Phylogenetic Methods

9 December 2024

Slides courtesy of Mark Craven University of Wisconsin-Madison

Background

 Phylogenetic tree: diagram showing evolutionary lineages of species/sequences/genes

- Why construct trees?
 - to try to explain the evolutionary history of species
 - to understand the lineage of various species
 - to understand how various functions evolved
 - to inform multiple alignments

Dinosaurs

Turner, A.H. et al. "A Basal Dromaeosaurid and Size Evolution Preceding Avian Flight" *Science* 317, 1378 (2007)

Horses

Stirton, R. A. 1940. "Phylogeny of North American Equidae". *Bull. Dept. Geol. Sci.*, Univ. California 25(4): 165-198.

Retroviruses

Weiss Retrovirology 2006 3:67 doi:10.1186/1742-4690-3-67

Two phylogenies

Reed et al. BMC Biology 2007 5:7 doi:10.1186/1741-7007-5-7

Evolution

- A phylogeny explains partially the evolutionary history of species
- Associated with a model of evolution
- Phylogenetic tree: leaves are associated with today's species and internal nodes associated with their hypothetical ancestors
- Trees are built from taxa associated with species: characters, morphology, DNA sequences, protein sequences, order of genes, repetitions and motifs, etc.

Phylogenetic Tree

- Binary tree
- Leaves represent elements, called taxa, corresponding to species being compared and clustered
- Internal nodes are hypothetical ancestral units
- In a rooted tree, path from root to a node represents an evolutionary path
- An unrooted tree specifies relationships among things, but not evolutionary paths; it represents clusters of species

Character states

- Character examples: #legs; nucleotide at some location; etc. corresponding states: 2, 4, 8; A, C, G, T; etc.
- Intention: species that share common character states are genetically close
- Common hypotheses:
 - independence: characters are evolving independently
 - neither convergence (parallel evolution leading the same state)
 Divergent Parallel Convergent

nor reversal (character turns back to previous state)

Phylogenetic Tree

 character-based: the topology of the tree describes branching events associated with the character (beak shape, #fingers, wings, presence of a given gene/protein/motif, etc.)

	2 legs	6 legs	wings	venom
human	1	0	0	0
bird	1	0	1	0
bee	0	1	1	1
spider	0	0	0	1

 distance-based: distance between nodes estimates the evolution time between hypothetical or real species (e.g. based on sequence distance)

	A	В	С	D	E
Α	0		8	5	3
A B C D		0	3	8	8
С			0	8	8
D				0	5
Е					0

Data for building trees

Trees can be constructed from various types of data

- character-based: morphological features (e.g. #legs),
 DNA/protein sequences
- distance-based: measures of distance between species/genes/sequences
- gene-order: linear order of orthologous genes in given genomes
- etc.

Phylogenetic Tree Approaches

Three general types of methods

- parsimony: find the tree that requires the minimum number of changes (mutations) to explain the data (Fitch's algorithm)
- distance: find tree that accounts for estimated evolutionary distances (UPGMA and NJ algorithms)
- maximum likelihood: find the tree that maximizes the likelihood of the data (not discussed today)

Parsimony-based approaches

Parsimony Based Approaches

- given: character-based data, e.g. sequences
- do: find tree that explains the data with a minimal number of changes

Parsimony prefers the first tree because it requires the fewest substitution events

Parsimony Based Approaches

- Usually involve two separate components
 - a search through the space of trees
 - a procedure to find the minimum number of changes/mutations needed to explain the data (for a given tree topology)
- Search with a branch and bound algorithm based on criteria adapted to the problem
- Explore branches of tree representing subsets of solution set
- Branch is checked against upper and lower bounds
- Requires an efficient algorithm to label a given tree

Number of possible trees

For n > 2 leaves, there are:

• $u_n = 1 \cdot 3 \cdot ... \cdot (2n-7) \cdot (2n-5)$ possible unrooted trees

• $r_n = (2n-3) \cdot u_n$ possible rooted trees: place the root on one of the 2n-3 edges in the unrooted tree

Number of possible trees

7	ı	$ u_n $	r_n
3	3	1	3
4		3	15
5	5	15	105
6	6	105	945
8	3	10 395	135 135
1	0	2 027 025	34 459 425

Impossible to generate them all and filter the appropriate trees for a given set of species!

Binary-character tree

- Binary-characters: states are 0 are 1
- n objects, m binary-char. matrix M, phylogenetic tree:
 - objects label leaves (1-to-1)
 - each character labels exactly one edge
 - state-1 characters of an object are along the path from the root to the object

	1	2	3	4	5
A	1	1	0	0 0 0 1	0
В	0	0	1	0	0
C	1	1	0	0	1
D	0	0	1	1	0
Ε	0	1	0	0	0

Perfect phylogeny

- A phylogenetic tree is perfect if, for any taxon f, the characters labeling the edges along the unique path from the root to leaf f specify all characters that f possesses (neither convergence nor reversal hypotheses)
- problem: n objects, m binary-characters, is there a perfect phylogeny of the objects?

Perfect phylogeny

- Let O_j be the set of objects having state 1 for character j
- **lemma**: the binary-character matrix M admits a perfect phylogeny if and only if for all O_j , O_k : either $O_j \cap O_k = \emptyset$ or $O_j \subseteq O_k$ or $O_k \subseteq O_j$ (either disjoint or comparable)

impossible because A, B should be in the same subtree without C, and B, C should be in the same subtree without A

Testing perfect phylogeny

Algorithm:

- sort columns of M in decreasing order of their number of 1s, which gives M'
- compute new matrix L from M'

Find the max k less than j where M_ik is 1

$$L_{ij} = \begin{cases} \max k < j : M'_{ik} = 1 & \text{if } M'_{ij} = 1 \\ -1 & \text{if no k} \\ 0 & \text{if } M'_{ij} \neq 1 \end{cases}$$

– if in each column of L, the non-zero elements are all the same, then we have a perfect phylogeny

Running test

perfect phylogeny exists

Output perfect phylogeny

running time: O(mn)

Complexity

- unordered characters, all state changes possible NP-complete
- ordered characters (cladistic model), changes are restricted, linear order, partial order (e.g. A→T→C→G) polynomial solutions
- binary characters (above algorithm) O(mn)

Minimum Changes for a Given Tree

- We are given the tree's topology and a mapping of taxa to the tree's leaves
- Our goal is to label internal nodes, minimizing the total number of changes
- Fitch's algorithm [1971]
 - assumes any state (e.g. nucleotide, amino acid) can convert to any other state
 - assumes positions are independent
 - processes sequences position per position

Fitch's Algorithm

- Two steps (per position on sequences)
 - bottom-up: traverse tree from leaves to root determining a set of possible states (e.g. nucleotides) for each internal node
 - top-down: traverse tree from root to leaves picking ancestral states for internal nodes

Fitch's Algorithm: bottom-up

- Set of possible states for internal node i: R_i
- Compute R_is during a post-order (from leaves to root) traversal of the tree with formula:

$$R_{i} = \begin{cases} R_{j} \cap R_{k} & R_{j} \cap R_{k} \neq \emptyset \\ R_{j} \cup R_{k} & otherwise \end{cases}$$

for internal node i with children j and k

Fitch's Algorithm: bottom-up

Computing sets R_i

- Selected states for internal node $i: r_i \in R_i$
- Compute r_i s during a pre-order (from root to leaves) traversal of the tree with formula:

$$r_{j} = \begin{cases} r_{i} & \text{if } r_{i} \in R_{j} \\ \text{arbitrary state in } R_{j} & \text{otherwise} \end{cases}$$

for node *j* with parent *i*

i | | |

• Selecting states r_i (first choice T): 4 mutations

• Selecting states r_i (first choice C, then T): 4 mutations

• Selecting states r_i (first choice C, then A): 4 mutations

Distance-based approaches

Distance-based Approaches

- Input: an $n \times n$ symmetric matrix M of pairwise distances between the objects
 - M_{ij} gives the distance between i and j
- Output: an edge-weighted tree such that the distance between leaves i and j is M_{ij}
- Two basic methods:
 - UPGMA produces a rooted tree under the molecular clock asumption if data is *ultrametric*
 - NJ produces an unrooted tree if data is additive

The UPGMA Method

Unweighted Pair Group Method using Arithmetic Averages

- basic idea:
 - iteratively pick two clusters and merge them
 - create a new node in tree for the merged cluster
 - update the distances between clusters and objects
- clusters are groups of objects sharing a common ancestor
- distance between two clusters C_i and C_j defined as:

$$d_{ij} = \frac{\sum_{q \in C_j}^{p \in C_i} d_{pq}}{|C_i| \cdot |C_j|}$$

(avg. distance between pairs of elements from clusters)

The UPGMA Method

Input: matrix of distances

Α	В	C	D	Ε
0	8	8	5	3
	0	3	8	8
		0	8	8
			0	5
				0
		0 8	0 8 8 0 3	0 8 8 5 0 3 8 0 8

Output: rooted tree

UPGMA Algorithm

Build a phylogenetic tree with UPGMA method

- define a leaf for each taxon/species and place it at height 0
- make each leaf a cluster
- while there exists more than one cluster
 - find two clusters C_i , C_j with smallest d_{ij}
- define a new cluster $C_k = C_i \cup C_j$
 - define new node k with children i and j at height $\frac{1}{2}d_{ij}$
 - replace clusters C_i and C_j by C_k

New distance

How do we define the distance of C_f to the **new cluster** C_k ?

That is, how do we find d_{fk} from d_{fi} and d_{fi} for a given C_f ?

$$d_{fk} = \frac{\sum_{q \in C_k}^{p \in C_f} d_{pq}}{|C_f| \cdot |C_k|} = \frac{\sum_{q \in C_i}^{p \in C_f} d_{pq} + \sum_{q \in C_j}^{p \in C_f} d_{pq}}{|C_f| \cdot |C_k|}$$

$$= \frac{\sum_{q \in C_i}^{p \in C_f} d_{pq}}{\frac{|C_f|}{|C_k|}} + \frac{\sum_{q \in C_j}^{p \in C_f} d_{pq}}{\frac{|C_f|}{|C_i|}} = \frac{d_{fi} \cdot |C_i| + d_{fj} \cdot |C_j|}{|C_i| + |C_j|}$$

Now it only takes constant time to compute d_{fk} .

Running UPGMA algorithm (1)

Running UPGMA algorithm (2)

Running UPGMA algorithm (2)

Matrix of distances

Tree

$$d_{Da} = \frac{5 \cdot 1 + 5 \cdot 1}{2} = 5$$

Running UPGMA algorithm (3)

Tree

3

Running UPGMA algorithm (3)

Matrix of distances

Tree

Running UPGMA algorithm (4)

Running UPGMA algorithm (4)

Matrix of distances

Tree

$$d_{bc} = \frac{8 \cdot 2 + 8 \cdot 1}{3} = 8$$

Running UPGMA algorithm (5)

Running UPGMA algorithm (6)

Matrix of distances

	Α	В	С	D	Е
Α	0	8	8	5	3
A B C D		0	3	8	8
С			0	8	8
				0	5
Е					0

The Molecular Clock Assumption

- the molecular clock assumption: divergence of sequences/species assumed to occur at the same rate at all points in the tree
- generally not true due to: changes in the intensity of natural selection, change in function of the protein studied, species-specific differences, population size, changing generation times, etc.
- if it does hold, then the data is said to be ultrametric
- UPGMA algorithm only works on ultrametric data

Ultrametric Data

 Ultrametric data: for every triplet of taxa, i, j, k,
 their distances are either all equal or two are equal and the remaining one is smaller

Neighbor Joining

- Like UPGMA, constructs a tree by iteratively joining subtrees
- Unlike UPGMA
 - does not assume the molecular clock assumption
 - produces an unrooted tree
- More general assumption than ultrametricity: additivity

Neighbor Joining

Input: matrix of distances

Output: unrooted tree

	Α	В	С	D
Α	0	3	5	6
A B C D		0	6	5
С			0	9
D				0

Picking Pairs of Nodes to Join

- At each step, we pick a pair of nodes to join; should we pick pair with smallest d_{ij} ? NO
- Suppose the real tree looks like this and we're picking the first pair of nodes to join

 $d_{AB} = 3$ is the smallest distance between two taxa

Wrong decision: we will never get the tree

Distances in Neighbor Joining

- Consider that we want to join i and j to a new node k
- The distance between any pair of leaves is the sum of lengths of edges connecting them

 We can thus compute the new distance from i to k as follows:

Distances in Neighbor Joining

 We now generalize the previous identity to account for the distance to all other leaves:

$$w_{ij} = \frac{1}{2}(d_{ij} + r_{ij} - r_{ji})$$

(w for weight) where

$$r_{ij} = \frac{\sum_{m \in L \setminus \{i,j\}} d_{im}}{|L| - 2}$$

and L is the set of leaves (avg. distance of i to all leaves except j)

• Beware: w_{ij} not always equals w_{ji}

NJ Algorithm

Build a phylogenetic tree with NJ method

- define one leaf for each taxon/species
- while more than two remaining nodes
 - find ordered pair i and j with smallest weight w_{ij}
 - join i and j to a new node k with $d_{ik} = w_{ij}$
 - replace nodes i and j by k and update distances with $d_{km} = d_{im} d_{ik}$ for every node $m \neq i$

Running NJ algorithm (1)

Find the smallest w_{ij}

$$w_{AB} = \frac{1}{2} \left(3 + \frac{5+6}{2} - \frac{6+5}{2} \right) = 1.5$$

$$w_{AC} = \frac{1}{2} \left(5 + \frac{3+6}{2} - \frac{6+9}{2} \right) = 1$$

$$w_{AD} = \frac{1}{2} \left(6 + \frac{3+5}{2} - \frac{5+9}{2} \right) = 1.5$$

$$w_{BA} = \frac{1}{2} \left(3 + \frac{6+5}{2} - \frac{5+6}{2} \right) = 1.5$$

$$w_{BC} = \frac{1}{2} \left(6 + \frac{3+5}{2} - \frac{5+9}{2} \right) = 1.5$$

$$\vdots$$

$$w_{BD} = \frac{1}{2} \left(5 + \frac{3+6}{2} - \frac{6+9}{2} \right) = 1$$

Running NJ algorithm (2)

Matrix of distances

Tree

nodes $\bf A$ and $\bf C$ with smallest weight $w_{AC}=1$ join $\bf A$ and $\bf C$ to a new node $\bf a$ with $d_{Aa}=w_{AC}=1$

Running NJ algorithm (2)

Matrix of distances

Tree

update distance
$$d_{aB} = d_{AB} - d_{aA} = 3 - 1 = 2$$

Running NJ algorithm (2)

Find the smallest w_{ij}

$$w_{aB} = \frac{1}{2} \left(2 + \frac{5}{1} - \frac{5}{1} \right) = 1$$

$$w_{aD} = \frac{1}{2} \left(5 + \frac{2}{1} - \frac{5}{1} \right) = 1$$

$$w_{Ba} = \frac{1}{2} \left(2 + \frac{5}{1} - \frac{5}{1} \right) = 1$$

$$w_{BD} = \frac{1}{2} \left(5 + \frac{2}{1} - \frac{5}{1} \right) = 1$$

$$w_{Da} = \frac{1}{2} \left(5 + \frac{5}{1} - \frac{2}{1} \right) = 4$$

$$w_{DB} = \frac{1}{2} \left(5 + \frac{5}{1} - \frac{2}{1} \right) = 4$$

Running NJ algorithm (3)

Matrix of distances

a B D
 a C D
 a D
 b C D
 b D
 c D
 d D
 d D

Tree

Running NJ algorithm (3)

Matrix of distances

b D
b 0 4

Tree

Running NJ algorithm (4)

Matrix of distances

	A	В	С	D	
Α	0	3	5	6	
A B C		0	6	5	
С			0	9	
D				0	

Final tree

Testing for Additivity

• For every set of four leaves, i, j, k and m, two of the sums $d_{ij} + d_{km}$, $d_{ik} + d_{jm}$, $d_{im} + d_{jk}$ must be equal and larger than the third (triplet condition)

Rooting Trees

- Finding a root in an unrooted tree is sometimes accomplished by using an outgroup
- Outgroup: a species known to be more distantly related to remaining species than they are to each other
- Best candidate for root position on the edge joining the outgroup to the rest of the tree

Comments on Distance Based Methods (1)

- If the given distance data is ultrametric (and these distances represent real distances), then UPGMA will identify the correct tree
- If the data is additive (and these distances represent real distances), then neighbor joining will identify the correct tree
- Otherwise, the methods may not recover the correct tree, but they may still be reasonable heuristics
- If the data is ultrametric, it is also additive

Comments on Distance Based Methods (2)

- Both UPGMA and NJ work by iteratively joining two "nearby" nodes and replacing them with the new node
- UPGMA can be implemented in $O(n^2 \log n)$ time using an efficient priority queue
- NJ can be implemented in $O(n^3)$ time
- NJ is slower because we need to recompute the weights after every iteration, whereas UPGMA allows quick dynamic updates

Conclusion

- finding the right tree structure is hard
- perfect phylogeny: each feature labels exactly one edge
- Fitch's algorithm minimizes the number of mutations for each character (maximum parsimony) given a tree
- distance-based methods
 - UPGMA requires ultrametric data, assuming the molecular clock assumption
 - NJ requires additive data, but produces an unrooted tree