Interpretación resultados

1. Modelo lineal simple

$$Y = b_0 + b_1 X_1$$

 $\triangle Y = b_1 \triangle X_1$ $\frac{\Delta Y}{\Delta X_1} = b_1$

b_o es intercepto

b₁ pendiente

• Cuando X_1 aumenta 1 unidad $\Delta X_1 = 1$, Y varía en b_1 unidades $(\Delta Y = b_1)$

5. Modelo y-x log

$$Y = b_o + b_1 \ln X_1$$

b_o es intercepto

 $\frac{\Delta Y}{\Delta X_1} = \frac{1}{b_1}$

b₁ pendiente

• Cuando X_1 aumenta 1% $(\frac{\Delta X_1}{Y_1} = 1\% = \frac{1}{100} = 0.01)$, $\Delta Y = 0.01 \cdot b_{1 \text{ unidades}}$

2. Modelo cuadrático

$$Y = b_0 + b_1 X_1 + b_2 X_1^2$$

 $\triangle Y = b, \triangle X,$

 b_{\odot} pendiente

$$\frac{\Delta Y}{\Delta X_1} = b_1 + 2b_2 X_1$$

 $b_1 + 2b_2 X_1$ pendiente

- Cuando X aumenta 1 unidad ΔX₁ = 1, Y varía en $b_1 + 2b_2X_1$ unidades $(\Delta Y = b_1 + 2b_2X_1)$
- El efecto del aumento de X1 ahora depende del nivel que tenía X₁ cuando ocurre el cambio

6. Modelo log Y - X

$$lnY = b_0 + b_1 X_1$$

$$\frac{1}{Y} \frac{\triangle Y}{\triangle X_1} = b_1$$

$$\frac{\triangle Y}{Y} = b_1 \Delta X_1$$

Cuando X aumenta 1 unidad ($\Delta X_1 = 1$)

- Y aumenta o disminuve un $100 \cdot b_1\%$
- Si X_1 es binaria b_1 se interpreta como $100 \cdot [\exp(b_1) 1]$

3. Modelo con variable cualitativa

$$Y = b_o + b_1 X_1 + b_2 X_2$$

Si
$$X_2 = 0$$

 $Y = b_0 + b_1 X_1$
 $\triangle Y = b_1 \triangle X_1$

Si
$$X_2 = 1$$

 $Y = (b_o + b_2) + b_1 X_1$
 b_0 pendiente

- Cuando X aumenta 1 unidad ΔX₁ = 1, Y varía en b_1 unidades $(\Delta Y = b_1)$ tanto para $X_2 = 1$ como para $X_2 = 0$
- La diferencia entre las rectas de cada X_2 es $Y_{x_{2=1}} Y_{x_{2=0}} = b_2$, manteniendo X_1 constante.

7. Modelo log Y - logX

$$lnY = b_o + b_1 \, lnX_1$$

$$\frac{\frac{1}{Y} \stackrel{\triangle}{\triangle} \frac{Y}{X_1}}{= b_1 \cdot \frac{\Delta X_1}{X_1}} = b_1 \cdot \frac{1}{X_1}$$

 $\frac{\triangle Y}{Y}$

Cuando X aumenta 1% ($\Delta X_1 = 1\%$)

•
$$\frac{\Delta X}{X} = 1\% = \frac{1}{100} = 0.01$$

• $\frac{\Delta Y}{Y} = \frac{b_1}{100}$

- Y aumenta o disminuve un b₁%

b₁ es la elasticidad — X respecto de Y

|b₁| > 1, Y es elástico a variación de X

|b₁| < 1, Y es inelástico a variación de X

Econometría I página 1

4. Modelo con interacción (variable cualitativa)

$$Y = b_o + b_1 X_1 + b_2 X_2 + b_3 X_2 X_1$$

$$\begin{array}{ll} \mathrm{Si}\;\mathrm{X}_2=0 & \mathrm{Si}\;\mathrm{X}_2=1 \\ Y=b_o+b_1\,X_1 & Y=(b_o+b_2)\,+\,(b_1+b_3)\,X_1 \\ \frac{\Delta\;Y}{\Delta\;X_1}=b_1 & \frac{\Delta\;Y}{\Delta\;X_1}=b_1\,+\,b_3 \end{array}$$

Cuando X aumenta 1 unidad $\Delta X_1 = I$

- $\Delta Y = b_1 \text{ para } X_2 = 0$ $\Delta Y = \mathbf{b}_1 + b_3 \text{ para } \mathbf{X}_2 = 1$
- La diferencia entre las rectas de cada X_1 es $Y_{x_{2-1}} Y_{x_{2-0}} = b_2 + b_3 X_1$
- Tienen distinta intercepto y pendiente