ChipFiles

19 February 2018

This is the process for the production of MicroChip PIC chipfiles for Great Cow BASIC.

The outcome of this process is a microcontroller specific DAT file. These files are located in the chipfiles folder of the Great Cow BASIC installation.

A microcontroller specific DAT file is required for every microcontroller that Great Cow BASIC supports. The microcontroller specific DAT file contains information with respect registers, register bits, configuration options, memory, interrupts and microcontroller specific constraints (if any). This microcontroller specific DAT file is for Great Cow BASIC only - this is a good resource but the microcontroller specific DAT file should not be manually edited.

All issues with respect to the microcontroller specific DAT file should be report via the forum.

This document will explain how we produce these microcontroller specific DAT file.

Tools

- 1. MPLAB-X IDE we will be using component of the MPASMX sub-directory. Great Cow BASIC uses *.INC files as the primary data source for microcontroller configuration.
- PreProcess.BAT- the first part of the Great Cow BASIC conversion process. This uses GAWK.EXE an Open Source application. PreProcessIncFile.bat is used for the first step of the conversion . The associated source script file is PreProcessIncFile.awk. PreProcessIncFile.awk is the script that is completes the conversion.
- 3. GETCHIPDATA.EXE a Great Cow BASIC specific application for conversion.
- 4. Chipdata.cvs a Great Cow BASIC specific data source. This file contains critical data with respect to microcontroller specific data.
- 5. CriticalChanges.txt a Great Cow BASIC specific data source. This file contains critical date with respect to microcontroller specific data. This file contains corrections to known bugs in the INC source files and how to correct them.

Usage:

- Update the source INC file from the latest MPLAN-X installation by copying the file from the source folder to the Incfiles \original folder
 - Copy C:\Program Files (x86)\Microchip\MPLABX\v4\mpasmx\p1*.inc [target]DAT\incfiles\OrgFiles Execute PreProcess.bat. This will update or create the inc files in the [target]DAT\incfiles folder.
- 2.
- 3. Update CriticalChanges.txt for any known corrections.
- Update the Chipdata.cvs file with the correct chip data
- Execute getchipdata.exe > chipfiles/outputlog.txt
- 6. Copy to chipfiles to distribution
- Undate SVN:DAT

Adaption details in Chipdata.cvs

PWMTimerVariant can be set to 0, 1 or 2

Values will be set in the .dat using the following rule.

Search for CCPTMRS and examine.

PWMTimerVariant = 1. When CCPTMRS or CCPTMRSX has PTxSEL a value of 0x00 =Timer 2 and

The Default (no value present). When PTxSEL as value=0x01 = Timer2 and PTxSEL=0x00 to be reserved, OR, this register /bit combination is not present. Which is the general case.

PIC16F1614 PWMTimerVariant = 1 Where timer2,4,6 = 0,1,2

PIC18(L)F27/47K40 PWMTimerVariant = 2 Where timer 2,4,6 = 1,2,3

PIC16(L)F19156 PWMTimerVariant Where timer2,4=1,2 Datasheet is wrong?

Data File format

'GCBASIC/GCGB Chip Data File

'Chip: 16F819

'Main Format last revised: 14/07/2017 'Header Format last revised: 28/03/2019

[ChipData] Prog=2048 EEPROM=256 RAM=256 I/O=16 ADC=5 MaxMHz=20

IntOsc=8, 4, 2, 1, 0.5, 0.25, 0.125

Pins=18 Family=14 ConfigWords=1 PSP=0

MaxAddress=511

'Microcontroller specific configuration to create variants. Parameters used with specific libraries, the compiler or user programs. All sourced from chip data

'Used within user programs

Stacks=8

'Used within user programs UserIDAddress=8192 UserIDLength=4

[Interrupts] ADCReady:ADIE,ADIF CCP1:CCP1IE,CCP1IF EEPROMReady:EEIE,EEIF

[Registers] INDF,0 TMR0.1 PCL.2 STATUS.3

[Bits] TMR1IF,PIR1,0 TMR2IF,PIR1,1

[FreeRAM] 20:7F A0:EF 120:16F

[NoBankRAM] 70:7F

[Pins-DIP]

[ConfigOps] OSC=LP,XT,HS,EC,EXTCLK,INTOSCIO,INTRC IO,INTOSCC LK,INTRC_CLKOUT,EXTRCIO,EXTRC_IO,EXTRCCLK,EXTRC _CLKOUT WDTE=OFF,ON

[Config] FOSC_LP,1,16364 LP_OSC,1,16364 FOSC_XT,1,16365

SMTClockSourceVariant can be set to 1, 2 or 3.

Values will be set in the .dat the following rule applies for SMTxCLK

ConfigBaseLoc to be set in the .dat the following rule applies:

Value are specific to the microcontroller and may need to be calculated.

Search for 'memory map' and examine if the CONFIG words are at 300000h

Applies to 18f only and it is calculated at the last location for the config memory address minus 15

An example, 18F67J50 the last location is 0x1FFFF, so the ConfigBaseLoc is 0x1FFFF - 15 = 0x1FFF0

Default location for an 18F is from 0x300000.

OSCCON TABLE for IntOSCOONFormat =1

Default OSCCON table - for comparison

5.6 Oscillator Control Registers

IntOSCCONFormat to be set in the .dat the following rule applies:

Values are 1. The default is empty.

Search for HFIOFS bit

Applies to PIC only.

Examples are PIC10F322 and PIC18F13K22. This is required to ensure the clock oscilla correctly. This chip will have HFIOFS bit. The OSSCON bits for IRCFx are different for sp. The IntOSCCONFormat enables system.h to set the correct frequency bits.

IntOSCCONFormat = 1 111 = 111 16 Mhz 110 = 110 8 Mhz

> ... 000 = 0 31 kHz

| 4.5 | Register Definitions: Oscillator Control
| University | Responsible | Register |

IntOSCCONFormat = 2... there is **NO PLL** on these chips. 12f1501, 16f1503...9. Only 5 chips... Similar to Default OSCCON but the Chipdata file would fail to set correct frequencies as PLL is not present

OSCCON TABLE for IntOSCOONFormat =2

,	Oscillator Control Regist
	TER 5-1: OSOCON: OSCI
	0 RW00 RW-1/1

IntOSCCONFormat = 2... there is **NO PLL** on these chips. 12f1501, 16f1503...9. Only 5 chips... Similar to Default OSCCON but the Chipdata file would fail to set correct frequencies as PLL is not present

```
1111 = 16 Mhz
1110 = 110 8 Mhz
```

ReadAD10BitForceVariant to be set in the .dat following rule applies: Values are divisor that will shift the value READAD10, a word, by a number of bits.

Applies to improve support for 12bit ADCs force a return of 10bit values. Add ChipReadAD10BitForceVariant to the chip file where ChipReadAD10BitForceVariant is the divisor for the max value returned.

The is typically needed where the chip does not have the ADRMD bit as the . As the ADRMD bit will resolve the 10 bit issue, but, for those without ADRMD you need **ReadAD10BitForceVariant**:

```
;set AD Result Mode to 10-Bit
#IFDEF Bit(ADRMD) ;Added for 16F178x
#IFDEF Bit(ADRMD). set AD Result Mode to 10-Bit. @DebugADC_H
NOP 'HIFDEF Bit(ADRMD). set AD Result Mode to 10-Bit. @DebugADC_H
#ENDIF

SET ADRMD ON ; WMR
#ENDIF

Or

#IFDEF ChipReadAD10BitForceVariant
    'Shift the data to 10bits when a 12bit ADC is returned and ADRMD is not valid
IF ADN_PORT <> 0 then
    READAD10 = READAD10/ChipReadAD10BitForceVariant
END IF
#ENDIF
```

TIMERXCLOCKSOURCESVARIANT to be set in the DAT the following rule applies: The FOSC/4 clock source in T2CLKCON, T4CLKCON or T6CLKCON equates to 0b0000000

The general rule for chip FOSC/4 clock source in T2CLKCON, T4CLKCON or T6CLKCON equates to 0b0000001

This information is used in PWM.H to set the clock source for the CCP/PWM

17.3 Register Definitions: ADC Control

REGISTER 17-1: ADCON0: ADC CONTROL REGISTER 0

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
ADRMD			CHS<4:0>			GO/DONE	ADON
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bi	t	U = Unimpleme	ented bit, read a	s '0'	
u = Bit is unchan	ged	x = Bit is unkno	wn	-n/n = Value at	POR and BOR/	Value at all other I	Resets
'1' = Bit is set		'0' = Bit is clear	ed				
bit 7	ADRMD: ADO	Result Mode bit			_		
		and ADRESH pri					
		and ADRESH pri	ovide data form	atted for a 12-bit i	result		
	See Figure 17	'-3 for details					
bit 6-2		ositive Differential					
	11111 = FVF	R (Fixed Voltage R	teference) Buff	er 1 Output ⁽³⁾			
	11110 = DA	C output ⁽²⁾					

CLOCK Source table for **TIMERXCLOCKSOURCESVARIANT = 1**This example is **16F199** family

R/W-0/0 R/W-0/0

REGISTER 23-1: Txclkcon: TIMERx clock selection register U-0 U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0

_	_	-	_	CS<3:0>
bit 7		•	•	bit (
Legend:				
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set		'0' = Bit is dea	ared	

bit 3-0 CS<3:0>: Timerx Clock Selection bit

TABLE 23-3: TIMERX CLOCK SOURCES

CS<3:0>	Timer2	Timer4	Timer6	
1101-1111	Reserved	Reserved	Reserved	
1011	AT1_perclk	AT1_perclk	AT1_perclk	
1010	LC4_out	LC4_out	LC4_out	
1001	LC3_out	LC3_out	LC3_out	
1000	LC2_out	LC2_out	LC2_out	
0111	LC1_out	LC1_out	LC1_out	
0110	Pin selected by T2INPPS	Pin selected by T2INPPS	Pin selected by T2INPPS	
0101	MFINTOSC 31.25 kHz	MFINTOSC 31.25 kHz	MFINTOSC 31.25 kHz	
0100	ZCD1_output	ZCD1_output	ZCD1_output	
0011	LFINTOSC	LFINTOSC	LFINTOSC	
0010	HFINTOSC 16 MHz	HFINTOSC 16 MHz	HFINTOSC 16 MHz	
0001	Fosc	Fosc	Fosc	
0000	Fosc/4	Fosc/4	Fosc/4	

Values of the Family value in the chip data files:

Family	Chips in family
12	PIC baseline chips - Most 10F, and 12F5* and 16F5* chips. (Those with 12 bit

	instructions)
14	PIC midrange chips - 10F3* chips, and any 12F and 16F chips other than F1* or F5* chips. (Those with 14 bit instructions)
15	PIC enhanced midrange chips - 12F1* and 16F1* chips. (Those with 14 bit instructions, but with the extra instructions and extra FSR register)
16	PIC high end chips - 18F (16 bit instruction width)
100	AVR - 90s1200, tiny11, tiny12, tiny15
110	AVR - tiny22, some 90s* parts.
120	Most AVR chips
120 Subtype: 121	120 Subtype: 121 AVR core version AVR8L, also called AVRrc, reduced core class microcontrollers. ATTiny4-5-9-10 and ATTiny102-104 with only 16 GPR's from r16-r31 and only 54 instructions.
120 Subtype: 122	LGT microcontrollers.
120 Subtype: 123	AVR core version V2E class microcontrollers with one USART like the mega32u4, mega16u4 - they have different registers for the usart.
121	Tiny4-5-9-10 and tiny102-104. Only 16 GPR's from r16-r31 and only 54 instructions.
130	AVR - mega32u6

The family is defined by GCB for the PIC chips, and is from the AVR Studio files for AVR. For each family, there is a core file specifying the instructions found on these chips and the binary equivalents. The core file is used by GCASM when assembling the program.

FamilyVariant is to handle chips that have added instructions and need different treatment in the assembler. It is used for 3 PIC families where some chips have added instructions not found in most. The default value is 0, but it can be set to anything else.

Family	FamilyVariant values
12	0: Default 1: Newer chips (16F527, 16F570) which have movlb, return and retfie instructions.
14	Not used
15	0: Default 1: Chips with more RAM that have an extra bit for the bank in the movlb instruction (6 bits rather than 5)
16	0: Default 1: Chips with more RAM (K42 and K83 series) that have a movffl instruction and 2 more bits for the address in the Ifsr instruction Controls Automatic Context Save during interrupts for K42 and K83 with MVECEN = OFF, the EEPROM base address at 0x31000
	High end core devices. 16 Bit instruction set, memory addressing architecture and an extended instruction set. Chip family 16 also have a sub chip family Constant. These constants are shown below:
	ChipFamily18FxxQ10 = 16100 ChipFamily18FxxQ43 = 16101
	ChipFamily18FxxQ41 = 16102 ChipFamily18FxxK42 = 16103
	ChipFamily18FxxK40 = 16104 ChipFamily18FxxQ40 = 16105
	ChipFamily18FxxQ84 = 16106 ChipFamily18FxxK83 = 16107
	ChipFamily18FxxQ83 = 16108
AVR	Not used, although the HardwareMult parameter has a similar role in identifying which chips have a hardware multiplier.

The NoBankRAM section in the chip data file refers to the area of microprocessor RAM that can be accessed regardless of which bank is currently selected.

Example, the 16F59 does have RAM from 0x0A to 0x1F in bank 0, but only 0x0A to 0x0F can be accessed while another bank is selected. If for example bank 3 is selected, the PIC would be working with addresses between 0x60 and 0x7F. Accessing 0x6A to 0x6F would map back to 0x0A to 0x0F, but accessing 0x70 would access location 0x70 (not 0x10).