

FIGURE 6.12. Left: Cross-validation errors that result from applying ridge regression to the Credit data set with various value of λ . Right: The coefficient estimates as a function of λ . The vertical dashed lines indicate the value of λ selected by cross-validation.

small amount of shrinkage relative to the least squares solution. In addition, the dip is not very pronounced, so there is rather a wide range of values that would give very similar error. In a case like this we might simply use the least squares solution.

Figure 6.13 provides an illustration of ten-fold cross-validation applied to the lasso fits on the sparse simulated data from Figure 6.9. The left-hand panel of Figure 6.13 displays the cross-validation error, while the right-hand panel displays the coefficient estimates. The vertical dashed lines indicate the point at which the cross-validation error is smallest. The two colored lines in the right-hand panel of Figure 6.13 represent the two predictors that are related to the response, while the grey lines represent the unrelated predictors; these are often referred to as signal and noise variables, respectively. Not only has the lasso correctly given much larger coefficient estimates to the two signal predictors, but also the minimum crossvalidation error corresponds to a set of coefficient estimates for which only the signal variables are non-zero. Hence cross-validation together with the lasso has correctly identified the two signal variables in the model, even though this is a challenging setting, with p=45 variables and only n=50observations. In contrast, the least squares solution—displayed on the far right of the right-hand panel of Figure 6.13—assigns a large coefficient estimate to only one of the two signal variables.

signa

6.3 Dimension Reduction Methods

The methods that we have discussed so far in this chapter have controlled variance in two different ways, either by using a subset of the original variables, or by shrinking their coefficients toward zero. All of these methods

FIGURE 6.13. Left: Ten-fold cross-validation MSE for the lasso, applied to the sparse simulated data set from Figure 6.9. Right: The corresponding lasso coefficient estimates are displayed. The vertical dashed lines indicate the lasso fit for which the cross-validation error is smallest.

are defined using the original predictors, $X_1, X_2, ..., X_p$. We now explore a class of approaches that transform the predictors and then fit a least squares model using the transformed variables. We will refer to these techniques as dimension reduction methods.

Let Z_1, Z_2, \ldots, Z_M represent M < p linear combinations of our original p predictors. That is,

dimension reduction linear combination

$$Z_m = \sum_{j=1}^p \phi_{jm} X_j \tag{6.16}$$

for some constants $\phi_{1m}, \phi_{2m}, \dots, \phi_{pm}, m = 1, \dots, M$. We can then fit the linear regression model

$$y_i = \theta_0 + \sum_{m=1}^{M} \theta_m z_{im} + \epsilon_i, \quad i = 1, \dots, n,$$
 (6.17)

using least squares. Note that in (6.17), the regression coefficients are given by $\theta_0, \theta_1, \ldots, \theta_M$. If the constants $\phi_{1m}, \phi_{2m}, \ldots, \phi_{pm}$ are chosen wisely, then such dimension reduction approaches can often outperform least squares regression. In other words, fitting (6.17) using least squares can lead to better results than fitting (6.1) using least squares.

The term dimension reduction comes from the fact that this approach reduces the problem of estimating the p+1 coefficients $\beta_0, \beta_1, \ldots, \beta_p$ to the simpler problem of estimating the M+1 coefficients $\theta_0, \theta_1, \ldots, \theta_M$, where M < p. In other words, the dimension of the problem has been reduced from p+1 to M+1.

Notice that from (6.16),

$$\sum_{m=1}^{M} \theta_m z_{im} = \sum_{m=1}^{M} \theta_m \sum_{j=1}^{p} \phi_{jm} x_{ij} = \sum_{j=1}^{p} \sum_{m=1}^{M} \theta_m \phi_{jm} x_{ij} = \sum_{j=1}^{p} \beta_j x_{ij},$$

FIGURE 6.14. The population size (pop) and ad spending (ad) for 100 different cities are shown as purple circles. The green solid line indicates the first principal component, and the blue dashed line indicates the second principal component.

where

$$\beta_j = \sum_{m=1}^M \theta_m \phi_{jm}. \tag{6.18}$$

Hence (6.17) can be thought of as a special case of the original linear regression model given by (6.1). Dimension reduction serves to constrain the estimated β_i coefficients, since now they must take the form (6.18). This constraint on the form of the coefficients has the potential to bias the coefficient estimates. However, in situations where p is large relative to n, selecting a value of $M \ll p$ can significantly reduce the variance of the fitted coefficients. If M=p, and all the Z_m are linearly independent, then (6.18) poses no constraints. In this case, no dimension reduction occurs, and so fitting (6.17) is equivalent to performing least squares on the original p predictors.

All dimension reduction methods work in two steps. First, the transformed predictors Z_1, Z_2, \ldots, Z_M are obtained. Second, the model is fit using these M predictors. However, the choice of Z_1, Z_2, \ldots, Z_M , or equivalently, the selection of the ϕ_{im} 's, can be achieved in different ways. In this chapter, we will consider two approaches for this task: principal components and partial least squares.

Principal Components Regression

Principal components analysis (PCA) is a popular approach for deriving a low-dimensional set of features from a large set of variables. PCA is components discussed in greater detail as a tool for *unsupervised learning* in Chapter 10. Here we describe its use as a dimension reduction technique for regression.

An Overview of Principal Components Analysis

PCA is a technique for reducing the dimension of a $n \times p$ data matrix **X**. The *first principal component* direction of the data is that along which the observations vary the most. For instance, consider Figure 6.14, which shows population size (pop) in tens of thousands of people, and ad spending for a particular company (ad) in thousands of dollars, for 100 cities. The green solid line represents the first principal component direction of the data. We can see by eye that this is the direction along which there is the greatest variability in the data. That is, if we projected the 100 observations onto this line (as shown in the left-hand panel of Figure 6.15), then the resulting projected observations would have the largest possible variance; projecting the observations onto any other line would yield projected observations with lower variance. Projecting a point onto a line simply involves finding the location on the line which is closest to the point.

The first principal component is displayed graphically in Figure 6.14, but how can it be summarized mathematically? It is given by the formula

$$Z_1 = 0.839 \times (pop - \overline{pop}) + 0.544 \times (ad - \overline{ad}). \tag{6.19}$$

Here $\phi_{11} = 0.839$ and $\phi_{21} = 0.544$ are the principal component loadings, which define the direction referred to above. In (6.19), $\overline{\text{pop}}$ indicates the mean of all pop values in this data set, and $\overline{\text{ad}}$ indicates the mean of all advertising spending. The idea is that out of every possible linear combination of pop and ad such that $\phi_{11}^2 + \phi_{21}^2 = 1$, this particular linear combination yields the highest variance: i.e. this is the linear combination for which $\text{Var}(\phi_{11} \times (\text{pop} - \overline{\text{pop}}) + \phi_{21} \times (\text{ad} - \overline{\text{ad}}))$ is maximized. It is necessary to consider only linear combinations of the form $\phi_{11}^2 + \phi_{21}^2 = 1$, since otherwise we could increase ϕ_{11} and ϕ_{21} arbitrarily in order to blow up the variance. In (6.19), the two loadings are both positive and have similar size, and so Z_1 is almost an average of the two variables.

Since n = 100, pop and ad are vectors of length 100, and so is Z_1 in (6.19). For instance,

$$z_{i1} = 0.839 \times (\operatorname{pop}_i - \overline{\operatorname{pop}}) + 0.544 \times (\operatorname{ad}_i - \overline{\operatorname{ad}}). \tag{6.20}$$

The values of z_{11}, \ldots, z_{n1} are known as the *principal component scores*, and can be seen in the right-hand panel of Figure 6.15.

There is also another interpretation for PCA: the first principal component vector defines the line that is as close as possible to the data. For instance, in Figure 6.14, the first principal component line minimizes the sum of the squared perpendicular distances between each point and the line. These distances are plotted as dashed line segments in the left-hand panel of Figure 6.15, in which the crosses represent the projection of each point onto the first principal component line. The first principal component has been chosen so that the projected observations are as close as possible to the original observations.

FIGURE 6.15. A subset of the advertising data. The mean pop and ad budgets are indicated with a blue circle. Left: The first principal component direction is shown in green. It is the dimension along which the data vary the most, and it also defines the line that is closest to all n of the observations. The distances from each observation to the principal component are represented using the black dashed line segments. The blue dot represents (pop, ad). Right: The left-hand panel has been rotated so that the first principal component direction coincides with the x-axis.

In the right-hand panel of Figure 6.15, the left-hand panel has been rotated so that the first principal component direction coincides with the x-axis. It is possible to show that the first principal component score for the ith observation, given in (6.20), is the distance in the x-direction of the ith cross from zero. So for example, the point in the bottom-left corner of the left-hand panel of Figure 6.15 has a large negative principal component score, $z_{i1} = -26.1$, while the point in the top-right corner has a large positive score, $z_{i1} = 18.7$. These scores can be computed directly using (6.20).

We can think of the values of the principal component Z_1 as single-number summaries of the joint pop and ad budgets for each location. In this example, if $z_{i1} = 0.839 \times (\text{pop}_i - \overline{\text{pop}}) + 0.544 \times (\text{ad}_i - \overline{\text{ad}}) < 0$, then this indicates a city with below-average population size and below-average ad spending. A positive score suggests the opposite. How well can a single number represent both pop and ad? In this case, Figure 6.14 indicates that pop and ad have approximately a linear relationship, and so we might expect that a single-number summary will work well. Figure 6.16 displays z_{i1} versus both pop and ad.⁴ The plots show a strong relationship between the first principal component and the two features. In other words, the first principal component appears to capture most of the information contained in the pop and ad predictors.

So far we have concentrated on the first principal component. In general, one can construct up to p distinct principal components. The second principal component Z_2 is a linear combination of the variables that is uncorrelated with Z_1 , and has largest variance subject to this constraint. The second principal component direction is illustrated as a dashed blue line in Figure 6.14. It turns out that the zero correlation condition of Z_1 with Z_2

⁴The principal components were calculated after first standardizing both pop and ad, a common approach. Hence, the x-axes on Figures 6.15 and 6.16 are not on the same scale.

FIGURE 6.16. Plots of the first principal component scores z_{i1} versus pop and ad. The relationships are strong.

is equivalent to the condition that the direction must be perpendicular, or orthogonal, to the first principal component direction. The second principal component is given by the formula

perpendicular orthogonal

$$Z_2 = 0.544 \times (pop - \overline{pop}) - 0.839 \times (ad - \overline{ad}).$$

Since the advertising data has two predictors, the first two principal components contain all of the information that is in pop and ad. However, by construction, the first component will contain the most information. Consider, for example, the much larger variability of z_{i1} (the x-axis) versus z_{i2} (the y-axis) in the right-hand panel of Figure 6.15. The fact that the second principal component scores are much closer to zero indicates that this component captures far less information. As another illustration, Figure 6.17 displays z_{i2} versus pop and ad. There is little relationship between the second principal component and these two predictors, again suggesting that in this case, one only needs the first principal component in order to accurately represent the pop and ad budgets.

With two-dimensional data, such as in our advertising example, we can construct at most two principal components. However, if we had other predictors, such as population age, income level, education, and so forth, then additional components could be constructed. They would successively maximize variance, subject to the constraint of being uncorrelated with the preceding components.

The Principal Components Regression Approach

The principal components regression (PCR) approach involves constructing the first M principal components, Z_1, \ldots, Z_M , and then using these components as the predictors in a linear regression model that is fit regression using least squares. The key idea is that often a small number of principal components suffice to explain most of the variability in the data, as well as the relationship with the response. In other words, we assume that the directions in which X_1, \ldots, X_p show the most variation are the directions that are associated with Y. While this assumption is not guaranteed

FIGURE 6.17. Plots of the second principal component scores z_{i2} versus pop and ad. The relationships are weak.

FIGURE 6.18. PCR was applied to two simulated data sets. Left: Simulated data from Figure 6.8. Right: Simulated data from Figure 6.9.

to be true, it often turns out to be a reasonable enough approximation to give good results.

If the assumption underlying PCR holds, then fitting a least squares model to Z_1, \ldots, Z_M will lead to better results than fitting a least squares model to X_1, \ldots, X_p , since most or all of the information in the data that relates to the response is contained in Z_1, \ldots, Z_M , and by estimating only $M \ll p$ coefficients we can mitigate overfitting. In the advertising data, the first principal component explains most of the variance in both pop and ad, so a principal component regression that uses this single variable to predict some response of interest, such as sales, will likely perform quite well.

Figure 6.18 displays the PCR fits on the simulated data sets from Figures 6.8 and 6.9. Recall that both data sets were generated using n=50 observations and p=45 predictors. However, while the response in the first data set was a function of all the predictors, the response in the second data set was generated using only two of the predictors. The curves are plotted as a function of M, the number of principal components used as predictors in the regression model. As more principal components are used in

FIGURE 6.19. PCR, ridge regression, and the lasso were applied to a simulated data set in which the first five principal components of X contain all the information about the response Y. In each panel, the irreducible error $Var(\epsilon)$ is shown as a horizontal dashed line. Left: Results for PCR. Right: Results for lasso (solid) and ridge regression (dotted). The x-axis displays the shrinkage factor of the coefficient estimates, defined as the ℓ_2 norm of the shrunken coefficient estimates divided by the ℓ_2 norm of the least squares estimate.

the regression model, the bias decreases, but the variance increases. This results in a typical U-shape for the mean squared error. When M=p=45, then PCR amounts simply to a least squares fit using all of the original predictors. The figure indicates that performing PCR with an appropriate choice of M can result in a substantial improvement over least squares, especially in the left-hand panel. However, by examining the ridge regression and lasso results in Figures 6.5, 6.8, and 6.9, we see that PCR does not perform as well as the two shrinkage methods in this example.

The relatively worse performance of PCR in Figure 6.18 is a consequence of the fact that the data were generated in such a way that many principal components are required in order to adequately model the response. In contrast, PCR will tend to do well in cases when the first few principal components are sufficient to capture most of the variation in the predictors as well as the relationship with the response. The left-hand panel of Figure 6.19 illustrates the results from another simulated data set designed to be more favorable to PCR. Here the response was generated in such a way that it depends exclusively on the first five principal components. Now the bias drops to zero rapidly as M, the number of principal components used in PCR, increases. The mean squared error displays a clear minimum at M=5. The right-hand panel of Figure 6.19 displays the results on these data using ridge regression and the lasso. All three methods offer a significant improvement over least squares. However, PCR and ridge regression slightly outperform the lasso.

We note that even though PCR provides a simple way to perform regression using M < p predictors, it is not a feature selection method. This is because each of the M principal components used in the regression

FIGURE 6.20. Left: PCR standardized coefficient estimates on the Credit data set for different values of M. Right: The ten-fold cross validation MSE obtained using PCR, as a function of M.

is a linear combination of all p of the original features. For instance, in (6.19), Z_1 was a linear combination of both pop and ad. Therefore, while PCR often performs quite well in many practical settings, it does not result in the development of a model that relies upon a small set of the original features. In this sense, PCR is more closely related to ridge regression than to the lasso. In fact, one can show that PCR and ridge regression are very closely related. One can even think of ridge regression as a continuous version of PCR!⁵

In PCR, the number of principal components, M, is typically chosen by cross-validation. The results of applying PCR to the Credit data set are shown in Figure 6.20; the right-hand panel displays the cross-validation errors obtained, as a function of M. On these data, the lowest cross-validation error occurs when there are M=10 components; this corresponds to almost no dimension reduction at all, since PCR with M=11 is equivalent to simply performing least squares.

When performing PCR, we generally recommend standardizing each predictor, using (6.6), prior to generating the principal components. This standardization ensures that all variables are on the same scale. In the absence of standardization, the high-variance variables will tend to play a larger role in the principal components obtained, and the scale on which the variables are measured will ultimately have an effect on the final PCR model. However, if the variables are all measured in the same units (say, kilograms, or inches), then one might choose not to standardize them.

 $^{^5{\}rm More}$ details can be found in Section 3.5 of $\it Elements$ of $\it Statistical\ Learning$ by Hastie, Tibshirani, and Friedman.

FIGURE 6.21. For the advertising data, the first PLS direction (solid line) and first PCR direction (dotted line) are shown.

6.3.2 Partial Least Squares

The PCR approach that we just described involves identifying linear combinations, or directions, that best represent the predictors X_1, \ldots, X_p . These directions are identified in an unsupervised way, since the response Y is not used to help determine the principal component directions. That is, the response does not supervise the identification of the principal components. Consequently, PCR suffers from a drawback: there is no guarantee that the directions that best explain the predictors will also be the best directions to use for predicting the response. Unsupervised methods are discussed further in Chapter 10.

We now present partial least squares (PLS), a supervised alternative to PCR. Like PCR, PLS is a dimension reduction method, which first identifies a new set of features Z_1, \ldots, Z_M that are linear combinations of the original features, and then fits a linear model via least squares using these M new features. But unlike PCR, PLS identifies these new features in a supervised way—that is, it makes use of the response Y in order to identify new features that not only approximate the old features well, but also that are related to the response. Roughly speaking, the PLS approach attempts to find directions that help explain both the response and the predictors.

partial least squares

We now describe how the first PLS direction is computed. After standardizing the p predictors, PLS computes the first direction Z_1 by setting each ϕ_{j1} in (6.16) equal to the coefficient from the simple linear regression of Y onto X_j . One can show that this coefficient is proportional to the correlation between Y and X_j . Hence, in computing $Z_1 = \sum_{j=1}^p \phi_{j1} X_j$, PLS places the highest weight on the variables that are most strongly related to the response.

Figure 6.21 displays an example of PLS on a synthetic dataset with Sales in each of 100 regions as the response, and two predictors; Population Size and Advertising Spending.⁶ The solid green line indicates the first PLS direction, while the dotted line shows the first principal component direction. PLS has chosen a direction that has less change in the ad dimension per unit

⁶This dataset is distinct from the Advertising data discussed in Chapter 3.

change in the pop dimension, relative to PCA. This suggests that pop is more highly correlated with the response than is ad. The PLS direction does not fit the predictors as closely as does PCA, but it does a better job explaining the response.

To identify the second PLS direction we first adjust each of the variables for Z_1 , by regressing each variable on Z_1 and taking residuals. These residuals can be interpreted as the remaining information that has not been explained by the first PLS direction. We then compute Z_2 using this orthogonalized data in exactly the same fashion as Z_1 was computed based on the original data. This iterative approach can be repeated M times to identify multiple PLS components Z_1, \ldots, Z_M . Finally, at the end of this procedure, we use least squares to fit a linear model to predict Y using Z_1, \ldots, Z_M in exactly the same fashion as for PCR.

As with PCR, the number M of partial least squares directions used in PLS is a tuning parameter that is typically chosen by cross-validation. We generally standardize the predictors and response before performing PLS.

PLS is popular in the field of chemometrics, where many variables arise from digitized spectrometry signals. In practice it often performs no better than ridge regression or PCR. While the supervised dimension reduction of PLS can reduce bias, it also has the potential to increase variance, so that the overall benefit of PLS relative to PCR is a wash.

Considerations in High Dimensions 6.4

6.4.1 High-Dimensional Data

Most traditional statistical techniques for regression and classification are intended for the *low-dimensional* setting in which n, the number of observations, is much greater than p, the number of features. This is due in $\frac{1}{\text{dimensional}}$ part to the fact that throughout most of the field's history, the bulk of scientific problems requiring the use of statistics have been low-dimensional. For instance, consider the task of developing a model to predict a patient's blood pressure on the basis of his or her age, gender, and body mass index (BMI). There are three predictors, or four if an intercept is included in the model, and perhaps several thousand patients for whom blood pressure and age, gender, and BMI are available. Hence $n \gg p$, and so the problem is low-dimensional. (By dimension here we are referring to the size of p.)

In the past 20 years, new technologies have changed the way that data are collected in fields as diverse as finance, marketing, and medicine. It is now commonplace to collect an almost unlimited number of feature measurements (p very large). While p can be extremely large, the number of observations n is often limited due to cost, sample availability, or other considerations. Two examples are as follows:

1. Rather than predicting blood pressure on the basis of just age, gender, and BMI, one might also collect measurements for half a million