Optimization

Lusine Poghosyan

AUA

February 15, 2019

Numerical Methods for Unconstrained Optimization

minimize f(x)

subject to $x \in \Omega$,

where $f: \mathbb{R}^n \to \mathbb{R}$ and $\Omega \subset \mathbb{R}^n$, with $n \ge 1$.

One Dimensional Search Methods

Here we consider the minimization of univariate function $f:[a,b] \to \mathbb{R}$.

In an iterative algorithm we start with an initial candidate solution x_0 and generate sequence of points x_1, x_2, \ldots Each x_{k+1} iteration depends on previous points x_0, x_1, \ldots, x_k . The algorithm may also use the value of f or f' or even f'' at some points:

- Golden section Search (uses only f);
- Fibonacci method (uses only f);
- Bisection method (uses only f');
- Newton's method (uses f' and f'').

Line Search in Multidimensional Optimization

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function that we wish to minimize.

Iterative algorithms for finding a minimizer of f are of the form

$$x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}, \quad k = 0, 1, \dots,$$

where $x^{(0)}$ is the initial approximation.

 α_k is called the step-size and $d^{(k)} \in \mathbb{R}^n$ is called the search direction.

At each iteration we face two problems:

- first, we need to choose the search direction
- second, we need to choose the step size α_k when $d^{(k)}$ is fixed

Assume we use a descent direction $d^{(k)}$, i.e., $\nabla f(x^{(k)})^T d^{(k)} < 0$.

Choosing the step size

In order to choose the step size we need to consider the following univariate function

$$\Phi_k(\alpha) = f\left(x^{(k)} + \alpha d^{(k)}\right), \quad \alpha \ge 0.$$

Example

Let $f(x_1, x_2) = x_1 \sin(x_1 + x_2)$.

- **a.** Show that $d = [-2, 1]^T$ is a descent direction at $x^* = [0, 1]^T$.
- **b.** Construct the function $\Phi(\alpha) = f(x^* + \alpha d)$, $\alpha \ge 0$ and calculate $\Phi'(0)$.
- **c.** Plot the graphs of $f(x_1, x_2)$ and $\Phi(\alpha)$, $\alpha \ge 0$.

$$\Phi'_{k}(\alpha) = \nabla f \left(x^{(k)} + \nabla d^{(k)} \right)^{T} d^{(k)}$$

$$\Phi'_{k}(0) = \nabla f \left(x^{(k)} \right)^{T} d^{(k)}$$

 $\Phi'_k(0) < 0$ as $d^{(k)}$ is a descent direction at $x^{(k)}$.

There are two methods for choosing α_k :

- exact line search, i.e., find the minimum point of $\Phi_k(\alpha)$
- inexact line search, i.e., we need to choose α_k to ensure that $f(x^{(k+1)}) < f(x^{(k)})$ but α_k shouldn't be too small or too large.

Let $\varepsilon \in (0,1)$, $\gamma > 1$ and $\eta \in (\varepsilon,1)$.

The *Armijo condition* ensures that α_k is not too large by requiring that

$$\Phi_k(\alpha_k) \leq \Phi_k(0) + \varepsilon \alpha_k \Phi_k'(0)$$

or

$$f\left(\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}\right) \leq f\left(\mathbf{x}^{(k)}\right) + \varepsilon \alpha_k \nabla f\left(\mathbf{x}^{(k)}\right)^T \mathbf{d}^{(k)}.$$

It also ensures that α_k is not too small by requiring that

$$\Phi_k(\gamma \alpha_k) \ge \Phi_k(0) + \varepsilon \gamma \alpha_k \Phi'_k(0)$$

or

$$f\left(x^{(k)} + \gamma \alpha_k d^{(k)}\right) \ge f\left(x^{(k)}\right) + \varepsilon \gamma \alpha_k \nabla f\left(x^{(k)}\right)^T d^{(k)}.$$

The Goldstein condition (Armijo-Goldstein):

$$\Phi_k(\alpha_k) \leq \Phi_k(0) + \varepsilon \alpha_k \Phi'_k(0),$$

$$\Phi_k(\alpha_k) \ge \Phi_k(0) + \eta \alpha_k \Phi'(0).$$

The Wolfe condition (Armijo-Wolfe):

$$\Phi_k(\alpha_k) \le \Phi_k(0) + \varepsilon \alpha_k \Phi'_k(0),$$

$$\Phi'_k(\alpha_k) \ge \eta \Phi'_k(0).$$

The strong Wolfe condition:

$$\Phi_{k}(\alpha_{k}) \leq \Phi_{k}(0) + \varepsilon \alpha_{k} \Phi'_{k}(0),$$
$$|\Phi'_{k}(\alpha_{k})| \leq \eta |\Phi'_{k}(0)|.$$

Armijo backtracking algorithm to chose the step size α_k

- Step 1: We start with some candidate value $\alpha_k^{(0)}$ for the step size α_k . Take a contraction (backtracking) factor $\tau \in (0,1)$ (typically $\tau = 0.5$) and $\ell = 0$.
- Step 2: If $\alpha_k^{(\ell)}$ satisfies a prespecified termination condition (usually the first Armijo inequality) then return $\alpha_k^{(\ell)}$ for α_k . If the condition is not satisfied, then take

$$\alpha_k^{(\ell+1)} = \tau \alpha_k^{(\ell)},$$
$$\ell \longmapsto \ell + 1$$

and do the Step 2.

Example

Assume we want to find the minimizer of

$$f(x_1,x_2)=2x_1^2+x_2^2,$$

using the line search method. We start with $\left(x_1^{(0)},x_2^{(0)}\right)=(1,1)^T$ and as search direction we take $d^{(0)}=-\nabla f\left(x^{(0)}\right)$. In order to calculate the next approximation $x^{(1)}$ we need a step size α_0 which we are going to find by using Armijo backtracking algorithm. In Armijo backtracking algorithm let's take $\alpha_0^{(0)}=2,\, \tau=0.5$ and $\varepsilon=0.1$. Then we calculate $\left(x_1^{(1)},x_2^{(1)}\right)$.