

The Arc Index of Theta-Curve and Handcuff Graph

Eunchan Cho¹ Jeongwon Shin¹ Boyeon Seo¹ Minho Choi¹

SEP 6, 2025

Introduction

Theta-Curves

- A theta-curve T is a graph embedded in S^3 , which consists of two vertices v_1 , v_2 and three edges e_1 , e_2 , e_3 , such that each edge joins the vertices.
- A constituent knot T_{ij} , $1 \le i < j \le 3$, is a subgraph of T that consists of two vertices v_1 , v_2 and two edges e_i , e_j .
- Theta-curves are roughly classified by comparing the triples of constituent knots.
- A theta-curve is said to be **trivial** if it can be embedded in a 2-sphere in S^3 .

Handcuff Graphs

- A handcuff graph H is a graph embedded in S^3 consisting of two vertices (v_1, v_2) and three edges (e_1, e_2, e_3) , where e_3 has distinct endpoints v_1 and v_2 , and e_1 and e_2 are loops based at v_1 and v_2 .
- A constituent link H_{12} , is a subgraph of H that consists of two vertices v_1 , v_2 and two edges e_1 , e_2 .

Reidemaister Moves for Theta-Curves and Handcuff Graphs

Arc Presentation

- Arc presentation of a theta-curve or handcuff graph is an embedding of them.
- It is contained in the union of finitely many half planes (called pages).
- The embedding is with the common boundary line (called axis).
- · Each vertex lies in the axis.
- Each page contains a properly embedded single arc.
- Arc index, is the minimal number of pages among all possible arc presentations of graph.
- This arc presentation with the minimal number of pages is minimal arc presentation.

Arc Presentation

Grid Diagram

- The **grid diagram** of theta-curve or handcuff graph is a diagram with only vertical strand and horizontal strands.
- (number of vertical strands) + 1 = (number of horizontal strands)
- At every crossing, the vertical strand crosses over the horizontal strand.
- · No two horizontal strands are in the same row.
- · No two vertical strands are in same column.

Grid Diagram

· A grid diagram gives rise to an arc presentation and vice versa.

Arc Presentation of the Theta-Curve and Handcuff Graph

Theorem

Every theta-curve and handcuff graph admit a grid diagram.

PROOF

Corollary

Every theta-curve and handcuff graph admit a arc presentation.

Classifying by Determinant

THC-cromwell matrix

• The **THC-cromwell matrix** is an expansion of cromwell matrix into θ -curves and handcuff graphs

Determinant of the cromwell matrices of Knot

Theorem

Let K be any knot then its determinant of the cromwell matrix is 0 or ± 2 .

PROOF

grid diagram

THC-cromwell

 $\begin{array}{c|cccc}
row/column & 0 & 1 & 1 & 0 \\
\hline
operations & 0 & 0 & 1 & 1 \\
\hline
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}$

CASE 1. When *n* is an even number.

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} \longmapsto \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 2 & 2 & 2 & 2 \end{bmatrix} \longmapsto$$

So the determinant of K is 0.

CASE 2. When *n* is an odd number.

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix} \longmapsto \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 2 & 2 & 2 & 2 & 2 \end{bmatrix} \longmapsto \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

So the determinant of K is ± 2 .

H-deletion of THC-cromwell matricies

• The **H-deletion** Matrix of the THC-cromwell matrix G is $(n-1) \times (n-1)$ matrix which deleted vertex-row and its two side-rows from the matrix G.

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \end{bmatrix} \longmapsto \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \end{bmatrix} \longmapsto \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Determinant of the THC-cromwell matrices

Theorem

Let M be any THC-cromwell matrice of θ -curve or handcuff graph.

- $det(M) = \pm 1 \iff M \text{ represents } \theta\text{-curve}$
- det(M) = 0 or $\pm 2 \iff M$ represents handcuff graph

*det(M) = determinant of H-deletion matrix of M

PROOF

CASE 1. When M represents θ -curve

(i) Line-shape

	Γ1	1	0	0	1
	0	0	1	0	0
H−deletion →	0	0	0	1	0
	0	0	1	0	1
H−deletion→	1	0	0	1	0

and simplify with

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\xrightarrow{\text{subtracting}}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

So
$$det(M) = \pm 1$$

CASE 1. When M represents θ -curve

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

and simplify with

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

regioning

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

So
$$det(M) = \pm 1$$

0	0	1	0	0	0	0	1
0	0	0	0	0	0	1	1
1	0	1	0	0	0	0	0
1	0	0	0	1	0	1	0
0	0	0	1	1	0	0	0
0	1	0	1	0	1	0	0
0	1	0	0	0	1	0	1 1 0 0 0 0 0

and simplify with

$$\stackrel{operations}{\longmapsto} \begin{bmatrix} T - loop & * \\ 0 & Line - shape \end{bmatrix}$$

$$\stackrel{\text{seperating}}{\longmapsto} \begin{bmatrix} \textit{Knot} & * & * \\ 0 & \textit{Line} - \textit{shape} & * \\ 0 & 0 & \textit{Line} - \textit{shape} \end{bmatrix}$$

So det(M) = 0 or ± 2

(ii) Knot & Line-shape

cromwell matrix $\xrightarrow{H-deletion}$ H-deletion $\xrightarrow{seperating}$ O Line - shape So O