dispersion study of α^2 Canum Venaticorum and v Sagittarii could not fail to bring to light new peculiarities and might well result in the identification of astrophysically unobserved elements. The star 73 Draconis, which has been previously investigated. 10 fills the gap between α^2 Canum Venaticorum and β Coronae Borealis. The latter star shares with γ Equulei the peculiarity of having abnormal relative intensities for the lines of Fe I. The spectra of both stars are too complex for adequate discussion from one-prism plates and B Coronae Borealis is included here only to show the transition between the A- and F-type peculiar stars.

⁹ Pubs. University of Michigan Obs., 3, 108, 1919.

¹⁰ Ap. J., 77, 77, 1933.

TABLE V
WAVE-LENGTHS AND IDENTIFICATIONS IN PECULIAR STARS—Continued

λ	0.	Aur	a² C	Vn .	β Cr B	Identification
3913			. 42	3		Ті н. 46 (60)
3914	. 54	1	.12	2n		V 11 .33 (20)
3915			.37	2 n		
3916	.77	1:	. 64	3		Gd 11 . 58 300
3918			.40	3n		C 11 .98 (6)
3919	. 46	1n	.34	2		Cr 1 .16 35n II
3920	. 68	1	. 29	2n		Fe 1 .26 (6R) I C 11 .68 (8) Cr 1 1.02 (20) I
3922	.41	1	1.76	3n		
3923			. 26	4n		Fe I 2.92 (6R) I
3924	.50	1				
3925			.07	2 n		
3925	.96	1–2				
3927	. 04	1:				
3928	. 19	1	7.79	3n		Fe i 7.93 (6R) I
3930	.09	1	.48	8		Fe 1 .30 (7R) I Eu 11 .50 300R Y 11 .67 (15)
3930	.84	1-2				
3933	. 67	3	.61	6		Са п. 67 (10)
934	• • • • • • • • • • • • • • • • • • • •		.89	2		
3935	. 97	1	.92	3		Fe 1 .82 (4) III
936			.87	2		
937	. 96	1	8.06	5		Mg 1 8.43 (3r)
938	.81	-1	.87	5		
3940			.30	1		Fe 1 .89 (4) II?
941	. 46	1				Fe i .29 (2) Cr i .49 20
3942			.17	1		
942			. 68	1		Fe 1 .45 (3) IV
943	.87	1	. 76	1n		Mn II .81 (1)

TABLE V-Continued

λ	θ 2	Aur	a ² (Vn	β Cr B	Identification
3945	. 23	1	4.81	-4n		Dy 11 . 69 600
3946	. 96	1:	.91	2		O 1 7.33 (10)
3948	. 29	1	. 02	1n		O 1 7.51 (7) O 1 7.61 (4)
3948			. 58	2		
3950	<i>:</i>		.37	4		Y II .35 (200)
3 95 0	. 86	1.				. •
3952	. 62	1	.40	1n		V 11 1.97 (40)
3954	. 50	1-2	. 41	3n		
3955		 	.39	1		
3956	. 99	1:	. 62	1n		Fe 1 . 68 (6) III
3957			.87	4n		Gd 11 . 69 150 Zr 11 8 . 23 (50)
3959			. 52	3		
3960	. 90	1	.72	2	¢	
3961			. 66	1		Al 1 .54 (10R)
3963			. 25	2n		Cr 1 .69 30 II
3964	. 13	1n				
3966			. 22	1n		
3968	. 45	2:	.37	6		Dy 11 .39 1000 Ca 11 .46 (10)
3970	.00	40	.02	30		Hε .08 (6)
3974	.31	1		· · · · · · · · · · · · · · · · · · ·		Fe II . 17 (*)
3974			.93	1		
3976	. 60	1				Cr 1 .67 25 II
3977			.35	1		
3978			. 46	3		Dy 11 .56 150
3979			. 39	3		Cr 11 .21 (pred)
3980	. 03	2				· · · · · · · · · · · · · · · · · · ·
3980			.71	1		
3982	.13	1	02	3		Ti 11 .00 (tr) Y 11 .59 (150)

TABLE V-Continued

λ	θ A	Lur	a² (C Vn	βC	r B	Identification
3984	.38	1	.00	5			Dy 11 3 . 66 100 Cr 1 3 . 91 20 II
3985			. 97	1n			
3986	.49	1					
3987			. 46	1n			
3989			. 57				
399 0	.33	1:		2nn			
3991	.71	1n					Zr 11 .14 (40)
3992			.28				
3994	. 46	1	3.88	1n .			
3996			. 57	1			Dy 11 . 69 200
3997	. 86	1n	. 90	1n			Si II 8.00 (1n)
3998			.98	2			Zr 11 .97 (30)
4000	. 21	1:	. 51	2			Mn II .06 (1) Гу II .45 600
4002	. 16	1:	. 28	2			
4003	. 03	3n	2.94	2			V п 2.95 (10)
4005	. 27	1	.35	2n	.02	6	Fe i . 25 (7) II V ii . 71 (60)
4006					.46	1-2	Fe 1 .16 (*) Fe 1 .31 (2) IV
4007			. 01	1n			Fe 1 . 27 (3) IV
4008	. 03	1	7.98	1	. 57	. 1	Fe 1 7.61 (⊙ -1)
4008					.98	2	$ \begin{array}{c c} Fe \text{ 1 . 85 } [\odot \text{ 2}] \\ Fe \text{ 1 . 88 } (\odot \text{ 2}) \\ Ti \text{ 1 . 92 35 II} \end{array} $
4009			. 05	1n	. 69	1	Ti 1 .65 15 II Fe 1 .71 (5) III
4010					.71	1–2	⊙ 11 .59 (3) Fe 1 .77 [⊙ 2] Fe 1 .95 (1)
4011					. 65	1:	Fe 1 .42 (1) Fe 1 .72 (⊙ 2)
4012	.82	3	.39	7	.40	3	Ti 11 .37 (4)

TABLE V-Continued

			1	LE V—Contin	1		1
λ	0 !	Aur	a2 C	Vn	β (Cr B	Identification
4013					.73	1–2	Ti 1 .58 12n III Fe 1 .64 (1) Fe 1 .80 (2) V
4014			.42	2 n	. 59	1-2	Fe 1 . 54 (4) III
4015			. 68	1	.81	1–2	Ni 11 . 50 (1) ⊙ (1)? . 61 (3-3)
4016	. 96	1:	.36	1n			
4017					. 54	1-2	Fe I .10 (1) Fe I .15 (3) III
4018	. 22	1-2	. 19	1	. 13	.2	Fe 1 .11 (2) Mn 1 .11 20 I Fe 1 .28 (2) Zr 11 .39 (10)
4019			. 50	2n	. 23	1	
4020			.86	2	.30	1	Fe 1 .49 (1)
4022			. 13	3n	.02	1	Fe i 1.87 (5) III
4022	. 63	1			. 41	1	Fe 1 .73 (O 2)
4023					. 67	1	V 11 .38 (50)
4024	. 64	1			[.78	3	Zr II . 44 (12) Ti I . 56 35 II Fe I . 75 (2) V Ti II 5 . 13 (2)
4025			.76	3nn			
4026	.32	1:			.40	1	He 1 .19 (5) He 1 .36 (1) Fe 1 .44 (1)
4028	. 69	1	.14	4n	.32	2	Ti 11 33 (7)
4029			.77	2n	.72	1-2	Fe 1 .64 (2) V Zr 11 .68 (20)
4030	. 72	2			. 68	4	Cr II .37 (pred) Fe I .51 (3) IV Mn I .76 200 I
4031			.43	1	. 56	1	Fe 1 . 24 (1) Mn 1 . 80 (4) Fe 1 . 97 (2) V
4033	. 16	1-2	2.77	2	.01	3–4	Fe 1 2.64 (1) III Mn 1 .07 150 I
4033			. 95	3n	4.64	1	Mn 1 4 49 100 I

TABLE V---Continued

λ	0 A	Aur	a2 C	Vn	80	'r B	Identification
4035			. 09	1			
4036	. 17	1:	.16	3	5.81	2	Mn I 5.73 15 I
4037			.30	2	. 59	1	Gd 11 . 34 200 Fe 1 . 73 (1)
4038	. 26	1–2	7.94	2			Gd II 7.90 125 Cr II .04 (2)
4039			.59	1	.11	1:	Fe 1 8.82 (1)
4040					. 07	1:	Fe 1 .10 (O 2)
4040			. 60	?	. 89	1	Fe 1 .65 (1) V
4041	.49	1			. 61	1	Fe i .29 (1) Mn i .37 50r I
4042			.27	1	.82	1	
4043			.08	1n			
4044	.01	1	3.68	1	3.92	. 2	Fe 1 3.90 (2) IV Fe 1 3.99 (\cdot 2)
4044					. 79	1	Fe 1 .62 (2) IV
4045	.86	1	.40	3	.81	6	(Ho 11 . 43 [200]) Fe 1 .82 (8) II
4046			.58	4			• • • • • • • • • • • • • • • • • • • •
4047					.06	1	Fe 1 .32 (1)
4047				. .	. 98	1	
4048			.51	5n	.		Zr II .67 (25) Mn I .76 15 I
4049	.27	2			. 05	2-3n	Fe 1 .34 (1)
4049			. 65	2	.91	1	Gd 11 .44 150 Gd 11 .90 200
4050	.80	1:	. 55	3			Zr II .33 (15) Dy II .58 150
4051					. 16	1:	V 1 .04 (pred)
4051	. 96	1			.96	2n	Fe 1 .93 (2) Cr 11 2.00 (1) Fe 1 2.31 (1)
4053			.33	2	.50	1–2	Fe i .27 (1) Gd ii .31 100 Cr ii .45 (pred)

TABLE V-Continued

λ	0 A	Mur	α² C	Vn	B C	r B	Identification
4054	. 06	1-2	3.85	3	. 03	2	Fe i 3.83 Ti ii 3.81 (3) Cr ii .09 (pred) Fe i .19 (© 2)
4055			. 19	3	. 02	2	Fe 1 4.83 (1) Fe 1 4.88 (1) V Fe 1.05 (1) V Mn 1.55 20 I
4056	. 12	1			.18	2	Ті п. 20 [1] Fe г. 34 ⊙ I
4057	.37	1	.32	3	.34	1	Fe 1 .36 (1) V Mg 1 .51 (5r)
4058			.33	1	. 67	1:	Fe 1 .77 (1) IV
4059			.68	2n			
4060					. 52	1	196 - ₁₀
4061	. 54	1	58	3	.80	1	Fe 1 .96 (1)
4062			.47	2	. 67	1	Fe 1 .45 (4) III
4063	.80	1–2	.43	4	. 56	3	Fe 1 .30 (2) Gd 11 .45 150 Fe 1 .60 (8) II Cr 11 4 .05 (pred)
4065			.01	2	4.74	1	Fe 1 4.46 (© 3) Fe 11 4.77 (*) V 11.09 (6r) Ti 1.09 15 III
4066	. 54	1	. 58	1n	.98	2	Fe i .98 (4) III Ni ii 7.04 (3)
4068	. 50	1:	.45	2n	.01	1-2	Fe 1 7.99 (5) III
4069					. 04	1	
4069					.97	1	Fe 1 0.05 (1)
4070	. 96	1	.18	5nn	. 97	1-2	Fe i .78 (2) III Cr ii .99 (2)
4071					. 77	1	Fe 1 .75 (7) II
4072	. 46	1			. 62	1-2	Fe 1 .52 (1) Cr 11 .63 (pred)
4073			.32	4–5n	.77	1	Dy 11 .11 200 Fe 1 .77 4n IV Gd 11 .78 200

TABLE V-Continued

λ	θ Aur		α2 (C Vn	β Cr B		Identification	
4074					. 84	1	Fe 1 .79 (3) IV	
4075	. 50	1	.48	4n	. 89	1-2	Si 11 .45 (2) Cr 11 .66 (pred) Fe 1 .94 (1)	
4076			. 66	2	.82	1-2	Fe 1 .64 (5) IV Si 11 .78 (1) Fe 1 .81 (1) Cr 11 .87 (pred)	
1077	.36	2-3n	.72	5	.68	2~3	Cr II .58 (pred) Sr II .71 400r Dy II .97 600	
078		• • • • • • • • •			.48	1	Fe 1 .36 (3) IV	
4079					.36	1	Fe I .25 (2) IV Mn I .25 12 I Mn I .43 10 I	
1080	.06	1:	.11	1n	.48	1	Fe i .23 (2) IV Fe i .88 (1)	
081	.71	1	.38	1	.35	1	Fe 1 .26 (\odot 1)	
082			. 23	1	.34	1-2	Fe i .12 (1) Fe i .44[⊙ 5]	
083	. 62	1	.36	1	. 60	1-2	Fe i .55 (1) Mn i .64 12 I Fe i .78 (1)	
1084			. 50	1	.70	1	Fe i .51 (4) IV Fe i 5.01 (2) IV	
.085	. 57	1	. 65	3	.53	2	Fe i .31 (3) IV Gd ii .60 200	
086					.42	1	Cr II . 19 (1) Co I . 31 15 II	
	.44	1	. 27	3	.46	2	Fe i .10 (1) Fe ii .27 (*) Cr ii .64 (pred)	
.089	.04	1	8.67	1	.06	2-3	Fe 1 8.57 (1) Fe 11 8.73 (*) Cr 11 8.85 (pred) Fe 1 .22 (1)	
090					.29	1	Fe 1 .09 (1) Fe 1 .33 Zr 11 .52 (10)	
091			. 46	1				

TABLE V-Continued

λ	0.	Aur	α ² (. Vn	β	Or B	Identification
4092					. 52	1	Fe 1 .29 (1) Co 1 .40 25 I Fe 1 .52 (1) V 1 .69 50 I
4094			.46	1n	.44	1	
4095	.30	1:			· · · · · · · · · · · · · · · · · · ·		
4096					.22	1	Fe I 5.98 (3) IV Fe I .12 (1) Fe I .22 (3)
4098	. 53	2:			.49	3n	Cr 1 .18 (20n) III Fe 1 .19 (3) II Cr 11 .48 (1) Ca 1 .55 15 III
4100			•		.15	1	Fe 1 9.98 Fe 1 .17 (© 2) Fe 1 .35 Fe 1 .75 (2) IIA
4101	.75	50	.66	50	.74	15	Ηδ .74 (7)
4103	. 26	1					Si 1 2.95 (5)
4104	.81	2	,		.75	1	Mn 11 5.01 (2) V 1 5.17 60 I
4106	.73	1:			.21	1	Fe 1 .27 (1) Fe 1 .44 (1)
4107	:				. 55	1	Fe 1 .50 (5) III
4108					. 57	1	
4109					.79	1	V 1 .78 50 I Fe 1 .81 (4) IV
4110			.38	2			
4110	. 95	2	1.56	2	.99	2	Cr 1 .87 20n III Cr 11 1.04 (2) Dy 11 1.35 150 V 1 1.79 100R I
4112					.15	1:	Fe 1 .35 (1)
4113	. 04	1	.15	1n	.01	1	Ti 1 2.72 20 II Fe 1 2.98 (2) V Cr 11 .29 (1)
4114			.84	2n	.32	1:	Fe 1 .45 (4) IV
4115	.18	1:			. 44	1	V 1 .18 60 I

TABLE V-Continued

λ	θ Α	Lur	α ² C	Vn	βΩ	'r B	Identification
4116	. 68	1			. 94		V 1 .48 50 I
4117			. 14	4		O	Fe i .87 (1)
4119	.01	1n	8.99	4nn	}	2nn	Fe 1 8.56 (6) IV
4119					.70		(Fe 1 8.90 (1)
4121			. 10	1n	0.91	1	Co 1 .33 60 II He 1 .81 (3) He 1 .98 (1)
4122	. 24	12			1.92	1:	Fe 1 1.81 (2) IV
1122			.88	3n	.77	2	Fe 1 .52 (2) IV Fe 11 .67 (*)
4123					. 64	1	V 1 .56 60 I Fe 1 .74 (1) Fe 1 .76 (1)
4124	. 56	1	. 69	2	.86	1-2	Y 11 .91 (15)
4125					.78	1	Fe i .63 (1) Fe i .89 (1) Fe i 6.19 (2) IV
4127					. 04	1	Fe I 6.86
4127	. 97	5	8.08	7	.91	2	Fe I .61 (4) V Fe I .81 (2) V Si II 8.05 (8) V I 8.08 60 I
4129			. 66	4	. 64	3	Cr i .37 20n III Dy ii .43 100 Eu ii .73 500R
4130	.80	5	.89	7	1.07	1	Si 11 .88 (10)
4132	.47	1–2	. 45	5	.37	5	V I .02 60 I Fe I .06 (7) II Mn II .28 (1) Gd II .28 200 Cr II .45 (1) Fe I .91 (3) III
4133	,		. 76	2	. 90	1-2	Fe 1 .61 Fe 1 .87 (2) Fe 1 4 .34 (1)
4134					.78	1	V 1 .50 60 I Fe 1 .68 (5)
4135	.61	1	.18	2	.68	1	
4136	.94	1	.91	2 n	7.17	2n	Fe 1 .53 (1) Mn 11 .91 (2)

TABLE V-Continued

λ	θ A:	ur	α ² C V	'n	₿ C	г В	Identification
4138	.58	1	. 57	2n	.37	1	Fe 1 7.98 Fe 11.37 (*) Fe 1.:86
4139					. 69	1:	Fe 1 .93 (1) IIA
4140	. 19	1	. 93	2n	. 56	1	Mn II . 16 (1) Fe I . 40 (1)
4141	.91	1:					Fe 1 .86 (1)
4142					. 29	2n	
4143	.41	1	.08	3n	.71	3	Dy II . 10 300 Fe I . 42 (5) III Fe I . 51 He I . 77 (2) Fe I . 87 (7) I
4145			.08	3	4.99	1	[Fe 1 4.63 (1)]
4145	.83	2	6.10	1	6.14	3	Cr II .81 (3) Fe I 6.07 (2)
4147			. 04	2	. 46	2	Fe 1 .67 (4) III
4149	.48	1			.34	1-2	Zr II . 21 (75) Fe I . 37 (2) V
4149					.98	1	Fe 1 .77 (2) Fe 1 0.28 (2)
4150	. 49	1			. 90	1:	Zr 11 .98 (10)
4152			.32	1-2	. 05	3	La 11 1.95 (250) Fe 1 1.96 (1) Fe 1.18 (2) IIA
4153	.88	1	.74	1-2	. 75	2	Cr 1 .82 20 III Fe 1 .92 (4) IV
4154			.81	1:	. 70	2	Cr II .29 (pred) Fe I .50 (4) III Fe I .82 (4) IV
4155					. 57	1:	
4156	.32	1	.09	2n	. 60	3	Zr II .24 (15) Fe I .46 (1) Fe I .67 (1) Fe I .81 (4) III
4157	. 58	1:	8.13	1n	. 74	1	Fe 1 81 (3) IV
4158					. 97	3	Fe 1 .80 (2) V
4160		• • • • • • • • •	. 60	3	.36	1	Fe 1 .56 (1)

TABLE V-Continued

λ	θ	Aur	a ² (C Vn	β	Cr B	Identification
4161	.34	1-2	. 50	3	. 52	3-4	Fe 1 .08 (1) Zr 11 .21 (20) Fe 1 .49 (1) Ti 11 .52 (1) Sr 11 .81 30
4163					.17	1	
4163	.92	1	. 64	1-2	.71	2	Cr i .63 20 III Ti ii .65 (40) Fe i .68 (1)
4165	.78	1:			. 59	2-3	Fe 1 .42 (1)
4167	.23	1	6.90	3n	.40	2n	Mg 1 .27 10n III? Fe 1 .86 (2) Fe 1 .96 (1)
4168					.86	1:	Fe i .63 (1) Fe i .95 (1)
4169			. 50	2	.90	2-3	Fe 1 .78 (1)
4170	.61	1	.72	3	.96	3	Cr 11 .65 (pred) Fe 1 .91 (2) IV
4171			. 86	3	. 90	3	Fe 1 .70 (2) Fe 1 .90 (2) Ti 11 .91 (30) Cr 11 .92 (pred)
4172	.11	1			.76	2	Fe i .64 (1) Fe i .75 (2) IIA
4173	. 64	1	. 63	3-4n	.51	2-3	Fe 1 .32 (2) IV Fe 11 .48 (6) Ti 11 .54 (1)
4174					. 35	1	
4175	.80	1	. 47	2-3n	. 69	1	Fe 1 .64 (4) III
4176			. 71	1	. 69	2	Fe 1 .57 (2) IV
4177	. 59	1	. 68	4	.78	3	Y II .54 (125) Fe I .60 (2) IIA
4178	. 93	2	9.20	3n	9.22	4	Fe II 87 (6) Cr II 9 41 (2)
4180			.87	1–2	.85	1	
4182	.08	1	. 19	2	1.94	3-4	Fe i 1.76 (6) III Fe i .39 (2) IV
4183			. 25	1			V 11 .43 (35)

TABLE V--Continued

λ	0.1	Aur	α^2 C	Vn	β	er B	Identification
4184	.40	1	.37	3	.05	3-4	© 11 .00 (4) Gd 11 .25 300 Ti 11 .33 (0)
4185					. 28	1	Fe 1 4.90 (4) III
4187	.35	2n	.15	2-3n	.00	3	Fe 1 .05 (6) III
4187					.67	3	Fe 1 .59 (© 2) Fe 1 .81 (6) III
4188			.80	1-2	.82	2	⊙ (π)? .74 (4)
4190	. 60	1-2n	9.71	1	. 19	1	Ti 11 .29 [1] Si 11 .74 (3)
4191			. 24	3n	.41	4	Gd 11 .06 200 Fe 1 .45 (6) III Fe 1 .68 (2)
4193			.72	2n	. 43	2	₩. ₂₀
4195	. 42	2	.51	2n	.28	.3	Fe i .34 (3) IV Fe i .62 (2)
4196					. 23	1	Fe 1 . 22 (2) IV
4198	. 27	1-2	.16	3n	.31	· 4–5n	Si II .17 (2) Fe I .27 (1) Fe I .31 (6) III Fe I .65 (2) V
4199					. 21	1	Fe i .10 (6) III Y ii .28 (5)
4200					. 03	1	Fe 1 9.99 1 IIA
4200	.68	2	.61	2–3	. 96	1	Mn 11 .25 (2) Fe 1 .92 (1) V
4202					.01	1	Fe i .03 (7) V ii .35 (35)
12 02	. 56	1	.61	1-2	. 65	1	Fe 1 .76 (1)
4203			.68	1:	.85	1	Fe i .57 (1) Fe i .95 (1) V ii 4.20 (8)
1204	.97	1	.98	9	5.06	5	Y II .69 (10) Gd II .84 100 Eu II 5.05 500 V II 5.09 (30)
42 06	. 79	1	7.78	3-4	7.10	2	Mn 11 .43 (2) Fe 1 .70 (2) IA Fe 1 7 .13 (2) IV Cr 11 7 .34 (pred)

TABLE V—Continued

λ	θ.Α	Mur	a² () Vn	вС	Cr B	Identification
4208					. 54	2	Fe i .61 (2) V Zr ii .98 (30)
4209	. 74	1n			. 57	1-2	V 11 .80 (12)
4210					. 19	1–2	Fe 1 .36 (6) III
4211			.80	2	.73	1–2	Zr II .88 (12) Gd II 2.01 200
4213	.06	1	. 49	3	.48	. 1	Fe 1 .42 (2) IV Fe 1 .65 (2) IV
4215	. 28	2	.34	4	. 53	6	Gd 11 4 .97 150 Fe 1 .42 (2) IV Sr 11 .52 300r Cr 11 .78 (pred)
4217	. 25	1	.31	2n	.42	3	Cr II .09 (pred) Gd II .15 100 Fe I .56 (2) IV Cr I .63 15 III
4219	.45	1	. 45	1	. 24	2-3n	Fe 1 .36 (5) IV
4220			. 90	1:	. 53	2-3n	Fe 1 .35 (2) IV
4221	. 55	1			. 55	1	
4222			.86	2n	. 27	2	Fe 1 .23 (5) III
4224	.48	1	. 74	2n	. 23	3	Fe 1 .17 (3) IV Cr 11 .85 (2)
4225					. 51	2	V 11 .21 (20) Fe 1 .46 (4) IV
4227	.12	1	. 19	3	64	2	Fe 1 6.43 (2) IV
4227					.30	3	Ca 1 6.73 500 I Fe 1 .45 (7) III
4229	. 67	1	. 57	2–3	. 64	3	Fe 1 . 52 (1) Fe 1 . 75 (1) III Cr 11 . 82 (pred)
4232					. 16	1	
4233	. 16	4	.15	4	. 29	4	Fe II . 16 (8) Cr II . 25 (1) Fe I . 61 (6) III
4235			. 47	2-3			
4235	.81	2	6.45	1	6.04	3	Y 11 .73 (20) Fe 1 .95 (8) III
4237					. 96	1	Fe 1 8.04 (1) IV

TABLE V-Continued

λ	θ A	ur	α ² C	Vn	β	Cr B	Identification
4238	. 73	2	. 36	3n	.86	2	La 11 .38 400 Fe 1 .83 (4) IV
4239					.88	2	Mn 1 .73 5 II Fe 1 .85 (2) III
4240	. 57	1:	.33	1n			
4242	. 27		.13	2	.48	3-4	Cr 11 . 35 (5) Mn 11 . 37 (2) Fe 1 . 59 (1) Fe 1 . 73 (2)
4243			.48	v	. 63	1	⊙ (I)? .45 (3) Fe 1 .79 (1)
4244	. 17	1					Mn 11 .24 (1)
4245	.83	1	.30	2nn	. 49		Fe 1 .26 (2) III Fe 1 .88 (1)
4246			. 29	r	.34	3nn	Fe i .09 (2) V Sc II .83 (100)
4247	.43	1			. 26		Fe 1 .44 (5) III
4249			. 02	2nn	8.31	1	Fe 1 8.22 (2) IV Fe 1 8.42
4250	.18	1	.33	1-2	. 10	3	Fe 1 .13 (7) III
42 50					.82	3-4	Fe 1 .79 (8) II
4251			.82	2-3	.78	1	Gd 11 . 76 300
4252	.88	2	3.07	2n	. 54	1	Cr 11 .66 (1) Mn 11 3.02 (2)
4253					. 52	1:	Gd 11 .36 150 Gd 11 .62 150
4254	.38	1	. 61	1-2	.48	3-4	Cr i .34 500 II
4255	.74	1	6.02	4	6.08	2	Fe 1 .85 (1) Fe 1 6.21 (2)
12 58	. 44	1–2n	7.97	2-3	. 44	3–4	Zr II .05 (12) Fe II .14 (*) Fe I .39 (1) IA Fe I .61 (1) Fe I .95 (1)
4259			. 29	2			Mn 11 .26 (2)
4260			. 57	1	.36	4	Fe i 9.99 (2) Fe i .14 (2) Fe i .49 (10) III

TABLE V-Continued

λ	. 01	Aur	a2 (C Vn	β	Cr B	Identification
4261	. 90	2	. 69	2–3	.94	3	Cr II .81 (pred) Cr II .91 (2) Gd II 2.09 250
4263	. 67	1			.13)	0.0	
4264			.30	2n	.35	2-3n	Cr II .18 (pred) Fe I .21 (2)
4265					.46	1	Fe 1 .26 (2)
4266	. 11	1	<i></i>				
4267		:	. 07	3	.29	12n	Fe 1 6.97 (2) IV C 11 .02 (8) C 11 .27 (10) Fe 1 .83 (2) IV
4269	. 14	2	. 10	2	.09	3-4	Fe 1 8.75 (2) IV Cr 11 .30 (1)
4270			. 55	5			
4271	.39	1			. 15	2	Fe 1 .17 (7) III
4271			.97	2	. 79	2-3	Fe 1 .76 (8) II
4273	.46	1:	. 40	3	. 35	2-3	Fe II .31 (1)
4274					.81	2-3	Cr 1 .80 400 II
4275	. 23	2 n	. 2 8	2-3n	. 56	2	Cr 11 .56 (1)
4278	. 23	1	. 02	2-3n	.06	. 3	Fe II .13 (1) Fe I .23 (1)
4280	. 58	1	. 25	3-4	. 57	. 3	Cr II .34 (pred) Gd II .50 200
4282	. 29	1	.08	1	.57	2	Zr 11 .20 (6) Fe 1 .41 (6) III Mn 11 .50 (3)
4284	.40	2	. 14	2-3	. 19	2	Cr 11 .24 (2)
4285					.36	1	Fe 1 .45 (2) IV
4286			. 36	2-3	.47	1	Ti 1 .01 25 II Fe 1 .44 (1) Zr 11 .51 (5) Fe 1 .68 (1) Fe 1 .89 (1) Fe 1 .98 (1)
4287	.86	1:	.97	4	8.03	1-2	Ti 11 .89 (2)

TABLE V-Continued

			T			~	
λ	θ.	θ Aur		a² C Vn		Cr B	Identification
4290	.00	1-2	.08	5n	9.96	7	Cr 1 9.73 (350) II Ti 11 .22 (50)
4292	. 25	1	1.89	2	. 17	1-2n	Fe 1 .13 (pred) Mn 11 .28 (2) Fe 1 .29 (1)
4292			.81	3	120		
4294	.44	1:	.02	1n	.10	2	Ti II .10 (40) Fe I .13 (6) II
42 95			.01	1-2			
4296	.38	1	. 60	5n	.40	4n	Gd II .04 150 Fe II .56 (6)
4298					.06	1	Fe 1 .04 (2) IV
4299					.35	3	Fe 1 . 25 (7) III
4300	.01	1	. 20	4	.02	3	Ti 11 .05 (60) Mn 11 .21 (1)
4301			.78	3–4	2.14	3	Ti 11 .93 (15) Fe 1 2.19 (2) Ca 1 2.53 60r I
4303	.37	2	.30	4	.04	3	Fe II .18 (4)
4304					.71	1	Fe 1 .55 (1)
4305	.38	1:	. 27	1-2	.49	3	Fe 1 .46 (2) IV Sr 11 .46 40 Ti 1 .91 60 II
4306					. 65	1	
4308	.33	1			7.94	3	Ca 1 7.74 45 I Ti 11 7.86 (40) Fe 1 7.91 (8R) II
4309			.02	2n	.41	2-3	Dy 11 8 .62 100 Fe 1 .04 (2) Fe 1 .38 (2) IV Y 11 .62 (50)
4309			.97	1:			
4311			. 15	1:	0.75	1	Fe 1 0.78 (1)
4312	. 67	1	. 90	2-3	.81	3	Ti II .87 (35)
4314	.71	1		• • • • • • • • •	. 25	3	
4314			.95	2-3	5.91	3	Ti II . 98 (40) Fe I 5.09 (5) III Sc II 5.09 (30)

TABLE V--Continued

λ	θ Α	Nur	α² C	Vn	вС	Cr B	Identification
4316					. 04	1	
4317			.31	1-2	6.95	1	Ti 11 6.81 (1) Zr 11 .32 (12)
4318					. 52	1	Ca 1 .65 45 II
4319	. 66	1n	. 29	1	.49	1	Fe 1 .46 (pred)
432 0			.82	2-3	.98	4	Sc 11 .73 (20) Ti 11 .97 (1)
4323	.30	1:	.06	1n:	2.83	1:	La 11 2.51 (100)
4325					. 12	1n	Sc 11 .00 (20)
4326	. 14	2-3n	5.65	34	5.74	2-3	Fe i 5.77 (9) II Mn ii .71 (3)
4326					.94	2	Fe 1 .76 (2) Fe 1 7.10 (2) V
4328					.09	1	
4329			.25	1:	. 26	1:	
4330	.30	1	.35	4	. 47	4	Ті н .26 (0) Gd н .58 100 Ті н .71 (0)
4333	. 29	1					Zr п . 27 (15)
4334					. 70	12	
4337	.32	1:			. 70	3	Fe 1 .05 (5) II Ti 11 .32 [1] Cr 1 .57 30 I Ti 11 .92 (50)
4340	.48	50	. 54	40	. 44	20	$H\gamma$.47 (8)
4342	.39	1:			.37	1	
4344	. 40	1	3.85	4	. 29	3	Mn II .03 (1) Ti II .29 (2) Cr I .51 40 I
4345	.71	1			6.01	1	
4348	.42	1	7.48	2:	7.96	1-2	Мп п .48 (1)
4350	. 09	1:			.71	1:	Ti 11 .86 (1) Cr 1 1 .06 (20) I
4351	. 67	1-2n	. 68	3-4	.84	2	Fe II .77 (6) Cr I .77 (60) I Mg I .94 30 IV

TABLE V-Continued

λ	θ A	ur	a² C	Vn	βCı	В	Identification
1352					.70	1	Fe i .74 (4) IIIB V i .89 50 I
354	.43	1			.41	1 n	
355			.11	5	.12	2	Ca 1 . 10 25 III
356					.85	1-2	
357	.27	1	. 24	1-2		1	
358					. 59	1	Fe i .51 (2) IV Y ii .73 (30)
359	. 53	1	. 76	1-2	.78	1-2	Zr 11 .74 (10)
361	.28	1	. 47	34	.34	1-2	
363	.00	2	. 70	4-5	. 15	2	
364			,		. 62	1:	
365	.32	1	.71	1n	.86	1	Mn 11 .29 (1) Fe 1 .90 (1)
368	. 20	1	7.68	5	7.65	4n	Fe 1 7 .58 (2) IV Ti 11 7 .67 (15) O 1 .30 (10)
369	.40	1	. 53	3-4	. 60	4	Fe II .40 (*) Fe I .78 (3) III
371			.95	2n	.09	1	Zr II 0.95 (8) Cr I .28 (20) I
373					. 40	r	Cr i .27 (8) I Fe i .57 (2)
374	. 67	1:	.91	34	. 51	3nn	Sc II .46 (30) Fe I .50 (1) Ti II .83 (1)
375					.70	\mathbf{v}	Fe 1 .93 (5) I, II
376	.92	2n	7.18	1n	7.13	1	Fe 1 .78 (1)
379	.93	1	0.20	1-2n	0.48	2-3n	Mn II .74 (1) Zr II .77 (9) Mg I 0.39 (5)
382	.37	1					
384	.01	2n	3.97	3-4n	3.44	3	Fe I 3.55 (10) II
385	,		.35	2	4.90	2-3	Mg 11 4 64 (8) V 1 4 .73 125 II Cr 1 4 .98 20 I Fe 11 .39 (5)

TABLE V-Continued

λ	θ.	Aur	α² (C Vn	β	Cr B	Identification
4386			. 65	4-5	.76	2	Ті п. 86 (10)
4387	.43	1			.84	2	Fe i .90 (2) IV
4388			. 43	3			
4389	.98	1:				:	V 1 .99 100 II Mg 11 0 .59 (10)
4391	.82	1	. 10	5n	.13	3-4n	Fe I 0.96 (3) IV Ti II 0.98 (tr) Fe I .46 (1)
4393			. 51	2	.72	1	Ti 11 4.06 (2)
4395	.49	1 n	. 27	4n	.15	3n .	Ti II .04 (60) V 1 .24 80 II Fe I .29 (2) Fe I .51 (1)
4398			. 07	2–3n	7.73	1-2n	Y п .02 (50) Ti п .32 [1]
4400	.30	1:	9.69	2	9.61	3nn	Ti 11 9.77 (35) Fe 1.35 (1) Sc 11.38 (20) V 1.59 60 II Ti 11.63 (pred)
4401			.36	1	.37		Fe 1 .30 (3) Fe 1 .45 (2) Ni 1 .55 30 III
4403			.01	2-3	. 07	3	· · · · · · · · · · · · · · · · · · ·
4404			.70	5	.80	3	Fe 1 .75 (8) II
4406			.78	1	.73		V 1 .65 80 I
4407						2nn	V 1 .65 70 I Ti 11 .67 (1) Fe 1 .72 (2) III V 1 8 .21 70 I
4409	. 99	1:	. 67	5	. 26		Fe i 8.42 (4) III Fe i .12 (2) Ti ii .25 (tr) Ti ii .54 (tr)
4410					. 68	1	Fe i .72 (2) Ti ii 1.08 (15)
4411			. 65	1n	2.09	1	Ti II .95 (1)
4413	.36	1:	4.17	3-4n	. 51	2	
4414	.51	1			5.05	2-3	Fe I 5.13 (8) II

TABLE V—Continued

λ	0 1	Aur	α ² C	Vn	в	Cr B	Identification
4416	. 99	2	. 62	1n:	.74	1-:2	Fe II .81 (4)
4417			. 66	1:	.74	1-2	Ті п.72 (40)
4419	. 54	1n	. 10	2-3	8.99	1-2	Gd 11 .03 150 Ti 11 .34 (1) Mn 11 .78 (2)
4420			.90	1-2:	.87	1:n	• • • • • • • • • • • • • • • • • • • •
4422	. 24	1n	. 13	4n	. 51	3-4n	Ti 11 1.95 (1) Fe 1 .57 (4) III Y 11 .59 (40)
4424	.80	1	. 67	4n	.00	2	Fe 1 3.86 (2)
4425					. 47	1	Ca 1 .43 50 I Fe 1 .66 (1)
4427	.96	1	.38	2-3	.38	3nr	Fe 1 .31 (5) I Ti 11 .89 (pred) Mg 11 8 .00 (7)
4430	. 67	1-2	.42	3-4n	.12	3-4	Fe i .20 (2) IV Fe i .62 (4) III
4432	. 43	1:			1.82	1	Ti 11 .08 (tr)
4433		,	, ,		. 26	2n	Fe 1 .22 (2) IV Fe 1 .39
4434	. 00	1	.01	3-4			Mg 11 3.99 (8)
4436	. 15	1	5.52	4-5	5.42	4–5	Ca 1 4.95 60 I Fe 1 5.15 (2) IIA Ca 1 5.67 40 I Mg 11.48 (5)
4438			.08	1:	. 01	2	
4441					.33	2n	Fe 1 0.84 (1) Fe 1 0.97 (2) Ti 11 .73 (pred)
4442	.42	1:					Zr 11 .99 (25)
4443			.39	6	.85	3n	Fe 1 .20 (3) III Ti 1 .80 (50)
4444	.79	1:	. 51	. 3			Ti 11 .56 (1)
4445			. 91	2	6.01		Fe 1 6.85 (2) Fe 1 7.14 (2) IV
4447	.70	1:	.68	4-5	. 67	2n	Fe i .73 (5) III
4449	.78	1:			. 53	1	

TABLE V-Continued

λ	θ.	Aur	α ² C	Vn	βC	т В	Identification
4450			. 75	3n	.39	3	Fe 1 .32 (2) Ti 11 .49 (10)
4451	. 58	1:					
4453					.02	1	
4454			.91	2-3n	96	3n	Fe 1 .39 (3) III Fe 1 .67 (1) Ca 1 .77 80 I Zr 11 .80 (10) Fe 1 5 .04 (2)
4455	. 50	1					Ca I .87 40 I Ca I 6.61 10 II
4457	. 22	1:	.24	1-2:			Ti 11 6.64 (tr) Zr 11 .42 (8)
4458					. 15	1	Fe 1 . 10 (2) Mn 1 . 26 12 II
4459					. 16	2	Ni 1 .05 20 III Fe 1 .13 (5) III
4461	.34	2	.42	3	.57	3-4	Fe I . 21 (2) Zr II . 23 (10) Fe I . 66 (4) I Fe I 2 . 01 (3) IV
4463					.35	1	
4464	. 60	1	.43	1:	.59	3	Ti 11 .46 (1) Mn 1 .68 8 II Fe 1 .77 (2) IV
4466	.04	1			. 57	2	Fe 1 .56 (5) II Fe 1 .94 (2)
4467	. 40	1				· · · · · · · · · · · ·	
4468			.34	2-3n	. 55	1-2	Ti 11 .49 (50)
4469					.16	1–2	Ti II . 15 (tr) Fe I . 39 (4) IV
4470	.89	1:	.94	3	1.10	2	<i>Ti</i> 11 .86 (tr)
4472	. 95	1n	3.17	3	. 69	2	Fe 1 .71 (2) Fe 11 .91 (pred)
4474					. 46	1n	
4476	. 10	1:	5.25	1	5.94	2	Fe I .02 (7) III
4477			. 22	1n:			
4478	. 53	1	.70	1:	. 19	1-2	Mn II .74 (1)

TABLE V-Continued

λ	θ Α	ur	α ² (O Vn	β	'r B	Identification
4481	. 22	5	. 25	8	. 24	4-5	$Mg \text{ II} \left\{ \begin{array}{c} .13 \\ .33 \end{array} \right\} (100)$
4482					.60	1	Fe 1 .18 (3) I Fe 1 .26 (4) Fe 1 .75 (2)
4483	.97	1	. 60	2-3			
4484					.81	1n	Fe 1 .24 (3) IV
4485			.98	1-2			Fe 1 .67 (2)
4486	. 66	1					
4488					.16	1	Fe 1 .13 (2) Ti 11 .32 (15)
4489	.18	2	8.98	3-4n	.11	2	Fe 1 8.92 (2) IV Fe 11 .21 (4)
4491	. 44	1	. 53	2	. 54	1	Fe m .41 (4)
4493	. 79	1	•		. 22	1:	Ті п. 54 [1]
4494			.11	3n	52	1-2	Zr 11 .41 (8) Fe 1 .57 (5) III
4497	.14	1	. 14	1:	6.41	1	Cr 1 6.86 25R I Zr 11 6.96 (15)
4499	.44	1			8.98	1	Cr 11 8:73 (6 III)
4500	. 99	1-2	.80	3-4n			
4501					. 25	3n	Ті н. 27 (40)
4503	.39	1	. 16	3-4n			
4505	. 10	1			4.65	1	Cr 11 4.54 (pred) Fe 1 4.85 (2)
4507			. 06	2	6.68	2n	Ti 11 6.74 (pred)
4507	. 96	2n	8.16	2-3	8.82	1-2n	Fe 11 8.29 (8)
4509			.87	3			
4512	. 04	1n	1.99	3	1.93	2	
4514	. 19	1	.38	4-5	. 66	3	Fe 1 .19 (2)
4515	.30	3-4	. 55	4	.43	3	Fe 11 .34 (6)
4517	.82	1:			. 29	1	Fe 1 .53 (2)

TABLE V-Continued

λ	. 6	\ur		C Vn	1 80	Cr B	Identification
4518			.75	1	. 52	1	Ti 1 .03 50 II
4519		1	0.23	4	0.20	2-3	Fe 11 .24 (6)
4522	. 61	1	.68	5-6	.79	4	Fe II . 64 (6) Ti I . 80 40 II
4524			.87	1	5.01	3	Fe 1 5.15 (3) IV Ti 11 5.25 (pred)
4526	.18	1			.92	1-2n	Cr i .46 (15) II Fe i .57 (2)
4528					.71	1-2	Fe 1 .62 (7) II
4529			.76	1	.55	1	Fe 1 . 56 (1) Fe 1 . 68 (2)
4531	.90	1:			.10	2	Fe 1 .16 (5) II
4533	.84	1	.97	6	.30	1	Ti 1 .25 80 II Ti 11 .97 (30)
4534	. 92	1			. 13	3	Fe II . 18 (*) Mg II . 26 (4)
4536			.44	1:	5.62	2	Ti 1 5 . 57 50 II Ti 1 5 . 92 40 II Ti 1 . 05 40 II
4537	.48	1:	8.04	1			
4539	. 56	1-2	.74	2-3	.71	2-3	
4541	. 51	1	. 62	4	.08	2	Fe п .33 (1) Fe п .53 (*)
4544			.87	1n	.11	2n	Ti II .03 (tr) Cr II .69 (pred) Ti I .70 30 II
4545	.36	1:			.90		Ti 11 .16 (tr)
4546			. 95	1-2n	<i></i>		
4549	. 45	3-4	. 58	7-8	.61	6	Fe II .48 (4) Ti II .62 (60)
4552	.11	1	. 02	1:n	. 50	1	Ti 11 . 25 (pred) Ti 1 . 46 35 II Fe 1 . 55 (2)
4555	.38	2–3n	· · · · · · · · · · · · · · · · · · ·		3.91	3n	Zr 11 .96 (12) Ba 11 4.04 1000R Cr 11 5.00 (2)
4555			.89	4n	6.21		Fe II .90 (6)

TABLE V-Continued

λ	θ A	Aur	a² (2 Vn	βC		Identification
4558	.81	45	. 57	4	. 65	4	Cr II .66 (20) Cr II .78 (pred)
4561	. 59	1			0.84	In	Fe I 0.11 (2)
4564	.28	1	3.66	2-3	3.77	2-3	Ti 11 3.76 (30)
4566	.02	. 1	5.71	3	5. 62	2	Fe 1 5.32 (2) Fe 1 5.68 (2) Cr 11 5.78 (2)
4568	. 49	1:					Ti 11 8.31 [1]
4569			. 44	1	. 67	1	
4572	. 16	1:n	. 44	5	1.81	4n	Ti II 1.97 (50)
4574					.85	1	Fe 1 .73 (2)
4576	.34	1			.34	2	Fe II .31 (4) Fe II .34 (10)
4579	.89	1			. 67	2n	Fe 1 .34 (1) Fe 1 .83 (1) Cr 1 0 .06 (20) I Ti 11 0 .47 [1]
4581					.46	1	Ca 1 .41 40 II Fe 1 .53 (2)
4582					. 57	1	Fe II .83 (*)
4583	.79	3n			.83	2-3	Ті п. 45 [1] Fe п. 84 (8)
4585					. 90	1-2	Ca 1 .87 50 II V 1 6 .36 50 I
4588	. 16	2-3n			.36	3	Cr 11 .21 (20) Cr 11 .40 (pred)
4590					.00	1 .	Cr 11 9.89 (pred) Cr 11 9.94 (1) Ti 11 9.96 (2)
4592	. 10	1			. 25	2-3	Cr 11 . 06 (2) Fe 1 . 66 (4) IB
4593	. 99	1:			. 79	1-2	V 1 4 . 10 60 I
4596	.18	1			5.89	12	Fe I 5.37 (2) Fe II 5.69 (*) Fe I .06 (2)
4598	. 89	1			.06	1-2	Fe 1 .14 (2)

TABLE V-Continued

λ	0	Aur	α2 (C Vn	вС	er B	Identification
4600	.85	1:			1.10	2–3n	Cr 1 .75 20 I Fe 11 1.38 (*) Fe 1 2.01 (2)
4602					.91	1	Fe i .95 (4) IB
4604	.94	1					
4605					. 60	1-2n	Fe 1 . 25 (2)
4607					. 62	2	Fe 1 .66 (4) V
4609		,			. 49	1	
4612	.30	1:			1.52	2-3	Fe i 1.29 (4) III
4613					.38	1	Fe 1 .22 (3) V Cr 1 .37 15 I
4614	. 36	1:					
4616	. 73	2–3			.37	3	Cr 1 .14 (25) I Cr 11 .67 (3)
4619	. 33	2			.08	3	Fe 1 8.76 (2) Cr 11 8.82 (10) Fe 1 .30 (4) IV
4621	.91	23n			.91	1n	
4625					.28	2-3n	Fe i .06 (4) IV
4626	. 04	1n					Cr i .19 (20) I
4628					. 25	1	
4629	.31	2-3	, ,		.43	1	Fe II .33 (4) Ti I .34 15 III
4632					.39	1	Fe i .92 (3) III?
4634					.02	2-3n	Cr 11 .09 (10)
4635	. 18	2–3n					Fe 11 .35 [1]
4638	. 54	1			7.73	2	Fe i 7.51 (4) IV Fe i .02 (4) IV
4640					. 26	1n	Ti 1 9 .94 15 III
4641	. 25	12					
4643	.38	1			. 66	1:	Fe I .47 (3)
4646	. 26	1	· · · · · · · · · · ·		. 57	3	Cr 1 . 17 40 I
4648					. 43	1-2	Ni 1 .66 15 III Fe 11 9 .32 (*)

TABLE V-Continued

λ	0 /	Nur	α² () Vn	вС	Tr B	Identification
4651	. 39	1:			. 55	2	Cr 1 .30 (20) I
4654	.08	1:			. 50	3	Fe 1 .50 (4) II? Fe 1 .64 (3) V
4656		<i></i>			. 87	3n	Fe m 7.01 (*)
4657	. 07	1					Ti 11 .21 (tr)
4659	.41	1	,				
1663	. 75	2			. 57	3	Fe п .72 (*)
4666	.88	2			. 76	4	Fe II .75 (*) Fe I 7.46 (4) V
4670	.02	2					Sc 11 .40 (10)
1673	. 16	2					

TABLE VI ELEMENTS PRESENT IN A-TYPE STARS

	η Leo	υSgr	a Cyg	e Aur	a Lyr	γ Gem
<i>H</i>	Stronger than in a Cygni; much weak- er than in Vega and Sirius	Weaker by far than in other standard stars	Weak and narrow	Weak and narrow	Very wide and strong	Very wide and strong
He 1	All strong lines present but not out- standing	Lines very strong; prob- ably vari- able in in- tensity	λ 4471 present and un- blended on three-prism plates	Absent	λ 4471 un- blended on three-prism plates; slightly < α Cygni	λ 4471 as in Vega
C 1	Absent	Absent	Absent	Lines in 4770 region present; weaker than in a Persei	Absent	Absent
С 11	Faintly present	Present; of moderate intensity	Doubtfully present	Absent	Absent	Absent
N 11	Faintly present	Present; rather weak	Absent	Absent	Absent	Absent
<i>O</i> 1	Faintly present	Absent	Doubtfully present	Absent	Doubtfully present	Faintly present
0 п	Doubtful; possibly a trace	Faintly present	Absent	Absent	Absent	Absent
Мд 1	Singlets faintly present; strong triplets not in region ob- served	Singlets doubt- fully pres- ent	Rather weak	Strongest singlet lines of intensity 2	Strongest singlet lines of intensity 1	Considerably stronger than in a Lyrae
Мд 11	λ 4481 strong; weak high- excitation lines also present	As in η Leonis	As in η Leonis	λ 4481 strong; fainter lines not observed	See & Aurigae	See η Leonis
Al 1	Ultimate doublet rather faint	Probably somewhat weaker than in η Leonis	See η Leonis	Lines of considerable strength	Of moderate intensity	As in a Lyrae
Al 11	Absent	Absent	Probably faint- ly present	Absent	Absent	Absent

TABLE VI-Continued

	15 U Ma	a And	τ° Eri	φ Her	€ Aur	β Cr B
<i>H</i>	Considerably weaker than in Vega	Wide and strong	Wide and strong	Wide and strong	Wide and strong	Considerably weaker than in Vega
He 1	Absent	Principal lines present but faint	Principal lines present but faint	Principal lines present but faint	Probably absent	Absent
C 1	Spectral region not included	Spectral region not included	Spectral region not included	Spectral region not included	Spectral region not included	Spectral region not included
С п	Absent	Present; rather weak	Present; rather weak	Present; rather weak	Absent	Absent
<i>N</i> 11	Absent	Doubtfully present	Absent	Absent?	Absent	Absent
<i>O</i> 1*	Uncertain because of blends	Absent	Uncertain because of blends	Uncertain because of blends	Presence very doubtful	Uncertain because of blends
0 п	Absent	Absent	Absent	Absent	Absent	Absent
Mg 1	Probably somewhat stronger than in γ Geminorum	Singlets absent	Singlets rather weak	Singlets rather weak	Singlets faint- ly present	Somewhat stronger than in θ Aurigae
Mg 11	See & Aurigae	λ 4481 strong; trace of fainter lines	See a Andromedae	See a Androm- edae	See a Androm- edae	See & Aurigae
Al 1	See & Aurigae	Not in range measured	Not in range measured	Not in range measured	Presence doubtful	Not in range measured
Al 11	Absent	Absent	Absent	Absent	Absent	Absent

^{*} Strong lines of N I and O I have been observed in the infra-red region of several A-type stars by Merrill (Ap. J., 79, 183, 1934).

TABLE VI-Continued

	η Leo	υ Sgr	a Cyg	e Aur	a Lyr	γ Gem
Si I	Absent	Absent	Absent	Absent	λ 4103 probably masked in wing of Hδ	See a Lyrae
Si ii	λλ 4128–4130 outstanding fainter lines also present	See η Leonis; $\lambda\lambda 4128-4130$ almost as strong as $H\delta$	See Leonis	λλ 4128-4130 strong	See & Aurigae	See & Aurigae
Si 111	λ 4552 may be faintly pres- ent	May be present	Absent	Absent	Absent	Absent
S п	Faintly present	Well marked; stronger than in any other star	A trace may be present	Absent	Absent	Absent
А п	Probably absent	A number of unblended lines; defi- nitely pres- ent	Absent	Absent	Absent	Absent
Ca 1	λ 4226 faintly present	Probably absent	λ 4226 faintly present	λ 4226 strong	λ 4226 of moderate intensity	As in a Lyrae
Ca 11	For intensity of K line see Table I	See η Leonis	See η Leonis	See	See Reonis	See η Leonis
Sc 11	Rather weak	Rather weak	Slightly > η Leonis	Very strong	As in α Cygni	About as in a Cygni
<i>Ti</i> 1	Absent	Absent	Absent	Absent? Trace of λ 4533 suspected	Absent?	Probably faintly present
<i>Ti</i> 11	For behavior of λ 4501 see Table I	See	See η Leonis	See η Leonis	See η Leonis	See η Leonis
<i>V</i> 1	Absent	Absent	Absent	Probably absent	Probably a trace	As in a Lyrae
V 11	Faintly present	Absent	Rather weak; stronger than in η Leonis	Well marked	Absent	Present; rather weak

TABLE V-Continued

	15 U Ma ·	α And	τº Eri	φ Her	θ Aur	β Cr B
Si I	λ 4103 of moderate intensity	Absent?	See a Lyrae	See a Lyrae	Possibly faint- ly present	See a Lyrae
Si 11	Moderately strong	Moderately strong	All lines strong	All lines present but $< \tau^9$ Eridani	λλ 4128-4130 strong; fainter lines doubtful	Strong lines present but faint
Si 111	Absent	Absent	Probably faint- ly present	As in τ ⁹ Eri- dani	Absent	Absent
S II	Absent	Absent	Faintly present	Probably a trace	Absent	Absent
А п	Absent	Absent	Absent	Absent	Absent	Absent
Ca 1	See & Aurigae	Absent	Absent	λ 4226 may contribute to very faint blend	λ 4226 contributes to faint blend	λ 4226 present as weak line
Ca 11	See η Leonis	See η Leonis	See η Leonis	See Leonis	See Reonis	See Leonis
Sc 11	Blended; probably of moderate intensity	Probably absent	May be faintly present	As in α Lyrae	Absent?	Blended; prob- ably present
Ti 1	Present but rather weak	Absent	Absent	Absent	Absent	Faintly pressent
Ti II	See η Leonis	See η Leonis	See η Leonis	See η Leonis	See η Leonis	See Leonis
V 1	Faintly present	Absent	Absent	Absent	Absent	Probably contributes to blend
V 11	Of moderate intensity	Absent	Possibly a trace	Absent	Absent	Possibly faint- ly present

TABLE VI-Continued

	η Leo	υ Sgr	а Суд	€ Aur	a Lyr	ү Сет
$Cr 1 \dots$	Strongest line faintly pres- ent	See η Leonis	See η Leonis	Moderately strong	λ 4254 prob- ably contrib- utes to blend	As in & Aurigae
Cr II	For behavior of λ 4558 see Table I	See η Leonis	See 7 Leonis	See Leonis	See η Leonis	See η Leonis
<i>Mn</i> 1	Ultimate lines near \(\lambda\) 4030 probably faintly pres- ent	Probably absent	Faintly present	Ultimate lines of moderate intensity	Faintly present	Of moderate intensity
Mn 11	Present but faint	Most lines faintly present; $> \eta$ Leonis	Absent	Absent	Probably faintly pres- ent	Doubtful
Fe 1	Lines ⋝7 on Burns's scale present	λ 4045 faintly present; a few other strong lines probably blended	Lines >6 on Burns's scale present	Lines 3 on solar scale present	Lines >5 on Burns's scale present	Lines 3 on Burns's scale present
Fe 11	For behavior of λ 4233 see Table I	See η Leonis	See	See η Leonis	See η Leonis	See η Leonis
Ni 1	Absent	Absent	Faintly present	Possibly a trace	Probably absent	May contrib- ute to faint blends
Ni 11	Fairly strong	Very strong	As in η Leonis	Of moderate - intensity	Probably faintly present	Present but rather weak
Zn 1	Not observed; out of spec- tral range	Absent	See Reconis	Probablyfaint- ly present; weaker than in sun	See η Leonis	See η Leonis
Sr II	For behavior of λ 4215 see Table I	See η Leonis	See η Leonis	See Reonis	See Leonis	See
Y 11	Present but rather weak	As in η Leonis	About as in η Leonis	Very strong	Faintly present	Somewhat stronger than in a Lyrae

TABLE VI-Continued

	15 U Ma	α And	τº Eri	φ Her	θ Aur	β Cr B
<i>Cr</i> 1	Well marked	Absent	Faintly present	Faintly present	Faintly present	Fairly strong
Cr II	See Reonis	See Reconis	See Reonis	See η Leonis	See η Leonis	See Reconis
<i>Mn</i> 1	Strong	Faintly present	Possibly a trace	Intermediate in intensity	Rather weak	Moderately strong
Mn 11	Absent	Well marked	Probably a trace	Well marked	Almost all lines faintly present	Probably
Fe 1	Lines >2 on solar scale present	Possibly a trace of \$\lambda 4045\$	A few of the strongest lines faintly present	Lines >5 on Burns's scale present	A half-dozen of the strong- est lines faintly pres- ent	Lines >2 on * solar scale present
Fe 11	Stronger than in Vega and γ Gemi- norum	See Reconis	See 7 Leonis	See Reconis	See η Leonis	Weaker than in 15 v Ma- joris
Ni 1	May contrib- ute to blends	Absent	Doubtful star line agrees in position with λ 4401	Probably faintly present	Absent	May contrib- ute to blends
Ni 11	Probably con- tribute to blends	Faintly present	Absent	Faintly present	Probably present	May contrib- ute to blends
Zn 1	See η Leonis	See Leonis	See η Leonis	See Leonis	See Leonis	See η Leonis
Sr 11	See η Leonis	See η Leonis	See Reonis	See η Leonis	See η Leonis	See Reonis
У 11	Strong	Possibly a trace	Faintly present	Strong	Faintly present	Probably faintly present

TABLE VI-Continued

	η Leo	υ Sgr	a Cyg	e Aur	a Lyr	γ Gem
Zr 11	Probably a trace	Absent	Faintly present	Very strong	Faintly present	Probably slightly stronger than in a Lyrae
За 11	Absent	Absent	Absent	May be faintly present	Absent	Rather faint
a 11	Absent	Absent	Absent	Probably faintly pres- ent	Possibly a trace	Possibly a trace
Се 11		e are a number of 1, plates of highe				
Cu 11	Absent	Absent	Absent	Absent?	Absent	Absent?

TABLE VI—Continued

	15 U Ma	a And	τ° Eri	φ Her	θ Aur	β Cr B
\overline{Zr} II	Moderately strong	Absent	Trace ?	All of strong- est lines present	Probably a trace	Rather weak
Ва п	Well marked	Absent	Doubtful contributor to blends	Faintly present	Probably contributes to blend	Probably contributes to blend
<i>La</i> 11	Definitely present; rather faint	Absent	Absent	Absent	Absent	Absent
Се 11						
Eu 11	Absent?	Absent	Possibly present	Possibly present	Present?	Very strong

An examination of the behavior of the elements in such heterogeneous A0 stars as Vega, a Andromedae, τ^9 Eridani, θ Aurigae, and α^2 Canum Venaticorum shows how difficult it is to devise a satisfactory system of classification. No two of the foregoing spectra are at all similar, but even these six examples do not exhaust all the possibilities. To cite two other examples, the stars 21 Persei and BS 1732, both of types A0, have certain peculiarities quite different from any of the standard stars. In the spectrum of 21 Persei Sr 11 4077 is strong and lines of Mn 11 and Eu 11 are outstanding. The general features of the spectrum of BS 1732 are similar to that of τ^9 Eridani, but Si 111 4552—which is vanishingly weak in the few A0 stars in which it is observed at all—is actually stronger than in the B8 supergiant β Orionis. The spectrum of BS 1732 is variable and the Si 111 line probably has a variable intensity.

10. From the foregoing discussion it seems safe to conclude that there is some physical factor other than temperature and surface gravity concerned in the production of the spectra of the A stars and that the additional factor is probably variable effective abundance in a number of the elements observed, if not in all of them.

I am indebted to Miss Vivian Peterson for most of the wave-length reductions and for the careful typing of the manuscript.

SUMMARY

A qualitative description of the A-type spectra brighter than magnitude 5.5 is given. Definite evidence is found for the presence of a physical variable in addition to temperature and surface gravity. It seems very probable that this additional variable is the effective abundance of the elements.

YERKES OBSERVATORY, WILLIAMS BAY, WIS.

June 27, 1934