IN THE CLAIMS

The listing of the claims which follows replaces any and all prior versions and/or listings of the claims in the application.

1. (currently amended) A compound according to claim 20, which is a compound of Formula II, or a pharmaceutically acceptable salt thereof:

wherein:

bond " === " in the ring is a single bond or a double bond;

 X^1 and X^2 are each independently:

- (1) -H,
- (2) -C₁₋₆ alkyl,
- (3) -OH
- (3)(4) -O-C₁₋₆ alkyl,
- (4)(5) -C₁₋₆ haloalkyl,
- (5) (6) -O-C₁₋₆ haloalkyl,
- (6) (7) halogen,
- (7)(8)-CN,
- (8) (9) -N(Ra)Rb,
- (9) (10) -C(=O)N(Ra)Rb,
- (10)(11) -SRa,
- (11)(12) -S(O)Ra,
- (12)(13) -SO₂Ra,
- (13)(14) -N(Ra)SO₂Rb,
- (14)(15) -N(Ra)SO₂N(Ra)Rb,
- (15)(16) -N(Ra)C(=O)Rb,
- (16) (17) -N(Ra)C(=O)-C(=O)N(Ra)Rb,
- (17)(18) -HetA,
- (18)(19) -C(=O)-HetA, or
- (19)(20) HetB;

wherein each HetA is independently a C₄₋₅ azacycloalkyl or a C₃₋₄ diazacycloalkyl, either of which is optionally substituted with 1 or 2 substituents each of which is independently oxo or C₁₋₆ alkyl; and with the proviso that when HetA is attached to the rest of the compound via the -C(=O)- moiety, the HetA is attached to the -C(=O)- via a ring N atom; and

each HetB is independently a 5- or 6-membered heteroaromatic ring containing from 1 to 4 heteroatoms independently selected from N, O and S, wherein the heteroaromatic ring is optionally substituted with from 1 to 4 substituents each of which is independently halogen, -C₁₋₆ alkyl, -C₁₋₆ haloalkyl, -O-C₁₋₆ alkyl, -O-C₁₋₆ haloalkyl, or hydroxy;

or alternatively X¹ and X² are respectively located on adjacent carbons in the phenyl ring and together form methylenedioxy or ethylenedioxy;

```
X^3 is:
```

- (1) H
- (2) -- C₁₋₆ alkyl,
- (3) -- O-C₁₋₆ alkyl,
- (4) -- C₁₋₆ haloalkyl,
- (5) O C₁₋₆ haloalkyl, or
- (6) halogen;

R4 is:

- (1) $-C_{1-6}$ alkyl,
- $\frac{(2)}{}$ -CO₂Ra,
- (2)(3) -C(=O)N(Ra)Rb,
- (3) (4) -C(=O)-N(Ra)-(CH₂)₂₋₃-ORb,
- (4)(5) -N(Ra)C(=0)Rb,
- (5) (6) -N(Ra)SO₂Rb,
- (7) C3-6-cycloalkyl, which is optionally substituted with from 1 to 4 substituents each of which is independently halogen, C₁₋₆ alkyl, CF₃, O-C₁₋₆ alkyl, or -OCF₃,
- (6)(8)-HetK,
- (7)(9) -C(=0)-HetK,
- (10) C(-O)N(Ra) + HetK,

- (11)——C(=O)N(Ra) (CH₂)₀₋₂ (C₃₋₆ cycloalkyl), wherein the cycloalkyl is optionally substituted with from 1 to 4 substituents each of which is independently halogen, -C₁₋₆ alkyl, -CF₃, -O C₁₋₆ alkyl, or -OCF₃, or
- (8) -C(=O)N(Ra)-(CH₂)₀₋₁-(C₃₋₆ cycloalkyl), wherein the cycloalkyl is optionally substituted with from 1 to 4 substituents each of which is independently halogen, -C₁₋₆ alkyl, -CF₃, -O-C₁₋₆ alkyl, or -OCF₃, or
- (9) (12) -C(=O)N(Ra)-CH2-phenyl, wherein the phenyl is optionally substituted with from 1 to 4 substituents each of which is independently -C₁₋₆ alkyl, -CF₃, -OCF₃, or halogen;
- (13) HetL,
- (14) -C(=O)N(Ra)Re, or
- (15) halogen;

wherein HetK is a 5- or 6-membered saturated heterocyclic ring containing a total of from 1 to 4 heteroatoms independently selected from 1 to 4 N atoms, from 0 to 2 O atoms, and from 0 to 2 S atoms, wherein the heterocyclic ring is optionally substituted with (i) from 1 to 4 substituents each of which is independently -C₁₋₆ alkyl, or oxo; oxo, halogen, -C(=O)N(Ra)Rb, -C(=O)Ra, -CO₂Ra, -SO₂Ra, or -SO₂N(Ra)Rb and (ii) from zero to 1 C₃₋₆-cycloalkyl; and with the proviso that when HetK is attached to the rest of the compound via the -C(=O)- moiety, the HetK is attached to the -C(=O)- via a ring N atom;

wherein HetL is a 5- or 6-membered heteroaromatic ring containing from 1 to 4 heteroatoms independently selected from N, O and S, wherein the heteroaromatic ring is optionally substituted with from 1 to 4 substituents each of which is independently -C₁₋₆ alkyl or -OH;

R⁵ is:

- (1) -H,
- (2) -C₁₋₆ alkyl,
- (3) -C₃₋₆ cycloalkyl,
- (4) $-(CH_2)_{1-2}-C_{3-6}$ cycloalkyl, or
- -CH2-phenyl; wherein the phenyl is optionally substituted with from 1 to 4 substituents each of which is indepedently halogen, C₁₋₆-alkyl, C₁₋₆-haloalkyl, O-C₁₋₆-alkyl, or O-C₁₋₆-haloalkyl,
- (6) -- (CH₂)₁₋₂ HetD, wherein HetD is a 4- to 7-membered saturated heterocyclic ring containing from 1-to 2 heteroatoms independently selected from 1-to 2 N-atoms,

from zero to 1 O atom and from zero to 1 S atom, wherein the heterocyclic ring is attached to the rest of the molecule via a ring N atom, and the heterocyclic ring is optionally substituted with from 1 to 4 substituents each of which is independently -C₁ 6 alkyl, -C₁ 6 haloalkyl, O-C₁ 6 alkyl, O-C₁ 6 haloalkyl, oxo, -C(-O)N(Ra)Rb, -C(-O)Ra, -CO₂Ra, -SO₂Ra, or -SO₂N(Ra)Rb,

- 7) phenyl which is optionally substituted with from 1 to 4 substituents each of which is independently C₁ 6 alkyl, O C₁ 6 alkyl, C₁ 6 haloalkyl, O C₁ 6 haloalkyl, O C₁ 6 haloalkyl, O C₁ 6 haloalkyl, O C₁ 6 haloalkyl, N(Ra)C(=O)Ra, CO₂Ra, SO₂Ra, N(Ra)C(=O) C₁ 6 haloalkyl, N(Ra)C(=O)Rb, N(Ra)C(=O)N(Ra)Rb, N(Ra)CO₂Rb, N(Ra)CO₂Rb, N(Ra)CO₂Rb, O C(=O)N(Rd)Re, or SO₂N(Rd)Re;
- (8) a 5- or 6-membered heteroaromatic ring containing from 1 to 4 heteroatoms independently selected from N, O and S, wherein the heteroaromatic ring is optionally substituted with from 1 to 4 substituents each of which is independently -C₁₋₆-alkyl, -C₁₋₆-haloalkyl, O-C₁₋₆ alkyl, -O-C₁₋₆-haloalkyl, or -OH,
- (9) C₁₋₆ alkyl-substituted with O-C₁₋₆ alkyl, CN, -N(Ra)Rb, C(=O)N(Ra)Rb, -C(=O)Ra, CO₂Ra, -SO₂Ra, or -SO₂N(Ra)Rb, or
- (10) C₁₋₆ haloalkyl;

each Ra is independently H or C1-6 alkyl; and

each Rb is independently H or C1-6 alkyl.;

Re is C₁₋₆ haloalkyl or C₁₋₆ alkyl substituted with CO₂Ra, -SO₂Ra, -SO₂N(Ra)Rb, or N(Ra)Rb; and

each R^d and R^e are independently H or C₁₋₆ alkyl, or together with the N atom to which they are attached form a 4- to 7 membered saturated heterocyclic ring optionally containing a heteroatom in addition to the nitrogen attached to R^d and R^e selected from N, O, and S, wherein the S is optionally oxidized to S(O) or S(O)₂, and wherein the saturated heterocyclic ring is optionally substituted with from 1- to 4 substituents each of which is independently halogen, -CN, -C₁₋₆ alkyl, -C₁₋₆ haloalkyl, -C(=O)R^a, -CO₂R^a, -SO₂R^a, or -SO₂N(R^a)R^b.

2. (currently amended) The compound according to claim 1, or a pharmaceutically acceptable salt thereof, wherein:

bond " ==== " in the ring is a single bond;

X¹ and X² are each independently:

- (1) -H,
- (2) -C₁₋₄ alkyl,
- (3) -C₁₋₄ haloalkyl,
- (4) OH,
- (5)—O-C₁₋₄ alkyl,
- (5) (6) halogen,
- (6) (7) -CN,
- (7)(8) -C(=0)NH₂,
- (8)(9) -C(=0)NH(-C₁₋₄ alkyl),
- (9) (10) -C(=O)N(-C₁₋₄ alkyl)₂, or
- (10) (11) -SO₂-C₁-4 alkyl;

or alternatively X¹ and X² are respectively located on adjacent carbons in the phenyl ring and together form methylenedioxy or ethylenedioxy;

X³ is -H, halogen, C₁₋₄ alkyl, or -O-C₁₋₄ alkyl;

R4 is:

- $(1) -C_{1-4-alkyl},$
- (2)—CO₂H,
- (2)(3) -C(=O)-O-C₁₋₄ alkyl,
- (3)(4) -C(=0)NH₂,
- $(4) \quad -C(=O)NH-C_{1-4} \text{ alkyl},$
- (5) C(=O)NH C_{1-5} alkyl,
- (5) (6) -C(=O)N(C₁₋₄ alkyl)₂,
- (6)(7) -C(=0)-NH-(CH₂)₂₋₃-O-C₁₋₄ alkyl,
- (7) (8) -C(=O)-N(C₁₋₄ alkyl)-(CH₂)₂₋₃-O-C₁₋₄ alkyl,
- (8)(9) -NHC(=0)-C₁₋₄ alkyl,
- (9) (10) -N(C₁₋₄ alkyl)C(=O)-C₁₋₄ alkyl,
- (10) (11) -NHSO₂-C₁₋₄ alkyl,
- (11) (12) -N(C₁₋₄ alkyl)SO₂-C₁₋₄ alkyl,
- (13) C₃₋₆ cycloalkyl,
- (14) HetK wherein HetK is:

wherein the asterisk * denotes the point of attachment to the rest of the compound,

$$(12)$$
 (15) -C(=O)-HetK, wherein HetK is:

wherein the asterisk * denotes the point of attachment to the rest of the compound,

- (16) C(=O)NH-HetK or -C(=O)N(C₁-4-alkyl) HetK, wherein HetK is a saturated heterocyclic selected from the group consisting of pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, and thiomorpholinyl, wherein the saturated heterocyclic is optionally substituted with from 1 to 2 substituents each of which is independently C₁-4-alkyl, SO₂-C₁-4-alkyl, or -SO₂N(C₁-4-alkyl)₂,
- (13)(17) -C(=O)NH-(CH₂)₀₋₁-(C₃₋₆ cycloalkyl),
- (14) (18) -C(=0)N(C₁₋₄ alkyl)-(CH₂)₀₋₁-(C₃₋₆ cycloalkyl),
- (15) (19) -C(=O)NH-CH₂-phenyl, or wherein the phenyl is optionally substituted with 1 or 2 substituents each of which is independently halogen, -C₁ 4 alkyl, -CF₃, O-C₁ 4 alkyl, or -OCF₃,
- (16) (20) -C(=O)N(C₁₋₄ alkyl)-CH₂-phenyl; and , wherein the phenyl is optionally substituted with 1 or 2 substituents each of which is independently halogen, C₁₋₄ alkyl, -CF₃, O C₁₋₄ alkyl, or OCF₃,
- (21) HetL, wherein HetL is a heteroaromatic ring which is pyrrolyl, thienyl, furanyl, imidazolyl, oxazolyl, thiazolyl, isoxazolyl, isothiazolyl, pyrazolyl, triazolyl, tetrazolyl, oxadiazolyl, pyridinyl, pyrimidinyl, or pyrazinyl, wherein the

heteroaromatic ring is optionally substituted with from 1 to 4 substituents each of which is independently halogen or -C₁₋₄-alkyl,

- (22) $C(O)N(H)-C_{1-4}$ haloalkyl,
- (23) -C(O)N(C₁₋₄-alkyl)-C₁₋₄-haloalkyl,
- (24) --- C(O)N(H) (CH₂)₁₋₂SO₂-C₁₋₄ alkyl,
- (25) C(0)N(C₁₋₄-alkyl)-(CH₂)₁₋₂SO₂-C₁₋₄-alkyl,
- (26) -C(O)N(H)-(CH₂)₁₋₂N(C₁₋₄-alkyl)₂,
- (27) $C(O)N(C_{1-4} alkyl) + (CH₂)₁₋₂N(C₁₋₄ alkyl)₂, or$
- (28) Cl or -Br; and

R⁵ is:

- (1) -H,
- (2) -C₁₋₄ alkyl,
- (3) -C₃₋₆ cycloalkyl,
- (4) -CH2-C3-6 cycloalkyl, or
- (5) -CH₂-phenyl.
- (5) -CH2-phenyl, wherein the phenyl is optionally substituted with from 1 to 3 substituents each of which is independently halogen, -C₁ 4 alkyl, -CF₃, O-C₁ 4 alkyl, or OCF₃,
- (6) (CH₂)₁₋₂ HetD, wherein HetD is:

point of attachment to the rest of the compound,

- (7)—phenyl-which is optionally substituted with—C1_4 alkyl,—O C1_4 alkyl,—CF3,—OCF3, halogen,—CN,—NO2,—C(=O)—C1_4 alkyl,—C(=O)—O—C1_4 alkyl,—C(O)N(C1_4 alkyl)2,—SO2_C1_4 alkyl,—SO2_NH2,—SO2_N(H)—C1_4 alkyl,—SO2_N(C1_4 alkyl)2,—N(H)C(=O)—C1_4 alkyl,—N(C1_4 alkyl)C(=O)—C1_4 alkyl,—N(H)C(=O)—CF3,—N(C1_4 alkyl)C(=O)—CF3,—N(H)C(=O)N(H)C1_4 alkyl,—N(C1_4 alkyl)C(=O)N(H)C1_4 alkyl,—N(H)C(=O)N(C1_4 alkyl)2,—N(C1_4 alkyl)C(=O)N(C1_4 alkyl)2,—N(H)C(=O)—O—C1_4 alkyl,—N(H)SO2_C1_4 alkyl,—N(H)C(=O)—O—C1_4 alkyl,—N(H)SO2_C1_4 alkyl,—N(H)C(=O)—O—C1_4 alkyl,—N(H)SO2_C1_4 alky
 - alkyl, N(C₁₋₄-alkyl)SO₂-C₁₋₄ alkyl, * , or *, or *, $\frac{O_{1}}{S}$ N A , $\frac{O_{1$

wherein ring A is pyrrolidinyl, piperidinyl, morpholinyl, thiomorpholinyl, or piperazinyl optionally substituted on the other ring nitrogen with methyl or SO2-CH3.

- (8) a 5- or 6-membered heteroaromatic ring which is pyrrolyl, thienyl, furanyl, imidazolyl, oxazolyl, thiazolyl, isoxazolyl, isothiazolyl, pyrazolyl, triazolyl, tetrazolyl, pyridinyl, pyrimidinyl, or pyrazinyl, wherein the heteroaromatic ring is optionally substituted with from 1 to 2 substituents each of which is independently halogen or -C₁₋₄-alkyl,
- (9) C₁₋₄ alkyl substituted with O C₁₋₄ alkyl, -CN, -NH₂, -N(H)-C₁₋₄ alkyl, -N(C₁₋₄ alkyl)₂, C(O)NH₂, C(O)N(H)-C₁₋₄ alkyl, C(O)N(C₁₋₄ alkyl)₂, -C(=O)-C₁₋₄ alkyl, -C(=O)-O C₁₋₄ alkyl, -SO₂-C₁₋₄ alkyl, -SO₂NH₂, -SO₂N(H)-C₁₋₄ alkyl, or -SO₂N(C₁₋₄ alkyl)₂, or
- (10) C₁₋₄ fluoroalkyl.
- 3. (currently amended) The compound according to claim 1, or a pharmaceutically acceptable salt thereof, which is a compound of Formula III:

$$X^{1}$$
 X^{2}
 X^{2}
 X^{2}
 X^{2}
 X^{3}
 X^{4}
 X^{5}
 X^{6}
 X^{1}
 X^{2}
 X^{2}
 X^{3}
 X^{4}
 X^{2}
 X^{2}
 X^{3}
 X^{4}
 X^{2}
 X^{2}
 X^{3}
 X^{4}
 X^{2}
 X^{2}
 X^{3}
 X^{4}
 X^{2}
 X^{3}
 X^{4}
 X^{5}
 X^{5}
 X^{6}
 X^{7}
 X^{7

wherein:

 X^1 is:

- (1) -H,
- (2) bromo,
- (3) chloro,
- (4) fluoro, or
- (5) methoxy;

 X^2 is:

- (1) -H,
- (2) bromo,
- (3) chloro,
- (4) fluoro,

- (5) methoxy,
- (6) $-C_{1-4}$ alkyl,
- (7) -CF₃,
- (8) -OCF₃,
- (9) -CN, or
- (10) $-SO_2(C_{1-4} \text{ alkyl});$

R4 is:

- (1) -CO₂H,
- (2) $-C(=O)-O-C_{1-4}$ alkyl,
- (3) $-C(=O)NH_2$,
- (4) $-C(=O)NH-C_{1-4}$ alkyl,
- (5) $-C(=O)N(C_{1-4} \text{ alkyl})_2$,
- (6) $-C(=O)-NH-(CH_2)_2-3-O-C_{1-4}$ alkyl,
- (7) $-C(=O)-N(C_{1-4} \text{ alkyl})-(CH_{2})_{2-3}-O-C_{1-4} \text{ alkyl},$
- (8) $-NHC(=O)-C_{1-4}$ alkyl,
- (9) $-N(C_{1-4} \text{ alkyl})C(=O)-C_{1-4} \text{ alkyl},$
- (10) -NHSO₂-C₁₋₄ alkyl,
- (11) $-N(C_{1-4} \text{ alkyl})SO_2-C_{1-4} \text{ alkyl},$

, wherein the asterisk * denotes the point of attachment to the rest of the compound,

- (13) $-C(=O)NH-(CH_2)_{0-1}-(C_{3-6} \text{ cycloalkyl}),$
- (14) $-C(=O)N(C_{1-4} \text{ alkyl})-(CH_2)_{0-1}-(C_{3-6} \text{ cycloalkyl}),$
- (15) $-C(=O)NH-CH_2$ -phenyl, or
- (16) $-C(=O)N(C_{1-4} \text{ alkyl})-CH_2\text{-phenyl}; \text{ and}$

R⁵ is:

- (1) -H,
- (2) -C₁₋₄ alkyl,
- (3) cyclopropyl,
- (4) cyclobutyl,

which comprises:

(B) contacting a compound of Formula V:

$$R^2$$
 R^3
 R^5
 R^1
 R^0
 R^0

with a Grignard salt of an amine of Formula VI:

$$HN(R^{V})R^{W}$$
 (VI)

to obtain Compound IV; wherein:

bond "= " in the ring is a single bond or a double bond;

R¹ is -C₁₋₆ alkyl substituted with R^J, wherein R^J is:

- (A) aryl or aryl fused to a 5- or 6-membered heteroaromatic ring containing from 1 to 4 heteroatoms independently selected from N, O and S, wherein the aryl or fused aryl is:
 - (a) optionally substituted with from 1 to 5 substituents each of which is independently:
 - (1) -C₁₋₆ alkyl,
 - -C₁₋₆ alkyl substituted with -O-C₁₋₆ alkyl, -O-C₁₋₆ haloalkyl, -NO₂, -N(R^a)R^b, or -S(O)_nR^a,
 - (3) -C₁₋₆ haloalkyl,
 - (4) -O-C₁₋₆ alkyl,
 - (5) halogen,
 - (6) C(=O)N(Ra)Rb, or
 - (7) $-SO_2R^a$, and

- (b) optionally substituted with 1 or 2 substituents each of which is independently:
 - (1) phenyl,
 - (2) benzyl, or
 - (3) -HetB;

wherein each HetB is a 5- or 6-membered heteroaromatic ring containing from 1 to 4 heteroatoms independently selected from N, O and S, wherein the heteroaromatic ring is optionally substituted with from 1 to 4 substituents each of which is independently halogen, -C₁₋₆ alkyl, -C₁₋₆ haloalkyl, -O-C₁₋₆ alkyl, or -O-C₁₋₆ haloalkyl; or

- (B) a 5- or 6-membered heteroaromatic ring containing from 1 to 4 heteroatoms independently selected from N, O and S; wherein the heteroaromatic ring is
 - (i) optionally substituted with from 1 to 4 substituents each of which is independently halogen, -C₁₋₆ alkyl, -C₁₋₆ haloalkyl, -O-C₁₋₆ alkyl, or -O-C₁₋₆ haloalkyl, and
 - (ii) optionally substituted with 1 or 2 substituents each of which is independently aryl or -C₁₋₆ alkyl substituted with aryl;

R² and R³ are each independently -H or -C₁₋₆ alkyl;

R⁵ is:

- (1) -C₁₋₆ alkyl,
- -C₃₋₈ cycloalkyl optionally substituted with from 1 to 4 substituents each of which is independently -C₁₋₆ alkyl or -O-C₁₋₆ alkyl,
- -C₁₋₆ alkyl substituted with C₃₋₈ cycloalkyl, wherein the cycloalkyl is optionally substituted with from 1 to 4 substituents each of which is independently -C₁₋₆ alkyl,
- -C₁₋₆ alkyl substituted with aryl, wherein the aryl is optionally substituted with from 1 to 5 substituents each of which is independently -C₁₋₆ alkyl, -C₁₋₆ alkyl, or halogen, or
- (5) -C₁₋₆ alkyl substituted with a 5- or 6-membered heteroaromatic ring containing from 1 to 4 heteroatoms independently selected from N, O and S, wherein the heteroaromatic ring is optionally substituted with from 1 to 4 substituents each of which is independently -C₁₋₆ alkyl;

RT is -C1-6 alkyl;

RV and RW are each independently -C₁₋₆ alkyl or RV and RW together with the N atom to which they are both attached form a 4- to 6-membered saturated heterocyclic ring optionally containing a heteroatom in addition to the nitrogen attached to RV and RW selected from N, O, and S, where the S is optionally oxidized to S(O) or S(O)₂, and wherein the saturated heterocyclic ring is optionally substituted with 1 or 2 substituents each of which is independently a C₁₋₆ alkyl group;

each aryl is independently phenyl, naphthyl, or indenyl;

each Ra is independently H or C1-6 alkyl; and

each Rb is independently H or C1-6 alkyl.

- 17. (original) The process according to claim 16, wherein the process further comprises:
 - (A) treating a compound of Formula IX:

$$\begin{array}{c|c}
R^{2} & Q & OR^{T} \\
R^{2} & Q & Q & R^{5} \\
\hline
R^{1} & Q & Q & OR^{T^{*}} \\
\hline
O & Q & O & O & (IX)
\end{array}$$

with (i) a tertiary amine base in the presence of a lithium salt or (ii) an alkoxide base, to obtain a compound of Formula V; wherein one of bonds "=" and "=" is a single bond and the other is a double bond; and R^{T*} is C_{1-6} alkyl.

18. (original) A process for preparing a compound of Formula IV:

$$R^2$$
 R^3
 R^5
 R^1
 R^3
 R^5
 R^5
 R^1
 R^1
 R^1
 R^1
 R^2
 R^3
 R^5
 R^5
 R^5
 R^1
 R^1
 R^1
 R^2
 R^3
 R^5
 R^5
 R^5
 R^1
 R^1
 R^1
 R^1
 R^1
 R^1
 R^1
 R^2
 R^3
 R^5
 R^5
 R^5
 R^5
 R^1
 R^1

which comprises treating a compound of Formula X:

with (i) a tertiary amine base in the presence of a lithium salt or (ii) an alkoxide base, to obtain a compound of Formula IV, wherein:

bond "==" in the ring is a single bond or a double bond;

R¹ is -C₁₋₆ alkyl substituted with R^J, wherein R^J is:

- (A) aryl or aryl fused to a 5- or 6-membered heteroaromatic ring containing from 1 to 4 heteroatoms independently selected from N, O and S, wherein the aryl or fused aryl is:
 - (a) optionally substituted with from 1 to 5 substituents each of which is independently:
 - (1) -C₁₋₆ alkyl,
 - -C1-6 alkyl substituted with -O-C1-6 alkyl, -O-C1-6 haloalkyl, -NO2, -N(Ra)Rb, or -S(O)_nRa,
 - (3) -C₁₋₆ haloalkyl,
 - (4) -O-C₁₋₆ alkyl,
 - (5) halogen,
 - (6) $C(=O)N(R^a)R^b$, or
 - (7) -SO₂Ra, and
 - (b) optionally substituted with 1 or 2 substituents each of which is independently:
 - (1) phenyl,
 - (2) benzyl, or
 - (3) -HetB;

wherein each HetB is a 5- or 6-membered heteroaromatic ring containing from 1 to 4 heteroatoms independently selected from N, O and S, wherein the heteroaromatic ring is optionally substituted with from 1 to 4 substituents each of which is independently halogen, -C₁₋₆ alkyl, -C₁₋₆ haloalkyl, -O-C₁₋₆ alkyl, or -O-C₁₋₆ haloalkyl; or

- (B) a 5- or 6-membered heteroaromatic ring containing from 1 to 4 heteroatoms independently selected from N, O and S; wherein the heteroaromatic ring is
 - (i) optionally substituted with from 1 to 4 substituents each of which is independently halogen, -C₁₋₆ alkyl, -C₁₋₆ haloalkyl, -O-C₁₋₆ alkyl, or -O-C₁₋₆ haloalkyl, and
 - (ii) optionally substituted with 1 or 2 substituents each of which is independently aryl or -C₁₋₆ alkyl substituted with aryl;

R² and R³ are each independently -H or -C₁₋₆ alkyl;

 R^5 is:

- (1) -C₁₋₆ alkyl,
- -C₃₋₈ cycloalkyl optionally substituted with from 1 to 4 substituents each of which is independently -C₁₋₆ alkyl or -O-C₁₋₆ alkyl,
- -C₁₋₆ alkyl substituted with C₃₋₈ cycloalkyl, wherein the cycloalkyl is optionally substituted with from 1 to 4 substituents each of which is independently -C₁₋₆ alkyl or -O-C₁₋₆ alkyl,
- -C₁₋₆ alkyl substituted with aryl, wherein the aryl is optionally substituted with from 1 to 5 substituents each of which is independently -C₁₋₆ alkyl, -C₁₋₆ alkyl, or halogen, or
- (5) -C₁₋₆ alkyl substituted with a 5- or 6-membered heteroaromatic ring containing from 1 to 4 heteroatoms independently selected from N, O and S, wherein the heteroaromatic ring is optionally substituted with from 1 to 4 substituents each of which is independently -C₁₋₆ alkyl;

RV and RW are each independently -C₁₋₆ alkyl or RV and RW together with the N atom to which they are both attached form a 4- to 6-membered saturated heterocyclic ring optionally containing a heteroatom in addition to the nitrogen attached to RV and RW selected from N, O, and S, where the S is optionally oxidized to S(O) or S(O)₂, and wherein the saturated heterocyclic ring is optionally substituted with 1 or 2 substituents each of which is independently a C₁₋₆ alkyl group;

each aryl is independently phenyl, naphthyl, or indenyl;

each Ra is independently H or C1-6 alkyl;

each Rb is independently H or C1-6 alkyl;

one of bonds "=" and "=" is a single bond and the other is a double bond; and RT* is C₁₋₆ alkyl.

19. (original) A process for preparing a compound of Formula VII:

which comprises reacting an alkylating agent of formula R⁵-Z with a compound of Formula VIII:

in a polar aprotic solvent and in the presence of a base selected from a magnesium base and a calcium base; wherein:

bond " = " in the ring is a single bond or a double bond;

W is -H or -C₁₋₆ alkyl;

Z is halogen or -SO₃-Q wherein Q is (i) C₁₋₆ alkyl or (ii) phenyl optionally substituted with 1 or 2 substituents each of which is independently a C₁₋₆ alkyl;

RS is -O-C₁₋₆ alkyl or N(RV)RW wherein RV and RW are each independently -C₁₋₆ alkyl or RV and RW together with the N atom to which they are both attached form a 4- to 6-membered saturated heterocyclic ring optionally containing a heteroatom in addition to the nitrogen attached to RV and RW selected from N, O, and S, where the S is optionally oxidized to S(O) or S(O)₂,

and wherein the saturated heterocyclic ring is optionally substituted with 1 or 2 substituents each of which is independently a C₁₋₆ alkyl group;

R¹ is -C₁₋₆ alkyl substituted with R^J, wherein R^J is:

- (A) aryl or aryl fused to a 5- or 6-membered heteroaromatic ring containing from 1 to 4 heteroatoms independently selected from N, O and S, wherein the aryl or fused aryl is:
 - (a) optionally substituted with from 1 to 5 substituents each of which is independently:
 - (1) -C₁₋₆ alkyl optionally substituted with -OH, -O-C₁₋₆ alkyl, -O-C₁₋₆ haloalkyl, -CN, -NO₂, -N(Ra)Rb, -C(=O)N(Ra)Rb, -C(=O)Ra, -CO₂Ra, -S(O)_nRa, -SO₂N(Ra)Rb, -N(Ra)C(=O)Rb, -N(Ra)CO₂Rb, -N(Ra)SO₂Rb, -N(Ra)SO₂N(Ra)Rb, -OC(=O)N(Ra)Rb, or -N(Ra)C(=O)N(Ra)Rb,
 - (2) -O-C₁₋₆ alkyl,
 - (3) -C₁₋₆ haloalkyl,
 - (4) -O-C₁₋₆ haloalkyl,
 - (5) -OH,
 - (6) halogen,
 - (7) -CN,
 - (8) $-NO_{2}$
 - (9) -N(Ra)Rb,
 - (10) -C(=O)N(Ra)Rb,
 - (11) -C(=O)Ra,
 - (12) $-CO_2Ra$,
 - (13) -SRa,
 - (14) $-S(=O)R^a$,
 - (15) -SO₂Ra,
 - (16) $-SO_2N(Ra)Rb$,
 - (17) -N(Ra)SO₂Rb,
 - (18) $-N(Ra)SO_2N(Ra)Rb$,
 - (19) -N(Ra)C(=O)Rb,
 - (20) $-N(R^a)C(=O)-C(=O)N(R^a)R^b$, or
 - (21) $-N(R^a)CO_2R^b$, and
 - (b) optionally substituted with 1 or 2 substituents each of which is independently:

- (1) phenyl,
- (2) benzyl,
- (3) -HetA,
- (4) -C(=O)-HetA, or
- (5) -HetB;

wherein each HetA is independently a C₄₋₇ azacycloalkyl or a C₃₋₆ diazacycloalkyl, either of which is optionally substituted with from 1 to 4 substituents each of which is independently oxo or C₁₋₆ alkyl; and

wherein each HetB is a 5- or 6-membered heteroaromatic ring containing from 1 to 4 heteroatoms independently selected from N, O and S, wherein the heteroaromatic ring is optionally substituted with from 1 to 4 substituents each of which is independently halogen, -C₁₋₆ alkyl, -C₁₋₆ haloalkyl, -O-C₁₋₆ alkyl, -O-C₁₋₆ haloalkyl, or hydroxy; or

- (B) a 5- or 6-membered heteroaromatic ring containing from 1 to 4 heteroatoms independently selected from N, O and S; wherein the heteroaromatic ring is
 - (i) optionally substituted with from 1 to 4 substituents each of which is independently halogen, -C₁₋₆ alkyl, -C₁₋₆ haloalkyl, -O-C₁₋₆ haloalkyl, or hydroxy, and
 - (ii) optionally substituted with 1 or 2 substituents each of which is independently aryl or -C₁₋₆ alkyl substituted with aryl;

R² and R³ are each independently -H or -C₁₋₆ alkyl;

 R^5 is:

- (1) -C₁₋₆ alkyl,
- -C₃₋₈ cycloalkyl optionally substituted with from 1 to 4 substituents each of which is independently -C₁₋₆ alkyl or -O-C₁₋₆ alkyl,
- -C₁₋₆ alkyl substituted with C₃₋₈ cycloalkyl, wherein the cycloalkyl is optionally substituted with from 1 to 4 substituents each of which is independently -C₁₋₆ alkyl or -O-C₁₋₆ alkyl,
- -C₁₋₆ alkyl substituted with aryl, wherein the aryl is optionally substituted with from 1 to 5 substituents each of which is independently -C₁₋₆ alkyl, -C₁₋₆ alkyl, or halogen, or

(5) -C₁₋₆ alkyl substituted with a 5- or 6-membered heteroaromatic ring containing from 1 to 4 heteroatoms independently selected from N, O and S, wherein the heteroaromatic ring is optionally substituted with from 1 to 4 substituents each of which is independently -C₁₋₆ alkyl;

each aryl is independently phenyl, naphthyl, or indenyl;

each Ra is independently H or C1-6 alkyl;

each Rb is independently H or C1-6 alkyl; and

each n is independently an integer equal to zero, 1, or 2.

20. (currently amended) A compound of Formula I, or a pharmaceutically acceptable salt thereof:

$$R^2$$
 R^3
 R^4
 R^5
 R^1
 R^5
 R^1
 R^5
 R^6
 R^1
 R^1
 R^2
 R^3
 R^4
 R^5
 R^5
 R^1
 R^1
 R^2
 R^3
 R^4
 R^5
 R^5
 R^5
 R^1
 R^1
 R^1
 R^2
 R^3
 R^4
 R^5
 R^5
 R^5
 R^1
 R^1
 R^2
 R^3
 R^4
 R^5
 R^5
 R^5
 R^5
 R^1
 R^2
 R^3
 R^4
 R^5
 R^5
 R^5
 R^5
 R^5
 R^5
 R^5
 R^7
 R^7

wherein:

bond " = " in the ring is a single bond or a double bond;

R¹ is -C₁₋₆ alkyl, R^J, or -C₁₋₆ alkyl substituted with R^J, wherein R^J is:

- (A) (i) aryl or (ii) aryl fused to a 5- or 6-membered heteroaromatic ring containing from 1 to 4 heteroatoms independently selected from N, O and S, or (iii) aryl substituted on two-adjacent ring carbons with alkylenedioxy, wherein the aryl or fused aryl is: or alkylenedioxy aryl-is:
 - (a) optionally substituted with from 1 to 5 substituents each of which is independently:
 - -C₁₋₆ alkyl optionally substituted with -OH, -O-C₁₋₆ alkyl, -O-C₁₋₆ haloalkyl, -CN, -NO₂, -N(Ra)Rb, -C(=O)N(Ra)Rb, -C(=O)Ra, -CO₂Ra, -S(O)_nRa, -SO₂N(Ra)Rb, -N(Ra)C(=O)Rb,

- -N(Ra)CO₂Rb, -N(Ra)SO₂Rb, -N(Ra)SO₂N(Ra)Rb, -OC(=O)N(Ra)Rb, or -N(Ra)C(=O)N(Ra)Rb,
- (2) -O-C₁₋₆ alkyl,
- (3) -C₁₋₆ haloalkyl,
- (4) -O-C₁₋₆ haloalkyl,
- (5) -OH,
- (6) halogen,
- (7) -CN,
- (8) -NO₂,
- (9) -N(Ra)Rb,
- (10) -C(=O)N(Ra)Rb,
- (11) -C(=O)Ra,
- (12) -CO₂Ra,
- (13) -SRa,
- (14) -S(=0)Ra,
- (15) -SO₂Ra,
- (16) $-SO_2N(R^a)R^b$,
- (17) -N(Ra)SO₂Rb,
- (18) $-N(Ra)SO_2N(Ra)Rb$,
- (19) -N(Ra)C(=O)Rb,
- (20) $-N(Ra)C(=O)-C(=O)N(Ra)Rb, \underline{or}$
- (21) $-N(Ra)CO_2R^b$, and or
- (22) $N(R^a)C(=O)N(R^a)R^b$, and
- (b) optionally substituted with 1 or 2 substituents each of which is independently:
 - (1) <u>phenyl</u>, C₃ & eycloalkyl which is optionally substituted with from 1 to 4 substituents each of which is independently halogen, CN, C₁ 6 alkyl, OH, O C₁ 6 alkyl, C₁ 6 haloalkyl, O-C₁ 6 haloalkyl, C₁ 6 alkylene OH, or C₁ 6 alkylene O-C₁ 6 alkylene O-C₁ 6 alkylene OH, or C₁ 6 alkylene OH, or C₁ 6 alkylene O-C₁ 6 alkylene OH, or C₁ 6 alkylene O-C₁ 6 alkylene OH, or C₁ 6 alkylene OH, or C₁ 6 alkylene O-C₁ 6 alkylene OH, or C₁ 6 alkylene OH, or C₁ 6 alkylene OH, or C₁ 6 alkylene O-C₁ 6 alkylene OH, or C₁ 6 alkylene OH
 - benzyl, aryl or C₁₋₆ alkyl substituted with aryl, wherein in either case the aryl is optionally substituted with from 1 to 5 substituents each of which is independently halogen, CN, NO₂, C₁₋₆ alkyl, C₁₋₆ haloalkyl, OH, O-C₁₋₆ alkyl, O-C₁₋₆ haloalkyl, N(Ra)Rb, C(O)N(Ra)Rb, C(O)Ra, C(O)ORa, SRa, S(O)Ra, S(O)₂Ra, S(O)₂N(Ra)Rb, S(O)₂N(Ra)C(O)Rb, C₁₋₆ alkylene CN, C₁₋₆ alkylene OH, C₁₋

C₁₋₆-alkylene O-C₁₋₆-haloalkyl, C₁₋₆-alkylene N(R^a)R^b, C₁₋₆-alkylene C(O)N(R^a)R^b, C₁₋₆-alkylene C(O)R^a, C₁₋₆-alkylene SR^a, C₁₋₆-alkylene S(O)R^a, C₁₋₆-alkylene S(O)₂R^a, C₁₋₆-alkylene S(O)₂N(R^a)R^b, or C₁₋₆-alkylene S(O)₂N(R^A)C(O)R^b,

- (3) -HetA,
- (4) -C(=O)-HetA, or
- (5) -HetB;

wherein each HetA is independently a C4-7 azacycloalkyl or a C3-6 diazacycloalkyl, either of which is optionally substituted with from 1 to 4 substituents each of which is independently oxo or C1-6 alkyl; and halogen, CN, C1-6 alkyl, OH, oxo, O C1-6 alkyl, C1-6 haloalkyl, S(O)₂R^a, C1-6 alkylene CN, C1-6 alkylene OH, or C1-6 alkylene O-C1-6 alkyl; and

wherein each HetB is independently a 5- or 6-membered heteroaromatic ring containing from 1 to 4 heteroatoms independently selected from N, O and S, wherein the heteroaromatic ring is optionally substituted with from 1 to 4 substituents each of which is independently halogen, C₁₋₆ alkyl, C₁₋₆ haloalkyl, O-C₁₋₆ alkyl, O-C₁₋₆ haloalkyl, or hydroxy; CN, NO₂, C₁₋₆ alkyl, C₁₋₆ haloalkyl, OH, O-C₁₋₆ alkyl, or O-C₁₋₆ haloalkyl, N(Ra)Rb, C(O)N(Ra)Rb, C(O)Ra, C(O)ORa, SRa, S(O)Ra, S(O)₂Ra, S(O)₂N(Ra)Rb, S(O)₂N(Ra)C(O)Rb, C₁₋₆ alkylene CN, C₁₋₆ alkylene NO₂, C₁₋₆ alkylene OH, C₁₋₆ alkylene O-C₁₋₆ haloalkyl, C₁₋₆ alkylene O-C₁₋₆ haloalkyl, C₁₋₆ alkylene O-C₁₋₆ alkylene C(O)N(Ra)Rb, C₁₋₆ alkylene SRa, C₁₋₆ alkylene S(O)₂N(Ra)Rb, C₁₋₆ alkylene S(O)₂Ra, C₁₋₆ alkylene S(O)₂N(Ra)Rb, or C₁₋₆ alkylene S(O)₂N(Ra)C(O)Rb; or alkylene S(O)₂N(Ra)Rb, or C₁₋₆ alkylene S(O)₂N(Ra)C(O)Rb; or

- (B) a 5- or 6-membered heteroaromatic ring containing from 1 to 4 heteroatoms independently selected from N, O and S, wherein the heteroaromatic ring is:
 - (i) optionally substituted with from 1 to 4 substituents each of which is independently halogen, -C₁₋₆ alkyl, -C₁₋₆ haloalkyl, -O-C₁₋₆ haloalkyl, or hydroxy; and
 - (ii) optionally substituted with 1 or 2 substituents each of which is independently aryl or -C₁₋₆ alkyl substituted with aryl;

- (a) optionally substituted with from 1 to 4 substituents each of which is independently:
 - (1) C₁₋₆-alkyl optionally substituted with -OH, -O-C₁₋₆ alkyl, -O-C₁₋₆-alkyl, -O-C₁₋₆-alkyl, -CN, NO₂, N(Ra)Rb, -C(=O)N(Ra)Rb, -C(=O)Ra, -CO₂Ra, -S(O)_nRa, -SO₂N(Ra)Rb, N(Ra)C(=O)Rb, -N(Ra)CO₂Rb, N(Ra)SO₂Rb, N(Ra)SO₂N(Ra)Rb, -OC(=O)N(Ra)Rb, or N(Ra)C(=O)N(Ra)Rb,
 - (2) 0 C_{1-6} alkyl,
 - (3) ——C₁₋₆ haloalkyl,
 - (4) O-C₁₋₆-haloalkyl,
 - (5) OH,
 - (6) halogen,
 - (7) CN,
 - (8) -- NO₂,
 - (9) -N(Ra)Rb,
 - $\frac{(10) \quad C(-O)N(Ra)Rb}{},$
 - (11) $-C(=O)R^{a}$,
 - (12) CO₂Ra,
 - (13) SRa
 - (14) S(=0)Ra,
 - (15) SO₂Ra,
 - (16) SO₂N(Ra)Rb,
 - (17) $N(R^a)SO_2R^b$,
 - (18) $N(R^a)SO_2N(R^a)R^b$,
 - (19) N(Ra)C(=O)Rb,
 - (20) N(Ra)C(-O)-C(-O)N(Ra)Rb,
 - (21) -N(Ra)CO₂Rb, or
 - (22) $N(R^a)C(-O)N(R^a)R^b$, and
- (b) optionally substituted with 1 or 2 substituents each of which is independently:
 - (1) C₃ & cycloalkyl which is optionally substituted with from 1 to 4 substituents each of which is independently halogen, CN, C₁ 6 alkyl, OH, O C₁ 6 alkyl, C₁ 6 haloalkyl, O C₁ 6 haloalkyl, C₁ 6 alkylene OH, or C₁ 6 alkylene O-C₁ 6 alkyl,
 - (2) aryl or C₁₋₆ alkyl substituted with aryl, wherein in either case the aryl is optionally substituted with from 1 to 5 substituents each of

which is independently halogen, CN, NO₂, C₁₋₆-alkyl, C₁₋₆ haloalkyl, OH, O-C₁₋₆-alkyl, O-C₁₋₆-haloalkyl, N(R^a)R^b, C(O)N(R^a)R^b, C(O)R^a, C(O)OR^a, SR^a, S(O)R^a, S(O)₂R^a, S(O)₂N(R^a)R^b, S(O)₂N(R^a)C(O)R^b, C₁₋₆-alkylene CN, C₁₋₆ alkylene NO₂, C₁₋₆-alkylene OH, C₁₋₆-alkylene O-C₁₋₆-alkylene O-C₁₋₆-alkylene O-C₁₋₆-alkylene N(R^a)R^b, C₁₋₆-alkylene C(O)N(R^a)R^b, C₁₋₆-alkylene C(O)R^a, C₁₋₆-alkylene S(O)₂R^a, C₁₋₆-alkylene S(O)₂N(R^a)R^b, or C₁₋₆-alkylene S(O)₂N(R^a)R^b, or C₁₋₆-alkylene S(O)₂N(R^a)C(O)R^b,

(3)—HetA,
(4)—C(=O)-HetA, or
(5)—HetB;
— wherein HetA and HetB are each independently as defined

R² and R³ are each independently -H or -C₁₋₆ alkyl;

above;

R² is H or C₁₋₆ alkyl;

R³ independently has the same definition as R⁴, with the proviso that at least one of R³ and R⁴ is -H or -C₁₋₆ alkyl;

or, as an alternative, when bond " ==== " is a double bond, R² and R³ together with the carbon atoms to which each is attached form:

- (i) a benzene ring which is optionally substituted with a total of from 1 to 4 substituents wherein (a) from zero to 4 substituents are each independently one of substituents (1) to (22) as defined in part (A)(a) of the definition of R¹ and (b) from zero to 2 substituents are each independently one of the substituents (1) to (5) as defined in part (A)(b) of the definition of R¹, or
- (ii) a 5- or 6 membered heteroaromatic ring containing from 1 to 4 heteroatoms independently selected from N, O and S, wherein the heteroaromatic ring is optionally substituted with a total of from 1 to 3 substituents wherein (a) from zero to 3 substituents are each independently one of substituents (1) to (22) as defined in part (B)(a) of the definition of R¹ and (b) from zero to 2 substituents

are each independently one of the substituents (1) to (5) as defined in part (B)(b) of the definition of R¹;

R⁴ is:

- (1) -H,
- (2) -C₁₋₆ alkyl,
- (3) -C₁₋₆ haloalkyl,
- -C1-6 alkyl substituted with -OH, -O-C1-6 alkyl, -O-C1-6 haloalkyl, -CN, -N(Ra)Rb, -C(=O)N(Ra)Rb, -C(=O)Ra, -CO2Ra, -C(=O)-N(Ra)-C1-6 alkylene-ORb with the proviso that the -N(Ra)- moiety and the -ORb moiety are not both attached to the same carbon of the -C1-6 alkylene- moiety, -S(O)_nRa, -SO2N(Ra)Rb, -N(Ra)C(=O)-Rb, -N(Ra)CO2Rb, -N(Ra)SO2Rb, -N(Ra)SO2N(Ra)Rb, -N(Ra)C(=O)N(Ra)Rb, or -OC(=O)N(Ra)Rb,
- (5) -C(=O)Ra,
- (6) $-CO_2Ra$,
- (7) -C(=O)N(Ra)Rb,
- (8) -C(=O)-N(Ra)-C₁₋₆ alkylene-OR^b with the proviso that the -N(Ra)- moiety and the -OR^b moiety are not both attached to the same carbon of the -C₁₋₆ alkylene-moiety,
- (9) -N(Ra)-C(=O)-Rb,
- (10) $-N(R^a)-C(=O)-C(=O)N(R^a)R^b$,
- (11) $-N(Ra)SO_2Rb$,
- (12) $-N(Ra)SO_2N(Ra)Rb$,
- (13) -N(Ra)C(=O)N(Ra)Rb,
- (14) -OC(=O)N(Ra)Rb,
- (15) -RK,
- (16) -C(=O)-RK,
- (17) -C(=O)N(Ra)-RK,
- (18) $-C(=O)N(R^a)-C_{1-6}$ alkylene-RK,
- (19) -C₁₋₆ alkyl substituted with -RK,
- (20) $-C_{1-6}$ alkyl substituted with -C(=O)-RK,
- (21) $-C_{1-6}$ alkyl substituted with $-C(=O)N(R^a)-RK$, or
- (22) -C₁₋₆ alkyl substituted with -C(=0)N(R^a)-C₁₋₆ alkylene-R $\frac{K_{1}}{2}$
- (23) -C(-O)N(Ra)Re
- (24) -CN,
- (25) halogen,

- (26) -N(Ra)Rb, or (27) -N(Ra)CO2Rb; wherein RK is
 - (i) C₃₋₈ cycloalkyl which is optionally substituted with from 1 to 4 substituents each of which is independently halogen, <u>-OH, -C₁₋₆ alkyl, -O-C₁₋₆ alkyl, or -O-C₁₋₆ haloalkyl, CN, C₁₋₆ alkyl, OH, OC₁₋₆ alkyl, OC₁₋₆ haloalkyl, OC₁₋₆ haloalkyl, C1-6 alkylene CN, C₁₋₆ alkylene OH, or C₁₋₆ alkylene OC₁₋₆ alkylene OH, or C₁₋₆ alkylene O-C₁₋₆ alkylene OH, or C₁₋₆ alkylene OH, or C₁₋₆ alkylene O-C₁₋₆ alkylene OH, or C₁₋₆ alkylene OH, or C₁₋₆ alkylene OH, or C₁₋₆ alkylene O-C₁₋₆ alkylene OH, or C₁₋₆ alkylene</u>
 - (ii) aryl, which is optionally substituted with from 1 to 5 substituents each of which is independently -C₁₋₆ alkyl, -C₁₋₆ alkylene-OH, -C₁₋₆ alkylene-O-C₁₋₆ alkylene-O-C₁₋₆ alkylene-O-C₁₋₆ haloalkyl, -C₁₋₆ alkylene-N(Ra)Rb, -C₁₋₆ alkylene-C(=O)N(Ra)Rb, -C₁₋₆ alkylene-S(O)_nRa, -O-C₁₋₆ alkylene-C(=O)Ra, -C₁₋₆ alkylene-S(O)_nRa, -O-C₁₋₆ alkylene-S(O)_nRa, -O-C₁₋₆ alkylene-S(O)_nRa, or -N(Ra)Rb, -C(=O)N(Ra)Rb, -C(=O)Ra, -CO₂Ra, -S(O)_nRa, or -SO₂N(Ra)Rb,
 - (iii) HetK, which is a 4- to 7-membered saturated heterocyclic ring containing at least one carbon atom and from 1 to 4 heteroatoms independently selected from N, O and S, wherein the heterocyclic ring is:
 - optionally substituted with from 1 to 6 substituents each of which is independently halogen, -C₁₋₆ alkyl, -C₁₋₆ haloalkyl, -O-C₁₋₆ alkyl, -O-C₁₋₆ haloalkyl, or oxo; oxo, -C(=O)N(Ra)Rb, -C(=O)Ra, -CO₂Ra, -S(O)_nRa, or -SO₂N(Ra)Rb; and
 - (b) optionally substituted with aryl or HetC; with:
 - (1) C3_8 cycloalkyl which is optionally substituted with from 1 to 4 substituents each of which is independently halogen, CN, C1_6 alkyl, OH, O C1_6 alkyl, C1_6 haloalkyl, O C1_6 haloalkyl, C1_6 alkylene CN, C1_6 alkylene OH, or C1_6 alkylene O C1_6 alkyl,
 - (2) aryl which is optionally substituted with from 1 to 5
 substituents each of which is independently halogen, CN,
 NO2, C1-6-alkyl, C1-6 haloalkyl, OH, O-C1-6 alkyl, O-C16-haloalkyl, N(Ra)Rb, C(O)N(Ra)Rb, C(O)Ra, C(O)ORa,
 SRa, S(O)Ra, S(O)2Ra, S(O)2N(Ra)Rb,
 S(O)2N(Ra)C(O)Rb, C1-6 alkylene CN, C1-6

alkylene NO₂, C₁ 6 alkylene OH, C₁ 6 alkylene O C₁ 6 alkylene O C₁ 6 haloalkyl, C₁ 6 alkylene N(R^a)R^b, C₁ 6 alkylene C(O)N(R^a)R^b, C₁ 6 alkylene C(O)OR^a, C₁ 6 alkylene C(O)OR^a, C₁ 6 alkylene S(O)R^a, C₁ 6 alkylene S(O)R^a, C₁ 6 alkylene S(O)2R^a, C₁ 6 alkylene S(O)2N(R^a)R^b, or C₁ 6 alkylene S(O)2N(R^a)C(O)R^b, or

(3) HetC,

wherein HetC is a 5- or 6-membered heteroaromatic ring containing from 1 to 4 heteroatoms independently selected from N, O and S, wherein the heteroaromatic ring is optionally fused with a benzene ring, and the optionally fused heteroaromatic ring is optionally substituted with from 1 to 4 substituents each of which is independently -C1-6 alkyl, -C1-6 haloalkyl, -O-C1-6 alkyl, -O-C₁₋₆ haloalkyl, or hydroxy; or halogen, CN, NO₂, C₁₋₆ alkyl, C1 6 haloalkyl, OH, O-C1 6 alkyl, O-C1 6 haloalkyl, N(Ra)Rb, C(O)N(Ra)Rb, C(O)Ra, C(O)ORa, SRa, S(O)Ra, $S(O)_2Ra$, S(O)2N(Ra)Rb, S(O)2N(Ra)C(O)Rb, C1 6 alkylene-CN, C1 6 alkylene-NO2, C1_6-alkylene-OH, C1_6 alkylene-O C1_6 alkyl, C₁₋₆ alkylene O-C₁₋₆ haloalkyl, C₁₋₆ alkylene N(Ra)Rb, C₁₋₆ alkylene-C(O)N(Ra)Rb, C1-6 alkylene-C(O)Ra, C1-6 alkylene C(O)ORa, C1_6 alkylene SRa, C1_6 alkylene S(O)Ra, C1-6-alkylene-S(O)2Ra, C1-6 alkylene S(O)2N(Ra)Rb, or C1-6 alkylene S(O)2N(Ra)C(O)Rb, or

-HetL, which is a 5- or 6-membered heteroaromatic ring containing from 1 to 4 heteroatoms independently selected from N, O and S, wherein the heteroaromatic ring is optionally substituted with from 1 to 4 substituents each of which is independently halogen, -C₁₋₆ alkyl, -C₁₋₆ haloalkyl, -O-C₁₋₆ haloalkyl, or hydroxy; CN, NO₂, C₁₋₆ haloalkyl, C₁₋₆ haloalkyl, OH, O-C₁₋₆ haloalkyl, or hydroxy; CN, NO₂, C₁₋₆ alkyl, C₁₋₆ haloalkyl, N(R^a)R^b, C(O)N(R^a)R^b, C(O)R^a, C(O)OR^a, SR^a, S(O)R^a, S(O)₂R^a, S(O)₂N(R^a)R^b, S(O)₂N(R^a)C(O)R^b, C₁₋₆ alkylene CN, C₁₋₆ alkylene NO₂, C₁₋₆ alkylene O-C₁₋₆ alkylene O-C₁₋₆ alkylene O-C₁₋₆ alkylene C(O)N(R^a)R^b, C₁₋₆ alkylene C(O)N(R^a)R^b, C₁₋₆ alkylene SR^a, C₁₋₆ alkylene SR^a, C₁₋₆

alkylene S(O)R^a, C₁₋₆ alkylene S(O)₂R^a, C₁₋₆ alkylene S(O)₂N(R^a)R^b, or C₁₋₆ alkylene S(O)₂N(R^a)C(O)R^b;

R⁵ is:

- (1) -H,
- (2) -C₁₋₆ alkyl,
- -C3-8 cycloalkyl optionally substituted with from 1 to 4 substituents each of which is independently halogen, -OH, -C1-6 alkyl, -C1-6 haloalkyl, -O-C1-6 alkyl, or -O-C1-6 haloalkyl, -CN, -C1-6 alkyl, OH, O-C1-6 alkyl, -C1-6 haloalkyl, OH, O-C1-6 alkylene OH, or C1-6 alkylene OC1-6 alkylene
- -C₁₋₆ alkyl substituted with C₃₋₈ cycloalkyl, wherein the cycloalkyl is optionally substituted with from 1 to 4 substituents each of which is independently halogen, -OH, -C₁₋₆ alkyl, -C₁₋₆ haloalkyl, -O-C₁₋₆ alkyl, or -O-C₁₋₆ haloalkyl, CN, C₁₋₆ alkyl, OH, O-C₁₋₆ alkyl, C₁₋₆ haloalkyl, O-C₁₋₆ haloalkyl, C₁₋₆ alkylene CN, C₁₋₆ alkylene OH, or C₁₋₆ alkylene O-C₁₋₆ alkyl,
- -C₁₋₆ alkyl substituted with aryl, wherein the aryl is optionally substituted with (5) from 1 to 5 substituents each of which is independently -C1-6 alkyl, -C1-6 alkylene-OH, -C1-6 alkylene-O-C1-6 alkyl, -C1-6 alkylene-O-C1-6 haloalkyl, -C₁₋₆ alkylene-N(Ra)Rb, -C₁₋₆ alkylene-C(=O)N(Ra)Rb, -C₁₋₆ alkylene-C(=O)Ra, -C1-6 alkylene-CO2Ra, -C1-6 alkylene-S(O)nRa, -O-C1-6 alkyl, -C₁₋₆ haloalkyl, -O-C₁₋₆ haloalkyl, -OH, halogen, -N(Ra)Rb, $-C(=O)N(R^a)R^b$, $-C(=O)R^a$, $-CO_2R^a$, $-S(O)_nR^a$, or $-SO_2N(R^a)R^b$, or halogen, CN, NO2, C1_6 alkyl, C1_6 haloalkyl, OH, O-C1_6 alkyl, O-C1_6 haloalkyl, $N(R^a)R^b$, $C(O)N(R^a)R^b$, $C(O)R^a$, $C(O)OR^a$, SR^a , $S(O)R^a$, $S(O)_2R^a$, S(O)2N(Ra)Rb, S(O)2N(Ra)C(O)Rb, C1 6 alkylene CN, C1 6 alkylene NO2, C1 6-alkylene OH, C1 6-alkylene O-C1 6-alkyl, C1 6-alkylene O-C1 6-haloalkyl, C1-6 alkylene N(Ra)Rb, C1-6 alkylene C(O)N(Ra)Rb, C1-6 alkylene C(O)Ra, C1-6 alkylene C(O)ORa, C1-6 alkylene-SRa, C1-6 alkylene-S(O)Ra, C1-6 alkylene-S(O)2Ra, C1-6-alkylene-S(O)2N(Ra)Rb, or C1-6 alkylene-S(O)2N(RA)C(O)Rb.
- (6) -C₁₋₆ alkyl substituted with HetD, wherein HetD is:
 - (i) a 4- to 7-membered saturated heterocyclic ring containing at least one carbon atom and from 1 to 4 heteroatoms independently selected from N, O and S, wherein the heterocyclic ring is optionally substituted with from 1 to 5 substituents each of which

- is independently halogen, -C1-6 alkyl, -C1-6 haloalkyl, -O-C1-6 alkyl, -O-C1-6 haloalkyl, or oxo; oxo, -C(=O)N(Ra)Rb, -C(=O)Ra, -CO2Ra, -S(O)nRa, or -SO2N(Ra)Rb; or
- (ii) a 5- or 6-membered heteroaromatic ring containing from 1 to 4 heteroatoms independently selected from N, O and S, wherein the heteroaromatic ring is optionally substituted with from 1 to 4 substituents each of which is independently -C₁₋₆ alkyl, -C₁₋₆ haloalkyl, -O-C₁₋₆ alkyl, -O-C₁₋₆ haloalkyl, or hydroxy, ;
- aryl, which is optionally substituted with from 1 to 5 substituents each of which is independently C₁-6 alkyl, C₁-6 alkylene OH, C₁-6 alkylene O-C₁-6 alkylene O-C₁-6 alkylene O-C₁-6 alkylene N(R^a)R^b, -C₁-6 alkylene C(=O)N(R^a)R^b, C₁-6 alkylene C(=O)R^a, C₁-6 alkylene CO₂R^a, -C₁-6 alkylene S(O)_nR^a, -O-C₁-6 alkyl, C₁-6 haloalkyl, -O-C₁-6 haloalkyl, -OH, halogen, CN, NO₂, N(R^a)R^b, N(R^a)C(=O)R^b, N(R^a)C(=O)-C₁-6 haloalkyl, N(R^a)C(=O)N(R^a)R^b, N(R^a)CO₂R^b, N(R^a)S(O)_nR^b, -C(=O)N(R^d)R^e, -C(=O)R^a, CO₂R^a, S(O)_nR^a, or SO₂N(R^d)R^e,
- (8) a 5- or 6 membered heteroaromatic ring containing from 1 to 4 heteroatoms independently selected from N, O and S, wherein the heteroaromatic ring is optionally substituted with from 1 to 4 substituents each of which is independently halogen, CN, NO2, C1-6 alkyl, C1-6 haloalkyl, OH, O-C1-6 alkyl, O-C1-6 haloalkyl, N(Ra)Rb, C(O)N(Ra)Rb, C(O)Ra, C(O)ORa, SRa, S(O)Ra, S(O)2Ra, S(O)2N(Ra)Rb, S(O)2N(Ra)C(O)Rb, C1-6 alkylene-CN, C1-6 alkylene-NO2, C1-6 alkylene-OH, C1-6 alkylene-O-C1-6 alkylene-O-C1-6 alkylene-C(O)N(Ra)Rb, C1-6 alkylene-C(O)Ra, C1-6 alkylene-C(O)ORa, C1-6 alkylene-S(O)2Ra, C1-6 alkylene-S(O)2Ra, C1-6 alkylene-S(O)2Ra, C1-6 alkylene-S(O)2N(Ra)Rb, or C1-6 alkylene-S(O)2N(Ra)C(O)Rb,
- (9) C₁₋₆-alkyl-substituted with O C₁₋₆-alkyl, O C₁₋₆-haloalkyl, -CN, -N(Ra)Rb, -C(=O)N(Ra)Rb, -C(=O)Ra, -CO₂Ra, -S(O)nRa, -SO₂N(Ra)Rb, -N(Ra)Rb, -N(Ra)CO₂Rb, or N(Ra)SO₂Rb, or
- (10) -- C₁₋₆ haloalkyl;

each aryl is independently <u>phenyl</u>, <u>naphthyl</u>, <u>or indenyl</u>; <u>(i) phenyl</u>, <u>(ii) a 9 or 10 membered</u> <u>bicyclic</u>, <u>fused carbocyclic ring system in which at least one ring is aromatic</u>, <u>or (iii) an 11 to 14 membered tricyclic</u>, <u>fused carbocyclic ring system in which at least one ring is aromatic</u>;

each Ra is independently H or C1-6 alkyl;

each Rb is independently H or C1-6 alkyl; and

Re is C₁₋₆-haloalkyl or C₁₋₆-alkyl substituted with C(=O)N(Ra)Rb, C(=O)Ra, CO₂Ra, S(O)_nRa, SO₂N(Ra)Rb, N(Ra)Rb, N(Ra)C(=O)-Rb, N(Ra)CO₂Rb, or N(Ra)SO₂Rb;

each R^d and R^e are independently H or C₁₋₆ alkyl, or together with the N atom to which they are attached form a 4- to 7-membered saturated or mono-unsaturated heterocyclic ring optionally containing a heteroatom in addition to the nitrogen attached to R^d and R^e selected from N, O, and S, wherein the S is optionally oxidized to S(O) or S(O)₂, and wherein the saturated or mono-unsaturated heterocyclic ring is optionally substituted with from 1 to 4 substituents each of which is independently halogen, CN, C₁₋₆ alkyl, OH, oxo, O-C₁₋₆ alkyl, C₁₋₆ haloalkyl, C(-O)R^a, CO₂R^a, S(O)_nR^a, SO₂N(R^a)R^b, N(R^a)C(-O)-R^b, N(R^a)CO₂R^b, or N(R^a)SO₂R^b; and

each n is independently an integer equal to zero, 1, or 2.

21. (new) A compound according to claim 20, or a pharmaceutically acceptable salt thereof, wherein the compound is selected from the group consisting of:

methyl 6-(4-fluorobenzyl)-4-hydroxy-3, 5-dioxo-2,3,5,6,7,8-hexahydro-2,6-naphthyridine-1-carboxylate;

6-(4-fluorobenzyl)-4-hydroxy-*N*,*N*-dimethyl-3,5-dioxo-2,3,5,6,7,8-hexahydro-2,6-naphthyridine-1-carboxamide;

N-cyclobutyl-6-(4-fluorobenzyl)-4-hydroxy-3,5-dioxo-2,3,5,6,7,8-hexahydro-2,6-naphthyridine-1-carboxamide;

N-cyclopropyl-6-(4-fluorobenzyl)-4-hydroxy-3,5-dioxo-2,3,5,6,7,8-hexahydro-2,6-naphthyridine-1-carboxamide;

6-(4-fluorobenzyl)-4-hydroxy-*N*-isopropyl-3,5-dioxo-2,3,5,6,7,8-hexahydro-2,6-naphthyridine-1-carboxamide;

6-(4-fluorobenzyl)-4-hydroxy-N-methyl-3,5-dioxo-2,3,5,6,7,8-hexahydro-2,6-naphthyridine-1-carboxamide;

6-(4-fluorobenzyl)-4-hydroxy-3, 5-dioxo-2,3,5,6,7,8-hexahydro-2,6-naphthyridine-1-carboxylic acid;

N-[6-(4-fluorobenzyl)-3,4-dihydroxy-5-oxo-5,6,7,8-tetrahydro-2,6-naphthyridin-1-yl]-N-methylmethanesulfonamide;

N-[6-(4-fluorobenzyl)-4-hydroxy-2-methyl-3,5-dioxo-2,3,5,6,7,8-hexahydro-2,6-naphthyridin-1-yl]-N-methylacetamide;

6-(4-fluorobenzyl)-4-hydroxy-*N*, *N*, 2-trimethyl-3,5-dioxo-2,3,5,6,7,8-hexahydro-2,6-naphthyridine-1-carboxamide;

6-(3-chloro-4-fluorobenzyl)-4-hydroxy-N,N,2-trimethyl-3,5-dioxo-2,3,5,6,7,8-hexahydro-2,6-naphthyridine-1-carboxamide; and

6-(4-fluorobenzyl)-4-hydroxy-N,N,2-trimethyl-3,5-dioxo-2,3,5,6-tetrahydro-2,6-naphthyridine-1-carboxamide.