# **Tutorial Sheet-5 (Unit-2)**

#### **Question-1:**

Given a BJT with a base-emitter voltage drop ( $V_{BE}$ ) of 0.7 V and a collector current ( $I_C$ ) of 2 mA, determine the values of base current ( $I_B$ ) and collector-emitter voltage drop ( $V_{CE}$ ) for the transistor in the active region. Assume  $\beta=100$ .

#### Solution:

- 1. Calculate  $I_B$  using  $I_C=eta imes I_B$ :  $I_B=rac{I_C}{eta}=rac{2\,\mathrm{mA}}{100}=0.02\,\mathrm{mA}=20\,\mu\mathrm{A}$
- 2. Determine  $V_{CE}$  using  $V_{CE}=V_{CC}-(I_C\times R_C)$ , where  $V_{CC}$  is the collector supply voltage and  $R_C$  is the collector resistor. For simplicity, let's assume  $V_{CC}=10~V$  and  $R_C=4~k\Omega$ :

$$V_{CE} = 10\,V - (2\,mA imes 4\,k\Omega) = 10\,V - 8\,V = 2\,V$$

So, 
$$I_B=20\,\mu\mathrm{A}$$
 and  $V_{CE}=2\,V.$ 

#### **Question-2:**

For a BJT with  $\beta=150$ , if the base current ( $I_B$ ) is 40  $\mu$ A, calculate the collector current ( $I_C$ ) and the current gain ( $\alpha$ ).

#### Solution:

1. Use the current gain equation  $I_C=eta imes I_B$ :

$$I_C=150 imes40\,\mu\mathrm{A}=6\,mA$$

2. Calculate lpha using  $lpha=rac{I_C}{I_E}$  , where  $I_E$  is the emitter current. Since  $I_E=I_C+I_B$ :

$$I_E = I_C + I_B = 6 \, mA + 40 \, \mu {
m A} = 6.04 \, mA$$
  $lpha = rac{6 \, mA}{6.04 \, mA} pprox 0.993$ 

So, 
$$I_C=6\,mA$$
 and  $lphapprox0.993$ .

#### **Question-3:**

For an inverting amplifier with an input resistor ( $R_1$ ) of 10 k $\Omega$  and a feedback resistor ( $R_f$ ) of 20 k $\Omega$ , calculate the voltage gain ( $A_v$ ).

#### Solution:

The voltage gain for an inverting amplifier is given by  $A_v=-rac{R_f}{R_1}.$ 

$$A_v = -rac{20\,k\Omega}{10\,k\Omega} = -2$$

So, the voltage gain is -2.

#### **Question-4:**

Given a BJT with a collector current  $(I_C)$  of 2 mA, a base current  $(I_B)$  of 20  $\mu$ A, and a collector-emitter voltage drop  $(V_{CE})$  of 5 V, calculate the current gain  $(\beta)$  and the transistor power dissipation  $(P_{diss})$ .

#### Solution:

1. Calculate  $\beta$  using the formula  $\beta=\frac{I_C}{I_B}$ :

$$eta=rac{2\,mA}{20\,\mu A}=100$$

2. Calculate the power dissipation using  $P_{diss} = V_{CE} imes I_{C}$ :

$$P_{diss}=5\,V imes 2\,mA=10\,mW$$

So, 
$$\beta=100$$
 and  $P_{diss}=10\,mW$ .

#### **Question-5:**

For a non-inverting amplifier with an input resistor  $(R_1)$  of 5 k $\Omega$  and a feedback resistor  $(R_f)$  of 15 k $\Omega$ , calculate the voltage gain  $(A_v)$ .

#### Solution:

The voltage gain for a non-inverting amplifier is given by  $A_v=1+rac{R_f}{R_1}.$ 

$$A_v = 1 + \frac{15 \, k\Omega}{5 \, k\Omega} = 1 + 3 = 4$$

So, the voltage gain is 4.

### **Question-6:**

In the circuit shown in the figure, the input voltage Vi is 20 V, VBE = 0 V and VCE = 0 V. What are the values of IB, IC,  $\beta$ ?

#### **Solution:**



$$I_{B} = \frac{V_{i}}{R_{B}} = \frac{20 \, V}{500 \, k\Omega} = 40 \, \mu A \left[ \because V_{BE} = 0V \right]$$

$$I_{C} = \frac{V_{CC}}{R_{C}} = \frac{20 \, V}{4 \, k\Omega} = 5 \, mA \left[ \because V_{CE} = 0V \right]$$

$$\beta = \frac{I_{C}}{I_{B}} = \frac{5 \, mA}{40 \, \mu A} = 125$$

## **HomeWork**

### **Question-1:**

In a transistor connected in the common base configuration,  $\alpha$ =0.95,  $I_E$  =1 mA. Calculate the values of  $I_C$  and  $I_B$ .

Solution:  $\alpha = I_C/I_E$ 

$$I_C = \alpha I_E = 0.95 \times 1 = 0.95 \ mA$$

$$I_E = I_B + I_C$$

$$I_B = I_C - I_E = 1 - 0.95 = 0.05 \text{ mA}$$

#### **Question-2:**

In a BJT, the emitter current id 8 mA and  $I_B = I_C/100$ . Determine  $I_C$  and  $I_E$ .

Section 
$$I_E = I_C + I_B$$

$$I_E = I_C + \frac{1}{100} I_C = \frac{101}{100} I_C$$

$$I_C = 8 \times \frac{1}{100} I_C = 0.0792 \text{ mA}$$

#### **Question-3:**

Find the output voltage for the circuit shown in Fig. below.



Solution. Voltage gain, 
$$A_{CL} = -\frac{R_f}{R_i} = -\frac{40 \text{ k}\Omega}{1 \text{ k}\Omega} = -40$$

#### **Question-4:**

For the noninverting amplifier circuit shown in Fig., find peak-to-peak output voltage.



Fig. 25.59

**Solution.** The input signal is 2 V peak-to-peak.

Voltage gain, 
$$A_{CL} = 1 + \frac{R_f}{R_i} = 1 + \frac{5 \text{ k}\Omega}{1 \text{ k}\Omega} = 1 + 5 = 6$$

:. Peak-to-peak output voltage =  $A_{CL} \times v_{inpp}$  = 6 × 2 = 12 V

#### **Question-5:**

Consider an op-amp subtractor circuit with two input voltages,  $V_1=3~V$  and  $V_2=1~V$ , and resistors  $R_1=5~k\Omega$  and  $R_2=2~k\Omega$  in the feedback loop.

Determine the output voltage ( $V_{
m out}$ ).

#### Solution:

The output voltage ( $V_{\mathrm{out}}$ ) in an op-amp subtractor circuit is given by the formula:

$$V_{
m out} = -\left(rac{R_f}{R_1}\cdot V_1 - rac{R_f}{R_2}\cdot V_2
ight)$$

In this case,  $R_f$  is the feedback resistor, which is  $R_f=R_2=2\,k\Omega$ .

#### **MCQs**

# <u>Q1.</u> In a common-emitter configuration, the phase difference between the input and output signals is:

- a.0 degrees
- b. 45 degrees
- c. 90 degrees
- d. 180 degrees

Answer: d. 180 degrees

- 2. The current gain (β\betaβ) of a BJT in the common-emitter configuration is given by:
- a. IE/IB
- b. IB/IE
- c. IC/IB
- d. IB/IC

Answer: c. IC/IB

- 3. In a BJT, the region of operation where both the emitter-base junction and the collector-base junction are forward biased is called:
- a. Active region
- b. Cutoff region
- c. Saturation region
- d. Breakdown region

Answer: c. Saturation region

- 4.In a BJT, the majority charge carriers in the base region of an NPN transistor are:
- a. Electrons
- b. Holes
- c. Ions
- d. None

Answer: b. Holes

- 5. For a BJT to operate in the active region, the emitter-base junction must be:
- a. Forward biased, and the collector-base junction must be forward biased
- b. Reverse biased, and the collector-base junction must be forward biased
- c. Forward biased, and the collector-base junction must be reverse biased
- d. Reverse biased, and the collector-base junction must be reverse biased

Answer: c. Forward biased, and the collector-base junction must be reverse biased

- 6. The primary difference between enhancement-mode and depletion-mode MOSFETs is:
- a. The type of substrate used
- b. The gate structure

- c. The threshold voltage
- d. The channel formation

**Answer: d. The channel formation** 

#### 7.In an n-channel MOSFET, the channel is formed when:

- a. The gate-source voltage is less than the threshold voltage
- b. The gate-source voltage is equal to the threshold voltage
- c. The gate-source voltage is greater than the threshold voltage
- d. The gate-source voltage is zero

Answer: c. The gate-source voltage is greater than the threshold voltage

# 8. In a MOSFET, the region where the drain current is almost constant and independent of the drain-source voltage is called:

- a. Ohmic region
- b. Active region
- c. Saturation region
- d. Cutoff region

Answer: c. Saturation region

#### 9. The primary function of the gate terminal in a MOSFET is to:

- a. Control the source voltage
- b. Control the drain current
- c. Control the body current
- d. Provide a reference voltage

Answer: b. Control the drain current

#### 10.In a MOSFET, the body effect refers to the:

- a. Effect of the gate voltage on the body
- b. Effect of the source voltage on the body
- c. Effect of the drain voltage on the body
- d. Effect of the body voltage on the threshold voltage

#### Answer: d. Effect of the body voltage on the threshold voltage

#### Q11. In a MOSFET, the polarity of the inversion layer is the same as that of the

- a. Charge on the gate electrode
- b. Minority carriers in the drain
- c. Majority carriers in the substrate
- d. Majority carriers in the source

#### Answer: d

#### Q 12. The threshold voltage of an n-channel MOSFET can be increased by

- a. Increasing the channel dopant concentration.
- b. Reducing the channel dopant concentration.

- c. Reducing the gate oxide thickness.
- d. Reducing the channel length.

#### Answer: a

Q13. The transit time of the current carriers through the channel of an FET decides...... Characteristics

#### **Answer: Switching**

- Q14. When a bipolar junction transistor is operating in the saturation mode, which one of the following is TRUE about the state of its collector-base (CB) and base-emitter (BE) junctions?
  - a. The CB junction is forward biassed, and the BE junction is reverse biased.
  - b. The CB junction is reverse biassed, and the BE junction is forward biased.
  - c. Both CB and BE junctions are forward biassed
  - d. Both CB and BE junctions are reverse biassed

#### Answer: c

- 15.In an ideal op-amp, the open-loop gain is:
- a. 1
- b. 100
- c. Infinite
- d. Zero

Answer: c. Infinite

- 16. In an inverting amplifier configuration, the input signal is applied to:
- a. The non-inverting terminal
- b. The inverting terminal
- c. Both terminals
- d. The output terminal

Answer: b. The inverting terminal

- 17. The primary difference between inverting and non-inverting op-amp configurations is:
- a. The type of feedback used
- b. The phase relationship between input and output
- c. The gain of the amplifier
- d. The bandwidth of the amplifier

Answer: b. The phase relationship between input and output

## 18. In an op-amp integrator circuit, the output voltage is proportional to:

- a. The integral of the input voltageb. The derivative of the input voltage

c. The sum of the input voltages
d. The difference between the input voltages
Answer: a. The integral of the input voltage