Machine Learning Internship Report

Submitted by: Yatharth Kumar Saxena

Objective:

To build a classification model using Random Forest to predict the Target variable from customer data. The goal is to compare performance between raw and preprocessed datasets using two different train-test splits: **70:30** and **80:20**.

Step-by-Step Explanation

1. Importing Required Libraries

The project started by importing essential Python libraries:

- pandas for data handling
- numpy for numerical computations
- scikit-learn for model building, data preprocessing, and evaluation

These libraries enabled efficient data loading, transformation, model training, and performance assessment.

2. Loading and Preparing the Dataset

The dataset was loaded from a CSV file named:

Yatharth Kumar Saxena - ml_preprocessing_dataset_1000.csv

A .copy() of the dataset was stored in two versions:

- df_raw → to retain the raw dataset structure (no imputations)
- df_clean → to apply full preprocessing and transformations

The columns were stripped of extra whitespace to ensure consistency.

3. Initial Transformation - Target Encoding

The Target column was found to be of type object. To allow model training:

• It was label-encoded in both df_raw and df_clean.

4. Raw vs Cleaned Dataset Processing

Raw Dataset (df_raw)

- No missing value handling
- All categorical (string) features except Legacy_Customer_ID and Target were label encoded directly

Cleaned Dataset (df_clean)

- Categorical missing values were filled with mode
- Numerical missing values were filled with mean

• After imputation, all object-type columns were label-encoded

5. Feature-Target Separation

The dataset was split into:

- x → All columns except Target and Legacy_Customer_ID
- y → Only the Target column

This separation was done uniformly for both raw and cleaned datasets.

6. Model Evaluation Pipeline

A reusable function evaluate_model() was created to:

- Split data into training, validation, and testing sets
- Apply StandardScaler if preprocess=True
- Train a Random Forest Classifier
- Print:
 - Accuracy
 - Classification Report (Precision, Recall, F1)
 - Confusion Matrix

Both 70:30 and 80:20 train-test splits were tested with and without preprocessing.

Results

Split: 70:30 | Preprocessed: (Raw Data)

- Accuracy: 59.13%
- F1-Score (Class 0 / Class 1): 0.72 / 0.22
- Macro Avg F1: 0.47
- Confusion Matrix: [[161 27]

[96 17]]

Split: 70:30 | Preprocessed: (Cleaned Data)

- **Accuracy**: 57.80%
- F1-Score (Class 0 / Class 1): 0.72 / 0.17
- Macro Avg F1: ~0.45
- Confusion Matrix: [[110 18]

[63 9]]

Split: 80:20 | Preprocessed: (Raw Data)

• **Accuracy**: 61.5%

• F1-Score (Class 0 / Class 1): 0.75 / 0.21

• Macro Avg F1: 0.48

• Confusion Matrix: [[113 15]

[62 10]]

Split: 80:20 | Preprocessed: (Cleaned Data)

• Accuracy: 61.5%

• **F1-Score (Class 0 / Class 1)**: 0.75 / 0.19

• Macro Avg F1: 0.47

• Confusion Matrix: [[114 14]

[63 9]]

Observations

- The model consistently performed **better on Class 0**, indicating a possible **class imbalance**.
- Preprocessing improved consistency and structure, but did **not significantly improve** accuracy or recall for Class 1.
- Across both splits, **Class 1 recall** remained low (~14% or less), limiting overall F1 score and macro average.
- Standard scaling and missing value treatment did not change the outcome drastically due to Random Forest's tree-based nature.

Conclusion

This internship project provided hands-on experience in building an end-to-end machine learning pipeline:

- From data ingestion and cleaning
- To model training, evaluation, and comparison across datasets

Although the Random Forest Classifier achieved only $^{\sim}61\%$ accuracy, the project underlines the importance of:

- Data quality
- Class balancing
- Model choice
- Hyperparameter tuning

Future enhancements may include:

- SMOTE / undersampling for balancing
- Trying XGBoost, SVM, or Logistic Regression
- Applying **GridSearchCV** for hyperparameter optimization