Three-dimensional Morphological Reconstruction of Millimeter-Scale Soft Continuum Robots based on Dual-Stereo-Vision

Tian-Ao Ren^{1,2,3}, Wenyan Liu¹, **Tao Zhang (Presenting)**¹, Lei Zhao^{3,4} Hongliang Ren^{1,3}, Jiewen Lai^{1,3}

¹EE, CUHK

²ME, Stanford University

³CUHK Shenzhen Research Institute

⁴CSE, Hunan University

Background – Morphological Reconstruction for Robot's Self Modeling

Why

- > Self Modeling: The ability for a robot to simulate its physical self
- Essential for robot motion planning and control – when the robot has complex morphology (outlook)

Current

- General setup: A multi-depth-camera system for morph data collection
- Only for well-structured large rigid robots (meter-scale)

Chen et al., Sci. Robot. (2022)

Target – Notched Tubular Continuum Robots (NTCR)

Problems

- Notch's geometric parameters significantly affect the deformation
- → Benefit from self-modeling
- Challenging to reconstruct small body & notches (length < 1 mm)
- → Need either better camera (hardware) or improved algorithm (software)

How to reconstruct the soft robot on a millimeter scale?

Existing Solutions

Rong & Gu, **IEEE RA-L** (2024)

- Tri-RGB-D camera system
- Large diameter: 18 mm for a single soft robot
- Simplified to parameterized B-spines
- CNN for training (Images)

Zheng et al., Adv Intell Syst (2024)

- Dual-RGB camera system
- Large diameter: 40 mm for a single soft robot
- Simplified to parameterized Key Points
- CNN for training (Key points)

Shape Reconstruction for large soft robots with simple geometry (cylindrical shape)

Ours

T.-A. Ren et al, **ROBIO** (2024)

What's new

- Dual stereo vision-based 3D morphological reconstruction method for millimeter-scale soft continuum robots
- KD-tree-based point cloud optimization for improved morphological reconstruction

Performance

Reconstruct the notched robot's shape with clear details, identifying 1.5 mm-width notches

Setup

- Point cloud acquisition platform: Dual stereo cameras in the opposite direction
- Camera-Object distance: 90 mm
- Target Robot: 3.5 mm diameter, 50 mm length

Comparison: 3D Point Clouds captured by Intel RealSense (a) **D405** and (b) **D435i**.

Preliminary 3D Reconstruction

Statistical Outlier Removal (SOR) is used to identify and exclude points that significantly deviate from their neighbors

$$\delta_{Threshold} = \mu + \alpha \sigma$$

 μ : the mean distance (easily tuned within the setup)

 σ : the standard deviation of distances

- Showing the robot in detail, including its curvature and notches
- Fail to represent the cylindrical appearance of the tiny robot

Needs further optimization

Optimization with K-Dimensional Tree

Optimization workflow

- 1. For raw 3D point cloud (PC):
 - 1. Extract geometric backbone
 - 2. Generate a corresponding cylinder with a pre-defined diameter
- 2. Align the PC to the cylinder surface with the **KD tree** and **iterative closest point (ICP)** algorithms

Optimization with KD-Tree

Point Cloud Alignment with ideal cylinder

Iterative closest point (ICP):

- Align the target point cloud to the reference point cloud
- It iteratively solves for the transformation matrix T as

$$T = \arg \sum_{T=i}^{min} ||p_i - (Rq_i + t)||^2$$

 p_i : Points in the target point cloud

 q_i : Corresponding points in the reference point cloud

Iterative Refinement Results

Results

Metrics: Point Density Consistency (PDC):

$$\lambda_{PDC} = \frac{\sigma_{PDC}}{\mu_{PDC}}$$

 σ_{PDC} : standard deviation of point counts per voxel

 μ_{PDC} : mean of point counts per voxel

Measurement results on the visible notches' width

Successfully reconstructed mm-scale continuum robot morphology with clear details:

- 14 out of 16 notches
- Notches with a width of 1.5 mm
- Point Density Consistency Analysis:

Point Clouds	μ_{PDC}	σ_{PDC}	$\lambda_{ ext{PDC}}$
Point Clouds 1 (Optimized)	1.5489	3.9636	2.5590
Point Clouds 2 (Non-optimized)	0.9582	2.2759	2.3752

Conclusion

- Proposed a **dual stereo vision** method for 3D reconstruction of millimeter-scale **NTCRs**.
- Achieved high-resolution, cost-effective, and precise results.

Future work

- Real-time reconstruction for dynamic soft robot
- Self-modeling for soft robots

