Breadth-First Search

Breadth-First Search (BFS)

- A general technique for traversing a graph
- BFS traversal of graphG
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G

- Complexity: O(n + m)
 for a graph with n
 vertices and m edges
- BFS for other graph problems
 - Find a minimum path between two given vertices
 - Find a simple cycle
- BFS is to graphs what level-order is to binary/general rooted trees

BFS Algorithm

 The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm BFS(G)

Input graph G

Output labeling of the edges and partition of the vertices of *G*

for all $u \in G.vertices()$

u.setLabel(UNEXPLORED)

for all $e \in G.edges()$

e.setLabel(UNEXPLORED)

for all $v \in G.vertices()$

if v.getLabel() = UNEXPLOREDBFS(G, v)

```
Algorithm BFS(G, s)
```

```
L_0 \leftarrow new empty sequence L_0.insertBack(s) s.setLabel(VISITED)
```

```
i \leftarrow 0
```

```
while \neg L_i empty()
```

 $L_{i+1} \leftarrow$ new empty sequence

for all $v \in L_i$.elements()

for all $e \in v.incidentEdges()$

if e.getLabel() = UNEXPLORED

 $w \leftarrow e.opposite(v)$

 $if \ \textit{w.getLabel}() = \textit{UNEXPLORED}$

e.setLabel(DISCOVERY)

w.setLabel(VISITED)

 L_{i+1} .insertBack(w)

else

e.setLabel(CROSS)

 $i \leftarrow i + 1$

Example via Queue

Quiz!

- Start vertex: 0
- Traverse order: 0, 1,2, 3, 4, 5, 6, 7

 1
 2

 3
 4

 5
 6

	vertex 0	->	1 ->	2		
	vertex 1	-> (0 ->	3 -	> 4	
~-	vertex 2	-> (0 ->	5 -	> 6	
	vertex 3	->	1 ->	7		
	vertex 4	->	1 ->	7		
~~	vertex 5	-> 2	2 ->	7		
	vertex 6	-> :	2 ->	7		
	vertex 7	-> :	3 ->	4 -:	> 5	-> 6

Queue contents at each step:

Outpu	t Queue
0	<u>0</u> 1 2
1	2 0 3 4
2	3 4 <u>0 5 6</u>
3	4 5 6 <u>1 7</u> 5 6 7 1 7
5	677 27
6	777 <u>27</u>
/	777 <u>3456</u>

Another Example via Queue

- Start vertex: 4
- Traverse order: 4, 1,7, 0, 3, 5, 6, 2
- Queue contents at each step:


```
vertex 0 -> 1 -> 2
vertex 1 -> 0 -> 3 -> 4
vertex 2 -> 0 -> 5 -> 6
vertex 3 -> 1 -> 7
vertex 4 -> 1 -> 7
vertex 5 -> 2 -> 7
vertex 6 -> 2 -> 7
vertex 7 -> 3 -> 4 -> 5 -> 6
```

Example

Example (cont.)

© 2010 Goodrich, Tamassia

Example (cont.)

Properties

Notation

 G_s : connected component of s

Property 1

BFS(G, s) visits all the vertices and edges of G_s

Property 2

The discovery edges labeled by BFS(G, s) form a spanning tree T_s of G_s

Property 3

For each vertex v in L_i

- The path of T_s from s to v has i edges
- Every path from s to v in G_s has at least i edges

Analysis

- \Box Setting/getting a vertex/edge label takes O(1) time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or CROSS
- \Box Each vertex is inserted once into a sequence L_i
- Method incidentEdges is called once for each vertex
- □ BFS runs in O(n + m) time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_{v} \deg(v) = 2m$

Applications

- using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in O(n + m) time
 - Compute the connected components of *G*
 - Compute a spanning forest of G
 - Find a simple cycle in G, or report that G is a forest
 - Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists

Comparison: DFS vs. BFS

DFS

- Complexity: O(m+n)
- Like preorder for binary trees
- Can be achieved by a stack
- Path finding with low memory
 - Game solution finding, such as maze traversal, 2048, nonograms, etc.

□ BFS

- Complexity: O(m+n)
- Like level-order for binary tress
- Can be achieved by a queue
- Minimum path finding

DFS vs. BFS

Applications	DFS	BFS
Spanning forest, connected components, paths, cycles		V
Shortest paths		√
Biconnected components	V	

BFS

DFS vs. BFS (cont.)

Back edge (v, w)

w is an ancestor of v in the tree of discovery edges

Cross edge (v, w)

w is in the same level asv or in the next level

Applications of BFS

- BFS applications
 - Shortest path in a unweighted graph
 - Web crawler
 - Social network
 - Cycle detection
 - Bipartite graph determination
 - Broadcasting in a network
 - Folk-Fulkerson algorithm