CLAIMS

What is claimed is:

l	1.	A met	hod for fabrication of magnetic write heads for disk drives, comprising:
2		A)	forming a P1 layer having a P1 Protrusion, said P1 Protrusion having a
3	longit	udinal a	xis;
4		B)	depositing a gap layer on said P1 Protrusion;
5		C)	forming a fill material layer on said gap layer, said fill material layer being
6	shaped	d to form	n a mold mask which surrounds a hollow which is substantially aligned
7	with s	aid long	citudinal axis of said P1 Protrusion; and
8		D)	filling said hollow in said fill material layer with P2 pole material to form
9	a P2 p	ole whi	ch is substantially aligned with said P1 Protrusion.
1	2.	The m	ethod of fabrication of claim 1, further comprising:
2		E)	removing said fill layer material to leave a P1/gap/P2 structure;
3		F)	trimming said P1/gap/P2 structure to obtain the final track width;
4		G)	filling around said P1/gap/P2 structure with a second fill material; and
5		H)	removing portions of said second fill material to expose said P2 pole.
1	3.	The m	ethod of fabrication of claim 1, wherein A) further comprises:
2			i) depositing an N3 layer of high magnetic moment material on said
3		P1 lay	er; and
4			ii) forming a P1 Protrusion on said N3 layer.

- 1 4. The method of fabrication of claim 2, wherein ii) further comprises:
- 2 applying, exposing and developing photoresist to create a
- 3 pattern for said P1 Protrusion;
- 4 2) plating pole material into the photo-resist pattern to form
- 5 said P1 Protrusion; and
- 6 3) stripping said photo-resist.
- 1 5. The method of fabrication of claim 1, wherein:
- 2 said P1 pole material is chosen from a group consisting of CoFe, NiFe, CoFeN,
- 3 CoNiFe and high magnetic moment materials.
- 1 6. The method of fabrication of claim 3, wherein:
- 2 said N3 layer material is chosen from a group consisting of CoFe, NiFe, CoFeN,
- 3 CoNiFe and high magnetic moment materials.
- 1 7. The method of fabrication of claim 3, wherein:
- 2 said P1 Protrusion pole material is chosen from a group consisting of CoFe, NiFe,
- 3 CoFeN, CoNiFe and high magnetic moment materials.
- 1 8. The method of fabrication of claim 1, wherein:
- 2 said gap layer material is chosen from a group consisting of Al₂O₃, SiO₂, Ta, Rh,
- 3 Ta/Rh, Pd and Ru.

- 1 9. The method of fabrication of claim 1, wherein:
- 2 said fill layer material is chosen from a group consisting of SiO2, Si3N4, SiC, and
- 3 TaC.
- 1 10. The method of fabrication of claim 1, wherein C) further comprises:
- i) forming a RIE mask on said fill layer, said mask maintaining
- 3 substantial alignment with said longitudinal axis of said P1 Protrusion;
- 4 ii) etching by RIE to remove fill layer material to form a hollow
- 5 which is substantially aligned with said longitudinal axis of said P1 Protrusion;
- 6 and
- 7 iii) removing said RIE mask.
- 1 11. The method of claim 10, wherein:
- 2 said RIE mask material is chosen from a group consisting of NiFe, Ta, W and Cr.
- 1 12. The method of claim 1, wherein:
- 2 said P2 pole material is chosen from a group consisting of CoFe, NiFe, CoFeN,
- 3 and CoNiFe.
- 1 13. The method of claim 2, wherein:
- 2 said second fill material is chosen from a group consisting of Al₂O₃, SiO₂, Si₃N₄
- 3 and SiC.

1	14.	The method of claim 1, wherein D) further comprises:	
2		i) plating with P2 pole material to form a mushroom portion; and	
3		ii) performing CMP to remove said mushroom portion.	
1	15.	The method of claim 2, wherein E) comprises:	
2		i) etching by using RIE to remove said fill layer material.	
1	16.	The method of claim 2, wherein F) comprises:	
2		i) using ion milling to trim said P1/gap/P2 structure to obtain the	
3		final track width.	
1	17.	The method of claim 2, wherein H) comprises:	
2		i) using CMP to remove said portions of said second fill material to	
3		expose said P2 pole.	
1	18.	A method for fabrication of magnetic write heads for disk drives, comprising:	
2		A) forming a P1 layer;	
3		B) forming an N3 layer of high magnetic moment material on said P1 layer;	
4		C) forming a P1 Protrusion on said N3 layer, said P1 Protrusion having a	
5	longitudinal axis;		
6		D) depositing a gap layer on said P1 Protrusion;	
7		E) forming a fill layer on said gap layer;	
8		F) forming a RIE mask on said fill layer;	

- 9 G) etching by RIE to remove fill layer material to form a hollow which is
- aligned with said longitudinal axis of said P1 Protrusion;
- 11 H) removing said RIE mask;
- 12 I) filling said hollow in said fill material layer with pole material to form a
- 13 P2 pole;
- 14 J) etching by RIE to remove said fill layer material to leave a P1/gap/P2
- structure which maintains alignment with said longitudinal axis of said PI Protrusion;
- 16 K) trimming said P1/gap/P2 structure to obtain the final track width;
- 17 L) filling with second fill material around said P1/gap/P2 structure; and
- 18 M) removing portions of said second fill material to expose said P2 pole.
- 1 19. A method for fabrication of magnetic write heads for disk drives, comprising:
- A) forming a P1 layer having a P1 Protrusion, said P1 Protrusion having a
- 3 longitudinal axis;
- 4 B) depositing a gap layer on said P1 Protrusion,
- 5 C) forming a fill layer on said gap layer, said fill layer having a protrusion
- 6 which is substantially aligned with said P1 Protrusion longitudinal axis;
- 7 D) forming a RIE mask on said fill layer, said mask having an opening at said
- 8 fill layer protrusion which maintains substantial alignment with said longitudinal axis of
- 9 said P1 Protrusion;
- 10 E) etching by RIE to remove fill layer material to form a hollow which is
- aligned with said longitudinal axis of said P1 Protrusion;
- F) removing said RIE mask;

- 13 G) filling said hollow in said fill material layer with material to form a P2
- 14 pole;
- 15 H) etching by RIE to remove said fill layer material to leave a P1/gap/P2
- structure which maintains alignment with said longitudinal axis of said PI Protrusion;
- 17 I) trimming said P1/gap/P2 structure to obtain the final track width;
- J) filling with second fill material around said P1/gap/P2 structure; and
- 19 K) removing portions of said second fill material to expose said P2 pole.