Package 'daltoolbox'

April 1, 2024

Title Leveraging Experiment Lines to Data Analytics

Version 1.0.767

License MIT + file LICENSE

Description

The natural increase in the complexity of current research experiments and data demands better tools to enhance productivity in Data Analytics. The package is a framework designed to address the modern challenges in data analytics workflows. The package is inspired by Experiment Line concepts. It aims to provide seamless support for users in developing their data mining workflows by offering a uniform data model and method API. It enables the integration of various data mining activities, including data preprocessing, classification, regression, clustering, and time series prediction. It also offers options for hyper-parameter tuning and supports integration with existing libraries and languages. Overall, the package provides researchers with a comprehensive set of functionalities for data science, promoting ease of use, extensibility, and integration with various tools and libraries. Information on Experiment Line is based on Ogasawara et al. (2009) <doi:10.1007/978-3-642-02279-1_20>.

```
URL https://github.com/cefet-rj-dal/daltoolbox
Encoding UTF-8
RoxygenNote 7.3.1
Imports FNN, MLmetrics, caret, class, cluster, dbscan, dplyr, e1071,
      elmNNRcpp, forecast, ggplot2, nnet, randomForest, reshape,
      tree, reticulate
Config/reticulate list( packages = list( list(package = "scipy"),
      list(package = ``torch"), list(package = ``pandas"), list(package
      = ``numpy"), list(package = ``matplotlib"), list(package =
      "scikit-learn"), list(package = "functools"), list(package =
      ``operator"), list(package = ``sys") ) )
NeedsCompilation no
Author Eduardo Ogasawara [aut, ths, cre]
      (<https://orcid.org/0000-0002-0466-0626>),
      Antonio Castro [aut, ctb],
      Heraldo Borges [aut, ths],
      Diego Carvalho [aut, ths],
      Joel Santos [aut, ths],
```

Eduardo Bezerra [aut, ths], Rafaelli Coutinho [aut, ths], Federal Center for Technological Education of Rio de Janeiro (CEFET/RJ) [cph]

Maintainer Eduardo Ogasawara <eogasawara@ieee.org>

Repository CRAN

2

Date/Publication 2024-03-31 22:30:02 UTC

R topics documented:

action
action.dal_transform
adjust_class_label
adjust_data.frame
adjust_factor
adjust_matrix
adjust_ts_data
autoenc_encode
autoenc_encode_decode
Boston
categ_mapping
classification
cla_dtree
cla_knn
cla_majority
cla_mlp
cla_nb
cla_rf
cla_svm
cla_tune
cluster
clusterer
cluster_dbscan
cluster_kmeans
cluster_pam
clu_tune
dal_base
dal_learner
dal_transform
dal_tune
data_sample
do_fit
do_predict
dt_pca
evaluate
fit
fit.cla tune

fit.cluster_dbscan		. 3
fit_curvature_max		. 3
fit_curvature_min		. 3
inverse_transform		3
k_fold		
minmax		
MSE.ts		
outliers		
plot_bar		
plot_boxplot		
plot_boxplot_class		
plot_density		
plot_density_class		
plot_groupedbar		
plot_hist		
plot_lollipop		
1 -1 1		
plot_points		
plot_radar		
plot_scatter		
plot_series		
plot_stackedbar		
plot_ts		
plot_ts_pred		
predictor		
R2.ts		
regression		
reg_dtree		
reg_knn		. 5
reg_mlp		. 5
reg_rf		. 5
reg_svm		. 5
reg_tune		. 5
sample_random		. 5
sample_stratified		. 5
select_hyper		. 5
select_hyper.cla_tune		. 5
select_hyper.ts_tune		. 5
set params		_
set_params.default		
sin_data		
sMAPE.ts		
smoothing		
smoothing cluster		
smoothing_freq		
smoothing inter		
8-		
train_test	٠.	. b.
DADE JEST HOUR TORIS		n

4 action

ex		82
	[.ts_data	80
	zscore	80
	ts_tune	
	ts_svm	
	ts_sample	
	ts_rf	
	ts_regsw	
	ts_reg	
	ts_projection	
	ts_norm_swminmax	
	ts_norm_gminmax	
	ts_norm_ean	
	ts_norm_diff	
	ts_norm_an	
	ts_mlp	
	ts_lstm	
	ts_knn	
	ts_head	67
	ts_elm	
	ts_data	65
	ts_conv1d	64
	ts_arima	64
	transform	0.

Description

action

Executes the action of model applied in provided data

Action

Usage

```
action(obj, ...)
```

Arguments

obj object: a dal_base object to apply the transformation on the input dataset.
... optional arguments.

Value

The result of an action of the model applied in provided data

action.dal_transform 5

Examples

```
data(iris)
# an example is minmax normalization
trans <- minmax()
trans <- fit(trans, iris)
tiris <- action(trans, iris)</pre>
```

```
{\tt action.dal\_transform} \quad \textit{Action implementation for transform}
```

Description

A default function that defines the action to proxy transform method

Usage

```
## S3 method for class 'dal_transform'
action(obj, ...)
```

Arguments

obj object

... optional arguments

Value

Transformed data

Examples

```
#See ?minmax for an example of transformation
```

Description

vector value is adjusted to a categorical mapping

```
adjust_class_label(x, valTrue = 1, valFalse = 0)
```

6 adjust_factor

Arguments

x vector to be categorizedvalTrue value to represent truevalFalse value to represent false

Value

an adjusted categorical mapping

adjust_data.frame

Adjust to data frame

Description

dataset data is adjusted to a data. frame

Usage

```
adjust_data.frame(data)
```

Arguments

data

dataset

Value

The date argument

Examples

```
data(iris)
df <- adjust_data.frame(iris)</pre>
```

 $adjust_factor$

adjust factors

Description

vector value is adjusted to a factor

```
adjust_factor(value, ilevels, slevels)
```

adjust_matrix 7

Arguments

value vector to be converted into factor

ilevels order for categorical values slevels labels for categorical values

Value

an adjusted factor

adjust_matrix

adjust to matrix

Description

dataset data is adjusted to a matrix

Usage

```
adjust_matrix(data)
```

Arguments

data

dataset

Value

an adjusted matrix

Examples

```
data(iris)
mat <- adjust_matrix(iris)</pre>
```

adjust_ts_data

adjust ts_data

Description

dataset data is adjusted to a ts_data

```
adjust_ts_data(data)
```

8 autoenc_encode

Arguments

data dataset

Value

```
an adjusted ts_data
```

autoenc_encode

Autoencoder - Encode

Description

Creates an deep learning autoencoder to encode a sequence of observations. It wraps the pytorch library.

Usage

```
autoenc_encode(
  input_size,
  encoding_size,
  batch_size = 32,
  num_epochs = 1000,
  learning_rate = 0.001
)
```

Arguments

input_size input size
encoding_size encoding size

batch_size size for batch learning

num_epochs number of epochs for training

learning_rate learning rate

Value

a autoenc_encode object.

Examples

#See example at https://nbviewer.org/github/cefet-rj-dal/daltoolbox-examples

autoenc_encode_decode

Description

Creates an deep learning autoencoder to encode a sequence of observations. It wraps the pytorch library.

Usage

```
autoenc_encode_decode(
  input_size,
  encoding_size,
  batch_size = 32,
  num_epochs = 1000,
  learning_rate = 0.001
)
```

Arguments

```
input_size input size
encoding_size encoding size
batch_size size for batch learning
num_epochs number of epochs for training
learning_rate learning rate
```

Value

```
a autoenc_encode_decode object.
```

Examples

```
#See example at https://nbviewer.org/github/cefet-rj-dal/daltoolbox-examples
```

Boston

Boston Housing Data (Regression)

10 Boston

Description

housing values in suburbs of Boston.

- crim: per capita crime rate by town.
- zn: proportion of residential land zoned for lots over 25,000 sq.ft.
- indus: proportion of non-retail business acres per town
- chas: Charles River dummy variable (= 1 if tract bounds)
- nox: nitric oxides concentration (parts per 10 million)
- rm: average number of rooms per dwelling
- age: proportion of owner-occupied units built prior to 1940
- dis: weighted distances to five Boston employment centres
- rad: index of accessibility to radial highways
- tax: full-value property-tax rate per \$10,000
- ptratio: pupil-teacher ratio by town
- black: 1000(Bk 0.63)^2 where Bk is the proportion of blacks by town
- lstat: percentage of lower status of the population
- medv: Median value of owner-occupied homes in \$1000's

Usage

```
data(Boston)
```

Format

Regression Dataset.

Source

This dataset was obtained from the MASS library.

References

Creator: Harrison, D. and Rubinfeld, D.L. Hedonic prices and the demand for clean air, J. Environ. Economics & Management, vol.5, 81-102, 1978.

```
data(Boston)
head(Boston)
```

categ_mapping 11

categ_mapping Categorical mapping

Description

Categorical mapping provides a way to map the levels of a categorical variable to new values. Each possible value is converted to a binary attribute.

Usage

```
categ_mapping(attribute)
```

Arguments

attribute attribute to be categorized.

Value

A data frame with binary attributes, one for each possible category.

Examples

```
cm <- categ_mapping("Species")
iris_cm <- transform(cm, iris)

# can be made in a single column
species <- iris[,"Species", drop=FALSE]
iris_cm <- transform(cm, species)</pre>
```

 ${\tt classification}$

classification

Description

Ancestor class for classification problems

Usage

```
classification(attribute, slevels)
```

Arguments

attribute attribute tar

attribute target to model building

slevels

• possible values for the target classification

12 cla_dtree

Value

classification object

Examples

#See ?cla_dtree for a classification example using a decision tree

cla_dtree

Decision Tree for classification

Description

Creates a classification object that uses the Decision Tree algorithm for classification. It wraps the tree library.

Usage

```
cla_dtree(attribute, slevels)
```

Arguments

attribute attribute target to model building.

slevels The possible values for the target classification.

Value

A classification object that uses the Decision Tree algorithm for classification.

```
data(iris)
slevels <- levels(iris$Species)
model <- cla_dtree("Species", slevels)

# preparing dataset for random sampling
sr <- sample_random()
sr <- train_test(sr, iris)
train <- sr$train
test <- sr$test

model <- fit(model, train)

prediction <- predict(model, test)
predictand <- adjust_class_label(test[,"Species"])
test_eval <- evaluate(model, predictand, prediction)
test_eval$metrics</pre>
```

cla_knn 13

cla_knn

K Nearest Neighbor Classification

Description

Classifies using the K-Nearest Neighbor algorithm. It wraps the class library.

Usage

```
cla_knn(attribute, slevels, k = 1)
```

Arguments

attribute attribute target to model building.

slevels Possible values for the target classification.

k A vector of integers indicating the number of neighbors to be considered.

Value

A knn object.

```
data(iris)
slevels <- levels(iris$Species)
model <- cla_knn("Species", slevels, k=3)

# preparing dataset for random sampling
sr <- sample_random()
sr <- train_test(sr, iris)
train <- sr$train
test <- sr$test

model <- fit(model, train)

prediction <- predict(model, test)
predictand <- adjust_class_label(test[,"Species"])
test_eval <- evaluate(model, predictand, prediction)
test_eval$metrics</pre>
```

14 cla_majority

cla_majority

Majority Classification

Description

This function creates a classification object that uses the majority vote strategy to predict the target attribute. Given a target attribute, the function counts the number of occurrences of each value in the dataset and selects the one that appears most often.

Usage

```
cla_majority(attribute, slevels)
```

Arguments

attribute attribute target to model building.

slevels Possible values for the target classification.

Value

Returns a classification object.

```
data(iris)
slevels <- levels(iris$Species)
model <- cla_majority("Species", slevels)

# preparing dataset for random sampling
sr <- sample_random()
sr <- train_test(sr, iris)
train <- sr$train
test <- sr$test

model <- fit(model, train)

prediction <- predict(model, test)
predictand <- adjust_class_label(test[,"Species"])
test_eval <- evaluate(model, predictand, prediction)
test_eval$metrics</pre>
```

cla_mlp 15

cla_mlp //	MLP for classification
------------	------------------------

Description

Creates a classification object that uses the Multi-Layer Perceptron (MLP) method. It wraps the nnet library.

Usage

```
cla_mlp(attribute, slevels, size = NULL, decay = 0.1, maxit = 1000)
```

Arguments

attribute	attribute target to model building
slevels	possible values for the target classification
size	number of nodes that will be used in the hidden layer
decay	how quickly it decreases in gradient descent
maxit	maximum iterations

Value

a classification object

```
data(iris)
slevels <- levels(iris$Species)
model <- cla_mlp("Species", slevels, size=3, decay=0.03)

# preparing dataset for random sampling
sr <- sample_random()
sr <- train_test(sr, iris)
train <- sr$train
test <- sr$test

model <- fit(model, train)

prediction <- predict(model, test)
predictand <- adjust_class_label(test[,"Species"])
test_eval <- evaluate(model, predictand, prediction)
test_eval$metrics</pre>
```

16 cla_rf

cla_nb

Naive Bayes Classifier

Description

Classification using the Naive Bayes algorithm It wraps the e1071 library.

Usage

```
cla_nb(attribute, slevels)
```

Arguments

attribute attribute target to model building.

slevels Possible values for the target classification.

Value

A classification object.

Examples

```
data(iris)
slevels <- levels(iris$Species)
model <- cla_nb("Species", slevels)

# preparing dataset for random sampling
sr <- sample_random()
sr <- train_test(sr, iris)
train <- sr$train
test <- sr$test

model <- fit(model, train)

prediction <- predict(model, test)
predictand <- adjust_class_label(test[,"Species"])
test_eval <- evaluate(model, predictand, prediction)
test_eval$metrics</pre>
```

cla_rf

Random Forest for classification

Description

Creates a classification object that uses the Random Forest method It wraps the randomForest library.

cla_svm 17

Usage

```
cla_rf(attribute, slevels, nodesize = 5, ntree = 10, mtry = NULL)
```

Arguments

attribute attribute target to model building

slevels possible values for the target classification

nodesize node size

ntree number of trees

mtry number of attributes to build tree

Value

obj

Examples

```
data(iris)
slevels <- levels(iris$Species)
model <- cla_rf("Species", slevels, ntree=5)

# preparing dataset for random sampling
sr <- sample_random()
sr <- train_test(sr, iris)
train <- sr$train
test <- sr$test

model <- fit(model, train)

prediction <- predict(model, test)
predictand <- adjust_class_label(test[,"Species"])
test_eval <- evaluate(model, predictand, prediction)
test_eval$metrics</pre>
```

cla_svm

SVM for classification

Description

Creates a classification object that uses the Support Vector Machine (SVM) method for classification It wraps the e1071 library.

```
cla_svm(attribute, slevels, epsilon = 0.1, cost = 10, kernel = "radial")
```

18 cla_tune

Arguments

attribute attribute target to model building
slevels possible values for the target classification

epsilon parameter that controls the width of the margin around the separating hyperplane

cost parameter that controls the trade-off between having a wide margin and correctly

classifying training data points

kernel the type of kernel function to be used in the SVM algorithm (linear, radial,

polynomial, sigmoid)

Value

A SVM classification object

Examples

```
data(iris)
slevels <- levels(iris$Species)
model <- cla_svm("Species", slevels, epsilon=0.0,cost=20.000)

# preparing dataset for random sampling
sr <- sample_random()
sr <- train_test(sr, iris)
train <- sr$train
test <- sr$test

model <- fit(model, train)

prediction <- predict(model, test)
predictand <- adjust_class_label(test[,"Species"])
test_eval <- evaluate(model, predictand, prediction)
test_eval$metrics</pre>
```

cla_tune

Classification Tune

Description

Classification Tune

Usage

```
cla_tune(base_model, folds = 10, metric = "accuracy")
```

Arguments

base_model base model for tuning

folds number of folds for cross-validation

metric metric used to optimize

cluster 19

Value

```
a cla_tune object.
```

Examples

```
# preparing dataset for random sampling
sr <- sample_random()
sr <- train_test(sr, iris)
train <- sr$train
test <- sr$test

# hyper parameter setup
tune <- cla_tune(cla_mlp("Species", levels(iris$Species)))
ranges <- list(size=c(3:5), decay=c(0.1))

# hyper parameter optimization
model <- fit(tune, train, ranges)

# testing optimization
test_prediction <- predict(model, test)
test_predictand <- adjust_class_label(test[,"Species"])
test_eval <- evaluate(model, test_predictand, test_prediction)
test_eval$metrics</pre>
```

cluster

Cluster

Description

Defines a cluster method.

Usage

```
cluster(obj, ...)
```

Arguments

obj a clusterer object.
... optional arguments.

Value

clustered data.

```
#See ?cluster_kmeans for an example of transformation
```

20 cluster_dbscan

clusterer

Clusterer

Description

Ancestor class for clustering problems

Usage

```
clusterer()
```

Value

a clusterer object

Examples

#See ?cluster_kmeans for an example of transformation

cluster_dbscan

DBSCAN

Description

Creates a clusterer object that uses the DBSCAN method It wraps the dbscan library.

Usage

```
cluster_dbscan(minPts = 3, eps = NULL)
```

Arguments

minPts minimum number of points

eps distance value

Value

A dbscan object.

cluster_kmeans 21

Examples

```
# setup clustering
model <- cluster_dbscan(minPts = 3)

#load dataset
data(iris)

# build model
model <- fit(model, iris[,1:4])
clu <- cluster(model, iris[,1:4])
table(clu)

# evaluate model using external metric
eval <- evaluate(model, clu, iris$Species)
eval</pre>
```

cluster_kmeans

k-means

Description

Creates a clusterer object that uses the k-means method It wraps the stats library.

Usage

```
cluster_kmeans(k = 1)
```

Arguments

k

The number of clusters to form.

Value

A k-means object.

```
# setup clustering
model <- cluster_kmeans(k=3)

#load dataset
data(iris)

# build model
model <- fit(model, iris[,1:4])
clu <- cluster(model, iris[,1:4])
table(clu)

# evaluate model using external metric
eval <- evaluate(model, clu, iris$Species)
eval</pre>
```

clu_tune

cluster_pam

PAM

Description

Creates a clusterer object that uses the Partition Around Medoids (PAM) method It wraps the cluster library.

Usage

```
cluster_pam(k = 1)
```

Arguments

k

The number of clusters to generate.

Value

A PAM object.

Examples

```
# setup clustering
model <- cluster_pam(k = 3)

#load dataset
data(iris)

# build model
model <- fit(model, iris[,1:4])
clu <- cluster(model, iris[,1:4])
table(clu)

# evaluate model using external metric
eval <- evaluate(model, clu, iris$Species)
eval</pre>
```

clu_tune

Clustering Tune

Description

Clustering Tune

```
clu_tune(base_model)
```

dal_base 23

Arguments

```
base_model base model for tuning
```

Value

```
a clu_tune object.
```

Examples

```
data(iris)
# fit model
model <- clu_tune(cluster_kmeans(k = 0))
ranges <- list(k = 1:10)
model <- fit(model, iris[,1:4], ranges)
model$k</pre>
```

dal_base

Class dal_base

Description

The dal_base class is an abstract class for all dal descendants classes. It provides both fit() and action() functions

Usage

```
dal_base()
```

Value

A dal_base object

```
trans <- dal_base()</pre>
```

24 dal_transform

dal_learner

DAL Learner

Description

A ancestor class for clustering, classification, regression, and time series regression. It also provides the basis for specialized evaluation of learning performance.

An example of a learner is a decision tree (cla_dtree)

Usage

```
dal_learner()
```

Value

a learner

Examples

#See ?cla_dtree for a classification example using a decision tree

dal_transform

DAL Transform

Description

A transformation method applied to a dataset. If needed, the fit can be called to adjust the transform.

Usage

```
dal_transform()
```

Value

a dal_transform object.

Examples

#See ?minmax for an example of transformation

dal_tune 25

dal_tune

DAL Tune

Description

Ancestor class for hyper parameter optimization

Usage

```
dal_tune(base_model, folds = 10)
```

Arguments

base_model

base model for tuning

folds

number of folds for cross-validation

Value

```
a dal_tune object.
```

Examples

```
#See ?cla_tune for classification tuning
#See ?reg_tune for regression tuning
#See ?ts_tune for time series tuning
```

data_sample

Data Sample

Description

The data_sample function in R is used to randomly sample data from a given data frame. It can be used to obtain a subset of data for further analysis or modeling.

Two basic specializations of data_sample are sample_random and sample_stratified. They provide random sampling and stratified sampling, respectively.

Data sample provides both training and testing partitioning (train_test) and k-fold partitioning (k_fold) of data.

Usage

```
data_sample()
```

Value

obj

do_fit

Examples

```
#using random sampling
sample <- sample_random()
tt <- train_test(sample, iris)

# distribution of train
table(tt$train$Species)

# preparing dataset into four folds
folds <- k_fold(sample, iris, 4)

# distribution of folds
tbl <- NULL
for (f in folds) {
  tbl <- rbind(tbl, table(f$Species))
}
head(tbl)</pre>
```

 do_fit

do fit for time series

Description

The actual time series model fitting. This method should be override by descendants.

Usage

```
do_fit(obj, x, y = NULL)
```

Arguments

obj	object
x	input variable
У	output variable

Value

fitted object

do_predict 27

do_predict

do predict for time series

Description

The actual time series model prediction. This method should be override by descendants.

Usage

```
do_predict(obj, x)
```

Arguments

obj object

x input variable

Value

predicted values

dt_pca PCA

Description

PCA (Principal Component Analysis) is an unsupervised dimensionality reduction technique used in data analysis and machine learning. It transforms a dataset of possibly correlated variables into a new set of uncorrelated variables called principal components.

Usage

```
dt_pca(attribute = NULL, components = NULL)
```

Arguments

attribute target attribute to model building components number of components for PCA

Value

obj

28 evaluate

Examples

```
mypca <- dt_pca("Species")
# Automatically fitting number of components
mypca <- fit(mypca, iris)
iris.pca <- transform(mypca, iris)
head(iris.pca)
head(mypca$pca.transf)
# Manual establishment of number of components
mypca <- dt_pca("Species", 3)
mypca <- fit(mypca, datasets::iris)
iris.pca <- transform(mypca, iris)
head(iris.pca)
head(mypca$pca.transf)</pre>
```

evaluate

evaluate

Description

evaluate learner performance. The actual evaluate varies according to the type of learner (clustering, classification, regression, time series regression)

Usage

```
evaluate(obj, ...)
```

Arguments

```
obj object ... optional arguments
```

Value

evaluation

```
data(iris)
slevels <- levels(iris$Species)
model <- cla_dtree("Species", slevels)
model <- fit(model, iris)
prediction <- predict(model, iris)
predictand <- adjust_class_label(iris[,"Species"])
test_eval <- evaluate(model, predictand, prediction)
test_eval$metrics</pre>
```

fit 29

fit Fit

Description

Fits a model.

Usage

```
fit(obj, ...)
```

Arguments

objobjectoptional arguments.

Value

obj

Examples

```
data(iris)
# an example is minmax normalization
trans <- minmax()
trans <- fit(trans, iris)
tiris <- action(trans, iris)</pre>
```

fit.cla_tune

tune hyperparameters of ml model

Description

tune hyperparameters of ml model for classification

Usage

```
## S3 method for class 'cla_tune'
fit(obj, data, ranges, ...)
```

Arguments

obj object data dataset

ranges hyperparameters ranges
... optional arguments

30 fit_curvature_max

Value

fitted obj

fit.cluster_dbscan fit dbscan model

Description

fit dbscan model

Usage

```
## S3 method for class 'cluster_dbscan'
fit(obj, data, ...)
```

Arguments

obj object data dataset

... optional arguments

Value

fitted obj

fit_curvature_max

maximum curvature analysis

Description

Fitting a curvature model in a sequence of observations. It extracts the the maximum curvature computed.

Usage

```
fit_curvature_max()
```

Value

Returns an object of class fit_curvature_max, which inherits from the fit_curvature and dal_transform classes. The object contains a list with the following elements:

- x: The position in which the maximum curvature is reached.
- y: The value where the maximum curvature occurs.
- yfit: The value of the maximum curvature.

fit_curvature_min 31

Examples

```
x <- seq(from=1,to=10,by=0.5)
dat <- data.frame(x = x, value = -log(x), variable = "log")
myfit <- fit_curvature_max()
res <- transform(myfit, dat$value)
head(res)</pre>
```

fit_curvature_min

minimum curvature analysis

Description

Fitting a curvature model in a sequence of observations. It extracts the the minimum curvature computed.

Usage

```
fit_curvature_min()
```

Value

Returns an object of class fit_curvature_max, which inherits from the fit_curvature and dal_transform classes. The object contains a list with the following elements:

- x: The position in which the minimum curvature is reached.
- y: The value where the the minimum curvature occurs.
- yfit: The value of the minimum curvature.

```
x <- seq(from=1,to=10,by=0.5)
dat <- data.frame(x = x, value = log(x), variable = "log")
myfit <- fit_curvature_min()
res <- transform(myfit, dat$value)
head(res)</pre>
```

32 k_fold

inverse_transform

Inverse Transform

Description

Reverses the transformation applied to data.

Usage

```
inverse_transform(obj, ...)
```

Arguments

obj a dal_transform object. ... optional arguments.

Value

dataset inverse transformed.

Examples

#See ?minmax for an example of transformation

 k_fold

k-fold sampling

Description

k-fold partition of a dataset using a sampling method

Usage

```
k_fold(obj, data, k)
```

Arguments

obj object data dataset

k number of folds

Value

k folds

minmax 33

Examples

```
#using random sampling
sample <- sample_random()

# preparing dataset into four folds
folds <- k_fold(sample, iris, 4)

# distribution of folds
tbl <- NULL
for (f in folds) {
  tbl <- rbind(tbl, table(f$Species))
}
head(tbl)</pre>
```

minmax

min-max normalization

Description

The minmax performs scales data between [0,1]. minmax = (x-min(x))/(max(x)-min(x)).

Usage

```
minmax()
```

Value

obj

```
data(iris)
head(iris)

trans <- minmax()
trans <- fit(trans, iris)
tiris <- transform(trans, iris)
head(tiris)

itiris <- inverse_transform(trans, tiris)
head(itiris)</pre>
```

34 outliers

MSE.ts

MSE

Description

Compute the mean squared error (MSE) between actual values and forecasts of a time series

Usage

```
MSE.ts(actual, prediction)
```

Arguments

actual

real observations

prediction

predicted observations

Value

A number, which is the calculated MSE

outliers

Outliers

Description

The outliers class uses box-plot definition for outliers. An outlier is a value that is below than $Q_1 - 1.5 \cdot IQR$ or higher than $Q_3 + 1.5 \cdot IQR$. The class remove outliers for numeric attributes. Users can set alpha to 3 to remove extreme values.

Usage

```
outliers(alpha = 1.5)
```

Arguments

alpha

boxplot outlier threshold (default 1.5, but can be 3.0 to remove extreme values)

Value

An outlier object

plot_bar 35

Examples

```
# code for outlier removal
out_obj <- outliers() # class for outlier analysis
out_obj <- fit(out_obj, iris) # computing boundaries
iris.clean <- transform(out_obj, iris) # returning cleaned dataset
#inspection of cleaned dataset
nrow(iris.clean)
idx <- attr(iris.clean, "idx")
table(idx)
iris.outliers <- iris[idx,]
iris.outliers</pre>
```

plot_bar

plot bar graph

Description

plot bar graph

Usage

```
plot_bar(data, label_x = "", label_y = "", colors = NULL, alpha = 1)
```

Arguments

data data.frame contain x, value, and variable label_x x-axis label y-axis label colors color vector alpha level of transparency

Value

ggplot graphic

```
#summarizing iris dataset
data <- iris |> dplyr::group_by(Species) |>
  dplyr::summarize(Sepal.Length=mean(Sepal.Length))
head(data)

#ploting data
grf <- plot_bar(data, colors="blue")
plot(grf)</pre>
```

36 plot_boxplot_class

plot_boxplot

plot boxplot

Description

plot boxplot

Usage

```
plot_boxplot(data, label_x = "", label_y = "", colors = NULL, barwith = 0.25)
```

Arguments

```
data data.frame contain x, value, and variable
label_x x-axis label
label_y y-axis label
colors color vector
barwith width of bar
```

Value

ggplot graphic

Examples

```
grf <- plot_boxplot(iris, colors="white")
plot(grf)</pre>
```

plot_boxplot_class

plot boxplot per class

Description

plot boxplot per class

```
plot_boxplot_class(
  data,
  class_label,
  label_x = "",
  label_y = "",
  colors = NULL
)
```

plot_density 37

Arguments

```
data data.frame contain x, value, and variable class_label name of attribute for class label label_x x-axis label y-axis label colors color vector
```

Value

ggplot graphic

Examples

```
grf <- plot_boxplot_class(iris |> dplyr::select(Sepal.Width, Species),
  class = "Species", colors=c("red", "green", "blue"))
plot(grf)
```

plot_density

plot density

Description

plot density

Usage

```
plot_density(
  data,
  label_x = "",
  label_y = "",
  colors = NULL,
  bin = NULL,
  alpha = 0.25
)
```

Arguments

```
data data.frame contain x, value, and variable
label_x x-axis label
label_y y-axis label
colors color vector
bin bin width
alpha level of transparency
```

38 plot_density_class

Value

```
ggplot graphic
```

Examples

```
grf <- plot_density(iris |> dplyr::select(Sepal.Width), colors="blue")
plot(grf)
```

plot_density_class

plot density per class

Description

plot density per class

Usage

```
plot_density_class(
  data,
  class_label,
  label_x = "",
  label_y = "",
  colors = NULL,
  bin = NULL,
  alpha = 0.5
)
```

Arguments

data data.frame contain x, value, and variable class_label name of attribute for class label label_x x-axis label y-axis label colors color vector bin bin width level of transparency

Value

ggplot graphic

```
grf <- plot_density_class(iris |> dplyr::select(Sepal.Width, Species),
  class = "Species", colors=c("red", "green", "blue"))
plot(grf)
```

plot_groupedbar 39

plot_groupedbar

plot grouped bar

Description

plot grouped bar

Usage

```
plot_groupedbar(data, label_x = "", label_y = "", colors = NULL, alpha = 1)
```

Arguments

data data.frame contain x, value, and variable

label_x x-axis label
label_y y-axis label
colors color vector

alpha level of transparency

Value

ggplot graphic

Examples

```
data <- iris |> dplyr::group_by(Species) |>
  dplyr::summarize(Sepal.Length=mean(Sepal.Length), Sepal.Width=mean(Sepal.Width))
grf <- plot_groupedbar(data, colors=c("blue", "red"))
plot(grf)</pre>
```

plot_hist

plot histogram

Description

plot histogram

Usage

```
plot_hist(data, label_x = "", label_y = "", color = "white", alpha = 0.25)
```

40 plot_lollipop

Arguments

```
data data.frame contain x, value, and variable label_x x-axis label label_y y-axis label color color vector alpha transparency level
```

Value

ggplot graphic

Examples

```
grf <- plot_hist(iris |> dplyr::select(Sepal.Width), color=c("blue"))
plot(grf)
```

plot_lollipop

plot lollipop

Description

plot lollipop

Usage

```
plot_lollipop(
   data,
   label_x = "",
   label_y = "",
   colors = NULL,
   color_text = "black",
   size_text = 3,
   size_ball = 8,
   alpha_ball = 0.2,
   min_value = 0,
   max_value_gap = 1
)
```

Arguments

```
data data.frame contain x, value, and variable
label_x x-axis label
label_y y-axis label
colors color vector
color_text color of text inside ball
```

plot_pieplot 41

```
size_text size of text inside ball
size_ball size of ball
alpha_ball transparency of ball
min_value minimum value
max_value_gap maximum value gap
```

Value

ggplot graphic

Examples

```
#summarizing iris dataset
data <- iris |> dplyr::group_by(Species) |>
   dplyr::summarize(Sepal.Length=mean(Sepal.Length))
head(data)

#ploting data
grf <- plot_lollipop(data, colors="blue", max_value_gap=0.2)
plot(grf)</pre>
```

plot_pieplot

plot pie

Description

plot pie

Usage

```
plot_pieplot(
  data,
  label_x = "",
  label_y = "",
  colors = NULL,
  textcolor = "white",
  bordercolor = "black"
)
```

Arguments

```
data data.frame contain x, value, and variable
label_x x-axis label
label_y y-axis label
colors color vector
textcolor text color
bordercolor border color
```

42 plot_points

Value

```
ggplot graphic
```

Examples

```
#summarizing iris dataset
data <- iris |> dplyr::group_by(Species) |>
   dplyr::summarize(Sepal.Length=mean(Sepal.Length))
head(data)

#ploting data
grf <- plot_pieplot(data, colors=c("red", "green", "blue"))
plot(grf)</pre>
```

plot_points

plot points

Description

plot points

Usage

```
plot_points(data, label_x = "", label_y = "", colors = NULL)
```

Arguments

data data.frame contain x, value, and variable
label_x x-axis label
label_y y-axis label
colors color vector

Value

ggplot graphic

```
x <- seq(0, 10, 0.25)
data <- data.frame(x, sin=sin(x), cosine=cos(x)+5)
head(data)
grf <- plot_points(data, colors=c("red", "green"))
plot(grf)</pre>
```

plot_radar 43

plot_radar

plot radar

Description

plot radar

Usage

```
plot_radar(data, label_x = "", label_y = "", colors = NULL)
```

Arguments

data data.frame contain x, value, and variable
label_x x-axis label
label_y y-axis label
colors color vector

Value

ggplot graphic

Examples

```
data <- data.frame(name = "Petal.Length", value = mean(iris$Petal.Length))
data <- rbind(data, data.frame(name = "Petal.Width", value = mean(iris$Petal.Width)))
data <- rbind(data, data.frame(name = "Sepal.Length", value = mean(iris$Sepal.Length)))
data <- rbind(data, data.frame(name = "Sepal.Width", value = mean(iris$Sepal.Width)))
grf <- plot_radar(data, colors="red") + ggplot2::ylim(0, NA)
plot(grf)</pre>
```

plot_scatter

scatter graph

Description

scatter graph

Usage

```
plot_scatter(data, label_x = "", label_y = "", colors = NULL)
```

plot_series

Arguments

data data.frame contain x, value, and variable
label_x x-axis label
label_y y-axis label
colors color vector

Value

ggplot graphic

Examples

```
grf <- plot_scatter(iris |> dplyr::select(x = Sepal.Length,
  value = Sepal.Width, variable = Species),
  label_x = "Sepal.Length", label_y = "Sepal.Width",
  colors=c("red", "green", "blue"))
  plot(grf)
```

plot_series

plot series

Description

plot series

Usage

```
plot_series(data, label_x = "", label_y = "", colors = NULL)
```

Arguments

data data.frame contain x, value, and variable label_x x-axis label y-axis label colors color vector

Value

plot

```
x <- seq(0, 10, 0.25)
data <- data.frame(x, sin=sin(x))
head(data)

grf <- plot_series(data, colors=c("red"))
plot(grf)</pre>
```

plot_stackedbar 45

plot_stackedbar

plot stacked bar

Description

plot stacked bar

Usage

```
plot_stackedbar(data, label_x = "", label_y = "", colors = NULL, alpha = 1)
```

Arguments

```
data data.frame contain x, value, and variable
label_x x-axis label
label_y y-axis label
colors color vector
alpha level of transparency
```

Value

ggplot graphic

Examples

```
data <- iris |> dplyr::group_by(Species) |>
  dplyr::summarize(Sepal.Length=mean(Sepal.Length), Sepal.Width=mean(Sepal.Width))
grf <- plot_stackedbar(data, colors=c("blue", "red"))
plot(grf)</pre>
```

plot_ts

Plot a time series chart

Description

The function receives six variables as a parameter, which are obj and y, yadj, main and xlabels. The graph is plotted with 3 lines: the original series (in black), the adjusted series (in blue) and the predicted series (in green)

Usage

```
plot_ts(x = NULL, y, label_x = "", label_y = "", color = "black")
```

46 plot_ts_pred

Arguments

```
x input variable
y output variable
label_x x-axis label
label_y y-axis label
color color for time series
```

Value

ggplot graphic

Examples

```
x <- seq(0, 10, 0.25)
data <- data.frame(x, sin=sin(x))
head(data)

grf <- plot_ts(x = data$x, y = data$sin, color=c("red"))
plot(grf)</pre>
```

plot_ts_pred

Plot a time series chart

Description

The function receives six variables as a parameter, which are obj and y, yadj, main and xlabels. The graph is plotted with 3 lines: the original series (in black), the adjusted series (in blue) and the predicted series (in green)

Usage

```
plot_ts_pred(
    x = NULL,
    y,
    yadj,
    ypred = NULL,
    label_x = "",
    label_y = "",
    color = "black",
    color_adjust = "blue",
    color_prediction = "green"
)
```

predictor 47

Arguments

time index Х time series У adjustment of time series yadj prediction of the time series ypred label_x x-axis title label_y y-axis title color color for the time series color for the adjusted values color_adjust color_prediction

color for the predictions

Value

ggplot graphic

Examples

```
data(sin_data)
ts <- ts_data(sin_data$y, 0)
ts_head(ts, 3)

samp <- ts_sample(ts, test_size= 5)
io_train <- ts_projection(samp$train)
io_test <- ts_projection(samp$test)

model <- ts_arima()
model <- fit(model, x=io_train$input, y=io_train$output)
adjust <- predict(model, io_train$input)

prediction <- predict(model, x=io_test$input, steps_ahead=5)
prediction <- as.vector(prediction)

yvalues <- c(io_train$output, io_test$output)
grf <- plot_ts_pred(y=yvalues, yadj=adjust, ypre=prediction)
plot(grf)</pre>
```

predictor

DAL Predict

Description

Ancestor class for regression and classification It provides basis for fit and predict methods. Besides, action method proxies to predict.

An example of learner is a decision tree (cla_dtree)

48 regression

Usage

```
predictor()
```

Value

a predictor object

Examples

#See ?cla_dtree for a classification example using a decision tree

R2.ts

R2

Description

Compute the R-squared (R2) between actual values and forecasts of a time series

Usage

```
R2.ts(actual, prediction)
```

Arguments

actual

real observations

 ${\tt prediction}$

predicted observations

Value

A number, which is the calculated R2

regression

Regression

Description

Ancestor class for regression problems

Usage

```
regression(attribute)
```

Arguments

attribute

attribute target to model building

reg_dtree 49

Value

```
regression object
```

Examples

```
#See ?reg_dtree for a regression example using a decision tree
```

reg_dtree

Decision Tree for regression

Description

Creates a regression object that uses the Decision Tree method for regression It wraps the tree library.

Usage

```
reg_dtree(attribute)
```

Arguments

attribute

attribute target to model building.

Value

A decision tree regression object

```
data(Boston)
model <- reg_dtree("medv")

# preparing dataset for random sampling
sr <- sample_random()
sr <- train_test(sr, Boston)
train <- sr$train
test <- sr$test

model <- fit(model, train)

test_prediction <- predict(model, test)
test_predictand <- test[,"medv"]
test_eval <- evaluate(model, test_predictand, test_prediction)
test_eval$metrics</pre>
```

reg_mlp

reg_knn

knn regression

Description

Creates a regression object that uses the K-Nearest Neighbors (knn) method for regression

Usage

```
reg_knn(attribute, k)
```

Arguments

attribute attribute target to model building k number of k neighbors

Value

A knn regression object

Examples

```
data(Boston)
model <- reg_knn("medv", k=3)

# preparing dataset for random sampling
sr <- sample_random()
sr <- train_test(sr, Boston)
train <- sr$train
test <- sr$test

model <- fit(model, train)

test_prediction <- predict(model, test)
test_predictand <- test[,"medv"]
test_eval <- evaluate(model, test_predictand, test_prediction)
test_eval$metrics</pre>
```

reg_mlp

MLP for regression

Description

Creates a regression object that uses the Multi-Layer Perceptron (MLP) method. It wraps the nnet library.

reg_rf 51

Usage

```
reg_mlp(attribute, size = NULL, decay = 0.05, maxit = 1000)
```

Arguments

attribute attribute target to model building size number of neurons in hidden layers

decay decay learning rate

maxit number of maximum iterations for training

Value

obj

Examples

```
data(Boston)
model <- reg_mlp("medv", size=5, decay=0.54)

# preparing dataset for random sampling
sr <- sample_random()
sr <- train_test(sr, Boston)
train <- sr$train
test <- sr$test

model <- fit(model, train)

test_prediction <- predict(model, test)
test_predictand <- test[,"medv"]
test_eval <- evaluate(model, test_predictand, test_prediction)
test_eval$metrics</pre>
```

reg_rf

Random Forest for regression

Description

Creates a regression object that uses the Random Forest method. It wraps the randomForest library.

Usage

```
reg_rf(attribute, nodesize = 1, ntree = 10, mtry = NULL)
```

Arguments

attribute attribute target to model building

nodesize node size
ntree number of trees

mtry number of attributes to build tree

52 reg_svm

Value

obj

Examples

```
data(Boston)
model <- reg_rf("medv", ntree=10)

# preparing dataset for random sampling
sr <- sample_random()
sr <- train_test(sr, Boston)
train <- sr$train
test <- sr$test

model <- fit(model, train)

test_prediction <- predict(model, test)
test_predictand <- test[,"medv"]
test_eval <- evaluate(model, test_predictand, test_prediction)
test_eval$metrics</pre>
```

reg_svm

SVM for regression

Description

Creates a regression object that uses the Support Vector Machine (SVM) method for regression It wraps the e1071 library.

Usage

```
reg_svm(attribute, epsilon = 0.1, cost = 10, kernel = "radial")
```

Arguments

attribute attribute target to model building

epsilon parameter that controls the width of the margin around the separating hyperplane

cost parameter that controls the trade-off between having a wide margin and correctly classifying training data points

kernel the type of kernel function to be used in the SVM algorithm (linear, radial, polynomial, sigmoid)

Value

A SVM regression object

reg_tune 53

Examples

```
data(Boston)
model <- reg_svm("medv", epsilon=0.2,cost=40.000)

# preparing dataset for random sampling
sr <- sample_random()
sr <- train_test(sr, Boston)
train <- sr$train
test <- sr$test

model <- fit(model, train)

test_prediction <- predict(model, test)
test_predictand <- test[,"medv"]
test_eval <- evaluate(model, test_predictand, test_prediction)
test_eval$metrics</pre>
```

reg_tune

Regression Tune

Description

Regression Tune

Usage

```
reg_tune(base_model, folds = 10)
```

Arguments

base_model base model for tuning
folds number of folds for cross-validation

Value

a reg_tune object.

```
# preparing dataset for random sampling
data(Boston)
sr <- sample_random()
sr <- train_test(sr, Boston)
train <- sr$train
test <- sr$test

# hyper parameter setup
tune <- reg_tune(reg_mlp("medv"))
ranges <- list(size=c(3), decay=c(0.1,0.5))</pre>
```

54 sample_random

```
# hyper parameter optimization
model <- fit(tune, train, ranges)

test_prediction <- predict(model, test)
test_predictand <- test[,"medv"]
test_eval <- evaluate(model, test_predictand, test_prediction)
test_eval$metrics</pre>
```

sample_random

Sample Random

Description

The sample_random function in R is used to generate a random sample of specified size from a given data set.

Usage

```
sample_random()
```

Value

obj

```
#using random sampling
sample <- sample_random()
tt <- train_test(sample, iris)

# distribution of train
table(tt$train$Species)

# preparing dataset into four folds
folds <- k_fold(sample, iris, 4)

# distribution of folds
tbl <- NULL
for (f in folds) {
  tbl <- rbind(tbl, table(f$Species))
}
head(tbl)</pre>
```

sample_stratified 55

sample_stratified

sample_stratified

Description

The sample_stratified function in R is used to generate a stratified random sample from a given dataset. Stratified sampling is a statistical method that is used when the population is divided into non-overlapping subgroups or strata, and a sample is selected from each stratum to represent the entire population. In stratified sampling, the sample is selected in such a way that it is representative of the entire population and the variability within each stratum is minimized.

Usage

```
sample_stratified(attribute)
```

Arguments

attribute attribute target to model building

Value

obj

```
#using stratified sampling
sample <- sample_stratified("Species")
tt <- train_test(sample, iris)

# distribution of train
table(tt$train$Species)

# preparing dataset into four folds
folds <- k_fold(sample, iris, 4)

# distribution of folds
tbl <- NULL
for (f in folds) {
  tbl <- rbind(tbl, table(f$Species))
}
head(tbl)</pre>
```

select_hyper.cla_tune

select_hyper

Selection hyper parameters

Description

Selection hyper parameters from a k-fold cross-validation execution

Usage

```
select_hyper(obj, hyperparameters)
```

Arguments

```
obj object hyperparameters
```

data set with hyper parameters and quality measure from execution

Value

index of selected hyper parameter

```
select_hyper.cla_tune selection of hyperparameters
```

Description

selection of hyperparameters (maximizing classification metric)

Usage

```
## S3 method for class 'cla_tune'
select_hyper(obj, hyperparameters)
```

Arguments

```
obj object
hyperparameters
```

hyperparameters dataset

Value

optimized key number of hyperparameters

select_hyper.ts_tune 57

```
select_hyper.ts_tune selection of hyperparameters (time series)
```

Description

selection of hyperparameters (minimizing error)

Usage

```
## S3 method for class 'ts_tune'
select_hyper(obj, hyperparameters)
```

Arguments

```
obj object
hyperparameters
hyperparameters dataset
```

Value

optimized key number of hyperparameters

set_params

Assign parameters

Description

set_params function assigns all parameters to the attributes presented in the object. It returns the object with the parameters set.

Usage

```
set_params(obj, params)
```

Arguments

obj object of class dal_base params parameters to set obj

Value

obj with parameters set

```
obj <- set_params(dal_base(), list(x = 0))</pre>
```

58 sin_data

set_params.default

Assign parameters

Description

This function receives the obj and params variables as parameters. It returns the obj as it is.

Usage

```
## Default S3 method:
set_params(obj, params)
```

Arguments

obj object params parameters

Value

obj

sin_data

Time series example dataset

Description

Synthetic dataset of sine function.

- x: correspond time from 0 to 10.
- y: dependent variable for time series modeling.

Usage

```
data(sin_data)
```

Format

data.frame.

Source

This dataset was generated for examples.

```
data(sin_data)
head(sin_data)
```

sMAPE.ts 59

sMAPE.ts sMAPE

Description

Compute the symmetric mean absolute percent error (sMAPE)

Usage

```
sMAPE.ts(actual, prediction)
```

Arguments

actual real observations

prediction predicted observations

Value

The sMAPE between the actual and prediction vectors

smoothing Smoothing

Description

Smoothing is a statistical technique used to reduce the noise in a signal or a dataset by removing the high-frequency components. The smoothing level is associated with the number of bins used. There are alternative methods to establish the smoothing: equal interval, equal frequency, and clustering.

Usage

```
smoothing(n)
```

Arguments

n number of bins

Value

obj

60 smoothing_cluster

Examples

```
data(iris)
obj <- smoothing_inter(n = 2)
obj <- fit(obj, iris$Sepal.Length)
sl.bi <- transform(obj, iris$Sepal.Length)
table(sl.bi)
obj$interval
entro <- evaluate(obj, as.factor(names(sl.bi)), iris$Species)
entro$entropy</pre>
```

smoothing_cluster

Smoothing by cluster

Description

Uses clustering method to perform data smoothing. The input vector is divided into clusters using the k-means algorithm. The mean of each cluster is then calculated and used as the smoothed value for all observations within that cluster.

Usage

```
smoothing_cluster(n)
```

Arguments

n

number of bins

Value

obj

```
data(iris)
obj <- smoothing_cluster(n = 2)
obj <- fit(obj, iris$Sepal.Length)
sl.bi <- transform(obj, iris$Sepal.Length)
table(sl.bi)
obj$interval
entro <- evaluate(obj, as.factor(names(sl.bi)), iris$Species)
entro$entropy</pre>
```

smoothing_freq 61

smoothing_freq

Smoothing by Freq

Description

The 'smoothing_freq' function is used to smooth a given time series data by aggregating observations within a fixed frequency.

Usage

```
smoothing_freq(n)
```

Arguments

n

number of bins

Value

obj

Examples

```
data(iris)
obj <- smoothing_freq(n = 2)
obj <- fit(obj, iris$Sepal.Length)
sl.bi <- transform(obj, iris$Sepal.Length)
table(sl.bi)
obj$interval
entro <- evaluate(obj, as.factor(names(sl.bi)), iris$Species)
entro$entropy</pre>
```

 $smoothing_inter$

Smoothing by interval

Description

The "smoothing by interval" function is used to apply a smoothing technique to a vector or time series data using a moving window approach.

Usage

```
smoothing_inter(n)
```

Arguments

n

number of bins

62 train_test

Value

obj

Examples

```
data(iris)
obj <- smoothing_inter(n = 2)
obj <- fit(obj, iris$Sepal.Length)
sl.bi <- transform(obj, iris$Sepal.Length)
table(sl.bi)
obj$interval
entro <- evaluate(obj, as.factor(names(sl.bi)), iris$Species)
entro$entropy</pre>
```

train_test

training and test

Description

training and test partition of a dataset using a sampling method

Usage

```
train_test(obj, data, perc = 0.8, ...)
```

Arguments

```
obj object
data dataset
perc percentage for training
... optional arguments.
```

Value

train and test sets

```
#using random sampling
sample <- sample_random()
tt <- train_test(sample, iris)
# distribution of train
table(tt$train$Species)</pre>
```

train_test_from_folds 63

train_test_from_folds k-fold training and test partition object

Description

k-fold training and test partition object

Usage

```
train_test_from_folds(folds, k)
```

Arguments

folds data partitioned into folds

k k-fold for test set, all reminder for training set

Value

train and test folds

transform Transform

Description

Defines a transformation method.

Usage

```
transform(obj, ...)
```

Arguments

obj a dal_transform object. ... optional arguments.

Value

transformed data.

Examples

#See ?minmax for an example of transformation

ts_conv1d

ts_arima

ARIMA

Description

Creates a time series prediction object that uses the AutoRegressive Integrated Moving Average (ARIMA). It wraps the forecast library.

Usage

```
ts_arima()
```

Value

a ts_arima object.

Examples

```
data(sin_data)
ts <- ts_data(sin_data$y, 0)
ts_head(ts, 3)

samp <- ts_sample(ts, test_size = 5)
io_train <- ts_projection(samp$train)
io_test <- ts_projection(samp$test)

model <- ts_arima()
model <- fit(model, x=io_train$input, y=io_train$output)

prediction <- predict(model, x=io_test$input[1,], steps_ahead=5)
prediction <- as.vector(prediction)
output <- as.vector(io_test$output)

ev_test <- evaluate(model, output, prediction)
ev_test</pre>
```

ts_conv1d

Conv1D

Description

Creates a time series prediction object that uses the Conv1D. It wraps the pytorch library.

Usage

```
ts_conv1d(preprocess = NA, input_size = NA, epochs = 10000L)
```

ts_data 65

Arguments

preprocess normalization

input_size input size for machine learning model

epochs maximum number of epochs

Value

```
a ts_conv1d object.
```

Examples

```
#Use the same example of ts_mlp changing the constructor to:
model <- ts_conv1d(ts_norm_gminmax(), input_size=4, epochs = 10000L)</pre>
```

ts_data

ts_data

Description

Time series data structure used in DAL Toolbox. It receives a vector (representing a time series) or a matrix y (representing a sliding windows). Internal ts_data is matrix of sliding windows with size sw. If sw equals to zero, it store a time series as a single matrix column.

Usage

```
ts_data(y, sw = 1)
```

Arguments

y output variable

sw integer: sliding window size.

Value

a ts_data object.

```
data(sin_data)
head(sin_data)

data <- ts_data(sin_data$y)
ts_head(data)

data10 <- ts_data(sin_data$y, 10)
ts_head(data10)</pre>
```

ts_elm

ts_elm *ELM*

Description

Creates a time series prediction object that uses the Extreme Learning Machine (ELM). It wraps the elmNNRcpp library.

Usage

```
ts_elm(preprocess = NA, input_size = NA, nhid = NA, actfun = "purelin")
```

Arguments

Value

a ts_elm object.

```
data(sin_data)
ts <- ts_data(sin_data$y, 10)
ts_head(ts, 3)

samp <- ts_sample(ts, test_size = 5)
io_train <- ts_projection(samp$train)
io_test <- ts_projection(samp$test)

model <- ts_elm(ts_norm_gminmax(), input_size=4, nhid=3, actfun="purelin")
model <- fit(model, x=io_train$input, y=io_train$output)

prediction <- predict(model, x=io_test$input[1,], steps_ahead=5)
prediction <- as.vector(prediction)
output <- as.vector(io_test$output)

ev_test <- evaluate(model, output, prediction)
ev_test</pre>
```

ts_head 67

ts_head ts_head

Description

Returns the first n observations from a ts_data

Usage

```
ts_head(x, n = 6L, ...)
```

Arguments

```
x ts_data
```

n number of rows to return
... optional arguments

Value

The first n observations of a ts_data

Examples

```
data(sin_data)
data10 <- ts_data(sin_data$y, 10)
ts_head(data10)</pre>
```

ts_knn

knn time series prediction

Description

Creates a prediction object that uses the K-Nearest Neighbors (knn) method for time series regression

Usage

```
ts_knn(preprocess = NA, input_size = NA, k = NA)
```

Arguments

preprocess normalization

input_size input size for machine learning model

k number of k neighbors

68 ts_lstm

Value

```
a ts_knn object.
```

Examples

```
data(sin_data)
ts <- ts_data(sin_data$y, 10)
ts_head(ts, 3)

samp <- ts_sample(ts, test_size = 5)
io_train <- ts_projection(samp$train)
io_test <- ts_projection(samp$test)

model <- ts_knn(ts_norm_gminmax(), input_size=4, k=3)
model <- fit(model, x=io_train$input, y=io_train$output)

prediction <- predict(model, x=io_test$input[1,], steps_ahead=5)
prediction <- as.vector(prediction)
output <- as.vector(io_test$output)

ev_test <- evaluate(model, output, prediction)
ev_test</pre>
```

 ts_lstm

LSTM

Description

Creates a time series prediction object that uses the LSTM. It wraps the pytorch library.

Usage

```
ts_lstm(preprocess = NA, input_size = NA, epochs = 10000L)
```

Arguments

preprocess normalization

input_size input size for machine learning model

epochs maximum number of epochs

Value

```
a ts_1stm object.
```

```
#Use the same example of ts_mlp changing the constructor to:
model <- ts_lstm(ts_norm_gminmax(), input_size=4, epochs = 10000L)</pre>
```

ts_mlp 69

ts_mlp MLP	
------------	--

Description

Creates a time series prediction object that uses the Multilayer Perceptron (MLP). It wraps the nnet library.

Usage

```
ts_mlp(preprocess = NA, input_size = NA, size = NA, decay = 0.01, maxit = 1000)
```

Arguments

preprocess	normalization
input_size	input size for machine learning model
size	number of neurons inside hidden layer
decay	decay parameter for MLP
maxit	maximum number of iterations

Value

```
a ts_mlp object.
```

```
data(sin_data)
ts <- ts_data(sin_data$y, 10)
ts_head(ts, 3)

samp <- ts_sample(ts, test_size = 5)
io_train <- ts_projection(samp$train)
io_test <- ts_projection(samp$test)

model <- ts_mlp(ts_norm_gminmax(), input_size=4, size=4, decay=0)
model <- fit(model, x=io_train$input, y=io_train$output)

prediction <- predict(model, x=io_test$input[1,], steps_ahead=5)
prediction <- as.vector(prediction)
output <- as.vector(io_test$output)

ev_test <- evaluate(model, output, prediction)
ev_test</pre>
```

70 ts_norm_an

ts_norm_an

Time Series Adaptive Normalization

Description

Transform data to a common scale while taking into account the changes in the statistical properties of the data over time.

Usage

```
ts_norm_an(remove_outliers = TRUE, nw = 0)
```

Arguments

```
remove_outliers logical: if TRUE (default) outliers will be removed.

nw integer: window size.
```

Value

```
a ts_norm_an object.
```

```
# time series to normalize
data(sin_data)

# convert to sliding windows
ts <- ts_data(sin_data$y, 10)
ts_head(ts, 3)
summary(ts[,10])

# normalization
preproc <- ts_norm_an()
preproc <- fit(preproc, ts)
tst <- transform(preproc, ts)
ts_head(tst, 3)
summary(tst[,10])</pre>
```

ts_norm_diff 71

 ts_norm_diff

Time Series Diff

Description

It receives as parameter the variable remove_outliters. This function calculates the difference between the values of a time series

Usage

```
ts_norm_diff(remove_outliers = TRUE)
```

Arguments

remove_outliers

logical: if TRUE (default) outliers will be removed.

Value

```
a ts_norm_diff object.
```

Examples

```
# time series to normalize
data(sin_data)

# convert to sliding windows
ts <- ts_data(sin_data$y, 10)
ts_head(ts, 3)
summary(ts[,10])

# normalization
preproc <- ts_norm_diff()
preproc <- fit(preproc, ts)
tst <- transform(preproc, ts)
ts_head(tst, 3)
summary(tst[,9])</pre>
```

ts_norm_ean

Time Series Adaptive Normalization (Exponential Moving Average - EMA)

Description

It takes 2 parameters: remove_outliers and nw

72 ts_norm_gminmax

Usage

```
ts_norm_ean(remove_outliers = TRUE, nw = 0)
```

Arguments

```
\label{eq:continuous} logical: if TRUE (default) outliers will be removed. \\ \\ \text{nw} \qquad windows size
```

Value

a ts_norm_ean object.

Examples

```
# time series to normalize
data(sin_data)

# convert to sliding windows
ts <- ts_data(sin_data$y, 10)
ts_head(ts, 3)
summary(ts[,10])

# normalization
preproc <- ts_norm_ean()
preproc <- fit(preproc, ts)
tst <- transform(preproc, ts)
ts_head(tst, 3)
summary(tst[,10])</pre>
```

 $ts_norm_gminmax$

Time Series Global Min-Max

Description

Rescales data, so the minimum value is mapped to 0 and the maximum value is mapped to 1.

Usage

```
ts_norm_gminmax(remove_outliers = TRUE)
```

Arguments

```
remove_outliers
```

logical: if TRUE (default) outliers will be removed.

Value

```
a ts_norm_gminmax object.
```

ts_norm_swminmax 73

Examples

```
# time series to normalize
data(sin_data)

# convert to sliding windows
ts <- ts_data(sin_data$y, 10)
ts_head(ts, 3)
summary(ts[,10])

# normalization
preproc <- ts_norm_gminmax()
preproc <- fit(preproc, ts)
tst <- transform(preproc, ts)
ts_head(tst, 3)
summary(tst[,10])</pre>
```

ts_norm_swminmax

Time Series Sliding Window Min-Max

Description

It takes as parameter the variable remove_outliers. The ts_norm_swminmax function creates an object for normalizing a time series based on the "sliding window min-max scaling" method

Usage

```
ts_norm_swminmax(remove_outliers = TRUE)
```

Arguments

remove_outliers

logical: if TRUE (default) outliers will be removed.

Value

```
a ts_norm_swminmax object.
```

```
# time series to normalize
data(sin_data)

# convert to sliding windows
ts <- ts_data(sin_data$y, 10)
ts_head(ts, 3)
summary(ts[,10])

# normalization
preproc <- ts_norm_swminmax()</pre>
```

74 ts_projection

```
preproc <- fit(preproc, ts)
tst <- transform(preproc, ts)
ts_head(tst, 3)
summary(tst[,10])</pre>
```

 $ts_projection$

Time Series Projection

Description

Separates the ts_data into input and output.

Usage

```
ts_projection(ts)
```

Arguments

ts

matrix or data.frame containing the time series.

Value

```
a ts_projection object.
```

```
#setting up a ts_data
data(sin_data)
ts <- ts_data(sin_data$y, 10)
io <- ts_projection(ts)

#input data
ts_head(io$input)

#output data
ts_head(io$output)</pre>
```

ts_reg 75

Description

Time Series Regression directly from time series Ancestral class for non-sliding windows implementation.

Usage

ts_reg()

Value

A ts_reg object

Examples

#See ?ts_arima for an example using Auto-regressive Integrated Moving Average

 ts_regsw TSRegSW

Description

Time Series Regression from Sliding Windows. Ancestral class for Machine Learning Implementation.

Usage

```
ts_regsw(preprocess = NA, input_size = NA)
```

Arguments

preprocess normalization

input_size input size for machine learning model

Value

A ts_regsw object

Examples

#See ?ts_elm for an example using Extreme Learning Machine

76 ts_rf

ts_rf Random Forest

Description

Creates a time series prediction object that uses the Random Forest. It wraps the randomForest library.

Usage

```
ts_rf(preprocess = NA, input_size = NA, nodesize = 1, ntree = 10, mtry = NULL)
```

Arguments

preprocess normalization

input_size input size for machine learning model

nodesize node size

ntree number of trees

mtry number of attributes to build tree

Value

a ts_rf object.

```
data(sin_data)
ts <- ts_data(sin_data$y, 10)
ts_head(ts, 3)

samp <- ts_sample(ts, test_size = 5)
io_train <- ts_projection(samp$train)
io_test <- ts_projection(samp$test)

model <- ts_rf(ts_norm_gminmax(), input_size=4, nodesize=3, ntree=50)
model <- fit(model, x=io_train$input, y=io_train$output)

prediction <- predict(model, x=io_test$input[1,], steps_ahead=5)
prediction <- as.vector(prediction)
output <- as.vector(io_test$output)

ev_test <- evaluate(model, output, prediction)
ev_test</pre>
```

ts_sample 77

ts_sample

Time Series Sample

Description

Separates the ts_data into training and test. It separates the test size from the last observations minus an offset. The offset is important to allow replication under different recent origins. The data for train uses the number of rows of a ts_data minus the test size and offset.

Usage

```
ts_sample(ts, test_size = 1, offset = 0)
```

Arguments

ts time series.

test_size integer: size of test data (default = 1).

offset integer: starting point (default = 0).

Value

A list with the two samples

```
#setting up a ts_data
data(sin_data)
ts <- ts_data(sin_data$y, 10)

#separating into train and test
test_size <- 3
samp <- ts_sample(ts, test_size)

#first five rows from training data
ts_head(samp$train, 5)

#last five rows from training data
ts_head(samp$train[-c(1:(nrow(samp$train)-5)),])

#testing data
ts_head(samp$test)</pre>
```

78 ts_svm

ts_svm SVM

Description

Creates a time series prediction object that uses the Support Vector Machine (SVM). It wraps the e1071 library.

Usage

```
ts_svm(
  preprocess = NA,
  input_size = NA,
  kernel = "radial",
  epsilon = 0,
  cost = 10
)
```

Arguments

preprocess normalization
input_size input size for machine learning model
kernel SVM kernel (linear, radial, polynomial, sigmoid)
epsilon error threshold
cost cost

Value

a ts_svm object.

```
data(sin_data)
ts <- ts_data(sin_data$y, 10)
ts_head(ts, 3)

samp <- ts_sample(ts, test_size = 5)
io_train <- ts_projection(samp$train)
io_test <- ts_projection(samp$test)

model <- ts_svm(ts_norm_gminmax(), input_size=4)
model <- fit(model, x=io_train$input, y=io_train$output)

prediction <- predict(model, x=io_test$input[1,], steps_ahead=5)
prediction <- as.vector(prediction)
output <- as.vector(io_test$output)

ev_test <- evaluate(model, output, prediction)
ev_test</pre>
```

ts_tune 79

ts_tune

Time Series Tune

Description

Time Series Tune

Usage

```
ts_tune(input_size, base_model, folds = 10)
```

Arguments

input_size input size for machine learning model

base_model base model for tuning

folds number of folds for cross-validation

Value

a ts_tune object.

```
data(sin_data)
ts <- ts_data(sin_data$y, 10)
ts_head(ts, 3)

samp <- ts_sample(ts, test_size = 5)
io_train <- ts_projection(samp$train)
io_test <- ts_projection(samp$test)

tune <- ts_tune(input_size=c(3:5), base_model = ts_elm(ts_norm_gminmax()))
ranges <- list(nhid = 1:5, actfun=c('purelin'))

# Generic model tunning
model <- fit(tune, x=io_train$input, y=io_train$output, ranges)

prediction <- predict(model, x=io_test$input[1,], steps_ahead=5)
prediction <- as.vector(prediction)
output <- as.vector(io_test$output)

ev_test <- evaluate(model, output, prediction)
ev_test</pre>
```

[.ts_data

zscore

z-score normalization

Description

Scale data using z-score normalization. zscore = (x - mean(x))/sd(x).

Usage

```
zscore(nmean = 0, nsd = 1)
```

Arguments

nmean new mean for normalized data

nsd new standard deviation for normalized data

Value

z-score transformation object

Examples

```
data(iris)
head(iris)

trans <- zscore()
trans <- fit(trans, iris)
tiris <- transform(trans, iris)
head(tiris)

itiris <- inverse_transform(trans, tiris)
head(itiris)</pre>
```

[.ts_data

Extract a subset of a time series stored in an object

Description

Receives as parameters the variables x, i, j ...

Usage

```
## S3 method for class 'ts_data'
x[i, j, ...]
```

[.ts_data 81

Arguments

x input variablei row ij column j... optional arguments

Value

A new ts_data object

```
data(sin_data)
data10 <- ts_data(sin_data$y, 10)</pre>
ts_head(data10)
#single line
data10[12,]
#range of lines
data10[12:13,]
#single column
data10[,1]
#range of columns
data10[,1:2]
#range of rows and columns
data10[12:13,1:2]
#single line and a range of columns
#'data10[12,1:2]
#range of lines and a single column
data10[12:13,1]
#single observation
data10[12,1]
```

Index

* datasets Boston, 9	do_predict, 27 dt_pca, 27
sin_data, 58	evaluate, 28
[.ts_data, 80	evaluate, 20
<pre>action, 4 action.dal_transform, 5 adjust_class_label, 5 adjust_data.frame, 6 adjust_factor, 6</pre>	fit, 29 fit.cla_tune, 29 fit.cluster_dbscan, 30 fit_curvature_max, 30 fit_curvature_min, 31
<pre>adjust_matrix, 7 adjust_ts_data, 7</pre>	inverse_transform, 32
autoenc_encode, 8	k fold 22
autoenc_encode_decode, 9	k_fold, 32
Boston, 9	minmax, 33 MSE.ts, 34
<pre>categ_mapping, 11 cla_dtree, 12</pre>	outliers, 34
cla_knn, 13	plot_bar, 35
cla_majority, 14	plot_boxplot, 36
cla_mlp, 15	<pre>plot_boxplot_class, 36</pre>
cla_nb, 16	plot_density,37
cla_rf, 16	<pre>plot_density_class, 38</pre>
cla_svm, 17	plot_groupedbar, 39
cla_tune, 18	plot_hist, 39
classification, 11	plot_lollipop, 40
clu_tune, 22	plot_pieplot,41
cluster, 19	plot_points,42
cluster_dbscan, 20	plot_radar,43
cluster_kmeans, 21	plot_scatter, 43
cluster_pam, 22	plot_series,44
clusterer, 20	plot_stackedbar, 45
	plot_ts, 45
dal_base, 23	plot_ts_pred,46
dal_learner, 24	predictor, 47
dal_transform, 24	
dal_tune, 25	R2.ts, 48
data_sample, 25	reg_dtree, 49
do_fit, 26	reg_knn, 50

INDEX 83

```
reg_mlp, 50
reg_rf, 51
reg_svm, 52
reg_tune, 53
regression, 48
sample_random, 54
sample_stratified, 55
select_hyper, 56
select_hyper.cla_tune, 56
select_hyper.ts_tune, 57
set_params, 57
\mathsf{set\_params.default}, 58
sin_data, 58
sMAPE.ts, 59
smoothing, 59
smoothing_cluster, 60
smoothing_freq, 61
smoothing_inter, 61
train_test, 62
train_test_from_folds, 63
transform, 63
ts_arima, 64
ts_conv1d, 64
ts_data, 65
ts_elm, 66
ts_head, 67
ts_knn, 67
ts_1stm, 68
ts_mlp, 69
ts_norm_an, 70
\texttt{ts\_norm\_diff}, \textcolor{red}{71}
ts_norm_ean, 71
ts_norm_gminmax, 72
ts_norm_swminmax, 73
ts_projection, 74
ts_reg, 75
ts_regsw, 75
ts_rf, 76
ts_sample, 77
ts_svm, 78
ts_tune, 79
zscore, 80
```