

- Zufallsvariable
- 2. Dichte und Zähldichte
- 3. Verteilungsfunktion
- 4. Transformation und Simulation von Zufallsvariablen
- 5. Erwartungswert
- 6. Varianz
- 7. Ungleichungen von Markov und Tschebyscheff

Mathe III

- 1. Zufallsvariable
- 2. Dichte und Zähldichte
- 3. Verteilungsfunktion
- 4. Transformation und Simulation von Zufallsvariablen
- 5. Erwartungswert
- 6. Varianz
- 7. Ungleichungen von Markov und Tschebyscheff

Mathe III

7ufallsvariablen

- In der Praxis sind wir oft nicht an allen Details des Experiments interessiert, sondern nur dem numerischen Wert einer Messgröße.
- **Beispiel (Zwei Würfel)**. Wir werfen zwei faire Würfel und zählen die Summe der beiden Zahlen. Welche Verteilung hat die Summe *X*?

$$P_X(X=2) = P_{\text{naive}}(\{(1,1)\}) = \frac{1}{36}$$

$$P_X(X=3) = P_{\text{naive}}(\{(1,2),(2,1)\}) = \frac{2}{36}$$

$$P_X(X=4) = P_{\text{naive}}(\{(1,3),(2,2),(3,1)\}) = \frac{3}{36}$$

$$P_X(X=5) = P_{\text{naive}}(\{(1,4),(2,3),(3,2),(4,1)\}) = \frac{4}{36}$$

$$P_X(X=6) = P_{\text{naive}}(\{(1,5),(2,4),(3,3),(4,2),(5,1)\}) = \frac{5}{36}$$

$$P_X(X=7) = P_{\text{naive}}(\{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}) = \frac{6}{36}$$

$$P_X(X=8) = P_{\text{naive}}(\{(2,6), (3,5), (4,4), (5,3), (6,2)\}) = \frac{5}{36}$$

$$P_X(X=9) = P_{\text{naive}}(\{(3,6),(4,5),(5,4),(6,3)\}) = \frac{4}{36}$$

$$P_X(X = 10) = P_{\text{naive}}(\{(4,6), (5,5), (6,4)\}) = \frac{3}{36}$$

$$P_X(X = 11) = P_{\text{naive}}(\{(5,6), (6,5)\}) = \frac{2}{36}$$

$$P_X(X = 12) = P_{\text{naive}}(\{(6,6)\}) = \frac{1}{36}$$

Mathe III

Zufallsvariablen

Was ist hier passiert?

Summe

$$\Omega_1 = \{1,2,3,4,5,6\}^2$$

$$\Omega_2 = \{2,3,4,5,6,7,8,9,10,11,12\} \subset \mathbb{N}$$

$$\omega = (n_1, n_2) \in \Omega_1 \qquad \qquad X: \Omega_1 \to \Omega_2$$

$$X(\omega) = n_1 + n_2$$

$$X^{-1}(i) = \{(n_1, n_2) \mid n_1 + n_2 = i\} \qquad i \in \Omega_2$$

$$P_{\text{naive}}(\omega) = \frac{1}{36}$$

$$P_X(X=i) = P_{\text{naive}}(X^{-1}(i))$$

Mathe III

Zufallsvariablen: Formal

- **Definition (Zufallsvariable)**. Gegeben einen Ereignisraum $(\Omega_1, \mathcal{F}_1)$ und einen Ereignisraum $(\Omega_2, \mathcal{F}_2)$. Wir nennen die Funktion $X: \Omega_1 \to \Omega_2$ eine Zufallsvariable, wenn für jedes Ereignis $A \in \mathcal{F}_2$ gilt, dass $X^{-1}(A) \in \mathcal{F}_1$, d.h. wenn X messbar ist.
- **Definition (Diskrete und Reelle Zufallsvariable)**. Wenn Ω_2 endlich oder abzählbar unendlich ist, so bezeichnen wir X als diskrete Zufallsvariable. Wenn $\Omega_2 = \mathbb{R}$, so bezeichnen wir X als stetige oder reelle Zufallsvariable.
- **Definition (Verteilung von Zufallsvariablen)**. Gegeben ein Wahrscheinlichkeitsraum (Ω, \mathcal{F}, P) und ein Ereignisraum $(\Omega_X, \mathcal{F}_X)$ sowie eine Zufallsvariable $X: \Omega \to \Omega_X$. Dann ist die Wahrscheinlichkeitsverteilung P_X

$$P_X(A) = P(X^{-1}(A))$$
 für alle $A \in \mathcal{F}_X$

■ **Bemerkung (Zufallsvariablen)**. Die Verteilung P_X ist eindeutig und wird Verteilung von X genannt. Wir schreiben hierfür auch kurz $X \sim P_X$. Zusammen mit $(\Omega_X, \mathcal{F}_X)$ bildet P_X einen Wahrscheinlichkeitsraum $(\Omega_X, \mathcal{F}_X, P_X)$.

Mathe III

Verteilung von Zufallsvariablen

- **Bemerkungen (Notation)**. Gegeben zwei Wahrscheinlichkeitsräume (Ω, \mathcal{F}, P) und $(\Omega_X, \mathcal{F}_X, P_X)$ mit einer Zufallsvariable $X: \Omega \to \Omega_X$.
 - □ Für ein Ereignis $A \in \mathcal{F}_X$ schreiben wir statt $P_X(A)$ oder $P(X^{-1}(A))$ auch $P(X \in A)$.
 - Für ein Ergebnis $\omega \in \Omega_X$ schreiben wir statt $P_X(\{\omega\})$ oder $P(X^{-1}(\{\omega\}))$ auch $P(X = \omega)$.
 - Ist X eine reelle Zufallsvariable, schreiben wir statt $P_X((-\infty, c])$ oder $P(X^{-1}((-\infty, c]))$ auch kurz $P(X \le c)$.
 - □ Analoge Schreibweisen lassen sich für \neq , <, \geq und > definieren.
 - Ebenso möglich ist die Anwendung logischer Operatoren.

Mathe III

Identisch verteilte Zufallsvariablen

- **Definition (Identisch verteilte Zufallsvariablen)**. Sei (Ω, \mathcal{F}) ein Ereignisraum, in welchen zwei Zufallsvariablen X und Y mit der jeweiligen Verteilung P_X und P_Y abbilden. Gilt $P_X = P_Y$, so nennen wir X und Y identisch verteilt. Wir schreiben hierfür auch kurz $X \sim Y$.
- Bemerkungen (Identisch verteilte Zufallsvariablen)
 - Identisch verteilt bedeutet nicht dasselbe wie gleichverteilt.
 - Wenn für Zufallsvariablen X und Y gilt X = Y, so gilt $X \sim Y$. Die Umkehrung gilt nicht!
 - Beispiel (Identisch verteilte Zufallsvariablen). Sei X eine Zufallsvariable, welche bei zweifachem Münzwurf die Anzahl der Münzen zählt, die Zahl zeigen. Sei analog dazu Y eine Zufallsvariable, welche die Anzahl der Münzen zählt, die Kopf zeigen.

$$P(X = 0) = P(\{(Kopf, Kopf)\}) = \frac{1}{4}$$

$$P(X = 1) = P(\{(Kopf, Zahl), (Zahl, Kopf)\}) = \frac{1}{2}$$

$$P(Y = 0) = P(\{(Zahl, Zahl)\}) = \frac{1}{4}$$

$$P(Y = 1) = P(\{(Kopf, Zahl), (Zahl, Kopf)\}) = \frac{1}{2}$$

$$P(Y = 2) = P(\{(Kopf, Kopf)\}) = \frac{1}{4}$$

- Gleichzeitig gilt X((Kopf, Kopf)) = 0 und Y((Kopf, Kopf)) = 2 und folglich $X \neq Y$.

Mathe III

- Zufallsvariable
- 2. Dichte und Zähldichte
- 3. Verteilungsfunktion
- 4. Transformation und Simulation von Zufallsvariablen
- 5. Erwartungswert
- 6. Varianz
- 7. Ungleichungen von Markov und Tschebyscheff

Mathe III

Zähldichte (Diskrete Zufallsvariablen)

- **Definition (Zähldichte)**. Für eine diskrete Ergebnismenge Ω bezeichnen wir eine Funktion $p: \Omega \to [0,1]$ mit $\sum_{\omega \in \Omega} p(\omega) = 1$ (d.h. p ist normiert) als Zähldichte von Ω . Die Zähldichte wird auch Gewichtung genannt.
 - Beispiel (Zähldichte). Für einen fairen Würfel mit $\Omega = \{1, 2, 3, 4, 5, 6\}$ ist die Funktion $p: \Omega \to [0, 1], \omega \mapsto \frac{1}{6}$ eine Zähldichte.
 - Beispiel (Zähldichte). Für eine Münze mit $\Omega = \{\text{Kopf, Zahl}\}\$ ist die Funktion $p: \Omega \to [0,1], ω \mapsto \frac{1}{3}$ keine Zähldichte. Warum?
 - Da sie nicht normiert ist.
 - Beispiel (Zähldichte). Für eine Münze mit $Ω = {Kopf, Zahl}$ ist die Funktion p: Ω → [0, 1] mit p(Kopf) = 2 und p(Zahl) = -1 keine Zähldichte. Warum?
 - Da sie zwar normiert ist p(Kopf) + p(Zahl) = 1, allerdings Werte außerhalb des Wertebereiches [0,1] annimmt.

Mathe III

Diskrete und stetige Zufallsversuche

- Beispiel (Diskrete und stetige Wahrscheinlichkeitsräume)
 - Wir betrachten die Augenzahl beim Wurf eines Würfels.
 - Diskreter Wahrscheinlichkeitsraum ($|\Omega| = 6$)
 - Wir messen die Körpergröße einer zufällig gewählten Person im Raum.
 - Stetiger Wahrscheinlichkeitsraum ($\Omega = \mathbb{R}_+$)
 - Wir zählen die Anzahl von Münzen in einem Brunnen zu einem zufällig gewählten Zeitpunkt.
 - Diskreter Wahrscheinlichkeitsraum ($\Omega = \mathbb{N}$)
- Angenommen, wir suchen eine Person, welche exakt 180cm groß ist. Aber selbst bei vielfacher Wiederholung werden wir keine Person finden, die exakt 180cm groß ist. Warum?
- Satz (Wahrscheinlichkeit von Einzelergebnissen im stetigen Raum). In einem stetigen Wahrscheinlichkeitsraum (\mathbb{R} , \mathcal{F} , P) gilt für alle $\omega \in \mathbb{R}$, dass $P(\{\omega\}) = 0$.

Mathe III

Paradox

■ Folgt hier aus der Additivität von *P*, dass

$$0 = \sum_{\omega \in \mathbb{R}} P(\{\omega\}) = P\left(\bigcup_{\omega \in \mathbb{R}} \{\omega\}\right) = P(\Omega) = 1?$$

überabzählbar unendlich!

- Nein, da die Additivität nur eine Aussage über die **abzählbare** Vereinigung trifft (σ -Additivität)
- Aber welche Ergebnisse sind dann messbar?
 - Da die Wahrscheinlichkeit von Einzelergebnissen stets 0 ist, ist die Betrachtung der vollständigen Potenzmenge als Ereignissystem nicht möglich.
 - Stattdessen wird als Ereignissystem in der Regel die sogenannte **Borelalgebra** $\mathcal{B}(\mathbb{R})$ genutzt.
 - Ereignissystem, welches durch die folgende Ergebnismenge gegeben ist $\{(a,b] \mid a,b \in \mathbb{R}, a \neq b\}$
 - Für uns reicht es zu wissen, dass wir bei stetigen Zufallsversuchen $\mathcal{B}(\mathbb{R})$ verwenden, und dass $\mathcal{B}(\mathbb{R})$ "praktisch alle" Teilmengen von Ω enthält.

Émile Borel (1871 – 1956)

Mathe III

Dichte (Reelle Zufallsvariablen)

■ **Definition (Dichte)**. Für eine stetige Ergebnismenge \mathbb{R} bezeichnen wir eine Funktion $p: \Omega \to [0, \infty)$ mit $\int_{\Omega} p(x) \, dx = 1$ (d.h. p ist normiert) als Dichte von Ω . Eine Dichte p eines stetigen Ergebnisraumes $(\Omega, \mathcal{B}(\Omega))$ induziert genau eine Wahrscheinlichkeitsverteilung P mit

$$\forall A \in \mathcal{B}(\Omega): \quad P(A) = \int_{A} p(x) \, dx$$

Beispiel (Dichte). Betrachte den Ausrichtungswinkel eines Glücksrades mit $\Omega = [0, 2\pi]$ und die Funktion $p: \Omega \to [0, \infty)$, $\omega \mapsto \frac{1}{2\pi}$. Ist dies eine Dichte?

$$\int_0^{2\pi} p(x) dx = \frac{x}{2\pi} \Big|_0^{2\pi} = \frac{2\pi}{2\pi} - \frac{0}{2\pi} = 1$$

Beispiel (Dichte). Betrachte nun das Ereignis $A = \left[\pi, \frac{3}{2}\pi\right] \subseteq \Omega$, dass das Glücksrad im dritten Viertel stoppt, gegeben die Dichte p. Wie groß ist die Wahrscheinlichkeit?

$$P(A) = \int_{A} p(x) dx = \int_{\pi}^{\frac{3}{2}\pi} \frac{1}{2\pi} dx = \frac{x}{2\pi} \Big|_{\pi}^{\frac{3}{2}\pi} = \frac{\frac{3}{2}\pi}{2\pi} - \frac{\pi}{2\pi} = \frac{3}{4} - \frac{1}{2} = \frac{1}{4}$$

Mathe III

- Zufallsvariable
- 2. Dichte und Zähldichte
- 3. Verteilungsfunktion
- 4. Transformation und Simulation von Zufallsvariablen
- 5. Erwartungswert
- 6. Varianz
- 7. Ungleichungen von Markov und Tschebyscheff

Mathe III

Kumulative Verteilungsfunktion

■ **Definition (Kumulative Verteilungsfunktion)**. Für den stetigen Wahrscheinlichkeitsraum (\mathbb{R} , \mathcal{B} (\mathbb{R}), P) bezeichnen wir die Funktion

$$F(c) \coloneqq P((-\infty, c])$$

als die kumulative Verteilungsfunktion von P. Besitzt die Verteilung eine Dichte p, so gilt für alle $c \in \mathbb{R}$, dass

$$F(c) = \int_{-\infty}^{c} p(x) \ dx$$

Besitzt die Verteilung eine Zähldichte p, so gilt für alle $c \in \mathbb{R}$, dass

$$F(c) = \sum_{\omega \le c} p(\omega)$$

- Bemerkungen (Eigenschaften der kumulativen Verteilungsfunktionen)
 - Jede Wahrscheinlichkeitsverteilung P hat eine kumulative Verteilungsfunktion.
 - Für jede kumulative Verteilungsfunktion F gilt: $\lim_{c \to -\infty} F(c) = 0$ sowie $\lim_{c \to \infty} F(c) = 1$.
 - Jede kumulative Verteilungsfunktion ist monoton wachsend und rechtsstetig.

Mathe III

Kumulative Verteilungsfunktion

Beispiel (Kumulative Verteilungsfunktion für diskrete Zufallsräume).

Betrachte den Wurf eines fairen Würfels mit Zähldichte

$$p(\omega) = \begin{cases} \frac{1}{6} & \omega \in \{1,2,3,4,5,6\} \\ 0 & \text{sonst} \end{cases}$$

Was ist F(1), F(3), F(3.48), F(400) und F(-12.7)?

$$F(1) = \frac{1}{6}$$

$$F(3) = \frac{3}{6}$$

$$F(3.48) = \frac{3}{6}$$

$$F(400) = 1$$

$$F(-12.7) = 0$$

Mathe III

Kumulative Verteilungsfunktion

Beispiel (Kumulative Verteilungsfunktion für stetige Zufallsräume).

Betrachte den Ausrichtungswinkel eines Glücksrades mit Dichte

$$p(\omega) = \begin{cases} \frac{1}{2\pi} & \omega \in [0, 2\pi] \\ 0 & \text{sonst} \end{cases}$$
 1.00

Was ist $F(\pi)$, $F(\frac{\pi}{4})$, F(400) und F(-12.7)?

$$F(\pi) = \int_0^{\pi} \frac{1}{2\pi} dx = \frac{1}{2}$$

$$F\left(\frac{\pi}{4}\right) = \int_0^{\pi} \frac{1}{2\pi} dx = \frac{1}{8}$$

$$F(400) = \int_0^{2\pi} \frac{1}{2\pi} dx = 1$$

$$F(-12.7) = \int_{-\infty}^{70} 10 \, dx = 0$$

Mathe III

Kumulative Verteilungsfunktionen und Dichten

Beobachtung: Für eine Dichte p auf einem Ereignisraum $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ können wir eine eindeutige Wahrscheinlichkeitsverteilung P und somit auch eine eindeutige kumulative Verteilungsfunktion F ermitteln:

$$F(c) = P((-\infty, c]) = \int_{-\infty}^{c} p(x) dx$$

- **Frage:** Wie können wir umgekehrt eine Dichte p aus einer kumulativen Verteilungsfunktion F bestimmen?
 - Durch Ableiten, denn per Definition

$$dF(x) = p(x) dx \Leftrightarrow p(x) = \frac{d}{dx}F(x)$$

- Bemerkungen (Dichtefunktion aus kumulativer Verteilungsfunktion)
 - Die Ableitung von F liefert uns eine mögliche Dichtefunktion p. Es gibt allerdings mehr als eine Dichtefunktion, welche F beschreibt.
 - Die Verteilung besitzt eine Dichtefunktion genau dann, wenn F stetig ist und an höchstens abzählbar vielen Stellen nicht ableitbar ist.

Mathe III

Viel Spaß bis zur nächsten Vorlesung!