Inequalities Notes

Abror Maksudov

Last Updated: May 19, 2025

Contents

1	Introduction					
2	Definitions					
	2.1	Majorization	2			
	2.2	Convex Function	2			
3	Inequalities 3					
	3.1	•	3			
	3.2		3			
	3.3		4			
	3.4		4			
	3.5		5			
	3.6		5			
	3.7		5			
	3.8		6			
	3.9	Popoviciu's Inequality	6			
	3.10		7			
			7			
	3.12	Muirhead's Inequality	7			
			7			
			7			
	3.15	Generalized Minkowski Inequality	7			
	3.16	Chebyshev's Sum Inequality	7			
			7			
			7			
			7			
			7			
			7			
			7			
			7			
	3.24	Heinz Inequality	7			
	3.25	Nesbitt's Inequality	7			
			7			
			7			
4	Sele	ected Inequalities	7			

5	Proofs		
	5.1	Proof of AM-GM Inequality using Induction	7
	5.2	Proof of AM-GM Inequality using Forward-Backward Induction (a.k.a. Cauchy	
		Induction)	8
	5.3	Proof of AM-GM Inequality using Jensen's Method	9
6	Sele	ected Problems	9

1 Introduction

2 Definitions

2.1 Majorization

Let $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$ be non-increasing sequences of real numbers. Then x is said to majorize y, denoted $x \succ y$, if the following conditions are satisfied:

1.
$$x_1 \ge x_2 \ge \cdots \ge x_n$$
 and $y_1 \ge y_2 \ge \cdots \ge y_n$;

2.
$$\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i;$$

3.
$$\sum_{i=1}^{k} x_i \ge \sum_{i=1}^{k} y_i$$
 for all $k = 1, 2, \dots, n-1$.

Example: $(3,1,0) \succ (2,1,1), (12,0,0) \succ (4,4,4).$

2.2 Convex Function

A function $f:[a,b]\to\mathbb{R}$ is called *convex* (concave up) on [a,b] if and only if for all $x,y\in[a,b]$ and all $\lambda\in[0,1]$, the following inequality holds:

$$\lambda f(x) + (1 - \lambda)f(y) \ge f(\lambda x + (1 - \lambda)y).$$

A function is called *concave* (concave down) if the inequality is flipped.

Additionally, convexity (concavity) can be determined by checking if $f''(x) \ge 0$ ($f''(x) \le 0$) holds for all $x \in [a, b]$.

Note that f is convex if and only if -f is concave.

Example (convex): x^2, e^x . Example (concave): $\ln x, \sqrt{x}$.

3 Inequalities

3.1 AM-GM Inequality

Let $a_1, a_2, \ldots, a_n > 0$. Then, the following inequality holds:

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 a_2 \dots a_n},$$

with equality if and only if $a_1 = a_2 = \cdots = a_n$. More precisely,

$$\frac{1}{n}\sum_{i=1}^{n}a_{i} \geq \sqrt[n]{\prod_{i=1}^{n}a_{i}}.$$

Example: $\frac{a+b+c}{3} \ge \sqrt[3]{abc}$.

3.2 Weighted AM-GM Inequality

Let $a_1, a_2, \ldots, a_n > 0$ and w_1, w_2, \ldots, w_n be positive integers. Then, by AM-GM we have:

$$\underbrace{\frac{a_1+a_1+\cdots+a_1}{w_1}}_{w_1} + \underbrace{\frac{a_2+a_2+\cdots+a_2}{w_2}}_{w_2} + \cdots + \underbrace{\frac{a_n+a_n+\cdots+a_n}{w_n}}_{w_n}$$

$$\geq \left(\underbrace{a_1a_1\dots a_1}_{w_1}\underbrace{a_2a_2\dots a_2}_{w_2}\dots\underbrace{a_na_n\dots a_n}_{w_n}\right)^{\frac{1}{w_1+w_2+\cdots+w_n}}$$

The above is equivalent to the following

$$\frac{w_1 a_1 + w_2 a_2 + \dots + w_n a_n}{w_1 + w_2 + \dots + w_n} \ge (a_1^{w_1} a_2^{w_2} \dots a_n^{w_n})^{\frac{1}{w_1 + w_2 + \dots + w_n}}.$$

More precisely,

$$\frac{\sum_{i=1}^{n} w_i a_i}{\sum_{i=1}^{n} w_i} \ge \left(\prod_{i=1}^{n} a_i^{w_i}\right)^{\frac{1}{\sum_{i=1}^{n} w_i}}$$

If we let $w_1, w_2, \dots, w_n \ge 0$ with $w_1 + w_2 + \dots + w_n = 1$, we have:

$$w_1a_1 + w_2a_2 + \dots + w_na_n \ge a_1^{w_1}a_2^{w_2}\dots a_n^{w_n},$$

or, more precisely,

$$\sum_{i=1}^{n} w_i a_i \ge \prod_{i=1}^{n} a_i^{w_i}.$$

3

Example: $\frac{3a+2b+c}{6} \ge \sqrt[6]{a^3b^2c}$.

3.3 Power Mean Inequality

Let $a_1, a_2, \ldots, a_n > 0$. Then, the r-th power mean is defined as:

$$\mathcal{P}(r) = \begin{cases} \left(\frac{a_1^r + \dots + a_n^r}{n}\right)^{1/r} & r \neq 0, \\ \sqrt[n]{a_1 a_2 \dots a_n} & r = 0. \end{cases}$$

Example:

•
$$r = -1$$
:
$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} = \frac{n}{\sum_{i=1}^n \frac{1}{a_i}}$$
 (Harmonic Mean)

•
$$r = 0$$
:
$$\sqrt[n]{a_1 a_2 \dots a_n} = \left(\prod_{i=1}^n a_i\right)^{\frac{1}{n}}$$
 (Geomteric Mean)

•
$$r = 1$$
:
$$\frac{a_1 + a_2 + \dots + a_n}{n} = \frac{1}{n} \sum_{i=1}^{n} a_i$$
 (Arithmetic Mean)

•
$$r=2$$
:
$$\sqrt{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}} = \sqrt{\frac{\sum_{i=1}^n a_i^2}{n}}$$
 (Quadratic Mean)

If r > s, then

$$\mathcal{P}(r) \ge \mathcal{P}(s)$$

with equality if and only if $a_1 = a_2 = \cdots = a_n$.

Example:
$$\mathcal{P}(2) \ge \mathcal{P}(1) \iff \sqrt{\frac{a^2+b^2}{2}} \ge \frac{a+b}{2}$$
.

3.4 Weighted Power Mean Inequality

Let $a_1, a_2, \ldots a_n > 0$ and $w_1, w_2, \ldots, w_n \ge 0$ with $w_1 + w_2 + \cdots + w_n = 1$. Then, the r-th weighted power mean is defined as:

$$\mathcal{P}(r) = \begin{cases} (w_1 a_1^r + w_2 a_2^r + \dots + w_n a_n^r)^{1/r} & r \neq 0, \\ a_1^{w_1} a_2^{w_2} \dots a_n^{w_n} & r = 0. \end{cases}$$

Similarly, if r > s, then

$$\mathcal{P}(r) > \mathcal{P}(s)$$

with equality if and only if $a_1 = a_2 = \cdots = a_n$.

Example: $(\frac{1}{6}a^3 + \frac{1}{3}b^3 + \frac{1}{2}c^3)^{1/3} \ge a^{1/6}b^{1/3}c^{1/2}$.

3.5 HM-GM-AM-QM Inequalities

Let $a_1, a_2, ..., a_n > 0$. Then:

$$0 < HM \le GM \le AM \le QM$$

$$0 < \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \le \sqrt[n]{a_1 a_2 \dots a_n} \le \frac{a_1 + a_2 + \dots + a_n}{n} \le \sqrt{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}}.$$

More precisely,

$$0 < \frac{n}{\sum_{i=1}^{n} \frac{1}{a_i}} \le \sqrt[n]{\prod_{i=1}^{n} a_i} \le \frac{1}{n} \sum_{i=1}^{n} a_i \le \sqrt{\frac{\sum_{i=1}^{n} a_i^2}{n}}.$$

Example: $\frac{2ab}{a+b} \le \sqrt{ab} \le \frac{a+b}{2} \le \sqrt{\frac{a^2+b^2}{2}}$.

3.6 Bernoulli's Inequality

For all $x \ge -1$ and $r \ge 1$:

$$(1+x)^r \ge 1 + rx.$$

Example: $(1+x)^5 \ge 1 + 5x$.

3.7 Jensen's Inequality

If f is convex, then:

$$\frac{f(a_1) + f(a_2) + \dots + f(a_n)}{n} \ge f\left(\frac{a_1 + a_2 + \dots + a_n}{n}\right)$$

with equality if and only if f is linear or $a_1 = a_2 = \cdots = a_n$.

If we let $w_1, w_2, \ldots, w_n \ge 0$ with $w_1 + w_2 + \cdots + w_n = 1$, we have:

$$w_1 f(a_1) + w_2 f(a_2) + \dots + w_n f(a_n) \ge f(w_1 a_1 + w_2 a_2 + \dots + w_n a_n),$$

or, more precisely,

$$\sum_{i=1}^{n} w_i f(a_i) \ge f\left(\sum_{i=1}^{n} w_i a_i\right).$$

The inequality is reversed if f is concave.

Example: $\sqrt{\frac{x+y}{2}} \ge \frac{\sqrt{x}+\sqrt{y}}{2}$.

3.8 Karamata's Inequality

If f is convex, and (a_i) majorizes (b_i) , then:

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge f(b_1) + f(b_2) + \dots + f(b_n),$$

or, more precisely,

$$\sum_{i=1}^{n} f(a_i) \ge \sum_{i=1}^{n} f(b_i).$$

The inequality is reversed if f is concave.

Example: $f(x) = x^2 \implies (4)^2 + (1)^2 \ge (2.5)^2 + (2.5)^2 \implies 17 \ge 12.5$.

3.9 Popoviciu's Inequality

If f is convex, and a, b, c > 0, then:

$$af(x) + bf(y) + cf(z) + (a+b+c)f\left(\frac{ax + by + cz}{a+b+c}\right) \ge$$

$$(a+b)f\left(\frac{ax + by}{a+b}\right) + (b+c)f\left(\frac{by + cz}{b+c}\right) + (c+a)f\left(\frac{cz + ax}{c+a}\right)$$

Particularly, if a = b = c = 1, we have:

$$\frac{f(x)+f(y)+f(c)}{3}+f\left(\frac{x+y+z}{3}\right)\geq \frac{2}{3}\left[f\left(\frac{x+y}{2}\right)+f\left(\frac{y+z}{2}\right)+f\left(\frac{z+x}{2}\right)\right].$$

Equality holds if and only if f is linear or x = y = z.

Example:
$$f(x) = x^2 \implies \frac{(1)^2 + (2)^2 + (3)^2}{3} + \left(\frac{1+2+3}{3}\right)^2 \ge \frac{2}{3} \left[\left(\frac{1+2}{2}\right)^2 + \left(\frac{2+3}{2}\right)^2 + \left(\frac{3+1}{2}\right)^2 \right] \implies \frac{26}{3} \ge \frac{25}{3}.$$

- 3.10 Young's Inequality
- 3.11 Cauchy-Schwarz Inequality
- 3.12 Muirhead's Inequality
- 3.13 Hölder's Inequality
- 3.14 Minkowski Inequality
- 3.15 Generalized Minkowski Inequality
- 3.16 Chebyshev's Sum Inequality
- 3.17 Rearrangement Inequality
- 3.18 Schur's Inequality
- 3.19 Generalized Schur's Inequality
- 3.20 Newton's Inequality
- 3.21 Maclaurin's Inequality
- 3.22 Aczel's Inequality
- 3.23 Huygens Inequality
- 3.24 Heinz Inequality
- 3.25 Nesbitt's Inequality
- 3.26 Cesàro's Inequality
- 3.27 Mildorf's Inequality

4 Selected Inequalities

5 Proofs

5.1 Proof of AM-GM Inequality using Induction

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 a_2 \dots a_n}$$

- i. Base case is true (n=2).
- ii. n is true $\implies n+1$ is true.

Proof:

Step 1:

$$\frac{a_1 + a_2}{2} \ge \sqrt{a_1 a_2} \implies (\sqrt{a_1})^2 - 2\sqrt{a_1 a_2} + (\sqrt{a_2})^2 = (\sqrt{a_1} - \sqrt{a_2})^2 \ge 0.$$

$$\frac{a_1 + \dots + a_n}{n} \ge \sqrt[n]{a_1 \dots a_n} \Longrightarrow$$

$$\frac{a_1 + \dots + a_n + a_{n+1}}{n+1} = \frac{n \frac{a_1 + \dots + a_n}{n} + a_{n+1}}{n+1}$$

$$\ge \left(\frac{a_1 + \dots + a_n}{n}\right)^{\frac{n}{n+1}} (a_{n+1})^{\frac{1}{n+1}}$$

$$\ge (\sqrt[n]{a_1 \dots a_n})^{\frac{n}{n+1}} (a_{n+1})^{\frac{1}{n+1}}$$

$$= \sqrt[n+1]{a_1 \dots a_n a_{n+1}}$$

5.2 Proof of AM-GM Inequality using Forward-Backward Induction (a.k.a. Cauchy Induction)

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 a_2 \dots a_n}$$

i. Base case is true (n=2).

ii. n is true $\implies 2n$ is true.

iii. n is true $\implies n-1$ is true.

Proof:

Step 1:

$$\frac{a_1 + a_2}{2} \ge \sqrt{a_1 a_2} \implies (\sqrt{a_1})^2 - 2\sqrt{a_1 a_2} + (\sqrt{a_2})^2 = (\sqrt{a_1} - \sqrt{a_2})^2 \ge 0.$$

Step 2:

$$\frac{a_1 + \dots + a_n}{n} \ge \sqrt[n]{a_1 \dots a_n} \Longrightarrow$$

$$\frac{a_1 + a_2 + \dots + a_{2n}}{2n} = \frac{1}{2} \left(\frac{a_1 + a_2 + \dots + a_n}{n} + \frac{a_{n+1} + a_{n+2} + \dots + a_{2n}}{n} \right)$$

$$\ge \frac{\sqrt[n]{a_1 a_2 \dots a_n} + \sqrt[n]{a_{n+1} a_{n+2} \dots a_{2n}}}{2}$$

$$\ge \sqrt[n]{\sqrt[n]{a_1 a_2 \dots a_n}} \cdot \sqrt[n]{a_{n+1} a_{n+2} \dots a_{2n}}$$

$$= \sqrt[2n]{a_1 a_2 \dots a_{2n}}$$

Step 3:
$$\frac{a_1 + a_2 + \dots + a_{n-1} + a_n}{n} \ge \sqrt[n]{a_1 a_2 \dots a_{n-1} a_n} \Longrightarrow$$

$$\frac{a_1 + a_2 + \dots + a_{n-1} + \frac{a_1 + \dots + a_{n-1}}{n-1}}{n} \ge \sqrt[n]{a_1 a_2 \dots a_{n-1}} \cdot \frac{a_1 + \dots + a_{n-1}}{n-1}$$

$$\frac{(n-1)(a_1 + a_2 + \dots + a_{n-1}) + (a_1 + \dots + a_{n-1})}{n \cdot (n-1)} = \frac{(n-1+1)(a_1 + a_2 + \dots + a_{n-1})}{n \cdot (n-1)}$$

$$\frac{a_1 + a_2 + \dots + a_{n-1}}{n-1} \ge \sqrt[n]{a_1 a_2 \dots a_{n-1}} \cdot \frac{a_1 + \dots + a_{n-1}}{n-1}$$

$$\left(\frac{a_1 + a_2 + \dots + a_{n-1}}{n-1}\right)^n \ge a_1 a_2 \dots a_{n-1} \cdot \frac{a_1 + \dots + a_{n-1}}{n-1}$$

$$\left(\frac{a_1 + a_2 + \dots + a_{n-1}}{n-1}\right)^{n-1} \ge a_1 a_2 \dots a_{n-1}$$

$$\frac{a_1 + a_2 + \dots + a_{n-1}}{n-1} \ge \sqrt[n-1]{a_1 a_2 \dots a_{n-1}}$$

5.3 Proof of AM-GM Inequality using Jensen's Method

Let $a_1, a_2, \ldots, a_n > 0$ and $f(x) = \ln x$ be a *concave* function on $(0, \infty)$. By Jensen's Inequality we have:

$$f\left(\frac{1}{n}\sum_{i=1}^{n}a_{i}\right) \geq \frac{1}{n}\sum_{i=1}^{n}f(a_{i})$$

$$\ln\left(\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}\right) \geq \frac{\ln\left(a_{1}\right)+\ln\left(a_{2}\right)+\cdots+\ln\left(a_{n}\right)}{n}$$

$$=\frac{\ln\left(a_{1}a_{2}\dots a_{n}\right)}{n}$$

$$=\ln\left(\sqrt[n]{a_{1}a_{2}\dots a_{n}}\right)$$

$$e^{\ln\left(\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}\right)} \geq e^{\ln\left(\sqrt[n]{a_{1}a_{2}\dots a_{n}}\right)}$$

$$\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \geq \sqrt[n]{a_{1}a_{2}\dots a_{n}}$$

6 Selected Problems

1. -

9