Key to Tutorial 7 Problems of Combinational Logic

Exercise 1 Polling Report

Four shop stewards (A, B, C, D) represent the following number of votes respectively: 100 votes, 150 votes, 250 votes and 175 votes. A proposal needs at least 50 % of the votes to be accepted. Write down the most simplified expression of a logic function (S) that is 1 when a proposal is accepted and 0 when it is rejected. Draw the circuit diagram.

Indication: 'A = 1' means that the A shop steward accepts a proposal and 'A = 0' means that he or she rejects it. The same goes for the other shop stewards.

First of all, let us determine the truth table of the *S* output:

A (100)	B (150)	C (250)	D (175)	S	Number of votes
0	0	0	0	0	0
0	0	0	1	0	175
0	0	1	0	0	250
0	0	1	1	1	425
0	1	0	0	0	150
0	1	0	1	0	325
0	1	1	0	1	400
0	1	1	1	1	575
1	0	0	0	0	100
1	0	0	1	0	275
1	0	1	0	1	350
1	0	1	1	1	525
1	1	0	0	0	250
1	1	0	1	1	425
1	1	1	0	1	500
1	1	1	1	1	675

The total number of votes is 675 (100 + 150 + 250 + 175). Therefore, a proposal is accepted (S = 1) when the number of votes is equal to or greater than 338 (at least 50 % of the votes); otherwise it is rejected (S = 0).

Key to Tutorial 7

Then, let us deduce the expression of *S* according to its Karnaugh map:

		CD						
	S	00	01	11	10			
AB	00	0	0	1	0			
	01	0	0	1	1			
	11	0	1	1	1			
	10	0	0	1	1			

$$S = A.C + B.C + C.D + A.B.D$$

Finally, here is what the circuit diagram should look like:

Exercise 2 Liquid Level

Let us consider two tanks: R1 and R2. The liquid level of each tank is checked by two sensors: a high-level sensor (A for R1, B for R2) and a low-level sensor (C for R1, D for R2). The values of A, B, C, D are 1s when there is some liquid in front of the sensor; otherwise they are 0s. Three indicator lights (V1, V2, V3) are set according to the following conditions:

- VI = 1, if RI and R2 are full.
- V2 = 1, if R1 and R2 are empty.
- V3 = 1, in any other cases.

Write down the truth tables and the most simplified expressions of the outputs. Draw the circuit diagram.

Key to Tutorial 7

First of all, let us determine the truth table of the V1, V2 and V3 outputs:

A	В	С	D	V1	V2	V3	
0	0	0	0	0	1	0	
0	0	0	1	0	0	1	
0	0	1	0	0	0	1	
0	0	1	1	0	0	1	
0	1	0	0	Φ	Φ	Φ	← Don't care condition
0	1	0	1	0	0	1	
0	1	1	0	Φ	Φ	Φ	← Don't care condition
0	1	1	1	0	0	1	
1	0	0	0	Φ	Φ	Φ	← Don't care condition
1	0	0	1	Φ	Φ	Φ	← Don't care condition
1	0	1	0	0	0	1	
1	0	1	1	0	0	1	
1	1	0	0	Φ	Φ	Φ	← Don't care condition
1	1	0	1	Φ	Φ	Φ	← Don't care condition
1	1	1	0	Φ	Φ	Φ	← Don't care condition
1	1	1	1	1	0	0	

In this truth table, some conditions never occur. If a high-level sensor is 1, the low-level sensor of the same tank cannot be 0. In other words, if A is 1, C cannot be 0; and if B is 1, D cannot be 0.

The conditions where 'A = 1 and C = 0' and those where 'B = 1 and D = 0' are called 'don't care conditions' because they never occur. So, we do not care what their outputs are and we can set them to either 0 or 1. Outputs of don't care conditions are represented by the Greek character ' Φ ' (phi), which means 0 or 1. (The 'x' character can also be used instead of the ' Φ ' character.)

Key to Tutorial 7

Then, let us deduce the expressions of V1, V2, V3 according to their Karnaugh maps. Don't care conditions are set to 0 or 1 in order to simplify the expression.

		CD					
	V1	00	01	11	10		
AB	00	0	0	0	0		
	01	Φ	0	0	Φ		
	11	Φ	Φ	1	Φ		
	10	Φ	Φ	0	0		

V1

V200 01 00 1 0 01 Φ 0 AB Φ 11 Φ 10 Φ Φ

CD

11

0

0

0

0

10

0

Φ

Φ

0

 $\overline{\mathbf{C}}.\overline{\mathbf{D}}$

= A.B	V2 = C
= A.B	V2 = 0

		CD					
	V3	00	01	11	10		
AB	00	0	1	1	1		
	01	Φ	1	1	Φ		
	11	Φ	Φ	0	Φ		
	10	Φ	Φ	1	1		

 $V3 = \overline{A}.D + \overline{B}.C$

Finally, here is what the circuit diagram should look like:

Key to Tutorial 7 4/4