Projection

- Convert the Viewing Confine Pipeline on of the scene to coordinate positions on the projection plane.
- Viewing 3D objects on a 2D display requires a mapping from 3D to 2D.

- **Projection** can be traited to mapping of point P(x,y,z) onto its image in the projection plane.
- The mapping is determined by a **projector** that passes through P and intersects the view plane ().

- Projectors are lines from center (reference) of projection through each point in the object.
- The result of projecting an object is dependent on the spatial relationship among the projectors and the view plane.

Parallel Projection:

Coordinate position are transformed to the view plane along **parallel lines**.

Perspective Projection:

Object positions are transformed to the view plane along lines that converge to the projection reference (center) point.

- Center of projection at infinity results with a parallel projection.

• A parallel projection preserves relative proportion of objects, but dose not give us a realistic representation of the appearance of object.

- Object perspective Brajection iew plane along lines that converge to the projection reference (center) point.
- Produces realistic views but does not preserve relative proportion of objects.

• Projections of distant objects are smaller than the projections of objects of the same size are closer to the projection plane.

Parallel and Perspective Projection

Parallel Projection

Projection lines (projectors).

- Orthographic Projection: Projectors (projection vectors) are **perpendicular** to the projection plane.
- **Oblique Projection**: Projectors (projection vectors) are **not** perpendicular to the projection plane.

Orthographic Parallel Projection

• Orthographic Parallel Projection • Orthographic projection used to produce the **front**, **side**, and **top** views of an object.

- Profession Profession Profession and rear orthographic projections of an object are called **elevations**.
- **Top** orthographic projection is called a **plan** view.

Orthographic Parallel Projection

Multi View Orthographic

• Orthographic Parallel Projection Axonometric orthographic projections display more than one face of an object.

- Orthographic Parallel Projection sometric Projection: Projection plane intersects each coordinate axis in which the object is defined (principal axes) at the same distant from the origin.
- Projection vector makes equal angles with all of the **three principal axes**.

Isometric projection is obtained by **aligning** the **projection vector** with the **cube diagonal**.

Orthographic Parallel Projection • Dimetric Projection: Projection vector makes

• **Dimetric Projection**: Projection vector makes equal angles with exactly **two** of the principal axes.

Orthographic Parallel Projection

• *Trimetric Projection*: Projection vector makes unequal angles with the three principal axes.

Orthographic Parallel Projection Trimetric Isometric **Dimetric** Isometric Dim etric Trimetric

Orthographic Parallel Projection Transformation

Orthographic Parallel Projection Transformation

• Convert the **viewing coordinate** description of the scene to coordinate positions on the **Orthographic parallel projection plane**.

Orthographic Parallel Projection Transformation

• Since the view plane is placed at position z_{vp} along the z_v axis. Then any point (x,y,z) in viewing coordinates is transformed to projection coordinates as:

$$x_p = x$$
, $y_p = y$

$$\mathbf{M}_{Orthographic\ Parallel} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Oblique Parallel Projection

- Projection are for perpendicular to the viewing plane.
- Angles and lengths are preserved for faces parallel the plane of projection.
- Preserves 3D nature of an object.

Oblique Parallel Projection Transformation

Oblique Parallel Projection

Transformation

• Convert the **viewing coordinate** description of the scene to coordinate positions on the **Oblique parallel projection plane**.

Oblique Parallel Projection
Point (x,y,z) is projected to position (x_p,y_p) on the view plane.

Projector (oblique) from (x,y,z) to (x_p,y_p) makes an angle with the line (**L**) on the projection plane that joins (x_p, y_p) and (x,y).

with the horizontal direction in the Line **L** is at an angle projection plane.

X_p Oblique Parallel Projection

$$y_p = y + L \sin \varphi$$

$$L = \frac{z}{\tan \alpha}$$
$$= zL_1$$

$$x_p = x + z(L_1 \cos \varphi)$$
$$y_p = y + z(L_1 \sin \varphi)$$

$$\mathbf{M}_{Parallel} = egin{bmatrix} 1 & 0 & L_1 \cos \varphi & 0 \ 0 & 1 & L_1 \sin \varphi & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Oblique Parallel Projection Orthographic Projection:

$$L_1 = 0$$

$$\alpha = 90^{\circ}$$

$$x_p = x$$
, $y_p = y$

$$\mathbf{M}_{Orthographic\ Parallel} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Angles, distances, and parallel lines in the plane are projected accurately.

Cavalier Projection

$$\tan \alpha = 1$$
$$\alpha = 45^{\circ}$$

- Preserves lengths of lines perpendicular to the viewing plane.
- 3D nature can be captured but shape seems distorted.
- Can display a combination of front, and side, and top views.

Cabinet Profeabinet Projection

$$\tan \alpha = 2$$
$$\alpha \approx 63.4^{\circ}$$

- Lines perpendicular to the viewing plane project at $\frac{1}{2}$ of their length.
- A more realistic view than the cavalier projection.
- Can display a combination of front, and side, and top views.

Cavalier & Cabinet Projection

Perspective Projection
In a perspective projection, the center of projection is

In a perspective projection, the center of projection is at a finite distance from the viewing plane.

- Produces realistic views but does not preserve relative proportion of objects
- The size of a projection object is inversely proportional to its distance from the viewing plane.

- Paralle Perspectivet Parallection wing plane, converge to a vanishing point.
- A vanishing point is the projection of a point at infinity.

• Each set of projected paramet lines will have a separate vanishing points.

• There are infinity many **general** vanishing points.

- Perspective Projection
 The vanishing point for any set of lines that are parallel to one of the principal axes of an object is referred to as a principal vanishing point.
- We control the number of principal vanishing points (one, two, or three) with the orientation of the projection plane.

• The number of principal vanishing points in a projection is determined by the number of principal axes intersecting the view plane.

One Point Perspective (z-axis vanishing point)

Two Point Perspective (z, and x-axis vanishing points)

Parchactiva Praiaction

Two Point Perspective

Three Point Perspective (z, x, and y-axis vanishing points)

One-Point Perspective Projection

Two-Point Perspective Projection

Tree-Point Perspective Projection

• Convert the **viewing coordinate** description of the scene to coordinate positions on the **perspective projection plane**.

• Suppose the projection reference point at position z_{prp} along the z_v axis, and the view plane at z_{vp} .

$$x' = x - xu$$

$$y' = y - yu$$

$$z' = z - (z - z_{prp})u$$

On the view plane:

$$u = \frac{z_{vp} - z}{z_{prp} - z}$$

$$z' = z_{vp}$$

$$x' = x - xu$$

$$y' = y - yu$$

$$z' = z - (z - z_{prp})u$$

$$x_{p} = x \left(\frac{z_{prp} - z_{vp}}{z - z_{prp}} \right) = x \left(\frac{d_{p}}{z - z_{prp}} \right)$$

$$\left(z_{m} - z_{m} \right) \left(d_{p} \right)$$

On the view plane: $z' = z_{vp}$

$$\begin{bmatrix} x_h \\ y_h \\ z_h \\ h \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & z_{vp}/d_p & -z_{vp}(z_{prp}/d_p) \\ 0 & 0 & 1/d_p & -z_{prp}/d_p \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$x_{p} = x \left(\frac{z_{prp} - z_{vp}}{z - z_{prp}} \right) = x \left(\frac{d_{p}}{z - z_{prp}} \right)$$

$$y_{p} = y \left(\frac{z_{prp} - z_{vp}}{z - z_{prp}} \right) = y \left(\frac{d_{p}}{z - z_{prp}} \right)$$

$$x_p = x_h/h$$
, $y_p = y_h/h$

Special Cases: $z_{vp} = 0$

$$x_{p} = x \left(\frac{z_{prp}}{z - z_{prp}} \right) = x \left(\frac{1}{z/z_{prp} - 1} \right)$$

$$y_{p} = y \left(\frac{z_{prp}}{z - z_{prp}} \right) = y \left(\frac{1}{z/z_{prp} - 1} \right)$$

$$x_{p} = x \left(\frac{z_{prp} - z_{vp}}{z - z_{prp}} \right) = x \left(\frac{d_{p}}{z - z_{prp}} \right)$$

$$y_{p} = y \left(\frac{z_{prp} - z_{vp}}{z - z_{prp}} \right) = y \left(\frac{d_{p}}{z - z_{prp}} \right)$$

Special Cases: The projection reference point is at the viewing coordinate origin: z = 0

$$x_{p} = x \left(\frac{z_{prp} - z_{vp}}{z - z_{prp}}\right) = x \left(\frac{d_{p}}{z - z_{prp}}\right)$$

$$y_{p} = y \left(\frac{z_{prp} - z_{vp}}{z - z_{prp}}\right) = y \left(\frac{d_{p}}{z - z_{prp}}\right)$$

$$x_{p} = x \left(\frac{-z_{vp}}{z} \right) = x \left(\frac{-1}{z/z_{vp}} \right)$$

$$y_p = y \left(\frac{-z_{vp}}{z} \right) = y \left(\frac{-1}{z/z_{vp}} \right)$$

Summary

Orthographic projections

Obtain the orthographic projection. Obtain the front and top views.

ISOmetric projections

• Obtain the Isometric projections of the given diagram

Oblique Projections oblique projections with alpha=45 and theta=30 and alpha=90 and theta=45.

• A single point perspective transformation has to be performed on a triangle (0,1,0),(1,1,0) and (0,1,1) from a center zv=10 on the z-axis, followed by its projection on z=0 plane.

$$\begin{bmatrix} x_h \\ y_h \\ z_h \\ h \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & z_{vp}/d_p & -z_{vp}(z_{prp}/d_p) \\ 0 & 0 & 1/d_p & -z_{prp}/d_p \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

