```
In [5]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.metrics import accuracy_score
    from sklearn.metrics import f1_score,recall_score,confusion_matrix,precision_scor
    from sklearn.metrics import confusion_matrix
    from sklearn.metrics import ConfusionMatrixDisplay
    from sklearn.preprocessing import LabelEncoder
```

In [6]: df = pd.read_csv('census_labeled (2).csv')
df

Out[6]:

	county name	state	county_population_increased_2015_2016	year	female_total_population	fe
0	Stark County	Ohio	False	2010	192651	
1	Summit County	Ohio	False	2010	279592	
2	Trumbull County	Ohio	False	2010	108490	
3	Tuscarawas County	Ohio	False	2010	47279	
4	Warren County	Ohio	True	2010	105706	
4946	Toa Alta Municipio	Puerto Rico	False	2015	38559	
4947	Toa Baja Municipio	Puerto Rico	False	2015	43530	
4948	Trujillo Alto Municipio	Puerto Rico	False	2015	36804	
4949	Bayamón Municipio	Puerto Rico	False	2015	99486	
4950	Mayagüez Municipio	Puerto Rico	False	2015	41540	
4051 rows x 42 columns						

4951 rows × 42 columns

```
In [7]: df.corr().iloc[:,0].sort_values().plot(kind='bar',figsize=(20,10))
```

Out[7]: <AxesSubplot:>


```
df.female_age_under_5_pct = df.female_total_population*df.female_age_under_5_pct/
df.female age 5 to 9 pct = df.female total population*df.female age 5 to 9 pct/10
df.female_age_10_to_14_pct = df.female_total_population*df.female_age_10_to_14_pd
df.female_age_15_to_19_pct = df.female_total_population*df.female_age_15_to_19_pd
df.female_age_20_to_24_pct = df.female_total_population*df.female_age_20_to_24_pd
df.female age 25 to 29 pct = df.female total population*df.female age 25 to 29 pc
df.female_age_30_to_34_pct = df.female_total_population*df.female_age_30_to_34_pd
df.female_age_35_to_39_pct = df.female_total_population*df.female_age_35_to_39_pd
df.female_age_40_to_44_pct = df.female_total_population*df.female_age_40_to_44_pd
df.female_age_45_to_49_pct = df.female_total_population*df.female_age_45_to_49_pd
df.female_age_50_to_54_pct = df.female_total_population*df.female_age_50_to_54_pd
df.female age 55 to 59 pct = df.female total population*df.female age 55 to 59 pc
df.female_age_60_to_64_pct = df.female_total_population*df.female_age_60_to_64_pd
df.female_age_65_to_69_pct = df.female_total_population*df.female_age_65_to_69_pd
df.female age 70 to 74 pct = df.female total population*df.female age 70 to 74 pc
df.female_age_75_to_79_pct = df.female_total_population*df.female_age_75_to_79_pd
df.female_age_80_to_84_pct = df.female_total_population*df.female_age_80_to_84_pd
df.female age 85 and over pct = df.female total population*df.female age 85 and d
```

In [9]: | df.male_age_under_5_pct = df.male_total_population*df.male_age_under_5_pct/100 df.male_age_5_to_9_pct = df.male_total_population*df.male_age_5_to_9_pct/100 df.male_age_10_to_14_pct = df.male_total_population*df.male_age_10_to_14_pct/100 df.male age 15 to 19 pct = df.male total population*df.male age 15 to 19 pct/100 df.male_age_20_to_24_pct = df.male_total_population*df.male_age_20_to_24_pct/100 df.male_age_25_to_29_pct = df.male_total_population*df.male_age_25_to_29_pct/100 df.male age 30 to 34 pct = df.male total population*df.male age 30 to 34 pct/100 df.male_age_35_to_39_pct = df.male_total_population*df.male_age_35_to_39_pct/100 df.male_age_40_to_44_pct = df.male_total_population*df.male_age_40_to_44_pct/100 df.male_age_45_to_49_pct = df.male_total_population*df.male_age_45_to_49_pct/100 df.male_age_50_to_54_pct = df.male_total_population*df.male_age_50_to_54_pct/100 df.male_age_55_to_59_pct = df.male_total_population*df.male_age_55_to_59_pct/100 df.male_age_60_to_64_pct = df.male_total_population*df.male_age_60_to_64_pct/100 df.male_age_65_to_69_pct = df.male_total_population*df.male_age_65_to_69_pct/100 df.male_age_70_to_74_pct = df.male_total_population*df.male_age_70_to_74_pct/100 df.male_age_75_to_79_pct = df.male_total_population*df.male_age_75_to_79_pct/100 df.male_age_80_to_84_pct = df.male_total_population*df.male_age_80_to_84_pct/100 df.male_age_85_and_over_pct = df.male_total_population*df.male_age_85_and_over_pd

In [10]: df

Out[10]:

	county name	state	county_population_increased_2015_2016	year	female_total_population	fe
0	Stark County	Ohio	False	2010	192651	
1	Summit County	Ohio	False	2010	279592	
2	Trumbull County	Ohio	False	2010	108490	
3	Tuscarawas County	Ohio	False	2010	47279	
4	Warren County	Ohio	True	2010	105706	
4946	Toa Alta Municipio	Puerto Rico	False	2015	38559	
4947	Toa Baja Municipio	Puerto Rico	False	2015	43530	
4948	Trujillo Alto Municipio	Puerto Rico	False	2015	36804	
4949	Bayamón Municipio	Puerto Rico	False	2015	99486	
4950	Mayagüez Municipio	Puerto Rico	False	2015	41540	

4951 rows × 42 columns

```
In [11]: df.groupby('year').mean()[['female_total_population' , 'male_total_population']].
```

Out[11]: <AxesSubplot:xlabel='year'>

In [12]: df[df['county name'] == 'Warren County']['female_total_population'].plot()

Out[12]: <AxesSubplot:>


```
In [13]: df[df['county name'] == 'Comanche County']['female_total_population'].plot()
```

Out[13]: <AxesSubplot:>

In [14]: df[df['year'] == 2015].groupby('state').mean()

Out[14]:

	year	female_total_population	female_age_under_5_pct	female_age_5_to_9_pct	fe
state					
Alabama	2015.0	89143.095238	5050.608714	5468.212810	
Alaska	2015.0	79403.333333	6072.043000	5882.711333	
Arizona	2015.0	335736.100000	20486.708400	22051.816000	
Arkansas	2015.0	77046.181818	5067.847182	5069.264545	
California	2015.0	486521.025000	30325.205850	30915.998200	
Colorado	2015.0	195333.500000	11878.393667	12676.465250	
Connecticut	2015.0	229852.875000	11458.595875	12754.876875	
Delaware	2015.0	162575.333333	9013.996000	8918.158000	
District of Columbia	2015.0	352523.000000	21151.380000	16216.058000	
Florida	2015.0	251238.200000	12997.283000	13441.668250	
Georgia	2015.0	110586.833333	6840.602417	7266.327694	
Hawaii	2015.0	176723.500000	11341.124000	10514.779500	
ldaho	2015.0	89632.166667	5951.454167	6342.694333	
Illinois	2015.0	245176.521739	14505.460957	15026.626130	
Indiana	2015.0	97037.800000	6028.551080	6228.381920	
Iowa	2015.0	81558.600000	5211.838300	5106.576100	
Kansas	2015.0	111713.250000	7606.679625	7704.536375	
Kentucky	2015.0	84930.461538	5253.495846	5179.018615	
Louisiana	2015.0	102766.941176	6371.775824	6699.221059	
Maine	2015.0	80153.333333	3859.830167	3872.571333	
Maryland	2015.0	184531.625000	10823.508938	10920.819187	
Massachusetts	2015.0	290250.166667	14846.490917	15489.207750	
Michigan	2015.0	149194.172414	8333.588483	8640.492931	
Minnesota	2015.0	139698.285714	8812.171357	8766.692857	
Mississippi	2015.0	68622.300000	4423.480000	4564.694600	
Missouri	2015.0	124968.764706	7368.695706	7840.588706	
Montana	2015.0	51600.333333	3022.145833	3310.868167	
Nebraska	2015.0	173302.666667	12425.769333	12289.589000	
Nevada	2015.0	640444.000000	38844.771000	40040.997500	
New Hampshire	2015.0	96854.500000	4476.466667	5137.968667	
New Jersey	2015.0	218243.857143	12278.370238	12774.242524	
New Mexico	2015.0	83724.800000	5295.618900	5459.034100	
_					

state				
New York	2015.0	248220.717949	14191.504615	13514.337385
North Carolina	2015.0	103859.600000	6086.529000	6521.071775
North Dakota	2015.0	50070.750000	3557.710500	3227.447500
Ohio	2015.0	128012.333333	7258.961256	7438.421436
Oklahoma	2015.0	110964.454545	7368.013000	7331.494909
Oregon	2015.0	120590.733333	6727.166333	7347.152867
Pennsylvania	2015.0	151494.425000	8135.077100	8534.167850
Puerto Rico	2015.0	71194.636364	3195.394364	3553.919091
Rhode Island	2015.0	129885.250000	6411.557250	7384.320500
South Carolina	2015.0	101512.904762	5775.679286	6401.324095
South Dakota	2015.0	72635.000000	5099.173000	4320.046000
Tennessee	2015.0	116562.950000	7025.443650	7287.258700
Texas	2015.0	228488.509434	16209.197415	16762.777283
Utah	2015.0	210931.500000	17487.250500	17747.376500
Vermont	2015.0	82838.000000	4307.576000	3727.710000
Virginia	2015.0	102539.366667	6344.966900	6411.055667
Washington	2015.0	175196.000000	10762.641263	11107.512947
West Virginia	2015.0	53409.142857	2967.646571	2655.256000
Wisconsin	2015.0	96752.391304	5626.738174	6115.312783
Wyoming	2015.0	44979.000000	3015.035500	2896.641500

52 rows × 39 columns

year female_total_population female_age_under_5_pct female_age_5_to_9_pct fe

In [15]: df.nunique() Out[15]: county name 662

county name	662
state	52
county_population_increased_2015_2016	2
year	6
<pre>female_total_population</pre>	4859
<pre>female_age_under_5_pct</pre>	4945
<pre>female_age_5_to_9_pct</pre>	4945
<pre>female_age_10_to_14_pct</pre>	4951
<pre>female_age_15_to_19_pct</pre>	4945
<pre>female_age_20_to_24_pct</pre>	4948
<pre>female_age_25_to_29_pct</pre>	4949
<pre>female_age_30_to_34_pct</pre>	4946
<pre>female_age_35_to_39_pct</pre>	4951
<pre>female_age_40_to_44_pct</pre>	4948
<pre>female_age_45_to_49_pct</pre>	4947
<pre>female_age_50_to_54_pct</pre>	4946
<pre>female_age_55_to_59_pct</pre>	4946
<pre>female_age_60_to_64_pct</pre>	4947
<pre>female_age_65_to_69_pct</pre>	4948
female_age_70_to_74_pct	4945
female_age_75_to_79_pct	4943
female_age_80_to_84_pct	4937
female_age_85_and_over_pct	4943
<pre>male_total_population</pre>	4862
male_age_under_5_pct	4948
male_age_5_to_9_pct	4947
male_age_10_to_14_pct	4945
male_age_15_to_19_pct	4945
male_age_20_to_24_pct	4944
male_age_25_to_29_pct	4949
male_age_30_to_34_pct	4949
male_age_35_to_39_pct	4947
male_age_40_to_44_pct	4946
male_age_45_to_49_pct	4946
male_age_50_to_54_pct	4947
male_age_55_to_59_pct	4949
male_age_60_to_64_pct	4946
male_age_65_to_69_pct	4945
male_age_70_to_74_pct	4942
male_age_75_to_79_pct	4943
male_age_80_to_84_pct	4943
male_age_85_and_over_pct	4933
dtype: int64	

In [16]: df.groupby('state').mean()[['female_total_population','male_total_population']].r

Out[16]: <AxesSubplot:xlabel='state'>

In [18]: df.groupby('state').mean()[['female_age_10_to_14_pct','male_age_10_to_14_pct']].r

Out[18]: <AxesSubplot:xlabel='state'>

In [19]: df.groupby('state').mean()[['female_age_15_to_19_pct','male_age_15_to_19_pct']].r

Out[19]: <AxesSubplot:xlabel='state'>

In [20]: df.groupby('year').mean()[['female_age_20_to_24_pct','male_age_20_to_24_pct']].pl

Out[20]: <AxesSubplot:xlabel='year'>


```
In [21]: df.groupby('year').mean()[['female_age_under_5_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_age_5_to_9_pct','female_5_to_9_pct','female_5_to_9_pct','female_5_to_9_pct','female_5_to_9_pct','female_5_to_9_pct','female_5_to_9_pct','female_5_to
```

Out[21]: <AxesSubplot:xlabel='year'>

Out[22]:

	county name	state	county_population_increased_2015_2016	year	female_total_population fe	
0	Stark County	Ohio	False	2010	192651	
1	Summit County	Ohio	False	2010	279592	
2	Trumbull County	Ohio	False	2010	108490	
3	Tuscarawas County	Ohio	False	2010	47279	
4	Warren County	Ohio	True	2010	105706	
4946	Toa Alta Municipio	Puerto Rico	False	2015	38559	
4947	Toa Baja Municipio	Puerto Rico	False	2015	43530	
4948	Trujillo Alto Municipio	Puerto Rico	False	2015	36804	
4949	Bayamón Municipio	Puerto Rico	False	2015	99486	
4950	Mayagüez Municipio	Puerto Rico	False	2015	41540	
4951 rows × 42 columns						
4					•	

In [23]: import matplotlib.pyplot as plt df1 = [10595.805, 15657.152, 5858.460, 2600.345, 6765.184,] label = ['Stark County', 'Summit County', 'Trumbull County', 'Tuscarawas County', plt.pie(df1, labels = label, autopct = '%1.1f%%', explode = [0,0,0,0.1,0], shadov plt.title('female_age_under_5_pct') plt.axis('equal') plt.show()


```
In [24]: import matplotlib.pyplot as plt

df1 = [11559.060 , 17334.704 , 6834.870 , 3640.483 , 3640.483 ,]
label = ['Stark County', 'Summit County', 'Trumbull County', 'Tuscarawas County',

plt.pie(df1, labels = label, autopct = '%1.1f%%', explode = [0,0,0,0.1,0], shadow plt.title('female_age_10_to_14_pct')
    plt.axis('equal')
    plt.show()
```



```
In [25]: print(df[['county name', 'state', 'county population increased 2015 2016', 'year
                 'female_total_population', 'female_age_under_5_pct',
                 'female_age_5_to_9_pct', 'female_age_10_to_14_pct',
                 'female_age_15_to_19_pct', 'female_age_20_to_24_pct',
                 'female_age_25_to_29_pct', 'female_age_30_to_34_pct',
                 'female_age_35_to_39_pct', 'female_age_40_to_44_pct',
                 'female_age_45_to_49_pct', 'female_age_50_to_54_pct',
                'female_age_55_to_59_pct', 'female_age_60_to_64_pct',
                 'female_age_65_to_69_pct', 'female_age_70_to_74_pct',
                 'female_age_75_to_79_pct', 'female_age_80_to_84_pct',
                 'female_age_85_and_over_pct', 'male_total_population',
                 'male_age_under_5_pct', 'male_age_5_to_9_pct', 'male_age_10_to_14_pct',
                 'male_age_15_to_19_pct', 'male_age_20_to_24_pct',
                 'male_age_25_to_29_pct', 'male_age_30_to_34_pct',
                 'male_age_35_to_39_pct', 'male_age_40_to_44_pct',
                 'male_age_45_to_49_pct', 'male_age_50_to_54_pct',
                 'male_age_55_to_59_pct', 'male_age_60_to_64_pct',
                 'male_age_65_to_69_pct', 'male_age_70_to_74_pct',
                 'male_age_75_to_79_pct', 'male_age_80_to_84_pct',
                 'male age 85 and over pct']].corr(method = 'pearson'))
                                                female total population
                                          year
         year
                                      1.000000
                                                                0.006365
         female_total_population
                                      0.006365
                                                                1.000000
         female age under 5 pct
                                     -0.003691
                                                                0.991554
         female age 5 to 9 pct
                                                                0.989353
                                     -0.000372
         female_age_10_to_14_pct
                                                                0.990788
                                     -0.000764
         female age 15 to 19 pct
                                     -0.007319
                                                                0.993002
         female_age_20_to_24_pct
                                      0.005537
                                                                0.988849
         female_age_25_to_29_pct
                                      0.008643
                                                                0.988602
         female age 30 to 34 pct
                                      0.012536
                                                                0.993259
         female age 35 to 39 pct
                                                                0.995898
                                      0.001890
         female_age_40_to_44_pct
                                     -0.006627
                                                                0.996320
         female_age_45_to_49_pct
                                     -0.016901
                                                                0.996235
```

-0.000530

0.017757

0.022927

0.054650

0.044979

0.019371

0 004004

0.996743
0.995282

0.993040

0.983539

0.977261

0.973695

0 000001

female_age_50_to_54_pct

female_age_55_to_59_pct

female_age_60_to_64_pct

female age 65 to 69 pct

female_age_70_to_74_pct

female_age_75_to_79_pct

```
In [26]: | dd = pd.DataFrame(np.random.random((52,42)), columns = ['county name', 'state',
                  'female_total_population', 'female_age_under_5_pct',
                  'female_age_5_to_9_pct', 'female_age_10_to_14_pct',
                  'female_age_15_to_19_pct', 'female_age_20_to_24_pct',
                  'female_age_25_to_29_pct', 'female_age_30_to_34_pct', 'female_age_35_to_39_pct', 'female_age_40_to_44_pct',
                  'female_age_45_to_49_pct', 'female_age_50_to_54_pct',
                  'female_age_55_to_59_pct', 'female_age_60_to_64_pct',
                  'female_age_65_to_69_pct', 'female_age_70_to_74_pct',
                  'female_age_75_to_79_pct', 'female_age_80_to_84_pct',
                  'female_age_85_and_over_pct', 'male_total_population',
                  'male_age_under_5_pct', 'male_age_5_to_9_pct', 'male_age_10_to_14_pct',
                  'male_age_15_to_19_pct', 'male_age_20_to_24_pct',
                  'male_age_25_to_29_pct', 'male_age_30_to_34_pct',
                  'male_age_35_to_39_pct', 'male_age_40_to_44_pct',
                  'male_age_45_to_49_pct', 'male_age_50_to_54_pct',
                  'male_age_55_to_59_pct', 'male_age_60_to_64_pct',
                  'male_age_65_to_69_pct', 'male_age_70_to_74_pct',
'male_age_75_to_79_pct', 'male_age_80_to_84_pct',
                  'male age 85 and over pct'])
          p = sns.heatmap(dd)
```



```
In [27]: cor = dd.corr()

In [28]: import matplotlib.pyplot as plt
import seaborn as sns

plt.figure(figsize=(50,40))

sns.heatmap(cor, annot=True, cmap = plt.cm.Reds)
plt.show()
```



```
In [29]: df['county name'].unique()
Out[29]: array(['Stark County', 'Summit County', 'Trumbull County',
                   'Tuscarawas County', 'Warren County', 'Wayne County',
                  'Wood County', 'Canadian County', 'Cleveland County', 'Comanche County', 'Creek County', 'Muskogee County', 'Oklahoma County', 'Payne County', 'Pottawatomie County',
                   'Rogers County', 'Tulsa County', 'Wagoner County', 'Benton County',
                   'Clackamas County', 'Deschutes County', 'Douglas County',
                   'Jackson County', 'Josephine County', 'Klamath County',
                   'Lane County', 'Linn County', 'Marion County', 'Multnomah County',
                  'Polk County', 'Umatilla County', 'Washington County',
                   'Yamhill County', 'Adams County', 'Allegheny County',
                  'Armstrong County', 'Beaver County', 'Berks County',
                  'Blair County', 'Bucks County', 'Butler County', 'Cambria County', 'Carbon County', 'Centre County', 'Chester County',
                   'Clearfield County', 'Columbia County', 'Crawford County',
                   'Cumberland County', 'Dauphin County', 'Delaware County',
                  'Erie County', 'Fayette County', 'Franklin County',
                  'Indiana County', 'Lackawanna County', 'Lancaster County', 'Lawrence County', 'Lebanon County', 'Lehigh County',
In [30]: |df['county name']=df['county name'].astype('category')
          df['county name']=df['county name'].cat.codes
          df['state']=df['state'].astype('category')
          df['state']=df['state'].cat.codes
          df['county_population_increased_2015_2016']=df['county_population_increased_2015_
          df['county population increased 2015 2016']=df['county population increased 2015
In [31]: # Le = LabelEncoder()
          # encoded = le.fit transform(df[['state']])
          # encoded
In [32]: # Le.inverse transform(encoded)
In [33]: # Le = LabelEncoder()
          # encoded 1 = le.fit transform(df[['county population increased 2015 2016']])
          # encoded 1
In [34]: # Le.inverse transform(encoded 1)
In [35]: # le = LabelEncoder()
          # encoded 2 = le.fit transform(df[['county name']])
          # encoded 2
 In [ ]:
In [36]: | df['county_population_increased_2015_2016'].unique()
Out[36]: array([ 0, 1, -1], dtype=int8)
```

```
In [37]: df
Out[37]:
                 county
                        state county_population_increased_2015_2016 year female_total_population fema
                  name
              0
                           35
                                                                0 2010
                    572
                                                                                      192651
                    580
                           35
                                                                0 2010
                                                                                      279592
              1
              2
                    602
                                                                0 2010
                                                                                      108490
                           35
              3
                    606
                           35
                                                                0 2010
                                                                                       47279
              4
                    627
                           35
                                                                  2010
                                                                                      105706
              ...
                    ...
           4946
                    594
                                                                0 2015
                                                                                       38559
                           39
           4947
                    595
                           39
                                                                0 2015
                                                                                       43530
                    601
                                                                                       36804
           4948
                           39
                                                                0 2015
           4949
                    40
                           39
                                                                0 2015
                                                                                       99486
           4950
                                                                0 2015
                                                                                       41540
                    371
                           39
          4951 rows × 42 columns
In [38]:
          val = []
          ind = []
          for i,x in enumerate(df.county_population_increased_2015_2016):
               if x==-1:
                   val.append(x)
                   ind.append(i)
          print(ind)
          [398, 1472, 2342, 3124, 3954, 4250]
In [39]: df.drop(index = ind , inplace = True)
```

```
In [40]: df
```

Out[40]:

	county name	state	county_population_increased_2015_2016	year	female_total_population	female_
O	572	35	0	2010	192651	
1	580	35	0	2010	279592	
2	602	35	0	2010	108490	
3	606	35	0	2010	47279	
4	627	35	1	2010	105706	
4946	594	39	0	2015	38559	
4947	595	39	0	2015	43530	
4948	601	39	0	2015	36804	
4949	40	39	0	2015	99486	
4950	371	39	0	2015	41540	

4945 rows × 42 columns

In [42]: y = df.county population increased 2015 2016

```
In [41]: X =df[['county name', 'state', 'year',
                   'female_total_population', 'female_age_under_5_pct',
                  'female_age_5_to_9_pct', 'female_age_10_to_14_pct',
                  'female_age_15_to_19_pct', 'female_age_20_to_24_pct'
                  'female_age_25_to_29_pct', 'female_age_30_to_34_pct',
                  'female_age_35_to_39_pct', 'female_age_40_to_44_pct', 'female_age_45_to_49_pct', 'female_age_50_to_54_pct',
                  'female_age_55_to_59_pct', 'female_age_60_to_64_pct',
                  'female_age_65_to_69_pct', 'female_age_70_to_74_pct', 'female_age_75_to_79_pct', 'female_age_80_to_84_pct',
                  'female_age_85_and_over_pct', 'male_total_population',
                  'male_age_under_5_pct', 'male_age_5_to_9_pct', 'male_age_10_to_14_pct',
                  'male_age_15_to_19_pct', 'male_age_20_to_24_pct',
                  'male_age_25_to_29_pct', 'male_age_30_to_34_pct',
                  'male_age_35_to_39_pct', 'male_age_40_to_44_pct',
                  'male_age_45_to_49_pct', 'male_age_50_to_54_pct',
                  'male_age_55_to_59_pct', 'male_age_60_to_64_pct',
                  'male_age_65_to_69_pct', 'male_age_70_to_74_pct',
                  'male_age_75_to_79_pct', 'male_age_80_to_84_pct',
                  'male_age_85_and_over_pct']]
```

In [43]: X

Out[43]:

_		county name	state	year	female_total_population	female_age_under_5_pct	female_age_5_to_9_pct
-	0	572	35	2010	192651	10595.805	12137.013
	1	580	35	2010	279592	15657.152	16216.336
	2	602	35	2010	108490	5858.460	6400.910
	3	606	35	2010	47279	2600.345	2458.508
	4	627	35	2010	105706	6765.184	7399.420
	4946	594	39	2015	38559	1773.714	2583.453
	4947	595	39	2015	43530	2002.380	3134.160
	4948	601	39	2015	36804	1619.376	1803.396
	4949	40	39	2015	99486	4377.384	5372.244
	4950	371	39	2015	41540	1703.140	1287.740

4945 rows × 41 columns

```
In [44]: y
Out[44]: 0
                  0
         1
                  0
         2
                  0
         3
                  0
         4
                  1
         4946
         4947
         4948
                  0
         4949
                  0
         4950
         Name: county_population_increased_2015_2016, Length: 4945, dtype: int8
In [45]: from sklearn.model_selection import train_test_split
```

```
In [46]: X_train , X_test , y_train, y_test = train_test_split(X, y , test_size = 0.3)
```

```
In [47]: from sklearn.neighbors import KNeighborsClassifier
```

```
In [48]: KNN = KNeighborsClassifier()
```

```
In [49]: KNN.fit(X_train, y_train)
```

Out[49]: KNeighborsClassifier()

```
In [50]: # KNN.score(X_test, y_test)
In [51]: y_pred = KNN.predict(X_test)
In [52]: kn =accuracy_score(y_test , y_pred)
In [53]: | print(kn)
         0.871967654986523
In [54]: from sklearn.metrics import f1_score,recall_score,confusion_matrix,precision_scor
In [55]: confusion_matrix(y_test , y_pred)
Out[55]: array([[403, 72],
                 [118, 891]], dtype=int64)
In [56]: cc = ConfusionMatrixDisplay.from_predictions(y_test , y_pred)
                                                 800
                                                700
            0
                                                600
          Frue label
                                                 500
                                                 400
                                                 300
                    118
                                   891
            1 .
                                                200
                                                100
                        Predicted label
In [57]: |f1_score(y_test , y_pred, average='micro')
Out[57]: 0.871967654986523
In [58]: |f1_score(y_test , y_pred, average='macro')
Out[58]: 0.8564440317049129
In [59]: recall_score(y_test , y_pred, average='macro')
Out[59]: 0.8657367899431433
In [60]: precision_score(y_test , y_pred, average='macro')
Out[60]: 0.8493730604337453
```

```
In [61]: print(classification_report(y_test , y_pred))
                         precision
                                      recall f1-score
                                                           support
                     0
                              0.77
                                         0.85
                                                   0.81
                                                               475
                                         0.88
                     1
                              0.93
                                                   0.90
                                                              1009
                                                   0.87
                                                              1484
              accuracy
                              0.85
                                         0.87
                                                   0.86
                                                              1484
             macro avg
         weighted avg
                              0.88
                                         0.87
                                                   0.87
                                                              1484
In [62]: from sklearn.svm import SVC
In [63]: | SVM = SVC(kernel ='sigmoid')
In [64]: | SVM.fit(X_train , y_train)
Out[64]: SVC(kernel='sigmoid')
In [65]: y_pred = SVM.predict(X_test)
In [66]: | sv = accuracy_score(y_test , y_pred)
Out[66]: 0.6084905660377359
In [67]: |confusion_matrix(y_test , y_pred)
Out[67]: array([[193, 282],
                 [299, 710]], dtype=int64)
In [68]: cc = ConfusionMatrixDisplay.from_predictions(y_test , y_pred)
                                                 600
                     193
             0
                                                 - 500
          Frue label
                                                 400
                                    710
             1 .
                                                 - 300
                        Predicted label
```

```
In [69]: | f1_score(y_test , y_pred, average='micro')
Out[69]: 0.6084905660377359
In [70]: | f1_score(y_test , y_pred, average='macro')
Out[70]: 0.5544089382402904
In [71]: recall_score(y_test , y_pred)
Out[71]: 0.7036669970267592
In [72]: precision_score(y_test , y_pred)
Out[72]: 0.7157258064516129
In [73]: | print(classification_report(y_test , y_pred))
                        precision
                                     recall f1-score
                                                        support
                                       0.41
                                                 0.40
                                                            475
                    0
                             0.39
                     1
                                       0.70
                                                 0.71
                                                            1009
                             0.72
                                                 0.61
                                                           1484
             accuracy
                                                 0.55
            macro avg
                             0.55
                                       0.55
                                                            1484
         weighted avg
                             0.61
                                       0.61
                                                 0.61
                                                            1484
In [ ]:
In [ ]:
In [74]: | from sklearn.naive_bayes import GaussianNB
In [75]: |GB = GaussianNB()
In [76]: GB.fit(X_train , y_train)
Out[76]: GaussianNB()
In [77]: |y_pred = GB.predict(X_test)
In [78]: |gb = accuracy_score(y_test ,y_pred )
Out[78]: 0.6610512129380054
In [79]: confusion_matrix(y_test , y_pred)
Out[79]: array([[ 33, 442],
                 [ 61, 948]], dtype=int64)
```

```
In [80]: cc = ConfusionMatrixDisplay.from_predictions(y_test , y_pred)
                                                 800
            0 -
                     33
                                                 600
          True label
                     61
                                    948
                                                 200
                      0
                                     1
                        Predicted label
In [81]: | f1_score(y_test , y_pred, average='micro')
Out[81]: 0.6610512129380054
In [82]: |f1_score(y_test , y_pred, average='macro')
Out[82]: 0.453161136999819
In [83]: recall_score(y_test , y_pred)
Out[83]: 0.9395441030723488
In [84]: precision_score(y_test , y_pred)
Out[84]: 0.6820143884892086
In [85]: print(classification_report(y_test , y_pred))
                        precision
                                      recall f1-score
                                                          support
                                        0.07
                     0
                              0.35
                                                   0.12
                                                              475
                     1
                              0.68
                                        0.94
                                                   0.79
                                                              1009
                                                   0.66
                                                             1484
              accuracy
                              0.52
                                        0.50
                                                   0.45
                                                             1484
             macro avg
         weighted avg
                              0.58
                                        0.66
                                                   0.57
                                                             1484
In [ ]:
In [ ]:
In [86]: from sklearn import tree
```

```
In [87]: Tree = tree.DecisionTreeClassifier()
In [88]: Tree.fit(X_train , y_train)
Out[88]: DecisionTreeClassifier()
In [89]: |y_pred = Tree.predict(X_test)
In [90]: | tree = accuracy_score(y_test ,y_pred )
Out[90]: 0.8618598382749326
In [91]: |confusion_matrix(y_test , y_pred)
Out[91]: array([[383, 92],
                 [113, 896]], dtype=int64)
In [92]: cc = ConfusionMatrixDisplay.from_predictions(y_test , y_pred)
                                                 800
                                    92
                                                 700
            0
                                                 600
          Frue label
                                                 500
                    113
                                                 - 300
            1 .
                                   896
                                                 200
                                                 100
                        Predicted label
In [93]: |f1_score(y_test , y_pred, average='micro')
Out[93]: 0.8618598382749326
In [94]: |f1_score(y_test , y_pred, average='macro')
Out[94]: 0.8431117324802858
In [95]: recall_score(y_test , y_pred)
Out[95]: 0.88800792864222
In [96]: precision_score(y_test , y_pred)
Out[96]: 0.9068825910931174
```

```
In [97]: print(classification_report(y_test , y_pred))
                         precision
                                       recall f1-score
                                                           support
                      0
                               0.77
                                         0.81
                                                    0.79
                                                               475
                      1
                               0.91
                                         0.89
                                                    0.90
                                                              1009
                                                    0.86
                                                              1484
               accuracy
                              0.84
                                                    0.84
                                         0.85
                                                              1484
              macro avg
          weighted avg
                               0.86
                                         0.86
                                                    0.86
                                                              1484
  In [ ]:
 In [98]: from sklearn.ensemble import RandomForestClassifier
 In [99]: rfc = RandomForestClassifier()
In [100]: rfc.fit(X_train , y_train)
Out[100]: RandomForestClassifier()
In [101]: y_pred = rfc.predict(X_test)
In [102]: Rfc = accuracy_score(y_test ,y_pred )
          Rfc
Out[102]: 0.8726415094339622
In [103]: confusion_matrix(y_test , y_pred)
Out[103]: array([[328, 147],
                  [ 42, 967]], dtype=int64)
In [104]: | cc = ConfusionMatrixDisplay.from_predictions(y_test , y_pred)
                                                  800
             0
                                                  600
           True label
                      42
                                     967
             1 -
                                                 - 200
                         Predicted label
```

```
In [105]: | f1_score(y_test , y_pred, average='micro')
Out[105]: 0.8726415094339622
In [106]: |f1_score(y_test , y_pred, average='macro')
Out[106]: 0.8436531981370563
In [107]: recall_score(y_test , y_pred)
Out[107]: 0.958374628344896
In [108]: precision_score(y_test , y_pred)
Out[108]: 0.8680430879712747
In [109]: print(classification_report(y_test , y_pred))
                         precision
                                      recall f1-score
                                                         support
                     0
                              0.89
                                        0.69
                                                  0.78
                                                             475
                      1
                                        0.96
                              0.87
                                                  0.91
                                                             1009
                                                  0.87
                                                            1484
              accuracy
             macro avg
                              0.88
                                        0.82
                                                  0.84
                                                            1484
          weighted avg
                                        0.87
                                                  0.87
                                                            1484
                              0.87
  In [ ]:
In [110]: from sklearn.ensemble import AdaBoostClassifier
In [111]: | Ada = AdaBoostClassifier()
In [112]: Ada.fit(X_train , y_train)
Out[112]: AdaBoostClassifier()
In [113]: y_pred = Ada.predict(X_test)
In [114]: | Ada_acc = accuracy_score(y_test ,y_pred )
          Ada_acc
Out[114]: 0.7742587601078167
In [115]: |confusion_matrix(y_test , y_pred)
Out[115]: array([[236, 239],
                  [ 96, 913]], dtype=int64)
```

```
900
                                                   800
              0 -
                                                   700
                                                   600
           Frue label
                                                   500
                                                   400
                                     913
                      96
              1 .
                                                   - 300
                                                   200
                                                   100
                          Predicted label
In [117]: f1_score(y_test , y_pred, average='micro')
Out[117]: 0.7742587601078166
In [118]: | f1_score(y_test , y_pred, average='macro')
Out[118]: 0.7149307281784157
In [119]: recall_score(y_test , y_pred)
Out[119]: 0.9048562933597621
In [120]: precision_score(y_test , y_pred)
Out[120]: 0.792534722222222
In [121]: print(classification_report(y_test , y_pred))
                          precision
                                        recall f1-score
                                                            support
                                          0.50
                      0
                               0.71
                                                    0.58
                                                                475
                      1
                               0.79
                                          0.90
                                                    0.84
                                                               1009
                                                    0.77
                                                               1484
               accuracy
                               0.75
                                          0.70
                                                    0.71
                                                               1484
              macro avg
           weighted avg
                               0.77
                                          0.77
                                                    0.76
                                                               1484
  In [ ]:
In [122]: from sklearn.ensemble import BaggingClassifier
```

In [116]: cc = ConfusionMatrixDisplay.from_predictions(y_test , y_pred)

```
In [123]: | ba = BaggingClassifier()
In [124]: ba.fit(X_train , y_train)
Out[124]: BaggingClassifier()
In [125]: y_pred = ba.predict(X_test)
In [126]: Ba_acc = accuracy_score(y_test ,y_pred )
           Ba_acc
Out[126]: 0.9090296495956873
In [127]: |confusion_matrix(y_test , y_pred)
Out[127]: array([[402, 73],
                  [ 62, 947]], dtype=int64)
In [128]: | cc = ConfusionMatrixDisplay.from_predictions(y_test , y_pred)
                                                  900
                                                  800
              0
                                                  700
                                                  600
           Frue label
                                                  500
                                                  400
                                                  300
              1 .
                      62
                                     947
                                                  200
                                                  100
                       Ó
                         Predicted label
In [129]: | f1_score(y_test , y_pred, average='micro')
Out[129]: 0.9090296495956873
In [130]: | f1_score(y_test , y_pred, average='macro')
Out[130]: 0.8948473964574375
In [131]: |recall_score(y_test , y_pred)
Out[131]: 0.9385530227948464
In [132]: precision_score(y_test , y_pred)
Out[132]: 0.9284313725490196
```

```
In [133]: |print(classification_report(y_test , y_pred))
                        precision
                                      recall f1-score
                                                         support
                     0
                             0.87
                                       0.85
                                                  0.86
                                                             475
                     1
                             0.93
                                       0.94
                                                  0.93
                                                            1009
                                                  0.91
                                                            1484
              accuracy
                             0.90
                                       0.89
                                                  0.89
                                                            1484
             macro avg
          weighted avg
                             0.91
                                       0.91
                                                  0.91
                                                            1484
In [139]: data = {'kn':0.8672506738544474, 'sv':0.532345013477089, 'gb':0.6650943396226415
                  'tree':0.9022911051212938, 'Rfc':0.8793800539083558,'Ada_acc':0.773584905
          fig = plt.figure(figsize = (10, 5))
          # creating the bar plot
          plt.bar(courses, values, color ='maroon',
                  width = 0.4)
          plt.xlabel("Machine Learning Algrithims")
          plt.ylabel("Accuracy of All Algorithims")
          plt.title("Show Different Algorithims Accuracy")
          plt.show()
          TypeError
                                                     Traceback (most recent call last)
          Input In [139], in <cell line: 7>()
                4 fig = plt.figure(figsize = (10, 5))
                6 # creating the bar plot
          ----> 7 plt.bar( color = 'maroon',
                          width = 0.4)
                8
               10 plt.xlabel("Machine Learning Algrithims")
               11 plt.ylabel("Accuracy of All Algorithims")
          TypeError: bar() missing 2 required positional arguments: 'x' and 'height'
          <Figure size 720x360 with 0 Axes>
 In [ ]:
```