PowerUp™ SYBR™ Green Master Mix 简要操作说明(Rev. A.0)

货号: A25741, A25742, A25743, A25776, A25777, A25778, A25779, A25780, A25918 本操作说明提供了 PowerUp SYBR Master Mix 的简要操作指南。更详细信息,请至赛默飞世尔官方网站下载英文版说明书:

https://tools.thermofisher.com/content/sfs/manuals/MAN0013511_PowerUp_mastermix_UG.pdf

货号	包装规格	反应次数(20 µl 体系)	保存条件
A25741	1 mL	100	
A25742	5 mL	500	
A25743	50 mL	5000	
A25776	2 × 5 mL	1000	
A25777	5 × 5 mL	2500	2-8 度
A25778	10 × 5 mL	5000	
A25779	2 × 1 mL	200	
A25780	5 × 1 mL	500	
A25918	10 × 1 mL	1000	

一. 总体实验要求

- 在使用本试剂之前,请将其充分涡旋混匀。
- 每个样本推荐进行四次重复
- 建议设置无模板对照(NTC)。NTC 中包括除模板以外的所有 qPCR 反应成分(包含 PowerupUp SYBR Greeen Master Mix, 引物, ddH₂O)。NTC 理论上应该没有扩增。
- 如果要减小反应体系,请将各组分按比例缩减。不推荐小于 10 µl 的反应体系。

二. 配制反应体系

1. 按照下表配制 PCR 反应体系(注:配制多个反应孔时,请为各组分预留 10%的余量,以免移液损失。)

组成成分	10 µl 体系	20 μl 体系
2 X PowerUp SYBR Green Master Mix	5 µl	10 µl
正向引物和反向引物[1]	_	_
cDNA 模板和 ddH₂O ^[2]	_	_
总体积	10 µl	20 μΙ

^[1]建议正、反向引物的终浓度各为 300-800 nM

- 2. 反应体系配好后,盖上反应盖,充分涡旋混匀,离心。
- 3. 将反应液分装到每个反应孔中。封上贴膜,离心,避免产生气泡。

三.运行 qPCR 反应程序

1. 将反应板放在荧光定量 PCR 仪上,根据需要选择快速或标准 PCR 反应程序,并按照以下表格设置反应参数。(注:如果反应模板是 gDNA,推荐使用标准反应程序。在 7900HT 仪器上,推荐使用标准反应程序。)

^[2]建议每个反应孔使用 1-10 ng cDNA 或 10-100 ng gDNA

Table 1 快速反应程序(引物 Tm≥60°C)

阶段	温度	时间	循环
UDG 酶激活	50°C	2 分钟	Hold
预变性	95°C	2 分钟	Hold
变性	95°C	1秒 ^[1] 或3秒 ^[2]	40
退火/延伸	60°C	30 秒	40

^[1]使用 QuantStudio 系列或 ViiA7 qPCR 仪

Table 2 标准反应模式(引物 Tm≥60°C)

阶段	温度	时间	循环
UDG 酶激活	50°C	2 分钟	Hold
预变性	95°C	2 分钟	Hold
变性	95°C	15 秒	40
退火/延伸	60°C	1 分钟	

Table 3 标准反应模式(引物 Tm<60°C)

阶段	温度	时间	循环
UDG 酶激活	50°C	2 分钟	Hold
预变性	95°C	2 分钟	Hold
变性	95°C	15 秒	
退火	55-60°C ^[1]	15 秒	40
延伸	72°C	1 分钟	

^{[&}lt;sup>1]</sup>退火温度根据引物的 Tm 值进行设置

四. 设置熔解曲线

1. qPCR 反应结束后,如果将反应板避光保存,则在反应结束后 72 小时内仍可进行熔解曲线的分析。如果不能将反应板避光保存,则需在反应结束后的 24 小时内进行熔解曲线的分析。

Table 4 熔解曲线条件

阶段	升降温速度	温度	时间
1	1.6°C/秒	95°C	15 秒
2	1.6°C/秒	60°C	1 分钟
3 ^[1]	0.15°C/秒	95°C	15 秒

^[1]荧光采集步骤

2. 在 ABI 品牌荧光定量 PCR 仪上按照如下设置:

反应类型:标准曲线 试剂:SYBR Green 试剂

报告基团: SYBR 淬灭基团: None 参比荧光染料: ROX

^[2]使用 7500 Fast, StepOnePlus 或 StepOne qPCR 仪

运行模式:标准模式或快速模式 熔解曲线模式:Continuous(连续的)

3. 设置反应体积,开始运行实验。

五. 实验数据分析

- 1. 观察扩增曲线
- 2. 设置合适的基线和阈值
- 3. 观察熔解曲线,检查反应体系中是否存在非特异性扩增或引物二聚体。
- 4. 进行相对定量或绝对定量的计算

Applied Biosystems 技术支持服务中心 800-820-8982 400-820-8982

