

ELEKTROKARDIOGRAFI

Pengertian.

Elektrokardiografi adalah ilmu yang mempelajari aktifitas listrik jantung.

- Elektrokardiogram (EKG) adalah suatu grafik yang menggambarkan rekaman listrik jantung.
- Aktifitas listrik jantung dicatat dan direkam melalui elektroda – elektroda yang dipasang pada permukaan tubuh.

2

Jenis pemeriksaan EKG

Resting ECG,

 Perekaman EKG yang dilakukan ketika istirahat.

 Mecatat aktivias listrik jantung secara kontinu (biasanya 24 jam).

Exercise ECG (Stress test/ teadmill)

III. FISIOLOGI JANTUNG : Sistem Konduksi

• Fungsi jantung:

Nemompa darah secara kontinu ke jaringan, menyuplai 02 dan zat-zat nutrisi serta mengangkut CO2 dan hasil buangan sisa metabolisme untuk di ekskresikan melalui organ-organ sekresi

E ektrofisiologi jantung

Jantung dibentuk oleh 3 sel eksitasi, yaitu:

- sel-sel pace maker, sbg sumber bioelektrik jantung. dlm keadaan normal sel pacemaker dominan berada di SA node
- b. Sel-sel konduksi, (jaringan neuromuskular yg membentuk traktus internodal atium, berkas his atau serat purkinye) penghantar arus bioelektris.
- c. Sel-sel miokardium, untuk kontraksi

5

Membran sel otot jantung pada keadaan istirahat berada dalam (stadium) polarisasi, dengan bagian luar berpotensi positif dibandingkan bagian dalam selisih potensial ini disebut potensial membran.

- Bila membran otot jantung dirangsang, sifat permeabel berubah sehingga ion Na masuk ke dalam sel, yang menyebabkan potensial membran, Perubahan ini disebut depolarisasi.
- Setelah proses depolarisasi selesai, maka potensial membran kembali mencapai keadaan semula yaitu proses repolarisasi.

Arah Arus Depolarisasi

- Arah arus depolarisasi digambarkan memiliki arah dan intensitas tersendiri, jika digabungkan akan membentuk vektor utama sebagai aksis jantung.
- Normal aksis jantung mengarah dari nodus SA menuju apek jantung.
- Aksis normal selalu terdapat antara 30° sampai +110°.

Sandapan (lead) EKG

A. Sandapan (lead) bipolar

Sandapan (lead) I

Merekam perbedaan potensi listrik antara ekstremitas kiri atas dengan kanan atas.

Sandapan (lead) II

 Merekam perbedaan potensi listrik antara ekstremitas kanan atas dengan ekstremitas kiri bawah.

Sandapan (lead) III

 Merekam perbedaan potensi listrik antara ekstremitas kiri atas dengan ekstremitas kiri bawah.

10

Sandapan (lead) Unipolar: Ekstremitas.

- Sandapan (lead) aVR.
 - Merekam potensi listrik pada tangan kanan (RA).
- Sandapan (lead) aVL.
 - Merekam potensi listrik pada tangan kiri (LA).
- Sandapan (lead) aVF.
- Merekam potensi listrik pada kaki kiri (F).

Sandapan (lead) Unipolar: Ekstremitas.

Sandapan (lead) Unipolar: Prekordial

Sandapan (lead) V₁.

- Ruang interkosta IV garis sternal kanan.
- Untuk menggambarkan septal jantung.
- Sandapan (lead) V₂.
- Ruang interkosta IV garis sternal kiri.
- Untuk menggambarkan septal jantung.
- Sandapan (lead) V₃.
- Pertengahan antara V₂ dan V₄.
- Untuk menggambarkan anterior jantung.

14

(Lanjutan) Sandapan (lead) Unipolar : Prekordial

Sandapan (lead) V₄.

- Ruang interkostaV MCLS.
- Untuk menggambarkan anterior jantung.

Sandapan (lead) V₅.

- Sejajar dengan V₄ pada garis aksila anterior kiri.
- Untuk menggambarkan lateral jantung.

Sandapan (lead) V₆.

- Sejajar V₅ pada garis midaksilaris kiri.
- Untuk menggambarkan lateral jantung.

Precordial Leads (Sandapan Dada)

Kertas EKG

- Kertas grafik yang terdiri dari bidang horizontal (mendatar) dan vertikal (keatas), yang berjarak 1 mm (satu kotak kecil).
- Garis horizontal menggambarkan waktu, dimana 1 mm = 0.04 detik, sedangkan 5 mm = 0.2 detik.
- Garis vertikal menggambarkan voltase, dimana 1 mm = 0.1 mV, sedangkan 10 mm = 1 mV.
- Pada perekaman normal sehari-hari, kecepatan kertas dibuat 25 mm/detik, kalibrasi pada 1 mV. Bila dirubah harus dicatat pada setiap sandapan (lead).

KertasEKG

- 0.2 sec - .04 sec -

Segmen ST

- Segmen ST, menggambarkan repolarisasi ventrikel awal, berlangsung dari akhir gel S sampai permulaan gel T.
- Normalnya isoelektrik (tanpa variasi potensial listrik). boleh berkisar – 0,5 s/d + 2 mm (Widjadja S)

Kepentingan:

- Elevasi segmen ST terdapat pada : MI, aneurisma, perikarditis, dll
- Depresi segmen ST terdapat pada : angina pectoris, efek digitali

25

P - R Interval

- P–R Interval adalah jarak dar permulaan gelombang P sampai dengan permulaan gelombang Q.
- menggambaran waktu yang dibutuhkan untuk depolarisasi atrium atau lamanya impuls dari nodus SA melalui nodus AV sampai ke berkas His.
- Normal P–R interval yaitu 0,12 0,20 detik.
- Memanjang pada gangguan hantaran pada nodus AV : seperti pada kelainan blok AV

Gelombang T

- Menggambarkan fase repolarisasi ventrikel
- Arah normalnya : sesuai arah gel. U atau komplek QRS
- Amplitudo normal: kurang dari 10 mm di sadapan dada; kurang dari 5 mm di sadapan ekteremitas. Minimum 1 mm

Kepentingan:

- menandakan adanya iskemik/infark
- Infark : gel. T mendatar, bifasik atau terbalik
- Menandakan adanya kelainan elektrolit: Hiperkalemia T tinggi
 Hipokalemia T datar atau terbalik

T Interval

- Jarak antara permulaan gel. Q s/d akhir gelombang T
- Menggambarkan lamanya aktivitas depolarisasi dan repolarisasi ventrkel
- Normalnya laki2 : 0,42 dtk

Wanita : 0,43 dtk

- Nilai Memanjang pada hypokalsemia dan memendek pada hyperkalsemia

INTERPRESTASI EKG

- Tentukan irama jantung (Rhytme).
- Tentukan frekuensi. (Rate)
- Tentukan sumbu jantung. (Axis)
- Tentukan ada tidaknya Hipertropi.
- Tentukan ada tidaknya iskemik atau infark.
- Tentukan ada tidaknya tanda akibat gangguan elektrolit.

29

Langkah Interpretasi:

- R hythm
- R ate
- A xis
- H ypertrophy
- I schemia
- I nfacrt

1. Menenentukan Irama, *irama* sinus atau bukan

Kriteria Irama Sinus :

- Irama teratur
- HR 60 100 x/mnt
- Gel. P normal, setiap gel. P selalu diikuti gelombang QRS dan T
- Interval PR normal (0,12 0,20 dtk)
- Gel. QRS normal (0,06 0,12 dtk)
- Semua gel. sama

Irama sinus disebut dengan sinus rhythm (SR)

-1

2. Frekwensi

Menentukan frekwensi (HR) Ada 3 cara sbb:

- a. 300 : jml kotak besar antar R R
- b. 1500 : jml kotak kecil antar R R
- c. Ambil EKG strip sepanjang 6 detik, hitung jumlah QRS dan kalikan 10

33

3. Menentukan sumbu jantung (Axis)

- Lihat sandapan (lead) I Jumlahkan ketinggian R dan kedalaman S (+/-).
- Lihat sandapan (lead) aVF.
 Jumlahkan ketinggian R dan kedalaman S (+/-).
- Lalu buat gradiennya
- Tentukan normal axis, axis bergerak ke kiri (LAD), axis bergerak ke kanan (RAD), atau indeterminate axis (IND)

34

Menentukan sumbu jantung (axis)

Menentukan Hipertropi Atrium.

- Hipertropi Atrium Kanan (RAH).
 Ditandai gelombang P yang lancip disebut P
 Pulmonal. Tinggi gelombang P diatas 0.25 mV. (2.5 kotak kecil) pada II, III, aVF.
- Hipertropi Atrium Kiri (LAH).
 Ditandai gelombang P yang lebar disebut P Mitral.
 Lebar gelombang lebih dari 0.12 detik.

Menentukan Hipertropi Ventrikel

- Hipertropi Ventrikel Kanan (RVH).
 Perbandingan tinggi gelombang R dengan gelombang S lebih dari 1 di V1.
- Hipertropi Ventrikel Kiri (LVH).
 Gelombang R di sandapan V5 atau V6 lebih dari 25 mm atau jumlah tinggi/kedalaman gelombang S di sandapan V1 atau V2 ditambah tinggi gelombang R di V5 atau V6 lebih dari 35 ml.

7

Menentukan tanda iskemik dan infark

- Iskemik miokard ditandai tanda adanya ST Depresi atau gelombang T terbalik.
- Infark miokard ditandai dengan ST Elevasi (STEMI) atau Q patologis (Non STEMI).

Lokasi: infark

- Infark septal pada V₁ dan V₂.
- Infark anterior pada V₃ dan V₄.
- Infark anteroseptal pada V₁, V₂, V₃, dan V₄
- Infark lateral pada V₅ dan V₆.
- Infark inferior pada II, III, dan aVF.
- Infark ekstensif anterior pada I, aVL, V₁ V₆.

