

Mark Scheme (Results) January 2010

GCE

Mechanics M3 (6679)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2010
Publications Code UA022968
All the material in this publication is copyright
© Edexcel Ltd 2010

January 2010 6679 Mechanics M3 Mark Scheme

Question Number	Scheme	Marks
Q1.	$0.5a = 4 + \cos\left(\pi t\right)$	B1
	Integrating $0.5v = 4t + \frac{\sin(\pi t)}{\pi} (+C)$	M1 A1
	Using boundary values $3 = 4 + C \Rightarrow C = -1$	M1 A1
	When $t = 1.5$ $0.5v = 6 - \frac{1}{\pi} - 1$ $v \approx 9.36 \text{ (m s}^{-1}\text{)}$ cao	M1
	$v \approx 9.36 \text{ (m s}^{-1}\text{)}$ cao	A1 (7) [7]

Question Number	Scheme	Marks	
Q2.	(a) $\frac{2\pi}{\omega} = 2.4 \implies \omega = \frac{5\pi}{6} (\approx 2.62)$ $x = 0, t = 0 \implies x = a \sin \omega t$	M1 A1	
	when $t = 0.4$, $x = a \sin\left(\frac{5\pi}{6} \times 0.4\right)$ $\left(=\frac{\sqrt{3}}{2}a\right)$	M1	
	$v^2 = \omega^2 (a^2 - x^2) \implies 16 = \frac{25\pi^2}{36} \left(a^2 - \frac{3a^2}{4} \right) \implies a = \frac{48}{5\pi} (\approx 3.06)$	M1 A1	
	$v_{\text{max}} = a\omega = 8$ (or awrt 8.0 if decimals used earlier) cao	M1 A1 (7	7)
	(b) $\ddot{x}_{\text{max}} = a\omega^2 = \frac{20\pi}{3}$ awrt 21	M1 A1 (2	2) 9]
	Alternative in (a) (a) $ \frac{2\pi}{\omega} = 2.4 \Rightarrow \omega = \frac{5\pi}{6} $ $ x = 0, t = 0 \Rightarrow x = a \sin \omega t $ $ \dot{x} = a\omega \cos \omega t $ $ 4 = a\omega \cos \left(\frac{5\pi}{6} \times 0.4\right) $ $ a = \frac{48}{5\pi} (\approx 3.06) \text{ or } a\omega = 8 $ $ v_{\text{max}} = a\omega = 8 $	M1 A1 M1 A1 M1 A1 (7	7)

Question Number	Scheme	Marks
Q3.	(a) $\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1 B1
	$8 \times \frac{1}{4}r + 19\overline{x} = 27 \times \frac{3}{8}r$ $\overline{x} = \frac{65}{152}r \qquad *$	M1 A1ft A1 (5)
	(b) $Mg \qquad kMg$ $Mg \times \overline{x} \sin \theta = kMg \times r \cos \theta$ leading to $k = \frac{13}{38}$	- M1 A1=A1 - M1 A1 (5) [10]

Question Number	Scheme	Marks
Q4.	O θ T $A0 N$ $A0 N$	
	$ \uparrow T \cos \theta = 40 \qquad \text{M1 attempt at both equations} \rightarrow T \sin \theta = 30 \text{leading to} T = 50 $	M1 A1 A1 M1 A1
	$E = \frac{\lambda x^2}{2a} = 10$ HL $T = \frac{\lambda x}{a} = 50$	B1 - M1
	leading to $x = 0.4$	- M1 A1
	OP = 0.5 + 0.4 = 0.9 (m)	A1ft (10) [10]

Question Number	Scheme	Marks
Q5.	(a) $\frac{1}{2}m \times 2ag - \frac{1}{2}mv^2 = mg(2a - 3a\sin\theta)$ leading to $v^2 = 2ga(3\sin\theta - 1) + 2ga(3\sin\theta)$ (b) minimum value of T is when $v = 0 \implies \sin\theta = \frac{1}{3}$ $T = mg\sin\theta = \frac{mg}{3}$ maximum value of T is when $\theta = \frac{\pi}{2}$ $\left(v^2 = 4ag\right)$ $\uparrow T = \frac{mv^2}{3a} + mg$ $= \frac{7mg}{3}$ $\left(\frac{mg}{3} \le T \le \frac{7mg}{3}\right)$	M1 A1=A1 -M1 A1 (5) B1 M1 A1 M1 A1 (6)

Question Number	Scheme	e Marks	
Q6.	(a) μR mg $\uparrow R = mg$ Use of limiting friction, $F_r = \mu R$ $\leftarrow \mu R = \frac{m28^2}{120}$ $\mu = \frac{28^2}{120 \times 9.8} = \frac{2}{3} *$ cao (b)	B1 B1 M1 A1 M1 A1 (6)	
	$ \uparrow R\cos\alpha - \mu R\sin\alpha = mg $ $ \leftarrow \mu R\cos\alpha + R\sin\alpha = \frac{mv^2}{r} $ $ \frac{\mu\cos\alpha + \sin\alpha}{\cos\alpha - \mu\sin\alpha} = \frac{v^2}{rg} $ Eliminating R $ \frac{2\cos\alpha + 3\sin\alpha}{3\cos\alpha - 2\sin\alpha} = \frac{25}{24} $ Substituting values $ \text{leading to} \tan\alpha = \frac{27}{122} $ awrt 0.22	M1 A1 M1 A1 M1 A1 M1 M1 M1 M1 M1 M1 M1 M1 (8) [14]	

Question Number	Scheme	Marks
Q7.	(a) $\frac{1}{2}mv^2 + \frac{3mgx^2}{4a} = mg(a+x)$ leading to $v^2 = 2g(a+x) - \frac{3gx^2}{2a}$ * cso	M1 A2 (1, 0) A1 (4)
	(b) Greatest speed is when the acceleration is zero $T = \frac{\lambda x}{a} = \frac{3mgx}{2a} = mg \implies x = \frac{2a}{3}$ $v^2 = 2g\left(a + \frac{2a}{3}\right) - \frac{3g}{2a} \times \left(\frac{2a}{3}\right)^2 \left(=\frac{8ag}{3}\right)$ $v = \frac{2}{3}\sqrt{6ag} \qquad \text{accept exact equivalents}$	- M1 A1 - M1 A1 (4)
	(c) $v = 0 \implies 2g(a+x) - \frac{3gx^2}{2a} = 0$ $3x^2 - 4ax - 4a^2 = (x-2a)(3x+2a) = 0$ x = 2a	M1 M1 A1
	At D , $m\ddot{x} = mg - \frac{\lambda \times 2a}{a}$ ft their $2a$ $ \ddot{x} = 2g$	M1 A1ft A1 (6) [14]
	Alternative to (b) $v^{2} = 2g(a+x) - \frac{3gx^{2}}{2a}$ Differentiating with respect to x $2v\frac{dv}{dx} = 2g - \frac{3gx}{a}$ $\frac{dv}{dx} = 0 \Rightarrow x = \frac{2a}{3}$ $v^{2} = 2g\left(a + \frac{2a}{3}\right) - \frac{3g}{2a} \times \left(\frac{2a}{3}\right)^{2} \left(=\frac{8ag}{3}\right)$ $v = \frac{2}{3}\sqrt{6ag}$ accept exact equivalents	- M1 A1 - M1 A1 (4)

Question Number	Scheme	Marks		
Q7.	Alternative approach using SHM for (b) and (c) If SHM is used mark (b) and (c) together placing the marks in the gird as shown.			
	Establishment of equilibrium position $T = \frac{\lambda x}{a} = \frac{3mge}{2a} = mg \implies e = \frac{2a}{3}$ N2L using y for displacement from equilibrium position	bM1 bA1		
	N2L, using y for displacement from equilibrium position $m\ddot{y} = mg - \frac{\frac{3}{2}mg(y+e)}{a} = -\frac{3g}{2a}y$ $\omega^2 = \frac{3g}{2a}$			
	Speed at end of free fall $u^2 = 2ga$	cM1		
	Using A for amplitude and $v^2 = \omega^2 (a^2 - x^2)$			
	$u^2 = 2ga \text{ when } y = -\frac{2}{3}a \implies 2ga = \frac{3g}{2a}\left(A^2 - \frac{4a^2}{9}\right)$	cM1		
	$A = \frac{4a}{3}$	cA1		
	Maximum speed $A\omega = \frac{4a}{3} \times \sqrt{\left(\frac{3g}{2a}\right)} = \frac{2}{3}\sqrt{(6ag)}$	cM1 cA1		
	Maximum acceleration $A\omega^2 = \frac{4a}{3} \times \frac{3g}{2a} = 2g$	cA1		

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email <u>publications@linneydirect.com</u>

Order Code UA022968 January 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH