Unsupervised Learning

ECE 449

Unsupervised Learning

- Clustering: group similar things
 - Finding structure in data
 - Applications: group search results or customers, find anomalies
- Feature projections: dimensionality reduction
 - Feature reduction that preserves structure in data
 - Applications: improved learning, visualizing data
- General theme: no labels

Clustering Images

[Goldberger et al.]

Clustering for Segmentation

Unsupervised Learning: Clustering

- (Dis)similarity
- Hierarchical clustering
- K-means (partitioning) and its variants
- Soft clustering (EM for GMM)
- Density based clustering
- Evaluating clusters
- Principle components analysis (PCA)

Clustering

- Basic idea: group together similar instances
- Example: 2D point patterns

- What could "similar" mean?
 - For two different samples
 - Between a sample and a cluster

What could Similar Mean

- With respect to another sample
 - Small distance
 - Euclidean distance (L2), city block (L1)
 - High match
 - Correlation, cosine distance (equivalent to L2)
 - Feature overlap
- With respect to the cluster
 - Close to (all, some, avg) members of the group

Other Clustering Questions

- Will the algorithm converge?
- Will it find the true patterns in the data?
- How many clusters to pick?
- How good are the clusters?

Hierarchical Clustering

- Agglomerative
 - Iteratively group samples
 - Good for different linkages, but expensive
- Divisive clustering
 - Iteratively divide samples (iterative K-means)
 - Better decisions for a small number of clusters
- Both produce a hierarchy –good for when you don't know the # of clusters

Agglomerative Clustering

- Agglomerative clustering
 - First merge very similar instances
 - Incrementally build larger clusters out of smaller clusters
- Algorithm
 - Maintain a set of clusters
 - Initially, each instance in its own cluster
 - Repeat:
 - Pick the two closest clusters
 - Merge them into a new cluster
- Stop when there's only one cluster left
- Produces not one clustering, but a family of clusterings represented by a dendrogram

Agglomerative Clustering

- How should we define "closest" for clusters with multiple elements?
- Many options:
 - Closest pair (single-link clustering)
 - Farthest pair (complete-link clustering)
 - Average of all pairs
 - Ward's method (min variance, like k-means)
- Different choices create different clustering behaviors

Agglomerative Clustering: Diff Objectives

K-Means

- An iterative clustering algorithm
 - Pick K random points as cluster centers (means), c¹...c^k
 - Alternate:
 - Assign each example xⁱ to the mean c^j that is closest to it
 - Set each mean c^j to the average of its assigned points
 - Stop when no points' assignments change

K-Means

- Data:{x^j | j=1..n}
- An iterative clustering algorithm
 - Pick K random cluster centers, c¹...c^k
 - For t=1..T: [or, stop if assignments don't change]
 - for j = 1.. n: [recompute cluster assignments] $a^{j} = \arg\min_{i} \operatorname{dist}(x^{j}, c^{i})$
 - for j= 1...k: [recompute cluster centers]

$$c^{j} = \frac{1}{|\{i|a^{i} = j\}|} \sum_{\{i|a^{i} = j\}}^{j} x^{i}$$

K-Means as Optimization

Consider the total distance to the means

$$L(\lbrace x^{i}\rbrace, \lbrace a^{i}\rbrace, \lbrace c^{k}\rbrace) = \sum_{i} \operatorname{dist}(x^{i}, c^{a^{i}})$$
points means assignments

- Two stages each iteration:
 - Update assignments: fix means c, change assignments a
 - Update means: fix assignments a, change means c

Phase I: Update Assignments

 For each point, re-assign to closest mean

$$a^i = \arg\min_j \operatorname{dist}(x^i, c^j)$$

Can only decrease total distance L

$$L(\{x^i\}, \{a^i\}, \{c^k\}) = \sum_i \operatorname{dist}(x^i, c^{a^i})$$

Phase II: Update Means

Move each mean to the average of its assigned points

$$c^{j} = \frac{1}{|\{i|a^{i} = j\}|} \sum_{\{i|a^{i} = j\}} x^{i}$$

Also can only decrease total distance

 Fun fact: the point y with minimum squared Euclidean distance to a set of points {x} is their mean

Questions

• Optimal solution?

Initialization

- K-means is non-deterministic
 - Requires initial means
 - It does matter what you pick!
- Various schemes for preventing this kind of thing:
 - Multiple random starts
 - Divisive clustering

Examples

Importance of Choosing Initial Centroids

Importance of Choosing Initial Centroids

Solutions to Initial Centroids Problem

- Multiple runs
 - Helps, but probability is not on your side
- Use some strategy to select the k initial centroids and then select among these initial centroids
 - Select most widely separated
 - K-means++ is a robust way of doing this selection
 - Use hierarchical clustering to determine initial centroids

K-means++

- This approach can be slower than random initialization, but very consistently produces better results in terms of SSE
- To select a set of initial centroids, C, perform the following

Select an initial point at random to be the first centroid For k – 1 steps

For each of the N points, x_i , $1 \le i \le N$, find the minimum squared distance to the currently selected centroids, C_1 , ..., C_j , $1 \le j < k$, i.e., $\min_i d^2(C_j, x_i)$

Randomly select a new centroid by choosing a point with probability proportional to $\frac{\min\limits_{j} d^2(Cj,xi)}{\sum_{i} \min\limits_{j} d^2(Cj,xi)}$

End For

Limitations

- K-means has problems when clusters are of differing
 - Sizes
 - Densities
 - Non-globular shapes

• K-means has problems when the data contains outliers.

3 - 2 - 1 0 1 2 3 4 X

Original Points

K-means (3 Clusters)

3 2 -1 -2 -2 -3 -2 -1 0 1 2 3 4 5 6 X

Original Points

K-means (3 Clusters)

Original Points

K-means (2 Clusters)

A Bad Case for "Hard" Assignments

- Clusters may overlap
- Some clusters may be "wider" than others
- Distances can be deceiving

- We can use a probabilistic model
 - Allows overlaps, clusters of different size, etc.

Hard Assignment vs Soft Assignment

K-Means

EM for GMMs

Iterate: p=0,1,2, ...

(with known Σ)

Hard decision

Soft decision

$$z^{i} = \underset{j}{\operatorname{argmin}} d(x^{i}, c_{j} | C^{(p)}) \qquad \qquad \gamma^{i}(j) = P(z^{i} = j | x^{i}, \theta^{(p)})$$

$$\gamma^{i}(j) = P(z^{i} = j | x^{i}, \theta^{(p)})$$

For j=1,2,...,K

$$c_j^{(p+1)} = \frac{1}{N_j} \sum_{i:z^i = j} x^i$$

$$N_j = \sum_{i=1}^n I(z^i = j)$$

$$\mu_j^{(p+1)} = \frac{1}{N_j} \sum_{i=1}^n \gamma^i(j) x^i$$

$$N_j = \sum_{i=1}^n \gamma^i(j)$$

Expectation-Maximization (EM) for Gaussian Mixture Models (GMM)

GMM model

$$p(x|\theta) = \sum_{j=1}^{k} p_{j} N(x; \mu_{j}, \Sigma_{j})$$

Expectation

$$q_{i,j} = \frac{p_j N(x; \mu_j, \Sigma_j)}{\sum_{j=1}^k p_j N(x; \mu_j, \Sigma_j)}$$

Maximization

$$\mu_{j} = \frac{\sum_{i} q_{i,j} x_{i}}{\sum_{i} q_{i,j}}, \, \Sigma_{j} = \frac{\sum_{i} q_{i,j} (x_{i} - \mu_{j}) (x_{i} - \mu_{j})^{T}}{\sum_{i} q_{i,j}}, \, p_{j} = \frac{1}{m} \sum_{i} q_{i,j}$$

Example

Density Based Clustering

• Clusters are regions of high density that are separated from one another by regions on low density.

DBSCAN

- DBSCAN is a density-based algorithm.
 - Density = number of points within a specified radius (Eps)
 - A point is a core point if it has at least a specified number of points (MinPts) within Eps
 - These are points that are at the interior of a cluster
 - Counts the point itself
 - A border point is not a core point, but is in the neighborhood of a core point
 - A noise point is any point that is not a core point or a border point

DBSCAN: Core, Border, and Noise Points

DBSCAN: Core, Border and Noise Points

Original Points

Point types: core, border and noise

Eps = 10, MinPts = 4

DBSCAN Algorithm

- Form clusters using core points, and assign border points to one of its neighboring clusters
- 1: Label all points as core, border, or noise points.
- 2: Eliminate noise points.
- 3: Put an edge between all core points within a distance *Eps* of each other.
- 4: Make each group of connected core points into a separate cluster.
- 5: Assign each border point to one of the clusters of its associated core points

When DBSCAN Works Well

- Resistant to Noise
- Can handle clusters of different shapes and sizes

When DBSCAN Does NOT Work Well

Original Points

- Varying densities
- High-dimensional data

(MinPts=4, Eps=9.92).

(MinPts=4, Eps=9.75)

Evaluating Clusters

- Two options:
 - Compare to labeled data (if you have it)
 - Plug into some application & show improvement
- Labeled data options
 - Cluster purity: Label cluster by most likely class
 - $p_i = \max_j p_{ij}$, $P = \sum_i \frac{N_i}{N} p_i$
 - Rand Index: count pairs in same/diff clusters

•
$$R = \frac{TP + TN}{TP + TN + FP + FN}$$

• ...

Feature Projections

- General idea: project n-dim data into k-dim space while preserving information
- Projections to min reconstruction error
 - Principle Components Analysis (PCA)
 - Neural network embeddings

Reminder: Vector Projections

- Basic definitions:
 - A.B = $|A| |B| \cos \theta$
- Assume |B|=1 (unit vector)
 - A.B = $|A|\cos\theta$
- So, dot product is length of projection

Linear Projections

- Project a point into a (lower dimensional) space
 - point: $\mathbf{x} = (x_1, ..., x_n)$
 - Select a basis set of unit (length 1) basis vectors (u₁,...,u_k)
 - We consider orthonormal basis

•
$$\mathbf{u}_i^t \mathbf{u}_i = 1$$
, $\mathbf{u}_i^t \mathbf{u}_i = 0$, $\forall i \neq j$

- Select a center $-\bar{x}$, defines offset of space
- Best coordinates in lower dimensional space
 - Defined by dot-products: (z₁,...,z_k), $z_j^i = \left(\mathbf{x}^i \bar{\mathbf{x}}\right)^t \mathbf{u}_j$

$$\hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j$$

PCA Finds Projection that Minimizes Reconstruction Error

- Given m data points: $\mathbf{x}^i = (x_1^i, ..., x_n^i)$, i = 1, ..., m
- Will represent each point as a projection
 - $\hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j$
 - $\bar{\mathbf{x}} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}^{i}$, $z_{j}^{i} = (\mathbf{x}^{i} \bar{\mathbf{x}})^{t} \mathbf{u}_{j}$
- PCA
 - Given k<n, find (u1,...,uk) minimizing reconstruction error

$$err_k = \sum_{i=1}^{\infty} \left\| \mathbf{x}^i - \hat{\mathbf{x}}^i \right\|^2$$

Understanding the Reconstruction Error

- ullet Note that $old x^i$ can be represented exactly by n-dimensional projection
 - $\mathbf{x}^i = \overline{\mathbf{x}} + \sum_{j=1}^n z_j^i \mathbf{u}_j$
- Rewriting error

•
$$err_k = \sum_{i=1}^m \|\mathbf{x}^i - \hat{\mathbf{x}}^i\|^2 = \sum_{i=1}^m \|\mathbf{x}^i - (\bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j)\|^2 = \sum_{i=1}^m \|(\bar{\mathbf{x}} + \sum_{j=1}^n z_j^i \mathbf{u}_j) - (\bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j)\|^2 = \sum_{i=1}^m \|\sum_{j=k+1}^n z_j^i \mathbf{u}_j\|^2 = \sum_{i=1}^m \sum_{j=k+1}^n (z_j^i)^2 = \sum_{i=1}^m \sum_{j=k+1}^n ((\mathbf{x}^i - \bar{\mathbf{x}})^t \mathbf{u}_j)^2$$

- Note
 - $\mathbf{u}_i^t \mathbf{u}_i = 1$ if i==j, and zero otherwise, because \mathbf{u} 's are an orthonormal basis
 - Error is sum of squared weights that would have be used for dimensions that are cut

Reconstruction Error and Covariance Matrix

•
$$err_k = \sum_{i=1}^m \sum_{j=k+1}^n \left(\left(\mathbf{x}^i - \overline{\mathbf{x}} \right)^t \mathbf{u}_j \right)^2 = \sum_{i=1}^m \sum_{j=k+1}^n \mathbf{u}_j^t \left(\mathbf{x}^i - \overline{\mathbf{x}} \right) \left(\mathbf{x}^i - \overline{\mathbf{x}} \right)^t \mathbf{u}_j = \sum_{j=k+1}^n \mathbf{u}_j^t \left[\sum_{i=1}^m \left(\mathbf{x}^i - \overline{\mathbf{x}} \right) \left(\mathbf{x}^i - \overline{\mathbf{x}} \right)^t \right] \mathbf{u}_j = m \sum_{j=k+1}^n \mathbf{u}_j^t \sum$$

- To find the \mathbf{u}_i , we minimize
 - $\mathbf{u}^t \Sigma \mathbf{u} + \lambda (1 \mathbf{u}^t \mathbf{u})$
- Take derivative, set equal to 0, solutions are eigenvectors
 - $\Sigma \mathbf{u}_i = \lambda_i \mathbf{u}_i$

Minimizing Reconstruction Error

- Minimizing reconstruction error equivalent to picking orthonormal basis $(\mathbf{u}_1,...,\mathbf{u}_k)$ minimizing
 - $err_k = m \sum_{j=k+1}^n \mathbf{u}_j^t \Sigma \mathbf{u}_j$
- Solutions: eigenvectors
 - $\Sigma \mathbf{u}_i = \lambda_i \mathbf{u}_i$
- So, minimizing reconstruction error is equivalent to picking $(\mathbf{u}_{k+1},...,\mathbf{u}_n)$ to be eigenvectors with smallest eigenvalues
- And, our projection should be onto the $(\mathbf{u}_1,...,\mathbf{u}_k)$ with the largest values

Basic PCA algorithm

- Start from m by n data matrix X
- Recenter: subtract mean from each row of X

•
$$X_c \leftarrow X - \widehat{X}$$

Compute covariance matrix:

$$\bullet \ \Sigma = \frac{1}{m} \mathbf{X}_c^T \mathbf{X}$$

- Find eigenvectors and values of Σ
- Principal components: k eigenvectors with highest eigenvalues

Eigenfaces

Input Images

Principal components

Eigenfaces Reconstruction

• Each image corresponds to adding together the principal components

