This weeks problem set focuses on eigenvalues and eigenvectors of Matrices. A question marked with a † is difficult and probably too hard for an exam (though still illustrates a useful point). A question marked with a * is especially important.

- 1. From section 2.2, problems 4, 9.
- 2. From section 2.3, problems 12.
- 3. From section 2.4, problems 7, 16.
- 4. From section 2.5, problems 4, 8.
- 5. From section 5.1, problems 1, 2a, c, e, 3a, c, 4a, d, h, 6, 7*, 14*, 15, 16, 22a, 23.
- 6. From section 5.2, problems 1, $3a, d, e, 8, 9, 10, 11, 18^*, 19, 20^{\dagger}$.
- 7. Let $\theta \in [0, 2\pi)$ and $R_{\theta} : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the linear map that takes a vector and rotates it by θ in the counterclockwise direction. Let E be the standard basis.
 - (a) Find $[R_{\theta}]_{E}^{E}$.
 - (b) Is R_{θ} diagonalisable?
 - (c) Consider the linear map $R_{\theta}^{\mathbb{C}}: \mathbb{C}^2 \longrightarrow \mathbb{C}^2$ given by $R_{\theta}^{\mathbb{C}}(v) = [R_{\theta}]_E^E v$. Is this linear map diagonalisable?
- 8. Let U, W be subspaces of V such that $V = U \oplus W$. Let $\operatorname{pr}_U^W : V \longrightarrow V$ be the projection of V onto U along W. Is pr_U^W diagonalisable? Hint: find a suitable basis for V.
- 9. Let V be a vector space and $E = \{v_1, \ldots, v_n\}$ a collection of eigenvectors for a linear map $T: V \longrightarrow V$ such that the eigenvalues are all distinct. Prove that E is a linearly independent set. Hint: use induction on n.

Solution: We start with n = 1. In this case the statement is true since E is a set of one element. For general n, let λ_i be the eigenvalue of v_i . Now consider an arbitrary linear combination

$$0 = \mu_1 v_1 + \dots + \mu_n v_n$$

Call this equation A. Applying T to both sides we get

$$0 = T(0) = T(\mu_1 v_1 + \dots + \mu_n v_n)$$

= $\mu_1 T(v_1) + \dots + \mu_n T(v_n)$
= $\mu_1 \lambda_1 v_1 + \dots + \mu_n \lambda_n v_n$.

Call this equation B. Now consider $\lambda_n A - B$

$$0 = \mu_1(\lambda_n - \lambda_1)v_1 + \cdots + \mu_{n-1}(\lambda_n - \lambda_{n-1})v_{n-1}.$$

By induction $\{v_1, \ldots, n_{n-1}\}$ is a linearly independent set, so $\mu_i(\lambda_n - \lambda_i) = 0$ for $1 \le i \le n-1$. But by assumption $\lambda_n \ne \lambda_i$ when $1 \le i \le n-1$ so we must have that $\mu_i = 0$ for $1 \le i \le n-1$.

Thus equation A becomes

$$0 = \mu_n v_n$$

which means $\mu_n = 0$. Thus E is a linearly independent set.