Name: _____ Date: ____

IMAGINARY NUMBERS COMMON CORE ALGEBRA II

Recall that in the Real Number System it is not possible to take the square root of a negative quantity because whenever a real number is squared it is non-negative. This fact has a ramification for finding the *x*-intercepts of a parabola, as *Exercise* #1 will illustrate.

Exercise #1: On the axes below, a sketch of $y = x^2$ is shown. Now, consider the parabola whose equation is given in function notation as $f(x) = x^2 + 1$.

- (a) How is the graph of $y = x^2$ shifted to produce the graph of f(x)?
- (c) What can be said about the *x*-intercepts of the function y = f(x)?
- (d) Algebraically, show that these intercepts do not exist, in the Real Number System, by solving the incomplete quadratic $x^2 + 1 = 0$.

(b) Create a quick sketch of f(x) on the axes below.

Since we cannot solve this equation using Real Numbers, we introduce a new number, called i, the basis of **imaginary numbers**. Its definition allows us to now have a result when finding the square root of a negative real number. Its definition is given below.

THE DEFINITION OF THE IMAGINARY NUMBER i

$$i = \sqrt{-1}$$

Exercise #2: Simplify each of the following square roots in terms of i.

(a)
$$\sqrt{-9}$$

(b)
$$\sqrt{-100}$$

(c)
$$\sqrt{-32}$$

(d)
$$\sqrt{-18}$$

Exercise #3: Solve each of the following incomplete quadratics. Place your answers in simplest radical form.

(a)
$$5x^2 + 8 = -12$$

(b)
$$\frac{1}{2}x^2 + 20 = 2$$

(c)
$$2x^2 - 10 = -36$$

Exercise #4: Which of the following is equivalent to $5i \cdot 6i$?

 $(1) \ 30i$

(3) -30

(2) 11*i*

(4) -11

Powers of i display a remarkable pattern that allow us to simplify large powers of i into one of four cases. This pattern is discovered in *Exercise* #4.

Exercise #5: Simplify each of the following powers of *i*.

$$i^1 = i$$

$$i^2 =$$

$$i^3 =$$

$$i^4 =$$

$$i^{5} =$$

$$i^6 =$$

$$i^7 =$$

$$i^{8} =$$

We see, then, from this pattern that every power of i is either -1, 1, i, or -i. And the pattern will repeat.

Exercise #6: From the pattern of Exercise #4, simplify each of the following powers of i.

(a)
$$i^{38} =$$

(b)
$$i^{21} =$$

(c)
$$i^{83} =$$

(d)
$$i^{40} =$$

Exercise #7: Which of the following is equivalent to $5i^{16} + 3i^{23} + i^{26}$?

- (1) 8 + 2i
- (3) 5-4i
- (2) 4-3i
- (4) 2 + 7i

Name:

IMAGINARY NUMBERS COMMON CORE ALGEBRA II HOMEWORK

FLUENCY

1. The imaginary number i is defined as

(1) -1

(3) $\sqrt{-4}$

- (2) $\sqrt{-1}$
- $(4) (-1)^2$

2. Which of the following is equivalent to $\sqrt{-128}$?

- (1) $8\sqrt{2}$
- $(3) -8\sqrt{2}$
- (2) 8i

(4) $8i\sqrt{2}$

3. The sum $\sqrt{-9} + \sqrt{-16}$ is equal to

(1) 5

(3) 7i

(2) 5i

(4) 7

4. Which of the following powers of i is *not* equal to one?

(1) i^{16}

(3) i^{32}

(2) i^{26}

(4) i^{48}

5. Which of the following represents all solutions to the equation $\frac{1}{3}x^2 + 10 = 7$?

- (1) $x = \pm 3i$
- (3) $x = \pm i$
- (2) $x = \pm 5i$
- (4) $x = \pm 2i$

6. Solve each of the following incomplete quadratics. Express your answers in simplest radical form.

(a) $2x^2 + 100 = -62$

(b)
$$\frac{2}{3}x^2 + 20 = 2$$

- 7. Which of the following represents the solution set of $\frac{1}{2}x^2 12 = -37$?
 - $(1) \pm 7i$

- (3) $\pm 5i\sqrt{2}$
- (2) $\pm 7i\sqrt{2}$
- (4) $\pm 3i\sqrt{2}$
- 8. Simplify each of the following powers of i into either -1, 1, i, or -i.
 - (a) i^2

(b) i^{3}

(c) i^4

(d) i^{11}

(e) i^{41}

(f) i^{30}

(g) i^{25}

(h) i^{36}

(i) i^{51}

(j) i^{45}

(k) i^{80}

(1) i^{70}

- 9. Which of the following is equivalent to $i^7 + i^8 + i^9 + i^{10}$?
 - (1) 1

(3) 1-i

(2) 2+i

- (4) 0
- 10. When simplified the sum $5i^{18} + 7i^{25} + 2i^{28} + 6i^{43}$ is equal to
 - (1) 2-4i
- (3) 5-7i
- (2) -3 + i
- (4) 8+i
- 11. The product (6+2i)(4-3i) can be written as
 - (1) 24-6i
- (3) 2 + 5i
- (2) 18+10i
- (4) 30-10i

