

中华人民共和国国家标准

GB/T 15852. 1—XXXX

代替 GB/T 15852.1-2008

信息技术 安全技术 消息鉴别码第 1 部分:采用分组密码的机制

Information technology—Security techniques—Message Authentication Codes (MACs)—Part 1: Mechanisms using a block cipher

(ISO/IEC 9797-1:2011, MOD)

(报批稿)

(本稿完成日期: 2019年11月5日)

XXXX-XX-XX 发布

XXXX - XX - XX 实施

目 次

前言	IV
引言	VI
1 范围	1
2 规范性引用文件	
3 术语和定义	
4 符号、代号和缩略语	
4.1 符号和代号	
4.2 缩略语	
5 用户要求	5
6 MAC 算法的模型	5
6.1 一般模型	5
6.2 密钥诱导(第1步)	6
6.2.1 概述	6
6.2.2 密钥诱导方法 1	6
6. 2. 3 密钥诱导方法 2	
6.3 消息填充(第2步)	
6.3.1 概述	
6. 3. 2 填充方法 1	
6. 3. 3 填充方法 2	
6. 3. 4 填充方法 3	
6. 3. 5 填充方法 4	
6.4 数据分割(第3步)	
6.5 初始变换(第4步)	
6.5.1 概述	
6.5.2 初始变换 1	
W/H/CV/	
6.5.4 初始变换 3 6.6 迭代应用分组密码(第 5 步)	
6.7 最终迭代(第6步)	
6.7.1 概述	
6.7.2 最终迭代 1	
6.7.3 最终迭代 2	
6.7.4 最终迭代 3	
6.7.5 最终迭代 4	
6.8 输出变换(第7步)	

6.8.1 概述	g
6.8.2 输出变换 1	<u>c</u>
6.8.3 输出变换 2	Ç
6.8.4 输出变换 3	g
6.9 截断操作(第8步)	10
6.9.1 概述	10
6.9.2 截断操作 1	10
6.9.3 截断操作 2	10
7 MAC 算法	10
7.1 概述	10
7.2 MAC 算法 1 (CBC-MAC)	10
7.3 MAC 算法 2(EMAC)	11
7.4 MAC 算法 3(ANSI retail MAC)	12
7.5 MAC 算法 4(MacDES)	13
7.6 MAC 算法 5 (CMAC)	14
7.7 MAC 算法 6(LMAC)	15
7.8 MAC 算法 7(TrCBC)	15
7.9 MAC 算法 8 (CBCR)	16
附录 A (资料性附录) 测试向量	17
A. 1 概述	17
A. 2 MAC 算法 1 (CBC-MAC)	18
A. 3 MAC 算法 2 (EMAC)	19
A.4 MAC 算法 3(ANSI retail MAC)	20
A.5 MAC 算法 4 (MacDES)	21
A. 6 MAC 算法 5 (CMAC)	23
A.7 MAC 算法 6(LMAC)	23
A. 8 MAC 算法 7(TrCBC)	25
A. 9 MAC 算法 8 (CBCR)	25
附录 B(资料性附录) MAC 算法的安全性分析	27
<u>参老</u> 文献	33

前 言

GB/T 15852《信息技术 安全技术 消息鉴别码》由如下部分组成:

- ——第1部分:采用分组密码的机制;
- ——第2部分:采用专用杂凑函数的机制;
- ——第3部分:采用泛杂凑函数的机制。

本部分是GB/T 15852的第1部分。

本部分按照GB/T 1.1-2009《标准化工作导则 第1部分:标准的结构和编写》和GB/T 20000.2《标准化工作指南 第2部分:采用国际标准》给出的规则起草。

本部分代替GB/T 15852.1-2008。

本部分与GB/T 15852.1-2008相比,主要技术变化如下:

- ——删除了消息鉴别码算法用途的说明(见 GB/T 15852.1-2008 的第 1 章);
- ——增加了 MAC 算法的常用名称指代(见引言、第5章、第7章,参见附录 A、附录 B);
- ——增加了规范性引用文件 GB/T 32907-2016 (见第 2 章);
- ——修改了"术语和定义"的条目顺序(见第3章,GB/T 15852.1-2008的第3章);
- ——增加了 16 个符号,修改了 3 个符号(见 4.1, GB/T 15852.1-2008 的第 4 章);增加了"缩略语"(见 4.2);
- ——修改了第 5 章的标题,将"要求"改为"用户要求";修改了用户选择密钥诱导方法的要求(见 第 5 章, GB/T 15852.1-2008 的第 5 章);
- ——增加了使用 MAC 算法 4 时数据串长度的要求;增加了使用 MAC 算法 7 时 MAC 的长度要求(见第5章);
- ——修改了 MAC 算法的一般模型,增加了密钥诱导和最终迭代操作,并修改了"MAC 算法模型"图 (见 6.1, GB/T 15852.1-2008 的第 6 章);
- ——增加了密钥诱导操作的概述与方法、最终迭代操作的概述与方法(见 6. 2、6. 7);增加了填充方法4、初始变换3(见 6. 3. 5、6. 5. 4);修改了迭代应用分组密码操作(见 6. 4);增加了截断操作的概述和截断操作2(见 6. 9);
- ——修改了 MAC 算法 5, 替换为 CMAC (见 7.6, GB/T 15852.1-2008 的 7.5); 修改了 MAC 算法 6, 替换为 LMAC (见 7.7, GB/T 15852.1-2008 的 7.6);
- ——增加了 MAC 算法 7 (TrCBC) 和 8 (CBCR) (见 7.8、7.9);
- ——修改了附录"例子"的标题为"测试向量";修改了使用的分组密码算法,将 DEA 修改为 SM4 分组密码算法;修改了明文、密钥、结果(参见附录 A, GB/T 15852.1-2008的附录 A);增加了 MAC 算法 7 和 8 的测试向量(参见 A. 7、A. 8);
- ——修改了表 B.1 中序号为 1.2 和 4.2 的算法效率;增加了 MAC 算法 7 和 8 的安全性说明、算法的特性、安全强度估计(参见附录 B)。

本部分修改采用ISO/IEC 9797-1:2011《信息技术 安全技术 消息鉴别码 第1部分:采用分组密码的机制》。

本部分与国际标准ISO/IEC 9797-1:2011的主要技术差异如下:

- ——增加了 MAC 算法的常用名称指代 (见引言、第 5 章、第 7 章,参见附录 A、附录 B);
- ——删除了密钥管理机制和对象标识符的说明(见 ISO/IEC 9797-1:2011 的第 1 章);

- ——增加了规范性引用文件 GB/T 9387. 2-1995、GB/T 15843. 1-2017、GB/T 17964-2008,将 ISO/IEC 18033-3 替换为 GB/T 32907-2016(见第 2 章, ISO/IEC 9797-1:2011 的第 2 章);
- ——增加了初始变换等 4 个符号和代号(见 4.1);增加了"缩略语"(见 4.2);
- ——修改了用户选择密钥诱导方法的要求(见第5章, ISO/IEC 9797-1:2011的第5章);
- ——修改了 MAC 算法的一般模型,增加了初始变换操作,并修改了"MAC 算法模型"图(见 6.1, ISO/IEC 9797-1:2011的 6.1):
- ——增加了填充方法 4、初始变换 3(见 6. 3. 5、6. 5. 4);修改了迭代应用分组密码操作(见 6. 4, ISO/IEC 9797-1:2011 的 6. 5);增加了截断操作的概述和截断操作 2(见 6. 9);
- ——增加了 MAC 算法 7 (TrCBC) 和 8 (CBCR) (见 7.8、7.9);
- ——删除了附录"对象标识符"(参见 ISO/IEC 9797-1:2011 的附录 A);
- ——修改了附录"例子"的标题为"测试向量";修改了使用的分组密码算法、明文、密钥、结果 (参见附录 A, ISO/IEC 9797-1:2011 的附录 B);增加了 MAC 算法 7 和 8 的测试向量 (参见 A. 7、A. 8);
- ——修改了表 B. 1 中序号为 1. 2 和 4. 2 的算法效率 (参见附录 B, ISO/IEC 9797-1:2011 的附录 C); 增加了 MAC 算法 7 和 8 的安全性说明、算法的特性、安全强度估计(参见附录 B);
- ——删除了获得高安全性强度的 MAC 算法的方法及建议(参见 ISO/IEC 9797-1:2011 的 C. 2);
- ——删除了附录"与以前的 MAC 算法标准的比较"(参见 ISO/IEC 9797-1:2011 的附录 D)。

请注意本部分的某些内容可能涉及专利,本部分的发布机构不承担识别这些专利的责任。

本部分由全国信息安全标准化技术委员会(SAC/TC260)提出并归口。

本部分起草单位:中国科学院软件研究所、成都卫士通信息产业股份有限公司、桂林电子科技大学、国家密码管理局商用密码检测中心。

本部分主要起草人:吴文玲、眭晗、张立廷、张蕾、韦永壮、毛颖颖、郑雅菲、涂彬彬、刘仁章、丁勇、王玉珏、张众。

引 言

本部分定义了八种采用 n 比特分组密码的消息鉴别码算法 (MAC 算法): CBC-MAC、EMAC、ANSI retail MAC、MacDES、CMAC、LMAC、TrCBC、CBCR。

本部分定义的第一个 MAC 算法通常被称作 CBC-MAC。其余七个 MAC 算法是 CBC-MAC 的变种。MAC 算法 2、3、5、6 和 8 在操作的末尾应用了特殊的变换。MAC 算法 4 在操作的起始和末尾各应用了一个特殊的变换。MAC 算法 7 在截取 MAC 值时使用特殊的规则。当 MAC 算法的密钥长度是分组密码密钥长度的两倍的时候,建议使用 MAC 算法 4。MAC 算法 5 和 7 使用加密的次数最少。MAC 算法 5 只需要一次分组密码密钥设置,但需要一个较长的中间密钥。MAC 算法 6 是 MAC 算法 2 的可选变种。MAC 算法 7 和 8 不需要中间密钥和密钥设置,当存储空间受限时,建议使用 MAC 算法 7 和 8。

本部分凡涉及密码算法的相关内容,按国家有关法规实施;凡涉及到采用密码技术解决保密性、完整性、真实性、抗抵赖性需求的须遵循密码相关国家标准和行业标准。

信息技术 安全技术 消息鉴别码第 1 部分:采用分组密码的机制

1 范围

GB/T 15852的本部分定义了八种采用分组密码的消息鉴别码(MAC)算法,规定了这八种MAC算法的用户使用要求和一般模型,提供了测试向量和安全性分析。

本部分适用于安全体系结构、过程及应用的安全服务。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 9387.2-1995 信息处理系统 开放系统互联 基本参考模型 第2部分:安全体系结构

GB/T 15843.1-2017 信息技术 安全技术 实体鉴别 第1部分: 总则

GB/T 17964-2008 信息安全技术 分组密码算法的工作模式

GB/T 32907-2016 信息安全技术 SM4分组密码算法

3 术语和定义

下列术语和定义适用于本文件。

3. 1

分组 block

长度为n的比特串。

3. 2

密钥 key

控制密码变换操作的符号序列。

注:密码变换操作,如加密、解密、密码校验函数计算、签名生成、签名验证。

3. 3

明文 plaintext

未加密的信息。

3. 4

密文 ciphertext

为隐藏信息内容进行变换后的数据。

3.5

分组密码密钥 block cipher key

控制分组密码运算的密钥。

3.6

n比特分组密码 n-bit block cipher

分组长度为n比特的分组密码。

3 7

加密 encryption

为隐藏数据信息,通过密码算法对数据进行的一种可逆变换过程,并产生密文。

3.8

解密 decryption

一个相应的加密过程的逆过程。

3.9

数据完整性 data integrity

数据未被非授权地修改或破坏的性质。

3.10

消息鉴别码(MAC) Message Authentication Code

利用对称密码技术,以密钥为参数,由消息导出的数据项。任何持有这一密钥的实体,都可利用消息鉴别码检查消息的完整性和始发者。

注:一个MAC有时也称作一个密码校验值。

3. 11

消息鉴别码算法 Message Authentication Code algorithm

消息鉴别码算法简称MAC算法,其输入为密钥和消息,输出为一个固定长度的比特串,满足下面两个性质:

- ——对于任何密钥和消息, MAC 算法都能够快速有效地计算。
- ——对于任何固定的密钥,攻击者在没有获得密钥信息的情况下,即使获得了一些(消息,MAC) 对,对任何新的消息预测其 MAC 在计算上是不可行的。

注1: 一个 MAC 算法有时也称作一个密码校验函数。

注 2: 计算不可行性依赖于使用者具体的安全要求及其环境。

3. 12

消息鉴别码 (MAC) 算法密钥 MAC algorithm key

用于控制消息鉴别码算法运算的密钥。

3. 13

初始变换 initial transformation

消息鉴别码算法起始时所应用的函数。

3. 14

输出变换 output transformation

应用在算法中,对迭代操作的输出所进行的变换。

4 符号、代号和缩略语

4.1 符号和代号

本部分使用下列符号约定:

CT_i	整数 i 的 n 比特的二进制表示。
D	输入 MAC 算法的数据比特串。
D_{j}	填充和分割操作后,分割自数据比特串 D 的分组。
$d_{\kappa}(C)$	使用分组密码 e 和密钥 K 对密文 C 进行解密。
$e_{K}(P)$	使用分组密码 e 和密钥 K 对明文 P 进行加密。
F	最终迭代。
G	输出变换的结果。
g	输出变换,将分组 H_q 映射到分组 G 。
$GF(2^n)$	元素个数为2"的有限域。
$H_{0}, H_{1},, H_{q}$	MAC 算法运算中的中间变量。
I	初始变换。
K,K',K''	分组密码的秘密密钥,长度为k比特。
K_1, K_2	秘密掩码密钥,长度为 n 比特。
k	分组密码密钥的比特长度。
k^*	MAC 算法密钥的比特长度。
L	填充方法 3 中表示长度的分组,等价于输入消息长度的二进制表示经左侧填充得到 n 比特分组。
$L_{\scriptscriptstyle D}$	数据比特串 D 的比特长度。
m	MAC值的比特长度。
n	分组密码的分组长度。
$p_n(x)$	GF(2)上的 n 次不可约多项式,即:没有非平凡因子的多项式。
\widetilde{p}_n	长度为 n 的比特串,包含不可约多项式 $p_n(x)$ 最右侧的 n 个系数 (对应于 $x^{n-1},x^{n-2},,x,x^0=1$)。
	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

对于 n=128 , $p_n(x)=x^{128}+x^7+x^2+x+1$, $\widetilde{p}_{128}=0^{120}10000111$ 。

对于 n = 64 , $p_n(x) = x^{64} + x^4 + x^3 + x + 1$, $\tilde{p}_{64} = 0^{59}11011$ 。

q 经过填充和分割操作之后,数据比特串 D 的分组个数。

S 长度为n的秘密比特串。

 S_1, S_2 长度为 $t \cdot n$ 的秘密比特串。

t 不小于 k/n 的最小整数。

 $LSB_{i}(X)$ 比特串 X 最右侧 j 比特串。

 $MSB_{i}(X)$ 比特串 X 最左侧 j 比特串。

multx(T) 长度为n的比特串T上的操作,记作T*x,其中T是有限域 $GF(2^n)$ 上的元素,将T与 $GF(2^n)$ 的单项式x相乘。计算如下,其中 T_{n-1} 表示T的最左侧的比特:

$$\mathrm{multx}(T) = \begin{cases} T = 1 & \stackrel{\cong}{\rightrightarrows} T_{n-1} = 0 \, \text{If} \\ (T = 1) \oplus \stackrel{\circ}{p}_n & \stackrel{\cong}{\rightrightarrows} T_{n-1} = 1 \, \text{Iff} \end{cases} .$$

 $X \oplus Y$ 比特串 $X \cap Y$ 的异或值。

X||Y 按顺序将比特串 X 和 Y 连接所构成的比特串。

0" n个零比特组成的比特串。

≔ MAC 算法定义中使用的赋值符号。

有限域乘法。在多项式表达式中, $GF(2^n)$ 的每个元素可由次数小于n 的二进制多项式表示。更明确地,比特串 $A = a_{n-1}...a_2a_1a_0$ 映射到二进制多项式 $a(x) = a_{n-1}x^{n-1} + ... + a_2x^2 + a_1x + a_0$ 。有限域 $GF(2^n)$ 中的乘法,记作 A*B,等价于两个多项式的乘积 a(x)b(x) 模一个n 次不可约多项式 $p_n(x)$ 。即:A*B 是经 a(x) 和 b(x) 相乘后,除以 $p_n(x)$ 所得的次数不大于n-1的余式。其中 $p_n(x)$ 选具有最少非零系数的n 次不可约多项式中按字典序排列的第一个多项式。对于n=128, $p_n(x) = x^{128} + x^7 + x^2 + x + 1$ 。

比特串 X 左移 1 位得到的比特串;如果 X 的长度是 n 比特,则

X = 1表示 $X \parallel 0$ 的最右侧 n 比特。

 X
 1
 比特串 X 循环左移 1 位得到的比特串。

 X
 t
 比特串 X 循环右移 1 位得到的比特串。

4.2 缩略语

下列缩略语适用于本文件。

X = 1

CBCCipher Block Chaining分组密码链接CTRCounter Operation Mode计数器模式MACMessage Authentication Code消息鉴别码

5 用户要求

使用本部分中给出的MAC算法的用户需要选择:

- ——符合国家管理要求的分组密码算法 e;
- ——从 6.3 中选取一种填充方法:
- ——从7中选取一个 MAC 算法:
- ——MAC 的比特长度 m:
- ——一个通用的密钥诱导方法; MAC 算法 5 需要此方法, MAC 算法 2、4 和 6 也可能需要。

MAC 的比特长度 m 应是一个正整数并且不大于分组长度 n。

如果使用填充方法 3, 那么数据串 D 的比特长度应小于 2"。

如果使用 MAC 算法 4, 那么数据串填充中的分组数应不小于 2, 即: $q \ge 2$ 。

如果使用 MAC 算法 7, 那么 MAC 的比特长度 m 应小于 n/2。

对于具体分组密码 e、填充方法、MAC 算法、m 的值以及密钥诱导方法(如果需要)的选择超出了本部分所规定的范围。

注:上述选择影响MAC算法的安全强度。具体参见附录B。

生成MAC和验证MAC应使用相同的密钥。当数据比特串也被加密,则MAC算法使用的密钥应不同于用作加密的密钥。

注: 关于密钥管理的信息参见GB/T 17901.1-1999。

本部分中给出的MAC算法的安全性严重依赖于管理密钥所遵循的程序和方法。

MAC算法计算过程中泄露中间值可能造成伪造和(或)密钥恢复攻击(参见附录B)。

6 MAC 算法的模型

6.1 一般模型

MAC算法的应用需要如下八步操作:

- ——第1步:密钥诱导(可选);
- ——第2步:消息填充;
- 一一第3步:数据分割;
- ——第 4 步: 初始变换 *I*;
- ——第5步: 迭代应用分组密码;
- ——第6步: 最终迭代F;
- ——第7步: 输出变换g;
- 一一第8步:截断操作。

其中,第4步至第8步如图1所示。

图 1 MAC 算法的第 4、5、6、7 和 8 步操作

6.2 密钥诱导(第1步)

6.2.1 概述

MAC算法5使用密钥诱导算法,由一个分组密码密钥诱导得到两个掩码密钥。MAC算法2、4和6可能需要使用密钥诱导算法,由一个分组密码密钥诱导得到两个分组密码密钥。

本部分规定了两种密钥诱导算法。密钥诱导算法1可被用在本部分所规定的MAC算法2、4和6中。密钥诱导算法2被用在本部分所规定的MAC算法5中。

6.2.2 密钥诱导方法 1

密钥诱导方法1由一个分组密码密钥 K 计算得到两个 k 比特的分组密码密钥 K' 和 K'' 。密钥诱导方法使用GB/T 17964中定义的计数器模式(CTR)。操作如下:

- ——定义整数 t 为不小于 k/n 的最小正整数。
- ——定义计数器 CT_i (1 $\leq i \leq 2t$) 为在整数 i 的二进制表示左侧填充"0"得到的 n 比特分组,尽可能少填充(甚至不填充)。
- ——计算长度为m的比特串 S_1 ,使其等于 $e_K(CT_1) \| e_K(CT_2) \| ... \| e_K(CT_t)$,并定义 $K' := MSB_k(S_1)$ 。
- ——计算长度为 tn 的比特串 S_2 ,使其等于 $e_{\scriptscriptstyle K}(CT_{\scriptscriptstyle t+1})\|e_{\scriptscriptstyle K}(CT_{\scriptscriptstyle t+2})\|...\|e_{\scriptscriptstyle K}(CT_{\scriptscriptstyle 2t})$,并定义 $K''\coloneqq MSB_{\scriptscriptstyle k}(S_2)$ 。

6.2.3 密钥诱导方法 2

密钥诱导方法2由一个分组密码密钥 K 计算得到两个 n 比特的掩码密钥 K_1 和 K_2 。操作如下:

- ——首先, 计算 n 比特的秘密比特串 S: S ≔ $e_{\kappa}(0^n)$ 。
- ——其次,由S计算得到掩码密钥 K_1 : $K_1 := \text{multx}(S)$ 。

——最后,由 K_1 计算得到掩码密钥 K_2 : $K_3 := \text{multx}(K_1)$ 。

6.3 消息填充(第2步)

6.3.1 概述

在这一步骤中,用额外的比特串作为前缀或后缀对数据比特串D进行填充,使得填充后的数据比特串的长度是n的整数倍。根据选择的填充方法,填充比特串只用来计算MAC,所以这些填充比特串不必随原消息存储或发送。MAC的验证者应知道填充比特串是否已经被存储或发送,以及使用的是何种填充方法。

本部分规定了四种填充方法。填充方法1、2和3可被用在本部分所规定的MAC算法1、2、3、4和6中。填充方法4被用在本部分所规定的MAC算法5、7和8中。

6.3.2 填充方法1

在数据比特串D的右侧填充"0",尽可能少填充(甚至不填充),使填充后比特串的长度是n的正整数倍。

注 1: 面对简单伪造攻击,使用填充方法 1 的 MAC 算法可能是不安全的。具体参见附录 B。

注 2: 如果数据比特串是空串,那么填充方法 1 规定对其填充 n 个 "0"。

6.3.3 填充方法2

在数据比特串D的右侧填充一个比特"1",然后在所得到的比特串右侧填充"0",尽可能少填充(甚至不填充),使填充后的比特串的长度是n的正整数倍。

注: 如果数据比特串是空串,那么填充方法2规定对其填充一个"1",然后在其右侧填充n-1个"0"。

6.3.4 填充方法3

在数据比特串D的右侧填充"0",尽可能少填充(甚至不填充),使填充后比特串的长度是n的正整数倍。然后在所得到的数据比特串左侧填充一个分组L。分组L由尽可能少的"0"和数据比特串D的长度 L_D 的二进制表示组成,其中位于 L_D 二进制表示的左侧的"0"尽可能少,且使L的长度为n比特。L最右端的比特和 L_D 的二进制表示中的最低位相对应。

注1: 如果在计算 MAC 之前不知数据比特串的长度,则填充方法 3 不适用。

注 2: 如果数据比特串是空串,那么填充方法 3 规定对其填充 n 个 "0",然后在其左侧填充一个由 n 个 "0"组成的分组 L。

6.3.5 填充方法 4

如果输入MAC算法的数据比特串D的比特长度是n的正整数倍,则不需要填充。否则,在数据比特串D的右侧填充一个"1"比特,然后在所得到的比特串右侧填充"0",尽可能少填充(甚至不填充),使填充后的比特串的长度是n的正整数倍。

注:如果数据比特串是空串,那么填充方法4规定对其填充一个"1",然后在其左侧填充 n-1个"0"。

6.4 数据分割(第3步)

把填充后的数据比特串分割成 $q \land n$ 比特的分组 $D_1, D_2, ..., D_q$ 。这里 D_1 表示填充后比特串的第一个n比特, D_2 表示随后的n个比特,以此类推。

6.5 初始变换(第4步)

6.5.1 概述

初始变换I用来处理填充后比特串的第一个n比特分组 D_i 以得到 H_i 。

本部分规定了三种初始变换。初始变换1被用在本部分所规定的MAC算法1、2、3、5、6和7中。初始变换2被用在本部分所规定的MAC算法4中。初始变换3被用在本部分所规定的MAC算法8中。

6.5.2 初始变换1

初始变换1需要一个分组密码密钥 K。按照如下的方法使用密钥 K 和分组密码 e 计算 H_1 :

$$H_1 := e_{\scriptscriptstyle K}(D_1) \circ$$

6.5.3 初始变换2

$$H_1 := e_{K''}(e_K(D_1))$$
 .

6.5.4 初始变换3

初始变换3需要一个分组密码密钥 K。按照如下的方法使用密钥 K,以及分组密码 e 计算 H_1 :

$$H_1 := e_{\kappa}(D_1 \oplus H_0)$$
,

其中 $H_0 := e_{\kappa}(0^n)$ 。

6.6 迭代应用分组密码(第5步)

对比特串 D_i 和 H_{i-1} 的异或值迭代应用密钥为 K 的分组密码 e ,计算得到分组 $H_2, H_3, ..., H_{g-1}$:

$$H_i := e_{\kappa}(D_i \oplus H_{i-1}), i = 2,...,q-1$$

如果q=2,那么第5步省略。

6.7 最终迭代(第6步)

6.7.1 概述

最终迭代 F 用来处理填充后比特串的最后一个分组 D_q 以得到分组 H_q 。

本部分规定了四种最终迭代。最终迭代1被用在本部分所规定的MAC算法1、2、3、4和7中。最终迭代2被用在本部分所规定的MAC算法6中。最终迭代3被用在本部分所规定的MAC算法5中。最终迭代4被用在本部分所规定的MAC算法8中。

6.7.2 最终迭代1

最终迭代1使用与第5步相同的分组密码密钥 K,以及分组密码 e 计算 H_a :

$$H_q := e_K(D_q \oplus H_{q-1}) \circ$$

6.7.3 最终迭代 2

最终迭代2使用分组密码密钥 K'(不同于第5步使用的分组密码密钥 K),以及分组密码 e 计算 H_a :

$$H_a := e_{K'}(D_a \oplus H_{a-1})$$

6.7.4 最终迭代3

最终迭代3使用与第5步相同的分组密码密钥 K 和两个 n 比特的掩码密钥 K_1 和 K_2 。根据填充操作将输入与密钥 K_1 或 K_2 异或,再应用密钥为 K 的分组密码 e,计算得到 H_a 。

依照填充方法4,如果输入MAC算法的消息的比特长度是n的正整数倍,则:

$$H_q := e_K(D_q \oplus H_{q-1} \oplus K_1)$$
,

否则

$$H_q := e_K(D_q \oplus H_{q-1} \oplus K_2)$$
 o

6.7.5 最终迭代4

最终迭代4使用与第5步相同的分组密码密钥 K。根据填充操作将输入循环右移或左移1位。依照填充方法4,如果输入MAC算法的消息的比特长度是n的正整数倍,则:

$$H_a := e_K((D_a \oplus H_{a-1}))$$
 },

否则

$$H_q := e_K((D_q \oplus H_{q-1}))$$
 1) .

6.8 输出变换(第7步)

6.8.1 概述

输出变换g用来处理第6步得到的结果 H_a 。

本部分规定了三种输出变换。输出变换1被用在本部分所规定的MAC算法1、5、6、7和8中。输出变换2被用在本部分所规定的MAC算法2和4中。输出变换3被用在本部分所规定的MAC算法3中。

6.8.2 输出变换1

输出变换1是恒等变换:

$$G := H_a \circ$$

6.8.3 输出变换 2

输出变换2对 H_a 应用密钥为K'的分组密码e,即:

$$G := e_{K'}(H_q)$$
 .

6.8.4 输出变换3

输出变换3对 H_q 应用密钥为 K' 的分组密码(解密操作) d ,对于得到的结果再应用密钥为 K 的分组密码 e ,即:

$$G := e_{K}(d_{K'}(H_a))$$
 o

6.9 截断操作(第8步)

6.9.1 概述

截断操作用来处理第7步得到的结果 G 以得到MAC值。

本部分规定了两种截断操作。截断操作1被用在本部分所规定的MAC算法1、2、3、4、5、6和8中。 截断操作2被用在本部分所规定的MAC算法7中。

6.9.2 截断操作1

截断操作1截取G最左侧的m比特作为MAC值,即:

$$MAC := MSB_m(G)$$
 o

6.9.3 截断操作2

截断操作2根据填充操作截取G最左侧或最右侧的m比特作为MAC值。

依照填充方法4,如果输入MAC算法的消息的比特长度是n的正整数倍,则:

$$MAC := MSB_m(G)$$
,

否则

$$MAC := LSB_{m}(G)$$
 o

7 MAC 算法

7.1 概述

本部分规定了八种MAC算法。每种MAC算法明确规定了初始变换、最终迭代、输出变换和截断操作。

7.2 MAC 算法 1 (CBC-MAC)

 ${
m MAC}$ 算法1使用初始变换1、最终迭代1、输出变换1和截断操作1。 ${
m MAC}$ 算法密钥就是分组密码密钥 ${
m \emph{K}}$ 。 ${
m MAC}$ 算法1如图2所示。

MAC算法1可使用6.3中的填充方法1、2或3。

注 1: 填充方法的选择影响 MAC 算法的安全性。具体参见资料性附录 B。

注 2: MAC 算法 1 可能遭受异或伪造攻击(参见附录 B)。因此 MAC 算法 1 仅适用于异或伪造攻击不可行的环境,例如,消息长度固定。

图 2 MAC 算法 1 (CBC-MAC)

7.3 MAC 算法 2 (EMAC)

MAC算法2使用初始变换1、最终迭代1、输出变换2和截断操作1。MAC算法密钥由两个分组密码密钥 K和 K'组成。K和 K'的值可从一个共同的主密钥(一个分组密码密钥)通过密钥诱导方法生成,应满足 K和 K'以高概率不相同。

注 1: MAC 算法 2 通常被称作 EMAC[25]。

注 2: 密钥诱导方法 1 是由一个共同的主密钥诱导出 K 和 K' 的一个例子。

注 3: 若 K = K',一个简单的异或伪造攻击就能够攻击 EMAC, 具体参见资料性附录 B。

注 4: 若 K 和 K' 相互独立,MAC 算法 2 针对密钥恢复攻击的安全强度低于 MAC 算法 2 采用的密钥长度所应提供的安全强度,具体参见资料性附录 B。

MAC算法2如图3所示。

MAC算法2可使用6.3中的填充方法1、2或3。

图 3 MAC 算法 2 (EMAC)

注 5: 填充方法的选择影响 MAC 算法的安全性。具体参见资料性附录 B。

注 6: 如果 MAC 算法 2 与计算(公开)密钥标识 $S = e_K(\mathbf{0}^n)$ 的算法结合使用,例如 X9. 24[11] ,则 MAC 算法 2 将遭受异或伪造攻击(参见附录 B)。在这种情况下,算法应仅用于异或伪造攻击不可行的环境,例如,消息长度固定。

7.4 MAC 算法 3 (ANSI retail MAC)

MAC算法3使用初始变换1、最终迭代1、输出变换3和截断操作1。MAC算法密钥由两个分组密码密钥 K和 K'组成。 K和 K'应独立选取。若 K=K',MAC算法3和MAC算法1一致。

MAC算法3如图4所示。

MAC算法3可使用6.3中的填充方法1、2或3。

注1: MAC 算法 3 通常被称作 ANSI retail MAC[10]。

注 2: 填充方法的选择影响 MAC 算法的安全性。具体参见资料性附录 B。

注 3: 如果 MAC 算法 3 与计算(公开)密钥标识 $S = e_K(0^n)$ 的算法结合使用,例如 X9. 24[11],则 MAC 算法 3 将遭受异或伪造攻击(参见附录 B)。在这种情况下,算法应仅用于异或伪造攻击不可行的环境,例如,消息长度固定。

图 4 MAC 算法 3 (ANSI retail MAC)

7.5 MAC 算法 4 (MacDES)

MAC算法4使用初始变换2、最终迭代1、输出变换2和截断操作1。MAC算法密钥由两个分组密码密钥 K和 K'组成,K和 K'应独立选取。另外,第三个分组密码密钥 K''由 K''通过密钥诱导方法得出。密钥 K、 K'和 K''应互不相同。分组密码密钥 K和 K''用于初始变换2,分组密码密钥 K'用于输出变换2。

- **注 1:** MAC 算法 4 在[22] 中被提出,因提出时采用 DES(ISO/IEC 18033-3:2005 的附录 A 和 ANSI X3. 92[8] 中规范的分组密码)而被称作 MacDES。
- **注 2**: 对 K' 从第一个 4 比特组开始,每隔 4 比特交替取补和不变即是由 K' 诱导出 K'' 的一个例子。这个例子中, K' 和 K'' 不是相互独立且随机的。另外一个例子是用密钥诱导方法 1 由一个公共的主密钥生成 K' 和 K'' 。

MAC算法4如图5所示。

MAC算法4可使用6.3中的填充方法1、2或3。

注 3: 填充方法的选择影响 MAC 算法的安全性。具体参见资料性附录 B。

图 5 MAC 算法 4 (MacDES)

7.6 MAC 算法 5 (CMAC)

MAC算法5使用密钥诱导方法2、初始变换1、最终迭代3、输出变换1和截断操作1。MAC算法密钥由一个分组密码密钥 K 组成。MAC算法5使用填充方法4。最终迭代3中使用的掩码密钥 K_1 和 K_2 是使用密钥诱导方法2由MAC算法密钥 K 得到的。

MAC算法5如图6所示,其中 $K_i = K_1$ 或 K_2 。

注1: MAC 算法 5 在[20]中提出,通常被称作 0MAC1[20]或 CMAC[12]。

注 2:如果 MAC 算法 5 与计算(公开)密钥标识 $S=e_K(\mathbf{0}^n)$ 的算法结合使用,例如 X9. 24[11],则 MAC 算法 5 将遭受 异或伪造攻击(参见附录 B)。在这种情况下,算法应仅用于异或伪造攻击不可行的环境,例如,消息长度固 定。

图 6 MAC 算法 5 (CMAC)

7.7 MAC 算法 6 (LMAC)

MAC算法6使用初始变换1、最终迭代2、输出变换1和截断操作1。MAC算法密钥包含两个分组密码密钥 K 和 K' 。 K 和 K' 的值可从一个共同的主密钥(一个分组密码密钥)通过密钥诱导方法生成,应满足 K 和 K' 以高概率不相同。

- 注1: MAC 算法 6 通常被称作 LMAC。
- 注 2: 密钥诱导方法 1 是由一个共同的主密钥诱导出 K 和 K' 的一个例子。
- 注 3: 若 K = K', 一个简单的异或伪造攻击就能够攻击 MAC 算法 6, 具体参见资料性附录 B。
- **注 4**: 若 K 和 K' 相互独立,MAC 算法 6 针对密钥恢复攻击的安全强度低于 MAC 算法 6 采用的密钥长度所应提供的安全强度,具体参见资料性附录 B。

MAC算法6如图7所示。

MAC算法6可使用6.3中的填充方法1、2和3。

- 注 5: 填充方法的选择影响 MAC 算法的安全性。具体参见资料性附录 B。
- **注 6:** 如果 MAC 算法 6 与计算(公开)密钥标识 $S = e_K(\mathbf{0}^n)$ 的算法结合使用,例如 X9. 24[11],则 MAC 算法 6 将遭受异或伪造攻击(参见附录 B)。在这种情况下,算法应仅用于异或伪造攻击不可行的环境,例如,消息长度固定。

图 7 MAC 算法 6 (LMAC)

7.8 MAC 算法 7 (TrCBC)

MAC算法7使用初始变换1、最终迭代1、输出变换1和截断操作2。MAC算法密钥就是分组密码密钥 K。MAC算法7使用填充方法4。

注: MAC算法7通常被称作TrCBC[29]。

MAC算法7如图8所示。

图 8 MAC 算法 7 (TrCBC)

7.9 MAC 算法 8 (CBCR)

MAC算法8使用初始变换3、最终迭代4、输出变换1和截断操作1。MAC算法密钥就是分组密码密钥 K。MAC算法8使用填充方法4。

注: MAC算法8通常被称作CBCR[30]。

MAC算法8如图9所示。

图 9 MAC 算法 8 (CBCR)

附 录 A (资料性附录) 测试向量

A.1 概述

本附录提供了使用GB/T 32907-2016中定义的SM4分组密码算法生成MAC的过程示例。

对于 MAC 算法,明文是 GB/T 1988-1998规定的七位编码字符:数据比特串1: "This_is_the_test_message_for_mac",数据比特串2为:"This_is_the_test_message_",其中"_"表示一个空格。所有的MAC值和密钥值都是用16进制表示。

对于数据比特串1,分别经过填充方法1-4后得到的结果如下:

——填充方法 1: q=2

D_1	54 68 69 73 20 69 73 20 74 68 65 20 74 65 73 74
D_2	20 6D 65 73 73 61 67 65 20 66 6F 72 20 6D 61 63

——填充方法 2: q=3

D_{1}	54	68	69	73	20	69	73	20	74	68	65	20	74	65	73	74
D_2	20	6D	65	73	73	61	67	65	20	66	6F	72	20	6D	61	63
D_3	80	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00

——填充方法 3: q=3

D_1	00 00 00 00 00 00 00 00 00 00 00 00 00
D_2	54 68 69 73 20 69 73 20 74 68 65 20 74 65 73 74
D_3	20 6D 65 73 73 61 67 65 20 66 6F 72 20 6D 61 63

——填充方法 4: q=2

D_1	54	68	69	73	20	69	73	20	74	68	65	20	74	65	73	74
D_2	20	6D	65	73	73	61	67	65	20	66	6F	72	20	6D	61	63

对于数据比特串2,分别经过填充方法1-4后得到的结果如下:

——填充方法 1: q=2

D_1	54	68	69	73	20	69	73	20	74	68	65	20	74	65	73	74
D_2	20	6D	65	73	73	61	67	65	20	00	00	00	00	00	00	00

——填充方法 2: q=2

D_{1}	54	68	69	73	20	69	73	20	74	68	65	20	74	65	73	74
D_2	20	6D	65	73	73	61	67	65	20	80	00	00	00	00	00	00

——填充方法 3: q=3

D_1	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	C8
D_{2}	54	68	69	73	20	69	73	20	74	68	65	20	74	65	73	74
D_3	20	6D	65	73	73	61	67	65	20	00	00	00	00	00	00	00

——填充方法 4: q=2

D_1	54	68	69	73	20	69	73	20	74	68	65	20	74	65	73	74
D_2	20	6D	65	73	73	61	67	65	20	80	00	00	00	00	00	00

A. 2 MAC算法 1 (CBC-MAC)

这里使用的密钥是 K=01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10 (16进制)。MAC的比特长度 m 等于64。

——使用数据比特串1和填充方法1

密钥 K	01	23	45	67	89	AB	CD	EF	FE	DC	BA	98	76	54	32	10
H_1	45	FF	A9	48	60	5F	52	E8	F4	EF	21	D5	5C	D8	F8	0C
$D_2 \oplus H_1$	65	92	CC	ЗВ	13	3E	35	8D	D4	89	4E	A7	7C	В5	99	6F
$G = H_2$	16	ЕО	29	04	EF	В7	65	В7	06	45	9C	9E	DA	BD	В5	19

MAC=16 E0 29 04 EF B7 65 B7

——使用数据比特串1和填充方法2

密钥 K	01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32	2 10
H_1	45 FF A9 48 60 5F 52 E8 F4 EF 21 D5 5C D8 F8	3 OC
$D_2 \oplus H_1$	65 92 CC 3B 13 3E 35 8D D4 89 4E A7 7C B5 99	6F
H_2	16 E0 29 04 EF B7 65 B7 06 45 9C 9E DA BD B5	5 19
$D_3 \oplus H_2$	96 E0 29 04 EF B7 65 B7 06 45 9C 9E DA BD B5	5 19
$G = H_3$	4B 65 53 AF 3C 4E 27 44 84 12 31 5A C7 84 95	35

MAC=4B 65 53 AF 3C 4E 27 44

——使用数据比特串1和填充方法3

密钥 K	01	23	45	67	89	AB	CD	EF	FE	DC	BA	98	76	54	32	10
H_1	03	FE	50	С5	56	АЗ	DB	0F	CA	AC	F5	A7	C1	С5	0C	A9
$D_2 \oplus H_1$	57	96	39	В6	76	CA	A8	2F	ВЕ	C4	90	87	В5	A0	7F	DD
H_2	A9	15	8A	4B	7B	С6	F7	DB	00	23	8D	04	DC	6A	94	A4
$D_3 \oplus H_2$	89	78	EF	38	08	A7	90	BE	20	45	E2	76	FC	07	F5	C7
$G = H_3$	71	AF	7E	45	53	40	4C	ВС	C4	F2	97	3С	DB	DO	F0	63

MAC=71 AF 7E 45 53 40 4C BC

——使用数据比特串2和填充方法1

密钥 K	01	23	45	67	89	AB	CD	EF	FE	DC	BA	98	76	54	32	10
H_1	45	FF	A9	48	60	5F	52	E8	F4	EF	21	D5	5C	D8	F8	0C
$D_2 \oplus H_1$	65	92	CC	3В	13	3E	35	8D	D4	EF	21	D5	5C	D8	F8	0C
$G = H_2$	BA	89	E4	5F	E8	AB	F2	42	E2	6C	ЕО	32	AD	00	7C	09

MAC=BA 89 E4 5F E8 AB F2 42

密钥 K	01	23	45	67	89	AB	CD	EF	FE	DC	BA	98	76	54	32	10	
--------	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	--

H_1	45	FF	A9	48	60	5F	52	E8	F4	EF	21	D5	5C	D8	F8	0C
$D_{\scriptscriptstyle 2} \oplus H_{\scriptscriptstyle 1}$	65	92	CC	ЗВ	13	3Е	35	8D	D4	6F	21	D5	5C	D8	F8	0C
$G = H_2$	42	1A	D1	69	OA	A1	52	E2	84	6F	A2	A5	D8	34	45	A9

MAC=42 1A D1 69 OA A1 52 E2

——使用数据比特串2和填充方法3

密钥 K	01	23	45	67	89	AB	CD	EF	FE	DC	BA	98	76	54	32	10
H_1	42	39	ВВ	2B	9A	A0	09	0B	ЕО	D3	48	17	С7	2B	1B	C8
$D_2 \oplus H_1$	16	51	D2	58	BA	C9	7A	2B	94	ВВ	2D	37	ВЗ	4E	68	ВС
H_2	CD	F9	25	C0	AF	83	15	88	93	76	DO	68	D1	С8	25	3A
$D_3 \oplus H_2$	ED	94	40	ВЗ	DC	E2	72	ED	ВЗ	76	DO	68	D1	C8	25	3A
$G = H_3$	6A	4A	86	F5	В5	E4	68	DA	D2	7D	F2	5F	В9	D9	BE	16

MAC=6A 4A 86 F5 B5 E4 68 DA

A.3 MAC算法 2 (EMAC)

这里使用两个密钥, K=01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10 (16 进制), K'=41 49 D2 AD ED 94 56 68 1E C8 B5 11 D9 E7 EE 04。诱导密钥 K' 由 K 从第一个4比特组开始,每隔4比特交替取补和不变得到。MAC的比特长度 m 等于64。

前q步操作和CBC-MAC一致,唯一的不同是EMAC使用输出变换2。

——使用数据比特串1和填充方法1

密钥 K'	41	49	D2	AD	ED	94	56	68	1E	C8	В5	11	D9	E7	EE	04
G	1E	9A	71	D3	ВС	92	DF	A7	E5	00	D2	OA	ОВ	09	41	10

MAC=1E 9A 71 D3 BC 92 DF A7

——使用数据比特串1和填充方法2

密钥 K'	41	49	D2	AD	ED	94	56	68	1E	C8	В5	11	D9	E7	EE	04
G	E4	23	ЕЗ	55	99	AF	D9	48	AE	С5	ОВ	DE	E8	38	Е9	EA

MAC=E4 23 E3 55 99 AF D9 48

——使用数据比特串1和填充方法3

密钥 K'	41	49	D2	AD	ED	94	56	68	1E	C8	В5	11	D9	E7	EE	04
G	40	03	ВА	1B	6A	DC	53	A8	26	E8	2F	CE	A1	6A	FA	AC

MAC=40 03 BA 1B 6A DC 53 A8

——使用数据比特串2和填充方法1

密钥 K'	41 49 D2 AD ED 94 56 68 1E C8 B5 11 D9 E7 EE 04
G	4E C3 C7 FA CF AA C6 07 C3 DD E5 CE B5 03 1C C8

MAC=4E C3 C7 FA CF AA C6 07

密钥 K'	41	49	D2	AD	ED	94	56	68	1E	C8	В5	11	D9	E7	EE	04
G	F0	26	25	CE	AD	00	8D	4E	FΒ	F3	F0	В2	ВО	C2	A7	5B

MAC=F0 26 25 CE AD 00 8D 4E

——使用数据比特串2和填充方法3

密钥 K'	41	49	D2	AD	ED	94	56	68	1E	C8	В5	11	D9	E7	EE	04
G	FF	D5	F1	F2	E5	ED	A5	СВ	F4	02	D6	5A	5В	ОВ	19	53

MAC=FF D5 F1 F2 E5 ED A5 CB

A.4 MAC算法 3 (ANSI retail MAC)

这里使用的两个密钥是 *K* = 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10 (16 进制) 和 *K'* = 41 49 D2 AD ED 94 56 68 1E C8 B5 11 D9 E7 EE 04 (16进制)。MAC的比特长度 *m* 等于64。

前q步操作和MAC算法1一致,唯一的不同是MAC算法3使用输出变换3。

——使用数据比特串1和填充方法1

密钥 K'	41	49	D2	AD	ED	94	56	68	1E	C8	В5	11	D9	E7	EE	04
d 的输出	0C	С6	7A	FF	AF	С8	80	С9	05	В9	A9	01	05	DF	DA	8D
G	27	63	21	1B	2B	CA	F7	19	34	90	E4	BD	59	62	AA	67

MAC=27 63 21 1B 2B CA F7 19

——使用数据比特串1和填充方法2

密钥 K'	41 49 D2 AD ED 94 56 68 1E C8 B5 11 D9 E7 EE 0)4
d 的输出	7D 5F 48 1C 87 58 55 7B 9A 17 6E 73 4F 5F C8 5	7
G	51 E9 92 8C 22 38 33 0C 32 31 B8 75 2A 9A FD 7	F

MAC=51 E9 92 8C 22 38 33 0C

——使用数据比特串1和填充方法3

密钥 K'	41	49	D2	AD	ED	94	56	68	1E	C8	В5	11	D9	E7	EE	04
d 的输出	5В	76	BD	43	4B	A8	85	D0	ЗА	69	A7	F4	2C	33	CF	52
G	7C	D4	8C	42	42	E4	55	75	E5	1A	AF	OD	CC	7A	20	8C

MAC=7C D4 8C 42 42 E4 55 75

——使用数据比特串2和填充方法1

密钥 K'	41	49	D2	AD	ED	94	56	68	1E	C8	В5	11	D9	E7	EE	04
d 的输出	6E	67	77	0В	9F	32	ВЗ	8A	17	F2	40	92	49	DA	D5	A6
G	ЕЗ	2D	99	A6	89	СО	52	59	60	E1	8D	53	AA	73	0F	33

MAC=E3 2D 99 A6 89 CO 52 59

——使用数据比特串2和填充方法2

密钥 K'	41	49	D2	AD	ED	94	56	68	1E	C8	В5	11	D9	E7	EE	04
d 的输出	06	21	В9	BE	7C	51	64	4C	4F	7D	3A	F8	В1	18	EF	38
G	19	72	47	22	9C	Е9	D7	В6	AE	40	5В	F8	85	В2	70	57

MAC=19 72 47 22 9C E9 D7 B6

密钥 K'	41	49	D2	AD	ED	94	56	68	1E	C8	В5	11	D9	E7	EE	04	
-------	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	--

d 的输出	6D 13 AD 5D 4C EE C5 08 96 A4 4F 48 B2 C2 B9 0	9
G	3C 43 0F 1E A4 3B 54 0C 68 45 7E 24 9C 46 F1 D	В

MAC=3C 43 OF 1E A4 3B 54 OC

A.5 MAC算法 4 (MacDES)

这里使用两个密钥, K=01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10 (16 进制)和 K'=41 49 D2 AD ED 94 56 68 1E C8 B5 11 D9 E7 EE 04 (16进制)。诱导密钥 K'' 由 K' 从第一个4比特组开始,每隔4比特交替取补和不变得到。MAC的比特长度 m 等于64。

——使用数据比特串1和填充方法1

密钥 K	01	23	45	67	89	AB	CD	EF	FE	DC	BA	98	76	54	32	10
密钥 K'	41	49	D2	AD	ED	94	56	68	1E	С8	В5	11	D9	E7	EE	04
密钥 K"	В1	В9	22	5D	1D	64	A6	98	EE	38	45	E1	29	17	1E	F4
$e_{\scriptscriptstyle K}(D_{\scriptscriptstyle 1})$	45	FF	A9	48	60	5F	52	E8	F4	EF	21	D5	5C	D8	F8	0C
H_1	ВА	52	Е9	0F	9A	59	91	F0	С9	85	C4	56	69	9F	8D	27
$D_2 \oplus H_1$	9A	3F	8C	7C	Е9	38	F6	95	Е9	ЕЗ	AB	24	49	F2	ЕС	44
H_2	CC	FD	ЕО	7B	09	96	37	9A	99	F0	4B	68	DE	13	0E	59
G	DD	10	52	A7	AF	E8	99	9B	BE	31	90	64	3E	CF	99	69

MAC=DD 10 52 A7 AF E8 99 9B

--使用数据比特串1和填充方法2

密钥 K	01	23	45	67	89	AB	CD	EF	FE	DC	BA	98	76	54	32	10
密钥 K'	41	49	D2	AD	ED	94	56	68	1E	С8	В5	11	D9	E7	EE	04
密钥 K"	В1	В9	22	5D	1D	64	A6	98	EE	38	45	E1	29	17	1E	F4
$e_{K}(D_{1})$	45	FF	A9	48	60	5F	52	E8	F4	EF	21	D5	5C	D8	F8	0C
H_1	BA	52	Е9	0F	9A	59	91	F0	С9	85	C4	56	69	9F	8D	27
$D_2 \oplus H_1$	9A	3F	8C	7C	Е9	38	F6	95	Е9	ЕЗ	AB	24	49	F2	ЕС	44
H_2	CC	FD	ЕО	7B	09	96	37	9A	99	F0	4B	68	DE	13	0E	59
$D_3 \oplus H_2$	4C	FD	ЕО	7B	09	96	37	9A	99	F0	4B	68	DE	13	0E	59
H_3	8C	04	5C	44	97	24	48	76	A8	38	64	7C	A6	37	В2	45
G	7E	1A	9A	5E	0E	F0	94	7F	25	СВ	94	85	26	1C	98	5C

MAC=7E 1A 9A 5E 0E FO 94 7F

密钥 K	01	23	45	67	89	AB	CD	EF	FE	DC	ВА	98	76	54	32	10
密钥 K'	41	49	D2	AD	ED	94	56	68	1E	C8	В5	11	D9	E7	EE	04
密钥 K"	В1	В9	22	5D	1D	64	A6	98	EE	38	45	E1	29	17	1E	F4
$e_{K}(D_{1})$	03	FE	50	С5	56	А3	DB	0F	CA	AC	F5	A7	C1	С5	0C	A9

H_1	71	59	35	2B	ЕВ	73	9D	5B	12	1F	6B	EE	ЕЗ	04	53	C8
$D_2 \oplus H_1$	25	31	5C	58	СВ	1A	EE	7B	66	77	0E	CE	97	61	20	ВС
H_2	59	В9	0A	21	38	65	1F	29	56	Е9	60	8A	A8	09	97	8E
$D_3 \oplus H_2$	79	D4	6F	52	4B	04	78	4C	76	8F	0F	F8	88	64	F6	ED
H_3	6F	СЗ	ЕО	D2	6E	D6	3A	49	CA	0E	12	OD	FE	FE	Е9	B1
G	28	A7	OD	6B	CC	F7	44	22	46	20	58	AB	ВС	27	F6	AE

MAC=28 A7 OD 6B CC F7 44 22

——使用数据比特串2和填充方法1

密钥 K	01	23	45	67	89	AB	CD	EF	FE	DC	ВА	98	76	54	32	10
密钥 K'	41	49	D2	AD	ED	94	56	68	1E	С8	В5	11	D9	E7	EE	04
密钥 K"	В1	В9	22	5D	1D	64	A6	98	EE	38	45	E1	29	17	1E	F4
$e_{K}(D_{1})$	45	FF	A9	48	60	5F	52	Е8	F4	EF	21	D5	5C	D8	F8	0C
H_1	BA	52	Е9	0F	9A	59	91	F0	C9	85	C4	56	69	9F	8D	27
$D_2 \oplus H_1$	9A	3F	8C	7C	Е9	38	F6	95	Е9	85	C4	56	69	9F	8D	27
H_2	С9	A2	2F	02	4B	В4	91	09	CA	79	2B	C0	DC	36	67	C1
G	AA	9D	ВЗ	D9	65	1F	86	2B	6F	18	D6	74	92	13	25	ЕО

MAC=AA 9D B3 D9 65 1F 86 2B

一使用数据比特串2和填充方法2

密钥 K	01	23	45	67	89	AB	CD	EF	FE	DC	BA	98	76	54	32	10
密钥 K'	41	49	D2	AD	ED	94	56	68	1E	С8	В5	11	D9	E7	EE	04
密钥 K"	В1	В9	22	5D	1D	64	A6	98	EE	38	45	E1	29	17	1E	F4
$e_{\scriptscriptstyle K}(D_{\scriptscriptstyle 1})$	45	FF	A9	48	60	5F	52	E8	F4	EF	21	D5	5C	D8	F8	0C
H_1	BA	52	Е9	0F	9A	59	91	F0	C9	85	C4	56	69	9F	8D	27
$D_2 \oplus H_1$	9A	3F	8C	7C	Е9	38	F6	95	Е9	05	C4	56	69	9F	8D	27
H_2	4B	22	С9	ЕЗ	7B	4A	02	3E	94	89	15	CD	DE	26	3D	74
G	94	94	76	D3	5F	17	26	1E	1F	В8	C4	39	6D	62	DC	05

MAC=94 94 76 D3 5F 17 26 1E

密钥 K	01	23	45	67	89	AB	CD	EF	FE	DC	BA	98	76	54	32	10
密钥 K'	41	49	D2	AD	ED	94	56	68	1E	С8	В5	11	D9	E7	EE	04
密钥 K"	В1	В9	22	5D	1D	64	A6	98	EE	38	45	E1	29	17	1E	F4
$e_{K}(D_{1})$	42	39	ВВ	2B	9A	A0	09	0B	ЕО	D3	48	17	С7	2B	1B	C8
H_1	BA	12	90	4E	07	EE	D2	СЕ	34	64	А3	51	3C	4D	6C	95
$D_2 \oplus H_1$	EE	7A	F9	3D	27	87	A1	EE	40	0C	С6	71	48	28	1F	E1
H_2	BB	96	37	C0	FB	F2	В7	86	ВС	54	12	27	20	67	26	53

$D_3 \oplus H_2$	9В	FB	52	ВЗ	88	93	DO	ЕЗ	9C	54	12	27	20	67	26	53
H_3	CC	В9	49	OD	D1	В4	EA	A3	82	0E	8C	5В	F5	53	F8	59
G	C9	D3	4E	16	C4	9A	В6	43	57	A2	61	8D	ЕВ	D1	03	2F

MAC=C9 D3 4E 16 C4 9A B6 43

A. 6 MAC算法 5 (CMAC)

这里密钥 K=01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10(16进制)。掩码密钥 K_1 和 K_2 由 K_3 使用密钥诱导方法2得到。MAC的比特长度 M 等于64。

——使用数据比特串1和填充方法4

密钥 K	01 23 45 67 89 AB CD EF FE DC BA 98 76 54 3	32 10
$S = e_K(0^{128})$	26 77 F4 6B 09 C1 22 CC 97 55 33 10 5B D4 A	12 2A
K_1	4C EF E8 D6 13 82 45 99 2E AA 66 20 B7 A9 4	14 54
K_2	99 DF D1 AC 27 O4 8B 32 5D 54 CC 41 6F 52 8	88 A8
H_1	45 FF A9 48 60 5F 52 E8 F4 EF 21 D5 5C D8 F	78 OC
$D_2 \oplus H_1$	65 92 CC 3B 13 3E 35 8D D4 89 4E A7 7C B5 9	9 6F
G	69 2C 43 71 00 F3 B5 EE 2B 8A BC EF 37 3D 9	9 OC

MAC=69 2C 43 71 00 F3 B5 EE

——使用数据比特串2和填充方法4

密钥 K	01	23	45	67	89	AB	CD	EF	FE	DC	BA	98	76	54	32	10
$S = e_K(0^{128})$	26	77	F4	6B	09	C1	22	CC	97	55	33	10	5В	D4	A2	2A
K_1	4C	EF	E8	D6	13	82	45	99	2E	AA	66	20	В7	A9	44	54
K_2	99	DF	D1	AC	27	04	8B	32	5D	54	СС	41	6F	52	88	A8
H_1	45	FF	A9	48	60	5F	52	E8	F4	EF	21	D5	5C	D8	F8	0C
$D_2 \oplus H_1$	65	92	СС	3B	13	3E	35	8D	D4	6F	21	D5	5C	D8	F8	0C
G	47	38	A6	C7	60	В2	80	FC	0C	8A	8A	F3	88	6E	9F	5D

MAC=47 38 A6 C7 60 B2 80 FC

A.7 MAC算法 6 (LMAC)

这里密钥 K^* = 01 23 45 67 89 AB CD EF FE DC BA 98 76 5 4 32 10(16进制)。密钥 K 和 K' 由 K^* 使用密钥诱导方法1得到。MAC的比特长度 m 等于64。

密钥 K*	01	23	45	67	89	AB	CD	EF	FE	DC	BA	98	76	54	32	10
密钥 K	4E	59	5В	F0	3F	23	BD	10	32	9B	AF	56	98	E8	98	EC
密钥 K'	ВЗ	13	6C	04	4E	95	48	2D	4F	65	2E	69	4F	27	41	CD
H_1	7A	0F	91	F3	1D	D3	4E	F2	23	4B	С9	05	EA	DC	80	14

$D_2 \oplus H_1$	5A	62	F4	80	6E	В2	29	97	03	2D	A6	77	CA	В1	E1	77
G	ВЗ	8A	96	19	5В	AA	61	FC	D7	82	05	9F	35	9E	6E	D5

MAC=B3 8A 96 19 5B AA 61 FC

--使用数据比特串1和填充方法2

密钥 K*	01 23 45 67 89 AB CD EF FE DC BA 98 76 54 3	32 10
密钥 K	4E 59 5B F0 3F 23 BD 10 32 9B AF 56 98 E8 9	98 EC
密钥 K'	B3 13 6C 04 4E 95 48 2D 4F 65 2E 69 4F 27 4	41 CD
H_1	7A OF 91 F3 1D D3 4E F2 23 4B C9 05 EA DC 8	30 14
$D_2 \oplus H_1$	5A 62 F4 80 6E B2 29 97 03 2D A6 77 CA B1 E	E1 77
H_2	9C 93 76 0B A0 AF E2 15 51 78 5D 0C 61 3B E	33 61
$D_3 \oplus H_2$	1C 93 76 0B A0 AF E2 15 51 78 5D 0C 61 3B E	33 61
G	A0 C4 65 EE 58 96 97 2F 83 37 AA 1F 92 C9 9	9D 10

MAC=A0 C4 65 EE 58 96 97 2F

一使用数据比特串1和填充方法3

密钥 K^*	01	23	45	67	89	AB	CD	EF	FE	DC	BA	98	76	54	32	10
密钥 K	4E	59	5В	F0	3F	23	BD	10	32	9В	AF	56	98	E8	98	EC
密钥 K'	ВЗ	13	6C	04	4E	95	48	2D	4F	65	2E	69	4F	27	41	CD
H_1	75	9B	ЕО	D4	71	87	52	ЕВ	89	2A	40	Е5	99	43	Е9	16
$D_2 \oplus H_1$	21	F3	89	A7	51	EE	21	СВ	FD	42	25	C5	ED	26	9A	62
H_2	45	A0	43	8C	E1	42	AC	38	5E	08	33	В9	CF	AE	46	33
$D_3 \oplus H_2$	65	CD	26	FF	92	23	СВ	5D	7E	6E	5C	СВ	EF	СЗ	27	50
G	43	05	OD	51	C6	56	AE	60	BE	27	3F	ВЕ	A4	87	0E	F1

MAC=43 05 0D 51 C6 56 AE 60

——使用数据比特串2和填充方法1

密钥 K^*	01 2	3 45	67	89	AB	CD	EF	FE	DC	ВА	98	76	54	32	10
密钥 K	4E 5	9 5B	F0	3F	23	BD	10	32	9В	AF	56	98	E8	98	EC
密钥 K'	В3 1	3 6C	04	4E	95	48	2D	4F	65	2E	69	4F	27	41	CD
H_1	7A 0	F 91	F3	1D	D3	4E	F2	23	4B	С9	05	EA	DC	80	14
$D_2 \oplus H_1$	5A 6	2 F4	80	6E	В2	29	97	03	4B	С9	05	EA	DC	80	14
G	8C F	6 E6	43	14	FE	F4	17	3E	7A	8A	ЕВ	67	С5	BE	57

MAC=8C F6 E6 43 14 FE F4 17

密钥 K*	01	23	45	67	89	AB	CD	EF	FE	DC	BA	98	76	54	32	10
密钥 K	4E	59	5В	F0	3F	23	BD	10	32	9В	AF	56	98	E8	98	EC
密钥 K'	ВЗ	13	6C	04	4E	95	48	2D	4F	65	2E	69	4F	27	41	CD

$D_2 \oplus H_1$	5A 62 F4 80 6E B2 29 97 03 CB C9 05 EA DC 80 14
G	60 DD 95 5E DO CA 3D 7A 64 22 71 74 DD 98 DD 81

MAC=60 DD 95 5E DO CA 3D 7A

——使用数据比特串2和填充方法3

密钥 K^*	01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10
密钥 K	4E 59 5B F0 3F 23 BD 10 32 9B AF 56 98 E8 98 EC
密钥 K'	B3 13 6C 04 4E 95 48 2D 4F 65 2E 69 4F 27 41 CD
H_1	C8 70 DD 59 02 49 30 88 3A DD 10 80 CE 76 D7 63
$D_2 \oplus H_1$	9C 18 B4 2A 22 20 43 A8 4E B5 75 A0 BA 13 A4 17
H_2	6E 09 28 0E C2 2C E9 1B ED 84 45 12 FF B5 C0 E6
$D_3 \oplus H_2$	4E 64 4D 7D B1 4D 8E 7E CD 84 45 12 FF B5 CO E6
G	61 E0 00 49 E2 69 62 A3 6F EDBA 8D 4F 52 F0 AD

MAC=61 E0 00 49 E2 69 62 A3

A.8 MAC算法 7 (TrCBC)

这里使用的密钥是 K=01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10 (16进制)。MAC的比特长度 m 等于64。

——使用数据比特串1和填充方法4

密钥 K	01	23	45	67	89	AB	CD	EF	FE	DC	BA	98	76	54	32	10
H_1	45	FF	A9	48	60	5F	52	E8	F4	EF	21	D5	5C	D8	F8	0C
$D_2 \oplus H_1$	65	92	CC	3В	13	3E	35	8D	D4	89	4E	A7	7C	В5	99	6F
$G = H_2$	16	ЕО	29	04	EF	В7	65	В7	06	45	9C	9E	DA	BD	В5	19

MAC=16 E0 29 04 EF B7 65 B7

——使用数据比特串2和填充方法4

密钥 K	01	23	45	67	89	AB	CD	EF	FE	DC	BA	98	76	54	32	10
H_1	45	FF	A9	48	60	5F	52	E8	F4	EF	21	D5	5C	D8	F8	0C
$D_2 \oplus H_1$	65	92	CC	3В	13	3E	35	8D	D4	6F	21	D5	5C	D8	F8	0C
$G = H_2$	42	1A	D1	69	OA	A1	52	E2	84	6F	A2	A5	D8	34	45	A9

MAC=84 6F A2 A5 D8 34 45 A9

A. 9 MAC算法 8 (CBCR)

这里使用的密钥是 K=01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10 (16进制)。MAC的比特长度 m 等于64。

密钥 K	01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10
$H_0 = e_K(0^{128})$	26 77 F4 6B 09 C1 22 CC 97 55 33 10 5B D4 A2 2A

$D_1 \oplus H_0$	72 1F	9D	18	29	A8	51	EC	ЕЗ	3D	56	30	2F	В1	D1	5E
H_1	18 68	26	95	ЗВ	1F	ВС	63	F1	84	06	C0	D9	42	4E	52
$D_2 \oplus H_1$	38 05	43	Е6	48	7E	DB	06	D1	E2	69	В2	F9	2F	2F	31
$G = H_2$	E4 0E	D7	9C	31	49	A1	С9	D4	2F	04	C4	23	04	99	35

MAC=E4 OE D7 9C 31 49 A1 C9

——使用数据比特串2和填充方法4

密钥 K	01 23	45	67	89	AB	CD	EF	FE	DC	BA	98	76	54	32	10
$H_0 = e_K(0^{128})$	26 77	F4	6B	09	C1	22	CC	97	55	33	10	5В	D4	A2	2A
$D_1 \oplus H_0$	72 1F	9D	18	29	A8	51	EC	ЕЗ	3D	56	30	2F	В1	D1	5E
H_1	18 68	26	95	3В	1F	ВС	63	F1	84	06	C0	D9	42	4E	52
$D_2 \oplus H_1$	38 05	43	Е6	48	7E	DB	06	D1	04	06	C0	D9	42	4E	52
$G = H_2$	A9 9D	13	01	3Е	89	2E	E2	C2	5В	E2	DA	AA	6C	82	E8

MAC=A9 9D 13 01 3E 89 2E E2

附 录 B (资料性附录) MAC 算法的安全性分析

本附录讨论了本部分中MAC算法的安全强度。它的目标是协助本部分的使用者选择合适的MAC算法。假定分组密码的密钥长度为k比特,MAC算法的密钥长度为 k^* 比特,所以 $k^*=k$ 或 $k^*=2k$ 。

本附录中, $MAC_{\kappa}(D)$ 表示用密钥为 K的MAC算法对消息 D进行计算所得到的MAC。

为了确定MAC算法的安全强度,本附录考虑了如下两类攻击:

- 一一伪造攻击: 此类攻击是在没有密钥 K 的情况下,对消息 D 预测 $MAC_K(D)$ 。如果攻击者能够对一个消息成功预测其 MAC,那么称他有能力"伪造"。实际攻击经常要求伪造是可验证的,也就是说,以接近 1 的概率确认伪造的 MAC 是正确的。在许多应用中消息有特定的格式,这就意味着对消息 D 有额外限制。
- ——**密钥恢复攻击**:此类攻击根据大量的(消息,MAC)对找到MAC 算法的密钥 K 。密钥恢复攻击比伪造攻击更强大,因为它一旦成功就可进行任意伪造。
- 一个攻击的可行性依赖于攻击者已知和选择的(消息,MAC)对数目以及离线加密的次数。

对MAC算法可能的攻击描述如下,但是这里并不保证列举了所有的攻击。前两种攻击是一般性的,它们对任何MAC算法都有效。第三种适用于迭代的MAC算法。随后的三种攻击只对本标准中的一个或多个特定MAC算法有效(更多信息请参阅[16, 21, 22, 26, 27, 28])。

- ——**猜测 MAC**: 这种伪造是不可验证的,成功概率为 $\max(1/2^m,1/2^{k^*})$ 。这种攻击适用于所有的 MAC 算法,只有合适地选择 m 和 k^* 才能够抵抗这种攻击。
- —**密钥穷搜索**:这种攻击需要运行平均 2^{k^*-1} 次 MAC 算法,并且需要 k^*/m 对(消息,MAC)以唯一确定密钥。同样这种攻击适用于所有 MAC 算法,合适地选择 k^* 能够抵抗这种攻击。另外,MAC 算法使用者也可阻止攻击者获得 k^*/m 对(消息,MAC)以抵抗这种攻击。例如,如果 $k^*=64$ 且 m=32,给定的对(消息,MAC)相当于 2^{32} 个密钥。如果每次使用 MAC 算法后都改变密钥,那么密钥穷搜索攻击并不比猜测 MAC 攻击更有效。
- ——生日攻击[26, 28]:如果攻击者获得接近 $2^{n/2}$ 对(消息,MAC),将有很高的概率找到消息 D 和 D',使得: $\mathrm{MAC}_K(D)$ = $\mathrm{MAC}_K(D')$,并且 H_a 的值在两次 MAC 计算中是相等的(被称为内部碰撞)。 如果消息 D 和 D' 构成内部碰撞,那么对任意的比特串 Y 都有 $\mathrm{MAC}_K(D||Y)$ = $\mathrm{MAC}_K(D'||Y)$ 。 这就构成了一种伪造,当攻击者得到比特串 D||Y 的 MAC 时,就能够预测比特串 D'||Y 的 MAC。同样,这种伪造依赖于消息的特殊格式,可能对许多应用没有威胁。但是,这种攻击的扩展版本在消息格式方面有更大的灵活性。这种攻击需要一个比特串、大约 $2^{n/2}$ 对已知(消息,MAC)和 $\min\{2^{n-m},2^{n/2}\}$ 对选择(消息,MAC)。

使用填充方法3和在要处理的消息前面加上一个序列号分组并不能避免生日攻击(具体参见文献[17])。

- ——**简单伪造**: 若采用填充方法 1,那么攻击者可轻易地增加或删除消息最后的几个"0"比特,却保持 MAC 不变。这就意味着填充方法 1 只能用在 MAC 算法使用者事先知道消息长度的情况下,或者消息最后有不同个数的"0"却意义相同的情况。
- ——**异或伪造**: 若 MAC 算法 1 采用填充方法 1 或 2,并且 m=n,那么就可能存在一个简单的异或 伪造攻击。简单来讲,假如消息 D 或其被填充后的数据 \overline{D} 只有一个分组长度(如果使用填充 方法 2,假定 D 的长度小于 n 比特)。v 表示将比特串最右侧的比特 "1"以及随后的所有 "0"

去除的操作(假如 $\overline{v(X)}$ 表示v(X)经填充方法 2 得到的数据,则 $\overline{v(X)} = X$)。

假 定 攻 击 者 获 得 了 $\mathrm{MAC}_{\kappa}(D)$ 。 如 果 采 用 填 充 方 法 1 , 可 知 $\mathrm{MAC}_{\kappa}(\overline{D} \| (\overline{D} \oplus \mathrm{MAC}_{\kappa}(D))) = \mathrm{MAC}_{\kappa}(D)$ 。 类 似 地 , 如 果 使 用 填 充 方 法 2 , 可 知 $\mathrm{MAC}_{\kappa}(\overline{D} \| \nu(\overline{D} \oplus \mathrm{MAC}_{\kappa}(D))) = \mathrm{MAC}_{\kappa}(D)$ 。这就意味着攻击者可构造一个伪造。

注意到:即便 MAC 算法的密钥仅使用一次,这类攻击仍然适用。如果攻击者获得了 $MAC_{\kappa}(D)$ 和 $MAC_{\kappa}(D')$ 。如果采用填充方法 1,经过类似的推导可知: $MAC_{\kappa}(\overline{D}||(\overline{D'}\oplus MAC_{\kappa}(D)))=MAC_{\kappa}(D')$ (这里 D 的长度任意,而 D' 的长度必须是一个分组)。类似地,如果采用填充方法 2,可知 $MAC_{\kappa}(\overline{D}||\nu(\overline{D'}\oplus MAC_{\kappa}(D)))=MAC_{\kappa}(D')$ (这里 D 的长度任意,而 D' 的长度必须是一个分组)。

此外,对于填充方法 1,如果攻击者知道 $\operatorname{MAC}_{\kappa}(D)$, $\operatorname{MAC}_{\kappa}(D \parallel Y)$ 和 $\operatorname{MAC}_{\kappa}(D')$,那么就知道了 $\operatorname{MAC}_{\kappa}(D' \parallel Y') = \operatorname{MAC}_{\kappa}(D \parallel Y)$,其中 $Y' = Y \oplus \operatorname{MAC}_{\kappa}(D) \oplus \operatorname{MAC}_{\kappa}(D')$ (这里假定 D 和 Y 的比特长度为 n 的整数倍)。这也构成了一个伪造,因为攻击者在获得了两个已知消息和一个选择消息所对应的 MAC 之后,能够对比特串 $D' \parallel Y'$ 伪造 MAC 。对于填充方法 2,类似(但较为复杂)的伪造攻击也有效。

值得注意的是,上述伪造依赖于消息的特殊格式,可能对许多应用没有威胁。

采用填充方法3可抵抗这种攻击。

若m < n,这种攻击仍然适用,但是更加困难,需要额外的 $2^{(n-m)/2}$ 对选择(消息,MAC)[21]。这种攻击对使用两个相同密钥(K' = K)的 MAC 算法 2 也适用,不过这里要求 Y 包含至少两个分组,并且其前面n 比特为"0"。

——捷径密钥恢复: 基于内部碰撞的密钥恢复攻击适用于某些 MAC 算法。比如 MAC 算法 3[22, 24, 27]),以及采用填充方法 1、2[19]或 3[18]的 MAC 算法 4。部分密钥恢复攻击适用于 MAC 算法 5[24]。获得部分密钥后,容易构造伪造。

如下的表格比较了本部分各MAC算法的安全强度。这里假定底层分组密码算法没有任何弱点。表B. 1 列举了各MAC算法的主要性质。因为采用填充方法1存在简单伪造攻击,所以MAC算法1、2、3、4和6只采用填充方法2和3。表B. 2和表B. 3针对采用 n=64 和 k=56 (比如DES算法[8])分组密码的MAC算法,介绍了最好的攻击。表B. 4和表B. 5针对采用 n=64 和 k=128 分组密码的MAC算法,表B. 6和表B. 7针对采用 n=128 和 k=128 分组密码的MAC算法。在这些情形中,无需将MAC算法的密钥长度加倍,因此仅考虑MAC算法1和2。其中的大部分攻击源自[16,17,18,19,20,21,22,26,27,28]。攻击复杂度使用4元组 $[\alpha,\beta,\gamma,\delta]$ 描述,其中 α 表示离线加密的次数, β 表示已知(消息,MAC)对的数目, γ 表示选择(消息,MAC)的数目, δ 表示在线验证的次数。

在假设分组密码是伪随机置换的情况下,文献[16]对输入长度固定且为分组长度整数倍的MAC算法1做了分析,给出了安全强度的一个下界,证明了其安全性;文献[25]对输入长度是分组长度任意整数倍的MAC算法2做了分析,同样证明了其安全性。文献[16,25]同时说明了在假定底层分组密码没有弱点的条件下,前面所述的很多生日攻击接近于最好的攻击。

表 B. 1 MAC 算法的特性;密钥个数表示相互独立的分组密码密钥个数,效率表示处理长度为 tn 比特的比特串所用的加密次数

序号	MAC算法	初始变换	最终变换	输出变换	截断操作	填充	密钥个数	效率
1.1	1	1	1	1	1	2	1	<i>t</i> + 1
1.2	1	1	1	1	1	3	1	<i>t</i> + 1
2. 1	2	1	1	2	1	2	1	<i>t</i> + 2
2.2	2	1	1	2	1	2	2	t + 2

3	3	1	1	3	1	2	2	t + 3			
4.1	4	2	1	2	1	2	2	t + 3			
4.2	4	2	1	2	1	3	2	<i>t</i> + 3			
5	5	1	3	1	1	4	1ª	t a			
6. 1	6	1	2	1	1	2	1	t + 1			
6. 2	6	1	2	1	1	2	2	t + 1			
7	7	1	1	1	2	4	1	t			
8	8	3	4	1	1	4	1	t + 1			
^a MAC	$^{\circ}$ MAC 算法 5 需要预计算一次加密,存储额外的两个 n 比特密钥。										

表 B. 2 当 n = 64 、 k = 56 和 m = 64 时的安全强度估计,安全强度由四个数字表示:离线加密的次数,已知(消息,MAC)的数目,选择(消息,MAC)的数目以及在线验证的次数

	密钥	月恢复		伪造	
序号	密钥穷搜索	捷径密钥恢复	猜测 MAC 值	异或	生日伪造
1. 1	$[2^{56},1,0,0]$		$[0,0,0,2^{56}]$	[0,1,0,0]	$[0,2^{32},1,0]$ $[0,1,2^{32},0]$
1. 2	$[2^{56},1,0,0]$		$[0,0,0,2^{56}]$		$[0,2^{32},1,0]$ $[0,1,2^{32},0]$
2. 1	[2 ⁵⁶ ,1,0,0]		$[0,0,0,2^{56}]$		$[0,2^{32},1,0]$ $[0,1,2^{32},0]$
2. 2	$[2^{112}, 2, 0, 0]$	$[2^{57}, 2, 0, 0]$	$[0,0,0,2^{64}]$		$[0,2^{32},1,0]$ $[0,1,2^{32},0]$
3	$[2^{112}, 2, 0, 0]$	$[2^{57}, 2^{32}, 0, 0]$ $[2^{56}, 1, 0, 2^{56}]$ $[2^{57}, 2, 0, 2^{63}]$	$[0,0,0,2^{64}]$ $[0,1,0,2^{56}]$		$[0,2^{32},1,0]$ $[0,1,2^{32},0]$
4. 1	$[2^{112}, 2, 0, 0]$	$[2^{58}, 2^{32}, 2, 0]^{a}$ $[2^{58}, 1, 1, 2^{56}]^{a}$	$[0,0,0,2^{64}]$ $[0,1,0,2^{56}]^{a}$		$[0,2^{32},1,0]$
4. 2	$[2^{112}, 2, 0, 0]$	$[2^{58}, 2^{33}, 2^{50}, 0]^{a}$	$[0,0,0,2^{64}]$		$[0,2^{32},1,0]$ $[0,0,1,2^{64}]$
5	$[2^{56},1,0,0]$	$[0,2^{33},0,0]^{\mathrm{b}}$	$[0,0,0,2^{64}]$		$[0,2^{33},0,0]$
6. 1	$[2^{56},1,0,0]$		$[0,0,0,2^{56}]$		$[0,2^{32},1,0]$ $[0,1,2^{32},0]$
6.2	$[2^{112}, 2, 0, 0]$	$[2^{57}, 2, 0, 0]$	$[0,0,0,2^{64}]$		$[0,2^{32},1,0]$ $[0,1,2^{32},0]$
8	$[2^{56},1,0,0]$		$[0,0,0,2^{64}]$		$[0,2^{33},0,0]$
					$[0,2^{33},0]$

^b 仅恢复用于简单伪造的掩码密钥。

表 B. 3 当 n = 64 、 k = 56 和 m = 32 时的安全强度估计;安全强度由四个数字表示:离线加密的次数,已知(消息,MAC)的数目,选择(消息,MAC)的数目以及在线验证的次数

	密钥	恢复		伪造	
序号	密钥穷搜索	捷径密钥恢复	猜测 MAC 值	异或	生日伪造
1.1	$[2^{56}, 2, 0, 0]$		$[0,0,0,2^{32}]$	$[0,2,2^{16},0]$	$[0,2^{32},2^{32},0]^{a}$
1.2	$[2^{56}, 2, 0, 0]$		$[0,0,0,2^{32}]$		$[0,2^{32},2^{32},0]^{a}$
2.1	$[2^{56}, 2, 0, 0]$		$[0,0,0,2^{32}]$		$[0,2^{32},2^{32},0]^{a}$
2.2	$[2^{112}, 4, 0, 0]$	$[2^{57}, 2^{32}, 2^{32}, 0]$	$[0,0,0,2^{32}]$	——	$[0,2^{32},2^{32},0]^{a}$
		$[2^{88},4,0,0]$			
3	$[2^{112}, 4, 0, 0]$	$[2^{57}, 2^{32}, 2^{32}, 0]^{a}$	$[0,0,0,2^{32}]$	——	$[0,2^{32},2^{32},0]^{a}$
		$[2^{89}, 2^{32}, 0, 0]$			
		$[2^{57}, 0, 0, 2^{48}]$			
4.1	$[2^{112}, 4, 0, 0]$	$[2^{78}, 2^{32}, 2^{50}, 0]^{a}$	$[0,0,0,2^{32}]$		$[0,2^{32},2^{32},0]^{a}$
4.2	$[2^{112}, 4, 0, 0]$	$[2^{78}, 2^{32}, 2^{50}, 0]^{a}$	$[0,0,0,2^{32}]$	——	$[0,2^{32},2^{32},0]^{a}$
		$[2^{64}, 0, 2^{63}, 2^{57}]^{a}$			
5	$[2^{56}, 2, 0, 0]$	$[0,2^{33},2^{33},0]^{b}$	$[0,0,0,2^{64}]$		$[0,2^{32},2^{32},0]$
6.1	$[2^{56}, 2, 0, 0]$		$[0,0,0,2^{32}]$		$[0,2^{32},2^{32},0]^{a}$
6.2	$[2^{112}, 4, 0, 0]$	$[2^{57}, 2^{32}, 2^{32}, 0]$	$[0,0,0,2^{32}]$		$[0,2^{32},2^{32},0]^{a}$
		$[2^{88},4,0,0]$			
8	$[2^{56}, 2, 0, 0]$		$[0,0,0,2^{64}]$		$[0,2^{32},2^{32},0]$
* 表示采	· 用填充方式3并且在	数据比特串头部附加	一个序列号消息块	可避免相应攻击。	
^b 仅恢复	用于简单伪造的掩码	· · · · · · · · · · · · · · · · · · ·			

表 B. 4 当 n=64、 k=128 和 m=64 时的安全强度估计;安全强度由四个数字表示:离线加密的次数,已知(消息,MAC)的数目,选择(消息,MAC)的数目以及在线验证的次数

	密钥恢复		伪造			
序号	密钥穷搜索	捷径密钥恢复	猜测 MAC 值	异或	生日伪造	
1.1	$[2^{128}, 2, 0, 0]$		$[0,0,0,2^{64}]$	[0,1,0,0]	$[0,2^{32},1,0]^{a}$	
					$[0,1,2^{32},0]$	
1.2	$[2^{128}, 2, 0, 0]$		$[0,0,0,2^{64}]$		$[0,2^{32},1,0]^{a}$	
					$[0,1,2^{32},0]$	
2.1	$[2^{128}, 2, 0, 0]$		$[0,0,0,2^{64}]$		$[0,2^{32},1,0]^{a}$	
					$[0,1,2^{32},0]$	
5	$[2^{128}, 2, 0, 0]$	$[0,2^{33},0,0]$ b	$[0,0,0,2^{64}]$		$[0,2^{33},0,0]$	
6.1	$[2^{128}, 2, 0, 0]$		$[0,0,0,2^{64}]$		$[0,2^{32},1,0]^{a}$	
					$[0,1,2^{32},0]$	
8	$[2^{128}, 2, 0, 0]$		$[0,0,0,2^{64}]$		$[0,2^{33},0,0]$	
*表示采用填充方式3并且在数据比特串头部附加一个序列号消息块可避免相应攻击。						

^b 仅恢复用于简单伪造的掩码密钥。

表 B. 5 当 n = 64、 k = 128 和 m = 32 时的安全强度估计;安全强度由四个数字表示:离线加密的次数,已知(消息,MAC)的数目,选择(消息,MAC)的数目以及在线验证的次数

	密钥恢复		伪造			
序号	密钥穷搜索	捷径密钥恢复	猜测 MAC 值	异或	生日伪造	
1.1	$[2^{128}, 4, 0, 0]$		$[0,0,0,2^{32}]$	$[0,2,2^{16},0]$	$[0,2^{32},2^{32},0]^{a}$	
1.2	$[2^{128}, 4, 0, 0]$		$[0,0,0,2^{32}]$		$[0,2^{32},2^{32},0]^{a}$	
2.1	$[2^{128}, 4, 0, 0]$		$[0,0,0,2^{32}]$		$[0,2^{32},2^{32},0]^{a}$	
5	$[2^{128}, 4, 0, 0]$	$[0,2^{33},2^{33},0]^{b}$	$[0,0,0,2^{32}]$		$[0,2^{33},2^{33},0]$	
6.1	$[2^{128}, 4, 0, 0]$		$[0,0,0,2^{32}]$		$[0,2^{32},2^{32},0]^{a}$	
8	$[2^{128}, 4, 0, 0]$		$[0,0,0,2^{32}]$		$[0,2^{33},2^{33},0]$	
"表示采用填充方式3并且在数据比特串头部附加一个序列号消息块可避免相应攻击。						
b 仅恢复	^b 仅恢复用于简单伪造的掩码密钥。					

表 B. 6 当 n = 128 、 k = 128 和 m = 64 时的安全强度估计;安全强度由四个数字表示:离线加密的次数,已知(消息,MAC)的数目,选择(消息,MAC)的数目以及在线验证的次数

	密钥恢复		伪造			
序号	密钥穷搜索	捷径密钥恢复	猜测 MAC 值	异或	生日伪造	
1.1	$[2^{128}, 2, 0, 0]$		$[0,0,0,2^{64}]$	$[0,2,2^{32},0]$	$[0,2^{64},2^{64},0]^{a}$	
1.2	$[2^{128}, 2, 0, 0]$		$[0,0,0,2^{64}]$	——	$[0,2^{64},2^{64},0]^{a}$	
2. 1	$[2^{128}, 2, 0, 0]$		$[0,0,0,2^{64}]$		$[0,2^{64},2^{64},0]^{a}$	
5	$[2^{128}, 2, 0, 0]$	$[0,2^{65},2^{65},0]^{\mathrm{b}}$	$[0,0,0,2^{64}]$	——	$[0,2^{65},2^{65},0]$	
6.1	$[2^{128}, 2, 0, 0]$		$[0,0,0,2^{64}]$		$[0,2^{64},2^{64},0]^{a}$	
8	$[2^{128}, 2, 0, 0]$		$[0,0,0,2^{64}]$	——	$[0,2^{65},2^{65},0]$	
*表示采用填充方式3并且在数据比特串头部附加一个序列号消息块可避免相应攻击。						
^b 仅恢复用于简单伪造的掩码密钥。						

表 B. 7 当 n=128 、 k=128 和 m=32 时的安全强度估计;安全强度由四个数字表示:离线加密的次数,已知(消息,MAC)的数目,选择(消息,MAC)的数目以及在线验证的次数

	密钥恢复		伪造		
序号	密钥穷搜索	捷径密钥恢复	猜测 MAC 值	异或	生日伪造
1.1	$[2^{128}, 4, 0, 0]$		$[0,0,0,2^{32}]$	$[0,2,2^{48},0]$	$[0,2^{64},2^{64},0]^{a}$
1.2	$[2^{128}, 4, 0, 0]$		$[0,0,0,2^{32}]$		$[0,2^{64},2^{64},0]^{a}$
2. 1	$[2^{128}, 4, 0, 0]$		$[0,0,0,2^{32}]$		$[0,2^{64},2^{64},0]^{a}$
5	$[2^{128}, 4, 0, 0]$	$[0,2^{65},2^{97},0]$ b	$[0,0,0,2^{32}]$		$[0,2^{65},2^{97},0]$
6.1	$[2^{128}, 4, 0, 0]$		$[0,0,0,2^{32}]$		$[0,2^{64},2^{64},0]^{a}$
7	$[2^{128}, 4, 0, 0]$		$[0,0,0,2^{32}]$		$[0,2^{65},2^{97},0]$

8	$[2^{128}, 4, 0, 0]$		$[0,0,0,2^{32}]$	——	$[0,2^{65},2^{97},0]$	
。表示采用填充方式 3 并且在数据比特串头部附加一个序列号消息块可避免相应攻击。						
^b 仅恢复用于简单伪造的掩码密钥。						

参 考 文 献

- [1] ISO 8731-1:1987, Banking Approved algorithms for message authentication Part 1: DEA
- [2] ISO 8732:1988, Banking Key management (wholesale)
- [3] ISO/IEC 8825-1:2002, Information technology ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)
- [4] ISO 9807:1991, Banking and related financial services Requirements for message authentication (retail)
- [5] ISO/IEC 10116:2006, Information technology Security techniques Modes of operation for an n-bit block cipher
- [6] ISO/IEC 11770 (all parts), Information technology Security techniques Key management
- [7] ISO 11568 (all parts), Banking Key management (retail)
- [8] ANSI X3.92:1981, Data Encryption Algorithm
- [9] ANSI X9.9:1986, Financial Institution Message Authentication (Wholesale)
- [10] ANSI X9.19:1986, Financial Institution Retail Message Authentication
- [11] ANSI X9.24-1:2004, Retail Financial Services Symmetric Key Management Part 1: Using Symmetric Techniques
- [12] NIST Special Publication 800-38B: 2005, Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication, May 2005
- [13] GB/T 9387.2-1995, 《信息处理系统 开放系统互联 基本参考模型 第 2 部分:安全体系结构》
- [14] GB/T 15843.1-2017, 《信息技术 安全技术 实体鉴别 第 1 部分: 概述》
- [15] GB/T 17901.1-1999, 《信息技术 安全技术 密钥管理 第 1 部分: 框架》
- [16] M. Bellare, J. Kilian, and P. Rogaway, 'The security of cipher block chaining', Advances in Cryptology, Proceedings Crypto'94, LNCS 839, Y. Desmedt, Ed., Springer-Verlag, 1994, pp. 341-358
- [17] K. Brincat and C.J. Mitchell, 'New CBC-MAC forgery attacks', Information Security and Privacy, ACISP 2001, LNCS 2119, V. Varadharajan and Y. Mu, Eds., Springer-Verlag, 2001, pp. 3-14
- [18] D. Coppersmith, L.R. Knudsen, and C.J. Mitchell, 'Key recovery and forgery attacks on the MacDES MAC algorithm', Advances in Cryptology, Proceedings Crypto 2000, LNCS 1880, M. Bellare, Ed., Springer-Verlag, 2000, pp. 184-196
- [19] D. Coppersmith and C.J. Mitchell, 'Attacks on MacDES MAC algorithm', Electronics Letters, Vol. 35, No. 19, 1999, pp. 1626-1627
- [20] T. Iwata and K. Kurosawa, 'OMAC: One-key CBC MAC', Proceedings Fast Software Encryption 2003, LNCS 2887, T. Johansson, Ed., Springer-Verlag, 2003, pp. 129-153
- [21] L. Knudsen, 'Chosen-text attack on CBC-MAC', Electronics Letters, Vol. 33, No. 1, 1997, pp. 48-49
- [22] L. Knudsen and B. Preneel, 'MacDES: MAC algorithm based on DES', Electronics Letters, Vol. 34, No. 9, 1998, pp. 871-873
- [23] C.J. Mitchell, 'Key recovery attack on ANSI retail MAC', Electronics Letters, Vol. 39, 2003, pp. 361-362
- [24] C.J. Mitchell, 'Partial key recovery attack on XCBC, TMAC and OMAC', Cryptography and Coding: Proceedings 10th IMA International Conference, LNCS 3796, N. Smart, Ed., Springer-Verlag, 2005, pp. 155-167 (See also: Royal Holloway, University of London, Mathematics Department Technical Report

- RHUL-MA-2003-4, August 2003, 15 pages)
- [25] E. Petrank and C. Rackoff, 'CBC MAC for real-time data sources', Journal of Cryptology, Vol. 13, No. 3, 2000, pp. 315-338
- [26] B. Preneel and P.C. van Oorschot, 'MDx-MAC and building fast MACs from hash functions', Advances in Cryptology, Proceedings Crypto'95, LNCS 963, D. Coppersmith, Ed., Springer-Verlag, 1995, pp. 1-14
- [27] B. Preneel and P.C. van Oorschot, 'A key recovery attack on the ANSI X9.19 retail MAC', Electronics Letters, Vol. 32, No. 17, 1996, pp. 1568-1569
- [28] B. Preneel and P.C. van Oorschot, 'On the security of iterated Message Authentication Codes', IEEE Transactions on Information Theory, Vol. 45, No. 1, January 1999, pp. 188-199
- [29] L. Zhang, W. Wu, P. Wang, and B. Liang, 'TrCBC: Another look at CBC-MAC', Information Processing Letters, Vol. 112, No. 7, 2012, pp. 302-307
- [30] L. Zhang, W. Wu, L. Zhang, and P. Wang, 'CBCR: CBC MAC with rotating transformations', Science China Information Sciences, Vol. 54, No. 11, 2011, pp. 2247-2255

34