Lý thuyết hệ điều hành

Giảng viên: TS. Hà Chí Trung

Bộ môn: Khoa học máy tính

Khoa: Công nghệ thông tin

Học viện Kỹ thuật quân sự

Email: hct2009@yahoo.com

Mobile: 01685.582.102

- 4.1. Thiết bị phần cứng I/O
- 4.2. Các kỹ thuật I/O
- 4.3. Giao diện I/O cho ứng dụng
- 4.4. Các dịch vụ của I/O Subsystem
- 4.5. Hiệu suất I/O

- 4.1. Thiết bị phần cứng I/O
- 4.2. Các kỹ thuật I/O
- 4.3. Giao diện I/O cho ứng dụng
- 4.4. Các dịch vụ của I/O subsystem
- 4.5. Hiệu suất I/O

4.1.1 Thiết bị phần cứng I/O

- Các thiết bị I/O khác nhau về chức năng, tốc độ, ... nên cần có các phương thức quản lý, điều khiển khác nhau
- Device Driver: trình điều khiển thiết bị. Cung cấp cho I/O system của OS một giao diện thuần nhất để truy cập tới thiết bị.
- Kết nối vật lý giữa máy tính và thiết bị:
 - Port: cổng kết nối (connection point)
 - Bus: tập hợp dây dẫn và giao thức được định nghĩa để truyền thông tin.

4.1.1 Thiết bị phần cứng I/O

- Điều khiển: Controller (device controller, SCSI (Small Computer System Interface) host adapter, IDE (Integrated Drive Electronics) disk controller)
- Giao tiếp giữa CPU và thiết bị I/O
 - I/O port: địa chỉ để lập trình I/O, dùng các lời gọi hệ thống để truy cập, thay đổi... các thanh ghi, trạng thái, lệnh... của controller
 - Memory mapped I/O: mỗi thanh ghi điều khiển được gán một địa chỉ nhớ riêng, đơn nhất (unique).

4.1.2 Cấu trúc bus hệ thống

4.1.3 Một số I/O Port điển hình

• Một số I/O Port điển hình:

I/O address range (hexadecimal)	device	
000-00F	DMA controller	
020-021	interrupt controller	
040-043	timer	
200-20F	game controller	
2F8-2FF	serial port (secondary)	
320-32F	hard-disk controller	
378-37F	parallel port	
3D0-3DF	graphics controller	
3F0-3F7	diskette-drive controller	
3F8-3FF	serial port (primary)	

- 4.1. Thiết bị phần cứng I/O
- 4.2. Các kỹ thuật I/O
- 4.3. Giao diện I/O cho ứng dụng
- 4.4. Các dịch vụ của I/O Subsystem
- 4.5. Hiệu suất I/O

- 1. Kỹ thuật polling (busy waiting) hay programmed I/O
 - Kiểm tra trạng thái thiết bị: ready, busy, error
 - Tốn thời gian kiểm tra
- Kỹ thuật I/O dùng ngắt (interrupt-driven I/O):
 - CPU có 1 ngõ Interrupt Request (INTR), khi xảy ra ngắt thì CPU chuyển quyền điều khiển cho interrupt handler (trình phục vụ ngắt).
 - Hệ thống có 1 bảng vector ngắt chứa địa chỉ của các trình phục vụ ngắt

PC interrupt

(4) Take exception to address k*4

Interrupt-drive I/O Cycle

Ví dụ về bảng ngắt (Pentium)

vector number	description	
0	divide error	
1	debug exception	
2	null interrupt	
3	breakpoint	
4	INTO-detected overflow	
5	bound range exception	
6	invalid opcode	
7	device not available	
8	double fault	
9	coprocessor segment overrun (reserved)	
10	invalid task state segment	
11	segment not present	
12	stack fault	
13	general protection	
14	page fault	
15	(Intel reserved, do not use)	
16	floating-point error	
17	alignment check	
18	machine check	
19–31	(Intel reserved, do not use)	
32–255	maskable interrupts	

- 3. Kỹ thuật DMA (direct memory access) cần thêm sự hỗ trợ của DMA controller cho phép truyền trực tiếp dữ liệu từ I/O device vào bộ nhớ mà không cần sự can thiệp của CPU.
 - Nhận xét: Các kỹ thuật polling và Interrupt-Driven I/O không thích hợp khi thực hiện di chuyển khối lượng lớn dữ liệu.

• 6 bước thực hiện DMA:

- DMA controller transfers bytes to buffer X, increasing memory address and decreasing C until C = 0
- 6. when C = 0, DMA interrupts CPU to signal transfer completion

- device driver is told to transfer disk data to buffer at address X
- device driver tells disk controller to transfer C bytes from disk to buffer at address X

DMA/bus/interrupt controller

- CPU memory bus —) m

CPU

cache

PCI bus

memory x buffer

IDE disk controller

disk

disk

- 3. disk controller initiates DMA transfer
- disk controller sends each byte to DMA controller

- 4.1. Thiết bị phần cứng I/O
- 4.2. Các kỹ thuật I/O
- 4.3. Giao diện I/O cho ứng dụng
- 4.4. Các dịch vụ của I/O subsystem
- 4.5. Hiệu suất I/O

Đặc tính của các thiết bị I/O

aspect	variation	example
data-transfer mode	character block	terminal disk
access method	sequential random	modem CD-ROM
transfer schedule	synchronous asynchronous	tape keyboard
sharing	dedicated sharable	tape keyboard
device speed	latency seek time transfer rate delay between operations	
I/O direction	read only write only readĐwrite	CD-ROM graphics controller disk

- Giao diện chuẩn cho nhóm thiết bị liên quan:
 - Thiết bị khối (Block devices): Disk (read, write, seek)
 - Thiết bị ký tự (Character devices): Keyboard, mouse, serial port, line printer (get, put)
 - Thiết bị mạng: có thể là thiết bị khối hoặc ký tự, để giao tiếp với thiết bị mạng có thể sử dụng các protocol, socket, pipes, ...
- Clock và timer: cung cấp thời gian, tính thời gian, timer, ngắt định kỳ

- Blocking and Nonblocking I/O:
 - Blocking: tiến trình bị treo cho đến khi I/O hoàn tất.
 - Non-blocking: Tiến trình thực thi ngay sau lời gọi nhập xuất (thường thực hiện với multithreading)
 - Asynchronous: tiến trình vẫn thực thi trong lúc thực hiện I/O

- OS cung cấp 1 giao diện I/O chuẩn hóa, đồng nhất cho các ứng dụng (I/O system calls)
- Device Driver có trách nhiệm thực hiện giao diện chuẩn hóa, qua đó che giấu sự khác biệt giữa các bộ điều khiển thiết bị (device controller) khác nhau.
- Phân biệt thiết bị theo các tiêu chí I/O:
 - Luồng hoặc khối dữ liệu;
 - Tuần tự hoặc truy cập ngẫu nhiên;
 - Chia sẻ hay chuyên dụng;
 - Tốc độ;
 - Chỉ đọc, đọc ghi, chỉ ghi...

Cấu trúc I/O trong OS

I/O Requests

21

- 4.1. Thiết bị phần cứng I/O
- 4.2. Các kỹ thuật I/O
- 4.3. Giao diện I/O cho ứng dụng
- 4.4. Các dịch vụ của I/O Subsystem
- 4.5. Hiệu suất I/O

4.4. Các dịch vụ của I/O Subsystem

- Chức năng:
 - Lập lịch các yêu cầu I/O
 - Bộ đệm dữ liệu: lưu dữ liệu trong bộ nhớ khi truyền dữ liệu giữa các thiết bị (để đối phó với không tương thích về tốc độ, dung lượng, ngữ nghĩa..)
 - Caching bản sao của dữ liệu từ memory vào cache để đảm bảo tốc độ thực thi.
 - Spooling tổ chức đầu ra cho thiết bị, nếu thiết bị phục vụ được 1 yêu cầu tại 1 thời điểm (vd: in ấn).
 - Đặt hàng: độc quyền truy cập thiết bị (cấp phát và thu hồi, phòng ngừa deadlock)
 - Xử lý lỗi (error handling): lỗi thiết bị, lỗi đọc ghi...

- 4.1. Thiết bị phần cứng I/O
- 4.2. Các kỹ thuật I/O
- 4.3. Giao diện I/O cho ứng dụng
- 4.4. Các dịch vụ của I/O subsystem
- 4.5. Hiệu suất I/O

4.5. Hiệu suất I/O

- Hiệu suất I/O ảnh hưởng lớn (lớn nhất) đến hiệu suất toàn hệ thống:
 - CPU thực hiện các lệnh điều khiển của device drivers, của kernel I/O code.
 - Chuyển ngữ cảnh vì các I/O interrupt, chi phí copy dữ liệu gửi/nhận;
 - Network traffic
- Tăng hiệu suất I/O
 - Giảm số lần chuyển ngữ cảnh, giảm quá trình copy dữ liệu (bằng caching,...)
 - Giảm số lần ngắt quãng (truyền khối dữ liệu lớn, dùng kỹ thuật polling, các controller thông minh...)
 - Sử dụng DMA;
 - Cân đối CPU, RAM, BUS, ...