Computer Vision

Spring 2006 15-385,-685

Instructor: S. Narasimhan

Wean 5403 T-R 3:00pm – 4:20pm

Lecture #17

Structured Light + Range Imaging

Lecture #17

(Thanks to Slides from Levoy, Rusinkiewicz, Bouguet, Perona)

3D Scanning

Structured Light Reconstruction

- Avoid problems due to correspondence
- Avoid problems due to surface appearance
- Much more accurate
- Very popular in industrial settings
- Reading:
 - Marc Levoy's webpages (Stanford)
 - Katsu Ikeuchi's webpages (U Tokyo)
 - Peter Allen's webpages (Columbia)

Structured Light

- Any spatio-temporal pattern of light projected on a surface (or volume).
- Cleverly illuminate the scene to extract scene properties (eg., 3D).
- Avoids problems of 3D estimation in scenes with complex texture/BRDFs.
- Very popular in vision and successful in industrial applications (parts assembly, inspection, etc).

Light Stripe Scanning – Single Stripe

- Optical triangulation
 - Project a single stripe of laser light
 - Scan it across the surface of the object
 - This is a very precise version of structured light scanning
 - Good for high resolution 3D, but needs many images and takes time

Triangulation

• Project laser stripe onto object

Triangulation

- Depth from ray-plane triangulation:
 - Intersect camera ray with light plane

$$x = x'z/f$$

$$y = y'z/f$$

$$z = \frac{-Df}{Ax'+By'+Cf}$$

Example: Laser scanner

Cyberware® face and head scanner

- + very accurate < 0.01 mm
- more than 10sec per scan

Example: Laser scanner

Digital Michelangelo Project http://graphics.stanford.edu/projects/mich/

Faster Acquisition?

- Project multiple stripes simultaneously
- Correspondence problem: which stripe is which?
- Common types of patterns:
 - · Binary coded light striping
 - Gray/color coded light striping

More complex patterns

Works despite complex appearances

Works in real-time and on dynamic scenes

- Need very few images (one or two).
- But needs a more complex correspondence algorithm

Zhang et al

3D Acquisition from Shadows

Bouguet-Perona, ICCV 98

Real-Time 3D Model Acquisition

Next Class

- Polyhedral Objects and Line Drawing
- Reading → Notes