

计算方法

令 丹

数学与统计学院

邮箱: danling@xjtu.edu.cn

第九章 常微分方程的数值解法

一阶常微分方程初值问题

考虑如下的一阶常微分方程初值问题

$$\begin{cases} y'(x) = f(x, y(x)), & a \leq x \leq b \\ y(a) = y_0, \end{cases}$$

其中 y_0 为已知常数, f(x,y(x)) 为已知函数.

解的存在唯一性定理

Lipschitz 连续

定理

设 f(x,y) 在区域 $D = \{(x,y)|a \le x \le b, -\infty < y < \infty\}$ 上连续, 并且关于 y 满足 Lipschitz 条件, 即存在常数 L, 使得

$$|f(x,y) - f(x,\overline{y})| \le L|y - \overline{y}|,$$

对于任意的 $x\in [a,b]$ 及任意的 y,\overline{y} 都成立, 则初值问题在区间 [a,b] 上存在唯一的连续可微解 y=y(x).

常微分方程的数值解法

前提条件 初值问题的解存在且唯一

基本思路 取区间 [a,b] 上的 n+1 个离散点 x_i ,

$$a = x_0 < x_1 < \dots < x_{n-1} < x_n = b,$$

通过数值方法得到 x_i 处的函数值 y_i , 作为准确解 y(x) 在该点的取值 $y(x_i)$ 的近似值. 称 $h_i = x_i - x_{i-1}$ 为 x_{i-1} 到 x_i 的步长, 通常取为常数, 即 h = (b-a)/n.

主要内容

1. 初值问题的数值解法

2. 收敛性与绝对稳定性

3. 微分方程组与高阶方程

1. 初值问题的数值解法

三种基本数值方法

- 数值微分 用数值微分公式代替方程中的导数
- 数值积分 对方程两端积分并使用数值积分公式
- 泰勒级数法 Taylor 展开

1. 欧拉 (Euler) 法

在 $x = x_i$ 处, 初值问题表示为 $y'(x_i) = f(x_i, y(x_i))$.

将数值微分公式 (一阶向前差商公式)

$$y'(x_i) = rac{y(x_{i+1}) - y(x_i)}{h} - rac{h}{2}y''(\xi_i)$$
 Taylor公式在x_i 处展开

代入初值问题可得

$$y(x_{i+1}) = y(x_i) + hf(x_i, y(x_i)) + \frac{h^2}{2}y''(\xi_i).$$

舍去 h^2 项, 即

$$y(x_{i+1}) \approx y(x_i) + hf(x_i, y(x_i)).$$

计算方法 令 丹 (数学与统计学院) 8/101

用 y_i 代替 $y(x_i)$ 则得

欧拉法

$$y_{i+1} = y_i + hf(x_i, y_i)$$

局部截断误差 设 $y(x_{i+1})$ 是准确解 y(x) 在 x_i 处的值. 若计算 y_1, y_2, \dots, y_i 时无误差, 即 $y_1 = y(x_1), y_2 = y(x_2), \dots, y_i = y(x_i)$. 而 y_{i+1} 是 x_{i+1} 的数值解, 则称 $R[y_{i+1}] = y(x_{i+1}) - y_{i+1}$ 为数值解 法在 x_{i+1} 处的局部截断误差.

欧拉法的局部截断误差:

$$R[y_{i+1}] = y(x_{i+1}) - y_{i+1} = \frac{h^2}{2}y''(\xi_i)$$
 Taylor一阶展开的余项

令 丹 (数学与统计学院) 计 算 方 法 9/101

2. 后退欧拉法 (向后欧拉法, 隐式欧拉法)

用一阶向后差商公式

代替微分得

$$y(x_{i+1}) = y(x_i) + hf(x_{i+1}, y(x_{i+1})) - \frac{h^2}{2}y''(\xi_i)$$

舍去 h^2 项, 用 y_i 近似 $y(x_i)$, 得

后退欧拉法

$$y_{i+1} = y_i + hf(x_{i+1}, y_{i+1})$$

局部截断误差:
$$R[y_{i+1}] = y(x_{i+1}) - y_{i+1} = -\frac{h^2}{2}y''(\xi_i)$$

3. 中点法

欧拉法、后退欧拉法、中点法: 几何图像-斜率

用一阶中心差商公式

$$y'(x_i) = \frac{y(x_i+1) - y(x_{i-1})}{2h} - \frac{h^2}{6}y'''(\xi_i)$$

代替微分得

$$y(x_{i+1}) = y(x_{i-1}) + 2hf(x_i, y(x_i)) + \frac{h^3}{3}y'''(\xi_i).$$

由此得到

中点法

$$y_{i+1} = y_{i-1} + 2hf(x_i, y_i)$$

局部截断误差:

$$R[y_{i+1}] = y(x_{i+1}) - y_{i+1} = \frac{h^3}{3}y'''(\xi_i)$$

令 丹 (数学与统计学院) 11/101 计 算 方 法 11/101

例 1: 取步长 h=0.02, 分别用欧拉法、后退欧拉法以及中点法求

解初值问题

$$\begin{cases} y' = -\frac{0.9y}{1+2x}, & 0 \le x \le 0.1, \\ y(0) = 1. \end{cases}$$

解 易得该初值问题的准确解为 $y(x) = (1+2x)^{-0.45}$. 由题可知, n = 0.1/h = 5, $x_i = ih = 0.02i$, $i = 1, 2, \dots, 5$. 三种数值方法为:

三种方法的 迭代格式

欧拉法	$y_{i+1} = y_i + hf(x_i, y_i)$		
后退欧拉法	$y_{i+1} = y_i + hf(x_{i+1}, y_{i+1})$		
中点法	$y_{i+1} = y_{i-1} + 2hf(x_i, y_i)$		

 令 丹 (数学与统计学院)
 计 算 方 法
 12 / 101

计算结果如下, 同时与准确解作对比:

x_i	exact	Euler	backward-Euler	Mid-point
0.00	1.00000000	1.00000000	1.00000000	1.00000000
0.02	0.98250551	0.98200000	0.98298676	0.98298676
0.04	0.96596037	0.96500384	0.96687223	0.96597353
0.06	0.95028065	0.94892044	0.95157899	0.95078764
0.08	0.93539254	0.93366994	0.93703874	0.93541250
0.10	0.92123077	0.91918195	0.92319087	0.92175760

1. 梯形法

在区间 $[x_i, x_{i+1}]$ 上对微分方程 y' = f(x, y) 两端积分得

$$\int_{x_i}^{x_{i+1}} y'(x)dx = y(x_{i+1}) - y(x_i) = \int_{x_i}^{x_{i+1}} f(x, y(x))dx$$

对右端使用梯形积分公式得

$$y(x_{i+1}) - y(x_i) = \frac{h}{2} \left[f(x_i, y(x_i)) + f(x_{i+1}, y(x_{i+1})) \right] - \frac{h^3}{12} \left. \frac{d^2 f}{dx^2} \right|_{x=\mathcal{E}_i}.$$

注意到

$$\left. \frac{d^2 f}{dx^2} \right|_{x=\xi_i} = y'''(\xi_i).$$

令 丹 (数学与统计学院) 计 算 方 法

由此得到

梯形法
$$y_{i+1} = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, y_{i+1})]$$

局部截断误差:

$$R[y_{i+1}] = y(x_{i+1}) - y_{i+1} = -\frac{h^3}{12}y'''(\xi_i)$$

令 丹 (数学与统计学院) 计 算 方 法 16/101

2. 辛普森法

在区间 $[x_{i-1}, x_{i+1}]$ 上对微分方程 y' = f(x, y) 两端积分得

$$\int_{x_{i-1}}^{x_{i+1}} y'(x)dx = y(x_{i+1}) - y(x_{i-1}) = \int_{x_{i-1}}^{x_{i+1}} f(x, y(x))dx$$

对右端使用辛普森积分公式, 可得 b-a=2h

$$y(x_{i+1}) - y(x_{i-1}) = \frac{2h}{6} \left[f(x_{i-1}, y(x_{i-1})) + 4f(x_i, y(x_i)) + f(x_{i+1}, y(x_{i+1})) \right] - \frac{h^5}{90} \left. \frac{d^4 f}{dx^4} \right|_{x=\xi_i}.$$

令 丹 (数学与统计学院) 17 /101

记

$$f_{i-1} = f(x_{i-1}, y_{i-1}), \quad f_i = f(x_i, y_i), \quad f_{i+1} = f(x_{i+1}, y_{i+1}),$$

则有

辛普森法
$$y_{i+1} = y_{i-1} + \frac{h}{3}(f_{i-1} + 4f_i + f_{i+1})$$

局部截断误差:

$$R[y_{i+1}] = y(x_{i+1}) - y_{i+1} = -\frac{h^5}{90}y^{(5)}(\xi_i)$$

3. 亚当斯 (Adams) 显式法 Lagrange插值

给定 k+1 个数据点 (x_{i-j}, f_{i-j}) $(j=0,1\cdots,k)$, 构造 k 次拉格朗 日插值多项式 $L_k(x)$, 则有 $f(x,y)=L_k(x)+R_k(x)$.

在区间 $[x_i, x_{i+1}]$ 上对微分方程 y' = f(x, y) 两端积分得

$$\int_{x_i}^{x_{i+1}} y'(x)dx = \int_{x_i}^{x_{i+1}} f(x, y(x))dx = \int_{x_i}^{x_{i+1}} \left(L_k(x) + R_k(x) \right) dx$$

其中

$$R_k(x) = \frac{y^{(k+2)}(\xi_i)}{(k+1)!} \pi_{k+1}(x), \quad \pi_{k+1}(x) = \prod_{j=0}^k (x - x_{i-j})$$

令 丹 (数学与统计学院) 计 算 方 法 19 /101

$$\int_{x_i}^{x_{i+1}} y'(x) dx \approx \int_{x_i}^{x_{i+1}} L_k(x) dx = \sum_{j=0}^k f_{i-j} \int_{x_i}^{x_{i+1}} l_j(x) dx$$

则可得

Adams 显式法
$$y_{i+1} = y_i + rac{h}{A} \sum_{j=0}^k b_j f_{i-j}, \quad i \geqslant k$$

局部截断误差:

$$R[y_{i+1}] = B_k h^{k+2} y^{(k+2)}(\xi_i), \quad B_k = \frac{\int_{x_i}^{x_{i+1}} \pi_{k+1}(x) dx}{(k+1)! h^{k+2}}$$

计算方法 令 丹 (数学与统计学院) 20 / 101

例如, k = 0 时, $\{x_i\}$, 0 次多项式

$$L_0(x) = f_i, \quad f(x, y(x)) = f_i + y''(\xi)(x - x_i)$$

于是有

$$y(x_{i+1}) - y(x_i) = \int_{x_i}^{x_{i+1}} f_i dx + \int_{x_i}^{x_{i+1}} y''(\xi)(x - x_i) dx = hf_i + \frac{h^2}{2} y''(\xi_i)$$

因此有

$$y(x_{i+1}) - y(x_i) = hf_i + \frac{h^2}{2}y''(\xi_i) \implies y_{i+1} = y_i + hf_i$$

即为欧拉法, 此时有

$$R[y_{i+1}] = \frac{h^2}{2}y''(\xi_i) \implies A = b_0 = 1, \ B_0 = \frac{1}{2}.$$

k = 1 时, $\{x_{i-1}, x_i\}$, 1 次多项式

$$L_1(x) = -\frac{f_{i-1}}{h}(x - x_i) + \frac{f_i}{h}(x - x_{i-1})$$

$$y(x_{i+1}) = y(x_i) + \frac{h}{2}(3f_i - f_{i-1}) + \frac{5}{12}h^3y'''(\xi_i)$$

即

$$y_{i+1} = y_i + \frac{h}{2}(3f_i - f_{i-1}), \quad R[y_{i+1}] = \frac{5}{12}h^3y'''(\xi_i)$$

 $A = 2, \quad b_0 = 3, \quad b_1 = -1, \quad B_1 = \frac{5}{12}.$

令 丹 (数学与统计学院) 22 /101

类似地, k=2 时, $\{x_{i-2},x_{i-1},x_i\}$, 2 次多项式

$$L_2(x) = \sum_{j=0}^{2} l_j(x) f_{i-j}, \qquad l_0(x) = \frac{(x - x_{i-2})(x - x_{i-1})}{2h^2}$$

$$l_1(x) = -\frac{(x - x_{i-2})(x - x_i)}{h^2}, \qquad l_2(x) = \frac{(x - x_{i-1})(x - x_i)}{2h^2}$$

$$y(x_{i+1}) - y(x_i) = \frac{h}{12} (23f_i - 16f_{i-1} + 5f_{i-2}) + \frac{3}{8} h^4 y^{(4)}(\xi_i)$$

因此有

$$y_{i+1} = y_i + \frac{h}{12} (23f_i - 16f_{i-1} + 5f_{i-2}), \quad R[y_{i+1}] = \frac{3}{8} h^4 y^{(4)}(\xi_i)$$

 $A = 12, \quad b_0 = 23, \quad b_1 = -16, \quad b_2 = 5, \quad B_2 = \frac{3}{8}.$

令 丹 (数学与统计学院) 计 算 方 法 23 /101

4. Adams 隐式法

与显式法的区别

给定 k+1 个数据点 $(x_{i-j}, f_{i-j}), j = -1, 0, \dots, k-1$, 类似 Adams 显式法的原理, 可得

Adams 隐式法
$$y_{i+1} = y_i + \frac{h}{A^*} \sum_{j=0}^k b_j^* f_{i+1-j}, \ i \geqslant k-1$$

局部截断误差:

$$R[y_{i+1}] = B_k^* h^{k+2} y^{(k+2)}(\xi_i)$$

 令 丹 (数学与统计学院)
 计 算 方 法

 24 /101

0次Adam隐式法即为后退欧拉法

例如, k=0 时, $\{x_{i+1}\}$, 0 次多项式

$$L_0(x) = f_{i+1} \implies y(x_{i+1}) - y(x_i) = hf_{i+1} - \frac{h^2}{2}y''(\xi_i)$$

由此得到

$$y_{i+1} = y_i + h f_{i+1}, \quad R[y_{i+1}] = -\frac{h^2}{2} y''(\xi_i)$$

即为后退欧拉法, 此时有

$$A^* = b_0^* = 1, \quad B_0^* = -\frac{1}{2}.$$

同理, k = 1 时, $\{x_i, x_{i+1}\}$, 1 次多项式

$$L_1(x) = -\frac{(x - x_{i+1})}{h} f_i + \frac{(x - x_i)}{h} f_{i+1}$$

由此得到

$$y_{i+1} = y_i + \frac{h}{2}(f_i + f_{i+1}), \quad R[y_{i+1}] = -\frac{h^3}{12}y'''(\xi_i)$$

即为梯形法,

$$A^* = 2$$
, $b_0^* = b_1^* = 1$, $B_1^* = -\frac{1}{12}$.

$$k=2$$
 时, $\{x_{i-1},x_i,x_{i+1}\}$, 2 次多项式

$$y_{i+1} = y_i + \frac{12}{h} (5f_{i+1} + 8f_i - f_{i-1}), \quad R[y] = -\frac{1}{24} h^4 y^{(4)}(\xi_i)$$

 $A^* = 12, \quad b_0^* = 5, \quad b_1^* = 8, \quad b_2^* = -1, \quad B_2^* = -\frac{1}{24}.$

对比 Adams 显式法和隐式法,

$$|B_0^*| = |B_0|, |B_1^*| < |B_1|, |B_2^*| < |B_2|.$$

一般地,有 $|B_k^*| < |B_k|$ $(k \ge 1)$,即隐式法的局部截断误差小于显式法的局部截断误差.

泰勒级数法

设函数 f(x,y) 充分可微, 将 $y(x_{i+1})$ 在 x_i 处泰勒展开, 得到

$$y(x_{i+1}) = y(x_i + h) = y(x_i) + y'(x_i)h + \frac{1}{2}y''(x_i)h^2 + \cdots + \frac{1}{p!}y^{(p)}(x_i)h^p + \frac{h^{p+1}}{(p+1)!}y^{(p+1)}(\xi_i),$$

略去误差项, 用 $y_i^{(k)}$ 代替 $y^{(k)}(x_i)$, 则得

p 阶泰勒级数法 $y_{i+1} = y_i + y_i' h + \dots + \frac{1}{p!} y_i^{(p)} h^p$

 令 丹 (数学与统计学院)
 计 算 方 法

泰勒级数法

其中 $y_i^{(k)}$ 的计算公式为 $\frac{1}{2}$ Taylor公式的展开

$$\begin{cases} y'_{i} = f(x_{i}, y_{i}), \\ y''_{i} = (f'_{x} + f'_{y} \cdot y')\big|_{(x_{i}, y_{i})} = (f'_{x} + f'_{y} \cdot f)\big|_{(x_{i}, y_{i})}, \\ y'''_{i} = (f''_{xx} + 2f''_{xy} \cdot f + f''_{yy} \cdot f^{2} + f'_{x}f'_{y} + f'^{2}_{y} \cdot f)\big|_{(x_{i}, y_{i})}, \\ \dots \end{cases}$$

局部截断误差:

$$R[y_{i+1}] = y(x_{i+1}) - y_{i+1} = \frac{h^{p+1}}{(p+1)!} y^{(p+1)}(\xi_i).$$

泰勒级数法

• p=1 时,

$$y_{i+1} = y_i + hf(x_i, y_i), \quad R[y_{i+1}] = \frac{1}{2}h^2y''(\xi_i),$$

即为欧拉法.

p = 2 时,

$$y_{i+1} = y_i + h f(x_i, y_i) + \frac{h^2}{2} \left[f'_x(x_i, y_i) + f'_y(x_i, y_i) f(x_i, y_i) \right]$$
$$R[y_{i+1}] = \frac{h^3}{6} y'''(\xi_i)$$

p > 2 时, 高阶导数的计算相当复杂和困难, 因此泰勒级数法适用 于求解比较简单的常微分方程.

 令 丹 (数学与统计学院)
 计 算 方 法
 30 / 101

概念介绍

- (1) p 阶方法 数值解法的局部截断误差为 $R[y] = O(h^{p+1})$, 如欧拉法、后退欧拉法是一阶方法, 中点法、梯形法是二阶方法, 辛普森法是四阶方法.
- (2) 显式法 数值求解公式中的 f(x,y) 不含 y_{i+1} , 可以直接计算 y_{i+1} , 如欧拉法、中点法、Adams 显式法.
- (3) 隐式法 数值求解公式中的 f(x,y) 含有 y_{i+1} , 不能直接计算 y_{i+1} , 如后退欧拉法、梯形法、辛普森法、Adams 隐式法.
- (4) 单步法 计算 y_{i+1} 只需要一个点值, 如欧拉法、后退欧拉法、梯形法.
- (5) 多步法 计算 y_{i+1} 需要多个点值, 如中点法、辛普森法、Adams 显式 (隐式) 法. 用到 k 个点值的方法称为 k 步法.

令 丹 (数学与统计学院) 计 算 方 法 31 /101

隐式法的求解

非线性方程求根方法. 以梯形法为例, 非线性方程组的迭代解法

$$y_{i+1} = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, y_{i+1})].$$

(1) 简单迭代法

记迭代函数为

$$\phi(y_{i+1}) = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, y_{i+1})].$$

给定初始值 $y_{i+1}^{(0)}$ (如 $y_{i+1}^{(0)} = y_i + hf(x_i, y_i)$), 由迭代格式

$$y_{i+1}^{(k+1)} = \phi(y_{i+1}^{(k)}) = y_i + \frac{1}{2}h[f(x_i, y_i) + f(x_{i+1}, y_{i+1}^{(k)})], \ k = 0, 1, \dots$$

当 $|y_{i+1}^{(k+1)} - y_{i+1}^{(k)}| \leq \varepsilon$ 时, 取 $y_{i+1} \approx y_{i+1}^{(k+1)}$.

令 丹 (数学与统计学院) 计 算 方 法 32 /101

隐式法的求解

(2) 牛顿法

记

$$F(y_{i+1}) = y_{i+1} - y_i - \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, y_{i+1})]$$

由牛顿迭代法有

$$y_{i+1}^{(k+1)} = y_{i+1}^{(k)} - \frac{F(y_{i+1}^{(k)})}{F'(y_{i+1}^{(k)})}, \quad k = 0, 1, 2, \dots$$

当
$$|y_{i+1}^{(k+1)} - y_{i+1}^{(k)}| \leq \varepsilon$$
 时, 取 $y_{i+1} \approx y_{i+1}^{(k+1)}$.

令 丹 (数学与统计学院) 计 算 方 法 33 /101

隐式法的求解

(3) 改进欧拉法

用欧拉法计算得到 $y_{i+1}^{(0)}$, 再用梯形法计算 y_{i+1} , 即

$$\begin{cases} y_{i+1}^{(0)} = y_i + hf(x_i, y_i) \\ y_{i+1} = y_i + \frac{1}{2}h[f(x_i, y_i) + f(x_{i+1}, y_{i+1}^{(0)})] \end{cases}$$

即

$$y_{i+1} = y_i + \frac{1}{2}h[f(x_i, y_i) + f(x_{i+1}, y_i + hf(x_i, y_i))]$$

令 丹 (数学与统计学院) 计算方法 34 / 101

龙格-库塔法

Runge-Kutta (R-K) 方法: 通过将不同点的函数值进行适当的线性组合实现高阶精度.

m 级的 R-K 方法的一般形式:

$$\begin{cases} y_{i+1} = y_i + \sum_{j=1}^m \lambda_j K_j, \\ \\ K_j = hf \left(x_i + \alpha_j h, y_i + \sum_{\ell=1}^{j-1} \beta_{j\ell} K_\ell \right) \end{cases}$$
 $\lambda_j, \beta_{j\ell}, \alpha_j$ 均为常数

经常假定

$$\alpha_j = \sum_{\ell=1}^{j-1} \beta_{j\ell}, \quad j = 1, 2, \cdots, m \longrightarrow$$
 行和条件

令 丹 (数学与统计学院) 计 算 方 法 35 /101

通过 Taylor 展开确定常数 $\lambda_j, \beta_{j\ell}, \alpha_j$, 使其局部截断误差 R[y] 尽可能高阶.

当 m=1 时, 由行和条件知 $\alpha_1=0, K_1=hf(x_i,y_i)$, 因此

$$y_{i+1} = y_i + \lambda_1 K_1 = y_i + \lambda_1 h f(x_i, y_i)$$

$$R[y_{i+1}] = y(x_{i+1}) - y_{i+1}$$

$$= y_i + hf(x_i, y_i) + \frac{1}{2}h^2y''(x_i) + O(h^3) - y_i - \lambda_1 hf(x_i, y_i)$$

$$= (1 - \lambda_1)hf(x_i, y_i) + \frac{1}{2}h^2y''(x_i) + O(h^3)$$

为使误差阶更高,需取 $1 - \lambda_1 = 0$, 即 $\lambda_1 = 1$,

$$y_{i+1} = y_i + hf(x_i, y_i), \quad R[y_{i+1}] = \frac{h^2}{2}y''(x_i)$$
 欧拉法

m=2 时, 由行和条件可知 $\alpha_1=0, K_1=hf(x_i,y_i)$ 以及

$$\alpha_2 = \beta_{21}, \quad K_2 = hf(x_i + \alpha_2 h, y_i + \beta_{21} K_1).$$

因此

$$y_{i+1} = y_i + \lambda_1 K_1 + \lambda_2 K_2$$

= $y_i + \lambda_1 K_1 + \lambda_2 h f(x_i + \alpha_2 h, y_i + \beta_{21} K_1)$
= $y_i + \lambda_1 K_1 + \lambda_2 h f(x_i + \alpha_2 h, y_i + \alpha_2 K_1)$

根据二元函数的 Taylor 展开, 有

$$f(x_0 + \Delta x, y_0 + \Delta y) = f(x_0, y_0) + \left(\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y}\right) f(x_0, y_0) + \frac{1}{2!} \left(\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y}\right)^2 f(x_0, y_0) + \cdots$$

令 丹 (数学与统计学院) 计 算 方 法 37 /101

$$f(x_i + \alpha_2 h, y_i + \alpha_2 K_1)$$

$$= f(x_i, y_i) + \alpha_2 h f'_x(x_i, y_i) + \alpha_2 K_1 f'_y(x_i, y_i) + \frac{1}{2} \alpha_2^2 h^2 f''_{xx}(x_i, y_i)$$

$$+ \alpha_2^2 h K_1 f''_{xy}(x_i, y_i) + \frac{1}{2} \alpha_2^2 K_1^2 f''_{yy}(x_i, y_i) + \dots$$

$$= \left[f + \alpha_2 h \left(f'_x + f'_y f \right) + \frac{1}{2} \alpha_2^2 h^2 \left(f''_{xx} + 2 f''_{xy} f + f''_{yy} f^2 \right) \right]_{(x_i, y_i)} + O(h^3)$$
于是 $y_{i+1} = y_i + \lambda_1 K_1 + \lambda_2 h f(x_i + \alpha_2 h, y_i + \alpha_2 K_1)$

$$= y_i + \left[(\lambda_1 + \lambda_2) h f + \alpha_2 \lambda_2 h^2 \left(f'_x + f'_y f \right) + \frac{1}{2} \alpha_2^2 \lambda_2 h^3 \left(f''_{xx} + 2 f''_{xy} + f''_{yy} f^2 \right) \right]_{(x_i, y_i)} + O(h^4)$$

另一方面.

$$y(x_{i+1}) = y(x_i) + hy'(x_i) + \frac{h^2}{2}y''(x_i) + \frac{h^3}{6}y'''(x_i) + O(h^4)$$

$$= y(x_i) + \left[hf + \frac{h^2}{2}(f'_x + f'_y f) + \frac{h^3}{6}(f''_{xx} + 2f''_{xy} f + f''_{yy} f^2 + f''_x f'_y + f'^2_y f\right]_{(x_i, y_i)} + O(h^4)$$

由此得局部截断误差

$$R[y_{i+1}] = y(x_{i+1}) - y_{i+1}$$

$$= \left[h(1 - \lambda_1 - \lambda_2) f + \frac{1}{2} h^2 (1 - 2\alpha_2 \lambda_2) (f'_x + f'_y f) + \frac{1}{6} h^3 (1 - 3\alpha_2^2 \lambda_2) (f''_{xx} + 2f''_{xy} f + f''_{yy} f^2) + \frac{1}{6} h^3 (f'_x f'_y + f'^2_y + f'^2_y f) \right]_{(x_i, y_i)} + O(h^4)$$

为使 $R[y_{i+1}]$ 的阶尽可能高, 则需要有

$$\begin{cases} 1 - \lambda_1 - \lambda_2 = 0, \\ 1 - 2\alpha_2 \lambda_2 = 0, \end{cases} \Longrightarrow R[y_{i+1}] = O(h^3)$$
 二阶方法.

令 丹 (数学与统计学院) 40 /101

(1)
$$\lambda_1 = \lambda_2 = \frac{1}{2}, \ \alpha_2 = \beta_{21} = 1,$$
 即得
$$\begin{cases} y_{i+1} = y_i + \frac{1}{2}K_1 + \frac{1}{2}K_2, \\ K_1 = hf(x_i, y_i), \\ K_2 = hf(x_i + h, y_i + K_1), \end{cases}$$
 改进欧拉法

(2)
$$\lambda_1 = 0$$
, $\lambda_2 = 1$, $\alpha_2 = \beta_{21} = \frac{1}{2}$, 即得
$$\begin{cases} y_{i+1} = y_i + k_2, \\ K_1 = hf(x_i, y_i), \\ K_2 = hf(x_i + \frac{1}{2}h, y_i + \frac{1}{2}K_1) \end{cases}$$

变形欧拉法

(1) 3 级 3 阶的显式 Kutta 公式

$$\begin{cases} y_{i+1} = y_i + \frac{1}{6} \left(K_1 + 4K_2 + K_3 \right), \\ K_1 = hf(x_i, y_i), \quad K_2 = hf\left(x_i + \frac{1}{2} h, y_i + \frac{1}{2} K_1 \right), \\ K_3 = hf(x_i + h, y_i - K_1 + 2K_2). \end{cases}$$

(2) 3 级 3 阶的显式 Heun 公式

$$\begin{cases} y_{i+1} = y_i + \frac{1}{4}(K_1 + 3K_3), \\ K_1 = hf(x_i, y_i), \quad K_2 = hf(x_i + \frac{1}{3}h, y_i + \frac{1}{3}K_1), \\ K_3 = hf(x_i + \frac{2}{3}h, y_i + \frac{2}{3}K_2). \end{cases}$$

令 丹 (数学与统计学院) 42 /101

(3) 4级4阶的标准 R-K 公式

$$\begin{cases} y_{i+1} = y_i + \frac{1}{6}(K_1 + 2K_2 + 2K_3 + K_4), \\ K_1 = hf(x_i, y_i), \\ K_2 = hf(x_i + \frac{1}{2}h, y_i + \frac{1}{2}K_1), \\ K_3 = hf(x_i + \frac{1}{2}h, y_i + \frac{1}{2}K_2), \\ K_4 = hf(x_i + h, y_i + K_3). \end{cases}$$

记!

(4) 4 级 4 阶的显式 Kutta 公式

$$\begin{cases} y_{i+1} = y_i + \frac{1}{8}(K_1 + 3K_2 + 3K_3 + K_4), \\ K_1 = hf(x_i, y_i), \\ K_2 = hf(x_i + \frac{1}{3}h, y_i + \frac{1}{3}K_1), \\ K_3 = hf(x_i + \frac{2}{3}h, y_i - \frac{1}{3}K_1 + K_2), \\ K_4 = hf(x_i + h, y_i + K_1 - K_2 + K_3). \end{cases}$$

令 丹 (数学与统计学院) 计 算 方 法 44 /101

- 一般地, R-K 方法中的系数满足 $\sum\limits_{j=1}^m \lambda_j = 1$.
- $\{\lambda_j\}, \{\alpha_j\}, \{\beta_{j\ell}\}$ 的出现为构造高精度的数值方法创造了条件, 当 m = 2, 3, 4 时, 存在 m 阶精度的显式 R-K 方法.
- 当 m = 5 时, 至少能获得 4 阶精度的显式 R-K 方法. 若要得到 5 阶精度的显式 R-K 方法, 至少要 m = 6.
- 当 m = 7 或 m = 8 时, 可得到 6 阶精度的显式 R-K 方法. 而 当 $m \ge 9$ 时, 至多只能得到 m 2 阶精度的显式 R-K 方法.
- R-K 方法的优缺点
 - 优点: 显式单步法, 高精度, 计算 y_{i+1} 只需要一个值 y_i .
 - 缺点: 需计算多个函数值, 当 f(x,y) 比较复杂时, 计算量大.

令 丹 (数学与统计学院) 计 算 方 法 45 /101

例 2: 用标准 R-K 方法求解例 1.

解 由题知.

$$f(x,y) = -\frac{0.9y}{1+2x}$$
, $y_0 = 1$, $n = 5$, $h = 0.02$.

用标准 R-K 方法计算, 即对 i = 0, 1, 2, 3, 4 依次计算

$$\begin{cases} K_1 = hf(x_i, y_i), & K_2 = hf\left(x_i + \frac{1}{2}h, y_i + \frac{1}{2}K_1\right), \\ K_3 = hf\left(x_i + \frac{1}{2}h, y_i + \frac{1}{2}K_2\right), & K_4 = hf(x_i + h, y_i + K_3), \\ y_{i+1} = y_i + \frac{1}{6}(K_1 + 2K_2 + 2K_3 + K_4). \end{cases}$$

计算结果如下:

x_i	exact	标准 R-K
0.00	1.0000000000	1.0000000000
0.02	0.9825055160	0.9825055157
0.04	0.9659603718	0.9659603712
0.06	0.9502806581	0.9502806573
0.08	0.9353925461	0.9353925452
0.10	0.9212307782	0.9212307771

一般形式:

$$y_{i+1} = \sum_{j=0}^{k} \alpha_j y_{i-j} + h \sum_{j=-1}^{k} \beta_j f_{i-j}, \quad f_{i-j} = f(x_{i-j}, y_{i-j})$$

其中 α_j, β_j 为常数. $\beta_{-1} = 0$, 显式法. $\beta_{-1} \neq 0$, 隐式法.

局部截断误差:

$$R[y_{i+1}] = y(x_{i+1}) - y_{i+1}$$

$$= y(x_{i+1}) - \sum_{j=0}^{k} \alpha_j y_{i-j} + h \sum_{j=-1}^{k} \beta_j y'_{i-j}$$

$$= y(x_{i+1}) - \sum_{j=0}^{k} \alpha_j y(x_{i-j}) + h \sum_{j=-1}^{k} \beta_j y'(x_{i-j})$$

α_i, β_i 的确定<mark>:待定系数法.</mark>

- (1) 适当选取 α_j, β_j 使 $R[y_{i+1}]$ 的阶尽可能高,同时可用广义佩亚诺定理确定误差项。
- (2) 同一误差阶的情况下, 可以构造出许多不同的计算公式.

例 3. 确定如下求解公式的系数, 使其局部截断误差阶尽可能高.

$$y_{i+1} = \alpha_0 y_i + \alpha_1 y_{i-1} + \alpha_2 y_{i-2} + h(\beta_{-1} f_{i+1} + \beta_0 f_i + \beta_1 f_{i-1})$$

解 由于

$$R[y_{i+1}] = y(x_{i+1}) - y_{i+1}$$

$$= y(x_i + h) - \alpha_0 y(x_i) - \alpha_1 y(x_i - h) - \alpha_2 y(x_i - 2h)$$

$$- h(\beta_{-1} y'(x_i + h) + \beta_0 y'(x_i) + \beta_1 y'(x_i - h))$$

将 $y(x_i \pm h), y(x_i - 2h), y'(x_i \pm h)$ 在 x_i 处作 Taylor 展开得到

$$R[y_{i+1}] = (1 - \alpha_0 - \alpha_1 - \alpha_2)y(x_i)$$

$$+ hy'(x_i)(1 + \alpha_1 + 2\alpha_2 - \beta_{-1} - \beta_0 - \beta_1)$$

$$+ \frac{h^2}{2}y''(x_i)(1 - \alpha_1 - 4\alpha_2 - 2\beta_{-1} + 2\beta_1)$$

$$+ \frac{h^3}{6}y'''(x_i)(1 + \alpha_1 + 8\alpha_2 - 3\beta_{-1} - 3\beta_1)$$

$$+ \frac{h^4}{24}y^{(4)}(x_i)(1 - \alpha_1 - 16\alpha_2 - 4\beta_{-1} + 4\beta_1)$$

$$+ \frac{h^5}{120}y^{(5)}(x_i)(1 + \alpha_1 + 32\alpha_2 - 5\beta_{-1} - 5\beta_1)$$

$$+ \frac{h^6}{720}y^{(6)}(x_i)(1 - \alpha_1 - 64\alpha_2 - 6\beta_{-1} + 6\beta_1) + \cdots$$

令 升 (数学与统计学院) 51 /101

由于有 6 个系数, 因此至少需要 6 个方程, 即系数 α_i, β_i 需满足

$$\begin{cases} 1 - \alpha_0 - \alpha_1 - \alpha_2 = 0, \\ 1 + \alpha_1 + 2\alpha_2 - \beta_{-1} - \beta_0 - \beta_1 = 0, \\ 1 - \alpha_1 - 4\alpha_2 - 2\beta_{-1} + 2\beta_1 = 0, \\ 1 + \alpha_1 + 8\alpha_2 - 3\beta_{-1} - 3\beta_1 = 0, \\ 1 - \alpha_1 - 16\alpha_2 - 4\beta_{-1} + 4\beta_1 = 0, \\ 1 + \alpha_1 + 32\alpha_2 - 5\beta_{-1} - 5\beta_1 = 0, \end{cases}$$

由此得到

$$\alpha_0 = -\frac{9}{10}, \quad \alpha_1 = \frac{9}{5}, \quad \alpha_2 = \frac{1}{10}, \quad \beta_{-1} = \frac{3}{10}, \quad \beta_0 = \frac{9}{5}, \quad \beta_1 = \frac{9}{10}.$$

令 丹 (数学与统计学院) 计 算 方 法 52 /101

此时

$$1 - \alpha_1 - 64\alpha_2 - 6\beta_{-1} + 6\beta_1 = -\frac{18}{5} \neq 0 \Longrightarrow R[y_{i+1}] = O(h^6).$$

因此

$$y_{i+1} = -\frac{9}{10}y_i + \frac{9}{5}y_{i-1} + \frac{1}{10}y_{i-2} + \frac{h}{10}(3f_{i+1} + 18f_i + 9f_{i-1})$$

是一个五阶格式, 其局部截断误差为

$$R[y_{i+1}] = -\frac{1}{200}y^{(6)}(\xi_i).$$

也可取 $y = x^k \ (k = 0, 1, \dots, 5)$ 来确定系数. 由于对 $y = x^6$,

 $R[y_{i+1}] = -\frac{18}{5}h^6 \neq 0$, 故代数精度为 m = 5.

根据广义 Peano 定理, 可取 Hermite插值

$$e(x) = \frac{1}{720}y^{(6)}(\xi)(x - x_{i+1})^2(x - x_i)^2(x - x_{i-1})^2.$$

注意到

$$e(x_i) = e'(x_i) = e(x_{i-1}) = e'(x_{i-1}) = e(x_{i+1}) = e'(x_{i+1}) = 0.$$

因此有

$$R[y_{i+1}] = R[e(x)] = e(x_{i+1}) - \frac{1}{10} \left[-9e(x_i) + 18e(x_{i-1}) + e(x_{i-2}) + h\left(3e'(x_{i+1}) + 18e'(x_i) + 9e'(x_{i-1})\right) \right]$$
$$= -\frac{1}{10}e(x_{i-2}) = -\frac{h^6}{200}y^{(6)}(\xi)$$

若要构造<mark>一个四阶格式,</mark>则 α_i, β_i 满足方程组

$$\begin{cases} 1 - \alpha_0 - \alpha_1 - \alpha_2 = 0, \\ 1 + \alpha_1 + 2\alpha_2 - \beta_{-1} - \beta_0 - \beta_1 = 0, \\ 1 - \alpha_1 - 4\alpha_2 - 2\beta_{-1} + 2\beta_1 = 0, \\ 1 + \alpha_1 + 8\alpha_2 - 3\beta_{-1} - 3\beta_1 = 0, \\ 1 - \alpha_1 - 16\alpha_2 - 4\beta_{-1} + 4\beta_1 = 0. \end{cases}$$

6 个未知量, 5 个方程, 有无穷多解. 设 α_1 为自由变量, 则

$$\alpha_0 = \frac{9}{8}(1 - \alpha_1), \quad \alpha_2 = -\frac{1}{8}(1 - \alpha_1), \quad \beta_{-1} = \frac{1}{24}(9 - \alpha_1),$$
$$\beta_0 = \frac{1}{12}(9 + 7\alpha_1), \quad \beta_2 = \frac{1}{24}(-9 + 17\alpha_1)$$

令 丹 (数学与统计学院) 55 /101

(1) 取 $\alpha_1 = 1$, 则

$$\alpha_0 = \alpha_2 = 0, \quad \beta_{-1} = \frac{1}{3}, \quad \beta_0 = \frac{4}{3}, \quad \beta_1 = \frac{1}{3}$$

从而得

$$y_{i+1} = y_{i-1} + \frac{h}{3}(f_{i+1} + 4f_i + f_{i-1})$$
 辛普森公式

$$R[y_{i+1}] = y(x_{i+1}) - y_{i+1}$$

$$= y(x_{i+1}) - y(x_{i-1}) - \frac{h}{3} (y'(x_{i+1}) + 4y'(x_i) + y'(x_{i-1}))$$

$$= (x_i + h)^5 - (x_i - h)^5 + \frac{5h}{3} ((x_i + h)^4 + 4x_i^4 + (x_i - h)^4)$$

$$= -\frac{4}{3}h^5 \neq 0.$$

于是代数精度 m=4. 根据广义 Peano 定理可取

$$e(x) = \frac{1}{120}y^{(5)}(\xi)(x - x_{i-1})^2(x - x_{i+1})^2(x - x_i)$$

注意到

$$e(x_i) = e(x_{i-1}) = e(x_{i+1}) = e'(x_{i-1}) = e'(x_{i+1}) = 0$$

因此

$$R[y_{i+1}] = R[e(x)]$$

$$= e(x_{i+1}) - e(x_{i-1}) - \frac{h}{3} (e'(x_{i+1}) + 4e'(x_i) + e'(x_{i-1}))$$

$$= -\frac{4h}{3} e'(x_i) = -\frac{h^5}{90} y^{(5)}(\xi).$$

计算方法 57 /101

(2) 取 $\alpha_1 = 0$, 则

$$\alpha_0 = \frac{9}{8}, \quad \alpha_2 = -\frac{9}{8}, \quad \beta_{-1} = \frac{3}{8}, \quad \beta_0 = \frac{6}{8}, \quad \beta_1 = -\frac{3}{8},$$

从而得到汉明 (Hamming) 公式

$$y_{i+1} = \frac{1}{8} [9y_i - y_{i-2} + 3h(f_{i+1} + 2f_i - f_{i-1})],$$

其局部截断误差为

$$R[y_{i+1}] = y(x_{i+1}) - y_{i+1}$$

$$= y(x_{i+1}) - \frac{1}{8} [9y(x_i) - y(x_{i-2}) + 3h(y'(x_{i+1}) + 2y(x_i) - y'(x_{i-1}))]$$

令 丹 (数学与统计学院) 计 算 方 法 58 /101

令 $y = x^5$, 则 $R[x^5] = -3h^5 \neq 0$, 故代数精度 m = 4.

根据广义 Peano 定理可取

$$e(x) = \frac{1}{120}y^{(5)}(\xi)(x - x_{i+1})^2(x - x_i)(x - x_{i-1})^2$$

注意到

$$e(x_i) = e(x_{i+1}) = e'(x_{i+1}) = e(x_{i-1}) = e'(x_{i-1}) = 0,$$

因此

$$R[y_{i+1}] = R[e(x)]$$

$$= e(x_{i+1}) - \frac{1}{8} \left[9e(x_i) - e(x_{i-2}) + 3h(e'(x_{i+1}) + 2e'(x_i) - e'(x_{i-1})) \right]$$

$$= \frac{1}{8} \left(e(x_{i-2}) - 6he'(x_i) \right) = -\frac{h^5}{40} y^{(5)}(\xi).$$

同理若 k=3, 也可用待定系数法推导米尔恩 (Milne) 公式

$$y_{i+1} = y_{i-3} + \frac{4}{3}h(2f_i - f_{i-1} + 2f_{i-2})$$

其局部截断误差为

$$R[y_{i+1}] = \frac{14}{45}h^5y^{(5)}(\xi).$$

计算方法 令 丹 (数学与统计学院) 60 / 101

预测—校正公式

改进欧拉法?

在实际应用中, 常将显式公式与同阶的隐式公式联合使用,

用显式公式计算结果估计 y_{i+1} 预测 (预估) \Longrightarrow 预测—校正 代入隐式公式计算 y_{i+1} 校正 \leadsto 公式

通常将 Adams 显式公式与同阶的 Adams 隐式公式联合使用, 构成预测—校正公式.

令 丹 (数学与统计学院) 计 算 方 法 61/101

预测—校正公式

k = 1, 预测─校正公式

$$\begin{cases} y_{i+1}^{(0)} = y_i + \frac{h}{2} (3f_i - f_{i-1}) \\ y_{i+1} = y_i + \frac{h}{2} [f(x_{i+1}, y_{i+1}^{(0)}) + f(x_i, y_i)] \end{cases}$$

k = 2, 预测─校正公式

$$\begin{cases} y_{i+1}^{(0)} = y_i + \frac{h}{12} (23f_i - 16f_{i-1} + 5f_{i-2}) \\ y_{i+1} = y_i + \frac{h}{12} [5f(x_{i+1}, y_{i+1}^{(0)}) + 8f_i - f_{i-1}] \end{cases}$$

预测—校正公式

k = 3, 预测─校正公式

$$\begin{cases} y_{i+1}^{(0)} = y_i + \frac{h}{24} (55f_i - 59f_{i-1} + 37f_{i-2} - 9f_{i-1}) \\ y_{i+1} = y_i + \frac{h}{24} [9f(x_{i+1}, y_{i+1}^{(0)}) + 19f_i - 5f_{i-1} + f_{i-2})] \end{cases}$$

• 用米尔恩公式做预测, 汉明公式做校正的预测—校正公式

$$\begin{cases} y_{i+1}^{(0)} = y_{i-3} + \frac{4}{3}h(2f_i - f_{i-1} + 2f_{i-2}) \\ y_{i+1} = \frac{1}{8}(9y_i - y_{i-2}) + \frac{3h}{8}[f(x_{i+1}, y_{i+1}^{(0)}) + 2f_i - f_{i-1}] \end{cases}$$

预测—修正—校正—修正公式

将上述米尔恩—汉明公式改写

$$\begin{cases} p_{i+1} = y_{i-3} + \frac{4}{3}h(2f_i - f_{i-1} + 2f_{i-2}), \\ y_{i+1} = \frac{1}{8}(9y_i - y_{i-2}) + \frac{3h}{8}[f(x_{i+1}, p_{i+1}) + 2f_i - f_{i-1}], \end{cases}$$

则有

$$y(x_{i+1}) - p_{i+1} = \frac{14}{45} h^5 y^{(5)}(\xi),$$
$$y(x_{i+1}) - y_{i+1} = -\frac{1}{40} h^5 y^{(5)}(\xi_1).$$

预测—修正—校正—修正公式

假定 $y^{(5)}(\xi) \approx y^{(5)}(\xi_1)$, 则有

$$y_{i+1} - p_{i+1} \approx \frac{121}{360} h^5 y^{(5)}(\xi).$$

于是得到

$$h^5 y^{(5)}(\xi) \approx \frac{360}{121} (y_{i+1} - p_{i+1}), \quad h^5 y^{(5)}(\xi_i) \approx \frac{360}{121} (y_{i+1} - p_{i+1}).$$

代入得

$$y(x_{i+1}) \approx p_{i+1} + \frac{112}{121}(y_{i+1} - p_{i+1}), \ \ y(x_{i+1}) \approx y_{i+1} - \frac{9}{121}(y_{i+1} - p_{i+1}).$$

这表明可以通过对预测值 p_{i+1} 和校正值 y_{i+1} 加以修正, 得到更好的近似. 实用误差估计式

令 丹 (数学与统计学院) 计 算 方 法 65/101

预测—修正—校正—修正公式

修正汉明预测—校正公式

$$\begin{cases} p_{i+1} = y_{i-3} + \frac{4}{3}h(2f_i - f_{i-1} + 2f_{i-2}), \\ m_{i+1} = p_{i+1} + \frac{112}{121}(c_i - p_i), \\ c_{i+1} = \frac{1}{8}(9y_i - y_{i-2}) + \frac{3}{8}h[f(x_{i+1}, m_{i+1}) + 2f_i - f_{i-1}], \\ y_{i+1} = c_{i+1} - \frac{9}{121}(c_{i+1} - p_{i+1}), \end{cases}$$

其中 m_{i+1} 为 p_{i+1} 的修正值, c_{i+1} 为校正值, y_{i+1} 为 c_{i+1} 的修正值.

2. 收敛性与绝对稳定性

显式单步法

显式单步法可写为如下一般形式

$$y_{i+1} = y_i + h\phi(x_i, y_i, h)$$

假设为 p 阶方法, 则局部截断误差为

$$R[y_{i+1}] = y(x_{i+1}) - y_{i+1} = O(h^{p+1}).$$

干是

$$y(x_{i+1}) = y(x_i) + h\phi(x_i, y(x_i), h) + R[y_{i+1}].$$

假设 $\max_{a \leqslant x \leqslant b} \left| y^{(p+1)}(x) \right| \leqslant M_{p+1}$, 则有

$$\left|R[y_{i+1}]\right| \leqslant cM_{p+1}h^{p+1}, \quad c$$
 为常数.

计算方法 67 /101

显式单步法

在实际计算中,由于存在<mark>舍入误差,</mark>由显式单步法计算出的 \tilde{y}_{i+1} 并不是理论上的数值解 y_{i+1} ,而是其近似值,满足

$$\widetilde{y}_{i+1} = \widetilde{y}_i + h\phi(x_i, \widetilde{y}_i, h) + \eta_i$$

其中 η_i 表示第 i 步的舍入误差.

 $e_i = y(x_i) - \widetilde{y}_i$ 称为全程 (整体)误差.

数值方法的相容性

对于某一数值方法, 最基本的要求是当 $h \to 0$ 时, 它应该趋于原连续问题.

定义

对于求解初值问题的显式单步法,如果

$$\lim_{h \to 0} \frac{R[y]}{h} = 0,$$

则称显式单步法与初值问题是相容的. 进一步地, 若存在常数 c 使得 $|R[y]| \leq ch^{p+1}$, 则称该方法为 p 阶相容的, 也称 p 阶方法.

定义

设常微分方程初值问题为

$$\begin{cases} y'(x) = f(x, y(x)), & a \leqslant x \leqslant b, \\ y(a) = y_0, & \end{cases}$$

其中 f(x,y) 在 $D = \left\{ (x,y) | a \le x \le b, -\infty < y < \infty \right\}$ 上连续, 并且关于 y 满足 Lipschitz 条件, 其准确解 (真解) 为 y(x). 对于任一固定的 $x \in [a,b]$, 令 $h = \frac{b-a}{n}, x_i = a + ih$, 若由某一数值解法得到的近似解 y_i , 当 $h \to 0$ 时一致地有 $\lim_{h \to 0} y_i = y(x_i)$, 则称该方法为收敛的, 或者说数值解 y_i 一致收敛于初值问题的真解 y(x) 在点 x_i 处的值 $y(x_i)$.

 令 丹 (数学与统计学院)
 1 算 方 法

 70 / 101

定理

设求解常微分方程初值问题的显式单步法为

$$y_{i+1} = y_i + h\phi(x_i, y_i, h),$$

其中 $\phi(x,y,h)$ 在区域 $D=\left\{(x,y)|a\leqslant x\leqslant b,-\infty< y<\infty\right\}$ 上关于 y 满足 Lipschitz 条件, 即存在常数 L, 使得

$$|\phi(x, y, h) - \phi(x, \overline{y}, h)| \le L|y - \overline{y}|$$

对任意的 $x\in[a,b]$ 及任意的 y,\overline{y} 都成立, 则显式单步法的全程误差 $e_i=y(x_i)-\widetilde{y}_i$ $(i=0,1,2,\cdots,n)$ 估计式如下:

$$|e_1| \le |e_0|e^{L(x_i-a)} + (e^{L(x_i-a)} - 1)\left(\frac{cM_{p+1}h^p}{L} + \frac{\eta}{hL}\right)$$

其中 η 为 η_i 的上界.

证 由于
$$|y(x_{i+1}) - \widetilde{y}_{i+1}|$$

 $= |y(x_i) + h\phi(x_i, y(x_i), h) + R[y_{i+1}] - \widetilde{y}_i - h\phi(x_i, \widetilde{y}_i, h) - \eta_i|$
 $\leq |y(x_i) - \widetilde{y}_i| + h|\phi(x_i, y(x_i), h) - \phi(x_i, \widetilde{y}_i, h)| + |R[y_{i+1}]| + |\eta_i|$
 $\leq (1 + hL)|y(x_i) - \widetilde{y}_i| + cM_{p+1}h^{p+1} + \eta$
 $= (1 + hL)|e_i| + cM_{p+1}h^{p+1} + \eta$

于是

$$|e_{i+1}| \leq (1+hL)|e_i| + \alpha$$

$$\leq (1+hL)^2|e_{i-1}| + (1+hL)\alpha + \alpha$$

$$\leq \dots \leq (1+hL)^{i+1}|e_0| + (1+(1+hL) + \dots + (1+hL)^i)\alpha$$

$$= (1+hL)^{i+1}|e_0| + \frac{(1+hL)^{i+1} - 1}{hL}\alpha, \quad \alpha = cM_{p+1}h^{p+1} + \eta.$$

因此

$$|e_{i}| \leq (1+hL)^{i}|e_{0}| + \frac{1-(1+hL)^{i}}{1-(1+hL)} (cM_{p+1}h^{p+1} + \eta)$$

$$= (1+hL)^{\frac{ihL}{hL}}|e_{0}| + \frac{(1+hL)^{\frac{ihL}{hL}} - 1}{hL} (cM_{p+1}h^{p+1} + \eta)$$

$$< e^{ihL}|e_{0}| + \frac{e^{ihL} - 1}{hL} (cM_{p+1}h^{p+1} + \eta)$$

$$= e^{L(x_{i}-a)}|e_{0}| + \frac{e^{L(x_{i}-a)} - 1}{hL} (cM_{p+1}h^{p+1} + \eta).$$

令 丹 (数学与统计学院) 计算方法 73 / 101

- (1) 全程误差包括局部截断误差和舍入误差两部分. h 越小, 局部 截断误差越小, 而舍入误差越大.
- (2) 全程误差与数值解法的阶数 p 以及真解的 p+1 阶导数有关.

假如计算中的舍入误差忽略不计,则 $|e_0|=0,\eta=0$. 即计算出的解即为理论的数值解. 此时

$$|y(x_i) - y_i| \leqslant \frac{e^{L(x_i - a)} - 1}{hL} cM_{p+1} h^{p+1} \leqslant \frac{e^{L(b-a)} - 1}{L} cM_{p+1} h^p$$

当 $h \to 0$ 时, y_i 一致收敛于初值问题的真解于 y(x) 点 x_i 处的值 $y(x_i)$, 即显式单步法收敛.

定理

设求解常微分方程初值问题的显式单步法为

$$y_{i+1} = y_i + h\phi(x_i, y_i, h),$$

其中 $\phi(x,y,h)$ 在区域 $D = \{(x,y)|a \le x \le b, -\infty < y < \infty\}$ 上关于 y 满足 Lipschitz 条件. 若计算中不存在舍入误差, 则显式单步法收敛.

 $y(x_i) - y_i$ 称为全程 (整体) 截断误差.

若一个方法的局部截断误差为 $O(h^{p+1})$, 则全程截断误差为 $O(h^p)$.

欧拉法
$$|y(x_i) - y_i| \leqslant \frac{1}{2} (e^{L(b-a)} - 1) M_2 h.$$

对于标准四级四阶 R-K 方法, 依据上述定理讨论其收敛性.

设 f(x,y) 在 $D=\left\{(x,y)|a\leqslant x\leqslant b,-\infty< y<\infty\right\}$ 上关于 y 满足 Lipschitz 条件. 记

$$K_1(x, y, h) = hf(x, y),$$

$$K_2(x, y, h) = hf\left(x + \frac{h}{2}, y + \frac{1}{2}K_1(x, y, h)\right),$$

$$K_3(x, y, h) = hf\left(x + \frac{h}{2}, y + \frac{1}{2}K_2(x, y, h)\right),$$

$$K_4(x, y, h) = hf\left(x + h, y + K_3(x, y, h)\right)$$

由于

$$y_{i+1} = y_i + \frac{1}{6} (K_1 + 2K_2 + 2K_3 + K_4) \triangleq y_i + h\phi(x_i, y_i, h)$$

令 丹 (数学与统计学院) 计 算 方 法 76 /101

$$\phi(x,y,h) = \frac{1}{6} \left[K_1(x,y,h) + 2K_2(x,y,h) + 2K_3(x,y,h) + K_4(x,y,h) \right]$$

首先, 对于 $K_1(x,y,h)$ 有

$$\left|K_1(x,y,h) - K_1(x,\widetilde{y},h)\right| = h\left|f(x,y) - f(x,\widetilde{y})\right| \leqslant hL|y - \widetilde{y}|.$$

于是对于 $K_2(x,y,h)$ 有

$$|K_{2}(x,y,h) - K_{2}(x,\widetilde{y},h)| \leq hL|y + \frac{1}{2}K_{1}(x,y,h) - \widetilde{y} - \frac{1}{2}K_{1}(x,\widetilde{y},h)|$$

$$\leq hL\left(|y - \widetilde{y}| + \left|\frac{1}{2}K_{1}(x,y,h) - \frac{1}{2}K_{1}(x,\widetilde{y},h)\right|\right)$$

$$\leq hL\left(1 + \frac{1}{2}hL\right)|y - \widetilde{y}|.$$

同理可得

$$|K_{3}(x,y,h) - K_{3}(x,\widetilde{y},h)| \leq hL|y + \frac{1}{2}K_{2}(x,y,h)| - \widetilde{y} - \frac{1}{2}K_{2}(x,\widetilde{y},h)|$$

$$\leq hL\left(1 + \frac{1}{2}hL(1 + \frac{1}{2}hL)\right)|y - \widetilde{y}|$$

$$= hL\left(1 + \frac{1}{2}hL + \frac{1}{4}h^{2}L^{2}\right)|y - \widetilde{y}|$$

$$|K_{4}(x,y,h) - K_{4}(x,\widetilde{y},h)| \leq hL|y + K_{3}(x,y,h)| - \widetilde{y} - K_{3}(x,\widetilde{y},h)|$$

$$\leq hL\left(1 + hL(1 + \frac{1}{2}hL + \frac{1}{4}h^{2}L^{2})\right)|y - \widetilde{y}|$$

$$= hL\left(1 + hL + \frac{1}{2}(hL)^{2} + \frac{1}{4}(hL)^{3}\right)|y - \widetilde{y}|$$

于是有

$$|\phi(x,y,h) - \phi(x,\widetilde{y},h)| \le L\left(1 + \frac{1}{2}hL + \frac{1}{6}h^2L^2 + \frac{1}{24}h^3L^3\right)|y - \widetilde{y}|$$

即 $\phi(x, y, h)$ 关于 y 满足 Lipschitz 条件, 因此标准四级四阶 R-K 方法是收敛的.

令 丹 (数学与统计学院) 计 算 方 法 79 /101

若某个数值方法在计算中的每一步产生的舍入误差在以后的每步 计算中都能逐步削弱,则该算法是绝对稳定的.

定义

若某个数值方法在计算 y_i 时有误差 e_i , 如果在计算以后各步 y_j (j>i) 时, 由 e_i 引起的误差 e_j 满足

$$|e_j| < |e_i|, \quad j > i$$

则称该算法是绝对稳定的.

设 y_i 是显式单步法得到的数值解, \tilde{y}_i 是计算中包含舍入误差得到的实际值, 从而有

$$y_{i+1} = y_i + h\phi(x_i, y_i, h), \quad \widetilde{y}_{i+1} = \widetilde{y}_i + h\phi(x_i, \widetilde{y}_i, h).$$

$$y_{i+1} - \widetilde{y}_{i+1} = y_i + h\phi(x_i, y_i, h) - \widetilde{y}_i - h\phi(x_i, \widetilde{y}_i, h)$$

$$= y_i - \widetilde{y}_i + h\left[\phi(x_i, y_i, h) - \phi(x_i, \widetilde{y}_i, h)\right]$$

$$= y_i - \widetilde{y}_i \left(1 + h\frac{\phi(x_i, y_i, h) - \phi(x_i, \widetilde{y}_i, h)}{y_i - \widetilde{y}_i}\right)$$

$$\implies \frac{\left|y_{i+1} - \widetilde{y}_{i+1}\right|}{\left|y_i - \widetilde{y}_i\right|} = \left|1 + h\frac{\phi(x_i, y_i, h) - \phi(x_i, \widetilde{y}_i, h)}{y_i - \widetilde{y}_i}\right|$$

若要使得舍入误差不增长,则应有

$$\left| 1 + h \frac{\phi(x_i, y_i, h) - \phi(x_i, \widetilde{y}_i, h)}{y_i - \widetilde{y}_i} \right| \leqslant 1$$

由于 $\phi(x,y,h)$ 不但与求解方法有关, 而且跟初值问题中的 f 有关. 因此, 稳定性讨论非常复杂.

 令 丹 (数学与统计学院)
 计 算 方 法

为简单起见。一般将数值方法用于如下的"试验方程"来讨论。

$$y' = \lambda y$$
,其中 $Re(\lambda) < 0$.

设数值解法的步长为 h. 若计算开始时产生的误差在以后的计算 中能逐步削弱. 则称这个解法相对于 $\bar{h} = \lambda h$ 是绝对稳定的. \bar{h} 的 全体称为绝对稳定区域, 与实轴的交集称为绝对稳定区间,

今 丹 (数学与统计学院) 计算方法 82 /101

1. 欧拉法的绝对稳定性

用欧拉法求解试验方程

$$y_{i+1} = y_i + hf(x_i, y_i) = y_i + \lambda hy_i.$$

由于舍入误差, y_i 变成 \widetilde{y}_i , y_{i+1} 变成 \widetilde{y}_{i+1} , 则

$$\widetilde{y}_{i+1} = \widetilde{y}_i + \lambda h \widetilde{y}_i.$$

令 $e_i = y_i - \widetilde{y}_i$, 则有

$$e_{i+1} = e_i + \lambda h e_i = (1 + \overline{h})e_i.$$

欲使欧拉法绝对稳定, 则需 $|e_{i+1}|<|e_i|$, 此时 \overline{h} 满足 $\left|1+\overline{h}\right|<1$.

令 丹 (数学与统计学院) 计 算 方 法

复平面上满足条件的 \bar{h} 构成的区域为实轴上以 -1 为圆心, 半径为 1 的单位圆的内部, 即欧拉法的绝对稳定区域为单位圆域.

2. 后退欧拉法的绝对稳定性

用后退欧拉法求解试验方程

$$y_{i+1} = y_i + hf(x_i, y_{i+1}) = y_i + \lambda h y_{i+1}$$

类似地,有

$$y_{i+1} = y_i + \lambda h y_{i+1}, \quad \widetilde{y}_{i+1} = \widetilde{y}_i + \lambda h \widetilde{y}_{i+1},$$

$$e_{i+1} = e_i + \lambda h e_{i+1} = e_i + \overline{h} e_{i+1} \implies e_{i+1} = \frac{e_i}{1 - \overline{h}}.$$

其绝对稳定区域为 $\left|\frac{1}{1-\overline{h}}\right| < 1$, 即 $\left|1 - \overline{h}\right| > 1$.

复平面上满足条件的 \overline{h} 构成的区域为以实轴上点 1 为圆心的单位圆的外部, 如图所示.

绝对稳定区间

$$Re(\overline{h}) < 0$$
 或 $Re(\overline{h}) > 2$
 $\implies h > 0$

3. 标准四级四阶 R-K 方法的绝对稳定性

$$y_{i+1} = y_i + \frac{1}{6} \left(K_1 + 2K_2 + 2K_3 + K_4 \right),$$

$$K_1 = h \lambda y_i,$$

$$K_2 = h \lambda \left(y_i + \frac{1}{2} K_1 \right) = y_i \left(\overline{h} + \frac{1}{2} \overline{h}^2 \right),$$

$$K_3 = h \lambda \left(y_i + \frac{1}{2} K_2 \right) = y_i \left(\overline{h} + \frac{1}{2} \overline{h}^2 + \frac{1}{4} \overline{h}^3 \right),$$

$$K_4 = h \lambda \left(y_i + K_3 \right) = y_i \left(\overline{h} + \overline{h}^2 + \frac{1}{2} \overline{h}^3 + \frac{1}{4} \overline{h}^4 \right).$$

3. 标准四级四阶 R-K 方法的绝对稳定性

$$y_{i+1} = y_i + \frac{1}{6} (K_1 + 2K_2 + 2K_3 + K_4),$$

$$K_1 = h\lambda y_i,$$

$$K_2 = h\lambda (y_i + \frac{1}{2}K_1) = y_i (\overline{h} + \frac{1}{2}\overline{h}^2),$$

$$K_3 = h\lambda (y_i + \frac{1}{2}K_2) = y_i (\overline{h} + \frac{1}{2}\overline{h}^2 + \frac{1}{4}\overline{h}^3),$$

$$K_4 = h\lambda (y_i + K_3) = y_i (\overline{h} + \overline{h}^2 + \frac{1}{2}\overline{h}^3 + \frac{1}{4}\overline{h}^4).$$

$$\Rightarrow y_{i+1} = (1 + \overline{h} + \frac{1}{2}\overline{h}^2 + \frac{1}{6}\overline{h}^3 + \frac{1}{24}\overline{h}^4)y_i$$

$$\Rightarrow e_{i+1} = (1 + \overline{h} + \frac{1}{2}\overline{h}^2 + \frac{1}{6}\overline{h}^3 + \frac{1}{24}\overline{h}^4)e_i$$

令 丹 (数学与统计学院) 计 算 方 法

3. 微分方程组与高阶方程

一阶常微分方程组的初值问题

$$\begin{cases} y'_1(x) = f_1(x, y_1(x), y_2(x), \dots, y_n(x)), \\ y'_2(x) = f_2(x, y_1(x), y_2(x), \dots, y_n(x)), \\ \dots \\ y'_n(x) = f_n(x, y_1(x), y_2(x), \dots, y_n(x)), \\ y_1(a) = y_{10}, y_2(a) = y_{20}, \dots, y_n(a) = y_{n0}, \end{cases}$$

其中 $a \leqslant x \leqslant b$.

常微分方程组

若记

$$y(x) = (y_1(x), y_2(x), \dots, y_n(x))^{\mathrm{T}}, \quad y_0 = (y_{10}, y_{20}, \dots, y_{n0})^{\mathrm{T}},$$
$$f(x, y) = (f_1(x, y), f_2(x, y), \dots, f_n(x, y))^{\mathrm{T}},$$

则微分方程组的初值问题可写为下列向量形式

$$\begin{cases} y'(x) = f(x, y(x)), & a \leqslant x \leqslant b, \\ y(a) = y_0. \end{cases}$$

常微分方程组

定理 (解的存在唯一性定理)

设 f(x,y) 在 n+1 维区域

$$D = \{(x, y) | a \le x \le b, -\infty < y_i < \infty, \ i = 1, 2, \dots, n \}$$

上连续, 关于 y 满足 Lipschitz 条件, 即存在常数 L, 使得

$$|f(x,y) - f(x,\overline{y})| \le L|y - \overline{y}|$$

对任意的 $x \in [a,b]$ 及任意的 y, \overline{y} 都成立, 则微分方程组存在唯一的连续可微解 y(x).

常微分方程组的数值解法

微分方程组的初值问题在形式上的单个方程的初值问题完全相同, 只是标量函数变成了向量函数,因此求解单个方程初值问题的数 值方法完全可用于求解方程组.

例如, 欧拉方法的向量形式

$$y_{i+1} = y_i + h f(x_i, y_i)$$

其分量形式为:

$$y_{j,i+1} = y_{j,i} + h f_j(x_i, y_{1i}, y_{2i}, \dots, y_{ni}), \quad j = 1, 2, \dots, n.$$

令 丹 (数学与统计学院) 计 算 方 法

常微分方程组的数值解法

标准四级四阶 R-K 方法

$$\begin{cases} y_{i+1} = y_i + \frac{1}{6} \left(K_1 + 2K_2 + 2K_3 + K_4 \right) \\ K_1 = h f(x_i, y_i) \\ K_2 = h f\left(x_i + \frac{h}{2}, y_i + \frac{1}{2} K_1 \right) \\ K_3 = h f\left(x_i + \frac{h}{2}, y_i + \frac{1}{2} K_2 \right) \\ K_4 = h f\left(x_i + h, y_i + K_3 \right) \end{cases}$$

常微分方程组的数值解法

其分量形式
$$(j=1,2,\cdots,n)$$

$$\begin{cases} y_{j,i+1} = y_{j,i} + \frac{1}{6} \left(K_{j1} + 2K_{j2} + 2K_{j3} + K_{j4} \right) \\ K_{j1} = h f_j(x_i, y_{1i}, y_{2i}, \dots, y_{ni}) \\ K_{j2} = h f_j \left(x_i + \frac{h}{2}, y_{1i} + \frac{1}{2} K_{11}, y_{2i} + \frac{1}{2} K_{21}, \dots, y_{ni} + \frac{1}{2} K_{n1} \right) \\ K_{j3} = h f_j \left(x_i + \frac{h}{2}, y_{1i} + \frac{1}{2} K_{12}, y_{2i} + \frac{1}{2} K_{22}, \dots, y_{ni} + \frac{1}{2} K_{n2} \right) \\ K_{j4} = h f_j \left(x_i + h, y_{1i} + K_{13}, y_{2i} + K_{23}, \dots, y_{ni} + K_{n3} \right) \end{cases}$$

令 丹 (数学与统计学院) 计 算 方 法 94 /101

高阶常微分方程

m 阶常微分方程的初值问题为

$$\begin{cases} y^{(m)} = f(x, y, y', y'', \dots, y^{(m-1)}), & a \leqslant x \leqslant b, \\ y(a) = y_0, y'(a) = y'_0, \dots, y^{(m-1)}(a) = y_0^{(m-1)}. \end{cases}$$

引入新变量 $y_1=y,y_2=y',\cdots,y_m=y^{(m-1)}$, 则 m 阶方程可转化为如下的微分方程组:

$$\begin{cases} y_1' = y_2, & y_2' = y_3, & \cdots, & y_{m-1}' = y_m, \\ y_m' = f(x, y_1, y_2, \cdots, y_m), \\ y_1(a) = y_0, & y_2(a) = y_0', \cdots, & y_m(a) = y_0^{(m-1)}. \end{cases}$$

例 1. 取 h = 0.1, 用欧拉法和标准四级四阶 R-K 方法求解二阶初值问题

$$\begin{cases} y'' - 2y' + 2y = e^{2x} \sin(x), & 0 \le x \le 1, \\ y(0) = -0.4, \ y'(0) = -0.6. \end{cases}$$

解 令 $y_1 = y$, $y_2 = y'$, 则上述二阶初值问题转化为

$$\begin{cases} y_1' = y_2, \\ y_2' = e^{2x} \sin x - 2y_1 + 2y_2, \\ y_1(0) = -0.4, \ y_2(0) = -0.6. \end{cases}$$

记

$$y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \quad y(0) = \begin{pmatrix} y_1(0) \\ y_2(0) \end{pmatrix} = \begin{pmatrix} -0.4 \\ -0.6 \end{pmatrix},$$
$$f(x,y) = \begin{pmatrix} f_1(x,y) \\ f_2(x,y) \end{pmatrix} = \begin{pmatrix} y_2 \\ e^{2x} \sin x - 2y_1 + y_2 \end{pmatrix},$$

则欧拉法的计算公式为 $y_{i+1} = y_i + hf(x_i, y_i)$, 即

$$\begin{pmatrix} y_{1,i+1} \\ y_{2,i+1} \end{pmatrix} = \begin{pmatrix} y_{1i} \\ y_{2i} \end{pmatrix} + h \begin{pmatrix} y_{2i} \\ e^{2x_i} \sin x_i - 2y_{1i} + 2y_{2i} \end{pmatrix}.$$

令 丹 (数学与统计学院) 计 算 方 法

若用标准四级四阶 R-K 方法求解,则

$$y_{i+1} = y_i + \frac{1}{6} (K_1 + 2K_2 + 2K_3 + K_4),$$

其中

$$K_{1} = hf(x_{i}, y_{i}) = h \begin{pmatrix} y_{2i} \\ e^{2x_{i}} \sin x_{i} - 2y_{1i} + 2y_{2i} \end{pmatrix} = \begin{pmatrix} K_{11} \\ K_{12} \end{pmatrix},$$

$$K_{2} = hf(x_{i} + \frac{h}{2}, y_{i} + \frac{1}{2}K_{1}) = \begin{pmatrix} K_{21} \\ K_{22} \end{pmatrix}$$

$$= h \begin{pmatrix} y_{2i} + \frac{1}{2}K_{12} \\ e^{2(x_{i} + \frac{h}{2})} \sin \left(x_{i} + \frac{h}{2}\right) - 2\left(y_{1i} + \frac{1}{2}K_{11}\right) + 2\left(y_{2i} + \frac{1}{2}K_{12}\right) \end{pmatrix}.$$

令 丹 (数学与统计学院) 计 算 方 法

$$K_{3} = hf\left(x_{i} + \frac{h}{2}, y_{i} + \frac{1}{2}K_{2}\right) = \begin{pmatrix} K_{31} \\ K_{32} \end{pmatrix}$$

$$= h \begin{pmatrix} y_{2i} + \frac{1}{2}K_{22} \\ e^{2(x_{i} + \frac{h}{2})} \sin\left(x_{i} + \frac{h}{2}\right) - 2(y_{1i} + \frac{1}{2}K_{21}) + 2(y_{2i} + \frac{1}{2}K_{22}) \end{pmatrix},$$

$$K_{4} = hf\left(x_{i} + h, y_{i} + K_{3}\right) = \begin{pmatrix} K_{41} \\ K_{42} \end{pmatrix}$$

$$= h \begin{pmatrix} y_{2i} + K_{32} \\ e^{2(x_{i} + h)} \sin(x_{i} + h) - 2(y_{1i} + K_{31}) + 2(y_{2i} + K_{32}) \end{pmatrix}.$$

将 $y_{10}=-0.4,\ y_{20}=-0.6$ 分别代入上述两种方法, 将计算结果与准确解 $y=0.2\mathrm{e}^{2x}(\sin x-2\cos x)$ 作对比.

x_i	exact	Euler	R-K4			
0.0	-0.4000000	-0.40000000	-0.40000000			
0.1	-0.46173297	-0.46000000	-0.46173334			
0.2	-0.52555904	-0.52400000	-0.52555988			
0.3	-0.58860004	-0.59038063	-0.58860143			
0.4	-0.64661028	-0.65659359	-0.64661230			
0.5	-0.69356394	-0.71885680	-0.69356665			
0.6	-0.72114849	-0.77177411	-0.72115189			
0.7	-0.71814889	-0.80786562	-0.71815295			
8.0	-0.66970677	-0.81699315	-0.66971132			
0.9	-0.55643813	-0.78566457	-0.55644290			
1.0	-0.35339435	-0.69619952	-0.35339886			

\overline{h}	Euler		R-K4	
	errors	orders	errors	orders
1/10	3.428×10^{-1}	_	4.765×10^{-6}	_
1/20	1.911×10^{-1}	0.843	2.706×10^{-7}	4.139
1/40	1.008×10^{-1}	0.922	1.609×10^{-8}	4.072
1/80	5.179×10^{-2}	0.961	9.806×10^{-10}	4.036
1/160	2.624×10^{-2}	0.981	6.052×10^{-11}	4.018