A Brief Intro to BERT

文本表征模型

- Bag of words: one-hot、TF-IDF、Text Rank等;
- 主题模型: LSA (SVD) 、pLSA、LDA
- 词嵌入静态表征: word2vec、GloVe
- 词嵌入动态表征: ELMo、GPT、BERT

动态文本表征模型的演变

BERT: Bidirectional Encoder Representations from Transformers.

BERT模型结构

多层双向Transformer , 多层单向Transformer

LM目标函数:

$$P(w_i|w_1,\ldots,w_{i-1},w_{i+1},\ldots,w_n)$$

双层LSTM,独立双向语义拼接,

LM目标函数:

$$P(w_i|w_1,\ldots w_{i-1})
otin P(w_i|w_{i+1},\ldots w_n)$$

BERT模型结构

BERTBASE

BERTLARGE

BERT的inputs

Token:第一个单词用[CLS]标识出来,该标识的output可用于分类任务;

Segment:分句编码,用于区分两个句子,预训练的"下一句预测"子任务用到;

Position:位置编码,但不是使用三角函数计算而是在预训练中学习得到的。

BERT的outputs

每个位置输出一个长度为H(768 / 1024)的向量

BERT的预训练 (Fine-tuning)

Task #1 Masked Language Model

- 采取mask技巧的原因
 - (1) 为了捕捉更深层的上下文语义依赖;
- (2) 双向Transformer Encoder网络中,每个词可以**间接**地在多层上下文中**看到自身**,这在实际预测中是不允许的。
- Mask的具体操作
 - (1) 随机遮挡15%的词语(80%: "[MASK]";
- 10%: 保持不变; 10%: 随机替换成另一个词)
- (2)与CBOW不同,最终损失函数只**计算**被masked掉的token。(但预训练时每个词都要关注,因为不知道哪些词是被masked的)

DEC 6^{TH,} 2019

BERT的预训练 (Fine-tuning)

Task #2 Next Sentence Prediction

- 目的
 - (1) 让模型更好地理解句子之间的联系;
 - (2) 使模型更适用于QA和NPI等多句任务。
- 具体操作
 - (1) 给定句子A和句子B, B有50%的概率为A的下一句;
 - (2) 二分类目标:预测句子B是否为A的下一句话;
 - (3) 预训练时准确率达到97%~98%。

Tokenized Input

belongs after

sentence A

Input

1. 分类任务

sequence-level类的文本分类,直接取第一个token 即 [CLS] 的最后一层encoder隐层输出 $C \in \mathbb{R}^H$,加上一层权重 $W \in \mathbb{R}^{K \times H}$,然后softmax预测label proba,如下:

 $P = softmax(CW^T)$

2. 双句分类任务

与单句分类任务相似,依然是取第一个token 即 [CLS] 的最后一层encoder隐层输出*C*,加上一层权重W,然后softmax预测label proba,注意在输入的时候,对两个句子进行分句标识[SEP]。

Class Label

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

3. 问答任务

Input:一个问题和一篇包含问题答案的文章

Return:问题答案在文章中的起止位置

(相当于一个答案抽取的过程)

具体过程:

- (1) 引入两个向量 , $S \in \mathbb{R}^H$, $E \in \mathbb{R}^H$, 分别代表答案起始和结束位置的判断向量 ;
- (2) 用词 T_i 和S的内积表示起始概率,词 T_i 和E的内积表示结束概率;
- (3) 一个答案片段得分为 $S \times T_i + E \times T_j$,得分最大的片段即为答案。

(c) Question Answering Tasks: SQuAD v1.1

4. NER标记任务

```
对于中文NER任务,使用字向量bert embeddings;字向量的获取:kashgari package
(`from kashgari.embeddings import BERTEmbedding; embedding = BERTEmbedding( "bert-base-chinese", 200);
`)
```


DEC 6^{TH,} 2019

BERT用于特征抽取

- Fine-tuning不是使用BERT的唯一方式,可以使用BERT预训练模型获取字/词/句embeddings,用于其他下游任务;
- 关键在于:应该使用哪一层 encoder的hidden states

The output of each encoder layer along each token's path can be used as a feature representing that token.

But which one should we use?

BERT用于特征抽取

Fine-tuning不是使用BERT的唯一方式,可以使用BERT预训练模型获取字/词/句embeddings,可用于其他下游任务;

- 关键在于:应该使用哪一层 encoder的hidden states;
- 在CoNLL-2003 NER任务中,使用最后四层的拼接作为embedding, F1得分最高。

What is the best contextualized embedding for "Help" in that context?

For named-entity recognition task CoNLL-2003 NER

Help

First Layer Embe	edding		91.0
Last Hidden Layer	12		94.9
Sum All 12 Layers	12 + 1 = =		95.5
Second-to-Last Hidden Layer	11		95.6
Sum Last Four Hidden	12 + 11 + 10 + 9 + 9		95.9
Concat Last Four Hidden	9	10 11 12	96.1

Dev F1 Score

DEC 6^{TH,} 2019

Thank you!