

FCC PART 15 SUBPART C TEST REPORT

Issued By: Dongguan New Testing Centre Co., Ltd

Add: 3F, No. 1 the 1st North Industry Road, Songshan Lake Science &

Technology Park, Dongguan, Guangdong, China, 523808.

A2LA Number:5426.01 Tel: 86-769-22212079 http://www.ntc-cert.com

Marking:

- 1. The test report is invalid without the official stamp of test center.
- 2. Nobody is allowed to photocopy or partly photocopy this test report without written permission of test center.
- 3. The test report is invalid without the signatures of approver, reviewer and testing engineer.
- 4. The test report is invalid if altered.
- 5. Objections to the test report must be submitted to NTC within 15 days.
- 6. The test report is valid for the tested samples only.
- 7. As for test verdict, "—"means is "no need for judgment" "N/A" means is "not applicable", "P" means "pass", "F" means "fail".

TABLE OF CONTENTS

Test R	Report Declare	3
1.	Summary of test results	4
2.	General test information	4
2.1.	Description of EUT	4
2.2.	Detail models	5
2.3.	Block diagram EUT configuration for test	5
2.4.	Test environment conditions	6
2.5.	Measurement uncertainty	7
2.6.	Test Peripheral List	7
3.	Power Line Conducted Emission Test	8
3.1.	Test equipment	8
3.2.	Block diagram of test setup	8
3.3.	Power Line Conducted Emission Limits (Class B)	8
3.4.	Test Procedure	9
3.5.	Test Result	9
4.	Radiated emission test	12
4.1.	Test equipment	12
4.2.	Block diagram of test setup	13
4.3.	Limit	15
4.4.	Test Procedure	16
4.5.	Test result	16
5.	Maximum Peak Output Power	22
5.1.	Applied procedures / Limit	22
5.2.	Test procedure	22
5.3.	Deviation from standard	22
5.4.	Test setup	22
5.5.	TEST RESULTS	22
6.	BANDWIDTH TEST	28
6.1.	Applied procedures / Limit	28
6.2.	Test procedure	28
6.3.	Deviation from standard	28
6.4.	Test setup	28
6.5.	Test results	28

Page 1 of 91

Report No.:NTCER1909009

7.	Carrier Frequencies Separated	34
7.1.	Applied procedures / Limit	34
7.2.	Test procedure	34
7.3.	Deviation from standard	34
7.4.	Test setup	34
7.5.	Test results	34
8.	Hopping Channel Number	40
8.1.	Applied procedures / Limit	40
8.2.	Test procedure	40
8.3.	Deviation from standard	40
8.4.	Test setup	40
8.5.	Test result	40
9.	Dwell time	44
9.1.	Applied procedures / Limit	44
9.2.	Test procedure	44
9.3.	Deviation from standard	44
9.4.	Test setup	44
9.5.	Test result	44
10.	Band edge	59
10.1.	Applied procedures / Limit	59
10.2.	Test procedure	59
10.3.	Deviation from standard	59
10.4.	Test setup	59
10.5.	Test results	59
11.	Conducted Spurious Emissions	87
11.1.	Applied procedures / Limit	87
11.2.	Test procedure	87
11.3.	Deviation from standard	87
11.4.	Test setup	87
11.5.	Test results	87
12.	Antenna Requirement	97
12.1.	Standard requirement	97
12.2.	EUT Antenna	97
13.	Test setup photograph	98
14.	Photos of the EUT	100

Page 3 of 91 Report No.: NTCER1909009

TEST REPORT DECLARE

FCC ID	:	2AFHW-ITSBL547		
Applicant		INNOVATIVE TECHNOLOGY ELECTRONICS LLC		
Annrage I-I		1 CHANNEL DRIVE, PORT WASHINGTON, New York 11050, United States.		
Equipment under Test		Groovy/ Glitter lamp with Bluetooth Speaker		
Model No		ITSBL-547XXXX where X can be 0-9, A-Z, "-" or blank means color of unit/liquid color inside bottle and light bulb power 15-30W.		
Trade Mark	•	Innovative Technology, Victrola		
Manufacturer	•	DONGGUAN QIAOTOU KIT SHING LIGHTING LTD		
Address	:	He Keng Qiao Tou Town Dongguan,Guangdong 523527 CHINA		

Test Standard Used:

FCC Rules and Regulations Part 15 Subpart C: 2017, ANSI C63.10:2013.

We Declare:

The equipment described above is tested by Dongguan New Testing Centre Co., Ltd and in the configuration tested the equipment complied with the standards specified above. The test results are contained in this test report and Dongguan New Testing Centre Co., Ltd is assumed of full responsibility for the accuracy and completeness of these tests.

After test and evaluation, our opinion is that the equipment provided for test compliance with the requirement of the above FCC standards.

 Report No.:
 NTCER1909009

 Date of Test:
 Sep.2,2019 to Sep.21,2019
 Date of Report:
 Sep.21,2019

Prepared By:

Jack Zhang/Engineer

Neil Zhong/LAB Manager

Note: This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Dongguan New Testing Centre Co., Ltd

1. Summary of test results

Description of Test Item	Standard	Results	
Antenna Requirement	Section 15.247(c)	PASS	
Conduction Emissions	Section 15.207(a)	PASS	
Radiated Emissions	Section 15.247(d)	PASS	
Carrier Frequencies Separated	Section 15.247(a)(1)	PASS	
Hopping Channel Number	Section 15.247(a)(1) (iii)	PASS	
Dwell Time	Section 15.247(a)(1) (iii)	PASS	
Maximum Peak Output Power	Section 15.247(b)	PASS	
Band edge	Section 15.247(d)	PASS	
Conducted Spurious Emissions	Section 15.247(d)	PASS	

2. General test information

2.1. Description of EUT

EUT* Name	••	Groovy/ Glitter lamp with Bluetooth Speaker
Test model	:	ITSBL-547-KBG
EUT function description	••	Please reference user manual of this device
Power supply	••	AC 120V 60Hz 35W
Trade mark	:	Innovative Technology, Victrola
Operation frequency	••	2402-2480MHz
Number of channel	••	79
Modulation Technology	••	GFSK, π/4-DQPSK, 8DPSK(1/2/3Mbps)
Bluetooth version		3.0
H/W No.	••	V 2.0
S/W No.	••	V1.0
Antenna Type		PCB antenna
Antenna Gain	••	1.9 dBi
Sample Type	:	Series production

Note: 1,EUT is the ab. of equipment under test.

Page 5 of 91 Report No.: NTCER1909009

2.2. Detail models

Model	Rating	Note
ITSBL-547XXXX	AC 120V 60Hz 35W	ITSBL-547XXXX where X can be 0-9, A-Z, "-" or blank means color of unit/liquid color inside bottle and light bulb power 15-30W.

Note: The light bulb power is 30W for model "ITSBL-547-KBG".

2.3. Block diagram EUT configuration for test

Page 6 of 91 Report No.: NTCER1909009

2.4. Test environment conditions

During the measurement the environmental conditions were within the listed ranges:

(1) E.U.T. test conditions:

15.31(e): For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

(2) Test frequencies:

According to the 15.31(m) Measurements on intentional radiators or receivers, other than TV broadcast receivers, shall be performed and. If required reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table:

Frequency range over which device operates	Number of frequencie	Location in the range of operation	
1 MHz or less	1	Middle	
1 to 10 MHz	2	1 near top and 1 near bottom	
More than 10 MHz	3	1 near top, 1 near middle and 1 near bottom	

- (3) Frequency range of radiated measurements:

 According to the 15.33, the test range will be up to the tenth harmonic of the highest fundamental frequency.
- (4) Pre-test the EUT in all transmitting mode at the lowest (2402 MHz), middle (2441 MHz) and highest (2480 MHz) channel with different data packet and conducted to determine the worst-case mode,

The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.

2.5. Measurement uncertainty

Test Item	Uncertainty		
Uncertainty for Conduction emission test	2.44dB		
Uncertainty for Radiation Emission test	3.14 dB (Polarize: V)		
(30MHz – 1GHz)	3.16 dB (Polarize: H)		
Uncertainty for Radiation Emission test	4.27 dB (Polarize: V)		
(1GHz – 18GHz)	4.51 dB (Polarize: H)		
Uncertainty for conducted RF Power	0.63dB		
Stop Transmitting Time Test	±0.5%		
Uncertainty for frequency error	5.8 x 10-8		

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.6. Test Peripheral List

No.	Equipmen t	Manufacturer	anufacturer FCC approved		Serial No.	signal cable
1	Lap top	lenovo	DOC	7457	7457A82	N/A

Report No.: NTCER1909009

3. Power Line Conducted Emission Test

3.1. Test equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	Test Receiver	R&S	ESCS30	8341151006	2019-05-23	1 Year
2	LISN	R&S	ENV216	3650.6550.0 6	2019-05-13	1 Year
3	Pulse Limiter	R&S	ESH3-Z2	0357-8810.5 4	2019-05-13	1 Year
4	RF Cable	HUBER	SUCOFLEX1 00	30722/4E	2019-05-13	1 Year
5	MEASUREME NT SOFTWARE	FARAD	EZ-EMC(VE R:1.1.4.2)	N/A	N/A	N/A

3.2. BLOCK DIAGRAM OF TEST SETUP

3.3. Power Line Conducted Emission Limits (Class B)

Frequency	Quasi-Peak Level dB(μV)	Average Level dB(μV)
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*
500kHz ~ 5MHz	56	46
5MHz ~ 30MHz	60	50

Note 1: * Decreasing linearly with logarithm of frequency.

Note 2: The lower limit shall apply at the transition frequencies.

Page 9 of 91 Report No.: NTCER1909009

3.4. Test Procedure

The EUT and Support equipment, if needed, were put placed on a non-metallic table, 80cm above the ground plane.

Configuration EUT to simulate typical usage as described in clause 2.3 and test equipment as described in clause 3.2 of this report.

All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.

All support equipment power received from a second LISN.

Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.

The Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.

During the above scans, the emissions were maximized by cable manipulation.

The test mode(s) described in clause 2.3 were scanned during the preliminary test.

After the preliminary scan, we found the test mode producing the highest emission level.

The EUT configuration and worse cable configuration of the above highest emission levels were recorded for reference of the final test.

EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.

A scan was taken on both power lines, Neutral and Line, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.

The test data of the worst-case condition(s) was recorded.

The bandwidth of test receiver is set at 9 KHz.

3.5. Test Result

PASS. (See below detailed test result)

Note1: All emissions not reported below are too low against the prescribed limits.

Note2: "----" means Peak detection; "-----" means Average detection

Note3: Measurement = Reading Level + Factor, Margin= Measurement-Limit

Page 10 of 91 Report No.: NTCER1909009

Conducted Emission Test Result

Site: 844LAB Phase:L1 Temperature(C):24(C)

Limit: FCC Part15 CE-Class B_QP Humidity(%):63%

EUT: Groovy/ Glitter lamp with Bluetooth Test Time: 2019/9/10 13:41:21

Speaker

M/N.: ITSBL-547-KBG Power Rating: AC120/60Hz

Mode: Tx mode Test Engineer:

Note:

No.	Frequency	Reading	Factor	Measure-	Limit	Margin	Detector	Comment
	(MHz)	Level(dBuV)	(dB)	ment(dBuV)	(dBuV)	(dB)		
1	1.1635	34.39	9.74	44.13	56.00	-11.87	QP	
2	1.1635	18.73	9.74	28.47	46.00	-17.53	AVG	
3 *	1.4559	26.38	9.85	36.23	46.00	-9.77	AVG	
4	1.4565	35.35	9.85	45.20	56.00	-10.80	QP	
5	2.0375	22.02	10.05	32.07	46.00	-13.93	AVG	
6	2.0376	34.58	10.05	44.63	56.00	-11.37	QP	
7	2.3262	35.27	10.05	45.32	56.00	-10.68	QP	
8	2.3262	19.37	10.05	29.42	46.00	-16.58	AVG	
9	6.7167	38.61	10.07	48.68	60.00	-11.32	QP	
10	6.7167	29.26	10.07	39.33	50.00	-10.67	AVG	
11	10.1951	27.92	10.08	38.00	50.00	-12.00	AVG	
12	10.1955	39.74	10.08	49.82	60.00	-10.18	QP	

Page 11 of 91 Report No.: NTCER1909009

Site: 844LAB Phase:N Temperature(C):24(C)

Limit: FCC Part15 CE-Class B_QP Humidity(%):63% EUT: Groovy/ Glitter lamp with Bluetooth Test Time: 2019/9/10 13:45:19

Speaker

M/N.: ITSBL-547-KBG Power Rating: AC120/60Hz

Mode: Tx mode Test Engineer:

Note:

No.	Frequency	Reading	Factor	Measure-	Limit	Margin	Detector	Comment
	(MHz)	Level(dBuV)	(dB)	ment(dBuV)	(dBuV)	(dB)		
1	1.4522	31.42	9.85	41.27	46.00	-4.73	AVG	
2	1.4526	36.40	9.85	46.25	56.00	-9.75	QP	
3	2.0375	31.65	10.05	41.70	46.00	-4.30	AVG	
4	2.0376	38.40	10.05	48.45	56.00	-7.55	QP	
5	2.6187	37.07	10.05	47.12	56.00	-8.88	QP	
6 *	2.6187	32.17	10.05	42.22	46.00	-3.78	AVG	
7	3.7839	38.36	10.05	48.41	56.00	-7.59	QP	
8	3.7839	31.73	10.05	41.78	46.00	-4.22	AVG	
9	4.3727	36.47	10.05	46.52	56.00	-9.48	QP	
10	4.3727	27.99	10.05	38.04	46.00	-7.96	AVG	
11	4.6614	35.62	10.05	45.67	56.00	-10.33	QP	
12	4.6614	26.70	10.05	36.75	46.00	-9.25	AVG	
13	5.8234	31.24	10.06	41.30	50.00	-8.70	AVG	
14	5.8236	39.76	10.06	49.82	60.00	-10.18	QP	
15	8.1516	33.31	10.07	43.38	50.00	-6.62	AVG	
16	8.1519	40.95	10.07	51.02	60.00	-8.98	QP	

4. Radiated emission test

4.1. Test equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	EMI Test Receiver	R&S	ESR	7250-30406 7528	2019-04-30	1Year
2	Trilog Broadband Antenna	Schwarzbeck	VULB9168	00969	2019-06-14	2 Year
3	Pre-amplifier	R&S	8447F	3113A04553	2019-05-13	1Year
4	Active Loop antenna	Schwarzbeck	FMZB-1519	1519-038	2019-05-23	1Year
5	Horn antenna	Schwarzbeck	BBHA9120D	453	2019-05-23	2Year
6	Double Ridged Horn Antenna	A.H. System	SAS-574	584	2019-05-23	1Year
7	Pre-amplifier	R&S	SCU18	105326	2019-05-23	1Year
8	RF Cable	GORE	OSQ01Q010 78.7	SN1545847 3	2019-05-23	1Year
9	RF Cable	GORE	OSQ01Q010 78.7	SN1545847 4	2019/5/14	1Year
10	RF Cable	ESCO	ETS-LINGR EN	RFC-SMS-1 00-SMS-340 -IN	2019-05-23	1Year
11	Measurement software	Farad	EZ-EMC(VE R:1.1.4.2)	N/A	N/A	N/A

4.2. Block diagram of test setup

In 3m Anechoic Chamber Test Setup Diagram for 9KHz to 30MHz:

In 3m Anechoic Chamber Test Setup Diagram for 30MHz to 1GHz:

3F, No. 1 the 1st North Industry Road, Songshan Lake Science & Technology Park, Dongguan, Guangdong, China, 523808

In 3m Anechoic Chamber Test Setup Diagram for frequency above 1GHz:

4.3. Limit

FCC 15.205 Restricted frequency band:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)

Report No.: NTCER1909009

FCC 15.109 Limit

Frequency	Distance	Field Strengths Limits
(MHz)	(Meters)	dB(μV)/m
3088	3	40.0
88216	3	43.5
216960	3	46.0
9601000	3	54.0
Above 1GHz	3	Peak: 74.0
Above IGH2	3	Average:54.0

Note: (1) The smaller limit shall apply at the cross point between two frequency bands.

- (2)Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.
- (3)The emission limits shown in the above table are based on measurements employing a CISPR QP detector except for the frequency bands 9-90KHz, 110-490KHz and above 1000MHz.Radiated emissions limits in these three bands are based on measurements employing an average detector.
- (4) At frequencies below 30MHz, measurement may be performed at a distance closer then that specified, and the limit at closer measurement distance can be extrapolated by below formula: Limit3m(dBuV/m)= Limit30m(dBuV/m) + 40Log(30m/3m)
- (5)All the emissions appearing within 15.205 restricted frequency bands shall not exceed the limits shown in 15.109, all the other emissions shall be at least 20dB below the fundamental emissions, or comply with 15.109 limits.

Page 16 of 91 Report No.: NTCER1909009

4.4. Test Procedure

Procedure of Preliminary Test

Configuration EUT to simulate typical usage as described in clause 2.3 and test equipment as described in clause 4.2 of this report.

Mains cables, telephone lines or other connections to auxiliary equipment located outside the test are shall drape to the floor, be fitted with ferrite clamps or ferrite tubes placed on the floor at the point where the cable reaches the floor and then routed to the place where they leave the turntable. No extension cords shall be used to mains receptacle.

EUT height should be 0.8m for below 1GHz and 1.5m for above 1GHz at ground with absorbers.

The antenna was placed at 3 meter away from the EUT as stated in ANSI C63.10. The antenna connected to the Spectrum Analyzer via a cable and at times a pre-amplifier would be used.

The Analyzer / Receiver quickly scanned from 30MHz to 18GHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.

The X, Y, Z three axial are tested and the report only the worst case.

The emissions from 9KHz to 1GHz, QP or average values were measured with EMI receiver with below RBW:

Frequency band	RBW
9KHz-150KHz	200Hz
150KHz-30MHz	9KHz
30MHz-1GHz	120KHz

For emissions above 1GHz, both Peak and Average level were measured with Spectrum Analyzer, and the RBW is set at 1MHz, VBW is set at 3MHz for Peak measure; RMS detector RBW 1MHz VBW 3MHz for Average measure.

4.5. Test result

PASS. (See below detailed test result)

All the emissions except fundamental emission from 9 KHz to 40GHz were comply with FCC PART 15.109 limits limit.

Note1: According exploratory test no any obvious emission were detected from 9KHz to 30MHz and

18GHz to 40GHz, so the final test was performed with frequency range from 30MHz to 18GHz and recorded in below.

Note2: For emissions above 1GHz. If peak results comply with AV limit, AV Result is deemed to comply

with AV limit.

Note3: Level = Reading Level + Factor, Margin= Level-Limit

Page 17 of 91 Report No.: NTCER1909009

Radiated Emission Test Result

Site: 966LAB Antenna::Horizontal Temperature(C):24(C)

Limit: FCC Part15 RE _30-1000MHz Humidity(%):60%
EUT: Groovy/ Glitter lamp with Bluetooth Test Time: 2019/9/10 13:55:35

Speaker

M/N.: ITSBL-547-KBG Power Rating: AC 120V/60Hz

Mode: Tx mode Test Engineer:

Note:

No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.	Height	Azimuth	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg)	
1	39.7146	11.37	14.79	26.16	40.00	-13.84	peak	100	45	
2	51.6616	12.27	14.22	26.49	40.00	-13.51	peak	200	356	
*										
3	72.8466	14.79	11.34	26.13	40.00	-13.87	peak	100	54	
4	147.9214	12.22	15.30	27.52	43.50	-15.98	peak	200	246	
5	185.7882	16.33	12.38	28.71	43.50	-14.79	peak	100	104	
6	355.4273	13.96	15.77	29.73	46.00	-16.27	peak	100	356	

Page 18 of 91 Report No.: NTCER1909009

Site: 966LAB Antenna::Vertical Temperature(C):24(C)

Limit: FCC Part15 RE_30-1000MHz Humidity(%):60% EUT: Groovy/ Glitter lamp with Bluetooth Test Time: 2019/9/10 13:58:36

Speaker

M/N.: ITSBL-547-KBG Power Rating: AC 120V/60Hz

Mode: Tx mode Test Engineer:

Note:

No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.	Height	Azimuth	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg)	
1	37.8121	19.41	14.52	33.93	40.00	-6.07	peak	200	278	
2	72.3376	23.57	11.41	34.98	40.00	-5.02	peak	100	4	
*										
3	114.1138	20.05	12.74	32.79	43.50	-10.71	peak	100	294	
4	152.1297	16.68	15.46	32.14	43.50	-11.36	peak	100	89	
5	194.4534	19.33	11.64	30.97	43.50	-12.53	peak	100	140	
6	252.0627	13.82	13.23	27.05	46.00	-18.95	peak	100	205	

Page 19 of 91 Report No.: NTCER1909009

EUT:	Groovy/ Glitter lamp with Bluetooth Speaker	Model Name:	ITSBL-547-KBG
Temperature:	25 ℃	Test Engineer	Jack
Pressure:	1010 hPa	Relative Humidity:	60%
Test Mode:	3Mbps (worst)	Test Voltage:	AC 120V, 60Hz
Measurement Distance	3 m	Frequency Range	1GHz to 25GHz
RBW/VBW	Spurious emission: 1MHz/3MHz for them all.	Peak, 1MHz/10Hz fo	r Average, PK detector is for

(a) Antenna polarization: Horizontal

(a) Antenna pola	n) Antenna polarization. Horizontal									
Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector Type				
2390.00	51.42	4.68	56.10	74.00	-17.90	peak				
2390.00	35.74	4.68	40.42	54.00	-13.58	AVG				
4804.00	50.01	5.06	55.07	74.00	-18.93	peak				
4804.00	38.82	5.06	43.88	54.00	-10.12	AVG				
7206.00	44.67	7.03	51.70	74.00	-22.30	peak				
7206.00	33.17	7.03	40.20	54.00	-13.80	AVG				

(b) Antenna polarization: Vertical

Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector Type
2390.00	48.82	4.68	53.50	74.00	-20.50	peak
2390.00	36.04	4.68	40.72	54.00	-13.28	AVG
4804.00	50.05	5.06	55.11	74.00	-18.89	peak
4804.00	39.77	5.06	44.83	54.00	-9.17	AVG
7206.00	45.15	7.03	52.18	74.00	-21.82	peak
7206.00	33.29	7.03	40.32	54.00	-13.68	AVG

Note:

 $8{\sim}25 GHz$ at least have 20dB margin. No recording in the test report. Measurement Level = Reading Level + Factor

Remark: Factor = Antenna Factor + Cable Loss—Pre-amplifier

Lowest Channel: 2402 MHz

Data rate: 3Mbps

Page 20 of 91 Report No.: NTCER1909009

(a) Antenna polarization: Horizontal

(a) / interina poi	a) Afterina polarization. Horizontal									
Frequency	Reading	Correct	Measure	Limit	Over	Detector				
(MHz)	Level	Factor	Level	(dBuV/m)	(dB)	Type				
	(dBuV)	(dB)	(dBuV/m)	,	, ,	71				
	,	, ,	,							
4882.00	51.20	5.14	56.34	74.00	-17.66	peak				
4882.00	40.90	5.14	46.04	54.00	-7.96	AVG				
						1				
7323.00	43.76	7.54	51.30	74.00	-22.70	peak				
7323.00	31.96	7.54	39.50	54.00	-14.50	AVG				
		_								

(b) Antenna polarization: Vertical

Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector Type
4882.00	50.02	5.14	55.16	74.00	-18.84	peak
4882.00	39.61	5.14	44.75	54.00	-9.25	AVG
7323.00	44.63	7.54	52.17	74.00	-21.83	peak
7323.00	33.03	7.54	40.57	54.00	-13.43	AVG

Note:

8~25GHz at least have 20dB margin. No recording in the test report.

Measurement Level = Reading Level + Factor

Remark: Factor = Antenna Factor + Cable Loss-Pre-amplifier

Middle Channel: 2441 MHz

Data rate: 3Mbps

Page 21 of 91 Report No.: NTCER1909009

(a) Antenna polarization: Horizontal

(a) Artierina polarization: Horizontal									
Frequency	Reading	Correct	Measure	Limit	Over	Detector			
(MHz)	Level	Factor	Level	(dBuV/m)	(dB)	Type			
	(dBuV)	(dB)	(dBuV/m)						
2483.50	50.39	4.71	55.10	74.00	-18.90	peak			
2483.50	38.27	4.71	42.98	54.00	-11.02	AVG			
4960.00	49.67	5.22	54.89	74.00	-19.11	peak			
4960.00	38.50	5.22	43.72	54.00	-10.28	AVG			
7440.00	43.55	8.06	51.61	74.00	-22.39	peak			
7440.00	32.54	8.06	40.60	54.00	-13.40	AVG			

(b) Antenna polarization: Vertical

(b) Afterina polarization: Vertical								
Frequency	Reading	Correct	Measure	Limit	Over	Detector		
(MHz)	Level	Factor	Level	(dBuV/m)	(dB)	Type		
	(dBuV)	(dB)	(dBuV/m)					
	, ,	, ,	,					
2483.50	51.49	4.71	56.20	74.00	-17.80	peak		
2483.50	40.82	4.71	45.53	54.00	-8.47	AVG		
4960.00	49.76	5.22	54.98	74.00	-19.02	peak		
4960.00	38.48	5.22	43.70	54.00	-10.30	AVG		
7440.00	43.56	8.06	51.62	74.00	-22.38	peak		
7440.00	32.66	8.06	40.72	54.00	-13.28	AVG		

Note:

8~25GHz at least have 20dB margin. No recording in the test report.

Measurement Level = Reading Level + Factor

Remark: Factor = Antenna Factor + Cable Loss-Pre-amplifier

Highest channel: 2480 MHz

Data rate: 3Mbps

Page 22 of 91 Report No.: NTCER1909009

5. Maximum Peak Output Power

5.1. Applied procedures / Limit

15.247(a) (1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

15.247(b) (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

5.2. Test procedure

- (1) Connected the antenna port to the Spectrum Analyzer, set the Spectrum Analyzer as Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured, VBW ≥ RBW, Sweep = auto Detector function = peak, Trace = max hold
- (2) The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.
- (3) The above procedure shall be repeated at the lowest, the middle, and the highest frequency of the stated frequency range with modulated mode. Also shall be performed at different modes of operation.

5.3. Deviation from standard

No deviation.

5.4. Test setup

EUT	SPECTRUM
	ANALYZER

5.5. TEST RESULTS

Page 23 of 91 Report No.: NTCER1909009

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH1	2402	Ant 1	-6.403	0	-6.403	21	Pass
NVNT	1-DH1	2441	Ant 1	-6.605	0	-6.605	21	Pass
NVNT	1-DH1	2480	Ant 1	-5.737	0	-5.737	21	Pass

Page 24 of 91 Report No.: NTCER1909009

Condition	Mode	Frequency	Antenna	Conducted Power	Duty	Total Power	Limit	Verdict
		(MHz)		(dBm)	Factor (dB)	(dBm)	(dBm)	
NVNT	2-DH3	2402	Ant 1	-5.49	0	-5.49	21	Pass
NVNT	2-DH3	2441	Ant 1	-5.963	0	-5.963	21	Pass
NVNT	2-DH3	2480	Ant 1	-5.152	0	-5.152	21	Pass

Page 25 of 91 Report No.: NTCER1909009

Power NVNT 2-DH3 2441MHz Ant1

Power NVNT 2-DH3 2480MHz Ant1

Page 26 of 91 Report No.: NTCER1909009

Condition	Mode	Frequency	Antenna	Conducted Power	Duty	Total Power	Limit	Verdict
		(MHz)		(dBm)	Factor (dB)	(dBm)	(dBm)	
NVNT	3-DH5	2402	Ant 1	-4.789	0	-4.789	21	Pass
NVNT	3-DH5	2441	Ant 1	-5.211	0	-5.211	21	Pass
NVNT	3-DH5	2480	Ant 1	-4.559	0	-4.559	21	Pass

Page 27 of 91 Report No.: NTCER1909009

Note: All the modes (1-DH1, 1-DH3,1-DH5,2-DH1,2-DH3,2-DH5,3-DH1,3-DH3,3-DH5) had been test, but only the worst data (1-DH1,2-DH3,3-DH5) record in the report.

Page 28 of 91 Report No.: NTCER1909009

6. BANDWIDTH TEST

6.1. Applied procedures / Limit

For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, two-thirds 20dBbandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

6.2. Test procedure

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW ≥ 1% of the 20 dB bandwidth, VBW ≥ RBW, Sweep = auto, Detector function = peak Trace = max hold

6.3. Deviation from standard

No deviation.

6.4. Test setup

6.5. Test results

Page 29 of 91 Report No.: NTCER1909009

Condition	Mode	Frequency	Antenna	99% OBW	-20 dB Bandwidth	Limit -20 dB	Verdict
		(MHz)		(MHz)	(MHz)	Bandwidth (MHz)	
NVNT	1-DH1	2402	Ant 1	0.8076	0.8667	0	Pass
NVNT	1-DH1	2441	Ant 1	0.819	0.8684	0	Pass
NVNT	1-DH1	2480	Ant 1	0.8108	0.8554	0	Pass

OBW NVNT 1-DH1 2402MHz Ant1

Page 30 of 91 Report No.: NTCER1909009

OBW NVNT 1-DH1 2480MHz Ant1

Condition	Mode	Frequency	Antenna	99% OBW	-20 dB Bandwidth	Limit -20 dB	Verdict
		(MHz)		(MHz)	(MHz)	Bandwidth (MHz)	
NVNT	2-DH3	2402	Ant 1	1.1612	1.273	0	Pass
NVNT	2-DH3	2441	Ant 1	1.1682	1.275	0	Pass
NVNT	2-DH3	2480	Ant 1	1.1626	1.2725	0	Pass

Page 31 of 91 Report No.: NTCER1909009

OBW NVNT 2-DH3 2441MHz Ant1

OBW NVNT 2-DH3 2480MHz Ant1

Page 32 of 91 Report No.: NTCER1909009

Condition	Mode	Frequency	Antenna	99% OBW	-20 dB Bandwidth	Limit -20 dB	Verdict
		(MHz)		(MHz)	(MHz)	Bandwidth (MHz)	
NVNT	3-DH5	2402	Ant 1	1.1668	1.2811	0	Pass
NVNT	3-DH5	2441	Ant 1	1.1658	1.2791	0	Pass
NVNT	3-DH5	2480	Ant 1	1.1599	1.2857	0	Pass

Page 33 of 91

OBW NVNT 3-DH5 2480MHz Ant1

Report No.: NTCER1909009

Page 34 of 91 Report No.: NTCER1909009

7. Carrier Frequencies Separated

7.1. Applied procedures / Limit

15.247(a) (1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

7.2. Test procedure

- (1) Connected the antenna port to the Spectrum Analyzer, set the Spectrum Analyzer as Span = wide enough to capture the peaks of two adjacent channels, Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span, Video (or Average) Bandwidth (VBW) ≥ RBW Sweep = auto, Detector function = peak, Trace = max hold
- (2) The EUT should be transmitting at its maximum data rate. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.
- (3) The above procedure shall be repeated at the lowest, the middle, and the highest frequency of the stated frequency range with modulated mode. also shall be performed at different modes of operation.

7.3. Deviation from standard

No deviation.

7.4. Test setup

EUT	SPECTRUM
	ANALYZER

7.5. Test results

Page 35 of 91 Report No.: NTCER1909009

Condition	Mode	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH1	2401.873	2402.863	0.99	0.578	Pass
NVNT	1-DH1	2440.876	2442.109	1.233	0.579	Pass
NVNT	1-DH1	2479.038	2479.86	0.822	0.57	Pass

CFS NVNT 1-DH1 2402MHz

Page 36 of 91

CFS NVNT 1-DH1 2480MHz

Report No.: NTCER1909009

(Condition	Mode	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
	NVNT	2-DH3	2401.867	2402.875	1.008	0.849	Pass
	NVNT	2-DH3	2440.864	2441.893	1.029	0.85	Pass
	NVNT	2-DH3	2479.047	2480.007	0.96	0.848	Pass

CFS NVNT 2-DH3 2402MHz

Page 37 of 91

CFS NVNT 2-DH3 2441MHz

Report No.: NTCER1909009

CFS NVNT 2-DH3 2480MHz

Page 38 of 91

Report No.: NTCER1909009

Condition	Mode	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	3-DH5	2401.873	2403.04	1.167	0.854	Pass
NVNT	3-DH5	2440.996	2442.028	1.032	0.857	Pass
NVNT	3-DH5	2479.122	2480.334	1.212	0.857	Pass

Center Freq 2.402500000 GHz Ref Offset 7.52 dB Ref 20.00 dBm R

CFS NVNT 3-DH5 2441MHz | R | F | SO Q AC | SENSE:INT | ALIGN AUTO | 03:35:44PM Sep 10, 20:9 | Center Freq 2.441500000 GHz | PNO; Wide | Trig: Free Run | Avg Type:Log-Pwr | Avg Type:Log-Pwr | Trye: Free Run | Atten: 24 dB | Avg Type:Log-Pwr | Trye: Free Run | Atten: 24 dB | Avg Type:Log-Pwr | Trye: Free Run | Atten: 24 dB | Avg Type:Log-Pwr | Trye: Free Run | Atten: 24 dB | Avg Type:Log-Pwr | Trye: Free Run | Avg Type:Log-Pwr | Trye: Free Run | Atten: 24 dB | Avg Type:Log-Pwr | Avg Type:Log-Pwr | Trye: Free Run | Avg Type:Log-Pwr | Trye: Free Run | Atten: 24 dB | Avg Type:Log-Pwr | Trye: Free Run | Avg Type:Log-Pwr | Avg Type:Log-Pwr | Trye: Free Run | Avg Type:Log-Pwr | Avg Type:Log-Pwr | Trye: Free Run | Avg Type:Log-Pwr |

Page 39 of 91

CFS NVNT 3-DH5 2480MHz

Report No.: NTCER1909009

Page 40 of 91 Report No.: NTCER1909009

8. Hopping Channel Number

8.1. Applied procedures / Limit

15.247(a) (1) (iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

8.2. Test procedure

- (1) Connected the antenna port to the Spectrum Analyzer , set the Spectrum Analyzer as Span = the frequency band of operation, RBW ≥ 1% of the span, VBW ≥ RBW Sweep = auto Detector function = peak, Trace = max hold
- (2) The EUT should be have its hopping function enabled. Maxhold and record hopping channels It may prove necessary to break the span up to sections, in order to clearly show all of the hopping frequencies.

8.3. Deviation from standard

No deviation.

8.4. Test setup

EUT	SPECTRUM
	ANALYZER

8.5. Test result

Page 41 of 91

Number of Hopping Channel

Report No.: NTCER1909009

			of Channel:		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

Page 42 of 91 Report No.: NTCER1909009

Condition	Mode	Hopping Number	Limit	Verdict
NVNT	1-DH1	79	15	Pass

Page 43 of 91

Condition	Mode	Hopping Number	Limit	Verdict
NVNT	2-DH3	79	15	Pass

Report No.: NTCER1909009

Condition Mode		Mode	Hopping Number	Limit	Verdict
NVN		3-DH5	79	15	Pass

Page 44 of 91 Report No.: NTCER1909009

9. Dwell time

9.1. Applied procedures / Limit

15.247(a) (1) (iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

9.2. **Test procedure**

- (1) Place the EUT on the table in the chamber or connect the antenna port of the EUT to spectrum analyzer and set it in transmitting mode.
- (2) Set RBW of spectrum analyzer to 1MHz, VBW ≥ RBW
- (3) Use a video trigger with the trigger level set to enable triggering only on full pulses.
- (4) Sweep Time is more than once pulse time.
- (5) Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- (6) Measure the maximum time duration of one single pulse.
- (7) Set the EUT for DH5, DH3 and DH1 packet transmitting.
- (8) Measure the maximum time duration of one single pulse.
- (9) A Period Time = 79*0.4=31.6 S

DH1 Time Slot: Reading * (1600/2)*31.6/79 DH3 Time Slot: Reading * (1600/4)*31.6/79

DH5 Time Slot: Reading * (1600/6)*31.6/79

9.3. Deviation from standard

No deviation.

9.4. Test setup

EUT	SPECTRUM
	ANALYZER

9.5. Test result

Page 45 of 91

Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Period Time (ms)	Limit (ms)	Verdict
NVNT	1-DH1	2402	0.387	122.292	31600	400	Pass
NVNT	1-DH1	2441	0.387	122.292	31600	400	Pass
NVNT	1-DH1	2480	0.387	122 292	31600	400	Pacc

Report No.: NTCER1909009

Page 46 of 91

Dwell NVNT 1-DH1 2480MHz

Report No.: NTCER1909009

Condition	Mode	Frequency	Pulse Time	Total Dwell Time	Period Time	Limit	Verdict
		(MHz)	(ms)	(ms)	(ms)	(ms)	
NVNT	1-DH3	2402	1.643	259.594	31600	400	Pass
NVNT	1-DH3	2441	1.643	259.594	31600	400	Pass
NVNT	1-DH3	2480	1.643	259.594	31600	400	Pass

Page 47 of 91

Dwell NVNT 1-DH3 2441MHz

Report No.: NTCER1909009

Dwell NVNT 1-DH3 2480MHz

Page 48 of 91

Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Period Time (ms)	Limit (ms)	Verdict
NVNT	1-DH5	2402	2.891	274.067	31600	400	Pass
NVNT	1-DH5	2441	2.891	274.067	31600	400	Pass
NVNT	1_DH5	2480	2 801	274.067	31600	400	Pacc

Report No.: NTCER1909009

Page 49 of 91

Dwell NVNT 1-DH5 2480MHz

Report No.: NTCER1909009

Condition	Mode	Frequency	Pulse Time	Total Dwell Time	Period Time	Limit	Verdict
		(MHz)	(ms)	(ms)	(ms)	(ms)	
NVNT	2-DH1	2402	0.397	125.452	31600	400	Pass
NVNT	2-DH1	2441	0.397	125.452	31600	400	Pass
NVNT	2-DH1	2480	0.397	125.452	31600	400	Pass

Page 50 of 91 Report No.: NTCER1909009

Dwell NVNT 2-DH1 2441MHz

Dwell NVNT 2-DH1 2480MHz

Page 51 of 91

Condition	Mode	Frequency	Pulse Time	Total Dwell Time	Period Time	Limit	Verdict
		(MHz)	(ms)	(ms)	(ms)	(ms)	
NVNT	2-DH3	2402	1.648	260.384	31600	400	Pass
NVNT	2-DH3	2441	1.649	260.542	31600	400	Pass
NVNT	2-DH3	2480	1.644	259.752	31600	400	Pass

Report No.: NTCER1909009

Page 52 of 91

Dwell NVNT 2-DH3 2480MHz

Report No.: NTCER1909009

Condition	Mode	Frequency	Pulse Time	Total Dwell Time	Period Time	Limit	Verdict
		(MHz)	(ms)	(ms)	(ms)	(ms)	
NVNT	2-DH5	2402	2.89	273.972	31600	400	Pass
NVNT	2-DH5	2441	2.891	274.067	31600	400	Pass
NVNT	2-DH5	2480	2.891	274.067	31600	400	Pass

Page 53 of 91

Dwell NVNT 2-DH5 2441MHz

Report No.: NTCER1909009

Dwell NVNT 2-DH5 2480MHz

Page 54 of 91

Condition	Mode	Frequency	Pulse Time	Total Dwell Time	Period Time	Limit	Verdict
		(MHz)	(ms)	(ms)	(ms)	(ms)	
NVNT	3-DH1	2402	0.398	125.768	31600	400	Pass
NVNT	3-DH1	2441	0.398	125.768	31600	400	Pass
NVNT	3-DH1	2480	0.373	117.868	31600	400	Pass

Report No.: NTCER1909009

Page 55 of 91

Dwell NVNT 3-DH1 2480MHz

Report No.: NTCER1909009

Condition	Mode	Frequency	Pulse Time	Total Dwell Time	Period Time	Limit	Verdict
		(MHz)	(ms)	(ms)	(ms)	(ms)	
NVNT	3-DH3	2402	1.649	260.542	31600	400	Pass
NVNT	3-DH3	2441	1.648	260.384	31600	400	Pass
NVNT	3-DH3	2480	1.649	260.542	31600	400	Pass

Page 56 of 91

Dwell NVNT 3-DH3 2441MHz

Report No.: NTCER1909009

Dwell NVNT 3-DH3 2480MHz

Page 57 of 91

Condition	Mode	Frequency	Pulse Time	Total Dwell Time	Period Time	Limit	Verdict
		(MHz)	(ms)	(ms)	(ms)	(ms)	
NVNT	3-DH5	2402	2.899	274.825	31600	400	Pass
NVNT	3-DH5	2441	2.899	274.825	31600	400	Pass
NVNT	3-DH5	2480	2.871	272.171	31600	400	Pass

Report No.: NTCER1909009

Page 58 of 91

Dwell NVNT 3-DH5 2480MHz

Report No.: NTCER1909009

Page 59 of 91 Report No.: NTCER1909009

10. Band edge

10.1. Applied procedures / Limit

15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

10.2. Test procedure

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation, RBW ≥ 1% of the span, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold

10.3. Deviation from standard

No deviation.

10.4. Test setup

EUT	SPECTRUM
	ANALYZER

10.5. Test results