Efficient Video Object Detection for EV Charging Plug Type Identification in Real-World Scenarios

Phasuwut Chunnapiya, Porawat Visutsak

Department of Computer and Information Science Faculty of Applied Science KMUTNB

Introduction

- Problem: Rapid EV adoption requires efficient charging systems, but varied plug types create challenges.
- Objective: Develop a video object detection system for identifying EV plug types using YOLO models (V5-V8) on a custom dataset.
- Application: User-friendly website for real-time EV plug detection.

Figure 1 shows electric car charging plugs around the world.

Figure 2 shows the location of EV charging plugs in Various plug locations.

Literature Review

YOLO Architecture

 YOLO (You Only Look Once) is a fast, single-stage object detection model that identifies multiple objects in a scene using bounding boxes via a CNN.

Figure 3 shows the Operating procedure of the YOLO algorithm with the NMS function.

Literature Review

• YOLO Version Comparisons

Version	Key Features
YOLOv5	- Introduced CSPDarknet backbone Utilized Feature Pyramid Network (FPN) for improved feature extraction.
YOLOv6	Focused on efficiency with EfficientRep.Implemented Rep-PAN for enhanced feature aggregation.
YOLOv7	- Enhanced accuracy through Efficient Layer Aggregation Network (ELAN).
YOLOv8	 Introduced C2f module for improved feature flow. Employed anchor-free detection for simplicity. Utilized smaller kernel sizes for faster inference.

Dataset

- Total Images: 109,902 images.
- Classes: Five classes of EV sockets.
- Augmentation: Using Albumentations for rotation, scaling, blur, and noise.
- **Split:** Training, validation, and testing in an 8:1:1 ratio.
- **Sources:** Public sites like Roboflow, Google, YouTube.

Figure 4 shows an overview of the dataset showing different sockets.

Dataset and Classes for EV Plug Types

- Total Classes: 5
- Plug Types:
 - 1. CHAdeMO
 - **2.** AC Type 1
 - **3.** AC Type 2
 - 4. DC CCS Type 1
 - 5. DC CCS Type 2

Figure 5 shows electric car charging plugs in Thailand.

Real-world test video

Data collection locations:

Events: EV Expo and Motor Show in Thailand.

Locations: Gas stations, shopping malls, hotels.

Conditions:

Lighting: Daylight, night, rain.

Settings: Outdoor and indoor environments.

Figure 6 Video clips taken at actual locations at various charging stations.

Experimental setting

- Model training setup: Epochs = 100, batch size = 32, image size = 640, optional use default.
- **Training dataset:** The same dataset is used for training four models.
- Experimental environment: Refer to Figure 7 for visual representation.

Component	Environment A	Environment B	Environment C iPhone 12 Promax	
Hardware/Cloud	https://www.runpod.io/	MacBook Pro M2 Max 2022		
Environment used for	training, validation, and prediction prediction		prediction	
Python	3.10.12	3.10.12	n/a	
PyTorch	2.10+cu118	2.10+cu118	n/a	
GPU	NVIDIA RTX A5000	Apple M2 max	Apple A14 Bionic	
CPU	AMD EPYC 7302P	Apple M2 max	Apple A14 Bionic	
RAM	31.3 GB	32 GB	6 GB	
Operating system	Ubuntu 22.04	macOS Sonoma 14.1.1	IOS 18.0	

Figure 7 show Environment used experimental

Results - YOLO Performance

Metrics Used:

mAP@0.5, mAP@0.5:0.95, precision, recall, F1 Score, Gigaflops.

Best Model:

- YOLOv5s has the lowest Gigaflops and Parameters value among all YOLO
- YOLOv6s has the lowest Training time value among all YOLO.
- YOLOv7 has the highest mAP@0.5 of 0.997.
- YOLOv8s had the highest mAP@0.5-0.95 of 0.95, precision of 0.998, and recall of 0.996.
- YOLOv8s delivers the best balance of accuracy and efficiency.

Model	Precisions	Recall	mAP@0.5	mAP@0.5-95	F1 Score	Training time (hours)	Gigaflops	Parameters
YOLO V5s	0.996	0.996	0.995	0.912	0.996	15.092	16.0 Gigaflops	7,033,114
YOLO V6s	0.993	0.994	0.994	0.933	0.993	14.966	44.9 Gigaflops	16,452,192
YOLO V7	0.995	0.997	0.997	0.921	0.996	36.479	105.2 Gigaflops	37,218,132
YOLO V8s	0.998	0.996	0.995	0.95	0.997	15.595	28.7 Gigaflops	11,137,535

Figure 8 shows the results of the experiments.

Performance Comparison of YOLO Models

- Metric Summary:
 - Gigaflops & Parameters:
 - Lightest Model: YOLOv5s
 - Heaviest Model: YOLOv7
 - Precision & Recall:
 - **Best Performance:** YOLOv8s (highest precision and recall)
 - Conclusion: YOLOv8s is ideal for accuracy-intensive tasks.

Detection EV Socket on website

- Website Development Overview
 - Framework: Next.js (version 14.2.7)
 - Prediction Library: "@tensorflow/tfjs" (version 4.21.0)
 - Rendering Method: Client-Side Rendering (CSR)
 - Predictions are processed directly on the client side
- The website have YOLO V6s and YOLO V8s models used for prediction

Detection EV Socket on website

- Homepage (Figure 11):
 - Users can select between two models for prediction: YOLOv6 and YOLOv8.
- **Detection Modes** (Figure 12):
 - Four buttons for user interaction: "Change Model", "Open Image", "Open Video", and
 "Open Webcam".
- **Detection Results** (Figure 13):
 - Displays the results of the EV socket detection.

Figures 11 shows a button that can select a model

Figure 12 shows the menu

Figures 13 show the experimental results.

Detection EV Socket on website

- Video and image test for ev-socket-detection
 - OURL: https://kaggle.com/datasets/9d1ccb2f90198091526f5986311ffeb4e0de1fb6f672b49af2f50264f06584ee
- Website Ddemo
 - URL: https://ev-socket-detection.phasuwut.com/prediction

Figure 9 shows the QR code of the Website.

Figure 10 shows the QR code of the Video and image test for ev-socket-detection

Video 1 shows a demo detection socket EV on the website.

Results of detection EV Socket on website

- Accuracy Improvement:
 - YOLOv8s outperforms YOLOv6s by:
 - 3.49% in Environment B
 - 3.31% in Environment C
- Prediction Variability:
 - Environment B: Difference of 0.54%
 - Environment C: Difference of 0.37%
- Model Stability: Demonstrates consistent performance across varying environments.

TABLE 4. Detection results of Environment B and Environment C

File name Second		Environ	ıment B	Environment C		
		YOLO	YOLO	YOLO	YOLO	
		V6s	V8s	V6s	V8s	
IMG 6279	0	85.1	90.1	86.1	90.9	
IMG_6283	7	85.8	90.6	86.1	91	
IMG_6283	8	86.7	91.8	87.2	91.6	
IMG 6292	21	86.9	90.3	87.7	90.9	
IMG 6292	20	87.1	89.7	88	90	
IMG 6292	35	90.8	93.1	90.9	93.7	
IMG_6292	33	92.1	93.3	92.3	93.4	
AVC	j	87.79	91.27	88.33	91.64	

Figure 14 shows the Results of the detection EV Socket on the website.

Conclusions

- Study Focus: YOLO-based models for video object detection in automatic EV charger robots.
- Key Findings:
 - YOLOv5s: Most efficient; suitable for low-resource devices; comparable metrics to YOLOv7.
 - YOLOv6s: boasts the fastest training time.
 - YOLOv7: Strong mAP@0.5 (0.997); resource-intensive.
 - YOLOv8s: Highest mAP@0.5:0.95 (0.95), Precision (0.998), F1 Score (0.997).
- Real-World Testing:
 - 85.08% accuracy in detecting EV sockets in real time.
 - Web implementation allows cross-device predictions.
- **Recommendation:** Use YOLOv5s for resource-constrained environments.

Thank you