大学数学试卷 答案 2021.1.4

简答题(每小题7分,共4题,计28分)

1. 设矩阵
$$A = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$
,且 $A^2B + A = B + E$,求矩阵 B 及行列式 $|B|$.

解: 由
$$A^2B + A = B + E$$
 可得 $(A - E)(A + E)B = E - A$,且 $|A - E| = -2 \neq 0$,故 $(A + E)B = -E$, $B = -(A + E)^{-1} = -\begin{pmatrix} 2 & 0 & -2 \\ 0 & 3 & 0 \\ -1 & 0 & 2 \end{pmatrix}^{-1} = -\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1/3 & 0 \\ 1/2 & 0 & 1 \end{pmatrix}$, $|B| = -1/6$. 解法二: 由 $A^2B + A = B + E$ 可得 $(A^2 - E)B = E - A$,

故
$$B = (A^2 - E)^{-1}(E - A) = \begin{pmatrix} 2 & 0 & -4 \\ 0 & 3 & 0 \\ -2 & 0 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 0 & 0 & 2 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 & -1 \\ 0 & -1/3 & 0 \\ -1/2 & 0 & -1 \end{pmatrix}, |B| = -1/6.$$

解法三: 由 $A^2B + A = B + E$ 可得 $(A^2 - E)B = E - A$,解矩阵

$$(A^{2} - E, E - A) = \begin{pmatrix} 2 & 0 & -4 & 0 & 0 & 2 \\ 0 & 3 & 0 & 0 & -1 & 0 \\ -2 & 0 & 2 & 1 & 0 & 0 \end{pmatrix}^{-1} \to \begin{pmatrix} 1 & 0 & 0 & -1 & 0 & -1 \\ 0 & 1 & 0 & 0 & -1/3 & 0 \\ 0 & 0 & 1 & -1/2 & 0 & -1 \end{pmatrix},$$

$$b \not B = \begin{pmatrix} -1 & 0 & -1 \\ 0 & -1/3 & 0 \\ -1/2 & 0 & -1 \end{pmatrix}, |B| = -1/6.$$

2. 设
$$\alpha=(1,1,-1)^{\mathrm{T}}$$
 是矩阵 $A=\begin{pmatrix}2&-1&2\\5&a&3\\-1&b&-2\end{pmatrix}$ 的一个特征向量,求常数 a,b 的值.

解法二: 因为
$$A\alpha = \lambda \alpha$$
,故得
$$\begin{cases} -1 &= \lambda, \\ a+2 &= \lambda, \text{ } \end{cases}$$
,解得 $\lambda = -1, a = -3, b = 0.$
$$b+1 &= -\lambda.$$

解法三:
$$A\alpha = \begin{pmatrix} 2 & -1 & 2 \\ 5 & a & 3 \\ -1 & b & -2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ a+2 \\ b+1 \end{pmatrix}$$
, 由 $A\alpha$ 与 α 线性相关,知 $\mathbf{r}(\alpha, A\alpha) = 1$ 。 而 $(\alpha, A\alpha) = \begin{pmatrix} 1 & -1 \\ 1 & a+2 \\ -1 & b+1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 \\ 0 & a+3 \\ 0 & b \end{pmatrix}$,可得 $a = -3, b = 0$.

3. α 为 n 维实单位列向量, $A = E - k\alpha\alpha^{T}$ 为正定矩阵,求实数 k 的取值范围.

解:由 r(E-A) = 1 可知 1 为 A 的 n-1 重特征值,又因为 $A\alpha = (1-k)\alpha$,

所以 1-k 为 A 的 1 重特征值,由 A 正定知 1-k>0 即 k<1.

解法二: 设 $B = \alpha \alpha^{\mathrm{T}}$, 由 α 为 n 维实单位列向量, 可得 $B^2 = \alpha(\alpha^{\mathrm{T}}\alpha)\alpha^{\mathrm{T}} = B$, 于是 $B^2 - B = O$.

设 λ 为 B 的特征值, ξ 为对应的特征向量,则有 $\theta = O\xi = (B^2 - B)\xi = (\lambda^2 - \lambda)\xi$,

故有 $\lambda^2 - \lambda = \lambda(\lambda - 1) = 0$,即 B 的特征值 $\lambda = 0$ 或者1,于是 $A\xi = (E - kB)\xi = (1 - k\lambda)\xi$, 即 A 的特征值为 1 或者 1-k,由于 A 正定,故 1-k>0,即 k<1.

解法三: 由单位向量 α 构造标准正交向量组 $\beta_1, \beta_2, \dots, \beta_n$,其中 $\beta_1 = \alpha$,令 $P = (\beta_1, \beta_2, \dots, \beta_n)$, 则有 $\alpha^{\mathrm{T}}P = \alpha^{\mathrm{T}}(\alpha, \beta_2, \dots, \beta_n) = (e_1, 0, \dots, 0) = E_{11}$, 于是

$$P^{\mathrm{T}}AP = E - kP^{\mathrm{T}}\alpha\alpha^{\mathrm{T}}P^{\mathrm{T}} = E - kE_{11}^{\mathrm{T}}E_{11} = \begin{pmatrix} 1 - k & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix}$$
,由于A正定,故 $1 - k > 0$,即 $k < 1$.

解法四: 任取n维向量 $x \neq \theta$, $A = E - k\alpha\alpha^T$ 为正定矩阵,故要满足 $x^TAx = x^Tx - k(\alpha^Tx)^2 > 0$, 显然 $\alpha^{\mathrm{T}}A\alpha = \alpha^{\mathrm{T}}\alpha - k(\alpha^{\mathrm{T}}\alpha)^2 = 1 - k > 0$. 当 1 - k > 0 时,由柯西不等式 $(\alpha^{\mathrm{T}}x)^2 \leq (x^{\mathrm{T}}x)(\alpha^{\mathrm{T}}\alpha) = x^{\mathrm{T}}x$, $\alpha^{\mathrm{T}}x \neq 0$ 时有 $x^{\mathrm{T}}Ax = x^{\mathrm{T}}x - k(\alpha^{\mathrm{T}}x)^2 \geq (\alpha^{\mathrm{T}}x)^2 - k(\alpha^{\mathrm{T}}x)^2 = (1-k)(\alpha^{\mathrm{T}}x)^2 > 0$, $\alpha^{T}x = 0$ 时显然有 $x^{T}Ax = x^{T}x - k(\alpha^{T}x)^{2} = x^{T}x > 0$, 故 k 满足 k < 1.

4. 设 $A = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}, B = \begin{pmatrix} b & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & a \end{pmatrix}$,证明 $A \subseteq B$ 合同,即存在可逆矩阵 P,使得 $B = P^{T}AP$.

证法二: 易知
$$A$$
 有特征值 $\lambda_1 = a, \lambda_2 = b, \lambda_3 = c$,对应特征向量 $\xi_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \xi_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \xi_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$,
$$\begin{pmatrix} \lambda_2 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} b & 0 & 0 \end{pmatrix}$$

则令
$$P = (\pm \xi_2, \pm \xi_3, \pm \xi_1)$$
,则 P 为正交阵,且 $P^{-1}AP = P^{T}AP = \begin{pmatrix} \lambda_2 & 0 & 0 \\ 0 & \lambda_3 & 0 \\ 0 & 0 & \lambda_1 \end{pmatrix} = \begin{pmatrix} b & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & a \end{pmatrix} = B.$

(注: 用 $P = \operatorname{diag}(\sqrt{\frac{b}{a}}, \sqrt{\frac{c}{b}}, \sqrt{\frac{a}{c}})$ 是错的,因为 a, b, c 可能为0)

二、(本題12分) 已知二次型 $f = x_1^2 + x_2^2 + x_3^2 + 2ax_1x_2 + 2x_1x_3 + 2bx_2x_3$ 经正交变换可化为

解: 由
$$A = \begin{pmatrix} 1 & a & 1 \\ a & 1 & b \\ 1 & b & 1 \end{pmatrix} \sim \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} = B$$
,可得 $A - E \sim B - E$,

标准形
$$f = 2y_1^2 + y_3^2$$
, 试求 a, b .

解: 由 $A = \begin{pmatrix} 1 & a & 1 \\ a & 1 & b \\ 1 & b & 1 \end{pmatrix} \sim \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} = B$, 可得 $A - E \sim B - E$,

可知 $|A| = 2ab - a^2 - b^2 = |B| = 0$, $|A - E| = 2ab = |B - E| = 0$, 因此 $a = b = 0$.

解法二: 由 $A = \begin{pmatrix} 1 & a & 1 \\ a & 1 & b \\ 1 & b & 1 \end{pmatrix} \sim \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$, 可知 A 有特征值 $\lambda = 2, 0, 1$, 代入特征多项式 $|\lambda E - A|$ 得 $|2E - A| = -a^2 - b^2 - 2ab = 0$, $|0E - A| = a^2 + b^2 - 2ab = 0$, $|E - A| = -2ab = 0$, 解得 $a = b = 0$.

解法三: 由 $A = \begin{pmatrix} 1 & a & 1 \\ a & 1 & b \\ 1 & b & 1 \end{pmatrix} \sim \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$, 可知 A 有特征值 $\lambda = 2, 0, 1$,

$$|\lambda E - A| = \begin{vmatrix} \lambda - 1 & -a & -1 \\ -a & \lambda - 1 & -b \\ -1 & -b & \lambda - 1 \end{vmatrix} = \lambda^3 - 3\lambda^2 + (2 - a^2 - b^2)\lambda + (a^2 + b^2 - 2ab)$$

$$= (\lambda - 2)\lambda(\lambda - 1) = \lambda^3 - 3\lambda^2 + 2\lambda$$
比较系数得 $2 - a^2 - b^2 = 2$, $a^2 + b^2 - 2ab = 0$, 解得 $a = b = 0$.

$$|2E - A| = -a^2 - b^2 - 2ab = 0, |0E - A| = a^2 + b^2 - 2ab = 0, |E - A| = -2ab = 0, |E - A| = -2ab = 0$$

解法三: 由
$$A = \begin{pmatrix} 1 & a & 1 \\ a & 1 & b \\ 1 & b & 1 \end{pmatrix} \sim \begin{pmatrix} 2 & & \\ & 0 & \\ & & 1 \end{pmatrix}$$
, 可知 A 有特征值 $\lambda = 2, 0, 1$

故
$$|\lambda E - A| = \begin{vmatrix} \lambda - 1 & -a & -1 \\ -a & \lambda - 1 & -b \\ -1 & -b & \lambda - 1 \end{vmatrix} = \lambda^3 - 3\lambda^2 + (2 - a^2 - b^2)\lambda + (a^2 + b^2 - 2ab)$$

$$= (\lambda - 2)\lambda(\lambda - 1) = \lambda^3 - 3\lambda^2 + 2\lambda,$$

三、 (本题12分) 设3阶实对称矩阵 A 的各行元素之和都为2,向量 $\alpha_1 = (1,0,-1)^T, \alpha_2 = (1,-1,0)^T$ 为线性方程组 Ax = 0 的两个解.

(1) 求 A 的全部特征值与特征向量; (2) 求正交矩阵 P, 使得 $P^{T}AP$ 为对角阵; (3) 求矩阵 A.

解: (1) 由 $A(1,1,1)^{\mathrm{T}}=2(1,1,1)^{\mathrm{T}}$,可知 $\lambda=2$ 是 A 的一个特征值,且 $\alpha_3=(1,1,1)^{\mathrm{T}}$ 是 A 的 属于特征值2的特征向量. 再由 $A\alpha_1=0, A\alpha_2=0$ 知,A 的特征值为0,0,2. 属于特征值0的全部

特征向量为
$$k_1\alpha_2 + k_2\alpha_2, k_1, k_2$$
不全为0. 属于特征值2的全部特征向量形如 $k_3\alpha_3, k_3 \neq 0$. (2) 将 α_1, α_2 正交化并单位化,可得 $\beta_1 = (\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}})^{\mathrm{T}}, \beta_2 = (\frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}})^{\mathrm{T}},$

$$P = (\beta_1, \beta_2, \beta_3) = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$
为正交阵且满足 $P^{T}AP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

(注: P 不唯一,只要构成矩阵 P 的前两列 β_1, β_2 与 $\beta_3 = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})^{\mathrm{T}}$ 构成标准正交向量组即可)

(3)解法一:
$$A = P \begin{pmatrix} 0 & & \\ & 0 & \\ & & 2 \end{pmatrix} P^{T} = \frac{2}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
.

解法二:
$$A(\alpha_1, \alpha_2, \alpha_3) = (0, 0, 2\alpha_3)$$
, 故 $A = (0, 0, 2\alpha_3)(\alpha_1, \alpha_2, \alpha_3)^{-1} = \frac{2}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

解法二: (1) 设矩阵 $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, 则根据条件,有 $A\alpha_1 = A\alpha_2 = 0$, $A\alpha_3 = 2\alpha_3$,即 $\begin{cases} a_{11} - a_{13} &= 0, \\ a_{21} - a_{23} &= 0, \\ a_{31} - a_{33} &= 0, \end{cases}$ $\begin{cases} a_{11} - a_{12} &= 0, \\ a_{21} - a_{22} &= 0, \\ a_{31} - a_{32} &= 0, \end{cases}$ $\begin{cases} a_{11} + a_{12} + a_{13} &= 2, \\ a_{21} + a_{22} + a_{23} &= 2, \\ a_{31} + a_{32} + a_{33} &= 2. \end{cases}$

$$\begin{cases} a_{11} - a_{13} &= 0, \\ a_{21} - a_{23} &= 0, \\ a_{31} - a_{33} &= 0, \end{cases} \begin{cases} a_{11} - a_{12} &= 0, \\ a_{21} - a_{22} &= 0, \\ a_{31} - a_{32} &= 0, \end{cases} \begin{cases} a_{11} + a_{12} + a_{13} &= 2, \\ a_{21} + a_{22} + a_{23} &= 2, \\ a_{31} + a_{32} + a_{33} &= 2. \end{cases}$$

解得
$$a_{11} = a_{12} = a_{13} = a_{21} = a_{22} = a_{23} = a_{31} = a_{32} = a_{33} = 2/3$$
,即 $A = \frac{2}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

 $|\lambda E - A| = \lambda^2 (\lambda - 2)$,故有特征值 $\lambda = 0$ (二重), 2.

当
$$\lambda = 0$$
时,解得无关特征向量为: $\xi_1 = (-1, 1, 0)^{\mathrm{T}}, \xi_2 = (-1, 0, 1)^{\mathrm{T}}$,特征向量为 $k_1\xi_1 + k_2\xi_2, k_1, k_2$ 不全为0.
当 $\lambda = 2$ 时,解得无关特征向量为: $\xi_3 = (1, 1, 1)^{\mathrm{T}}$,特征向量为 $k_3\xi_3, k_3 \neq 0$.
(2) 将 $\lambda = 0$ 的无关特征向量 ξ_1, ξ_2 标准正交化得 $\beta_1 = \frac{1}{\sqrt{2}}(-1, 1, 0)^{\mathrm{T}}, \beta_2 = \frac{1}{\sqrt{6}}(-1, -1, 2)^{\mathrm{T}}$,将 $\lambda = 2$

的无关特征向量 ξ_3 单位化得 $\beta_3 = \frac{1}{\sqrt{3}}(1,1,1)^{\mathrm{T}}$,令 $P = (\beta_1,\beta_2,\beta_3)$,则 P 正交且 $P^{\mathrm{T}}AP = \mathrm{diag}(0,0,2)$.

(3) 由(1)己得
$$A = \frac{2}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
.

四、 (本题12分) 设 n 阶矩阵 $A=(\alpha_1,\alpha_2,\cdots,\alpha_{n-1},\alpha_n)$ 的前 n-1 个列向量线性无关,

- (1) 证明: 方程组 $Ax = \beta$ 有无穷多组解; (2) 求方程组 $Ax = \beta$ 的通解.
- 解: (1) 因为 β 可以由 $\alpha_1,\alpha_2,\cdots,\alpha_{n-1},\alpha_n$ 线性表示,故方程组 $Ax=\beta$ 有解,即 $\mathbf{r}(A)=\mathbf{r}(A,b)$.

又因为 $\alpha_2, \dots, \alpha_{n-1}, \alpha_n$ 线性相关,因此 r(A, b) = r(A) < n,从而方程组 $Ax = \beta$ 有无穷多组解.

(2) $n-1 = r(\alpha_1, \alpha_2, \dots, \alpha_{n-1}) \le r(A) < n$, 因此 r(A) = n-1, 又有 $\alpha_2 + \dots + \alpha_{n-1} - \alpha_n = 0$, 于是 $Ax = \beta$ 的通解为 $(1, 1, \dots, 1)^{\mathrm{T}} + k(0, 1, \dots, 1, -1)^{\mathrm{T}}$, k 为任意实数.

解法二: (1) $A = (\alpha_1, \alpha_2, \cdots, \alpha_{n-1}, \alpha_n) \xrightarrow{c_n - c_1 - \cdots - c_{n-1}} (\alpha_1, \alpha_2, \cdots, \alpha_{n-1}, 0)$,

故 $\mathbf{r}(A) = \mathbf{r}(\alpha_1, \alpha_2, \dots, \alpha_{n-1}) = n-1$,Ax = 0基础解系含一个向量,由 $\alpha_n = \alpha_2 + \alpha_3 + \dots + \alpha_{n-1}$ 知, $0\alpha_1 + \alpha_2 + \alpha_3 + \dots + \alpha_{n-1} - \alpha_n = 0$, $\mathbb{D} \xi = (0, 1, 1, \dots, 1, -1)^T$ 为 Ax = 0 的基础解系.

又有 $\beta = \alpha_1 + \alpha_2 + \dots + \alpha_n$ 知 $\eta = (1, 1, \dots, 1)^T$ 是 $Ax = \beta$ 的一个特解,故 $Ax = \beta$ 通解为 $\eta + k\xi, k \in \mathbf{R}$. 由通解公式知 $Ax = \beta$ 有无穷多组解.

- (2) 由(1)得到 $Ax = \beta$ 通解为 $\eta + k\xi, k \in \mathbf{R}$.
- 五、 (本题12分) 设 A 为三阶矩阵, $\lambda_1, \lambda_2, \lambda_3$ 是 A 的三个不同特征值,

对应的特征向量分别为 $\alpha_1, \alpha_2, \alpha_3$,令 $\beta = \alpha_1 + \alpha_2 + \alpha_3$.

- (1) 证明 β , $A\beta$, $A^2\beta$ 线性无关; (2) 若 $A^3\beta = A\beta$, 求秩 r(A-E) 及行列式 |A+2E|.
- (1)证法一: 由 $\beta = \alpha_1 + \alpha_2 + \alpha_3$ 及 $A\alpha_i = \lambda_i \alpha_i$ (i = 1, 2, 3),可知

$$A\beta = \lambda_1 \alpha_1 + \lambda_2 \alpha_2 + \lambda_3 \alpha_3 \quad , \qquad A^2 \beta = \lambda_1^2 \alpha_1 + \lambda_2^2 \alpha_2 + \lambda_3^2 \alpha_3,$$

设 $k_1\beta + k_2A\alpha + k_3A^2\beta = 0$, 将上式代入整理可得

 $(k_1 + k_2\lambda_1 + k_3\lambda_1^2)\alpha_1 + (k_1 + k_2\lambda_2 + k_3\lambda_2^2)\alpha_2 + (k_1 + k_2\lambda_3 + k_3\lambda_3^2)\alpha_3 = 0.$

因为 $\alpha_1, \alpha_2, \alpha_3$ 是三个不同特征值对应的特征向量,必线性无关,于是

$$\begin{pmatrix} 1 & \lambda_1 & \lambda_1^2 \\ 1 & \lambda_2 & \lambda_2^2 \\ 1 & \lambda_3 & \lambda_3^2 \end{pmatrix} \begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} = 0.$$

其系数行列式非零,因此必有 $k_1 = k_2 = k_3 = 0$,故 β , $A\beta$, $A^2\beta$ 线性无关.

证法二: 由 $\beta = \alpha_1 + \alpha_2 + \alpha_3$ 及 $A\alpha_i = \lambda_i \alpha_i$ (i = 1, 2, 3),可知

$$A\beta = \lambda_1 \alpha_1 + \lambda_2 \alpha_2 + \lambda_3 \alpha_3$$
 , $A^2\beta = \lambda_1^2 \alpha_1 + \lambda_2^2 \alpha_2 + \lambda_3^2 \alpha_3$, 于是

$$(\beta, A\beta, A^2\beta) = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 1 & \lambda_1 & \lambda_1^2 \\ 1 & \lambda_2 & \lambda_2^2 \\ 1 & \lambda_3 & \lambda_3^2 \end{pmatrix} = (\alpha_1, \alpha_2, \alpha_3)B,$$

故 $|\beta, A\beta, A^2\beta| = |\alpha_1, \alpha_2, \alpha_3| \cdot |B|$, 因为 $\lambda_1, \lambda_2, \lambda_3$ 互不相同,故 $|B| = (\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)(\lambda_3 - \lambda_2) \neq 0$, 且对应的特征向量 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,从而 $|\alpha_1, \alpha_2, \alpha_3| \neq 0$,于是 $|\beta, A\beta, A^2\beta| \neq 0$, 即 β , $A\beta$, $A^2\beta$ 线性无关.

(2) 解法一: 由 $A^3\beta = A\beta$ 可得

解法二:由 $(A^3 - A)\beta = 0$,可知 $(\lambda_1^3 - \lambda_1)\alpha_1 + (\lambda_2^3 - \lambda_2)\alpha_2 + (\lambda_3^3 - \lambda_3)\alpha_3 = 0$,而 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,

而 A-E 的特征值为 A 的特征值减1即-1,-2,0, 互不相同, 可对角化, 故 $A-E \sim \text{diag}(-1,-2,0)$, 从而 r(A-E)=2,而行列式 $|A+2E|=(0+2)\cdot(-1+2)\cdot(1+2)=6$.

解法三: 由 $(A^3 - A)\beta = (A - E)(A + E)A\beta = (A - E)(A^2 + A)\beta = (A - E)(A^2\beta + A\beta) = 0$ 可知 $\xi_1 = A^2\beta + A\beta$ 满足 $A\xi_1 = \xi_1$,因为 $\beta, A\beta, A^2\beta$ 线性无关,故 $\xi_1 = A^2\beta + A\beta \neq 0$, 于是 ξ_1 为 A 的属于特征值1的特征向量. 同理 $\xi_2 = A^2\beta - A\beta \neq 0, \xi_3 = A^2\beta - \beta \neq 0$ 分别为 A 的属于特征值-1和0的特征向量,故3阶矩阵 A 有互不相同的特征值1,-1,0,

而 A-E 的特征值为 A 的特征值减1即0,-2,-1,互不相同,可对角化,故 $A-E \sim \mathrm{diag}(0,-2,-1)$, 从而 r(A-E)=2,而行列式 $|A+2E|=(1+2)\cdot(-1+2)\cdot(0+2)=6$.

(注: (2)中如果用 $A^3\beta = \lambda^3\beta$, $A\beta = \lambda\beta$, 故特征值满足 $\lambda^3 - \lambda = 0$ 是错误的, 因为 β 不是 A 的特征值)

六、 (本题12分) 已知线性空间 \mathbb{R}^3 的基 $\alpha_1, \alpha_2, \alpha_3$ 到基 $\beta_1, \beta_2, \beta_3$ 的过渡矩阵为 P,且

$$\alpha_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad P = \begin{pmatrix} 2 & 1 & 2 \\ 4 & 0 & 3 \\ 3 & -2 & 2 \end{pmatrix}$$

解: (1) 从基 $\alpha_1, \alpha_2, \alpha_3$ 到基 $\beta_1, \beta_2, \beta_3$ 的过渡矩阵为 P,即

$$(\beta_1, \beta_2, \beta_3) = (\alpha_1, \alpha_2, \alpha_3)P = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 2 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 4 & 0 & 3 \\ 3 & -2 & 2 \end{pmatrix} = \begin{pmatrix} 6 & 1 & 5 \\ 11 & -2 & 8 \\ 10 & 1 & 8 \end{pmatrix},$$
因此基 $\beta_1 = \begin{pmatrix} 6 \\ 11 \\ 10 \end{pmatrix}, \beta_2 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, \beta_3 = \begin{pmatrix} 5 \\ 8 \\ 8 \end{pmatrix}.$

(2)解法一: 设所求向量的坐标为 x,则 $(\alpha_1, \alpha_2, \alpha_3)x = (\beta_1, \beta_2, \beta_3)x = (\alpha_1, \alpha_2, \alpha_3)Px$, 因为 $\alpha_1, \alpha_2, \alpha_3$ 线性无关, 所以 Px = x, 即 (P - E)x = 0, 经行变换,

$$P - E = \begin{pmatrix} 1 & 1 & 2 \\ 4 & -1 & 3 \\ 3 & -2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix},$$

得 $x = (1, 1, -1)^{\mathrm{T}}$,故所求向量为 $\alpha = k(\alpha_1 + \alpha_2 - \alpha_3) = k(2, 1, 3)^{\mathrm{T}}$,其中 k 为任意常数. 解法二 设所求向量的坐标为 x,则 $(\beta_1, \beta_2, \beta_3)x = (\alpha_1, \alpha_2, \alpha_3)x$, 即 $(\beta_1 - \alpha_1, \beta_2 - \alpha_2, \beta_3 - \alpha_3)x = 0$,解方程组

$$(\beta_1 - \alpha_1, \beta_2 - \alpha_2, \beta_3 - \alpha_3) = \begin{pmatrix} 5 & 0 & 5 \\ 11 & -4 & 7 \\ 9 & -1 & 8 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix},$$

得 $x = (1, 1, -1)^{\mathrm{T}}$,故所求向量为 $\alpha = k(\alpha_1 + \alpha_2)$

七、 (本题12分) (1) 已知矩阵 A 的秩 $\mathbf{r}(A) = 1$, 证明:存在非零列向量 α 和 β , 使得 $A = \alpha \beta^{\mathrm{T}}$. (2) 已知矩阵 $A = \alpha_1 \beta_1^{\text{T}} + \alpha_2 \beta_2^{\text{T}}$,其中列向量 α_1, α_2 线性无关, β_1, β_2 也线性无关,证明: r(A) = 2. 证: (1) $\mathbf{r}(A) = 1$ 说明 A 的列秩为1,则 $A = (\alpha_1, \alpha_2, \dots, \alpha_n)$ 的任意两列线性相关,

取 A 的一个非零列向量记为 α ,则 $\alpha_i = b_i \alpha, i = 1, 2, \cdots, n$,记 $\beta = (b_1, b_2, \cdots, b_n)^{\mathrm{T}}$,因为有一个 b_i 为1,则 β 非零,有 $A = \alpha \beta^{\mathrm{T}}$.

 $(2)解法一: 由 A = \alpha_1\beta_1^T + \alpha_2\beta_2^T = (\alpha_1, \alpha_2) \begin{pmatrix} \beta_1^T \\ \beta_2^T \end{pmatrix} 及线性无关性知,$ $2 = \mathbf{r}(\alpha_1, \alpha_2) + \mathbf{r}((\beta_1, \beta_2)^T) - 2 \le \mathbf{r}(A) \le \mathbf{r}(\alpha_1, \alpha_2) = 2, \text{ 故 } \mathbf{r}(A) = 2.$ 解法二: 由 $A = \alpha_1\beta_1^T + \alpha_2\beta_2^T = (\alpha_1, \alpha_2) \begin{pmatrix} \beta_1^T \\ \beta_2^T \end{pmatrix}$ 及线性无关性知,

 $2 = r(\alpha_1, \alpha_2) + r((\beta_1, \beta_2)^T) - 2 \le r(A) = r(\alpha_1 \beta_1^T + \alpha_2 \beta_2^T) \le r(\alpha_1 \beta_1^T) + r(\alpha_2 \beta_2^T) = 2, \text{ 故 } r(A) = 2.$ 解法三:根据结论:若 P 行满秩,则 r(AP) = r(A). 可知 $r(A) = r((\alpha_1, \alpha_2)(\beta_1, \beta_2)^T) = r(\alpha_1, \alpha_2) = 2.$ 解法四:由 $A = \alpha_1 \beta_1^T + \alpha_2 \beta_2^T = (\alpha_1, \alpha_2) \begin{pmatrix} \beta_1^T \\ \beta_2^T \end{pmatrix}$,令 $B = \begin{pmatrix} \beta_1^T \\ \beta_2^T \end{pmatrix}$,由线性无关性有 r(B) = 2.

只要证明 Ax = 0 与 Bx = 0 同解,即可得 $\mathbf{r}(A) = \mathbf{r}(B) = 2$. 若 x 满足方程组 Bx = 0,则有 $Ax = (\alpha_1, \alpha_2)Bx = 0$,若 x 满足 Ax = 0,令 y = Bx,

则有 $(\alpha_1,\alpha_2)y=0$,由于 α_1,α_2 线性无关,故 y=0,于是 Bx=y=0,即 Ax=0 与 Bx=0 同解.

证法二: (1) 因为 $\mathbf{r}(A) = 1$ 我们有分解 $A = P\begin{pmatrix} 1 \\ O \end{pmatrix} Q = Pe_1e_1^{\mathrm{T}}Q = (Pe_1)(e_1^{\mathrm{T}}Q) = \alpha\beta^{\mathrm{T}},$ 其中 P,Q 可逆, $\alpha,\beta^{\mathrm{T}}$ 分别是 P,Q 的第一列和第一行,故 α,β 非零.

(2) 因为 α_1, α_2 线性无关,故存在可逆矩阵 P 使得 $P(\alpha_1, \alpha_2) = \begin{pmatrix} E_2 \\ O \end{pmatrix}$,

同理有可逆矩阵 Q 使得 $Q(\beta_1, \beta_2) = \begin{pmatrix} E_2 \\ O \end{pmatrix}$,

于是有 $PAQ^{\mathrm{T}} = P(\alpha_1 \beta_1^{\mathrm{T}} + \alpha_2 \beta_2^{\mathrm{T}})Q^{\mathrm{T}} = P(\alpha_1, \alpha_2) \begin{pmatrix} \beta_1^{\mathrm{T}} \\ \beta_2^{\mathrm{T}} \end{pmatrix} Q^{\mathrm{T}} = \begin{pmatrix} E_2 \\ O \end{pmatrix} (E_2, O) = \begin{pmatrix} E_2 & O \\ O & O \end{pmatrix}$,

故 $\mathbf{r}(A) = \mathbf{r}(PAQ^{\mathrm{T}}) = \mathbf{r}\begin{pmatrix} E_2 & O \\ O & O \end{pmatrix} = 2.$