Application example: Photo OCR (Photo Optical Character Recognition)	Application example: Photo OCR Date	
Problem description and pipeline	Stidma wirdaus	
=> focus on han to get a computer to read the fext to the purest	=2 starting by setting a window of sixels in 82×36 image patches	
in images we take.	Using supervised learning, feed the pedistrian detection diasofter with	
	photo with position (y=1) and photo without palastrian (y=0)	
Photo OCR pipeline	- Now using the stiding window to stide the image row by now to	
1-Text detection =) detect out where the fext is and drown a rectangle	check the whether the pedestrian is in the image or not.	
around the text	- The distance between I window and the next window is determined by	
2. Character segmentation =) In the restargle, segment out each	the stide parameter (step-size/stride)	
character of the words	- Now see Is the algorithm can defect out the pedestrian in the image.	
3- Character classification) for each character, classify out what	A	
alphabet nt is.	This same goes to Text detection	
Complex restricts		
moley than I mago - I to to the character	Text detectron an image with	
down into recognition segmentation recognition many mobiles	- ofter doing diding window, the output will be poolour in between black and	
murg	white	
Machine learning pipeline => A system with many stages/components, several		
of which may use machine learning	then grey and least probability will be black	
J.	- Then, using "expansion" operator to expand the white region in the image	
	-) Draw out rationale in those white region which the height to width	
	ratio is more look like a rectangular	
	on o 18 more poor like of reconstruction	
	To sheck how many times were need to my your potches can use	
	To check how many times you need to non your postches can use (height * width) of image (step-size)	
	(step-size) at mage	
	Character segmentation	
	10 sliding window	
	e) Using supervised learning to train a classifier by feeding the dossifier with image that got space (split) between 2 character	
	The classifier with though that got space (spirit) permeen 2 character	
	as (y=1) and the image with only 1 character as (y=0)	
	Character classification	
	=) using supervised borning classifler	
	J. J	

Application example: Photo OCR	Application example: Photo OCR Date	
Getting lots of Jota: Artificial dota guthesis	Certing analysis: what part of the pipeline to work on next	
	, J. J. T.	
Synthetic data => Data where the image of character is randomly	Estimating the errors due to each component (cerling analysis)	
chosen from a font and put on a random.		
background, may be edited with blurry	Image -> Text detection -> Segmentation -> recognition	
effect or brighter / downter image	segments from recognition	
ch look similar to real data	What part of the possions of all the same	
=) We can build new doctor from scrotch	What part of the pipeline should you spend the most time trying to improve?	
Introduce artificial distortion into dataset to generate more data	Component Accuracy	
y-404(1141- (1161)	Manually put in Overall system 72% 1 +17	
Discussion on getting more data	(correct output and Text detectron 89%)	
1. Make sure you have a low bias classifier before expending the effort.	(Manually put in Over all system 72% 1 17 (cornect cutput and) Text detectron 89% for this component of them, check accuracy again + Source -) Character governmentation 90%	
(Plot learning Curves). E-g-keep moreaging the number of features/number		
of Midden units in mural not more at 1 1 in a 1	some =) character reagnition 100% [+1	
of hidden units in neural network until you have a low.	7	
bras classifier. Good question to ask	Text detection worth spending more time with compared to another two components.	
be to cot to a	more time with compared to another two components.	
be to get lox as much data go we currently have?"	ceiling analysis example	
- Artificial data synthesis 1 #hours? - Glect/label it unous m=1,000	Face recognition from images (Arthfold example)	
- Glect/latel it yourself m=1,000 calculation	· ·	
Crowd Source (E. a. Amazon Mechanin) how about m=10,000")	Cornera image -> Preprocess Cremore background)	
tabelling	1 PEyes segmentation	
	Face detection Nose segmentation - Leveton reconnection	
	Manthe account of	
	Overall system 85% to 10% Preprocess (remove background) 85.1% to 10% Face defection 91% to 4% Eyes segmentation 95%	
	tace defection 91%. Host worth	
	Eyes Segmentation 95% 4%	
	Nace a status 960 11%	
	Nose segmentation 96% 11%. Mouth segmentation 97% 11%	
	Mouth segmentation 97%, 29	
	Logistic regression 100%. 23%.	

Nc.	 	

Quiz

Suppose you perform certing analysis on a prolined machine learning system, and when we plug in the ground-truth labels flor one of the components, the performance of the overall system improves very little. This probably means:

- It is probably not worth dedicating engineering resources
to improving that component of the system.

- If that component is a classifier training using gradient descent, it
is probably not worth numbring gradient descent for 10x as
long to see if it converges to better classifier parameters.