Unit 11: ARMA Autocorrelation and Partial Autocorrelation Functions

Jeffrey Woo

Department of Statistics, University of Virginia

Spring 2016

Readings for Unit 11

Textbook chapter 3.4.

Last Unit

- ARMA(p,q)
- Condition for causality
- Condition for invertibility

This Unit

- ACF for MA(q)
- ACF for Causal ARMA(p,q)
- Partial Autocorrelation Function (PACF)

Motivation

In this unit we will study the autocorrelation and partial autocorrelation functions for ARMA processes.

- 1 ACF for MA(q) Processes
- 2 ACF for Causal ARMA(p,q) Processes
- Partial Autocorrelation Function

MA(q) Process

Let's start with an MA(q) process

$$x_t = w_t + \theta_1 w_{t-1} + \theta_2 w_{t-2} + \dots + \theta_q w_{t-q} = \sum_{j=0}^q \theta_j w_{t-j},$$

where we have written $\theta_0 = 1$. Then

$$E(x_t) = \sum_{j=0}^q \theta_j E(w_{t-j}) = 0.$$

The autocovariance function is

$$\gamma(h) = cov(x_t, x_{t+h}) = E\left[\sum_{j=0}^{q} \theta_j w_{t-j} \sum_{j'=0}^{q} \theta_{j'} w_{t+h-j'}\right] \\
= \sum_{j=0}^{q} \sum_{j'=0}^{q} \theta_j \theta_{j'} E(w_{t-j} w_{t+h-j'}).$$

Autocovariance for MA(q)

Recall that $E(w_s w_t) = \sigma_w^2$ if s = t and $E(w_s w_t) = 0$ otherwise. So we have

$$\gamma(h) = \begin{cases} \sigma_w^2 \sum_{j=0}^{q-h} \theta_j \theta_{j+h}, & 0 \le h \le q, \\ 0, & h \ge q+1. \end{cases}$$
 (1)

Recall that $\gamma(h) = \gamma(-h)$, so we will only need the values for $h \ge 0$. Dividing $\gamma(h)$ by $\gamma(0)$ in (1), we obtain the autocorrelation function (ACF) of an MA(q) model

$$\rho(h) = \begin{cases} \frac{\sum_{j=0}^{q-h} \theta_j \theta_{j+h}}{1+\theta_1^2 + \dots + \theta_q^2}, & 0 \le h \le q, \\ 0, & h \ge q+1. \end{cases}$$
 (2)

2 ACF for Causal ARMA(p,q) Processes

Partial Autocorrelation Function

Causal ARMA(p,q)

Now we discuss causal ARMA(p, q) model

$$\phi(B)x_t = \theta(B)w_t,$$

where the roots of $\phi(z)$ are outside the unit circle. Since the model is causal, we have the MA(∞) representation

$$x_t = \sum_{j=0}^{\infty} \psi_j w_{t-j}, \quad \text{where} \quad \psi(z) = \frac{\theta(z)}{\phi(z)} = \sum_{j=0}^{\infty} \psi_j z^j. \tag{3}$$

Autocovariance for Causal ARMA(p,q)

It follows that $E(x_t) = 0$ and by (1), the autocovariance function of x_t is given by

$$\gamma(h) = cov(x_t, x_{t+h}) = \sigma_w^2 \sum_{j=0}^{\infty} \psi_j \psi_{j+h}, \quad h \geq 0.$$

ACF for Causal ARMA(p,q)

We have seen in (2), for MA(q) models, the ACF will be zero for lags greater than q. Moreover, because $\theta_q \neq 0$, $\rho(q) = \theta_0 \theta_q / (1 + \theta_1^2 + \dots + \theta_q^2) \neq 0$. Thus, the ACF provides a considerate amount of information about the order of the dependence for a MA model. How about ARMA or AR models?

Autocovariance for Causal AR(1)

To motivate the idea, consider a causal AR(1) model $x_t = \phi_1 x_{t-1} + w_t$. Then

Autocovariance for Causal AR(1)

Here, we have used causality: x_{t-2} only depends on w_{t-2}, w_{t-3}, \ldots and hence is independent of w_{t-1} and w_t . Consequently, $cov(w_{t-1}, x_{t-2}) = 0$ and $cov(w_t, x_{t-2}) = 0$. The ACF for an AR(1) model is very different from an MA(1) model whose ACF is zero at lag 2.

Autocovariance for Causal AR(1)

Question: Why is $\gamma(2) \neq 0$ for an AR(1) process?

Removing Connection

Consider the following,

because of causality. Thus, after removing the connection x_{t-1} , the covariance between x_t and x_{t-2} is zero.

Notation

One way to remove linear connections is through _. Let x_h^{h-1} denote the regression of x_h on $\{x_{h-1}, x_{h-2}, \dots, x_1\}$, which we write as

$$x_h^{h-1} = \beta_1 x_{h-1} + \beta_2 x_{h-2} + \dots + \beta_{h-1} x_1.$$
 (4)

Here we do not include the intercept assuming the mean of x_t is zero.

In addition, let x_0^{h-1} denote the regression of x_0 on $\{x_1, x_2, \dots, x_{h-1}\}$, then

$$x_0^{h-1} = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{h-1} x_{h-1}.$$
 (5)

2 ACF for Causal ARMA(p,q) Processes

Partial Autocorrelation Function

The partial autocorrelation function (_____) of a stationary process x_t , denoted by ϕ_{hh} , for h = 1, 2, ..., is

$$\phi_{11} = corr(x_1, x_0) = \rho(1) \tag{6}$$

and

$$\phi_{hh} = corr(x_h - x_h^{h-1}, x_0 - x_0^{h-1}), \quad h \ge 2.$$
 (7)

Note that, the PACF, ϕ_{hh} is the correlation between x_t and x_{t-h} with the linear dependence of $\{x_{t-1}, x_{t-2}, \dots, x_{t-(h-1)}\}$, on each, removed.

Now we consider PACF of a causal AR(1) model: $x_t = \phi x_{t-1} + w_t$, with $|\phi| < 1$. By definition, $\phi_{11} = corr(x_1, x_0) = \rho(1) = \phi$. To calculate ϕ_{22} , consider the regression of x_2 on x_1 , say $x_2^1 = \beta x_1$.

Recall in linear regression we seek to minimize the residual sum of squares (RSS). In this setting, we seek to minimize

Next, consider the regression of x_0 on x_1 , say $x_0^1 = \beta x_1$. We choose β to minimize

In general, for a causal AR(p) model $x_h = \sum_{j=1}^p \phi_j x_{h-j} + w_h$. When h > p, the regression of x_h on x_{h-1}, \ldots, x_1 is

$$x_h^{h-1} = \sum_{j=1}^p \phi_j x_{h-j}.$$

Thus, when h > p, by causality,

$$\phi_{hh} = corr(x_h - x_h^{h-1}, x_0 - x_0^{h-1}) = corr(w_h, x_0 - x_0^{h-1}) = 0.$$

Summary

- The ACF of MA(q) model cuts at lag q. The PACF of an AR(p) model cuts at lag p.
- Identification of an MA(q) model is best done with ACF;
 identification of an AR(p) model is best done with PACF.
- The PACF between x_t and x_{t-h} is the conditional correlation between x_t and x_{t-h} . It is conditional on $x_{t-h+1}, \dots, x_{t-1}$, the set of observations that come _______.

- 1 ACF for MA(q) Processes
- 2 ACF for Causal ARMA(p,q) Processes
- Partial Autocorrelation Function
- Worked Examples

ACF and PACF of Causal AR(2)

ACF and PACF of Invertible MA(2)

ACF and PACF of Causal and Invertible ARMA(2,2)

ACF and PACF of Causal AR and Invertible MA

(From page 108, Table 3.1 of text)

	AR(p)	MA(q)	ARMA(p,q)
ACF	Decay	0 after lag <i>q</i>	Decay
PACF	0 after lag <i>p</i>	Decay	Decay

Fish Population Example

This time series from "recruit.dat" contains data on fish population in the central Pacific Ocean. The numbers represent the number of new fish in the years 1950-1987. **Question**: Based on the ACF and PACF plots, what process do you think is most likely to describe this time series?

Fish Population Example

ACF of Recruitment Series

PACF of Recruitment Series

