说明

因子部分

文章介绍了两种因子扩散度的计算方法

$$\begin{aligned} QBD_t &= \bar{\beta}_t^{High} - \bar{\beta}_t^{Low} \\ BD_t &= \sqrt{\sum_{i=1}^n \left(w_{i,t} \cdot \beta_{i,t} - \sum_{i=1}^n \left(w_{i,t} \cdot \beta_{i,t} \right) \right)^2} \end{aligned}$$

其中,做一点质疑。感觉 BD_t 因子的写法应该是,可能是作者笔误。 $\sum w_{i,t}\cdot \beta_{i,t}$ 代表了整体的beta。beta减去整体beta才能表示其内部扩散情况。

$$BD_{t} = \sqrt{\sum_{i=1}^{n} w_{i,t} \cdot (\beta_{i,t} - \sum_{i=1}^{n} (w_{i,t} \cdot \beta_{i,t}))^{2}}$$

回归部分

原文的两个基本逻辑

成分指数中个股beta之差beta扩散度,beta扩散度可以表示了当前指数的一些性质。是一个很好的指标。

上图对应原文中的图。可以看出来,中国股市相对于美国股市beta扩散值更小。

============	OLS Regres:	sion Results	
Dep. Variable:	CHGPct	R-squared:	0.004
Model:	OLS	Adj. R-squared:	-0.003
Method:	Least Squares	F-statistic:	0.5472
Date:	Sun, 04 Apr 2021	Prob (F-statistic):	0.461
Time:	22:58:13	Log-Likelihood:	157.63
No. Observations:	156	AIC:	-311.3
Df Residuals:	154	BIC:	-305.2
Df Model:	1		
Covariance Type:	nonrobust		
c	oef std err	t P> t [0.025	0.975]

const	-0.0123	0.025	-0.487	0.627	-0.062	0.038
beta	0.0216	0.029	0.740	0.461	-0.036	0.079
Omnibus:		7.1	17 Durbir	n-Watson:		1.806
Prob(Omnik	ous):	0.0	28 Jarque	e-Bera (JB):		8.483
Skew:		-0.3	13 Prob(3	JB):		0.0144
Kurtosis:		3.9	56 Cond.	No.		7.05
	ard Errors assum	e that the	covariance	e matrix of	the errors i	5

当我们仅对beta分散度做预测性的检验,得到的结果并不理想。其p值的检验未通过。文中引入了一个虚拟变量 D_{t-2} 表示提前两个时间点,市场的涨跌情况。我们也对该变量进行引入,得到如下的回归结果。其检验方程为:

		OL	.5 100	910331	on Results		
			====	=====			
======							
Dep. Variable:		CHGP	ct	R-squ	ared (uncent	ered):	
0.024							
Model:		O	LS	Adj.	R-squared (u	ncentered):	
0.011							
Method:		Least Squar	es	F-sta	cistic:		
1.861							
Date:	Su	n, 04 Apr 20	21	Prob	(F-statistic):	
0.159							
Cime:		23:04:	53	Log-L	ikelihood:		
158.90		_					
No. Observation	s:	1	.56	AIC:			
-313.8			5 4	DIG			
Of Residuals:		1	.54	BIC:			
-307.7 Of Model:			2				
or moder:			2				
Covariance Type	:	nonrobu	ıst				
		std err				_	
peta	0.0205	0.011	1	1.850	0.066	-0.001	0.04
dummy –							
======== Omnibus:	======				======== n-Watson:	========	1.968
Prob(Omnibus):		0.007		Jarque-Bera (JB):		12.65	
Skew:		-0.4	11	Prob(JB):		0.0017

在引入新的虚拟变量后,两个系数p值都变得显著。与原文不同的是,此处引入的虚拟变量为 D_{t-1} 。虚拟变量表示了对不同的市场情况。原文认为美国市场的涨跌具有一定的联机效应(240页倒数第二段),即,在beta扩散度变大之前,市场会先出现征兆,此时的虚拟变量 D_{t-2} 就是征兆的代理变量。我通过回归发现不然,国内的市场并没有这种所谓联级效应,反而,使用 D_{t-1} 作为代理变量回归之后会让beta扩散度与虚拟变量都变得显著。

在显著的条件下,可以做一定的解释。虚拟变量为负,与原文一致,说明当出现了市场的崩溃之 后,其后面延续的行情依旧可能是崩溃的状态。

beta扩散度为正,与美股市场相反。说明,美股在崩溃之后beta越大的点回继续出现强烈的奔溃,从而反应在市场上。A股为正,说明出现beta越大的点回出现一定的调整。也正是这种调整,让A股市场的Beta扩散度是明显小于美国市场的。可以理解为,美国走28行情(即指数的行情反映在极少数的股票上),而中国普遍走一种行情(指数成分股走出的行情与成分股比较类似)。

接下来,文章使用了很多方法来说明beta分散度因子的有效性。包括,行业的分析,情绪的分析,技术指标因子分析,时间序列分区的分析。在排除了这几种情况下,beta扩散度依然显著,说明了beta扩散度的有效性。

策略部分

由于文中数据充足,可以做长的跳步进行策略的实现。优矿只提供了2008年之后的成分股数据。有效数据只有12年。文中基于预测的数据都是先进行20年的回归做初始化,然后,每次预测都增加时间点,预测的时长一只保证了20年以上。

因此,我们出了提供了基于预测的策略还有基于逻辑(回归结果)的策略。

在六个月的rolling下,计算第一种beta扩散度。

左侧是基于逻辑的策略,即上一个时间段的市场是在涨的,且当前beta值大于历史beta值的中位数。右侧是基于35天的预测,若预测大于0,则买入。

由于数据量太少会导致预测不够准确。不过与原文fig.5对应,也可以看出。基于预测的效果其实不会跑过基准多少。

基于逻辑的策略是一种选择策略,只对有把握的点买入,就会出现较好的效果。

此处正对signal说明,dummy是进行过滞后处理的变量,beta在预处理过程中就进行了处理,因此,此时的signal就不需要进行滞后处理。

另一种beta 扩散度的计算方法基本走出了一样的结果。

说明两种beta扩散度的计算方法都是有效的。

关于文中策略部分使用分布回归的说明及其他说明

这篇文章给出来的策略效果其实不是很好(紫线对比黑线)。另,这篇文章是一篇的重点是计量的 部分,不是策略驱动的。

文中股票数据来自wind,指数数据来自优矿。

可以通过修改Beta_1.py中,106行的month_step参数来进行月份的调整。实验展示部分使用的是6个月数据。