

Dr. Gavin McArdle

Email: gavin.mcardle@ucd.ie

Office: A1.09 Computer Science

RECAP

Network Layer

- Datagram Service
- Internet Protocol
- Virtual Packet Switching
- •Internetworking
- IP Address format
- Forwarding

TODAY'S PLAN

Helper Protocols for Network Layer ARP and DHCP

DHCP & ARP

Filling in the gaps we need to make for IP forwarding work in practice

- Getting IP addresses (DHCP)
- Mapping IP to link addresses (ARP)

GETTING IP ADDRESSES

Problem:

- A node wakes up for the first time ...
 - What is its IP address?
 - What's the IP address of its router?
 - What's the subnet mask?

Want this to just work without human interaction.

GETTING IP ADDRESSES

- 1. Manual configuration (old days)
 - Can't be factory set, depends on use
 - As seen in the practical sessions!
- 2. A protocol for automatically configuring addresses (DHCP)

DHCP

DHCP (Dynamic Host Configuration Protocol)

It <u>leases</u> IP addresses to nodes

Provides other parameters too

- Network prefix
- Address of local router
- DNS server, time server, etc.
 More on Dynamic Name Service later

DHCP PROTOCOL STACK

DHCP is a client-server application

- Uses UDP
 - User Datagram Packets

DHCP ADDRESSING

Bootstrap issue:

• How does node send a message to DHCP server before it is configured?

DHCP ADDRESSING

Bootstrap issue:

• How does node send a message to DHCP server before it is configured?

Answer:

- Node sends <u>broadcast</u> messages that deliver to all nodes on the network
- Broadcast address is all 1s
- IP (32 bit): 255.255.255.255
- Ethernet (48 bit): ff:ff:ff:ff:ff

DHCP MESSAGES

DHCP MESSAGES

DHCP MESSAGES

To renew an existing lease, an abbreviated sequence is used:

REQUEST, followed by ACK

Protocol also supports replicated servers for reliability

SENDING AN IP PACKET

Problem:

- A node needs Link layer addresses to send a frame over the local link
- How does it get the destination link address from a destination IP address?

ARP (ADDRESS RESOLUTION PROTOCOL)

Node uses it to map a local IP address to its Link layer addresses

NEXT PROBLEM

How do we connect networks with different maximum packet sizes?

Need to split up packets in transit, Or discover the largest size to use in advance of host sending packet

PACKET SIZE PROBLEM

Different networks have different maximum packet sizes or MTUs

- MTU = <u>Maximum Transmission Unit</u>
- E.g., Ethernet 1.5K, WiFi 2.3K

Prefer large packets for efficiency

- But what size is too large?
- Difficult because node does not know complete network path

PACKET SIZE SOLUTIONS

Fragmentation

- Split up large packets in the network if they are too big to send
 - Classic method

Discovery

- Find the largest packet that fits on the network path and use it
 - IP uses today instead of fragmentation

IPV4 FRAGMENTATION

Routers fragment packets that are too large to forward

Receiving **host** reassembles to reduce load on routers

IPV4 FRAGMENTATION FIELDS

Header fields used to handle packet size differences

Identification, Fragment offset, MF/DF control bits

IPV4 FRAGMENTATION PROCEDURE

Routers split a packet that is too large:

- Typically break into large pieces
- Copy IP header to pieces
- Adjust length on pieces
- Set offset to indicate position
- Set MF (More Fragments) on all pieces except last

Receiving hosts reassembles pieces:

Identification field links pieces together,
 MF tells receiver when it has all pieces

IPV4 FRAGMENTATION

Before MTU = 2300 ID = 0x12efData Len = 2300Offset = 0MF = 0

(Ignore length of headers)

After MTU = 1500

ID =
Data Len =
Offset =
MF =

ID = Data Len = Offset =

MF =

IPV4 FRAGMENTATION (3)

IPV4 FRAGMENTATION

But fragmentation is undesirable

- More work for routers and hosts
- Tends to magnify loss rate
- Security vulnerabilities too

PATH MTU DISCOVERY

Discover the MTU that will fit

- Maximum Transmission Unit
- So we can avoid fragmentation
- The method in use today by IP

Host tests path with large packet

Routers provide feedback if too large; they tell host what size would have fit

PATH MTU DISCOVERY (2)

PATH MTU DISCOVERY

PATH MTU DISCOVERY

Process may seem involved

But usually quick to find right size

Path MTU depends on the path, so can change over time

Search is ongoing

Implemented with ICMP

Set DF (Don't Fragment) bit in IP header to get feedback messages

IP ERRORS - ICMP

What happens when something goes wrong during forwarding?

Need to be able to find the problem

INTERNET CONTROL MESSAGE PROTOCOL

ICMP is a companion protocol to IP

- They are implemented together
- Sits on top of IP

Provides error report and testing

Error is at router while forwarding

ICMP ERRORS

When router encounters an error while forwarding:

- It sends an ICMP error report back to the IP source address
- It discards the problematic packet; host needs to rectify

ICMP MESSAGE FORMAT

Each ICMP message has a Type, Code, and Checksum

Often carry the start of the offending packet as payload

Each message is carried in an IP packet

ICMP MESSAGE FORMAT

Each ICMP message has a Type, Code, and Checksum

Often carry the start of the offending packet as payload

Each message is carried in an IP packet

Portion of offending packet, starting with its IP header

EXAMPLE ICMP MESSAGES

Name	Type / Code	Usage
Dest. Unreachable (Net	3 / 0 or 1	Lack of
or Host)		connectivity
Dest. Unreachable	3 / 4	Path MTU
(Fragment)	J 7 4	Discovery
Time Exceeded (Transit)	11 / 0	Traceroute
Echo Request or Reply	8 or 0 / 0	Ping

Testing, not a forwarding error: Host sends Echo Request, and destination responds with an Echo Reply

TRACEROUTE

IP header contains TTL (Time to live) field

- Decremented every router hop, with ICMP error if it hits zero
- Protects against forwarding loops

TRACEROUTE

Traceroute repurposes TTL and ICMP functionality

- Sends probe packets increasing TTL starting from 1
- ICMP errors identify routers on the path

PUBLIC VERSUS PRIVATE IP ADDRESSES - NAT

What is NAT (Network Address Translation)? How does it work?

NAT is widely used at the edges of the network, e.g., homes

NAT (NETWORK ADDRESS TRANSLATION) BOX

NAT box connects an internal network to an external network

- Many internal hosts are connected using few external addresses
- Middlebox that "translates addresses"

Motivated by IP address scarcity

Controversial at first, now accepted

NAT

Common scenario:

- Home computers use "private" IP addresses
- NAT (in AP/firewall) connects home to ISP using a single external IP address

Keeps an internal/external table

- Typically uses IP address + TCP port
- This is address and port translation
- Need ports to make mapping 1-1 since there are fewer external IPs

What host thinks

What ISP thinks

Internal IP:port	External IP : port
192.168.1.12 : 5523	44.25.80.3 : 1500
192.168.1.13 : 1234	44.25.80.3 : 1501
192.168.2.20 : 1234	44.25.80.3 : 1502

Internal → External:

Look up and rewrite Source IP/port

	Internal IP:port	External IP : port	External
Internal source	192.168.1.12 : 5523	-	destination
300100			IP=X, port=\

External > Internal

Look up and rewrite Destination IP/port

Internal IP:port	External IP : port
192.168.1.12 : 5523	44.25.80.3 : 1500

Internal destination

External source IP=X, port=Y

Need to enter translations in the table for it to work

Create external name when host makes a TCP connection

NAT DOWNSIDES

Connectivity has been broken!

- Can only send incoming packets after an outgoing connection is set up
- Difficult to run servers or peer-to-peer apps at home

Breaks apps that unwisely expose their IP addresses (FTP)

NAT UPSIDES

Relieves much IP address pressure

Many home hosts behind NATs

Easy to deploy

Rapidly, and by you alone

Useful functionality

Firewall, helps with privacy