Radiation Hardened VA416X2

32-Bit Arm® Cortex®-M4 (with FPU) microcontroller manufactured with HARDSIL® technology offering best in class radiation performance and latch-up immunity.

MEMORY CONFIGURATION OPTIONS

- Internal NVM (VA41632 only)
- External SPI NVM (for code boot)
- External parallel NVM (for code boot)
- External memory bus interface (EBI for code or data)

RADIATION HARDENED PERFORMANCE

- VA41622 Total Ionizing Dose (TID) > 300 krad (Si)
- VA41632 Total Ionizing Dose (TID) > 200 krad (Si)
- Soft Error Rate (SER) < 1e⁻¹⁵ errors / bit-day
- Single-Event Latch-Up (SEL) immunity to LET > 110 MeVcm² / mg

KEY FEATURES

- Manufactured with HARDSIL technology
- RAD hardened Registers with Triple-Module Redundancy (TMR)
- 32-bit Arm Cortex-M4 processor
 - Single-Precision Floating-Point Unit (FPU)
 - SWD based debug interface
- Operating voltages
 - GPIO 3.3 ± 10% V
 - Optional 1.5 V core supply voltage
 - Includes on-chip LDO regulator
- Clock rate up to 100 MHz
 - Internal 20 MHz oscillator for fail-safe clocking
- Memory
 - 64 Kbyte on-chip data and 256 Kbyte on-chip program memory SRAM
 - 256 Kbyte SPI NVM (VA41632 only)
 - Error Detection and Correction (EDAC)
 - Built in Scrub Engine
- Peripherals
 - 104 Configurable GPIO pins
 - 3 UART interfaces
 - 3 I²C interfaces
 - 3 SPI interfaces
 - 2 CAN 2.0B
 - Ethernet 10/100 MAC
 - SpaceWire interface
 - DMA controller
- External Asynchronous Parallel Bus Interface (EBI)
 - 8-bit or 16-bit memory support
 - Four chip select of up to 16 Mbytes each
- Timer System
 - 24 configurable 32-bit counters / timers
 - · Input capture, Output compares
 - PWMs, Pulse Counters, Watchdog timer
- Package
- 196 BGA (12 mm x 12 mm)

SUPPORT

- PEB1 development board
- Keil™ Microcontroller Development Kit

1		Functional Description	. 5
	1.1	Related Documentation	5
	1.2	Feature Summary	5
	1.3	Power-Up Sequence	9
	1.4	Resets	
	1.5	Inter-Integrated Circuit (I ² C) pins	10
2		Block Diagram	11
3		Pinout	12
	3.1	196-Pin Plastic BGA Ball-Map diagram	12
	3.1	1 Ball-Map	.13
	3.2	Pin Descriptions	15
	3.3	GPIO Pin Alternative Functions	
4		Peripheral Summary	21
	4.1	Serial Peripheral Interface (SPI)	21
	4.2	Universal Asynchronous Receiver/Transmitter (UART)	21
	4.3	Inter-Integrated Circuit (I ² C)	
	4.4	SpaceWire (SpW)	
	4.5	Controller Area Network (CAN)	
	4.6	General Purpose 4-Channel DMA	24
	4.7	Ethernet Media Access Control (MAC)	
	4.8	Timers/Counters (TIM)	
	4.9	General-Purpose Input/Output Ports (GPIO)	
	4.10		
	4.11		
5		DC Electrical Characteristics	
	5.1	Absolute Maximum Ratings	
	5.2	Recommended Supply Conditions	
	5.3	DC Current Consumption	
	5.4	Power Supply Decoupling	
	5.5	Electrostatic Discharge (ESD)	
	5.6	Signal Pads Operating Conditions	
	5.7	Low-Voltage Detect Circuit	
	5.8	Internal Pull-up/Pull-down Resistors	
	5.9	Pin Capacitance	
6		AC Electrical Characteristics	
	6.1	AC Timing Conditions	
	6.2	Internal 20 MHz Oscillator	-
	6.3	Internal 1 MHz Oscillator	
	6.4	Clock Signals	
	6.5	Phased Locked Loop (PLL)	
	6.6	Serial Wire Debug (SWD)	
	6.7	Low Voltage Differential Signaling (LVDS)	
	6.8	Ethernet MII Timing	
	6.9	External Bus Interface (EBI) Timing	
7		Radiation Hardened Performance Targets	43

8	Package Mechanical Information	44
8.1	196-Pin Plastic BGA Package Dimensions (mm)	. 44
	Ordering Information	
10	Development Kit Ordering Information	45
11	Revision History	45

page 4

Features

- Performance
 - 100 MHz Arm Cortex-M4 processor with Single-Precision Floating-Point Unit (FPU)
- On-Chip Memory
 - 256 Kbyte Non-Volatile Memory (NVM) (VA41632 only)
 - 256 Kbyte Program SRAM
 - o 64 Kbyte Data SRAM
 - o On-chip Error Detection and Correction (EDAC) and Scrub Engine
- General-purpose I/O (GPIO) pins
 - Configurable direction
 - Configurable pull-up/down resistors
 - Configurable as edge or level sensitive interrupt sources
- 24 General-purpose counter/timers
 - Configurable interrupt sources
 - Can be triggered from multiple sources (GPIO or other counter/timers)
 - Each counter/timer has an independent 32-bit counter
 - o Configurable as PWM, capture or compare
- 3 x UARTS
 - Internal FIFO
 - Transmit or receive interrupt source
- 3 x Serial Peripheral Interface (SPI) ports
 - o Internal FIFO
 - Transmit or receive interrupt source
 - Multiple chip select outputs
- 3 x l²C ports
 - Internal FIFO
 - Master and Slave mode on all ports
 - Standard and Fast mode support
- System-level Triple Modular Redundancy (TMR) on critical internal registers
- 2 x CAN 2.0B controllers
- 10/100 Ethernet MAC
- SpaceWire controller with LVDS interface
- Random Number Generator
- Serial Wire Debug (SWD) based debug controller
- 3.3 V single rail supply or configurable for dual supplies
- Parallel external memory bus interface (EBI)

1 Functional Description

The VA416X2 is optimized for radiation environments and consists of an Arm Cortex-M4 CPU core and a related set of peripherals. It includes Error Detection and Correction (EDAC) logic on the internal memories. The program space EDAC is 16-bit word-based for optimum performance and reliability. The data space EDAC is 8-bit to allow reliable byte size data manipulation. In addition, the VA416X2 includes Triple-Mode Redundancy (TMR) with voting on select internal flip-flop storage elements.

1.1 Related Documentation

The following associated documents will help understand this device:

- Arm Documents (Available from http://infocenter.arm.com)
 - Cortex-M4 Generic User Guide
 - Cortex-M4 Technical Reference Manual
 - o AMBA® 3 AHB-LiteTM Protocol Specification
 - o AMBA® 3 APB Protocol Specification
 - Arm® TrustZone® True Random Number Generator Technical Reference Manual
 - o Arm® PrimeCell® External Bus Interface Technical Reference Manual
 - Arm® PrimeCell® DMA Technical Reference Manual
- NXP Documents (Available from http://www.nxp.com)
 - o I²C-bus Specification and User Manual
- Cypress Documents (Available from http://cypress.com)
 - FM25V20A FRAM Datasheet
- VORAGO Documents
 - VA416XX Programmer's Guide

1.2 Feature Summary

- Processor Core
 - Arm Cortex-M4 processor
 - Up to 100 MHz operation
 - SysTick Counter
 - Single Cycle Multiply-and-accumulate
 - Hardware divide (2 to 12 cycles)
 - Single-precision IEEE 754 compliant HW Floating Point Unit (FPU)
 - Bit-Banding region for registers and data SRAM
 - o Arm Cortex-M4 built-in Nested Vectored Interrupt Controller (NVIC)
 - 240 Interrupt sources with a unique 8-bit priority level (176 of these are used)
 - Tail chaining supported

page 6

- Arm CoreSightTM debug and trace technology
 - SWD: Serial Wire Debug
 - DAP: Debug Access Port
 - SWV: Serial Wire Viewer
 - Four Breakpoint Comparators
 - Two Data Watch Point Comparators
- Memory
 - 64 Kbyte SRAM Data Memory (32 Kbyte on Data bus and 32 Kbyte on System bus)
 - Byte-level Error Detection and Correction (EDAC) logic on Data memory
 - 256 Kbyte SRAM Instruction Memory
 - Loaded from Serial Peripheral Interface (SPI) based memory or from external memory on the External Bus interface at startup
 - Configurable boot delay, boot speed, and error checking
 - 16-bit level EDAC on instruction memory
 - Programmable Scrub Engine for both Data and Instruction memory
 - Utility peripheral
 - Provides means of injecting single and multi-bit errors to check error handling routines.
 - 256 Kbyte serial NVM in package (VA41632 only)
- System Integration Peripherals
 - System Configuration
 - Memory Control
 - Data memory clear on reset
 - Code memory reload on reset
 - Code memory write protect
 - Code/Data memory Scrub rate
 - Code/Data memory SBE/MBE counters
 - Code/Data memory SBE/MBE Interrupt control
 - GPIO Glitch Filter rate control
 - Peripheral Configuration
 - Clock gating and Reset control of individual peripherals
 - Interrupt Router
 - Maps interrupt sources to timers and DMA for flexible event triggers

- Four-Channel DMA
 - Allows CPU independent data movement from memory to memory, peripherals to memory, or memory to peripherals.
- Serial Communication Peripherals
 - Three UARTs
 - 16 word Transmit and Receive FIFOs
 - Fractional baud rate generation
 - Supports baud rates up to 115200 with system clocks above 2MHz
 - Supports:
 - 5, 6, 7, 8 and 9 bits
 - Even, Odd and None parity
 - Stop Bits 1 or 2
 - Break generation and detection
 - Error detection
 - FIFO overflow
 - Framing error
 - Parity error
 - Break detection
 - Configurable Interrupt generation
 - FIFO level (fully configurable)
 - Receive Timeout
 - Error
 - o Three SPI Ports (Fourth SPI used only to program Boot SPI NVM)
 - Supports all four modes of SPI operation
 - Data size of 4 to 16 bits
 - 16 word Transmit and Receive FIFOs
 - Block mode support for larger Frame sizes
 - Master-mode clock rates up to 1/8 System clock (1.56 Mbit/s)
 - Slave-mode clock rates up to 1/24 System clock (520 kbit/s)
 - Configurable Interrupt generation for transmitting and receiving
 - FIFO level (fully configurable)
 - FIFO Overflow
 - Receive Timeout
 - Three I²C Ports
 - Standard (NXP UM10204) I²C-compliant bus interface
 - Dedicated open-drain pins supporting I²C Fast mode
 - Configurable as Master or Slave

- 16-byte Transmit and Receive FIFOs
- Configurable Interrupt generation
 - FIFO level (fully configurable)
- Ethernet Media Access Controller (MAC)
 - Supports 10/100BASE-T (10 MHz or 100 MHz operation.)
 - Physical Layer (PHY) interface: Media-Independent interface (MII)
- Two Controller Area Network (CAN) ports
 - Supports CAN 2.0B
 - Two-wire interface to external Physical Layer (PHY)
- SpaceWire port
 - Supports SpaceWire standard ECSS-E-ST-50-12C
 - 1k byte receive FIFO
 - 1k byte transmit FIFO
- System Connection Peripherals
 - o GPIO
 - Seven GPIO Ports with up to 104 pins total
 - 16-bit ports A-F
 - 8-bit port G
 - Configurable direction control of individual bits
 - Bit-level mask register allows single instruction setting or clearing of any bits in one port.
 - Configurable interrupt generation on ports A-F
 - Level or Edge sensitive
 - Configurable Pulse mode on individual bits
 - Configurable (0 to 3) cycle delay filtering on individual bits
 - I/O Configuration
 - Manages programmable function selects of each pin to allow peripherals to be mapped to GPIO
 - Sets electrical parameters:
 - Glitch filters
 - Pull-up/Pull-down resistors
 - Signal inversion
 - Pseudo open-drain
 - Timers
 - Twenty-four 32-bit timers
 - Advanced trigger modes using cascade feature
 - Separate Start/Stop based on other timers or interrupt signals

- Multiple trigger sources from GPIO or other timers
- Configurable output event
 - One cycle pulse when timer equal to zero detected
 - Active mode
 - Divide by two for square wave creation
 - Two PWM modes: single edge and double edge detection (supports center alignment)
- External Bus interface
 - Asynchronous with 16-bit or 8-bit data width
 - Double mapped in memory to allow Instruction or Data access
 - 16 Mbyte memory space with four chip selects
 - Configurable wait states
- Power supplies
 - Can be configured for use with a single 3.3 V supply
 - Can be configured for use with dual supplies
 - 3.3 V for I/O
 - 1.5 V for logic
 - Selectable with an external input pin (EXT15_SEL)
- Radiation Hardness
 - Latch-up immunity in extreme environments
 - Built to be resistant to Single Event Upsets (SEU)
 - o Built with VORAGO proprietary HARDSIL technology
 - Designed with Dual-Interlocked Storage Cells (DICE) and Triple Mode Redundancy (TMR) on key register elements.

1.3 Power-Up Sequence

The VA416X2 auto-detects the Power-Up condition and begins operation by loading the internal SRAM code memory from an NVM memory located in the same package via an internally connected Serial Peripheral Interface (VA41632 only) or from an external NVM memory via the ROM_SPI interface pins. Alternatively, if the EBI_BOOT pin is set high, the VA416X2 will load the internal code memory from an external memory device via the External Bus Interface. After loading the code memory, the processor follows a typical Arm Cortex-M4 start sequence. The clock source for boot operation is a 20 MHz internally generated oscillator

1.4 Resets

In addition to the Power-on reset, the device can be reset from other events:

- EXTRESETn pin
- SYSRESETREQ from software

- Hardware events configured by IRQ Selector Peripheral or the System Controller Peripheral:
 - Processor Lockup
 - Watchdog Timer
 - o Memory Errors (Single or Multi-bit errors from the EDAC memory controller)

1.5 Inter-Integrated Circuit (I²C) pins

The VA416X2 contains three sets of dedicated I²C pins and related I²C controllers. Each controller can act as both an I²C master and an I²C slave simultaneously. These interfaces are capable of operating up to 100 kbps in Standard mode and up to 400 kbps in Fast mode.

2 Block Diagram

3 Pinout

The VA416X2 is available in a 196-pin plastic BGA

3.1 196-Pin Plastic BGA Ball-Map diagram

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Α	PF15	NC	SRXSN	SRXN	STXSN	STXN	SDA0	PG01	PG05	NC	XTALp	AN7	AN3	VREFH
В	PF11	PF14	SRXSP	SRXP	STXSP	SCL0	PG00	PG04	NMI	XTALn	A3V3	AN4	ANO	DAC0
С	TRST	TDO	PF13	STXP	NC	CRX0	PG03	PG07	1V5n	A1V5	AN5	AN1	DAC1	VSS
D	PF08	TMS	тск	PF12	СТХО	PG02	PG06	RST	VDDQ	AN6	AN2	PA03	PA01	PA00
Ε	PF04	PF07	3V3	TDI	1V5	VSS	3V3	1V5	VSS	3V3	PA09	PA06	PA04	PA02
F	SCK	PF03	PF06	PF09	VSS	VSS	3V3	1V5	VSS	VSS	PA13	PA10	PA07	PA05
G	PF01	CSn	MOSI	PF05	1V5	1V5	VSS	VSS	3V3	3V3	PB01	PA14	PA11	PA08
Н	PE13	PF00	F_SO	MISO	3V3	3V3	VSS	vss	1V5	1V5	PB04	NC	PA15	PA12
J	EBI	WPn	PE15	PF02	VSS	VSS	1V5	3V3	VSS	VSS	PB08	PB05	PB02	PB00
K	PE10	PE12	TM	PE14	3V3	VSS	1V5	3V3	VSS	1V5	PB12	PB09	PB06	PB03
L	PE08	PE09	PE11	PE01	PD13	PD09	PD05	PD01	PC13	PC10	PC00	PB13	PB10	PB07
М	PE06	PE07	PE02	PD14	PD10	PD06	PD02	PC14	NC	PC07	PC04	SDA1	PB14	PB11
N	PE05	PE03	PD15	PD11	PD07	PD03	PC15	PC11	PC08	PC05	PC02	SCL2	SCL1	PB15
Р	PE04	PE00	PD12	PD08	PD04	PD00	PC12	PC09	PC06	PC03	PC01	SDA2	CTX1	CRX1

3.1.1 Ball-Map

3.1.1 Ball-Map								
Ball No.	Ball Name	Datasheet Name		Ball No.	Ball Name	Datasheet Name		
A01	PF15	PORTF[15]		D01	PF08	PORTF[8]		
A02	NC	NC		D02	TMS	TMS/SWDIO		
A03	SRXSN	SW_RXSTR_N		D03	TCK	TCK/SWCLK		
A04	SRXN	SW_RX_N		D04	PF12	PORTF[12]		
A05	STXSN	SW_TXSTR_N		D05	CTX0	CAN0_Tx		
A06	STXN	SW_TX_N		D06	PG02	PORTG[2]		
A07	SDA0	I2C0_SDA		D07	PG06	PORTG[6]		
A08	PG01	PORTG[1]		D08	RST	EXTRESETn		
A09	PG05	PORTG[5]		D09	VDDQ	VDDQ		
A10	NC	NC		D10	NC	NC		
A11	XTALp	XTAL_P		D11	NC	NC		
A12	NC	NC		D12	PA03	PORTA[3]		
A13	NC	NC		D13	PA01	PORTA[1]		
A14	3V3	VDD33		D14	PA00	PORTA[0]		
B01	PF11	PORTF[11]		E01	PF04	PORTF[4]		
B02	PF14	PORTF[14]		E02	PF07	PORTF[7]		
B03	SRXSP	SW_RXSTR_P		E03	PF10	PORTF[10]		
B04	SRXP	SW_RX_P		E04	TDI	TDI		
B05	STXSP	SW_TXSTR_P	4	E05	1V5	VDD15		
B06	SCL0	I2C0_SCL		E06	VSS	VSS		
B07	PG00	PORTG[0]		E07	3V3	VDD33		
B08	PG04	PORTG[4]		E08	1V5	VDD15		
B09	NMI	NMI		E09	VSS	VSS		
B10	XTALn	XTAL_N		E10	3V3	VDD33		
B11	3V3	VDD33		E11	PA09	PORTA[9]		
B12	NC	NC		E12	PA06	PORTA[6]		
B13	NC	NC		E13	PA04	PORTA[4]		
B14	NC	NC		E14	PA02	PORTA[2]		
C01	TRST	TRSTn		F01	SCK	ROM_SCK		
C02	TDO	TDO		F02	PF03	PORTF[3]		
C03	PF13	PORTF[13]		F03	PF06	PORTF[6]		
C04	STXP	SW TX P		F04	PF09	PORTF[9]		
C05	NC	NC		F05	VSS	VSS		
C06	CRX0	CAN0 Rx		F06	VSS	VSS		
C07	PG03	PORTG[3]		F07	3V3	VDD33		
C08	PG07	PORTG[7]		F08	1V5	VDD15		
C09	1V5n	EXT15 SEL	1	F09	VSS	VSS		
C10	1V5	VDD15	1	F10	VSS	VSS		
C11	NC	NC	1	F11	PA13	PORTA[13]		
C12	NC	NC	1	F12	PA10	PORTA[10]		
C13	NC	NC	1	F13	PA07	PORTA[7]		
C14	VSS	VSS	1	F14	PA05	PORTA[5]		

G01	PF01	DODTE[4]		L/01	PE10	DODTE[40]
G02	CSn	PORTF[1] ROM CSn		K01 K02	PE12	PORTE[10] PORTE[12]
G02 G03	SO			K03	TM	TEST MODE
G03 G04	PF05	ROM_MOSI		K04	PE14	PORTE[14]
		PORTF[5]				VDD33
G05	1V5	VDD15		K05	3V3	
G06	1V5	VDD15		K06	VSS	VSS
G07	VSS	VSS		K07	1V5	VDD15
G08	VSS	VSS		K08	3V3	VDD33
G09	3V3	VDD33		K09	VSS	VSS
G10	3V3	VDD33		K10	1V5	VDD15
G11	PB01	PORTB[1]		K11	PB12	PORTB[12]
G12	PA14	PORTA[14]		K12	PB09	PORTB[9]
G13	PA11	PORTA[11]		K13	PB06	PORTB[6]
G14	PA08	PORTA[8]		K14	PB03	PORTB[3]
H01	PE13	PORTE[13]		L01	PE08	PORTE[8]
H02	PF00	PORTF[0]		L02	PE09	PORTE[9]
H03	F_SO	FRAM_MISO		L03	PE11	PORTE[11]
H04	SI	ROM_MISO		L04	PE01	PORTE[1]
H05	3V3	VDD33		L05	PD13	PORTD[13]
H06	3V3	VDD33		L06	PD09	PORTD[9]
H07	VSS	VSS		L07	PD05	PORTD[5]
H08	VSS	VSS		L08	PD01	PORTD[1]
H09	1V5	VDD15		L09	PC13	PORTC[13]
H10	1V5	VDD15		L10	PC10	PORTC[10]
H11	PB04	PORTB[4]		L11	PC00	PORTC[0]
H12	NC	NC		L12	PB13	PORTB[13]
H13	PA15	PORTA[15]		L13	PB10	PORTB[10]
H14	PA12	PORTA[12]		L14	PB07	PORTB[7]
J01	EBI	EBI BOOT		M01	PE06	PORTE[6]
J02	WPn	FRAM PROTn		M02	PE07	PORTE[7]
J03	PE15	PORTE[15]		M03	PE02	PORTE[2]
J04	PF02	PORTF[2]		M04	PD14	PORTD[14]
J05	VSS	VSS		M05	PD10	PORTD[10]
J06	VSS	VSS		M06	PD06	PORTD[6]
J07	1V5	VDD15		M07	PD02	PORTD[2]
J08	3V3	VDD33	1	M08	PC14	PORTC[14]
J09	VSS	VSS		M09	NC	NC NC
J10	VSS	VSS		M10	PC07	PORTC[7]
J11	PB08	PORTB[8]		M11	PC04	PORTC[4]
J12	PB05	PORTB[5]	1	M12	SDA1	I2C1 SDA
J13	PB02	PORTB[2]	1	M13	PB14	PORTB[14]
J14	PB00	PORTB[0]	1	M14	PB11	PORTB[11]
J 17	1.000	1.01(10[0]	1	101 1 -	1 1 0 1 1	

N01	PE05	PORTE[5]	P01	PE04	PORTE[4]
N02	PE03	PORTE[3]	P02	PE00	PORTE[0]
N03	PD15	PORTD[15]	P03	PD12	PORTD[12]
N04	PD11	PORTD[11]	P04	PD08	PORTD[8]
N05	PD07	PORTD[7]	P05	PD04	PORTD[4]
N06	PD03	PORTD[3]	P06	PD00	PORTD[0]
N07	PC15	PORTC[15]	P07	PC12	PORTC[12]
N08	PC11	PORTC[11]	P08	PC09	PORTC[9]
N09	PC08	PORTC[8]	P09	PC06	PORTC[6]
N10	PC05	PORTC[5]	P10	PC03	PORTC[3]
N11	PC02	PORTC[2]	P11	PC01	PORTC[1]
N12	SCL2	I2C2_SCL	P12	SDA2	I2C2_SDA
N13	SCL1	I2C1_SCL	P13	CTX1	CAN1_Tx
N14	PB15	PORTB[15]	P14	CRX1	CAN1_Rx

3.2 Pin Descriptions

Pin Type Description		Туре	Internal Pull- up/down
	System Pins		
XTAL_P	Crystal Oscillator Output	Out	None
XTAL_N	Crystal Oscillator Input	In	None
EXTRESETn	External System Reset, active low. Resets the processor and all peripherals. This signal is		Pull-up
NMI	Non-maskable Interrupt – active high	ASync In	None
EBI_BOOT	When high, this signal enables software boot from the EBI port rather than the SPI ROM interface.	In	None
EXT15_SEL	When high, this signal disables the internal 1.5 V regulator, and 1.5 V must be applied externally to all VDD15 pins and A_VDD15.	ln	None
NVM_PROTn	When low, this signal inhibits programming of the internal NVM (VA41632 only).	ln	None
TEST_MODE	For factory use only. Must be tied to VSS with a 10k resistor.	In	None
	General-Purpose I/O Pins		
PORTA[15:0]	Software configurable general-purpose I/O pins. Software configurable for direction, interrupt sources, and counter/timer triggers. These pins are configurable as UART, SPI, Timers, and Ethernet pins.	Sync I/O	Software configurable

Pin Type	Description	Туре	Internal Pull- up/down
PORTB[15:0]	Software configurable general-purpose I/O pins. Software configurable for direction, interrupt sources, and counter/timer triggers. These pins are configurable as UART, SPI, Timers, and Ethernet pins.	Sync I/O	Software configurable
PORTC[15:0]	Software configurable general-purpose I/O pins. Software configurable for direction, interrupt sources, and counter/timer triggers. These pins are configurable as UART, SPI, Timers, and EBI pins.	Sync I/O	Software configurable
PORTD[15:0]	Software configurable general-purpose I/O pins. Software configurable for direction, interrupt sources, and counter/timer triggers. These pins are configurable as UART, Timers, and EBI pins.	Sync I/O	Software configurable
PORTE[15:0]	Software configurable general-purpose I/O pins. Software configurable for direction, interrupt sources, and counter/timer triggers. These pins are configurable as UART, SPI, Timers, and EBI pins.	Sync I/O	Software configurable
PORTF[15:0]	Software configurable general-purpose I/O pins. Software configurable for direction, interrupt sources, and counter/timer triggers. These pins are configurable as UART, SPI, Timers, and EBI pins.	Sync I/O	Software configurable
PORTG[7:0]	Software configurable general-purpose I/O pins. Software configurable for direction, interrupt sources, and counter/timer triggers. These pins are configurable as UART, SPI, and Timer pins.	Sync I/O	Software configurable
	SPI ROM pins		
ROM_SCK	SPI Clock to Boot ROM.	Sync Out	Pull-down
ROM_SS	SPI Chip Select to Boot ROM (Active Low).	Sync Out	Pull-up
ROM_MOSI	SPI Data Out to Boot ROM.	Sync Out	Pull-down
ROM_MISO	SPI Data In from Boot ROM (must be tied to VSS for VA41632 devices with an internal NVM).	Sync In	None
	I ² C Pins		
I2C0_SCL	I ² C0 Clock	Open drain	None
I2C0_SDA	I ² C0 Data	Open drain	None
I2C1_SCL	I ² C1 Clock	Open drain	None

Pin Type	Pin Type Description		Internal Pull- up/down
I2C1_SDA	I ² C1 Data	Open drain	None
I2C2_SCL	I ² C2 Clock	Open drain	None
I2C2_SDA	I ² C2 Data	Open drain	None
	CAN Pins		
CAN0_RX	CAN0 Receive	Sync In	None
CAN0_TX	CAN0 Transmit	Sync Out	None
CAN1_RX	CAN1 Receive	Sync In	None
CAN1_TX	CAN1 Transmit	Sync Out	None
	JTAG/SWD Pins		
TCK/SWCK	Test Clock/Serial Wire Debug Clock	Clock	None
TMS/SWDIO	Test Mode Select/Serial Wire Debug Data IO	Sync In/Out	Pull-up
TRSTn	Test Reset, active low	Sync In	Pull-up
TDI	Test Data In	Sync In	Pull-up
TDO	Test Data Out	Sync Out	None
	SpaceWire Pins		
SW_RXSTR_N	Receive strobe negative signal	LVDS	None
SW_RXSTR_P	Receive strobe positive signal	LVDS	None
SW_RX_N	Receive data negative signal	LVDS	None
SW_RX_P	Receive data positive signal	LVDS	None
SW_TXSTR_N	Transmit strobe negative signal	LVDS	None
SW_TXSTR_P	Transmit strobe positive signal	LVDS	None
SW_TX_N	Transmit data negative signal	LVDS	None
SW_TX_P	Transit data positive signal	LVDS	None
	Power/Ground pins		
VDD15	1.5 V Core power (must be supplied externally if EXT15_SEL=1)	Power	N/A
VSS	Ground	Ground	N/A
VDD33	3.3 V IO power	Power	N/A
VDDQ	For factory use only. Must be tied to VSS	Power	N/A

3.3 GPIO Pin Alternative Functions

GPIO pins can be configured for various peripherals on the VA416X2 MCU. The default configuration is for all the pins to be assigned as GPIO. Please refer to the VA416XX Programmer's Guide for more information about the usage of GPIO pins and their alternative functions.

Port pin default function	Alternative function 1	Alternative function 2	Alternative function 3
PORTA[0]	TIM[0]	SPI2 SS4	UARTO RTS
PORTA[1]	TIM[1]	SPI2_SS3	UARTO_CTS
PORTA[2]	TIM[2]	SPI2_SS2	UART0_TX
PORTA[3]	TIM[3]	SPI2_SS1	UART0_RX
PORTA[4]	TIM[4]	SPI2_SS0	Not assigned
PORTA[5]	TIM[5]	SPI2_SCK	Not assigned
PORTA[6]	TIM[6]	SPI2_MISO	Not assigned
PORTA[7]	TIM[7]	SPI2_MOSI	Not assigned
PORTA[8]	ETH_MDIO	SPI2_SS6	TIM[8]
PORTA[9]	ETH_MDC	SPI2_SS5	Not assigned
PORTA[10]	ETH_RxD3	TIM[23]	Not assigned
PORTA[11]	ETH_RxD2	TIM[22]	Not assigned
PORTA[12]	ETH_RxD1	TIM[21]	Not assigned
PORTA[13]	ETH_RxD0	TIM[20]	Not assigned
PORTA[14]	ETH_Rx_DV	TIM[19]	Not assigned
PORTA[15]	ETH_Rx_CLK	TIM[18]	Not assigned
PORTB[0]	ETH_Rx_ER	TIM[17]	SPI1_SS7
PORTB[1]	ETH_Tx_ER	TIM[16]	SPI1_SS6
PORTB[2]	ETH_Tx_CLK	TIM[15]	SPI1_SS5
PORTB[3]	ETH_Tx_EN	TIM[14]	SPI1_SS4
PORTB[4]	ETH_TxD0	TIM[13]	SPI1_SS3
PORTB[5]	ETH_TxD1	TIM[12]	SPI1_SS2
PORTB[6]	ETH_TxD2	TIM[11]	SPI1_SS1
PORTB[7]	ETH_TxD3	TIM[10]	SPI1_SS0
PORTB[8]	ETH_COL	TIM[9]	SPI1_SCK
PORTB[9]	ETH_CRS	TIM[8]	SPI1_MISO
PORTB[10]	ETH_PPS_OUT	TIM[7]	SPI1_MOSI
PORTB[11]	SPI0_SS3	TIM[6]	Not assigned
PORTB[12]	SPI0_SS2	TIM[5]	UART1_RTS
PORTB[13]	SPI0_SS1	TIM[4]	UART1_CTS
PORTB[14]	SPI0_SS0	TIM[3]	UART1_TX
PORTB[15]	SPI0_SCK	TIM[2]	UART1_RX
PORTC[0]	SPI0_MISO	TIM[1]	Not assigned
PORTC[1]	SPI0_MOSI	TIM[0]	Not assigned
PORTC[2]	EBI_A[0]	UART0_RTS	Not assigned
PORTC[3]	EBI_A[1]	UART0_CTS	Not assigned
PORTC[4]	EBI_A[2]	UART0_TX	Not assigned

Port pin default function	Alternative function 1	Alternative function 2	Alternative function 3
PORTC[5]	EBI_A[3]	UART0_RX	Not assigned
PORTC[6]	EBI_A[4]	Not assigned	Not assigned
PORTC[7]	EBI_A[5]	SPI1_SS1	Not assigned
PORTC[8]	EBI_A[6]	SPI1_SS0	Not assigned
PORTC[9]	EBI_A[7]	SPI1_SCK	Not assigned
PORTC[10]	EBI_A[8]	SPI1_MISO	Not assigned
PORTC[11]	EBI_A[9]	SPI1_MOSI	Not assigned
PORTC[12]	EBI_A[10]	UART2_RTS	Not assigned
PORTC[13]	EBI_A[11]	UART2_CTS	Not assigned
PORTC[14]	EBI_A[12]	UART2_TX	Not assigned
PORTC[15]	EBI_A[13]	UART2_RX	Not assigned
PORTD[0]	EBI_A[14]	TIM[0]	Not assigned
PORTD[1]	EBI_A[15]	TIM[1]	Not assigned
PORTD[2]	EBI_A[16]	TIM[2]	Not assigned
PORTD[3]	EBI_A[17]	TIM[3]	Not assigned
PORTD[4]	EBI_A[18]	TIM[4]	Not assigned
PORTD[5]	EBI_A[19]	TIM[5]	Not assigned
PORTD[6]	EBI_A[20]	TIM[6]	Not assigned
PORTD[7]	EBI_A[21]	TIM[7]	Not assigned
PORTD[8]	EBI_A[22]	TIM[8]	Not assigned
PORTD[9]	EBI_A[23]	TIM[9]	UART1_RTS
PORTD[10]	EBI_D[15]	TIM[10]	UART1_CTS
PORTD[11]	EBI_D[14]	TIM[11]	UART1_TX
PORTD[12]	EBI_D[13]	TIM[12]	UART1_RX
PORTD[13]	EBI_D[12]	TIM[13]	Not assigned
PORTD[14]	EBI_D[11]	TIM[14]	Not assigned
PORTD[15]	EBI_D[10]	TIM[15]	Not assigned
PORTE[0]	EBI_D[9]	TIM[16]	UART0_RTS
PORTE[1]	EBI_D[8]	TIM[17]	UART0_CTS
PORTE[2]	EBI_D[7]	TIM[18]	UART0_TX
PORTE[3]	EBI_D[6]	TIM[19]	UART0_RX
PORTE[4]	EBI_D[5]	TIM[20]	Not assigned
PORTE[5]	EBI_D[4]	TIM[21]	SPI1_SS7
PORTE[6]	EBI_D[3]	TIM[22]	SPI1_SS6
PORTE[7]	EBI_D[2]	TIM[23]	SPI1_SS5
PORTE[8]	EBI_D[1]	SPI1_SS4	TIM[16]
PORTE[9]	EBI_D[0]	SPI1_SS3	TIM[17]

Port pin default function	Alternative function 1	Alternative function 2	Alternative function 3
PORTE[10]	Not assigned	SPI1_SS2	TIM[18]
PORTE[11]	Not assigned	SPI1_SS1	TIM[19]
PORTE[12]	EBI_CE[0]	SPI1_SS0	TIM[20]
PORTE[13]	EBI_CE[1]	SPI1_SCK	TIM[21]
PORTE[14]	EBI_CE[2]	SPI1_MISO	TIM[22]
PORTE[15]	EBI_CE[3]	SPI1_MOSI	TIM[23]
PORTF[0]	EBI_OEN	SPI2_SS4	TIM[0]
PORTF[1]	EBI_WEN	SPI2_SS3	TIM[1]
PORTF[2]	SPI1_SS0	SPI2_SS2	TIM[2]
PORTF[3]	SPI1_SCK	SPI2_SS1	TIM[3]
PORTF[4]	SPI1_MISO	SPI2_SS0	TIM[4]
PORTF[5]	SPI1_MOSI	SPI2_SCK	TIM[5]
PORTF[6]	UART2_RTS	SPI2_MISO	TIM[6]
PORTF[7]	UART2_CTS	SPI2_MOSI	TIM[7]
PORTF[8]	UART2_TX	Not assigned	TIM[8]
PORTF[9]	UART2_RX	Not assigned	TIM[9]
PORTF[10]	UART1_RTS	Not assigned	TIM[10]
PORTF[11]	UART1_CTS	Not assigned	TIM[11]
PORTF[12]	UART1_TX	Not assigned	TIM[12]
PORTF[13]	UART1_RX	TIM[19]	Not assigned
PORTF[14]	UART0_RTS	TIM[20]	Not assigned
PORTF[15]	UART0_CTS	TIM[21]	Not assigned
PORTG[0]	UART0_TX	TIM[22]	Not assigned
PORTG[1]	UART0_RX	TIM[23]	Not assigned
PORTG[2]	TIM[9]	SPI1_SS0	Not assigned
PORTG[3]	TIM[10]	SPI1_SCK	Not assigned
PORTG[4]	SPI1_SS3	SPI1_MISO	Not assigned
PORTG[5]	SPI1_SS2	Not assigned	Not assigned
PORTG[6]	SPI1_SS1	TIM[12]	Not assigned
PORTG[7]	Not assigned	Not assigned	Not assigned

4 Peripheral Summary

4.1 Serial Peripheral Interface (SPI)

The VA416X2 contains three general purpose Serial Peripheral Interface (SPI) blocks. A fourth SPI is dedicated to the boot memory and uses a dedicated set of pins. The other three use pins shared with various GPIOs. Please refer to the VA416XX Programmer's Guide for more information about the usage of the SPI.

The SPI peripheral supports the following features:

- Master mode
- Slave mode
- Buffered RX/TX operation with dual four entry FIFOs
- Serial clock (SCK) with programmable polarity (SPO) and phase (SPH)
- SPIO has up to 4 chip selects
- SPI1 has up to 8 chip selects
- SPI2 has up to 7 chip selects
- SPI3 is Master only and shares its pins with the SPI ROM pins (ROM_SCK, ROM_MOSI, ROM_MISO, ROM_SS)
- Interrupt conditions:
 - TX FIFO is at least half empty (TXIM)
 - o RX FIFO is at least half full (RXIM)
 - RX Timeout (RTIM)
 - o RX FIFO overrun (RORIM)

4.2 Universal Asynchronous Receiver/Transmitter (UART)

The VA416X2 contains three Universal Asynchronous Receiver/Transmitter (UART) interface blocks with an independent Transmit and Receive section, each with a 16-byte FIFO. The UART pins are shared with various GPIO pins. Please refer to the VA416XX Programmer's Guide for more information about the usage of the UART. The UART peripheral supports the following features:

- Selectable even, odd or no parity
- Selectable one or two stop bits
- Word sizes from 5 to 8 bits
- 9-bit address mode
- Baud rates from 300 to 115,200 bps (or up to 2 Mbps)
- 16-byte RX and TX FIFO
- Detection of Framing, Parity and Overrun errors
- Full Duplex or Half Duplex operation
- Break signal generation and detection

- Interrupt conditions:
 - Receive FIFO at least half full (IRQ_RX)
 - Receive FIFO overflow, receive frame error, receive parity error, or receive break condition (IRQ_RX_STATUS)
 - Receive timeout (IRQ_RX_TO)
 - Transmit FIFO at least half empty (IRQ_TX)
 - Transmit FIFO overflow (IRQ_TX_STATUS)
 - Transmit FIFO empty (IRQ_TX_EMPTY)
 - Transmitter interrupt when CTSn changes value (IRQ_TX_CTS)

4.3 Inter-Integrated Circuit (I²C)

The VA416X2 contains three Inter-Integrated Circuit (I²C) interface blocks. Please refer to the VA416XX Programmer's Guide for more information about the usage of the I²C.

The I²C peripheral supports the following features:

- Standard I²C-compliant bus interface
- Configurable as Master or Slave
- Dedicated open-drain pins
- 16-word FIFO for both transmit and receive
- Programmable clock rate for standard 100 kHz mode or 400 kHz mode
- Interrupt conditions:
 - TX FIFO ready (TXREADY)
 - TX FIFO empty (TXEMPTY)
 - TX FIFO overflow (TXOVERFLOW)
 - RX FIFO full (RXFULL)
 - RX FIFO ready (RXREADY)
 - RX FIFO overflow (RXOVERFLOW)
 - Clock low timeout (CLKLOTO)
 - I²C Status (STATUS)

4.4 SpaceWire (SpW)

The VA416X2 contains a single SpaceWire interface block. Please refer to the VA416XX Programmer's Guide for more information about the usage of the SpaceWire.

The SpaceWire interface supports the following features

- Full implementation of SpaceWire standard ECSS-E-ST-50-12C
- Protocol ID extension ECSS-E-ST-50-11C
- RMAP protocol ECSS-E-ST-50-11C
- AMBA AHB backend with DMA
- Descriptor-based autonomous multi-packet transfer
- 1 Kbyte receive FIFO
- 1 Kbyte transmit FIFO

This interface implements the SpaceWire - Time Distribution Protocol (TDP). The protocol provides the capability to transfer time values and synchronize them between onboard users of the SpaceWire network. The time values are transferred as CCSDS Time Codes, and synchronization is performed through SpaceWire Time-Codes.

The SpaceWire interface consists of four differential pairs (two inputs and two outputs), as shown in the figure. The VA416X2 incorporates the Low Voltage Differential Signal (LVDS) driver and receiver structures. External LVDS circuits are not required.

4.5 Controller Area Network (CAN)

The VA416X2 contains two CAN interface blocks. Please refer to the VA416XX Programmer's Guide for more information about the usage of the CAN.

The CAN Controller implements the following features:

Compliant to CAN Specification 2.0B

- Standard data and remote frames
- Extended data and remote frames
- Up to 8 bytes data length
- Programmable bit rate of up to 1 Mbps

15 message buffers, each configurable as a receive or transmit buffer

- Message buffers are 16-bit oriented as dual-port RAM
- One buffer may be used as basic CAN path

Remote frame support

- Automatic transmission after reception of a Remote Transmission Request (RTR)
- Auto receive after transmission of an RTR

Acceptance filtering

- Two filtering capabilities: global acceptance mask and individual buffer identifiers
- One of the buffers uses an independent acceptance filtering procedure

Programmable transmit priority

Interrupt capability

- One interrupt vector for all message buffers (receive/transmit/error)
- Each interrupt source can be enabled/disabled

16-bit counter with time stamp capability on successful message reception or transmission

Push-pull capable output pins

Diagnostic functions

- Error identification
- Loopback and listen-only features for test and initialization purposes

An external CAN transceiver is required to connect the VA416X2 to a CAN interface bus.

4.6 General Purpose 4-Channel DMA

The VA416X2 supports a single DMA interface to allow the MCU to transfer data from a peripheral to memory or memory to peripheral, independent of the Arm CPU. The Ethernet and SpaceWire peripherals have their own DMA and will not use the general-purpose DMA. Please refer to the VA416XX Programmer's Guide for more information about the usage of the DMA.

The DMA controller implements the following features:

- Each DMA channel has dedicated handshake signals
- Each DMA channel has a programmable priority level
- Each priority level arbitrates using a fixed priority that is determined by the DMA channel
- Support for multiple transfer types:
 - Memory-to-memory
 - Memory-to-peripheral
 - Peripheral-to-memory
- Support for multiple DMA transfer data widths
- The number of transfers in a single DMA cycle is programmable from 1 to 1024

Typical use cases for the DMA are listed below:

- SPI/UART emptying own FIFO into RAM buffer or vice versa
- Moving external EBI Memory to on-chip SRAM

4.7 Ethernet Media Access Control (MAC)

The VA416X2 contains an Ethernet interface block. Please refer to the VA416XX Programmer's Guide for more information about the usage of the Ethernet. The Ethernet controller implements the following features:

MAC General features

- Compliant with the full IEEE 802.3-2002 specifications
- Supports IEEE 802.1Q VLAN tag detection for reception frames
- Support of CSMA/CD protocol for half-duplex operation
- Supports full-duplex only configuration
- Supports IEEE 802.3x flow control for full-duplex operation
- Supports backpressure for flow control in half-duplex mode
- Optional forwarding of received pause frames to the user application when operating in full-duplex mode
- Automatic CRC and pad generation controllable on a per-frame basis
- Optional Automatic Pad Stripping on the receive frames
- Programmable frame length to support standard or jumbo Ethernet frames
 16 Kbytes in size
- Programmable inter-frame gap to 40 to 96-bit times (steps of 8)
- Supports a variety of flexible address filtering modes
- Checksum options:
 - Offload Engine for IPv4, IPv6, TCP, UDP, ICMP

- Insertion in transmit frames
- Check of received frames
- Support for IEEE 1588-2002 time-stamping of transmitted and received frames

PHY interface features

- Supports industry-standard MII and SMII
- MDIO master interface for PHY device configuration and management

Ethernet DMA features

- Four single channel transmit and receive engines
- Fully synchronous design operating on a single system clock
- 32/64/128-bit data transfers
- Optimized for packet-oriented DMA transfers with frame delimiters
- Byte-aligned addressing for data buffers supported
- Dual-buffer (ring) and linked-list (chained) descriptor chaining
- Descriptor architecture allows large blocks of data transfer with minimum CPU intervention
- Each descriptor can transfer up to 16 Kbyte of data
- Comprehensive status reporting for normal operation and transfers with errors
- Programmable burst size for optimal host bus utilization
- Programmable interrupt options for different operational conditions
- Per-frame transmit/receive complete interrupt control
- Round-robin or fixed-priority arbitration between receive and transmit engines
- Start/stop modes

Ethernet FIFO

- 2 Kbyte transmit buffer
- 2 Kbyte receive buffer

An external Ethernet PHY is required to connect the VA416X2 to an Ethernet bus.

4.8 Timers/Counters (TIM)

The VA416X2 contains 24 general-purpose Timer/Counter interface blocks. These can be configured as timers or event counters. They can be free-running or triggered by system events. Timer pins are shared with various GPIO pins. Please refer to the VA416XX Programmer's Guide for more information about the usage of the Timers.

Timer feature summary

- Advanced trigger modes
 - Start/Stop based on other Counter/Timers or GPIO signals
 - Multiple trigger sources
- Configurable output event
 - One cycle zero detect when timer equal to zero is detected
 - Active mode
 - Divide by two for square wave generation
 - Two PWM modes: Single edge and double edge detection

4.9 General-Purpose Input/Output Ports (GPIO)

The VA416X2 contains seven GPIO banks providing a total of 104 GPIO pins. GPIO pins can be configured as inputs or outputs. Please refer to the VA416XX Programmer's Guide for more information about the usage of the GPIO.

- PORTA[15:0]
- PORTB[15:0]
- PORTC[15:0]
- PORTD[15:0]
- PORTE[15:0]
- PORTF[15:0]
- PORTG[7:0]
- Interrupt capability on Ports A to F
- Selectable edge or level interrupts
- Programmable pull-up or pull-down resistors
- Programmable output inversion
- Selectable input filtering
- Pseudo open-drain capability
- Alternative functions available on many GPIO pins

4.10 External Parallel Bus Interface (EBI)

The EBI peripheral is used to interface multiple external memories to the VA416X2. The EBI can connect to an 8-bit or 16-bit external asynchronous memory of up to 16 Mbytes and supports up to four external memory devices. Each external memory will be sharing memory interface signals such as data, address, and write/read. Each memory will have its own chip enable pin (EBI_CEN[3:0]).

The External Bus Interface can be used to load the instruction code into the internal SRAM (if EBI_BOOT=1). Please refer to the VA416XX Programmer's Guide for more information about the usage of the External Parallel Bus Interface.

4.11 True Random Number Generator (TRNG)

The Arm TrustZone TRNG offers these two components:

- The TRNG that conforms to the following standards and drafts:
 - NIST SP800-90B
 - o NIST SP800-22
 - o FIPS 140-2
 - o BSI AIS-31
- A software-implemented Deterministic Random Bit Generator (DRBG) which follows NIST SP 800-90A (making the entire RNG flow SP 800-90C compliant)

For more detailed information, see the Arm TrustZone True Random Number Generator, Technical Reference Manual.

5 DC Electrical Characteristics

5.1 Absolute Maximum Ratings

Symbol	Rating	Hi-Rel	Unit
V_{DD33}	DC supply voltage (I/O)	-0.3 to 3.8	V
V _{I/O}	Voltage on any pin	-0.3 to 3.8	V
T _{CASE}	Operating temperature	-55 to 125	°C
T _{BIAS}	Temperature under bias	-55 to 125	°C
T _{STG}	Storage temperature	-55 to 125	°C

5.2 Recommended Supply Conditions

Symbol	Parameter	Min	Тур	Max	Unit
V_{DD33}	I/O supply voltage	2.97	3.3	3.63	V
V_{DD15}	Core supply voltage (if supplied externally)	1.35	1.5	1.65	V
Vss	Ground	-	0	-	V
V_{ramp}	V _{DD33} voltage ramp time ¹	2.0	-	-	μS
V _{PROFF}	V _{DD33} level at which the Power-on reset is released ²	2.5	2.7	2.9	>
V_{PRON}	V _{DD33} level at which the Power-on reset is activated ³	0.5	0.7	0.9	V

Notes:

- 1. V_{Ramp} time is the time from V_{DD} at 0 V until it reaches the operating range.
- 2. V_{PROFF} is the voltage at which the internal Power-on reset is released when power is rising.
- 3. V_{PRON} is the voltage at which the internal Power-on reset is activated.

5.3 DC Current Consumption

Core Supply Current (VDD15)

The core supply current is approximately 1.2mA/MHz.

Run I _{DD}	25 MHz	50 MHz	100 MHz	Units
CPU only	32	60	120	mA
Worst case (maximum activity)	50	100	200	mA

Notes:

- Maximum activity is measured with all internal counters running at the maximum rate, all I²C interfaces active in Fast mode and loopback mode, all SPI interfaces active in master mode at 16x clock divide rate, all UARTs active in loopback mode at 1 MHz Baud rate, and the CPU running multiply operations.
- 2. Minimum activity (CPU only) is measured with all peripheral clocks disabled.
- 3. Measured at nominal VDD and 25C.

I/O Supply Current (V_{DD33}) I_{DD33}

Run I _{DD} ¹	Max	Units
Overall maximum I/O current	200	mA
Maximum I/O current per side of the device	100	mA

Notes:

1. Although each GPIO can drive up to 8mA, the maximum current allowed per package side of the device is 100mA.

Deep-sleep Supply Current (V_{DD33})

Sleep I _{DD} ¹	25 MHz	50 MHz	100 MHz	Units
CPU only	TBD	TBD	TBD	mA
Worst case (maximum activity)	TBD	TBD	TBD	mA

Notes:

 During deep sleep, the internal 1.5V supply is disabled, and the current consumption of the 1.5V circuitry is only due to leakage. The 3.3V supply is enabled along with a configurable 1MHz oscillator used as the wake-up counter. Deep sleep cannot be used if an external 1.5V supply is being supplied to the MCU (EXT15_SEL=1).

5.4 Power Supply Decoupling

Each power supply pair (VDD33/VSS, VDD15/VSS) must be decoupled with filtering ceramic capacitors, as shown. These capacitors must be placed as close as possible to the corresponding supply pins to ensure proper operation of the MCU. Capacitors can also be placed on the bottom side of a PC board for convenience.

Digital Supplies

5.5 Electrostatic Discharge (ESD)

ESD testing is done in conformance with MIL-PRF-38534 and applies to all pads.

Parameter	Test Conditions	Value	Unit
ESD for Human Body Model (HBM)	All pins	2000	V
ESD for field-induced Charged Device Model (CDM)	All pins	500	V

5.6 Signal Pads Operating Conditions

Input/Output and Input-Only Pads

Symbol	Parameter	Test Conditions	Min	Typ¹	Max	Unit
V _{IL}	Input Low Voltage		-0.3	-	0.3 x V _{DD33}	V
V _{IH}	Input High Voltage		0.7 x V _{DD33}	1	V _{DD33} + 0.3	V
V _{hys}	Hysteresis of Schmitt trigger		300	450	600	mV

Notes:

- 1. Typ for -55° to 125°C measured at 25°C
- 2. The following input buffers have Schmitt Trigger Inputs: TCK, TRSTn, TDI, TMS, ROM_MISO, NVM_PROTn, TEST_MODE, NMI, CAN0_RX, CAN1_RX, EBI_BOOT, and all GPIO

Input/Output and Output-Only Pads

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{OL}	Output voltage (Low)	Load I = 8 mA V_{DD33} = Min	1	0.25	0.4 x V _{DD33}	V
V _{OH}	Output voltage (High)	Load I = -8 mA V_{DD33} = Min	0.8 x V _{DD33}	3.0	-	V

Leakage Current Input/Output and Input-Only Pads (At Temperature -55 to 125°C)

<u> </u>		n, eelper and imperent	1 446 (7 11 1011			
Symbol	Parameter	Pins	Test Condition	Min	Тур	Max
	Input leakage current (V _{in} low)	Pins with configurable pull-up or pull-down	V _{in} = 0 V	-1 μΑ	10 nA	-
		Pins with internal pull- down always enabled	V _{in} = 0 V	-65 μΑ	-50 μΑ	ı
		Tri-state Pins	$V_{in} = 0 V$	-1 μA	10 nA	-
l _{in}	Input leakage current (V _{in} high)	Pins with configurable pull-up or pull-down	$V_{in} = V_{DD33}$	-	10 nA	1 μΑ
		Pins with internal pull- down always enabled	$V_{in} = V_{DD33}$	-	10 nA	1 μΑ
		Tri-state Pins	$V_{in} = V_{DD33}$	-	10 nA	1 μΑ

Notes:

- 1. TYP for -55° to 125°C measured at 25°C
- 2. See Section 3.1 Pin Descriptions for more information

Open Drain I²C Pads

Open Drain I^2C pad specifications apply to pads: I2C0_SCL, I2C0_SDA, I2C1_SCL, I2C1_SDA, I2C2_SCL, and I2C2_SDA

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{IL}	Input low voltage		-0.3		0.3 x V _{DD33MAX}	V
V _{IH}	Input high voltage		0.7 x V _{DD33MIN}		V _{DD33} + 0.3	V
V _{hys}	Hysteresis of Schmitt trigger		300		600	mV
l _{in}	Input leakage current (high)	$V_{in} = V_{DD33}$	-1 µA	10 nA	1 μΑ	
V _{OL}	Output voltage (low)	Load I = -8 mA, V_{DD33} = Min	-	0.25	0.4 x V _{DD33}	V

SpaceWire Low Voltage Differential Signaling (LVDS) Receive Pads

LVDS TX specifications apply to pads: SW_RX_N, SW_RX_P, SW_RXSTR_N, and SW_RXSTR_P. A 100 Ω load is provided between SW_RX_N and SW_RX_P and between SW_RXSTR_N and SW_RXSTR_P.

Symbol	Parameter	Min	Тур	Max	Unit
$ V_{ID} $	Input differential voltage	75	100	-	mV
V _{CM}	Input common mode voltage	0.2	1.2	2.8	V
I _{IC}	Input current, single ended	92	114	160	μА
C_in	Input capacitance at pad (when disabled)	-	0.9	1	pF
R _{in}	Terminating resistance	-	100	-	Ω

SpaceWire Low Voltage Differential Signaling (LVDS) Transmit Pads

LVDS RX specifications apply to pads: SW_TX_N, SW_TX_P, SW_TXSTR_N, and SW_TXSTR_P. A 100 Ω load is assumed between SW_RX_N and SW_RX_P and between SW_RXSTR_N and SW_RXSTR_P at the receiving end.

Symbol	Parameter	Min	Тур	Max	Unit
V _{OD}	Output differential voltage	270	350	410	mV
V_{OM}	Output common-mode voltage (V _{DD33} = 3.3 V)	1.22	1.25	1.26	V
V_{OCM}	Output common mode voltage (V _{DD33} = 2.97 to 3.63 V)	1.09	1.25	1.38	V
loc	Output current	2.7	3.5	4.1	mA
t_skd	Differential pulse skew	0	0.025	0.1	ns
C _{in}	Input capacitance at pad (when disabled)	-	0.9	1	рF

5.7 Low-Voltage Detect Circuit

Refer to the VA416XX Programmer's Guide for more information.

Low-Voltage Detect Level	LVL_SLCT Value	Min	Max	Units
Low-voltage detect rising	00	2.85	2.95	V
	01	2.95	3.05	V
	10	3.05	3.15	V
	11	3.15	3.25	V
Low-voltage detect falling	00	2.75	2.85	V
	01	2.85	2.95	V
	10	2.95	3.05	V
	11	3.05	3.15	V

Notes:

1. LVL_ SLCT is set to the lowest possible setting on power-up to keep the low voltage detect circuit from resetting the device.

5.8 Internal Pull-up/Pull-down Resistors

	Typ Value	Units
Pull-up	60	kΩ
Pull-down	60	kΩ

Notes:

- 1. Pins with dedicated Pull-ups: TMS, TRSTn, TDI, ROM_SS, EXTRESETn, ROM_SCK
- 2. Pins with dedicated Pull-downs: ROM_MOSI
- 3. Pins with software configurable pulls: All GPIO pins

5.9 Pin Capacitance

Symbol	Parameter	Conditions	Max	Unit
C _{IN} ¹	Input Capacitance	$V_{in} = 3.3 \text{ V}$	6	pF
$C_{I/O}^2$	I/O Capacitance	$V_{out} = 3.3 \text{ V}$	10	pF

Notes:

- Input only pins: XTAL_N, ROM_MISO, TCK, TRSTn, TDI, CANO_RX, CAN1_RX, NMI, EBI_BOOT, NVM_PROTn, EXT15_SEL
- 2. Bidirectional pins: PORTA[15:0], PORTB[15:0], PORTC[15:0], PORTD[15:0], PORTE[15:0], PORTF[15:0], PORTG[7:0], TMS/SWDIO
- 3. Open-drain pins: EXTRESETn, I2C0_SCL, I2C0_SDA, I2C1_SCL, I2C1_SDA, I2C2_SCL, and I2C2_SDA.

6 AC Electrical Characteristics

6.1 AC Timing Conditions

V _{DD33}	3.3 V ± 0.3 V
Input swing levels	0 to 3.3 V
Input rise/fall times	1 / 4 ns ¹
Input timing reference levels	1.65 V
Output timing reference levels	1.65 V
AC test load	15 pF

Notes:

1. Rise/Fall times are measured from 20% to 80% of V_{DD33}

6.2 Internal 20 MHz Oscillator

The internal 20 MHz oscillator is used for boot and Power-Up delay timing. If the system clock drops below 1 MHz, the system clock will automatically switch over to the internal 20 MHz oscillator as a system fail-safe mechanism.

Parameter	Description	Min	Тур	Max	Unit
t _{CYC}	Clock cycle time	40	50	66.7	ns
t _{FREQ}	Clock frequency	15	20	25	MHz
-	Cycle time accuracy	-25	-	25	%

6.3 Internal 1 MHz Oscillator

The internal 1 MHz oscillator is used during deep-sleep to wake up the device. Please refer to the VA416XX Programmer's Guide for more information about entering and exiting deep-sleep mode.

Parameter	Description	Min	Тур	Max	Unit
tcyc	Clock cycle time	0.82	1	1.28	μS
t _{FREQ}	Clock frequency	0.78	1	1.22	MHz
-	Cycle time accuracy	-28	-	28	%
twake-up	Deep-sleep wake-up time ¹	256	-	1024	mA

Notes:

 Wake-up time is software programmable and can be disabled to allow for hardware wake-up only.

6.4 Clock Signals

The VA416X2 can be clocked in several different ways.

- Internal oscillator
- 4 to 10 MHz external crystal oscillator with PLL or without PLL enabled
- 4 to 10 MHz external square wave with PLL enabled
- 0 to 100 MHz external square wave without PLL enabled

External Clock Signal

An external clock can be used to drive the XTAL_N input with the XTAL_P pin left unconnected. The clock signal must adhere to the following table.

Parameter	Description	Time	Unit
tcyc	Clock cycle time (min)	10	ns
t _{сн}	Clock high (min)	4	ns
t _{CL}	Clock low (min)	4	ns

External Crystal Oscillator

If an external crystal oscillator circuit is used, please refer to the crystal oscillator manufacturer's data sheet for exact values of resistors and capacitors for proper oscillation at the fundamental frequency,

reliable start-up, and to maximize stability.

. on able train op,	and is maximize stability.				
Parameter	Description	Min	Тур	Max	Unit
t _{CYC}	Clock cycle time (min)	-	-	100	ns
f _{XTAL}	Crystal frequency	4	-	10	MHz
R _F	Feedback resistor	-	1M	-	Ω
Rs	Series resistor	1k	-	20k	Ω
ts	Start-up time	-	10	15	ms

Notes:

1. PC board trace lengths for the oscillator circuit should be as short as possible

External Crystal Circuit

R_F = Feedback resistor

R_s = Series resistor

C1, C2 = Load capacitors

 t_{HTT}

ns

6.5 Phased Locked Loop (PLL)

The VA416X2 contains an internal PLL circuit that can be used to generate internal frequencies higher than the input clock (either driven by an external clock or an external crystal oscillator). The PLL clock can be used as the MCU system clock. Please refer to the VA416XX Programmer's Guide for more information on the usage of the PLL.

Parameter	Description	Тур	Max	Unit
f _{in}	Input frequency	4	10	MHz
f _{out}	Output frequency	50	100	MHz
t _{LOCK}	PLL lock time	10	100	μS
Jitter	PLL clock jitter (percentage of input frequency)	3		%
t _{CL}	Clock low (min)	4		ns

6.6 Serial Wire Debug (SWD)

The Serial Wire Debug interface allows access to the Arm Debug Access Port (DAP). The TMS/SWDIO pin is bi-directional data, and the TCK/SWCLK pin is a clock input to the VA416X2.

Parameter	Description	Min	Тур	Max	Unit
tctcyc	TCK/SWCLK cycle time (min) ²	60),	1	ns
t _{CTH}	TCK/SWCLK high (min) ²	20	-	1	ns
t _{CTL}	TCK/SWCLK low (min) ²	20	-	1	ns
t _{DTT}	SWDIO/TDO output change from TCK/SWCLK fall ³	3.0	9	14	ns
t _{STT}	TMS/SWDIO and TDI setup time to TCK/SWCLK rise	2.0	-	-	ns

TMS/SWDIO and TDI hold time to

6.0

6.7 Low Voltage Differential Signaling (LVDS)

LVDS Receiver Timing Specifications

Symbol	Description	Min	Тур	Max	Unit
f	Operating frequency	-	100	100	MHz
t _{pHLr}	Input differential propagation delay high to low	1.9	2.3	2.75	ns
t _{pLHr}	Input differential propagation delay low to high	1.9	2.3	3	ns

LVDS Transmitter Timing Specifications

Symbol	Description	Min	Тур	Max	Unit
f	Operating frequency	-	100	100	MHz
t _{pHL}	Output differential propagation delay high to low	1.1	1.5	2.25	ns
t_{pLH}	Output differential propagation delay low to high	1.1	1.5	2.25	ns

LVDS Timing

Maximum common mode input = 2.50V

Minimum common mode input = 200 mV

6.8 Ethernet MII Timing

Parameter	Description		Тур	Max	Unit
t _{TX}	Transmit clock period for 10 Mbps		400	-	ns
t _{TX}	Transmit clock period for 100 Mbps	-	40	-	ns
t _{TXH/TXL}	Transmit clock duty cycle	35	-	65	%
t _{CKD}	Transmit clock to MII data delay	1	5	15	ns
$t_{R,}$ t_{F}	Transmit clock rise and fall time	1	-	4	ns

Transmit timing

Parameter	Description	Min	Тур	Max	Unit
t_{RX}	Receive clock period for 10 Mbps	-	400	-	ns
t _{RX}	Receive clock period for 100 Mbps	_	40	-	ns
t _{RXH/RXL}	Receive clock duty cycle	35	-	65	%
tsetup	Receive data set up time to receive clock	10	-	-	ns
t _{HOLD}	Receive data hold time to receive clock	10	-	-	ns
$t_{R,}$ t_{F}	Receive clock rise and fall time	1	-	4	ns

Receive timing

6.9 External Bus Interface (EBI) Timing

In all timing tables, the T_{HCLK} is the MCU system clock.

Read timing (no wait states)

Parameter	Description	Min	Тур	Max	Unit
t _{CE}	Chip select low time	2 t _{HCLK} - 2	-	2 t _{HCLK} + 0.5	ns
t _{CE} to t _{OE}	Chip select low to output enable low set-up time	0	-	1	ns
toE	Output enable low time	2 t _{HCLK} - 1	-	2 t _{HCLK} + 0.5	ns
t _{OE} to t _{CE}	Output enable high to chip select high hold time	0	-		ns
t _{CE} to t _A	Chip select low to address valid set-up time	-	-	0.5	ns
t _{OE} to t _A	Address hold time after output enable high	0	i	-	ns
t_{DATA} to t_{CE}	Data to chip select high set-up time	2 t _{HCLK} - 2	-	-	ns
t _{DATA} to t _{OE}	Data to output enable high set-up time	2 t _{HCLK} - 2	-	-	ns
toe to t _{DATA}	Data hold time after output enable high	0	-	-	ns
t _{CE} to t _{DATA}	Data hold time after chip select high	0	-	-	ns

Read timing (with wait states)

Parameter	Description	Min	Тур	Max	Unit
t _{CE}	Chip select low time	7 t _{HCLK} + 1	ı	7 t _{HCLK}	ns
t _{OE}	Output enable low time	5 t _{HCLK} - 1	ı	5 t _{HCLK} + 1	ns
t_{WAIT}	Wait signal low time	$t_{HCLK} - 0.5$	ı	-	ns
t _{CE} to t _A	Chip select low to address valid set-up time	-	-	0.5	ns
twaitl to toe	Wait signal valid before chip select high	5 t _{HCLK} + 1.5	ı	-	ns
t _{WAITH} to t _{CE}	Chip select hold time after wait signal invalid	4 t _{HCLK} + 1	-		ns

Write timing (no wait states)

Parameter	Description	Min	Тур	Max	Unit
t _{CE}	Chip select low time	3 t _{HCLK} - 2	-	3 t _{HCLK} + 0.5	ns
t _{CE} to t _{OE}	Chip select low to output enable low set-up time	t _{HCLK} – 0.5	-	t _{HCLK} + 0.5	ns
t _{WE}	Write enable low time	t _{HCLK}	-	t _{HCLK} + 0.5	ns
t _{WE} to t _{CE}	Write enable high to chip select high hold time	t _{HCLK} + 0.5	-	-	ns
t _{CE} to t _A	Chip select low to address valid set-up time	-	-	0	ns
t _{WE} to t _A	Address hold time after write enable high	t _{HCLK} + 0.5	-		ns
t _{CE} to t _{DATA}	Chip select low to data valid time	-	-	t _{HCLK} + 2	ns
t _{DATA} to t _{WE}	Data hold time after write enable high	t _{HCLK} + 0.5	-	-	ns

Write timing (with wait states)

Parameter	Description	Min	Тур	Max	Unit
t _{CE}	Chip select low time	8 t _{HCLK} - 0.5	-	8 t _{HCLK} + 1	ns
t _{WE}	Write enable low time	6 t _{HCLK} - 0.5	-	6 t _{HCLK} + 1	ns
t _{WAITL} to t _{CE}	Wait signal valid before chip select high	6 t _{HCLK} - 0.5	-	-	ns
t _{WAITH} to t _{CE}	Chip select hold time after wait signal invalid	4 t _{HCLK} + 2	-	-	ns

7 Radiation Hardened Performance Targets

Parameter	Description	Min	Тур	Max	Unit
TID	Total ionizing dose (VA41622)	-	-	300	krad (Si) ¹
TID	Total ionizing dose (VA41632)	-	-	200	krad (Si) ¹
SER	Soft error rate (EDAC enabled)	-	1e ⁻¹⁵	-	errors / bit / day ^{1,2}
LET	Linear energy transfer (latch-up immunity)	110	1	-	MeV / cm2 / mg ¹

Notes:

- Along with EDAC, the Scrub Engine should also be enabled and running at an appropriate frequency to prevent the accumulation of errors in the memory to achieve consistently low SER over time.
- 2. In geosynchronous orbit, solar min, and 100 mils of aluminum shielding.

8 Package Mechanical Information

8.1 196-Pin Plastic BGA Package Dimensions (mm)

9 Ordering Information

Part Number	Package	NVM	Qualification
VA41622- PG196F0EAA	Plastic 196 BGA	256 Kbyte on-chip FRAM	Engineering Sample
VA41632- PG196F0EAA	Plastic 196 BGA	External NVM (parallel or SPI)	Engineering Sample

10 Development Kit Ordering Information

Description	Part number	Features
Development Board	PEB1-VA41630	Supported by Keil TM MDK-Arm Microcontroller Software Kit Board Support Package (BSP) includes example software for peripherals Segger J-Link OB
Development Board	PEB1-VA41620	Supported by Keil TM MDK-Arm Microcontroller Software Kit Board Support Package (BSP) includes example software for peripherals Segger J-Link OB

11 Revision History

Date	Version	Page Locations	Description
08/7/2020	0.98	All	Initial Release
9/15/2020	0.99	12, 13, 14, 17	Added pins VDDQ and TEST_MODE

The use of this product is subject to the manufacturer's standard terms and conditions available on the manufacturer's website here.

VORAGO Technologies 1501 S. MOPAC Expressway, Suite #350 Austin, TX 78746

www.voragotech.com

Email: <u>info@voragotech.com</u> Phone: (512) 347-1800