MAT 201B Homework 1 Winter 2020

Professor Qinglan Xia

Due Date: Wednesday, January 15th at 9:00am

1. Let X be an uncountable set. Show that

$$\Sigma = \{E \subseteq X : E \text{ is countable or } E^c \text{ is countable } \}$$

is a σ -algebra on X.

- 2. Let (X, Σ, μ) be a measure space, and (A_i) be a sequence of measurable sets in Σ .
 - (a.) If (A_i) is increasing in the sense that

$$A_1 \subseteq A_2 \subseteq \cdots \subseteq A_i \subseteq A_{i+1} \subseteq \cdots$$

then show that

$$\mu(\bigcup_{i=1}^{\infty} A_i) = \lim_{i \to \infty} \mu(A_i).$$

(b.) If (A_i) is decreasing in the sense that

$$A_1 \supseteq A_2 \supseteq \cdots \supseteq A_i \supseteq A_{i+1} \supseteq \cdots$$

and $\mu(A_1) < +\infty$, then show that

$$\mu(\bigcap_{i=1}^{\infty} A_i) = \lim_{i \to \infty} \mu(A_i).$$

Give a counterexample to show that this result need not be true if $\mu(A_i)$ is infinite for every A_i .

- 3. Let (X, Σ) be a measuable space.
 - (a.) Show that if (μ_n) is an increasing sequence of measures on (X, Σ) (in the sense that $\mu_n(A) \leq \mu_{n+1}(A)$ for each $A \in \Sigma$ and n), then the formula

$$\mu(A) := \lim_{n \to \infty} \mu_n(A)$$

defines a measure on (X, Σ) .

(b.) Show that if (μ_n) is an arbitrary sequence of measures on (X, Σ) , then the formula

$$\mu(A) := \sum_{n} \mu_n(A)$$

defines a measure on (X, Σ) .

- 4. Let (X, Σ) be a measuable space, and $f: X \to \mathbb{R}$ be a real-valued function on X. Show that for any Borel set $A \subseteq \mathbb{R}$, the set $f^{-1}(A) := \{x \in X : f(x) \in A\}$ is Σ -measurable whenever f is Σ -measurable.
- 5. Prove that $f \sim g$ if and only if f = g pointwise-a.e. defines an equivalence relation on the space of all measuable functions.
- 6. Suppose μ is a finite measure on a set X. A point $x^* \in X$ is called an atom of μ if $\mu(\{x^*\}) > 0$. Show that μ has at most countable many atoms.