教师		ากาา					VA 11-4				
価		2023-2	024	学年/	要第	1	_学期	课程类		· //夕· 「	
JIH	课程名	济:		微积分	I(补考卷	送)			必修 [√] 选修[] 考试方式		
古]] 闭	卷[√	
填	授课教	师:						试卷类	芝 别 (A,	B, C)	
写	考试时		2	2024年(03月21	日		[C]		共6页	
考生	_			学院			专业_	1		班(级)	
ᆂ	姓名_			学号 <u></u>				内招	[]外	招[√]	
题	号			<u> </u>	三		四	五.		总分	
 得	分										
. 4	-		I			_					
评问	阅人	(共10/	、 题,每	小题 2 分	}, 共20	0分)					
评的一、自	阅人 单选题 页知:	本题答案	必须写在	E如下表	格中,	否则不约		0		10	
评的	阅人 单选题 页知:		, ,	.,_ ,		, , ,	合分.	8	9	10	

5. 设函数 $f(x) = 1$	<i>x²-x-2</i> . 那么必定存	在一占 <i>c</i> ∈ (0.2). 其导	是数 f'(c)=····(B)	į į
(A) 6;		(C) 4;		
6. 函数 $f(x) = \begin{cases} 1 \\ 3 \end{cases}$	$ \begin{array}{ll} 1 - x, & x < 0 \\ x + 1, & x \ge 0 \end{array} $	小	(A)	
`	(B) 有跳跃间断点;			
7. 当 $x \to 0$ 时,下 (A) $\sqrt{x+0.01}$;	列变量中属于无穷小式(B) $\frac{x+2}{x-2}$;	量的是······· (C) x ² +0.01;	(D) $\frac{1}{2}x^2$.	採
8. 下列序列中, 当 (A) $y_n: \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}$, (C) $y_n: 1, \frac{3}{2}, \frac{1}{3}, \frac{5}{4}, \frac{1}{5}$,		共一个常数 $a \in (-\infty, -1)$ (B) $y_n : 0, 1, -2, 3, -4$ (D) $y_n : 1, \frac{1}{2}, 1, \frac{1}{3}, 1, \frac{1}{4}$	+∞) 为极限的是(A) l,5,-6,…; ,1, ½,	
9. 当 <i>x</i> → 2 时,卤 (A) 2;		的极限是······· (C) ∞;	(D) 4.	
10. 设函数 <i>f</i> (<i>x</i>)=	$= \begin{cases} x^2 + 1, x \ge 0 \\ \frac{\sin x}{x}, x < 0 \end{cases} \text{ im} \lim_{x \to 0}$	$f(x) = \cdots$	(B) (D) ∞.	
(A) 不存在;	(B) 1;	(C) 0;	(D) ∞ .	
二、填空题(共 8	3小题,每小题3分,	共24分)		

答题须知:本题答案必须写在如下表格中,否则不给分.

小题	1	2	3	4
答案				
小题	5	6	7	8
答案				

- **1.** 设函数 $f(x) = x^2 + 1$, $g(x) = x^2 1$, 则 f[g(1)] = 1
- **2.** 函数 $f(x) = x^2 + 2024x + 1$, 则 f'(0) = 2024
- **3.** 曲线 $y = x^2 + 1$ 在点 (0,1) 处的切线斜率为 0
- **4.** 函数 $f(x) = \sqrt{x-1}$ 的定义域使用区间表示为 $[1,+\infty)$.
- **5.** $\lim_{x\to 0} \frac{\sin x}{2x} = \frac{1}{2}$.
- **6.** 函数 $y = 2e^x$ 的微分 $dy = 2e^x dx$.
- 7. 函数 $y = \frac{3x-2}{2}$ 的反函数为 $x = \frac{2y+2}{3}$
- **8.** 函数 $y = \frac{1}{x-2}$ 的垂直渐近线为 x = 2.

三、判断题,对与错分别使用"√"和"×"标记(共4小题,每小题2分,共8分)

答题须知:本题答案必须写在如下表格中,否则不给分.

小题	1	2	3	4
答案				

涨

2. 函数 f(x) = |x-1| 对所有 x 连续, 所以对所有 x 可导.....(x)

3. 函数 $f(x) = x^3$ 在 x = 0 处导数 f'(0) = 0, 所以 f(x) 在 x = 0 处取得极小值或极大值.....(x)

四、计算题(共5题,每题8分,共40分)

1. 求函数 $y = x^5 + (x+1)^2 + \frac{x+1}{x} + \sin x$ 的导数.

解.

$$y' = (x^{5})' + [(x+1)^{2}]' + (\frac{x+1}{x})' + (\sin x)'$$

$$= 5x^{4} + 2(x+1)(x+1)' + \frac{(x+1)'x - (x)'(x+1)}{x^{2}} + \cos x$$

$$= 5x^{4} + 2x + 2 - \frac{1}{x^{2}} + \cos x$$

.....8分

(注:每项正确得2分)

2. 计算下列极限 (每小题 4分):

$$(1)\lim_{x\to 1}\frac{5x^2+6x+1}{8x-4};$$

 $(2)\lim_{x\to 2}\frac{x^2-5x+6}{x-2}.$

解. (1)

原式 =
$$\frac{\lim_{x \to 1} (5x^2 + 6x + 1)}{\lim_{x \to 1} (8x - 4)}$$

= $\frac{5 \cdot 1^2 + 6 \cdot 1 + 1}{8 \cdot 1 - 4} = 3$

……4分

(2)

原式 =
$$\lim_{x\to 2} \frac{(x-2)(x-3)}{x-2}$$

= $\lim_{x\to 2} (x-3) = -1$ (或使用洛必达法则)

……4分

3. 设函数 $f(x) = \frac{1}{x}$, (1) 使用**求导公式计算** f(x) 在 x = 1 处的导数 (2 分); (2) 使用**导数定义计算** 该导数 f'(1), 验证 (1) 的结果 (6 分).

解. (1) $f'(x) = (\frac{1}{x})' = -\frac{1}{x^2}$, 所以 f'(1) = -1.

----2分

(2) 由导数定义有

$$f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1}$$
$$= \lim_{x \to 1} \frac{\frac{1}{x} - 1}{x - 1}$$

2 🛆

$$= \lim_{x \to 1} \frac{\frac{1-x}{x}}{x-1}$$

$$= \lim_{x \to 1} \frac{-1}{x} = -1.$$

……6分

4. 求下列隐函数及参数方程所确定的函数的导数 $\frac{dy}{dx}$ (每小题 4 分):

(1)3
$$x - y^2 - 2 = 0;$$
 (2)
$$\begin{cases} x = 2t - t^2 \\ y = 3t - t^3 \end{cases}$$

 \mathbf{p} . (1) 原方程左右两端同时关于 x 求导,得到

$$3-2y\cdot y'=0.$$

……2分

整理得到

$$\frac{\mathrm{d}y}{\mathrm{d}x} = y' = \frac{3}{2y}.$$

……4分

(2)

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 2 - 2t, \frac{\mathrm{d}y}{\mathrm{d}t} = 3 - 3t^2$$

----2分

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{3 - 3t^2}{2 - 2t} = \frac{3}{2}(1 + t).$$

.....4分

5. 设函数 $f(x) = \frac{1}{2}x^2 - 6x + 4$, 求 (1) f(x) 的导数 f'(x) 及驻点 (2 分); (2) 该函数的单调增减区间及极值 (4 分); (3) 判断该函数图像是上凹还是下凹 (2 分).

解.

(1)
$$f'(x) = x - 6$$
, 令 $f'(x) = 0$, 解得驻点 $x = 6$2分

- (3) 对于所有 x, 函数 f(x) 的二阶导数 f''(x) = 1 > 0, 所以该函数图像上凹. · · · · · · 2 分

苌

五、应用题(共1题,共8分)

假设生产 x 件产品的成本函数为

$$C(x) = -0.02x^2 + 50x + 100(\overline{\pi}), 0 \le x \le 1000.$$

- (1) 确定平均成本函数及边际成本函数 (2分):
- (2) 确定 x = 100 时的平均成本及边际成本, 并解释该边际成本的经济意义 (4分);
- (3) 若所生产的 x 件商品均能销售出去,每件售价为 100 元,确定收益函数及利润函数 (2分).

解.

(1) 平均成本函数为

$$\bar{C}(x) = \frac{C(x)}{x} = -0.02x + 50 + \frac{100}{x} (\vec{\pi}), \ 0 < x \le 1000.$$

边际成本函数为

$$C'(x) = -0.04x + 50 \,(\text{T}), \ 0 \le x \le 1000.$$

----2分

(2) x = 100 时, 平均成本为

$$\bar{C}(100) = -0.02 \cdot 100 + 50 + \frac{100}{100} = 49 \ (\overline{\text{7L}}).$$

……1分

边际成本为

$$C'(100) = -0.04 \cdot 100 + 50 = 46 \ (\overline{\pi}).$$

……2分

此边际成本意味着生产 100 件产品时, 再多生产 1 件产品成本相应增加 46 元.4 分

(3) 收益函数

$$R(x) = 100x \ (\overline{\pi}), 0 \le x \le 1000.$$

利润函数

$$L(x) = R(x) - C(x) = 0.02x^2 + 50x - 100$$
 ($\overrightarrow{\pi}$), $0 \le x \le 1000$.

……2分

共