

Suites

Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice 1 ***IT

Soient $(u_n)_{n\in\mathbb{N}}$ une suite réelle et $(v_n)_{n\in\mathbb{N}}$ la suite définie par : $\forall n\in\mathbb{N},\ v_n=\frac{u_0+u_1+\ldots+u_n}{n+1}$.

- 1. Montrer que si la suite $(u_n)_{n\in\mathbb{N}}$ vers un réel ℓ , la suite $(v_n)_{n\in\mathbb{N}}$ converge et a pour limite ℓ . Réciproque ?
- 2. Montrer que si la suite $(u_n)_{n\in\mathbb{N}}$ est bornée, la suite $(v_n)_{n\in\mathbb{N}}$ est bornée. Réciproque ?
- 3. Montrer que si la suite $(u_n)_{n\in\mathbb{N}}$ est croissante alors la suite $(v_n)_{n\in\mathbb{N}}$ l'est aussi.

Correction ▼ [005220]

Exercice 2 ***

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. Montrer que si la suite $(u_n)_{n\in\mathbb{N}}$ converge au sens de CÉSARO et est monotone, alors la suite $(u_n)_{n\in\mathbb{N}}$ converge.

Correction ▼ [005221]

Exercice 3 **IT

Pour *n* entier naturel non nul, on pose $H_n = \sum_{k=1}^n \frac{1}{k}$ (série harmonique).

- 1. Montrer que : $\forall n \in \mathbb{N}^*$, $\ln(n+1) < H_n < 1 + \ln(n)$ et en déduire $\lim_{n \to +\infty} H_n$.
- 2. Pour n entier naturel non nul, on pose $u_n = H_n \ln(n)$ et $v_n = H_n \ln(n+1)$. Montrer que les suites (u_n) et (v_n) convergent vers un réel $\gamma \in \left[\frac{1}{2},1\right]$ (γ est appelée la constante d'EULER). Donner une valeur approchée de γ à 10^{-2} près.

Correction ▼ [005222]

Exercice 4 **

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique ne s'annulant pas. Montrer que pour tout entier naturel n, on a $\sum_{k=0}^{n} \frac{1}{u_k u_{k+1}} = \frac{n+1}{u_0 u_{n+1}}$.

Correction ▼ [005223]

Exercice 5 **

Calculer $\lim_{n\to+\infty}\sum_{k=1}^n \frac{1}{1^2+2^2+...+k^2}$.

Correction ▼ [005224]

Exercice 6 ***

Soient a et b deux réels tels que 0 < a < b. On pose $u_0 = a$ et $v_0 = b$ puis, pour n entier naturel donné, $u_{n+1} = \frac{u_n + v_n}{2}$ et $v_{n+1} = \sqrt{u_{n+1}v_n}$. Montrer que les suites (u_n) et (v_n) sont adjacentes et que leur limite commune est égale à $\frac{b\sin(\operatorname{Arccos}(\frac{a}{b}))}{\operatorname{Arccos}(\frac{a}{b})}$.

Correction ▼ [005225]

Exercice 7 **

Limite quand *n* tend vers $+\infty$ de

- 1. $\frac{\sin n}{n}$
- 2. $(1+\frac{1}{n})^n$,
- 3. $\frac{n!}{n^n}$,
- 4. $\frac{E((n+\frac{1}{2})^2)}{E((n-\frac{1}{2})^2)}$,
- 5. $\sqrt[n]{n^2}$,
- 6. $\sqrt{n+1} \sqrt{n}$,
- 7. $\frac{\sum_{k=1}^{n} k^2}{n^3}$,
- 8. $\prod_{k=1}^{n} 2^{k/2^{2^k}}$

Correction ▼ [005226]

Exercice 8 **

Etudier la suite (u_n) définie par $\sqrt{n+1} - \sqrt{n} = \frac{1}{2\sqrt{n+u_n}}$.

Correction ▼ [005227]

Exercice 9 **T Récurrences homographiques

Déterminer u_n en fonction de n quand la suite u vérifie :

- 1. $\forall n \in \mathbb{N}, u_{n+1} = \frac{u_n}{3-2u_n}$
- 2. $\forall n \in \mathbb{N}, u_{n+1} = \frac{4(u_n 1)}{u_n}$ (ne pas se poser de questions d'existence).

Correction ▼ [005228]

Exercice 10 **

Soient (u_n) et (v_n) les suites définies par la donnée de u_0 et v_0 et les relations de récurrence

$$u_{n+1} = \frac{2u_n + v_n}{3}$$
 et $v_{n+1} = \frac{u_n + 2v_n}{3}$.

Etudier les suites u et v puis déterminer u_n et v_n en fonction de n en recherchant des combinaisons linéaires intéressantes de u et v. En déduire $\lim_{n\to+\infty}u_n$ et $\lim_{n\to+\infty}v_n$.

Correction ▼ [005229]

Exercice 11 **

Soient (u_n) , (v_n) et (w_n) les suites définies par la donnée de u_0 , v_0 et w_0 et les relations de récurrence

$$u_{n+1} = \frac{v_n + w_n}{2}, v_{n+1} = \frac{u_n + w_n}{2}$$
 et $w_{n+1} = \frac{u_n + v_n}{2}$.

Etudier les suites u, v et w puis déterminer u_n , v_n et w_n en fonction de n en recherchant des combinaisons linéaires intéressantes de u, v et w. En déduire $\lim_{n\to+\infty} u_n$, $\lim_{n\to+\infty} v_n$ et $\lim_{n\to+\infty} w_n$.

Correction ▼ [005230]

Exercice 12 ***

Montrer que les suites définies par la donnée de u_0 , v_0 et w_0 réels tels que $0 < u_0 < v_0 < w_0$ et les relations de récurrence :

$$\frac{3}{u_{n+1}} = \frac{1}{u_n} + \frac{1}{v_n} + \frac{1}{w_n} \text{ et } v_{n+1} = \sqrt[3]{u_n v_n w_n} \text{ et } w_{n+1} = \frac{u_n + v_n + w_n}{3},$$

ont une limite commune que l'on ne cherchera pas à déterminer.

Correction ▼ [005231]

Exercice 13 ***

Soit u une suite complexe et v la suite définie par $v_n = |u_n|$. On suppose que la suite $(\sqrt[n]{v_n})$ converge vers un réel positif l. Montrer que si $0 \le l < 1$, la suite (u_n) converge vers 0 et si l > 1, la suite (v_n) tend vers $+\infty$. Montrer que si l = 1, tout est possible.

Correction ▼ [005232]

Exercice 14 ***

- 1. Soit u une suite de réels strictement positifs. Montrer que si la suite $(\frac{u_{n+1}}{u_n})$ converge vers un réel ℓ , alors $(\sqrt[n]{u_n})$ converge et a même limite.
- 2. Etudier la réciproque.
- 3. Application: limites de
 - (a) $\sqrt[n]{C_{2n}^n}$,
 - (b) $\frac{n}{\sqrt[n]{n!}}$,
 - (c) $\frac{1}{n^2} \sqrt[n]{\frac{(3n)!}{n!}}$.

Correction ▼ [005233]

Exercice 15 *

Soient u et v deux suites de réels de [0,1] telles que $\lim_{n\to+\infty}u_nv_n=1$. Montrer que (u_n) et (v_n) convergent vers 1

Correction ▼ [005234]

Exercice 16 **

Montrer que si les suites (u_n^2) et (u_n^3) convergent alors (u_n) converge.

Correction ▼ [005235]

Exercice 17 ***T

Etudier les deux suites $u_n = (1 + \frac{1}{n})^n$ et $v_n = (1 + \frac{1}{n})^{n+1}$.

Correction ▼ [005236]

Exercice 18 **T

Etudier les deux suites $u_n = \sum_{k=0}^n \frac{1}{k!}$ et $v_n = u_n + \frac{1}{n \cdot n!}$

Correction ▼ [005237]

Exercice 19

Etudier les deux suites $u_n = \left(\sum_{k=1}^n \frac{1}{\sqrt{k}}\right) - 2\sqrt{n+1}$ et $v_n = \left(\sum_{k=1}^n \frac{1}{\sqrt{k}}\right) - 2\sqrt{n}$.

Exercice 20 **T

Déterminer u_n en fonction de n et de ses premiers termes dans chacun des cas suivants :

- 1. $\forall n \in \mathbb{N}, 4u_{n+2} = 4u_{n+1} + 3u_n$.
- 2. $\forall n \in \mathbb{N}, 4u_{n+2} = u_n$.
- 3. $\forall n \in \mathbb{N}, 4u_{n+2} = 4u_{n+1} + 3u_n + 12.$
- 4. $\forall n \in \mathbb{N}, \ \frac{2}{u_{n+2}} = \frac{1}{u_{n+1}} \frac{1}{u_n}.$
- 5. $\forall n \geq 2, u_n = 3u_{n-1} 2u_{n-2} + n^3$.
- 6. $\forall n \in \mathbb{N}, u_{n+3} 6u_{n+2} + 11u_{n+1} 6u_n = 0.$

7. $\forall n \in \mathbb{N}, u_{n+4} - 2u_{n+3} + 2u_{n+2} - 2u_{n+1} + u_n = n^5$.

Correction ▼ [005239]

Exercice 21 ****

On pose $u_1 = 1$ et, $\forall n \in \mathbb{N}^*$, $u_{n+1} = 1 + \frac{n}{u_n}$. Montrer que $\lim_{n \to +\infty} (u_n - \sqrt{n}) = \frac{1}{2}$.

prrection ▼ [005240]

Exercice 22 ***

Montrer que, pour $n \ge 2$,

$$\cos\left(\frac{\pi}{2^n}\right) = \frac{1}{2}\sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}} \ (n - 1 \text{ radicaux}) \text{ et } \sin\left(\frac{\pi}{2^n}\right) = \frac{1}{2}\sqrt{2 - \sqrt{2 + \dots + \sqrt{2}}} \ (n - 1 \text{ radicaux}).$$

En déduire $\lim_{n\to+\infty} 2^n \sqrt{2-\sqrt{2+...+\sqrt{2}}}$ (*n* radicaux).

Correction ▼ [005241]

Exercice 23 ***

- 1. Montrer que pour x réel strictement positif, on a : $\ln(1+x) < x < (1+x)\ln(1+x)$.
- 2. Montrer que $\prod_{k=1}^{n} \left(1 + \frac{1}{k}\right)^k < e^n < \prod_{k=1}^{n} \left(1 + \frac{1}{k}\right)^{k+1}$ et en déduire la limite quand n tend vers $+\infty$ de $\frac{\sqrt[n]{n!}}{n}$.

Correction ▼ [005242]

Exercice 24 ****

Soit $(u_n) = \left(\frac{p_n}{q_n}\right)$ avec $p_n \in \mathbb{Z}$ et $q_n \in \mathbb{N}^*$, une suite de rationnels convergeant vers un irrationnel x. Montrer que les suites $(|p_n|)$ et (q_n) tendent vers $+\infty$ quand n tend vers $+\infty$.

Correction ▼ [005243]

Exercice 25 **

Donner un exemple de suite (u_n) divergente, telle que $\forall k \in \mathbb{N}^* \setminus \{1\}$, la suite (u_{kn}) converge.

Correction ▼ [005244]

Exercice 26 ***I

Soit f une application injective de \mathbb{N} dans \mathbb{N} . Montrer que $\lim_{n\to+\infty} f(n) = +\infty$.

Correction ▼ [005245]

Exercice 27 ***I

Soit u_n l'unique racine positive de l'équation $x^n + x - 1 = 0$. Etudier la suite (u_n) .

Correction ▼ [005246]

Exercice 28 ****I

Etude des suites $(u_n) = (\cos na)$ et $(v_n) = (\sin na)$ où a est un réel donné.

- 1. Montrer que si $\frac{a}{2\pi}$ est rationnel, les suites u et v sont périodiques et montrer dans ce cas que (u_n) et (v_n) convergent si et seulement si $a \in 2\pi\mathbb{Z}$.
- 2. On suppose dans cette question que $\frac{a}{2\pi}$ est irrationnel.
 - (a) Montrer que (u_n) converge si et seulement si (v_n) converge.
 - (b) En utilisant différentes formules de trigonométrie fournissant des relations entre u_n et v_n , montrer par l'absurde que (u_n) et (v_n) divergent.

- 3. On suppose toujours que $\frac{a}{2\pi}$ est irrationnel. On veut montrer que l'ensemble des valeurs de la suite (u_n) (ou (v_n)) est dense dans [-1,1], c'est-à-dire que $\forall x \in [-1,1]$, $\forall \varepsilon > 0$, $\exists n \in \mathbb{N}/|u_n x| < \varepsilon$ (et de même pour v).
 - (a) Montrer que le problème se ramène à démontrer que $\{na + 2k\pi, n \in \mathbb{N} \text{ et } k \in \mathbb{Z}\}$ est dense dans \mathbb{R} .
 - (b) Montrer que $E = \{na + 2k\pi, n \in \mathbb{N} \text{ et } k \in \mathbb{Z}\}$ est dense dans \mathbb{R} (par l'absurde en supposant que $\inf(E \cap \mathbb{R}_+^*) > 0$ pour en déduire que $\frac{a}{2\pi} \in \mathbb{Q}$).
 - (c) Conclure.

Correction ▼ [005247]

Exercice 29 ****

Montrer que l'ensemble E des réels de la forme $u_n = \sin(\ln(n))$, n entier naturel non nul, est dense dans [-1,1].

Correction \blacksquare

Exercice 30 ***

Calculer $\inf_{\alpha \in]0,\pi[}(\sup_{n \in \mathbb{N}}(|\sin(n\alpha)|)).$

Correction ▼ [005249]

Exercice 31 **I

Soit (u_n) une suite réelle non majorée. Montrer qu'il existe une suite extraite de (u_n) tendant vers $+\infty$.

Correction ▼ [005250]

Exercice 32 ***

Soit (u_n) une suite de réels éléments de]0,1[telle que $\forall n \in \mathbb{N}, (1-u_n)u_{n+1} > \frac{1}{4}$. Montrer que (u_n) converge vers $\frac{1}{2}$.

Correction ▼ [005251]

Correction de l'exercice 1

1. Soit $\varepsilon > 0$. Il existe un rang n_0 tel que, si $n \ge n_0$ alors $|u_n - \ell| < \frac{\varepsilon}{2}$. Soit n un entier naturel strictement supérieur à n_0 .

$$|v_{n} - \ell| = \left| \frac{1}{n+1} \sum_{k=0}^{n} u_{k} - \ell \right| = \left| \frac{1}{n+1} \sum_{k=0}^{n} (u_{k} - \ell) \right|$$

$$\leq \frac{1}{n+1} \sum_{k=0}^{n} |u_{k} - \ell| = \frac{1}{n+1} \sum_{k=0}^{n_{0}} |u_{k} - \ell| + \frac{1}{n+1} \sum_{k=n_{0}+1}^{n} |u_{k} - \ell|$$

$$\leq \frac{1}{n+1} \sum_{k=0}^{n_{0}} |u_{k} - \ell| + \frac{1}{n+1} \sum_{k=n_{0}+1}^{n} \frac{\varepsilon}{2} \leq \frac{1}{n+1} \sum_{k=0}^{n_{0}} |u_{k} - \ell| + \frac{1}{n+1} \sum_{k=0}^{n} \frac{\varepsilon}{2}$$

$$= \frac{1}{n+1} \sum_{k=0}^{n_{0}} |u_{k} - \ell| + \frac{\varepsilon}{2}$$

Maintenant, $\sum_{k=0}^{n_0} |u_k - \ell|$ est une expression constante quand n varie et donc, $\lim_{n \to +\infty} \frac{1}{n+1} \sum_{k=0}^{n_0} |u_k - \ell| = 0$. Par suite, il existe un entier $n_1 \ge n_0$ tel que pour $n \ge n_1$, $\frac{1}{n+1} \sum_{k=0}^{n_0} |u_k - \ell| < \frac{\varepsilon}{2}$. Pour $n \ge n_1$, on a alors $|v_n - \ell| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. On a montré que $\forall \varepsilon > 0$, $\exists n_1 \in \mathbb{N} / (\forall n \in \mathbb{N}) (n \ge n_1 \Rightarrow |v_n - \ell| < \varepsilon)$. La suite (v_n) est donc convergente et $\lim_{n \to +\infty} v_n = \ell$.

Si la suite u converge vers ℓ alors la suite v converge vers ℓ .

La réciproque est fausse. Pour n dans \mathbb{N} , posons $u_n = (-1)^n$. La suite (u_n) est divergente. D'autre part, pour n dans \mathbb{N} , $\sum_{k=0}^{n} (-1)^k$ vaut 0 ou 1 suivant la parité de n et donc, dans tous les cas, $|v_n| \leq \frac{1}{n+1}$. Par suite, la suite (v_n) converge et $\lim_{n \to +\infty} v_n = 0$.

2. Si u est bornée, il existe un réel M tel que, pour tout naturel n, $|u_n| \le M$. Pour n entier naturel donné, on a alors

$$|v_n| \le \frac{1}{n+1} \sum_{k=0}^n |u_k| \le \frac{1}{n+1} \sum_{k=0}^n M = \frac{1}{n+1} (n+1) M = M.$$

La suite *v* est donc bornée.

Si la suite *u* est bornée alors la suite *v* est bornée.

La réciproque est fausse. Soit u la suite définie par : $\forall n \in \mathbb{N}, \ u_n = (-1)^n E\left(\frac{n}{2}\right) = \begin{cases} p \text{ si } n = 2p, \ p \in \mathbb{N} \\ -p \text{ si } n = 2p+1, \ p \in \mathbb{N} \end{cases}$ u n'est pas bornée car la suite extraite (u_{2p}) tend vers $+\infty$ quand p tend vers $+\infty$. Mais, si n est impair, $v_n = 0$, et si n est pair, $v_n = \frac{1}{n+1} \times u_n = \frac{n}{2(n+1)}$, et dans tous les cas $|v_n| \le \frac{1}{n+1} \frac{n}{2} \le \frac{1}{n+1} \frac{n+1}{2} = \frac{1}{2}$ et la suite v est bornée.

3. Si *u* est croissante, pour *n* entier naturel donné on a :

$$v_{n+1} - v_n = \frac{1}{n+2} \sum_{k=0}^{n+1} u_k - \frac{1}{n+1} \sum_{k=0}^n u_k = \frac{1}{(n+1)(n+2)} \left((n+1) \sum_{k=0}^{n+1} u_k - (n+2) \sum_{k=0}^n u_k \right)$$

$$= \frac{1}{(n+1)(n+2)} \left((n+1)u_{n+1} - \sum_{k=0}^n u_k \right) = \frac{1}{(n+1)(n+2)} \sum_{k=0}^n (u_{n+1} - u_k) \ge 0.$$

La suite *v* est donc croissante.

Si la suite *u* est croissante alors la suite *v* est croissante.

Correction de l'exercice 2

Supposons sans perte de généralité u croissante (quite à remplacer u par -u). Dans ce cas, ou bien u converge, ou bien u tend vers $+\infty$. Supposons que u tende vers $+\infty$, et montrons qu'il en est de même pour la suite v. Soit $A \in \mathbb{R}$. Il existe un rang n_0 tel que pour n naturel supérieur ou égal à n_0 , $u_n \ge 2A$. Pour $n \ge n_0 + 1$, on a alors,

$$v_n = \frac{1}{n+1} \left(\sum_{k=0}^{n_0} u_k + \sum_{k=n_0+1}^n u_k \right) \ge \frac{1}{n+1} \sum_{k=0}^{n_0} u_k + \frac{(n-n_0)2A}{n+1}$$

Maintenant, quand n tend vers $+\infty$, $\frac{1}{n+1}\sum_{k=0}^{n_0}u_k+\frac{(n-n_0)2A}{n+1}$ tend vers 2A et donc, il existe un rang n_1 à partir duquel $v_n\geq \frac{1}{n+1}\sum_{k=0}^{n_0}u_k+\frac{(n-n_0)2A}{n+1}>A$. On a montré que : $\forall n\in\mathbb{N},\ \exists n_1\in\mathbb{N}/\ (\forall n\in\mathbb{N}),\ (n\geq n_1\Rightarrow v_n>A)$. Par suite, $\lim_{n\to+\infty}v_n=+\infty$. Par contraposition, si v ne tend pas vers $+\infty$, la suite u ne tend pas vers $+\infty$ et donc converge, d'après la remarque initiale.

Correction de l'exercice 3

1. La fonction $x \mapsto \frac{1}{x}$ est continue et décroissante sur $]0, +\infty[$ et donc, pour $k \in \mathbb{N}^*$, on a :

$$\frac{1}{k+1} = (k+1-k)\frac{1}{k+1} \le \int_{k}^{k+1} \frac{1}{x} \, dx \le (k+1-k)\frac{1}{k} = \frac{1}{k}.$$

Donc, pour $k \ge 1$, $\frac{1}{k} \ge \int_k^{k+1} \frac{1}{x} dx$ et, pour $k \ge 2$, $\frac{1}{k} \le \int_{k-1}^k \frac{1}{x} dx$. En sommant ces inégalités, on obtient pour $n \ge 1$,

$$H_n = \sum_{k=1}^n \frac{1}{k} \ge \sum_{k=1}^n \int_k^{k+1} \frac{1}{x} dx = \int_1^{n+1} \frac{1}{x} dx = \ln(n+1),$$

et pour $n \ge 2$,

$$H_n = 1 + \sum_{k=2}^n \frac{1}{k} \le 1 + \sum_{k=2}^n \int_{k-1}^k \frac{1}{x} dx = 1 + \int_1^n \frac{1}{x} dx = 1 + \ln n,$$

cette dernière inégalité restant vraie quand n = 1. Donc,

$$\forall n \in \mathbb{N}^*, \ln(n+1) \le H_n \le 1 + \ln n.$$

2. Soit *n* un entier naturel non nul.

$$u_{n+1} - u_n = \frac{1}{n+1} - \ln(n+1) + \ln n = \frac{1}{n+1} - \int_n^{n+1} \frac{1}{x} dx = \int_n^{n+1} \left(\frac{1}{n+1} - \frac{1}{x} \right) dx \le 0$$

car la fonction $x \mapsto \frac{1}{x}$ décroit sur [n, n+1]. De même,

$$v_{n+1} - v_n = \frac{1}{n+1} - \ln(n+2) + \ln(n+1) = \frac{1}{n+1} - \int_{n+1}^{n+2} \frac{1}{x} dx = \int_{n+1}^{n+2} \left(\frac{1}{n+1} - \frac{1}{x}\right) dx \ge 0$$

car la fonction $x \mapsto \frac{1}{x}$ décroit sur [n+1, n+2]. Enfin,

$$u_n - v_n = \ln(n+1) - \ln n = \ln\left(1 + \frac{1}{n}\right)$$

et donc la suite u-v tend vers 0 quand n tend vers $+\infty$. Finalement, la suite u décroit, la suite v croit et la suite u-v tend vers 0. On en déduit que les suites u et v sont adjacentes, et en particulier convergentes et de même limite. Notons γ cette limite. Pour tout entier naturel non nul n, on a $v_n \le \gamma \le u_n$, et en particulier, $v_3 \le \gamma \le u_1$ avec $v_3 = 0,5...$ et $u_1 = 1$. Donc, $\gamma \in \left[\frac{1}{2},1\right]$. Plus précisément, pour n entier naturel non nul donné, on a

$$0 \le u_n - v_n \le \frac{10^{-2}}{2} \Leftrightarrow \ln\left(1 + \frac{1}{n}\right) \le 0,005 \Leftrightarrow \frac{1}{n} \le e^{0,005} - 1 \Leftrightarrow n \ge \frac{1}{e^{0,005} - 1} = 199,5... \Leftrightarrow n \ge 200.$$

Donc $0 \le \gamma - v_{100} \le \frac{10^{-2}}{2}$ et une valeur approchée de v_{200} à $\frac{10^{-2}}{2}$ près (c'est-à-dire arrondie à la 3 ème décimale la plus proche) est une valeur approchée de γ à 10^{-2} près. On trouve $\gamma = 0,57$ à 10^{-2} près par défaut. Plus précisémént,

$$\gamma = 0,5772156649...$$
 (γ est la constante d'EULER).

Correction de l'exercice 4 A

Soit r la raison de la suite u. Pour tout entier naturel k, on a

$$\frac{r}{u_k u_{k+1}} = \frac{u_{k+1} - u_k}{u_k u_{k+1}} = \frac{1}{u_k} - \frac{1}{u_{k+1}}.$$

En sommant ces égalités, on obtient :

$$r\sum_{k=0}^{n}\frac{1}{u_{k}u_{k+1}}=\sum_{k=0}^{n}\left(\frac{1}{u_{k}}-\frac{1}{u_{k+1}}\right)=\frac{1}{u_{0}}-\frac{1}{u_{n+1}}=\frac{u_{n+1}-u_{0}}{u_{0}u_{n+1}}=\frac{(n+1)r}{u_{0}u_{n+1}}.$$

Si $r \neq 0$, on obtient $\sum_{k=0}^{n} \frac{1}{u_k u_{k+1}} = \frac{(n+1)}{u_0 u_{n+1}}$, et si r = 0 (et $u_0 \neq 0$), u est constante et le résultat est immédiat.

Correction de l'exercice 5

Soit k un entier naturel non nul. On sait que $\sum_{i=1}^{k} i^2 = \frac{k(k+1)(2k+1)}{6}$. Déterminons alors trois réels a, b et c tels que, pour entier naturel non nul k,

$$\frac{6}{k(k+1)(2k+1)} = \frac{a}{k} + \frac{b}{k+1} + \frac{c}{2k+1} \ (*).$$

Pour k entier naturel non nul donné,

$$\frac{a}{k} + \frac{b}{k+1} + \frac{c}{2k+1} = \frac{a(k+1)(2k+1) + bk(2k+1) + ck(k+1)}{k(k+1)(2k+1)} = \frac{(2a+2b+c)k^2 + (3a+b+c)k + a}{k(k+1)(2k+1)}$$

Par suite,

$$(*) \Leftarrow \begin{cases} 2a + 2b + c = 0 \\ 3a + b + c = 0 \\ a = 6 \end{cases} \Leftrightarrow \begin{cases} a = 6 \\ b = 6 \\ c = -24 \end{cases},$$

et donc,

$$\forall n \in \mathbb{N}^*, \ \sum_{k=1}^n \frac{6}{k(k+1)(2k+1)} = 6\left(\sum_{k=1}^n \frac{1}{k} + \sum_{k=1}^n \frac{1}{k+1} - 4\sum_{k=1}^n \frac{1}{2k+1}\right).$$

Ensuite, d'après l'exercice 3, quand n tend vers $+\infty$, $\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + o(1)$ puis

$$\sum_{k=1}^{n} \frac{1}{k+1} = \sum_{k=2}^{n+1} \frac{1}{k} = H_{n+1} - 1 = -1 + \ln(n+1) + \gamma + o(1) = \ln n + \ln\left(1 + \frac{1}{n}\right) + \gamma - 1 + o(1) = \ln n + \gamma - 1 + o(1).$$

Enfin,

$$\sum_{k=1}^{n} \frac{1}{2k+1} = -1 + \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{2k} = -1 + H_{2n+1} - \frac{1}{2}H_n$$

$$= \ln(2n+1) + \gamma - \frac{1}{2}(\ln n + \gamma) - 1 + o(1) = \ln 2 + \ln n + \ln\left(1 + \frac{1}{2n}\right) + \gamma - \frac{1}{2}\ln n - \frac{1}{2}\gamma - 1 + o(1)$$

$$= \frac{1}{2}\ln n + \ln 2 + \frac{1}{2}\gamma - 1 + o(1)$$

Finalement, quand n tend vers $+\infty$, on a

$$\sum_{k=1}^{n} \frac{1}{1^2 + 2^2 + \dots + k^2} = 6\left(\ln n + \gamma + \ln n + \gamma - 1 - 4\left(\frac{1}{2}\ln n + \ln 2 + \frac{1}{2}\gamma - 1\right)\right) = 6(3 - 4\ln 2) + o(1).$$

Donc,

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{1^2 + 2^2 + \dots + k^2} = 6(3 - 4\ln 2).$$

Correction de l'exercice 6 ▲

Posons $\alpha = \operatorname{Arccos} \frac{a}{b}$. α existe car $0 < \frac{a}{b} < 1$ et est élément de $\left]0, \frac{\pi}{2}\right[$. De plus, $a = b\cos\alpha$. Enfin, pour tout entier naturel $n, \frac{\alpha}{2^n} \in \left]0, \frac{\pi}{2}\right[$ et donc, $\cos\frac{\alpha}{2^n} > 0$. On a $u_0 = b\cos\alpha$ et $v_0 = b$ puis $u_1 = \frac{1}{2}(u_0 + v_0) = \frac{b}{2}(1 + \cos\alpha) = b\cos^2\frac{\alpha}{2}$ et $v_1 = \sqrt{u_1v_0} = \sqrt{b\cos^2\frac{\alpha}{2} \times b} = b\cos\frac{\alpha}{2}$ puis $u_2 = \frac{b}{2}\cos\frac{\alpha}{2}(1 + \cos\frac{\alpha}{2}) = b\cos\frac{\alpha}{2}\cos^2\frac{\alpha}{2^2}$ et $v_2 = \sqrt{b\cos\frac{\alpha}{2}\cos^2\frac{\alpha}{2^2} \times b\cos\frac{\alpha}{2}} = b\cos\frac{\alpha}{2}\cos\frac{\alpha}{2^2}$... Montrons par récurrence que pour tout entier naturel non nul $n, v_n = b\prod_{k=1}^n\cos\frac{\alpha}{2^k}$ et $u_n = v_n\cos\frac{\alpha}{2^n}$. C'est vrai pour n = 1 et si pour $n \geq 1$ donné, on a $v_n = b\prod_{k=1}^n\cos\frac{\alpha}{2^k}$ et $u_n = v_n\cos\frac{\alpha}{2^n}$ alors,

$$u_{n+1} = \frac{1}{2}(v_n \cos \frac{\alpha}{2^n} + v_n) = v_n \cos^2 \frac{\alpha}{2^{n+1}}$$

puis

$$v_{n+1} = \sqrt{u_{n+1}v_n} = v_n \cos \frac{\alpha}{2^{n+1}} (\text{car } \cos \frac{\alpha}{2^{n+1}} > 0),$$

et donc, $v_{n+1} = b \prod_{k=1}^{n+1} \cos \frac{\alpha}{2^k}$ puis $u_{n+1} = v_{n+1} \cos \frac{\alpha}{2^{n+1}}$. On a montré par récurrence que

$$\forall n \in \mathbb{N}^*, \ v_n = b \prod_{k=1}^n \cos \frac{\alpha}{2^k} \text{ et } u_n = v_n \cos \frac{\alpha}{2^n}.$$

Pour tout entier naturel non nul n, on a $v_n > 0$ et $\frac{v_{n+1}}{v_n} = \cos \frac{\alpha}{2^{n+1}} < 1$. La suite v est donc strictement décroissante. Ensuite, pour tout entier naturel non nul n, on a $u_n > 0$ et

$$\frac{u_{n+1}}{u_n} = \frac{v_{n+1}}{v_n} \frac{\cos \frac{\alpha}{2^{n+1}}}{\cos \frac{\alpha}{2^n}} = \frac{\cos^2 \frac{\alpha}{2^{n+1}}}{\cos \frac{\alpha}{2^n}} = \frac{1}{2} \left(1 + \frac{1}{\cos \frac{\alpha}{2^n}} \right) > \frac{1}{2} (1+1) = 1.$$

La suite u est strictement croissante. Maintenant, pour $n \in \mathbb{N}^*$,

$$v_n = b \prod_{k=1}^n \cos \frac{\alpha}{2^k} = b \prod_{k=1}^n \frac{\sin \frac{\alpha}{2^{k-1}}}{2 \sin \frac{\alpha}{2^k}}$$
$$= \frac{\sin \alpha}{2^n \sin \frac{\alpha}{2^n}}$$

Donc, quand n tend vers $+\infty$, $v_n \sim \frac{\sin \alpha}{2^n \frac{\alpha}{2^n}} = \frac{\sin \alpha}{\alpha}$, puis $u_n = v_n \cos \frac{\alpha}{2^n} \sim v_n \sim \frac{\sin \alpha}{\alpha}$. Ainsi, les suites u et v sont adjacentes de limite commune $b \frac{\sin \alpha}{\alpha} = \frac{\sqrt{b^2 - a^2}}{\operatorname{Arccos}\left(\frac{a}{b}\right)}$.

Correction de l'exercice 7

1. Pour $n \in \mathbb{N}^*$, $\left|\frac{\sin n}{n}\right| \leq \frac{1}{n}$. Comme $\frac{1}{n} \underset{n \to +\infty}{\longrightarrow} 0$, $\frac{\sin n}{n} \underset{n \to +\infty}{\longrightarrow} 0$.

$$\lim_{n\to+\infty}\frac{\sin n}{n}=0.$$

2. Quand n tend vers $+\infty$, $\ln\left(\left(1+\frac{1}{n}\right)^n\right) = n\ln\left(1+\frac{1}{n}\right) \sim n \times \frac{1}{n} = 1$. Donc, $\ln\left(\left(1+\frac{1}{n}\right)^n\right)$ tend vers 1 puis, $\left(1+\frac{1}{n}\right)^n = e^{n\ln(1+1/n)}$ tend vers $e^1 = e$.

$$\lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^n = e.$$

3. Pour $n \in \mathbb{N}^*$, posons $u_n = \frac{n!}{n^n}$. Pour n entier naturel non nul, on a

$$\frac{u_{n+1}}{u_n} = \frac{(n+1)!}{n!} \times \frac{n^n}{(n+1)^{n+1}} = \left(\frac{n}{n+1}\right)^n = \left(1 + \frac{1}{n}\right)^{-n}.$$

Donc, quand *n* tend vers $+\infty$, $\frac{u_{n+1}}{u_n} = e^{-n\ln(1+1/n)} = e^{-n(1/n+o(1/n))} = e^{-1+o(1)}$. Ainsi, $\frac{u_{n+1}}{u_n}$ tend vers $\frac{1}{e} = 0.36... < 1$. On sait alors que $\lim_{n \to +\infty} u_n = 0$.

$$\lim_{n\to+\infty}\frac{n!}{n^n}=0.$$

4. Pour $n \ge 1$, $\frac{(n+\frac{1}{2})^2-1}{(n-\frac{1}{2})^2} \le u_n \le \frac{(n+\frac{1}{2})^2}{(n-\frac{1}{2})^2-1}$. Or, $\frac{(n+\frac{1}{2})^2-1}{(n-\frac{1}{2})^2}$ et $\frac{(n+\frac{1}{2})^2}{(n-\frac{1}{2})^2-1}$ tendent vers 1 quand n tend vers $+\infty$ et donc, d'après le théorème de la limite par encadrement, la suite u converge et a pour limite 1.

$$\lim_{n\to+\infty} \frac{E\left(\left(n+\frac{1}{2}\right)^2\right)}{E\left(\left(n-\frac{1}{2}\right)^2\right)} = 1.$$

5. Quand *n* tend vers $+\infty$, $\sqrt[n]{n^2} = e^{\frac{1}{n}\ln(n^2)} = e^{2\ln n/n} = e^{o(1)}$, et donc $\sqrt[n]{n^2}$ tend vers 1.

$$\lim_{n\to+\infty}\sqrt[n]{n^2}=1.$$

6. $\sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \to 0$.

7. $\frac{1}{n^3} \sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6n^3} \sim \frac{2n^3}{6n^3} = \frac{1}{6}$.

8. $\prod_{k=1}^{n} 2^{k/2^k} = 2^{\frac{1}{2}\sum_{k=1}^{n} \frac{k}{2^{k-1}}}$. Pour x réel, posons $f(x) = \sum_{k=1}^{n} kx^{k-1}$. f est dérivable sur \mathbb{R} en tant que polynôme et pour tout réel x,

$$f(x) = \left(\sum_{k=1}^{n} x^{k}\right)'(x) = \left(\sum_{k=0}^{n} x^{k}\right)'(x).$$

Pour $x \neq 1$, on a donc

$$f(x) = \left(\frac{x^{n+1} - 1}{x - 1}\right)'(x) = \frac{(n+1)x^n(x-1) - (x^{n+1} - 1)}{(x-1)^2} = \frac{nx^{n+1} - (n+1)x^n + 1}{(x-1)^2}.$$

En particulier, $\sum_{k=1}^{n} \frac{k}{2^{k-1}} = f\left(\frac{1}{2}\right) = \frac{\frac{n}{2^{n+1}} - \frac{n+1}{2^n} + 1}{(\frac{1}{2} - 1)^2} \to 4$ (d'après un théorème de croissances comparées). Finalement,

$$\prod_{k=1}^{n} 2^{k/2^k} \to 2^{4/2} = 4.$$

Correction de l'exercice 8 A

Soit $n \in \mathbb{N}$.

$$\frac{1}{2\sqrt{n+u_n}} = \sqrt{n+1} - \sqrt{n} \Leftrightarrow 2\sqrt{n+u_n} = \frac{1}{\sqrt{n+1} - \sqrt{n}} \Leftrightarrow 2\sqrt{n+u_n} = \sqrt{n+1} + \sqrt{n}$$

$$4(n+u_n) = (\sqrt{n+1} + \sqrt{n})^2 \Leftrightarrow u_n = -n + \frac{1}{4}(2n+1+2\sqrt{n(n+1)})$$

$$\Leftrightarrow u_n = \frac{1}{4}(-2n+1+2\sqrt{n(n+1)})$$

Par suite, quand n tend vers $+\infty$,

$$u_n = -\frac{n}{2} + \frac{1}{4} + \frac{1}{2}\sqrt{n^2 + n} = \frac{1}{4} + \frac{n}{2}\left(\sqrt{1 + \frac{1}{n}} - 1\right) = \frac{1}{4} + \frac{n}{2}\frac{1/n}{\sqrt{1 + \frac{1}{n}} + 1}$$
$$= \frac{1}{4} + \frac{1}{2}\frac{1}{\sqrt{1 + \frac{1}{n}} + 1} = \frac{1}{4} + \frac{1}{4} + o(1) = \frac{1}{2} + o(1).$$

La suite (u_n) converge et a pour limite $\frac{1}{2}$.

Correction de l'exercice 9 A

1. Calcul formel de u_n . Soit $x \in \mathbb{R}$. $\frac{x}{3-2x} = x \Leftrightarrow 2x^2 - 2x = 0 \Leftrightarrow x = 0$ ou x = 1. Pour n entier naturel donné, on a alors

$$\frac{u_{n+1}-1}{u_{n+1}}=\frac{\frac{u_n}{3-2u_n}-1}{\frac{u_n}{3-2u_n}}=\frac{3u_n-3}{u_n}=3\frac{u_n-1}{u_n}.$$

Par suite, $\frac{u_n-1}{u_n} = 3^n \frac{u_0-1}{u_0}$, puis $u_n = \frac{u_0}{u_0-3^n(u_0-1)}$.

2. Calcul formel de u_n . Soit $x \in \mathbb{R}$. $\frac{4(x-1)}{x} = x \Leftrightarrow x^2 - 4x + 4 = 0 \Leftrightarrow x = 2$. Pour n entier naturel donné, on a alors

$$\frac{1}{u_{n+1}-2} = \frac{1}{\frac{4(u_n-1)}{u}-2} = \frac{u_n}{2(u_n-2)} = \frac{u_n-2+2}{2(u_n-2)} = \frac{1}{2} + \frac{1}{u_n-2}.$$

Par suite, $\frac{1}{u_n-2} = \frac{n}{2} + \frac{1}{u_0-2}$, puis $u_n = 2 + \frac{2(u_0-2)}{(u_0-2)n+2}$.

Correction de l'exercice 10 ▲

Pour tout entier naturel n, on a $\begin{cases} u_{n+1} - u_n = \frac{1}{3}(v_n - u_n) \\ v_{n+1} - v_n = -\frac{1}{3}(v_n - u_n) \end{cases}$. La dernière relation montre que la suite v - u $v_{n+1} - u_{n+1} = \frac{1}{3}(v_n - u_n)$

garde un signe constant puis les deux premières relations montrent que pour tout entier naturel n, $sgn(u_{n+1} - u_n) = sgn(v_n - u_n)$ et $sgn(v_{n+1} - v_n) = -sgn(v_n - u_n)$. Les suites u et v sont donc monotones de sens de variation opposés. Si par exemple $u_0 \le v_0$, alors, pour tout naturel n, on a :

$$u_0 \le u_n \le u_{n+1} \le v_{n+1} \le v_n \le v_0.$$

Dans ce cas, la suite u est croissante et majorée par v_0 et donc converge vers un certain réel ℓ . De même, la suite v est décroissante et minorée par u_0 et donc converge vers un certain réel ℓ' . Enfin, puisque pour tout entier naturel n, on a $u_{n+1} = \frac{2u_n + v_n}{3}$, on obtient par passage à la limite quand n tend vers l'infini, $\ell = \frac{2\ell + \ell'}{3}$ et

donc $\ell = \ell'$. Les suites u et v sont donc adjacentes. Si $u_0 > v_0$, il suffit d'échanger les rôles de u et v. Calcul des suites u et v. Pour n entier naturel donné, on a $v_{n+1} - u_{n+1} = \frac{1}{3}(v_n - u_n)$. La suite v - u est géométrique de raison $\frac{1}{3}$. Pour tout naturel n, on a donc $v_n - u_n = \frac{1}{3^n}(v_0 - u_0)$. D'autre part, pour n entier naturel donné, $v_{n+1} + u_{n+1} = v_n + u_n$. La suite v + u est constante et donc, pour tout entier naturel n, on a $v_n + u_n = v_0 + u_0$. En additionnant et en retranchant les deux égalités précédentes, on obtient pour tout entier naturel n:

$$u_n = \frac{1}{2} \left(v_0 + u_0 + \frac{1}{3^n} (v_0 - u_0) \right) \text{ et } v_n = \frac{1}{2} \left(v_0 + u_0 - \frac{1}{3^n} (v_0 - u_0) \right).$$

En particulier, $\ell = \ell' = \frac{u_0 + v_0}{2}$

Correction de l'exercice 11 A

Pour tout entier naturel n, on a $u_{n+1} - v_{n+1} = -\frac{1}{2}(u_n - v_n)$ et donc, $u_n - v_n = \left(-\frac{1}{2}\right)^n (u_0 - v_0)$. De même, en échangeant les rôles de u, v et w, $v_n - w_n = \left(-\frac{1}{2}\right)^n (v_0 - w_0)$ et $w_n - u_n = \left(-\frac{1}{2}\right)^n (w_0 - v_0)$ (attention, cette dernière égalité n'est autre que la somme des deux premières et il manque encore une équation). On a aussi, $u_{n+1} + v_{n+1} + w_{n+1} = u_n + v_n + w_n$ et donc, pour tout naturel n, $u_n + v_n + w_n = u_0 + v_0 + w_0$. Ainsi, u_n , v_n et w_n sont solutions du système

$$\begin{cases} v_n - u_n = \left(-\frac{1}{2}\right)^n (v_0 - u_0) \\ w_n - u_n = \left(-\frac{1}{2}\right)^n (w_0 - u_0) \\ u_n + v_n + w_n = u_0 + v_0 + w_0 \end{cases}$$

Par suite, pour tout entier naturel n, on a

$$\begin{cases} u_n = \frac{1}{3} \left((u_0 + v_0 + w_0) + \left(-\frac{1}{2} \right)^n (2u_0 - v_0 - w_0) \right) \\ v_n = \frac{1}{3} \left((u_0 + v_0 + w_0) + \left(-\frac{1}{2} \right)^n (-u_0 + 2v_0 - w_0) \right) \\ w_n = \frac{1}{3} \left((u_0 + v_0 + w_0) + \left(-\frac{1}{2} \right)^n (-u_0 - v_0 + 2w_0) \right) \end{cases}.$$

Les suites u, v et w convergent vers $\frac{u_0+v_0+w_0}{3}$.

Correction de l'exercice 12 ▲

Montrons tout d'abord que :

$$\forall (x,y,z) \in]0,+\infty[^3,\ (x \le y \le z \Rightarrow \frac{3}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}} \le \sqrt[3]{xyz} \le \frac{x+y+z}{3}).$$

Posons $m = \frac{x+y+z}{3}$, $g = \sqrt[3]{xyz}$ et $h = \frac{3}{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}}$. Soient y et z deux réels strictement positifs tels que $y \le z$. Pour $x \in]0,y]$, posons

$$u(x) = \ln m - \ln g = \ln \left(\frac{x + y + z}{3} \right) - \frac{1}{3} (\ln x + \ln y + \ln z).$$

u est dérivable sur]0, y] et pour $x \in]0, y]$,

$$u'(x) = \frac{1}{x+y+z} - \frac{1}{3x} \le \frac{1}{x+x+x} - \frac{1}{3x} = 0.$$

u est donc décroissante sur]0,y] et pour x dans]0,y], $u(x) \ge u(y) = \ln\left(\frac{2y+z}{3}\right) - \frac{1}{3}(2\ln y + \ln z)$. Soit z un réel strictement positif fixé. Pour $y \in]0,z]$, posons $v(y) = \ln\left(\frac{2y+z}{3}\right) - \frac{1}{3}(2\ln y + \ln z)$. v est dérivable sur]0,z] et pour $y \in]0,z]$,

$$v'(y) = \frac{2}{2y+z} - \frac{2}{3z} \le \frac{2}{3z} - \frac{2}{3z} = 0.$$

v est donc décroissante sur]0,z] et pour y dans]0,z], on a $v(y) \ge v(z) = 0$. On vient de montrer que $g \le m$. En appliquant ce résultat à $\frac{1}{x}$, $\frac{1}{y}$ et $\frac{1}{z}$, on obtient $\frac{1}{g} \le \frac{1}{h}$ et donc $h \le g$. Enfin, $m \le \frac{z+z+z}{3} = z$ et $h \ge \frac{3}{\frac{1}{x}+\frac{1}{x}+\frac{1}{x}} = x$. Finalement,

$$x \le h \le g \le m \le z$$
.

Ce résultat préliminaire étant établi, puisque $0 < u_0 < v_0 < w_0$, par récurrence, les suites u, v et w sont définies puis, pour tout naturel n, on a $u_n \le v_n \le w_n$, et de plus $u_0 \le u_n \le u_{n+1} \le w_{n+1} \le w_n \le w_0$. La suite u est croissante et majorée par w_0 et donc converge. La suite w est décroissante et minorée par u_0 et donc converge. Enfin, puisque pour tout entier naturel $n, v_n = 3w_{n+1} - u_n - w_n$, la suite v converge. Soient alors a, b et c les limites respectives des suites u, v et w. Puisque pour tout entier naturel n, on a $0 < u_0 \le u_n \le v_n \le w_n$, on a déjà par passage à la limite $0 < u_0 \le a \le b \le c$. Toujours par passage à la limite quand n tend vers $+\infty$:

$$\begin{cases} \frac{3}{a} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \\ b = \sqrt[3]{abc} \\ c = \frac{a+b+c}{3} \end{cases} \Leftrightarrow \begin{cases} 2bc = ab + ac \\ b^2 = ac \\ a+b = 2c \end{cases} \Leftrightarrow \begin{cases} b = 2c - a \\ a^2 - 5ac + 4c^2 = 0 \end{cases} \Leftrightarrow (a = c \text{ et } b = c) \text{ ou } (a = 4c \text{ et } b = -2c).$$

b = -2c est impossible car b et c sont strictement positifs et donc, a = b = c. Les suites u, v et w convergent vers une limite commune.

Correction de l'exercice 13 ▲

Supposons que la suite $(\sqrt[n]{v_n})$ tende vers le réel positif ℓ .

- Supposons que $0 \le \ell < 1$. Soit $\varepsilon = \frac{1-\ell}{2}$. ε est un réel strictement positif et donc, $\exists n_0 \in \mathbb{N} / \forall n \in \mathbb{N}, (n \ge n_0 \Rightarrow \sqrt[n]{\nu_n} < \ell + \frac{1-\ell}{2} = \frac{1+\ell}{2})$. Pour $n \ge n_0$, par croissance de la fonction $t \mapsto t^n$ sur \mathbb{R}^+ , on obtient $|u_n| < \left(\frac{1+\ell}{2}\right)^n$. Or, $0 < \frac{1+\ell}{2} < \frac{1+1}{2} = 1$ et donc $\left(\frac{1+\ell}{2}\right)^n$ tend vers 0 quand n tend vers $+\infty$. Il en résulte que u_n tend vers 0 quand n tend vers $+\infty$.
- Supposons que $\ell > 1$. $\exists n_0 \in \mathbb{N} / \forall n \in \mathbb{N}$, $(n \ge n_0 \Rightarrow \sqrt[n]{v_n} > \ell \frac{\ell-1}{2} = \frac{1+\ell}{2})$. Mais alors, pour $n \ge n_0$, $|u_n| > \left(\frac{1+\ell}{2}\right)^n$. Or, $\frac{1+\ell}{2} > \frac{1+1}{2} = 1$, et donc $\left(\frac{1+\ell}{2}\right)^n$ tend vers $+\infty$ quand n tend vers $+\infty$. Il en résulte que $|u_n|$ tend vers $+\infty$ quand n tend vers $+\infty$.

Soit, pour α réel et n entier naturel non nul, $u_n = n^{\alpha}$. $\sqrt[n]{u_n} = e^{\alpha \frac{\ln n}{n}}$ tend vers 1 quand n tend vers $+\infty$, et ceci pour toute valeur de α . Mais, si $\alpha < 0$, u_n tend vers 0, si $\alpha = 0$, u_n tend vers 1 et si $\alpha > 0$, u_n tend vers $+\infty$. Donc, si $\ell = 1$, on ne peut rien conclure.

Correction de l'exercice 14 A

1. Supposons $\ell > 0$. Soit ε un réel strictement positif, élément de $]0,\ell[.\exists n_0 \in \mathbb{N}/ \forall n \in \mathbb{N}, \ (n \ge n_0 \Rightarrow 0 < \ell - \frac{\varepsilon}{2} < \frac{u_{n+1}}{u_n} < \ell + \frac{\varepsilon}{2})$. Pour $n > n_0$, puisque $u_n = \frac{u_n}{u_{n-1}} \frac{u_{n-1}}{u_{n-2}} \frac{u_{n-2}}{u_{n-3}} \dots \frac{u_{n_0+1}}{u_{n_0}} u_{n_0}$, on a $u_{n_0} \left(\ell - \frac{\varepsilon}{2}\right)^{n-n_0} \le u_n \le u_{n_0} \left(\ell + \frac{\varepsilon}{2}\right)^{n-n_0}$, et donc

$$(u_{n_0})^{1/n} \left(\ell - \frac{\varepsilon}{2}\right)^{-n_0/n} \left(\ell - \frac{\varepsilon}{2}\right) \leq \sqrt[n]{u_n} \leq (u_{n_0})^{1/n} \left(\ell + \frac{\varepsilon}{2}\right)^{-n_0/n} \left(\ell + \frac{\varepsilon}{2}\right).$$

Maintenant, le membre de gauche de cet encadrement tend vers $\ell - \frac{\varepsilon}{2}$, et le membre de droite rend vers $\ell + \frac{\varepsilon}{2}$. Par suite, on peut trouver un entier naturel $n_1 \geq n_0$ tel que, pour $n \geq n_1$, $(u_{n_0})^{1/n} \left(\ell - \frac{\varepsilon}{2}\right)^{-n_0/n} \left(\ell - \frac{\varepsilon}{2}\right) > \ell - \varepsilon$, et $(u_{n_0})^{1/n} \left(\ell + \frac{\varepsilon}{2}\right)^{-n_0/n} \left(\ell + \frac{\varepsilon}{2}\right) < \ell + \varepsilon$. Pour $n \geq n_1$, on a alors $\ell - \varepsilon < \sqrt[n]{u_n} < \ell + \varepsilon$. On a montré que $\forall \varepsilon > 0$, $\exists n_1 \in \mathbb{N} / (\forall n \in \mathbb{N})$, $(n \geq n_1 \Rightarrow \ell - \varepsilon < \sqrt[n]{u_n} < \ell + \varepsilon)$. Donc, $\sqrt[n]{u_n}$ tend vers ℓ . On traite de façon analogue le cas $\ell = 0$.

2. Soient a et b deux réels tels que 0 < a < b. Soit u la suite définie par

$$\forall p \in \mathbb{N}, \ u_{2p} = a^p b^p \text{ et } u_{2p+1} = a^{p+1} b^p.$$

(on part de 1 puis on multiplie alternativement par a ou b). Alors, $\sqrt[2p]{u_{2p}} = \sqrt{ab}$ et $\sqrt[2p+1]{u_{2p+1}} = a^{\frac{p+1}{2p+1}}b^{\frac{p}{2p+1}} \rightarrow \sqrt{ab}$. Donc, $\sqrt[n]{u_n}$ tend vers \sqrt{ab} (et en particulier converge). On a bien sûr $\frac{u_{2p+1}}{u_{2p}} = a$ et $\frac{u_{2p+2}}{u_{2p+1}} = b$. La suite $\left(\frac{u_{n+1}}{u_n}\right)$ admet donc deux suites extraites convergentes de limites distinctes et est ainsi divergente. La réciproque du 1) est donc fausse.

3. (a) Pour *n* entier naturel donné, posons $u_n = \binom{2n}{n}$.

$$\frac{u_{n+1}}{u_n} = \frac{(2n+2)!}{(2n)!} \frac{n!^2}{(n+1)!^2} = \frac{(2n+2)(2n+1)}{(n+1)^2} = \frac{4n+2}{n+1}.$$

Ainsi, $\frac{u_{n+1}}{u_n}$ tend vers 4 quand n tend vers $+\infty$, et donc $\sqrt[n]{\binom{2n}{n}}$ tend vers 4 quand n tend vers $+\infty$.

(b) Pour *n* entier naturel donné, posons $u_n = \frac{n^n}{n!}$.

$$\frac{u_{n+1}}{u_n} = \frac{(n+1)^{n+1}}{n^n} \frac{n!}{(n+1)!} = \left(1 + \frac{1}{n}\right)^n.$$

Ainsi, $\frac{u_{n+1}}{u_n}$ tend vers e quand n tend vers $+\infty$, et donc $\sqrt[n]{u_n} = \frac{n}{\sqrt[n]{n!}}$ tend vers e quand n tend vers $+\infty$.

(c) Pour *n* entier naturel donné, posons $u_n = \frac{(3n)!}{n^{2n}n!}$

$$\frac{u_{n+1}}{u_n} = \frac{(3n+3)!}{(3n)!} \frac{n^{2n}}{(n+1)^{2n+2}} \frac{n!}{(n+1)!} = \frac{(3n+3)(3n+2)(3n+1)}{(n+1)^2(n+1)} \left(\frac{n}{n+1}\right)^{2n}$$
$$= \frac{3(3n+2)(3n+1)}{(n+1)^2} \left(1 + \frac{1}{n}\right)^{-2n}.$$

Maintenant, $\left(1+\frac{1}{n}\right)^{-2n} = e^{-2n\ln(1+1/n)} = e^{-2n(\frac{1}{n}+o(\frac{1}{n}))} = e^{-2+o(1)}$, et donc $\frac{u_{n+1}}{u_n}$ tend vers $27e^{-2}$. Par suite, $\frac{1}{n^2} \sqrt[n]{\frac{(3n)!}{n!}}$ tend vers $\frac{27}{e^2}$.

Correction de l'exercice 15 ▲

D'après le théorème de la limite par encadrement :

$$0 \le u_n v_n \le u_n \le 1 \Rightarrow u$$
 converge et tend vers 1.

Il en est de même pour v en échangeant les rôles de u et v.

Correction de l'exercice 16 A

Si $u_n^2 \to 0$, alors $|u_n| = \sqrt{|u_n^2|} \to 0$ et donc $u_n \to 0$. Si $u_n^2 \to \ell \neq 0$, alors $(u_n) = (\frac{u_n^3}{u_n^2})$ converge. (L'exercice n'a d'intérêt que si la suite u est une suite complexe, car si u est une suite réelle, on écrit immédiatement $u_n = \sqrt[3]{u_n^3}$ (et non pas $u_n = \sqrt{u_n^2}$)).

Correction de l'exercice 17 ▲

Les suites u et v sont définies à partir du rang 1 et strictement positives. Pour tout naturel non nul n, on a :

$$\frac{u_{n+1}}{u_n} = \left(\frac{n+2}{n+1}\right)^{n+1} \left(\frac{n}{n+1}\right)^n = e^{(n+1)\ln(n+2) + n\ln n - (2n+1)\ln(n+1)}.$$

Pour x réel strictement positif, posons alors $f(x) = (x+1)\ln(x+2) + x\ln x - (2x+1)\ln(x+1)$. f est dérivable sur $]0, +\infty[$ et pour x > 0,

$$f'(x) = \frac{x+1}{x+2} + \ln(x+2) + 1 + \ln x - \frac{2x+1}{x+1} - 2\ln(x+1)$$

$$= \frac{x+2-1}{x+2} + \ln(x+2) + 1 + \ln x - \frac{2x+2-1}{x+1} - 2\ln(x+1)$$

$$= -\frac{1}{x+2} + \frac{1}{x+1} + \ln x + \ln(x+2) - 2\ln(x+1).$$

De même, f' est dérivable sur $]0, +\infty[$ et pour x > 0,

$$f''(x) = \frac{1}{(x+2)^2} - \frac{1}{(x+1)^2} + \frac{1}{x} + \frac{1}{x+2} - \frac{2}{x+1}$$

$$= \frac{x(x+1)^2 - x(x+2)^2 + (x+1)^2(x+2)^2 + x(x+1)^2(x+2) - 2x(x+1)(x+2)^2}{x(x+1)^2(x+2)^2}$$

$$= \frac{-2x^2 - 3x + (x^2 + 2x + 1)(x^2 + 4x + 4) + (x^2 + 2x)(x^2 + 2x + 1) - 2(x^2 + x)(x^2 + 4x + 4)}{x(x+1)^2(x+2)^2}$$

$$= \frac{3x + 4}{x(x+1)^2(x+2)^2} > 0.$$

f' est strictement croissante sur $]0, +\infty[$ et donc, pour x > 0,

$$f'(x) < \lim_{t \to +\infty} f'(t) = \lim_{t \to +\infty} \left(-\frac{1}{t+2} + \frac{1}{t+1} + \ln \frac{t(t+2)}{(t+1)^2} \right) = 0.$$

Donc, f est strictement décroissante sur $]0, +\infty[$. Or, pour x > 0

$$f(x) = (x+1)\ln(x+2) + x\ln x - (2x+1)\ln(x+1)$$

$$= (x+(x+1) - (2x+1))\ln x + (x+1)\ln\left(1 + \frac{2}{x}\right) - (2x+1)\ln\left(1 + \frac{1}{x}\right)$$

$$= \ln\left(1 + \frac{2}{x}\right) - \ln\left(1 + \frac{1}{x}\right) + 2\frac{\ln\left(1 + \frac{2}{x}\right)}{\frac{2}{x}} - 2\frac{\ln\left(1 + \frac{1}{x}\right)}{\frac{1}{x}}.$$

On sait que $\lim_{u\to 0}\frac{\ln(1+u)}{u}=1$, et donc, quand x tend vers $+\infty$, f(x) tend vers 0+0+2-2=0. Comme f est strictement décroissante sur $]0,+\infty[$, pour tout réel x>0, on a $f(x)>\lim_{t\to +\infty}f(t)=0$. f est donc strictement positive sur $]0,+\infty[$. Ainsi, $\forall n\in\mathbb{N}^*$, f(n)>0 et donc $\frac{u_{n+1}}{u_n}=e^{f(n)}>1$. La suite u est strictement croissante. (Remarque. On pouvait aussi étudier directement la fonction $x\mapsto \left(1+\frac{1}{x}\right)^x$ sur $]0,+\infty[$.) On montre de manière analogue que la suite v est strictement décroissante. Enfin, puisque u_n tend vers e, et que $v_n=\left(1+\frac{1}{n}\right)u_n$ tend vers e, les suites u et v sont adjacentes. (Remarque. En conséquence, pour tout entier naturel non nul n, $\left(1+\frac{1}{n}\right)^n< e<\left(1+\frac{1}{n}\right)^{n+1}$. Par exemple, pour n=10, on obtient $\left(\frac{11}{10}\right)^{10}< e<\left(\frac{11}{10}\right)^{11}$ et donc, 2,59...< e<2,85... et pour n=100, on obtient $1,01^{100}< e<1,01^{101}$ et donc 2,70...< e<2,73... Ces deux suites convergent vers e lentement).

Correction de l'exercice 18 ▲

Il est immédiat que u croit strictement et que v-u est strictement positive et tend vers 0. De plus, pour n entier naturel donné,

$$v_{n+1} - v_n = \frac{1}{(n+1)!} + \frac{1}{(n+1) \times (n+1)!} - \frac{1}{n \times n!} = \frac{n(n+1) + n - (n+1)^2}{n(n+1) \times (n+1)!} = \frac{-1}{n(n+1) \times (n+1)!} < 0,$$

et la suite v est strictement décroissante. Les suites u et v sont donc adjacentes et convergent vers une limite commune (à savoir e).

(Remarque. Dans ce cas, la convergence est très rapide. On a pour tout entier naturel non nul n, $\sum_{k=0}^{n} \frac{1}{k!} < e < \sum_{k=0}^{n} \frac{1}{k!} + \frac{1}{n \times n!}$ et n=5 fournit par exemple 2,716... < e < 2,718...).

Correction de l'exercice 19

Pour n entier naturel non nul donné, on a

$$u_{n+1}-u_n=\frac{1}{\sqrt{n+1}}-2\sqrt{n+2}+2\sqrt{n+1}=\frac{1}{\sqrt{n+1}}-\frac{2}{\sqrt{n+1}+\sqrt{n+2}}>\frac{1}{\sqrt{n+1}}-\frac{2}{\sqrt{n+1}+\sqrt{n+1}}=0.$$

De même,

$$v_{n+1}-v_n=\frac{1}{\sqrt{n+1}}-2\sqrt{n+1}+2\sqrt{n}=\frac{1}{\sqrt{n+1}}-\frac{2}{\sqrt{n+1}+\sqrt{n}}<\frac{1}{\sqrt{n+1}}-\frac{2}{\sqrt{n+1}+\sqrt{n+1}}=0.$$

La suite u est strictement croissante et la suite v est strictement décroissante. Enfin,

$$v_n - u_n = 2\sqrt{n+1} - 2\sqrt{n} = \frac{2}{\sqrt{n} + \sqrt{n+1}},$$

et la suite v - u converge vers 0. Les suites u et v sont ainsi adjacentes et donc convergentes, de même limite.

Correction de l'exercice 20

1. L'équation caractéristique est $4z^2-4z-3=0$. Ses solutions sont $-\frac{1}{2}$ et $\frac{3}{2}$. Les suites cherchées sont les suites de la forme $(u_n)=\left(\lambda\left(-\frac{1}{2}\right)^n+\mu\left(\frac{3}{2}\right)^n\right)$ où λ et μ sont deux réels (ou deux complexes si on cherche toutes les suites complexes). Si u_0 et u_1 sont les deux premiers termes de la suite u, λ et μ sont les solutions du système $\begin{cases} \lambda+\mu=u_0\\ -\frac{\lambda}{2}+\frac{3\mu}{2}=u_1 \end{cases}$ et donc $\lambda=\frac{1}{4}(3u_0-2u_1)$ et $\mu=\frac{1}{4}(u_0+2u_1)$.

$$\forall n \in \mathbb{N}, \ u_n = \frac{1}{4} (3u_0 - 2u_1) \left(-\frac{1}{2} \right)^n + \frac{1}{4} (u_0 + 2u_1) \left(\frac{3}{2} \right)^n.$$

2. Clairement $u_{2n} = \frac{1}{4^n}u_0$ et $u_{2n+1} = \frac{1}{4^n}u_1$ et donc $u_n = \frac{1}{2}\left(\frac{1}{2^n}(1+(-1)^n)u_0 + 2 \times \frac{1}{2^n}(1-(-1)^n)u_1\right)$.

$$\forall n \in \mathbb{N}, u_n = \frac{1}{2^{n+1}} \left((1 + (-1)^n) u_0 + 2(1 - (-1)^n) u_1 \right).$$

3. Les solutions de l'équation homogène associée sont les suites de la forme $\lambda \left(-\frac{1}{2}\right)^n + \mu \left(\frac{3}{2}\right)^n$. Une solution particulière de l'équation proposée est une constante a telle que 4a = 4a + 3a + 12 et donc a = -4. Les solutions de l'équation proposée sont donc les suites de la forme $\left(-4 + \lambda \left(-\frac{1}{2}\right)^n + \mu \left(\frac{3}{2}\right)^n\right)$ où λ et μ sont les solutions du système $\begin{cases} \lambda + \mu = 4 + u_0 \\ -\frac{\lambda}{2} + \frac{3\mu}{2} = 4 + u_1 \end{cases}$ et donc $\lambda = \frac{1}{4}(4 + 3u_0 - 2u_1)$ et $\mu = \frac{1}{4}(12 + u_0 + 2u_1)$.

$$\forall n \in \mathbb{N}, u_n = -4 + \frac{1}{4}(4 + 3u_0 - 2u_1)(-\frac{1}{2})^n + \frac{1}{4}(12 + u_0 + 2u_1)(\frac{3}{2})^n.$$

- 4. La suite $v = \frac{1}{u}$ est solution de la récurrence $2v_{n+2} = v_{n+1} v_n$ et donc, (v_n) est de la forme $\left(\lambda \left(\frac{1+i\sqrt{7}}{4}\right)^n + \mu \left(\frac{1-i\sqrt{7}}{4}\right)^n\right)$ et donc $u_n = \frac{1}{\lambda \left(\frac{1+i\sqrt{7}}{4}\right)^n + \mu \left(\frac{1-i\sqrt{7}}{4}\right)^n}$.
- 5. Les solutions de l'équation homogène associée sont les suites de la forme $(\lambda + \mu 2^n)$. 1 est racine simple de l'équation caractéristique et donc il existe une solution particulière de l'équation proposée de la forme $u_n = an^4 + bn^3 + cn^2 + dn$. Pour $n \ge 2$, on a

$$u_{n} - 3u_{n-1} + 2u_{n-2} = (an^{4} + bn^{3} + cn^{2} + dn) - 3(a(n-1)^{4} + b(n-1)^{3} + c(n-1)^{2} + d(n-1))$$

$$+ 2(a(n-2)^{4} + b(n-2)^{3} + c(n-2)^{2} + d(n-2))$$

$$= a(n^{4} - 3(n-1)^{4} + 2(n-2)^{4}) + b(n^{3} - 3(n-1)^{3} + 2(n-2)^{3})$$

$$+ c(n^{2} - 3(n-1)^{2} + 2(n-2)^{2}) + d(n-3(n-1) + 2(n-2))$$

$$= a(-4n^{3} + 30n^{2} - 52n + 29) + b(-3n^{2} + 15n - 13) + c(-2n+5) + d(-1)$$

$$= n^{3}(-4a) + n^{2}(30a - 3b) + n(-52a + 15b - 2c) + 29a - 13b + 5c - d.$$

u est solution
$$\Leftrightarrow -4a = 1$$
 et $30a - 3b = 0$ et $-52a + 15b - 2c = 0$ et $29a - 13b + 5c - d = 0$
 $\Leftrightarrow a = -\frac{1}{4}, \ b = -\frac{5}{2}, \ c = -\frac{49}{4}, \ d = -36.$

Les suites cherchées sont les suites de la forme $\left(-\frac{1}{4}(n^3+10n^2+49n+144)+\lambda+\mu 2^n\right)$.

- 6. Pour tout complexe z, $z^3 6z^2 + 11z 6 = (z 1)(z 2)(z 3)$ et les suites solutions sont les suites de la forme $(\alpha + \beta 2^n + \gamma 3^n)$.
- 7. Pour tout complexe z, $z^4 2z^3 + 2z^2 2z + 1 = (z^2 + 1)^2 2z(z^2 + 1) = (z 1)^2(z^2 + 1)$. Les solutions de l'équation homogène associée sont les suites de la forme $\alpha + \beta n + \gamma i^n + \delta(-i)^n$. 1 est racine double de l'équation caractéristique et donc l'équation proposée admet une solution particulière de la forme $u_n = an^7 + bn^6 + cn^5 + dn^4 + en^3 + fn^2$. Pour tout entier naturel n, on a

$$u_{n+4} - 2u_{n+3} + 2u_{n+2} - 2u_{n+1} + u_n = a((n+4)^7 - 2(n+3)^7 + 2(n+2)^7 - 2(n+1)^7 + n^7)$$

$$+b((n+4)^6 - 2(n+3)^6 + 2(n+2)^6 - 2(n+1)^6 + n^6)$$

$$+c((n+4)^5 - 2(n+3)^5 + 2(n+2)^5 - 2(n+1)^5 + n^5)$$

$$+d((n+4)^4 - 2(n+3)^4 + 2(n+2)^4 - 2(n+1)^4 + n^4)$$

$$+e((n+4)^3 - 2(n+3)^3 + 2(n+2)^3 - 2(n+1)^3 + n^3)$$

$$+f((n+4)^2 - 2(n+3)^2 + 2(n+2)^2 - 2(n+1)^2 + n^2)$$

$$= a(84n^5 + 840n^4 + 4340n^3 + 12600n^2 + 19348n + 12264)$$

$$+b(60n^4 + 480n^3 + 1860n^2 + 3600n + 2764)$$

$$+c(40n^3 + 240n^2 + 620n + 600) + d(24n^2 + 96n + 124) + e(12n + 24) + 4f$$

$$= n^5(84a) + n^4(840a + 60b) + n^3(4340a + 480b + 40c) + n^2(12600a + 1860b + 240c + 24d)$$

$$+n(19348a + 3600b + 620c + 96d + 12e) + (12264a + 2764b + 600c + 124d + 24e + 4f)$$

u est solution si et seulement si 84a=1 et donc $a=\frac{1}{84}$, puis 840a+60b=0 et donc $b=-\frac{1}{6}$, puis 4340a+480b+40c=0 et donc $c=\frac{17}{24}$, puis 12600a+1860b+240c+24d=0 et donc $d=-\frac{5}{12}$ puis 19348a+3600b+620c+96d+12e=0 et donc $e=-\frac{59}{24}$ puis 12264a+2764b+600c+124d+24e+4f=0 et donc $f=\frac{1}{12}$. La solution générale de l'équation avec second membre est donc :

$$\forall n \in \mathbb{N}, \ u_n = \frac{1}{168} (2n^7 - 28n^6 + 119n^5 - 70n^4 - 413n^3 + 14n^2) + \alpha + \beta n + \gamma i^n + \delta(-i)^n, \ (\alpha, \beta, \gamma, \delta) \in \mathbb{C}^4.$$

Correction de l'exercice 21

Tout d'abord, on montre facilement par récurrence que, pour tout entier naturel non nul n, u_n existe et $u_n \ge 1$. Mais alors, pour tout entier naturel non nul n, $1 \le u_{n+1} = 1 + \frac{n}{u_n} \le 1 + n$. Par suite, pour $n \ge 2$, $1 \le u_n \le n$, ce qui reste vrai pour n = 1.

$$\forall n \in \mathbb{N}^*, \ 1 \leq u_n \leq n.$$

Supposons momentanément que la suite $(u_n - \sqrt{n})_{n \ge 1}$ converge vers un réel ℓ . Dans ce cas :

$$1 + \frac{n}{u_n} = 1 + \frac{n}{\sqrt{n} + \ell + o(1)} = 1 + \sqrt{n} \frac{1}{1 + \frac{\ell}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right)} = 1 + \sqrt{n} \left(1 - \frac{\ell}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right)\right) = \sqrt{n} + 1 - \ell + o(1).$$

D'autre part,

$$u_{n+1} = \sqrt{n+1} + \ell + o(1) = \sqrt{n} \left(1 + \frac{1}{n} \right)^{1/2} + \ell + o(1) = \sqrt{n} + \ell + o(1),$$

et donc $\ell - (1 - \ell) = o(1)$ ou encore $2\ell - 1 = 0$. Donc, si la suite $(u_n - \sqrt{n})_{n \ge 1}$ converge vers un réel ℓ , alors $\ell = \frac{1}{2}$. Il reste à démontrer que la suite $(u_n - \sqrt{n})_{n \ge 1}$ converge. On note que pour tout entier naturel non nul,

$$u_{n+1} - u_n = \frac{1}{u_n} (-u_n^2 + u_n + n) = \frac{1}{u_n} \left(\frac{1}{2} (1 + \sqrt{4n+1}) - u_n \right) \left(u_n - \frac{1}{2} (1 - \sqrt{4n+1}) \right).$$

Montrons par récurrence que pour $n \ge 1$, $\frac{1}{2}(1 + \sqrt{4n - 3}) \le u_n \le \frac{1}{2}(1 + \sqrt{4n + 1})$. Posons $v_n = \frac{1}{2}(1 + \sqrt{4n - 3})$ et $w_n = \frac{1}{2}(1 + \sqrt{4n + 1})$.

Si n = 1, $v_1 = 1 \le u_1 = 1 \le \frac{1}{2}(1 + \sqrt{5}) = w_1$.

Soit $n \ge 1$. Supposons que $v_n \le u_n \le w_n$. Alors,

$$1 + \frac{2n}{\sqrt{4n+1}+1} \le u_{n+1} = 1 + \frac{n}{u_n} \le 1 + \frac{2n}{\sqrt{4n-3}+1}.$$

Mais, pour $n \ge 1$,

$$\begin{split} \operatorname{sgn}(\frac{1}{2}(1+\sqrt{4n+5}) - (1+\frac{2n}{\sqrt{4n-3}+1})) &= \operatorname{sgn}((1+\sqrt{4n+5})(1+\sqrt{4n-3}) - 2(2n+1+\sqrt{4n-3})) \\ &= \operatorname{sgn}(\sqrt{4n+5}(1+\sqrt{4n-3}) - (4n+1+\sqrt{4n-3})) \\ &= \operatorname{sgn}((4n+5)(1+\sqrt{4n-3})^2 - (4n+1+\sqrt{4n-3})^2) \text{ (par croissance de } x \mapsto x^2 \operatorname{sur}[0,+\infty[) \\ &= \operatorname{sgn}((4n+5)(4n-2+2\sqrt{4n-3}) - ((4n+1)^2+2(4n+1)\sqrt{4n-3}+4n-3)) \\ &= \operatorname{sgn}(-8+8\sqrt{4n-3}) = \operatorname{sgn}(\sqrt{4n-3}-1) = \operatorname{sgn}((4n-3)-1) = \operatorname{sgn}(n-1) = + \end{split}$$

Donc, $u_{n+1} \le 1 + 1 + \frac{2n}{\sqrt{4n-3}+1} \le w_{n+1}$.

D'autre part,

$$1 + \frac{2n}{\sqrt{4n+1}+1} = \frac{2n+1+\sqrt{4n+1}}{\sqrt{4n+1}+1} = \frac{(\sqrt{4n+1}+1)^2}{2(\sqrt{4n+1}+1)} = \frac{1}{2}(1+\sqrt{4n+1}) = v_{n+1},$$

et donc $v_{n+1} \le u_{n+1} \le w_{n+1}$.

On a montré par récurrence que

$$\forall n \in \mathbb{N}^*, \ \frac{1}{2}(1+\sqrt{4n-3}) \le u_n \le \frac{1}{2}(1+\sqrt{4n+1}),$$

(ce qui montre au passage que *u* est croissante).

Donc, pour $n \ge 1$,

$$\frac{1}{2} + \sqrt{n - \frac{3}{4}} - \sqrt{n} \le u_n - \sqrt{n} \le \frac{1}{2} + \sqrt{n + \frac{1}{4}} - \sqrt{n},$$

ou encore, pour tout $n \ge 1$,

$$\frac{1}{2} - \frac{3}{4} \frac{1}{\sqrt{n - \frac{3}{4}} + \sqrt{n}} \le u_n - \sqrt{n} \le \frac{1}{2} + \frac{1}{4} \frac{1}{\sqrt{n + \frac{1}{4}} + \sqrt{n}}.$$

Maintenant, comme les deux suites $(\frac{1}{2} - \frac{3}{4} \frac{1}{\sqrt{n - \frac{3}{4}} + \sqrt{n}})$ et $(\frac{1}{2} + \frac{1}{4} \frac{1}{\sqrt{n + \frac{1}{4}} + \sqrt{n}})$ convergent toutes deux vers $\frac{1}{2}$, d'après le théorème de la limite par encadrements, la suite $(u_n - \sqrt{n})_{n \ge 1}$ converge vers $\frac{1}{2}$.

Correction de l'exercice 22 ▲

L'égalité proposée est vraie pour n = 2 car $\cos \frac{\pi}{2^2} = \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$.

Soit $n \ge 2$. Supposons que $\cos(\frac{\pi}{2^n}) = \frac{1}{2}\sqrt{2 + \sqrt{2 + ...\sqrt{2}}}$ (n-1 radicaux). Alors, puisque $\cos(\frac{\pi}{2^{n+1}}) > 0$ (car $\frac{\pi}{2^{n+1}}$ est dans $]0, \frac{\pi}{2}[$),

$$\cos(\frac{\pi}{2^{n+1}}) = \sqrt{\frac{1 + \cos(\frac{\pi}{2^n})}{2}} = \sqrt{\frac{1}{2}(1 + \frac{1}{2}\sqrt{2 + \sqrt{2 + \dots \sqrt{2}}})} = \frac{1}{2}\sqrt{2 + \sqrt{2 + \dots \sqrt{2}}}, \text{ (n radicaux)}.$$

On a montré par récurrence que, pour $n \ge 2$, $\cos(\frac{\pi}{2^n}) = \frac{1}{2}\sqrt{2 + \sqrt{2 + ...\sqrt{2}}}$ (n-1 radicaux). Ensuite, pour $n \ge 2$,

$$\sin(\frac{\pi}{2^n}) = \sqrt{\frac{1}{2}(1 - \cos(\frac{\pi}{2^{n-1}}))} = \frac{1}{2}\sqrt{2 - \sqrt{2 + \dots \sqrt{2}}} \ (n - 1 \text{ radicaux})$$

Enfin,

$$2^{n}\sqrt{2-\sqrt{2+...\sqrt{2}}}=2^{n}.2\sin\frac{\pi}{2^{n+1}}\sim 2^{n+1}\frac{\pi}{2^{n+1}}=\pi.$$

Donc, $\lim_{n\to+\infty} 2^n \sqrt{2-\sqrt{2+...\sqrt{2}}} = \pi$.

Correction de l'exercice 23

1. Pour x réel positif, posons $f(x) = x - \ln(1+x)$ et $g(x) = (x+1)\ln(x+1) - x$. f et g sont dérivables sur $[0, +\infty[$ et pour x > 0, on a

$$f'(x) = 1 - \frac{1}{x+1} = \frac{x}{x+1} > 0,$$

et

$$g'(x) = \ln(x+1) + 1 - 1 = \ln(x+1) > 0.$$

f et g sont donc strictement croissantes sur $[0,+\infty[$ et en particulier, pour x>0, f(x)>f(0)=0 et de même, g(x)>g(0)=0. Finalement, f et g sont strictement positives sur $[0,+\infty[$ ou encore,

$$\forall x > 0$$
, $\ln(1+x) < x < (1+x)\ln(1+x)$.

2. Soit *k* un entier naturel non nul.

D'après 1), $\ln(1+\frac{1}{k}) < \frac{1}{k} < (1+\frac{1}{k})\ln(1+\frac{1}{k})$, ce qui fournit $k\ln(1+\frac{1}{k}) < 1 < (k+1)Ln(1+\frac{1}{k})$, puis, par stricte croissance de la fonction exponentielle sur \mathbb{R} ,

$$\forall k \in \mathbb{N}^*, \ 0 < (1 + \frac{1}{k})^k < e < (1 + \frac{1}{k})^{k+1}.$$

En multipliant membre à membre ces encadrements, on obtient pour tout naturel non nul n:

$$\prod_{k=1}^{n} (1 + \frac{1}{k})^{k} < e^{n} < \prod_{k=1}^{n} (1 + \frac{1}{k})^{k+1}.$$

Maintenant,

$$\prod_{k=1}^{n} (1 + \frac{1}{k})^k = \prod_{k=1}^{n} \left(\frac{k+1}{k}\right)^k = \frac{\prod_{k=2}^{n+1} k^{k-1}}{\prod_{k=1}^{n} k^k} = \frac{(n+1)^n}{n!}.$$

De même,

$$\prod_{k=1}^{n} (1 + \frac{1}{k})^{k+1} = \frac{\prod_{k=2}^{n+1} k^k}{\prod_{k=1}^{n} k^{k+1}} = \frac{(n+1)^{n+1}}{n!}.$$

On a montré que $\forall n \in \mathbb{N}^*, \ \frac{(n+1)^n}{n!} < e^n < \frac{(n+1)^{n+1}}{n!}$ et donc

$$\forall n \in \mathbb{N}^*, \ \frac{1}{e} \frac{n+1}{n} < \frac{\sqrt[n]{n!}}{n} < \frac{1}{e} \frac{n+1}{n} (n+1)^{1/n}.$$

D'après le théorème de la limite par encadrements, comme $\frac{n+1}{n}$ tend vers 1 quand n tend vers l'infini de même que $(n+1)^{1/n}=e^{\ln(n+1)/n}$, on a montré que $\frac{\sqrt[n]{n!}}{n}$ tend vers $\frac{1}{e}$ quand n tend vers $+\infty$.

Correction de l'exercice 24 A

Soit x un irrationnel et $(\frac{p_n}{q_n})_{n\in\mathbb{N}}$ une suite de rationnels tendant vers x (p_n entier relatif et q_n entier naturel non nul, la fraction $\frac{p_n}{q_n}$ n'étant pas nécessairement irréductible). Supposons que la suite $(q_n)_{n\in\mathbb{N}}$ ne tende pas vers $+\infty$. Donc :

$$\exists A > 0 / (\forall n_0 \in \mathbb{N}) (\exists n \ge n_0 / q_n \ge A)$$

ou encore, il existe une suite extraite $(q_{\varphi}(n))_{n\in\mathbb{N}}$ de la suite $(q_n)_{n\in\mathbb{N}}$ qui est bornée.

La suite $(q_{\varphi}(n))_{n\in\mathbb{N}}$ est une suite d'entiers naturels qui est bornée, et donc cette suite ne prend qu'un nombre fini de valeurs. Mais alors, on peut extraire de la suite $(q_{\varphi}(n))_{n\in\mathbb{N}}$ et donc de la suite $(q_n)_{n\in\mathbb{N}}$ une suite $(q_{\psi(n)})_{n\in\mathbb{N}}$ qui est constante et en particulier convergente.

La suite $(p_{\psi(n)})_{n\in\mathbb{N}} = (\frac{p_{\psi(n)}}{q_{\psi(n)}})_{n\in\mathbb{N}} (q_{\psi(n)})_{n\in\mathbb{N}}$ est aussi une suite d'entiers relatifs convergente et est donc constante à partir d'un certain rang.

Ainsi, on peut extraire de la suite $(p_{\psi(n)})_{n\in\mathbb{N}}$ et donc de la suite $(p_n)_{n\in\mathbb{N}}$ une suite $(p_{\sigma(n)})_{n\in\mathbb{N}}$ constante. La suite $((q_{\sigma(n)})_{n\in\mathbb{N}})_{n\in\mathbb{N}}$ est également constante car extraite de la suite constante $(q_{\psi(n)})_{n\in\mathbb{N}}$ et finalement, on a extrait de la suite $(\frac{p_n}{q_n})_{n\in\mathbb{N}}$ une sous suite $(\frac{p_{\sigma(n)}}{q_{\sigma(n)}})_{n\in\mathbb{N}}$ constante.

Mais la suite $(\frac{p_n}{q_n})_{n\in\mathbb{N}}$ tend vers x et donc la suite extraite $(\frac{p_{\sigma(n)}}{q_{\sigma(n)}})_{n\in\mathbb{N}}$ tend vers x. Puisque $(\frac{p_{\sigma(n)}}{q_{\sigma(n)}})_{n\in\mathbb{N}}$ est constante, on a $\forall n\in\mathbb{N}, \ \frac{p_{\sigma(n)}}{q_{\sigma(n)}}=x$ et donc x est rationnel. Contradiction .

Donc la suite $(q_n)_{n\in\mathbb{N}}$ tend vers $+\infty$. Enfin si $(|p_n|)_{n\in\mathbb{N}}$ ne tend pas vers $+\infty$, on peut extraire de $(p_n)_{n\in\mathbb{N}}$ une sous-suite bornée $(p_{\varphi}(n))_{n\in\mathbb{N}}$. Mais alors, la suite $(\frac{p_{\varphi(n)}}{q_{\varphi(n)}})_{n\in\mathbb{N}}$ tend vers x=0 contredisant l'irrationnalité de x. Donc, la suite $(|p_n|)_{n\in\mathbb{N}}$ tend vers +infty.

Correction de l'exercice 25 ▲

On pose $u_0 = 0$, $u_1 = 0$, $u_2 = 1$, $u_3 = 1$, $u_4 = 0$, $u_5 = 1$,... c'est-à-dire

$$\forall n \in \mathbb{N}, \ u_n = \left\{ \begin{array}{l} 0 \text{ si } n \text{ n'est pas premier} \\ 1 \text{ si } n \text{ est premier} \end{array} \right..$$

Soit k un entier naturel supérieur ou égal à 2. Pour $n \ge 2$, l'entier kn est composé et donc, pour $n \ge 2$, $u_{kn} = 0$. En particulier, la suite $(u_{kn})_{n \in \mathbb{N}}$ converge et a pour limite 0. Maintenant, l'ensemble des nombres premiers est infini et si p_n est le n-ième nombre premier, la suite $(p_n)_{n \in \mathbb{N}}$ est strictement croissante. La suite $(u_{p_n})_{n \in \mathbb{N}}$ est extraite de $(u_n)_{n \in \mathbb{N}}$ et est constante égale à 1. En particulier, la suite $(u_{p_n})_{n \in \mathbb{N}}$ tend vers 1. Ainsi la suite $(u_n)_{n \in \mathbb{N}}$

admet au moins deux suites extraites convergentes de limites distinctes et donc la suite $(u_n)_{n\in\mathbb{N}}$ diverge bien que toutes les suites $(u_{kn})_{n\in\mathbb{N}}$ convergent vers 0 pour $k\geq 2$.

Correction de l'exercice 26 ▲

Soit f une application de \mathbb{N} dans lui-même, injective. Montrons que $\lim_{n\to+\infty} f(n) = +\infty$.

Soient A un réel puis m = Max(0, 1 + E(A)).

Puisque f est injective, on a card $(f^{-1}(\{0,1,...,m\}) \ge m+1$. En particulier, $f^{-1}(\{0,1,...,m\})$ est fini (éventuellement vide).

Posons
$$n_0 = 1 + \begin{cases} 0 \text{ si } f^{-1}(\{0, 1, ..., m\}) = \emptyset \\ \text{Max } f^{-1}(\{0, 1, ..., m\}) \text{ sinon} \end{cases}$$
.

Par définition de n_0 , si $n \ge n_0$, n n'est pas élément de $f^{-1}(\{0,1,...,m\})$ et donc f(n) > m > A.

On a montré que $\forall A \in \mathbb{R}, \ \exists n_0 \in \mathbb{N}/\ (\forall n \in \mathbb{N}), \ (n \ge n_0 \Rightarrow f(n) > A)$ ou encore $\lim_{n \to +\infty} f(n) = +\infty$.

Correction de l'exercice 27

Pour *n* naturel non nul et *x* réel positif, posons $f_n(x) = x^n + x - 1$.

Pour $x \ge 0$, $f_1(x) = 0 \Leftrightarrow x = \frac{1}{2}$ et donc $u_1 = \frac{1}{2}$.

Pour $n \ge 2$, f_n est dérivable sur \mathbb{R}^+ et pour $x \ge 0$, $f'_n(x) = nx^{n-1} + 1 > 0$.

 f_n est ainsi continue et strictemnt croissante sur \mathbb{R}^+ et donc bijective de \mathbb{R}^+ sur $f_n(\mathbb{R}^+) = [f(0), \lim_{x \to +\infty} f_n(x)] = [-1, +\infty[$, et en particulier,

$$\exists ! x \in [0, +\infty[/f_n(x) = 0.$$

Soit u_n ce nombre. Puisque $f_n(0) = -1 < 0$ et que $f_n(1) = 1 > 0$, par stricte croissance de f_n sur $[0, +\infty[$, on a :

$$\forall n \in \mathbb{N}, \ 0 < u_n < 1.$$

La suite *u* est donc bornée.

Ensuite, pour *n* entier naturel donné et puisque $0 < u_n < 1$:

$$f_{n+1}(u_n) = u_n^{n+1} + u_n - 1 < u_n^n + u_n - 1 = f_n(u_n) = 0 = f_{n+1}(u_{n+1}),$$

et donc $f_{n+1}(u_n) < f_{n+1}(u_{n+1})$ puis, par stricte croissance de f_{n+1} sur \mathbb{R}^+ , on obtient :

$$\forall n \in \mathbb{N}, u_n < u_{n+1}.$$

La suite u est bornée et strictement croissante. Donc, la suite u converge vers un réel ℓ , élément de [0,1]. Si $0 \le \ell < 1$, il existe un rang n_0 tel que pour $n \ge n_0$, on a : $u_n \le \ell + \frac{1-\ell}{2} = \frac{1+\ell}{2}$. Mais alors, pour $n \ge n_0$, on a $1 - u_n = u_n^n \le (\frac{1+\ell}{2})^n$ et quand n tend vers vers $+\infty$, on obtient $1 - \ell \le 0$ ce qui est en contradiction avec $0 \le \ell < 1$. Donc, $\ell = 1$.

Correction de l'exercice 28 ▲

1. Posons $a = \frac{2p\pi}{q}$ où $p \in \mathbb{Z}$, $q \in \mathbb{N}^*$ et PGCD(p,q) = 1. Pour tout entier naturel n, on a

$$u_{n+q} = \cos\left((n+q)\frac{2p\pi}{q}\right) = \cos\left(n\frac{2p\pi}{q} + 2p\pi\right) = \cos(na) = u_n.$$

La suite u est donc q-périodique et de même la suite v est q-périodique. Maintenant, une suite périodique converge si et seulement si elle est constante (en effet, soient T une période strictement positive de u et ℓ la limite de u. Soit $k \in \{0, ..., T-1\}$. $|u_k - u_0| = |u_{k+nT} - u_{nT}| \to |\ell - \ell| = 0$ quand n tend vers l'infini). Or, si $a = \frac{2p\pi}{q}$ où $p \in \mathbb{Z}$, $q \in \mathbb{N}^*$, PGCD(p,q) = 1 et $\frac{p}{q} \in \mathbb{Z}$, alors $u_1 \neq u_0$ et la suite u n'est pas constante et donc diverge, et si $a \in 2\pi\mathbb{Z}$, la suite u est constante et donc converge.

2. (a) et b)) Pour tout entier naturel n,

$$v_{n+1} = \sin((n+1)a) = \sin(na)\cos a + \cos(na)\sin a = u_n\sin a + v_n\cos a.$$

Puisque $\frac{a}{2\pi} \notin \mathbb{Z}$, $\sin a \neq 0$ et donc $u_n = \frac{v_{n+1} - v_n \cos a}{\sin a}$. Par suite, si v converge alors u converge. De même, à partir de $\cos((n+1)a) = \cos(na)\cos a - \sin(na)\sin a$, on voit que si u converge alors v converge. Les suites u et v sont donc simultanément convergentes ou divergentes.

Supposons que la suite u converge, alors la suite v converge. Soient ℓ et ℓ' les limites respectives de u et v. D'après ce qui précède, ℓ et ℓ' sont solutions du système :

$$\left\{ \begin{array}{l} \ell \sin a + \ell' \cos a = \ell' \\ \ell \cos a - \ell' \sin a = \ell. \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \ell \sin a + \ell' (\cos a - 1) = 0 \\ \ell (\cos a - 1) - \ell' \sin a = 0. \end{array} \right. .$$

Le déterminant de ce système vaut $-\sin^2 a - (\cos a - 1)^2 < 0$ car $a \notin 2\pi\mathbb{Z}$. Ce système admet donc l'unique solution $\ell = \ell' = 0$ ce qui contredit l'égalité $\ell^2 + {\ell'}^2 = 1$. Donc, les suites u et v divergent.

3. (a) Soit $E' = \{na + 2k\pi, n \in \mathbb{N}, k \in \mathbb{Z}\}$. Supposons que E' est dense dans \mathbb{R} et montrons que $\{u_n, n \in \mathbb{N}\}$ et $\{v_n, n \in \mathbb{N}\}$ sont dense dans [-1, 1].

Soient x un réel de [-1,1] et $b = \operatorname{Arccos} x$, de sorte que $b \in [0,\pi]$ et que $x = \cos b$.

Soit $\varepsilon > 0$. Pour *n* entier naturel et *k* entier relatif donnés, on a :

$$|u_n - x| = |\cos(na) - \cos b| = |\cos(na + 2k\pi) - \cos b| = 2|\sin(\frac{na + 2k\pi - b}{2})\sin(\frac{na + 2k\pi + b}{2})|$$

$$\leq 2\left|\frac{na + 2k\pi - b}{2}\right| \text{ (1'inégalité } |\sin x| \leq |x| \text{ valable pour tout réel } x \text{ est classique)}$$

$$= |na + 2k\pi - b|$$

En résumé, $\forall k \in \mathbb{Z}, \ \forall n \in \mathbb{N}, \ |u_n - x| \le |na + 2k\pi - b|$. Maintenant, si E' est dense dans \mathbb{R} , on peut trouver $n \in \mathbb{N}$ et $k \in \mathbb{Z}$ | tels que $|na + 2k\pi - b| < \varepsilon$ et donc $|u_n - x| < \varepsilon$.

Finalement, $\{u_n, n \in \mathbb{N}\}$ est dense dans [-1,1]. De même, on montre que $\{v_n, n \in \mathbb{N}\}$ est dense dans [-1,1].

Il reste donc à démontrer que E' est dense dans \mathbb{R} .

(b) Soit $E = \{na + 2k\pi, n \in \mathbb{Z}, k \in \mathbb{Z}\}$. E est un sous groupe non nul de $(\mathbb{R}, +)$ et donc est soit de la forme $\alpha\mathbb{Z}$ avec $\alpha = \inf(E \cap [0, +\infty[) > 0$, soit dense dans \mathbb{R} si $\inf(E \cap [0, +\infty[) = 0$.

Supposons par l'absurde que $\inf(E\cap]0,+\infty[)>0$. Puisque $E=\alpha\mathbb{Z}$ et que 2π est dans E, il existe un entier naturel non nul q tel que $2\pi=q\alpha$, et donc tel que $\alpha=\frac{2\pi}{q}$.

Mais alors, a étant aussi dans E, il existe un entier relatif p tel que $a = p\alpha = \frac{2p\pi}{q} \in 2\pi\mathbb{Q}$. Ceci est exclu et donc, E est dense dans \mathbb{R} .

(c) Soit x dans [-1,1]. D'après ce qui précède, pour $\varepsilon > 0$ donné, il existe $n \in \mathbb{Z}$ tel que $|\cos(na) - x| < \varepsilon$ et donc $|u_{|n|} - x| < \varepsilon$, ce qui montre que $\{u_n, n \in \mathbb{N}\}$ est dense dans [-1,1]. De même, $\{v_n, n \in \mathbb{N}\}$ est dense dans [-1,1].

Correction de l'exercice 29 A

Soit *x* dans [-1,1] et $\varepsilon > 0$.

Soit $\theta = \operatorname{Arcsin} x$ (donc θ est élément de $[-\frac{\pi}{2}, \frac{\pi}{2}]$ et $x = \sin \theta$). Pour k entier naturel non nul donné, il existe un entier n_k tel que $\ln(n_k) \le \theta + 2k\pi < \ln(n_k + 1)$ à savoir $n_k = E(e^{\theta + 2k\pi})$. Mais,

$$0 < \ln(n_k + 1) - \ln(n_k) = \ln(1 + \frac{1}{n_k}) < \frac{1}{n_k}$$

(d'après l'inégalité classique $\ln(1+x) < x$ pour x > 0, obtenue par exemple par l'étude de la fonction $f: x \mapsto \ln(1+x) - x$). Donc,

$$0 \le \theta + 2k\pi - \ln(n_k) < \ln(n_k + 1) - \ln(n_k) < \frac{1}{n_k},$$

puis

$$|\sin(\theta) - \sin(\ln(n_k))| = 2|\sin(\frac{\theta + 2k\pi - \ln(n_k)}{2})\cos(\frac{\theta + 2k\pi + \ln(n_k)}{2})|$$

$$\leq 2\left|\frac{\theta + 2k\pi - \ln(n_k)}{2}\right| = |\theta + 2k\pi - \ln(n_k)| < \frac{1}{n_k}.$$

Soit alors ε un réel strictement positif.

Puisque $n_k = E(e^{\theta + 2k\pi})$ tend vers $+\infty$ quand k tend vers $+\infty$, on peut trouver un entier k tel que $\frac{1}{n_k} < \varepsilon$ et pour cet entier k, on a $|\sin \theta - \sin(\ln(n_k))| < \varepsilon$.

On a montré que $\forall x \in [-1,1], \ \forall \varepsilon > 0, \ \exists n \in \mathbb{N}^* / \ |x - \sin(\ln n)| < \varepsilon$, et donc $\{\sin(\ln n), \ n \in \mathbb{N}^*\}$ est dense dans [-1,1].

Correction de l'exercice 30 ▲

Pour $\alpha \in]0, \pi[$, posons $f(\alpha) = \sup_{n \in \mathbb{N}} (|\sin(n\alpha)|)$. $\{(\sin(n\alpha), n \in \mathbb{N}\}$ est une partie non vide et majorée (par 1) de \mathbb{R} . Donc, pour tout réel α de $]0, \pi[$, $f(\alpha)$ existe dans \mathbb{R} . Si α est dans $[\frac{\pi}{3}, \frac{2\pi}{3}]$,

$$f(\alpha) = \sup_{n \in \mathbb{N}} (|\sin(n\alpha)|) \ge \sin \alpha \ge \frac{\sqrt{3}}{2} = f(\frac{\pi}{3}).$$

Si α est dans $]0,\frac{\pi}{3}]$. Soit n_0 l'entier naturel tel que $(n_0-1)\alpha < \frac{\pi}{3} \le n_0\alpha$ (n_0 existe car la suite $(n\alpha)_{n\in\mathbb{N}}$ est strictement croissante). Alors,

$$\frac{\pi}{3} \le n_0 \alpha = (n_0 - 1)\alpha + \alpha < \frac{\pi}{3} + \alpha \le \frac{\pi}{3} + \frac{\pi}{3} = \frac{2\pi}{3}.$$

Mais alors,

$$f(\alpha) = \sup_{n \in \mathbb{N}} (|\sin(n\alpha)|) \ge |\sin(n_0\alpha)| \ge \frac{\sqrt{3}}{2} = f(\frac{\pi}{3}).$$

Si α est dans $\left[\frac{2\pi}{3}, \pi\right]$, on note que

$$f(\alpha) = \sup_{n \in \mathbb{N}} (|\sin(n\alpha)|) = \sup_{n \in \mathbb{N}} (|\sin(n(\pi - \alpha)|) = f(\pi - \alpha) \ge f(\frac{\pi}{3}),$$

car $\pi - \alpha$ est dans $\left[0, \frac{\pi}{2}\right]$.

On a montré que $\forall \alpha \in]0,\pi[,\ f(\alpha) \geq f(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}.$ Donc, $\inf_{\alpha \in]0,\pi[}(\sup_{n \in \mathbb{N}}(|\sin(n\alpha)|))$ existe dans \mathbb{R} et

$$\inf_{\alpha\in]0,\pi[}(\sup_{n\in\mathbb{N}}(|\sin(n\alpha)|))=\min_{\alpha\in]0,\pi[}(\sup_{n\in\mathbb{N}}(|\sin(n\alpha)|))=f(\frac{\pi}{3})=\frac{\sqrt{3}}{2}.$$

Correction de l'exercice 31 ▲

La suite u n'est pas majorée. Donc, $\forall M \in \mathbb{R}, \ \exists n \in \mathbb{N}/\ u_n > M$. En particulier, $\exists n_0 \in \mathbb{N}/\ u_{n_0} \geq 0$. Soit k = 0. Supposons avoir construit des entiers $n_0, n_1, ..., n_k$ tels que $n_0 < n_1 < ... < n_k$ et $\forall i \in \{0, ..., k\}, \ u_{n_i} \geq i$. On ne peut avoir : $\forall n > n_k, \ u_n < k+1$ car sinon la suite u est majorée par le nombre $\max\{u_0, u_1, ..., u_{n_k}, k+1\}$). Par suite, $\exists n_{k+1} > n_k/\ u_{n_{k+1}} \geq k+1$.

On vient de construire par récurrence une suite $(u_{n_k})_{k\in\mathbb{N}}$ extraite de la suite u telle que $\forall k\in\mathbb{N},\ u_{n_k}\geq k$ et en particulier telle que $\lim_{k\to+\infty}u_{n_k}=+\infty$.

Correction de l'exercice 32 A

Si u converge vers un réel ℓ , alors $\ell \in [0,1]$ puis, par passage à la limite quand n tend vers $+\infty$, $\ell(1-\ell) \geq \frac{1}{4}$, et donc $(\ell-\frac{1}{2})^2 \leq 0$ et finalement $\ell=\frac{1}{2}$. Par suite, si u converge, $\lim_{n \to +\infty} u_n = \frac{1}{2}$. De plus, puisque la suite u est à valeurs dans]0,1[, pour n naturel donné, on a :

$$u_n(1-u_n) = \frac{1}{4} - (\frac{1}{2} - u_n)^2 \le \frac{1}{4} < u_{n+1}(1-u_n),$$

et puisque $1-u_n > 0$, on a donc $\forall n \in \mathbb{N}, \ u_n < u_{n+1}.$ u est croissante et majorée. Donc u converge et $\lim_{n \to +\infty} u_n = \frac{1}{2}$ (amusant).