

Contents

- Lecture 1: Tổng quan về Khoa học dữ liệu
- Lecture 2: Thu thập và tiền xử lý dữ liệu
- · Lecture 3: Làm sạch và tích hợp dữ liệu
- · Lecture 4: Phân tích và khám phá dữ liệu
- · Lecture 5: Trực quan hoá dữ liệu
- Lecture 6: Trực quan hoá dữ liệu đa biến
- Lecture 7: Học máy
- Lecture 8: Phân tích dữ liệu lớn
- Lecture 9: Báo cáo tiến độ bài tập lớn và hướng dẫn
- Lecture 10+11: Phân tích một số kiểu dữ liệu
- · Lecture 12: Đánh giá kết quả phân tích

3

Các bài toán chính trong phân tích liên kết

- · Xếp hạng đồ thị: Phân tích vai trò của các đỉnh trong đồ thị
- Nhận diện cộng đồng: Phát hiện các cộng đồng bao gồm các thành viên có tính chất tương tự
- Dự đoán liên kết: Dự đoán sự tiến hóa của đồ thị theo thời gian
- Phân loại đồ thị: Phân loại các đỉnh và các cạnh của đồ thị vào các lớp cho trước

Nội dung

- 1. Xếp hạng đồ thị
- 2. Nhận diện cộng đồng
- 3. Học biểu diễn đồ thị

5

1. Xếp hạng đô thị

• 1.1 Các khái niệm cơ bản của đồ thị

a) Đồ thị vô hướng

b) Đồ thị có hướng

Ma trận kề

a[i, j] = 1 nếu tồn tại cạnh (i,j)
 = 0 nếu ngược lại
 = 2 nếu tồn tại cạnh từ một đỉnh đến chính nó

 $(2 \ 1 \ 0)$

7

Bậc của đỉnh

- $d_i(i) = số nút trỏ tới <math>i$
- · $d_o(i) = \text{số nút } i \text{ trỏ tới}$

1.2 Thuật toán Dijkstra

- Tìm đường đi ngắn nhất từ một đỉnh s tới các đỉnh còn lại của đồ thị
- d(v): Khoảng cách từ đỉnh v tới đỉnh s
 - **B1**: Khởi tạo d(s) = 0; d(v) = oo
 - B2: Sắp xếp các đỉnh v theo một trật tự xác định trên hàng đợi Q
 - B3: Lấy một đỉnh u thuộc hàng đợi Q và cập nhật khoảng cách d(v) (nếu cần) với mỗi đỉnh v liền kề với u
 - Quay lại B2 cho đến khi xử lý hết các đỉnh

9

VD

VD (tiếp)

v	S	а	b	С	d
d[v]	0	∞	∞	∞	∞
pred[v]	nil	nil	nil	nil	nil
color[v]	W	W	W	W	W

11

VD (tiếp)

VD (tiếp)

$oldsymbol{v}$	S	а	b	С	d
d[v]	0	2	7	∞	∞
pred[v]	nil	S	S	nil	nil
color[v]	В	W	W	W	W

13

VD (tiếp)

v	S	а	b	С	d
d[v]	0	2	5	6	7
pred[v]	nil	S	а	b	а
color[v]	В	В	В	W	W

17

VD (tiếp)

VD (tiếp)						
	v	S	a	b	С	d
	$\overline{d[v]}$	0	2	5	6	7
	pred[v]	nil	S	а	b	а
	color[v]	В	В	В	В	W
		1				
		v	d			
	_	d[v]	7			
			1			

VD (tiếp)

v	s	а	b	С	d
d[v]	0	2	5	6	7
pred[v]	nil	S	а	b	а
color[v]	В	В	В	В	В

$$Q = \emptyset$$
.

21

1.3 Độ trung tâm: Độ trung tâm lân cận

$$C_C(i) = \frac{n-1}{\sum_{j=1}^{n} d(i,j)}.$$

d(i, j): Khoảng cách ngắn nhất từ nút i tới nút j

Độ trung tâm trung gian

 $m{p}_{jk}(\pmb{i})$: Số lượng đường đi ngắn nhất từ \pmb{j} tới \pmb{k} mà đi qua \pmb{i}

$$C_B(1) = 15$$
, $C_B(2) = C_B(3) = C_B(4) = C_B(5) = C_B(6) = C_B(7) = 0$

23

1.4 Độ quan trọng: Độ quan trọng theo bậc

$$P_D(i) = \frac{d_I(i)}{n-1},$$

d_i(i): Số nút trỏ tới i

Độ quan trọng lân cận

$$P_P(i) = \frac{|I_i|/(n-1)}{\sum_{j \in I_i} d(j,i) / |I_i|},$$

I: Các nút có thể đi tới i

25

1.5 Thuật toán Pagerank

- · Xếp hạng đồ thị dựa trên cấu trúc tổng quát
- Đối với các đồ thị lớn, thứ hạng được tính xấp xỉ bằng thuật toán lặp dựa trên 'random walk'
- · Có ứng dụng quan trọng trong máy tìm kiếm web
- Nhược điểm: Không phụ thuộc vào câu truy vấn

Ma trận chuyển tiếp

$$A = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 1/3 & 1/3 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/2 & 1/2 & 0 \end{pmatrix}$$

27

Ma trận chuyển tiếp (tiếp)

· Chuẩn hóa:

$$A = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 1/3 & 1/3 \end{pmatrix}. \longrightarrow \overline{A} = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 1/3 & 1/3 \end{pmatrix}.$$

Công thức xếp hạng

 $\mathsf{R}(\mathsf{A}) = (1-\mathit{d}) \ / \ \mathit{N} + \mathit{d} * \Sigma_{\mathsf{B}:(\mathsf{B},\mathsf{A}) \,\in\, \mathsf{E}} \ \mathsf{R}(\mathsf{B}) \, / \, \mathsf{d}_{\mathsf{o}}(\mathsf{B})$

R(A): Thứ hạng của đỉnh A d: damping factor N: số đỉnh của đồ thị (B,A) cạnh của đồ thị d_o(B) bậc ra của đỉnh B

1.6 Thuật toán HITS

- · Hypertext Induced Topic Search
- J. Kleinberg. "Authoritative Sources in a Hyperlinked Environment." In Proc. of the 9th ACM SIAM Symposium on Discrete Algorithms (SODA'98), pp. 668–677, 1998.

	Spam filtering	Query relevance	Execution
HIST	<u> </u>		Online
PageRank			Offline

37

Authority/Hub

- Authority: Trang được trỏ tới nhiều
- Hub: Trang trỏ tới nhiều trang khác
- Authority và hub có mối quan hệ tương hỗ

Bigraph

- Các nút chia thành hai tập không giao nhau
- Mỗi cạnh đều nối hai nút thuộc hai tập

39

Thuật toán

- Đầu vào: Câu truy vấn q
- Đầu ra: Điểm authority và hub của các trang liên quan đến q
- Thuật toán:
 - 1 Truy hồi thông tin
 - 2 Mở rộng đồ thị
 - 3 Tính ranking

1-Truy hồi thông tin

- Y/c một máy tìm kiếm có chứa các văn bản liên quan đến câu truy vấn q (vd Google, Coccoc)
 - Đưa q vào máy tìm kiếm và lấy về tập root W gồm k trang liên quan nhất đến q (vd k = 200)

41

2- Mở rộng đô thị

- Từ tập root W, mở rộng ra tập base S
- · Với mỗi trang p trong W
 - · Bổ sung các trang mà p trỏ tới
 - · Bổ sung các trang trỏ tới p

3- Tính thứ hạng

Authority score (a) Hub score (h)

$$G = (V, E)$$

$$L_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E \\ 0 & \text{otherwise} \end{cases}$$

$$a(i) = \sum_{(j,i)\in E} h(j)$$

$$\sum_{i=1}^{n} a(i) = 1$$

$$h(i) = \sum_{(i,j)\in E} a(j)$$

$$\sum_{i=1}^{n} h(i) = 1$$

$$h(i) = \sum_{(i,j)\in E} a(j)$$
 $\sum_{i=1}^{n} h(i) = 1$

43

3- Tính thứ hạng (tiếp)

$$a = L^T h$$

$$h = La$$

HITS-Iterate(G)

$$a_0 \leftarrow h_0 \leftarrow (1, 1, ..., 1);$$

 $k \leftarrow 1$

Repeat

$$a_k \leftarrow L^T L a_{k-1};$$

$$h_k \leftarrow LL^T h_{k-1};$$

$$a_k \leftarrow a_k / ||a_k||_1;$$
 // normalization

$$\mathbf{h}_k \leftarrow \mathbf{h}_k / ||\mathbf{h}_k||_1;$$
 // normalization

$$k \leftarrow k + 1;$$

until
$$||\boldsymbol{a}_k - \boldsymbol{a}_{k-1}||_1 < \varepsilon_a$$
 and $||\boldsymbol{h}_k - \boldsymbol{h}_{k-1}||_1 < \varepsilon_h$;

return a_k and h_k

THANK YOU!