# 머신러닝

머신러닝 이해와 파이프라인

# 머신러닝 이해

## 인공지능

♥ 인공지능(Artificial Intelligence)

인간의 학습능력, 추론능력, 지각능력을 인공적으로 구현하려는 컴퓨터 과학의 분야

사람처럼 학습하고 추론할 수 있는 시스템을 만드는 기술

머신러닝과 딥러닝을 포괄하는 종합적인 분야

## 인공지능



인공지능(Artificial Intelligence)

# Artificial Intelligence

사람이 해야 할 일을 기계가 대신할 수 있는 자동화

# Machine Learning

데이터로부터 의사결정을 위한 패턴을 기계가 스로 학습

# Deep Learning

◆ 인공신경망 기반의 모델로 비정형 데이터로부터 특징 추출 및 판단까지 기계가 한번에 수행

## 머신러닝

## 맥 머신러닝(Machine Learning)



인공지능의 한 분야로 컴퓨터가 학습할 수 있도록 하는 알고리즘과 기술을 개발하는 분야임



전통적인 방식은 주어진 문제를 해결하기 위해 사람이 규칙을 프로그래밍하여 정답을 예측함



머신러닝은 데이터를 학습하여 스스로 규칙을 찾아내서 정답을 예측함

## 머신러닝

### 맥신러닝(Machine Learning)

◎ 전통적인 프로그램 예측 방식



#### <sup>♥</sup> 머신러닝의 분류

머신러닝은 학습 방식에 따라 지도 학습, 비지도 학습으로 분류

#### CLASSICAL MACHINE LEARNING



## <sup>♥</sup> 지도 학습(Supervised Learning)

모델(알고리즘)에 입력 값(특성)과 출력 값(정답)을 같이 넣어 학습시키는 방식

문듀 (Classification)

- 예측하고자 하는 정답 값이 범주형 데이터인 경우
- Binary, Multi-class, Multi-label

회귀 (Regression)

• 예측하고자 하는 정답 값이 수치형 데이터인 경우

## <sup>♥</sup> 지도 학습(Supervised Learning)

| 체질량 지수 | 가족력 | 콜레스테롤  |     | 정상여부 |
|--------|-----|--------|-----|------|
| 18.3   | 없음  | 100.7  | ••• | 정상   |
| 22.1   | 없음  | 98.7   | ••• | 정상   |
| 25.5   | 있음  | 190.9  | ••• | 비정상  |
| 17.1   | 없음  | 150.7  | ••• | 정상   |
| 28.5   | 있음  | 140.1  | ••• | 비정상  |
| 16.5   | 있음  | 111.2  | ••• | 정상   |
| 18.3   | 없음  | 190.7  | ••• | 정상   |
| 20.5   | 있음  | 190.9  | ••• | 비정상  |
| 17.3   | 없음  | 170.71 |     | 정상   |
| 18.3   | 없음  | 160.7  | ••• | 정상   |

## 🏺 비지도 학습(Unsupervised Learning)

정답이 없는 데이터를 학습하는 방식

군집화(Clustering)

• 주어진 데이터를 유사한 데이터들의 그룹으로 나누는 것

차원축소 (Dimensionality reduction)

• 고차원의 데이터를 저차원의 데이터로 변환하는 방법

# 머신러닝 학습 원리



손실을 최소화하는 방향으로 모델의 파라미터를 찾음

# 머신러닝 학습 원리



# 머신러닝 워크플로우(Workflow)

#### 데이터를 전처리하고 모델 학습 및 성능을 평가하는 과정



# 머신러닝 기초용어

- 1 Feature, 독립변수, 설명변수
  - ♦ 학습데이터의 특성
- 2 class, label, target, <del>종속</del>변수
  - ◆ 정답 데이터

| 체질량 지수 | 가족력          | 콜레스테롤 |     | 정상여부 |
|--------|--------------|-------|-----|------|
| 18.3   | 없음           | 190.7 |     | 정상   |
|        | •••          | •••   | ••• | •••  |
| 20.5   | 있음           | 101.9 | ••• | 비정상  |
|        | <del> </del> |       |     |      |

**Feature** 

Label

# 머신러닝 기초용어

3 Parameter

◆ 모델이 학습과정에서 업데이트하는 파라미터



- 4 Hyper parameter
  - ◆ 사용자가 직접 설정하는 파라미터

# 머신러닝 기초용어

- 5 Loss, <del>손</del>실
  - ◆ 정답 값과 예측 값의 오차를 표현하는 지표
- 6 Metrics, 평가지표
  - ◆ 모델의 성능을 평가할 때 사용하는 지표

# 머신러닝 파이프라인 이해

## 머신러닝 파이프라인

## <sup>®</sup> 머신러닝 파이프라인(ML Pipeline)



메신러닝 기술을 활용함에 있어서 초기 기획부터 데이터 수집·가공, 분석과 사후관리까지 일련의 전체 과정



문제 정의부터 데이터 수집, 전처리, 학습, 모델 배포, 모니터링까지 전 과정을 순차적으로 처리하도록 설계된 머신러닝 아키텍처

## 머신러닝 파이프라인

- <sup>®</sup> 머신러닝 파이프라인(ML Pipeline)
  - ◎ 파이프라인이란?

한 데이터 처리 단계의 출력이 다음 단계의 입력으로 이어지는 형태로 연결된 구조



## 문제 정의

#### 비즈니스 목적에 맞게 문제를 구체화하는 단계

머신러닝 타당성 확인 • 머신러닝 모델을 이용하여 어떠한 이익을 얻을 수 있는지 등을 파악

데이터 수집 방안 정의 • 내부데이터가 있는지에 대한 여부와 외부데이터 수집 가능 여부 등을 파악

지도학습 or 비지도 학습 • 레이블 되어 있는 데이터가 있는지에 대한 여부 등을 파악하여 학습 유형을 정의

# 문제 정의

#### 비즈니스 목적에 맞게 문제를 구체화하는 단계

회귀 or 분류

• 예측하고자 하는 타겟값에 따라 회귀인지 분류인지 정의

성능 측정 지표 선택

• 적절한 평가지표를 선택

## 데이터 수집

<sup>♥</sup> 데이터 수집(Data Collection)

주어진 문제를 해결하기 위한 데이터 수집 및 처리하는 단계

◎데이터 구조 확인



테스트 세트를 생성하기 위해 데이터 구조를 파악



학습 및 평가에 사용할 수 없는 데이터를 제거

## 데이터 수집

- 데이터 수집(Data Collection)
  - ◎테스트 세트 생성



모델 평가를 위해 테스트 세트를 생성



일반적으로 20~30% 비율의 데이터를 테스트 세트로 분리



데스트 세트에 대해서는 절대 EDA를 진행하면 안됨

# 데이터 분석, 특성 공학

● 데이터 분석(Data analysis)



# 데이터 분석, 특성 공학

## 특성 공학(Feature Engineering)



데이터 정제

이상치 제거, 결측치 처리 등 범주형 특성 인코딩 (Feature Encoding)

범주형 특성을 숫자형태로 변환 특성 스케일링 (Feature Scaling)

모든 특성의 범위를 같도록 만들어 주는 방법

# 데이터 분리, 모델 학습

<sup>⑨</sup> 데이터 분리(Data Split)

모델 평가 전에 모델의 성능을 검증하는 검증 세트 생성



# 데이터 분리, 모델 학습

- - ◎모델 선택과 훈련

다양한 머신러닝 모델을 활용하여 학습을 진행

◎ 검증 세트를 이용하여 모델 평가



학습된 모델이 좋은 성능을 보일 수 있는지를 검증

## 모델 평가, 모델 배포, 모니터링

모델 평가 (Model Evaluation)

- 테스트 세트를 이용하여 모델 평가
- 테스트 세트에 대한 평가가 좋지 못하면 이전 단계들로 돌아감

모델 배포 (Model Serving)

- 학습된 모델을 시스템에 적용
- REST API를 통해 질의할 수 있는 전용 웹 서비스 등에 학습된 모델을 배포

모니터링 (Monitoring)

- 모델 실전 성능 모니터링
- 모델 성능이 감소하는 상황이 감지되면 이전 단계들로 돌아감