Travaux dirigés ET3 Titrages

ET3.1. Dosages acido-basiques

Une bouteille d'acide chlorhydrique porte les indications suivantes : masse volumique 1190 kg.m⁻³, pourcentage massique en HCl 37 % (M_{HCI} = 36,5 g.mol⁻¹).

On dose, par de la soude à $0,005 \text{ mol.L}^{-1}$, une solution formée de 5 mL de cet acide et complétée à 500 mL par de l'eau. On repère le volume à l'équivalence $V_e = 12,1 \text{ mL}$ (comment?). Quelle est la verrerie utilisée pour les différentes opérations? Les indications de l'étiquette sont-elles correctes?

ET3.2. Deux acidités

Soit un diacide H_2A caractérisé par deux constantes d'acidité K_{a1} et K_{a2} . Les deux acidités sont dosées séparément lorsqu'à la première équivalence H_2A est dosé à mieux de 99 % alors que HA^- est dosé à moins de 1 %. Quelle condition doit alors vérifier la différence pK_{a2} - pK_{a1} ?

ET3.3. Dosage par conductimétrie

On suit par conductimétrie le dosage de 100 mL d'une solution d'acide sulfurique H_2SO_4 (considéré comme un diacide fort) à 0,01 mol.L⁻¹ par de la soude NaOH à 0,5 mol.L⁻¹. Donner l'expression de la conductivité σ de la solution fonction du volume x (exprimé en mL) de soude versé.

<u>Donnée</u>: λ° (mS.m².mo1⁻¹): H_3O^+ 35,0; HO^- 19,8; Na^+ 5,0; SO_4^{2-} 16,0.

ET3.4. État d'équilibre d'une base faible

L'ion phosphate PO_4^{3-} est une base faible, elle est introduite en solution aqueuse sous forme de phosphate de sodium de concentration initiale $C_0 = 10^{-1}$ mol.L⁻¹.

Déterminer la composition du système à l'équilibre chimique.

On indique que l'ion phosphate intervient dans le couple acide-base HPO_4^{2-}/PO_4^{3-} , de pK_a égal à 12,3. Donnée : pKe = 14,0.

ET3.5. Dosage d'un mélange acide

Le dosage d'un volume V = 10 mL d'un mélange acide sulfureux, H_2SO_3 (concentration C_1), acide sulfurique, H_2SO_4 (concentration C_2), par de la soude à $C_0 = 1$ mol.L⁻¹ fait apparaître deux équivalences pour les volumes $V_a = 1,5$ mL et $V_b = 2,0$ mL de soude versée, marquées respectivement par le virage de l'hélianthine et de la phénolphtaléine. Déterminer C_1 et C_2 .

<u>Donnée</u>: H_2SO_3 $pK_{a1} = 2$, $pK_{a2} = 7$; H_2SO_4 première acidité forte, $pK'_{a2} = 2$.