On Adhesivity of EGGs

Roberto Biondo

Dipartimento di Informatica Università di Pisa

Friday 29th November, 2024

Contenuti

Overview

Background

Grafi

Adesività

Conclusioni

Formalismi Grafici

Formalismi grafici:

- Analisi delle dipendenze
- Bioinformatica
- Sistemi di riscrittura
- Ottimizzazione
- Ingegneria del software

Categorie

Modello categoriale.

Una categoria & è composta da:

- ullet oggetti
- morfismi (o frecce)

$$id_A \stackrel{\longrightarrow}{\subset} A \stackrel{f}{\longrightarrow} B \stackrel{\longrightarrow}{\smile} id_B$$

La categoria i cui oggetti sono gli insiemi e i cui morfismi sono le funzioni tra essi è denominata **Set**.

 $f: A \to B$ può essere:

- un monomorfismo : $f \circ g = f \circ h \Rightarrow g = h$;
- un epimorfismo : $g \circ f = h \circ f \Rightarrow g = h$;
- un isomorfismo : esiste k tale che $f \circ k = id_R$ e $k \circ f = id_A$.

Funtori, Trasformazioni Naturali

Un funtore $F: \mathscr{C} \to \mathscr{D}$:

$$F(g \circ f) = F(g) \circ F(f)$$

$$F(id_A) = id_{F(A)} \longrightarrow F(A) \longrightarrow F(B) \longrightarrow F(C) \longrightarrow F(id_C) = id_{F(C)}$$

Una trasformazione naturale $\eta: F \rightarrow G$:

$$F(A) \xrightarrow{\eta_A} G(A)$$

$$F(f) \downarrow \qquad \qquad \downarrow G(f)$$

$$F(B) \xrightarrow{\eta_B} G(B)$$

Definizione dei Grafi

 $Categoria\ di\ funtori\ [\mathscr{C},\mathscr{D}]:$

- Oggetti: funtori (con dominio \mathscr{C} e codominio \mathscr{D})
- Morfismi: trasformazioni naturali

Le categorie di funtori il cui codominio è Set sono dette categorie di prefasci.

Un grafo G è costituito da:

- ullet Un insieme di nodi V
- $\bullet\,$ Un insieme di archi E
- $s: E \to V$ funzione sorgente
- $t: E \to V$ funzione destinazione

Un morfismo fra grafi è una coppia $f_V: V_1 \to V_2, f_E: E_1 \to E_2$ che rispetta sorgente e destinazione.

In altre parole, un grafo è un oggetto della categoria

$$[E \overset{s}{\underset{t}{\rightrightarrows}} V, \mathbf{Set}]$$

Grafi ed Equivalenze

Un grafo con equivalenza (G, \sim) è dato da:

- ullet Un grafo G
- Una relazione di equivalenza \sim definita sui vertici

Ossia, un elemento di $[E \rightrightarrows V \to Q, \mathbf{Set}]$, tale che la freccia $q: V \to Q$ sia surgettiva (epi). Un E-Grafo (G, \sim) è un grafo con equivalenza tale che

$$\frac{s_G(e) \sim s_G(e')}{t_G(e) \sim t_G(e')}$$

EGGs

La categoria degli E-Grafi è detta \mathbf{EGG} , dal nome della libreria che li implementa in Rust.

La definizione attuale è esplicitamente operativa, e risulta difficile per ottenere dei risultati teorici.

Tuttavia gli utilizzi sono molteplici, dalla $equality\ saturation$ all'ottimizzazione in fase di compilazione.

Pullback, Pushout, Equalizzatori

In Set:

- Pullback di f e g: $P = \{(x, y) \in A \times B \mid f(x) = g(y)\}$
- Pushout di $f \in g$: $Q = (A + B)/_{\sim}$

Approccio DPO

$$L \xleftarrow{l} K \xrightarrow{r} L \qquad \begin{matrix} L \xleftarrow{l} K \xrightarrow{r} R \\ m_L \downarrow & \downarrow m_K & \downarrow m_R \\ G \xleftarrow{l*} D \xrightarrow{r*} H \end{matrix}$$

le rsono morfismi, il primo dei quali mono, di $\mathscr{C},$ mentre i quadrati sono pushout. Tecniche per parlare di:

(a) Regola

- Confluenza
- Terminazione
- Parallelismo e concorrenza

(b) Passo di derivazione

Adesività

Una categoria $\mathscr C$ è adesiva se:

- ha tutti i pushout di monomorfismi
- ha tutti i pullback
- i pushout di monomorfismi sono Van Kampen
 - ossia tali pushout sono stabili sotto pullback e i pullback sono stabili sotto pushout combinati con pullback

L'adesività permette di estendere l'approccio DPO a categorie di grafi più complesse.

(a) DPO su grafi

(b) DPO per reazione di Dies-Alder

Conclusioni

Nel lavoro di tesi abbiamo

- Formalizzato gli E-Grafi mediante categorie di prefasci
- Provato l'adesività rispetto a una sottoclasse di monomorfismi

Come lavori futuri vogliamo

- Sostituire la categoria Set con una generica categoria adesiva
- Generalizzare il risultato ad altri tipi di grafi, e.g., ipergrafi e term graph