Computational Complexity Theory

Lecture 2: Class NP, Reductions, NP-completeness

Indian Institute of Science

Complexity classes P and NP

Recap: Decision Problems

- In the initial part of this course, we'll focus primarily on decision problems.
- Decision problems can be naturally identified with boolean functions, i.e. functions from {0,1}* to {0,1}.
- Boolean functions can be naturally identified with sets of {0,1} strings, also called languages.

Recap: Decision Problems

Decision problems Boolean functions Languages

• Definition. We say a TM M <u>decides a</u> <u>language</u> $L \subseteq \{0,1\}^*$ if M computes f_L , where $f_L(x) = 1$ if and only if $x \in L$.

Recap: Complexity Class P

Let T: N→ N be some function.

- Definition: A language L is in DTIME(T(n))
 if there's a TM that decides L in time
 O(T(n)).
- Defintion: Class ₱ = U DTIME (nc).

Deterministic polynomial-time

- Cycle detection
- Solvability of a system of linear equations
- Perfect matching
- Primality testing (AKS test 2002)
 - Check if a number is prime

Polynomial time Turing Machines

Definition. A TM M is a polynimial time TM if there's a polynomial function q: N N such that for every input x ∈ {0,1}*, M halts within q(|x|) steps.

Polynomial function. $q(n) = n^c$ for some constant c

What if a problem is not a decision problem? Like the task of adding two integers.

- What if a problem is not a decision problem? Like the task of adding two integers.
- One way is to focus on the i-th bit of the output and make it a decision problem.

(Is the i-th bit, on input x, 1?)

- What if a problem is not a decision problem? Like the task of adding two integers.
- One way is to focus on the i-th bit of the output and make it a decision problem.
- Alternatively, we define a class called functional P.

- What if a problem is not a decision problem? Like the task of adding two integers.
- One way is to focus on the i-th bit of the output and make it a decision problem.
- We say that a problem or a function f: {0,1}* {0,1}* is in FP (functional P) if there's a polynomial-time TM that computes f.

- Greatest Common Divisor (Euclid ~300)
 - Given two integers a and b, find their gcd.

- Greatest Common Divisor
- Counting paths in a DAG (homework)
 - Find the number of paths between two vertices in a directed acyclic graph.

Greatest Common Divisor

- Counting paths in a DAG
- Maximum matching (Edmonds 1965)
 - Find a maximum matching in a given graph

Greatest Common Divisor

- Counting paths in a DAG
- Maximum matching
- Linear Programming (Khachiyan 1979, Karmarkar 1984)
 - Optimize a linear objective function subject to linear (in)equality constraints

Solving a problem is generally *harder* than verifying a given solution to the problem.

- Solving a problem is generally harder than verifying a given solution to the problem.
- Class NP captures the set of decision problems whose solutions are efficiently verifiable.

- Solving a problem is generally harder than verifying a given solution to the problem.
- Class NP captures the set of decision problems whose solutions are *efficiently* verifiable.

Nondeterministic polynomialtime

Definition. A language L ⊆ {0,1}* is in NP if there's a polynomial function p: N N and a polynomial time TM M (called the verifier) such that for every x,

```
x \in L \exists u \in \{0,1\}^{p(|x|)} s.t. M(x, u) = 1
```

Definition. A language L ⊆ {0,1}* is in NP if there's a polynomial function p: N N and a polynomial time TM M (called the verifier) such that for every x,

```
x \in L \qquad \exists u \in \{0,1\}_{p(|x|)} \text{ s.t. } M(x,u) = 1
```

u is called a <u>certificate or</u> <u>witness</u> for x (w.r.t L and M) if $x \in L$

Definition. A language L ⊆ {0,1}* is in NP if there's a polynomial function p: N N and a polynomial time TM M (called the verifier) such that for every x,

```
x \in L \exists u \in \{0,1\}^{p(|x|)} s.t. M(x, u) = 1
```

It follows that verifier M cannot be fooled!

Definition. A language $L \subseteq \{0,1\}^*$ is in NP if there's a polynomial function p: N N and a polynomial time TM M (called the <u>verifier</u>) such that for every x,

```
x \in L \qquad \exists u \in \{0,1\}_{p(|x|)} \quad \text{s.t. } M(x, u)
= 1
```

 Class NP contains those problems (languages) which have such efficient verifiers.

Vertex cover

Fiven a graph G and an integer k, check if G has a vertex cover of size k.

Vertex cover

- 0/1 integer programming
 - Fiven a system of linear (in)equalities with integer coefficients, check if there's a 0-1 assignment to the variables that satisfy all the (in)equalities.

Vertex cover

- 0/1 integer programming
- Integer factoring
 - Fiven 2 numbers n and U, check if n has a nontrivial factor less than equal to U.

Vertex cover

- 0/1 integer programming
- Integer factoring
- Graph isomorphism
 - Given 2 graphs, check if they are isomorphic

IS P = NP?

- Obviously, $P \subseteq NP$.
- Whether or not P = NP is an outstanding open question in mathematics and TCS!

- Obviously, $P \subseteq NP$.
- Whether or not P = NP is an outstanding open question in mathematics and TCS!
- Solving a problem does seem harder than verifying its solution, so most people believe that P ≠ NP.

- Obviously, $P \subseteq NP$.
- Whether or not P = NP is an outstanding open question in mathematics and TCS!
- P = NP has many weird consequences, and if true, will pose a serious threat to secure and efficient cryptography.

- \bigcirc Obviously, $P \subseteq NP$.
- Whether or not P = NP is an outstanding open question in mathematics and TCS!
- Mathematics has gained much from attempts to prove such negative statements —Galois theory, Godel's incompleteness, Fermat's Last Theorem, Turing's undecidability, Continuum hypothesis etc.

- Obviously, $P \subseteq NP$.
- Whether or not P = NP is an outstanding open question in mathematics and TCS!
- Complexity theory has several of such intriguing unsolved questions.

Karp reductions

Polynomial time reduction

Definition. We say a language $L_1 \subseteq \{0,1\}^*$ is *polynomial time (Karp) reducible* to a language $L_2 \subseteq \{0,1\}^*$ if there's a polynomial time computable function f s.t.

Polynomial time reduction

Definition. We say a language $L_1 \subseteq \{0,1\}^*$ is polynomial time (Karp) reducible to a language $L_2 \subseteq \{0,1\}^*$ if there's a polynomial time computable function f s.t.

$$x \in L_1$$
 $f(x) \in L_2$

- Notation. $L_1 \leq_p L_2$
- Observe. If $L_1 \leq_p L_2$ and $L_2 \leq_p L_3$ then $L_1 \leq_p L_3$.

NP-completeness

- **Definition**. A language L' is *NP-hard* if for every L in NP, L \leq_p L'. Further, L' is *NP-complete* if L' is in NP and is NP-hard.
- Observe. If L' is NP-hard and L' is in P then P = NP. If L' is NP-complete then L' in P if and or if P = NP.

Hardest problems inside NP in the sense that if one NPC problem is in P then all problems in NP is in P

NP-completeness

- Definition. A language L' is NP-hard if for every L in NP, L \leq_p L'. Further, L' is NP-complete if L' is in NP and is NP-hard.
- Observe. If L' is NP-hard and L' is in P then P
 NP. If L' is NP-complete then L' in P if and only if P = NP.
- Exercise. Let $L_1 \subseteq \{0,1\}^*$ be any language and L_2 be a language in NP. If $L_1 \leq_p L_2$ then L_1 is also in NP.

Few words on reductions

- As to how we define a reduction from one language to the other (or one function to the other) is usually guided by a *question on whether two complexity classes* are different or identical.
- For polynomial time reductions, the question is whether P equals NP.
- Reductions help us define complete problems (the 'hardest' problems in a class) which in turn help us compare the complexity classes under consideration.

Class P and NP: Examples

- Vertex cover (NP-complete)
- 0/1 integer programming (NP-complete)
- Integer factoring (unlikely to be NP-complete)
- Graph isomorphism (Quasi-P)
- Primality testing (P)
- Linear programming (P)

How to show existence of an NPC problem?

- Let L' = { $(\alpha, x, 1^m, 1^t)$: there exists a $u \in \{0,1\}^m$ s.t. M_α accepts (x, u) in t steps }
- Observation. L' is NP-complete.
- The language L' involves Turing machine in its definition. Next, we'll see an example of an NP-complete problem that is arguably more natural.

• Definition. A <u>boolean formula</u> on variables $x_1, ..., x_n$ consists of AND, OR and NOT operations.

e.g.
$$\phi = (x_1 \ V \ x_2) \ \Lambda \ (x_3 \ V \ \neg x_2)$$

• Definition. A boolean formula ϕ is satisfiable if there's a $\{0,1\}$ -assignment to its variables that makes ϕ evaluate to 1.

Definition. A boolean formula is in Conjunctive Normal Form (CNF) if it is an AND of OR of literals.

e.g.
$$\phi = (x_1 \lor x_2) \land (x_3 \lor \neg x_2)$$

clauses

Definition. A boolean formula is in <u>Conjunctive Normal Form</u> (CNF) if it is an AND of OR of literals.

e.g.
$$\phi = (x_1 \lor x_2) \land (x_3 \lor \neg x_2)$$

literals

Definition. A boolean formula is in <u>Conjunctive Normal Form</u> (CNF) if it is an AND of OR of literals.

e.g.
$$\phi = (x_1 \ V \ x_2) \ \Lambda \ (x_3 \ V \ \neg x_2)$$

 Definition. Let SAT be the language consisting of all satisfiable CNF formulae.

Definition. A boolean formula is in <u>Conjunctive Normal Form</u> (CNF) if it is an AND of OR of literals.

e.g.
$$\phi = (x_1 \ V \ x_2) \ \Lambda \ (x_3 \ V \ \neg x_2)$$

- Definition. Let SAT be the language consisting of all satisfiable CNF formulae.
- Theorem. (Cook-Levin) SAT is NP-complete.

Definition. A boolean formula is in <u>Conjunctive</u>
<u>Normal Form</u> (CNF) if it is an AND of OR of literals.

e.g.
$$\phi = (x_1 \ v \ x_2) \ \Lambda (x_3 \ v \ \neg x_2)$$

- Definition. Let SAT be the language consisting of all satisfiable CNF formulae.
- Theorem. (Cook-Levin) SAT is NP-complete.

Easy to see that SAT is in NP.

Need to show that SAT is NP-hard.

Proof of Cook-Levin Theorem

Main idea: Computation is *local*; i.e. every step of computation *looks at* and *changes* only constantly many bits; and this step can be implemented by a small CNF formula.

Main idea: Computation is *local*; i.e. every step of computation *looks at* and *changes* only constantly many bits; and this step can be implemented by a small CNF formula.

- Let L ∈ NP. We intend to come up with a polynomial time computable function f: x
 - ϕ_x s.t.,
 - \rightarrow $x \in L$ $\phi_x \in SAT$

- Main idea: Computation is *local*; i.e. every step of computation *looks at* and *changes* only constantly many bits; and this step can be implemented by a small CNF formula.
- Let $L \in NP$. We intend to come up with a polynomial time computable function $f: x \to \phi_x$ s.t.,
 - \rightarrow $x \in L \quad \Longrightarrow \phi_x \in SAT$

```
Notation: |\phi_{\times}| := \text{size of } \phi_{\times}
= number of v or \Lambda in \phi_{\times}
```

Language L has a poly-time verifier M such that

```
x \in L \exists u \in \{0,1\}_{p(|x|)} s.t. M(x, u)
```

Language L has a poly-time verifier M such that

```
x \in L \exists u \in \{0,1\}_{p(|x|)} s.t. M(x, u)
```

• Idea: Capture the computation of M(x, ...) by a CNF ϕ_x such that

```
\exists u \in \{0,1\}_{p(|x|)} \text{ s.t. } M(x, u) = 1 \qquad \qquad \varphi_x \text{ is satisfiable}
```

Language L has a poly-time verifier M such that $x \in L \iff \exists u \in \{0,1\} p(|x|) \text{ s.t. } M(x, u) = 1$

• Idea: Capture the computation of M(x, ...) by a CNF ϕ_x such that

```
\exists u \in \{0,1\}_{p(|x|)} \text{ s.t. } M(x, u) = 1 \qquad \phi_x \text{ is satisfiable}
```

• For any fixed x, M(x, ...) is a deterministic TM that takes u as input and runs in time polynomial in |u|.

Main Theorem. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1. Then,

- Main Theorem. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1. Then,
 - 1. There's a CNF ϕ of size poly(T(n)) such that $\phi(u, "additional variables")$ is satisfiable if and only if N(u) = 1.

- Main Theorem. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1. Then,
 - 1. There's a CNF ϕ of size poly(T(n)) such that $\phi(u, "additional variables")$ is satisfiable if and only if N(u) = 1.
 - 2. ϕ is computable in time poly(T(n)).

- Main Theorem. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1. Then,
 - 1. There's a CNF ϕ of size poly(T(n)) such that $\phi(u, "additional variables")$ is satisfiable if and only if N(u) = 1.
 - 2. ϕ is computable in time poly(T(n)).

Cook-Levin theorem follows from above!