修改记录

更新日期	更新类型	更新人	更新内容
2015/12/13	Α	Echo	新建文档
2015/12/16	Α	Echo	增加常见测量场景,初步完成文档
2016/5/12	М	Echo	修复TTL接口RXD和TXD顺序问题,感谢@ckw1107
2016/10/1	М	Echo	根据 v16.9.20 固件更新文档
2017/12/10	М	Echo	根据固件 v17.8.5 更新文档
	_		
	_		

注:

M-->修改

A -->添加

作者 Echo <echo.xjtu@gmail.com>保留本文档最终解释权

保留文档更新但不在第一时间通知用户的权利

本文档以 v17.8.5 固件编写,其余固件仅供参考

请使用 PDF 书签阅读本文档,快速定位所需内容!

更多信息请关注

作者博客: http://blog.sina.com.cn/xjtuecho

作者微博: http://weibo.com/eth0

作者淘宝: http://shop114445313.taobao.com/ 作者 github 主页: https://github.com/xjtuecho/

最新文档和设备固件请访问 github 项目主页: https://github.com/xjtuecho/uimeter/

UIMeterMini 用户手册

UIMeterMini 为 UIMeter 的精简版本,继承了 UIMeter 强大的电压电流监控记录功能,体积大大缩小,简化了供电,降低了使用难度,新增四线测量等实用功能。主要特性如下:

- 1) 体积小巧,不含插头仅仅 40x27x15mm
- 2) 测量范围宽, 电压高达 35V, 电流正负 10A
- 3) 功耗低,典型工作功耗 6.5mA,典型休眠功耗 170uA,可长期连电池工作
- 4) 支持 4096 条离线数据记录与导出
- 5) 独特的串口命令行界面,可以查看设置各种参数
- 6) 电流支持高端、低端测量,检流电阻共模电压高达 26V,支持真四线测量
- 7) 可外接蓝牙模块,支持无线联机
- 8) 电压电流全软件校准,提供校准命令

UIMeterMini 外观与接口参考图 1。

图 1 UIMeter 外观与接口

1 端口定义

1.1J1 TTL 通信接口

四个插针从上往下依次为: TXD、RXD、GND、3V3。分别为串口发送、串口接收、地、3.3V 电源。

测量端取电时, 3.3V 可以对外输出电源, 用于蓝牙模块等外接设备的供电。

连接 USB 转 TTL 串口数据线时,3.3V 可以输入电源,注意 3.3V 电源只能连接 3.3V 电源,

禁止连接 5V 电源, 会烧坏设备。

如果只有 5V USBTTL 线,可以外部供电时可以将 USBTTL 的供电线连接到 VIN1。

1.2J2 功能选择跳线

四个插针从上往下依次为: BOOTO、3V3、VIN、VIN1。

BOOT0 为 MCU 引导跳线, 3V3 为控制板 3.3V 电源输出, 短接 BOOT0 和 3V3 可以通过 J1 刷入固件, 默认状态为断开。v17.8.5 版本固件以后内置了 xboot, 更新 APP 无需使用引导 跳线。

VIN 为测量电压, VIN1 为辅助供电输入, 短接 VIN 和 VIN1 设备辅助供电从测量端取电,默认状态为短接。断开以后,可以使用 USBTTL 线供电,接 J1 的 TXD、RXD、GND 和 J2 的 VIN1,注意 3.3V 以上供电只能接入 VIN1。

1.3 J3 4PIN5.08 测量端口

从左往右依次为: I+、I-、V+、GND。

I+和 I-为电流测量端子,电流从 I+流入,I-流出定义为正,反之为负。I+和 I-之间连接 5mR 电流取样电阻,严禁连接电压源,会造成短路。I+和 I-端子电压近似相等,相对于 GND 的电压定义为共模电压,共模电压范围-0.3V~26V,因此使用高端电流取样时电压不应该超过 26V。

V+和 GND 为电压测试端子,V+电压范围 2V-35V,使用高端电流取样时,电压应低于 26V。 V+与 GND 有极性,严禁反接,反接会烧坏设备。

2 用户界面

UIMeterMini 的用户界面由四位数码管和两个按键组成。用户界面参考图 2。

图 2 UIMeterMini 用户界面

2.1恢复出厂设置

同时按住左键+右键上电,设备恢复出厂设置,参数保存到内置存储。恢复出厂设置以后需要重新校准。

2.2恢复默认串口波特率

按住左键上电,设备使用默认波特率 **115200**,用于忘记波特率时联机,默认波特率不保存。

3 串口命令

UIMeter 内置一个命令解释器,可以通过超级终端(或者 Putty、SecrueCRT)等软件来连接。连接以后可以设置设备参数,访问或者导出离线记录数据。

串口参数如图 3 所示。波特率 115200、8 位数据、1 位停止、无校验、无流控。

图 3 MODBUS 串口参数

连接以后输入 help 回车,可以查看支持的命令,及对应帮助信息。

3.1 getui

getui 命令可以获取当前时间、电压、电流、功率、电量等信息。如图 4 所示。 第三方软件可以借助 getui 命令采集设备数据。为简化第三方软件编写难度,可以采用 info echo 0 命令关闭 UIMeterMini 的命令回显功能。

> getui T=8s U=3298mV I=0mA P=0mW 0mAh 0mWh 图 4 getui 命令输出

3.2 log

log 命令用来操作离线数据。不带参数的 log 命令输出当前设置,如图 5 所示。

```
log
log [dump|max|int|ring|auto] Operate data logs.
current log data length is 4096
current log interval is 2
current ring mode is Off
current auto start log mode is Off
```

图 5 log 命令默认输出

3.2.1 log dump

log dump 子命令用来导出离线数据,格式: log dump [数据条数]。数据条数应该小于设备最大记录条数。导出 10 条数据见图 6。第一列为数据序号,第二列为采样时间(单位秒),第三列为电压(单位毫伏),第四列为电流(单位毫安)。

log	dump	10		
-	i,	t(s),	U(mV),	I(mA)
	0,	6,	5190,	-3
	1,	8,	5192,	-3
	2,	10,	5192,	-3
	3,	12,	5195,	-3
	4, 5,	14,	5193,	-3
		16,	5192,	-3
	6,	18,	5195,	-2
	7,	20,	5192,	-3
	8,	22,	5193,	-3
	9,	24,	5164,	345

图 6 log dump 导出 10 条数据

可以借助超级终端捕获文字功能保存离线数据。菜单:传送(T)->捕获文字(C)...打开超级终端的捕获文字功能,如图 7,启动捕获文字,执行完 log dump 命令,然后停止。保存离线记录数据。

图 7 超级终端捕获文字

离线数据格式为 CSV 文件,可以使用 Excel 或者任意一款文本编辑器编辑。

3.2.2 log max

设置最大记录条数,需要和实际设备配置的 EEPROM 容量匹配。

UIMeterMini 默认配置 32kB EEPROM,最大支持 4096 条离线数据。如果更换更小的 EEPROM,需要使用 log max 命令设置最大记录数据,如更换 16kB EEPROM 可以支持 2048 条离线数据,需要执行 log max 2048 命令。

3.2.3 log int

设置离线记录间隔,单位秒,如:"log int 10",设置离线记录间隔为10秒每次。最大间隔65535秒。

3.2.4 log ring

默认模式下,记录数据达到最大以后停止记录,通过打开 ring 模式,可以使数据达到最大以后自动从 0 开始记录,覆盖旧数据。该方法可以用于循环记录,跟踪最新的测试数据。

使用"log ring 1"命令打开 ring 模式。

使用"log ring 0"命令关闭 ring 模式。

设定以后,如果需要掉电保存参数,需要执行"param save"命令。具体请参考 help 命令在线帮助。

3.2.5 log auto

默认情况下,数据离线记录功能需要用户来手动启动。如果用户需要同步采集某些量,多台 UIMeterMini 之间很难完成同步启动采集, 因此可以设定 UIMeterMini 上电启动以后自动记录数据,通过给多台 UIMeterMini 同时上电来完成数据同步采集。

使用"log auto 1"命令打开自动记录功能。

使用"log auto 0"命令关闭自动记录功能。

设定以后,如果需要掉电保存参数,需要执行"param save"命令。具体请参考 help 命令在线帮助。

3.3 info

info 命令查看或者设置设备参数。不带参数的 info 命令获取设备参数,如图 8。

info info [echo|baud|menu|bklt|halt|comal Operate parameters. BAUD=115200 ECHO=1 MENU=0 BKLT=3 HALT=0s COMA=1 LOGM=4096 ITVL=2 RING=0 AUTO=0

图 8 info 命令查看参数

设置参数的命令格式为: info [子命令] [参数] 如设置数码管亮度为 3: 命令为 info bklt 3 子命令如表 1 所示:

表 1 info 命令子命令

命令名	意义	取值
echo	命令回显标志	0/1
baud	串口波特率	115200
menu	上电默认菜单	0-4
bklt	数码管亮度	0-3
halt	自动休眠间隔	0-65535 秒, 0 不休眠
coma	是否共阳极数码管	1 共阳极, 0 共阴极

3.3.1 info echo

设置超级终端下命令回显,"info echo 0"关闭回显,"info echo 1"打开回显。效果见图 9 所示。

```
version
UIMeterMini v16.9.20 Flash:16k SN:140036000A57334737373620
ECHO Studio <echo.xjtu@gmail.com>. All Rights Reserved.
info echo 0
Set ECHO status to 0...
UIMeterMini v16.9.20 Flash:16k SN:140036000A57334737373620
ECHO Studio <echo.xjtu@gmail.com>. All Rights Reserved.
Set ECHO status to 1...
version
UIMeterMini v16.9.20 Flash:16k SN:140036000A57334737373620
ECHO Studio <echo.xjtu@gmail.com>. All Rights Reserved.
```

图 9 回显开关前后效果

命令回显关闭以后,UIMeterMini 将不会回显用户输入的命令,主要用于软件通过命令查询 UIMeterMini 的数据场合。如:可以通过主机发送字符串"getui\r\n"获取设备信息,UIMeterMini 将会在收到整个字符串以后发送电压、电流、功率信息。

3.3.2 info baud

设置设备波特率,支持波特率:9600、19200、38400、57600、115200(默认)。设置以后保存参数并且重启生效。

如果忘记设置的波特率,上电时按住左键,强制使用默认 115200 波特率,使用 115200 波特率连上设备以后设置新波特率。无特殊需求建议使用默认波特率。

3.3.3 info menu

设置上电默认菜单。

 编号
 名称
 备注

 0
 电压
 默认

 1
 时间计数

 2
 电流

 3
 功率

 4
 离线计数

表 2 菜单编号

UIMeterMini 上电默认显示电压,可以通过"info menu"命令设置其它上电菜单。

如需要上电直接显示电流,输入命令"info menu 3", 然后使用"param save"命令保存。 reboot 命令重启即可。

给命令仅仅影响上电初始界面,上电以后,可以通过按键切换界面。

3.3.4 info bklt

设定数码管亮度, info bklt 0/1/2/3, 数字越大, 数码管越亮, 功耗越大。默认亮度为 0, 适合绝大多数应用场合。

3.3.5 info halt

设定自动休眠时间。最大时间65535秒。设置为0时,关闭自动休眠功能。

如: "info halt 10"设置自动休眠时间为 10 秒,如果 10 秒之内没有按键操作,没有串口通讯数据,设备将会进入休眠状态,消耗电流降低到 170uA 左右,可以长期连接电池使用。

3.3.6 info coma

设置数码管类型。

不同批次产品使用的数码管类型可能不同,软件中需要设定。coma=1 表示共阳极数码管,coma=0 表示共阴极数码管。

"info coma 1"设置为共阳极数码管。

"info coma 0"设置为共阴极数码管。

设定以后,如果需要掉电保存参数,需要执行"param save"命令。

3.4 uset

电压校准相关命令。uset 命令带两个子命令:adj、cali。不带子命令的 uset 命令输出当前电压和电流相关校正系数。

命令名意义取值uadj电压校正系数,扩大 10000 倍0-65535iadj电流校正系数,扩大 10000 倍0-65535izro电流零偏校正-1000~1000

表 3 电压电流校正系数

3.4.1 uset adj

uset adj 命令设置电压校正系数。系数扩大 10000 倍,即 10030 表示 1.0030,执行情况见图 10。

uset UADJ=10030 IADJ=10043 IZRO=-3 uset adj 10020 Set UADJ to 10020...

图 10 uset adj 命令

设定以后,如果需要掉电保存参数,需要执行"param save"命令。

3.4.2 uset cali

电压自动校准命令。

先保证电压校正系数为 10000 (1.0000), 如果不是,可以使用命令 "uset adj 10000"设置电压校正系数为 10000.

将设备接入已知基准电压,如 5V,输入 uset cali 5000,设备可以自动计算出电压校正系数。输入电压单位为 mV。

设定以后,如果需要掉电保存参数,需要执行"param save"命令。

3.5 iset

电流校准相关命令。iset 命令带三个子命令:adj、cali、zro。不带子命令的 uset 命令输出当前电压和电流相关校正系数。

3.5.1 iset adi

iset adj 命令设置电流校正系数。系数扩大 10000 倍,即 10030 表示 1.0030,执行情况 见图 11。

> 1set UADJ=10030 IADJ=10030 IZRO=-3 iset adj 10043 Set IADJ to 10043...

> > 图 11 iset adj 命令

设定以后,如果需要掉电保存参数,需要执行"param save"命令。

3.5.2 iset cali

电流自动校准命令。

先保证电流校正系数为 10000 (1.0000), 如果不是,可以使用命令 "iset adj 10000"设置电压校正系数为 10000.

将设备接入已知电流,如 1A,输入 iset cali 1000,设备可以自动计算出电流校正系数。输入电流单位为 mA。

设定以后,如果需要掉电保存参数,需要执行"param save"命令。

3.5.3 iset zro

设置电流零偏校正。

设备实际电流为 0 时显示的电流值为零偏电流,可以使用 iset zro 命令校正。如实际电流为 0,实际显示 0.003,即电流 3mA,使用命令"iset zro 3"设置零偏校正为 3mA。

设定以后,如果需要掉电保存参数,需要执行"param save"命令。

3.6 param

```
param 命令带三个子命令: load、save、restore。
param load 命令从内置 EEPROM 加载保存的参数。
param save 命令将参数保存到内置 EEPROM。
param restore 命令恢复默认参数。同时按住左右键上电也可以恢复默认参数。
param
param [load|save|restore] Operate parameters.
param restore
Restore default parameters...
param load
Load parameters from EEPROM...
param save
Save parameters to EEPROM...
```

图 12 param 命令执行结果

3.7 reboot

重启 UIMeterMini。

可以带一个延时参数,单位 ms,如果 reboot 900 延时 900ms 以后重启。

reboot ? UIMeterMini v16.9.20 Flash:16k SN:140036000A57334737373620 ECHO Studio <echo.xjtu@gmail.com>. All Rights Reserved.

图 13 reboot 命令执行结果

3.8 help

获取在线帮助。

```
help
getui -> get voltage current and power etc.
log -> log [dump|max|int|ring|autol Operate data logs.
info -> info [echo|baud|menu|bklt|halt|comal Set/Show params.
uset -> uset [adj|calil Set/Show Voltage params.
iset -> iset [adj|cali|zrol Set/Show Current params.
param -> param [load|save|restorel Operate parameters.
reboot -> Restart system.
help -> help Info.
version -> display SW version and SN.
```

图 14 help 命令执行结果

3.9 version

获取固件和设备序列号等信息。

version UIMeterMini v16.9.20 Flash:16k SN:140036000A57334737373620 ECHO Studio <echo.xjtu@gmail.com>. All Rights Reserved.

图 15 version 命令执行结果

4 常见测量场景

4.1单电压测量

使用两条导线,连接图 1 中 J3 端子的 V+和 GND 两位到待测试电压即可。如图 16 所示。测试时 J2 端子的 VIN 和 VIN1 网络短接, UIMeterMini 从待测试电源供电,电流小于 10mA。

图 16 单电压测试

可以用该方式测试电池电压、直流电源输出电压。

直连电池测试电压时,如果需要长期连接电池,一定打开设备自动体眠功能,否则可能会很快将电池电量用光。

接线时一定看清楚极性,严禁接反,接反会烧。一定分清楚电压档和电流档,用电流档测试电压会造成短路,可能带来危险。

4.2单电流测量

将电路原回路断开,电流从 J3 的 I+流入, I-流出,同时 V+和 GND 连接电池供电,如图

17 所示,可以进行单电流测量,此时设备显示电流为待测回路电流,电压为供电电池电压,两者没有内在联系,因此功率参数无意义。

如果电流从 I-流入, I+流出, 电流为负值, 最后一个小数点点亮, 表示负数。

图 17 单电流测量

4.3 电压电流测量

同时使用电压电流档,可以测试电源电压、电流、功率等参数。

电流测量分高端取样和低端取样,UlMeterMini 同时支持高端取样和低端取样。电流低端取样和高端取样原理图见图 18 图 19 所示。

低端取样测量 A 点与 GND 之间的电压,低端取样简单方便,但会带来地平面噪声。

高端取样测量 AB 之间的差模电压,高端取样直接连电源,共模电压高,但是不会带来额外的接地干扰。

图 18 电流低端取样原理

图 19 电流高端取样原理

4.3.1 电流低端取样

电流低端取样接线图见图 20。电流从电源正极出来,先经过负载,然后进入 UIMeterMini 的 J3 端子 I+,经过检流电阻以后从 I-出来,回到电源负极。电流路径需要用粗线连接,确保低阻抗,电压测量可使用单独的细线连接。

采用低端取样,I+和I-端子共模电压近似为0,电源电压可以达到最大35V。

去掉 VIN 和 VIN1 之间的跳线,通过 J1 单独供电 3.3V,电压测试线无电流流过,可实现 真四线测量。

图 20 电流低端取样接线图

4.3.2 电流高端取样

电流高端取样接线图见图 21。电流从电源正极出来,先进入 UIMeterMini 的 J3 端子 I+, 经过 UIMeterMini 内部检流电阻以后从 I-出来,经过负载,最后回到电源负极。电流路径需要用粗线连接,确保低阻抗,电压测量可使用单独的细线连接。

采用高端取样,I+和I-端子共模电压近似为电源电压,由于I+和I-最高共模电压不能超过 26V,因此采用电流高端取样,电源电压最大 26V。

去掉 VIN 和 VIN1 之间的跳线,通过 J1 单独供电 3.3V,电压测试线无电流流过,可实现 真四线测量。

图 21 电流高端取样接线图

4.4辅助电源接法

如果测量 2V 以下或者 26V 以上 35V 以下电压,设备需要提供单独的辅助电源,测量接线如图 22 所示。

常见的辅助电源为 USBTTL 线,VCC 和 GND 接入 UIMeterMini 的 GND 和 VIN1,如果需要联机可以同时连接 TXD 和 RXD。

J1 和 J2 的 3V3 端子都是 3.3V 电源, 严禁连接外部 3.3V 以上电压。

图 22 辅助电源接法

5 固件更新

v17.8.5 及以后固件支持 TTL 串口直接更新。

使用超级终端连接 TTL 串口以后,执行 reboot 900 命令,延时 900ms 重启,然后马上按住键盘上的字母 'e',设备重启进入 xboot 状态,执行 ymodem 命令,然后选择要升级的固件,协议选择 'ymodem'等待固件下载完毕即可。

升级过程与 UIMeter V2.0 完全相同,可以参考相关视频。

6 技术指标

表 4 技术指标

54 - W.L.AHIA.					
指标	说明	备注			
电压测量范围	2V-35V	测量端直接取电			
电流测量范围	-9.999A~9.999A	可支持高端、低端电流测量			
电压分辨率	1mV				
电流分辨率	1mA				
检流电阻	5mR	功率限制 1W			
检流电阻共模电压范围	-0.3V~26V	I+和 I-两个端子对 GND 的电压			
电压档输入阻抗	1MR				
采样频率	4Hz				
典型工作电流	6.5mA	5V 电压、普通亮度			
典型休眠电流	170uA	5V 电压、普通亮度			
体积	40x27x15mm	不含插头			
重量	15g	不含插头			

注:超过最大范围可能损坏设备。