# **Inspira Crea Transforma**



### Sustentación taller final

# Manuela Guarnizo Sepulveda, Gregorio Pérez Bernal, Luisa Toro Villegas

Universidad EAFIT Escuela de Ciencias Departamento de Ciencias Matemáticas Ingeniería Matemática



#### Contenido

Adams Bashforth

**Adams Moulton** 

PVI

Condición de CFL

PVF ecuación de onda

#### **Generalidades Adams Bashforth**

- ► Método multipasos (3 pasos)
- ▶ Método explícito
- ► Orden del error  $O(h^3)$
- ► Esquema discreto:

$$Y_{j+1} = Y_j + h(\frac{5}{12}Y_{j-2} - \frac{4}{3}Y_{j-1} + \frac{23}{12}Y_j)$$

Es consistente



#### **Generalidades Adams Bashforth**

▶ Tiene el siguiente polinomio de estabilidad

$$P(\zeta) = \zeta^3 - \zeta^2 - h\lambda(\frac{5}{12} - \frac{4}{3}\zeta + \frac{23}{12}\zeta^2) = 0$$

Es estable en la siguiente región:



Figura: Región de estabilidad para Adams Bashforth 3 pasos

#### **Proceso Adams Bashforth**

Para deducir el método de tres pasos de Adams-Bashforth, se plantea el PVI más generico posible.

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases} \tag{1}$$

#### **Generalidades Adams Moulton**

- ► Método multipasos (4 pasos)
- ▶ Método implícito
- ▶ Orden del error  $O(h^5)$
- Esquema discreto:

$$Y_{j+1} = Y_j + \frac{h}{720} (-19Y_{j-3} + 106Y_{j-2} - 264Y_{j-1} + 646Y_j + 251Y_{j+1})$$

Es consistente



#### **Generalidades Adams Moulton**

► Tiene el siguiente polinomio de estabilidad:

$$P(\zeta) = \zeta^4 - \zeta^3 - \frac{h\lambda}{720} (-19Y + 106\zeta - 264\zeta^2 + 646\zeta^3 + 251\zeta^4)$$
$$= 0, \lambda \in \mathbb{C}$$

#### **Generalidades Adams Moulton**

► Es estable en la siguiente región:



Figura: Región de estabilidad para Adams Moulton 4 pasos

#### Problema de valor inicial

Considere el siguiente PVI:

$$\begin{cases} y_1' = 9y_1 + 24y_2 + 5\cos t - \frac{1}{3}\sin t & t \in [0, 1] \\ y_2' = -24y_1 - 51y_2 - 95\cos t + \frac{1}{3}\sin t & t \in [0, 1] \\ y_1(0) = \frac{4}{3}, & y_2(0) = \frac{2}{3} \end{cases}$$

con la siguiente solución:

$$y_1(t) = 2e^{-3t} - e^{-39t} + \frac{1}{3}\cos t$$
$$y_2(t) = -e^{-3t} + 2e^{-39t} - \frac{1}{3}\cos t$$

## Aproximaciones con Euler explícito



Figura: Aproximación y solución exacta del PVI usando Euler explícito



## Aproximaciones con Euler implícito





Figura: Aproximación y solución exacta del PVI usando Euler implícito

## **Aproximaciones con Crank Nicolson**



Figura: Aproximación y solución exacta del PVI usando Crank Nicolson



## **Aproximaciones con Runge-Kutta-Fehlberg**





Figura: Aproximación y solución exacta del PVI usando Runge-Kutta-Fehlberg 45 de quinto orden



## **Aproximaciones con Adams Bashforth**



Figura: Aproximación y solución exacta del PVI usando Adams Bashforth de tres pasos



#### **PVF**

Considere el PVF

$$\epsilon u'' - u' = -1, 0 < x < 1$$
  
 $u(0) = 1, \quad u(1) = 3$ 

con solución dada por

$$u(x) = 1 + x + \frac{e^{\frac{\lambda}{\epsilon}} - 1}{e^{\frac{1}{\epsilon}} - 1}$$

Se usa el siguiente esquema para las diferencias centradas:

$$U'_{j} = \frac{U_{j+1} - U_{j-1}}{2 * h} + O(h^{2}), U''_{j} = \frac{U_{j+1} - 2 * U_{j} + U_{j-1}}{h^{2}} + O(h^{2})$$

# ¿Por qué un PVF?

Como se tiene una ecuación diferencial de segundo orden, con 0 < x < 1, y se tienen los valores (las condiciones) en las fronteras.

# ¿Cómo se llega al esquema?

$$u'' - \frac{1}{\epsilon}u' = -\frac{1}{\epsilon}$$
;  $\epsilon \neq 0$ 

Se reemplaza y se factoriza

$$(1 - \frac{h}{2\epsilon})U_{j+1} - 2U_j + (1 + \frac{h}{2\epsilon})U_{j-1} = -\frac{h^2}{\epsilon}; \epsilon \neq 0$$

Se evalua en j = 1 y j = n - 1

# ¿Cómo se llega al esquema?

Así se tiene el siguiente sistema de n-1 ecuaciones y n-1 incognitas:

$$I_{j,j-1} = (1 + \frac{h}{2\epsilon}), I_{j,j} = -2, I_{j,j+1} = (1 - \frac{h}{2\epsilon})$$



# Esquema para el PVF

$$\begin{pmatrix} -2 & (1 - \frac{h}{2\epsilon}) \\ (1 + \frac{h}{2\epsilon}) & -2 & (1 - \frac{h}{2\epsilon}) \\ & (1 + \frac{h}{2\epsilon}) & -2 & (1 - \frac{h}{2\epsilon}) \\ & & \ddots & \ddots & \ddots \\ & & (1 + \frac{h}{2\epsilon}) & -2 & (1 - \frac{h}{2\epsilon}) \\ & & & (1 + \frac{h}{2\epsilon}) & -2 & (1 - \frac{h}{2\epsilon}) \\ & & & & (1 + \frac{h}{2\epsilon}) & -2 \end{pmatrix} \begin{pmatrix} U_1 \\ U_2 \\ \vdots \\ U_{n-2} \\ U_{n-1} \end{pmatrix}$$

$$= \begin{pmatrix} -\frac{h^2}{\epsilon} - (1 + \frac{h}{2\epsilon}) \\ & \vdots \\ & -\frac{h^2}{\epsilon} \\ & h^2 & 2(1 - \frac{h}{\epsilon}) \end{pmatrix}$$

#### **Errores**

$$E_h := \left(\int_0^1 |u(x) - U_h(x)|^2 dx\right)^{\frac{1}{2}}$$

Se utiliza el polinomio interpolante de Lagrange para encontrar a traves de los puntos aproximados una funcion de aproximación, para asi encontrar despues el Error.

Se observa que mientras más pequeño sea  $\epsilon$  hay más errores porque se trata con divisiones de números muy pequeñosy eso lleva al overflow, hay muchos errores.

## Orden de convergencia experimental

$$\alpha_{j}^{h} = \frac{\ln \frac{E_{j+1}^{h}}{E_{j}^{h}}}{\ln \frac{h_{j+1}}{h_{i}}}, j = 1, ..., n-1$$

### Condición de CFL

El método de diferencias finitas aplicado a la ecuación de onda con velocidad c > 0 es estable si  $\sigma = ck/h \le 1$ .

#### PVF ecuación de onda

$$\begin{cases} u_{tt} = 16u_{xx} \\ u(x,0) = \sin \pi x \text{ for } 0 \le x \le 1 \\ u_t(x,0) = 0 \text{ for } 0 \le x \le 1 \\ u(0,t) = 0 \text{ for } 0 \le t \le 1 \\ u(1,t) = 0 \text{ for } 0 \le t \le 1 \end{cases}$$

Como  $u(x,t) = sin(\pi)cos(4\pi t)$ 



# **Aproximaciones con diferencias finitas**



Figura: Aproximaciones con diferencias finitas

