

Generalizing Across Domains in Diabetic Retinopathy via Variational Autoencoders

Sharon Chokuwa and Muhammad H. Khan

Mohamed Bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE

MOTIVATION

- Diabetes Mellitus is projected to reach approximately 700 million by 2045, thus Diabetic Retinopathy (DR) will remain a common place.
- Existing literature to tackle Domain Generalization (DG) for DR is limited.
- We exploit the disentangled latent representation of the fundus images which separates the domain specific and domain-invariant features.

CONTRIBUTIONS

- We inspire researchers to explore a wider spectrum of techniques especially simple methods and we show that naive methods can outperform sophisticated DG methods.
- First to use Variational Autoencoders (VAE) for DG in DR.
- We rectify the existing work's limitation for future studies' fair comparisons with our method.

METHOD

 We hypothesize that an optimally disentangled latent space obtained via VAE contains domainshared features which boosts DG to unseen target domains.

$$\mathcal{L} = -\mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x|z) \right] + \beta D_{\text{KL}} \left(q_{\phi}(z|x) || p(z) \right) - \alpha \sum_{i=1}^{n} \ell(f(x_i), y_i)$$

EXPERIMENTS AND RESULTS

Method	Aptos	EyePACS	Messidor	Messidor-2	Avg.				
ERM	63.75 ± 5.5	70.22 ± 1.6	66.11 ± 0.8	67.38 ± 1.0	66.86 ± 2.2				
DRGen	57.06 ± 0.9	72.52 ± 1.3	61.25 ± 4.2	49.16 ± 16.3	60.00 ± 5.7				
Fishr	62.89 ± 5.0	71.92 ± 1.3	65.69 ± 1.1	63.54 ± 3.8	66.01 ± 2.8				
VAE-DG	66.14 ± 1.1	72.74 ± 1.0	65.90 ± 0.7	67.67 ± 2.0	$\textbf{68.11} \pm \textbf{1.2}$				
Oracle Results									
VAE-DG	68.54 ± 2.5	74.30 ± 0.2	66.39 ± 1.3	70.27 ± 1.2	69.87 ± 1.3				

ABLATION STUDIES

	APTOS	EyePACS	Messidor	Messidor-2	Avg.	Diff.		
Extended Analysis								
VAE-DG ResNet-152	61.45 ± 8.2	71.44 ± 3.1	$65.94{\pm}1.0$	67.81 ± 2.6	66.66 ± 3.7	$1.45(\downarrow)$		
$\overline{ ext{VAE-DG} + ext{SWAD}}$ $\overline{ ext{ERM} + ext{SWAD}}$				16.48 ± 12.0 58.48 ± 3.1				
Ablations Studies								
Latent-dim 64 Latent-dim 128			66.42 ± 2.1 66.60 ± 1.9	68.98 ± 3.0 66.09 ± 2.2		(' /		
Fixed latent space	63.87 ± 0.6	73.44 ± 0.8	66.46 ± 0.6	69.39 ± 0.8	68.29 ± 0.7	0.18(\(\frac{1}{2}\))		
$eta, lpha = 10{,}000 \ eta, lpha = 100{,}000$				$69.27{\pm}4.0$ $67.88{\pm}1.0$				
No Recon Loss No KL Divergence				65.21 ± 1.4 66.93 ± 1.6				

CONCLUSION

- We demonstrate that this simple approach provides effective results and outperforms contemporary state-of-the-art methods.
- Our study encourages the medical imaging community to consider simpler methods in order to realize robust models.

REFERENCES

- Teo, Z.L., Tham, Y.C., Yu, M., Chee, M.L., Rim, T.H., Cheung, N., Bikbov, M.M., Wang, Y.X., Tang, Y., Lu, Y., et al.: Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis.
 Ophthalmology 128(11), 1580–1591 (2021)
- 2. Gulrajani, I., Lopez-Paz, D.: In search of lost domain generalization. arXiv preprint arXiv:2007.01434 (2020)
- 3. Kingma, D.P., Welling, M.: An introduction to variational autoencoders. Foundations and Trends® in Machine Learning 12(4), 307–392 (2019). https://doi.org/10.1561/2200000056, https://doi.org/10.1561%2F2200000056