Выбранное соревнование - IWildCam2019 (https://www.kaggle.com/c/iwildcam-2019-fgvc6).

Главная сложность возникла с распаковкой архива трейновых картинок: они не помещались в папку /data/kaggle-iwildcam-2019/train-images/, из-за чего в процессе обучения вылезала ошибка о том, что картинка имеет тип None Type. Проблема была решена путем распаковки картинок в корневую папку /data/.

Картинки необходимо классифицировать по 14 классам, при этом классы не принимают значения от 0 до 13. Поэтому был написан encoder, кодирующий существующие классы цифрами от 0 до 13:

Encoded	classes	Initial	classes
	1		0
	6		1
	2		3
	4		4
	3		8
	12		10
	7		11
	5		13
	10		14
	8		16
	9		17
	11		18
	0		19
	13		22

Далее, был написан класс IWIldDataset для формирования трейн и тест датасетов. К ним применялась следующая трансформация:

- Обрезание картинки до размера 64*64
- Перевод в тензор
- Нормализация

Был написан наш стандартный код для обучения и валидации модели, который также визуализирует loss и accuracy на трейне и валидации.

Далее, была написана примитивная сетка. Для проекта по DL будет применена более адекватная модель.

Результат модели лучше рандомного классификатора.

Видно, что сетка не особо учится (затухающие градиенты?), но с эти разберемся уже в рамках проекта по DL