Istoric

- din cursul 1

Jocul icosian

• 1856 – **Hamilton** – "voiaj în jurul lumii":

Există un traseu închis pe muchiile dodecaedrului care să treacă prin fiecare vârf o singură dată

http://en.wikipedia.org/wiki/File:Dodecahedron.jpg

Jocul icosian

Fie G graf neorientat

Ciclu hamiltonan al lui G = ciclu C elementar în G cu

$$V(C) = V(G)$$

- G hamiltonian = conţine un ciclu hamiltonian
- Lanţ hamiltonian al lui G = lanţ elementar P în G cu

$$V(P) = V(G)$$

Condiții necesare **și** suficiente ca un graf să fie hamiltonian (ca în cazul grafurilor euleriene)?

Este hamiltonian?

Condiții necesare **și** suficiente ca un graf să fie hamiltonian (ca în cazul grafurilor euleriene)?

Este hamiltonian?

Nu - are punct critic

Condiții necesare **și** suficiente ca un graf să fie hamiltonian (ca în cazul grafurilor euleriene)?

Graful lui Petersen

Este hamiltonian?

Nu, deși nu are puncte critice

Condiții necesare și sau suficiente ca un graf să fie hamiltonian

Condiții necesare:

Fie G un graf hamiltonian. Atunci:

- G este biconex (nu are noduri critice)
- Pentru orice S ⊂ V nr_comp_conexe (G-S) ≤ |S|
 - deoarece nr_comp_conexe (C-S) \leq |S| pentru un ciclu hamiltonian C din G **Exemplu** $K_{1,2,4}$ - nu este hamiltonian

Condiții necesare și sau suficiente ca un graf să fie hamiltonian

Condiții necesare:

Exemplu $K_{1,2,4}$ – nu este hamiltonian

$$S = \{1,2,3\}$$

 $K_{1,2,4}$ – S are 4 componente conexe

Condiții necesare și sau suficiente ca un graf să fie hamiltonian

Condiții suficiente:

- Teorema lui Dirac
- Teorema lui Ore
- Teorema lui Chvatal şi Erdos etc

Teorema lui Dirac

Fie G un graf cu $n \ge 3$ vârfuri.

Dacă $d(v) \ge n / 2$ pentru orice vârf v, atunci G este hamiltonian.

Teorema lui Dirac

Fie G un graf cu $n \ge 3$ vârfuri.

Dacă $d(v) \ge n / 2$ pentru orice vârf v, atunci G este hamiltonian.

Demonstrație (schiță):

G este conex (de ce?)

Arătăm că putem construi un ciclu hamiltonian C în G.

- 1. Fie P=[x]
- 2. Extindem P la un lanț elementar maximal, adăugând câte o muchie la una dintre extremități până când toți vecinii extremităților sunt în lanț:

$$P = [x_1, ..., x_k]$$

- 3. Dacă k = n
- Dacă $x_1x_k \in E(G)$ atunci $P+x_1x_k$ este ciclu hamiltonian.

- 3. Dacă k = n
- Dacă $x_1x_k \in E(G)$ atunci $P+x_1x_k$ este ciclu hamiltonian.
- Altfel: deoarece P nu se mai poate extinde, toți vecinii lui x_1 și ai lui x_k sunt în P, deci ambele vârfuri au cel puțin n/2 vecini în V(P).
- **Din principiul cutiei (Dirichlet)** există există un i astfel încât $x_0x_{i+1} \in E$ și $x_ix_k \in E$, deoarece
 - Există cel puțin n/2 noduri i, astfel încât $x_i x_k \in E$
 - Există cel puțin n/2 noduri i, astfel încât $x_0x_{i+1} \in E$

Atunci putem construi ciclul $C = [x_1 - P - x_i, x_k - P - x_{i+1}, x_i]$ indicat în figură cu roșu și C este hamiltonian

- 4. Altfel (k<n) putem obține un lanț elementar mai lung astfel:
 - Considerăm un vârf v care nu este în P, dar adiacent cu un vârf x_t din P
 - Similar cu 3, folosind tot principiul lui Dirichlet, obținem un lanț elementar mai lung decât P, indicat cu verde $[v,x_t-P-x_i,x_k-P-x_{i+1},x_1-P-x_{t-1}]$:

și reluăm raționamentul/construcția de la 2 pentru noul lanț P (până k=n)

Teorema lui Ore

Fie G un graf cu $n \ge 3$ vârfuri.

Dacă $d(x) + d(y) \ge n$ pentru orice două vârfuri neadiacente, atunci G este hamiltonian.

Demonstrație - similar

Probleme de hamiltoneitate

aspecte algoritmice

Probleme de hamiltoneitate

Probleme de decizie (raspuns DA/ NU):

- dat un graf neorientat G, există un ciclu hamiltonian în G?
- dat un graf neorientat G, există un lanț hamiltonian în G?

TSP (Travelling Salesman Problem) - Problema comis-voiajorului

Dat un graf complet (neorientat) ponderat, să se determine un ciclu hamiltonian de cost minim (fără a restrânge generalitatea, ponderile pot fi și infinit)

TSP ca problemă de decizie: Dat un graf G complet (neorientat) ponderat și un număr
 L, există un ciclu hamiltonian în G de cost cel mult L?

NP-complete => nu se cunoaște un algoritm polinomial de rezolvare

Ciclu hamiltonian

Problemă – dat un graf neorientat G, **există un ciclu hamiltonian** în G? **Soluții posibile**:

 Generăm toate permutările și verificăm pentru fiecare dacă este soluție validă - O(n!*n)

Ciclu hamiltonian

Problemă – dat un graf neorientat G, **există un ciclu hamiltonian** în G? **Soluții posibile**:

- Generăm toate permutările și verificăm pentru fiecare dacă este soluție validă - O(n!*n)
- Algoritmi exponenţiali mai eficienţi?

Putem presupune că primul vârf din ciclu este 1

Putem presupune că primul vârf din ciclu este 1

Un ciclul hamiltonian este format din:

Un lanț elementar de la 1 la i cu mulțimea vârfurilor V

Cum putem afla dacă există un astfel de i (pentru care avem lanț elementar de la 1 la i cu mulțimea vârfurilor V)?

Un lanț elementar de la 1 la i cu mulțimea vârfurilor V

Lanț elementar de la 1 la i cu mulțimea vârfurilor V =

Lanț elementar de la 1 la j cu mulțimea vârfurilor V - {i} plus muchia (j,i)

Un lanț elementar de la 1 la j cu mulțimea vârfurilor V - {i}

Lanț elementar de la 1 la i cu mulțimea vârfurilor V =

Lanț elementar de la 1 la j cu mulțimea vârfurilor V - {i} plus muchia (j,i)

Un lanț elementar de la 1 la j cu mulțimea vârfurilor V - {i}

Subprobleme: Există un lanț elementar de la 1 la i cu mulțimea vârfurilor S?

- dp[1][{1}] = True
- dp[i][S] = False, dacă 1, i ∉ S

<u>Ştim</u>:

- dp[1][{1}] = True
- dp[i][S] = False, dacă 1, i ∉ S

Relația de recurență:

Subprobleme: Există un lanț elementar de la 1 la i cu mulțimea vârfurilor S?

dp[i][S] = True ⇔ există un lanț elementar de la 1 la i cu mulțimea vârfurilor S

Ştim:

- dp[1][{1}] = True
- dp[i][S] = False, dacă 1, i ∉ S

Relația de recurență:

```
dp[i][S] = True \Leftrightarrow i \in S i
```


Soluția problemei: există ciclu hamiltonian ⇔ există i vecin cu 1 astfel încât dp[i] [v] =True

- dp[1][{1}] = True
- dp[i][S] = False, dacă 1, i ∉ S

Relația de recurență:

```
dp[i][S] = True \Leftrightarrow i \in S;
\exists j \in S \text{ adiacent cu } i \text{ astfel } incat dp[j][S - \{i\}] = True
Un | lant | elementar | de | la | la | cu | multimea | varfurilor | S - \{i\}
```


Ordinea de calcul: când calculăm dp[i][s] să fie deja calculate $dp[j][s-\{i\}]$ (de exemplu crescător după |S|)

• $dp[i][S] = False, dacă 1, i \notin S$

	{1}	{1,2}	{1,3}	{1,4}	{1,2,3}	{1,2,4}	{1,3,4}	{1,2,3,4}
1	True	False	False	False	False	False	False	False
2	False	False						
3	False							
4	False							

 $dp[2][\{1,2\}] = False (2 nu are vecini in \{1,2\})$

• dp[i][S] = False, dacă 1, i ∉ S

	{1}	{1,2}	{1,3}	{1,4}	{1,2,3}	{1,2,4}	{1,3,4}	{1,2,3,4}
1	True	False	False	False	False	False	False	False
2	False	False						
3	False	False						
4	False	False						

 $dp[3][\{1,2\}] = False decarece 3 \notin \{1,2\}$

• dp[i][S] = False, dacă 1, i ∉ S

	{1}	{1,2}	{1,3}	{1,4}	{1,2,3}	{1,2,4}	{1,3,4}	{1,2,3,4}
1	True	False	False	False	False	False	False	False
2	False	False	False					
3	False	False	True					
4	False	False	False					

 $dp[3][\{1,3\}] = True deoarece (3,1) \in E \ si \ d[1][\{1\}] = True$

• dp[i][S] = False, dacă 1, i ∉ S

	{1}	{1,2}	{1,3}	{1,4}	{1,2,3}	{1,2,4}	{1,3,4}	{1,2,3,4}
1	True	False	False	False	False	False	False	False
2	False	False	False	False				
3	False	False	True	False				
4	False	False	False	True				

 $dp[4][\{1,4\}] = True deoarece (4,1) \in E \ si \ d[1][\{1\}] = True$

• dp[i][S] = False, dacă 1, i ∉ S

	{1}	{1,2}	{1,3}	{1,4}	{1,2,3}	{1,2,4}	{1,3,4}	{1,2,3,4}
1	True	False	False	False	False	False	False	False
2	False	False	False	False	True			
3	False	False	True	False /				
4	False	False	False	True				

 $dp[2][\{1,2,3\}] = True deoarece (2,3) \in E \ si \ d[3][\{1,3\}] = True$

 $d[3][{1,3}]=True \Rightarrow d[2][{1,2,3}] = True$

• dp[i][S] = False, dacă 1, i ∉ S

	{1}	{1,2}	{1,3}	{1,4}	{1,2,3}	{1,2,4}	{1,3,4}	{1,2,3,4}
1	True	False	False	False	False	False	False	False
2	False	False	False	False	True			
3	False	False	True	False	False			
4	False	False	False	True	7			

 $dp[3][\{1,2,3\}] = False deoarece, pentru vecinii lui 3 din <math>\{1,2,3\}$ avem:

- $(3,1) \in E \text{ si d}[1][\{1,2\}] = False$
- (3,2) ∈E și d[2][{1,2}]=False

• dp[i][S] = False, dacă 1, i ∉ S

	{1}	{1,2}	{1,3}	{1,4}	{1,2,3}	{1,2,4}	{1,3,4}	{1,2,3,4}
1	True	False	False	False	False	False	False	False
2	False	False	False	False	True			
3	False	False	True	False	False			
4	False	False	False	True	False			

• dp[i][S] = False, dacă 1, i ∉ S

	{1}	{1,2}	{1,3}	{1,4}	{1,2,3}	{1,2,4}	{1,3,4}	{1,2,3,4}
1	True	False	False	False	False	False	False	False
2	False	False	False	False	True	True		
3	False	False	True	False	False			
4	False	False	False	True	False			

 $dp[2][\{1,2,4\}] = True deoarece (2,4) \in E \ si \ d[4][\{1,4\}] = True$

• dp[i][S] = False, dacă 1, i ∉ S

	{1}	{1,2}	{1,3}	{1,4}	{1,2,3}	{1,2,4}	{1,3,4}	{1,2,3,4}
1	True	False	False	False	False	False	False	False
2	False	False	False	False	True	True		
3	False	False	True	False	False	False		
4	False	False	False	True	False	False		

 $dp[4][\{1,2,4\}] = False deoarece pentru vecinii lui 4 din <math>\{1,2,4\}$ avem:

- (4,2) ∈E și d[2][{1,2}]=False
- $(4,1) \in E \text{ si d}[1][\{1,2\}] = False$

• dp[i][S] = False, dacă 1, i ∉ S

	{1}	{1,2}	{1,3}	{1,4}	{1,2,3}	{1,2,4}	{1,3,4}	{1,2,3,4}
1	True	False	False	False	False	False	False	False
2	False	False	False	False	True	True	False	
3	False	False	True	False	False	False	False	
4	False	False	False	True	False	False	False	

• dp[i][S] = False, dacă 1, i ∉ S

	{1}	{1,2}	{1,3}	{1,4}	{1,2,3}	{1,2,4}	{1,3,4}	{1,2,3,4}
1	True	False	False	False	False	False	False	False
2	False	False	False	False	True	True	False	False
3	False	False	True	False	False	False	False	
4	False	False	False	True	False	False	False	

 $dp[2][\{1,2,3,4\}] = False deoarece pentru vecinii lui 2 din <math>\{1,2,3,4\}$ avem:

- $(2,4) \in E \text{ si d}[4][\{1,3,4\}] = False$
- $(2,3) \in E \text{ si d}[3][\{1,3,4\}] = False$

• dp[i][S] = False, dacă 1, i ∉ S

	{1}	{1,2}	{1,3}	{1,4}	{1,2,3}	{1,2,4}	{1,3,4}	{1,2,3,4}
1	True	False	False	False	False	False	False	False
2	False	False	False	False	True	True	False	False
3	False	False	True	False	False	False	False	True
4	False	False	False	True	False	False	False	

 $dp[3][\{1,2,3,4\}] = True deoarece (3,2) \in E \ si \ d[2][\{1,2,4\}] = True$

• dp[i][S] = False, dacă 1, i ∉ S

	{1}	{1,2}	{1,3}	{1,4}	{1,2,3}	{1,2,4}	{1,3,4}	{1,2,3,4}
1	True	False	False	False	False	False	False	False
2	False	False	False	False	True	True	False	False
3	False	False	True	False	False	False	False	True
4	False	False	False	True	False	False	False	

Există lanț hamiltonian de la 1 la 3, cu 3 adiacent cu 1 => ciclu hamiltonian

Pseudocod

Cum generăm/ codificăm submulțimile?

Cum generăm/ codificăm submulțimile?

Şiruri binare, vector caracteristic -> numerele $0,..., 2^n-1$

- $i \in \text{submulţimii S codificată de numărul } x \Leftrightarrow x & (1 << (i-1)) != 0$
- Dacă S este codificată prin x, atunci S − {i} are codificarea x ^ (1<<(i-1))

Pseudocod

```
Pseudocod V = \{0,...,n-1\}
```

```
inițializează dp cu False
dp[0][1] = True, nr_subm = (1<<n)-1

pentru x = 0, nr_subm

pentru i =0,n-1

   daca x & (1<<i) atunci

   pentru j vecin al lui i

        daca x & (1<<j) și dp[j][x^{1<<i)] = True

        dp[i][S] = True

pentru i din V

   daca dp[i][nr_subm-1]=True și (i adiacent cu 1)

        returneaza True

returneaza False</pre>
```

