Max-Cut Project

Group Meeting - 08/14/2020

Max-Cut Problem & Antiferromagnetic Ising Model

Max-Cut Problem (NP-hard)

• Objective: Find cut that maximizes the total weight of edges in the cut: $\sum_{(ij)\in E(S,\overline{S})} w_{ij}d_{ij}$

Antiferromagnetic Ising Model (Mother nature!)

- Atoms i and interaction strengths $-J_{ij}$, $J_{ij} < 0$
- Anti-alignment:
 - spins σ_i^z : (+1, -1)
 - Interactions between anti-aligned spins: $\sigma_i^z \neq \sigma_j^z$

• Ground state: configuration that minimizes $H(\sigma) = -\sum_{ij} J_{ij} \sigma_i \sigma_j = -\sum_{ij} J_{ij} + 2\sum_{ij:\sigma_i \neq \sigma_i} J_{ij}$

System Configurations

• System structure

- Square lattice
- Triangular lattice
- Free particles
- System size

- Interaction shape & range (radius, R)
 - Step function $1 \cdot (d \le R)$

Soft-core potential
$$\frac{1}{1 + \left(\frac{d}{R}\right)^6}$$

• Random R[0,1]

Classical Algorithms

Simulated Annealing

- Initialize a random partition (randomly assign each vertex to either set)
- Set initial temperature $T := T_0$
- Repeat t_{eq} iterations for equilibration ($t_{eq} = 1$ in continuous cooling):
 - Pick a random vertex v
 - ΔE = change of energy implied by switching the assignment of v: p(v)
 - If $R[0,1] < e^{-\Delta E/T}$ (using Metropolis-Hastings Algorithm):
 - p(v) := -p(v)
- Decrease temperature $T := r \cdot T$ (geometric cooling)
- Repeat steps 3 & 4 until convergence

Algorithm Parameters:

- Initial temperature T_0
- Cooling rate *r*
- Equilibration duration t_{eq}

Algorithm Evaluation Metric

- Evaluation metric: **minimize** $M(T) \cdot T$
- In each run, P(T) of finding the ground state estimated from N runs, where T is the # of steps

•
$$P_* = 1 - \varepsilon = 1 - \frac{1}{e}$$

- Optimization parameters: M runs each for a time T
- Probability of not finding ground state: $(1 P(T))^M = \varepsilon$

$$M(T) = \begin{cases} \frac{\log \varepsilon}{\log(1 - P(T))} = \frac{\log(1 - P_*)}{\log(1 - P(T))}, & \text{if } P(T) < P_* \\ 1, & \text{if } P(T) \ge P_* \end{cases}$$

Total # of steps:
$$M(T) \cdot T \propto \begin{cases} \frac{T}{\log(1-P(T))}, & \text{if } P(T) < P_* \\ T, & \text{if } P(T) \geq P_* \end{cases}$$

Sample Case: All-to-all Random Interactions, N = 9

- Simulated Annealing (approximate)
 - Evaluation metric: minimize $M(T) \cdot T$
- Compare with: Brute Force Solution (exact)
 - Boltzmann distribution plotted using all states explored by brute force algorithm:

$$\frac{\sum_{i} E_{i} e^{-E_{i}/T}}{\sum_{i} e^{-E_{i}/T}}$$

Scaling with System Size

Quantum Algorithms

Adiabatic Quantum Evolution (AQE)

Ising Interaction Hamiltonian: $\hat{H}(\sigma) = -\sum_{ij} J_{ij} \sigma_i^z \sigma_j^z$, Reference Hamiltonian: $\hat{B}(\sigma) = -\sum_i \sigma_i^x$

Evolution Hamiltonian: $\hat{H}(\tau) = (1 - \tau)\hat{B} + \tau\hat{H}, \tau \in [0,1]$

Initial state = ground state of $\hat{B}(\sigma)$: $\left|\psi_{0}\right\rangle = \left|+\right\rangle_{N-1} \otimes \ldots \otimes \left|+\right\rangle_{0}$

Final state: $\left|\psi_f\right\rangle = \left|\psi(\tau=1)\right\rangle$

Objective to minimize: $\left\langle \psi_{\!f} \left| \hat{H} \right| \psi_{\!f} \right
angle$

Quantum Approximate Optimization Algorithm

(QAOA)

Ising Interaction Hamiltonian:
$$\hat{H}(\sigma) = -\sum_{ij} J_{ij} \sigma_i^z \sigma_j^z$$
, Reference Hamiltonian: $\hat{B}(\sigma) = -\sum_i \sigma_i^x$

Random initial state, e.g. ground state of
$$\hat{B}(\sigma)$$
: $\left|\psi_{0}\right\rangle = \left|+\right\rangle_{N-1} \otimes \ldots \otimes \left|+\right\rangle_{0}$

Unitary time evolution:
$$\hat{U}(\vec{\beta}, \vec{\gamma}) = e^{-i\hat{B}\beta_{(\alpha-1)}}e^{-i\hat{H}\gamma_{(\alpha-1)}}\dots e^{-i\hat{B}\beta_0}e^{-i\hat{H}\gamma_0}$$

Final state:
$$\left|\psi_{f}(\overrightarrow{\beta}, \overrightarrow{\gamma})\right\rangle = \hat{U}(\overrightarrow{\beta}, \overrightarrow{\gamma}) \left|\psi_{0}\right\rangle$$

Objective to minimize:
$$\left\langle \psi_{f}(\overrightarrow{\beta}, \overrightarrow{\gamma}) \left| \hat{H} \right| \psi_{f}(\overrightarrow{\beta}, \overrightarrow{\gamma}) \right\rangle$$

Optimization:
$$\overrightarrow{\beta}$$
, $\overrightarrow{\gamma} = \text{VQE}\left(\text{ansatz} = \left|\psi_f(\overrightarrow{\beta}, \overrightarrow{\gamma})\right\rangle$, operator $= \hat{H}\right)$

Algorithm Parameters:

- Circuit depth α
- Angles $\overrightarrow{\beta}$, $\overrightarrow{\gamma}$

Optimization Method: Variational Quantum Eigensolver (VQE)

VQE
$$\left(\text{ansatz} = \left| \psi_f(\overrightarrow{\theta}) \right\rangle$$
, operator $= \hat{H} \right)$:

== Classical optimization ==

- Initialize random parameters: $\overrightarrow{\theta} := \overrightarrow{\theta_0}$
- Loop until convergence:

== Quantum sub-routine ===

- Prepare ansatz: $\left|\psi_f(\overrightarrow{\theta})\right>$
- Evaluate objective (expectation value of operator): $\left\langle \frac{\psi_f(\overrightarrow{\theta})}{|H|} |\hat{H}| \psi_f(\overrightarrow{\theta}) \right\rangle$ $M(T) \cdot T, \text{ where } T \in [1, 2\alpha]$
- Update parameter $\overrightarrow{\theta} := \operatorname{optimizationStep}(\overrightarrow{\theta})$
- Return parameters that minimize objective: $\overrightarrow{\theta} = \min \left(\left\langle \psi_f(\overrightarrow{\theta}) \middle| \hat{H} \middle| \psi_f(\overrightarrow{\theta}) \right\rangle \right)$

Sample Case:

Nearest-Neighbor Interactions, Square Lattice, N = 4x4

- Variational Quantum Eigensolver (approximate)
 - Evaluation metric: minimize $M(T) \cdot T$, where $T \in [1, 2\alpha]$
- Quantum Approximate Optimization Algorithm (approximate)

Next Steps

- Comparing classical & quantum algorithms
 - Common optimization: minimize $M(T) \cdot T$, i.e. number of trials x number of "steps" per trial
 - No obvious one-to-one correspondence of the grounds for comparison: what is T?
 - Classical algorithm:
 - number of iterations of Simulated Annealing
 - Quantum algorithm:
 - Length of Hamiltonian pulse sequence, $[1, 2\alpha]$
 - Integrated interaction strength x time $(\sum_{i=0}^{\alpha-1} \beta_i)$

- Classical & quantum speedups
 - Different cooling schedules for Simulated Annealing
 - Different angle initializations for QAOA
- Scaling to larger system sizes with reasonable simulation runtimes
 - Entropy as heuristic for probability of reaching ground state in Simulated Annealing
 - DTWA for simulating larger quantum systems

Bibliography

- https://www.cs.cmu.edu/afs/cs/academic/class/15854-f05/www/scribe/lec02.pdf
- http://www.mit.edu/~ilkery/papers/MetropolisHastingsSampling.pdf
- https://mathworld.wolfram.com/SimulatedAnnealing.html
- https://arxiv.org/pdf/1505.03068.pdf
- https://doi.org/10.4236/am.2017.88090
- https://iopscience.iop.org/article/10.1088/0305-4470/31/41/011/ meta
- https://grove-docs.readthedocs.io/en/latest/vge.html
- https://grove-docs.readthedocs.io/en/latest/gaoa.html
- https://arxiv.org/pdf/1304.3061.pdf
- https://iopscience.iop.org/article/10.1088/1367-2630/18/2/023023/ ampdf
- https://scipost.org/SciPostPhys.2.1.003/pdf

- https://scipost.org/SciPostPhys.7.2.020/pdf
- http://large.stanford.edu/courses/2008/ph372/behroozi2/
- http://weinbe58.github.io/QuSpin/index.html
- https://arxiv.org/pdf/1508.07314.pdf
- https://paramekanti.weebly.com/uploads/1/1/2/8/11287579/ atan_paper.pdf
- http://users.ox.ac.uk/~phys1116/msm2.pdf
- https://www.math.arizona.edu/~tgk/541/chap1.pdf
- https://arxiv.org/pdf/2002.01068.pdf
- https://arxiv.org/pdf/1401.2910.pdf
- https://arxiv.org/pdf/1401.1084.pdf
- https://journals.aps.org/prx/pdf/10.1103/PhysRevX.10.021067

- physical time for re-initializing the system when computing M * T, include overhead
- Integrated interaction strength is good because H is costly due to decay, include in simulation, in reality probability doesn't strictly increase, T might be the argument at that maximum