Candidate's Name	***************************************
Candidate 5 Maine.	***************************************

Sianature	•••••	yeler 3	Ran	dom	Personal No		
Signature.	••••••••••••						
		ı	1				1

(Do not write your School /Centre Name or Number anywhere on this booklet.)

P525/1 **CHEMISTRY** Paper 1

(Theory) Nov./Dec. 2024 2¾ hours

UGANDA NATIONAL EXAMINATIONS BOARD

Uganda Advanced Certificate of Education

CHEMISTRY

Paper 1 (Theory)

2 hours 45 minutes

INSTRUCTIONS TO CANDIDATES:

This paper consists of two Sections; A and B.

Section A is compulsory. Attempt six questions from Section B. Any additional question(s) attempted will not be marked.

All questions must be answered in the spaces provided. Use blue or black ink. Any work done in pencil, except drawings, will not be marked.

The Periodic Table, with relative atomic masses, is attached at the end of the paper.

Mathematical tables (3-figure tables) are adequate or silent non-programmable scientific electronic calculators may be used.

Illustrate your answers with equations where applicable.

Where necessary, use the following:

Molar gas constant, $R = 8.31 \text{ JK}^{-1} \text{ mol}^{-1}$.

Molar volume of gas at s.t.p. is 22.4 litres.

Standard temperature = 273 K.

Standard pressure = 101325 Nm^{-2} .

						Fo	or Ex	amiı	ners'	Use	Only	, 17 =					
					6	7	8	9	10	11	12	13	14	15	16	17	Total
1	2	3	4	5	0	-	-										
											.51						1 5

© 2024 Uganda National Examinations Board

Turn Over

SECTION A: (46 MARKS)

Answer all the questions in this section.

1.	(a)	Def	ine the term sta	indard el	ectrode po	tential.		(01 mark)	
	•••••	Th	is is the re	duction	potentic	al of a	n electi	ode	
	or		r cell mea					dard it	
	hyc	lrogen	electrode	under		ard con	************	s. H	(oI)
	••••••	••••••	•••••	••••••		•••••			
		••••••	••••••	•	••••••		. Projection		
	(b)	belo	standard electr w:	ode poten	tials of sor	me half ce	lls reactio	ns are given	
		C 2:	+	1 -1 -				E^{θ} (V)	
. kv ⁱ		Co ²	$^{+}(aq) + 2e -$	•	Co(s)			-0.28	
F. J. W. J.	111	Zn	$^{+}(aq) + 2e _{-}$	*	Zn (s)		ret i i i Graf	-0.76	
		Cl_{2}	(aq) + 2e —		$2 Cl{(aq)}$)		+1.36	
		MnC	$0^{-}_{4}(aq) + 8H^{+}$	(aq) + 5e	$\longrightarrow Mn^2$	$^{2+}(aq) + 4$	$H_2O_{(l)}$	+1.52	
		(i)	Identify the sagent.					st oxidising (01 mark)	
		• • • • • • • • •	rungest oxidi	******				non (o)	
£ .		(ii)	Write the cel	l notation	of the cell	construct	ed by com	hining the	
		· ·	half cells C_0 $Z_0(s)/Z_0$	2+(aq) / (caq) ($Co(s)$ and $Co^{2+}_{(9q)}$	Zn ²⁺ (aq) Co (s)	$/Zn_{(s)}$.	(01 mark)	
		(iii)	Write the eq	uation for	the overa	ll cell rea	ction for	the cell	
			Znisi	+ Co (9)	<u>,</u>)	Zn (99)	+ Cocs	(01 mark)	
		(iv) E	Calculate the $= F^{\theta}$	e.m.f. of	the cell in	b(ii)	01	(01 mark)	
			= -0.28 -	(-0.76)	= +(0.48 V	beduct	1 if + is mi	sing

2. Nylon 6, 6
$$-\frac{N}{H} - \frac{O}{C(CH_2)_4 C} + \frac{O}{n}$$
 is formed by

condensation polymerisation.

(a) S	tate the	meanin	g of the	term	cond	ensatio	n po	lymeris	ation.		
This	is The	comb	ination	Of	two	types	of	bifuncl	tional	(01 mark	ζ,
	mono										
	elimi										
•••••			Pajart	Firm	ale r	molecu	le (r m.J			_

(b)	(1)	Write the struc	ctural formula(e)	and name(s) of the monomers of
		nylon 6, 6.	11.11.11	_	(03 marks)
	H N/C	HINLE	Harrison	diamina 1	Rei H. N- (CH.).

HOCCCHILCOOH - Hexane-1,6-diamine Key H2 N-(CH2)6

Accept CLOC(CH2)4COCL Hexanedicyl dichloride Key HOOC-(CH2)4

3. Draw the structure and name the shape of each of the following ions in Table 1:

check bonds should be in close proximity or

fouching

Ion	Structure	Name of shape
NO ₃	of variable	Trigonal planar
SO3 ²⁻		Trigonal pyramida
NH4 ⁺	[HAT H] or H	Tetrahedral ·

42

Reject if charge is missing

(41/2 marks)

4.	Complete the fol	owing equations and	I name the major	organic product:
----	------------------	---------------------	------------------	------------------

(b)
$$CH_3$$
 Al_2O_3
 $Heat$
 $(1\frac{1}{2} marks)$

(c)
$$(CH_3COO)_2Ca \xrightarrow{Heat} CH_3 COCH_3$$
 or CH_3COCH_3 or CH_3COCH_3 (1½ marks)

Name Proponone
$$\frac{1}{2}$$

(d) $OH CH_3COCI$

AlCl₃

OH Or HO CH₃

(1½ marks)

5. The vapour pressure of propanone is 37330 Nm⁻² at 30 °C. When 33.4 g of cane sugar were dissolved in 120 g of propanone, the vapour pressure reduced by 1760 Nm⁻².

(b) Explain why the vapour pressure of the solution is lower than that of propanone.

(1½ marks)

Lane sugar is a non-volatile solute. It covers part of propanone surface, and reduces the escaping

8.	(a) Write an equation for the reaction that takes place dissolved in water.	e when methylamine is (1½ marks)
	CH3NH2 (99) + H2O(1) == CH3NH, (99) 1	(

(The ionic product of water,
$$K_w = 10^{-14} \text{ mol}^2 l^{-2}$$
)
$$K_b = \frac{\text{[CH}_3 \text{NH}_3][\text{OH}]}{\text{[CH}_3 \text{NH}_2]}$$

At equilibrium;
$$[CH_3NH_3] = [\bar{O}H]$$

$$K_b = \frac{[\bar{O}H]^2}{\{GH_3NH_2\}}$$

$$[5H] = 0.04 \text{ moll}^{-1} \text{ M}$$

$$H_{B} = \frac{(0.04)^{2}}{1} \text{ M}$$

$$\frac{(3\frac{1}{2})}{1}$$

$$= 0.0016 \text{ moll}^{-1}$$

9. The first ionisation energies and atomic radii for some elements of group(II) of the Periodic Table are given in Table 2.

Table 2

Element	Beryllium	Magnesium	Calcium	Strontium	Barium
First ionisation energy (kJ mol ⁻¹)	899	738	590	550	503
Atomic radius (nm)	0.089	0.136	0.174	0.191	0.198

(a) State how the first ionisation energy varies with atomic radius.

(b) Explain your answer in (a). (04 marks)
From beryllium to barium, nuclear charge increases
as protons are added to the nucleus. The screening 1
effect also increases due to increaser in the number
of complete inner energy levels of electrons.
Increase in screening effect outweighs the increase
in nuclear charge, therefore the effective nuclear
charge decreases, atomic radius increases and 64
outermost electron is far and weakly attracted
by the nucleus hence low amount of energy to
is required to remove it
the contract of the contract o
SECTION B: (54 MARKS)
Answer any six questions from this section.
Any additional question(s) answered will not be marked.
The molecular formula of a compound P is $C_3H_6Cl_2$.
(a) Write the structural formulae of all the possible isomers of P .
CH3CH2CL2 CH3 CHCH2CL (02 marks)
Cl Cl
CH3 CCH3 CLCH2CH2CH2CL (02)
EL CLCH2CH2CH2CL [02)
(b) When P was boiled with aqueous sodium hydroxide, a compound R
which reacted with hydroxylamine (NH2OH) in the presence of an acid
, and the process of the control of
and reduced Fehling's solution, was formed.
(i) Identify compounds P and R . (02 marks)
(i) Identify compounds P and R. (02 marks) P is 1,1-Dichlosopropone or CH ₃ CH ₂ CH _C L ₂
(i) Identify compounds P and R . (02 marks)

10.

Turn Over

11. (a) State two factors which affect the magnitude of lattice energy.

Magnitude of Ionic charge of Emphasize

Ionic radius of spelling.

(b) Some thermochemical data are shown below:

Enthalpy of atomisation of chlorine $= +122 \text{ kJ mol}^{-1}$. Enthalpy of atomisation of magnesium $= +148 \text{ kJ mol}^{-1}$. First ionisation energy of magnesium $= +738 \text{ kJ mol}^{-1}$. Second ionisation energy of magnesium $= +1451 \text{ kJ mol}^{-1}$. Enthalpy of formation of magnesium chloride $= -641 \text{ kJ mol}^{-1}$. First electron affinity of chlorine $= -364 \text{ kJ mol}^{-1}$.

(i) Construct an energy level diagram for the formation of magnesium chloride. (03 marks)

(ii) Determine the lattice energy of magnesium chloride. (02 marks)
$-641 = +148 + 738 + 1451 + (122 \times 2) + (-364 \times 2) + \text{Lattice energy}$
Lattice energy = -1,188 k Jmol with units 62
-1/2 with no units
(iii) Calculate the enthalpy of solution of magnesium chloride.
(The hydration energies of magnesisms in (03 marks)
(The hydration energies of magnesium ions and chloride ions are
-1891 and -381 kJ mol ⁻¹ respectively.)
$\Delta H_{\text{Hydration}}(MgCl_2) = \Delta H_{\text{Hydration}}(Mg^{2\dagger}) + 2\Delta H_{\text{Hydration}}(Cl^-)$ $= -1891 + (2x - 381) $
2,653 kJmol-
Enthalpy of solution = Athydration (MgCl2) + Atlattice (MgCl2)
= -2,653 + 1,188
$= -1,465 \text{ kJmol}^{-1}$
12. (a) One of the characteristics of transition elements, is formation of complexes. Explain how transition metal ions form complexes.
Transition metal ions have small ionic radii (11/2 marks)
and high charge density which attract strongly H
the lone pairs of electrons from molecules or negatively charged
they also have vacant a orbitals which can accommadate
lone pairs of elections from ligands.
(b) The formulae of some complex ions are shown in Table 3. Write the
name of the complex ion, its oxidation state and the co-ordination

Table 3

number of the central metal ion.

(ii)

Complex ion	Name of ion	Oxidation state	Co-ordination number	
$\left[(Co (SCN)_4) \right]^{2-}$	Tetrathiocyanatocobaltate(II	1) +2	4 H	
$\left[Cr \left(NH_{3} \right)_{4} Cl_{2} \right]^{+}$	Tetraamminedichlorochromi	um(III) +3	6 H	0.

The molecular mass of a salt, $Cu (NH_3)_x Cl_y \cdot ZH_2O$ is 276. (c) When a solution containing 1.38g of salt was reacted with excess silver nitrate solution, 2.87g of silver chloride was formed. Calculate the number of moles of chloride ions in 1 mole of the salt. (02 marks)

Molar mass of AgCL	0.005 mdes of the salt contain 0.02 moles	
= (108x1) + (35.5x1) = 143.5g	- Internet and the second seco	
143-5g of silver chloride contain 1 mole	1 male of the sult contain (0.02) moles	
2.879 of silver chloride contain (1 x 2.87) mdes	(0.005) of chloride	
= 0.02 molesx		
Agian + Clian - Agclis)		
1 mde of silver chloride is produced by 1 mole		
0.02 moles of silver chloride is produced by 0.02 moles	(02)	
276 g of the salt contain 1 mole	Land A Kabayan Land	
1.389 of the salt contain (1x138) moles		
= 0.005 mole		
	g of the salt was mixed with aqueous are ammonia liberated completely drochloric acid.	
Calculate the number of moles of	f ;	
(i) ammonia molecules in 1 _N	mole of the salt. (1½ marks)	
Moles of hydrochloric acid that reacted	0.005 moles of the salt liberated 0.01 mole of ammon	
1000 cm of solution emptain 1 male of the acid.		
10 cm 3 of solution contain (1 XID) moles of theacid	1 mole of the salt therated 0.01 moles of	
	(
NH3(09) + HCtcay, NH4Ctcay, Moles of ammonia liberated = 0.01 mole	$= 2 \text{ moles } \left(\frac{1}{2} \right)$	
(ii) water in 1 mole of the sal	t. (01 mark)	
C4(NH3)2CL4.EH2O	ા કાર્યા કરવા આવા માટે કાર્યા કાર્યા (or mark) દૂર્શિ કાર્યા કેલ્ક્સિક્સિક ઉદ્દેશને ઉદ્દેશને ઉદ્દેશને પ્રાપ્ત કર્યા	
63.5+(2x14)+(6x1)+(4x35.5)		
	The state of the s	
The number of moles of wa	ter in 1 mole of the salt is 2	
13. Write the equations to show how the f and in each case, indicate the condition	following compounds can be synthesised as for the reaction.	
(a) $CH_3CH_2CH_2Br$ from propa	none. (04 marks)	
	on the transport of the production of the control o	
American Sali		

15.	(a) State the meaning of the term bond energy. (01 mark)
	This is the amount of heat evolved when one mole of
	reveilent hands is enamed
	Or Amount of heat absorbed when one mole of covalent bonds is broken to form free gaseous atoms Reject covalent bond in
	(h) The hand discovery
	(b) The bond dissociation energies of fluorine, chlorine, bromine and iodine
	are 136, 242, 193 and 151 kJ mol ⁻¹ respectively
	(i) State the trend in the bond dissociation energies of the elements.
	(11/2 m gules)
	Dond dissociation energy decreases from chlorine
	to Lodine but with plourine having an abnormally
	Tow value of bond dissociation energy (12)
	(ii) Evnlain von
	From chlorine to Todios others. (3½ marks)
	From chlorine to Iodine, atomic radius increases,
	bond length increases and bond strength decreases,
	resulting into weaker attraction between the atoms
	in the molecule. Hence amount of energy required
	to break the bonds decreases. Flourine has an abnormally
	describe has an abnormally
	Tow value of bond dissociation energy because it has the smallest atomic radius which makes the non-bonding electron pairs on the electron
	electron pairs on the electron makes the non-bonding
	electron pairs on the flourine atoms very close to each
	other causing a strong repulsion. This strong repulsion
	for apart weakening It
	the flourine- flourine bond hence low amount of energy (32)
	(c) Write an equation to show how cold dilute sodium hydroxide solution
	reacts with;
	(i) fluorine. (1½ marks)
ر. الر ا إو	2 Fz(g) + 2 NaOH(a2) -> UFz(g) + 2 NaF(ag) + H2O(1)
	Or 2F2191 + 2 OH caz) -> OF2191 + 2Fin + H2O11
	(ii) chlorine. (1½ marks) $Cl_{2} \cdot q_{1} + 2 NaOH_{caq_{1}} \longrightarrow NaCl_{(aq)} + NaClO_{(aq)} + H_{2}O_{(1)}$
	Or Cl2(9) + 20H (29) -> Cl (29) + Cl (20) + H2O,

16. Propan-1-ol (boiling point 97 °C) and water (boiling point 100 °C) are miscible in all proportions. A mixture of the two liquids containing 72 % propan-1-ol boils at 88 °C.

(a) Sketch a labelled boiling point-composition diagram for the mixture of propan-1-ol and water.

(03 marks)

(b) Briefly explain;

(i) why propan-1-ol and water form a minimum boiling point mixture. (04 marks)

The mixture has a minimum boiling point because it Rapult's law. This is because forces deviates positively from of attraction between all propan-1-01 molecules Water molecules are on average Weaker The forces between individual propan-1-01 molecules of attraction and the forces of attraction between individual water molecules. This increases the tendency molecules to escape from the solution than from the pure liquids Therefore the total vapour pressure above liquids will be greater than what is predicted by Raoult's law and this corresponds to a minimum boiling point

what would happen when a mixture containing 30 % propan-1-ol is fractionally distilled. (02 marks)

When a mixture containing 30% propan-1-01 is heated, it boils at a temperature to to form a vapour of oz composition, V, containing a higher percentage of propan-1-01 than the solution. When the vapour is condensed, it forms a liquid l, Repeated vapourization as the vapour still richer in propan-1-01 to Repeated vapourization and distillation will yield the azeotropic mixture as the distillate and pure propan-1-01 as the residue.

17. Tin and lead are elements in group(IV) of the Periodic Table. Describe the reactions of the elements with;

cold water. (a) (03 marks)

Tin does not react with cold water. Lead reacts with cold soft water containing oxygen

to form slightly soluble lead(II) hydroxide

2 Pb(s) + 2 H₂O₍₁₎ + O₂(9) \longrightarrow 2 Pb(OH)₂(5)

(b) sodium hydroxide solution.

 $(3\frac{1}{2} \text{ marks})$

Tin reacts with not concentrated sodium hydroxide solution to form sodium stannate (IV) and hydrogen gas

5n (s) + 20H (eq) + H2O(1) -> 5nO3 (aq) + 2H2(g) Lead reacts with hot concentrated sodium hydroxide solution to form sodium plumbate(II.) X and hydregen 995

Pb(s) + 2.0H (aq) ---> PbO2 (aq) + H2(g)

(c) hot concentrated sulphuric acid.

Hot concentrated sulphuric acid oxidizes both tin and lead to tin(IV) sulphate and lead(II) sulphate respectively and itself sulphur dioxide gas and water.

5n(s) + 4 H2 504 (aq) -> Sn(504)2 (aq) + 2502(g) + 4 H2O(1) Pb(s) + 2H2SO4(99) -> PbSO4(5) + SO2(9) + 2H2O(1)