

WHAT IS CLAIMED IS:

1 1. A program storage device, comprising:
2 program instructions executable by a processing device to perform operations for
3 estimating motion trials in video image sequences, the operations comprising:
4 providing data points representing information from an image sequence; and
5 performing regression clustering using a K-Harmonic Means function to cluster the
6 data points and to provide motion information regarding the data points.

1 2. The program storage device of claim 1, wherein the performing regression
2 clustering using the K-Harmonic Means function to cluster the data points and to provide
3 motion information regarding the data points further comprises providing motion vectors for
4 the data points.

1 3. The program storage device of claim 1, wherein the performing regression
2 clustering using the K-Harmonic Means function to cluster the data points and to provide
3 motion information regarding the data points further comprises providing at least one motion
4 path for the data points.

1 4. The program storage device of claim 1, wherein the performing regression

2 clustering further comprises:

3 selecting a number of regression clusters, K, for data points from an image sequence;

4 initializing regression functions for each of the K clusters to estimate the centers of

5 motion for the data points;

6 calculating the distances from each data point to each of the K regression functions;

7 calculating a membership probability and a weighting factor for each data point based

8 on distances between the K regression functions and each data point;

9 applying regression clustering using a K-Harmonic Means function to recalculate the

10 K regression functions;

11 comparing a change in membership probability and a change in the K regression

12 function to a predetermined threshold; and

13 using motion paths represented by the K regression functions when the change in

14 membership probability and change in the K regression function are less than a

15 predetermined threshold.

1 5. The program storage device of claim 4, wherein the initializing regression

2 functions for each of the K clusters further comprises randomly initializing regression

3 functions for each of the K clusters.

1 6. The program storage device of claim 4, wherein the program instructions
2 further include instructions for performing the operations comprising repeating the
3 calculating the distances, the calculating membership probability and weighting factors, and
4 applying regression clustering until the change in membership probability and change in the
5 K regression function is not less than the predetermined threshold.

1 7. The program storage device of claim 4, wherein the weighting factor is chosen
2 to allow the K regression functions to be optimized with less sensitivity to initialization of the
3 K regression functions.

1 8. The program storage device of claim 4 further comprising extracting data
2 according to a predetermined criteria to provide the data points.

1 9. The program storage device of claim 8, wherein the extracting data according
2 to the criteria comprises portioning data according to color.

1 10. The program storage device of claim 4, wherein the program instructions
2 further include instructions for performing the operations comprising preparing each of the
3 data points as x-y-coordinate data points.

1 11. The program storage device of claim 4, wherein the program instructions
2 further include instructions for performing the operations comprising using the K regression
3 functions to render the image sequence with motion paths shown on a display.

1 12. The program storage device of claim 11, wherein the using the K regression
2 functions to render the image sequence further comprises overlaying the K regression
3 functions on the video images to show motion between the image sequences.

1 13. A system for estimating motion trials in video image sequences, comprising:
2 an image sequence retrieval module for retrieving a current image and a first
3 reference image and providing data points representing information from the current image
4 and the first reference image; and
5 a motion estimator, coupled to the image sequence retrieval module, for performing
6 regression clustering using a K-Harmonic Means function to cluster the data points and to
7 provide motion information regarding the data points.

1 14. The system of claim 13, wherein the motion information regarding the data
2 points further comprises motion vectors for the data points.

1 15. The system of claim 13, wherein the motion information regarding the data
2 points further comprises at least one motion path for the data points.

1 16. The system of claim 13, wherein the motion estimator performs regression
2 clustering by selecting a number of regression clusters, K, for data points from an image
3 sequence, initializing regression functions for each of the K clusters to estimate the centers of
4 motion for the data points, calculating the distances from each data point to each of the K
5 regression functions, calculating a membership probability and a weighting factor for each
6 data point based on distances between the K regression functions and each data point,
7 applying regression clustering using a K-Harmonic Means function to recalculate the K
8 regression functions, comparing a change in membership probability and a change in the K
9 regression functions to a predetermined threshold and using motion paths represented by the
10 K regression functions when the change in membership probability and change in the K
11 regression function are less than a predetermined threshold.

1 17. The system of claim 16, wherein the motion estimator randomly initializes
2 regression functions for each of the K clusters.

1 18. The system of claim 16, wherein the motion estimator repeats the calculation
2 of the distances, the membership probability and weighting factors, and applies regression
3 clustering until the change in membership probability and change in the K regression
4 function is not less than the predetermined threshold.

1 19. The system of claim 16, wherein the weighting factor is chosen to allow the K
2 functions to be optimized with less sensitivity to initialization of the K regression functions.

1 20. The system of claim 16, wherein the motion estimator extracts data according
2 to predetermined criteria.

1 21. The system of claim 20, wherein the motion estimator extracts data
2 according to color.

1 22. The system of claim 16, wherein the image sequence retrieval module
2 prepares each of the data points as x-y-coordinate data points.

1 23. The system of claim 16 further comprising a processor for using the K
2 regression functions to render the image sequence with motion paths shown on a
3 display.

1 24. The system of claim 23, wherein the processor overlays the K
2 regression functions on the video images to show motion between the current image
3 and the first reference image.

1 25. A method for estimating motion trials in video image sequences, the
2 method comprising:
3 providing data points representing information from an image sequence; and
4 performing regression clustering using a K-Harmonic Means function to
5 cluster the data points and to provide motion information regarding the data points.

1 26. The method of claim 25, wherein the performing regression clustering
2 further comprises:
3 selecting a number of regression clusters, K, for data points from an image
4 sequence;
5 initializing regression functions for each of the K clusters to estimate the
6 centers of motion for the data points;
7 calculating the distances from each data point to each of the K regression
8 functions;
9 calculating a membership probability and a weighting factor for each data
10 point based on distances between the K regression functions and each data point;
11 applying regression clustering using a K-Harmonic Means function to
12 recalculate the K regression functions;
13 comparing a change in membership probability and a change in the K
14 regression functions to a predetermined threshold; and
15 using motion paths represented by the K regression functions when the change
16 in membership probability and change in the K regression functions are less than a
17 predetermined threshold.

1 27. A system for estimating motion trials in video image sequences, comprising:
2 means for retrieving a current image and a first reference image and providing data
3 points representing information from the current image and the first reference image; and
4 means for performing regression clustering, coupled to the means for retrieving and
5 providing, wherein the means for performing regression clustering uses a K-Harmonic Means
6 function to cluster the data points and to provide motion information regarding the data
7 points.

1 28. The system of claim 27, wherein the means for performing regression
2 clustering further comprises means for selecting a number of regression clusters, K, for data
3 points from an image sequence, means for initializing regression functions for each of the K
4 clusters to estimate the centers of motion for the data points, means for calculating the
5 distances from each data point to each of the K regression functions, means for calculating a
6 membership probability and a weighting factor for each data point based on distances
7 between the K regression functions and each data point, means for applying regression
8 clustering using a K-Harmonic Means function to recalculate the K regression functions,
9 means for comparing a change in membership probability and a change in the K regression
10 functions to a predetermined threshold and means for using motion paths represented by the
11 K regression functions when the change in membership probability and change in the K
12 regression functions are less than a predetermined threshold.

1 29. A system for estimating motion trials in video image sequences, comprising:
2 means for storing a current image and a first reference image;
3 means, coupled to the means for storing, for retrieving and providing data points
4 representing information from the current image and the first reference image; and
5 means, coupled to the means for retrieving, for performing regression clustering using
6 a K-Harmonic Means function to cluster the data points and to provide motion information
7 regarding the data points.

1 30. The system of claim 29, wherein the means for performing regression
2 clustering further comprises:
3 means for selecting a number of regression clusters, K, for data points from an image
4 sequence,
5 means for initializing regression functions for each of the K clusters to estimate the
6 centers of motion for the data points,
7 means for calculating the distances from each data point to each of the K regression
8 functions,
9 means for calculating a membership probability and a weighting factor for each data
10 point based on distances between the K regression functions and each data point,
11 means for applying regression clustering using a K-Harmonic Means function to
12 recalculate the K regression functions,
13 means for comparing a change in membership probability and a change in the K
14 regression functions to a predetermined threshold; and
15 means for using motion paths represented by the K regression functions when the
16 change in membership probability and change in the K regression functions are less than a
17 predetermined threshold.