Logistic Regression Tutorial

A fundamental understanding of logistic regression models is assumed, please seek resources to improve understanding and use this tutorial as a computational example.

Read data

More information can be found in the Data Import and Export tutorial notebook.

```
In [1]: train = read.csv("train.csv")
test = read.csv("test.csv")
```

Error Metric ¶

R-Bloggers has a nice article on explaining the Log Loss function which can be read here (http://www.r-bloggers.com/making-sense-of-logarithmic-loss/).

```
In [2]: LogLossBinary = function(actual, predicted, eps = 1e-15) {
    predicted = pmin(pmax(predicted, eps), 1-eps)
    - (sum(actual * log(predicted) + (1 - actual) * log(1 - predicted)))
    / length(actual)
}
```

One Predictor Model

Fit a single predictor logistic regression model and inspect its coefficients.

```
In [5]:
        summary(model)
Out[5]: Call:
        glm(formula = Response ~ Var1, family = "binomial", data = train)
        Deviance Residuals:
            Min
                           Median
                      10
                                        3Q
                                                Max
        -0.9143
                -0.8267
                          -0.7963
                                    1.5474
                                             1.7307
        Coefficients:
                     Estimate Std. Error z value Pr(>|z|)
        (Intercept) -1.013422
                                0.008732 -116.06
                                                   <2e-16 ***
                                0.015172 -15.04
                                                   <2e-16 ***
        Var1
                    -0.228121
        Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
        (Dispersion parameter for binomial family taken to be 1)
            Null deviance: 118824 on 99999 degrees of freedom
        Residual deviance: 118595 on 99998
                                             degrees of freedom
        AIC: 118599
        Number of Fisher Scoring iterations: 4
```

Make predictions with the single predictor model on the training data.

```
In [6]: trainingPredictions = predict(model, type = "response")
In [7]: LogLossBinary(train$Response, trainingPredictions)
Out[7]: 0.59297692097586
```

Create another model that predicts every observation as the mean of the training set's response variable. Compare its log loss to the first model's log loss.

```
In [8]: responseMean = rep(mean(train$Response), nrow(train))
In [9]: LogLossBinary(train$Response, responseMean)
Out[9]: 0.594120639781108
In [10]: LogLossBinary(train$Response, trainingPredictions)
Out[10]: 0.59297692097586
```

Three Predictor Model

Fit another logistic regression model with more predictors and inspect results.

```
multipleModel = glm(Response ~ Var1 + Var2 + NVVar1, data = train, famil
In [11]:
         y = "binomial")
In [12]: | coef(multipleModel)
Out[12]:
                               -0.990706038509847
                    (Intercept)
                         Var1
                               -0.0170514509093614
                         Var2
                               -0.198554853852551
                      NVVar1
                               0.0421376519120142
        summary(multipleModel)
In [13]:
Out[13]: Call:
         glm(formula = Response ~ Var1 + Var2 + NVVar1, family = "binomial",
            data = train)
         Deviance Residuals:
            Min
                      10
                          Median
                                       30
                                               Max
         -1.0335 -0.8382 -0.7782
                                   1.5042
                                            2.2484
         Coefficients:
                     Estimate Std. Error z value Pr(>|z|)
         Var1
                    -0.017051
                                0.019062 -0.895
                                                    0.371
                    -0.198555
                                0.011143 -17.819 < 2e-16 ***
         Var2
        NVVar1
                     0.042138
                                0.006965
                                           6.050 1.45e-09 ***
         Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
         (Dispersion parameter for binomial family taken to be 1)
            Null deviance: 118824 on 99999 degrees of freedom
         Residual deviance: 118231 on 99996 degrees of freedom
         AIC: 118239
        Number of Fisher Scoring iterations: 4
In [14]: multiplePredictions = predict(multipleModel, type = "response")
```

Compare the log loss of all 3 models fit.

```
In [15]: print(paste(LogLossBinary(train$Response, responseMean), "Log loss of re
    sponse mean model"))
    print(paste(LogLossBinary(train$Response, trainingPredictions), "Log los
    s of single predictor model"))
    print(paste(LogLossBinary(train$Response, multiplePredictions), "Log los
    s of multiple predictor model"))
```

- [1] "0.594120639781108 Log loss of response mean model"
- [1] "0.59297692097586 Log loss of single predictor model"
- [1] "0.591155408804644 Log loss of multiple predictor model"

As expected, the single predictor logistic regression model has a lower log loss than the response mean model, and the multiple predictor logistic regression model has a lower log loss than both.

Create baseline submission

Create predictions on the test set using our three predictor model. These predictions are scored as the 'GLM Benchmark' on the competition leaderboard.