2025년도한국통신학회 동계종합학술발표회 금속 산업 용도별 전력 데이터 비율 기반 임계값 최적화를 통한 이상치 탐지

Outlier Detection by Threshold Optimization Based on Power Data Ratios of Metal Industry Applications

저 자: 정민성, 김준서, 서지윤, 이충호(ETRI), 허태욱(ETRI), 이상금

발표자: 정민성

발표일: 2025.02.05

목차

서론

데이터 전처리

이상치 범위 설정

임계값최적화

5

결론

2025년도한국통신학회 동계종합학술발표회

금속 산업 용도별 전력 데이터 비율 기반 임계값 최적화를 통한 이상치 탐지

서론

서론(1/4)

▶ 전력 소비 관리의 필요성

- 전력이 전체 사용 비율의 22%를 차지
- 전력 사용량은 계속 증가하는 추세
- 산업부문이 53%로 절반 이상을 차지

<전기 사용량 추이>

산업체의 비용 증가, 이산화탄소 배출 증가

서론(2/4)

▶ 그린 버튼 플랫폼

출처:한국에너지공단

- 표준화된 데이터를 기반으로 에너지 소비 정보를 효율적으로 활용할 수 있도록 지원
- 산업체의 실시간 전력 사용 데이터를 수집, 저장, 여러 요인에 따른 소비 패턴의 분석 과정을 거쳐 절약 방안 제시

서론(3/4)

▶ 흐름도

금속 산업 용도별 전력 데이터 비율 기반 임계값 최적화를 통한 이상치 탐지

서론(4/4)

▶ 연구목표

• Z-Score를 기반으로 데이터의 분포 특성을 고려한 이상치 탐지 기법을 개발

• 데이터 품질 향상을 통해 산업체의 전력 데이터를 효율적으로 관리

• 산업체들의 안정적인 서비스 제공 기반 마련

2025년도한국통신학회 동계종합학술발표회

금속 산업 용도별 전력 데이터 비율 기반 임계값 최적화를 통한 이상치 타지

데이터 전처리

데이터 전처리 (1/2)

▶ 데이터셋 설명

사용량>

- -용도별로 산업용, 일반용, 심야, 농사용으로 구분
- -산업용의 데이터 수가 전체 데이터의 98.2%로 대부분을 차지

데이터 전처리 (2/2)

▶ 데이터 전처리

2025년도 한국통신학회 동계종합학술발표회

금속 산업 용도별 전력 데이터 비율 기반 임계값 최적화를 통한 이상치 탐지

이상치 범위 분석

이상치 범위 분석 (1/3)

> Z-Score

$$|If \quad |Z| = \left| rac{ \displaystyle \mathop{ rac{ \displaystyle \mathop{ \mathrm{e}}}{ \displaystyle \mathop{ \mathrm{e}}} } }{ \displaystyle \mathop{ \mathrm{E}}{ \displaystyle \mathop{ \mathrm{e}}} }
ight| > 임계값, \qquad 이상치$$

- <Z-Score 표준편차 그래프 >
 - -관측치의 오차를 표준편차로 측정한 값
 - -Z-Score의 절댓값이 특정 임계값을 초과하면 이상치로 간주

|상치 범위 분석 **(2/3)**

▶ 전체 전력 데이터 이상치 탐지

- 전체 전력 데이터에서 Z-Score의 임계값을 3으로 설정하여 진행

- 이상치를 각 용도별로 살펴봤을 때 모두 산업용에서 탐지 2025년도 한국통신학회

이상치 범위 분석 (3/3)

▶ 용도별 전력 데이터 이상치 탐지

- 용도별 분류 후 각각 임계값을 3으로 설정했을 때 산업용, 일반용에서만 이상치가 탐지됨
- 기 데이터의 분포와 비율의 불균형이 이상치 탐지를 최대화 하는 최적 임계값 설정에 영향을 미침

2025년도한국통신학회 동계종합학술발표회

금속 산업 용도별 전력 데이터 비율 기반 임계값 최적화를 통한 이상치 탐지

임계값 최적화

임계값 최적화 **(1/3)**

▶ 기대 비율과 가중 평균 기대 비율

가중 평균 기대 비율 =
$$\sum_{i=1}^n \left(\frac{k_i}{k_{total}} * k_i$$
의 기대비율 $\right) = \sum_{i=1}^n \left(\frac{k_i}{k_{total}} * \left(1 - \frac{k_i$ 의 이상치 개수}{k_i} \right) \right) $n = 용도 수, \qquad k_1, k_2, k_3, k_4 =$ 일반용, 산업용, 심야, 농사용

- 용도별 전력 데이터의 비율이 최적 임계값에 미치는 영향을 줄이기 위해 가중 평균 기대 비율을 제안
- 용도별 전력 데이터 비율을 기대 비율에 가중치로 반영해 더 정확한 최적 임계값 도출

기대 비율 =
$$1 - \frac{$$
이상치 개수 전체 데이터 개수

- 기대비율은 Z-Score에서 설정한 임계값에 따라 정상치가 차지하는 비율을 의미

임계값 최적화 (2/3)

▶ 용도별 최적 임계값

<가중 평균 기대 비율과 용도별 전력 데이터의 최적 임계값 >

- -임계값 변화에 따른 기대비율과 가중평균 기대비율이 최소한의 오차를 보이는 값을 최적 임계값으로 선정
- 일반용 3.1, 산업용 3.0, 심야 2.3, 농사용 1.7
- 데이터의 비율이 낮을수록 최적 임계값도 낮은 경향

임계값 최적화 (3/3)

> 예외

<용도별 평균 전력 사용량 그래프(15분 단위)>

<산업용과 일반용 전력 데이터의 커널 밀도 추정 그래프>

- 일반용과 산업용의 전력의 평균이 유사
- 일반용이 산업용보다 밀도가 낮게 나타남
- 일반용의 IQR값이 75883, 산업용은 68908으로 보다 높음

> 데이터의 평균이 유사하고 값이 더 고르게 분포되어 있어 최적 임계값이 더 높게 나타남

2025년도한국통신학회 동계종합학술발표회

금속 산업 용도별 전력 데이터 비율 기반 임계값 최적화를 통한 이상치 탐지

결론 및 향후 연구

결론

1. 금속 산업 전력 데이터에 통계적 접근법을 활용해 임계값 최적화를 목표로 연구 진행

- 2. Z-Score를 이용해 용도별 전력 데이터의 분포와 비율에 따른 이상치 분포 분석
- 3. 용도별 전력 데이터의 임계값에 영향을 미치는 요인으로 데이터의 비율 선정
- 4. 기대 비율에 가중치를 부여하는 가중 평균 기대 비율 수식 도출
- 5. 가중 평균 기대 비율 활용을 통해 최적 임계값 확인 및 분석

향후연구 및기대효과

금속 이외 산업의 전력 데이터를 대상으로 적용 가능성 검증

전력 데이터의 신뢰성과 정확성 강화

지속 가능한 에너지 관리와 효율적인 산업체 운영

2025년도 한국통신학회 **동계종합학술발표회**

감사합니다

저자: 정민성, 김준서, 서지윤, 이충호(ETRI), 허태욱(ETRI), 이상금

발표자: 정민성

발표일: 2025.02.05

