Customer Churn Prediction Using Machine Learning

Individual Assignment #1 | Kaylyn Nguyen

Introduction

ሗ ‹

25

- **Goal:** Build predictive models to identify customers likely to churn.
- **Tools:** Python, Google Colab, scikit-learn, seaborn, matplotlib
- Dataset: Bank Churn Modeling (Kaggle)

Detail Compact Column												14 of 14 columns	
RowNumber	F	CustomerId	F	∆ Surname	F	# CreditScore	=	□ Geography	=	∆ Gender	=	# Age	
				2932 unique values						Male Female	55% 45%		
1	0000	15.6m	15.8m			350	850					18	
		15634602		Hargrave		619		France		Female		42	
		15647311		Hill		608		Spain		Female		41	
		15619304		Onio		502		France		Female		42	
		15701354		Boni		699		France		Female		39	
		15737888		Mitchell		850		Spain		Female		43	
		15574012		Chu		645		Spain		Male		44	
		15592531		Bartlett		822		France		Male		50	
		15656148		Obinna		376		Germany		Female		29	
		15792365		Не		501		France		Male		44	
0		15592389		H?		684		France		Male		27	
I		15767821		Bearce		528		France		Male		31	
2		15737173		Andrews		497		Spain		Male		24	
3		15632264		Kay		476		France		Female		34	

Churn Modelling.csv (684.86 kB)

15691483

Business Questions

01

How can the bank predict customer churn before it happens?

02

Which customers are most likely to leave the bank?

03

How can we use ML models to help target retention efforts?

Target variable:

Exited (1 = churned, 0 = stayed)

• Key findings:

- Churn rate ~20%
- Higher churn in Germany
- Churn increases with age
- Less active members more likely to churn
- Females have a higher churn rate

- Applied 3 models: Logistic Regression, SVM, Random Forest
- Evaluated using Confusion Matrix, Precision, Recall, ROC AUC

Model Performance Overview:

- Random Forest:
 - Highest accuracy: 87%
 - o ROC AUC: 0.86
 - Recall: 48% (captures nearly half of churners)
- Logistic Regression:
 - Accuracy: 81%
 - Recall: 20%
 - Missed churners: 468 (high risk of revenue loss due to false negatives)
- Support Vector Machine (SVM):
 - Accuracy: 86%
 - Recall: 38% (misses 62% of churners)
 - Lower false positives compared to Random Forest

Takeaway:

- Prioritizing detection of churners is crucial for customer retention strategies.
- Random Forest is the optimal choice due to its ability to identify more at-risk customers, despite having 81 false positives.

Business Action

01

Built machine learning models (especially Random Forest) to predict which customers are at high risk of churning, based on their behavior and attributes (age, geography, activity, etc.).

02

Used feature importance + EDA to identify high-risk groups (e.g., older customers, less active members, those from Germany).

03

Used model predictions to flag high-risk customers, segment customers for retention campaigns, reach out via personalized offers or loyalty incentives

Business Outcome

01

The Random Forest model correctly identified ~48% of churners, meaning the bank now has a tool to catch nearly half of the potential leavers before it happens.

02

By acting on model predictions, the bank can focus marketing efforts, reduce churn-related revenue loss, and improve customer lifetime value—instead of spending resources on customers unlikely to churn.

Key Takeaways & Next Steps

- Key Takeaways:
 - Predictive modeling is effective for churn detection
 - Random Forest = best model for balancing accuracy and recall
- **Next:** Deploy model for real-time churn alerts

Thank You

