MAULANA AZAD NATIONAL INSTITUTE OF TECHNOLOGY DEPARTMENT OF PHYSICS

EXAMINATION: End-Term Examination

MONTH & YEAR: December, 2024

Course: B.Tech. Time: 2 hr. Note: Attempt all questions Semester: I Subject: Physics Subject Code: PH Max. Marks: 40			2
Q. No.	Questions	Marks	COs
1. a.	Derive an expression for the intensity distribution in the Fraunhofer diffraction pattern produced by a single slit. Discuss the conditions for principal maxima and minima.	5	CO5
) (Explain the missing order in double slit diffraction pattern. Deduce the missing orders for a double slit Fraunhoffer diffraction pattern, if the slit widths are 0.16 mm and they are 0.8 mm apart.	3	CO3
2. a.	An electron is moving in a one-dimensional box of width $a = 1$ Å. If the wave	4	CO4
	function of the first excited state $\psi(x) = \sqrt{\frac{2}{a}} Sin\left(\frac{2\pi x}{a}\right)$, then determine the		
	probability of locating an electron between $x = 0$ to $x = 0.5$ Å in that quantum state.		
b.	Establish the relationship between the phase velocity and group velocity in a dispersive medium.	3	CO2
c.	Explain whether the wave functions $\Psi(x) = Atan(x)$ is allowed to describe the quantum behaviour of a particle or not.	1	CO2
3. a.	Using the Fermi-Dirac distribution function find the temperature at which there is 1% probability that a state with energy 2 eV is occupied. Given that Fermi energy is 1.5 eV. $(k_B = 8.61 \times 10^{-5} \text{ eV})$	3	CO4
b.	Briefly mention the principle of operation of a photocell.	2	CO1
c/	The current gain of an n - p - n transistor working in CB mode is 0.98. If the emitter current is 2 mA and the reverse saturation current (leakage current) is 10μ A, calculate the base current and the collector current.	3	CO5
4. a.	A cyclotron with its dees of radius 2 m has a magnetic field of 0.75 Wb/m^2 , calculate the maximum energies to which a Proton can be accelerated. (Given: Mass of Proton = $1.67 \times 10^{-27} \text{ kg}$, Charge on Proton = $1.6 \times 10^{-19} \text{ C}$)	3	CO3
b.	Elaborate the construction and working of the Bainbridge mass spectrograph.	4	CO2
c.	What is the role of the time-varying magnetic field in the Betatron?	1	CO2
5 a	Illustrate the working principle of a He-Ne laser with a labeled diagram.	3	CO1
b .	A spaceship is moving at a speed of $0.8c$ relative to an observer on Earth. If 1 hour passes on the spaceship, calculate how much time has passed on Earth. $(c = 3 \times 10^8 \text{ m/s})$	3	CO5
To a c	State and derive Bethe's Law. How is it analogous to Snell's law?	2	CO1