TAL

Technology and Artificial Intelligence League

REGRESSÃO LINEAR

1. Introdução

A análise de regressão busca visualizar o quanto uma variável quantitativa varia em relação a outra. A regressão não busca rótulos, como em classificação, mas sim, encontrar determinado valor.

Alguns exemplos de onde pode ser aplicada:

- Renda familiar e as despesas da mesma família;
- Número de vendas de determinado produto e os índices de publicidade;
- Histórico de investimentos e o índice de lucros no mesmo período.

Exemplos de gráficos de regressão (esquerda) e de classificação (direita)

2. Exemplo

Pensemos na seguinte situação: Temos os valores abaixo representando os gastos mensais de uma família no decorrer de 12 meses. Como podemos visualizar essa

variação?

MESES	RENDA(R\$)	GASTOS(R\$)
JANEIRO	2500	2200
FEVEREIRO	2574	1800
MARÇO	2467	2000
ABRIL	2456	2000
MAIO	2457	1720
JUNHO	2356	1560
JULHO	2555	2341
AGOSTO	2234	2312
SETEMBRO	2267	2312
OUTUBRO	2231	2354
NOVEMBRO	2286	2213
DEZEMBRO	3000	2600

Tabela de renda e gastos mensais de uma família no decorrer de um ano

Renda é uma variável independente Gastos é uma variável dependente

Gráfico de regressão da tabela de gastos

3. Ajuste de parâmetros

1. Design Matrix

- Utilizada em bases de dados com poucos atributos;
- Utiliza inversão de matrizes.

2. Gradient Descent.

- Possui melhor desempenho com muitos atributos;
- Busca atingir o mínimo global de determinada curva.

Interpretação gráfica do Gradient Descent

4. Regressão Linear Simples

Para a Regressão Linear Simples temos a seguinte equação:

$$y = b_0 + b_1 * x_1$$

Onde:

- y é o atributo que desejamos prever;
- b0 é uma constante;
- b1 é um coeficiente;
- x1 é a variável independente.

5. Regressão Linear Múltipla

Nesses casos, dois ou mais regressores influenciam o comportamento da variável dependente.

Para a Regressão Linear Múltipla temos a seguinte equação:

$$y = b_0 + b_1 * x_1 + b_2 * x_2 + \ldots + b_n * x_n$$

Onde:

- x1, x2, ..., xn são variáveis independentes;
- b0, b1, ..., bn são coeficientes associados às variáveis.

Referências

RAMOS, Raniere. Regressão Linear Simples: O que é? Para que serve? Como funciona?. Disponível em:

https://oestatistico.com.br/regressao-linear-simples/. Acesso em 17 de Setembro de 2020;

SORRENTINO, Juliana. Guia de estatística – Regressão Linear. Disponível em: https://www.ecommercebrasil.com.br/artigos/guia-de-estatistica%E2%80%8A-%E2%80%8Aregressao-linear/. Acesso em 17 de Setembro de 2020;

INSPER. Análise de regressão linear múltipla I. Disponível em: http://hedibert.org/wp-content/uploads/2014/02/Econometria201401-Aula04-ARLM-I-Estimacao.pdf>. Acesso em 17 de Setembro de 2020.