Scopes of Claims in Amendment

5

[Received by The International Bureau on February 28, 2005 (28. 02. 05): the claim 8 filed at the time of filing this application was withdrawn; the claims 1, 5, and 6 at the time of filing this application have been amended; and the other claims are not changed.]

CLAIMS

5

10

15

20

25

- 1. (Amended) In a method for treating an NH₃-containing gas wherein a gas containing an ammonia (NH₃) of a high concentration is allowed to pass through a pre-treatment catalyst layer having a function for oxidizing NH₃ to generate nitrogen monoxide (NO), and then pass through a denitration catalyst layer having a denitration function and a function for oxidizing NH₃ to generate NO in combination; a method for preventing thermal deterioration of the catalyst, characterized by disposing a catalyst layer not having the function in the pre-treatment catalyst layer in parallel thereto.
- 2. The method according to claim 1, whrein a part of a flow path section is composed of a catalyst layer containing an NH₃ oxidation active component selected from zeolite, silica, titania, zirconia, alumina and the like supported with platinum (Pt), palladium (Pd), or rhodium (Rh); and another part of the flow path section is composed of a catalyst layer not containing the NH₃ oxidation active component in the pre-treatment catalyst layer.
 - 3. The method according to claim 1 or 2, wherein the catalyst having the denitration function in combination with the function for oxidizing NH₃ to generate NO contains titanium oxide (TiO₂); an oxide of at least one of vanadium (V), tungsten (W) and molybdenum (Mo); and zeolite, titania, alumina, or zirconia supported with platinum (Pt).
 - 4. The method according to any one of claims 1 to 3, wherein a feed amount of the NH₃-containing gas to the flow path of the catalyst layer having the function for oxidizing NH₃ to generate NO in the pre-treatment catalyst and another flow path not having the former function is controlled in such that an NH₃ concentration in the gas treated in the pre-treatment catalyst layer is higher than a NOx concentration.

- 5. (Amended) The method according to any one of claims 1 to 4, wherein the gas containing the NH₃ of the high concentration contains 3% of NH₃.
- 6. (Amended) An apparatus for treating an NH₃-containing gas while preventing thermal deterioration of a catalyst, wherein a pre-treatment catalyst layer having a function for oxidizing NH₃ to generate carbon monoxide (NO), and a catalyst layer having a denitration function in combination with another function for oxidizing NH₃ to generate NO are sequentially disposed in a flow path section of a gas containing ammonia (NH₃) along the gas flow direction, characterized in that a part of the flow path section is composed of a catalyst layer containing an NH₃ oxidation active component selected from zeolite, silica, titania, zirconia and alumina supported with platinum (Pt), palladium (Pd), or rhodium (Rh); and another part of the flow path section is composed of a catalyst layer not containing the NH₃ oxidation active component in the pretreatment catalyst layer.
- 7. The apparatus according to claim 6, wherein a ratio of the catalyst layer containing the NH₃ oxidation active component to the catalyst layer not containing the oxidation component is decided in the pre-treatment catalyst layer such that the NH₃ concentration is higher than a NOx concentration in the outlet gas of the pre-treatment catalyst layer.
 - 8. (Deleted)

5

10

15

20