

Dis 1C Page 2

* Vos pushes the "cars" (charges) Ohysics — B model

(B) (1) voltage - controlled switch

(most ideal; helpful for

disital (ogto)

(2) resistor switch model (helpful when thinking about) (3) RC mode 12- Collin Consider thinking

transients J. Valtage-controlled Switch

D. Just Vas Was Vas

1 m / 1 - 1 m / IDS < O always than positive current actually flowing)+++ Switch Made X Vgs 2 Vtn always.

1 out

2 Single-transistor Inverter

Consider the following single-transitor inverter, consisting of an NMOS transistor and a resistor, where for N_1 we have $0 < V_{In} < V_{DD}$.

Figure 4: Single transistor NMOS inverter

- * R1 Vant NMOS Off V35=V+1 TV20
- a) Replace the transistor ${\cal N}_1$ with a switch, the simplest model of a transistor and answer the following questions
 - (i) What is V_{out} when $V_{\text{in}} = 0$?
 - (ii) What is V_{out} when $V_{\text{in}} = V_{\text{DD}}$?
 - (iii) What is the power consumption of the circuit when $V_{\rm in}$ = 0? How about when $V_{\rm in}$ = $V_{\rm DD}$

1=0 Dy-V.1

(ii) \ in = \ DD

MMOS is of

Jin - Nou / Jant = O

1 St. Sout

(") Parer?

Vin = 0 ; P= I

 $\sqrt{\frac{1}{1}} = \sqrt{\frac{1}{1}} = \frac{1}{1}$

D P- IVD-1

V_{DD}

Figure 5: NMOS Transistor Resistor-switch model

- b) Now replace the NMOS device with a transistor model that includes an internal resistor, such as the one in the figure above.
 - (i) What is V_{out} when $V_{\text{in}} = 0$?
 - (ii) What is V_{out} when $V_{\text{in}} = V_{\text{DD}}$ in terms of R_1 and $R_{\text{on, N}}$? What is this value if $R_{\text{on, N}} = \frac{1}{10}R_1$? How much power does the circuit consume?

(i) Vin= O) VGS=0-0=0 C Vty

NMOS OFF

VoD ZRI

Volt= VDD

Volt aga divided

c) Now consider a CMOS inverter with both PMOS and CMOS devices, such as that of Figure 3. How does the performance and power consumption compare?

3 NAND Circuit

Let us consider a NAND logic gate. This circuit implements the boolean function $\overline{(A \cdot B)}$.

a) Label Nows.

 V_{tn} and V_{tp} are the threshold voltages for the NMOS and PMOS transistors, respectively Assume that $V_{DD} > V_{tn}$ and $|V_{tp}| > 0$.

a) Label the gate, source, and drain nodes for the NMOS and PMOS transistors above.

PM65 __ IDS < C

Dis 1C Page 15

