مروری بر الگوریتمهای شبکهی عصبی

فرزاد عبدالحسینی، سید سبحان میریوسفی، هومن هاشمی دانشگاه صنعتی شریف، دانشکده مهندسی کامپیوتر (abdolhosseini, miryoosefi, hohashemi) (@ce.sharif.edu

چکیدہ _

كليد واژهها_ الگوريتم، هوش مصنوعي، شبكههاي عصبي.

۱_ مق*د*مه

کار بر روی شبکه های عصبی مصنوعی یا به اختصار شبکه های عصبی از جایی آغاز شد که دانشمندان به این مهم دست یافتند که سیستم پردازش مغز انسان بسیار متفاوت با سیستم های کامپیوتری دیجیتال مرسوم میباشد. مغز انسان از یک ساختار بسیار پیچیده، غیر خطی و موازی بهره میبرد و همچنین قابلیت بهبود و ارتقای خود را نیز دارا میباشد.

برای مثال قدرت بینایی و بصری انسان را در نظر بگیرید که یک نوع پردازش اطلاعات است. ما اطلاعات رو از محیط بیرون توسط حسگر پیچیده چشم دریافت میکنیم آن هارا تجزیه و تحلیل میکنیم تا بتوانیم چیز هایی که برای تعامل با محیط نیاز داریم بدست آوریم. مغز انسان میتواند فرآیند تشخیص چهره در یک محیط نا آشنا را در کمتر از ۲۰۰ میلی ثانیه انجام دهد در صورتی که فرآیند های بسیار ساده تر از این برای کامپیوتر های حال حاضر چند روز زمان میبرد.

به عنوان مثالی دیگر خفاش را در نظر بگیرید. این خفاش از یک سیستم ردیاب صوتی یا همان سونار بهره میبرد به این شکل که هنگامی که در تعقیب شکار خود است یک موج صوتی از خود ساتع میکند و از روی انکعاس آن توسط طعمه میتواند اطلاعاتی نظیر سرعت نسبی طعمه، اندازه طعمه و ... بدست آورد. تمام این پردازش های پیچیده در مغز کوچک خفاش که به اندازه ی یک آلو است انجام می پذیرد.

اما مغز انسان یا خفاش چگونه این کار هارا انجام میدهد ؟

۲_ آشنایی و مفاهیم اولیه

در اینجا ابتدا یک تعریف ارائه میکنیم[؟] و سپس در بخش های بعد به توضیح آن میپردازیم:

شبکه عصبی مصنوعی یک پردازنده توزیع شده موازی و گسترده است و که از واحد های پردازشی ساده ساخته شده است

که میتواند دانش اکتسابی را در خود دخیره کند و در آینده از آن ها در تصمیمگیری ها استفاده کند از دو جهت این شبکه عصبی مصنوعی مغز انسان را تداعی میکند:

- ۱. اطلاعات از محیط و توسط فرآیند یادگیری کسب میشود.
- میزان قدرت اتصالات بین واحد های پردازشی (نورون ها)
 که به آن وزن سیناپسی میگوییم برای دخیره اطلاعات استفاده میشود.

۲_۱_ مزایای شبکه های عصبی

شبکه عصبی قدرت محاسباتی اش را از دو ویژگی بهره میگیرد ویژگی اول اینکه یک شبکه بسیار گسترده، موازی و توزیع شده است و ویژگی دوم اینکه قابلیت یادگیری است اینکه میتواند با توجه به محیط یک سری اطلاعات و تجارب کسب کند و از این تجارب در تصمیمگیری های بعدی استفاده کند به این ویژگی کلیت بخشی امیگوییم. این ویژگی ها باعث میشود مسائلی که در حال حاضر برای کامپیوتر های مرسوم دست نیافتی است توسط این شبکه ها قابل حل باشد البته باید توجه داشت که گونه های خاصی از مسائل هستند و پردازنده های مرسوم در بعضی موارد بهتر بهینه قابل حل هستند و پردازنده های مرسوم در بعضی موارد بهتر توسط این شبکه ها حل کنیم. همچنین تا ساختن شبکه عصبی که توسط این شبکه عصبی که به طور کامل مغز انسان یا هر شبکه عصبی طبیعی دیگر را تداعی به طور کامل مغز انسان یا هر شبکه عصبی طبیعی دیگر را تداعی کند راه طولانی ای در پیش داریم.

حالا بعضی از مزایا و توانایی های شبکه های عصبی را ذکر میکنیم:

• توانایی غیرخطی بودن: ۲ واحد های سازنده شبکه عصبی یا همان نورون ها میتوانند غیرخطی باشند و درنتیجه کل

^{&#}x27;Generalization

[†]Nonlinearity

شبکه عصبی غیرخطی میشود این ویژگی بسیار مهم است زیرا بسیاری از مسائل ذاتا غیرخطی هستند مانند پردازش گفتار.

- نگاشت ورودی خروجی: " در بسیاری از مسائل ما ارتباط منظقی بین ورودی و خروجی را نمیدانیم ولی برای چند نمونه خاص ورودی خروجی مورد انتظار را در دست داریم ما میتوانیم به کمک این ها شبکه عصبی را آموزش دهیم در اینصورت شبکه عصبی وزن های سیناپسی خود را به گونهای تغییر میدهد که جواب تاحدممکن به خروجی مورد نظر نزدیک شود در اینصورت به گونه ای توانستیم بدون هیچ دانسته قبلی بین ورودی و خروجی های درست نگاشت برقرار کنیم حال میتوانیم از شبکه عصبی برای بدست آوردن خروجی مورد نظر برای ورودی های دیگر استفاده کنیم این خروجی مورد نظر برای ورودی های دیگر استفاده کنیم این تکنینک در مسائل الگویابی بسیار استفاده میشود.
- تطبیقپذیری: * ساختار شبکه عصبی به نحوی است که میتواند خود را در محیط وفق دهد به اینگونه که اگر محیط تغییر کند شبکه عصبی وزن های سیناپسی خود را به گونه این تغییر میدهد که با محیط تغییر یافته تطبیق پیدا کند البته باید توجه داشت که شبکه عصبی نباید بیش از حد هم نسبت به تغییرات حساس باشد زیرا که تغییرات خیلی کوچک که حتی میتواند ناشی از خطای حسگر ها باشد بروی آن تاثیر میگذارد این تطبیق پذیری باید به گونه ای باشد که نه خیلی میاس باشد که پایداری سیستم به هم بریزد نه خیلی بی تفاوت که روند یادگیری و بهبود را مختل کند.
- تحمل خطا: ۵ ساختار شبکه های عصبی به علت گستردگی به گونه ایست تحمل خطا و خرابی بالایی دارد . برای مثال با از کار افتادن یک نورون تغییر محسوسی در نتیجه حاصل نیمشود و آسیب باید خیلی زیاد باشد تا کار شبکه را مختل کند.
- آزمایشات زیستی: ۶ از آن جایی که شبکه عصبی تا حد خوبی میتواند شبکه های عصبی واقعی را تداعی کند از آن میتواند در آزمایشات و پژوهش های زیستی استفاده کرد.

۲_۲_ بررسی مغز انسان

از آن جایی که شبکه عصبی برگرفته از مغز انسان است ابتدا به بررسی آن میپردازیم . شبکه عصبی مغز انسان یک سیستم سه بخشی است همانطور که در شکل ۱ نشان داده شده است.

^{*}Adaptivity

شكل ١: ساختار سه بخشى شبكه عصبى انسان

شكل ٢: ساختار نورون زيستي

بخش مرکزی همان شبکه عصبی است که شامل شبکه گسترده نورون ها است و محل تصمیم گیری میباشد . بخش اول یا همان گیرنده ها اطلاعات را از محیط گرفته و به سیگنال های قابل فهم برای شبکه عصبی تبدیل میکند و بخش آخر نیز دستورات را از شبکه عصبی گرفته و واکنش موردنظر را در محیط انجام میدهد. در سال ۱۹۱۱ ساختار نورونی ۲ برای مغز معرفی شد. نورون ها که الی ۶ مرتبه توانی از سیلیکون کند تر هستند. اتفاقات در چیپ های سیلیکونی هر ۱ نانوثانیه اتفاق میافتد و این در حالی است که در نورون هر ۱ میلی ثانیه . ولی مغز انسان این سرعت کم نورون ها در نورون ها بسیار زیاد آن ها و اتصلات (سیناپس ها) بسیار زیادتر جبران کرده است. تخمین زده میشود که تعداد نورون ها حدود برا میلیارد و تعداد اتصلات بین آن ها حدود ۶۰ تریلیارد است. از طرفی دیگر مصرف انرژی مغز انسان در مقایسه با چیپ های سیلیکونی حدود ۱ مرتبه توانی کمتر است. در شکل ۲ ساختار نورون و سیناپس را مشاهده میکنید.

Υ مدل نورون برای شبکه عصبی

نورون یک واحد پردازش اطلاعات است که واحد سازنده شبکه عصبی است در شکل ۳ مدل ارائه شده برای نورون را مشاهده

^aFault Tolerance

⁹Neurobiological Analogy

^vRamon y Cajal

شکل ۳: مدل ریاضی ارائه شده برای نورون

میکنید . در اینجا به تشریح بخش های مختلف می پردازیم:

- سیناپس ها یا اتصالات هر کدام به همراه یک عدد که به آن وزن سیناپسی میگوییم مشخص شده اند هنگامی که سیگنال x_i را در سیناپس i از نورون i داشته باشیم و وزن سیناپسی این سیناپس i باشد آن وقت سیگنال ورودی در وزن سیناپسی ضرب میشود.
- یک جمع کننده که مقادیر ورودی (سیگنال های ضرب شده در وزن سیناپسی) و همچنین مقدار ثابت (bias) را جمع می کند.
- تابع فعال سازی که مقدار حاصل جمع را میگیرد و خروجی مورد نظر را تولید میکند.

همانطور که در بالا توضیح دادیم داریم:

$$u_k = \sum_{j=1}^k W_{k,j} X_j$$

$$v_k = u_k + b_k$$

$$y_k = \varphi(v_k)$$

به مقدار v_k در عبارت بالا پتانسیل فعالسازی نورون میگوییم.

۲_۴_ انواع توابع فعالسازی

• تابع Threshold: این تابع به نوعی بر اساس اینکه مقدار ورودی میزان مشخصی را رد کرده است یا خیر تصمیم گیری انجام می دهد و بسیار پر کاربرد است:

$$\varphi(v) = \begin{cases} v & \text{if} \quad v \ge \cdot \\ \cdot & \text{if} \quad v < \cdot \end{cases}$$

• تابع PicewiseLinear: این تابع حالت بسیار تیز تغییر

تصمیم در مدل قبلی را به کمک تابعی خطی بهبود بخشیده است:

$$\varphi(v) = \begin{cases} 1 & \text{if } v > \frac{1}{7} \\ v + \frac{1}{7} & \text{if } -\frac{1}{7} \le v \le \frac{1}{7} \end{cases}$$

$$\cdot & \text{if } v < -\frac{1}{7}$$

• تابع Sigmoid: این تابع یکی از پرکاربردترین توابع فعال سازی است در واقع چیزی بین دو حالت قبلی است. توجه کنید اگر ثابت a را به سمت بینهایت میل بدهیم تبدیل به تابع Treshold می شود.

$$\varphi(v) = \frac{1}{1 + \exp(-av)}$$

• مدل احتمالاتی: در بعضی از مسائل نیاز است که تابع فعال سازی ما تصمیم قطعی نگیرد و به صورت احتمالاتی عمل کند مانند مثال زیر:

$$P(v) = \frac{1}{1 + \exp(-av)}$$

$$\varphi(v) = \begin{cases} +1 & \text{with probability} \quad P(v) \\ -1 & \text{with probability} \quad 1 - P(v) \end{cases}$$

۲_۵_ نمایش شبکه عصبی با گراف جهتدار

شبکه عصبی را میتوان به وسیله یک گراف جهتدار نشان داد . این گراف از سه قاعده زیر طبعیت میکند:

- قاعده ۱: سیگنال در جهت یال منتقل میشود ۲ نوع یال در گراف موجود است:
- یال سیناپسی: در این یال مقدار ورودی یال (سیگنال گرهی ابتدای یال) در وزن نوشته شده روی یال که در واقع همان وزن سیناپسی است ضرب میشود تا حاصل تولید شود.
- یال فعالسازی: در این یال مقدار ورودی یال یال (سیگنال گرهی ابتدای یال) به عنوان ورودی تابع نوشته شده روی یال در نظر گرفته میشود تا حاصل تولید شود.
- قاعده ۲: سیگنال یک گره جمع جبری سیگنال یال هایی است که به آن وارد میشوند.

(c)

شكل ۵: قاعده ۲ و ۳

شكل ۶: مدل گراف جهتدار براي نورون

$$x_j \circ \underbrace{\qquad \qquad }_{w_{kj}} \circ y_k = w_{kj} x_j$$
(a)

$$y_j \circ y_k = \varphi(x_j)$$
(b)

شكل ٤: قاعده ١

• قاعده ۳: یال هایی که از یک گره خارج میشوند از هم مستقل بوده و سیگنال اولیه برابر سیگنال گره دارند.

در شکل ۴ و ۵ میتوایند این سه قاعده را مشاهده کنید. در نتیجه میتوانیم تعریفی دیگر[؟] برای شبکه عصبی ارائه دهیم:

شبکه عصبی یک گراف جهندار است تشکیل شده از گره و یال هی سیناپسی یا فعالسازی و دارای چهار ویژگی زیر است:

- هر نورون متشکل از تعدادی یال سیناپسی و حداکثر یک یال فعالسازی است.
- وزن یال های سیناپسی نشان دهنده وزن های سیناپسی است (مقادیر قابل تغییر در یادگیری).
- جمع سیگنال یال های سیناپسی پتانسیل فعال سازی گره را میسازد.
- تابع فعال سازی روی پتانسیل فعالسازی اعمال میشود و خروجی نورون تولید میشود.

در شکل ۶ میتوانید مدل نورون ارائه شده را به عنوان یک گراف جهتدار مشاهده کنید.

۲_۶_ معماری شبکه عصبی

به نحوه قرار گرفتن گره در شبکه عصبی و اتصلات بین آن ها معماری شبکه عصبی می گویند. معماری شبکههای عصبی را به چند دسته ی اصلی تقسیم میکنیم:

 ۱. شبکه های رو به جلو: شبکه هایی که در ساختار گراف آن ها دور وجود ندارد.

- شبکه های تک لایه: شبکه های رو به جلویی که تنها شامل دو سطح از گره هستند سطح گره ورودی و سطح گره خروجی(نورون های خروجی).
- شبکه های چند لایه: شبکه هایی که حداقل دارای یک سطح بیشتر از شبکه های تک لایه هستند. (به لایه های میانی لایه های پنهان نورون نیز میگویند)

 ۲. شبکه های درجریان: شبکه هایی که در ساختار گراف ان ها دور وجود دارد.

٣_ الگوهای اتصالات

!! در واقع همانطور که در قسمت بعدی نشان داده می شود، می توان با استفاده از نرونهای بسیار ساده، تمام گیتهای پایهای یک رایانه را پیاده سازی کرد، پس قدرت محاسبهای شبکههای عصبی مصنوعی حداقل به اندازهی قدرت رایانهها است با این تفاوت که قدرت اصلی این شبکهها در قابلیت یادگیری آنها بدون برنامه ریزی است.

۱_۳ تقلید از نورونها

سلام

٣_١_١_ تقليد از نورونها

سلام

۳_۲_ شبکه های تغذیهی رو به جلو

ساده ترین نوع شبکه های عصبی، شبکه هایی اند که در ساختارشان دور وجود نداشته باشد. یعنی خروجی یک گره هرگز (بعد از یک یا چند مرحله) به خود آن گره برنگردد. در نتیجه اطلاعات همیشه از یک قسمت وارد شده و بعد از گذشتن از درون یک یا چند نورون مختلف به انتهای مسیر (گرههای خروجی) می رسند. معمولا این شبکه ها را در حالت کلی به صورت شکل ۷ نشان می دهند.

اهمیت این معماری ساده در این است که با وجود سادگی، توانایی بالایی دارند و مهمتر از آن، برای آنها الگوریتمهای یادگیری کارآمد وجود دارد. در مقابل، معماریهای پیچیدهتری که جلوتر خواهیم دید، با وجود پتانسیل بالا نمی توانند از قدرت خود به حد کافی استفاده کنند (به جز در مواردی که برای یک دسته سوال اختصاصی شدهاند).

۳_۳ شبکه های تک لایه

این نوع از شبکههای رو به جلو همانطور که از اسمشان مشخص است، فقط یک لایه نورون دارند (البته اگر گرههای ورودی را نورون فرض نکنیم) و از آنها با نام پرسپترون میشود. این شبکهها در سال ۱۹۶۰ توسط فرانک روزنبلت و د دنبالهای از مقالات و یک کتاب ابررسی شده و توسعه داده شدند. پس از انتشار این کتاب، شبکههای تک لایه محبوبیت زیادی به دست آورد. پس از آن تحقیقات زیادی بر روی این شبکهها انجام شد و محققان اکثرا انتظارات بسیار زیادی از آنها داشتند تا این که مینسکی و پپرت در کتابشان با نام پرسپترون ۱۳ در سال ۱۹۶۹ با این تحقیقات به طور قابل ملاحظهای کاستند تا حدی که تا سال این تحقیقات به طور قابل ملاحظهای کاستند تا حدی که تا سال این تحقیق بر روی این شبکهها متوقف شد. [؟]

یک مثال قابل توجه از بزرگنمایی هایی که در مورد توانایی پرسیترونها قبل از انتشار مقالهی مینسکی و پیرت انجام گرفت، پروژهای بود که در آن تعدادی عکس که در هر کدام دقیقا یک تراکتوریا یک تانک (در محیطهای مختلف) قرار داشت به یک شبکهی عصبی داده شد و هدف این بود که این شبکه بتواند در نهایت تشخیص بدهد که وسیلهی موجود در عکس تانک بوده یا تراکتور. حتی در بعضی از این عکسها قسمتی از وسیله توسط درختان جنگلی پوشیده شده بود و وسیله به طور کامل دیده نمی شد. این پروژه در ابتدا نتایج بسیار موفقیت آمیزی داشت و به خوبی می توانست بین دو وسیله تشخیص درست بدهد. اما در نهایت مشخص شد که دلیل نتایج درست این شبکه این بوده که عکس تراکتورها در یک روز آفتابی و عکس تانکها در یک روز ابری گرفته شده بود و تنها کاری که شبکه انجام میداد تعیین مقدار روشنایی تصویر و تصمیمگیری بر اساس آن بود، کاری که برای چشم انسان (حداقل با دقت بالا) کار سادهای نیست، اما برای نورون ها به سادگی قابل انجام است. اینگونه اتفاقات میتوانند یک الگوریتم را به سرعت بدنام کنند. [؟]

ساده ترین مثالی که شبکه های تک لایه در شبیه سازی شان عاجز اند، گیت منطقی xor است. البته این تنها مثال نیست و فقط نماینده ی گروه بزرگی از توابع است که نورون ها قابلیت تولید خروجی همانند شان را ندارند، اما خبر خوب این است که این مشکل با اضافه کردن تعداد لایه ها حل می شود و همین گیت xor

[^]perceptron

⁴Frank Rosenblatt

^{&#}x27;Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms, Spartan Books, 1962

¹¹Marvin Minsky

^{۱۲}Seymour Paper

¹Perceptrons: an introduction to computational geometry, 1969

با دو لایه نورون به سادگی قابل پیادهسازی است.

یک نکته ی مهم درتحلیل و بررسی رفتار شبکه های تک لایه این است که اگر دقت کنید، هر کدام از نورونها کاملا به طور مستقل از دیگر نورونها رفتار می کند چون مقادیر ورودی را که نمی توانیم تغییری بدهیم و بین نورونهای سطح اول هم هیچ ارتباطی وجود ندارد. پس برای مثال هر شبکهی تک لایه با k نورون را می توان k تا شبکه با فقط یک نورون در نظر گرفت که البته ورودی تمام شان را یکی می دهیم. این موضوع باعث می شود که تحلیل این شبکه ها بسیار ساده باشد و الگوریتم یادگیری کارایی برای آنها طراحی شود. البته این موضوع باعث می شود که به سادگی ببینیم که این نوع شبکه ها توانایی بالایی در حل مسائل مختلف ندارند و با بزرگتر کردن شان بر قدرتشان افزوده نمی شود.

۳_۳_۱_ تواناییهای یک تک نورون

برای نشان دادن حداقل توانایی های یک نورون ساده، با استفاده از آنها گیتهای منطقی پایهای رایانه و دو مثال پیشرفته تر را طراحی میکنیم. برای این کار فرض کنید که تابع فعالسازی تمام نورونهای این بخش از نوع تابع Threshold (که در بخش ۲ ـ ۴ ـ تعریف شده) می باشد:

- گیت not: برای ساختن این گیت باید یک ورودی داشته باشیم که ضریب آن را برابر ۱ قرار میدهیم و مقدار عدد ثابت (bias) را برابر ۰ قرار میدهیم و یک گیت not ساخته میشود.
- گیت and: برای ساختن این گیت باید دو ورودی داشته باشیم که ضریب هر کدام را برابر ۱ قرار میدهیم و مقدار عدد ثابت را برابر ۲ قرار میدهیم. حال مقدار خروجی فقط در صورتی یک است که هر دو ورودی یک باشند.
- گیت or: همانند and دو ورودی داریم با ضریب ۱ و فقط مقدار عدد ثابت را برابر ۱ قرار میدهیم. حال اگر هر کدام را یک کنیم، جواب یک می شود.
- تابع اکثریت یعنی این که n ورودی داشته باشیم و بگوید که اکثریت آنها صفر بودهاند یا یک: برای این تابع هم n ورودی داریم که ضریب هر کدام یک است و مقدار عدد ثابت برابر $\frac{\pi}{9}$ است.
- فلیپفلاپ^{۱۱}: ساخت این قطعه به داشتن دور در گراف ساختار نورونها دارد و در نتیجه فقط در شبکههای در جریان (بخش ۳_۵_) قابل پیادهسازی است. اما برای ساخت آن فقط کافی است که خروجی نورون به عنوان ورودی دوباره

شکل ۷: معماری شبکههای چند لایه (این مثال: سه لایه)

به خودش داده شود (با ضریب ۱) و دو سیگنال ورودی set با ضریب ۱ و reset با ضریب منفی Y – (البته بسته به استفاده می تواند I – هم باشد) و عدد ثابت (bias) هم برابر I – باشد. حال تا وقتی که سیگنالی نیاید، همیشه مقدار خروجی نورون ثابت می ماند و با آمدن سیگنال هم مقدار آن تعیین می شود.

۳_۴_ شبکههای چند لایه

این شبکهها که حالت کلی شبکههای رو به جلو اند، امروزه مدل استاندارد مورد استفاده برای بیشتر مسائل تشخیص الگو با کمک یادگیری با ناظر اند. با ظهور و استفاده از این شبکهها در الگوریتمهای شبکههای عصبی، جان تازهای در تحقیقات در این زمینه دمیده شد. این شبکهها محدودیتهای شبکههای تک لایه در تولید فقط بعضی از انواع توابع خروجی را ندارند.

یکی از مشکلاتی که شبکههای تک لایه با آن روبرو بودند این بود که برای این که بهتر کار کنند، نیاز بود که ابتدا از ورودیها چند خاصیت کلی استخراج شوند و سپس با استفاده از این خاصیتها پرسپترونها کار تصمیم گیری را انجام بدهند. اما با استفاده از شبکههای چند لایه میتوانیم ابتدا حتی بدون دانستن خروجیها (بدون ناظر) مقدار زیادی خواص را فقط با داشتن ورودیهای محتلف از آنها استخراج کنیم و سپس با یا بدون داشتن خروجیها شروع به تصمیمگیری کنیم. به همین دلیل این الگوریتمها برای دادهکاوی^{۱۵} در مجموعهی عظیمی از دادهها حتی وقتی که نمیدانیم دنبال چه چیزی میگردیم و برای مثال فقط میخواهیم دنبال بیقاعدگیها بگردیم بسیار مناسب هستند. برای اطلاعات بیشتر و کاربردهای عملی این شبکهها میتوانید به ابزار متنباز وکا^{۱۹} مراجعهکنید.

در معماری این شبکهها تعدادی لایه نرون وجود دارد که نه گره ورودی اند و نه گره خروجی. به این لایهها در اصطلاح، لایههای پنهان ۱۷ میگویند. اهمیت این لایهها در این است که این لایهها

¹⁰DataMining

¹⁵ http://www.cs.waikato.ac.nz/ml/weka/

[\]hidden layers

[\]filip-flop

تنها چیزیاند که شبکههای چند لایه را از شبکههای تک لایه جدا میکنند، پس قدرت این شبکهها بر دوش این لایهها است. اما وجود این لایهها مشکلاتی را برای الگوریتمهای یادگیری ایجاد میکند.

در ادامه بعضی از این مشکلات را بررسی کرده و راهحلهای آنها را ارائه میدهیم.

۳_۴_۱ بیشبرازش

بیش برازش $^{^{^{^{^{^{^{^{^{^{^{^{}}}}}}}}}}}$ بیش برازش $^{^{^{^{^{^{^{^{^{^{}}}}}}}}}}$ به پدیده ی نامطلوبی در مدلهای آماری گفته می شود که در آن درجه ی آزادی مدل بسیار بیشتر از درجه ی انتخاب شده و در نتیجه اگرچه مدل روی دادههای استفاده شده برای یادگیری بسیار خوب نتیجه می دهد، اما بر روی دادههای جدید دارای خطای زیاد است.[?] برای مثال وقتی که مقدار یک چند جملهای درجه ی سه تخمین چند جملهای درجه ی سه تخمین بزنیم.

همانند تمام مدلهای آماری، شبکههای چند لایه نیز وقتی که تعداد پارامترهای مسئله (همان تعداد لایهها و اندازهی کلی شبکه) بیش از حد باشد، به مشکل بیش برازش بر میخوریم. در این حالت حتی شبکهی ما میتواند به صورتی تمام ورودیهای داده شده را در خود ذخیره کند و بر روی آنها درست جواب بدهد اما لزوما این نتایچ را بر روی ورودیهای جدید تعمیم ندهد.

به وضوح اگر اندازهی شبکه بسیار کوچک باشد نیز مشکلات دیگری^{۱۹} پیش می آید و نتایج دقت کافی را ندارند.

اگر قرار باشد در شبکه موجود تمام گرهها به یکدیگر وصل باشند، تنها موضوع باقی مانده، اندازهی شبکه است. یکی از روشهای ساده برای حل این مشکل این است که ابتدا چند ساختار را بررسی کنیم و کوچک ترین ساختاری را انتخاب کنیم که نتایج قابل قبولی دارد. روشهای دیگر استفاده از روش اعتبار سنجی متقابل ۲۰ است. یک روش برای شبکههای تماما متصل نیستند، الگوریتم صدمه ی مغزی بهینه ۲۰ است که ابتدا از یک گراف کامل شروع می کند و سپس بعضی از ارتباطات آن را حذف می کند. [؟،

٣_٢_٢ انتشار رو به عقب

یکی از ابتدایی ترین مشکلات شبکههای چند لایه این است که نیاز به الگوریتم کارایی برای انجام یادگیری در لایههای نهفته داریم. به این دلیل که این لایهها به طور مستقیم به خروجیها وصل نیستند و نمی توانیم به طور مستقیم خروجی شان را بررسی کرده و بر اساس

آن تغییرات لازم را انجام بدهیم. یکی از اولین و پرکاربردترین روشهای ارائه شده، الگوریتم انتشار رو به عقب^{۲۲} است. در این روش مقدار خطای لایههای عقبتر بر اساس خطای لایههای جلوتر به دست میآید و به اصطلاح خطا رو به عقب انتشار پیدا میکند. یک پیشنیاز برای انجام این روش این است که توابع فعالسازی نورونها توابعی پیوسته باشند. برای مثال میتوان از تابع فعالسازی Sigmoid (بخش ۲-۴) استفاده کرد.

برای بهتر فهمیدن روش این الگوریتم، در نظر بگیرید که خروجی نورونهای لایههای جلوتر یک تابع بر حسب خروجی نورونهای لایههای مرحلهی قبل است. حال با در دست داشتن مقدار خطای تابع میتوانیم مقدار تاثیر پارامترهای ورودی تابع را در خطا محاسبه کنیم. با انجام این کار و انتشار مقدار خطای به دست آمده به مراحل قبل، مقدار خطای آنها نیز به دست میآید.[؟]

یک نکته ی مهم در مورد درستی این روش این است که شاید این روش بهترین روش ممکن نباشد، یک الگوریتم کارا هم نظر پردازشی و هم از نظر نتایج به دست آمده است.

اما هنوز این روش نمی تواند به عنوان یک روش یادگیری کامل بر روی تمام شبکهها استفاده شود. به شبکههایی که تعداد لایههای زیادی (در واقع تعداد لایههای پنهان زیاد) داشته باشند، شبکههای عمیق^{۲۲} می گویند. در هنگام اجرای این الگوریتم بر روی این شبکهها دیده می شود که یادگیری بعد از چند سطح دیگر کار خود را نمی تواند به خوبی انجام دهد. این مشکل به دلیل موضوعی به نام مسئلهی گرادیان محو شونده ۲۴ ایجاد می شود. یعنی سهم خطایی که برای لایههای قبلی محاسبه می کردیم، بعد از چند مرحله به سرعت از بین می رود و شاید حتی بعد از چهار مرحله، مقدار به دست آمده با تقریب خوبی برابر صفر باشد. به همین دلیل معمولا ابتدا برای لایههای اولیه از الگوریتم های یادگیری بدون ناظر استفاده می شود و سپس برای لایههای انتهایی از این الگوریتم یا الگوریتم های مشابه استفاده می شود.

۳_۵_ شبکههای در جریان

^{**}back propagation

^{۲۳}deep networks

YFVanishing Gradient problem

^{۲۵}recurrent

^{\^}overfitting

¹⁴underfittin

^{*} cross-validation

^{۲۱}optimal brain damage

پایهای یک رایانه ی کامل را داشته باشند. پس اگر بتوانیم آنها را تعلیم دهیم قدرت بسیار بالایی می توانند داشته باشند. اما به دلیل این که می توانند اشکال بسیار مختلف و پیچیدهای داشته باشند، الگوریتمهای یادگیری مناسبی برای شان به دست نیامده و به همین دلیل در حال حاضر نمی توانیم از تمامی قدرت شان استفاده کنیم و طراحی چنین الگوریتمی بسیار مورد نیاز و سودمند است.

این شبکهها طبیعی ترین روش برای مدل کردن دادههای پشت سر هم (دنبالهی دادهها) هستند. معمولا در هنگام عمل یادگیری برای این شبکهها آنها را به صورت شبکههای چند لایهی رو به جلو مدل میکنیم که در زمان عمق پیدا کرده اند. یعنی برای هر مرحلهی زمان، یک بار کل شبکه را قرار می دهیم و یالهای شان را به جای وصل کردن به همان مرحله، به مرحلهی بعدی وصل میکنیم. یکی از خوبیهای این روش این است که بااین کار می توانیم از الگوریتمهای یادگیری ساخته شده برای شبکههای رو به جلو، در این شکبهها نیز استفاده کنیم.[؟]

همچنین روش دیگری که بسیار مورد استفاده قرار میگیرد، استفاده از حالتهای خاص توپولوژی نورونها (در مقابل گراف کامل) بود که هر کدام به دلیل محدودیتهای شان، تحلیل و بررسی و در نتیجه تعلیم شان ساده تر باشد.

۳_۶_ مثالهایی از شبکههای در جریان

برای این که ببینید این الگوریتمها چه کارهایی را می توانند انجام بدهند، چند مثال از فعالیتها در این زمینه می آوریم:

در سال ۱۹۱۱ ایلیا ساتسکور ۲۶ یک نوع خاص از شبکههای در جریان را برای پیشبینی کاراکتر بعدی در یک دنباله از کلمات تعلیم داد. و سپس با استفاده از همین شبکه، یک متن کامل را از ابتدا تولید کرد. این متن شاید در نگاه کلی معنای خاصی نداشت اما با وجود این موضوع، همین که تمام کلمات تولید شده کلمات درست انگلیسی بودند و بسیاری از عبارات و حتی جملات آن معنای کامل و درست داشتند، خود نشان دهنده ی دقت و قدرت این الگوریتم بود. [؟]

۳_۶_۱_ شبکههای رقابتی

۳_۶_۲ شبکه های هایفیلد

یک حالت خاص از شبکههای در جریان، شبکههای متقارن اند. در این شبکهها یالها به جای یک طرفه، دو طرفه اند. پس وزن در دو طرف یکسان است. جان هاپفیلد^{۲۷} و دیگران متوجه شدند که تحلیل این نوع شبکهها بسیار ساده تر از حالت کلی شبکههای در جریان است.

٣_٤_٣_ مدل اي.آر.تي.

سلام

۴_ تعریف مسئله

جستجو و یافتن الگو درون دادهها را می توان یک مسئله ی کاملا پایه ای و پر کاربرد در علم، صنعت و به طور کلی در زندگی در نظر گرفت. برای مثال در قرن ۱۶ ام کپلربا توجه به اطلاعات زیاد مشاهداتی موجود متوجه الگوی حرکتی سیارات شد و یا مشاهدات طیف نشری اتم ها به پیدایش فیزیک کوانتوم ختم شد.

به طور کلی فیلد شناسایی الگوها به دنبال شناسایی خودکار نظم و قواعد درون داده ها توسط الگوریتم های کامپیوتری و پس از پیدا کردن این قواعد، به دنبال کار هایی همچون دسته بندی این دادهها در گروههای مختلف است. [؟، ص_١]

شبکههای عصبی مصنوعی به خصوص در سال های اخیر به دلیل پیشرفت های حاصل در این زمینه به عنوان یک دسته از الگوریتم های قوی و پویای تشخیص الگو همیشه گزینهی مناسبی برای حل این گونه مسائل بودهاند.

معیار هایی که با آنها می توان این مسئال را تفکیک کرد متنوع اند، اما از میان آنها میتوان رایج ترین و مهم ترین آنها را نامبرد که عبارتاند از، نحوهی یادگیری که معمولا این مسائل را در دو فرم با نظارت و بدون نظارت دسته بندی میکند و خواستهی مسئله که به طور عمده یکی از حالت های دسته بندی دادهها و یا پیشبینی داده های پیوسته است.

در ادامه هر یک از این معیار ها را بررسی میکنیم.

۴_۱_ خواستهی مسئله

الگویی که بر روی یک دسته از داده ها پیدا می شود را می توان یافتهی اصلی الگوریتم در نظر گرفت و با توجه به انواع الگوهایی که یک الگوریتم شناسایی می کند، می توان الگوریتم ها و مسائل متناظر آن ها را دسته بندی کرد.

هاپفیلد و دیگران^{۲۸} بر اساس همین موضوع شبکههایی را طراحی کردند. شبکهی هاپفیلد معمولا به عنوان حافظههای تداعی گیر^{۲۹} استفاده می شوند. ثابت می شود که این شبکهها همیشه به یک کمینهی موضعی^{۳۱} همگرا می شوند. اما ضمانتی وجود ندارد که این کمینهی موضعی همان جواب مسئله باشد. همچنین این شبکهها به عنوان مدلی برای درک بهتر حافظهی انسان نیز استفاده می شوند.[؟]

^{۲۸} برای مثال ماشین بلتزمن (Boltzmann) را ببینید.

^{۲۹}Content-addressable memory

[&]quot;·local minima

^{۲۶}Ilya Sutskever

YV John Hopfield

این الگو در واقع یک تابع است که الگوریتم با بررسی داده های قدیمی پیدا می کند و از این تابع برای حدس زدن ویژگیهای دادههای جدید استفاده می کند. این تابع را در ادامه با y(x) نشان می دهیم.

به طور کلی در یک مسئله ییادگیری در صورتی که خواسته ی مسئله درون یابی ۳۳ یا برون یابی ۳۳ یک داده ی پیوسته باشد به آن یک مسئله ی رگراسیون ۳۴ می گویند و در صورتی که هدف پیشبینی یک کلاس گسسته و محدود برای داده های جدید باشد به آن کلاس بندی ۳۵ می گویند، یا به تفسیری دیگر از کتاب پترن ریکا گنبشن:

در صورتی که هدف یک فرایند، انتساب داده های ورودی به تعداد متناهیای از کلاسهای گسسته باشد به آن کار کلاسبندی میگوییم و اگر خروجی (یعنی خروجی تابع (y(x)) شامل یک یا چند داده ی پیوسته باشد در این صورت به این کار رگراسیون میگوییم.[؟]

در نتیجه این دستهبندی بر اساس خروجی تابع y است.

۲_۲_ نحوهی یادگیری

فرض کنید یک مجموعه ی داده $X=x_1,x_7,...,x_N$ در اخیار شما قرار گرفته و از شما میخواهند که با استفاده از آن یک روش و یا الگو ارائه دهید که در صورت مواجه با داده ی جدید \widehat{x} با آن الگو بتوان یک ویژگی از \widehat{x} به اسم \widehat{t} را با تابع $y(\widehat{x})$ پیشبینی کرد.

همان طور که از جملهی بالا معلوم است ویژگی خواسته شده توسط مسئله مبهم است و قبل از شروع به حل مسئله نیاز به رفع ابهام دارد.

اما در بعضی دیگر از مسائل بردار t به الگوریتم داده نمی شود، با این که ممکن است در نگاه اول عجیب به نظر برسد که الگوریتم باید بدون داشتن هیچ ایده ای از خواسته ی مسئله به دنبال ویژگی ای

در مسئله بگردد، اما در ادامه می بینیم در واقعت بسیار با این گونه مسائل روبه رو می شویم، برای مثال وقتی که برای اولین بار کسی با چند دسته از اشیاء جدید روبه رو می شود، بدون آن که کسی به او بگوید این اشیاء با هم تفاوفت دارند، فرد از روی تفاوت هایی مانند شکل، اندازه و ... آنها را در گروه هایی دسته بندی می کند و برای هر گروه مفهومی در ذهن خود درنظر می گیرد، از آن جا که این دسته از مسائل هیچ گونه راهنمایی ای در مرحلهی یادگیری دریافت نمی کنند، یادگیری این دسته مسائل را یادگیری بدون نظارت می نامند.

۵_ یادگیری

پر اهمیت ترین ویژگی شبکه های عصبی، توانایی یادگیری و بهبود عملکرد آنها به وسیله ی یادگیری است. در واقع اتصالات بین عصبها و شیوه ی فعالیت آنها، تابع y(x) که در قسمت قبل مطرح شد را می سازند، پس در شبکه های عصبی مرحله ی یادگیری که مرحله ی تولید y است، با تعیین وزن اتصالات بین عصب ها انجام می شود. تعریف دقیق یادگیری در شبکه های عصبی را می توان به صورت زیر دانست:

یادگیری فرایندی است که در آن متغیرهای آزاد یک شبکهی عصبی (یعنی وزن اتصالات و ...) در جریان تحریک شدن به وسیلهی محیطی که شبکه در آن قرار دارد مقدار میگیریند. نوع یادگیری، تغییراتی که در این متغیرها رخ میدهد را تعیین میکند.[؟، ص_-٥]

با توجه به تعریف بالا میتوان گفت که یادگیری در شبکههای عصبی از دنبالهی وقایع زیر تشکیل شده:

- ۱. تحریک توسط یک محیط.
- ۲. تغییر متغیرهای آزاد بر اساس این تحریک.
- ۳. پاسخ دادن به صورتی جدید به محیط به خاطر تغییرات مرحله قبل.

همان طور که تعریف به آن اشاره کرد یادگیری انواعی دارد که روش تغییرات داخلی را تعیین میکنند. از آنجا که این تغییرات به صورت های متفاوتی میتوانند شکل گیرند، میتوان انواع زیادی از یادگیری را تولید کرد، چند نمونه از روش های یادگیری معروف را میتوان روش های زیر دانست:

- ١. تصحيح خطا
- ۲. يادگيري هبين
- ۳. یادگیری رقابتی

^{*\}Learning Problem

^{**}Interpolation

^{**}Extrapolation

^{**}Regression

^{۳۵}Classification

^{۳9}Training set

Target vector

[™]Supervised learning

۴. یادگیری برمبنای حافظه

۵. یادگیری بتلزمن

در بخش های بعدی دربارهی هر یک از این روش های یادگیری توضیحی مختصر داده میشود، برای یادگیری بیشتر در این زمینه میتوانید به منابع ذکر شده در قسمت پایانی رجوع کنید.

۵_۱_ قواعد تصحیح خطا

در ساده ترین حالت این روش یادگیری می توانید فرض کنید یک عصبk داریم که خروجی آن قابل اندازهگیری است و آن را با y(x) نشان می دهیم، برای این عصب یک مقدار مطلوب خروجی وجود دارد که آن را d(x) مینامیم و مستقیما به ما داده می شود. در اثر مقایسه ی سیگنال خروجی با سیگنال مطلوب یک سیگنال خطا به دست می آید که برابر با مقدار زیر است:

$$e_k(n) = d_k(n) - y_k(n)$$

سیگنال خطای e یک مکانیزم کنترلی را فعال میکند که هدف آن اعمال یک سری تغییرات بر روی وزن اتصالات عصب ها به منظور بهبود دادن خروجی است. این تغییرات طراحی شده اند تا مرحله به مرحله فاصله یy(x) را از y(x) کم کنند. در هر مرحله با انتخاب تغییراتی که مقدار تابع هزینه ی زیر را کمینه کند این کار را انجام می دهیم:

$$\xi(n) = \frac{1}{7} e_k^{\rm Y}(n)$$

که در اینجا $e_k(n)$ نشان دهنده ی مقدار خطا در مرحله ی n ام است. می توان این تابع هزینه را تابع انرژی لحظه ای خطا نامید. این تغییرات مرحله به مرحله تا جایی ادامه می یابد که عصب k به یک وضعیت تعادل برسد، در این حالت فرایند متوقف می شود. می توان نشان داد که کمینه کردن این تابع هزینه معادل است با انتخاب یک بردار تغییرات $\Delta \omega$ به صورت زیر که مقدار ورودی ها و مقدار خطا متناسب است.

$$\Delta\omega_{k,j} = \eta e_k(n) x_j(n)$$

$$\omega_{k,j}(n+1) = \omega_{k,j}(n) + \Delta\omega_{k,j}(n)$$

که (n) وزن اتصال بین عصب k و j در مرحله n است و $m_{k,j}(n)$ مریب یادگیری شبکه است که مقدار آن سرعت فرایند یادگیری را تعیین می کند. برای اندازه گیری خطا لازم است که علاوه بر مقدار مطلوب به خود خروجی نیز دسترسی داشت پس k باید یک عصب خروجی باشد که همیشه ممکن نیست، به علاوه این روش به صورت موضعی عمل می کند، یعنی خطا تنها از روی عصب های مجاور به دست می آید و حالت های پیچیده تر را درنظر نمی گیرد.

شکل ۸: محدوده ی درون خطچین شامل دو نقطه متعلق به کلاس ۱ و یک داده ی پرت با مقدار ۱ است، الگوریتم k نزدیک ترین همسایه k = 0 مقدار به طور شهودی صحیح ۱ را به نقطه ی k = 0 نسبت می دهد، در حالی که k = 0 به داده ی پرت ۱ نزدیک تر است.

۵_۲_ یادگیری بر مبنای حافظه

در یادگیری بر پایه ی حافظه، بیشتر تجربیات گزشته به صورت واضح در یک حافظه ی رده بندی شده به صورت ورودی خروجی یعنی $\sum_{i=1}^{N} \{X_i, d_i\}_{i=1}^{N}$ ذخیره می شوند، که x و x به ترتیب نشان دهنده ی ورودی و خروجی مورد نظر است. فرض کنید مقدار خروجی یکی از مقدارهای و یا ۱ باشد. در این صورت با دریافت x (ورودی جدید) الگوریتم با بررسی داده های آزمایشی در همسایگی و آنالیز آنها پاسخ خود را می دهد.

در تعریف بالا دو چیز نیاز به رفع ابهام دارد، یکی مفهوم همسایگی \widehat{x} و دیگری روش اعمال قوانین یاگیری بر روی داده های آزمایشی در همسایگی \widehat{x} است. برای مثال یک روش یادگیری ساده مبتنی بر حافظه قانون نزدیک ترین همسایه x است. در این جا همسایگی x ، آزمایشی است که در نزدیک ترین فاصله از آن قرار دارد یعنی آزمایشی که بردار ورودی آن تا بردار x کمترین فاصله ی اقلیدسی را داراست:

$$\min_{i} d(x_{i}, \widehat{x}) = d(x_{N}^{'}, \widehat{x})$$

مقداری که به این داده یعنی x_N' نسبت دارد به عنوان مقدار خروجی \widehat{x} گزارش می شود، می توان ثابت کرد در صورت برقرار بودن چند شرط بر روی داده ها، احتمال خطای این مقدار خروجی، حداکثر ۲ برابر احتمال خطای بیز است، یعنی حداکثر دو برابر احتمال خطای بهینه.

یک حالت دیگر از یادگیریهای مبتنی بر حافظه که در واقع تعمیم روش قبل است، کلاس بندی k نزدیک ترین همسایه است.

^{٣٩}Nearest neighbor rule

در این روش همسایگی \hat{k} ، \hat{k} آزمایشی است که در نزدیک ترین فاصله از بردار ورودی قرار دارند، و الگوریتم با یافتن کلاسی که در این \hat{k} آزمایش بیشتر از همه تکرار شده ، جواب مسئله را میدهد.

الگوریتم های دیگری نیز وجود دارند که بر پایهی حافظه هستند اما ما به همین دو مورد بسنده میکنیم.

شكل ؟؟ تفاوت اين دو روش مبنى بر حافظه را نشان مىدهد.

۵_۳_ بلتزمن (Boltzmann)

قانون یادگیری بلتزمن که به نام مبدع آن نام گذاری شده، الگوریتمی احتمالاتی است و به شبکه های عصبیای که بر پایهی این الگوریتم کار میکنند ماشین های بلتزمن میگویند.

در یک ماشین بلتزمن هر عصب می تواند در ۲ حالت مختلف مثلا 1+ یا 1- قرار گیرد و برای کل سیستم می توان یک تابع انرژی E در نظر گرفت که مقدار آن با وضعیتی که عصب ها می گیرند تعیین می شود:

$$E = -\frac{1}{\mathbf{Y}} \underset{j \neq k}{\sum \sum_{j}} \underset{k}{\sum} \omega_{kj} x_k x_j$$

ماشین در هر مرحله با انتخاب یک عصب تصادفی و عوض کردن وضعیت آن عصب با احتمالی که تابع زیر توصیف میکند در دمای T تلاش میکند تا مقدار انرژی را به دمای تعادل برساند (البته که این دما کمیتی فیزیکی نیست و میتوان آن را شبه دما نامید).

$$P(x_k \to -x_k) = \frac{1}{1 + \exp\left(-\Delta E_k/T\right)}$$

اینجا ΔE_k مقدار تغییرات انرژی بر اثر تغییر وضعیت عصب k را نشان میدهد.

عصب های ماشین بلتزمن را میتوان به دو دستهی پنهان و آشکار تقسیم کرد، این ماشین در دو حالت مختلف عمل می کند:

۱. حالتی که وضعیت عصب های آشکار از سوی محیط تحمیل ه شدد.

۲. حالتی که عصب های آشکار آزادانه تغییر می کنند.

که در هر دو این حالات وضعیت عصب های پنهان به صورت آزاد می تواند تغییر کند. فرض کنید $\rho_{i,j}^+$ مقدار هم بستگی وضعیت های دو عصب i و j و میانگین گرفته شده درتمام وضعیتهای تعادل حالت اول است. و $\rho_{i,j}^-$ همین هم بستگی در حالت دوم است. تغییر وزن اتصال بین این دو عصب را با فرمول زیر تعیین میکنیم:

$$\Delta\omega_{k,j} = \eta(\rho_{k,j}^+ - \rho_{k,j}^-), \quad j \neq k$$

که متغیر های بالا قبل تر تعریف شده اند.

4-4 هبين (Hebian)

فرضیهی هب یکی از قدیمی ترین و مشهور ترین قانون های یادگیری را ارائه میکند:

وقتی که یک عصب A به اندازه کافی به عصب B نزدیک باشد که آن را تحریک کند و به طور مداوم در فعال کردن عصب B شرکت کند، فرایندی در یکی یا هر دو این عصب B افزایش می دهد. [؟، ص_که تاثیر عصب A را بر روی عصب B افزایش می دهد. [؟، ص_

با عوض کردن جمله بندی این گزاره، دو قانون زیر را به دست میآوریم:

- اگر دو عصب در دو سمت یک سیناپس (یک اتصال) به طور همزمان عمل کنند، در آن صورت قدرت آن سیناپس به دلخواهی افزایش می یابد.
- ۲. اگر دو عصب در دو سمت یک سیناپس (یک اتصال) به طور غیر هم زمان عمل کنند، در آن صورت قدرت آن سیناپس به دلخواهی کاهش می یابد. [؟، ص_۵۵]

به چنین سیناپسی سیناپس هبین میگویند، در واقع چنین اتصالی از یک فرایند فعال وابسته به زمان و به شدت موضعی برای بهبود کارایی عصب ها و بهینه سازی آنها استفاده میکند.

از تعریف اولیه، قانون دوم نوشته شده به دست نمیآید در واقع مدل های متفاوتی با توجه به قوانین هبین میتوان ساخت که میتوانند به صورت متفاوتی عمل کنند، برای مثال ممکن است تغییرات وزن اتصالات متناسب با حاصل ضرب وضعیت دو عصب تغییر کند که در این صورت سیناپس خاصیت کواریانسی پیدا میکند و یا این که تنها با همزمانی ها تقویت شود و تضعیفی در کار نباشد که مشابه تعریف اولیه است.

به شباهت قوانین هبین با پدیدهی شرطی سازی در روانشناسی نیز می توان توجه کرد.

۵_۵_ آموزش رقابتی

مشابه اسم این یادگیری، عصب های شبکههای عصبی در این روش با یکدیگر سر فعال شدن رقابت میکنند، برعکس روش های قبلی که در آن به طور همزمان چند عصب از شبکه می توانستند فعالیت کنند، در این روش تنها عصب برنده فعال می شود، که این خاصیت این شبکه ها را برای کشف ویژگی های مهم آماری برای دسته بندی داده ها مناسب می سازد. قواعد این روش را در سه عنصر می توان خلاصه کرد:

- ۱. یک مجموعه از عصب ها که کاملا مشابه اند، به جز در وزن اتصالات که به صورت تصادفی توزیع شده اند.
 - ۲. یک محدودیت بر روی قدرت عصب ها.
- ۳. یک مکانیزم رقابت که عصب ها به وسیلهی آن بتوانند رقابت کنند و برنده تعیین شود.

در ساده ترین حالت این شبکه می توان یک سطح از عصب های خروجی در نظر گرفت که همه ی عصب های ورودی به همه ی آنها اتصالاتی با وزن مثبت دارند (اتصالات بین عصب های خروجی نیز مشکلی ایجاد نمی کند).

برای این که عصب k بین عصب ها برنده شود باید میدان القایی * آن به ازای ورودی \widehat{x} در بین همهی عصب ها بیشینه باشد، در نتیجه ورودی های عصب برنده به نحوی تغییر میکنند که عصب k با ورودی \widehat{x} آموزش یابد و این عصب با این ورودی راحت تر تحریک شود، برای این کار بردار وزن اتصالات عصب k به سمت ورودی \widehat{x} شیفت داده می شود، یا به عبارتی:

$$\Delta \omega_{k,j} = egin{cases} \eta(x_j - \omega_{k,j}) & \text{ .} \end{cases}$$
 اگر عصب k مسابقه را ببازد اگر عصب k مسابقه را ببازد

که ضریب η همان ضریب یادگیری است. تعبیر شهودی فرایند ذكر شده اين است كه در صورت خوشه اي بودن داده ها در چند همسایگی، برای دسته بندی این داده ها به وسیلهی شبکهی عصبی بالا در گروههای جدا از هم، می خواهیم که به هر گروه یک عصب نسبت دهیم که در صورتی که ورودی درون یکی از آن گروه ها فعال شود، عصب متناظر با آن گروه شروع به فعالیت کند. برای این کار بردار ورودی عصب ها را رندم در فضای حالات پراکنده میکنیم و در صورتی که بردار ورودی یک عصب به ورودی یک آزمایش نزدیک تر باشد (و در نتیجه بیشتر از بقیهی عصب ها تحریک شود)، آن عصب را متناظر با گروه آن ورودی در نظر میگیریم و بردار آن را به بردار این ورودی نزدیک میکنیم. بعد از چندین مرحله اجرای این آزمایش به حالتی میرسیم که بردار هر عصب در میان گروه متناظر آن قرار دارد و در مراحل بعدی این عصب اعضای آن گروه را شناسایی میکند، از آن جا که بردار های ورودی در ابتدا تصادفی پراکنده شده بودند، به صورت احتمالی هر گروه یک عصب درون خود دارد، و از آنجا که هر آزمایش یک برنده دارد، در صورتی که یک گروه عصب متناظر خود را پیدا کند، از آن پس عصب برندهی خود را خواهد داشت و بردار عصب های دیگر را به سمت خود نمی کشاند.

شكل ؟؟ اين فرايند را نشان مىدهد.

شکل ۹: فرایند یادگیری عصب ها در شبکه های رقابتی: شکل سمت چپ قبل از تحریک شدن توسط داده ها، شکل سمت راست بعد از تحریک شدن. هر یک از علامت های ضربدر نشان دهنده ی مکان یکی از بردارهای وزن اتصالات است، هر یک از نقطه ها نشان دهنده ی بردار ورودی یک داده است.

۶ـ کاربردهای مهم

در چند دهه ی اخیر بسیاری از فعالیت هایی که پیش از این تنها به وسیله ی انسان قابل انجام بوده، به وسیله ی کامپیوتر دست یافتنی شده است. علت این پیشرفت را می توان پیدایش پردازنده های قوی تر و همچنین الگوریتم های جدید ماشین لرنینگ دانست. به عنوان یکی از این الگوریتم ها شبکه های عصبی نیز نقش موثری در این فرایند داشته اند. مواردی که در ادامه مطرح می شود به طور کلی کاربرد هایی هستند که به وسیله ی شبکه های عصبی و یا سایر ماشین های یادگیری آماری ممکن شده اند.

3-۱- تشخیص الگو، صدا و تصویر

امروزه پیشرفت ها در این زمینه تا حدی بوده که حتی بعضی از تلفن های همراه هم دارای امکاناتی همچون دستیار های صوتی و یا تشخیص چهره هستند، گرچه در ابتدا موفقیت های ماشین های آماری در این زمینه بسیار بیشتر از شبکههای عصبی بود ولی با پیدایش شبکه های عمیق و پیشرفت شبکههای عصبی، این شبکهها از ماشین های آماری پیشی گرفتند.

۶_۲_ خوشهسازی و دسته بندی

وقتی حجم داده ها زیاد و یا تعداد ابعاد ورودی بیش ۳ یا ۴ بعد میشود ادراک انسان دچار مشکل شده و توانایی خود را در تجسم داده از دست می دهد، این مشکل برای کامپیوتر نیز به دلیل افزایش محاسبات به صورت نمایی با افزایش ابعاد ورودی وجود دارد اما شدت آن کمتر است.

8_۲_۱_ استخراج اطلاعات

انسان ها در برابر حجم زیاد داده ها از ماشین ها عقب ماندند، علاوه بر برتری هایی که در بالا ذکر شد، گاهی ماشین ها نظمی

^{*} Local induced field

در داده های پیدا می کنند که انسان به طور شهودی قابلیت درک آن را ندارد.

٤_٢_٢_ تحليل اطلاعات

به طور مشابه کامپیوتر ها در این زمینه هم ثابت کردند که در بعضی از موارد از انسان ها سریع ترند، بسیاری از شرکت های اقتصادی بر پایهی این برنامه ها سرمایهگذاری های خود را انجام میدهند.

8_٣_ تقريب تابعها

محاسبه ی بعضی از توابع به راحتی امکان پذیر نیست. تقریب تابع های پیچیده را به عنوان یکی دیگر از کاربرد های الگوریتمهای ماشین لرنینگ می توان نام برد.

۶_۴_ پیش بینی و حدس

پیشبینی وضع هوا، بازار، حدس زدن نتیجهی یک رخداد و ... از کاربرد های دیگر شبکه های عصبی است، اکثر این موارد حتی به وسيلهي مغز انسان هم قابل پيشبيني نيستند.

۵_۶ بهینهسازی مسائل پیچیده

مسائل NP دسته ای کاربردی از مسائل هستند که تا کنون الگوریتم ای قطعی برای حل آن ها در زمان مناسب ارائه نشده است. اما شبکه های عصبی و سایر ماشینهای یادگیری می توانند آن ها را در زمان خیلی خوبی با اطمینان بالایی حل کنند. و شاید حتی این دسته از مسئله ها را بتوان علت این دانست که چرا الگوریتم های قطعی توانایی رقایت با مغز انسان را ندارند.

٧_ نتيجهگيري

- [1] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed., New Jersey, Prentice-Hall, 1999.
- [2] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed., New Jersey, Prentice-Hall, 2010 [3] C. M. Bishop, *Pattern Recognition and Machine Learning*,
- 1st ed., New York, Springer, 2006.
- [4] G. Hinton, Neural Networks and Machine Learning [lecture notes], Retrieved from coursera.org, 2012
- [5] A. Ng, Machine Learning [lecture notes]. Retrieved from coursera.org, 2014
- [6] Wikipedia contributors, "Frank Rosenblatt" Wikipedia, FreeEncyclopedia, [online], Available: https://en.wikipedia.org/wiki/Frank_Rosenblatt

[7] Wikipedia Wikipedia, contributors, "Overfitting" Available: The FreeEncyclopedia, [online], https://en.wikipedia.org/wiki/Overfitting

Wikipedia,

Available:

[8] Wikipedia contributors, "Hopfield network" FreeEncyclopedia, [online], https://en.wikipedia.org/wiki/Hopfield network