

Cálculo y Métodos Numéricos

Práctica Incremental

Método relativo de navegación de satélites

2021/2022

José Luis Espinosa Aranda Ricardo García Ródenas María Luz López García

A tener en cuenta

- La realización de la práctica es individual
- 2,5 puntos del global de la asignatura
- No es necesario realizar todos los hitos
- Se tendrán en cuenta la claridad del código y los comentarios incluidos en éste
- Se utilizará un programa de detección de copia.
 COPIA = suspenso en la asignatura tanto en la convocatoria ordinaria como extraordinaria
- Fecha límite de entrega: Hasta el 8 de enero, en CampusVirtual
- Obligatoria y recuperable: Mínimo de 4 sobre 10

Descripción del problema: explorando el espacio

Descripción del problema: aterrizar en un satélite

Descripción del problema: aterrizar en un satélite

Descripción del problema: localización de la posición relativa

Descripción del problema: localización de la posición relativa

Imagen para la búsqueda

Imagen de referencia

Descripción del problema: representación de una imagen en escala de grises

Hito 1: Descriptor de características

- Se utilizan para describir de forma objetiva el contenido de una imagen
- Si dos imágenes son similares, los descriptores deben ser similares
- Histograma de Gradientes Orientados (HOG.m)

Greg Borenstein

Hito 1: Descriptor de características

Histograma de Gradientes Orientados (HOG.m)

descriptor = [0.15, 0.51, 0.25, 0.83, 0.25, 0.53, 0.23, 0.31]

Hito 1: Comparar dos imágenes

imread("referenciaHito1.jpg")

-----> HOG ----> descriptor1 = [0.268, 0.171,]

imread("imagen1Hito1.jpg")

-----> HOG ----> descriptor2 = [0.246, 0.130,]

Hito 1: Comparar dos imágenes, distancia del coseno

descriptor1 = [0.268, 0.171,] (A)

descriptor2 = [0.246, 0.130,] (B)

Similar coseno del ángulo cercano a 1 No relacionados coseno del ángulo cercano a 0 <u>Contrarios</u> coseno del ángulo cercano a -1

Hito 1: Comparar dos imágenes, distancia del coseno

$$\mathbf{A} \cdot \mathbf{B} = \|\mathbf{A}\| \|\mathbf{B}\| \cos(\theta)$$

$$\cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}},$$

$$d_{AB} = 1 - \cos(\theta)$$

Hito 1: Se pide

- Cargar la imagen de referencia y las 4 imágenes con las que comparar. Mostrarlas todas en una misma figura utilizando la función imshow
- Calcular los descriptores HOG de todas las imágenes y representarlos gráficamente en una misma figura
- Implementar la función de similitud del coseno y utilizarla para indicar cuál de las imágenes es más parecida a la de referencia

Localización de la zona de interés mediante la generación de un mosaico

Hito 2: Mosaico

Hito 2: Mosaico

Imagen de búsqueda

Imagen de referencia

Objetivo:

Localizar automáticamente la posición que más se asemeje a la imagen de referencia

1000

Hito 2: Mosaico

1000

Como extraer submatriz (1,1):

imagen(1:200,1:200)

Hito 2: Se pide

- Cargar la imagen de referencia y la imagen del asteroide
- Crear una imagen temporal (solo para este subapartado) en la que se sustituya una parte de la imagen del asteroide por la imagen de referencia la comenzando por el vértice superior izquierdo, mostrándola por pantalla
- Utilizando el tamaño de la imagen de referencia, crear el mosaico de la imagen del asteroide
- Aplicar la función de distancia para localizar la posición con mayor similitud a la imagen de referencia y mostrarla por pantalla

Localización fina de la zona de interés mediante ventana deslizante configurable

Hito 3: Ventana deslizante

- El mosaico puede no recortar una imagen que se aproxime a la imagen de referencia
- Podemos definir dos variables:

- SaltoX (eje X)
- SaltoY (eje Y)

• Permite superponer elementos entre particiones diferentes

Hito 3: Ventana deslizante

Hito 3: Ventana deslizante

Imagen de búsqueda

3000

Imagen de referencia

Objetivo:

Localizar automáticamente la posición que más se asemeje a la imagen de referencia

Aviso: Usando el mosaico se seleccionaría una imagen incorrecta

Hito 3: Se pide

- Cargar la imagen de referencia y la imagen del asteroide
- Implementar el algoritmo de ventana deslizante, incluyendo los parámetros saltoX y saltoY. Si la ventana sobrepasa el límite de la imagen del asteroide, se descartará esa partición
- Localizar la posición con mayor similitud a la imagen de referencia y mostrarla por pantalla, utilizando los siguientes valores:

saltoX=100

saltoY=120

 Nota: tened en cuenta que el algoritmo completo puede tardar unos segundos

