

Physics-Based Animation (SET09119)

Tutorial 01 - Mathematics for Physics

1 Question

If $p = \sqrt{3}$ and $s = \sqrt{2}$ evaluate:

$$\sqrt{(5p-4s)^2 - (4p-5s)^2}$$

2 Question

Find the set of real numbers λ for which the quadratic equation:

$$x^2 - (\lambda - 3)x + \lambda = 0$$

has distinct, real roots for x.

(Remember: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$)

3 Question

Let $\mathbf{u} = <-4, -1, 2>$, $\mathbf{v} = <1, 3, 2>$ and $\mathbf{w} = <0, -2, -4>$, Find:

- 1. u + v
- 2. -3u
- 3. 3u 4v
- 4. 2u + 4v 5w

4 Question

Let $\mathbf{u} = <0, 1, 5>$, $\mathbf{v} = <1, 1, 5>$ and $\mathbf{w} = <-0, -1, 2>$, Find:

- 1. $\mathbf{u} \cdot \mathbf{v}$
- 2. $\mathbf{u} \cdot \mathbf{w}$
- 3. $\mathbf{u} \times \mathbf{w}$

- 4. $\mathbf{v} \times \mathbf{w}$
- 5. $||\mathbf{u}||$ (i.e., the length/magnitude of \mathbf{u})

5 Question

- 1. Show that if \vec{a} and \vec{b} are two parallel vectors, then $\vec{a} \times \vec{b} = 0$
- 2. Show that if \vec{a} and \vec{b} are two orthogonal vectors where $\vec{c} = \vec{a} \times \vec{b}$ then

$$||c|| = ||a|| ||b||$$

3. Find the cross product of the vectors $\vec{a}=<1,0,3>$ and $\vec{b}=<9,-3,1>$. If $\vec{c}=\vec{a}\times\vec{b},$ verify that $\vec{c}^T\vec{a}=\vec{c}^T\vec{b}=0$

6 Question

Differentiate:

- 1. $\frac{d}{dx}(3x^2)$
- 2. $\frac{d}{dx}(4x^4-2)$
- $3. \ \frac{d}{dx}(x+\frac{1}{x})$
- 4. $\frac{d}{dx}(\sqrt[4]{x})$
- $5. \ \frac{d}{dx}(\sqrt[5]{x} + \frac{5}{\sqrt{x}})$

7 Question

Integrate:

- 1. $\int 4x^3 dx$
- 2. $\int 2x^4 dx$
- 3. $\int x^{-4} dx$
- 4. $\int 5x^{-3} dx$
- 5. $\int \frac{6}{x^2} dx$

8 Question

Compute:

1.
$$\begin{bmatrix} 1 & 6 \\ -3 & 5 \end{bmatrix} \times \begin{bmatrix} 4 & 0 \\ 2 & -1 \end{bmatrix}$$

$$2. \begin{bmatrix} 1 & 6 \\ -3 & 5 \end{bmatrix} \times \begin{bmatrix} 2 \\ -7 \end{bmatrix}$$

$$3. \begin{bmatrix} 1 \\ -6 \end{bmatrix} \times \begin{bmatrix} 1 & 6 \\ -3 & 5 \end{bmatrix}$$

$$4. \begin{bmatrix} 1 \\ 6 \end{bmatrix} \times \begin{bmatrix} 3 & 2 \end{bmatrix}$$

5.
$$\begin{bmatrix} 2 & -1 \end{bmatrix} \times \begin{bmatrix} 1 \\ -6 \end{bmatrix}$$

9 Question

Generate the 4×4 transformation matrix for the following transformations:

- 1. A translation of <4,6,7>
- 2. A scaling of < 10, 5, 2 >
- 3. A z-axis rotation of $\frac{\pi}{2}$ radians
- 4. A x-axis rotation of π radians
- 5. A y-axis rotation of $\frac{\pi}{4}$ radians

10 Question

Transform the following vectors using the transformation matrix:

$$\begin{bmatrix} 2.121 & -2.121 & 0 & 10 \\ 2.121 & 2.121 & 0 & 15 \\ 0 & 0 & 3 & 12 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- 1. < 4, 5, 10 >
- 2. < 12, 8, 16 >
- 3. < 1, 4, 0 >
- 4. < -10, 12, -4 >
- 5. < 0, 5, -11 >

11 Question

A plane is described by a point p < 1, 2, 1 > on the plane and a unit normal n < 0, 1, 0 >. Find the distance from point x < 2, 2, 0 > to the plane

12 Question

Find the solution of the following system of algebraic equations:

$$-x_1 + 2x_2 - x_3 = 2$$
1.
$$2x_1 - x_2 = 1.5$$

$$-x_2 + x_3 = 5$$

$$-3x_2 + 5x_3 = 0$$
2.
$$-2x_1 + 2x_2 - 3x_3 = 0$$

$$6x_1 - 2x_2 = 5.5$$

13 Question

A triangle is defined by 3D points \vec{a} , \vec{b} , and \vec{c} Find the area of the triangle given $\vec{a} < 1, 1, 0 >$, $\vec{b} < 4, 5, 1 >$, and $\vec{c} < 0, 2, 0 >$.

