Outline

Introduction

Univariate Data

Maximum Likelihood Estimation

Bayesian Estimation

Parametric Classification

Regression

Model Selection

Multivariate Data

Parameter Estimation

Multivariate Normal Distribution

Parametric Classification

Discrete Features

Regression

Multivariate Parameters - I

► Mean vector:

$$\mathbb{E}[\mathbf{x}] = \boldsymbol{\mu} = (\mu_1, \dots, \mu_d)^T$$

ightharpoonup Covariance of x_i and x_i :

$$\sigma_{ij} = \mathsf{Cov}(x_i, x_j) = \mathbb{E}[(x_i - \mu_i)(x_j - \mu_j)] = \mathbb{E}[x_i x_j] - \mu_i \mu_j$$

Typically the features are correlated, or else there will not be a need for multivariate analysis.

- ▶ The x_i and x_j are called uncorrelated if $\sigma_{ij} = \mathbb{E}[x_i x_j] \mu_i \mu_j = 0$.
- ► The covariance between two random variables measures the degree to which they are (linearly) related.
- \triangleright Variance of x_i :

$$\sigma_i^2 = \mathbb{E}[(x_i - \mu_i)^2]$$

Note that:

$$\sigma_{ij} = \sigma_{ji}$$
 $\sigma_{ii} = \sigma_i^2$

Multivariate Parameters - II

Covariance matrix:

$$\mathbf{\Sigma} \equiv \mathsf{Cov}(\mathbf{x}) = \mathbb{E}[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^T] = \mathbb{E}[\mathbf{x}\mathbf{x}^T] - \boldsymbol{\mu}\boldsymbol{\mu}^T = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1d} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2d} \\ \vdots & & & \vdots \\ \sigma_{d1} & \sigma_{d2} & \cdots & \sigma_d^2 \end{bmatrix}$$

Correlation between x_i and x_j:

$$\rho_{ij} \equiv \mathsf{Corr}(x_i, x_j) = \frac{\sigma_{ij}}{\sigma_i \sigma_j}$$

The correlation (a.k.a. Pearson correlation coefficient) between x_i and x_j is in [-1, +1], making it easier to interpret than the covariance.

- $-\rho_{ij} \neq 0$: two variables x_i and x_j are related in a linear way
- Dependence vs. correlation:

$$x_i$$
 and x_j are independent $\Rightarrow \sigma_{ij} = \rho_{ij} = 0$

Parameter Estimation

► Sample mean:

$$\mathbf{m} = \frac{1}{N} \sum_{t=1}^{N} \mathbf{x}^{t}$$

► Sample covariance matrix:

$$\mathbf{S} = [s_{ij}]_{i,j=1}^d = \frac{1}{N} \sum_{t=1}^N (\mathbf{x}^t - \mathbf{m}) (\mathbf{x}^t - \mathbf{m})^T$$

where $s_{ii} = s_i^2$

► Sample correlation matrix:

$$\mathbf{R} = [r_{ij}]_{i,j=1}^d$$
 where $r_{ij} = \frac{s_{ij}}{s_i s_i}$

Estimation of Missing Values

- What to do if the values of certain variables in some instances are missing?
- Discarding the instances: not a good idea if the sample is small and since the non-missing entries do contain information.
- Imputation: filling in the missing entries
 - Mean imputation: using the most likely value (e.g., mean or mode)
 - Imputation by regression: predicting the missing values based on the regression approach
 - Matrix factorization: using low-rank matrices as factors for matrix completion.

Outline

Introduction

Univariate Data

Maximum Likelihood Estimation

Bayesian Estimation

Parametric Classification

Regression

Model Selection

Multivariate Data

Parameter Estimation

Multivariate Normal Distribution

Parametric Classification

Discrete Features

Regression

Multivariate Normal Distribution - I

$$\mathbf{x} \sim \mathcal{N}_d(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right]$$

Multivariate Normal Distribution - II

- ► Multivariate generalization of univariate normal distribution.
- ▶ Multivariate normal distribution $\mathcal{N}(\mu, \mathbf{\Sigma})$ with $d \times 1$ mean vector μ and $d \times d$ covariance matrix $\mathbf{\Sigma}$.
- Probability density function:

$$p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right]$$

► Log likelihood:

$$\mathcal{L}(\boldsymbol{\mu}, \boldsymbol{\Sigma} \mid \mathcal{X}) = -\frac{Nd}{2} \log(2\pi) - \frac{N}{2} \log|\boldsymbol{\Sigma}| - \frac{1}{2} \sum_{t=1}^{N} (\mathbf{x}^{t} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{x}^{t} - \boldsymbol{\mu})$$

► Given sample $\mathcal{X} = \{x^t\}_{t=1}^N$, ML estimates:

$$\mathbf{m} = \frac{1}{N} \sum_{t=1}^{N} \mathbf{x}^{t}$$
 $\mathbf{S} = \frac{1}{N} \sum_{t=1}^{N} (\mathbf{x}^{t} - \mathbf{m}) (\mathbf{x}^{t} - \mathbf{m})^{T}$

Multivariate Normal Distribution - III

Mahalanobis distance measures the distance from \mathbf{x} to $\boldsymbol{\mu}$ in terms of $\boldsymbol{\Sigma}$ (normalized for differences in variance and covariance):

$$(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$$

 $(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) = c^2$ is the *d*-dimensional hyperellipsoid centered at $\boldsymbol{\mu}$. Its shape and orientation are defined by $\mathbf{\Sigma}$.

Euclidean distance is a special case of Mahalanobis distance when $\Sigma = s^2 \mathbf{I}$; the hyperellipsoid degenerates into a hypersphere.

Bivariate Normal Distribution - I

- ▶ Multivariate normal distribution with d = 2.
- Covariance matrix:

$$\mathbf{\Sigma} = \left[egin{array}{ccc} \sigma_1^2 &
ho\sigma_1\sigma_2 \
ho\sigma_2\sigma_1 & \sigma_2^2 \end{array}
ight]$$

Joint density:

$$p(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left[-\frac{1}{2(1-\rho^2)}(z_1^2 - 2\rho z_1 z_2 + z_2^2)\right]$$

where

$$z_i = \frac{x_i - \mu_i}{\sigma_i}$$
 (z-normalization)

Bivariate Normal Distribution - II

▶ for $|\rho|$ < 1, the equation of an ellipse

$$z_1^2 - 2\rho z_1 z_2 + z_2^2 = c^2$$

- $-\,$ if $\rho>$ 0, the major axis of the ellipse has a positive slope
- if ρ < 0, the major axis of the ellipse has a negative slope
- If $\rho=0$, the two variables are independent, the cross-term disappears, and we get a product of two univariate densities.
- If $\rho=\pm 1$, the two variables are linearly related, the observations are effectively one-dimensional, and one of the two variables can be disposed of.

Isoprobability Contour Plot of Bivariate Normal

Independent Inputs

▶ If x_i are independent, the off-diagonal entries σ_{ij} , $i \neq j$ of Σ are 0. The joint density becomes:

$$p(\mathbf{x}) = \prod_{i=1}^{d} p_i(x_i) = \frac{1}{(2\pi)^{d/2} \prod_{i=1}^{d} \sigma_i} \exp\left[-\frac{1}{2} \sum_{i=1}^{d} \left(\frac{x_i - \mu_i}{\sigma_i}\right)^2\right]$$

Mahalanobis distance reduces to weighted Euclidean distance (with weightings $1/\sigma_i$).

▶ It further reduces to Euclidean distance if all variances σ_i^2 are equal.

Outline

Introduction

Univariate Data

Maximum Likelihood Estimation

Bayesian Estimation

Parametric Classification

Regression

Model Selection

Multivariate Data

Parameter Estimation

Multivariate Normal Distribution

Parametric Classification

Discrete Features

Regression

Parametric Classification

 \blacktriangleright In Bayes' decision rule for classification, the discriminant function for of class C_i is

$$p(\mathbf{x} \mid C_i)P(C_i)$$
 or $\log[p(\mathbf{x} \mid C_i)P(C_i)]$

▶ Class-conditional densities $p(\mathbf{x} \mid C_i) \sim \mathcal{N}_d(\mu_i, \Sigma_i)$:

$$p(\mathbf{x} \mid C_i) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}_i|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^T \mathbf{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i)\right]$$

► Discriminant functions:

$$g_i(\mathbf{x}) = \log p(\mathbf{x} \mid C_i) + \log P(C_i)$$

$$= -\frac{d}{2} \log 2\pi - \frac{1}{2} \log |\mathbf{\Sigma}_i| - \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^T \mathbf{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) + \log P(C_i)$$

Estimation of Parameters

- ▶ Given a training sample for $K \ge 2$ classes, $\mathcal{X} = \{(\mathbf{x}^t, \mathbf{r}^t)\}_{t=1}^N$, where $r_i^t = 1$ if $\mathbf{x}^t \in C_i$ and 0 otherwise, parameters can be estimated separately for each class.
- Parameter estimates:

$$\hat{P}(C_i) = \frac{1}{N} \sum_{t} r_i^t$$

$$\mathbf{m}_i = \frac{\sum_{t} r_i^t \mathbf{x}^t}{\sum_{t} r_i^t}$$

$$\mathbf{S}_i = \frac{\sum_{t} r_i^t (\mathbf{x}^t - \mathbf{m}_i) (\mathbf{x}^t - \mathbf{m}_i)^T}{\sum_{t} r_i^t}$$

Quadratic Discriminant Functions - I

➤ The parameter estimates are then plugged into the discriminant functions:

$$g_i(\mathbf{x}) = -\frac{1}{2}\log|\mathbf{S}_i| - \frac{1}{2}(\mathbf{x} - \mathbf{m}_i)^T \mathbf{S}_i^{-1}(\mathbf{x} - \mathbf{m}_i) + \log \hat{P}(C_i)$$

$$= -\frac{1}{2}\log|\mathbf{S}_i| - \frac{1}{2}(\mathbf{x}^T \mathbf{S}_i^{-1} \mathbf{x} - 2\mathbf{x}^T \mathbf{S}_i^{-1} \mathbf{m}_i + \mathbf{m}_i^T \mathbf{S}_i^{-1} \mathbf{m}_i) + \log \hat{P}(C_i)$$

$$= \mathbf{x}^T \mathbf{W}_i \mathbf{x} + \mathbf{w}_i^T \mathbf{x} + w_{i0}$$

where

$$\mathbf{W}_{i} = -\frac{1}{2}\mathbf{S}_{i}^{-1}$$

$$\mathbf{w}_{i} = \mathbf{S}_{i}^{-1}\mathbf{m}_{i}$$

$$w_{i0} = -\frac{1}{2}\mathbf{m}_{i}^{T}\mathbf{S}_{i}^{-1}\mathbf{m}_{i} - \frac{1}{2}\log|\mathbf{S}_{i}| + \log\hat{P}(C_{i})$$

- ► The discriminant functions are concave and quadratic.
- ► The decision surface between two categories are hyperquadrics.

Quadratic Discriminant Functions - II

Quadratic Discriminant Functions - III

- The number of parameters to be estimated are Kd for the means and Kd(d+1)/2 for the covariance matrices.
- ▶ When d is large and samples are small, the estimation is not reliable.
- ► For the estimates to be reliable on small samples,
 - one may want to decrease dimensionality, d, by redesigning the feature extractor and select a subset of the features or somehow combine existing features.
 - another possibility is to pool the data and estimate a common covariance matrix for all classes.

▶ If the covariance for different class is different, we call it heteroscedasticity.

Equal Covariance Matrix S - I

Shared common sample covariance matrix (i.e., homoscedasticity):

$$\mathbf{S} = \sum_{i} \hat{P}(C_{i})\mathbf{S}_{i}$$

Discriminant functions are linear:

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \mathbf{m}_i)^T \mathbf{S}^{-1}(\mathbf{x} - \mathbf{m}_i) + \log \hat{P}(C_i) + \text{const.}$$

Ignoring terms that are the same for all classes

$$g_i(\mathbf{x}) = \mathbf{w}_i^T \mathbf{x} + w_{i0}$$

with

$$\mathbf{w}_i = \mathbf{S}^{-1}\mathbf{m}_i$$

$$w_{i0} = -\frac{1}{2}\mathbf{m}_i^T \mathbf{S}^{-1}\mathbf{m}_i + \log \hat{P}(C_i)$$

▶ The number of parameters is Kd for the means and d(d+1)/2 for the shared covariance matrix.

Equal Covariance Matrix S - II

- The decision surfaces for a linear discriminant classifiers are hyperplanes defined by the linear equations $g_i(\mathbf{x}) = g_i(\mathbf{x})$.
 - The equation can be written as

$$\begin{aligned} &(\mathbf{w}_i - \mathbf{w}_j)^T \mathbf{x} + w_{i0} - w_{j0} = 0 \\ &\mathbf{w}^T (\mathbf{x} - \mathbf{x}_0) = 0 \\ &\mathbf{w} = \mathbf{S}^{-1} (\mathbf{m}_i - \mathbf{m}_j) \\ &\mathbf{x}_0 = \frac{1}{2} \mathbf{S}^{-1} (\mathbf{m}_i + \mathbf{m}_j) - \frac{1}{\|\mathbf{S}^{-1} (\mathbf{m}_i - \mathbf{m}_j)\|^2} \log \frac{\hat{P}(C_i)}{\hat{P}(C_i)} \mathbf{S}^{-1} (\mathbf{m}_i - \mathbf{m}_j) \end{aligned}$$

- These equations define a hyperplane through point \mathbf{x}_0 with a normal vector \mathbf{w} .
- If the priors are equal, the optimal decision rule is to assign input to the class whose mean's Mahalanobis distance to the input is the smallest.
- Unequal priors shift the boundary toward the less likely class.

Equal Covariance Matrix S - III

Decision regions of such a linear classifier are convex.

Equal and Diagonal S - I

- ▶ Naive Bayes' classifier: if the variables are independent, ∑ becomes a diagonal matrix.
- Class-conditional densities:

$$p(\mathbf{x} \mid C_i) = \prod_j p(x_j \mid C_i)$$

where $p(x_i \mid C_i)$ are univariate Gaussian distributions.

Discriminant functions:

$$g_i(\mathbf{x}) = -rac{1}{2}\sum_{j=1}^d \left(rac{x_j-m_{ij}}{s_j}
ight)^2 + \log \hat{P}(C_i)$$

- Classification based on weighted Euclidean distance.
- ightharpoonup The number of parameters is Kd for the means and d for the variances.

Equal and Diagonal S - II

Equal and Diagonal S with Equal Variances - I

- ▶ If we assume further that all variances are equal, i.e., $\Sigma = s^2 I$, weighted Euclidean distance reduces to Euclidean distance.
- Discriminant functions:

$$g_i(\mathbf{x}) = -\frac{1}{2s^2} \|\mathbf{x} - \mathbf{m}_i\|^2 + \log \hat{P}(C_i)$$

= $-\frac{1}{2s^2} \sum_{j=1}^d (x_j - m_{ij})^2 + \log \hat{P}(C_i)$

- Discriminant functions are linear.
- ▶ The number of parameters in this case is Kd for the means and 1 for s^2 .
- ▶ If the priors are equal, we have $g_i(\mathbf{x}) = -\|\mathbf{x} \mathbf{m}_i\|^2$
 - nearest mean classifier: it assigns the input to the class of the nearest mean
 - template matching procedure: each mean acts as a prototype/template for the class.

Equal and Diagonal S with Equal Variances - II

Tuning Model Complexity

Assumption	Covariance matrix	No. of parameters
Shared, hyperspherical	$S_i = S = s^2 I$	1
Shared, axis-aligned	$\mathbf{S}_i = \mathbf{S}$, with $s_{ij} = 0$	d
Shared, hyperellipsoidal	$S_i = S$	d(d+1)/2
Different, hyperellipsoidal	S_i	Kd(d+1)/2

- ► Complexity increases (i.e., less restricted **S**)
 - ⇒ bias decreases and variance increases
- ▶ Regularization: uses strong bias to control model complexity.

General Case for Multiple Classes

Outline

Introduction

Univariate Data

Maximum Likelihood Estimation

Bayesian Estimation

Parametric Classification

Regression

Model Selection

Multivariate Data

Parameter Estimation

Multivariate Normal Distribution

Parametric Classification

Discrete Features

Regression

Discrete Features: Bernoulli

▶ Bernoulli (or binary) variables x_j :

$$p_{ij} \equiv p(x_j = 1 \mid C_i)$$

▶ If x_i 's are independent given C_i (i.e, naive Bayes'):

$$p(\mathbf{x} \mid C_i) = \prod_{j=1}^d p_{ij}^{x_j} (1 - p_{ij})^{1-x_j}$$

giving linear discriminant functions:

$$g_i(\mathbf{x}) = \log p(\mathbf{x} \mid C_i) + \log P(C_i)$$

$$= \sum_i \left[x_j \log p_{ij} + (1 - x_j) \log(1 - p_{ij}) \right] + \log P(C_i)$$

▶ Given sample $\mathcal{X} = \{\mathbf{x}^t\}_{t=1}^N$, the maximum likelihood estimators:

$$\hat{p}_{ij} = \frac{\sum_{t} x_j^t r_i^t}{\sum_{t} r_i^t}$$

Discrete Features: Generalized Bernoulli

- ▶ Generalized Bernoulli (or multinomial) variables $x_j \in \{v_1, \dots, v_{n_i}\}$
- Indicator variables:

$$z_{jk} = \begin{cases} 1 & \text{if } x_j = v_k \\ 0 & \text{otherwise} \end{cases}$$

Define

$$p_{ijk} \equiv p(z_{jk} = 1 \mid C_i) = p(x_j = v_k \mid C_i)$$

▶ If x_i 's are independent:

$$p(\mathbf{x} \mid C_i) = \prod_{j=1}^d \prod_{k=1}^{n_j} p_{ijk}^{z_{jk}}$$

$$g_i(\mathbf{x}) = \sum_i \sum_k z_{jk} \log p_{ijk} + \log P(C_i)$$

• Given sample $\mathcal{X} = \{\mathbf{x}^t\}_{t=1}^N$, the maximum likelihood estimators:

$$\hat{p}_{ijk} = \frac{\sum_{t} z_{jk}^{t} r_{i}^{t}}{\sum_{t} r_{i}^{t}}$$

Outline

Introduction

Univariate Data

Maximum Likelihood Estimation

Bayesian Estimation

Parametric Classification

Regression

Model Selection

Multivariate Data

Parameter Estimation

Multivariate Normal Distribution

Parametric Classification

Discrete Features

Regression

Multivariate Data

87

Multivariate Linear Regression

Multivariate linear regression:

$$r = f(\mathbf{x}) + \epsilon$$

where $f(\mathbf{x}) \approx \text{estimator } g(\mathbf{x} \mid w_0, w_1, \dots, w_d) = w_0 + w_1 x_1 + \dots + w_d x_d$.

- ▶ In some literature (especially statistical literature), this is called multiple linear regression; statisticians use the term multivariate when there are multiple outputs.
- ► Given $\mathcal{X} = \{(\mathbf{x}^t, r^t)\}_{t=1}^N$, error function:

$$E(w_0, w_1, \dots, w_d \mid \mathcal{X}) = \frac{1}{2} \sum_t (r^t - w_0 - w_1 x_1^t - \dots - w_d x_d^t)^2$$

Maximizing the Gaussian likelihood is equivalent to minimizing the sum of squared errors.

Normal Equations

► Taking the derivative with respect to the parameters, we get the normal equations for multivariate linear regression:

$$\mathbf{X}^T\mathbf{X}\mathbf{w} = \mathbf{X}^T\mathbf{r}$$

where

$$\mathbf{X} = \begin{bmatrix} 1 & x_1^1 & x_2^1 & \cdots & x_d^1 \\ 1 & x_1^2 & x_2^2 & \cdots & x_d^2 \\ \vdots & & & & \\ 1 & x_1^N & x_2^N & \cdots & x_d^N \end{bmatrix}$$

$$\mathbf{w} = (w_0, w_1, \dots, w_d)^T$$

$$\mathbf{r} = (r^1, r^2, \dots, r^N)^T$$

 \triangleright Estimated parameters (assuming that $\mathbf{X}^T\mathbf{X}$ is invertible):

$$\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{r}$$

Multivariate Polynomial Regression

Define new higher-order variables, e.g.

$$z_1 = x_1, \ z_2 = x_2 \ z_3 = (x_1)^2, \ z_4 = (x_2)^2, \ z_5 = x_1 x_2$$

- ► Apply multivariate linear regression in the new **z** space.
- Actually using higher-order terms of inputs as additional inputs is only one possibility; we can define any nonlinear function of the original inputs using basis functions, like $z = \sin(x)$.
- This idea of generalizing the linear model is frequently used in later course.