Lambda Calculus and its Impact on Computer Science

Joris Klaasse Bos Zaanlands Lyceum

October 10, 2020

1 Prologue

The reason I chose this subject is that it combines two things I enjoy: abstract maths and computer science. I have been programming for about five to six years now. I mainly enjoy low-level programming, so naturally C is my most used language and I am most familiar with a simple procedural paradigm. Such a paradigm is, however, not always very easy to use when working with very large and complex systems. I, as many, started out with Object-Oriented Programming, but I did not like that very much. Therefore, I have been exploring alternative paradigms, including Data-Oriented Programming and Functional Programming. I am quite familiar with Data-Oriented Programming and the Rust programming language by now, but Functional Programming isn't something I ever really have got in to yet. I did find out about lambda calculus and combinatory logic, which intrigued me, but I haven't got into it beyond a basic level of understanding. That is why I decided to research it for this paper.

2 Introduction

Lambda calculus is, as its name suggests, a calculus. A calculus is a system of manipulating symbols, which by themselves don't have any semantic meaning, in a way that is somehow meaningful. We all know algebra. Algebra itself doesn't have an innate meaning, but we can use it to represent and solve real world problems. Algebra, however, is limited. Not every problem can be represented in algebra. There are many branches of mathematics that use different systems. One example would be formal logic, which is used for logical operations on booleans. Another such example is lambda calculus.

2.1 A short history

2.2 The syntax

Lambda calculus is all about unary anonymous functions. Such a function has no name to identify it, takes only one input, and returns a single expression that is only dependent on the input, so it doesn't have any outside state. A simple function definition in lambda calculus looks as follows:

 $\lambda a.a$

The lambda signifies a function. Everything following it will be part of that function's definition. The a before the . is the name of the argument. There is only one, because, as I said before, all functions in lambda calculus are unary. Everything following the . is part of the return expression. The function above is the identity function in lambda calculus; it just returns the input. This is the equivalent of multiplying by one, or defining a function like f(x) = x, or multiplying a vector with the identity matrix; it does nothing.

But how do we use this function? Well, just like defining a function, it is quite simple. If you want to apply this function to a symbol, you just put it in parentheses in from of the symbol. Something like this:

 $(\lambda a.a)x$

Which evaluates to:

x

The reason for the parentheses is that otherwise x would be considered part of the function's return expression, which it isn't.

I have now basically explained the entire lambda calculus, it is really that simple. I have explained abstraction (the functions), application (applying a function to a symbol), and grouping (the parentheses), which is basically all we need. You can also give names to expressions. We could name our identity function I as follows:

$$I := \lambda a.a$$

But this isn't really part of the core lambda calculus anymore, just some syntactic sugar. This way, instead of constantly having to write $\lambda a.a.$, we can just write I. So instead of writing:

$$(\lambda a.a)x = x$$

We could use our previous definition of I and write:

$$Ix = x$$

We have now covered identifiers too.

But if this is all there is, how can this possibly be Turing complete? How do we do boolean logic, or algebra? How can we do things with only unary anonymous functions? What are a and x supposed to represent? If there is no concept of value, how do we even use this meaningfully?

Well, the key is this: a function can return any expression, so even other functions, not just a single symbol. We can start composing these simple functions into more complex functions. Let's say that we wanted to have a function that takes two arguments, and then applies the first argument to the second one. You are probably asking yourself a few questions. For example, what does it mean for one argument to be applied to another. Well, as I said, these arguments are expressions and can thus be functions themselves. But the biggest question you are probably asking yourself is: how can you have a function that takes two arguments?

Well, we actually can't, but what we can do is to have a function that takes one argument and returns another function that takes one argument. We can define the function as follows:

$$\lambda a.\lambda b.ab$$

We currently have a function definition inside the body of another function. If we now apply this function to a symbol like x, we get this:

$$(\lambda a.\lambda b.ab)x = \lambda b.xb$$

We get a new function that takes an argument and applies x to it. If we now apply this function to a symbol like y, we get this:

$$(\lambda b.xb)y = xy$$

Alternatively, we could write it all on one line:

$$(\lambda a.\lambda b.ab)xy = (\lambda b.xb)y = xy$$

xy in this case is what we would call the β -reduced form of the preceding expressions. That just means that it is in the simplest form and isn't able to be evaluated any further.

You can start to see how we can compose unary anonymous functions to create more complex functions. In this example we used two nested unary functions to get the same result you would with a binary function. You now know the very basics of lambda calculus. You may still not see how this is Turing complete or how this can be useful and meaningful, but we'll get to that. If you get this, everything will make sense.

2.3 Combinatory logic