

تمرین هفتم درس تجزیه و تحلیل سیگنالها و سیستمها نمونه برداری و تبدیل Z

زمان تحویل: ۱۴۰۲/۰۳/۳۱ ساعت ۱۶:۳۰

استاد: د كتر نقش

ا- از سیگنال زمان پیوستهی $\chi(t)$ با تبدیل فوریهی $\chi(\omega)$ ، با $T_{
m s}=1$ نمونه برداری می شود. برای هر یک X(t)از موارد زیر، با توجه به قیدی که روی $\chi(t)$ با $\chi(t)$ گذاشته شده است، مشخص کنید که طبق قضیهی نمونه بر داری می توان تضمین نمو د که سیگنال $\chi(t)$ قابل بازیابی است یا خیر (با بیان استدلال).

$$X(\omega) = \cdot$$
 , $for |\omega| > \delta \cdot \cdot \cdot \pi$ (الف

$$X(\omega) = \cdot$$
, for $|\omega| > 1 \cdot \cdot \cdot \pi$ (\cup

$$Re\{X(\omega)\} = \cdot$$
, $for |\omega| > \delta \cdots \pi$

د)
$$X(t)$$
 و $X(\omega) = \cdot$, for $\omega > \delta \cdots \pi$ (د

و)
$$X(t)$$
 و $X(\omega) = \cdot$, $for \omega < -1$ و عقیقی

$$X(\omega) * X(\omega) = \cdot$$
, for $|\omega| > 1 \cdot \cdot \cdot \pi$ (o

$$|X(\omega)| = \cdot$$
, for $\omega > \delta \cdots \pi$ (ω

۲- اگر نرخ نایکوییست سیگنال x(t) برابر $\omega_{
m s}$ باشد، نرخ نایکوییست برای سیگنال های زیر چقدر است؟

$$x(t) + x(t - 1)(\delta$$

$$x(t)\cos(\omega_{S}t)$$
 (f $x(t)*x(t)$ (f $\frac{dx(t)}{dt}$ (f

$$x(t) * x(t)$$
 (*

$$\frac{dx(t)}{dt}$$
 (Y

 $x^{r}(t)$ (1

۳- فرض کنید سیگنال y(t) با استفاده از سیگنال x(t) ساخته شده باشد. طیف دو سیگنال در زیر نشان داده شده است. از سیگنال y(t) با نرخ T نمونه بر داری می کنیم و سیگنال بدست آمده را از یک فیلتر پایین گذر با فر کانس $(\omega_p = \omega_{
m r} - \omega_{
m r})$ عبور می دهیم. مقادیر T و ω_c چقدر باشد تا بتوان سیگنال x(t) را بازیابی کرد

- سیگنال زمان پیوسته است که تبدیل فوریه ی آن $X_c(\omega)$ برای $X_c(\omega)$ برابر با صفر است. سیگنال زمان پیوسته است که تبدیل فوریه ی آن $X_c(\omega)$ برای $X_c(\omega)$ برای $X_d(e^{j\Omega})$ را در نظر بگیرید. به ازای هر یک از خواص بیان شده برای $X_d(e^{j\Omega})$ گسسته زمان شده برای $X_d(e^{j\Omega})$ دارد؟
 - الف) حقيقي است.
 - ب) ماکزیمم $X_d(e^{j\Omega})$ برابر با ۱ است.
 - $X_d(e^{j\Omega}) = \cdot, \quad \frac{r\pi}{r} \leq |\Omega| \leq \pi$
 - $X_d(e^{j\Omega}) = X_d(e^{j(\Omega-\pi)})$ (د
- w(t) در سیستم شکل زیر، دو سیگنال $x_1(t)$ و $x_2(t)$ در هم ضرب می شوند و حاصلضرب آنها یعنی سیگنال $x_1(t)$ در $x_2(t)$ دارای حدود زیر در حوزه فرکانس هستند:

$$X_{\gamma}(j\omega) = \cdot, |\omega| > \omega_{\gamma}$$

 $X_{\gamma}(j\omega) = \cdot, |\omega| > \omega_{\gamma}$

بزرگترین دوره تناوب نمونهبرداری \mathbf{T} را به گونه ای بیابید که w(t) از $w_p(t)$ با استفاده از یک فیلتر پایین گذر ایده آل قابل بازیابی باشد.

٦- الف) تابع تبديل سيستم LTI على توصيف شده با معادله تفاضلي زير را بيابيد.

$$y[n] - \frac{1}{7}y[n-1] + \frac{1}{7}y[n-1] = x[n]$$
 ب $y[n] - \frac{1}{7}y[n-1] + \frac{1}{7}y[n-1] = x[n]$ ب $y[n] - \frac{1}{7}y[n-1] + \frac{1}{7}y[n-1] = x[n]$ ب $y[n] - \frac{1}{7}y[n-1] + \frac{1}{7}y[n-1] = x[n]$ با اگر $y[n] - \frac{1}{7}y[n-1] + \frac{1}{7}y[n-1] = x[n]$

- ۷- با دانستن موارد زیر در مورد سیگنال گسسته در زمان x[n] با تبدیل X(z) ، X(z) را بیابید.
 - استی است. حقیقی و دست راستی است. x[n]
 - دارد. X(z) دقیقا دو قطب دارد.
 - ۳) X(z) دو صفر در مبدا دارد.
 - در $z=\frac{1}{7}e^{\frac{j\pi}{r}}$ در $z=\frac{1}{7}e^{\frac{j\pi}{r}}$
 - $X(1) = \frac{\Lambda}{\pi} \quad (\Delta$

میشود: x[n] با ورودی s[n] با ورودی s[n] و خروجی x[n] با معادله تفاضلی زیر توصیف میشود:

 $x[n] = s[n] - e^{\vee a}s[n - \lambda]$, $\cdot < a < \gamma$

الف) تابع تبدیل سیستم را بیابید. (قطبها و صفرهای آن را روی صفحه z رسم کرده و ناحیه همگرایی آن را مشخص کنید.)

ب) می خواهیم با یک سیستم LTI، x[n] را از x[n] بازیابی کنیم. تابع تبدیل y[n] را برای داشتن y[n] را برای داشتن y[n] = s[n] رسم کنید. تمام نواحی همگرایی ممکن y[n] = s[n] را تعیین کرده، در هر مورد علی بودن و پایداری سیستم را بررسی کنید.

موفق باشيد