GI] Wention the beincible basticulars of INS AFREUNTS

Esmot 000,00 = tunner

Length = 262 m

Beam = 62 m

Draff = 8.4m

Depth = 25.6 m

speed = 28 knots

Two shall propulsion

4- gas turbines => &0 MW (110,000hp)

OD] Praw the ship wave pattern for high apred

KELVIN WAVE PATTERN

b) Ashok Leyland Fishing Vessel

Particulars	Prototype	Model
Score	a rate to accoming	5
LOA	11. 58 m	2.316 m
LWL	11.51m	2.302 m
Breadth	3.08 m	0:616 m
Design Draft	0.8 m	0.16m
Displacement	7-8 tuar	62.4 kg
Hax Speed	8 knots	1.84 m/s

Froude no. - 0.381

\Box				
ď	Makindsa	20m	medium	craft

Particulars	Prototyp 1	Model
Scale	l	6
Length of hull	11.4m	1900 mm
LWL	10.84 m	1806.7 mm
Beam	3.71 m	618.3 mm
Deptu	a. 7 m	450 mm
Praft hull body.	0.84m	140 mm
Drapy maximum	1.39 m	232 mm
pispla ciment	12 MT	54.09 kg
wether area	B4.19 m2	0.95 m²
Speed	12 knots	8-25 W/2

Scanned by CamScanner

LOA = 2.95

B = 0627

Beale: (15.9:1)

D = 0.269

T = 0.122

D= 112.76kg.

3m= 1.737 kg 102

as Vo= 10 knots, RTm = 10.8 N Vm = 1.29 m/s

 $C_{m} = \frac{10.8}{\frac{1}{2} \text{gV}^2 \text{Sm}} = \frac{10.8}{\frac{1}{2} \text{gV}^2 \text{Sm}} = \frac{10.8}{\frac{1}{4} \times 997 \times (0 \times 0.5144)} \times 1.737$

Cm = 471 × 10-4 7.49 × 10-3

 $C_{r_m} = \frac{6-075}{(63_{10}R_n - 2)^2} =$

 $Pn = \frac{V_m L_m}{V_m} = \frac{1.29 \times 2.978}{0.893 \times 10^6} = 4.302 \times 10^6$

CFm = 3.49 × 10-3

Cen = CTm - CFM

CRM = 4×10-3

ORm = CAP = 4×10-3

Rnp = Np Lp = 5.144 x 447.5 = 0.89 x108

CFP = 1.82 × 10-3

CAP = CFP + CR

= (1.82 + 4) × 10-3 = 5.82 × 10-3

RTD = CTp x 1 3 900 x Up2 x Sp

= 5.82 ×103 × 1 × 1025 × 51442 × 441.84

= 34.904 KN

Similar	ly .	Karamas e				
Rim	0,					
Speed		10	11	12	13	14
(Vp lends	\$)	CAL OF				7.2.
in mis		5.144	5.65	6.17	6.68	28.39
RTm		10.8	13-89	17-97	23.15	1.80 6
1m		1.29	1.419	1.548	1.677	
C.LW		7.49 × 103	7.96 x10-3	8.66×15-3	9.506 × 103	10.05 × 10-3
Rum		4.3 1106	4.73×106	5.16 × 106	5-59 ×106	6.02×106
CEM		3. 49× 10-3	3.43×10-3	501x F&B	3.32 ×10-3	3.28 + 10-3
CR		4 × 10-3	B. 43 × 10-3	B.37 X103	3.32 × 10-3	3.28 × 10-3
Rup		2.59 × 103	2.85 ×108	B-109 × 108	3.368 ×108	3-627 × 108
CF_p		1.82 ×10-3	1.8 × 10-3	1,77 × 10-3	1,76 ×10-3	1.74 X103
C_{T_p}		5.82×10-3	6.33 7 10-3	7.06 410-3	7.93× 10-6	8.51 × 10-6
R_{Tp}	1.1 8	34.904 KM	45. 926 KN	60,936 KN	80.39 KN	199.96 KN

$$V_{3} = 11 \text{ lcnots}$$

$$= 11 \times 0.5144 = 5.6584 \text{ m/3}$$

$$V_{4} = V_{5} (1-\omega)$$

$$= 5.6584 (1-0.214)$$

$$= 4.447 \text{ m/s}$$

$$R_{5} = T(1-t)$$

$$T = \frac{32.38}{1-0.307} = 46.724 \text{ KN}$$

$$K_{Q}^{14} J^{-34} = \left[\frac{P}{2\pi g D^{2} V_{A}^{3}} \right]^{14}$$

$$= \left[\frac{340000}{2x314x 1025 \times 1.1^{2} \times 4.4^{3}} \right]^{14}$$

$$= 0.846$$

$$V_{1} = 0.47$$

$$J = \frac{V_0}{ND} \Rightarrow n = 10.9 \text{ sps}$$

$$N = \frac{J}{2\pi} \frac{K_T}{K_S} = \frac{T}{Sn^2 D^4} * \frac{2\pi g n^3 D^5}{P_D} \cdot \frac{J}{2\pi} = \frac{TnDJ}{P_D} = 0.47$$

05J %=0.8 7=0.4

D = 2m

rpm = 400 ⇒ 8.67 pps

Bollord pull condition -> Va = 0

$$\therefore \quad J = \frac{\sqrt{N}}{N} = 0$$

$$K_{9} = \frac{PD}{2\pi g n^{3} D^{5}}$$
 \Rightarrow $P_{D} = 2139.536 \text{ KW}$

By P-J diagram,
$$K_T = 0.32$$

$$K_T = \frac{T}{2 n^2 D^4}$$
 $T = 233.47 kN$

$$\left(\frac{A_E}{A_O}\right)_{m_{10}} = \left[T(\overline{1.3} + 0.3 \overline{2})\right]$$

$$(P_O - P_V) D^2$$

$$\frac{\left(\frac{A_{E}}{A_{0}}\right)}{\left(\frac{A_{0}}{A_{0}}\right)^{2}} = \frac{\left(\frac{1.8 + 0.3 \times 4}{46.724 \times 10^{3}}\right)}{\left(\frac{114071.8 - 1750}{1.1}\right)^{2}} = 0.859$$

14 19 not appropriate because it is larger.

Q5]

$$k_{\phi} = 0.023 \Rightarrow \frac{P_{D}}{2\pi g \, n^{3} D^{5}} = 0.023$$