# ПЛН20

### ENOTHTA 3: KATHΓOPHMATIKH ΛΟΓΙΚΗ

Μάθημα 3.5: Νόμοι Κατηγορηματικής Λογικής

Δημήτρης Ψούνης



Δημήτρης Ψούνης, ΠΛΗ20, Μάθημα 3.5: Νόμοι Κατηγορηματικής Λογικής

# ΠΕΡΙΕΧΟΜΕΝΑ

#### Α. Σκοπός του Μαθήματος

#### Β.Θεωρία

- 1. Νόμοι Κατηγορηματικής Λογικής
  - 1. Η χρήση των νόμων της κατηγορηματικής λογικής
  - 2. Οι νόμοι της Κατηγορηματικής Λογικής
  - 3. Νόμοι Προτασιακής Λογικής
- 2. Κανονική Ποσοδεικτική Μορφή
  - 1. Ορισμός
  - 2. Αναγνώριση της Ποσοδεικτικής Μορφής
  - 3. Εύρεση Κανονικής Ποσοδεικτικής Μορφής
  - 4. Παραδείγματα

#### Γ.Ασκήσεις

- 1. Ερωτήσεις
- 2. Εφαρμογές

Δημήτρης Ψούνης, ΠΛΗ20, Μάθημα 3.5: Νόμοι Κατηγορηματικής Λογικής





### Α. Σκοπός του Μαθήματος

#### Επίπεδο Α

- > Νόμοι Κατηγορηματικής Λογικής
- > Εξαγωγή της Κανονικής Ποσοδεικτικής Μορφής ενός Τύπου

#### Επίπεδο Β

**>** (-)

#### Επίπεδο Γ

> (-)

Δημήτρης Ψούνης, ΠΛΗ20, Μάθημα 3.5: Νόμοι Κατηγορηματικής Λογικής



### Β. Θεωρία

- 1. Νόμοι Κατηγορηματικής Λογικής
- 1. Χρήση των Νόμων Κατηγορηματικής Λογικής
- Έχουμε 4 νόμους της κατηγορηματικής λογικής. Κάθε νόμος έχει δύο διαφορετικές χρήσεις. Π.χ. ο 1<sup>ος</sup> νόμοςάρνησης ποσοδείκτη είναι ο ακόλουθος:

 $\neg \forall x \varphi \leftrightarrow \exists x \neg \varphi$ 

- Οποιοσδήποτε τύπος της μορφής ¬∀xφ μπορεί να μετατραπεί στον ισοδύναμο τύπο: ∃x¬φ και αντίστροφα.
  - $\Pi.\chi$ . ο τύπος  $\neg \forall x P(x)$ είναι ισοδύναμος τύπος με τον $\exists x \neg P(x)$
  - Άρα χρησιμοποιούμε τους νόμους για να μετατρέψουμε τύπους σε άλλους τύπους που είναιισοδύναμοι.
    - Στην Κ.Λ. όταν λέμε ότι δύο τύποι είναι ισοδύναμοι σημαίνει ότι όταν ο ένας είναι Αληθής, τότε και ο άλλος είναι Αληθής και όταν ο ένας είναι Ψευδής τότε και άλλος είναι Ψευδής.
- 2. Ο νόμος είναι λογικά έγκυρος τύπος!
  - Όπως θα δούμε στο επόμενο μάθημα ένας λογικά έγκυρος τύπος είναι το ισοδύναμο την ταυτολογίας στην Κατηγορηματική Λογική

## Β. Θεωρία

### 1. Νόμοι Κατηγορηματικής Λογικής

#### 2. Οι νόμοι της Κατηγορηματικής Λογικής

> Οι νόμοι της κατηγορηματικής λογικής είναι οι ακόλουθοι:

|   | Όνομα Νόμου           | Διατύπωση                                                                                                                                                                                                                                                                                                       |
|---|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Άρνηση Ποσοδείκτη     | $\neg \forall x \varphi \leftrightarrow \exists x \neg \varphi$ $\neg \exists x \varphi \leftrightarrow \forall x \neg \varphi$                                                                                                                                                                                 |
| 2 | Κατανομή Ποσοδείκτη   | $\forall x (\varphi \land \psi) \leftrightarrow \forall x \varphi \land \forall x \psi$ $\exists x (\varphi \lor \psi) \leftrightarrow \exists x \varphi \lor \exists x \psi$                                                                                                                                   |
| 3 | Εναλλαγή Ποσοδεικτών  | $\forall x \forall y \varphi \leftrightarrow \forall y \forall x \varphi$<br>$\exists x \exists y \varphi \leftrightarrow \exists y \exists x \varphi$                                                                                                                                                          |
| 4 | Μετακίνηση Ποσοδείκτη | $(\varphi \to \forall x \psi) \leftrightarrow \forall x (\varphi \to \psi)$ $(\varphi \to \exists x \psi) \leftrightarrow \exists x (\varphi \to \psi)$ $(\forall x \varphi \to \psi) \leftrightarrow \exists x (\varphi \to \psi)$ $(\exists x \varphi \to \psi) \leftrightarrow \forall x (\varphi \to \psi)$ |

- > Στους παραπάνω νόμους έχουμε ότι:
  - χ,y: είναι μεταβλητές
  - φ,ψ: είναι τύποι (ατομικοί ή μη ατομικοί) της κατηγορηματικής λογικής

Δημήτρης Ψούνης, ΠΛΗ20, Μάθημα 3.5: Νόμοι Κατηγορηματικής Λογικής

www.psounis.g



### 2. Κανονική Ποσοδεικτική Μορφή

#### 1. Ορισμός

Ορισμός: Ένας τύπος φ θα λέμε ότι είναι σε κανονική ποσοδεικτική μορφή αν έχει τη μορφή:

$$Q_1y_1Q_2y_2 \dots Q_ny_n\Psi$$

- > Όπου τα:
  - $ightharpoonup Q_1, Q_2, ..., Q_n$  είναι ποσοδείκτες, δηλαδή:  $\exists$  ή  $\forall$
  - $\succ y_1, y_2, ..., y_n$  είναι μεταβλητές
  - Το Ψ είναι ανοιχτός τύπος (δεν έχει ποσοδείκτες)

Με απλά λόγια ένα τύπος είναι σε κανονική ποσοδεικτική μορφή, αν <u>μόνο</u> στην αρχή του τύπου εμφανίζονται ποσοδείκτες που δεσμεύουν όλο τον υπόλοιπο τύπο.

Παραδείγματα: Οι παρακάτω τύποι είναι σε κανονική ποσοδεικτική μορφή:

- $\forall x \exists y [P(x,y)]$
- $\forall x \forall y [P(x,y) \rightarrow R(x,y)]$
- $\exists x \forall y \forall z [P(x, w) \rightarrow R(y, z)]$

## Β. Θεωρία

### 1. Νόμοι Κατηγορηματικής Λογικής

#### 3. Νόμοι της Προτασιακής Λογικής

- Όλοι οι νόμοι της προτασιακής λογικής ισχύουν και στην κατηγορηματική λογική.
- Επαναφέρουμε το πινακάκι που είχαμε δει στο μάθημα 2.3 που χρησιμοποιούμε για να μετατρέψουμε λογικούς συνδέσμους παίρνοντας ισοδύναμες παραστάσεις.
- Θα μας φανεί χρήσιμο στην εξαγωγή της κανονικής ποσοδεικτικής μορφής ενός τύπου:

| Μετατροπή συνδέσμων       | Χρήση του νόμου                         | Νόμος                                                                                                                                     |
|---------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Από → σε ∨ και αντίστροφα | 1 <sup>ος</sup> νόμος<br>αντικατάστασης | $(\varphi \to \psi) \leftrightarrow (\neg \varphi \lor \psi)$                                                                             |
| Από → σε Λ και αντίστροφα | Νόμος άρνησης<br>συνεπαγωγής            | $\neg(\varphi \rightarrow \psi) \leftrightarrow \varphi \land \neg \psi$                                                                  |
| Από ∨ σε ∧ και αντίστροφα | NόμοιDe Morgan                          | $\neg(\varphi \lor \psi) \leftrightarrow \neg\varphi \land \neg\psi$ $\neg(\varphi \land \psi) \leftrightarrow \neg\varphi \lor \neg\psi$ |
| Από↔σε Λ, →και αντίστροφα | 2 <sup>ος</sup> νόμος<br>αντικατάστασης | $(\varphi \leftrightarrow \psi) \leftrightarrow ((\varphi \to \psi) \land (\psi \to \varphi))$                                            |

Δημήτρης Ψούνης, ΠΛΗ20, Μάθημα 3.5: Νόμοι Κατηγορηματικής Λογικής



### Β. Θεωρία

### 2. Κανονική Ποσοδεικτική Μορφή

#### 2. Αναγνώριση Κανονικής Ποσοδεικτικής Μορφής

- Μελετάμε στο παράδειγμα ποιοι από τους παρακάτω τύπους είναι σε κανονική ποσοδεικτική μορφη:
  - $\forall x [P(x) \rightarrow R(y)]$ 
    - Είναι σε Κανονική Ποσοδεικτική Μορφή.
    - Δεν έχει σημασία που έχουμε ελεύθερες μεταβλητές. Πρέπει απλά οι ποσοδείκτες να είναι μπροστά, και να δεσμεύουν όλο τον τύπο.
  - $\forall x P(x) \rightarrow \exists y R(y)$ 
    - Δεν είναι σε Κανονική Ποσοδεικτική Μορφή
    - Οι ποσοδείκτες δεν εμφανίζονται αριστερά στον τύπο.
  - $\forall x P(x) \rightarrow R(y)$ 
    - Δεν είναι σε Κανονική Ποσοδεικτική Μορφή
    - Ισχύει ο εμπειρικός κανόνας ότι η εμβέλεια ενός ποσοδείκτη που δεν καθορίζεται με παρενθέσεις, εκτείνεται μέχρι τον πρώτο διμελή σύνδεσμο που συναντά. Άρα η παρενθετοποίηση που υπονοείται είναι η ακόλουθη: ∀x [P(x)] → R(y)
  - $\forall x \exists y R(x, y) \rightarrow Q(x, y)$ 
    - Δεν είναι σε κανονική Ποσοδεικτική Μορφή.
    - H εμβέλεια των ποσοδεικτών είναι ως εξής:  $\forall x \exists y [R(x,y)] \rightarrow Q(x,y)$

## www.psounis.gr

### Β. Θεωρία

#### 2. Κανονική Ποσοδεικτική Μορφή

#### 3. Εύρεση Κανονικής Ποσοδεικτικής Μορφής

• Οι κανόνες που εφαρμόζουμε για την εύρεση της κανονικής ποσοδεικτικής μορφής:

#### ΘΕΩΡΗΜΑ:

 Κάθε τύπος είναι ταυτολογικά ισοδύναμος με έναν τύπο σε κανονική ποσοδεικτική μορφή!

#### ΜΕΘΟΔΟΛΟΓΙΑ

- Όταν μας ζητείται η κανονική ποσοδεικτική μορφή ενός τύπου εφαρμόζουμε νόμους κατηγορηματικής και προτασιακής λογικής:
  - Να φέρουμε τους ποσοδείκτες μπροστά
  - Να δεσμεύουν όλον τον τύπο
- Το πρόβλημα εντοπίζεται όταν οι ποσοδείκτες είναι στην μέση του τύπου.
  - 1. Αν έχουμε ποσοδείκτες με το ίδιο όνομα μεταβλητής, θα πρέπει να κάνουμε μετονομασία στα ονόματα, ώστε να υπάρχει μοναδική φορά σε κάθε ποσοδείκτη. Η διαδικασία αυτή λέγεται «αλφαβητική παραλλαγή» ή «μετονομασία σε υποτύπο»
  - 2. Έπειτα μετατρέπουμε τα λογικά σύμβολα σε συνεπαγωγές (με τους νόμους της προτασιακής λογικής) και έπειτα μεταφέρουμε τους ποσοδείκτες στην αρχή του τύπου με τους νόμους μετακίνησης, άρνησης και κατανομής ποσοδείκτη.

### Β. Θεωρία

#### 2. Κανονική Ποσοδεικτική Μορφή

### 4. Παραδείγματα Εύρεσης Κανονικής Ποσοδεικτικής Μορφής

```
ΠΑΡΑΔΕΙΓΜΑ 1:Να βρεθεί η κανονική ποσοδείκτη μορφή του τύπου \forall x \ P(x) \rightarrow \forall y R(y)

A' τρόπος \\ \forall x \ P(x) \rightarrow \forall y R(y) \\ \equiv \exists x \ [P(x) \rightarrow \forall y R(y)] \\ \equiv \exists x \forall y [P(x) \rightarrow R(y)]
(Εφαρμόζω το νόμο μετακίνησης ποσοδείκτη)
B' τρόπος \\ \forall x \ P(x) \rightarrow \forall y \ R(y) \\ \equiv \forall y \ [\forall x \ P(x) \rightarrow R(y)] \\ \equiv \forall y \ [\forall x \ P(x) \rightarrow R(y)] \\ \equiv \forall y \ [\forall x \ P(x) \rightarrow R(y)] \\ \equiv \forall y \ [\forall x \ P(x) \rightarrow R(y)] \\ \equiv \forall y \ [\forall x \ P(x) \rightarrow R(y)]

Συμπέρασμα: Η κανονική ποσοδεικτική μορφή ενός τύπου ΔΕΝ είναι μοναδική. Η υποχρέωση μας είναι γα βρούμε μία ποσοδεικτική μορφή που προκύπτει με σωστή
```

Επίσης η σειρά των βημάτων δεν έχει σημασία. Επιλέγουμε έναν ποσοδείκτη και κανουμε

διαδοχικές εφαρμογές νόμων μέχρι να τον βγάλουμε να δεσμεύει όλον τον τύπο.

www.psounis.g



### Β. Θεωρία

### 2. Κανονική Ποσοδεικτική Μορφή

Δημήτρης Ψούνης, ΠΛΗ20, Μάθημα 3.5: Νόμοι Κατηγορηματικής Λογικής

4. Παραδείγματα Εύρεσης Κανονικής Ποσοδεικτικής Μορφής

ΠΑΡΑΔΕΙΓΜΑ 2:Να βρεθεί η κανονική ποσοδείκτη μορφή του τύπου  $Q(c) \lor \forall x R(x,x)$ 

```
\begin{array}{ll} Q(c) \lor \forall x R(x,x) & (\text{Εφαρμόζω το νόμο διπλής άρνησης}) \\ \equiv \neg \neg Q(c) \lor \forall x R(x,x) & (\text{Εφαρμόζω 1° νόμο αντικατάστασης}) \\ \equiv \neg Q(c) \to \forall x R(x,x) & (\text{Εφαρμόζω το νόμο μετακίνησης ποσοδείκτη}) \\ \equiv \forall x [\neg Q(c) \to R(x,x)] & (\text{Εφαρμόζω το νόμο μετακίνησης ποσοδείκτη}) \end{array}
```

ΠΑΡΑΔΕΙΓΜΑ 3:Να βρεθεί η κανονική ποσοδείκτη μορφή του τύπου $\forall x Q(x) \lor \forall x R(x,x)$ 

```
\begin{array}{ll} \forall x Q(x) \lor \forall x R(x,x) & (\text{Algabitish Parallary}) \\ \equiv \forall x Q(x) \lor \forall y R(y,y) & (\text{Erarmator}) \\ \equiv \neg \neg \forall x Q(x) \lor \forall y R(y,y) & (\text{Erarmator}) \\ \equiv \neg \forall x Q(x) \to \forall y R(y,y) & (\text{Erarmator}) \\ \equiv \forall y [\neg \forall x Q(x) \to R(y,y)] & (\text{Erarmator}) \\ \equiv \forall y [\exists x \neg Q(x) \to R(y,y)] & (\text{Erarmator}) \\ \equiv \forall y \forall x [\neg Q(x) \to R(y,y)] & (\text{Erarmator}) \\ \equiv \forall y \forall x [\neg Q(x) \to R(y,y)] & (\text{Erarmator}) \\ \end{array}
```

Δημήτρης Ψούνης, ΠΛΗ20, Μάθημα 3.5: Νόμοι Κατηγορηματικής Λογικής

www.psounis.gr

### Β. Θεωρία

εφαρμογή νόμων λογικής.

### 2. Κανονική Ποσοδεικτική Μορφή

4. Παραδείγματα Εύρεσης Κανονικής Ποσοδεικτικής Μορφής

```
ΠΑΡΑΔΕΙΓΜΑ 4:Να βρεθεί η κανονική ποσοδείκτη μορφή του τύπου \exists x Q(x) \leftrightarrow R(y)
\exists x Q(x) \leftrightarrow R(y)
                                                                          (Εφαρμόζω το 2° νόμο αντικατάστασης)
                                                                          (Αλφαβητική Παραλλαγή)
\equiv [\exists x Q(x) \rightarrow R(y)] \land [R(y) \rightarrow \exists x Q(x)]
                                                                          (Εφαρμόζω το νόμο μετακίνησης ποσοδείκτη)
\equiv [\exists x Q(x) \rightarrow R(y)] \land [R(y) \rightarrow \exists z Q(z)]
                                                                          (Εφαρμόζω το νόμο μετακίνησης ποσοδείκτη)
\equiv [\exists x Q(x) \rightarrow R(y)] \land \exists z [R(y) \rightarrow Q(z)]
\equiv \forall x[Q(x) \rightarrow R(y)] \land \exists z[R(y) \rightarrow Q(z)]
                                                                          (Εφαρμόζω το νόμο διπλής άρνησης)
                                                                          (Εφαρμόζω το νόμο άρνησης συνεπαγωγής)
\equiv \forall x [Q(x) \to R(y)] \land \neg \neg \exists z [R(y) \to Q(z)]
                                                                          (Εφαρμόζω το νόμο μετακίνησης ποσοδείκτη)
\equiv \neg [\forall x [Q(x) \to R(y)] \to \neg \exists z [R(y) \to Q(z)]]
\equiv \neg \exists x [ [Q(x) \to R(y)] \to \neg \exists z [R(y) \to Q(z)]]
                                                                          (Εφαρμόζω το νόμο άρνησης ποσοδείκτη)
\equiv \forall x \neg [Q(x) \rightarrow R(y)] \rightarrow \neg \exists z [R(y) \rightarrow Q(z)]]
                                                                          (Εφαρμόζω το νόμο άρνησης ποσοδείκτη)
                                                                          (Εφαρμόζω το νόμο μετακίνησης ποσοδείκτη)
\equiv \forall x \neg [Q(x) \rightarrow R(y)] \rightarrow \forall z \neg [R(y) \rightarrow Q(z)]]
                                                                          (Εφαρμόζω το νόμο άρνησης ποσοδείκτη)
\equiv \forall x \neg \forall z [ [Q(x) \rightarrow R(y)] \rightarrow \neg [R(y) \rightarrow Q(z)]]
\equiv \forall x \exists z \neg [ [Q(x) \rightarrow R(y)] \rightarrow \neg [R(y) \rightarrow Q(z)]]
```

## <u>Γ. Ασκήσεις</u> <u>Ερωτήσεις 1</u>

Ποιες από τις παρακάτω προτάσεις αληθεύουν;

- 1. Η μεταβλητή x εμφανίζεται δεσμευμένη στον τύπο  $\forall x \forall z (P(x,y) \lor Q(x,y)) \lor \exists y P(x,y)$
- 2. Ο τύπος  $\exists x \exists y (P(x,y) \land \neg Q(x,y)) \rightarrow \forall x Q(x,x)$  είναι πρόταση
- 3. Οι τύποι  $\exists x (P(x,x) \land Q(x,x))$  και  $\exists x P(x,x) \land \exists x Q(x,x)$  είναι λογικά ισοδύναμοι
- 4. Οι τύποι  $\exists x \big( P(x,y) \rightarrow Q(x,y) \big)$  και  $\forall x P(x,y) \rightarrow Q(x,y)$  είναι λογικά ισοδύναμοι

Δημήτρης Ψούνης, ΠΛΗ20, Μάθημα 3.5: Νόμοι Κατηγορηματικής Λογικής

## <u>Γ. Ασκήσεις</u> <u>Εφαρμογή 1</u>

Βρείτε την κανονική ποσοδεικτική μορφή των τύπων:

- 1.  $P(x) \rightarrow (\exists y R(y) \rightarrow \forall z R(z))$
- 2.  $P(x) \rightarrow \forall x P(x)$
- 3.  $\forall x [\exists y Q(y) \lor \forall x Q(x) \to R(x)]$

Δημήτρης Ψούνης, ΠΛΗ20, Μάθημα 3.5: Νόμοι Κατηγορηματικής Λογικής

www neounis o



### <u>Γ. Ασκήσεις</u> Εφαρμογή 2

Βρείτε την κανονική ποσοδεικτική μορφή των τύπων:

- 1.  $\exists x P(x) \lor \exists x Q(x)$
- 2.  $\exists x P(x) \land \exists x Q(x)$

Δημήτρης Ψούνης, ΠΛΗ20, Μάθημα 3.5: Νόμοι Κατηγορηματικής Λογικής



### <u>Γ. Ασκήσεις</u> Εφαρμογή 3

Χρησιμοποιώντας τους νόμους της προτασιακής λογικής και τους νόμους των ποσοδεικτών να δείξετε ότι αν η x δεν εμφανίζεται ελεύθερη στον ψ τότε:

$$\exists x \varphi \lor \psi \equiv \exists x [\varphi \lor \psi]$$

Δημήτρης Ψούνης, ΠΛΗ2ο, Μάθημα 3.5: Νόμοι Κατηγορηματικής Λογικής



<u>Γ. Ασκήσεις</u> <u>Εφαρμογή 4</u>

Δίνεται η πρόταση  $\varphi = \forall x \ (P(x) \to \exists y \ P(y))$ . Να βρεθεί πρόταση λογικά ισοδύναμη με την άρνηση της  $\varphi$  έτσι ώστε το σύμβολο της άρνησης ( ¬ ) να εφαρμόζεται μόνο στο κατηγορηματικό σύμβολο P.

Δημήτρης Ψούνης, ΠΛΗ2ο, Μάθημα 3.5: Νόμοι Κατηγορηματικής Λογικής

www.psounis.gr

## <u>Γ. Ασκήσεις</u> <u>Εφαρμογή 5</u>

Δώστε κανονική ποσοδεικτική μορφή του τύπου  $\ \forall x P(x) \to \forall y [Q(x,y) \to \neg \forall z \, R(y,z)]$