

ELEC2005 Electrical and Electronic Systems

POWER SEMICONDUCTORS
DAVID PAYNE

Assignment-1

Average Mark: 68 Marks distribution:

Most people did well in the assignment, if you need more assistance then please use consultation hours and email to bring raise questions, doubts and concerns!

Assignment-1

Q6 & Q7

The circuit shown below consists of three identical diodes which have an ideality factor of 1 and saturation current of 1E-16. They are operating at a thermal voltage of 25mV. Find the value of the current (I) required to obtain an output voltage of 2.44V. Express your answer in mA to 1 decimal place.

Diode equation:
$$I_0 = I_S \exp\left(\frac{V_0}{0V_T}\right)$$
 $V_0 = \frac{2.44}{3} = 0.81333$
 $I_0 = I_{\times 10^{-16}} \exp\left(\frac{0.813}{25 \times 0^{-7}}\right) = 13.46 \text{ mA} = 13.5 \text{ mA}$

If a current of 1mA is drawn away by a load at the output terminal, what is the change in output voltage?

Give your answer in mV to one decimal places. We now have 12.5 A

Difference = - 5 mV

Assignment-1

Q8

Consider the half-wave rectifier circuit shown below, which has a triangular-wave input V_s of 4.5V peak-to-peak amplitude and zero average, and a resistor value of R=1 k Ω . Assume that the diode can be represented by the constant-voltage-drop model with $V_D=0.7$ V. Find the average value of V_o .

Give your answer in mV, to no decimal places.

input:

1.550 1.225-0.7 6, t2

1.55 T/4 07-1/1 6, 7 62/2

0.7 E1. L=0.0777T

area of triangle

20.267T = 0.267T

Sor overage, divide by period

In Today's Lecture

- Introduction to Power semiconductors
- Diodes
- BJTs
- MOSFETS
- Insulated-Gat Bipolar Transistors (IGBTs)
- Thyristors:SCR GTO MCT
- Summary

Intro to power semiconductors

INTRO

- Power devices (usually switches) with either 2 (diodes) or 3 (transistors) terminals.
- Designed to be able to handle large currents/voltages for power applications – designed to be in the on or off state, with rapid switching between
- A vast range of devices exist, their operation and power/speed handling capabilities vary significantly.
- In the ideal case we would want these to work like a perfect and instantaneous switch
 - No switching delay, no voltage drop across the switch
 - No voltage or current limit.

Intro to power semiconductors

SWITCHING

Ideal switch

Practical switch

Lecture 7

- 1. Diodes
- 2. BJTs
- 3. MOSFETS
- Insulated-Gate Bipolar Transistors (IGBTs)
- 5. Thyristors:SCR GTO MCT
- 6. Summary

INTRO AND STRUCTURE

- We have already covered ideal diodes, simple diode models and worked with signal diodes in the lab.
- We have discussed and tested some diode circuit applications.
- Power diodes differ from signal diodes in their construction, instead of a simple PN junction, there are extra layers with different doping.

Figure 2-1 Diode: (a) symbol, (b) i-v characteristic, (c) idealized characteristic.

IMPORTANT PARAMETERS

- Diodes have several key parameters, some of which are constant and some which vary with condition.
- Voltage rating max instantaneous voltage the device can block in the off state
- Current rating max instantaneous, average or RMS current that it can conduct in the on state
- Switching speed transition speed from on to off (or vice versa)
- On State voltage Voltage dropped across the device when it is conducting.

SWITCHING STATES

- Their On and off states controlled by the power circuit
- Diode Turn-off is not instant, a sudden change in polarity will not immediately stop current flow
- There is an additional charge Qrr that needs to be supplied to complete turn-off – The diode conducts a negative current for duration t_{rr}
- This is known as Reverse Recovery
- Power diodes are classified based on their reverse Recovery Characteristics General/Fast-recovery/Shottky

CLASSIFICATIONS

- General Purpose Diodes
 - Relatively high trr (~25 microseconds)
 - Good for low-frequency applications up to ~1khz
 - Typical current ratings 1-1000A, voltage ratings 50V-5KV
- Fast Recovery Diodes
 - Relatively low trr (<5 microseconds)
 - Good for power conversion systems
 - Typical current ratings1-1000A, voltage ratings 50V-3KV
- Schottky Diodes
 - These have a metal/semiconductor junction, rather than PN
 - Very fast switching (low trr in the nanoseconds).
 - Typical current ratings 1-300A, voltage ratings ~100V

APPLICATIONS

- Power diodes are broadly used in power electronics, example applications include:
- Freewheeling diodes/clamp diodes/snubber diodes
 -protect circuits from damage caused by abrupt reduction in current flow
- AC/DC conversion/ Rectification
 -Changing between alternating
 and direct current
- Battery charging

Lecture 7

- 1. Diodes
- 2. BJTs
- 3. MOSFETS
- Insulated-Gate Bipolar Transistors (IGBTs)
- 5. Thyristors:SCR GTO MCT
- 6. Summary

BJTs for Power Applications

INTRO AND STRUCTURE

- We have covered BJT fundamentals and how they can be used as switches and amplifiers.
- For power switching applications the cut-off and saturation regions are used
- Similarly to power diodes, high power rated BJTs have an additional nregion

Figure 2-7 A BJT: (a) symbol, (b) i-v characteristics, (c) idealized characteristics.

BJTs for Power Applications

CIRCUIT CONFIGURATIONS

- Usually used in the common emitter configuration.
- To handle higher switching currents a Darlingon pair/triple Darlington configuration can be used.
- This configuration can generally be treated just like a single transistor but with: $\beta_{\text{Darlington}} = \beta_1 \cdot \beta_2 + \beta_1 + \beta_2$
- Downside is that the voltage drop also increases:

$$V_{BE} = V_{BE1} + V_{BE2}$$

Figure 2-8 Darlington configurations: (a) Darlington, (b) triple Darlington.

BJTs for Power Applications

RATINGS AND APPLICATIONS

- Generally superseded by other technologies, but still used in some cases, can be cheaper than MOSFETs etc.
- Used in output stages of audio amplifiers, touch sensitive switches, computer controlled relays, low power AC/DC supplies.
- Switching speeds in the tens of kHz, some devices can handle 10-100s of amps and up to 1KV.

Examples of BJT rating:

Parameter	Small-signal BJT (2N2222A)	Power BJT (2N3055)	Power BJT (2N6078)
V_{CE} (max) (V)	40	60	250
I_C (max) (A)	0.8	15	7
P_D (max) (W)	1.2	115	45
β	35 – 100	5 – 20	12 – 70
$f_T(MHz)$	300	0.8	1

Lecture 7

- 1. Diodes
- 2. BJTs
- 3. MOSFETS
- Insulated-Gate Bipolar Transistors (IGBTs)
- 5. Thyristors:SCR GTO MCT
- 6. Summary

Power MOSFETs

INTRO

- Power MOSFETs are the most common power semiconductor device
- We have studied general MOSFET devices in some detail during this unit
- Power MOSFETs are a specific type of this technology designed to handle high power levels.
- They have the advantage of high switching speed, and good low voltage efficiency.
- Often they are low gain devices
- Very commonly used for relatively 'low voltage' switching (<200V)

Power MOSFETs

STRUCTURE

- Typically made using silicon and fabricated as a vertical diffused MOS structure
- Source terminal is above the drain, so current flow is primarily vertical
- The vertical structure means that the voltage rating depends on the doping and thickness of the N+ layers, whilst the current depends on the channel width.
- This design allows for higher currents and power ratings than the traditional lateral mosfet.

Power MOSFETs

RATINGS & APPLICATIONS

- Voltages typically up to ~ 200V
- Current up to ~100A
- Frequencies in excess of 100khz

- Account for >50% of power transistor market.
- Used for high power and rapid switching
- Applications include:
- Power supplies, DC-DC Convertors, Low-Voltage Motor Controllers, Vehicle electronics

Lecture 7

- 1. Diodes
- 2. BJTs
- 3. MOSFETS
- **4.** Insulated-Gate Bipolar Transistors (IGBTs)
- 5. Thyristors:SCR GTO MCT
- 6. Summary

IGBTs

INTRO

- IGBT stands for Insulated Gate Bipolar Transistor
- Combine the ease of control of a MOSFET with low on-state losses, even at higher voltages (>200V)
- Circuit symbol is similar to BJT but with an extra line.

IGBTs

RATINGS & APPLICATIONS

- Voltage ratings up to ~5KV and current ratings up to ~2000A.
- Most commercial designs do not block reverse polarity voltages
- Typically used for convertors over a wide power range (1kW up to >1MW) at switching frequencies <100khz.
- Used in motor drive circuits, UPS, induction cooktops.

Lecture 7

- 1. Diodes
- 2. BJTs
- 3. MOSFETS
- Insulated-Gate Bipolar Transistors (IGBTs)
- **5.** Thyristors: SCR GTO MCT
- 6. Summary

INTRO

- Thyristors are four-layer semiconductor devices with alternating doped regions, e.g. PNPN
- Essentially a semi-controllable diode
- Typically three electrodes, anode, cathode and gate.
- Various types of thyristor are available, most common is the Silicon Controlled Rectifier (SCR)
- They work as a bistable switch, conducting when there
 is a current trigger at the gate, they keep conducting
 until a reverse bias is applied.
- Only a short pulse is needed at the gate to turn the diode on.

SILICON CONTROLLED RECTIFIER (SCR)

- SCR is the most common type of Thyristor, the terms are often used synonymously
- Like a modified diode, SCRs are unidirectional, they only conduct current on one direction
- 3 Modes of operation:

Forward blocking mode – Anode has + voltage and cathode has -, gate held at zero potential, only a small leakage current flows from A to C.

Forward conduction mode – as above but potential between anode and cathode is increased beyond breakdown, or a positive pulse is sent to the gate, now in the on state (conducting)

Reverse blocking mode - Anode has - voltage and cathode has +, behaves like two diodes in series, only a small leakage current flows.

 SCRS are typically used in medium-high voltage control (power regulator, light dimmer etc.)

GATE-TURN-OFF THYRISTORS (GTO)

- A type of thyristor that provides additional control
- As the name suggests, for a GTO the gate can be used to turn off the device (unlike with a regular SCR)
- Requires a negative signal at the gate to turn-off.
- Has the drawback of long switch-off times, so can only be used at slow switching speeds. (up to 1khz) – can use a snubber circuit to reduce turn off time
- Applications include high speed motor drives and high power invertors

Figure 2-11 Gate turn-off transient characteristics: (a) snubber circuit, (b) GTO turn-off characteristic.

MOS CONTROLLED THYRISTORS (MCT)

- MCTs are a more modern device, essentially consisting of a thyristor with two MOSFETs built into the gate.
- These MOSFETS are used to turn the gate on and off.
- In this case a negative pulse (relative to the anode)
 turns the device on
- MCTs offer
 - low forward conduction loss
 - fast switching
 - High input impedance at gate

Lecture 7

- 1. Diodes
- 2. BJTs
- 3. MOSFETS
- Insulated-Gate Bipolar Transistors (IGBTs)
- 5. Thyristors:SCR GTO MCT
- 6. Summary

Power Semiconductors

SUMMARY

- A wide range of devices exist (not all covered here)
- Device choice is a design matter, you must consider:
 Control requirements, Voltage Rating, Current Rating, Frequency,
 Efficiency, Cost etc.

Device	Power Capability	Switching Speed
BJT	Medium	Medium
MOSFET	Low	Fast
GTO	High	Slow
IGBT	Medium	Medium
MCT	Medium	Medium

Power Semiconductors

SUMMARY

