

Nonparametric Bayesian Methods: Models, Algorithms, and Applications (Part II)

Tamara Broderick

ITT Career Development Assistant Professor Electrical Engineering & Computer Science MIT

- Example problem: clustering
- Example NPBayes model: Dirichlet process
- Chinese restaurant process
- Inference
- Venture further into the wild world of Nonparametric Bayes
- Big questions
 - Why NPBayes?
 - What does an infinite/growing number of parameters really mean (in NPBayes)?
 - Why is NPBayes challenging but practical?

- Example problem: clustering
- Example NPBayes model: Dirichlet process
- Chinese restaurant process
- Inference
- Venture further into the wild world of Nonparametric Bayes
- Big questions
 - Why NPBayes?
 - What does an infinite/growing number of parameters really mean (in NPBayes)?
 - Why is NPBayes challenging but practical?

- Example problem: clustering
- Example NPBayes model: Dirichlet process
- Chinese restaurant process
- Inference
- Venture further into the wild world of Nonparametric Bayes
- Big questions
 - Why NPBayes?
 - What does an infinite/growing number of parameters really mean (in NPBayes)?
 - Why is NPBayes challenging but practical?

- Example problem: clustering
- Example NPBayes model: Dirichlet process
- Chinese restaurant process
- Inference
- Venture further into the wild world of Nonparametric Bayes
- Big questions
 - Why NPBayes? Learn more as acquire more data
 - What does an infinite/growing number of parameters really mean (in NPBayes)?
 - Why is NPBayes challenging but practical?

- Example problem: clustering
- Example NPBayes model: Dirichlet process
- Chinese restaurant process
- Inference
- Venture further into the wild world of Nonparametric Bayes
- Big questions
 - Why NPBayes? Learn more as acquire more data
 - What does an infinite/growing number of parameters really mean (in NPBayes)? Components vs. clusters; latent vs. realized
 - Why is NPBayes challenging but practical?

- Example problem: clustering
- Example NPBayes model: Dirichlet process
- Chinese restaurant process
- Inference
- Venture further into the wild world of Nonparametric Bayes
- Big questions
 - Why NPBayes? Learn more as acquire more data
 - What does an infinite/growing number of parameters really mean (in NPBayes)? Components vs. clusters; latent vs. realized
 - Why is NPBayes challenging but practical? Infinite dimensional parameter; more on this today!

 Beta → random distribution over 1,2

- Beta → random distribution over 1,2
- Dirichlet \rightarrow random distribution over $1, 2, \dots, K$

- Beta → random distribution over 1,2
- Dirichlet \rightarrow random distribution over $1, 2, \dots, K$
- GEM / Dirichlet process stick-breaking → random distribution over 1, 2, . . .

- Beta → random distribution over 1,2
- Dirichlet \rightarrow random distribution over $1, 2, \dots, K$
- GEM / Dirichlet process stick-breaking → random distribution over 1, 2, . . .

- Beta → random distribution over 1,2
- Dirichlet \rightarrow random distribution over $1, 2, \dots, K$
- GEM / Dirichlet process stick-breaking → random distribution over 1, 2, . . .

- Beta → random distribution over 1,2
- Dirichlet \rightarrow random distribution over $1, 2, \dots, K$
- GEM / Dirichlet process stick-breaking → random distribution over 1, 2, . . .

$$\rho = (\rho_1, \rho_2, \dots) \sim \text{GEM}(\alpha)$$

$$\phi_k \stackrel{iid}{\sim} G_0$$

$$G = \sum_{k=1}^{\infty} \rho_k \delta_{\phi_k}$$

- Beta → random distribution over 1,2
- Dirichlet \rightarrow random distribution over $1, 2, \dots, K$
- GEM / Dirichlet process stick-breaking → random distribution over 1, 2, . . .

$$\rho = (\rho_1, \rho_2, \dots) \sim \text{GEM}(\alpha)$$

$$\phi_k \stackrel{iid}{\sim} G_0$$

$$G = \sum_{k=1}^{\infty} \rho_k \delta_{\phi_k}$$

- Beta → random distribution over 1,2
- Dirichlet \rightarrow random distribution over $1, 2, \dots, K$
- GEM / Dirichlet process stick-breaking → random distribution over 1, 2, . . .
- Dirichlet process \rightarrow random distribution over Φ : $\rho = (\rho_1, \rho_2, \ldots) \sim \operatorname{GEM}(\alpha)$ $\phi_k \overset{iid}{\sim} G_0$ $G = \sum_{k=0}^{\infty} \rho_k \delta_{\phi_k}$

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\mu_k \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \ldots$$

$$\rho = (\rho_1, \rho_2, \dots) \sim \text{GEM}(\alpha)$$

$$\mu_k \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \dots$$

$$\rho = (\rho_1, \rho_2, \dots) \sim \text{GEM}(\alpha)$$

$$\mu_k \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \dots$$

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\mu_k \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \ldots$$
• i.e. $G = \sum_{k=1}^{\infty} \rho_k \delta_{\mu_k}$

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\mu_k \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \ldots$$

Gaussian mixture model

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\mu_k \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \ldots$$

$$\mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \dots$$
• i.e. $G = \sum_{k=1}^{\infty} \rho_k \delta_{\mu_k} \overset{d}{=} \mathrm{DP}(\alpha, \mathcal{N}(\mu_0, \Sigma_0))$

 $z_n \stackrel{iid}{\sim} \text{Categorical}(\rho)$

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\mu_k \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \ldots$$

$$\mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \dots$$
• i.e. $G = \sum_{k=1}^{\infty} \rho_k \delta_{\mu_k} \overset{d}{=} \mathrm{DP}(\alpha, \mathcal{N}(\mu_0, \Sigma_0))$

$$z_n \stackrel{iid}{\sim} \text{Categorical}(\rho)$$

 $\mu_n^* = \mu_{z_n}$

Gaussian mixture model

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\mu_k \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \ldots$$

$$\mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \dots$$
• i.e. $G = \sum_{k=1}^{\infty} \rho_k \delta_{\mu_k} \overset{d}{=} \mathrm{DP}(\alpha, \mathcal{N}(\mu_0, \Sigma_0))$

Gaussian mixture model

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\mu_k \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \ldots$$

$$\mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \dots$$
• i.e. $G = \sum_{k=1}^{\infty} \rho_k \delta_{\mu_k} \overset{d}{=} \mathrm{DP}(\alpha, \mathcal{N}(\mu_0, \Sigma_0))$

$$z_n \stackrel{iid}{\sim} \text{Categorical}(\rho)$$

 $\mu_n^* = \mu_{z_n}$

$$x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_n^*, \Sigma)$$

Gaussian mixture model

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\mu_k \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \ldots$$

• i.e.
$$G = \sum_{k=1}^{\infty} \rho_k \delta_{\mu_k} \stackrel{d}{=} \mathrm{DP}(\alpha, \mathcal{N}(\mu_0, \Sigma_0))$$

$$z_n \stackrel{iid}{\sim} \text{Categorical}(\rho)$$

 $\mu_n^* = \mu_{z_n}$

$$x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_n^*, \Sigma)$$

Gaussian mixture model

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\mu_k \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \ldots$$

• i.e.
$$G = \sum_{k=1}^{\infty} \rho_k \delta_{\mu_k} \stackrel{d}{=} \mathrm{DP}(\alpha, \mathcal{N}(\mu_0, \Sigma_0))$$

$$z_n \stackrel{iid}{\sim} \text{Categorical}(\rho)$$

 $\mu_n^* = \mu_{z_n}$

• i.e. $\mu_n^* \stackrel{iid}{\sim} G$

$$x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_n^*, \Sigma)$$

[demo]

More generally

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\mu_k \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \ldots$$

• i.e.
$$G = \sum_{k=1}^{\infty} \rho_k \delta_{\mu_k} \stackrel{d}{=} \mathrm{DP}(\alpha, \mathcal{N}(\mu_0, \Sigma_0))$$

$$z_n \stackrel{iid}{\sim} \text{Categorical}(\rho)$$

 $\mu_n^* = \mu_{z_n}$

$$x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_n^*, \Sigma)$$

More generally

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\phi_k \stackrel{iid}{\sim} G_0$$

$$k=1,2,\ldots$$

$$\phi_k \overset{iid}{\sim} G_0 \qquad k = 1, 2, \dots \qquad 1 \quad 2$$
• i.e. $G = \sum_{k=1}^{\infty} \rho_k \delta_{\mu_k} \overset{d}{=} \mathrm{DP}(\alpha, \mathcal{N}(\mu_0, \Sigma_0))$

$$z_n \stackrel{iid}{\sim} \text{Categorical}(\rho)$$

 $\mu_n^* = \mu_{z_n}$

$$x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_n^*, \Sigma)$$

More generally

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\phi_k \stackrel{iid}{\sim} G_0$$

$$k=1,2,\ldots$$

$$\phi_k \overset{iid}{\sim} G_0 \qquad k = 1, 2, \dots \qquad 1 \quad 2$$
• i.e. $G = \sum_{k=1}^{\infty} \rho_k \delta_{\mu_k} \overset{d}{=} \mathrm{DP}(\alpha, \mathcal{N}(\mu_0, \Sigma_0))$

$$z_n \stackrel{iid}{\sim} \text{Categorical}(\rho)$$

 $\mu_n^* = \mu_{z_n}$

$$x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_n^*, \Sigma)$$

More generally

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\phi_k \stackrel{iid}{\sim} G_0$$

$$k=1,2,\ldots$$

$$\phi_k \overset{iid}{\sim} G_0 \qquad k = 1, 2, \dots \qquad 1 \quad 2$$
• i.e. $G = \sum_{k=1}^{\infty} \rho_k \delta_{\mu_k} \overset{d}{=} \mathrm{DP}(\alpha, \mathcal{N}(\mu_0, \Sigma_0))$

$$z_n \stackrel{iid}{\sim} \text{Categorical}(\rho)$$

 $\mu_n^* = \mu_{z_n}$

$$x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_n^*, \Sigma)$$

More generally

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\phi_k \stackrel{iid}{\sim} G_0$$

$$k=1,2,\ldots$$

$$\phi_k \overset{iid}{\sim} G_0 \qquad k = 1, 2, \dots \qquad 1 \quad 2$$
• i.e. $G = \sum_{k=1}^{\infty} \rho_k \delta_{\phi_k} \overset{d}{=} \mathrm{DP}(\alpha, \mathcal{N}(\mu_0, \Sigma_0))$

$$z_n \stackrel{iid}{\sim} \text{Categorical}(\rho)$$

 $\mu_n^* = \mu_{z_n}$

$$x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_n^*, \Sigma)$$

More generally

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\phi_k \stackrel{iid}{\sim} G_0$$

$$k=1,2,\ldots$$

$$\phi_k \overset{iid}{\sim} G_0$$
 $k=1,2,\ldots$
• i.e. $G=\sum_{k=1}^\infty
ho_k \delta_{\phi_k} \overset{d}{=} \mathrm{DP}(\alpha,G_0)$

$$z_n \stackrel{iid}{\sim} \text{Categorical}(\rho)$$

 $\mu_n^* = \mu_{z_n}$

• i.e. $\mu_n^* \stackrel{iid}{\sim} G$

$$x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_n^*, \Sigma)$$

More generally

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\phi_k \stackrel{iid}{\sim} G_0$$

$$k=1,2,\ldots$$

$$\phi_k \overset{iid}{\sim} G_0$$
 $k=1,2,\ldots$
• i.e. $G=\sum_{k=1}^\infty
ho_k \delta_{\phi_k} \overset{d}{=} \mathrm{DP}(\alpha,G_0)$

$$\theta_n = \phi_{z_n}$$

 $\theta_n = \phi_{z_n}$ • i.e. $\mu_n^* \overset{iid}{\sim} G$

$$x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_n^*, \Sigma)$$

More generally

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\phi_k \stackrel{iid}{\sim} G_0$$

$$k=1,2,\ldots$$

$$\phi_k \overset{iid}{\sim} G_0$$
 $k=1,2,\ldots$
• i.e. $G=\sum_{k=1}^\infty
ho_k \delta_{\phi_k} \overset{d}{=} \mathrm{DP}(\alpha,G_0)$

$$\theta_n = \phi_{z_n}$$

 $\theta_n = \phi_{z_n}$ • i.e. $\theta_n \overset{iid}{\sim} G$

$$x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_n^*, \Sigma)$$

More generally

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\phi_k \stackrel{iid}{\sim} G_0$$

$$k=1,2,\ldots$$

$$\phi_k \overset{iid}{\sim} G_0$$
 $k=1,2,\ldots$
• i.e. $G=\sum_{k=1}^\infty
ho_k \delta_{\phi_k} \overset{d}{=} \mathrm{DP}(\alpha,G_0)$

$$z_n \stackrel{iid}{\sim} \text{Categorical}(\rho)$$

$$\theta_n = \phi_{z_n}$$

 $\theta_n = \phi_{z_n}$ • i.e. $\theta_n \overset{iid}{\sim} G$

More generally

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\phi_k \stackrel{iid}{\sim} G_0$$

$$k=1,2,\ldots$$

$$\phi_k \overset{iid}{\sim} G_0$$
 $k=1,2,\ldots$
• i.e. $G=\sum_{k=1}^{\infty} \rho_k \delta_{\phi_k} \overset{d}{=} \mathrm{DP}(\alpha,G_0)$

$$\theta_n = \phi_{z_n}$$

[Antoniak 1974; Ferguson 1983; West, Müller, Escobar 1994; Escobar, West 1995; MacEachern, Müller 1998]

• GEM: ...

• GEM: ...

Compare to:

• GEM: ...

- Compare to:
 - Finite (small K) mixture model

• GEM: --

- Compare to:
 - Finite (small K) mixture model

Finite (large K) mixture model

- GEM: ...
- Compare to:
 - Finite (small K) mixture model

Finite (large K) mixture model

Time series

Roadmap

- Example problem: clustering
- Example NPBayes model: Dirichlet process
- Chinese restaurant process
- Inference
- Venture further into the wild world of Nonparametric Bayes
- Big questions
 - Why NPBayes? Learn more as acquire more data
 - What does an infinite/growing number of parameters really mean (in NPBayes)? Components vs. clusters; latent vs. realized
 - Why is NPBayes challenging but practical? Infinite dimensional parameter; more on this today!

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

• Integrate out the frequencies $\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$
$$p(z_n = 1 | z_1, \dots, z_{n-1})$$

$$\rho_{1} \sim \text{Beta}(a_{1}, a_{2}), z_{n} \stackrel{iid}{\sim} \text{Cat}(\rho_{1}, \rho_{2})$$

$$p(z_{n} = 1 | z_{1}, \dots, z_{n-1})$$

$$= \int p(z_{n} = 1, \rho_{1} | z_{1}, \dots, z_{n-1}) d\rho_{1}$$

• Integrate out the frequencies $\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$

$$p(z_n = 1 | z_1, \dots, z_{n-1})$$

$$= \int p(z_n = 1 | \rho_1) p(\rho_1 | z_1, \dots, z_{n-1}) d\rho_1$$

• Integrate out the frequencies $\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$ $p(z_n = 1 | z_1, \dots, z_{n-1})$ $= \int p(z_n = 1 | \rho_1) p(\rho_1 | z_1, \dots, z_{n-1}) d\rho_1$

$$\rho_{1} \sim \text{Beta}(a_{1}, a_{2}), z_{n} \stackrel{iid}{\sim} \text{Cat}(\rho_{1}, \rho_{2})
p(z_{n} = 1 | z_{1}, \dots, z_{n-1})
= \int p(z_{n} = 1 | \rho_{1}) p(\rho_{1} | z_{1}, \dots, z_{n-1}) d\rho_{1}
- \int \rho_{1} z_{n} d\rho_{1} d\rho_{$$

The grate out the frequencies
$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1})$$

$$= \int_{\Gamma} p(z_n = 1 | \rho_1) p(\rho_1 | z_1, \dots, z_{n-1}) d\rho_1$$

$$\begin{aligned} & \rho_1 \sim \text{Beta}(a_1, a_2), z_n \overset{iid}{\sim} \text{Cat}(\rho_1, \rho_2) \\ & p(z_n = 1 | z_1, \dots, z_{n-1}) \\ & = \int p(z_n = 1 | \rho_1) p(\rho_1 | z_1, \dots, z_{n-1}) d\rho_1 \\ & = \int \rho_1 \text{Beta}(\rho_1 | a_{1,n}, a_{2,n}) d\rho_1 \end{aligned}$$

$$\begin{aligned} &\rho_1 \sim \text{Beta}(a_1, a_2), z_n \overset{iid}{\sim} \text{Cat}(\rho_1, \rho_2) \\ &p(z_n = 1 | z_1, \dots, z_{n-1}) \\ &= \int p(z_n = 1 | \rho_1) p(\rho_1 | z_1, \dots, z_{n-1}) d\rho_1 \\ &= \int \rho_1 \text{Beta}(\rho_1 | a_{1,n}, a_{2,n}) d\rho_1 \end{aligned}$$

$$\begin{aligned} &\rho_1 \sim \text{Beta}(a_1, a_2), z_n \overset{iid}{\sim} \text{Cat}(\rho_1, \rho_2) \\ &p(z_n = 1 | z_1, \dots, z_{n-1}) \\ &= \int p(z_n = 1 | \rho_1) p(\rho_1 | z_1, \dots, z_{n-1}) d\rho_1 \\ &= \int \rho_1 \text{Beta}(\rho_1 | a_{1,n}, a_{2,n}) d\rho_1 \\ &= a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\} \end{aligned}$$

$$\begin{aligned} &\rho_1 \sim \text{Beta}(a_1, a_2), z_n \overset{iid}{\sim} \text{Cat}(\rho_1, \rho_2) \\ &p(z_n = 1 | z_1, \dots, z_{n-1}) \\ &= \int p(z_n = 1 | \rho_1) p(\rho_1 | z_1, \dots, z_{n-1}) d\rho_1 \\ &= \int \rho_1 \text{Beta}(\rho_1 | a_{1,n}, a_{2,n}) d\rho_1 \\ &a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1} \{ z_m = 1 \}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1} \{ z_m = 2 \} \\ &= \int \rho_1 \frac{\Gamma(a_{1,n} + a_{2,n})}{\Gamma(a_{1,n}) \Gamma(a_{2,n})} \rho_1^{a_{1,n}-1} (1 - \rho_1)^{a_{2,n}-1} d\rho_1 \end{aligned}$$

 Integrate out the frequencies $\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$ $p(z_n = 1 | z_1, \dots, z_{n-1})$ $= \int_{a}^{b} p(z_n = 1 | \rho_1) p(\rho_1 | z_1, \dots, z_{n-1}) d\rho_1$ $= \int \rho_1 \text{Beta}(\rho_1 | a_{1,n}, a_{2,n}) d\rho_1$ $a_{1,n} := a_1 + \sum \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum \mathbf{1}\{z_m = 2\}$ $= \int \rho_1 \frac{\Gamma(a_{1,n} + a_{2,n})}{\Gamma(a_{1,n})\Gamma(a_{2,n})} \rho_1^{a_{1,n}-1} (1 - \rho_1)^{a_{2,n}-1} d\rho_1$ $= \frac{\Gamma(a_{1,n} + a_{2,n})}{\Gamma(a_{1,n})\Gamma(a_{2,n})} \frac{\Gamma(a_{1,n} + 1)\Gamma(a_{2,n})}{\Gamma(a_{1,n} + a_{2,n} + 1)}$

Integrate out the frequencies
$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1})$$

$$= \int p(z_n = 1 | \rho_1) p(\rho_1 | z_1, \dots, z_{n-1}) d\rho_1$$

$$= \int \rho_1 \text{Beta}(\rho_1 | a_{1,n}, a_{2,n}) d\rho_1$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

$$= \int \rho_1 \frac{\Gamma(a_{1,n} + a_{2,n})}{\Gamma(a_{1,n})\Gamma(a_{2,n})} \rho_1^{a_{1,n}-1} (1 - \rho_1)^{a_{2,n}-1} d\rho_1$$

$$= \frac{\Gamma(a_{1,n} + a_{2,n})}{\Gamma(a_{1,n})\Gamma(a_{2,n})} \frac{\Gamma(a_{1,n} + 1)\Gamma(a_{2,n})}{\Gamma(a_{1,n} + a_{2,n} + 1)}$$

Recall
$$\Gamma(x+1) = x\Gamma(x)$$

Integrate out the frequencies
$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \overset{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1})$$

$$= \int p(z_n = 1 | \rho_1) p(\rho_1 | z_1, \dots, z_{n-1}) d\rho_1$$

$$= \int \rho_1 \text{Beta}(\rho_1 | a_{1,n}, a_{2,n}) d\rho_1$$

$$a_{1,n} := a_1 + \sum_{m=1} \mathbf{1} \{ z_m = 1 \}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1} \{ z_m = 2 \}$$

$$= \int \rho_1 \frac{\Gamma(a_{1,n} + a_{2,n})}{\Gamma(a_{1,n}) \Gamma(a_{2,n})} \rho_1^{a_{1,n}-1} (1 - \rho_1)^{a_{2,n}-1} d\rho_1$$

$$= \Gamma(a_{1,n} + a_{2,n}) \Gamma(a_{1,n} + 1) \Gamma(a_{2,n})$$
 Recall

$$= \frac{\Gamma(a_{1,n} + a_{2,n})}{\Gamma(a_{1,n})\Gamma(a_{2,n})} \frac{\Gamma(a_{1,n} + 1)\Gamma(a_{2,n})}{\Gamma(a_{1,n} + a_{2,n} + 1)}$$

$$= \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

Recall
$$\Gamma(x+1) = x\Gamma(x)$$

$$\frac{\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)}{p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

mitegrate out the frequencies
$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

Integrate out the frequencies
$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \overset{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

Integrate out the frequencies
$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \overset{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

Integrate out the frequencies
$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \overset{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

Integrate out the frequencies
$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \overset{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

Integrate out the frequencies
$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

Integrate out the frequencies
$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

Integrate out the frequencies
$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

Integrate out the frequencies
$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

$$\lim_{n \to \infty} \frac{\# \text{ orange}}{\# \text{ total}} = \rho_{\text{orange}}$$

Integrate out the frequencies

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

m=1

m=1

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

Integrate out the frequencies

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 2\}$$

Pólya urn

Integrate out the frequencies

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

Pólya urn

Integrate out the frequencies

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 2\}$$

Pólya urn

Integrate out the frequencies

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)
p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

m=1

$$\sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$= 1|z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum \mathbf{1}\{z_m = 2\}$$

m=1

Choose any ball with equal probability

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 2\}$$

- Pólya urn
 - Choose any ball with equal probability
 - Replace and add ball of same color

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 2\}$$

- Pólya urn
 - Choose any ball with equal probability
 - Replace and add ball of same color

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 2\}$$

- Pólya urn
 - Choose any ball with equal probability
 - Replace and add ball of same color

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$= a_2 + \sum_{n=1}^{2} \mathbf{1}\{z_m = 2\}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 2\}$$

- Pólya urn
 - Choose any ball with equal probability
 - Replace and add ball of same color

Integrate out the frequencies

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

m=1

m=1

- Choose any ball with equal probability
- Replace and add ball of same color

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

- Pólya urn
 - Choose any ball with equal probability
 - Replace and add ball of same color

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$= a_2 + \sum_{n=1}^{2} \mathbf{1}\{z_m = 2\}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 2\}$$

- Pólya urn
 - Choose any ball with equal probability
 - Replace and add ball of same color

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 2\}$$

- Pólya urn
 - Choose any ball with equal probability
 - Replace and add ball of same color

$$\lim_{n \to \infty} \frac{\text{\# orange}}{\text{\# total}} = \rho_{\text{orange}} \stackrel{d}{=} \text{Beta}(a_{\text{orange}}, a_{\text{green}})$$

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$= a_2 + \sum_{n=1}^{2} \mathbf{1}\{z_m = 2\}$$

$$a_{1,n} := a_1 + \sum_{m=1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1} \mathbf{1}\{z_m = 2\}$$

- Pólya urn
 - Choose any ball with equal probability
 - Replace and add ball of same color

$$\lim_{n \to \infty} \frac{\text{\# orange}}{\text{\# total}} = \rho_{\text{orange}} \stackrel{d}{=} \text{Beta}(a_{\text{orange}}, a_{\text{green}})$$

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 2\}$$

- Pólya urn
 - Choose any ball with equal probability
 - Replace and add ball of same color

$$\lim_{n \to \infty} \frac{\text{\# orange}}{\text{\# total}} = \rho_{\text{orange}} \stackrel{d}{=} \text{Beta}(a_{\text{orange}}, a_{\text{green}})$$

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

- Pólya urn
 - Choose any ball with prob proportional to its mass
 - Replace and add ball of same color

$$\lim_{n \to \infty} \frac{\text{\# orange}}{\text{\# total}} = \rho_{\text{orange}} \stackrel{d}{=} \text{Beta}(a_{\text{orange}}, a_{\text{green}})$$

Integrate out the frequencies

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

- Pólya urn
 - Choose any ball with prob proportional to its mass
 - Replace and add ball of same color

$$\lim_{n \to \infty} \frac{\text{\# orange}}{\text{\# total}} = \rho_{\text{orange}} \stackrel{d}{=} \text{Beta}(a_{\text{orange}}, a_{\text{green}})$$

 $PolyaUrn(a_{orange}, a_{green})$

• Integrate out the frequencies $\rho_{1:K} \sim \mathrm{Dirichlet}(a_{1:K}), z_n \overset{iid}{\sim} \mathrm{Cat}(\rho_{1:K})$

• Integrate out the frequencies $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K}), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_{1:K})$

$$\rho_{1:K} \sim \text{Dirichlet}(a_{1:K}), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_{1:K})$$

$$p(z_n = k | z_1, \dots, z_{n-1}) = \frac{a_{k,n}}{\sum_{j=1}^{K} a_{j,n}}$$

$$\rho_{1:K} \sim \text{Dirichlet}(a_{1:K}), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_{1:K})$$

$$p(z_n = k | z_1, \dots, z_{n-1}) = \frac{a_{k,n}}{\sum_{j=1}^{K} a_{j,n}}$$

$$a_{k,n} := a_k + \sum \mathbf{1}\{z_m = k\}$$

Integrate out the frequencies

$$\rho_{1:K} \sim \text{Dirichlet}(a_{1:K}), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_{1:K})$$

$$p(z_n = k | z_1, \dots, z_{n-1}) = \frac{a_{k,n}}{\sum_{j=1}^{K} a_{j,n}}$$

multivariate Pólya urn

• Integrate out the frequencies

$$\rho_{1:K} \sim \text{Dirichlet}(a_{1:K}), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_{1:K})$$

$$p(z_n = k | z_1, \dots, z_{n-1}) = \frac{a_{k,n}}{\sum_{j=1}^{K} a_{j,n}}$$

$$a_{k,n} := a_k + \sum_{1} \mathbf{1} \{ z_m = k \}$$

multivariate Pólya urn

• Integrate out the frequencies $\rho_{1:K} \sim \mathrm{Dirichlet}(a_{1:K}), z_n \stackrel{iid}{\sim} \mathrm{Cat}(\rho_{1:K})$

$$p(z_n = k | z_1, \dots, z_{n-1}) = \frac{a_{k,n}}{\sum_{j=1}^{K} a_{j,n}}$$
$$a_{k,n} := a_k + \sum \mathbf{1} \{ z_m = k \}$$

- multivariate Pólya urn
 - Choose any ball with prob proportional to its mass

• Integrate out the frequencies $\rho_{1:K} \sim \mathrm{Dirichlet}(a_{1:K}), z_n \stackrel{iid}{\sim} \mathrm{Cat}(\rho_{1:K})$

$$p(z_n = k | z_1, \dots, z_{n-1}) = \frac{a_{k,n}}{\sum_{j=1}^{K} a_{j,n}}$$

$$a_{k,n} := a_k + \sum_{j=1}^{K} \mathbf{1}\{z_m = k\}$$

- multivariate Pólya urn
 - Choose any ball with prob proportional to its mass
 - Replace and add ball of same color

$$\rho_{1:K} \sim \text{Dirichlet}(a_{1:K}), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_{1:K})$$

$$p(z_n = k | z_1, \dots, z_{n-1}) = \frac{a_{k,n}}{\sum_{j=1}^{K} a_{j,n}}$$

$$z_{n} = \kappa | z_{1}, \dots, z_{n-1}) = \frac{1}{\sum_{j=1}^{K} a_{j,n}}$$

$$a_{k,n} := a_{k} + \sum_{j=1}^{K} \mathbf{1} \{ z_{m} = k \}$$

- multivariate Pólya urn
 - Choose any ball with prob proportional to its mass
 - Replace and add ball of same color

$$\rho_{1:K} \sim \text{Dirichlet}(a_{1:K}), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_{1:K})$$

$$p(z_n = k | z_1, \dots, z_{n-1}) = \frac{a_{k,n}}{\sum_{j=1}^{K} a_{j,n}}$$

$$a_{k,n} := a_k + \sum \mathbf{1} \{ z_m = k \}$$

- Choose any ball with prob proportional to its mass
- Replace and add ball of same color

$$\lim_{n \to \infty} \frac{(\text{\# orange, \# green, \# red, \# yellow})}{\text{\# total}}$$
$$\to (\rho_{\text{orange}}, \rho_{\text{green}}, \rho_{\text{red}}, \rho_{\text{yellow}})$$

$$\rho_{1:K} \sim \text{Dirichlet}(a_{1:K}), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_{1:K})$$

$$p(z_n = k | z_1, \dots, z_{n-1}) = \frac{a_{k,n}}{\sum_{j=1}^{K} a_{j,n}}$$

$$a_{k,n} := a_k + \sum_{j=1}^{K} \mathbf{1}\{z_m = k\}$$

- multivariate Pólya urn
 - Choose any ball with prob proportional to its mass
 - Replace and add ball of same color

$$\lim_{n \to \infty} \frac{(\text{\# orange, \# green, \# red, \# yellow})}{\text{\# total}}$$

$$\to (\rho_{\text{orange}}, \rho_{\text{green}}, \rho_{\text{red}}, \rho_{\text{yellow}})$$

$$\stackrel{d}{=} \text{Dirichlet}(a_{\text{orange}}, a_{\text{green}}, a_{\text{red}}, a_{\text{yellow}})$$

Hoppe urn / Blackwell-MacQueen urn

Hoppe urn / Blackwell-MacQueen urn

Hoppe urn / Blackwell-MacQueen urn

Choose ball with prob proportional to its mass

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

Hoppe urn / Blackwell-MacQueen urn

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

 $(\# \text{orange}, \# \text{other}) = \text{PolyaUrn}(1, \alpha)$

• not orange: (#green, #other) = PolyaUrn(1, α)

Hoppe urn / Blackwell-MacQueen urn

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

 $(\# \text{orange}, \# \text{other}) = \text{PolyaUrn}(1, \alpha)$

• not orange: (#green, #other) = PolyaUrn(1, α)

Hoppe urn / Blackwell-MacQueen urn

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

 $(\text{\#orange}, \text{\#other}) = \text{PolyaUrn}(1, \alpha)$

- not orange: (#green, #other) = PolyaUrn(1, α)
- not orange, green: $(\#red, \#other) = PolyaUrn(1, \alpha)$

Hoppe urn / Blackwell-MacQueen urn

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

 $(\text{\#orange}, \text{\#other}) = \text{PolyaUrn}(1, \alpha)$

- not orange: (#green, #other) = PolyaUrn(1, α)
- not orange, green: $(\#red, \#other) = PolyaUrn(1, \alpha)$

Hoppe urn / Blackwell-MacQueen urn

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

```
Step 0 | Step 1 | Step 2 | Step 3 | Step 4 | V_k \stackrel{iid}{\sim} \text{Beta}(1, \alpha)
```

 $(\# \text{orange}, \# \text{other}) = \text{PolyaUrn}(1, \alpha)$

- not orange: (#green, #other) = PolyaUrn(1, α)
- not orange, green: $(\#red, \#other) = PolyaUrn(1, \alpha)$

Hoppe urn / Blackwell-MacQueen urn

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

Step 0 | Step 1 | Step 2 | Step 3 | Step 4 |
$$V_k \stackrel{iid}{\sim} \operatorname{Beta}(1, \alpha)$$

 $(\# \text{orange}, \# \text{other}) = \text{PolyaUrn}(1, \alpha)$

- not orange: (#green, #other) = PolyaUrn(1, α)
- not orange, green: $(\#red, \#other) = PolyaUrn(1, \alpha)$

Hoppe urn / Blackwell-MacQueen urn

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

 $(\text{\#orange}, \text{\#other}) = \text{PolyaUrn}(1, \alpha)$

- not orange: (#green, #other) = PolyaUrn(1, α)
- not orange, green: $(\#red, \#other) = PolyaUrn(1, \alpha)$

• Hoppe urn / Blackwell-MacQueen urn

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

 $(\# \text{orange}, \# \text{other}) = \text{PolyaUrn}(1, \alpha)$

- not orange: (#green, #other) = PolyaUrn(1, α)
- not orange, green: $(\#red, \#other) = PolyaUrn(1, \alpha)$

Exercises

- Review Gibbs sampling
- Derive the Dirichlet-Categorical marginal
- What are the advantages and disadvantages of the DP and urn representations?
- Can you find a formula for the expected # clusters from a Hoppe-urn(α) after N data points? What happens as $N \to \infty$
- What do you think about the answer to the previous question when it comes to real-life data modeling?
- Code a HoppeB-MacQ urn simulator. Examine the empirical distribution of the # clusters after N customers

References

A full reference list is provided at the end of the "Part III" slides.