### RANGKAIAN ELEKTRONIKA II

Penguat Diferensial



Mifta Nur Farid, S.T., M.T. miftanurfarid@lecturer.itk.ac.id

Teknik Elektro Institut Teknologi Kalimantan Balikpapan, Indonesia

Februari 22, 2021



- Istilah Operational amplifier (op-amp) merujuk kepada sebuah amplifier/penguat yang menjalankan suatu operasi matematika.
- Dalam sejarahnya, op-amp pertama digunakan di dalam komputer analog untuk melakukan operasi penjumlahan, perkalian dan lainnya.
- Op-amp dibuat sebagai sirkuit diskrit → sekarang kebanyakan op-amp adalah sirkuit terintegrasi/ integrated circuits (IC).



### **Brief History of Op-Amp**







# Solid State Discrete Op-Amps (1960's)

Dual-supply voltage of +15/-15 V Output swing +/- 11 volts Open-loop voltage gain of 40,000, Slew rate of +/- 1.5 volts/µsecond Maximum output current of 2.2 mA



#### Monolithic IC Op-Amp

- First created in 1963 µA702 by Fairchild Semiconductor
- μA741 created in 1968, became widely used due to its ease of use 8 pin, dual in-line package (DIP)
- Further advancements include use of field effects transistors (FET), greater precision, faster response, and smaller packaging



- Op-amp → penguat DC/DC amplifier dengan voltage gain/penguatan tegangan yang sangat besar, impendansi input yang sangat besar, dan impedansi output yang sangat kecil.
- Frekuensi unity gain dari 1 hingga lebih dari 20 Mhz.
- IC op-amp adalah sebuah blok fungsional yang lengkap dengan pin eksternal.
- Hanya dengan menghubungkan pin tersebut ke suplai tegangan dan beberapa komponen, kita dapat dengan cepat membuat segala jenis rangkaian yang berguna.



- Rangkaian input yang paling banyak digunakan di op-amp adalah sebuah penguat diferensial/ differential amplifier.
- Konfigurasi dari penguat ini memberikan banyak karakteristik input di IC.
- Penguat diferensial juga dapat dikonfigurasi dalam bentuk diskrit untuk digunakan dalam komunikasi, instrumentasi, dan rangkaian kontrol industri.
- Kita akan fokus pada penguat diferensial yang digunakan dalam IC.



- Sub-CPMK:
  - Mahasiswa mampu menganalisis rangkaian penguat diferensial (C4, P3, A3)
- Bahan Kajian
  - 1. Konsep dasar penguat diferensial;
  - 2. Analisis DC dari penguat diferensial;
  - 3. Analisis AC dari penguat diferensial;
  - 4. Common-mode gain;

## Penguat Diferensial



- 1. Transistor, dioda, dan resistor adalah komponen-komponen praktis yang ada di dalam IC.
- 2. Kapasitor mungkin dapat digunakan, tapi ukurannya sangat kecil, < 50 pF.
- 3. Sehingga tidak bisa menggunakan kapasitor kopling dan kapasistor bypass seperti pada rangkaian diskret.
- 4. Harus menggunakan kopling langsung antara stage-nya + menghilangkan kapasitor bypass emitter.
- 5. Solusinya?  $\rightarrow$  penguat diferensial
- 6. Penguat diferensial ightarrow menghilangkan kebutuhan terhadap kapasitor bypass emitter
- 7. Penguat diferensial ← banyak digunakan sebagai input stage hampir di setiap IC op-amp

## Difderential Input dan Output





- Ada 2 CE stage yang paralel terhadap resistor common emitter R<sub>E</sub>
- Meskipun ada 2 tegangan input
   (v<sub>1</sub>, v<sub>2</sub>) dan 2 tegangan collector
   (v<sub>c1</sub>, v<sub>c2</sub>), keseluruhan rangkaian
   dianggap 1 stage.
- Tidak ada kapasitor kopling dan bypass
  → tidak ada lower cutoff frequency

## Diferential Input dan Output





■ Tegangan output AC :

$$V_{out} = v_{c2} - v_{c1} (1)$$

- V<sub>out</sub> = differential output, karena menggabungkan 2 tegangan collector.
- Transistor yang identik + resistor collector yang sama → ideal
- $v_1 = v_2 \to v_{out} = 0$
- $v_1 > v_2 \rightarrow v_{out}$  memiliki polaritas seperti gambar di samping.
- $v_1 < v_2 \rightarrow v_{out}$  inverted + polaritas yang berkebalikan

## Diferential Input dan Output





- $v_1 =$  **noninverting input** karena  $v_{out}$  memiliki fasa yang sama dengan  $v_1$
- $v_2=$  **inverting input** karena  $v_{out}$  memiliki fasa yang berbeda 180  $^\circ$  dengan  $v_2$
- Terkadang, noninverting input yang digunakan dan inverting input di-grounding, terkadang juga sebaliknya.

## Diferential Input dan Output





 Jika kedua input-nya ada, input totalnya disebut differential input karena tegangan output sama dengan penguatan tegangan (voltage gain) × selisih dari kedua tegangan input.

$$v_{out} = A_v(v_1 - v_2) \tag{2}$$

•  $A_{\nu} = \text{penguatan tegangan}/\text{ voltage gain}$ 

## Single-Ended Output







- Differential output (gambar sebelumnya) membutuhkan floating load, karena kedua ujung dari load tidak ke ground.
- Umumnya, load/ beban adalah single-ended, salah satu ujungnya ke ground. Seperti pada gambar (a).
- $V_{out} = A_v(v_1 v_2)$ , tapi voltage gain  $(A_v)$  hanya setengah
- Blok-diagram, gambar (b), sama dengan op-amp

## Konfigurasi Noninverting-Input





- Konfigurasi ini memiliki
  - □ Noninverting input
  - □ Differential output
- Karena  $v_2 = 0$ , maka

$$v_{out} = A_v(v_1) \tag{3}$$

## Konfigurasi Noninverting-Input





- Konfigurasi ini memiliki
  - □ Noninverting input
  - □ Single-ended output
- Karena  $v_{out}$  adalah tegangan output AC, maka  $v_{out}$  tetap sama seperti sebelumnya yaitu  $v_{out} = A_v(v_1)$
- Tapi A<sub>v</sub> akan bernilai setengahnya karena output hanya diambil dari satu sisi dari diff-amp

## Konfigurasi Inverting-input





•  $v_2$  adalah active input dan  $v_1$  adalah grounded input, maka

$$v_{out} = -A_{\nu}(\nu_2) \tag{4}$$

 Tanda minus (-) menunjukkan fasa yang berkebalikan







■ Tegangan output juga sama dengan sebelumnya, yaitu  $v_{out} = -A_v(v_2)$ 





| Summary Table 15-1 |              | Diff-Amp Configurations                        |                   |
|--------------------|--------------|------------------------------------------------|-------------------|
| Input              | Output       | V <sub>in</sub>                                | V <sub>out</sub>  |
| Differential       | Differential | $v_1 - v_2$                                    | $v_{c2} - v_{c1}$ |
| Differential       | Single-ended | $v_1 - v_2$                                    | V <sub>c2</sub>   |
| Single-ended       | Differential | <i>v</i> <sub>1</sub> or <i>v</i> <sub>2</sub> | $v_{c2} - v_{c1}$ |
| Single-ended       | Single-ended | <i>v</i> <sub>1</sub> or <i>v</i> <sub>2</sub> | V <sub>c2</sub>   |

## Analisis DC dari Diff Amp





- Rangkaian ekivalen DC dari diff amp.
- Pada pembahasan berikutnya, kita akan mengasumsikan transistornya identik dan resistor collectornya sama.
- Kita asumsikan juga kedua base di-grounded

### Analisis Ideal





- Diff amp disebut juga long-tail pair karena kedua transistor saling berbagi satu common resistor R<sub>E</sub>.
- Arus yang mengalir melalui common resistor ini disebut tail current.
- Jika kita mengabaikan V<sub>BE</sub> drop sepanjang dioda emitter, maka di atas emitter resistor idealnya adalah sebuah titik ground DC.

### Analisis Ideal





 Sehingga semua V<sub>EE</sub> ada di seberang R<sub>E</sub> dan arus tail bernilai

$$I_T = \frac{V_{EE}}{R_E} \tag{5}$$

 Ketika keduanya benar-benar sama, maka arus tail akan terbagi sama, sehingga tiap transistor memiliki arus emitter sebesar

$$I_{EE} = \frac{I_T}{2} \tag{6}$$

### Analisis Ideal





Tegangan DC pada kedua collector sebesar

$$V_C = V_{CC} - I_C R_C \tag{7}$$

## Metode perkiraan kedua





 Kita bisa meningkatkan analisis DC dengan cara menyertakan V<sub>BE</sub> drop di setiap dioda emitter

$$I_T = \frac{V_{EE} - V_{BE}}{R_E} \tag{8}$$

dimana  $V_{BE} = 0.7 \text{ V}$  untuk transistor silikon.





#### Pertanyaan:

- Berapa arus dan tegangan ideal dari gambar di samping?
- Jawaban:
  - Berdasarkan persamaan 5, arus tail adalah:

$$I_T = \frac{V_{EE}}{R_E} = \frac{15 \text{ v}}{7.5 \text{ m}\Omega} = 2 \text{ mA}$$

Tiap arus emitter adalah separuh dari arus tail:

$$I_E = \frac{I_T}{2} = \frac{2 \text{ mA}}{2} = 1 \text{ mA}$$





#### ■ Jawaban:

□ Setiap tegangan collectornya adalah:

$$V_C = V_{CC} - I_C R_C = 15 \text{ V} - (1 \text{ mA})(5 \text{ k}\Omega)$$

### Latihan Soal 1





- Pertanyaan:
  - $\Box$  Berapa arus dan teganan ideal jika  $R_E=5~\mathrm{k}\Omega$
- Jawaban: ??
  - Silakan dikerjakan





#### ■ Pertanyaan:

Dengan menggunakan metode kedua, berapa arus dan tegangan ideal dari gambar di samping?

#### ■ Jawaban:

Arus tail-nya adalah:

$$I_T = \frac{V_{EE} - V_{BE}}{R_E} = \frac{15 \text{ V} - 0.7 \text{ V}}{7.5 \text{ k}\Omega}$$
  
= 1.91 mA





#### Jawaban:

 Setiap arus emitternya adalah setengah dari arus tailnya:

$$I_E = \frac{I_T}{2} = \frac{1.91 \text{ mA}}{2} = 0.955 \text{ mA}$$

□ Tegangan collectornya sebesar:

$$V_C = V_{CC} - I_C R_C$$
  
= 15 V - (0.955 mA)(5 k $\Omega$ )  
= 10.2 V

### Latihan Soal 2





### ■ Pertanyaan:

 $\hfill\Box$  Dengan menggunakan metode kedua, berapa arus dan teganan ideal jika  $R_E=5~{\rm k}\Omega$ 

#### ■ Jawaban:

□ Silakan dikerjakan





#### Pertanyaan:

 Berapa arus dan tegangan di dalam rangkaian single-ended output di samping

#### ■ Jawaban:

□ Idealnya, arus tail:

$$I_T = \frac{V_{EE}}{R_E} = \frac{12 \text{ V}}{5 \text{ kV}} = 2.4 \text{ mA}$$

 Setiap arus emitter adalah setengah dari arus tailnya:

$$I_E = \frac{I_T}{2} = \frac{2.4 \text{ mA}}{2} = 1.2 \text{ mA}$$





#### Jawaban:

□ Tegangan collector yang sebelah kanan adalah:

$$V_C = V_{CC} - I_C R_C$$
  
= 12 V - (1.2 mA)(3 k $\Omega$ )  
= 8.4 V

 Sedangkan tegangan collector sebelah kiri adalah 12 V.





#### Jawaban:

□ Jika kita gunakan metode yang kedua, kita dapatkan:

$$I_T = \frac{V_{EE} - V_{BE}}{R_E}$$
$$= \frac{12 \text{ V} - 0.7 \text{ V}}{5 \text{ k}\Omega}$$
$$= 2.26 \text{ mA}$$

$$I_E = \frac{I_T}{2} = \frac{2.26 \text{ mA}}{2} = 1.13 \text{ mA}$$





#### ■ Jawaban:

$$V_C = V_{CC} - I_C R_C$$
  
= 12 V - (1.13 mA)(3 k $\Omega$ )  
= 8.61 V

### Latihan Soal 3





#### ■ Pertanyaan:

 $\Box$  Jika  $R_E=3$  kΩ, tentukan arus dan tegangan dengan menggunakan metode kedua.

## Analisis AC dari Diff Amp



- Pada bagian ini, kita akan menurunkan persamaan untuk penguatan tegangan (voltage gain) dari diff amp.
- Kita mulai dengan konfigurasi yang paling sederhana, noninverting input dan single-ended output.
- Setelah menurunkan penguatan tegangan, kita akan kembangkan hasilnya ke konfigurasi yang lain.

## Teori Operasi





- Gambar di samping adalah noninverting input dan single-ended output.
- Dengan R<sub>E</sub> yang besar, arus tail hampir konstan saat ada sinyal AC yang kecil.
- Jika arus emitter d Q<sub>1</sub> meningkat maka arus emitter di Q<sub>2</sub> menurun, dan sebaliknya.

## Teori Operasi





- Transistor Q<sub>1</sub> bertindak seperti emitter follower yang menghasilkan tegangan AC di seberang resistor emitter.
- Tegangan AC ini bernilai setengah dari tegangan input v<sub>1</sub>
- Pada setengah siklus positif daru tegangan input, arus emitter Q<sub>1</sub> meningkat, arus emitter Q<sub>2</sub> menurun, dan tegangan collector Q<sub>2</sub> meningkat.

## Teori Operasi





- Sama halnya pada setengah siklus negatif dari tegangan input, arus emitter Q<sub>1</sub> menurun, arus emitter Q – 2 meningkat, dan tegangan collector Q<sub>2</sub> menurun.
- Hal ini yang menyebabkan gelombang sinus yang dikuatkan memiliki fasa yang sama dengan noninverting input.

## Single-ended output gain





- Gambar di samping adalah rangkaian ekivalennya
- Setiap transistor memiliki  $r'_e$
- $R_E$  paralel dengan  $r'_e$  pada transistor kanan karena base dari  $Q_2$  di-grounding.
- Karena R<sub>E</sub> jauh lebih besar dariada r'<sub>e</sub> maka R<sub>E</sub> bisa diabaikan.
- Sehingga kita dapat rangkaian yang lebih sederhana sebagai berikut:

## Single-ended output gain





- lacktriangle Tegangan input  $v_1$  sepanjang kedua  $r_e'$
- Karena kedua  $r'_e$  bernilai sama, maka tegangan pada  $r'_e$  adalah setengah dari tegangan inputnya.
- Ini lah mengapa tegangan AC sepanjang resistor tail adalah setengah dari tegangan input.
- Tegangan output AC:  $v_{out} = i_C R_C$
- Tegangan input AC:  $v_{in} = i_e r'_e + i_e r'_e = 2i_e r'_e$
- Penguatan tegangan (voltage gain):

## Referensi



1. test