# DISCRETE ANALOGUE OF THE MCADAMS POKER MODEL

# SEARCHING FOR OPTIMAL STRATEGIES AND NASH EQUILIBRIA

IML Scholars: Aryan Gupta, Mihir Tandon MENTORS: PROF. A.J. HILDEBRAND, ANDRÉS MEDINA ILLINOIS MATHEMATICS LAB, UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

# Introduction and Motivation

We base our work on the card game developed by Duke Economist David McAdams, aptly named 'the World's Simplest Poker', is a zero-sum game that features a two-player, symmetric blinds system. It is structured as follows:

- . **Dealing**: Both players receive a single card with a value that can be modeled as a random variable between [0, 1].
- 2. Deciding: After seeing their card, both players are presented with the option to either bet or fold.
- 3. **Outcome**: Should both players choose the same action, the game proceeds to a *showdown* (in which the player with the card of higher value wins the round). Otherwise, the betting player wins by *forfeit*.

We apply the model in the discrete setting, replacing the real-valued cards with a random element from the discrete set  $\{1, 2, 3, ...n\}$ . Through this lens, we ask the following:

- What is the optimal playing strategy?
- When should a player bluff?
- Does there exist a Nash Equilibrium?

#### **MECHANICS**

The Poker model adheres to the following mechanics, in relation to Player A and Player B:

| Action     | Result        | Profits |  |  |
|------------|---------------|---------|--|--|
| Bet, Bet   | $c_A > c_B$   | (2, -2) |  |  |
| Bet, Bet   | $c_A < c_B$   | (-2,2)  |  |  |
| Fold, Fold | $c_A > c_B$   |         |  |  |
| Fold, Fold | $c_A < c_B$   |         |  |  |
| Bet, Fold  | Player A Wins | (1, -1) |  |  |
| Fold, Bet  | Player B Wins | (-1,1)  |  |  |

#### DETERMINISTIC STRATEGIES

As per the dynamics of the game, we can define a the following two deterministic strategies that players can adopt:

- Pure Cutoff Strategies: A player bets if and only if their card  $c \geq k$ , where k is some arbitrary cutoff in the set  $\{1, 2, 3...n\}$ , and folds otherwise.
- Pure Betting Strategies: A player bets if and only if their card  $c \in \mathcal{B}$ , where  $\mathcal{B}$  is their discrete betting set, and folds otherwise.

#### EXPECTED VALUE VISUALIZATION

#### **Building Intuition for Optimal Strategies**

We started by deriving a closed-form solution for the expected payout of a player given cutoff strategies. We found the relationship

$$\mathbb{E}_A(k_A, k_B) = \frac{3k_A k_B - k_B^2 - 2k_A^2 + 2k_A - 2k_B + nk_A - nk_B}{n(n-1)},$$

depicted in Figure 1 for the case n = 50. By varying  $k_A$  and fixing  $k_B$ , we can draw the following conclusions from the graph:

- Opponent plays safe: When your opponent bets conservatively  $(k_B \approx n)$ , your best move would be to play riskier  $(k_A = 0).$
- Opponent plays risky: When your opponent bets riskily  $(k_B \approx 0)$ , your best move would be to be slightly more conservative  $(k_A \approx \frac{1}{4}n)$ .



**Figure 1:**  $\mathbb{E}_A(k_A, k_B)$  with constant  $k_B$  and  $1 \le k_A \le n$ 

Similarly, we can expand our analysis to three dimensions, where we allow both  $k_A$  and  $k_B$  to vary freely over the range [1, n]. Figure 2 depicts the lattice for  $\mathbb{E}_A$ . Notice that, by the nature of the lattice, there exists **no global minimum** in  $\mathbb{E}_A$ .



**Figure 2:**  $\mathbb{E}_A(k_A, k_B)$  when  $1 \le k_A, k_B \le n$ 

*Remark.* The exact optimal  $k_A$  when the opponent plays risky is gi-

$$k_A = \frac{2 + n + 3k_B}{4}$$

where we can then perform case-by-case analysis for  $2+n+3k_B$ (mod 4). However, it should be noted that

• Cutoff Strategies are non-dominant: As can be seen in Table 1,  $\forall k_x, \exists \mathcal{B}_x \text{ such that } \mathbb{E}_A(\mathcal{B}_x) \geq \mathbb{E}_A(k_x)$ .

As such, we can now direct our efforts to betting set, and as we will later introduce, general strategies, in our search for dominant strategies and Nash Equilibria.

### NASH EQUILIBRIA & DOMINANCE

As part of our game theoretic approach to the game, we search for the following:

- A Nash Equilbrium, where neither player has an incentive to change strategies in response to their opponent's current strategy.
- A **Dominant Strategy**, where one player always achieves their maximum payout by choosing a particular strategy.

We do this by laying the following groundwork:

• Defining General Strategies: A player's most general strategy can be expressed as a vector of probabilities,

$$\vec{p} = (p_1, p_2, p_3, \dots, p_n),$$

where Player A bets on card  $c_i$  with probability  $p_i$ .

• Applying Nash's Theorem: By Nash's Theorem, any game with a finite number of players and a finite number of pure strategies has at least one Nash Equilibrium.

Consider the case n=3. We proved that, among the aforementioned General Strategies, the unique Nash Equilibrium occurs when both players adopt the strategy

$$(p_1, p_2, p_3) = (1/3, 1/3, 1).$$

Additionally, we proved that there is **no dominant strategy** for the discrete McAdams Model.

#### FUTURE DIRECTIONS

The results of our work show promise, and we hope to move forward in the following sectors:

- Deterministic Nash Equilibria: We know, through computation, that there exists no deterministic Nash Equilibria for  $n \leq 10$ . Does there exist any deterministic Nash Equilibria for n > 10?
- General Nash Equilibria: Is there a pattern we can extrapolate to find General Strategy Nash Equilibria for any arbitrary n?

# Intransitivity & Iterated Strategies

By analyzing payouts for all possible pairs  $\mathcal{B}_A$ ,  $\mathcal{B}_B$ of betting sets (depicted in Table 1 for n = 3), Player A can find their best possible response  $\mathcal{B}_A$  given  $\mathcal{B}_B$ .

- . **Usage**: Suppose Player B chooses  $\mathcal{B}_B = \{2, 3\}$ . Looking at the corresponding row, we see that  $\mathcal{B}_A = \{3\}$  maximizes Player A's payout.
- 2. Player B Counter-strategy: As Player B aims to minimize Player A's profit, they would change to  $\mathcal{B}_B = \{1, 3\}.$
- 3. Player A Counter-counter-strategy: Player A can then change to  $\mathcal{B}_A = \{1, 2, 3\}$  in order to maximize their payout.
- 4. **Intransitivity**: Player B then chooses  $\mathcal{B}_B = \{2,3\}$ , after which player A chooses  $\mathcal{B}_A = \{3\}$ , returning us to our starting point. This shows that the game is intransitive, as there exists a strategy cycle.

| $\mathcal{B}_Backslash\mathcal{B}_A$ | Ø  | {1} | {2} | {3}             | $\{1, 2\}$ | $\{1,3\}$ | $\{2,3\}$ | $\{1, 2, 3\}$   |
|--------------------------------------|----|-----|-----|-----------------|------------|-----------|-----------|-----------------|
| Ø                                    | 0  | 4   | 2   | 0               | 6          | 4         | 2         | 6               |
| {1}                                  | -4 | 0   | 1   | -1              | 5          | 3         | 3         | 8               |
| {2}                                  | -2 | -1  | 0   | 1               | 1          | 2         | 3         | 4               |
| {3}                                  | 0  | 1   | -1  | 0               | 1          | -1        | -1        | 0               |
| $\{1,2\}$                            | -6 | -5  | -1  | 0               | 0          | 1         | 5         | 6               |
| {1,3}                                | -4 | -3  | -2  | 7 <sup>-1</sup> | -1         | 0         | 1         | $\rightarrow$ 2 |
| $\{2,3\}$                            | -2 | -4  | -3  | 1 4             | -5         | -1        | 0         | -2              |
| $\{1, 2, 3\}$                        | -6 | -8  | -4  | 0               | -6         | -2        | 2         | 0               |

**Table 1:**  $\mathbb{E}_A$  for betting sets  $\mathcal{B}_A$ ,  $\mathcal{B}_B$  when n=3.

#### LINKS



nttps://github.com/aryan-cs/poker-likegames/tree/discrete-poker



https://aryan-cs.github.io/poker-like-games