

We claim:

1. A copolymer of ethylene with α -olefins which has a molar mass distribution M_w/M_n of from 1 to 8, a density of from 0.85 to 0.94 g/cm³, a molar mass M_n of from 10 000 g/mol to 4 000 000 g/mol and a CDBI of less than 50% and in which the side chain branching of the maxima of the individual peaks of the side chain branching distribution is in each case greater than 5 CH₃/1 000 carbon atoms.
2. A copolymer of ethylene with α -olefins as claimed in claim 1 which has an at least bimodal side chain branching distribution.
3. A copolymer of ethylene with α -olefins as claimed in claim 1 or 2 which has a molar mass M_n of from 150 000 g/mol to 1 000 000 g/mol.
4. A copolymer of ethylene with α -olefins as claimed in any of claims 1 to 3 which has at least one peak in the Crystaf® spectrum of the differential distribution in the range from 15 to 40°C and at least one further peak in the Crystaf® spectrum of the differential distribution in the range from 25 to 80°C.
5. A copolymer of ethylene with α -olefins as claimed in any of claims 2 to 4 in which the side chain branching distribution is bimodal or trimodal.
6. A process for preparing ethylene copolymers as claimed in any of claims 1 to 5, which comprises polymerizing ethylene with α -olefins in the presence of the following components:
 - A) at least one monocyclopentadienyl complex comprising the structural feature of the formula (Cp-Z-A)Cr (I), where the variables have the following meanings:

Cp-Z-A is a ligand of the formula (II)

where

- 5 $R^{1A}-R^{4A}$ are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR^{11A}₂, N(SiR^{11A}₃)₂, OR^{11A}, OSiR^{11A}₃, SiR^{11A}₃, BR^{11A}₂, where the organic radicals R^{1A}-R^{4A} may also be substituted by halogens and where at least two of the vicinal radicals R^{1A}-R^{4A} are joined to form a five- or six-membered ring, and/or two vicinal radicals R^{1A}-R^{4A} are joined to form a heterocycle which contains at least one atom from the group consisting of N, P, O and S,
- 10 Z is a bridge between A and Cp having the formula
- 15
- where
L is carbon or silicon, preferably carbon,
- 20 R^{5A}, R^{6A} are each hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{11A}₃, where the organic radicals R^{5A} and R^{6A} may also be substituted by halogens and R^{5A} and R^{6A} may also be joined to form a five- or six-membered ring,
- 25 A is
30
- where
 $E^{1A}-E^{4A}$ are each carbon or nitrogen,
- 35 $R^{7A}-R^{10A}$ are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{11A}₃, where the organic radicals R^{7A}-R^{10A} may also bear halogens or nitrogen or further C₁-C₂₀-alkyl groups, C₂-C₂₀-alkenyl groups, C₆-C₂₀-aryl groups, alkylaryl groups having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{11A}₃ as substituents and two

vicinal radicals R^{7A} - R^{10A} or R^{7A} and Z may also be joined to form a five- or six-membered ring,

5 R^{11A} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two geminal radicals R^{11A} may also be joined to form a five- or six-membered ring and

10 p is 0 when E^{1A}-E^{4A} is nitrogen and is 1 when E^{1A}-E^{4A} is carbon,

- 15 B) optionally an organic or inorganic support,
- C) optionally one or more activating compounds and
- D) optionally one or more metal compounds containing a metal of group 1, 2 or 13 of the Periodic Table.

7. A catalyst system for olefin polymerization comprising

20 A') at least one monocyclopentadienyl complex A') comprising the structural feature of the formula (Cp-CR^{5B}R^{6B}-A)Cr (IV), where the variables have the following meanings:

30 where

35 R^{1B} - R^{4B} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl radical and 6-20 carbon atoms in the aryl radical, NR^{5A}₂, N(SiR^{11B}₃)₂, OR^{11B}, OSiR^{11B}₃, SiR^{11B}₃, BR^{11B}₂, where the organic radicals R^{1B}-R^{4B} may also be substituted by halogens and two vicinal radicals R^{1B}-R^{4B} may also be joined to form a five- or six-membered ring,

40 R^{5B}, R^{6B} are each hydrogen or methyl,

5

where
 E^{1B} - E^{4B} are each carbon or nitrogen,

10 R^{7B} - R^{10B} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{11B}₃, where the organic radicals R^{7B}-R^{10B} may also bear halogens or nitrogen or further C₁-C₂₀-alkyl groups, C₂-C₂₀-alkenyl groups, C₆-C₂₀-aryl groups, alkylaryl groups having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{11B}₃ as substituents and two vicinal radicals R^{7B}-R^{10B} may also be joined to form a five- or six-membered ring,

15

20 R^{11B} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R^{11B} may also be joined to form a five- or six-membered ring,

25 p is 0 when E^{1B}-E^{4B} is nitrogen and is 1 when E^{1B}-E^{4B} is carbon,

30 where at least one radical R^{7B}-R^{10B} is C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{11B}₃ and the organic radicals R^{7B}-R^{10B} may also bear halogens or nitrogen or further C₁-C₂₀-alkyl groups, C₂-C₂₀-alkenyl groups, C₆-C₂₀-aryl groups, alkylaryl groups having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{5C}₃ as substituents and two vicinal radicals R^{7B}-R^{10B} may also be joined to form a five- or six-membered ring or at least one E^{1B}-E^{4B} is nitrogen,

- B) optionally an organic or inorganic support,
- C) optionally one or more activating compounds and
- D) optionally one or more metal compounds containing a metal of group 1, 2 or 13 of the Periodic Table.

40

8. A catalyst system for olefin polymerization as claimed in claim 7, wherein two vicinal radicals R¹⁸-R⁴⁸ in the monocyclopentadienyl complex A') form a fused ring system.
9. A prepolymerized catalyst system comprising a catalyst system as claimed in claim 7 or 8 and linear C₂-C₁₀-1-alkenes polymerized onto it in a mass ratio of from 1:0.1 to 1:200.
- 5 10. The use of a catalyst system as claimed in any of claims 7 to 9 for the polymerization or copolymerization of ethylene with α -olefins.
- 10 11. A process for preparing ethylene copolymers as claimed in any of claims 1 to 4, which comprises polymerizing ethylene with α -olefins in the presence of a catalyst system as claimed in any of claims 7 to 9.
12. A process as claimed in claim 11, wherein the polymerization is carried out using, as monomers, a monomer mixture which comprises ethylene and/or C₃-C₁₂-1-alkenes and contains at least 50 mol% of ethylene.
- 15 13. A polymer mixture comprising
 - (E) from 1 to 99% by weight of one or more ethylene copolymers as claimed in any of claims 1 to 5 and
 - (F) from 1 to 99% by weight of a polymer which is different from (E), where the percentages by weight are based on the total mass of the polymer mixture.
- 20 14. A fiber, film or molding comprising an ethylene copolymer as claimed in any of claims 1 to 5.
- 25

30

35

40