Introduction to Machine Learning

Early Stopping

Learning goals

- Know how early stopping works
- Understand how early stopping acts as a regularizer

- When training with an iterative optimizer such as SGD, it is commonly the case that, after a certain number of iterations, generalization error begins to increase even though training error continues to decrease.
- Early stopping refers to stopping the algorithm early before the generalization error increases.

Figure: After a certain number of iterations, the algorithm begins to overfit.

How early stopping works:

- Split training data $\mathcal{D}_{\text{train}}$ into $\mathcal{D}_{\text{subtrain}}$ and \mathcal{D}_{val} (e.g. with a ratio of 2:1).
- 2 Train on $\mathcal{D}_{\text{subtrain}}$ and evaluate model using the validation set \mathcal{D}_{val} .
- Stop training when validation error stops decreasing (after a range of "patience" steps).
- Use parameters of the previous step for the actual model.

More sophisticated forms also apply cross-validation.

Strengths	Weaknesses
Effective and simple	Periodical evaluation of validation error
Applicable to almost any	Temporary copy of $ heta$ (we have to save
model without adjustment	the whole model each time validation
	error improves)
Combinable with other	Less data for training $ ightarrow$ include \mathcal{D}_{val}
regularization methods	afterwards

• Relation between optimal early-stopping iteration T_{stop} and weight-decay penalization parameter λ for step-size α (see Goodfellow et al. (2016) page 251-252 for proof):

$$\textit{T}_{\rm stop} \approx \frac{1}{\alpha \lambda} \Leftrightarrow \lambda \approx \frac{1}{\textit{T}_{\rm stop} \alpha}$$

Small \(\lambda\) (low penalization) ⇒ high \(T_{\text{stop}}\) (complex model / lots of updates).

Figure: An illustration of the effect of early stopping. *Left:* The solid contour lines indicate the contours of the negative log-likelihood. The dashed line indicates the trajectory taken by SGD beginning from the origin. Rather than stopping at the point $\hat{\theta}$ that minimizes the risk, early stopping results in the trajectory stopping at an earlier point $\hat{\theta}_{\text{Ridge}}$. *Right:* An illustration of the effect of L_2 regularization for comparison. The dashed circles indicate the contours of the L_2 penalty which causes the minimum of the total cost to lie closer to the origin than the minimum of the unregularized cost.