Generation of DFA Minimization Problems

Gregor Sönnichsen

Universität Bayreuth

21. Mai 2020

Automata theory is a classical topic in computer science curricula. Minimization of DFAs is a typical task for students:

- sufficiently easy to understand
- practical applications
- understanding can be tested easily

Consequently, studying automatized generation of DFA minimization problems is interesting because it could. . .

- ...free up precious time (if a generator is implemented)
- ... yield a deeper insight in the nature of such problems

Outline

Introduction

Problem definition and approach

Preliminaries (1/2)

A tuple $A = (Q, \Sigma, \delta, s, F)$ with Q, Σ being a finite, $\delta \colon Q \times \Sigma \to Q$, $s \in Q$ and $F \subseteq Q$ is called *deterministic finite automaton*.

We define the extended transition function $\delta^*: Q \times \Sigma^* \to Q$ as:

- lacksquare $\delta^*(q, w\sigma) = \delta(\delta^*(q, w), \sigma)$ for all $q \in Q$, $w \in \Sigma^*$, $\sigma \in \Sigma$

The *language* of DFA is defined as $L(A) = \{ w \mid \delta^*(w) \in F \}$.

We call a DFA *minimal*, if there exists no other DFA with the same language having less states.

Preliminaries (2/2)

We say a state q is *unreachable*, iff there is no word $w \in \Sigma^*$ such that $\delta^*(s,w)=q$.

A state pair $q_1,q_2\in Q$ is called *equivalent*, iff $\sim_A (q_1,q_2)$ is true, where

$$q_1 \sim_A q_2 \Leftrightarrow_{def} \forall z \in \Sigma^* \colon (\delta^*(q_1, z) \in F \Leftrightarrow \delta^*(q_2, z) \in F)$$

Example

Theorem

A DFA is minimal, iff it has neither unreachable nor equivalent states.

Hopcroft's Minimization Algorithm

- 1. Compute all unreachable states
- 2. Remove all unreachable states and their transitions
- 3. Compute all equivalent state pairs (\sim_A)

```
1: function FindEquivPairs(A)
         i \leftarrow 0
2.
         m(0) \leftarrow \{(p,q),(q,p) \mid p \in F, q \notin F\}
3:
4:
         do
               i \leftarrow i + 1
5:
               m(i) \leftarrow \{(p,q), (q,p) \mid (p,q) \notin \bigcup m(\cdot) \land
6:
                                             \exists \sigma \in \Sigma : (\delta(p, \sigma), \delta(q, \sigma)) \in m(i-1)
7:
          while m(i) \neq \emptyset
8:
          return | | m(\cdot) |
9:
```

4. Merge all equivalent state pairs

A sample DFA minimization problem...

<u>Task:</u> Consider the below shown deterministic finite automaton A:

Apply the minimization algorithm and illustrate for each state pair of A during which FindEquivPairs-iteration it was marked. Draw the resulting automaton.

...and its solution

Solution:

Step 1: Detect and eliminate unreachable states.

State 5 is unreachable.

Step 2: Apply FindEquivPairs to A and merge equivalent state pairs:

	0	1	2	3	4	6
0		1	0		0	2
1			0	1	0	1
2				0		0
3					0	2
4						0
6						

Conclusion

This presentation has. . .

References