Парочка вспомогательных утверждений

Везде далее через \mathcal{L}_X будет обозначать множество всех прямых, которые проходят через точку X.

- 1. (Лемма Соллертинского). На плоскости даны точки X и Y. Предположим, что прямые $\ell_X(t) \in \mathcal{L}_X$ и $\ell_Y(t) \in \mathcal{L}_Y$ вращаются проективно вокруг точек X и Y, соответственно. Тогда точка пересечения прямых $\ell_X(t)$ и $\ell_Y(t)$ движется проективно по некоторой конике, которая проходит через X и Y, либо по прямой (прямая получается в случае, когда $\ell_X(t)$ и $\ell_Y(t)$ проезжают прямую XY одновременно).
- 2. Докажите, что изогональный образ прямой, не проходящей через вершины треугольника— это коника, проходящая через вершины. Изогональным образом какой прямой будет являться описанная окружность?

Проективные инволюции

Инволюцией называется отображение $f: M \mapsto M$ из произвольного множетсва M в себя, при всех $x \in M$ удовлетворяющее f(f(x)) = x. Проективная инволюция — это такое отображение f из прямой/пучка прямых/коники в себя, что f — инволюция, и f — сохраняет двойные отношения.

- 3. Пусть \mathcal{P} прямая или коника. Пусть $f: \mathcal{P} \mapsto \mathcal{P}$ сохраняет двойные отношения и существуют $A, B \in \mathcal{P}$, такие что f(A) = B и f(B) = A. Докажите, что f является проективной инволюцией.
- 4. Докажите, что любая проективная инволюция на прямой ℓ это инверсия в некоторой её точке, возможно с отражением.
- 5. Докажите, что для любой инволюции f на конике $\mathcal C$ есть точка P такая, что f переводит A во вторую точку пересечения прямой PA и $\mathcal C$.

Теорема Дезарга об Инволюции

- 6. (Сильное ТДИ). Даны четыре точки A, B, C и D общего положения и прямая ℓ , не проходящая через них. Тогда существует такая проективная инволюция $f: \ell \mapsto \ell$, что если P и Q точки пересечения ℓ и произвольной коники через точки A, B, C и D, то f(P) = Q.
- 7. (ТДИ). Пусть ABCD четырехугольник вписанный в конику \mathcal{C} . Прямая ℓ пересекает прямые AB, CD, AD, BC, AC, BD в точках $X_1, X_2, Y_1, Y_2, Z_1, Z_2$ и пересекает \mathcal{C} в точках W_1 и W_2 . Тогда существует инволюция $f: \ell \mapsto \ell$, меняющая местами пары точек $X_1 \leftrightarrow X_2, Y_1 \leftrightarrow Y_2, Z_1 \leftrightarrow Z_2, W_1 \leftrightarrow W_2$.
- 8. (ТДИ для двух точек). Пусть A и B точки на конике C, прямая ℓ пересекает прямую AB в точке X и касательные к C в точках A и B в точках Y_1 и Y_2 . ℓ пересекает C в точках W_1 и W_2 . Тогда существует инволюция $f: \ell \mapsto \ell$, меняющая местами пары точек $X \leftrightarrow X$, $Y_1 \leftrightarrow Y_2$ и $W_1 \leftrightarrow W_2$.
- 9. (ТДИ для трёх точек). Пусть треугольник ABC вписан в конику \mathcal{C} . Прямая ℓ пересекает прямые AB, AC, BC в точках X_1, X_2, Y_1 и касательную к \mathcal{C} в точке A в Y_2 . ℓ пересекает \mathcal{C} в W_1 и W_2 . Тогда существует инволюция $f: \ell \mapsto \ell$, меняющая местами пары точек $X_1 \leftrightarrow X_2, Y_1 \leftrightarrow Y_2$ и $W_1 \leftrightarrow W_2$.

Как и у любого проективного утверждения у ТДИ так же есть двойственная версия.

10. (Двойственная ТДИ). Пусть P точка и ABCD четырехугольник описанный вокруг коники \mathcal{C} . Пусть $E = AB \cap CD$ и $F = AD \cap BC$. Тогда если PX и PY касательные к \mathcal{C} , то существует инволюция $f : \mathcal{L}_P \mapsto \mathcal{L}_P$, меняющая местами пары прямых $PX \leftrightarrow PY, PA \leftrightarrow PC, PB \leftrightarrow PD, PE \leftrightarrow PF$.

- 11. (Двойственная ТДИ для двух точек). Пусть A и B две точки на конике \mathcal{C} и P точка на плоскости. Если касательные к \mathcal{C} в A и B пересекаются в X и пусть PY и PZ касательные к \mathcal{C} . Тогда существует инволюция $f: \mathcal{L}_P \mapsto \mathcal{L}_P$, меняющая местами пары прямых $PY \leftrightarrow PZ$, $PX \leftrightarrow PX$, $PA \leftrightarrow PB$.
- 12. (Двойственная ТДИ для трёх точек). Пусть ABC треугольник со вписанной коникой \mathcal{C} , которая касается BC в точке D. Пусть P точка на плоскости. PX и PY касательные из P к \mathcal{C} . Тогда существует инволюция $f: \mathcal{L}_P \mapsto \mathcal{L}_P$, меняющая местами пары прямых $PA \leftrightarrow PD$, $PX \leftrightarrow PY$, $PB \leftrightarrow PC$.

Упражнения

- 13. Дан треугольник $\triangle ABC$, точка P на плоскости и прямая γ , проходящая через P. Пусть A', B', C' точки в которых отражения прямых PA, PB, PC относительно γ пересекают прямые BC, AC, AB соответственно. Докажите, что A', B' и C' лежат на одной прямой.
- 14. Пусть $AB,\ CD$ и PQ хорды окружности, которые пересекаются в точке M. Пусть $X=PQ\cap AD$ и $Y=PQ\cap BC.$ Тогда если MP=MQ, то MX=MY.
- 15. Даны треугольник ABC и две точки P и Q на плоскости, такие что AP и AQ изогонали относительно $\angle A$. Пусть $X=PB\cap QC$ и $Y=PC\cap QB$. Докажите, что AX и AY так же изогонали относительно $\angle A$.
- 16. Пусть ABC треугольник. Общие касательные к его описанной и A—вневписанной окружности пересекают прямую BC в точках P и Q. Докажите, что AP и AQ изогонали относительно $\angle A$.

Задачи

- 17. На плоскости дан треугольник $\triangle ABC$ и переменная точка P. Касательные из P ко вписанной окружности пересекают прямую BC в точках X и Y. Прямая AP повторно пересекает описанную окружность треугольника $\triangle ABC$ в точке K. Докажите, что (KXY) проходит через фиксированную точку плоскости.
- 18. Пусть ABC и DEF два треугольника, которые имеют общую вписанную окружность ω и описанную окружность Ω . Пусть ω касается прямых BC и EF в точках K и L соответственно. Пусть $N = AL \cap \Omega$ и $M = DK \cap \Omega$. Докажите, что прямые AM, DN, EF и BC пересекаются в одной точке.

Очень сложные задачи

- 19. Пусть Γ описанная окружность $\triangle ABC$. Пусть ω вневписанная окружность, противоположная A, а I_a её центр. Прямые ℓ и γ общие касательные к Γ и ω . Пусть a' отражение BC относительно I_a . Пусть X и Y пересечение ℓ и γ с a'. Докажите, что существует окружность, проходящая через X, Y и касающаяся AB, AC и Γ .
- 20. Пусть ABCD вписанный четырехугольник и M_1 , M_2 , M_3 , M_4 середины отрезков AB, BC, CD и DA соответственно. Пусть E точка пересечения диагоналей AC и BD. E_1 изогонально сопряжена E в треугольнике $\triangle M_1CD$. Аналогично определим E_2 , E_3 и E_4 . Пусть E_1E_3 и E_2E_4 пересекаются в точке W. Докажите, что прямая Гаусса четырёхугольника ABCD делит отрезок EW пополам.
- 21. Дан треугольник $\triangle ABC$ с ортоцентром H и инцентром I. Точки P и Q выбраны на плоскости так, что P и Q изогонально сопряжены относительно $\triangle ABC$. Прямые IP и IQ пересекают BC в точках X и Y соответственно. Пусть M середина дуги BC описанной окружности, не содержащей A. Оказалось, что $\angle XIY = \angle XMY = 90^\circ$. Докажите, что HI касается описанной окружности треугольника $\triangle PIQ$.