This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

AMENDMENT UNDER 37 C.F.R. § 1.111 Attorney Docket No.: Q66637

Appln. No.: 09/972,960

REMARKS

Claims 1-10 are all the claims pending in the application. This Amendment adds claims 11-15, and addresses each point of rejection raised by the Examiner. Favorable reconsideration is respectfully requested.

Applicants thank the Examiner for acknowledging the claim for foreign priority under 35 U.S.C. § 119. As explained in a letter filed by the Applicants on February 2, 2004, there was ambiguity on the Office Action cover sheet in this regard. As clarified by the Examiner on February 9, 2004 in a telephone conversation with Applicants' undersigned representative, the foreign priority papers do appear in the USPTO computer system. Accordingly, Applicants request that the Examiner indicate receipt of the these papers in the next action.

Rejection Under 35 U.S.C. § 102(b) - Claims 1, 4, & 6

Claim 1, 4, and 6 are rejected under 35 U.S.C. § 102(b) as being clearly anticipated by U.S. Patent 5,113,402 to Itani *et al.* ("Itani").

Itani discloses a laser resonator consisting of a first mirror 1, a Q-switch cell 2, an alexandrite rod 3, a double refraction filter 4, an etalon 5, and a second mirror 5. Fundamental light 6 emitted via the second mirror 5 passes through a non-linear optical crystal 8, creating a second harmonic wave 9. The fundamental 6 and second harmonic 9 then pass through ½ λ plate 10, which makes the planes of polarization of the fundamental 6 and the second harmonic 9 coincident with each other. The fundamental 6 and second harmonic 9 then pass through a second non-linear optical crystal 11, creating a third harmonic 12. The fundamental 6, second

-6-

Appln. No.: 09/972,960

harmonic 9, and third harmonic 12 then pass through a prism 13, whereby the three wavelengths are split up, the third harmonic 12 being directed to an integrator 14 for use as the output.

Applicants respectfully submit that the Examiner has misinterpreted Itani. Specifically, the Q-switch cell 2 is cited as being a semiconductor laser (incorrect under all circumstances), the alexandrite rod 3 and fundamental 6 are cited as being a light wavelength converting element (incorrect under all circumstances), the $\frac{1}{2}\lambda$ plate 10 is cited as a wavelength plate disposed at a light exiting side of the light wavelength converting element (functionally correct, if non-linear optical crystal 8 is used as the light wavelength converting element), and etalon 5 is cited as a removing portion disposed between the wavelength plate and the light wavelength converting element, for removing the fundamental wave from light incident on the removing portion (incorrect under all circumstances).

In more detail, **claim 1** is not anticipated by Itani at least because:

Q-switch cell 2 is not a semiconductor laser from which a fundamental wave exits. Applicants provide herewith a discussion of Q-switched lasers from Matt Young's Optics and Lasers 151-153 (Springer-Verlag 1986). Based on Matt Young's explanation, a Q-Switch cell clearly functions as a shutter between the mirror 1 and the alexandrite rod 3 in Itani.

Alexandrite rod 3 and fundamental wave 6 are not a light wavelength converting element which is optically coupled to the semiconductor laser, and which converts a wavelength of the fundamental wave which has entered from the semiconductor laser. Rather, alexandrite rod 3 is the active component (i.e., laser medium) within the resonator formed between mirrors 1 and 7. It is the alexandrite rod 3 which produces the fundamental (i.e., no converting of the fundamental wave is performed). See Itani col. 5, lines 1-8.

Appln. No.: 09/972,960

Etalon 5 is not a removing portion, disposed between the wavelength plate and the light wavelength converting element, for removing fundamental wave from light incident on the removing portion. Rather, it is an etalon inside laser L, and is an element for making the fundamental wavelength to be in a narrow band. See Itani col. 5, lines 1-8. In other words, the etalon does not remove the fundamental wave, and is not disposed between the wavelength plate and the wavelength converting element.

Regarding claims 4 and 6, Applicants submit that claims 4 and 6 are also not anticipated, at least as a further limitations on claim 1.

Rejection Under 35 U.S.C. § 103(a) - Claims 2, 3, & 5

Claims 2, 3, and 5 are rejected under 35 U.S.C. § 103(a) as unpatentable over Itani in view of U.S. Patent 6,327,085 to Osawa et al. ("Osawa").

Regarding claims 2, 3, and 5, Applicants submit that the combination of Itani and Osawa fail to overcome the deficiencies of Itani alone, with regard to claim 1.

Rejection Under 35 U.S.C. § 103(a) - Claims 7-10

Claims 7-10 are rejected under 35 U.S.C. § 103(a) as unpatentable over Itani in view of U.S. Patent 5,611,946 to Leong *et al.* ("Leong").

The Examiner states that "with respect to claim 7, Itani discloses the claimed invention except for the shield of <sic> photodiode and the beam splitter from scattered light."

In addition to the deficiencies of Itani discussed above, Itani does not disclose a photodiode.

Appln. No.: 09/972,960

Referring to Figs. 2A and 2B, Leong discloses a Q-switched YAG laser 100 outputting a fundamental wavelength; a first non-linear crystal 106 outputting the fundamental and the second harmonic; a second non-linear crystal 109 outputting the fundamental, the second harmonic, and the third or fourth harmonic; a wavelength plate 113 and a polarizer 114 which combine to form attenuator 112; a filter mechanism 116 for selecting the output wavelength; an aperture 120; a beam splitter 121; and a camera adapter 123 including fitting 125 for mounting a camera.

Referring to claim 1, Leong, either alone or in combination with Itani, fails to teach or suggest a removing portion disposed between the wavelength plate and the light wavelength converting element, for removing the fundamental wave from light incident on the removing portion. Specifically, Leong's filter mechanism 116 is after the wave plate 113.

Therefore, Applicants respectfully submit that claims 7-10 are not suggested at least because the combination of Itani and Leong fail to teach or suggest each requirement of the independent claim.

New Claims

New claims 11-15 are added. Claims 11 and 12 recite a means for controlling an amount of current applied to the semiconductor laser. Claim 13 depends from claim 7 and requires that the photo diode, via the beam splitter, receives light exiting the wavelength plate (the camera in Leong observes whether the laser is striking a surface, rather than receipt of the laser output itself). Claims 14 and 15 further describe the shield. No new matter is included. Entry and consideration are requested.

AMENDMENT UNDER 37 C.F.R. § 1.111

Appln. No.: 09/972,960

Attorney Docket No.: Q66637

In view of the above, reconsideration and allowance of this application are now believed

to be in order, and such actions are hereby solicited. If any points remain in issue which the

Examiner feels may be best resolved through a personal or telephone interview, the Examiner is

kindly requested to contact the undersigned at the telephone number listed below.

The USPTO is directed and authorized to charge all required fees, except for the Issue

Fee and the Publication Fee, to Deposit Account No. 19-4880. Please also credit any

overpayments to said Deposit Account.

Respectfully submitted,

Registration No. 46,835

David A. Klein

SUGHRUE MION, PLLC

Telephone: (202) 293-7060

Facsimile: (202) 293-7860

WASHINGTON OFFICE

23373

CUSTOMER NUMBER

Date: April 21, 2004

Springer Series in Optical Sciences

Editorial Board: J.M. Enoch D.L. MacAdam A.L. Schawlow K. Shimoda T. Tamir

Volume 42 Principles of Phase Conjugation By B. Ya. Zel'dovich, N. F. Pilipetsky, and V. V. Shkunov

Volume 43 X-Ray Microscopy Editors: G. Schmahl and D. Rudolph

Volume 44 Introduction to Laser Physics By K. Shimoda Volume 45 Scanning Electron Microscopy
Physics of Image Formation and Microanalysis
By L. Reimer

Volume 46 Holography and Deformation Analysis By W. Schumann, J.-P. Zürcher, and D. Cuche Volume 47 Tunable Solid State Lasers
Editors: P. Hammerling, A. B. Budgor, and A. Pinto

Volume 48 Integrated Optics Editors: H.-P. Nolting and R. Ulrich Volume 49 Laser Spectroscopy VII
Editors: T.W. Hänsch and Y.R. Shen
Volume 50 Laser-Induced Dynamic Gratings
By H. J. Eichler, P. Günter, and D. W. Pohl

Volume 51 Tunable Solid-State Lasers for Remote Sensing Editors: R. L. Byer, E. K. Gustafson, and R. Trebino

Volumes 1-41 are listed on the back inside cover

Matt Young

Optics and Lasers

Including Fibers and Optical Waveguides

Third Revised Edition

With 162 Figures

Springer-Verlag Berlin Heidelberg New York Tokyo

3145 Fremont, Boulder, CO 80302, USA MATT YOUNG, Ph. D.

Editorial Board

ARTHUR L. SCHAWLOW, Ph. D.

Department of Physics, Stanford University Stanford, CA 94305, USA

Professor Kolchi Shimoda

JAY M. ENOCH, Ph. D. School of Optometry,

Faculty of Engineering, Keio University 3-14-1 Hiyoshi, Kohoku-ku

Yokohama 223, Japan

Berkeley, CA 94720, USA

University of California

DAVID L. MACADAM, Ph. D. 68 Hammond Street, Rochester, NY 14615, USA

THEODOR TAMIR, Ph. D.

981 East Lawn Drive, Teaneck, NJ 07666, USA

ISBN 3-540-16127-9 3. Aufl. Springer-Verlag Berlin Heidelberg New York Tokyo ISBN 0-387-16127-9 3rd Ed. Springer-Verlag New York Heidelberg Berlin Tokyo

ISBN 3-540-13014-4 2. Auflage Springer-Verlag Berlin Heidelberg New York Tokyo ISBN 0-387-13014-4 2nd Edition Springer-Verlag New York Heidelberg Berlin Tokyo

Library of Congress Cataloging-in-Publication Data. Young, Matt, 1941— Optics and lasers. (Springer series in optical sciences; v. 5) Bibliography: p. Includes index. 1. Optics. 2. Lasers. I. Tute. II. Series. QC355.2.Y68 1986 621.36 85-27795

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, reuse of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § \$4 of the German Copyright Law, where copies are made for other than private use, a fee is payable to "Verwertungsgesellschaft Wort", Munich.

C Springer-Verlag Berlin Heidelberg 1977, 1984 and 1986

Printed in Germany

The use of registered names, trademarks, etc in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typesetting, printing and bookbinding: Konrad Triltsch, Graphischer Betrieb, Wurzburg 2153/3130-543210

Professor Arthur K. Young, still learning the art from whom I am of clear thinking For my father,

151

50

taneous emission rates from level 2 to 1, and W_{12} the rate of absorption from where W_p is the pumping rate per atom, W_{21} and A_{21} the stimulated and sponlevel 1. Because N_3 is zero, all atoms exist in either level 1 or 2 and dN_1/dt is just the negative of dN2/dt. Because the stimulated-emission and absorption cross sections are equal,

$$V_{12} = W_{21}.$$
 (7.15)

A steady-state solution to the rate equation is found by setting

$$\frac{dN_t}{dt} = 0, (7.16)$$

from which we find that

$$(W_p + W_{12}) n_1 = (W_{12} + A_{21}) n_2,$$
 (7.17)

in terms of normalized populations n_1 and n_2 . Using the normalized population inversion n, we find that

$$n = \frac{W_p - A_{11}}{W_p + A_{21} + 2 W_{12}}. (7.18)$$

For amplification, n > 0, or

$$W_{\rm p} > A_{\rm 2l}.\tag{7.19}$$

W, depends both on the energy density of pump light and on the absorption cross section of the material. Thus, a) an intense pumping source, b) strong absorption of pump light, and c) a long-lived upper level (small A_{21}) are desira-We must pump to level 2 faster than n_2 is depleted by spontaneous emission. ble, if not necessary.

We estimate the pumping power required to achieve gain by writing "W", in terms of the photon flux F_p and cross section σ_p for absorption of pump light,

$$W_{\rm p} = F_{\rm p} \, \sigma_{\rm p}. \tag{7.20}$$

The pump power per unit area at $v_{\rm p}$ is $F_{\rm p} \cdot h v_{\rm p}$. Further, A_{21} is just the reciprocal of the average spontaneous-emission lifetime τ of the upper laser level.

Thus,

$$h\nu_{\rm p}/\sigma_{\rm p}\tau$$
 (7.21)

 $\tau \sim 3$ ms and $h\nu_{\rm p} \sim 2$ eV. We therefore require about $10^3~{\rm W\,cm^{-2}}$ or perhaps 50is the required power density incident on the laser. For ruby, $\sigma_{\rm n} \sim 10^{-19} {\rm cm}^2$,

citing the laser, the total input power required is greatly in excess of 50 kW; this kW incident at y_p on a rod with total area $50\,\mathrm{cm}^2$. The corresponding values for a four-level laser (in which the lower level is not the ground state) may be two immediately suggests short-pulse operation with a flashlamp for pumping. The first laser was such a flashlamp-pumped ruby laser, but we temporarily postpone orders of magnitude less. Because not all pump frequencies are effective in exfurther discussion of such systems.

outputs). We take ruby as our example. Suppose that the pump power absorbed wave laser (or the average power emitted by certain lasers that produce irregular Output Power. We can estimate the total output power emitted by a continuousat v_p is equal to P. The the total output power is approximately

$$P_0 = P \cdot \nu_{11} / \nu_{\rm p} \,, \tag{7.22}$$

because, in the steady state, each excitation to the pumping level results in a single emission from level 2.

 $n_2 - n_1$ only slightly exceeds zero. Then, approximately half of the systems will Let us assume that the laser begins to oscillate when the population inversion be in the upper level; this condition will persist as long as pumping is continued. Thus, the population N₁ per unit volume of the lower level is about

$$N_1 \cong N_0/2, \tag{7.23}$$

and the total pumping power absorbed is

$$P = (N_0 V/2) W_p h \nu_p \,, \tag{7.24}$$

where V is the volume of the active medium. Further, we have seen that W, is equal to A_{21} in steady state. Thus, the output power is

$$P_0 = (N_0 V/2) A_{21} h \nu_{21}. \tag{7.25}$$

A typical ruby rod may be 10 cm long with end faces 1 cm² in area. V is thus 10 kW. This estimate is only slightly high for a system that may emit 1 or 2 joules cm³, and the other parameters as in the preceding section. Thus, we find $P_{
m o}\sim 10$ in a period of 1 ms.

threshold value n_t . When n reaches a very large value, oscillation is allowed to Q-Switched Laser. Applications often require high-peak-power (as opposed to high-energy) operation. In a Q-switched or giant-pulse laser, the laser is prevented from oscillating until n has been allowed greatly to exceed the usual occur, for example, by opening a shutter placed between the laser medium and the total reflector.

The process is detailed in Fig. 7.5. The top curve is drawn as if the reflectance Reft of one mirror were allowed to vary from a low value to a high value. When

the power grows rapidly and continues to grow as long as the round-trip gain exceeds 1. The population of the upper level decreases rapidly because of the high energy density. The round-trip gain is just equal to 1 when $n=n_1$ and falls below Rest is small, n grows large. When the shutter before the mirror is switched open, 1 thereafter. Peak power is emitted, therefore, when n is just equal to n_t.

Fig. 7.5. Q-switched laser

tion inversion is n_i before the shutter is switched and decreases to n_i at the end of Assuming virtually instantaneous switching, we can estimate some of the properties of the output by similar arguments. Suppose the normalized populathe pulse. Then the total energy emitted during the pulse is

$$E = (1/2)(n_1 - n_1) N_0 V h v_{12}, (7.26)$$

time a quantum is emitted (because n_1 increases, whereas n_2 decreases afterward downward transition). In ruby, n, may be 0.2 and n, at most, 0.6 to 0.8. If the ruby rod, we estimate the output energy to be about 5 joules. In fact, E is more The factor 1/2 appears because the population difference changes by 2 units every pulse is roughly symmetrical, $n_{\rm f}$ will be about 0.5. Using these figures for a small nearly 1 joule for such a laser.

We may estimate the duration of the Q-switched pulse by examining the decay of a pulse in an isolated cavity. Such a pulse oscillates between the mirrors it loses (1-R) of its energy. In unit time, it therefore loses the fraction (1-R)and makes a round trip in time $t_1 = 2d/c$. Each time it strikes the output mirror, t, of its energy. The time

$$t_{\rm e} = t_1/(1 - R)$$
 (7.27)

is accordingly known as the cavity lifetime.

7.2 Optically Pumped Laser

choose a cavity length of about 50 cm and take $R\sim50\%$, we find that the pulse If the population inversion switches rapidly from n_i to n_t , we can conjecture that the decay time of the Q-switched pulse is about equal to the cavity lifetime $t_{\rm c}$. Thus, a symmetrical pulse would have a full duration of about $2t_{\rm c}$. If we duration $2t_c$ is 10 or 15 ns. If anything, the estimate is slightly low.

The peak power can now be estimated. Assuming a nearly triangular shape for the pulse, we find

$$P_{\rm m} = E/2t_{\rm c} \tag{7.28}$$

for the case where $E\sim 1$ joule and 2 $t_{
m e}\sim 10$ ns, the peak power is of the order of 100 MW.

number N of different wavelengths known as spectral modes, all for simplicity taken to have equal amplitudes A. If we could place a detector inside the cavity at x = 0 and record the electric field E(t) as a function of time, we would find Mode-Locked Laser. We begin by considering a laser oscillating in a large

$$E(t) = A \sum_{n=0}^{N-1} e^{i(\omega_n t + \delta_n)}, (7.29)$$

where ω_n is the angular frequency of the nth mode and δ_n , its relative phase. We shall find in the following section that the modes differ in frequency by ${\it L}\omega$, where

$$\Delta \omega = \omega_n - \omega_{n-1} = 2\pi(c/2d).$$
 (7.30)

Usually, the modes are not related and the relative phases δ_n have different, random values. The modes are incoherent with one another, and the total intensity is found by adding the intensities of the modes; that is,

$$r = NA^2$$
 (7.31)

The intensity will have only small fluctuations, which occur whenever two or three modes happen to be precisely in phase.

Suppose we are able to make the modes interact so that they all have the same relative phase δ ; that is

$$\lambda_{i} = \delta. \tag{7.32}$$

Such a laser is known as a mode-locked laser. The intensity must now be found by adding the electric fields, rather than the intensities,

$$E(t) = A e^{i\phi} \sum_{n=0}^{N-1} e^{i\omega_n t}.$$
 (7.33)