

IN THE CLAIMS

Claims 1-30 (Canceled).

31. (Withdrawn) A gas storage apparatus comprising:
 - a pressure vessel including:
 - a polymeric structure of interconnected particles creating open cells; and
 - a nanostructure grown on said polymeric structure, said polymeric structure and said nanostructure capable of sorbing a molecular gas.
32. (Withdrawn) The apparatus of Claim 31, wherein said nanostructure comprise a structure taken from the group consisting of platelet carbon nano-fiber, cylindrical carbon nanostructure, ribbon carbon nano-fiber, faceted tubular carbon nano-fiber and herringbone carbon nano-fiber.
33. (Withdrawn) The apparatus of Claim 31, wherein said interconnected particles comprise particles having a diameter of up to the order of 100 Angstroms.
34. (Withdrawn) The apparatus of Claim 31, wherein said polymeric structure of interconnected particles creating open cells comprises a polymeric structure formed from a solution of one of either formaldehyde-resorcinol (RF) or phenolic-furfural (PF).
35. (Withdrawn) The apparatus of Claim 31, wherein said polymeric structure of interconnected particles creating open cells comprises a carbon aerogel structure having a density of about the order of 100 mg/cc.

MacPHERSON, KWOK CHEN
& REID LLP
1762 TECHNOLOGY DRIVE
SUITE 216
SAN JOSE, CA 95110
(408) 751-4046
FAX (408) 393-9263

36. (Withdrawn) The apparatus of Claim 31, wherein said polymeric structure of interconnected particles creating open cells comprises a carbon aerogel structure having a surface area in the range of between about 0.2 m²/gm and 3000 m²/gm.

37. (Withdrawn) The apparatus of Claim 31, wherein said molecular gas is taken from the group consisting of hydrogen and oxygen.

38. (Withdrawn) The apparatus of Claim 31, wherein said polymeric structure comprises a catalyzed carbon aerogel monolith structure.

39. (Withdrawn) The apparatus of Claim 31, wherein said nanostructures comprise solid fibers or hollow tubes of carbon.

40. (Withdrawn) The apparatus of Claim 31, wherein said open cells range in size up to about 1000 Angstroms.

41. (Withdrawn) The apparatus of Claim 31, further comprising a catalyst disposed on said polymeric structure bonded to carboxyl sites disposed on said polymeric structure to form catalyst islands.

42. (Withdrawn) The method of Claim 41, wherein said deposited metal catalyst is taken from a group of transition metals consisting of Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn and combinations thereof.

MacPHERSON, KWOK CHEN
& HEED LLP
1943 TECHNOLOGY DRIVE
SUITE 226
SAN JOSE, CA 95110
(408) 732-7040
FAX (408) 392-9262

43. (Withdrawn) The apparatus of Claim 41, wherein said deposited metal catalyst comprises an alloy of 70% Fe and 30% Cu.

44. (Withdrawn) The apparatus of Claim 41, wherein said nanostructures are configured to be grown from said catalyst islands by preparing graphite nano-filaments by the decomposition of an effective amount of carbon-containing gas mixture precursors on said polymeric structure at an elevated temperature.

45. (Withdrawn) The apparatus of Claim 44, wherein said elevated temperature is in the range of between about 500 °F and about 2000 °F.

46. (Withdrawn) The apparatus of Claim 44, wherein said carbon-containing gas mixture comprises gases taken from the group consisting of acetylene, benzene, carbon dioxide, carbon monoxide, hydrogen, and methane.

47. (Withdrawn) The method of Claims 31, wherein said pressure vessel is configured to receive said molecular gas at a temperature of between about 77°K and about 300°K.

48. (Currently amended) A method for forming a nanostructure laded reticulate structure for sorption and desorption of molecular gas, comprising:

polymerizing one or more precursor mixtures to form an aerogel;

supercritically drying said aerogel to remove the liquid components and form a monolith aerogel;

curing said monolith aerogel disposed and sealed into a mold;

McPHERSON, KWOK CHEN
& HIRD LLP
1762 TECHNOLOGY DRIVE
SUITE 226
SAN JOSE, CA 95110
(408) 732-7040
FAX (408) 732-9262

carbonizing said monolith aerogel by placing said carbonized monolith aerogel in a reducing atmosphere at elevated temperatures;

depositing a catalyst on the carbonized aerogel which bonds to sites available on the aerogel to form catalyst islands;

growing crystalline graphite precursors from said catalyst islands.

49. (Original) The method of Claim 48, wherein said crystalline graphite precursors comprise platelet carbon nano-fibers, cylindrical carbon nanostructures, ribbon carbon nano-fibers, faceted tubular carbon nano-fibers and herringbone carbon nano-fibers.

50. (Original) The method of Claim 48 further comprising introducing a hydrogen gas molecule into a pressure vessel which includes the nanostructure laded reticulate structure at the suitable temperatures and pressures for sorption of the hydrogen gas molecule.

51. (Currently amended) A method for forming a nanostructure laded reticulate structure for sorption and desorption of molecular gas, comprising:

combining the sol-gel polymerization of one or more precursor mixtures of organic aerogel precursors, solvent precursors, sol-gel catalyst precursors, metal cation salts and organic acid metal salts/polymer sol-gel of acetates, benzoates, carbonates, chlorides, epoxides, formates, hydroxides, isopropoxides, nitrates and and/or oxalates of metal precursors;

casting said sol-gel mixtures into a retort;

curing said sol-gel mixtures;

supercritical drying extraction of liquid from the cured sol-gel mixtures;

MacPHERSON, KWOK CHEN
& HEID LLP
1762 TECHNOLOGY DRIVE
SUITE 226
SAN JOSE, CA 95110
(408) 752-7040
FAX (408) 992-9422

reducing and carbonizing said cured sol-gel mixtures in a reducing atmosphere of hydrogen to produce a catalyzed carbon aerogel monolith structure; and growing graphite nano-filaments on said reticulated catalyzed carbon aerogel monolith structures.

52. (Original) The method of Claim 51, wherein said growing graphite nano-filaments on said reticulated catalyzed carbon aerogel monolith structure comprises: decomposing an effective amount carbon-containing gas mixed precursors on the catalyzed carbon aerogel structure at elevated temperatures.

53. (Original) The method of Claim 52, wherein said carbon-containing gas mixed precursors comprises at least one of acetylene, benzene, carbon dioxide, carbon monoxide, hydrogen and methane.

54. (Original) The method of Claim 52, wherein said graphite nano-filaments comprises platelet nanostructure, cylindrical nanostructure, ribbon nanostructure, faceted tubular nanostructure and herringbone nanostructure.

55. (Currently amended) The method of Claim 51, wherein said organic aerogel precursors comprise one of resorcinol-formaldehyde RF (RF), phenolic-furfural PF (PF), melamine-formaldehyde, and phenolic-novolak resins GP[®]-2018C and FurCarb[®] UP520.

56. (Original) The method of Claim 51, wherein said solvent precursors comprise at least one of acetic acid, acetone, butane, butyric acid, ethanol, ethyl ether, formic acid,

MCKEEHORN, KWOK CHEN
& HEID LLP
1762 TECHNOLOGY DRIVE
SUITE 226
SAN JOSE, CA 95110
(916) 752-7040
FAX (408) 392-9262

hexane, isopentane, isopropanol, methanol, n-propanol, pentanoic acid, pentane, 1-propanol and propionic acid.

57. (Currently amended) The method of Claim 51, wherein said sol-gel catalyst precursors comprise at least one of sodium carbonate, hydrochloric acid, QUCORR®2001, toluenesulfonic acid, and phosphoric acid.

58. (Original) The method of Claim 51, wherein said oxalates of metal precursors comprise at least one of chromium, cobalt, copper, iron, nickel and alloys of said metals.

MacPherson, Kwok Chen
& Heid LLP
1762 TECHNOLOGY DRIVE
SUITE 216
SAN JOSE, CA 95110
(408) 752-7040
FAX (408) 752-9262