Car Crash Analysis

Jeremy Meye and Brittany Russell

Introduction

Motivation

Goals

Assumptions

Verifying Assumptions

Variable

Evaluation

_ .

Results

Conclusion

Remarks
Weaknesses &
Future Question

Car Crash Analysis

Jeremy Meyer and Brittany Russell

April 2019

Outline

Car Crash Analysis

- Introduction
 - Motivation
 - EDA/Cleaning
 - Goals
- 2 Model
 - Assumptions
 - Verifying Assumptions
- 3 Methods
 - Variable Selection
- 4 Evaluation
 - Evaluating Fit
- Results
- Conclusion
 - Remarks
 - Weaknesses & Future Questions
 - References

Motivation

Car Crash Analysis

Jeremy Meyer and Brittany Russell

Introduction Motivation

EDA/Cleaning Goals

Mode

Verifying Assumption

Method

Variable Selection

Evaluation Evaluating F

Result

Conclusio

Remarks Weaknesses & Future Question References

- 37,461 US fatalities in 2016 (NHTSA department)²
- $lue{}$ Understanding the relationships between road conditions and fatal injuries ightarrow safer roads

The Data

Car Crash Analysis

Jeremy Meyer and Brittany Russell

Motivation

EDA/Cleaning

Goals

Model
Assumptions
Verifying
Assumptions

Methods Variable Selection

Evaluation Evaluating F

Result

Conclusion
Remarks
Weaknesses &
Future Question
References

■ FHWA collected data from 8603 accidents in 2013 nationwide

- Variable of interest: Crash severity (binary outcome)
 - 47% of data had severe crashes
- Variables collected describe various road/vehicle conditions.

Categorical Variables:

_	24.1080	
	Hour*	Traffic-way
	Lighting	Air Bag
	Weather	Restraints
ĺ	ALCOHOL	Road alignment
	Intersection	Road surface
	Severity	

Numeric Variables:

The Data: Categorical Variables

Car Crash Analysis

Jeremy Meyer and Brittany Russell

Introduction Motivation EDA/Cleaning

Mode

Assumptions Verifying Assumptions

Methods

Evaluation

Evaluating

Results

- Most categorical variables contain several levels
- Problem: Factor levels need to be cleaned
 - Sparsity
 - Similar categories
 - $\blacksquare \ \ \mathsf{Hour} \ \mathsf{is} \ \mathsf{a} \ \mathsf{cyclic} \ \mathsf{variable} \to \mathsf{categorize}$

Cleaning Example – Airbag Deployment

Car Crash Analysis

EDA/Cleaning

(a) Original contingency table.

(b) Original proportions by airbag

	Not severe	Severe
None deployed	362	299
Front deployed	787	1259
Side deployed	61	53
Roof deployed	11	20
Other deployed	1	2
Combo deployed	128	248
Unknown deployed	290	445
Not applicable	2909	1728

(b) Original proportions by airbag					
Not severe	Severe				
0.5477	0.4523				
0.3847	0.6153				
0.5351	0.4649				
0.3548	0.6452				
0.3333	0.6667				
0.3404	0.6596				
0.3946	0.6054				
0.6273	0.3727				
	Not severe 0.5477 0.3847 0.5351 0.3548 0.3333 0.3404 0.3946				

Severe Not severe None deployed 362 299 1+ deployed 1278 2027 Not applicable 1728 2909

(a) Cleaned contingency table. (b) Cleaned proportions by airbag.

	Not severe	Severe
None deployed	0.5477	0.4523
1+ deployed	0.3867	0.6133
Not applicable	0.6273	0.3727

The Data: Continuous variables

Car Crash Analysis

Jeremy Meyer and Brittany Russell

Motivation
EDA/Cleaning
Goals

Assumption

Verifying Assumptions

Variable Selection

Evaluation Evaluating F

Result

Conclusior

Remarks Weaknesses & Future Questions References Data also had numeric variables such as speed limit and number of lanes.

Goals of the Analysis

Car Crash Analysis

Jeremy Meyer and Brittany Russell

Introduction

Motivation

EDA/Cleaning

Goals

Model Assumptions Verifying

Methods

Evaluation

Resul

Conclusio

- Our goal is to understand the relationship between these variables and severe crashes.
- We will address the following:
 - What makes a severe accident more likely?
 - 2 What is the probability of a severe crash for different groups?

Logistic Regression

Car Crash Analysis

Jeremy Meye and Brittany Russell

Introduction
Motivation
EDA/Cleaning
Goals

Model

Assumptions Verifying Assumptions

Methods Variable

Evaluation

Result

Conclusio

- Response variables is binary severe crash (1) or not severe crash (0)
- Cannot use linear regression (response does not follow a normal distribution)
- Use the Bernoulli distribution to model binary response
- Make the probability of "success" (severe crash) a function of the covariates

Model Statement

Car Crash Analysis

Jeremy Meyer and Brittany Russell

Introduction Motivation EDA/Cleaning

Model

Assumptions Verifying Assumptions

Method

Variable Selection

Evaluation Evaluating I

Result

Conclusio

Remarks
Weaknesses &
Future Question

Model

$$Y_i \sim \mathsf{Bernoulli}(p_i), \quad x_i'\beta = \log\left(\frac{p_i}{1-p_i}\right)$$

 Y_i : the response for the *i*th crash

p_i: the probability of the ith crash being "severe"

 x_i' : the vector of covariates for the *i*th crash

 β : coefficients of the covariates, the effect of the covariate on the log-odds

Model Continued

Car Crash Analysis

Jeremy Meyer and Brittany Russell

Introduction

Motivation

EDA/Cleaning

Goals

Model
Assumptions
Verifying

Assumptions Methods

Evaluation

Result

Conclusion
Remarks
Weaknesses &
Future Question

 $\mathbf{x}_{i}'\beta = \beta_{0} + \beta_{1} \operatorname{airbag}_{i} + \beta_{2} (\operatorname{no restraint})_{i} + \beta_{3} \operatorname{unknown}_{i} + \beta_{4} \operatorname{alcohol}_{i} + \beta_{5} \operatorname{speed}_{i} + \beta_{6} \operatorname{night}_{i} + \beta_{7} \operatorname{left}_{i}$

Covariates

airbag: binary, no airbags deployed or at least one deployed no restraint: binary, known restraint used or no restraint used unknown: binary, known restraint used or unknown restraint used

alcohol: binary, no alcohol involved or alcohol involved

speed: quantitative, speed limit, mph

night: binary, any other light condition or night with lights

left: binary, straight/other curvature or left curve

Model Assumptions

Car Crash Analysis

Jeremy Meyer and Brittany Russell

Introduction

Motivation

EDA/Cleaning

Goals

Assumptions

Verifying Assumptions

Variable Carriable

Evaluation

Results

Conclusion

- Independence
- 2 Monotonicity in the predictors
- 3 No Multicollinearity

Independence

Car Crash Analysis

Jeremy Meyer and Brittany Russell

Introduction
Motivation
EDA/Cleaning

Model Assumptions Verifying

Verifying Assumptions

Variable Selection

Evaluation Evaluating

Results

- Each individual car crash is independent of the others
- Reasonable since data has been pre-cleaned
 - Only 1 record per car accident

Monotonicity in the predictors

Car Crash Analysis

Jeremy Meyer and Brittany Russell

Introduction

Motivation

EDA/Cleaning

Goals

Model
Assumptions
Verifying
Assumptions

Methods

Evaluation Evaluating F

Result

Conclusion

Remarks Weaknesses & Future Questions References

Only needs to be checked for continuous variables

Severity by the Number of Lanes

Multicollinearity

Car Crash Analysis

Jeremy Meye and Brittany Russell

Introduction
Motivation
EDA/Cleaning
Goals

Model
Assumptions
Verifying
Assumptions

Methods Variable Selection

Evaluation Evaluating F

Result

Remarks Weaknesses & Future Question

- Potential Problems with:
 - Hour (VIF 3.00) and Lighting (VIF 3.16)
 - 2 Weather (VIF 5.87) and surface conditions (VIF 5.56) (All other variables had a VIF less than 2)

Solution: We will allow step-wise regression to choose between the correlated predictors. We will then check collinearity with final model to verify it has dissipated.

Variable selection

Car Crash Analysis

Jeremy Meyer and Brittany Russell

Introduction

Motivation

EDA/Cleaning

Goals

Assumption

Assumptions Verifying Assumptions

Variable Selection

Evaluation Evaluating F

Result

Conclusio

- Problem: Even after data cleaning \rightarrow 43 levels across 11 variables.
 - Multicollinearity / Overfitting
- We want the significant levels, not just significant variables.
- Stepwise Regression treat each level as its own variable

Stepwise regression criterion

Car Crash Analysis

Jeremy Meye and Brittany Russell

Introduction

Motivation

EDA/Cleaning

Goals

Mode

Assumptions Verifying Assumptions

Method

Variable Selection

Evaluation Evaluating F

Result

Conclusio

Remarks
Weaknesses &
Future Questions
References

Criterion: BIC

- Lower standard errors
- Less chance for overfitting
- Better for our inference-type research questions

$$BIC = -2(loglikelihood) + Plog(N)$$
 (1)

P = Number of predictors in the model

N = number of crashes in dataset

Stepwise regression will seek to minimize this quantity

Bidirectional stepwise selection algorithm

Car Crash Analysis

Variable Selection

We used this to perform variable selection

- Start with intercept only model
- 2 Consider all possible models after adding one of the variables not in the model or removing one variable currently in the model.
- 3 Find and choose the model with the lowest BIC.
- 4 Repeat 2 and 3 until doing nothing yields the lowest BIC

Which ones were eliminated?

Car Crash Analysis

Variable

Selection

Trafficway (2w-Divided)	Weather (Clear)	Intersec type (None)	Restraint (Lap/Shoulder)
2w-Divided, unprotected	Rain	4 way	Shoulder Only
2w-Unprotected	Snow	5+ way	Lap Only
One way	Crosswinds	Y-int	Not Used
2w-mid lane	Cloudy	T-int	Motor Helmet
On/off ramp	Low Visibility	L-int	Other/Unknown
	Wintry Mix		None available
Surface Condition (None)	Light (Day)	Hour (Day (10a-3p))	Alignment (Straight)
Snow/Slush	Dark-not lit	Morning (6a-9a)	Curve Right
Ice	Dark-lit	Evening (4p-8p)	Curve Left
Water	Dawn	Night (9p-5a)	Unknown Curve
Dry	Dusk		
Wet			
Other Conditions			
Air Bag (Not deployed)	Alcohol (None)	Speed Limit (0)	Number Lanes (0)
Air Bag Deployed	Alcohol Used	Speed Limit	Number of Lanes

- The algorithm eliminated 35 variables and kept only 8
- In the final model, all VIFs were less than 2

Evaluating Fit

Car Crash Analysis

Evaluating Fit

- R² does not work in this situation
- We need a measurement of classification accuracy
- ROC (Receiver Operating Characteristic) Curve
 - Uses many different cutoff values
 - Plots sensitivity (true positive rate) against specificity (true negative rate)
- AUC (Area Under the Curve) summarizes the ROC curve

ROC Curve

Car Crash Analysis

Jeremy Meyer and Brittany Russell

Introduction Motivation

Model

Assumptions Verifying

Methods Variable

Evaluation Evaluating Fit

Result

Conclusion

ROC Curve

Car Crash Analysis

Evaluating Fit

- \bullet AUC = 0.682
- \blacksquare AUC = 1 (perfect classification), AUC = 0.5 (same as flipping a coin)
- Model classifies better than a coin flip
- Missing factors that distinguish severe and not severe crashes?

Choosing a Cutoff

Car Crash Analysis

Evaluating Fit

- In order to classify, we must choose a cutoff value
- "Best" cutoff depends on the goals of the analysis
- Balance accuracy in predicting severe crashes and predicting not severe crashes
- Maximize overall accuracy (biases towards the more common category)

Accuracy Rates

Car Crash Analysis

Jeremy Meyer and Brittany Russell

Introduction

Motivation

EDA/Cleaning

Model

Assumptions
Verifying
Assumptions

Methods Variable

Selection

Evaluating Fit

Results

Conclusion

Balancing Two Types of Accuracy

Car Crash Analysis

Jeremy Meyer and Brittany Russell

Introduction Motivation

Motivation EDA/Cleaning

Model

Assumptions Verifying

Mothodo

Variable

Evaluation Evaluating Fit

Danula

Canalusia

Conclusio

Weaknesses & Future Question:

Classification

Car Crash Analysis

Jeremy Meyer and Brittany Russell

Motivation
EDA/Cleaning
Goals

Model
Assumptions
Verifying

Methods Variable Selection

Evaluation Evaluating Fit

Result

Conclusio

Remarks Weaknesses & Future Question References

Table: Confusion Matrix, cutoff = 0.4325

	Classified Not Severe	Classified Severe
True Not Severe	2906	1643
True Severe	1455	2599

- \blacksquare Sensitivity = 2599/(2599 + 1455) = 0.6388
- \blacksquare Specificity = 2906/(2906 + 1643) = 0.6411

Classification

Car Crash Analysis

Jeremy Meyer and Brittany Russell

Introduction

Motivation

EDA/Cleaning

Model

Assumptions Verifying Assumptions

Methods Variable Selection

Evaluation Evaluating Fit

Result

Conclusio

Remarks
Weaknesses &
Future Question
References

Classification with cutoff = 0.4325

Research questions

Car Crash Analysis

Results

Recall our first research question was what makes a severe accident more likely.

To answer this question, we'll look at the model coefficients.

Results

Car Crash Analysis

Jeremy Meyer and Brittany Russell

Introduction

Motivation

EDA/Cleaning

Goals

Model
Assumptions
Verifying

Assumptions Methods

Selection Evaluation

Evaluating I

Results

Remarks
Weaknesses &
Future Question
References

Effect	Estimate	2.5 %	97.5 %
(Intercept)	-1.276	-1.446	-1.107
$1+\;Air\;Bag\;Deployed$	0.781	0.688	0.875
No Restraint Used	1.390	1.197	1.588
Unknown Restraint Used	0.456	0.221	0.695
Alcohol	0.544	0.397	0.692
Speed Limit	0.013	0.010	0.017
Night - Lit Roads	0.373	0.252	0.493
Left Curve	0.418	0.226	0.611

Baseline Levels: No airbag deployment, known restraint used, no alcohol involvement, speed limit of 0, daytime conditions, straight road.

Interpretation of effects

Car Crash Analysis

Jeremy Meye and Brittany Russell

Introduction Motivation EDA/Cleaning Goals

Model
Assumptions
Verifying
Assumptions

Methods Variable Selection

Evaluation Evaluating F

Results

Remarks
Weaknesses &
Future Question

Interpretation:

- Categorical effects are relative to baseline level.
- When at least one airbag is deployed, severe crashes are $e^{.781} = 2.18$ times more likely.
- For every one mph increase in speed limit, severe crashes are $e^{.013} = 1.013$ times more likely.
- All confidence intervals do not include zero \rightarrow significance.

What makes a severe accident more likely?

Car Crash Analysis

Jeremy Meyer and Brittany Russell

Introduction

Motivation

EDA/Cleaning

Goals

Model Assumptions Verifying Assumptions

Methods Variable Selection

Evaluation Evaluating F

Results

Conclusion Remarks Weaknesses & Future Questions References Contributors to severe accidents

Contributors to severe accidents				
Contributor	Multiplier	2.5 %	97.5 %	
1+ Air Bag Deployed	2.184	1.990	2.398	
No Restraint Used	4.014	3.310	4.896	
Unknown Restraint Used	1.579	1.247	2.003	
Alcohol	1.723	1.487	1.998	
Speed Limit (per 5mph)	1.069	1.050	1.089	
Night - Lit Roads	1.451	1.286	1.638	
Left Curve	1.519	1.254	1.842	

- Not wearing seat belts increases odds of severe car crash the most.
 - No difference between most other restraint types
- Air bag deployment also increases odds of a severe crash.
 - Confounded?
- Left curves are more associated with severe accidents.

What is the probability of a severe crash for different groups?

Car Crash Analysis

Jeremy Meye and Brittany Russell

Introduction

Motivation

EDA/Cleaning

Goals

Model
Assumptions
Verifying

Methods Variable Selection

Evaluation

Results

- We can explore the probability of a severe crash by group
- Compare estimated probabilities across all groups
- 48 possible combinations of categorical variables
- Hold speed limit constant at 45 mph

Probabilities by group

Car Crash Analysis

Jeremy Meyer and Brittany Russell

Introduction Motivation EDA/Cleaning Goals

Model
Assumptions
Verifying
Assumptions

Methods

Evaluation Evaluating F

Results

Canalusia

Remarks Weaknesses & Future Question References Table: Estimated probabilities of a severe crash for worst, best, alcohol only, no seatbelt only, and night driving only groups (speed limit held constant at 45 mph).

	Best	Worst	Alcohol	No seatbelt	Night driving
estimated probability	0.337	0.944	0.467	0.671	0.425
dark with lights	0	1	0	0	1
alcohol involved	0	1	1	0	0
no restraint used	0	1	0	1	0
unknown restraint used	0	0	0	0	0
1+ airbag deployed	0	1	0	0	0
road curved left	0	1	0	0	0

Worst Case Scenario

Car Crash Analysis

Jeremy Meye and Brittany Russell

Introduction Motivation EDA/Cleaning

Mode

Assumptions Verifying Assumptions

Methods Variable Selection

Evaluation Evaluating F

Results

Remarks
Weaknesses &
Future Questio
References

- Dark road with lights
- Alcohol is involved
- No restraint used
- At least one airbag deploys
- Road curves left
- Probability increases as speed limit increases

Best Case Scenario

Car Crash Analysis

Jeremy Meyer and Brittany Russell

Introduction Motivation EDA/Cleaning Goals

Model
Assumptions
Verifying
Assumptions

Methods Variable Selection

Evaluation Evaluating F

Results

- Road is not dark and lit
- Alcohol is not involved
- Either lap, shoulder, lap/shoulder, or motorcycle helmet used (or restraint is not applicable)
- No airbags deploy (or airbag is not applicable)
- Road is straight (or curves not to the left)
- Probability decreases as speed limit decreases

What about speed limit?

Car Crash Analysis

Results

Remarks

Car Crash Analysis

Remarks

Logistic regression model succeeded in estimating the relationship between independent variables and the probability of a severe crash for different groups.

Model fit is adequate and the assumptions of the model are satisfied.

Weaknesses

Car Crash Analysis

Weaknesses & **Future Questions**

- Variable selection is subjective (bias vs. variance)
- "Unknown" variables may create problems (i.e. unknown restraint used)
- Model seems to be missing important variables

Future Questions

Car Crash Analysis

Weaknesses & **Future Questions**

- New data set, build a model for prediction
- Try different cutoffs for classification
- Estimate the real-world costs of the two types of errors

References

Car Crash Analysis

Jeremy Meyer and Brittany Russell

Introduction

Motivation

EDA/Cleaning

Goals

Model Assumptions Verifying

Verifying Assumptions

Variable Selection

Evaluation Evaluating

Results

Conclusion
Remarks
Weaknesses &
Future Questic

- **1** komonews.com *1 dead, 1 under arrest in 3-vehicle crash in Lynnwood*, Jan 13th, 2019
- 2 NHTSA public traffic crash data 2016