

University of Western Attica Faculty of Engineering Department of Informatics and Computer Engineering

Circuit Theory Lab Exercises

4th EXERCISE

Notes 2020, Voutsinas Stylianos Material revision, Editor 2021, Christos Kampouris

ATHENS 2021

• Task 4 - Coordination

1.1 Theoretical part

RLC circuit is an electrical circuit consisting of an ohmic resistance R , an inductance coil L and a capacitor of capacitance C . We call resonance the phenomenon of forced oscillation in which the frequency of the exciter is identical to the natural frequency of the oscillator.

When a coil and a capacitor are connected in series or parallel, then there is some frequency at which the inductive and capacitive reactance become equal to each other in measure. The point at which the two reactions equal each other is called coordination.

In the resonant state, the two reactions cancel each other out, so that only the resistance R "remains" in the circuit.

For the series resonant circuit, the total impedance of the circuit is given by the relation: $Z = \sqrt{R^2 + (X_L - X_c)^2}$.

If $X_L > X_C$ then the circuit exhibits inductive behavior, otherwise the circuit exhibits capacitive behavior.

But at the coordination point $X_L = X_C$ so the total impedance of the circuit is expressed by the relation Z = R.

The frequency at which this phenomenon is observed is called the resonant frequency frequency) and is calculated by the relation $f_r = \frac{1}{2\pi\sqrt{LC}}$.

In the resonant circuit in parallel connection, its impedance is given by the relation: $Z = \frac{1}{\sqrt{\frac{1}{R^2} + \left(\frac{1}{X_L} - \frac{1}{X_C}\right)^2}}$

In resonant circuits depending on the frequency range in which they are designed to operate, there is at least one frequency (although in most circuits it is 2) at which the output has lost half the power of the input signal.

The bandwidth of a resonant circuit is defined as the frequency range that lies between the pair of half-power frequencies, i.e. between the frequencies at which the output signal has lost half of its original power. This point is defined as -3 db or 0.707 of the maximum amplitude. Mathematically, it is expressed by the relation $BandWidth = \frac{f_r}{Q}$.

Q or otherwise the quality (efficiency) coefficient is calculated from the relationship: $Q = \frac{1}{R} \sqrt{\frac{L}{c}} \text{for resonant circuits in series and, respectively, with the relationship } Q = R \sqrt{\frac{c}{L}} \text{ for circuits in parallel connection.}$

Vrms & Vp-p voltage relationships

1.1 Laboratory part

To study series & parallel tuned circuit with $f_r = 30 \text{ kHz}$.

The implementation will be with R - L - C components . For the capacitors, the value C = 47 nF will be used in the series circuit, and C = 27 nF in the parallel connection circuit.

Then select coils that approximate the theoretical values calculated above. The " **Typical coil values** " table from the appendix can be used . Is there a large deviation from the resonant frequency?

Calculate the theoretical values of the coils required for the specific circuits.

Implementation	С	L theoretical	L Standard	Deviation from f _R
In Series	47nF			
At the same time	27 nF			

Implement tuning circuits in series and parallel.

You fed each of the above implementations with a 1V rms sinusoidal input signal.

Connect channel A of an oscilloscope to the input (source) and channel B to the output (at the ends of the circuit resistor).

Accordingly, you connected the bode as well plotter at the input and output of the circuit. Then, complete the table below and graphically represent the gain-frequency relationship. Compare me the corresponding chart by bode plotter.

Connect the corresponding current measuring instruments, and fill in the corresponding column of the following table.

Note: the table below will be completed with measurements for both the series and parallel circuit.

F (Hz)	Vi(V) Reg. A	Vo(V) Reg. B	20log10(Vo/Vi)	I _{rms} (A)
	Measurement	Measurement.	(db) calculable	Measurement
1				
10				
100				
500				
1000				
1500				
2500				
5000				
10k				
30k				
50k				
100k				
200k				
500k				
1M				
10M				

Theoretically calculated matrix

F	G	X	X _L	Хс	I rms	V _{Lrms}	V _{Crms}
(Hz)							
1							
10							
100							
500							
1000							
1500							
2500							
5000							
10k							
30k							
50k							
100k							
200k							
500k							
1M							
10M							

The above table sizes will be calculated based on the following:

Impedance Z=(R 2 + X 2) $^{1/2}$ (in Ω)

Reactive resistance $X=X_L-X_C$ (in Ω)

Inductive reactance $X_L=2 \pi fL$ (in Ω)

Capacitive reactance $X_C = 1/2 \pi fC$ (in Ω)

 $I_{rms} = V_{rms}/Z$ (in A)

 $V_{Lrms} = I_{rms} * X_L$ (in V)

 $V_{Crms} = I_{rms} * X_{C}$ (in V)

Quality factor

For the series tuning circuit, change the resistance R , according to the table below. What do you notice about the current flowing through the resistor R?

Resistance (Ω)	$Q_{ser} = \frac{1}{R} \sqrt{\frac{L}{C}}$	IR (mA ₎
1k		
500		
220		
100		
10		
1		

4.3 Questions

- How could the above circuits acquire a variable tuning point?
- Suggest uses for series and parallel tuning circuits.
- Describe the basic criteria of synchronization in series circuit.
- Plot the impedance (impedance of the entire circuit assembly) for a frequency range of 100 Hz to 10M Hz for the series circuit.

1.2 Appendix: Typical values of coils

10	100	1000
11	110	1100
12	120	1200
13	130	1300
15	150	1500
16	160	1600
18	180	1800
20	200	2000
22	220	2200
24	240	2400
27	270	2700
30	300	3000
33	330	3300
36	360	3600
39	390	3900
43	430	4300
47	470	4700
51	510	5100
56	560	5600
62	620	6200
68	680	6800
75	750	7500
82	820	8200
87	870	8700
91	910	9100
	11 12 13 15 16 18 20 22 24 27 30 33 36 39 43 47 51 56 62 68 75 82 87	11 110 12 120 13 130 15 150 16 160 18 180 20 200 22 220 24 240 27 270 30 300 33 330 36 360 39 390 43 430 47 470 51 510 56 560 62 620 68 680 75 750 82 820 87 870