Exercise 1. Let *X* be a set and $A, B \subseteq X$. Show that the following (*called De Morgan's Laws*) are true.

(a)
$$X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B)$$

Proof. Suppose also that $x \in X \setminus (A \cup B)$, then $x \notin A \cup B$. Hence, $x \notin A$ and $x \notin B$. Therefore, $x \in (X \setminus A)$ and $x \in (X \setminus B)$. It then follows that $x \in (X \setminus A) \cap (X \setminus B)$.

(b)
$$X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B)$$

Proof. Suppose that $x \in X \setminus (A \cap B)$, then $x \notin A$ or $x \notin B$. Therefore, $x \in (X \setminus A)$ or $x \in (X \setminus B)$. Namely, $X \in (X \setminus A) \cup (X \setminus B)$.

Exercise 2. Let X be a set and A a family of subsets of X. Prove the following statements.

(a)
$$X \setminus (\cup A) = \cap \{X \setminus A | A \in A\}$$

Proof. Assume $x \in X \setminus (\cup A)$. Thereby, $x \notin \cup A$, so we can take any $A \in A$, and we know that $x \notin A$. This implies that $x \in X \setminus A$ for all $A \in A$. In other words, $A \in \cap A$.

(b)
$$X \setminus (\cap A) = \bigcup \{X \setminus A | A \in A\}$$

Proof. Take $x \in \bigcup \{X \setminus A | A \in \mathcal{A}\}$. It follows that $x \notin A$ for all $A \in \mathcal{A}$. This means also that $x \in X \setminus A$ for all $A \in \mathcal{A}$. Namely, $x \in \cap (X \setminus A)$ for all $A \in \mathcal{A}$. Rewriting this slightly, we get $x \in X \setminus (\cap \mathcal{A})$. \square

Exercise 3. Let $\{I_j\}_{j\in\mathbb{N}}$ be as in the example above (an indexed family of sets). Describe the followings sets, justify your responses.

(a) $\bigcup_{j\in\mathbb{N}}I_j$

This is simply a union of every set in the family $\{I_j\}_{j\in\mathbb{N}}$. Every element in some indexed member of the family I_j will be in the union. We know this by the definition of union of a family of sets

$$\bigcup_{j\in\mathbb{N}}I_j=\{x|x\in I_j \text{ for any } j\in\mathbb{N}\}$$

(b) $\cap_{j\in\mathbb{N}}I_j$

This denotes the intersection of all I_j for all $j \in \mathbb{N}$. This will be the set of all elements which exist in every set of the family $\{I_j\}_{j\in\mathbb{N}}$. This one again follows directly from the definition

$$\cap_{j\in\mathbb{N}} I_j = \{x | x \in I_j \text{ for every } j \in \mathbb{N}\}$$

Exercise 4. Prove the following statements.

(a) If \mathcal{U} is a family of open subsets of \mathbb{R}^n , then $\cup \mathcal{U}$ is open.

Proof. Take any $x \in \cup \mathcal{U}$. We know that x lies within at least one open set $U \in \mathcal{U}$. Within this open set U we can construct an open ball B(r,x) around x, such that everything within the open ball is also within U. Now because $U \in \mathcal{U}$, we know that $U \subseteq \cup \mathcal{U}$. Therefore also $B(r,x) \subseteq \cup \mathcal{U}$. Hence, we can take any point $x \in \cup \mathcal{U}$ and construct an open ball with t > 0 around t = 0 around t = 0. This shows that t = 0 is also open.

(b) If A is a family of closed sets of \mathbb{R}^n , then $\cap A$ is closed.

Proof. Take any $A \in \mathcal{A}$. We know that this A is closed by the given statement. By the definition of closed, we know that $\mathbb{R} \setminus A$ is open. From **Exercise 2** (b), we have that

$$\mathbb{R} \setminus (\cap \mathcal{A}) = \cup \{ \mathbb{R} \setminus A | A \in \mathcal{A} \}$$

We know that $\mathbb{R} \setminus A$ is open for all $A \in \mathcal{A}$. Furthermore their union $\cup \{\mathbb{R} \setminus A | A \in \mathcal{A}\}$ is then open by part (a). Therefore,

$$\mathbb{R} \setminus (\cap \mathcal{A})$$
 is open

and by the definition of closed in \mathbb{R}^n ,

 $\cap \mathcal{A}$ is closed

(c) \emptyset and \mathbb{R}^n are closed in \mathbb{R}^n .

Proof. Begin with \emptyset . The complement of \emptyset in \mathbb{R}^n is $\mathbb{R}^n \setminus \emptyset = \mathbb{R}^n$. Therefore, as \mathbb{R}^n is open, we know that the complement of \emptyset is open in \mathbb{R}^n , and therefore \emptyset is closed in \mathbb{R}^n .

Second, for \mathbb{R}^n . We calculate the complement of \mathbb{R}^n in \mathbb{R}^n to be $\mathbb{R}^n \setminus \mathbb{R}^n = \emptyset$. We have previously shown that \emptyset is open, therefore by the definition of closed, \mathbb{R}^n is closed in \mathbb{R}^n .