## FREQUENCY RESPONSE

- So far, considered *midband analysis*, where *all capacitive effects were neglected* 
  - > Voltage/current gain was independent of frequency
- In *practical amplifier circuits*, however, the *gain would depend on frequency*
- Characterized by:
  - > Lower Cutoff Frequency (f<sub>I</sub>)
    - Contributed by external capacitors (C<sub>E</sub>, C<sub>B</sub>, C<sub>C</sub>)

- **► Upper Cutoff Frequency** (f<sub>H</sub>)
  - Contributed by device capacitances (for BJTs:  $C_{\pi}$ ,  $C_{\mu}$ ; for MOSFETs:  $C_{gs}$ ,  $C_{gd}$ ,  $C_{sb}$ ,  $C_{db}$ )
- These capacitors create *charge storage effects*, and *introduce time constants* into
  the circuit
- Discrete circuits show both  $f_L$  and  $f_H$
- IC stages show only  $f_H$ , since most of them are direct coupled without the need for any external capacitors



**f**<sub>L</sub>: Lower Cutoff Frequency **f**<sub>H</sub>: Upper Cutoff Frequency

**Bandwidth** =  $f_H - f_L$ 

- Exact analysis extremely complicated
  - ➤ Most often, results in *very complicated expressions*, *completely hiding the physical feel of the phenomenon*
  - > Makes debugging extremely difficult
    - For example, a circuit having *4 capacitors*, will have a *fourth-order transfer function*, which needs to be *solved* to get all the *poles and zeros* of the system
  - ➤ However, there are *techniques*, which make these *analyses* extremely *trivial* 
    - Not accurate, but extremely simple, and makes debugging easy

## • Techniques:

- ➤ Infinite-Value Time Constant (IVTC) Method
  - Used for obtaining f<sub>L</sub>
- > Zero-Value Time Constant (ZVTC) Method
  - Used for obtaining  $f_H$
- These techniques are *extremely easy to* apply, and the results are *quite close to* actuals
- However, there is *one limitation* of these techniques