Linear Algebra Review II

- Nate Olson
- June 29, 2016

Matricies and Linear Regression

What we are working towards....

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, i = 1, \dots, N$$

as:

$$\begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_N \end{pmatrix} = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots \\ 1 & x_N \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_N \end{pmatrix}$$

or simply:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

1.3 Vector Equations

Definitions

- vector a list of numbers
- column vector one column matrix
- zero vector all values in a vector are zero
- scalar real numbers that have magnitude but no direction wikipedia
- span subset of a vector

Parallelogram Rule for Addition

Figure 1: http://i.stack.imgur.com/O6Ved.png

Algebratic Properties of \mathbb{R}^n

 \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors, where c and d are scalars

1.
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

2.
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

3.
$$\mathbf{u} + 0 = 0 + \mathbf{u} = \mathbf{u}$$

4.
$$\mathbf{u} + (-\mathbf{u}) = 0$$
, where $(-1)\mathbf{u} = -\mathbf{u}$

5.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

6.
$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

7.
$$c(d\mathbf{u}) = (cd)(\mathbf{u})$$

8.
$$1u = u$$

1.4 The Matrix Equation Ax = b

A is a $m \times n$ matrix, with columns $\mathbf{a}_1, \ldots, \mathbf{a}_n$, and if \mathbf{x} is in \mathbb{R}^n ,

$$A\mathbf{x} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n$$

Theorem 3

A is a $m \times n$ matrix with columns $\mathbf{a}_1, \dots, \mathbf{a}_n$, **b** is in \mathbb{R}^m

The solutions of x (and solution set for the augmented matrix) are all the same.

•
$$\mathbf{A}x = \mathbf{b}$$

•
$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n = \mathbf{b}$$

•
$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n & \mathbf{b} \end{bmatrix}$$

Existence of Solutions

Only solution if and only if \mathbf{b} is a linear combination of the columns of A

Theorem 4

A is a $m \times n$ matrix. The following are all true or false.

- 1. for all real **b**, $\mathbf{A}x = \mathbf{b}$ has a solution
- 2. for all real \mathbf{b} , \mathbf{b} is a linear combination of columns in \mathbf{A}

- 3. column of ${\bf A}$ span ${\rm I\!R}^m$ I think this means the columns are real as well
- 4. **A** has a pivot position in every row.

Computation of Ax

Introduction of the identity matrix concept - the identity matrix is key to finding inverse of a matrix

$$I_n = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

Figure 2: https://tfetimes.com/c-identity-matrix/

Theorem 5

Assuming the following,

- **A** is a $m \times n$ matrix
- $oldsymbol{\cdot}$ **u** and **v** are real vectors
- c is a scalar

Then

- A(u + v) = Au + Av
- $\mathbf{A}(c\mathbf{u}) = c(\mathbf{A}\mathbf{u})$