Assignment-II

Fertilizer recommendation system for disease prediction

Date	27 September 2022
Student name	Lakshmi Vidhya.G
Student roll number	1919102049
Maximum marks	2 marks

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
sns.set_style('darkgrid')
sns.set(font scale=1.3)
df=pd.read_csv("/content/drive/MyDrive/IBM/Assignment - 2
/Churn_Modelling.csv")
df.head()
                           Surname CreditScore Geography Gender
   RowNumber CustomerId
                                                                    Age \
0
                                                    France Female
           1
                15634602
                          Hargrave
                                             619
                                                                      42
1
           2
                15647311
                              Hill
                                             608
                                                     Spain
                                                            Female
                                                                      41
2
           3
                15619304
                              Onio
                                             502
                                                    France
                                                            Female
                                                                      42
3
           4
                                                            Female
                                                                      39
                15701354
                              Boni
                                             699
                                                    France
4
           5
                15737888 Mitchell
                                             850
                                                     Spain Female
                                                                      43
                                                 IsActiveMember
   Tenure
             Balance
                      NumOfProducts
                                     HasCrCard
0
        2
                0.00
                                   1
                                              1
                                                               1
                                   1
1
        1
            83807.86
                                              0
                                                               1
2
        8
         159660.80
                                   3
                                              1
                                                              0
3
                                   2
                                                              0
        1
                0.00
                                              0
4
           125510.82
                                   1
                                              1
                                                               1
```

```
EstimatedSalary Exited
0
        101348.88
1
        112542.58
                        0
2
        113931.57
                        1
3
                        0
         93826.63
4
         79084.10
                        0
df.drop(["RowNumber","CustomerId","Surname"],axis=1,inplace=True)
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 11 columns):
#
    Column
                     Non-Null Count Dtype
---
                     _-----
0
                     10000 non-null int64
    CreditScore
1
    Geography
                     10000 non-null object
2
                     10000 non-null object
    Gender
                     10000 non-null int64
3
    Age
4
    Tenure
                    10000 non-null int64
5
                   10000 non-null float64
    Balance
    NumOfProducts 10000 non-null int64
7
    HasCrCard
                     10000 non-null int64
8
    IsActiveMember 10000 non-null int64
    EstimatedSalary 10000 non-null float64
9
                     10000 non-null int64
10 Exited
dtypes: float64(2), int64(7), object(2)
memory usage: 859.5+ KB
#Perform Univariate Analysis
plt.figure(figsize=(8,8))
sns.countplot(x='Tenure',data=df)
plt.xlabel('0:Customers with Bank, 1: exited from bank')
plt.ylabel('No.of.Customers')
plt.title("Bank Customers viz")
plt.show()
```


#Perform Univariate Analysis
plt.figure(figsize=(8,8))
sns.kdeplot(x=df['Balance'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fa0c03906d0>

#Perform Bivariate Analysis
plt.scatter(df.Age,df.Balance)

<matplotlib.collections.PathCollection at 0x7fa0d35a7dd0>

#Perform Bivariate Analysis
df.corr()

	CreditScore	Gender	Age	Tenure	Balance	\
CreditScore	1.000000	0.007888	-0.003965	0.000842	0.006268	
Gender	0.007888	1.000000	0.022812	0.003739	0.069408	
Age	-0.003965	0.022812	1.000000	-0.009997	0.028308	
Tenure	0.000842	0.003739	-0.009997	1.000000	-0.012254	
Balance	0.006268	0.069408	0.028308	-0.012254	1.000000	
NumOfProducts	0.012238	0.003972	-0.030680	0.013444	-0.304180	
HasCrCard	-0.005458	-0.008523	-0.011721	0.022583	-0.014858	
IsActiveMember	0.025651	0.006724	0.085472	-0.028362	-0.010084	
EstimatedSalary	-0.001384	-0.001369	-0.007201	0.007784	0.012797	
Exited	-0.027094	0.035943	0.285323	-0.014001	0.118533	
	NumOfProduct	s HasCrCa	ard IsActi	iveMember	EstimatedSa	alary \
CreditScore	NumOfProduct 0.01223			iveMember 0.025651	EstimatedSa -0.00	-
CreditScore Gender		88 -0.0054	158			1384
	0.01223	38 -0.0054 72 -0.0085	158 523	0.025651	-0.00)1384)1369
Gender	0.01223 0.00397	38 -0.0054 72 -0.0085 30 -0.0117	158 523 721	0.025651 0.006724	-0.06 -0.06 -0.06)1384)1369
Gender Age	0.01223 0.00397 -0.03068	38 -0.0054 72 -0.0085 30 -0.0117 44 0.0225	158 523 721 583	0.025651 0.006724 0.085472	-0.00 -0.00 -0.00 0.00	91384 91369 97201
Gender Age Tenure	0.01223 0.00397 -0.03068 0.01344	38 -0.0054 72 -0.0085 30 -0.0117 44 0.0225 30 -0.0148	158 523 721 583	0.025651 0.006724 0.085472 -0.028362	-0.06 -0.06 -0.06 0.06 0.01	91384 91369 97201 97784
Gender Age Tenure Balance	0.01223 0.00397 -0.03068 0.01344 -0.30418	38 -0.0054 72 -0.0085 30 -0.0117 44 0.0225 30 -0.0148 90 0.0031	158 523 721 583 358	0.025651 0.006724 0.085472 -0.028362 -0.010084	-0.06 -0.06 -0.06 0.06 0.01	01384 01369 07201 07784 12797
Gender Age Tenure Balance NumOfProducts	0.01223 0.00397 -0.03068 0.01344 -0.30418 1.00000	-0.0054 -0.0085 -0.0117 -0.0225 -0.0148 -0.0031 -0.0006	158 523 721 583 358 183	0.025651 0.006724 0.085472 -0.028362 -0.010084 0.009612	-0.00 -0.00 -0.00 0.00 0.01 0.01	01384 01369 07201 07784 02797 04204
Gender Age Tenure Balance NumOfProducts HasCrCard	0.01223 0.00397 -0.03068 0.01344 -0.30418 1.00000 0.00318	-0.0054 -0.0085 -0.0117 -0.0225 -0.0148 -0.0031 -0.008 -0.0118	158 523 721 583 358 183 900	0.025651 0.006724 0.085472 -0.028362 -0.010084 0.009612 -0.011866	-0.06 -0.06 -0.06 0.01 0.01 -0.06	01384 01369 07201 07784 02797 04204
Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember	0.01223 0.00397 -0.03068 0.01344 -0.30418 1.00000 0.00318 0.00961	-0.0054 -0.0085 -0.0117 -0.0225 -0.0148 -0.0031 -0.0118 -0.0118 -0.0099	158 523 721 583 358 183 900 366	0.025651 0.006724 0.085472 -0.028362 -0.010084 0.009612 -0.011866 1.000000	-0.00 -0.00 -0.00 0.01 0.01 -0.00 -0.01	01384 01369 07201 07784 12797 14204 09933

Exited CreditScore -0.027094

```
Gender
              0.035943
Age
              0.285323
Tenure
             -0.014001
Balance
             0.118533
NumOfProducts -0.047820
HasCrCard
             -0.007138
IsActiveMember -0.156128
EstimatedSalary 0.012097
Exited
              1.000000
#Perform Bivariate Analysis
import statsmodels.api as sm
#define response variable
y = df['CreditScore']
#define explanatory variable
x = df[['EstimatedSalary']]
#add constant to predictor variables
x = sm.add constant(x)
#fit linear regression model
model = sm.OLS(y, x).fit()
#view model summary
print(model.summary())
                        OLS Regression Results
______
Dep. Variable:
                      CreditScore
                                  R-squared:
0.000
Model:
                             OLS
                                  Adj. R-squared:
0.000
Method:
                    Least Squares
                                  F-statistic:
0.01916
Date:
                 Sat, 24 Sep 2022
                                  Prob (F-statistic):
0.890
Time:
                         05:06:19
                                  Log-Likelihood:
59900.
No. Observations:
                           10000
                                  AIC:
1.198e+05
Df Residuals:
                                  BIC:
                            9998
1.198e+05
Df Model:
                              1
Covariance Type:
                       nonrobust
______
=====
                                       t
                                              P>|t|
                         std err
                                                       [0.025
                  coef
```

```
______
const
            650.7617 1.940 335.407 0.000
                                               646.958
654.565
3.06e-05
______
                    132.939 Durbin-Watson:
Omnibus:
2.014
                      0.000 Jarque-Bera (JB):
Prob(Omnibus):
84.242
Skew:
                       -0.072 Prob(JB):
                                                     5.10e-
19
Kurtosis:
                        2.574 Cond. No.
2.32e+05
______
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is
correctly specified.
[2] The condition number is large, 2.32e+05. This might indicate that there
are
strong multicollinearity or other numerical problems.
/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/tsatools.py:142:
FutureWarning: In a future version of pandas all arguments of concat except
for the argument 'objs' will be keyword-only
 x = pd.concat(x[::order], 1)
#Perform Multivariate Analysis
plt.figure(figsize=(4,4))
sns.pairplot(data=df[["Balance","CreditScore","EstimatedSalary","NumOfProduct
s","Tenure","Exited"]],hue="Exited")
<seaborn.axisgrid.PairGrid at 0x7fa0b00a1b10>
<Figure size 288x288 with 0 Axes>
```


#Perform Descriptive Statistics

df=pd.DataFrame(df)
print(df.sum())

CreditScore	6505288
Geography	FranceSpainFranceFranceSpainSpainFranceGermany
Gender	FemaleFemaleFemaleFemaleMaleMaleFemaleMa
Age	389218
Tenure	50128
Balance	764858892.88
NumOfProducts	15302
HasCrCard	7055
IsActiveMember	5151
EstimatedSalary	1000902398.81
Exited	2037
dtype: object	

```
#Perform Descriptive Statistics
print("----Sum Value ----")
```

```
print(df.sum(1))
print("-----")
print("----Product Value ----")
print(df.prod())
print("-----")
----Sum Value----
     102015.88
1
       197002.44
    274149.37
94567.63
205492.92
2
3
4
9995
       97088.64
9996 159633.38
9997
      42840.58
9998 168784.83
9999 169159.57
Length: 10000, dtype: float64
----Product Value----
CreditScore 0.0
               0.0
Age
Tenure
               0.0
Balance
               0.0
NumOfProducts 0.0
HasCrCard
               0.0
IsActiveMember 0.0
EstimatedSalary inf
Exited
                 0.0
dtype: float64
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:3:
FutureWarning: Dropping of nuisance columns in DataFrame reductions (with
'numeric only=None') is deprecated; in a future version this will raise
TypeError. Select only valid columns before calling the reduction.
 This is separate from the ipykernel package so we can avoid doing imports
/usr/local/lib/python3.7/dist-packages/numpy/core/_methods.py:52:
RuntimeWarning: overflow encountered in reduce
 return umr prod(a, axis, dtype, out, keepdims, initial, where)
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:6:

FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

```
#Perform Descriptive Statistics
print("------Mean Value-----")
```

```
print(df.mean())
print("-----")
print("-----")
print(df.median())
print("----")
print("----"Mode Value ----")
print(df.mode())
print("----")
-----Mean Value-----
CreditScore
Age
                 38.921800
Tenure
                 5.012800
Balance
NumOfProducts
             76485.889288
                1.530200
              0.705500
0.515100
HasCrCard
IsActiveMember
EstimatedSalary 100090.239881
Exited
                0.203700
dtype: float64
____
-----Median Value-----
CreditScore 652.000
Age
                37.000
Balance 97198.540
NumOfProducts 1 000
HasCrCand
HasCrCard
                 1.000
IsActiveMember
                 1.000
EstimatedSalary 100193.915
Exited
                0.000
dtype: float64
-----Mode Value-----
  CreditScore Geography Gender Age Tenure Balance NumOfProducts \
        850 France Male 37 2 0.0
  HasCrCard IsActiveMember EstimatedSalary Exited
   1 1 24924.92 0
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3:
FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise
TypeError. Select only valid columns before calling the reduction.

This is separate from the ipykernel package so we can avoid doing imports until

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:6:
FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise

TypeError. Select only valid columns before calling the reduction.

#Handling with missing Values df.isnull()#Checking values are null

,	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts
0	False		False	False	False		False
1	False		False		False	False	False
2	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False
• • •	•••		• • •		• • •	• • •	• • •
9995	False		False	False	False	False	False
9996	False	False	False	False	False	False	False
9997	False	False	False	False	False	False	False
9998	False	False	False	False	False	False	False
9999	False	False	False	False	False	False	False
	HasCrCard	IsActiveMemb	er Esti	matedSa	lary Ex	kited	
0	False	Fal	se	F	alse F	alse	
1	False	Fal	se	F	alse F	alse	
2	False	Fal	se	F	alse F	alse	
3	False	Fal				alse	
4	False	Fal		F	alse F	alse	
					• • •		
9995	False	Fal		F		alse	
9996	False	Fal				alse	
9997	False	Fal				alse	
9998	False	Fal				alse	
9999	False	Fal				alse	
	. 4150	. 41		•			

[10000 rows x 11 columns]

#Handling with missing Values df.notnull()#Checking values are not null

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	\
0	True	True	True	True	True	True	True	
1	True	True	True	True	True	True	True	
2	True	True	True	True	True	True	True	
3	True	True	True	True	True	True	True	
4	True	True	True	True	True	True	True	
	• • •					• • •	• • •	
9995	True	True	True	True	True	True	True	
9996	True	True	True	True	True	True	True	
9997	True	True	True	True	True	True	True	
9998	True	True	True	True	True	True	True	
9999	True	True	True	True	True	True	True	

	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	True	True	True	True
1	True	True	True	True
2	True	True	True	True
3	True	True	True	True
4	True	True	True	True
• • •	• • •	• • •	• • •	
9995	True	True	True	True
9996	True	True	True	True
9997	True	True	True	True
9998	True	True	True	True
9999	True	True	True	True

[10000 rows x 11 columns]

#Find outliers & replace the outliers
sns.boxplot(df['Balance'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7fa0af6dcf90>

0 50000 100000 150000 200000 250000 Balance

```
#Find outliers & replace the outliers
print(np.where(df['Balance']>100000))
                       5, ..., 9987, 9993, 9999]),)
(array([
           2,
                 4,
#Find outliers & replace the outliers
from scipy import stats
import numpy as np
z = np.abs(stats.zscore(df["EstimatedSalary"]))
print(z)
0
        0.021886
1
        0.216534
2
        0.240687
3
        0.108918
4
        0.365276
          . . .
9995
        0.066419
9996
        0.027988
9997
        1.008643
9998
        0.125231
9999
        1.076370
Name: EstimatedSalary, Length: 10000, dtype: float64
#Check for categorical columns & performs encoding
from sklearn.preprocessing import LabelEncoder
df['Gender'].unique()
array(['Female', 'Male'], dtype=object)
#Check for categorical columns & performs encoding
df['Gender'].value_counts()
Male
          5457
Female
          4543
Name: Gender, dtype: int64
#Check for categorical columns & performs encoding
encoding=LabelEncoder()
df["Gender"]=encoding.fit_transform(df.iloc[:,1].values)
df
                                                               NumOfProducts
      CreditScore Geography Gender
                                      Age
                                           Tenure
                                                      Balance
                                                                              \
0
              619
                      France
                                   0
                                       42
                                                 2
                                                         0.00
1
              608
                       Spain
                                   2
                                       41
                                                 1
                                                     83807.86
                                                                            1
2
                                                                            3
              502
                                   0
                                       42
                                                 8
                      France
                                                    159660.80
3
              699
                                       39
                                                 1
                                                                            2
                      France
                                   0
                                                         0.00
4
                                   2
                                       43
                                                 2
                                                                            1
              850
                                                    125510.82
                       Spain
              . . .
                                               . . .
                                                                          . . .
9995
              771
                      France
                                   0
                                       39
                                                5
                                                         0.00
                                                                            2
9996
              516
                      France
                                   0
                                       35
                                                10
                                                     57369.61
                                                                            1
```

```
9997
           709
                 France
                            0
                                36
                                              0.00
9998
            772
                 Germany
                                42
                                       3
                                           75075.31
9999
           792
                 France
                                28
                                       4 130142.79
     HasCrCard IsActiveMember EstimatedSalary Exited
0
                                 101348.88
            1
                         1
1
            0
                         1
                                 112542.58
                                              0
2
            1
                         0
                                 113931.57
                                              1
3
            0
                         0
                                              0
                                  93826.63
                                  79084.10
4
            1
                         1
                                              0
9995
           1
                         0
                                 96270.64
                                              0
9996
           1
                         1
                                              0
                                 101699.77
9997
           0
                         1
                                 42085.58
                                              1
           1
                                              1
9998
                         0
                                 92888.52
9999
                                  38190.78
                                              0
[10000 rows x 11 columns]
#Check for categorical columns & performs encoding
#Split the data into Dependent & Independent Variables
print("-----")
X=df.iloc[:,1:4]
print(X)
print("-----")
print("-----Independent Variables -----")
Y=df.iloc[:,4]
print(Y)
print("-----")
------Dependent Variables
     Age Tenure
                 Balance
      42
            2
                    0.00
0
1
     41
            1 83807.86
2
     42
            8 159660.80
3
      39
            1
                   0.00
4
     43
             2 125510.82
     . . .
                    . . .
           . . .
          5
10 57369.61
a aa
9995
      39
            5
                    0.00
9996
      35
            7
                   0.00
9997
      36
      42
                75075.31
9998
             3
             4 130142.79
9999
      28
[10000 rows x 3 columns]
-----Independent Variables-----
0
      1
      1
1
```

```
2
        3
3
        2
4
        1
9995
        2
9996
        1
9997
       1
        2
9998
9999
        1
Name: NumOfProducts, Length: 10000, dtype: int64
#Scale the independent Variables
from sklearn.preprocessing import StandardScaler
object= StandardScaler()
# standardization
scale = object.fit transform(df)
print(scale)
[[-0.32622142 0.29351742 -1.04175968 ... 0.97024255 0.02188649
   1.97716468]
 [-0.44003595 0.19816383 -1.38753759 ... 0.97024255 0.21653375
  -0.50577476]
 [-1.53679418 0.29351742 1.03290776 ... -1.03067011 0.2406869
   1.97716468]
 [ 0.60498839 -0.27860412  0.68712986  ...  0.97024255 -1.00864308
   1.97716468]
 [ 1.25683526  0.29351742  -0.69598177  ...  -1.03067011  -0.12523071
   1.97716468]
 [ 1.46377078 -1.04143285 -0.35020386 ... -1.03067011 -1.07636976
  -0.50577476]]
#Split the data into training & testing
from sklearn.model_selection import train_test_split
#Split the data into training & testing
x_train, x_test, y_train, y_test = train_test_split(x, y,
test_size=4, random_state=4)
x train
      const EstimatedSalary
2558
        1.0
                   137903.54
7642
        1.0
                   121765.00
8912
        1.0
                  109470.34
3319
        1.0
                     2923.61
6852
                     7312.25
       1.0
. . .
        . . .
456
        1.0
                     7666.73
                   9085.00
6017
        1.0
709
        1.0
                   147794.63
```

```
8366
        1.0
                   102515.42
1146
                    54776.64
        1.0
[9996 rows x 2 columns]
#Split the data into training & testing
x_test
      const EstimatedSalary
1603
        1.0
                    23305.85
8713
        1.0
                    41248.80
4561
        1.0
                   143317.42
6600
        1.0
                   174123.16
#Split the data into training & testing
y_train
2558
        727
7642
        811
8912
        623
3319
        430
6852
        600
       . . .
456
        733
6017
        487
709
        686
8366
        637
1146
        614
Name: CreditScore, Length: 9996, dtype: int64
#Split the data into training & testing
y_test
1603
        576
8713
        786
4561
        562
        505
6600
Name: CreditScore, dtype: int64
```