

MATH 165B - Introduction to Complex Variables

Worksheet 3

Topic: Zeros of an Analytic Function Readings: Section 75 from Brown & Churchill

75. Zeros of Analytic Functions

• Definition: Recall that an analytic function at a point z_0 has a zero of order m, m a positive integer iff

$$f(z_0) = 0$$

$$f'(z_0) = f^{(2)}(z_0) = \dots = f^{(m-1)}(z_0) = 0$$

$$f^{(m)}(z_0) \neq 0$$

Motivating example:

Let $f(z) = (z-1)^3(z-i)^2z^4$. Notice that f(1) = 0 and $z_0 = 1$ is a zero of order m = 3 since the Taylor expansion of f centered at $z_0 = 1$ is

$$f(z) = -2(z-1)^3 + (2-10i)(z-1)^4 + (9-20i)(z-1)^5 + (16-20i)(z-1)^6 + (14-10i)(z-1)^7 + (6-2i)(z-1)^8 + (z-1)^9$$

The expansion was computed using the Mathematica command:

Series[
$$(z - 1) \land 3*(z - 1) \land 2*z \land 4, \{z, 1, 10\}$$
]

Notice that f(1) = f'(1) = f''(1) = 0 but $\frac{f^{(3)}(1)}{3!} = -2i \neq 0$. Thus $f^{(3)}(1) = 3!(-2i) = -12i \neq 0$ and 1 is a zero of order m = 3.

Reading

- Read carefully Theorem 1 with the example above in mind, what is the function g(z) in the motivating example.
- Use the ComplexPlot3D Mathematica command to plot the function f of the motivating example and of all the examples of Theorem 1 in the textbook. Try other functions with zeros and to help you generate the examples below. (If you already have Mathematica 12.)
- (P) Examples of zeros: Give examples of functions f_1, f_2 and f_3 with the following characteristics
 - 1. f_1 has a zero of order 4 at $z_1 = 0$
 - 2. f_2 has a zero of order 2 at $z_2 = i\pi$ and a zero of order 3 at $z_4 = -2$

- 3. f_3 has a zero of order $3 z_3 = 1$ and a pole of order 2 at $z_5 = 0$
- (P) Particular cases of Theorem 2: Read carefully Theorem 2 and find epsilons for z_1, z_2 and z_3 for each of the functions f_1, f_2 and f_3 given by the theorem. That is, an ε that determines a neighborhood where the only zero is z_1, z_2 or z_3 .

HOMEWORK PROBLEMS FOR SECTION 75

- 1. Locate the zeros of the following functions and determine their order
 - (a) $(1+z^2)^4$
 - (b) $z^3 \sin z$
 - (c) 1 + Expz
 - (d) $z^6 + 1$
- 2. Let f be analytic with a zero of order k at z_0 . Show that f' has a zero of order k-1 at z_0 .

Star Problem: Show that if f(z) and g(z) are analytic at $z = \alpha$ and have zeros of order m and n, respectively, at $z = \alpha$, then their product h(z) = f(z)g(z) has a zero of order m + n at $z = \alpha$.

The Star Problems are intended for students who are interested in challenging problems, they can substitute regular problems in the assignment.