MSNE characterization Theorem to algorithm

NFG
$$G = \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$$

All possible supports of $S_1 \times S_2 \times \cdots \times S_n$

number =
$$K = (2^{|S_1|} - 1) \times (2^{|S_2|} - 1) \times \cdots \times (2^{|S_m|} - 1)$$

for every support profile $X_1 \times X_2 \cdots \times X_n$, where $X_i \subseteq S_i$

solve The following feasibility program

$$W_{i} = \sum_{\underline{A_{i}} \in \underline{S_{i}}} \left(\prod_{j \neq i} \sigma_{j}(A_{j}) \right) u_{i}(A_{i}, \underline{A_{i}}), \quad \forall A_{i} \in X_{i}, \forall i \in \mathbb{N} - cond (1)$$

$$W_{i} \geqslant \sum_{A_{i} \in S_{i}} \left(\prod_{j \neq i} \sigma_{j}(A_{j}) \right) u_{i}(A_{i}, A_{i}), \forall A_{i} \in S_{i} \setminus X_{i}, \forall i \in \mathbb{N} - cond(2)$$

 $\sigma_{j}(A_{j}) > 0$, $\forall A_{j} \in S_{j}$, $\forall j \in N$, and $\sum \sigma_{j}(A_{j}) = 1$, $\forall j \in N$. $A_{j} \in S_{j}$

feasibility program with variables W_i , $i \in N$, $T_j(A_j)$, $A_j \in S_j$, $j \in N$.

Remarks: this is not a linear program unless n=2

For general games, there is no poly-time algorithm

Problem of finding an MSNE is PPAD-complete [Polynomial Parity

Argument on Directed graphs

Daskalakis, Goldberg, Papadimitrion "The complexity of computing a Nash equilibrium" 2009.

MSNE and dominance

The previous algorithm can be applied to a smaller set of strategies by removing the dominated strategies

Dominated strutegy in this game?

domination can also be via mixed strategy

		R
T	4,1	2,5
M	1,3	6,2
В	2,2	3,3

Weak dominated stretegy removal can remove equilibrium

for strictly dominated strategies

Theorem: If a pure strategy S_i is strictly dominated by a mixed strategy $T_i \in \Delta(S_i)$, then in every MSNE of the game, S_i is chosen with probability zero.

So, can remove without loss of equilibrium.

Existence of MSNE

Finite game: number of players and The strutegies are finite

Theorem (Nash 1951)

Every finite game has a (mixed) Nash equilibrium.

Proof requires a few tools and a result from real analysis

- o A set $S \subseteq \mathbb{R}^n$ is convex if $\forall x,y \in S$ and $\forall \lambda \in [0,1]$, $\lambda x + (1-\lambda) x \in S$
- o A set $S \subseteq \mathbb{R}^n$ is closed if it contains all its limit point (points whose every neighborhood contains a point in S a set not closed [0,1) every ball of reduce E > 0 around I has a member of [0,1), but 1 is not in the set [0,1)
- o A set $S \subseteq \mathbb{R}^n$ is bounded if $\exists x_0 \in \mathbb{R}^n$ and $R \in (0,\infty)$ s.t. $\forall x \in S$, $||x-x_0||_2 < R$
- · A set S ⊆ Rn is compact if it is closed and bounded.

A result from real analysis (without proof)

Browners fixed point theorem

If $S \subseteq \mathbb{R}^n$ is convex and compact and $T: S \to S$, is continuous. Then T has a fixed point, i.e., $\exists x^* \in S$ s.t. $T(x^*) = x^*$.