مدرس: آبام-كاظمى

۴ اردیبهشت ۱۴۰۳

دانشکدهی مهندسی کامپیوتر

نام و نام خانوادگی:

√ مسئلهی ۱. زیر آرایه ها [۱۲ نمره]

آرایه ای به طول n از اعداد $a_1, a_2, \cdots a_n$ داریم. با استفاده از تقسیم و حل، الگوریتمی از مرتبه زمانی $(n \log^r n)$ ارائه دهید که تمام زیر آرایه های این آرایه با مجموع کمتر از t بیابد. به عبارت دیگر، تمام جفت های r, l را بیابید که

$$a_l + a_{l+1} + \dots + a_{r-1} + a_r < t$$

مسئلهی ۲. بازگشت عجیب [۱۳ نمره]

فرض کنید تابع $\mathbb{R}^+ \oplus g: \mathbb{N} \to \mathbb{R}^+$ با این رابطه داده شده باشد:

$$g(n) = \begin{cases} a & n = 1$$
اگر ا $n = 1$ اگر ا $n = 1$ در غیر این صورت $n = 1$

که a, b اعداد حقیقی و مثبتاند.

 \overrightarrow{f} . $g(n) \in \Theta(n!)$ گابت کنید (آ

b و a

$$c = \lim_{n \to \infty} \frac{g(n)}{n!}$$

 $a\leqslant c\leqslant a+\Delta b$ همچنين بررسي کنيد

√ مسئلهی ۳. n سکه [۲۵ نمره]

الگوریتمی را در نظر بگیرید که یک آرایه از n سکه سالم را شبیه سازی میکند. عملکرد الگوریتم به این صورت است که هر سکه را آنقدر پرتاب میکند که خط (و نه شیر) ظاهر گردد. لازم به ذکر است که هر سکه نهایتا n بار پرتاب می شود. به ازای سکه k متغیر تصدفی k $k \leqslant n$ تعریف می شود که نشان دهنده تعداد پرتاب های سکه مذکور تا ظاهر شدن خط است. نشان دهید که:

 $\Pr[X_k \geqslant 7 \log n] \leqslant \frac{1}{n^7}$ (1

 $\Pr[\max(X_1, X_1, \dots, X_n) \ge 1 \log n] \le \sum_{i=1}^n \Pr[X_i \ge 1 \log n] \le \frac{1}{n}$ (...

 $E[\max(X_1,X_1,\cdots,X_n)] \leqslant Y \log n + 1$ ج) میتوان با استفاده از دو قسمت آ و ب نشان داد:

مسئلهی ۴. ارزیابی بازار بورس [۲۵ نمره]

iقیمت سهام یک شرکت در هر روز کاری تهیه می شود. هدف ما پیدا کردن دوره آن سهام است. چنانچه قیمت سهام در روز p_i باشد. برابر p_i باشد، دوره سهام در آن روز برابر است با تعداد روزهای قبل از i (شامل i) که قیمت سهام کمتر یا مساوی p_i باشد.

مطلوبست طراحی یک الگوریتم با استفاده از ساختمان داده پشته، که به عنوان ورودی، یک آرایه n تایی به نام P از قیمت یک سهام در روزهای مختلف دریافت کرده و به عنوان خروجی آرایه S را بازگرداند. که در آن، S[i] نشان دهنده دوره سهام در روز i باشد. لازم است تا پیچیدگی زمانی الگوریتم شما از O(n) تجاوز نکند.

٧ مسئلهي ٥. صف با دو پشته [۲۵ نمره]

فرض کنید که با دو پشته S_1 و S_2 یک صف را پیاده سازی کردهایم. برای enqueue یک عنصر در صف، آن را در S_1 push میکنیم. برای dequeue آن، ابتدا خالی بودن S_2 را بررسی می کنیم. چنانچه خالی بود، تمامی عناصر S_3 را به ترتیب از آن pop کرده و سپس بلافاصله در S_3 push می کنیم. نهایتا، عملیات pop روی S_4 اجرا می شود. می دانیم هزینه هر عملیات push و یا pop یک واحد است. برای یک صف مانند S_4 که به صورت فوق پیاده سازی شده، تابع پتانسیل "تعداد عناصر داخل پشته اول" S_4 تعریف میشود. با استفاده از این تابع پتانسیل، زمان سرشکن enqueue و dequeue در صف را تحلیل کنید.