5.2.1 – SAS: Logistic Regression with Polytomous Response

Example: Individuals were surveyed regarding how important they viewed AC and power steering in cars. The sex (M or W), age (1=18-23, 2=24-40, 3=40+), and response (1=little importance, 2=important, 3=very important) of each individual was recorded. The count of responses in each sex/age/response combination was summarized. We want to determine whether and how the sex and age of individuals affects their response.

```
/* Define options */
ods html image dpi=300 style=journal;
/******** Example 1 *******************/
      /* Nominal Logistic Regression */
data car; input sex $ age response count @@; cards;
             W 1 2 12
 W 1 1 26
                         W 1 3
                                7
                                     W 2 1
                                     W 3 2 14
 W 2 2 21
             W 2 3 15
                         W 3 1 5
 W 3 3 41
             M 1 1 40
                         M 1 2 17
                                     M 1 3
 M 2 1 17
             M 2 2 15
                         M 2 3 12
                                     M 3 1
 M 3 2 15
             M 3 3 18
/* Note that this is equivalent to:
    data car; input sex $ age response; cards;
      W 1 1
      W 1 1
      ... (26 times)
      W 1 1
      W 1 2
      W 1 2
      ... (12 times)
      W 1 2
      . . .
           (all the other categorical combinations)
      . . .
      M 3 3
      M 3 3
      ... (18 times)
      M 3 3
      ;
*/
```

```
/* Define dummy variables */
data car; set car;
  S = 1;
  if sex = 'W' then S = 0;
  A2 = 0;
  if age = 2 then A2 = 1;
  A3 = 0;
  if age = 3 then A3 = 1;
run;
/* Run nominal logistic regression */
/* I want response=1 to be last so
   it will be the reference category */
proc sort data=car; by descending response;
proc logistic data=car;
  freq count;
  model response(order=data) = S A2 A3 / link=glogit;
    /* glogit is generalized logit function,
       specifies nominal logistic regression */
  title1 'Nominal Logistic Regression';
run;
```

Nominal Logistic Regression

Response Profile				
Ordered Value	Total Frequency			
1	3	101		
2	2	94		
3	1	105		

Logits modeled use response=1 as the reference category.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Testing Global Null Hypothesis: BETA=0							
Test Chi-Square DF Pr > ChiSq							
Likelihood Ratio	77.8419	6	<.0001				
Score	74.9761	6	<.0001				
Wald	62.9703	6	<.0001				

Analysis of Maximum Likelihood Estimates						
Parameter	response	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	3	1	-1.0391	0.3305	9.8843	0.0017
Intercept	2	1	-0.5908	0.2840	4.3286	0.0375
S	3	1	-0.8129	0.3210	6.4122	0.0113
S	2	1	-0.3881	0.3005	1.6677	0.1966
A2	3	1	1.4780	0.4009	13.5912	0.0002
A2	2	1	1.1283	0.3416	10.9059	0.0010
A3	3	1	2.9165	0.4229	47.5594	<.0001
A3	2	1	1.5876	0.4029	15.5270	<.0001

Odds Ratio Estimates						
Effect	response	Point Estimate	95% Wald Confidence Limits			
s	3	0.444	0.236	0.832		
S	2	0.678	0.376	1.223		
A2	3	4.384	1.998	9.620		
A2	2	3.090	1.582	6.037		
A3	3	18.477	8.066	42.327		
A3	2	4.892	2.221	10.775		

Ordinal Logistic Regression

Response Profile				
Ordered Value	Total Frequency			
1	3	101		
2	2	94		
3	1	105		

Probabilities modeled are cumulated over the lower Ordered Values.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Score Test for the Proportional Odds Assumption						
Chi-Square DF Pr > ChiSq						
0.7139 3 0.8699						

Testing Global Null Hypothesis: BETA=0						
Test Chi-Square DF Pr > ChiSq						
Likelihood Ratio	77.2485	3	<.0001			
Score	70.0452	3	<.0001			
Wald	68.0278	3	<.0001			

Analysis of Maximum Likelihood Estimates						
ParameterDFEstimateStandard ErrorWald Chi-SquarePr > Chi-Square					Pr > ChiSq	
Intercept	3	1	-1.6546	0.2536	42.5742	<.0001
Intercept	2	1	-0.0433	0.2303	0.0354	0.8508
S		1	-0.5762	0.2261	6.4936	0.0108
A2		1	1.1468	0.2773	17.1079	<.0001
A3		1	2.2322	0.2904	59.0806	<.0001

Odds Ratio Estimates					
Effect	Point Estimate 95% Wald Confidence Limits				
S	0.562	0.361	0.875		
A2	3.148	1.828	5.421		
A3	9.320	5.275	16.467		