Pattern Recognition for Neuroimaging Data

Edinburgh, SPM course April 2019

Overview

- Introduction
 - Pattern recognition
 - Univariate & multivariate approaches
 - Data representation
- Pattern Recognition
 - Machine learning
 - Validation & inference
 - Weight maps & feature selection
 - Applications: groups & fMRI
- Conclusion & Toolboxes

Overview

- Introduction
 - Pattern recognition
 - Univariate & multivariate approaches
 - Data representation
- Pattern Recognition
 - Machine learning
 - Validation & inference
 - Weight maps & feature selection
 - Applications: groups & fMRI
- Conclusion & Toolboxes

Pattern recognition concept

 Pattern recognition aims to find patterns/regularities in the data that can be used to take actions (e.g. make predictions), aka. machine learning, AI,...

Digit Recognition

Face Recognition

Recommendation Engines

- Types of Learning:
 - supervised learning: trained with labeled data (classification & regression)
 - unsupervised learning: trained with unlabeled data (clustering)
 - reinforcement learning: actions and rewards (robotics)

Pattern recognition framework

Computer-based procedures that learn a function f from a series of examples

Classification model

New subject

Testing

Prediction:
Class
membership

Regression model

Predictive function: *f*

Prediction:

Score = 28

Mass-univariate vs Pattern recognition

Standard Statistical Analysis (mass-univariate)

Pattern Recognition Analysis (multivariate & predictive)

Volumes from task 1

Volumes from task 2

New example

Training Phase

Testing Phase

Predictive map (classification or regression weights)

> **Predictions:** task 1 or task 2

Neuroimaging data

Ex. fMRI time series = 3D array of time series.

= time series of 3D fMRI's

= 4D image

About the same for a series of structural MRIs

Neuroimaging data features

Data dimensions

- dimensionality of a "data point", aka. features
 - = #voxels considered
- number of "data points", aka. samples
 - = #scans/images considered

Neuroimaging data features

Types of features:

fMRI:

BOLD signal, contrast image, connectivity maps/matrix, ...

sMRI:

GM maps, volume change map, cortical thickness,...

- PET images
- EEG/MEG

Advantages of pattern recognition

Accounts for the spatial correlation of the data (multivariate aspect)

- images are multivariate by nature.
- can yield greater sensitivity than conventional (univariate) analysis.

Enable classification/prediction of new samples

- 'Mind-reading' or decoding applications
- Clinical application

Overview

- Introduction
 - Pattern recognition
 - Univariate & multivariate approaches
 - Data representation
- Pattern Recognition
 - Machine learning
 - Validation & inference
 - Weight maps & feature selection
 - Applications: groups & fMRI
- Conclusion & Toolboxes

Classification model

Different classifiers will compute different hyper-planes!

Regression model

Linear predictive models

Linear predictive models (classifier or regression)
are parameterized by a weight vector w and a
bias term b.

The general equation for making predictions for a test example x* is:

 $f(\mathbf{X}_*) = \mathbf{W} \times \mathbf{X}_* + b$ training data

 In the linear case w can be expressed as a linear combination of training examples x_i (N = number of training examples).

$$\mathbf{w} = \mathop{\bigcirc}_{i=1}^{N} \partial_i \mathbf{x}_i$$

Weight maps

= predictive patterns!

- Shows the relative contribution of each feature for the decision
- No local inferences can be made!

Neuroimaging data

Problem: #features >> #samples

→ "ill posed problem"

Possible solutions:

- Fewer features
 - → ROIS, feature selection, searchlight
- Regularization & Kernel Methods

Regularization

- Regularization is a technique used in an attempt to solve ill-posed problems and to prevent overfitting in statistical/machine learning models.
- Regularized methods find w minimizing an objective function consisting of a data fit term E and a penalty/regularization term J

$$\min_{w \in R^p} \{E(w) + \lambda J(w)\}$$

Data fit term

= loss function L

The **regularisation term J**

 Many machine learning algorithms are particular choices of *L* and *J* (e.g. Kernel Ridge Regression (KRR), Support Vector Machine (SVM)).

The role of regularization

- Weight maps for classifying fMRI images during visualization of pleasant vs. unpleasant pictures.
- All models used a square loss + a different type of regularization.

Kernel approaches

Mathematical trick!

→ powerful and unified framework (e.g. classification & regression)

Consist of two parts:

- Use of a kernel function
 - → kernel matrix (mapping into the feature space)
- Learning algorithm operating with kernel

Advantages:

- Computational shortcut → computational efficiency
- Kernel trick (linear & non-linear) + regulariaztion
 - → efficient solution of ill-conditioned problems.

Kernel function & matrix

Kernel matrix

= "similarity measure" between any pair of sample **x** and **x***Brain scan 2

- The "kernel function"
- simple similarity measure
 - = a dot product \rightarrow linear kernel
- more general measures
 - = Gaussian, polynomial,... → non-linear kernel

Linear classifier prediction

General equation: making predictions for a test example **x*** with kernel methods

$$f(\mathbf{X}_*) = \mathbf{W} \times \mathbf{X}_* + b \longrightarrow \text{Primal representation}$$

$$\mathbf{w} = \mathring{\partial}_i \partial_i \mathbf{X}_i$$

$$f(\mathbf{X}_*) = \mathring{\partial}_i \partial_i \mathbf{X}_i \times \mathbf{X}_* + b$$

$$kernel \\ definition$$

$$f(\mathbf{X}_*) = \mathring{\partial}_i \partial_i \mathbf{X}_i \times \mathbf{X}_* + b \longrightarrow \text{Dual representation}$$

 $f(\mathbf{x}_*) =$ signed distance to boundary (classification) predicted score (regression)

Example of kernel methods: Support Vector Machines (SVM), Kernel Ridge Regression (KRR), Gaussian Process (GP), Kernel Fisher Discriminant, Relevance Vector Regression

Multi-kernel learning

- Multiple Kernel Learning (MKL) can be applied to combine different sources of information (e.g. multimodal imaging or ROIs) for prediction.
- In MKL, the kernel K can be considered as a linear combination of M "basis kernels".

$$K(\mathbf{x}, \mathbf{x}') = \mathop{\overset{M}{\overset{M}{\circ}}} d_m K_m(\mathbf{x}, \mathbf{x}')$$
with $d_m \stackrel{3}{\circ} 0$, $\mathop{\overset{M}{\overset{M}{\circ}}} d_m = 1$

• MKL models simultaneously learn the kernel weights (d_m) and the associated decision function (\mathbf{w}, b) in supervised learning settings.

Support Vector Machine

SVM = "maximum margin" classifier

$$\mathbf{w} = \mathop{\triangle}_{i=1}^{N} \partial_i \mathbf{X}_i$$

Support vectors have $\alpha_i \neq 0$

Data: $\langle \mathbf{x}_i, y_i \rangle$, i=1,...,NObservations: $\mathbf{x}_i \in R^d$ Labels: $y_i \in \{-1,+1\}$

SVM vs. GP

SVM

- → Hard binary classification
 - simple & efficient, quick calculation but
 - NO 'grading' in output {-1, 1}

Gaussian Processes

- → probabilistic model
 - more complicated, slower calculation but
 - returns a probability [0 1]
 - can be multiclass

Other machines out there:

ex. tree-based, deep learning,...

Overview

- Introduction
 - Pattern recognition
 - Univariate & multivariate approaches
 - Data representation
- Pattern Recognition
 - Machine learning
 - Validation & inference
 - Weight maps & feature selection
 - Applications: groups & fMRI
- Conclusion & Toolboxes

Validation principle

Data set: Samples = {features, labels}

M-fold cross-validation

- Split data in 2 sets: "train" & "test"
 - → evaluation on 1 "fold"

- Rotate partition and repeat
 - → evaluations on M "folds"

- Applies to scans/events/blocks/subjects/...
 - → Leave-some-out (LSO) approach
- Accumulates metric over the M "folds".

Confusion matrix & accuracy

Confusion matrix = summary table

Accuracy estimation

- Class 0 accuracy, $p_0 = A/(A+B)$
- Class 1 accuracy, $p_1 = D/(C+D)$
- Total accuracy, p = (A+D)/(A+B+C+D)

Other criteria

- Sensitivity = D/(C+D)
- Specificity = A/(A+B)
- Positive Predictive Value, PPV = D/(B+D)
- Negative Predictive Value, NPV = A/(A+C)

Accuracy & Dataset balance

Watch out if #samples/class are different!!!

Example: Classes A/B with 80/20 samples each

- \rightarrow observed $a_{tot} = 70\%$ overall accuracy but
- within class A ($N_A = 80$), excellent accuracy (85%)
- within class B ($N_B = 20$), poor accuracy (10%)
- \rightarrow balanced accuracy $a_{bal} = 47,5\%!$

Good practice:

Report

- class accuracies [a₀, a₁, ..., a_C]
- balanced accuracy $a_{bal} = (a_0 + a_1 + ... + a_C) / \# Classes$

Regression validation

"Mean squared error" (MSE):

- Squared error in one fold $SE_n = (y_n f(\mathbf{x}_n))^2$
- Across all CV folds $R(f, \mathbf{X}) = MSE = \frac{1}{N} \sum_{n=1}^{N} (y_n f(\mathbf{x}_n))^2$
- → Out-of-sample "mean squared error" (MSE)

Other measure:

Correlation between:

- predictions (across folds!), and
- 'true' targets

Inference by permutation testing

- H₀: "class labels are non-informative"
- Test statistic = CV accuracy (total or balanced)
- Estimate distribution of test statistic under H₀
 - → Random permutation of labels
 - → Estimate accuracy
 - → Repeat M times
- Calculate p-value as

$$p = \frac{1}{M} \sum_{m}^{M} (a_m^{\text{perm}} \geqslant a^{\text{true}})$$

Overview

- Introduction
 - Pattern recognition
 - Univariate & multivariate approaches
 - Data representation
- Pattern Recognition
 - Machine learning
 - Validation & inference
 - Weight maps & feature selection
 - Applications: groups & fMRI
- Conclusion & Toolboxes

Weight vector interpretation

Weight vector

- → weight (or discrimination) image!
- → how important each voxel is
- → for which class "it votes" (mean centred data & b=0)

Weight maps for different masks

Linear machine

→ Weight map

Different mask/ROI

- → different feature set
- → different weight map

Feature selection

- 1 sample image
 - → 1 predicted value
- use ALL the voxels
 - → NO thresholding of weight allowed!

Feature selection:

- a priori mask or 'filtering'
- Multiple Kernel Learning
- Sparse methods
- (Search Light)
- Recursive Feature Elimination/Addition
 MUST be independent from test data!

Overview

- Introduction
 - Pattern recognition
 - Univariate & multivariate approaches
 - Data representation
- Pattern Recognition
 - Machine learning
 - Validation & inference
 - Weight maps & feature selection
 - Applications: groups & fMRI
- Conclusion & Toolboxes

Application & designs

Levels of "inference"

- within subject ≈ FFX with SPM
 - → 'decode' subject's brain states
 - → multiple images, e.g. fMRI time series
- between subjects ≈ RFX with SPM
 - → 'classify' groups, e.g. patients vs. controls or regress subjects' parameter
 - → 1 (or few) image(s)/subject

Activation design → decode stimuli

- Block or event-related design?
- How to account for haemodynamic function?

Rely on raw BOLD signal per event/block

- → one label per image!
- 1 volume = 1 sample

Rely on raw BOLD signal per event/block

- → one label per image!
- 1 volume = 1 sample, or
- average over N volumes

Rely on contrast image per event/block

- 1 contrast = 1 sample
- implicit averaging

[&]quot;Least Squares All" (LSA)

[&]quot;Least Squares Unitary" (LSU)

[&]quot;Least Squares Separate" (LSS)

Between subjects

Design

- 2 groups: group A vs. group B
- 1 group: 2 conditions per subject (e.g. before/after treatment)
- 1 group: 1 target score
- → Extract 1 (or a few) summary image(s) per subject, and classify/regress

Example:

- contrast (a-fMRI), ICA/correlation map (rs-fMRI)
- GM/Jacobian maps (sMRI)
- FA/MD maps (DWI)
- PET
- etc.

Overview

- Introduction
 - Pattern recognition
 - Univariate & multivariate approaches
 - Data representation
- Pattern Recognition
 - Machine learning
 - Validation & inference
 - Weight maps & feature selection
 - Applications: groups & fMRI
- Conclusion & Toolboxes

"Univariate vs. multivariate" concepts

Univariate

- 1 voxel
- target → data
- look for difference or correlation
- General Linear Model
- GLM inversion
- calculate contrast of interest

Multivariate

- 1 volume
- data → target
- look for similarity or score
- Specific machine (SVM, GP,...)
- training & testing cross-validation
- estimate accuracy of prediction

Conclusions

Key points:

- NO local (voxel/blob) inference
 - → CANNOT report coordinates nor thresholded weight map
- Require cross-validation (split in train/test sets)
 - → report accuracy or MSE
- MUST assess significance of accuracy
 - permutation approach
- Could expect more sensitivity (~like omnibus test with SPM)
- Different questions & Different designs!?

Existing toolboxes

In Matlab

- The Decoding Toolbox, <u>https://sites.google.com/site/tdtdecodingtoolbox/</u>
- Pattern Component Modelling Toolbox (PCMtoolbox), <u>https://github.com/jdiedrichsen/pcm_toolbox</u>
- MVPA by cross-validated MANOVA, <u>https://github.com/allefeld/cvmanova</u>
- Princeton Multi-Voxel Pattern Analysis (MVPA) Toolbox, <u>https://github.com/princetonuniversity/princeton-mvpa-toolbox</u>

In Python

- pyMVPA, http://www.pymvpa.org/
- Nilearn, http://nilearn.github.io/
- Brain Imaging Analysis Kit (BrainAIK), https://brainiak.org/

PRONTO

Pattern Recognition for Neuroimaging Toolbox

http://www.mlnl.cs.ucl.ac.uk/pronto/

with references, manual, demo data, course, etc.

Afternoon workshop

More about

- Weight interpretation
- Machines & "multi-kernel learning"
- Nested CV & parameter optimization
- Feature extraction

• ...

And practical demo of PRoNTo:

- fMRI & group analysis
- GUI and batching

Thank you for your attention! Any question?

References

- Baldassare L, et al. (2017). Sparsity Is Better with Stability: Combining Accuracy and Stability for Model Selection in Brain Decoding. Front. Neurosci.
- Hastie T, Tibshirani R & Friedman J. The Elements of Statistical Learning 2009.
 Springer Series in Statistics.
- Haynes JD, Rees G (2006) Decoding mental states from brain activity in humans. Nat Rev Neurosci.
- Mourão-Miranda J et al. (2006). The impact of temporal compression and space selection on SVM analysis of single-subject and multi-subject fMRI data. *Neuroimage* 33, 1055–1065.
- Noirhomme Q, et al. (2014). Biased binomial assessment of cross-validated estimation of classification accuracies illustrated in diagnosis predictions. Neuroimage Clin. 4, 687–694.
- Pereira F, Mitchell TM, Botvinick M (2009) Machine Learning Classifiers and fMRI: a tutorial overview. *Neuroimage*
- Rakotomamonjy A et al. (2008) Simple MKL. Journal of Machine Learning, 2491-2521.
- Rasmussen C, Williams CKI (2006) Gaussian Processes for Machine Learning. Cambridge, Massachusetts: The MIT Press.
- Shawe-Taylor J, Christianini N (2004) Kernel Methods for Pattern Analysis.
 Cambridge: Cambridge University Press.
- Schrouff J et al. (2013) PRoNTo: Pattern Recognition for Neuroimaging Toolbox, Neuroinformatics.
- Schrouff J et al (2018) Embedding anatomical or functional knowledge in wholebrain multiple kernel learning models. *Neuroinformatics*.

