COMPUTAÇÃO GRÁFICA E REALIDADE VIRTUAL

Processamento Espacial Filtros

Prof. Dr. Fernando Kakugawa

fernando.kakugawa@animaeducacao.com.br

Transformações ponto a ponto

THE HENDICHEN ENDINE

ambididadianandinaman<mark>andinanandi</mark>

Histograma

Transformações lineares

Operadores Ponto a Ponto

- Transformações de níveis de cinza ou mapeamento
- Cada ponto na imagem de entrada gera um só ponto na imagem de saída

 T[f(x,y)] → Operação sobre cada ponto (cada pixel) da imagem de entrada

Histogramas

 O histograma não traz informação posicional sobre os pixels da imagem

Exemplos de Histogramas

Exemplos de Histogramas

Histogramas

- Visualização das Transformações nos Níveis de Cinza através dos Histogramas
 - Alterações Globais no Brilho
 - Clarear ou escurecer uma Imagem
 - Somar ou Subtrair uma constante em todos os pixels da Imagem
 - \triangleright 0 \rightarrow Preto
 - ➤ Max → Branco

Negativo

Imagem de Entrada

$$T[f(x,y)]$$

$$= g(x,y)$$

$$= W - f(x,y)$$

Imagem de Saída

Transformações não lineares

Equalização do histograma

- Aumentar o contraste geral na imagem espalhando a distribuição de níveis de cinza
- Exemplo:
 - Dada uma imagem de n x m pixels e "g" níveis de cinza
 - Número ideal de pixels em cada nível $\rightarrow I = (n \times m)/g$

Exemplo

- Equalização de histograma com 3 bits
 - 8 níveis de intensidade

Histograma original

Função de transformação

Histograma equalizado

Exemplo

Imagem original

Histograma original

Imagem equalizada

Histograma Equalizado

Transformações por vizinhança

EMILIANI CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CO

Convolução

Filtros lineares

Filtros derivativos – detectores de borda

Operadores Locais - Vizinhança

 Combina a intensidade de um certo número de pixels (janela), para computar o valor da nova intensidade na imagem de saída

• $T[f(x,y)]_S \to \text{Operação sobre todos os pixels dentro}$ da janela S centrada em f(x,y)

Filtros no domínio do espaço

\mathbf{w}_1	\mathbf{w}_2	w ₃
\mathbf{W}_{4}	\mathbf{w}_{5}	w ₆
w ₇	w ₈	W ₉

- (a,b,c,d,e,f,g,h,i) são os valores dos níveis de cinza na mesma vizinhança de f(x,y)=e, comparativamente ao Template
- $(W_1 \ a \ W_9)$ são os "pesos", ou seja, os valores dos níveis de cinza em cada posição do Template
- O valor do pixel g(x,y) na nova imagem, na posição (x,y) será dado por:
 - $g(x,y) = W_1 \cdot a + W_2 \cdot b + W_3 \cdot c + W_4 \cdot d + W_5 \cdot e + W_6 \cdot f + W_7 \cdot g + W_8 \cdot h + W_9 \cdot i$

Convenção

- Máscaras de organização par (2 x 2, 4 x 4 , ...) o resultado é colocado sobre o Primeiro Pixel
- Máscaras de organização ímpar (3 x 3, 5 x 5, ...) o resultado é colocado sobre o Pixel de Centro

Exemplo de máscara simétrica

Operação de convolução

Template

1	0
0	1

T(i,j)

Imagem Original

1	1	3	3	4
1	1	4	4	3
2	1	3	3	3
1	1	1	4	4

f(x,y)

Imagem Final

2		
2		
3		
*		

$$T(i,j) * f(x,y)$$

$$\rightarrow$$

Exemplo de máscara simétrica

Template

1	0
0	1

T(i,j)

Imagem Original

1	1	3	3	4
1	1	4	4	3
2	1	3	3	3
1	1	1	4	4

f(x,y)

Imagem Final

2	5	7	6	*
2	4	7	7	*
3	2	7	7	*
*	*	*	*	*

$$T(i,j) * f(x,y)$$

$$\rightarrow$$

Exemplo de máscara simétrica

Template

1	0
0	1

T(i,j)

Imagem Original

	<u> </u>			
1	1	3	3	4
1	1	4	4	3
2	1	3	3	3
1	1	1	4	4
_	•		•	

f(x,y)

Imagem Final

2	5	7	6	*
2	4	7	7	*
3	2	7	7	*
*	*	*	*	*

$$T(i,j) * f(x,y)$$

Os valores marcados com * não podem ser calculados

Solução para os pixels das bordas

- Podem ser usadas cinco soluções:
 - Atribuindo valor zero aos resultados não calculáveis;
 - Preenchimento da imagem com 0 s antes do cálculo da imagem final;
 - Replicação dos pixels das bordas;
 - Espelhamento;
 - Convolução periódica (circular);

Exemplo

Atribuindo zero aos resultados não calculáveis

Template				
7	1	1		
0	0	0		
1	1	1		

Imagem					
1	2	3	4	5	
0	1	3	4	0	
1	1	3	2	0	
0	0	4	5	6	
1	0	7	8	0	

Resultado

0	0	0	0	0
0	11	15	17	0
0	8	17	22	0
0	13	21	20	0
0	0	0	0	0

Primeiro Ponto: (1x1) + (1x2) + (1x3) + (0x0) + (0x1) + (0x3) + (1x1) + (1x1) + (1x3) = 11

Convolução Periódica

 O Template é deslocado sobre todos os pixels da imagem original como se esta fosse adjacente em suas extremidades

Primeiro Ponto: (1x0) + (1x1) + (1x0) + (0x5) + (0x1) + (0x2) + (1x0) + (1x0) + (1x1) = 2

Convolução Periódica

```
f(0,1) = 1x5 + 1x1 + 1x2 + 0x0 + 0x0 + 0x1 + 1x0 + 1x1 + 1x1 = 10
  f(0,2) = 1x0 + 1x0 + 1x1 + 0x0 + 0x1 + 0x1 + 1x6 + 1x0 + 1x0 = 7
• f(0,3) = 1x0 + 1x1 + 1x1 + 0x0 + 0x1 + 0x0 + 1x0 + 1x1 + 1x0 = 3
• f(0,4) = 1x6 + 1x0 + 1x0 + 0x0 + 0x1 + 0x0 + 1x5 + 1x1 + 1x2 = 14
• f(1,0) = 1x1 + 1x0 + 1x7 + 0x1 + 0x2 + 0x3 + 1x0 + 1x1 + 1x3 = 12
• f(2,0) = 1x0 + 1x7 + 1x8 + 0x2 + 0x3 + 0x4 + 1x1 + 1x3 + 1x4 = 23
• f(3,0) = 1x7 + 1x8 + 1x0 + 0x3 + 0x4 + 0x5 + 1x3 + 1x4 + 1x0 = 22
• f(4,0) = 1x8 + 1x0 + 1x1 + 0x4 + 0x5 + 0x1 + 1x4 + 1x0 + 1x0 = 13
  f(1,4) = 1x0 + 1x0 + 1x4 + 0x1 + 0x0 + 0x7 + 1x1 + 1x2 + 1x3 = 10
• f(2,4) = 1x0 + 1x4 + 1x5 + 0x0 + 0x7 + 0x8 + 1x2 + 1x3 + 1x4 = 18
• f(3,4) = 1x4 + 1x5 + 1x6 + 0x7 + 0x8 + 0x0 + 1x3 + 1x4 + 1x5 = 27
• f(4,4) = 1x5 + 1x6 + 1x0 + 0x8 + 0x0 + 0x1 + 1x4 + 1x5 + 1x1 = 21
• f(4,1) = 1x4 + 1x5 + 1x1 + 0x4 + 0x0 + 0x0 + 1x2 + 1x0 + 1x1 = 13
• f(4,2) = 1x4 + 1x0 + 1x0 + 0x2 + 0x0 + 0x1 + 1x5 + 1x6 + 1x0 = 15
• f(4,3) = 1x^2 + 1x^0 + 1x^1 + 0x^5 + 0x^6 + 0x^0 + 1x^8 + 1x^0 + 1x^1 = 12
```

Convolução Periódica

Resultado

2	12	23	22	13
10	11	15	17	13
7	8	17	22	15
3	13	21	20	12
14	10	18	27	21

- O custo computacional da Convolução espacial é alto
- Se a Imagem é de tamanho M x M e o Template N x N, o número de multiplicações é de $M^2 \cdot N^2$
- Ou seja, se a Imagem é de 512 x 512 e o Template é de 16 x 16, são necessárias 67.108.864 multiplicações.
- A alternativa é transformar a imagem e o Template para o domínio da frequência (Fourier) e multiplicar elemento a elemento.
- A transformação só é justificável se o Template for maior que 32×32 , devido ao custo da Transformada de Fourier.

Filtragem Espacial

Filtros Passa-Baixa

Filtros Passa-Alta

Altas e baixas frequências em uma imagem

Filtragem Espacial Passa Baixa

- Uma das aplicações da Convolução espacial de uma Imagem com Templates é a Suavização (Smoothing) ou Filtragem Passa Baixa.
- Um filtro espacial Passa Baixa é implementado através de uma Máscara que realiza a Média da Vizinhança.
- Uma Máscara de Média é tal que seus pesos são positivos e a soma é igual a 1.
- Exemplos de algumas Máscaras de Filtros Passa Baixa:

$$\frac{1}{5} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \qquad \frac{1}{32} \begin{bmatrix} 1 & 3 & 1 \\ 3 & 16 & 3 \\ 1 & 3 & 1 \end{bmatrix} \qquad \frac{1}{8} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Exemplo de Média da Vizinhança

$$g(0,0) = (20 + 30 + 24 + 23 + 24 + 56 + 12 + 23 + 35) / 9 = 24,77$$

Exemplo de Média da Vizinhança

f(x,y)

g(x,y)

1										
	20	30	24	34	60	80	89	90	12	0
	23	24	56	67	88	99	0	0	0	0
	12	23	35	65	66	77	88	99	0	0
	11	22	99	99	99	99	99	98	88	88
	12	12	12	22	22	44	55	65	77	88
	11	44	55	76	87	55	66	33	33	33
	12	33	44	55	66	77	88	0	0	0

$$g(0,1) = (30 + 24 + 34 + 24 + 56 + 67 + 23 + 35 + 65) / 9 = 39,77$$

Imagem Original

Vizinhança 7 x 7

Vizinhança 3 x 3

Vizinhança 15 x 15

Vizinhança 5 x 5

Vizinhança 25 x 25

1/9 x

1	1	1
1	1	1
1	1	1

***** 1/25 x

1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

$$*9 \times 9 =$$

Filtragem Mediana

- Substitui o nível de cinza de cada pixel pelo nível de cinza mediano em uma vizinhança do pixel.
- O nível mediano de um conjunto de valores é tal que exista metade dos valores menores e metade dos valores maiores.
- Usado para remover ruído impulsivo ("sal e pimenta")

Ruído "sal e pimenta"

Imagem com ruído sal e pimenta

Média da Vizinhança 3 x 3

Filtragem Mediana 3 x 3

Ruído "sal e pimenta"

Imagem Original

Imagem com ruído

Média da vizinhança 5 x 5

Filtragem Mediana 5 x 5

Filtragem Espacial Passa Alta

- É chamada de filtro de passa-alta porque detecta na imagem os detalhes finos e mudanças abruptas de níveis de cinza na imagem
- A máscara do filtro passa alta deve ter pesos de tal forma que a soma seja igual a zero
- Exemplos de máscaras de filtros passa alta:

Operador Laplaciano

Filtro Passa Alta Detector de Altas Frequências

$$* \frac{1}{9} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix} =$$

/Normalizado

255 -

Filtro de AGUÇAMENTO

Sharpening - realce de altas frequências

Filtro de AGUÇAMENTO Sharpening - realce de altas frequências

Filtro de aguçamento (normalizado)

Material elaborado por:

Prof. Dr. Bruno R. N. Matheus

bruno.matheus@gmail.com

Prof. Dr. Fernando Kakugawa

fernando.kakugawa@animaeducacao.com.br

