Data Analytics in R Session 5

Maria Kunevich

Homework feedback

- Your feedback for the course and course assignments is greatly appreciated!
- https://miro.com/welcomeonboard/SUw3RHpXWjBpUDF2V0dwTWhkOFVVUn lUTnZ4Qm1oVGtSTVN0SmNCUmJyODhydU9hUzA3VUpNZVZHRnNBenhqVH wzMDc0NDU3MzY2NDE0OTE3Njc4?share_link_id=308470562965

Let's look at our DataCamp leaderboard:
 https://app.datacamp.com/groups/data-analytics-in-r-db1ae4f4-62a1
 -4da2-b5d9-94616b38d5d0/leaderboard

Homework feedback

- Feedback from me is in the comments to your gists: please make sure you comment your script thoroughly:)
- Review table:
 https://docs.google.com/spreadsheets/d/1JyX2fQArbhfkkMf_HTly-F
 DLDvI-C_-B1DAi8IiSfyc/edit?usp=sharing
- Any questions?

Homework assignment 3

- Part 1: finish two last chapters on DataCamp Introduction to R course
- Part 2: the same procedure for copy pasting the task (HW3) and creating your own Gist, submit the link on Wednesday evening by 23:59
- Please comment your script heavily and more carefully, make sure you
 explain the data set structure and comment on all the characteristics
 of the data set. Provide descriptive statistics (with your comments
 and interpretation!)

Course information: assignments deadlines

Assignment	Date of assignment	Deadline (midnight 23:59)	
HW1	22 Sept 2022	28 Sept 2022	
HW2	29 Sept 2022	5 Oct 2022	
HW3	6 Oct 2022	12 Oct 2022	
HW4	13 Oct 2022	19 Oct 2022	
HW5 20 Oct 2022 2 Nov 2		2 Nov 2022	
Paper summary	20 Oct 2022	20 Nov 2022	
HW6	3 Nov 2022	9 Nov 2022	
HW7	10 Nov 2022	16 Nov 2022	
HW8	17 Nov 2022	23 Nov 2022	
HW9	24 Nov 2022	30 Nov 2022	
HW10	1 Dec 2022	7 Dec 2022	
Project	ТВА	14 Dec 2022	
Final Presentations		15 Dec 2022	

Plan for today

- Revision of the basic concepts in statistics: population vs sample, levels of measurement in statistics
- 2. Basic concepts in descriptive statistical analysis
- 3. Data import in R
- 4. Data frames in R

Describe the difference between population and sample

A **parameter** is a number that summarises some aspect of the population as a whole. A **statistic** is a number computed from the

sample data.

■ Example: how many students know R language and use it for statistical analysis? Is it difficult to learn?

■ What is the population? What is the sample?

Sampling techniques - probability sampling

https://www.scribbr.com/methodology/sampling-methods/

Sampling techniques - non-probability sampling

Probability **bias**

https://www.scribbr.com/methodology/sampling-methods/

Describe the difference and provide examples of **different data types** (levels of measurement) in statistics

☐ Gender, age, level of education, yes/no answer (0/1), level of difficulty (1-7), scale (agree-disagree), year

In small groups provide your own examples

Types of descriptive statistics

- Three basic categories of measures:
- Measures of central tendency describe the averages of the values (mean, median, mode)
- Measures of frequency distribution describe the frequency of each value (count)
- Measures of variability or dispersion describe how spread out the values are (variance, standard deviation)

Measures of central tendency

Measures of central tendency estimate the center, or average, of a data set

The **mean**, **median** and **mode** are 3 ways of finding the average

Measures of central tendency

Visualisation: histogram, density curve, boxplot

Fig 1: Central Tendency & Dispersion of plotted data in images

Normal distribution

- Data is symmetrically distributed with no skew
- The mean, mode and median are exactly the same in a normal distribution.

Skewed distributions

Median

Measures of frequency distribution

- A frequency distribution shows the number of times that a particular value occurs in a dataset
- Usually illustrated using graphs and frequency tables
- Types: Ungrouped frequency distributions (what type of variable?)
- Grouped frequency distributions
- Relative frequency distributions: The proportion (%) of observations of each value or class interval of a variable
- Cumulative frequency distributions: The sum of the frequencies less than or equal to each value or class interval of a variable

Ungrouped frequency distributions

For categorical variables

Bird species	Tally	Frequency
Chickadee	III	3
Dove	1	1
Finch	IIII	4
Grackle	II	2
Sparrow	IIII	4
Starling	II	2 Scribbr

Grouped frequency distributions

Divide the variable into class intervals

A ()	F	
Age, a (years)	Frequency	
19 ≤ <i>a</i> < 29	4	
29 ≤ a < 39	9	
39 ≤ <i>a</i> < 49	3	
49 ≤ a < 59	3	

Relative frequency tables

- The sample size -> the sum of the frequencies
- To calculate the relative frequencies, divide each frequency by the sample

SIZE Relative frequency table of the frequency of bird species at a bird feeder

Bird species	Frequency	Relative frequency	
Chickadee	3	= 3 (3 + 1 + 4 + 2 + 4 + 2)	
		= 3 16	
		= .19	
Dove	1	.06	
Finch	4	.25	
Grackle	2	.13	
Sparrow	4	.25	
Starling	2	13 Scribb	

Cumulative frequency tables

Example 1: Robert is the sales manager of a toy company. On checking his quarterly sales record, he can observe that by the month of April, a total of 83 toy cars were sold.

Month	Number of toy cars sold (Frequency)	Total number of toy cars sold (Cumulative Frequency)	
January	20	20	
February	30	20 + 30 = 50	
March	15	50 + 15 = 65	
April	18	65 + 18 = 83	

Cumulative relative frequency tables

Cumulative frequency table of the ages of survey participants

Age, a (years)	Frequency	Cumulative frequency	Cumula frequer	itive relative icy
19 ≤ <i>a</i> < 29	4	4	4 / 20 =	.2
29 ≤ a < 39	9	9 + 4 = 13	.65	
39 ≤ a < 49	3	9 + 4 + 3 = 16	.8	
49 ≤ <i>a</i> < 59	3	19	.95	
59 ≤ <i>a</i> < 69	1	20	1	Scribbr

Frequency tables - visualisation

Frequency distribution can be visualised using:

- a pie chart (what kind of variable?)
- a bar chart (what kind of variable?)
- a **line chart** (what kind of variable?)
- a histogram (what kind of variable?)

Measures of variability

 Measures of variability - to check how spread out the response values are

The range, quantiles, standard deviation and variance each reflect different aspects of spread

- Range: the difference between the highest and lowest values
- Interquartile range: the range of the middle half of a distribution
- Standard deviation: average distance from the mean
- Variance: average of squared distances from the mean

Variability in normal distribution

- · Sample A: high school students,
- · Sample B: college students,
- · Sample C: adult full-time employees.

Interquartile range

Provides information about the spread of the middle of your distribution

(50%)

Five-number summary

Every distribution can be organized using a five-number summary:

- 1. Lowest value
- 2. Q1: 25th percentile
- 3. Q2: the median
- 4. Q3: 75th percentile
- 5. Highest value (Q4)

Comparison of three distributions

Standard deviation

- The standard deviation is the average amount of variability in your dataset
- Information about how far each score lies from the mean
- Interpretation the larger the standard deviation, the more variable the data set is

There are six steps for finding the standard deviation:

- List each score and find their mean
- 2. Subtract the mean from each score to get the deviation from the mean
- 3. Square each of these deviations
- 4. Add up all of the squared deviations
- 5. Divide the sum of the squared deviations by N-1
- 6. Find the square root of the number you found

Source: https://www.scribbr.com/statistics/variability/

Variance

- The **variance** is the average of squared deviations from the mea
- Variance reflects **the degree of spread** in the data set
- The more spread the data, the larger the variance is in relation to the
 mean
- To find the variance, you need to square the standard deviation

Data Exploration (EDA)

Exploratory Data Analysis - introduce the data

Questions to ask yourself when you explore the dataset:

- What metadata is available for this data set? Are the descriptions of variables provided? What do we know about the population / sampling?
- What are the observed population, the observation unit and the reference period?
- What are the data types of the variables? Do we need to change them?
- What are the frequency distributions of these variables? What are the measures of central tendency and dispersion? Anything that surprises you?
- Are there any outliers? Are there any values that look like errors?
- ☐ What is the mean for each variable?
- ☐ Are there any Null / NA values?

Data import in R

Function	Description
range()	Range (minimum and maximum) of vector
min(), max()	Minimum or maximum of vector
<pre>mean() , median()</pre>	Mean or median of vector
sd()	Standard deviation of vector
table()	Number of observations per level for a factor vector
cor()	Determine correlation(s) between two or more vectors
summary()	Summary statistics, depends on class

Data import in R

- data() function to load the datasets in R
- If you run the data function without an argument, R will display a list of the available datasets
- data() the list of preloaded datasets from the datasets package
- Homework assignment dataset "women"
- How to you import it to R?
- •

Data frames in R

- A data frame is a table or a two-dimensional array-like structure: each column contains values of one variable and each row contains a set of values from each column
- **Create** a data frame > data.frame() function
- Check if a variable is a data frame or not, if not **change it** to a data frame
- **Summary** of data: a list of functions to explore the data set (check the R script)
- Extracting data from a data frame -> \$ operator and column name or square
 brackets and index, i.e. subsetting data
- Modifying data frames: expanding the data frame by adding columns or rows
- **Deleting** components