

Name:

Resource Free	/25	%
Resource Rich	25 1 36	%
Total	1 55	%

Mathematics Methods, Year 12, 2016 Test 2 – Further differentiation and applications, Integrals

25 minutes working time.

Calculator Free Section (no notes, no calculators)

SCSA Formula sheet allowed

1. (3 marks)

Given $f(x) = e^x$ and h(x) = -2x

(a) find
$$y = f(h(x))$$
. $y = f(-2x)$ (1) $y = e^{-2x}$

(b) hence find the expression for $\frac{d}{dx}(f(h(x)))$. (2)

$$\frac{d}{dx}\left(f\left(h\left(x\right)\right)\right) = -2e^{-2x}$$

2. (7 marks)

(a) Find the following. Simplify your answers.

(i)
$$\int \sqrt{2x+1} dx = \frac{2(2x+1)^{\frac{3}{2}}}{3 \times 2} + c$$
 (2)
$$= \frac{\sqrt{(2x+1)^3}}{3} + c$$

(ii)
$$\int (6\sqrt{x} - e^{6x}) dx = \int (6x^{\frac{1}{2}} - e^{6x}) dx$$

$$= 6 \times \frac{2}{3} x^{\frac{3}{2}} - \frac{e^{6x}}{6} + C$$

$$= 4 \int x^{3} - \frac{e^{6x}}{6} + C$$

$$(4x) + x^{\frac{3}{2}} - \frac{1}{6}e^{6x} + C$$

$$(4x) + x^{\frac{3}{2}} - \frac{1}{6}e^{6x} + C$$

(b) Given
$$\frac{dy}{dx} = 2x + 3x^2 - x^{1/2}$$
 find the function $y = f(x)$ given the point $\left(1, -\frac{2}{3}\right)$ belongs to the function.
$$\mathcal{Y} = \frac{2x^2}{2} + \frac{3x^3}{3} - \frac{2x^{\frac{3}{2}}}{3} + c$$
 (2)
$$\frac{5\omega b}{\left(1, -\frac{2}{3}\right)} \qquad \frac{-2}{3} = 1 + 1 - \frac{2}{3} + c$$

3. (4 marks)
$$C = -2$$

$$y = \chi^2 + \chi^3 - \frac{2\chi^{\frac{3}{2}}}{3} - 2$$
Find $\frac{dy}{dx}$ for each of the following

Find $\frac{dy}{dx}$ for each of the following

(a)
$$y = (x + e^{3x})^2$$
 (2) $\frac{dy}{dx} = 2(x + e^{3x}) \times (1 + 3e^{3x})$

(b)
$$\int_{x}^{2} (3-t^{2}) dt = -\frac{d}{dx} \int_{2}^{3} (3-t^{2}) dt$$
 (2)
= $x^{2} - 3$

(5 marks)

(a) If
$$F(x) = x^3 - x^2$$

(i) find $F'(x)$. $F'(x) = 3x^2 - 2x$ (1)

(ii) hence simplify
$$\int_0^p F'(x) dx = \left[\int_0^3 - \int_0^2 \int_0^p \right]$$
 (2)
$$= p^3 - p^2$$

(b) Given
$$F(x) = \int_{1}^{x} t^{3} dt$$
 find an expression for $F'(x)$. (2)
$$F'(x) = \chi^{3}$$

5. (6 marks)

Calculate the area bounded by the functions $f(x) = (x-3)^2 - 2$ and g(x) = 4 - 2x

solve
$$f(x) = g(x)$$

 $(x-3)^2-2 = 4-2x$
 $x^2-6x+9-2 = 4-2x$
 $x^2-4x+3 = 0$
 $x = 3$, $x = 1$
Area = $\int_{-3x}^{3} g(x) - f(x)$, dx .
 $= \int_{1}^{3} 4-2x - (x-3)^2+2 dx$.
 $= \int_{1}^{3} 4-2x - 7x^2+6x-9+2 dx$
 $= \left[-\frac{x^3}{3}+2x^2-3x\right]_{1}^{3}$
 $= \left(-\frac{3^2}{3}-2(3)^2-3(3)\right) - \left(-\frac{1^3}{3}+2(1)^2-3(1)\right)$
 $= 0$ $-\left(-\frac{1}{3}+2-3\right)$.
 $= \frac{1\frac{1}{3}}{3} = \frac{59}{3} = \frac{1}{3} =$

END OF TEST

Name:

Mathematics Methods, Year 12, 2016

Test 2 – Further differentiation and applications, Integrals

Total	130	%

30 minutes working time.

Calculator Assumed Section (notes allowed)

SCSA Formula sheet and calculators allowed

(2 marks)

Consider the function $f(x) = \frac{1}{x}$ graphed below:

Estimate the area between the function y = f(x), the x axis and

x = 1 and x = 4 using rectangles from below and from above.

The graph of $y = 3\sin\left(2x + \frac{\pi}{4}\right)$ is given below for $-1 \le x \le 2$.

(a) Determine the roots of the function
$$y = 3\sin\left(2x + \frac{\pi}{4}\right)$$
 for $-1 \le x \le 2$. (2)
$$3 \sinh\left(2x + \frac{\pi}{4}\right) = 0 \qquad \text{Sih}\left(2x + \frac{\pi}{4}\right) = \sinh\left(0\right) \qquad \text{Sih}\left(2x + \frac{\pi}{4}\right) = \sinh\left(0\right) \qquad \text{Sih}\left(2x + \frac{\pi}{4}\right) = \pi$$
(b) Calculate exact value for the area under the curve between the two roots.

(3)

$$A = \int_{-\frac{\pi}{8}}^{\frac{3\pi}{8}} 3 \, sh\left(2x(+\frac{\pi}{4})\right) \, dx \qquad (3)$$

3. (3 marks)

Given $f(x) = e^x \times sin(x)$

(a) find
$$f'(x)$$
. (1)
$$f'(x) = \cos x e^{x} + \sin x e^{x}$$

$$f'(x) = e^{x} (\cos x + \sin x).$$

(b) hence find
$$y = \int e^x (\sin(x) + \cos(x)) dx$$
 given $y = 1$ when $x = 0$. (2)
$$y = e^x \times \sinh x + C.$$

4. (6 marks)

Fuel was observed to leak from a damaged tank at a rate of $\frac{45}{e^{0.1t}}$. Litres per minute, where t is the number of minutes that have elapsed since the tank was ruptured.

(a) How much fuel leaked from the tank during the first two minutes? (2) $= \int_{0}^{2} \frac{45}{e^{0.1t}} dt$

= 8/57 L (2d.p.).

(b) If the tank initially contained 400 litres of fuel, determine the time taken, to the nearest second, for the tank to empty.

(3)

$$\int_{0}^{t} \frac{45}{e^{0.1t}} dt = 400 / \left(\frac{450}{e^{0.1t}} + 450 \right) = 400$$

$$\int_{0}^{t} 45 e^{-0.1t} dt = 400. \left(\frac{1}{t} = 21.97224 / \frac{1}{t} = 210.97224 /$$

The velocity of a body is v = -3t + 6 m/s and the initial displacement is 2m. Assume $t \ge 0$.

Find the expression for the displacement. (a)

$$\int -3t + 6$$

$$x = -\frac{3t^{2}}{2} + 6t + c$$

$$x = -\frac{3t^{2}}{2} + 6t + 2$$

(2)

(1)

When t=0 2 = 2 : C=2

(b) Find the expression for the acceleration.

(c) Find the second time when the displacement is equal to the initial displacement.

Solve
$$-3\frac{t^2}{2} + 6t + 2 = 2$$
 , using calculator $t = 0$, $t = 4$

(d) Find the displacement when the body changes direction.

Body changes direction. (2)

Body changes direction when
$$-3t+6=0$$

$$3t=6$$

$$t=2$$
(2)
$$2 = -3(2)^{2} + 6(2) + 2$$

How far does the body travel in the first second after the body changes (e) direction?

when
$$t=2$$
 $x=8$ $x=-3\frac{(3)^2}{2}+6\frac{(3)}{2}+2$ $x=3$ $x=6.5$ $x=6.5$