COMP.SGN.100 Introduction to Signal Processing Exercise 9: Task 1, 2

Wajeeha Jamil ID: 150209683

October 5, 2021

Task 1

	EXERCISE 9
	TASK 1
h(n) =	S(n) + S(n-2)
z-transform	of the given impulse response is
	= 1-+2-2
	response would be =
	$=1+e^{-2i\omega}$
	by taking e was common factor
H(eiw) -	$e^{-i\omega} \left[e^{i\omega} + e^{-i\omega} \right]$
Illain)	er's Formula i.e, e'n = cos(x) +isin(x)
$H(e^{-}) = e^{-}$	-iw [ws (w) + isin(w) + cos (-w) + isin(-w)
H(e''') = e	$\frac{-i\omega}{\omega}\left(\cos(\omega)+i\sin(\omega)+\cos(\omega)-i\sin(\omega)\right)$
+ 6	$e^{-it}(2\cos(\omega))$
Phase response Jerm e-iw	is same as phase angle of complex
	$d(\omega) = -1$
Phase response	is linear as a a single
costant.	as group delaye 13
00364116.	

 $Task \ 2$

lask 2	
EXERCISE 9	1
TASK 2	1
Pass band Frequency = fp = 4000 Hz Stop band Frequency = fs = \$000 Hz	1
Stop band Fraguency = 1p = 4000112	-
Normalized for and is would be:	
fp = 14000 _ 1	-
415000 = 4	-
ts = 5000 = 5	
16000 16	
Transition bandwidth = of = fc - fp	
13-18	
- 5 - 1 11 4	
16 9	
Df = 5-4 = 1	
16 16	
(i) Rectangular Window Coefficients:	
$N = 0.9 = 0.9 \times 16 = 14.4 = 15$	
Af = 0.7 × 16 = 14.4 = 15	
(ii) Hanning Window Coefficients:	
N = 3-1 = 3-1 × 16 = 49.6 = 51	
2)	

