Numéro d'inscription: 21898

Prédiction de la propagation d'une épidémie

* Voir annexe

Objectif : Prédire l'évolution du Covid-19 en Tunisie en ayant recours à deux différents modèles :

- un modèle épidémiologique : SIR
- un modèle statistique : ARIMA

Plan:

1. Première approche : modélisation SIR

Le modèle mathématique SIR est un modèle de compartiments utilisé en épidémiologie .

La population est divisée en 3 groupes :

S: les personnes susceptibles d'attraper la maladie

- •
- I : les personnes infectées
- R: les personnes rétablies

le modèle consiste en un système de 3 équations différentielles non linéaires d'ordre couple qui lient les 3 compartiments avec l'utilisation de deux constantes :

- α: taux de guérison
- β: taux de transmission

$$\begin{cases} \frac{\delta S(t)}{\delta t} = -\frac{\beta(t)}{N} S(t) I(t) \\ \frac{\delta I(t)}{\delta t} = \frac{\beta(t)}{N} S(t) I(t) - \alpha(t) I(t) \\ \frac{\delta R(t)}{\delta t} = \alpha(t) I(t) \end{cases}$$

Présentation de la base de données collectée sur le site de WHO

Annexe code 1

									evolution du nombre à marvidus infectes par jour
	SNo (ObservationDate Provin	ce/State Country/Region	n Last Update	Confirmed	Deaths	Recovered	160000 -	_
3417	3418	03/04/2020	NaN Tunisia	a 2020-03-04T01:33:07	1.0	0.0	0.0		
3586	3587	03/05/2020	NaN Tunisia	a 2020-03-04T01:33:07	1.0	0.0	0.0	140000 -	
3776	3777	03/06/2020	NaN Tunisia	2020-03-04T01:33:07	1.0	0.0	0.0	120000 -	
3992	3993	03/07/2020	NaN Tunisia	2020-03-04T01:33:07	1.0	0.0	0.0		
4194	4195	03/08/2020	NaN Tunisia	2020-03-08T21:13:10	2.0	0.0	0.0	100000 -	
4459	4460	03/09/2020	NaN Tunisi	a 2020-03-08T21:13:10	2.0	0.0	0.0	ğ 80000 -	
4699	4700	03/10/2020	NaN Tunisia	a 2020-03-10T05:13:07	5.0	0.0	0.0	ipdi	
4907	4908	03/11/2020	NaN Tunisi	2020-03-11T18:52:03	7.0	0.0	0.0	60000 -	
5130	5131	03/12/2020	NaN Tunisia	2020-03-11T18:52:03	7.0	0.0	0.0	40000 -	
5374	5375	03/13/2020	NaN Tunisia	a 2020-03-11T20:00:00	16.0	0.0	0.0		
								20000 -	<i>y</i> *
								0 -	
								L	0 100 200 300 400
									ioure

Pendant les 14 premiers jours :

La durée de l'infection étant fixée à 14 jours, le nombre de personnes rétablies pendant les 14 premiers jours n'évolue pas. δR

$$\begin{cases} \frac{\delta R}{\delta t} = \alpha I(t) \\ \frac{\delta I}{\delta t} = (\frac{\beta}{N} S(t) - \alpha) I(t) & \xrightarrow{\delta I} \frac{\delta I}{\delta t} = \beta I(t) \\ \frac{S(t)}{N} \approx 1 \end{cases}$$

La courbe du nombre d'infectés par jours a une allure exponentielle pendant les 14 premiers jours.

évolution du nombre d'individus infectés par jour

Choix des constantes:

- 1. $\alpha = \frac{1}{\gamma} \ avec \ \gamma \ la \ dur\'ee \ de \ l'infection$ ainsi, comme $\gamma \approx 14$, on suppose que $\alpha = 0.07$
- 2. On cherche β qui permet d'approcher exponentiellement le nuage de points pendant les 14 premiers jours

Méthode : Minimisation de la somme des carrés des résidus :

Soit Y la variable à expliquer et \hat{Y} la variable prédite . On pose $\varepsilon = Y - \hat{Y}$ le résidu .

La somme des carrés des résidus $SCR = \sum \varepsilon_i^2$. Elle mesure la distance de la courbe de la variable prédite aux points du nuage de points qui est minimale au sens des moindres carrés. On cherche à minimiser SCR pour retrouver une distance qui est minimale au sens des moindres carrés.

Première simulation pour α =0,07 et β =0,205 :

Réajustement des valeurs de α et β selon l'évolution journalière :

 \square Pour plus de précision on choisit de modifier les valeurs de α et β selon l'évolution

journalière de la pandémie.

 $\alpha(t), \beta(t)$

On suppose que $\alpha(t) = \alpha(t-1)$ et $\beta(t) = \beta(t-1)$

$$S(t) - S(t - 1) = -\frac{\beta(t)}{N}S(t) I(t)$$

$$I(t) - I(t - 1) = \frac{\beta(t)}{N}S(t)I(t) - \alpha(t)I(t)$$

$$R(t) - R(t - 1) = \alpha(t)I(t)$$

$$egin{cases} eta(t) = N rac{S(t-1) - S(t)}{I(t-1)S(t-1)} & ext{Annexe Code 3} \ lpha(t) = rac{R(t) - R(t-1)}{I(t)} & ext{Annexe Code 4} \end{cases}$$

Simulation des résultats du modèle SIR en actualisant les valeurs de α et β selon l'évolution journalière :

Comparaison des résultats de la modélisation SIR avec le cas réel :

- L'écart entre la modélisation épidémiologiste SIR et la courbe réelle est très grand.
- C'était prévisible puisqu'on n'a pas pris en considération l'effet des mesures sanitaires instaurées .

On choisit donc d'adopter une autre démarche : prédire la propagation du virus à l'aide d'un modèle statistique adapté aux séries temporelles : l'ARIMA puis comparer les résultats .

2. Deuxième approche : ARIMA

L' ARIMA est un modèle de prédiction de séries temporelles

Ce modèle est constitué de 3 paramètres :

p , d et q et chacune correspond à une des composantes du modèle .

- Dans le modèle auto-régressif d'ordre p AR(p), La modélisation de X_t se résume à une relation linéaire le liant aux p derniers instants : $\forall t$, $X(t) = \varepsilon_t + \sum_{i=1}^p \varphi_i X(t-i)$
- Dans le modèle de moyenne mobile d'ordre q MA(q), le processus est la combinaison linéaire de bruit blanc : $\forall t, X(t) = \varepsilon_t + \sum_{i=1}^q \theta_i \varepsilon_{t-i}$
- d : le nombre de fois qu'il faut différencier la série afin de la rendre stationnaire.

Notions de stationnarité et bruit blanc :

Pour appliquer l'ARIMA, le processus doit être stationnaire et le résidu doit être un bruit blanc .

Notion de stationnarité :

Un processus (Xt)t∈Z est (faiblement) stationnaire si son espérance et ses autocovariances sont invariantes par translation dans le temps .

Notion de bruit blanc :

Un résidu ε sans dépendance linéaire temporelle.

$$\begin{cases} \forall t, & E(\varepsilon(t)) = 0 \\ \forall t, & E(\varepsilon(t)^2) = \sigma^2 \\ \forall t, \forall t', & Cov(\varepsilon(t), \varepsilon(t')) = 0 \end{cases}$$

Effet de la transformation logarithmique

Calcul de variance :

$$V_k = \sqrt{\sum_{i=k}^{k+T} (x_i^2 - \widehat{x_i}^2)}$$


```
def somme_carre(ni,j,a):
    t=0
    for k in range(j,j+a):
        t+=ni[k]**2 -x[k]**2
    return(t)
```

```
def variance(ni,a,n):
    a=7
    x=moymob(ni,a,n)
    v=[]
    for k in range(n-a):
        t=math.sqrt(somme_carre(ni,k,a)/a)
        v.append(t)
    return(v)
```

Ayant une base avec une évolution journalière, j'ai décidé de faire une moyenne hebdomadaire

Appliquer le log

nilog=[math.log(ni[k]) for k in range (len(ni))]
xlog=moymob(nilog,a,n)

```
\label{eq:v_ni=variance} $$v_ni=variance(ni,a,n)$$ check_v_cte=[(v_ni[k+1]-v_ni[k])/v_ni[k]$$ for $k$ in $range(len(v_ni)-1)]|$$
```


Choix de la constante d :

On trace la courbe d'autocorrélation pour nilog

On différencie

La courbe d'autocorrélation diminue lentement.

#d=1
i=[nilog[k+1]-nilog[k] for k in range(len(nilog)-1)]

On trace la courbe d'autocorrélation pour i .

La courbe d'autocorrélation décroit rapidement vers 0 .

Choix des constantes p et q :

Traçage des courbes d'autocorrélation et d'autocorrélation partielle pour i .

Implémentation du modèle ARIMA (3,1,3):

- La courbe réelle décrit l'évolution du processus après la transformation logarithmique.
- La courbe simulée est le résultat du modèle ARIMA(3,1,3).
- Interprétation : Les 2 courbes sont presque confondues. Le modèle semble approprié . Il faut tester la blancheur du résidu .

Le résidu est-il un Bruit Blanc?

La statistique de Portemanteau Q :

soit

X(t) le processus stationnaire

S(t) le processus simulé

 $\varepsilon(t) = X(t) - S(t)$ le résidu

avec
$$\widehat{\rho}(h) = \frac{T-h}{T} \frac{\sum_{t=h+1}^{T} (\varepsilon_t - \overline{\varepsilon_T})(\varepsilon_{t-h} - \overline{\varepsilon_T})}{\sum_{t=1}^{T} (\varepsilon_t - \overline{\varepsilon_T})^2}$$

SI h
$$\ll T$$
; $\hat{\rho}(h) = \frac{\sum_{t=h+1}^{T} (\varepsilon_t - \overline{\varepsilon_T})(\varepsilon_{t-h} - \overline{\varepsilon_T})}{\sum_{t=1}^{T} (\varepsilon_t - \overline{\varepsilon_T})^2}$

Le résidu est-il un Bruit Blanc?

<u>La statistique de Portemanteau reste toujours dans l'intervalle ±5%</u> sauf pour quelques pics qui n'atteignent pas des valeurs très importantes.

Le résidu peut être considéré comme un bruit blanc

Prédiction grâce au modèle ARIMA(3,1,3):

Comparaison:

Malgré que le SIR est un modèle mathématique épidémiologiste, l'ARIMA s'avère dans le cas tunisien beaucoup plus efficace pour la prédiction de l'évolution du virus en Tunisie.

Annexe:

Code 1 :	<pre>import pandas as pd data=pd.read_csv(r'C:\Users\user\Downloads\covid_19_data.csv') print(data)</pre>									data1=data print(data	
		SNo Ob	servationDate	Prov	ince/Stat	te Country/Region	1 \		3417		
	0	1	01/22/2020		Anhı	, ,			3586		
	1	2	01/22/2020)	Beijir	ng Mainland China	9		3776		
	2	3	01/22/2020)	Chongqir	ng Mainland China	а		3992		
	3	4	01/22/2020)	Fujia	an Mainland China	9		4194		
	4	5	01/22/2020)	Gans	su Mainland China	а				
									281645	28	
	285302	285303	05/02/2021	Zaporiz	hia Oblas	st Ukrain	2		282409	28	
	285303	285304	05/02/2021		Zeelar	nd Netherland:	5		283173	28	
	285304	285305	05/02/2021	l	Zhejiar	ng Mainland China	9		283937	28	
	285305	285306	05/02/2021	Zhyto	myr Oblas	st Ukrain	2		284701	28	
	285306	285307	05/02/2021	. Zu	id-Hollar	nd Netherland	5				
		L	ast Update (onfirmed	Deaths	Recovered			3417	26	
	0	1/22/	2020 17:00	1.0	0.0	0.0			3586	26	
	1	1/22/	2020 17:00	14.0	0.0	0.0			3776	26	
	2	1/22/	2020 17:00	6.0	0.0	0.0			3992	26	
	3	1/22/	2020 17:00	1.0	0.0	0.0			4194	26	
	4	1/22/	2020 17:00	0.0	0.0	0.0					
									281645	26	
	285302	2021-05-0	3 04:20:39	96531.0	1919.0	78700.0			282409	26	
	285303	2021-05-0	3 04:20:39	26045.0	233.0	0.0			283173	26	
	285304	2021-05-0	3 04:20:39	1344.0	1.0	1322.0			283937	26	

285305 2021-05-03 04:20:39 84641.0 1597.0

285306 2021-05-03 04:20:39 359327.0 4138.0

	SNo Ob	servationDa	te Province	/State Co	untry/Region	
3417	3418	03/04/20	20	NaN	Tunisia	
3586	3587	03/05/20	20	NaN	Tunisia	
3776	3777	03/06/20	20	NaN	Tunisia	
3992	3993	03/07/20	20	NaN	Tunisia	
4194	4195	03/08/20	20	NaN	Tunisia	
281645	281646	04/28/20	21	NaN	Tunisia	
282409	282410	04/29/20	21	NaN	Tunisia	
283173	283174	04/30/20	21	NaN	Tunisia	
283937	283938	05/01/20	21	NaN	Tunisia	
284701	284702	05/02/20	21	NaN	Tunisia	
	L	ast Update	Confirmed	Deaths	Recovered	
3417	2020-03-0	4T01:33:07	1.0	0.0	0.0	
3586	2020-03-0	4T01:33:07	1.0	0.0	0.0	
3776	2020-03-0	4T01:33:07	1.0	0.0	0.0	
3992	2020-03-0	4T01:33:07	1.0	0.0	0.0	
4194	2020-03-0	8T21:13:10	2.0	0.0	0.0	
281645	2021-04-2	9 04:20:55	305313.0	10563.0	255870.0	
282409	2021-04-3	0 04:21:03	307215.0	10641.0	258190.0	
283173	2021-05-0	1 04:20:47	309119.0	10722.0	259957.0	
283937	2021-05-0	2 04:20:48	310734.0	10808.0	261552.0	
284701	2021-05-0	3 04:20:39	311743.0	10868.0	262602.0	

*lien de l'image:

https://ichef.bbci.co.uk/news/640/cpsprodpb/17700/production/_117500069_9db4 8266-1bb0-40c4-9c75-b6d2b06c30be.jpg

68529.0

Code 2:

0.20505050505050507

```
alpha=0.07
beta1=0.2
beta2=0.3
import math as m
def minscr(ni,I0,beta1,beta2,alpha):
    a=int(1/alpha)
    B=numpy.linspace(beta1,beta2,100)
    smin=0
    betamin=beta1
    for t in range(a):
        smin=smin+(ni[t]-I0*m.exp(beta2*t))**2
    for beta in B:
        s=0
        for t in range(a):
            s=s+(ni[t]-I0*m.exp(beta*t))**2
        if s<smin :</pre>
            smin=s
            betamin=beta
    return(betamin)
betamin=minscr(ni,I0,beta1,beta2,alpha)
print(betamin)
```

Code 3:

```
def guess_beta(s,i,r,k,alpha,beta):
    c=N(s[k-1]-s[k])/(s[k-1]*i[k-1])
    if c==0:
        return(beta)
    else :
        return(c)
```

Code 4:

```
def guess_alpha(s,i,r,k,alpha,beta):
    c=(r[k]-r[k-1])/i[k-1]
    if c==0:
        return(alpha)
    else :
        return(c)
```

Code 5

```
tsaplots.plot_acf(nilog, lags=15)
plt.axhline(y=1.96/7, linestyle='-', color='gray')
plt.axhline(y=-1.96/7, linestyle='-', color='gray')
plt.show()
tsaplots.plot_acf(i,lags=400)
plt.axhline(y=1.96/7, linestyle='-', color='gray')
plt.axhline(y=-1.96/7, linestyle='-', color='gray')
plt.show()
```

Code 6

```
tsaplots.plot_acf(i,lags=20)
plt.axhline(y=1.96/7, linestyle='-', color='gray')
plt.axhline(y=-1.96/7, linestyle='-', color='gray')
plt.show()
tsaplots.plot_pacf(i,lags=20)
plt.axhline(y=1.96/7, linestyle='-', color='gray')
plt.axhline(y=-1.96/7, linestyle='-', color='gray')
plt.show()
```

Code 7

```
model = ARIMA(nilog, order=(3,1,3) )
results0 = model.fit(disp=-1)
plt.figure(figsize=(9,5))
plt.plot(i,label="courbe réelle")
plt.plot(results0.fittedvalues, color='red',label="courbe simulée")
plt.xlabel("jours")
plt.ylabel("individus en log ")
plt.legend()
plt.title("Simulation à l'aide du modèle ARIMA(3,1,3)")
plt.show()
```

Code 8

```
def moy(x):
    s=0
    for i in range(len(x)):
        s+=x[i]
    return(s/len(x))
def stat Portmanteau(x,k):
    X=moy(x)
    s1=0
    for i in range(k+1,len(x)):
        s1+=(x[i]-X)*(x[i-k]-X)
    s2=0
    for i in range(len(x)):
        s2+=(x[i]-X)**2
    return(s1/s2)
Q=[stat Portmanteau(r,k) for k in range(len(r))]
plt.title('Test de blancheur')
plt.xlabel('jours')
plt.ylabel("la statistique de Portmanteau ")
plt.axhline(y=0.05, linestyle='-', color='gray')
plt.axhline(y=-0.05, linestyle='-', color='gray')
plt.plot(Q[10:])
plt.show()
```

Code 9

```
result_diff=[]
result_diff.append(results.fittedvalues[0])
for k in range(1,len(results.fittedvalues)):
    result_diff.append(results.fittedvalues[k-1]+result_diff[k-1])
r=[math.exp(result_diff[k]) for k in range(len(result_diff))]
ni1=[N*ni[k] for k in range(len(ni))]

plt.figure(figsize=(15,7))
plt.plot(r,'g',label='simulation ARIMA(3,1,3)')
plt.plot(ni1,label="nombre d'infectés réel")
plt.xlabel('jours')
plt.ylabel("indivdus infectés")
plt.legend()
plt.title("prédiction du nombre d'inféctés à l'aide du modèle ARIMA(3,1,3)")
plt.show()
```

i1: d'après le document [4], on sait que la constante β serait dans cet intervalle.

plt.savefig('simulation arima')