PATENT ABSTRACTS OF JAPAN

(11) Patent number:

2850187

(24) Date of registration: 13.11.1998

(51)Int.CI.

E02D 31/08

E04H 9/02

(21)Application number: 05-172363

(73)Patentee: TAKEMIYA HIROKAZU

AISAWA KOGYO KK

RAILWAY TECHNICAL RES

INST

GANSUI CORPORATION

(22)Date of filing:

18.06.1993

(65)Publication number: 07-003829

(43)Date of publication 06.01.1995

of application:

Date of request for

23.10.1995

examination:

(54) VIBRATION CONTROLLING METHOD BY BURIED BOARD BLOCK

(57) [Claim(s)]

[Claim 1] To underground of a lower part of a foundation structure object which receives an oscillation or it emits an oscillation, or underground around a foundation structure object In a vibration-deadening method of establishing a rigid high plate block horizontally from the circumference ground a plate block 1/5 or more-about thickness of basic width of face of the basic structure, width of face more than comparable, and width of face of a plate block, A vibration-deadening method by laying-under-the-ground plate block which has the rigidity of 3 to 5 times or more of the circumference ground with a shear wave volocity, and is installed in alpha-Vs / a depth of 4f (however, alpha= 0.5 to 0.8 and Vs a shear wave volocity of the ground and f vibration frequency).

[Detailed Description of the Invention]

[0001]

[Industrial Application] This invention relates to the vibration-deadening method for controlling an oscillation of the structures, such as a building installed in foundation structure objects by control of the propagation of vibration to surrounding earth surface and propagation of an oscillation, such as a foundation structure object which installed for example, the press machine etc., or the railroad structure, and the earth surface of those.

[0002]

[Description of the Prior Art] In recent years, the vibration hazards to the structure circumference are occurring frequently by mechanical vibration or traffic oscillation, and a cure which prevents a vibration hazard is desired strongly. Especially, in the case of the pile foundation on a weak ground, an oscillation spreads into a weak stratum, and the effect of the earth surface on the circumference of it is large, and the excellence oscillation of subsurface layers may be induced.

[0003] As one of the methods which prevents such a vibration hazard, a trench may be prepared in the perimeter of the basic structure which emits an oscillation. However, by this method, since it is actually impossible to hold a perfect trench, it is necessary to install an end dam and a timbering member, and the vibration-deadening effect decreases by an end dam etc. Moreover, the land use of a trench portion becomes impossible.

[0004] Moreover, there is also a method of installing a rigid high subterranean vertical wall in the perimeter of the foundation structure object which emits an oscillation.
[0005]

[Problem(s) to be Solved by the Invention] The technical problem which this invention tends to solve is to acquire the vibration-deadening effect higher than the conventional vibration-deadening method, aiming at a deployment of a ground. [0006]

[Means for Solving the Problem] The feature of this invention is as follows. That is, or it emits an oscillation, a rigid high plate block is horizontally formed in **** underground of a lower part of a foundation structure object which receives an oscillation, or around the basic structure from the circumference ground.

[0007] As a result of changing vibration frequency, the depth, width of face, thickness, and rigidity to a certain layered ground and performing analysis by the finite element method, to this plate block And basic width of face of a foundation structure object and width of face more than comparable, The rigidity of 3 to 5 times or more of the circumference ground is given with 1/5 or more-about thickness of width of face of a

plate block, and a shear wave volocity, and it installs in alpha-Vs / a depth of 4f (however, alpha= 0.5 to 0.8 and Vs a shear wave volocity of the ground and f vibration frequency). Thus, when a plate block was laid underground, it turned out that it is effective in vibration deadening. Furthermore, this was checked by experiment. [0008]

[Function] The predominant period to Thickness H is defined as follows about propagation of the P wave of a body wave, and an S wave by the stratification ground, respectively.

About Tp=4 H/VpS wave propagation, Ts=4 H/Vs, however Tp are [propagation / of a P wave / an S wave period and H of a P wave period and Ts] the distance from the earth surface to the Takemoto velum.

[0009] When the representation period of the loading of a foundation structure object is set to To, it is expressed as To=lambda o/V=1/f. As BARAME-TA - on analysis, if Tp/To and Ts/To are taken, these parameters will serve as Tp/To and Ts/To=4 H/lambda o=4 Hf/V=alpha. lambdao is [wave propagation speed and f of representative wave wavelength and V] the vibration frequency of a wave.

[0010] Tp/To and Ts/To are changed, as a result of investigating the ratio of the maximum response value A of the base searched for analytically, and the maximum response value Ao on the half-infinity ground, and the relation of Tp/To and Ts/To, resonance of the ground is notably seen at Tp/To and the time of Ts/To=1, and A/Ao becomes a peak. Tp/To and in the case of Ts/To>1, the wave-motion propagation phenomenon from a base occurs, and the response condition of the half-infinity ground is approached in a locking, a vertical, and level order with thickness. Tp/To and in the case of Ts/To<1, it becomes smaller than the response condition of the half-infinity ground, and they came to give the vibration-deadening effect to a basic response.

[0011] That is, it becomes possible by designing a rigid high plate as a virtual Takemoto velum so that Tp/To and Ts/To=alpha may become one or less to consider as a basic vibration-deadening mechanism. That is, the vibration-deadening effect can be brought about by installing a plate in the location which makes alpha in H=alpha-V / 4f one or less.

[0012] The above-mentioned analysis result is expressed with drawing 7. In this drawing, maximum response value ratio A/Ao is taken along an axis of ordinate, Tp/To and Ts/To are taken along a horizontal axis, it is the chain line about vertical vibration as a continuous line in a horizontal vibration, and the dashed line shows the locking, respectively.

[0013] Next, an experimental result shows the vibration-deadening effect by laying-under-the-ground plate block. An experiment location is located in the Okayama Asahikawa down-stream region, the alluvium constituted from sandy soil and a very weak clay stratum by the upper part is distributed, and the with an N-ary of 50 or more gravel bed is distributed from near GL-18m. Moreover, as a result of carrying out PS logging, about Vs, 100 - 340 m/sec showed the velocity distribution corresponding to N-ary mostly.

[0014] As drawing 8 showed, basic structure adopted as this experiment was made into the pile foundation by H beam 2 which makes a bearing stratum the gravel bed placed on the diagonal line of a footing 1. Furthermore, as the vibration-deadening method, the plate block 3 was installed in the location of GL-1.9m with the high voltage injection stirring method of construction in the one direction, and the vertical wall 4 by the machine stirring method of construction was established in another direction as an object for a comparison.

[0015] The shape of a plan type is one-side the square it is [square] 3000mm, and 500mm in thickness and H beam 2 are set up for the footing 1 on the base by the thickness of 19mm of 350mm long, 350mm wide, and the parallel both-sides section, the thickness of 12mm of the connection section of the both-sides section, and length of 17.5m. And the main gap of H beam 2 is [0016] which is 1600mm and by which 100mm at a head is embedded at the footing 1. the plate block 3— the shape of a plan type — 11000mm of bases, the top chord of 9200mm, and a height of 5300mm — it is a trapezoid mostly and thickness is 1000mm. moreover, the shape of a plan type of the vertical wall 4 is 750mm long and 6350mm wide — mostly, nothing and thickness are 6000mm and the rectangle was prepared in a depth of 760mm from surface of the earth.

[0017] The experiment adopted the free vibration trial and performed the vertical drop test to the upper surface of a footing 1, and the level impact test to the side of a footing 1. Drawing 9 shows the result of a vertical drop test, and has taken the ratio [as opposed to the vertical response value before execution of the plate block 3 and the vertical wall 4 for the distance from a footing 1] of the vertical response value after execution, i.e., a vertical response value ratio, along the axis of ordinate on the horizontal axis in vertical excitation with a vibration frequency of 10Hz. Moreover, drawing 10 showed the result of a level impact test, and has taken along the axis of ordinate on the horizontal axis similarly in level excitation with a vibration frequency of 9Hz, the ratio, i.e., the level response value ratio, of the level response value [as opposed to the level response value before execution of the plate block 3 and the

vertical wall 4 for the distance from a footing 1] after execution.

[0018] Moreover, from the result of a vertical drop test and a level impact test, it can set at the point of the right above of the plate block 3, and a footings [of the vertical wall 4 / 1–10m] point. When the ratio of each maximum plate block 3–with vertical response value and level response value and execution before of the vertical wall 4 and after execution is taken and compared, in vertical excitation A vertical response value is 0.670 and level response values are the plate block 0.568 and the vertical wall 0.740 in the plate block 0.787 and a vertical wall. In level excitation, vertical response values are the plate block 0.263 and the vertical wall 0.907, and level response values are the plate block 0.324 and the vertical wall 0.808.

[0019] It became clear especially by the above-mentioned analysis result and the test result that the vibration-deadening effect has a high plate block compared with a vertical wall.

[0020]

ż

[Example] The example of <u>drawing 1</u> and <u>drawing 2</u> shows the case where the structure 11 which emits an oscillation is supported by caisson foundation 12a. 13a is a plate block, is detached to the degree to which inner skin does not contact caisson foundation 12a, and is installed disc-like. It may change to caisson foundation 12a, and a pile foundation may be used.

[0021] As a foundation structure object which emits an oscillation, <u>drawing 3</u> shows the example of landfill basic 12b which carried the orbit for railroads. In this case, plate block 13b is installed in landfill basic 12b and parallel. In addition, although not illustrated, when it is spread foundation, it is the width of face same directly under spread foundation as it, or a plate block is installed like <u>drawing 1</u> and <u>drawing 2</u> by the same width of face as the perimeter [directly under] of underground of it.

[0022] The example of <u>drawing 4</u> shows the case where the building 14 set up on spread foundation 12c prevents the oscillation of the ground. In this example, plate block 13c is installed directly under spread foundation 12c. Although not illustrated, a plate block may be installed in the perimeter [directly under] of underground of spread foundation 12c.

[0023] In the above example, it is the width of face of Bases 12a-12c, and W is the width of face of the plate blocks 13a-13c, W>=1.00B and t are the thickness of the plate blocks 13a-13c, and the inside B of drawing is 1/5 or more [of W]. Moreover, H is the depth of the plate blocks 13a-13c from surface of the earth, and is H**alpha.Vs/4, andf. However, they are the shear rate (m/sec) of Vs= ground, alpha=0.5 to 0.8, and f= vibration frequency (Hz). And the plate blocks 13a-13c are formed

with concrete with the rigidity of 3 to 5 times or more of the shear wave volocity Vs of the circumference ground, and the amount of cement is adjusted so that said rigidity may be held.

[0024] After excavating in the predetermined depth, giving timbering 16 after end-dam ****** with the end-dam sheet pile 15 like drawing 5 when workspace can be taken, the plate blocks 13a-13c, for example, 13c, are formed of concrete placing, it removes the end-dam sheet pile 15 and timbering 16, and is returned.

[0025] When workspace cannot be taken, the plate blocks 13a-13c are formed by the high voltage injection stirring method of construction which used the soil improvement machine 17 like <u>drawing 6</u>. According to this method of construction, the plate blocks 13a-13c are formed so that the periphery sections may overlap a disc mutually.

[0026] In addition, the shape of a plan type of the plate blocks 13a-13c answers the configuration of Bases 12a-12c, if the shape of a basic plan type is circular and a rectangle, when preparing in directly under, when preparing in the perimeter [directly under] again at circular and a rectangle, an inner circumference edge will be formed in circular and a rectangle, and a periphery edge will be formed in circular and a rectangle, respectively. moreover, a line — to the structure, for example, the railroad structure etc., it forms in directly under or circumference underground along with the structure at the structure and parallel.

[0027]

Ì

[Effect of the Invention] Also actively, the also passively high vibration-deadening effect is brought about about many foundation structure objects, such as soil bases, such as caisson foundation, a pile foundation, spread foundation, and landfill, without barring utilization of a ground. Therefore, prevention of a passive oscillation of the building prepared on the super bank etc. is expectable.

[Drawing 1]

[Drawing 2]

[Drawing 3]

[Drawing 4]

[Drawing 5]

[Drawing 7]

[Drawing 8]

[Drawing 9]

Ţ

鉛直加振(振動数10 Hz)

[Drawing 10]

水平加振(振動数9Hz)

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-003829

(43) Date of publication of application: 06.01.1995

(51)Int.CI.

E02D 31/08 E04H 9/02

(21)Application number: 05-172363

(71)Applicant: TAKEMIYA HIROKAZU

AISAWA KOGYO KK

RAILWAY TECHNICAL RES INST

(22)Date of filing:

18.06.1993

(72)Inventor: TAKEMIYA HIROKAZU

NISHIMURA AKIHIKO

NARUSE RYUICHIRO

(54) VIBRATION CONTROLLING METHOD BY BURIED BOARD BLOCK

(57)Abstract:

PURPOSE: To obtain a high vibration controlling effect in excess of a conventional vibration-controlling method while contriving effective use of land.

CONSTITUTION: Board blocks 13a having rigidity higher than the peripheral ground are provided right under a foundational structure 12a originating or receiving vibration or under the surrounding thereof. In the case the foundational structure 12a originates vibration, the propagation of vibration to the peripheral ground is suppressed, and in the case the foundational structure receives vibration, the propagation of vibration to the foundational structure is suppressed.

This corresponds to the publication of Patent No. 2850187.

LEGAL STATUS

[Date of request for examination] 23.10.1995

[Date of sending the examiner's decision of 24.03.1998

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

2850187 [Patent number]

13.11.1998 [Date of registration]

10-06636 [Number of appeal against examiner's decision

of rejection]

(19)日本国特許庁 (JP)

(12) 特 許 公 報 (B2)

(11)特許番号

第2850187号

(45)発行日 平成11年(1999) 1月27日

(24)登録日 平成10年(1998)11月13日

(51) Int.Cl.4

Ą

識別記号

FΙ

E 0 2 D 31/08

E 0 2 D 31/08

請求項の数1(全 6 頁)

			· · · · · · · · · · · · · · · · · · ·
(21)出願番号	特顯平5-172363	(73)特許権者	593133958
			竹宮 宏和
(22)出顧日	平成5年(1993)6月18日	1	岡山県岡山市津島本町15番23号
		(73)特許権者	591041727
(65)公開番号	特開平7-3829		アイサワ工業株式会社
(43)公開日	平成7年(1995)1月6日		岡山県岡山市表町一丁目5番1号
審査請求日	平成7年(1995)10月23日	(73)特許権者	000173784
		·	財団法人鉄道総合技術研究所
前置審査			東京都国分寺市光町2丁目8番地38
		(73)特許権者	394006059
			岩水開発株式会社
			岡山県岡山市福吉町18番18号
		(72)発明者	竹宮 宏和
			岡山県岡山市津島本町15番23号
		(74)代理人	弁理士 山上 正晴
			, , ,
		審査官	宮崎 恭
			最終頁に続く

(54) 【発明の名称】 埋設平板プロックによる制振方法

1

(57)【特許請求の範囲】

【請求項1】 振動を発する又は振動を受ける基礎構造物の下方の地中、或いは基礎構造物の周囲の地中に、周辺地盤より剛性の高い平板ブロックを水平方向に設ける制振方法に於いて、平板ブロックは、基礎構造物の基礎幅と同程度以上の幅と、平板ブロックの幅の1/5程度以上の厚みと、剪断波速度で周辺地盤の3~5倍以上の剛性とを有し、α・Vs/4f(但しα=0.5~0.8、Vsは地盤の剪断波速度、fは振動数)の深さに設置される埋設平板ブロックによる制振方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】との発明は、例えばプレス機等を 設置した基礎構造物或いは鉄道構造物などの周辺の地表 面への振動伝播の抑制、及び振動の伝播による、基礎構 2

造物に設置された建物等の構造物やその地表面の振動を 抑制するための制振方法に関する。

[0002]

【従来の技術】近年、機械振動や交通振動によって構造物周辺への振動障害が多発しており、振動障害を防ぐ対策が強く望まれている。特に軟弱地盤上の杭基礎の場合、振動が軟弱層内へ伝播されてその周辺の地表面への影響が大きく、又表層地盤の卓越振動が誘発されることもある。

.0 【0003】とのような振動障害を防止する方法の一つとして、振動を発する基礎構造物の周囲にトレンチを設ける場合がある。しかしとの方法では、完全なトレンチを保持することは実際には不可能なため、土留や支保部材を設置する必要があり、土留などによって制振効果が減少する。又トレンチ部分の土地利用ができなくなる。

【0004】又剛性の高い地中鉛直壁を、振動を発する 基礎構造物の周囲に設置する方法もある。

[0005]

【発明が解決しようとする課題】との発明が解決しよう とする課題は、土地の有効利用を図りつつ、従来の制振 方法より高い制振効果を得ることにある。

[0006]

【課題を解決するための手段】との発明の特徴は、次の とおりである。即ち、振動を発する又は振動を受ける基 礎構造物の下方の地中、或いは基礎構造物の周囲の地申 に、周辺地盤より剛性の高い平板ブロックを水平方向に 設ける。

【0007】そしてある層状地盤に対して振動数、深 さ、幅、厚み、剛性を変化させて有限要素法による解析 を行なった結果、との平板ブロックに、基礎構造物の基 礎幅と同程度以上の幅と、平板ブロックの幅の1/5程 度以上の厚みと、剪断波速度で周辺地盤の3~5倍以上 の剛性とを持たせ、 $\alpha \cdot V s / 4 f$ (但し $\alpha = 0.5$ ~ 0.8、Vsは地盤の剪断波速度、fは振動数)の深さ に設置する。このように平板ブロックを埋設すると、制 20 振に有効であることがわかった。さらにこれを実験によ り確認した。

[0008]

【作用】成層地盤では、実体波のP波及びS波の伝播に つき、それぞれ層厚Hに対する卓越周期が次のように定

P波の伝播については、Tp=4H/Vp S波の伝播については、Ts = 4H/Vs但しTpはP波周期、TsはS波周期、Hは地表面から 剛基面盤までの距離である。

【0009】基礎構造物の載荷の代表周期をToとする と、 $To = \lambda o / V = 1 / f$ として表される。解析上の バラメーターとして、Tp/To、Ts/Toをとる と、これらのパラメーターは、

Tp/To, $Ts/To=4H/\lambda o=4Hf/V=\alpha$ となる。λοは代表波波長、Vは波の伝播速度、fは波 の振動数である。

【0010】Tp/To、Ts/Toを変化させ、解析 的に求めた基礎の最大応答値Aと半無限地盤上の最大応 答値Aoとの比と、Tp/To、Ts/Toの関係を調 べた結果、Tp/To、Ts/To=1のとき地盤の共 振が顕著に見られ、A/Aoはピークになる。Tp/T o、Ts/To>1の場合は基礎からの波動伝播現象が 起き、層厚とともにロッキング、鉛直、水平の順に半無 限地盤の応答状態に近づく。Tp/To、Ts/To< 1の場合は半無限地盤の応答状態よりも小さくなり、基 礎の応答に制振効果を与えるようになった。

[0011] ozb, Tp/To, $Ts/To = \alpha M1$ 以下になるように仮想剛基面盤として剛性の高い平板を 設計するととにより、基礎の制振メカニズムとすること 50 の、平板ブロック3及び鉛直壁4の施工前と施工後のそ

が可能となる。即ち、

 $H = \alpha \cdot V / 4 f$

に於けるαを1以下とする位置に平板を設置すること で、制振効果をもたらすことができる。

4

【0012】上記の解析結果を図7で表す。同図に於い て縦軸に最大応答値比A/Aoを、横軸にTp/To、 Ts/Toをとり、水平振動を実線で、鉛直振動を鎖線 で、又ロッキングを1点鎖線でそれぞれ示している。 【0013】次に埋設平板ブロックによる制振効果を実

験結果で示す。実験場所は岡山市旭川下流域に位置し、 上部に砂質土と非常に軟弱な粘土層で構成される沖積層 が分布し、GL-18m付近よりN値50以上の砂礫層 が分布している。又PS検層を実施した結果、Vsにつ いては100~340m/secでほぼN値に対応した 速度分布を示した。

【0014】図8で示すように、本実験に採用した基礎 構造は、フーチング1の対角線上に打設した砂礫層を支 持地盤とするH型鋼2による杭基礎とした。さらに制振 方法としては、1方向に平板ブロック3を、GL-1. 9mの位置に高圧噴射攪拌工法により設置し、比較対象 として別方向に機械攪拌工法による鉛直壁4を設けた。 【0015】 フーチング1は平面形状が1辺3000m mの正方形で、厚さ500mm、H型鋼2は縦350m m、横350mm、平行な両側部の厚み19mm、両側 部の連結部の厚み12mm、長さ17.5mで基礎上に 立設されている。そしてH型鋼2の中心間隔は1600 mmで、先端の100mmがフーチング1に埋め込まれ ている

【0016】平板ブロック3は平面形状が底辺1100 0mm、上辺9200mm、高さ5300mmのほぼ台 形であり、厚さは1000mmである。又鉛直壁4は平 面形状が縦750mm、横6350mmのほぼ矩形をな し、厚さは6000mmで、地表から760mmの深さ に設けられた。

【0017】実験は自由振動試験を採用し、フーチング 1の上面への鉛直落下試験と、フーチング1の側面への 水平打撃試験を行なった。図9は鉛直落下試験の結果を 示すもので、振動数10Hzの鉛直加振に於いて、横軸 にフーチング1からの距離を、縦軸に平板ブロック3及 び鉛直壁4の施工前鉛直応答値に対する施工後鉛直応答 値の比、即ち鉛直応答値比をとっている。又図10は水 平打撃試験の結果を示し、振動数9Hzの水平加振に於 いて、同様に横軸にフーチング1からの距離を、縦軸に 平板プロック3及び鉛直壁4の施工前水平応答値に対す る施工後水平応答値の比、即ち水平応答値比をとってい

【0018】又鉛直落下試験と水平打撃試験との結果か ら、平板ブロック3の直上の点と鉛直壁4のフーチング 1から10mの点に於ける、鉛直応答値と水平応答値と

れぞれの最大値の比をとって比較すると、鉛直加振では、鉛直応答値が平板ブロック0.787、鉛直壁で0.670、水平応答値が平板ブロック0.568、鉛直壁0.740である。水平加振では、鉛直応答値が平板ブロック0.263、鉛直壁0.907、又水平応答値が平板ブロック0.324、鉛直壁0.808である

【0019】上記解析結果、試験結果により、特に平板 ブロックが鉛直壁に比べて制振効果が高いことが明らか になった。

[0020]

【実施例】図1及び図2の実施例は、振動を発する構造物11をケーソン基礎12aで支持した場合を示す。13aは平板ブロックで、内周面がケーソン基礎12aに接触しない程度に離して円盤状に設置されている。ケーソン基礎12aに替えて杭基礎を用いてもよい。

【0021】振動を発する基礎構造物として、例えば鉄道用の軌道を載せた盛土基礎12bの実施例を図3で示す。この場合平板ブロック13bは盛土基礎12bと平行に設置される。なお図示しないが直接基礎の場合は、直接基礎の直下にそれと同じ幅で、又は図1、図2と同様にその直下の地下周囲に同じ幅で平板ブロックを設置する。

【0022】図4の実施例は、直接基礎12c上に立設した建物14が地盤の振動を防ぐ場合を示す。との実施例では平板ブロック13cは、直接基礎12cの直下に設置されている。図示しないが、直接基礎12cの直下の地下周囲に平板ブロックを設置してもよい。

【0023】以上の実施例で図中Bは基礎 $12a\sim12$ cの幅、Wは平板ブロック $13a\sim13$ cの幅で、W \ge 1.00 B、 t は平板ブロック $13a\sim13$ cの厚みで、W 01/5 以上である。又 H は地表からの平板ブロック $13a\sim13$ cの深さであって、H $= \alpha$. V s/4 · f である。但 0 V s = 地盤の剪断速度(0 M 0 S 0 C。 0 C。

【0024】平板ブロック13a~13c、例えば13 cは、作業スペースを取れる場合には図5のように土留 鋼矢板15で土留め工施工後、支保工16を施しながら 所定の深さに掘削したのち、コンクリート打設により形 成され、土留め鋼矢板15及び支保工16を撤去して埋 め戻される。

【0025】作業スペースが取れない場合、平板ブロック13a~13cは、図6のように地盤改良機17を用いた高圧噴射攪拌工法により形成される。この工法によると平板ブロック13a~13cは、円盤を周縁部が互いに重なり合うように形成される。

【0026】なお平板ブロック13a~13cの平面形状は、基礎12a~12cの形状に応ずるもので、例えば基礎の平面形状が円形、矩形であれば、直下に設ける場合はそれぞれ円形、矩形に、又直下の周囲に設ける場合には内周縁は円形、矩形に、外周縁は円形、矩形に形成する。又線状構造物、例えば鉄道構造物などに対しては、構造物に沿って直下或いは周辺地下に構造物と平行に形成する。

[0027]

【発明の効果】ケーソン基礎、杭基礎、直接基礎、盛土 20 などの土基礎など多くの基礎構造物について、土地の利 用を妨げることなく、能動的にも受動的にも高い制振効 果をもたらす。従ってスーパー堤防上に設けられた建築 物の受動的振動の防止なども期待できる。

【図面の簡単な説明】

- 【図1】ケーソン基礎の実施例を示す縦断面略図である。
- 【図2】図1の平面略図である。
- 【図3】盛土基礎の実施例を示す縦断面略図である。
- 【図4】受動的制振の実施例を示す縦断面略図である。
- 【図5】掘削による平板ブロックの設置を示す縦断面略 図である。
- 【図6】高圧噴射攪拌工法による平板ブロックの設置を 示す縦断面略図である。
- 【図7】平板ブロックの制振原理を説明するための解析 図である。
- 【図8】平板ブロックの制振効果を実験するための設備 の縦断面略図である。
- 【図9】基礎を鉛直加振した実験の解析値と実験値との 比較図である。
- 0 【図10】基礎を水平加振した実験の解析値と実験値との比較図である。

【図9】

【図10】

水平加振(振動数9Hz)

フロントページの続き

(72)発明者 西村 昭彦

東京都国分寺市光町2丁目8番地38 財

(56)参考文献

特開 昭56-67024 (JP, A) 特開 昭53-142010 (JP, A)

団法人鉄道総合技術研究所内

特開 昭51-31009(JP, A)

岡山県岡山市惣爪136番地の1

特開 昭55-155829(JP, A)

特表 平3-500430 (JP, A)

(72)発明者

成瀬 龍一郎

(58)調査した分野(Int.Cl.*, DB名) E02D 31/08