

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

"МИРЭА - Российский технологический университет"

РТУ МИРЭА

Институт радиоэлектроники и автоматики Кафедра геоинформационных систем

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ № 11

Синтез четырехразрядного счетчика с параллельным переносом между разрядами двумя способами

по дисциплине

«ИНФОРМАТИКА»

Выполнил студент группы ИКБ	Враженко Д.О.		
Принял доцент кафедры ГИС, к.т.н.	Воронов Г.Б.		
Практическая работа выполнена	« <u> </u> »	2023 г.	
«Зачтено»	« »	2023 г	

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	3
2 ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ	
2.1 Составление таблицы переходов счетчика	4
2.2 Минимизация Q ₃ (t+1)	5
2.3 Минимизация Q ₂ (t+1)	6
2.4 Минимизация Q ₁ (t+1)	7
2.5 Минимизация Q ₀ (t+1)	9
2.6 Схема счетчика	10
3 ВЫВОДЫ	12
4 ИНФОРМАЦИОННЫЕ ИСТОЧНИКИ	13

1 ПОСТАНОВКА ЗАДАЧИ

Разработать счетчик с параллельным переносом на D-триггерах двумя способами:

- с оптимальной схемой управления, выполненной на логических элементах общего базиса;
- со схемой управления, реализованной на преобразователе кодов (быстрая реализация, но не оптимальная схема).

Протестировать работу схемы и убедиться в ее правильности. Подготовить отчет о проделанной работе и защитить ее.

Личный вариант: $CNT = 1E2_{16}$.

2 ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ

2.1 Составление таблицы переходов счетчика

Исходные данные (CNT = 1E2) необходимо расшифровать:

- направление счета вычитание;
- максимальное значение счетчика е (14 в десятичной системе);
- шаг счета 2.

По исходным данным восстановим таблицу переходов счетчика, смотри табл. 1.

Таблица 1 — Таблица переходов счетчика

Q ₃ (t)	$Q_2(t)$	$Q_1(t)$	$Q_0(t)$	$Q_3(t+1)$	$Q_2(t+1)$	$Q_1(t+1)$	$Q_0(t+1)$
0	0	0	0	1	1	0	1
0	0	0	1	1	1	1	0
0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	1
0	1	0	0	0	0	1	0
0	1	0	1	0	0	1	1
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	1
1	0	0	0	0	1	1	0
1	0	0	1	0	1	1	1
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	1
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	1	0	0
1	1	1	1	*	*	*	*

Таблица переходов является частично определенной: состояния 1111, согласно исходным данным, возникать никогда не должны, поэтому очередное состояние Q(t+1) для этих случаев мы можем интерпретировать как нам удобно в целях минимизации управляющей логики.

Рассматриваем столбцы $Q_i(t+1)$ как самостоятельные функции от четырех переменных и проводим их минимизацию.

2.2 Минимизация Q₃(t+1)

Для оценки сложности минимальных форм, которые получаются для функции $Q_3(t+1)$, составлю карты Карно и посчитаю количество переменных, входящих в них. Затем выберу оптимальную.

На рис. 1 показана карта Карно для МДНФ функции Q₃(t+1)

	$Q_1(t)$				
Q ₃ (1)	$Q_1(t)$ $Q_0(t)$ $Q_1(t)$	00	01	11	10
	00	1	1		
	01				
	11	1	1	*	1
	10			1	1

Рисунок 1 — Карта Карно для МДНФ функции $Q_3(t+1)$

На рис. 2 показана карта Карно для МКНФ функции $Q_3(t+1)$

	$Q_1(t)$ $Q_0(t)$				
$Q_3(1)$	(t)	00	01	11	10
	00			\bigcirc	0
	01	0	0	0	0
	11			*	
	10	0	0		

Рисунок 2 — Карта Карно для МКНФ функции $Q_3(t+1)$

В моём случае МДНФ $Q_3(t+1)$ записывается при помощи 2+2+3=7 переменных или их отрицаний, а МКНФ $Q_3(t+1)$ записывается при помощи 2+2+3=7 переменных или их отрицаний. Значит, мне всё равно, какую минимальную форму взять.

Формула МДНФ для $Q_3(t+1)$ (1).

$$Q_3(t+1)_{MДH\Phi} = Q_2(t) \cdot Q_3(t) + Q_1(t) \cdot Q_3(t) + \overline{Q_1(t)} \cdot \overline{Q_2(t)} \cdot \overline{Q_3(t)}$$
(1)

2.3 Минимизация Q₂(t+1)

Для оценки сложности минимальных форм, которые получаются для функции $Q_2(t+1)$, составлю карты Карно и посчитаю количество переменных, входящих в них. Затем выберу оптимальную.

На рис. 3 показана карта Карно для МДН Φ функции $Q_2(t+1)$

Рисунок 3 – Карта Карно для МДНФ функции Q₂(t+1)

На рис. 4 показана карта Карно для МКН Φ функции $Q_2(t+1)$

Рисунок 4 — Карта Карно для МКН Φ функции $Q_2(t+1)$

В моём случае МДНФ $Q_2(t+1)$ записывается при помощи 2+2=4 переменных или их отрицаний, а МКНФ $Q_2(t+1)$ записывается при помощи 2+2=4 переменных или их отрицаний. Значит, мне всё равно, какую минимальную форму взять.

Формула МДНФ для $Q_2(t+1)$ (2).

$$Q_2(t+1)_{MДH\Phi} = \overline{Q_1(t)} \cdot \overline{Q_2(t)} + Q_1(t) \cdot Q_2(t)$$
(2)

2.4 Минимизация Q₁(t+1)

Для оценки сложности минимальных форм, которые получаются для функции $Q_1(t+1)$, составлю карты Карно и посчитаю количество переменных, входящих в них. Затем выберу оптимальную.

На рис. 5 показана карта Карно для МДН Φ функции $Q_1(t+1)$

Рисунок 5 — Карта Карно для МДН Φ функции Q₁(t+1)

На рис. 6 показана карта Карно для МКНФ функции Q₁(t+1)

	$Q_1(t)$ $Q_0(t)$				
Q ₃ (Q	t) (t) (t)	00	01	11	10
	00	0		0	0
	01			0	0
	11			*	0
	10			0	0

Рисунок 6 – Карта Карно для МКНФ функции $Q_1(t+1)$

В моём случае МДНФ $Q_1(t+1)$ записывается при помощи 2+2+2=6 переменных или их отрицаний, а МКНФ $Q_1(t+1)$ записывается при помощи 1+3=4 переменных или их отрицаний. Значит, МКНФ для $Q_1(t+1)$ строить выгоднее, чем МДНФ.

Формула МКНФ для $Q_1(t+1)$ (3).

$$Q_{1}(t+1)_{MKH\Phi} = \overline{Q_{1}(t)} \cdot (Q_{0}(t) + Q_{2}(t) + Q_{3}(t))$$
(3)

2.5 Минимизация Q₀(t+1)

Для оценки сложности минимальных форм, которые получаются для функции $Q_0(t+1)$, составлю карты Карно и посчитаю количество переменных, входящих в них. Затем выберу оптимальную.

На рис. 7 показана карта Карно для МДН Φ функции $Q_0(t+1)$

	$Q_1(t)$				
$Q_3($	$Q_1(t)$ $Q_0(t)$ $Q_1(t)$	00	01	11	10
	00	1		$\overline{1}$	
	01		1	1	
	11		1	*	
	10		1	1	

Рисунок 7 – Карта Карно для МДНФ функции Q₀(t+1)

На рис. 8 показана карта Карно для МКН Φ функции $Q_0(t+1)$

	$Q_1(t)$ $Q_0(t)$				
$Q_3(1)$	(t)	00	01	11	10
	00		0		0
	01	0			0
	11	0		*	0
	10	0			0

Рисунок 8 — Карта Карно для МКНФ функции $Q_0(t+1)$

В моём случае МДНФ $Q_0(t+1)$ записывается при помощи 2+2+2+4=10 переменных или их отрицаний, а МКНФ $Q_0(t+1)$ записывается при помощи

2+2+2+4=10 переменных или их отрицаний. Значит, мне всё равно, какую минимальную форму взять.

Формула МДНФ для $Q_0(t+1)$ (4).

$$Q_0(t+1)_{MJH\Phi} = Q_0 \cdot Q_1 + Q_0 \cdot Q_2 + Q_0 \cdot Q_3 + \overline{Q_0} \cdot \overline{Q_1} \cdot \overline{Q_2} \cdot \overline{Q_3}$$

$$\tag{4}$$

2.6 Схема счетчика

При помощи полученных формул выполню реализацию схем управления для триггеров счетчика на рис. 9.

Рисунок 9 — Схема счетчика с подключением к устройству проверки Тестирование показало, что схема работает правильно.

Схема счетчика, выполненная с помощью преобразователя кодов в качестве схемы управления триггерами, представлена на рис. 10.

Рисунок 10 — Счетчик со схемой управления, выполненной на преобразователе кодов

Тестирование показало, что схема работает правильно.

3 ВЫВОДЫ

В ходе выполнения практической работы был разработан счетчик с параллельным переносом на D-триггерах двумя способами:

- с оптимальной схемой управления, выполненной на логических элементах общего базиса;
- со схемой управления, реализованной на преобразователе кодов (быстрая реализация, но не оптимальная схема).

Протестирована работа схемы. Тестирование показало, что схемы работают правильно. Подготовлен отчёт о проделанной работе.

4 ИНФОРМАЦИОННЫЕ ИСТОЧНИКИ

- 1. Информатика: Методические указания по выполнению практических работ / С.С. Смирнов, Д.А. Карпов М., МИРЭА Российский технологический университет, 2020. 102 с. [70-78]
- 2. Воронов Г.Б. Информатика: Лекции по информатике / Г.Б. Воронов М., МИРЭА Российский технологический университет, 2023.
- 3. Документация Logisim [Электронный ресурс] URL: http://www.cburch.com/logisim/ru/docs.html (дата обращения 07.10.2023).