Krylov Subspace Iteration Methods

Anastasia Filimon

ETH Zurich

29 May 2008

Set up

 The methods represent iterative techniques for solving large linear systems

$$Ax = b$$
,

where A is non-singular $n \times n$ -matrix, b is n-vector, n is large.

• They are based on projection processes onto Krylov subspaces.

Krylov Subspaces

 Krylov subspace generated by an nxn-matrix A, and an n-vector b is the subspace spanned by the vectors of the Krylov sequence:

$$K_m = span\{b, Ab, A^2b, ..., A^{m-1}b\}.$$

• The projection method seeks an approximate solution x_m from an affine subspace $x_0 + K_m$ by imposing condition $b - Ax_m \perp L_m$, L_m is another subspace of dimension m, x_0 is an initial guess to the solution. In the case of Krylov subspace methods $K_m = K_m(A, r_0)$, $r_0 = b - Ax_0$ is an n-vector

$$K_m = span\{r_0, Ar_0, A^2r_0, ..., A^{m-1}r_0\}.$$

• **Property 1.** K_m is the subspace of all vectors in \mathbb{R}^n which can be written as

$$x = p(A)v$$
,

where p is a polynomial of degree not exceeding m-1

Krylov Subspaces

• The different versions of Krylov subspace methods arise from different choices of the subspace L_m and from the ways in which the system is preconditioned. Two broad choices for L_m give rise to the best-known techniques:

$$L_m = K_m$$
 FOM $L_m = AK_m$ GMRES, MINRES.

Arnoldi Modified Gram-Schmidt Method

• This is an algorithm for building an orthogonal basis of the Krylov subspace K_m .

ALGORITHM Arnoldi-Modified Gram-Schmidt

- 1. Choose a vector v_1 of norm 1 2. For j = 1, 2, ..., m Do:
- 3. Compute $w_i := Av_i$
- 4. For $i = 1, \ldots, j$ Do:
- $5. h_{ij} = (w_j, v_i)$
- $6. w_i := w_i h_{ij} v_i$
- 7. EndDo
- 8. $h_{j+1,j} = ||w_j||_2$. If $h_{j+1,j} = 0$ Stop
- 9. $v_{j+1} = w_j/h_{j+1,j}$
- 10. EndDo
- At each step, the algorithm multiplies Arnoldi vector v_j by A and then orthonormalizes the resulting vector w_j against all previous v_j 's by a standard Gram-Schmidt procedure.

Arnoldi's Method

• **Proposition 1.** Assume the Arnoldi Algorithm does not stop before the m-th step. Then the vectors $v_1, v_2, ..., v_m$ form an orthonormal basis of the Krylov subspace

$$K_m = span\{v_1, Av_1, ..., A^{m-1}v_1\}.$$

- **Proposition 2.** Projection method onto the subspace K_j will be exact when a breakdown occurs at step j.
- Proposition 3. Denote by V_m the $n \times m$ matrix with column vectors

 $v_1,...,v_m$, by \overline{H}_m , the (m+1)xm Hessenberg matrix whose nonzero entries h_{ij} are defined by Arnoldi Modified Gram-Schmidt Algorithm and by H_m the matrix obtained from \overline{H}_m by deleting its last row. Then the following relations hold:

$$AV_m = V_m H_m + w_m e_m^T = V_{m+1} \overline{H}_m$$

$$V_m^T A V_m = H_m.$$

Full Orthogonalization Method (FOM)

• Given the initial guess x_0 to the original linear system Ax = b, consider the projection method described before, which takes $L_m = K_m(A, r_0)$, where $r_0 = b - Ax_0$. If $v_1 = \frac{r_0}{\|r_0\|_2}$ in Arnoldi's method and set $\beta = \|r_0\|_2$, then

$$V_m^T A V_m = H_m$$
 from Proposition 3, and $V_m^T r_0 = V_m^T (\beta v_1) = \beta e_1$.

• As a result, the approximate solution using the above m-dimensional subspaces is given by

$$x_m = x_0 + V_m y_m, \ y_m = H_m^{-1}(\beta e_1)$$

Full Orthogonalization Method (FOM)

- The presented algorithm depends on a parameter m which is the dimension of the Krylov subspace. In practice it is desirable to select m in a dynamic fashion. This would be possible if the residual norm of x_m is available without compution x_m itself.
- **Proposition 4.** The residual vector of the approximate solution x_m computed by the FOM Algorithm is such that

$$\|b-Ax_m\|_2 = h_{m+1,m} \left| e_m^T y_m \right|.$$

Full Orthogonalization Method (FOM)

ALGORITHM Full Orthogonalization Method (FOM)

- 1. Compute $r_0 = b Ax_0$, $\beta := ||r_0||_2$, and $v_1 := r_0/\beta$
- 2. Define the $m \times m$ matrix $H_m = \{h_{ij}\}_{i,j=1,\dots,m}$; Set $H_m = 0$
- 3. For j = 1, 2, ..., m Do:
- 4. Compute $w_i := Av_i$
- 5. For i = 1, ..., j Do:
- $6. h_{ij} = (w_j, v_i)$
- $7. w_j := w_j h_{ij}v_i$
- 8. EndDo
- 9. Compute $h_{j+1,j} = ||w_j||_2$. If $h_{j+1,j} = 0$ set m := j and Goto 12
- 10. Compute $v_{j+1} = w_j/h_{j+1,j}$.
- 11. EndDo
- 12. Compute $y_m = H_m^{-1}(\beta e_1)$ and $x_m = x_0 + V_m y_m$

Generalized Minimum Residual Method (GMRES)

- The method is a projection method based on taking $L_m = AK_m$, in which K_m is the m-th Krylov subspace with $v_1 = r_0 / \|r_0\|_2$. Such a technique minimizes the residual norm over all vectors in $x_0 + K_m$. The implementation of an algorithm based on this approach is similar to that of the FOM algorithm.
- Any vector x in $x_0 + K_m$ can be written as $x = x_0 + V_m y$, where y is an m-vector.
- Define

$$J(y) = \|b - Ax\|_2 = \|b - A(x_0 + V_m y)\|_2$$
,

Using relation from Proposition 3

$$b - Ax = b - A(x_0 + V_m y) = r_o - AV_m y = \beta v_1 - V_{m+1} \overline{H}_m y$$

= $V_{m+1}(\beta e_1 - \overline{H}_m y)$.

ullet Since the column-vectors of V_{m+1} are orthonormal, then

$$J(y) = \|b - A(x_0 + V_m y)\|_2 = \|\beta e_1 - \overline{H}_m y\|_2$$
.

Generalized Minimum Residual Method (GMRES)

• The GMRES approximation is the unique vector of $x_0 + K_m$ which minimizes J(y), i.e.

$$x_m = x_0 + V_m y_m$$
, where
 $y_m = \arg\min_{y} \|\beta e_1 - \overline{H}_m y\|_2$

• The minimizer is inexpensive to compute since it requires the solution of an (m+1)xm least-squares problem where m is typically small.

Generalized Minimum Residual Method (GMRES)

ALGORITHM GMRES

- 1. Compute $r_0 = b Ax_0$, $\beta := ||r_0||_2$, and $v_1 := r_0/\beta$
- 2. Define the $(m+1) \times m$ matrix $\bar{H}_m = \{h_{ij}\}_{1 \leq i \leq m+1, 1 \leq j \leq m}$. Set $\bar{H}_m = 0$.
- 3. For j = 1, 2, ..., m Do:
- 4. Compute $w_j := Av_j$
- 5. For i = 1, ..., j Do:
- $6. h_{ij} := (w_j, v_i)$
- $7. w_j := w_j h_{ij}v_i$
- 8. EndDo
- 9. $h_{j+1,j} = ||w_j||_2$. If $h_{j+1,j} = 0$ set m := j and go to 12
- 10. $v_{j+1} = w_j/h_{j+1,j}$
- EndDo
- 12. Compute y_m the minimizer of $\|\beta e_1 \bar{H}_m y\|_2$ and $x_m = x_0 + V_m y_m$.

- A clear difficulty with GMRES algorithm is that it does not provide the approximate solution x_m explicitly at each step. As a result, it is not easy to determine when to stop. However, there is a solution related to the way in which the least-squares problem is solved.
- In order to solve the least-squares problem min $\|\beta e_1 \overline{H}_m y\|$, it is natural to transform the Hessenberg matrix into upper triangular form by using plane rotations.

• **Proposition 5.** Define the rotation matrices to transform \overline{H}_m into upper triangular form

$$c_i^2+s_i^2=1$$
, $s_i=rac{h_{i+1,i}}{\sqrt{(h_{ii}^{(i-1)})^2+h_{i+1,i}^2}}$, $c_i=rac{h_{ii}^{(i-1)}}{\sqrt{(h_{ii}^{(i-1)})^2+h_{i+1,i}^2}}$.

• Define the product of matrices Ω_i

$$Q_m = \Omega_m \Omega_{m-1} ... \Omega_1$$
,

ullet \overline{R}_m , $\overline{g}_m = (\gamma_1,...,\gamma_{m+1})^T$ the resulting matrix and right-hand side

$$\overline{R}_{m} = \overline{H}_{m}^{(m)} = Q_{m}\overline{H}_{m},
\overline{g}_{m} = Q_{m}(\beta e_{1}) = (\gamma_{1}, ..., \gamma_{m+1})^{T}.$$

• Denote by R_m the $m \times m$ upper triangular matrix obtained from \overline{R}_m by deleting its last row and by g_m the m-dimensional vector obtained from \overline{g}_m by deleting its last component.

- Then,
 - 1. Vector y_m which minimizes $\|\beta e_1 \overline{H}_m y\|_2$ is given by

$$y_m = R_m^{-1} g_m.$$

2. The residual vector at step m satisfies

$$b-Ax_m=V_{m+1}(eta e_1-\overline{H}_m y)=V_{m+1}Q_m^{T}(\gamma_{m+1}e_{m+1})$$
 and, as a result,

$$\|b-Ax_m\|_2=|\gamma_{m+1}|.$$

• This was the process for computing the least-squares solution y_m . The process must be stopped if the residual norm $|\gamma_{m+1}|$ is small enough. The last rows of \overline{R}_m and \overline{g}_m are deleted and the resulting upper triangular system is solved to obtain y_m . Then the approximate solution $x_m = x_0 + V_m y_m$ is computed.

The Symmetric Lanczos Algorithm

• This algorithm can be viewed as a simplification of Arnoldi's method for the particular case when the matrix is symmetric. When A is symmetric, then the Hessenberg matrix H_m becomes symmetric tridiagonal.

$$\begin{pmatrix} \alpha_1 & \beta_2 \\ \beta_2 & \alpha_2 & \beta_3 \\ & \dots \\ & \beta_{m-1} & \alpha_{m-1} & \beta_m \\ & \beta_m & \alpha_m \end{pmatrix}$$

ALGORITHM The Lanczos Algorithm

- 1. Choose an initial vector v_1 of norm unity. Set $\beta_1 \equiv 0, v_0 \equiv 0$
- 2. For j = 1, 2, ..., m Do:
- $3. w_i := Av_i \beta_i v_{i-1}$
- 4. $\alpha_i := (w_i, v_i)$
- $5. w_j := w_j \alpha_j v_j$
- 6. $\beta_{i+1} := ||w_i||_2$. If $\beta_{i+1} = 0$ then Stop
- 7. $v_{j+1} := w_j/\beta_{j+1}$
- 8. EndDo

- This algorithm is one of the best known iterative techniques for solving sparse Symmetric Positive Definite linear systems.
- Assume we need to minimize the following function

$$f(x) = \frac{1}{2}x^T A x - x^T b$$

where A is $n \times n$ -matrix positive definite and symmetric, b is n-vector.

• The minimum value of f(x) is $-b^TA^{-1}b/2$, achieved by setting $x=A^{-1}b$. Therefore, minimizing f(x) and solving Ax=b are equivalent problems if A is symmetric positive definite.

• The vector x_{j+1} can be expressed as .

$$x_{j+1} = x_j + \alpha_j p_j.$$

Therefore, the residual vectors must satisfy the recurrence

$$r_{j+1} = r_j - \alpha_j A p_j$$
.

• To have r_j 's orthogonal it is necessary that

$$(r_j - \alpha_j A p_j, r_j) = 0$$

and, as a result,

$$\alpha_j = \frac{(r_j, r_j)}{(Ap_j, r_j)}.$$

• The first basis vector p_1 is the gradient of f at x_0 , which equals to Ax_0-b . The other vectors in the basis will be conjugate to the gradient. Each next p_{k+1} is defined to be in the direction closest to the gradient r_k under the conjugacy constraint. This direction is given by the projection of r_k onto the space orthogonal to p_k with respect to the inner product induced by A.

$$\begin{aligned}
\rho_{j+1} &= r_{j+1} + \beta_{j} \rho_{j}, \\
(A \rho_{j}, r_{j}) &= (A \rho_{j}, \rho_{j} - \beta_{j-1} \rho_{j-1}) = (A \rho_{j}, \rho_{j}) \\
\alpha_{j} &= \frac{(r_{j}, r_{j})}{(A \rho_{j}, \rho_{j})}, \ \beta_{j} = \frac{(r_{j+1}, A \rho_{j})}{(\rho_{j}, A \rho_{j})} \\
A \rho_{j} &= -\frac{1}{\alpha_{j}} (r_{j+1} - r_{j}), \beta_{j} = \frac{1}{\alpha_{j}} \frac{(r_{j+1}, (r_{j+1} - r_{j}))}{(A \rho_{j}, \rho_{j})} = \frac{(r_{j+1}, r_{j+1})}{(r_{j}, r_{j})}
\end{aligned}$$

ALGORITHM Conjugate Gradient

- 1. Compute $r_0 := b Ax_0$, $p_0 := r_0$.
- 2. For j = 0, 1, ..., until convergence Do:

3.
$$\alpha_j := (r_j, r_j)/(Ap_j, p_j)$$

$$4. x_{j+1} := x_j + \alpha_j p_j$$

$$5. r_{j+1} := r_j - \alpha_j A p_j$$

6.
$$\beta_j := (r_{j+1}, r_{j+1})/(r_j, r_j)$$

7.
$$p_{j+1} := r_{j+1} + \beta_j p_j$$

- 8. EndDo
- The process stops if r_{i+1} is "sufficiently small".

Convergence Analysis

- One of the main tool used in the analysis of convergence behavior is Chebyshev polynomials.
- Lemma 1. Let x_m be the approximate solution obtained from the m-th step of the CG algorithm, and let $d_m = x_* x_m$, where x_* is the exact solution. Then x_m is of the form

$$x_m = x_0 + q_m(A)r_0,$$

where q_m is a polynomial of degree m-1 such that

$$\|(I - Aq_m(A))d_0\|_A = \min_{q \in P_{m-1}} \|(I - Aq(A))d_0\|_A$$
.

• **Theorem 2.** Let x_m be the approximate solution obtained from the m-th step of the CG algorithm, and x_* is the exact solution. Then

$$||x_* - x_m||_A \le 2 \left[\frac{\sqrt{k} - 1}{\sqrt{k} + 1} \right]^m ||x_* - x_0||_A.$$

Convergence Analysis

Convergence Analysis

GMRES residual norms show a period of stagnation followed by rapid convergence. The above plots are for $\kappa=10,15,\ldots,40$.