Unsupervised learning

- Goal:
 - Are there clusters in the data?

Many dimensions – total mess

How to define a cluster

Define metric

$$dist(x, y) = \sum_{i=1}^{n} (x_i - y_i)^2$$

What formal definition – let's define 'energy' as

$$V(k, \mu_1, \dots, \mu_k) = \sum_{i=1}^k \sum_{x \in C_i} dist(x, \mu_i)$$

The less – the better

total length of Green >> total length of Red

Task for a fixed k Find clusters that minimize the value of V

- It's np-hard in general case
- Lloyd`s algorithm converges to local minimum

Lloyd's algorithm

- EM version
 - Fix some value of k (?)
 - Take initial k centers (?)
 - Assign all points to clusters
 - Recalculate centers
 - Iterate previous two steps

Notes

- Scaling again is important
 - Always use it
- Initialization is crucial
 - Never do random
 - Good heuristics K-means++

K-means++

- Intuition: close points work poorly
- The further the point from already chosen the better
 - Take 1st at random
 - For each point update D(x):=distance to closest cluster
 - Choose next center with probability proportional to D(x)^2

- K-means | implemented in Spark MLlib
- First, generate a set of candidates for centers
 - Done in parallel
- Apply K-means++ only on those candidates
 - Don't need much resources

How to define the number of clusters?

Value of V as percent of V total

Recap

- What the clusters are
- How to formalize clustering
- K-means
 - K-means++ and K-means
 - Elbow method to define `k`