Lista 6

Zadanie 1. Udowodnij, że jeśli $\lambda_1, \lambda_2, \dots, \lambda_k$ są różnymi wartościami własnymi macierzy M, to suma (mnogościowa) baz przestrzeni $\mathbb{V}_{\lambda_1}, \dots, \mathbb{V}_{\lambda_k}$ jest zbiorem liniowo niezależnym.

Wywnioskuj z tego, że $\mathbb{V}_{\lambda_1} \cap LIN(\bigcup_{i=2}^k \mathbb{V}_{\lambda_i}) = \{\vec{0}\}.$

Wskazówka: Najprościej przez indukcję dodając pojedyncze wektory.

Zadanie 2. Znajdź wartości własne i odpowiadające im wektory własne dla podanych przekształceń liniowych:

- L((x, y, z)) = (2x y, 0, y + z);
- L'((x,y,z)) = (0,0,y);
- L''(x, y, z) = (y + z, x + 2z, 0).

Wskazówka: Czasami może być prościej wprost, bez przechodzenia przez macierze.

Zadanie 3. Znajdź wartości własne, ich krotności algebraiczne i geometryczne dla poniższych macierzy:

$$\begin{bmatrix} 7 & -12 & 6 \\ 10 & -19 & 10 \\ 12 & -24 & 13 \end{bmatrix}, \begin{bmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{bmatrix}.$$

Dla jednej z wartości oblicz odpowiadające wektory własne.

Zadanie 4. Niech $A: \mathbb{V} \to \mathbb{V}$ będzie przekształceniem liniowym. Pokaż, że ker A oraz Im A są przestrzeniami niezmienniczymi A.

Zadanie 5 (* nie liczy się do podstawy). Dla wielomianu $\varphi(x) = \sum_{i=0}^k a_i x^i$ możemy zdefiniować naturalnie wartość tego wielomianu na macierzy kwadratowej, jako $\varphi(M) = \sum_{i=0}^k a_i M^i$, gdzie $M^0 = \mathrm{Id}$.

Niech $M = AJA^{-1}$, gdzie J jest macierzą Jordana (tzn. na przekątnej ma klatki Jordana), zaś φ_M jej wielomianem charakterystycznym. Pokaż, że $\varphi_M(M)$ jest macierzą zerową.

(W pełnej ogólności to zadanie powinno mówić, że A, J są macierzami nad \mathbb{C} , ale w zasadzie nic nie zmienia to w dowodzie: wystarczy, że pokażesz to dla \mathbb{R} .)

Zadanie 6. Niech w będzie wielomianem o współczynnikach rzeczywistych. Pokaż, że dla liczby zespolonej α mamy $w(\overline{\alpha}) = \overline{w(\alpha)}$ (gdzie $\bar{\cdot}$ to sprzężenie).

Wywnioskuj z tego, że jeśli w ma pierwiastek zespolony β , to $\overline{\beta}$ też jest pierwiastkiem tego wielomianu. Wywnioskuj z tego, że jeśli macierz o współczynnikach rzeczywistych (traktowana jako macierz o współczynnikach zespolonych) ma zespoloną wartość własną β , to ma też wartość własną $\overline{\beta}$.

Udowodnij, że w tym przypadku, jeśli wektor o współczynnikach zespolonych $\vec{V} = [v_1, \dots, v_n]^T$ jest wektorem własnym dla zespolonej wartości własnej β , to $\overline{\vec{V}} = [\overline{v}_1, \dots, \overline{v}_n]^T$ jest wektorem własnym dla zespolonej wartości własnej $\overline{\beta}$.

Zadanie 7. Pokaż, że:

- suma macierzy symetrycznych jest macierzą symetryczną;
- iloczyn macierzy symetrycznych jest macierzą symetryczną;
- jeśli macierz symetryczna jest odwracalna, to jej macierz odwrotna jest symetryczna.

Zadanie 8. Udowodnij, że iloczyn dwóch macierzy kolumnowo stochastycznych (dodatnich) jest macierzą kolumnowo stochastyczną (dodatnią).

Niech M_1, \ldots, M_k będą macierzami kolumnowo stochastycznymi (dodatnimi) oraz $\alpha_1, \ldots, \alpha_k$ są liczbami nieujemnymi, spełniającymi $\sum_i \alpha_i = 1$. Pokaż, że

$$\sum_{i=1}^{k} \alpha_i M_i$$

też jest macierza kolumnowo stochastyczną (dodatnią).

Zadanie 9. Niech A będzie macierzą stochastyczną. Pokaż, że zachowuje ona sumę współrzędnych, tzn. dla wektora $(\vec{v}_1,\ldots,\vec{v}_n)^T$ niech $(w_1,\ldots,w_n)^T=A(\vec{v}_1,\ldots,\vec{v}_n)^T$ pokaż, że

$$\sum_{i=1}^{n} \vec{v}_i = \sum_{i=1}^{n} w_i .$$

Zadanie 10. Niech A będzie dodatnią macierzą kolumnowo stochastyczną. Pokaż, że A nie ma wartości własnej -1.

dzeń udowodnionych na wykładzie.

Wskazówka: Rozpatrz A^2 . Jaka jest krotność geometryczna wartości własnej 1? Możesz korzystać z Twier-

Zadanie 11. Niech A będzie dodatnią macierzą kolumnowo stochastyczną, potraktujmy ją jako macierz liczb zespolonych. Pokaż analogicznie do dowodu na wykładzie, że jeśli A ma (zespoloną) wartość własną o module 1, to wektor własny tej wartości własnej jest postaci $\alpha \vec{V}$, gdzie $\alpha \in \mathbb{C}$ oraz $\vec{V} > 0$.