The Vector Balancing Constant for Zonotopes

Thomas Rothyoss

Joint work with Rainie Heck and Victor Reis

Pre-Seminar Talk

▶ Set system $S = \{S_1, \ldots, S_m\}, S_i \subseteq [n]$

- ▶ Set system $S = \{S_1, \ldots, S_m\}, S_i \subseteq [n]$
- ▶ Coloring $\chi:[n] \to \{-1,+1\}$

- ▶ Set system $S = \{S_1, \ldots, S_m\}, S_i \subseteq [n]$
- ▶ Coloring $\chi:[n] \to \{-1,+1\}$
- Discrepancy

$$\operatorname{disc}(\mathcal{S}) = \min_{\chi:[n] \to \{\pm 1\}} \max_{S \in \mathcal{S}} \Big| \sum_{i \in S} \chi(i) \Big|.$$

- ▶ Set system $S = \{S_1, \ldots, S_m\}, S_i \subseteq [n]$
- ▶ Coloring $\chi:[n] \to \{-1,+1\}$
- Discrepancy

$$\operatorname{disc}(\mathcal{S}) = \min_{\chi:[n] \to \{\pm 1\}} \max_{S \in \mathcal{S}} \Big| \sum_{i \in S} \chi(i) \Big|.$$

Theorem (Spencer 1985)

For set system with $n \le m$ one has $disc(S) \le O(\sqrt{n \log(\frac{2m}{n})})$

- ▶ Set system $S = \{S_1, \ldots, S_m\}, S_i \subseteq [n]$
- ▶ Coloring $\chi:[n] \to \{-1,+1\}$
- Discrepancy

$$\operatorname{disc}(\mathcal{S}) = \min_{\chi:[n] \to \{\pm 1\}} \max_{S \in \mathcal{S}} \Big| \sum_{i \in S} \chi(i) \Big|.$$

Theorem (Spencer 1985)

For set system with $n \le m$ one has $disc(S) \le O(\sqrt{n \log(\frac{2m}{n})})$

▶ Linear algebraic version: For $A \in [-1, 1]^{m \times n}$ there is a $x \in \{-1, 1\}^n$ with $||Ax||_{\infty} \le O(\sqrt{n \log \frac{2m}{n}})$.

- ▶ Set system $S = \{S_1, \ldots, S_m\}, S_i \subseteq [n]$
- Coloring $\chi:[n] \to \{-1,+1\}$
- Discrepancy

$$\operatorname{disc}(\mathcal{S}) = \min_{\chi:[n] \to \{\pm 1\}} \max_{S \in \mathcal{S}} \Big| \sum_{i \in S} \chi(i) \Big|.$$

Theorem (Spencer 1985)

For set system with $n \le m$ one has $disc(S) \le O(\sqrt{n \log(\frac{2m}{n})})$

▶ Linear algebraic version: For $A \in [-1, 1]^{m \times n}$ there is a $x \in \{-1, 1\}^n$ with $||Ax||_{\infty} \leq O(\sqrt{n \log \frac{2m}{n}})$.

Main method: Find a partial coloring $x \in \{-1, 0, 1\}^n$

- ▶ low discrepancy $||Ax||_{\infty}$
- $ightharpoonup |\operatorname{supp}(x)| \ge \Omega(n)$

Gaussian measure

► Gaussian measure:

$$\gamma_n(K) = \Pr[\text{gaussian} \in K] \approx \frac{\text{Vol}_n(K \cap \sqrt{n}B_2^n)}{\text{Vol}_n(\sqrt{n}B_2^n)}$$

Gaussian measure

► Gaussian measure:

$$\gamma_n(K) = \Pr[\text{gaussian} \in K] \approx \frac{\text{Vol}_n(K \cap \sqrt{n}B_2^n)}{\text{Vol}_n(\sqrt{n}B_2^n)}$$

Lemma (Sidak-Kathri '67)

For convex symmetric set K and strip S,

$$\gamma_n(K \cap S) \ge \gamma_n(K) \cdot \gamma_n(S)$$

Gaussian measure

► Gaussian measure:

$$\gamma_n(K) = \Pr[\text{gaussian} \in K] \approx \frac{\text{Vol}_n(K \cap \sqrt{n}B_2^n)}{\text{Vol}_n(\sqrt{n}B_2^n)}$$

Lemma (Sidak-Kathri '67)

For convex symmetric set K and strip S,

$$\gamma_n(K \cap S) \ge \gamma_n(K) \cdot \gamma_n(S)$$

Theorem

Let K be symmetric convex set with $\gamma_n(K) \ge e^{-n/20}$. Then $\exists x \in K \cap \{-1, 0, 1\}^n$ with $|\operatorname{supp}(x)| \ge n/10$.

Theorem

Let K be symmetric convex set with $\gamma_n(K) \ge e^{-n/20}$. Then $\exists x \in K \cap \{-1, 0, 1\}^n$ with $|\operatorname{supp}(x)| \ge n/10$.

Theorem

Let K be symmetric convex set with $\gamma_n(K) \ge e^{-n/20}$. Then $\exists x \in K \cap \{-1, 0, 1\}^n$ with $|\operatorname{supp}(x)| \ge n/10$.

▶ We call an $x \in \{-1, 0, 1\}^n$ with $|\text{supp}(x)| \ge \frac{n}{10}$ a **good** partial coloring.

A basic fact on measure concentration

Lemma

Any set $X \subseteq \{-1,1\}^n$ with $|X| \ge 2^{0.8n}$ contains $x,y \in X$ differing in at least $\frac{n}{10}$ coordinates.

► See [Kleitman 1966] for exact bounds.

A basic fact on measure concentration

Lemma

Any set $X \subseteq \{-1,1\}^n$ with $|X| \ge 2^{0.8n}$ contains $x,y \in X$ differing in at least $\frac{n}{10}$ coordinates.

► See [Kleitman 1966] for exact bounds.

Theorem

For convex symmetric set $K \subseteq \mathbb{R}^n$ with $\gamma_n(K) \ge e^{-n/20}$ and $v_1, \ldots, v_n \in \mathbb{R}^n$ with $||v_i||_2 \le 1$, there is a good partial coloring x with $||\sum_{i=1}^n x_i v_i||_K \le C$.

Theorem

For convex symmetric set $K \subseteq \mathbb{R}^n$ with $\gamma_n(K) \ge e^{-n/20}$ and $v_1, \ldots, v_n \in \mathbb{R}^n$ with $||v_i||_2 \le 1$, there is a good partial coloring x with $||\sum_{i=1}^n x_i v_i||_K \le C$.

Proof.

▶ Let $\varepsilon > 0$ small constant.

Theorem

For convex symmetric set $K \subseteq \mathbb{R}^n$ with $\gamma_n(K) \ge e^{-n/20}$ and $v_1, \ldots, v_n \in \mathbb{R}^n$ with $||v_i||_2 \le 1$, there is a good partial coloring x with $||\sum_{i=1}^n x_i v_i||_K \le C$.

Proof.

- ▶ Let $\varepsilon > 0$ small constant.
- ▶ Consider 2^n pts $\varepsilon \sum_{i=1}^n x_i v_i$ with $x \in \{-1, 1\}^n$

$$\bullet \, \varepsilon \sum_{i=1}^{n} x_i v_i$$

Theorem

For convex symmetric set $K \subseteq \mathbb{R}^n$ with $\gamma_n(K) \ge e^{-n/20}$ and $v_1, \ldots, v_n \in \mathbb{R}^n$ with $||v_i||_2 \le 1$, there is a good partial coloring x with $||\sum_{i=1}^n x_i v_i||_K \le C$.

Proof.

- ▶ Let $\varepsilon > 0$ small constant.
- ▶ Consider 2^n pts $\varepsilon \sum_{i=1}^n x_i v_i$ with $x \in \{-1, 1\}^n$
- ▶ Note: $\mathbb{E}_{x \sim \{-1,1\}^n} [\| \sum_{i=1}^n x_i \varepsilon v_i \|_2^2] = \sum_{i=1}^n \| \varepsilon v_i \|_2^2 \le \varepsilon^2 n.$

$$\bullet \varepsilon \sum_{i=1}^{n} x_i v_i$$

Theorem

For convex symmetric set $K \subseteq \mathbb{R}^n$ with $\gamma_n(K) \ge e^{-n/20}$ and $v_1, \ldots, v_n \in \mathbb{R}^n$ with $||v_i||_2 \le 1$, there is a good partial coloring x with $||\sum_{i=1}^n x_i v_i||_K \le C$.

Proof.

- ▶ Let $\varepsilon > 0$ small constant.
- ▶ Consider 2^n pts $\varepsilon \sum_{i=1}^n x_i v_i$ with $x \in \{-1, 1\}^n$
- ▶ Note: $\mathbb{E}_{x \sim \{-1,1\}^n} [\| \sum_{i=1}^n x_i \varepsilon v_i \|_2^2] = \sum_{i=1}^n \| \varepsilon v_i \|_2^2 \le \varepsilon^2 n.$

Proof (cont.)

Then $\exists X_1 \subseteq \{-1, 1\}^n$ with $|X_1| \ge \frac{1}{2}2^n$ and $\|\sum_{i=1}^n x_i \varepsilon v_i\|_2^2 \le 2\varepsilon^2 n \ \forall x \in X_1$.

•

0 •

•

$$\bullet \varepsilon \sum_{i=1}^{n} x_i v_i$$

- Then $\exists X_1 \subseteq \{-1,1\}^n$ with $|X_1| \ge \frac{1}{2}2^n$ and $\|\sum_{i=1}^n x_i \varepsilon v_i\|_2^2 \le 2\varepsilon^2 n \ \forall x \in X_1$.
- ▶ For $x \in X_1$, $\gamma_n(K + \varepsilon \sum_{i=1}^n x_i v_i) \ge e^{-\varepsilon n} \gamma_n(K) \ge e^{-n/10}$.

- Then $\exists X_1 \subseteq \{-1,1\}^n$ with $|X_1| \ge \frac{1}{2}2^n$ and $\|\sum_{i=1}^n x_i \varepsilon v_i\|_2^2 \le 2\varepsilon^2 n \ \forall x \in X_1.$
- ▶ For $x \in X_1$, $\gamma_n(K + \varepsilon \sum_{i=1}^n x_i v_i) \ge e^{-\varepsilon n} \gamma_n(K) \ge e^{-n/10}$.

- Then $\exists X_1 \subseteq \{-1, 1\}^n$ with $|X_1| \ge \frac{1}{2}2^n$ and $\|\sum_{i=1}^n x_i \varepsilon v_i\|_2^2 \le 2\varepsilon^2 n \ \forall x \in X_1$.
- ▶ For $x \in X_1$, $\gamma_n(K + \varepsilon \sum_{i=1}^n x_i v_i) \ge e^{-\varepsilon n} \gamma_n(K) \ge e^{-n/10}$.

- Then $\exists X_1 \subseteq \{-1,1\}^n$ with $|X_1| \ge \frac{1}{2}2^n$ and $\|\sum_{i=1}^n x_i \varepsilon v_i\|_2^2 \le 2\varepsilon^2 n \ \forall x \in X_1$.
- ► For $x \in X_1$, $\gamma_n(K + \varepsilon \sum_{i=1}^n x_i v_i) \ge e^{-\varepsilon n} \gamma_n(K) \ge e^{-n/10}$.
- ► Then $\bigcup_{x \in X_1} (K + \varepsilon \sum_{i=1}^n x_i v_i)$ covers some point $y \in \mathbb{R}^n$ at least $|X_1| \cdot e^{-n/10} \ge 2^{0.8n}$ times

- Then $\exists X_1 \subseteq \{-1,1\}^n$ with $|X_1| \ge \frac{1}{2}2^n$ and $\|\sum_{i=1}^n x_i \varepsilon v_i\|_2^2 \le 2\varepsilon^2 n \ \forall x \in X_1$.
- ► For $x \in X_1$, $\gamma_n(K + \varepsilon \sum_{i=1}^n x_i v_i) \ge e^{-\varepsilon n} \gamma_n(K) \ge e^{-n/10}$.
- ► Then $\bigcup_{x \in X_1} (K + \varepsilon \sum_{i=1}^n x_i v_i)$ covers some point $y \in \mathbb{R}^n$ at least $|X_1| \cdot e^{-n/10} \ge 2^{0.8n}$ times

- ► Then $\exists X_1 \subseteq \{-1,1\}^n$ with $|X_1| \ge \frac{1}{2}2^n$ and $\|\sum_{i=1}^n x_i \varepsilon v_i\|_2^2 \le 2\varepsilon^2 n \ \forall x \in X_1$.
- ► For $x \in X_1$, $\gamma_n(K + \varepsilon \sum_{i=1}^n x_i v_i) \ge e^{-\varepsilon n} \gamma_n(K) \ge e^{-n/10}$.
- ► Then $\bigcup_{x \in X_1} (K + \varepsilon \sum_{i=1}^n x_i v_i)$ covers some point $y \in \mathbb{R}^n$ at least $|X_1| \cdot e^{-n/10} > 2^{0.8n}$ times

Proof (cont.)

Let $X_2 := \{ x \in X_1 \mid ||y - \varepsilon \sum_{i=1}^n x_i v_i||_K \le 1 \}$ with $|X_2| \ge 2^{0.8n}$.

- ▶ Let $X_2 := \{x \in X_1 \mid ||y \varepsilon \sum_{i=1}^n x_i v_i||_K \le 1\}$ with $|X_2| \ge 2^{0.8n}$.
- ► There are $x', x'' \in X_2 \subseteq \{-1, 1\}^n$ with $|\{j \in [n] : x'_j \neq x''_j\}| \ge \frac{n}{10}$.

- ▶ Let $X_2 := \{x \in X_1 \mid ||y \varepsilon \sum_{i=1}^n x_i v_i||_K \le 1\}$ with $|X_2| \ge 2^{0.8n}$.
- ► There are $x', x'' \in X_2 \subseteq \{-1, 1\}^n$ with $|\{j \in [n] : x'_j \neq x''_j\}| \ge \frac{n}{10}$.
- Then $x := \frac{1}{2}(x' x'') \in \{-1, 0, 1\}^n$ has $|\operatorname{supp}(x)| \ge \frac{n}{10}$ and $\|\sum_{i=1}^n x_i v_i\|_K \le \frac{2}{\varepsilon}$.

Lemma

Let $A \in [-1,1]^{m \times n}$ with $m \ge n$. Then there is a good partial coloring x with $||Ax||_{\infty} \le O(\sqrt{n \log(\frac{2m}{n})})$.

Lemma

Let $A \in [-1, 1]^{m \times n}$ with $m \ge n$. Then there is a good partial coloring x with $||Ax||_{\infty} \le O(\sqrt{n \log(\frac{2m}{n})})$.

► Consider $K = \{x \in \mathbb{R}^n : |\langle A_i, x \rangle| \le \lambda \sqrt{n} \ \forall i \in [m]\}$ with $\lambda := C\sqrt{\log(\frac{2m}{n})}$.

Lemma

Let $A \in [-1, 1]^{m \times n}$ with $m \ge n$. Then there is a good partial coloring x with $||Ax||_{\infty} \le O(\sqrt{n \log(\frac{2m}{n})})$.

- ► Consider $K = \{x \in \mathbb{R}^n : |\langle A_i, x \rangle| \le \lambda \sqrt{n} \ \forall i \in [m]\}$ with $\lambda := C\sqrt{\log(\frac{2m}{n})}$.
- \blacktriangleright Need to show K contains good partial coloring.

Lemma

Let $A \in [-1, 1]^{m \times n}$ with $m \ge n$. Then there is a good partial coloring x with $||Ax||_{\infty} \le O(\sqrt{n \log(\frac{2m}{n})})$.

- Consider $K = \{x \in \mathbb{R}^n : |\langle A_i, x \rangle| \le \lambda \sqrt{n} \ \forall i \in [m] \}$ with $\lambda := C \sqrt{\log(\frac{2m}{n})}$.
- \blacktriangleright Need to show K contains good partial coloring.
- K is intersection of m strips of width at least λ

Lemma

Let $A \in [-1, 1]^{m \times n}$ with $m \ge n$. Then there is a good partial coloring x with $||Ax||_{\infty} \le O(\sqrt{n \log(\frac{2m}{n})})$.

- ► Consider $K = \{x \in \mathbb{R}^n : |\langle A_i, x \rangle| \le \lambda \sqrt{n} \ \forall i \in [m]\}$ with $\lambda := C\sqrt{\log(\frac{2m}{n})}$.
- \triangleright Need to show K contains good partial coloring.
- K is intersection of m strips of width at least λ
- ► Then by Sidak-Khatri

$$\gamma_n(K) \ge \prod_{i=1}^m \gamma_n(\{x : |\langle A_i, x \rangle | \le \lambda\})$$

Partial colorings for Spencer

Lemma

Let $A \in [-1, 1]^{m \times n}$ with $m \ge n$. Then there is a good partial coloring x with $||Ax||_{\infty} \le O(\sqrt{n \log(\frac{2m}{n})})$.

- ► Consider $K = \{x \in \mathbb{R}^n : |\langle A_i, x \rangle| \le \lambda \sqrt{n} \ \forall i \in [m]\}$ with $\lambda := C\sqrt{\log(\frac{2m}{n})}$.
- \triangleright Need to show K contains good partial coloring.
- K is intersection of m strips of width at least λ
- ► Then by Sidak-Khatri

$$\gamma_n(K) \ge \prod_{i=1} \gamma_n(\{x : |\langle A_i, x \rangle | \le \lambda\}) \ge \exp(-\lambda^2/2)^m$$

Partial colorings for Spencer

Lemma

Let $A \in [-1, 1]^{m \times n}$ with $m \ge n$. Then there is a good partial coloring x with $||Ax||_{\infty} \le O(\sqrt{n \log(\frac{2m}{n})})$.

- ► Consider $K = \{x \in \mathbb{R}^n : |\langle A_i, x \rangle| \le \lambda \sqrt{n} \ \forall i \in [m]\}$ with $\lambda := C\sqrt{\log(\frac{2m}{n})}$.
- \triangleright Need to show K contains good partial coloring.
- K is intersection of m strips of width at least λ
- ► Then by Sidak-Khatri

$$\gamma_n(K) \ge \prod_{i=1}^m \gamma_n(\{x : |\langle A_i, x \rangle | \le \lambda\}) \ge \exp(-\lambda^2/2)^m = e^{-n/20}$$

From partial to full coloring

▶ We know that for each $A \in [-1, 1]^{m \times n}$ there is a good partial coloring with $||Ax||_{\infty} \leq f(n, m) := C\sqrt{n\log(\frac{2m}{n})}$.

From partial to full coloring

- ▶ We know that for each $A \in [-1, 1]^{m \times n}$ there is a good partial coloring with $||Ax||_{\infty} \leq f(n, m) := C\sqrt{n\log(\frac{2m}{n})}$.
- ▶ Iteratively find partial colorings $x^1, x^2, \dots, x^{O(\log(n))}$; after t iterations at most $n \cdot 0.9^t$ elements uncolored.

From partial to full coloring

- We know that for each $A \in [-1, 1]^{m \times n}$ there is a good partial coloring with $||Ax||_{\infty} \leq f(n, m) := C\sqrt{n \log(\frac{2m}{n})}$.
- ▶ Iteratively find partial colorings $x^1, x^2, \dots, x^{O(\log(n))}$; after t iterations at most $n \cdot 0.9^t$ elements uncolored.
- Set $x^* := x^1 + \ldots + x^{O(\log(n))}$. Then

$$||Ax^*||_{\infty} \le \sum_{n \ge 0} f(n \cdot 0.9^t, m) \le \text{const} \cdot f(n, m)$$

The end

Thanks for your attention

(and see you back in a few minutes..)

The Vector Balancing Constant for Zonotopes

Thomas Rothvoss

Joint work with Rainie Heck and Victor Reis

▶ Set system $S = \{S_1, \ldots, S_m\}, S_i \subseteq [n]$

- ▶ Set system $S = \{S_1, \ldots, S_m\}, S_i \subseteq [n]$
- ▶ Coloring $\chi:[n] \to \{-1,+1\}$

- ▶ Set system $S = \{S_1, \ldots, S_m\}, S_i \subseteq [n]$
- Coloring $\chi:[n] \to \{-1,+1\}$
- Discrepancy

$$\operatorname{disc}(\mathcal{S}) = \min_{\chi:[n] \to \{\pm 1\}} \max_{S \in \mathcal{S}} \bigg| \sum_{i \in S} \chi(i) \bigg|.$$

- ▶ Set system $S = \{S_1, \ldots, S_m\}, S_i \subseteq [n]$
- Coloring $\chi:[n] \to \{-1,+1\}$
- Discrepancy

$$\operatorname{disc}(\mathcal{S}) = \min_{\chi:[n] \to \{\pm 1\}} \max_{S \in \mathcal{S}} \Big| \sum_{i \in S} \chi(i) \Big|.$$

Theorem (Spencer 1985)

For set system with $n \le m$ one has $disc(S) \le O(\sqrt{n \log(\frac{2m}{n})})$

- ▶ Set system $S = \{S_1, \ldots, S_m\}, S_i \subseteq [n]$
- Coloring $\chi:[n] \to \{-1,+1\}$
- Discrepancy

$$\operatorname{disc}(\mathcal{S}) = \min_{\chi:[n] \to \{\pm 1\}} \max_{S \in \mathcal{S}} \Big| \sum_{i \in S} \chi(i) \Big|.$$

Theorem (Spencer 1985)

For set system with $n \le m$ one has $disc(S) \le O(\sqrt{n \log(\frac{2m}{n})})$

▶ Linear algebraic version: For $A \in [-1, 1]^{m \times n}$ there is a $x \in \{-1, 1\}^n$ with $||Ax||_{\infty} \leq O(\sqrt{n \log \frac{2m}{n}})$.

$$vb(K, Q) := \sup \left\{ \min_{x \in \{-1, 1\}^n} \left\| \sum_{i=1}^n x_i v_i \right\|_Q \mid n \in \mathbb{N}, v_1, \dots, v_n \in K \right\}$$

$$vb(K,Q) := \sup \left\{ \min_{x \in \{-1,1\}^n} \left\| \sum_{i=1}^n x_i v_i \right\|_Q \mid n \in \mathbb{N}, v_1, \dots, v_n \in K \right\}$$

$$vb(K,Q) := \sup \left\{ \min_{x \in \{-1,1\}^n} \left\| \sum_{i=1}^n x_i v_i \right\|_Q \mid n \in \mathbb{N}, v_1, \dots, v_n \in K \right\}$$

$$vb(K,Q) := \sup \left\{ \min_{x \in \{-1,1\}^n} \left\| \sum_{i=1}^n x_i v_i \right\|_Q \mid n \in \mathbb{N}, v_1, \dots, v_n \in K \right\}$$

$$vb(K,Q) := \sup \left\{ \min_{x \in \{-1,1\}^n} \left\| \sum_{i=1}^n x_i v_i \right\|_Q \mid n \in \mathbb{N}, v_1, \dots, v_n \in K \right\}$$

▶ For symmetric convex bodies $K, Q \subseteq \mathbb{R}^d$,

$$\operatorname{vb}_n(K, Q) := \sup \left\{ \min_{x \in \{-1,1\}^n} \left\| \sum_{i=1}^n x_i v_i \right\|_Q \mid v_1, \dots, v_n \in K \right\}$$

Theorem (LSV'86)

One has $vb(K,Q) \leq 2 \cdot vb_d(K,Q)$.

The L_p -balls

• Let $B_p^d := \{ x \in \mathbb{R}^d \mid ||x||_p \le 1 \}$

Same bodies:

▶ Spencer's Theorem. $\operatorname{vb}(B_{\infty}^d, B_{\infty}^d) \lesssim \sqrt{d}$ and $\operatorname{vb}_n(B_{\infty}^d, B_{\infty}^d) \lesssim \sqrt{n \log \frac{2d}{n}}$ for $n \leq d$.

Same bodies:

- ▶ Spencer's Theorem. $\operatorname{vb}(B_{\infty}^d, B_{\infty}^d) \lesssim \sqrt{d}$ and $\operatorname{vb}_n(B_{\infty}^d, B_{\infty}^d) \lesssim \sqrt{n \log \frac{2d}{n}}$ for $n \leq d$.
- One has $\operatorname{vb}(B_p^d, B_p^d) \lesssim \sqrt{d}$ for any $2 \leq p \leq \infty$.

Same bodies:

- ▶ Spencer's Theorem. $\operatorname{vb}(B_{\infty}^d, B_{\infty}^d) \lesssim \sqrt{d}$ and $\operatorname{vb}_n(B_{\infty}^d, B_{\infty}^d) \lesssim \sqrt{n \log \frac{2d}{n}}$ for $n \leq d$.
- ▶ One has $vb(B_p^d, B_p^d) \lesssim \sqrt{d}$ for any $2 \leq p \leq \infty$.
- One has $vb(B_1^d, B_1^d) \approx d$

Same bodies:

- ▶ Spencer's Theorem. $\operatorname{vb}(B_{\infty}^d, B_{\infty}^d) \lesssim \sqrt{d}$ and $\operatorname{vb}_n(B_{\infty}^d, B_{\infty}^d) \lesssim \sqrt{n \log \frac{2d}{n}}$ for $n \leq d$.
- ▶ One has $vb(B_p^d, B_p^d) \lesssim \sqrt{d}$ for any $2 \leq p \leq \infty$.
- One has $vb(B_1^d, B_1^d) \approx d$

Different bodies:

- ▶ $\operatorname{vb}(B_1^d, B_\infty^d) \le 2$ [Beck, Fiala '81]
- ▶ Komlós Conjecture: $vb(B_2^d, B_\infty^d) \le O(1)$ Best known $vb(B_2^d, B_\infty^d) \le O(\sqrt{\log d})$ [Banaszczyk '98]

Definition

A **zonotope** $K \subseteq \mathbb{R}^d$ is the projection of a cube.

Definition

A **zonotope** $K \subseteq \mathbb{R}^d$ is the projection of a cube.

▶ We write $K = \{\sum_{i=1}^m y_i A_i \mid y \in [-1, 1]^m\}$ where $A \in \mathbb{R}^{m \times d}$

ightharpoonup m is the **number of segments** of K

Definition

A **zonotope** $K \subseteq \mathbb{R}^d$ is the projection of a cube.

▶ We write $K = \{\sum_{i=1}^m y_i A_i \mid y \in [-1, 1]^m\}$ where $A \in \mathbb{R}^{m \times d}$

- ightharpoonup m is the **number of segments** of K
- Examples of zonotopes: B^d_{∞}

Definition

A **zonotope** $K \subseteq \mathbb{R}^d$ is the projection of a cube.

▶ We write $K = \{\sum_{i=1}^m y_i A_i \mid y \in [-1, 1]^m\}$ where $A \in \mathbb{R}^{m \times d}$

- ightharpoonup m is the number of segments of K
- Examples of zonotopes: B^d_{∞}
- ▶ Example of **zonoid**: B_p^d for $2 \le p \le \infty$

Definition

A **zonotope** $K \subseteq \mathbb{R}^d$ is the projection of a cube.

▶ We write $K = \{\sum_{i=1}^m y_i A_i \mid y \in [-1, 1]^m\}$ where $A \in \mathbb{R}^{m \times d}$

- ightharpoonup m is the **number of segments** of K
- \triangleright Examples of zonotopes: B^d_{∞}
- ▶ Example of **zonoid**: B_n^d for $2 \le p \le \infty$
- ▶ NOT a zonoid: B_1^d

Reducing number of segments

Theorem (Talagrand '90)

For any zonotope $K \subseteq \mathbb{R}^d$ there is a zonotope Q with $O(\frac{d}{\varepsilon^2}\log(d))$ segments so that $Q \subseteq K \subseteq (1+\varepsilon)Q$.

Reducing number of segments

Theorem (Talagrand '90)

For any zonotope $K \subseteq \mathbb{R}^d$ there is a zonotope Q with $O(\frac{d}{\varepsilon^2}\log(d))$ segments so that $Q \subseteq K \subseteq (1+\varepsilon)Q$.

Reducing number of segments

Theorem (Talagrand '90)

For any zonotope $K \subseteq \mathbb{R}^d$ there is a zonotope Q with $O(\frac{d}{\varepsilon^2}\log(d))$ segments so that $Q \subseteq K \subseteq (1+\varepsilon)Q$.

Question (Talagrand '90, Bourgain, Lindenstrauss, Milman '89))

Are $O_{\varepsilon}(d)$ segments enough?

Lemma (Folklore)

For any zonotope $K \subseteq \mathbb{R}^d$, $vb(K, K) \leq O(\sqrt{d \log \log(d)})$.

Lemma (Folklore)

For any zonotope $K \subseteq \mathbb{R}^d$, $vb(K, K) \le O(\sqrt{d \log \log(d)})$.

▶ May assume $m \le O(d \log d)$ [Talagrand '90]

Lemma (Folklore)

For any zonotope $K \subseteq \mathbb{R}^d$, $vb(K, K) \le O(\sqrt{d \log \log(d)})$.

- ▶ May assume $m \le O(d \log d)$ [Talagrand '90]
- ▶ Let $v_1, ..., v_d \in K$. Then $v_j = \sum_{i=1}^m A_i y_i^{(j)}$ with $y^{(j)} \in [-1, 1]^m$.

Lemma (Folklore)

For any zonotope $K \subseteq \mathbb{R}^d$, $vb(K, K) \le O(\sqrt{d \log \log(d)})$.

- ▶ May assume $m \le O(d \log d)$ [Talagrand '90]
- ▶ Let $v_1, ..., v_d \in K$. Then $v_j = \sum_{i=1}^m A_i y_i^{(j)}$ with $y^{(j)} \in [-1, 1]^m$.
- We balance the vectors $y^{(1)}, \ldots, y^{(d)}$ instead!

Lemma (Folklore)

For any zonotope $K \subseteq \mathbb{R}^d$, $vb(K, K) \le O(\sqrt{d \log \log(d)})$.

- ▶ May assume $m \le O(d \log d)$ [Talagrand '90]
- ▶ Let $v_1, ..., v_d \in K$. Then $v_j = \sum_{i=1}^m A_i y_i^{(j)}$ with $y^{(j)} \in [-1, 1]^m$.
- We balance the vectors $y^{(1)}, \ldots, y^{(d)}$ instead!
- ▶ Then $\operatorname{vb}_d(K, K) \le \operatorname{vb}_d(B_\infty^m, B_\infty^m) \le O(\sqrt{d \log \frac{2m}{d}}).$

Our main contribution

Question (Schechtman; AIM workshop 2007)

Is it true that for each zonotope $K \subseteq \mathbb{R}^d$ one has $\mathrm{vb}(K,K) \leq O(\sqrt{d})$?

► Known is $vb(K, K) \le O(\sqrt{d \log \log(d)})$.

Our main contribution

Question (Schechtman; AIM workshop 2007)

Is it true that for each zonotope $K \subseteq \mathbb{R}^d$ one has $\mathrm{vb}(K,K) \leq O(\sqrt{d})$?

► Known is $vb(K, K) \le O(\sqrt{d \log \log(d)})$.

Theorem (Heck, Reis, R. 2022)

For any zonotope $K \subseteq \mathbb{R}^d$ one has $O(\sqrt{d} \log \log \log d)$.

Normalizing a zonotope

Definition

We call a zonotope $K \subseteq \mathbb{R}^d$ normalized if $K = \sqrt{\frac{d}{m}} A^T B_{\infty}^m$ where $A \in \mathbb{R}^{m \times d}$ has

- ▶ Orthonormal columns
- ▶ Short rows: $||A_i||_2 \le 2\sqrt{\frac{d}{m}}$ for all i

Normalizing a zonotope

Definition

We call a zonotope $K \subseteq \mathbb{R}^d$ normalized if $K = \sqrt{\frac{d}{m}} A^T B_{\infty}^m$ where $A \in \mathbb{R}^{m \times d}$ has

- ► Orthonormal columns
- ▶ Short rows: $||A_i||_2 \le 2\sqrt{\frac{d}{m}}$ for all i

Normalizing a zonotope

Definition

We call a zonotope $K \subseteq \mathbb{R}^d$ normalized if $K = \sqrt{\frac{d}{m}} A^T B_{\infty}^m$ where $A \in \mathbb{R}^{m \times d}$ has

- ▶ Orthonormal columns
- ▶ Short rows: $||A_i||_2 \le 2\sqrt{\frac{d}{m}}$ for all i
- ► Each zonotope can be made apx. normalized by a linear transformation + subdivision of segments (similar to [BLM' 89, Talagrand 90])
- $\triangleright B^d_{\infty}$ is normalized

Radius of normalized zonotope

Lemma

A normalized zonotope K has radius at most \sqrt{d} .

Radius of normalized zonotope

Lemma

A normalized zonotope K has radius at most \sqrt{d} .

► Each point in K is of the form $\sqrt{\frac{d}{m}}A^Ty$ with $y \in [-1,1]^m$.

Radius of normalized zonotope

Lemma

A normalized zonotope K has radius at most \sqrt{d} .

- ▶ Each point in K is of the form $\sqrt{\frac{d}{m}}A^Ty$ with $y \in [-1,1]^m$.
- ► Then

$$\left\| \sqrt{\frac{d}{m}} A^T y \right\|_2 \le \sqrt{\frac{d}{m}} \cdot \underbrace{\|A^T\|_{\text{op}}}_{\le 1} \cdot \underbrace{\|y\|_2}_{\le \sqrt{m}} \le \sqrt{d}$$

Partial colorings

▶ We say $x \in [-1,1]^n$ is a **good partial coloring** if $|\{j \in [n] : x_j \in \{-1,1\}\}| \ge \frac{n}{2}$.

Partial colorings

▶ We say $x \in [-1,1]^n$ is a good partial coloring if $|\{j \in [n] : x_j \in \{-1,1\}\}| \ge \frac{n}{2}$.

Lemma

Any symmetric convex body $P \subseteq \mathbb{R}^n$ with $\gamma_n(P) \ge e^{-C_1 n}$ and let $v_1, \ldots, v_n \in B_2^n$. Then there is a good partial coloring x with $\sum_{i=1}^n x_i v_i \in C_2 \cdot P$.

Partial colorings

▶ We say $x \in [-1,1]^n$ is a good partial coloring if $|\{j \in [n] : x_j \in \{-1,1\}\}| \ge \frac{n}{2}$.

Lemma

Any symmetric convex body $P \subseteq \mathbb{R}^n$ with $\gamma_n(P) \ge e^{-C_1 n}$ and let $v_1, \ldots, v_n \in B_2^n$. Then there is a good partial coloring x with $\sum_{i=1}^n x_i v_i \in C_2 \cdot P$.

ightharpoonup Picture for case $v_i = e_i$:

Main technical contribution

Theorem (Heck, Reis, R. 2022)

For any normalized zonotope $K \subseteq \mathbb{R}^d$ and any *n*-dimensional subspace $H \subseteq \mathbb{R}^d$ one has $\gamma_H(K \cap H) \geq e^{-\Theta(n)}$.

Main technical contribution

Theorem (Heck, Reis, R. 2022)

For any normalized zonotope $K \subseteq \mathbb{R}^d$ and any *n*-dimensional subspace $H \subseteq \mathbb{R}^d$ one has $\gamma_H(K \cap H) \geq e^{-\Theta(n)}$.

Corollary

For any $v_1, \ldots, v_n \in K$ there is a good partial coloring x so that $\sum_{i=1}^n x_i v_i \in O(\sqrt{d}) \cdot K$.

▶ **Proof.** Use $||v_i||_2 \le \sqrt{d}$. Then use partial col. lemma with $H := \text{span}\{v_1, \dots, v_n\}$.

Lemma

Lemma

Let $K = A^T B_{\infty}^m$ where columns of A orthonormal and let $H \subseteq \mathbb{R}^d$ with $n = \dim(H)$. Then $\gamma_H(K \cap H) > e^{-n}$.

As $\sum_{i=1}^m A_i A_i^T = I_d$ one has $x = \sum_{i=1}^m A_i \langle A_i, x \rangle$ for all x.

Lemma

Let $K = A^T B_{\infty}^m$ where columns of A orthonormal and let $H \subset \mathbb{R}^d$ with $n = \dim(H)$. Then $\gamma_H(K \cap H) > e^{-n}$.

▶ As $\sum_{i=1}^{m} A_i A_i^T = I_d$ one has $x = \sum_{i=1}^{m} A_i \langle A_i, x \rangle$ for all x.

$$\Pr_{y \sim N(0, I_H)}[y \in K] \qquad \ge \qquad \Pr[|\langle A_i, y \rangle| \le 1 \ \forall i \in [m]]$$

Lemma

- As $\sum_{i=1}^m A_i A_i^T = I_d$ one has $x = \sum_{i=1}^m A_i \langle A_i, x \rangle$ for all x.
- ▶ $\gamma_d(P \cap Q) \ge \gamma_d(P) \cdot \gamma_d(Q)$ for symmetric+convex P, Q; one a strip [Sidak-Khatri]

$$\Pr_{y \sim N(0, I_H)}[y \in K] \geq \Pr[|\langle A_i, y \rangle| \leq 1 \ \forall i \in [m]]$$

$$\stackrel{\text{Sidak-K.}}{\geq} \prod_{i=1}^{m} \Pr_{y \sim N(0, I_H)}[|\langle A_i, y \rangle| \leq 1]$$

Lemma

- ▶ As $\sum_{i=1}^m A_i A_i^T = I_d$ one has $x = \sum_{i=1}^m A_i \langle A_i, x \rangle$ for all x.
- ▶ $\gamma_d(P \cap Q) \ge \gamma_d(P) \cdot \gamma_d(Q)$ for symmetric+convex P, Q; one a strip [Sidak-Khatri]

$$\Pr_{y \sim N(0, I_H)}[y \in K] \geq \Pr[|\langle A_i, y \rangle| \leq 1 \ \forall i \in [m]]$$

$$\stackrel{\text{Sidak-K.}}{\geq} \prod_{\substack{i=1 \ m}} \Pr_{y \sim N(0, I_H)}[|\langle A_i, y \rangle| \leq 1]$$

$$\geq \prod_{i=1} \exp(-\|\Pi_H(A_i)\|_2^2)$$

Lemma

- As $\sum_{i=1}^m A_i A_i^T = I_d$ one has $x = \sum_{i=1}^m A_i \langle A_i, x \rangle$ for all x.
- ▶ $\gamma_d(P \cap Q) \ge \gamma_d(P) \cdot \gamma_d(Q)$ for symmetric+convex P, Q; one a strip [Sidak-Khatri]

$$\Pr_{y \sim N(0,I_H)}[y \in K] \geq \Pr[|\langle A_i, y \rangle| \leq 1 \quad \forall i \in [m]]$$

$$\stackrel{\text{Sidak-K.}}{\geq} \prod_{i=1}^{m} \Pr_{y \sim N(0,I_H)}[|\langle A_i, y \rangle| \leq 1]$$

$$\geq \prod_{i=1}^{m} \exp(-\|\Pi_H(A_i)\|_2^2)$$

$$= \exp\left(-\sum_{i=1}^{m} \|\Pi_H(A_i)\|_2^2\right) = e^{-n}$$

Lemma

Each normalized zonotope K can be written as Minkowski sum of $\Theta(\frac{m}{d})$ zonotopes K_j s.t. $\Theta(\frac{m}{d}) \cdot K_j$ is approx. normalized*.

* of the form $\tilde{A}^T B_{\infty}^{\tilde{m}}$ with $\sum_i \tilde{A}_i \tilde{A}_i^T \succeq \Omega(1) I_d$.

Theorem (Kadison-Singer problem - Marcus, Spielman, Srivastava 2015)

Let $v_1, \ldots, v_m \in \mathbb{R}^d$ so that $\sum_{i=1}^m v_i v_i^T = I_d$ and $||v_i||_2^2 \leq \varepsilon$ for all $i \in [m]$. There is a partition $[m] = S_1 \dot{\cup} S_2$ so that for both $j \in \{1, 2\}$ one has

$$\left(\frac{1}{2} - 3\sqrt{\varepsilon}\right)I_d \preceq \sum_{i \in S_i} v_i v_i^T \preceq \left(\frac{1}{2} + 3\sqrt{\varepsilon}\right)I_d$$

Theorem (Kadison-Singer problem - Marcus, Spielman, Srivastava 2015)

Let $v_1, \ldots, v_m \in \mathbb{R}^d$ so that $\sum_{i=1}^m v_i v_i^T = I_d$ and $||v_i||_2^2 \leq \varepsilon$ for all $i \in [m]$. There is a partition $[m] = S_1 \dot{\cup} S_2$ so that for both $j \in \{1, 2\}$ one has

$$\left(\frac{1}{2} - 3\sqrt{\varepsilon}\right)I_d \preceq \sum_{i \in S_i} v_i v_i^T \preceq \left(\frac{1}{2} + 3\sqrt{\varepsilon}\right)I_d$$

Apply to the row vectors A_1, \ldots, A_m iteratively

Theorem (Kadison-Singer problem - Marcus, Spielman, Srivastava 2015)

Let $v_1, \ldots, v_m \in \mathbb{R}^d$ so that $\sum_{i=1}^m v_i v_i^T = I_d$ and $||v_i||_2^2 \leq \varepsilon$ for all $i \in [m]$. There is a partition $[m] = S_1 \dot{\cup} S_2$ so that for both $j \in \{1, 2\}$ one has

$$\left(\frac{1}{2} - 3\sqrt{\varepsilon}\right)I_d \preceq \sum_{i \in S_i} v_i v_i^T \preceq \left(\frac{1}{2} + 3\sqrt{\varepsilon}\right)I_d$$

ightharpoonup Apply to the row vectors A_1, \ldots, A_m iteratively

Theorem (Kadison-Singer problem - Marcus, Spielman, Srivastava 2015)

Let $v_1, \ldots, v_m \in \mathbb{R}^d$ so that $\sum_{i=1}^m v_i v_i^T = I_d$ and $||v_i||_2^2 \leq \varepsilon$ for all $i \in [m]$. There is a partition $[m] = S_1 \dot{\cup} S_2$ so that for both $j \in \{1, 2\}$ one has

$$\left(\frac{1}{2} - 3\sqrt{\varepsilon}\right)I_d \preceq \sum_{i \in S_i} v_i v_i^T \preceq \left(\frac{1}{2} + 3\sqrt{\varepsilon}\right)I_d$$

Apply to the row vectors A_1, \ldots, A_m iteratively

▶ Write $K = K_1 + \ldots + K_{\Theta(m/d)}$ where each j satisfies $\gamma_H(\Theta(\frac{m}{d}) \cdot K_j \cap H) \ge e^{-\Theta(n)}$

$$\begin{array}{c}
\bullet \mathbf{0} \\
K
\end{array} =
\begin{array}{c}
\bullet \\
K_1
\end{array} +
\begin{array}{c}
\bullet \\
K_2
\end{array} +
\begin{array}{c}
\bullet \\
K_{\Theta(m/d)}
\end{array}$$

▶ Write $K = K_1 + \ldots + K_{\Theta(m/d)}$ where each j satisfies $\gamma_H(\Theta(\frac{m}{d}) \cdot K_j \cap H) \ge e^{-\Theta(n)}$

► Then

$$\gamma_H(K \cap H) \geq \gamma_H((K_1 \cap H) + \ldots + (K_{\Theta(d/m)} \cap H))$$

- ▶ Write $K = K_1 + \ldots + K_{\Theta(m/d)}$ where each j satisfies $\gamma_H(\Theta(\frac{m}{d}) \cdot K_j \cap H) \ge e^{-\Theta(n)}$
- ▶ Recall: Gaussian measure is log concave, i.e. $\gamma_d(\lambda_1 S_1 + \ldots + \lambda_k S_k) \ge \prod_{j=1}^k \gamma_d(S_j)^{\lambda_j}$ for sets $S_j \subseteq \mathbb{R}^d$ and convex combination λ .
- ► Then

$$\gamma_H(K \cap H) \ge \gamma_H((K_1 \cap H) + \ldots + (K_{\Theta(d/m)} \cap H))$$

$$\ge \prod_{j=1}^{\Theta(m/d)} \gamma_H(\Theta(m/d) \cdot (K_j \cap H))^{\Theta(d/m)}$$

$$\begin{array}{c}
\bullet \mathbf{0} \\
K
\end{array} =
\begin{array}{c}
\bullet \mathbf{0} \\
K_1
\end{array} +
\begin{array}{c}
\bullet \mathbf{0} \\
K_2
\end{array} +
\begin{array}{c}
\bullet \mathbf{0} \\
K_{\Theta(m/d)}
\end{array}$$

- ▶ Write $K = K_1 + \ldots + K_{\Theta(m/d)}$ where each j satisfies $\gamma_H(\Theta(\frac{m}{d}) \cdot K_j \cap H) \ge e^{-\Theta(n)}$
- ▶ Recall: Gaussian measure is log concave, i.e. $\gamma_d(\lambda_1 S_1 + \ldots + \lambda_k S_k) \ge \prod_{j=1}^k \gamma_d(S_j)^{\lambda_j}$ for sets $S_j \subseteq \mathbb{R}^d$ and convex combination λ .
- ► Then

$$\gamma_{H}(K \cap H) \geq \gamma_{H}((K_{1} \cap H) + \ldots + (K_{\Theta(d/m)} \cap H))$$

$$\geq \prod_{j=1}^{\Theta(m/d)} \gamma_{H}(\Theta(m/d) \cdot (K_{j} \cap H))^{\Theta(d/m)} \geq e^{-\Theta(n)}$$

Theorem (Heck, Reis, R. 2022)

For any zonotope $K \subseteq \mathbb{R}^d$ one has $O(\sqrt{d} \log \log \log d)$.

Theorem (Heck, Reis, R. 2022)

For any zonotope $K \subseteq \mathbb{R}^d$ one has $O(\sqrt{d} \log \log \log d)$.

 $\blacktriangleright \text{ Let } v_1, \ldots, v_d \in K.$

Theorem (Heck, Reis, R. 2022)

For any zonotope $K \subseteq \mathbb{R}^d$ one has $O(\sqrt{d} \log \log \log d)$.

- $\blacktriangleright \text{ Let } v_1, \ldots, v_d \in K.$
- ► Then
 - (1) For t iterations find **good partial coloring** with discrepancy $O(\sqrt{d})$ each
 - (2) Then apply **Spencer's Theorem** to color remaining $\frac{d}{2^t}$ vectors

Theorem (Heck, Reis, R. 2022)

For any zonotope $K \subseteq \mathbb{R}^d$ one has $O(\sqrt{d} \log \log \log d)$.

- $\blacktriangleright \text{ Let } v_1, \dots, v_d \in K.$
- ► Then
 - (1) For t iterations find **good partial coloring** with discrepancy $O(\sqrt{d})$ each
 - (2) Then apply **Spencer's Theorem** to color remaining $\frac{d}{2^t}$ vectors
- ▶ Resulting coloring $x \in \{-1, 1\}^d$ has

$$\left\| \sum_{j=1}^{d} x_j v_j \right\|_{K} \le t \cdot O(\sqrt{d}) + O\left(\sqrt{\frac{d}{2^t}} \cdot \sqrt{\log \frac{m}{d}}\right)$$

Theorem (Heck, Reis, R. 2022)

For any zonotope $K \subseteq \mathbb{R}^d$ one has $O(\sqrt{d} \log \log \log d)$.

- $\blacktriangleright \text{ Let } v_1, \dots, v_d \in K.$
- ► Then
 - (1) For t iterations find **good partial coloring** with discrepancy $O(\sqrt{d})$ each
 - (2) Then apply **Spencer's Theorem** to color remaining $\frac{d}{2^t}$ vectors
- ▶ Resulting coloring $x \in \{-1, 1\}^d$ has

$$\Big\| \sum_{j=1}^d x_j v_j \Big\|_K \le t \cdot O(\sqrt{d}) + O\Big(\sqrt{\frac{d}{2^t}} \cdot \sqrt{\log \frac{m}{d}}\Big) \le O(\sqrt{d} \log \log \log d)$$

setting $t := \log \log \log d$ and using $m \lesssim d \log d$.

Conjecture I

For any zonotope $K \subseteq \mathbb{R}^d$ one has $vb(K, K) \leq O(\sqrt{d})$.

Conjecture I

For any zonotope $K \subseteq \mathbb{R}^d$ one has $\mathrm{vb}(K, K) \leq O(\sqrt{d})$.

Conjecture II

For any zonotope $K \subseteq \mathbb{R}^d$ there is a zonotope \tilde{K} with $O(\frac{d}{\varepsilon^2})$ segments so that $\tilde{K} \subseteq K \subseteq (1+\varepsilon)\tilde{K}$.

Conjecture I

For any zonotope $K \subseteq \mathbb{R}^d$ one has $\mathrm{vb}(K,K) \leq O(\sqrt{d})$.

Conjecture II

For any zonotope $K \subseteq \mathbb{R}^d$ there is a zonotope \tilde{K} with $O(\frac{d}{\varepsilon^2})$ segments so that $\tilde{K} \subseteq K \subseteq (1+\varepsilon)\tilde{K}$.

Conjecture III

For any matrix $A \in \mathbb{R}^{m \times d}$ there is a matrix $B \in \mathbb{R}^{O(d/\varepsilon^2) \times d}$ s.t.

$$||Bx||_1 \le ||Ax||_1 \le (1+\varepsilon)||Bx||_1 \quad \forall x \in \mathbb{R}^d$$

▶ True for $\|\cdot\|_2$, w. B consists of scaled rows of A [BSS'08]

Conjecture I

For any zonotope $K \subseteq \mathbb{R}^d$ one has $\mathrm{vb}(K, K) \leq O(\sqrt{d})$.

Conjecture II

For any zonotope $K \subseteq \mathbb{R}^d$ there is a zonotope \tilde{K} with $O(\frac{d}{\varepsilon^2})$ segments so that $\tilde{K} \subseteq K \subseteq (1+\varepsilon)\tilde{K}$.

Conjecture III

For any matrix $A \in \mathbb{R}^{m \times d}$ there is a matrix $B \in \mathbb{R}^{O(d/\varepsilon^2) \times d}$ s.t.

$$||Bx||_1 \le ||Ax||_1 \le (1+\varepsilon)||Bx||_1 \quad \forall x \in \mathbb{R}^d$$

► True for $\|\cdot\|_2$, w. B consists of scaled rows of A [BSS'08] Thanks for your attention