What is Software **Engineering?**

- Engineering approach to develop software.
 - Building Construction Analogy.
- Systematic collection of past experience:
 -techniques,
 -methodologies,
 -guidelines.

IEEE Definition

"Software engineering is the application of a systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software; that is, the application of engineering to software."

Software Crisis

- Software products:
 - -fail to meet user requirements.
 - -frequently crash.
 - –expensive.
 - difficult to alter, debug, and enhance.
 - often delivered late.
 - use resources non-optimally.

Factors contributing to the software crisis

- Larger problems,
- Lack of adequate training in software engineering,
- Increasing skill shortage,
- Low productivity improvements.

Programs versus Software Products

- Usually small in size
- Author himself is sole user
- Single developer
- Lacks proper user interface
- Lacks proper documentation
- Ad hoc development.

- Large
- Large number of users
- Team of developers
- Well-designed interface
- Well documented & user-manual prepared
- Systematic development

Object-Oriented Design (80s)

- Object-oriented technique:
 - natural objects (such as employees, pay-roll-register, etc.) occurring in a problem are first identified.
- Relationships among objects:
 - such as composition, reference, and inheritance are determined.

Evolution of Other Software Engineering Techniques

- -life cycle models,
- -specification techniques,
- -project management techniques,
- testing techniques,
- -debugging techniques,
- -quality assurance techniques,
- software measurement techniques,
- –CASE tools, etc.

Differences between the exploratory style and modern software development practices

- Use of Life Cycle Models
- Software is developed through several well-defined stages:
 - requirements analysis and specification,
 - –design,
 - -coding,
 - -testing, etc.

Differences between the exploratory style and modern software development practices

- Emphasis has shifted
 - from error correction to error prevention.
- Modern practices emphasize:
 - detection of errors as close to their point of introduction as possible.

Differences between the exploratory style and modern software development practices (CONT.)

- In exploratory style,
 - errors are detected only during testing,
- Now,
 - focus is on detecting as many errors as possible in each phase of development.

Differences between the exploratory style and modern software development practices (CONT.)

- During all stages of development process:
 - Periodic reviews are being carried out
- Software testing has become systematic:
 - standard testing techniques are available.

Differences between the exploratory style and modern software development practices (CONT.)

- Projects are being thoroughly planned:
 - estimation,
 - scheduling,
 - monitoring mechanisms.
- Use of CASE tools.

Life Cycle Model

- A software life cycle model (or process model):
 - a descriptive and diagrammatic model of software life cycle:
 - identifies all the activities required for product development,
 - establishes a precedence ordering among the different activities,
 - Divides life cycle into phases.

Why Model Life Cycle?

- A written description:
 - forms a common understanding of activities among the software developers.
 - helps in identifying inconsistencies, redundancies in the development process.

Why Model Life Cycle?

- Processes are tailored for special projects.
 - A documented process model
 - * helps to identify where the tailoring is to occur.

- The development team must identify a suitable life cycle model:
 - and then adhere to it.
 - Primary advantage of adhering to a life cycle model:
 - * helps development of software in a systematic and disciplined manner.

- When a software product is being developed by a team:
 - there must be a precise understanding among team members as to when to do what,
 - otherwise it would lead to and project failure.

- A life cycle model:
 - defines entry and exit criteria for every phase.
 - –A phase is considered to be complete:
 - *only when all its exit criteria's are satisfied.

- The phase exit criteria for the software requirements specification phase:
 - Software Requirements Specification (SRS) document is complete, reviewed, and approved by the customer.
- A phase can start:
 - only if its phase-entry criteria have been satisfied.

- It becomes easier for software project managers:
 - to monitor the progress of the project.

- Many life cycle models have been proposed.
- We will confine our attention to a few important and commonly used models.
 - classical waterfall model
 - iterative waterfall,
 - evolutionary,
 - prototyping, and
 - spiral model