TD 1 - Rappels sur les groupes et les sous-groupes

Par défaut, on considère un groupe (G,*), dont on note e l'unité.

† Premiers exemples

Exercice 1. Déterminer toutes les lois de composition internes * sur un ensemble X de cardinal 2 telles que (X,*) soit un groupe. Même question pour un ensemble X de cardinal 3. Même question pour un ensemble X de cardinal 4.

Exercice 2.

- 1. Soient $x, y \in G$. Montrer que x et y commutent si et seulement si $xyx^{-1}y^{-1} = e$.
- 2. On suppose que pour tout $x \in G$, on a $x^2 = e$. Montrer que G est abélien (indication : on pourra remarquer que $x^2 = e$ entraîne $x = x^{-1}$).
- 3. Donner un exemple de groupe respectant la condition de la question 2.
- 4. Donner un exemple de groupe abélien qui ne respecte pas la condition de la question 2.

† Sous-groupes

Exercice 3 (Sous-groupes). On rappelle qu'un sous-groupe H de G est la donnée d'un sous-ensemble $H \subset G$ non vide et tel que pour tout $x, y \in H$, on a $x * y \in H$ et $x^{-1} \in H$ (la restriction de * à H fait alors de (H, *) un groupe).

- 1. Soit $H \subset G$ un sous-ensemble. Montrer que H forme un sous-groupe de G si et seulement si on a à la fois $e \in H$ et pour tout $x, y \in H$, $x * y^{-1} \in H$.
- 2. Soient $H, K \subset G$ deux sous-groupes. Montrer que $H \cap K$ est un sous-groupe de G.
- 3. Soient $H, K \subset G$ deux sous-groupes. Montrer que $H \cup K$ est un sous-groupe de G si et seulement si $H \subset K$ ou $K \subset H$.

Exercice 4 (Classes à gauche). Soit H un sous-groupe de G.

1. Montrer que la relation $\equiv_H \text{ sur } G$ définie par

$$\forall x, y \in G, \ x \equiv_H y \Leftrightarrow x^{-1}y \in H$$

est une relation d'équivalence sur G. On appelle cette relation l'égalité modulo H à gauche.

- 2. Soit $x \in G$. Montrer que la classe d'équivalence de x modulo H à gauche est donnée par l'ensemble $xH := \{x * h \mid h \in H\}$. On appelle xH la classe à gauche de x modulo H.
- 3. Bonus : montrer que la relation $H \equiv \text{donn\'ee par } x_H \equiv y \Leftrightarrow yx^{-1} \in H$ est aussi une relation d'équivalence sur G. Quelles sont ses classes d'équivalence ? (on les appelle les classes à droite).

Exercice 5. Dans cet exercice, on fixe un corps k.

- 1. Rappeler pourquoi, pour tout $n \in \mathbb{N}^*$, l'ensemble $GL_n(\mathbb{k})$ forme un groupe pour le produit des matrices?
- 2. On considère l'ensemble suivant

$$\mathscr{A} := \left\{ \begin{pmatrix} \lambda & 0 \\ 0 & 1 \end{pmatrix} \in \mathcal{M}_2(\mathbb{k}) \mid \lambda \neq 0 \right\}.$$

Montrer que \mathscr{A} est un sous-groupe de $GL_2(\mathbb{k})$.

- 3. Soit $M \in \mathrm{GL}_2(\mathbb{k})$. Déterminer la classe à gauche de M. En déduire qu'une matrice $M' \in \mathrm{GL}_2(\mathbb{k})$ est équivalente à M modulo \mathscr{A} à gauche si et seulement si les premières colonnes de M et de M' sont colinéaires et les secondes colonnes de M et M' sont égales.
- 4. Soit $M := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{k})$. Montrer que a = 0 entraı̂ne $c \neq 0$, ensuite montrer que
 - a) Si $a \neq 0$, alors il existe une unique matrice de la forme $M' = \begin{pmatrix} 1 & x \\ y & z \end{pmatrix} \in GL_2(\mathbb{k})$ telle que $M \equiv_A M'$.
 - b) Si a = 0, alors il existe une unique matrice de la forme $M' = \begin{pmatrix} 0 & x \\ 1 & z \end{pmatrix} \in GL_2(\mathbb{k})$ telle que $M \equiv_A M'$.
- 5. On considère l'ensemble suivant

$$\mathscr{B} := \left\{ \begin{pmatrix} 1 & a \\ 0 & b \end{pmatrix} \mid b \neq 0 \right\}.$$

Montrer que \mathscr{B} est un sous-groupe de $\mathrm{GL}_2(\mathbb{k})$. Déterminer la classe à gauche d'une matrice $M \in \mathrm{GL}_2(\mathbb{k})$. En déduire qu'une matrice $M' \in GL_2(\mathbb{k})$ est équivalente à M modulo \mathscr{B} à gauche si et seulement si leurs premières colonnes sont égales. Décrire des représentants des classes à gauche dans $GL_2(k)$ modulo \mathcal{B} .

† Permutations

Exercice 6. Calculer les compositions suivantes :

1.
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$
.

$$2. \ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 7 & 1 & 4 & 6 & 5 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 5 & 7 & 4 & 3 & 6 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 3 & 4 & 1 & 7 & 2 & 6 \end{pmatrix}.$$

Exercice 7. Décomposer les permutations suivantes en produit de cycles à supports disjoints, puis calculer leur signature:

- 3. $(1\ 5\ 4\ 2) \circ (3\ 4\ 5)$ dans \mathfrak{S}_{5}
- 4. $(1\ 2\ 3) \circ (1\ 2\ 4) \circ (1\ 3\ 4) \circ (2\ 3\ 4)$ dans \mathfrak{S}_4 .

Exercice 8. 1. Dans \mathfrak{S}_3 , on considère l'ensemble $K := \{ \mathrm{Id}, (1\ 2), (1\ 3\ 2) \}$. Montrer que K n'est pas un sous-groupe de \mathfrak{S}_3 .

- 2. Dans \mathfrak{S}_3 , on considère l'ensemble $H := \{ \mathrm{Id}, (1\ 2\ 3), (1\ 3\ 2) \}$. Montrer que H est un sous-groupe de \mathfrak{S}_3 .
- 3. Dans \mathfrak{S}_3 , on considère l'ensemble $S := \{ \mathrm{Id}, (1\ 2) \}$. Montrer que S est un sous-groupe de \mathfrak{S}_3 .
- 4. Calculer l'ensemble des classes à gauche (resp. à droite) de G modulo S.

Exercice 9. Soit $n \in \mathbb{N}$, et soit $\sigma \in \mathfrak{S}_n$.

- 1. Montrer que $\sigma \circ (1 \ 2 \ \cdots \ n) \circ \sigma^{-1} = (\sigma(1) \ \sigma(2) \ \cdots \ \sigma(n))$.
- 2. Plus généralement, si $(i_1 \cdots i_k) \in \mathfrak{S}_n$ est un k-cycle (avec $k \leq n$), alors on a

$$\sigma \circ (i_1 \ i_2 \ \cdots \ i_k) \circ \sigma^{-1} = (\sigma(i_1) \ \sigma(i_2) \ \cdots \ \sigma(i_k)).$$

Exercice 10. On se propose de montrer que pour tout entier n, tout élément non trivial de \mathfrak{S}_n s'écrit comme un produit d'au plus n transpositions. On procède par récurrence sur n.

- 1. Montrer le résultat pour n = 1 et pour n = 2.
- 2. Soit $n \ge 2$ un entier, et soit $\sigma \in \mathfrak{S}_n$.
 - (a) Si $\sigma(n) = n$, montrer que $\sigma \in \mathfrak{S}_{n-1}$ s'écrit comme un produit d'au plus n-1 transpositions.
 - (b) Si $\sigma(n) \neq n$, on considère la transposition $\tau := (n \ \sigma(n))$. Montrer que $\sigma' := \tau \circ \sigma$ est telle que $\sigma(n') = n'$.
 - (c) Conclure que σ s'écrit comme un produit d'au plus n transpositions.