$\|y_0 - x_0\| < \delta, \delta' \leq \min\left\{\frac{1}{2}\delta_1, \frac{1}{2}(\delta - \delta_1)\right\}, 则 \ U(y_0, \delta') \subseteq U(x_0, \delta), 从而 \ U(y_0, \delta')$ $\cap A = \emptyset$, 即 x_0 的邻域 $U(x_0, \delta)$ 中所有的点均为 A 的外点, 即 $U(x_0, \delta) \subseteq \operatorname{ext} A$. 于是ext A为开集.

(2) A', ∂A 是闭集;

先证 A'是闭集. 即证 A'的任一个聚点 $\mathbf{x}_0 \in A'$. 由于 \mathbf{x}_0 为 A'的聚点,则存在 A'中的点列 $\{\mathbf{x}_k\}$ $(k=1,2,\cdots,\mathbf{L}|\mathbf{x}_k\neq\mathbf{x}_0)$ 使 $\lim_{k\to\infty}\mathbf{x}_k=\mathbf{x}_0$,即对 \mathbf{x}_0 的任一邻域 $\mathring{U}(\mathbf{x}_0,\varepsilon)$, $\exists N\in \mathbb{N}_+$,使对 $\forall k>N$,恒有 $\mathbf{x}_k\in \mathring{U}(\mathbf{x}_0,\varepsilon)$. 又由 $\mathring{U}(\mathbf{x}_0,\varepsilon)$ 是开集,则对 $\forall k>N$, $\exists \mathbf{x}_k$ 的邻域 $U(\mathbf{x}_k)\subseteq\mathring{U}(\mathbf{x}_0,\varepsilon)$,又由 $\mathbf{x}_k\in A'$,则 $U(\mathbf{x}_k)\cap A\neq\emptyset$,即 $\mathring{U}(\mathbf{x}_0,\varepsilon)\cap A\neq\emptyset$,即在 \mathbf{x}_0 的任何去心邻域中均含有 A 的点,由定理 1.5 知 $\mathbf{x}_0\in A'$.

∂A 为闭集.

由于 $\mathbf{R}^n = \mathring{A} \cup \text{ext } A \cup \partial A$,则 $\partial A = (\mathring{A} \cup \text{ext } A)^n$. 由本题(1)及定理 1.7 知 $\mathring{A} \cup \text{ext } A$ 为开集. 由定理 1.6, ∂A 为闭集.

(3) A 为开集⇔A∩∂A = Ø.

先证 A 为开集 $\Rightarrow A \cap \partial A = \emptyset$.

由 A 为开集,则 A = A,从而 $A \cap \partial A = A \cap \partial A = \emptyset$.

再证 $A \cap \partial A = \emptyset \Rightarrow A$ 为开集.

由 $A \cap \partial A = \emptyset$ 且 $A \cap \text{ext } A = \emptyset$,而 $A = (\partial A \cup \text{ext } A)^{\circ}$.

从而 $A \subseteq \mathring{A}$, 故 $A = \mathring{A}$. 即 A 为开集.

2. 以 n = 2 为例证明聚点原理: R* 中的有界无限点集至少有一个聚点.

证明 设 $A = |(x_{\alpha}, y_{\alpha}) \in \mathbb{R}^2 | \alpha \in I, I$ 为实数集 | 为有界无限点集,则 $|x_{\alpha}| \subseteq \mathbb{R}$ \mathbb{R} , $|y_{\alpha}| \subseteq \mathbb{R}$ $(\alpha \in I)$ 均为有界无限集. 由数集的 Weierstrass 定理 $(\mathfrak{R} - \mathfrak{P})$ 定理 (2.8) 知 $|x_{\alpha}|$ 必有收敛的子列. 不妨设为 $|x_{\alpha_k}|$,且 $\lim_{k \to \infty} x_{\alpha_k} = x_0$,在 $|y_{\alpha}|$ ($\alpha \in I$)中选取与 x_{α_k} 对应的 y_{α_k} (即 $(x_{\alpha_k}, y_{\alpha_k}) \in A$)构成数列 $|y_{\alpha_k}|$,则 $|y_{\alpha_k}| \subseteq |y_{\alpha}|$ ($\alpha \in I$)为有界无限数列,必有收敛的子数列. 设为 $|y_{\alpha_k}|$,且 $\lim_{l \to \infty} y_{\alpha_{k_l}} = y_0$,又由于与 $|y_{\alpha_{k_l}}|$ 对应的 $|x_{\alpha_k}|$ 的子列 $|x_{\alpha_{k_l}}|$ ($(x_{\alpha_{k_l}}, y_{\alpha_{k_l}}) \in A$)也收敛于 x_0 ,从而 x_0 中存在收敛于 x_0 , x_0 的点列 x_0 , x_0 。

习题 5.2

(A)

3. 用定义证明下列二重极限.

(1)
$$\lim_{(x,y)\to(0,0)} xy \sin \frac{x}{x^2+y^2} = 0$$
;

解 由于
$$\left| xy\sin \frac{x}{x^2 + y^2} \right| \le |xy| \le \frac{1}{2} (x^2 + y^2)$$
. 所以对 $\forall \varepsilon > 0$, 取 $\delta = \sqrt{2\varepsilon}$,

当
$$\|(x,y)-(0,0)\| = \sqrt{x^2+y^2} < \delta$$
 时,就有:

$$\left|xy\sin\frac{x}{x^2+y^2}-0\right|<\varepsilon. \text{ if } \lim_{(x,y)\to(0,0)}xy\sin\frac{x}{x^2+y^2}=0.$$

(2)
$$\lim_{(x,y)\to(1,1)} (x^2 + y^2) = 2;$$

解 不妨设 || (x,y) - (1,1) || <1,则 |x+1 | <3, |y+1 | <3, 于是 ∀ε>

 $\leq 3(|x-1|+|y-1|) < \varepsilon.$

故
$$\lim_{(x,y)\to(1,1)}(x^2+y^2)=2.$$

(4)
$$\lim_{(x,y)\to(0,0)} \frac{\sqrt{xy+1}-1}{xy} = \frac{1}{2}$$
.

解
$$\forall \varepsilon > 0$$
, 取 $\delta = \sqrt{\varepsilon}$, 当 $0 < \| (x,y) - (0,0) \| = \sqrt{x^2 + y^2} < \delta$ 时, 恒有

$$\left| \frac{\sqrt{xy+1}-1}{xy} - \frac{1}{2} \right| = \frac{1}{2} \frac{|xy|}{(\sqrt{xy+1}+1)^2} \le \frac{1}{2} |xy| \le x^2 + y^2 < \varepsilon.$$

故
$$\lim_{(x,y)\to(0,0)} \frac{\sqrt{xy+1}-1}{xy} = \frac{1}{2}$$
.

4. 证明: (1)
$$\lim_{(x,y)\to(0,0)} \frac{x+y}{x-y}$$
不存在; (2) $\lim_{(x,y)\to(0,0)} \frac{xy}{x+y}$ 不存在.

证明 (1) 由于
$$\lim_{\substack{x\to 0\\y=kx}} \frac{x+y}{x-y} = \frac{1+k}{1-k} (k \neq -1)$$
,故 $\lim_{(x,y)\to(0,0)} \frac{x+y}{x-y}$ 不存在.

(2) 由于
$$\lim_{\substack{x\to 0\\x=y}}\frac{xy}{x+y}=0$$
; $\lim_{\substack{x=y^2-y\\y\to 0}}\frac{xy}{x+y}=-1$, 故 $\lim_{(x,y)\to(0,0)}\frac{xy}{x+y}$ 不存在.

6. 讨论下列函数的连续性.

(2)
$$f(x,y) = \frac{x-y}{x+y}$$
; (4) $f(x,y) = \begin{cases} \frac{\sin(xy)}{x^2+y^2}, & x^2+y^2 \neq 0, \\ 0, & x^2+y^2 = 0. \end{cases}$

解 (2)
$$f(x,y)$$
 的定义域 $D = \mathbb{R}^2 \setminus \{(x,y) \mid x+y=0\}$.

由于x-y,x+y均为 \mathbb{R}^2 上的连续函数.

故f(x,y)在D上连续,x+y=0为其间断线.

(4) 当 $x^2 + y^2 \neq 0$ 时 f(x,y) 连续. 又由于 $\lim_{(x,y)\to(0,0)} f(x,y)$ 不存在. 故 f(x,y) 在 $\mathbf{R}^2 \setminus \{(0,0)\}$ 上连续. (0,0) 为其间断点 $\left(\lim_{\substack{x\to 0\\y=kx}} f(x,y) = \lim_{\substack{x\to 0\\y=kx}} \left(\frac{\sin kx^2}{kx^2} \cdot \frac{k}{1+k^2}\right) = \frac{k}{1+k^2}\right)$.

7. 设 $f(x,y) = \frac{1}{xy}$, $r = \sqrt{x^2 + y^2}$, $D_1 = |(x,y) \in \mathbb{R}^2 \mid \frac{x}{k} \le y \le kx$, k > 1 为常数|, $D_2 = |(x,y) \in \mathbb{R}^2 \mid x > 0$, y > 0|.

- (1) lim f(x,y)是否存在? 为什么?
- (2) lim f(x,y)是否存在? 为什么?

解 (1) 存在. 当(x,y) $\in D$, 时,xy > 0 且 x > 0 时, $\frac{1}{kx^2} \le \frac{1}{xy} \le \frac{k}{x^2}$; 当 x < 0 时, $\frac{k}{x^2} \le \frac{1}{xy} \le \frac{1}{kx^2}$. $\lim_{x \to \infty} \frac{1}{x^2} = 0$, 由函数极限的夹逼准则知 $\lim_{x \to +\infty} \frac{1}{xy} = 0$.

(2) 不存在. 由于
$$(x,y) \in D_2$$
,所以 $\lim_{x \to +\infty} \frac{1}{xy} = \lim_{x \to +\infty} k = k$.

故 $\lim_{x\to +\infty} \frac{1}{xy}$ 不存在.

8. 设函数
$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0. \end{cases}$$

证明 当(x,y)沿过点(0,0)的每一条射线 $x = t\cos\alpha$, $y = t\sin\alpha$ $(0 < t < + \infty)$ 趋于点(0,0)时 f(x,y)的极限等于f(0,0), 即 $\lim_{t\to 0} f(t\cos\alpha$, $t\sin\alpha) = f(0,0)$, 但f(x,y)在点(0,0)不连续.

证明
$$\lim_{t \to 0} f(t\cos\alpha, t\sin\alpha) = \lim_{t \to 0} \frac{t\cos^2\alpha\sin\alpha}{t^2\cos^4\alpha + \sin^2\alpha} = 0 = f(0,0)$$

$$\lim_{t \to 0} f(x,y) = \lim_{t \to 0} \frac{k}{1+k^2} = \frac{k}{1+k^2} \neq 0,$$

故 f(x,y)在(0,0)不连续.

9. 设 $f:D\subseteq \mathbb{R}^2 \to \mathbb{R}$.若f(x,y)在区域 D 内对变量 x 连续,对变量 y 满足

Lipchitz条件. 即对 D 内任意两点(x,y'),(x,y'')有: $|f(x,y') - f(x,y'')| \le L|y' - y''|$,其中 L 为常数,证明:f(x,y)在 D 内连续.

证明 $\forall (x_0,y_0) \in D$ 及 $\forall \varepsilon > 0$,由于 f(x,y) 在 D 内对 x 连续,必 $\exists \delta_i > 0$,使当 $(x,y) \in U((x_0,y),\delta_1) \cap D$ 时,恒有

$$|f(x,y) - f(x_0,y)| < \frac{\varepsilon}{2}$$

取
$$\delta = \min \left\{ \delta_1, \frac{\varepsilon}{2L} \right\}$$
. 那么当 $(x, y) \in U((x_0, y_0), \delta) \cap D$ 时,恒有
$$|f(x, y) - f(x_0, y_0)| \leq |f(x, y) - f(x_0, y)| + |f(x_0, y) - f(x_0, y_0)|$$
$$< \frac{\varepsilon}{2} + L |y - y_0| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2L} \cdot L = \varepsilon.$$

即 $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$,故f(x,y)在 (x_0,y_0) 连续.由 (x_0,y_0) 的任意性知f(x,y)在D内连续.

10. 设 $A \subseteq \mathbb{R}^n$ 为一点集, $f: A \to \mathbb{R}^m$ 为n元向量值函数,证明 f 在A 上连续等价于它的每个分量在A 上连续。

证明 设 $f(x) = (f_1(x_1, \dots, x_n), f_2(x_1, \dots, x_n), \dots, f_m(x_1, \dots, x_n))^T, x = (x_1, \dots, x_n).$

 $\forall x_0 = (x_{01}, \dots, x_{0n}) \in A, f(x)$ 在 x_0 处连续, 即 $\lim_{x \to x_0} f(x) = f(x_0)$, 则 $\forall i \in \{1, 2, \dots, m\}$, 恒有

$$|f_{i}(\mathbf{x}) - f_{i}(\mathbf{x}_{0})| \leq \sqrt{\sum_{i=1}^{m} (f_{i}(\mathbf{x}) - f_{i}(\mathbf{x}_{0}))^{2}}$$

$$= ||f(\mathbf{x}) - f(\mathbf{x}_{0})||.$$

$$\lim_{\mathbf{x} \to \mathbf{x}_{0}} f_{i}(\mathbf{x}) = f_{i}(\mathbf{x}_{0}) \quad (i = 1, 2, \dots, m).$$

从而

反过来,设 $\lim_{x\to x_0} f_i(x) = f_i(x_0), i = 1, 2, \cdots, m, 则 \forall \varepsilon > 0, \exists \delta_i > 0. 便当 x \in U(x_0, \delta_i)$ 时,恒有

$$|f_i(\mathbf{x}) - f_i(\mathbf{x}_0)| < \frac{\varepsilon}{\sqrt{m}} \quad (i = 1, 2, \dots, m),$$

令 $\delta = \min \{\delta_1, \delta_2, \dots, \delta_m\}$,则当 $x \in U(x_0, \delta)$ 时,恒有

$$||f(x) - f(x_0)|| = \sqrt{\sum_{i=1}^{m} |f_i(x) - f_i(x_0)|^2}$$

$$<\sqrt{m\cdot\frac{\varepsilon^2}{m}}=\varepsilon.$$

故 $\lim_{x\to x_0} f(x) = f(x_0)$,即f(x)在 x_0 连续,从而在A上连续.

11. 设f 是集合 $A \subseteq \mathbb{R}^n$ 上的 n 元向量值函数,证明: f 在 $x_0 \in A$ 连续 \Leftrightarrow 对于 A 中任何收敛于 x_0 的点列 $\{x_k\}$,都有 $\lim_{n \to \infty} f(x_k) = f(x_0)$.

证明 设 $\mathbf{f} = (f_i(\mathbf{x}), f_2(\mathbf{x}), \cdots, f_m(\mathbf{x}))^T, \mathbf{x} \in A \subseteq \mathbf{R}^n, \text{则} f_i(\mathbf{x}) 为 n 元数量值函数, <math>i = 1, 2, \cdots, m$. 由上题知: $\mathbf{f} \propto \mathbf{x}_0 \in A$ 上连续 $\Leftrightarrow f_i(\mathbf{x}) \propto \mathbf{x}_0$ 处连续, $i = 1, 2, \cdots, m$. 由数量值函数的 Heine 定理: $f_i(\mathbf{x}) \propto \mathbf{x}_0$ 处连续 \Leftrightarrow 对于 A 中任何收敛于 \mathbf{x}_0 的点列 $|\mathbf{x}_k|$,都有 $\lim_{\mathbf{x} \to \mathbf{x}_0} f_i(\mathbf{x}) = f_i(\mathbf{x}_0)$. 故本题得证.

12. 设f为集合 $A \subseteq \mathbb{R}^n$ 上的 n 元数量值函数,证明: 若f 在 $x_0 \in A$ 连续,且 $f(x_0) > 0$,则存在正常数 q,使得:

$$\exists \delta > 0, \forall x \in U(x_0, \delta) \cap A,$$
都有 $f(x) \ge q > 0$.

证明 由于 n 元数量值函数 f(x) 在 $x_0 \in A$ 连续. 且 $f(x_0) > 0$,则对 $s = \frac{f(x_0)}{2} > 0$, $\exists \delta > 0$,使得 $\forall x \in U(x_0, \delta) \cap A$,恒有 $|f(x) - f(x_0)| < \frac{f(x_0)}{2}$,即

$$f(x_0) - \frac{f(x_0)}{2} < f(x) < f(x_0) + \frac{1}{2}f(x_0), \quad \text{if } q = \frac{1}{2}f(x_0) > 0$$

则 $f(x) \ge q > 0$.

(B)

- 1. 设 $f: \mathbb{R}^n \to \mathbb{R}^n$ 是n元向量值函数,试用邻域的语言表述f 在 $x_0 \in \mathbb{R}^n$ 处连续的定义,并证明下列命题等价:
 - (1) f在 R" 上连续;
- (2) $W \subseteq \mathbb{R}^n$ 是开集,则 W 关于 f 的原象 $f^{-1}(W) = \{x \in \mathbb{R}^n \mid f(x) \in W\}$ 是 \mathbb{R}^n 中的开集;
 - (3) W⊆R" 是闭集,则 W 关于f的原象f -1(W)是 R" 中的闭集.

证明 f在 $x_0 \in \mathbb{R}^n$ 处连续,如果 $\forall \varepsilon > 0$, $\exists \delta > 0$, 使得当 $x \in U(x_0, \delta)$ 时恒有 $f(x) \in U(f(x_0), \varepsilon)$.

 $(1) \Rightarrow (2)$

如 $f^{-1}(W) = \emptyset$,则 $f^{-1}(W)$ 为开集. 如 $f^{-1}(W) \neq \emptyset$,那么 $\forall x_0 \in f^{-1}(W)$,则 $f(x_0) \in W$. 由 W 是开集可知, $\exists \varepsilon > 0$,使 $U(f(x_0), \varepsilon) \subseteq W$. 由 f(x) 在 x_0 处连续知:对上述的 $\varepsilon > 0$, $\exists \delta > 0$,使 $\forall x \in U(x_0, \delta)$,恒有 $f(x) \in U(f(x_0), \varepsilon) \subseteq W$.

即 $f(U(x_0,\delta)) \subseteq U(f(x_0),\varepsilon) \subseteq W$,则 $U(x_0,\delta) \subseteq f^{-1}(W)$,即 x_0 为 $f^{-1}(W)$ 的 内点. 由 x_0 的任意性知 $f^{-1}(W)$ 为开集.

$$(2) \Rightarrow (1)$$

 $\forall x_0 \in \mathbb{R}^n$ 及 $\forall \varepsilon > 0$,则 $W = U(f(x_0), \varepsilon)$ 为开集,则 $f^{-1}(W)$ 也是开集,且 $x_0 \in f^{-1}(W)$. 进而 $\exists \delta > 0$,使 $U(x_0, \delta) \subseteq f^{-1}(W)$. 即 $\forall x \in U(x_0, \delta)$, $f(x) \in W = U(f(x_0), \varepsilon)$. 故 f(x) 在 x_0 处连续. 从而 f(x) 在 \mathbb{R}^n 上连续.

故(1)⇔(2).

下证(2)⇔(3). 为此先证 $f^{-1}(W') = [f^{-1}(W)]^c$. $\forall x \in f^{-1}(W'), f f(x) \in W'$, 即 $f(x) \notin W$, 从而 $x \in [f^{-1}(W)]^c$. 故 $f^{-1}(w') \subseteq [f^{-1}(W)]^c$.

又 $\forall x \in [f^{-1}(W)]^c$, 有 $x \notin f^{-1}(W)$, 从而 $f(x) \notin W$, 即 $f(x) \in W^c$, 从而 $x \in f^{-1}(W^c)$. 故 $f^{-1}(W^c) \supseteq [f^{-1}(W)]^c$.

因此
$$f^{-1}(W^c) = [f^{-1}(W)]^c$$

 $(2) \Rightarrow (3)$

如果 $W \subseteq \mathbb{R}^m$ 为闭集,则 $W^c \subseteq \mathbb{R}^m$ 为开集。由(2)知 $f^{-1}(W^c) = [f^{-1}(W)]^c$ 为开集,即 $f^{-1}(W)$ 为闭集.则(2)⇒(3).

$$(3) \Rightarrow (2)$$

如果 $\mathbf{W} \subseteq \mathbf{R}^m$ 是开集,则 $\mathbf{W}^c \subseteq \mathbf{R}^m$ 为闭集.则由(3), $\mathbf{f}^{-1}(\mathbf{W}^c) = [\mathbf{f}^{-1}(\mathbf{W})]^c$ 为闭集,即 $\mathbf{f}^{-1}(\mathbf{W})$ 是开集,则(3)⇒(2).

故(2)⇔(3). 从而(1)⇔(2)⇔(3),

2. 设有二元函数
$$f(x,y) = \begin{cases} \frac{x^2y^2}{x^2+y^2}, & x^2+y^2 \neq 0, \\ 0, & x^2+y^2 = 0. \end{cases}$$

证明 f(x,y) 在 \mathbb{R}^2 上不一致连续.

证明 对 $\forall \varepsilon > 0$, 取 $\delta = 2\sqrt{\varepsilon}$, 当 $(x,y) \in U((0,0),\delta)$ 时, 恒有 $\left| \frac{x^2y^2}{x^2+y^2} - 0 \right|$

 $\leq \frac{1}{4}(x^2+y^2) < \varepsilon$. 故 $\lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0,0)$. 由连续函数的性质,f(x,y) 在 \mathbf{R}^2 上连续.

取 $P_n = \left(n + \frac{1}{n}, n + \frac{1}{n}\right), Q_n = (n, n),$ 则当 $n \to \infty$ 时 $\parallel P_n - Q_n \parallel \to 0$. 因此,对 $\varepsilon = \frac{1}{2}$ 及任何 $\delta > 0$,都存在 $P_n, Q_n \in \mathbb{R}^2$,满足当 $\parallel P_n - Q_n \parallel < \delta$ 时有

$$|f(P_n) - f(Q_n)| = 1 + \frac{1}{2n^2} > 1 > \varepsilon_+$$

故f(x,y)在 \mathbb{R}^2 上不一致连续.

3. 设f是集 $A \subseteq \mathbb{R}^n$ 上的n元向量值函数,并且满足 Lipschitz 条件,即存在常数 $L \ge 0$,使对所有 $x,y \in A$,均有 $\|f(x) - f(y)\| \le L \|x - y\|$,证明f在A上一致连续.

证明 $\forall \varepsilon > 0$, 取 $\delta = \frac{\varepsilon}{L}$. 则对 $\forall x, y \in A$, 当 $\|x - y\| < \delta$ 时, 由于 f 在 A 上 满足 Lipschitz 条件, 则有

 $||f(x)-f(y)|| \le L ||x-y|| < \varepsilon$,故f在A上一致连续.

- 4. 设 $f: \mathbb{R}^n \to \mathbb{R}$ 是 n 元数量值连续函数, $c \in \mathbb{R}$ 是一个常数,证明
- (1) $|x \in \mathbb{R}^n | f(x) > c | 与 |x \in \mathbb{R}^n | f(x) < c |$ 均为开集;
- (2) $|x \in \mathbb{R}^n | f(x) \ge c | 5|x \in \mathbb{R}^n | f(x) \le c |$ 均为闭集;
- (3) |x ∈R" |f(x) =c| 是闭集.

证明 (1) 令 $W_1 = (c, +\infty), W_2 = (-\infty, c)$ 均为 \mathbb{R} 中的开集, 而 $\{x \in \mathbb{R}^n \mid f(x) > c\} = f^{-1}(W_1), \{x \in \mathbb{R}^n \mid f(x) < c\} = f^{-1}(W_2).$ 由于 $f \in \mathbb{R}^n$ 上的连续函数,则由本习题(B)的第一题知 $f^{-1}(W_1)$ 与 $f^{-1}(W_2)$ 均为开集.

类似的方法可知(2)中两集合均为闭集.

(3) 由于 $|x \in \mathbb{R}^n | f(x) = c \rangle = |x \in \mathbb{R}^n | f(x) \ge c \rangle \cap |x \in \mathbb{R}^n | f(x) \le c \rangle$,由本题(2)知 $|x \in \mathbb{R}^n | f(x) = c \rangle$ 为两闭集的交,则由定理性质知其为闭集。

习 题 5.3

(A)

2. (1)
$$\partial f(x,y) = x + (y-1) \arcsin \sqrt{\frac{x}{y}}, \Re f_x(x,1);$$

解
$$f_x(x,1) = \frac{\mathrm{d}}{\mathrm{d}x} f(x,1) = \frac{\mathrm{d}}{\mathrm{d}x}(x) = 1$$
 或

$$f_{x}(x,1) = \frac{\partial}{\partial x} f(x,y) \Big|_{(x,1)} = 1 + (y-1) + \frac{1}{\sqrt{1 - \frac{x}{y}}} \cdot \frac{1}{y} + \frac{1}{2\sqrt{\frac{x}{y}}} \Big|_{(x,1)} = 1.$$

(2)
$$f(x,y) = \frac{\cos(x-2y)}{\cos(x+y)}$$
, $\Re f_y\left(\pi,\frac{\pi}{4}\right)$.

$$|\mathbf{f}_{y}(\pi, \frac{\pi}{4}) = \frac{d}{dy} f(\pi, y) \Big|_{y = \frac{\pi}{4}} = \frac{d}{dy} \Big(\frac{\cos(\pi - 2y)}{\cos(\pi + y)} \Big) \Big|_{y = \frac{\pi}{4}} = -2\sqrt{2}.$$

3. 求曲线
$$\begin{cases} z = \frac{1}{4}(x^2 + y^2), \\ y = 4 \end{cases}$$
 在点(2,4,5)处的切线与 x 轴正向所成的倾角.