Technische Universität München Wintersemester 2007/08 Theoretische Physik 2: ELEKTRODYNAMIK, Probeklausur

Freitag, 21.12.2007 HS1 11:00 - 12:30

Aufgabe 1: Multiple Choice Aufgaben: (10 P)

		er (ii) oder (iii)] an. (Auswahl nach dem Zufalls- negativen Punkten belegt werden!).
(a) Zwei gleiche L	adungen	
i) ziehen sich	an ii) stoßen sich	ab. (1P)
(b) Zwei parallele	konstante Ströme	
i) ziehen sich	an ii) stoßen sich	ab iii) üben keine Kraft aufeinander aus. (1P)
(c) Zwei orthogon	ale konstante Ströme	
i) ziehen sich	an ii) stoßen sich	ab iii) üben keine Kraft aufeinander aus. (1P)
(d) Ein ungeladen \vec{E} -Feld	es Dielektrikum wird in o	ein externes $ec{E}$ -Feld eingefügt. Dadurch wird das
i) verstärkt	ii) abgeschwächt.	(1P)
` '	omagnetisches Material n ngefügt. Dadurch wird d	nit verschwindender (freier) Stromdichte wird in as $\vec{B}\text{-Feld}$
i) verstärkt	ii) abgeschwächt.	(1P)
. , _	Drähte führen zunächst ähte geschickt. Dadurch	keinen Strom. Zur Zeit $t=t_0$ wird ein Strom wird der zweite Draht
i) angezogen	ii) abgestoßen.	(1P)
(g) Die Erhaltung	der elektrischen Ladung	
i) folgt aus d	en Maxwell-Gleichungen	ii) muss zusätzlich postuliert werden. (1P)
` '		magnetische Welle trifft senkrecht auf ein Medie Welle wird hauptsächlich
i) transmittie	ert ii) reflektiert	iii) absorbiert. (2P)

(1P)

(i) Gegeben seien die Felder $\vec{E}(\vec{r},t)$ und $\vec{B}(\vec{r},t)$. Bestimmen die Maxwell-Gleichungen dann

die Ladungsdichte $\rho(\vec{r},t)$ und die Stromdichte $\vec{j}(\vec{r},t)$ eindeutig?

ii) Nein.

i) Ja

Aufgabe 2: (10 P)

- (a) Geben Sie für das homogene Magnetfeld $\vec{B} = B_0 \hat{e}_z$ ein Vektorpotential \vec{A} an. (1P)
- (b) Betrachten Sie folgende Anordnungen ruhender Ladungen im Vakuum:

Geben Sie für jede Anordnung die führenden Potenzen von r an, mit denen das elektrostatische Potential $\Phi(\vec{r})$ und die elektrische Feldstärke $\vec{E}(\vec{r})$ bei großem r abfallen. (6P)

(c) Ein homogenes paramagnetisches Medium mit Permeabilität $\mu > 1$ ist von Vakuum umgeben, in dem ein homogenes \vec{B} -Feld herrscht, das in z-Richtung zeigt, siehe Skizze.

Vakuum	Medium //	Vakuum
\xrightarrow{B}		
		<i>z</i>

Skizzieren Sie Qualitativ, wie die Stärke $|\vec{B}|$ der magnetischen Induktion und die Stärke $|\vec{H}|$ des Magnetfelds von z abhängen, insbesondere bei den Übergangen zwischen Vakuum und Medium. (3P)

Aufgabe 3: (8 P)

Ein ebener Lichtpuls im Vakuum werde durch die Potentiale $\vec{A}(\vec{r},t) = \hat{e}_x f(z-c_0 t)$, $\Phi(\vec{r},t) = 0$ beschrieben.

- (a) Prüfen Sie nach, ob die Potentiale einer geläufigen Eichung genügen. (2P)
- (b) Berechnen Sie die Orts- und Zeitabhängigkeit der Felder \vec{E} und \vec{B} . (2P)
- (c) Berechnen Sie den Poynting-Vektor $\vec{S}(\vec{r},t)$. (2P)
- (d) Wenn der Lichtpuls auf eine (nicht ruhende) Punktladung Q trifft, dann übt er durch sein elektrisches Feld und durch sein Magnetfeld jeweils eine Kraft auf die Punktladung aus. Welches Feld verursacht die stärkere Kraft? Begründen Sie Ihre Antwort. (2P)

<u>Aufgabe 4:</u> (11 P)

Eine im Vakuum propagierende elektromagnetische Welle $(\vec{k} = |\vec{k}|\hat{\epsilon}_x)$ trift senkrecht auf ein Medium mit komplexen Brechungsindex $n = Re(n) + i Im(n) = n_1 + i n_2$.

- (a) Berechnen Sie die Amplituden der reflektierten und der transmitierten Welle im Falle $\mu=1.$ (4P)
- (b) Finden Sie nach der Mittelung über einen Zeitraum $T \gg 1/\omega$ die Energiestromdichte der transmittierten Welle im Falle $n_1 = Re(n) \ll Im(n) = n_2$ und $|n| \gg 1$. (7P)

Hinweis: Wählen Sie die Polarisationen der \vec{E} -Felder entlang der y-Achse.

Nützliche Information:

• Maxwellgleichungen

$$\vec{\nabla} \cdot \vec{D} = \rho_{\text{frei}}$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\vec{\nabla} \cdot \vec{B} = 0$$

$$\vec{\nabla} \times \vec{H} = \vec{j}_{\text{frei}} + \frac{\partial \vec{D}}{\partial t}$$

$$\vec{H} = \frac{1}{\mu \mu_0} \vec{B}$$

• Potentiale

$$\vec{B} = \vec{\nabla} \times \vec{A} \,, \qquad \vec{E} = -\vec{\nabla} \Phi - \frac{\partial \vec{A}}{\partial t}$$

$$\vec{\nabla} \cdot \vec{A} = 0 \,\, \text{(Coulomb-Eichung)} \,, \qquad \vec{\nabla} \cdot \vec{A} + \frac{\partial \Phi}{c_0^2 \, \partial t} = 0 \,\, \text{(Lorentz-Eichung)}$$