CLAIMS

T T 71		•		•	
Wha	t 10	· cl	วาท	ned	10

11

12

1

2

1

2

3

4

5

6

1

2

1

2

3

4

5

	What is claimed is:
1	1. A method for reducing spurious emissions in an amplified signal, the method comprising the
2	steps of:
3	(a) amplifying a first copy of an input signal by a first amplifier sub-system;
4	(b) amplifying one or more other copies of the input signal by one or more other amplifier sub-
5	systems;
6	(c) combining outputs from the first amplifier sub-system and the one or more other amplifier sub-
7	systems to generate a combined amplified output signal, wherein the first amplifier sub-system:
8	(1) applies pre-distortion to the first copy of the input signal to generate a pre-distorted first copy
9	of the input signal, wherein the pre-distortion of the first copy of the input signal is based on the
10	combined amplified output signal; and

- (2) amplifies the pre-distorted first copy of the input signal to generate the output from the first amplifier sub-system.
- 2. The invention of claim 1, wherein a portion of the combined amplified output signal is tapped off and fed back to the first amplifier sub-system for use in pre-distorting the first copy of the input signal.
 - 3. The invention of claim 1, wherein each other amplifier sub-system:
- (1) applies pre-distortion to its copy of the input signal to generate a pre-distorted copy of the input signal, wherein the pre-distortion of its copy of the input signal is based on only the output from said each other amplifier sub-system; and
- (2) amplifies the pre-distorted copy of the input signal to generate the output from said each other amplifier sub-system.
- 4. The invention of claim 1, wherein each other amplifier sub-system amplifies its copy of the input signal without performing any pre-distortion.
 - 5. The invention of claim 1, wherein:
- during initial operations, each amplifier sub-system pre-distorts its copy of the input signal based on only the output from said each amplifier sub-system; and
- after the initial operations, the first sub-system pre-distorts its copy of the input signal based on the combined amplified output signal.

6. The invention of claim 1, further comprising performing pre-distortion by one of the one or more
other amplifier sub-systems based on the combined amplified output signal in case of failure of the pre-
distortion processing of the first amplifier sub-system.

7. An apparatus comprising:

1
2
3

1

2

3

4

5

6

7

8

9

10

11

12

1

2

1

2

3

4

5

6

1

2

1

2

3

- a first amplifier sub-system adapted to amplify a first copy of an input signal;
- one or more other amplifier sub-systems adapted to amplify one or more other copies of the input signal;
- a combiner adapted to combine outputs from the first amplifier sub-system and the one or more other amplifier sub-systems to generate a combined amplified output signal, wherein the first amplifier sub-system comprises:
- (1) a pre-distortion block adapted to apply pre-distortion to the first copy of the input signal to generate a pre-distorted first copy of the input signal, wherein the pre-distortion of the first copy of the input signal is based on the combined amplified output signal; and
- (2) a power amplifier adapted to amplify the pre-distorted first copy of the input signal to generate the output from the first amplifier sub-system.
- 8. The invention of claim 7, wherein a portion of the combined amplified output signal is tapped off and fed back to the first amplifier sub-system for use in pre-distorting the first copy of the input signal.
 - 9. The invention of claim 7, wherein each other amplifier sub-system comprises:
- (1) a pre-distortion block adapted to apply pre-distortion to its copy of the input signal to generate a pre-distorted copy of the input signal, wherein the pre-distortion of its copy of the input signal is based on only the output from said each other amplifier sub-system; and
- (2) a power amplifier adapted to amplify the pre-distorted copy of the input signal to generate the output from said each other amplifier sub-system.
- 10. The invention of claim 7, wherein each other amplifier sub-system is adapted to amplify its copy of the input signal without performing any pre-distortion.
 - 11. The invention of claim 7, wherein:
- during initial operations, each amplifier sub-system is adapted to pre-distort its copy of the input signal based on only the output from said each amplifier sub-system; and

4	after the initial operations, the first sub-system is adapted to pre-distort its copy of the input signal				
5	based on the combined amplified output signal.				
1	12. The invention of claim 7, wherein:				
2	the one or more other amplifier sub-systems comprise a second amplifier sub-system adapted to				
3	amplify a second copy of the input signal; and				
4	the combiner is adapted to combine the outputs from the first and second amplifier sub-systems to				
5	generate the combined amplified output signal.				
1	13. The invention of claim 12, further comprising:				
2	a first splitter adapted to split the input signal into the first and second copies of the input signal;				
3	a first tap adapted to tap off a portion of the combined amplified output signal; and				
4	a second splitter adapted to split the portion of the combined amplified output signal into two copies,				
5	wherein each copy of the portion of the combined amplified output signal is fed back to a different one o				
6	the first and second amplifier sub-systems.				
1	14. The invention of claim 13, wherein each amplifier sub-system further comprises a switch adapted				
2	to select either the corresponding copy of the portion of the combined amplified output signal or the				
3	output from said each amplifier sub-system for use in pre-distorting its copy of the input signal.				
1	15. The invention of claim 7, wherein at least one of the one or more other amplifier sub-systems is				
2	adapted to perform pre-distortion based on the combined amplified output signal to provide a level of				

redundancy in case of failure of the pre-distortion processing of the first amplifier sub-system.

3