

AUTOMATIZACIÓN Y ROBÓTICA

CURSO 2022/2023

Tema 9. Fundamentos matemáticos

Fundamentos matemáticos

- 1. Introducción
- 2. Descripción de la posición y orientación.
- 3. Transformaciones básicas.
- 4. Composición de transformaciones.

Introducción

- La manipulación de piezas llevada a cabo por un robot implica el movimiento espacial de su extremo.
- Para que el robot puede recoger una pieza es necesario conocer la posición y orientación de ésta respecto al robot.
- Por esto se requieren unas herramientas matemáticas que permitan especificar la posición y orientación de las piezas en el espacio respecto al robot.
- Consideraremos que las piezas se pueden modelar como cuerpos rígidos, con lo que se les puede asociar un sistema de referencia para conocer su posición y orientación.

DESCRIPCIÓN DE LA POSICIÓN Y ORIENTACIÓN

- Descripción de la posición
 - Notación

- Descripción de la posición
 - Notación

Introducción:

- Se van a describir las diferentes herramientas matemáticas y físicas para modelar el comportamiento cinemático y dinámico de un robot.
- Sistemas de referencia dextrógiros asociados a cada cuerpo rígido.

Descripción de la posición:

Descripción de la posición:

Coordenadas cilíndricas (polares en 2D) $p^{M}(r, \vartheta, z)$

Descripción de la posición:

- Descripción de la orientación. Matrices de rotación 2D:
 - <u>Matriz de rotación</u>: Define la orientación de un sistema móvil (U,V) respecto del sistema de referencia estático O.
 - Proyecciones de los vectores unitarios U, V sobre los ejes del sistema O (X, Y).

- Descripción de la orientación. Matrices de rotación 3D:
 - Proyecciones de los vectores unitarios x_0 , y_0 , z_0 sobre los ejes del sistema M.

$${}^{M}\mathbf{Rot}_{O} = \begin{bmatrix} \mathbf{x}_{O}^{M} & \mathbf{y}_{O}^{M} & \mathbf{z}_{O}^{M} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_{x_{O}^{M}} & \mathbf{x}_{y_{O}^{M}} & \mathbf{x}_{z_{O}^{M}} \\ \mathbf{y}_{x_{O}^{M}} & \mathbf{y}_{y_{O}^{M}} & \mathbf{y}_{z_{O}^{M}} \\ \mathbf{z}_{x_{O}^{M}} & \mathbf{z}_{y_{O}^{M}} & \mathbf{z}_{z_{O}^{M}} \end{bmatrix}$$

$$Proyecciones de \mathbf{Xo}, \mathbf{Yo}, \mathbf{Zo}$$

$$sobre \mathbf{X,Y,Z}$$

$$\begin{bmatrix} \mathbf{p}_{X} \\ \mathbf{p}_{Y} \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$${}^{\mathbf{M}}\mathbf{Rot}_{\mathbf{O}} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$$(p_{xo}, p_{yo}, p_{zo}) = (-1, 0, 0)$$

$$\begin{bmatrix} px \\ py \\ pz \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{p} = (p_x, p_y, p_z) = (0, 1, 0)$$

Propiedades: una matriz de rotación es ortonormal

$$\left(^{\mathbf{M}}\mathbf{Rot}_{\mathbf{O}}\right)^{\mathbf{T}} = \left(^{\mathbf{M}}\mathbf{Rot}_{\mathbf{O}}\right)^{\mathbf{T}}$$

- Descripción de la orientación. Ángulos de Euler:
 - Todo sistema OUVW solidario al cuerpo cuya orientación se quiere describir, puede definirse respecto al sistema OXYZ mediante 3 ángulos φ, θ, ψ que representan valores de giros sobre 3 ejes ortogonales.
 - Ángulos de Euler WUW. Estando OXYZ y OUVW inicialmente coincidentes se puede colocar OUVW en cualquier orientación siguiendo:
 - Girar el sistema OUVW un ángulo φ con respecto al eje OZ, convirtiéndose en el OU'V'W'.
 - Girar el sistema OU'V'W' un ángulo θ con respecto al eje OU', convirtiéndose en el OU''V''W''.
 - Girar el sistema OU"V"W" un ángulo ψ con respecto al eje OW", convirtiéndose en el OU"'V"".

- Descripción de la orientación. Ángulos de Euler:
 - Ángulos de Euler XYZ. Estando OXYZ y OUVW inicialmente coincidentes se puede colocar OUVW en cualquier orientación siguiendo:
 - Girar el sistema OUVW un ángulo φ con respecto al eje OX. Es el denominado Yaw o guiñada.
 - Girar el sistema OUVW un ángulo θ con respecto al eje OY. Es el denominado Pitch o cabeceo.
 - Girar el sistema OUVW un ángulo ψ con respecto al eje OZ. Es el denominado Roll o alabeo.

- Matrices y coordenadas homogéneas:
 - Las coordenadas homogéneas en un espacio n-dimensional son n+1. En 3D un punto p(x,y,z) en coordenadas homogéneas es: p(wx,wy,wz,w) donde w es un factor de escala (se considera w=1).
 - Matriz de transformación homogénea. Representación de la posición y orientación de forma conjunta de un sistema de coordenadas.

$$\mathbf{T} = \begin{bmatrix} \text{Rotación} & \text{Traslación} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} x_{x_{0}^{\text{M}}} & x_{y_{0}^{\text{M}}} & x_{z_{0}^{\text{M}}} & x_{0}^{\text{M}} \\ y_{x_{0}^{\text{M}}} & y_{y_{0}^{\text{M}}} & y_{z_{0}^{\text{M}}} & y_{0}^{\text{M}} \\ z_{x_{0}^{\text{M}}} & z_{y_{0}^{\text{M}}} & z_{z_{0}^{\text{M}}} & z_{0}^{\text{M}} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 biedades:

Propiedades:

$$\mathbf{T}^{-1} = \begin{bmatrix} \text{Rotación}^{\mathsf{T}} & -\text{Rotación}^{\mathsf{T}} \cdot \text{Traslación} \\ 0 & 1 \end{bmatrix}$$

- Matrices y coordenadas homogéneas. Uso en robótica:
 - Representar la posición y orientación de un sistema O'UVW resultado de rotar y trasladar el sistema OXYZ según una matriz de traslación y rotación dadas.
 - Conocer las coordenadas r [x, y, z, 1]^T del vector r en el sistema OXYZ a partir de sus coordenadas r' [u, v, w, 1]^T en el sistema O'UVW.
 - Expresar la rotación y traslación de un vector respecto de un sistema de referencia fijo OXYZ de tal manera que un vector r [x, y, z, 1]^T transformado según T se convierte en el vector r' [x', y', z', 1]^T dado por: r' = T r.

$$^{\mathrm{M}}\mathbf{T}_{\mathrm{O}} = \begin{bmatrix} ^{\mathrm{M}}\mathbf{Rot}_{\mathrm{O}} & ^{\mathrm{M}}\mathbf{Tras}_{\mathrm{O}} \\ 0 & 1 \end{bmatrix}$$

$$\boldsymbol{p}^{\mathrm{M}} = \begin{bmatrix} p_{\mathrm{x}}^{\mathrm{M}} \\ p_{\mathrm{y}}^{\mathrm{M}} \\ p_{\mathrm{z}}^{\mathrm{M}} \\ 1 \end{bmatrix} = {}^{\mathrm{M}}\mathbf{T}_{\mathrm{O}} \begin{bmatrix} p_{\mathrm{x}}^{\mathrm{O}} \\ p_{\mathrm{y}}^{\mathrm{O}} \\ p_{\mathrm{z}}^{\mathrm{O}} \\ 1 \end{bmatrix}$$

TRANSFORMACIONES BÁSICAS

Translación:

$$\mathbf{Tras}(p) = \begin{bmatrix} 1 & 0 & 0 & x \\ 0 & 1 & 0 & y \\ 0 & 0 & 1 & z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & x \\ 0 & 1 & 0 & y \\ 0 & 0 & 1 & z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_{x'} \\ p_{y'} \\ p_{z'} \\ 1 \end{bmatrix} = \begin{bmatrix} p_{x'} + x \\ p_{y'} + y \\ r_{z'} + z \\ 1 \end{bmatrix}$$

Ejemplo. El sistema O'UVW se encuentra trasladado un vector p (6, -3, 8) con respecto al sistema OXYZ. Calcular las coordenadas r(x, y, z) del vector r cuyas coordenadas con respecto al sistema O'UVW son r' (-2, 7, 3)

$$\mathbf{Tras}(\boldsymbol{p}) = \begin{vmatrix} 1 & 0 & 0 & x \\ 0 & 1 & 0 & y \\ 0 & 0 & 1 & z \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

$$\begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 6 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 8 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ 7 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \\ 11 \\ 1 \end{bmatrix}$$

• Ejemplo. Calcular el vector r' resultante de trasladar el vector r (4, 4, 11) según la transformación Tras(p) con p(6,-3,8).

$$\mathbf{Tras}(\boldsymbol{p}) = \begin{bmatrix} 1 & 0 & 0 & x \\ 0 & 1 & 0 & y \\ 0 & 0 & 1 & z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{r}_{x} \\ \mathbf{r}_{y} \\ \mathbf{r}_{x} \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 6 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 8 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 4 \\ 11 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 1 \\ 19 \\ 1 \end{bmatrix}$$

Rotación:

$$\mathbf{Rot}(x,\alpha) = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha & 0 \\ 0 & \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

• Rotación:

$$\mathbf{Rot}(y,\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \beta & 0 & \cos \beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotación:

$$\mathbf{Rot}(z,\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 & 0 \\ \sin \gamma & \cos \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Ejemplo. El sistema O'UVW se encuentra girado -90º alrededor del eje OZ con respecto al sistema OXYZ. Calcular las coordenadas del vector r(x, y, z) si sus coordenadas en el sistema O'UVW son r' (4, 8, 12).

$$\mathbf{Rot}(z,\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 & 0 \\ \sin \gamma & \cos \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{r}_{x} \\ \mathbf{r}_{y} \\ \mathbf{r}_{z} \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 8 \\ 12 \\ 1 \end{bmatrix} = \begin{bmatrix} 8 \\ -4 \\ 12 \\ 1 \end{bmatrix}$$

- Traslación junto con rotación.
 - No conmutativa:
 - O'U'V'W': Primero se rota 180º alrededor de z y después se traslada.
 - O''U''V''W'': Primero se traslada y después se rota 180º alrededor de z.

Un sistema OUVW ha sido girado 90º alrededor del eje OX y, posteriormente, trasladado un vector $\mathbf{p}(8,-4,12)$ con respecto al sistema OXYZ. Calcular las coordenadas $(\mathbf{r}_{x'}\mathbf{r}_{v'}\mathbf{r}_z)$ del vector \mathbf{r} con coordenadas $\mathbf{r}_{u''v''w''}$ (-3,4,-11).

$$\mathbf{T}(\mathbf{p})\mathbf{Rot}(\mathbf{x},\phi) = \begin{vmatrix} 1 & 0 & 0 & p_{\mathbf{x}} \\ 0 & \cos\phi & -\sin\phi & p_{\mathbf{y}} \\ 0 & \sin\phi & \cos\phi & p_{\mathbf{z}} \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

$$\begin{bmatrix} \mathbf{r}_{x} \\ \mathbf{r}_{y} \\ \mathbf{r}_{z} \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 8 \\ 0 & 0 & -1 & -4 \\ 0 & 1 & 0 & 12 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -3 \\ 4 \\ -11 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \\ 16 \\ 1 \end{bmatrix}$$

■ Un sistema OUVW trasladado un vector $\mathbf{p}(8,-4,12)$ con respecto al sistema OXYZ y girado 90° alrededor del eje OX. Calcular las coordenadas $(\mathbf{r}_{x'}\mathbf{r}_{y'}\mathbf{r}_{z})$ del vector \mathbf{r} con coordenadas $\mathbf{r}_{u''v''w''}(-3,4,-11)$.

COMPOSICION DE TRANSFORMACIONES

- Para describir diversos giros y traslaciones consecutivas.
 - Si el sistema OXYZ y el sistema transformado O'UVW son coincidentes la matriz de transformación es la identidad.
 - Si el sistema O'UVW se obtiene mediante rotaciones y traslaciones definidas con respecto al sistema fijo OXYZ, la matriz homogénea que representa cada transformación se deberá premultiplicar sobre las matrices de las transformaciones previas.
 - Si el sistema O'UVW se obtiene mediante rotaciones y traslaciones definidas con respecto al sistema móvil, la matriz homogénea que representa cada transformación se deberá postmultiplicar sobre las matrices de las transformaciones previas.

• Ejemplo. Obtener la matriz de transformación que representa al sistema obtenido a partir de un sistema de referencia fijo sobre el que se le ha aplicado un giro de 90º alrededor del eje X, un giro de 180º alrededor del eje Y (estas dos rotaciones se realizan respecto al sistema de coordenadas fijo OXYZ); y por último un giro de - 90º alrededor del eje V del sistema transformado.

Composición de transformaciones

Ejemplo. Obtener la matriz de transformación que representa al sistema obtenido a partir de un sistema de referencia fijo sobre el que se le ha aplicado un giro de 90º alrededor del eje X, un giro de 180º alrededor del eje Y (estas dos rotaciones se realizan respecto al sistema de coordenadas fijo OXYZ); y por último un giro de -90º alrededor del eje V del sistema transformado.

$$\mathbf{T} = \mathbf{Rot}(y,180^{\circ}) \cdot \mathbf{Rot}(x,90^{\circ}) \cdot \mathbf{Rot}(v,-90^{\circ})$$

$$\mathbf{T} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

■ Ejemplo. Obtener la matriz de transformación que representa las siguientes transformaciones sobre un sistema OXYZ fijo de referencia: traslación de un vector (-3,10,10); giro de -90º sobre el eje O'U del sistema trasladado y giro de 90º sobre el eje O'V' del sistema girado.

Composición de transformaciones

Ejemplo. Obtener la matriz de transformación que representa las siguientes transformaciones sobre un sistema OXYZ fijo de referencia: traslación de un vector (-3,10,10); giro de -90º sobre el eje O'U del sistema trasladado y giro de 90º sobre el eje O'V' del sistema girado.

$$\mathbf{T} = \mathbf{Tras}(-3,10,10) \cdot \mathbf{Rot}(\mathbf{u}, -90^{\circ}) \cdot \mathbf{Rot}(\mathbf{v}', 90^{\circ})$$

$$\mathbf{T} = \begin{bmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 10 \\ 0 & 0 & 1 & 10 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & -3 \\ -1 & 0 & 0 & 10 \\ 0 & -1 & 0 & 10 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Composición de transformaciones

Ejemplo. La localización del extremo de un robot viene determinada por la siguiente matriz homogénea:

$$\mathbf{T'} = \begin{bmatrix} -1 & 0 & 0 & 5 \\ 0 & 1 & 0 & 10 \\ 0 & 0 & -1 & 5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

con respecto al sistema de coordenadas situado en la base. Obtener la localización del extremo si éste sufre en primer lugar una traslación de un vector p(5,10,5) y posteriormente una rotación de -90º con respecto al eje y, expresando ambas transformaciones con respecto al sistema de coordenadas de la base del robot.

$$\mathbf{T} = \mathbf{Rot}(y, -90^{\circ}) \cdot \mathbf{Tras}(5, 10, 5) \cdot \mathbf{T}'$$

$$\mathbf{T} = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & 10 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} -1 & 0 & 0 & 5 \\ 0 & 1 & 0 & 10 \\ 0 & 0 & -1 & 5 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & -10 \\ 0 & 1 & 0 & 20 \\ -1 & 0 & 0 & 10 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

AUTOMATIZACIÓN Y ROBÓTICA

CURSO 2022/2023

Tema 9. Fundamentos matemáticos