q: Soit $\mathcal{F}=(\mathbf{x}_1,...,\mathbf{x}_n)$ famille de n vecteurs (=ordonnée, avec potentielles répétitions), on dit que \mathcal{F} est génératrice de E si:

a: Soit $\mathcal{F}=(\mathbf{x_1},...,\mathbf{x_n})$ famille de n vecteurs (=ordonnée, avec potentielles répétitions), on dit que \mathcal{F} est génératrice de E si:

tout vecteur de E peut s'écrire comme une combinaison linéaire de $\mathbf{x}_1,...,\mathbf{x}_{\mathbf{n}}$

$$\forall x \in E, \exists (\lambda_1, ..., \lambda_{\mathbf{n}}) \in \mathbb{K}^n, x = \lambda_1 x_1 + ... + \lambda_n x_n$$

🗘 Anki

q: \mathcal{F} génératrice $\Leftrightarrow E = ?$

a: \mathcal{F} génératrice $\Leftrightarrow E = \operatorname{Vect}_{\mathbb{K}}(F)$

🗘 Anki

q: Soient E Kev et $\mathcal F$ famille généatrice de E alors toute $\ref{eq:properties}$ de $\mathcal F$ est génératrice :

a: $\mathcal F$ famille généatrice de E alors toute **surfamille** de $\mathcal F$ est génératrice

Éléments de preuve:

On peut annuler les nouveaux termes

🗘 Anki

q: Soient E Kev, $\mathcal G$ famille génératrice de E et χ famille qqconque de vecteurs de E:

Il y a équivalence entre:

а.

1. χ famille génératrice

2. $\forall x \in \mathcal{G}, x \in \text{Vect}(\chi)$

Éléments de preuve:

 $1 \Longrightarrow 2$: vects de \mathcal{G} sont vect de E

 $2 \Longrightarrow 1$: on sq $x \in \text{Vect}(\chi)$ et on inverse les sommes

q: Famille libre, définition

a: Soient E \mathbb{K} ev et $(\mathbf{x}_1,...,\mathbf{x}_{\mathbf{n}})$ famille de vecteurs de E:

Cette famille est libre si $\forall (\lambda_1, ..., \lambda_n) \in \mathbb{K}^n$:

$$\lambda_1 x_1 + \ldots + \lambda_n x_n = 0_E \Rightarrow \lambda_1 = \ldots = \lambda_n = 0$$

("la seule combinaison linéaire nulle est la combinaison linéaire triviale")

L'inverse d'une famille libre est une famille liée

Éléments de méthode:

Pour montrer liberté on pourra poser des $(\lambda_1,...,\lambda_n)$ tel que la combinaison linéaire est nulle, puis prouver que $\lambda_1=...=\lambda_n=0$

Anki

q: Soient E Kev, $\mathcal F$ une famille de vecteurs de E et $\mathcal G$ une surfamille de $\mathcal F$ vecteurs de E: alors:

- 1. \mathcal{G} libre \Rightarrow ?
- 2. \mathcal{F} liée \Rightarrow ?

a:

- 1. \mathcal{G} libre $\Rightarrow \mathcal{F}$ libre
- 2. $\mathcal F$ liée $\Rightarrow \mathcal G$ liée

Éléments de preuve:

- 1. on a déjà que la combinaison linéaire de $\mathcal G$ est nulle que si tous les lambdas sont nuls, or $\mathcal F$ est sous famille de $\mathcal G$ donc ok!
- 2. la meme chose dans l'autre sens en fait

q: Soient E Kev, $(\mathbf{x_1},...,\mathbf{x_n})$ famille \mathbf{libre} de vecteurs de E et $x \in E$:

Il y a équivalence entre:

- 1. $(\mathbf{x}_1,...,\mathbf{x}_n,x)$ liée
- 2. $x \in ?$
- 3. ∃?
- a: Équivalence entre:
- 1. $(x_1, ..., x_n, x)$ liée
- 2. $x \in \text{Vect}(\mathbf{x}_1,...,\mathbf{x}_{\mathbf{n}})$
- 3. $\exists \lambda_1, ..., \lambda_n \in \mathbb{K}, x = \sum_{k=1}^n \lambda_k x_k$

Éléments de méthode:

Si on ajoute un vecteur combinaison linéaire des vecteurs précédents, la nouvelle famille formée est alors liée

Éléments de preuve:

2 ⇔ 3: définition du sev engendré (on peut décomposer élément)

 $\mathbf{1}\Longrightarrow\mathbf{3}$: liée, donc il existe des $\lambda_1,...,\lambda_n$ tels que combinaison linéaire non nulle, sq λ = 0, puis montrer contradiction $\mathbf{3}\Longrightarrow\mathbf{1}$: enlever 1*x, et pouf c'est lié!

Anki

q: Soient E Kev, $\mathbf{x}_1,...,\mathbf{x}_{\mathbf{n}}$ famille libre et $x \in \mathrm{Vect}(\mathbf{x}_1,...,\mathbf{x}_{\mathbf{n}})$:

alors \exists unique $(\lambda_1, ..., \lambda_n)$ tq?

a: alors \exists unique $(\lambda_1,...,\lambda_{\mathbf{n}})$ tq $x=\sum \lambda_k x_k$

Éléments de méthode:

Unique décomposition

Éléments de preuve:

Existence: définition de $Vect(x_1, ..., x_n)$

Unicité: sq deux différentes, montrer contradiction

🗘 Anki

q: Base, définition

a: Famille $\mathcal{F}=(\mathbf{e}_1,...,\mathbf{e}_{\mathbf{n}})$ de vecteurs du \mathbb{K} ev E est une base de E si \mathcal{F} est libre et génératrice

Éléments de méthode:

exemple des base canoniques, bases de référence (exemple, pour un plan orthonormé c'est $\binom{1}{0}$, $\binom{0}{1}$)

q: Caractérisation de la base

a: Soit $(e_1,...,e_n)$ famille de vecteurs de E:

Il y a équivalence entre:

1. $(e_1, ..., e_n)$ base de E

2. $\forall x \in E, \exists \text{ unique } (\lambda_1,...,\lambda_{\mathbf{n}}) \in \mathbb{K}^n \text{ tq } x = \sum_{k=1}^n \lambda_k e_k$

Éléments de preuve:

Unicité: liberté

Existence: génératrice

Éléments de méthode:

Le vecteur $(\lambda_1,...,\lambda_n)$ est appelé vecteur de coordonnées de x dans la

base
$$\mathcal{B}$$
, noté $\operatorname{Mat}_{\mathcal{B}} = \begin{pmatrix} \lambda_1 \\ \dots \\ \lambda_n \end{pmatrix}$

Anki

q: Soient E Kev et $\mathcal{F}=(\mathbf{e}_1,...,\mathbf{e}_\mathbf{n})$ famille de vecteurs de E, φ l'application de $\mathbb{K}^n\longrightarrow E$ définie par $\varphi(\lambda_1,...,\lambda_\mathbf{n})=\sum_{k=1}^n\lambda_ke_k$:

alors:

1. φ est?

2. φ injective \Leftrightarrow ?

3. φ surjective \Leftrightarrow ?

4. φ bijective \Leftrightarrow ?

a:

1. φ est linéaire de $\mathbb{K}^n \longrightarrow E, \varphi \in L(\mathbb{K}^n, E)$

2. φ injective $\Leftrightarrow \mathcal{F}$ libre

3. φ surjective $\Leftrightarrow \mathcal{F}$ génératrice

4. φ bijective $\Leftrightarrow \mathcal{F}$ base

Éléments de preuve:

1. mq linéaire, comme d'hab

2. double implication, avec Ker

3. double implication

4. automatique avec 2 et 3

q: Soient E,F Kev, $\mathcal{B}=(\mathbf{e}_1,...,\mathbf{e}_\mathbf{n})$ et $\Psi\in L(E,F)$: alors:

- 1. $(\Psi(e_1),...,\Psi(e_n))$ est famille ? de ?
- 2. Ψ injective $\Leftrightarrow (\Psi(e_1),...,\Psi(e_n))$?
- 3. Ψ surjective $\Leftrightarrow (\Psi(e_1), ..., \Psi(e_n))$?
- 4. Ψ bijective/isomorphisme $\Leftrightarrow (\Psi(e_1), ..., \Psi(e_n))$?

a:

- 1. $(\Psi(e_1),...,\Psi(e_n))$ est famille **génératrice** de $\mathbf{Im}(\Psi)$
- 2. Ψ injective $\Leftrightarrow (\Psi(e_1), ..., \Psi(e_n))$ libre
- 3. Ψ surjective $\Leftrightarrow (\Psi(e_1),...,\Psi(e_n))$ génératrice
- 4. Ψ bijective/isomorphisme $\Leftrightarrow (\Psi(e_1),...,\Psi(e_n))$ base

Éléments de preuve:

On prend $\varphi\in L(\mathbb{K}^n,E)$ tq $\varphi(\lambda_1,...,\lambda_n)=\lambda_1e_1+...+\lambda_ne_n$ On a déjà φ bijective car $(\mathbf{e}_1,...,\mathbf{e}_n)$ base

- 1. Im $\Psi = \Psi(E) = \Psi(\text{Vect}(e_1, ..., e_n))$ puis linéarité ok!
- 2. Ψ injective $\Leftrightarrow \Psi \circ \varphi$ injective (composition à gauche à droite possible par linéarité) puis utiliser proposition précédente
- 3. Ψ injective $\Leftrightarrow \Psi \circ \varphi$ surjective
- 4. ok

q: Soient E Kev, $({\bf e_1},...,{\bf e_n})$ base de E et $({\bf f_1},...,{\bf f_n})$ famille qq
conque de vecteurs de F Kev: alors ?

a: alors il existe une unique application linéaire u de E dans F tel que

$$\forall i \in [1; n], u(e_i) = f_i$$

Éléments de méthode:

Ainsi, une application linéàire est entièrement caractérisée par l'image d'une base

Donco on obtient l'équivalence suivante:

f est l'application lineaire nulle $\Leftrightarrow f$ est nulle sur une base

Éléments de preuve:

Unicité: sq deux, mq les memes, en passant par les vects car base génératrice

Existence: se reservir de φ de $\mathbb{K}^n \longrightarrow E, \varphi(\lambda_1,...,\lambda_{\mathbf{n}}) = \sum_{k=1}^n \lambda_k e_k$, isomorphisme car $(\mathbf{e}_1,...,\mathbf{e}_{\mathbf{n}})$ base, puis créer $\Psi(\lambda_1,...,\lambda_{\mathbf{n}}) = \sum_{k=1}^n \lambda_k f_k$ linéaire, puis se servir de $\varphi^{-1}(e_k) = (0,...,0,1,0,...,0)$, d'où $\psi(\varphi^{-1}(e_k)) = f_k$, donc $\psi \circ \varphi^{-1}$ convient

🗘 Anki

q: Dimension finie: un Kev est de dimension finie s'il existe une ?

a: Un Kev est de dimension finie s'il existe une partie génératrice finie

Sinon, c'est dit de dimension infinie

☆ Anki

q: Si E Kev de dimension finie, il admet ?

a: Si E Kev de dimension finie, il admet **une base**

Éléments de preuve:

Algorithmique, on parcourt la liste en rajoutant des vecteurs si besoin pour rester libre, et ça termine

q: Soient $\mathbf{x}_1,...,\mathbf{x}_n$ n vecteurs de E \mathbb{K} ev et $\mathbf{y}_1,...,\mathbf{y}_{n+1}$ vecteurs combinaisons linéaires de $\mathbf{x}_1,...,\mathbf{x}_n$ ($\forall i \in [\![1;n+1]\!], y_i \in \mathrm{Vect}(\mathbf{x}_1,...,\mathbf{x}_n)$): alors que dire de $(\mathbf{y}_1,...,\mathbf{y}_{n+1})$? a: $(\mathbf{y}_1,...,\mathbf{y}_n)$ est liée

Éléments de preuve:

Une récurrence

On fait un gros système, on peut alors échanger des lignes, on trouve un lambda non nul et on annule une autre ligne - s'ils sont tous nuls alors c'est bon

Anki

q: Soient E Kev, $\mathcal F$ une famille libre de vecteurs de E et $\mathcal G$ famille génératrice de vecteurs de E: alors que dire du cardinal de ces familles?

card
$$\mathcal{F} < \text{card } \mathcal{G}$$

Reformulation:

libre \leq génératrice

Éléments de preuve:

 $\mbox{Sq card } \mathcal{F} > \mbox{card } \mathcal{G}, \mbox{contradiction car } \mathcal{F} \mbox{ libre et } E = \mbox{Vect}(\mathcal{G}), \mbox{ et que les vecteurs de } \mathcal{F} \mbox{ sont dans ce Vect, donc liée}$

Anki

q: Soit E Kev de dimension finie:

Que dire du cardinal de ses bases?

a: Toutes les bases ont le meme cardinal

On appelle ce dardinal **dimension**, noté dim E (ou dim $_{\mathbb{K}}$ E si corps à préciser)

Éléments de preuve:

Prendre deux bases qqconques, puis utiliser le fait que le cardinal d'une famille libre est inférieur ou égal à celui d'une base génératrice

q: Soient E Kev et $(\mathbf{x}_1,...,\mathbf{x}_{\mathbf{n}})$ famille de n vecteurs de E:

Si deux des trois propriétés suivantes sont vérifiées:

- 1. ?
- 2. ?
- 3. ?

alors?

a: Si deux des trois propriétés suivantes sont vérifiées:

- 1. $\dim E = n$
- 2. $(x_1, ..., x_n)$ est une famille génératrice
- 3. $(x_1, ..., x_n)$ est une famille libre

alors la troisième l'est aussi et $(x_1,...,x_n)$ est une base de E

Éléments de preuve:

 $2 \land 3 \Longrightarrow 1$: définition de la dimension

 $1 \land 3 \Longrightarrow 2: (x_1, ..., x_n)$ non génératrice, donc $\exists y \in E \setminus$

 ${
m Vect}(x_1,...,x_n)$ et on peut donc le rajouter à $(x_1,...,x_n)$ libre par 2, or le card d'une libre est inférieur ou égal à celui d'une génératrice, donc contradiction

 $\mathbf{1} \wedge \mathbf{2} \Longrightarrow \mathbf{3}$: sq liée, donc il existe un x_i dans le vect sans x_i , donc on peut l'enlever -> contradictoire car le card d'une libre est inférieur à card d'une génératrice

Anki

q: Soit $E \mathbb{K}ev$:

Il y a équivalence entre:

- 1. E a une dimension infinie
- 2. ?
- a: Il y a équivalence entre:
- 1. E a une dimension infinie
- 2. $\forall n \in \mathbb{N}^*$, il existe famille libre de n vecteurs de E

Éléments de preuve:

 $\mathbf{1}\Longrightarrow\mathbf{2}\text{: on construit suite infinie de vecteurs }\left(x_{n}\right)_{n\in N}\operatorname{tq}\left(\mathbf{x}_{1},...,\mathbf{x}_{\mathbf{n}}\right)$ par récurrence; Init: on prend $x_{0}\in E\setminus\{0_{E}\}$ hérédité: la suite construite est non génératrice car E de dim infinie, donc il existe $x\in E\setminus\operatorname{Vect}(\mathbf{x}_{1},...,\mathbf{x}_{\mathbf{n}})$

 $\mathbf{2}\Longrightarrow\mathbf{1}:$ sq E a dim finie n; toutes familles libres on cardinal au plus n, donc il n'existe par de $(x_1,...,x_{n+1})$ libre

Anki 🗘

q: Théorème de la base incomplète

a: Soient E Kev de dimension finie et $\mathcal F$ famille **libre** de vecteurs de E: alors il existe une base $\mathcal B$ surfamille de $\mathcal F$

Éléments de preuve:

Récurrence, on construit une suite libre de cardinal strictement croissant, on s'arrete quand c'est une base, majoré par la dimension de ${\cal E}$

🗘 Anki

q: Théorème de la base extraite

a: Soient E Kev et \mathcal{G} famille génératrice finie de E:

Alors il existe ${\mathcal B}$ une base qui est sous-famille de G

Éléments de preuve:

Récurrence, en gardant les vecteurs, s'ils agrandissent l'engendré

🗘 Anki

q: Soient E Kev de dimension finie et F sous-espace vectoriel de E:

Que dire de la dimension de F? Que dire si E=F?

a: F est de dimension finie, et $\dim F \leq \dim E$

De plus, on a:

$$E = F \Leftrightarrow \dim E = \dim F$$

Éléments de preuve: TODO

Éléments de méthode:

On utilise cette propriété pour montrer égalité de deux \mathbb{K} ev; on montre dim $E=\dim F$ et seulement une inclusion, par exemple $F\subset E$ et cela suffit à conclure

q: Soient E Kev et F sev de E:

alors il existe G sev de E,?

a: alors il existe G sev de E, supplémentaire de F dans E avec $\dim G = \dim E - \dim F$

Éléments de preuve:

On complète F en une base de E, avec des vecteurs $\mathbf{g}_1,...,\mathbf{g}_{\mathbf{n}-\mathbf{k}}$ qui $\dim G=$

former ont $G = \text{Vect}(\mathbf{g}_1,...,\mathbf{g}_{\mathbf{n-k}});$ on a direct ement = n-k

Puis on montre que F et G sont supplémentaires, par caractérisation

🗘 Anki

q: Soient E Kev de dimension finie et F Kev:

Il y a équivalence entre:

- 1. F de dim finie et dim $E = \dim F$
- 2. E et F sont?

a: Il y a équivalence entre:

- 1. F de dim finie et dim $E = \dim F$
- 2. E et F sont **isomorphes**

Éléments de preuve:

 $\mathbf{1}\Longrightarrow\mathbf{2}$: Poser deux bases, utiliser $\varphi\in L(E,F), \varphi(e_i)=f_i$, unique, et l'image de \mathcal{B}_E est une base donc φ isomorphisme ok!

 $\begin{tabular}{l} {\bf 2} \Longrightarrow {\bf 1} : \mbox{ensembles sont isomorphes, on peut donc prendre la fonction} \\ \varphi \in L(E,F) \mbox{ bijective; puis, } \varphi(\mathcal{B}_E) = (\varphi(e_1),...,\varphi(e_n)) \mbox{ libre car } \varphi \\ \mbox{injective; } F = \varphi(E) = \varphi({\rm Vect}({\bf e}_1,...,{\bf e}_{\bf n})) = {\rm Vect}(\varphi(e_1),...,\varphi(e_n)), \\ \mbox{d'où } (\varphi(e_1),...,\varphi(e_n)) \mbox{ libre et génératrice de } F, \mbox{ donc base, et } \\ \mbox{dim } F = n = \dim E \\ \end{tabular}$

Éléments de méthode:

On sort un corollaire intéréssant: Soit E de dimension finie n, alors $E\cong \mathbb{K}^n$

Anki 🗘

q: Soient E,F 2 Kev de dimension finie, $\mathcal{B}_E=(\mathbf{e}_1,...,\mathbf{e}_\mathbf{n})$ base de E et $\mathcal{B}_F=(\mathbf{f}_1,...,\mathbf{f}_\mathbf{n})$ base de F:

- 1. $\dim E * F = ?$
- 2. ? est base de E * F

a:

- 1. $\dim E * F = \dim E + \dim F$
- 2. $((e_1, 0_F), ..., (e_n, 0_F), (0_E, f_1), ..., (0_E, f_n))$ est base de E * F

Éléments de preuve:

Il suffit de montrer la deuxième propriété, la première en descend;

Montrer liberté et génératrice

🗘 Anki

q: Soient E Kev, F,G 2 sev en somme directe et $\mathcal{B}_F=(\mathbf{f_1},...,\mathbf{f_n})$ base de F: alors

- 1. $\dim(F \oplus G) = ?$
- 2. ? est une base adaptée à cette somme directe

a:

- 1. $\dim(F \oplus G) = \dim F + \dim G$
- 2. $(f_1,...,f_n,g_1,...,g_m)$ est une base adaptée à cette somme directe

Éléments de preuve:

Montrer liberté: on peut introduire projecteur + linéarité

Génératrice: ça s'écrit

q: Formule de Grassman

a: Soient E Kev de dimension finie et F, G deux sev de E:

Alors F + G de dimension finie, et

$$\dim(F+G) = \dim F + \dim G - \dim F \cap G$$

Éléments de preuve:

Considérons $F\cap G$ sev de F, donc il admet un supplémentaire dans F: $F=F\cap G\oplus H$ et $\dim H=\dim F-\dim F\cap G$

Montrons que $F+G=H\oplus G$ par double inclusion:

• \subset Soit $x \in F + G \Rightarrow x = x_F + x_G$; or $x_F \in F = F \cap G \oplus H \Rightarrow \exists x_{F \cap G} \text{ et } x_H \in H \text{ tq } x_F = x_{F \cap G} + x_H,$ d'où

$$x = x_{F \cap G} + x_H + x_G = \underbrace{x_H}_{\in H} + \underbrace{x_{F \cap G} + x_G}_{\in G}$$

 $\mathrm{donc}\; x \in H \oplus G$

• \supset Soit $x \in H \oplus G$, on a alors $x = \underbrace{x_H}_{GH \cap G} + x_G \Rightarrow x \in F + \underbrace{x_G}_{GH \cap G}$

G et F + G = H + G

Montrons alors que cette somme est directe: Soit $x \in F+G$, alors $\left\{ \substack{x \in H \text{ sev de } F \\ x \in G} \right\}$, d'où $x \in F \cap G$, or $F \cap H$ et H sont en somme directe, donc $x = 0_E$ d'où H et G en somme directe

d'où $\dim F + G = \dim(H \oplus G) = \dim H + \dim G = \dim F - \dim F \cap G + \dim G$ ok

Anki

q: Définition du rang

- 1. pour une famille \mathcal{F}
- 2. pour une application linéaire f

a: Soit E Kev:

- 1. $\operatorname{rg} \mathcal{F} = \dim \operatorname{Vect}(\mathcal{F})$ ("la dimension du sev engendré par \mathcal{F} ")
- 2. $f \in L(E, F)$, rg $f = \dim \operatorname{Im}(f) = \dim f(E)$

Éléments de méthode:

On peut relier les deux définitions dans le cas où E est de dimension finie; Si $\mathcal{B}_E=(\mathbf{e}_1,...,\mathbf{e}_\mathbf{n})$ base de E, rg $f=\dim f(E)=\dim f(\mathrm{Vect}(\mathbf{e}_1,...,\mathbf{e}_\mathbf{n}))=\dim(\mathrm{Vect}(f(e_1),...,f(e_n)))=\mathrm{rg}(f(e_1),...,f(e_n))$

-> Donc le rang d'une application linéaire est le rang de l'image d'une base

q: Soient $E = \mathbb{K}^n$ et $(\mathbf{u}_1,...,\mathbf{u}_k)$ k vecteurs de E:

Si les vecteurs $\mathbf{u}_1,...,\mathbf{u}_k$ sont échelonnés, alors: ?

a: Si les vecteurs $\mathbf{u}_1,...,\mathbf{u}_k$ sont échelonnés, alors: $\mathbf{rg}(\mathbf{u}_1,...,\mathbf{u}_k)=k$

Éléments de preuve:

On fait une récurrence descendante, en créant une base - Cf cours

🗘 Anki

q: Soient E Kev et $(\mathbf{u}_1,...,\mathbf{u}_n)$ famille de vecteurs E:

Quelles sont les opérations possibles sur les vecteurs \boldsymbol{u}_i tels que les rangs restent les memes?

1. $\forall i, j \in [1; n], u_i \longleftrightarrow u_i$

2. $\forall i \in [1; n], \alpha \in \mathbb{K} * n, u_i \longleftarrow \alpha u_i$

3. $\forall i \neq j \in [1; n], \lambda \in \mathbb{K}, u_i \longleftarrow u_i + \lambda u_j$

Éléments de méthode:

Cela permet de se ramener au cas où les vecteurs sont échelonnés

Éléments de preuve:

- 1. sommes des vecteurs sont commutatives, donc on remet dans l'ordre dans le Vect
- 2. double inclusion des vects + expression du nouveau coefficient en fonction de l'ancien
- 3. double inclusion, formule de Bel

🗘 Anki

q: Soient E Kev, $f \in L(E,F)$ et E_0 un supplémentaire de Ker f dans E: alors

a: alors E_0 et $\mathrm{Im}\, f$ sont isomorphes et $f_{|E_0}$ induit un isomorphisme de E_0 sur $\mathrm{Im}\, f$

Éléments de méthode:

Cette méthode de preuve pour le théorème du rang est aussi appelée théorème du rang géométrique

Éléments de preuve:

On a $E=\operatorname{Ker} f\oplus E_0$ par hypothèse, et $\varphi=f|_{E_0}^{\operatorname{Im} f}\in L(E_0,\operatorname{Im} f);$

mq φ isomorphisme (deux doubles inclusions)

- injective car $x\in {\rm Ker}\, f\cap E_0=\{0\}$ (par la restriction de phi à E_0) car ${\rm Ker}\, f\oplus E_0$
- puis surjective $(E_0\subset E, \varphi(E_0)=f(E_0)\subset E=\mathrm{Im}\, f$, et pour l'autre sens décomposer un x par $x_{\mathrm{Ker}\, f}+x_{E_0}$)

q: Théorème du rang a: Soient E Kev de dimension finie, F Kev et $f \in L(E,F)$: alors $\dim E = \dim \operatorname{Ker} f + \operatorname{rg} f = \dim \operatorname{Ker} f + \dim \operatorname{Im} f$

Éléments de preuve:

Méthode 1: utiliser une base

Méthode 2: Ker f admet un supplémentaire dans E, E_0 ; la dimension est finie, donc $\dim E_0 = \dim E - \dim \operatorname{Ker} f$; de plus, E_0 et $\operatorname{Im} f$ sont isomorphes, donc $\dim E_0 = \dim \operatorname{Im} f$ et comme la dimension est finie $\dim E_0 = \dim \operatorname{Im} f = \operatorname{rg} f$, d'où $\operatorname{rg} f = \dim E - \dim \operatorname{Ker} f$

🗘 Anki

q: Soient E Kev, $f \in L(E,F)$ et $\dim E = \dim F$: alors que dire de l'injectivité/surjectivité/bijectivité de f? a: On a

f surjective $\Leftrightarrow f$ injective $\Leftrightarrow f$ bijective

Éléments de preuve:

 $\begin{array}{l} \mathbf{1} \Longrightarrow \mathbf{2} \text{: on a f surjective, donc } f(E) = F = \operatorname{Im} f \text{, d'où par le} \\ \text{th\'eor\`eme du rang, } \dim E = \operatorname{Im} f + \dim \operatorname{Ker} f \Rightarrow \dim E = \dim F + \\ \dim \operatorname{Ker} f \Rightarrow \dim \operatorname{Ker} F = 0 \Rightarrow \operatorname{Ker} f = \{0_E\} \Rightarrow f \text{ injective} \\ \mathbf{2} \Longrightarrow \mathbf{1} : \text{: on a donc } \dim \operatorname{Ker} f = 0 \text{, d'où par le th du rang } \dim \operatorname{Im} f = \\ \dim E = \dim F \text{, inclusion et \'egalit\'e des dimensions, donc } \operatorname{Im} f = F \text{, d'où } f \text{ surjective} \\ \end{array}$

🗘 Anki

q: Soient E,F,G Kev, $f\in L(E,F)$ et $g\in L(F,G)$: alors

- 1. $\operatorname{Im} g \circ f$?
- 2. Ker $g \circ f$?

a:

- 1. $\operatorname{Im} g \circ f \subset \operatorname{Im} g$
- 2. Ker $g \circ f \supset \text{Ker } f$

Éléments de preuve:

- 1. trivia
- 2. linéarité de g nous done que $g(0_F)=0_G$, et trivial

q: Soient E,F,G Kev de dimension finie, $f\in L(E,F)$ et $g\in L(F,G)$: alors

- 1. $\operatorname{rg}(g \circ f) \leq ?$
- 2. si f surjective, $rg(g \circ f) = ?$
- 3. si g injective, $rg(g \circ f) = ?$

a:

- 1. $rg(g \circ f) \leq min(rg f, rg g)$
- 2. si f surjective, $rg(g \circ f) = rg g$
- 3. si g injective, $rg(g \circ f) = rg f$

Éléments de preuve:

- 1. $\operatorname{Im} g \circ f \subset \operatorname{Im} g \Rightarrow \dim \operatorname{Im} g \circ f \leq \dim \operatorname{Im} g$, càd $\operatorname{rg} g \circ f \leq \operatorname{rg} g$ De plus, $\operatorname{Ker} f \subset \operatorname{Ker} g \circ f \Rightarrow \dim \operatorname{Ker} f \leq \dim \operatorname{Ker} g \circ f$ Par le théorème du rang, $\dim E - \dim \operatorname{Im} f \leq \dim E - \dim \operatorname{Im} g \circ f$ f donc $\dim \operatorname{Im} g \circ f \leq \dim \operatorname{Im} f$, d'où $\operatorname{rg} g \circ f \leq \operatorname{rg} f$
- 2. f(E)=F, donc $g\circ f(E)=g(F)\Rightarrow {\rm Im}(g\circ f)={\rm Im}\, g\Rightarrow {\rm rg}(g\circ f)={\rm rg}\, g$
- 3. considérer $g_{|\operatorname{Im} f}$, puis théorème du rang et $\operatorname{Ker} g \cap \operatorname{Im} f \subset \operatorname{Ker} g$, or $\dim \operatorname{Ker} g = 0$ car g injective. d'où $\dim \operatorname{Im} f = \dim g \circ f(E)$, ok

Anki

- q: Hyperplan définition
- a: Soient E un \mathbb{K} ev et H sev de E:

H est un hyperplan de E s'il existe φ une forme linéaire non nulle telle que

$$H=\operatorname{Ker}\varphi$$

Éléments de méthode:

En dimension finie, si $\dim E=n$, comme φ non nulle, $\operatorname{Im} \varphi \neq \{0\}$, or $\operatorname{Im} \varphi \in \mathbb{K}$ d'où $\operatorname{Im} \varphi = \mathbb{K}$; par le théorème du rang, $\dim E=\dim \operatorname{Im} \varphi + \dim \operatorname{Ker} \varphi = 1 + \dim \operatorname{Ker} \varphi$ d'où $\dim \operatorname{Ker} \varphi = \dim E - 1 = n - 1$

q: Soit H hyperplan de E:

Que dire du supplémentaire de H?

a: Les supplémentaires de H sont de dimension 1

De plus, $\forall u \in E \setminus H, E = H \oplus \mathbb{K}u$

Éléments de preuve:

Si H hyperplan, $\exists \varphi \in L(E,K)^*, H = \operatorname{Ker} \varphi$; or grace au théorème du rang (pdv géométrique), $\operatorname{Im} \varphi = \mathbb{K}$, donc les supplémentaires du noyau sont isomorphes à \mathbb{K} , donc de dimension 1.

Soit $u \in E \setminus H$, on a donc $\varphi(u) = \lambda \neq 0$ car $u \notin \operatorname{Ker} \varphi$; on réalise ensuite une analyse synthèse en décomposant x, or $\varphi(x_H) = 0$ par définition de l'hyperplan; on montre existence et unicité

🗘 Anki

q: Soit $u \in E \setminus \{0_E\}$:

alors que dire des supplémentaires de $\mathbb{K}u$

a: Les supplémentaires de $\mathbb{K}u$ sont des hyperplans

Éléments de preuve:

Comme $\mathbb{K}u$ sev de E, il admet supplémentaire S; on décompose en $x=\lambda_x u+x_s$ et on pose $\varphi E\longrightarrow \mathbb{K}, \varphi(x)=\lambda_x$; on vérifie que φ est linéaire, et donc on aura bien $\operatorname{Ker} \varphi=S$, d'où S hyperplan

🗘 Anki

q: Soient E Kev de dimension finie et $\mathcal{B}_E=(\mathbf{e_1},...,\mathbf{e_n})$ base de E:

a: $\forall x \in E$, il existe une unique décomposition $x = \sum_{k=1}^n x_k e_k$ avec $(\mathbf{x}_1, ..., \mathbf{x}_n) \in \mathbb{K}^n$ et les applications

$$f_k \: E \longrightarrow \mathbb{K}$$
$$x \mapsto x_k$$

sont appelées formes linéaires coordonnées associées à la base ${\cal E}$

$$\forall i,j \in [\![1;n]\!], f_i\!\left(e_j\right) = \begin{cases} 1 \text{ si } i=j \\ 0 \text{ sinon, si } i \neq j \end{cases}$$

q: Soient E Kev de dimension finie, $\mathcal{B}_E=({\bf e_1},...,{\bf e_n})$ base de E et H sev de E: Alors il y a équivalence entre:

- 1. $\dim H = ?$
- 2. H est un hyperplan
- 3. <équation cartésienne de l'hyperplan>

a: Il y a équivalence entre:

- 1. $\dim H = \dim E 1$
- 2. H est un hyperplan
- 3. Il existe $(\mathbf{a}_1,...,\mathbf{a}_\mathbf{n}) \in \mathbb{K}^n \setminus \{\mathbf{0}_{\mathbb{K}^n}\}$ tel que

$$x = \sum_{k=1}^{n} \lambda_k e_k \in H \Leftrightarrow \sum_{k=1}^{n} a_k \lambda_k = 0$$

Une telle équation est appelée équation cartésienne de l'hyperplan dans la base \mathcal{B}_E

Anki

q: Soient E Kev de dimension finie n et $\left(H_i\right)_{i\in [\![1:m]\!]}m$ hyperplans de E: alors

$$\dim \bigcap_{i=1}^m H_i ?$$

a: alors

$$\dim \bigcap_{i=1}^m H_i \ge n - m$$

Éléments de preuve:

Prendre $(\varphi_1,...,\varphi_n)$ formes linéaires non nulles tq $\forall i \in \llbracket 1;n \rrbracket$, $\operatorname{Ker} \varphi_k = H_k$; on a alors $x \in \bigcap_{i=1}^n H_k \Leftrightarrow \forall k \in \llbracket 1;n \rrbracket, \varphi_{k(x)} = 0$; puis on introduit $\Psi(x) = \left(\varphi_1(x),...,\varphi_{n(x)}\right)$ linéaire, puis th du rang $(\operatorname{Im} \psi \subset \mathbb{K}^m$, donc dimension majorée, on réinsère et trouve que $\dim \operatorname{Ker} \psi = \dim E - \dim \operatorname{Im} \psi \geq n - m)$

q: Soient E \mathbb{K} ev de dimension finie et $f,g\in L(E,\mathbb{K})\setminus \left\{0_{L(E,\mathbb{K})}\right\}$: On a

$$(f,g)$$
 liée \Leftrightarrow ?

a: On a

$$(f,g)$$
 liée $\Leftrightarrow \operatorname{Ker} f = \operatorname{Ker} g$

Éléments de preuve:

$$\implies$$
 $Sq(f,g)$ $li\acute{e}e$

On a alors $f = \lambda g$, donc $\forall x \in \operatorname{Ker} f \Leftrightarrow x \in \operatorname{Ker} g$, ok

Alors $\dim \operatorname{Ker} f = \dim \operatorname{Ker} g = \dim E - 1 = n-1$; ainsi on peut prendre $\varepsilon_1,...,\varepsilon_{\mathrm{n-1}}$ base de $\operatorname{Ker} f = \operatorname{Ker} g$, qu'on complète avec u en base de E, or $\forall i \in [\![1;n-1]\!], f(\varepsilon_i) = g(\varepsilon_i) = 0$, d'où $f(u) = \alpha, g(u) = \beta, a, \beta \neq 0 \Rightarrow g(u) = \frac{\beta}{\alpha} f(u)$; vraie sur une base, par linéarité vraie sur E

🗘 Anki

q: Polynômes de Lagrange

a: Soient $(x_0,...,x_n)\in\mathbb{K}^{n+1}$ un (n+1)-uplet de scalaires deux à deux distincts et $(y_0,...,y_n)\in\mathbb{K}^{n+1}$ un (n+1)-uplet de scalaires:

alors il existe un unique polynôme P de $\operatorname{\mathbf{degr\'e}}$ au $\operatorname{\mathbf{plus}}$ n tel que

$$\forall i \in [0; n], P(x_i) = y_i$$

Éléments de preuve:

On a dim
$$\mathbb{K}^{n+1}$$
 = dim $\mathbb{K}_n[X] = n+1$

Prendre $\varphi \in L(\mathbb{K}_n[X], \mathbb{K}^{n+1})$ (admis que cest linéaire) tel que

$$\varphi(P)=(P(x_0),...,P(x_n))$$

Puis justifier que c'est un isomorphisme: $\dim \mathbb{K}_n[X] = \dim \mathbb{K}^{n+1}$ donc par théorème du rang il suffira de démontrer que $\ker \varphi = \{0\}$, d'où n+1 racines pour polynome de degré n

q: Base d'interpolation de Lagrange

a: Soit $(x_0,...,x_n)\in\mathbb{K}^{n+1}$ un (n+1)-uplet de scalaires deux à deux distincts: alors la famille $(L_0,...,L_n)$ définie par

$$\forall i \in [\![0;n]\!], L_i(X) = \prod_{\substack{0 \leq j \leq n \\ j \neq i}} \frac{X-x_j}{x_i-x_j}$$

est une base de $\mathbb{K}_n[X]$ appelée base d'interpolation de Lagrange aux points $(x_0,...,x_n)$ Si P est le polynome d'interpolation tel que

$$\forall i \in [0; n], P(x_i) = y_i$$

alors

$$P = \sum_{k=0}^{n} y_k L_k$$

Anki

q: Soient E Kev et $f,g\in L(E)$: alors il y a équivalence entre:

1.
$$f \circ g = 0_{L(E)}$$

2. '

a: Il y a équivalence entre:

1.
$$f \circ g = 0_{L(E)}$$

2. Im $g \subset \operatorname{Ker} f$

Éléments de preuve:

$$\implies Sq\ f\circ g=0_{L(E)}$$

Alors $\forall y \in \text{Im } g, \exists x \in E \text{ tq } g(x) = y$

Or,
$$f(y) = f(g(x)) = 0_{L(E)} = 0 \Rightarrow y \in \operatorname{Ker} f$$

$$\sqsubseteq Sq \operatorname{Im} G \subset \operatorname{Ker} f$$

Ainsi, $\forall x \in E, g(x) \in \operatorname{Ker} f, \operatorname{donc} \, f(g(x)) = 0, \operatorname{d'où} \, f \circ g = 0_{L(E)}$