PROGRAMACIÓN

(GRADOS EN INGENIERO MECÁNICO, ELÉCTRICO, ELECTRÓNICO INDUSTRIAL y QUÍMICO INDUSTRIAL)

Sesión	14 (Archivos con organización secuencial)					
Temporización	1 hora (no presencial)					
Objetivos	Conocer la sintaxis de C para la manipulación de estructuras	de datos en				
formativos	memoria secundaria (archivos): apertura (para lectura y par					
	lectura y escritura de componentes, cierre. Diferenciar entre	archivos de				
	texto y archivos binarios.					
	• Implementar programas modulares en lenguaje de progr	amación C.				
	Identificar y corregir errores sintácticos que surgen					
	codificación.					
	Resolver problemas sencillos con archivos de texto/binarios, aplicando					
	las operaciones básicas sobre los mismos (añadir componentes detrás					
	del último y lectura secuencial de todos los componentes). I	ntercambiar				
	información entre diferentes aplicaciones a través de a	archivos de				
	texto/binarios.					
	Conocer los algoritmos básicos de clasificación y fusió	n externas.				
	Aplicarlos a la resolución (diseño e implementación) de sub	o-problemas				
	de clasificación por diferentes criterios de datos alma					
	archivos con organización secuencial y a la comparación cruzada de los					
	componentes de diferentes archivos con diferentes objetivos.					
	Diseñar e implementar programas que resuelven problemas de					
	ingeniería usando operaciones abstractas sobre tipos abstractos de					
	datos: representar el modelo de información mediante una combinación					
	de estructuras de datos y construir operaciones complejas mediante					
	técnicas de diseño modular y programación estructurada.					
	Probar con datos operacionales la correctitud de los módulos y					
	programas desarrollados e identificar y corregir los errores lógicos que					
	surjan.					
Competencias	RD1: Poseer y comprender conocimientos	X				
a desarrollar	RD2: Aplicación de conocimientos	X				
	UAL1: Conocimientos básicos de la profesión	X				
	UAL3: Capacidad para resolver problemas	Х				
	UAL6: Trabajo en equipo	V				
	FB3: Conocimientos básicos sobre el uso y programación de	Х				
	los ordenadores, sistemas operativos, bases de datos y					
	programas informáticos con aplicación en la ingeniería.					
Materiales	Sesiones de teoría 13 y 14 + Bibliografía tema 5 + Internet					
	Algoritmos de clasificación externa (implementados en C)					
	Archivos con datos de prueba					
_	IDEs: Dev-C++/Code::Blocks (freeware)					
Tarea	Desarrollar los dos programas propuestos en esta ficha de	e trabajo y				
	presentar un informe según modelo que se adjunta.					
Fecha de	Siguiente sesión del Grupo de Trabajo.					
entrega						

Criterios de	Terminar en el tiempo previsto la tarea.				
éxito	Demostrar, en una prueba escrita u oral, mediante las respuestas a las				
CAICO	·				
	preguntas del profesor que ha alcanzado los objetivos fo	rmativos.			
Plan de	Actividad	Temporización			
trabajo	Diseño de los sub-algoritmos correspondientes a cada uno	30 mn			
	de los ejercicios propuestos. Nota: puede simultanear esta				
	actividad con las dos siguientes (para cada ejercicio).				
	Implementación en lenguaje C de los sub-programas	20 mn			
	correspondientes a los algoritmos diseñados.				
	Pruebas: los programas desarrollados serán validados	5 mn			
	utilizando como mínimo los datos de prueba				
	suministrados. Nota: en caso de detectar errores en esta				
	fase de pruebas, estos deberán ser corregidos				
	modificando el código fuente y/o el algoritmo				
	correspondiente.				
	Elaboración de la documentación a presentar según	5 mn			
	modelo adjunto, así como de la respuesta a las cuestiones				
	planteadas en el mismo.				

Ejercicios: desarrollo de programas

Ejercicio 1	Una estación meteorológica está monitorizando el tiempo atmosférico mediante				
	un conjunto de sensores que miden la temperatura (en grados centígrados), la				
	presión barométrica (mm de mercurio), la velocidad del viento (m/sg) y la				
	humedad relativa (en %). Construir un programa que muestre en pantalla la				
	información suministrada por los sensores, actualizándose cada 5 segundos.				
	Además presentará los valores máximos y mínimos de la temperatura, así como				
	la media aritmética de las últimas 10 medidas registradas. También presentará				
	un mensaje indicando si la presión atmosférica está aumentando, disminuyendo				
	o se mantiene igual tras las 3 últimas lecturas. Nota: la lectura de los sensores se				
	simulará mediante un archivo binario que contiene el registro meteorológico de				
	un intervalo de tiempo dado.				
Datos de	Archivo de datos (para simular las medidas): <i>meteoro.dat</i>				
prueba	Estructura del archivo :				
	Temperatura (ºC): real (simple precisión)				
	Presión atmosférica (mm de Hg): real (simple precisión)				
	Velocidad del viento (m/sg): real (simple precisión)				
	Humedad relativa (%): real (simple precisión)				
	El archivo de prueba contiene 30 registros, permitiendo simular una				
	secuencia de tiempo de 150 sg (2mn 30 sg). Los datos que contiene son:				
	1.0 2.0 3.0 4.0				
	1.1 2.1 3.1 4.1				
	1.2 2.2 3.2 4.2				
	1.3 2.3 3.3 4.3				
	1.4 2.4 3.4 4.4				
	1.5 2.5 3.5 4.5				
	1.6 2.6 3.6 4.6				
	1.7 2.7 3.7 4.7				

```
1.8 2.8 3.8 4.8
              1.9 2.9 3.9 4.9
              1.9 2.9 3.9 4.9
              1.9 2.9 3.9 4.9
              1.9 2.9 3.9 4.9
              1.9 2.9 3.9 4.9
              1.9 2.9 3.9 4.9
              1.9 2.9 3.9 4.9
              1.9 2.9 3.9 4.9
              1.9 2.9 3.9 4.9
              1.9 2.9 3.9 4.9
              1.9 2.9 3.9 4.9
              1.9 2.9 3.9 4.9
              1.8 2.8 3.8 4.8
              1.7 2.7 3.7 4.7
              1.6 2.6 3.6 4.6
              1.5 2.5 3.5 4.5
              1.4 2.4 3.4 4.4
              1.3 2.3 3.3 4.3
              1.2 2.2 3.2 4.2
              1.1 2.1 3.1 4.1
              1.0 2.0 3.0 4.0
    Ejemplos en diferentes instantes de tiempo:
t=0 sg
              ESTACION METEOROLOGICA
    _____
    Wed May 31 19:39:50 2006
    _____
    Temperatura (°c):
                                 2.00
    Presion atmosferica (mm de Hg):
    Velocidad del viento (m/sg):
                                  3.00
                                  4.00
    Humedad relativa (%):
    _____
    Evolucion de la temperatura:
         Temperatura maxima:
                                 1.00
         Temperatura minima:
                                 1.00
         Temperatura media (10 u.l.): 1.00
    _____
    Evolucion de la presion atmosferica:
         Datos de presion insuficientes
t=25 sg
        ESTACION METEOROLOGICA
    _____
    Wed May 31 19:40:15 2006
    _____
    Temperatura (°c):
    Presion atmosferica (mm de Hg):
    Velocidad del viento (m/sg):
    Humedad relativa (%):
    Evolucion de la temperatura:
         Temperatura maxima:
                                 1.50
         Temperatura minima: 1.00
Temperatura media (10 u.l.): 1.25
    _____
    Evolucion de la presion atmosferica:
```

```
La presion esta aumentando
t=50 sg
       ESTACION METEOROLOGICA
    _____
    Wed May 31 19:40:40 2006
    _____
    Temperatura (°c):
    Presion atmosferica (mm de Hg):
                             2.90
    Velocidad del viento (m/sg):
                             3.90
    Humedad relativa (%):
                             4.90
    Evolucion de la temperatura:
        Temperatura maxima:
                             1.00
        Temperatura minima:
        Temperatura media (10 u.l.): 1.54
    _____
    Evolucion de la presion atmosferica:
        La presion esta aumentando
t=75 sg
     ESTACION METEOROLOGICA
     _____
    Wed May 31 19:41:05 2006
    Temperatura (°c):
    Presion atmosferica (mm de Hg):
    Velocidad del viento (m/sg):
    Humedad relativa (%):
    _____
    Evolucion de la temperatura:
        Temperatura maxima:
       Temperatura media (10 u.l.): 1.84
    _____
    Evolucion de la presion atmosferica:
        La presion se mantiene estacionaria
t=100 sg
           ESTACION METEOROLOGICA
    _____
    Wed May 31 19:41:30 2006
    _____
    Temperatura (°c):
    Presion atmosferica (mm de Hg):
    Velocidad del viento (m/sq):
    Humedad relativa (%):
    _____
    Evolucion de la temperatura:
        Temperatura maxima:
        Temperatura minima:
                             1.00
        Temperatura media (10 u.l.): 1.90
    _____
    Evolucion de la presion atmosferica:
        La presion se mantiene estacionaria
t=125 sg
            ESTACION METEOROLOGICA
    _____
    Wed May 31 19:41:55 2006
```

```
Temperatura (°c):
Presion atmosferica (mm de Hg):
                             2.40
Velocidad del viento (m/sg):
                             3.40
Humedad relativa (%):
                             4.40
______
Evolucion de la temperatura:
    Temperatura maxima:
                             1.90
    Temperatura minima:
                             1.00
    Temperatura media (10 u.l.): 1.75
______
Evolucion de la presion atmosferica:
    la presion esta disminuyendo
```

Nota: funciones para control del tiempo:

Ejercicio 2

Considerar los siguientes archivos donde se han almacenado las medidas registradas por un escáner industrial de una pieza plana de mármol en las diferentes cuadrículas de un retículo rectangular que incluye la pieza:

pieza.cfg

№ filas: entero

№ columnas: entero

Tamaño cuadrícula (cm): real

pieza.dat

Medida: entero (0,1)

Las medidas se han tomado en cuadrículas de 25 cm de lado y los valores posibles son 0 ó 1, correspondiendo el valor 1 a una cuadrícula con mármol de calidad aceptable y el valor 0 a una cuadrícula con material defectuoso (sin material, incompleto, con impurezas,...). Ejemplo:

		Nº Columna				
		1	2	თ	4	5
	1	0	1	1	1	1
<u>a</u>	2	0	1	0	1	0
Nº Fila	3	0	1	1	1	0
Ž	4	0	1	1	1	0
	5	0	0	0	0	0

pieza.cfg ={5,5,25,EOF} pieza.dat = {0,0,0,0,0,1,1,1,1,0,1,0,1,1,0,1,1,1,1,0,0,0,0,0,EOF}

El archivo pieza.cfg contiene un solo registro con el nº de filas y de columnas del retículo rectangular con datos (considerar un máximo de 100 en ambas

direcciones), y el archivo pieza.dat contiene las medidas de las diferentes cuadrículas, almacenadas por columnas empezando por la esquina superior izquierda.

Construir un programa que dados dichos archivos genere un tercer archivo que contenga todas las piezas cuadradas, de dimensiones múltiplos de 25 cm y en posición estándar, que se pueden extraer de la misma, empezando por las de mayor tamaño posible, y con el siguiente formato:

Nº fila: entero Nº columna: entero Ancho: entero Largo: entero

Ej: pieza.ext = $\{\{3,2,3,2\},\{1,2,4,1\},\{2,2,1,1\},\{2,4,1,1\},EOF\}$

	· ·		
Datos de	Pieza.cfg	Pieza.dat	Pieza.ext
prueba	5 5 25.0	00000	3232
		11110	1241
		10110	2211
		11110	2411
		10000	

Nota: construir manualmente dos archivos de texto con los datos del ejemplo.

Asignatura	Programación		
Plan de Estudios	Grados en Ingeniero Mecánico, Eléctrico, Electró	nico Indu	ıstrial y
	Químico Industrial		
Actividad	Trabajo individual	Sesión	14
Tiempo empleado			

Apellidos, nombre	DNI	Firma

1.- Documentación del diseño y de la implementación de los programas desarrollados.

Documentar de forma adecuada los productos de ingeniería obtenidos en las fases principales de desarrollo de los sub-programas de esta práctica: para el diseño utilizar la notación formal de pseudo-código propuesta en las clases de teoría y para la codificación utilizar directamente el listado fuente en lenguaje C. **Ejercicio** (enunciado del ejercicio) Diseño Archivos de datos externos usados: (nombre físico, estructura y organización) preliminar Diseño de datos: (nuevas tipologías) Estructura del programa: (diagrama de módulos) Interfaces entre módulos: (nombre + lista de parámetros formales) **Ejercicio** Diseño preliminar

2.- Resultados de aprendizaje (reflexión): marque con una cruz los objetivos que cree haber alcanzado tras realizar esta actividad, y rellene en el campo de observaciones aquellos aspectos que cree que necesita mejorar (si los hubiera):

	Objetivos formativos	Cumplimiento
•	Conocer la sintaxis de C para la manipulación de estructuras de datos en memoria secundaria (archivos): apertura (para lectura y para escritura), lectura y escritura de componentes, cierre. Diferenciar entre archivos de texto y archivos binarios.	
•	Implementar programas modulares en lenguaje de programación C. Identificar y corregir errores sintácticos que surgen durante la codificación.	
•	Resolver problemas sencillos con archivos de texto/binarios, aplicando las operaciones básicas sobre los mismos (añadir componentes detrás del último y lectura secuencial de todos los componentes). Intercambiar información entre diferentes aplicaciones a través de archivos de texto/binarios.	
•	Conocer los algoritmos básicos de clasificación y fusión externas. Aplicarlos a la resolución (diseño e implementación) de sub-problemas de clasificación por diferentes criterios con datos almacenados en archivos	

con organización secuencial y a la comparación de los componentes de diferentes archivos con diferentes objetivos.

• Diseñar e implementar programas que resuelven problemas de ingeniería usando operaciones abstractas sobre tipos abstractos de datos: representar el modelo de información mediante una combinación de estructuras de datos y construir operaciones complejas mediante técnicas de diseño modular y programación estructurada.

• Probar con datos operacionales la correctitud de los módulos y programas desarrollados e identificar y corregir los errores lógicos que surjan.

Observaciones