Seaborn - Categorical Data Plots

· catplot()

```
In [1]:
         import seaborn as sns
         import matplotlib.pyplot as plt
         import pandas as pd
         import numpy as np
         sns.set(style="ticks")
In [2]: exercise = sns.load_dataset("exercise")
         exercise.head(10)
Out[2]:
                           diet pulse
            Unnamed: 0 id
                                       time kind
         0
                    0 1 low fat
                                  85
                                      1 min
                                             rest
          1
                    1 1 low fat
                                  85
                                      15 min
                                             rest
          2
                    2 1 low fat
                                      30 min
                                             rest
                    3 2 low fat
          3
                                  90
                                      1 min
                                             rest
          4
                       2 low fat
                                      15 min
                                             rest
          5
                    5 2 low fat
                                  93 30 min
                                             rest
          6
                    6 3 low fat
                                  97
                                       1 min
                                             rest
                       3 low fat
                                  97 15 min
                                             rest
                    8 3 low fat
                                  94 30 min
          8
                                             rest
                    9 4 low fat
                                  80
                                      1 min
                                             rest
In [3]: exercise.time.unique()
Out[3]: [1 min, 15 min, 30 min]
         Categories (3, object): [1 min, 15 min, 30 min]
In [4]: exercise.kind.unique()
Out[4]: [rest, walking, running]
         Categories (3, object): [rest, walking, running]
In [5]: exercise.diet.unique()
Out[5]: [low fat, no fat]
         Categories (2, object): [low fat, no fat]
```

```
In [6]: tips = sns.load dataset("tips")
          tips.head()
 Out[6]:
            total_bill
                                            time size
                    tip
                           sex smoker day
               16.99 1.01 Female
                                   No Sun Dinner
                                                   2
          1
               10.34 1.66
                                                   3
                           Male
                                   No Sun Dinner
          2
               21.01 3.50
                           Male
                                   No Sun Dinner
                                                   3
          3
               23.68 3.31
                           Male
                                   No Sun Dinner
                                                   2
               24.59 3.61 Female
                                   No Sun Dinner
                                                   4
 In [7]: tips.day.unique()
 Out[7]: [Sun, Sat, Thur, Fri]
         Categories (4, object): [Sun, Sat, Thur, Fri]
 In [8]: tips.time.unique()
 Out[8]: [Dinner, Lunch]
         Categories (2, object): [Dinner, Lunch]
 In [9]: tips.smoker.unique()
 Out[9]: [No, Yes]
         Categories (2, object): [No, Yes]
In [10]: tips.sex.unique()
Out[10]: [Female, Male]
         Categories (2, object): [Female, Male]
In [11]: tips["size"].unique()
Out[11]: array([2, 3, 4, 1, 6, 5])
 In [ ]:
 In [ ]:
```

In [12]: sns.catplot(x="time", y="pulse", data=exercise);


```
In [13]: sns.catplot(x="time", y="pulse", hue="diet", data=exercise);
```


In [14]: sns.catplot(x="time", y="pulse", hue="kind", data=exercise);

In [15]: sns.catplot(x="time", y="pulse", hue="kind", jitter=False, data=exercise);


```
In [22]: tips.head()
```

Out[22]:

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

```
In [23]: sns.catplot(x="day", y="total_bill", data=tips);
```


In [24]: sns.catplot(x="day", y="total_bill", kind="swarm", data=tips);


```
In [25]: sns.catplot(x="day", y="total_bill", hue="sex", kind="swarm", data=tips);
```


In [26]: sns.catplot(x="size", y="total_bill", kind="swarm", data=tips);

In [27]: sns.catplot(x="smoker", y="tip", data=tips);


```
In [29]: # For many categories, show on y-axis
sns.catplot(x="total_bill", y="day", hue="time", kind="swarm", data=tips);
```


Distribution of observations within categories

• For large datasets, scatter plots can only provide limited information

Boxplots

```
In [30]: sns.catplot(x="day", y="total_bill", kind="box", data=tips);
```



```
In [31]: tips.groupby('day')['total_bill'].describe()
```

Out[31]:

	count	mean	std	min 25%		50%	75%	max
day								
Thur	62.0	17.682742	7.886170	7.51	12.4425	16.20	20.1550	43.11
Fri	19.0	17.151579	8.302660	5.75	12.0950	15.38	21.7500	40.17
Sat	87.0	20.441379	9.480419	3.07	13.9050	18.24	24.7400	50.81
Sun	76.0	21.410000	8.832122	7.25	14.9875	19.63	25.5975	48.17

In [32]: sns.boxplot(x="day", y="total_bill", data=tips);

In [33]: # with hue, the box for each level is moved along the categorical axis (dodging)
default dodging is true - semantic variable (hue) nested within main categorical varia
sns.catplot(x="day", y="total_bill", hue="smoker", kind="box", data=tips);


```
In [35]:
    tips["weekend"] = tips["day"].isin(["Sat", "Sun"])
    tips.head()
```

Out[35]:

	total_bill	tip	sex	smoker	day	time	size	weekend
0	16.99	1.01	Female	No	Sun	Dinner	2	True
1	10.34	1.66	Male	No	Sun	Dinner	3	True
2	21.01	3.50	Male	No	Sun	Dinner	3	True
3	23.68	3.31	Male	No	Sun	Dinner	2	True
4	24.59	3.61	Female	No	Sun	Dinner	4	True

Boxen plot (Letter-Value plots)

In [38]: sns.catplot(x="day", y="total_bill", kind="box", data=tips);

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/scipy/st ats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional inde xing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval


```
In [46]: # Show each observation along with a summary of the distribution

g = sns.catplot(x="day", y="total_bill", kind="violin", inner=None, data=tips)

sns.swarmplot(x="day", y="total_bill", color="k", size = 3, data=tips, ax=g.ax);
```


Statistical estimation within categories

Bar plots

```
In [47]: # estimate is mean by default
# error bars show the confidence interval (95% default)
sns.catplot(x="day", y="total_bill", kind="bar", data=tips);
```


In [48]: sns.barplot(x="day", y="total_bill", data=tips);

In [49]: tips.groupby('day')['total_bill'].describe()

Out[49]:

	count	mean	std	min	25%	50%	75%	max
day								
Thur	62.0	17.682742	7.886170	7.51	12.4425	16.20	20.1550	43.11
Fri	19.0	17.151579	8.302660	5.75	12.0950	15.38	21.7500	40.17
Sat	87.0	20.441379	9.480419	3.07	13.9050	18.24	24.7400	50.81
Sun	76.0	21.410000	8.832122	7.25	14.9875	19.63	25.5975	48.17

In [50]: sns.barplot(x="day", y="total_bill", ci="sd", data=tips);

In [51]: sns.barplot(x="day", y="total_bill", ci=None, data=tips);

In [52]: sns.catplot(x="day", y="total_bill", hue="sex", kind="bar", data=tips);

In [53]: sns.catplot(x="tip", y="day", kind="bar", data=tips);

In [54]: sns.catplot(x="tip", y="day", hue="sex", kind="bar", data=tips);

Count plot

In [56]: exercise.head()

Out[56]:

	Unnamed: 0	id	diet	pulse	time	kind
0	0	1	low fat	85	1 min	rest
1	1	1	low fat	85	15 min	rest
2	2	1	low fat	88	30 min	rest
3	3	2	low fat	90	1 min	rest
4	4	2	low fat	92	15 min	rest

```
In [57]: tips.head()
```

Out[57]:

	total_bill	tip	sex	smoker	day	time	size	weekend
0	16.99	1.01	Female	No	Sun	Dinner	2	True
1	10.34	1.66	Male	No	Sun	Dinner	3	True
2	21.01	3.50	Male	No	Sun	Dinner	3	True
3	23.68	3.31	Male	No	Sun	Dinner	2	True
4	24.59	3.61	Female	No	Sun	Dinner	4	True

```
In [58]: sns.catplot(x="day", kind="count", data=tips);
```


In [59]: sns.countplot(x="day", data=tips);

In [60]: sns.catplot(x="day", kind="count", hue="time", data=tips);

