Corrigé du QCM 12

lundi 28 mai 2018

La notation $a \wedge b$ désigne le pgcd de a et b.

Question 11

Soient $(a, b) \in \mathbb{N}^{*2}$ et $n \in \mathbb{N}^*$ tels que $a \equiv b[n]$. Alors

- (a.) $n \mid b-a$
 - b. $a-b \mid n$
- (c.) a et b ont même reste dans la division euclidienne par n.
 - d. rien de ce qui précède

Question 12

Soient p premier et $n \in \mathbb{N}^*$. Le petit théorème de Fermat dit

- a. $p^n \equiv p[n]$
- b. $n^p \equiv p[n]$
- c. $n^p \equiv 1 [p]$
- d. $p^n \equiv 1[p]$
- (e.) rien de ce qui précède

Question 13

Soit $(a,b)\in\mathbb{N}^{*2}$ tel que a et b sont premiers entre eux. Alors

- (a.) $a \wedge b = 1$
- (b.) Le seul diviseur commun dans $\mathbb N$ de a et b est 1
 - c. Il existe un unique couple $(u,v)\in\mathbb{Z}^2$ tel que au+bv=1
 - d. rien de ce qui précède

Question 14

Soit $n \in \mathbb{N}$ tel que $n \geqslant 2$. Alors n admet un diviseur premier.

- (a.) vrai
 - b. faux

Question 15

Soient $p \in \mathbb{N}$ premier et $d \in \mathbb{N}^*$. Alors

- a. $d \mid p$ ou $d \wedge p = 1$
- (b.) Si d divise p alors d = 1 ou d = p
 - c. Si $d \geqslant 2$ alors $p \mid d$
 - d. rien de ce qui précède

Question 16

Soit $a \in \mathbb{N}^*$ quelconque. Alors

- a. $0 \mid a$
- b. a | 1
- (c.) 1 | a
- (d.) $a \mid 0$
 - e. rien de ce qui précède

Question 17

Le reste de la division euclidienne de -16 par 5 est

- a. -1
- b. 2
- c. 3
- (d.) 4
 - e. rien de ce qui précède

Question 18

Soit $(a,b,c) \in \mathbb{N}^{*3}$ quel conque tel que $a \wedge b = 1$. Alors

- a. $b \mid ac$
- b. $c \mid ab$
- \bigcirc si $a \mid b c$ alors $a \mid c$
 - d. si $c \mid ab$ alors $c \mid b$

Question 19

Soit l'équation différentielle (E) suivante : y'(x) + 2xy(x) = 0. Alors

- (a.) les solutions de (E) sur \mathbb{R} sont les fonctions $x \mapsto ke^{-x^2}$ où $k \in \mathbb{R}$
 - b. les solutions de (E) sur $\mathbb R$ sont les fonctions $x\mapsto k\sqrt{x}$ où $k\in\mathbb R$
 - c. les solutions de (E) sur $\mathbb R$ sont les fonctions $x\mapsto \frac{k}{\sqrt{x}}$ où $k\in\mathbb R$
 - d. les solutions de (E) sur \mathbb{R} sont les fonctions $x \mapsto kx^2$ où $k \in \mathbb{R}$
 - e. rien de ce qui précède

Question 20

Soit l'équation différentielle (E) suivante : y''(x) - 2y'(x) + y(x) = 0. Alors

- a. les solutions de (E) sur \mathbb{R} sont les fonctions $x\mapsto k_1e^x+k_2e^{-x}$ où $(k_1,k_2)\in\mathbb{R}^2$
- b. les solutions de (E) sur \mathbb{R} sont les fonctions $x \mapsto e^x (k_1 \cos(x) + k_2 \sin(x))$ où $(k_1, k_2) \in \mathbb{R}^2$
- (c.) les solutions de (E) sur \mathbb{R} sont les fonctions $x \mapsto (k_1x + k_2)e^x$ où $(k_1, k_2) \in \mathbb{R}^2$
 - d. rien de ce qui précède