Listing of Claims:

1.(Currently Amended) A method for controlling SO₃ in a combustion process of a sulfur-containing fuel utilizing selective catalytic reduction for the control of NOx emissions, the method steps comprising:

providing a combustion system having a first stage and a second stage, a mass flow, a volumetric utilization, a pressure, a density, a given temperature, a stoichiometric ratio, a local fuel flow, a local air flow, and, optionally, a micro-stage;

- a) partially combusting the fuel in a <u>the</u> first stage to create a reducing environment;
- chosen from increasing the distance between the first stage and the
 second stage, increasing mixing within the first stage by macro-staging,
 reducing the mass flow, increasing the volumetric utilization, increasing
 the pressure, increasing the density, increasing the temperature,
 decreasing the stoichiometric ratio, increasing the local fuel flow,
 decreasing the local air flow, and decreasing micro-stage mixing, wherein
 by the adjusting such that SO₃ is reduced to SO₂ to effectuate an overall
 decrease in SO₃ concentration to less than about 15 ppm prior to selective
 catalytic reduction to achieve a desirable level of SO₃ for optimizing
 precipitator function; and
- e) combusting the remainder of the fuel and combustion intermediates in a second stage with oxidizing environment; thereby controlling the levels of SO₃ in the flue gases.
- 2. (Currently Amended) The method of claim 1, wherein the adjusting includes including the step of micro-staging the first stage fuel combustion to adjust.

- 3.(Original) The method of claim 2, wherein the micro-staging is provided through the use of low-NOx burners.
- 4.(Currently Amended) The method of claim 1, wherein the adjusting includes including the step of macro-staging the first stage of fuel combustion to adjust.
- 5.(Original) The method of claim 4, wherein the macro-staging is provided through the use of over-fired air.
- 6.(Previously Presented) The method of claim 1, wherein the adjusting includes including a combination of micro-staging and macro-staging to adjust.
- 7.(Original) The method of claim 6, wherein the micro-staging is provided by low-NOx burners and the macro-staging is provided by over-fired air.
 - 8.(Original) The method of claim 1, wherein the fuel is coal.
- 9.(Currently Amended) A combustion furnace <u>having a first stage and a second</u> stage, a mass flow, a volumetric utilization, a pressure, a density, a given temperature, a stoichiometric ratio, a local fuel flow, a local air flow, and, optionally, a micro-stage, the furnace utilizing selective catalytic reduction for the control of NOx emissions and a precipitator, said furnace operated with a method for controlling SO₃ in a combustion process of a sulfur-containing fuel, the method steps comprising:
 - a) partially combusting the fuel to create a reducing environment;
 - chosen from increasing the distance between the first stage and the
 second stage, increasing mixing within the first stage by macro-staging,
 reducing the mass flow, increasing the volumetric utilization, increasing
 the pressure, increasing the density, increasing the temperature,
 decreasing the stoichiometric ratio, increasing the local fuel flow,
 decreasing the local air flow, and decreasing micro-stage mixing, wherein

- by the adjusting such that SO₃ is reduced to SO₂ to effectuate an overall decrease in SO₃ concentration and achieve a desirable level of SO₃ for optimizing precipitator function; and
- c) combusting the remainder of the fuel in an oxidizing environment; thereby reducing the conversion of levels of SO₃ in the flue gases.
- 10.(Currently Amended) The method of claim 9, wherein the adjusting includes including the step of micro-staging to adjust.
- 11.(Original) The method of claim 10, wherein the micro-staging is provided through the use of low-NOx burners.
- 12.(Currently Amended) The method of claim 9, wherein the adjusting includes including the step of macro-staging to adjust.
- 13.(Original) The method of claim 12, wherein the macro-staging is provided through the use of over-fired air.
- 14.(Currently Amended) The method of claim 9, wherein the adjusting includes including a combination of micro-staging and macro-staging to adjust.
- 15.(Original) The method of claim 14, wherein the micro-staging is provided by low-NOx burners and the macro-staging is provided by over-fired air.
 - 16.(Original) The method of claim 9, wherein the fuel is coal.
- 17.(Currently Ameded) A method for controlling SO₃ concentrations in a combustion process of a sulfur-containing fuel, the method steps comprising:

4

providing a combustion system having a first stage and a second stage, a mass flow, a volumetric utilization, a pressure, a density, a given

temperature, a stoichiometric ratio, a local fuel flow, a local air flow, and, optionally, a micro-stage;

- a) partially combusting the fuel in a first stage to create a reducing environment;
- adjustments chosen from increasing the distance between the first stage
 and the second stage, increasing mixing within the first stage using
 macro-staging, reducing the mass flow, increasing the volumetric
 utilization, increasing the pressure, increasing the density, increasing the
 temperature, decreasing the stoichiometric ratio, increasing the local fuel
 flow, decreasing the local air flow, and decreasing micro-stage mixing,
 wherein by the adjusting such that SO₃ is preferentially reduced to SO₂ to
 achieve a desirable level of SO₃ for optimizing precipitator function; and
 combusting the remainder of the fuel and combustion intermediates in a
 second stage with oxidizing environment; thereby controlling the levels of
 SO₃ in the flue gases.
- 18.(Currently Amended) The method of claim 17, wherein adjusting includes including the step of micro-staging the first stage fuel combustion to adjust.
- 19.(Original) The method of claim 18, wherein the micro-staging is provided through the use of low-NOx burners.
- 20.(Currently Amended) The method of claim 17, wherein adjusting includes including the step of macro-staging the first stage of fuel combustion to adjust.
- 21.(Original) The method of claim 20, wherein the macro-staging is provided through the use of over-fired air.
- 22.(Previously Presented) The method of claim 17, including a combination of micro-staging and macro-staging to adjust.

23.(Original) The method of claim 22, wherein the micro-staging is provided by low-NOx burners and the macro-staging is provided by over-fired air.

24.(Original) The method of claim 17, wherein the fuel is coal.