МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет компьютерных наук

Кафедра технологий обработки и защиты информации

Предпроектное исследование
для разработки мобильного приложения
«Оценка качества продукции "QWality"»

Испол	нители
-	Р.Ю. Перцев
-	Д.С. Сушкова
	В.А. Баранов
	В.В. Лихачев
	Д.В. Фролов
.	М.В. Бен Амор
Заказч	ик
	В.С. Тарасов
	Воронеж 2025

Содержание

. 2
. 3
. 3
. 4
. 4
. 4
. 5
. 7
. 9
. 9

1. Целевая аудитория

Наше приложение ориентировано на пользователей, заинтересованных в мониторинге состояния солнечных панелей и своевременном выявлении дефектов.

- Владельцы солнечных панелей
- Обслуживающие компании
- Компании производящие солнечные панели

1.1. Как приложение учитывает особенности пользователей

Удобство перед функционалом:

- Интуитивно понятный интерфейс, позволяющий быстро анализировать состояние панелей даже пользователям без технического опыта.
- Простая навигация и доступ к ключевой информации

Точность данных:

- Анализ тепловизионных снимков с камер, что позволяет выявлять дефекты без необходимости физического осмотра.
- Применение алгоритмов машинного обучения для прогнозирования возможных неисправностей.

Приоритет эффективности диагностики:

- Автоматическое распознавание типов дефектов (микротрещины, загрязнения, деградация элементов).
- Возможность оценки критичности проблемы.

2. Обзор аналогов

В данном разделе представлен анализ существующих решений для детекции дефектов на солнечных панелях. Цель исследования — выявить их сильные и слабые стороны, определить конкурентные преимущества разрабатываемого решения.

2.1. Критерии сравнения

Для сравнения аналогов были выбраны следующие ключевые критерии:

- Автоматическое обнаружение дефектов.
- Поддержка работы с тепловизионными снимками.
- Генерация отчетов о состоянии панелей.
- Уведомления о критических повреждениях.

2. Технологии:

- Использование машинного обучения и компьютерного зрения.
- Интеграция с камерами.
 - 3. Пользовательский опыт (UX/UI):
- Удобство интерфейса.
- Дополнительные платные функции.
 - 4. Монетизация:
- Подписки с разными уровнями.
 - 5. Ограничения:
- Требования к высокому качеству исходных снимков

2.2. Анализ существующих решений

1. ISSART

Описание:	Оборудование	и ПО	для	диагностики	солнечных	панелей	C
использованием	ИИ.						

1101101	
	Плюсы:
	— Персонализация интерфейса
	— Интерактивная отчетность
	— Градация дефектов
	Минусы:
	— Отсутствие настройки уверенности нейросети
	— Отсутствие мобильного приложения
	— Непостоянная техническая поддержка
	— Сравнительно долгий анализ изображения
	— Отсутствие пробной версии
	2. СолТех
	Описание: Сервис для анализа солнечных панелей с использованием
ИИ.	
	Плюсы:
	— Интеграция в 1С
	— Интерактивная отчетность
	— Модульные решения
	Минусы:
	— Необходимость обращения в техническую поддержку
	— Отсутствие тонкой настройки уверенности нейросети
	— Отсутствие пробной версии

2.3. Выводы

Проведенный анализ позволил выявить следующие ключевые моменты для разработки нашего решения:

Конкурентные преимущества:

- Автоматизированный анализ снимков без необходимости физического подключения к панелям.
- Простота использования для владельцев солнечных электростанций и компаний производителей.

Ограничения конкурентов:

- Требование специализированного оборудования.
- Высокая стоимость решений.
- Отсутствие пробной версии.
- Непостоянная техническая поддержка.
- Отсутствие мобильного приложения.

	ISSART	СолТех	QWality
Мобильная	-	+	+
версия			
Пробная версия	-	-	+
Наличие тонкой	-	-	+
настройки			
нейросети			

3. SWOТ-анализ

Сильные стороны:

- Высокая точность обнаружения дефектов использование машинного обучения позволяет выявлять повреждения, которые сложно заметить человеку.
- Автоматизация контроля качества исключает человеческий фактор.
- Работа в реальном времени система анализирует панели без остановки производства.
- Интеграция с облачными и локальными серверами позволяет выбрать наиболее подходящий вариант развертывания.
- Оптимизация затрат уменьшение количества бракованных панелей снижает издержки производства.

Слабые стороны:

- Требования к качеству данных некачественные изображения снижают точность детектирования.
- Ограниченность модели требуется обучение на новых типах дефектов, что может занять время.

Возможности:

- Улучшение модели с помощью новых данных возможность постоянного обучения и повышения точности.
- Выход на международный рынок стандарты контроля качества панелей применимы в разных странах, что дает потенциал для масштабирования.
- Подключение к ERP-системам интеграция с системами управления производством для автоматического учета брака и корректировки процессов.

Угрозы:

- Конкуренция на рынке могут появляться аналогичные решения от крупных технологических компаний.
- Изменения в технологиях производства новые виды панелей могут потребовать кардинального пересмотра алгоритмов.
- Сбои в работе системы возможны ошибки детектирования, ложные срабатывания или пропуск дефектов, что может повлиять на репутацию.
- Высокие требования к качеству входных данных если съемка будет проходить в неподходящих условиях, модель может давать некорректные результаты.
- Экономические факторы кризисы, рост цен на оборудование или снижение спроса на солнечные панели могут повлиять на востребованность технологии.

4. Оценка SAM

Рынок солнечных панелей в России в 2025 году продолжает расти. Объем солнечной энергетики в России к 2025 году может достичь 4-5 ГВт. Это является значительным ростом по сравнению с предыдущими годами. В 2022 году Россия установила около 1,2 ГВт солнечных панелей. По прогнозу установка солнечных панелей вырастет на 20-30% в ближайшие несколько лет.

Если учесть все вышеперечисленные факторы, то потенциальный объем рынка может достигать 100-300 миллионов рублей при условии, что мы займём 10% от общего рынка.

5. Оценка **SOM**

Географические ограничения: Начнем с Воронежа и крупных регионов Центральной России. В 2025 году мы можем охватить 1-2% рынка в этих регионах.

Технические возможности: Наше решение будет опираться на передовые технологии машинного обучения, которые позволят повысить точность прогнозов.

На старте работы мы можем охватить 1-2% рынка. Это эквивалентно 100-200 пользователей в год примерная выручка за первый год работы может составить 5-10 млн рублей.