高二第一学期期中 数学试卷参考答案

- 1. D 因为 $a_2 = 4$,所以 $a_3 = 9$.
- 2. C 由题意得 $y=2x\cos 30^{\circ}-8=\sqrt{3}x-8$,所以该直线的倾斜角为 60° .
- 3. C $d = \frac{11-1}{5-3} = 5$.
- 4. B 因为抛物线 $y=x^2+2x+3$ 的顶点坐标为(-1,2),所以圆 C 的圆心坐标为(-1,2). 又圆 C 经过点(1,6),所以圆 C 的半径 $R=\sqrt{(-1-1)^2+(2-6)^2}=2\sqrt{5}$,所以圆 C 的方程为 $(x+1)^2+(y-2)^2=20$.
- 5. D 因为 4+5+9=2+2+14,所以 $a_4a_5a_9=a_2^2a_{14}$,在等比数列 $\{a_n\}$ 中,各项均不为 0,所以必有 $a_{14}=1$.
- 6. A $\sqrt{x^2 + (y-1)^2} + \sqrt{x^2 + (y+1)^2} = 2$ 表示点(x,y)与点A(0,1),B(0,-1)的距离之和为 2,因为点A(0,1),B(0,-1)的距离也为 2,所以M表示线段AB.
- 7. D 由题意得圆心 M 到直线 3x+4y=0 的距离 $d=\frac{|3\times 2+4\times 1|}{\sqrt{3^2+4^2}}=2$,则 $|AB|=2\sqrt{16-4}=4\sqrt{3}$,所以 $\triangle MAB$ 的面积为 $\frac{1}{2}\times 4\sqrt{3}\times 2=4\sqrt{3}$.
- 8. C 根据题意,从 2023 年 10 月 26 日开始到读完的前一天,他每天阅读《巴黎圣母院》的时间 (单位:分钟)依次构成等差数列,且首项为 60,公差为-2,

则由 $60n + \frac{n(n-1)}{2} \times (-2) \le 820$,且 $60 - 2n \ge 0$,得 $n \le 20$,所以小方读此书 20 天恰好可以读完,故他恰好读完《巴黎圣母院》的日期为 2023 年 11 月 14 日.

- 9. AC 因为 $a_1=2$, $a_2=16$, 所以 $\{a_n\}$ 的通项公式可能为 $a_n=14n-12$ 或 $a_n=2^{n^2}$.
- 10. ACD 点 $(1,\sqrt{3})$ 在直线 $y=\sqrt{3}x$ 上,点(1,0)到直线 $y=\sqrt{3}x$ 的距离为 $\frac{\sqrt{3}}{2}$,A 正确,B 错误. 因为 $2\times(-\frac{1}{2})=-1$,所以直线 y=2x 与直线 $y=-\frac{1}{2}x$ 垂直,C 正确. 圆 $x^2+y^2=1$ 与圆 $(x-2)^2+y^2=1$ 外切,D 正确.
- 11. ABC 当 $a_n = 2\sqrt{2} 2n$ 时, $\{a_n\}$ 是单调递减数列, $|a_n| = \begin{cases} 2\sqrt{2} 2, n = 1, \\ 2n 2\sqrt{2}, n \geqslant 2, \end{cases}$ 因为 $|a_1| |a_2|$

 $=4\sqrt{2}-6$ <0,当 n>2 时, $\{2n-2\sqrt{2}\}$ 单调递增,所以 $\{|a_n|\}$ 是单调递增数列,所以 $\{2\sqrt{2}-2n\}$ 是 T 数列.

当 a_n =(-4)ⁿ 时,易知{(-4)ⁿ}不是递增数列,因为|(-4)ⁿ|=4ⁿ,所以{| a_n |}是单调递增数列,所以{(-4)ⁿ}是 T 数列.

因为 $\frac{1-n^2}{2n} = \frac{1}{2}(\frac{1}{n}-n)$,所以 $\{\frac{1-n^2}{2n}\}$ 是递减数列,因为 $[\frac{1}{2}(\frac{1}{n}-n)] = \frac{1}{2}(n-\frac{1}{n}) \geqslant 0$,且 $\{|a_n|\}$ 是单调递增数列,所以 $\{\frac{1-n^2}{2n}\}$ 是 T 数列.

当 $a_n = \frac{2^n}{3n-1}$ 时, $a_n > 0$, $a_1 = 1 > a_2 = \frac{4}{5}$,所以 $\{|a_n|\}$ 不是单调递增数列, $\{\frac{2^n}{3n-1}\}$ 不是 T数列.

12. BD 因为曲线 $(x+\sqrt{3})(\sqrt{3}x-y-2)=0$ 与圆 $x^2+(y-m)^2=m^2$ 恰有 4 个公共点,所以直线 $x+\sqrt{3}=0$, $\sqrt{3}x-y-2=0$ 均与圆 $x^2+(y-m)^2=m^2$ 相交,且两直线的交点 $(-\sqrt{3},-5)$ 不在该圆上,

则有
$$\begin{cases} \sqrt{3} < |m|, \\ \frac{|\sqrt{3} \times 0 - m - 2|}{\sqrt{3 + 1}} < |m|, \quad \text{解得 } m \in (-\infty, -\frac{14}{5}) \cup (-\frac{14}{5}, -\sqrt{3}) \cup (2, +\infty). \\ (-\sqrt{3})^2 + (-5 - m)^2 \neq m^2, \end{cases}$$

- 13.30 这个数列的第5项为5×6=30.
- $14.\sqrt{5}$ 两平行直线 y=2x 与 y=2x-5 之间的距离为 $\frac{5}{\sqrt{2^2+(-1)^2}}=\sqrt{5}$.
- 15. $(-\sqrt{3}, \frac{3}{4})$ 点(1,0)到直线 ax+y-2=0 的距离 $d=\frac{|a-2|}{\sqrt{a^2+1}}>1$,解得 $a<\frac{3}{4}$. 点(0,1)到 直线 ax+y-2=0 的距离 $d'=\frac{|-1|}{\sqrt{a^2+1}}>\frac{1}{2}$,解得 $-\sqrt{3}< a<\sqrt{3}$.

故 a 的取值范围是 $(-\sqrt{3}, \frac{3}{4})$.

16. 90; $108 - \frac{162}{3^n}$ ($108 - \frac{162}{3^n}$ 也可以写为 $108 - 54 \times (\frac{1}{3})^{n-1}$ (或 $108 - \frac{54}{3^{n-1}}$), 还可以写为 $108 - 2 \times (\frac{1}{3})^{n-4}$ (或 $108 - \frac{2}{3^{n-4}}$)) 设小球第 1 次落地时经过的路程为 a_1 , 小球从第 n-1 ($n \ge 2$)次落地到第 n 次落地时经过的路程为 a_n 米,则 $a_1 = 54$, $a_2 = 54 \times \frac{1}{3} \times 2$, $a_3 = 54 \times (\frac{1}{3})^2 \times 2$, \dots , $a_n = 54 \times (\frac{1}{3})^{n-1} \times 2$ ($n \ge 2$),

所以小球第 2 次落地时,经过的路程是 $54+54\times\frac{1}{3}\times2=90$ 米,小球第 $n(n\geq2)$ 次落地时,

经过的路程是
$$a_1 + a_2 + \dots + a_n = 54 + 108 \times \left[\frac{1}{3} + (\frac{1}{3})^2 + \dots + (\frac{1}{3})^{n-1}\right] = 54 + 108 \times \frac{\frac{1}{3} - \frac{1}{3^n}}{1 - \frac{1}{3}}$$

$$=108-\frac{162}{3^n}$$
*.

17. 解: 当 $n \ge 2$ 时, $a_n = S_n - S_{n-1} = n^2 - (n-1)^2 + 3^{n+1} - 3^n = 2n - 1 + 2 \times 3^n$, 6 分【高二数学・参考答案 第 2 页(共 4 页)】 · 24 - 134Bl·

	$a_1 = S_1 = 1^2 + 3^2 = 10,$
	所以 $a_n = \begin{cases} 10, n=1, \\ 2n-1+2\times 3^n, n \geqslant 2. \end{cases}$
18.	解:(1)由 $\begin{cases} x-y+1=0, \\ 2x+y-4=0, \end{cases}$ 解得 $\begin{cases} x=1, \\ y=2, \end{cases}$ 即 l_1 和 l_2 的交点坐标为(1,2), 2 分
	因为直线 l 经过点(3,3),所以直线 l 的斜率为 $\frac{3-2}{3-1} = \frac{1}{2}$,
	所以直线 l 的方程为 $y-2=\frac{1}{2}(x-1)$,
	令 $y=0$,得 $x=-3$,所以直线 l 在 x 轴上的截距为 -3
	(2)因为直线 l 与直线 l_3 : $4x+5y-12=0$ 平行,
	所以可设直线 l 的方程为 $4x+5y+m=0$,
	又直线 l 经过点 $(1,2)$,所以 $4\times1+5\times2+m=0$,得 $m=-14$,
	所以直线 l 的一般式方程为 $4x+5y-14=0$.
19.	解:(1)由 $a_n = a_{n+1} + 2$,得 $a_{n+1} - a_n = -2$,
	所以 $\{a_n\}$ 是公差为 -2 的等差数列, · · · · · · · 2分
	因为 $a_3 = -5$,所以 $a_1 = a_3 - 2 \times (-2) = -1$.
	(2)由(1)知 $\frac{1}{a_n(2n+1)} = -\frac{1}{(2n-1)(2n+1)} = -\frac{1}{2}(\frac{1}{2n-1} - \frac{1}{2n+1})$,
	所以 $S_n = -\frac{1}{2}(1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \dots + \frac{1}{2n-1} - \frac{1}{2n+1}) = -\frac{1}{2}(1 - \frac{1}{2n+1}) = -\frac{n}{2n+1}$
20.	解:(1)因为圆 M 的圆心在 y 轴上,所以可设圆 M 的方程为 $x^2+(y-b)^2=r^2$ 2分
	又圆 M 经过 $A(-1,0)$, $B(1,4)$ 两点,所以 $\begin{cases} 1^2+b^2=r^2,\\ 1^2+(4-b)^2=r^2, \end{cases}$ 得 $\begin{cases} b=2,\\ r^2=5. \end{cases}$
	故圆 M 的圆心坐标为 $(0,2)$,半径为 $\sqrt{5}$
	(2)由题意得圆心 M 到直线 $x+2y+11=0$ 的距离为 $\frac{ 0+2\times 2+11 }{\sqrt{1^2+2^2}}=3\sqrt{5}$, 9 分
	所以 P 到直线 $x+2y+11=0$ 的距离的最小值为 $3\sqrt{5}-\sqrt{5}=2\sqrt{5}$
0.1	
21.	(1)证明:因为 $a_{n+1} = 2a_n + n - 1$,所以 $\frac{a_{n+1} + n + 1}{a_n + n} = \frac{2a_n + n - 1 + n + 1}{a_n + n} = \frac{2(a_n + n)}{a_n + n} = 2.$ ······
	3分
	又 a_1 =3,所以 a_1 +1=4,
	所以数列 $\{a_n+n\}$ 是等比数列,且首项为 4,公比为 2. · · · · · · 5 分
	(2)解:由(1)知 $a_n + n = 4 \cdot 2^{n-1}$,
	即 $a_n + n = 2 \cdot 2^n$,则 $\frac{2n}{a_n + n} = \frac{n}{2^n}$

	$S_n = \frac{1}{2} + \frac{2}{2^2} + \dots + \frac{n}{2^n},$ 8 \$\frac{1}{2^n}\$
	$\frac{1}{2}S_n = \frac{1}{2^2} + \frac{2}{2^3} + \dots + \frac{n}{2^{n+1}}, \qquad 9 $
	则 $\frac{1}{2}S_n = \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n} - \frac{n}{2^{n+1}} = \frac{\frac{1}{2} - \frac{1}{2^{n+1}}}{1 - \frac{1}{2}} - \frac{n}{2^{n+1}} = 1 - \frac{n+2}{2^{n+1}}, \dots 11$ 分
	所以 $S_n = 2 - \frac{n+2}{2^n}$. 12 分
22.	(1)证明:圆 C 的方程可化为 $\lambda(x^2+y^2-5)-2x-4y+6=0$
	故圆 C 恒过两个定点,且这两个定点的坐标为 $(-1,2)$ 和 $(\frac{11}{5},\frac{2}{5})$
	(2)解:当 λ =1 时,圆 C 的方程可化为 $x^2+y^2-2x-4y+1=0$. 由题知直线 l 的斜率 k 存在且不为 0 ,设直线 l 的方程为 $y=k(x+1)$ 5 分
	联立 $\begin{cases} x^2 + y^2 - 2x - 4y + 1 = 0, \\ y = k(x+1), \end{cases}$ 消去 x 得 $(1+k^2)y^2 - 4k(1+k)y + 4k^2 = 0, \dots$ 7分
	所以 $ \begin{cases} y_1 + y_2 = \frac{4k(1+k)}{1+k^2}, \\ y_1 y_2 = \frac{4k^2}{1+k^2}, \end{cases} $ 8分
	$\Delta = 16k^2(1+k)^2 - 16k^2(1+k^2) > 0$,解得 $k > 0$
	$\Delta = 16k^{2}(1+k)^{2} - 16k^{2}(1+k^{2}) > 0, 解得 k > 0.$ $ \qquad \qquad$
	所以 $\frac{1+k}{k}=k$,解得 $=\frac{1\pm\sqrt{5}}{2}$,
	又 $k>0$,所以 $k=\frac{1+\sqrt{5}}{2}$. 12 分