Lukion matematiikkakilpailun alkukilpailu 2015

Avoimen sarjan tehtävien ratkaisuja

1. Voidaan olettaa, että b = a+1. Silloin $d = a^2 + (a+1)^2 + (a(a+1))^2 = a^2 + a^2 + 2a + 1 + a^4 + 2a^3 + a^2 = a^4 + 2a^3 + 3a^2 + 2a + 1$. Toisaalta $(a^2 + a + 1)^2 = a^4 + a^2 + 1 + 2a^3 + 2a^2 + 2a = a^4 + 2a^3 + 3a^2 + 2a + 1$. d on siis neliöluku ja $\sqrt{d} = a^2 + a + 1$. $(a^2 + a + 1) = \left(a + \frac{1}{2}\right)^2 + \frac{3}{4} > 0$.) Koska $a^2 + a + 1 = a(a+1) + 1$ ja joko a tai a + 1 on parillinen, niin a(a+1) on parillinen ja \sqrt{d} on pariton.

2. Olkoon suorakulmainen kolmion ABC, sen hypotenuusa c = AB, $\angle ABC = \beta$, $\angle CAB = \alpha$ ja I sisään piirretyn ympyrän keskipiste. I on kolmion kulmien puolittajien leikkauspiste. Sovelletaan (kolmion kulmasummasta välittömästi seuraavaa) tietoa, jonka mukaan kolmion kulman vieruskulma on kolmion muiden kulmien summa, kolmioihin CAI ja BCI.

Saadaan heti $\angle AIB = \left(45^\circ + \frac{\alpha}{2}\right) + \left(45^\circ + \frac{\beta}{2}\right) = 90^\circ + \frac{1}{2}(\alpha + \beta)$. Koska ABC on suorakulmainen, $\alpha + \beta = 90^\circ$. Siis $\angle AIB = 135^\circ$. Sovelletaan kosinilausetta kolmioon ABI. Koska $\cos 135^\circ = -\frac{1}{\sqrt{2}}$, saadaan heti

$$c^2 = 4^2 + 2^2 + 2 \cdot 4 \cdot 2 \cdot \frac{1}{\sqrt{2}} = 20 + 8\sqrt{2},$$

joten

$$c = 2\sqrt{5 + 2\sqrt{2}}.$$

- **3.** Olkoon x mielivaltainen joukon A alkio. Jaetaan joukon $A \setminus \{x\}$ 40 alkiota kahdeksi 20-alkioiseksi joukoksi. Olkoot näiden joukkojen alkioiden summat S_1 ja S_2 . Tehtävän ehdon perusteella $S_1 + x > S_2$ ja $S_2 + x > S_1$. Edellisestä epäyhtälöstä seuraa $x > S_2 S_1$ ja jälkimmäisestä $x > S_1 S_2$. Siis $x > |S_1 S_2| \ge 0$. Jokainen A:n alkio on siis positiivinen luku, joten negatiivisia lukuja A:ssa ei ole.
- **4.** 1. ratkaisu. Jonoja, joissa on $2k, k \ge 0$, **A**-kirjainta, on

$$\binom{n}{2k} 2^{n-2k}$$

kappaletta: paikat, joissa on **A**-kirjain voidaan valita yhtä monella tavalla kuin voidaan valita n-alkioisen joukon 2k-alkioinen osajoukko. **B**- ja **C**-kirjaimille jää n-2k paikkaa,

ja jokaiseen tällaiseen voidaan asettaa kumpi tahansa näistä kirjaimista, joten mahdollisuuksia on 2^{n-2k} . Kaikkiaan tehtävän mukaisia merkkijonoja on siis

$$2^{n} + \binom{n}{2} 2^{n-2} + \binom{n}{4} 2^{n-4} + \cdots$$

kappaletta. Mutta summa saadaan kirjoitettua suljettuun muotoon, kun huomataan, että

$$3^{n} = (2+1)^{n} = 2^{n} + \binom{n}{1} 2^{n-1} + \binom{n}{2} 2^{n-2} + \binom{n}{3} 2^{n-3} + \binom{n}{4} 2^{n-4} + \cdots,$$

$$1 = (2-1)^{n} = 2^{n} - \binom{n}{1} 2^{n-1} + \binom{n}{2} 2^{n-2} - \binom{n}{3} 2^{n-3} + \binom{n}{4} 2^{n-4} - \cdots.$$

Kun edelliset binomikehitelmät lasketaan yhteen, saadaan

$$3^{n} + 1 = 2 \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k} 2^{n-2k}.$$

Tehtävässä kysytty lukumäärä on siis

$$\frac{1}{2}(3^n+1).$$

2. ratkaisu. n-kirjaimisia sanoja on kaikkiaan 3^n kappaletta. Olkoon näistä S_n sellaisia, joissa on parillinen määrä \mathbf{A} -kirjaimia ja T_n sellaisia, joissa on pariton määrä \mathbf{A} -kirjaimia. Tarkastellaan sanoja, joissa on parillinen määrä \mathbf{A} -kirjaimia. Jos sanan viimeinen kirjain on \mathbf{A} , sen (n-1):n ensimmäisen kirjaimen joukossa on pariton määrä \mathbf{A} -kirjaimia ja jos viimeinen kirjain on \mathbf{B} tai \mathbf{C} , sen (n-1):n ensimmäisen kirjaimen joukossa on parillinen määrä \mathbf{A} -kirjaimia. Tästä seuraa

$$S_n = T_{n-1} + 2S_{n-1}. (1)$$

Vastaavasti tarkastelemalla sanoja, joissa on pariton määrä **A**-kirjaimia, tullaan yhtälöön

$$T_n = S_{n-1} + 2T_{n-1}. (2)$$

Kun yhtälöt (1) ja (2) vähennetään toisistaan, saadaan

$$S_n - T_n = S_{n-1} - T_{n-1}. (3)$$

Nyt $S_1 = 2$ ja $T_1 = 1$ (parillinen määrä **A**-kirjaimia on sanoissa **B** ja **C**, pariton sanassa **A**) eli $S_1 - T_1 = 1$. Yhtälöstä (3) seuraa nyt yksinkertaisella induktiolla, että $S_n - T_n = 1$ kaikilla n. Koska $S_n + T_n = 3^n$, saadaan heti

$$S_n = \frac{1}{2}(3^n + 1).$$