Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики Факультет информационных технологий и программирования Кафедра компьютерных технологий

Реализация эффективного взаимодействия между платформой для анализа экспрессии генов Morpheus и библиотекой вычислительных методов R/Bioconductor

Зенкова Д.М.

Научный руководитель: Сергушичев А. А.

ОГЛАВЛЕНИЕ

		Стр.
введение	•••••	5
глава 1. Об3	ОР ПРЕДМЕТНОЙ ОБЛАСТИ	6
1.1. Биоинформатика		6
1.1.1.	Анализ экспрессии генов	6
1.1.2.	Используемые методы	6
1.2. Cy	ществующие решения для анализа экспрессии генов	6
1.2.1.	GENE-E	6
1.2.2.	morpheus.js	6
1.2.3.	R/Bioconductor	7
1.3. Ин	струменты, которые могут быть применены	7
1.3.1.	Язык R и библиотека Bioconductor	7
1.3.2.	JavaScript	7
1.3.3.	R shiny	7
1.3.4.	OpenCPU	7
1.3.5.	Gene Expression Omnibus	7
1.3.6.	Docker	8
1.3.7.	Protocol Buffers	8
1.3.8.	Apache2	8
1.3.9.	HTML	8
1.4. По	остановка задачи	8
1.4.1.	Цель работы	8
1.4.2.	Основные задачи	8
1.4.3.	Требования к веб-приложению phantasus	9
Выводы	по главе 1	9
ГЛАВА 2. АРХ	ИТЕКТУРА ПРОЕКТА	10
Резюме		10
глава з. РЕА	•	11
Резюме		11
ЗАКЛЮЧЕНИ!	E	12
список ист	ОЧНИКОВ	13

введение

ГЛАВА 1. ОБЗОР ПРЕДМЕТНОЙ ОБЛАСТИ

1.1. Биоинформатика

1.1.1. Анализ экспрессии генов

1.1.2. Используемые методы

1.2. Существующие решения для анализа экспрессии генов

1.2.1. **GENE-E**

Платформа для анализа данных и визуального исследования данных, созданная на Java и R. Содержит в себе множество полезных для исследования инструментов: тепловые карты, кластеризацию, фильтрацию, построение графиков и т.д. Позволяет исследовать любые данные в виде матрицы. К тому же, содержит дополнительные инструменты для геномных данных.

Недостатки:

- Чтобы использовать, необходимо устанавливать на свой компьютер;
- Поддержка данного приложения прекратилась в связи с созданием morpheus.js;
- Не имеет открытого исходного кода, а только API.

1.2.2. morpheus.js

Веб-приложение от создателя GENE-E. Создано с теми же целями и мотивацией, но уже на JavaScript и с открытым исходным кодом. Удобно для использования исследователями без навыков программирования и так же, как и GENE-E, применимо к любым матрицам.

Недостатки:

- Ограниченный набор функций, которых недостаточно для полноценного анализа;
- Для расширения биоинформатическими алгоритмами требуется реализовывать их заново на JavaScript.

1.2.3. R/Bioconductor

R - язык программирования для статистического анализа данных и работы с графикой. Bioconductor - библиотека, содержащая в себе множество реализаций биоинформатических алгоритмов и методов обработки биологических данных на R. Она постоянно обновляется, пополняется новыми библиотеками, модерируется сообществом. R и Bioconductor очень популярны в биоинформатической среде ввиду предоставляемых возможностей.

Однако для качественного и полноценного анализа с помощью этих инструментов, нужно иметь навыки программирования на R, что весьма неудобно для исследователей биологических специальностей.

1.3. Инструменты, которые могут быть применены

1.3.1. Язык R и библиотека Bioconductor

Алгоритмы, реализованные в Bioconductor, могут быть применены для анализа экспрессии генов.

1.3.2. JavaScript

JavaScript - язык программирования, широко используемый для написания веб-приложений.

1.3.3. R shiny

1.3.4. OpenCPU

OpenCPU - система для встроенных научных вычислений и воспроизводимых исследований, предоставляющая HTTP API для взаимодействия с R-серверами. Имеется также библиотека opencpu.js для интеграции JavaScript и R.

1.3.5. Gene Expression Omnibus

GEO - публичный репозиторий с геномными данными.

В библиотеке Bioconductor есть R-пакет GEOquery для удобной загрузки данных из GEO.

- **1.3.6. Docker**
- **1.3.7.** Protocol Buffers
- **1.3.8.** Apache2
- 1.3.9. HTML

1.4. Постановка задачи

Рассмотрев существующие решения для анализа экспрессии генов и инструментов, которые могли бы пригодиться для будущих решений, можно сформулировать цель и основные задачи данной работы

1.4.1. Цель работы

Создать веб-приложение, интегрирующее существующие возможности веб-приложения morpheus.js и методы анализа, реализованные в Bioconductor.

1.4.2. Основные задачи

- а) Разработать способ взаимодействия между јѕ-клиентом и R и встроить его в morpheus.js, чтобы избежать реализации с нуля уже существующих алгоритмов;
- б) Реализовать графический интерфейс в js-клиенте и серверную реализацию в R-пакете;
- в) Соединить все составляющие в одном веб-приложении phantasus;
- г) Запустить веб-приложение в открытый доступ для исследователей.

1.4.3. Требования к веб-приложению phantasus

Доступность

Необходимо, чтобы веб-приложение phantasus было доступно для исследователей независимо от их местоположения и времени суток. Варианты действий:

- а) Сделать его доступным по определенному веб-адресу, и тогда пользователь сможет продолжать исследования из любой точки, где есть подключение к интернету;
- б) Предоставить возможность запускать приложение локально, например, с помощью Docker или внутри R.

Возможность дальнейшего расширения функционала веб-приложения

Как уже было сказано выше, библиотека Bioconductor постоянно обновляется и пополняется новыми алгоритмами, а исследователи находят новые методы для анализа экспресси генов, так что необходимо не только реализовать дополнительные методы, но и отладить и описать алгоритм действий для добабления новых.

Выводы по главе 1

В данной главе была кратко описана предметная область и необходимые биоинформатические определения, рассмотрены существующие решения и инструменты, которые могли бы быть применены для разработки новых решений. Исходя из обзора, была сформулирована цель работы и требования к результату:

- а) доступность;
- б) возможность дальнейшего расширения функционала.

ГЛАВА 2. АРХИТЕКТУРА ПРОЕКТА

В этой главе будут подробно рассмотрены элементы проекта, их взаимосвязь и ключевые для архитектуры выдержки из исходного кода.

Резюме

глава 3. РЕАлизация

Резюме

ЗАКЛЮЧЕНИЕ

СПИСОК ИСТОЧНИКОВ