

MASTER EN CIENCIA DE DATOS E INTELIGENCIA ARTIFICIAL

Expositores:

ING. LEONEL LINARES

LIC. LESLY SALMERON

JUNIO 2025

RETO#1

Análisis y Modelado de Datos Datos para Predicción de Precios

RETO:
HOUSE PRICES - ADVANCED REGRESSION TECHNIQUES

Presentación de nuestro proceso de análisis de datos y modelado para predecir precios

DESCRIPCIÓN DEL RETO

Conjunto de Datos

Dos archivos CSV:

train.csv **1,460** Registros

test.csv: **1,459** Registros

Variables

81 variables en total

43 categóricas y

38 numéricas

Variable Objetivo

Precio de Venta (SalePrice)

Análisis de Variables Categóricas

Variables con Valores Nulos

Identificamos variables categóricas con más del 80% de valores nulos.

Esto nos permitió determinar qué variables requerían tratamiento especial.

Variables con Alta Repetición

Detectamos variables categóricas con más del 95% de repetición de valores.

Estas variables aportan poca información al modelo.

Análisis de Variables Numéricas Numéricas

Valores Nulos

Identificamos variables numéricas con **más del del 5% de valores nulos.**

Valores Cero

Detectamos variables con más del 95% de valores cero.

Correlación

Analizamos variables con correlación superior al 80% para aplicar PCA.

GarageCars	GarageArea	0.890
YearBuilt	GarageYrBlt	0.835
GrLivArea	TotRmsAbvGrd	0.808
TotalBsmtSF	1stFIrSF	0.802

Representación gráfica de las variables numéricas y categóricas para identificar patrones

Distribución de las variables

Representación gráfica de las variables numéricas y categóricas para identificar patrones

Relación con la Variable Objetivo

Representación Gráfica de la Distribución de la Variable Objetivo

Escenario Inicial

SalePrice Count 100 SalePrice

Aplicando Logaritmo

Transformación de Variables

Variables Categóricas con NULL

Aplicamos Ordinal encoding, Target encoding y encoding y One hot encoding.

Variables Nuevas

Creamos variables con mayor correlación.

Técnicas de Escalado Utilizamos RobustScaler y StandardScaler.

Entrenar

Modelos Evaluados

- □ Linear Regression
- □ CatBoostRegressor
- ☐ GradientBoosting Regress
- **□**XGBoost
- □ Lig htG B M
- □ Random Forest

Se implementó Grid Search

Se definió un conjunto de hiperparámetros asignando múltiples valores a cada variable, con el objetivo de explorar distinta combinaciones durante el proceso de ajuste de modelo.

La validación del modelo se realizo utilizando el Error Cuadrático Medio(RMSE).

Modelos Aplicados

Modelo	Tiempo (segundos
Linear Regression	0.01380
CatBoostRegressor	1.51203
GradientBoostingRegressor	1.07605
XGBoost	0.95564
LightGBM	0.32938
RandomForest	3.38828

Diagrama de dispersión

Técnica de aprendizaje en conjunto (ensemble learning)

4.89 segundos

StackingRegressor es una técnica de **aprendizaje en conjunto** que combina múltiples modelos de regresión para mejorar la precisión de las predicciones. En lugar de depender de un solo modelo, **StackingRegressor** apila varios modelos base y usa un **meta-modelo** para aprender de sus predicciones y generar una estimación final más robusta

Resultados y Conclusiones

0.11814

179

Puntaje Final

Posición

Métrica de evaluación del modelo

Entre 4,648 participantes

179

CesteGrupo42025

0.11814

,

6 Modelos

Algoritmos de regresión evaluados evaluados

RETO#2

MASTER EN CIENCIA DE DATOS E INTELIGENCIA ARTIFICIAL

Expositores:

ING. LEONEL LINARES

LIC. LESLY SALMERON

JUNIO 2025

Análisis y Modelado de Datos para Predicción de Tweets

RETO: NATURAL LANGUAGE PROCESSING WITH DISASTER TWEETS

Presentación de nuestro proceso de análisis de datos y modelado para predecir Tweets sobre desastres reales y no reales

DESCRIPCIÓN DEL RETO

PROCESAMIENTO DEL LENGUAJE NATURAL CON TWEETS DE DESASTRE

Construir un modelo de aprendizaje automático que prediga qué Tweets tratan tratan sobre desastres reales y cuáles no. no.

Conjunto de datos de más 10 000 Tweets Tweets Clasificados Manualmente.

Conjunto de Datos

Archivos

Dos archivos CSV:

train.csv **7,613** registros

test.csv **3,263** registros

Variables

5 variables en total

3 categóricas

2 numéricas

Variable Objetivo

Indicador de desastre(target)

Análisis de Variables Categóricas

Variables con Valores Nulos

Identificamos variables categóricas de valores nulos.

Esto nos permitió determinar qué variables requerían tratamiento especial.

Análisis de Variables Numéricas

Histograma para identificar Patrones

Distribución de la longitud de los Tweets

"La longitud del tweet es un detector de emergencias: Esto permite crear un filtro de priorización para salvar vidas."

Distribución grafica de palabras por cada cada Tweets

histograma con una línea de densidad de kernel (KDE) superpuesta. Este gráfico ilustra cómo se distribuye la cantidad de palabras en los tweets.

Limpieza de Datos

Limpiamos caracteres extraños en el texto

Elimina URLs

Elimina emojis

Elimina caracteres especiales (excepto letra, números y espacios)

Elimina menciones a usuarios @usuario

Texto Original	Texto Limpio
"@user ¡Hola! Visita https://example.com 😃 #Python"	"hola visita python"

Entrenar Modelo

- Modelos Evaluados
 - ✓ Vinai/bertweet-base
 - ✓ Cardiffnlp/twitter-roberta-base
 - ✓ Microsoft/deberta-v3-small
 - ✓ Bert-base-uncased
 - ✓ Roberta-base
- Se implementó **optimizador Adam:** permite ajustar dinámicamente la tasa de aprendizaje de cada parámetro.
- Para realizar la validación utilizamos el error F1 Score, garantizando así una evaluación más precisa del rendimiento del modelo.

Modelos Aplicados

D. A I . I .		
Modelo	Tiemno	(segundos)
	licilipo	(3CBalla03)

Vinai/bertweet-base	428.20
---------------------	--------

Cardiffnlp/twitter-roberta-base 432.55

Microsoft/deberta-v3-small 287.78

Bert-base-uncased 431.77

Roberta-base 429.58

MAX_LEN=125, BATCH=32, EPOCHS=3, LEARNING_RATE=2e-5

Matriz de Confusión

La matriz muestra información de Verdadero Negativo (VN):379 Falso Positivos (FP):47 Falso Negativos (FN):69 Verdadero Positivo (VP):267 ayuda a priorizar mejoras (ej: reducir FN si son críticos).

Matriz de Confusión vinai/bertweet-base Seales Ago No Desastre No Desastre Desastre

Predicciones

Comparativa entre Modelos

Modelo	Mejor F1	Mejor Accuracy	Menor Val Loss	Comentario breve
vinai/bertweet-base	0.8219	0.8504	0.3794	Mejor F1 y Accuracy
cardiffnlp/twitter-roberta	0.8074	0.8360	0.4089	Buen rendimiento pero algo inconsistente
microsoft/deberta-v3- small	0.8076	0.8333	0.4263	Muy estable, pero F1 ligeramente menor
bert-base-uncased	0.8137	0.8360	0.4171	Pierde rendimiento en la última época
roberta-base	0.8111	0.8412	0.3929	Consistente y competitivo

Comparación de la validación de Pérdida por Época entre Diferentes Modelos de Lenguaje

Mide la diferencia entre las predicciones del modelo y los valores reales en el conjunto de validación. Un valor más bajo indica que el modelo está ajustándose bien sin sobreajustarse.

Comparación del valor F1 de validación por Época entre Diferentes Modelos de Lenguaje

Es una métrica que combina precisión y exhaustividad (precision & recall) en un solo valor. Es útil cuando hay clases desbalanceadas, ya que captura tanto los falsos positivos como los falsos negativos de manera equilibrada

Comparación del valor Accuracy por Época entre Diferentes Modelos de Lenguaje

Indica el porcentaje de ejemplos correctamente clasificados por el modelo en el conjunto de validación. Es una métrica más simple y directa, pero puede no ser la mejor si las clases no están bien distribuidas.

Técnica de aprendizaje en conjunto

```
# Función para votación mayoritaria

def majority_vote(row):

votes = [row[model] for model in MODELS if model in row]

return Counter(votes).most_common(1)[0][0]
```

Modelos

- ✓ Vinai/bertweet-base
- ✓ Cardiffnlp/twitter-roberta-base
- ✓ Mcrosoft/deberta-v3-small

La votación mayoritaria (Majority Vote) es una técnica utilizada en Ensemble Learning para combinar múltiples modelos y obtener una predicción final más robusta. Básicamente, cada modelo individual genera una predicción y el resultado que recibe más votos es el que se elige como la decisión final.

Resultados y Conclusiones

0.84308

51

Puntaje Final

Posición

Métrica de evaluación del modelo

Entre 965 participantes

CesteGrupo42025

0.84308

1

Modelos
Algoritmos de evaluados