Übungszettel #4

Aufgabe	Punkte
1	
2	
3	
Gesamt	

Aufgabe 1

- (a) $f_1({3,4,5,6}) = {9,16,25,36}$
- (b) $f_2({3,4,5,6}) = {4,9}$
- (c) $f_3(\{30,\cdots,50\}) = \{6,7\}$
- (d) $f_4({30,\cdots,50}) = {26,\cdots,49}$
- (e) (f_1) **injektiv**, da die Wertemenge schneller wächst als Definitionsmenge. Deswegen gibt es für jedes x aus der Wertemenge auf jeden fall nur ein y aus Definitionsmenge. **Nicht surjektiv**, da es y gibt s.d. kein x zugeordnet ist. $\Rightarrow y = 2$
 - (f_2) Nicht injektiv, man wähle $x_1 = 2, x_2 = 3$ es gilt das $x_1 \neq x_2$ aber f(2) = 4 = f(3)Nicht surjektiv, da es y gibt s.d. kein x zugeordnet ist. $\Rightarrow y = 2$
 - (f_3) injektiv und surjektiv da die Funktion genau alle werte aus Q trifft.
 - (f_4) Nicht injectiv, man wähle $x_1 = 2, x_2 = 3$ es gilt das $x_1 \neq x_2$ aber f(2) = 4 = f(3) surjektiv im gegensatz zu (f_2) identisch aber die menge hat nur quadratzahlen also gibt es kein y was nicht einem x zugeordnet ist.

Aufgabe 2

(a) (i)
$$A_0 = \{2\}$$

 $\Rightarrow q^{-1}(q(2)) = q^{-1}(4) = \{2, 3, 4\}$
 $\{2\} \neq \{2, 3, 4\}$

(ii)
$$A'_0 = \{1\}$$

 $\Rightarrow q^{-1}(q(1)) = q^{-1}(1) = 1$
 $\{1\} = \{1\}$

(iii)
$$B_0 = ?$$

 $\Rightarrow q(q^{-1}(B_0))$

(iv)
$$B'_0 = \{4\}$$

 $\Rightarrow q(q^{-1}(4)) = q(\{2, 3, 4\}) = 4$

(b)

Aufgabe 3