2.1

\mathbf{a}

A nonlinear transfer function gives the neural network a universal property: Given enough layers and neurons, the network can model any function within a certain accuracy. In a network with a linear transfer function we can only compute a linear function. A network with a linear transfer function of n layers will always be equivalent to a network with only one layer: linear functions can always be concatinated.

Whenever the function that we are trying to model isn't a linear function, it is useful to use a nonlinear transfer function. Examples include image classification or speech recognition.

b

Consider a simple neural network with two input neurons that can both either be 0 or 1 and one output layer. We want to construct an AND gate with our network, so without bias our quest would be to find $w = (w_1, w_2)$ such that:

$$0 \le 0$$

$$w_1 \le 0$$

$$w_2 \le 0$$

$$w_1 + w_2 > 0$$

which is impossible. We can easily however create the network with a bias, if we have the weights w = (1,1) and the bias $\theta = \frac{3}{2}$. Then $sgn(w^Tx - \theta)$ would give us AND.

C

Point and edge filters are for example a connectionist neuron which gets values of a scalar field as input, that represent the color of each pixel or the color gradient or even a higher derivative and has weights in the following form: In the simple case of two colors (0 and 1) this point filter would return

zero for no point, 1 or -1 for a point in the outer region and 8 or -8 if the point is in the middle. This goes analogously for the other filter.

\mathbf{d}

The first is deterministic and the second has a noise parameter and can return different states for set parameters and a given input.

2.2

The code for this assignment can be found in the file $2_2.py$

 \mathbf{a}

Figure 1: Input data, x[1] against x[0] colored according to y value

b

performance for various w-angles.png

Figure 2: Classification performance given by $sign(w\cdot x)$ for varying angles determining w

 \mathbf{c}

The weight vector giving us the best performance is w=(0.93969262,0.34202014) if we optimize it without respect to θ .

 \mathbf{d}

Figure 3: Classification performance with w and theta optimized separately The weight vector w is colored pink in the figure, and it is perpendiculair to the line along which a lot of x are classified. w*x gives us a measure of how far away our points, x are from this line. If we optimize w and θ one after another we get a p=0.805 classification rate and an optimal $\theta=0.135135135135$.

 \mathbf{e}

If we optimize w and theta one after another we get a p=0.915 classification rate with optimal parameters w=(0.64278761,0.76604444) and $\theta=0.339339339339$

2.3

\mathbf{a}

A MLP could decide between a horizontal and a vertical edge, whereas a perceptionist neuron would either be able to differ between vertical edge or no vertical edge OR horizontal edge or no horizontal edge.

\mathbf{b}

Figure 4: functions computed with normally distributed a_i with a standard deviation of 2

 \mathbf{c}

Figure 5: functions computed with normally distributed a_i with a standard deviation of 2

c + bonus

Figure 6: functions computed with normally distributed \boldsymbol{a}_i with a standard deviation of 0.5

Figure 7: functions with least mean square error from f(x)=-x, computed with an std of 2 (green) and 0.5 (blue)