# Problemo Questions - Level 1

# Triangles 3

In a  $3 \times 3$  grid of points, many triangles can be formed using 3 of the points as vertices?

Three such triangles are shown below.







Of all these possible triangles, how many have all three sides of different lengths?

### Dots 1

A 3 by 5 grid of dots is set out as shown.

. . . .

. . . . .

. . . . .

How many straight line segments can be drawn that join two of these dots and pass through exactly one other dot?

14 20 22 24 30

### Circle 1

Eighteen points are equally spaced on a circle, from which you will choose a certain number at random.

How many do you need to choose to guarantee that you will have the four corners of at least one rectangle?

### Bookshelf

Petra has three different dictionaries, and two different novels on a shelf.

How many ways are there to arrange the books if she wants to keep the dictionaries together and the novels together?

12 24 30 60 120

### Prisms

Two rectangular prisms are constructed.

One measures 4cm  $\times$  6cm  $\times$  x cm and the other measures 3cm  $\times$  8cm  $\times$  y cm, where both x and y are integers.

If they have equal surface area, what is the smallest possible value of x+y?

11 21 26 42 63

### Tube

Thanom has a roll of paper consisting of a very long sheet of thin paper tightly rolled around a cylindrical tube, forming the shape indicated in the diagram.



Initially, the diameter of the roll is 12 cm and the diameter of the tube is 4 cm.

After Thanom uses half of the paper, what is the diameter of the remaining roll to the nearest centimetre?



### Matches

As shown in the diagram, you can create a grid of squares 3 units high and 4 units wide using 31 matches.



I would like to make a grid of squares a units high and b units wide, where a < b are positive integers.

Determine the sum of the areas of all such rectangles that can be made, each using exactly 337 matches.

# Father and son Today the product of the ages (in integers) of a father and son is 2015. What is the difference in their ages? 26 29 31 34 36





## KLR

If  $K=L+\frac{6}{R}$  and L=4 and K=7, then R equals

-18

1

12

8

2

# Fractions 3

If  $\frac{p}{p-2q}=3$  then  $\frac{p}{q}$  equals

-3

3

 $\frac{1}{3}$ 

 $\frac{2}{3}$ 

2