We claim,

1. A compound of Formula 1:

Formula 1

wherein:

 $R_1$  is selected from cycloalkyl, heterocycloalkyl, aryl and heteroaryl wherein  $R_1$  is optionally substituted with one or more substituents  $R_a$ , wherein  $R_a$  is independently selected from the group consisting of alkyl, halo, haloalkyl, nitro, alkenyl, alkynyl, alkoxy,  $-(R_7)_nNR_8R_9$  (wherein  $R_7$  is selected from alkyl, alkoxy, and oxyalkyl,  $R_8$  and  $R_9$  can be independently selected from H, and alkyl, or  $R_8$  and  $R_9$  can join together such that  $NR_8R_9$  form a 5 or 6-member heterocyclic ring, and n is selected from 0 and 1), and the substituent  $R_a$  is optionally further substituted with one or more substituents selected from the group consisting of alkyl, alkoxy, halo, cyano, alkanoyl, haloalkyl, thioalkyl and nitro,  $-(R_7)_nNR_8R_9$ , wherein  $R_7$ ,  $R_8$ ,  $R_9$ , and n are as defined above.

## R<sub>2</sub> and R<sub>3</sub> are:

independently selected from the group consisting of H, alkyl,
haloalkyl, aralkyl optionally substituted aryl, optionally substituted
heteroaryl and optionally substituted, saturated or unsaturated, 5-or

## **DOCKET NO. 317743-121**

6-membered, homocyclic or heterocyclic rings wherein the optional substituent may be selected from the group consisting of H, alkyl, alkoxy, and halo;

or

b) join together to form a 3, 4, 5, 6 or 7 member spirocyclic ring;

X is slelected from O, S, NH and NCN;

Ar<sub>1</sub> is phenyl and is optionally substituted with one or more substituents R<sub>b</sub>, wherein the substituent(s) R<sub>b</sub> are independently selected from the group consisting of alkyl, alkoxy, nitro halo, haloalkoxy, -(R<sub>7</sub>)<sub>n</sub>NR<sub>8</sub>R<sub>9</sub>, -S(O)<sub>2</sub>NR<sub>10</sub>R<sub>11</sub> and -O-(CH<sub>2</sub>)<sub>m</sub>NR<sub>10</sub>R<sub>11</sub> (wherein R<sub>7</sub> is selected from alkyl, alkoxy, and oxyalkyl, R<sub>8</sub> and R<sub>9</sub> can be independently selected from H, and alkyl, or R<sub>8</sub> and R<sub>9</sub> can join together such that NR<sub>8</sub>R<sub>9</sub> form a 5 or 6-member heterocyclic ring, and *n* is selected from 0, 1, 2, 3, 4 and 5 and R<sub>10</sub> and R<sub>11</sub> are independently selected from H, or alkyl, or R<sub>10</sub> and R<sub>11</sub> can join together such that NR<sub>10</sub>R<sub>11</sub>to form a 5 or 6-member heterocyclic ring and *m* is selected from 1, 2, 3, 4 and 5) and;

the substituent  $R_b$  is optionally further substituted with one or more substituents selected from the group consisting of alkyl, alkoxy, halo, cyano, alkanoyl, haloalkyl, thioalkyl, nitro,  $-(R_7)_nNR_8R_9$  wherein  $R_7$ ,  $R_8$ ,  $R_9$  and n are as described above,

with the proviso that Ar<sub>1</sub> does not have a substituent at the 2-position selected from the following groups, nitro, haloalkyl, cyano, -C(O)R<sub>12</sub> -C(O)OR<sub>12</sub>, -C(O)NR<sub>12</sub>R<sub>13</sub>, -S(O)R<sub>12</sub>, -S(O)<sub>2</sub>R<sub>12</sub>, and -S(O)<sub>2</sub>NR<sub>12</sub>R<sub>13</sub> (wherein R<sub>12</sub> and R<sub>13</sub> are independently selected from H and alkyl), and,

the second proviso that Ar<sub>1</sub> does not have an alkanoyl substituent at the 4 position,

and a salt solvate or hydrate thereof.

## DOCKET NO. 317743-121

- 2. A compound of claim 1 wherein Ar<sub>1</sub> is substituted with one or more substituents, R<sub>a</sub>, wherein the substituent(s) R<sub>a</sub> are selected from the group consisting of alkyl, alkoxy, nitro, acetyl, halo, haloalkyl, -S(O)<sub>2</sub>NR<sub>10</sub>R<sub>11</sub>, -O-(CH<sub>2</sub>)<sub>n</sub>NR<sub>10</sub>R<sub>11</sub>, wherein R<sub>10</sub> and R<sub>11</sub> are independently selected from H, or alkyl, or R<sub>10</sub> and R<sub>11</sub> can join together such that NR<sub>10</sub>R<sub>11</sub> form a 5 or 6 member heterocyclic ring.
- 3. A compound of claim 2 wherein there are two substituents  $R_6$ , independently selected from the group consisting of nitro, methoxy, and ethoxy.
- 4. A compound of claim 3 wherein the two substituents  $R_6$  are a nitro substituent at the 5-position and a methoxy substituent at the 2-position.
- 5. A compound as defined in claim 1 wherein R<sub>1</sub> is optionally substituted and is selected from the group consisting of phenyl, naphthyl, tetrahydro-naphthyl, indanyl, quinolinyl and pyridyl.
- 6. A compound of claim 5 wherein R<sub>1</sub> is indanyl.
- 7. A compound of claim 5 wherein  $R_1$  is optionally substituted pyridyl wherein the substituent(s)  $R_a$  are selected from the group consisting of alkyl, and haloalkyl.
- 8. A compound of claim 5 wherein R<sub>1</sub> is optionally substituted phenyl wherein the substituent(s) R<sub>a</sub> are selected from the group consisting of alkyl, halo, haloalkyl, nitro, vinyl, alkoxy, -(R<sub>7</sub>)<sub>n</sub>NR<sub>8</sub>R<sub>9</sub> wherein R<sub>7</sub> is selected from alkyl, alkoxy, and oxyalkyl, R<sub>8</sub> and R<sub>9</sub> can be independently selected from H, and alkyl, or R<sub>8</sub> and R<sub>9</sub> can join together such that NR<sub>8</sub>R<sub>9</sub> form a heterocyclic ring, and *n* is selected from 0 and 1.
- A compound of claim 8 wherein R<sub>1</sub> is selected from mono or di-substituted phenyl with the substituents selected independently from the group consisting of alkyl, halo and haloalkyl.
- 10. A compound as defined in claim 1 wherein R<sub>2</sub> and R<sub>3</sub> are independently selected from, H, alkyl, aralkyl, optionally substituted aryl, optionally substituted heteroaryl and optionally substituted saturated or unsaturated 5 or 6-membered homocyclic, or heterocyclic rings.

## **DOCKET NO. 317743-121**

- 11. A compound as defined in claim 10 wherein R<sub>2</sub> and R<sub>3</sub> are selected independently from H, phenyl, 3-thiophene, sec-butyl, 3,4-difluorophenyl, cyclohexyl, 3-trifuoromethylphenyl, t-butyl, isopropyl, methyl, benzyl, trifuoromethyl.
- 12. A compound as defined in claim 10 wherein R<sub>2</sub> and R<sub>3</sub> together form a 3, 5 or 6 member spirocycle.
- 13. A compound of claim 1 selected from the group consisting of:
- 2-[3-(2-methoxy-5-nitro-phenyl)-thioureido]- N-(2-indanyl)-2-(3-thienyl) acetamide **E42.2**;
- 2-[3-(2-methoxy-5-nitro-phenyl)-thioureido]- *N*-(3,4-dimethylphenyl)-2-phenyl acetamide **E32.2**;
- 2-[3-(2-methoxy-5-nitro-phenyl)-ureido]- *N*-(3,4-dimethylphenyl)-2-phenyl acetamide **E32.5**;
- (R)-2-[3-(2-methoxy-5-nitro-phenyl)-thioureido]- *N*-(3,4-dimethylphenyl)-2-phenyl acetamide **E33.1\***;
- 2-[3-(2-methoxy-5-nitro-phenyl)-ureido]- *N*-(2-indanyl)-2-(3-thienyl) acetamide **E42.1**;
- (R)-2-[3-(2-nitro -5-methoxy-phenyl)-ureido]- *N*-(2-indanyl)-2-phenyl acetamide **E29.1\***;
- (R)-2-[3-(2-nitro-5-methoxy-phenyl)-ureido]- N-(4-chlorophenyl)-2-phenyl acetamide **E4.1**; and
- (R)-2-[3-(2-methoxy-5-nitro-phenyl)-ureido]- *N*-(3-trifluromethylphenyl)-2-phenyl acetamide **E31.2**.
- 14. A pharmaceutical composition comprising a therapeutically effective amount of a compound of claim 1 and a pharmaceutically acceptable carrier.
- 15. A method for treating a patient having a medical condition for which a glycine transport inhibitor is indicated, comprising the step of administering to a patient a pharmaceutical composition as described in claim 14.
- 16. A method according to claim 15 wherein the medical condition is schizophrenia, cognitive dysfunction, or Alzheimer's disease.