

On Transferability of Prompt Tuning for Natural Language Processing

Yusheng Su*, Xiaozhi Wang*, Yujia Qin, Chi-Min Chan, Yankai Lin, Huadong Wang, Kaiyue Wen, Zhiyuan Liu, Peng Li, Juanzi Li, Lei Hou, Maosong Sun, Jie Zhou

Department of Computer Science and Technology, Tsinghua University, Beijing, 100084, China

Background

Development of PLM

Challenge in Fine-tuning

10⁴
10³
(B) 10²
10¹
10⁰
10⁻¹
GPT (2018) BERT (2018) RoBERTa (2019) GPT-2 (2019) T5 (2019) Model (Year)

GPT (2018) BERT (2018) RoBERTa (2019) GPT-2 (2019) T5 (2019) GPT-3 (2020) GShard (2020) Switch (2021)

Fine-tuning paradigm becomes de-facto standard

Background

NLP Injunge Provident

Parameter-Efficient Tuning (PET) Methods

- PET methods only optimize a small part of parameters for downstream tasks while freezing the rest of the parameters of the PLM. [6]
- Methods: Adapter [1], Prefix [2], LoRA [3],
 BitFit [4], Prompt [5], etc.

[6]

- [1] Neil, et al., Parameter-Efficient Transfer Learning for NLP, ICML, 2019.
- [2] Li, et al., Prefix-Tuning: Optimizing Continuous Prompts for Generation, ACL, 2021.
- [3] Hu, et al., LoRA: Low-Rank Adaptation of Large Language Models, ICLR, 2022.
- [4] Zaken, et al., BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Masked Language-models, ACL, 2022.
- [5] Lester et al., The Power of Scale for Parameter-Efficient Prompt Tuning, EMNLP, 2021.
- [6] He et al., Towards a Unified View of Parameter-Efficient Transfer Learning, ICLR, 2022.

Background

Prompt Tuning (PT)

- Advantage: Lowest computation costs
- Challenge: Slow Convergence

$$L = p(y|\mathbf{P}, x_1, \dots, x_n)$$

On Transferability of Prompt Tuning for NLP

- Prompt Tuning (PT)
 - Solution: Transferring the trained prompts
 - Cross-Task Transfer
 - Cross-Model Transfer

Prompt | am glad to... | Source | PLM | Projector | Task | Target | PLM | PLM

On Transferability of Prompt Tuning for NLP

- Prompt Tuning (PT)
 - Solution: Transferring the trained prompts
 - Cross-Task Transfer
 - Motivation: Similar tasks may require similar skills

Cross-Task Transfer

- Zero-shot Transferability
 - For the tasks within the same type, transferring prompts between them can generally perform well

(Relative Performance)

Cross-Task Transfer

- Transfer with Initialization (TPT_{TASK})
 - Initializing soft prompts with well-trained prompts of the most similar task and then starts PT can speed up training and achieve better performance

Task Type	SA			NLI			EJ		PΙ	QA		SUM				
Task	IMDB	SST-21	laptop re	estaurant l	Movie'	Tweet	MNLI	QNLI	SNLI	deontology ji	ustice Q()P MRP	C SQuAD	NQ-Open	Multi-News	SAMSum
Metric	Acc.	Acc.	Acc.	Acc.	Acc.	Acc.	Acc.	Acc.	Acc.	Acc.	Acc. Ac	c. Ac	c. F1	F1	ROUGE-L1	ROUGE-L
$RoBERTa_{Large}$																
Performance (PT) (%)	92.2	96.1	76.4	83.7	84.9	76.1	87.3	92.4	91.9	85.6	81.0 88	3.9 81.	2 N/A	N/A	N/A	N/A
Performance (TPT _{TASK}) (%)	92.4	96.3	79.1	85.8	85.1	76.1	87.9	93.1	91.9	85.6	78.2 86	5.1 79.	2 N/A	N/A	N/A	N/A
Convergence Speedup	1.7	1.1	1.0	1.9	1.2	0.9	1.2	1.2	1.3	0.9	0.7	0.8	9 N/A	N/A	N/A	N/A
Comparable-result Speedup	2.5	2.4	1.0	3.8	1.5	1.3	1.1	2.3	1.0	0.9	N/AN/	/A N/	A N/A	N/A	N/A	N/A
${ m T5_{XXL}}$																
Performance (PT) (%)	96.5	97.4	76.6	90.1	97.9	76.2	90.5	95.2	93.4	87.0	92.5 90	0.0 86.	3 86.3	20.8	29.2	45.8
Performance (TPT _{TASK}) (%)	96.6	97.8	84.2	88.6	97.5	77.0	92.0	96.2	94.0	95.3	90.7 90	.9 89.	0 85.9	21.3	29.3	46.8
Convergence Speedup	1.2	49.7	2.2	1.1	3.9	1.4	12.5	24.9	49.9	29.8	1.5 1	.0 3.	3 1.1	1.0	2.0	2.0
Comparable-result Speedup	1.2	48.9	219.8	N/A	N/A	1.5	12.5	29.9	49.9	29.9	N/A 1	.0 5	0 N/A	1.0	2.0	2.5

Prompt Tuning (PT)

- Solution: Transferring the trained prompts
 - Cross-Task Transfer
 - Cross-Model Transfer
 - Motivation: Train prompts on a small and computationally efficient PLM and use them on a massive and computationally expensive PLM

Cross-Model Transfer

- Cross-Model Prompt Projection
 - Distance Minimizing
 - Task Tuning

Source prompt: **P**^s; Target prompt: **P**^t;

Distance Minimizing: $L_D = \min ||Proj(\mathbf{P^s}) - \mathbf{P^t}||_2$

$$\mathbf{P}^{\mathbf{s}\prime} = Proj(\mathbf{P}^{\mathbf{s}});$$

Task Tuning:
$$L_T = p(y|\mathbf{P^s}', x_1, ..., x_n)$$

Cross-Model Transfer

- Zero-shot Transfer Performance
 - Task Tuning (projector) generalizes to same-type unseen tasks of the training tasks
- Transfer with trained prompt Initialization (TPT_{TASK})
 - Accelerate convergence, improve performance

Method					SA				NLI		EJ] :	ΡΙ
		IMDB	SST-2	laptop	restaurant	Movie	Tweet	MNLI	QNLI	SNLI	deontology	justice	QQP	MRPC
PT on	PT on T5 _{XXL}		97.4	76.6	88.1	97.9	72.5	90.5	95.2	93.4	87.0	92.5	90.0	86.3
Random Prompt		49.7	49.0	19.8	17.0	51.6	15.5	31.8	49.3	31.9	51.3	50.0	36.4	67.0
			(2	ı) Zero-	shot Trans	fer Perf	ormanc	e (%)						
lanton	Prompt Mapping	49.6	49.0	76.6	17.5	51.5	14.4	31.8	48.1	32.8	53.3	49.9	36.8	66.6
laptop	Task Tuning	82.9	89.3	80.3	85.7	78. 6	58.4	32.4	50.7	33.6	54.9	51.6	33.9	63.7
MNLI	Prompt Mapping	49.6	50.1	19.8	18.3	51.2	15.0	90.5	49.0	32.9	50.3	49.0	36.8	65.6
	Task Tuning	49.7	48.8	19.8	17.0	51.6	16.0	89.8	82.7	88.2	49.7	50.0	36.8	67.7
		(b)	Transf	er with Init	ializatio	on (TPT	MODEL)							
	Performance (%)	96.5	97.4	82.9	90.3	97.4	74.4	91.0	95.4	93.4	92.5	92.5	90.0	87.9
laptop	Convergence Speedup	1.1	1.7	1.9	1.3	0.6	1.3	0.9	0.9	1.0	1.0	0.7	1.1	1.1
	Comparable-result Speedup	1.0	19.0	16.0	6.0	N/A	2.2	3.6	1.1	6.0	6.0	0.9	1.8	3.4
	Performance (%)	96.5	97.4	82.7	88.5	95.8	74.7	91.2	95.9	93.5	94.6	92.5	90.0	87.7
MNLI	Convergence Speedup	1.0	1.6	1.8	0.9	0.4	1.3	1.0	1.1	1.4	2.0	1.7	0.9	0.9
	Comparable-result Speedup	1.0	18.0	15.0	1.6	N/A	1.5	18.0	20.0	30.0	7.5	5.0	1.5	1.9

- Motivation
 - Explore why the soft prompts can transfer across tasks and what decides the transferability between them
 - Find suitable prompts for performing transfer to achieve better performance or accelerate prompt tuning

Prompt_1 Prompt_2

Prompt Bank Prompt_3 Prompt_4

Prompt_5 Prompt_6

Reuse / Initialize

PLM Source
Task

Embedding Similarity

Concate

Euclidean similarity

$$P^{t1}$$
: $\bigcirc \bigcirc \bigcirc \bigcirc \longrightarrow P^{t1}$: $\bigcirc \bigcirc \bigcirc \bigcirc$

$$E_{\text{concat}}(P^{t_1}, P^{t_2}) = \frac{1}{1 + \|\mathbf{P}^{t_1} - \mathbf{P}^{t_2}\|}$$

Cosine similarity

$$P^{t2}$$
: $\bigcirc \bigcirc \bigcirc \bigcirc \longrightarrow \mathbf{P}^{t2}$: $\bigcirc \bigcirc \bigcirc \bigcirc$

$$C_{\text{concat}}(P^{t_1}, P^{t_2}) = \frac{\mathbf{P}^{t_1} \cdot \mathbf{P}^{t_2}}{\|\mathbf{P}^{t_1}\| \|\mathbf{P}^{t_2}\|}$$

Model Stimulation Similarity

- Embedding Similarity
 - Euclidean similarity
 - Cosine similarity
- Model Stimulation Similarity

$$\begin{split} \mathbf{E}_{\text{average}}(P^{t_1}, P^{t_2}) &= \frac{1}{1 + \frac{1}{l^2} \sum\limits_{i=1}^{l} \sum\limits_{j=1}^{l} \|\mathbf{p}_i^{t_1} - \mathbf{p}_j^{t_2}\|} \\ \mathbf{C}_{\text{average}}(P^{t_1}, P^{t_2}) &= \frac{1}{l^2} \sum\limits_{i=1}^{l} \sum\limits_{j=1}^{l} \frac{\mathbf{p}_i^{t_1} \cdot \mathbf{p}_j^{t_2}}{\|\mathbf{p}_i^{t_1}\| \|\mathbf{p}_j^{t_2}\|} \end{split}$$

- Embedding Similarity
 - Euclidean similarity
 - Cosine similarity

$$\text{FFN}(\mathbf{x}) = \underbrace{\max(\mathbf{x}W_1^{\top} + \mathbf{b_1}, \mathbf{0})}_{} W_2 + \mathbf{b_2},$$

- Embedding Similarity
 - Euclidean similarity
 - Cosine similarity

$$\text{FFN}(\mathbf{x}) = \underbrace{\left(\mathbf{x}W_1^{\top} + \mathbf{b_1}, \mathbf{0}\right)}_{} W_2 + \mathbf{b_2},$$

$$AS(P) = [\mathbf{s}_1; \mathbf{s}_2; ...; \mathbf{s}_L]$$

- **Embedding Similarity**
 - **Euclidean similarity**
 - Cosine similarity

$$FFN(\mathbf{x}) = \underbrace{(\mathbf{x}W_1^{\top} + \mathbf{b_1}, \mathbf{0})}_{W_2} W_2 + \mathbf{b_2},$$

$$AS(P) = [\mathbf{s}_1; \mathbf{s}_2; ...; \mathbf{s}_L]$$

- Embedding Similarity
 - Euclidean similarity
 - Cosine similarity

- Embedding Similarity
 - Euclidean similarity:
 - Cosine similarity:

- Model Stimulation Similarity (ON)
 - ON has the higher Spearman's correlation with the transferability
 - ON works worse on the larger PLMs because of the higher redundancy [1]

Metric		Model							
1	1eu ic	$RoBERTa_{LARGE}$	T5 _{XXL}						
E	concat	22.6	12.9						
E	average	2.8	-2.5						
C	$^{\prime}_{ m concat}$	24.8	31.6						
C	average	44.7	33.5						
	N	49.7	36.9						

Spearman's correlation

Cross-Task Transfer | Cross-Model Transfer | Transferability Indicator

Exploring Transferability Indicator

- Distribution of Activated Neuron
 - The activated neurons are comm
 -on in the bottom layers but more task-specific in top layers

1 - 3 layers

4 - 6 layers

7 - 9 layers

10 - 12 layers

Conclusion

Transferability of Prompts

- In the cross-task setting
 - Soft prompts can transfer to similar tasks to accelerate prompt tuning and achieve better performance
- In the cross-model setting
 - Soft prompts can transfer to different PLMs with a projector trained on similar tasks
- Transferability Indicator
 - We can utilize activated neurons of soft prompts to well indicate transferability between tasks

Q&A

THUNLP

