

Model Development Phase Template

Date	9 August 2025
Skillwallet ID	SWUID20250188620
Project Title	Anemia Sense: Leveraging Machine Learning for Precise Anemia Recognition
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
[ ] from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import classification_report, accuracy_score
    log_model = LogisticRegression()
    log_model.fit(x_train_balanced, y_train_balanced)
    y_pred_log = log_model.predict(x_test)
    alr=accuracy_score(y_test, y_pred_log)
    print("Accuracy Score")
    print(alr)
    clr=(classification_report(y_test, y_pred_log))
    print("Classification Report")
    print(clr)
```

```
from sklearn.ensemble import RandomForestClassifier
rf_model = RandomForestClassifier()
rf_model.fit(x_train_balanced, y_train_balanced)
y_pred_rf = rf_model.predict(x_test)
ar=accuracy_score(y_test, y_pred_rf)
print("Accuracy Score")
print(ar)
print("Classification Report")
print(classification_report(y_test, y_pred_rf))
```



```
from sklearn.naive_bayes import GaussianNB
   gnb_model = GaussianNB()
   gnb_model.fit(x_train_balanced, y_train_balanced)
   y_pred_gnb = gnb_model.predict(x_test)
   ag=accuracy_score(y_test, y_pred_gnb)
   print("Accuracy Score")
   print(ag)
   print("Classification Report")
   print(classification_report(y_test, y_pred_gnb))
```

```
from sklearn.svm import SVC
svm_model = SVC()
svm_model.fit(x_train_balanced, y_train_balanced)
y_pred_svm = svm_model.predict(x_test)
asvm=accuracy_score(y_test, y_pred_svm)
print("Accuracy Score")
print(asvm)
print("Classification Report")
print(classification_report(y_test, y_pred_svm))
```

```
from sklearn.ensemble import GradientBoostingClassifier
   gb_model = GradientBoostingClassifier()
   gb_model.fit(x_train_balanced, y_train_balanced)
   y_pred_gb = gb_model.predict(x_test)
   agb=accuracy_score(y_test, y_pred_gb)
   print("Accuracy Score")
   print(agb)
   print("Classification Report")
   print("Gradient Boosting")
   print(classification_report(y_test, y_pred_gb))
```

Model Validation and Evaluation Report:

Model	Classification Report	F1 Scor e	Confusion Matrix
Random Forest	print("Classification Report") print(classification_report(y_test, y_pred_rf)) Accuracy Score 0.9964912280701754 Classification Report precision recall f1-score support 0 1.00 0.99 1.00 157 1 0.99 1.00 1.00 128 accuracy 1.00 285 macro avg 1.00 1.00 1.00 285 weighted avg 1.00 1.00 1.00 285		print("Confusion Matrix") print(confusion_matrix(y_test, y_pred_rf)) Confusion Matrix [[156 1]

	<pre>print("Classification Report") print(clr)</pre>				<pre>print("Confusion Matrix")</pre>	
Logistic Regressi on	Accuracy Score 0.9824561403508771 Classification Rep prec	ort	ll f1-score	support	98%	print(confusion_matrix(y_test, y_pred_log)) Confusion Matrix [[152 5] [0 128]]
	0 1	1.00 0. 0.96 1.		157 128		
	accuracy macro avg weighted avg	0.98 0. 0.98 0.		285 285 285		
	<pre>print("Classificat print(classification</pre>		est, y_pred_;	gnb))		<pre>print("Confusion Matrix")</pre>
GaussianN B	Accuracy Score 0.968421052631579 Classification Repo				96%	print(confusion_matrix(y_test, y_pred_gnb)) Confusion Matrix [[150 7]
	prec: 0 1	ision reca 0.99 0.9 0.95 0.9		support 157 128		[2 126]]
	accuracy macro avg weighted avg	0.97 0.9 0.97 0.9		285 285 285		
	<pre>print("Classification Report") print(classification_report(y_test, y_pred_gb))</pre>					<pre>print("Confusion Matrix")</pre>
Gradient Boosting	Accuracy Score 1.0 Classification Repo		l f1-score	support	100%	print(confusion Matrix) print(confusion_matrix(y_test, y_pred_gb)) Confusion Matrix [[157 0] [0 128]]
		1.00 1.0 1.00 1.0		157 128		
	accuracy macro avg weighted avg	1.00 1.0 1.00 1.0		285 285 285		
	<pre>print("Classification Report") print(classification_report(y_test, y_pred_svm))</pre>					<pre>print("Confusion Matrix")</pre>
SVM	Accuracy Score 0.9228070175438596 Classification Rep	ort	ll f1-score	support	92%	print(confusion_matrix(y_test, y_pred_svm)) Confusion Matrix [[135 22] [0 128]]
	0 1	1.00 0.	86 0.92 00 0.92	157		
	accuracy macro avg weighted avg		0.92 93 0.92 92 0.92	285		