Introduction to Digital Systems Part II (4 lectures) 2023/2024

Combinational Logic Blocks

Lecture 6 contents

- Block oriented combinational logic design
- Multiplexers
- Demultiplexers

Multiplexers

 A multiplexer is a digital switch: one out of n data sources is passed to a single output

Information selector

2ⁿ:1 Mux models

4:1 Mux Truth Table

EN	S ₁	S ₀	Υ
0	X	X	0
1	0	0	
1	0	1	
1	1	0	l ₂
1	1	1	l ₃

Alternate Symbol

Functional description

4:1 Mux Truth Table

EN	S ₁	S ₀	Υ
0	X	X	0
1	0	0	I ₀
1	0	1	l ₁
1	1	0	l ₂
1	1	1	l ₃

$$Y = EN. [\sum_{k=0}^{2^{n}-1} m(S)_{k} I_{k}]$$

 $m(S)_k$ is the kth minterm on the selection variables $S_0...S_{n-1}$

Alternate Symbol

Exercise: Draw the 4:1 Mux internal logic circuit

The 74151 model

- 8:1 mux
- Obtain the truth table
- Write the output equations

Mux and decoders

Verify that the logic circuit is a 8:1 Mux

7

Demultiplexers

- Functional inverse of a multiplexer
 - An inverse digital switch: a single input is "routed" to one out of *N outputs*

$$O_k = EN. D_{in} m_k(S), \qquad k = 0, ... 2^n - 1$$

Question: How can we use a demux as a decoder?

Multiplexing multibit data channels

- Mux 4:1, 4 bit input data channels
- Explain the timing diagram

The 74157 model

• 74157: 4x2:1

FUNCTION TABLE

	INPU	OUTPUT Y			
STROEE G	SELECT A/B	A	в	157, LS157, 'S157	'LS158 'S158
Н	X	×	×	L	Н
L	L	L	×		н
L	1 1	н	×	н	L
L	н	×	L	L	н
L	н	×	н	і н і	Ł

The 74153 model

• 74153: 2x4:1

FUNCTION TABLE

	SELECT		DATA INPUTS		STROBE	ООТРОТ	
В	Α	CO	C1	C2	C3	Ğ	Y
×	×	X	×	×	×	н	Ĺ
L	L	1	×	X	×	L	L
L	L	н	×	×	×	L	н
L	н	×	L	×	X	L	L
L	н	×	н	×	×	L	н
н	Ĺ.	×	×	Ł.	×	L	L
н	L	×	×	н	×	l.	н
##	н	×	×	×	L	Ł	L
н	н	×	×_	×	н	L	н

Mux hierarchies

• 8:1 with 7x(2:1)

- Always check the design by obtaining the truth table.
- Note that IN THIS case A is the most significant selection variable

Mux hierarchies

• 8:1 with 2x(4:1 MUX) + 1x(2:1 MUX)

- Always check the design by obtaining the truth table.
- Note that IN THIS case A is the most significant selection variable

Mux hierarchies

• 8:1 with 4x(2:1 MUX) + 1x(4:1 MUX)

• Always check the design by obtaining the truth table.

 Note that IN THIS case A is the most significant selection variable

4:1MUX

Logic Function Unit (LFU)

Use C₂C₁C₀ as function code (Opcode)

C ₂	C ₁	C _o	F
0	0	0	1
0	0	1	A+B
0	1	0	(A.B)'
0	1	1	А⊕В
1	0	0	(A⊕B)′
1	0	1	(A+B)'
1	1	0	A.B
1	1	1	0

Explain the LFU timing diagram

Boolean Functions with Multiplexers

- Simplest approach:
 - Direct mapping of the Truth Table
 - Selection = input variables
 - $D_k = F_k$

А	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Boolean Functions with Multiplexers

The general case:

- Selection = a subset of input variables
- $-D_k = g_k$ where each g_k is a simpler Boolean function of the remaining input variables

Example

n-1 input variables used for selection

I1	I2	.••	In	F			
	••	••	0	0	0	1	1
		••	1	0	1	0	1
				0	In	Īn	1

Possible output values as a function of I_n

Example

• Implement the Boolean function F(A,B,C,D) using a 8:1 Mux

$$F(A,B,C,D) = \sum m(1,3,6,7,8,11,12,14)$$

- 1. Use the Karnaugh map JUST to layout the truth table
- 2.Choose the subset of inputs to be assigned to the mux selection inputs

3. Find the logic values of the mux data inputs as functions of the remaining inputs

D in this case

Regions of the truth sharing the same value of the selection inputs. (A,B,C) in this case. DO NOT MISINTERPRET as prime implicants

D

Example

Find the error in the logic circuit

$$F(A,B,C,D) = \sum m(1,3,6,7,8,11,12,14)$$

 Implement the Boolean function F using a a MUX 4:1 and additional elementary logic

$$F(A,B,C,D) = \sum m(1,3,6,7,8,11,12,14)$$

 Several choices of input variables are possible to be assigned to the mux selection inputs. Try for example (A,B) and (C,D)

Using A,B for selection

B

$$F(A, B, C, D) = \sum m(1,3,6,7,8,11,12,13)$$

77

Using C,D for selection

В

$$F(A,B,C,D) = \sum m(1,3,6,7,8,11,12,14)$$

High-Impedance (High – Z)

A switch model

- When the switch is open there is an almost infinite resistance (Impedance) to the signal flow through the "wire" OUT.
- The output signal is left "floating" with neither HIGH or LOW logic levels assigned.
- The output is assigned a High-Z state and the device exhibits a 3 State behavior

3 State Buffers

Possible outputs: HIGH, LOW, High-Z

quando nao temos sinal temos "Hi-Z"

Wire sharing

High-Z outputs may be physically connected

- Of course EN1 = EN2 = 1 should never occour.
- Tight control of enabling inputs is required

A special kind of Mux

- Efficient multiplexing strategy
- Mux 2:1

Write the Truth Table

 Write the truth table of the circuit and verify that's a 4:1 mux

Aggregate 3 State Buffer Models

"BUS" Driver

(a)

Transceiver

Aggregate 3 State Buffer Models

74HC244

PIN ASSIGNMENT

FUNCTION TABLE

Inpu	Outputs	
Enable A, Enable B A, B		YA, YB
L	L	L
L	Н	Н
н	×	7

Z = high impedance

Word Multiplexing

- Main idea:
 - Decode the 3 State
 buffers enabling inputs
- Share the output data bus

Explain the timing diagram of the previous circuit

• SELECT = (S1,S0)

Final Remarks

- Always recall
 - The block symbol
 - The types of inputs and outputs
 - Data
 - Control
 - The truth table
 - The output equations
- Design with encapsulated logic requires mastering all the functional details of each block