

Project Overview

Effectiveness of Adversarial Attacks on ViTs(Vision Transformers)

- Focused on using the ViT-B_16 model
- Convolutional Neural Networks
 - Gold standard in computer vision applications
 - Successful but very vulnerable to adversarial attacks
 - Concerns for security applications
- Different architectures
 - o defend against adversarial attacks
- Purpose
 - study the robustness of the ViT architecture or model on different adversarial attack setups

Motivation behind Project

Tricking Machine Learning Models

- Al Systems becoming more integrated with society presents security risks
- Ex:
 - Al Cars
 - Stop sign = speed sign
 - Medical
 - Malignant = Benign
- WAYS TO TRICK
- **Poisoning Attacks-** a dataset or another way to describe this is introducing noise which will slowly make the classifier misidentify by learning certain features
- Evasion attack- Intentionally introduce data to deceive an already trained model to make errors
- Studying how adversarial attacks work on AI systems is crucial as AI systems become more integrated with our lives

Vision Transformer Model

Transformer Encoder L x MLP Norm Multi-Head Attention Norm Embedded Patches

ViTs(Vision Transformers) vs CNNs (Convolutional Neural Networks)

- CNNs
 - Uses Pixel Arrays
- ViTs
 - learns by measuring the relationship between input token pairs
- Uses an Attention Map making it more robust
 - patches of images are organized as a token
 - the relationship can be learned by providing attention in the network
- Architecture Model in Image Classification

Types of Attacks

White-Box Setting vs Black Box Setting Attacks

- A whitebox attack
 - complete access to the target model- architecture and its parameters
 - Query-based
 - Transfer based
- A blackbox attack
 - no access to the model- only observe the outputs of the targeted model
- White-box settings introduces one of the strongest possible adversaries that can test the effectiveness of Vision Transformers

ATTACKS TESTED on ViT

- Fast Gradient Sign Method
- Carlini and Wagner
- Deep Fool

Hyperparameters

ImageNet Dataset

ViT-B/16- B-base 16-patch size

- Image: 224
- patch size: 7*7 2
- # patches: 16
- epochs- 25
- Self Attention Layers (Depth) 6
- Loss- Categorical Cross entropy
 - o (the target should be [0,0,0,0,1,0] if the 5 class)
- Learning rate- 0.003
- Epsilon = 0, 0.1, 0.2, 0.3 and 0.4

FSGM/Results

Attack	Epsilon	Vision Transformer Accuracy
No Attack (clean)	0	88.2%
FGSM	0.1	81.7%
FGSM	0.2	78.2%
FGSM	0.3	53.2%
FGSM	0.4	34.2%

- ♦ Transformer has overfitted over imagenet
 - self attention layers are fewer than what is required
 - train accuracy is around- 90%
 - test accuracy is around (7-12)%

Carlini and Wagner/Results

Clean Accuracy: 76.4

C&W Attack Success Rate: 46.8%

- A model with a lower ASR or a higher I2-distance metric is consider more robust
- ♦ ViT-B/16 was able to divert the attack almost 50%
- This attack does not need an epsilon variable

Deep Fool Attack/Results

Clean Accuracy: 72.9

DeepFool Attack Success Rate: 54.8%

- A model with a lower ASR or a higher I2-distance metric is consider more robust
- ♦ ViT-B/16 was able to divert the attack almost 50%
- This attack was a very simple, yet very effective attack in bypassing a lot models

Linear Binary Classifier for Adversarial Examples

Clean vs Adversarial

Results

Conclusion

- ♦ Vision Transformers are robust at small epsilons
 - But not as epsilon increases
- ♦ Patch number
 - Determined how are used in each iteration
 - Small = did not produce strong adversarial examples
- Feature perspective
 - ViTs more reliant on robust features
- ♦ ViTs vs CNNs

Further Implementation

- ♦ ViTs
 - Still recently new
- More testing on different models
- Different attacks
- Different settings
 - Black-box easier to implement
 - Less or no training time and
 - Less knowledge needed to know of models used and more practical

- https://towardsdatascience.com/deepfool-a-simple-and-accurate-method-to-fool-deep-neural-networks-17e0d0910ac0
- https://blog.floydhub.com/introduction-to-adversarial-machine-learning/ #deepfool
- https://portswigger.net/daily-swig/adversarial-attacks-against-machine-learning-systems-everything-you-need-to-know
- https://towardsdatascience.com/adversarial-machine-learning-attacksand-possible-defense-strategies-c00eac0b395a
- https://viso.ai/deep-learning/vision-transformer-vit/#:~:text=Moreover% 2C%20ViT%20models%20outperform%20CNNs,globally%20across%20 the%20overall%20image.

•

