Bayesian inference

Lecture 14b (STAT 24400 F24)

1/16

Example: Exponential with gamma prior

Suppose the data is drawn from an exponential distribution:

$$X_1, \ldots, X_n \mid \lambda \stackrel{\mathsf{iid}}{\sim} \mathsf{Exponential}(\lambda)$$

Our prior on the parameter λ is:

$$\lambda \sim \mathsf{Gamma}(k, r) \leftarrow \mathsf{shape} \ k > 0, \ \mathsf{rate} \ r > 0$$

Some facts about Gamma(a, b):

- mean = $\frac{a}{b}$, mode = $\frac{a-1}{b}$ (if a > 1)
- For integer k: Gamma(k, b) is the distribution of a sum of k independent Exponential(b) r.v.'s
- So by CLT, if a is large, Gamma $(a, b) \approx N(\frac{a}{b}, \frac{a}{b^2})$

Review: the Bayesian framework

$$egin{cases} heta & \sim g(\cdot) & \leftarrow ext{PMF/density of prior distribution} \ X_1,\ldots,X_n \mid heta & \sim f(\cdot \mid heta) \end{cases}$$

The posterior distribution is the conditional distribution of θ (conditioned on the observed data X_1, \ldots, X_n).

Posterior PMF/density:

$$h(t \mid X_1, \dots, X_n) = \frac{g(t)f(X_1, \dots, X_n \mid t)}{f(X_1, \dots, X_n)}$$

$$= \begin{pmatrix} \text{terms that don't} \\ \text{depend on } t \end{pmatrix} \cdot g(t) \cdot \prod_{i=1}^n f(X_i \mid t)$$

2/16

Example: Exponential (cont.)

Back to the example: $X_1, \ldots, X_n \mid \lambda \stackrel{\text{iid}}{\sim} \mathsf{Exponential}(\lambda)$

- Prior density $g(t) = \frac{r^k}{\Gamma(k)} t^{k-1} e^{-rt}, t \ge 0$
- Data density $f(x \mid t) = te^{-tx}$, $x \ge 0$
- Posterior density: $h(t|X_1,...,X_n) = \frac{g(t)f(X_1,...,X_n|t)}{f(X_1,...,X_n)}$

$$h(t \mid X_1, \dots, X_n) = \begin{pmatrix} \text{terms that don't} \\ \text{depend on } t \end{pmatrix} \cdot \frac{r^k}{\Gamma(k)} t^{k-1} e^{-rt} \cdot \prod_{i=1}^n t e^{-tX_i}, \ t \ge 0$$

$$= \begin{pmatrix} \text{terms that don't} \\ \text{depend on } t \end{pmatrix} \cdot t^{k+n-1} e^{-(r+\sum_i X_i)t}, \ t \ge 0$$

 \leadsto the posterior distribution is $\mathsf{Gamma}(k+n,r+\sum_i X_i)$

The Bayesian framework (point estimation via posterior)

The posterior gives a distribution of θ (given observed data).

What if we want a "point estimate", i.e. a single value that is a good estimate for θ ?

Two standard options:

• Posterior mean:

$$\widehat{ heta} = \mathbb{E}(heta \mid X_1, \dots, X_n) \leftarrow \mathbb{E}(\cdot)$$
 with respect to posterior $h(\cdot \mid X_1, \dots, X_n)$

Posterior mode (MAP):

$$\widehat{\theta} = \operatorname*{argmax} h(t \mid X_1, \dots, X_n)$$

5/16

Construction of credible intervals

A $(1 - \alpha)$ credible interval I (calculated as a function of X_1, \ldots, X_n) contains $(1 - \alpha)$ posterior probability:

$$\mathbb{P}(\theta \in I \mid X_1, \dots, X_n) = 1 - \alpha$$

There are various ways to construct a credible interval.

Two common options:

- Equal tailed interval
- High posterior density interval

(For a symmetric & unimodal distribution, these options are equivalent)

Remarks: the ideas used in the methods also apply to construction of frequentist confidence intervals with asymmetric and non-unimodal distributions.

Example: Exponential

Our model:

$$egin{cases} \lambda \sim \mathsf{Gamma}(k,r) \ X_1,\dots,X_n \mid \lambda \stackrel{\mathsf{iid}}{\sim} \mathsf{Exponential}(\lambda) \end{cases}$$

Posterior:

$$\lambda \mid X_1, \dots, X_n \sim \mathsf{Gamma}(k+n, r+\sum_{i=1}^n X_i)$$

Recall for Gamma(a, b): mean $= \frac{a}{b}$, mode $= \frac{a-1}{b}$ (if a > 1)

$$\Rightarrow$$
 Posterior mean $=\frac{k+n}{r+\sum_{i}X_{i}}$, Posterior mode (MAP) $=\frac{k+n-1}{r+\sum_{i}X_{i}}$

6/16

Equal tailed credible intervals

• Equal tailed interval: our interval is

$$F_{\text{posterior}}^{-1}(\alpha/2) \le \theta \le F_{\text{posterior}}^{-1}(1-\alpha/2).$$

High posterior credible intervals

• High posterior density interval: our interval is given by

$$I = \{t : f_{\theta \mid X_1,...,X_n}(t \mid x_1,...,x_n) \geq c\}$$

where the density cutoff c is chosen so that prob. $= 1 - \alpha$

Note that this region I might not be a single interval! (In the example above, if α is large, then I splits into two intervals)

9/16

Example: exponential (normal approx. credible interval)

- Recall the fact about Gamma(a,b) For integer a: Gamma(a,b) is the distribution of a sum of a indep. Exponential(b) r.v.'s. So by the CLT, for large integer a, Gamma $(a,b) \approx N\left(\frac{a}{b},\frac{a}{b^2}\right)$
- \Rightarrow for any $x \in (0,\infty)$, the CDF $F_{\mathsf{Gamma}(a,b)}(x) \approx \Phi\left(\frac{x-a/b}{\sqrt{a}/b}\right)$
- \Rightarrow for any $t \in (0,1)$,

$$F_{\mathsf{Gamma}(a,b)}^{-1}(t) pprox F_{\mathsf{N}(rac{a}{b},rac{a}{b^2})}^{-1}(t) = rac{a}{b} + \Phi^{-1}(t) \cdot rac{\sqrt{a}}{b}$$

For example, for $t = 1 - \alpha/2$,

$$F_{\mathsf{Gamma}(a,b)}^{-1}(1-\alpha/2) \approx \frac{a}{b} + \Phi^{-1}(1-\alpha/2) \cdot \frac{\sqrt{a}}{b} = \frac{a}{b} + z_{\alpha/2} \cdot \frac{\sqrt{a}}{b}$$

Back to Example: Exponential (credible interval)

Our model:

$$egin{cases} \lambda \sim \mathsf{Gamma}(k,r) \ X_1,\dots,X_n \mid \lambda \stackrel{\mathsf{iid}}{\sim} \mathsf{Exponential}(\lambda) \end{cases}$$

Posterior:

$$\lambda \mid X_1, \dots, X_n \sim \mathsf{Gamma}(k+n, r+\sum_i X_i)$$

Equal-tailed credible interval:

$$F_{\mathsf{Gamma}(k+n,r+\sum_{i}X_{i})}^{-1}(\alpha/2) \leq \lambda \leq F_{\mathsf{Gamma}(k+n,r+\sum_{i}X_{i})}^{-1}(1-\alpha/2)$$

write $F_{Gamma(a,b)}$ for the CDF of Gamma(a,b)

Note: the high posterior density interval is more complex to compute (omitted)

10 / 16

Example: exponential (Bayesian credible interval vs frequentist conf. interval)

Therefore, the $(1-\alpha)$ (equal-tailed) credible interval

$$F_{\mathsf{Gamma}(k+n,r+\sum_{i}X_{i})}^{-1}(\alpha/2) \leq \lambda \leq F_{\mathsf{Gamma}(k+n,r+\sum_{i}X_{i})}^{-1}(1-\alpha/2)$$

is approximately equal to:

$$pprox rac{k+n}{r+\sum_{i}X_{i}} \pm z_{\alpha/2} \cdot rac{\sqrt{k+n}}{r+\sum_{i}X_{i}}$$

If n is large (while k & r are constant), this credible int. is

= frequentist interval (using symp. normality of the MLE)

$$pprox \frac{n}{\sum_{i} X_{i}} \pm z_{\alpha/2} \cdot \frac{\sqrt{n}}{\sum_{i} X_{i}} = \frac{1}{\bar{X}} \pm z_{\alpha/2} \cdot \frac{1}{\sqrt{n} \cdot \bar{X}}$$

Bayes risk

In the Bayesian framework, what's the best way to choose an estimator $\widehat{\theta}$ to minimize squared loss?

At a *fixed* parameter value θ , the MSE is

$$\mathbb{E}((\widehat{\theta} - \theta)^2) \leftarrow \mathbb{E}(\cdot)$$
 with respect to $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f(\cdot \mid \theta)$

In a Bayesian framework, should also account for the random distrib. of θ :

Bayes risk
$$= \mathbb{E} \big((\widehat{\theta} - \theta)^2 \big) \leftarrow \mathbb{E}(\cdot)$$
 with respect to $\begin{cases} \theta \sim g(\cdot) \\ X_1, \dots, X_n \mid \theta \stackrel{\text{iid}}{\sim} f(\cdot \mid \theta) \end{cases}$

13 / 16

Bayes rule (proof for squared loss)

Why does the posterior mean minimize $\mathbb{E}((\widehat{\theta} - \theta)^2)$?

• For any random variable T and any constant t,

$$\mathbb{E}((T-t)^2) = \text{Var}(T-t) + (\mathbb{E}(T-t))^2 = \text{Var}(T) + (\mathbb{E}(T)-t)^2$$

$$\Rightarrow \mathbb{E}((T-t)^2) \text{ is minimized by choosing } t = \mathbb{E}(T)$$

- For any random variables T and S, and any function t(S), $\mathbb{E}((T-t(S))^2\mid S)$ is minimized by choosing $t(S)=\mathbb{E}(T\mid S)$
- \Rightarrow $\widehat{\theta} = \mathbb{E}(\theta \mid X_1, \dots, X_n) = \text{posterior mean is the estimator that minimizes}$ $\mathbb{E}((\widehat{\theta} \theta)^2 \mid X_1, \dots, X_n)$

i.e., the expected squared error conditional on the data $\Rightarrow \widehat{\theta} \text{ must minimize } \mathbb{E}\big((\widehat{\theta}-\theta)^2\big).$

Bayes rule (for squared loss)

The **Bayes rule** is the estimator $\widehat{\theta}$ (i.e., the function $\widehat{\theta}(X_1, \dots, X_n)$) that minimizes Bayes risk

For squared loss:

 $\mathbb{E}(\cdot)$ with respect to marginal distrib. of X_1,\ldots,X

$$\mathbb{E}ig((\widehat{ heta}- heta)^2ig)=\mathbb{E}ig(\mathbb{E}ig((\widehat{ heta}- heta)^2\mid X_1,\ldots,X_nig)ig)$$
 $\mathbb{E}(\cdot)$ with respect to posterior distrib. of $heta\mid X_1,\ldots,X_n$

This is minimized by $\widehat{\theta} = \text{posterior mean}$

14 / 16

Other definitions of Bayes risk

We can generalize this to other loss functions loss($\widehat{\theta}, \theta$), for example:

Absolute loss:

Bayes risk =
$$\mathbb{E}(|\widehat{\theta} - \theta|)$$

- \leadsto minimized by $\widehat{\theta} = \mathsf{posterior}$ median
- \bullet 0/1 loss: \leftarrow for the case of a discrete prior (& so the posterior is discrete)

Bayes risk
$$=\mathbb{E}(\mathbb{1}_{\widehat{ heta}
eq heta})=\mathbb{P}(\widehat{ heta}
eq heta)$$

 \leadsto minimized by $\widehat{\theta} = \text{posterior mode}$