Bartolomeo Ryan 10208 Jeux et Sports

Modélisation de solides déformables

Plan

I. Présentation et première approche

- A. Inspiration
- B. Étude d'un mouvement
- C. Première solution : les systèmes masse-ressort

II. Réalisation

- A. Première méthode d'intégration : Euler
- B. Deuxième Méthode : Runge Kutta
- C. Problème de la réaction du support

III.Deuxième approche

- A. Modèle du gaz parfait
- B. Confirmation avec expérimentation

Présentation du problème et première approche

Inspiration

Modélisation réaliste du mouvement

Modèle informatique simple

7

Mouvements naturels

Mouvements type Système masse-ressort

Simplification

Structure du système

II. Réalisation

Méthode d'Euler

x[t + 1] = x[t] + v[t] * dtv[t + 1] = v[t] + acceleration(t) * dt

13

Premier algorithme

Premier résultat

Méthode de Runge-Kutta

Expérimentatio n

$$\begin{cases} y' = z \\ z' = f(t, y, z) \end{cases}$$

$$\mathbf{Y}' = \mathbf{F}(\mathbf{t}, \mathbf{Y}), \text{ avec } \mathbf{Y}(\mathbf{t}) = \begin{pmatrix} y(t) \\ z(t) \end{pmatrix}, \mathbf{Y}(\mathbf{t}_0) = \begin{pmatrix} y_0 \\ y_0' \end{pmatrix}$$

$$y'' = f(t, y, y'), \tag{1}$$

$$y(t_0) = y_0, \quad y'(t_0) = y_0'$$
 (2)

Nouvelle description du système

Effet de respiration

gravité

frottement du ressort

force de ressort élastique

Collisions

Collision "magnétique"

Résultats pour différentes valeurs de K

forces

accélération

gravité

frottement du ressort

force de ressort élastique

Problèmes : Nombreux calculs de replacement Imprécision sur les points à la surface

III. Deuxième approche

Modèle du gaz parfait

$$\vec{F} = Pd\vec{S}$$

$$P = \frac{nRT}{V}$$

$$\vec{F} = K_{nRT} \frac{1}{V} d\vec{S}$$

Calcul du volume

Théorème de Stokes :

$$\iint_{S} \operatorname{div} \vec{F} \cdot d\vec{S} = \oint_{C} \vec{F} \cdot d\vec{l}$$

$$\vec{F} = x\vec{e_x}$$
 $\vec{F} \cdot d\vec{l}$ $\vec{f} \cdot d\vec{l}$ $\vec{f} \cdot d\vec{l}$ $\vec{f} \cdot \vec{r} = 1$ $\vec{f} \cdot \vec{r} = 1$

$$S \approx \sum x_i \cdot n_i \cdot dl$$

Compromis ressort/gaz

Résultat

gaz

gravité

force de ressort élastique

Améliorations possibles

