Learning a Playlist Representation For Playlist Generation

Spotify

The world's leading music streaming provider

- Provides a music streaming service
- Free version with ads
- Premium version for a fee
- 75 million active users
- 20 million paying users

Spotify: The Soundtracks of Our Lives

Playlists, a popular way of consuming music

- Millions of songs, Billions of playlists
- Itunes store controversy
- Tunigo (Browse Playlists)
- Playlists' uses include allowing a particular desired musical atmosphere to be created and maintained without constant user interaction, or to allow a variety of different styles of music be played, again without maintenance." *Wikipedia*

Thesis Outline

Project goal

- Make an initial step towards fully automated playlist generation
- In the form of candidate song selection

But

- Playlist generation is recommendation
- Recommender systems already exist

Recommender Systems

Collaborative Filtering

	Item.1	Item.2	Item.3	Item.4	Item.5	Item.6	Item.7
User 1	4	1	?	3	2	3	2
User 2	3	4	?	3	4	?	4
User 3	4	2	5	4	2	2	3
User 4	?	?	1	3	1	3	5
User 5	3	5	?	1	2	3	2
User 6	2	4	4	4	2	3	2
User 7	3	2	2	4	4	?	?

Recommender Systems

Collaborative Filtering

- Suffers from the cold start problem
- A previously unranked item cannot be recommended
- What if 20 000 songs are added each day...

Recommender Systems

Content Based

Recommendation

- Vector space model
- Comparing items based on cosine similarity

Recommendation

Downsides

- Traditional recommendation typically focuses on tracks, albums, items
- What if a playlist could be generated, with a seed playlist as training data?

Playlist Characteristics

What characterizes a playlist?

- Variance
- How do featuresco-vary in a playlist?

Representation Learning

How can playlist characteristics be represented?

- Map features to latent factors
- Only take relevant variance into account
- Principal component analysis

 By approximating variance in playlists we learn a representation of playlist characteristics

Principal Component Analysis

Playlist Characteristics

Does it work?

- Playlist comparison and clustering works fine
- Based on comparison of latent spaces

Candidate Song Selection

How to relate playlist variance to songs?

- Subspace method
- Relative change in magnitude under projection

Candidate Song Selection

How are songs selected?

- Songs are projected into the principal component space of a playlist
- Ranking is according to the fit of songs to the principal component space
- Songs that have their "feature mass" in the directions of variance are ranked higher

Theoretical shortcomings

What are the weaknesses of the model?

- PCA is based on approximation of covariance in data
- Covariance is normalizing
- The model takes direction, but not location into account.

Approximate nearest neighbours

What if we could pre-filter based on location?

 Approximate nearest neighbours can prefilter based on location in sublinear time.

Evaluation

How playlist candidate songs be evaluated?

- Why is evaluation difficult?
 - Tautology
- What is an appropriate metric?
 - Precision
- What is an appropriate baseline?
 - Taking full variance of data into account

Evaluation

Evaluation

How playlist candidate songs be evaluated?

- Why is evaluation difficult?
 - Tautology
- What is an appropriate metric?
 - Precision
- What is an appropriate baseline?
 - Taking full variance of data into account

Quantitative results

Precision scores

>	Model	Baseline
p@10	6	3
p@20	10	6
p@30	16	10

False Positives

Let's revisit the clusters

- Where do FPs come from?
- It is reasonable
 that precision is
 overly conservative as
 a metric

False Positives

What can we see from rank distribution

- Precision measure seems overly conservative
- "True" precision is probably higher

 Let us look at distribution of rankings of playlists which FPs belong to

False Positives Rank Distributions

Qualitative Evaluations

Quantitative measures only reveal so much

- Are generated playlists listenable?
- How do they compare to curated playlists?
- Is actual precision really higher?

Qualitative Evaluations

What questions to ask listeners?

- How well songs matches playlist theme
- Number of outliers
- How well songs matches playlist theme with outliers removed.

Qualitative Evaluations

Difficulties with qualitative evaluations

- Users are biased
- How to handle user bias?

Qualitative Results

Moment of truth

- Two out of three playlist performed equally good or better than the reference playlists
- One performed significantly worse
- But that playlist was the 2nd worse in the entire experiment and had an uplift in precision over 100%

Scalability

Does it scale?

- Time complexity of creating a projection matrix is O(D^3 + ND^2)
- Should take less than 1 second on modern computer
- To do candidate song selection O(nD^2)
- Candidate song selection is parallelizable

Conclusions

What have we learned?

- Approximating relevant variance is shown more effective than using full variance as a baseline
- Promising qualitative results
- Performance is likely to increase with better features and more data

Special thanks to Spotify, Carl Henrik Ek, Boxun Zhang, Anders
Petterson and Matteo Poletti

Results - p@10

Results - p@20

Results - p@30

Qualitative Results Hip Hop

Qualitative Results Rock

Rock #Outliers, Scale 1 - 10

Qualitative Results Metal

Metal #Outliers, Scale 1 - 10

