

Table of Contents

1.	GENERAL DESCRIPTION	3
2.	FEATURES	3
3.	BLOCK DIAGRAM	4
4.	PIN DESCRIPTION	5
5.	FUNCTION DESCRIPTION	7
5.1 5.2	Power On/Off Sequence	7
5.3 5.4		
6.	ELECTRICAL SPECIFICATION	10
6.1 6.2 6.3	Recommended Operating Range	10 10
6.4 6.5 6.6	5. AC Characteristics	12 14
6.7 6.8		
7.	DEFINITIONS	17
7.1 7.2		
8.	EPD DISPLAY SYSTEM CONFIGURATION	18

S960/800/720/640*G640/600/540/480 EPD Driver

1. GENERAL DESCRIPTION

The EK79632A is an EPD IC max for 960*640 active matrix display, include Source driver and Gate driver. It also provides cascade function for dot expansion.

The Source driver is a selectable 960, 800, 720 or 640 bit long 2-bit wide serial-input parallel-output driver with level conversion on each parallel output which converts the 2 digital bits into positive, GND, or negative analog output voltages. An 8-bit input bus simultaneously inputs 4 groups of 2 bits each. It consists of a Bi-Directional Shift Data Inputs, Transfer Latch, and 960 bit Level Shifter/Output Driver. Each "S[1] .. S[960]" pin is switched to one of [VPOS, GND, VNEG], according to the D7...D0 logic levels clocked into the Source driver, modified by the OE pin.

After a start pulse of Gate driver is triggered, output pins will output high-driving voltage pulses sequentially for the gate signals of the display. It supports 640/600/540/480 channels, shift up/down selection.

2. FEATURES

Source

- CMOS Technology
- 960/800/720/640 Output Channels Selectable
- Drives Segment or Active Matrix Displays
- +/-15 Volt Source Output Driver Supply Voltage
- Logical Interface: 1.7V ~ 3.6V
- Maximum Operating Frequency: 60MHz / 45MHz (VCC = 2.5V ~ 3.6V / 1.7V ~ 2.5V)
- Bi-Directional Shift 8-bit Data Inputs

Gate

- 640/600/540/480 Output Channels Selectable
- Built-in Bi-direction Shift Register
- Logical Interface: 1.7V ~ 3.6V
- Output Supply Voltage: VGL + 45V
- Maximum Operation Frequency: 200KHZ
- CMOS Silicon Gate

Package

COG type

3. BLOCK DIAGRAM

Figure 1. Block Diagram

4. PIN DESCRIPTION

Table 1. Pin Description

Pin Name	Pin Type		Descr	intion		
Source Driver	1) 00		20301			
CLK	Input		ver clock input. s are captured on the	rising edge of c	clock signal.	
STL1		SHR	Start Pulse Input	Start Pulse Ou	utput	
STL2	Bi-direction	H	STL2 STL1	STL1 STL2		
		Global star	t pulse input.	1		
		SHR	GLOSTL synchron	nous		
		Н	First IC' STL2	!		
GLOSTL	Input with	L	First IC' STL1			
	Pull High	use.	me and synchronous	·		
		It is the sar	me and synchronous	with the first IC'	s start pulse	
			Data inputs read sequ	entially from SIS	960] to S[1].	
SHR	Input	SHR= L: D	ata inputs read sequ	entially from S[1		
			ronous to clock CLK			
D[7:0]	Input	Source drivedge of CL	ver data input pins. Š K	They are latche	d on the rising	
			ver outputs enabled v	when OE is logic	: "H",	
OE	Input with Pull Low	Outputs for	rced to GND when O nronous to clock CLK	E is logic "L".	,	
LE	Input	Source driv	ver parallel latch ena nronous to clock CLK	ble, transparent	when high.	
0141 010001	0	Source driv	ver parallel outputs. I	Range is from V		
S[1] ~ S[960]	Output	switching of	ve to GND by setting on or off.	OE to logic "L"	prior to power	
		Source out	put channel select in	puts.		
		OSELS		channels		
OSELS1	Input with	Н	Н	960		
OSELS2	Pull High	Н	L	800		
		L	H	720		
		L L	L	640		
Gate Driver	Τ	Onto del	a alaife alaal oito 📧	a alatta wa ata t	data (a1-16) - 1	
GCLK	Input		r shift clock pin. Thusly with each rising		data is shifted	
STV1	Di dia di	UD	Start Pulse Input	Start Pulse Ou	utput	
STV2	Bi-direction	H	STV1 STV2	STV2 STV1		
		Used as ga	ate driver up/down pu	1	ntrol and	
UD	المراجع المراجع		cade sequence input			
UD	Input	Display drive outputs shift from G[1] to G[640] when set to "H"				
			ve outputs shift from			
MODE	Input with		ate driver output mod		•	
MODE	Pull Low		l: Normal single pulse	Э.		
MODE = L: Always keep VGL.						

Pin Name	Pin Type		Descr	iption			
Gate Driver							
XON	Input with Pull High	VGH level. Also VCC is preferre	When XON input pin is 'L', all the output pins are forced to VGH level. Also it has an internal pull high resistor, keep it to VCC is preferred when unused. The chip internal shift register is not cleared when XON input is active.				
		Gate output cha	annel select inpu	ıts.			
		OSELG1	OSELG2	channels			
OSELG1	Input with	Н	Н	640			
OSELG2	Pull High	Н	L	600			
		L	I	540			
		L	L	480			
G[1] ~ G[640]	Output	Gate driver output pins for driving the display's gate signals. The amplitude of these outputs is from VGH to VGL. The output timing of these signals is synchronous with the rising edge of the shift clock.					
Power Supply							
VPOS	Power	Supply of positi	ve power for so	urce outputs			
VNEG	Power	Supply of negat	tive power for so	ource outputs			
VCC	Power	Power for digital	al circuit				
GND	Power	Ground pin					
VGH	Power		ve power for the				
VGL	Power	Supply of negat	tive power for th	e gate outputs.			
Others							
Others' pads which not be mentioned above		Please do not o open.	connect to any si	ignal or power, ju	ust let them		

Note: SHR, UD and MODE can not be changed during frame.

5. FUNCTION DESCRIPTION

5.1. Description

The EK79632A is an EPD IC max for 960*640 active matrix display, include Source driver and Gate driver. It also provides cascade function for dot expansion.

The Source driver is a selectable 960, 800, 720 or 640 bit long 2-bit wide serial-input parallel-output driver with level conversion on each parallel output which converts the 2 digital bits into positive, GND, or negative analog output voltages. An 8-bit input bus simultaneously inputs 4 groups of 2 bits each.

Terminal SHR, when SHR = logic 1, the data inputs are read sequentially from S[960] to S[1] end of the device. The direction is reversed when SHR is logic 0. It is asynchronous to the clock CLK.

The two input terminals latch enable (LE) and output enable (OE) are asynchronous to the clock CLK. Terminal OE, when is logic 0, forces "S[1]...S[960]" outputs to GND. Terminal LE controls 960 latches that are transparent when LE is logic 1 and hold the data when LE is logic 0.

The EK79632A logic is static CMOS type. The current drain depends on the operating frequency.

Each "S[1]...S[960]" pin is switched to one of [VPOS, GND, VNEG] voltage levels according to the D[7:0] logic levels clocked into the EK79632A, modified by the OE pin. The truth tables are shown in the following tables.

Table 2. Data Input Truth Table (n = 0 to 3, k = 0 to 239)

OE	D [2n + 1]	D [2n]	SHR = H	SHR = L
OL	D [ZII + I]	D [ZII]	Output [n + 1 + 4k]	Output [4(k+1) - n]
1	0	0	GND	GND
1	0	1	VPOS	VPOS
1	1	0	VNEG	VNEG
1	1	1	GND	GND
0	X	Χ	GND	GND

Table 3. Source clock input Table

Output channels	Latch clocks	Dummy clocks	Total clocks
960	240		240 + Dummy clocks
800	200	≥ 3	200 + Dummy clocks
720	180	≟ 3	180 + Dummy clocks
640	160		160 + Dummy clocks

Note:

After the last data, it should append 3 dummy clocks at least.

Example1: If only 840 output channels in use, the total clocks should be 210+3 at least.

Example2: In cascade application, if output channels are 1920, the total clocks should be 480+3 at least.

5.2. Power On/Off Sequence

This IC is a high-voltage EPD driver, so it may be damaged by a large current flow if an incorrect power sequence is used. Connecting the drive powers, [VNEG, VGL] & [VPOS, VGH], after the logical power, VCC, is the recommended sequence. When shutting off the power, shut off the drive power and then the logic system or turn off all powers simultaneously.

Figure 2. Power On/Off Sequence

5.3. Power Level

Figure 3. Signal voltage level

Note: For the input signals: CLK, STL1, STL2, GLOSTL, SHR, D[7:0], OE, LE, OSELS1, OSELS2, GCLK, STV1, STV2, UD, MODE, XON, OSELG1 and OSELG2 "High" level = VCC, "Low" level = GND.

5.4. Channel Selection Function

OSELS1	OSELS2	Source Output Channels	Valid Output Channels	Invalid Output Channels
Н	Н	960CH	S1 ~ S960	None
Н	L	800CH	S1 ~ S400, S561 ~ S960	S401 ~ S560 Fix to GND
L	Н	720CH	S1 ~ S360, S601 ~ S960	S361 ~ S600 Fix to GND
L	L	640CH	S1 ~ S320, S641 ~ S960	S321 ~ S640 Fix to GND
OSELG1	OSELG2	Gate Output Channels	Valid Output Channels	Invalid Output Channels
Н	Н	640CH	G1 ~ G640	None
Н	L	600CH	G21 ~ G620	G1 ~ G20, G621 ~ G640 Fix to VGL
L	Н	540CH	G51 ~ G590	G1 ~ G50, G591 ~ G640 Fix to VGL
L	L	480CH	G81 ~ G560	G1 ~ G80, G561 ~ G640 Fix to VGL

6. ELECTRICAL SPECIFICATION

6.1. Absolute Maximum Ratings

Table 4. Absolute Maximum Ratings (GND = 0 V)

Parameter	Symbol	Rating	Unit
Logic Supply Voltage	VCC	-0.3 to +5	V
Positive Supply Voltage	VPOS	-0.3 to +18	V
Negative Supply Voltage	VNEG	+0.3 to -18	V
Max. Drive Voltage Range	VPOS - VNEG	36	V
Supply voltage	VGH	-0.3 to + 46	V
Supply voltage	VGL	-25.0 to + 0.3	V
Supply range	VGH - VGL	-0.3 to + 46	V
Operating Temp. Range	TOTR	-30 to +85	°C
Storage Temperature	TSTG	-55 to +125	°C

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this data sheet is not implied. Exposure of the device to the absolute maximum ratings for an extended period may degrade the device and affect its reliability.

6.2. Recommended Operating Range

Table 5. Recommended Operating Range (GND = 0V)

Parameter	Condition	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage (1)	-	VCC	1.7	3.0	3.6	V
Supply Voltage (2)	-	VPOS	10	-	15	V
Supply Voltage (3)	-	VNEG	-15	-	-10	V
Supply Voltage (4)	-	VGH	7.0	VGL + 42	VGL + 45	V
Supply Voltage (5)	-	VGL	-20	-	VNEG - 4	V
Clock Frequency (1)	-	fGCLK	-	-	200	KHz
Clock Frequency (2)	VCC = 2.5V ~ 3.6V	fCLK			60	MHz
Clock Frequency (2)	VCC = 1.7V ~ 2.5V	ICLK	-	-	45	IVIITZ
Operating temperature	-	T _A	-20	-	75	ů

6.3. Supply Capacitor Selection

We recommended it is necessary to connect 4.7 μF ceramic capacitors from VCC, VGH, VGL, VPOS and VNEG to GND.

6.4. DC Characteristics

6.4.1. Source DC Characteristics (TA = 25° C, VCC=3.0V, GND = 0V, VPOS = 15V, VNEG = -15V, CLK=20MHz)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
High level input voltage	V_{IH}	-	0.8 x VCC	-	VCC	V
Low level input voltage	V _{IL}	-	GND	-	0.2 x VCC	V
High level output voltage	V _{OH}	I _{OH} = 2mA	VCC-0.5V	-	VCC	V
Low level output voltage	V _{OL}	$I_{OL} = 2mA$	GND	-	GND+0.5V	V
Input leakage current	IL	-	-1	-	+1	μΑ
Input pull high / low	Rph / Rpl	VCC = 1.8V	200		1000	ΚΩ
resistance	NPH / NPL	VCC = 3.0V	100	_	450	
Logic static current, output inactive	I _{ccs}	When VPOS and VNEG = 0, V_{IN} = GND or VCC	-	-	30	μΑ
Logic current, output active	I _{CC1}	Per output that is switched to VNEG.	-	-	3	mA
VPOS DC current	I _{POS1}	Per output that is switched to VPOS.	-	ı	30	μΑ
VNEG DC current	I _{NEG1}	Per output that is switched to VNEG.	-		30	μΑ
VPOS Switching current	I _{POS2}	VPOS = 15V, VNEG = -15V, Cload = 100pf, f_{LINE} = 57KHz	-	ı	90	mA
VNEG Switching current	I _{NEG2}	VPOS = 15V, VNEG = -15V, Cload = 100pf, f _{LINE} = 57KHz	-	-	90	mA

6.4.2. Gate DC Characteristics (TA = 25°C, VCC=3.0V, GND = 0V, VGH = 22V, VGL = -20V, GCLK=200KHz)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
High level input voltage	VIH	-	0.8 x VCC	-	VCC	V
Low level input voltage	VIL	-	0	-	0.2 x VCC	V
High level output current	IXOH	Driving current, VO = VGH - 0.5V	0.5	-	-	mA
Low level output current	IXOL	Skin current, VO = VGL + 0.5V	-0.5	ı	-	mA
Input Leakage current	IIL	-	-1	-	1	μΑ
Input pull high / low	Rph / Rpl	VCC = 1.8V	200		1000	ΚΩ
resistance	NPH / NPL	VCC = 3.0V	100	-	450	1/22
Operating current consumption (Note 1)	ICC	VCC = 3.0V Fclk = 20KHz, No load	-	-	120	μΑ
Operating current consumption (Note 1)	IGH	VGH = 22V, Fclk = 20KHz, No load	-	-	300	μΑ
Operating current consumption (Note 1)	IGL	VGL = -20V Fclk = 20KHz, No load	-	-	300	μΑ

Note 1: For STV frequency = 60 Hz and two pulse mode

6.5. AC Characteristics

6.5.1. Source AC Characteristic (TA = 25°C, VCC=3.0V, GND = 0V, VPOS = 15V, VNEG = -15V, VGL= -20V)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Clock CLK cycle time	t _{cy}	-	16.67	50	-	nS
D7D0 setup time	t _{su}	-	8	-	-	nS
D7D0 hold time	t_h	-	8	ı	-	nS
STL1/STL2 setup time	t _{stls}	-	$0.5 \times t_{cy}$	-	0.8 x t _{cy}	nS
		960 outputs			240 x t _{cy} - t _{stls}	
STL1/STL2 hold time	720 outputs 0.5 x t _{cy} - 180 x t _{cy} -	200 x t _{cy} - t _{stls}	nS			
31L1/31L2 Hold tillle		720 outputs	- 0.5 Χ ι _{cy}	_	180 x t _{cy} - t _{stls}	110
		640 outputs			160 x t _{cy} - t _{stls}	
GLOSTL setup time	t _{glostls}	-	0.5 x t _{cy}	-	0.8 x t _{cy}	nS
		960 outputs			$240 \times t_{cy} - t_{stls}$	
GLOSTL hold time	4	800 outputs	0.5 v. t		200 x t _{cy} - t _{stls}	nS
GLOSTE Hold time	t _{glostlh}	720 outputs	0.5 x t _{cy}	_	180 x t _{cy} - t _{stls}	113
		640 outputs			160 x t _{cy} - t _{stls}	
LE on delay time	t _{LEdly}	-	3.5 x t _{cy}	-	-	nS
LE high-level pulse width	t _{LE}	VCC=2.5V to 3.6V	300	-	-	nS
LE off delay time	t _{LEoff}	-	200	-	-	nS
Output settling time to +/- 30mV	t _{OUT}	Cload = 200pF	-	-	20	μS

(TA = 25°C, VCC=1.8V, GND = 0V, VPOS = 15V, VNEG = -15V, VGL= -20V)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Clock CLK cycle time	t _{cy}	-	22.22	-	-	nS
D7D0 setup time	t _{su}	-	11	1	-	nS
D7D0 hold time	t_h	-	11	ı	-	nS
STL1/STL2 setup time	t_{stls}	-	$0.5 \times t_{cy}$	ı	0.8 x t _{cy}	nS
		960 outputs			$240 \times t_{cy} - t_{stls}$	
STL1/STL2 hold time	+	800 outputs	0.5 v t	_	200 x t _{cy} - t _{stls}	nS
31L1/31L2 Hold tillle	t _{stlh}	720 outputs	0.5 x t _{cy}	_	180 x t _{cy} - t _{stls}	
		640 outputs			160 x t _{cy} - t _{stls}	
GLOSTL setup time	t _{glostls}	-	0.5 x t _{cy}	-	0.8 x t _{cy}	nS
		960 outputs	0.5 v.4		$240 \text{ x } t_{cy} - t_{stls}$	
GLOSTL hold time	+	800 outputs			200 x t _{cy} - t _{stls}	nS
GLOSTE Hold time	t _{glostlh}	720 outputs	0.5 x t _{cy}	-	180 x t _{cy} - t _{stls}	113
		640 outputs			160 x t _{cy} - t _{stls}	
LE on delay time	t _{LEdly}	-	4.5 x t _{cy}	-	-	nS
LE high-level pulse width	t _{LE}	VCC=1.7V to 2.5V	400	-	-	nS
LE off delay time	t _{LEoff}	-	250	-	-	nS
Output settling time to +/-30mV	t _{OUT}	Cload = 200pF	-	1	20	μS

6.5.2. Gate AC Characteristic (TA = 25°C, VCC = 3.0V, GND = 0V, VGH = 22V, VGL = -20V)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Clock rise time	Trck	10% to 90%	-	-	100	nS
Clock fall time	Tfck	90% to 10%	1	1	100	nS
Clock pulse width (low)	Tclkl	•	500	1	-	nS
Clock pulse width (high)	Tclkh	-	500	-	-	nS
Clock frequency	Fclk	-	-	-	200	KHz
XON pulse width	t _{WXON}	-	10	1	-	μs
XON to output delay time	t _{PD}	CL=300pF	ı	1	20	μs
STV rise time	Trstv	10% to 90%	ı	1	100	nS
STV fall time	Tfstv	90% to 10%	ı	1	100	nS
STV setup to Clock	Tsu	-	100	-	Tclkh-100	nS
STV hold from Clock	Th	-	100	-	Tclkh-100	nS
Output transfer delay time	Td	CL = 300pf,	ı	3	-	uS
Output rise time	Tr	CL = 300pf, 10% to 90%	ı	1	1	uS
Output fall time	Tf	CL = 300pf, 90% to10%	ı	1	1	uS
VCC rise time	Ton	-	-	-	20	ms
VCC fall time	Toff	-	-	-	20	ms
VCC waiting time	Toff-on	-	700	-	-	ms

_(TA = 25°C, VCC = 1.8V, GND = 0V, VGH = 22V, VGL = -20V)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Clock rise time	Trck	10% to 90%	-	-	100	nS
Clock fall time	Tfck	90% to 10%	-	-	100	nS
Clock pulse width (low)	Tclkl	-	1000	-	-	nS
Clock pulse width (high)	Tclkh	-	1000	-	-	nS
Clock frequency	Fclk	-	-	-	200	KHz
XON pulse width	t _{WXON}	-	10	-	-	μs
XON to output delay time	t _{PD}	CL=300pF	-	-	20	μs
STV rise time	Trstv	10% to 90%	-	-	100	nS
STV fall time	Tfstv	90% to 10%	-	-	100	nS
STV setup to Clock	Tsu	-	100	-	Tclkh-100	nS
STV hold from Clock	Th	-	100	-	Tclkh-100	nS
Output transfer delay time	Td	CL = 300pf,	-	3	-	uS
Output rise time	Tr	CL = 300pf, 10% to 90%	-	-	1	uS
Output fall time	Tf	CL = 300pf, 90% to10%	-	-	1	uS
VCC rise time	Ton	-	ı	1	20	ms
VCC fall time	Toff	-	ı	-	20	ms
VCC waiting time	Toff-on	-	700	-	-	ms

6.6. Operating Timing

6.6.1. Source

Figure 4. Clock and Data Timing

Figure 5. Output Latch / Control Signals

Note: After the last data, CLK must append 3 dummy clocks at least.

6.6.2. Gate

Figure 6. Example of input/output timing

6.7. Timing Waveform

Figure 7. Timing Waveform

6.8. VCC on/off time

Figure 8. VCC on/off time

7. DEFINITIONS

7.1. Data Sheet Status

Tentative Data Sheet	This data sheet contains Tentative data; supplementary data may be published later.
Data Sheet	This data sheet contains final product specifications.

Contents in the document are subject to change without notice.

7.2. Life Support Application

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Fitipower customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify fitipower for any damages resulting from such improper use or sale.

8. EPD DISPLAY SYSTEM CONFIGURATION

The connection example when the EPD panel of $640(W) \times 960(H)$ is composed by using the EPD driver (EK79632A) as shown.

The connection example when the EPD panel of 1280(W) x 1920(H) is composed by cascade using the EPD driver (EK79632A) as shown.

The connection example when the EPD panel of 1072(W) x 1448(H) is composed by cascade using the EPD driver (EK79632A) as shown.

Notes: SHR=L; UD=L 1st IC OSELS1=L, OSELS2=H 2nd IC OSELS1=H, OSELS2=L OSELG1=L, OSELG2=H