

DW01_cmp2

2-Function Comparator

Version, STAR and Download Information: IP Directory

Features and Benefits

- Parameterized word length
- Unsigned and signed (two's-complement) data operation

Description

DW01_cmp2 is a two-input comparator. DW01_cmp2 compares two signed or unsigned numbers \mathtt{A} and \mathtt{B} and produces two output conditions $\mathtt{LT_LE}$ and $\mathsf{GE_GT}$ as results.

Table 1-1 Pin Description

Pin Name	Width	Direction	Function
Α	width bit(s)	Input	Input data
В	width bit(s)	Input	Input data
LEQ	1 bit	Input	Output condition control
тс	1 bit	Input	Two's complement control 0 = unsigned 1 = signed
LT_LE	1 bit	Output	Less-than/less-than-or-equal output condition
GE_GT	1 bit	Output	Greater-than-or-equal/greater-than output condition

Table 1-2 Parameter Description

Parameter	Values	Description
width	≥ 1	Word length of A and B

Table 1-3 Synthesis Implementations^a

Implementation Name	Function	License Feature Required
rpl	Ripple-carry synthesis model	none

Table 1-3 Synthesis Implementations^a (Continued)

Implementation Name	Function	License Feature Required
pparch	Delay-optimized flexible parallel-prefix	DesignWare
apparch	Area-optimized flexible architecture that can be optimized for area, for speed, or for area, speed	DesignWare

a. During synthesis, Design Compiler will select the appropriate architecture for your constraints. However, you may force Design Compiler to use any architectures described in this table. For more, see *DesignWare Building Block IP User Guide*.

Table 1-4 Obsolete Synthesis Implementations^a

Implementation	Function	Replacement Implementation
bk	Brent-Kung synthesis model	pparch
cla	Carry-look-ahead synthesis model	pparch

a. DC versions and DesignWare EST releases linked to DC versions prior to 2007.03 will incude these implementations.

Table 1-5 Simulation Models

Model	Function
DW01.DW01_CMP2_CFG_SIM	Design unit name for VHDL simulation
dw/dw01/src/DW01_cmp2_sim.vhd	VHDL simulation model source code
dw/sim_ver/DW01_cmp2.v	Verilog simulation model source code

Table 1-6 Functional Description

LEQ	Condition	LT_LE	GE_GT
1	A≤ B	1	0
1	A > B	0	1
0	A < B	1	0
0	A≥B	0	1

The input signal LEQ determines whether the two output conditions are LT (less-than) and GE (greater-than-or-equal) (LEQ=0) or LE (less-than-or-equal) and GT (greater-than) (LEQ=1). The input TC determines whether the two inputs are compared as unsigned (TC=0) or signed two's complement (TC=1) numbers.

Related Topics

- Math Arithmetic Overview
- DesignWare Building Block IP Documentation Overview

HDL Usage Through Operator Inferencing - VHDL

```
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std logic arith.all;
entity DW01_cmp2_oper is
  generic(wordlength: integer:=8);
  port(in1, in2
                  : in STD_LOGIC_VECTOR(wordlength-1 downto 0);
       instruction : in STD_LOGIC;
       comparison : out boolean);
end DW01_cmp2_oper;
architecture oper of DW01 cmp2 oper is
  signal in1_signed, in2_signed: SIGNED(wordlength-1 downto 0);
begin
  in1_signed <= SIGNED(in1);</pre>
  in2_signed <= SIGNED(in2);</pre>
  -- infer the non-equality comparison operators
  process (in1_signed, in2_signed, instruction)
  begin
    if (instruction = '0') then
      comparison <= in1_signed > in2_signed;
      comparison <= in1_signed >= in2_signed;
    end if;
  end process;
end oper;
```

HDL Usage Through Operator Inferencing - Verilog

```
module DW01_cmp2_oper(in1, in2, instruction, comparison);
  parameter wordlength = 8;

input [wordlength-1:0] in1, in2;
input instruction;
output comparison;
reg comparison;

always @ (in1 or in2 or instruction)
begin
  if (instruction == 0)
    comparison = (in1 > in2);
  else
    comparison = (in1 >= in2);
end
endmodule
```

HDL Usage Through Component Instantiation - VHDL

```
library IEEE, DWARE, DWARE;
use IEEE.std logic 1164.all;
use DWARE.DWpackages.all;
use DWARE.DW foundation comp.all;
entity DW01_cmp2_inst is
  generic ( inst width : NATURAL := 8 );
  port ( inst_A : in std_logic_vector(inst_width-1 downto 0);
         inst_B : in std_logic_vector(inst_width-1 downto 0);
         inst_LEQ : in std_logic;
         inst_TC : in std_logic;
         LT_LE_inst : out std_logic;
         GE_GT_inst : out std_logic );
end DW01_cmp2_inst;
architecture inst of DW01_cmp2_inst is
begin
  -- Instance of DW01_cmp2
  U1 : DW01_{cmp}2
    generic map ( width => inst_width )
    port map ( A => inst_A, B => inst_B, LEQ => inst_LEQ,
              TC => inst TC, LT LE => LT LE inst, GE GT => GE GT inst );
end inst;
-- pragma translate off
configuration DW01_cmp2_inst_cfg_inst of DW01_cmp2_inst is
  for inst
  end for; -- inst
end DW01_cmp2_inst_cfg_inst;
-- pragma translate_on
```

HDL Usage Through Component Instantiation - Verilog

Copyright Notice and Proprietary Information

© 2018 Synopsys, Inc. All rights reserved. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc. and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All other use, reproduction, modification, or distribution of the Synopsys software or the associated documentation is strictly prohibited.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable regulations and to comply with them.

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks

Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at https://www.synopsys.com/company/legal/trademarks-brands.html.

All other product or company names may be trademarks of their respective owners.

Third-Party Links

Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse and is not responsible for such websites and their practices, including privacy practices, availability, and content.

Synopsys, Inc. 690 E. Middlefield Road Mountain View, CA 94043

www.synopsys.com