

planetmath.org

Math for the people, by the people.

topos axioms

Canonical name ToposAxioms

Date of creation 2013-03-22 19:31:01 Last modified on 2013-03-22 19:31:01

Owner bci1 (20947) Last modified by bci1 (20947)

Numerical id 4

Author bci1 (20947)

Entry type Topic
Classification msc 18-00
Synonym axioms of topoi
Related topic Hypergraph

Defines topos

Definition 0.1. The two axioms that define an *elementary topos*, or a *standard topos*, as a special category τ are:

- i. τ has finite limits
- ii. τ has power objects $\Omega(A)$ for objects A in τ .

To complete the axiomatic definition of topoi, one needs to add the ETAC axioms which allow one to define a category as an interpretation of ETAC. The above axioms imply that any topos has finite colimits, a subobject classifier (such as a Heyting logic algebra), as well as several other properties.

Alternative definitions of topoi have also been proposed, such as:

Definition 0.2. A topos is a category τ subject to the following axioms:

- \mathbb{T}_1 . τ is cartesian closed
- \mathbb{T}_2 . τ has a subobject classifier.

One can readily show that axioms i. and ii. also imply axioms \mathbb{T}_1 and \mathbb{T}_2 ; one notes that property \mathbb{T}_2 can also be expressed as the existence of a representable subobject functor.