

Polylogarithmic Approximation for Generalized Minimum Manhattan Networks

Aparna Das Krzysztof Fleszar Stephen Kobourov Joachim Spoerhase Sankar Veeramoni Alexander Wolff

Department of Computer Science University of Arizona Institut für Informatik Universität Würzburg Definitions: Given a set of *n* points in the plane...

0

Definitions: Given a set of *n* points in the plane... "terminals"

Definitions: Minimum Manhattan Network (MMN)

Definitions: Minimum Manhattan Network (MMN)

point-set embedding:

o point-set embedding: K_n with min. ink (using M-geodesics)

- o point-set embedding: K_n with min. ink (using M-geodesics)
- visualization of split networks (also in higher dim.)

- o point-set embedding: K_n with min. ink (using M-geodesics)
- visualization of split networks (also in higher dim.)

- o point-set embedding: draw K_n with min. ink (using M-geodesics)
- visualization of split networks (also in higher dim.)

VLSI layout:

- o point-set embedding: K_n with min. ink K_n (using M-geodesics)
- visualization of split networks (also in higher dim.)

VLSI layout:

minimize total wire length

- point-set embedding: draw K_n with min. ink (using M-geodesics)
- visualization of split networks (also in higher dim.)

VLSI layout:
 minimize total wire length
 minimize signal travel time

Previous Work

Previous Work

Previous Work

Previous Work + Our Contributions

Part I

A Simple Recursive $O(\log^2 n)$ -Approximation Algorithm for GMMN in the Plane

Let $\rho_{2D}(n) = \cos t / OPT$ be the performance ratio (in w-c). $\rho_{2D}(n) OPT = \cos t$

$$\rho_{2D}(n) \, \mathsf{OPT} = \mathsf{cost} \, \leq \,$$

$$\rho_{\text{2D}}(n) \, \mathsf{OPT} = \mathsf{cost} \, \leq \boxed{\rho_{\text{2D}}(n/2) \, \mathsf{OPT}} + \boxed{\rho_{\mathsf{x-sep}}(n) \, \mathsf{OPT}}$$

$$\Rightarrow \rho_{2D}(n) \leq \rho_{2D}(n/2) + \rho_{x-sep}(n)$$

TO DO:

Show that

$$\rho_{\mathsf{x-sep}}(n) \in O(\log n).$$

$$\rho_{\text{2D}}(n) \, \mathsf{OPT} = \mathsf{cost} \, \leq \, \rho_{\text{2D}}(n/2) \, \mathsf{OPT} \, + \, \rho_{\mathsf{x-sep}}(n) \, \mathsf{OPT}$$

$$\Rightarrow \rho_{2D}(n) \leq \rho_{2D}(n/2) + \rho_{x-sep}(n)$$

TO DO:

Show that

$$\rho_{\mathsf{x-sep}}(n) \in O(\log n).$$

$$\rho_{\text{2D}}(n) \, \mathsf{OPT} = \mathsf{cost} \, \leq \, \rho_{\text{2D}}(n/2) \, \mathsf{OPT} + \, \rho_{\mathsf{x-sep}}(n) \, \mathsf{OPT}$$

$$\Rightarrow \rho_{2D}(n) \leq \rho_{2D}(n/2) + \rho_{x-sep}(n)$$

TO DO:

Show that

$$\rho_{\mathsf{x-sep}}(n) \in O(\log n).$$

$$\rho_{\text{2D}}(n) \, \mathsf{OPT} = \mathsf{cost} \, \leq \, \rho_{\text{2D}}(n/2) \, \mathsf{OPT} + \, \rho_{\mathsf{x-sep}}(n) \, \mathsf{OPT}$$

$$\Rightarrow \rho_{2D}(n) \leq \rho_{2D}(n/2) + \rho_{x-sep}(n)$$

$$\Rightarrow \in O(\log^2 n)$$
 by Master theorem.

Let $\rho_{\text{x-sep}}(n) = \cos t / \text{OPT}$ be the performance ratio (in w-c). $\rho_{\text{x-sep}}(n) \text{ OPT} = \cos t$

$$\rho_{\mathsf{x-sep}}(n) \, \mathsf{OPT} = \mathsf{cost} \, \leq \, \rho_{\mathsf{x-sep}}(n/2) \, \mathsf{OPT} \, + \, \rho_{\mathsf{xy-sep}}(n) \, \mathsf{OPT}$$

Let $\rho_{\text{x-sep}}(n) = \cos t / \text{OPT}$ be the performance ratio (in w-c). $\rho_{\text{x-sep}}(n) \text{ OPT} = \cos t \leq \rho_{\text{x-sep}}(n/2) \text{ OPT} + \rho_{\text{xy-sep}}(n) \text{ OPT}$ $\Rightarrow \rho_{\text{x-sep}}(n) \leq \rho_{\text{x-sep}}(n/2) + \rho_{\text{xy-sep}}(n)$

TO DO:

Show that

$$\rho_{\mathsf{xy-sep}}(n) \in O(1).$$

$$\rho_{\mathsf{x-sep}}(n) \, \mathsf{OPT} = \mathsf{cost} \, \leq \, \rho_{\mathsf{x-sep}}(n/2) \, \mathsf{OPT} \, + \, \rho_{\mathsf{xy-sep}}(n) \, \mathsf{OPT}$$

$$\Rightarrow \rho_{x-sep}(n) \leq \rho_{x-sep}(n/2) + \rho_{xy-sep}(n)$$

TO DO:

Show that

$$\rho_{\mathsf{xy-sep}}(n) \in O(1).$$

$$\rho_{\mathsf{x-sep}}(n) \, \mathsf{OPT} = \mathsf{cost} \, \leq \, \rho_{\mathsf{x-sep}}(n/2) \, \mathsf{OPT} \, + \, \rho_{\mathsf{xy-sep}}(n) \, \mathsf{OPT}$$

$$\Rightarrow \rho_{\mathsf{x-sep}}(n) \leq \rho_{\mathsf{x-sep}}(n/2) + \rho_{\mathsf{xy-sep}}(n)$$

$$\Rightarrow$$
 $\in O(\log n)$ by Master theorem.

Idea: Use algorithm for RSA!

Idea: Use algorithm for RSA! Resulting network is...− feasible √

- feasible √
- near-optimal:

- feasible √
- near-optimal:

RSA network

- feasible √
- near-optimal:

RSA network

- feasible √
- near-optimal:

- feasible √
- near-optimal: cross + GMMN network *is* RSA network

- feasible √
- near-optimal: cross + GMMN network *is* RSA network

- feasible √
- near-optimal: cross + GMMN network *is* RSA network

- feasible √
- near-optimal: cross + GMMN network *is* RSA network

- feasible √
- near-optimal: cross + GMMN network *is* RSA network

- feasible √
- near-optimal: cross + GMMN network is RSA network

- feasible √
- near-optimal: cross + GMMN network is RSA network
- efficiently constructable: RSA admits PTAS in 2D.

- feasible √
- near-optimal: cross + GMMN network is RSA network
- efficiently constructable: RSA admits PTAS in 2D.√

- feasible √
- near-optimal: cross + GMMN network is RSA network
- efficiently constructable: RSA admits PTAS in 2D.√

$$\Rightarrow \rho_{\text{xy-sep}} \leq$$

- feasible √
- near-optimal: cross + GMMN network is RSA network
- efficiently constructable: RSA admits PTAS in 2D.√

$$\Rightarrow \rho_{\text{xy-sep}} \leq 2(1+\varepsilon)$$

- feasible √
- near-optimal: cross + GMMN network is RSA network
- efficiently constructable: RSA admits PTAS in 2D.√

$$\Rightarrow
ho_{\mathsf{xy-sep}} \leq 2(1+arepsilon)$$
 , $ho_{\mathsf{x-sep}} \in O(\log n)$

- feasible √
- near-optimal: cross + GMMN network is RSA network
- efficiently constructable: RSA admits PTAS in 2D.√

$$\Rightarrow
ho_{\mathsf{xy-sep}} \leq \ 2(1+arepsilon)$$
 , $ho_{\mathsf{x-sep}} \in O(\log n)$, $ho_{\mathsf{2D}} \in O(\log^2 n)$ \square

	Approximation Factors		
Dimension	Step 1: Partition	Step 2: RSA	Result
2			
d > 2			

	Approximation Factors		
Dimension	Step 1: Partition	Step 2: RSA	Result
2	$O(\log^2 n)$	O(1)	$O(\log^2 n)$
d > 2			

	Approximation Factors		
Dimension	Step 1: Partition	Step 2: RSA	Result
2	$O(\log^2 n)$	O(1)	$O(\log^2 n)$
d > 2	$O(\log^{d} n)$	$O(\log n)$	$O(\log^{d+1} n)$

	Approximation Factors		
Dimension	Step 1: Partition	Step 2: RSA	Result
2	$O(\log^{\times} n)$	O(1)	$O(\log^{\times} n)$
d > 2	$O(\log^{d} n)$	$O(\log n)$	$O(\log^{d+1} n)$

	Approximation Factors		
Dimension	Step 1: Partition	Step 2: RSA	Result
2	$O(\log^{\times} n)$	O(1)	$O(\log^{\times} n)$
d > 2	$O(\log^{d} n)$	$O(\log n)$	$O(\log^{d+1} n)$

TO DO: In 2D, remove one level of recursion!

Part II

An Improved $O(\log n)$ -Approximation Algorithm for GMMN in the Plane

Simple and Improved Approach in 2D

Simple and Improved Approach in 2D

Simple and Improved Approach in 2D

RSA

The right parts of the horizontal line segments in a fixed optimal solution.

Lemma₁.

For any $x \ge 0$, it holds that $|P_x| \le 2 \cdot |\ell_x \cap N_{\text{hor}}^+|$.

The right parts of the horizontal line segments in a fixed optimal solution.

Lemma₁.

For any
$$x \ge 0$$
, it holds that $|P_x| \le 2 \cdot |\ell_x \cap N_{\text{hor}}^+|$.

The right parts of the horizontal line segments in a fixed optimal solution.

Lemma₁.

not by $P_X \setminus \{p\}$.

For any $x \ge 0$, it holds that $|P_x| \le 2 \cdot |\ell_x \cap N_{\text{hor}}^+|$.

Proof.

For every $p \in P_x$, let $I_p \in \mathcal{I}_x$ be a *witness* if it is pierced by p but

 $\{r \cap \ell_{\mathsf{x}} \mid r \in R^+\}$

The right parts of the horizontal line segments in a fixed optimal solution.

Lemma₁.

For any $x \ge 0$, it holds that $|P_x| \le 2 \cdot |\ell_x \cap N_{\text{hor}}^+|$.

Proof.

 $\{r \cap \ell_{\mathsf{X}} \mid r \in R^{+}\}$

The right parts of the horizontal line segments in a fixed optimal solution.

Lemma₁.

For any $x \ge 0$, it holds that $|P_x| \le 2 \cdot |\ell_x \cap N_{\text{hor}}^+|$.

Proof.

 $\{r \cap \ell_{\mathsf{X}} \mid r \in R^{+}\}$

The right parts of the horizontal line segments in a fixed optimal solution.

Lemma₁.

For any $x \ge 0$, it holds that $|P_x| \le 2 \cdot |\ell_x \cap N_{\text{hor}}^+|$.

Proof.

 $\{r \cap \ell_{\mathsf{X}} \mid r \in R^{+}\}$

The right parts of the horizontal line segments in a fixed optimal solution.

Lemma₁.

For any $x \ge 0$, it holds that $|P_x| \le 2 \cdot |\ell_x \cap N_{\text{hor}}^+|$.

Proof.

 $\{r \cap \ell_{\mathsf{X}} \mid r \in \mathsf{R}^+\}$

For every $p \in P_x$, let $I_p \in \mathcal{I}_x$ be a *witness* if it is pierced by p but not by $P_x \setminus \{p\}$.

• Any point q on ℓ_x pierces ≤ 2 witnesses

The right parts of the horizontal line segments in a fixed optimal solution.

Lemma₁.

For any $x \ge 0$, it holds that $|P_x| \le 2 \cdot |\ell_x \cap N_{\text{hor}}^+|$.

Proof.

 $\{r \cap \ell_{\mathsf{X}} \mid r \in \mathsf{R}^+\}$

For every $p \in P_x$, let $I_p \in \mathcal{I}_x$ be a *witness* if it is pierced by p but not by $P_x \setminus \{p\}$.

• Any point q on ℓ_x pierces ≤ 2 witnesses (by contradiction).

The right parts of the horizontal line segments in a fixed optimal solution.

Lemma₁.

For any $x \ge 0$, it holds that $|P_x| \le 2 \cdot |\ell_x \cap N_{\text{hor}}^+|$.

Proof.

 $\{r \cap \ell_{\mathsf{X}} \mid r \in \mathsf{R}^+\}$

- Any point q on ℓ_x pierces ≤ 2 witnesses (by contradiction).
- \bullet $\ell_{\mathsf{x}} \cap \mathsf{N}^{+}_{\mathsf{hor}}$ pierces \mathcal{I}_{x} .

The right parts of the horizontal line segments in a fixed optimal solution.

Lemma₁.

For any $x \ge 0$, it holds that $|P_x| \le 2 \cdot |\ell_x \cap N_{\text{hor}}^+|$.

Proof.

 $\{r \cap \ell_{\mathsf{X}} \mid r \in \mathsf{R}^+\}$

- Any point q on ℓ_x pierces ≤ 2 witnesses (by contradiction).
- $\ell_x \cap N_{\text{hor}}^+$ pierces \mathcal{I}_x , and hence, the $|P_x|$ many witnesses.

The right parts of the horizontal line segments in a fixed optimal solution.

Lemma₁.

For any $x \ge 0$, it holds that $|P_x| \le 2 \cdot |\ell_x \cap N_{\text{hor}}^+|$.

Proof.

 $\{r \cap \ell_{\mathsf{X}} \mid r \in \mathsf{R}^+\}$

- Any point q on ℓ_x pierces ≤ 2 witnesses (by contradiction).
- $\ell_X \cap N_{\text{hor}}^+$ pierces \mathcal{I}_X , and hence, the $|P_X|$ many witnesses.

$$\Rightarrow |\ell_x \cap N_{hor}^+| \ge |P_x|/2$$

Lemma₁.

For any $x \ge 0$, it holds that $|P_x| \le 2 \cdot |\ell_x \cap N_{\text{hor}}^+|$.

Lemma₂.

There is a set S^+ of horizontal line segments that stabs R^+ s.t.

$$cost(S^+) \leq 2 \cdot ||N_{hor}^+||$$
.

Lemma₁.

For any $x \ge 0$, it holds that $|P_x| \le 2 \cdot |\ell_x \cap N_{\text{hor}}^+|$.

Lemma₂.

There is a set S^+ of horizontal line segments that stabs R^+ s.t.

$$cost(S^+) \leq 2 \cdot ||N_{hor}^+||$$
.

Lemma₁.

For any $x \ge 0$, it holds that $|P_x| \le 2 \cdot |\ell_x \cap N_{\text{hor}}^+|$.

Lemma₂.

There is a set S^+ of horizontal line segments that stabs R^+ s.t.

$$cost(S^+) \leq 2 \cdot ||N_{hor}^+||$$
.

Lemma₁.

For any $x \ge 0$, it holds that $|P_x| \le 2 \cdot |\ell_x \cap N_{\text{hor}}^+|$.

Lemma₂.

There is a set S^+ of horizontal line segments that stabs R^+ s.t.

$$cost(S^+) \leq 2 \cdot ||N_{hor}^+||$$
.

$$||N_{hor}^+|| = \int |\ell_x \cap N_{hor}^+| dx.$$

Lemma₁.

For any $x \ge 0$, it holds that $|P_x| \le 2 \cdot |\ell_x \cap N_{\text{hor}}^+|$.

Lemma₂.

There is a set S^+ of horizontal line segments that stabs R^+ s.t.

$$cost(S^+) \leq 2 \cdot ||N_{hor}^+||$$
.

- $||N_{hor}^+|| = \int |\ell_x \cap N_{hor}^+| dx.$
- \bullet ALG = $\int |P_x| dx$.

Lemma₁.

For any $x \ge 0$, it holds that $|P_x| \le 2 \cdot |\ell_x \cap N_{\text{hor}}^+|$.

Lemma₂.

There is a set S^+ of horizontal line segments that stabs R^+ s.t.

$$cost(S^+) \leq 2 \cdot ||N_{hor}^+||$$
.

$$||N_{hor}^+|| = \int |\ell_x \cap N_{hor}^+| dx.$$

• ALG =
$$\int |P_x| dx$$
.
 $\leq \int 2 \cdot |\ell_x \cap N_{hor}^+| dx$

Lemma₁.

For any $x \ge 0$, it holds that $|P_x| \le 2 \cdot |\ell_x \cap N_{\text{hor}}^+|$.

Lemma₂.

There is a set S^+ of horizontal line segments that stabs R^+ s.t.

$$cost(S^+) \leq 2 \cdot ||N_{hor}^+||$$
.

$$||N_{hor}^+|| = \int |\ell_x \cap N_{hor}^+| dx.$$

• ALG =
$$\int |P_x| dx$$
.
 $\leq \int 2 \cdot |\ell_x \cap N_{hor}^+| dx$
= $2 \cdot ||N_{hor}^+||$

Lemma₃.

There is a set S of horizontal line segments that stabs R s.t. $cost(S) \le 4 \cdot OPT_{hor}$.

Lemma₃.

There is a set S of horizontal line segments that stabs R s.t. $cost(S) \leq 4 \cdot OPT_{hor}$.

Lemma₃.

There is a set S of horizontal line segments that stabs R s.t. $cost(S) \le 4 \cdot \mathsf{OPT}_{\mathsf{hor}}$.

$$cost(S) \leq$$

Lemma₃.

There is a set S of horizontal line segments that stabs R s.t. $cost(S) \le 4 \cdot OPT_{hor}$.

$$cost(S) \le 2(||S^-|| + ||S^+||)$$

Lemma₃.

There is a set S of horizontal line segments that stabs R s.t. $cost(S) \le 4 \cdot OPT_{hor}$.

$$cost(S) \le 2(||S^-|| + ||S^+||)$$

= $4(||N_{hor}^-|| + ||N_{hor}^+||)$

Lemma₃.

There is a set S of horizontal line segments that stabs R s.t. $cost(S) \le 4 \cdot OPT_{hor}$.

$$cost(S) \le 2(||S^-|| + ||S^+||)$$

= $4(||N_{hor}^-|| + ||N_{hor}^+||)$
= $4 \cdot OPT_{hor}$

Theorem. x-separated 2D-GMMN admits, for any $\varepsilon > 0$, a $(6 + \varepsilon)$ -approximation.

Theorem. x-separated 2D-GMMN admits, for any $\varepsilon > 0$, a $(6 + \varepsilon)$ -approximation.

Proof. PTAS for RSA \Rightarrow networks A_{up} for (L, top(I)) and A_{down} for (H, bot(I))

Theorem. x-separated 2D-GMMN admits, for any $\varepsilon > 0$, a $(6 + \varepsilon)$ -approximation.

Proof. PTAS for RSA \Rightarrow networks A_{up} for (L, top(I)) and A_{down} for (H, bot(I))

Theorem. x-separated 2D-GMMN admits, for any $\varepsilon > 0$, a $(6 + \varepsilon)$ -approximation.

Proof. PTAS for RSA \Rightarrow networks A_{up} for (L, top(I)) and A_{down} for (H, bot(I))

Theorem. x-separated 2D-GMMN admits, for any $\varepsilon > 0$, a $(6 + \varepsilon)$ -approximation.

Proof. PTAS for RSA ⇒ networks A_{up} for (L, top(I)) and A_{down} for (H, bot(I)) Return $N = A_{up} \cup A_{down} \cup S$.

Theorem. x-separated 2D-GMMN admits, for any $\varepsilon > 0$, a $(6 + \varepsilon)$ -approximation.

Proof. PTAS for RSA \Rightarrow networks $A_{\rm up}$ for $(L, {\rm top}(I))$ and $A_{\rm down}$ for $(H, {\rm bot}(I))$ Return $N = A_{\rm up} \cup A_{\rm down} \cup S$.

Feasible?

Theorem. x-separated 2D-GMMN admits, for any $\varepsilon > 0$, a $(6 + \varepsilon)$ -approximation.

Proof. PTAS for RSA \Rightarrow networks $A_{\rm up}$ for $(L, {\rm top}(I))$ and $A_{\rm down}$ for $(H, {\rm bot}(I))$ Return $N = A_{\rm up} \cup A_{\rm down} \cup S$.

Feasible?

Near-optimal?

$$egin{aligned} & \operatorname{cost}(\mathcal{S}) \leq 4 \cdot \operatorname{OPT}_{\mathsf{hor}} \,. \ & \operatorname{cost}(A_{\mathsf{up}}) \leq (1+arepsilon)(\mathsf{OPT} + \mathsf{OPT}_{\mathsf{ver}}) \ & \operatorname{cost}(A_{\mathsf{down}}) \leq (1+arepsilon)(\mathsf{OPT} + \mathsf{OPT}_{\mathsf{ver}}) \end{aligned}$$

 \dots and in \mathbb{R}^d

- O(1)-approx. for RSA?
- $O(\log^{\text{const}} n)$ approx. for GMMN?