Week13_텍스트분석_8장_#2

토픽 모델링(Topic Modeling)

문서 집합에 숨어 있는 주제를 찾아내는 것

머신러닝 기반 토픽 모델: 숨겨진 주제를 효과적으로 표현할 수 있는 중심 단어를 함축적으로 추출

자주 사용되는 기법

- LSA(Latent Semantic Analysis)
- LDA(Latent Dirichlet Allocation)

LDA로 토픽 모델링 수행하기

(복습과제) 뉴스그룹 데이터로 사이킷런의 LatentDirichletAllocation 클래스를 이용해서 토픽 모델링

문서 군집화(Document Clustering)

비슷한 텍스트 구성의 문서를 군집화(Clustering)하는 것

텍스트 분류 기반 문서 분류와 비교

동일한 군집에 속하는 문서를 같은 카테고리 소속으로 분류할 수 있음

- → 텍스트 분류 기반 문서 분류와 유사
- 텍스트 분류 기반 문서 분류: 사전에 결정 카테고리 값을 가진 학습 데이터세트 필요
- 문서 군집화: 비지도학습 기반 동작

문서 유사도

문서와 문서 간 유사도를 비교하기

문서 유사도 측정 방법 - 코사인 유사도(Cosine Similarity)

벡터와 벡터 간 유사도를 비교할 때 두 벡터 사이의 사잇각을 구해서 벡터의 상호 방향성이 얼마나 유사한지에 기반

Week13_텍스트분석_8장_#2 1

두 벡터 사잇각

• 두 벡터 A와 B의 코사인 값 - A와 B의 내적 값을 이용

$$\text{similarity} = \cos\theta = \frac{A \cdot B}{\parallel A \parallel \parallel B \parallel} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$

코사인 유사도를 문서 유사도 비교에 많이 사용하는 이유

문서를 피처 벡터화 변환 \rightarrow 희소 행렬이 되기 쉬운데, 희소 행렬 기반에서 문서와 문서 벡터 간의 크기에 기반한 유사도(ex.유클리드 거리 기반 지표)는 정확도가 떨어지기 쉬움 문서가 매우 긴 경우 글이 길기 때문에 단어 빈도수도 더 \bigcap \rightarrow 공정한 비교 X

한글 텍스트 처리 - 네이버 영화 평점 감성 분석

한글 NLP 처리의 어려움

한글에는 띄어쓰기랑 다양한 조사가 있어서 라틴어 처리보다 어려움

KoNLPy

파이썬의 대표적인 한글 형태소 패키지

- 형태소 분석(Morphological analysis): 말뭉치를 형태소 어근 단위로 쪼개고 각 형태소에 품사 태깅을 부착하는 작업
- KoNLPy에서 꼬꼬마(Kkma), 한나눔(Hannanum), Komoran, 은전한닢 프로젝트 (Mecab), Twitter 등 5개의 형태소 분석 모듈 모두 사용 가능
 - Mecab은 윈도우에서 안 됨

Week13_텍스트분석_8장_#2 3