Aprendizagem de Máquina

Modelos Lineares de Regressão

Telmo de Menezes e Silva Filho tmfilho@gmail.com/telmo@de.ufpb.br www.de.ufpb.br

Sumário

Introdução

Mínimos Quadrados

Propriedades Amostrais de \hat{eta}

Controlando os Pesos

Softwares Disponíveis

Introdução

- Um modelo de regressão linear assume que a função $\mathbb{E}(Y|X) = f(X)$ é linear em relação às entradas X_1, \dots, X_p
- Vários desses modelos foram desenvolvidos na era pre-computacional
- São modelos simples, mas podem nos ajudar a interpretar como os dados de entrada afetam a saída

Introdução

- Mesmo com a existência de modelos mais complexos, os lineares ainda são frequentemente úteis quando tempos conjuntos de dados pequenos e dados ruidosos ou esparsos
- Além disso, existem transformações dos dados que permitem usar métodos lineares mesmo que o problema não seja originalmente linear
 - Kernels e funções de base radial (RBF)

Regressão Linear com Mínimos Quadrados

Suponha que dado um vetor de entrada $\mathbf{x}^T = (x_1, x_2, \dots, x_p)$, nós queremos predizer um valor de saída y. Podemos usar uma função da seguinte forma:

$$f(\mathbf{x}) = \beta_0 + \sum_{j=1}^p x_j \beta_j$$

- Os coeficientes β_i são também chamados de parâmetros desconhecidos
- O modelo é linear nos parâmetros

Regressão Linear com Mínimos Quadrados

- Como mencionado na aula passada, estimamos nossos modelos usando dados
- Podemos representar nossos dados como um conjunto de tuplas $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)$, em que cada $\mathbf{x}_i = (x_{i1}, \dots, x_{ip})$ é um vetor associado a um valor alvo y_i
- Para estimar os coeficientes $\beta = (\beta_0, \beta_1, \dots, \beta_p)^T$, o método mais popular é o dos mínimos quadrados

Regressão Linear com Mínimos Quadrados

O objetivo do método dos mínimos quadrados é minimizar a soma dos quadrados dos resíduos

$$S(\beta) = \sum_{i=1}^{N} (y_i - f(x_i))^2$$

= $\sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2$

Ajuste por Mínimos Quadrados

- O ajuste do modelo é intuitivamente satisfatório
 - ► Ele simplesmente tenta encontrar o melhor ajuste linear dos dados por meio de um critério que avalia o erro médio de ajuste
- Mas como minimizamos o critério S?

Começamos definindo y, o vetor de tamanho N dos valores alvo de treinamento e uma matriz X_{N×(p+1)}, em que cada linha representa um vetor de entrada dos nossos dados, com uma coluna a mais com o valor 1

i	<i>X</i> ₁	<i>X</i> ₂	V		i	<i>X</i> ₀	<i>X</i> ₁	<i>X</i> ₂
	<u> </u>							
1	-1.75	3.34	-19.56		1	1	-1.75	3.34
2	1.15	2.75	10.54		2	1	1.15	2.75
3	0.98	3.51	5.53		3	- 1	0.98	3.51
4	0.22	1.93	0.50		4	1	0.22	1.93
5	-0.19	3.26	-5.24	\rightarrow	5	1	-0.19	3.26
6	-0.46	3.44	-7.54		6	- 1	-0.46	3.44
7	-0.58	3.82	-9.71		7	1	-0.58	3.82
8	0.67	2.90	5.26		8	1	0.67	2.90
9	-0.53	4.03	-10.69		9	- 1	-0.53	4.03
10	-0.44	1.88	-5.10		10	1	-0.44	1.88

-19.56 10.54 5.53 0.50 -5.24 -7.54 -9.71 5.26 -10.69 -5.10

Com X e y podemos escrever o critério S como:

$$S(\beta) = \sum_{i=1}^{N} \left(y_i - \sum_{j=0}^{p} x_{ij} \beta_j \right)^2$$

$$= (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta)$$

$$= \mathbf{y}^T \mathbf{y} - \mathbf{y}^T \mathbf{X}\beta - \beta^T \mathbf{X}^T \mathbf{y} + \beta^T \mathbf{X}^T \mathbf{X}\beta$$

Agora, para minimizar o critério podemos derivar $S(\beta)$ em relação a β e igualar a 0

$$\begin{split} \frac{\partial \mathcal{S}}{\partial \beta} &= \frac{\partial (\mathbf{y}^T \mathbf{y} - \mathbf{y}^T \mathbf{X} \beta - \beta^T \mathbf{X}^T \mathbf{y} + \beta^T \mathbf{X}^T \mathbf{X} \beta)}{\partial \beta} = 0 \\ &= -2 \mathbf{X}^T \mathbf{y} + 2 \mathbf{X}^T \mathbf{X} \beta = 0 \\ &= \mathbf{X}^T \mathbf{X} \beta = \mathbf{X}^T \mathbf{y} \\ \hat{\beta} &= (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} \end{split}$$

Para predizer o valor alvo para um novo vetor x fazemos:

$$\hat{y} = \hat{f}(\mathbf{x}) = (1 : \mathbf{x})^T \hat{\beta}$$

Aplicando ao Nosso Exemplo

► Relembrando, tínhamos os seguintes dados:

i	<i>X</i> ₁	<i>X</i> ₂	У
1	-1.75	3.34	-19.56
2	1.15	2.75	10.54
3	0.98	3.51	5.53
4	0.22	1.93	0.50
5	-0.19	3.26	-5.24
6	-0.46	3.44	-7.54
7	-0.58	3.82	-9.71
8	0.67	2.90	5.26
9	-0.53	4.03	-10.69
10	-0.44	1.88	-5.10

 Após ajustar o modelo, temos como resultado

$$\hat{\beta} = (2.9098, 9.9125, -1.8111)^{T}$$

 Este é um bom momento para dizer que os coeficientes usados para gerar os dados foram

$$\hat{\beta} = (3, 10, -2)^T$$

Massa! Mas e quando dá errado?

- Quando **X** tem colunas altamente correlacionadas, ou talvez perfeitamente correlacionadas, e.g. $x_2 = 3 * x_1$, $\mathbf{X}^T \mathbf{X}$ é singular, ou seja não invertível
- Isso é ruim? Sim, é péssimo
 - Nesses casos, $\hat{\beta}$ não é unicamente definido
- Problemas também podem aparecer quando p > N
- Assim, é muito comum que implementações de regressão linear calculem a pseudo-inversa de X^TX

Propriedades Amostrais de \hat{eta}

- Agora vamos ver uma das características mais legais do modelo de regressão linear com mínimos quadrados: a possibilidade de diagnosticar a importância das variáveis independentes X para determinar o valor alvo Y
- Vamos começar assumindo que as observações y_i tem variância σ^2 e que os \mathbf{x}_i não são aleatórios
- Podemos estimar σ^2 fazendo

$$\hat{\sigma}^2 = \frac{1}{N-p-1} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Propriedades Amostrais de \hat{eta}

Vamos supor também que o valor esperado condicional de Y é linear em relação a X_1, \ldots, X_p e que quaisquer desvios de Y ao redor de seu valor esperado são representados pelo acréscimo de um erro Gaussiano

$$egin{aligned} Y &= \mathbb{E}(Y|X_1,\ldots,X_p) + \epsilon \ \epsilon &\sim \mathcal{N}(0,\sigma^2) \end{aligned}$$

Com isso:

$$\hat{\beta} \sim \mathcal{N}(\beta, (\mathbf{X}^T \mathbf{X})^{-1} \sigma^2)$$

Propriedades Amostrais de \hat{eta}

Com isso:

$$\hat{\beta} \sim \mathcal{N}(\beta, (\mathbf{X}^T\mathbf{X})^{-1}\sigma^2)$$

Com a hipótese nula de que $\beta_j = 0$, e como não conhecemos σ^2 (precisamos estimá-lo a partir dos dados), temos que a estatística t_j é

$$t_j = rac{\hat{eta}_j}{\hat{\sigma}\sqrt{a_{jj}}} \sim t(N-p-1)$$

- Onde a_{jj} é o j-ésimo elemento da diagonal de X^TX
- Naturalmente, se o número de instâncias for muito grande (e muito maior que p), podemos usar a distribuição Normal, ao invés da t de Student

Voltando ao Nosso Exemplo

	у	ŷ
1	-19.56	-20.486004
2	10.54	9.328740
3	5.53	6.267213
4	0.50	1.595192
5	-5.24	-4.877636
6	-7.54	-7.879998
7	-9.71	-9.757699
8	5.26	4.299086
9	-10.69	-9.642397
10	-5.10	-4.856498

A variância estimada é

$$\hat{\sigma}^2 = \frac{1}{N - p - 1} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$
$$\hat{\sigma}^2 = 0.9138$$

Voltando ao Nosso Exemplo

► Temos que **X**^T**X** é

$$\mathbf{X}^{T}\mathbf{X} = \begin{bmatrix} 10.0 & -0.93 & 30.86 \\ -0.93 & 6.9013 & -4.2556 \\ 30.86 & -4.2556 & 100.002 \end{bmatrix}$$

j	$\hat{eta}_{\pmb{j}}$	t_j	p-value
0	2.9098	0.9626	0.3678
1	9.9125	3.9471	0.0056
2	-1.8111	-0.1894	0.8551

Para rejeitar $\beta_j = 0$ com $\alpha = 0.05$ e N - p - 1 = 7 graus de liberdade, precisamos de $t_j \ge 2.36$ ou $t_j \le 2.36$

$$t_j = rac{\hat{eta}_j}{\hat{\sigma}\sqrt{a_{jj}}}$$

E Tem Mais...

- Também é possível avaliar se grupos de variáveis independentes são úteis para explicar a variável dependente
- Isso pode ser muito útil para testar a importância de variáveis categóricas transformadas em variáveis dummy/one-hot encoding
- Ver Capítulo 3.2 do Elements of Statistical Learning, a partir da página 48

- Suponha que existam K valores alvo Y_1, \ldots, Y_K que você deseja predizer dadas as suas entradas X_1, \ldots, X_p
- Assumimos um modelo linear para cada saída

$$Y_k = \beta_{0k} + \sum_{j=1}^{p} X_j \beta_{jk} + \epsilon_k$$
$$= f_k(\mathbf{x}) + \epsilon_k$$

Com N instâncias, podemos reescrever o modelo em notação de matriz

$$\mathbf{Y} = \mathbf{XB} + \mathbf{E}$$

► Com *N* instâncias, podemos reescrever o modelo em notação de matriz

$$\mathbf{Y} = \mathbf{XB} + \mathbf{E}$$

Aqui, **Y** é uma matriz de respostas $N \times K$, **B** é uma matriz $(p+1) \times K$ de parâmetros, **E** é uma matriz $N \times K$ de erros e **X** é a mesma matriz de entrada $N \times (p+1)$ do caso univariado

Com N instâncias, podemos reescrever o modelo em notação de matriz

$$Y = XB + E$$

Podemos então generalizar a soma dos mínimos quadrados

$$S(\mathbf{B}) = \sum_{k=1}^{K} \sum_{i=1}^{N} (y_{ik} - f_k(x_i))^2$$
$$= tr \left[(\mathbf{Y} - \mathbf{X}\mathbf{B})^T (\mathbf{Y} - \mathbf{X}\mathbf{B}) \right]$$

 A solução dos mínimos quadrados vai ter exatamente a mesma forma do caso univariado

$$\hat{\mathbf{B}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

- Ou seja, os coeficientes equivalem aos que seriam obtidos por K regressões separadas
- Esse resultado supõe que os erros das K respostas não são correlacionados* e suas covariâncias não variam ao longo das observações

Controlando os Pesos

- Regressão ridge é um tipo de regressão que busca controlar os coeficientes impondo uma penalidade aos seus valores
- Essa abordagem é também chamada de regularização ou de weight decay nas redes neurais

- Quando existem múltiplas variáveis correlacionadas em um modelo de regressão linear, os coeficientes podem exibir alta variância
 - Um coeficiente altamente positivo em uma variável pode ser cancelado por um altamente negativo em outra variável correlacionada
- O objetivo da regressão ridge é aliviar esse problema

A soma dos mínimos quadrados penalizada é dada por

$$\hat{eta}^{\mathsf{ridge}} = rg \min_{eta} \left\{ \sum_{i=1}^{N} (y_i - eta_0 - \sum_{j=1}^{p} x_{ij} eta_j)^2 + \lambda \sum_{j=1}^{p} eta_j^2
ight\}$$

- au $\lambda \geq 0$ é um parâmetro de complexidade que define o tamanho da penalização
- Essa penalização também é chamada de L₂
- A solução da regressão ridge se beneficia de uma prévia normalização dos dados de entrada

A soma dos mínimos quadrados penalizada é dada por

$$\hat{eta}^{\mathsf{ridge}} = \arg\min_{eta} \left\{ \sum_{i=1}^{N} (y_i - eta_0 - \sum_{j=1}^{p} x_{ij} eta_j)^2 + \lambda \sum_{j=1}^{p} eta_j^2
ight\}$$

- Note que o intercepto β_0 não é penalizado
- A solução é feita em duas partes:

- A solução é feita em duas partes
- Primeiro estimamos

$$\beta_0 = \bar{y} = \frac{1}{N} \sum_{i=1}^N y_i$$

Para a segunda parte, centralizamos as entradas, i.e. cada x_{ij} é substituído por $x_{ij} - \bar{x}_j$ e montamos a matriz **X**, sem a coluna extra igual a 1, para minimizar o critério

$$S(\beta, \lambda) = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta) + \lambda \beta^T \beta$$

A solução da regressão ridge é então dada por

$$\hat{eta}^{ ext{ridge}} = (\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^T\mathbf{y}$$

- Onde I é uma matriz identidade $p \times p$
- ▶ Note que a solução adiciona uma constante positiva λ à diagonal de $\mathbf{X}^T\mathbf{X}$ antes da inversão
- Essa foi a motivação inicial por trás do método, para evitar o problema da singularidade

Regressão Lasso

Na regressão lasso, a soma dos mínimos quadrados penalizada é dada por

$$\hat{eta}^{\mathsf{lasso}} = rg \min_{eta} \left\{ rac{1}{2} \sum_{i=1}^N (y_i - eta_0 - \sum_{j=1}^p x_{ij} eta_j)^2 + \lambda \sum_{j=1}^p |eta_j|
ight\}$$

- Essa penalização é também chamada de regularização L₁
- Note a similaridade com regressão ridge
- Um valor de λ suficientemente pequeno fará com que alguns coeficientes sejam exatamente 0

Regressão Lasso

- A nova restrição em cima dos valores de β_j faz com que não exista expressão de forma fechada para solucionar o problema
 - Temos um problema de programação quadrática
- Assim como na ridge, a solução é feita em duas partes: estimamos $\beta_0 = \bar{y}$, depois centralizamos os x_{ij} normalizados antes de minimizar o critério

Regressão Elastic Net

- A regressão lasso tem algumas limitações
 - Em problemas com *p* grande e *N* pequeno, a regressão lasso selecionará no máximo *N* variáveis
 - Além disso, em um grupo de variáveis muito correlacionadas, a lasso tende a selecionar apenas uma variável do grupo
- Para solucionar essas limitações a regressão elastic net adiciona a penalização quadrática da ridge à penalização da lasso

Regressão Elastic Net

O problema então torna-se:

$$\hat{\beta} = \arg\min_{\beta} \left\{ \frac{1}{2} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda_2 \sum_{j=1}^{p} \beta_j^2 + \lambda_1 \sum_{j=1}^{p} |\beta_j| \right\}$$

- O termo quadrático faz com que exista uma solução única para o problema
- Com $\lambda_1=0$, temos ridge, com $\lambda_2=0$, temos lasso e com $\lambda_1=\lambda_2=0$, temos regressão linear sem regularização

Softwares Disponíveis

Softwares Disponíveis

- Python
 - Statsmodels
 - Faz as avaliações de significância dos coeficientes
 - Sklearn
- ► R
 - glm (modelos lineares generalizados)
 - plmnet: elastic net
- Javascript
 - Vai no Google
- Julia
 - Roberts

Aprendizagem de Máquina

Modelos Lineares de Regressão

Telmo de Menezes e Silva Filho tmfilho@gmail.com/telmo@de.ufpb.br www.de.ufpb.br

