Реализация конфигурирования полетных заданий роя квадрокоптеров

Выполнил:

Д.В. Коробков

студент гр.1742

Руководитель:

Е.А. Суворова

к.т.н., доцент

www.guap.ru

Предметная область

Шоу дронов — это групповой полет роя беспилотных летательных аппаратов от нескольких сотен до **нескольких тысяч** с красивыми визуальными эффекта

Изменяемые параметры при переориентации шоу для **каждого** дрона:

- Высота
- Широта
- Долгота
- Угол поворота

Новгород. День космонавтики. 500 дронов

₩ ГУАП

Запуск на новой местности – изменение начальных координат всех дронов

На изменения потребовалось более 20 часов

- 1 на север
- 2 на набережную

Проблематика и актуальность

Изменяемые параметры при переориентации шоу для **каждого** дрона:

- Высота
- Широта
- Долгота
- Угол поворота

Время затраты на переориентацию шоу дронов и прошивке 2000 квадрокоптеров и завершение проверок около **100** часов

Появление Hyundai GENESIS на рынке Китая 3281 дрон, 2021

Цель

Создать удобное комплексное программное решение для изменения стартовой точки и угла поворота анимации с целью сокращения временных затрат, связанных с перерисовкой анимации и загрузкой новых полетных заданий в каждый дрон.

Оценка планируемого сокращения временных затрат шоу из 2000 дронов: со 100 часов до менее 10 часов

Существующая инфраструктура

Квадрокоптер GEOSCAN

Пульт позволяет переводить все квадрокоптеры в режим ожидания сигнала от базовой станции

Тестовая базовая станция GEOSCAN

Квадрокоптер

Разработанная плата GEOSCAN с микроконтроллером STM32F405RGT

Радиомодуль RC1180HP

GPS Приемник CGGP .25.4.E.02 (информация с документации на сайте GeoScan.aero)

Базовая станция

На тестовой станции используется плата квадрокоптера

GNSS модуль U-blox NEO M8P-2 с подключением внешней активной антенны

Модуль RC1180HP для радиосвязи с подключением внешней антенны с усилителем

Программное обеспечение

С помощью Coursed_GUI можно передать данные на Базовую станцию

Базовая станция может посылать широковещательные сообщения

Квадрокоптер, получая широковещательное сообщение, сохранит его данные в свой Автопилот

Программное решение

Смена стартовой точки и угла поворота анимации со стороны оператора шоу дронов

10

Реализация отправки широковещательного сообщения

Реализация обработки пакета

NetworkControl.process

Извлечение данных из пакета широковещательного сообщения Coxpaнeние данных в объект класса Singlton в объект newGnssPosition структуры NewStartPoint

Запуск LUA скрипта на считывание стартовой точки и угла поворота анимации из файла полетного задания

NandLua

readPositionOrigin и geoRotationOrigin

Получение данных newGnssPosition если они не нулевые или считывание стартовой точки из файла полетного задания

Выводы

- 1) Успешно реализовано программное решение по обновлению стартовой точки и угла поворота анимации полетного задания роя квадрокоптеров в рамках шоу дронов GEOSCAN
- 2) Успешно протестировано реализованное решение на тестовой площадке с десятью дронами, следующий этап проверки с 1000 дронов на стадионе 05.07.2021
- 3) Благодаря реализованному решению не требуется перерисовка анимации, прошивка дронов и предварительного тестирование всего шоу, что позволяет существенно сократить временны затраты

2 слайд Предметная область

Одним из применений роя квадрокоптеров является шоу дронов. Шоу дронов — это групповой полет роя беспилотных летательных аппаратов от нескольких сотен до нескольких тысяч с красивыми визуальными эффектами.

При проведении шоу на новой локации требуется изменить полетное задание каждого дрона, а именно заново определить стартовую точку коптера (высоту, широту, долготу) и угол поворота анимации.

Решение задачи по конфигурированию полетных заданий роя квадрокоптеров реализуется в рамках имеющегося программного обеспечения и оборудования компании GEOSCAN.

3 слайд **Запуск на новой местности – изменение начальных координат всех дронов**

По умолчанию шоу проектируется с ориентацией на север и имеет нулевую стартовую точку.

Изменение стартовой точки и угла поворота анимации позволяют использовать уже поставленное шоу на другой местности при других условиях.

Например, во время открытия туристического сезона в Санкт-Петербурге за пару дней до начала фестиваля потребовалось сменить ориентацию, угол поворота анимации) в сторону дворцовой набережной.

4 слайд Проблематика и актуальность

Операторам Шоу дронов приходится перерисовывать анимацию (по сути, создавать ее заново) и прошивать каждый квадрокоптер отдельно. Например, для смены стартовой точки и поворота анимации шоу в 2000 квадрокоптеров требуется около 100 часов рабочего времени.

5 слайд **Цель**

Следовательно, стоит острая необходимость в разработке комплексного решения для быстрого изменения стартовой точки и угла поворота анимации в каждом дроне при использовании уже сформированного шоу дронов на другой местности

6 слайд Существующая инфраструктура

В Шоу дронов используется следующая инфраструктура:

• Квадрокоптер Геоскан

- Пульт позволяет переводить все квадрокоптеры в режим ожидания сигнала от базовой станции
- Тестовая Базовая станция

7 слайд Квадрокоптер

Рассмотрим подробнее. Квадрокоптер.

В шоу дронов используются квадрокоптеры имеющие у себя на плате Радиомодуль для общения с Базовой станцией GEOSCAN, каждый коптер оснащен GPS приемником для своего позиционирования во время полета

Базовая станция

Для управления коптерами используется Базовая станция GEOSCAN. Она имеет свой радиомодуль RC1180HP для общения с квадрокоптерам. Используя Базовую станцию с GPS приемником и технологию GPS RTK, удается достичь сантиметровой точности позиционирования квадрокоптеров во время полета. Также БС с помощью радиомодуля может посылать широковещательные сообщения всем коптерам.

8 слайд Программное обеспечение

Автопилот в GEOSCAN — это сборка программных модулей взаимодействия устройств. Каждое из этих устройств использует определенный, нужный ему функционал автопилота.

Так квадрокоптер использует почти весь функционал: от запуска, сбора информации с датчиков, так и получение радиосообщений через бортовой радиомодуль.

Приложение Cursed_GUI используется, как графический интерфейс пользователя для получения или передачи информации с или на коптер.

БС использует функционал связанный с GPS, приложением Cursed_GUI и модулем для передачи радиосообщений к конкретным или всем коптерам.

9 слайд Программное решение

Проанализировав имеющуюся программную и аппаратную структуру, было спроектировано следующее программное решение:

1) Создание в Пользовательском графическом интерфейсе Cursed_GUI компонента для ввода параметров стартовой точки и угла поворота анимации. С компьютера будут переданы введенные параметры на базовую станцию

- 2) На базовой станции необходимо сформировать широковещательное сообщение и осуществлять передачу готового пакета через радиомодуль на все коптеры
- 3) Организовать прием, обработку пакета с данными о стартовой точке и угле поворота анимации. Далее записать их в автопилот взамен тех, что считаются из файла индивидуального полетного задания. После осуществить индикацию светодиодами о получении новой стартовой точки и угле поворота анимации из широковещательного сообщения

10 слайд Смена стартовой точки и угла поворота анимации со стороны оператора шоу дронов

Для оператора шоу дронов смена стартовой точки и угла поворота анимации будет выглядит следующим образом:

- 1) Оператор вводит новые параметры точки и угла в специальный модуль
- 2) Через базовую станцию все квадрокоптеры получат пакет широковещательного сообщения и запустят индикацию

11 слайд Реализация отправки широковещательного сообщения

Для создания программного решения были реализованы

- 1) Модуль в Cursed_GUI для ввода параметров стартовой точки и угла поворота анимации
- 2) Далее эти данные передаются в модуль CoordinateBridge для формирования структуры из полученных данных.
- 3) После структура передается для проверки и подсчет статистики автопилота
- 4) После всех проверок структура передается в RadioDataHandler на формирование пакета широковещательного сообщения
- 5) Готовый пакет передается в буфер-очередь радиомодуля базовой станции для отправки, далее он будет передан на все квадрокоптеры

12 слайд Реализация обработки пакета

Каждый квадрокоптер получив пакет широковещательного сообщения должен извлечь из него данные.

Данные из пакета передаются в модуль NandLua. Функции readPositionOrigin и getRotarionOrigin возвращают полученные данные из широковещательного сообщения.

13 слайд Выводы

- 1) Успешно реализовано программное решение по обновлению стартовой точки и угла поворота анимации полетного задания роя квадрокоптеров в рамках шоу дронов GEOSCAN
- 2) Успешно протестировано реализованное решение на тестовой площадке с десятью дронами, следующий этап проверки с 1000 дронов на стадионе 05.07.2021
- 3) Благодаря реализованному решению не требуется перерисовка анимации, прошивка дронов и предварительного тестирование всего шоу, что позволяет существенно сократить временны затраты