江西理工大学《工程热力学》

2014-2015 学年第一学期期中考试试卷

1、理想气体自由膨胀过程为()。

(A) $Q>0$ (B) $\Delta U<0$ (C) $W<0$ (D) $\Delta H=0$
2、从热力学四个基本方程可导出 $\left(\frac{\partial U}{\partial S}\right)_{\nu} = ($)
(A) $\left(\frac{\partial A}{\partial V}\right)_T$ (B) $\left(\frac{\partial H}{\partial S}\right)_p$ (C) $\left(\frac{\partial U}{\partial V}\right)_S$ (D) $\left(\frac{\partial G}{\partial T}\right)_p$
3、A(I)与 B(I)可形成理想液态混合物,若在一定温度下,纯 A、纯 B 的饱和蒸气压 $p^*_A > p^*_B$,则
在该二组分的蒸气压组成图上的气、液两相平衡区,呈平衡的气、液两相的组成必有:
$(A)y_B > x_B; (B)y_B < x_B (C)y_B = x_B; (D)以上答案均不正确$
4、理想溶液的定义为()
(A)任一组分在某一浓度范围内符合拉乌尔定律的溶液
(B)溶剂在全部浓度范围内都符合拉乌尔定律的溶液
(C)溶质在全部浓度范围内都符合拉乌尔定律的溶液
(D)任一组分在全部浓度范围内都符合拉乌尔定律的溶液
a5、已知反应 2NO(g)+O ₂ (g)=2NO ₂ (g)是放热的,反应达到平衡后,欲使平衡向右移动以获得更多
额 NO ₂ , 应采取的措施是 ()
(A)降温和减压 (B)降温和增压 (C)升温和减压 (D)升温和增压。
6、工作在 100℃和 25℃的两个大热源间的卡诺热机,其效率为()
(A)20% (B)25% (C)75% (D)100%
7、在刚性密闭容器中,有下列理想气体的反应达到平衡 $A(g) + B(g) = C(g)$ 若在恒温下加入一定
量的惰性气体,则平衡将()
(A) 向右移动 (B) 向左移动 (C) 不移动 (D) 无法确定
8、纯液体苯在其正常沸点等温汽化,则:()
(A) $\Delta_{\text{vap}}U^{\ominus} = \Delta_{\text{vap}}H^{\ominus}$, $\Delta_{\text{vap}}A^{\ominus} = \Delta_{\text{vap}}G^{\ominus}$, $\Delta_{\text{vap}}S^{\ominus} > 0$
(B) $\Delta_{\text{vap}} U^{\Theta} < \Delta_{\text{vap}} H^{\Theta}$, $\Delta_{\text{vap}} A^{\Theta} < \Delta_{\text{vap}} G^{\Theta}$, $\Delta_{\text{vap}} S^{\Theta} > 0$
(C) $\Delta_{\text{vap}} U^{\Theta} > \Delta_{\text{vap}} H^{\Theta}$, $\Delta_{\text{vap}} A^{\Theta} > \Delta_{\text{vap}} G^{\Theta}$, $\Delta_{\text{vap}} S^{\Theta} < 0$
(D) $\Delta_{\text{vap}}U^{\Theta} < \Delta_{\text{vap}}H^{\Theta}$, $\Delta_{\text{vap}}A^{\Theta} < \Delta_{\text{vap}}G^{\Theta}$, $\Delta_{\text{vap}}S^{\Theta} < 0$
9、已知纯液体 A 和 B,其沸点分别为 t_A^* =116℃, t_B^* =80℃,A 和 B 可以形成双组分理想液态混合

物,将某一定组成的该液态混合物进行精馏(完全分离)时,则()。
(A) 在塔顶得到纯 B (B) 在塔底得到纯 B (C) 在塔中间得到纯 B
10、下列各式中,哪个是化学势(
$A. \begin{pmatrix} \frac{\partial U}{\partial n_i} \end{pmatrix}_{T,p,n_j} \qquad \begin{pmatrix} \frac{\partial A}{\partial n_i} \end{pmatrix}_{T,p,n_j} \qquad \begin{pmatrix} \frac{\partial H}{\partial n_i} \end{pmatrix}_{T,p,n_j} \qquad \begin{pmatrix} \frac{\partial G}{\partial n_i} \end{pmatrix}_{T,p,n_j}$ $C. \qquad D. \begin{pmatrix} \frac{\partial G}{\partial n_i} \end{pmatrix}_{T,p,n_j}$
二、填空题(10×2 分=20 分)
1、从同一始态分别经一恒温可逆膨胀与一绝热可逆膨胀至有相同体积的末态,则可逆膨
胀末态压力大于可逆膨胀末态压力。
 2、理想气体加热温度发生变化, ΔU=, ΔH=。 3、已知 298K 时, FeO(s)、CO₂、Fe₂O₃(s)、CO(g)的标准生成热(单位 KJ•mol⁻¹),分别为-226.5、
-393.51、-821.32、-110.54, 则反应 Fe ₂ O ₃ (s)+CO(G)=2FeO(s)+CO ₂ (g)的 Δ _R H _m (298 K)
4、恒温恒压下,组元 i 从 α 相转移到 β 相,则 μ^{α} μ^{β} 。(>, <, =)
5、n <i>mol</i> 理想气体恒容下由 T_1 升温至 T_2 ,相同量的该气体恒压下由 T_1 升温至 T_2 ,则两个过程热量和内能的关系为: Q_V QP, $\triangle U_V$ $\triangle U_P$ 。(>,<,=)
6、1mol 纯理想气体在 298K、50kPa 下,其化学势和标准化学势之差值为。
7、已知某反应的标准平衡常数 K^{Θ} 与 T 的关系为: $\ln K^{\Theta} = 4.184 - 2059 \text{K/T}$,则 $\Delta_{\mathbf{r}} H_{\mathbf{m}}^{\Theta}$
为。
8、在2000K时,理想气体反应 $CO(g) + \frac{1}{2}O_2(g) = CO_2(g)$ 的平衡常数 $K_{p,1}$ =6.443,反应 $2CO_2(g)$
=2CO ₂ (g)+O ₂ (g) 的 K _{p,2} 为。
9、稀溶液是指。
10、1000k 时, $CO(g)+1/2O_2(g)=CO_2(g)$,其 $K_{p,1}=1.659\times10^{10}$; $C(s)+CO_2(g)=2CO(g)$,其 $K_{p,2}=$
1.719, 则反应 C(s)+1/2O ₂ (g)= CO(g), K _{p,3} 为。
Account to the second s
三、计算题(5×12 分=60 分)
1、10mol 理想气体,压力 1013kPa,温度 300k,分别求出等温时下列过程的功:
(1) 真空中膨胀;
(2) 在空气中(101.3kPa)体积胀大 1dm³;
(3)在空气中膨胀到该气体压力也是 101.3kPa;
(4)等温可逆膨胀至气体的压力为 101.3kPa。

- 5、 环己烷的正常沸点为 80.75°C,在正常沸点的摩尔气化焓 $\Delta_{\rm vap}H_{\rm m}=30.08{\rm kJ} \cdot {\rm mol}^{-1}$,在此温度及 101325Pa 下,液体和蒸气的摩尔体积分别为 116.7×10⁻⁶m³ · mol¹,28.97×10⁻³m³ · mol¹。
- (1) 计算环己烷在正常沸点时 dp/dT 的近似值(即忽略液体的体积)和精确值(考虑液体体积);
 - (2) 估计 100kPa 时的沸点;
 - (3) 应将压力降低到多少 Pa, 可使环己烷在 25 ℃ 时沸腾?