násobič

- pro malé proudové odběry a velká napětí se nevyplatí konstruovat a realizovat transformátor (nebezpečí mezizávitových zkratů apod.)
- konstrukce násobičů odvozena od konstrukce usměrňovačů
 - realizace s různým počtem stupňů (kaskáda) → teoreticky až nekonečně mnoho, prakticky do 10
 - realizace s různým počtem cest → jednocestné, můstkové
- jednostupňový
 - výstupní napětí odpovídá amplitudě vstupního napětí
 - kondenzátor se nabije na amplitudu vstupního napětí
- dvoustupňový
 - výstupní napětí odpovídá dvojnásobku vstupního napětí
 - kondenzátor C_1 se nabije přes diodu D_1 na amplitudu vstupního napětí
 - D_1 se uzavře
 - kladné napětí dole společně s ${\cal U}_{C1}$ nabijí přes D_2 kapacitu C_2 na dvojnásobek amplitudy vstupního napětí
- třístupňový
 - výstupní napětí odpovídá trojnásobku amplitudy vstup. napětí
 - kondenzátory všech dalších stupňů se nabíjejí na dvojnásobek amplitudy vstupního napětí
- čtyřstupňový
- shrnutí
 - v uzlech mezi kondenzátory v
 - dolní řadě smícháme liché násobky vst. napětí
 - horní řadě smícháme sudé násobky vst. napětí
 - diody dimenzujeme pro dvojnásobek amplitudy vst. napětí, protéká jimi proud odpovídající stř. hodnotě proudu zátěže
 - hodnotu kapacity ovlivňuje
 - počet stupňů
 - stř. hodnota proudu, str. hodnota napětí 1. stupně
 - kmitočet vst. napětí

$$C_N>rac{2*n*(n+2)*I}{U_O*f}(F,-,A,V,Hz)$$

- kaskádní
 - vazební kondenzátory musí mít velkou kapacitu, musí být bipolární (nelze užít elektrolytické, jež jsou typicky unipolární)
 - bipolární kondenzátory s velkou kapacitou jsou dražší, než obvodová náhrada
- kaskádní (pro transformátor s vyvedeným středem sekundárního vinutí) předchozí a níže uvedené zapojení je schopno dát dvojnásobný proud ve srovnání s jednocestnými násobiči