	doc_1		doc_2		decision	id
cases	Wesley J. Maddox Pavel Izmailov Timur Garipov		authors	 Pavel Izmailov Timur Garipov Andrew Gordon Wilson Dmitry Vetrov Wesley Maddox 		
	authors	Dmitry Vetrov	title	A Simple Baseline for Bayesian Uncertainty in Deep Learning		
		Andrew Wilson	publication_date	2019-02-07 00:00:00		
			source	SupportedSources.PAPERS_WITH_CODE		
	title	A Simple Baseline for Bayesian Uncertainty in Deep Learning	journal			
	publication date 2019-02-07 00:00:00		volume		DUPLICATES 1:	
	source	SupportedSources.OPENALEX doi				155
	journal	Neural Information Processing Systems	urls	 https://arxiv.org/pdf/1902.02476v2.pdf https://github.com/wjmaddox/swa_gaussian http://papers.nips.cc/paper/9472-a-simple-baseline-for-bayesian-uncertainty-in-deep-learning.pdf 		
	volume	32				
	doi	None				
	urls	https://openalex.org/W2971130081	id	id2036108193044549007		
	uris		abstract S	We propose SWA-Gaussian (SWAG), a simple, scalable, and general purpose approach for uncertainty representation and calibration in deep learning. Stochastic Weight		
	id	id2462246507733355680		Averaging (SWA), which computes the first moment of stochastic gradient descent (SGD) iterates with a modified learning rate schedule, has recently been shown to improve generalization in deep learning. With SWAG, we fit a Gaussian using the SWA solution as the first moment and a low rank plus diagonal covariance also derived from the SGD iterates, forming an approximate posterior distribution over neural network weights; we then sample from this Gaussian distribution to perform Bayesian model averaging. We empirically find that SWAG approximates the shape of the true posterior, in accordance with results describing the stationary distribution of SGD iterates.		
	abstract					
	versions					
				Moreover, we demonstrate that SWAG performs well on a wide variety of tasks, including out of sample detection, calibration, and transfer learning, in comparison to many popular alternatives including MC dropout, KFAC Laplace, SGLD, and temperature scaling.		
			versions			