Final team project Data compression

ECE 6260 PRESENTATION | April 2019

By: Neha N Gowda and Thomas Benoit

OUTLINE

1. Analysis

2. Implementation

3. Results

Analysis

Analysis

Is it a combination of different signals?

-> Let's analyze it both in the time and the frequency domains

4

Short-time LPC analysis

length of Frames analysed	Covering selected in %	Could hear a speech?
20ms	10%	badly
20 ms	25%	badly
20 ms	50%	slightly
20ms	60%	slightly
50ms	10%	slightly
50ms	20%	slightly
50ms	50%	slightly
75ms	25%	slightly
75ms	50%	slightly

We hear and we notice speech traces in the synthesized signal!

Frame=50ms
And Covering
=10%

Magnitude spectrum

Three clusters of (3) chirps

- Cluster 1 located in 4,000Hz
- Cluster 2 in *8,000Hz*
- Cluster 3 in *12,000Hz*

Spectrogram

Implementation

Extracting structures

Details on chirp extraction

- ★ FFT of various frames each of 1600 samples was analysed
- ★ Observed 3 kinds of chirp in each band of frequency
- ★ These chirps did not appear continuously in all frames

- ★ Studied the spectrogram and modelled the three different chirps
- ★ Used comparison of instantaneous frequencies and found where which chirp occurs

Why post processing?

STRUC of No-speech part
(Mathematical parameters of each function)

Sending the parameters of each function

Results

Measurements		Values	Comments
bits/s (f	ixe rate)	8 kbit/s	The standard version of G.729 uses a fixed 8 kbit/s data rate.
Signal to coding noise ratio	8000 Hz sampled	-2.3177	They were computed such that:
	32000 Hz sampled	-0.7489	SQNR = 10*log_10 (Psig/P(sig - decoded))
			with sig: the initial signal and decoded: the decode one
Spectral distortion (log spectral distance)	8000 Hz sampled	0.1126	The log spectral distance is computed from the truncated cepstral distance
	32000 Hz sampled	0.9972	

- ★ Modelling the chirp signals and reconstructing them: autocorrelation and spectral distance measures. We did instantaneous frequency comparison, which otherwise might have given us better results.
- ★ We were not able to subtract the constructed chirp signals. Constructed chirp signal is the right one or not? We used LPC filtering of the signal. An unsolved mystery for us: "The CHIRP nightmare"!
- ★ We could compress the file better if we could get rid of all the chirp signals.

References

[1] LPCdemo.m provided from the correction of HW4

[2] the G.729 given in class: the github of *opentelecoms-org:* https://github.com/opentelecoms-org/codecs/tree/master/g729/l
TU-samples-200701/Soft/g729

[3] MathWork file exchange Matlab

Questions?!