

集成电路原理与设计 10.运算放大器

宋 奏 shuangsonghz@zju.edu.cn

2-1-The circuit shown in Fig. 2.1 illustrates a single-channel MOS resistor with a W/L of 2μm/2μm. Using Table 2.1 model parameters calculate the small-signal on resistance of the MOS transistor at various values for VS and fill in the table below. (Note that the transistor was in linear region, VB=0, IDs=0).

Vs(V)₽	$R(\Omega)$	4
0.0∙ ₽	47	+
1.0⋅ ₽	٠	+
2.0 ⋅ ₽	47	+
3.0⋅ ₽	÷	÷
4.0 ⋅ ₽	47	+
5.0⋅ ₽	÷	÷

Fig.2.·1.

Answer+

The equation for threshold voltage is represented with absolute values so that it can be applied to n-channel or p-channel transistors without confusion.

$$|V_T| = |V_{T0}| + \gamma \left[\sqrt{2|\Phi_F| + |V_{SB}|} - \sqrt{2|\Phi_F|} \right]^{J}$$

$$r_{on} = \frac{1}{\partial I_D / \partial V_{DS}} = \frac{L}{KW(|V_{GS}| - |V_T| - |V_{DS}|)}^{J}$$

For n-channel device

$$V_{T0} = 0.7 \cdot \gamma = 0.45 \cdot 2|\Phi_F| = 0.9 \cdot K = 134$$

(1)-When
$$V_S = 0$$
, $V_{GS} = 5$ and $V_{SB} = 0$

$$|V_T| = |V_{T0}| + \gamma \left[\sqrt{2|\Phi_F| + |V_{SB}|} - \sqrt{2|\Phi_F|} \right] = 0.74$$

$$r_{on} = \frac{1}{\partial I_D / \partial V_{DS}} = \frac{L}{KW(|V_{GS}| - |V_T| - |V_{DS}|)} = 1.736K\Omega$$

(2)-When $V_S = 1$, $V_{GS} = 4$ and $V_{SB} = 1$

$$|V_T| = |V_{T0}| + \gamma \left[\sqrt{2|\Phi_F| + |V_{SB}|} - \sqrt{2|\Phi_F|} \right] = 0.893$$

$$r_{on} = \frac{1}{\partial I_D / \partial V_{DS}} = \frac{L}{KW(|V_{GS}| - |V_T| - |V_{DS}|)} = 2.402K\Omega$$

(3)+When·
$$V_S = 2$$
, $V_{GS} = 3$ and· $V_{SB} = 2$.
$$|V_T| = |V_{T0}| + \gamma [\sqrt{2|\Phi_F|} + |V_{SB}| - \sqrt{2|\Phi_F|}] = 1.039$$
.
$$r_{on} = \frac{1}{\partial I_D/\partial V_{DS}} = \frac{L}{KW(|V_{GS}| - |V_T| - |V_{DS}|)} = 3.806K\Omega$$
.
(4)+When· $V_S = 3$, $V_{GS} = 2$ and· $V_{SB} = 3$.
$$|V_T| = |V_{T0}| + \gamma [\sqrt{2|\Phi_F|} + |V_{SB}| - \sqrt{2|\Phi_F|}] = 1.162$$
.
$$r_{on} = \frac{1}{\partial I_D/\partial V_{DS}} = \frac{L}{KW(|V_{GS}| - |V_T| - |V_{DS}|)} = 8.905K\Omega$$
.
(5)+When· $V_S = 4$, $V_{GS} = 1$ and· $V_{SB} = 4$.
$$|V_T| = |V_{T0}| + \gamma [\sqrt{2|\Phi_F|} + |V_{SB}| - \sqrt{2|\Phi_F|}] = 1.269$$
.
$$V_{GS} < V_T \cdot \text{The·device is cutoff, so· } r_{on} = \text{infinity}$$
.

The device is cutoff, so $r_{on} = infinity$

(6) When $V_S = 5$, $V_{GS} = 0$ and $V_{SB} = 5$

 $\begin{array}{c|cccc} V_S(V) \varphi & R(\Omega) \varphi & \varphi \\ \hline 0.0 \cdot \varphi & 1.736 K \varphi & \varphi \\ \hline 1.0 \cdot \varphi & 2.402 K \varphi & \varphi \\ \hline 2.0 \cdot \varphi & 3.806 K \varphi & \varphi \\ \hline 3.0 \cdot \varphi & 8.905 K \varphi & \varphi \\ \hline 4.0 \cdot \varphi & infinity \varphi & \varphi \\ \hline 5.0 \cdot \varphi & infinity \varphi & \varphi \\ \hline \end{array}$

3-2-An·NMOS·with·W=50 μ m·and·L=0.5 μ m·operates·in·the·saturated·region·and·its·layout·is·folded·shown·as·Fig3.2.·Calculate·the·all·capacitances·by·using·the-parameters·in·Table3.2·and· C_{ox} =3.8×10⁻³·F/m,·V_R=0.6V.·Assume·that·the·minimum-size·(lateral)·of·S/D·region·is·1.5 μ m·

Fig.3. 2.

Answer:

$$C_{j0} = 0.56 \times \frac{10^{-3}F}{m^2}, C_{jsw0} = 0.35 \times \frac{10^{-11}F}{m}, m_j = 0.45, m_{jsw} = 0.24$$

$$C_{ov} = 0.4 \times \frac{10^{-9}F}{m}, W = 50\mu m, L = 0.5\mu m, L_D = 0.08\mu m, E = 1.5\mu m$$

$$V_R = 0.6V, 2\Phi_F = 0.9V, C_{ox} = 3.8 \times 10^{-3}F/m^2, P_{SUB} = 9 \times 10^8 m^{-3} + 60.5 \times 10^{-12}F/m, q = 1.6 \times 10^{-19}C$$

$$C_J = \frac{C_{j0}}{(1 + V_R/2\Phi_F)^{m_j}} = 0.445 \frac{eF}{\mu m^2} C_{jsw} = \frac{C_{jsw0}}{(1 + V_R/2\Phi_F)^{m_{jsw}}} = 3.16 \times \frac{10^{-3}fF}{\mu m^4} + 1.55 \times 10^{-6}fF$$

$$C_{DB} = \frac{W}{2}EC_J + 2(\frac{W}{2} + E)C_{jsw} = 16.85fF + 1.55 \times 10^{-6}fF$$

$$C_{GD} = 2(\frac{W}{2}C_{ov}) = 20.0fF + 1.55 \times 10^{-6}fF$$

$$C_{GB} = \frac{WL_{eff}C_{ox}C_d}{(WL_{eff}C_{ox}C_d)} = 1.55 \times 10^{-6}fF$$

$$C_{GB} = \frac{WL_{eff}C_{ox}C_d}{(WL_{eff}C_{ox}C_d)} = 1.55 \times 10^{-6}fF$$

Table.3.·1 ₽

Typical Parameter Value

Typical Parameter varue				
Parameter Symbol	Parameter · Description ∘	n- Channel₽	p- Channel₽	Units₽
$V_{T0^{\rm 4^{\rm 3}}}$	Threshold voltage(V _{BS} =0)₽	0.7₽	-0.8₽	$V^{\scriptscriptstyle arphi}$
K₽	Transconductance parameter(in saturation) €	134₽	50₽	μ <u>A</u> /V².
γ.	Bulk threshold parameter ₽	0.45₽	0.4₽	$V^{1/2}$
λ	Channel·length·modulation· parameter €	0.1₽	0.2₽	V-1,0
2 φ _F ↔	Surface potential at strong inversion	0.9₽	0.8₽	V↔

Table.3.2₽

	N	MOS·Model₽	
LEVEL=1₽	VTO=0.7₽	GAMMA=0.45& PHI=0.9&	
PSUB=9e+14₽	LD=0.08e-6₽	UO=350¢	LAMBDA=0.1
TOX=9e-9₽	PB=0.9¢	CJ=0.56e-3₽	CJSW=0.35e-11₽
MJ=0.45₽	MJSW=0.2	CGDO=0.4e-9₽	JS=1.0e-8
	Pl	MOS·Model	
LEVEL=1₽	VTO=-0.8₽	GAMMA=0.4φ PHI=0.8φ	
PSUB=5e+14	LD=0.09e-6	UO=100¢	LAMBDA=0.2
TOX=9e-9	PB=0.94	CJ=0.94e-3₽	CJSW=0.32e-11₽
MJ=0.5₽	MJSW=0.3	CGDO=0.3e-9	JS=0.5e-8₽

上表给出的是 0.5μm 工艺 level·1·MOS·SPICE·模型参数的典型值,其中的参数定义如下:

4

VTO: →	VSB=0 时的阈值电压 →	(单位: V) →
GAMMA: →	体效应系数 →	(单位: V ^{1/2}) ↔
PHI: →	$2\Phi_F$ \rightarrow	(单位: Ⅴ) ↓
TOX: →	栅氧厚度 →	(单位: m) →
NSUB: →	衬底掺杂浓度 →	(单位: cm ⁻³) ↓
LD: →	源/漏侧扩散长度 →	(单位: m) →
UO: →	沟道迁移率 →	(单位: cm2/(v/s)) ↵
LAMBDA: →	沟道长度调制系数 →	(单位: V-1) →
CJ: →	单位面积的源/漏结电容 →	(单位: F/m²) ↵
CJSW: →	单位长度的源/漏侧壁结电容 →	(单位: F/m) →
PB: →	源/漏结内建电势 →	(单位: V) ↵
MJ: →	CJ 公式中的幂指数 →	(无单位) ↵
MJSW: →	CJSW 等式中的幂指数 →	(无单位) ↓
CGDO: →	单位宽度的栅/漏交叠电容 →	(单位: F/m) ↵
CGSO: →	单位宽度的栅/源交叠电容 →	(单位: F/m) →
JS: →	源/漏结单位面积的漏电流 →	(单位: A/m²) ↵

MOS Device Capacitance: Depletion Cap

Bottom-plate Capacitance (per area)

Side-wall capacitance (per perimeter)

X: "S" or "D"

AS=area of the source
PS=perimeter of the source
CJSW=zero bias, bulk-source sidewall
capacitance
MJSW=bulk-source sidewall grading coefficient

2-3-There is an N-type current source, I_D is 0.5mA, and the drain-source voltage V_{DS} must more than 0.4V when it works as a current source. If the minimum output resistance is 20 K Ω , determine the length and width of the device by using the parameters in Table 2.2.

Answer:

$$\begin{cases} r_o = \frac{1}{\lambda I_D} = 20K\Omega \\ I_D = 0.5mA \end{cases} \Rightarrow \lambda = 0.1$$

From the table 3.2, L-can be determined as L=0.5 um. (

$$L_{\rm eff} = L - 2L_{\rm D} = 0.5 \mu m - 2 \times 0.08 \mu m = 0.34 \mu m$$
 ,

Calculating · W.

$$I_{\scriptscriptstyle D} = \frac{1}{2} \, \mu_{\scriptscriptstyle n} C_{\scriptscriptstyle ox} \, \frac{W}{L_{\scriptscriptstyle eff}} (V_{\scriptscriptstyle GS} - V_{\scriptscriptstyle TH})^2 \,, \qquad {
m V_{\scriptscriptstyle GS}} - {
m V_{\scriptscriptstyle TH}} = {
m V_{\scriptscriptstyle DSAT}} = 0.4 {
m V}_{\scriptscriptstyle ox} \, . \label{eq:ID}$$

$$\frac{W}{L_{eff}} = \frac{I_D}{\frac{1}{2} \mu_n C_{ox} (V_{GS} - V_{TH})^2} = \frac{0.5 \times 10^{-3}}{\frac{1}{2} \times 134 \times 10^{-6} \times 0.4^2} = 46.64$$

$$W = 46.64 L_{eff} = 15.86 \mu m_{\odot}$$

2-4-A·"ring"·MOS·structure·is·shown·in·Fig.2.3.·Explain·how·the·device·operations· and·estimate·its·equivalent·aspect·ratio.·Calculate·the·drain·junction·capacitance·of· the·structure.·(use·Cj·and·Cjsw).

Fig.2. 3 -

Answer:

- → Width/length·ratio·is·4W/L.
- $C_{DB} = W^2 C_j + 4W C_{jsw} + C_$

2-5-Find the small-signal model (g_m, g_{mb}, g_{ds}) for an n-channel transistor with the drain at $\cdot 4 \cdot V$, gate at $\cdot 4 \cdot V$, source at $\cdot 2 \cdot V$, and the bulk at $\cdot 0 \cdot V$. Assume the model parameters from Table 2.1, and $\cdot W/L = \cdot 10 \cdot \mu m/1 \cdot \mu m$.

Answer:

$$V_{T} = V_{T0} + \gamma \left[\sqrt{2|\Phi_{F}| + v_{SB}} - \sqrt{2|\Phi_{F}|} \right]^{\perp}$$

$$V_{T} = 0.7 + 0.45 \left[\sqrt{0.9 + 2.0} - \sqrt{0.9} \right] = 1.04 \quad V^{\perp}$$

$$I_{D} = \frac{KW}{L} (v_{GS} - v_{T})^{2} (1 + \lambda v_{DS})^{\perp}$$

$$I_{D} = 134 \times 10^{-6} \times 10 \times (2 - 1.04)^{2} (1 + 0.1 \times 2) = 1482 \times 10^{-6} \quad \text{A}^{\perp}$$

$$g_{m} = \sqrt{4 \times 134 \times 10^{-6} \times 10 \times 1482 \times 10^{-6}} = 2.818 \times 10^{-3} \quad \text{S}^{\perp}$$

$$g_{mb} = g_{m} \frac{\gamma}{2(2|\Phi_{F}| + V_{SB})^{\frac{1}{2}}}$$

$$g_{mb} = 2.818 \times 10^{-3} \frac{0.45}{2(0.9 + 2.0)^{\frac{1}{2}}} = 372.3 \times 10^{-6} \quad \text{S}^{\perp}$$

$$g_{ds} = \frac{\lambda I_{D}}{1 + \lambda V_{DS}}^{\perp}$$

$$g_{ds} = 1482 \times 10^{-6} \times 0.1 \div 1.2 = 123.5 \times 10^{-6} \quad \text{S}^{\perp}$$

Course Arrangements

课数	內容	课数	为客
1	导论	9	差分放大器
2	工艺流程	10	逐算放大器
3	器件模型一	11	逻辑门
4	器件模型二	12	组合逻辑
5	模拟基本单元	13	村序逻辑
6	电流镜与基准	14	加法器/乘法器
7	单级放大器	15	集成电路专题讲座一
8	课堂测验	16	集成电路专题讲座二

Outline

- General Consideration
- One-Stage Op Amps
- Two-Stage Op Amps
- □ Compensation of 2-Stage Op Amps
- Other Issues of Op Amps

Why it is called Op. Amp

For different operations based on feedbacks

Noninverting amplifier

$$G_V^* = (R_1 + R_2) / R_1$$

Inverting amplifier

$$G_V^* = R_2 / R_1$$

Voltage follower

$$G_{V}^{*} = 1$$

Why it is so important

In signal chain applications: (IA+ADC)

Why it is so important

In power management applications:

Basic Concept of Op Amp

A high-gain differential amplifier

- Ideal op amp
 - Voltage controlled voltage source
 - Infinite gain
 - Infinite input impedance
 - Zero output impedance
 - Infinite CMRR and PSRR

■ Application

- DC generation
- Amplification
- Integration/Differentiation
- Filtering (HP/LP/BP)

If the infinite differential gain, then

$$v_1 - v_2 = v_i = 0$$

 $i_1 = 0$ and $i_2 = 0$

The differential input voltage is zero and no current flow into or out of the differential input

Feedback

Nonideal model of Op amp

where

 R_{id} = differential input resistance

 C_{id} = differential input capacitance

 R_{icm} = common mode input resistance

 V_{OS} = input-offset voltage

 I_{B1} and I_{B2} = differential input-bias currents

 I_{OS} = input-offset current ($I_{OS} = I_{B1} - I_{B2}$)

CMRR =common-mode rejection ratio

 e_n^2 = voltage-noise spectral density (mean-square volts/Hertz)

 i_n^2 = current-noise spectral density (mean-square amps/Hertz)

Performance Parameters

□Gain

■ Open-loop gain: DC条件下,在输入加一小信号,得到输出电压

$$A_d = 10 \sim 10^5 (20 dB \sim 100 dB)$$

High gain: $A_d \sim 80 dB - 100 dB$

■ Common-mode Gain: 在输入加共模小信号,得到输出电压

$$A_{CM} \sim 20 dB - 40 dB$$

■ CMRR(Common-mode Rejection Ratio)

Example Non-inverting Voltage Amplifier.

- Input and output swing: rail-to-rail
- Amplifier buffer
 - High open-gain could suppress nonlinearity

Close-loop Gain:
$$\left(V_{in} - \frac{R_2}{R_1 + R_2} V_{out}\right) A_1 = V_{out}$$

$$\frac{V_{out}}{V_{in}} = \frac{A_1}{1 + \frac{R_2}{R_1 + R_2}} \frac{A_1}{A_1} = \frac{R_1 + R_2}{R_2} \frac{A_1}{1 + \frac{R_1 + R_2}{R_2}} \approx \left(1 + \frac{R_1}{R_2}\right) \left(1 - \frac{R_1 + R_2}{R_2} \frac{1}{A_1}\right) = \frac{1}{\beta} \left(1 - \frac{1}{\beta A}\right)^{\beta A \to \infty} \frac{1}{\beta}$$

Feedback coefficient: $\beta = \frac{R_2}{R_1 + R_2}$

Loop gain: βA_1

Relative gain error: $\frac{1}{\beta A_1}$ The circuit has a nominal gain of 10. i.e., $1+R_1/R_2=10$ If a gain error <1% => $A_1>1000$

Higher open gain -> smaller gain error

Small-signal behavior of frequency response

☐ Differential and common-mode frequency response

$$V_{out}(s) = A_d(s) \left[V_1(s) - V_2(s) \right] \pm A_C(s) \left(\frac{V_1(s) + V_2(s)}{2} \right)$$

■ Differential-frequency response:

$$A_{d}(s) = \frac{A_{d0}}{\left(\frac{s}{p_{1}} - 1\right)\left(\frac{s}{p_{2}} - 1\right)\left(\frac{s}{p_{3}} - 1\right)\cdots} = \frac{A_{d0}p_{1}p_{2}p_{3}\cdots}{\left(s - p_{1}\right)\left(s - p_{2}\right)\left(s - p_{3}\right)\cdots}$$

where p_1, p_2, p_3, \dots are the poles of the differential-frequency response (ignoring zeros)

☐ Bandwidth: BW

 \square Unity-Gain frequency: GB $f_u \rightarrow w_u$

 \square -3dB frequency: $f_{-3dB} \rightarrow w_1$

Large-signal behavior of frequency response

在瞬态输入**大信号**工作时,表征运放的速度:

- □ 转换速率 SR (Slew Rate)
 - \square SR= output voltage rate limit of the op amp
- □ 建立时间 T_S (Settling time, usually <1%)

Example

Assume the op amp is a single-pole voltage amplifier and V_{in} is a small step input. Calculate the time for V_{out} to reach within 1% and the unitygain bandwidth if $1+R_1/R_2=10$ and the settling time <5ns.

For a single-pole amp:

$$A(s) = \frac{A_0}{\left(1 + s/\omega_0\right)}$$

$$\frac{V_{out}}{V_{in}}\left(s\right) = \frac{A\left(s\right)}{1 + \frac{R_2}{R_1 + R_2}A\left(s\right)} = \frac{A_0/\left(1 + A_0\beta\right)}{1 + \left(\frac{s}{\left(1 + A_0\beta\right)\omega_0}\right)}$$
Bandwidth expanding
$$\tau = \frac{1}{\left(1 + A_0\beta\right)\omega_0} \approx \left(1 + \frac{R_1}{R_2}\right)\frac{1}{A_0\omega_0}$$

$$\tau = \frac{1}{\left(1 + A_0 \beta\right) \omega_0} \approx \left(1 + \frac{R_1}{R_2}\right) \frac{1}{A_0 \omega_0}$$

$$V_{in} = au(t)$$

$$V_{out} = a\left(\frac{A_0}{1 + \beta A_0}\right)\left(1 - \exp\frac{-t}{\tau}\right)u(t)$$

For 1% settling:
$$V_{out} = 0.99V_F$$
 $1 - \exp{\frac{-t_{1\%}}{\tau}} = 0.99 \implies t_{1\%} = \tau \ln 100 = 4.6\tau < 5ns$

$$A_0 \omega_0 \approx (1 + R_1/R_2)/\tau = 9.21 \, Grad/s$$
 (1.47GHz)

For 0.1% settling: $t_{0.1\%} = \tau \ln 1000 = 6.9\tau$

Performance Parameters

- ☐ Output Swing: output voltage range without distortion
- □ <u>ICMR</u>: (Input Common Mode Range)
 - ☐ ICMR= the voltage range over which the input common-mode signal can vary without influence the differential performance
- ☐ <u>Linearity:</u> input-pair exhibit a nonlinear relation between its differential drain current and its input voltage
- PSRR: (Power Supply Rejection Ration)

$$PSRR = \frac{\Delta V_{DD}}{\Delta V_{OUT}} A_{V}(s) = \frac{V_{O}/V_{in} (V_{dd} = 0)}{V_{O}/V_{dd} (V_{in} = 0)}$$

- ☐ Offset: the minimum signal level that can be processed with reasonable quality
- □ Noise

Specifications for a typical unbuffered CMOS Op Amp

Boundary Conditions	Requirement
Process Specification	See Tables 3.1-1 and 3.1-2
Supply Voltage	±2.5 V ±10%
Supply Current	$100 \mu A$
Temperature Range	0 to 70°C
Specifications	Value
Gain	≥ 70 dB
Gainbandwidth	≥ 5 MHz
Settling Time	≤ 1 µsec
Slew Rate	≥ 5 V/µsec
Input <i>CMR</i>	≥ ±1.5 V
CMRR	≥ 60 dB
PSRR	≥ 60 dB
Output Swing	≥ ±1.5 V
Output Resistance	N/A, capacitive load only
Offset	≤ ±10 mV
Noise	$\leq 100 \text{nV} / \sqrt{\text{Hz}}$ at 1KHz
Layout Area	≤ 10,000 min. channel length ²

AMP and **OTA**

Inverting Voltage Amplifier $V_{inp} = 0$

- Input common mode: a fixed voltage
 - Input range could be small, but the output range could be rail-to-rail

$$A \rightarrow \infty A_V = \frac{V_{out}}{V_{in}} = -\frac{R_2}{R_1}$$

Operational Transconductance Amplifiers (OTAs)

Driving capacitive load

G_m stage

- ☐ High gain : high output resistance
- ☐ Generally be used in switched-capacitor (SC) circuits

Outline

- General Consideration
- One-Stage Op Amps (First Stage of Opamps)
- Two-Stage Op Amps
- □ Compensation of 2-Stage Op Amps
- Other Issues of Op Amps

Basic Topologies

- f L Low-frequency gain: $A_O=g_{mN}r_{out}=g_{mN}\left(r_{ON}//r_{OP}
 ight)< g_{mN}r_{OD}$
- \Box Output Swing (single-side): V_{DD} -3 V_{OV}
- Mirror pole in single ended

Example

Calculate the input common-mode voltage range and the closed-loop output impedance of **the unity-gain buffer**.

Input common-mode voltage range

All transistors operate saturation region

$$V_{in,\text{min}} = V_{ISS} + V_{GS1} = V_{ISSds,sat} + V_{th1} + V_{ds,sat1} = 0.1 + 0.3 + 0.1 = 0.5V$$

$$V_{in,\text{max}} = V_{DD} - (|V_{GS3}| + V_{th1}) = 1 - (0.1 + 0.3) = 0.9V$$

$$V_{in,\text{max}} - V_{in,\text{min}} = V_{DD} - |V_{th3}| - 3V_{ds,sat} = 0.4V$$

- The open-loop output impedance: $r_{O2}^{-1/r}$
- Loop gain: $g_{m1} \left(r_{O2} // r_{O4} \right)$
 - The closed-loop output impedance : $\frac{r_{O2}//r_{O4}}{1 + g_{m1} (r_{O2}//r_{O4})} \approx \frac{1}{g_{m1}}$

Voltage feedback at output

□ The closed-loop pole is independent of open-loop output impedance.

Telescopic Cascode Op Amps

High gain!!! ×20~40 Small output swing!!!

□ Low-frequency gain:

$$A_{O} = g_{m2}R_{out} = g_{m2} \left(g_{m4}r_{O2}r_{O4} / / g_{m6}r_{O6}r_{O8}\right)$$

$$\approx g_{mN} \left(g_{mN}r_{ON}^{2} / / g_{mP}r_{OP}^{2}\right)$$
vb.—

Output Swing (single-side):

$$V_{\rm DD}$$
 -5 $V_{\rm OV}$

☐ Speed:

$$\omega_1 = \frac{1}{C_I R_{out}}$$

$$\omega_1 = \frac{1}{C_L R_{out}}$$
 $\omega_u = \frac{g_m}{C_L} = \frac{\sqrt{2\beta I_O}}{C_L} = \frac{\beta V_{eff}}{C_L}$

VDD

- Mirror pole in single-ended
- Be difficult to short telescopic OPAMP output to input (why)

Telescopic Cascode Op Amps

Input common-mode voltage range

All transistors operate saturation region

$$V_{in,\min} = V_{ds,sat,ISS} + V_{GS2} = V_{ds,sat,ISS} + V_{th2} + V_{ds,sat2}$$

$$V_{in, \text{max}} = V_{b1} - |V_{GS3}| + V_{th2}$$

$$V_{b1} > V_{th4} + 3V_{ds,sat}$$

Output common-mode voltage range

All transistors operate saturation region

$$V_{out,min} = V_{b1} - V_{th4}$$

$$V_{out,\text{max}} = V_{b2} + |V_{th6}|$$

Output swings:
$$2(V_{out, max} - V_{out, min}) = 2(V_{b2} + |V_{th6}| + V_{b1} + V_{th2})$$

$$V_{b2} \uparrow$$
, $V_{b1} \downarrow \Rightarrow$ output range \uparrow

极限值
$$\rightarrow 2(V_{DD} - V_{ds8,sat} - V_{ds6,sat} - V_{ds4,sat} - V_{ds2,sat} - V_{ISS,ds,sat}) = 2(V_{DD} - 5V_{ds,sat})$$
 27

Output common-mode voltage range of unity-gain buffer

All transistors operate saturation region

M2:

$$V_{out, \text{max}} = V_x + V_{th2} = V_b - V_{GS4} + V_{th2}$$

M4:

$$V_{out, min} = V_b - V_{ds4, sat}$$

$$V_b - V_{th4} \le V_{out} \le V_b - V_{GS4} + V_{th2}$$

High gain, small output swing 🔨 Unity-gain Buffer 💥

Folded Cascode Op Amps

- Not "stack" the cascode transistor , on the input device
- □ Consume higher power

$$P = V_{DD} \times \left(I_{SS} + I_{SS1} + I_{SS2}\right) > V_{DD} \times I_{SS}$$

- \Box Output Voltage Swing: $V_{\rm DD}$ -4 $V_{\rm OV}$
- Output and input could short together

Folded Cascode Op Amps

VDD

Voltage Gain

$$\left|A_{V}\right| = G_{m}R_{out}$$

$$|A_V| \approx g_{m1} \left[\left(g_{m3} + g_{mb3} \right) r_{O3} \left(r_{O1} // r_{O5} \right) \right] // \left[\left(g_{m7} + g_{mb7} \right) r_{O7} r_{O9} \right]$$

■ 2~3 times lower than a telescopic topology

Input Voltage Range: P-diff pair

$$V_{in,\min} = 0$$

$$V_{in,\text{max}} = V_{DD} - V_{ds,sat,ISS} - V_{GS1}$$

$$V_{out,min} = V_{b1} - V_{th3}$$

$$V_{out,\min} = V_{b1} - V_{th3} \qquad V_{out,\min} > V_{ds3,sat} + V_{ds5,sat}$$

$$V_{out,\max} = V_{b2} + \left| V_{th7} \right|$$

$$V_{out,\text{max}} = V_{b2} + |V_{th7}| \qquad V_{out,\text{max}} < V_{DD} - (V_{ds7,sat} + V_{ds9,sat})$$

Folded Cascode Op Amps

Effect Capacitance on Non-dominant Pole

At "folding point", a large capacitance due to a large current device M5 would

be added to the total capacitance.

Input Arrangments

NMOS vs. PMOS Input

Other Properties of Folded Cascode

- ☐ Slighter **Higher Output Swing** than Telescopic
- Higher power dissipation, similar voltage gain, similar pole frequency
- Input and output can be shorted: 2 overdrive from bound
- A better input CM range

Outline

- General Consideration
- One-Stage Op Amps
- Two-Stage Op Amps
- □ Compensation of 2-Stage Op Amps
- □ Other Issues of Op Amps

Two-Stage Op Amps

☐ Design limitation: low supply voltage, high gain and large output swing

Stage 1: High Gain

- ■Output swing could be small
- **■**OTA

Stage 2: High Swing

☐ Can we have more stages? Feedback stability limits!

Two-Stage Op Amps

VDD

$$A_{V} = A_{V1} \times A_{V2}$$

$$A_V = g_{m1,2} \left(r_{O1,2} // r_{O3,4} \right) g_{m5,6} \left(r_{O5,6} // r_{O7,8} \right)$$

$$V_{out, min} = V_{ds7, sat}$$

$$V_{out, \max} = V_{DD} - V_{ds5, sat}$$

$$A_{V} = g_{m1,2} \left(r_{O1,2} // r_{O3,4} \right) g_{m5,6} \left(r_{O5,6} // r_{O7,8} \right) \qquad A_{V} = g_{m1} \left(g_{m3} r_{O3} r_{O1} // g_{m5} r_{O5} r_{O7} \right) g_{m9} \left(r_{O9} // r_{O11} \right)$$

$$V_{out, min} = V_{ds11, sat}$$

$$V_{out, \text{max}} = V_{DD} - V_{ds9, sat}$$

Outline

- General Consideration
- One-Stage Op Amps
- Two-Stage Op Amps
- □ Compensation of 2-Stage Op Amps
 - -> Control Theory
 - -> Miller compensation
- Other Issues of Op Amps

Block diagram of two-stage op-amp

• Differential transconductance stage:

Forms the input and sometimes provides the differential-to-single ended conversion.

- High gain stage:
 - Provides the voltage gain required by the op amp together with the input stage.
- Output buffer:
 - Used if the op amp must drive a low resistance.
- Compensation:

Necessary to keep the op amp stable when resistive negative feedback is applied.

Rail to rail Folded Cascode

- Input Stage, Gain Stage, Output Stage
- + Bias Circuit, Frequency Compensation

General Considerations of Stability

Feedback systems suffer from potential instability and they may oscillate!!!

- Closed-loop transfer function: $\frac{Y(s)}{X(s)} = \frac{H(s)}{1 + \beta H(s)}$
- \Box When $\beta H(s) = -1$, the closed-loop "gain" goes to infinity -> oscillate
- Barkhausen's Criteria: $|\beta H(j\omega_1)| = 1$ $\angle \beta H(j\omega_1) = -180^\circ$
- Negative feedback itself provides 180 phase shift
- Loop transmission determines the stability issue

Review: Bode approximation

- The slope of the magnitude at zero frequency: +20dB/dec
 - at pole frequency: -20dB/dec.
- Zero 0.1 ω : begin to change, ω : +45°, 10 ω : +90°
- **D** Pole 0.1ω : begin to change, ω : -45°, 10 ω : -90°
- ☐ The key point is that phase changes faster than magnitude.
- The phase is much more significantly affected by high-frequency poles and zeros than the magnitude is .

System with bode plots of loop transmission: unstable vs. stable

■ Phase shift changes the negative feedback to positive

Oscillate: when phase=– 180°, gain>1

Stable: when gain=1, phase<– 180°

■ In a stable system, PX must be behind GX (GX<PX), and GX is equal to unity-gain bandwidth in the open-loop system</p>

Phase Margin

$$PM = 180^{\circ} + \angle \beta H (\omega = \omega_2)$$

Location of the poles on a complex plane: Root Locus

$$\beta H = \frac{1}{as^2 + bs + c}, \ s = \sigma_p + j\omega_p$$

a term of impulse response:

$$\exp(\sigma_p + j\omega_p)$$

One-Pole System

Open loop:
$$H(s) = \frac{A_0}{1 + s/\omega_0}$$

Close loop:

$$\frac{Y(s)}{X(s)} = \frac{\frac{A_0}{1 + \beta A_0}}{1 + \frac{s}{\omega_0 (1 + \beta A_0)}}$$

- A phase shift less than 90 °
- A one-pole system is unconditionally stable

- ☐ A real-valued pole in the **left half plane**
- Pole moves away from the origin as the loop gain β increases

Two-pole Systems

$$\omega = \omega_{p1}, \angle \beta H = -45^{\circ}$$

$$\omega = 10\omega_{p1}, \angle \beta H \Rightarrow -90^{\circ}$$

$$\omega = \omega_{p2}, \angle \beta H = -135^{\circ}$$

$$\omega = 10\omega_{p2}, \angle \beta H \Rightarrow -180^{\circ}$$

☐ Stable: PX> -180 ° @GX

Three-Pole Systems

- \square ω_{p3} : additional phase shift decreases the magnitude of the loop gain at a greater rate
 - => GX does not move as much as PX
 - => additional poles/zeros affect the phase gristlier than they do the magnitude

Phase margin (PM)

GX

 ω

 ω

PX

☐ How far should PX be from GX?

$$PM = 180^{\circ} + \angle \beta H \left(\omega = \omega_1 @ GX \right)$$

- A "well-behaved" closed-loop response concludes a greater spacing between GX and PX
- ☐ The unity-gain bandwidth cannot exceed the second pole frequency
- For large-signal application, time-domain simulation of closed-loop system **more relevant** and useful than small-signal as computations

β*H* (ω)

Phase Margin and step response of closed loop

PM=45°

$$\frac{Y}{X}(j\omega_1) = \frac{H(j\omega_1)}{1 + 1 \times \exp(-135^\circ)} = \frac{H(j\omega_1)}{0.29 - 0.71j} = \frac{1.3}{\beta}$$

$$\left| \frac{Y}{X} \right| \left(\omega = \omega_1 \right) = \frac{1}{\beta} \frac{1}{\left| 0.29 - 0.71j \right|} = \frac{1.3}{\beta}$$

-- The frequency response of the feedback system suffers from a 30% peak at $\omega = \omega_1$

Trade-off

β*H* (ω)

Phase Margin and step response of closed loop

- ☐ For less PM, exhibits more ringing
- ☐ For greater PM, the system is more stable, **but the time response** slows down
- ☐ Generally, PM>45° and the optimum value: PM=60°

Trade off

Outline

- General Consideration
- One-Stage Op Amps
- Two-Stage Op Amps
- □ Compensation of 2-Stage Op Amps
 - -> Control Theory
 - -> Miller compensation
- Other Issues of Op Amps

Compensation of 2-stage Op Amps

-- Miller Compensation

Stage 1: High output impedance

Stage 2: A moderate gain

- dominating pole: a large C at node E $C_{eq} = C_E + (1 + A_{v2}) C_C$
- ⇒ a low frequency pole with a moderate capacitor

Miller Compensation!

$$f_{pE} = \frac{1}{2\pi R_{out1} \left[C_E + (1 + A_{v2}) C_C \right]} \approx \frac{1}{2\pi R_{out1} A_{v2} C_C}$$

⇒ move the output pole away from the origin

Miller Theorem

2-stage Op Amps with Cc

 $g_{mI} = g_{m1} = g_{m2}, R_I = r_{ds2} || r_{ds4}, C_I = C_1$

$$g_{mII} = g_{m6}$$
, $R_{II} = r_{ds6} || r_{ds7}$, $C_{II} = C_2 = C_L$
 C_c = accomplishes the Miller compensation
 C_M = capacitance associated with the first-stage mirror (mirror pole)
 C_I = output capacitance to ground of the first-stage
 C_{II} = output capacitance to ground of the second-stage

$$-g_{mI}V_{in} = [G_I + s(C_I + C_c)]V_2 - [sC_c]V_{out}$$

$$0 = [g_{mII} - sC_c]V_2 + [G_{II} + sC_{II} + sC_c]V_{out}$$

$$\frac{V_{out}(s)}{V_{in}(s)} = \frac{g_{ml}(g_{mll} - sC_c)}{G_lG_{ll} + s \left[G_{ll}(C_l + C_{ll}) + G_l(C_{ll} + C_c) + g_{mll}C_c\right] + s^2 \left[C_lC_{ll} + C_cC_l + C_cC_{ll}\right]}{A_o \left[1 - s \left(C_c/g_{mll}\right)\right]}$$

$$= \frac{A_o \left[1 - s \left(C_c/g_{mll}\right)\right]}{1 + s \left[R_l(C_l + C_{ll}) + R_{ll}(C_2 + C_c) + g_{mll}R_lR_{ll}C_c\right] + s^2 \left[R_lR_{ll}(C_lC_{ll} + C_cC_l + C_cC_{ll})\right]}$$

where, $A_o = g_{mI}g_{mII}R_IR_{II}$

2-stage Op Amps with Cc

In general,
$$D(s) = \left(1 - \frac{s}{p_1}\right) \left(1 - \frac{s}{p_2}\right) = 1 - s \left(\frac{1}{p_1} + \frac{1}{p_2}\right) + \frac{s^2}{p_1 p_2} \rightarrow D(s) \approx 1 - \frac{s}{p_1} + \frac{s^2}{p_1 p_2}$$
, if $|p_2| >> |p_1|$

$$p_{1} = \frac{-1}{R_{I}(C_{I} + C_{II}) + R_{II}(C_{II} + C_{c}) + g_{mII}R_{I}R_{II}C_{c}} \approx \frac{-1}{g_{mII}R_{I}R_{II}C_{c}}$$

- --Dominant left-half pole (the Miller pole)
- -- This root accomplishes the desired compensation

$$p_2 = \frac{-[R_I(C_I + C_{II}) + R_{II}(C_{II} + C_c) + g_{mII}R_IR_{II}C_c]}{R_IR_{II}(C_IC_{II} + C_cC_I + C_cC_{II})} \approx \frac{-g_{mII}C_c}{C_IC_{II} + C_cC_I + C_cC_{II}} \approx \frac{-g_{mII}C_c}{C_{II}}$$

- --Left-half plane output pole
- --This pole must be ≥ unity-gain-bandwidth or PM will not be satisfied

$$z = \frac{g_{mII}}{C_c} \qquad (C_{II} > C_C >> C_I)$$

- -- Right-half plane zero
- -- This root is very undesirable: it boosts the magnitude while decreasing the phase

Conceptually, where do these roots come from?

1) The Miller pole

$$|p_1| \approx \frac{1}{R_{\mathrm{II}} (g_{m6} R_{\mathrm{II}} C_c)}$$

2) The left-half plane output pole:

$$|p_2| \approx \frac{g_{m6}}{C_{||}}$$

3) Right-half plane zero (One source of zeros is from multiple paths from the input to output):

$$v_{out} = \left(\frac{-g_{m6}R_{\parallel}(\frac{1}{sC_c})}{R_{\parallel} + \frac{1}{sC_c}}\right)V' + \left(\frac{R_{\parallel}}{R_{\parallel} + \frac{1}{sC_c}}\right)V'' = \frac{-R_{\parallel}(\frac{g_{m6}}{sC_c} - 1)}{R_{\parallel} + \frac{1}{sC_c}}V'' = \frac{-R_{\parallel}(\frac{g_{m6}}{sC_c} - 1)}{R_{\parallel}$$

4) Mirror pole-zero
$$p_3=-(\frac{g_{m3}}{C_3})$$
 $z_3=-(\frac{2g_{m3}}{C_3})$

Outline

- General Consideration
- One-Stage Op Amps
- Two-Stage Op Amps
- □ Compensation of 2-Stage Op Amps
- Other Issues of Op Amps

Input Range Limitations

- ☐ Input common-mode level may need to vary over a wide range,
 - e.g. ADC input comparator.
- ☐ Input swingwimits the total range sometimes.

?

Input pair: PMOS

■ Input common-mode range ICMR=0.9V

$$V_{icm}(upper) = V_{DD} - V_{SD3}(sat) + V_{T1}$$

$$V_{icm}(lower) = V_{DS5}(sat) + V_{GS1}$$
1.1V

☐ Minimum power supply (*ICMR*=0)

$$V_{DD}(\min)$$

$$= V_{SD3}(sat) - V_{T1} + V_{GS1} + V_{DS5}(sat)$$

$$= V_{SD3}(sat) + V_{DS1}(sat) + V_{DS5}(sat)$$
0.6V

Input Range Limitations

- N-MOSTs differential pair
- □ P-MOSTs differential pair

- □ How to extending the input CM range?
 - -- Parallel Input Stage

Rail to rail Folded Cascode

- Input Stage, Gain Stage, Output Stage
- + Bias Circuit, Frequency Compensation

Slew Rate

$$\frac{V_{out}}{V_{in}} = \frac{1/sC}{R + 1/sC} = \frac{1}{1 + sRC}$$

for an input step

$$\frac{V_{out}}{V_{in}} = \frac{1/sC}{R + 1/sC} = \frac{1}{1 + sRC} \quad \bullet \quad \bullet$$

$$V_{out} = V_0 \left[1 - \exp\left(\left(-t \right) / \tau \right) \right] \qquad \frac{dV_{out}}{dt} = \frac{V_0}{\tau} \exp\left(\frac{-t}{\tau} \right)$$

$$\frac{dV_{out}}{dt} = \frac{V_0}{\tau} \exp\left(\frac{-t}{\tau}\right)$$

- \Box the slope of the step response is proportional to the final output value V_0
- Linear feedback system with op amp

$$\beta = \frac{R_2}{R_1 + R_2}$$

$$V_{out} = \frac{AV_0}{1 + A\beta} \left[1 - \exp \frac{-t}{C_L R_{out} / (1 + A\beta)} \right] u(t)$$

Linear feedback system with real op amp

- With large input steps, the output displays a linear ramp having a constant slope. The slope of ramp is the "slew rate".
- ☐ It seems that the maximum current to charge the load capacitance is limited.
- □ Nonlinear behaviors **reduce speed** and increase distortion.
- Increase SR would consume power and wider device

Trade off

$$I = C_L \frac{dV_{out}}{dt} = \frac{AV_0}{R_{out}} \exp \left[\frac{-(1 + A\beta)t}{R_{out}C_L} \right]$$

Slewing in op amp

- \square V_{in} : $\uparrow \Delta V$,
 - $V_{G1}\uparrow: I_{D1}\uparrow g_{m}\Delta V/2$ $V_{G2}\downarrow: I_{D2}\downarrow g_{m}\Delta V/2$
 - => the charging current to C_L :

$$I=g_{\rm m}\Delta V$$

- □ When M1 experiences a large step, M2 turns off.
 - \Box C_L : a constant current $I_{SS} = g_m \Delta V$
 - ☐ Feedback is broken but after M2 turns on,
 - the circuit returns to a linear operation.
 - Slew rate:

$$I_{SS}/C_{L}$$

be independent of the input !!!

- \square $V_{in} \downarrow \Delta V$
 - -- Slew rate:

$$I_{SS}/C_{L}$$

Slew Rate of Telescopic and Folded op amp

- -- The ramp slope in each side: $\pm I_{SS}/(2C_L)$
- -- The slew rate for $V_{\rm out1} V_{\rm out2}$: $I_{\rm SS}/C_{\rm L}$

□ Folded op amp

--if $I_P \ge I_{SS}$, slew rate: I_{SS}/C_L

--if $I_{SS} > I_P$, M3 turns off and tail current source enters the triode region. The settling time increases.

Other examples (1)

Current reuse: two stage and telescoppic

Other examples (2)

Current reuse: folded cascode

Summary

- Ideal Opamp
- DC gain and dominant pole of single stage, telescopic and folded-cascade amplifier
- DC gain and two poles of two stage amplifier, after miller compensation
- Input and output range (everyone in saturation)
- Speed and Slew rate (small signal and large signal behavior)

集成电路原理与设计 10.运算放大器

宋 奏 shuangsonghz@zju.edu.cn