Integral Exponents

Definitions and Terms

Exponent – Says how many times to multiply a number with itself

 $4^2 = 4 \times 4 = 16$ "4 to the 2nd power, 4 squared" 3^3 = 3 x 3 x 3 = 27 "3 to the 3rd power, 3 cubed"

 $5^4 = 5 \times 5 \times 5 \times 5 = 625$ "5 to the 4th power, 5 raised to the power of 4"

Exponents make it easier to write large numbers

Base – The lower portion of a term with an exponent

5² 5 is the base, 2 is the exponents

 x^4 x is the base, 4 is the exponent

Coefficient – The leading constant of a term with an exponent

 $3x^2$ 3 is the coefficient, x is the base, 2 is the exponent

 $5x^5$ 5 is the coefficient, x is the base, 5 is the exponent

Negative Exponents

Negative Exponent – Says how many times to divide 1 by the number

$$8^{-1} = 1 \div 8 = 0.125$$

$$5^{-3} = 1 \div 5 \div 5 \div 5 = 0.008$$
 OR
 $5^{-3} = 1 \div (5 \times 5 \times 5) = \frac{1}{5^3} = \frac{1}{125} = 0.008$

General Rule: $a^{-n} = \frac{1}{a^n}$

Negative Exponent	Reciprocal of Positive Exponent	Answer
4 ⁻²	$\frac{1}{4^2}$	$\frac{1}{16} = 0.0625$
10 ⁻³	$\frac{1}{10^3}$	$\frac{1}{1000} = 0.001$
(-2) ⁻³	$\frac{1}{(-2)^3}$	$\frac{1}{(-8)} = -0.125$

0 or 1 Exponent

If exponent is 1, then you have the number itself If exponent is 0, then you get 1

ex: $9^1 = 9$ ex: $9^0 = 1$

If 0° , then you say it is "indeterminate"

Example: Powers of 3				
33	1 x 3 x 3 x 3	27		
3 ²	1 x 3 x 3	9		
3 ¹	1 x 3	3		
30	1	1		
3-1	1÷3	<u>1</u> 3		
3-2	1÷3÷3	<u>1</u> 9		
3-3	1□÷3÷3÷3	$\frac{1}{27}$		

Law	Example		
$x^1 = x$	6 ¹ = 6		
$x^0 = 1$	7 ⁰ = 1		
$x^{-1} = 1/x$	4 ⁻¹ = 1/4		
$x^m x^n = x^{m+n}$	$x^2x^3 = x^{2+3} = x^5$		
$x^{m}/x^{n} = x^{m-n}$	$x^6/x^2 = x^{6-2} = x^4$		
$(x^m)^n = x^{mn}$	$(x^2)^3 = x^{2 \times 3} = x^6$		
$(xy)^n = x^n y^n$	$(xy)^3 = x^3y^3$		
$(x/y)^n = x^n/y^n$	$(x/y)^2 = x^2 / y^2$		
$x^{-n} = 1/x^n$	$x^{-3} = 1/x^3$		

And the law about Fractional Exponents:

$$x^{\frac{m}{n}} = \sqrt[n]{x^m}$$
 $x^{\frac{2}{3}} = \sqrt[3]{x^2}$ $= (\sqrt[n]{x})^m$ $= (\sqrt[3]{x})^2$