CHAPTER 5

Transportation Model and its Variants

					Se	et 5	5.1a
\mathbf{S}	nit a	rets	in sh	rusana	1 \$ p	n	110
	unor	r ga	llons:				
0	m re	finer =	\$ 1.50x	blums 106	ny		
fro	r e	/	100 X	703	- 15		
		mer	y 2 to	Dum.			
		=	\$ 2.20 x	103 =	22		
		12	2 18	3	Dum	my	
Ref.	4		2		•	13	6
2	-	30	5 /0	8		22	E
3		20	25	A 12	2	0	9
				4	3		O
/ >	4		8	4	3		
			3 dive			on	
			use := \$20				
(a) To!	M Supp	N = /9	*d+ 200 1	<u> </u>		T	
1 Pot	ential of	vertin	e Swabin) + 400 +16 \	70 = 800 C	ntes	
1-3		oren Z	ado 1 \$ 2		9-600 u <i>mmy</i>	= & 00	crates
Orch 1	1	(150)	2 3	2	0		
	2	(30)	4 /	2 (2	00 150	7+20	0
2		,	400		20	0+2	00
3	(So)	3	5	100)	MAS	0	
	150	150	400	100 2	00		
(6)	J.						
Cost=	*1150	4	((2)	(3))	
150		1					
1	(2)	150	(3)	o Cu	\$100	為	00
	lem 7	las.	alter	. ∕_` . ⁄~`	ノ <i>ナ</i> ~ **		
(c) C	Ircha	d 1	altern	vertin	puna		
0	rchad	'z	= 200	overti	me cra	tes	

810-61/6	N'O- DEE LA.
Supply/demand quantities are 12	E E E E E E E E
expressed in truck loads,	
of cars by 18 and rounding the	
result up, of necessary. For example,	\$ E
supply amount at center 1 is	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
400 = 22.22 or 23 truckloads.	# P P P P P P P P P P P P P P P P P P P
Expressing unit transportation costs in	2/1////////////////////////////////////
\$ 1000 per truck load, we get	6 /////0/6/////////////////////////////
	3777777777
2.5 3.75 5 3.5 875	
(<u>6</u> <u>9</u> <u>8</u> 23	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 3 9 1.625 2 12	(300)
1 2.25 25 275 2.00	3 13: 13: 13: 3
$\begin{vmatrix} 3 \end{vmatrix} \begin{pmatrix} 2.25 \\ 9 \end{pmatrix} \begin{vmatrix} 2.5 \\ 3.75 \end{vmatrix} 3.75 \begin{vmatrix} 3.25 \\ 9 \end{vmatrix}$	
6 /2 9 9 8	77 6 2 1 1 1 2 2
(b) alternative Solution exists	\$ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Coot = \$92,500	
	28 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
2.	So S
'	4 4 8 8
	300 500 400 400
	Optimim Solution:
1	LA-Denver M4 = 300 cars
	DetDenver MI = 500 Cars
	Det Denver M2 = 450 Cars Det Denver MI/M2 = 70 Cars
	DetMiami M2 = 75 cars
	DetMiami M2/4 = 5 cars
	Det Denver M4 = 180 cars
	DetDenver $M3/4 = 100$ cars
	DetMiami M4 = 95 Cars
	DetMiami $M2/4 = 25$ cars N.oDenver M1 = 130 cars
	N.o Denver M1 = 130 cars $N.o Denver M1/2 = 50 cars$
	N.O Miami MI = 540 Cars
	N.O Miami M1/3 = 80 Cars
	N.O Miami MZ = 400 CMS
	Total (00) = \$343,620

Task	
	270 345 645 450 450.
Machine 10 2 3 15 9	
1 (25) 1 ZS	200 150 300 250 400
5 10 15 2 4	400
2 (20) (10) 30	2100 104 108 112 116 1
3 15 5 14 7 15	K1 (180) 180
(20)	0 150 154 158 162 166 0
4 20 15 5 13 M (25) 30	[9] (20) 70 90
	R ₂ // (150) (80) 104 108 0 930
	144 148 152 156 0 230
Total cost = \$560	0, 115 115
	1/1/11/16 120 124 0
(1) (2) (3) (4)	R ₃ // (220) So (60) 430
25	0 // 174 178 182 0
20 25 25 10	215 2/3
(1) (2) (3) 5 (4) (5)	Ry 102 106 0 300
500 600 200 300	1 / / / / / / / / / / / / / / / / / / /
5	04//////// 13 150 150
400 300 420 320	D / / / 106 0
	R _S ////////////////////////////////////
C: \$100 \$140 \$120 \$150 h: \$3 \$3 \$3 \$3	05/ 159 150
h: \$3 \$3 \$3	1/1////////////////////////////////////
_1 2 3 4 Surpho	200 150 300 250 400 860
100 103 106 M 0	Cost = #137,720
400 000 500	alternative solution exists.
2 M 140 143 146 600	
M M /20 /23 0	Period Production schedule
3 200 200	1 Regular - 180 engines Overtime - 20 engines
M M M /50 0	Overame - 20 engines
4 200 100 300	2 Regular: 230 engines
400 300 420 380 100	3 Regular 270 engines
Cost = \$190,040, alternative Solution	
Pariod Canacity Ant Co. 1. Delivery	4 Regular 300 engines
Period Capacity Amb Prod. Delivery 1 500 500 400 for 1	
2 600 600 100 for 2	5 Regular 300 engines
220 for 3	
3 200 200 200 for 3	
4 300 200 200 for 4	
5-	

	. 1	2	3	4	5	6	Dis	Posal.
New	200	(80)	(40)	231.53	243.1	\$2:56	878	1398
1 :		120	121.5	(88) 37	36.5	38	6	200
2			<u>३</u> (🏵	121.5	35	36.5	0	180
3				(E)	121.5	35 290	0	300
4					120	151-2	0	198
5						120	230	230
6							290	290
	200	180	300 .	198	236	290	1398	

Cost = \$ 170,698 alternative Solution exists

Month	New	1-day	3-day	Dispual
1	200	12	188	0
2	180	148	32	0
3	140	10	290	6
4	0	198	0	0
5	0	0	0	230
6	0	σ	0	290

Loc -520 M 10 -18 2 20 M -650 -18 2 20 M -43 3 -570 -495 -240 -710 3 30 10 20 6	60
Loc -520 M -650 -18 10 2 20 M -43 -240 -716 30 30	
Loc -520 M -650 -18	30
Loc -520 M -650 -18	20
100	1.0
100	10
	-
Bidder	9
(a) Use negative cost voalues	123

(b) Bidder 1 = 0 acre

Bidder 2 = 20 acres (location)

Bidder 3 = 10 acres (location 2)

Bidder 4 = 30 acres (location 3)

Set 5.3a

(c)	
Method (i) (ii) (iii)	u \ 3 3
NW 3 4 5	0 -2 5 10 1 7 10
Jeast cost 2 2 2 Vogel 2 1 1	6 4 6
Least-cost starting solution : 5	3 20 10 50 80
4 2 1 2	0 15 3 2 5 15
5 0 7 10	40 0 M
6///4 06	-2 -M
3 9 5	75 20 50 Total cost = \$515. Dest. 1 is 40 units
5 (10) -2 15	Short.
5 3 40 ² 40	Vogel method:
75 20 50	1 2 1 6
u 3 1 3	
0 -2 5 10 1 -4 7 10	
6 4 6	² 3 3 20 ³ 1
3 2 5	1 1 2 2,
0 (15) -1 -2 15	2 20 0
$\begin{bmatrix} -1 \\ -3 \end{bmatrix} \begin{bmatrix} -3 \\ -3 \end{bmatrix} \begin{bmatrix} 3 \\ 40 \end{bmatrix} \begin{bmatrix} 2 \\ 40 \end{bmatrix}$	3 4 5
75 20 50	2 3 3
Destination 3 will be 40 units	1 1 2
short. Optimum cost = \$595	
act-cost starting solution:	3 4 5
5 7	2 3 2 3
0 -3 10 -6 10	0
4 30" 50 80	1 2
5 10 ² 3 15	
2 40° 1 ° M 40	203 204
-I-M	102 3
75 20 50 5-9	

y V		1		ı	•
O	_1 _1	-1 2	20	3	20
3	20 ³	204	-1 S	M 4-M	40
2	102	0)	0 3	20 ³	30
	30	20	20	20	

Cost = \$240- alternative solution exists

ul	2	5	10	(2.8 Margar)
- 2	(S) C11	CIZ	^C /3	15
3	(S) (C21	(25)"	C13	30
5	C3/	(S) C32	(80) C31	85
	20	30	80	

(a) Cij = Ui + Vj. for basic xij Thus,

$$C_{11} = 2 - 2 = 0$$

$$C_{21} = 3 + 2 = 5$$

$$Q_2 = 3 + 5 = 8$$

$$C_{32} = 5+5 = 10$$

$$C_{33} = 5 + 10 = 15$$

Cot = 15x0 + 5x5+ 25x8+5x10 + 80 x 15 = \$1475

(b) 21c+vj-Cij ≤0 for nonbasic xij

Problems 6 and 7 on next page

Set 9.30
(a) For basic Xij, Cij = Ui+Vj.
u 2 2 5
1 1 1+30 1+30 10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Cost = 3×10+1×20+4×20 = \$130
(b) For nonbasic Xi; : Ui+VjCij ≤0
to satisfy optimality. Hence
$2+1-(1+2\theta) \le 0 \implies \theta \ge 1$
$5+1-(1+3\theta) \le 0 \implies \theta \geqslant 5/3$ $2-1-(2+\theta) \le 0 \implies \theta \ge -1$
Take $\theta = \frac{5}{3}$ to yield $x_{13} = 0$ as
The zero basic variable.
7
Min 7- 1 1 a 22 X23
Min Z= 1 1 2 6 5 1 S.t.
/ / ≥7 / ≥1
Xij≥o for all i and j
Optimim LP Solution using TORA:
Z=15, x11=2, x12=7, x23=6
If we replace the first two constraints with equations, we get the standard of
conshaints with equations, we get the ortions of
get the optimum solution:
$Z = 27$, $K_{11} = 2$, $K_{12} = 3$, $K_{23} = 4$, $K_{23} = 2$
$X_{22} = 4, X_{23} = 2$
The new Johnton is worse!

Max 15 25 10 5 15 15 15
s.t.
1 ≤10
≤ 20 ≤
1 / 12
1
1
1 ≤14
≤ 16 ≤ 18
From Table 5-25:
$u_1 = 0, u_2 = 5, u_3 = 7$
$v_1 = -3$, $v_2 = 2$, $v_3 = 4$, $v_4 = 11$
Optimum W = 15x0 + 25x5 + 10x7
+ 5x-3+1/cx 2+
15x4+15x11 (
= \$435
minimize $Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$ 2
subject to
0
$\sum_{j=1}^{\infty} x_{ij} = \alpha_{ij}, i=1,2,,m$
m
$\sum_{i=1}^{n} x_{ij} = b_{j}, j=1,2,,n$
Next, consider
$Z' = \sum_{i=1}^{m} \sum_{j=1}^{n} (C_{ij} + K) \chi_{ij}$
• • · · · · · · · · · · · · · · · · · ·
$= \sum_{i=j}^{m} \sum_{j=i}^{n} c_{ij} x_{ij} + K \sum_{i=j}^{m} \left(\sum_{j=i}^{n} x_{ij} \right)$
$= \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} + K \sum_{j=1}^{m} a_{i}$
- (=) (=) (1) + \ (=)

Set 5.3c = \(\sum_{i=1} \sum_{j=1} C_{ij} \times_{ij} + K, Kio a constant This result shows that optimization cesing Z and Z' yield the same optimum values of xij. To show why the dual values associated with a given primal basic Solution are not unique, note that, for any constant K, (Dual) = (Original basic) x Inverse This means that even though the optimal primal solution is unique for all K, there are infinity of dual values, each corresponding to a given value of K. The conclusion is that an arbitrary value assigned to one of the dual variables (c.g., u,=0) implies a specific value for the constant K.

(a-i)	
(4-1) 3 8 2 10 3 27	10 7 0 0 5 Optimum:
872972	
	4 0 4 4 5 2-2
6 4 2 7 5 2 Row	2-2
8 4 2 3 5 2 min	1 0 0 11-4
	0 4 3 0 0 5-3
9 10 6 9 10 6)	6 4 0 1 4 Cost = \$11
7	
	55 M 2 3 3 M-2 0 2
16081	7423 5201
65075	935 M 60 Z M-3
	7267 5045
4 2 0 5 3	(All entries are divided by 10 for convenience)
62013	Jo pr convenence)
3 4 0 3 4	0 3 M-2 0 0 5 M-2 0
	12 2 0 1 2 4 10 1
Cal min - 1 2 0 1 1	3 0 2 M-3 1 101 0 M-5
Across 1	2 0 4 5 0 0 4 5
Assignment: 0 4 2 7 0	Optimum: 1-4, 2-3, 3-2, 4-1
1-8 3 1 0 4 z	Cost = \$140
3-2 3 0 2 4 2	Job
	1 2 3 4 5
50202	1 50 50 M 20 0
Cont= \$21 0 0 0 0 1	2 70 40 20 30 0 Job 5 is
	Worker 3 90 30 50 M 0 dummy
(a-ii) 3 9 2 2 7 2	4 70 20 60 70 0 5 60 45 30 80 0
	1 2 3 4 5 0 30 M-20 0 D
9 4 7 10 3 3	
254211	70
962462	3 40 10 30 M-20 0 4 20 0 40 50 0
	5 10 25 10 60 0
	1 2 3 4 5 000
17015	1 0 30 M-20 0 10 1-4
50455	2 20 20 0 10 10 2-3
	3 30 0 20 M-30 0 3-50
	4 20 0 40 50 10 4-2
1 4 3 1 0	5 0 15 0 50 0 5-1
74024	Worker 3 is assigned to dummy job 5.
Calmin 1 0 0 1 0 continued	Worker 3 is assigned to dummy job 5. hus, worker 5 must replace worker 3.
30)ktil@00:	The state of the s
5-13	

add a "dummy" operator with zero assignment cost to each job (including the fifth). The optimal solution will show the replacement by indicating which of the current jobs (1 show 4) is assigned to the dummy operator. If the dummy operator is assigned to the new job, then the new job must assume lower priority to the current four jobs.

(all assignment cost are divided by

10 for convenience.)

1 2 3 4 5

1 5 5 M 2 2

2 7 4 2 3 1

Operator 3 9 3 5 M 2

4 7 2 6 7 8

5 0 0 0 0 0 0 Dummy

3 3 M-3 0 0 6 3 1 2 0 7 1 3 M-2 0 5 0 4 5 0

2 2 M-4 0 0 1-4 5 2 0 2 0 2-3 6 0 2 M-2 0 3-5 5 0 4 6 7 4-2 0 0 0 1 0 5-1

Since dummy operator is assigned to job 1, new job 5 has higher priority over job 1.

Define the following two sets:

Set 1: (DA, 3), (DA, 10), (DA, 17), (DA, 25)

Set 2: (AT, T), (AT, 12) AT, 21), (AT, 28). The idea is to match one element from Set 1 with another element from Set 2. The matching automatically decides the date and location for the purchase of each ticket. For example, consider the following assignment:

(DA,3) - (AT,21) (DA,10) - (AT,7) (DA,17) - (AT,28)(DA,25) - (AT,12)

This accignment can be interpreted as follows:

Ticket 1: June 3 DA → AT
June 21 AT → DA

Ticket 2: June 7 AT → DA June 10 DA → AT

Ticket 3: June 17 DA -> AT

June 28 AT -> DA

Ticket 4: June 12 AT → DA

June 25 DA → AT

The complete assignment model is given below

A,12 A, 28 A,21 D,3 400 300 300 (280) D,10 (300) 400 300 300 D,17 (300) 300 400 300 D,25 -300 300 (300) 400

Optimum:

(P,3) - (A,28) (A,21) - (D,25) (A,7) - (D,10) (A,12) - (D,17) Problem has alternative optima.

5-14

Distance	matri	x in	meter	0	G
		a	candi b	tate as	d
	- 1	50	50	95	45
existing	Z	30	30	55	65
centers	3	70	50	25	55
	4	100	60	55	25

a measure of the optimal assignment of new centers to candidate locations must reflect both distance and frequency of trips; that is

	, ,	cxi. 2	sting 3	4	candidate a b c d
1		7		• _	SO SO 95 45
Ø	2	1	8	4	30 30 55 65
new III	4	9	6	0	70 50 25 55
W.	3	5	2	7_	100 60 55 25

		a	Ь	C	d
,	Ľ	1810	b 1370	1940	(180)
New	II	1090	770	665	695
, regul	亚	1140	770	1025	1095
	区	1140	820	995	745

TORA optimum assignment:

I-d II-C m-a四-6

The ranking of the projects by the different teams can use the following numeric score 1: Highest preference 1 : lowest preference A tie in preference between two or more projects is indicated by assigning the projects the same score. For example, the scores Project 1 2 3 4 5 6 7 8 9 Score 9 9 8 7 3 5 4 1 indicate that project 8 is the most preferred and projects 1 and 2 tie for the least preferred status. For the development of the model, eve use de following numeric designations for the projects Project nor. Project name Boing-F15 Boing - F18 Boing Simulation Cargil Cobb-Vantress ConAgra Cooper Dayspung (layout) 8 Dayspring (Materials) JB Hunt 10 Raytheon

Tyson fouth

Tyson East

WAL-MART

Yellow

11 12

13

14

15

The following	is a type	ial	Su.	mmary	
of profesence s	cores Sub	mile	led t	by sa	
11 teams:	Team	34			

•••		,,,,,				Tea.						
		/*	2		3	1 E a s	5	6	* 7	ໍ	9	10
	0	_	0) ;	2	S	T	_		Ť		2 19
2	8 -	-	1		5 (2 D	Z			i	- 1	10 13
3	1		Z	5		3	2	13	5	ı		2 ([
4	3)	3	6	4	4	10	S		S		4 14
5	13		5	4	5	•	q	4	12			3 13
6			4	Z	5	•	9	8	-		7	
7	4		6	(1)	12	2	8	9	, –			2 5
8	5			フ	N		7	9	10	4 (3	15
9	4			9	14		7	1	() i	· 1	15	1
10	1_		}		15	(, .	3	9 5	4		5
	1								- 7		. 6	7
1/8	7 -	9		3	6	5		3				
12	13	10	1	4	7	4				15		9
13	14	11	ı		8	3	13	_	78			9
14	15	12	S	5	9	0	10	!	76	Z	9	10
1.1	15	13	7	•	10	2	15	5	61	3	(1)	u

* Team does not meet at izonship requirements

8 project requiring us citizenthip

The problem is modeled as an assignment model. Entries — are replaced by M. a very large value. The model is unbalanced. Thus, 4 artificial teams must be added to balance the model. In its end four projects will not be assigned.

TORA Solution:

Project	Team	Score
1	2	1
2	4	j .
3	, 11	1

_		
Project	Team	Score
4	1	1
5	None	-
6	8	,
7	3	1
8	None	_
9	7	1
10	None	
- 11	None	·
12	6	Z
13	10	1
14	5	. 1
15	10	1
7	Total score	13

Average score = $\frac{13}{11} = 1.18$ The average score is close to 1, meaning that all preferences are well met.

Xij = number of laborers lived at the start of period i and terminated at the start of period j.

8

Define nodes 1, 2, 3, 4, and 5 to correspond to the five months of the Rougon Node 6 is added to allow defining the variables xi6 that terminate at the end of the five-month planning horizon. The associated LP is defined below.

	x _{1,2}	x ₁₃ .	x ₁₄	X15	x ₁₆	x ₂₃	x ₂₄	x ₂₅	x ₂₆	x ₃₄	x35	x ₃₆	X ₄₅	X ₄₆	x ₅₆	
	100	130	180.	220	250	100	130	180	220	100	130	180	100	130	100	min
(1)	1	1	1	1	1											≥ 100
(2)	l	1	1	1	1	1	1	1	1							≥ 120
(3)	1		1	1	1		1	1	1	1	1	1				≥ 80
(4)				1	1			1	1		1	1	. 1	1		≥ 170
(5)					1				1			1		1	1	≥ 50

Let S,, S2, S3, S4, and S5 be the surplus variables associated with constraints 1, 2, 3, 4, and 5, respectively. The LP after adding the surplus variables show appears as

x,2	X ₁₃	x ₁₄	x15	x ₁₆	x ₂₃	x ₂₄	x ₂₅	x_{26}	x ₃₄	x35	x36	X45	X46	x 56	S_1	S ₂	S_3	S ₄	s,	ı
100	130	180	220	250	100	120	180	220	100	130	180	100	130	100				····		min
1	1	1	1	1							3 1 200000									
	1	1	1	1	1	1	1	1							1					100
		1	1	1		1	1	i	1	1	,					I				120
		_	1	,		-	•	•	•	•	1						-1			80
			•	•			1	1		i	1	1	1					-1		170
				1				1			1		1	1					-1	50

Next, perform the following transformation:

- 1. Leave equation (1) unchanged.
- 2. Replace equation (2) with (2) -(1).
- 3. Replace equation (3) with (3) (2).
- 4. Replace equation (4) with (4) (3).
- 5. Replace equation (5) with (5)-(4)
- 6. Add a new equation that equals -(5).

These transformations lead to the following LP

12	X13	X14	x 15	x16	x 23	X24	x25	x26	X34	X35	x36	X45	XAS	x 56	S,	S_2	S3	S.	S,	1
00	130	180	220	250	100	130	180	220		130	180		130	100	<u> </u>					min
1	1	1	1	1											_1					100
-1					1	1	1	1							1	-1				20
	— I				-1				1	1	, 1					1	-1			44
		1				-1			-1			1	1				1	-1		9
			-1				-1			1		1		1				1	-1	- 12
				1				-1			-1		-1	-1					1	1 -4

The last LP has the structure of a transhipment model (See Problem 7). Let

$$S_{i} = X_{2i}$$

$$S_2 = X_{32}$$
 $S_4 = X_{54}$

Then the LP above can be translated as a network as follows:

The transshipment model thus appears as

				>			
		2	3	4	5		
<u>'</u>	0	100	130	180	7	6	,
² _	0	0	100		220	250	100
3 L	M	0		130	180	220	20
u] T	M		0	100	130	180	-0
	7	M	0	0	100		
-	M	M	M	0		130	90 ₁
L	M	М	М		0	100	
	В	В		M	0	0	
		_	40 + B	B	120 + B	50 . 8	

B = 550

The optimien solution from TORA is (Problem has alternative optime)

This solution can be interpreted as follows

- 1. Hire 100 laborers at the start of period I and terminate them at the start of period 5.
- 2. Hire 20 workers at the start of period 2 and terminale them at the start of periods.
- 3. Hire so workers at the start of period 4 and Terminate them at the start of period 6.

The Solution satisfies the labor requirements exactly, except for period 3 where there is a surplus of 40 workers (x43 = 40).