Persamaan differensial homogen

Informatika UAD

Persamaan Differensial

Persamaan yang melibatkan fungsi misalnya y, satu variable misalnya x, dan turunan dari y atau differensial dari x dan y

Contoh:

1.
$$dy = (x + 2y)dx \Rightarrow y' = x + 2y$$

2.
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 3y - 7\sin x + 4x = 0 \Rightarrow y'' + 2y' + 3y - 7\sin x + 4 = 0$$

Orde dari persamaan differensial adalah orde dari turunan tertinggi yang ada di dalam persamaan

Contoh pertama merupakan persamaan differensial orde pertama

Contoh kedua merupakan persamaan differensial orde kedua

Persamaan Differensial

Solusi penyelesaian dari persamaan differensial merupakan fungsi y = f(x) yang memenuhi persamaan tersebut

Persamaan differensial
$$\frac{dy}{dx}=3x^2$$
 dapat mempunyai solusi : $y=x^3$, $y=x^3+10$, $y=x^3-3$

Solusi tersebut merupakan solusi khusus

Solusi umum dari persamaan differensial tersebut adalah $y = x^3 + C$

Persamaan Differensial

Persamaan Differensial Biasa (Ordinary Differential Equation / ODE)

- Persamaan differensial yang melibatkan satu variable independent
- Misalnya:

$$\cdot \frac{dy}{dx} + 3 = 0$$

Persamaan differensial parsial (Partial Differential Equation / PDE)

- Persamaan differensial yang melibatkan lebih dari satu variable independent
- Misalnya :

$$\bullet \frac{d^2y}{dx^2} + 3x^2 = 0$$

Persamaan Differensial Orde Pertama

Persamaan differensial orde pertama, bentuk sederhananya ditulis:

$$\frac{dy}{dx} = f(x)$$

Fungsi y dapat dicari dengan mengintegralkan f(x) yaitu :

$$y = \int f(x) \, dx$$

Cari penyelesaiannya dari persamaan differensial : $\frac{dy}{dx} = 5 \sin 2x$

Karena ada satu peubah maka:

$$y = \int 5\sin 2x \, dx \Rightarrow y = -\frac{5}{2}\cos 2x + C$$

Persamaan Differensial Terpisah

Pada persamaan differensial orde pertama, bila terdapat fungsi dalam bentuk :

$$f(x)dx + g(y)dy = 0$$

Atau:

$$\frac{dy}{dx} = -\frac{f(x)}{g(y)}$$

Penyelesaiannya dapat dicari dengan pemisahan variabel yaitu:

$$\int f(x)dx + \int g(y)dy = C$$

Ada persamaan differensial : $\frac{dy}{dx} = \frac{x^2}{y}$

Maka penyelesaiannya:

• Karena ada dua peubah maka kita kelompokkan peubahnya:

$$y \, dy - x^2 dx = 0$$

• Selesaikan dengan mengintegralkan secara terpisah

•
$$\int y \, dy - \int x^2 \, dx = C \Rightarrow \frac{1}{2} y^2 - \frac{1}{3} x^3 = C \Rightarrow y = \sqrt{\frac{2}{3}} x^3 + 2C$$

• Jadi
$$y = \sqrt{\frac{2}{3}x^3 + 2C}$$

Contoh Masalah Nilai Awal

Bila diketahui nilai awal dari persamaan differensial $\frac{dy}{dx} = \frac{x^2}{y}$ adalah y(0) = 2

Maka penyelesaiannya:

•
$$y = \sqrt{\frac{2}{3}x^3 + 2C} \Rightarrow y(0) = \sqrt{\frac{2}{3}(0)^3 + 2C} \Rightarrow y(0) = \sqrt{2C} = 2$$

•
$$y(0) = \sqrt{2C} = 2 \Rightarrow 2C = 4 \Rightarrow C = 2$$

Jadi solusi khususnya:

$$y = \sqrt{\frac{2}{3}x^3 + 4}$$

Persamaan Differensial Linear Orde Pertama

Persamaan differensial linear orde pertama bisa memiliki bentuk:

$$\frac{dy}{dx} + P(x)y = Q(x)$$

P dan Q adalah fungsi dengan variable x

Contoh:

Persamaan Differensial Linear Orde Pertama

Solusinya dicari menggunakan faktor pengintegralan

Mengalikan kedua sisi dengan μ sehingga :

$$\mu \frac{dy}{dx} + \mu Py = \mu Q$$

Dimana $\mu = e^{\int P dx}$

Sehingga didapatkan:

$$y = \frac{1}{\mu} \int \mu Q dx$$

Tentukan penyelesaian dari persamaan differensial $\frac{dy}{dx} + \frac{y}{x} = 5$

Jawab:

Didefinisikan dulu P dan Q

•
$$P = \frac{1}{x} \operatorname{dan} Q = 5$$

Maka :
$$\mu = e^{\int \frac{1}{x} dx} = e^{\ln x} = x$$

Sehingga:

$$\bullet \ y = \frac{1}{x} \int 5x \, dx = \frac{5}{2}x + C$$

Persamaan Differensial Homogen

Fungsi f(x,y) dikatakan homogen berderajat n jika $f(\lambda x, \lambda y) = \lambda^n f(x,y)$ Persamaan differensial dalam bentuk M(x,y)dx + N(x,y)dy = 0dikatakan homogen bila M(x,y) dan N(x,y) homogen pada derajat yang sama

Penyelesaian dari persamaan differensial homogen yaitu dengan substitusi :

$$y = v \cdot x$$
$$dy = dv \cdot x + v \cdot dx = x \cdot dv + v \cdot dx$$

Sehingga persamaannya menjadi separable terhadap variable v dan x

Hitung penyelesaian persamaan differensial $2xy\ dy = (x^2 - y^2)dx$

Ubah ke bentuk M(x,y)dx + N(x,y)dy = 0

•
$$2xy dy = (x^2 - y^2)dx \Rightarrow 2xy dy - (x^2 - y^2)dx = 0$$

•
$$(y^2 - x^2)dx + 2xy dy = 0$$

Cek apakah homogen atau tidak?

Untuk
$$M(x, y) = (y^2 - x^2)$$

•
$$M(\lambda x, \lambda y) = \lambda^n M(x, y) \Rightarrow (\lambda y)^2 - (\lambda x)^2 = \lambda^n (y^2 - x^2)$$

•
$$\Rightarrow \lambda^2(y^2 - x^2) = \lambda^n(y^2 - x^2)$$
 jadi $n = 2$

Untuk
$$N(x, y) = 2xy$$

•
$$N(\lambda x, \lambda y) = \lambda^n N(x, y) \Rightarrow 2(\lambda x)(\lambda y) = \lambda^n (2xy)$$

•
$$\Rightarrow \lambda^2(2xy) = \lambda^n(2xy)$$
 jadi $n = 2$

Karena derajatnya sama maka disebut persamaan differensial homogen berderajat dua

Karena $2xy\ dy=(x^2-y^2)dx$ merupakan persamaan differensial homogen berderajat dua maka penyelesaiannya :

Substitusi $y = vx \operatorname{dan} dy = xdv + vdx$

Menjadi:

•
$$2x(vx)(xdv + vdx) = (x^2 - (vx)^2)dx \Rightarrow 2vx^3dv + 2v^2x^2dx = x^2dx - v^2x^2dx$$

•
$$2vx \, dv + 2v^2 dx = dx - v^2 dx \Rightarrow 2vx \, dv = dx - 3v^2 dx \Rightarrow 2vx \, dv = (1 - 3v^2) dx$$

•
$$\frac{2v}{1-3v^2}dv = \frac{1}{x}dx \Rightarrow \frac{2v}{1-3v^2}dv - \frac{1}{x}dx = 0$$

Selesaikan dengan separable differential equation

•
$$\int \frac{2v}{1-3v^2} dv - \int \frac{1}{x} dx = C \Rightarrow -\frac{1}{3} \ln|1-3v^2| - \ln|x| = \ln C$$

Substitusikan kembai dengan $v = \frac{y}{x}$

•
$$-\frac{1}{3}\ln\left|1-3\left(\frac{y}{x}\right)^2\right|-\ln|x|=\ln C$$

Persamaan Differensial Orde Kedua

Persamaan differensial orde kedua memiliki bentuk:

$$1. \qquad \frac{d^2y}{dx^2} = f(x)$$

$$2. \qquad \frac{d^2y}{dx^2} = f\left(x, \frac{dy}{dx}\right)$$

$$3. \qquad \frac{d^2y}{dx^2} = f(y)$$

$$4. \qquad \frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = R$$

Persamaan differensial linear orde 2 mempunyai bentuk dasar :

$$P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x)y = G(x)$$

Dimana P(x), Q(x), R(x), G(x) adalah fungsi variable x

- Bila G(x) = 0 disebut persamaan differensial homogen orde kedua
- Bila $G(x) \neq 0$ disebut persamaan differensial tak homogen orde kedua

Persamaan Differensial Orde Kedua

Penyelesaiannya mengikuti aturan berikut:

- 1. Jika persamaan karakteristik akar-akarnya merupakan bilangan real yang berbeda yaitu m_1 dan m_2 maka penyelesaiannya : $y = C_1 e^{m_1 x} + C_2 e^{m_2 x}$
- 2. Jika persamaan karakteristik akar-akarnya merupakan bilangan real yang sama yaitu $m_1=m_2=m$ maka penyelesaiannya : $y=\mathcal{C}_1e^{mx}+\mathcal{C}_2xe^{mx}$
- 3. Jika persamaan karakteristik akar-akarnya merupakan bilangan kompleks $\lambda = a \pm bj$ maka penyelesaiannya : $y = e^{ax}(C_1 \cos bx + C_2 \sin bx)$

Cari solusi dari persamaan differensial berikut:

Jawab:

Misalkan
$$y = Ce^{mx}$$
 maka $\frac{dy}{dx} = Cme^{mx}$ dan $\frac{d^2y}{dx^2} = Cm^2e^{mx}$

Disubstitusikan:

•
$$m^2(Ce^{mx}) + 4m(Ce^{mx}) + 3(Ce^{mx}) = 0$$

Persamaan karakteristiknya:

• $m^2 + 4m + 3 = 0$ maka dari pemfaktoran didapat m = -3 dan m = -1

Didapatkan dua solusi

•
$$y = Ce^{-3x} \operatorname{dan} y = Ce^{-x}$$

Karena akar-akarnya adalah bilangan real yang berbeda maka solusi umumnya adalah $y=\mathcal{C}_1e^{-3x}+\mathcal{C}_2e^{-x}$

Latihan

1. Carilah penyelesaian dari persamaan differensial :

$$\frac{dy}{dx} = \frac{x^2}{y(1+x^3)}$$

2. Carilah penyelesaian dari persamaan differensial :

$$\frac{dy}{dx} + y = e^x$$

3. Carilah penyelesaian dari persamaan differensial :

$$(x^2 - 2y^2)dy + 2xy \, dx = 0$$

Latihan

1. Carilah penyelesaian dari persamaan differensial :

$$\frac{d^2x}{dt^2} - 2\frac{dx}{dt} - 15x = 0$$

2. Carilah penyelesaian dari persamaan differensial:

$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 8y = 0$$