Research Seminar Coding Task

Y Data Program

Asaf Dahan and Omer Dodi March 2022

Dataset

- CIFAR-10
- 60K Images
 - 50K train dataset
 - 10K validation dataset
- 32x32 Pixels, 3 channels
- 10 Classes
 - Balanced
- Split datasets by classes
 - A with 5 classes
 - B with 5 classes
 - Randomly splitted to 5 groups

Initial Architecture

- 8x Convolutions
 - o 3 filters (3x3)
 - Padding + stride of 1
 - ReLu activation
- Flatten to 3072 -> 10

The problem:

 We got low baseline accuracy

Final Architecture

- 3x of:
 - 2x Convolutions
 - 8 filters (3x3)
 - Padding + stride of 1
 - Batch normalization
 - ReLu activation
 - Max pooling 2d (2x2)
- Flatten to 512 -> 10

Baseline accuracy (10 epochs) - 0.689

Workflow

- Load data
- Split data (A/B)
 - o 5 splits
- Build our own NN architecture
- Train base models
 - o 10 models
- Create transfer learning function
- Train experimental models
 - B3B, B3B+ ("Selffer"), A3B, A3B+ ("Transfer")
 - ~160 models (2 freeze ind * 8 transfer layers * 10 base models)
- Draw graphs
- Get insights

Experiments

```
def transfer learning(modelA, transfer layers, freeze ind):
                          modelB = BaseNeuralNetwork2()
                          pretrained dict = modelA.state dict()
                          newmodel dict = modelB.state dict()
                          new state dict = dict()
                          for (k pre, v pre), (k new, v new) in zip(pretrained dict.items(), newmodel dict.items()):
                              layer name = k pre.split('.')[0]
                              if layer name in transfer layers:
Copy layers
                                  new state dict[k pre] = v pre
                              else:
                                  new state dict[k new] = v new
                          new state dict = OrderedDict(new state dict)
                          modelB.load state dict(new state dict)
                          if freeze ind == 1:
                              for name, child in modelB.named_children():
Freeze layers
                                  if name in transfer layers:
                                      for param in child.parameters():
                                          param.requires grad = False
                          return modelB
```

Results

Results

Conclusions

Finetune yield better results

As for conclusions from the original paper

- X Transfer + finetune improve generalization
- X Performance drops due to fragile co-adaptation
- ✓ Performance drops due to representation specificity

Possible explanations

- Due to small dataset low number of samples and number of classes
- Due to low number of epochs 3