МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №6

по дисциплине «Параллельные алгоритмы»

Тема: Оптимизация доступа к памяти в модели Open CL

Студент гр. 0303	 Середенков А.А
Преподаватель	 Сергеева Е.И.

Санкт-Петербург 2023

Цель работы.

Познакомится с работой с моделями памяти OpenCL. Реализовать алгоритм умножения матриц на видеокарте при помощи OpenCL.

Задание.

Реализовать умножение матриц на OpenCL.

Произвести сравнение производительности с CPU реализацией из лаб. 4.

Выполнение работы.

Для выполнения данной лабораторной работы, была установлена и настроена среда разработки Microsoft Visual Studio.

Были написаны дополнительные функции для инициализации и запуска фреймворка OpenCl:

create_device — функция, необходимая для поиска устройства GPU. При отсутствии устройств выбирается первый попавшийся CPU.

build_program — функция, загружающая текст кода, запускающая kernel и собирающая программу.

invoke_kernel — функция, запускающая kernel. Функция передаёт параметры в kernel, помещает задачу в очередь. В ней задаётся размер рабочей группы и рабочей единицы, в конце сохраняет полученный результат.

Для уменьшения обращений к глобальной памяти использовалась локальная память рабочей группы. В каждую локальную группу передаётся часть исходных матриц, за счёт этого происходит вычисление части матрицы.

Сравним время работы программы при вычислениях на CPU и GPU. Результат вычисления представлен в табл. 1

Таблица 1 — Время вычисления CPU и GPU.

Размерность матрицы	GPU, ms	CPU, ms
128x128	0	17
256x256	1	44

512x512	6	256
1024x1024	46	1722
2048x2048	344	13735
4096x4096	2148	131825

Исходя из результатов таблицы можно сделать вывод, что вычисления проводимые на GPU намного быстрее, аналогичных вычислений на CPU алгоритма Штрассена.

Выводы.

В процессе выполнения лабораторной работы был исследован модели памяти OpenCL и реализованы алгоритмы перемножения матриц на GPU, используя библиотеку OpenCL.