СЕРВИСНО ОРИЕНТИРОВАННЫЙ ПОДХОД К ИСПОЛЬЗОВАНИЮ СИСТЕМ ИНЖЕНЕРНОГО ПРОЕКТИРОВАНИЯ И АНАЛИЗА В РАСПРЕДЕЛЕННЫХ ВЫЧИСЛИТЕЛЬНЫХ СРЕДАХ

05.13.11 - математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей

Диссертация на соискание ученой степени кандидата физико-математических наук

Г.И. Радченко

Научный руководитель: СОКОЛИНСКИЙ Леонид Борисович доктор физ.-мат. наук, профессор

Цель диссертационной работы

На основе концепции облачных вычислений разработать методы и алгоритмы, обеспечивающие автоматизированную генерацию проблемно-ориентированных грид-сервисов, позволяющих использовать инженерные пакеты в распределенных вычислительных средах

Основные задачи

- 1. Разработать модель проблемно-ориентированного сервиса для решения задач инженерного проектирования и анализа в грид в виде *PaBИС* (*Распределенного Виртуального Испытательного Стенда*)
- 2. Разработать архитектуру и принципы структурной организации РаВИС
- 3. Разработать методы и алгоритмы автоматизированного построения РаВИС и реализовать их в виде *программной системы CAEBeans*, обеспечивающей создание и использование РаВИС
- 4. Провести испытания системы CAEBeans путем создания и внедрения РаВИС на промышленном предприятии

Испытательный стенд

Концепция облачных вычислений

Структура РаВИС

Технология CAEBeans

Технология CAEBeans – это совокупность теории и практической техники, на которые опирается процесс создания и использования распределенных виртуальных испытательных стендов. Технология CAEBeans включает в себя:

- *концептуальные средства*, которые определяют методы разработки и структуру РаВИС
- *организационные средства*, которые определяют форму труда и распределение обязанностей в команде разработчиков и пользователей РаВИС
- **программные средства** разработки и среду исполнения РаВИС

CAEBean

Оболочка CAEBean – это основная структурная единица, формирующая РаВИС

Название CAEBean:

- CAE (Computer Aided Engeneering) инженерное проектирование при помощи компьютера
- **Bean** оболочка

Слои РаВИС

Проблемный CAEBean

Иерархия проблемных CAEBean

Логический план решения задачи

Узлы логического плана

Название	Обозначение
Начальный узел	
Конечный узел	
Действие	
Разветвление	
Объединение	
Разделение	
Слияние	

Компонентный CAEBean

Пример Структура Рассчитать вектора скоростей в Полная спецификация системе из двух труб, при заданной сетке и начальными условиями задачи программные **ANSYS CFX 11.0** Спецификация Спецификация ресурсы эесурсов оесурсов Академическая лицензионные лицензия, на 20 ядер ресурсы минимум 5 узлов, Intel Zeon 2ГГц, аппаратные 4096 Мб ОП... ресурсы

Системный CAEBean

Роли в разработке РаВИС

- Инженер пользователь РаВИС;
- Прикладной программист разработчик проблемных, потоковых и компонентных CAEBeans;
- *Системный программист* разработчик шаблонов компонентных CAEBean и системных CAEBean.

Разработка и исполнение РаВИС

Разработка и исполнение РаВИС

Метрики производительности приложений в Грид

- Среднее время ответа (ART): $ART = \frac{1}{|\tau|} \sum_{j \in \tau} (C_j(S))$
- Оценка производительности системы CAEBeans:

$$ART = \frac{1}{\mid \tau \mid} \sum_{j \in \tau} \left(EndTime_j - SubmitTime_j \right) = \frac{1}{\mid \tau \mid} \sum_{j \in \tau} \left(\sum_{k \in j} SolveTime_k \right)$$

Решение типовой САЕ-задачи средствами CAEBeans	Решение типовой САЕ-задачи в распределенной вычислительной среде «вручную»
$\overline{ART} = 4 \cdot (\overline{t}_{\text{зап}} + 2 \cdot \overline{t}_{\text{передачи}} + \overline{t}_{\text{обработки}}) + 1 \cdot (\overline{t}_{\text{зап}} + 2 \cdot \overline{t}_{\text{передачи}} + \overline{t}_{\text{реш}}) = 1 + 1 \cdot (2 + 2 \cdot 2 + 10) + 1 \cdot (2 + 2 \cdot 2 + 70) = 140 \text{ (мин)}$	$\overline{MAN} = 4 \cdot (\overline{t}_{\text{подготовки}} + 2 \cdot \overline{t'}_{\text{передачи}} + \overline{t}_{\text{обработки}}) + 1 \cdot (\overline{t}_{\text{подготовки}} + 2 \cdot \overline{t'}_{\text{передачи}} + \overline{t}_{\text{реш}}) = $ $= 4 \cdot (10 + 2 \cdot 27 + 10) + $ $+1 \cdot (10 + 2 \cdot 27 + 70) = 430 \text{ (мин)}$

Структура системы CAEBeans

Платформа реализации

• Грид-сервисы системы основаны на базе группы стандартов WSRF.

• Реализация стандарта WSRF-Lite, представленная консорциумом UNICORE.

CAEBeans Constructor

CAEBeans Portal

CAEBeans Server

Взаимодействие CAEBeans Server и CAEBeans Broker

CAEBeans Broker

Диаграмма последовательностей решения САЕ-задачи в системе CAEBeans

CAEBeans Constructor

CAEBeans Portal

РаВИС "Термообработка"

РаВИС на базе ANSYS Mechanical: "Моделирование резьбовых соединений труб для нефтяных скважин"

РаВИС на базе CFX: "Моделирование обдувания дымовой трубы"

РаВИС на базе ABAQUS «моделирование напряженно-деформированного состояния грунтового массива »

Публикации

В списке ВАК

- 1. Радченко Г.И. Технология построения проблемно-ориентированных иерархических оболочек над инженерными пакетами в грид-средах // Системы управления и информационные технологии. № 4(34). 2008. С. 57-61.
- 2. Радченко Г.И., Соколинский Л.Б. Технология построения виртуальных испытательных стендов в распределенных вычислительных средах // Науч.-техн. вест. СПбГУ ИТМО. № 54. 2008. С. 134-139.

Другие

- 3. Радченко Г.И. Грид-система CAEBeans: интеграция ресурсов инженерных пакетов в распределенные вычислительные среды // Параллельные вычислительные технологии (ПаВТ'2009): Тр. междунар. науч. конф. (Н.Н., 30 марта 3 апреля 2009 г.). Челябинск: Изд-во ЮУрГУ. 2009. С. 281-292.
- 4. Радченко Г.И. Методы организации грид-оболочек системного слоя в технологии CAEBeans // Вестник ЮУрГУ. Серия "Математическое моделирование и программирование" № 15 (115). Вып. 1. 2008. С. 69-78.
- 5. Радченко Г.И., Соколинский Л.Б. CAEBeans: иерархические системы структурированных проблемно-ориентированных оболочек над инженерными пакетами // Научный сервис в сети Интернет: многоядерный компьютерный мир. 15 лет РФФИ: Тр. Всеросс. науч. конф. (24-29 сентября 2007 г., г. Новороссийск). М.: Изд-во МГУ. 2007. С. 54-57.
- 6. Радченко Г.И., Дорохов В.А., Насибулина Р.С., Соколинский Л.Б., Шамакина А.В. Технология создания виртуальных испытательных стендов в грид-средах // Вторая Международная научная конференция "Суперкомпьютерные системы и их применение" (SSA'2008): доклады конференции (27-29 октября 2008 года, Минск) Минск: ОИПИ НАН Беларуси, 2008. С. 194-198.
- 7. Радченко Г.И., Соколинский Л.Б., Шамакина А.В. Разработка компонентно-ориентированных CAEBean-оболочек для пакета ANSYS CFX // Параллельные вычислительные технологии (ПаВТ'2008): Труды международной научной конференции (28 января 1 февраля 2008 г., г. Санкт-Петербург). Челябинск: Изд-во ЮУрГУ, 2008. С. 438-443.

Основные результаты, выносимые на защиту

- Разработана модель проблемно-ориентированного сервиса для решения задач инженерного проектирования и анализа в грид в виде РаВИС (Распределенного Виртуального Испытательного Стенда)
- 2. Разработана архитектура CAEBeans, определяющая принципы структурной организации РаВИС
- 3. Разработан комплекс методов и алгоритмов, позволяющих автоматизировать процесс построения специализированных РаВИС для решения прикладных задач с использованием различных САЕ-пакетов
- 4. На базе предложенных подходов разработана система CAEBeans для создания и поддержки PaB/IC; произведены испытания системы CAEBeans для различных CAE-пакетов; PaB/IC «Термообработка», внедрен в опытную эксплуатацию на ОАО «Челябинский трубопрокатный завод»

35