Chapitre 12 : Courbes d'équation $\rho = f(\theta)$ en coordonnées polaires

I Préliminaire

Ici, \mathfrak{P} désigne un plan affine euclidien orienté, $\mathfrak{R} = (O, \vec{i}, \vec{j})$ un repère orthonormé. Pour $\theta \in \mathbb{R}$, on note $\vec{u}(\theta) = \cos \theta . \vec{i} + \sin \theta . \vec{j}$.

Soit $(\rho, \theta) \in \mathbb{R}^2$. M admet le système de coordonnées polaires $(\rho, \theta) \Leftrightarrow \overrightarrow{OM} = \rho.\vec{u}(\theta)$. Ainsi, M est sur la droite $(O, \vec{u}(\theta))$, et $OM = |\rho|$.

 \overrightarrow{OM} et $\overrightarrow{u}(\theta)$ sont de même sens si et seulement si $\rho \ge 0$.

Soit I un intervalle infini de \mathbb{R} . Soit $f: I \to \mathbb{R}$, de classe C^1 au moins.

La courbe d'équation polaire $\rho = f(\theta)$ dans \Re , c'est

$$C = \left\{ M \in \mathfrak{P}, \exists \theta \in I, \overrightarrow{OM} = f(\theta).\overrightarrow{u}(\theta) \right\}$$

C'est donc le support de l'arc paramétré $\theta \mapsto M(\theta) \begin{vmatrix} f(\theta)\sin\theta \\ f(\theta)\cos\theta \end{vmatrix}$.

Rappel:

 $\theta \mapsto \vec{u}(\theta)$ est de classe C^{∞} sur \mathbb{R} , et $\frac{d\vec{u}}{d\theta}(\theta) = -\sin\theta . \vec{i} + \cos\theta . \vec{j} = \vec{u}(\theta + \frac{\pi}{2})$, noté $\vec{v}(\theta)$.

Et, par récurrence, $\frac{d^k \vec{u}}{d\theta^k}(\theta) = \vec{u}(\theta + \frac{k\pi}{2})$.

La donnée de θ et du signe de ρ donne l'angle $(\overline{i}, \overrightarrow{OM})$, ce qui suffit quasiment à tracer la courbe (ou du moins l'allure).

Exemple: $C: \rho = f(\theta), \theta \in \left[0, \frac{5\pi}{2}\right]$.

Données

f est de classe C^1 , et on a le tableau de signes :

θ	0		$\frac{\pi}{2}$,	π		$\frac{3\pi}{2}$		2π		$\frac{5\pi}{2}$
$f(\theta)$	0	+	0	+	0	+	0	+	0	_	$-\infty$

II Réduction de l'intervalle d'étude

On considère une courbe $C: \rho = f(\theta), \theta \in \mathbb{R}$. Divers exemples :

• Si il existe $k \in \mathbb{Z}$ * tel que $\forall \theta \in \mathbb{R}$, $f(\theta + 2k\pi) = f(\theta)$, alors $M(\theta + 2k\pi) = M(\theta)$, puisque $\overrightarrow{OM}(\theta + 2k\pi) = f(\theta + 2k\pi) \cdot \overrightarrow{u}(\theta + 2k\pi) = f(\theta) \cdot \overrightarrow{u}(\theta) = \overrightarrow{OM}(\theta)$.

On obtient ainsi tout C pour θ décrivant un intervalle d'amplitude $2k.\pi$.

• Si il existe $k \in \mathbb{Z}^*$ tel que $\forall \theta \in \mathbb{R}, f(\theta + \pi + 2k\pi) = -f(\theta)$:

$$\overrightarrow{OM}(\theta + \pi + 2k.\pi) = f(\theta + \pi + 2k.\pi).\overrightarrow{u}(\theta + \pi + 2k.\pi) = -f(\theta).(-\overrightarrow{u}(\theta)) = \overrightarrow{OM}(\theta)$$

On obtient donc encore tout C avec un intervalle d'amplitude $\pi + 2k \cdot \pi$.

• Si $\forall \theta \in \mathbb{R}, f(-\theta) = f(\theta)$

On obtient alors C en se limitant à \mathbb{R}^+ (ou \mathbb{R}^-), et en opérant sur la courbe obtenue une symétrie d'axe Ox

• Si $\forall \theta \in \mathbb{R}, f(-\theta) = -f(\theta)$

On obtient tout C en se limitant à \mathbb{R}^+ puis en faisant une symétrie d'axe Oy.

• Si $\forall \theta \in \mathbb{R}, f(\pi - \theta) = f(\theta)$

Idem que précédemment, avec $\theta \in \left[\frac{\pi}{2}, +\infty\right[\text{ (ou]} -\infty, \frac{\pi}{2}\right]$)

• Si $\forall \theta \in \mathbb{R}, f(\pi - \theta) = -f(\theta)$

On obtient C en se limitant à $\theta \in \left[\frac{\pi}{2}, +\infty\right[$, puis en faisant une symétrie d'axe Ox.

• Si $\forall \theta \in \mathbb{R}, f(\pi + \theta) = f(\theta)$

On dessine sur un intervalle d'amplitude π , puis on fait une symétrie par rapport à O.

• Autres cas plus variés :

Si
$$\forall \theta \in \mathbb{R}, f(\theta + \frac{\pi}{2}) = f(\theta)$$
:

On dessine sur $\left[0, \frac{\pi}{2}\right]$, puis on fait une rotation d'angle $\frac{\pi}{2}$ (3 fois) et de centre O.

Si
$$\forall \theta \in \mathbb{R}, f(\frac{\pi}{2} - \theta) = f(\theta)$$
:

On fait l'étude pour $\theta \in \left] - \infty, \frac{\pi}{4} \right]$, puis une symétrie par rapport à la première bissectrice.

Si
$$\forall \theta \in \mathbb{R}, f(\theta + 2\pi) = 2f(\theta)$$
:

On étudie sur un intervalle d'amplitude 2π , puis on fait toutes les homothéties de centre O et de rapport 2^k , $k \in \mathbb{Z}$.

Exemples, construire les courbes :

$$C_n: \rho = \sin(n.\theta), n \in \mathbb{N}$$

$$C'_n$$
: $\rho = \sin(\frac{\theta}{n}), n \in \mathbb{N}^*$

Pour les C_n , on peut se limiter à un intervalle d'amplitude 2π .

- Pour n = 1: on se restreint à $[-\pi, \pi]$

$$\rho(-\theta) = -\rho(\theta)$$
: On peut se limiter à $[0,\pi]$, puis on fait une symétrie d'axe Oy $\rho(\pi-\theta) = \rho(\theta)$; rien de mieux.

On obtient un cercle:

- Pour C_2 : $\rho = \sin(2.\theta)$:

$$\rho(2\pi + \theta) = \rho(\theta)$$
. On peut donc se restreindre à $[-\pi, \pi]$.

$$\rho(-\theta) = -\rho(\theta)$$
: Etude sur $[0, \pi]$, puis symétrie d'axe Oy .

$$\rho(\pi - \theta) = -\rho(\theta)$$
: Etude sur $[0, \frac{\pi}{2}]$, puis une symétrie d'axe Ox donne sur $[0, \pi]$.

- Pour C_3 : $\rho = \sin(3.\theta)$:

$$\rho(2\pi + \theta) = \rho(\theta)$$
: Etude sur un intervalle d'amplitude 2π .

 $\rho(\frac{2\pi}{3} + \theta) = \rho(\theta)$: Etude sur un intervalle d'amplitude $\frac{2\pi}{3}$, puis 2 rotations d'angle $\frac{2\pi}{3}$ et de centre O.

$$\rho(-\theta) = -\rho(\theta)$$
: Etude sur $\left[0, \frac{2\pi}{6}\right]$, puis symétrie d'axe *Oy* donne la courbe sur $\left[\frac{-\pi}{3}, \frac{\pi}{3}\right]$

$$\begin{array}{c|cccc} \theta & 0 & \frac{\pi}{3} \\ \hline \rho & 0 & + & 0 \end{array}$$

-
$$C'_2$$
: $\rho = \sin(\frac{\theta}{2})$:

$$\rho(\theta + 4\pi) = \rho(\theta)$$
: Etude sur $[-2\pi, 2\pi]$

$$\rho(-\theta) = -\rho(\theta)$$
: Etude sur $[0,2\pi]$, puis symétrie d'axe Oy .

III Etude des tangentes

Soit $C: \rho = f(\theta), \theta \in I$, où f est de classe C^1 (au moins)

Soit $\theta_0 \in I$, on cherche la tangente en $M(\theta_0)$.

$$\overrightarrow{OM} = f(\theta) \overrightarrow{u}(\theta)$$
. Donc $\frac{\overrightarrow{dM}}{d\theta}(\theta) = f'(\theta) \overrightarrow{u}(\theta) + \underbrace{f(\theta)}_{\neq 0 \text{ si} \overrightarrow{M} \neq 0} \overrightarrow{v}(\theta)$

Ainsi, sur une courbe d'équation polaire $\rho = f(\theta)$, si $M(\theta_0) \neq O$, alors ce point n'est pas stationnaire (la famille $(\vec{u}(\theta), \vec{v}(\theta))$ est en effet libre, pour tout $\theta \in \mathbb{R}$, elle forme même une base orthonormée directe de la direction de \mathfrak{P})

• Si $M(\theta_0) \neq O$:

$$\frac{\overrightarrow{dM}}{d\theta}(\theta_0)$$
 fait un angle α avec $\overrightarrow{u}(\theta_0)$ tel que $\frac{\cos \alpha}{\sin \alpha} = \frac{f'(\theta_0)}{f(\theta_0)}$

En effet:

Si on note
$$\alpha = \left(\vec{u}(\theta_0), \frac{\overrightarrow{dM}}{d\theta}(\theta_0)\right)$$
, alors $\frac{\overrightarrow{dM}}{d\theta}(\theta_0) = \left\|\frac{\overrightarrow{dM}}{d\theta}(\theta_0)\right\| (\cos \alpha \cdot \vec{u}(\theta_0) + \sin \alpha \cdot \vec{v}(\theta_0))$

Donc
$$\left\| \frac{\overrightarrow{dM}}{d\theta}(\theta_0) \right\| \cos \alpha = f'(\theta_0)$$
 et $\left\| \frac{\overrightarrow{dM}}{d\theta}(\theta_0) \right\| \sin \alpha = f(\theta_0)$, (et donc $\sin \alpha \neq 0$)

D'où le résultat.

Ainsi:

Si $M(\theta_0) \neq O$, ce point n'est pas stationnaire, et la tangente T_0 en ce point fait avec (OM_0) un angle orienté $\alpha = ((OM_0), T_0)$ tel que $\cot \alpha = \frac{f'(\theta_0)}{f(\theta_0)}$

On peut aussi retenir que $\tan \alpha = \frac{f(\theta_0)}{f'(\theta_0)}$ si $f'(\theta_0) \neq 0$ et $\alpha = \frac{\pi}{2}$ sinon.

• Si $M(\theta_0) = O$:

$$\frac{\overrightarrow{dM}}{d\theta}(\theta_0) = f'(\theta_0).\overrightarrow{u}(\theta_0) + f(\theta_0).\overrightarrow{v}(\theta_0) = f'(\theta_0).\overrightarrow{u}(\theta_0)$$

- Si $f'(\theta_0) \neq 0$, alors $M(\theta_0) = O$ n'est pas stationnaire et la tangente est dirigée par $\vec{u}(\theta_0)$.
- Si $f'(\theta_0) = 0$ et qu'on peut dériver suffisamment de façon à tomber sur le premier $f^{(k)}(\theta_0)$ non nul (s'il en existe) :

$$\frac{\overline{d^k M}}{d\theta^k}(\theta_0) = \sum_{i=0}^k C_k^i f^{(i)}(\theta_0) . \vec{u}^{(k-i)}(\theta_0) = C_k^k f^{(k)}(\theta_0) . \vec{u}(\theta_0 + (k-k)\frac{\pi}{2}) = f^{(k)}(\theta_0) . \vec{u}(\theta_0)$$

Ainsi, dans tous les cas la tangente est dirigée par $\vec{u}(\theta_0)$.

Exemple:

 $C: \rho = a(1 + \cos \theta)$ (« cardioïde »)

 $\rho(\theta + 2\pi) = \rho(\theta)$: Etude sur $[-\pi, \pi]$

 $\rho(-\theta) = \rho(\theta)$: Etude sur $[0,\pi]$, puis symétrie d'axe Ox.

Si a > 0:

θ	0	$\frac{\pi}{2}$	π
$\rho(\theta)$	2 <i>a</i>	a	0

Etude des tangentes:

$$\rho'(\theta) = -a\sin\theta$$

Donc
$$\frac{\rho'(\theta)}{\rho(\theta)} = \frac{-a\sin\theta}{a(1+\cos\theta)} = \frac{-\sin\theta}{1+\cos\theta}$$

En $\theta = 0$, on a donc cotan $\alpha = 0$, donc $\alpha = \frac{\pi}{2} [\pi]$ (et $(\overrightarrow{OM}, T) = \alpha$).

En $\theta = \frac{\pi}{2}$, cotan $\alpha = -1$, donc $\alpha = \frac{-\pi}{4} [\pi]$ (et $(\overrightarrow{OM}, T) = \alpha$).

IV Branches infinies

Diverses situations:

Soit $C: \rho = f(\theta), \theta \in I$ où I est un intervalle infini.

• Si *I* n'est pas majoré/minoré et $\lim_{\theta \to +\infty/-\infty} f(\theta) = \pm \infty$, on a une branche infinie spirale.

• Si $\lim_{\theta \to \theta_0} f(\theta) = \pm \infty$ où $\theta_0 \in Adh_{\mathbb{R}}(I)$: on obtient une direction asymptotique dirigée par $\vec{u}(\theta_0)/d$ 'angle polaire θ_0 .

En effet, en coordonnées cartésiennes :

$$\int x(\theta) = f(\theta)\cos(\theta)$$

$$y(\theta) = f(\theta)\sin(\theta)$$

Donc si
$$\cos \theta_0 \neq 0$$
, au voisinage de θ_0 : $\frac{y(\theta)}{x(\theta)} = \frac{\sin(\theta)}{\cos(\theta)} = \tan \theta \xrightarrow{\theta \mapsto \theta_0} \tan \theta_0$.

On a alors une direction asymptotique de pente $\tan \theta_0$.

Si
$$\cos \theta_0 = 0$$
, au voisinage épointé de θ_0 : $\frac{y(\theta)}{x(\theta)} = \frac{\sin(\theta)}{\cos(\theta)} \xrightarrow{\theta \mapsto \theta_0} \pm \infty$

Pour avoir les asymptotes, on fait ensuite l'étude de $y(\theta) - \tan \theta_0 x(\theta) \dots$

Exemple:

$$\rho = a \tan(\frac{\theta}{2})$$
 où $a > 0$.

$$\rho(\theta + 2\pi) = \rho(\theta)$$
: Etude sur $]-\pi,\pi[$.

 $\rho(-\theta) = -\rho(\theta)$: Etude sur $[0, \pi[$ puis symétrie par rapport à Oy.

$$y(\theta) = \rho(\theta)\sin(\theta) = a\tan(\frac{\theta}{2})\sin(\theta) = a\frac{\sin(\frac{\theta}{2})}{\cos(\frac{\theta}{2})}2\sin(\frac{\theta}{2})\cos(\frac{\theta}{2}) \xrightarrow{\theta \to \pi} 2a$$

Autre exemple :

$$C: \rho = a(1 + \tan(\frac{\theta}{2}))$$

$$\rho(\theta + 2\pi) = \rho(\theta)$$
: Etude sur $]-\pi,\pi[$.

Déjà, on a une direction asymptotique horizontale :

$$y(\theta) = \rho(\theta)\sin\theta = 2a(1+\tan(\frac{\theta}{2}))\sin(\frac{\theta}{2})\cos(\frac{\theta}{2}) = 2a(\sin(\frac{\theta}{2})\cos(\frac{\theta}{2}) + \sin^2(\frac{\theta}{2})) \xrightarrow{\pm \pi} 2a$$

Tangente au point de paramètre $\theta = 0$:

$$\cot \alpha = \frac{\rho'}{\rho}$$
 où $\alpha = ((OM), T)$.

$$\rho' = \frac{a}{2} (1 + \tan^2 \frac{\theta}{2}).$$

Donc $\cot \alpha = \frac{1}{2}$. Donc $\tan \alpha = 2$ et *OM* est horizontal. Donc *T* est de pente 2.

En
$$\theta = \frac{\pi}{2}$$
:

$$\frac{\rho'}{\rho} = \frac{a}{2a} = \frac{1}{2}$$
. On note $\beta = ((Ox), T)$

On a
$$\beta = ((Ox), T) = ((Ox), (OM)) + ((OM), T) = \frac{\pi}{2} + \alpha$$

Donc
$$\tan \beta = \tan(\frac{\pi}{2} + \alpha) = \frac{-1}{\tan \alpha} = \frac{-1}{2}$$
. Donc la tangente est de pente $\frac{-1}{2}$

V Recherche de points doubles

On doit chercher les points doubles parmi les solutions de :

$$\bullet \begin{cases}
\rho(\theta_1) = \rho(\theta_2) = 0 \\
\theta_1 \neq \theta_2
\end{cases}$$

Et

$$\bullet \begin{cases}
\rho(\theta_1) = \rho(\theta_2) \neq 0 \\
\theta_1 \equiv \theta_2 [2\pi] \text{ et } \theta_1 \neq \theta_2
\end{cases}$$

Et

$$\bullet \begin{cases}
\rho(\theta_1) = -\rho(\theta_2) \neq 0 \\
\theta_1 = \pi + \theta_2 \left[2\pi \right]
\end{cases}$$

Exemple : on reprend celui de la fin du paragraphe précédent :

On cherche un point double, pour $\theta_1 \in]0,\pi[$ et $\theta_2 \in]-\pi,\frac{-\pi}{2}[$ (d'après l'allure de la courbe). On cherche donc $\theta_1 \in]0,\pi[$ tel que $\rho(\theta_1-\pi)=-\rho(\theta_1)$.

C'est-à-dire $1 + \tan(\frac{\theta_1}{2} - \frac{\pi}{2}) = -1 - \tan(\frac{\theta_1}{2})$

Soit
$$1 + \frac{1}{\tan(\frac{\theta_1}{2})} = -1 - \tan(\frac{\theta_1}{2})$$

Soit
$$\tan(\frac{\theta_1}{2}) + 1 = -\tan(\frac{\theta_1}{2}) - \tan^2(\frac{\theta_1}{2})$$

Soit
$$2\tan(\frac{\theta_1}{2}) = 1 - \tan^2(\frac{\theta_1}{2})$$

C'est-à-dire
$$\frac{2\tan(\frac{\theta_1}{2})}{1-\tan^2(\frac{\theta_1}{2})} = 1$$

Soit
$$tan(\theta_1) = 1$$
. Donc $\theta_1 = \frac{\pi}{4}$.

VI Quelques courbes classiques en coordonnées polaires

A) Droites

• Droite passant par $O: \theta = \theta_0$ est une équation en coordonnées polaires de \mathfrak{D} .

• Droite orthogonale à $\vec{u}(\alpha)$ unitaire et passant par H tel que $\overrightarrow{OH} = h \cdot \vec{u}(\alpha)$.

Rappel:

$$\mathfrak{D} = \left\{ M \in \mathfrak{P}, \overrightarrow{HM} \cdot \vec{u}(\alpha) = 0 \right\} = \left\{ M \in \mathfrak{P}, \overrightarrow{OM} \cdot \vec{u}(\alpha) = \overrightarrow{OH} \cdot \vec{u}(\alpha) \right\}$$
$$= \left\{ M \in \mathfrak{P}, \overrightarrow{OM} \cdot \vec{u}(\alpha) = h \right\}$$

Soit
$$M(\rho, \theta)$$
: $\overrightarrow{OM} = \rho . \overrightarrow{u}(\theta)$

$$\overrightarrow{OM} \cdot \vec{u}(\alpha) = \rho \cdot \underbrace{\vec{u}(\theta) \cdot \vec{u}(\alpha)}_{=\cos(\theta - \alpha)}$$

Donc $M \in \mathfrak{D} \Leftrightarrow \rho . \cos(\theta - \alpha) = h$

Si $h \neq 0$ (alors $\rho \neq 0$, $\cos(\theta - \alpha) \neq 0$), c'est-à-dire si $\mathfrak D$ ne passe pas par O, l'équation s'écrit aussi $\rho = \frac{h}{\cos(\theta - \alpha)}$.

B) Cercles

• Cercle de centre *O* :

Pour $a \ge 0$, $\rho = a$ est une équation du cercle de centre O et de rayon a ($\rho = -a$ en est aussi une)

• Cercle C passant par O et de centre Ω de coordonnées polaires (r, α) .

(C'est-à-dire telles que $\overrightarrow{O\Omega} = r.\overrightarrow{u}(\alpha)$)

Soit $M(\rho, \theta)$. On a les équivalences :

$$M \in C \Leftrightarrow \Omega M^{2} = r^{2}$$

$$\Leftrightarrow (\overline{\Omega O} + \overline{O M})^{2} = r^{2}$$

$$\Leftrightarrow (-r.\overline{u}(\alpha) + \rho.\overline{u}(\theta))^{2} = r^{2}$$

$$\Leftrightarrow r^{2} + \rho^{2} - 2\rho.r.\cos(\theta - \alpha) = r^{2}$$

$$\Leftrightarrow \begin{cases} \rho = 0 \\ \text{ou } \rho = 2.r.\cos(\theta - \alpha) \end{cases}$$

Une équation polaire de C est donc $\rho = 2.r.\cos(\theta - \alpha)$

L'équation trouvée est donc de la forme $\rho = a \cos \theta + b \sin \theta$.

Inversement, soit $C: \rho = a \cos \theta + b \sin \theta$.

Si
$$a = b = 0$$
, alors $C = \{O\}$.

Sinon, $a^2 + b^2 \neq 0$ et $a\cos\theta + b\sin\theta$ se met sous la forme $2.r.\cos(\theta - \alpha)$

(avec
$$2r = \sqrt{a^2 + b^2}$$
 et α tel que $\sin \alpha = \frac{b}{\sqrt{a^2 + b^2}}$, $\cos \alpha = \frac{a}{\sqrt{a^2 + b^2}}$)

On reconnaît le cercle passant par O de centre Ω tel que $\overline{O\Omega} = r.\vec{u}(\alpha)$.

C) Conique dont un des foyers est O.

Soient \mathfrak{D} une droite ne passant pas par $O, e > 0, C = \{M \in \mathfrak{P}, OM = eMH\}$ où Hest le projeté orthogonal de M sur \mathfrak{D} .

Si e > 1, on a une hyperbole, si e = 1 une parabole et si 0 < e < 1 une ellipse.

Disons que \mathfrak{D} est orthogonale à $\vec{u}(\alpha)$ et passe par K tel que $OK = h.\vec{u}(\alpha)$ ($h \neq 0$ car \mathfrak{D} ne passe pas par O)

Ainsi,
$$\mathfrak{D}: \rho = \frac{h}{\cos(\theta - \alpha)}$$

Soit $M(\rho, \theta)$ (donc $\overrightarrow{OM} = \rho \cdot \overrightarrow{u}(\theta)$)

H est déterminé par : $H \in \mathfrak{D}$ et \overline{MH} est colinéaire à $\vec{u}(\alpha)$.

Donc $\overrightarrow{MH} = \lambda . \overrightarrow{u}(\alpha)$.

$$\overrightarrow{MH} = \overrightarrow{MO} + \overrightarrow{OK} + \overrightarrow{KM} = -\rho . \overrightarrow{u}(\theta) + h . \overrightarrow{u}(\alpha) + \overrightarrow{\underbrace{KH}}_{\perp \overrightarrow{u}(\alpha)}$$

Donc $\overrightarrow{MH} \cdot \overrightarrow{u}(\alpha) = -\rho \cdot \cos(\theta - \alpha) + h = \lambda$.

Ainsi, on a les équivalences : $M \in C \Leftrightarrow MO = eMH$

$$\Leftrightarrow |\rho| = e|h - \rho\cos(\theta - \alpha)$$

$$\Leftrightarrow \begin{cases} \rho = e(h - \rho\cos(\theta - \alpha)) \\ \cos \rho = -e(h - \rho\cos(\theta - \alpha)) \end{cases}$$

$$\Leftrightarrow \begin{cases} \rho(1 + e\cos(\theta - \alpha)) = eh \\ \cos \rho(1 - e\cos(\theta - \alpha)) = -eh \end{cases}$$

$$\Leftrightarrow \begin{cases} \rho(1 + e\cos(\theta - \alpha)) = eh \\ ou \ \rho(1 - e\cos(\theta - \alpha)) = -eh \end{cases}$$

$$\Leftrightarrow \begin{cases} \rho = \frac{eh}{1 + e\cos(\theta - \alpha)} & (1) \\ ou \ \rho = \frac{-eh}{1 - e\cos(\theta - \alpha)} & (2) \end{cases}$$

(Pour la dernière équivalence, si $M \in C$, on a en effet $1 \pm e \cos(\theta - \alpha) \neq 0$ car sinon h = 0 ou e = 0 ce qui est faux)

Une équation polaire de C est alors $\rho = \frac{eh}{1 + e\cos(\theta - \alpha)}$. (En effet, (ρ, θ) est

solution de (1) si et seulement si $(-\rho, \pi + \theta)$ est solution de (2))

eh s'appelle le paramètre de la conique.

On retrouve la nature de la conique avec l'équation :

• Si $1+e\cos(\theta-\alpha)$ ne s'annule pour aucune valeur de θ (c'est-à-dire si 1/e > 1), tout les $\theta \in [-\pi, \pi]$ sont permis, on a donc une ellipse.

- Si $1+e\cos(\theta-\alpha)$ s'annule pour deux valeurs de θ (modulo 2π), c'est-à-dire si $\cos(\theta-\alpha)=-1/e$ a deux solutions $\pm\beta[2\pi]$, c'est-à-dire si e>1, on a alors une hyperbole.
- Si $1+e\cos(\theta-\alpha)$ ne s'annule qu'une fois modulo 2π , c'est-à-dire si e=1, on a alors une parabole.

Réciproque:

Soit
$$C: \rho = \frac{a}{b+c\cos\theta+d\sin\theta}$$
 avec $a \neq 0$, $b^2+c^2+d^2 \neq 0$.

$$1^{er}$$
 cas : Si $b = 0$.

$$\rho = \frac{a}{c\cos\theta + d\sin\theta} = \frac{a}{r\cos(\theta - \theta_0)} \text{ avec } r = \sqrt{c^2 + d^2} \text{, on obtient une droite.}$$

$$2^{\text{ème}}$$
 cas : Si $b \neq 0$ et $c^2 + d^2 \neq 0$

$$\rho = \frac{a/b}{1 + c/b\cos\theta + d/b\sin\theta} = \frac{eh}{1 + e\cos(\theta - \theta_0)} \text{ avec } e = \sqrt{\frac{c^2}{b^2} + \frac{d^2}{b^2}} \text{ et } h = \frac{a}{be}.$$

On reconnaît une conique d'excentricité e, de foyer O et de directrice associée

$$\mathfrak{D}: \rho = \frac{h}{\cos(\theta - \theta_0)} = \frac{a}{c\cos\theta + d\sin\theta}$$

$$3^{\text{ème}}$$
 cas : Si $b \neq 0$ et $c^2 + d^2 = 0$

$$\rho = \frac{b}{a}$$
. On obtient un cercle de centre O .