Laboratory Module 1 <u>Indexing X-Ray Diffraction Patterns</u>

LEARNING OBJECTIVES

Upon completion of this module you will be able to index an X-ray diffraction pattern, identify the Bravais lattice, and calculate the lattice parameters for crystalline materials.

BACKGROUND

We need to know about crystal structures because structure, to a large extent, determines properties. X-ray diffraction (XRD) is one of a number of experimental tools that are used to identify the structures of crystalline solids.

The XRD patterns, the product of an XRD experiment, are somewhat like fingerprints in that they are unique to the material that is being examined. The information in an XRD pattern is a direct result of two things:

- (1) The size and shape of the unit cells determine the relative positions of the diffraction peaks;
- (2) Atomic positions within the unit cell determine the relative intensities of the diffraction peaks (remember the structure factor?).

Taking these things into account, we can calculate the size and shape of a unit cell from the positions of the XRD peaks and we can determine the positions of the atoms in the unit cell from the intensities of the diffraction peaks.

Full identification of crystal structures is a multi-step process that consists of:

- (1) Calculation of the size and shape of the unit cell from the XRD peak positions;
- (2) Computation of the number of atoms/unit cell from the size and shape of the cell, chemical composition, and measured density;
- (3) Determination of atom positions from the relative intensities of the XRD peaks

We will only concern ourselves with step (1), calculation of the size and shape of the unit cell from XRD peak positions. We loosely refer to this as "indexing." The laboratory module is broken down into two sections. The first addresses how to index patterns from cubic materials. The second addresses how to index patterns from non-cubic materials.

PART 1 PROCEDURE FOR INDEXING CUBIC XRD PATTERNS

When you index a diffraction pattern, you assign the correct Miller indices to each peak (reflection) in the diffraction pattern. An XRD pattern is properly indexed when ALL of the peaks in the diffraction pattern are labeled and no peaks expected for the particular structure are missing.

This is an example of a properly indexed diffraction pattern. All peaks are accounted for. One now needs only to assign the correct Bravais lattice and to calculate lattice parameters.

How to we correctly index a pattern? The correct procedures follow.

PROCEDURE FOR INDEXING AN XRD PATTERN

The procedures are standard. They work for any crystal structure regardless of whether the material is a metal, a ceramic, a semiconductor, a zeolite, etc... There are two methods of analysis. You will do both. One I will refer to as the mathematical method. The second is known as the analytical method. The details are covered below.

Mathematical Method

Interplanar spacings in cubic crystals can be written in terms of lattice parameters using the plane spacing equation:

$$\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2}$$

You should recall Bragg's law ($\lambda = 2d \sin \theta$), which can be re-written either as:

$$\lambda^2 = 4d^2 \sin^2 \theta \text{ OR } \sin^2 \theta = \frac{\lambda^2}{4d^2}$$

Combining this relationship with the plane spacing equation gives us a new relationship:

$$\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2} = \frac{4\sin^2\theta}{\lambda^2},$$

which can be rearranged to:

$$\sin^2\theta = \left(\frac{\lambda^2}{4a^2}\right) \left(h^2 + k^2 + l^2\right)$$

The term in parentheses $\left(\frac{\lambda^2}{4a^2}\right)$ is constant for any one pattern (because the X-ray

wavelength λ and the lattice parameters a do not change). Thus $\sin^2 \theta$ is proportional to $h^2 + k^2 + l^2$. This proportionality shows that planes with higher Miller indices will diffract at higher values of θ .

Since $\left(\frac{\lambda^2}{4a^2}\right)$ is constant for any pattern, we can write the following relationship for any two different planes:

$$\frac{\sin^2 \theta_1}{\sin^2 \theta_2} = \frac{\left(\frac{\lambda^2}{4a^2}\right) \left(h_1^2 + k_1^2 + l_1^2\right)}{\left(\frac{\lambda^2}{4a^2}\right) \left(h_2^2 + k_2^2 + l_2^2\right)} \text{ or } \frac{\sin^2 \theta_1}{\sin^2 \theta_2} = \frac{\left(h_1^2 + k_1^2 + l_1^2\right)}{\left(h_2^2 + k_2^2 + l_2^2\right)}.$$

The ratio of $\sin^2 \theta$ values scales with the ratio of $h^2 + k^2 + l^2$ values.

In cubic systems, the first XRD peak in the XRD pattern will be due to diffraction from planes with the lowest Miller indices, which interestingly enough are the close packed planes (i.e.: simple cubic, (100), $h^2 + k^2 + l^2 = 1$; body-centered cubic, (110) $h^2 + k^2 + l^2 = 2$; and face-centered cubic, (111) $h^2 + k^2 + l^2 = 3$).

Since h, k, and l are always integers, we can obtain $h^2 + k^2 + l^2$ values by dividing the $\sin^2 \theta$ values for the different XRD peaks with the minimum one in the pattern (*i.e.*, the $\sin^2 \theta$ value from the first XRD peak) and multiplying that ratio by the proper integer (either 1, 2 or 3). This should yield a list of integers that represent the various $h^2 + k^2 + l^2$ values. You can identify the correct Bravais lattice by recognizing the sequence of allowed reflections for cubic lattices (*i.e.*, the sequence of allowed peaks written in terms of the quadratic form of the Miller indices).

Primitive $h^2 + k^2 + l^2 = 1,2,3,4,5,6,8,9,10,11,12,13,14,16...$

Body-centered $h^2 + k^2 + l^2 = 2,4,6,8,10,12,14,16...$

Face-centered $h^2 + k^2 + l^2 = 3,4,8,11,12,16,19,20,24,27,32...$

Diamond cubic $h^2 + k^2 + l^2 = 3,8,11,16,19,24,27,32...$

The lattice parameters can be calculated from:

$$\sin^2\theta = \left(\frac{\lambda^2}{4a^2}\right) \left(h^2 + k^2 + l^2\right)$$

which can be re-written as:

$$a^{2} = \frac{\lambda^{2}}{4\sin^{2}\theta} (h^{2} + k^{2} + l^{2}) \text{ OR } a = \frac{\lambda}{2\sin\theta} \sqrt{h^{2} + k^{2} + l^{2}}$$

Worked Example

Consider the following XRD pattern for Aluminum, which was collected using $\text{CuK}\alpha$ radiation.

Index this pattern and determine the lattice parameters.

Steps:

- (1) Identify the peaks.
- (2) Determine $\sin^2 \theta$.
- (3) Calculate the ratio $\sin^2 \theta / \sin^2 \theta_{\min}$ and multiply by the appropriate integers.
- (4) Select the result from (3) that yields $h^2 + k^2 + l^2$ as an integer.
- (5) Compare results with the sequences of $h^2 + k^2 + l^2$ values to identify the Bravais lattice.
- (6) Calculate lattice parameters.

Here we go!

(1) Identify the peaks and their proper 2θ values. Eight peaks for this pattern. Note: most patterns will contain α_1 and α_2 peaks at higher angles. It is common to neglect α_2 peaks.

Peak No.	2θ	$\sin^2 \theta$	$1 \times \frac{\sin^2 \theta}{\sin^2 \theta_{\min}}$	$2 \times \frac{\sin^2 \theta}{\sin^2 \theta_{\min}}$	$3 \times \frac{\sin^2 \theta}{\sin^2 \theta_{\min}}$	$h^2+k^2+l^2$	hkl	a (Å)
1	38.43							
2	44.67							
3	65.02							
4	78.13							
5	82.33							
6	98.93							
7	111.83							
8	116.36							

(2) Determine $\sin^2 \theta$.

Peak No.	2θ	$\sin^2 \theta$	$1 \times \frac{\sin^2 \theta}{\sin^2 \theta_{\min}}$	$2 \times \frac{\sin^2 \theta}{\sin^2 \theta_{\min}}$	$3 \times \frac{\sin^2 \theta}{\sin^2 \theta_{\min}}$	$h^2 + k^2 + l^2$	hkl	a (Å)
1	38.43	0.1083						. ,
2	44.67	0.1444						
3	65.02	0.2888						
4	78.13	0.3972						
5	82.33	0.4333						
6	98.93	0.5776						
7	111.83	0.6859						

8 116.36 0.7220

(3) Calculate the ratio $\sin^2 \theta / \sin^2 \theta_{\min}$ and multiply by the appropriate integers.

Peak No.	2θ	$\sin^2 \theta$	$1 \times \frac{\sin^2 \theta}{\sin^2 \theta_{\min}}$	$2 \times \frac{\sin^2 \theta}{\sin^2 \theta_{\min}}$	$3 \times \frac{\sin^2 \theta}{\sin^2 \theta_{\min}}$	$h^2+k^2+l^2$	hkl	a (Å)
1	38.43	0.1083	1.000	2.000	3.000			
2	44.67	0.1444	1.333	2.667	4.000			
3	65.02	0.2888	2.667	5.333	8.000			
4	78.13	0.3972	3.667	7.333	11.000			
5	82.33	0.4333	4.000	8.000	12.000			
6	98.93	0.5776	5.333	10.665	15.998			
7	111.83	0.6859	6.333	12.665	18.998			
8	116.36	0.7220	6.666	13.331	19.997			

(4) Select the result from (3) that most closely yields $h^2 + k^2 + l^2$ as a series of integers.

Peak No.	2θ	$\sin^2 \theta$	$1 \times \frac{\sin^2 \theta}{\sin^2 \theta_{\min}}$	$2 \times \frac{\sin^2 \theta}{\sin^2 \theta_{\min}}$	$3 \times \frac{\sin^2 \theta}{\sin^2 \theta_{\min}}$	$h^2 + k^2 + l^2$	hkl	a (Å)
1	38.43	0.1083	1.000	2.000	3.000			
2	44.67	0.1444	1.333	2.667	4.000			
3	65.02	0.2888	2.667	5.333	8.000			
4	78.13	0.3972	3.667	7.333	11.000			
5	82.33	0.4333	4.000	8.000	12.000			
6	98.93	0.5776	5.333	10.665	15.998			
7	111.83	0.6859	6.333	12.665	18.998			
8	116.36	0.7220	6.666	13.331	19.997			

(5) Compare results with the sequences of $h^2 + k^2 + l^2$ values to identify the miller indices for the appropriate peaks and the Bravais lattice.

Peak No.	2θ	$\sin^2 \theta$	$1 \times \frac{\sin^2 \theta}{\sin^2 \theta_{\min}}$	$2 \times \frac{\sin^2 \theta}{\sin^2 \theta_{\min}}$	$3 \times \frac{\sin^2 \theta}{\sin^2 \theta_{\min}}$	$h^2 + k^2 + l^2$	hkl	a (Å)
1	38.43	0.1083	1.000	2.000	3.000	3	111	4.0538
2	44.67	0.1444	1.333	2.667	4.000	4	200	4.0539
3	65.02	0.2888	2.667	5.333	8.000	8	220	4.0538
4	78.13	0.3972	3.667	7.333	11.000	11	311	4.0538
5	82.33	0.4333	4.000	8.000	12.000	12	222	4.0538
6	98.93	0.5776	5.333	10.665	15.998	16	400	4.0541
7	111.83	0.6859	6.333	12.665	18.998	19	331	4.0540
8	116.36	0.7220	6.666	13.331	19.997	20	420	4.0541

Bravais lattice is Face-Centered Cubic

(6) Calculate lattice parameters.

Peak No.	2θ	$\sin^2 \theta$	$1 \times \frac{\sin^2 \theta}{\sin^2 \theta_{\min}}$	$2 \times \frac{\sin^2 \theta}{\sin^2 \theta_{\min}}$	$3 \times \frac{\sin^2 \theta}{\sin^2 \theta_{\min}}$	$h^2+k^2+l^2$	hkl	a (Å)
1	38.43	0.1083	1.000	2.000	3.000	3	111	4.0538
2	44.67	0.1444	1.333	2.667	4.000	4	200	4.0539
3	65.02	0.2888	2.667	5.333	8.000	8	220	4.0538
4	78.13	0.3972	3.667	7.333	11.000	11	311	4.0538
5	82.33	0.4333	4.000	8.000	12.000	12	222	4.0538
6	98.93	0.5776	5.333	10.665	15.998	16	400	4.0541
7	111.83	0.6859	6.333	12.665	18.998	19	331	4.0540
8	116.36	0.7220	6.666	13.331	19.997	20	420	4.0541

Average lattice parameter is 4.0539 Å

Analytical Method

This is an alternative approach that will yield the same results as the mathematical method. It will give you a nice comparison.

Recall:

$$\sin^2 \theta = \left(\frac{\lambda^2}{4a^2}\right) \left(h^2 + k^2 + l^2\right)$$
 and $\left(\frac{\lambda^2}{4a^2}\right) = \text{constant for all patterns}$

If we let $K = \left(\frac{\lambda^2}{4a^2}\right)$, we can re-write these equations as:

$$\sin^2\theta = K(h^2 + k^2 + l^2)$$

For any cubic system, the possible values of $h^2 + k^2 + l^2$ correspond to the sequence:

$$h^2 + k^2 + l^2 = 1,2,3,4,5,6,8,9,10,11...$$

If we determine $\sin^2 \theta$ for each peak and we divide the values by the integers 2,3,4,5,6,8,9,10,11..., we can obtain a common quotient, which is the value of K corresponding to $h^2 + k^2 + l^2 = 1$.

K is related to the lattice parameter as follows:

$$K = \left(\frac{\lambda^2}{4a^2}\right)$$
 OR $a = \frac{\lambda}{2\sqrt{K}}$

If we divide the $\sin^2 \theta$ values for each reflection by K, we get the $h^2 + k^2 + l^2$ values. The sequence of $h^2 + k^2 + l^2$ values can be used to label each XRD peak and to identify the Bravais lattice.

Let's do an example for the Aluminum pattern presented above.

Steps:

- (1) Identify the peaks.
- (2) Determine $\sin^2 \theta$.
- (3) Calculate the ratio $\sin^2 \theta$ /(integers)
- (4) Identify the lowest common quotient from (3) and identify the integers to which it corresponds. Let the lowest common quotient be *K*.
- (5) Divide $\sin^2 \theta$ by K for each peak. This will give you a list of integers corresponding to $h^2 + k^2 + l^2$.
- (6) Select the appropriate pattern of $h^2 + k^2 + l^2$ values and identify the Bravais lattice.
- (7) Calculate lattice parameters.

Here we go again!

(1) Identify the peaks.

(1) Identify the peaks.										
Peak			$\sin^2 \theta$	$\sin^2 \theta$	$\sin^2 \theta$	$\sin^2 \theta$	$\frac{\sin^2 \theta}{}$	$\sin^2 \theta$		
No.	2θ	$\sin^2 \theta$	2	3	4	5	6	8		
1	38.43									
2	44.67									
3	65.02									
4	78.13									
5	82.33									
6	98.93									
7	111.83									
8	116.36									

(2) Determine $\sin^2 \theta$.

	(2) Betermine Sin V.										
Peak No.	2 heta	$\sin^2 \theta$	$\frac{\sin^2\theta}{2}$	$\frac{\sin^2\theta}{3}$	$\frac{\sin^2\theta}{4}$	$\frac{\sin^2\theta}{5}$	$\frac{\sin^2\theta}{6}$	$\frac{\sin^2\theta}{8}$			
4											
1	38.43	0.1083									
2	44.67	0.1444									
3	65.02	0.2888									
4	78.13	0.3972									
5	82.33	0.4333									
6	98.93	0.5776									

7	111.83	0.6859			
8	116.36	0.7220			

(3) Calculate the ratio $\sin^2 \theta$ /(integers)

Peak			$\sin^2 \theta$					
No.	2θ	$\sin^2 \theta$	2	3	4	5	6	8
1	38.43	0.1083	0.0542	0.0361	0.0271	0.0217	0.0181	0.0135
2	44.67	0.1444	0.0722	0.0481	0.0361	0.0289	0.0241	0.0181
3	65.02	0.2888	0.1444	0.0963	0.0722	0.0578	0.0481	0.0361
4	78.13	0.3972	0.1986	0.1324	0.0993	0.0794	0.0662	0.0496
5	82.33	0.4333	0.2166	0.1444	0.1083	0.0867	0.0722	0.0542
6	98.93	0.5776	0.2888	0.1925	0.1444	0.1155	0.0963	0.0722
7	111.83	0.6859	0.3430	0.2286	0.1715	0.1372	0.1143	0.0857
8	116.36	0.7220	0.3610	0.2407	0.1805	0.1444	0.1203	0.0903

(4) Identify the lowest common quotient from (3) and identify the integers to which it corresponds. Let the lowest common quotient be K.

Peak			$\sin^2 \theta$					
No.	2θ	$\sin^2 \theta$	2	3	4	5	6	8
1	38.43	0.1083	0.0542	0.0361	0.0271	0.0217	0.0181	0.0135
2	44.67	0.1444	0.0722	0.0481	0.0361	0.0289	0.0241	0.0181
3	65.02	0.2888	0.1444	0.0963	0.0722	0.0578	0.0481	0.0361
4	78.13	0.3972	0.1986	0.1324	0.0993	0.0794	0.0662	0.0496
5	82.33	0.4333	0.2166	0.1444	0.1083	0.0867	0.0722	0.0542
6	98.93	0.5776	0.2888	0.1925	0.1444	0.1155	0.0963	0.0722
7	111.83	0.6859	0.3430	0.2286	0.1715	0.1372	0.1143	0.0857
8	116.36	0.7220	0.3610	0.2407	0.1805	0.1444	0.1203	0.0903

K = 0.0361

(5) Divide $\sin^2 \theta$ by K for each peak. This will give you a list of integers corresponding to $h^2 + k^2 + l^2$.

Peak			$\sin^2 \theta$		
No.	2θ	$\sin^2 \theta$	K	$h^2 + k^2 + l^2$	hkl
1	38.43	0.1083	3.000		
2	44.67	0.1444	4.000		
3	65.02	0.2888	8.001		
4	78.13	0.3972	11.001		
5	82.33	0.4333	12.002		
6	98.93	0.5776	16.000		
7	111.83	0.6859	19.001		

0.7220 20.000	36 0.7	116.36	8
---------------	--------	--------	---

(6) Select the appropriate pattern of $h^2 + k^2 + l^2$ values and identify the Bravais lattice.

Peak			$\sin^2 \theta$		
No.	2θ	$\sin^2 \theta$	K	$h^2 + k^2 + l^2$	hkl
1	38.43	0.1083	3.000	3	111
2	44.67	0.1444	4.000	4	200
3	65.02	0.2888	8.001	8	220
4	78.13	0.3972	11.001	11	311
5	82.33	0.4333	12.002	12	222
6	98.93	0.5776	16.000	16	400
7	111.83	0.6859	19.001	19	331
8	116.36	0.7220	20.000	20	420

Sequence suggests a Face-Centered Cubic Bravais Lattice

(7) Calculate lattice parameters.

$$a = \frac{\lambda}{2\sqrt{K}} = \frac{1.540562 \text{ Å}}{2\sqrt{0.0361}} = \underline{4.0541 \text{ Å}}$$

These methods will work for any cubic material. This means metals, ceramics, ionic crystals, minerals, intermetallics, semiconductors, etc...

PART 2 PROCEDURE FOR INDEXING NON-CUBIC XRD PATTERNS

The procedures are standard and will work for any crystal. The equations will differ slightly from each other due to differences in crystal size and shape (i.e., crystal structure). As was the case for cubic crystals, there are two methods of analysis that involve calculations. You will do both. One I will refer to as the mathematical method. The second I will refer to as the analytical method. Both the mathematical and graphical methods require some knowledge of the crystal structure that you are dealing with and the resulting lattice parameter ratios (e.g., c/a, b/a, etc...).

This information can be determined graphically using Hull-Davey charts. We will first introduce the concept of Hull-Davey charts prior to showing how to proper index patterns.

Hull-Davey Charts

The graphical method developed by Hull and Davey¹ are convenient for indexing diffraction patterns, in particular for systems of lower symmetry. The reason is that this method allows one to determine structure even if lattice parameters are unknown. The mathematical methods that will be illustrated in later sections of this module require such knowledge, in particular the values of the various lattice parameter ratios (c/a, b/a, c/b etc...). The steps involved in constructing and indexing patterns using Hull-Davey charts is very straightforward.

First, consider the plane spacing equations for the crystal structures of interest. Some examples are shown below:

Hexagonal
$$\frac{1}{d^2} = \frac{4}{3} \left(\frac{h^2 + hk + k^2}{a^2} \right) + \frac{l^2}{c^2}$$
 Tetragonal
$$\frac{1}{d^2} = \frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2}$$
 Orthorhombic
$$\frac{1}{d^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}$$
 Etc.

You should recall Bragg's law ($\lambda = 2d \sin \theta$), which can be re-written either as:

$$\lambda^2 = 4d^2 \sin^2 \theta$$

or

$$\sin^2\theta = \frac{\lambda^2}{4d^2}$$

Combining Bragg's law with the plane spacing equations yields the relationship:

Hexagonal
$$\frac{1}{d^{2}} = \frac{4}{3} \left(\frac{h^{2} + hk + k^{2}}{a^{2}} \right) + \frac{l^{2}}{c^{2}} = \frac{4\sin^{2}\theta}{\lambda^{2}}$$
Tetragonal
$$\frac{1}{d^{2}} = \frac{h^{2} + k^{2}}{a^{2}} + \frac{l^{2}}{c^{2}} = \frac{4\sin^{2}\theta}{\lambda^{2}}$$
Orthorhombic
$$\frac{1}{d^{2}} = \frac{h^{2}}{a^{2}} + \frac{k^{2}}{b^{2}} + \frac{l^{2}}{c^{2}} = \frac{4\sin^{2}\theta}{\lambda^{2}}$$
Etc...

which can be rearranged in terms of $\sin^2 \theta$ to:

 $^{^{1}}$ A.W. Hull and W.P. Davey, *Phys. Rev.*, vol. 17, pp. 549, 1921; W.P. Davey, *Gen. Elec. Rev.*, vol. 25, pp. 564, 1922.

Hexagonal
$$\sin^2 \theta = \left(\frac{\lambda^2}{4}\right) = \left[\frac{4}{3}\left(\frac{h^2 + hk + k^2}{a^2}\right) + \frac{l^2}{c^2}\right]$$
Tetragonal
$$\sin^2 \theta = \left(\frac{\lambda^2}{4}\right)\left(\frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2}\right)$$
Orthorhombic
$$\sin^2 \theta = \left(\frac{\lambda^2}{4}\right)\left(\frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}\right)$$

You should note that as unlike cubic systems where $\left(\frac{\lambda^2}{4a^2}\right)$ is constant, your results for

non-cubic systems will depend upon ratios of lattice parameters (*i.e.*, c/a, b/a, etc.) and your interaxial angles (*i.e.*, α , β , γ). We will illustrate this ("sort of") below. This is due to the non-equivalence of indices in these systems (*e.g.*, tetragonal – 001 \neq 100; orthorhombic – 001 \neq 010 \neq 100; etc...).

Let's concentrate on hexagonal systems for the time being. <u>I may ask you to derive relationships for tetragonal and orthorhombic systems in a homework assignment.</u> As noted previously, the mathematical method requires knowledge of the c/a ratio. We don't know what it is so we need to construct a Hull-Davey chart. To accomplish this goal, we must first rewrite our revised d-spacing equations as follows:

$$\frac{1}{d^2} = \frac{4}{3} \left(\frac{h^2 + hk + k^2}{a^2} \right) + \frac{l^2}{c^2} = \frac{4\sin^2 \theta}{\lambda^2}$$

$$\downarrow \downarrow$$

$$2\log d = 2\log a - \log \left[\frac{4}{3} \left(h^2 + hk + k^2 \right) + \frac{l^2}{(c/a)^2} \right]$$

Letting the term in brackets equal s, we finally end up with:

$$2\log d = 2\log a - \log[s]$$

We can now construct the Hull-Davey chart by plotting the variation of log [s] with c/a for different hkl values. One axis will consist of c/a values while the other will consist of -log [s] values with the origin set at log [1] = 0. A representative chart is presented on the next page.

Hull-Davey Plot for HCP

hkl=100 -	hkl=002 —	— hkl=101 —	— hkl=102 —	hkl=110
hkl=103 -	—— hkl=200 ——	— hkl=112 —	—— hkl=201 —	hkl=004
hkl=202 –	 hkl=104	— hkl=203 ·	· hkl=210	

To determine the c/a ratio, one only needs to collect an XRD pattern, identify the peak locations in terms of the Bragg angle, calculate the d-spacing for each peak and to construct a single range d-spacing scale ($2 \cdot \log d$) that is the same size as the logarithmic [s] scale (you can use $\sin^2 \theta$ instead if you prefer). I know this is confusing so I have schematically illustrated what I mean in the next set of figures.

Next, you need to calculate the *d*-spacing or $\sin^2 \theta$ values for the observed peaks and mark them on a strip laid along side the appropriate *d*- or $\sin^2 \theta$ - scale.

The strip should be moved horizontally and vertically across the $\log [s] - c/a$ plot until a position is found where each mark on your strip coincides with a line on the chart. This is illustrated schematically on the next figure.

Please keep in mind that my illustrations for the Hull-Davey method are <u>SCHEMATIC</u>. This method is very difficult to convey. You should consult the classical references to find out more information about this technique.

This is our c/a ratio for the pattern!

This method really does work as I showed you in class. Once you know your c/a ratio, you can index the XRD pattern. As we noted above, there are two ways to do this. The first is the mathematical method.

Mathematical Method for Non-Cubic Crystals

Recall the following equation:

$$\sin^2 \theta = \left(\frac{\lambda^2}{4a^2}\right) \left[\frac{4}{3}(h^2 + hk + k^2) + \frac{l^2}{(c/a)^2}\right]$$

Note that the lattice parameter a and the ratio of lattice parameters c/a are constant for a given diffraction pattern. Thus, $\left(\frac{\lambda^2}{4a^2}\right)$ is constant for any pattern. The pattern can now be indexed in by considering the terms in brackets:

$$\frac{4}{3}\Big(h^2+hk+k^2\Big)$$

$$\frac{l^2}{(c/a)^2}$$

Let's start with term 1. This term only depends on the indices h and k. Thus its value can be calculated for different values of h and k. This is done below for various hk values.

Term 1 calculated for various values of hk

	k				
		0	1	2	3
	0	0.000	1.333	5.333	12.000
h	1	1.333	4.000	9.333	17.333
	2	5.333	9.333	16.000	25.333
	3	12.000	17.333	25.333	36.000

The second term can be determined by substituting in the known c/a ratio. This is illustrated for zinc (c/a = 1.8563) in the table below.

Term 2 calculated for zinc (c/a = 1.8563)

I	l ²	$I^2/(c/a)^2$
0	0	0.000
1	1	0.290
2	4	1.161
3	9	2.612
4	16	4.643
5	25	7.255
6	36	10.447

The next step is to add the values for the two terms that are permitted by the structure factor (*i.e.*, the values corresponding to the allowed *hkl* values) and to rank them in increasing order. The structure factor calculation for hexagonal systems yields the following rules:

- 1. When h + 2k = 3N (where N is an integer), there is no peak.
- 2. When *l* is odd, there is no peak.

Both criteria must be met!

Indices (hkl)	l	h + 2k	Peak
301	Odd	3	NO
103	Odd	1 ≠ 3 <i>N</i>	YES
Etc			

Compare with values in appendix 9 in Cullity.

Several values for the bracketed quantity are calculated below minus the peaks forbidden by the structure factor.

h	k	1	sum
0	0	2	1.1608
1	0	0	1.3333
1	0	1	1.6235
1	0	2	2.4942
1	0	3	3.9452
1	1	0	4.0000
0	0	4	4.6433
1	1	2	5.1608
2	0	0	5.3333
2	0	1	5.6235
1	0	4	5.9766
2	0	2	6.4942

The values in this table have been calculated for specific (*hkl*) planes. We can assign specific *hkl* values for each of the peaks in a hexagonal unknown by noting that the sequence of peaks will be the same as indicated in the table.

Lattice parameters can be determined in two ways:

We can calculate a by looking for peaks where l = 0 (i.e., hk0 peaks). If you substitute l = 0 into:

$$\sin^2 \theta = \left(\frac{\lambda^2}{4a^2}\right) \left[\frac{4}{3}(h^2 + hk + k^2) + \frac{l^2}{(c/a)^2}\right]$$

you will get,

$$\sin^2\theta = \left(\frac{\lambda^2}{4a^2}\right) \left\lceil \frac{4}{3} \left(h^2 + hk + k^2\right) \right\rceil$$

OR

$$a = \frac{\lambda}{\sqrt{3}\sin\theta} \sqrt{h^2 + hk + k^2}$$

You can now perform this calculation for every hk0 peak, which will yield values for a. Similarly, values for c can be determined by looking for 00l type peaks. In these instances, h = k = 0. Thus,

$$\sin^2 \theta = \left(\frac{\lambda^2}{4a^2}\right) \left[\frac{4}{3}(h^2 + hk + k^2) + \frac{l^2}{(c/a)^2}\right]$$

becomes

$$c = \frac{\lambda}{2\sin\theta}l$$

Worked Example

Consider the following XRD pattern for Titanium, which was collected using $\text{CuK}\alpha$ radiation.

Index this pattern and determine the lattice parameters.

Steps:

- (1) Identify the peaks.
- (2) Determine values of $\frac{4}{3}(h^2 + hk + k^2)$ for reflections allowed by the structure factor.
- (3) Determine values of $\frac{l^2}{(c/a)^2}$ for the allowed reflections and the known c/a ratio
- (4) Add the solutions from parts (2) and (3) together and re-arrange them in increasing order.
- (5) Use this order to assign indices to the peaks in your diffraction pattern.
- (6) Look for *hk*0 type reflections and calculate *a* for these reflections.
- (7) Look for 00l type reflections. Calculate c for these reflections.

Here we go!

(1) Identify the peaks.

Peak	I/lo	$\sin^2 \theta$	d
35.275	21	0.0918	2.542
38.545	18	0.1089	2.334
40.320	100	0.1188	2.235
53.115	16	0.1999	1.723
63.095	11	0.2737	1.472
70.765	9	0.3353	1.330
74.250	10	0.3643	1.276
76.365	8	0.3821	1.246
77.500	14	0.3918	1.231
82.360	2	0.4335	1.170
86.940	2	0.4733	1.120
92.900	10	0.5253	1.063

(2) Determine values of $\frac{4}{3}(h^2 + hk + k^2)$ for reflections allowed by the structure factor.

		k			
		0 1 2			
	0	0.000	1.333	5.333	12.000
h	1	1.333	4.000	9.333	17.333
"	2	5.333	9.333	16.000	25.333
	3	12.000	17.333	25.333	36.000

(3) Determine values of $\frac{l^2}{(c/a)^2}$ for the allowed reflections and the known c/a ratio.

Titanium: c/a = 1.587

1	f	$f/(c/a)^2$
0	0	0.000
1	1	0.397
2	4	1.588
3	9	3.573
4	16	6.352
5	25	9.925
6	36	14.292

(4) Add the solutions from parts (2) and (3) together and re-arrange them in increasing order.

hkl	Pt.1+Pt.2		hkl	Pt.1+Pt.2
002	1.588		100	1.333
100	1.333		002	1.588
101	1.730		101	1.730
102	2.921		102	2.921
103	4.906		110	4.000
110	4.000		103	4.906
004	6.352	/	200	5.333
112	5.588		112	5.588
200	5.333		201	5.730
201	5.730		004	6.352
104	7.685		202	6.921
202	6.921		104	7.685
203	8.906		203	8.906
105	11.258		210	9.333
114	10.352		211	9.730
210	9.333		114	10.352
211	9.730		212	10.921
204	11.685		105	11.258
006	14.292		204	11.685
212	10.921		300	12.000
106	15.625		213	12.906
213	12.906		302	13.588
300	12.000		006	14.292
205	15.258		205	15.258
302	13.588		106	15.625

(5) Use this order to assign indices to the peaks in your diffraction pattern.

Peak	I/lo	sin²θ	d (nm)	hkl	а	С	h^2+hk+k^2	f ²
35.275	21	0.091805	2.5423	100				
38.545	18	0.108941	2.3338	002				
40.320	100	0.118779	2.2351	101				
53.115	16	0.199895	1.7229	102				
63.095	11	0.273744	1.4723	110				
70.765	9	0.335278	1.3303	103				
74.250	10	0.36428	1.2763	200				
76.365	8	0.382132	1.2461	112				
77.500	14	0.39178	1.2307	201				
82.360	2	0.433526	1.1699	004				
86.940	2	0.473309	1.1197	202				
92.900	10	0.525296	1.0628	104				

(6) Look for *hk*0 type reflections and calculate *a* for these reflections.

Peak	I/lo	sin²θ	d (nm)	hkl	а	С	h^2+hk+k^2	f ²
35.275	21	0.091805	2.5423	100	2.936		1	
38.545	18	0.108941	2.3338	002				
40.320	100	0.118779	2.2351	101				
53.115	16	0.199895	1.7229	102				
63.095	11	0.273744	1.4723	110	2.945		3	
70.765	9	0.335278	1.3303	103				
74.250	10	0.36428	1.2763	200	2.947		4	
76.365	8	0.382132	1.2461	112				
77.500	14	0.39178	1.2307	201				
82.360	2	0.433526	1.1699	004				
86.940	2	0.473309	1.1197	202				
92.900	10	0.525296	1.0628	104				
	•	•	•	AVG	2.943		c/a:	

(7) Look for 00*l* type reflections. Calculate *c* for these reflections.

Peak	I/lo	sin²θ	d (nm)	hkl	а	С	h^2+hk+k^2	ľ
35.275	21	0.091805	2.5423	100	2.936		1	
38.545	18	0.108941	2.3338	002		4.668		4
40.320	100	0.118779	2.2351	101				
53.115	16	0.199895	1.7229	102				
63.095	11	0.273744	1.4723	110	2.945		3	
70.765	9	0.335278	1.3303	103				
74.250	10	0.36428	1.2763	200	2.947		4	
76.365	8	0.382132	1.2461	112				
77.500	14	0.39178	1.2307	201				
82.360	2	0.433526	1.1699	004		4.680		16
86.940	2	0.473309	1.1197	202				
92.900	10	0.525296	1.0628	104				•
_			•	AVG	2.943	4.674	c/a:	1.588

Pretty good correlation with ICDD value. Actual c/a for Titanium is 1.5871

This method, though effective for most powder XRD data, can yield the wrong results if XRD peaks are missing from your XRD pattern. In other words, missing peaks can cause you to assign the wrong *hkl* values to a peak. Other methods should be available.

Analytical Method for Non-Cubic Crystals

To accurately apply this technique, one must first consider our altered plane spacing equation:

$$\sin^2 \theta = \left(\frac{\lambda^2}{4a^2}\right) \left[\frac{4}{3}(h^2 + hk + k^2) + \frac{l^2}{(c/a)^2}\right]$$

Since a and c/a are constants for any given pattern, we can re-arrange this equation to:

$$\sin^2 \theta = A(h^2 + hk + k^2) + Cl^2$$

where $A = \frac{\lambda^2}{3a^2}$ and $C = \frac{\lambda^2}{4c^2}$. Since h, k, and l are <u>always</u> integers, the term in parentheses, $h^2 + hk + k^2$ can only have values like 0, 1, 3, 4, 7, 9, 12... and l^2 can only have values like 0, 1, 4, 9,....

We need to calculate $\sin^2 \theta$ for each peak, divide each $\sin^2 \theta$ value by the integers 3, 4, 7, 9... and look for the common quotient (*i.e.*, the $\sin^2 \theta / n$ value that is equal to one of the observed $\sin^2 \theta$ values). The $\sin^2 \theta$ values representing this common quotient refer to hk0 type peaks. Thus this common quotient can be tentatively assigned as A.

We can now re-arrange terms in our modified equation to obtain *C*. This is done as follows:

$$\sin^2 \theta = A(h^2 + hk + k^2) + Cl^2$$

$$\downarrow \downarrow$$

$$Cl^2 = \sin^2 \theta - A(h^2 + hk + k^2)$$

We get the value of C by subtracting from each $\sin^2 \theta$ the values of $n \cdot A$ (i.e., A, 3A, 4A, 7A,...) where A is the common quotient that we identified above. Next, we need to look for the remainders that are in the ratio of 1, 4, 9, 16..., which will be peaks of the 00l type. We can determine C from these peaks. The remaining peaks are neither hk0-type nor 00l type. Instead they are hkl-type. They can be indexed from a combination of A and C values. Let's do an example.

Worked Example

Steps:

- (1) Identify the peaks and calculate $\sin^2 \theta$ for each peak.
- (2) Divide each $\sin^2 \theta$ value by the integers 3, 4, 7, 9....
- (3) Look for the common quotient.
- (4) Let the lowest common quotient represent A.
- (5) Assign *hk*0 type indices to peaks.
- (6) Calculate $\sin^2 \theta$ *nA* where *n* = 1, 3, 4, 7....

(7) Look for the lowest common quotient. From this we can identify 00*l* type peaks. Recall, that 001 is not allowed for hexagonal systems. The first 00*l* type peak will be 002. We can calculate *C* from:

$$C \cdot l^2 = \sin^2 \theta - A \cdot (h^2 + hk + k^2)$$

- (8) Look for values of $\sin^2 \theta$ that increase by factors of 4, 9... (this is because l = 1, 2, 3... and $l^2 = 1, 4, 9...$). Peaks exhibiting these characteristics are 00l type peaks, which can be assigned the indices 004, 009, etc...). Also note that the values of $\sin^2 \theta$ will be some integral number times the value observed in (7) which indicates the indices of the peak
- (9) Peaks that are neither *hk*0 nor 00*l* can be identified using combinations of our calculated *A* and *C* values.
- (10) Calculate the lattice parameters from the values of A and C.

Confused yet? You could be. I was the first time I learned these things. Let me show you an example that should make all things clear.

Here we go!

Consider the diffraction pattern for Titanium as shown below. This one is a little different than the specimen that we analyzed above.

Steps to success:

- 1. Calculate $\sin^2\theta$ for each peak
- 2. Divide each $\sin^2 \theta$ value by integers 3, 4, 7... (from h^2 +hk+ k^2 allowed by the structure factor)
- 3. Look for lowest common quotient.
- 4. Let lowest common quotient = A.
- 5. Peaks with lowest common quotient are *hk*0 type peaks. Assign allowed *hk*0 indices to peaks.

Peak	I/lo	sin²θ	$(\sin^2\theta)/3$	(sin²θ)/4	$(\sin^2\theta)/7$	$(\sin^2\theta)/9$	$(\sin^2\theta)/12$	hkl		(sin²θ)/LCQ
35.100	25.5	0.0909	0.0303	0.0227	0.0130	0.0101	0.0076	100		1.0
38.390	25.6	0.1081	0.0360	0.0270	0.0154	0.0120	0.0090		$- = 3 \times A$	1.2
40.170	100	0.1179	0.0393	0.0295	0.0168	0.013 1	0.0098			1.3
53.000	12.8	0.1991	0.0664	0.0498	0.0284	0.0221	0.0166		- = 4 x <i>A</i>	2.2
62.940	13.4	0.2725	0.0908	0.0681	0.0389	0.0303	0.0227	110		3.0
70.650	13	0.3343	0.1114	0.0836	0.0478	0.0371	0.0279			3.7
74.170	1.8	0.3636	0.1212	0.0909	0.0519	0.0404	0.0303	200		4.0
76.210	13.1	0.3808	0.1269	0.0952	0.0544	0.0423	0.0317			4.2
77.350	9.3	0.3905	0.1302	0.0976	0.0558	0.0434	0.0325			4.3
82.200	1.7	0.4321	0.1440	0.1080	0.0617	0.0480	0.0360			4.8
86.740	2.1	0.4716	0.1572	0.1179	0.0674	0.0524	0.0393		– = 7 x <i>A</i>	5.2
92.680	1.8	0.5234	0.1745	0.1308	0.0748	0.0582	0.0436			5.8
102.350	4.4	0.6069	0.2023	0.1517	0.0867	0.0674	0.0506			6.7
105.600	1.4	0.6345	0.2115	0.1586	0.0906	0.0705	0.0529	210		7.0
109.050	8.3	0.6632	0.2211	0.1658	0.0947	0.0737	0.0553	•		7.3
114.220	5.4	0.7051	0.2350	0.1763	0.1007	0.0783	0.0588			7.8
119.280	2.7	0.7445	0.2482	0.1861	0.1064	0.0827	0.0620			8.2
						A =	<u>0.0908</u>		-	

Indices correspond to: h^2 +hk+ k^2 = 1, 3, 4, 7... or hk = 10, 11, 20, 21

- 6. Subtract from each $\sin^2\theta$ value 3A, 4A, 7A... (from $h^2 + hk + k^2$ allowed by the structure factor)
- 7. Look for lowest common quotient (LCQ). From this you can identify 00*l*-type peaks. The first allowed peak for hexagonal systems is 002. Determine *C* from the equation:

$$C \cdot l^2 = \sin^2 \theta - A (h^2 + hk + k^2)$$

since $h = 0$ and $k = 0$, then:
 $C = LCQ/l^2 = \sin^2 \theta / l^2$

8. Look for values of $\sin^2\theta$ that increase by factors of 4, 9, 16... (because $I = 1,2,3,4..., I^2 = 1,4,9,16...$) The peaks exhibiting these characteristics are 00I-type peaks (002...).

We identify the 4th peak as 102 because we observe the LCQ for $\sin^2\theta$ -1A. Recall that the 1 comes from the quadratic form of Miller indices (i.e., $h^2+hk+k^2=1$).

We identify the 8th peak as 112 because we observe the LCQ for $\sin^2\theta$ -3A. Recall that the 1 comes from the quadratic form of Miller indices (i.e., $h^2+hk+k^2=3$).

We identify the 11th peak as ...

etc...

<i>/</i> C											
1.54062											
Peak	I/Io	sin²θ	sin²θ- <i>A</i>	$\sin^2\theta$ -3A	sin²θ-4 <i>A</i>	sin²θ-4 <i>A</i>	h	k	1	C=LCQ/I ²	I ² =LCQ/C
35.100	25.5	0.0909					1	0	0		
38.390	25.6	0.1081	0.0173				0	0	2	0.0270	4.0
40.170	100	0.1179	0.0271								
53.000	12.8	0.1991	0.1083				1	0	2	0.0271	
62.940	13.4	0.2725	0.1817	0.0001			1	1	0		
70.650	13	0.3343	0.2435	0.0618							
74.170	1.8	0.3636	0.2728	0.0911	0.0003		2	0	0		
76.210	13.1	0.3808	0.2900	0.1083	0.0175		1	1	2	0.0271	
77.350	9.3	0.3905	0.2997	0.1180	0.0272						
82.200	1.7	0.4321	0.3413	0.1597	0.0688		0	0	4	0.0270	16
86.740	2.1	0.4716	0.3807	0.1991	0.1083		2	0	2	0.0271	
92.680	1.8	0.5234	0.4326	0.2509	0.1601						
102.350	4.4	0.6069	0.5161	0.3345	0,2436						
105.600	1.4	0.6345	0.5436	0.3620	0.271		2	1	0		
109.050	8.3	0.6632	0.5724	0.3907	0,2999	0.0274					
114.220		0.7051	0.6143	0.4326	0.3418	0.0693					
119.280	2.7	0.7445	0.6537	0.4721	0.3812	0.1087					

This peak is 004 because sqrt(LCQ/C)=4

9. Peaks that are not hk0 or 00l can be identified using combinations of A and C values.

This is accomplished by considering:

$$\sin^2\theta = C \cdot I^2 + A(h^2 + hk + k^2)$$

Cycle through allowed values for l and hk, and compare $\sin^2\theta$ value to labeled peaks.

10. Once A and C are known, the lattice parameters can be calculated.

_	$\sin^2\theta = C \cdot l^2 + A \cdot (h^2 + hk + k^2)$

<i>A</i> 0.0908	<i>C</i> 0.0270					$\sqrt{}$
Peak	I/lo	sin²θ	h	k	I	$\sin^2 \theta$ Calculated
35.100	25.5	0.0909	1	0	0	0.0908
38.390	25.6	0.1081	0	0	2	0.1081
40.170	100	0.1179	1	0	1	0.1179
53.000	12.8	0.1991	1	0	2	0.1989
62.940	13.4	0.2725	1	1	0	0.2725
70.650	13	0.3343	1	0	3	0.3341
74.170	1.8	0.3636	2	0	0	0.3633
76.210	13.1	0.3808	1	1	2	0.3806
77.350	9.3	0.3905	2	0	1	0.3903
82.200	1.7	0.4321	0	0	4	0.4324
86.740	2.1	0.4716	2	0	2	0.4714
92.680	1.8	0.5234	1	0	4	0.5232
102.350	4.4	0.6069	2	0	3	0.6065
105.600	1.4	0.6345	2	1	0	0.6358
109.050	8.3	0.6632	2	1	1	0.6628
114.220	5.4	0.7051	1	1	4	0.7049
119.280	2.7	0.7445	2	1	2	0.7439

10. Once A and C are known, the lattice parameters can be calculated.

а	С	c/a		
2.951	4.686	1.588		

HOW DO THESE VALUES COMPARE WITH THOSE FROM THE ICDD CARDS?