

Lecture 25: Partial Fractions

Last few lectures

- the meaning of integration as area under the curve
- indefinite integrals and definite integrals
- integration by substitution:

$$\int_a^b u'(x)f(u(x))dx = \int_{x=a}^{x=b} f(u)du$$

- ▶ integrating piecewise functions by chopping into different bits
- improper integrals: take limits, integrate and evaluate
- integration by parts

K This time

- how to integrate p(x)/q(x) where p and q are polynomials
- last lecture on integration!

Next week

Partial differentiation

EngMaths I Lecture 25 Partial Fractions
Autumn Semester 2017

Partial fractions: the idea

- $\not k$ given $f(x)=rac{p(x)}{q(x)}$ let's try to simplify
- \bigvee If deg $p(x) < \deg q(x)$ then factorise q(x):

$$\frac{p(x)}{q(x)} = \frac{p(x)}{(x - x_1)(x - x_2)\dots(x - x_n)}$$

and find constants $A_1, A_2, A_3, \dots A_n$ such that

$$\frac{p(x)}{q(x)} = \frac{p(x)}{(x-x_1)(x-x_2)\dots(x-x_n)} = \frac{A_1}{(x-x_1)} + \frac{A_2}{(x-x_2)} + \dots + \frac{A_n}{(x-x_n)}$$

- ke then $\int rac{p(x)}{a(x)}\,\mathrm{d}\,x=A_1\ln|x-x_1|+A_2\ln|x-x_2|+\dots A_n\ln|x-x_n|$
- k but how to find the constants $A_1, \ldots A_n$?

EngMaths I Lecture 25 Partial Fractions
Autumn Semester 2017

A trick for integrating rational functions

Most integrals of simple functions don't have closed form expressions, e.g. can't integrate (directly)

$$\int_0^1 \frac{3x^4 + 2x^3 - 5x^2 + 6x - 7}{x^2 - 2x + 3} \, \mathrm{d}x$$

But can always use linear property:

$$\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$$

& So how can we find f_1 , f_2 , f_3 etc. so that

$$f(x) = \frac{p(x)}{q(x)} = f_1(x) + f_2(x) + f_3(x) + \dots$$
?

★ Answer: use partial fractions . . .

EngMaths I Lecture 25 Partial Fractions
Autumn Semester 2017

A simple method: the cover-up rule

for finding the coefficients A_i (doesn't work in every case)

- $\slash\hspace{-0.6em} \slash\hspace{-0.6em} \underline{\text{Example}} \ \text{Express} \ \frac{2x+1}{x^2-4x+3} \ \text{in partial fractions}$
- Step 1: Factorise: $x^2 4x + 3 = (x 1)(x 3)$, and write

$$\frac{2x+1}{(x-1)(x-3)} = \frac{A_1}{x-1} + \frac{A_2}{x-3}$$

- Step 2b: evaluate LHS when x=3, covering up the factor (x-3): $\frac{2\cdot 3+1}{(3-1)}=A_2 \quad \Rightarrow A_2=\frac{7}{2}$
- ₭ Hence

$$\frac{2x+1}{x^2-4x+3} = \frac{(7/2)}{x-3} - \frac{(3/2)}{x-1}$$

Final step Check!

Either: expand out:

$$\frac{(7/2)}{x-3} - \frac{(3/2)}{x-1} = \frac{1}{2} \frac{7(x-1) - 3(x-3)}{x^2 - 4x + 3} = \frac{2x+1}{x^2 - 4x + 2}$$

ightharpoonup Or, evaluate for some fixed x. E.g. x=2:

$$\frac{(7/2)}{2-3} - \frac{(3/2)}{2-1} = -(7/2) - (3/2) = -5 = \frac{4+1}{1-4+2}$$

Exercises: Express as partial fractions:

1.
$$\frac{x}{x^2 + 5x + 4}$$

2.
$$\frac{1}{(x+2)(x-5)(x-1)}$$

EngMaths I Lecture 25 Partial Fractions

Complication I: repeated roots

- What if we had for example $\frac{1}{(x-2)^2(x-1)}$?
- In general, I should write this as

$$\frac{1}{(x-2)^2(x-1)} = \frac{A_1}{(x-2)} + \frac{A_2}{(x-2)^2} + \frac{A_3}{(x-1)}$$

- \swarrow But how do we evaluate the coefficients A_i in this case? ⇒ general method (always works!):
 - step 1. multiply by denominator of LHS
 - step 2. use cover-up method where you can
 - step 3. compare coefficients of powers of x
 - step 4. solve any simultaneous equations that arise

EngMaths I Lecture 25 Partial Fractions

Why does cover-up method work?

Return to example:

$$\frac{2x+1}{(x-1)(x-3)} = \frac{A_1}{x-1} + \frac{A_2}{x-3}$$

multiply both sides by (x-1)(x-3):

$$(2x+1) = A_1(x-3) + A_2(x-1)$$

& evaluating at $x=1, A_2$ -term disappears and we get:

$$(2x+1) = A_1(x-3)$$
, which is $\frac{2x+1}{x-3} = A_1$,

which we evaluate at x = 1 to get: $A_1 = -3/2$.

$$A_1 = -3/2$$

 \mathbb{K} similarly, evaluating at x=3 eliminates A_1 -term & is like covering-up the $A_2 = \frac{2x+1}{x-1}|_{x=3} = (7/2)$ (x-3) term:

EngMaths I Lecture 25 Partial Fractions Autumn Semester 2017

Example

- \bigvee How to express $\frac{1}{(x-2)^2(x-1)}$ as partial fractions?
- Write $\frac{1}{(x-2)^2(x-1)} = \frac{A_1}{(x-2)} + \frac{A_2}{(x-2)^2} + \frac{A_3}{(x-1)}$
- Key Step 1. Multiply by the denominator of LHS $1 = A_1(x-2)(x-1) + A_2(x-1) + A_3(x-2)^2$
- Ke Step 2. Use cover-up method for x = 1 and x = 2: $1 = 0 + 0 + A_3(-1)^2$, $1 = 0 + A_2$ Hence $A_3 = 1$, $A_2 = 1$
- \normalfont{k} Step 3. compute coefficient of x^2 : $0 = A_1 + 0 + A_2$, $\Rightarrow A_1 = -1$
- Finally, multiply out to check: $1 = -(x-2)(x-1) + (x-1) + (x-2)^2 =$ $-(x^2-3x+2)+(x-1)+(x^2-4x+4)=1$

Engineering HOT SPOT I:

Laplace Transforms (used lots in control engineering)

EngMaths I Lecture 25 Partial Fractions
Autumn Semester 2017

Complication II: complex roots

What if there are complex roots in the denominator?

e.g.
$$\frac{2x+1}{x^2-2x+3}$$
, roots are $2\pm\sqrt{2}j$

- $\mbox{\em \&}$ Could write this as $\frac{A_1}{x-(2+\sqrt{2}j)}+\frac{A_2}{x-(2-\sqrt{2}j))}$
 - not ideal as get complex logs if we integrate
- k instead, best to leave this term unsimplified.

$$\int \frac{2x+1}{x^2 - 2x + 3} \, \mathrm{d} x = \int \frac{2x-2}{x^2 - 2x + 3} \, \mathrm{d} x + \int \frac{3}{x^2 - 2x + 3} \, \mathrm{d} x$$

$$= \ln|x^2 - 2x + 3| + 3 \int \frac{\mathrm{d} x}{(x-1)^2 + 2}$$

$$= \ln|x^2 - 2x + 3| + \frac{3}{\sqrt{2}} \arctan\left(\frac{x-1}{\sqrt{2}}\right)$$

Engineering HOT SPOT II:

Laplace Transform

$$F(s) = \int e^{-st} f(t) \, \mathrm{d} t$$

Get a transfer function

$$\operatorname{ouput}(s) = Y(s) \times \operatorname{input}(s)$$

 $\not k$ Y(s) usually a rational function e.g.

$$\frac{s+1}{s^3 + 2s^2 + s + 1}$$

need to use partial fractions to transform back

EngMaths I Lecture 25 Partial Fractions
Autumn Semester 2017

Example with real and complex roots

Illustrating the general method

- \checkmark To express $\frac{5x}{(x^2+x+1)(x-2)}$ as partial fractions
- Write $\frac{5x}{(x^2+x+1)(x-2)} = \frac{Ax+B}{x^2+x+1} + \frac{C}{x-2}$
- Step 1. multiply both sides by the denominator of LHS $5x = (Ax + B)(x 2) + C(x^2 + x + 1)$
- Step 2. find C using the cover-up method with x=2 $5\times 2=C(4+2+1)$ $\Rightarrow C=\frac{10}{7}$

$$0 = A + C$$
, $0 = -2B + C$, $\Rightarrow A = -\frac{10}{7}$, $B = \frac{5}{7}$

We Hence
$$\frac{5x}{(x^2+x+1)(x-2)} = \frac{5-10x}{7(x^2+x+1)} + \frac{10}{7(x-2)}$$

EngMaths I Lecture 25 Partial Fractions
Autumn Semester 2017

Exercise

Express as partial fractions

$$\frac{1}{(x^2+9)(x+1)}$$

Hence evaluate

$$\int_0^1 \frac{1}{(x^2+9)(x+1)} \, \mathrm{d} x$$

EngMaths I Lecture 25 Partial Fractions
Autumn Semester 2017

- Note that $x^2 2x + 3$ has complex roots (its irreducible) i.e. we can't simplify further
- Exercise: Use the answer to this example to evaluate

$$\int_0^1 \frac{3x^4 + 2x^3 - 5x^2 + 6x - 7}{x^2 - 2x + 3} \, \mathrm{d} x$$

₭ Hint: remember useful formula

$$\int \frac{1}{(x-b)^2 + a^2} dx = \frac{1}{a} \arctan\left(\frac{x-b}{a}\right)$$

EngMaths I Lecture 25 Partial Fractions
Autumn Semester 2017

Complication III: improper fractions

- what if we have $\int \frac{p(x)}{q(x)} dx$ where $\deg(p(x)) > \deg(q(x))$?
- Use polynomial division

$$(3x^4 + 2x^3 - 5x^2 + 6x - 7) = (x^2 - 2x + 3)(3x^2 + \dots$$
 match coef. of x^3 : = $(x^2 - 2x + 3)(3x^2 + 8x + \dots$ match coef. of x^2 : = $(x^2 - 2x + 3)(3x^2 + 8x + 2) + \text{Remainder}$

- Remainder = linear & const. terms of (LHS RHS): Remainder = (6x 7) 20x + 6 = -14x 13.
- $\normalfont{\normalfont{\mbox{\sc Hence}}}$ (expand out, or evaluate at x=1 to check!)

$$\frac{3x^4 + 2x^3 - 5x^2 + 6x - 7}{x^2 - 2x + 3} = 3x^2 + 8x + 2 - \frac{14x + 13}{x^2 - 2x + 3}$$

EngMaths I Lecture 25 Partial Fractions
Autumn Semester 2017

Homework

- Read sect. 2.5.1 of James, including <u>Summary of method</u> table at end Also read sect. 8.8.1
- ¼ 4th edition:
 - Ex. 2.5.2 Q.40(a),(c),(e), Q.41(a),(c),(e) 8.8.2 Q.98(a),(c),(e),(g),(i),(k)
- - ► Ex. 2.5.2 Q.40(a),(c),(e), Q.41(a),(c),(e) 8.8.9 Q.117(a),(c),(e),(g),(i),(k)
- Don't forget to keep up with qmp.bris.ac.uk