Fonctions_Matplotlib

May 28, 2024

1 Quelques fonctions de matplotlib

1.1 Objets de figures et d'axes

1.1.1 Créer une figure

La figure contient tous les éléments du tracé. Le principal moyen de créer une figure dans matplotlib consiste à utiliser le pyplot .

```
[]: import matplotlib.pyplot as plt
fig = plt.figure()
```

Vous pouvez éventuellement fournir un numéro que vous pouvez utiliser pour accéder à une image précédemment créée.

Si aucun numéro n'est fourni, l'ID du dernier personnage créé sera incrémenté et utilisé à la place; les chiffres sont indexés à partir de 1 et non de 0.

```
[]: import matplotlib.pyplot as plt

fig = plt.figure()
fig = plt.figure(1) # True
```

Au lieu d'un nombre, les chiffres peuvent également être identifiés par une chaîne.

Si vous utilisez un backend interactif, cela définira également le titre de la fenêtre.

```
[]: import matplotlib.pyplot as plt
fig = plt.figure('image')
```

Pour choisir l'utilisation de la figure

```
[]: plt.figure(fig.number) # or
plt.figure(1)
```

1.1.2 Créer un axe

Il existe deux manières principales de créer un axe dans matplotlib:

- utiliser pyplot
- utiliser l'API orientée objet.

En utilisant pyplot:

```
[]: import matplotlib.pyplot as plt
ax = plt.subplot(3, 2, 1) # 3 rows, 2 columns, the first subplot
```

En utilisant l'API orientée objet:

```
[]: import matplotlib.pyplot as plt

fig = plt.figure()
ax = fig.add_subplot(3, 2, 1)
```

La fonction de commodité plt.subplots() peut être utilisée pour produire une figure et une collection de sous-parcelles dans une commande:

```
[]: import matplotlib.pyplot as plt
fig, (ax1, ax2) = plt.subplots(ncols=2, nrows=1) # 1 row, 2 columns
[]:
```

1.2 Insertion de formules TeX dans les parcelles

Les formules TeX peuvent être insérées dans le tracé à l'aide de la fonction rc

Exemple

```
[]:
```

```
[]: import matplotlib.pyplot as plt

plt.rc(usetex = True)

#Utilisation

plt.xlabel('\\alpha')
plt.xlabel(r'\alpha')
```

Exemple de code

```
[]: import matplotlib.pyplot as plt
plt.rc(usetex = True)
```

```
x = range(0,10)
y = [t**2 for t in x]
z = [t**2+1 for t in x]

plt.plot(x, y, label = r'$\beta=\alpha^2$')
plt.plot(x, z, label = r'$\beta=\alpha^2+1$')
plt.xlabel(r'$\alpha$')
plt.ylabel(r'$\beta$')
plt.legend(loc=0)
plt.show()
```

1.2.1 Enregistrement et exportation de tracés utilisant TeX

Afin d'inclure les tracés créés avec matplotlib dans les documents TeX, ils doivent être enregistrés sous pdf fichiers pdf ou eps . Tout texte du tracé (y compris les formules TeX) est rendu sous forme de texte dans le document final.

```
[]: plt.savefig('my_pdf_plot.pdf') # Saving plot to pdf file

plt.savefig('my_eps_plot.eps') # Saving plot to eps file

plt.savefig("my_png_plot.png")
```

1.3 Fermer une fenêtre de figure

Syntaxe

```
[]: plt.close() # ferme la figure active en cours

plt.close(fig) # ferme la figure avec la poignée 'fig'

plt.close(num) # ferme le numéro de chiffre 'num'

plt.close(nom) # ferme la figure avec l'étiquette 'name'

plt.close('all') # ferme tous les chiffres
```

Exemple

```
[]: import matplotlib.pyplot as plt
fig1 = plt.figure() # création de la première figure
plt.plot([0, 1], [0, 1])
fig2 = plt.figure() # création de la seconde figure
```

```
plt.plot([0, 1], [0, 1])
plt.close(fig1) # ferme la première figure mais la seconde reste active
```