Diseño de la Máquina Sencilla

Introducción a los Computadores

1º Ingeniería Informática, EINA, U. de Zaragoza Luis M. Ramos, Víctor Viñals

IBM PC XT, 1981

Unidad de Proceso

consigue siguiente instrucción a ejecutar (leer RAM)
 operación + localización de operandos → registro de instrucción

- consigue siguiente instrucción a ejecutar (leer RAM)
 operación + localización de operandos → registro de instrucción
- decodifica la instrucción

- consigue siguiente instrucción a ejecutar (leer RAM)
 operación + localización de operandos → registro de instrucción
- decodifica la instrucción
- consigue los operandos fuente (leer RAM dos veces) dato → registro de datos

- consigue siguiente instrucción a ejecutar (leer RAM)
 operación + localización de operandos → registro de instrucción
- decodifica la instrucción
- consigue los operandos fuente (leer RAM dos veces) dato → registro de datos
- opera y guarda resultado (escribir RAM) resultado → RAM

Unidad de Proceso

- consigue siguiente instrucción a ejecutar (leer RAM)
 operación + localización de operandos → registro de instrucción
- decodifica la instrucción
- consigue los operandos fuente (leer RAM dos veces) dato → registro de datos
- opera y guarda resultado (escribir RAM) resultado → RAM

Unidad de Control

Unidad de Proceso

- consigue siguiente instrucción a ejecutar (leer RAM)
 operación + localización de operandos → registro de instrucción
- decodifica la instrucción
- consigue los operandos fuente (leer RAM dos veces) dato → registro de datos
- opera y guarda resultado (escribir RAM) resultado → RAM

Unidad de Control

da órdenes a la UP,
... porque la UP no sabe qué hacer ni cuándo hacerlo

Unidad de Proceso

- consigue siguiente instrucción a ejecutar (leer RAM)
 operación + localización de operandos → registro de instrucción
- decodifica la instrucción
- consigue los operandos fuente (leer RAM dos veces) dato → registro de datos
- opera y guarda resultado (escribir RAM)
 resultado → RAM

Unidad de Control

da órdenes a la UP,
... porque la UP no sabe qué hacer ni cuándo hacerlo

Arquitectura de la Máquina Sencilla

Almacenes

- Memoria
 - √ 128 palabras de 16 bits, numeradas desde la 0 hasta la 127
 - ✓ contiene instrucciones y datos
 - ✓ los datos son números naturales o enteros Ca2
- FZ (flag zero): 1 bit, registra igualdad cero
- PC (program counter): 7 bits, dirección de la instrucción a ejecutar

4 instrucciones de tamaño fijo: ADD, MOV, CMP, BEQ

 ADD, MOV y CMP usan el modo de direccionamiento de datos directo ó absoluto: la dirección del dato está en la propia instrucción

Arquitectura de la Máquina Sencilla

Almacenes

- Memoria
 - √ 128 palabras de 16 bits, numeradas desde la 0 hasta la 127
 - √ contiene instrucciones y datos
 - ✓ los datos son números naturales o enteros Ca2
- FZ (flag zero): 1 bit, registra igualdad cero
- PC (program counter): 7 bits, dirección de la instrucción a ejecutar

 ADD, MOV y CMP usan el modo de direccionamiento de datos directo ó absoluto: la dirección del dato está en la propia instrucción

Ensamblador	Descripción	Tipo	Codificación (16b)
ADD F,D	@D ← (D)+(F) FZ ← 1 \underline{si} (D)+(F)=0	aritmética	00 fffffff ddddddd
CMP F,D	FZ ← 1 <u>si</u> (F)⊕(D)=0	aritmético-lógica	01 fffffff ddddddd
MOV F,D	@D ← (F) FZ ← 1 <u>si</u> (F)=0	movimiento	10 fffffff ddddddd
BEQ dst	<u>si</u> FZ=1 salta a dst <u>sino</u> ejecuta siguiente	salto condicional	11 ddddddd

Niveles (o capas) del computador: HW y SW

Usuario

	Aplicación (PowerPoint, Firefox,)		
SW	Lenguaje de Alto Nivel (C, C++, Java, Phyton,)		
	Sistema Operativo		
	Arquitectura Lenguaje Ensamblador Lenguaje Máquina		
HW	Computador (procesador + memoria + E/S)		

Niveles (o capas) del computador: HW

Usuario Aplicación (PowerPoint, Firefox, ...) Programación Lenguaje de Alto Nivel convencional (C, C++, Java, Phyton, ...) SW Administración Sistema Operativo de Sistemas Arquitectura Lenguaje Ensamblador Sistemas Críticos Optimización: Lenguaje Máquina - velocidad - tamaño Computador HW - energía (procesador + memoria + E/S) **µ**Procesador Periféricos intel **DRAM DDR3**

Memoria

```
ADD 64, 65
@0
     MOV 64, 65
@1
     CMP 64, 65
@2
     BEQ 0
@3
      18
(a)64
      10
```

FZ

Memoria

@2 CMP 64, 65

@3 BEQ 0

@64 18

@65 10

• • • • • • •

FZ

Memoria

@0 ADD 64, 65

@1 MOV 64, 65

@2 CMP 64, 65

@3 BEQ 0

@64 18

*@*65 10

• • • • • • •

4 @65 ←

 $@65 \leftarrow (64) + (65)$

FZ

Memoria

FZ 0

Memoria

@0 ADD 64, 65
@1 MOV 64, 65
@2 CMP 64, 65

@3 BEQ 0

a65 a65 a65 a65 a65

FZ

Memoria

Memoria

@0 ADD 64, 65

@1 MOV 64, 65

@2 CMP 64, 65

@3 BEQ 0

@64 18

@65

28

FZ

Memoria

Memoria

ADD 64, 65 @0MOV 64, 65 @1 CMP 64, 65 @2 BEQ 0 @3

 $\frac{FZ}{0}$

Memoria

ADD 64, 65 @0MOV 64, 65 @1 CMP 64, 65 @2 BEQ 0 @3

FZ 0

Memoria

Memoria

ADD 64, 65 @0MOV 64, 65 @1 CMP 64, 65 @2 BEQ 0 @3

FZ
1

Memoria

FZ 1

Memoria


```
uint16_t a, b;
...
c= a*b
```

```
uint16_t a, b;
...
c= a*b

c= 0;
i= 0;
while (i!=b){

c= c+a;
i= i+1;
}
```

```
uint16_t a, b;
...
c= a*b

c= 0;
i= 0;
while (i!=b){

c= c+a;
i= i+1;
}
```

```
MOV CERO, c
MOV CERO, i
while: CMP i, b
BEQ fin
ADD a, c
ADD UNO, i
CMP i, i
BEQ while
fin:
```

```
uint16_t a, b;
...
c= a*b

c= 0;
i= 0;
while (i!=b){

c= c+a;
i= i+1;
}
```

```
MOV CERO, c
MOV CERO, i
while: CMP i, b
BEQ fin
ADD a, c
ADD UNO, i
CMP i, i
BEQ while
fin:
```

```
uint16_t a, b;
...
c= a*b

c= 0;
i= 0;
while (i!=b){

c= c+a;
i= i+1;
}
```

```
MOV CERO, c
MOV CERO, i
while: CMP i, b salto
BEQ fin condicional
ADD a, c
ADD UNO, i
CMP i, i
BEQ while
fin:
```

```
uint16_t a, b;
...
c= a*b

c= 0;
i= 0;
while (i!=b){

c= c+a;
i= i+1;
}
```

```
MOV CERO, c
MOV CERO, i
while: CMP i, b
BEQ fin condicional
ADD a, c
ADD UNO, i
CMP i, i
BEQ while
fin:
```

```
uint16_t a, b;
...
c= a*b

c= 0;
i= 0;
while (i!=b){

c= c+a;
i= i+1;
}
```

```
MOV CERO, c
MOV CERO, i
while: CMP i, b salto
BEQ fin condicional
ADD a, c
ADD UNO, i
CMP i, i salto
BEQ while incondicional
fin:
```

```
uint16_t a, b;
...
c= a*b
```

¿Qué son a, b, c, i? ¿CERO y UNO? ¿fin y while?

```
c= 0;
i= 0;
while (i!=b){
c= c+a;
i= i+1;
}
```

```
MOV CERO, c
MOV CERO, i
while: CMP i, b
BEQ fin condicional
ADD a, c
ADD UNO, i
CMP i, i
BEQ while incondicional
fin:
```

```
uint16_t a, b;
...
c= a*b
```

¿Qué son a, b, c, i? ¿CERO y UNO? ¿fin y while?

```
c= 0;
i= 0;
while (i!=b){
c= c+a;
i= i+1;
}
```

```
Simbolos
         MOV CERO, c
                                        a \rightarrow (a)100
         MOV CERO, i
                                        b \rightarrow @101
while: CMP i, b
                                       c \rightarrow @102
                       salto
         BEQ fin | condicional
                                        i \rightarrow (a, 103)
         ADD a, c
         ADD UNO, i
         CMP i, i
                         salto
         BEQ while \( \int \text{incondicional} \)
fin:
```

```
uint16_t a, b;
...
c= a*b
```

¿Qué son a, b, c, i? ¿CERO y UNO? ¿fin y while?

```
c= 0;
i= 0;
while (i!=b){
c= c+a;
i= i+1;
}
```

```
Simbolos
       MOV CERO, c
                                  a \rightarrow (a)100
        MOV CERO, i
                                  b \to @101
while: CMP i, b
                                  c \rightarrow (a)102
                     salto
       BEQ fin
                    condicional
                                   i \rightarrow (a, 103)
        ADD a, c
                                   UNO → @104
        ADD UNO, i
                                   CERO → @105
        CMP i, i
                      salto
       BEQ while | incondicional
fin:
```

```
¿Qué son a, b, c, i? ¿CERO y UNO? ¿fin y while?
uint16 t a, b;
c = a*b
                                                                      Simbolos
     c = 0;
                                        MOV CERO, c
                        <u>@</u>0
                                                                      a \rightarrow (a)100
     i=0;
                        <u>a</u>1
                                        MOV CERO, i
                                                                      b \rightarrow @101
     while (i!=b){
                        <u>a</u>2
                               while: CMP i, b
                                                                      c \rightarrow (a)102
                                                      salto
                                                     J condicional
                                        BEQ fin
                        <u>@</u>3
                                                                      i \rightarrow (a, 103)
                                        ADD a, c
                        <u>a</u>4
      c = c + a;
                                                                      UNO → @104
      i=i+1;
                                        ADD UNO, i
                        <u>a</u>5
                                                                      CERO → @105
                                        CMP i, i
                        <u>a</u>6
                                                        salto
                                       BEQ while | incondicional
                        <u>a</u>7
                               fin:
                        (a)8
```

```
¿Qué son a, b, c, i? ¿CERO y UNO? ¿fin y while?
uint16 t a, b;
c = a*b
                                                                        Simbolos
     c = 0;
                                         MOV CERO, c
                         <u>@</u>0
                                                                        a \rightarrow (a)100
     i=0;
                                         MOV CERO, i
                         <u>a</u>1
                                                                        b \rightarrow @101
     while (i!=b){
                         <u>a</u>2
                                while: CMP i, b
                                                                        c \rightarrow (a)102
                                                        salto
                                         BEQ fin
                         <u>@</u>3
                                                       condicional
                                                                        i \rightarrow (a, 103)
                         <u>a</u>4
                                         ADD a, c
       c = c + a;
                                                                        UNO → @104
       i=i+1;
                                         ADD UNO, i
                         <u>a</u>5
                                                                        CERO → @105
                                         CMP i, i
                         <u>a</u>6
                                                          salto
                                         BEQ while | incondicional
                         <u>a</u>7
                                                                        fin \rightarrow @8
                         (a)8
                                fin:
                                                                        while \rightarrow (a,2)
```

¿Cómo representar instrucciones?

- 4 instrucciones → 2 bits para codificar instrucción
- RAM de 128 → 7 bits para cada operando

¿Cómo representar instrucciones?

- 4 instrucciones → 2 bits para codificar instrucción
- RAM de 128 → 7 bits para cada operando

¿Cómo representar instrucciones?

- 4 instrucciones → 2 bits para codificar instrucción
- RAM de 128 → 7 bits para cada operando

¿Cómo queda la RAM una vez cargado el programa?

@0	2	105	102
@1	2	105	103
@2	1	103	101
@3	3	X	8
@4	0	100	102
@5	0	104	103
@6	1	103	103
@7	3	X	2
•••			
@100	valor de a (16 bits)		
@101	valor de b (16 bits)		
@102	valor de c (16 bits)		
@103	valor de i (16 bits)		
@104	0000000000000001		
@105	0000000000000000		

MOV	CERO, c
MOV	CERO, i
CMP	i, b
BEQ	fin
ADD	a, c
ADD	UNO, i
CMP	i, i
BEQ	while
	MOV CMP BEQ ADD ADD CMP

Diseño de la Unidad de Proceso (o datapath)

Diseño de la Unidad de Proceso (o datapath)

Ruta de datos

Ruta de datos

Cuatro fases de ejecución: interpretación

- F1 Buscar instrucción (fetch)
 RAM → IR
- F2 Decodificar (Unidad de Control)
- F3 Buscar operandos
 RAM → A, RAM → B
 o evaluar FZ
- F4 Calcular resultado y Z (ALU), escribir RAM y FZ resultado → RAM ALU_Z → FZ

Cuatro fases de ejecución: interpretación

Buscar instrucción (fetch) RAM → IR **F2** Decodificar (Unidad de Control) **F3** Buscar operandos $RAM \rightarrow A, RAM \rightarrow B$ o evaluar FZ Calcular resultado y Z (ALU), escribir RAM y FZ resultado → RAM $ALU_Z \rightarrow FZ$

F1 IR
$$\leftarrow$$
 (PC) PC \leftarrow PC + 1

Fase: 1 o 2 ciclos

Fase: 1 o 2 ciclos

Fase: 1 o 2 ciclos

Diseño de la Unidad de Control

- U.C. cableada:
 - autómata Moore
 - cada estado → vector de salidas
- U.C. microprogramada:
 - microprograma
 - ejecutar instrucción → secuencia de microinstrucciones

F4

 $PC \leftarrow PC+1$

F1 F2

Autómata Moore de la U.C.

	S ₀	S ₁	S ₂	S_3	S ₄	S ₅	S ₆	S ₇	S ₈	S ₉	S ₁₀	S ₁₁
mx ₁	0	X	1	1	1	X	1	1	1	X	1	1
mx_0	0	X	0	0	0	X	1	1	1	X	1	1
alu ₁	X	X	X	X	X	X	X	0	X	0	1	X
alu ₀	X	X	X	X	X	X	X	0	X	1	0	X
L/E	0	0	0	0	0	0	0	1	0	0	1	0
рс	1	0	0	0	0	0	0	0	0	0	0	1
ir	1	0	0	0	0	0	0	0	0	0	0	1
a	0	0	0	0	0	0	1	0	1	0	0	0
b	0	0	1	1	1	0	0	0	0	0	0	0
fz	0	0	0	0	0	0	0	1	0	1	1	0

 S_0 $IR \leftarrow (PC)$ $PC \leftarrow PC+1$

	S ₀	S ₁	S ₂	S_3	S_4	S ₅	S ₆	S ₇	S ₈	S ₉	S ₁₀	S ₁₁
mx ₁	0	X	1	1	1	X	1	1	1	X	1	1
mx_0	0	X	0	0	0	X	1	1	1	X	1	1
alu ₁	X	X	X	X	X	X	X	0	X	0	1	X
alu ₀	X	X	X	X	X	X	X	0	X	1	0	X
L/E	0	0	0	0	0	0	0	1	0	0	1	0
рс	1	0	0	0	0	0	0	0	0	0	0	1
ir	1	0	0	0	0	0	0	0	0	0	0	1
a	0	0	0	0	0	0	1	0	1	0	0	0
b	0	0	1	1	1	0	0	0	0	0	0	0
fz	0	0	0	0	0	0	0	1	0	1	1	0

 S_0 $IR \leftarrow (PC)$ $PC \leftarrow PC+1$

S₁ y S₅ ???

	S ₀	S ₁	S_2	S_3	S_4	S ₅	S_6	S ₇	S ₈	S ₉	S ₁₀	S ₁₁
mx ₁	0	X	1	1	1	X	1	1	1	X	1	1
mx_0	0	X	0	0	0	X	1	1	1	X	1	1
alu ₁	X	X	X	X	X	X	X	0	X	0	1	X
alu ₀	X	X	X	X	X	X	X	0	X	1	0	X
L/E	0	0	0	0	0	0	0	1	0	0	1	0
рс	1	0	0	0	0	0	0	0	0	0	0	1
ir	1	0	0	0	0	0	0	0	0	0	0	1
a	0	0	0	0	0	0	1	0	1	0	0	0
b	0	0	1	1	1	0	0	0	0	0	0	0
fz	0	0	0	0	0	0	0	1	0	1	1	0

 S_0 $IR \leftarrow (PC)$ $PC \leftarrow PC+1$

 $S_1 y S_5$??? $S_2, S_3 y S_4$ $B \leftarrow (F)$

	S ₀	S ₁	S_2	S_3	S_4	S ₅	S_6	S ₇	S ₈	S ₉	S ₁₀	S ₁₁
mx ₁	0	X	1	1	1	X	1	1	1	X	1	1
mx_0	0	Х	0	0	0	X	1	1	1	X	1	1
alu ₁	X	Х	X	X	X	X	X	0	X	0	1	X
alu ₀	X	Х	X	X	X	X	X	0	X	1	0	X
L/E	0	0	0	0	0	0	0	1	0	0	1	0
рс	1	0	0	0	0	0	0	0	0	0	0	1
ir	1	0	0	0	0	0	0	0	0	0	0	1
a	0	0	0	0	0	0	1	0	1	0	0	0
b	0	0	1	1	1	0	0	0	0	0	0	0
fz	0	0	0	0	0	0	0	1	0	1	1	0

Implementación de la U.C.: autómata de Moore

• Tabla de transición

Q	ENT	Q+
$q_2 q_1 q_0$	$CO_1 CO_0 FZ$	$q_{2}^{+} q_{1}^{+} q_{0}^{+}$
•••		•••

• Tabla de salida

Q	SAL					
$q_2 q_1 q_0$	$mx_1 mx_0$ alu ₁ alu ₀ \overline{L}/E pc ir a b fz					
•••	•••					

• Resumen:

• Q: 3 FFs D

• FT: ROM 64x3

• FS: ROM 8x10

Máquina sencilla completa de 7 estados

 $Tex(programa) = n^{o} ciclos \cdot Tc$

$$Tex(programa) = n^{\circ} ciclos \cdot Tc$$

= $(I_{add} \cdot C_{add} + I_{cmp} \cdot C_{cmp} + I_{mov} \cdot C_{mov} + I_{beq} \cdot C_{beq}) \cdot Tc$

$$Tex(programa) = n^{\circ} ciclos \cdot Tc$$

$$= (I_{add} \cdot C_{add} + I_{cmp} \cdot C_{cmp} + I_{mov} \cdot C_{mov} + I_{beq} \cdot C_{beq}) \cdot Tc$$

$$= I \cdot (f_{add} \cdot C_{add} + f_{cmp} \cdot C_{cmp} + f_{mov} \cdot C_{mov} + f_{beq} \cdot C_{beq}) \cdot Tc$$

$$Tex(programa) = n^{\circ} ciclos \cdot Tc$$

$$= (I_{add} \cdot C_{add} + I_{cmp} \cdot C_{cmp} + I_{mov} \cdot C_{mov} + I_{beq} \cdot C_{beq}) \cdot Tc$$

$$= I \cdot (f_{add} \cdot C_{add} + f_{cmp} \cdot C_{cmp} + f_{mov} \cdot C_{mov} + f_{beq} \cdot C_{beq}) \cdot Tc$$
fracción de MOV

$$\begin{split} Tex(programa) &= n^{\circ} \ ciclos \cdot Tc \\ &= (I_{add} \cdot C_{add} + I_{cmp} \cdot C_{cmp} + I_{mov} \cdot C_{mov} + I_{beq} \cdot C_{beq}) \cdot Tc \\ &= I \cdot (f_{add} \cdot C_{add} + f_{cmp} \cdot C_{cmp} + f_{mov} \cdot C_{mov} + f_{beq} \cdot C_{beq}) \cdot Tc \\ &= I \times CPI \times Tc \end{split}$$
 fracción de MOV ciclos de MOV

Mejoras: añadir instrucciones al repertorio

μProcesador

¿ Como añadir una instrucción al repertorio?

- Tres formas:
 - Software: no se modifica nada (barata y lenta)
 - → se añade únicamente al lenguaje ensamblador! el compilador emite la secuencia necesaria de instrucciones máquina
 - Hardware: se modifica UP y UC (caro y rápido)
 - Firmware: se modifica sólo la UC
- Ejemplo: añadir instrucción
 - CUAD F, D @D ← 4 * (F)

Ejemplo: añadimos CUAD al repertorio

- SW:

 CUAD a ,b ≡

 MOV a, b

 ADD b, b

 ADD b, b
- **HW**: añado inst CUAD modificando ALU

$$B \leftarrow (F)$$
 $@D \leftarrow 4*B$

FW:
añado inst CUAD sin modificar ALU
A ← (F); B ← (F)
@D ← A + B
A ← (D); B ← (D)
@D ← A + B

Ejemplo: añadimos tres instrucciones. Modificación HW

Añadir las siguientes instrucciones:

- Codificación expandida
 - usar bits libres en alguna instrucción

CO X	@D	BEQ
------	----	-----

Codificación expandida

Autómata de la U.C.

Autómata de la U.C.

Autómata de la U.C.

U.C. microprogramada

- U.C. cableada:
 - autómata → estado → RTL
 - decodificación
- U.C. μprogramada:
 - μprograma → μinstrucciones → RTL
 - μPC
 - ✓ secuenciamiento implícito
 - $\checkmark \mu \text{ saltos}$

¿Cómo sería el µprograma?

μ@	RTL	μ instrucción	
0	IR ← (PC)	PC ← PC + 1	
1	Decod		
2	B ← (F)		ADD
3	A ← (D)		
4	@ D ← A + B	FZ ← Z	
5	B ← (F)		CMP
6	A ← (D)		
7	$A \oplus B$	FZ ← Z	
8	B ← (F)		MOV
9	@D ← B	FZ ← Z	
10	IR ← (D)	PC ← D + 1	BEQ

$$\mu PC^+ = \left\{ \right.$$

$$\mu PC^{+} = \begin{cases} \mu @ \text{ salto } \underline{\text{si}} & \text{bit(test}_{1-0}) = \text{test}_{2} \\ \end{pmatrix}$$

$$\mu \ PC^{+} = \left\{ \begin{array}{ll} \mu @ \ salto & \underline{si} & bit(test_{1-0}) = test_{2} \\ \\ \mu PC + 1 & \underline{cc} & (\neq) \end{array} \right.$$

test ₁₋₀	bit
00	CO ₀
01	CO ₁
10	FZ
11	'0'

$$\mu \ PC^{+} = \left\{ \begin{array}{ll} \mu @ \ salto & \underline{si} & bit(test_{1-0}) = test_{2} \\ \\ \mu PC + 1 & \underline{cc} & (\neq) \end{array} \right.$$

test ₁₋₀	bit
00	CO ₀
01	CO ₁
10	FZ
11	'0'

$$\mu \ PC^{+} = \left\{ \begin{array}{ll} \mu @ \ salto & \underline{si} & bit(test_{1-0}) = test_{2} \\ \\ \mu PC + 1 & \underline{cc} & (\neq) \end{array} \right.$$

• En "test₁₋₀" se codifica 1 bit

test ₁₋₀	bit
00	CO ₀
01	CO ₁
10	FZ
11	'0'

$$\mu \ PC^{+} = \left\{ \begin{array}{ll} \mu @ \ salto & \underline{si} & bit(test_{1-0}) = test_{2} \\ \\ \mu PC + 1 & \underline{cc} & (\neq) \end{array} \right.$$

- En "test₁₋₀" se codifica 1 bit
- Sólo hay 1 destino de salto

test ₁₋₀	bit
00	CO ₀
01	CO ₁
10	FZ
11	'0'

$$\mu \ PC^{+} = \left\{ \begin{array}{ll} \mu @ \ salto & \underline{si} & bit(test_{1-0}) = test_{2} \\ \\ \mu PC + 1 & \underline{cc} & (\neq) \end{array} \right.$$

- En "test₁₋₀" se codifica 1 bit
- Sólo hay 1 destino de salto
- ¿Porqué comparar test₂ con una constante?

mprograma (ROM)

μ@	μ@ salto	test	mx ₁	mx ₀	alu ₁	alu ₀	L/E	рс	ir	а	b	fz
0	XXXX	111	0	0	X	X	0	1	1	0	0	0
1	1000	100	X	X	X	X	0	0	0	0	0	0
2	0110	101	X	X	X	X	0	0	0	0	0	0
3	XXXX	111	1	0	X	X	0	0	0	0	1	0
4	XXXX	111	1	1	X	X	0	0	0	1	0	0
5	0000	011	1	1	0	0	1	0	0	0	0	1
6	XXXX	111	1	0	X	X	0	0	0	0	1	0
7	0000	011	1	1	1	0	1	0	0	0	0	1
8	1100	101	X	Х	X	X	0	0	0	0	0	0
9	XXXX	111	1	0	X	X	0	0	0	0	1	0
10	XXXX	111	1	1	X	X	0	0	0	1	0	0
11	0000	011	X	X	0	1	0	0	0	0	0	1
12	0000	010	X	X	X	X	0	0	0	0	0	0
13	0001	011	1	1	X	X	0	1	1	0	0	0

μ@	μ@ salto	test	mx ₁	mx ₀	alu₁	alu ₀	L/E	рс	ir	а	b	fz
0	XXXX	111	0	0	X	X	0	1	1	0	0	0
1	1000	100	X	X	X	X	0	0	0	0	0	0
2	0110	101	X	X	X	test	1-0	bit		0	0	0
3	XXXX	111	1	0	X	00		CO		0	1	0
4	XXXX	111	1	1	X	01		CO ₁		1	0	0
5	0000	011	1	1	0	10	10			0	0	1
6	XXXX	111	1	0	X	11	11			0	1	0
7	0000	011	1	1	1	0	1	0	0	0	0	1
8	1100	101	X	X	X	X	0	0	0	0	0	0
9	XXXX	111	1	0	X	X	0	0	0	0	1	0
10	XXXX	111	1	1	X	X	0	0	0	1	0	0
11	0000	011	X	X	0	1	0	0	0	0	0	1
12	0000	010	X	X	X	X	0	0	0	0	0	0
13	0001	011	1	1	X	X	0	1	1	0	0	0

μ@	μ@ salto	test	mx ₁	mx ₀	alu₁	alu ₀	L/E	рс	ir	а	b	fz
0	XXXX	111	0	0	X	X	0	1	1	0	0	0
1	1000	100	X	X	X	X	0	0	0	0	0	0
2	0110	101	X	X	X	test	1-0	bit		0	0	0
3	XXXX	111	1	0	X	00		CO)	0	1	0
4	XXXX	111	1	1	X	01		CO ₁		1	0	0
5	0000	011	1	1	0	10		FZ		0	0	1
6	XXXX	111	1	0	X	11		'0'		0	1	0
7	0000	011	1	1	1	0	1	0	0	0	0	1
8	1100	101	X	Х	X	X	0	0	0	0	0	0
9	XXXX	111	1	0	X	X	0	0	0	0	1	0
10	XXXX	111	1	1	X	X	0	0	0	1	0	0
11	0000	011	X	X	0	1	0	0	0	0	0	1
12	0000	010	X	X	X	Х	0	0	0	0	0	0
13	0001	011	1	1	X	Х	0	1	1	0	0	0

0=1

μ@	μ@ salto	test	mx ₁	mx ₀	alu₁	alu ₀	L/E	рс	ir	а	b	fz
0	XXXX	111	0	0	X	X	0	1	1	0	0	0
1	1000	100	X	X	X	X	0	0	0	0	0	0
2	0110	101	X	X	X	test	1-0	bit		0	0	0
3	XXXX	111	1	0	X	00		CO)	0	1	0
4	XXXX	111	1	1	X	01		CO ₁		1	0	0
5	0000	011	1	1	0	10)	FZ		0	0	1
6	XXXX	111	1	0	X	11		'0'		0	1	0
7	0000	011	1	1	1	0	1	0	0	0	0	1
8	1100	101	X	X	X	X	0	0	0	0	0	0
9	XXXX	111	1	0	X	X	0	0	0	0	1	0
10	XXXX	111	1	1	X	X	0	0	0	1	0	0
11	0000	011	X	X	0	1	0	0	0	0	0	1
12	0000	010	X	X	X	X	0	0	0	0	0	0
13	0001	011	1	1	X	X	0	1	1	0	0	0

0=1 CO₀=1

μ@	μ@ salto	test	mx ₁	mx ₀	alu₁	alu ₀	L/E	рс	ir	а	b	fz
0	XXXX	111	0	0	X	X	0	1	1	0	0	0
1	1000	100	X	X	X	Х	0	0	0	0	0	0
2	0110	101	X	X	X	test	1-0	bit		0	0	0
3	XXXX	111	1	0	X	00)	CO		0	1	0
4	XXXX	111	1	1	X	01		CO ₁		1	0	0
5	0000	011	1	1	0	10)	FZ		0	0	1
6	XXXX	111	1	0	X	11		'0'		0	1	0
7	0000	011	1	1	1	0	1	0	0	0	0	1
8	1100	101	X	X	X	X	0	0	0	0	0	0
9	XXXX	111	1	0	X	X	0	0	0	0	1	0
10	XXXX	111	1	1	X	X	0	0	0	1	0	0
11	0000	011	X	X	0	1	0	0	0	0	0	1
12	0000	010	X	X	X	X	0	0	0	0	0	0
13	0001	011	1	1	X	X	0	1	1	0	0	0

0=1 CO₀=1

μ@	μ@ salto	test	mx ₁	mx ₀	alu ₁	alu ₀	T/E	рс	ir	а	b	fz	
0	XXXX	111	0	0	X	X	0	1	1	0	0	0	0=1
1	1000	100	X	X	X	X	0	0	0	0	0	0	$CO_0=1$
2	0110	101	X	X	X	test	1-0	bit		0	0	0	CO ₁ =1
3	XXXX	111	1	0	Х	00		CO		0	1	0	
4	XXXX	111	1	1	X	01		CO ₁		1	0	0	
5	0000	011	1	1	0	10)	FZ		0	0	1	0=0
6	XXXX	111	1	0	Х	11		'0'		0	1	0	
7	0000	011	1	1	1	0	1	0	0	0	0	1	
8	1100	101	X	X	X	Х	0	0	0	0	0	0	
9	XXXX	111	1	0	Х	Х	0	0	0	0	1	0	
10	XXXX	111	1	1	X	X	0	0	0	1	0	0	
11	0000	011	X	X	0	1	0	0	0	0	0	1	
12	0000	010	X	X	X	X	0	0	0	0	0	0	
13	0001	011	1	1	Х	X	0	1	1	0	0	0	

μ@	μ@ salto	test	mx ₁	mx ₀	alu ₁	alu ₀	T/E	рс	ir	а	b	fz	
0	XXXX	111	0	0	X	X	0	1	1	0	0	0	0=1
1	1000	100	X	X	Х	X	0	0	0	0	0	0	$CO_0=1$
2	0110	101	X	X	X	test	1-0	bit		0	0	0	CO ₁ =1
3	XXXX	111	1	0	Х	00		CO		0	1	0	
4	XXXX	111	1	1	X	01		CO ₁		1	0	0	
5	0000	011	1	1	0	10)	FZ		0	0	1	0=0
6	XXXX	111	1	0	Х	11		'0'		0	1	0	
7	0000	011	1	1	1	0	1	0	0	0	0	1	
8	1100	101	X	X	X	X	0	0	0	0	0	0	CO ₁ =1
9	XXXX	111	1	0	Х	X	0	0	0	0	1	0	
10	XXXX	111	1	1	X	X	0	0	0	1	0	0	
11	0000	011	X	X	0	1	0	0	0	0	0	1	
12	0000	010	X	X	Х	X	0	0	0	0	0	0	
13	0001	011	1	1	X	X	0	1	1	0	0	0	

μ@	μ@ salto	test	mx ₁	mx ₀	alu ₁	alu ₀	L/E	рс	ir	а	b	fz	
0	XXXX	111	0	0	X	X	0	1	1	0	0	0	0=1
1	1000	100	X	X	X	Х	0	0	0	0	0	0	CO ₀ =1
2	0110	101	X	X	X	test	1-0	bit		0	0	0	CO ₁ =1
3	XXXX	111	1	0	X	00)	CO)	0	1	0	
4	XXXX	111	1	1	X	01		CO ₁		1	0	0	
5	0000	011	1	1	0	10		FZ		0	0	1	0=0
6	XXXX	111	1	0	X	11		'0'		0	1	0	
7	0000	011	1	1	1	0	1	0	0	0	0	1	
8	1100	101	X	X	X	X	0	0	0	0	0	0	CO ₁ =1
9	XXXX	111	1	0	X	X	0	0	0	0	1	0	
10	XXXX	111	1	1	X	X	0	0	0	1	0	0	
11	0000	011	X	X	0	1	0	0	0	0	0	1	F7 0
12	0000	010	X	Х	X	Х	0	0	0	0	0	0	FZ=0
13	0001	011	1	1	X	Х	0	1	1	0	0	0	

μ@	μ@ salto	test	mx ₁	mx ₀	alu ₁	alu ₀	L/E	рс	ir	а	b	fz	
0	XXXX	111	0	0	X	X	0	1	1	0	0	0	0=1
1	1000	100	X	X	X	X	0	0	0	0	0	0	$CO_0=1$
2	0110	101	X	X	X	test	1-0	bit		0	0	0	CO ₁ =1
3	XXXX	111	1	0	X	00)	CO ₀		0	1	0	ADD
4	XXXX	111	1	1	X	01	l	CO ₁		1	0	0	(00)
5	0000	011	1	1	0	10		FZ		0	0	1	0=0
6	XXXX	111	1	0	X	11		'0'		0	1	0	
7	0000	011	1	1	1	0	1	0	0	0	0	1	
8	1100	101	X	X	X	X	0	0	0	0	0	0	CO ₁ =1
9	XXXX	111	1	0	X	X	0	0	0	0	1	0	
10	XXXX	111	1	1	X	X	0	0	0	1	0	0	
11	0000	011	X	X	0	1	0	0	0	0	0	1	F7. 0
12	0000	010	X	X	X	X	0	0	0	0	0	0	FZ=0
13	0001	011	1	1	X	X	0	1	1	0	0	0	

μ@	μ@ salto	test	mx ₁	mx ₀	alu ₁	alu ₀	L/E	рс	ir	а	b	fz	
0	XXXX	111	0	0	X	X	0	1	1	0	0	0	0=1
1	1000	100	X	X	X	X	0	0	0	0	0	0	CO ₀ =1
2	0110	101	X	X	X	test	1-0	bit		0	0	0	CO ₁ =1
3	XXXX	111	1	0	X	00)	CO		0	1	0	ADD
4	XXXX	111	1	1	X	01		CO		1	0	0	(00)
5	0000	011	1	1	0	10	10		FZ		0	1	0=0
6	XXXX	111	1	0	Х	11	11		'0'		1	0	MOV
7	0000	011	1	1	1	0	1	0	0	0	0	1	(10)
8	1100	101	X	X	X	X	0	0	0	0	0	0	CO ₁ =1
9	XXXX	111	1	0	X	X	0	0	0	0	1	0	
10	XXXX	111	1	1	X	X	0	0	0	1	0	0	
11	0000	011	X	X	0	1	0	0	0	0	0	1	F7. 0
12	0000	010	X	X	Х	X	0	0	0	0	0	0	FZ=0
13	0001	011	1	1	X	X	0	1	1	0	0	0	

μ@	μ@ salto	test	mx ₁	mx ₀	alu ₁	alu ₀	L/E	рс	ir	а	b	fz	
0	XXXX	111	0	0	X	X	0	1	1	0	0	0	0=1
1	1000	100	X	X	X	Х	0	0	0	0	0	0	CO ₀ =1
2	0110	101	X	X	X	test	1-0	bit		0	0	0	CO ₁ =1
3	XXXX	111	1	0	X	00		CO		0	1	0	ADD
4	XXXX	111	1	1	X	01		CO ₁		1	0	0	(00)
5	0000	011	1	1	0	10		FZ		0	0	1	0=0
6	XXXX	111	1	0	X	11		'0'		0	1	0	MOV
7	0000	011	1	1	1	0	1	0	0	0	0	1	(10)
8	1100	101	X	X	X	X	0	0	0	0	0	0	CO ₁ =1
9	XXXX	111	1	0	X	X	0	0	0	0	1	0	CMP
10	XXXX	111	1	1	X	X	0	0	0	1	0	0	(01)
11	0000	011	X	X	0	1	0	0	0	0	0	1	57. 0
12	0000	010	X	X	X	X	0	0	0	0	0	0	FZ=0
13	0001	011	1	1	X	X	0	1	1	0	0	0	

μ@	μ@ salto	test	mx ₁	mx ₀	alu₁	alu ₀	L/E	рс	ir	а	b	fz	
0	XXXX	111	0	0	X	X	0	1	1	0	0	0	0=1
1	1000	100	X	X	X	X	0	0	0	0	0	0	$CO_0=1$
2	0110	101	X	X	X	test	1-0	bit		0	0	0	CO ₁ =1
3	XXXX	111	1	0	X	00		CO		0	1	0	ADD
4	XXXX	111	1	1	X	01		CO ₁		1	0	0	(00)
5	0000	011	1	1	0	10		FZ		0	0	1	0=0
6	XXXX	111	1	0	X	11		'0'		0	1	0	MOV
7	0000	011	1	1	1	0	1	0	0	0	0	1	(10)
8	1100	101	X	X	X	X	0	0	0	0	0	0	CO ₁ =1
9	XXXX	111	1	0	X	X	0	0	0	0	1	0	CMP
10	XXXX	111	1	1	X	X	0	0	0	1	0	0	(01)
11	0000	011	X	X	0	1	0	0	0	0	0	1	
12	0000	010	X	X	X	X	0	0	0	0	0	0	FZ=0 BEQ
13	0001	011	1	1	X	X	0	1	1	0	0	0	(11)

μ@	μ @ salto	test	mx ₁	mx ₀	alu ₁	alu ₀	L/E	рс	ir	а	b	fz	
0	XXXX	111	0	0	X	X	0	1	1	0	0	0	0=1
1	1000	100	X	X	X	Х	0	0	0	0	0	0	CO ₀ =1
2	0110	101	X	X	X	test	1-0	bit		0	0	0	CO ₁ =1
3	XXXX	111	1	0	X	00		CO		0	1	0	ADD
4	XXXX	111	1	1	X	01		CO ₁		1	0	0	(00)
5	0000	011	1	1	0	10		FZ		0	0	1	0=0
6	XXXX	111	1	0	X	11		'0'		0	1	0	MOV
7	0000	011	1	1	1	0	1	0	0	0	0	1	(10)
8	1100	101	X	X	X	X	0	0	0	0	0	0	CO ₁ =1
9	XXXX	111	1	0	X	X	0	0	0	0	1	0	CMP
10	XXXX	111	1	1	X	X	0	0	0	1	0	0	(01)
11	0000	011	X	X	0	1	0	0	0	0	0	1	F7. 0
12	0000	010	X	X	X	X	0	0	0	0	0	0	FZ=0 BEQ
13	0001	011	1	1	X	X	0	1	1	0	0	0	(11)