平成 20 年 8 月 19 日(火)

 $10:00\sim12:00$

平成 21 年度大学院前期課程入学試験

回路理論

入試問題

【注意事項】

問題の数は5問である。解答は

問題1を1枚目(白色)の解答用紙

問題2を2枚目(赤色)の解答用紙

問題3を3枚目(青色)の解答用紙

問題4を4枚目(黄色)の解答用紙

問題5を5枚目(水色)の解答用紙

に記入すること。

図1の回路において、t<0でスイッチ SW は a 側に接続されており、定常状態にある。t=0 でスイッチ SW を b 側に切り替えるものとする。ただし、R、 r_1 、 r_2 、C、E は、全て正の実数である。

- (1) スイッチ SW を切り替える直前(t=0)での図示の電圧 $v_C(t)$ の値 $v_C(0$)を求めよ.
- (2) 図示の電圧 $v_C(t)$ $(t \ge 0)$ のラプラス変換 $V_C(s)$ を求めよ.
- (3) 図示の電圧 $v_C(t)$ ($t \ge 0$) を求めよ.

図 1

問 2 (20 点)

図 2 に示す回路について角周波数 ω である電圧 Eを A B 間に加える。正弦波定常状態において,抵抗 R_I を流れる電流 I_I の位相が電圧 E の位相よりも $\pi/2$ 進むために必要な角周波数 ω の条件を求めよ。

図 2

問 3 (20 点)

図 3a の角周波数 ω の正弦波定常状態にある交流回路に関して、以下の設問に答えよ。ただし、 \hat{V} は電圧源の電圧フェーザ (角周波数: ω , 振幅: $|\hat{V}|$)、 $g\hat{V}$ は電圧制御電流源の電流フェーザ (g はコンダクタンス)、 \hat{E}_0 はポート 1-1' の開放電圧フェーザを示す。

- (1) ポート 1-1'の開放電圧フェーザ E_0 を求めよ。
- (2) ポート 1-1' から見たノートン等価回路を示せ。
- (3) 図 3a のポート 1-1'にアドミッタンス $Y_l = 1/R_l + 1/(j\omega L)$ の負荷を接続した (図 3b)。
 - (a) 負荷 Y_l の両端に発生する電圧フェーザ V_l を求めよ。
 - (b) L のみが可変である時に $\stackrel{\bullet}{V}_{l}$ の振幅 $|\stackrel{\bullet}{V}_{l}|$ を最大にする L の条件を、本文中の記号 (ω,R,C) を用いて示せ。また、その時の $|\stackrel{\bullet}{V}_{l}|$ を示せ。

図 3b

図の回路は MOSFET 多段増幅回路の信号成分に関する等価回路である。信号成分が正弦波定常状態にあるとするとき、以下の各間いに答えよ。

(1) ポート①-①', ②-②'で挟まれた部分回路を2ポート回路として、その伝送行列 $F_1(j\omega)$

$$(F_{\mathrm{I}}(j\omega) = \begin{pmatrix} A_{\mathrm{I}} & B_{\mathrm{I}} \\ C_{\mathrm{I}} & D_{\mathrm{I}} \end{pmatrix}$$
は $\begin{pmatrix} \dot{V}_{\mathrm{I}} \\ \dot{V}_{\mathrm{I}} \\ \dot{I}_{\mathrm{I}} \end{pmatrix} = \begin{pmatrix} A_{\mathrm{I}} & B_{\mathrm{I}} \\ C_{\mathrm{I}} & D_{\mathrm{I}} \end{pmatrix} \begin{pmatrix} \dot{V}_{\mathrm{2}} \\ \dot{V}_{\mathrm{2}} \\ \dot{I}_{\mathrm{2}} \end{pmatrix}$ を満たす行列)を求めよ。

- (2) ポート②-②',③-③'で挟まれた部分回路を2ポート回路として、その伝送行列 $F_2(j\omega)$ を求めよ。
- (3) ポート①-①', ④-④'で挟まれた部分回路を2ポート回路として、その伝送行列 *F*(*jω*)を求めよ。
- (4) 電圧増幅度 $A = \frac{V_4}{V_1}$ の周波数特性を求め、ボード線図に図示せよ。

図 4

問 5 (20 点)

図 5 に示す演算増幅器を用いた回路について、下記の問いに答えよ. ただし、演算増幅器 (operational amplifier) 単体の入力インピーダンスは十分に高く、出力インピーダンスは十分低いものとする. ここで、A 及び R_{l} 、 R_{l} はすべて正の実数である.

- (1) この回路の電圧利得 $G_V = V_{out} / V_{in}$ を演算増幅器単体の電圧利得 A 及び R_i , R_f を用いて表せ.
- (2) 演算増幅器単体の電圧利得Aが十分大きい ($A=\infty$)として,回路の電圧利得 G_{Videal} を求めよ.
- (3) G_V を $G_{V,ideal}$ に対して 1%以下の誤差となる ($|(G_V G_{V,ideal})/G_{V,ideal}| \le 1/100$) ようにするための演算増幅器単体の電圧利得 A の下限を求めよ.

