

living planet MILAN 13-17 May 2019

ESA UNCLASSIFIED - For Official Use

Early Estimate of Crop Emergence Date using Sentinel-2 over the Free State Province, South Africa

van Baalen Romain, Eweys Omar, Chirima Georges, Radoux Julien,
Newby Terry, and Defourny Pierre

Challenge

DETECTING A CROP DEVELOPMENT STAGE IN SEASON?

Current information

FIELD SURVEY FOR EMERGENCE DATE ESTIMATE EARLY IN THE SEASON

Sen2-Agri time series and derived indices

Building Sentinel-2 index time-series

+ AGRICULTURE

OBJECTIVES

Development of a generic method to estimate emergence date as early as possible in near real time based on Sentinel-2 time series (Sen2-Agri output)

- ⇒ Insurance companies, ag. services
- ⇒ Emergence date critical for yield forecasting

STUDY AREA - Free State (South-Africa)

30 000 km²

3 Sentinel-2 tiles 300 km x 100 km

Studied Sentinel-2 tiles

25 50 100 150 Kilometers

In situ observation and meteorological data

Emergence reports (from field survey)

- emergence date
- growth stage
- GPS coordinates
- crop density and row width

for 2 commercial crops: 359 fields 114 fields

Linking in situ observation and EO imagery

Field boundaries (from PICES)

EO extraction at location of field observation

Extracted samples of 1.8 ha on average

Critical because of very large field sizes and high field heterogeneity

PRINCIPLE OF EMERGENCE DATE DETECTION

Performance assessment using 6 metrics (incl. Standard Deviation and Mediane Absolute Deviation)

DETECTION METHOD – elements to benchmark

- 4 variables: NDVI MSAVI2 Hue index Leaf Area Index (LAI)
- > 2 interpolation algo. : Linear interpolation Logistic interpolation

2 Time scales: Calendar time (Julian day Thermal time (growing degree days)

RESULTS – Criteria without calibration

Maize mergence date estimation

215 samples for calibration / 108 samples for validation

No really interesting results

		MS	AVI	NI	OVI	Hue	index	L	ΑI
		calib	valid	calib	valid	calib	valid	calib	valid
	SD	19.7	19.8	17.6	14.1	12.5	37.9		
Inflection point	MAD	7.4	9.6	7.4	8.9	8.9	7.4	Not ap	plicable
	Time-lag	30.6	31.1	35.1	33.3	26.4	27.5		
	SD	14.1	16.7	12.1	15.1	13.5	12.2		
Base logistic	MAD	13.3	14.1	10.4	11.1	10.4	9.6	Not ap	plicable
	Time-lag	1.3	-2.1	8.0	5.5	5.9	5.8		
	SD	17.6	17.5	17.7	17.4	18.5	17.9	34	31.4
Maximum value	MAD	19.3	20	19.3	20.8	19.3	20	31.1	23.7
	Time-lag	96.4	94.6	96.3	94.6	97.9	95.8	79.4	78.6

SD: Standard Deviation

MAD: Mediane Absolute Deviation

RESULTS – Criteria with calibration

Maize mergence date estimation 215 samples for calib. / 108 samples for validation

		MS	AVI	ND	VI	Hue i	ndex	L	ΑI
		calib	valid	calib	valid	calib	valid	calib	valid
	SD	10.8	12.9	11.7	12.4	10.7	12.4	18.3	14.9
Absolute threshold	MAD	8.9	10.4	8.9	11.9	10.4	10.4	13.3	14.8
(linear interpolation)	Time-lag	17.0		28.5		22.7		-32.7	
	min/bias	SD	-0.9	MAD	0.9	SD	-2.3	SD	-4.5
	SD	9.8	11.6	10.2	11.6	11.1	12	21.2	18.9
Relative threshold	MAD	7.4	8.9	7.4	8.9	10.4	11.1	22.2	23.7
(linear interpolation)	Time-lag	28.3		30.4		21.9		-13.1	
	min/bias	SD	-1.2	MAD	-0.2	SD	-1.5	SD	3.2
	SD	10.2	10.5	10.7	11.5	9.3	10.3		
Absolute threshold	MAD	11.9	8.2	7.4	10.4	9.6	7.4	Not applicable	
(log. interpolation)	Time-lag	25.3		22.6		24.1			
	min/bias	SD	-1.5	MAD	-1.2	SD	-1.3		
	SD	9.4	9.6	9.0	11.8	9.3	12.1		
Relative threshold	MAD	7.4	8.2	7.4	8.2	8.2	11.1	Not on	nlicabla
(log. interpolation)	Time-lag	24.4		26.5		22.6		Not ap	plicable
	min/bias	SD	-0.6	SD	-1.6	MAD	-1.4		
	SD	13.6	14.6	17.6	17.4	13.6	13.9	11.8	12.7
Highest slope	MAD	8.9	11.1	10.4	10.4	10.4	10.4	11.8	13.3
	Time-lag	29.4	29.0	33.0	32.8	24.9	24.1	38.9	36.6

Most accurate results using MSAVI and NDVI

Relative threshold criteria

SD: Standard Deviation

MAD: Mediane Absolute Deviation

Little difference between calendar and thermal time

Differences for threshold, derivative method and model-fitting method

Strong influence of plant density and row width on NDVI but no impact on the best results (MSAVI rel. threshold)

RESULTS – similar results for 2 different years

Similar results for maize for 2016-2017 and 2015-2016

but annual calibration required

(still using only Sentinel-2a for both years)

,			
		MSAVI	
		2016-2017	2015-2016
Highest slope	SD	17.8	14.6
Tilgliest slope	MAD	17.8	7.4
	Time-lag	45.3	37.7
Inflaction point	SD	19.7	12.1
Inflection point	MAD	7.4	7.4
	Time-lag	30.6	40.2
Daga la sistia	SD	15.9	11.2
Base logistic	MAD	16.3	5.9
	Time-lag	-6.5	22.0
Maximum value	SD	17.6	21.3
Maximum value	MAD	19.3	22.2
	Time-lag	96.4	85.3
Absolute threshold	SD	10.8	13.0
	MAD	8.9	7.4
(linear interpolation)	Time-lag	17.0	27.7
Relative threshold	SD	9.8	12.8
	MAD	7.4	5.9
(linear interpolation)	Time-lag	28.3	33.2
Absolute threshold	SD	10.6	10.0
	MAD	7.4	19.3
(logistic interpolation)	Time-lag	18.9	27.5
Relative threshold	SD	9.3	10.9
(logistic interpolation)	MAD	7.4	5.9
(logistic interpolation)	Time-lag	21.0	29.0

RESULTS -

Similar results for sunflower

(Relative threshold using MSAVI but here linearly or log. interpolated)

Sunflower reports :

80 samples for calibration 34 samples for validation

H2020 - ECoLaSS

Maximum value Absolute threshold (linear interpolation) Relative threshold (linear internolation) Absolute threshold (log. interpolation) Relative threshold (log. MAD

interpolation)

Highest slope

Inflection point

Base logistic

calib
19.4
11.9
19.8
20.7
17.8
-12.2
15.9
15.6
77.7
15.5
8.9
8.35
11.7
11./
7 /
24.6
24.6
24.6 SD 15.3
24.6 SD 15.3 19.3
24.6 SD 15.3
24.6 SD 15.3 19.3
24.6 SD 15.3 19.3 8.7
24.6 SD 15.3 19.3 8.7 SD
24.6 SD 15.3 19.3 8.7 SD 13.3
24.6 SD 15.3 19.3 8.7 SD 13.3 10.4 19.6
24.6 SD 15.3 19.3 8.7 SD 13.3 10.4 19.6
24.6 SD 15.3 19.3 8.7 SD 13.3 10.4

MSAVI

SD

SD

SD

SD

SD

SD

SD

SD

MAD

MAD

MAD

MAD

MAD

MAD

Time-lag

Time-lag

Time-lag

Time-lag

Time-lag

min/bias

Time-lag

min/bias

Time-lag min/bias valid

17.9

11.9

21.4

16.0

13.3

-6.0

18.6

16.3

74.8

12.1

7.4

9.9

-1.2

10.8

10.4

2.9

10.0

8.9

2.3

12.7

12.6

NDVI

calib valid

15.1 16.4

10.4 11.9

25.1 26.0

17.6 11.6

11.9 14.8

-2.3 - 2.9

15.8 18.3

16.3 18.5

77.2 76.1

17.5 13.0

8.2 8.9

13.2 11.6

MAD -0.9

11.8 11.7

14.1 8.9

11.7 13.1

10.4 14.8

18.2 14.2

11.9 14.8

1.2

0.9

2.2

9.6

SD

8.9 6.7

26.5

22.2

SD

24.4

SD

Hue index

calib valid

22.6 10.9

13.3 7.4

16.4 14.8

26.5 19.1

14.8 5.2

-10.2 -4.5

17.8 21.5

17.0 20.0

78.0 72.3

16.7 23.2

14.8 16.3

13.3 14.1

9.6 12.6

SD -0.2

15.9 15.4

13.3 14.1

16.3 14.3 13.3 11.1

18.9 12.5

11.9 15.6

-3.6

3.1

-3.6

19.2

SD

36.5

21.3

SD

20.7

SD

LAI

Not applicable

valid

35.1

31.1

48.6

25.9

26.7

-0.5

34.3

40.0

-5.8

Not applicable

12.7

13.3

15.1

14.1

calib

Not applicable 31.7 19.3 35.8 25.2 25.2 -32.1SD 27.5 22.9 -15.1SD Not appl icable

APPLICATIONS – Maize emergence date map

APPLICATIONS – heterogeneity management precision agriculture at the pixel level

Sowing date very relevant for yield forecasting model

CONCLUSION

- Emergence date can be estimated with an accuracy of +9 days using Sentinel-2a only over a large area with a large planting window and large range of sowing densities
- Relative threshold using MSAVI time series found to be the most accurate but required to wait for the profile maximum (information delay)
 Absolute threshold using MSAVI could be used for early emergence date estimate (within the month of plant emergence) but less accurate and more sensitive to plant density
- Dense time series using Sentinel-2a and 2b with improved cloud screening could improve significantly these results (e.g. Sen2-Agri v.2.0)
- In situ data availability is the main bottleneck for developing detection algorithm of more advanced development stages (flowering, maturity) quite critical for yield.

Thank you for attention!

