Operating System Overview

Operating System Objectives

 Operating systems are among the most complex pieces of software ever developed

CConvenience

Makes the computer more convenient to use

Allows computer system resources to be used in an efficient manner

Ability to evolve

 Permit effective development, testing, and introduction of new system functions without interfering with service

Operating System Services

- Program development
 Editors, debuggers, frameworks
- Program executionInitialization, scheduling
- Access to I/O devices
 Uniform interface, hides details
- Controlled access to files
 Authorization, sharing, caching

OS Services (continued...)

- System access
- Error detection and response
 - Hardware errors: memory error or device failure
 - Software errors: arithmetic errors, access forbidden memory locations, allocation errors
- Accounting
 - collect statistics (billing)
 - monitor performance
 - caused to anticipate future enhancements

OS as a Resource Manager

- OS executes same way as ordinary computer software - it is set of computer programs
- The key difference is
- Kernel

 - Contains most-frequently used functions

Evolution of Operating Systems

- Operating systems have evolved because
 - New types of hardware and hardware upgrades
 - □ Development of new services and needs
 - Fixes to OS faults

Serial Processing
Simple Batch Processing
Multi-programmed Batch Systems
Time-Sharing Systems

Distributed Processing Systems

7777

Serial Processing

- Serial Processing
 - No operating system
 - Machines run from a console with display lights and switches

 - Setup included loading the compiler, source program, saving compiled program, and loading and linking

Simple Batch Systems

Simple Batch Systems

Monitors

- Software that controls the running programs
- Batch jobs together
- Program branches back to monitor when finished
- Resident monitor is in main memory and available for execution

- Special type of programming language
- Provides instructions to the monitor (what compiler/data to use)

Hardware Features

- Memory protection do not allow the memory area containing the monitor to be altered
- Timer prevents a job from monopolizing the system

Sample Example

	Job 1	Job 2	Job 3
Type of Job	Heavy computing	Heavy memory	Heavy I/O
Duration	5 min	15 min	10 min
Memory	50 M	100 M	75 M
Need disk	No	No	Yes
Need terminal	No	Yes	No
Need printer	No	No	Yes

Multiprogramming

Effects of Multiprogramming

	Uniprogramming	Multiprogramming
Processor use	20%	40%
Memory use	33%	67%
Disk use	33%	67%
Printer use	33%	67%
Elapsed time	30 min.	15 min.
Throughput rate	6 jobs/hr	12 jobs/hr
Mean response	18 min.	10 min.
time	(5+20+30)/3	(5+10+15)/3

Time-Sharing Systems

- Allow several users to interact at the same time
- Emphasizes response time over processor use
- Compatible time sharing system (CTSS) 1962

 ≈32K 36-bit words, switched users every 0.2 seconds
 Supported up to 32 users
- MULTICS (1965) Computer service for Boston
- Systems grew as user requirements expanded
 - MS-DOS 1.0 (8k, 1981)

 - Windows 95 − 32-bit internals (1995)
 - **@**...

Migration of Operating-System Concepts and Features

Distributed Processing Systems

- Symmetric multiprocessing
 - athere are multiple processors
 - and I/O facilities
 - All processors can perform the same functions
- Distributed operating systems
 - provides the illusion of a single main memory and single secondary memory space
 - caused for distributed computing

Major Achievements

- Processes
- Memory Management
- Information protection and security
- Scheduling and resource management
- System structure

Processes

- Processes are the fundamental structure of operating systems
 - A unit of activity characterized by a sequential thread of execution, current state, and an associated set of system resources
- Processes solved the problems introduced by
 - Multiprogramming batch operations

 - Real-time transaction systems
- Principle tool available to system programmers in developing multi-tasking systems was the interrupt!

Processes (continued...)

- Problems in Coordination of processes
 - Improper synchronization
 - Failed mutual exclusion
 - Non-determinate program operation
 - Deadlocks
- Processes consist of three components
 - An executable program
 - Associated data (variables, workspace, buffers, stacks, etc.)
 - The execution context of the program

Processes in Windows XP

- Hit CTRL-ALT-DEL to start Task Manager
- Shows info about the PC's performance
- Info gathered by OS; updated continuously
- The Applications tab shows running applications and allows them to be ended

Processes in Linux

Memory Management

- Responsibilities of memory management
 - Process isolation
 - Automatic allocation and management
 - Support of modular programming
 - Protection and access control
 - Long-term storage
- These requirements typically met by
 - Virtual memory

Memory in Windows XP

- The Performance tab shows CPU and virtual memory usage over time
- Memory statistics also shown

Information Protection and Security

- Time-sharing and computer networks require
 - Availability
 - Confidentiality

 - Authenticity