Exercices d'oraux ENS – Session d'été 2025

Cécile Gachet

28 août 2025

Exercice 1. (Idempotent, nilpotent) Soit A un anneau unitaire tel que tout $x \in A$ satisfait $x^2 = x$ ou bien est nilpotent. Montrer que tout élément $x \in A$ satisfait $x^2 = x$.

Bonus (facile). En déduire que A est commutatif.

Exercice 2. Soit $n \in \mathbb{N}$, $n \geq 1$. On considère l'espace vectoriel $S_n(\mathbb{R})$ des matrices symétriques réelles de taille n et son sous-ensemble $\operatorname{Pos}_n(\mathbb{R})$ des matrices définies positives. Classifier les symétries linéaires de $S_n(\mathbb{R})$ qui fixent un hyperplan de $S_n(\mathbb{R})$ et préservent l'ensemble $\operatorname{Pos}_n(\mathbb{R})$.

Exercice 3. Soit $n \in \mathbb{N}$, soit $E = \{e_i \mid 1 \le i \le n\}$. Soient $(\sigma_i)_{1 \le i \le n}$ des variables alétoires indépendantes de loi uniforme à valeur dans le groupe symétrique \mathfrak{S}_n . On définit une opération * sur E par

$$e_i * e_j = e_{\sigma_i(j)}$$
.

Montrer que la probabilité que (E, *) soit un groupe, sachant qu'il possède un élément neutre, tend vers zéro quand n tend vers l'infini.

Exercice 4. (Structures réelles sur \mathbb{CP}^{n-1}) Soit $R_n \subset \mathrm{GL}_n(\mathbb{C})$ l'ensemble des matrices A telles que $A\overline{A}$ appartient à l'ensemble $\mathbb{C} \cdot I_n$ des homothéties. On définit sur $\mathrm{GL}_n(\mathbb{C})$ et en particulier sur R_n la relation d'équivalence suivante :

$$A \sim B$$
 s'il existe $M \in GL_n(\mathbb{C}), H \in \mathbb{C}^* \cdot I_n$ telles que $A = \overline{M}BM^{-1}H$.

Donner une liste d'éléments de R_n comprenant un (et exactement un) représentant par classe d'équivalence de \sim .