Funções Reais de *n* Variáveis Reais: diferenciabilidade

Maria Joana Torres

2021/22

Derivadas parciais

Definição:

Seja $f\colon U\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ uma função definida no aberto $U\subset\mathbb{R}^n$ e seja $a=(a_1,\ldots,a_n)\in U.$

Para cada $i=1,\ldots,n$, a derivada partial de f em ordem a x_i no ponto a é o número real

$$\frac{\partial f}{\partial x_i}(a) = \lim_{h \to 0} \frac{f(a+h e_i) - f(a)}{h} = \lim_{h \to 0} \frac{f(a_1, \dots, a_i + h, \dots, a_n) - f(a_1, \dots, a_n)}{h}$$

caso este limite exista.

Na prática estamos a considerar a função real de variável real definida numa vizinhança de a_i por

$$x \longmapsto f(a_1, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_n)$$

e a calcular a sua derivada no ponto a_i .

Derivadas parciais

Observação:

Fixemos $i \in \{1, \ldots, n\}$.

Como U é aberto, existe $\varepsilon > 0$ tal que $a + te_i \in U$, para todo o $t \in]-\varepsilon, \varepsilon[$.

Então está bem definido o caminho retilíneo $\alpha\colon]-arepsilon, arepsilon[\longrightarrow U$, $\alpha(t)=a+te_i$.

A função $\varphi\colon]-\varepsilon, \varepsilon[\longrightarrow \mathbb{R},\ \varphi(t)=f(a+te_i)$ é essencialmente a restrição de f ao segmento de reta $]a-\varepsilon e_i, a+\varepsilon e_i[$ que passa no ponto a e é paralelo ao i-ésimo eixo coordenado de \mathbb{R}^n .

A definição de derivada parcial de f em ordem a x_i no ponto a diz que

$$\frac{\partial f}{\partial x_i}(a) = \varphi'(0) \,.$$

Derivadas parciais → significado geométrico

- A derivada parcial $\frac{\partial f}{\partial x}(a,b)$ é o declive da reta tangente à curva no ponto (a,b,f(a,b)), obtida da intersecção do gráfico de f com o plano paralelo a X0Z com equação y=b.
- A derivada parcial $\frac{\partial f}{\partial y}(a,b)$ é o declive da reta tangente à curva no ponto (a,b,f(a,b)), obtida da intersecção do gráfico de f com o plano paralelo a Y0Z com equação x=a.

Funcões derivadas parciais

Definição:

Seja $f\colon U\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ uma função definida no aberto $U\subset\mathbb{R}^n.$

Para cada $i=1,\ldots,n$, a função derivada parcial de f em ordem a x_i é a função real de n variáveis reais definida por:

$$\frac{\partial f}{\partial x_i} : \quad V_i \subset \mathbb{R}^n \quad \longrightarrow \quad \mathbb{R}$$

$$x \quad \longmapsto \quad \frac{\partial f}{\partial x_i}(x) \,,$$

onde V_i é o subconjunto dos pontos de U para os quais a derivada parcial de f em ordem a x_i existe.

Notação:

As notações mais usadas para a derivada parcial de f em ordem a x_i são:

$$\frac{\partial f}{\partial x_i}$$
, f_{x_i} , $D_{x_i}f$, D_if

Dada $f\colon U\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ e um ponto $a=(a_1,a_2,\ldots,a_n)\in U$ suponhamos que queremos calcular a derivada parcial $\frac{\partial f}{\partial x_i}(a)$, para algum $i\in\{1,2,\ldots,n\}$.

Caso 1: Se numa vizinhança do ponto a, a função f é definida por uma única expressão, então:

- 1. consideram-se $x_1, x_2, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n$ como constantes;
- 2. deriva-se a expressão $f(x_1, x_2, \dots, x_n)$ em ordem à variável x_i , usando as regras usuais para o cálculo das derivadas de funções de uma variável;
- 3. substitui-se $x_1 = a_1, x_2 = a_2, ..., x_n = a_n$.

Caso 2: Se em qualquer vizinhança do ponto a, a função f é definida em termos de duas ou mais expressões, temos de usar a definição de derivada parcial de f em ordem a x_i no ponto a e calcular o correspondente limite.

Exemplo 1:

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{se} \quad (x,y) \neq (0,0) \\ 0 & \text{se} \quad (x,y) = (0,0) \end{cases}$$

Caso 1: $(x,y) \neq (0,0)$

$$\frac{\partial f}{\partial x}(x,y) = \frac{y^3 - x^2y}{(x^2 + y^2)^2} \quad \text{e} \quad \frac{\partial f}{\partial y}(x,y) = \frac{x^3 - xy^2}{(x^2 + y^2)^2}$$

Caso 2: (x,y) = (0,0)

$$\lim_{h \to 0} \frac{f((0,0) + h(1,0)) - f(0,0)}{h} = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = 0 \leadsto \frac{\partial f}{\partial x}(0,0) = 0$$

$$\lim_{h \to 0} \frac{f((0,0) + h(0,1)) - f(0,0)}{h} = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = 0 \leadsto \frac{\partial f}{\partial y}(0,0) = 0$$

Exemplo 1 (continuação):

$$f(x,y) = \left\{ \begin{array}{ll} \frac{xy}{x^2+y^2} & \text{se} \quad (x,y) \neq (0,0) \\ \\ 0 & \text{se} \quad (x,y) = (0,0) \end{array} \right.$$

Temos então que:

$$\begin{split} f_x(x,y) &= \left\{ \begin{array}{ll} \frac{y^3 - x^2y}{(x^2 + y^2)^2} & \text{se} \quad (x,y) \neq (0,0) \\ \\ 0 & \text{se} \quad (x,y) = (0,0) \\ \\ f_y(x,y) &= \left\{ \begin{array}{ll} \frac{x^3 - xy^2}{(x^2 + y^2)^2} & \text{se} \quad (x,y) \neq (0,0) \\ \\ 0 & \text{se} \quad (x,y) = (0,0) \end{array} \right. \end{split}$$

Observemos que f não é contínua na origem (nem sequer possui limite na origem; basta estudar o limite trajetorial ao longo de retas y = mx, $m \in \mathbb{R}$).

Derivada parcial / Continuidade

O exemplo anterior mostra que a existência de derivadas parciais num ponto não implica a continuidade da função nesse ponto

existem
$$f_{x_1}(a),\dots,f_{x_n}(a) \implies f$$
 é contínua em a

Com efeito, a continuidade no ponto a depende dos valores da função em todos os pontos de alguma bola aberta centrada em a, enquanto que a derivada parcial em ordem a x_i depende apenas dos valores da função em todos os pontos de algum segmento de reta centrado em a e paralelo ao eixo Oe_i .

Exemplo 2:

$$f(x,y) = \left\{ \begin{array}{ll} 0 & \text{se} & (x,y) \in]0,1[\times]0,1[\\ \\ 1 & \text{se} & (x,y) \in B\left((7,0),1\right) \end{array} \right.$$

A função f é contínua. É evidente que

$$\frac{\partial f}{\partial x}(x,y) = \frac{\partial f}{\partial y}(x,y) = 0,$$

para todo $(x,y) \in]0,1[\times]0,1[\cup B\left((7,0),1\right).$

No exemplo anterior, f tem derivadas parciais nulas em todo o domínio e, no entanto, f não é constante. Nem sequer é constante na direção de OX.

Teorema:

Seja $f:U\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ uma função definida no aberto U.

- Se $f_{x_i}(x)=0$ para todo $x\in U$, então f é constante em cada segmento de reta contido em U e paralelo a e_i .
- Se $f_{x_i}(x) > 0$ para todo $x \in U$, então f é estritamente crescente, no sentido de e_i , em cada segmento de reta contido em U e paralelo a e_i .
- Se $f_{x_i}(x) < 0$ para todo $x \in U$, então f é estritamente decrescente, no sentido de e_i , em cada segmento de reta contido em U e paralelo a e_i .

Derivada direcional

Definição:

Seja $f\colon U\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ uma função definida no aberto $U\subset\mathbb{R}^n$ e seja $a=(a_1,\dots,a_n)\in U$. Consideremos um vetor $v\in\mathbb{R}^n$, com $v=v_1e_1+\dots+v_ne_n$.

A derivada direcional de f no ponto a segundo o vetor v é o número real

$$\frac{\partial f}{\partial v}(a) = \lim_{h \to 0} \frac{f(a+hv) - f(a)}{h} = \lim_{h \to 0} \frac{f(a_1 + hv_1, \dots, a_n + hv_n) - f(a_1, \dots, a_n)}{h}$$

caso este limite exista.

Observação:

A derivada direcional de f segundo o vetor e_i da base canónica de \mathbb{R}^n coincide, em cada ponto, com a derivada parcial de f em relação à variável x_i :

$$\frac{\partial f}{\partial e_i}(a) = \frac{\partial f}{\partial x_i}(a).$$

Derivada direcional

Observação:

 ${\sf Como}\ U\ {\rm \'e}\ {\sf aberto},\ {\sf existe}\ \varepsilon>0\ {\sf tal}\ {\sf que}\ a+tv\in U,\ {\sf para}\ {\sf todo}\ {\sf o}\ t\in]-\varepsilon,\varepsilon[.$

Então está bem definido o caminho retilíneo $\alpha\colon]-\varepsilon,\varepsilon[\longrightarrow U$, $\alpha(t)=a+tv$.

A função $\phi\colon]-\varepsilon, \varepsilon[\longrightarrow \mathbb{R},\ \phi(t)=f(a+tv)$ é essencialmente a restrição de f ao segmento de reta $]a-\varepsilon v, a+\varepsilon v[$ que passa no ponto a e é paralelo ao vetor v.

A definição de derivada direcional de f no ponto a segundo o vetor v diz que

$$\frac{\partial f}{\partial v}(a) = \phi'(0) .$$

Função derivada direcional

Definição:

Seja $f\colon U\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ uma função definida no aberto $U\subset\mathbb{R}^n$. Consideremos um vetor $v\in\mathbb{R}^n$.

A função derivada direcional de f segundo o vetor v é a função real de n variáveis reais definida por:

$$\frac{\partial f}{\partial v}: \quad V \subset \mathbb{R}^n \quad \longrightarrow \quad \mathbb{R}$$

$$x \quad \longmapsto \quad \frac{\partial f}{\partial v}(x) \,,$$

onde V é o subconjunto dos pontos de U para os quais a derivada direcional de f segundo o vetor v existe.

Notação:

As notações mais usadas para a derivada direcional são:

$$\frac{\partial f}{\partial v}$$
, f_v , $D_v f$

Derivada direcional --- exemplo

Exemplo:

$$f(x,y) = \begin{cases} & \frac{x^3y}{x^6 + y^2} & \text{se} \quad (x,y) \neq (0,0) \\ & 0 & \text{se} \quad (x,y) = (0,0) \end{cases}$$

Calcular
$$\frac{\partial f}{\partial v}(0,0)$$
, $v=(v_1,v_2)\in\mathbb{R}^2\backslash\{(0,0)\}$

Temos que:

$$\frac{\partial f}{\partial v}(0,0) = \lim_{h \to 0} \frac{f((0,0) + h(v_1, v_2)) - f(0,0)}{h}$$

$$= \lim_{h \to 0} \frac{f(hv_1, hv_2) - f(0,0)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{h^4 v_1^3 v_2}{h}}{h} = \lim_{h \to 0} \frac{hv_1^3 v_2}{h^4 v_1^6 + v_2^2} = 0, \ \forall v \in \mathbb{R}^2 \setminus \{(0,0)\}$$

Observemos que f não é contínua em (0,0) porque não existe o limite na origem.

Derivada direcional / Continuidade

No exemplo anterior f não é contínua. Mas existe $\frac{\partial f}{\partial v}(0,0)$, para todo $v\in\mathbb{R}^2$. Assim,

existem
$$\frac{\partial f}{\partial v}(a), \ \forall v \in \mathbb{R}^2 \implies f$$
 é contínua em a

Com efeito, a continuidade no ponto a depende dos valores da função em todos os pontos de alguma bola aberta centrada em a, enquanto que a derivada direcional segundo o vetor v no ponto a depende apenas dos valores da função em todos os pontos de algum segmento de reta centrado em a e com a direção do vetor v.

Teorema:

Seja $f\colon U\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ uma função definida no aberto U e $v\in\mathbb{R}^n\backslash\{0\}$ um vetor.

- Se $\dfrac{\partial f}{\partial v}(x)=0$ para todo $x\in U$, então f é constante em cada segmento de reta contido em U e paralelo a v.
- Se $\frac{\partial f}{\partial v}(x) > 0$ para todo $x \in U$, então f é estritamente crescente, no sentido de v, em cada segmento de reta contido em U e paralelo a v.
- Se $\frac{\partial f}{\partial v}(x) < 0$ para todo $x \in U$, então f é estritamente decresecente, no sentido de v, em cada segmento de reta contido em U e paralelo a v.

Teorema: [Valor Médio de Lagrange]:

Sejam $f\colon U\longrightarrow \mathbb{R}$ uma função definida no aberto $U\subset \mathbb{R}^n$ e $a\in U$, $v\in \mathbb{R}^n\backslash \{0\}$ tais que o segmento de reta [a,a+v] está contido em U. Se f é contínua em [a,a+v] e existe $\frac{\partial f}{\partial v}(x)$ para todo $x\in]a,a+v[$, então

$$\exists p \in]a, a + v[: \frac{\partial f}{\partial v}(p) = f(a + v) - f(a).$$

Corolário:

Seja $f\colon U\longrightarrow \mathbb{R}$ uma função definida no aberto conexo $U\subset \mathbb{R}^n$. Se $\frac{\partial f}{\partial v}(x)=0$, para todo $x\in U$ e para todo $v\in \mathbb{R}^n\backslash\{0\}$, então f é constante em U.

Derivadas parciais de ordem superior

Seja $f\colon U\longrightarrow \mathbb{R}$ uma função que possui derivadas parciais

$$\frac{\partial f}{\partial x_1}(x), \ldots, \frac{\partial f}{\partial x_n}(x)$$

em todo o ponto x do aberto $U \subset \mathbb{R}^n$.

A derivada parcial em ordem a x_j da função $\dfrac{\partial f}{\partial x_i}\colon\thinspace U\longrightarrow \mathbb{R}$ no ponto $x\in U$ será indicada por

$$\frac{\partial^2 f}{\partial x_j x_i}(x) = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right)(x), \quad i, j = 1, \dots, n.$$

Também usamos a notação $f_{x_ix_j}$. Se i=j usamos a notação $f_{x_i}^2$ ou $\frac{\partial^2 f}{\partial x_i^2}$.

Se essas derivadas parciais de segunda ordem existirem em cada ponto $x \in U$ teremos n^2 funções

$$\frac{\partial^2 f}{\partial x_j x_i}(x) \colon U \longrightarrow \mathbb{R} \,.$$

A possibilidade de derivar parcialmente mantém-se, pelo que podemos definir as **derivadas parciais de terceira ordem** da função f. E assim sucessivamente, definindo-se as derivadas parciais de qualquer ordem $k \in \mathbb{N}$. $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}$

Mudança na ordem de derivação

Em geral, a mera existência das derivadas parciais de segunda ordem em algum ponto x não assegura que se tenha

$$\frac{\partial^2 f}{\partial x_j x_i}(x) = \frac{\partial^2 f}{\partial x_i x_j}(x),$$

como se vê no seguinte exemplo:

Exemplo:

$$f(x,y) = \begin{cases} & \frac{x^3y - xy^3}{x^2 + y^2} & \text{se} \quad (x,y) \neq (0,0) \\ & 0 & \text{se} \quad (x,y) = (0,0) \end{cases}$$

Verifique que:

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = 1 \quad \mathrm{e} \quad \frac{\partial^2 f}{\partial y \partial x}(0,0) = -1 \,.$$

Mudança na ordem de derivação → Teorema de Schwarz

Teorema: [Schwarz]:

Seja $f\colon U\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ uma função tal que existem, em todos os pontos do aberto U, as derivadas parciais

$$\frac{\partial f}{\partial x_i}$$
, $,\frac{\partial f}{\partial x_j}$, $\frac{\partial^2 f}{\partial x_j \partial x_i}$.

Se as funções $\dfrac{\partial f}{\partial x_i}$ e $\dfrac{\partial^2 f}{\partial x_j \partial x_i}$ são contínuas em U, então também existe a derivada parcial $\dfrac{\partial^2 f}{\partial x_i \partial x_j}$ em todos os pontos de U e tem-se

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(x) = \frac{\partial^2 f}{\partial x_j \partial x_i}(x), \quad \forall x \in U.$$

Observação:

Em todos os pontos $x\in U$ onde existem as derivadas parciais de segunda ordem da função $f\colon U\longrightarrow \mathbb{R}$, os números $h_{ij}(x)=f_{x_ix_j}(x)$ formam uma matriz $H(x)=[h_{ij}(x)]$, chamada a **matriz hessiana** da função f. Sob as hipóteses enunciadas, o Teorema de Schwarz afirma que a matriz hessiana de f é simétrica.

Seja $f\colon X\subset\mathbb{R}\longrightarrow\mathbb{R}$ uma função derivável num ponto $a\in X\cap X'$ e seja c=f'(a). Significa que

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = c$$

ou de modo equivalente

$$\lim_{x \to a} \frac{f(x) - f(a) - c(x - a)}{x - a} = 0$$

ou ainda

$$\lim_{x \to a} \frac{f(x) - f(a) - L_a(x - a)}{|x - a|} = 0 \quad \text{ou} \quad \lim_{x \to a} \frac{|f(x) - f(a) - L_a(x - a)|}{|x - a|} = 0.$$

em que $L_a : \mathbb{R} \longrightarrow \mathbb{R}$ é definida por $L_a(y) = c y$.

Esta expressão pode ser generalizada para funções cujo domínio está contido em \mathbb{R}^n .

Diferenciabilidade vi definição

Definição:

Sejam $U \subset \mathbb{R}^n$ um conjunto aberto, $f: U \longrightarrow \mathbb{R}$ e $a \in U$.

Diz-se que f é diferenciável no ponto a se existir uma aplicação linear

$$L_a: \mathbb{R}^n \longrightarrow \mathbb{R}$$

tal que

$$\lim_{x \to a} \frac{|f(x) - f(a) - L_a(x - a)|}{\|x - a\|} = 0$$

ou, equivalentemente,

$$\lim_{v \to 0} \frac{|f(a+v) - f(a) - L_a(v)|}{\|v\|} = 0.$$

Note-se que nas condições acima, f é diferenciável em a se e só se

$$\lim_{x \to a} \frac{f(x) - f(a) - L_a(x - a)}{\|x - a\|} = 0.$$

Função derivada

Teorema:

Sejam $U\subset\mathbb{R}^n$ um conjunto aberto, $f\colon U\longrightarrow\mathbb{R}$ e $a\in U$. Se f é diferenciável em a então existe **uma e uma só** aplicação linear $L_a\colon\mathbb{R}^n\longrightarrow\mathbb{R}$ tal que

$$\lim_{v \to 0} \frac{f(a+v) - f(a) - L_a(v)}{\|v\|} = 0.$$

Definição:

A esta aplicação linear chama-se **derivada de** f **no ponto** a e representa-se por f'(a). É também usada na literatura a notação Df(a).

Diferenciabilidade / derivabilidade direcional

Teorema:

Sejam $U\subset\mathbb{R}^n$ um conjunto aberto, $f\colon U\longrightarrow\mathbb{R}$ e $a\in U$. Se f é diferenciável em a então f possui derivada direcional em a segundo todas as direções e

$$f'(a)(v) = \frac{\partial f}{\partial v}(a)$$
.

Demonstração:

Se v=0 o resultado é trivial. Se $v\neq 0$ então, por hipótese,

$$\lim_{x \to a} \frac{f(x) - f(a) - f'(a)(x - a)}{\|x - a\|} = 0.$$

Em particular, fazendo x = a + hv, obtemos

$$\lim_{h \to 0} \frac{f(a+hv) - f(a) - f'(a)(hv)}{|h| ||v||} = 0.$$

Diferenciabilidade / derivabilidade direcional

Demonstração (continuação):

Temos assim, sucessivamente

$$\lim_{h\to 0}\frac{f(a+hv)-f(a)-f'(a)(hv)}{|h|}=0\,,$$

$$\lim_{h\to 0} \left| \frac{f(a+hv) - f(a) - hf'(a)(v)}{h} \right| = 0,$$

$$\lim_{h \to 0} \left| \frac{f(a+hv) - f(a)}{h} - f'(a)(v) \right| = 0,$$

$$\lim_{h \to 0} \frac{f(a+hv) - f(a)}{h} - f'(a)(v) = 0$$

e, finalmente,

$$\lim_{h \to 0} \frac{f(a+hv) - f(a)}{h} = f'(a)(v).$$

Diferenciabilidade / derivabilidade direcional / derivadas parciais

Observações: Sejam $U \subset \mathbb{R}^n$ um conjunto aberto, $f \colon U \longrightarrow \mathbb{R}$ e $a \in U$.

1. Se f é diferenciável em a então existem as derivadas parciais de f em a e para todo $v=(v_1,v_2,\ldots,v_n)\in\mathbb{R}^n$,

$$\frac{\partial f}{\partial v}(a) = v_1 \frac{\partial f}{\partial x_1}(a) + \dots + v_n \frac{\partial f}{\partial x_n}(a).$$

Com efeito, temos que

$$\frac{\partial f}{\partial v}(a) = f'(a)(v)$$

$$= f'(a)(v_1e_1 + \dots + v_ne_n)$$

$$= v_1f'(a)(e_1) + \dots + v_nf'(a)(e_n))$$

$$= v_1\frac{\partial f}{\partial x_1}(a) + \dots + v_n\frac{\partial f}{\partial x_n}(a)$$

Diferenciabilidade / derivabilidade direcional / derivadas parciais

Observações: Sejam $U \subset \mathbb{R}^n$ um conjunto aberto, $f \colon U \longrightarrow \mathbb{R}$ e $a \in U$.

2. Se existirem derivadas parciais de f em a, então f é diferenciável em a sse

$$\lim_{x \to a} \frac{f(x) - f(a) - L_a(x - a)}{\|x - a\|} = 0$$

ou, equivalentemente,

$$\lim_{v \to 0} \frac{f(a+v) - f(a) - L_a(v)}{\|v\|} = 0,$$

onde L_a é a aplicação linear

$$L_a: \mathbb{R}^n \longrightarrow \mathbb{R}$$

 $v \mapsto \frac{\partial f}{\partial v}(a) = v_1 \frac{\partial f}{\partial x_1}(a) + \dots + v_n \frac{\partial f}{\partial x_n}(a)$

Diferenciabilidade / derivabilidade direcional / derivadas parciais

- 1.a) se não existe $\frac{\partial f}{\partial v}(a)$ para algum v então f não é diferenciável no ponto a;
- 1.b) se para algum vetor v tivermos

$$\frac{\partial f}{\partial v}(a) \neq v_1 \frac{\partial f}{\partial x_1}(a) + \dots + v_n \frac{\partial f}{\partial x_n}(a),$$

então f não é diferenciável em a;

2. se existirem derivadas parciais de f em a, então f é diferenciável em a sse

$$\lim_{v \to 0} \frac{f(a+v) - f(a) - \left[v_1 \frac{\partial f}{\partial x_1}(a) + \dots + v_n \frac{\partial f}{\partial x_n}(a)\right]}{\|v\|} = 0.$$

Matriz da derivada

Seja $f\colon U\longrightarrow \mathbb{R}$ uma função definida no aberto U diferenciável em $a\in U$. Consideremos a aplicação linear derivada de f no ponto $a,\,f'(a)\colon \mathbb{R}^n\longrightarrow \mathbb{R}$.

Tratando-se de uma aplicação linear, f'(a) pode ser identificada pela sua matriz, digamos $\mathcal{M}(f'(a))$, relativamente às bases canónicas de \mathbb{R}^n e de \mathbb{R} :

$$f'(a)(v) = \mathcal{M}(f'(a))v$$
.

Como

$$f'(a)(v) = v_1 \frac{\partial f}{\partial x_1}(a) + \dots + v_n \frac{\partial f}{\partial x_n}(a)$$
$$= \left[\frac{\partial f}{\partial x_1}(a) + \dots + \frac{\partial f}{\partial x_n}(a) \right] \cdot \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$$

temos que

$$\mathcal{M}(f'(a)) = \left[\frac{\partial f}{\partial x_1}(a) \cdots \frac{\partial f}{\partial x_n}(a) \right].$$

Observação: Se $U \subset \mathbb{R}$ então f'(a) pode ser identificada com a matriz 1×1 , $\left[\frac{df}{dx}(a)\right]$, ou seja, pelo número real $\frac{df}{dx}(a)$, como é habitual.

Definição: Sejam $U \subset \mathbb{R}^n$ um conjunto aberto, $f \colon U \longrightarrow \mathbb{R}$ e $a \in U$.

Define-se o **gradiente** de f em a e denota-se por $\nabla f(a)$ como sendo o vetor

$$\nabla f(a) = \left(\frac{\partial f}{\partial x_1}(a), \cdots, \frac{\partial f}{\partial x_n}(a)\right).$$

Sejam $U\subset\mathbb{R}^n$ um conjunto aberto, $f\colon U\longrightarrow\mathbb{R}$ e $a\in U$. Se f é diferenciável em a podemos escrever

$$f'(a): \mathbb{R}^n \longrightarrow \mathbb{R}.$$
 $v \mapsto \nabla f(a) \cdot v$

Diferenciabilidade \rightsquigarrow Significado geométrico (em \mathbb{R}^2)

Seja $U\subset\mathbb{R}^2$ um conjunto aberto e suponhamos que $f\colon U\longrightarrow\mathbb{R}$ é diferenciável no ponto $(a,b)\in U$. Então existem as derivadas parciais de f em (a,b) tendo-se

$$f(a+v_1,b+v_2) = f(a,b) + \underbrace{v_1 \frac{\partial f}{\partial x}(a,b) + v_2 \frac{\partial f}{\partial y}(a,b)}_{L(v_1,v_2), \text{ parte linear}} + \underbrace{o(v_1,v_2)}_{\text{resto}},$$

para todo o vetor $(v_1,v_2)\in\mathbb{R}^2$ tal que $(a,b)+(v_1,v_2)\in U$, onde

$$\lim_{(v_1, v_2) \to (0,0)} \frac{o(v_1, v_2)}{\|(v_1, v_2)\|} = 0.$$

Pondo $(a + v_1, b + v_2) = (x, y)$, obtemos

$$f(x,y) = f(a,b) + \underbrace{(x-a)\frac{\partial f}{\partial x}(a,b) + (y-b)\frac{\partial f}{\partial y}(a,b)}_{L(x-a,y-b), \text{ parte linear}} + \underbrace{o(x-a,y-b)}_{\text{resto}},$$

para todo $(x,y) \in U$, onde

$$\lim_{(x,y)\to(a,b)} \frac{o(x-a,y-b)}{\sqrt{(x-a)^2+(y-b)^2}} = 0.$$

Diferenciabilidade \rightsquigarrow Significado geométrico (em \mathbb{R}^2)

Para (x,y) suficientemente próximo de (a,b), isto é, quando a distância $\sqrt{(x-a)^2+(y-b)^2}$ é suficientemente pequena, os valores de f(x,y) podem ser aproximados por

$$T(x-a,y-b) = f(a,b) + (x-a)\frac{\partial f}{\partial x}(a,b) + (y-b)\frac{\partial f}{\partial y}(a,b) \,.$$

Geometricamente, significa que:

- no ponto (a,b), a superfície z=f(x,y) do gráfico de f não apresenta "bico" .
- para (x,y) suficientemente próximo de (a,b), tal superfície confunde-se com a superfície plana (que lhe é tangente no ponto (a,b)) de equação

$$z = f(a,b) + (x-a)\frac{\partial f}{\partial x}(a,b) + (y-b)\frac{\partial f}{\partial y}(a,b)\,.$$

• para (x,y) suficientemente próximo de (a,b), a função f pode ser aproximada pela função polinomial de grau não superior a um, definida por

$$f(a,b) + (x-a)\frac{\partial f}{\partial x}(a,b) + (y-b)\frac{\partial f}{\partial y}(a,b)$$
.

Exemplo 1: A função $f \colon \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por $f(x,y) = x^2 + y^2$ é diferenciável na origem.

Exemplo 2: A função $f\colon \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por $f(x,y) = \sqrt{x^2 + y^2}$ não é diferenciável na origem.

Condição suficiente de diferenciabilidade

Definição:

Uma função $f\colon U\longrightarrow \mathbb{R}$, em que $U\subset \mathbb{R}^n$ é um aberto, diz-se de classe C^1 se admitir derivadas parciais contínuas.

Teorema: [condição suficiente de diferenciabilidade]:

Se U é um aberto de \mathbb{R}^n e $f\colon U\longrightarrow \mathbb{R}$ é uma função de classe C^1 então f é diferenciável em U.

Diferenciabilidade / continuidade

Teorema:

Sejam $U\subset \mathbb{R}^n$ um conjunto aberto, $f\colon U\longrightarrow \mathbb{R}$ e $a\in U.$

Se f é diferenciável em a então f é contínua em a.

Demonstração:

Como f é diferenciável no ponto a, existem as derivadas parciais de f em a tendo-se

$$f(x) = f(a) + (x_1 - a_1) \frac{\partial f}{\partial x_1}(a) + \dots + (x_n - a_n) \frac{\partial f}{\partial x_n}(a) + o(x - a) \,, \quad \text{ com } \quad \lim_{x \to a} \frac{o(x - a)}{\|x - a\|} = 0 \,.$$

Tomando o limite quando x tende para a na expressão anterior e atendendo a

que
$$\lim_{x\to a} \frac{o(x-a)}{\|x-a\|} = 0 \Longrightarrow \lim_{x\to a} o(x-a) = 0$$
, vem

$$\lim_{x \to a} f(x) = f(a) \,,$$

ou seja, f é contínua em a.

Consequência:

f descontínua no ponto $a \implies f$ não é diferenciável no ponto a .

Funções de classe C^k

Definição:

Uma função $f\colon U\longrightarrow \mathbb{R}$, em que $U\subset \mathbb{R}^n$ é um aberto, diz-se de **classe** C^k e escreve-se $f\in C^k(U)$ (ou simplesmente $f\in C^k$) se f admitir derivadas parciais de qualquer ordem $p\leq k$ contínuas.

Convencionou-se que f é uma função de classe C^0 quando f é contínua e que f é de classe C^∞ quando f é de classe C^k para todo $k=0,1,2,3,\ldots$ Escreve-se $f\in C^0(U)$ e $f\in C^\infty(U)$, respetivamente.

Exemplo:

Toda a função polinomial $p \colon \mathbb{R}^n \longrightarrow \mathbb{R}$ é de classe C^{∞} .

Funções k vezes diferenciáveis

Suponhamos que $f\colon U\longrightarrow \mathbb{R}$ é diferenciável no aberto $U\subset \mathbb{R}^n$. Então existem as derivadas parciais de primeira ordem que definem novas funções em U,

$$f_{x_i}: U \longrightarrow \mathbb{R}$$
.

• Se cada uma das funções f_{x_i} é também diferenciável em U, diz-se que a função f é duas vezes diferenciável .

Se for este o caso, tem-se que existem em $\cal U$ as derivadas parciais de segunda ordem, que definem novas funções em $\cal U$,

$$f_{x_i x_j}: U \longrightarrow \mathbb{R}, \quad i, j = 1, 2, \cdots, n.$$

- Se cada uma das funções $f_{x_ix_j}$ é também diferenciável em U, diz-se que a função f é **três vezes diferenciável** .
- Em geral, para cada $k \in \mathbb{N}$, diz-se que a função f é k vezes diferenciável quando f e todas as suas derivadas parciais até à ordem k-1 são funções diferenciáveis em U.
- Dizemos que f é infinitamente diferenciável quando f e todas as suas derivadas parciais de qualquer ordem são diferenciáveis em U.