Modelo SIR aplicado a la comunidad de Madrid.

Instrucciones

En esta tarea aplicaremos el modelo SIR a los datos de la comunidad de Madrid. Concretamente calcularemos el número básico de reproducción R0 y estudiaremos si la epidemia continuará expandiéndose.

Descripción de la tarea

En el recurso descargable ficheros.zip tenéis dos ficheros:

- El archivo datosCCAA.csv donde estan los datos del número de infectados, hospitalizados, fallecidos, pacientes en las UCI y recuperados (altas) (ver la variable o columna tipo) de las 17 comunidades autónomas (faltan Ceuta y Melilla) de España.
- El archivo Fichero_poblaciónCCAA.csv donde están los datos de la población o del número de habitantes de las 17 comunidades autónomas.

Pregunta 1

Cargar los datos del número deinfectados, fallecidos, hospitalizados, enfermos en las UCI y recuperados de las comunidades autónomas.

Llamarle datos a la variable de R donde habéis almacenado la información.

Usando la función select del paquete tidyverse seleccionar las variables que nos da la fecha, la comunidad autónoma, la variable total y tipo de la variable datos.

Solución

Cargamos los datos:

```
datos = read.csv("DatosCCAA.csv")
```

Los datos filtrados serán:

```
library(tidyverse)
datos.filtrados= datos %>% select(fecha,CCAA,total,tipo)
```

Pregunta 2

A partir de la variable filtrada de la pregunta anterior y usando la función filter, calcular tres tablas de datos:

- casos.Madrid que tenga las columnas o variables fecha y número de infectados de la comunidad de Madrid.
- fallecidos. Madrid que tenga las columnas o variables fecha y número de fallecidos de la comunidad de Madrid
- recuperados.Madrid que tenga las columnas o variables fecha y número de altas o recuperados de la comunidad de Madrid.

Veréis que las variables número de infectados, fallecidos y recuperados de las tres tablas de datos anteriores no tienen la misma longitud.

A partir de las tablas anteriores, crear tres vectores más que nos den los infectados, fallecidos y recuperados de la comunidad de Madrid asegurándose que tienen la misma longitud añadiendo ceros al principio de los vectores que tengan longitud menor.

Solución

Las tres tablas de datos son:

```
casos.Madrid = datos.filtrados %>%
  filter(tipo=="casos") %>%
  filter(CCAA == "Madrid") %>%
  select(fecha,total)

fallecidos.Madrid = datos.filtrados %>%
  filter(tipo=="fallecidos") %>%
  filter(CCAA == "Madrid") %>%
  select(fecha,total)

recuperados.Madrid = datos.filtrados %>%
  filter(tipo =="altas") %>%
  filter(CCAA == "Madrid") %>%
  filter(CCAA == "Madrid") %>%
  select(fecha,total)
```

Los vectores pedidos son:

Pregunta 3

A partir de la población de la comunidad de Madrid, hallar la estimación del número básico de reproducción R_0 y compararlo con el valor adecuado para estudiar si la epidemia se seguirá expandiendo o no.

Solución

Primero calculamos la población de Madrid:

```
fichero.poblaciones = read.csv("Fichero_poblaciónCCAA.csv")
población.Madrid=fichero.poblaciones[fichero.poblaciones$CCAA=="MADRID",]$Pob_CCAA_2019
```

Seguidamente calculamos el número de susceptibles a partir de los vectores creados en la pregunta anterior: susceptibles.Madrid = población.Madrid-casos.Madrid2-fallecidos.Madrid2

Para hallar la estimación de R_0 hacemos lo siguiente:

```
x=recuperados.Madrid2
y=población.Madrid*log(susceptibles.Madrid)
(estimación.RO = -summary(lm(y~x))$coefficients[2])
```

y tenemos que comparar con:

```
dia.último = length(casos.Madrid2)
```

exp(estimación.R0*recuperados.Madrid2[dia.último]/población.Madrid)

Como R_0 es mayor que el valor anterior, la epidemia se seguirá expandiendo.

Pregunta 4

Realizar el estudio de las tres preguntas anteriores para los datos de la Comunidad de Cataluña.

Solución

Basta seguir los pasos de las preguntas anteriores cambiando los datos de la comunidad de Madrid por los datos de la comunidad de Cataluña.