Coordenação da proteção das redes de distribuição primárias

Proteção do Sistema Elétrico de Potência

- A coordenação segura e confiável dos dispositivos de proteção usados nas redes primárias é um fator de vital importância para as concessionárias
- Em uma condição de falta, uma má coordenação provoca um erro de interpretação nos dispositivos de proteção
 - quem e a que momento cada um atua

Coordenação elo fusível x elo fusível

- O primeiro é denominado protegido e o segundo protetor
- Falta se origina na zona de proteção do elo protetor:
 - este deve atuar em um curto intervalo de tempo para evitar o rompimento ou danos permanentes ao elo protegido

Critério de coordenação

Figura 3.18 | Critério para coordenação

elo fusível×elo fusível

protegido Tempo mínimo de fusão do elo Tempo [s] protegido Elo protetor 75% do tempo mínimo de fusão do elo protegido

- Critério de coordenação elo fusível x elo fusível:
 - o tempo total para mitigação da falta despendido pelo elo protetor não pode exceder 75% do tempo mínimo de fusão do elo protegido, para o mesmo nível de corrente

- Tempo total para mitigação da falta pelo elo protetor:
 - é o tempo para extinção do arco elétrico no seu interior
- Esse critério garante que o elo <mark>protetor</mark> mitigue completamente o curto-circuito, antes que o elo <mark>protegido</mark> seja afetado de alguma forma
- fator 75% compensa efeitos provocados ao elo protegido por
 - excessivas correntes de carga
 - fadiga do seu filamento provocada por efeito térmico
 - curtos-circuitos que não são suficientes para provocar a completa fusão do filamento

- A coordenação entre dois ou mais fusíveis usa as curvas caraterísticas de Tempo x Corrente, que variam segundo a especificação do elo fusível (tipo K, T ou H)
- fator de redução: a curvatura que define o tempo mínimo de fusão do elo protegido será multiplicada por 0,75
 - obtém-se nova curva entre as curvas operativas de Tempo x Corrente dos elos empregados

- A coordenação entre elos fusíveis também pode ser obtida através do uso de tabelas simplificadas
- A análise da coordenação se torna simples e direta, apesar de ser menos precisa, pois, menos dados são considerados
- Sabendo o valor da máxima corrente de falta que fluirá por um alimentador ou ramal, basta apenas escolher adequadamente os elos fusíveis (tabela a seguir)

Tabela 3.4 | Coordenação entre elos fusíveis do tipo K

Elo a mon- tante	10K	12K	15K	20K	25K	30K	40K	50K	65K	80K	100K	140K	200K
Elo a jusan- te	Corrente máxima (e falta (A)												
6K	190	350	510	650	840	1060	1340	1700	2200	2800	3900	5800	9200
8K		210	440	650	840	1060	1340	1700	2200	2800	3900	5800	9200
10K			300	540	840	1060	1340	1700	2200	2800	3900	5800	9200
12K				320	710	1050	1340	1700	2200	2800	3900	5800	9200
20K						500	1100	1700	2200	2800	3900	5800	9200
25K							660	1350	2200	2800	3900	5800	9200
30K								850	1700	2800	3900	5800	9200

montante = antes jusante = depois

Elo a mon- tante	10K	12K	15K	20K	25K	30K	40K	50K	65K	80K	100K	140K	200K
Elo a jusan- te	Corrente máxima de falta (A)												
40K									1100	2200	3900	5800	9200
50K										1450	3900	5800	9200
65K											2400	5800	9200
80K												4500	9200
100K												2000	9100
140K													4000

Exemplo (p. 134)

- Com base nos dados fornecidos na Tabela 3.4 (slide 8), determine o elo fusível que pode ser empregado
- Coordenação com o elo fusível lateral de 40K
- Corrente máxima de falta 1100 A, no ponto B do circuito
- O tempo mínimo de fusão do elo protegido é 0,35 s
- Determine o tempo de mitigação da falta despendido pelo elo protetor, para que o critério de coordenação de 75% seja assegurado

Resolução

- Pelo slide 10, 40K é o elo protegido
- Na Tabela 3.4 (slide 8), o elo de 40K e corrente de 1100A corresponde ao elo de 20K
- Uma vez que o elo 40K possui um tempo mínimo de fusão de 0,35 s para a referida corrente de falta, o tempo mitigação da falta ($T_{\rm MF}$) pelo elo de 20K, de modo a obedecer ao critério de 75% é dado por:

$$T_{MF} < 0.35s \times 0.75 \Rightarrow T_{MF} < 0.2625s$$

Coordenação religador x elo fusível

• Os critérios para determinar a coordenação religador x elo fusível dependem da posição relativa desses dispositivos, ou seja, se o elo está a montante (antes) e o religador a jusante (depois) ou vice-versa

Fusível a montante e religador a jusante

- Quando o elo fusível se encontra a montante (antes) do religador, todas as operações do religador devem ser mais rápidas do que o tempo mínimo de fusão do elo
- O elo fusível deve suportar todas as operações rápidas e lentas de religamentos executadas pelo religador na tentativa de mitigar faltas transitórias

Figura 3.20 | Critério para coordenação entre elo fusível a montante e religador a jusante

- Para assegurar tal coordenação, faz-se o uso de fatores multiplicativos (k) aplicados à curva lenta do religador
 - a curva C acaba ficando "mais lenta"
 - a curva resultante deve ser mais rápida do que a do elo fusível
- k visa compensar a fadiga do elo fusível em decorrência das operações sucessivas do religador

Religador a montante e elo fusível a jusante

Religador a montante

- Coordenação de um religador a montante e um elo fusível a jusante:
 - Para todos os valores da corrente de falta que fluem pelo elo fusível, o tempo mínimo de fusão do elo deve ser superior ao tempo de atuação do religador na curva <mark>rápida</mark>
- Aplica-se o fator multiplicativo **k** para tornar um pouco mais lenta a curva rápida de modo que ela intercepte a curva de tempo mínimo de fusão do elo

- Este critério estabelece a máxima corrente de falta que assegura a coordenação, cujo valor se encontra no ponto de interseção entre a curva de tempo mínimo de fusão do elo e a curva rápida do religador
- Para valores de corrente de curto-circuito acima do ponto de intersecção das curvas:
 - a coordenação perde sua efetividade
 - a seletividade é mantida pela fusão do fusível

Tempo total de extinção do arco

- Para todos os valores da corrente de falta que fluem pelo elo fusível, o tempo total de extinção do arco no seu interior deve ser menor que o tempo de atuação do religador na curva temporizada lenta
- Este critério estabelece a corrente mínima de falta que assegura a coordenação, cujo valor se encontra no ponto de interseção entre a curva de tempo total de extinção do arco e a curva temporizada lenta do religador

• Para os tipos de coordenação apresentados, a ocorrência de um curto-circuito permanente exige que o religador dê tempo suficiente ao elo fusível para que este possa fundir, dessa forma, evita-se que o elo se funda parcialmente

Seccionalizador

- Não é capaz de interromper correntes de curto circuito
- Interrompe correntes até a sua corrente nominal
- Utilizado em conjunto com outro equipamento de proteção, normalmente um religador

Localização Típica dos Dispositivos de Proteção

Fonte: FRITZEN, PC. Proteção de Sistemas de Distribuição de Energia Elétrica. 2018.

Coordenação <mark>religador</mark> x <mark>seccionalizador</mark>

- A operação dos <mark>seccionalizadores</mark> não se baseia em curvas características de Tempo x Corrente
- Baseia-se no número de operações efetuadas pelo religador
- A atuação do <mark>religador</mark> fundamenta-se na combinação de operações rápidas e lentas, por exemplo, 2A + 2B
- O seccionalizador deve ser ajustado com uma operação a menos que a do religador
- O r<mark>eligador</mark> executa N operações e o <mark>seccionalizador</mark> N-1

- Se um religador é programado para quatro operações de abertura e uma falta permanente ocorrer a jusante (depois) do seccionalizador, este atuará e isolará a falta após a terceira abertura do religador, permitindo que o religador reenergize o restante do circuito
- O religador é sensibilizado pela corrente de curto-circuito na zona de proteção do seccionalizador, uma vez que este tem sua operação condicionada ao número de operações do religador

- Para que haja coordenação, três requisitos devem ser considerados:
 - A corrente mínima de atuação do religador
 - O número de contagens do seccionalizador
 - O tempo de memória do seccionalizador

Figura 3.22 | Coordenação com seccionalizadores em série

- Seccionalizadores em série em um mesmo alimentador ou ramal:
 - cada um tem uma contagem a menos que o anterior
 - religador vai atuando e o seccionalizador contando

Coordenação religador x relé

Figura 3.23 | Zonas de proteção: relé / religador

 A coordenação é assegurada quando o relé não opera o disjuntor (D) enquanto o religador executa a sua sequência de operação

- Caso o religador falhe, o relé deve atuar como dispositivo de backup (proteção de retaguarda)
 - temos uma sobreposição entre as zonas de proteção desses dispositivos
- Na prática, quatro relés de sobrecorrente devem ser conectados a um alimentador trifásico a fim de detectar todos os tipos possíveis de curtos-circuitos
 - podem desempenhar tanto as funções
 - 50 (instantâneo)
 - 51 (temporizado)

Relés de fase e de neutro

- Unidade <mark>instantânea</mark> deve ser ajustada
 - em função da máxima corrente originada por um curtocircuito trifásico
 - por um curto-circuito fase-terra na zona onde o relé atua como proteção de retaguarda
- Unidade temporizada devem ser ajustada
 - para que o religador complete todo o seu ciclo de operação, antes que o relé possa atuar

Figura 3.24 | Coordenação religador×relé

- Religador atua primeiro: a corrente mínima de atuação do religador deve ser igual ou menor que a corrente de sensibilização do relé (I_{LIMIAR})
- As curvas características do religador devem estar, no mínimo, 0,2 s abaixo das curvas do relé em toda a faixa de coordenação

Exemplo (p. 139)

Figura 3.16 | Análise gráfica da coordenação religador x seccionalizador

- Realizar a análise gráfica da coordenação religador x seccionalizador, em um dado alimentador
- A figura anterior mostra a corrente no alimentador para uma ocorrência de falta
- O religador alocado no alimentador principal possui operação fixada em 3 religamentos
- O seccionalizador alocado no ramal lateral do alimentador possui 2 operações
- Pede-se:
 - Os gráficos de operação do religador e do seccionalizador
 - Local da falta (alimentador ou ramal lateral)

- slide anterior: representação gráfica da operação do religador e do seccionalizador, com base na corrente que flui pelo alimentador
- Para t < t1, a corrente no alimentador está em regime permanente caracterizando uma operação normal
 - Tanto o religador como o seccionalizador mantêm seus contatos fechados

- Em t = t1 ocorre uma falta
- Em t = t2 o religador abre seus contatos
- Nesse momento, o seccionalizador registra a primeira abertura do religador, contudo, ele ainda mantém seus contatos fechados

- Passado o tempo do religador operando, t2 < t < t3, o religador volta a fechar seus contatos em t = t3
- A corrente de falta ainda está presente, assim, o religador abre novamente seus contatos em t = t4
- O seccionalizador registra mais uma abertura do religador
 - como o seccionalizador possui duas operações, seus contatos se abrem (sem carga) dentro de um intervalo de tempo após a segunda abertura do religador

- Em t = t5 ocorre o segundo religamento do religador e, a partir desse instante, a corrente no alimentador volta para sua faixa normal de operação
- A falta ocorreu no ramal lateral, no qual o seccionalizador foi instalado, haja vista que o alimentador principal é reenergizado quando o seccionalizador abre permanentemente seus terminais

Coordenação entre elos fusíveis (p. 140)

- Por vezes, o fator de redução de 75% não assegura a perfeita coordenação entre elos fusíveis para todos os valores da corrente de falta
- Para ambos os elos, é assumido que a curva do tempo máximo de fusão e a curva do tempo total para extinção do arco, se sobrepõem
- Calcule o valor máximo da corrente de falta que pode fluir pelo alimentador, de modo que a coordenação entre os elos ainda possa ser assegurada

Resolução

- A curva do tempo máximo de fusão do elo protetor (vermelho tracejado) coincide a curva do tempo mínimo de fusão do elo protegido (azul sólido) no ponto em que a corrente de falta é igual a 500 A
- Para uma corrente de falta 3500 A, a coordenação baseada no fator de redução de 75% perde sua efetividade

- Para uma corrente de falta de 400 A, o tempo máximo de fusão do elo protetor é 0,3 s
- O tempo mínimo de fusão do elo protegido é <mark>0,45</mark> s
- 0.3 s < (0.45 s × 0.75 = 0.3375 s)
- A <u>coordenação</u> entre os elos é mantida com segurança para correntes de falta ≤ 400 A