San José State University Department of Computer Science

Ahmad Yazdankhah

ahmad.yazdankhah@sjsu.edu www.cs.sjsu.edu/~yazdankhah

Formal Languages

(Part 2)

Lecture 05 Day 05/31

CS 154
Formal Languages and Computability
Spring 2018

Agenda of Day 05

- Summary of Lecture 04
- Quiz 1
- Lecture 05: Teaching ...
 - Formal Languages (Part 2)

Summary of Lecture 04: We learned ...

Alphabets & Strings

- Alphabet is ...
 - a nonempty and finite set of symbols, denoted by Σ.
- String is ...
 - a finite sequence of symbols from the alphabet.
- Length of string w is ...
 - ... the number of symbols in the string, denoted by |w|.
- Empty string is ...
 - ... A string with no symbol, denoted by λ
 - $-|\lambda|=0$

Operations on Strings

- Concatenation of u and v is uv.
 - $-\lambda w = w\lambda = w$ (neutral element)
- Reverse of w is denoted by w^R.
- Substring
- Prefix and Suffix
 - w = uv, u=prefix, v=suffix
 - λ is suffix and prefix of every string because: w = λ w = w λ
- Exponent operator
 - $w^{n} = w w w ... w$
 - $w w^n = w^n w = w^{n+1}$
 - $w^0 = \lambda$

Summary of Lecture 04: We learned ...

Formal Languages

- Star operator: Σ*
 - The set of all possible strings obtained by concatenating zero or more symbols from Σ.
 - Universal set of all strings over Σ.
- Plus operator: Σ+
 - The set of all possible strings obtained by concatenating one or more symbols from Σ.
 - $\Sigma^+ = \Sigma^* \{\lambda\}$
 - $\Sigma^* = \Sigma^+ \cup \{\lambda\}$
- Formal language is ...
 - any subset of Σ*
- Special cases:
 - { } and { λ }

- Formal languages are sets, so, they have all sets properties.
- Formal languages can be finite or infinite.

U = All Formal Languages

Any question?

NAME	Alan M. Turing		
SUBJECT	CS 154	TEST NO.	1
DATE	02/08/2018	PERIOD	1, 2, 3

Quiz 1 Use Scantron

Operations on Languages

The Regular Set Operations

 Since languages are sets, we can apply all regular set operations on them.

Union

{a, aa, ab} U {a, ab, bbb, bba, b} = {a, aa, ab, bbb, bba, b}

Intersection

• {a, aa, ab} ∩ {a, ab, bbb, bba, b} = {a, ab}

Minus

{a, aa, ab} - {a, ab, bbb, bba, b} = {aa}

1

Complement of Languages

Definition

- Let L be a language over a given alphabet Σ.
- Complement of L, denoted by L, is defined as:

$$\overline{L} = U - L = \Sigma^* - L$$

Example 18

- Let L = $\{\lambda, b, aa, aab\}$ over $\Sigma = \{a, b\}$; $\overline{L} = ?$
- $\overline{L} = \Sigma^* L$
- $\Sigma^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, ...\}$
- L = {\(\), a, b, a\(\) a, ab, ba, bb, aaa, a\(\) ab, ...}
 = {\(\) a, ab, ba, bb, aaa, ...}

Homework

- Given the following languages over $\Sigma = \{a, b\}$
 - a. Represent L by set builder
 - b. Find \overline{L} and represent it by set builder
- 1. Set of all strings that contains at least one a
- 2. Set of all strings that contains more than one a
- 3. Set of all strings that contains exactly one a

Reverse of Languages

Definition

- Let L be a language over a given alphabet Σ.
- Reverse of L, denoted by L^R, is defined as:

$$L^R = \{w : w^R \in L\}$$

Example 19

- Let L = {b, ab, aab, abab}; L^R = ?
- L^R = {b, ba, baa, baba}

Example 20

- * Let L = $\{a^nb^n : n \ge 0\}$; L^R = ?
 - $L^R = \{b^n a^n : n \ge 0\}$

Concatenation of Languages

Definition

- Let L_1 and L_2 be two languages over two alphabets Σ_1 and Σ_2 .
- The concatenation of L₁ and L₂, denoted by L₁L₂, is defined as:

$$L_1L_2 = \{xy : x \in L_1, y \in L_2\}$$
 over $\Sigma = \Sigma_1 \cup \Sigma_2$

Example 21

- Let L₁ = {a, ab} and L₂ = {b, ba, baa}; L₁L₂ = ?
- L₁L₂ = {a, ab} {b, ba, baa}
 = {ab, aba, abaa, abb, abba, abbaa}

1

Concatenation Notes

- The concatenation of two languages looks like Cartesian product of two sets.
 - Instead of ordered-pair, we concatenate two strings.
- 2. $\phi L = L \phi = \phi$ (prove it!)
 - $-\phi$ has the same role as 0 (zero) for multiplication.
- 3. $\{\lambda\} L = L \{\lambda\} = L$
 - $\{\lambda\}$ has the same role as 1 (one) for multiplication.
 - $\{\lambda\}$ is the neutral language for concatenation operation of languages.

Exponential Operation

Definition

For a language L and a natural number n, Lⁿ is defined as:

$$L^n = L L ... L$$
n times

Example 22

```
Let L = {a, ab}; L<sup>2</sup> = ?; L<sup>3</sup> = ?

L<sup>2</sup> = {a, ab} {a, ab}

= {aa, aab, aba, abab}

L<sup>3</sup> = L L<sup>2</sup> = {a, ab} {aa, aab, aba, abab}

= {aaa, aaab, aaba, aabab, abaa, abaab, ababa, ababab}
```

- ① In general: L Lⁿ = Lⁿ L = Lⁿ⁺¹
 - Where n ∈ N (natural numbers)

Exponential Operation

① Example 23

- Let $L = \{a^nb^n : n \ge 0\}$; $L^2 = ?$
- $L^2 = \{a^nb^n \ a^mb^m : n \ge 0, m \ge 0\}$
- Note that n and m are independent.
- For example ab aabb (n=1, m=2) belongs to L².
- How about L³ = ?

Homework

O Special cases

- $L^0 = ?$
- $L^0 = {\lambda}$ (prove it!)
- $\phi^0 = ?$

Optional

- For the following problems, we might use "prove by induction".
- $\{\lambda\}^n = \{\lambda\}$
- $\phi^n = ?$ for $n \ge 1$

Star-Closure Operation

Definition

- Let L be a language over a given alphabet Σ.
- Star-closure of L is defined as:

$$L^* = L^0 \cup L^1 \cup L^2 \cup ...$$

- Star-closure is also known as Kleene closure (pronounce it clay-knee) or Kleene star.
 - We prefer star-closure.
- The star-closure of a language L consists of all strings that can be formed by concatenating zero or more strings from L.

Star-Closure Operation

Example 24

- Let L = $\{a, ab\}$ over $\Sigma = \{a, b\}$; L* = ?
- $L^* = L^0 \cup L^1 \cup L^2 \cup ...$
- $L^0 = \{\lambda\}$
- $L^1 = \{a, ab\}$
- L² = {aa, aab, aba, abab}
- L³ = {aaa, aaab, aaba, aabab, abaa, abaab, ababab, ababab}
- $L^4 = ...$
- L* = {λ, a, ab, aa, aab, aba, abab, abaa, ababa, ababa, ababa, ababa, ababa, ababa, ababab, ...}

Positive-Closure Operation

Definition

- Let L be a language over a given alphabet.
- Positive-closure of L is defined as:

$$L^+ = L^1 \cup L^2 \cup ...$$

■ L⁺ does not contain L⁰. So, if we add L⁰ to L⁺, we get L*:

$$\Gamma_* = \Gamma_0 \cap \Gamma_+$$

- Is the following statement correct?
- $L^+ = L L^*$
- How can you support your answer?

Homework

- Let L = $\{a, ab, bb\}$ over $\Sigma = \{a, b\}$.
- $L^* = ?$
- $L^+ = ?$
- Let L = $\{\lambda, a, ab\}$ over $\Sigma = \{a, b\}$.
- $L^* = ?$
- $L^+ = ?$

Special Cases

- $\phi^* = ?$
- $\{\lambda\}^* = ?$

Homework

- Enumerate at least 5 elements of the following languages:
 - 1. $L = \{w \in \{a, b\}^+\}$
 - 2. $L = \{w \in \{a, b\}^+ : |w| = 2k, K \ge 0\}$
 - 3. $L = \{w \in \{a, b\}^+ : |w| = 2k+1, K \ge 0\}$
 - 4. $L = \{1^{2k} : k \ge 1\} \text{ over } \Sigma = \{1\}$
 - 5. $L = \{w \in \{a, b\}^+ : n_a(w) = n_b(w)\}$ //number of a's = number of b's
 - 6. $L = \{a^nb^nc^n : n \ge 1\}$
 - 7. $L = \{a^n b^m c^{nm} : n, m \ge 1\}$
 - 8. $L = \{w \# w : w \in \{a, b\}^+\}$
 - 9. $L = \{w \in \{a, b\}^+ : |w| = 2k+1, K \ge 0, w \text{ contains at least one a} \}$
 - 10. $L = \{ww : w \in \{a, b\}^+\}$

Surprising Languages

Surprising Languages Examples

In computer Science, all data are strings!

Example 25: Natural Numbers

- $\mathbb{N} = \{0, 1, ..., 123, ..., 456, ..., 5908764, ...\}$
- $\Sigma = \{0, 1, ..., 9\}$

Example 26 : Binary+ Numbers

- $\Sigma = \{0, 1\}$
- B = { 0, 1, ..., 1010, ..., 10000001, ..., 111100001, ...}

Example 27: Unary Numbers

This is our celebrity numbers!

- $\Sigma = \{1\}$
- A = {1, 11, 111, 1111, 11111, ...}
- Equivalent integer numbers: 1, 2, 3, 4, 5, ...

Surprising Languages Examples

Example 28: Prime Numbers

- $\Sigma = \{0, 1, 2, ..., 9\}$
- L = {2, 3, 5, 7, 11, 13, 17, ...}

Example 29: Even and Odd Numbers

- $\Sigma = \{0, 1, 2, ..., 9\}$
- $L_1 = \{0, 2, 4, 6, 8, ...\}$
- $L_2 = \{1, 3, 5, 7, 9, ...\}$

Surprising Languages Examples

Example 30: Addition of Unary Numbers

- $\Sigma = \{1, +, =\}$
- $L = \{1^n + 1^m = 1^{n+m} : n \ge 1, m \ge 1\}$
- Membership: L contains strings such as:

...

Not Membership: L doesn't contain strings such as:

Homework

Square of Unary Numbers

- $\Sigma = \{1, \#, =\}$
- $L = \{1^n \# = 1^k : k = n^2, n \ge 1\}$
- Membership: L contains strings such as:

??

Not Membership: L doesn't contain strings such as:

??

References

- Linz, Peter, "An Introduction to Formal Languages and Automata, 5th ed.," Jones & Bartlett Learning, LLC, Canada, 2012
- Kenneth H. Rosen, "Discrete Mathematics and Its Applications, 7th ed.," McGraw Hill, New York, United States, 2012
- Michael Sipser, "Introduction to the Theory of Computation, 3rd ed.," CENGAGE Learning, United States, 2013 ISBN-13: 978-1133187790