# Анализ свойств локальных моделей в задачах кластеризации точек квазипериодических временных рядов

## Грабовой Андрей Валериевич

Московский физико-технический институт Факультет управления и прикладной математики Кафедра интеллектуальных систем

Научный руководитель д.ф.-м.н. В. В. Стрижов

Москва 2019 г

## Задача кластеризации точек временного ряда

**Цель:** предложить алгоритм поиска характерных квазипериодических сегментов внутри временного ряда, полученных при помощи мобильного акселерометра.

#### Задачи

- Предложить признаковое описание точек временного ряда.
- Предложить функцию расстояния между точками временного ряда в новом признаковом описании, для их дальнейшей кластеризации.

#### Исследуемая проблема

Понижение размерности пространства признаков. Понстроение признакового описания точек временного ряда.

#### Метод решения

Алгоритм поиска характерных сегментов основывается на методе главных компонент для локального снижения размерности сегмента фазовой траектории в окрестности каждой точки временного ряда. Главные компоненты рассматриваются как признаковое описания точек временного ряда.

## Список литературы

- A. P. Motrenko, V. V. Strijov Extracting fundamental periods to segment biomedical signals // Journal of Biomedical and Health Informatics, 2015, 20(6). P. 1466–1476.
- ❷ A.D. Ignatov, V. V. Strijov Human activity recognition using quasi-periodic time series collected from a single triaxial accelerometer. // Multimedia Tools and Applications, 2015, P. 1–14.
- Y. G. Cinar and H. Mirisaee Period-aware content attention RNNs for time series forecasting with missing values // Neurocomputing, 2018. Vol. 312. P. 177– 186.
- A. Olivares, J. Ramirez, J. M. Gorris, G. Olivares, M. Damas Detection of (in)activity periods in human body motion using inertial sensors: A comparative study. // Sensors, 12(5):5791–5814, 2012.

## Постановка задачи кластеризации точек

Сегмент — последовательность точек временного ряда, которая относится к одному характерному физическому действию человека: шаг, прыжок.

Цепь — последовательность сегментов, которые образуют квазипериодическую последовательность точек.



а) временной ряда разбитый на сегменты; b) проекции на плоскость фазовых траекторий временного ряда, которые относятся к Type 1 и Type 2.

## Постановка задачи кластеризации точек

### Предположения:

- ullet число различных типов сегментов внутри временного ряда известно и равно K,
- $\bullet$ для всех  $\mathbf{v} \in \mathcal{V}$  выполняется  $|\mathbf{v}| \leq T$ , где  $|\mathbf{v}|$  длина сегмента,
- ullet для всех i либо  $[{f v}_{i-1},{f v}_i]$  либо  $[{f v}_i,{f v}_{i+1}]$  является цепью.

Строится отображение

$$a: t \to \mathbb{Y} = \{1, \cdots, K\},\$$

где  $t \in \{1, \cdots, N\}$  некоторый момент времени, на котором задан временной ряд. Требуется, чтобы отображение a удовлетворяло следующим свойствам:

$$\begin{cases} a\left(t_{1}\right)=a\left(t_{2}\right), & \text{если в моменты } t_{1},t_{2} \text{ совершается один тип действий,} \\ a\left(t_{1}\right) \neq a\left(t_{2}\right), & \text{если в моменты } t_{1},t_{2} \text{ совершаются разные типы действий.} \end{cases}$$

Задана асессорская разметка точек временного ряда:

$$\mathbf{y} \in \{1, \cdots, K\}^N$$
.

Ошибка алгоритма a на временном ряде  $\mathbf{x}$ :

$$S = \frac{1}{N} \sum_{t=1}^{N} [y_t = a(t)],$$

где t — момент времени,  $y_t$  асессорская разметка t-го момента времени для заданого временного ряда.

## Построение признакового описания точек

Фазовая траектория ряда х:

$$\mathbf{H} = {\mathbf{h}_t | \mathbf{h}_t = [x_{t-T}, x_{t-T+1}, \cdots, x_t], T \le t \le N},$$

где  $\mathbf{h}_t$  — точка фазовой траектории.

Множество сегментов фазовой траектории:

$$S = \{s_t | s_t = [h_{t-T}, h_{t-T+1}, \cdots, h_{t+T-1}], \ 2T \le t \le N - T\},\$$

где  $\mathbf{s}_t$  — это сегмент фазовой траектории в окрестности момента времени t.





## Построение признакового описания точек

Множество базисов, полученных методом главных компонент для каждого сегмента фазовой траектории:

$$\mathbf{W} = \{\mathbf{W}_t | \mathbf{W}_t = [\mathbf{w}_t^1, \mathbf{w}_t^2]\}, \quad \mathbf{\Lambda} = \{\boldsymbol{\lambda}_t | \boldsymbol{\lambda}_t = [\lambda_t^1, \lambda_t^2]\},$$

где  $[\mathbf{w}_t^1, \mathbf{w}_t^2]$  и  $[\lambda_t^1, \lambda_t^2]$  это базисные векторы и соответствующие им собственные числа для сегмента фазовой траектории  $\mathbf{s}_t$ .

Далее  $\mathbf{W}_t$  и  $\lambda_t$  рассматриваются как признаковое описанием момента t.

Для кластеризации точек временного ряда, вводится расстояние в предложенном признаковом описании данного ряда. Расстояние между элементами  $\mathbf{W}_{t_1}, \mathbf{W}_{t_2}$ :

$$\rho\left(\mathbf{W}_{t_{1}},\mathbf{W}_{t_{2}}\right) = \max\left(\max_{\mathbf{e}_{2} \in \mathbf{W}_{t_{2}}} d_{1}\left(\mathbf{e}_{2}\right), \max_{\mathbf{e}_{1} \in \mathbf{W}_{t_{1}}} d_{2}\left(\mathbf{e}_{1}\right)\right),$$

где  $\mathbf{e}_i$  это базисный вектор пространства  $\mathbf{W}_i$ , а  $d_i\left(\mathbf{e}\right)$  является расстоянием от вектора  $\mathbf{e}$  до пространства  $\mathbf{W}_i$ .

## Функция расстояния

Расстояние между элементами  $\mathbf{W}_{t_1}, \mathbf{W}_{t_2}$ :

$$\rho\left(\mathbf{W}_{t_{1}},\mathbf{W}_{t_{2}}\right) = \max_{\left\{\mathbf{a},\mathbf{b},\mathbf{c}\right\} \subset \mathbf{W}_{t_{1}} \cup \mathbf{W}_{t_{2}}} V\left(\mathbf{a},\mathbf{b},\mathbf{c}\right),$$

где  $\mathbf{W}_{t_1} \cup \mathbf{W}_{t_2}$  это объединение базисных векторов первого и второго пространства,  $V(\mathbf{a}, \mathbf{b}, \mathbf{c})$  — объем параллелепипеда построенного на векторах  $\mathbf{a}, \mathbf{b}, \mathbf{c}$ , которые являются столбцами матрицы  $\mathbf{W}_{t_1} \cup \mathbf{W}_{t_2}$ .

Расстояние между собственными числами:

$$\rho\left(\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}\right) = \sqrt{\left(\boldsymbol{\lambda}_{1} - \boldsymbol{\lambda}_{2}\right)^{\mathsf{T}}\left(\boldsymbol{\lambda}_{1} - \boldsymbol{\lambda}_{2}\right)}.$$

Расстояние между точками временного ряда:

$$\rho(t_1, t_2) = \rho(\mathbf{W}_1, \mathbf{W}_2) + \rho(\lambda_1, \lambda_2).$$

Матрица попарных растояний:

$$\mathbf{M} = \mathbb{R}_{+}^{N \times N}.$$

Используя матрицу попарны

### Результаты эксперимента

- Physical Motion ряды получены при помощи мобильного акселерометра.
  Характерные действия: ходьба, бег, приседания.
- Synthetic синтетические временные ряды.

| Ряд, х            | Длина, $N$ | Сегментов, $K$ | Период, Т | Ошибка, S |
|-------------------|------------|----------------|-----------|-----------|
| Physical Motion 1 | 900        | 2              | 50        | 0.03      |
| Physical Motion 2 | 900        | 2              | 35        | 0.08      |
| Physical Motion 3 | 900        | 2              | 30        | 0.09      |
| Physical Motion 4 | 800        | 2              | 50        | 0.01      |
| Synthetic 1       | 2000       | 3              | 40        | 0.008     |
| Synthetic 2       | 2000       | 2              | 40        | 0.06      |
| Synthetic 3       | 2000       | 2              | 40        | 0.03      |
| Synthetic 4       | 2000       | 2              | 40        | 0.03      |
| Synthetic 5       | 2000       | 2              | 40        | 0.04      |
| Simple            | 1000       | 2              | 135       | 0.14      |

- N число точек во временном ряде,
- ullet K число различных действий во временном ряде,
- Т максимальная длина сегмента,
- $\bullet$  S точность кластеризации.

# Пример кластеризации точек временного ряда



а) начальный временной ряд; b) матрица попарных расстояний; c) кластеризация точек ряда; d) Multidimential Scaling для матрицы попарных расстояний.

# Пример сегментации временного ряда



а) сегментация ряда; b) фазовая траектория для второго действия; c) фазовая траектория для первого действия.

## Выносится на защиту

- Предложен алгоритм поиска характерных сегментов, который основывается на методе главных компонент для локального снижения размерности
- Введена функция расстояния между локальными базисами в каждый момент времени, которые интерпретировались как признаковое описание точки временного ряда. Данная функция является метрикой.
- В ходе эксперимента, на реальных показаниях акселерометра, а также на синтетических данных, было показано, что предложенный метод измерение расстояния между базисами хорошо разделяет точки которые принадлежат различным действиям, что приводит к хорошей кластеризации объектов.
- Также в эксперименте была проведена полная сегментация временных рядов для каждого кластера по отдельности.

Планируется решить задачу нахождения минимального размера фазового пространства, для которого фазовая траектория не имеет самопересечений.

## Публикации и выступления

- Грабовой А. В., Бахтеев О. Ю., Стрижов В. В. Определение релевантности параметров нейросети // Информатика и ее применения, 2019, 13(2).
- Падаев Т. Т., Грабовой А. В., Мотренко А. П., Стрижов В. В. Численные методы оценки объема выборки в задачах регрессии и классификации // (в процессе)
- f O Бучнев Т. Т., Грабовой А. В., Гадаев Т. Т., Стрижов В. В. Ранее прогнозирование достаточного объема выборки для обобщенно линейной модели // (в процессе)
- 12 октября 2018. ИОИ-2018. Автоматическое определение релевантности параметров нейросети.
- 29 ноября 2019. 61-я Всероссийская научная конференция МФТИ. Поиск оптимальной модели при помощи алгоритмов прореживания.