DAY2

Introduction to NGS technologies and library preparation

Chiara Batini, cb334@le.ac.uk

http://www.ncbi.nlm.nih.gov/ https://gold.jgi.doe.gov/

from http://sulab.org/2013/06/sequenced-genomes-per-yea

2004: NHGRI launches '\$1000 genome' grants

Sequencers: how they were and what they were used for

platform	# reads	max read length	de-novo assembly
Roche 454 – 2005	200K	110bp	metagenomics
Illumina (Solexa) GA – 2006	30M	35bp	RNA-seq
ABI SOLID – 2007	100M	35bp	ChIP-seq
IonTorrent PGM – 2010	3M	100bp	re-sequencing
TOTAL CHET CIVI ZOTO	3141	1000p	amplicon-seq

Sequencers: read length

250-300bp 400bp 1kb

Sequencers: the real-time generation

Pacific Biosciences (PacBio) - 2010

Nanopore MinION - 2014

Sequencers: size and output

Illumina sequencing technology (1)

Sequencing by synthesis, 4 modified dNTPs together, imaging support: slide

Illumina sequencing technology (2)

Illumina sequencing technology (3)

IonTorrent sequencing technology (1)

Sequencing by synthesis, 1 nonmodified dNTP at the time, pH detection support: bead/chip

from https://www.thermofisher.com/uk/en/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-technology.html

IonTorrent sequencing technology (2)

from https://www.thermofisher.com/uk/en/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-technology.html

Sequencers: error rates and patterns

Instrument	Primary Errors	Single-pass Error Rate (%)	Final Error Rate (%)
ABI 3730xl (capillary)	substitution	0.1-1	0.1-1
Roche 454 – All models	indel	1	1
Illumina – All models	substitution	~0.1	~0.1
Ion Torrent – all chips	Indel	~1	~1
Oxford Nanopore	deletions	≥4*	4*
PacBio RS	Indel	~13	≤1

from http://www.molecularecologist.com/next-gen-fieldguide-2014/

NGS applications

Genomic DNA:

- WGS (whole genome sequencing): population-scale; single-cell
- WES (whole exome sequencing)
- custom enrichment
- amplicon-seq
- RAD-seq (restriction-site-associated DNA): very useful for organisms lacking reference genomes

De novo assembly

Overlap reads by sequence, into a single contiguous sequence (Contig)

Fill gaps using known contig end sequences

Finished chromosome sequence

What does DNA-seq tell you

- Calling of known polymorphisms
- Identification of novel polymorphism (SNPs, indels etc)
- Genomic rearrangements, large deletions and insertions
- What the genome of your sample looks like (genome assembly, chromosome assembly)

NGS applications

RNA-seq:

- strand-specific RNA-seq protocols
- single-cell transcriptomics
- Fluorescent in situ RNA seq (FISSEQ): it allows the characterization of the singlecell transcriptomics and the localization of the transcripts within the cell
- CaptureSeq
- Native elongating transcript seq (NET-seq)

RNA-seq

Shear DNA strands by sonicating cell lysate Add bead-attached antibodies to immunoprecipitate target protein precipitate unlink protein; purify DNA sequencing map to genome ATGCCTGGACCGTG

ChIP-seq

Location-based techniques ChIP-seq: protein-DNA interactions; ChIP-exo (down to nucleotide level) protein-RNA, RNA-DNA, DNA-DNA interactions

from http://www.mdpi.com/2079-7737/2/1/378/htm

Diagnostic tools in clinical laboratories; spreading in forensics

Illumina HiSeq X Ten: a human genome for less than \$1000? Personalized medicine is just around the corner...

So, which is the best technology?

https://docs.google.com/spreadsheets/d/1eoWVtwKvnbV8MaRb9hzCSpGtEjazO0XTt3a8TbPG4dY/edit?pli=1#gid=0

Good support and communication are essential

So, how do we get our DNA ready to be sequenced then?

DNA source and quantity

non-degraded, RNA-free, high quality DNA quality can be checked with nanodrop, specific ratios are suggested:

260/280: 1.7-2.0

amplicon seq

260/230: >2

for quantification other methods are suggested [Qubit, picogreen]

whole genome 2ug for paired end, 20ug for mate pair Exome 6ug or more

custom enrichment min 5ug, more depending on the target size

a few ng per amplicon may be enough, since PCR will

increase the concentration

library prep - shearing

modified from Mardis 2008 Annu Rev Genomics Hum Genet 9:387-402

Two main methods are used:

- Sonication: hydrodynamic shearing using acoustic energy; bubbles are formed in solution, when they explode they break the DNA
- Enzymatic reaction: enzymes randomly cut the dsDNA in a time-dependent manner

library prep – adapter ligation and barcoding

modified from Mardis 2008 Annu Rev Genomics Hum Genet 9:387-402

- adapters: 30-50bp fragments which contain primer sites for amplification and are needed to link the fragment with the support (slide, bead)
- barcodes/indexes: 6-10bp fragments which carry a unique sequence; they are used to distinguish samples run in the same lane/chip
- Adapters and barcodes are combined into one fragment

library prep – size selection

Needed to select fragments of the right length from a mixture of fragments generated by the fragmentation step: it is usually 200-300bp for paired end sequencing with Illumina, but it may vary depending on the read length for 454 and IonTorrent

library prep – amplification

 Amplification: needed to increase the concentration of the fragments which positively incorporated adapters

modified from Mardis 2008 Annu Rev Genomics Hum Genet 9:387-402

library prep –quantification

 Quantification: needed to tune the quantity of template for the run – usually performed with the Agilent Bioanalyzer

695.4

Overall Results for sample 3: <u>lib pool3 1:15 01</u>

Number of peaks found: 2 Corr. Area 1: Noise: 0.2

Peak table for sample 3: <u>lib pool3 1:15 01</u>							
Peak		Size [bp]	Conc. [pg/µl]	Molarity [pmol/l]	Observations	Area	
1	4	35	125.00	5,411.2	Lower Marker	83.8	
2		282	335.56	1,802.2		460.4	
3		10,380	75.00	10.9	Upper Marker	278.6	
4		12,706	0.00	0.0		6.2	

clonal amplification – ePCR (Roche 454/Ion Torrent)

modified from Mardis 2008 Annu Rev Genomics Hum Genet 9:387-402

emulsion PCR: ideally each drop contains a single fragment, PCR reagents and a bead with primers [beads may happen to be polyclonal, will be discarded after sequencing]

each bead will have one million copies of each fragment on its surface

an enrichment step is needed afterwards in order to increase the concentration of beads with attached fragments

clonal amplification – clustering Illumina

modified from Mardis 2008 Annu Rev Genomics Hum Genet 9:387-402

isothermal amplification: temperature is kept constant but reagent are cycled to perform amplification, not very efficient (on purpose)

clonal amplification – clustering Illumina

modified from Mardis 2008 Annu Rev Genomics Hum Genet 9:387-402

clusters usually contain around 1000 identical copies of a single template optimal cluster density will provide optimal sequencing output

A few videos...

Illumina

https://www.youtube.com/watch?v=womKfikWlxM

IonTorrent

https://www.youtube.com/watch?v=ZL7DXFPz8rU

PacBio

https://www.youtube.com/watch?v=NHCJ8PtYCFc

Oxford Nanopore

https://www.youtube.com/watch?v=3UHw22hBpAk

useful references and links

Mardis 2008 Annu Rev Genomics Hum Genet 9:387-402

Metzker 2010 Nat Rev Genet 11:31-46

http://seqanswers.com/forums/index.php

http://www.frontlinegenomics.com/1649/next-generation-sequencing-how-and-why-we-got-here/

http://thewestheimerinstitute.org/pubs/The%20challenges%20of%20sequencing%20by%20synthesis.pdf

http://www.molecularecologist.com/next-gen-fieldguide-2014/

Thanks to:

Pierpaolo Maisano Delser Rita Neumann James Eales

Local Realignment Base quality recalibration Variant Mapping Calling Duplicate removal Data QC Data QC

Mapping

Local Realignment

Base quality recalibration

Duplicate removal

Variant Calling