

SVGA050 Series Low-Power AMOLED Microdisplay

Datasheet

V1.2

SVGA050SC

SVGA050SW

SVGA050SG

For Products:

SVGA050SCV1R1 — **Full Color**

SVGA050SWV1R1 -Monochrome White

SVGA050SGV1R1 -Monochrome Green

Yunnan North OLiGHTEK Opto-Electronic Technology Co., LTD April 14, 2020

Record of Revision

Version	Revise Date	Page	Content
Pre-spec. V0.1	2011-10-13		Initial release.
V1.0	2013-05-21		Update to official version
V1.1	2014-01-27		Added19H register description,added temperature sensor description
V1.2	2020-04-14		Revise some description.

Contents

1.	FEA	TURES	1
2.	GEN	VERAL DESCRIPTION	
	2.1.	SVGA050SV1R1 Microdisplay	
	2.2.	Functional Overview	
	2.3.	Pixel Array	
	2.4.	Interface	
		Pin Assignment.	
		Pin Definition	
		. Video Formats	
	2.7.5	Timing Characteristics.	
	2.6.	Electrical Characteristics	
	-	Recommended Operation Ratings	
		DC Characteristics	
		AC Characteristics	
3.		AC Characteristics	
٦.			
	3.1.	Digital Video Interface	
	3.1.1	1	
	3.1.2	0	
	3.1.3		
	3.1.4		
	3.1.5		
	3.1.6		
	3.2.	3D Video Display	
	3.3.	Power Supply & Reset	
	3.3.1	1	
	3.3.2	1	
	3.4.	DC/DC Converter	
	3.5.	Temperature Sensor	
	3.6.	Two-wire Serial Interface	
	3.6.1	I = G	
	3.6.2	σ	
4.		SISTER DESCRIPTION	
	4.1.	Summary of Registers	
	4.2.	Detailed Information of Register	
		. Video Related Registers	
	4.2.2		
	4.2.3		
	4.2.4	1 0	
	4.2.5	30 G	
	4.2.6	0	
	4.3.	Register Setting Example	
5.	OPT	TICAL CHARACTERISTICS	32
	5.1.	Brightness and Contrast Properties	32
	5.1.1	Brightness	32
	5.1.2	. Contrast	32
	5.2.	Spectrum Characteristics	
	5.3.	Luminance Characteristic with Temperature	
	5.4.	Power Consumption Characteristic with Luminance	
6.		CHANICAL CHARACTERISTICS	
7.		DUCTS CLEANING, HANDLING AND STORAGE	
٠.	7.1.	Cleaning	
	1.1.	General Handling Considerations	
	1.1.	Static Charge Prevention	
	1.4.	Static Charge I revention	30

1.3. Storage	36
1.3.1. Short Term Storage	
1.3.2. Long Term Storage	
APPENDIX	
List of Figures	
List of Tables	

1. FEATURES

- Si-Base AMOLED Microdisplay
 - 0.18μm CMOS Technology
 - Full Digital Video Core
 - High Efficiency Top Emission
 Structure
 - Active Driver Technology
 - Low Power Consumption
- 800×600 (SVGA) Resolution
 - View Area: 0.5 inch
 - Pixel Pitch: 12.6µm
 - Total Pixels : $804 \times 3 \times 604$
- Digital Video Interface
 - Compatible with ITU-R BT.656/601
 - Accept 8/16/24 Bit Digital Video
 - Accept YCbCr/RGB Color or Mono
 - Support Progressive & Interlaced

- Digital Video Signal Enhancement
 - Brightness
 - Contrast
 - R/G/B Offset
- Gamma Correction
 - Piecewise Linear by 17 Entry LUTs
 - Expand 8bit Input to 9bit Output
- Digital 8 Bit Input/9bit Output Gray Level
- Support Binocular Stereovision
- Horizontal/Vertical Mirror
- Shift and Position Control
- Embed Temperature Sensor
- Integrate Vcom DC-DC Module
- Built-in Test Patterns
- 2-Wire Series Interface

SVGA	<u>050</u>	<u>S</u>	<u>C</u>	<u>V1</u>	<u>R1</u>
\bigcirc	2	(3)	(4)	(5)	(6)

①Type				
SVGA 800×600				
SXGA	1280×1024			

③Temperature			
S	Standard: -40°C ~+60°C		
N	Normal: $-10^{\circ}\text{C} \sim +40^{\circ}\text{C}$		

⑤Connector				
V1	Board to board			
V2	FPC			

②Size				
050 0.5 inch				
060	0.6 inch			

4 Color			
C	Full Color		
W	Mono White		
G	Mono Green		

	© Revision			
R1 Revision No.				

2. GENERAL DESCRIPTION

2.1. SVGA050SV1R1 Microdisplay

Product Type		SVGA050SCV1R1	SVGA050SWV1R1	SVGA050SGV1R1		
Resolution		804 (×3) × 604				
Active pixels			804 (×3) × 604			
Pixel Asp	ect Ratio		1:1			
Color Pixel A	Arrangement		RGB Vertical Strip	oe e		
Gray	Levels		8bits/256Levels			
Luminance	Uniformity		> 90%			
Con	trast		> 10000:1			
Digital Video Interface		ITU-R BT.601/656 24-bit 4:4:4 RGB/YCbCr 16-bit 4:2:2 YCbCr 8-bit 4:2:2 YCbCr/Mono				
Operating	Standard	-40°C ∼ +65°C				
Temperature	Normal	-10°C ∼ +40°C				
Chromoticity	White	CIEx=0.30±0.05, CIEy=0.35±0.05				
Chromaticity	Green	CIEx=0.30±0.05, CIEy=0.63±0.05				
Operating	Humidity	≤85%RH (Non condensing)				
Pixel Si	ze(μm²)	12.6 × 12.6				
Viewing A	Area(mm²)	10.13 × 7.61				
Mechanical E	nvelope(mm³)	22 × 17 × 4.6				
Typical Luminance(Cd/m²)		70	100	500		
Typical Power Consumption(mW) ^①		120 100 200				
Power	Digital core	DC 1.8V @ Max50mA				
Supply	OLED array	DC 5.0V@Max200mA				
Weight(g)		≤ 2				

Note(1): Measuring method refer to section 2.6.2

2.2. Functional Overview

2.3. Pixel Array

Figure 2-1 Pixel and Sub-Pixel Array

Each pixel of OLiGHTEK's SVGA050 series AMOLED microdisplay is formed by three sub-pixels (Figure 2-1). The pixel's related parameters are shown below:

Model	Pixel Size		Duty	View Area	
Model	Width(W)	Height(H)	Cycle	Width (804×W)	Height (604×H)
SVGA050	12.6μm	12.6µm	70%	10.13mm	7.61mm

2.4. Interface

2.4.1. Pin Assignment

Part number of the connector: Hirose DF12D(3.0)-40DP-0.5 (0.5mm pitch 40 ways).

Pin1 Mark

2.4.2. Pin Definition

Pin	Symbol	I/O	Function	Remark	Pin	Symbol	I/O	Function	Remark
1	V1.8	P	1.8V Power Supply		2	V5.0	P	5V Power Supply	
3	V1.8	P	1.8V Power Supply		4	V5.0	P	5V Power Supply	
5	GND	P	Power groung		6	GND	P	Power groung	
7	SCL	I	Serial port clock line	Pull-up to 1.8V	8	Reset	I	Master reset, active low	Can not float
9	3D	I	3D L/R Signal input		10	Addr0	I	Seiral port Address A0	Pull-up to 1.8V
11	Hs	I	Hsync Signal input		12	SDA	I/O	Serial port data line	Pull-up to 1.8V
13	R6	I	Video Data Input R[6]		14	Vs	I	Hsync Signal input	
15	R4	I	Video Data Input R[4]		16	R7	I	Video Data Input R[7]_MSB	
17	R2	I	Video Data Input R[2]		18	R5	Ι	Video Data Input R[5]	
19	R0	I	Video Data Input R[0]_LSB		20	R3	I	Video Data Input R[3]	
21	DE	I	Data enable signal input		22	R1	I	Video Data Input R[1]	
23	GND	P	Power groung		24	VCLK	I	Pixel clock input	
25	G6	I	Video Data Input G[6]		26	G7	I	Video Data Input G[7]_MSB	
27	G4	I	Video Data Input G[4]		28	G5	I	Video Data Input G[5]	
29	G2	I	Video Data Input G[2]		30	G3	I	Video Data Input G[3]	
31	G0	I	Video Data Input G[0]_LSB		32	G1	I	Video Data Input G[1]	
33	В6	I	Video Data Input B[6]		34	В7	I	Video Data Input B[7]_MSB	
35	B4	Ι	Video Data Input B[4]		36	36 B5 I Video Data Input B[5]			
37	B2	I	Video Data Input B[2]		38	В3	B3 I Video Data Input B[3]		
39	В0	I	Video Data Input B[0]_LSB		40	B1	Ι	Video Data Input B[1]	

2.4.3. Video Formats

Video Data Formate	Color Space	R[7:0]	G[7:0]	B[7:0]
8-bit, 4:2:2	YCbCr	-	YCbCr[7:0]	
8-bit, Mono	Y		Y[7:0]	
16-bit, 4:2:2	YCbCr		Y[7:0]	CbCr[7:0]
24-bit, 4:4:4	YCbCr	Cr[7:0]	Y[7:0]	Cb[7:0]
24-bit, 4:4:4	RGB	R[7:0]	G[7:0]	B[7:0]

2.5. Timing Characteristics

Figure 2-2 Input Sync Signals Timing (For All Formats)

Table 2-1 SVGA Video Timing Characateristics

I4a	Cymphol		Values	i	Unit	Domonik
Item	Symbol	Min.	Тур.	Max.	Unit	Remark
Clock Frequency	f_{CLK}		40		MHz	SVGA@60Hz frame rate
HSYNC Period	t_{HP}	660			tclk	
HSYNC Pulse Width	$t_{ m HW}$	10			$t_{\rm CLK}$	
HSYNC Back Porch	$t_{ m HBP}$	10			tclk	
Horizontal Valid data width	t _{HV}	296		804	tclk	
HSYNC Front Porch	$t_{ m HFP}$	60			$t_{\rm CLK}$	$t_{\rm HV} >= 580$
Horizontal Blank	t _{HBK}	80			tclk	
VSYNC Period	t_{VP}	106			t _{HP}	
VSYNC Pulse Width	t∨w	1			t _{HP}	
VSYNC Back Porch	$t_{ m VBP}$	7			t _{HP}	
Vertical valid data width	$t_{ m W}$	96		604	t_{HP}	
Vertical Front Porch	tvfp	2			t _{HP}	
Vertical Blank	tvbk	10			t _{HP}	

Figure 2-3 24-bit 4:4:4 RGB Input VideoTiming

Figure 2-4 24-bit 4:4:4 YCbCr Input Video Timing

Figure 2-5 16-bit 4:2:2 YCbCr Input Video Timing

Figure 2-6 8-bit Mono Input Video Timing

Figure 2-7 8-bit 4:2:2 YCbCr input Video timing

Table 2-2 VESA Progressive Video Timing Specifications

Mode		Frequency	Total	Active	Front Porch + Border	Sync Pulse	Back Porch + Border
GY1G 1 00071600	Н	53.674 KHz	1048 pixels	800 pixels	32 pixels	64 pixels	152 pixels
SVGA 800X600 85Hz non-interlaced	V	85.061 Hz	631 lines	600 lines	1 line	3 lines	27 lines
8311Z Holl-Iliteriaced	P	56.250 MHz					
GLIG L OOOLIGOO	Н	46.875 KHz	1056 pixels	800 pixels	16 pixels	80 pixels	160 pixels
SVGA 800X600 75Hz non-interlaced	V	75.000 Hz	625 lines	600 lines	1 line	3 lines	21 lines
/311Z non-interfaced	P	49.500 MHz					
GLIG L OOOLIGO	Н	48.077 KHz	1040 pixels	800 pixels	56 pixels	120 pixels	64 pixels
SVGA 800X600 72Hz non-interlaced	V	72.188 Hz	666 lines	600 lines	37 line	6 lines	23 lines
/2112 non-interfaced	P	50.000 MHz					
GY1G 1 00071600	Н	37.879 KHz	1056 pixels	800 pixels	40 pixels	128 pixels	88 pixels
SVGA 800X600 60Hz non-interlaced	V	60.317 Hz	628 lines	600 lines	1 line	4 lines	23 lines
00112 non-interfaced	P	40.000 MHz					
77.0 1 (1077.100	Н	43.269 KHz	832 pixels	640 pixels	56 pixels	56 pixels	80 pixels
VGA 640X480 85Hz non-interlaced	V	85.008 Hz	509 lines	480 lines	1 line	3 lines	25 lines
03112 Holl-Interfaced	P	36.000 MHz					
77.01. (4077.400	Н	37.500 KHz	840 pixels	640 pixels	16 pixels	64 pixels	120 pixels
VGA 640X480 75Hz non-interlaced	V	75.000 Hz	500 lines	480 lines	1 line	3 lines	16 lines
/311Z non-interfaced	P	31.500 MHz					
11G 1 (401/400	Н	37.861 KHz	832 pixels	640 pixels	24 pixels	40 pixels	128 pixels
VGA 640X480 72Hz non-interlaced	V	72.809 Hz	520 lines	480 lines	9 line	3 lines	28 lines
	P	31.500 MHz					
ALC: (AOMACA	Н	31.469 KHz	800 pixels	640 pixels	16 pixels	96 pixels	48 pixels
VGA 640X480 60Hz non-interlaced	V	59.940 Hz	525 lines	480 lines	10 line	2 lines	33 lines
OUTZ HOH-IIICHacca	P	25.175 MHz					

Note: For more details please refer to the <u>VESA Monitor Timing Standard</u>

Table 2-3 VESA interlaced Video Timing Specifications

Mode		Frequency	Total	Active
MPTE-170M-1	Н	15.734 KHz	780 pixels	640 pixels
640X480 Mono	V	60 Hz Field	262.5 lines	240 lines
30Hz interlaced	P	12.27 MHz		
SMPTE-170M-2	Н	15.625 KHz	1052 pixels	800 pixels
800X600 Mono	V	50 Hz Field	312.5 lines	600 lines
25Hz interlaced	P	16.437 MHz		
NTSC	Н	15.734 KHz	858 pixels	720 pixels
720X480 Color	V	60 Hz Field	262.5 lines	240 lines
30Hz interlaced	P	13.5 MHz		
PAL	Н	15.625 KHz	864 pixels	720 pixels
720X576 Color	V	50 Hz Field	312.5 lines	288 lines
25Hz interlaced	P	13.5 MHz		
NTSC (Square)	Н	15.734 KHz	780 pixels	640 pixels
640X480 Color	V	60 Hz Field	262.5 lines	240 lines
30Hz interlaced	P	12.2727 MHz		
PAL (Square)	Н	15.625 KHz	944 pixels	768 pixels
768X576 Color	V	50 Hz Field	312.5 lines	288 lines
25Hz interlaced	P	14.75 MHz		

2.6. Electrical Characteristics

2.6.1. Recommended Operation Ratings

SYMBOL	DESCRIPTION	MIN	ТҮР	MAX ^①	UNIT
V1.8	1.8V Power Supply	1.62	1.8	2.5	V
V5.0	5.0V Power Supply	4.5	5.0	6.0	V
$V_{\mathrm{I/O}}$	Digital Signal Voltage	_	1.8	3.3	V
Tstorage	Storage Temperature	-55	20	90	°C
Toperate	Operation Temperature	-40	20	65	°C

Note ①: The absolute maximum rating values (except $V_{I/O}$) of this product are not allowed to be exceeded at any time. If the product is used with its symbol value exceeding the maximum rating or in an extreme condition, the characteristics of the device maybe recovered and the lifetime of the device will decrease, even the device may be permanently destroyed.

2.6.2. DC Characteristics

Table 2-4 SVGA050V1R1 DC Characteristics

PARAMETER		DESCRIPTION	MIN	TYP	MAX	UNIT
$I_{1.8}$	1.8V Supp	ly Current	9	10	12	mA
$I_{5.0}$	5.0V Supp	ly Current	10	20	250	mA
Vcom	Cathode V	oltage	-5	-2	0	V
		Color @ 70Cd/m2	-	120	-	
T ' 1 D	Working	Working Monochrome White @ 100Cd/m2		100	-	
Typical Power Consumption ^①		Monochrome Green @ 500Cd/m2		200	-	mW
Consumption	Display O	-	-	75		
	Power Do	wn	0	-	0.4	

Note ①:Power consumption measured at 60Hz refresh rate, room ambient temperature and with a full white test pattern(all pixels on) see

Figure 2-8 Full white test pattern

2.6.3. AC Characteristics

PARAMETER	Symbol	MIN	TYP	MAX	UNIT
Digital Video Data Setup & Hold	t_{S}	1	-	1	ns
Digital video Data Setup & Hold	t_{H}	0.5	-	ı	ns
Video Clock Period	$t_{\rm CLK}$	17.8	-	-	ns
Video Clock Duty	q	40	50	60	%

3. DETAILED FUNCTION DESCRIPTION

3.1. Digital Video Interface

Figure 3-1 Digital Video Processing Flow Diagram

The digital video interface has three 8-bit data channels, and additional horizontal and vertical sync (HS/VS), data enable (DE), pixel clock signals (VCLK). User should select the correct signals to connect according to different Video format. VCLK is always needed in any mode. When use 8bit with embedded sync signal (8bit ITU-R BT.656 YCbCr/Mono 4:2:2), only G[7..0] bus and VCLK is needed.

OLED Display receives data with BT601/656 format, like 8/16/24bit and 4:2:2/4:4:4 format, and transfers to 24bit RGB signal, then sends the signal to Video signal enhancement module, after scaling (only a scaled-down), gamma correction, RGB offset adjustment, finally output 27bit RGB signal.

3.1.1. Color Space

If the input data format is YCbCr, the device will change it to RGB format. Color space conversion block converts color space from YCbCr to RGB and uses the following equations. Output signal is

24-bit RGB format, 8-bit in each path.

$$R = 1.164 \times (Y - 16) + 1.596 \times (Cr - 128)$$

$$G = 1.164 \times (Y - 16) - 0.813 \times (Cr - 128) - 0.392 \times (Cb - 128)$$

$$B = 1.164 \times (Y - 16) + 2.017 \times (Cb - 128)$$

3.1.2. Digital Video Signal Enhancement

Digital video signal enhancement can be achieved by adjusting the brightness and the contrast ratio, as is Shown in Figure 3-2.

Figure 3-2 Digital Video Signal Enhancement Diagram

Brightness adjustment using addition and subtraction to achieve, the output value is equal to the input value plus the value of register 08H, and then minus 128. When the value of register 08H is greater than 80H, it means increase the brightness, whereas decrease. Brightness adjustment range is ± 128 .

$$V_{out} = V_{in} + Reg(08H) - 128$$

Contrast adjustment using multiplication and division to achieve, the output value is equal to the input value multiplied by the value of register 09H and then divided by 128. When the value of register 09H is greater than 80H, it means increase the contrast, whereas decrease. The gain of contrast adjustment range is 0 to 2.

$$V_{out} = V_{in} \cdot \frac{\text{Reg}(09\text{H})}{128}$$

Note: The algorithms keep only 8bit data, if overflow, automatically discarded high bit.

3.1.3. Video Pattern Generation

Built-in test pattern generator can generate color bars, gray scale, tiles, horizontal stripes, vertical stripes, as well as monochrome red, green, blue, and white test pattern. Line width, line spacing, foreground color, background color, etc. of all test pattern can be set by relevant registers. Register 4AH is pattern mode selection, default value is 0, indicates the test pattern generator is turned off; register 4BH, 4CH, 4DH were used to set line width, line spacing, etc. respectively. Details of setting refer to Table 3-1 and Figure 3-3

Table 3-1 Summary of Test Pattern Setting

Test Pattern Name	Patterns (4AH)	LineWidth (4BH)	LineSpace (4CH)	BGMASK (4DH)	FGMASK (4DH)
Color Bar	001	-	-	-	-
Gray Scale	010	-	-	-	-
Checker Board	011	-	-	-	-
Alternating Column	100	LineWide	Line Space	000	111
Alternating Row	101	LineWide	Line Space	000	111
Alternating Row & Column	110	LineWide	Line Space	000	111
All Black	100	-	-	000	000
All White	100	-	-	111	111
All Red	100	-	-	100	100
All Green	100	-	-	010	010
All Blue	100	-	-	001	001

Figure 3-3 Test Video Patterns

3.1.4. Scaling

In order to maintain the aspect ratio of input image, some video format in need of scaling. Scaling could be achieved by set register 07H, the algorithm is shown in Figure 3-4 and Figure 3-5, applicable video format is shown in Table 3-2.

Figure 3-4 Diagram of the Horizontal Scaling Algorithm

Figure 3-5 Diagram of the Vertical Scaling Algorithm

Table 3-2 Scaling format applied

Video Format Name	Input Resolution	Scan Mode	Hor. Scaling	Ver. Scaling	Display Resolution
SVGA	800 × 600	Progressive	1:1	1:1	800 × 600
VGA	640 × 480	Progressive	1:1	1:1	640 × 480
SMPTE-170M-2	800 × 600 Mono	Interlaced	1:1	1:1	800 × 600
SMPTE-170M-1	640 × 480 Mono	Interlaced	1:1	1:1	640 × 480
NTSC	720 × 480	Interlaced	11:10/9:8	1:1	640 × 480
NTSC (Square)	640 × 480	Interlaced	1:1	1:1	640 × 480
PAL (Square)	768 × 576 Color	Interlaced	1:1	1:1	768 × 576
PAL	720 × 576	Interlaced	11:10/9:8	6:5	640 × 480

3.1.5. Gamma Correction

Gamma correction is performed using piecewise-linear function by a 17-entry lookup table. Gamma correction expends 8 bit input to 9 bit output by Look-Up Table (LUT). Intermediate values are computed by interpolating between the two nearest LUT entries. In C notation:

$$V_{out} = LUT[V_{in}/16] + V_{in}\%16*(LUT[V_{in}/16+1] - LUT[V_{in}/16])/16$$

Note:

- '/' denotes integer division truncating the remainder, '*' denotes multiplication, '%' denotes integer division taking remainder
- $LUT[0\sim15]$ is 9 bit register to support the full 0-511 range without missing codes.
- LUT[16] is 10 bit register to support 201H~3FEH range, set to "200H" as maximum value (512) and "3FFH" as minimum value (-1).

Figure 3-6 Gamma Correction LUT and Curve

3.1.6. RGB offset

After gamma correction process, the corrected R/G/B value can be shifted separately by Roffset, Goffset, Boffset configuration registers, color offset control registers 44H-49H are used to adjust separate R/G/B signal's offset. Gamma correction output 9bit data each channel, color offset adjustment range is 0~511.

Figure 3-7 Color Offset Control

3.2. 3D Video Display

Stereo register(02H) and 3DMODE pin can set 3D video display. If 3DMODE pin state is the same as the ST_mode bit (02H) value, the screen display is updated, whereas not. 3DMODE pin signal is latched at Vsync falling edge. 3D video display timing is shown below.

In progressive mode, 3D video signal using frame timing mode, such as the odd frame is updated left display, and the even frame is updated right display.

In interlaced mode, 3D video signal using field timing mode, such as the odd field is updated left display, and the even field is updated right display. At this point, the vertical resolution of each field is lower compare with the source, the last two bit of register 01H should be set to "11", display will repeat to display each line in next line automatically, to ensure that the image aspect ratio and display.

Figure 3-8 3D Video Display Timing

3.3. Power Supply & Reset

SVGA050 series microdisplay need 1.8V and 5V external power supply to operate, 1.8V is used for digital core include decoder, video signal enhancement, gamma correction, communication, etc.; 5V is used for drive circuit, D/A converter, and so on. To ensure the display image quality, please note that ripple and interference rejection of 5V power supply.

3.3.1. Power UP/Down Sequence

The system power-up mechanism relies on the clock single(VCLK), so the power supply and VCLK input sequence is very important. SVGA050 repquires first provide VCLK, followed is 1.8v, and last is 5V. The working principle is shown by following figure and section 3.3.2.

If the power-up sequence can not meet requirements, SVGA050's working state may abnormal. In that case, after the reset and initialization operations, user can set the PDOWN(Register 0FH_Bit7) to 1 firt, and wait 20ms, then set PDOWN to 0.

Figure 3-9 Power-up Sequence (1.8V power-up, threshold voltage = 1.2V)

Figure 3-10 V5.0 Power Down & Up (POR5n threshold Voltage = 4V)

Figure 3-11 Register Control Power Down & Up

3.3.2. Reset Sequence

Figure 3-12 Reset Block Diagram

Figure 3-13 Reset Timing Case 1 – No external reset pin used (RESETB=1)

Figure 3-14 Reset Timing Case 2 – External reset pin depend on VCLK

Figure 3-15 Reset Timing Case 3 – External reset pin applied

3.4. DC/DC Converter

OLED emitting light needs to be applied positive bias voltage between the anode and cathode, the anode voltage from 5V power supply is controlled by drive transistor, all pixel's common cathode voltage Vcom supplied by DC/DC converter on the PCB backplane. The driving pulse of DC/DC converter is generated by the internal programmable pulse generator, the circuit shown in Figure 3-16. Vcom adjustment range is 0 ~-3V, corresponding to register 19H, the typical working curve is shown in Figure 3-17

Figure 3-16 DC/DC Principal Diagram

Figure 3-17 Vcom Programmable Working Curve

3.5. Temperature Sensor

The value of register 1DH is the internal temperature sensor's measured value. So the real-time internal working temperature can be read out through the two-wire serial interface. The temperature and the readout conversion relation is:

$$T = 0.47 \times \text{Reg (1DH)} - 40$$

The temperature sensor response curve and the calibration curve are shown as Figure 3-18 and Figure 3-19.

Figure 3-19 Temp. Sensor calibration curve

Note: Temperature sensor in SVGA050 series display updates readings (1DH register value) depending on field sync signal (VS). External VS must be provided to ensure the inner temperature sensor working properly in 8-bit BT.656 format application embedded sync signal.

3.6. Two-wire Serial Interface

Compatible with I²C communication standard, the two-wire serial interface is used to read/write the registers to realize the display programmable control, such as digital video signal decoding and processing, gamma correction, Vcom adjustment and so on.

SVGA050 series microdisplay acts as a slave for receiving and transmitting data, all read/write operations must be launched by the master. The SDA and SCL line must be pull-up to 1.8v or 3.3v power via a resistance by the outside communication controller.

Key Features and tag:

- Communication speed (SCL) support from 100K to 1MHz;
- 8-bits Slave Address consists of 7-bits device address and 1-bit read/write flag;
- Start/Re-Start: SDA change from HIGH to LOW while SCL is HIGH, See Figure 3-20;
- Stop: SDA change from LOW to HIGH while SCL is HIGH, see Figure 3-20;
- ACK: SDA is LOW during the acknowledge clock pulse;
- NAK: SDA is HIGH during the acknowledge clock pulse;
- One transmission includes 8bit data and an acknowledge bit, total nine clock of SCL;
- Except Start and Stop condition:
 - HIGH or LOW state of SDA can only being changed while SCL is LOW
 - Data on the SDA line must be stable during the HIGH period of the SCL

Figure 3-20 Start & Stop Timing

3.6.1. Communication Operating

- Write data (Figure 3-21):
 - 1) Master sends Start condition (S)
 - 2) Master sends 7bit Slave Address and 1bit write flag (\overline{W}) represents as low
 - 3) Slave sends 1bit ACK (A) response
 - 4) Master sends 8bit register address (Register)
 - 5) Slave sends 1bit ACK (A) response
 - 6) Master sends 8bit data (Data)
 - 7) Slave sends 1bit ACK (A) response
 - 8) Master sends stop condition(P)

Figure 3-21 Write Data format

- Read Data (Figure 3-22)
 - 1) Master sends Start condition (S)
 - 2) Master sends 7bit Slave Address and 1bit Write flag (\overline{W}) represents as low
 - 3) Slave sends ACK (A) response
 - 4) Master sends 8bit Register Address (Register)
 - 5) Slave sends 1bit ACK (A) response
 - 6) Master sends 1bit Re-Start condition (Sr)
 - 7) Master sends 7bit Slave Address and 1bit Read flag (R) represents as high
 - 8) Slave sends 1bit ACK (A) response
 - 9) Slave sends 8bit Data (Data)
 - 10) Master sends 1bit NAK (\overline{A}) response
 - 11) Master sends Stop condition (P)

Figure 3-22 Data format(Master reads from Slave)

3.6.2. Serial Interface Bus Address Selection

Two salve address of SVGA050 series microdisplay can be selected by an externally SelAdr0 pin. The SelAdr0 pin has an internal pull up resistor (10K) to pull up to 1.8V power. One of microdisplay's SelAdr0 pin must be connected to GND when used in binocular stereovision application. Microdisplay's corresponding read/write address is shown as Table 3-3.

Table 3-3 Slave Address list

A7 (MSB)	A6	A5	A4	A3	A2	A1 (SelAdr0)	A0 (R/W̄)	Slave Address (R/W̄)
0	0	0	1	1	1	1(Default)	1/0	1FH/1EH
0	0	0	1	1	1	0	1/0	1DH/1CH

4. REGISTER DESCRIPTION

4.1. Summary of Registers

Table 4-1 Summary of Registers

Address	Bytes	Description	Default Value
00H	1	Chip's Drive Circuit Revision	00H
01H	1	Input Video Type Set	34H
02H	1	Sync signal Polarity Set & 3D functions	00H
03H	1	Vertical Blank Lines	00Н
04H	1	Horizontal Blank Pixels	00Н
05H	1	Adjust Start Active Video Position	01H
06H	1	Field Start Line Position Adjustment For Interlaced Video	00Н
07H	1	Down Scaling for NTSC & PAL Video	00Н
08H	1	Brightness Control (Video Signal Brightness)	80H
09H	1	Contrast Control (Video Signal Contrast)	80H
0AH	1	Reserved	4AH
0BH	1	Reserved	5AH
0CH	1	Reserved	00H
0DH	1	Reserved	00H
0EH	1	Reserved	00H
0FH	1	Power Down Mode Control	00H
10H	1	Display ON/Off & Scan Directions	04H
11H	1	Display Left Margin	02H
12H	1	Display Right Margin	02H
13H	1	Display Top Margin	02H
14H	1	Display Bottom Margin	02H
15H	1	Reserved	44H
16H	1	D/A Offset Setting	0CH
17H	1	Discharge Current Setting	01H
18H	1	Discharge Enabled Control	00H
19H	1	Vcom Level Setting (Display's Brightness)	FFH
1AH	1	Reserved	1DH
1BH	1	Reserved	74H
1CH	1	Reserved	FFH
1DH	1	Temperature Sensor Readout	-
1E~1FH	2	Reserved	-
[21,20H]	2	9 Bit Gamma Correction LUT0	000H
[23,22H]	2	9 Bit Gamma Correction LUT1	020H
[25,24H]	2	9 Bit Gamma Correction LUT2	040H
[27,26H]	2	9 Bit Gamma Correction LUT3	060H
[29,28H]	2	9 Bit Gamma Correction LUT4	080H
[2B,2AH]	2	9 Bit Gamma Correction LUT5	0A0H
[2D,2CH]	2	9 Bit Gamma Correction LUT6	0C0H
[2F,2EH]	2	9 Bit Gamma Correction LUT7	0E0H

Address	Bytes	Description	Default Value
[31,30H]	2	9 Bit Gamma Correction LUT8	100H
[33,32H]	2	9 Bit Gamma Correction LUT9	120H
[35,34H]	2	9 Bit Gamma Correction LUT10	140H
[37,36H]	2	9 Bit Gamma Correction LUT11	160H
[39,38H]	2	9 Bit Gamma Correction LUT12	180H
[3B,3AH]	2	9 Bit Gamma Correction LUT13	1A0H
[3D,3CH]	2	9 Bit Gamma Correction LUT14	1C0H
[3F,3EH]	2	9 Bit Gamma Correction LUT15	1E0H
[41,40H]	2	10 Bit Gamma Correction LUT16	200H
42H	1	Reserved	-
43H	1	Reserved	-
[45,44H]	2	9 Bit Red Signal Offset	100H
[47,46H]	2	9 Bit Green Signal Offset	100H
[49,48H]	2	9 Bit Blue Signal Offset	100H
4AH	1	Test Pattern Mode Selection	00H
4BH	1	Test Pattern Line Width Setting	02H
4CH	1	Test Pattern Line Space Setting	03H
4DH	1	Test Pattern Foreground & Background Color Setting	07H
4E~FFH	178	Reserved	-

4.2. Detailed Information of Register

1) Revision information (Read Only)

Register Address	7	6	5	4	3	2	1	0
00H		N.A.					Revision	
Default			-			0	0	0

4.2.1. Video Related Registers

2) Input video type set

Register Address	7	6	5	4	3	2	1	0
01H	N.A.	Data Mode			Sync	signal	Scan	mode
Default	-	0	1	1	0	1	0	0

• Signal Mode: Select input data format

	1
Data Mode	Input Video Format
000	16-bit 422, YCbCr
001	24-bit 444, YcbCr
010	8-bit MONO
011	24-bit 444, RGB
100	8-bit 422, YcbCr

• Scan mode : Select scan mode

Interlaced	Interlaced mode
00	Non-interlaced
01	Interlaced
10	Do not use
11	Pseudo-Interlaced

• Sync Signal: Select sync mode

Sync signal	Sync Mode
00	Embedded Sync
01	External Sync with DE
10	Do not use
11	External Sync without DE

3) V sync/H sync Polarity& 3D function Setting

Register Address	7 6		5	4 3		2	1	0
02H	Reserved		3D Enable	N.A		3D Refresh	V_Pol	H_Pol
Default	0	0	0	0	0	0	0	0

• 3D function control:

3D Enable	3D Refresh	3D Pin	Display Mode	Operating
0	X	X	Normal Mode	Refresh every Frame/Filed
	0	0		Refresh
1	U	1	2D Mada	Keep last data
1	1		3D Mode	Keep last data
	1	1		Refresh

• V_Pol/H_Pol setting: Select Vsync & Hsync polarity

V_Pol/H_Pol	Polarity Choice
0	Active High
1	Active Low

4) Input video vertical blank lines

Register Address	7	6	5	4	3	2	1	0	
03H	V Blank								
Default	0	0	0	0	0	0	0	0	

5) Input video horizontal blank pixels

Register Address	7	6	5	4	3	2	1	0		
04H		H Blank								
Default	0	0	0	0	0	0	0	0		

Figure 4-1 Vertical Blank Lines with DE

Figure 4-2 Vertical Blank Lines without DE

6) Adjust Start Active Video position

Register Address	7	6	5	4	3	2	1	0
05H			SAV	Offset				
Default		-						1

• SAV Offset : Adjust start active video (SAV) position

SAV Offset	Hsync position
00	1 pixel before input SAV
01	Same as input SAV
10	1 pixel after input SAV
11	2 pixel after input SAV

7) Field start line position adjust for Interlaced video

Register Address	7	6	5	4	3	2	1	0
06H			V_o	ffset				
Default		-						0

• V Offset: Adjust odd field active video start position when interlaced video mode

V Offset	Odd field start position
00	Same as Even field
01	1 line after Even field
10	Do not use
11	1 line before Even field

8) Down scaling for NTSC & PAL video

Register Address	7	6	5	4	3	2	1	0
07H		N.A.					H_S	scale
Default		-				0	0	0

• V Scale: Vertical 4/3downscale for PAL

V_Scale	Down scaling (In : Out)
0	1:1
1	6:5

• H Scale: Horizontal 4/3downscale for PAL/NTSC

H_Scale	Down scaling (In : Out)
00	1:1
01	11:10
10	9:8
11	Do not use

9) Brightness control

Register Address	7	6	5	4	3	2	1	0
08H		Video Signal Brightness						
Default	1	0	0	0	0	0	0	0

• $V_{out} = V_{in} + Reg(08H) - 128$ (Limit Low 8Bit Data)

Brightness	Brightness adjustment effect
00H	Darkest setting
80H	No change
FFH	Brightest setting

10) Contrast enhance control

Register Address	7	6	5	4	3	2	1	0	
09H		Video Signal Contrast							
Default	1	0	0	0	0	0	0	0	

• $V_{out} = V_{in} \times Reg(09H) \div 128$ (Limit Low 8Bit Data)

Contrast	Contrast adjustment effect					
00H	Gain =0 (Black Screen)					
80H	Gain =1 (Normal)					
FFH	Gain =2 (Contrast Double)					

11) Reserved

Register Address	7	6	5	4	3	2	1	0	
0AH	N.A.		Reserved						
Default	-	1	0	0	1	0	1	0	

12) Reserved

Register Address	7	6	5	4	3	2	1	0
0BH	N.A.	Reserved						
Default	-	1	0	1	1	0	1	0

13) Power down

Register Address	7	6	5	4	3	2	1	0
0FH	PDOWN	N.	A.	BSGENPD	RDACPD	RAMPPD	VCOMPD	TSENPD
Default	0		-	0	0	0	0	0

• PDOWN: All system power off

• BSGENPD: Discharge current generator power off

• RDACPD: DAC module power off

• RAMPPD: DAC Buffer module power off

• VCOMPD: Vcom power off

• TSENPD: Temperature sensor power off

4.2.2. Video Display Control Registers

14) Display off & Scan directions

Register Address	7	6	5	4	3	2	1	0
10H		N.A.				DispOff	VSCAN	HSCAN
Default			-			1	0	0

• D	DispOff					
0	Display ON					
1	Display OFF					

• VSC	• VSCAN						
0	Top → Bottom						
1	Bottom → Top						

• HSCAN						
0	Left → Right					
1	Right → Left					

15) Display Left Margin

Register Address	7	6	5	4	3	2	1	0
11H				COL	LFT			
Default	0	0	0	0	0	0	1	0

16) Display Right Margin

Register Address	7	6	5	4	3	2	1	0
12H				COL	RGT			
Default	0	0	0	0	0	0	1	0

17) Display Top Margin

Register Address	7	6	5	4	3	2	1	0
13H				ROW	TOP			
Default	0	0	0	0	0	0	1	0

18) Display Bottom Margin

Register Address	7	6	5	4	3	2	1	0
14H				ROW	BOT			
Default	0	0	0	0	0	0	1	0

19) Reserved

Register Address	7	6	5	4	3	2	1	0
15H				Rese	rved			
Default	0	1	0	0	0	1	0	0

20) D/A Conversion Offset control

Register Address	7	6	5	4	3	2	1	0
16H				DAOI	FFSET			
Default	0	0	0	0	1	1	0	0

• DAOFFSET: Adjust D/A output offset

00H	Offset = -40%
80H	Offset = 0
FFH	Offset = $+40\%$

Note: The Register setting affect the gamma correction curve, not recommended to change

21) Discharge Current Setting

Register Address	7	6	5	4	3	2	1	0	
17H	N	NA		Reserved		NA		BIAS	
Default	-	-	0	0	-	-	0	1	

• BIAS: OLED pixel discharge current setting. Can enhance the display dynamic contrast ratio, may result in reduced display brightness

BIAS	BIAS Current
00	0 nA (OFF)
01	0.5 nA
10	1nA
11	DO not use

22) Discharge Enable Control

Register Address	7	6	5	4	3	2	1	0	
18H		N.A.							
Default		-							

• BIAS En: OLED pixel discharge function enable switch, "0" is Disable, "1" is Enable.

23) Vcom Level Setting

Register Address	7	6	5	4	3	2	1	0
19H		Vcom						
Default	1	1	1	1	1	1	1	1

• The valid range of Vcom setting is 20H ~ FFH, and the corresponding cathode voltage is about-3V ~ 0V. 20H is the brightest, FFH is the darkest

The lower cathode voltage makes the display brighter. The curve of Vcom and cathode voltage sees section 3.4 (DC/DC converter).

• Low Vcom settings will cause the display too bright, may damage the eyes of the user, and continues use may cause display overheating and damage.

4.2.3. Temperature Sensor Register

24) Reserved

Register Address	7	6	5	4	3	2	1	0		
1AH	Do no	ot use	Reserved							
Default	-	-	0	1	1	1	0	1		

25) Reserved

Register Address	7	6	5	4	3	2	1	0
1BH		Reserved						
Default	0	1	1	1	0	1	0	0

26) Reserved

Register Address	7	6	5	4	3	2	1	0
1CH		Reserved						
Default	1	1	1	1	1	1	1	1

27) Temperature Sensor Readout (Read Only)

Register Address	7	6	5	4	3	2	1	0
1DH				TEMP	OUT			
Default					•			

• Temperature conversion formula is : $T = 0.47 \times Reg (1DH) - 40$

4.2.4. Gamma Look-Up Table Registers

28) 9 Bit Gamma Correction LUT0

Register Address	7	6	5	4	3	2	1	0	
21H		N.A.							
Default		-							
20H		LUT0[7:0]							
Default	0	0	0	0	0	0	0	0	

29) 9 Bit Gamma Correction LUT1

Register Address	7	6	5	4	3	2	1	0	
23H		N.A.							
Default		-							
22H		LUT1[7:0]							
Default	0	0	1	0	0	0	0	0	

30) 9 Bit Gamma Correction LUT2

Register Address	7	6	5	4	3	2	1	0	
25H		N.A.							
Default		-							
24H		LUT2[7:0]							
Default	0	1	0	0	0	0	0	0	

31) 9 Bit Gamma Correction LUT3

Register Address	7	6	5	4	3	2	1	0	
27H		N.A.							
Default		-							
26H		LUT3[7:0]							
Default	0	1	1	0	0	0	0	0	

32) 9 Bit Gamma Correction LUT4

Register Address	7	6	5	4	3	2	1	0		
29H		N.A.								
Default		-								
28H		LUT4[7:0]								
Default	1	0	0	0	0	0	0	0		

33) 9 Bit Gamma Correction LUT5

Register Address	7	6	5	4	3	2	1	0		
2BH		N.A.								
Default		-								
2AH		LUT5[7:0]								
Default	1	0	1	0	0	0	0	0		

34) 9 Bit Gamma Correction LUT6

Register Address	7	6	5	4	3	2	1	0		
2DH		N.A.								
Default		-								
2CH		LUT6[7:0]								
Default	1	1	0	0	0	0	0	0		

35) 9 Bit Gamma Correction LUT7

Register Address	7	6	5	4	3	2	1	0		
2FH		N.A.								
Default		-								
2EH		LUT7[7:0]								
Default	1	1	1	0	0	0	0	0		

36) 9 Bit Gamma Correction LUT8

Register Address	7	6	5	4	3	2	1	0		
31H		N.A.								
Default		-								
30H		LUT8[7:0]								
Default	0	0	0	0	0	0	0	0		

37) 9 Bit Gamma Correction LUT9

Register Address	7	6	5	4	3	2	1	0		
33H		N.A.								
Default		-								
32H		LUT9[7:0]								
Default	0	0	1	0	0	0	0	0		

38) 9 Bit Gamma Correction LUT10

Register Address	7	6	5	4	3	2	1	0		
35H		N.A.								
Default		-								
34H		LUT10[7:0]								
Default	0	1	0	0	0	0	0	0		

39) 9 Bit Gamma Correction LUT11

Register Address	7	6	5	4	3	2	1	0		
37H		N.A.								
Default		-								
36H		LUT11[7:0]								
Default	0	1	1	0	0	0	0	0		

40) 9 Bit Gamma Correction LUT12

Register Address	7	6	5	4	3	2	1	0		
39H		N.A.								
Default		-								
38H		LUT12[7:0]								
Default	1	0	0	0	0	0	0	0		

41) 9 Bit Gamma Correction LUT13

Register Address	7	6	5	4	3	2	1	0		
3BH		N.A.								
Default		-								
3AH		LUT13[7:0]								
Default	1	0	1	0	0	0	0	0		

42) 9 Bit Gamma Correction LUT14

Register Address	7	6	5	4	3	2	1	0		
3DH		N.A.								
Default		-								
3CH		LUT14[7:0]								
Default	1	1	0	0	0	0	0	0		

43) 9 Bit Gamma Correction LUT15

Register Address	7	6	5	4	3	2	1	0		
3FH		N.A.								
Default		-								
3EH		LUT15[7:0]								
Default	1	1	1	0	0	0	0	0		

44) 10 Bit Gamma Correction LUT16

Register Address	7	6	5	4	3	2	1	0	
41H		N.A. LUT16[9:8							
Default			1	0					
40H		LUT16[7:0]							
Default	0	0	0	0	0	0	0	0	

4.2.5. Color Offset Control Registers

45) 9 Bit R offset control

Register Address	7	6	5	4	3	2	1	0		
45H		N.A. Ro								
Default		- 1								
44H		Roffset[7:0]								
Default	0	0	0	0	0	0	0	0		

46) 9 Bit G offset control

Register Address	7	6	5	4	3	2	1	0	
47H		N.A.							
Default		-							
46H		Goffset[7:0]							
Default	0	0	0	0	0	0	0	0	

47) B offset control

Register Address	7	6	5	4	3	2	1	0	
49H				N.A.				Boffset[8]	
Default		-							
48H		Boffset[7:0]							
Default	0	0	0	0	0	0	0	0	

4.2.6. Test Pattern Generator Control Register

48) Select Test Pattern

Register Address	7	6	5	4	3	2	1	0		
4AH		N.A.					PatternMode			
Default		-					0	0		

• PatternMode: Select Test Pattern

Patterns	Test Pattern
000	Pattern Generator Off (Normal)
001	Color Bar
010	Gray Scale
011	Tile
100	Vertical Lines
101	Horizontal Lines
110	Ver. & Hor. Lines
111	Do not use

49) Set line width for lines pattern (Patterns = $100 \sim 110$)

Register Address	7	6	5	4	3	2	1	0
4BH		LineWidth						
Default	0	0	0	0	0	0	1	0

50) Set line space for line pattern (Patterns = $100 \sim 110$)

Register Address	7	6	5	4	3	2	1	0	
4CH		LineSpace							
Default	0	0	0	0	0	0	1	1	

51) Set Foreground & Background RGB color for lines pattern (Patterns = $100 \sim 110$)

Register Address	7	6	5	4	3	2	1	0
4BH	N.A.	BGCOLOR			N.A.	FGCOLOR		
Default	-	0	0	0	-	1	1	1

• BGCOLOR : Background color

BGCOLOR	Color
000	Black
001	Blue
010	Green
100	Red
111	White

• FGCOLOR : Foreground color

FGCOLOR	Color
000	Black
001	Blue
010	Green
100	Red
111	White

4.3. Register Setting Example

Table 4-2 Register Setting Example

	Video Mo	ode		Register Setting						
Mode	Scan	Input	Display	Reg(01H)	Reg(07H)	Reg(11h)	Reg(12H)	Reg(13H)	Reg(14H)	
SVGA	Progressive	800×600	800×600	3СН	00H	02H	02H	02H	02H	
VGA	Progressive	640×480	640×480	3СН	00H	52H	52H	52H	3ЕН	
SMPTE-170M-1	Interlaced	640×480	640×480	21H	00H	52H	52H	52H	3ЕН	
SMPTE-170M-2	Interlaced	800×600	800×600	3DH	00H	02H	02H	02H	02H	
NTSC	Interlaced	720×480	640×480	41H	04H	52H	52H	52H	3ЕН	
PAL	Interlaced	720×480	640×480	41H	05H	52H	52H	52H	3ЕН	
NTSC (SQ)	Interlaced	640×480	640×480	41H	00H	52H	52H	52H	3ЕН	
PAL (SQ)	Interlaced	768×676	768×576	41H	00H	12H	12H	14H	0EH	

5. OPTICAL CHARACTERISTICS

Table 5-1 Optical Characteristics table

Item					Remark		Mini	Typical	Мах
Contrast Ratio					Highest gray: Minimum gray		10000:1	-	-
				olor	Using Built-in test pattern under			70	
Lumina	Luminance		chrom	e White	typical test conditions and all pixels			100	
		Mono	chrom	e Green	are fully on			500	
luminance uniformity					The average of five test points		90	95	100
Chromaticity		7	White	CIEX	all pixels are		0.25	0.30	0.35
				CIEY	fully on		0.30	0.35	0.40
			Red	CIEX	all red are sub-pixels fully on all green are sub-pixels fully on all blue are sub-pixels are on all pixels are	Using Built-in test pattern under typical test conditions and all pixels are fully on.	0.48	0.61	0.66
				CIEY			0.32	0.34	0.37
	Full Col		Green	CIEX			0.18	0.22	0.27
		C		CIEY			0.40	0.51	0.53
			Blue	CIEX			0.13	0.15	0.18
				CIEY			0.13	0.18	0.23
	Monochro	ome ,	White	CIEX			0.25	0.30	0.35
	White	: '		CIEY	fully on		0.30	0.35	0.40
	Monochro	ome	Graan	CIEX	all pixels are		0.25	0.30	0.35
	Green	1	Green	CIEY	fully on		0.60	0.65	0.70

5.1. Brightness and Contrast Properties

5.1.1. Brightness

The OLED's luminance is depending on the bias voltage and current, increasing the bias voltage can obtain the higher brightness. With OLiGHTEK's proprietary active matrix driver technology, SVGA050 series microdisplay has two kinds of method for brightness adjustment.

- 1) Through the input video signal control the anode voltage, realizing each pixel brightness control. The video signal can enhancement by change the value of register 08H and 09H.
- 2) Adjusting the common cathode voltage, while achieving all pixel brightness adjustment. The cathode negative voltage adjustments by change the value of register 19H.

5.1.2. Contrast

OLED's quickly response and self-emitting characteristics make it has excellent contrast features. But the leakage current will causing the contrast decreased when using a higher bias voltage. The SVGA050 series display's contrast property is shown in Figure 5-1, Figure 5-2 and Figure 5-3.

Figure 5-3 Monochrome Green Display

Figure 5-2 Monochrome White Display

5.2. Spectrum Characteristics

5.3. Luminance Characteristic with Temperature

Test conditions: V5=5.0V, V1.8=1.8V, All White Pattern, Reg(19H)=80H, VCLK=40MHz

Figure 5-4 SVGA050 Luminance characteristic curve with temperature

5.4. Power Consumption Characteristic with Luminance

Figure 5-5 SVGA050 Power consumption characteristic with luminance

6. MECHANICAL CHARACTERISTICS

7. PRODUCTS CLEANING, HANDLING AND STORAGE

7.1. Cleaning

- Avoid using any acid, alkali and organic solvent to clean or contact to the display
- Using the lens paper or clean cloth to clean the surface is recommend

1.1. General Handling Considerations

- Do not expose the display to strong acids, alkalis, or solvents.
- Do not expose the display surface to UV or other strong ionizing radiation.
- Do not using sharp objects to contact the glass and silicon regions of display.
- Avoid applying force to the any region except the PCB backplane, especially apply the force to the region of sealing, silicon edge and cover glass is not allowed.
- Avoid immersion of the display in any liquid.
- Handing with PVC clean gloves is recommended.

1.2. Static Charge Prevention

The microdisplay is sensitive to electro-static discharge due to integrated CMOS circuit in the display. The following measures are recommended to minimize ESD occurrences:

- Operate on a region which is equipped with electro-static eliminator, such as ionizing air blowers.
- Wear the anti-static wrist strap
- wear the non-chargeable clothes
- Keep away from charged region.

Figure 7-1 Handing the Display

1.3. Storage

1.3.1. Short Term Storage

The display should be stored in a dry environment with temperature range from -50°C to 90°C for a short period(≤ 100 hrs).

1.3.2. Long Term Storage

If the display is stored in such an environment with excessive heat or cold or moisture, the lifetime of display will be shorten, even the environment can cause permanent damage to the display. Recommended long-term storage condition as follows:

- Room temperature: $25^{\circ}\text{C} \pm 5^{\circ}\text{C}$
- Dry environment: dry nitrogen or vacuum sealing cabinet
- Static placing: avoid violent vibration

APPENDIX

List of Figures

	Figure 2-1	Pixel and Sub-Pixel Array	3
	Figure 2-2	Input Sync Signals Timing (For All Formats)	5
	Figure 2-3	24-bit 4:4:4 RGB Input VideoTiming	5
	Figure 2-4	24-bit 4:4:4 YCbCr Input Video Timing	
	Figure 2-5	16-bit 4:2:2 YCbCr Input Video Timing	
	Figure 2-6	8-bit Mono Input Video Timing	
	Figure 2-7	8-bit 4:2:2 YCbCr input Video timing	6
	Figure 2-8	Full white test pattern	
	Figure 3-1	Digital Video Processing Flow Diagram	
	Figure 3-2	Digital Video Signal Enhancement Diagram	
	Figure 3-3	Test Video Patterns	
	Figure 3-4	Diagram of the Horizontal Scaling Algorithm	12
	Figure 3-5	Diagram of the Vertical Scaling Algorithm	
	Figure 3-6	Gamma Correction LUT and Curve	
	Figure 3-7	Color Offset Control	
	Figure 3-8	3D Video Display Timing	
	Figure 3-9	Power-up Sequence (1.8V power-up, threshold voltage = 1.2V)	
	Figure 3-10	V5.0 Power Down & Up (POR5n threshold Voltage = 4V)	
	Figure 3-11	Register Control Power Down & Up	
	Figure 3-12	Reset Block Diagram	
	Figure 3-13	Reset Timing Case 1 – No external reset pin used (RESETB=1)	
	Figure 3-14	Reset Timing Case 2 – External reset pin depend on VCLK	
	Figure 3-15	Reset Timing Case 3 – External reset pin applied	
	Figure 3-16	DC/DC Principal Diagram	
	Figure 3-17	Vcom Programmable Working Curve	
	Figure 3-18	Temp. Sensor Readout	
	Figure 3-19	Temp. Sensor calibration curve	
	Figure 3-20	Start & Stop Timing	
	Figure 3-21	Write Data format	
	Figure 3-22	Data format(Master reads from Slave)	
	Figure 4-1	Vertical Blank Lines with DE	
	Figure 4-2	Vertical Blank Lines without DE	
	Figure 5-1	Full Color Display	
	Figure 5-2	Monochrome White Display	
	Figure 5-3	Monochrome Green Display	
	Figure 5-4	SVGA050 Luminance characteristic curve with temperature	
	Figure 5-5	SVGA050 Power consumption characteristic with luminance	
	Figure 7-1	Handing the Display	
1 :	st of Table		
LIS			
	Table 2-1	SVGA Video Timing Characateristics	
	Table 2-2	VESA Progressive Video Timing Specifications	
	Table 2-3	VESA interlaced Video Timing Specifications	
	Table 2-4	SVGA050V1R1 DC Characteristics	
	Table 3-1	Summary of Test Pattern Setting	
	Table 3-2	Scaling format applied	
	Table 3-3	Slave Address list	
	Table 4-1	Summary of Registers	
	Table 4-2	Register Setting Example	
	Table 5-1	Optical Characteristics table	32