Low power OTA on 28nm CMOS technology

Shubhang Srivastava Indian Institute of Technology Jammu Jammu,India 2019uee0117@iitjammu.ac.in

Abstract—Operational transconductance amplifiers are widely used in various applications like BGRs, VCO, VGA etc. In this abstract a power efficient two staged OTA has been designed on Synopsys Custom Compiler at 28nm technology. It is having a DC gain of 53.5dB and GBW of 4MHz. This OTA could be used as an audio amplifier.

I. REFRENCE CIRCUIT DETAILS

This OTA is made on Synopsys Custom Compiler at 28nm bulk CMOS technology. Some of the simulated design specs are as follows:

S.no	Design Specifications	Obtained Value
1	DC Gain (dB)	53.5dB
2	GBW	4.1MHz
3	Supply Voltage	1V
4	Power consumption	17.3μW
5	Phase Margin	63.5°
6	Slew Rate (SR)	~2 V/µs

II. REFRENCE CIRCUIT DESIGN

Fig 1: Actual Circuit schematic

III. REFRENCE WAVEFORMS AND AREA ESTIMATE

Fig 2: Actual Bode Gain and Phase Plot Obtained

Maximum actual area estimate: ~92μm².

REFERENCES

- [1] Z. Yan, C. Zhang and M. Wang, "Low-Voltage Bandgap Reference Circuit in 28nm CMOS," 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), 2018, pp. 14-17, doi: 10.1109/APCCAS.2018.8605676.J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68–73.
 - M. H. Hamzah, A. B. Jambek and U. Hashim, "Design and analysis of a two-stage CMOS op-amp using Silterra's 0.13 μm technology," 2014 IEEE Symposium on Computer Applications and Industrial Electronics (ISCAIE), 2014, pp. 55-59, doi: 10.1109/ISCAIE.2014.7010209.
 - R. Nagulapalli, K. Hayatleh, S. Barker, B. N. K. Reddy and B. Seetharamulu, "A Low Power Miller Compensation Technique for Two Stage Op-amp in 65nm CMOS Technology," 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 2019, pp. 1-5, doi: 10.1109/ICCCNT45670.2019.8944553.
 - M. P. Sarma, N. Kalita and N. E. Mastorakis, "Design of an low power miller compensated two stage OP-AMP using 45 nm technology for high data rate communication," 2017 4th International Conference on Signal Processing and Integrated Networks (SPIN), 2017, pp. 463-467, doi: 10.1109/SPIN.2017.8049994.
 - E. Kargaran, H. Khosrowjerdi and K. Ghaffarzadegan, "A 1.5 v High Swing Ultra-Low-Power Two Stage CMOS OP-AMP in 0.18 μm Technology," 2010 2nd International Conference on Mechanical and Electronics Engineering, 2010, pp. V1-68-V1-71, doi: 10.1109/ICMEE.2010.5558594.
 - A. Boni, "Op-amps and startup circuits for CMOS bandgap references with near 1-V supply," in IEEE Journal of Solid-State Circuits, vol. 37, no. 10, pp. 1339-1343, Oct. 2002, doi: 10.1109/JSSC.2002.803055.