

SEQUENCE LISTING

<110> Genentech, Inc.
Ashkenazi, Avi
Botstein, David
Desnoyers, Luc
Eaton, Dan L.
Ferrara, Napoleone
Filvaroff, Ellen
Fong, Sherman
Gao, Wei-Qiang
Gerber, Hanspeter
Gerritsen, Mary E.
Goddard, A.
Godowski, Paul J.
Grimaldi, Christopher J.
Gurney, Austin L.
Hillan, Kenneth, J.
Kljavin, Ivar J.
Mather, Jennie P.
Pan, James
Paoni, Nicholas F.
Roy, Margaret Ann
Stewart, Timothy A.
Tumas, Daniel
Williams, P. Mickey
Wood, William, I.

<120> Secreted and Transmembrane Polypeptides and Nucleic
Acids Encoding the Same

<130> 10466-14

<140> 09/665,350
<141> 2000-09-18

<150> PCT/US00/04414
<151> 2000-02-22

<150> US 60/143,048
<151> 1999-07-07

<150> US 60/145,698
<151> 1999-07-26

<150> US 60/146,222
<151> 1999-07-28

<150> PCT/US99/20594
<151> 1999-09-08

<150> PCT/US99/20944
<151> 1999-09-13

<150> PCT/US99/21090
<151> 1999-09-15

<150> PCT/US99/21547
<151> 1999-09-15

<150> PCT/US99/23089
<151> 1999-10-05

<150> PCT/US99/28214
<151> 1999-11-29

<150> PCT/US99/28313
<151> 1999-11-30

<150> PCT/US99/28564
<151> 1999-12-02

<150> PCT/US99/28565
<151> 1999-12-02

<150> PCT/US99/30095
<151> 1999-12-16

<150> PCT/US99/30911
<151> 1999-12-20

<150> PCT/US99/30999
<151> 1999-12-20

<150> PCT/US00/00219
<151> 2000-01-05

<160> 423

<210> 1
<211> 1825
<212> DNA
<213> Homo sapiens

<400> 1
actgcacctc gtttctatcg attgaattcc cggggatcc tctagagatc cctcgacctc 60
gaccacgcg tccggccgg agcagcacgg cccgaggacc tggagctccg gctgcgtctt 120
cccgagcgc tacccgcatt gcgcctgcgg cgccggccg cgctggggct cctgccgtt 180
ctgctgtgc tgccgcggc gcccggaggcc gccaagaagc cgacgcctg ccaccgggtgc 240
cgggggctgg tggacaagtt taaccagggg atggtgacca ccgcaaagaa gaactttggc 300
ggcgggaaca cggcttggga ggaaaagacg ctgtccaagt acgagtccag cgagattcgc 360
ctgctggaga tcctggaggg gctgtgcgag agcagcact tcgaatgcaa tcagatgcta 420
gaggcgcagg aggagcacct ggaggcctgg tggctgcagc tgaagagcga atatcctgac 480
ttattcgagt gttttgtgt gaagacactg aaagtgtgtct gctctccagg aacctaagg 540
cccgactgtc tcgcattgcca gggcgatcc cagaggccct gcagcgggaa tggccactgc 600
agcggagatg ggagcagaca gggcgacggg tcctggcggt gccacatggg gtaccagggc 660

ccgctgtgca ctgactgcat ggacggctac ttca gctcgc tccggAACGA gaccacAGC 720
atctgcacag cctgtacga gtcctgcaag acgtgctcg gcctgaccaa cagagactgc 780
ggcgagtgtg aagtggctg ggtgctggac gagggcgccgt gtgtggatgt ggacgagtgt 840
gcggccgagc cgccctccctg cagcgtcg cagttctgtt agaacGCCAA cggctccctac 900
acgtgcgaag agtgtgactc cagctgtgt ggtgcacag gggaaaggccc aggaaaactgt 960
aaagagtgtt tctctggcta cgcgaggggag cacggacagt gtgcagatgt ggacgagtgc 1020
tcactagcag aaaaaacctg tgtgaggaaa aacgaaaact gctacaatac tccaggggagc 1080
tagtctgtg tgtgtccctga cggcttcgaa gaaaacggaa atgcctgtgt gccgcggca 1140
gaggctgaag ccacagaagg agaaaagcccc acacagctgc cttcccgcgaa agacctgtta 1200
tgtgccggac ttacccttta aattatttcg aaggatgtcc cgtggaaaat gtggccctga 1260
ggatgccgtc tcctgcagtg gacagoggcg gggagaggct gcctgtctc taacgggttg 1320
ttctcatttg tcccttaaac agctgcattt ctgggttgtt cttaaacaga cttgttatatt 1380
ttgatacagt tctttgtaat aaaattgacc attgttagta atcaggagga aaaaaaaaaaa 1440
aaaaaaaaaaa aaaggccggc cgcgactcta gagtcgaccc gcagaagctt ggccgccccatg 1500
gcccaactt tttattgcag cttataatgg ttacaaataa agcaatagca tcacaaattt 1560
cacaataaa gcattttttt cactgcattc tagttgtgtt ttgtccaaac tcataatgt 1620
atcttatcat gtctggatcg ggaattaatt cggcgcagca ccatggctg aaataacctc 1680
tggaaagagga acttgggttag gtacctctg aggcggaaag aaccagctgt ggaatgtgt 1740
tcagtttaggg tgtggaaagt ccccaggctc cccagcaggc agaagtatgc aagcatgcat 1800
ctcaattagt cagcaaccca gtttt 1825

<210> 2
<211> 353
<212> PRT
<213> Homo sapiens

<400> 2
Met Arg Leu Pro Arg Arg Ala Ala Leu Gly Leu Leu Pro Leu Leu Leu
1 5 10 15

Leu Leu Pro Pro Ala Pro Glu Ala Ala Lys Lys Pro Thr Pro Cys His
20 25 30

Arg Cys Arg Gly Leu Val Asp Lys Phe Asn Gln Gly Met Val Asp Thr
35 40 45

Ala Lys Lys Asn Phe Gly Gly Gly Asn Thr Ala Trp Glu Glu Lys Thr
 50 55 60

Leu Ser Lys Tyr Glu Ser Ser Glu Ile Arg Leu Leu Glu Ile Leu Glu
65 70 75 80

Gly Leu Cys Glu Ser Ser Asp Phe Glu Cys Asn Gln Met Leu Glu Ala
85 90 95

Gln Glu Glu His Leu Glu Ala Trp Trp Leu Gln Leu Lys Ser Glu Tyr
 100 105 110

Pro Asp Leu Phe Glu Trp Phe Cys Val Lys Thr Leu Lys Val Cys Cys
115 120 125

Ser Pro Gly Thr Tyr Gly Pro Asp Cys Leu Ala Cys Gln Gly Gly Ser
130 135 140

Gln Arg Pro Cys Ser Gly Asn Gly His Cys Ser Gly Asp Gly Ser Arg
 145 150 155 160

Gln Gly Asp Gly Ser Cys Arg Cys His Met Gly Tyr Gln Gly Pro Leu
 165 170 175

Cys Thr Asp Cys Met Asp Gly Tyr Phe Ser Ser Leu Arg Asn Glu Thr
 180 185 190

His Ser Ile Cys Thr Ala Cys Asp Glu Ser Cys Lys Thr Cys Ser Gly
 195 200 205

Leu Thr Asn Arg Asp Cys Gly Glu Cys Glu Val Gly Trp Val Leu Asp
 210 215 220

Glu Gly Ala Cys Val Asp Val Asp Glu Cys Ala Ala Glu Pro Pro Pro
 225 230 235 240

Cys Ser Ala Ala Gln Phe Cys Lys Asn Ala Asn Gly Ser Tyr Thr Cys
 245 250 255

Glu Glu Cys Asp Ser Ser Cys Val Gly Cys Thr Gly Glu Gly Pro Gly
 260 265 270

Asn Cys Lys Glu Cys Ile Ser Gly Tyr Ala Arg Glu His Gly Gln Cys
 275 280 285

Ala Asp Val Asp Glu Cys Ser Leu Ala Glu Lys Thr Cys Val Arg Lys
 290 295 300

Asn Glu Asn Cys Tyr Asn Thr Pro Gly Ser Tyr Val Cys Val Cys Pro
 305 310 315 320

Asp Gly Phe Glu Glu Thr Glu Asp Ala Cys Val Pro Pro Ala Glu Ala
 325 330 335

Glu Ala Thr Glu Gly Glu Ser Pro Thr Gln Leu Pro Ser Arg Glu Asp
 340 345 350

Leu

<210> 3

<211> 2206

<212> DNA

<213> Homo sapiens

<400> 3

caggtccaaac tgcacacctgg ttcttatcgat tgaattcccc gggatcctc tagagatccc 60
 tcgacacctga cccacgcgtc cgccaggccg ggaggcgacg cgcccagccg tctaaacggg 120
 aacagccctg gctgaggagg ctgcagcgca gcagagtatac tgacggcgcc aggttgccta 180
 ggtgcggcac gaggagttt cccggcagcg aggaggctt gagcagcatg gcccggagga 240

<210> 4
<211> 379

<212> PRT
<213> *Homo sapiens*

<400> 4

Met Ala Arg Arg Ser Ala Phe Pro Ala Ala Ala Leu Trp Leu Trp Ser
1 5 10 15

Ile Leu Leu Cys Leu Leu Ala Leu Arg Ala Glu Ala Gly Pro Pro Gln
 20 25 30

Glu Glu Ser Leu Tyr Leu Trp Ile Asp Ala His Gln Ala Arg Val Leu
 35 40 45

Ile Gly Phe Glu Glu Asp Ile Leu Ile Val Ser Glu Gly Lys Met Ala
50 55 60

Pro Phe Thr His Asp Phe Arg Lys Ala Gln Gln Arg Met Pro Ala Ile

65	70	75	80
Pro Val Asn Ile His Ser Met Asn Phe Thr Trp Gln Ala Ala Gly Gln			
85		90	95
Ala Glu Tyr Phe Tyr Glu Phe Leu Ser Leu Arg Ser Leu Asp Lys Gly			
100		105	110
Ile Met Ala Asp Pro Thr Val Asn Val Pro Leu Leu Gly Thr Val Pro			
115		120	125
His Lys Ala Ser Val Val Gln Val Gly Phe Pro Cys Leu Gly Lys Gln			
130	135	140	
Asp Gly Val Ala Ala Phe Glu Val Asp Val Ile Val Met Asn Ser Glu			
145	150	155	160
Gly Asn Thr Ile Leu Gln Thr Pro Gln Asn Ala Ile Phe Phe Lys Thr			
165		170	175
Cys Gln Gln Ala Glu Cys Pro Gly Gly Cys Arg Asn Gly Gly Phe Cys			
180		185	190
Asn Glu Arg Arg Ile Cys Glu Cys Pro Asp Gly Phe His Gly Pro His			
195		200	205
Cys Glu Lys Ala Leu Cys Thr Pro Arg Cys Met Asn Gly Gly Leu Cys			
210		215	220
Val Thr Pro Gly Phe Cys Ile Cys Pro Pro Gly Phe Tyr Gly Val Asn			
225	230	235	240
Cys Asp Lys Ala Asn Cys Ser Thr Thr Cys Phe Asn Gly Gly Thr Cys			
245		250	255
Phe Tyr Pro Gly Lys Cys Ile Cys Pro Pro Gly Leu Glu Gly Glu Gln			
260		265	270
Cys Glu Ile Ser Lys Cys Pro Gln Pro Cys Arg Asn Gly Gly Lys Cys			
275		280	285
Ile Gly Lys Ser Lys Cys Lys Cys Ser Lys Gly Tyr Gln Gly Asp Leu			
290		295	300
Cys Ser Lys Pro Val Cys Glu Pro Gly Cys Gly Ala His Gly Thr Cys			
305		310	315
His Glu Pro Asn Lys Cys Gln Cys Gln Glu Gly Trp His Gly Arg His			
325		330	335
Cys Asn Lys Arg Tyr Glu Ala Ser Leu Ile His Ala Leu Arg Pro Ala			
340		345	350

Gly Ala Gln Leu Arg Gln His Thr Pro Ser Leu Lys Lys Ala Glu Glu
 355 360 365

Arg Arg Asp Pro Pro Glu Ser Asn Tyr Ile Trp
 370 375

<210> 5
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 5
 agggagcacg gacagtgtgc agatgtggac gagtgctcac tagca 45

<210> 6
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 6
 agagtgtatac tctggctacg c 21

<210> 7
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 7
 taagtccggc acattacagg tc 22

<210> 8
<211> 49
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 8
 cccacgatgt atgaatggtg gactttgtgt gactcctggc ttctgcac 49

<210> 9
 <211> 22
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 9
 aaagacgcat ctgcgagtgt cc

22

<210> 10
 <211> 23
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 10
 tgctgatttc acactgctct ccc

23

<210> 11
 <211> 2197
 <212> DNA
 <213> Homo sapiens

<400> 11
 cggacgcgtg ggcgtccggc ggtcgccagag ccaggaggcg gaggcgccgcg ggccagccctg 60
 ggccccagcc cacaccttca ccagggccca ggagccacca tggcgatg tccactgggg 120
 ctactgctgt tgctgccgt ggctggccac ttggctctgg gtgcccagca gggtcgtggg 180
 cgccgggagc tagcacccggg tctgcacctg cggggcatcc gggacgcggg aggccggta 240
 tgccaggagc aggacactgtg ctgcgcggc cgtgcgcacg actgtgcctt gcccctacctg 300
 ggcgcacatct gttactgtga cctattctgc aaccgcacgg tctccgactg ctgccttgac 360
 ttctgggact tctgcctcgg cgtgccaccc cctttcccc ccatccaagg atgtatgcat 420
 ggagggtcgta tctatccagt cttggaaacg tactggaca actgtaaacc ttgcacctgc 480
 caggagaaca ggcagtggca tgggtggatcc agacatgatc aaagccatca accaggcaa 540
 ctatggctgg caggctggg accacagcgc cttctggggc atgaccctgg atgagggcat 600
 tcgctaccgc ctgggcacca tccgcaccc ttcctcggtc atgaacatgc atgaaattta 660
 tacagtgtg aacccagggg aggtgtttcc cacagccctc gagggctctg agaagtggcc 720
 caacctgtt catgacccctc ttgaccaagg caactgtgca ggctcctggg cttctccac 780
 agcagctgtg gcatccgatc gtgtctcaat ccattctctg ggacacatga cgcctgtcct 840
 gtcgccccag aacctgctgt cttgtacac ccaccagcag cagggctgcc gcgggtggcg 900
 tctcgatggt gcctgggtgt tcctgcgtcg ccgggggtg gtgtctgacc actgtatacc 960
 cttctcgggc cgtgaacgag acgaggctgg ccctgcgcac ccctgtatga tgcacagccg 1020
 agccatgggt cggggcaagc gccaggccac tgcactgc cccaaacagct atgttaataa 1080
 caatgacatc taccaggtca ctcctgtcta ccgcctcggc tccaaacgaca aggagatcat 1140
 gaaggagctg atggagaatg gcccctgtcca agccctcatg gaggtgcatg aggacttctt 1200
 cctatacaag ggaggcatct acagccacac gccagtgagc cttggggaggc cagagagata 1260
 ccgcggcat gggacccact cagtcagat cacaggatgg ggagaggaga cgctgccaga 1320

tggaaaggacg ctc当地tact ggactgcggc caactcctgg gggccagcct gggcgagag 1380
gggccacttc cgcatcgtgc gc当地gtcaa tgagtgcac atcgagagct tc当地tctggg 1440
cgtctggggc cgctggca tggaggacat gggtcatcac tgaggctgcg ggc当地accacg 1500
ggggtccggc ctggatcca ggctaaggc cgccggaaga ggccc当地atg gggcggtgac 1560
cccagcctcg cccgacagag cccggggcgc aggc当地ggcgc caggc当地gcta atccc当地ggcgc 1620
gggttccgct gacgcagcgc cccgc当地tggg agccgc当地ggg aggcgagact ggccgagccc 1680
ccagacccctcc cagtggggac ggggc当地aggc ctggc当地tggg aagagcacag ctgc当地agatcc 1740
caggcctctg gc当地ccccac tcaagactac caaagccagg acacctcaag tctccagccc 1800
caatacccca ccccaatccc gtatttcttt ttttttttt ttagacaggg tcttgctcgc 1860
ttgccc当地agg tggagtgcag tggcccatca gggtc当地actg taacctccga ct当地ctgggt 1920
caagtgc当地cc tcccacctca gc当地tctcaag tagctggac tacaggtgc当地 ccaccacacc 1980
tggcttaatt ttgttatttt tgtaaagagg ggggtctc当地 tctgggtt aggctgggtt 2040
cgaactcctg ggctcaagcg gtccacctgc ctccgc当地tcc caaagtgctg ggattgc当地 2100
catgagccac tgc当地ccccc tggcttattct tatttctc当地 ag atatttattt ttctttt当地c 2160
tgttttaaaa taaaacccaa gtattgataa aaaaaaaa 2197

<210> 12

<211> 164

<212> PRT

<213> Homo sapiens

<400> 12

Met Trp Arg Cys Pro Leu Gly Leu Leu Leu Leu Leu Pro Leu Ala Gly
1 5 10 15

His Leu Ala Leu Gly Ala Gln Gln Gly Arg Gly Arg Arg Glu Leu Ala
20 25 30

Pro Gly Leu His Leu Arg Gly Ile Arg Asp Ala Gly Gly Arg Tyr Cys
35 40 45

Gln Glu Gln Asp Leu Cys Cys Arg Gly Arg Ala Asp Asp Cys Ala Leu
50 55 60

Pro Tyr Leu Gly Ala Ile Cys Tyr Cys Asp Leu Phe Cys Asn Arg Thr
 65 70 75 80

Val Ser Asp Cys Cys Pro Asp Phe Trp Asp Phe Cys Leu Gly Val Pro
85 90 95

Pro Pro Phe Pro Pro Ile Gln Gly Cys Met His Gly Gly Arg Ile Tyr
100 105 110

Pro Val Leu Gly Thr Tyr Trp Asp Asn Cys Asn Arg Cys Thr Cys Gln
 115 120 125

Glu Asn Arg Gln Trp His Gly Gly Ser Arg His Asp Gln Ser His Gln
 130 135 140

Pro Gly Gln Leu Trp Leu Ala Gly Trp Glu Pro Gln Arg Leu Leu Gly
145 150 155 160

His Asp Pro Gly

<210> 13
<211> 533
<212> DNA
<213> Homo sapiens

<220>
<221> modified_base
<222> (33)
<223> a, t, c or g

<220>
<221> modified_base
<222> (80)
<223> a, t, c or g

<220>
<221> modified_base
<222> (94)
<223> a, t, c or g

<220>
<221> modified_base
<222> (144)
<223> a, t, c or g

<220>
<221> modified_base
<222> (188)
<223> a, t, c or g

<400> 13
aggctccttg gcccttttc cacagcaagc ttntgcnatc ccgattcggt gtctcaaatac 60
caattctctt gggacacatn acgcctgtcc ttngccccca gaacctgctg tcttgtacac 120
ccaccagcag cagggctgcc gcgnntggcg tctcgatgggt gcctgggtgt tcctgcgtcg 180
ccgagggnngt gtgtctgacc actgtctaccc cttctcgccc cgtgaacgag acgaggctgg 240
ccctgcgccc ccctgtatga tgcacagccg agccatgggt cggggcaagc gccaggccac 300
tgcccactgc cccaacagct atgttaataa caatgacatc taccaggtca ctccctgtcta 360
ccgcctcgcc tccaacgaca aggagatcat gaaggagctg atggagaatg gccctgtcca 420
agccctcatg gaggtgcatttggacttctt octatacaag ggaggcatct acagccacac 480
gccagtgagc cttgggaggc cagagagata ccgcggcat gggaccact cag 533

<210> 14
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 14

ttcgaggcct ctgagaagtg gccc <210> 15 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 15 ggcggtatct ctctggcctc cc	24 22
<210> 16 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 16 ttctccacag cagctgtggc atccgatcgt gtctcaatcc attctctggg	50
<210> 17 <211> 960 <212> DNA <213> Homo sapiens <400> 17 gctgcttgcctgatgg caggcttggc cctgcagcca ggcaactgccc tgctgtgcta 60 ctcctgc当地 gcccaggta gcaacgagga ctgcctgc当地 gtggagaact gcacccagct 120 gggggagcag tgctggaccg cgccatccg cgc当地 ttggc当地 tc当地 tcatcagcaa 180 aggctgc当地 ttgactgc当地 tggatgactc acaggactac tac当地 tggc当地 agaagaacat 240 cacgtgctgt gacaccgact tgtgcaacgc cagc当地 ggcc catg当地 cctgc当地 agccggctgc 300 cgccatc当地 ttgctgctcc ctgactc当地 cctgctgctc tgggacccg gccagctata 360 ggctctgggg ggccccgctg cagccc当地 acac tgggtgtggt gccc当地 agggcc tctgtgccac 420 tc当地 tccacaga cctggccca g tggagcctg tc当地 tgggttcc tgaggcacat cctaaacgcaa 480 gtctgaccat gtatgtctgc acccctgtcc cccaccctga cc当地 tccatg gccc当地 tccca 540 ggactccc当地 cccggc当地 gagctcttagt acacagatcc gc当地 tgc当地 agat gccc当地 tccca 600 accctctctg ctgctgttcc catgccc当地 cattctccac ccttaaccct gtgctc当地 gagc 660 acctcttccc cc当地 aggaagcc ttccctgccc accccatcta tgacttgagc caggctc当地 ggt 720 ccgtgggtgc ccccgccaccc agcaggggac aggcactc当地 gagggccca g taaaggctga 780 gatgaagtgg actgagtaga actggaggac aagagtc当地 ac gtgagttcc tggaggtctcc 840 agagatgggg cctggaggcc tggaggaagg ggccaggcct cacattc当地 gtgctcc 900 aatggcagcc tgagcacagc gt当地 aggccctt aataaacacc tggataa gcca aaaaaaaa 960	
<210> 18 <211> 189 <212> PRT <213> Homo sapiens	

<400> 18

Met	Thr	His	Arg	Thr	Thr	Trp	Ala	Arg	Arg	Thr	Ser	Arg	Ala	Val
1														15

Thr	Pro	Thr	Cys	Ala	Thr	Pro	Ala	Gly	Pro	Met	Pro	Cys	Ser	Arg	Leu
															30

Pro	Pro	Ser	Leu	Arg	Cys	Ser	Leu	His	Ser	Ala	Cys	Cys	Ser	Gly	Asp
															45

Pro	Ala	Ser	Tyr	Arg	Leu	Trp	Gly	Ala	Pro	Leu	Gln	Pro	Thr	Leu	Gly

Val	Val	Pro	Gln	Ala	Ser	Val	Pro	Leu	Leu	Thr	Asp	Leu	Ala	Gln	Trp
65															80

Glu	Pro	Val	Leu	Val	Pro	Glu	Ala	His	Pro	Asn	Ala	Ser	Leu	Thr	Met
															95

Tyr	Val	Cys	Thr	Pro	Val	Pro	His	Pro	Asp	Pro	Pro	Met	Ala	Leu	Ser
															110

Arg	Thr	Pro	Thr	Arg	Gln	Ile	Ser	Ser	Ser	Asp	Thr	Asp	Pro	Pro	Ala
															125

Asp	Gly	Pro	Ser	Asn	Pro	Leu	Cys	Cys	Cys	Phe	His	Gly	Pro	Ala	Phe
130															140

Ser	Thr	Leu	Asn	Pro	Val	Leu	Arg	His	Leu	Phe	Pro	Gln	Glu	Ala	Phe
145															160

Pro	Ala	His	Pro	Ile	Tyr	Asp	Leu	Ser	Gln	Val	Trp	Ser	Val	Val	Ser
															175

Pro	Ala	Pro	Ser	Arg	Gly	Gln	Ala	Leu	Arg	Arg	Ala	Gln			

<210> 19

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 19

tgctgtgcta ctcctgcaaa gccc

24

<210> 20

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 20

tgcacaagtc ggtgtcacag cacg

24

<210> 21

<211> 44

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 21

agcaacgagg actgcctgca ggtggagaac tgcacccagc tggg

44

<210> 22

<211> 1200

<212> DNA

<213> Homo sapiens

<400> 22

cccacgcgtc cgaacctctc cagcgatggg agccgcccgc ctgctgccca acctcactct 60
 gtgcttacag ctgctgattc tctgctgtca aactcagtagtac gtgagggacc agggcgccat 120
 gaccgaccag ctgagcaggc ggcagatccg cgagtagccaa ctctacagca ggaccagtgg 180
 caagcacgtg caggtcaccg ggcgtcgcata ctccgcacc gccgaggacg gcaacaagtt 240
 tgccaagctc atatgtggaga cggacacggtt tggcagccgg gttcgcata aaggggctga 300
 gagtgagaag tacatctgtta tgaacaagag gggcaagctc atcgggaagc ccagcgggaa 360
 gagcaaagac tgcgtgttca cggagatcgt gctggagaac aactatacgg ctttccagaa 420
 cgccccggcac gagggtctggt tcataggcatt cacgcggcag gggggcccccc gccaggcttc 480
 ccgcagccgc cagaaccagc gcgaggccca ttcatcaag cgccctctacc aaggccagct 540
 gcccttcccc aaccacgcgc agaagcagaa gcagttcggat tttgtgggtt ccgccccccac 600
 ccgcgggacc aagcgcacac ggcggccccc gcccctcaag tagtctggga ggcagggggc 660
 acgagccctt gggccgcctc cccacccctt tcccttctta atccaaggac tgggctgggg 720
 tggcgggagg ggagccagat ccccgaggga ggaccctgag ggcgcgcaag catccgagcc 780
 cccagctggg aaggggcagg ccggcgcccc aggggcgcgt ggcacagtgc ccccttcccc 840
 gacgggtggc aggccctgga gaggaactga gtgtcacccct gatctcaggc caccagcctc 900
 tgccggcctc ccagccggc tcctgaagcc cgctgaaagg tcagcgactg aaggccttc 960
 agacaaccgt ctggaggtgg ctgtccctaa aatctgcctc tcggatctcc ctcaagtctgc 1020
 ccccaaaaaaaa ccaaactccctc ctggctagac tgttaggaagg gacttttggt tgggggggg 1080
 tttcaggaaaa aaagaaaagg agagagagga aaatagaggg ttgtccactc ctcacattcc 1140
 acgaccagg octgcacccccc acccccaact cccagccccc gaataaaaacc atttcctgc 1200

<210> 23

<211> 205

<212> PRT

<213> Homo sapiens

<400> 23
 Met Gly Ala Ala Arg Leu Leu Pro Asn Leu Thr Leu Cys Leu Gln Leu
 1 5 10 15

Leu Ile Leu Cys Cys Gln Thr Gln Tyr Val Arg Asp Gln Gly Ala Met
 20 25 30

Thr Asp Gln Leu Ser Arg Arg Gln Ile Arg Glu Tyr Gln Leu Tyr Ser
 35 40 45

Arg Thr Ser Gly Lys His Val Gln Val Thr Gly Arg Arg Ile Ser Ala
 50 55 60

Thr Ala Glu Asp Gly Asn Lys Phe Ala Lys Leu Ile Val Glu Thr Asp
 65 70 75 80

Thr Phe Gly Ser Arg Val Arg Ile Lys Gly Ala Glu Ser Glu Lys Tyr
 85 90 95

Ile Cys Met Asn Lys Arg Gly Lys Leu Ile Gly Lys Pro Ser Gly Lys
 100 105 110

Ser Lys Asp Cys Val Phe Thr Glu Ile Val Leu Glu Asn Asn Tyr Thr
 115 120 125

Ala Phe Gln Asn Ala Arg His Glu Gly Trp Phe Met Ala Phe Thr Arg
 130 135 140

Gln Gly Arg Pro Arg Gln Ala Ser Arg Ser Arg Gln Asn Gln Arg Glu
 145 150 155 160

Ala His Phe Ile Lys Arg Leu Tyr Gln Gly Gln Leu Pro Phe Pro Asn
 165 170 175

His Ala Glu Lys Gln Lys Gln Phe Glu Phe Val Gly Ser Ala Pro Thr
 180 185 190

Arg Arg Thr Lys Arg Thr Arg Arg Pro Gln Pro Leu Thr
 195 200 205

<210> 24

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 24

cagtagtga gggaccaggg cgccatga

28

<210> 25

```

<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 25
ccgggtgacct gcacgtgc tt gcca                                24

<210> 26
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<220>
<221> modified_base
<222> (21)
<223> a, t, c or g

<400> 26
gcggatctgc cgcctgctca nctggtcggt catggcgccc t                                41

<210> 27
<211> 2479
<212> DNA
<213> Homo sapiens

<400> 27
acttgcattc acctgttgcc agtgtggaaa aattctccct gttgaatttt ttgcacatgg 60
aggacagcag caaaagggc aacacaggct gataagacca gagacagcag ggagattatt 120
ttaccatacg ccctcaggac gttccctcta gctggagttc tggacttcaa cagaacccca 180
tccagtcatt ttgatttgc tgtttatttt ttttttctt ttcttttcc caccacattg 240
tattttattt ccgtacttca gaaatgggcc tacagaccac aaagtggccc agccatgggg 300
ctttttctt gaagtcttgg ctatcattt ccctgggct ctactcacag gtgtccaaac 360
tcctggcctg ccctagtgtg tgccgctgctg acaggaacctt tgtctactgt aatgagcgaa 420
gcttgcctc agtgcctttt gggatccccg aggccgtaac cgtactctac ctccacaaca 480
accaaattaa taatgcttgg a ttccctgcag aactgcacaa tgtacagtgc gtgcacacgg 540
tctacctgtt tggcaaccaa ctggacgaat tccccatgaa cttcccaag aatgtcagag 600
ttctccattt gcaggaaaaac aatattcaga ccatttcacg ggctgctt gcccagctct 660
tgaagcttga agagctgcac ctggatgaca actccatatac cacagtgggg gtggaagacg 720
gggccttccg ggaggctatt agcctcaaattt tggatgtttt gtctaagaat cacctgagca 780
gtgtgcctgt tggatgtttt gtggacttgc aagagcttag agtggatgaa aatcgaattt 840
ctgtcatatac cgacatggcc ttccagaatac tcacgagtt ggagcgtt attgtggacg 900
ggaaccttcc gaccaacaag ggtatcgccg aggccaccc t cagccatctc accaagctca 960
aggaattttc aattgtacgt aattcgctgt cccacccctcc tcccgatctc ccaggtacgc 1020
atctgatcag gctctattt caggacaacc agataaaacca cattcccttg acagccttct 1080
caaatctgcg taagcttggaa cggctggata tatccaacaa ccaactgcgg atgctgactc 1140

```

aagggggtttt tgataatctc tccaacctga agcagctcac tgctcggaat aacccttgt 1200
tttgtgactg cagtattaaa tgggtcacag aatggctcaa atatatccct tcatactctca 1260
acgtgcgggg tttcatgtgc caaggtcctg aacaagtccg ggggatggcc gtcaggaaat 1320
taaatatgaa tcttttgtcc tgtccccca cgaccccccgg cctgcctctc ttccaccccg 1380
cccccaagtac agcttctccg accactcage ctccccccct ctctattcca aacccttagca 1440
gaagctacac gcctccaact cctaccacat cgaaaacttcc cacgattcct gactgggatg 1500
gcagagaaaag agtgacccca cctatttctg aacggatcca gctctctatc cattttgtga 1560
atgataacttc cattcaagtgc agctggctct ctctcttcac cgtgatggca tacaaactcta 1620
catgggtgaa aatgggcccac agtttagtag ggggcacatcg tcaaggagcgc atagtcagcg 1680
gtgagaagca acacacctgagc ctggtaact tagagccccg atccacctat cggattttgtt 1740
tagtgccact ggatgctttt aactaccgcg cggtagaaga caccatttgt tcagaggcca 1800
ccacccatgc ctccatatctg aacaacggca gcaacacagc gtccagccat gagcagacga 1860
cgtnnnacag catgggctcc ccctttctgc tggcgggctt gatcgggggc gcggtgatat 1920
tttgtcttgtt ggtcttgctc agcgtttttt getggcatat gcacaaaaag gggcgtacaca 1980
cctcccgagaa gtggaaataac aaccggggcc ggccggaaaga tgattattgc gagggcaggca 2040
ccaagaagga caactccatc ctggagatga cagaaaccag tttcagatc gtctccttaa 2100
ataacgatca actccttaaa ggagattca gactgcagcc catttacacc ccaaattgggg 2160
gcattaatta cacagactgc catatccccca acaacatgcg atactgcaac agcagcgtgc 2220
cagaccttggc gcactgcccattt acgtgacagc cagaggccca gcgttatcaa ggcggacaat 2280
tagactcttgc agaacaacact cgtgtgtca cataaaagaca cgcagattac atttgataaa 2340
tgttacacacag atgcattttgtt gcatttgaat actctgttaat ttatacggtg tactatataa 2400
tgggatttaa aaaaagtgtt atctttctatc ttcaagtta attacaacaa gttttgttaac 2460
tctttgtttt ttaaatctt 2479

<210> 28

<211> 660

<212> PRT

<213> Homo sapiens

<400> 28

Met Gly Leu Gln Thr Thr Lys Trp Pro Ser His Gly Ala Phe Phe Leu
1 5 10 15

Lys Ser Trp Leu Ile Ile Ser Leu Gly Leu Tyr Ser Gln Val Ser Lys
20 25 30

Leu Leu Ala Cys Pro Ser Val Cys Arg Cys Asp Arg Asn Phe Val Tyr
35 40 45

Cys Asn Glu Arg Ser Leu Thr Ser Val Pro Leu Gly Ile Pro Glu Gly
50 55 60

Val Thr Val Leu Tyr Leu His Asn Asn Gln Ile Asn Asn Ala Gly Phe
65 70 75 80

Pro Ala Glu Leu His Asn Val Gln Ser Val His Thr Val Tyr Leu Tyr
85 90 95

Gly Asn Gln Leu Asp Glu Phe Pro Met Asn Leu Pro Lys Asn Val Arg
100 105 110

Val Leu His Leu Gln Glu Asn Asn Ile Gln Thr Ile Ser Arg Ala Ala
115 120 125

Leu Ala Gln Leu Leu Lys Leu Glu Glu Leu His Leu Asp Asp Asn Ser
 130 135 140

Ile Ser Thr Val Gly Val Glu Asp Gly Ala Phe Arg Glu Ala Ile Ser
 145 150 155 160

Leu Lys Leu Leu Phe Leu Ser Lys Asn His Leu Ser Ser Val Pro Val
 165 170 175

Gly Leu Pro Val Asp Leu Gln Glu Leu Arg Val Asp Glu Asn Arg Ile
 180 185 190

Ala Val Ile Ser Asp Met Ala Phe Gln Asn Leu Thr Ser Leu Glu Arg
 195 200 205

Leu Ile Val Asp Gly Asn Leu Leu Thr Asn Lys Gly Ile Ala Glu Gly
 210 215 220

Thr Phe Ser His Leu Thr Lys Leu Lys Glu Phe Ser Ile Val Arg Asn
 225 230 235 240

Ser Leu Ser His Pro Pro Pro Asp Leu Pro Gly Thr His Leu Ile Arg
 245 250 255

Leu Tyr Leu Gln Asp Asn Gln Ile Asn His Ile Pro Leu Thr Ala Phe
 260 265 270

Ser Asn Leu Arg Lys Leu Glu Arg Leu Asp Ile Ser Asn Asn Gln Leu
 275 280 285

Arg Met Leu Thr Gln Gly Val Phe Asp Asn Leu Ser Asn Leu Lys Gln
 290 295 300

Leu Thr Ala Arg Asn Asn Pro Trp Phe Cys Asp Cys Ser Ile Lys Trp
 305 310 315 320

Val Thr Glu Trp Leu Lys Tyr Ile Pro Ser Ser Leu Asn Val Arg Gly
 325 330 335

Phe Met Cys Gln Gly Pro Glu Gln Val Arg Gly Met Ala Val Arg Glu
 340 345 350

Leu Asn Met Asn Leu Leu Ser Cys Pro Thr Thr Pro Gly Leu Pro
 355 360 365

Leu Phe Thr Pro Ala Pro Ser Thr Ala Ser Pro Thr Thr Gln Pro Pro
 370 375 380

Thr Leu Ser Ile Pro Asn Pro Ser Arg Ser Tyr Thr Pro Pro Thr Pro
 385 390 395 400

Thr Thr Ser Lys Leu Pro Thr Ile Pro Asp Trp Asp Gly Arg Glu Arg

405	410	415
Val Thr Pro Pro Ile Ser Glu Arg Ile Gln Leu Ser Ile His Phe Val		
420	425	430
Asn Asp Thr Ser Ile Gln Val Ser Trp Leu Ser Leu Phe Thr Val Met		
435	440	445
Ala Tyr Lys Leu Thr Trp Val Lys Met Gly His Ser Leu Val Gly Gly		
450	455	460
Ile Val Gln Glu Arg Ile Val Ser Gly Glu Lys Gln His Leu Ser Leu		
465	470	475
Val Asn Leu Glu Pro Arg Ser Thr Tyr Arg Ile Cys Leu Val Pro Leu		
485	490	495
Asp Ala Phe Asn Tyr Arg Ala Val Glu Asp Thr Ile Cys Ser Glu Ala		
500	505	510
Thr Thr His Ala Ser Tyr Leu Asn Asn Gly Ser Asn Thr Ala Ser Ser		
515	520	525
His Glu Gln Thr Thr Ser His Ser Met Gly Ser Pro Phe Leu Leu Ala		
530	535	540
Gly Leu Ile Gly Gly Ala Val Ile Phe Val Leu Val Val Leu Leu Ser		
545	550	555
Val Phe Cys Trp His Met His Lys Lys Gly Arg Tyr Thr Ser Gln Lys		
565	570	575
Trp Lys Tyr Asn Arg Gly Arg Arg Lys Asp Asp Tyr Cys Glu Ala Gly		
580	585	590
Thr Lys Lys Asp Asn Ser Ile Leu Glu Met Thr Glu Thr Ser Phe Gln		
595	600	605
Ile Val Ser Leu Asn Asn Asp Gln Leu Leu Lys Gly Asp Phe Arg Leu		
610	615	620
Gln Pro Ile Tyr Thr Pro Asn Gly Gly Ile Asn Tyr Thr Asp Cys His		
625	630	635
Ile Pro Asn Asn Met Arg Tyr Cys Asn Ser Ser Val Pro Asp Leu Glu		
645	650	655
His Cys His Thr		
660		
<210> 29		
<211> 21		
<212> DNA		

```

<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 29
cggtctacct gtatggcaac c                                21

<210> 30
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 30
gcaggacaac cagataaaacc ac                                22

<210> 31
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 31
acgcagattt gagaaggctg tc                                22

<210> 32
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 32
ttcacgggct gctcttgccc agctcttgaa gcttgaagag ctgcac    46

<210> 33
<211> 3449
<212> DNA
<213> Homo sapiens

<400> 33
acttggagca agcggccggcg gcggagacag aggcagagggc agaagctggg gtcggctcct 60
cgccctccac gagcgatccc cgaggagagc cgccggccctc ggcgaggcga agaggccogac 120

```


ctgtagaaca ctggccatag gaaatgctgt tttttgtac tggactttac cttgatata 3360
 gtatatggat gtatgcataa aatcatagga catalgtact tgtggaacaa gttggatttt 3420
 ttatacaata taaaattca ccacttcag 3449

<210> 34
 <211> 915
 <212> PRT
 <213> Homo sapiens

<400> 34
 Met Glu Lys Met Leu Ala Gly Cys Phe Leu Leu Ile Leu Gly Gln Ile
 1 5 10 15
 Val Leu Leu Pro Ala Glu Ala Arg Glu Arg Ser Arg Gly Arg Ser Ile
 20 25 30
 Ser Arg Gly Arg His Ala Arg Thr His Pro Gln Thr Ala Leu Leu Glu
 35 40 45
 Ser Ser Cys Glu Asn Lys Arg Ala Asp Leu Val Phe Ile Ile Asp Ser
 50 55 60
 Ser Arg Ser Val Asn Thr His Asp Tyr Ala Lys Val Lys Glu Phe Ile
 65 70 75 80
 Val Asp Ile Leu Gln Phe Leu Asp Ile Gly Pro Asp Val Thr Arg Val
 85 90 95
 Gly Leu Leu Gln Tyr Gly Ser Thr Val Lys Asn Glu Phe Ser Leu Lys
 100 105 110
 Thr Phe Lys Arg Lys Ser Glu Val Glu Arg Ala Val Lys Arg Met Arg
 115 120 125
 His Leu Ser Thr Gly Thr Met Thr Gly Leu Ala Ile Gln Tyr Ala Leu
 130 135 140
 Asn Ile Ala Phe Ser Glu Ala Glu Gly Ala Arg Pro Leu Arg Glu Asn
 145 150 155 160
 Val Pro Arg Val Ile Met Ile Val Thr Asp Gly Arg Pro Gln Asp Ser
 165 170 175
 Val Ala Glu Val Ala Ala Lys Ala Arg Asp Thr Gly Ile Leu Ile Phe
 180 185 190
 Ala Ile Gly Val Gly Gln Val Asp Phe Asn Thr Leu Lys Ser Ile Gly
 195 200 205
 Ser Glu Pro His Glu Asp His Val Phe Leu Val Ala Asn Phe Ser Gln
 210 215 220
 Ile Glu Thr Leu Thr Ser Val Phe Gln Lys Lys Leu Cys Thr Ala His

225	230	235	240
Met Cys Ser Thr Leu Glu His Asn Cys Ala His Phe Cys Ile Asn Ile			
245		250	255
Pro Gly Ser Tyr Val Cys Arg Cys Lys Gln Gly Tyr Ile Leu Asn Ser			
260	265		270
Asp Gln Thr Thr Cys Arg Ile Gln Asp Leu Cys Ala Met Glu Asp His			
275	280		285
Asn Cys Glu Gln Leu Cys Val Asn Val Pro Gly Ser Phe Val Cys Gln			
290	295		300
Cys Tyr Ser Gly Tyr Ala Leu Ala Glu Asp Gly Lys Arg Cys Val Ala			
305	310	315	320
Val Asp Tyr Cys Ala Ser Glu Asn His Gly Cys Glu His Glu Cys Val			
325		330	335
Asn Ala Asp Gly Ser Tyr Leu Cys Gln Cys His Glu Gly Phe Ala Leu			
340	345		350
Asn Pro Asp Glu Lys Thr Cys Thr Arg Ile Asn Tyr Cys Ala Leu Asn			
355	360		365
Lys Pro Gly Cys Glu His Glu Cys Val Asn Met Glu Glu Ser Tyr Tyr			
370	375		380
Cys Arg Cys His Arg Gly Tyr Thr Leu Asp Pro Asn Gly Lys Thr Cys			
385	390	395	400
Ser Arg Val Asp His Cys Ala Gln Gln Asp His Gly Cys Glu Gln Leu			
405	410		415
Cys Leu Asn Thr Glu Asp Ser Phe Val Cys Gln Cys Ser Glu Gly Phe			
420	425		430
Leu Ile Asn Glu Asp Leu Lys Thr Cys Ser Arg Val Asp Tyr Cys Leu			
435	440		445
Leu Ser Asp His Gly Cys Glu Tyr Ser Cys Val Asn Met Asp Arg Ser			
450	455	460	
Phe Ala Cys Gln Cys Pro Glu Gly His Val Leu Arg Ser Asp Gly Lys			
465	470	475	480
Thr Cys Ala Lys Leu Asp Ser Cys Ala Leu Gly Asp His Gly Cys Glu			
485	490		495
His Ser Cys Val Ser Ser Glu Asp Ser Phe Val Cys Gln Cys Phe Glu			
500	505		510

Gly Tyr Ile Leu Arg Glu Asp Gly Lys Thr Cys Arg Arg Lys Asp Val
 515 520 525
 Cys Gln Ala Ile Asp His Gly Cys Glu His Ile Cys Val Asn Ser Asp
 530 535 540
 Asp Ser Tyr Thr Cys Glu Cys Leu Glu Gly Phe Arg Leu Ala Glu Asp
 545 550 555 560
 Gly Lys Arg Cys Arg Arg Lys Asp Val Cys Lys Ser Thr His His Gly
 565 570 575
 Cys Glu His Ile Cys Val Asn Asn Gly Asn Ser Tyr Ile Cys Lys Cys
 580 585 590
 Ser Glu Gly Phe Val Leu Ala Glu Asp Gly Arg Arg Cys Lys Lys Cys
 595 600 605
 Thr Glu Gly Pro Ile Asp Leu Val Phe Val Ile Asp Gly Ser Lys Ser
 610 615 620
 Leu Gly Glu Glu Asn Phe Glu Val Val Lys Gln Phe Val Thr Gly Ile
 625 630 635 640
 Ile Asp Ser Leu Thr Ile Ser Pro Lys Ala Ala Arg Val Gly Leu Leu
 645 650 655
 Gln Tyr Ser Thr Gln Val His Thr Glu Phe Thr Leu Arg Asn Phe Asn
 660 665 670
 Ser Ala Lys Asp Met Lys Lys Ala Val Ala His Met Lys Tyr Met Gly
 675 680 685
 Lys Gly Ser Met Thr Gly Leu Ala Leu Lys His Met Phe Glu Arg Ser
 690 695 700
 Phe Thr Gln Gly Glu Gly Ala Arg Pro Leu Ser Thr Arg Val Pro Arg
 705 710 715 720
 Ala Ala Ile Val Phe Thr Asp Gly Arg Ala Gln Asp Asp Val Ser Glu
 725 730 735
 Trp Ala Ser Lys Ala Lys Ala Asn Gly Ile Thr Met Tyr Ala Val Gly
 740 745 750
 Val Gly Lys Ala Ile Glu Glu Leu Gln Glu Ile Ala Ser Glu Pro
 755 760 765
 Thr Asn Lys His Leu Phe Tyr Ala Glu Asp Phe Ser Thr Met Asp Glu
 770 775 780
 Ile Ser Glu Lys Leu Lys Lys Gly Ile Cys Glu Ala Leu Glu Asp Ser
 785 790 795 800

Asp Gly Arg Gln Asp Ser Pro Ala Gly Glu Leu Pro Lys Thr Val Gln
 805 810 815

Gln Pro Thr Glu Ser Glu Pro Val Thr Ile Asn Ile Gln Asp Leu Leu
 820 825 830

Ser Cys Ser Asn Phe Ala Val Gln His Arg Tyr Leu Phe Glu Glu Asp
 835 840 845

Asn Leu Leu Arg Ser Thr Gln Lys Leu Ser His Ser Thr Lys Pro Ser
 850 855 860

Gly Ser Pro Leu Glu Glu Lys His Asp Gln Cys Lys Cys Glu Asn Leu
 865 870 875 880

Ile Met Phe Gln Asn Leu Ala Asn Glu Glu Val Arg Lys Leu Thr Gln
 885 890 895

Arg Leu Glu Glu Met Thr Gln Arg Met Glu Ala Leu Glu Asn Arg Leu
 900 905 910

Arg Tyr Arg
 915

<210> 35

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 35

gtgaccctgg ttgtgaatac tcc

23

<210> 36

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 36

acagccatgg tctatacggtt gg

22

<210> 37

<211> 45

<212> DNA

<213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

 <400> 37
 gcctgtcagt gtcctgaggg acacgtgctc cgcagcgatg ggaag 45

 <210> 38
 <211> 1813
 <212> DNA
 <213> Homo sapiens

 <400> 38
 ggagccgccc tgggtgtcag cggctcggt cccgcgcacg ctccggccgt cgccgcaggct 60
 cggcacctgc aggtccgtgc gtcccgccgc tggccgcctt gactccgtcc cggccaggaa 120
 gggccatgtat ttccctcccg gggcccccgt tgaccaactt gtcgggttt ttgttccctgg 180
 ggctgagtgc cctcgccccc ccctcgccgg cccagctgca actgcacttg cccgcacacc 240
 ggttgcaggc ggtggaggaa gggaaatgg tgatccacg gtgttacacc ttgcacgggg 300
 aggtgtcttc atccccagcca tgggaggtgc cctttgtat gtgttcttc aaacagaaaag 360
 aaaaggagga tcaggtgttg tcctacatca atggggtcac aacaagcaaa cctggagtt 420
 ctttgtcta ctccatgccc tccccggacc tgccctgtcg gtcggagggt ctccaggaga 480
 aagactctgg cccctacagc tgctccgtga atgtgcaaga caaacaaggc aaatcttaggg 540
 gccacagcat caaaaacctta gaactcaatg tactggtcc tccagctctt ccattctgccc 600
 gtctccaggc tggccccat gtgggggcaa acgtgacccct gagctgccag tctccaaggaa 660
 gtaagccgc tggccaatac cagtggtatc ggcagctcc atccttccag actttctttg 720
 caccacgtt agatgtcatc cgtgggttt taagcctcac caacctttcg tcttccatgg 780
 ctggagtcta tggctgcaag gcccacaatg aggtggggcac tgcccaatgt aatgtgacgc 840
 tggaaatgtgag cacagggtctt ggaggtgtcag tgggtgttgg agtgttgg ggtaccctgg 900
 ttggactggg gttgtctggc gggctggcc tcttgtacca ccggccggggc aaggccctgg 960
 aggagccagc caatgatatac aaggaggatg ccattgtcc ccggaccctg ccctggccca 1020
 agagctcaga cacaatctcc aagaatggg ccatttcctc tgcacccctcc gcacgagccc 1080
 tccggccacc ccatggccct cccaggccctg gtgcattgac cccacgcacc agtctctcca 1140
 gccaggccctt gcccacca agactgcccac cgacagatgg ggcccaccctt caaccaat 1200
 cccccatccc tgggggggtt tcttccctgt gcttgaggcc catgggtgtt gtgcctgtga 1260
 tgggtgcctgc ccagagtcaa gctggcttc tggatgtatg accccaccac tcattggcta 1320
 aaggatttgg ggtctctctt tcctataagg gtcacccctta gcacagaggc ctgagtcatg 1380
 ggaaagagtc acactcttgc cccttagtac tctgccccca cctctttta ctgtggaaaa 1440
 accatctcag taagacctaa gtgtccagga gacagaagga gaagaggaag tggatctgg 1500
 attggggagga gctccaccc acccctgtact cctccctatg aagccagctg ctgaaattag 1560
 ctactcacca agagtgggg gcagagactt ccagtcactg agtctccctg gcccccttga 1620
 tctgtacccccc accccttatct aacaccaccc ttggctccca ctccagctcc ctgttattgt 1680
 ataacctgtc aggctggcgtt ggttaggtt tactggggca gaggataggaaatctttat 1740
 taaaactaac atgaaatatg tgggttttc atttgcaat ttaaataaaag atacataatg 1800
 tttgtatgaa aaa 1813

 <210> 39
 <211> 390
 <212> PRT
 <213> Homo sapiens

 <400> 39
 Met Ile Ser Leu Pro Gly Pro Leu Val Thr Asn Leu Leu Arg Phe Leu

1	5	10	15
Phe Leu Gly Leu Ser Ala		Leu Ala Pro Pro Ser Arg Ala Gln	Leu Gln
20		25	30
Leu His Leu Pro Ala Asn Arg		Leu Gln Ala Val Glu Gly	Gly Glu Val
35		40	45
Val Leu Pro Ala Trp Tyr Thr	Leu His Gly Glu Val Ser Ser Ser Gln		
50	55	60	
Pro Trp Glu Val Pro Phe Val Met Trp Phe	Phe Lys Gln Lys Glu Lys		
65	70	75	80
Glu Asp Gln Val Leu Ser Tyr Ile Asn Gly	Val Thr Thr Ser Lys Pro		
85	90	95	
Gly Val Ser Leu Val Tyr Ser Met Pro Ser Arg Asn	Leu Ser Leu Arg		
100	105	110	
Leu Glu Gly Leu Gln Glu Lys Asp Ser Gly	Pro Tyr Ser Cys Ser Val		
115	120	125	
Asn Val Gln Asp Lys Gln Gly Lys Ser Arg Gly	His Ser Ile Lys Thr		
130	135	140	
Leu Glu Leu Asn Val Leu Val Pro Pro Ala Pro	Pro Ser Cys Arg Leu		
145	150	155	160
Gln Gly Val Pro His Val Gly Ala Asn Val Thr	Leu Ser Cys Gln Ser		
165	170	175	
Pro Arg Ser Lys Pro Ala Val Gln Tyr Gln	Trp Asp Arg Gln Leu Pro		
180	185	190	
Ser Phe Gln Thr Phe Phe Ala Pro Ala Leu Asp	Val Ile Arg Gly Ser		
195	200	205	
Leu Ser Leu Thr Asn Leu Ser Ser Ser Met Ala	Gly Val Tyr Val Cys		
210	215	220	
Lys Ala His Asn Glu Val Gly Thr Ala Gln	Cys Asn Val Thr Leu Glu		
225	230	235	240
Val Ser Thr Gly Pro Gly Ala Ala Val Val Ala	Gly Ala Val Val Gly		
245	250	255	
Thr Leu Val Gly Leu Gly Leu Leu Ala Gly	Leu Val Leu Leu Tyr His		
260	265	270	
Arg Arg Gly Lys Ala Leu Glu Glu Pro Ala Asn	Asp Ile Lys Glu Asp		
275	280	285	

Ala Ile Ala Pro Arg Thr Leu Pro Trp Pro Lys Ser Ser Asp Thr Ile
290 295 300

Ser Lys Asn Gly Thr Leu Ser Ser Val Thr Ser Ala Arg Ala Leu Arg
305 310 315 320

Pro Pro His Gly Pro Pro Arg Pro Gly Ala Leu Thr Pro Thr Pro Ser
325 330 335

Leu Ser Ser Gln Ala Leu Pro Ser Pro Arg Leu Pro Thr Thr Asp Gly
340 345 350

Ala His Pro Gln Pro Ile Ser Pro Ile Pro Gly Gly Val Ser Ser Ser
355 360 365

Gly Leu Ser Arg Met Gly Ala Val Pro Val Met Val Pro Ala Gln Ser
370 375 380

Gln Ala Gly Ser Leu Val
385 390

<210> 40

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> De

oligonucleotide probe

agggtctc

1955-1961 55 5

22

<211> 24

<212> DN

<213> Art

<213> Artificial sequence

52233

(22) Description of artificial sequence: synthetic oligonucleotide probe

400

41

attatggg

atggggggcc cggcagacat agac

24

210 42

<211> 50

<212> DNA

<213> Artificial sequence

1223

<<223> Description of Artificial
oligonucleotide probe

<400> 42		
ggccacagca tcaaaacctt agaactcaat gtactggttc ctccagctcc		50
<210> 43		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 43		
gtgtacaca gcgtggc		18
<210> 44		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 44		
gaccggcagg cttctgcg		18
<210> 45		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 45		
cagcagcttc agccaccagg agtgg		25
<210> 46		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 46		
ctgagccgtg ggctgcagtc tcgc		24
<210> 47		

180	185	190
Glu Phe Val Lys Thr Val Asn Asn Phe Val Gln Arg Asp Thr Phe Val		
195	200	205
Val Trp Asp Lys Leu Ser Val Asn His Arg Arg Thr His Leu Thr Lys		
210	215	220
Leu Met His Thr Val Glu Gln Ala Thr Leu Arg Ile Ser Gln Ser Phe		
225	230	235
Gln Lys Thr Thr Glu Phe Asp Thr Asn Ser Thr Asp Ile Ala Leu Lys		
245	250	255
Val Phe Phe Phe Asp Ser Tyr Asn Met Lys His Ile His Pro His Met		
260	265	270
Asn Met Asp Gly Asp Tyr Ile Asn Ile Phe Pro Lys Arg Lys Ala Ala		
275	280	285
Tyr Asp Ser Asn Gly Asn Val Ala Val Ala Phe Leu Tyr Tyr Lys Ser		
290	295	300
Ile Gly Pro Leu Leu Ser Ser Asp Asn Phe Leu Leu Lys Pro Gln		
305	310	315
Asn Tyr Asp Asn Ser Glu Glu Glu Arg Val Ile Ser Ser Val Ile		
325	330	335
Ser Val Ser Met Ser Ser Asn Pro Pro Thr Leu Tyr Glu Leu Glu Lys		
340	345	350
Ile Thr Phe Thr Leu Ser His Arg Lys Val Thr Asp Arg Tyr Arg Ser		
355	360	365
Leu Cys Ala Phe Trp Asn Tyr Ser Pro Asp Thr Met Asn Gly Ser Trp		
370	375	380
Ser Ser Glu Gly Cys Glu Leu Thr Tyr Ser Asn Glu Thr His Thr Ser		
385	390	395
Cys Arg Cys Asn His Leu Thr His Phe Ala Ile Leu Met Ser Ser Gly		
405	410	415
Pro Ser Ile Gly Ile Lys Asp Tyr Asn Ile Leu Thr Arg Ile Thr Gln		
420	425	430
Leu Gly Ile Ile Ile Ser Leu Ile Cys Leu Ala Ile Cys Ile Phe Thr		
435	440	445
Phe Trp Phe Phe Ser Glu Ile Gln Ser Thr Arg Thr Thr Ile His Lys		
450	455	460

Asn Leu Cys Cys Ser Leu Phe Leu Ala Glu Leu Val Phe Leu Val Gly
 465 470 475 480

Ile Asn Thr Asn Thr Asn Lys Leu Phe Cys Ser Ile Ile Ala Gly Leu
 485 490 495

Leu His Tyr Phe Phe Leu Ala Ala Phe Ala Trp Met Cys Ile Glu Gly
 500 505 510

Ile His Leu Tyr Leu Ile Val Val Gly Val Ile Tyr Asn Lys Gly Phe
 515 520 525

Leu His Lys Asn Phe Tyr Ile Phe Gly Tyr Leu Ser Pro Ala Val Val
 530 535 540

Val Gly Phe Ser Ala Ala Leu Gly Tyr Arg Tyr Tyr Gly Thr Thr Lys
 545 550 555 560

Val Cys Trp Leu Ser Thr Glu Asn Asn Phe Ile Trp Ser Phe Ile Gly
 565 570 575

Pro Ala Cys Leu Ile Ile Leu Val Asn Leu Leu Ala Phe Gly Val Ile
 580 585 590

Ile Tyr Lys Val Phe Arg His Thr Ala Gly Leu Lys Pro Glu Val Ser
 595 600 605

Cys Phe Glu Asn Ile Arg Ser Cys Ala Arg Gly Ala Leu Ala Leu Leu
 610 615 620

Phe Leu Leu Gly Thr Thr Trp Ile Phe Gly Val Leu His Val Val His
 625 630 635 640

Ala Ser Val Val Thr Ala Tyr Leu Phe Thr Val Ser Asn Ala Phe Gln
 645 650 655

Gly Met Phe Ile Phe Leu Phe Leu Cys Val Leu Ser Arg Lys Ile Gln
 660 665 670

Glu Glu Tyr Tyr Arg Leu Phe Lys Asn Val Pro Cys Cys Phe Gly Cys
 675 680 685

Leu Arg
 690

<210> 50
 <211> 589
 <212> DNA
 <213> Homo sapiens

<220>
 <221> modified_base
 <222> (61)

<223> a, t, c or g

<400> 50

tggaaacata tcctccctca tatgaatatg gatggagact acataaatat atttccaaag 60
 ngaaaagccg gcatatggat tcaaattggca atgttgcagt tgcattttta tattataaga 120
 gtattggtcc ct当地gcttc atcatctgac aacttcttat tgaaacctca aaattatgat 180
 aattctgaag aggagggaaag agtcataatct tcagtaattt cagtcataat gagctcaaac 240
 ccaccccacat tataatgaact tgaaaaaaata acatttacat taagtcatacg aaaggcaca 300
 gataggtata ggagtctatg tggcatttg gaatactcac ctgataaccat gaatggcagc 360
 tggttttcag agggctgtga gctgacatac tcaaattgaga cccacacctc atgccgctgt 420
 aatcacctga cacatttgc aattttgatg tcctctgtc cttccattgg tattaaagat 480
 tataatattc ttacaaggat cactcaacta ggaataatta tttcaactgat ttgtcttgcc 540
 atatgcattt ttaccttctg gtttttcagt gaaattcaaa gcaccagga 589

<210> 51

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 51

ggtaatgagc tccattacag

20

<210> 52

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 52

ggagtagaaa gcgcattgg

18

<210> 53

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 53

cacctgatac catgaatggc ag

22

<210> 54

<211> 18

<212> DNA

<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 54		
cgagctcgaa ttaattcg		18
<210> 55		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 55		
ggatctcctg agtcagg		18
<210> 56		
<211> 23		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 56		
cctagttgag tgatccttgt aag		23
<210> 57		
<211> 50		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 57		
atgagaccca cacctcatgc cgctgtataatc acctgacaca ttttgcaatt		50
<210> 58		
<211> 2137		
<212> DNA		
<213> Homo sapiens		
<400> 58		
gctcccagcc aagaacctcg gggccgcgtgc gcgggtgggga ggagttcccc gaaaccggc 60		
cgctaaggcga ggcctcctcc tcccgagat ccgaacggcc tggcggggt caccggct 120		

ggacaagaa gccggccgct gcctgccccgg gcccggggag ggggttgggg ctggggccgg 180
aggcgggtg tgagtgggtg tgtgcgggg gcgaggctt gatcaatcc cgataagaaa 240
tgctcggtg tcttggcac ctaccgtgg gccccgtaa gcgctactat ataaggctgc 300
cgccccggag ccggcgccgca gtcagagcag gagcgctgcg tccagatct aaggccacga 360
ccatcccaac cggcactca cagccccgca ggcattcccg gtcggccccc agcctccgc 420
accccatcg cggagctgc gccgagagcc ccagggaggt gccatcgaga gccccgtgt 480
ggtgttccac gtatggatcc tggccggct ctggctggcc gtggccggc gccccctcgc 540
cttctcgac gccccggccc acgtgcacta cggtggggc gaccatcc gcctgeggca 600
cctgtacacc tccggccccc acgggtctc cagctgtttc ctgcgcattcc gtgcccacgg 660
cgtcggtgac tgcgcgccc gccagagcgc gacagttt ctggagatca aggcaactcgc 720
tctcgacc gttggccatca agggcggtca cagcgtgcgg tacctctgca tggccgcccga 780
cgcaagatg caggggctgc ttcaagtactc ggaggaagac tttgttgc aggaggat 840
ccgcccagat ggctacaatg tgtaccgatc cgagaagcac cgcctcccg tctccctgag 900
cagtccaaa cagcggcagc tgtacaagaa cagaggctt ctccactct ctcatttcct 960
gcccatgctg cccatggcc cagaggagcc tgaggacctc agggccact tggaaatctga 1020
catgttctct tcgccccctgg agaccgacag catggacccoa tttgggtttg tcacccgact 1080
ggaggccgtg aggagtccca gcttgagaa gtaactgaga ccatgcccgg gctcttcac 1140
tgctgccagg ggctgtggta cctgcacgct gggggacgtg ctctacaag aacagtcctg 1200
agtccacgtt ctgttagct ttaggaagaa acatctagaa gttgtacata ttcagagtt 1260
tccattggca gtgccagttt ctggcaata gacttgtctg atcataaacat tgtaagccgt 1320
tagctgccc agctgctgcc tggcccccata ttctgctccc tcgaggttgc tggacaagat 1380
gctgcactgt ctcaagtctg ctggataacc tccatcgatg gggaaactcac tccctttgga 1440
aaaattctta tgtcaagctg aaattctcta atttttctc atcaactccc caggagcagg 1500
cagaagacag gcagtagttt taatttcagg aacagggtat ccactctgtaa acacagcagg 1560
taaatttcac tcaaccccat gttggaaattt atctatatct ctacttccag gaccatttg 1620
cccttcccaa atccctccag gccaactg actggagcag gcatggccca ccaggcttca 1680
ggagtagggg aagcctggag ccccaactcca gcccctggac aacttgagaa ttccccctga 1740
ggccagttct gtcatggatg ctgtcttgat aataacttgc tttcccggtt tcacctgtt 1800
ccatctccca gcccaccagg cctctgccc cctcacatgc ctccccatgg attggggcct 1860
cccaggcccc ccaccttatg tcaacctgca ctctttgttc aaaaatcagg aaaagaaaaag 1920
atttgaagac cccaagtctt gtcaataact tgctgtgtgg aagcagcggg ggaagaccta 1980
gaacccttcc cccagcactt gttttccaa catgatattt atgagaattt tattttgata 2040
tgtacatctc ttattttctt acattattt aaaaaaaaaa ttatattttat gtatgtaaat 2100
qaggttgggtt ttgtatatta aatggagtt tgtttgt 2137

<210> 59

<211> 216

<212> PRT

<213> Homo sapiens

<400> 59

Met Arg Ser Gly Cys Val Val Val His Val Trp Ile Leu Ala Gly Leu
 1 5 10 15

Trp Leu Ala Val Ala Gly Arg Pro Leu Ala Phe Ser Asp Ala Gly Pro
20 25 30

His Val His Tyr Gly Trp Gly Asp Pro Ile Arg Leu Arg His Leu Tyr
 35 40 45

Thr Ser Gly Pro His Gly Leu Ser Ser Cys Phe Leu Arg Ile Arg Ala
50 55 60

Asp Gly Val Val Asp Cys Ala Arg Gly Gln Ser Ala His Ser Leu Leu
 65 70 75 80

Glu Ile Lys Ala Val Ala Leu Arg Thr Val Ala Ile Lys Gly Val His
 85 90 95

Ser Val Arg Tyr Leu Cys Met Gly Ala Asp Gly Lys Met Gln Gly Leu
 100 105 110

Leu Gln Tyr Ser Glu Glu Asp Cys Ala Phe Glu Glu Glu Ile Arg Pro
 115 120 125

Asp Gly Tyr Asn Val Tyr Arg Ser Glu Lys His Arg Leu Pro Val Ser
 130 135 140

Leu Ser Ser Ala Lys Gln Arg Gln Leu Tyr Lys Asn Arg Gly Phe Leu
 145 150 155 160

Pro Leu Ser His Phe Leu Pro Met Leu Pro Met Val Pro Glu Glu Pro
 165 170 175

Glu Asp Leu Arg Gly His Leu Glu Ser Asp Met Phe Ser Ser Pro Leu
 180 185 190

Glu Thr Asp Ser Met Asp Pro Phe Gly Leu Val Thr Gly Leu Glu Ala
 195 200 205

Val Arg Ser Pro Ser Phe Glu Lys
 210 215

<210> 60

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 60

atccgccccag atggctacaa tgtgtta

26

<210> 61

<211> 42

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 61

gcctcccggt ctccctgagc agtgccaaac agcggcagtg ta

42

<210> 62
 <211> 22
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 62
 ccagtccggc gacaagccca aa 22

<210> 63
 <211> 1295
 <212> DNA
 <213> Homo sapiens

<400> 63
 cccagaagtt caagggcccc cggcctcctg cgctcctgcc gccgggaccc tcgaccctcct 60
 cagagcagcc ggctgccgcc cgggaaagat ggcgaggagg agccgcacc gcctcctcct 120
 gctgtcgtc cgctacctgg tggtcgccct gggctatcat aaggcctatg ggtttctgc 180
 cccaaaagac caacaagtag tcacagcagt agagtaccaa gaggctattt tagcctgcaa 240
 aaccccaaag aagactgttt cctccagatt agagtggaaag aaactgggtc ggagtgtctc 300
 ctttgtctac tatcaacaga ctctcaagg tgattttaaa aatcgagctg agatgataga 360
 tttcaataatc cggatcaaaa atgtgacaag aagtgtatgc gggaaatatac gttgtgaagt 420
 tagtgcccca tctgagcaag gccaaaacct ggaagagggat acagtcaactc tggaagtatt 480
 agtggctcca gcagttccat catgtgaagt accctcttc gctctgagtg gaactgtgg 540
 agagctacga tgtcaagaca aagaagggaa tccagctcct gaatacacat ggTTtaagga 600
 tggcatccgt ttgttagaaa atcccgact tggctccaa agcacaaca gctcatacac 660
 aatgaataca aaaactggaa ctctgcaatt taatactgtt tccaaaactgg acactggaga 720
 atattccctgt gaagcccgca attctgttgg atatcgagg tgtcctggaa aacgaatgca 780
 agtagatgat ctcaacataa gtggcatcat agcagccgt atagttgtgg ccttagtcat 840
 ttccgttgtt ggccttgggt tatgtatgc tcagaggaaa ggctacttt caaaaagaaac 900
 ctccctccag aagagtaatt ctcatctaa agccacgaca atgagtggaa atgtgcagtg 960
 gctcacgcct gtaatcccag cacttggaa ggccgcqgcq ggccgatcac gaggtcagga 1020
 gttctagacc agtctggcca atatggtaa accccatctc tactaaaata caaaaattag 1080
 ctgggcatgg tggcatgtgc ctgcagttcc agctgctgg gagacaggag aatcaactga 1140
 acccggggagg cggaggttgc agtgagctga gatcacgcca ctgcagtcgc gcctggtaa 1200
 cagagcaaga ttcacatctca aaaaataaaaa taaaataata aataaaatact ggTTtttacc 1260
 tgtagaattc ttacaataaa tatagcttga tattc 1295

<210> 64
 <211> 312
 <212> PRT
 <213> Homo sapiens

<400> 64
 Met Ala Arg Arg Ser Arg His Arg Leu Leu Leu Leu Leu Arg Tyr
 1 5 10 15

Leu Val Val Ala Leu Gly Tyr His Lys Ala Tyr Gly Phe Ser Ala Pro
 20 25 30

Lys Asp Gln Gln Val Val Thr Ala Val Glu Tyr Gln Glu Ala Ile Leu
 35 40 45

Ala Cys Lys Thr Pro Lys Lys Thr Val Ser Ser Arg Leu Glu Trp Lys
 50 55 60

Lys Leu Gly Arg Ser Val Ser Phe Val Tyr Tyr Gln Gln Thr Leu Gln
 65 70 75 80

Gly Asp Phe Lys Asn Arg Ala Glu Met Ile Asp Phe Asn Ile Arg Ile
 85 90 95

Lys Asn Val Thr Arg Ser Asp Ala Gly Lys Tyr Arg Cys Glu Val Ser
 100 105 110

Ala Pro Ser Glu Gln Gly Gln Asn Leu Glu Glu Asp Thr Val Thr Leu
 115 120 125

Glu Val Leu Val Ala Pro Ala Val Pro Ser Cys Glu Val Pro Ser Ser
 130 135 140

Ala Leu Ser Gly Thr Val Val Glu Leu Arg Cys Gln Asp Lys Glu Gly
 145 150 155 160

Asn Pro Ala Pro Glu Tyr Thr Trp Phe Lys Asp Gly Ile Arg Leu Leu
 165 170 175

Glu Asn Pro Arg Leu Gly Ser Gln Ser Thr Asn Ser Ser Tyr Thr Met
 180 185 190

Asn Thr Lys Thr Gly Thr Leu Gln Phe Asn Thr Val Ser Lys Leu Asp
 195 200 205

Thr Gly Glu Tyr Ser Cys Glu Ala Arg Asn Ser Val Gly Tyr Arg Arg
 210 215 220

Cys Pro Gly Lys Arg Met Gln Val Asp Asp Leu Asn Ile Ser Gly Ile
 225 230 235 240

Ile Ala Ala Val Val Val Ala Leu Val Ile Ser Val Cys Gly Leu
 245 250 255

Gly Val Cys Tyr Ala Gln Arg Lys Gly Tyr Phe Ser Lys Glu Thr Ser
 260 265 270

Phe Gln Lys Ser Asn Ser Ser Lys Ala Thr Thr Met Ser Glu Asn
 275 280 285

Val Gln Trp Leu Thr Pro Val Ile Pro Ala Leu Trp Lys Ala Ala Ala
 290 295 300

Gly Gly Ser Arg Gly Gln Glu Phe

305 310

<210> 65
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 65 atcgttgtga agttagtgcc cc 22

<210> 66
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 66 acctgcgata tccaacagaa ttg 23

<210> 67
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 67 ggaagaggat acagtcactc tggaagtatt agtggctcca gcagttcc 48

<210> 68
<211> 2639
<212> DNA
<213> Homo sapiens

<400> 68 gacatcgag gtgggctagc actgaaaactg ctttcaaga cgaggaagag gaggagaaaag 60 agaaaagaaga ggaagatgtt gggcaacatt tatttaacat gctccacagc ccggaccctg 120 gcatcatgct gctattcctg caaatactga agaagcatgg gattaaata ttttacttct 180 aaataaatga attactcaat ctcctatgac catctataca tactccacct tcaaaaaagta 240 catcaatatt atatcattaa ggaatatgta accttctt ctccaatatg catgacattt 300 ttggacaatg caatttgtgc actggactt atttcagtga agaaaaactt tgtggttcta 360 tggcattcat catttgacaa atgcaagcat cttccttatac aatcagctcc tattgaactt 420 actagcactg actgtggaat ccttaaggc ccattacatt tctgaagaag aaagctaaga 480 tgaaggacat gccactccga attcatgtgc tacttggcct agctatcact acactagta 540

aagctgtaga taaaaaaagt gattgtccac ggttatgtac gtgtgaaatc aggcccttgt 600
ttcacccag atccatttat atggaagcat ctacagtgg a ttgtaatgat ttaggtctt 660
taactttccc agccagattg ccagctaaca cacagattt ttccttacag actaacaata 720
ttgcaaaaat tgaataactcc acagacttc cagtaaacct tactggctg gatttatctc 780
aaaacaattt atcttcagtc accaatatta atgtaaaaaa gatgcctcag ctccttctg 840
tgtacctaga gaaaaacaaa cttactgaac tgccgtaaaa atgtctgtcc gaactgagca 900
acttacaaga actctatatt aatcacaact tgcttctac aatttcacct ggagcctta 960
ttggcctaca taatcttctt cgacttcata tcaattcaaa tagatgcag atgatcaaca 1020
gtaagtggtt tgatgctctt ccaaacttag agattctgat gattgggaa aatccaatta 1080
tcagaatcaa agacatgaac tttaaagcctc ttatcaatct tcgcagcctg gttatagctg 1140
gtataaacct cacagaaata ccagataacg ccttggttgg actggaaaac ttagaaagca 1200
tctctttta cgataaacagg cttattaaag tacccccatgt tgctcttcaa aaagttgtaa 1260
atctcaaattt tttggatcta aataaaaatc ctattaaatag aataogaagg ggtgatttt 1320
gcaatatgct acactaaaaa gagttgggaa taaataataat gcctgagctg atttccatcg 1380
atagtcttgc tggataaac ctgcccattt taagaaaaat agaagctact aacaacccta 1440
gattgtctta cattcacccc aatgcattt tcagactccc caagctggaa tcactcatgc 1500
tgaacagcaa tgctctcagt gccctgtacc atggtaccat tgagttctg ccaaaccctca 1560
aggaaatcag catacacagt aaccccatca ggtgtactg tgtcatccgt tggatgaaca 1620
tgaacaaaac caacattcga ttcattggagc cagattcaact gtttgcgtg gaccacccctg 1680
aattccaagg tcagaatggtt cggcaagtgc atttcaggaa catgatggaa atttgcctcc 1740
ctcttatacg tcctgagagc tttccttcta atctaaatgt agaagctggg agctatgtt 1800
ccttcactg tagagctact gcagaaccac agcctgaaat ctactggata acacccctg 1860
gtcaaaaact ctgcctaat accctgacag acaaggctca tggatcttct gagggaaacac 1920
tagatataaa tggcgtaact cccaaagaag ggggtttata tacttgtata gcaactaacc 1980
tagttggcgc tgacttgaag tctgttatga tcaaaagtgg a tggatcttctt ccacaagata 2040
acaatggctc tttgaatatt aaaataagag atattcaggc caattcagtt ttgggtgtct 2100
ggaaagcaag ttctaaaatt ctcaaatcta gtgttaaatg gacagcctt gtcaagactg 2160
aaaattctca tgctgcgcaa agtgctcga taccatctga tgtcaaggta tataatctt 2220
ctcatctgaa tccatcaact gagtataaa ttgttattga tattccacc atctatcaga 2280
aaaacagaaa aaaatgtgt aatgtcacca ccaaagggtt gcaccctgat caaaaagagt 2340
atggaaaagaa taataccaca acacttatgg cctgtcttgg aggccctctg gggattattg 2400
gtgtgatatg tcttatcagc tgcctctc cagaaatgaa ctgtgatggt ggacacagct 2460
atgtgaggaa ttacttacag aaaccaacct ttgcattagg tgagcttctt ctcctctga 2520
taaatctctg ggaagcagga aaagaaaaaa gtacatcaact gaaagtaaaa gcaactgtt 2580
taggtttacc aacaaatatg tcctaaaaac caccaggaa acctactcca aaaatgaac 2639

<210> 69

<211> 708

<212> PRT

<213> Homo sapiens

<400> 69

Met Lys Asp Met Pro Leu Arg Ile His Val Leu Leu Gly Leu Ala Ile
1 5 10 15

Thr Thr Leu Val Gln Ala Val Asp Lys Lys Val Asp Cys Pro Arg Leu
20 25 30

Cys Thr Cys Glu Ile Arg Pro Trp Phe Thr Pro Arg Ser Ile Tyr Met
 35 40 45

Glu Ala Ser Thr Val Asp Cys Asn Asp Leu Gly Leu Leu Thr Phe Pro
50 55 60

Ala Arg Leu Pro Ala Asn Thr Gln Ile Leu Leu Gln Thr Asn Asn
 65 70 75 80

Ile Ala Lys Ile Glu Tyr Ser Thr Asp Phe Pro Val Asn Leu Thr Gly
 85 90 95

Leu Asp Leu Ser Gln Asn Asn Leu Ser Ser Val Thr Asn Ile Asn Val
 100 105 110

Lys Lys Met Pro Gln Leu Leu Ser Val Tyr Leu Glu Glu Asn Lys Leu
 115 120 125

Thr Glu Leu Pro Glu Lys Cys Leu Ser Glu Leu Ser Asn Leu Gln Glu
 130 135 140

Leu Tyr Ile Asn His Asn Leu Leu Ser Thr Ile Ser Pro Gly Ala Phe
 145 150 155 160

Ile Gly Leu His Asn Leu Leu Arg Leu His Leu Asn Ser Asn Arg Leu
 165 170 175

Gln Met Ile Asn Ser Lys Trp Phe Asp Ala Leu Pro Asn Leu Glu Ile
 180 185 190

Leu Met Ile Gly Glu Asn Pro Ile Ile Arg Ile Lys Asp Met Asn Phe
 195 200 205

Lys Pro Leu Ile Asn Leu Arg Ser Leu Val Ile Ala Gly Ile Asn Leu
 210 215 220

Thr Glu Ile Pro Asp Asn Ala Leu Val Gly Leu Glu Asn Leu Glu Ser
 225 230 235 240

Ile Ser Phe Tyr Asp Asn Arg Leu Ile Lys Val Pro His Val Ala Leu
 245 250 255

Gln Lys Val Val Asn Leu Lys Phe Leu Asp Leu Asn Lys Asn Pro Ile
 260 265 270

Asn Arg Ile Arg Arg Gly Asp Phe Ser Asn Met Leu His Leu Lys Glu
 275 280 285

Leu Gly Ile Asn Asn Met Pro Glu Leu Ile Ser Ile Asp Ser Leu Ala
 290 295 300

Val Asp Asn Leu Pro Asp Leu Arg Lys Ile Glu Ala Thr Asn Asn Pro
 305 310 315 320

Arg Leu Ser Tyr Ile His Pro Asn Ala Phe Phe Arg Leu Pro Lys Leu
 325 330 335

Glu Ser Leu Met Leu Asn Ser Asn Ala Leu Ser Ala Leu Tyr His Gly

340	345	350	
Thr Ile Glu Ser Leu Pro Asn Leu Lys Glu Ile Ser Ile His Ser Asn			
355	360	365	
Pro Ile Arg Cys Asp Cys Val Ile Arg Trp Met Asn Met Asn Lys Thr			
370	375	380	
Asn Ile Arg Phe Met Glu Pro Asp Ser Leu Phe Cys Val Asp Pro Pro			
385	390	395	400
Glu Phe Gln Gly Gln Asn Val Arg Gln Val His Phe Arg Asp Met Met			
405	410	415	
Glu Ile Cys Leu Pro Leu Ile Ala Pro Glu Ser Phe Pro Ser Asn Leu			
420	425	430	
Asn Val Glu Ala Gly Ser Tyr Val Ser Phe His Cys Arg Ala Thr Ala			
435	440	445	
Glu Pro Gln Pro Glu Ile Tyr Trp Ile Thr Pro Ser Gly Gln Lys Leu			
450	455	460	
Leu Pro Asn Thr Leu Thr Asp Lys Phe Tyr Val His Ser Glu Gly Thr			
465	470	475	480
Leu Asp Ile Asn Gly Val Thr Pro Lys Glu Gly Gly Leu Tyr Thr Cys			
485	490	495	
Ile Ala Thr Asn Leu Val Gly Ala Asp Leu Lys Ser Val Met Ile Lys			
500	505	510	
Val Asp Gly Ser Phe Pro Gln Asp Asn Asn Gly Ser Leu Asn Ile Lys			
515	520	525	
Ile Arg Asp Ile Gln Ala Asn Ser Val Leu Val Ser Trp Lys Ala Ser			
530	535	540	
Ser Lys Ile Leu Lys Ser Ser Val Lys Trp Thr Ala Phe Val Lys Thr			
545	550	555	560
Glu Asn Ser His Ala Ala Gln Ser Ala Arg Ile Pro Ser Asp Val Lys			
565	570	575	
Val Tyr Asn Leu Thr His Leu Asn Pro Ser Thr Glu Tyr Lys Ile Cys			
580	585	590	
Ile Asp Ile Pro Thr Ile Tyr Gln Lys Asn Arg Lys Lys Cys Val Asn			
595	600	605	
Val Thr Thr Lys Gly Leu His Pro Asp Gln Lys Glu Tyr Glu Lys Asn			
610	615	620	

Asn	Thr	Thr	Thr	Leu	Met	Ala	Cys	Leu	Gly	Gly	Leu	Leu	Gly	Ile	Ile
625					630					635					640

Gly Val Ile Cys Leu Ile Ser Cys Leu Ser Pro Glu Met Asn Cys Asp
645 650 655

Gly Gly His Ser Tyr Val Arg Asn Tyr Leu Gln Lys Pro Thr Phe Ala
 660 665 670

Leu Gly Glu Leu Tyr Pro Pro Leu Ile Asn Leu Trp Glu Ala Gly Lys
675 680 685

Glu Lys Ser Thr Ser Leu Lys Val Lys Ala Thr Val Ile Gly Leu Pro
690 695 700

Thr Asn Met Ser
705

<210> 70
<211> 1305
<212> DNA
<213> Homo sap

<400> 70
gccccggact ggcgcaaggt gcccaagcaa ggaaagaaaat aatgaagaga cacatgtttt 60
agctgcagcc tttgaaaca cgcaagaagg aaatcaatag tgtggacagg gctggacct 120
ttaccacgct tttggagta gatgaggaat gggctcgta ttatgtcac attccagcat 180
gaatctggta gacctgtggc taaccctgttc cctctccatg tgtctctcc tacaaagttt 240
tgttcttatg atactgtgct ttcattctgc cagttatgtgt cccaaaggct gtctttgttc 300
ttcctctggg gttttaaatg tcacctgttag caatgcaaattt ctcaaggaaa tacctagaga 360
tcttcctcct gaaacagtct tactgtatct ggactccaaat cagatcacat ctattcccaa 420
tgaatTTTT aaggacctcc atcaacttgag agttctcaac ctgtccaaaaa atggcatttt 480
gtttatcgat gagcatgcct tcaaaggagt agctgaaacc ttgcagactc tggacttggc 540
cgacaatcggtt attcaaagggt tgccaaaaaa tgccctcaat aacctgaagg ccaggccag 600
aattgccaac aacccttggc actgcgactg tactctacag caagtctga ggagcatggc 660
gtccaatcat gagacagccc acaacgttatg ctgtaaaacg tccgtgttgg atgaacatgc 720
tggcagacca ttccctcaatg ctgccaacgca cgctgaccc ttgtacccctcc ctaaaaaaaac 780
taccgattat gccatgtgg tcaccatgtt tggctggttc actatggta tctcatatgt 840
ggtatattat gtgaggcaaa atcaggagga tgcccgaga cacctcgaaatc acttggaaatc 900
cctgccaagc aggcagaaga aagcagatga acctgtatgat attagcactg tggatatgt 960
tccaaactga ctgtcattga gaaagaaaaga aagttagttt cgattgcagt agaaataagt 1020
ggtttacttc tcccatccat tgtaaaccatt tgaaactttt tatttcagtt tttttgaat 1080
tatgccactg ctgaacttti aacaaacact acaacataaa taatttgagt ttaggtgatc 1140
cacccttaa ttgtacccccc gatggtatat ttctgagttaa gctactatctt gaacattttt 1200
tagatccatc tcactattta ataatgaaat ttatTTTTT aattttaaaag caaataaaaag 1260
cttaactttt aaccatggga aaaaaaaaaaaa aaaaaaaaaaaa aaaca 1305

<210> 71

<211> 259

<212> PRT

<213> Homo sapiens

<400> 71

Met Asn Leu Val Asp Leu Trp Leu Thr Arg Ser Leu Ser Met Cys Leu
 1 5 10 15

Leu Leu Gln Ser Phe Val Leu Met Ile Leu Cys Phe His Ser Ala Ser
 20 25 30

Met Cys Pro Lys Gly Cys Leu Cys Ser Ser Ser Gly Gly Leu Asn Val
 35 40 45

Thr Cys Ser Asn Ala Asn Leu Lys Glu Ile Pro Arg Asp Leu Pro Pro
 50 55 60

Glu Thr Val Leu Leu Tyr Leu Asp Ser Asn Gln Ile Thr Ser Ile Pro
 65 70 75 80

Asn Glu Ile Phe Lys Asp Leu His Gln Leu Arg Val Leu Asn Leu Ser
 85 90 95

Lys Asn Gly Ile Glu Phe Ile Asp Glu His Ala Phe Lys Gly Val Ala
 100 105 110

Glu Thr Leu Gln Thr Leu Asp Leu Ser Asp Asn Arg Ile Gln Ser Val
 115 120 125

His Lys Asn Ala Phe Asn Asn Leu Lys Ala Arg Ala Arg Ile Ala Asn
 130 135 140

Asn Pro Trp His Cys Asp Cys Thr Leu Gln Gln Val Leu Arg Ser Met
 145 150 155 160

Ala Ser Asn His Glu Thr Ala His Asn Val Ile Cys Lys Thr Ser Val
 165 170 175

Leu Asp Glu His Ala Gly Arg Pro Phe Leu Asn Ala Ala Asn Asp Ala
 180 185 190

Asp Leu Cys Asn Leu Pro Lys Lys Thr Thr Asp Tyr Ala Met Leu Val
 195 200 205

Thr Met Phe Gly Trp Phe Thr Met Val Ile Ser Tyr Val Val Tyr Tyr
 210 215 220

Val Arg Gln Asn Gln Glu Asp Ala Arg Arg His Leu Glu Tyr Leu Lys
 225 230 235 240

Ser Leu Pro Ser Arg Gln Lys Lys Ala Asp Glu Pro Asp Asp Ile Ser
 245 250 255

Thr Val Val

<210> 72

<211> 2290

<212> DNA

<213> Homo sapiens

<400> 72

accgagccga gcccggaccgaa ggccgcggccg agatgcaggt gagcaagagg atgctggcgg 60
 gggggctgtgag gaggcatgcccc agccccatcc tggcctgtcg gcagccatc ctccctgtgg 120
 tgctgggctc agtgcgtgtca ggctcgccca cgggctgccc gccccgtgc gagtgctccg 180
 cccaggaccg cgctgtgtcg tgccacccgca agtgctttgt ggcagtcccc gagggcatcc 240
 ccaccggagac gcccgtgtcg gacctaggca agaaccgcac caaaaacgcac aaccaggacg 300
 agttcgccag cttcccgac acgtggaggac tggagctcaa cgagaacatc gtgagcgccg 360
 tggagcccg cgccttcaac aaccttca acctccggac gctgggtctc cgcagcaacc 420
 gcctgaagct catcccgcta ggcgttca ctggccttag caacctgacc aaggcaggaca 480
 tcagcgagaa caagatcgat atcctactgg actacatgtt tcaggacctg tacaaccccta 540
 agtcactgga gtttggcgac aatgacactcg tctacatctc tcacccgcgc ttcagcggcc 600
 tcaacagccct ggagcagctg acgtggaga aatgcaaccc gacccatc cccaccggagg 660
 cgctgtccca cctgcacccgac ctcatgtcc tgaggctccg gcacccataac atcaatgcca 720
 tccgggacta ctccctcaag aggctgtacc gactcaaggt cttggagatc tcccactggc 780
 cctacttgga caccatgaca cccaaactgac tctacggcct caacccgtacg tccctgtcca 840
 tcacacactg caatctgacc gctgtgcct acctggccgt ccggccaccta gtctatctcc 900
 gcttcctcaa cctctcttac aaccccatca gcaccattga gggtccatg ttgcattgagc 960
 tgctccggct gcaggagatc cagctggtgg gcccggcagct ggcgtggtg gagccctatg 1020
 cttcccgccg cctcaactac ctgcgcgtgc tcaatgtctc tggcaaccag ctgaccacac 1080
 tggaggaatc agtcttccac tcgggtggca acctggagac actcatctcg gactccaacc 1140
 cgctggctg cgactgtcg ctcctgtgg tggtccggc ccgtggcgct ctcaacttca 1200
 accggcagca gcccacgtgc gccacgcccc agtttgtcca ggcaaggag ttcaaggact 1260
 tccctgatgt gtaactgccc aactacttca cctggcccg cgcccgatc cgggaccgca 1320
 aggcccagca ggtgtttgtg gacgaggggcc acacgggtca gtttgtgtc cgggcccgtg 1380
 gcgaccggcc gcccggccatc ctctggctc caccggaaa gcacccgtgc tcagccaaga 1440
 gcaatggcg gtcacagtc ttccctgtat gcacgcttgg ggtgcgtac gcccaggatc 1500
 aggacaacgg cacgtacccg tgcacccgcgg ccaacggggg cggcaacgcg tccatggccg 1560
 cccacctgca tgtgcgcagc tactccggcc actggccca tcagccaaac aagaccttcg 1620
 ctttcatctc caaccagccg ggcgaggggag aggccaaacag caccggccgc actgtgcctt 1680
 tccccctcga catcaagacc ctcatcatcg ccaccacat gggcttcatc tcttcctgg 1740
 gcgctgtcct ctctgcctg gtgtgtgtt ttctctggag ccggggcaag ggcaacacaaa 1800
 agcacaacat cgagatcgag tatgtgcccc gaaagtccga cgcaggcatc agtccggccg 1860
 acgcgccccg caagttcaac atgaagatga tatgaggccg ggggggggg cagggacccc 1920
 cggggggccg ggcaggggaa gggccctggt cggccacccgc tcactctcca gtccttccca 1980
 cctccctccct acccttctac acacgttctc ttctccctc ccggccctcg cccctgtgc 2040
 ccccccggccag ccctcaccac ctggccctct tctaccagga cctcagaagc ccagacctgg 2100
 ggacccccc tacacagggg cattgacaga ctggagttga aagccgacga accgacacgc 2160
 ggcagagtca ataattcaat aaaaaagttt cgaactttct ctgttaacttgc gtttcaata 2220
 attatggatt tttatgaaaaa cttgaaataa taaaaagaga aaaaaactaa aaaaaaaaaa 2280
 aaaaaaaaaa 2290

<210> 73

<211> 620

<212> PRT

<213> Homo sapiens

<400> 73

Met Gln Val Ser Lys Arg Met Leu Ala Gly Gly Val Arg Ser Met Pro

1

5

10

15

Ser Pro Leu Leu Ala Cys Trp Gln Pro Ile Leu Leu Leu Val Leu Gly
 20 25 30

Ser Val Leu Ser Gly Ser Ala Thr Gly Cys Pro Pro Arg Cys Glu Cys
 35 40 45

Ser Ala Gln Asp Arg Ala Val Leu Cys His Arg Lys Cys Phe Val Ala
 50 55 60

Val Pro Glu Gly Ile Pro Thr Glu Thr Arg Leu Leu Asp Leu Gly Lys
 65 70 75 80

Asn Arg Ile Lys Thr Leu Asn Gln Asp Glu Phe Ala Ser Phe Pro His
 85 90 95

Leu Glu Glu Leu Glu Leu Asn Glu Asn Ile Val Ser Ala Val Glu Pro
 100 105 110

Gly Ala Phe Asn Asn Leu Phe Asn Leu Arg Thr Leu Gly Leu Arg Ser
 115 120 125

Asn Arg Leu Lys Leu Ile Pro Leu Gly Val Phe Thr Gly Leu Ser Asn
 130 135 140

Leu Thr Lys Gln Asp Ile Ser Glu Asn Lys Ile Val Ile Leu Leu Asp
 145 150 155 160

Tyr Met Phe Gln Asp Leu Tyr Asn Leu Lys Ser Leu Glu Val Gly Asp
 165 170 175

Asn Asp Leu Val Tyr Ile Ser His Arg Ala Phe Ser Gly Leu Asn Ser
 180 185 190

Leu Glu Gln Leu Thr Leu Glu Lys Cys Asn Leu Thr Ser Ile Pro Thr
 195 200 205

Glu Ala Leu Ser His Leu His Gly Leu Ile Val Leu Arg Leu Arg His
 210 215 220

Leu Asn Ile Asn Ala Ile Arg Asp Tyr Ser Phe Lys Arg Leu Tyr Arg
 225 230 235 240

Leu Lys Val Leu Glu Ile Ser His Trp Pro Tyr Leu Asp Thr Met Thr
 245 250 255

Pro Asn Cys Leu Tyr Gly Leu Asn Leu Thr Ser Leu Ser Ile Thr His
 260 265 270

Cys Asn Leu Thr Ala Val Pro Tyr Leu Ala Val Arg His Leu Val Tyr
 275 280 285

Leu Arg Phe Leu Asn Leu Ser Tyr Asn Pro Ile Ser Thr Ile Glu Gly
 290 295 300

Ser Met Leu His Glu Leu Leu Arg Leu Gln Glu Ile Gln Leu Val Gly
 305 310 315 320
 Gly Gln Leu Ala Val Val Glu Pro Tyr Ala Phe Arg Gly Leu Asn Tyr
 325 330 335
 Leu Arg Val Leu Asn Val Ser Gly Asn Gln Leu Thr Thr Leu Glu Glu
 340 345 350
 Ser Val Phe His Ser Val Gly Asn Leu Glu Thr Leu Ile Leu Asp Ser
 355 360 365
 Asn Pro Leu Ala Cys Asp Cys Arg Leu Leu Trp Val Phe Arg Arg Arg
 370 375 380
 Trp Arg Leu Asn Phe Asn Arg Gln Gln Pro Thr Cys Ala Thr Pro Glu
 385 390 395 400
 Phe Val Gln Gly Lys Glu Phe Lys Asp Phe Pro Asp Val Leu Leu Pro
 405 410 415
 Asn Tyr Phe Thr Cys Arg Arg Ala Arg Ile Arg Asp Arg Lys Ala Gln
 420 425 430
 Gln Val Phe Val Asp Glu Gly His Thr Val Gln Phe Val Cys Arg Ala
 435 440 445
 Asp Gly Asp Pro Pro Ala Ile Leu Trp Leu Ser Pro Arg Lys His
 450 455 460
 Leu Val Ser Ala Lys Ser Asn Gly Arg Leu Thr Val Phe Pro Asp Gly
 465 470 475 480
 Thr Leu Glu Val Arg Tyr Ala Gln Val Gln Asp Asn Gly Thr Tyr Leu
 485 490 495
 Cys Ile Ala Ala Asn Ala Gly Asn Asp Ser Met Pro Ala His Leu
 500 505 510
 His Val Arg Ser Tyr Ser Pro Asp Trp Pro His Gln Pro Asn Lys Thr
 515 520 525
 Phe Ala Phe Ile Ser Asn Gln Pro Gly Glu Gly Ala Asn Ser Thr
 530 535 540
 Arg Ala Thr Val Pro Phe Pro Phe Asp Ile Lys Thr Leu Ile Ile Ala
 545 550 555 560
 Thr Thr Met Gly Phe Ile Ser Phe Leu Gly Val Val Leu Phe Cys Leu
 565 570 575
 Val Leu Leu Phe Leu Trp Ser Arg Gly Lys Gly Asn Thr Lys His Asn

580	585	590
Ile Glu Ile Glu Tyr Val Pro Arg Lys Ser Asp Ala Gly Ile Ser Ser		
595	600	605

Ala Asp Ala Pro Arg Lys Phe Asn Met Lys Met Ile		
610	615	620

<210> 74
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<p><400> 74</p>		22
tcacctggag cctttattgg cc		

<210> 75
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<p><400> 75</p>		23
ataccagcta taaccaggct gcg		

<210> 76
<211> 52
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<p><400> 76</p>		50
caacagtaag tggtttgatg ctcttccaaa tcttagagatt ctgtatgattg		
gg		52

<210> 77
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 77 ccatgtgtct cctcctacaa ag	22
<210> 78 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 78 gggaatagat gtgatctgat tgg	23
<210> 79 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 79 cacctgttagc aatgcaaatc tcaaggaaat acctagagat cttccctcctg	50
<210> 80 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 80 agcaaccgcc tgaagctcat cc	22
<210> 81 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 81 aaggcgccgt gaaaagatgt a gacg	24
<210> 82	

<211> 50
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 82
 gactacatgt ttcaggacct gtacaacctc aagtcaactgg aggttggcga 50

<210> 83
 <211> 1685
 <212> DNA
 <213> Homo sapiens

<400> 83
 cccacgcgtc cgcacctcg ccccggtc cgaagcgct cggggcgcc cttdcggtca 60
 acatcgtagt ccacccctc cccatccccca gccccccggg attcaggctc gccagcgccc 120
 agccagggag cggccggga agcgcgtatgg gggcccccagc cgctcgctc ctgctctgc 180
 tcctgctgtt cgccctgctgc tggcgcccg gcgccggccaa cctctcccaag gacgacagcc 240
 agccctggac atctgtatgaa acagtggtgg ctggggcac cgtggtgctc aagtgc当地 300
 tgaaaatca cgaggactca tccctgcaat ggtctaaccct tgctcagcag actctctact 360
 ttggggagaa gagagccctt cgagataatc gaattcagct ggttacctt acgccccacg 420
 agctcagcat cagcatcagc aatgtggccc tggcagacga gggcgagttac acctgctcaa 480
 tccttactat gcctgtgcga actgc当地 540
 agcccatcat cactggttat aaatcttcat tacggaaaa agacacagcc accctaaact 600
 gtcagtcttc tgggagcaag cctgcagccc ggctcacctg gagaagggt gaccaagaac 660
 tccacggaga accaaccgc atacaggaag atcccaatgg taaaacctt actgtcagca 720
 gtcgggtgac attccaggtt accccgggagg atgatggggc gagcatctg tgctctgtga 780
 accatgaatc tctaaaggga gctgacagat ccacctctca acgcattgaa gtttataaca 840
 caccactgc gatgatttagg ccagaccctc cccatcccg tgagggccag aagctgttgc 900
 tacactgtga gggtcgcggc aatccagttcc cccagcagta cctatggag aaggaggca 960
 gtgtgccacc cctgaagatg acccaggaga gtgc当地 1020
 gtgacagtgg cacctacggc tgcacagcca ccagcaacat gggcagctac aaggcctact 1080
 acaccctcaa tgttaatgac cccagtc当地 1140
 tc当地 1200
 gcaactactt gatccggcac aaaggaacct acctgacaca tgaggcaaaa ggctccgacg 1260
 atgctccaga cgcggacacg gccatcatca atgc当地 1320
 acaagaagga atatttcatc tagagggcc tgcccaactt ctgc当地 1380
 gtggggactg ctggggccgt caccacccg gacttgc当地 1440
 ctcccgctt ctccccagcc caccaccc cctgtacaga atgtctgtt tgggtgc当地 1500
 tttgtactcg gtttggaaatg gggagggagg agggc当地 1560
 cccttccgt ggcttctgt catttgggtt attatttt ttgtacaaat cccaaatcaa 1620
 atctgtctcc aggctggaga ggcaggagcc ctggggtgag aaaagcaaaa aacaaacaaa 1680
 aaaca 1685

<210> 84
 <211> 398
 <212> PRT
 <213> Homo sapiens

<400> 84

Met Gly Ala Pro Ala Ser Leu Leu Leu Leu Leu Phe Ala
 1 5 10 15

Cys Cys Trp Ala Pro Gly Gly Ala Asn Leu Ser Gln Asp Asp Ser Gln
 20 25 30

Pro Trp Thr Ser Asp Glu Thr Val Val Ala Gly Gly Thr Val Val Leu
 35 40 45

Lys Cys Gln Val Lys Asp His Glu Asp Ser Ser Leu Gln Trp Ser Asn
 50 55 60

Pro Ala Gln Gln Thr Leu Tyr Phe Gly Glu Lys Arg Ala Leu Arg Asp
 65 70 75 80

Asn Arg Ile Gln Leu Val Thr Ser Thr Pro His Glu Leu Ser Ile Ser
 85 90 95

Ile Ser Asn Val Ala Leu Ala Asp Glu Gly Glu Tyr Thr Cys Ser Ile
 100 105 110

Phe Thr Met Pro Val Arg Thr Ala Lys Ser Leu Val Thr Val Leu Gly
 115 120 125

Ile Pro Gln Lys Pro Ile Ile Thr Gly Tyr Lys Ser Ser Leu Arg Glu
 130 135 140

Lys Asp Thr Ala Thr Leu Asn Cys Gln Ser Ser Gly Ser Lys Pro Ala
 145 150 155 160

Ala Arg Leu Thr Trp Arg Lys Gly Asp Gln Glu Leu His Gly Glu Pro
 165 170 175

Thr Arg Ile Gln Glu Asp Pro Asn Gly Lys Thr Phe Thr Val Ser Ser
 180 185 190

Ser Val Thr Phe Gln Val Thr Arg Glu Asp Asp Gly Ala Ser Ile Val
 195 200 205

Cys Ser Val Asn His Glu Ser Leu Lys Gly Ala Asp Arg Ser Thr Ser
 210 215 220

Gln Arg Ile Glu Val Leu Tyr Thr Pro Thr Ala Met Ile Arg Pro Asp
 225 230 235 240

Pro Pro His Pro Arg Glu Gly Gln Lys Leu Leu Leu His Cys Glu Gly
 245 250 255

Arg Gly Asn Pro Val Pro Gln Gln Tyr Leu Trp Glu Lys Glu Gly Ser
 260 265 270

Val Pro Pro Leu Lys Met Thr Gln Glu Ser Ala Leu Ile Phe Pro Phe
 275 280 285

Leu Asn Lys Ser Asp Ser Gly Thr Tyr Gly Cys Thr Ala Thr Ser Asn
 290 295 300

Met Gly Ser Tyr Lys Ala Tyr Tyr Thr Leu Asn Val Asn Asp Pro Ser
 305 310 315 320

Pro Val Pro Ser Ser Ser Thr Tyr His Ala Ile Ile Gly Gly Ile
 325 330 335

Val Ala Phe Ile Val Phe Leu Leu Leu Ile Met Leu Ile Phe Leu Gly
 340 345 350

His Tyr Leu Ile Arg His Lys Gly Thr Tyr Leu Thr His Glu Ala Lys
 355 360 365

Gly Ser Asp Asp Ala Pro Asp Ala Asp Thr Ala Ile Ile Asn Ala Glu
 370 375 380

Gly Gly Gln Ser Gly Gly Asp Asp Lys Lys Glu Tyr Phe Ile
 385 390 395

<210> 85

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 85

gcttaggaatt ccacagaagc cc

22

<210> 86

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 86

aacctggaaat gtcaccgagc tg

22

<210> 87

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

oligonucleotide probe

```

<400> 87
cctagcacag tgacgaggga cttggc 26

<210> 88
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 88
aagacacagc caccctaaac tgtcagtctt ctgggagcaa gcctgcagcc 50

<210> 89
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 89
gccctggcag acgagggcga gtacacctgc tcaatcttca ctatgcctgt 50

<210> 90
<211> 2755
<212> DNA
<213> Homo sapiens

<400> 90
gggggttagg gaggaaggaa tccacccca cccccccaaa ccctttctt ctccttcct 60
ggcttcggac attggagcac taaatgaact tgaatttgtt ctgtggcgag caggatggc 120
gctgttactt tggatgaga tcggggatga attgctcgct taaaaaatgc tgctttggat 180
tctgttgcgt gagacgtctc tttgtttgc cgctggaaac gttacagggg acgtttgcaa 240
agagaagatc tggccttgca atgagataga aggggaccta cacgttagact gtaaaaaaaa 300
gggcttcaca agtctgcagc gtttcaactgc cccgacttcc cagtttacc atttatttct 360
gcatggcaat tccctcactc gactttccc taatgagttc gcttaactttt ataatgcgg 420
tagtttgcac atggaaaaca atggcttgc tggaaatcggtt ccgggggctt ttctgggct 480
gcagctggtg aaaaggctgc acatcaacaa caacaagatc aagtctttc gaaagcagac 540
ttttctgggg ctggacgatc tggaaatatct ccaggctgtat tttaatttat tacgagatat 600
agacccgggg gccttccagg acttgaacaa gctggaggtg ctcattttaa atgacaatct 660
catcagcacc ctacctgcca acgtttcca gtatgtgccc atcacccacc tcgaccccg 720
gggttaacagg ctgaaaacgc tgccctatga ggaggttttg gagcaaatcc ctggattgc 780
ggagatcctg ctagaggata acccttggga ctgcacctgt gatctgtctt ccctgaaaga 840
atggctggaa aacattccca agaatgccct gatcgcccgta gtgtctgcg aagccccac 900
cagactgcag ggtaaagacc tcaatgaaac caccgaacag gacttgcgtc ctttgaaaaa 960
ccgagtggt tcttagtctcc cggcgcccccc tgcccaagaa gagacctttg ctccctgacc 1020
cctgccaact ccttcaaga caaatggca agaggatcat gccacaccag ggtctgtcc 1080

```

aaacgggggt acaaagatcc caggcaactg gcagatcaaa atcagaccca cagcagcgat 1140
agcgacgggt agctccagga acaaaccctt agctaacagt ttacctgccc ctgggggctg 1200
cagctgcgac cacatcccag ggtcggttt aaagatgaac tgcaacaaca ggaacgttag 1260
cagcttggtc gatttaaaggc ccaagcttc taacgtgcag gagctttcc tacgagataa 1320
caagatccac agcatccgaa aatcgcaactt tgtggattac aagaacctca ttctgttgg 1380
tctggcaac aataacatcg ctactgtaga gaacaacact ttcaagaacc tttggac 1440
caggtggcta tacatggata gcaattaccc ggacacgctg tcccgggaga aattcgcggg 1500
gctgaaaaac cttagtacc tgaacgtgga gtacaacgct atccagctca tcctcccg 1560
cacttcaat gccatgccc aactgaggat cctcattctc aacaacaacc tgctgaggc 1620
cctgcctgtg gacgtgtcg ctgggtctc gctctctaaa ctcagccctgc acaacaatta 1680
cttcatgtac ctccccgtgg caggggtgct ggaccagtta acctccatca tccagataga 1740
cctccacgga aaccctggg agtgctcctg cacaattgtg ctttcaagc agtggcaga 1800
acgcttggt tccgaagtgc tgatgagcga cctcaagtgt gagacgcccgg tgaacttctt 1860
tagaaaggat ttcatgctcc tctccaatga cgagatctgc ctcagctgt acgcttagat 1920
ctcgccacg ttaacttcgc acagaaaaa cagcactggg ttggcggaga ccgggacgca 1980
ctccaaactcc tacctagaca ccagcagggt gtccatctc gtgttgtcc cgggactgct 2040
gctgggttt gtcacctccg cttcaccgt ggtggcatg ctcgtgttta tcctgaggaa 2100
ccgaaagcgg tccaagagac gagatgccaa ctccctccgcg tccgagatta attccctaca 2160
gacagtctgt gactcttct actggcacaa tgggccttac aacgcagatg gggcccacag 2220
agtgtatgac tgggtcttc actcgcttc agactaagac cccaaacccca ataggggagg 2280
gcagaggaa ggcgatacat cttccccac cgcaggcacc cgggggctg gaggggctg 2340
tacccaaatc ccccgccat cagcctggat gggcataagt agataaataa ctgtgagctc 2400
gcacaaccga aagggcctga ccccttactt agctccctcc ttgaaacaaa gagcagactg 2460
tggagagctg ggagagcgca gccagctcg tctttgtga gagcccttt tgacagaaag 2520
cccagcacga cctgctggaa agaactgaca gtgcctcgc ctcggcccc ggggcctgtg 2580
gggttggatg ccgcgggtt atacatatat acatatatcc acatcttat agagagatag 2640
atatctatcc ttccccgtg gattagcccc gtgatggctc cctgttggtc acgcaggat 2700
qqqcaqtq accaaggcat gaatgtattt taaaataagta actttgactt ctgac 2755

<210> 91

<211> 696

<212> PRT

<213> Homo sapiens

<400> 91

Met	Leu	Leu	Trp	Ile	Leu	Leu	Leu	Glu	Thr	Ser	Leu	Cys	Phe	Ala	Ala
1				5					10					15	

Gly Asn Val Thr Gly Asp Val Cys Lys Glu Lys Ile Cys Ser Cys Asn
 20 25 30

Glu Ile Glu Gly Asp Leu His Val Asp Cys Glu Lys Lys Gly Phe Thr
 35 40 45

Ser Leu Gln Arg Phe Thr Ala Pro Thr Ser Gln Phe Tyr His Leu Phe
50 55 60

Leu	His	Gly	Asn	Ser	Leu	Thr	Arg	Leu	Phe	Pro	Asn	Glu	Phe	Ala	Asn
65					70					75					80

Phe Tyr Asn Ala Val Ser Leu His Met Glu Asn Asn Gly Leu His Glu
85 90 95

Ile Val Pro Gly Ala Phe Leu Gly Leu Gln Leu Val Lys Arg Leu His
 100 105 110

Ile Asn Asn Asn Lys Ile Lys Ser Phe Arg Lys Gln Thr Phe Leu Gly
 115 120 125

Leu Asp Asp Leu Glu Tyr Leu Gln Ala Asp Phe Asn Leu Leu Arg Asp
 130 135 140

Ile Asp Pro Gly Ala Phe Gln Asp Leu Asn Lys Leu Glu Val Leu Ile
 145 150 155 160

Leu Asn Asp Asn Leu Ile Ser Thr Leu Pro Ala Asn Val Phe Gln Tyr
 165 170 175

Val Pro Ile Thr His Leu Asp Leu Arg Gly Asn Arg Leu Lys Thr Leu
 180 185 190

Pro Tyr Glu Glu Val Leu Glu Gln Ile Pro Gly Ile Ala Glu Ile Leu
 195 200 205

Leu Glu Asp Asn Pro Trp Asp Cys Thr Cys Asp Leu Leu Ser Leu Lys
 210 215 220

Glu Trp Leu Glu Asn Ile Pro Lys Asn Ala Leu Ile Gly Arg Val Val
 225 230 235 240

Cys Glu Ala Pro Thr Arg Leu Gln Gly Lys Asp Leu Asn Glu Thr Thr
 245 250 255

Glu Gln Asp Leu Cys Pro Leu Lys Asn Arg Val Asp Ser Ser Leu Pro
 260 265 270

Ala Pro Pro Ala Gln Glu Glu Thr Phe Ala Pro Gly Pro Leu Pro Thr
 275 280 285

Pro Phe Lys Thr Asn Gly Gln Glu Asp His Ala Thr Pro Gly Ser Ala
 290 295 300

Pro Asn Gly Gly Thr Lys Ile Pro Gly Asn Trp Gln Ile Lys Ile Arg
 305 310 315 320

Pro Thr Ala Ala Ile Ala Thr Gly Ser Ser Arg Asn Lys Pro Leu Ala
 325 330 335

Asn Ser Leu Pro Cys Pro Gly Gly Cys Ser Cys Asp His Ile Pro Gly
 340 345 350

Ser Gly Leu Lys Met Asn Cys Asn Asn Arg Asn Val Ser Ser Leu Ala
 355 360 365

Asp Leu Lys Pro Lys Leu Ser Asn Val Gln Glu Leu Phe Leu Arg Asp
 370 375 380

Asn Lys Ile His Ser Ile Arg Lys Ser His Phe Val Asp Tyr Lys Asn
 385 390 395 400
 Leu Ile Leu Leu Asp Leu Gly Asn Asn Asn Ile Ala Thr Val Glu Asn
 405 410 415
 Asn Thr Phe Lys Asn Leu Leu Asp Leu Arg Trp Leu Tyr Met Asp Ser
 420 425 430
 Asn Tyr Leu Asp Thr Leu Ser Arg Glu Lys Phe Ala Gly Leu Gln Asn
 435 440 445
 Leu Glu Tyr Leu Asn Val Glu Tyr Asn Ala Ile Gln Leu Ile Leu Pro
 450 455 460
 Gly Thr Phe Asn Ala Met Pro Lys Leu Arg Ile Leu Ile Leu Asn Asn
 465 470 475 480
 Asn Leu Leu Arg Ser Leu Pro Val Asp Val Phe Ala Gly Val Ser Leu
 485 490 495
 Ser Lys Leu Ser Leu His Asn Asn Tyr Phe Met Tyr Leu Pro Val Ala
 500 505 510
 Gly Val Leu Asp Gln Leu Thr Ser Ile Ile Gln Ile Asp Leu His Gly
 515 520 525
 Asn Pro Trp Glu Cys Ser Cys Thr Ile Val Pro Phe Lys Gln Trp Ala
 530 535 540
 Glu Arg Leu Gly Ser Glu Val Leu Met Ser Asp Leu Lys Cys Glu Thr
 545 550 555 560
 Pro Val Asn Phe Phe Arg Lys Asp Phe Met Leu Leu Ser Asn Asp Glu
 565 570 575
 Ile Cys Pro Gln Leu Tyr Ala Arg Ile Ser Pro Thr Leu Thr Ser His
 580 585 590
 Ser Lys Asn Ser Thr Gly Leu Ala Glu Thr Gly Thr His Ser Asn Ser
 595 600 605
 Tyr Leu Asp Thr Ser Arg Val Ser Ile Ser Val Leu Val Pro Gly Leu
 610 615 620
 Leu Leu Val Phe Val Thr Ser Ala Phe Thr Val Val Gly Met Leu Val
 625 630 635 640
 Phe Ile Leu Arg Asn Arg Lys Arg Ser Lys Arg Arg Asp Ala Asn Ser
 645 650 655
 Ser Ala Ser Glu Ile Asn Ser Leu Gln Thr Val Cys Asp Ser Ser Tyr

660	665	670
Trp His Asn Gly Pro Tyr Asn Ala Asp Gly Ala His Arg Val Tyr Asp		
675	680	685
Cys Gly Ser His Ser Leu Ser Asp		
690	695	
<210> 92		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 92		
gttggatctg ggcaacaata ac		22
<210> 93		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 93		
atttttgtgc aggctgagtt taag		24
<210> 94		
<211> 45		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 94		
ggtggtata catggatagc aattacctgg acacgctgtc ccggg		45
<210> 95		
<211> 2226		
<212> DNA		
<213> Homo sapiens		
<400> 95		
agtgcactgc gtccccctgta cccggcgcca gctgtgttcc tgaccccaga ataactcagg 60		
gctgcaccgg gcctggcagc gctccgcaca catttcctgt cgccggctaa gggaaactgt 120		
tggccgctgg gccccgggg ggattcttgg cagttgggg gtcgcgtcggg agcgaggcg 180		

gaggggaaagg gagggggaaac cgggttgggg aagccagctg tagagggcgg tgaccgcgt 240
ccagacacag ctctcgctcc tcgagcggga cagatccaag ttgggagcag ctctcgctgc 300
ggggcctcag agaatgaggg cggcgttcgc cctgtgcctc ctctggcagg cgctctggcc 360
cgggccccggc ggcggcgaac accccactgc cgaccgtgt ggctgtcgg ctcggggggc 420
ctgtacacgc ctgcaccacg ctaccatgaa gcggcaggcg gccgaggagg ctgcgtcct 480
gcgagggtggg ggcgtcagca ccgtgcgtgc gggcgccagag ctgcgcgtg tgctcgctg 540
cctgcgggca gggcccaggc cgggaggggg ctccaaagac ctgtgttct gggtcgact 600
ggagcgcagg cttcccaact gcaccctgga gaacgagcct ttgcgggggtt tctctggct 660
gtcctccgac cccggcggtc tcgaaagcga cacgctgcag tgggtggagg agccccaacg 720
ctcctgcacc ggcggagat ggcgggtact ccaggccacc ggtgggggtcg agccgcagg 780
ctggaaggag atgcgtatgcc acctgcgcgc caacggctac ctgtgcaagt accagttga 840
ggtcttgtt cctgcgcgc gccccggggc cgccctctaacc ttgagctata ggcgcgcctt 900
ccagctgcac agcgccgctc tggacttcag tccacctggg accgaggtga gtgcgtctg 960
ccggggacag ctcccgatct cagttacttg catgcggac gaaatcgcgctc 1020
caaactctcg ggcgtatgtt tggccctgt cccggggagg tacctccgtg ctggcaaattg 1080
cgcagagctc cctaactgcc tagacgactt gggaggctt gcctgcgaat gtgtacggg 1140
cttcgagctg gggaggacg gccgcttgc tggaccagt gggaggac agccgaccct 1200
tggggggacc ggggtgccc ccaggcgc gccggccact gcaaccagcc cctgtccgc 1260
gagaacatgg ccaatcaggg tcgacgagaa gctgggagag acaccacttgc tccctgaaca 1320
agacaattca gtaacatcta ttccctgagat tcctcgatgg ggatcacaga gcacgtgtc 1380
tacccttcaa atgtcccttc aagccgagtc aaaggccact atcaccctcat caggggagcgt 1440
gatttccaag tttaattcta cgacttcctc tgccactctc caggcttcg actcccttc 1500
tgccgtggtc ttcatatttg tgagcacagc agtagtagtg ttgggtgatct tgaccatgac 1560
agtactgggg ctgtcaagc tctgctttca cgaaagcccc tttcccgac caaggaaggaa 1620
gtctatggc cgcggggcc tggagagtga tcctcgaccc gctgtttgg gctccagttc 1680
tgcacattgc acaaacaatg gggtaaaagt cggggactgt gatctgcggg acagagcaga 1740
gggtgcctt cttggggagt cccctttgg ctctagtgat gcataggaa acaggggaca 1800
tgggcactcc tggtaacagt ttttcaactt tgatgaaaacg gggaaaccaag aggaacttac 1860
ttgtgttaact gacaatttct gcagaaatcc cccttcctt aaattccctt tactccactg 1920
aggagctaaa tcagaactgc acactccctc cctgtatgata gggaaagtgg aagtgcctt 1980
aggatggta tactggggga ccgggttagtg ctggggagag atattttctt atgtttattc 2040
ggagaatttgc gagaagtgtat tgaactttc aagacattgg aaacaaatag aacacaatat 2100
aatttacatt aaaaaataat ttctaccaaa atggaaaggg aatgttctat gttgttcagg 2160
ctaggagtat attggttcga aatcccaggg aaaaaaataa aaataaaaaaa ttaaaggatt 2220
qttgtat 2226

<210> 96

<211> 490

<212> PRT

<213> Homo sapiens

<400> 96

Met Arg P

MCC Aug 1.

Gly Pro Gly Gly Glu His Pro Thr Ala Asp Arg Ala Gly Cys Ser

Ala Ser Gly Ala Cys Tyr Ser Leu His His Ala Thr Met Lys Arg Gln
 81 10 15

Ala Ala Glu Glu Ala Cys Ile Leu Arg Gly Gly Ala Leu Ser Thr Val
50 55 60

Arg Ala Gly Ala Glu Leu Arg Ala Val Leu Ala Leu Leu Arg Ala Gly			
65	70	75	80
Pro Gly Pro Gly Gly Ser Lys Asp Leu Leu Phe Trp Val Ala Leu			
85	90	95	
Glu Arg Arg Arg Ser His Cys Thr Leu Glu Asn Glu Pro Leu Arg Gly			
100	105	110	
Phe Ser Trp Leu Ser Ser Asp Pro Gly Gly Leu Glu Ser Asp Thr Leu			
115	120	125	
Gln Trp Val Glu Glu Pro Gln Arg Ser Cys Thr Ala Arg Arg Cys Ala			
130	135	140	
Val Leu Gln Ala Thr Gly Gly Val Glu Pro Ala Gly Trp Lys Glu Met			
145	150	155	160
Arg Cys His Leu Arg Ala Asn Gly Tyr Leu Cys Lys Tyr Gln Phe Glu			
165	170	175	
Val Leu Cys Pro Ala Pro Arg Pro Gly Ala Ala Ser Asn Leu Ser Tyr			
180	185	190	
Arg Ala Pro Phe Gln Leu His Ser Ala Ala Leu Asp Phe Ser Pro Pro			
195	200	205	
Gly Thr Glu Val Ser Ala Leu Cys Arg Gly Gln Leu Pro Ile Ser Val			
210	215	220	
Thr Cys Ile Ala Asp Glu Ile Gly Ala Arg Trp Asp Lys Leu Ser Gly			
225	230	235	240
Asp Val Leu Cys Pro Cys Pro Gly Arg Tyr Leu Arg Ala Gly Lys Cys			
245	250	255	
Ala Glu Leu Pro Asn Cys Leu Asp Asp Leu Gly Gly Phe Ala Cys Glu			
260	265	270	
Cys Ala Thr Gly Phe Glu Leu Gly Lys Asp Gly Arg Ser Cys Val Thr			
275	280	285	
Ser Gly Glu Gly Gln Pro Thr Leu Gly Gly Thr Gly Val Pro Thr Arg			
290	295	300	
Arg Pro Pro Ala Thr Ala Thr Ser Pro Val Pro Gln Arg Thr Trp Pro			
305	310	315	320
Ile Arg Val Asp Glu Lys Leu Gly Glu Thr Pro Leu Val Pro Glu Gln			
325	330	335	
Asp Asn Ser Val Thr Ser Ile Pro Glu Ile Pro Arg Trp Gly Ser Gln			

340	345	350
Ser Thr Met Ser Thr Leu Gln Met Ser Leu Gln Ala Glu Ser Lys Ala		
355	360	365
Thr Ile Thr Pro Ser Gly Ser Val Ile Ser Lys Phe Asn Ser Thr Thr		
370	375	380
Ser Ser Ala Thr Pro Gln Ala Phe Asp Ser Ser Ser Ala Val Val Phe		
385	390	395
Ile Phe Val Ser Thr Ala Val Val Val Leu Val Ile Leu Thr Met Thr		
405	410	415
Val Leu Gly Leu Val Lys Leu Cys Phe His Glu Ser Pro Ser Ser Gln		
420	425	430
Pro Arg Lys Glu Ser Met Gly Pro Pro Gly Leu Glu Ser Asp Pro Glu		
435	440	445
Pro Ala Ala Leu Gly Ser Ser Ser Ala His Cys Thr Asn Asn Gly Val		
450	455	460
Lys Val Gly Asp Cys Asp Leu Arg Asp Arg Ala Glu Gly Ala Leu Leu		
465	470	475
Ala Glu Ser Pro Leu Gly Ser Ser Asp Ala		
485	490	

<210> 97

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 97

tggaaggaga tgcgtatgccca cctg

24

<210> 98

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 98

tgaccagtgg ggaaggacag

20

<210> 99
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 99
 acagagcaga gggtgccctg 20

<210> 100
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 100
 tcagggacaa gtgggtctc tccc 24

<210> 101
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 101
 tcagggaagg agtgtgcagt tctg 24

<210> 102
 <211> 50
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 102
 acagctcccc atctcagtta ctgcattgc ggacgaaatc ggcgctcgct 50

<210> 103
 <211> 2026
 <212> DNA
 <213> Homo sapiens

<400> 103

cggacgcgtg ggattcagca gtggcctgtg gctgccagag cagctcctca gggaaacta 60
 agcgtcgagt cagacggcac cataatcgcc tttaaaagtg cctccgcct gcccggcccg 120
 tatcccccg ctacctggc cgccccgcgg cggtgcgcgc gtgagaggga gcgcgcggc 180
 agccgagcgc cggtgtgagc cagcgtctgc gccagtgtga gcggcggtgt gagcgcgtgt 240
 ggtgcggagg ggcgtgtgtg ccggcgccgcg cgccgtgggg tgcaaaccac 300
 gctccatga gggcgcgaa cgcctggcg ccactctgcc tgctgctggc tgccgcacc 360
 cagctctcgc ggcagcagtc cccagagaga cctgtttca catgtggtgg cattctact 420
 ggagagtctg gatttattgg cagtaaggt tttcctggag tgtaccctcc aaatagcaaa 480
 tgtacttggaa aatacacaat tcccaagga aaagttagtgc ttctcaattt ccgattcata 540
 gacctcgaga gtgacaacct gtgcgcstat gactttgtgg atgtgtacaa tggccatgcc 600
 aatggccagc gcattggccg cttctgtggc actttccgc ctggagccct tggccatgt 660
 ggcaacaaga tgatggtgca gatgattct gatgccaaca cagctggcaa tggccatgt 720
 gccatgttct cgcgtctga accaaacgaa agaggggatc agtattgtgg aggactctt 780
 gacagacctt cggcgtcttt taaaaccccc aactggccag accgggatta ccctgcagga 840
 gtcacttgtg tggccatgt tgtagcccc aagaatcagc ttatagaatt aaagtttgag 900
 aagtttgatg tggagcggaa taactactgc cgatatgatt atgtggctgt gtttaatggc 960
 gggaaagtca acgatgttag aagaatttggaa aagtattgtg gtgatagtcc acctgcgc 1020
 attgtgtctg agagaaaatga acttcttatt cagtttttat cagacttaag tttaactgca 1080
 gatgggttta ttggctacta cataattcagg ccaaaaaaac tgcctacaac tacagaacag 1140
 cctgtcacca ccacattccc tgtaaccacg ggtttaaaac ccaccgtggc cttgtgtcaa 1200
 caaaagtgtt gacggacggg gactctggag ggcaattatt gttcaagtga ctttgttata 1260
 gccggcactg ttatcacaac catcaactgc gatgggagtt tgcacgcac agtctcgatc 1320
 atcaacatct acaaagaggg aaatttggcg attcagcagg cggcaagaa catgagtgcc 1380
 aggctgactg tcgtctgcaaa gcagtgcctt ctcctcagaa gaggtctaaa ttacattatt 1440
 atgggccaag taggtgaaga tggcgaggc aaaatcatgc caaacagctt tatcatgatg 1500
 ttcaagacca agaatcagaa gtcctggat gccttaaaaa ataagcaatg ttaacagtga 1560
 actgtgtcca ttaagctgtt attctgccc tgccttggaa agatctatgt tctctcagta 1620
 gaaaaaaaa tacttataaa attacatatt ctgaaagagg attccgaaag atgggactgg 1680
 ttgactcttc acatgatgga ggtatgaggc ctccgagata gctgagggaa gttctttgcc 1740
 tgctgtcaga ggagcagcta tctgatttggaa aacctgcgcga cttagtgcgg tgataggaag 1800
 ctaaaaagtgtt caagcgttga cagcttggaa gcttttattt atacatctct gtaaaaggat 1860
 attttagaaat tgagttgtgt gaagatgtca aaaaaagatt ttagaagtgc aatatttata 1920
 gtgttatttg tttcaccttc aagccttgc cctgaggtgt tacaatcttgc tcttgcgttt 1980
 tctaaatcaa tgcttaataa aatattttta aaggaaaaaaa aaaaaaa 2026

<210> 104

<211> 415

<212> PRT

<213> Homo sapiens

<400> 104

Met Arg Gly Ala Asn Ala Trp Ala Pro Leu Cys Leu Leu Leu Ala Ala

1

5

10

15

Ala Thr Gln Leu Ser Arg Gln Gln Ser Pro Glu Arg Pro Val Phe Thr

20

25

30

Cys Gly Gly Ile Leu Thr Gly Glu Ser Gly Phe Ile Gly Ser Glu Gly

35

40

45

Phe Pro Gly Val Tyr Pro Pro Asn Ser Lys Cys Thr Trp Lys Ile Thr

50

55

60

Val Pro Glu Gly Lys Val Val Val Leu Asn Phe Arg Phe Ile Asp Leu
 65 70 75 80

Glu Ser Asp Asn Leu Cys Arg Tyr Asp Phe Val Asp Val Tyr Asn Gly
 85 90 95

His Ala Asn Gly Gln Arg Ile Gly Arg Phe Cys Gly Thr Phe Arg Pro
 100 105 110

Gly Ala Leu Val Ser Ser Gly Asn Lys Met Met Val Gln Met Ile Ser
 115 120 125

Asp Ala Asn Thr Ala Gly Asn Gly Phe Met Ala Met Phe Ser Ala Ala
 130 135 140

Glu Pro Asn Glu Arg Gly Asp Gln Tyr Cys Gly Gly Leu Leu Asp Arg
 145 150 155 160

Pro Ser Gly Ser Phe Lys Thr Pro Asn Trp Pro Asp Arg Asp Tyr Pro
 165 170 175

Ala Gly Val Thr Cys Val Trp His Ile Val Ala Pro Lys Asn Gln Leu
 180 185 190

Ile Glu Leu Lys Phe Glu Lys Phe Asp Val Glu Arg Asp Asn Tyr Cys
 195 200 205

Arg Tyr Asp Tyr Val Ala Val Phe Asn Gly Gly Glu Val Asn Asp Ala
 210 215 220

Arg Arg Ile Gly Lys Tyr Cys Gly Asp Ser Pro Pro Ala Pro Ile Val
 225 230 235 240

Ser Glu Arg Asn Glu Leu Leu Ile Gln Phe Leu Ser Asp Leu Ser Leu
 245 250 255

Thr Ala Asp Gly Phe Ile Gly His Tyr Ile Phe Arg Pro Lys Lys Leu
 260 265 270

Pro Thr Thr Glu Gln Pro Val Thr Thr Phe Pro Val Thr Thr
 275 280 285

Gly Leu Lys Pro Thr Val Ala Leu Cys Gln Gln Lys Cys Arg Arg Thr
 290 295 300

Gly Thr Leu Glu Gly Asn Tyr Cys Ser Ser Asp Phe Val Leu Ala Gly
 305 310 315 320

Thr Val Ile Thr Thr Ile Thr Arg Asp Gly Ser Leu His Ala Thr Val
 325 330 335

Ser Ile Ile Asn Ile Tyr Lys Glu Gly Asn Leu Ala Ile Gln Gln Ala

340	345	350
Gly Lys Asn Met Ser Ala Arg Leu Thr Val Val Cys Lys Gln Cys Pro		
355	360	365
Leu Leu Arg Arg Gly Leu Asn Tyr Ile Ile Met Gly Gln Val Gly Glu		
370	375	380
Asp Gly Arg Gly Lys Ile Met Pro Asn Ser Phe Ile Met Met Phe Lys		
385	390	395
Thr Lys Asn Gln Lys Leu Leu Asp Ala Leu Lys Asn Lys Gln Cys		
405	410	415

<210> 105
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 105
ccgattcata gacctcgaga gt 22

<210> 106
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 106
gtcaaggagt cctccacaat ac 22

<210> 107
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 107
gtgtacaatg gccatgccaa tggccagcgc attggccgct tctgt 45

<210> 108
<211> 1838
<212> DNA

<213> Homo sapiens

<400> 108

cggacgcgtg ggccggacgcg tggcgcccc accggcccc cgccgtggg cggtcgcttc 60
 ttcccttcgc gtggcctacg agggtccccca gcctggtaa agatgcccc atggccccc 120
 aagggcctag tcccgctgt gctctgggc ctcagcctct tcctcaacct cccaggac 180
 atctggctcc agccctctcc acctccccag tcttctcccc cgcctcagcc ccatccgtgt 240
 catacctgcc ggggactggg tgacagctt aacaaggccc tggagagaac catccggac 300
 aactttggag gtggaaacac tgcctggag gaagagaatt tgtccaaata caaagacagt 360
 gagaccggcc tggtagaggt gctggagggt gtgtgcagca agtcagactt cgagtgcac 420
 cgccctgtgg agctgagtga ggagctggg gagagctggg gtttccaaa gcagcaggag 480
 gccccggacc tctccagtg gctgtgtca gattccctga agctctgtc ccccgccagc 540
 accttcgggc cctccctgcct tccctgtcct gggggAACAG agaggccctg cggtgtgtac 600
 gggcagtgta aaggagaagg gacacgaggg ggcagcgggc actgtactg ccaagccggc 660
 tacgggggtg aggccctgtgg ccagtgtggc ctggctact ttgaggcaga acgcaacgcc 720
 agccatctgg tatgttcggc ttgtttggc ccctgtgccc gatgctcagg acctgaggaa 780
 tcaaactgtt tgcaatgcaaa gaaggcgtgg gccctgcac acctaagtg tgttagacatt 840
 gatgagtgta gcacagaggg agccaaactgt ggagctgacc aattctgcgt gaacactgag 900
 ggctcctatg agtgcgcgaga ctgtgcctag gctgcctag gctgcattggg ggcaggccca 960
 ggtcgctgtt agaagtgttag ccctggctat cagcagggtgg gctccaagtg tctcgatgtg 1020
 gatgagtgta agacagaggt gtgtccggga gagaacaagc agtgtaaaaa caccgaggc 1080
 ggttatcgct gcatctgtgc cgagggtctac aagcagatgg aaggcatctg tgtgaaggag 1140
 cagatcccag agtcagcagg cttcttcata gagatgacag aagacgagg tgggtgtctg 1200
 cagcagatgt tcttggcat catcatctgt gcaactggcca cgctggctc taaggccgac 1260
 ttgggtttca ccgcctatctt cattggggct gtggccggcca tgactggcta ctgggtgtca 1320
 gagcgcagtg accgtgtgt ggagggttc atcaaggccca gataatcgcc gccaccac 1380
 gtaggacctc ctccccaccca cgctggcccc agagcttggg ctgcctctt gctggacact 1440
 caggacagct tggtttattt ttgagagttt ggtaaagcacc cctacactgcc ttacagagca 1500
 gcccaggatc ccaggccccgg gcagacaagg cccctgggtt aaaaagttagc cctgaagggt 1560
 gataccatga gcttttcacc tggcgccccgac tggcaggctt cacaatgtgt gaatttcaaa 1620
 agtttttcct taatgggtggc tgcttagagct ttggccctgt cttaggatta ggtggccctc 1680
 acagggtgg gcccattcaca gctccctctt gccagctgca tgctggccagt tcctgttctg 1740
 tggtttccacac atccccacac cccattgcca cttattttt catctcaggaa aataaaagaaa 1800
 ggtttttggaa agttaaaaaaa aaaaaaaaaa aaaaaaaaaa 1838

<210> 109

<211> 420

<212> PRT

<213> Homo sapiens

<400> 109

Met Ala Pro Trp Pro Pro Lys Gly Leu Val Pro Ala Val Leu Trp Gly
1 5 10 15

Leu Ser Leu Phe Leu Asn Leu Pro Gly Pro Ile Trp Leu Gln Pro Ser
 20 25 30

Pro Pro Pro Gln Ser Ser Pro Pro Pro Gln Pro His Pro Cys His Thr
35 40 45

Cys Arg Gly Leu Val Asp Ser Phe Asn Lys Gly Leu Glu Arg Thr Ile
 50 55 60

Arg Asp Asn Phe Gly Gly Asn Thr Ala Trp Glu Glu Glu Asn Leu
 65 70 75 80
 Ser Lys Tyr Lys Asp Ser Glu Thr Arg Leu Val Glu Val Leu Glu Gly
 85 90 95
 Val Cys Ser Lys Ser Asp Phe Glu Cys His Arg Leu Leu Glu Leu Ser
 100 105 110
 Glu Glu Leu Val Glu Ser Trp Trp Phe His Lys Gln Gln Glu Ala Pro
 115 120 125
 Asp Leu Phe Gln Trp Leu Cys Ser Asp Ser Leu Lys Leu Cys Cys Pro
 130 135 140
 Ala Gly Thr Phe Gly Pro Ser Cys Leu Pro Cys Pro Gly Gly Thr Glu
 145 150 155 160
 Arg Pro Cys Gly Gly Tyr Gly Gln Cys Glu Gly Glu Gly Thr Arg Gly
 165 170 175
 Gly Ser Gly His Cys Asp Cys Gln Ala Gly Tyr Gly Gly Glu Ala Cys
 180 185 190
 Gly Gln Cys Gly Leu Gly Tyr Phe Glu Ala Glu Arg Asn Ala Ser His
 195 200 205
 Leu Val Cys Ser Ala Cys Phe Gly Pro Cys Ala Arg Cys Ser Gly Pro
 210 215 220
 Glu Glu Ser Asn Cys Leu Gln Cys Lys Lys Gly Trp Ala Leu His His
 225 230 235 240
 Leu Lys Cys Val Asp Ile Asp Glu Cys Gly Thr Glu Gly Ala Asn Cys
 245 250 255
 Gly Ala Asp Gln Phe Cys Val Asn Thr Glu Gly Ser Tyr Glu Cys Arg
 260 265 270
 Asp Cys Ala Lys Ala Cys Leu Gly Cys Met Gly Ala Gly Pro Gly Arg
 275 280 285
 Cys Lys Lys Cys Ser Pro Gly Tyr Gln Gln Val Gly Ser Lys Cys Leu
 290 295 300
 Asp Val Asp Glu Cys Glu Thr Glu Val Cys Pro Gly Glu Asn Lys Gln
 305 310 315 320
 Cys Glu Asn Thr Glu Gly Gly Tyr Arg Cys Ile Cys Ala Glu Gly Tyr
 325 330 335
 Lys Gln Met Glu Gly Ile Cys Val Lys Glu Gln Ile Pro Glu Ser Ala
 340 345 350

Gly Phe Phe Ser Glu Met Thr Glu Asp Glu Leu Val Val Leu Gln Gln
 355 360 365

Met Phe Phe Gly Ile Ile Ile Cys Ala Leu Ala Thr Leu Ala Ala Lys
 370 375 380

Gly Asp Leu Val Phe Thr Ala Ile Phe Ile Gly Ala Val Ala Ala Met
 385 390 395 400

Thr Gly Tyr Trp Leu Ser Glu Arg Ser Asp Arg Val Leu Glu Gly Phe
 405 410 415

Ile Lys Gly Arg
 420

<210> 110

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 110

cctggctatc agcaggtggg ctccaagtgt ctcgatgtgg atgagtgtga 50

<210> 111

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 111

attctgcgtg aacactgagg gc 22

<210> 112

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 112

atctgcttgt agccctcgac ac 22

<210> 113

<211> 1616

<212> DNA

<213> Homo sapiens

<220>

<221> modified_base

<222> (1461)

<223> a, t, c or g

<400> 113

tgagaccctc ctgcagccctt ctcaaggggac agccccactc tgccctttgc tcctccagg 60
cagcaccatg cagcccctgt ggctctgtctg ggcactctgg gtgttgcccc tggccagccc 120
cgggggccccc ctgaccgggg agcagctctt gggcagcctg ctgcggcagc tgcagctcaa 180
agaggtgccc accctggaca gggccgacat ggaggagctg gtcatccccca cccacgttag 240
ggcccagtac gtggccctgc tgcagcgcag ccacggggac cgctcccgcg gaaagaggtt 300
cagccagagc ttccgagagg tggccggcag gttcctggcg ttggaggcca gcacacacct 360
gctgggttcc ggcattggagc agcggctgcc gccaacagc gagctggtgc aggccgtgct 420
gcggctcttc caggagccgg tcccccaagggc cgcgctgcac aggcaacgggc ggtctgtcccc 480
gcgcagcgcgc cgggccccggg tgaccgtcga gtggctgcgc gtccgcgcac acggctccaa 540
ccgcacctcc ctcatcgact ccaggctggt gtccgtccac gagagcggct ggaaggccctt 600
cgacgtgacc gaggccgtga acttctggca gcagctgagc cggcccccggc agccgctgtct 660
gctacaggtg tcgggtcaga gggagcatct gggcccgctg gcgtccggcg cccacaagct 720
ggtcccgctt gcctcgcagg gggcgccagc cgggcttggg gagcccccagc tggagctgca 780
cacccctggac ctggggact atggagctca gggcgactgt gaccctgaag caccaatgac 840
cgagggcacc cgctgtgtcc gccaggagat gtacattgac ctgcagggga tgaagtgggc 900
cgagaactgg gtgctggagc ccccgccctt cctggcttat gagtgtgtgg gcacccgcgc 960
gcagccccccg gaggccctgg ccttcaagtgc gccgttctg gggcctcgac agtgcacgc 1020
ctcggagact gactcgctgc ccatgatcgat cagcatcaag gagggaggca ggaccaggcc 1080
ccaggtggtc agcctgcccc acatgagggt gcagaagtgc agctgtgeet cggatggtgc 1140
gctcgtgcca aggaggctcc agccataggc gcctagtgtt gccatcgagg gacttgactt 1200
gtgtgtgttt ctgaagtgtt cgagggtaacc aggagagctg gcgatgactg aactgctgat 1260
ggacaaaatgc tctgtgtctt ctgtgagcc ctgaatttgc ttccctgtac aagttaccc 1320
acctaatttt tgcttctcag gaatgagaat cttggccac tggagagccc ttgctcagg 1380
ttctctattt ttattattca ctgcactata ttctaagcac ttacatgtgg agatactgta 1440
acctgagggc agaaaagccca ntgtgtcatt gtttacttgt cctgtcaactg gatctgggt 1500
aaagtccctcc accaccactc tggacctaag acctgggggt aagtgtgggt tgcaccc 1560
caatccaaqat aataaaagact ttgtaaaaaca tgaataaaaac acattttattt ctaaaa 1616

<210> 114

<211> 366

<212> PRT

<213> Homo sapiens

<400> 114

Met Gln Pro Leu Trp Leu Cys Trp Ala Leu Trp Val Leu Pro Leu Ala
1 5 10 15

Ser Pro Gly Ala Ala Leu Thr Gly Glu Gln Leu Leu Gly Ser Leu Leu
20 25 30

Arg Gln Leu Gln Leu Lys Glu Val Pro Thr Leu Asp Arg Ala Asp Met
35 40 45

Glu Glu Leu Val Ile Pro Thr His Val Arg Ala Gln Tyr Val Ala Leu
 50 55 60

Leu Gln Arg Ser His Gly Asp Arg Ser Arg Gly Lys Arg Phe Ser Gln
 65 70 75 80

Ser Phe Arg Glu Val Ala Gly Arg Phe Leu Ala Leu Glu Ala Ser Thr
 85 90 95

His Leu Leu Val Phe Gly Met Glu Gln Arg Leu Pro Pro Asn Ser Glu
 100 105 110

Leu Val Gln Ala Val Leu Arg Leu Phe Gln Glu Pro Val Pro Lys Ala
 115 120 125

Ala Leu His Arg His Gly Arg Leu Ser Pro Arg Ser Ala Arg Ala Arg
 130 135 140

Val Thr Val Glu Trp Leu Arg Val Arg Asp Asp Gly Ser Asn Arg Thr
 145 150 155 160

Ser Leu Ile Asp Ser Arg Leu Val Ser Val His Glu Ser Gly Trp Lys
 165 170 175

Ala Phe Asp Val Thr Glu Ala Val Asn Phe Trp Gln Gln Leu Ser Arg
 180 185 190

Pro Arg Gln Pro Leu Leu Gln Val Ser Val Gln Arg Glu His Leu
 195 200 205

Gly Pro Leu Ala Ser Gly Ala His Lys Leu Val Arg Phe Ala Ser Gln
 210 215 220

Gly Ala Pro Ala Gly Leu Gly Glu Pro Gln Leu Glu Leu His Thr Leu
 225 230 235 240

Asp Leu Gly Asp Tyr Gly Ala Gln Gly Asp Cys Asp Pro Glu Ala Pro
 245 250 255

Met Thr Glu Gly Thr Arg Cys Cys Arg Gln Glu Met Tyr Ile Asp Leu
 260 265 270

Gln Gly Met Lys Trp Ala Glu Asn Trp Val Leu Glu Pro Pro Gly Phe
 275 280 285

Leu Ala Tyr Glu Cys Val Gly Thr Cys Arg Gln Pro Pro Glu Ala Leu
 290 295 300

Ala Phe Lys Trp Pro Phe Leu Gly Pro Arg Gln Cys Ile Ala Ser Glu
 305 310 315 320

Thr Asp Ser Leu Pro Met Ile Val Ser Ile Lys Glu Gly Gly Arg Thr
 325 330 335

Arg Pro Gln Val Val Ser Leu Pro Asn Met Arg Val Gln Lys Cys Ser
 340 345 350

Cys Ala Ser Asp Gly Ala Leu Val Pro Arg Arg Leu Gln Pro
 355 360 365

<210> 115

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 115

aggactgccat taacttgccct g

21

<210> 116

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 116

ataggagttt aaggcaggcgct gc

22

<210> 117

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 117

tgtgtggaca tagacgagtg ccgcattaccgc tactgccaggc accgc

45

<210> 118

<211> 1857

<212> DNA

<213> Homo sapiens

<400> 118

gtctgttccc aggagtccctt cggccggctgt ttttgtcagtg gcctgatcgatc gatggggaca 60
 aaggcgcaag tcgagaggaa actgttgtgc ctcttcataat tggcgatcct gtttgtgctcc 120
 ctggcattgg gcagtgttac agtgcactct tctgaacctg aagtcaaat ttctgagaat 180

aatcctgtga agttgtcctg tgcctactcg ggcttttctt ctccccgtgt ggagtggaaag 240
tttgaccaag gagacaccac cagactcggt tgctataata acaagatcac agcttcctat 300
gaggaccggg tgacccctt gccaactgtt atcaccttca agtccgtgac acgggaagac 360
actgggacat acacttgtat ggtctcttag gaaggcggca acagctatgg ggagggtcaag 420
gtcaagctca tcgtgcttgt gcctccatcc aagcctacag ttaacatccc ctccctgtcc 480
accattggg accgggcagt gctgacatgc tcagaacaag atggttcccc accttctgaa 540
tacaccttgtt tcaaagatgg gatagtgtat cctacgaatc caaaaagcac cctgtgccttc 600
agcaactctt cctatgtcct gaatcccaca acaggagagc tggctttga tccccgtgtca 660
gcctctgata ctggagaata cagctgttag gcacggaatg ggtatggac acccatgact 720
tcaaattgtcg tgcgcattggg agctgtggag cggaatgtgg gggtcatcggt ggcagccgtc 780
cttgcataccc tgattctcct gggaatcttg gttttggca tctgggttgc ctatagccga 840
ggccactttg acagaacaaa gaaaggact tcgagtaaga aggtgattta cagccagcct 900
agtgcggaa gtgaaggaga attcaaacag acctcgcat tcctgggtgt agcctggtcg 960
gctcacccgc tatcatctgc attgcctta ctcagggtgt accggactct gggccctgtat 1020
gtctgttagtt tcacaggatg ctttattttgtt cttctacacc ccacaggccc ccctacttct 1080
tcggatgtgt ttttaataat gtcagctatg tgccccatcc tccttcatgc cttccctccc 1140
tttccttacca ctgctgagtg gcctggaaact tgtttaaagt gtttattccc catttctttg 1200
agggatcagg aaggaatcct gggtatgcca ttgacttccc ttctaagtag acagaaaaaa 1260
tggcgggggt cgccaggatc tgcactcaac tgccccatcg gctggcaggg atctttgaat 1320
aggtatctt agcttggttc tgggctctt cttgtgtac tgacgaccag gcccagctgt 1380
tctagagccg gaatttagagg cttagagccg tgaaatgggt gtttgggtat gacactgggg 1440
tccttcacat tctggggccc actctcttct gtcttcccat gggaaatgtgcc actgggatcc 1500
ctctgccttg tcctcctgaa tacaagctga ctgacattga ctgtgtctgt gaaaaatggg 1560
agctctgtt gtggagagca tagtaaattt tcaagagaact tgaagccaaa aggatttaaa 1620
accgctgctc taaagaaaaag aaaactggag gctgggcgcgat gttggctacg cctgtatcc 1680
cagaggctga ggccaggccgat tcacctgagg tcgggagttc gggatcagcc tgaccaacat 1740
ggagaaaaccc tactggaaat acaaagtttgc ccaggcatgg tgggtgcgtc ctgtgttccc 1800
agctgctcag gggccctggca acaagagcaa aactccagct caaaaaaaaaaa aaaaaaaaaa 1857

<210> 119

<211> 299

<212> PRT

<213> Homo sapiens

<400> 119

Met Gly Thr Lys Ala Gln Val Glu Arg Lys Leu Leu Cys Leu Phe Ile
1 5 10 15

Leu Ala Ile Leu Leu Cys Ser Leu Ala Leu Gly Ser Val Thr Val His
20 25 30

Ser Ser Glu Pro Glu Val Arg Ile Pro Glu Asn Asn Pro Val Lys Leu
35 40 45

Ser Cys Ala Tyr Ser Gly Phe Ser Ser Pro Arg Val Glu Trp Lys Phe
50 55 60

Asp Gln Gly Asp Thr Thr Arg Leu Val Cys Tyr Asn Asn Lys Ile Thr
65 70 75 80

Ala Ser Tyr Glu Asp Arg Val Thr Phe Leu Pro Thr Gly Ile Thr Phe
85 90 95

Lys Ser Val Thr Arg Glu Asp Thr Gly Thr Tyr Thr Cys Met Val Ser
 100 105 110

Glu Glu Gly Gly Asn Ser Tyr Gly Glu Val Lys Val Lys Leu Ile Val
 115 120 125

Leu Val Pro Pro Ser Lys Pro Thr Val Asn Ile Pro Ser Ser Ala Thr
 130 135 140

Ile Gly Asn Arg Ala Val Leu Thr Cys Ser Glu Gln Asp Gly Ser Pro
 145 150 155 160

Pro Ser Glu Tyr Thr Trp Phe Lys Asp Gly Ile Val Met Pro Thr Asn
 165 170 175

Pro Lys Ser Thr Arg Ala Phe Ser Asn Ser Ser Tyr Val Leu Asn Pro
 180 185 190

Thr Thr Gly Glu Leu Val Phe Asp Pro Leu Ser Ala Ser Asp Thr Gly
 195 200 205

Glu Tyr Ser Cys Glu Ala Arg Asn Gly Tyr Gly Thr Pro Met Thr Ser
 210 215 220

Asn Ala Val Arg Met Glu Ala Val Glu Arg Asn Val Gly Val Ile Val
 225 230 235 240

Ala Ala Val Leu Val Thr Leu Ile Leu Gly Ile Leu Val Phe Gly
 245 250 255

Ile Trp Phe Ala Tyr Ser Arg Gly His Phe Asp Arg Thr Lys Lys Gly
 260 265 270

Thr Ser Ser Lys Lys Val Ile Tyr Ser Gln Pro Ser Ala Arg Ser Glu
 275 280 285

Gly Glu Phe Lys Gln Thr Ser Ser Phe Leu Val
 290 295

<210> 120

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 120

tcgcggagct gtgttctgtt tccc

24

<210> 121

<211> 50

<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 121		
tgatcgcgat ggggacaaag gcgcaggctc gagaggaaac tgttgtgcct		50
<210> 122		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 122		
acacctgggtt caaagatggg		20
<210> 123		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 123		
taggaagagt tgctgaaggc acgg		24
<210> 124		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 124		
ttgccttact caggtgctac		20
<210> 125		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		

oligonucleotide probe

<400> 125
 actcagcagt ggttagaaag 20

<210> 126
 <211> 1210
 <212> DNA
 <213> Homo sapiens

<400> 126
 cagcgcgtgg ccggcgccgc tgggggaca gcatgagcgg cggttggatg gcgcagggtt 60
 gagcgtggcg aacaggggct ctggccctgg cgctgctgt gctgctcgcc ctcggactag 120
 gcctggaggc cggcgcgagc cccgtttcca ccccgcacca tgcccaggcc gcaggcccc 180
 gtcaggctc gtgcccaccc accaagtcc agtgcgcac cagtgctta tgcgtgcccc 240
 tcacctggcg ctgcgacagg gacttggact gcaagcgatgg cagcgatgag gaggagtgc 300
 ggattgagcc atgtaccacaa aaagggcaat gcccaccgccc ccctggcctc ccctgccc 360
 gcacccggcgt cagtactgc tctggggaa ctgacaagaa actgcgcacac tgcagccccc 420
 tggcctgcct agcaggcgag ctccgttgc cgcgtggca tgactgcatt ccactcacgt 480
 ggcgtgcga cggccaccca gactgtcccg actccagcga cgagctcgcc tggaaacca 540
 atgagatcct cccggaaggg gatgccacaa ccatgggccc ccctgtgacc ctggagagt 600
 tcacctctc caggaatgcc acaaccatgg ggccccctgt gaccctggag agtgtccct 660
 ctgtcggaa tgccacatcc tcctctgccc gagaccatgc tggaaacccca actgcctatg 720
 gggttattgc agctgctgcg gtgctcagtg caagcctgtt caccgcacc tcctctt 780
 tgcgtggct ccgagccca gaggccctcc gcccacttgg gttactggtg gccatgaagg 840
 agtcctgct gctgtcagaa cagaagaccc cgcgtccctg aggacaagca cttgccacca 900
 ccgtcactca gcccctggcg tagccggaca ggaggagagc agtgcgcgg atgggtaccc 960
 gggcacacca gcccctcagag acctgagttc ttctggccac gtgaaacccca gaacccggc 1020
 tcctgcagaa gtggccctgg agattgaggg tccctggaca tccttatgg agatccgggg 1080
 agcttagatg gggAACCTGC cacagccaga actgaggggc tggcccccagg cagctccca 1140
 ggggtagaac gcccctgtgc ttaagacact ccctgtgcc cctgtgagg gtggcgattt 1200
 aagttgttcc 1210

<210> 127
 <211> 282
 <212> PRT
 <213> Homo sapiens

<400> 127
 Met Ser Gly Gly Trp Met Ala Gln Val Gly Ala Trp Arg Thr Gly Ala
 1 5 10 15

Leu Gly Leu Ala Leu Leu Leu Leu Gly Leu Gly Leu Gly Leu Glu
 20 25 30

Ala Ala Ala Ser Pro Leu Ser Thr Pro Thr Ser Ala Gln Ala Ala Gly
 35 40 45

Pro Ser Ser Gly Ser Cys Pro Pro Thr Lys Phe Gln Cys Arg Thr Ser
 50 55 60

Gly Leu Cys Val Pro Leu Thr Trp Arg Cys Asp Arg Asp Leu Asp Cys
 65 70 75 80

Ser Asp Gly Ser Asp Glu Glu Glu Cys Arg Ile Glu Pro Cys Thr Gln
 85 90 95

 Lys Gly Gln Cys Pro Pro Pro Pro Gly Leu Pro Cys Pro Cys Thr Gly
 100 105 110

 Val Ser Asp Cys Ser Gly Gly Thr Asp Lys Lys Leu Arg Asn Cys Ser
 115 120 125

 Arg Leu Ala Cys Leu Ala Gly Glu Leu Arg Cys Thr Leu Ser Asp Asp
 130 135 140

 Cys Ile Pro Leu Thr Trp Arg Cys Asp Gly His Pro Asp Cys Pro Asp
 145 150 155 160

 Ser Ser Asp Glu Leu Gly Cys Gly Thr Asn Glu Ile Leu Pro Glu Gly
 165 170 175

 Asp Ala Thr Thr Met Gly Pro Pro Val Thr Leu Glu Ser Val Thr Ser
 180 185 190

 Leu Arg Asn Ala Thr Thr Met Gly Pro Pro Val Thr Leu Glu Ser Val
 195 200 205

 Pro Ser Val Gly Asn Ala Thr Ser Ser Ser Ala Gly Asp Gln Ser Gly
 210 215 220

 Ser Pro Thr Ala Tyr Gly Val Ile Ala Ala Ala Val Leu Ser Ala
 225 230 235 240

 Ser Leu Val Thr Ala Thr Leu Leu Leu Ser Trp Leu Arg Ala Gln
 245 250 255

 Glu Arg Leu Arg Pro Leu Gly Leu Leu Val Ala Met Lys Glu Ser Leu
 260 265 270

 Leu Leu Ser Glu Gln Lys Thr Ser Leu Pro
 275 280

 <210> 128
 <211> 24
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

 <400> 128
 aagttccagt gccgcaccag tggc

 <210> 129

cggcaaccag tgtgctgctg gtgctgctgc tcgtcatcct ggcaggatg ttccagacca 1200
 agttcaaggc ccacttccc cccaggggc ctccccggag ttccagcagt gaccctgact 1260
 ttgtggtgtt agacggcggt cccgtcatgc tcccgtctta tgacgaagct gtgagtggcg 1320
 gcttgagtgc cttaggcccc gggtacatgg cctctgtggg ccagggctgc cccttacccg 1380
 tggacgacca gagcccccca gcataccccc gtcagggga cacggacaca ggcccagggg 1440
 agtcagaaac ctgtgacagc gtctcaggct cttctgagct gctccaaagt ctgtattcac 1500
 ctcccagggtg ccaagagagc acccaccctg cttcggacaa ccctgacata attgccagca 1560
 cggcagagga ggtggcatcc accagcccag gcatccatca tgcccactgg gtgttgtcc 1620
 taagaaaactg attgattaaa aaatttccca aagtgtctg aagtgtctct tcaaatacat 1680
 gttgatctgt ggagtgttatt ccttccttc tcttggttt agacaaatgt aaacaaagct 1740
 ctgatccta aaattgctat gctgatagag tggtgagggc tggaagctt atcaagtcct 1800
 gtttcttctt gacacagact gattaaaaat taaaagnaaa aaa 1843

<210> 132

<211> 490

<212> PRT

<213> Homo sapiens

<400> 132

Met	Tyr	His	Gly	Met	Asn	Pro	Ser	Asn	Gly	Asp	Gly	Phe	Leu	Glu	Gln
1				5				10					15		

Gln	Gln	Gln	Gln	Gln	Pro	Gln	Ser	Pro	Gln	Arg	Leu	Leu	Ala	Val
					20			25				30		

Ile	Leu	Trp	Phe	Gln	Leu	Ala	Leu	Cys	Phe	Gly	Pro	Ala	Gln	Leu	Thr
					35			40				45			

Gly	Gly	Phe	Asp	Asp	Leu	Gln	Val	Cys	Ala	Asp	Pro	Gly	Ile	Pro	Glu
					50			55			60				

Asn	Gly	Phe	Arg	Thr	Pro	Ser	Gly	Gly	Val	Phe	Phe	Glu	Gly	Ser	Val
					65				70		75			80	

Ala	Arg	Phe	His	Cys	Gln	Asp	Gly	Phe	Lys	Leu	Lys	Gly	Ala	Thr	Lys
					85				90			95			

Arg	Leu	Cys	Leu	Lys	His	Phe	Asn	Gly	Thr	Leu	Gly	Trp	Ile	Pro	Ser
					100				105			110			

Asp	Asn	Ser	Ile	Cys	Val	Gln	Glu	Asp	Cys	Arg	Ile	Pro	Gln	Ile	Glu
					115				120			125			

Asp	Ala	Glu	Ile	His	Asn	Lys	Thr	Tyr	Arg	His	Gly	Glu	Lys	Leu	Ile
					130			135			140				

Ile	Thr	Cys	His	Glu	Gly	Phe	Lys	Ile	Arg	Tyr	Pro	Asp	Leu	His	Asn
							145		150			155		160	

Met	Val	Ser	Leu	Cys	Arg	Asp	Asp	Gly	Thr	Trp	Asn	Asn	Leu	Pro	Ile
					165				170			175			

Cys	Gln	Gly	Cys	Leu	Arg	Pro	Leu	Ala	Ser	Ser	Asn	Gly	Tyr	Val	Asn
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

180	185	190
Ile Ser Glu Leu Gln Thr Ser Phe Pro Val Gly Thr Val Ile Ser Tyr		
195	200	205
Arg Cys Phe Pro Gly Phe Lys Leu Asp Gly Ser Ala Tyr Leu Glu Cys		
210	215	220
Leu Gln Asn Leu Ile Trp Ser Ser Ser Pro Pro Arg Cys Leu Ala Leu		
225	230	235
Glu Ala Gln Val Cys Pro Leu Pro Pro Met Val Ser His Gly Asp Phe		
245	250	255
Val Cys His Pro Arg Pro Cys Glu Arg Tyr Asn His Gly Thr Val Val		
260	265	270
Glu Phe Tyr Cys Asp Pro Gly Tyr Ser Leu Thr Ser Asp Tyr Lys Tyr		
275	280	285
Ile Thr Cys Gln Tyr Gly Glu Trp Phe Pro Ser Tyr Gln Val Tyr Cys		
290	295	300
Ile Lys Ser Glu Gln Thr Trp Pro Ser Thr His Glu Thr Leu Leu Thr		
305	310	315
Thr Trp Lys Ile Val Ala Phe Thr Ala Thr Ser Val Leu Leu Val Leu		
325	330	335
Leu Leu Val Ile Leu Ala Arg Met Phe Gln Thr Lys Phe Lys Ala His		
340	345	350
Phe Pro Pro Arg Gly Pro Pro Arg Ser Ser Ser Ser Asp Pro Asp Phe		
355	360	365
Val Val Val Asp Gly Val Pro Val Met Leu Pro Ser Tyr Asp Glu Ala		
370	375	380
Val Ser Gly Gly Leu Ser Ala Leu Gly Pro Gly Tyr Met Ala Ser Val		
385	390	395
Gly Gln Gly Cys Pro Leu Pro Val Asp Asp Gln Ser Pro Pro Ala Tyr		
405	410	415
Pro Gly Ser Gly Asp Thr Asp Thr Gly Pro Gly Glu Ser Glu Thr Cys		
420	425	430
Asp Ser Val Ser Gly Ser Ser Glu Leu Leu Gln Ser Leu Tyr Ser Pro		
435	440	445
Pro Arg Cys Gln Glu Ser Thr His Pro Ala Ser Asp Asn Pro Asp Ile		
450	455	460

Ile Ala Ser Thr Ala Glu Glu Val Ala Ser Thr Ser Pro Gly Ile His
 465 470 475 480

His Ala His Trp Val Leu Phe Leu Arg Asn
 485 490

<210> 133

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 133

atctcctatc gctgcttcc cggt

23

<210> 134

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 134

agccaggatc gcagtaaaac tcc

23

<210> 135

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 135

atttaaaactt gatgggtctg cgtatcttga gtgcttacaa aaccatatct

50

<210> 136

<211> 1815

<212> DNA

<213> Homo sapiens

<400> 136

ccccacgcgtc cgctccgcgc cctccccccc gcctcccgtg cggccgtcg gtggcctaga 60
 gatgctgctg ccgcgggtgc agttgtcgcg cacgcctctg cccgccagcc cgctccacccg 120
 ccgttagcgcc cgagtgtcgg gggcgccacc cgagtcgggc catgaggccg ggaaccgcgc 180
 tacaggccgt gctgctggcc gtgctgctgg tggggctgcg ggccgcgacg ggtcgcctgc 240
 tgagtgcctc ggatttggac ctcagaggag ggcagccagt ctgccggga gggacacaga 300

ggccttgta taaagtccatt tacttccatg atacttctcg aagactgaac ttggagaaag 360
ccaaaagaagc ctgcaggagg gatggaggcc agctagtca catcgagtct gaagatgaac 420
agaaaactgat agaaaagttc attgaaaacc tcttgccatc tgatgggtac ttctggattg 480
ggctcaggag gcgtgaggag aaacaagaac atagcacagc ctgccaggac ctttatgctt 540
ggactgatgg cagcatatca caattttagga actggatgt ggatgagccg tcctgcccga 600
gcgaggctg cgtggatcatg taccatcagc catcgccacc cgctggcattc ggaggcccct 660
acatgttcca gtggaatgtat gaccggtgca acatgaagaa caatttcatt tgcaaataatt 720
ctgatgagaa accagcagtt ccttcttagag aagctgaagg tgagggaaaca gagctgacaa 780
cacctgtact tccagaagaa acacaggaag aagatgccaa aaaaacattt aaagaaaagta 840
gagaagctgc cttgaatctg gcctacatcc taatccccag cattccctt ctccctccctt 900
ttgtggtcac cacagttgtat tggtgggtt ggatctgttag aaaaagaaaa cgggagcagc 960
cagaccctag cacaagaag caacacacca tctggccctc tcctcaccag gaaaacagcc 1020
cgacccatga ggcttacaat gtcataagaa aacaaagcga agctgactta gctgagaccc 1080
ggccagacct gaagaatatt tcattccgag tgggttcggg agaagccact cccgatgaca 1140
tgtcttgtga ctatgacaac atggctgtga acccatcaga aagtgggtt gtgactctgg 1200
tgagcgtgga gagtgattt gtgaccaatg acatttatga gttctccccca gaccaaataatgg 1260
ggaggagtaa ggagtctgga tgggtggaaa atgaaatata tggttatttag gacatataaaa 1320
aaactgaaac tgacaacaat ggaaaagaaaa tgataagcaa aatcccttta ttttctataa 1380
ggaaaataca cagaaggctt atgaacaagc tttagatcagg tcctgtggat gagcatgtgg 1440
tccccacgac ctccctgttgg acccccacgt ttggctgtta tcctttatcc cagccagtc 1500
tccagctcga ccttatgaga aggtacccctg cccaggtctg gcacatagta gagtctcaat 1560
aaatgtcact tgggtggatg tatctaactt ttaagggaca gagcttacc tggcagtgtat 1620
aaagatgggc tggagactt ggaaaaccac ctctgttttc cttgccttat acagcagcac 1680
atattatcat acagacagaa aatccagaat cttttcaaaag cccacatatg gtagcacaagg 1740
ttggcctgtg catcgccaaat tctcatatct gttttttca aagaataaaa tcaaataaa 1800
aqaqaaaaaaa aaaaaa 1815

<210> 137

<211> 382

<212> PRT

<213> Homo sapiens

<400> 137

Met Arg Pro Gly Thr Ala Leu Gln Ala Val 10 Leu Leu Ala Val 15 Leu

Val Gly Leu Arg Ala Ala Thr Gly Arg Leu Leu Ser Ala Ser Asp Leu
20 25 30

Asp Leu Arg Gly Gly Gln Pro Val Cys Arg Gly Gly Thr Gln Arg Pro
35 40 45

Cys Tyr Lys Val Ile Tyr Phe His Asp Thr Ser Arg Arg Leu Asn Phe
50 55 60

Glu Glu Ala Lys Glu Ala Cys Arg Arg Asp Gly Gly Gln Leu Val Ser
65 70 75 80

Ile Glu Ser Glu Asp Glu Gln Lys Leu Ile Glu Lys Phe Ile Glu Asn
85 90 95

Leu Leu Pro Ser Asp Gly Asp Phe Trp Ile Gly Leu Arg Arg Arg Glu
 100 105 110

Glu Lys Gln Ser Asn Ser Thr Ala Cys Gln Asp Leu Tyr Ala Trp Thr
 115 120 125
 Asp Gly Ser Ile Ser Gln Phe Arg Asn Trp Tyr Val Asp Glu Pro Ser
 130 135 140
 Cys Gly Ser Glu Val Cys Val Val Met Tyr His Gln Pro Ser Ala Pro
 145 150 155 160
 Ala Gly Ile Gly Gly Pro Tyr Met Phe Gln Trp Asn Asp Asp Arg Cys
 165 170 175
 Asn Met Lys Asn Asn Phe Ile Cys Lys Tyr Ser Asp Glu Lys Pro Ala
 180 185 190
 Val Pro Ser Arg Glu Ala Glu Gly Glu Glu Thr Glu Leu Thr Thr Pro
 195 200 205
 Val Leu Pro Glu Glu Thr Gln Glu Glu Asp Ala Lys Lys Thr Phe Lys
 210 215 220
 Glu Ser Arg Glu Ala Ala Leu Asn Leu Ala Tyr Ile Leu Ile Pro Ser
 225 230 235 240
 Ile Pro Leu Leu Leu Leu Val Val Thr Thr Val Val Cys Trp Val
 245 250 255
 Trp Ile Cys Arg Lys Arg Lys Arg Glu Gln Pro Asp Pro Ser Thr Lys
 260 265 270
 Lys Gln His Thr Ile Trp Pro Ser Pro His Gln Gly Asn Ser Pro Asp
 275 280 285
 Leu Glu Val Tyr Asn Val Ile Arg Lys Gln Ser Glu Ala Asp Leu Ala
 290 295 300
 Glu Thr Arg Pro Asp Leu Lys Asn Ile Ser Phe Arg Val Cys Ser Gly
 305 310 315 320
 Glu Ala Thr Pro Asp Asp Met Ser Cys Asp Tyr Asp Asn Met Ala Val
 325 330 335
 Asn Pro Ser Glu Ser Gly Phe Val Thr Leu Val Ser Val Glu Ser Gly
 340 345 350
 Phe Val Thr Asn Asp Ile Tyr Glu Phe Ser Pro Asp Gln Met Gly Arg
 355 360 365
 Ser Lys Glu Ser Gly Trp Val Glu Asn Glu Ile Tyr Gly Tyr
 370 375 380

<211> 50
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 138
 gttcattgaa aacctttgc catgtatgg tgacttctgg attgggctca 50

<210> 139
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 139
 aagccaaaga agcctgcagg aggg 24

<210> 140
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 140
 cagtccaagc ataaagggtcc tggc 24

<210> 141
 <211> 1514
 <212> DNA
 <213> Homo sapiens

<400> 141
 ggggtctccc tcagggccgg gaggcacagc ggtccctgct tgctgaaggg ctggatgtac 60
 gcattccgcag gttcccgggg acttgggggc gccccgttag ccccgccgcg cgcagaagac 120
 ttgtgtttgc ctccctgcaggc ctcaacccgg agggcagcga gggcttacca ccatgtatcac 180
 tggtgtgttc agcatgcgtct tgtggacccc agtggggcgctc ctgacccctgc tggcgtactg 240
 cctgcaccag cggcggttgg cccttgccga gctgcaggag gccatggcc agtgtccgg 300
 cgaccgcagc ctgctgaagt tgaaaatggc gcaggtcggt tttcgacacg gggctcgag 360
 tcctctcaag ccgcctccgc tggaggagca ggttagagtgg aaccccccagc tattagaggt 420
 cccaccccaa actcagtttgc attacacagt caccaatcta gctgggtggc cgaaaccata 480
 ttctccttac gactctcaat accatgagac caccctgaag gggggcatgt ttgctggca 540
 gctgaccaag gtgggcattgc agcaaatgtt tgccttggga gagagactga ggaagaacta 600
 tgtggaaagac attcccttgc tttcaccaac cttcaaccca caggaggtct ttattcggttc 660
 cactaacatt tttcgaaatc tggagtccac ccgttgggttgc ctggctggc tttccagtg 720

tcagaaaagaa ggaccatca tcatccacac tgatgaagca gattcagaag tcttgatcc 780
 caactaccaa agctgctgga gcctgaggca gagaaccaga ggccggaggc agactgcctc 840
 tttacagcca ggaatctcg aggatttcaa aaaggtgaag gacaggatgg gcattgacag 900
 tagtgataaa gtggacttct tcatcctcct ggacaacgtg gctgccgagc aggcacacaa 960
 cctcccaagc tgccccatgc tgaagagatt tgcacggatg atcgaacaga gagctgtgga 1020
 cacatccttgc tacatactgc ccaaggaaga cagggaaagt cttcagatgg cagtaggccc 1080
 attcctccac atcctagaga gcaacctgct gaaagccatg gactctgcca ctgccccga 1140
 caagatcaga aagctgtatc tctatgcggc tcatgatgtg accttcatac cgctcttaat 1200
 gaccctgggg attttgacc acaaatggcc accgtttgtt gttgaccta ccattgaaact 1260
 ttaccagcac ctggaatcta aggagtgggt tttgcagtc tattaccacg ggaaggagca 1320
 ggtgccgaga gttgcctg atggctctg cccgctgac atgttcttga atgcattgtc 1380
 agtttatacc ttaagcccag aaaaatacca tgcactctgc tctcaaactc aggtgatgga 1440
 agttggaaat gaagagtaac tgatttataa aagcaggatg ttttgatttt aaaataaaagt 1500
 gccttataac aatg 1514

<210> 142

<211> 428

<212> PRT

<213> Homo sapiens

<400> 142

Met	Ile	Thr	Gly	Val	Phe	Ser	Met	Arg	Leu	Trp	Thr	Pro	Val	Gly	Val
1				5					10				15		

Leu	Thr	Ser	Leu	Ala	Tyr	Cys	Leu	His	Gln	Arg	Arg	Val	Ala	Leu	Ala
								20				25		30	

Glu	Leu	Gln	Glu	Ala	Asp	Gly	Gln	Cys	Pro	Val	Asp	Arg	Ser	Leu	Leu
								35				40		45	

Lys	Leu	Lys	Met	Val	Gln	Val	Val	Phe	Arg	His	Gly	Ala	Arg	Ser	Pro
			50				55				60				

Leu	Lys	Pro	Leu	Pro	Leu	Glu	Gln	Val	Glu	Trp	Asn	Pro	Gln	Leu
	65				70				75			80		

Leu	Glu	Val	Pro	Pro	Gln	Thr	Gln	Phe	Asp	Tyr	Thr	Val	Thr	Asn	Leu
					85				90			95			

Ala	Gly	Gly	Pro	Lys	Pro	Tyr	Ser	Pro	Tyr	Asp	Ser	Gln	Tyr	His	Glu
				100				105				110			

Thr	Thr	Leu	Lys	Gly	Gly	Met	Phe	Ala	Gly	Gln	Leu	Thr	Lys	Val	Gly
						115				120			125		

Met	Gln	Gln	Met	Phe	Ala	Leu	Gly	Glu	Arg	Leu	Arg	Lys	Asn	Tyr	Val
			130				135				140				

Glu	Asp	Ile	Pro	Phe	Leu	Ser	Pro	Thr	Phe	Asn	Pro	Gln	Glu	Val	Phe
	145				150				155			160			

Ile	Arg	Ser	Thr	Asn	Ile	Phe	Arg	Asn	Leu	Glu	Ser	Thr	Arg	Cys	Leu
					165				170			175			

Leu Ala Gly Leu Phe Gln Cys Gln Lys Glu Gly Pro Ile Ile Ile His
 180 185 190

 Thr Asp Glu Ala Asp Ser Glu Val Leu Tyr Pro Asn Tyr Gln Ser Cys
 195 200 205

 Trp Ser Leu Arg Gln Arg Thr Arg Gly Arg Arg Gln Thr Ala Ser Leu
 210 215 220

 Gln Pro Gly Ile Ser Glu Asp Leu Lys Lys Val Lys Asp Arg Met Gly
 225 230 235 240

 Ile Asp Ser Ser Asp Lys Val Asp Phe Phe Ile Leu Leu Asp Asn Val
 245 250 255

 Ala Ala Glu Gln Ala His Asn Leu Pro Ser Cys Pro Met Leu Lys Arg
 260 265 270

 Phe Ala Arg Met Ile Glu Gln Arg Ala Val Asp Thr Ser Leu Tyr Ile
 275 280 285

 Leu Pro Lys Glu Asp Arg Glu Ser Leu Gln Met Ala Val Gly Pro Phe
 290 295 300

 Leu His Ile Leu Glu Ser Asn Leu Leu Lys Ala Met Asp Ser Ala Thr
 305 310 315 320

 Ala Pro Asp Lys Ile Arg Lys Leu Tyr Leu Tyr Ala Ala His Asp Val
 325 330 335

 Thr Phe Ile Pro Leu Leu Met Thr Leu Gly Ile Phe Asp His Lys Trp
 340 345 350

 Pro Pro Phe Ala Val Asp Leu Thr Met Glu Leu Tyr Gln His Leu Glu
 355 360 365

 Ser Lys Glu Trp Phe Val Gln Leu Tyr Tyr His Gly Lys Glu Gln Val
 370 375 380

 Pro Arg Gly Cys Pro Asp Gly Leu Cys Pro Leu Asp Met Phe Leu Asn
 385 390 395 400

 Ala Met Ser Val Tyr Thr Leu Ser Pro Glu Lys Tyr His Ala Leu Cys
 405 410 415

 Ser Gln Thr Gln Val Met Glu Val Gly Asn Glu Glu
 420 425

<210> 143
 <211> 24
 <212> DNA
 <213> Artificial Sequence

```

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 143
      ccaactacca aagctgctgg agcc                                24

<210> 144
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 144
      gcagctctat taccacggga agga                                24

<210> 145
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 145
      tccttcccggt ggtaatagag ctgc                                24

<210> 146
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 146
      ggcagagaac cagaggccgg aggagactgc ctctttacag ccagg      45

<210> 147
<211> 1686
<212> DNA
<213> Homo sapiens

<400> 147
      ctcctcttaa catacttgca gctaaaacta aatattgctg cttggggacc tccttcttagc 60
      cttaaatttc agctcatcac cttcacctgc cttgggtcatg gctctgctat tctcattgtat 120
      cttgccatt tgcaccagac ctggattcct agcgtctcca tctggagtgc ggctgggtggg 180

```

gggcctccac cgctgtgaag ggcgggtgga ggtgaaacag aaaggccagt ggggcacctg 240
gtgtgatgac ggctgggaca ttaaggacgt ggctgtgtt tgccgggagc tgggctgtgg 300
agctgccagc ggaaccccta gtggtattt gtatgagcca ccagcagaaa aagagcaaaa 360
ggtcctcatc caatcagtca gttgcacagg aacagaagat acattggctc agtgtgagca 420
agaagaagtt tatgattgtt cacatgatga agatgctggg gcattgtgt agaacccaga 480
gagctttc tccccagtcc cagagggtgt caggctggct gacggccctg ggcattgcaa 540
gggacgcgtg gaagtgaagc accagaacca gtggtatacc gtgtgccaga caggctggag 600
cctccgggccc gcaaagggtgg tgtgcggca gctgggatgt gggagggctg tactgactca 660
aaaacgctgc aacaaggcatg cctatggccg aaaaccatc tggctgagcc agatgtcatg 720
ctcaggacga gaagcaaccc ttcaaggattt cccttctggg cttgggggaa agaacacactg 780
caaccatgtt gaagacacgt gggtgaatgg tgaagatccc ttgacttga gacttagg 840
aggagacaac ctctgctctg ggcgactggaa ggtgctgcac aaggcgat ggggctctgt 900
ctgtgatgac aactggggag aaaaggagga ccaggtggta tgcaagcaac tgggctgtgg 960
gaagtccttc tctccctctt tcagagaccg gaaatgctat gcccctgggg ttggccgat 1020
ctggctggat aatgttctgtt gctcaggggaa ggagcagtcc ctggagcagt gccagcacag 1080
attttggggg tttcacgact gcacccacca ggaagatgtt gctgtcatct gtcagtgtt 1140
ggtggccatc atctaattctg tttagtgcctt gaatagaaga aaaacacaga agaaggagc 1200
atttactgtc tacatgactg catggatga acactgatct tcttctgccc ttggacttgg 1260
acttataactt ggtgcccctg attctcaggc cttcagagtt ggatcagaac ttacaacatc 1320
aggcttagtt ctcaggccat cagacatagt ttggaaactac atcaccacct ttcttatgtc 1380
tccacattgc acacagcaga ttccccagct ccataattgt gtgtatcaac tacttaaaa 1440
cattctcaca cacacacaca cacacacaca cacacacaca cacacataca ccatttgcc 1500
tggttctctg aagaactctg aaaaaataca gatTTTggta ctgaaagaga ttcttagagga 1560
acggaatttt aaggataaat ttctgtattt ggttatgggg ttctgttttataa tggctctata 1620
atctaatttag atataaaaatt ctggtaactt tatttacaat aataaaagata gcactatgtg 1680
ttcaaa 1686

<210> 148

<211> 347

<212> PRT

<213> Homo sapiens

<400> 148

Met Ala Leu Leu Phe Ser Leu Ile Leu Ala Ile Cys Thr Arg Pro Gly
1 5 10 15

Phe Leu Ala Ser Pro Ser Gly Val Arg Leu Val Gly Gly Leu His Arg
 20 25 30

Cys Glu Gly Arg Val Glu Val Glu Gln Lys Gly Gln Trp Gly Thr Val
35 40 45

Cys Asp Asp Gly Trp Asp Ile Lys Asp Val Ala Val Leu Cys Arg Glu
 50 55 60

Leu Gly Cys Gly Ala Ala Ser Gly Thr Pro Ser Gly Ile Leu Tyr Glu
65 70 75 80

Pro Pro Ala Glu Lys Glu Gln Lys Val Leu Ile Gln Ser Val Ser Cys
85 90 95

Thr Gly Thr Glu Asp Thr Leu Ala Gln Cys Glu Gln Glu Glu Val Tyr
100 105 110

Asp Cys Ser His Asp Glu Asp Ala Gly Ala Ser Cys Glu Asn Pro Glu
 115 120 125

 Ser Ser Phe Ser Pro Val Pro Glu Gly Val Arg Leu Ala Asp Gly Pro
 130 135 140

 Gly His Cys Lys Gly Arg Val Glu Val Lys His Gln Asn Gln Trp Tyr
 145 150 155 160

 Thr Val Cys Gln Thr Gly Trp Ser Leu Arg Ala Ala Lys Val Val Cys
 165 170 175

 Arg Gln Leu Gly Cys Gly Arg Ala Val Leu Thr Gln Lys Arg Cys Asn
 180 185 190

 Lys His Ala Tyr Gly Arg Lys Pro Ile Trp Leu Ser Gln Met Ser Cys
 195 200 205

 Ser Gly Arg Glu Ala Thr Leu Gln Asp Cys Pro Ser Gly Pro Trp Gly
 210 215 220

 Lys Asn Thr Cys Asn His Asp Glu Asp Thr Trp Val Glu Cys Glu Asp
 225 230 235 240

 Pro Phe Asp Leu Arg Leu Val Gly Gly Asp Asn Leu Cys Ser Gly Arg
 245 250 255

 Leu Glu Val Leu His Lys Gly Val Trp Gly Ser Val Cys Asp Asp Asn
 260 265 270

 Trp Gly Glu Lys Glu Asp Gln Val Val Cys Lys Gln Leu Gly Cys Gly
 275 280 285

 Lys Ser Leu Ser Pro Ser Phe Arg Asp Arg Lys Cys Tyr Gly Pro Gly
 290 295 300

 Val Gly Arg Ile Trp Leu Asp Asn Val Arg Cys Ser Gly Glu Glu Gln
 305 310 315 320

 Ser Leu Glu Gln Cys Gln His Arg Phe Trp Gly Phe His Asp Cys Thr
 325 330 335

 His Gln Glu Asp Val Ala Val Ile Cys Ser Val
 340 345

 <210> 149
 <211> 24
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic

oligonucleotide probe

<400> 149		
ttcagctcat cacccatccc tgcc		24
<210> 150		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 150		
ggctcataca aaataccact aggg		24
<210> 151		
<211> 50		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 151		
gggcacctccac cgctgtgaag ggcgggtgga ggtggAACAGGAAAGCCAGT		50
<210> 152		
<211> 1427		
<212> DNA		
<213> Homo sapiens		
<400> 152		
actgcactcg gttctatcga ttgaattccc cggggatcct ctagagatcc ctgcaccccg 60		
acccacgcgt ccgcggacgc gtggggggac gcgtggggcg gctaccaggaa agagtctgcc 120		
gaaggtgtaaag gccatggact tcatcacccac cacagccatc ctgcggccctgc tggtcggtcg 180		
cctggggcgtc ttccggccctt tccggctgtgc gcagtgggtg cgccggaaagg cctaccccg 240		
gaatgctgtg gtgggtatca caggccac ctcaggccgt ggcaaaagaat gtgcggaaatgt 300		
cttctatgct gcggtgtcta aactgggtct ctgtggccgg aatgggtgggg ccctagaaga 360		
gctcatcaga gaacttaccg cttctatgc caccaagggtg cagacacaca agccttactt 420		
ggtgacccctc gacccacacg actctggggc catagttgca gcagcagctg agatcctgca 480		
gtgctttggc tatgtcgaca tactgtcaa caatgtggg atcagctacc gtggtaaccat 540		
catggacacc acagtggatg tggacaagag ggtcatggag acaaaactact ttggcccgat 600		
tgccttaacg aaaggactcc tggccctccat gatcaagagg aggcaaggcc acattgtcgc 660		
catcagcagc atccaggcga agatgagcat tcctttcga tcagcatatg cagccctccaa 720		
gcacgcaacc caggcttctt ttgactgtct gcgtggcgag atggaaacagt atggaaattga 780		
ggtgaccgtc atcagccccg gctacatcca caccaacccctc tctgtaaatg ccatcaccgc 840		
ggatggatct aggttatggag ttatggacac caccacagcc caggcccgaa gccctgtgga 900		
ggtgcccgag gatgttctt ctgtgtggg gaagaagaag aaagatgtga tcctggctga 960		
cttactgcct tccttggctg tttatcttcg aactctggct cctggctct tcctcagcct 1020		
catggccctcc agggccagaa aagagcggaa atccaagaac tccttagtact ctgaccagcc 1080		

agggccaggc cagagaagca gcactcttag gcttgcattac tctacaaggg acagttgcat 1140
 ttgttgagac ttaatggag atttgtctca caagtggaa agactgaaga aacacatctc 1200
 gtgcagatct gctggcagag gacaatcaa aacgacaaca agttcttcc cagggtgagg 1260
 ggaaacactt aaggaataaa tatggagctg gggtttaaca ctaaaaaacta gaaataaaca 1320
 tctcaaacag taaaaaaaaaaa aaaaaaggc gcgcgcact ctagagtcga cctgcagaag 1380
 cttggccgccc atggcccaac ttgttattt cagcttataa tggttac 1427

<210> 153

<211> 310

<212> PRT

<213> Homo sapiens

<400> 153

Met	Asp	Phe	Ile	Thr	Ser	Thr	Ala	Ile	Leu	Pro	Leu	Leu	Phe	Gly	Cys
1															15

Leu	Gly	Val	Phe	Gly	Leu	Phe	Arg	Leu	Leu	Gln	Trp	Val	Arg	Gly	Lys
															30
20															

Ala	Tyr	Leu	Arg	Asn	Ala	Val	Val	Val	Ile	Thr	Gly	Ala	Thr	Ser	Gly
35															45

Leu	Gly	Lys	Glu	Cys	Ala	Lys	Val	Phe	Tyr	Ala	Ala	Gly	Ala	Lys	Leu
50															60

Val	Leu	Cys	Gly	Arg	Asn	Gly	Gly	Ala	Leu	Glu	Glu	Leu	Ile	Arg	Glu
65															80

Leu	Thr	Ala	Ser	His	Ala	Thr	Lys	Val	Gln	Thr	His	Lys	Pro	Tyr	Leu
85															95

Val	Thr	Phe	Asp	Leu	Thr	Asp	Ser	Gly	Ala	Ile	Val	Ala	Ala	Ala	
100															110

Glu	Ile	Leu	Gln	Cys	Phe	Gly	Tyr	Val	Asp	Ile	Leu	Val	Asn	Asn	Ala
115															125

Gly	Ile	Ser	Tyr	Arg	Gly	Thr	Ile	Met	Asp	Thr	Thr	Val	Asp	Val	Asp
130															140

Lys	Arg	Val	Met	Glu	Thr	Asn	Tyr	Phe	Gly	Pro	Val	Ala	Leu	Thr	Lys
145															160

Ala	Leu	Leu	Pro	Ser	Met	Ile	Lys	Arg	Arg	Gln	Gly	His	Ile	Val	Ala
165															175

Ile	Ser	Ser	Ile	Gln	Gly	Lys	Met	Ser	Ile	Pro	Phe	Arg	Ser	Ala	Tyr
180															190

Ala	Ala	Ser	Lys	His	Ala	Thr	Gln	Ala	Phe	Phe	Asp	Cys	Leu	Arg	Ala
195															205

Glu Met Glu Gln Tyr Glu Ile Glu Val Thr Val Ile Ser Pro Gly Tyr

210	215	220
Ile His Thr Asn Leu Ser Val Asn Ala Ile Thr Ala Asp Gly Ser Arg		
225	230	235
Tyr Gly Val Met Asp Thr Thr Ala Gln Gly Arg Ser Pro Val Glu		
245	250	255
Val Ala Gln Asp Val Leu Ala Ala Val Gly Lys Lys Lys Lys Asp Val		
260	265	270
Ile Leu Ala Asp Leu Leu Pro Ser Leu Ala Val Tyr Leu Arg Thr Leu		
275	280	285
Ala Pro Gly Leu Phe Phe Ser Leu Met Ala Ser Arg Ala Arg Lys Glu		
290	295	300
Arg Lys Ser Lys Asn Ser		
305	310	

<210> 154
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 154
ggtgctaaac tggtgctctg tgga 24

<210> 155
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 155
cagggcaaga tgagcattcc 20

<210> 156
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 156		
tcatactgtt ccatctcgcc acgc		24
<210> 157		
<211> 50		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 157		
aatgggtgggg ccctagaaga gctcatcaga gaactcacccg cttctcatgc		50
<210> 158		
<211> 1771		
<212> DNA		
<213> Homo sapiens		
<400> 158		
cccacgcgtc cgctgggtt agatcgagca accctctaaa agcagtttag agtggtaaaa 60		
aaaaaaaaaaa acacacccaa cgctcgccgc cacaaaaaggg atgaaaatttc ttctggacat 120		
cctcctgtt ctcccgttac tgatcgcttg ctccctagag tccttcgtga agcttttat 180		
tcctaagagg agaaaatcag tcaccggcga aatcgctgtt attacaggag ctgggcattgg 240		
aattgggaga ctgactgcct atgaatttgc taaaacttaaa agcaagctgg ttctctggga 300		
tataaataag catggactgg aggaaaacagc tgccaaatgc aagggactgg gtgccaaggt 360		
tcataccctt gtggtagact gcagcaaccg agaagatatt tacagctgtt caaagaaggt 420		
gaaggcagaa attggagatg tttagtatttt agtaaataat gctgggttag tctatacatc 480		
agatttgttt gctacacaag atcctcagat tgaaaagact tttgaagtta atgtacttgc 540		
acatttctgg actacaaagg catttctcc tgcaatgcg aagaataacc atggccatat 600		
tgtcactgtg gttcggcag ctggacatgt ctgggtcccc ttcttactgg cttactgttc 660		
aagcaagttt gctgctgtt gatttcataa aactttgaca gatgaactgg ctgccttaca 720		
aataactgga gtcaaaaacaa catgtctgtc tcctaatttc gtaaacactg gcttcatcaa 780		
aaatccaagt acaagtttgg gaccactct ggaacctggag gaagtggtaa acaggctgat 840		
gcatgggatt ctgactgagc agaagatgtt ttttattcca tcttctatag ctttttaac 900		
aacattggaa aggatccttc ctgagcgttt cctggcagtt taaaacgaa aaatcagtgt 960		
taagtttgcgtt gcaaggatgtt gatataaaaat gaaagcgcaa taagcaccta gttttctgaa 1020		
aactgattta ccagggtttt gttgatgtca tctaatacgat ccagaattttt aatgtttggaa 1080		
cttctgtttt ttcttaattt cccattttct tcaatatcat ttttgaggct ttggcagtct 1140		
tcatttacta ccacttggtc ttttagccaaa agctgattac atatgatata aacagagaaa 1200		
tacctttaga ggtgacttta aggaaaaatgaa agaaaaaagaa cccaaatgac tttttaaaa 1260		
taatttccaa gattattttt ggctcacctg aaggcttgc aaaatttgc ccataaccgt 1320		
ttatttaaca tatattttt ttttgatttgc cacttaattt ttgtataattt tttttttttt 1380		
tttctgttct acataaaaatc agaaaactca agctctcaa ataaaatgaa ggactatatc 1440		
tagtggattt tcacaatgaa tatcatgaac tctcaatgggg tagtttcat cctaccatt 1500		
gccactctgtt ttcctgagag atacccatca ttccaaatggcc aaacatttct gcacaggaa 1560		
gcttagaggtg gatacacgtt ttggaaatgtt aaaaagcatca ctgggattta aggagaattt 1620		
agagaatgtt cccacaaatg gcagcaataa taaaatggatc acacttaaaa aaaaaaaaaaaa 1680		
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 1740		
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 1771		
<210> 159		

<211> 300

<212> PRT

<213> Homo sapiens

<400> 159

Met	Lys	Phe	Leu	Leu	Asp	Ile	Leu	Leu	Leu	Leu	Pro	Leu	Leu	Ile	Val
1															15

Cys	Ser	Leu	Glu	Ser	Phe	Val	Lys	Leu	Phe	Ile	Pro	Lys	Arg	Arg	Lys
															30
		20					25								

Ser	Val	Thr	Gly	Glu	Ile	Val	Leu	Ile	Thr	Gly	Ala	Gly	His	Gly	Ile
															45
								40							

Gly	Arg	Leu	Thr	Ala	Tyr	Glu	Phe	Ala	Lys	Leu	Lys	Ser	Lys	Leu	Val
															60
		50				55									

Leu	Trp	Asp	Ile	Asn	Lys	His	Gly	Leu	Glu	Glu	Thr	Ala	Ala	Lys	Cys
															80
		65				70			75						

Lys	Gly	Leu	Gly	Ala	Lys	Val	His	Thr	Phe	Val	Val	Asp	Cys	Ser	Asn
															95
							85			90					

Arg	Glu	Asp	Ile	Tyr	Ser	Ser	Ala	Lys	Lys	Val	Lys	Ala	Glu	Ile	Gly
															110
		100					105								

Asp	Val	Ser	Ile	Leu	Val	Asn	Asn	Ala	Gly	Val	Val	Tyr	Thr	Ser	Asp
															125
		115					120								

Leu	Phe	Ala	Thr	Gln	Asp	Pro	Gln	Ile	Glu	Lys	Thr	Phe	Glu	Val	Asn
															140
		130				135									

Val	Leu	Ala	His	Phe	Trp	Thr	Thr	Lys	Ala	Phe	Leu	Pro	Ala	Met	Thr
															160
		145			150			155							

Lys	Asn	Asn	His	Gly	His	Ile	Val	Thr	Val	Ala	Ser	Ala	Ala	Gly	His
															175
			165				170								

Val	Ser	Val	Pro	Phe	Leu	Leu	Ala	Tyr	Cys	Ser	Ser	Lys	Phe	Ala	Ala
															190
				180			185								

Val	Gly	Phe	His	Lys	Thr	Leu	Thr	Asp	Glu	Leu	Ala	Ala	Leu	Gln	Ile
															205
		195				200									

Thr	Gly	Val	Lys	Thr	Thr	Cys	Leu	Cys	Pro	Asn	Phe	Val	Asn	Thr	Gly
															220
		210			215										

Phe	Ile	Lys	Asn	Pro	Ser	Thr	Ser	Leu	Gly	Pro	Thr	Leu	Glu	Pro	Glu
															240
		225			230			235							

Glu	Val	Val	Asn	Arg	Leu	Met	His	Gly	Ile	Leu	Thr	Glu	Gln	Lys	Met
															255
			245			250			250						

attgtttcg tggcctgtt gatgcctggc ccctgtatg ggctgtttcg ctccctatac 180
 agaagtgtt ccatgccacc taaggagac tcaggacacg cattattct cacccttac 240
 attgaagctg ggaagatcca aaaaggaaga gaattgagtt tggtcggccc ttcccagga 300
 ctgaacatga agagttatgc cggcttcctc accgtgaata agacttacaa cagcaacctc 360
 ttcttcgtt tcttcccagc tcagatacag cagaagatg cccactgt tctctggcta 420
 cagggtgccc cgggaggttc atccatgtt ggactcttg tggacatgg gccttatgtt 480
 gtcacaagta acatgaccc tcgtgacaga gacttccct ggaccacaac gctctccatg 540
 cttaacattg acaatccagt gggcacaggc ttcagtttta ctgtgatac ccacggatata 600
 gcagtcaatg aggacgatgt agcacggat ttatacagtg cactaattca gttttccag 660
 atatttcctg aatataaaaaa taatgacttt tatgtcactg gggagtctta tgcaggaaa 720
 tatgtgccag ccattgcaca cctcatccat tccctcaacc ctgtgagaga ggtgaagatc 780
 aacctaaccg gaattgctat tggagatgga tattctgatc ccgaatcaat tataggggc 840
 tatgcagaat tcctgtacca aattggctt tggatgaga agaaaaaaaaa gtacttcag 900
 aagcagtgcc atgaatgcat agaacacatc aggaagcaga actggttga ggcctttaga 960
 atactggata aactactaga tggcgactt acaagtgtatc cttcttactt ccagaatgtt 1020
 acaggatgtt gtaattacta taacttttgc cgggtgcacgg aacctgagga tcagcttac 1080
 tatgtgaaat ttttgtcact cccagaggtg agacaagcga tccacgtggg gaatcagact 1140
 ttaaatgatg gaactatagt tgaaaagtac ttgcgagaag atacagtaca gtcagttaa 1200
 ccatggttaa ctgaaatcat gaataattat aaggttctga tctacaatgg ccaactggac 1260
 atcatcgtgg cagctgccct gacagagcgc tccttgcattt gcatggactg gaaaggatcc 1320
 caggaataca agaaggcaga aaaaaaaaaa tggaaagatct ttaaatctga cagtgaagtg 1380
 gctggttaca tccggcaagc ggggtgactt catcaggtaa ttattcgagg tggaggacat 1440
 attttaccct atgaccagcc tctgagagct tttgacatga ttaatcgatt catttatgga 1500
 aaaggatggg atccttatgt tggataaaact accttcccaa aagagaacat cagaggttt 1560
 cattgctgaa aagaaaatcg taaaaacaga aaatgtcata ggaataaaaaa aattatctt 1620
 tcatatctgc aagattttt tcatcaataa aaattatcct tgaaacaagt gagctttgt 1680
 ttttgggggg agatgtttac tacaaaatta acatgagttac atgagtaaga attacattat 1740
 ttaacttaaa ggatgaaagg tatggatgat gtgacactga gacaagatgt ataaatgaaa 1800
 ttttagggc ttgaatagga agtttaatt tcttctaaga gtaagtggaa agtgcagttg 1860
 taacaaacaa agctgtaca tcttttctg ccaataacag aagttggca tgccgtgaag 1920
 gtgtttggaa atattattgg ataagaatag ctcaattatc ccaataaaat ggtgaagct 1980
 ataatagttt tggggaaaag attctcaat gtataaagtctt ttagaacaagaa agaattctt 2040
 gaaataaaaaa tattatatat aaaagtaaaaa aaaaaaaaaa 2076

<210> 164

<211> 476

<212> PRT

<213> Homo sapiens

<400> 164

Met Val Gly Ala Met Trp Lys Val Ile Val Ser Leu Val Leu Leu Met

1

5

10

15

Pro Gly Pro Cys Asp Gly Leu Phe Arg Ser Leu Tyr Arg Ser Val Ser

20

25

30

Met Pro Pro Lys Gly Asp Ser Gly Gln Pro Leu Phe Leu Thr Pro Tyr

35

40

45

Ile Glu Ala Gly Lys Ile Gln Lys Gly Arg Glu Leu Ser Leu Val Gly

50

55

60

Pro Phe Pro Gly Leu Asn Met Lys Ser Tyr Ala Gly Phe Leu Thr Val

65	70	75	80
Asn Lys Thr Tyr Asn Ser Asn Leu Phe Phe Trp Phe Phe Pro Ala Gln			
85	90	95	
Ile Gln Pro Glu Asp Ala Pro Val Val Leu Trp Leu Gln Gly Gly Pro			
100	105	110	
Gly Gly Ser Ser Met Phe Gly Leu Phe Val Glu His Gly Pro Tyr Val			
115	120	125	
Val Thr Ser Asn Met Thr Leu Arg Asp Arg Asp Phe Pro Trp Thr Thr			
130	135	140	
Thr Leu Ser Met Leu Tyr Ile Asp Asn Pro Val Gly Thr Gly Phe Ser			
145	150	155	160
Phe Thr Asp Asp Thr His Gly Tyr Ala Val Asn Glu Asp Asp Val Ala			
165	170	175	
Arg Asp Leu Tyr Ser Ala Leu Ile Gln Phe Phe Gln Ile Phe Pro Glu			
180	185	190	
Tyr Lys Asn Asn Asp Phe Tyr Val Thr Gly Glu Ser Tyr Ala Gly Lys			
195	200	205	
Tyr Val Pro Ala Ile Ala His Leu Ile His Ser Leu Asn Pro Val Arg			
210	215	220	
Glu Val Lys Ile Asn Leu Asn Gly Ile Ala Ile Gly Asp Gly Tyr Ser			
225	230	235	240
Asp Pro Glu Ser Ile Ile Gly Gly Tyr Ala Glu Phe Leu Tyr Gln Ile			
245	250	255	
Gly Leu Leu Asp Glu Lys Gln Lys Lys Tyr Phe Gln Lys Gln Cys His			
260	265	270	
Glu Cys Ile Glu His Ile Arg Lys Gln Asn Trp Phe Glu Ala Phe Glu			
275	280	285	
Ile Leu Asp Lys Leu Leu Asp Gly Asp Leu Thr Ser Asp Pro Ser Tyr			
290	295	300	
Phe Gln Asn Val Thr Gly Cys Ser Asn Tyr Tyr Asn Phe Leu Arg Cys			
305	310	315	320
Thr Glu Pro Glu Asp Gln Leu Tyr Tyr Val Lys Phe Leu Ser Leu Pro			
325	330	335	
Glu Val Arg Gln Ala Ile His Val Gly Asn Gln Thr Phe Asn Asp Gly			
340	345	350	

Thr Ile Val Glu Lys Tyr Leu Arg Glu Asp Thr Val Gln Ser Val Lys
355 360 365

Pro Trp Leu Thr Glu Ile Met Asn Asn Tyr Lys Val Leu Ile Tyr Asn
 370 375 380

Gly Gln Leu Asp Ile Ile Val Ala Ala Ala Leu Thr Glu Arg Ser Leu
385 390 395 400

Met Gly Met Asp Trp Lys Gly Ser Gln Glu Tyr Lys Lys Ala Glu Lys
 405 410 415

Lys Val Trp Lys Ile Phe Lys Ser Asp Ser Glu Val Ala Gly Tyr Ile
420 425 430

Arg Gln Ala Gly Asp Phe His Gln Val Ile Ile Arg Gly Gly Gly His
435 440 445

Ile Leu Pro Tyr Asp Gln Pro Leu Arg Ala Phe Asp Met Ile Asn Arg
450 455 460

Phe Ile Tyr Gly Lys Gly Trp Asp Pro Tyr Val Gly
465 470 475

<210> 165

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> De:

oligonucleotide probe

<400> 165

tccatggca cctaagggag actc

24

<210> 166

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 166

tggatgaggt gtgcaatggc tggc

24

<210> 167

<211> 24

<212> DNA

<213> Artificial Sequence

```

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 167
agctctcaga ggctggcat aggg

<210> 168
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 168
gtcggccctt tcccaggact gaacatgaag agttatgccg gtttcctcac 50

<210> 169
<211> 2477
<212> DNA
<213> Homo sapiens

<400> 169
cgagggtttt tccggctccg gaatggcaca tgtggaaatc ccagtttgt tggctacaac 60
atttttccct ttcttaacaa gttctaacag ctgttctaac agcttagtgat caggggttct 120
tcttgctgga gaagaaaaggc ctgagggcag acgagggcac tctcaactcg ggtgaccagc 180
tccttcgcctc tctgtggata acagagcatg agaaaagtcaa gagatgcagc ggagttaggt 240
gatggaaatgc taaaatagga aggaattttg ttttgcataat cagactctgg ggggggttga 300
cctggagagc ctgggggagg gcctgcctaa caagcttca aaaaacagga gggacttcca 360
ctgggctggg ataagacgtg ccggtaggat agggaaagact gggtttagtc ctaatatcaa 420
attgactggc tgggtgaact tcaacagcct tttaacctct ctgggagatg aaaacgatgg 480
cttaaggggc cagaaataga gatgtttgt aaaataaaat tttaaaaaaaa gcaagtattt 540
tatagcataa aggcttagaga cccaaataga taacaggatt ccctgaacat ttcttaagagg 600
gagaaatgtat gttaaaaata gaaaaaccaa aatgcagaag gggggactc acagagctaa 660
accaggatgg ggaccctggg tcaggccagc ctctttgctc ctccccggaaa ttattttgg 720
tctgaccact ctgccttgtt ttttgcagaa tcatgtgagg gccaacccggg gaagggtggag 780
cagatgagca cacacaggag ccgtctccct accggccccc ctctcagcat ggaacagagg 840
cagccctggc cccggccct ggaggtggac agccgccttg tggctctgt ctcaagtggc 900
tgggtgtgc tggccccccc agcagccggc atgcctcagt tcagcacctt ccactctgag 960
aatcgtgact ggaccccaa ccacttgacc gtccaccaag ggacgggggc cgtctatgtg 1020
ggggccatca accgggtcta taagctgaca ggcaacctga ccatccaggt ggctcataag 1080
acagggccag aagaggacaa caagtctcgat taccggcccc tcatctgtca gcccctgcagc 1140
gaagtgtca ccctcaccaa caatgtcaac aagctgtca tcatttgcata ctctgagaac 1200
cgccctgtgg cctgtggag cctctaccag ggggtctgca agctgtgtcg gctggatgac 1260
ctcttcatcc tggtgagcc atcccacaag aaggagcaact acctgtccag tggcaacaag 1320
acggggcacca tgtacggggtt gattgtgcgc tctgagggtt aggtggcaa gctttcacatc 1380
ggcacggctg tggatggaa gcaggattac ttcccgaccc tggccagccg gaagctgc 1440
cgagaccctg agtcctcagc catgctcgac tatgagctac acagcgattt tggctccctc 1500
ctcatcaaga tcccttcaga caccctggcc ctggctccccc actttgacat ttctcacatc 1560
tacggcttgc ttagtggggg ctttgcctac ttctcaacttccg gaccctgag 1620
gggtgtggcca tcaactccgc tggagaccccttctacacatc caccgcacatc ggggtctgc 1680

```

aaggatgacc ccaagttcca ctcatacgtg tccctgcct tcggctgcac ccgggcggg 1740
 gtggaatacc gcctcctgca ggctgcttac ctggccaagc ctggggactc actggccag 1800
 gccttaata tcaccagcca ggacgatgta ctcttgcca tcttctccaa agggcagaag 1860
 cagtatcacc acccgccccga tgactctgcc ctgtgtgcct tccctatccg gccatcaac 1920
 ttgcagatca aggagcgcct gcagtcctgc taccaggcg aggcaacct ggagctcaac 1980
 tggctgctgg ggaaggacgt ccagtgcacg aaggcgctg tcccattcga tgataacttc 2040
 tgtggactgg acatcaacca gcccctggga ggctcaactc cagtgaggg cctgaccctg 2100
 tacaccacca gcagggaccg catgacctct gtggcctct acgtttacaa cggctacagc 2160
 gtggttttg tggggactaa gagtgcaag ctgaaaaagg taagagtcta tgagttcaga 2220
 tgctccaatg ccattcacct cctcagcaaa gagtccctct tggaaggtag ctattggtag 2280
 agatttaact ataggcaact ttattttctt ggggacaaa ggtgaaatgg ggaggtaaaga 2340
 aggggttaat ttgtgactt agcttctagc tacttcctcc agccatcagt cattgggtat 2400
 gtaaggaatg caagcgtatt tcaatatttc ccaaacttta agaaaaaaact ttaagaagg 2460
 acatctgcaa aagcaaa 2477

<210> 170

<211> 552

<212> PRT

<213> Homo sapiens

<400> 170

Met	Gly	Thr	Leu	Gly	Gln	Ala	Ser	Leu	Phe	Ala	Pro	Pro	Gly	Asn	Tyr
1			5					10					15		

Phe	Trp	Ser	Asp	His	Ser	Ala	Leu	Cys	Phe	Ala	Glu	Ser	Cys	Glu	Gly
							20				25		30		

Gln	Pro	Gly	Lys	Val	Glu	Gln	Met	Ser	Thr	His	Arg	Ser	Arg	Leu	Leu
							35				40		45		

Thr	Ala	Ala	Pro	Leu	Ser	Met	Glu	Gln	Arg	Gln	Pro	Trp	Pro	Arg	Ala
						50				55		60			

Leu	Glu	Val	Asp	Ser	Arg	Ser	Val	Val	Leu	Leu	Ser	Val	Val	Trp	Val
							65			70		75		80	

Leu	Leu	Ala	Pro	Pro	Ala	Ala	Gly	Met	Pro	Gln	Phe	Ser	Thr	Phe	His
							85			90		95			

Ser	Glu	Asn	Arg	Asp	Trp	Thr	Phe	Asn	His	Leu	Thr	Val	His	Gln	Gly
						100				105		110			

Thr	Gly	Ala	Val	Tyr	Val	Gly	Ala	Ile	Asn	Arg	Val	Tyr	Lys	Leu	Thr
							115			120		125			

Gly	Asn	Leu	Thr	Ile	Gln	Val	Ala	His	Lys	Thr	Gly	Pro	Glu	Glu	Asp
							130			135		140			

Asn	Lys	Ser	Arg	Tyr	Pro	Pro	Leu	Ile	Val	Gln	Pro	Cys	Ser	Glu	Val
							145			150		155		160	

Leu	Thr	Leu	Thr	Asn	Asn	Val	Asn	Lys	Leu	Leu	Ile	Ile	Asp	Tyr	Ser
							165			170		175			

Glu Asn Arg Leu Leu Ala Cys Gly Ser Leu Tyr Gln Gly Val Cys Lys
 180 185 190

Leu Leu Arg Leu Asp Asp Leu Phe Ile Leu Val Glu Pro Ser His Lys
 195 200 205

Lys Glu His Tyr Leu Ser Ser Val Asn Lys Thr Gly Thr Met Tyr Gly
 210 215 220

Val Ile Val Arg Ser Glu Gly Glu Asp Gly Lys Leu Phe Ile Gly Thr
 225 230 235 240

Ala Val Asp Gly Lys Gln Asp Tyr Phe Pro Thr Leu Ser Ser Arg Lys
 245 250 255

Leu Pro Arg Asp Pro Glu Ser Ser Ala Met Leu Asp Tyr Glu Leu His
 260 265 270

Ser Asp Phe Val Ser Ser Leu Ile Lys Ile Pro Ser Asp Thr Leu Ala
 275 280 285

Leu Val Ser His Phe Asp Ile Phe Tyr Ile Tyr Gly Phe Ala Ser Gly
 290 295 300

Gly Phe Val Tyr Phe Leu Thr Val Gln Pro Glu Thr Pro Glu Gly Val
 305 310 315 320

Ala Ile Asn Ser Ala Gly Asp Leu Phe Tyr Thr Ser Arg Ile Val Arg
 325 330 335

Leu Cys Lys Asp Asp Pro Lys Phe His Ser Tyr Val Ser Leu Pro Phe
 340 345 350

Gly Cys Thr Arg Ala Gly Val Glu Tyr Arg Leu Leu Gln Ala Ala Tyr
 355 360 365

Leu Ala Lys Pro Gly Asp Ser Leu Ala Gln Ala Phe Asn Ile Thr Ser
 370 375 380

Gln Asp Asp Val Leu Phe Ala Ile Phe Ser Lys Gly Gln Lys Gln Tyr
 385 390 395 400

His His Pro Pro Asp Asp Ser Ala Leu Cys Ala Phe Pro Ile Arg Ala
 405 410 415

Ile Asn Leu Gln Ile Lys Glu Arg Leu Gln Ser Cys Tyr Gln Gly Glu
 420 425 430

Gly Asn Leu Glu Leu Asn Trp Leu Leu Gly Lys Asp Val Gln Cys Thr
 435 440 445

Lys Ala Pro Val Pro Ile Asp Asp Asn Phe Cys Gly Leu Asp Ile Asn

100

450 455 460
Gln Pro Leu Gly Gly Ser Thr Pro Val Glu Gly Leu Thr Leu Tyr Thr
465 470 475 480
Thr Ser Arg Asp Arg Met Thr Ser Val Ala Ser Tyr Val Tyr Asn Gly
485 490 495
Tyr Ser Val Val Phe Val Gly Thr Lys Ser Gly Lys Leu Lys Lys Val
500 505 510
Arg Val Tyr Glu Phe Arg Cys Ser Asn Ala Ile His Leu Leu Ser Lys
515 520 525
Glu Ser Leu Leu Glu Gly Ser Tyr Trp Trp Arg Phe Asn Tyr Arg Gln
530 535 540
Leu Tyr Phe Leu Gly Glu Gln Arg
545 550

<210> 171
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 171
tggaataccg cctcctgcag 20

<210> 172
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 172
cttctgccct ttggagaaga tggc 24

<210> 173
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 173
 ggactcactg gcccaggcct tcaatatac cagccaggac gat 42
 <210> 174
 <211> 3106
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> modified_base
 <222> (1683)
 <223> a, t, c or g
 <400> 174
 aggctccgc gcgcggctga gtgcggactg gagtggaaac ccgggtcccc gcgcttagag 60
 aacacgcgt gaccacgtgg agcctccggc ggaggccggc ccgcacgctg ggactcctgc 120
 tgctggctgt ctggggcttc ctgggtctcc gcaggctgga ctggagcacc ctggtccctc 180
 tgcggctccg ccatcgacag ctggggctgc aggccaagggg ctggaacttc atgctggagg 240
 attccacctt ctggatcttc gggggctcca tccactattt ccgtgtgcc agggagtaact 300
 ggagggaccg cctgctgaag atgaaggcct gtggcttgaa caccctcacc acctatgttc 360
 cgtggAACCT gcatgagcca gaaagaggca aatttgactt ctctggaaac ctggacctgg 420
 aggccttcgt cctgatggcc gcagagatcg ggctgtgggt gattctgcgt ccaggcccct 480
 acatctgcag tgagatggac ctcggggct tgcccagctg gctactccaa gaccctgca 540
 tgaggctgag gacaacttac aagggcttca ccgaagcagt ggacctttat tttgaccacc 600
 ttagtgcagg ggtggtgcca ctccagtaca agcgtggggg acctatcatt gccgtgcagg 660
 tggagaatga atatggttcc tataataaaag accccgcata catgccctac gtcaagaagg 720
 cactggagga ccgtggcatt gtggaaactgc tcctgacttc agacaacaag gatgggctga 780
 gcaagggat tgtccaggga gtcttggcca ccatcaactt gcagtcaaca cacgagctgc 840
 agctactgac cactttctc ttcaacgtcc aggggactca gcccaagatg gtatggagt 900
 actggacggg gtggtttgcac tcgtggggag gccctcacaat tatcttggat tcttctgagg 960
 ttttggaaaac cgtgtctgcc attgtggacg ccggctccct catcaacccct tacatgttcc 1020
 acggaggcac caactttggc ttcatgaatg gagccatgca cttccatgac tacaagttag 1080
 atgtcaccag ctatgactat gatgtgtgc tgacagaagc cggcgttac acggccaagt 1140
 acatgaagct tcgagacttc ttccgttccca tctcaggat ccctctccct ccccccaccc 1200
 accttcttcc caagatgccg tatgagccct taacgccagt cttgtacccct tacatgttcc 1260
 acggccctcaa gtacctgggg gagccaatca agtctgaaaa gcccatcaac atggagaacc 1320
 tgccagtcaa tggggggaaat ggacagtccct tcgggtacat tctctatgat accagcatca 1380
 cctcgcttgg catccctcagt gcccacgtgc atgatcgggg gcagggtttt gtgaacacag 1440
 tatccatagg attcttggac tacaagacaa cgaagattgc tgcctccctg atccagggtt 1500
 acaccgtgtt gaggatctt gtggagaatc gtggggcgtt caactatggg gagaatattg 1560
 atgaccagcg caaaggctta attggaaatc tctatctgaa tgattcaccc ctgaaaaact 1620
 tcagaatcta tagcctggat atgaagaaga gcttcttca gaggttcggc ctggacaaat 1680
 ggnngttccct cccagaaaaca cccacattac ctgtttctt cttgggttagc ttgtccatca 1740
 gctccacgcc ttgtgacacc ttctgttccatc tggagggtctg ggagaagggg gttgtattca 1800
 tcaatggcca gaaccttggc cgttactggc acattggacc ccagaagacg ctttaccc 1860
 caggtccctg gttgagcagc ggaatcaacc aggtcatgt ttttggggag acgtggccgg 1920
 gcccgtcatt acagttcaag gaaacccccc acctggccag gaaccgtac attaagttag 1980
 cggtggcacc ccctccgtt ggtggccatgt ggagactgcc gcctctt gacgttggc 2040
 ctgggtggctt ctggcccccacc cctcaactgca aaagcatctc ctttaccc 2100
 actgggggctt acagttcttgc cctgttccatc tcaaaaaccc taaggcttgc gggaaaagggtg 2160
 ggtatggctt cggccctggat ttgttgcac ccgttccatc acggccctgc tcttgcgg 2220
 aggctgttccgg gctgttccatc ggggtggggc agctaatcag atcggccctgc ctttggccct 2280

cagaaaaaaagt	gctgaaaacgt	gcccttgcac	cggacgtcac	agccctgcga	gcatctgctg	2340
gactcaggcg	tgctcttgc	tggttcctgg	gaggcgtggc	cacatccctc	atggccccat	2400
tttatccccg	aaatcctggg	tgtgtcacca	gtgttagaggg	tgggaagggg	gtgtctcacc	2460
tgagctgact	ttgttcttcc	ttcacaaacct	tctgagcctt	cttgggatt	ctggaaaggaa	2520
ctcggcgtga	gaaacatgtg	acttcccctt	tccttccca	ctcgctgctt	cccacagggt	2580
gacaggctgg	gctggagaaa	cagaaatcct	caccctgcgt	cttccaagt	tagcaggtgt	2640
ctctggtgtt	cagtgaggag	gacatgtgag	tcctggcaga	agccatggcc	catgtctgca	2700
catccaggga	ggaggacaga	aggcccagct	cacatgtgag	tcctggcaga	agccatggcc	2760
catgtctgca	catccaggga	ggaggacaga	aggcccagot	cacatgtgag	tcctggcaga	2820
agccatggcc	catgtctgca	catccaggga	ggaggacaga	aggcccagct	cacatgtgag	2880
tcctggcaga	agccatggcc	catgtctgca	catccaggga	ggaggacaga	aggcccagct	2940
cagtggcccc	cgctcccccac	ccccccacgcc	cgaacagcag	gggcagagca	gccctccctc	3000
gaagtgtgtc	caagtccgca	tttgagcctt	gttctggggc	ccagcccaac	acctggcttg	3060
ggctcaactgt	cctgagttgc	agtaaagcta	taaccttcaa	tcacaa		3106

<210> 175

<211> 636

<212> PRT

<213> Homo sapiens

<220>

<221> MOD RES

222 <222> (539)

<223> Any amino acid

<400> 175

Met	Thr	Thr	Trp	Ser	Leu	Arg	Arg	Arg	Pro	Ala	Arg	Thr	Leu	Gly	Leu
1				5					10					15	

Leu Leu Leu Val Val Leu Gly Phe Leu Val Leu Arg Arg Leu Asp Trp
20 25 30

Ser Thr Leu Val Pro Leu Arg Leu Arg His Arg Gln Leu Gly Leu Gln
35 40 45

Ala Lys Gly Trp Asn Phe Met Leu Glu Asp Ser Thr Phe Trp Ile Phe
50 55 60

Gly Gly Ser Ile His Tyr Phe Arg Val Pro Arg Glu Tyr Trp Arg Asp
 65 70 75 80

Arg Leu Leu Lys Met Lys Ala Cys Gly Leu Asn Thr Leu Thr Thr Tyr
85 90 95

Val Pro Trp Asn Leu His Glu Pro Glu Arg Gly Lys Phe Asp Phe Ser
100 105 110

Gly Asn Leu Asp Leu Glu Ala Phe Val Leu Met Ala Ala Glu Ile Gly
 115 120 125

Leu Trp Val Ile Leu Arg Pro Gly Pro Tyr Ile Cys Ser Glu Met Asp
130 135 140

Leu Gly Gly Leu Pro Ser Trp Leu Leu Gln Asp Pro Gly Met Arg Leu
 145 150 155 160
 Arg Thr Thr Tyr Lys Gly Phe Thr Glu Ala Val Asp Leu Tyr Phe Asp
 165 170 175
 His Leu Met Ser Arg Val Val Pro Leu Gln Tyr Lys Arg Gly Gly Pro
 180 185 190
 Ile Ile Ala Val Gln Val Glu Asn Glu Tyr Gly Ser Tyr Asn Lys Asp
 195 200 205
 Pro Ala Tyr Met Pro Tyr Val Lys Lys Ala Leu Glu Asp Arg Gly Ile
 210 215 220
 Val Glu Leu Leu Leu Thr Ser Asp Asn Lys Asp Gly Leu Ser Lys Gly
 225 230 235 240
 Ile Val Gln Gly Val Leu Ala Thr Ile Asn Leu Gln Ser Thr His Glu
 245 250 255
 Leu Gln Leu Leu Thr Thr Phe Leu Phe Asn Val Gln Gly Thr Gln Pro
 260 265 270
 Lys Met Val Met Glu Tyr Trp Thr Gly Trp Phe Asp Ser Trp Gly Gly
 275 280 285
 Pro His Asn Ile Leu Asp Ser Ser Glu Val Leu Lys Thr Val Ser Ala
 290 295 300
 Ile Val Asp Ala Gly Ser Ser Ile Asn Leu Tyr Met Phe His Gly Gly
 305 310 315 320
 Thr Asn Phe Gly Phe Met Asn Gly Ala Met His Phe His Asp Tyr Lys
 325 330 335
 Ser Asp Val Thr Ser Tyr Asp Tyr Asp Ala Val Leu Thr Glu Ala Gly
 340 345 350
 Asp Tyr Thr Ala Lys Tyr Met Lys Leu Arg Asp Phe Phe Gly Ser Ile
 355 360 365
 Ser Gly Ile Pro Leu Pro Pro Pro Asp Leu Leu Pro Lys Met Pro
 370 375 380
 Tyr Glu Pro Leu Thr Pro Val Leu Tyr Leu Ser Leu Trp Asp Ala Leu
 385 390 395 400
 Lys Tyr Leu Gly Glu Pro Ile Lys Ser Glu Lys Pro Ile Asn Met Glu
 405 410 415
 Asn Leu Pro Val Asn Gly Gly Asn Gly Gln Ser Phe Gly Tyr Ile Leu
 420 425 430

Tyr Glu Thr Ser Ile Thr Ser Ser Gly Ile Leu Ser Gly His Val His
 435 440 445

Asp Arg Gly Gln Val Phe Val Asn Thr Val Ser Ile Gly Phe Leu Asp
 450 455 460

Tyr Lys Thr Thr Lys Ile Ala Val Pro Leu Ile Gln Gly Tyr Thr Val
 465 470 475 480

Leu Arg Ile Leu Val Glu Asn Arg Gly Arg Val Asn Tyr Gly Glu Asn
 485 490 495

Ile Asp Asp Gln Arg Lys Gly Leu Ile Gly Asn Leu Tyr Leu Asn Asp
 500 505 510

Ser Pro Leu Lys Asn Phe Arg Ile Tyr Ser Leu Asp Met Lys Lys Ser
 515 520 525

Phe Phe Gln Arg Phe Gly Leu Asp Lys Trp Xaa Ser Leu Pro Glu Thr
 530 535 540

Pro Thr Leu Pro Ala Phe Phe Leu Gly Ser Leu Ser Ile Ser Ser Thr
 545 550 555 560

Pro Cys Asp Thr Phe Leu Lys Leu Glu Gly Trp Glu Lys Gly Val Val
 565 570 575

Phe Ile Asn Gly Gln Asn Leu Gly Arg Tyr Trp Asn Ile Gly Pro Gln
 580 585 590

Lys Thr Leu Tyr Leu Pro Gly Pro Trp Leu Ser Ser Gly Ile Asn Gln
 595 600 605

Val Ile Val Phe Glu Glu Thr Met Ala Gly Pro Ala Leu Gln Phe Thr
 610 615 620

Glu Thr Pro His Leu Gly Arg Asn Gln Tyr Ile Lys
 625 630 635

<210> 176

<211> 2505

<212> DNA

<213> Homo sapiens

<400> 176

ggggacgcgg agctgagagg ctccgggcta gctaggtgta ggggtggacg ggtcccagga 60
 ccctggtag ggttctctac ttggccttcg gtgggggtca agacgcaggc acctacgcca 120
 aaggggagca aagccgggct cggcccgagg cccccaggac ctccatctcc caatgttgg 180
 ggaatccgac acgtgacggt ctgtccgccc tctcagacta gaggagcgct gtaaacgcca 240
 tggctcccaa gaagctgtcc tgcctcggtt ccctgctgtt gccgctcagg ctgacgctac 300
 tgctgccccca ggcagacact cggtcggtcg tagtgatag gggcatgac cggtttctcc 360
 tagacggggc cccgttccgc tatgtgtctg gcagcctgca ctacttcgg gtaccgcggg 420

tgctttggc cgaccggc ttgaagatgc gatggagcgg cctcaacgcc atacagttt 480
atgtccctg gaactaccac gagccacagc ctggggctca taaccttaat ggcagccggg 540
acctcattgc ctttctgaat gaggcagctc tagcgaacct gttggtcata ctgagaccag 600
gaccttacat ctgtcagag tgggagatgg ggggtctccc atcctggttg cttcgaaaac 660
ctgaaattca tctaagaacc tcagatccag acttccttgc cgcaagtggac tcctggttca 720
aggtcttgc gccaagata tatccatggc tttatcacaa tggggcaac atcattagca 780
ttcagggtga gaatgaatat ggtagctaca gaggctgtga cttcagctac atgaggcact 840
tggctggct cttccgtca ctgcttaggag aaaagatctt gctcttcacc acagatggc 900
ctgaaggact caagtgtggc tccctccggg gactctatac cactgttagat tttggccca 960
ctgacaacat gaccaaattt tttacccctgc ttcggaaagta tgaaccccat gggccattgg 1020
taaactctga gtactacaca ggctggctgg attactgggg ccagaatcac tccacacgg 1080
ctgtgtcagc tgtaacccaaa ggactagaga acatgctcaa gttggagcc agtgtgaaca 1140
tgtacatgtt ccatggaggt accaactttg gatattggaa tggtgcccat aagaagggac 1200
gcttccttcc gattactacc agctatgact atgatgcacc tatatctgaa gcaggggacc 1260
ccacacctaa gcttttgc cttcgagatg tcacgacaa gttcaggaa gttccttgg 1320
gaccttacc tccccccgagc cccaaatgta tgcttggacc tgtgactctg cacctggttg 1380
ggcatttact ggctttccta gacttgc tt gccccgtgg gcccattcat tcaatcttgc 1440
caatgacccct tgaggctgtc aaggcaggacc atggcttcat gttgtaccga acctatatga 1500
cccataccat ttttggcca acaccattt ggggtccaaa taatggagtc catgaccgtg 1560
cctatgtat ggtggatggg gtgttccagg gtgttgtgga gcgaaatatg agagacaaac 1620
tatttttgac gggaaactg ggggtccaaac tggatatctt ggtggagaac atggggaggc 1680
tcagcttgg gtctaacagc agtgacttca aggggctgtt gaagccacca attctggggc 1740
aaacaatcct taccctgtt atgatgttcc ctctgaaaat tgataacctt gtgaagtgg 1800
ggtttccctt ccagttgcca aaatggccat atcctcaagc tcctctggc cccacattct 1860
actccaaaac atttccaatt ttaggctcag ttggggacac atttctatat ctacctggat 1920
ggaccaaggg ccaagtctgg atcaatgggt ttaacttggg ccgtactgg acaaagcagg 1980
ggccacaaca gaccctctac gtgccaagat tcctgctgtt tcctagggga gcccctaaca 2040
aaattacatt gctggaacta gaagatgtac ctctccaggc ccaagtccaa tttttggata 2100
agcctatcct caatagcact agtactttgc acaggacaca tatcaattcc ctccatgtg 2160
atacactgag tgcctctgaa ccaatgggt taagtggca ctgaaaggta ggcggggcat 2220
ggtggtcat gcctgtatc ccagcacttt gggaggctga gacgggtgga ttacctgagg 2280
tcaggacttc aagaccagcc tggccaaacat ggtgaaaccc cgtctccact aaaaatacaa 2340
aaattagccg ggcgtgtatgg tggcacccctc taatcccacg tacttggag gctgaggggca 2400
ggagaattgc ttgaatccag gaggcagagg ttgcagttag tggaggttgc accactgcac 2460
tccagccctgg ctgacagtga gacactccat ctcaaaaaaaa aaaaa 2505

<210> 177

<211> 654

<212> PRT

<213> Homo sapiens

<400> 177

Met Ala Pro Lys Lys Leu Ser Cys Leu Arg Ser Leu Leu Leu Pro Leu

1 5 10 15

Ser Leu Thr Leu Leu Leu Pro Gln Ala Asp Thr Arg Ser Phe Val Val

20 25 30

Asp Arg Gly His Asp Arg Phe Leu Leu Asp Gly Ala Pro Phe Arg Tyr

35 40 45

Val Ser Gly Ser Leu His Tyr Phe Arg Val Pro Arg Val Leu Trp Ala

50 55 60

Asp Arg Leu Leu Lys Met Arg Trp Ser Gly Leu Asn Ala Ile Gln Phe
 65 70 75 80

Tyr Val Pro Trp Asn Tyr His Glu Pro Gln Pro Gly Val Tyr Asn Phe
 85 90 95

Asn Gly Ser Arg Asp Leu Ile Ala Phe Leu Asn Glu Ala Ala Leu Ala
 100 105 110

Asn Leu Leu Val Ile Leu Arg Pro Gly Pro Tyr Ile Cys Ala Glu Trp
 115 120 125

Glu Met Gly Gly Leu Pro Ser Trp Leu Leu Arg Lys Pro Glu Ile His
 130 135 140

Leu Arg Thr Ser Asp Pro Asp Phe Leu Ala Ala Val Asp Ser Trp Phe
 145 150 155 160

Lys Val Leu Leu Pro Lys Ile Tyr Pro Trp Leu Tyr His Asn Gly Gly
 165 170 175

Asn Ile Ile Ser Ile Gln Val Glu Asn Glu Tyr Gly Ser Tyr Arg Ala
 180 185 190

Cys Asp Phe Ser Tyr Met Arg His Leu Ala Gly Leu Phe Arg Ala Leu
 195 200 205

Leu Gly Glu Lys Ile Leu Leu Phe Thr Thr Asp Gly Pro Glu Gly Leu
 210 215 220

Lys Cys Gly Ser Leu Arg Gly Leu Tyr Thr Val Asp Phe Gly Pro
 225 230 235 240

Ala Asp Asn Met Thr Lys Ile Phe Thr Leu Leu Arg Lys Tyr Glu Pro
 245 250 255

His Gly Pro Leu Val Asn Ser Glu Tyr Tyr Thr Gly Trp Leu Asp Tyr
 260 265 270

Trp Gly Gln Asn His Ser Thr Arg Ser Val Ser Ala Val Thr Lys Gly
 275 280 285

Leu Glu Asn Met Leu Lys Leu Gly Ala Ser Val Asn Met Tyr Met Phe
 290 295 300

His Gly Gly Thr Asn Phe Gly Tyr Trp Asn Gly Ala Asp Lys Lys Gly
 305 310 315 320

Arg Phe Leu Pro Ile Thr Thr Ser Tyr Asp Tyr Asp Ala Pro Ile Ser
 325 330 335

Glu Ala Gly Asp Pro Thr Pro Lys Leu Phe Ala Leu Arg Asp Val Ile

340	345	350
Ser Lys Phe Gln Glu Val Pro Leu Gly Pro Leu Pro Pro Pro Ser Pro		
355	360	365
Lys Met Met Leu Gly Pro Val Thr Leu His Leu Val Gly His Leu Leu		
370	375	380
Ala Phe Leu Asp Leu Leu Cys Pro Arg Gly Pro Ile His Ser Ile Leu		
385	390	395
Pro Met Thr Phe Glu Ala Val Lys Gln Asp His Gly Phe Met Leu Tyr		
405	410	415
Arg Thr Tyr Met Thr His Thr Ile Phe Glu Pro Thr Pro Phe Trp Val		
420	425	430
Pro Asn Asn Gly Val His Asp Arg Ala Tyr Val Met Val Asp Gly Val		
435	440	445
Phe Gln Gly Val Val Glu Arg Asn Met Arg Asp Lys Leu Phe Leu Thr		
450	455	460
Gly Lys Leu Gly Ser Lys Leu Asp Ile Leu Val Glu Asn Met Gly Arg		
465	470	475
Leu Ser Phe Gly Ser Asn Ser Ser Asp Phe Lys Gly Leu Leu Lys Pro		
485	490	495
Pro Ile Leu Gly Gln Thr Ile Leu Thr Gln Trp Met Met Phe Pro Leu		
500	505	510
Lys Ile Asp Asn Leu Val Lys Trp Trp Phe Pro Leu Gln Leu Pro Lys		
515	520	525
Trp Pro Tyr Pro Gln Ala Pro Ser Gly Pro Thr Phe Tyr Ser Lys Thr		
530	535	540
Phe Pro Ile Leu Gly Ser Val Gly Asp Thr Phe Leu Tyr Leu Pro Gly		
545	550	555
Trp Thr Lys Gly Gln Val Trp Ile Asn Gly Phe Asn Leu Gly Arg Tyr		
565	570	575
Trp Thr Lys Gln Gly Pro Gln Gln Thr Leu Tyr Val Pro Arg Phe Leu		
580	585	590
Leu Phe Pro Arg Gly Ala Leu Asn Lys Ile Thr Leu Leu Glu Leu Glu		
595	600	605
Asp Val Pro Leu Gln Pro Gln Val Gln Phe Leu Asp Lys Pro Ile Leu		
610	615	620

Asn Ser Thr Ser Thr Leu His Arg Thr His Ile Asn Ser Leu Ser Ala
 625 630 635 640

Asp Thr Leu Ser Ala Ser Glu Pro Met Glu Leu Ser Gly His
 645 650

<210> 178
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 178
tggctactcc aagaccctgg catg 24

<210> 179
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 179
tggacaaaatc cccttgctca gccc 24

<210> 180
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 180
gggcttcacc gaaggcagtgg acctttatgg tgaccacctg atgtccaggg 50

<210> 181
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 181
ccagctatga ctatgatgca cc 22

```

<210> 182
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 182
tggcacccag aatggtgttg gctc                                         24

<210> 183
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 183
cgagatgtca tcagcaagtt ccaggaagtt ctttggac cttaacctcc                                         50

<210> 184
<211> 1947
<212> DNA
<213> Homo sapiens

<400> 184
gctttgaaca cgtctgcaag cccaaagtt agcatctgat tggtatgag gtatttgagt 60
gcaccaccaa tatggcttac atgttaaaaa agcttctcat cagttacata tccattattt 120
gtgttatgg ctttatctgc ctctacactc tcttcgttt attcaggata ccttgaagg 180
aatattctt cggaaaaagtc agagaagaga gcagtttag tgacattcca gatgtcaaaa 240
acgattttgc gttccttctt cacatggtag accagttatga ccagctatat tccaagcggt 300
ttggtgtgtt cttgtcagaa gtttagtggaaa ataaacttag ggaaatttagt ttgaaccatg 360
agtggacatt tgaaaaaactc aggacgcaca tttcacgcaa cgcccaggac aagcaggagt 420
tgcattgtt catgctgtcg ggggtgcccg atgctgttt tgacattcaca gacctggatg 480
tgctaaagct tgaactaatt ccagaagcta aaattcctgc taagattct caaatgacta 540
acctccaaga gctccacctc tgccactgcc ctgcaaaaat tgaacagact gcttttagct 600
ttcttcgca tcacttgaga tgccttcacg tgaagttcac tgatgtggct gaaattccctg 660
cctgggtgtt ttgctcaaa aaccttcgag agttgtactt aataggcaat ttgaactctg 720
aaaacaataa gatgatagga cttgaatctc tccgagagtt gcccacctt aagattctcc 780
acgtgaagag caatttgacc aaagttccct ccaacattac agatgtggct ccacatctta 840
caaagtttagt cattcataat gacggcacta aactcttggt actgaacagc cttaaagaaaa 900
tgatgaatgt cgctgagctg gaactccaga actgtgagct agagagaatc ccacatgcta 960
tttcagcct ctctaaattt caggaactgg atttaaagtca caataacatt cgcacaattt 1020
aggaaatcat cagtttccag cattttaaac gactgacttg tttaaaaatta tggcataaca 1080
aaattgttac tatttcctccc tcttattaccc atgtcaaaaaa cttggagtca ctttatttct 1140
ctaaacaaca gctcgaatcc ttaccagtgg cagtttttag tttacagaaaa ctcagatgct 1200
tagatgtgag ctacaacaac atttcaatga ttccaaataga aataggattt cttcagaacc 1260
tgcagcattt gcatatcact gggaaacaag tggacattct gccaaaacaa ttgtttaaat 1320

```

gcataaaagtt gaggactttg aatctgggac agaactgcat cacctcaactc ccagagaaaag 1380
 ttggtcagct ctcccagctc actcagctgg agctgaaggg gaactgcttg gaccgcctgc 1440
 cagcccagct gggccagtgt cgatgctca agaaaagcgg gcttgggttg gaagatcacc 1500
 ttttgatac cctgccactc gaagtcaaag aggcatgaa tcaagacata aatattccct 1560
 ttgcaaatgg gatttaaact aagataatat atgcacagtg atgtgcagga acaacttcct 1620
 agattgcaag tgctcacgta caagttatta caagataatg cattttagga gtagatacat 1680
 cttttaaaat aaaacagaga ggatgcatag aaggctgata gaagacataa ctgaatgttc 1740
 aatgttgta gggtttaag tcattcattt ccaaattcatt ttttttttc ttttggggaa 1800
 agggaaaggaa aaattataat cactaatctt gttctttt aaattgtttg taacttggat 1860
 gctgccgcta ctgaatgtt acaaattgct tgcctgctaa agtaaatgat taaattgaca 1920
 ttttcttact aaaaaaaaaaaaaaaa 1947

<210> 185

<211> 501

<212> PRT

<213> Homo sapiens

<400> 185

Met	Ala	Tyr	Met	Leu	Lys	Lys	Leu	Leu	Ile	Ser	Tyr	Ile	Ser	Ile	Ile
1									10					15	

Cys	Val	Tyr	Gly	Phe	Ile	Cys	Leu	Tyr	Thr	Leu	Phe	Trp	Leu	Phe	Arg
									25					30	

Ile	Pro	Leu	Lys	Glu	Tyr	Ser	Phe	Glu	Lys	Val	Arg	Glu	Glu	Ser	Ser
									40					45	

Phe	Ser	Asp	Ile	Pro	Asp	Val	Lys	Asn	Asp	Phe	Ala	Phe	Leu	Leu	His
									55					60	

Met	Val	Asp	Gln	Tyr	Asp	Gln	Leu	Tyr	Ser	Lys	Arg	Phe	Gly	Val	Phe
									75					80	

Leu	Ser	Glu	Val	Ser	Glu	Asn	Lys	Leu	Arg	Glu	Ile	Ser	Leu	Asn	His
									90					95	

Glu	Trp	Thr	Phe	Glu	Lys	Leu	Arg	Gln	His	Ile	Ser	Arg	Asn	Ala	Gln
								105					110		

Asp	Lys	Gln	Glu	Leu	His	Leu	Phe	Met	Leu	Ser	Gly	Val	Pro	Asp	Ala
								115					120		125

Val	Phe	Asp	Leu	Thr	Asp	Leu	Asp	Val	Leu	Lys	Leu	Glu	Leu	Ile	Pro
								130					135		140

Glu	Ala	Lys	Ile	Pro	Ala	Lys	Ile	Ser	Gln	Met	Thr	Asn	Leu	Gln	Glu
								145					150		160

Leu	His	Leu	Cys	His	Cys	Pro	Ala	Lys	Val	Glu	Gln	Thr	Ala	Phe	Ser
								165					170		175

Phe	Leu	Arg	Asp	His	Leu	Arg	Cys	Leu	His	Val	Lys	Phe	Thr	Asp	Val
								180					185		190

Ala Glu Ile Pro Ala Trp Val Tyr Leu Leu Lys Asn Leu Arg Glu Leu
 195 200 205

Tyr Leu Ile Gly Asn Leu Asn Ser Glu Asn Asn Lys Met Ile Gly Leu
 210 215 220

Glu Ser Leu Arg Glu Leu Arg His Leu Lys Ile Leu His Val Lys Ser
 225 230 235 240

Asn Leu Thr Lys Val Pro Ser Asn Ile Thr Asp Val Ala Pro His Leu
 245 250 255

Thr Lys Leu Val Ile His Asn Asp Gly Thr Lys Leu Leu Val Leu Asn
 260 265 270

Ser Leu Lys Lys Met Met Asn Val Ala Glu Leu Glu Leu Gln Asn Cys
 275 280 285

Glu Leu Glu Arg Ile Pro His Ala Ile Phe Ser Leu Ser Asn Leu Gln
 290 295 300

Glu Leu Asp Leu Lys Ser Asn Asn Ile Arg Thr Ile Glu Glu Ile Ile
 305 310 315 320

Ser Phe Gln His Leu Lys Arg Leu Thr Cys Leu Lys Leu Trp His Asn
 325 330 335

Lys Ile Val Thr Ile Pro Pro Ser Ile Thr His Val Lys Asn Leu Glu
 340 345 350

Ser Leu Tyr Phe Ser Asn Asn Lys Leu Glu Ser Leu Pro Val Ala Val
 355 360 365

Phe Ser Leu Gln Lys Leu Arg Cys Leu Asp Val Ser Tyr Asn Asn Ile
 370 375 380

Ser Met Ile Pro Ile Glu Ile Gly Leu Leu Gln Asn Leu Gln His Leu
 385 390 395 400

His Ile Thr Gly Asn Lys Val Asp Ile Leu Pro Lys Gln Leu Phe Lys
 405 410 415

Cys Ile Lys Leu Arg Thr Leu Asn Leu Gly Gln Asn Cys Ile Thr Ser
 420 425 430

Leu Pro Glu Lys Val Gly Gln Leu Ser Gln Leu Thr Gln Leu Glu Leu
 435 440 445

Lys Gly Asn Cys Leu Asp Arg Leu Pro Ala Gln Leu Gly Gln Cys Arg
 450 455 460

Met Leu Lys Lys Ser Gly Leu Val Val Glu Asp His Leu Phe Asp Thr

465 470 475 480

Leu Pro Leu Glu Val Lys Glu Ala Leu Asn Gln Asp Ile Asn Ile Pro
485 490 495

Phe Ala Asn Gly Ile
500

<210> 186

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 186

cctccctcta ttacccatgt c

21

<210> 187

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 187

gaccaacttt ctctggagt gagg

24

<210> 188

<211> 47

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 188

gtcactttat ttctctaaca acaagctcga atccttacca gtggcag

47

<210> 189

<211> 2917

<212> DNA

<213> Homo sapiens

<400> 189

ccccacgcgtc cggccttctc tctggacttt gcatttccat tcctttcat tgacaaactg 60
actttttta tttttttt tccatctcg ggccagcttgg gatcctagg cgccctggg 120
aagacatttg tggtttacac acataaggat ctgtgtttgg gtttcttct tcctccctg 180

acattggcat tgcttagtgg ttgtgtgggg agggagacca cgtgggctca gtgcttgctt 240
 gcacttatct gccttaggtac atcgaagtct tttgacctcc atacagtat tatgcctgtc 300
 atcgctggtg gtatcctggc ggccttgctc ctgctgatag ttgtcgtgct ctgtcttac 360
 ttcaaaaatac aacaacgcgt aaaagctgca aaggaacctg aagctgtggc tgaaaaaaat 420
 cacaacccag acaagggtgtg gtgggccaag aacagccagg ccaaaaccat tgccacggag 480
 tcttgcctg ccctgcagtg ctgtgaagga tatagaatgt gtgcagttt tgattccctg 540
 ccacccgt gttgcacat aaatgagggc ctctgaggtt gggaaaggctc ccttctcaaa 600
 gcagagccct gaagacttca atgatgtcaa tgaggccacc tggttgtat gtgcaggcac 660
 agaagaaaagg cacagctccc catcagttc atggaaaata actcagtgcc tgctggAAC 720
 cagctgctgg agatccctac agagagctc cactggggc aacccttcca ggaaggagtt 780
 ggggagagag aaccctcaact gtggggaaatg ctgataaaacc agtcacacag ctgctctatt 840
 ctcacacaaa tctaccctt gcgtggctgg aactgacggtt tccctggagg tgcacccaaa 900
 gctgatgtaa cacagagccct ataaaagctg tcggcctta aggctgccc ggccttgcc 960
 aaaatggagc ttgtaaaaag gctcatgcca ttgaccctct taattctctc ctgtttggcg 1020
 gagctgacaa tggcgaggc tgaaggcaat gcaagctgca cagtcagttt aggggggtgccc 1080
 aatatggcag agacccacaa agccatgatc ctgcaactca atcccaactgaa gaactgcacc 1140
 tggacaatag aaagaccaga aaacaaaagc atcagaattt tctttccctt tgccagctt 1200
 gatccagatg gaagctgtgaa aagtggaaac attaaagtct ttgacggaaac ctccagcaat 1260
 gggccctctgc tagggcaagt ctgcagttt aacgactatg ttccctgtatt tgaatcatca 1320
 tccagtagat tgcgtttca aatagttact gactcagccaa gaattcaaaag aactgtctt 1380
 gtcttctact acttcttctc tcctaaccatc tctattccaa actgtggcg ttacctggat 1440
 accttggaaag gatccttcac cagccccaaat tacccttcaaa cgcattctgaa gctggcttat 1500
 tgtgtgtggc acatacaagt ggagaaaagat tacaagataa aactaaactt caaagagatt 1560
 ttcttagaaaa tagacaaaaca gtgcaaaattt gattttcttg ccatttatgaa tggccccctcc 1620
 accaactctg gcctgattgg acaagtctgtt gcccgtgtaa ctcccacctt cgaatcgatca 1680
 tcaaactctc tgactgtcgat gttgtctaca gattatgoca attcttaccg gggattttct 1740
 gcttcctaca cctcaattt tgcagaaaac atcaacacta catctttaac ttgctctct 1800
 gacaggatga gagttattat aagcaaatcc taccttaggg cttttaactc taatggaaat 1860
 aacttgcac taaaagaccc aacttgcaga cccaaattat caaatgttgc ggaattttct 1920
 gtccttcata atggatgtgg tacaatcaga aaggttagaaat atcagtcaat tacttacacc 1980
 aatataatca cctttctgc atcctcaact tctgaagtgtca tcaccctgtca gaaacaactc 2040
 cagattattt tgaagtgtgaa atggggacat aattctacag tggagataat atacataaca 2100
 gaagatgtg taatacaaaag tcaaaaatgca ctggggcaaat ataacaccag catggcttt 2160
 ttgaatcca attcatttga aaagactata tctgaatcacatcatattatgt ggatttgaac 2220
 caaactctt ttgttcaagt tagtctgcac acctcagatc caaatttggg ggtgtttctt 2280
 gataacctgta gaggcctctcc cacctctgac tttgcatctc caacccatcgaa cctaattcaag 2340
 agtggatgtt gtcgagatgtt aacttgcataag gtgtatccct tatttggaca ctatgggaga 2400
 ttccagtttta atgcctttaa attcttgcata aagttgatgtt ctgtgtatct gcagtgtaaa 2460
 gttttgatgtt gtgatagcag tgaccaccag tctcgctgca atcaagggtt tgctccaga 2520
 agcaaaacggg acattttctt atataaaatgg aaaacagatt ccattatagg acccattcgt 2580
 ctgaaaagggtt atcgaagtgc aagtggcaat tcaggatttc agcatgaaac acatgcgaa 2640
 gaaaactccaa accagccctt caacagtgtt catctgtttt ccttcatgtt tctagctctg 2700
 aatgtgggtt ctgttagcgac aatcacagtg aggcatggg taaatcaacg ggcagactac 2760
 aaataccaga agctgcagaaa ctattaacta acaggtccaa ccctcaactgaa gacatgtttc 2820
 tccaggatgc caaaggaaat gctaccctgtt ggctacacat attatgaata aatgagggaaag 2880
 ggcctgaaaag tgacacacacat gcctgcattt aaaaaaaaaa 2917

<210> 190

<211> 607

<212> PRT

<213> Homo sapiens

<400> 190

Met Glu Leu Val Arg Arg Leu Met Pro Leu Thr Leu Leu Ile Leu Ser
 1 5 10 15

Cys Leu Ala Glu Leu Thr Met Ala Glu Ala Glu Gly Asn Ala Ser Cys
 20 25 30

Thr Val Ser Leu Gly Gly Ala Asn Met Ala Glu Thr His Lys Ala Met
 35 40 45

Ile Leu Gln Leu Asn Pro Ser Glu Asn Cys Thr Trp Thr Ile Glu Arg
 50 55 60

Pro Glu Asn Lys Ser Ile Arg Ile Ile Phe Ser Tyr Val Gln Leu Asp
 65 70 75 80

Pro Asp Gly Ser Cys Glu Ser Glu Asn Ile Lys Val Phe Asp Gly Thr
 85 90 95

Ser Ser Asn Gly Pro Leu Leu Gly Gln Val Cys Ser Lys Asn Asp Tyr
 100 105 110

Val Pro Val Phe Glu Ser Ser Ser Thr Leu Thr Phe Gln Ile Val
 115 120 125

Thr Asp Ser Ala Arg Ile Gln Arg Thr Val Phe Val Phe Tyr Tyr Phe
 130 135 140

Phe Ser Pro Asn Ile Ser Ile Pro Asn Cys Gly Gly Tyr Leu Asp Thr
 145 150 155 160

Leu Glu Gly Ser Phe Thr Ser Pro Asn Tyr Pro Lys Pro His Pro Glu
 165 170 175

Leu Ala Tyr Cys Val Trp His Ile Gln Val Glu Lys Asp Tyr Lys Ile
 180 185 190

Lys Leu Asn Phe Lys Glu Ile Phe Leu Glu Ile Asp Lys Gln Cys Lys
 195 200 205

Phe Asp Phe Leu Ala Ile Tyr Asp Gly Pro Ser Thr Asn Ser Gly Leu
 210 215 220

Ile Gly Gln Val Cys Gly Arg Val Thr Pro Thr Phe Glu Ser Ser Ser
 225 230 235 240

Asn Ser Leu Thr Val Val Leu Ser Thr Asp Tyr Ala Asn Ser Tyr Arg
 245 250 255

Gly Phe Ser Ala Ser Tyr Thr Ser Ile Tyr Ala Glu Asn Ile Asn Thr
 260 265 270

Thr Ser Leu Thr Cys Ser Ser Asp Arg Met Arg Val Ile Ile Ser Lys
 275 280 285

Ser Tyr Leu Glu Ala Phe Asn Ser Asn Gly Asn Asn Leu Gln Leu Lys
 290 295 300
 Asp Pro Thr Cys Arg Pro Lys Leu Ser Asn Val Val Glu Phe Ser Val
 305 310 315 320
 Pro Leu Asn Gly Cys Gly Thr Ile Arg Lys Val Glu Asp Gln Ser Ile
 325 330 335
 Thr Tyr Thr Asn Ile Ile Thr Phe Ser Ala Ser Ser Thr Ser Glu Val
 340 345 350
 Ile Thr Arg Gln Lys Gln Leu Gln Ile Ile Val Lys Cys Glu Met Gly
 355 360 365
 His Asn Ser Thr Val Glu Ile Ile Tyr Ile Thr Glu Asp Asp Val Ile
 370 375 380
 Gln Ser Gln Asn Ala Leu Gly Lys Tyr Asn Thr Ser Met Ala Leu Phe
 385 390 395 400
 Glu Ser Asn Ser Phe Glu Lys Thr Ile Leu Glu Ser Pro Tyr Tyr Val
 405 410 415
 Asp Leu Asn Gln Thr Leu Phe Val Gln Val Ser Leu His Thr Ser Asp
 420 425 430
 Pro Asn Leu Val Val Phe Leu Asp Thr Cys Arg Ala Ser Pro Thr Ser
 435 440 445
 Asp Phe Ala Ser Pro Thr Tyr Asp Leu Ile Lys Ser Gly Cys Ser Arg
 450 455 460
 Asp Glu Thr Cys Lys Val Tyr Pro Leu Phe Gly His Tyr Gly Arg Phe
 465 470 475 480
 Gln Phe Asn Ala Phe Lys Phe Leu Arg Ser Met Ser Ser Val Tyr Leu
 485 490 495
 Gln Cys Lys Val Leu Ile Cys Asp Ser Ser Asp His Gln Ser Arg Cys
 500 505 510
 Asn Gln Gly Cys Val Ser Arg Ser Lys Arg Asp Ile Ser Ser Tyr Lys
 515 520 525
 Trp Lys Thr Asp Ser Ile Ile Gly Pro Ile Arg Leu Lys Arg Asp Arg
 530 535 540
 Ser Ala Ser Gly Asn Ser Gly Phe Gln His Glu Thr His Ala Glu Glu
 545 550 555 560
 Thr Pro Asn Gln Pro Phe Asn Ser Val His Leu Phe Ser Phe Met Val

	565	570	575
Leu Ala Leu Asn Val Val Thr Val Ala Thr Ile Thr Val Arg His Phe			
580	585		590
Val Asn Gln Arg Ala Asp Tyr Lys Tyr Gln Lys Leu Gln Asn Tyr			
595	600		605
<210> 191			
<211> 21			
<212> DNA			
<213> Artificial Sequence			
<220>			
<223> Description of Artificial Sequence: Synthetic			
oligonucleotide probe			
<400> 191			
tctctattcc aaactgtggc g			21
<210> 192			
<211> 22			
<212> DNA			
<213> Artificial Sequence			
<220>			
<223> Description of Artificial Sequence: Synthetic			
oligonucleotide probe			
<400> 192			
tttgatgacg attcgaaggt gg			22
<210> 193			
<211> 47			
<212> DNA			
<213> Artificial Sequence			
<220>			
<223> Description of Artificial Sequence: Synthetic			
oligonucleotide probe			
<400> 193			
ggaaggatcc ttcaccagcc ccaattaccc aaagccgcac cctgagc			47
<210> 194			
<211> 2362			
<212> DNA			
<213> Homo sapiens			
<400> 194			
gacggaagaa cagcgctccc gagggccgcgg gagcctgcag agaggacagc cggcctgcgc 60			
cgggacatgc ggccccagga gctccccagg ctcgcgttcc cgttgctgtct gttgctgttg 120			
ctgctqctgc cggccgcgcgttcc cacagcgcca cgcgcgttca cccccacactgg 180			

gagtcctcgg acgcccgcga gctgcccccg 240
atccactggg gaggttttc cgtccccagc ttccgttagcg agtggctctg gtggatttgg 300
caaaaaggaaa agataaccgaa gtatgtggaa ttatgaaag ataattaccc tcctagttc 360
aaatatgaag attttggacc actattaca gaaaaatttt ttaatgc当地 ccagtggcca 420
gatattttc aggccctctgg tgccaaatac attgtcttaa cttccaaaca tcatgaaggc 480
tttaccttgt ggggttcaga atattcgtgg aactggaatg ccatagatga ggggccc当地 540
agggacattg tcaaggaact tgaggttagcc attaggaaca gaactgaccc gogttttgga 600
ctgtactatt cccttttga atggttcat ccgc当地tcc ttgaggatga atccagt当地 660
ttccataaagc ggcaatttcc agtttctaag acattgcccag agctctatga tttagt当地 720
aactatcagc ctgaggttct gtggctggat ggtgacggag gggccccc当地 tcaatactgg 780
aacagcacag gcttcttggc ctggttatataatgaaagcc cagttccccc当地 cacagtagtc 840
accaatgatc gttggggagc tggtagcata tgtaagcatg gtggcttctt当地 tacctgca 900
gatcgttata acccaggaca tcttttgc当地 cataaatggg aaaactgc当地 gacaatagac 960
aaactgtcct ggggctatacg gagggaagct ggaatctctg actatctt当地 aattgaagaa 1020
ttggtgaagc aacttgtaga gacagttca tggaggaa atctttgtat gaatatttgg 1080
cccacactag atggcaccat ttctgttagtt tttgaggagc gactgaggca agtgggtcc 1140
tggctaaaag tcaatggaga agctatttat gaaacctata cctggccatc ccagaatgac 1200
actgtcaccc cagatgtgtg gtacacatcc aagcctaaag aaaaatttagt ctatgccatt 1260
tttcttaaat ggccc当地tcc aggacagctg ttcccttggcc atcccaaagc tattcttggg 1320
gcaacagagg tgaaactact gggccatgga cagccactta actggatttcc ttggagccaa 1380
aatggcatta tggtagaact gccacagcta accatttcatc agatgccgtg taaatggggc 1440
tgggctctag ccctaactaa tgtgatctaa agtgc当地cagc agtggctgtat gctgcaagtt 1500
atgtctaagg ctaggaacta tcaggtgtct ataattgtag cacatggaga aagcaatgta 1560
aactggataa gaaaatttatt tggcagttca gccc当地tcc ttttccac taaattttcc 1620
ttaaaattacc catgtAACCA ttttaactct ccagtgcact ttgc当地tcc taaatgttca 1680
cattgatttgc ttcccatgtg tgactcagag gtgagaattt tttcacatta tagtagcaag 1740
gaattgggtgg tattatggac cgaactgaaa attttatgtt gaagccatat cccccatgat 1800
tatatagtta tgc当地tcc aatatggggat tattttctgg gaaatgc当地 gcttagt当地 1860
tttttttgc当地 gccaacatca tagagtgtat ttacaaaatc ctagatggca tagcctacta 1920
cacacctaattgtatggta tagacttgc当地 ctc当地tcc acagacatat acagcatgtt 1980
actgaataact gtaggcaata gtaacagttg tattttgtata tc当地aaacata tggaaacata 2040
gagaaggtaact gtaaaaaata ctgtAAAATA aatggtgccat ctgtataggg cacttaccac 2100
gaatggagct tacaggactg gaagttgctc tgggtgagtc agtgaatgaa tggtaaggcc 2160
taggacatta ttgaacactg ccagacgtt当地 taaatactgt atgcttaggc tacactacat 2220
ttataaaaaaa aagttttct ttcttcaatt ataaattaac ataaatgtac tggtaactt当地 2280
caaacgtttt aatttttaaa accttttgg ctctttgtatcataacactt当地 gcttAAAACA 2340
taaactcatt qtgcaatgt aa 2362

<210> 195

<211> 467

<212> PRT

<213> Homo sapiens

<400> 195

Met Arg Pro Gln Glu Leu Pro Arg Leu Ala Phe Pro Leu Leu Leu Leu
1 5 10 15

Leu Leu Leu Leu Leu Pro Pro Pro Pro Cys Pro Ala His Ser Ala Thr
20 25 30

Arg Phe Asp Pro Thr Trp Glu Ser Leu Asp Ala Arg Gln Leu Pro Ala
 35 40 45

Trp Phe Asp Gln Ala Lys Phe Gly Ile Phe Ile His Trp Gly Val Phe
 50 55 60
 Ser Val Pro Ser Phe Gly Ser Glu Trp Phe Trp Trp Tyr Trp Gln Lys
 65 70 75 80
 Glu Lys Ile Pro Lys Tyr Val Glu Phe Met Lys Asp Asn Tyr Pro Pro
 85 90 95
 Ser Phe Lys Tyr Glu Asp Phe Gly Pro Leu Phe Thr Ala Lys Phe Phe
 100 105 110
 Asn Ala Asn Gln Trp Ala Asp Ile Phe Gln Ala Ser Gly Ala Lys Tyr
 115 120 125
 Ile Val Leu Thr Ser Lys His His Glu Gly Phe Thr Leu Trp Gly Ser
 130 135 140
 Glu Tyr Ser Trp Asn Trp Asn Ala Ile Asp Glu Gly Pro Lys Arg Asp
 145 150 155 160
 Ile Val Lys Glu Leu Glu Val Ala Ile Arg Asn Arg Thr Asp Leu Arg
 165 170 175
 Phe Gly Leu Tyr Tyr Ser Leu Phe Glu Trp Phe His Pro Leu Phe Leu
 180 185 190
 Glu Asp Glu Ser Ser Ser Phe His Lys Arg Gln Phe Pro Val Ser Lys
 195 200 205
 Thr Leu Pro Glu Leu Tyr Glu Leu Val Asn Asn Tyr Gln Pro Glu Val
 210 215 220
 Leu Trp Ser Asp Gly Asp Gly Ala Pro Asp Gln Tyr Trp Asn Ser
 225 230 235 240
 Thr Gly Phe Leu Ala Trp Leu Tyr Asn Glu Ser Pro Val Arg Gly Thr
 245 250 255
 Val Val Thr Asn Asp Arg Trp Gly Ala Gly Ser Ile Cys Lys His Gly
 260 265 270
 Gly Phe Tyr Thr Cys Ser Asp Arg Tyr Asn Pro Gly His Leu Leu Pro
 275 280 285
 His Lys Trp Glu Asn Cys Met Thr Ile Asp Lys Leu Ser Trp Gly Tyr
 290 295 300
 Arg Arg Glu Ala Gly Ile Ser Asp Tyr Leu Thr Ile Glu Glu Leu Val
 305 310 315 320
 Lys Gln Leu Val Glu Thr Val Ser Cys Gly Gly Asn Leu Leu Met Asn
 325 330 335

Ile Gly Pro Thr Leu Asp Gly Thr Ile Ser Val Val Phe Glu Glu Arg
 340 345 350

Leu Arg Gln Val Gly Ser Trp Leu Lys Val Asn Gly Glu Ala Ile Tyr
 355 360 365

Glu Thr Tyr Thr Trp Arg Ser Gln Asn Asp Thr Val Thr Pro Asp Val
 370 375 380

Trp Tyr Thr Ser Lys Pro Lys Glu Lys Leu Val Tyr Ala Ile Phe Leu
 385 390 395 400

Lys Trp Pro Thr Ser Gly Gln Leu Phe Leu Gly His Pro Lys Ala Ile
 405 410 415

Leu Gly Ala Thr Glu Val Lys Leu Leu Gly His Gly Gln Pro Leu Asn
 420 425 430

Trp Ile Ser Leu Glu Gln Asn Gly Ile Met Val Glu Leu Pro Gln Leu
 435 440 445

Thr Ile His Gln Met Pro Cys Lys Trp Gly Trp Ala Leu Ala Leu Thr
 450 455 460

Asn Val Ile
 465

<210> 196

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 196

tggtttgacc aggccaagtt cggtt

23

<210> 197

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 197

ggattccatcc tcaaggaaga gcgg

24

<210> 198

<211> 24
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

 <400> 198
 aacttgcagc atcagccact ctgc 24

<210> 199
 <211> 45
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

 <400> 199
 ttccgtgccc agcttcggta gcgagtggtt ctggtggtat tggca 45

<210> 200
 <211> 2372
 <212> DNA
 <213> Homo sapiens

 <400> 200
 agcaggaaaa tccggatgtc tcggttatga agtggagcag tgagtgttag cctcaacata 60
 gttccagaac tctccatccg gactagttat tgagcatctg cctctcatat caccagtggc 120
 catctgaggt gttccctgg ctctgaaggg gtggcacga tggccagggt cttcagctg 180
 gtgttgccttc tcacttccat ctggaccacg aggctcctgg tccaaggctc tttgcgtgca 240
 gaagagcttt ccatccaggt gtcatgcaga attatgggta tcacccttgt gagaaaaaag 300
 gcgaaaccagc agctgaatt cacagaagct aaggaggcct gttaggtgtc gggactaagt 360
 ttggccggca aggaccaagt tgaaacagcc ttgaaagcta gcttgaaac ttgcagctat 420
 ggctgggttg gagatggatt cgtggtcata tctaggatta gcccaaacc caagtgtggg 480
 aaaaatgggg tgggtgtcct gatttggaaag gttccagtgaa gccgacagtt tgcagccat 540
 ttttacaact catctgatac ttggactaac tcgtgcattc cagaaaattat caccaccaaa 600
 gatcccatat tcaacactca aactgcaaca caaacaacag aatttattgt cagtgacagt 660
 acctaactcg tggcatcccc ttactctaca atacctggcc ctactactac tccctcctgct 720
 ccagcttcca cttcttattcc acggagaaaa aaattgattt gtgtcacaga agttttatg 780
 gaaactagca ccatgtctac agaaactgaa ccatttggtaaaaataaaagc agcattcaag 840
 aatgaagctg ctgggtttgg aggtgtcccc acggctctgc tagtgcctgc tctcctttc 900
 tttggtgctg cagctggctt tggattttgc tatgtcaaaa ggtatgtgaa ggccttccct 960
 tttacaaaca agaatcagca gaaggaaatg atcgaacca aagtagtaaa ggaggagaag 1020
 gccaatgata gcaaccctaa tgaggaatca aagaaaaactg ataaaaaacc agaagagtcc 1080
 aagagtccaa gcaaaaactac cgtgcgatgc ctggagactg aagtttagat gagacagaaaa 1140
 tgaggagaca cacctgaggc tggtttctt catgctcattt accctgcccc agctggggaa 1200
 atcaaaaggc ccaaagaacc aaagaagaaa gtccaccctt gggtcctaact tggaaatcagc 1260
 tcaggactgc cattggacta tggagtgacaa caaagagaat gccccttc ttattgttaac 1320
 cctgtctgga tcctatcctc ctacaccttca agcttccac ggccttcta gcctggctat 1380
 gtcctaataa tatcccactg ggagaaagga gtttgcaaa gtgcaggac ctaaacatc 1440

tcatcgttat ccagtggtaa aaaggcctcc tggctgtctg aggctaggtg gttgaaagc 1500
caaggagtca ctgagaccaa ggcttctactgattccg cagctcagac ctttcttca 1560
gctctgaaag agaaacacgt atcccacctg acatgtcctt ctgagcccg taagagcaa 1620
agaatggcag aaaagttag cccctgaaag ccatggagat tctcataact tgagaccta 1680
tctctgtaaa gctaaaataa agaaatagaa caaggcttag gatacgacag tacactgtca 1740
gcagggactg taaacacaga cagggctaaa gtgtttctc tgaacacatt gagttggaa 1800
caactgttttag aacacacaca cttactttt ctggctctca ccactgctga tattttctct 1860
aggaaatata cttttacaag taacaaaaat aaaaactctt ataaattctt atttttatct 1920
gagttacaga aatgattact aaggaagatt actcgtat ttgtttaaaa agtaataaaaa 1980
ttcaacaaac atttgctgaa tagctactat atgtcaagtg ctgtgcaagg tattacactc 2040
tgttaattgaa tattattcct caaaaaattt cacatagtag aacgtatct gggaaagctat 2100
ttttttcagt tttgatattt ctgttctactt tacttccaaa ctaatttttta tttttgctga 2160
gactaatctt attcattttc tctaatatgg caaccattt aacctaattt tattattaaac 2220
atacctaaga agtacattgt tacctctata taccaaagca cattttaaaa gtgccattaa 2280
caaatgtatc actagccctc cttttccaa caagaaggga ctgagagatg cagaaatatt 2340
tqtqacaaaa aattaaagca ttttagaaaaac tt 2372

<210> 201

<211> 322

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic protein

<400> 201

Met	Ala	Arg	Cys	Phe	Ser	Leu	Val	Leu	Leu	Leu	Thr	Ser	Ile	Trp	Thr
1					5						10				15

Thr Arg Leu Leu Val Gln Gly Ser Leu Arg Ala Glu Glu Leu Ser Ile
20 25 30

Gln Val Ser Cys Arg Ile Met Gly Ile Thr Leu Val Ser Lys Lys Ala
35 40 45

Asn Gln Gln Leu Asn Phe Thr Glu Ala Lys Glu Ala Cys Arg Leu Leu
50 55 60

Gly Leu Ser Leu Ala Gly Lys Asp Gln Val Glu Thr Ala Leu Lys Ala
65 70 75 80

Ser Phe Glu Thr Cys Ser Tyr Gly Trp Val Gly Asp Gly Phe Val Val
85 90 95

Ile Ser Arg Ile Ser Pro Asn Pro Lys Cys Gly Lys Asn Gly Val Gly
100 105 110

Val Leu Ile Trp Lys Val Pro Val Ser Arg Gln Phe Ala Ala Tyr Cys
115 120 125

Tyr Asn Ser Ser Asp Thr Trp Thr Asn Ser Cys Ile Pro Glu Ile Ile
 130 135 140

Thr Thr Lys Asp Pro Ile Phe Asn Thr Gln Thr Ala Thr Gln Thr Thr
 145 150 155 160
 Glu Phe Ile Val Ser Asp Ser Thr Tyr Ser Val Ala Ser Pro Tyr Ser
 165 170 175
 Thr Ile Pro Ala Pro Thr Thr Pro Pro Ala Pro Ala Ser Thr Ser
 180 185 190
 Ile Pro Arg Arg Lys Lys Leu Ile Cys Val Thr Glu Val Phe Met Glu
 195 200 205
 Thr Ser Thr Met Ser Thr Glu Thr Glu Pro Phe Val Glu Asn Lys Ala
 210 215 220
 Ala Phe Lys Asn Glu Ala Ala Gly Phe Gly Gly Val Pro Thr Ala Leu
 225 230 235 240
 Leu Val Leu Ala Leu Leu Phe Phe Gly Ala Ala Ala Gly Leu Gly Phe
 245 250 255
 Cys Tyr Val Lys Arg Tyr Val Lys Ala Phe Pro Phe Thr Asn Lys Asn
 260 265 270
 Gln Gln Lys Glu Met Ile Glu Thr Lys Val Val Lys Glu Glu Lys Ala
 275 280 285
 Asn Asp Ser Asn Pro Asn Glu Glu Ser Lys Lys Thr Asp Lys Asn Pro
 290 295 300
 Glu Glu Ser Lys Ser Pro Ser Lys Thr Thr Val Arg Cys Leu Glu Ala
 305 310 315 320
 Glu Val

<210> 202
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 202
 gagcttcca tccaggtgtc atgc 24

<210> 203
 <211> 22
 <212> DNA
 <213> Artificial Sequence

<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 203		
gtcagtgaca gtacctactc gg		22
<210> 204		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 204		
tggagcagga ggagtagtag tagg		24
<210> 205		
<211> 50		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 205		
aggaggcctg taggctgctg ggactaagtt tggccggcaa ggaccaagtt		50
<210> 206		
<211> 1620		
<212> DNA		
<213> Homo sapiens		
<220>		
<221> modified_base		
<222> (973)		
<223> a, t, c or g		
<220>		
<221> modified_base		
<222> (977)		
<223> a, t, c or g		
<220>		
<221> modified_base		
<222> (996)		
<223> a, t, c or g		
<220>		
<221> modified_base		

<222> (1003)

<223> a, t, c or g

<400> 206

agatggcggt ctggcacct ctaattgctc tcgtgtattc ggtgccgcga cttcacgat 60
 ggctcgccca accttactac cttctgtcg ccctgctctc tgctgccttc ctactcgta 120
 gaaaaactgcc gccgctctgc cacggctctgc ccacccaacg cgaagacggt aaccgcgtg 180
 actttgactg gagagaagtg gagatcctga tgtttcttag tgccattgtg atgatgaaga 240
 accgcagatc catcaactgtg gagcaacata taggcaacat tttcatgttt agtaaagtgg 300
 ccaacacaat tcttttcttc cgcttgata ttgcgtatgg cctactttac atcacactct 360
 gcatagtgtt cctgatgacg tgcaaaccctt ccctatatat gggccctgag tatataaagt 420
 acttcaatga taaaaccatt gatgaggaac tagaacggga caagagggtc acttggattg 480
 tggagttctt tgccaattgg tctaattgact gccaattcatt tgcccctatc tatgctgacc 540
 tctcccttaa atacaactgt acagggtcaa attttggaa ggtggatgtt ggacgctata 600
 ctgatgttag tacgcggtaaaatgtgacgatc catcaccctt caccaggcaaa ctccctaccc 660
 tgatcctgtt ccaagggtggc aaggaggcaaa tgccggcgcc acagattgac aagaaaggac 720
 gggctgtctc atggaccttc tctgaggaga atgtgatccg agaatttaac taaaatgagc 780
 tataccagcg ggc当地agaaa cttatcaaagg ctggagacaa tattccctgag gagcagcctg 840
 tggcttcaac cccccaccaca gtgtcagatg gggaaaacaa gaaggataaa taagatcctc 900
 actttggcag tgcttcctct cctgtcaatt ccaggcttcc tccataacca caaggctgag 960
 gctgcagcct ttnattnatg tttcccttt ggctgngact ggntggggca gcatgcagct 1020
 tctgatttttta aagaggcattc taggaaatttgc tcaaggccatc tacaggaagg cctgcccattgc 1080
 tgtggccaaatc tttttactg gagcaagaaa gagatctcat aggacggagg gggaaatgg 1140
 ttccctccaa gcttgggtca gtgtttaac tgcttatcatttgc tattcagac atctccatgg 1200
 tttccctcatg aaactctgtg gtttcatcat tccttcttag ttgacctgca cagcttgg 1260
 agaccttagat ttaaccctaa ggtaagatgc tgggtatag aacgctaaga atttcccc 1320
 aaggactctt gcttccttaa gcccctctgg ctctgtttat ggtcttcatcattaaaatgataa 1380
 gcctaacttt gtcgctagtc ctaaggagaa acctttaacc acaaagttt tatcattgaa 1440
 gacaatattt aacaacccccc tattttgtgg ggattgagaa ggggtgaata gaggcttgc 1500
 actttccctt gtgtggtagg acttggagga gaaatcccctt ggacttcac taaccctctg 1560
 acataactccc cacacccagt tgatggctt cogtaataaaa aagattggaa tttccctttt 1620

<210> 207

<211> 296

<212> PRT

<213> Homo sapiens

<400> 207

Met Ala Val Leu Ala Pro Leu Ile Ala Leu Val Tyr Ser Val Pro Arg

1 5 10 15

Leu Ser Arg Trp Leu Ala Gln Pro Tyr Tyr Leu Leu Ser Ala Leu Leu

20 25 30

Ser Ala Ala Phe Leu Leu Val Arg Lys Leu Pro Pro Leu Cys His Gly

35 40 45

Leu Pro Thr Gln Arg Glu Asp Gly Asn Pro Cys Asp Phe Asp Trp Arg

50 55 60

Glu Val Glu Ile Leu Met Phe Leu Ser Ala Ile Val Met Met Lys Asn

65 70 75 80

Arg Arg Ser Ile Thr Val Glu Gln His Ile Gly Asn Ile Phe Met Phe
 85 90 95

Ser Lys Val Ala Asn Thr Ile Leu Phe Phe Arg Leu Asp Ile Arg Met
 100 105 110

Gly Leu Leu Tyr Ile Thr Leu Cys Ile Val Phe Leu Met Thr Cys Lys
 115 120 125

Pro Pro Leu Tyr Met Gly Pro Glu Tyr Ile Lys Tyr Phe Asn Asp Lys
 130 135 140

Thr Ile Asp Glu Glu Leu Glu Arg Asp Lys Arg Val Thr Trp Ile Val
 145 150 155 160

Glu Phe Phe Ala Asn Trp Ser Asn Asp Cys Gln Ser Phe Ala Pro Ile
 165 170 175

Tyr Ala Asp Leu Ser Leu Lys Tyr Asn Cys Thr Gly Leu Asn Phe Gly
 180 185 190

Lys Val Asp Val Gly Arg Tyr Thr Asp Val Ser Thr Arg Tyr Lys Val
 195 200 205

Ser Thr Ser Pro Leu Thr Lys Gln Leu Pro Thr Leu Ile Leu Phe Gln
 210 215 220

Gly Gly Lys Glu Ala Met Arg Arg Pro Gln Ile Asp Lys Lys Gly Arg
 225 230 235 240

Ala Val Ser Trp Thr Phe Ser Glu Glu Asn Val Ile Arg Glu Phe Asn
 245 250 255

Leu Asn Glu Leu Tyr Gln Arg Ala Lys Lys Leu Ser Lys Ala Gly Asp
 260 265 270

Asn Ile Pro Glu Glu Gln Pro Val Ala Ser Thr Pro Thr Thr Val Ser
 275 280 285

Asp Gly Glu Asn Lys Lys Asp Lys
 290 295

<210> 208

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 208

gcttggatat tcgcatgggc ctac

<210> 209
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 209
 tggagacaat atccctgagg 20

<210> 210
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 210
 aacagttggc cacagcatgg cagg 24

<210> 211
 <211> 50
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 211
 ccattgatga ggaactagaa cgggacaaga gggtcacttg gattgtggag 50

<210> 212
 <211> 1985
 <212> DNA
 <213> Homo sapiens

<400> 212
 ggacagctcg cggcccccga gagctctagc cgtcgaggag ctgcctgggg acgtttgcc 60
 tggggcccca gcctggcccg ggtcacccctg gcatgaggag atgggcctgt tgctcctgg 120
 cccattgctc ctgctgcccc gctcctacgg actgccttc tacaacggct tctactactc 180
 caacagcgcc aacgaccaga acctaggcaa cggtcatggc aaagacctcc ttaatggagt 240
 gaagctggtg gtggagacac ccgaggagac cctgttcacc taccaagggg ccagtgttat 300
 cctgcctgc cgctaccgct acgagccggc cctggctcc cccggcggctg tgcgtgtcaa 360
 atggtgaaag ctgtcgagaa acggggcccc agagaaggac gtgctgggtgg ccatacggt 420
 gaggcaccgc tcctttgggg actaccaagg cgcgtgcac ctgcggcagg acaaagagca 480
 tgacgtctcg ctggagatcc aggatctgcg gctggaggac tatgggcgtt accgctgtga 540
 ggtcattgac gggctggagg atgaaagcgg tctggatggag ctggagctgc ggggtgttgt 600

ctttccttac cagccccca acggggcgta ccagttcaac ttccacgagg gccagcagg 660
ctgtgcagag caggctgcgg tggtgccgc cttttagcgag ctcttccggg cctggggagga 720
gggcctggac tggtcaacg cgggctggct gaaggatgt acggtcagt accccatcat 780
gttccccgg cagccctgcg gtggcccagg cctggcacct ggctgcgaa gctacggccc 840
ccgccaccgc cgccctgcacc gctatgtatgtt attctgcttc gctactgccc tcaagggcg 900
ggtgtactac ctggagcacc ctgagaagct gacgctgaca gaggcaaggg aggctgcca 960
ggaagatgtat gccacgatcg ccaagggtggg acagctctt gccgcctgga agttccatgg 1020
cctggaccgc tgcgacgctg gctggctggc agatggcagc gtccgcatacc ctgtggttca 1080
cccgcatcct aactgtgggc ccccagagcc tggggctccga agcttggct tccccgaccc 1140
gcagagccgc ttgtacgggt tttactgcta cggccagcac taggacctgg gcccccccc 1200
tgccgcattc cctcaactggc tgtgtattta ttgagtggtt cgtttccct tgggggttgg 1260
agccattttt actgtttttt tacttctcaa tttaaattttt cttaaacat ttttttacta 1320
ttttttgtaa agcaaaacaga acccaatgc tccctttgtt cctggatgcc caactccagg 1380
aatcatgctt gctccccctgg gccatttgcg gttttgtggg cttctggagg gttccccggc 1440
atccaggctg gtcctccctcc cttaggagg ttgggtcccc gagtggcg gggctgtct 1500
agaatgccgc cgggagtcgg ggcattgggtt gcacagttt ccctccccct cagccctggg 1560
gaagaagagg gcctcggggg cctccggagc tgggctttgg gcctctcctg cccacctcta 1620
cttctctgtg aagccgtcga ccccagtcgt cccactgagg ggcttagggct ggaagccagt 1680
tctaggctc caggcgaaat ctgagggaaag gaagaaaactc ccctccccgt tcccccttccc 1740
ctctcggttc caaagaatct gttttgttgc catttgcatttcc tcctgtttcc ctgtgtgggg 1800
agggggccctc aggtgtgtgt accttggaca ataaatgggt ctatgactgc cttccgccaa 1860
aaaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa 1920
aaaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa 1980
aaaaaa

<210> 213

<211> 360

<212> PRT

<213> Homo sapiens

<400> 213

Met Gly Leu Leu Leu Leu Val Pro Leu Leu Leu Leu Pro Gly Ser Tyr
1 5 10 15

Gly Leu Pro Phe Tyr Asn Gly Phe Tyr Tyr Ser Asn Ser Ala Asn Asp
 20 25 30

Gln Asn Leu Gly Asn Gly His Gly Lys Asp Leu Leu Asn Gly Val Lys
 35 40 45

Leu Val Val Glu Thr Pro Glu Glu Thr Leu Phe Thr Tyr Gln Gly Ala
50 55 60

Ser Val Ile Leu Pro Cys Arg Tyr Arg Tyr Glu Pro Ala Leu Val Ser
65 70 75 80

Pro Arg Arg Val Arg Val Lys Trp Trp Lys Leu Ser Glu Asn Gly Ala
85 90 95

Pro Glu Lys Asp Val Leu Val Ala Ile Gly Leu Arg His Arg Ser Phe
 100 105 110

Gly Asp Tyr Gln Gly Arg Val His Leu Arg Gln Asp Lys Glu His Asp

115	120	125
Val Ser Leu Glu Ile Gln Asp Leu Arg Leu Glu Asp Tyr Gly Arg Tyr 130	135	140
Arg Cys Glu Val Ile Asp Gly Leu Glu Asp Glu Ser Gly Leu Val Glu 145	150	155
Leu Glu Leu Arg Gly Val Val Phe Pro Tyr Gln Ser Pro Asn Gly Arg 165	170	175
Tyr Gln Phe Asn Phe His Glu Gly Gln Gln Val Cys Ala Glu Gln Ala 180	185	190
Ala Val Val Ala Ser Phe Glu Gln Leu Phe Arg Ala Trp Glu Glu Gly 195	200	205
Leu Asp Trp Cys Asn Ala Gly Trp Leu Gln Asp Ala Thr Val Gln Tyr 210	215	220
Pro Ile Met Leu Pro Arg Gln Pro Cys Gly Gly Pro Gly Leu Ala Pro 225	230	235
Gly Val Arg Ser Tyr Gly Pro Arg His Arg Arg Leu His Arg Tyr Asp 245	250	255
Val Phe Cys Phe Ala Thr Ala Leu Lys Gly Arg Val Tyr Tyr Leu Glu 260	265	270
His Pro Glu Lys Leu Thr Leu Thr Glu Ala Arg Glu Ala Cys Gln Glu 275	280	285
Asp Asp Ala Thr Ile Ala Lys Val Gly Gln Leu Phe Ala Ala Trp Lys 290	295	300
Phe His Gly Leu Asp Arg Cys Asp Ala Gly Trp Leu Ala Asp Gly Ser 305	310	315
Val Arg Tyr Pro Val Val His Pro His Pro Asn Cys Gly Pro Pro Glu 325	330	335
Pro Gly Val Arg Ser Phe Gly Phe Pro Asp Pro Gln Ser Arg Leu Tyr 340	345	350
Gly Val Tyr Cys Tyr Arg Gln His 355	360	
<210> 214		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 214

tgcttcgcta ctgccctc

18

<210> 215

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 215

ttcccttgtg ggttggag

18

<210> 216

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 216

agggcgtggaa gccagttc

18

<210> 217

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 217

agccagttag gaaatgcg

18

<210> 218

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 218

tgtccaaagt acacacacctt gagg

24

```

<210> 219
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 219
gatgccacga tcgccaagg gggacagctc tttgccgcct ggaag           45

<210> 220
<211> 1503
<212> DNA
<213> Homo sapiens

<400> 220
ggagagcgga gcgaagctgg ataacagggg accgatgatg tggcgaccat cagttctgct 60
gcttctgttg ctactgaggc acggggccca ggggaagcca tcccagacg caggccctca 120
tggccagggg agggtgcacc aggcggcccc cctgagcgc gctccccatg atgacgccc 180
cgggaaacttc cagtagcacc atgaggctt cctgggacgg gaagtggcca aggaattcga 240
ccaaactcacc ccagaggaaa gccagggccg tctggggccg atcgtggacc gcatggaccg 300
cgcgggggac ggacggcgt gggtgtcgct ggccgagcgtt cgccgtgga tcgcgcacac 360
gcagcagcgg cacatacggg actcggtgag cgccgcctgg gacacgtacg acacggaccg 420
cgacggcgt gtgggttggg aggagctgctg caacgcccacc tatggccact acgcgcccgg 480
tgaagaattt catgacgtgg aggatgcaga gacctacaaa aagatgtgg ctgcggacga 540
gcggcggttc cgggtggccg accaggatgg ggactcgatg gccactcgag aggagctgac 600
agccttcctg caccccgagg agttccctca catgcgggac atcgtgattt ctgaaacct 660
ggaggacctg gacagaaaca aagatggcta tgtccaggtt gaggagtaca tcgcggatct 720
gtactcagcc gagcctgggg aggaggagcc ggctgggtt cagacggaga ggcagcagtt 780
ccgggacttc cgggatctga acaaggatgg gcacctggat gggagtgggg tggccactg 840
ggtgctgccc cctgcccagg accagccctt ggtggaaagcc aaccacctgc tgacagagag 900
cgacacggac aaggatgggc ggctgagcaa agcggaaatc ctggtaatt ggaacatgtt 960
tgtggcagt caggccacca actatggcga ggacctgacc cggcaccacg atgagctgt 1020
agcacccgcgc acctgccaca gcctcagagg cccgcacaat gacggagga gggccgctg 1080
tggtctggcc ccctccctgt ccaggccccg caggaggcag atcagtcctt aggcattcctc 1140
ctgcccctgg gctctcaggg accccctggg tccgttctg tccctgtcac acccccaacc 1200
ccagggagg gctgtcatag tcccagagga taagcaatc ctatttctga ctgagtcctc 1260
cagcccgac ccaggacccc ttggcccaa gtcagctt aagaacccgc ccaacccctc 1320
cagctccaaa tctgagcctc caccacatag actgaaactc ccctggcccc agccctctcc 1380
tgcctggcct ggcctgggac acctcctctc tgccaggagg caataaaagc cagcgccggg 1440
acttgaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1500
aaa                                         1503

<210> 221
<211> 328
<212> PRT
<213> Homo sapiens

<400> 221
Met Met Trp Arg Pro Ser Val Leu Leu Leu Leu Leu Leu Arg His

```

1	5	10	15
Gly Ala Gln Gly Lys Pro Ser Pro Asp Ala Gly Pro His Gly Gln Gly			
20	25	30	
Arg Val His Gln Ala Ala Pro Leu Ser Asp Ala Pro His Asp Asp Ala			
35	40	45	
His Gly Asn Phe Gln Tyr Asp His Glu Ala Phe Leu Gly Arg Glu Val			
50	55	60	
Ala Lys Glu Phe Asp Gln Leu Thr Pro Glu Glu Ser Gln Ala Arg Leu			
65	70	75	80
Gly Arg Ile Val Asp Arg Met Asp Arg Ala Gly Asp Gly Asp Gly Trp			
85	90	95	
Val Ser Leu Ala Glu Leu Arg Ala Trp Ile Ala His Thr Gln Gln Arg			
100	105	110	
His Ile Arg Asp Ser Val Ser Ala Ala Trp Asp Thr Tyr Asp Thr Asp			
115	120	125	
Arg Asp Gly Arg Val Gly Trp Glu Glu Leu Arg Asn Ala Thr Tyr Gly			
130	135	140	
His Tyr Ala Pro Gly Glu Glu Phe His Asp Val Glu Asp Ala Glu Thr			
145	150	155	160
Tyr Lys Lys Met Leu Ala Arg Asp Glu Arg Arg Phe Arg Val Ala Asp			
165	170	175	
Gln Asp Gly Asp Ser Met Ala Thr Arg Glu Glu Leu Thr Ala Phe Leu			
180	185	190	
His Pro Glu Glu Phe Pro His Met Arg Asp Ile Val Ile Ala Glu Thr			
195	200	205	
Leu Glu Asp Leu Asp Arg Asn Lys Asp Gly Tyr Val Gln Val Glu Glu			
210	215	220	
Tyr Ile Ala Asp Leu Tyr Ser Ala Glu Pro Gly Glu Glu Pro Ala			
225	230	235	240
Trp Val Gln Thr Glu Arg Gln Gln Phe Arg Asp Phe Arg Asp Leu Asn			
245	250	255	
Lys Asp Gly His Leu Asp Gly Ser Glu Val Gly His Trp Val Leu Pro			
260	265	270	
Pro Ala Gln Asp Gln Pro Leu Val Glu Ala Asn His Leu Leu His Glu			
275	280	285	

Ser Asp Thr Asp Lys Asp Gly Arg Leu Ser Lys Ala Glu Ile Leu Gly
 290 295 300

Asn Trp Asn Met Phe Val Gly Ser Gln Ala Thr Asn Tyr Gly Glu Asp
 305 310 315 320

Leu Thr Arg His His Asp Glu Leu
 325

<210> 222

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 222

cgcaggccct catggccagg

20

<210> 223

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 223

gaaatcctgg gtaattgg

18

<210> 224

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 224

gtgcgcggtg ctcacagctc atc

23

<210> 225

<211> 44

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 225
 cccccctgag cgacgctccc ccatgatgac gcccacggga actt 44

 <210> 226
 <211> 2403
 <212> DNA
 <213> Homo sapiens

 <400> 226
 ggggccttgc cttccgcact cgggcgcagc cgggtggatc tcgagcaggt gcggagcccc 60
 gggcgccggg cgcgggtgcg agggatccct gacgcctctg tccctgttgc tttgtcgttc 120
 ccagcctgtc tgcgtcggt ttggcgcccc cgcctcccg cggtgccgggg ttgcacacccg 180
 atcctgggc tgcgtcgatt tgccgcccag ggcctccca gaccttagagg ggcgtggcc 240
 tggagcagcg ggtcgctgt gtccctctc ctctgcgcgg cgcggggga tccgaagggt 300
 gcggggctct gaggaggtga cgcgccgggc ctccgcacc ctggccttgc cgcatttctc 360
 cctctctccc aggtgtgagc agcctatcag tcaccatgtc cgcagcctgg atcccggtc 420
 tcggcctcgg tgcgtgtctg ctgcgtgtc cggggccgc gggcagcgg gggccgttc 480
 ccattgttat cacatgtttt accagaggct tggacatcag gaaagagaaa gcagatgtcc 540
 tctgcccagg gggctgcctt cttgaggaat tctctgtgtt tggaaacata gtatatgttt 600
 ctgtatcgag catatgtggg gctgtgtcc acagggggagt aatcagcaac tcagggggac 660
 ctgtacgagt ctatagccta cctggtcgag aaaactattc ctcagtagat gccaatggca 720
 tccagtctca aatgctttct agatggctgt cttctttcac agtaactaaa ggcaaaaagta 780
 gtacacagga gccacacagga caagcagtgt cccacgcaca tccaccaaca ggtaaaacgac 840
 taaagaaaac acccgagaag aaaactggca ataaagatgg taaagcagac attgcatttc 900
 tgattgtatgg aagcttaat attgggcagc gccgatttaa tttacagaag aattttgtt 960
 gaaaagtggc tctaattgtt ggaattggaa cagaaggacc acatgtggc cttgttcaag 1020
 ccagtgaaca tcccaaataa gaattttact taaaaaactt tacatcagcc aaagatgttt 1080
 tggttgcatt aaaggaagta ggttcagag ggggttaattt caatacagga aaagccttgc 1140
 agcatactgc tcagaaattt ttcacggtag atgctggagt aagaaaaggg atccccaaag 1200
 tggtgggtgtt atttattgtt ggttggcctt ctgtatgcacat cgaggaagca ggcattgtgg 1260
 ccagagagtt tggtgtcaat gtatttatac tttctgtggc caagcctatc cctgaagaac 1320
 tggggatggt tcaggatgtc acattttgtt acaaggctgt ctgtcggaat aatggcttct 1380
 tctcttacca catgccccac tgggttggca ccacaaaata cgtaaagcct ctgttacaga 1440
 agctgtgcac tcatgaacaa atgatgtgca gcaagacccgt ttataactca gtgaacattt 1500
 cctttctaat tgatggctcc agcagtgtt gagatagcaa tttccgcctc atgcttgaat 1560
 ttgttccaa catagccaaag acttttggaa tctcggacat tgggtccaaatg atagctgtc 1620
 tacagtttac ttatgtatcag cgcacggagt tcagtttac tgcactatgc accaaagaga 1680
 atgtcttagc tgcgtatcaga aacatccgct atatgatgttgg tggaaacagct actgggtatg 1740
 ccatttcctt cactgtttaga aatgtgtttt gcccataaag ggagagcccc aacaagaact 1800
 tccttagtaat tgcgtatcaga gggcgttcctt atgatgttgc ccaaggccct gcagctgtc 1860
 cacatgtgc aggaatactt atcttctctg tgggttggc ttgggcaccc ctggatgacc 1920
 tgaaagatgtt ggttctaaa ccgaaggagt ctcacgtttt cttcacaaga gagttcacag 1980
 gattagaacc aattgttttctt gatgtatca gaggcattt tagagatttcc tttagaatccc 2040
 agcaataatg taaacatttt gacaactgaa agaaaaagta caaggggatc cagtgttac 2100
 attgttattct cataataactg aaatgttttgcataactaga atcagataaca aaactattaa 2160
 gtatgtcaac agccattttag gcaaaataagc actcctttaa agccgtgtcc ttctgggtac 2220
 aatttacagt gtactttgtt aaaaacactg ctgaggcttc ataatcatgg ctcttagaaa 2280
 ctcagaaag aggagataat gtggattaaa accttaagag ttcttaaccat gcctactaaa 2340
 tgtacagata tgcaaatttcc atagctcaat aaaagaatct gatacttaga ccaaaaaaaaaa 2400
 aaa 2403

<210> 227

<211> 550

<212> PRT

<213> Homo sapiens

<400> 227

Met	Ser	Ala	Ala	Trp	Ile	Pro	Ala	Leu	Gly	Leu	Gly	Val	Cys	Leu	Leu
1															15

Leu	Leu	Pro	Gly	Pro	Ala	Gly	Ser	Glu	Gly	Ala	Ala	Pro	Ile	Ala	Ile
															30
20							25								

Thr	Cys	Phe	Thr	Arg	Gly	Leu	Asp	Ile	Arg	Lys	Glu	Lys	Ala	Asp	Val
															45
35							40								

Leu	Cys	Pro	Gly	Gly	Cys	Pro	Leu	Glu	Glu	Phe	Ser	Val	Tyr	Gly	Asn
															60
50							55								

Ile	Val	Tyr	Ala	Ser	Val	Ser	Ser	Ile	Cys	Gly	Ala	Ala	Val	His	Arg
															80
65							70			75					

Gly	Val	Ile	Ser	Asn	Ser	Gly	Gly	Pro	Val	Arg	Val	Tyr	Ser	Leu	Pro
															95
85								90							

Gly	Arg	Glu	Asn	Tyr	Ser	Ser	Val	Asp	Ala	Asn	Gly	Ile	Gln	Ser	Gln
															110
100							105								

Met	Leu	Ser	Arg	Trp	Ser	Ala	Ser	Phe	Thr	Val	Thr	Lys	Gly	Lys	Ser
															125
115							120								

Ser	Thr	Gln	Glu	Ala	Thr	Gly	Gln	Ala	Val	Ser	Thr	Ala	His	Pro	Pro
															140
130							135								

Thr	Gly	Lys	Arg	Leu	Lys	Lys	Thr	Pro	Glu	Lys	Lys	Thr	Gly	Asn	Lys
															160
145					150				155						

Asp	Cys	Lys	Ala	Asp	Ile	Ala	Phe	Leu	Ile	Asp	Gly	Ser	Phe	Asn	Ile
															175
165							165		170						

Gly	Gln	Arg	Arg	Phe	Asn	Leu	Gln	Lys	Asn	Phe	Val	Gly	Lys	Val	Ala
															190
180							180		185						

Leu	Met	Leu	Gly	Ile	Gly	Thr	Glu	Gly	Pro	His	Val	Gly	Leu	Val	Gln
															205
195							200				205				

Ala	Ser	Glu	His	Pro	Lys	Ile	Glu	Phe	Tyr	Leu	Lys	Asn	Phe	Thr	Ser
															220
210						215				220					

Ala	Lys	Asp	Val	Leu	Phe	Ala	Ile	Lys	Glu	Val	Gly	Phe	Arg	Gly	Gly
															240
225					230			235							

Asn	Ser	Asn	Thr	Gly	Lys	Ala	Leu	Lys	His	Thr	Ala	Gln	Lys	Phe	Phe
															255
245							245		250			255			

Thr Val Asp Ala Gly Val Arg Lys Gly Ile Pro Lys Val Val Val Val
 260 265 270

Phe Ile Asp Gly Trp Pro Ser Asp Asp Ile Glu Glu Ala Gly Ile Val
 275 280 285

Ala Arg Glu Phe Gly Val Asn Val Phe Ile Val Ser Val Ala Lys Pro
 290 295 300

Ile Pro Glu Glu Leu Gly Met Val Gln Asp Val Thr Phe Val Asp Lys
 305 310 315 320

Ala Val Cys Arg Asn Asn Gly Phe Phe Ser Tyr His Met Pro Asn Trp
 325 330 335

Phe Gly Thr Thr Lys Tyr Val Lys Pro Leu Val Gln Lys Leu Cys Thr
 340 345 350

His Glu Gln Met Met Cys Ser Lys Thr Cys Tyr Asn Ser Val Asn Ile
 355 360 365

Ala Phe Leu Ile Asp Gly Ser Ser Ser Val Gly Asp Ser Asn Phe Arg
 370 375 380

Leu Met Leu Glu Phe Val Ser Asn Ile Ala Lys Thr Phe Glu Ile Ser
 385 390 395 400

Asp Ile Gly Ala Lys Ile Ala Ala Val Gln Phe Thr Tyr Asp Gln Arg
 405 410 415

Thr Glu Phe Ser Phe Thr Asp Tyr Ser Thr Lys Glu Asn Val Leu Ala
 420 425 430

Val Ile Arg Asn Ile Arg Tyr Met Ser Gly Gly Thr Ala Thr Gly Asp
 435 440 445

Ala Ile Ser Phe Thr Val Arg Asn Val Phe Gly Pro Ile Arg Glu Ser
 450 455 460

Pro Asn Lys Asn Phe Leu Val Ile Val Thr Asp Gly Gln Ser Tyr Asp
 465 470 475 480

Asp Val Gln Gly Pro Ala Ala Ala His Asp Ala Gly Ile Thr Ile
 485 490 495

Phe Ser Val Gly Val Ala Trp Ala Pro Leu Asp Asp Leu Lys Asp Met
 500 505 510

Ala Ser Lys Pro Lys Glu Ser His Ala Phe Phe Thr Arg Glu Phe Thr
 515 520 525

Gly Leu Glu Pro Ile Val Ser Asp Val Ile Arg Gly Ile Cys Arg Asp
 530 535 540

Phe Leu Glu Ser Gln Gln
 545 550

<210> 228
 <211> 18
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 228
 tggtctcgca caccgatc

18

<210> 229
 <211> 18
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 229
 ctgctgtcca caggggag

18

<210> 230
 <211> 18
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 230
 ccttgaaagca tactgctc

18

<210> 231
 <211> 18
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 231
 gagatagcaa ttcccgcc

18

<210> 232

<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 232		
ttcctcaaga gggcagcc		18
<210> 233		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 233		
cttggcacca atgtccgaga ttcc		24
<210> 234		
<211> 45		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 234		
gctctgagga aggtgacgcg cggggcctcc gaacccttgg ccttg		45
<210> 235		
<211> 2586		
<212> DNA		
<213> Homo sapiens		
<400> 235		
cgccgcgctc ccgcacccgc ggcccccca cgcgcggct cccgcatttg cacccgcagg 60		
ccggccggct cccggcgaaa gcgagcagat ccagtccggc cggcagcgca actcggtcca 120		
gtcggggcgg cggctgcggg cgcaagacgg agatgcagcg gcttggggcc accctgttgt 180		
gcctgtgtgt ggccggggcg gtccccacgg ccccccggcc cgctccgacg ggcacccgg 240		
ctccagtcaa gccccggcccg gctctcagct accccgcaggaa ggaggccacc ctcaatgaga 300		
tgttccgcga ggttgaggaa ctgatggagg acacgcagca caaatgcgc agcgcgggtgg 360		
aagagatgga ggcagaagaa gctgctgcta aagcatcatc agaagtgaac ctggcaaact 420		
tacctcccaag ctatcacaat gagaccaaca cagacacgaa ggttggaaat aataccatcc 480		
atgtgcaccc agaaattcac aagataacca acaaccagac tggacaaatg gtctttcag 540		
agacagttat cacatctgtg ggagacgaag aaggcagaag gagccacgag tgcacatcg 600		
acgaggactg tggggccagc atgtactgcc agtttgcacg cttoccagtc acctgcccagc 660		
catgcggggg ccagaggatg ctctgcaccc gggacagtga gtgctgtgga gaccagctgt 720		

<210> 236

<211> 350

<212> PRT

<213> Homo sapiens

<400> 236

Met Gln Arg Leu Gly Ala Thr Leu Leu Cys Leu Leu Leu Ala Ala Ala
1 5 10 15

Val Pro Thr Ala Pro Ala Pro Ala Pro Thr Ala Thr Ser Ala Pro Val
20 25 30

Lys Pro Gly Pro Ala Leu Ser Tyr Pro Gln Glu Glu Ala Thr Leu Asn
 35 40 45

Glu Met Phe Arg Glu Val Glu Glu Leu Met Glu Asp Thr Gln His Lys
50 55 60

Leu Arg Ser Ala Val Glu Glu Met Glu Ala Glu Glu Ala Ala Ala Lys
65 70 75 80

Ala Ser Ser Glu Val Asn Leu Ala Asn Leu Pro Pro Ser Tyr His Asn
 85 90 95

 Glu Thr Asn Thr Asp Thr Lys Val Gly Asn Asn Thr Ile His Val His
 100 105 110

 Arg Glu Ile His Lys Ile Thr Asn Asn Gln Thr Gly Gln Met Val Phe
 115 120 125

 Ser Glu Thr Val Ile Thr Ser Val Gly Asp Glu Glu Gly Arg Arg Ser
 130 135 140

 His Glu Cys Ile Ile Asp Glu Asp Cys Gly Pro Ser Met Tyr Cys Gln
 145 150 155 160

 Phe Ala Ser Phe Gln Tyr Thr Cys Gln Pro Cys Arg Gly Gln Arg Met
 165 170 175

 Leu Cys Thr Arg Asp Ser Glu Cys Cys Gly Asp Gln Leu Cys Val Trp
 180 185 190

 Gly His Cys Thr Lys Met Ala Thr Arg Gly Ser Asn Gly Thr Ile Cys
 195 200 205

 Asp Asn Gln Arg Asp Cys Gln Pro Gly Leu Cys Cys Ala Phe Gln Arg
 210 215 220

 Gly Leu Leu Phe Pro Val Cys Thr Pro Leu Pro Val Glu Gly Glu Leu
 225 230 235 240

 Cys His Asp Pro Ala Ser Arg Leu Leu Asp Leu Ile Thr Trp Glu Leu
 245 250 255

 Glu Pro Asp Gly Ala Leu Asp Arg Cys Pro Cys Ala Ser Gly Leu Leu
 260 265 270

 Cys Gln Pro His Ser His Ser Leu Val Tyr Val Cys Lys Pro Thr Phe
 275 280 285

 Val Gly Ser Arg Asp Gln Asp Gly Glu Ile Leu Leu Pro Arg Glu Val
 290 295 300

 Pro Asp Glu Tyr Glu Val Gly Ser Phe Met Glu Glu Val Arg Gln Glu
 305 310 315 320

 Leu Glu Asp Leu Glu Arg Ser Leu Thr Glu Glu Met Ala Leu Gly Glu
 325 330 335

 Pro Ala Ala Ala Ala Ala Leu Leu Gly Gly Glu Glu Ile
 340 345 350

<211> 17		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic oligonucleotide probe		
<400> 237		
ggagctgcac cccttgc		17
<210> 238		
<211> 49		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Oligonucleotide Probe		
<400> 238		
ggaggactgt gccaccatga gagactcttc aaacctcaagg caaaaattgg		49
<210> 239		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Oligonucleotide Probe		
<400> 239		
gcagagcgg aatgcagcg cttg		24
<210> 240		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Oligonucleotide Probe		
<400> 240		
ttggcagctt catggagg		18
<210> 241		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Oligonucleotide Probe		
<400> 241		
cctggcaaa aatgcaac		18

<210> 242	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Oligonucleotide Probe	
<400> 242	
ctccagctcc tggcgcacct cctc	24
<210> 243	
<211> 45	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Oligonucleotide Probe	
<400> 243	
ggctctcagc taccgcgcag gagcgaggcc accctcaatg agatg	45
<210> 244	
<211> 3679	
<212> DNA	
<213> Homo Sapien	
<400> 244	
aaggaggctg ggagggaaaga ggttaagaaag gtttagagaac ctacctcaca 50	
tctctctggg ctcagaagga ctctgaagat aacaataatt tcagccccatc 100	
cactctcctt ccctccccaaa cacacatgtg catgtacaca cacacataca 150	
cacacataca ccttcctctc cttcactgaa gactcacagt cactcactct 200	
gtgagcaggt catagaaaaag gacactaaag ccttaaggac aggccctggcc 250	
attacctctg cagctccttt ggcttgttga gtcaaaaaac atgggagggg 300	
ccaggcacgg tgactcacac ctgtaatccc agcattttgg gagaccgagg 350	
tgagcagatc acttgaggtc aggagttcga gaccagcctg gccaaacatgg 400	
agaaacccccc atctctacta aaaataaaaa aattagccag gagtggtggc 450	
aggtgcctgt aatcccagct actcaggtgg ctgagccagg agaatcgctt 500	
gaatccagga ggcggaggat gcagtcagct gagtgcacccg ctgcactcca 550	
gcctgggtga cagaatgaga ctctgtctca aacaaacaaa cacgggagga 600	

ggggtagata ctgcttctc gcaacccct taactctgca tccttttt 650
ccagggctgc ccctgatggg gcctggcaat gactgagcag gcccagcccc 700
agaggacaag gaagagaagg catattgagg agggcaagaa gtgacgcccc 750
gtgtagaatg actgcccctgg gagggtggtt cttggggccc tggcagggtt 800
gctgaccctt accctgcaaa acacaaagag caggactcca gactctcctt 850
gtgaatggtc ccctgccctg cagctccacc atgaggcttc tcgtggcccc 900
actttgcta gcttgggtgg ctggtgccac tgccactgtg cccgtggta 950
cctggcatgt tccctgcccc ctcagtgtg cctgccagat ccggccctgg 1000
tatacgcccc gctcgtccta ccgcgaggct accactgtgg actgcaatga 1050
cctattcctg acggcagtcc cccggcact cccgcagggc acacagaccc 1100
tgctcctgca gagcaacagc attgtccgtg tggaccagag tgagctggc 1150
tacctggcca atctcacaga gctggacctg tcccagaaca gctttcgga 1200
tgcccgagac tgtgatttcc atgcccctgca ccagctgctg agcctgcacc 1250
tagaggagaa ccagctgacc cggtggagg accacagctt tgcagggttg 1300
gccagcctac aggaactcta tctcaaccac aaccagctt accgcattcg 1350
ccccagggcc ttttctggcc tcagcaactt gctgcggctg cacctcaact 1400
ccaacccctt gaggccatt gacagccgtt ggttgaaat gctgccaac 1450
ttggagatac tcatgattgg cgccaacaag gtagatgcca tcctggacat 1500
gaacttccgg cccctggcca acctgcgttag cctggtgcta gcaggcatga 1550
acctgcggga gatctccgac tatgcctgg aggggctgca aagcctggag 1600
agcctctcct tctatgacaa ccagctggcc cgggtggcca ggcgggact 1650
ggaacaggtg cccgggctca agttcctaga cctcaacaag aacccgctcc 1700
agcgggtagg gcccgggac tttgccaaca tgctgcaccc taaggagctg 1750
ggactgaaca acatggagga gctggctcc atcgacaagt ttgcctgg 1800
gaacccccc gagctgacca agctggacat caccaataac ccacggctgt 1850
ccttcatcca ccccccggcc ttccaccacc tgccccagat ggagaccctc 1900
atgctcaaca acaacgctct cagtgcatttgc caccagcaga cggtggagtc 1950

cctgcccAAC ctgcaggagg taggtctcca cggcaacccc atccgctgtg 2000
actgtgtcat ccgctggcc aatgccacgg gcacccgtgt ccgcttcATC 2050
gagccgcaat ccaccctgtg tgccggaccc cccggacctcc agcgccTccc 2100
ggtccgtgag gtgcTTTCC gggagatgac ggaccactgt ttgcCcCTCA 2150
tctccccacg aagcttcccc ccaagcCTCC aggtAGCCAG tggagagAGC 2200
atggtgctgc attGCCGGGC actggccgaa CCCGAACCCG agatctactg 2250
ggtaCTCCA gctgggCTTC gactgacacc tgcccAtgca ggcaggaggt 2300
accgggtgta ccccggggg accctggAGC tgccggagggt gacagcagaa 2350
gaggcaggGC tatacacctg tgtggccAG aacctggTgg gggctgacac 2400
taagacggtt agtgtggTTg tggccgtgc ttcctccAG ccaggcaggG 2450
acgaaggaca ggggctggag ctccgggtgc aggagaccca cccctatCAC 2500
atcctgctat cttgggtcac cccacccAAc acagtgtCCA ccaacCTCAC 2550
ctggTCCAGt gcctcctccc tccggggcca gggggcaca gctctggccc 2600
gcctgcctcg gggAACCCAC agtacacaaca ttacccGCT cttcaggCC 2650
acggagtact gggcctgcct gcaagtggcc tttgctgtatg cccacacCCA 2700
gttggcttGT gtatgggcca ggaccaaAGA ggccacttCT tgccacAGAG 2750
ccttagggga tcgtcctggg ctcattGCCA tcctggctct cgctgtcTT 2800
ctcctggcAG ctgggctAGC ggcccACCTT ggcacaggCC aacccaggAA 2850
gggtgtgggt gggaggcggc ctctccCTCC agcctgggt ttctgggct 2900
ggagtgcCCC ttctgtccgg gttgtgtctg ctcccCTCGT cctgcCcCTGG 2950
aatccaggGA ggaagctGCC cagatcctCA gaaggGGAGA cactgttGCC 3000
accattgtct caaaattctt gaagctcAGC ctgttctcAG cagtagAGAA 3050
atcacttagGA ctactttta ccaaaAGAGA agcagtctgg gccAGatGCC 3100
ctgccaggAA agggacatgg acccacgtgc ttgaggcctg gcagctggc 3150
caagacagat ggggcttGT ggccCTgggg gtgcttctGC agccttgAAA 3200
aagttgcCCT tacctcctAG ggtcacCTCT gctGCCATTc tgagGAACAT 3250

ctccaaggaa caggagggac tttggctaga gcctcctgcc tccccatctt 3300
 ctctctgccc agaggctctt gggcctggct tggctgtccc ctacctgtgt 3350
 ccccggtctg caccccttcc tcttctcttt ctctgtacag tctcagttgc 3400
 ttgctcttgt gcctcctggg caagggtctga aggaggccac tccatctcac 3450
 ctcggggggc tgccctcaat gtgggagtga ccccagccag atctgaagga 3500
 catttgggag agggatgccc aggaacgcct catctcagca gcctgggctc 3550
 ggcattccga agctgactt ctataggcaa ttttgtacct ttgtggagaa 3600
 atgtgtcacc tcccccaacc cgattcactc ttttctcctg ttttgtaaaa 3650
 aataaaaata aataataaca ataaaaaaaa 3679

<210> 245

<211> 713

<212> PRT

<213> Homo Sapien

<400> 245

Met	Arg	Leu	Leu	Val	Ala	Pro	Leu	Leu	Leu	Ala	Trp	Val	Ala	Gly
1														15
Ala	Thr	Ala	Thr	Val	Pro	Val	Val	Pro	Trp	His	Val	Pro	Cys	Pro
				20					25					30
Pro	Gln	Cys	Ala	Cys	Gln	Ile	Arg	Pro	Trp	Tyr	Thr	Pro	Arg	Ser
					35				40					45
Ser	Tyr	Arg	Glu	Ala	Thr	Thr	Val	Asp	Cys	Asn	Asp	Leu	Phe	Leu
					50				55					60
Thr	Ala	Val	Pro	Pro	Ala	Leu	Pro	Ala	Gly	Thr	Gln	Thr	Leu	Leu
									65					75
Leu	Gln	Ser	Asn	Ser	Ile	Val	Arg	Val	Asp	Gln	Ser	Glu	Leu	Gly
					80				85					90
Tyr	Leu	Ala	Asn	Leu	Thr	Glu	Leu	Asp	Leu	Ser	Gln	Asn	Ser	Phe
					95				100					105
Ser	Asp	Ala	Arg	Asp	Cys	Asp	Phe	His	Ala	Leu	Pro	Gln	Leu	Leu
					110				115					120
Ser	Leu	His	Leu	Glu	Glu	Asn	Gln	Leu	Thr	Arg	Leu	Glu	Asp	His
					125				130					135
Ser	Phe	Ala	Gly	Leu	Ala	Ser	Leu	Gln	Glu	Leu	Tyr	Leu	Asn	His
					140				145					150

Asn Gln Leu Tyr Arg Ile Ala Pro Arg Ala Phe Ser Gly Leu Ser
 155 160 165
 Asn Leu Leu Arg Leu His Leu Asn Ser Asn Leu Leu Arg Ala Ile
 170 175 180
 Asp Ser Arg Trp Phe Glu Met Leu Pro Asn Leu Glu Ile Leu Met
 185 190 195
 Ile Gly Gly Asn Lys Val Asp Ala Ile Leu Asp Met Asn Phe Arg
 200 205 210
 Pro Leu Ala Asn Leu Arg Ser Leu Val Leu Ala Gly Met Asn Leu
 215 220 225
 Arg Glu Ile Ser Asp Tyr Ala Leu Glu Gly Leu Gln Ser Leu Glu
 230 235 240
 Ser Leu Ser Phe Tyr Asp Asn Gln Leu Ala Arg Val Pro Arg Arg
 245 250 255
 Ala Leu Glu Gln Val Pro Gly Leu Lys Phe Leu Asp Leu Asn Lys
 260 265 270
 Asn Pro Leu Gln Arg Val Gly Pro Gly Asp Phe Ala Asn Met Leu
 275 280 285
 His Leu Lys Glu Leu Gly Leu Asn Asn Met Glu Glu Leu Val Ser
 290 295 300
 Ile Asp Lys Phe Ala Leu Val Asn Leu Pro Glu Leu Thr Lys Leu
 305 310 315
 Asp Ile Thr Asn Asn Pro Arg Leu Ser Phe Ile His Pro Arg Ala
 320 325 330
 Phe His His Leu Pro Gln Met Glu Thr Leu Met Leu Asn Asn Asn
 335 340 345
 Ala Leu Ser Ala Leu His Gln Gln Thr Val Glu Ser Leu Pro Asn
 350 355 360
 Leu Gln Glu Val Gly Leu His Gly Asn Pro Ile Arg Cys Asp Cys
 365 370 375
 Val Ile Arg Trp Ala Asn Ala Thr Gly Thr Arg Val Arg Phe Ile
 380 385 390
 Glu Pro Gln Ser Thr Leu Cys Ala Glu Pro Pro Asp Leu Gln Arg
 395 400 405
 Leu Pro Val Arg Glu Val Pro Phe Arg Glu Met Thr Asp His Cys

410	415	420
Leu Pro Leu Ile Ser Pro Arg Ser Phe Pro Pro Ser Leu Gln Val		
425	430	435
Ala Ser Gly Glu Ser Met Val Leu His Cys Arg Ala Leu Ala Glu		
440	445	450
Pro Glu Pro Glu Ile Tyr Trp Val Thr Pro Ala Gly Leu Arg Leu		
455	460	465
Thr Pro Ala His Ala Gly Arg Arg Tyr Arg Val Tyr Pro Glu Gly		
470	475	480
Thr Leu Glu Leu Arg Arg Val Thr Ala Glu Glu Ala Gly Leu Tyr		
485	490	495
Thr Cys Val Ala Gln Asn Leu Val Gly Ala Asp Thr Lys Thr Val		
500	505	510
Ser Val Val Val Gly Arg Ala Leu Leu Gln Pro Gly Arg Asp Glu		
515	520	525
Gly Gln Gly Leu Glu Leu Arg Val Gln Glu Thr His Pro Tyr His		
530	535	540
Ile Leu Leu Ser Trp Val Thr Pro Pro Asn Thr Val Ser Thr Asn		
545	550	555
Leu Thr Trp Ser Ser Ala Ser Ser Leu Arg Gly Gln Gly Ala Thr		
560	565	570
Ala Leu Ala Arg Leu Pro Arg Gly Thr His Ser Tyr Asn Ile Thr		
575	580	585
Arg Leu Leu Gln Ala Thr Glu Tyr Trp Ala Cys Leu Gln Val Ala		
590	595	600
Phe Ala Asp Ala His Thr Gln Leu Ala Cys Val Trp Ala Arg Thr		
605	610	615
Lys Glu Ala Thr Ser Cys His Arg Ala Leu Gly Asp Arg Pro Gly		
620	625	630
Leu Ile Ala Ile Leu Ala Leu Ala Val Leu Leu Leu Ala Ala Gly		
635	640	645
Leu Ala Ala His Leu Gly Thr Gly Gln Pro Arg Lys Gly Val Gly		
650	655	660
Gly Arg Arg Pro Leu Pro Pro Ala Trp Ala Phe Trp Gly Trp Ser		
665	670	675

Ala Pro Ser Val Arg Val Val Ser Ala Pro Leu Val Leu Pro Trp
680 685 690

Asn Pro Gly Arg Lys Leu Pro Arg Ser Ser Glu Gly Glu Thr Leu
695 700 705

Leu Pro Pro Leu Ser Gln Asn Ser
710

<210> 246

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 246

aacaaggtaa gatgccatcc tg 22

<210> 247

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 247

aaacctgtcg atggagacca gctc 24

<210> 248

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 248

aggggctgca aagcctggag agcctctcct tctatgacaa ccagc 45

<210> 249

<211> 3401

<212> DNA

<213> Homo Sapien

<400> 249

gcaaggccaag gcgctgttg agaaggtaa gaagttccgg acccatgtgg 50

aggaggggga cattgtgtac cgcccttaca tgcggcagac catcatcaag 100

gtgatcaagt tcatcctcat catctgtac accgtctact acgtgcacaa 150

catcaagttc gacgtggact gcaccgtgga cattgagagc ctgacgggct 200
accgcaccta ccgctgtgcc cacccccctgg ccacactctt caagatcctg 250
cggtcccttct acatcagcct agtcatcttc tacggcctca tctgcatgta 300
cacactgtgg tggatgctac ggcgctccct caagaagtagc tcgtttgagt 350
cgatccgtga ggagagcagc tacagcgaca tccccgacgt caagaacgac 400
ttcgccctca tgctgcacct cattgaccaa tacgaccgc tctactccaa 450
gcgcttcgccc gtcttcctgt cgagggtgag tgagaacaag ctgcggcagc 500
tgaacctcaa caacgagtgg acgctggaca agctccggca gcgctcacc 550
aagaacgcgc aggacaagct ggagctgcac ctgttcatgc tcagtggcat 600
ccctgacact gtgtttgacc tgggtggagct ggaggtcctc aagctggagc 650
tgatccccga cgtgaccatc ccgcccagca ttgcccagct cacgggcctc 700
aaggagctgt ggctctacca cacagcggcc aagattgaag cgctgcgt 750
ggccttcctg cgcgagaacc tgcggggcgt gcacatcaag ttcaccgaca 800
tcaaggagat cccgctgtgg atctatagcc tgaagacact ggaggagctg 850
cacctgacgg gcaacctgag cgccggagaac aaccgctaca tcgtcatcga 900
cgggctgcgg gagctcaaacc gcctcaaggt gctgcggctc aagagcaacc 950
taagcaagct gccacaggtg gtcacagatg tgggcgtgca cctgcagaag 1000
ctgtccatca acaatgaggg caccaagctc atcgccctca acagcctcaa 1050
gaagatggcg aacctgactg agctggagct gatccgctgc gacctggagc 1100
gcatccccca ctccatcttc agcctccaca acctgcagga gattgacctc 1150
aaggacaaca acctcaagac catcgaggag atcatcagct tccagcacct 1200
gcaccgcctc acctgcctta agctgtggta caaccacatc gcctacatcc 1250
ccatccagat cgccaacctc accaacctgg agcgcctcta cctgaaccgc 1300
aacaagatcg agaagatccc cacccagctc ttctactgccc gcaagctgcg 1350
ctacacctggac ctcagccaca acaacctgac cttccctccct gcccacatcg 1400
gcctccctgca gaacctccag aacctagcca tcacggccaa ccggatcgag 1450

acgctccctc cgagacttt ccagtgcggg aagctgcggg ccctgcacct 1500
 gggcaacaac gtgctgcagt cactgccctc cagggtgggc gagctgacca 1550
 acctgacgca gatcgagctg cggggcaacc ggctggagtg cctgcctgtg 1600
 gagctggcg agtgcact gctcaagcgc agcggcttgg tggggagga 1650
 ggacactgttc aacacactgc cacccgaggt gaaggagcgg ctgtggaggg 1700
 ctgacaagga gcaggcctga gcgaggccgg cccagcacag caagcagcag 1750
 gaccgctgcc cagtcctcag gcccgaggg gcaggcctag cttctcccag 1800
 aactcccgaa cagccaggac agcctcgccg ctggcagga gcctggggcc 1850
 gcttgtagt caggccagag cgagaggaca gtatctgtgg ggctggcccc 1900
 ttttctccct ctgagactca cgtccccag ggcaagtgt tggggaggag 1950
 agcaagtctc aagagcgcag tatttgata atcagggtct cctccctgga 2000
 ggccagctct gccccagggg ctgagctgcc accagaggc ctgggaccct 2050
 cacttagtt ctggattt attttctcc atctccacc tccttcattcc 2100
 agataactta tacattccca agaaagttca gcccagatgg aaggtgttca 2150
 gggaaaggtg ggctgcctt tcccttgtc cttathtagc gatgccgccc 2200
 ggcatttaac acccacctgg acttcagcag agtggccgg ggcgaaccag 2250
 ccatggacg gtcacccagc agtgcgggc tgggctctgc ggtgcggtcc 2300
 acgggagagc aggccctcag ctggaaaggc caggcctgga gcttgcctct 2350
 tcagttttt tggcagttt agtttttgt ttttttttt ttatcaaa 2400
 aaacaatttt tttaaaaaaa aagcttgaa aatggatggt ttgggtatta 2450
 aaaagaaaaaa aaaaacttaa aaaaaaaaaa acactaacgg ccagtgagtt 2500
 ggagtctcag ggcagggtgg cagttccct tgagcaaagc agccagacgt 2550
 tgaactgtgt ttcccttccc tggcgcagg gtgcagggtg tcttccggat 2600
 ctggtgtgac ctgggtccag gagttctatt tgttcctggg gagggaggtt 2650
 tttttgtttt tttttgggt tttttgggt tcttgggt tttctccctcc 2700
 atgtgtcttg gcaggcactc atttctgtgg ctgtcggcca gagggaatgt 2750
 tctggagctg ccaaggaggg aggagactcg ggttggctaa tccccggatg 2800

aacggtgctc cattcgacc tcccctcctc gtgcctgccc tgcctctcca 2850
 cgcacagtgt taaggagcca agaggagcca cttcgccca agtggtttc 2900
 cccacactcct gcggcatggg tgtgtccagt gccaccgctg gcctccgctg 2950
 cttccatcag ccctgtcgcc acctggctct tcatgaagag cagacactta 3000
 gaggctggtc gggaaatgggg aggtcgcccc tgggagggca ggctttgggt 3050
 ccaagccggt tcccgtccct ggcccttgga gtgcacacag cccagtcggc 3100
 acctggtggc tggaaagccaa cctgcttttag atcactcggt tccccacctt 3150
 agaagggtcc ccgccttaga tcaatcacgt ggacactaag gcacgtttta 3200
 gagtctcttg tcttaatgtat tatgtccatc cgtctgtccg tccatttg 3250
 ttttctgcgt cgtgtcattt gatataatcc tcagaaataa tgccacactag 3300
 cctctgacaa ccatgaagca aaaatccgtt acatgtgggt ctgaacttgt 3350
 agactcggtc acagtatcaa ataaaaatcta taacagaaaa aaaaaaaaaa 3400
 a 3401
 <210> 250
 <211> 546
 <212> PRT
 <213> Homo Sapien
 <400> 250
 Met Arg Gln Thr Ile Ile Lys Val Ile Lys Phe Ile Leu Ile Ile
 1 5 10 15
 Cys Tyr Thr Val Tyr Tyr Val His Asn Ile Lys Phe Asp Val Asp
 20 25 30
 Cys Thr Val Asp Ile Glu Ser Leu Thr Gly Tyr Arg Thr Tyr Arg
 35 40 45
 Cys Ala His Pro Leu Ala Thr Leu Phe Lys Ile Leu Ala Ser Phe
 50 55 60
 Tyr Ile Ser Leu Val Ile Phe Tyr Gly Leu Ile Cys Met Tyr Thr
 65 70 75
 Leu Trp Trp Met Leu Arg Arg Ser Leu Lys Lys Tyr Ser Phe Glu
 80 85 90
 Ser Ile Arg Glu Glu Ser Ser Tyr Ser Asp Ile Pro Asp Val Lys

95	100	105
Asn Asp Phe Ala Phe Met Leu His Leu Ile Asp Gln Tyr Asp Pro		
110	115	120
Leu Tyr Ser Lys Arg Phe Ala Val Phe Leu Ser Glu Val Ser Glu		
125	130	135
Asn Lys Leu Arg Gln Leu Asn Leu Asn Asn Glu Trp Thr Leu Asp		
140	145	150
Lys Leu Arg Gln Arg Leu Thr Lys Asn Ala Gln Asp Lys Leu Glu		
155	160	165
Leu His Leu Phe Met Leu Ser Gly Ile Pro Asp Thr Val Phe Asp		
170	175	180
Leu Val Glu Leu Glu Val Leu Lys Leu Glu Leu Ile Pro Asp Val		
185	190	195
Thr Ile Pro Pro Ser Ile Ala Gln Leu Thr Gly Leu Lys Glu Leu		
200	205	210
Trp Leu Tyr His Thr Ala Ala Lys Ile Glu Ala Pro Ala Leu Ala		
215	220	225
Phe Leu Arg Glu Asn Leu Arg Ala Leu His Ile Lys Phe Thr Asp		
230	235	240
Ile Lys Glu Ile Pro Leu Trp Ile Tyr Ser Leu Lys Thr Leu Glu		
245	250	255
Glu Leu His Leu Thr Gly Asn Leu Ser Ala Glu Asn Asn Arg Tyr		
260	265	270
Ile Val Ile Asp Gly Leu Arg Glu Leu Lys Arg Leu Lys Val Leu		
275	280	285
Arg Leu Lys Ser Asn Leu Ser Lys Leu Pro Gln Val Val Thr Asp		
290	295	300
Val Gly Val His Leu Gln Lys Leu Ser Ile Asn Asn Glu Gly Thr		
305	310	315
Lys Leu Ile Val Leu Asn Ser Leu Lys Lys Met Ala Asn Leu Thr		
320	325	330
Glu Leu Glu Leu Ile Arg Cys Asp Leu Glu Arg Ile Pro His Ser		
335	340	345
Ile Phe Ser Leu His Asn Leu Gln Glu Ile Asp Leu Lys Asp Asn		
350	355	360

<210> 251

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 251

caacaatgag ggcacccaagg 20

<210> 252

<211> 24

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 252
gatggctagg ttctggaggt tctg 24

<210> 253
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 253
caacctgcag gagattgacc tcaaggacaa caacctaag accatcg 47

<210> 254
<211> 1650
<212> DNA
<213> Homo Sapien

<400> 254
gcctgttgct gatgctgccg tgcggtaactt gtcatggagc tggactgct 50
gctgtctccc gtcccgccgt ggttgtgtct gctgccgtg ctgtggcc 100
tgaacgcagg agctgtcatt gactggccca cagaggaggg caaggaagta 150
tgggattatg tgacggtccg caaggatgcc tacatgttct ggtggctcta 200
ttatgccacc aactcctgca agaacttctc agaactgccc ctggcatgt 250
ggcttcaggc cggtccaggc gggtcttagca ctggatttgg aaacttttag 300
gaaattgggc cccttgacag tgatctcaaa ccacggaaaa ccacctggct 350
ccaggctgcc agtctcctat ttgtggataa tcccgtggc actgggtca 400
gttatgtgaa tggtagtggt gcctatgcca aggacctggc tatggtgct 450
tcagacatga tggttctcct gaagaccttc ttcagttgcc acaaagaatt 500
ccagacagtt ccattctaca ttttctcaga gtcctatgga ggaaaaatgg 550
cagctggcat tggtctagag ctttataagg ccattcagcg agggaccatc 600
aagtgcact ttgcgggggt tgccttgggt gattcctgga tctccccgt 650
tgattcggtg ctctcctggg gaccttacct gtacagcatg tctttctcg 700

Arg Lys Asp Ala Tyr Met Phe Trp Trp Leu Tyr Tyr Ala Thr Asn
 50 55 60
 Ser Cys Lys Asn Phe Ser Glu Leu Pro Leu Val Met Trp Leu Gln
 65 70 75
 Gly Gly Pro Gly Gly Ser Ser Thr Gly Phe Gly Asn Phe Glu Glu
 80 85 90
 Ile Gly Pro Leu Asp Ser Asp Leu Lys Pro Arg Lys Thr Thr Trp
 95 100 105
 Leu Gln Ala Ala Ser Leu Leu Phe Val Asp Asn Pro Val Gly Thr
 110 115 120
 Gly Phe Ser Tyr Val Asn Gly Ser Gly Ala Tyr Ala Lys Asp Leu
 125 130 135
 Ala Met Val Ala Ser Asp Met Met Val Leu Leu Lys Thr Phe Phe
 140 145 150
 Ser Cys His Lys Glu Phe Gln Thr Val Pro Phe Tyr Ile Phe Ser
 155 160 165
 Glu Ser Tyr Gly Gly Lys Met Ala Ala Gly Ile Gly Leu Glu Leu
 170 175 180
 Tyr Lys Ala Ile Gln Arg Gly Thr Ile Lys Cys Asn Phe Ala Gly
 185 190 195
 Val Ala Leu Gly Asp Ser Trp Ile Ser Pro Val Asp Ser Val Leu
 200 205 210
 Ser Trp Gly Pro Tyr Leu Tyr Ser Met Ser Leu Leu Glu Asp Lys
 215 220 225
 Gly Leu Ala Glu Val Ser Lys Val Ala Glu Gln Val Leu Asn Ala
 230 235 240
 Val Asn Lys Gly Leu Tyr Arg Glu Ala Thr Glu Leu Trp Gly Lys
 245 250 255
 Ala Glu Met Ile Ile Glu Gln Asn Thr Asp Gly Val Asn Phe Tyr
 260 265 270
 Asn Ile Leu Thr Lys Ser Thr Pro Thr Ser Thr Met Glu Ser Ser
 275 280 285
 Leu Glu Phe Thr Gln Ser His Leu Val Cys Leu Cys Gln Arg His
 290 295 300
 Val Arg His Leu Gln Arg Asp Ala Leu Ser Gln Leu Met Asn Gly

305	310	315
Pro Ile Arg Lys Lys Leu Lys Ile Ile Pro Glu Asp Gln Ser Trp		
320	325	330
Gly Gly Gln Ala Thr Asn Val Phe Val Asn Met Glu Glu Asp Phe		
335	340	345
Met Lys Pro Val Ile Ser Ile Val Asp Glu Leu Leu Glu Ala Gly		
350	355	360
Ile Asn Val Thr Val Tyr Asn Gly Gln Leu Asp Leu Ile Val Asp		
365	370	375
Thr Met Gly Gln Glu Ala Trp Val Arg Lys Leu Lys Trp Pro Glu		
380	385	390
Leu Pro Lys Phe Ser Gln Leu Lys Trp Lys Ala Leu Tyr Ser Asp		
395	400	405
Pro Lys Ser Leu Glu Thr Ser Ala Phe Val Lys Ser Tyr Lys Asn		
410	415	420
Leu Ala Phe Tyr Trp Ile Leu Lys Ala Gly His Met Val Pro Ser		
425	430	435
Asp Gln Gly Asp Met Ala Leu Lys Met Met Arg Leu Val Thr Gln		
440	445	450

Gln Glu

<210> 256

<211> 1100

<212> DNA

<213> Homo Sapien

<400> 256

ggccgcggga gaggaggcca tgggcgcgcg cggggcgctg ctgctggcgc 50

tgctgctggc tcgggctgga ctcaggaagc cggagtgcgc ggaggcggcg 100

ccgttatcag gaccatgcgg ccgacgggtc atcacgtcgc gcacgtggg 150

tggagaggac gccgaactcg ggcgttggcc gtggcagggg agcctgcgcc 200

tgtggattc ccacgtatgc ggagtgcgc tgctcagcca ccgctggca 250

ctcacggcgg cgcaactgctt tgaaacctat agtgcacctta gtgatccctc 300

cgggtggatg gtccagtttgc cccagctgac ttccatgcca tccttctgga 350

gcctgcaggc ctactacacc cgttacttcg tatcgaatat ctatctgagc 400

cctcgctacc tgggaaattc accctatgac attgccttgg tgaagctgtc 450
tgcacctgtc acctacacta aacacatcca gcccatctgt ctccaggcct 500
ccacatttga gtttgagaac cgAACAGACT gctgggtgac tggctggggg 550
tacatcaaag aggatgaggc actgccatct ccccacaccc tccaggaagt 600
tcaggtcgcc atcataaaca actctatgtg caaccacctc ttccctaagt 650
acagtttccg caaggacatc tttggagaca tggtttgtgc tggcaacgcc 700
caaggcggga aggatgcctg cttcggtgac tcaggtggac cttggcctg 750
taacaagaat ggactgttgt atcagattgg agtcgtgaga tggggagtgg 800
gctgtggtcg gccaatcgg cccgggtgtct acaccaatat cagccaccac 850
tttgagtgga tccagaagct gatggccccag agtggcatgt cccagccaga 900
ccccctctgg ccactactct tttccctct tctctggat ctcccactcc 950
tggggccggc ctgagcctac ctgagccccat gcagcctggg gccactgcca 1000
agtcaaggccc tggttctttt ctgtcttggtt tggtaataaaa cacattccag 1050
ttgatgcctt gcaggggcatt cttcaaaaaaa aaaaaaaaaaa aaaaaaaaaaa 1100

<210> 257

<211> 314

<212> PRT

<213> Homo Sapien

<400> 257

Met Gly Ala Arg Gly Ala Leu Leu Leu Ala Leu Leu Leu Ala Arg
1 5 10 15

Ala Gly Leu Arg Lys Pro Glu Ser Gln Glu Ala Ala Pro Leu Ser

20 25 30

Gly Pro Cys Gly Arg Arg Val Ile Thr Ser Arg Ile Val Gly Gly
35 40 45

Glu Asp Ala Glu Leu Gly Arg Trp Pro Trp Gln Gly Ser Leu Arg
50 55 60

Leu Trp Asp Ser His Val Cys Gly Val Ser Leu Leu Ser His Arg
65 70 75

Trp Ala Leu Thr Ala Ala His Cys Phe Glu Thr Tyr Ser Asp Leu
80 85 90

Ser Asp Pro Ser Gly Trp Met Val Gln Phe Gly Gln Leu Thr Ser
 95 100 105

 Met Pro Ser Phe Trp Ser Leu Gln Ala Tyr Tyr Thr Arg Tyr Phe
 110 115 120

 Val Ser Asn Ile Tyr Leu Ser Pro Arg Tyr Leu Gly Asn Ser Pro
 125 130 135

 Tyr Asp Ile Ala Leu Val Lys Leu Ser Ala Pro Val Thr Tyr Thr
 140 145 150

 Lys His Ile Gln Pro Ile Cys Leu Gln Ala Ser Thr Phe Glu Phe
 155 160 165

 Glu Asn Arg Thr Asp Cys Trp Val Thr Gly Trp Gly Tyr Ile Lys
 170 175 180

 Glu Asp Glu Ala Leu Pro Ser Pro His Thr Leu Gln Glu Val Gln
 185 190 195

 Val Ala Ile Ile Asn Asn Ser Met Cys Asn His Leu Phe Leu Lys
 200 205 210

 Tyr Ser Phe Arg Lys Asp Ile Phe Gly Asp Met Val Cys Ala Gly
 215 220 225

 Asn Ala Gln Gly Gly Lys Asp Ala Cys Phe Gly Asp Ser Gly Gly
 230 235 240

 Pro Leu Ala Cys Asn Lys Asn Gly Leu Trp Tyr Gln Ile Gly Val
 245 250 255

 Val Ser Trp Gly Val Gly Cys Gly Arg Pro Asn Arg Pro Gly Val
 260 265 270

 Tyr Thr Asn Ile Ser His His Phe Glu Trp Ile Gln Lys Leu Met
 275 280 285

 Ala Gln Ser Gly Met Ser Gln Pro Asp Pro Ser Trp Pro Leu Leu
 290 295 300

 Phe Phe Pro Leu Leu Trp Ala Leu Pro Leu Leu Gly Pro Val
 305 310

<210> 258

<211> 2427

<212> DNA

<213> Homo Sapien

<400> 258

cccacgcgtc cgccggacgacg tgggaagggc agaatggac tccaaggctg 50

cctcctaggg ctctttgccccc tcatacttc tggcaaatgc agttacagcc 100
cgaggccccga ccagcggagg acgctgcccc caggctgggt gtccctgggc 150
cgtgcggacc ctgaggaaga gctgagtctc acctttgccccc tgagacagca 200
gaatgtggaa agactctcg agctggtgca ggctgtgtcg gatcccagct 250
ctcctcaata cgaaaaatac ctgaccctag agaatgtggc tgatctggtg 300
aggccatccc cactgaccct ccacacggtg caaaaatggc tcttggcagc 350
cgagccccag aagtgcatt ctgtgatcac acaggacttt ctgacttgct 400
ggctgagcat ccgacaagca gagctgctgc tccctggggc tgagttcat 450
caatatgtgg gaggacctac ggaaacccat gttgtaaggt ccccacatcc 500
ctaccagctt ccacaggcct tggcccccca tgtggacttt gtggggggac 550
tgcaccgttt tcccccaaca tcataccctga ggcaacgtcc tgagccgcag 600
gtgacaggga ctgtaggcct gcatctgggg gtaacccctt ctgtgatccg 650
taagcgatac aacttgacct cacaagacgt gggctctggc accagcaata 700
acagccaagc ctgtgcccag ttcctggagc agtatttcca tgactcagac 750
ctggctcagt tcatacgccct cttcggtggc aactttgcac atcaggcattc 800
agtagcccggt gtgggtggac aacagggccg gggccgggccc gggattgagg 850
ccagtctaga tgtgcagtagc ctgatgagtg ctggtgccaa catctccacc 900
tgggtctaca gtggccctgg ccggcatgag ggacaggagc ccttcctgca 950
gtggctcatg ctgctcagta atgagtcagc cctgccacat gtgcatactg 1000
tgagctatgg agatgatgag gactccctca gcagcgccta catccagcgg 1050
gtcaacactg agctcatgaa ggctgcccgt cggggctctca ccctgctctt 1100
cgccctcaggt gacagtgggg ccgggtgttg gtctgtctct ggaagacacc 1150
agttccggccc taccttcctt gcctccagcc cctatgtcac cacagtggga 1200
ggcacatcct tccaggaacc tttcctcatc acaaatgaaa ttgttgacta 1250
tatcagtgggt ggtggcttca gcaatgtgtt cccacggcct tcataccagg 1300
aggaagctgt aacgaagttc ctgagctcta gcccccacct gccaccatcc 1350
agttacttca atgcccagtgg ccgtgcctac ccagatgtgg ctgcactttc 1400

tgatggctac tgggtggtca gcaacagagt gcccattcca tgggtgtccg 1450
 gaacctcgcc ctctactcca gtgttgggg ggatcctatc cttgatcaat 1500
 gagcacagga tccttagtgg ccgcggccct cttggcttc tcaacccaag 1550
 gctctaccag cagcatgggg caggtctt ttgatgttaacc cgtggctgcc 1600
 atgagtcctg tctggatgaa gaggttagagg gccagggtt ctgctctgg 1650
 cctggctggg atcctgtaac aggctggga acaccaactt cccagcttg 1700
 ctgaagactc tactcaaccc ctgaccctt cctatcagga gagatggctt 1750
 gtcccccgtcc ctgaagctgg cagttcagtc ccttattctg ccctgttgg 1800
 agccctgctg aaccctcaac tattgactgc tgcagacagc ttatctccct 1850
 aaccctgaaa tgctgtgagc ttgacttgac tcccaaccct accatgatcc 1900
 atcatactca ggtctcccta ctcctgcctt agattcctca ataagatgct 1950
 gtaactagca tttttgaat gcctctccct ccgcattctca tctttctt 2000
 ttcaatcagg cttttccaaa gggttgtata cagactctgt gcactatttc 2050
 acttgatatt cattccccaa ttcactgcaa ggagacctt actgtcaccg 2100
 tttactctt cctaccctga catccagaaa caatggcctc cagtcatac 2150
 ttctcaatct ttgctttatg gccttccat catagttgcc cactccctt 2200
 ctttacttag cttccaggc ttaacttctc tgactactt tgtcttcctc 2250
 tctcatcaat ttctgcttct tcatggaatg ctgacccatca ttgctccatt 2300
 tgttagattt tgctcttctc agtttactca ttgtccctg gaacaaatca 2350
 ctgacatcta caaccattac catctcacta aataagactt tctatccaat 2400
 aatgattgat acctcaaatg taaaaaa 2427

<210> 259
 <211> 556
 <212> PRT
 <213> Homo Sapien

<400> 259
 Met Gly Leu Gln Ala Cys Leu Leu Gly Leu Phe Ala Leu Ile Leu
 1 5 10 15

Ser Gly Lys Cys Ser Tyr Ser Pro Glu Pro Asp Gln Arg Arg Thr

20	25	30
Leu Pro Pro Gly Trp Val Ser Leu Gly Arg Ala Asp Pro Glu Glu		
35	40	45
Glu Leu Ser Leu Thr Phe Ala Leu Arg Gln Gln Asn Val Glu Arg		
50	55	60
Leu Ser Glu Leu Val Gln Ala Val Ser Asp Pro Ser Ser Pro Gln		
65	70	75
Tyr Gly Lys Tyr Leu Thr Leu Glu Asn Val Ala Asp Leu Val Arg		
80	85	90
Pro Ser Pro Leu Thr Leu His Thr Val Gln Lys Trp Leu Leu Ala		
95	100	105
Ala Gly Ala Gln Lys Cys His Ser Val Ile Thr Gln Asp Phe Leu		
110	115	120
Thr Cys Trp Leu Ser Ile Arg Gln Ala Glu Leu Leu Leu Pro Gly		
125	130	135
Ala Glu Phe His His Tyr Val Gly Gly Pro Thr Glu Thr His Val		
140	145	150
Val Arg Ser Pro His Pro Tyr Gln Leu Pro Gln Ala Leu Ala Pro		
155	160	165
His Val Asp Phe Val Gly Gly Leu His Arg Phe Pro Pro Thr Ser		
170	175	180
Ser Leu Arg Gln Arg Pro Glu Pro Gln Val Thr Gly Thr Val Gly		
185	190	195
Leu His Leu Gly Val Thr Pro Ser Val Ile Arg Lys Arg Tyr Asn		
200	205	210
Leu Thr Ser Gln Asp Val Gly Ser Gly Thr Ser Asn Asn Ser Gln		
215	220	225
Ala Cys Ala Gln Phe Leu Glu Gln Tyr Phe His Asp Ser Asp Leu		
230	235	240
Ala Gln Phe Met Arg Leu Phe Gly Gly Asn Phe Ala His Gln Ala		
245	250	255
Ser Val Ala Arg Val Val Gly Gln Gln Gly Arg Gly Arg Ala Gly		
260	265	270
Ile Glu Ala Ser Leu Asp Val Gln Tyr Leu Met Ser Ala Gly Ala		
275	280	285

Asn	Ile	Ser	Thr	Trp	Val	Tyr	Ser	Ser	Pro	Gly	Arg	His	Glu	Gly
				290					295					300
Gln	Glu	Pro	Phe	Leu	Gln	Trp	Leu	Met	Leu	Leu	Ser	Asn	Glu	Ser
				305					310					315
Ala	Leu	Pro	His	Val	His	Thr	Val	Ser	Tyr	Gly	Asp	Asp	Glu	Asp
				320					325					330
Ser	Leu	Ser	Ser	Ala	Tyr	Ile	Gln	Arg	Val	Asn	Thr	Glu	Leu	Met
				335					340					345
Lys	Ala	Ala	Ala	Arg	Gly	Leu	Thr	Leu	Leu	Phe	Ala	Ser	Gly	Asp
				350					355					360
Ser	Gly	Ala	Gly	Cys	Trp	Ser	Val	Ser	Gly	Arg	His	Gln	Phe	Arg
				365					370					375
Pro	Thr	Phe	Pro	Ala	Ser	Ser	Pro	Tyr	Val	Thr	Thr	Val	Gly	Gly
				380					385					390
Thr	Ser	Phe	Gln	Glu	Pro	Phe	Leu	Ile	Thr	Asn	Glu	Ile	Val	Asp
				395					400					405
Tyr	Ile	Ser	Gly	Gly	Gly	Phe	Ser	Asn	Val	Phe	Pro	Arg	Pro	Ser
				410					415					420
Tyr	Gln	Glu	Glu	Ala	Val	Thr	Lys	Phe	Leu	Ser	Ser	Ser	Pro	His
				425					430					435
Leu	Pro	Pro	Ser	Ser	Tyr	Phe	Asn	Ala	Ser	Gly	Arg	Ala	Tyr	Pro
				440					445					450
Asp	Val	Ala	Ala	Leu	Ser	Asp	Gly	Tyr	Trp	Val	Val	Ser	Asn	Arg
				455					460					465
Val	Pro	Ile	Pro	Trp	Val	Ser	Gly	Thr	Ser	Ala	Ser	Thr	Pro	Val
				470					475					480
Phe	Gly	Gly	Ile	Leu	Ser	Leu	Ile	Asn	Glu	His	Arg	Ile	Leu	Ser
				485					490					495
Gly	Arg	Pro	Pro	Leu	Gly	Phe	Leu	Asn	Pro	Arg	Leu	Tyr	Gln	Gln
				500					505					510
His	Gly	Ala	Gly	Leu	Phe	Asp	Val	Thr	Arg	Gly	Cys	His	Glu	Ser
				515					520					525
Cys	Leu	Asp	Glu	Glu	Val	Glu	Gly	Gln	Gly	Phe	Cys	Ser	Gly	Pro
				530					535					540
Gly	Trp	Asp	Pro	Val	Thr	Gly	Trp	Gly	Thr	Pro	Thr	Ser	Gln	Leu
				545					550					555

Cys

<210> 260
 <211> 1638
 <212> DNA
 <213> Homo Sapien

<400> 260
 gccgcgcgct ctctcccgcc gcccacacct gtctgagcgg cgcaaggc 50
 cgcgccccgg gggggctgtct cggcgccggaa cagtgtcggt catggcagg 100
 attccagggc tcctcttcat tctttttttt ctgtctgtg ctgttggca 150
 agtgagccct tacagtgcacc cctggaaacc cacttggcct gcataccgcc 200
 tccctgtcggt cttgccccag tctaccctca attttagccaa gccagacttt 250
 ggagccgaag ccaaattaga agtatcttct tcatgtggac cccagtgtca 300
 taaggaaact ccactgcccc cttacgaaga ggccaagcaa tatctgtctt 350
 atgaaaacgct ctatgccaat ggcagccgca cagagacgca ggtgggcattc 400
 tacatcctca gcagtagtggtt agatggggcc caacaccggag actcagggtc 450
 ttcagggaaag tctcgaaggaa agcggcagat ttatggctat gacagcagg 500
 tcagcatttt tgggaaggac ttccctgctca actacccttt ctcaacatca 550
 gtgaagttat ccacgggctg caccggcacc ctgggtggcag agaagcatgt 600
 cctcacagct gcccactgca tacacgatgg aaaaacctat gtgaaaggaa 650
 cccagaagct tcgagtgggc ttccctaaagc ccaagttaa agatgggttgt 700
 cgagggggcca acgactccac ttccatggcattt cccgagcaga tgaaatttca 750
 gtggatccgg gtgaaacgca cccatgtgcc caagggttgg atcaaggcga 800
 atgccaatga catcggtatg gattatgatt atgcccctctt ggaactcaaa 850
 aagccccaca agagaaaatt tatgaagatt ggggtgagcc ctccctgctaa 900
 gcagctgcca gggggcagaa ttccatgttc tggttatgac aatgaccgac 950
 caggcaattt ggtgtatcgc ttctgtgacg tcaaagacga gacctatgac 1000
 ttgctctacc agcaatgcga tgcccgccaa gggggccagcg ggtctgggt 1050
 ctatgtgagg atgtggaaga gacagcagca gaagtgggag cgaaaaatta 1100

ttggcattt ttcagggcac cagtgggtgg acatgaatgg ttccccacag 1150
gatttcaacg tggctgtcag aatcactctt ctcaaataatg cccagatttg 1200
ctattggatt aaaggaaact acctggattt tagggagggg tgacacagtg 1250
ttccctcctg gcagcaatta agggtcttca tgttcttatt ttaggagagg 1300
ccaaattgtt ttttgtcatt ggcgtgcaca cgtgtgtgtg tgtgtgtgtg 1350
tgtgtgttaag gtgtcttata atcttttacc tatttcttac aattgcaaga 1400
tgactggctt tactatttga aaactggttt gtgtatcata tcataatatca 1450
tttaagcagt ttgaaggcat acttttgcatt agaaataaaaa aaaataactga 1500
tttggggcaa tgaggaatat ttgacaatta agttaatctt cacgttttg 1550
caaactttga tttttatttc atctgaactt gtttcaaaga tttatattaa 1600
atattggca tacaagagat atgaaaaaaaaaaa 1638

<210> 261
<211> 383
<212> PRT
<213> Homo Sapien

<210> 262
<211> 1378
<212> DNA
<213> Homo Sapien

<400> 262
gcatcgccct gggctctcg agcctgctgc ctgtcccccc gccccaccag 50
ccatgggtt ttctggagcg ccccccagcccc tgggtggggg ctgtctcgcc 100
accttcacctt ccctgctgct gctggcgctcg acagccatcc tcaatgcggc 150
caggataacctt gttccccccag cctgtggaa gccccagcag ctgaaccggg 200
tttgtggcgcc cgaggacagc actgacagcg agtggccctg gatcgtgagc 250
atccagaaga atgggaccctt ccactgcgcga gggttctctgc tcaccagccg 300
ctgggtgatc actgctgccc actgtttcaa ggacaacctg aacaaaccat 350
acctgttctc tgtgctgctg ggggcctggc agctggggaa ccctggctct 400
cggtcccaga aggtgggtgt tgccctgggtg gagccccacc ctgtgtattc 450
ctggaaggaa ggtgcctgtg cagacattgc cctggtgctg ctcgagcgct 500
ccatacagtt ctcagagcgg gtcctgcccc tctgcctacc tgatgcctct 550
atccacactcc ctccaaacac ccactgctgg atctcaggct gggggagcat 600
ccaagatgga gttcccttgc cccaccctca gaccctgcag aagctgaagg 650
ttccttatcat cgactcgaa gtctgcagcc atctgtactg gcggggagca 700
ggacagggac ccatcactga ggacatgctg tgtgccggct acttggaggg 750
ggagcgggat gcttgcgtgg gcgactccgg gggccccctc atgtgccagg 800
tggacggcgc ctggctgctg gccggcatca tcagctgggg cgagggctgt 850
gccgagcgca acaggccccgg ggtctacatc agcctctctg cgcaccgctc 900
ctgggtggag aagatcgtgc aagggtgca gctccgcggg cgcgctcagg 950
gggggtggggc cctcaggggca ccgagccagg gctctggggc cgccgcgcgc 1000
tccttagggcg cagcgggacg cggggctcggt atctgaaagg cggccagatc 1050
cacatctgga tctggatctg cggcgccctc gggcggttcc ccccgccgta 1100
aataggctca tctacactcta cctctggggg cccggacggc tgctgcggaa 1150

aggaaacccc ctccccgacc cgcccgacgg cctcaggccc ccctccaagg 1200
catcaggccc cgcccaacgg cctcatgtcc ccgcccccac gacttccggc 1250
cccgcccccg ggccccagcg cttttgtgta tataaatgtt aatgattttt 1300
ataggtattt gtaaccctgc ccacatatct tatttattcc tccaatttca 1350
ataaaattatt tattctccaa aaaaaaaaa 1378

<210> 263

<211> 317

<212> PRT

<213> Homo Sapien

<400> 263

Met	Val	Val	Ser	Gly	Ala	Pro	Pro	Ala	Leu	Gly	Gly	Gly	Cys	Leu
1					5					10				15
Gly	Thr	Phe	Thr	Ser	Leu	Leu	Leu	Leu	Ala	Ser	Thr	Ala	Ile	Leu
					20					25				30
Asn	Ala	Ala	Arg	Ile	Pro	Val	Pro	Pro	Ala	Cys	Gly	Lys	Pro	Gln
					35					40				45
Gln	Leu	Asn	Arg	Val	Val	Gly	Gly	Glu	Asp	Ser	Thr	Asp	Ser	Glu
					50					55				60
Trp	Pro	Trp	Ile	Val	Ser	Ile	Gln	Lys	Asn	Gly	Thr	His	His	Cys
					65					70				75
Ala	Gly	Ser	Leu	Leu	Thr	Ser	Arg	Trp	Val	Ile	Thr	Ala	Ala	His
					80					85				90
Cys	Phe	Lys	Asp	Asn	Leu	Asn	Lys	Pro	Tyr	Leu	Phe	Ser	Val	Leu
					95					100				105
Leu	Gly	Ala	Trp	Gln	Leu	Gly	Asn	Pro	Gly	Ser	Arg	Ser	Gln	Lys
					110					115				120
Val	Gly	Val	Ala	Trp	Val	Glu	Pro	His	Pro	Val	Tyr	Ser	Trp	Lys
					125					130				135
Glu	Gly	Ala	Cys	Ala	Asp	Ile	Ala	Leu	Val	Arg	Leu	Glu	Arg	Ser
					140					145				150
Ile	Gln	Phe	Ser	Glu	Arg	Val	Leu	Pro	Ile	Cys	Leu	Pro	Asp	Ala
					155					160				165
Ser	Ile	His	Leu	Pro	Pro	Asn	Thr	His	Cys	Trp	Ile	Ser	Gly	Trp
					170					175				180

Gly Ser Ile Gln Asp Gly Val Pro Leu Pro His Pro Gln Thr Leu
 185 190 195
 Gln Lys Leu Lys Val Pro Ile Ile Asp Ser Glu Val Cys Ser His
 200 205 210
 Leu Tyr Trp Arg Gly Ala Gly Gln Gly Pro Ile Thr Glu Asp Met
 215 220 225
 Leu Cys Ala Gly Tyr Leu Glu Gly Glu Arg Asp Ala Cys Leu Gly
 230 235 240
 Asp Ser Gly Gly Pro Leu Met Cys Gln Val Asp Gly Ala Trp Leu
 245 250 255
 Leu Ala Gly Ile Ile Ser Trp Gly Glu Gly Cys Ala Glu Arg Asn
 260 265 270
 Arg Pro Gly Val Tyr Ile Ser Leu Ser Ala His Arg Ser Trp Val
 275 280 285
 Glu Lys Ile Val Gln Gly Val Gln Leu Arg Gly Arg Ala Gln Gly
 290 295 300
 Gly Gly Ala Leu Arg Ala Pro Ser Gln Gly Ser Gly Ala Ala Ala
 305 310 315

Arg Ser

<210> 264
 <211> 24
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Synthetic Oligonucleotide Probe

 <400> 264
 gtccgcaagg atgcctacat gttc 24

 <210> 265
 <211> 19
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Synthetic Oligonucleotide Probe

 <400> 265
 gcagagggtgt ctaaggttg 19

 <210> 266
 <211> 24

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 266
agctctagac caatgccagc ttcc 24

<210> 267
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 267
gccaccaact cctgcaagaa cttctcagaa ctgccccctgg tcattg 45

<210> 268
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 268
ggggaaattca ccctatgaca ttgcc 25

<210> 269
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 269
gaatgccctg caagcatcaa ctgg 24

<210> 270
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 270
gcacctgtca cctacactaa acacatccag cccatctgtc tccaggcctc 50

<210> 271
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 271
gcggaaggc agaatggac tccaaag 26

<210> 272
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 272
cagccctgcc acatgtgc 18

<210> 273
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 273
tactgggtgg tcagcaac 18

<210> 274
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 274
ggcgaagagc agggtgagac ccccg 24

<210> 275
<211> 45

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 275
gccctcatcc tctctggcaa atgcagttac agcccggagc ccgac 45

<210> 276
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 276
ggcaggat tccagggctc c 21

<210> 277
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 277
ggctatgaca gcaggttc 18

<210> 278
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 278
tgacaatgac cgaccagg 18

<210> 279
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 279
gcatcgatt gctggtagag caag 24

<210> 280
<211> 45
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 280
ttacagtgcc ccctggaaac ccacttggcc tgcataaccgc ctccc 45

<210> 281

<211> 34

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 281
cgtctcgagc gctccatata gttcccttgc cccca 34

<210> 282

<211> 61

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 282

tggaggggga gcgggatgt tgcgtggcg actccggggg cccccctcatg 50

tgccaggtgg a 61

<210> 283

<211> 119

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 283

ccctcagacc ctgcagaagg tgaagggtcc tatcatcgac tcggaagtct 50

gcagccatct gtactggcg ggagcaggac agggaccat cactgaggac 100

atgctgtgtg ccggctact 119

<210> 284

<211> 1875

<212> DNA

<213> Homo Sapien

<400> 284

gacggctggc caccatgcac ggctcctgca gtttcctgat gtttctgctg 50

ccgctactgc tactgctggt ggccaccaca ggccccgttg gagccctcac 100

agatgaggag aaacgttga tggtgagct gcacaacctc taccggggccc 150
 aggtatcccc gacggcctca gacatgctgc acatgagatg ggacgaggag 200
 ctggccgcct tcgccaaggc ctacgcacgg cagtgcgtgt ggggccacaa 250
 caaggagcgc gggcgccgag gcgagaatct gttcgccatc acagacgagg 300
 gcatggacgt gccgctggcc atggaggagt ggcaccacga gcgtgagcac 350
 tacaacctca gcgccgacac ctgcagccca ggccagatgt gcggccacta 400
 cacgcaggtg gtagggcca agacagagag gatcggctgt ggttcccact 450
 tctgtgagaa gctccaggggt gttgaggaga ccaacatcga attactggtg 500
 tgcaactatg agcctccggg gaacgtgaag gggaaacggc cctaccagga 550
 ggggactccg tgctcccaat gtccctctgg ctaccactgc aagaactccc 600
 tctgtgaacc catcggaagc ccggaaagatg ctcaggattt gccttacctg 650
 gtaactgagg ccccatcctt ccggcgact gaagcatcag actctaggaa 700
 aatgggtact ctttcttccc tagcaacggg gattccggct ttcttggtaa 750
 cagaggtctc aggctccctg gcaaccaagg ctctgcctgc tgtggaaacc 800
 caggccccaa cttccttagc aacgaaagac ccgcctcca tggcaacaga 850
 ggctccaccc tgcgtAACAA ctgaggtccc ttccattttg gcagctcaca 900
 gcctgcctc cttggatgag gagccagtta cttccccaa atcgaccat 950
 gttcctatcc caaaatcagc agacaaagtg acagacaaaa caaaagtgcc 1000
 ctctaggagc ccagagaact ctctggaccc caagatgtcc ctgacagggg 1050
 caagggaaact cctacccat gcccaggagg aggctgaggc tgaggctgag 1100
 ttgcctcctt ccagtgaggt cttggcctca gttttccag cccaggacaa 1150
 gccaggtgag ctgcaggcca cactggacca cacggggcac acctcctcca 1200
 agtcctgcc caatttcccc aatacctctg ccaccgctaa tgccacgggt 1250
 gggcgtgccc tggctctgca gtcgtccttg ccaggtgcag agggccctga 1300
 caagcctagc gttgtgtcag ggctgaactc gggccctggt catgtgtggg 1350
 gccctctcctt gggactactg ctctgcactc ctctggtgtt ggctggaatc 1400

ttctgaatgg gataccactc aaagggtgaa gaggtcagct gtcccttgt 1450
catcttcccc accctgtccc cagccccctaa acaagatact tcttggttaa 1500
ggccctccgg aaggaaagg ctacggggca tgtgcctcat cacaccatcc 1550
atcctggagg cacaaggcct ggctggctgc gagctcagga ggccgcctga 1600
ggactgcaca ccggggccac acctctcctg cccctccctc ctgagtctg 1650
ggggtgtggag gatttgaggg agctcaactgc ctacctggcc tggggctgtc 1700
tgccccacaca gcatgtgcgc tctccctgag tgccctgtgt a gctggggatg 1750
gggattccta ggggcagatg aaggacaagc cccactggag tggggtttt 1800
tgagtggggg aggcaggac gaggaaagga aagtaactcc tgactctcca 1850
ataaaaaacct gtccaaacctg tgaaa 1875

<210> 285

<211> 463

<212> PRT

<213> Homo Sapien

<400> 285

Met	His	Gly	Ser	Cys	Ser	Phe	Leu	Met	Leu	Leu	Leu	Pro	Leu	Leu
1					5				10					15

Leu Leu Leu Val Ala Thr Thr Gly Pro Val Gly Ala Leu Thr Asp
20 25 30

Glu Glu Lys Arg Leu Met Val Glu Leu His Asn Leu Tyr Arg Ala
35 40 45

Gln Val Ser Pro Thr Ala Ser Asp Met Leu His Met Arg Trp Asp
50 55 60

Glu Glu Leu Ala Ala Phe Ala Lys Ala Tyr Ala Arg Gln Cys Val
65 70 75

Trp Gly His Asn Lys Glu Arg Gly Arg Arg Gly Glu Asn Leu Phe
80 85 90

Ala Ile Thr Asp Glu Gly Met Asp Val Pro Leu Ala Met Glu Glu
95 100 105

Trp His His Glu Arg Glu His Tyr Asn Leu Ser Ala Ala Thr Cys
110 115 120

Ser Pro Gly Gln Met Cys Gly His Tyr Thr Gln Val Val Trp Ala
125 130 135

Ala Thr Ala Asn Ala Thr Gly Gly Arg Ala Leu Ala Leu Gln Ser
 410 415 420

Ser Leu Pro Gly Ala Glu Gly Pro Asp Lys Pro Ser Val Val Ser
 425 430 435

Gly Leu Asn Ser Gly Pro Gly His Val Trp Gly Pro Leu Leu Gly
 440 445 450

Leu Leu Leu Leu Pro Pro Leu Val Leu Ala Gly Ile Phe
 455 460

<210> 286

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 286

tcctgcagg ttccatgtgc 19

<210> 287

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 287

ctcatattgc acaccagtaa ttcg 24

<210> 288

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 288

atgaggagaa acgtttgatg gtggagctgc acaacctcta ccggg 45

<210> 289

<211> 3662

<212> DNA

<213> Homo Sapien

<400> 289

gttaactgaag tcaggcttt catttggaa gccccctcaa cagaattcgg 50

tcattctcca agttatggtg gacgtacttc tgggttctc cctctgcttg 100
cttttcaca ttagcagacc ggacttaagt cacaacagat tatcttcata 150
caaggcaagt tccatgagcc accttcaaag cttcgagaa gtgaaaactga 200
acaacaatga attggagacc attccaaatc tggaccagt ctggcaaat 250
attacacttc tctccttggc tggaaacagg attgttggaaa tactccctga 300
acatctgaaa gagttcagt ccctgaaac tttggacctt agcagcaaca 350
atatttcaga gctccaaact gcattccag ccctacagct caaatatctg 400
tatctcaaca gcaaccgagt cacatcaatg gaacctgggt atttgacaa 450
tttggccaac acactccttg tgttaaagct gaacaggaac cgaatctcag 500
ctatcccacc caagatgttt aaactgcccc aactgcaaca tctcgaattg 550
aaccgaaaca agattaaaaa tgttagatgga ctgacattcc aaggcattgg 600
tgctctgaag tctctgaaaa tgcaaagaaa tggagtaacg aaacttatgg 650
atggagctt ttggggctg agcaacatgg aaatttgca gctggaccat 700
aacaacctaa cagagattac caaaggctgg ctttacggct tgctgatgct 750
gcaggaactt catctcagcc aaaatgccat caacaggatc agccctgatg 800
cctgggagtt ctgccagaag ctcagtgagc tggacctaac ttcaatcac 850
ttatcaaggt tagatgattc aagcttcattt ggcctaagct tactaaatac 900
actgcacatt gggacaaca gagtcagcta cattgctgat tgtgcattcc 950
ggggcatttc cagttaaag actttggatc tgaagaacaa tgaaatttcc 1000
tggactattg aagacatgaa tgggtgtttc tctgggcttg acaaactgag 1050
gcgactgata ctccaaggaa atcgatccg ttctattact aaaaaagcct 1100
tcactggttt ggatgcattt gagcatctag acctgagtgaa caacgcaatc 1150
atgtctttac aaggcaatgc atttcacaa atgaagaaac tgcaacaatt 1200
gcatttaat acatcaagcc ttttgtgcga ttgccagcta aaatggctcc 1250
cacagtgggt ggcggaaaac aactttcaga gctttgtaaa tgccagttgt 1300
gcccatcctc agctgctaaa aggaagaagc attttgctg ttagcccaga 1350

tggcttgtg tgtgatgatt ttcccaaacc ccagatcacg gttcagccag 1400
 aaacacagtc ggcaataaaa ggttccaatt tgagttcat ctgctcagct 1450
 gccagcagca gtgattcccc aatgactttt gcttggaaaa aagacaatga 1500
 actactgcat gatgctgaaa tggaaaatta tgcacaccc tcggcccaag 1550
 gtggcgaggt gatggagtat accaccatcc ttccggctgctg cgaggtggaa 1600
 tttgccagtg aggggaaata tcagtgtgtc atctccaatc actttggttc 1650
 atcctactct gtcaaagccaa agcttacagt aaatatgctt ccctcattca 1700
 ccaagacccc catggatctc accatccgag ctggggccat ggcacgcttg 1750
 gagtgctgctg ctgtggggca cccagcccc cagatgcct ggcagaagga 1800
 tgggggcaca gacttccag ctgcacggga gagacgcattt catgtgatgc 1850
 ccgaggatga cgtgttctt atcgtggatg tgaagataga ggacattggg 1900
 gtatacagct gcacagctca gaacagtgc ggaagtattt cagcaaatgc 1950
 aactctgact gtcctagaaa caccatcatt tttcgccca ctgtggacc 2000
 gaactgtaac caagggagaa acagccgtcc tacagtgcatt tgctggagga 2050
 agccctcccc ctaaactgaa ctggacccaa gatgatagcc cattgggtt 2100
 aaccgagagg cactttttg cagcaggcaa tcagcttctg attattgtgg 2150
 actcagatgt cagtgtatgc gggaaataca catgtgagat gtctaaccacc 2200
 cttggcactg agagagggaaa cgtgcgcctc agtgtgatcc ccactccaac 2250
 ctgcactcc cctcagatga cagccccatc gtttagacat gacggatggg 2300
 ccactgtggg tgtcggtatc atagccgtgg tttgctgtgt ggtgggcacg 2350
 tcactcgtgt ggggtggatcat catataccac acaaggccgaa ggaatgaaga 2400
 ttgcagcatt accaacacag atgagaccaa cttgccagca gatattccta 2450
 gttatttgc atctcagggaa acgttagctg acaggcagga tgggtacgtg 2500
 tcttcagaaa gtggaagcca ccaccagttt gtcacatctt caggtgctgg 2550
 atttttctta ccacaacatg acagtagtgg gacctgccat attgacaata 2600
 gcagtgaagc tgatgtggaa gctgccacag atctgttctt ttgtccgttt 2650
 ttggatcca caggccctat gtatttgaag ggaaatgtgt atggctcaga 2700

tcctttgaa acatatacata caggttgcag tcctgaccca agaacagttt 2750
 taatggacca ctatgagccc agttacataa agaaaaagga gtgctaccca 2800
 tgttctcatc cttcagaaga atcctgcgaa cggagcttca gtaatatac 2850
 gtggccttca catgtgagga agctacttaa cactagttac tctcacaatg 2900
 aaggacctgg aatgaaaaat ctgtgtctaa acaagtcctc ttttagatttt 2950
 agtgcaaatc cagagccagc gtcgggtgcc tcgagtaatt ct当地atggg 3000
 tacctttgga aaagctctca ggagacctca cctagatgcc tattcaagct 3050
 ttggacagcc atcagattgt cagccaagag ccttttattt gaaagctcat 3100
 tcttccccag acttggactc tgggtcagag gaagatggga aagaaaggac 3150
 agattttcag gaagaaaatc acatttgcac ctttaaacag acttttagaaa 3200
 actacaggac tccaaatttt cagtcttatg acttggacac atagactgaa 3250
 tgagaccaaa ggaaaagctt aacatactac ctcaagtgaa cttttatata 3300
 aaagagagag aatcttatgt tttttaaatg gagttatgaa ttttaaaagg 3350
 ataaaaatgc tttatattata cagatgaacc aaaattacaa aaagttatga 3400
 aaattttat actggaaatg atgctcatat aagaataacct ttttaaacta 3450
 ttttttaact ttgtttatg caaaaaagta tcttacgtaa attaatgata 3500
 taaatcatga ttatattatg tattttata atgccagatt tcttttatg 3550
 gaaaatgagt tactaaagca ttttaataa tacctgcctt gtaccatttt 3600
 ttaaaatagaa gttacttcat tatatttgc acattatatt taataaaatg 3650
 tgtcaatttg aa 3662

<210> 290
 <211> 1059
 <212> PRT
 <213> Homo Sapien

<400> 290
 Met Val Asp Val Leu Leu Leu Phe Ser Leu Cys Leu Leu Phe His
 1 5 10 15
 Ile Ser Arg Pro Asp Leu Ser His Asn Arg Leu Ser Phe Ile Lys
 20 25 30

Ala Ser Ser Met Ser His Leu Gln Ser Leu Arg Glu Val Lys Leu
 35 40 45
 Asn Asn Asn Glu Leu Glu Thr Ile Pro Asn Leu Gly Pro Val Ser
 50 55 60
 Ala Asn Ile Thr Leu Leu Ser Leu Ala Gly Asn Arg Ile Val Glu
 65 70 75
 Ile Leu Pro Glu His Leu Lys Glu Phe Gln Ser Leu Glu Thr Leu
 80 85 90
 Asp Leu Ser Ser Asn Asn Ile Ser Glu Leu Gln Thr Ala Phe Pro
 95 100 105
 Ala Leu Gln Leu Lys Tyr Leu Tyr Leu Asn Ser Asn Arg Val Thr
 110 115 120
 Ser Met Glu Pro Gly Tyr Phe Asp Asn Leu Ala Asn Thr Leu Leu
 125 130 135
 Val Leu Lys Leu Asn Arg Asn Arg Ile Ser Ala Ile Pro Pro Lys
 140 145 150
 Met Phe Lys Leu Pro Gln Leu Gln His Leu Glu Leu Asn Arg Asn
 155 160 165
 Lys Ile Lys Asn Val Asp Gly Leu Thr Phe Gln Gly Leu Gly Ala
 170 175 180
 Leu Lys Ser Leu Lys Met Gln Arg Asn Gly Val Thr Lys Leu Met
 185 190 195
 Asp Gly Ala Phe Trp Gly Leu Ser Asn Met Glu Ile Leu Gln Leu
 200 205 210
 Asp His Asn Asn Leu Thr Glu Ile Thr Lys Gly Trp Leu Tyr Gly
 215 220 225
 Leu Leu Met Leu Gln Glu Leu His Leu Ser Gln Asn Ala Ile Asn
 230 235 240
 Arg Ile Ser Pro Asp Ala Trp Glu Phe Cys Gln Lys Leu Ser Glu
 245 250 255
 Leu Asp Leu Thr Phe Asn His Leu Ser Arg Leu Asp Asp Ser Ser
 260 265 270
 Phe Leu Gly Leu Ser Leu Leu Asn Thr Leu His Ile Gly Asn Asn
 275 280 285
 Arg Val Ser Tyr Ile Ala Asp Cys Ala Phe Arg Gly Leu Ser Ser

290	295	300
Leu Lys Thr Leu Asp Leu Lys Asn Asn Glu Ile Ser Trp Thr Ile 305	310	315
Glu Asp Met Asn Gly Ala Phe Ser Gly Leu Asp Lys Leu Arg Arg 320	325	330
Leu Ile Leu Gln Gly Asn Arg Ile Arg Ser Ile Thr Lys Lys Ala 335	340	345
Phe Thr Gly Leu Asp Ala Leu Glu His Leu Asp Leu Ser Asp Asn 350	355	360
Ala Ile Met Ser Leu Gln Gly Asn Ala Phe Ser Gln Met Lys Lys 365	370	375
Leu Gln Gln Leu His Leu Asn Thr Ser Ser Leu Leu Cys Asp Cys 380	385	390
Gln Leu Lys Trp Leu Pro Gln Trp Val Ala Glu Asn Asn Phe Gln 395	400	405
Ser Phe Val Asn Ala Ser Cys Ala His Pro Gln Leu Leu Lys Gly 410	415	420
Arg Ser Ile Phe Ala Val Ser Pro Asp Gly Phe Val Cys Asp Asp 425	430	435
Phe Pro Lys Pro Gln Ile Thr Val Gln Pro Glu Thr Gln Ser Ala 440	445	450
Ile Lys Gly Ser Asn Leu Ser Phe Ile Cys Ser Ala Ala Ser Ser 455	460	465
Ser Asp Ser Pro Met Thr Phe Ala Trp Lys Lys Asp Asn Glu Leu 470	475	480
Leu His Asp Ala Glu Met Glu Asn Tyr Ala His Leu Arg Ala Gln 485	490	495
Gly Gly Glu Val Met Glu Tyr Thr Thr Ile Leu Arg Leu Arg Glu 500	505	510
Val Glu Phe Ala Ser Glu Gly Lys Tyr Gln Cys Val Ile Ser Asn 515	520	525
His Phe Gly Ser Ser Tyr Ser Val Lys Ala Lys Leu Thr Val Asn 530	535	540
Met Leu Pro Ser Phe Thr Lys Thr Pro Met Asp Leu Thr Ile Arg 545	550	555

Ala Gly Ala Met Ala Arg Leu Glu Cys Ala Ala Val Gly His Pro
 560 565 570

 Ala Pro Gln Ile Ala Trp Gln Lys Asp Gly Gly Thr Asp Phe Pro
 575 580 585

 Ala Ala Arg Glu Arg Arg Met His Val Met Pro Glu Asp Asp Val
 590 595 600

 Phe Phe Ile Val Asp Val Lys Ile Glu Asp Ile Gly Val Tyr Ser
 605 610 615

 Cys Thr Ala Gln Asn Ser Ala Gly Ser Ile Ser Ala Asn Ala Thr
 620 625 630

 Leu Thr Val Leu Glu Thr Pro Ser Phe Leu Arg Pro Leu Leu Asp
 635 640 645

 Arg Thr Val Thr Lys Gly Glu Thr Ala Val Leu Gln Cys Ile Ala
 650 655 660

 Gly Gly Ser Pro Pro Pro Lys Leu Asn Trp Thr Lys Asp Asp Ser
 665 670 675

 Pro Leu Val Val Thr Glu Arg His Phe Phe Ala Ala Gly Asn Gln
 680 685 690

 Leu Leu Ile Ile Val Asp Ser Asp Val Ser Asp Ala Gly Lys Tyr
 695 700 705

 Thr Cys Glu Met Ser Asn Thr Leu Gly Thr Glu Arg Gly Asn Val
 710 715 720

 Arg Leu Ser Val Ile Pro Thr Pro Thr Cys Asp Ser Pro Gln Met
 725 730 735

 Thr Ala Pro Ser Leu Asp Asp Asp Gly Trp Ala Thr Val Gly Val
 740 745 750

 Val Ile Ile Ala Val Val Cys Cys Val Val Gly Thr Ser Leu Val
 755 760 765

 Trp Val Val Ile Ile Tyr His Thr Arg Arg Asn Glu Asp Cys
 770 775 780

 Ser Ile Thr Asn Thr Asp Glu Thr Asn Leu Pro Ala Asp Ile Pro
 785 790 795

 Ser Tyr Leu Ser Ser Gln Gly Thr Leu Ala Asp Arg Gln Asp Gly
 800 805 810

Tyr Val Ser Ser Glu Ser Gly Ser His His Gln Phe Val Thr Ser
 815 820 825
 Ser Gly Ala Gly Phe Phe Leu Pro Gln His Asp Ser Ser Gly Thr
 830 835 840
 Cys His Ile Asp Asn Ser Ser Glu Ala Asp Val Glu Ala Ala Thr
 845 850 855
 Asp Leu Phe Leu Cys Pro Phe Leu Gly Ser Thr Gly Pro Met Tyr
 860 865 870
 Leu Lys Gly Asn Val Tyr Gly Ser Asp Pro Phe Glu Thr Tyr His
 875 880 885
 Thr Gly Cys Ser Pro Asp Pro Arg Thr Val Leu Met Asp His Tyr
 890 895 900
 Glu Pro Ser Tyr Ile Lys Lys Lys Glu Cys Tyr Pro Cys Ser His
 905 910 915
 Pro Ser Glu Glu Ser Cys Glu Arg Ser Phe Ser Asn Ile Ser Trp
 920 925 930
 Pro Ser His Val Arg Lys Leu Leu Asn Thr Ser Tyr Ser His Asn
 935 940 945
 Glu Gly Pro Gly Met Lys Asn Leu Cys Leu Asn Lys Ser Ser Leu
 950 955 960
 Asp Phe Ser Ala Asn Pro Glu Pro Ala Ser Val Ala Ser Ser Asn
 965 970 975
 Ser Phe Met Gly Thr Phe Gly Lys Ala Leu Arg Arg Pro His Leu
 980 985 990
 Asp Ala Tyr Ser Ser Phe Gly Gln Pro Ser Asp Cys Gln Pro Arg
 995 1000 1005
 Ala Phe Tyr Leu Lys Ala His Ser Ser Pro Asp Leu Asp Ser Gly
 1010 1015 1020
 Ser Glu Glu Asp Gly Lys Glu Arg Thr Asp Phe Gln Glu Glu Asn
 1025 1030 1035
 His Ile Cys Thr Phe Lys Gln Thr Leu Glu Asn Tyr Arg Thr Pro
 1040 1045 1050
 Asn Phe Gln Ser Tyr Asp Leu Asp Thr
 1055

<210> 291

<211> 2906

<212> DNA

<213> Homo Sapien

<400> 291

ggggagagga attgaccatg taaaaggaga cttttttt tgggggtgg 50
ggctgttggg tgccctgcaa aaatgaagga tgcaggacgc agctttctcc 100
tggaaaccgaa cgcaatggat aaactgattt tgcaagagag aaggaagaac 150
gaagctttt cttgtgagcc ctggatctta acacaaatgt gtatatgtgc 200
acacagggag cattcaagaa taaaataaac cagagttaga cccgcggggg 250
ttggtgtgtt ctgacataaa taaataatct taaagcagct gttccccctcc 300
ccaccccaa aaaaaaggat gattggaaat gaagaaccga ggattcacaa 350
agaaaaaaagt atgttcattt ttctctataa aggagaaaagt gagccaagga 400
gatatttttgaatgaaaaag tttggggctt ttttagtaaa gtaaagaact 450
ggtgtgggtgg tgtttcctt tcttttgaa tttcccacaa gaggagagga 500
aattaataat acatctgcaa agaaatttca gagaagaaaa gttgaccgcg 550
gcagattttag gcattgattt ggggagagaa accagcagag cacagttgga 600
tttgcctta tggtgactaa aattgacgga taattgcagt tggattttc 650
ttcatcaacc tcctttttt taaattttta ttccctttgg tatcaagatc 700
atgcgttttc tcttgttctt aaccacctgg atttccatct ggatgttgct 750
gtgatcagtc taaaatacaa ctgtttgaat tccagaagga ccaacaccag 800
ataaaattatg aatgttgaac aagatgacct tacatccaca gcagataatg 850
ataggtccta ggttaacag ggccttattt gacccctgc ttgtggtgct 900
gctggcttctt caacttcttgc tggtggctgg tctggcgg gctcagacct 950
gcccttctgt gtgtccctgc agcaaccagt tcagcaaggt gatttgtgtt 1000
cgaaaaacc tgcgtgaggt tccggatggc atctccacca acacacggct 1050
gctgaacctc catgagaacc aaatccagat catcaaagt aacagctca 1100
agcacttgag gcacttgaa atcctacagt tgagttagaa ccatatcaga 1150
accattgaaa ttggggctt caatggctcg gcgaacctca acactctgg 1200
actctttgac aatcgtctta ctaccatccc gaatggagct tttgtatact 1250

tgtctaaact gaaggagctc tggtgcgaa acaacccat tgaaagcatc 1300
ccttcttatg ctttaacag aattccttct ttgcgccgac tagacttagg 1350
ggaattgaaa agactttcat acatctcaga aggtgcctt gaaggtctgt 1400
ccaacttgag gtatttgaac cttgccatgt gcaaccttcg ggaaatccct 1450
aacctcacac cgctcataaa actagatgag ctggatctt ctggaatca 1500
tttatctgcc atcaggcctg gctcttcca gggtttgatg caccttcaaa 1550
aactgtggat gatacagtcc cagattcaag tgattgaacg gaatgcctt 1600
gacaaccttc agtcaactgt ggagatcaac ctggcacaca ataatctaac 1650
attactgcct catgacccct tcactccctt gcatcatcta gagcggatac 1700
atttacatca caacccttgg aactgttaact gtgacatact gtggctcagc 1750
tggtgataa aagacatggc cccotcgaac acagcttgtt gtgcccggtg 1800
taacactcct cccaatctaa aggggaggtt cattggagag ctgcaccaga 1850
attacttcac atgctatgtt ccggtgattt tggagcccc tgcagacctc 1900
aatgtcaactg aaggcatggc agctgagctg aaatgtcggtt cttccacatc 1950
cctgacatct gtatcttgaa ttactccaaa tggAACAGTC atgacacatg 2000
gggcgtacaa agtgcggata gctgtgctca gtgatggtac gttAAATTc 2050
acaatgtaa ctgtgcaaga tacaggcatg tacacatgtt tggtagttaa 2100
ttccgttggg aatactactg cttcagccac cctgaatgtt actgcagcaa 2150
ccactactcc tttctcttac tttcaaccg tcacagttaga gactatggaa 2200
ccgtctcagg atgaggcacg gaccacagat aacaatgtgg gtcccactcc 2250
agtggtcgac tgggagacca ccaatgtgac cacctctctc acaccacaga 2300
gcacaaggta gacagagaaa accttcacca tcccagtgac tgatataaac 2350
agtggatcc caggaattga tgaggtcatg aagactacca aaatcatcat 2400
tgggtgtttt gtggccatca cactcatggc tgcagtgtatg ctggtcattt 2450
tctacaagat gaggaagcag caccatcgcc aaaaccatca cgccccaaaca 2500
aggactgttg aaattattaa tgtggatgtt gagattacgg gagacacacc 2550

catggaaagc cacctgccca tgcctgctat cgagcatgag cacctaaatc 2600
 actataactc atacaaatct cccttcaacc acacaacaac agttaacaca 2650
 ataaattcaa tacacagtcc agtgcattgaa ccgttattga tccgaatgaa 2700
 ctctaaagac aatgtacaag agactcaa at ctaaaacatt tacagagtta 2750
 caaaaaacaa acaatcaaaa aaaaagacag tttttaaaaa atgacacacaa 2800
 tgactgggct aaatctactg ttcaaaaaa gtgtctttac aaaaaaacaa 2850
 aaaagaaaaag aaatttattt attaaaaattt ctatttgat ctaaaggaga 2900
 caaaaa 2906

<210> 292
 <211> 640
 <212> PRT
 <213> Homo Sapien

<400> 292

Met	Leu	Asn	Lys	Met	Thr	Leu	His	Pro	Gln	Gln	Ile	Met	Ile	Gly
1														15
Pro	Arg	Phe	Asn	Arg	Ala	Leu	Phe	Asp	Pro	Leu	Leu	Val	Val	Leu
														30
Leu	Ala	Leu	Gln	Leu	Leu	Val	Val	Ala	Gly	Leu	Val	Arg	Ala	Gln
														45
Thr	Cys	Pro	Ser	Val	Cys	Ser	Cys	Ser	Asn	Gln	Phe	Ser	Lys	Val
														60
Ile	Cys	Val	Arg	Lys	Asn	Leu	Arg	Glu	Val	Pro	Asp	Gly	Ile	Ser
														75
Thr	Asn	Thr	Arg	Leu	Leu	Asn	Leu	His	Glu	Asn	Gln	Ile	Gln	Ile
														90
Ile	Lys	Val	Asn	Ser	Phe	Lys	His	Leu	Arg	His	Leu	Glu	Ile	Leu
														105
Gln	Leu	Ser	Arg	Asn	His	Ile	Arg	Thr	Ile	Glu	Ile	Gly	Ala	Phe
														120
Asn	Gly	Leu	Ala	Asn	Leu	Asn	Thr	Leu	Glu	Leu	Phe	Asp	Asn	Arg
														135
Leu	Thr	Thr	Ile	Pro	Asn	Gly	Ala	Phe	Val	Tyr	Leu	Ser	Lys	Leu
														150
Lys	Glu	Leu	Trp	Leu	Arg	Asn	Asn	Pro	Ile	Glu	Ser	Ile	Pro	Ser

155	160	165
Tyr Ala Phe Asn Arg Ile Pro Ser Leu Arg Arg Leu Asp Leu Gly		
170	175	180
Glu Leu Lys Arg Leu Ser Tyr Ile Ser Glu Gly Ala Phe Glu Gly		
185	190	195
Leu Ser Asn Leu Arg Tyr Leu Asn Leu Ala Met Cys Asn Leu Arg		
200	205	210
Glu Ile Pro Asn Leu Thr Pro Leu Ile Lys Leu Asp Glu Leu Asp		
215	220	225
Leu Ser Gly Asn His Leu Ser Ala Ile Arg Pro Gly Ser Phe Gln		
230	235	240
Gly Leu Met His Leu Gln Lys Leu Trp Met Ile Gln Ser Gln Ile		
245	250	255
Gln Val Ile Glu Arg Asn Ala Phe Asp Asn Leu Gln Ser Leu Val		
260	265	270
Glu Ile Asn Leu Ala His Asn Asn Leu Thr Leu Leu Pro His Asp		
275	280	285
Leu Phe Thr Pro Leu His His Leu Glu Arg Ile His Leu His His		
290	295	300
Asn Pro Trp Asn Cys Asn Cys Asp Ile Leu Trp Leu Ser Trp Trp		
305	310	315
Ile Lys Asp Met Ala Pro Ser Asn Thr Ala Cys Cys Ala Arg Cys		
320	325	330
Asn Thr Pro Pro Asn Leu Lys Gly Arg Tyr Ile Gly Glu Leu Asp		
335	340	345
Gln Asn Tyr Phe Thr Cys Tyr Ala Pro Val Ile Val Glu Pro Pro		
350	355	360
Ala Asp Leu Asn Val Thr Glu Gly Met Ala Ala Glu Leu Lys Cys		
365	370	375
Arg Ala Ser Thr Ser Leu Thr Ser Val Ser Trp Ile Thr Pro Asn		
380	385	390
Gly Thr Val Met Thr His Gly Ala Tyr Lys Val Arg Ile Ala Val		
395	400	405
Leu Ser Asp Gly Thr Leu Asn Phe Thr Asn Val Thr Val Gln Asp		
410	415	420

Thr Gly Met Tyr Thr Cys Met Val Ser Asn Ser Val Gly Asn Thr
 425 430 435

 Thr Ala Ser Ala Thr Leu Asn Val Thr Ala Ala Thr Thr Thr Pro
 440 445 450

 Phe Ser Tyr Phe Ser Thr Val Thr Val Glu Thr Met Glu Pro Ser
 455 460 465

 Gln Asp Glu Ala Arg Thr Thr Asp Asn Asn Val Gly Pro Thr Pro
 470 475 480

 Val Val Asp Trp Glu Thr Thr Asn Val Thr Thr Ser Leu Thr Pro
 485 490 495

 Gln Ser Thr Arg Ser Thr Glu Lys Thr Phe Thr Ile Pro Val Thr
 500 505 510

 Asp Ile Asn Ser Gly Ile Pro Gly Ile Asp Glu Val Met Lys Thr
 515 520 525

 Thr Lys Ile Ile Ile Gly Cys Phe Val Ala Ile Thr Leu Met Ala
 530 535 540

 Ala Val Met Leu Val Ile Phe Tyr Lys Met Arg Lys Gln His His
 545 550 555

 Arg Gln Asn His His Ala Pro Thr Arg Thr Val Glu Ile Ile Asn
 560 565 570

 Val Asp Asp Glu Ile Thr Gly Asp Thr Pro Met Glu Ser His Leu
 575 580 585

 Pro Met Pro Ala Ile Glu His Glu His Leu Asn His Tyr Asn Ser
 590 595 600

 Tyr Lys Ser Pro Phe Asn His Thr Thr Val Asn Thr Ile Asn
 605 610 615

 Ser Ile His Ser Ser Val His Glu Pro Leu Leu Ile Arg Met Asn
 620 625 630

 Ser Lys Asp Asn Val Gln Glu Thr Gln Ile
 635 640

 <210> 293
 <211> 4053
 <212> DNA

 <213> Homo Sapien

 <400> 293
 agccgacgct gctcaagctg caactctgtt gcagttggca gttctttcg 50

gtttccctcc tgctgttgg gggcatgaaa gggcttcgcc gcccggagta 100
 aaagaaggaa ttgaccgggc agcgcgaggg aggagcgcgc acgcgaccgc 150
 gagggcgggc gtgcaccctc ggctggaagt ttgtccggg ccccgagcgc 200
 gcgcggctg ggagcttogg gtagagacct aggccgctgg accgcgatga 250
 gcgcgcggag cctccgtgcg cgccgcgcgg ggttgggct gctgctgtgc 300
 gcggtgctgg ggccgcgtgg ccggtccgac agcggcggtc gcgggaaact 350
 cgggcagccc tctgggttag ccgcgcagcg cccatgc(cc) actacctgcc 400
 gctgcctcgg ggacctgctg gactgcagtc gtaagcggtc agcgcgtt 450
 cccgagccac tcccgtcctg ggtcgctcgg ctggacttaa gtcacaacag 500
 attatcttc atcaaggcaa gttccatgag ccaccttcaa agccttcgag 550
 aagtgaaaact gaacaacaat gaattggaga ccattccaaa tctggacca 600
 gtctcggcaa atattacact tctctccttg gctggaaaca ggattgttga 650
 aatactccct gaacatctga aagagttca gtcccttcaa actttggacc 700
 ttagcagcaa caatattca gagctccaaa ctgcattcc agccctacag 750
 ctcaaatac tgtatctcaa cagcaaccga gtcacatcaa tggAACCTGG 800
 gtatttgac aatttggcca acacactcct tgtgttaaag ctgaacacgga 850
 accgaatctc agctatccca cccaaagatgt ttaaactgcc ccaactgcaa 900
 catctcgaat tgaaccgaaa caagattaaa aatgttagatg gactgacatt 950
 ccaaggcctt ggtgctctga agtctctgaa aatgcaaaga aatggagtaa 1000
 cggaaacttat ggtggagct ttttggggc tgagcaacat ggaaatttt 1050
 cagctggacc ataacaacct aacagagatt accaaaggct ggcttacgg 1100
 cttgctgatg ctgcaggaac ttcatctcag cccaaatgcc atcaacagga 1150
 tcagccctga tgcctggag ttctgccaga agctcagtga gctggaccta 1200
 actttcaatc acttatcaag gtttagatgat tcaagcttcc ttggcctaag 1250
 cttactaaat acactgcaca ttggaaacaa cagagtcaac tacattgctg 1300
 attgtgcctt ccgggggctt tccagttaa agactttgga tctgaagaac 1350

aatgaaattt cctggactat tgaagacatg aatggtgctt tctctggct 1400
tgacaaaactg aggcgactga tactccaagg aaatcggtc cgttctatta 1450
ctaaaaaaagc cttcaactggt ttggatgcat tggagcatct agacctgagt 1500
gacaacgcaa tcatagtcttt acaaggcaat gcattttcac aaatgaagaa 1550
actgcaacaa ttgcatttaa atacatcaag cctttgtgc gattgccagc 1600
taaaatggct cccacagtgg gtggcggaaa acaactttca gagctttgta 1650
aatgccagtt gtgcccatcc tcagctgcta aaaggaagaa gcattttgc 1700
tgttagccca gatggcttg tgtgtgatga tttccaaa cccagatca 1750
cggttcagcc agaaacacag tcggcaataa aaggttccaa tttgagttc 1800
atctgctcag ctgccagcag cagtgattcc ccaatgactt ttgcttgaa 1850
aaaagacaat gaactactgc atgatgctga aatggaaaat tatgcacacc 1900
tccggggccca aggtggcgag gtgatggagt ataccaccat ccttggctg 1950
cgcgagggtgg aatttgccag tgagggaaa tatcagtgtg tcatactccaa 2000
tcactttggt tcatactact ctgtcaaagc caagcttaca gtaaaatatgc 2050
ttccctcatt caccaagacc cccatggatc tcaccatccg agctggggcc 2100
atggcacgct tggagtgtgc tgctgtgggg cacccagccc cccagatagc 2150
ctggcagaag gatgggggca cagacttccc agctgcacgg gagagacgca 2200
tgcatgtgat gccccaggat gacgtgttct ttatcgtgga tgtgaagata 2250
gaggacattt gggtatacag ctgcacagct cagaacagtg caggaagtat 2300
ttcagcaaat gcaactctga ctgtcctaga aacaccatca ttttgcggc 2350
cactgttggc ccgaactgta accaaggag aaacagccgt cctacagtgc 2400
attgtggag gaagccctcc ccctaaactg aactggacca aagatgatag 2450
cccattggtg gtaaccgaga ggcactttt tgcaagcaggc aatcagcttc 2500
tgattattgt ggactcagat gtcagtgtg ctggaaata cacatgtgag 2550
atgtctaaca cccttggcac tgagagagga aacgtgcgcc tcagtgtat 2600
ccccactcca acctgcgact cccctcagat gacagcccc tgcgttagacg 2650
atgacggatg ggccactgtg ggtgtcgtga tcataccgt ggtttgctgt 2700

gtggtggca cgtcactcgt gtgggtggc atcatatacc acacaaggcg 2750
gaggaatgaa gattgcagca ttaccaacac agatgagacc aacttgccag 2800
cagatattcc tagttatttg tcatctcagg gaacgtagc tgacaggcag 2850
gatgggtacg tgtcttcaga aagtggaagc caccaccagt ttgtcacatc 2900
ttcaggtgct ggattttct taccacaaca tgacagtagt gggacctgcc 2950
atattgacaa tagcagtgaa gctgatgtgg aagctgccac agatctgttc 3000
ctttgtccgt ttttggatc cacaggccct atgtatttga agggaaatgt 3050
gtatggctca gatccttttgc aaacatatca tacaggttgc agtcctgacc 3100
caagaacagt ttaatggac cactatgagc ccagttacat aaagaaaaag 3150
gagtgctacc catgttctca tccttcagaa gaatcctgcg aacggagctt 3200
cagtaatata tcgtggccct cacatgtgag gaagctactt aacactagtt 3250
actctcacaa tgaaggacct ggaatgaaaa atctgtgtct aaacaagtcc 3300
tcttagatt ttagtgcaaa tccagagcca gcgtcggttg cctcgagtaa 3350
ttctttcatg ggtacctttg gaaaagctct caggagacct cacctagatg 3400
cctattcaag ctggacag ccattcagatt gtcagccaag agccttttat 3450
ttgaaagctc attctcccc agacttggac tctgggtcag aggaagatgg 3500
gaaagaaaagg acagatttc aggaagaaaa tcacatttgt acctttaaac 3550
agactttaga aaactacagg actccaaatt ttcagtctta tgacttggac 3600
acatagactg aatgagacca aaggaaaagc ttaacatact acctaagtg 3650
aactttatt taaaagagag agaatcttatt gtttttaaa tggagttatg 3700
aattttaaaa ggataaaaaat gctttattta tacagatgaa cccaaattac 3750
aaaaagttat gaaaattttt atactggaa tgatgctcat ataagaatac 3800
ctttttaaac tatttttaa ctttggatc tgccaaaaag tatcttacgt 3850
aaatataatga tataaatcat gattattta tgtattttta taatgccaga 3900
tttcttttaa tggaaaatga gttactaaag cattttaaat aatacctgcc 3950
ttgtaccatt ttttaatag aagttacttc attatattt gcacattata 4000

tttaataaaaa tgtgtcaatt tgaaaaaaaaaaaaaaaaaaaaaaa 4050
 aaa 4053
 <210> 294
 <211> 1119
 <212> PRT
 <213> Homo Sapien
 <400> 294
 Met Ser Ala Pro Ser Leu Arg Ala Arg Ala Ala Gly Leu Gly Leu
 1 5 10 15
 Leu Leu Cys Ala Val Leu Gly Arg Ala Gly Arg Ser Asp Ser Gly
 20 25 30
 Gly Arg Gly Glu Leu Gly Gln Pro Ser Gly Val Ala Ala Glu Arg
 35 40 45
 Pro Cys Pro Thr Thr Cys Arg Cys Leu Gly Asp Leu Leu Asp Cys
 50 55 60
 Ser Arg Lys Arg Leu Ala Arg Leu Pro Glu Pro Leu Pro Ser Trp
 65 70 75
 Val Ala Arg Leu Asp Leu Ser His Asn Arg Leu Ser Phe Ile Lys
 80 85 90
 Ala Ser Ser Met Ser His Leu Gln Ser Leu Arg Glu Val Lys Leu
 95 100 105
 Asn Asn Asn Glu Leu Glu Thr Ile Pro Asn Leu Gly Pro Val Ser
 110 115 120
 Ala Asn Ile Thr Leu Leu Ser Leu Ala Gly Asn Arg Ile Val Glu
 125 130 135
 Ile Leu Pro Glu His Leu Lys Glu Phe Gln Ser Leu Glu Thr Leu
 140 145 150
 Asp Leu Ser Ser Asn Asn Ile Ser Glu Leu Gln Thr Ala Phe Pro
 155 160 165
 Ala Leu Gln Leu Lys Tyr Leu Tyr Leu Asn Ser Asn Arg Val Thr
 170 175 180
 Ser Met Glu Pro Gly Tyr Phe Asp Asn Leu Ala Asn Thr Leu Leu
 185 190 195
 Val Leu Lys Leu Asn Arg Asn Arg Ile Ser Ala Ile Pro Pro Lys
 200 205 210
 Met Phe Lys Leu Pro Gln Leu Gln His Leu Glu Leu Asn Arg Asn

215	220	225
Lys Ile Lys Asn Val Asp Gly Leu Thr Phe Gln Gly Leu Gly Ala		
230	235	240
Leu Lys Ser Leu Lys Met Gln Arg Asn Gly Val Thr Lys Leu Met		
245	250	255
Asp Gly Ala Phe Trp Gly Leu Ser Asn Met Glu Ile Leu Gln Leu		
260	265	270
Asp His Asn Asn Leu Thr Glu Ile Thr Lys Gly Trp Leu Tyr Gly		
275	280	285
Leu Leu Met Leu Gln Glu Leu His Leu Ser Gln Asn Ala Ile Asn		
290	295	300
Arg Ile Ser Pro Asp Ala Trp Glu Phe Cys Gln Lys Leu Ser Glu		
305	310	315
Leu Asp Leu Thr Phe Asn His Leu Ser Arg Leu Asp Asp Ser Ser		
320	325	330
Phe Leu Gly Leu Ser Leu Leu Asn Thr Leu His Ile Gly Asn Asn		
335	340	345
Arg Val Ser Tyr Ile Ala Asp Cys Ala Phe Arg Gly Leu Ser Ser		
350	355	360
Leu Lys Thr Leu Asp Leu Lys Asn Asn Glu Ile Ser Trp Thr Ile		
365	370	375
Glu Asp Met Asn Gly Ala Phe Ser Gly Leu Asp Lys Leu Arg Arg		
380	385	390
Leu Ile Leu Gln Gly Asn Arg Ile Arg Ser Ile Thr Lys Lys Ala		
395	400	405
Phe Thr Gly Leu Asp Ala Leu Glu His Leu Asp Leu Ser Asp Asn		
410	415	420
Ala Ile Met Ser Leu Gln Gly Asn Ala Phe Ser Gln Met Lys Lys		
425	430	435
Leu Gln Gln Leu His Leu Asn Thr Ser Ser Leu Leu Cys Asp Cys		
440	445	450
Gln Leu Lys Trp Leu Pro Gln Trp Val Ala Glu Asn Asn Phe Gln		
455	460	465
Ser Phe Val Asn Ala Ser Cys Ala His Pro Gln Leu Leu Lys Gly		
470	475	480

Leu Leu Ile Ile Val Asp Ser Asp Val Ser Asp Ala Gly Lys Tyr
 755 760 765
 Thr Cys Glu Met Ser Asn Thr Leu Gly Thr Glu Arg Gly Asn Val
 770 775 780
 Arg Leu Ser Val Ile Pro Thr Pro Thr Cys Asp Ser Pro Gln Met
 785 790 795
 Thr Ala Pro Ser Leu Asp Asp Asp Gly Trp Ala Thr Val Gly Val
 800 805 810
 Val Ile Ile Ala Val Val Cys Cys Val Val Gly Thr Ser Leu Val
 815 820 825
 Trp Val Val Ile Ile Tyr His Thr Arg Arg Arg Asn Glu Asp Cys
 830 835 840
 Ser Ile Thr Asn Thr Asp Glu Thr Asn Leu Pro Ala Asp Ile Pro
 845 850 855
 Ser Tyr Leu Ser Ser Gln Gly Thr Leu Ala Asp Arg Gln Asp Gly
 860 865 870
 Tyr Val Ser Ser Glu Ser Gly Ser His His Gln Phe Val Thr Ser
 875 880 885
 Ser Gly Ala Gly Phe Phe Leu Pro Gln His Asp Ser Ser Gly Thr
 890 895 900
 Cys His Ile Asp Asn Ser Ser Glu Ala Asp Val Glu Ala Ala Thr
 905 910 915
 Asp Leu Phe Leu Cys Pro Phe Leu Gly Ser Thr Gly Pro Met Tyr
 920 925 930
 Leu Lys Gly Asn Val Tyr Gly Ser Asp Pro Phe Glu Thr Tyr His
 935 940 945
 Thr Gly Cys Ser Pro Asp Pro Arg Thr Val Leu Met Asp His Tyr
 950 955 960
 Glu Pro Ser Tyr Ile Lys Lys Lys Glu Cys Tyr Pro Cys Ser His
 965 970 975
 Pro Ser Glu Glu Ser Cys Glu Arg Ser Phe Ser Asn Ile Ser Trp
 980 985 990
 Pro Ser His Val Arg Lys Leu Leu Asn Thr Ser Tyr Ser His Asn
 995 1000 1005
 Glu Gly Pro Gly Met Lys Asn Leu Cys Leu Asn Lys Ser Ser Leu

1010 1015 1020
Asp Phe Ser Ala Asn Pro Glu Pro Ala Ser Val Ala Ser Ser Asn
 1025 1030 1035
Ser Phe Met Gly Thr Phe Gly Lys Ala Leu Arg Arg Pro His Leu
 1040 1045 1050
Asp Ala Tyr Ser Ser Phe Gly Gln Pro Ser Asp Cys Gln Pro Arg
 1055 1060 1065
Ala Phe Tyr Leu Lys Ala His Ser Ser Pro Asp Leu Asp Ser Gly
 1070 1075 1080
Ser Glu Glu Asp Gly Lys Glu Arg Thr Asp Phe Gln Glu Glu Asn
 1085 1090 1095
His Ile Cys Thr Phe Lys Gln Thr Leu Glu Asn Tyr Arg Thr Pro
 1100 1105 1110
Asn Phe Gln Ser Tyr Asp Leu Asp Thr
 1115

<210> 295

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 295

ggaaccgaat ctcagcta 18

<210> 296

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 296

cctaaactga actggacca 19

<210> 297

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 297
ggctggagac actgaacct 19

<210> 298
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 298
acagctgcac agctcagaac agtg 24

<210> 299

<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 299
cattcccagt ataaaaattt tc 22

<210> 300
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 300
gggtcttgggt gaatgagg 18

<210> 301
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 301
gtgcctctcg gttaccacca atgg 24

<210> 302
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 302
gcggccactg ttggaccgaa ctgtAACCAA gggagAAACA gccgtcctac 50

<210> 303
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 303
gcctttgaca accttcagtc actagtgg 28

<210> 304
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 304
ccccatgtgt ccatgactgt tccc 24

<210> 305
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 305
tactgcctca tgacctcttc actcccttgc atcatcttag agcgg 45

<210> 306
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 306
actccaaggaa aatcgatcc gttc 24

<210> 307
<211> 24

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 307
ttagcagctg aggatggca caac 24

<210> 308
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 308
actccaagga aatcgatcc gttc 24

<210> 309
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 309
gccttcactg gtttggatgc attggagcat ctagacctga gtgacaacgc 50

<210> 310
<211> 3296
<212> DNA
<213> Homo Sapien

<400> 310

caaaaacttgc gtcgcccaga gcccggcgt tgacttgaat ggaaggagcc 50
cgagccccgcg gagcgccagct gagactgggg gagcgccgttc ggctgtggg 100
gcgcggctcg gcccggggc gcaggcaggaa agggaaagct gtggctgtcc 150
ctgctccacg aggcgccact ggtgtgaacc gggagagccc ctgggtggc 200
ccgtcccccta tccctcctt atatagaaac cttccacact gggaaaggcag 250
cggcgaggca ggagggctca tggtagcaa ggaggccggc tgatctgcag 300
gcgcacagca ttcccgatcc acagatttt acagatacca aatggaaaggc 350
gaggaggcag aacagcctgc ctgggtccat cagccctggc gcccaggcgc 400

atctgactcg gcacccctg caggcaccat ggcggcagagc cgggtgctgc 450
tgctcctgct gtcgtgccg ccacagctgc acctgggacc tgtgcttgcc 500
gtgagggccc caggatttgg ccgaagtggc ggccacagcc tgagccccga 550
agagaacgaa tttgcggagg aggagccggt gctggtaactg agccctgagg 600
agcccgccg tggcccaagcc gcggtcagct gcccccgaga ctgtgcctgt 650
tcccaggagg gcgttagtggc ctgtggcggt attgacctgc gtgagttccc 700
gggggacctg cctgagcaca ccaaccaccc atctctgcag aacaaccagc 750
tggaaaagat ctaccctgag gagctctccc ggctgcaccc gctggagaca 800
ctgaacctgc aaaacaaccc cctgacttcc cgagggctcc cagagaaggc 850
gtttgagcat ctgaccaacc tcaattaccc gtacttggcc aataacaagc 900
tgaccttggc accccgcttc ctgcacaaacg ccctgatcag tgtggacttt 950
gctgccaact atctcaccaa gatctatggg ctcaccccttgc gccagaagcc 1000
aaacttgagg tctgtgtacc tgcacaaacaa caagctggca gacgcccggc 1050
tgccggacaa catgttcaac ggctccagca acgtcgaggt cctcatcctg 1100
tccagcaact tcctgcgcca cgtgccaag cacctgcccctgc ctgcctgtt 1150
caagctgcac ctcaagaaca acaagctgga gaagatcccc ccggggccct 1200
tcagcgagct gagcagccctg cgcgagctat acctgcagaa caactacctg 1250
actgacgagg gcctggacaa cgagacccctc tggaaagctct ccagcctgga 1300
gtacctggat ctgtccagca acaacctgac tggggtccca gctgggctgc 1350
cgcgccgcct ggtgctgctg cacttggaga agaacgcac ccggagcggt 1400
gacgcgaatg tgctgacccc catccgcagc ctggagtacc tgctgctgca 1450
cagcaaccag ctgcgggagc agggcatcca cccactggcc ttccagggcc 1500
tcaagcggtt gcacacgggtg cacctgtaca acaacgcgtt ggagcgcggt 1550
cccagtggcc tgcctcgccc cgtgcccacc ctcatgatcc tgcacaaacca 1600
gatcacagggc attggcccg aagactttgc caccacccat ttcctggagg 1650
agctcaacct cagctacaac cgcatcacca gcccacaggt gcaccgcgac 1700

gccttcgca agctgcgcct gctgcgcctcg ctggacctgt cgggcaaccg 1750
 gctgcacacg ctgccacactg ggctgcctcg aaatgtccat gtgctgaagg 1800
 tcaagcgcaa tgagctggct gccttggcac gagggggcgct ggccccatg 1850
 gctcagactgc gtgagctgta cctcaccaggc aaccgactgc gcagccgagc 1900
 cctggggccc cgtgcctgg tggacctcgc ccatctgcag ctgctggaca 1950
 tcgcccggaa tcagtcaca gagatccccg aggggctccc cgagtcactt 2000
 gagtaacctgt acctgcagaa caacaagatt agtgcggtgc ccgccaatgc 2050
 cttcgactcc acgccccacc tcaagggat ctttctcagg tttaacaagc 2100
 tggctgtggg ctccgtggg gacagtgcct tccggaggct gaagcacctg 2150
 caggtcttgg acattgaagg caacttagag tttggtgaca tttccaagga 2200
 ccgtggccgc ttggggaggaaaaggagga ggaggaagag gaggaggagg 2250
 aggaagagga aacaagatag tgacaagggtg atgcagatgt gacctaggat 2300
 gatggaccgc cggactcttt tctgcagcac acgcctgtgt gctgtgagcc 2350
 ccccaactctg ccgtgctcac acagacacac ccagctgcac acatgaggca 2400
 tcccacatga cacgggctga cacagtctca tatccccacc cttccacacg 2450
 gcgtgtccca cggccagaca catgcacaca catcacaccc tcaaacaccc 2500
 agctcagcca cacacaacta ccctccaaac caccacagtc tctgtcacac 2550
 ccccaactacc gctgccacgc cctctgaatc atgcaggaa gggctgccc 2600
 ctgcctggc acacacaggc acccattccc tccccctgct gacatgtgta 2650
 tgcgtatgca tacacaccac acacacacac atgcacaagt catgtgcgaa 2700
 cagccctcca aagcctatgc cacagacagc tttgccccca gccagaatca 2750
 gccatagcag ctcgcccgtct gccctgtcca tctgtccgtc cgtccctgg 2800
 agaagacaca agggtatcca tgctctgtgg ccaggtgcct gccaccctct 2850
 ggaactcaca aaagctggct tttattcctt tcccatccta tggggacagg 2900
 agccttcagg actgctggcc tggcctggcc caccctgctc ctccaggtgc 2950
 tggcagtca ctctgctaag agtccctccc tgccacgccc tggcaggaca 3000
 caggcacttt tccaatgggc aagcccaagtg gaggcaggat gggagagccc 3050

cctgggtgct gctggggcct tggggcagga gtgaagcaga ggtgatgggg 3100
ctgggctgag ccagggagga aggacccagc tgcacctagg agacacctt 3150
gttcttcagg cctgtgggg aagttccggg tgccttatt ttttattctt 3200
ttctaaggaa aaaaatgata aaaatctcaa agctgatTTT tcttgtata 3250
aaaaaaactaa tataaaagca ttatccstat ccctgcaaaa aaaaaa 3296

<210> 311
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 311
gcattggccg cgagactttg cc 22

<210> 312
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 312
gcggccacgg tccttgaaa tg 22

<210> 313
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 313
tggaggagct caacctcagc tacaaccgca tcaccagccc acagg 45

<210> 314
<211> 3003
<212> DNA
<213> Homo Sapien

<400> 314
gggagggggc tccggcgcc ggcgcagcaga cctgctccgg ccgcgcgcct 50
cgccgcgtgc ctccgggagc ggcagcagta gccccggcgg cgagggtgg 100

gggttcctcg agactctcag aggggcgcct cccatcgccg cccaccaccc 150
caacctgttc ctgcgcgcct actgcgcgtgc gccccaggac ccgcgtcccc 200
acatggattt tctcctggcg ctgggtgtgg tatcctcgct ctacctgcag 250
gcggccgcgcg agttcgacgg gaggtggccc aggcaaatacg tgtcatcgat 300
tggcctatgt cggttatggtg ggaggattga ctgctgctgg ggctgggctc 350
gccagtcctg gggacagtgt cagcctgtgt gccaaccacg atgcaaacat 400
ggtgaatgtt tcgggccaataa caagtgcaga tgcatcctg gttatgctgg 450
aaaaaacctgt aatcaagatc taaatgagtg tggcctgaag ccccgccct 500
gtaagcacag gtgcataaca acttacggca gctacaagtg ctactgtctc 550
aacggatata tgctcatgcc ggatgggttc tgctcaagtg ccctgacctg 600
ctccatggca aactgtcagt atggctgtga tgggttaaa ggacaaatac 650
ggtgcgcagtgc cccatccccct ggctgcacc tggctctga tgggaggacc 700
tgtgttagatg ttgatgaatg tgctacagga agagcctctt gccctagatt 750
taggaatgt gtcaacactt ttgggagcta catctgcaga tgtcataaaag 800
gcttcgatct catgtatatt ggaggcaat atcaatgtca tgacatagac 850
gaatgctcac ttggtcagta tcagtcagc agctttgctc gatgttataa 900
cgtacgtggg tcctacaagt gcaaatagtaa agaaggatac cagggtgtatg 950
gactgacttg tgtgtatatac ccaaaagtta tgattgaacc ttcaggtcca 1000
attcatgtac caaaggaaaa tggtaccatt taaaagggtg acacaggaaa 1050
taataattgg attcctgtatg ttggaaagtac ttgggtggcct ccgaagacac 1100
catatatattcc tcctatcatt accaacaggc ctacttctaa gccaacaaca 1150
agacctacac caaagccaaac accaattccct actccaccac caccaccacc 1200
cctgccaaca gagctcagaa cacctctacc acctacaacc ccagaaaggc 1250
caaccacccgg actgacaact atagcaccag ctgccagttac acctccagga 1300
gggattacag ttgacacaacag ggtacagaca gaccctcaga aacccagagg 1350
agatgtgttc agtgttctgg tacacagttg taattttgac catggacttt 1400

gtggatggat cagggagaaaa gacaatgact tgcactggga accaatcagg 1450
gaccacgcag gtggacaata tctgacagtg tcggcagcca aagccccagg 1500
gggaaaagct gcacgcttgg tgctacctct cggccgcctc atgcattcag 1550
gggacctgtg cctgtcattc aggcacaagg tgacgggct gcactctggc 1600
acactccagg tggttgtgag aaaacacggt gcccacggag cagccctgtg 1650
gggaagaaat ggtggccatg gctggaggca aacacagatc accttgcgag 1700
gggctgacat caagagcgaa tcadaaaagat gattaaaggg ttggaaaaaaaa 1750
agatctatga tggaaaatta aaggaactgg gattattgag cctggagaag 1800
agaagactga ggggcaaacc attgatggtt ttcaagtata tgaagggttg 1850
gcacagagag ggtggcgacc agctgttctc catatgcact aagaatagaa 1900
caagaggaaa ctggcttaga ctagagtata agggagcatt tcttggcagg 1950
ggccattgtt agaatacttc ataaaaaaaaa aagtgtgaaa atctcagttat 2000
ctctctctct ttctaaaaaaaaa ttagataaaaa atttgtctat ttaagatgg 2050
taaagatgtt cttacccaag gaaaagtaac aaattataga atttcccaa 2100
agatgttttgc atcctactag tagtatgcag tgaaaatctt tagaactaaa 2150
taatttggac aaggcttaat ttaggcattt ccctcttgac ctccatatgg 2200
agagggatttgc aaagggaaag agcccaccaaa atgctgagct cactgaaata 2250
tctctccattt atggcaatcc tagcagtattt aaagaaaaaaaaa ggaaactattt 2300
tattccaaat gagagtatga tggacagata ttttagtatac tcagtaatgt 2350
cctagtgtgg cggtggtttt caatgtttct tcattggtaaa ggtataagcc 2400
tttcattttgt tcaatggatg atgtttcaga tttttttttt ttaagagat 2450
ccttcaagga acacagttca gagagattt catcgggtgc attctctctg 2500
cttcgtgtgt gacaagttat cttggctgct gagaaagagt gccctgcccc 2550
acaccggcag accttcctt cacctcatca gtatgattca gttctctta 2600
tcaattggac tctcccgagg tccacagaac agtaatattt tttgaacaat 2650
aggtacaata gaaggtcttc tgcattaa cctggtaaaag gcagggctgg 2700
agggggaaaaa taaatcatta agccttgag taacggcaga atatatggct 2750

gtagatccat ttttaatggt tcatttcctt tatggtcata taactgcaca 2800
 gctgaagatg aaagggaaa ataaatgaaa attttacttt tcgatgcca 2850
 tgatacattg cactaaactg atgaaagaag ttatccaaag tactgtataa 2900
 catcttgttt attatttaat gtttctaaa ataaaaaatg ttagtggttt 2950
 tccaaatggc ctaataaaaa caattattt taaataaaaa cactgttagt 3000
 aat 3003

<210> 315

<211> 509

<212> PRT

<213> Homo Sapien

<400> 315			
Met Asp Phe Leu Leu Ala Leu Val Leu Val Ser Ser Leu Tyr Leu			
1	5	10	15
Gln Ala Ala Ala Glu Phe Asp Gly Arg Trp Pro Arg Gln Ile Val			
20	25	30	
Ser Ser Ile Gly Leu Cys Arg Tyr Gly Gly Arg Ile Asp Cys Cys			
35	40	45	
Trp Gly Trp Ala Arg Gln Ser Trp Gly Gln Cys Gln Pro Val Cys			
50	55	60	
Gln Pro Arg Cys Lys His Gly Glu Cys Ile Gly Pro Asn Lys Cys			
65	70	75	
Lys Cys His Pro Gly Tyr Ala Gly Lys Thr Cys Asn Gln Asp Leu			
80	85	90	
Asn Glu Cys Gly Leu Lys Pro Arg Pro Cys Lys His Arg Cys Met			
95	100	105	
Asn Thr Tyr Gly Ser Tyr Lys Cys Tyr Cys Leu Asn Gly Tyr Met			
110	115	120	
Leu Met Pro Asp Gly Ser Cys Ser Ser Ala Leu Thr Cys Ser Met			
125	130	135	
Ala Asn Cys Gln Tyr Gly Cys Asp Val Val Lys Gly Gln Ile Arg			
140	145	150	
Cys Gln Cys Pro Ser Pro Gly Leu His Leu Ala Pro Asp Gly Arg			
155	160	165	

Thr Cys Val Asp Val Asp Glu Cys Ala Thr Gly Arg Ala Ser Cys
 170 175 180

 Pro Arg Phe Arg Gln Cys Val Asn Thr Phe Gly Ser Tyr Ile Cys
 185 190 195

 Lys Cys His Lys Gly Phe Asp Leu Met Tyr Ile Gly Gly Lys Tyr
 200 205 210

 Gln Cys His Asp Ile Asp Glu Cys Ser Leu Gly Gln Tyr Gln Cys
 215 220 225

 Ser Ser Phe Ala Arg Cys Tyr Asn Val Arg Gly Ser Tyr Lys Cys
 230 235 240

 Lys Cys Lys Glu Gly Tyr Gln Gly Asp Gly Leu Thr Cys Val Tyr
 245 250 255

 Ile Pro Lys Val Met Ile Glu Pro Ser Gly Pro Ile His Val Pro
 260 265 270

 Lys Gly Asn Gly Thr Ile Leu Lys Gly Asp Thr Gly Asn Asn Asn
 275 280 285

 Trp Ile Pro Asp Val Gly Ser Thr Trp Trp Pro Pro Lys Thr Pro
 290 295 300

 Tyr Ile Pro Pro Ile Ile Thr Asn Arg Pro Thr Ser Lys Pro Thr
 305 310 315

 Thr Arg Pro Thr Pro Lys Pro Thr Pro Ile Pro Thr Pro Pro Pro
 320 325 330

 Pro Pro Pro Leu Pro Thr Glu Leu Arg Thr Pro Leu Pro Pro Thr
 335 340 345

 Thr Pro Glu Arg Pro Thr Thr Gly Leu Thr Thr Ile Ala Pro Ala
 350 355 360

 Ala Ser Thr Pro Pro Gly Gly Ile Thr Val Asp Asn Arg Val Gln
 365 370 375

 Thr Asp Pro Gln Lys Pro Arg Gly Asp Val Phe Ser Val Leu Val
 380 385 390

 His Ser Cys Asn Phe Asp His Gly Leu Cys Gly Trp Ile Arg Glu
 395 400 405

 Lys Asp Asn Asp Leu His Trp Glu Pro Ile Arg Asp Pro Ala Gly
 410 415 420

 Gly Gln Tyr Leu Thr Val Ser Ala Ala Lys Ala Pro Gly Gly Lys

425 430 435

Ala Ala Arg Leu Val Leu Pro Leu Gly Arg Leu Met His Ser Gly
440 445 450

Asp Leu Cys Leu Ser Phe Arg His Lys Val Thr Gly Leu His Ser
455 460 465

Gly Thr Leu Gln Val Phe Val Arg Lys His Gly Ala His Gly Ala
470 475 480

Ala Leu Trp Gly Arg Asn Gly Gly His Gly Trp Arg Gln Thr Gln
485 490 495

Ile Thr Leu Arg Gly Ala Asp Ile Lys Ser Glu Ser Gln Arg
500 505

<210> 316
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 316
gatggttcct gctcaagtgc cctg 24

<210> 317
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 317
ttgcacttgt aggacccacg tacg 24

<210> 318
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 318
ctgatggag gacctgtgta gatgttgatg aatgtgctac aggaagagcc 50

<210> 319
<211> 2110
<212> DNA

<213> Homo Sapien

<400> 319
cttctttgaa aaggattatc acctgatcag gttctctctg catttgcccc 50
tttagattgt gaaatgtggc tcaaggtctt cacaacttgc ctttccttgc 100
caacaggtgc ttgctcgaaa ctgaaggtga cagtgccatc acacactgtc 150
catggcgtca gaggtcaggc cctctaccta cccgtccact atggcttcca 200
caactccagca tcagacatcc agatcatatg gctatttgag agaccccaca 250
caatgcccaa atacttactg ggctctgtga ataagtctgt ggttcctgac 300
tttggaaatacc aacacaagtt caccatgatg ccacccaaatg catctctgct 350
tatcaacccca ctgcagttcc ctgatgaagg caattacatc gtgaaggtca 400
acattcaggg aatggaact ctatctgcca gtcagaagat acaagtcacg 450
gttcatgtatc ctgtcacaaa gccagtggtg cagattcatc ctccctctgg 500
ggctgtggag tatgtgggaa acatgaccct gacatgccat gtggaaagggg 550
gcactcggct agcttaccaa tggctaaaaa atgggagacc tgtccacacc 600
agctccaccc actccctttc tccccaaaac aatacccttc atattgctcc 650
agtaaccaag gaagacattt ggaattacag ctgcctgggtg aggaaccctg 700
tcagtgaaat ggaaagtgtat atcattatgc ccatcatata ttatggaccc 750
tatggacttc aagtgaattt tgataaaggg ctaaaagtag gggaaagtgtt 800
tactgttgac cttggagagg ccacccatt tgattgtct gctgatttcc 850
atccccccaa cacctactcc tggatttagga ggactgacaa tactacatat 900
atcattaagc atgggcctcg cttagaagtt gcatctgaga aagtagccca 950
gaagacaatg gactatgtgt gctgtgctt caacaacata accggcaggc 1000
aagatgaaac tcatttcaca gttatcatca cttccgtagg actggagaag 1050
cttgcacaga aaggaaaatc attgtcaccc tttagcaagta taactggaaat 1100
atcactatcc ttgatttatccat ccatgtgtct tctcttcata tggaaaaaat 1150
atcaacccta caaagttata aaacagaaac tagaaggcag gccagaaaca 1200
qaatacacqga aagctcaaac attttcaggc catgaagatg ctctggatga 1250

cttcggaata tatgaatttg ttgccttcc agatgttct ggtgttcca 1300
 ggattccaag caggctgtt ccagcctctg attgtgtatc gggcaagat 1350
 ttgcacagta cagtgtatga agttattcag cacatccctg cccagcagca 1400
 agaccatcca gagtgaactt tcatgggcta aacagtacat tcgagtgaaa 1450
 ttctgaagaa acatTTAAG gaaaaacagt gggaaagtat attaatctgg 1500
 aatcagtgaa gaaaccagga ccaacaccc tcactcatta ttcccttaca 1550
 tgcagaatag aggcatTTT gcaaattgaa ctgcaggTTT ttcaGcatAT 1600
 acacaatgtc ttgtgcaaca gaaaaacatg ttggggaaat attcctcagt 1650
 ggagagtcgt tctcatgctg acggggagaa cgaaagtgac aggggTTCC 1700
 tcataagttt tgtatgaaat atctctacaa acctcaatta gttctactct 1750
 acactttcac tatcatcaac actgagacta tcctgtctca cctacAAATG 1800
 tggaaacttt acattgttcg atTTTCAGC agactttgtt ttattaaATT 1850
 tttatttagtg ttaagaatgc taaatttatg ttcaattttt atttccaaat 1900
 ttctatcttg ttatttgtaC aacaaagtaa taaggatggT tgtcacaaaa 1950
 acaaaactat gccttctctt tttttcaat caccagtagt atttttgaga 2000
 agacttgta acacttaagg aaatgactat taaagtctta tttttatTTT 2050
 ttcaaggaa agatggattc aaataaatta ttctgtttt gctttaaaa 2100
 aaaaaaaaaa 2110

<210> 320
 <211> 450
 <212> PRT
 <213> Homo Sapien

<400> 320			
Met Trp Leu Lys Val Phe Thr Thr Phe Leu Ser Phe Ala Thr Gly			
1	5	10	15
Ala Cys Ser Gly Leu Lys Val Thr Val Pro Ser His Thr Val His			
20	25	30	
Gly Val Arg Gly Gln Ala Leu Tyr Leu Pro Val His Tyr Gly Phe			
35	40	45	
His Thr Pro Ala Ser Asp Ile Gln Ile Ile Trp Leu Phe Glu Arg			
50	55	60	

Pro	His	Thr	Met	Pro	Lys	Tyr	Leu	Leu	Gly	Ser	Val	Asn	Lys	Ser
				65					70				75	
Val	Val	Pro	Asp	Leu	Glu	Tyr	Gln	His	Lys	Phe	Thr	Met	Met	Pro
				80					85				90	
Pro	Asn	Ala	Ser	Leu	Leu	Ile	Asn	Pro	Leu	Gln	Phe	Pro	Asp	Glu
				95					100				105	
Gly	Asn	Tyr	Ile	Val	Lys	Val	Asn	Ile	Gln	Gly	Asn	Gly	Thr	Leu
				110					115				120	
Ser	Ala	Ser	Gln	Lys	Ile	Gln	Val	Thr	Val	Asp	Asp	Pro	Val	Thr
				125					130				135	
Lys	Pro	Val	Val	Gln	Ile	His	Pro	Pro	Ser	Gly	Ala	Val	Glu	Tyr
				140					145				150	
Val	Gly	Asn	Met	Thr	Leu	Thr	Cys	His	Val	Glu	Gly	Gly	Thr	Arg
				155					160				165	
Leu	Ala	Tyr	Gln	Trp	Leu	Lys	Asn	Gly	Arg	Pro	Val	His	Thr	Ser
				170					175				180	
Ser	Thr	Tyr	Ser	Phe	Ser	Pro	Gln	Asn	Asn	Thr	Leu	His	Ile	Ala
				185					190				195	
Pro	Val	Thr	Lys	Glu	Asp	Ile	Gly	Asn	Tyr	Ser	Cys	Leu	Val	Arg
				200					205				210	
Asn	Pro	Val	Ser	Glu	Met	Glu	Ser	Asp	Ile	Ile	Met	Pro	Ile	Ile
				215					220				225	
Tyr	Tyr	Gly	Pro	Tyr	Gly	Leu	Gln	Val	Asn	Ser	Asp	Lys	Gly	Leu
				230					235				240	
Lys	Val	Gly	Glu	Val	Phe	Thr	Val	Asp	Leu	Gly	Glu	Ala	Ile	Leu
				245					250				255	
Phe	Asp	Cys	Ser	Ala	Asp	Ser	His	Pro	Pro	Asn	Thr	Tyr	Ser	Trp
				260					265				270	
Ile	Arg	Arg	Thr	Asp	Asn	Thr	Thr	Tyr	Ile	Ile	Lys	His	Gly	Pro
				275					280				285	
Arg	Leu	Glu	Val	Ala	Ser	Glu	Lys	Val	Ala	Gln	Lys	Thr	Met	Asp
				290					295				300	
Tyr	Val	Cys	Cys	Ala	Tyr	Asn	Asn	Ile	Thr	Gly	Arg	Gln	Asp	Glu
				305					310				315	
Thr	His	Phe	Thr	Val	Ile	Ile	Thr	Ser	Val	Gly	Leu	Glu	Lys	Leu

320	325	330
Ala Gln Lys Gly Lys Ser Leu Ser Pro Leu Ala Ser Ile Thr Gly		
335	340	345
Ile Ser Leu Phe Leu Ile Ile Ser Met Cys Leu Leu Phe Leu Trp		
350	355	360
Lys Lys Tyr Gln Pro Tyr Lys Val Ile Lys Gln Lys Leu Glu Gly		
365	370	375
Arg Pro Glu Thr Glu Tyr Arg Lys Ala Gln Thr Phe Ser Gly His		
380	385	390
Glu Asp Ala Leu Asp Asp Phe Gly Ile Tyr Glu Phe Val Ala Phe		
395	400	405
Pro Asp Val Ser Gly Val Ser Arg Ile Pro Ser Arg Ser Val Pro		
410	415	420
Ala Ser Asp Cys Val Ser Gly Gln Asp Leu His Ser Thr Val Tyr		
425	430	435
Glu Val Ile Gln His Ile Pro Ala Gln Gln Gln Asp His Pro Glu		
440	445	450

<210> 321
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 321
gatcctgtca caaagccagt ggtgc 25

<210> 322
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 322
cactgacagg gttcctcacc cagg 24

<210> 323
<211> 45
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 323

ctccctctgg gctgtggagt atgtgggaa catgaccctg acatg 45

<210> 324

<211> 2397

<212> DNA

<213> Homo Sapien

<400> 324

gcaagcggcg aaatggcgcc ctccggaggt cttgcagttc ccctggcagt 50

cctggtgctg ttgctttggg gtgctccctg gacgcacggg cggcggagca 100

acgttcgcgt catcacggac gagaactgga gagaactgct ggaaggagac 150

tggatgatag aattttatgc cccgtggtgc cctgcttgc aaaatcttca 200

accggaatgg gaaagtttg ctgaatgggg agaagatctt gaggttaata 250

ttcgaaaagt agatgtcaca gagcagccag gactgagtgg acggttatac 300

ataactgctc ttcctactat ttatcattgt aaagatggtg aatttaggcg 350

ctatcagggc ccaaggacta agaaggactt cataaacttt ataagtgata 400

aagagtggaa gagtatttag cccgtttcat catggtttg tccaggtct 450

gttctgatga gtagtatgtc agcactctt cagctatcta tgtggatcag 500

gacgtgccat aactactta ttgaagacct tggattgcca gtgtgggat 550

catatactgt ttttgcattt gcaactctgt tttccggact gttatttagga 600

ctctgtatga tatttgtggc agattgcatt tgccttcaa aaaggcgcag 650

accacagcca tacccataacc cttcaaaaaa attattatca gaatctgcac 700

aacctttgaa aaaagtggag gaggaacaag aggccggatga agaagatgtt 750

tcagaagaag aagctgaaag taaagaagga acaaacaag actttccaca 800

gaatgccata agacaacgct ctctgggtcc atcattggcc acagataaat 850

cctagttaaa ttttataat atcttaatat tatgattttg ataaaaacag 900

aagattgatc attttgggg gtttgaagtg aactgtgact tttttgaata 950

ttgcagggtt cagtctagat tgtcattaaa ttgaagagtc tacattcaga 1000

acataaaagc actaggata caagttgaa atatgattt agcacagtat 1050
gatggtttaa atagttctct aatttttgaa aaatcgcc aagcaataag 1100
atttatgtat atttggtaa taataaccta tttcaagtct gagtttgaa 1150
aatttacatt tcccaagtat tgcattattt aggtatttaa gaagattt 1200
tttagagaaaa atatttctca tttgatataa tttttctctg tttcaactgtg 1250
tgaaaaaaag aagatatttc ccataaatgg gaagtttgc cattgtctca 1300
agaaaatgtgt atttcagtga caatttcgtg gtcttttag aggtatattc 1350
caaaatttcc ttgtatttt aggttatgca actaataaaaa actaccttac 1400
attaatttaat tacagtttc tacacatggt aatacaggat atgtactga 1450
tttaggaagt tttaagttc atggattct cttgattcca acaaagttg 1500
attttcttctt gtattttct tacttactat gggttacatt ttttattttt 1550
caaattggat gataatttct tggaaacatt ttttatgttt tagtaaacag 1600
tatttttttgc ttgtttcaaa ctgaagtttca ctgagagatc catcaaatttgc 1650
aacaatctgt tgtaatttaa aattttggcc actttttca gattttacat 1700
catttttgc gaaatttcaac ttgaaattgt ttttttttgc tttttggatg 1750
tgaaggtgaa cattcctgat ttttgcgttca tggaaaaag cttggat 1800
ttacatttttgc aaaattcaaa gaagcttaat ataaaagttt gcattctact 1850
cagggaaaaag catcttcttgc tatatgtctt aaatgtattt ttgcctcat 1900
atacagaaaaag ttcttaatttgc attttacagt ctgtatgttgc tgatgttttgc 1950
aaataataac atttttatataat ttttttttttttttgc acaaacttca tattatcctg 2000
tgtttttcc tgactggtaa tattgtgtgg gatttcacag gtaaaagtca 2050
gttaggatgga acattttagt gtatttttac tccttaaaga gctagaatac 2100
atagtttca ccttaaaaga agggggaaaa tcataaatac aatgaatcaa 2150
ctgaccatta cgttagtagac aatttctgttca atgtcccctt ctttcttaggc 2200
tctgttgctg tgtgaatcca ttagatttac agtacgttca tatacaagtt 2250
ttctttaaag ccctctcctt tagaatttaa aatattgtac cattaaagag 2300
tttggatgtg taacttgcgttca tgccttagaa aaatatccta agcacaaaaat 2350

aaaccctttctt aaccacttca tttaagctga aaaaaaaaaaaa aaaaaaaaa 2397

<210> 325

<211> 280

<212> PRT

<213> Homo Sapien

<400> 325

Met	Ala	Pro	Ser	Gly	Ser	Leu	Ala	Val	Pro	Leu	Ala	Val	Leu	Val
1														

5

10

15

Leu	Leu	Leu	Trp	Gly	Ala	Pro	Trp	Thr	His	Gly	Arg	Arg	Ser	Asn

20

25

30

Val	Arg	Val	Ile	Thr	Asp	Glu	Asn	Trp	Arg	Glu	Leu	Leu	Glu	Gly

35

40

45

Asp	Trp	Met	Ile	Glu	Phe	Tyr	Ala	Pro	Trp	Cys	Pro	Ala	Cys	Gln

50

55

60

Asn	Leu	Gln	Pro	Glu	Trp	Glu	Ser	Phe	Ala	Glu	Trp	Gly	Glu	Asp

65

70

75

Leu	Glu	Val	Asn	Ile	Ala	Lys	Val	Asp	Val	Thr	Glu	Gln	Pro	Gly

80

85

90

Leu	Ser	Gly	Arg	Phe	Ile	Ile	Thr	Ala	Leu	Pro	Thr	Ile	Tyr	His

95

100

105

Cys	Lys	Asp	Gly	Glu	Phe	Arg	Arg	Tyr	Gln	Gly	Pro	Arg	Thr	Lys

110

115

120

Lys	Asp	Phe	Ile	Asn	Phe	Ile	Ser	Asp	Lys	Glu	Trp	Lys	Ser	Ile

125

130

135

Glu	Pro	Val	Ser	Ser	Trp	Phe	Gly	Pro	Gly	Ser	Val	Leu	Met	Ser

140

145

150

Ser	Met	Ser	Ala	Leu	Phe	Gln	Leu	Ser	Met	Trp	Ile	Arg	Thr	Cys

155

160

165

His	Asn	Tyr	Phe	Ile	Glu	Asp	Leu	Gly	Leu	Pro	Val	Trp	Gly	Ser

170

175

180

Tyr	Thr	Val	Phe	Ala	Leu	Ala	Thr	Leu	Phe	Ser	Gly	Leu	Leu	Leu

185

190

195

Gly	Leu	Cys	Met	Ile	Phe	Val	Ala	Asp	Cys	Leu	Cys	Pro	Ser	Lys

200

205

210

Arg Arg Arg Pro Gln Pro Tyr Pro Ser Lys Lys Leu Leu

215 220 225

Ser Glu Ser Ala Gln Pro Leu Lys Lys Val Glu Glu Glu Gln Glu
230 235 240

Ala Asp Glu Glu Asp Val Ser Glu Glu Glu Ala Glu Ser Lys Glu
245 250 255

Gly Thr Asn Lys Asp Phe Pro Gln Asn Ala Ile Arg Gln Arg Ser
260 265 270

Leu Gly Pro Ser Leu Ala Thr Asp Lys Ser
275 280

<210> 326
<211> 23
<212> DNA

<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 326
tgaggtggc aagcggcgaa atg 23

<210> 327
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 327
tatgtggatc aggacgtgcc 20

<210> 328
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 328
tgcagggttc agtcttagatt g 21

<210> 329
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 329
ttgaaggaca aaggcaatct gccac 25

<210> 330
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 330
ggagtcttgc agttcccttg gcagtcctgg tgctgttgct ttggg 45

<210> 331
<211> 2168
<212> DNA
<213> Homo Sapien

<400> 331
gcgagtgtcc agctgcggag acccgtgata attcgtaac taattcaaca 50
aacgggaccc ttctgtgtgc cagaaaccgc aagcagttgc taacccagtg 100
ggacaggcgg atttggaaagag cgggaaggtc ctggccaaaga gcagtgtgac 150
acttccctct gtgaccatga aactctgggt gtctgcattg ctgatggcct 200
ggtttggtgt cctgagctgt gtgcaggccg aattcttcac ctctattggg 250
cacatgactg acctgattt tgcagagaaa gagctggtgc agtctctgaa 300
agagtagatc cttgtggagg aagccaagct ttccaagatt aagagctggg 350
ccaacaaaaat ggaagccttg actagcaagt cagctgctga tgctgaggcc 400
tacctggctc accctgtgaa tgcctacaaa ctggtaagc ggctaaacac 450
agactggcct gcgctggagg accttgcct gcaggactca gctgcagggtt 500
ttatcgccaa cctctctgtg cagcggcagt tcttccccac tgatgaggac 550
gagataggag ctgccaaagc cctgatgaga cttcaggaca catacaggct 600
ggacccaggc acaatttcca gaggggaact tccaggaacc aagtaccagg 650
caatgctgag tgtggatgac tgctttggga tggggccgctc ggctacaat 700
gaaggggact attatcatac ggtgttgtgg atggagcagg tgctaaagca 750

gcttgatgcc ggggaggagg ccaccacaac caagtcacag gtgctggact 800
acctcagcta tgctgtcttc cagttgggtg atctgcacccg tgccctggag 850
ctcacccgccc gcctgctctc ccttgcacca agccacgaac gagctggagg 900
gaatctgcgg tactttgagc agttatttggaa ggaagagaga gaaaaaacgt 950
taacaaaatca gacagaagct gagcttagcaa cccccagaagg catctatgag 1000
aggcctgtgg actacactgcc tgagagggat gtttacgaga gcctctgtcg 1050
tggggagggt gtc当地actga caccggtag acagaagagg cttttctgtta 1100
ggtaccacca tggcaacagg gccccacagc tgctcattgc ccccttcaaa 1150
gaggaggacg agtgggacag cccgcacatc gtcaggtact acgtatgtcat 1200
gtctgatgag gaaatcgaga ggatcaagga gatcgaaaaa cctaaacttg 1250
cacgagccac cggtcgtgat cccaagacag gagtcctcac tgtcgccagc 1300
taccgggttt cccaaagctc ctggcttagag gaagatgtatg accctgttgt 1350
ggcccgagta aatcgctgga tgcagcatat cacagggta acagtaaaga 1400
ctgcagaatt gttacaggtt gcaaattatg gagtgggagg acagtatgaa 1450
ccgcacttcg acttctctag gcgacctttt gacagcggcc tcaaaacaga 1500
ggggaaatagg tttagcgacgt ttcttaacta catgagtgtat gttagaagctg 1550
gtggtgccac cgtcttcct gatctgggg ctgcaatttg gcctaagaag 1600
ggtagactg tgttctggta caacctcttg cggagcgggg aaggtgacta 1650
ccgaacaaga catgctgcct gccctgtgct tgtgggtgc aagtgggtct 1700
ccaataagtg gttccatgaa cgaggacagg agttcttgag accttgtgga 1750
tcaacagaag ttgactgaca tcctttctg tccttccct tcctggcct 1800
tcagccccatg tcaacgtgac agacaccttt gtatgttct ttgtatgttc 1850
ctatcaggct gatTTTggaa gaaatgaatg ttgtctggta gcagagggag 1900
accatactag ggcgactcct gtgtgactga agtcccagcc cttccattca 1950
gcctgtgcca tccctggccc caaggctagg atcaaagtgg ctgcagcaga 2000
gttagctgtc tagcgccctag caaggtgcct ttgtacctca ggtgttttag 2050
gtgtgagatg tttcagtgaa ccaaagttct gataccttgc ttacatgttt 2100

gtttttatgg catttctatc tattgtggct ttaccaaaaa ataaaatgtc 2150
 cctaccagaa aaaaaaaaa 2168

<210> 332
 <211> 533
 <212> PRT
 <213> Homo Sapien

<400> 332
 Met Lys Leu Trp Val Ser Ala Leu Leu Met Ala Trp Phe Gly Val
 1 5 10 15

Leu Ser Cys Val Gln Ala Glu Phe Phe Thr Ser Ile Gly His Met
 20 25 30

Thr Asp Leu Ile Tyr Ala Glu Glu Leu Val Gln Ser Leu Lys
 35 40 45

Glu Tyr Ile Leu Val Glu Glu Ala Lys Leu Ser Lys Ile Lys Ser
 50 55 60

Trp Ala Asn Lys Met Glu Ala Leu Thr Ser Lys Ser Ala Ala Asp
 65 70 75

Ala Glu Gly Tyr Leu Ala His Pro Val Asn Ala Tyr Lys Leu Val
 80 85 90

Lys Arg Leu Asn Thr Asp Trp Pro Ala Leu Glu Asp Leu Val Leu
 95 100 105

Gln Asp Ser Ala Ala Gly Phe Ile Ala Asn Leu Ser Val Gln Arg
 110 115 120

Gln Phe Phe Pro Thr Asp Glu Asp Glu Ile Gly Ala Ala Lys Ala
 125 130 135

Leu Met Arg Leu Gln Asp Thr Tyr Arg Leu Asp Pro Gly Thr Ile
 140 145 150

Ser Arg Gly Glu Leu Pro Gly Thr Lys Tyr Gln Ala Met Leu Ser
 155 160 165

Val Asp Asp Cys Phe Gly Met Gly Arg Ser Ala Tyr Asn Glu Gly
 170 175 180

Asp Tyr Tyr His Thr Val Leu Trp Met Glu Gln Val Leu Lys Gln
 185 190 195

Leu Asp Ala Gly Glu Glu Ala Thr Thr Lys Ser Gln Val Leu
 200 205 210

Asp Tyr Leu Ser Tyr Ala Val Phe Gln Leu Gly Asp Leu His Arg
 215 220 225

 Ala Leu Glu Leu Thr Arg Arg Leu Leu Ser Leu Asp Pro Ser His
 230 235 240

 Glu Arg Ala Gly Gly Asn Leu Arg Tyr Phe Glu Gln Leu Leu Glu
 245 250 255

 Glu Glu Arg Glu Lys Thr Leu Thr Asn Gln Thr Glu Ala Glu Leu
 260 265 270

 Ala Thr Pro Glu Gly Ile Tyr Glu Arg Pro Val Asp Tyr Leu Pro
 275 280 285

 Glu Arg Asp Val Tyr Glu Ser Leu Cys Arg Gly Glu Gly Val Lys
 290 295 300

 Leu Thr Pro Arg Arg Gln Lys Arg Leu Phe Cys Arg Tyr His His
 305 310 315

 Gly Asn Arg Ala Pro Gln Leu Leu Ile Ala Pro Phe Lys Glu Glu
 320 325 330

 Asp Glu Trp Asp Ser Pro His Ile Val Arg Tyr Tyr Asp Val Met
 335 340 345

 Ser Asp Glu Glu Ile Glu Arg Ile Lys Glu Ile Ala Lys Pro Lys
 350 355 360

 Leu Ala Arg Ala Thr Val Arg Asp Pro Lys Thr Gly Val Leu Thr
 365 370 375

 Val Ala Ser Tyr Arg Val Ser Lys Ser Ser Trp Leu Glu Glu Asp
 380 385 390

 Asp Asp Pro Val Val Ala Arg Val Asn Arg Arg Met Gln His Ile
 395 400 405

 Thr Gly Leu Thr Val Lys Thr Ala Glu Leu Leu Gln Val Ala Asn
 410 415 420

 Tyr Gly Val Gly Gly Gln Tyr Glu Pro His Phe Asp Phe Ser Arg
 425 430 435

 Arg Pro Phe Asp Ser Gly Leu Lys Thr Glu Gly Asn Arg Leu Ala
 440 445 450

 Thr Phe Leu Asn Tyr Met Ser Asp Val Glu Ala Gly Gly Ala Thr
 455 460 465

 Val Phe Pro Asp Leu Gly Ala Ala Ile Trp Pro Lys Lys Gly Thr
 470 475 480

Ala Val Phe Trp Tyr Asn Leu Leu Arg Ser Gly Glu Gly Asp Tyr
485 490 495

Arg Thr Arg His Ala Ala Cys Pro Val Leu Val Gly Cys Lys Trp
500 505 510

Val Ser Asn Lys Trp Phe His Glu Arg Gly Gln Glu Phe Leu Arg
515 520 525

Pro Cys Gly Ser Thr Glu Val Asp
530

<210> 333

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 333

ccagggcacaa tttccaga 18

<210> 334

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 334

ggacccttct gtgtgccag 19

<210> 335

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 335

ggtctcaaga actcctgtc 19

<210> 336

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

```

<400> 336
acactcagca ttgcctggta ct tg 24

<210> 337
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 337
gggcacatga ctgacacctgat ttatgcagag aaagagctgg tgcag 45

<210> 338
<211> 2789

<212> DNA
<213> Homo Sapien

<400> 338
gcagattga gtttacttc ctccttttt tagtggaaaga cagaccataa 50
tcccagtgtg agtggaaattt attgtttcat ttattaccgt tttggctggg 100
ggtagttcc gacaccccca cagttgaaga gcaggcagaa ggagttgtga 150
agacaggaca atcttcttgg ggatgctggt cctggaaagcc agcgggcctt 200
gctctgtctt tggcctcatt gaccccggt tctctggta aaactgaaag 250
cctactactg gcctggtgcc catcaatcca ttgatccctg aggctgtgcc 300
cctggggcac ccacctggca gggcttacca ccatgcgact gagctccctg 350
ttggctctgc tgccggccagc gcttccctc atcttagggc tgtctctggg 400
gtgcaggctg agcctcctgc gggttccctg gatccagggg gagggagaag 450
atccctgtgt cgaggctgta ggggagcgag gagggccaca gaatccagat 500
tcgagagctc ggcttagacca aagtgtgaa gacttcaaacc cccggattgt 550
ccccctactac agggaccctt acaaggcccta caagaagggtt ctcaggactc 600
ggtacatcca gacagagctg ggctccctg agcggttgct ggtggctgtc 650
ctgacacctcc gagctacact gtccactttg gccgtggctg tgaaccgtac 700
ggtagggccat cacttccctc ggtagtctta cttagtgggg cagcgggggg 750
cccggttcc acgaggatg caggtgggtt ctcatggggta tgacggcccc 800

```

gcctggctca tgcagagac cctgcgccac cttcacacac actttggggc 850
cgactacgac tggttcttca tcatgcagga tgacacatata gtgcaggccc 900
cccgccctggc agcccttgct ggccacaccta gcatcaaccca agacctgtac 950
ttaggccggg cagaggagtt cattggcgca ggcgagcagg cccggtaactg 1000
tcatggggc tttggctacc tggtgtcactg gagtctcctg cttcgtctgc 1050
ggccacatct ggatggctgc cgaggagaca ttctcagtgc ccgtcctgac 1100
gagtggcttg gacgctgcct cattgactct ctggcgctcg gctgtgtctc 1150
acagcaccag gggcagcagt atcgctcatt tgaactggcc aaaaataggg 1200
accctgagaa ggaagggagc tcggcttcc tgagtgcctt cgccgtgcac 1250
cctgtctccg aaggtacccct catgtaccgg ctccacaaac gcttcagcgc 1300
tctggagttg gagcgggctt acagtgaaat agaacaactg caggctcaga 1350
tccggAACCT gaccgtgtcg accccccgaag gggaggcagg gctgagctgg 1400
cccggtgggc tccctgctcc tttcacacca cactctcgct ttgaggtgct 1450
gggctggac tacttcacag agcagcacac cttctcctgt gaagatgggg 1500
ctcccaagtg cccactacag gggcttagca gggcggacgt gggtgatgcg 1550
ttggagactg ccctggagca gctcaatcg cgctatcagc cccgcctgcg 1600
cttccagaag cagcgactgc tcaacggcta tcggcgcttc gacccagcac 1650
ggggcatgga gtacaccctg gacctgtgt tggaatgtgt gacacagcgt 1700
gggcacccggc gggccctggc tcgcagggtc agcctgtgc gcccactgag 1750
ccgggtggaa atccctaccta tgccctatgt cactgaggcc acccgagtgc 1800
agctggtgct gccactcctg gtggctgaag ctgctgcagc cccggcttcc 1850
ctcgaggcgt ttgcagccaa tgtcctggag ccacgagaac atgcattgt 1900
caccctgttg ctggtctacg ggcacgaga aggtggccgt ggagctccag 1950
accacatttct tgggtgtgaag gctgcagcag cggagttaga gcgacggta 2000
cctgggacga ggctggcctg gctcgctgtg cgagcagagg ccccttccca 2050
ggtgcgactc atggacgtgg tctcgaagaa gcaccctgtg gacactctct 2100

tcttccttac caccgtgtgg acaaggcctg gggccgaagt cctcaaccgc 2150
tgtcgcatga atgccatctc tggctggcag gccttcttc cagtccattt 2200
ccaggagttc aatcctgccc tgtcaccaca gagatcaccc ccagggcccc 2250
cgggggctgg ccctgacccc ccctccctc ctggtgctga cccctcccg 2300
ggggctccta taggggggag atttgaccgg caggcttctg cggagggctg 2350
cttctacaac gctgactacc tggcggcccg agcccggtg gcaggtgaac 2400
tggcaggcca ggaagaggag gaagccctgg aggggctgga ggtgatggat 2450
gttttctcc ggttctcagg gctccacctc tttagggccg tagagccagg 2500
gctggtgcag aagttctccc tgcgagactg cagcccacgg ctcagtgaag 2550
aactctacca ccgctgccc ctcagcaacc tggaggggct agggggccgt 2600
gcccagctgg ctatggctct cttttagcag gagcaggcca atagcactta 2650
gcccgcctgg gggccctaac ctcattacct ttcccttgtc tgccctcagcc 2700
ccaggaaggg caaggcaaga tggtgacag atagagaatt gttgtgtat 2750
tttttaata taaaaatgtt attaaacatg tttctgcc 2789

<210> 339

<211> 772

<212> PRT

<213> Homo Sapien

<400> 339

Met Arg Leu Ser Ser Leu Leu Ala Leu Leu Arg Pro Ala Leu Pro
1 5 10 15

Leu Ile Leu Gly Leu Ser Leu Gly Cys Ser Leu Ser Leu Leu Arg
20 25 30

Val Ser Trp Ile Gln Gly Glu Gly Glu Asp Pro Cys Val Glu Ala
35 40 45

Val Gly Glu Arg Gly Gly Pro Gln Asn Pro Asp Ser Arg Ala Arg
50 55 60

Leu Asp Gln Ser Asp Glu Asp Phe Lys Pro Arg Ile Val Pro Tyr
65 70 75

Tyr Arg Asp Pro Asn Lys Pro Tyr Lys Lys Val Leu Arg Thr Arg
80 85 90

Tyr Ile Gln Thr Glu Leu Gly Ser Arg Glu Arg Leu Leu Val Ala

95	100	105
Val Leu Thr Ser Arg Ala Thr Leu Ser	Thr Leu Ala Val Ala Val	
110	115	120
Asn Arg Thr Val Ala His His Phe Pro Arg	Leu Leu Tyr Phe Thr	
125	130	135
Gly Gln Arg Gly Ala Arg Ala Pro Ala Gly Met	Gln Val Val Ser	
140	145	150
His Gly Asp Glu Arg Pro Ala Trp Leu Met Ser	Glu Thr Leu Arg	
155	160	165
His Leu His Thr His Phe Gly Ala Asp Tyr Asp	Trp Phe Phe Ile	
170	175	180
Met Gln Asp Asp Thr Tyr Val Gln Ala Pro Arg	Leu Ala Ala Leu	
185	190	195
Ala Gly His Leu Ser Ile Asn Gln Asp	Leu Tyr Leu Gly Arg Ala	
200	205	210
Glu Glu Phe Ile Gly Ala Gly Glu Gln Ala Arg	Tyr Cys His Gly	
215	220	225
Gly Phe Gly Tyr Leu Leu Ser Arg Ser	Leu Leu Leu Arg Leu Arg	
230	235	240
Pro His Leu Asp Gly Cys Arg Gly Asp	Ile Leu Ser Ala Arg Pro	
245	250	255
Asp Glu Trp Leu Gly Arg Cys Leu Ile Asp	Ser Leu Gly Val Gly	
260	265	270
Cys Val Ser Gln His Gln Gly Gln Gln	Tyr Arg Ser Phe Glu Leu	
275	280	285
Ala Lys Asn Arg Asp Pro Glu Lys Glu Gly Ser	Ser Ala Phe Leu	
290	295	300
Ser Ala Phe Ala Val His Pro Val Ser	Glu Gly Thr Leu Met Tyr	
305	310	315
Arg Leu His Lys Arg Phe Ser Ala Leu Glu Leu	Glu Arg Ala Tyr	
320	325	330
Ser Glu Ile Glu Gln Leu Gln Ala Gln Ile	Arg Asn Leu Thr Val	
335	340	345
Leu Thr Pro Glu Gly Glu Ala Gly Leu Ser Trp	Pro Val Gly Leu	
350	355	360

Pro Ala Pro Phe Thr Pro His Ser Arg Phe Glu Val Leu Gly Trp
 365 370 375

 Asp Tyr Phe Thr Glu Gln His Thr Phe Ser Cys Ala Asp Gly Ala
 380 385 390

 Pro Lys Cys Pro Leu Gln Gly Ala Ser Arg Ala Asp Val Gly Asp
 395 400 405

 Ala Leu Glu Thr Ala Leu Glu Gln Leu Asn Arg Arg Tyr Gln Pro
 410 415 420

 Arg Leu Arg Phe Gln Lys Gln Arg Leu Leu Asn Gly Tyr Arg Arg
 425 430 435

 Phe Asp Pro Ala Arg Gly Met Glu Tyr Thr Leu Asp Leu Leu Leu
 440 445 450

 Glu Cys Val Thr Gln Arg Gly His Arg Arg Ala Leu Ala Arg Arg
 455 460 465

 Val Ser Leu Leu Arg Pro Leu Ser Arg Val Glu Ile Leu Pro Met
 470 475 480

 Pro Tyr Val Thr Glu Ala Thr Arg Val Gln Leu Val Leu Pro Leu
 485 490 495

 Leu Val Ala Glu Ala Ala Ala Ala Pro Ala Phe Leu Glu Ala Phe
 500 505 510

 Ala Ala Asn Val Leu Glu Pro Arg Glu His Ala Leu Leu Thr Leu
 515 520 525

 Leu Leu Val Tyr Gly Pro Arg Glu Gly Gly Arg Gly Ala Pro Asp
 530 535 540

 Pro Phe Leu Gly Val Lys Ala Ala Ala Ala Glu Leu Glu Arg Arg
 545 550 555

 Tyr Pro Gly Thr Arg Leu Ala Trp Leu Ala Val Arg Ala Glu Ala
 560 565 570

 Pro Ser Gln Val Arg Leu Met Asp Val Val Ser Lys Lys His Pro
 575 580 585

 Val Asp Thr Leu Phe Phe Leu Thr Thr Val Trp Thr Arg Pro Gly
 590 595 600

 Pro Glu Val Leu Asn Arg Cys Arg Met Asn Ala Ile Ser Gly Trp
 605 610 615

 Gln Ala Phe Phe Pro Val His Phe Gln Glu Phe Asn Pro Ala Leu
 620 625 630

Ser Pro Gln Arg Ser Pro Pro Gly Pro Pro Gly Ala Gly Pro Asp
 635 640 645

 Pro Pro Ser Pro Pro Gly Ala Asp Pro Ser Arg Gly Ala Pro Ile
 650 655 660

 Gly Gly Arg Phe Asp Arg Gln Ala Ser Ala Glu Gly Cys Phe Tyr
 665 670 675

 Asn Ala Asp Tyr Leu Ala Ala Arg Ala Arg Leu Ala Gly Glu Leu
 680 685 690

 Ala Gly Gln Glu Glu Glu Ala Leu Glu Gly Leu Glu Val Met
 695 700 705

 Asp Val Phe Leu Arg Phe Ser Gly Leu His Leu Phe Arg Ala Val
 710 715 720

 Glu Pro Gly Leu Val Gln Lys Phe Ser Leu Arg Asp Cys Ser Pro
 725 730 735

 Arg Leu Ser Glu Glu Leu Tyr His Arg Cys Arg Leu Ser Asn Leu
 740 745 750

 Glu Gly Leu Gly Gly Arg Ala Gln Leu Ala Met Ala Leu Phe Glu
 755 760 765

 Gln Glu Gln Ala Asn Ser Thr
 770

<210> 340
 <211> 1572
 <212> DNA
 <213> Homo Sapien

<400> 340
 cggagtggtg cgccaacgtg agaggaaacc cgtgcgcggc tgcgcattcc 50

 tgtccccaaag ccgttctaga cgcgggaaaa atgcattctg aaagcagctc 100

 ctttttgaag ggtgtatgc ttggaagcat tttctgtgct ttgatcacta 150

 tgctaggaca cattaggatt ggtcatggaa atagaatgca ccaccatgag 200

 catcatcacc tacaagctcc taacaaagaa gatatcttga aaatttcaga 250

 ggtatgagcgc atggagctca gtaagagctt tcgagtatac tgtattatcc 300

 ttgtaaaacc caaagatgtg agtctttggg ctgcagtaaa ggagacttgg 350

 accaaaacact gtgacaaagc agagttcttc agttctgaaa atgttaaagt 400

gttttagtca attaatatgg acacaaatga catgtggta atgatgagaa 450
 aagcttacaa atacgcctt gataagtata gagaccaata caactggtc 500
 ttccttgcac gccccactac gtttgctatc attgaaaacc taaagtattt 550
 tttgttaaaa aaggatccat cacagcctt ctatctaggc cacactataa 600
 aatctggaga ccttgaatat gtgggtatgg aaggaggaat tgtcttaagt 650
 gtagaatcaa tgaaaagact taacagcctt ctcaatatcc cagaaaagtg 700
 tcctgaacag ggagggatga tttggaagat atctgaagat aaacagctag 750
 cagttgcct gaaatatgct ggagtatttgc cagaaaatgc agaagatgct 800
 gatggaaaag atgtatttaa taccaaatact gttggcctt ctattaaaga 850
 ggcaatgact tatcacccca accaggttgt agaaggctgt tgccagata 900
 tggctgttac tttaatgga ctgactccaa atcagatgca tgtgatgatg 950
 tatgggttat accgccttag ggcatttggg catatttca atgatgcatt 1000
 ggtttctta cctccaaatg gttctgacaa tgactgagaa gtggtagaaa 1050
 agcgtgaata tgatcttgc ataggacgtg tgccgtcatt atttgcatt 1100
 gtaactacat atccaataaca gctgtatgtt tcttttctt ttctaatttgc 1150
 gtggcactgg tataaccaca cattaaagtc agtagtacat tttaatgaa 1200
 gggtggtttt ttctttaaa acacatgaac attgtaaatg tgccggaaag 1250
 aagtgttttta agaataataa ttttgcacaa aaactattaa taaatattat 1300
 atgtgataaa ttctaaatata tgaacattag aaatctgtgg ggacacatatt 1350
 tttgctgatt gttaaaaaaa tttaacagg tctttgcgt tctaagat 1400
 gcaaatgata tctctagttg tgaatttgcgt attaaagtaa aacttttagc 1450
 tgtgtgttcc cttaacttct aatactgatt tatgttctaa gcctccccaa 1500
 gttccaatgg atttgccttc tcaaaatgta caactaagca actaaagaaaa 1550
 attaaagtga aagttgaaaa at 1572

<210> 341
 <211> 318
 <212> PRT
 <213> Homo Sapien

<400> 341

Met	Leu	Ser	Glu	Ser	Ser	Ser	Phe	Leu	Lys	Gly	Val	Met	Leu	Gly
1				5					10					15
Ser	Ile	Phe	Cys	Ala	Leu	Ile	Thr	Met	Leu	Gly	His	Ile	Arg	Ile
					20				25					30
Gly	His	Gly	Asn	Arg	Met	His	His	His	Glu	His	His	Leu	Gln	
					35				40					45
Ala	Pro	Asn	Lys	Glu	Asp	Ile	Leu	Lys	Ile	Ser	Glu	Asp	Glu	Arg
					50				55					60
Met	Glu	Leu	Ser	Lys	Ser	Phe	Arg	Val	Tyr	Cys	Ile	Ile	Leu	Val
					65				70					75
Lys	Pro	Lys	Asp	Val	Ser	Leu	Trp	Ala	Ala	Val	Lys	Glu	Thr	Trp
					80				85					90
Thr	Lys	His	Cys	Asp	Lys	Ala	Glu	Phe	Phe	Ser	Ser	Glu	Asn	Val
					95				100					105
Lys	Val	Phe	Glu	Ser	Ile	Asn	Met	Asp	Thr	Asn	Asp	Met	Trp	Leu
					110				115					120
Met	Met	Arg	Lys	Ala	Tyr	Lys	Tyr	Ala	Phe	Asp	Lys	Tyr	Arg	Asp
					125				130					135
Gln	Tyr	Asn	Trp	Phe	Phe	Leu	Ala	Arg	Pro	Thr	Thr	Phe	Ala	Ile
					140				145					150
Ile	Glu	Asn	Leu	Lys	Tyr	Phe	Leu	Leu	Lys	Lys	Asp	Pro	Ser	Gln
					155				160					165
Pro	Phe	Tyr	Leu	Gly	His	Thr	Ile	Lys	Ser	Gly	Asp	Leu	Glu	Tyr
					170				175					180
Val	Gly	Met	Glu	Gly	Gly	Ile	Val	Leu	Ser	Val	Glu	Ser	Met	Lys
						185			190					195
Arg	Leu	Asn	Ser	Leu	Leu	Asn	Ile	Pro	Glu	Lys	Cys	Pro	Glu	Gln
						200			205					210
Gly	Gly	Met	Ile	Trp	Lys	Ile	Ser	Glu	Asp	Lys	Gln	Leu	Ala	Val
					215				220					225
Cys	Leu	Lys	Tyr	Ala	Gly	Val	Phe	Ala	Glu	Asn	Ala	Glu	Asp	Ala
					230				235					240
Asp	Gly	Lys	Asp	Val	Phe	Asn	Thr	Lys	Ser	Val	Gly	Leu	Ser	Ile
					245				250					255
Lys	Glu	Ala	Met	Thr	Tyr	His	Pro	Asn	Gln	Val	Val	Glu	Gly	Cys

260 265 270
Cys Ser Asp Met Ala Val Thr Phe Asn Gly Leu Thr Pro Asn Gln
 275 280 285
Met His Val Met Met Tyr Gly Val Tyr Arg Leu Arg Ala Phe Gly
 290 295 300
His Ile Phe Asn Asp Ala Leu Val Phe Leu Pro Pro Asn Gly Ser
 305 310 315
Asp Asn Asp

<210> 342
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 342
tcccccaagcc gttcttagacg cg 23

<210> 343
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 343
ctgggttcttc cttgcacg 18

<210> 344
<211> 28

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 344
gcccaaatgc cctaaggcg 28

<210> 345
<211> 50
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 345
gggtgtatg cttggaagca ttttctgtgc tttgatcaact atgctaggac 50

<210> 346
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 346
gggatgcagg tggtgtctca tgggg 25

<210> 347
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 347
ccctcatgta ccggctcc 18

<210> 348
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 348
ggattctaat acgactcaact atagggtctca gaaaagcgca acagagaa 48

<210> 349
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 349
ctatgaaatt aaccctcaact aaagggatgt cttccatgcc aaccttc 47

<210> 350
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 350
ggattctaat acgactcact atagggcgcc gatgtccact ggggctac 48

<210> 351
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 351
ctatgaaatt aaccctcact aaagggacga ggaagatggg cggatgg 48

<210> 352
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 352
ggattctaat acgactcact atagggcacc cacgcgtccg gctgctt 47

<210> 353
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 353
ctatgaaatt aaccctcact aaagggacgg gggacaccac ggaccaga 48

<210> 354
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 354
ggattctaat acgactcact atagggcttg ctgcggttt tggccctg 48

<210> 355
<211> 48

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 355
ctatgaaatt aaccctcact aaagggagct gccgatccca ctggatt 48

<210> 356
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 356
ggattctaat acgactcact atagggcgga tcctggccgg cctctg 46

<210> 357
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 357
ctatgaaatt aaccctcact aaagggagcc cgggcattgtt ctcagtta 48

<210> 358
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 358
ggattctaat acgactcact atagggcgga aagatggcga ggaggag 47

<210> 359
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 359
ctatgaaatt aaccctcact aaagggacca aggccacaaa cgaaaatc 48

<210> 360
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 360
ggattctaat acgactcaact atagggctgt gctttcattc tgccagta 48

<210> 361
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 361
ctatgaaatt aaccctcaact aaagggaggg tacaattaag gggtggat 48

<210> 362
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 362
ggattctaat acgactcaact atagggcccg cctcgctcct gctcctg 47

<210> 363
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 363
ctatgaaatt aaccctcaact aaagggagga ttgcacggac cttcacag 48

<210> 364
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 364

ggattctaat acgactcact atagggcccc tcctgccttc cctgtcc 47
<210> 365
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 365
ctatgaaatt aaccctcact aaaggagtg gtggccgcga ttatctgc 48

<210> 366
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 366
ggattctaat acgactcact atagggcgca gcgatggcag cgatgagg 48

<210> 367
<211> 47

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 367
ctatgaaatt aaccctcact aaaggacag acggggcaga gggagtg 47

<210> 368
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 368
ggattctaat acgactcact atagggccag gaggcgtgag gagaaac 47

<210> 369
<211> 48
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 369
ctatgaaatt aaccctcact aaaggaaag acatgtcatc gggagtgg 48

<210> 370
<211> 48
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 370
ggattctaat acgactcact atagggccgg gtggaggtgg aacagaaa 48

<210> 371
<211> 48
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 371
ctatgaaatt aaccctcact aaaggacac agacagagcc ccatacgc 48

<210> 372
<211> 47
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 372
ggattctaat acgactcact atagggccag ggaaatccgg atgtctc 47

<210> 373
<211> 48
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 373
ctatgaaatt aaccctcact aaagggatgtt agggatgcc accgatgtt 48

<210> 374
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 374
ggattctaat acgactcact atagggccag ctacccgcag gaggagg 47

<210> 375
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 375
ctatgaaatt aaccctcact aaagggatcc caggtgatga ggtccaga 48

<210> 376
<211> 997
<212> DNA
<213> Homo Sapien

<400> 376
cccacgcgtc cgatcttacc aacaaaacac tcctgaggag aaagaaaagag 50
agggagggag agaaaaagag agagagagaa acaaaaaacc aaagagagag 100
aaaaaaatgaa ttcatctaaa tcatctgaaa cacaatgcac agagagagga 150
tgcttccttt cccaaatgtt cttatggact gttgctggga tccccatcct 200
atttctcagt gcctgtttca tcaccagatg ttttgtgaca tttcgcatct 250
ttcaaacctg tgatgagaaa aagtttcagc tacctgagaa tttcacagag 300
ctctcctgct acaattatgg atcaggttca gtcaagaatt gttgtccatt 350
gaactggaa tattttcaat ccagctgcta cttctttct actgacacca 400
tttcctgggc gttaagttt aagaactgct cagccatggg ggctcacctg 450
gtggttatca actcacagga ggagcaggaa ttcccttcct acaagaaaacc 500
taaaatgaga gagttttta ttggactgtc agaccagggtt gtcgagggtc 550
agtggcaatg ggtggacggc acaccttga caaagtctct gagttctgg 600
gatgttaggg agcccaacaa catagctacc ctggaggact gtgccaccat 650
gagagactct tcaaacccaa ggcaaaattg gaatgatgta acctgtttcc 700
tcaatttattt tcggatttgt gaaatggtag gaataaatcc tttgaacaaa 750

ggaaaatctc tttaagaaca gaaggcacaa ctcaaatgtg taaagaagga 800
 agagcaagaa catggccaca cccaccgccc cacacgagaa atttgtgcgc 850
 tgaacttcaa aggacttcat aagtatttgt tactctgata caaataaaaa 900
 taagtagttt taaatgttaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 950
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 997

<210> 377

<211> 219

<212> PRT

<213> Homo Sapien

<400> 377

Met	Asn	Ser	Ser	Lys	Ser	Ser	Glu	Thr	Gln	Cys	Thr	Glu	Arg	Gly	
1									10				15		
Cys	Phe	Ser	Ser	Gln	Met	Phe	Leu	Trp	Thr	Val	Ala	Gly	Ile	Pro	
					20				25				30		
Ile	Leu	Phe	Leu	Ser	Ala	Cys	Phe	Ile	Thr	Arg	Cys	Val	Val	Thr	
					35				40				45		
Phe	Arg	Ile	Phe	Gln	Thr	Cys	Asp	Glu	Lys	Lys	Phe	Gln	Leu	Pro	
					50				55				60		
Glu	Asn	Phe	Thr	Glu	Leu	Ser	Cys	Tyr	Asn	Tyr	Gly	Ser	Gly	Ser	
					65				70				75		
Val	Lys	Asn	Cys	Cys	Pro	Leu	Asn	Trp	Glu	Tyr	Phe	Gln	Ser	Ser	
					80				85				90		
Cys	Tyr	Phe	Phe	Ser	Thr	Asp	Thr	Ile	Ser	Trp	Ala	Leu	Ser	Leu	
					95				100				105		
Lys	Asn	Cys	Ser	Ala	Met	Gly	Ala	His	Leu	Val	Val	Ile	Asn	Ser	
					110				115				120		
Gln	Glu	Glu	Gln	Glu	Phe	Leu	Ser	Tyr	Lys	Lys	Pro	Lys	Met	Arg	
					125				130				135		
Glu	Phe	Phe	Ile	Gly	Leu	Ser	Asp	Gln	Val	Val	Glu	Gly	Gln	Trp	
					140				145				150		
Gln	Trp	Val	Asp	Gly	Thr	Pro	Leu	Thr	Lys	Ser	Leu	Ser	Phe	Trp	
					155				160				165		
Asp	Val	Gly	Glu	Glu	Pro	Asn	Asn	Ile	Ala	Thr	Leu	Glu	Asp	Cys	Ala
					170				175				180		

Thr Met Arg Asp Ser Ser Asn Pro Arg Gln Asn Trp Asn Asp Val
185 190 195

Thr Cys Phe Leu Asn Tyr Phe Arg Ile Cys Glu Met Val Gly Ile
200 205 210

Asn Pro Leu Asn Lys Gly Lys Ser Leu
215

<210> 378

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 378

ttcagttctt gggatgttagg g 21

<210> 379

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 379

tattcctacc atttcacaaa tccg 24

<210> 380

<211> 49

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 380

ggaggactgt gccaccatga gagactcttc aaacccaagg caaaattgg 49

<210> 381

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 381

gcagatttg aggacagcca cctcca 26

<210> 382
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 382
ggccttgcag acaaccgt 18

<210> 383
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 383
cagactgagg gagatccgag a 21

<210> 384
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 384
cagctgccct tccccaaacca 20

<210> 385
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 385
catcaagcgcc ctctaccca 18

<210> 386
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 386

cacaaactcg aactgcttct g 21
<210> 387
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 387
gggccatcac agtccct 18

<210> 388
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 388
gggatgtggt gaacacagaa ca 22

<210> 389
<211> 22

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 389
tgccagctgc atgctgccag tt 22

<210> 390
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 390
cagaaggatg tcccggtggaa 20

<210> 391
<211> 17
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 391
ggcgctgtcc actgcag 17

<210> 392
<211> 21
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 392
gacggcatcc tcagggccac a 21

<210> 393
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 393
atgtcctcca tgcccacgcg 20

<210> 394
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 394
gagtgcgaca tcgagagtt 20

<210> 395
<211> 18
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 395
ccgcagcctc agtgatga 18

<210> 396
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 396
gaagagcaca gctgcagatc c 21

<210> 397
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 397
gaggtgtcct ggcttggta gt 22

<210> 398
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 398
cctctggcgc ccccactcaa 20

<210> 399
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 399
ccaggagagc tggcgatg 18

<210> 400
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 400
gcaaattcag ggctcactag aga 23

<210> 401
<211> 29

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 401
cacagagcat ttgtccatca gcagttcag 29

<210> 402
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 402
ggcagagact tccagtcact ga 22

<210> 403
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 403
gccaaagggtg gtgttagata gg 22

<210> 404
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 404
caggccccct tgatctgtac ccca 24

<210> 405
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 405
gggacgtgct tctacaagaa cag 23

<210> 406
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 406
caggcttaca atgttatgat cagaca 26

<210> 407
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 407
tattcagagt tttccattgg cagtgccagt t 31

<210> 408
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 408
tctacatcag cctctctgcg c 21

<210> 409
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 409
cgatcttctc cacccaggag cg 23

<210> 410
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 410

gccaggcctc acattcgt 18
<210> 411
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 411
ctccctgaat ggcagcctga gca 23

<210> 412
<211> 24

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 412
agggttttat taagggccta cgct 24

<210> 413
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 413
cagagcagag ggtgccttg 19

<210> 414
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 414
tggcgagtc ccctcttggc t 21

<210> 415
<211> 22
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 415
ccctgtttcc ctagcatca ct 22

<210> 416
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 416
tcaacccctg accctttcct a 21

<210> 417
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 417
ggcaggggac aagccatctc tcct 24

<210> 418
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 418
gggactgaac tgccagcttc 20

<210> 419
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 419
gggcctaacc tctattacct tt 22

<210> 420
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 420
tgtctgcctc agccccagga agg 23

<210> 421
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 421
tctgtccacc atcttgccctt g 21

<210> 422
<211> 3554
<212> DNA
<213> Homo Sapien

<400> 422
gggactacaa gccgcgcgc gctgccgctg gcccctcagc aaccctcgac 50
atggcgctga ggccggccacc gcgactccgg ctctgcgctc ggctgcctga 100
cttcttcctg ctgctgcttt tcagggcctg cctgataggg gctgtaaatc 150
tcaaataccag caatcgaacc ccagtggtagc aggaatttga aagtgtggaa 200
ctgtcttgca tcattacgga ttccgcagaca agtgacccca ggatcgagtg 250
gaagaaaatt caagatgaac aaaccacata tgtgttttt gacaacaaaa 300
ttcaggaga cttggcggtt cgtgcagaaa tactggggaa gacatccctg 350
aagatctgga atgtgacacg gagagactca gccccttatac gctgtgaggt 400
cgttgctcga aatgaccgca agggaaattga tgagattgtg atcgagttaa 450
ctgtcaagt gaagccagtg acccctgtct gtagagtgcc gaaggctgta 500
ccagtaggca agatggcaac actgcactgc caggagagtg agggccaccc 550
ccggcctcac tacagctggc atcgcaatga tgtaccactg cccacggatt 600
ccagagccaa tcccagattt cgcaattctt cttccactt aaactctgaa 650
acaggcactt tggtgttcac tgctgttcac aaggacgact ctgggcagta 700
ctactgcatt gcttccaatg acgcaggctc agccaggtgt gaggagcagg 750

agatggaa gt ctatgacctg aacattggcg gaattattgg ggggttctg 800
gttgccttg ctgtactggc cctgatcacg ttgggcata gctgtgcata 850
cagacgtggc tacttcatca acaataaaca gcatggagaa agttacaaga 900
acccaggaa accagatgga gtttaactaca tccgcactga cgaggaggc 950
gacttcagac acaagtcatc gtttgcata tgagaccgc ggtgtggctg 1000
agagcgcaca gagcgcacgt gcacataacct ctgctagaaa ctccgtcaa 1050
ggcagcgaga gctgatgcac tcggacagag ctagacactc attcagaagc 1100
tttcgtttt ggccaaagtt gaccactact cttcttactc taacaagcca 1150
catgaataga agaattttcc tcaagatgga cccggtaaat ataaccacaa 1200
ggaagcgaaa ctgggtgcgt tcactgagtt gggttccaa tctgtttctg 1250
gcctgattcc cgcacatgagta ttagggtgat cttaaagagt ttgctcacgt 1300
aaacgcccgt gctggccct gtgaagccag catgttccacc actggtcgtt 1350
cagcagccac gacagcacca tgtgagatgg cgaggtggct ggacagcacc 1400
agcagcgcac cccggcgaaa acccagaaaa ggcttcttac acagcagcct 1450
tacttcatcg gcccacagac accaccgcag ttttttctta aaggctctgc 1500
tgatcggtgt tgcagtgtcc attgtggaga agcttttgg atcagcattt 1550
tgtaaaaaca accaaaatca ggaaggtaaa ttgggtgctg gaagagggat 1600
cttgcctgag gaaccctgct tgtccaacag ggtgtcagga tttaaggaaa 1650
accttcgtct taggctaagt ctgaaatggt actgaaatat gctttctat 1700
gggtcttgcgtt tattttataa aattttacat ctaaattttt gctaaggatg 1750
tattttgatt attgaaaaga aaatttctat ttaaactgta aatatattgt 1800
catacaatgt taaataacccat attttttaa aaaagttcaa cttaaggtag 1850
aagtccaa gctactgtgt taaattggaa aatatcaata attaagagta 1900
ttttacccaa ggaatcctct catggaaaggtt tactgtgatg ttccctttct 1950
cacacaagtt ttagcctttt tcacaaggaa actcataactg tctacacatc 2000
agaccatagt tgcttaggaa accttaaaa attccagtttta agcaatgtt 2050

aaatcagttt gcatctcttc aaaagaaaacc tctcaggtta gctttgaact 2100
gcctcttcct gagatgacta ggacagtctg tacccagagg ccacccagaa 2150
gccctcagat gtacatacac agatgccagt cagtcctgg ggttgcgcca 2200
ggcgcccccg ctctagctca ctgttgactc gctgtctgcc aggaggccct 2250
gccatcttg ggccctggca gtggctgtgt cccagtgagc tttactcacf 2300
tggcccttgc ttcatccagc acagctctca ggtgggact gcagggacac 2350
tggtgtcttc catgttagcgt cccagctttg ggctctgta acagacctct 2400
ttttggttat ggatggctca caaaataggg ccccaatgc tattttttt 2450
ttttaagttt gtttaattat ttgttaagat tgtctaaggc caaaggcaat 2500
tgcgaaatca agtctgtcaa gtacaataac atttttaaaa gaaaatggat 2550
cccactgttc ctcttgcca cagagaaagc acccagacgc cacaggctct 2600
gtcgcatttc aaaacaaacc atgatggagt ggcggccagt ccagccttt 2650
aaagaacgtc aggtggagca gccaggtgaa aggctggcg gggagggaaag 2700
tgaaacgcct gaatcaaaag cagtttcta attttgactt taaattttc 2750
atccgcccga gacactgctc ccatttgtgg ggggacatta gcaacatcac 2800
tcagaaggct gtgttcttca agagcaggtg ttctcagcct cacatgccct 2850
gccgtgctgg actcaggact gaagtgtgt aaagcaagga gctgctgaga 2900
aggagcactc cactgtgtgc ctggagaatg gctctcacta ctcaccttgt 2950
cttcagctt ccagtgtctt gggttttta tactttgaca gctttttttt 3000
aattgcatac atgagactgt gttactttttttttt ttagttatg tgaaacactt 3050
tgccgcaggc cgccctggcag aggcaggaaa tgctccagca gtggctcagt 3100
gctccctggt gtctgctgca tggcatcctg gatgcttagc atgcaagttc 3150
cctccatcat tgccacccctg gtagagaggg atggctcccc accctcagcg 3200
ttggggattc acgctccagc ctcccttcttgc gttgtcatag tgataggta 3250
gccttattgc cccctcttct tataccctaa aaccttctac actagtgcctt 3300
tgggaaccag gtctgaaaaa gtagagagaa gtgaaagtag agtctggaa 3350
gtagctgcct ataactgaga ctagacggaa aaggaatact cgtgtatTTT 3400

aagatatgaa tgtgactcaa gactcgaggc cgatacggagg ctgtgattct 3450
 gccttggat ggatgttgct gtacacagat gctacagact tgtactaaca 3500
 caccgtaatt tggcatttgt ttaacctcat ttataaaaagc ttcaaaaaaaaa 3550
 ccca 3554

<210> 423

<211> 310

<212> PRT

<213> Homo Sapien

<400> 423

Met Ala Leu Arg Arg Pro Pro Arg Leu Arg Leu Cys Ala Arg Leu			
1	5	10	15
Pro Asp Phe Phe Leu Leu Leu Phe Arg Gly Cys Leu Ile Gly			
20	25		30
Ala Val Asn Leu Lys Ser Ser Asn Arg Thr Pro Val Val Gln Glu			
35	40		45
Phe Glu Ser Val Glu Leu Ser Cys Ile Ile Thr Asp Ser Gln Thr			
50	55		60
Ser Asp Pro Arg Ile Glu Trp Lys Lys Ile Gln Asp Glu Gln Thr			
65	70		75
Thr Tyr Val Phe Phe Asp Asn Lys Ile Gln Gly Asp Leu Ala Gly			
80	85		90
Arg Ala Glu Ile Leu Gly Lys Thr Ser Leu Lys Ile Trp Asn Val			
95	100		105
Thr Arg Arg Asp Ser Ala Leu Tyr Arg Cys Glu Val Val Ala Arg			
110	115		120
Asn Asp Arg Lys Glu Ile Asp Glu Ile Val Ile Glu Leu Thr Val			
125	130		135
Gln Val Lys Pro Val Thr Pro Val Cys Arg Val Pro Lys Ala Val			
140	145		150
Pro Val Gly Lys Met Ala Thr Leu His Cys Gln Glu Ser Glu Gly			
155	160		165
His Pro Arg Pro His Tyr Ser Trp Tyr Arg Asn Asp Val Pro Leu			
170	175		180
Pro Thr Asp Ser Arg Ala Asn Pro Arg Phe Arg Asn Ser Ser Phe			
185	190		195

His Leu Asn Ser Glu Thr Gly Thr Leu Val Phe Thr Ala Val His
200 205 210

Lys Asp Asp Ser Gly Gln Tyr Tyr Cys Ile Ala Ser Asn Asp Ala
215 220 225

Gly Ser Ala Arg Cys Glu Glu Gln Glu Met Glu Val Tyr Asp Leu
230 235 240

Asn Ile Gly Gly Ile Ile Gly Gly Val Leu Val Val Leu Ala Val
245 250 255

Leu Ala Leu Ile Thr Leu Gly Ile Cys Cys Ala Tyr Arg Arg Gly
260 265 270

Tyr Phe Ile Asn Asn Lys Gln Asp Gly Glu Ser Tyr Lys Asn Pro
275 280 285

Gly Lys Pro Asp Gly Val Asn Tyr Ile Arg Thr Asp Glu Glu Gly
290 295 300

Asp Phe Arg His Lys Ser Ser Phe Val Ile
305 310