

Prediction of protein structures

New Al-prediction system, "AlphaFold"

Why protein structure?

- Drug design
- Material use
- catalysts

Designing protein

• Geometrically assembled protein-based material is expected to be used in various industrial fields.

History of protein structure prediction

Thermodynamics simulation: theory

INTERMOLECULAR FORCES IN PROTEIN STRUCTURE

The 4 types of interactions that determine tertiary structure of proteins are shown. Though varying in strength, each set of interactions is significant in the formation of intrachain bonds that fixes the structure of the overal polymer.

Thermodynamics simulation: problems

Homology prediction: theory

KQFTKCELSQNLYDIDGYGRIALPELICTMFH TSGYDTQAIVENDESTEYGLFQISNALWCKSS QSPQSRNICDITCDKFLDDDITDDIMCAKKIL DIKGIDYWIAHKALCTEKLEQWLCEKE

KVFGRCELAAAMKRHGLDNYRGYSLGNWVCAAKF ESNFNTQATNRNTDGSTDYGILQINSRWWCNDGR TPGSRNLCNIPCSALLSSDITASVNCAKKIVSDG NGMNAWVAWRNRCKGTDVQAWIRGCRL

Homology prediction: problems

PDB # - Function	RMSD - % Identity	Images from PyMOL and Cn3D	References
2GTL_Chain A: Lumbricus terrestris (annelide) hemoglobin part of a 3.6million Dalton protein. Transports oxygen. 1H97_Chain A: Paramphistomum epiclitum (trematode) monomeric hemoglobin. High affinity to oxygen.	RMSD: 2.3 Identity: 12.1%		24, 25
2GNW_Chain B: Found in plants. Its role is not yet determined. Oryza sativa. 2W31_Chain A: detects oxygen and transmits signal. Geobacter sulfurreducens.	RMSD: 3.2 Identity: 13.4%		27, 26
2GLN_Chain A: nitric oxide scavenging. Mycobacterium tuberculosis. 2ZS1_Chain A: extracellular giant Hb. Cooperative oxygen binding via inorganic cations. Oligobrachia mashikoi.	RMSD: 2.4 Identity: 6.7%		28, 29,
1KN1_Chain A: allophycocyanin, absorbs light, part of phycobilisomes and phycobilisome structural family. Pyropia yezoensis. 2BNL_Chain C: Non heme, regulates s factor after environmental stress. Bacillus subtilis	RMSD: 2.9 Identity:11.4%	A TONG	30, 31
2VEB_Chain A: Found in archae, role is not yet determined. Methanosarcina acetivorans. 1OJ6_Chain A: A neuroglobin found in human brain. Binds to oxygen. Homo sapiens.	RMSD: 2.9 Identity: 12.7%		32, 33

Critical Assessment of protein Structure Prediction

タンパク質構造予測精密評価(Critical Assessment of protein Structure Prediction、略称: CASP)は、1994年から2年ごとに行われているタンパク質構造予測のための世界的な実験である。

The champion Algorism in CASP13&14 (2018 &2020)

STRUCTURE SOLVER

DeepMind's AlphaFold 2 algorithm significantly outperformed other teams at the CASP14 proteinfolding contest — and its previous version's performance at the last CASP.

Demis Hassabis

*Subsidiary of Alphabet (google)

ブルフロッグ・プロダクションとライオンヘッド・スタジオでAIプログラマーとしてのキャリアを積んだのちにゲーム開発会社エリクサー・スタジオを設立。売却後、新しいAIアルゴリズムのインスピレーションを求めてロンドン大学で認知神経科学の研究を行い、優れた業績を納める。研究の合間に企業の準備を行い、2010年にDeepMind technologies を設立、CEOを務める。2014年にDeepMind社がGoogleに6億2500万ドルで買収され、エンジニアリング担当副社長になる。開発したプログラムAlphaGoで世界最高ランクの囲碁棋士である李世乭に5試合中4試合に勝利した。2018年には開発したAlphaFoldで蛋白質構造予測で世界トップを取得。2020年には改良を加えたAlphaFold2で予測精度の歴史を塗り替えた。

Nature 2021.08.26 (last week!)

Article

Highly accurate protein structure prediction with AlphaFold

https://doi.org/10.1038/s41586-021-03819-2			
Received: 11 May 2021			
Accepted: 12 July 2021			
Published online: 15 July 2021			
Open access			
Check for updates			

John Jumper^{1,4}, Richard Evans^{1,4}, Alexander Pritzel^{1,4}, Tim Green^{1,4}, Michael Figurnov^{1,4}, Olaf Ronneberger^{1,4}, Kathryn Tunyasuvunakool^{1,4}, Russ Bates^{1,4}, Augustin Židek^{1,4}, Anna Potapenko^{1,4}, Alex Bridgland^{1,4}, Clemens Meyer^{1,4}, Simon A. A. Kohl^{1,4}, Andrew J. Balkard^{1,4}, Andrew Cowie^{1,4}, Bernardino Romera-Paredes^{1,4}, Stanislav Nikolov^{1,4}, Rishub Jain^{1,4}, Jonas Adler¹, Trevor Back¹, Stig Petersen¹, David Reiman¹, Ellen Clancy¹, Michal Zielinski¹, Martin Steinegger^{2,3}, Michalina Pacholska¹, Tamas Berghammer¹, Sebastian Bodenstein¹, David Stever¹, Oliol Vinyals¹, Andrew W. Senior¹, Koray Kavukcuoglu¹, Pushmeet Kohl¹, & Demis Hassabis^{1,4,2}

Publish AlphaFold algorism

Article

Highly accurate protein structure prediction for the human proteome

https://doi.org/10.1038/s41586-021-03828-1		
Received: 11 May 2021		
Accepted: 16 July 2021	_	
Published online: 22 July 2021		
Open access	_	
Check for undates	_	

Kathryn Tunyasuvunakool^{1©}, Jonas Adler¹, Zachary Wu¹, Tim Green¹, Michal Zielinski¹, Augustin Žídek¹, Alex Bridgland¹, Andrew Cowie¹, Clemens Meyer¹, Agata Laydon¹, Sameer Velankar², Gerard J. Kleywegt², Alex Bateman², Richard Evans¹, Alexander Pritzel¹, Michael Figurnov¹, Olaf Ronneberger¹, Russ Bates¹, Simon A. A. Kohl¹, Anna Potapenko¹, Andrew J. Ballard¹, Bernardino Romera-Paredes¹, Stanislav Nikolov¹, Rishub Jain¹, Ellen Clancy¹, David Reiman¹, Stig Petersen¹, A grew w. semor, koray Kavukcuoglu¹, Ewan Birney², Pushmeet Kohli¹, John Jumper¹³ ² & Demis Hassabis^{13©}

Extend human proteome

Article

Highly accurate protein structure prediction with AlphaFold

https://doi.org/10.1038/s41586-021-03819-2

Received: 11 May 2021

Accepted: 12 July 2021

Published online: 15 July 2021

Open access

Check for updates

John Jumper^{1,4} E, Richard Evans^{1,4}, Alexander Pritzel^{1,4}, Tim Green^{1,4}, Michael Figurnov^{1,4}, Olaf Ronneberger^{1,4}, Kathryn Tunyasuvunakool^{1,4}, Russ Bates^{1,4}, Augustin Zidek^{1,4}, Anna Potapenko^{1,4}, Alex Bridgland^{1,5}, Clemens Meyer^{1,4}, Simon A. A. Kohl^{1,4}, Andrew J. Ballard^{1,5}, Andrew Cowie^{1,4}, Bernardino Romera-Paredes^{1,4}, Stanislav Nikolov^{1,4}, Rishub Jain^{1,4}, Jonas Adler¹, Trevor Back¹, Stig Petersen¹, David Reiman¹, Ellen Clancy¹, Michal Zielinski¹, Martin Steinegger^{2,3}, Michalina Pacholska¹, Tamas Berghammer¹, Sebastian Bodenstein¹, David Silver¹, Oriol Vinyals¹, Andrew W. Senior¹, Koray Kavukcuoglu¹, Pushmeet Kohli¹ & Demis Hassabis^{1,4}

based on the evolutionary, physical and geometric constraints

Recycling iteration 0, block 01 Secondary structure assigned from the final prediction

Recycling iteration 0, block 01 Secondary structure assigned from the final prediction

Article

Highly accurate protein structure prediction for the human proteome

https://doi.org/10.1038/s41586-021-03828-1

Received: 11 May 2021

Accepted: 16 July 2021

Published online: 22 July 2021

Open access

Check for updates

Kathryn Tunyasuvunakool¹⁵⁵, Jonas Adler¹, Zachary Wu¹, Tim Green¹, Michal Zielinski¹, Augustin Židek¹, Alex Bridgland¹, Andrew Cowie¹, Clemens Meyer¹, Agata Laydon¹, Sameer Velankar², Gerard J. Kleywegt², Alex Bateman², Richard Evans¹, Alexander Pritzel¹, Michael Figurnov¹, Olaf Ronneberger¹, Russ Bates¹, Simon A. A. Kohl¹, Anna Potapenko¹, Andrew J. Ballard¹, Bernardino Romera-Paredes¹, Stanislav Nikolov¹, Rishub Jain¹, Ellen Clancy¹, David Reiman¹, Stig Petersen¹, Andrew W. Senior¹, Koray Kavukcuoglu¹, Ewan Birney², Pushmeet Kohli¹, John Jumper¹³⁵⁵ & Demis Hassabis¹³⁵⁵

Problems

Complex structure

Unsolved human protein structures

Summary

2-5 years...

2-5 years...

Ligand (or drug) design

Evaluation of biological activity and safety

clinical trial

→min-hours!!

Ligand binding prediction and evaluation

Evaluation of biological activity and safety

clinical trial