$12a_{1140} (K12a_{1140})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{48} + u^{47} + \dots + 2u^2 + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 48 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{48} + u^{47} + \dots + 2u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{12} - 5u^{10} + 9u^{8} - 6u^{6} + u^{2} + 1 \\ u^{14} - 6u^{12} + 13u^{10} - 10u^{8} - 2u^{6} + 4u^{4} + u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{4} + u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{11} + 4u^{9} - 4u^{7} - 2u^{5} + 3u^{3} \\ -u^{11} + 5u^{9} - 8u^{7} + 3u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{29} + 12u^{27} + \dots - 2u^{3} + u \\ -u^{29} + 13u^{27} + \dots + 3u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{47} + 20u^{45} + \dots - 8u^{5} + 4u^{3} \\ -u^{47} + 21u^{45} + \dots + 2u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{30} - 13u^{28} + \dots + 2u^{2} + 1 \\ u^{32} - 14u^{30} + \dots - 20u^{8} + 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{45} + 80u^{43} + \cdots + 8u 6$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{48} - 11u^{47} + \dots - 336u + 41$
c_2, c_3, c_8	$u^{48} - u^{47} + \dots + 2u^2 + 1$
c_4, c_7	$u^{48} + u^{47} + \dots + 150u + 61$
c_5, c_6, c_{10} c_{11}, c_{12}	$u^{48} + u^{47} + \dots + 2u + 1$
<i>C</i> 9	$u^{48} + 3u^{47} + \dots + 4u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{48} + 9y^{47} + \dots + 21912y + 1681$
c_2, c_3, c_8	$y^{48} - 43y^{47} + \dots + 4y + 1$
c_4, c_7	$y^{48} - 27y^{47} + \dots + 17760y + 3721$
$c_5, c_6, c_{10} \\ c_{11}, c_{12}$	$y^{48} + 61y^{47} + \dots + 4y + 1$
<i>c</i> ₉	$y^{48} + y^{47} + \dots - 36y^2 + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.984705 + 0.170190I	0.63620 - 3.07400I	-1.42622 + 5.04336I
u = -0.984705 - 0.170190I	0.63620 + 3.07400I	-1.42622 - 5.04336I
u = 1.034970 + 0.229830I	9.29821 + 4.64078I	0.19063 - 3.74391I
u = 1.034970 - 0.229830I	9.29821 - 4.64078I	0.19063 + 3.74391I
u = 0.821678 + 0.119203I	-1.80692 - 0.00993I	-6.31095 - 0.29160I
u = 0.821678 - 0.119203I	-1.80692 + 0.00993I	-6.31095 + 0.29160I
u = 0.697074 + 0.345244I	9.79430 - 4.58712I	1.41766 + 1.42537I
u = 0.697074 - 0.345244I	9.79430 + 4.58712I	1.41766 - 1.42537I
u = 0.276656 + 0.724689I	8.24979 + 8.49657I	-1.26312 - 6.40308I
u = 0.276656 - 0.724689I	8.24979 - 8.49657I	-1.26312 + 6.40308I
u = -0.258333 + 0.712893I	-0.80898 - 6.73195I	-3.03818 + 8.02768I
u = -0.258333 - 0.712893I	-0.80898 + 6.73195I	-3.03818 - 8.02768I
u = -0.696113 + 0.263546I	0.85094 + 3.00932I	-0.10546 - 3.28969I
u = -0.696113 - 0.263546I	0.85094 - 3.00932I	-0.10546 + 3.28969I
u = 0.229854 + 0.703043I	-3.75638 + 3.54065I	-8.92526 - 5.06196I
u = 0.229854 - 0.703043I	-3.75638 - 3.54065I	-8.92526 + 5.06196I
u = 0.146777 + 0.708759I	6.63287 - 1.05371I	-3.70281 - 0.77988I
u = 0.146777 - 0.708759I	6.63287 + 1.05371I	-3.70281 + 0.77988I
u = -0.190207 + 0.689875I	-1.71125 - 0.36118I	-5.08602 - 0.20285I
u = -0.190207 - 0.689875I	-1.71125 + 0.36118I	-5.08602 + 0.20285I
u = -0.401505 + 0.556155I	13.18090 - 1.81273I	3.22900 + 3.77442I
u = -0.401505 - 0.556155I	13.18090 + 1.81273I	3.22900 - 3.77442I
u = -1.358150 + 0.117821I	3.75606 - 0.57966I	0
u = -1.358150 - 0.117821I	3.75606 + 0.57966I	0
u = -1.341400 + 0.274423I	11.31320 - 2.49652I	0
u = -1.341400 - 0.274423I	11.31320 + 2.49652I	0
u = 1.359690 + 0.179256I	4.62275 + 3.19043I	0
u = 1.359690 - 0.179256I	4.62275 - 3.19043I	0
u = 0.346107 + 0.516877I	3.67185 + 1.60748I	3.24996 - 4.72497I
u = 0.346107 - 0.516877I	3.67185 - 1.60748I	3.24996 + 4.72497I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.372900 + 0.269136I	3.24781 + 3.83280I	0
u = 1.372900 - 0.269136I	3.24781 - 3.83280I	0
u = 1.405940 + 0.096755I	7.05839 - 1.92770I	0
u = 1.405940 - 0.096755I	7.05839 + 1.92770I	0
u = -1.39090 + 0.27872I	1.39970 - 7.10603I	0
u = -1.39090 - 0.27872I	1.39970 + 7.10603I	0
u = -1.41073 + 0.20337I	9.24476 - 4.28144I	0
u = -1.41073 - 0.20337I	9.24476 + 4.28144I	0
u = 1.40430 + 0.28269I	4.48956 + 10.35090I	0
u = 1.40430 - 0.28269I	4.48956 - 10.35090I	0
u = -1.43192 + 0.09360I	16.3256 + 3.3059I	0
u = -1.43192 - 0.09360I	16.3256 - 3.3059I	0
u = -1.41356 + 0.28666I	13.6424 - 12.1723I	0
u = -1.41356 - 0.28666I	13.6424 + 12.1723I	0
u = 1.43291 + 0.20603I	19.0325 + 4.5978I	0
u = 1.43291 - 0.20603I	19.0325 - 4.5978I	0
u = -0.151330 + 0.440993I	-0.189683 - 0.842364I	-4.63984 + 8.09333I
u = -0.151330 - 0.440993I	-0.189683 + 0.842364I	-4.63984 - 8.09333I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{48} - 11u^{47} + \dots - 336u + 41$
c_2, c_3, c_8	$u^{48} - u^{47} + \dots + 2u^2 + 1$
c_4, c_7	$u^{48} + u^{47} + \dots + 150u + 61$
c_5, c_6, c_{10} c_{11}, c_{12}	$u^{48} + u^{47} + \dots + 2u + 1$
<i>C</i> 9	$u^{48} + 3u^{47} + \dots + 4u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{48} + 9y^{47} + \dots + 21912y + 1681$
c_2, c_3, c_8	$y^{48} - 43y^{47} + \dots + 4y + 1$
c_4, c_7	$y^{48} - 27y^{47} + \dots + 17760y + 3721$
c_5, c_6, c_{10} c_{11}, c_{12}	$y^{48} + 61y^{47} + \dots + 4y + 1$
<i>c</i> 9	$y^{48} + y^{47} + \dots - 36y^2 + 1$