ECOLE SUPERIEURE DE GENIE INFORMATIQUE **DEVOIR A LA MAISON**EXERCICES DE LOGIQUE FORMELLE

Charles Marchetti

November 5, 2024

Ces exercices de logique formelle sont à rédiger proprement.

1 Introduction

On donne trois définitions :

Definition 1.1 Une relation \mathcal{R} définie sur un ensemble E est dite

- réflexive : pour tout $x \in E$, $x \mathcal{R} x$,
- symértrique : pour tout $(x, y) \in E^2$, $x \mathcal{R} y$ alors $y \mathcal{R} x$,
- transitive: pour tout $(x, y, z) \in E^3$, $x \mathcal{R} y$ et $y \mathcal{R} z$ alors $x \mathcal{R} z$.

Definition 1.2 La relation \mathcal{R} est d'équivalence si et seulement si elle est réflexive, symetrique et transitive.

Definition 1.3 Une propriété \mathbf{P} est dite **héréditaire** à partir d'un certain rang : si la propriété \mathbf{P} est vraie pour un entier k, alors elle est vraie pour l'entier k+1.

On notera P(k), la propriété est vrai au rang k.

Definition 1.4 Le principe du raisonnement par récurrence est tel que :

- la propriété P(n) est vraie au rang n_0 , c'est l'étape de l'initialisation,
- héréditaire à partir du rang n alors la propriété P(n) est vraie pour tout entier $n \ge n_0$.

2 Les exercices

Exercice N°1

On considère les propositions suivantes :

- a- Anna se mariera,
- b- le mari de Anna sera très beau,
- c- le mari de Anna sera très riche,
- d- Anna sera actrice,
- e- Anna sera célèbre.

Donnez la négation de la proposition **P**: Si Anna se marie, ce sera avec un homme très beau ou très riche, à moins qu'elle ne devienne actrice et célèbre.

Exercice N°2

On considère la proposition suivante **P** : En hivers, il fait froid ou il pleut, et quand il pleut, les routes qui ne sont pas inondées sont encombrées. Donner sa négation.

Exercice N°3

La proposition **P**: Quand les vaches voleront, les poules auront des dents est-elle vraie ou fausse?

EXERCICExercice N°4

Démontrer le syllogisme suivant \mathbf{P} : Socrate est un homme, tous les hommes sont mortels, donc Socrate est mortel.

Exercice N°5

Pourquoi les mathématiciens confondent-ils Halloween avec Noel?

Exercice N°6

Montrer que la proposition **P**: Dans le plan, tout triangle rectangle est isocèle est fausse.

Exercice N°7

Sur l'ensemble des nombres réels \mathbb{R} , on définit la relation \mathcal{S} en posant, pour tout $(x,y) \in \mathbb{R} \times \mathbb{R}$,

$$xSy \Leftrightarrow x^2 - y^2 = x - y.$$

- 1. Montrer que $\mathcal S$ est une relation d'équivalence, c'est-à-dire réflexive, symétrique et transitive.
- 2. Quel est le graphe de S?
- 3. Déterminer les classes d'équivalence des nombres $0, 1, 2, \frac{1}{2}$.

Exercice N°8

Soit E l'ensemble des nombres premiers strictement supérieurs à 2. On considère la relation \mathcal{R} entre deux éléments de E définie par :

$$p\mathcal{R}q \Leftrightarrow \frac{p+q}{2} \in E.$$

La relation \mathcal{R} est-elle réflexive, symétrique ou transitive?

Exercice N°9

Laquelle des assertions est-elle correcte? Sont-elles équivalentes?

P: Il a mis ses chaussettes et (il a mis) ses chaussures.

Q: Il a mis ses chaussures et (il a mis) ses chaussettes.

Exercice N°10

On considère les deux énoncés suivants :

P: Les marées se produisent parce que l'attraction universelle s'exerce.

Q : Les marées se produisent et l'attraction universelle s'exerce.

Remplacez dans ces énoncés la phrase l'attraction universelle s'exerce par la phrase suivante la neige est blanche. Qu'obtient-on?

Exercice N°11

On considère l'expression suivante :

$$(2+2=5) \Longrightarrow (\sqrt{2}=2).$$

Cette proposition est-elle vraie?

Exercice $N^{\circ}12$

Démontrer la proposition ${f P}$ suivante par un raisonnement par récurrence :

$$\forall n \in \mathbb{N}, \mathbf{P}(\mathbf{n}) : 2^n > n.$$

Exercice N°13

Soit la proposition $\mathbf{P}:((\neg q)\wedge(p\vee r))\Rightarrow p$ et la proposition $\mathbf{Q}:(p\vee(q\vee(\neg r)).$ Montrer que l'on a :

$$P \Leftrightarrow Q$$
.