Задача 7. Неравенство для производной Из письменного экзамена в ШАД 2019 года

Вещественнозначная функция f определена на отрезке [a;b] $(b-a\geqslant 4)$ и дифференцируема на нём. Докажите, что найдётся точка $x_0 \in (a;b)$, для которой

$$f'(x_0) < 1 + f^2(x_0)$$

Решение. Заметим прежде всего, что

$$\frac{f'(x)}{1 + f^2(x)} = (\operatorname{arctg}(f(x)))'$$

По теореме Лагранжа о среднем значении для $a < x_1 < x_2 < b$ найдётся точка $x_1 < x_0 < x_2$, для которой

$$|\operatorname{arctg} f(x_2) - \operatorname{arctg} f(x_1)| = \frac{f'(x_0)}{1 + f^2(x_0)} (x_2 - x_1)$$

Отсюда

$$\frac{f'(x_0)}{1 + f^2(x_0)}(x_2 - x_1) \leqslant \pi$$

Следовательно,

$$\frac{f'(x_0)}{1 + f^2(x_0)} \leqslant \frac{\pi}{x_2 - x_1} < 1$$

 $\frac{f'(x_0)}{1+f^2(x_0)}\leqslant \frac{\pi}{x_2-x_1}<1$ для некоторых x_1,x_2 : ведь $b-a\geqslant 4$, то есть найдётся x_1,x_2 , для которой $x_2 - x_1 > \pi$.