Nai	ne	• • • • • • •	•••••	•••••	•••••	• • • • • • •	•••••	• • • • • • • •	•••••	.Cent	re No	•••••		
Sig	n	•••••	•••••	•••••	•••									
545, Che Pap 2 ho	mistry er 2													
2 110	urs					RESO	URCE	FUL M	OCKS 2	2019				
					UGA	NDA C	ERTIF	ICATE (OF EDU	JCATIO	ON			
							CHI	EMISTR	Y					
							P	APER 2						
							TIME	: 2 HOU	JRS					
 Instructions: This paper consists of two Sections A and B Section A consists of 10 structured questions. Attempt all questions in this section. Answers to these questions must be written in the spaces provided ONLY. Section B consists of 4 semi-structured questions. Attempt ONLYTWO questions from this section. Answers to the questions must be written in the answer booklets provided In both sections all working must be shown clearly 														
			T .					ER'S U		1	T	1	T	T
1	2	3	4	5	6	7	8	9	10	11	12	13	14	TOTAL
1.		lcium tı	urnings	were ac	lded in		questi	ECTION ons are eaker, bu	compu		urless į	gas, X ,a	and a cl	oudy solution
	formed. a) State the identity of : (i) GasX (½ mark)													
	(ii) '	The clo	udy sol	ution.								(½ m	ark)	
	b) Write	equatio	n for th	ne reacti	on lead	ling to tl	ne form	nation of	gas X.			(1½ n	nark)	

2. a) State the principle on which each of the following methods of separating mixtures works.

(i) How gas X could be identified in the laboratory.

(ii) One laboratory use of the resultant solution in the beaker.

(i) Chromatography (1 mark)

(1½ marks)

(1 mark)

	ctional Crystallization	(1 ma	
	would be observed and give a reason for your observation as shaken, then allowed to stand for some time.	, if a mixture of water and th	ne followi
•	Observation	(½ m	ark)
•	Reason	(½ m	ark)
(ii) Edd			
(II) Edd •	Observation	(½ m	ark)
•	Reason	(½ m	ark)
c) Name a pi	ece of apparatus that can be used to separate components o		ark)
a) Name the	$O_6 \xrightarrow{\text{STEP I}} C_2 \text{ H}_5 \text{ OH} \xrightarrow{\text{STEP II}}$ process that takes place in		
-	process that takes place in	(½ mark)	
a) Name the (i) Step(ii) Step	process that takes place in I	(½ mark) (½ m	ark)
a) Name the (i) Step (ii) Step	process that takes place in I	(½ mark) (½ m	ark)
a) Name the (i) Step (ii) Step b) State (i) One (ii) The	process that takes place in I I OII other product formed together with ethanol in step I conditions for the conversion in step II	(½ mark)(½ m (½ mark)(1½ marks)	
a) Name the (i) Step (ii) Step b) State (i) One (ii) The	process that takes place in I I OH other product formed together with ethanol in step I	(½ mark)(½ m (½ mark)(1½ marks)	
a) Name the (i) Stepb) State (i) One (ii) The	process that takes place in I I OII other product formed together with ethanol in step I conditions for the conversion in step II	(½ mark)(½ m (½ mark)(1½ marks)	
a) Name the (i) Stepb) State (i) One (ii) The	process that takes place in I I other product formed together with ethanol in step I conditions for the conversion in step II n be converted to a polymer J of relative molecular mass 1	(½ mark)(½ m (½ mark)(1½ marks) 6,800.	
a) Name the (i) Stepb) State (i) One (ii) The	process that takes place in I I other product formed together with ethanol in step I conditions for the conversion in step II n be converted to a polymer J of relative molecular mass 1	(½ mark)(½ m (½ mark)(1½ marks) 6,800.	
a) Name the (i) Step (ii) Stepb) State (i) One (ii) The	process that takes place in I I other product formed together with ethanol in step I conditions for the conversion in step II n be converted to a polymer J of relative molecular mass 1	(½ mark)(½ m (½ mark)(1½ marks) 6,800.	
a) Name the (i) Step (ii) Step b) State (i) One (ii) The c) Ethene ca (i) Write	process that takes place in I I other product formed together with ethanol in step I conditions for the conversion in step II n be converted to a polymer J of relative molecular mass 1	(½ mark)(½ m (½ mark)(1½ marks) 6,800.	
a) Name the (i) Step (ii) Step b) State (i) One (ii) The c) Ethene ca (i) Write	process that takes place in I OII other product formed together with ethanol in step I conditions for the conversion in step II n be converted to a polymer J of relative molecular mass 1 ethe structural formula of J.	(½ mark)(½ m (½ mark)(1½ marks) 6,800. (1 marks)	
a) Name the (i) Step (ii) Step b) State (i) One (ii) The	process that takes place in I OII other product formed together with ethanol in step I conditions for the conversion in step II n be converted to a polymer J of relative molecular mass 1 ethe structural formula of J.	(½ mark)(½ m (½ mark)(1½ marks) 6,800. (1 marks)	

		each case state one use of the allotrope
ou have i	named. Crystalline carbon allotrope.	(½ mark)
(1)	Crystainie caroon anotrope.	(/2 IIIdi K)
	(½mark)	Use
	Amorphous carbon allotrope	(½ mark)
	Use	(½mark)
	quation for the reaction to show	(1 1)
(1) Co	ombustion of carbon monoxide	(1 mark)
(ii) R	eduction of iron (II, III) oxide by carbon monoxide.	(1½ mark)
) State or	ne practical application of the reaction in (b) (ii)	(½ mark)
5.0° C to) Give a 1	ammonium nitrate was dissolved in 100cm ³ of water; and the 21.0° C. reason why there was a drop in the temperature of the water.	(1 mark)
5.0° C to) Give a 1	21.0° C. reason why there was a drop in the temperature of the water.	(1 mark)
5.0° C to) Give a 1	21.0° C. reason why there was a drop in the temperature of the water.	(1 mark)
5.0° C to) Give a 1	21.0° C. reason why there was a drop in the temperature of the water.	(1 mark)(4 marks)
5.0° C to) Give a 1	21.0° C. reason why there was a drop in the temperature of the water. the water water is 1, $N = 14$, $O = 16$, density of water is 1gcm ⁻³ and the heat cap	(1 mark)(4 marks)
5.0° C to) Give a 1	21.0° C. reason why there was a drop in the temperature of the water. the water water is 1, $N = 14$, $O = 16$, density of water is 1gcm ⁻³ and the heat cap	(1 mark)(4 marks)
5.0° C to) Give a 1	21.0° C. reason why there was a drop in the temperature of the water. the water water is 1, $N = 14$, $O = 16$, density of water is 1gcm ⁻³ and the heat cap	(1 mark)(4 marks)
5.0° C to) Give a 1	21.0° C. reason why there was a drop in the temperature of the water. the the molar enthalpy of solution of ammonium nitrate. 1, $N = 14$, $O = 16$, density of water is 1gcm^{-3} and the heat cape $a = 4.2 \text{ Jg}^{-1} \text{ k}^{-1}$	(1 mark)(4 marks) pacity of
5.0° C to) Give a 1	21.0° C. reason why there was a drop in the temperature of the water. the the molar enthalpy of solution of ammonium nitrate. 1, $N = 14$, $O = 16$, density of water is 1gcm^{-3} and the heat cape $a = 4.2 \text{ Jg}^{-1} \text{ k}^{-1}$	(1 mark)(4 marks) pacity of
5.0° C to) Give a 1) Calcula (H = water) (i) Defi (ii) Wat	21.0° C. reason why there was a drop in the temperature of the water. the water. the water. the water. the water. the water. the water is $1 \le 1 $	(1 mark) (4 marks) pacity of (1 mark)
5.0° C to) Give a 1) Calcula (H = water) (i) Defi (ii) Wat	21.0° C. reason why there was a drop in the temperature of the water. the water. the water. the water. the water. the water. the water is $1 \le 1 $	(1 mark) (4 marks) pacity of (1 mark) rolyte whereas pure water is a non-
5.0° C to) Give a 1) Calcula (H = water) (i) Defi (ii) Wat	21.0° C. reason why there was a drop in the temperature of the water. the water. the water. the water. the water. the water. the water is $1 \le 1 $	(1 mark) (4 marks) pacity of (1 mark) rolyte whereas pure water is a non-

c) Name the particles by means of which electric current is cond (i) Carbon electrodes	(½ mark)
(ii) Molten lead (11) bromide	(½ mark)
Under suitable conditions, hydrogen peroxide, solution H_2 $O_{2(aq)}$ (i) Write equation for the decomposition of hydrogen peroxide.	e. (1½ mark)
(ii) State two ways in which the decomposition of hydrogen pe	eroxide can be made to occur rapidly (1 mark)
b) Burning magnesium ribbon was lowered into a jar of oxygen. (i) State what was observed.	(1 mark)
(ii) Write an equation for the reaction that took place.	(1½ marks)
The atomic numbers of elements W , chlorine and Y are 15 , 17 at a) Write the electronic configuration of an atom of element. (i) W	nnd 20 respectively. (½ mark)
(ii) Y	(½ mark)
b) State which one of the elements W or Y would form a chlorid (i) A solid with high melting point.	le which is (½ mark)
(ii) A volatile liquid at room temperature.	(½ mark)
c) Give reasons for your statement in (b)	(1 mark)
	444
d) State how a chloride ion in aqueous solution can be identified	
d) State how a chloride ion in aqueous solution can be identified	

	b) Dilute sulphuric acid was added to sodium hydrogen carbonate solution. (i) State what was observed.	(½ mark)						
	(ii) Write an ionic equation for the reaction that took place.	(1½ marks)						
	c) (i) Name one reagent that can be used to differentiate between aqueous so hydrogen carbonate. (1 mark)	dium carbonate and aqueous sodium						
	(ii) State what would be observed if the reagent you have named in (c) (sodium carbonate and aqueous sodium hydrogen carbonate. (1 mark)	(i) was treated separately with aqueous						
10.	a) Sulphur dioxide can be prepared by burning iron pyrites, FeS_2 , in air account $4FeS_{2(s)} + 11O_{2(g)}$ \longrightarrow $2Fe_2 O_{3(s)} + 8SO_{2(g)}$	ording to the following equation.						
	Calculate the volume of sulphur dioxide evolved at room temperature when 9.60g of iron pyrites is reacted with excess oxygen. ($2\frac{1}{2}$ marks) ($Fe = 56$, $S = 32$; 1 mole of a gas occupies 24 dm³ at room temperature.)							
	b) During the manufacture of sulphuric acid by the contact process, sulphur presence of a catalyst. (i) Name the catalyst.	dioxide is heated with oxygen in the (1 mark)						
	(ii) Write equation for the reaction between sulphur dioxide and oxygen	1. (1½ marks)						
	SECTION B (30 MARKS)							
	Answer any two questions only in this section. Extra – questions only in the will not be marked.	sis section. Extra – questions answered						
11.	a) A pure dry sample of chlorine was prepared in a fume cupboard in the lab hydrochloric acid from a tap funnel onto a solid, R in a flask and then heating passed through water, then through a liquid, T , before it was collected.	ng the mixture. The gas evolved, was						
	(i) Identify R.(ii) State why the preparation of chlorine was carried out in the fume cu	(1 mark) pboard. (1 mark)						
	(iii) NameT and state its role.(iv) Give a reason why T was preferred for its role, which you have stat	(1 mark) red in (iii) (1 mark)						
	(v) Why was chloride passed through water?	(½ mark)						
	(vi) State, giving a reason, a method by which chloride was collected.	(1 mark)						
	(vii) Write equation for the reaction, which led to the formation of chlor b) Chlorine was bubbled through saturated potassium iodide solution, which and the mixture shaken, and left to stand for some time.							
	(i) State what was observed.(ii) Write equation for the reaction that took place.	(2 marks) (1½ mark)						
	(11) THE equation for the reaction that took place.	(1/2 11111111)						

	c) When exposed to bright sunlight, chlorine water produces a colourless gas,(i) Name the gas(ii) Explain briefly, how the gas was formed.	(½ mark) (2½ marks)						
	d) (i) Write equation for the reaction that can take place between iron and chlorine.							
	(ii) Give a reason why the reaction in (d) (i) is regarded as oxidation.	(1½ mark) (1 mark)						
12.	A compound Q consists of 26.7% carbon and 2.2% hydrogen by mass; the rest be a) Calculate the empirical formula of Q . ($\mathbf{H} = 1, \mathbf{C} = 12, \mathbf{O} = 16$) (3½ to	peing oxygen. marks)						
	b) An aqueous solution of Q turns blue litmus paper pale red. (i) Suggest how the P ^H value of a 2M aqueous solution of Q would compare hydrochloric acid. Give a reason for your suggestion. (2 marks) (ii) Predict how Q would react with magnesium powder. (iii) Write an ionic equation for the reaction that you have predicted in (b) (iii)	(1½ arks)						
	c) 100cm ³ of a solution containing 4.5g of Q per dm ³ of solution required exactly complete reaction. (Mg=24, 1 mole of Q reacts with 1 mole of magnesium.) Calculate	0.12g of magnesium powder for						
	 (i) The concentration of Q in mole per dm³. (ii) The formula mass of Q. 	(3 marks) (2 marks)						
	d) Determine the molecular formula of Q .	(2 marks)						
13.	Under suitable conditions iron can rust. a) Sate (i) what is meant by the term "rusting." (ii) The condition(s) necessary for iron to rust.	(1 mark) (2 marks)						
	b) (i) Draw labeled diagram(s) for a set up of an experiment which can be used to have stated in (a)(ii), is / are necessary for iron to rust. (5 marks)	show that the condition(s) you						
	(ii) State and explain observations that would be made if the experimental set updrawn in (b) (i) was allowed to stand for some days. (4 marks)	p in the diagrams that you have						
	c) (i) State two methods by which rusting can be prevented.	(2 marks)						
	(ii) Give one reason why rusting must be prevented.	(1 mark)						
14.	a) Describe the effect of heat on the nitrates of copper, potassium and silver, illus equations. (7 m	trating your answers with arks)						
	b) Potassium nitrate can be used in the preparation of nitric acid.(i) State the conditions and write equation for the reaction that leads to the fornitric acid.	ormation of (3 marks)						
	(ii) Draw a labeled diagram of the set up of apparatus used in the laboratory (3 marks)	preparation of nitric acid.						
	c) Write equation for the reaction of nitric acid with sulphur.	(1½ marks)						
	d) State one use of nitric acid.	(½ mark)						

END.