Assignment 14, Linear Algebra 1

Oleg Sivokon

<2016-05-20 Fri>

Contents

1	Pro	blems																					3
	1.1	Proble	em	1 .	•		 		 					 						 			3
		1.1.1	A	nsv	ver	1	 		 			•		 	•			•	•				3
		1.1.2	A	nsv	ver	2	 		 			•		 	•			•	•				3
		1.1.3	A	nsw	ver	3	 		 						•				•				3
	1.2	Proble	em	2 .			 		 			•		 	•			•	•				3
		1.2.1	A	nsw	ver	4	 		 						•				•				4
		1.2.2	A	nsw	ver	5	 		 						•				•				4
		1.2.3	A	nsw	ver	6	 		 						•				•				4
		1.2.4	A	.nsv	ver	7																	4
	1.3	Proble	em	3.			 		 					 	•				•				4
		1.3.1	A	nsw	ver	8	 		 						•				•				4
	1.4	Proble	em	4 .					 	•				 							•		4
		1 / 1	Λ	neu	7OP	Ω																	1

1.5	Proble	m 5	 	4
	1.5.1	Answer 10	 	5
1.6	Proble	m 6	 	5
	1.6.1	Answer 11	 	5
	1.6.2	Answer 12	 	5
	163	Answer 13		F

1 Problems

1.1 Problem 1

Given f, g, h are functions from \mathbb{R} to \mathbb{R} , check that all of them are linearly independent when:

- 1. $f(x) = \sin x$, $g(x) = \cos x$, $h(x) = x \cos x$.
- 2. f(x) = x(x-1), g(x) = x(x-2), h(x) = (x-1)(x-2).
- 3. $f(x) = \sin^2 x$, $g(x) = \cos^2 x$, h(x) = 3.

1.1.1 Answer 1

1.1.2 Answer 2

1.1.3 Answer 3

1.2 Problem 2

Given the following subsets of \mathbb{R}^4 :

$$U = \{(x, y, z, t) \in \mathbb{R}^4 \mid x - y + z = 0 \land x - y - 2t = 0\}$$

$$W = \text{Sp}\{(1, 0, 1, 1), (0, 1, 0, -1), (1, 0, 1, 0)\}$$

- 1. Prove that U and W are subspaces of \mathbb{R}^4 .
- 2. Find basis for U, W and U + W.
- 3. Find basis for $U \cap W$.
- 4. Find subspace T of \mathbb{R}^4 s.t. $U \oplus T = \mathbb{R}^4$.

- 1.2.1 Answer 4
- 1.2.2 Answer 5
- 1.2.3 Answer 6
- 1.2.4 Answer 7

1.3 Problem 3

Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ and \vec{w} be vectors in linear space V. Given $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k\}$ is linearly independent and that $\vec{w} \notin \operatorname{Sp}\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k\}$, prove that $\vec{v}_1 \notin \operatorname{Sp}\{\vec{v}_1 + \vec{w}, \vec{v}_2 + \vec{w}, \ldots, \vec{v}_k + \vec{w}\}$.

1.3.1 Answer 8

1.4 Problem 4

Let U and W be distinct linear subspaces of \mathbb{R}^5 of dimension 3. Suppose $(2,1,0,1), (1,0,1,1) \in U \cap W$, what is the dimension of U+W?

1.4.1 Answer 9

1.5 Problem 5

Let A and B be square matrices of size $n, n \geq 2$. Suppose A and B are of the rank 1,

- 1. what are the possible ranks of A + B?
- 2. What is the possible rank of A + B when they both are of rank 2?
- 3. Prove that it is possible to write any matrix of rank 2 as a sum of matrices of rank 1.

1.5.1 Answer 10

1.6 Problem 6

Given bases $B = (\vec{u}_1, \vec{u}_2, \vec{u}_3)$ and $C = (\vec{v}_1, \vec{v}_2, \vec{v}_3)$ both in \mathbb{R}^3 s.t.

$$\vec{u}_1 = (2, 1, 1)$$

$$\vec{u}_2 = (2, -1, 1)$$

$$\vec{u}_3 = (1, 2, 1)$$

$$\vec{v}_1 = (3, 1, -5)$$

$$\vec{v}_2 = (1, 1, -3)$$

$$\vec{v}_3 = (-1, 0, 2)$$

- 1. Write the matrix of change of basis from B to C and its inverse.
- 2. Compute the coordinate vector $[w]_B$ where $\vec{w}=(-5,8,-5)$.
- 3. Similarly, compute $[w]_C$.

1.6.1 Answer 11

1.6.2 Answer 12

1.6.3 Answer 13