Investigação Operacional

Dualidade

Dualidade

- Modelo Inicial \rightarrow Primal
- Substituição → Dual
- Primal:
 - A função objectivo é de maximização.
 - As restrições são todas do tipo ≤.
 - As variáveis são não negativas.
 - Ao modelo primal com estas condições pode-se associar um outro modelo, chamado Dual

Modelo Dual

- Variáveis de decisão do Dual:
 - A cada restrição do primal faz-se corresponder uma variável y_i.
- Função objectivo:
 - A f. O. Será de Minimização.
- Cada uma de suas parcelas será o produto da variável y_i pelo termo da direita da restrição correspondente.

Modelo Dual

- Restrições técnicas:
 - Cada variável de decisão primal será uma restrição no Dual.
- Termos da esquerda:
 - Cada termo é o produto da variável dual y_i pelo coeficiente respectivo da variável de decisão primal.
- **Sinal**: sinal do tipo \geq
- Termo da direita:
 - É o coeficiente da variável primal na f. O.
- As variáveis y_i são todas não negativas.

Exemplo:

• Primal: $Max Z = 2x_1 + 3x_2 + x_3$

$$\begin{cases} 3x_1 + 4x_2 + 2x_3 \le 10 \\ 2x_1 + 6x_2 + x_3 \le 20 \\ x_1 - x_2 - x_3 \le 30 \\ x_i \ge 0 \end{cases}$$

• Dual: $\min D = 10y_1 + 20y_2 + 30y_3$ (termos da direita)

$$\begin{cases} 3y_1 + 2y_2 + 1y_3 \ge 2 \\ 4y_1 + 6y_2 - y_3 \ge 3 \\ 2y_1 + y_2 - y_3 \ge 1 \\ y_i \ge 0 \end{cases}$$

Analogamente:

Modelo Primal:

- f.o. de minimização
- restrições do tipo ≥
- Variáveis todas não negativas.

Modelo Dual:

- f.o. de maximização
- restrições do tipo ≤
- variáveis todas não negativas.

Exemplo:

$$Min Z = 10x_1 + 20x_2 + 30x_3$$

$$\begin{cases} 3x_1 + 2x_2 + x_3 \ge 2 \\ 4x_1 + 6x_2 - x_3 \ge 3 \\ 2x_1 + x_2 - x_3 \ge 1 \\ x_i \ge 0 \end{cases}$$

Dual:

Max
$$D = 2y_1 + 3y_2 + y_3$$

$$\begin{cases} 3y_1 + 4y_2 + 2y_3 \le 10 \\ 2y_1 + 6y_2 + y_3 \le 20 \\ y_1 - y_2 - y_3 \le 30 \\ y_i \ge 0 \end{cases}$$

Observação:

 Se uma restrição primal é do tipo "=", a variável dual correspondente será sem restrição do sinal.

 Se uma variável primal for sem restrição de sinal, a restrição do dual correspondente será do tipo "=".

Exemplo

• Primal:

$$Z = 2x_1 + 3x_2 + x_3$$

$$S.a. \begin{cases} x_1 + x_2 \le 10 & \to y_1 \\ 2x_1 + 4x_2 - x_3 = 20 & \to y_2 \\ x_i \ge 0 \end{cases}$$

• Dual:

$$\mathbf{D} = \mathbf{10y_1} + \mathbf{20y_2}$$

$$S.a. \begin{cases} y_1 + 2y_2 \ge 2 \\ y_1 + 4y_2 \ge 3 \\ -y_2 \ge 1 \\ y_1 \ge 0 \end{cases}$$

Analogia entre as soluções Primal e Dual

- A cada solução básica admissível primal não óptima corresponde uma solução básica não admissível dual.
- A solução óptima primal corresponde à solução óptima dual com Z = D.
- O coeficiente da variável de decisão na f. O. Primal é o valor da variável de folga correspondente na solução dual.
- O coeficiente da variável de folga da f.o. primal é o valor da variável de decisão correspondente na solução dual.

Exemplo:

• Primal:

Max
$$Z = x1 + 2x2 + 3x3$$

s.a.
$$\begin{cases} x_1 + x_2 + x_3 \le 10 \\ 2x_1 + x_2 + 4x_3 \le 12 \\ x_1 + 3x_2 - x_3 \le 9 \\ x_i \ge 0 \end{cases}$$

Dual:

$$Min D = 10y1 + 12y2 + 9y3$$

s.a.
$$\begin{cases} y_1 + 2y_2 + y_3 \ge 1 \\ y_1 + y_2 + 3y_3 \ge 2 \\ y_1 + 4y_2 - y_3 \ge 3 \\ y_i \ge 0 \end{cases}$$

Colocar as variáveis de folga no primal e no dual.

• Primal:

Max
$$Z = x_1 + 2x_2 + 3x_3$$

s.a.
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 10\\ 2x_1 + x_2 + 4x_3 + x_5 = 12\\ x_1 + 3x_2 - x_3 + x_6 = 9\\ x_i \ge 0 \end{cases}$$

1º Quadro Simplex

Z	X_1	X_2	X_3	X_4	X_5	X_6	b
1	-1	-2	-3	0	0	0	0
0	1	1	1	1	0	0	10
0	2	1	4	0	1	0	12
0	1	3	-1	0	0	1	9

S.B.A.
$$\begin{cases} x_3 = 10 \\ x_4 = 12 \\ x_5 = 9 \end{cases}$$

Colocar as variáveis de folga no primal e no dual.

• Dual:

Min D =
$$10y_1 + 12y_2 + 9y_3$$
 ou
Max (- D) = $-10y_1 - 12y_2 - 9y_3$

s.a.
$$\begin{cases} y_1 + 2y_2 + y_3 - y_4 = 1 \\ y_1 + y_2 + 3y_3 - y_5 = 2 \\ y_1 + 4y_2 - y_3 - y_6 = 3 \\ y_i \ge 0 \end{cases}$$

1º Quadro Simplex

D	y ₁	y ₂	y ₃	y ₄	y ₅	y ₆	c
-1	10	12	9	0	0	0	0
0	1	2	1	-1	0	0	1
0	1	1	3	0	-1	0	2
0	1	4	-1	0	0	-1	3

S.B.N.A.
$$\begin{cases} y_6 = -3 \\ y_4 = -1 \\ y_5 = -2 \end{cases} D = 0$$

Colocar as variáveis de folga no primal e no dual.

• A próxima solução básica admissível do primal, com a entrada da variável x3 (coeficiente –3) e a saída da variável x5 (12 : 4=3) após o pivoteamento, será:

Z	x ₁	\mathbf{x}_2	X ₃	X ₄	X ₅	X ₆	b
1	0,5	-1,25	0	0	0,75	0	9
0	0,5	0,75	0	1	-0,25	0	7
0	0,5	0,25	1	0	0,25	0	3
0	1,5	3,25	0	0	0,25	1	12

• Solução:

•
$$x_3 = 3$$
 $x_4 = 7$ $x_6 = 12$ $Z = 9$

Relação Primal - Dual

- Usando a correspondência, pode-se montar o quadro dual correspondente:
 - Coeficientes de $x_i \rightarrow Valores de yF_i$
 - Coeficientes de $xF_i \rightarrow Valores de y_i$
 - Valores de $x_i \rightarrow$ coeficientes de y F_i
 - Valores de xF_i coeficientes de y_i

D	\mathbf{y}_1	y_2	y_3	y_4	y ₅	y_6	c
-1	7	0	12	0	0	3	-9
		0		1	0		0,5
		0		0	1		-1,25
		1		0	0		0,75

Solução:

$$y_2 = 0.75$$

$$y_4 = 0.5$$

$$y_2 = 0.75$$
 $y_4 = 0.5$ $y_2 = -1.25$

$$D = 9$$

Solução Final

Z	X_1	X_2	X_3	X_4	X_5	X_6	b
1	1,077	0	0	0	0,846	0,385	13,615
0	0,154	0	0	1	-0,308	-0,231	4,231
0	0,385	0	1	0	0,231	-0,077	2,077
0	0,461	1	0	0	0,077	0,308	3,692

$$x_2 = 3.692$$

$$x_3 = 2.077$$

$$x_4 = 4.231$$

Solução:
$$x_2 = 3.692$$
 $x_3 = 2.077$ $x_4 = 4.231$ $Z = 13.615$

D	y ₁	y_2	y_3	y_4	y_5	y_6	c
-1	4,321	0	0	0	3,692	2,077	-13,615
0		0	0	1	0		1,077
0		1	0	0	-1		0,846
0		0	1	0	0		0,385

$$y_2 = 0.846$$

$$y_3 = 0.385$$

$$y_4 = 1.077$$

Solução:
$$y_2=0.846$$
 $y_3=0.385$ $y_4=1.077$ $D=13.615$

Problema 3:

• Um pecuarista prepara ração a partir de três ingredientes, que contêm três nutrientes indispensáveis na alimentação dos animais. O quadro mostra a composição, exigências e custos dos elementos na mistura.

Ingredientes	Nutriente	Custo ingredientes		
mgredientes	Nutriente 1	Nutriente 2	Nutriente 3	em u.m./kg
1	50	20	10	200
2	20	30	30	150
3	10	20	50	240
Exigência mínima Em kg /saco 40kg	600	500	800	

- O objectivo é atender às exigências com o menor custo possível. Pedese:
 - Construir o modelo Linear do problema, onde xi são as quantidades dos ingredientes usados por kg de ração.
 - Construir o modelo dual correspondente.
 - Resolver o problema pelo método Simplex.

Modelação:

Ingredientes	Nutriente	Custo ingredientes		
	Nutriente 1	Nutriente 2	Nutriente 3	em u.m./kg
1	50	20	10	200
2	20	30	30	150
3	10	20	50	240
Exigência mínima Em kg /saco 40kg	600	500	800	

$$L = 200x_1 + 150x_2 + 240x_3 \rightarrow \min$$

$$s.a. \begin{cases} 50x_1 + 20x_2 + 10x_3 \ge 600 \\ 20x_1 + 30x_2 + 20x_3 \ge 500 \\ 10x_1 + 30x_2 + 50x_3 \ge 800 \end{cases}$$

 $com x_1, x_2, x_3 \ge 0$

Lösung:

• Modelo Dual: $D = 600y_1 + 500y_2 + 800y_3$

$$S.a. \begin{cases} 50y_1 + 20y_2 + 10y_3 \le 200 \\ 20y_1 + 30y_2 + 30y_3 \le 150 \\ 10y_1 + 20y_2 + 50y_3 \le 240 \end{cases}$$

D	У ₁	У ₂	y ₃	У ₄	У ₅	y_6	С
-1	0	325.38	0	1.54	26.15	0	4.230,77
0	1	0.23	0	0.02	-0.01	0	3.46
0	0	0.85	1	-0.02	0.04	0	2.69
0	0	-24.62	0	0.54	-1.85	1	70.77

...lembre-se!

- Relação Primal Dual
- Dado um problema de PL, podemos sempre escolher entre solucionar o modelo primal ou o modelo dual correspondente
 - Coeficientes de $x_i \rightarrow Valores de yF_i$
 - Coeficientes de $xF_i \rightarrow Valores de y_i$
 - Valores de $x_i \rightarrow$ coeficientes de yF_i
 - Valores de $xF_i \rightarrow$ coeficientes de y_i

... por exemplo!

• Seja a solução do primal:

Z	x ₁	X ₂	X ₃	X ₄	X ₅	x ₆	b
1	1,077	0	0	0	0,846	0,385	13,615
0	0,154	0	0	1	-0,308	-0,231	4,231
0	0,385	0	1	0	0,231	-0,077	2,077
0	0,461	1	0	0	0,077	0,308	3,692

• Encontre a solução do Dual correspondente!

D	$\mathbf{y_1}$	$\mathbf{y_2}$	y_3	y ₄	y_5	y ₆	C
-1	4,321	0	0	0	3,692	2,077	-13,615
0		0	0	1	0		1,077
0		1	0	0	-1		0,846
0		0	1	0	0		0,385