Computational Geometry Project

Mokhwa Lee

1) Project Info (#7 in pdf)

- [1] Project title: Heuristic algorithm to find a good set of "packing" rectangles
- [2] Project goal: Devising heuristic algorithm, Compute and analyze area of "packing" rectangles
- [3] URL of project idea page:
 - 1. https://link.springer.com/content/pdf/10.1007/s00493-015-3006-1.pdf
 - 2. https://github.com/Mokhwalee/Moka

3) Project Explanation

- [1] Assumption
 - 1) Let $S = \{p_1, ..., p_n\}$ be the set of n points within the unit square and $(0,0) \in S$.
 - 2) $U = \{(x, y) : 0 \le x \le 1, 0 \le y \le 1\}$, in the plane.
- [2] Definition
- : A rectangle R_i is valid $\leftrightarrow p_i$ is the bottom left corner of R_i and no other point $p_i \in S$ lies interior to R_i .
- [3] Goal
 - 1) Find a set of valid rectangles that forms a "packing" of maximum possible area.
 - 2) Prove that the area is at least ½.
 - 3) Prove whether we can always achieve positive area at least ε .

2) Language

: MATLAB or C++

4) Coding Plan and Methods

- [Step 1] Read paper "Packing Anchored Rectangles" and its references.
- [Step 2] Write "ReadMe" text file for overall explanation for this project
- [Step 3] Algorithm will be done based on Chap.2 in the paper: Constructing a rectangle packing
- [Step 4] Analysis of area will be done based on Chap.3 in the paper: Analysis of TilePacking
- [Step 5] Include animation and demo in algorithm 'TilePacking'. Video can be recorded if needed.
- [Step 6] Submit the code on GitHub repository and unit tests will be added accordingly.