Midterm Cheat Sheet

Daxiang Na (那达翔)

2022-11-01

Contents

1	Type I and Type II Error, calculating power:	1
2	Distributions	2

1 Type I and Type II Error, calculating power:

2 Distributions

X	X Counts	p(x)	Values of X	E(x)	V(x)
Discrete uniform	Outcomes that are equally likely (finite)	$\frac{1}{b-a+1}$	$a \le x \le b$	b+a 2	(b-a+2)(b-a) 12
Binomial	Number of sucesses in n fixed trials	$\binom{n}{x} p^x (1-p)^n$	-x x = 0,1,,n	np	np(1-p)
Poisson	Number of arrivals in a fixed time period	$\frac{e^{-\lambda}\lambda^{x}}{x!}$	x = 0,1,2,	λ	λ
Geometric	Number of trials up through 1st success	(1-p) ^{x-1} p	x = 1,2,3,	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Negative Binomial	Number of trials up through kth success	$\begin{pmatrix} x-1 \\ k-1 \end{pmatrix} (1-p)^{x-1}$	^k p ^k x = k, k + 1,	. <u>k</u>	$\frac{k(1-p)}{p^2}$
Hyper - geometric	Number of marked individuals in sample taken without replacement	$\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}}$	max (0,M + n − N ≤ x ≤ min (M,n)	n*-	nM(N-M)(N-n) N ² (N-1)

×	X Measures	f(x)	Values of X	E(x)	V(x)
Continuous uniform	Outcomes with equal density (continuous)	$\frac{1}{b-a}$	a≤x≤b	b+a 2	$\frac{(b-a)^2}{12}$
Exponential	Time between events; time until an event	λe ^{-λx}	x ≥ 0	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Normal	Values with a bell-shaped distribution (continuous)	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	-∞< χ <∞	μ	σ
Standard normal (Z)	Standard scores	$\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}z^2}$	$Z = \frac{x - \mu}{\sigma}$	0	1
Binomial approximatio	Number of successes in large number of trials	Approx. normal if np ≥ 5 and n(1-p) ≥ 5 by CLT	$Z = \frac{x - np}{\sqrt{np(1-p)}}$	np	np(1-p)
Poisson approximatio	Number of occurrences in a fixed time period (large average)	Approx. normal if λ > 30	$z = \frac{x - \lambda}{\sqrt{\lambda}}$	λ	λ
x	Average of x ₁ , x ₂ ,,x _n	Exactly normal if x is normal. Approx. normal if n ≥ 30 by CLT	$Z = \frac{\bar{x} - \mu_x}{\sigma_x / \sqrt{n}}$	μ_{x}	$\frac{\sigma_{\rm x}^2}{{\sf n}}$
ĝ	Proportion or percentage of successes in binomial with np ≥ 5, n(1−p) ≥ 5	Approx. normal if np ≥ 5 and n(1-p) ≥ 5 by CLT	$Z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}}$	р	<u>p(1-p)</u>