Intervals, Transformations, and Slope Solution (version 161)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-9, -8) \cup (-5, 1)$
Negative	$(-8, -5) \cup (1, 9)$
Increasing	$(-7, -3) \cup (6, 9)$
Decreasing	$(-9, -7) \cup (-3, 6)$
Domain	(-9,9)
Range	(-10,8)

Intervals, Transformations, and Slope Solution (version 161)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=32$ and $x_2=47$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 32 & 54 \\ 47 & 72 \\ 54 & 47 \\ 72 & 32 \\ \hline \end{array}$$

$$\frac{g(47) - g(32)}{47 - 32} = \frac{72 - 54}{47 - 32} = \frac{18}{15}$$

The greatest common factor of 18 and 15 is 3. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{6}{5}$$

2