VIEWING TRANSFORMTION & CLIPPING

- •Window and Viewport mapping
- •Point Clipping
- •Line Clipping
 - •Cohen-Sudhenland
 - •Parametric
- •Polygon Clipping

World coordinate

Cartesian coordinate w.r.t which we define diagram

•Window

An area on world coordinate selected for display.

Device Coordinate

Screen Coordinate

Viewport

Area on device coordinate where graphics is to be displayed The coordinate system of the frame buffer.

Viewing transformation

Window to viewport mapping

World Coordinates

Device Coordinates

VIEWING TRANSFORMATION BY NORMALIZATION

 (x_w, y_w) : A point on window

 (x_v, y_v) : Corr. point on viewport

Normalized point on window

$$(\frac{X_{\mathrm{W}} - X_{\mathrm{W}\min}}{X_{\mathrm{W}\max} - X_{\mathrm{W}\min}}, \frac{Y_{\mathrm{W}} - Y_{\mathrm{W}\min}}{Y_{\mathrm{W}\max} - Y_{\mathrm{W}\min}})$$

Normalized point on viewport

$$(\frac{X_{v} - X_{v \min}}{X_{v \max} - X_{v \min}}, \frac{Y_{v} - Y_{v \min}}{Y_{v \max} - Y_{v \min}})$$

$$\begin{split} \frac{X_{W} - X_{W \min}}{X_{W \max} - X_{W \min}} &= \frac{X_{v} - X_{v \min}}{X_{v \max} - X_{v \min}} \\ X_{v} - X_{v \min} &= (X_{W} - X_{W \min}) \frac{X_{v \max} - X_{v \min}}{X_{W \max} - X_{W \min}} \\ X_{v} - X_{v \min} &= (X_{W} - X_{W \min}) s_{x} \\ X_{v} - X_{v \min} &= (X_{W} - X_{W \min}) s_{x} \\ X_{v} &= X_{v \min} + (X_{W} - X_{W \min}) s_{x} \end{split}$$

$$X_{v} = X_{v \min} + (X_{w} - X_{w \min}) s_{x}$$

$$s_{x} = \frac{X_{v \max} - X_{v \min}}{X_{w \max} - X_{w \min}}$$

$$\begin{split} &\frac{Y_{W} - Y_{W \, min}}{Y_{W \, max} - Y_{W \, min}} = \frac{Y_{v} - Y_{v \, min}}{Y_{v \, max} - Y_{v \, min}} \\ &Y_{v} - Y_{v \, min} = (Y_{W} - Y_{W \, min}) \frac{Y_{v \, max} - Y_{v \, min}}{Y_{W \, max} - Y_{W \, min}} \\ &Y_{v} - Y_{v \, min} = (Y_{W} - Y_{W \, min}) s_{y} \qquad \qquad s_{y} = \frac{Y_{v \, max} - Y_{v \, min}}{Y_{W \, max} - Y_{W \, min}} \\ &Y_{v} = Y_{v \, min} + (Y_{W} - Y_{W \, min}) s_{y} \end{split}$$

$$Y_{v} = Y_{v \min} + (Y_{W} - Y_{W \min}) s_{Y}$$

$$s_{Y} = \frac{Y_{v \max} - Y_{v \min}}{Y_{w \max} - Y_{w \min}}$$

VIEWING TRANSFORMATION BY COMPOSITE TRANSFORMATION

 (x_w, y_w) : A point on window

 (x_v, y_v) : Corr. point on viewport

$$P_{v} = T_2 S T_1(P_{w})$$

$$T_{1} = \begin{pmatrix} 1 & 0 & -X_{w \text{ min}} \\ 0 & 1 & -Y_{w \text{ min}} \\ 0 & 0 & 1 \end{pmatrix} \qquad T_{2} = \begin{pmatrix} 1 & 0 & X_{v \text{ min}} \\ 0 & 1 & Y_{v \text{ min}} \\ 0 & 0 & 1 \end{pmatrix} \qquad S = \begin{pmatrix} S_{x} & 0 & 0 \\ 0 & S_{y} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} X_{V} \\ Y_{V} \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & X_{V \min} \\ 0 & 1 & Y_{V \min} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} S_{x} & 0 & 0 \\ 0 & S_{Y} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -X_{W \min} \\ 0 & 1 & -Y_{W \min} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X_{W} \\ Y_{W} \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} X_{V} \\ Y_{V} \\ 1 \end{pmatrix} = \begin{pmatrix} S_{x} & 0 & -S_{x}X_{w \min} + X_{V \min} \\ 0 & S_{y} & -S_{y}Y_{w \min} + Y_{V \min} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X_{w} \\ Y_{w} \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} X_{V} \\ Y_{V} \\ 1 \end{pmatrix} = \begin{pmatrix} S_{x}X_{W} - S_{x}X_{W \min} + X_{V \min} \\ S_{Y}Y_{W} - S_{Y}Y_{W \min} + Y_{V \min} \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} X_{V} \\ Y_{V} \\ 1 \end{pmatrix} = \begin{pmatrix} X_{V \min} + S_{x} (X_{W} - X_{W \min}) \\ Y_{V \min} + S_{Y} (Y_{W} - Y_{W \min}) \\ 1 \end{pmatrix}$$

$$X_{v} = X_{v \min} + (X_{w} - X_{w \min}) s_{x}$$

$$Y_{v} = Y_{v \min} + (Y_{W} - Y_{W \min}) s_{Y}$$

CLIPPING OPERATION

POINT CLIPPING

Cohen-Sutherland LINE CLIPPING algorithm

Liang-Barsky Line Clipping

Parametric definition of a line:

$$x = x_0 + u\Delta x$$
$$y = y_0 + u\Delta y$$

$$\Delta x = (x_{end} - x_0), \ \Delta y = (y_{end} - y_0), \ \ 0 \le u \le 1$$

From point clipping strategy

$$\begin{aligned} x_{min} &\leq x_0 + u \Delta x \leq x_{max} \\ y_{min} &\leq y_0 + u \Delta y \leq y_{max} \end{aligned}$$

•-
$$u\Delta x \le (x_0 - x_{min})$$

•
$$u\Delta x \le (x_{max} - x_0)$$

•-
$$u\Delta y \le (y_0 - y_{min})$$

•
$$u\Delta y \le (y_{max} - y_0)$$

ALGORITHM

- 1. Initialize $U_{min}=0$ and $U_{max}=1$
- 2. Calculate 'u' values (eg. u_{left} ,u_{right} ,u_{top} ,u_{bottom})
- 3. If $u < U_{min}$ or $u > U_{max}$ ignore it.

Otherwise update U_{min} and U_{max}

4. If $U_{min} < U_{max}$

Draw a line between the following points

1.
$$(x_0 + U_{min} \Delta x, y_0 + U_{min} \Delta y)$$

2.
$$(x_0 + U_{max} \Delta x, y_0 + U_{max} \Delta y)$$

Otherwise if $U_{min} > U_{max}$

No line segment to draw.

POLYGON CLIPPING

Sutherland-Hodgeman POLYGON CLIPPING algorithm

