MAthesis

Contents

Time Bins with sample sizes	3
Smaller time bins	5
m Maps	6
fossil occurences of testudinidae	6
body size of testudinidae	7
Sampling Accumulation Curve	8
Eurasia	9
Histograms	10
all	10
per time bin	13
modern vs. fossil	14
modern vs. fossil, continental vs. insular	15
continental vs. insular	16
continents	17
General statistics	18
Boxplots	20
genera per time bins	20
continental vs. insular per time bin	21
fossil vs. modern	22
fossil vs. modern, continental vs. insular	23
continental vs. insular	24
continental vs. insular per time bin	25
continents	26
continents continental vs. insular	27

pa	aleoTS analysis	28
	all (continental and insular)	28
	continental (excluding insular species)	30
	insular (excluding continental) $\dots \dots \dots$	32
	Equal time bins	33
	larger equal bins	35
	per continent	38

Time Bins with sample sizes

Table 1: Time bins with age range, epoch name, mean age and corresponding sample sizes (on individual, species and genus level)

bin	EpochBins	MeanBins	nIndividuals	nSpecies	nGenera
(0,0.0117]	Modern	0.00585	252	64	18
(0.0117, 0.126]	Upper Pleistocene	0.06885	48	16	8
(0.126, 0.781]	Middle Pleistocene	0.45350	49	11	6
(0.781, 2.59]	Lower Pleistocene	1.68450	73	27	11
(2.59, 3.6]	Upper Pliocene	3.09400	23	15	9
(3.6, 5.33]	Lower Pliocene	4.46600	29	17	8
(5.33,11.6]	Upper Miocene	8.47000	53	24	9
(11.6,16]	Middle Miocene	13.78900	40	18	11
(16,23]	Lower Miocene	19.50000	25	13	9
(23,50]	Oligocene and Eocene	36.51500	7	5	5

[1] 0

Figure 1: Scatterplot of CL over time, indicating insular (triangle) and continental (circles) and colour indicating continents. Lines indicte bins, dashed line = new bins.

Smaller time bins

Table 2: Smaller time bins with age range, epoch name, mean age and corresponding sample sizes (on individual, species and genus level)

bin	EpochBins	MeanBins	nIndividuals	nSpecies	nGenera
(0,0.0117]	Modern	0.00585	252	64	18
(0.0117, 0.126]	Upper Pleistocene	0.06885	48	16	8
(0.126, 0.781]	Middle Pleistocene	0.45350	49	11	6
(0.781, 1.81]	Lower Pleistocene	1.29350	47	19	11
(1.81, 2.59]	Gelasian(LowPleio2)	2.19700	26	10	7
(2.59, 3.6]	Upper Pliocene	3.09400	23	15	9
(3.6, 4.47]	Lower Pliocene 1	4.02300	19	11	5
(4.47, 5.33]	Lower Pliocene 2	4.88900	10	7	4
(5.33, 7.42]	Upper Miocene 1	6.37800	12	9	6
(7.42, 9.52]	Upper Miocene 2	8.47000	31	14	8
(9.52, 11.6]	Upper Miocene 3	10.56200	10	7	5
(11.6, 13.8]	Middle Miocene 1	12.69850	22	8	6
(13.8,16]	Middle Miocene 2	14.87950	18	14	10
(16,18]	Lower Miocene 1	16.98500	19	10	8
(18,23]	Lower Miocene 2	20.51500	6	4	4

Maps

fossil occurences of testudinidae

Figure 2: Map displaying all fossil occurrences of testudinids, with color indicating whether relevant literature was available (black if not) and if it was, whether body size data was available or not (yes and no, respectively).

body size of testudinidae

Figure 3: Map displaying all localities for which body size data for testudinids was available in the literature. Size of points denotes sample size, color denotes approximate age.

Sampling Accumulation Curve

Fossil genera, CL, per Reference

Eurasia

Fossil genera, CL, per Reference

Figure 4: Sampling Accumulation Curve of fossil genera per reference, Eurasia

Histograms

all

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Figure 5: Distribution of body size data, logtransformed, all data.

qqnorm(PleiPlioCL\$CL); qqline(PleiPlioCL\$CL, col=2)

Normal Q-Q Plot

qqnorm(log10(PleiPlioCL\$CL)); qqline(log10(PleiPlioCL\$CL), col=2)

Normal Q-Q Plot

per time bin

Figure 6: Distribution of body size data per time bin, logtransformed.

modern vs. fossil

Figure 7: Distribution of body size data modern vs. fossil, logtransformed.

modern vs. fossil, continental vs. insular

Figure 8: Distribution of body size data modern vs. fossil, continental vs. insular logtransformed.

continental vs. insular

Figure 9: Distribution of body site data of continental (n) and insular(y) species, logtransformed.

continents

Figure 10: Distribution of body site data per continent, logtransformed.

General statistics

Table 3: General statistics of body size data: all, per time bin, insular and continental, per continent (all referring to CL: min, max, variance, mean, logmean, median, logmedian, skewness, logskewness, kurosis, logkurtosis

nCL	min	max	var	mean	logm	med	logmed	skew	logsk	kurt	logku	Variable
571	80.00	2500	153024.63	424.8	2.5	270.0	2.4	2.23	0.70	8.71	2.79	all
251	80.00	1300	67716.64	328.9	2.4	242.0	2.4	1.85	0.60	5.91	2.73	Modern
47	102.44	1250	68679.40	441.9	2.6	334.7	2.5	1.26	0.24	3.85	2.66	Upper Pleistocene
48	132.00	1500	63574.87	360.3	2.5	288.8	2.5	2.95	1.50	11.95	5.69	Middle Pleistocene
47	107.80	2000	165103.07	460.3	2.5	259.5	2.4	1.90	0.78	6.44	2.55	Lower Pleistocene
24	118.90	1860	195107.42	333.4	2.4	186.2	2.3	2.60	2.07	8.39	5.95	${\it Gelasian}({\it LowPlei2})$
20	165.00	1600	269797.71	636.6	2.7	440.5	2.6	0.96	0.29	2.38	1.78	Upper Pliocene
18	185.00	2500	610493.44	1068.4	2.9	900.0	3.0	0.80	-0.35	2.52	2.09	Lower Pliocene 1
6	176.00	880	108570.00	608.8	2.7	785.5	2.9	-0.67	-0.70	1.51	1.52	Lower Pliocene 2
10	140.00	2100	602611.21	948.9	2.8	916.0	2.9	0.26	-0.22	1.49	1.29	Upper Miocene 1
30	112.00	1540	183698.15	472.8	2.5	250.0	2.4	1.57	0.90	3.99	2.72	Upper Miocene 2
10	107.00	1170	161993.40	442.6	2.5	236.5	2.4	1.14	0.51	2.68	1.95	Upper Miocene 3
22	111.00	1353	88365.91	303.2	2.4	209.5	2.3	2.73	1.83	9.30	5.83	Middle Miocene 1
14	270.00	1600	248524.79	835.4	2.8	1000.0	3.0	0.05	-0.23	1.45	1.25	Middle Miocene 2
18	160.00	1100	103008.71	444.2	2.5	302.0	2.5	0.99	0.44	2.53	1.77	Lower Miocene 1
6	230.00	620	20626.67	370.7	2.5	335.0	2.5	0.85	0.45	2.50	2.02	Lower Miocene 2
251	80.00	1300	67716.64	328.9	2.4	242.0	2.4	1.85	0.60	5.91	2.73	Modern
320	102.44	2500	207448.16	500.0	2.6	287.8	2.5	1.92	0.72	6.70	2.50	Fossil
430	81.00	2500	147179.14	381.9	2.5	249.8	2.4	2.76	1.10	11.48	3.89	continental
141	80.00	2000	149135.58	555.6	2.6	486.0	2.7	1.09	-0.25	4.39	2.03	insular
156	81.00	830	16385.92	241.9	2.3	220.5	2.3	1.97	0.29	8.59	3.02	fossil-con
95	80.00	1300	119898.26	471.7	2.6	351.0	2.5	0.82	0.02	2.44	1.75	fossil-ins
274	102.44	2500	204405.38	461.6	2.5	270.0	2.4	2.15	1.00	7.62	3.02	modern-con
46	140.00	2000	167981.36	728.9	2.8	632.0	2.8	1.41	-0.45	5.23	3.61	modern-ins
140	80.00	1446	92601.87	337.4	2.4	193.5	2.3	1.69	0.64	5.04	2.35	Africa

nCL	min	max	var	mean	$\log m$	med	logmed	skew	logsk	kurt	logku	Variable
231	102.44	1500	72942.55	403.8	2.5	300.0	2.5	1.83	0.75	6.06	2.94	America
48	140.00	2100	290958.22	510.7	2.6	272.5	2.4	1.84	1.25	4.90	3.21	Asia
152	107.00	2500	273298.31	510.1	2.5	245.0	2.4	1.77	0.74	5.88	2.18	Europe

Boxplots

genera per time bins

Figure 11: Boxplots of mean CL per time bin, including mean and sd CL for each genus (as pointrange).

continental vs. insular per time bin

Figure 12: Boxplots of each genus per time bin, continental vs. insular species.

fossil vs. modern

Figure 13: Boxplots fossil vs. modern.

Wilcoxon Rank Sum Test (unpaired data):

 $\mathrm{modern} < \mathrm{fossil} \; (\mathrm{P} = 1.6327968 \times 10^{-8})$

fossil vs. modern, continental vs. insular

Wilcoxon Rank Sum Test (unpaired data):

 $\mathrm{modern}\ \mathrm{continental}\ < \mathrm{fossil}\ \mathrm{continental}\ (\mathrm{P}=1.1915312\times 10^{-9})$

modern insular < fossil insular (P = 6.2264268×10^{-5})

continental vs. insular

Figure 14: Boxplot continental vs. insular, genera summarised

Wilcoxon Rank Sum Test (unpaired data):

continental < insular (P = 1.6773219×10^{-8})

continental vs. insular per time bin

Figure 15: Boxplot continental vs. insular, genera summarised

continents

Figure 16: Boxplot: body size on different continents, genera summarised

Wilcoxon Rank Sum Test (unpaired data):

Continent means differ (P = 1.1297236×10^{-7}) (still have to look into the details...)

continents, continental vs. insular

Figure 17: Boxplot: body size on different continents, genera summarised

paleoTS analysis

all (continental and insular)

genera (all)

Figure 18: paleoTS plot with genus mean, including island species

Table 4: Model-fitting results for testudinidae, genera, including island species

	logL	K	AICc	Akaike.wt
GRW	-102.03165	2	209.0633	0.087
URW	-102.45142	1	207.2105	0.220
Stasis	-99.96015	2	204.9203	0.692

 $\label{thm:condition} \mbox{Table 5: Model-fitting results for testudinidae (4 models), genera,} \\ \mbox{including island species}$

	$\log L$	K	AICc	Akaike.wt
GRW	-102.03165	2	209.0633	0.084
URW	-102.45142	1	207.2105	0.213
Stasis	-99.96015	2	204.9203	0.669
StrictStasis	-104.31155	1	210.9308	0.033

continental (excluding insular species)

genera (continental)

Figure 19: paleoTS plot with genus mean, excluding island species

Table 6: Model-fitting results for testudinidae, genera, excluding insular species

	$\log L$	K	AICc	Akaike.wt
GRW	-103.6594	2	212.3187	0.250
URW	-104.2638	1	210.8353	0.526
Stasis	-103.7699	2	212.5398	0.224

	$\log L$	K	AICc	Akaike.wt
GRW	-103.6594	2	212.3187	0.250
URW	-104.2638	1	210.8353	0.526
Stasis	-103.7699	2	212.5398	0.224
StrictStasis	-113.9010	1	230.1096	0.000

insular (excluding continental)

genera (insular)

Figure 20: paleoTS plot with genus mean, only insular species

Table 8: Model-fitting results for testudinidae, genera, only insular species

	$\log L$	K	AICc	Akaike.wt
GRW	-76.50692	2	159.0138	0
URW	-83.06382	1	168.6991	0
Stasis	-67.38663	2	140.7733	1

Equal time bins

genera (equal bins)

Table 9: paleoTS object, equal time bins, genera)

nn	vv	mm	tt
17	49292.698	335.6380	0.00025
12	95029.158	557.6242	0.50025
11	194613.806	558.2001	1.50000
5	235547.641	627.7867	2.50000
7	285072.539	758.8929	3.50000
6	621030.522	961.8833	4.50000
3	797671.000	1020.0000	5.50000
2	845000.000	850.0000	6.50000
2	435.125	174.2500	7.50000
6	229304.487	770.9667	8.50000
2	45000.000	1350.0000	9.50000
5	143534.355	527.1000	10.50000
2	58824.500	328.5000	11.50000
5	291476.249	602.1210	12.50000
3	420956.333	904.3333	13.50000
5	224901.227	651.9800	14.50000
1	0.000	553.3333	15.50000
5	183446.278	532.6600	16.50000
3	41915.395	366.5238	17.50000
1	0.000	405.0000	18.50000
3	44841.333	377.3333	19.50000
1	0.000	406.2500	23.50000
1	0.000	450.0000	25.50000
1	0.000	275.0000	32.50000
1	0.000	400.0000	33.50000
1	0.000	617.5000	49.50000

Figure 21: Equal bins, genera

 $\label{thm:condition} \mbox{Table 10: Model-fitting results for testudinidae, equal time bins,} \\ \mbox{genera}$

	$\log L$	K	AICc	Akaike.wt
GRW	-179.4657	2	363.4769	0.006
URW	-180.1926	1	362.5590	0.009
Stasis	-174.3472	2	353.2398	0.985

larger equal bins

genera (larger equal bins)

Table 11: PaleoTS object, larger equal bins, genera

tt	mm	vv	nn
0.5	406.1103	74156.024	21
1.5	558.2001	194613.806	11
2.5	627.7867	235547.641	5
3.5	758.8929	285072.539	7
4.5	961.8833	621030.522	6
5.5	1020.0000	797671.000	3
6.5	850.0000	845000.000	2
7.5	174.2500	435.125	2
8.5	770.9667	229304.487	6
9.5	1350.0000	45000.000	2
10.5	527.1000	143534.355	5
11.5	328.5000	58824.500	2
12.5	602.1210	291476.249	5
13.5	904.3333	420956.333	3
14.5	651.9800	224901.227	5
15.5	553.3333	0.000	1
16.5	532.6600	183446.278	5
17.5	366.5238	41915.395	3
18.5	405.0000	0.000	1
19.5	377.3333	44841.333	3
23.5	406.2500	0.000	1
25.5	450.0000	0.000	1
32.5	275.0000	0.000	1
33.5	400.0000	0.000	1
49.5	617.5000	0.000	1

Figure 22: Larger equal bins, genera

 $\label{thm:condition} \begin{tabular}{ll} Table 12: Model-fitting results for testudinidae, larger equal time \\ bins, genera \end{tabular}$

	$\log L$	K	AICc	Akaike.wt
GRW	-172.4164	2	349.4042	0.012
URW	-172.9589	1	348.0997	0.023
Stasis	-168.0413	2	340.6540	0.965

per continent

Europe, smaller original bins (see Table 2), genera

Figure 23: Smaller original bins, genera, Europe

Table 13: Model-fitting results for testudinidae, no bins, genera

	$\log L$	K	AICc	Akaike.wt
GRW	-110.4329	2	225.9567	0.004
URW	-111.1716	1	224.6765	0.007
Stasis	-104.8023	2	214.6954	0.990

Figure 24: Smaller original bins, genera, Eurasia

Table 14: Model-fitting results for testudinidae, no bins, genera

	$\log L$	K	AICc	Akaike.wt
GRW	-108.1541	2	221.3083	0.198
URW	-109.0897	1	220.4870	0.298
Stasis	-107.2170	2	219.4341	0.504