Aplicación de Modelos de ML para lograr predecir el rendimientos de Arándanos Silvestres

- Mayumy Carrasco Huaccha -

- Mayumy Carrasco Huaccha -

Lic. Scientific Computing | Datalover

Analytic Projections in Camposol

MayumyCH

MayumyCH

Mayumy Carrasco Huaccha

Comprensión del Negocio y los datos

El desafío mas grande que se tiene en el sector de la agricultura es lograr *predecir el rendimiento de los cultivos*.

Obtención y carga de la data

Kaggle - Articulo "Wild blueberry yield prediction using a combination of computer simulation and machine learning algorithms"

	clonesize	honeyBee	bumblesBee	andrenaBee	osmiaBee	MaxTempBS	MinTempBS	AverageTempBS	MaxTempBI	MinTempBI	AverageTempBI	RainingDays	AverageRainingDays	fruitset	fruitmass	seeds	yield
0	37.5	0.75	0.25	0.25	0.25	86.0	52.0	71.9	62.0	30.0	50.8	16.0	0.26	0.410652	0.408159	31.678898	3813.165795
1	37.5	0.75	0.25	0.25	0.25	86.0	52.0	71.9	62.0	30.0	50.8	1.0	0.10	0.444254	0.425458	33.449385	4947.605663
2	37.5	0.75	0.25	0.25	0.25	94.6	57.2	79.0	68.2	33.0	55.9	16.0	0.26	0.383787	0.399172	30.546306	3866.798965
3	37.5	0.75	0.25	0.25	0.25	94.6	57.2	79.0	68.2	33.0	55.9	1.0	0.10	0.407564	0.408789	31.562586	4303.943030
4	37.5	0.75	0.25	0.25	0.25	86.0	52.0	71.9	62.0	30.0	50.8	24.0	0.39	0.354413	0.382703	28.873714	3436.493543
	37.5	0.75	0.25	0.25	0.25	86.0	52.0	71.9	62.0	30.0	50.8	34.0	0.56	0.309669	0.366284	27.345454	2825.003738
6	37.5	0.75	0.25	0.25	0.25	94.6	57.2	79.0	68.2	33.0	55.9	24.0	0.39	0.284443	0.352186	26.101179	2625.269164
7	37.5	0.75	0.25	0.25	0.25	94.6	57.2	79.0	68.2	33.0	55.9	34.0	0.56	0.246568	0.342826		2379.905214

777 registros / 17 columnas

EDA y Preparación de la data

Variable target: "Yield"

50%

Del rendimiento obtenido esta entre 5115 y 7022 kilos/Ha.

Análisis de correlación

Se observa que hay features que sean correlacionados entre sí: Ejemplo: Clima de las banda superior e inferior y features del fruto.

Variables Predictoras

	fruitset	RainingDays	AverageTempBS	osmiaBee	bumblesBee	andrenaBee	honeyBee	clonesize
0	0.410652	16.0	71.9	0.25	0.25	0.25	0.75	37.5
1	0.444254	1.0	71.9	0.25	0.25	0.25	0.75	37.5
2	0.383787	16.0	79.0	0.25	0.25	0.25	0.75	37.5
3	0.407564	1.0	79.0	0.25	0.25	0.25	0.75	37.5
4	0.354413	24.0	71.9	0.25	0.25	0.25	0.75	37.5
5	0.309669	34.0	71.9	0.25	0.25	0.25	0.75	37.5

he

done

Eliminar los outliers de nuestra data

 $df_blueberry = df_blueberry[\sim((df_blueberry < (q1 - 1.5 * iqr)) | (df_blueberry > (q3 + 1.5 * iqr))).any(axis=1)]$

752 registros / 9 columnas

Modelamiento y Evaluación

Datos de Entrenamiento y Test

```
print("Tamaño del X_train",X_train.shape, "\nTamaño del X_test ",X_test.shape)
print("--")
print("Tamaño del y_train",y_train.shape, "\nTamaño del y_test ",y_test.shape)

Tamaño del X_train (526, 8)
Tamaño del X_test (226, 8)
--
Tamaño del y_train (526,)
Tamaño del y_test (226,)
```


Comparando los modelos con métrica RMSE

Modelo escogido

```
# Los mejores parametros:
random forest regresor = RandomForestRegressor(random state=0,n estimators=200,max depth=10)
random forest rmse = fit and evaluate(random forest regresor,True)
model pred train = random forest regresor.predict(X train)
model pred test = random forest regresor.predict(X test)
Calculando los errores en la data del TRAIN
Linear Regression Performance on the test set: MAE = 45.59
Linear Regression Performance on the test set: MSE = 3349.45
Linear Regression Performance on the test set: RMSE = 57.87
r2 square= 1.00
Calculando los errores en la data del TEST
Linear Regression Performance on the test set: MAE = 116.42
Linear Regression Performance on the test set: MSE = 21264.28
Linear Regression Performance on the test set: RMSE = 145.82
r2 square= 0.99
```


Importancia de los features

El feature fruitset es el que tiene mas importancia.

Modelo escogido

El modelo predice con un error de

± 57.10 kilos/ha (rendimiento de los arándanos silvestres)

Despliegue

- Api creado con FastApi para consumir el modelo.
- Frontend con Angular para correr el modelo

Gracias totales

Agradecimiento especial Bootcamp de Codigo Facilito

