OFFICE OF NAVAL RESEARCH

CONTRACT N00014-95-1-0028

R&T Code 4131D02

Dr. Richard S. Miller

Technical Report No. 76

CONTINUED COMPUTATIONAL EVALUATION OF THE FEASIBILITY OF NITRATING PRECURSORS TO $C_{12}N_{12}O_{12}$.

by

Peter Politzer and M. Edward Grice

Department of Chemistry University of New Orleans New Orleans, LA 70148

December 5, 1994

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.

19941209 064

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden. to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1264, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave plank) 12. REPORT DATE 3. REPORT TYPE AND DATES COVER			D DATES COVERED		
	December 5, 1994	Technical	Report		
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS		
Continued Computational Ev Nitrating Precursors to C	N00014-95-1-0028 Dr. Richard S. Miller R& T Code 4131D02				
6. AUTHOR(S)					
Peter Politzer and M. Edwa					
7. PERFORMING ORGANIZATION NAME(S) University of New Orleans Department of Chemistry New Orleans, Louisiana			8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Offie of Naval Research Code 333 800 N. Quincy Street Arlington, VA 22217			10. SPONSORING / MONITORING AGENCY REPORT NUMBER		
11. SUPPLEMENTARY NOTES					

12a. DISTRIBUTION / AVAILABILITY STATEMENT

12b. DISTRIBUTION CODE

Approved for public release. Unlimited distribution.

13. ABSTRACT (Maximum 200 words)

Extending the work reported in Technical Report No. 71 (October 20, 1994), we computed the average local ionization energies on the surfaces of two more possible precursors to 1. No minima were found at the positions to be nitrated, indicating that these are not favored sites for this purpose.

14. SUBJECT TERMS	15. NUMBER OF PAGES		
$C_{12}N_{12}O_{12}$, nitration	. 3		
12 12 12	16. PRICE CODE		
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICATION	20. LIMITATION OF ABSTRACT
OF REPORT	OF THIS PAGE	OF ABSTRACT	
Unclassified	Unclassified	Unclassified	Unlimited

Introduction

In Technical Report No. 71 (October 20, 1994), we investigated the susceptibility to electrophilic attack involving charge transfer (as in nitration) of several possible precursors to 1. We computed the average local ionization energies $\bar{I}_S(\mathbf{r})$ on the surfaces of 2 - 4 (Figure 1) in order to determine the ease of charge transfer at positions \mathbf{a} and \mathbf{b} . At the request of M. L. Trudell, we have now extended this study to include 5 and 6. The procedure used was the same as described in the earlier report, which also discusses the definition and interpretation of $\bar{I}_S(\mathbf{r})$. The results are given in Figure 1, together with those obtained previously.

$$O \longrightarrow O \longrightarrow O_2 N \longrightarrow NO_2$$

$$O \longrightarrow N \longrightarrow N \longrightarrow N$$

$$O_2 N \longrightarrow NO_2$$

$$O_2 N \longrightarrow NO_2$$

We find no minimum in $\bar{I}_S(\mathbf{r})$ at positions \mathbf{a} in $\mathbf{5}$ and $\mathbf{6}$, which is consistent with what was observed earlier for $\mathbf{4}$. This indicates that these are not favorable sites for charge transfer to an electrophile.

Figure 1. Some Computed (STO-5G) Minima of Average Local Ionization Energies on Molecular Surfaces

NO₂

$$a = 15.4 \text{ eV}$$
 $b = 15.1 \text{ eV}$
 $c = 15.2 \text{ eV}$
 $c = 15.2 \text{ eV}$
 $c = 15.8 \text{ eV}$

a: no minimum;

 $\bar{I}_S(\mathbf{r}) = \text{approx. } 15.9 \text{ eV.}$

$$b = 15.2 \text{ eV}$$

$$\bigcap_{N} \bigcap_{N} \bigcap_{N$$

a = 16.3 eV

a = 16.6 eV

5 a: no minimum; $\bar{I}_S(\mathbf{r}) = \text{approx. } 16.8 \text{ eV}.$

6 a: no minimum; $\bar{I}_S(\mathbf{r}) = \text{approx. } 17.0 \text{ eV}.$