Résidus et applications

Quelques notions à savoir avant la correction

- 1. Soit f une fonction holomorphe en z_0 . Alors son développement de Taylor coïncide avec son développement de Laurent en z_0 . Donc $Res(f, z_0) = 0$.
- 2. Soient U un ouvert, $z_0 \in U$, $f: U \to \mathbb{C}$ une fonction qui est holomorphe dans $U \setminus \{z_0\}$. Soit $g: U \to \mathbb{C}$ une fonction holomorphe. Supposons que f(z) = g(z) pour tout $z \in U \setminus \{z_0\}$. Alors z_0 est une fausse singularité de f (et donc $Res(f, z_0) = 0$). En effet, g, holomorphe, admet un développement en série de Taylor, en tout $z \in U$, donc notamment en $z_0: g(z) = \sum_{n \geq 0} a_n (z z_0)^n$. Ce développement correspond donc au développement en série de Laurent de f en z_0 (par unicité), qui ne comporte pas de partie principale. Ce cas s'applique par exemple à la fonction $f(z) = \frac{(z-z_0)^d}{(z-z_0)^e Q(z)}$ où $0 < e \leq d$ et Q est un polynôme ne s'annulant pas en z_0 .
- 3. Soit $f(z) = \frac{P(z)}{(z-z_0)^d Q(z)}$ avec P,Q deux polynômes ne s'annulant pas en z_0 . En particulier $\frac{P}{Q}$ est holomorphe en z_0 , donc admet un développement de Taylor en z_0 , de sorte que $f(z) = \frac{1}{(z-z_0)^d} \sum_{n\geq 0} a_n (z-z_0)^n = \frac{a_0}{(z-z_0)^d} + \sum_{n\geq 1} a_n (z-z_0)^{n-d}$ et $a_0 = \frac{P(z_0)}{Q(z_0)} \neq 0$. Donc z_0 est un pôle d'ordre d.

Exercice 1

Il s'agit de trouver la série de Laurent de f en précisant la nature de la singularité, le résidu et le rayon de convergence.

- 1. $\sin z \text{ en } z_0 = \pi/4.$
- 2. $\frac{\sin z}{z^3}$ en $z_0 = 0$.
- 3. $\sin \frac{1}{z}$ en $z_0 = 0$.
- 4. $\frac{z^2+2z+1}{z+1}$ en $z_0=-1$.
- 5. $\frac{1}{(1-z)^3}$ en $z_0 = 1$.

Solution 1

- 1. La fonction sin est holomorphe en $\pi/4$. Son développement en série de Laurent se confond donc avec son développement de Taylor en $\pi/4$. Il en résulte que $Res(f, \pi/4) = 0$ et que $sin(z) = \sum_{n=0}^{\infty} \frac{1}{n!} \sin^{(n)}(\pi/4)(z \pi/4)^n$. Or on a $\sin'(z) = \cos(z)$ et $\cos'(z) = -\sin(z)$. Comme $\sin(\pi/4) = \sin'(\pi/4) = \sqrt{2}/2$ et que $\sin''(\pi/4) = \sin'''(\pi/4) = -\sqrt{2}/2$, il en résulte que $\sin(z) = \frac{\sqrt{2}}{2} \sum_{n=0}^{\infty} \frac{\alpha_n}{n!} (z \pi/4)^n$, avec $\alpha_{4n} = \alpha_{4n+1} = -\alpha_{4n+2} = -\alpha_{4n+3} = 1$. La série de Taylor converge vers f(z) pour tout $z \in \mathbb{C}$.
- 2. On sait que $\sin z = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1}$ de sorte que $\frac{\sin z}{z^3} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n-2} = \frac{1}{z^2} + \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n-2} = \frac{1}{z^2} + \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2n+3)!} z^{2n}$. Donc 0 est un pôle double, et Res(f,0) = 0. La série converge pour tout $z \neq 0$.

3. On développe $\sin y$ en série de Taylor et on pose $y = \frac{1}{z}$ pour obtenir

$$\sin y = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} y^{2n+1} \Rightarrow \sin(1/z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \frac{1}{z^{2n+1}}.$$

On trouve alors que 0 est une singularité essentielle et Res(f,0)=1. La convergence a lieu pour tout $z\neq 0$.

- 4. $f(z) = \frac{z^2 + 2z + 1}{z + 1} = (z + 1)^2/(z + 1)$, donc $z_0 = -1$ est une fausse singularité. Par conséquent Res(f, 0) = 0. Le développement de Taylor en $z_0 = -1$ est donc trivialement z + 1. La convergence a lieu sur \mathbb{C} tout entier.
- 5. $f(z) = \frac{1}{(1-z)^3} = \frac{-1}{(z-1)^3}$ est le développement de Laurent de f en $z_0 = 1$. Il en résulte que z_0 est un pôle triple, et Res(f,1) = 0. La convergence a lieu pour peu que $z \neq 1$.

Exercice 2

Calculer l'intégrale

$$I(a) = \int_0^{2\pi} \frac{dt}{a^2 - 2a\cos(t) + 1}$$

où a est un paramètre réel qui ne prend pas les valeurs ± 1 .

Solution 2

Le cas où a=0 est immédiat :

$$I(0) = \int_0^{2\pi} dt = 2\pi.$$

Supposons donc $a \neq 0$. Considérons $R(x,y) = \frac{1}{a^2 - 2x + 1}$. La méthode vue en cours conduit à l'expression

$$I(a) = \int_{\gamma} \frac{1}{iz} \frac{dz}{(a^2 - a(z + 1/z) + 1)}$$

où $\gamma(t) = e^{it}$, $t \in [0, 2\pi]$. On a (pour $z \neq 0$) $a^2 - a(z + 1/z) + 1 = (a - z)(a - 1/z) = 1/z(a - z)(az - 1)$ de sorte que

$$I(a) = \int_{\gamma} \frac{idz}{(z-a)(az-1)} = \int_{\gamma} f(z)dz.$$

Il y a deux pôles simples z=a et z=1/a (rappelons que par hypothèse $a\neq \pm 1$), mais aussi la singularité z=0. Celle-ci est une fausse singularité (puisque $f(z)=\frac{i}{(z-a)(az-1)}$ et le membre de droite est holomorphe en 0) donc Res(f,0)=0. Il y a deux cas à considérer : soit |a|>1, soit |a|<1. Supposons tout d'abord que |a|>1. On a donc $I(a)=2i\pi Res(f,1/a)$. Or $Res(f,1/a)=\frac{1}{Q'(1/a)}=\frac{1}{1-a^2}$ où Q(z)=(z-a)(az-1). Ainsi $I(a)=2i\pi\frac{i}{1-a^2}=\frac{2\pi}{a^2-1}$. Pour |a|<1, on trouve de façon similaire : $I(a)=\frac{2\pi}{1-a^2}$ (on remarque que ce résultat reste vrai si a=0).

Exercice 3 Calculer l'intégrale $\int_{-\infty}^{+\infty} \frac{x^2}{16 + x^4} dx$.

Solution 3

On a $x^4+16=(x^2-4i)(x^2+4i)$. Donc x^4+16 n'admet pas de racines réelles. Comme par ailleurs $\deg(16+x^4)=4=\deg(x^2)+2$, on peut appliquer la méthode vue en cours et affirmer que $\int_{-\infty}^{+\infty}\frac{x^2}{16+x^4}dx=2i\pi\sum_{a\in E}Res(F,a)$ où $F(z)=z^2/(16+z^4)$ et E est l'ensemble des pôles de F dans le demi-plan supérieur.

Les pôles sont les zéros de $16 + z^4$. On a $z^4 = -16 = (2\omega)^4$ où ω est une racine quatrième de -1 (i.e., $\omega^4 = -1$), soit $\omega = e^{i(2k+1)\pi/4}$ pour k = 0, 1, 2, 3. (Rappelons que pour $n \ge 1$, et $z_0 = \rho_0 e^{i\theta_0} \ne 0$, on a $z^n = z_0$ si, et seulement si, $r^n = r_0$ et $n\theta = \theta_0 + k2\pi$, $k \in \mathbb{Z}$, où on a posé $z = re^{i\theta}$, de sorte que r est l'unique racine n-ème réelle positive de r_0 et $\theta = \theta_0/n + k2\pi/n$, $k \in \mathbb{Z}$ ou encore modulo 2π , $\theta = \theta_0/n + k2\pi/n$, $k = 0, \dots, n-1$.)

On a donc comme pôles $z_1 = 2e^{i\pi/4}$, $z_2 = 2e^{i3\pi/4}$, $z_3 = 2e^{i5\pi/4}$ et $z_4 = 2e^{7\pi/4}$. Ce sont donc des pôles simples et seuls z_1, z_2 appartiennent au demi-plan supérieur. Donc $\int_{-\infty}^{+\infty} \frac{x^2}{16 + x^4} dx = 2i\pi (Res(F, z_1) + Res(F, z_2)). \text{ Enfin, } Res(F, z_1) = \frac{z_1^2}{4z_1^3} = \frac{1}{4z_1} = \frac{1}{8}e^{-i\pi/4}$ et $Res(F, z_2) = \frac{1}{4z_2} = \frac{1}{8}e^{-3i\pi/4}$, et $\int_{-\infty}^{+\infty} \frac{x^2}{16 + x^4} dx = \frac{1}{4}i\pi (e^{-i\pi/4} + e^{-3i\pi/4}) = \frac{1}{4}i\pi (\frac{\sqrt{2}}{2}(1 - i\pi/4)) = \frac{\sqrt{2}\pi}{4}.$

Exercice 4 Calculer l'intégrale $\int_{-\infty}^{\infty} f(x)e^{i\omega x}dx$ en fonction de $\omega \in \mathbb{R}$, où $f(x) = 1/(x^2 + 1)$.

Solution 4

Bien sûr $z\mapsto f(z)$ n'admet pas de pôle sur l'axe des réels. Elle a un pôle simple i dans le demi-plan supérieur et un pôle simple -i dans le demi-plan inférieur. Par ailleurs on a $f=\frac{P}{Q}$ avec $\deg Q=2\geq \underbrace{\deg P}_{-r}+2$. Il en résulte, d'après ce que l'on a vu en cours, que pour $\omega>0$, $\lim_{r\to\infty}\int_{-r}^{+r}f(x)e^{i\omega x}dx=2i\pi Res(f(z)e^{i\omega z},i)=\pi e^{-\omega}$. Pour $\omega<0$, on a $\lim_{r\to\infty}\int_{-r}^{+r}f(x)e^{i\omega x}dx=-2i\pi Res(f(z)e^{i\omega z},-i)=\pi e^{\omega}$. Pour $\omega=0$, on a $f=\frac{P}{Q}$ avec $\deg Q=2\geq \underbrace{\deg P}_{=0}+2$, f n'a pas de pôle réel, de sorte que $\lim_{r\to\infty}\int_{-r}^{r}f(x)dx=2i\pi Res(f(z),i)=\pi$. Il en résulte que $\int_{-\infty}^{\infty}f(x)e^{i\omega x}dx=\pi e^{-|\omega|}$.

Exercice 5 Calculer l'intégrale $I = \int_0^{+\infty} \frac{x^3 \sin x}{x^4 + 5x^2 + 4} dx$.

Solution 5 On introduit la fonction rationnelle $f(z) = \frac{P(z)}{Q(z)} = \frac{z^3}{z^4 + 5z^2 + 4}$. Le dénominateur admet i et -i comme racines. La division par $z^2 + 1$ mène à $z^4 + 5z^2 + 4 = (z^2 + 1)(z^2 + 4)$. Elle n'a donc pas de pôle réel, et $\deg Q = 1 + \deg P$. Par raison de parité on a

$$I = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{x^3 \sin x}{x^4 + 5x^2 + 4} dx$$

(le membre de droite est en fait la partie imaginaire de la valeur principale $\lim_{r\to+\infty} \int_{-r}^{+r} f(x)e^{ix}dx$) qui n'est autre que la partie imaginaire de

$$J = \frac{1}{2} \int_{-\infty}^{\infty} \frac{x^3 e^{ix}}{x^4 + 5x^2 + 4} dx.$$

On peut appliquer la méthode vue en cours de sorte que $J = i\pi (Res(f(z)e^{iz},i) + Res(f(z)e^{iz},2i)) = i\pi (\left[\frac{z^3e^{iz}}{4z^3+10z}\right]_{z=i} + \left[\frac{z^3e^{iz}}{4z^3+10z}\right]_{z=2i}) = i\pi (\frac{2}{3e^2} - \frac{1}{6e}).$ Ainsi $I = \Im(J) = \pi (\frac{2}{3e^2} - \frac{1}{6e}).$