Undecidability of the Halting Problem

Meenakshi D'Souza

International Institute of Information Technology Bangalore.

Term I 2022-23

Universal Turing machine

- A Universal Turing Machine is a TM that can simulate another TM whose description is presented as a part of its input.
- We can construct a TM U that takes the encoding of a TM M and its input x, and "interprets" M on the input x.
- U accepts if M accepts x, rejects if M rejects x, and loops if M loops on x.

Encoding a TM as a $\{0,1\}$ -string

 $0^{n}10^{m}10^{k}10^{s}10^{t}10^{t}10^{t}10^{t}10^{u}10^{v} \ 1 \ 0^{p}10^{a}10^{q}10^{b}10 \ 1 \ 0^{p'}10^{a'}10^{a'}10^{b'}100 \ \cdots \ 1 \ 0^{p''}10^{a''}10^{a''}10^{b''}10.$

represents a TM M with

- states $\{1, 2, ..., n\}$.
- Tape alphabet $\{1, 2, \ldots, m\}$.
- Input alphabet $\{1, 2, \dots, k\}$, k < m.
- Start state $s \in \{1, 2, \dots, n\}$.
- Accept state $t \in \{1, 2, ..., n\}$.
- Reject state $r \in \{1, 2, ..., n\}$.
- Left-end marker symbol $u \in \{k+1, \ldots, m\}$.
- Blank symbol $v \in \{k+1, \ldots, m\}$.
- Each string $0^p 10^a 10^q 10^b 10$ represents the transition $(p, a) \rightarrow (q, b, L)$.

Example encoding of TM and its input

Input is encoded as $0^{a}10^{b}10^{c}$ etc. What does the following TM do on input 001010?

Working of a universal Turing machine

- Use 3 tapes: for input M#x, for current configuration, and for current state and position of head.
- Repeat:
 - \bullet Execute the transition of M applicable in the current config.
- Accept if M gets into t state, Reject if M gets into r state.
- $L(U) = \{M \# x \mid x \in L(M)\}.$

Diagonalization

- A technique used by Cantor 1874!
- Cantor's Theorem: There **does not** exist a one-to-one correspondence between the natural numbers $\mathbb N$ and its power set $2^{\mathbb N}=\{A\mid A\subseteq \mathbb N\}$.
- In fact, we can show that there **does not** even exist a function $f: \mathbb{N} \to 2^{\mathbb{N}}$ that is onto.

Diagonalization

- Proof is by contradiction: Suppose such an onto function f did exist.
- Define an infinite two-dimensional matrix indexed along the top by natural numbers $0, 1, 2, \ldots$ and down the left by the sets $f(0), f(1), \ldots$
- The matrix is filled by placing a 1 in position i, j if j is in the set f(i) and 0 if $j \notin f(i)$.

Cantor's Proof

Example:

	0	1	2	3	4	5	6	7	8	
f(0)	1	0	0	1	1	0	1	0	1	
f(1)	1	1	0	1	0	0	0	1	0	
f(2)	0	0	0	1	1	1	1	1	1	
f(3)	1	0	1	0	0	0	0	0	0	
f(4)	0	0	1	1	1	1	1	0	1	
f(5)	1	1	0	1	1	1	0	0	0	
f(6)	0	0	1	1	1	1	1	1	1	
f(7)	0	0	1	0	0	0	1	1	1	
:										

- The *i*th row of the matrix is a bit string describing the set f(i).
- Since f is onto (by our assumption), every subset of \mathbb{N} appears as a row of this matrix.

Cantor's Proof

- Look at the infinite bit string down the main diagonal of the matrix and take its Boolean complement.
- This new bit string represents a set B that does not appear anywhere in the list down the left side of the matrix, since it differs from every f(i) on the element i.
 - In this example, it will be the string 00110000... representing the set $B = \{2, 3, ...\}$.
- This is a contradiction, since every subset of $\mathbb N$ was supposed to occur as a row of the matrix, by our assumption that f was onto.

Diagonalization: Generalized

- Cantor's theorem can be generalized to any set A.
- Suppose (for a contradiction) there existed an onto function $f: A \to 2^A$. Let

$$B = \{x \in A \mid x \notin f(x)\}$$

Then $B \subseteq A$.

Since f is onto, there must exist $y \in A$ such that f(y) = B. Now,

$$y \in f(y) \Leftrightarrow y \in B \Leftrightarrow y \notin f(y)$$
.

Thus, no such f can exist.

Halting Problem for Turing machines

- Fix an encoding enc of TM's as above.
- Define the language

$$\mathsf{HP} = \{ enc(M) \# enc(x) \mid M \text{ halts on } x \}.$$

Undecidability of HP

Theorem (Turing)

The language HP is not recursive.

Proving undecidability of HP

Assume that we have a Turing machine M which decides HP. Then we can compute the entries of the table below:

	$ \epsilon $	0	1	00	01	10	11	000	001	010	011	111	
M_{ϵ}	L	Н	L	L	L	Н	Н	L	L	L	L	L	
M_0	L	L	L	L	L	L	L	L	L	L	L	L	
M_1	Н	Н	L	Н	L	Н	Н	L	L	Н	L	Н	
M_{00}	L	L	L	L	L	L	L	L	L	L	L	L	
M_{01}	L	Н	L	L	L	Н	Н	L	L	L	L	L	
M_{10}	Н	Н	L	Н	L	Н	Н	L	L	Н	L	Н	
M_{11}	L	Н	L	L	L	Н	Н	L	L	L	L	L	
M_{000}	L	L	L	L	L	L	Н	L	L	L	Н	L	
	l												

- For each $x \in \{0,1\}^*$ let M_x denote the TM
 - M, if x is the encoding of TM M with input alphabet 0, 1.
 - M_{loop} otherwise, where M_{loop} is 1-state turing machine that loops on all its inputs.

A TM N that behaves differently from all TM's

Let us assume we have a TM M that decides HP. Then we can define a TM N as follows: Given input $x \in \{0,1\}^*$, it

- runs as M on $M_x \# x$.
- If M accepts (i.e. M_x halts on x), goes to a new "looping" state and loops there.
- If M rejects (i.e. M_x loops on x), goes to the accept state.

N essentially "complements the diagonal" of the table: Given input $x \in \{0,1\}^*$ it halts iff M_x loops on x.

Consider y = enc(N). Then y cannot occur as any row of the table since the behaviour of N differs from all rows in the table. This is a contradiction.

Complement of HP is not r.e.,

Fact: If L and \overline{L} are both r.e. then L (and \overline{L}) must be recursive.

- Let M accept L and M' accept \overline{L} .
- We can construct a total TM that simulates M and M' on given input, one step at a time.
- ullet Accept if M accepts, Reject if M' accepts.

Corollary

The language ¬HP is not even recursively enumerable.

Where HP lies

