Fermat's Little Theorem

April 25, 2020

Conjecture. If $a, p \in \mathbb{N}$, p is prime and gcd(a, p) = 1 then $a^{p-1} \equiv 1 \pmod{p}$.

Proof. We claim that the first (p-1) multiples of $a=\{a,2a,3a,\ldots,(p-1)a\}$, when divided by p, have distinct, non-zero remainders. Let \mathbb{Z}_{p-1} represent the set of first (p-1) positive integers. Let $k\in\mathbb{Z}_{p-1}$. If ka had a zero remainder on division by p, it would mean $p\mid ka$.

We will prove that this means $p \mid k$ or $p \mid a$. Since $p \mid ka$ there must exist $x \in \mathbb{Z}$ so that px = ka. Assume $p \nmid k$.