06. High-speed Switches

Note Title 1/20/20

- Each link connected to a switch consists of an incoming wire and an outgoing wire There are interconnected uring a suiteh fabric: the sunteh can connect each input to only output at each time and each outfut can be connected to only input a time. - NXN switch: N input ports

and N out put

1

schedutes (interconnections). Each
echedule is a matching in
a bipartite graph.
In matrix from, each schedule
can be represented by a
permutation matix: exactly one I in each row and column
M EFOR (2001)
~ / o \ o \
000
Capacity region or throughput region
Let M. Mz., Mni be the
set of permutation matrices for

an NXN suitch. Let dij be the arrival rate of packets from input i to output j. The matrix is somp portable only if λ ≤ 2 α; M; for some di 20, Z di = 1. Question: Can the guenes be stobilized without knowing & but only knowing that λ(1+ε) ∈ C fir some €>0! We will use Forter- Lyapunov theory to answer this question Assume aij (n) = Ber (xij)

$$V = \sum_{i,j} q^2$$

$$E(V(x+1)-V(x)|q(x)=q)$$

$$\leq 25$$
 $q_{ij}(\lambda_{ij}-8_{ij})+$

chook { 8; j } ∈ { M, M2, ..., MN] }

to solve

max 5 gissig

Useful inright: Recall

l= Co(M), where Co's

the convex hull.

max 5 q; sij = max 5 q; sij seM ij to sel ij tijsij

Why?. if sel, then
$$S = \sum_{i} d_{i} M_{e}$$

$$\Rightarrow S_{i} = \sum_{i} d_{e} M_{e}(i, j)$$

Thus, we will make $\alpha_e = 1$

for Me which masimizes

Z gj Me (i, j).

Back to derivation: Since $\chi(1+\epsilon) \in C$

 $\sum_{i,j} \lambda_{ij} (1+\epsilon) q_{ij} \leq \sum_{ij} q_{ij} q_{ij}$

Thus, expected drift is

-EE(Zhij Gij) + K

which is negative for large

g. By Foster-Lyapunos, the

system is stable.

Scheduling algorithm (Max Weight)

max Z qij Me(i, j)

MeM i, j & j

Birkhoff-von Neumann theorem

Any {\lambda_{ij}^2} \quad \quad \text{\lambda} + \text{\lambda}

\[\sigma_{ij} \leq 1 \\ \quad \quad \text{\lambda} \righta_{ij} \leq 1 \\ \quad \quad \quad \quad \quad \text{\lambda} \righta_{ij} \leq 1 \\ \quad \qquad \quad \qquad \quad \quad \quad \quad \qqua

can be written as M= Zde Me for bone 0, 20, Z de = 1 Thus, (I) is another characterization of the capacity region.