

基于R软件的统计模拟

奚潭 (南京财经大学统计系2006级)

主要内容

- 1. 统计模拟的基本概念
- 2. 赶火车问题
- 3. R软件的统计模拟功能
- 4. 应用R软件模拟验证大数定律
- 5. 应用R软件模拟验证中心极限定理

一、统计模拟的基本概念

(一) 统计模拟的定义

统计模拟即是计算机统计模拟,它实质上是计算机建模,而这里的计算机模型就是计算机方法、统计模型(如程序、流程图、算法等),它是架于计算机理论和实际问题之间的桥梁。它与统计建模的关系如下图。

一、统计模拟的基本概念

- (二)统计模拟方法
 - 一般地,统计模拟分类如下:

若按状态变量的变化性质分为连续随机模拟和离散随机模拟。

而按变量是否随时间变化又可分为动态随机模拟和静态随机模拟。

常用的统计模拟方法主要有以下几种:

- 1. 蒙特卡罗法
- 2. 系统模拟方法
- 3. 其它方法:包括Bootstrap(自助法)、MCMC(马氏链蒙特卡罗法)等。

一、统计模拟的基本概念

(三) 统计模拟的一般步骤

一列列车从A站开往B站,某人每天赶往B站上车。他已经了解到火车从A站到B站的运行时间是服从均值为30min,标准差为2min的正态随机变量。火车大约下午13:00离开A站,此人大约13:30到达B站。火车离开A站的时刻及概率如表1所示,此人到达B站的时刻及概率如表2所示。问此人能赶上火车的概率有多大?

表1: 火车离开A站的时刻及概率

火车离站时刻	13:00	13:05	13:10
概率	0.7	0.2	0.1

表2: 某人到达B站的时刻及概率

人到站时刻	13:28	13:30	13:32	13:34
概率	0.3	0.4	0.2	0.1

——问题的分析——

这个问题用概率论的方法求解十分困难, 它涉及此人到达时刻、火车离开站的时刻、火 车运行时间几个随机变量,而且火车运行时间 是服从正态分布的随机变量,没有有效的解析 方法来进行概率计算。在这种情况下可以用计 算机模拟的方法来解决。

- →进行计算机统计模拟的基础是抽象现实系统的数学模型
- →为了便于建模,对模型中使用的变量作出如下假定:

T: 火车从A站出发的时刻;

 T_2 : 火车从A站到B站的运行时间;

T₃: 某人到达B站的时刻;

 μ : 随机变量 T_2 服从正态分布的均值;

 σ : 随机变量 T_2 服从正态分布的标准差;

→为了分析简化,假定13时为时刻t=0,则变量 T_1 、 T_3 的分布律为:

T_1 / \min	0	5	10
P(t)	0.7	0.2	0.1

$$\frac{T_3}{\min}$$
 28 30 32 34 $P(t)$ 0.3 0.4 0.2 0.1

→此人能及时赶上火车的充分必要条件为: $T_1+T_2>T_3$,所以此人能赶上火车的概率模型为: $p\{T_1+T_2>T_3\}$ 。

→R软件求解的总算法:

- ①借助区间(0,1)分布产生的随机数,对变量 T_1 、 T_3 概率分布进行统计模拟;
- ②根据变量 T_1 、 T_2 、 T_3 概率分布及模拟程序、命令产生n个随机分布数;
- ③使用随机产生的*n* 组随机数验证模型中的关系表达式是否成立;
- ④计算n 次模拟实验中,使得关系表达式成立的次数k;
- ⑤当 $n \to \infty$ 时,以 $\frac{k}{n}$ 作为此人能赶上 火车的概率p 的近似估计;

→进入演示


```
windows(7, 3)
                                     #括号内程序重复100次
prb = replicate(100, {
  x = sample(c(0, 5, 10), 1, prob = c(0.7, 0.2, 0.1))
  y = sample(c(28, 30, 32, 34), 1, prob = c(0.3, 0.4, 0.2, 0.1))
  plot(0:40, rep(1, 41), type = "n", xlab = "time", ylab = "",
     axes = FALSE
  axis(1, 0:40)
  r = rnorm(1, 30, 2)
  points(x, 1, pch = 15)
  i = 0
  while (i \leq r) {
    i = i + 1
     segments(x, 1, x + i, 1)
     if (x + i >= y)
       points(y, 1, pch = 19)
     Sys.sleep(0.1)
  points(y, 1, pch = 19)
  title(ifelse(x + r \le y, "poor... missed the train!", "Bingo!
catched the train!"))
  Sys.sleep(4)
                                                    →讲入模拟
  X + r > V
})
mean(prb)
```

三、R软件的统计模拟功能

1、R软件优秀的随机数模拟功能

生产某概率分布的随机数是实现统计模拟的前提条件,而使用R命令可以生成以下常用分布的随机数:

分布	产生随机数序列命令	参数设置
binomial	rbinom()	n, size, prob
chi-squared	rchisq()	n, df, ncp
exponential	exp()	n, rate
F	F()	n, df1, df2, ncp
normal	norm()	n,mean,sd
Poisson	pois()	n, lambda
Student's t	t()	n, df, ncp
unifom	unif()	n, min, max

三、R软件的统计模拟功能

2、优良的编程环境和编程语言

R所拥有的好的兼容性、拓展性和强大的内置函数有利于统计模拟的实现。

3、高效率的向量运算功能

使用R拥有的向量运算功能可以大大减少程序运行的时间,提高程序运行的效率。

→ 下面以求解Pi的程序为例加以说明

三、R软件的统计模拟功能

```
引入向量运算功能改进
未采用R向量运算功能
                               后的程序为:
   的程序为:
 mc1<-function(n){
                               mc1<-function(n){
   set.seed(1234579)
                                set.seed(1234579)
   k<-0:
                                k<-0;
   x<-runif(n);
                                x<-runif(n);
   y<-runif(n);</pre>
                                y<-runif(n);</pre>
   for(i in 1:n){
                                k \leftarrow length(x[x^2+y^2 < 1])
    if(x[i]^2+y[i]^2<1)
                                data.frame(Pi=4*k/n)
    k<-k+1;
   data.frame(Pi=4*k/n)
```

--> 下面用R软件分别执行两个程序,看看有什么差异 程序1_....._程序2

四、应用R软件模拟验证大数定律

1、验证的大数定律有:

(1) 伯努利大数定理——

设 n_A 是n 次独立重复试验中事件A发生的次数。P是事件A在每次试验中发生的概率,则对于任意正数 $\varepsilon > 0$,有

$$\lim_{n\to\infty} P\{\mid \frac{n_A}{n} - p \mid <\varepsilon\} = 1$$

(2) 辛钦定理:

设随机变量 $X_1, X_2, \dots, X_n, \dots$ 相互独立,服从同一分布,且 具有数学期望 $E(X_k) = \mu(k = 1, 2, \dots)$,则对于任意正数 \mathcal{E} ,有

$$\lim_{n\to\infty} P\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} X_k - \mu \right| < \varepsilon \right\} = 1$$

四、应用R软件模拟验证大数定律

2、在R软件实现的算法思想:

由大数定律可知,当 $n \to \infty$,样本的均值趋向与理论分布的期望,因此利用样本容量n逐渐增大这一趋势来模拟 $n \to \infty$ 这一趋势,在这种趋势下,样本的均值与理论分布期望的误差 ε 应该呈现出越来越小的趋势,同时,根据上述思想,分别对五种常用分布下的大数定律进行验证。

四、应用R软件模拟验证大数定律

→大数定律模拟算法

- ①设置循环的跳跃步长 steps、n 的第一次抽样的样本容量初始值 和上限值 p_1
- ②利用函数 $seq(from = n_1, to = n_2, by = steps)$ 产 生由各模拟样本空间大小组成的m 维序列:
- ③选择随机数 X_i 的分布类型,本文中的相关程序仅选择了常用的随机分布:正态分布、指数分布、均匀分布、泊松分布、二项分布、两点分布;
- ④利用R软件产生n个服从同一分布的随机数 X_i (i = 1,2,...,n);
- ⑤计算 $\frac{1}{n}\sum_{k=1}^{n}X_{k}$ (或 $\frac{n_{A}}{n}$) 的值;
- ⑥若循环次数 i<m ,则回转④,否则转⑦;
- ⑦以x轴代表样本容量n,y轴代表每次抽样所得的样本均值,描绘出整个试验的过程。

→ 进入演示.

五、应用R软件模拟验证中心极限定理

1、验证的中心极限定理有

(1) 独立同分布的中心极限定理:

设随机变量 $X_1, X_2, \dots, X_n, \dots$ 相互独立,服从同一分布,且具有 $E(X_{\nu}) = \mu, D(X_{\nu}) = \sigma^2 > 0(k = 1, 2, ...)$ 则随机变量之 数学期望和方差: 型标准化变量: 和

$$Y_{n} = \frac{\sum_{i=1}^{n} X_{k} - E(\sum_{k=1}^{n} X_{k})}{\sqrt{D(\sum_{i=1}^{n} X_{k})}} = \frac{\sum_{i=1}^{n} X_{k} - n\mu}{\sqrt{n\sigma}}$$

的分布函数对于任意满足:

函数对于任意满足:
$$\sum_{n\to\infty}^{n} X_k - n\mu$$

$$\lim_{n\to\infty} F_n(x) = \lim_{n\to\infty} P\{\frac{\sum_{i=1}^{n} X_k - n\mu}{\sqrt{n\sigma}} \le x\} = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt = \Phi(x)$$

五、应用R软件模拟验证中心极限定理

(2) De Moivre-Laplace(棣莫弗-拉普拉斯)中心极限定理

设相互独立的随机变量 $\eta_n(n=1,2,\cdots)$ 服从参数为 p 的两点分布,则对于任意实数 x ,有

$$\lim_{n \to \infty} P\{\frac{\sum_{i=1}^{n} X_i - np}{\sqrt{np(1-p)}} \le x\} = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt = \phi(x)$$

五、应用R软件模拟验证中心极限定理

→中心极限定理模拟算法

- ①选择随机变量 X_i 的分布类型,主要分布类型有正态分布、指数分布、均匀分布、泊松分布、二项分布和两点分布;
- ②设置模拟试验总次数m 及每次模拟试验中随机变量的个数n 的值;
- ③利用R软件模拟产生n个服从同一分布的随机数 x_i , $(i=1,2,\cdots,n)$;
- ④使用产生的n 个随机数计算标准化随机变量值 $\sum_{j=1}^{n} x_k n\mu$ $y_j = \frac{\sum_{i=1}^{n} x_k n\mu}{\sqrt{n}\sigma}$ $(j = 1, 2, \dots, m)$
- ⑤设置循环变量j 和循环的跳跃步长 step = 1,当 $j \le m$ 时,重复步骤③、④,直至 j > m;
- ⑥对m 个 y_i值进行正态性检验和描述性统计分析,包括直观的QQ图检验、正态性W 检验以及偏度系数、峰度系数、均值和方差。

→ 进入演示...

非常感谢!

