Proof by contrapositive, proof by contradiction, proof by cases

1. To prove a statement by contradiction, you suppose	se that
and you show that	
2. A proof by contrapositive of a statement of the for	rm "For all x in a domain, if $P(x)$ then $Q(x)$ " is a direct proof of
	(Note: Domain is a collection of
possible values for x. For example, integers, real nur	mbers, etc.)
3. a) To prove a statement of the form "For all x in a	a domain, if $P(x)$ then $Q(x)$ " by contrapositive, you suppose that
	and you show that
b) To prove "For every integer n, if n³ is even, then r	n is even" by contrapositive, you suppose that
	and you show that
c) To prove "For every real number x, if x is irrational	al, then -x is also irrational" by contrapositive, you suppose that
	and you show that
	20, then x > 10 or y > 10" by contrapositive, you suppose that and you show that
e) To prove "If x and y are integers and xy is even, the	nen x is even or y is even" by contrapositive, you suppose that
	and you show that
the number $x/2$. Since x is a positive real number, $x/2$ multiplying both sides of the inequality $1 < 2$ by (c)	diction that there is no least positive real number. east positive real number x. [We must deduce (a)] Consider (2) is also (b) . In addition, we can deduce that $x/2 < x$ by and dividing (d) . Hence $x/2$ is a positive real number that is (T) [Thus the supposition is false, and so there is no least positive
(b)	
(c)	
(d)	
(e)	

5. Fill in the blanks in the following proof by contrapositive that for all integers n, if 5 does not divide n^2 then 5 does not divide n. (Note: 5 n means that 5 divides n or n is divisible by 5.)
Proof (by contrapositive): [The contrapositive is: For all integers n, if $5 \mid n$ then $5 \mid n^2$.]
Suppose n is any integer such that <u>(a)</u> . [We must show that <u>(b)</u> .]
By definition of divisibility, $n = (c)$ for some integer k. By substitution, $n^2 = (d) = 5(5k^2)$. But $5k^2$ is an integer
because it is a product of integers. Hence $n^2 = 5$ (an integer), and so <u>(e)</u> [as was to be shown].
(a)
(b)
(c)
(d)
(\mathbf{u})
(e)

6. Prove that the product of any two consecutive integers has the form 3k or 3k+2 for some integer k.

(Use the fact that any integer can be written in one of the 3 forms: 3t, 3t+1, 3t+2 for some integer t.)