Загрузим данные

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

In [2]:

```
data = pd.read_csv('Data_Projects.csv', ';')
```

Посмотрим на данные и их статистики.

In [3]:

```
data.head()
```

Out[3]:

	AddressCount	CallsCount	ClicksCount	FirmsCount	GeoPart	MobilePart
0	156	20	1903	176	0,416104363472785	0,535762483130904
1	17	37	258	20	0,211678832116788	0,430656934306569
2	78	56	1956	185	0,349475383373688	0,476594027441485
3	14	70	378	19	0,318718381112985	0,463743676222597
4	111	90	4089	90	0,55617545209696	0,490573297422085
4						>

In [4]:

data.describe()

Out[4]:

	AddressCount	CallsCount	ClicksCount	FirmsCount	UsersCount	IsGeo
count	79.000000	79.000000	79.000000	79.000000	79.000000	79.000000
mean	1048.037975	3648.683544	21826.012658	305.088608	9753.126582	0.354430
std	1642.066119	8124.105402	32474.959513	382.052090	13927.295721	0.481397
min	9.000000	20.000000	258.000000	14.000000	157.000000	0.000000
25%	81.000000	346.000000	2055.000000	71.500000	1167.500000	0.000000
50%	371.000000	931.000000	6921.000000	185.000000	2934.000000	0.000000
75%	1195.000000	2457.500000	30625.500000	402.500000	13265.000000	1.000000
max	9552.000000	48497.000000	167155.000000	2379.000000	61127.000000	1.000000

In [5]:

```
_, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(ncols=5)
ax1.hist(data['AddressCount'])
ax2.hist(data['CallsCount'])
ax3.hist(data['ClicksCount'])
ax4.hist(data['FirmsCount'])
ax5.hist(data['UsersCount'])
```

Out[5]:

In [6]:

```
_, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(ncols=5)
ax1.boxplot(data['AddressCount'])
ax2.boxplot(data['CallsCount'])
ax3.boxplot(data['ClicksCount'])
ax4.boxplot(data['FirmsCount'])
ax5.boxplot(data['UsersCount'])
```

Out[6]:

Мы не можем точно судить о том, что у нас есть выбросы.

In [7]:

In [8]:

```
_, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(ncols=5)
ax1.hist(data['AddressCount'])
ax2.hist(data['CallsCount'])
ax3.hist(data['ClicksCount'])
ax4.hist(data['FirmsCount'])
ax5.hist(data['UsersCount'])
```

Out[8]:

In [9]:

from scipy.stats import anderson

In [10]:

Подсчитаем для всех этих 5 признаков критерий АД на экспоненциальное распред еление(т.к на него наиболее похожи):

AddressCount: 7.175171805110651 > 1.941 при а=0.01, Н0 отвергаем

CallsCount: 6.3712215275769495 > 1.941 при а=0.01, Н0 отвергаем

ClicksCount: 7.111964348713258 > 1.941 при а=0.01, НО отвергаем FirmsCount: 0.35589663392264015 < 1.941 при а=0.01, НО принимаем

UsersCount: 6.1567013050010075 > 1.941 при а=0.01, НО отвергаем

Из всех этих распределений признаков мы можем с уверенностью сказать только про FirmsCount.

Проверим скоррелированность наших переменных

Наши распределения +- похожи по гистограммам, потому проверим корреляцию между величинами с помощью коэффициента Спирмена(т.к НСВ не нормальная)

In [11]:

```
from scipy.stats import spearmanr
corradr_call, p = spearmanr(data.AddressCount, data.CallsCount)
corradr clicks, p = spearmanr(data.AddressCount, data.ClicksCount)
corradr_firms, p = spearmanr(data.AddressCount, data.FirmsCount)
corradr_users, p = spearmanr(data.AddressCount, data.UsersCount)
print('Рассмотрим к-ты для AddressCount и остальных:', corradr_call, ', ',
      corradr_clicks, ', ', corradr_firms, ', ', corradr_users,
      '\nМы видим, что эта переменная сильно скоррелирована с другими.')
corrcall clicks, p = spearmanr(data.CallsCount, data.ClicksCount)
corrcall_firms, p = spearmanr(data.CallsCount, data.FirmsCount)
corrcall_users, p = spearmanr(data.CallsCount, data.UsersCount)
print('Рассмотрим к-ты для CallsCount и остальных:', corrcall_clicks, ', ',
      corrcall_firms, ', ', corrcall_users,
      '\nМы видим, что эта переменная тоже сильно скоррелирована с другими.')
corrfirms_users, p = spearmanr(data.FirmsCount, data.UsersCount)
print('Paccмотрим к-ты для FirmsCount и UsersCount:', corrfirms_users,
      '\nМы видим, что эти переменные тоже сильно скоррелированы.')
```

```
Рассмотрим к-ты для AddressCount и остальных: 0.872316818250677 , 0.9575242892048305 , 0.7088303282657337 , 0.9649923897475567 Мы видим, что эта переменная сильно скоррелирована с другими. Рассмотрим к-ты для CallsCount и остальных: 0.9061735419630155 , 0.6662731069747219 , 0.866145092460882 Мы видим, что эта переменная тоже сильно скоррелирована с другими. Рассмотрим к-ты для FirmsCount и UsersCount: 0.7447242830489692 Мы видим, что эти переменные тоже сильно скоррелированы.
```

Оставим 3 переменные: AddressCount, CallsCount, FirmsCount для подсчета признака. Как признак возьмем переменную UsersCount.

```
In [12]:
```

```
y = data['UsersCount']
data = data.drop(['ClicksCount', 'UsersCount', 'GeoPart', 'MobilePart', 'Distance'], axis='
```

```
In [25]:
```

```
data['CallsCount'] = (data['CallsCount'] - data['CallsCount'].min()) / (data['CallsCount'].
data['FirmsCount'] = (data['FirmsCount'] - data['FirmsCount'].min()) / (data['FirmsCount'].
data['AddressCount'] = (data['AddressCount'] - data['AddressCount'].min()) / (data['Address
y = (y - y.min()) / (y.max() - y.min())
```

Построим регрессию:

```
In [32]:
from sklearn.linear_model import LinearRegression
```

```
In [33]:
```

```
lin_regr = LinearRegression()
lin_regr.fit(data, y)
```

Out[33]:

LinearRegression()

Коэффициенты регрессии:

```
In [34]:
```

```
lin_regr.coef_
```

```
Out[34]:
```

```
array([0.76902731, 0.03032046, 0.13495451, 0.05932247])
```

Найдем коэффициент детерминации:

```
In [35]:
```

```
from sklearn.metrics import r2_score
```

```
In [36]:
```

```
r2_score(y, lin_regr.predict(data))
```

Out[36]:

0.9077587905737353

Посчитаем VIF:

```
In [40]:
```

```
from statsmodels.stats.outliers_influence import variance_inflation_factor
from statsmodels.tools.tools import add_constant
```

```
In [41]:
```

Out[41]:

dtype: float64

In [45]:

data

Out[45]:

	AddressCount	CallsCount	FirmsCount	IsGeo
0	0.035042	0.000000	0.204545	1
1	0.001907	0.000826	0.007576	0
2	0.016448	0.001749	0.215909	1
3	0.001192	0.002428	0.006313	0
4	0.024315	0.003400	0.095960	1
72	0.980215	0.485648	0.988636	1
73	0.837187	0.591044	0.241162	1
74	0.602145	0.603040	0.125000	0
75	0.260787	0.620963	0.501263	0
76	0.744458	1.000000	0.498737	0

75 rows × 4 columns

In []:

Поскольку все значения статистики < 10, то вряд ли у нас встречается мультиколлинеарность.

Посмотрим на разброс самого значимого признака и регрессию для проверки гетероскедастичности:

In [55]:

```
plt.scatter(data['AddressCount'], y)
x = np.linspace(0, 1)
y_ = x * lin_regr.coef_[0]
plt.plot(x, y_)
plt.show()
```

(50,)(50,)

Мы видим, что по графику очень похоже, что у нас присуствует гетероскедастичность. Это происходит из-за особенностей данных.

In [56]:

```
from statsmodels.stats.stattools import durbin_watson
```

In [57]:

```
durbin_watson(data)
```

Out[57]:

```
array([0.35340311, 0.04653299, 0.4207456 , 1.48 ])
```

Мы можем наблюдать автокорреляцию остатков в AddressCount, CallsCount, FirmsCount

Проверим критерием Стьюдента на значимость признаков:

```
In [60]:
```

Рассмотрим к-ты для таргета и фич: 0.9649923897475566 , 0.7447242830489691 . 0.866145092460882

Посмотрим на статистики Стьюдента:

```
In [63]:
```

```
t1 = corradr_clicks * np.sqrt(76) / np.sqrt(1 - corradr_clicks **2)
t1
```

Out[63]:

32.07517359555236

```
In [65]:
```

```
t2 = corradr_firms * np.sqrt(76) / np.sqrt(1 - corradr_firms **2)
t2
```

Out[65]:

9.728237306328063

```
In [66]:
```

```
t2 = corradr_users * np.sqrt(76) / np.sqrt(1 - corradr_users **2)
t2
```

Out[66]:

15.108021439299462

Крит.точка даже для alpha = 0.001, k = 75 t = 3.46, все наши статистики больше => отвергаем H0 о равенстве к-оф к-ции 0, все фичи важны.

Все выбранные фичи значимы и прямо пропорционально линейно связаны с количеством кликов. В данных присуствует гетероскедастичность, которую можно объяснить нашим набором данных.

Вывод:

В исходных данных присуствовали выбросы, мы их удалили.

Все переменные в данных скоррелированы между собой, что объясняется природой данных(если заведение популярно, то и к-во просмотров с разных источников велико) При этом данные не мультиколлинеарны.

В данных присуствует гетероскедастичность, которая объясняется природой данных (чем более место популярно, тем больше людей заинтересованы в каком-либо действии с ним)

По данным построена линейная модель, в которой все параметры значимы.