TEOREMA DI

SI OTTIENE UN'ESPRESSIONE CANONICA DA UNA TABELLA DI VERITA.

UNA VARIABILE PLO AVERE VALORI O C.1, PERTANTO:

RESIDUE $\{(X_1, X_2, ..., X_m) = X_1 \cdot \begin{cases} (1, X_2, ..., X_m) + X_1 \cdot \begin{cases} (0, X_2, ..., X_m) \end{cases}$ funzione calculata funzione colculata OR well alver vale O quando IL Residuo si moltiplica per X1 (regatos).

variabili, lonzando la prima a zero.

variabili, forzando la prima a UNO.

Una delle due è vera, se x1=0 vole solo a destra, ossia f(0, x2,...xm).

ITERANDO:

$$\begin{cases} (XA, X_2, ..., X_m) = \overline{X_1 \cdot X_2 \cdot ... \cdot X_m} \cdot f(0,0,...0) + \\ X_1 \cdot \overline{X_2} \cdot ... \cdot \overline{X_m} \cdot f(1,0,...0) + (lew 12 legator 50 × 1) \\ \overline{X_1 \cdot X_2 \cdot ... \cdot X_m} \cdot f(0,1,...0) + ... (lew 12 legator 50 × 2) \\ X_1 \cdot X_2 \cdot ... \cdot \overline{X_m} \cdot f(1,1,...0) + (lew 12 legator 50 × 2) \\ X_1 \cdot X_2 \cdot ... \cdot \overline{X_m} \cdot f(1,1,...0) + (lew 12 legator 50 × 10 × 10) \\ X_1 \cdot X_2 \cdot ... \cdot \overline{X_m} \cdot f(1,1,...1) \cdot (lew 12 legator 50 × 10 × 10) \\ X_1 \cdot X_2 \cdot ... \cdot \overline{X_m} \cdot f(1,1,...1) \cdot (lew 12 legator 50 × 10 × 10) \\ X_1 \cdot X_2 \cdot ... \cdot \overline{X_m} \cdot f(1,1,...1) \cdot (lew 12 legator 50 × 10 × 10) \\ X_1 \cdot X_2 \cdot ... \cdot \overline{X_m} \cdot f(1,1,...1) \cdot (lew 12 legator 50 × 10 × 10) \\ X_2 \cdot ... \cdot \overline{X_m} \cdot f(1,1,...1) \cdot (lew 12 legator 50 × 10 × 10) \\ X_3 \cdot X_4 \cdot X_2 \cdot ... \cdot \overline{X_m} \cdot f(1,1,...1) \cdot (lew 12 legator 50 × 10) \\ X_4 \cdot X_2 \cdot ... \cdot \overline{X_m} \cdot f(1,1,...1) \cdot (lew 12 legator 50 × 10) \\ X_4 \cdot X_2 \cdot ... \cdot \overline{X_m} \cdot f(1,1,...1) \cdot (lew 12 legator 50 × 10) \\ X_4 \cdot X_2 \cdot ... \cdot \overline{X_m} \cdot f(1,1,...1) \cdot (lew 12 legator 50 × 10) \\ X_4 \cdot X_2 \cdot ... \cdot \overline{X_m} \cdot f(1,1,...1) \cdot (lew 12 legator 50 × 10) \\ X_4 \cdot X_2 \cdot ... \cdot \overline{X_m} \cdot f(1,1,...1) \cdot (lew 12 legator 50 × 10) \\ X_4 \cdot X_2 \cdot ... \cdot \overline{X_m} \cdot f(1,1,...1) \cdot (lew 12 legator 50 × 10) \\ X_4 \cdot X_2 \cdot ... \cdot \overline{X_m} \cdot f(1,1,...1) \cdot (lew 12 legator 50 × 10) \\ X_4 \cdot X_2 \cdot ... \cdot \overline{X_m} \cdot f(1,1,...1) \cdot (lew 12 legator 50 × 10) \\ X_5 \cdot \overline{X_m} \cdot f(1,1,...1) \cdot (lew 12 legator 50 × 10) \\ X_5 \cdot \overline{X_m} \cdot f(1,1,...1) \cdot (lew 12 legator 50 × 10) \\ X_5 \cdot \overline{X_m} \cdot f(1,1,...1) \cdot (lew 12 legator 50 × 10) \\ X_5 \cdot \overline{X_m} \cdot f(1,1,...1) \cdot (lew 12 legator 50 × 10) \\ X_5 \cdot \overline{X_m} \cdot f(1,1,...1) \cdot (lew 12 legator 50 × 10) \\ X_5 \cdot \overline{X_m} \cdot f(1,1,...1) \cdot (lew 12 legator 50 × 10) \\ X_5 \cdot \overline{X_m} \cdot f(1,1,...1) \cdot (lew 12 legator 50 × 10) \\ X_5 \cdot \overline{X_m} \cdot f(1,1,...1) \cdot (lew 12 legator 50 × 10) \\ X_5 \cdot \overline{X_m} \cdot f(1,1,...1) \cdot (lew 12 legator 50 × 10) \\ X_5 \cdot \overline{X_m} \cdot f(1,1,...1) \cdot (lew 12 legator 50 × 10) \\ X_5 \cdot \overline{X_m} \cdot f(1,1,...1) \cdot (lew 12 legator 50 × 10) \\ X_5 \cdot \overline{X_m} \cdot f(1,1,...1) \cdot (lew 12 legator 50 × 10) \\ X_5 \cdot \overline{X_m} \cdot f(1,1,...1) \cdot (lew 12 legator 5$$

SI FANNO TUTE LE CONFIGURAZIONI, NEGANDOLG SE VOLGONO ZERO E LASCIARLE NORMALI SE VALGONO UNO, MOLTIPLICATE PER IL VALORE della FUNZIONE.

Posso aprevalizzare quelo, ciascun tearmine mesos in "or" sorà scrimo con le mie variabili alla $a_i \in \{0,1\} \in X_i = X_i = a_i = 1, X_i = X_i = x_i = 0.$

quirdi: x1 · x2 · x3 · ... · xm · & (a1,a2,a3,...,am)

COMPANTANDO TUTO:

PRIMA FORMA CANONICA (SOME DI PRODOTTI) FORMA CANONICA (SOME DI PRODOTTI) di minternini

ma devous essere sommare

$$\sum_{k=0}^{m-1} m_{k} (k) = (x_{1}, x_{2}, ..., x_{m})$$

HINTERHINE (X1 X2 ... Xm) (IN CIASCUN MINTERMINE, LE VARIABILI COMPAIONO UNA SOLA VOUTA, IN FORMA DIRECTOR O NOGOTO)

Qui e { 0,13

Quinoi 10 Holliplico le mue voniabili X1, X2, X3 (a seconda se siamo dinerre o vegete) per 11 volore di 4.

ESEMPIQ.

				5
x	x ₁	<i>x</i> ₂	<i>x</i> ₃	у
0	0	0	0	0
1		0	1	1
2	0	1	0	1
3	0	1	1	1
4	1	0	0	0
0 1 2 3 4 5 6	1	0	1	0
6	1	1	0	
7	1	1	1	0

Quali sous le Riche che scomponimenno? quelle per cui f(K)=0.

RESTERANDO SOLO TERMINI m_K associati $\alpha y = 1$,

PRENDO TUTTI I PRODOTTI MIX PER CUI P(K) =1. -> Some di Prodotti

Posso anche uticizzade de-korgan e negare l'estressione.

FINE 1:23:41

Minternini, seleziono le riche per cui y=1 Maxternini, seleziono le riche per cui y=0.

Posso costavirci a una somma di elementi o un radotto di elementi.