MODERN CRYPTOGRAPHY

Bachelor Computer Science, University of Amsterdam, 2020/21 TEACHER: Christian Schaffner, TA: Jana Sotáková, Aron van Baarsen

Problem Set 5

Problem 1: Fermat's little theorem and Euclidean algorithm

(a) Modular roots Show that the 7th root of 47 modulo 143 is

$$[47^{103} \mod 143].$$

Note that $143 = 11 \cdot 13$.

- (b) Computing seemingly huge numbers by hand Compute the final two (decimal) digits of 3^{1000} (by hand).
 - **Hint:** The answer is $[3^{1000} \mod 100]$. If $\gcd(a,b)=1$, then $\phi(a \cdot b)=\phi(a) \cdot \phi(b)$.
- (c) Use the extended Euclidean algorithm to compute (by hand) the modular inverse of 20 modulo 457. Verify your answer with WolframAlpha.

Problem 2: Additive cyclic groups

In this problem, we study the additive group $(\mathbb{Z}_N,+)$ for some integer N>1, for example N=9.

- (a) Explain how to view $(\mathbb{Z}_N, +)$ as cyclic group generated by $\langle 1 \rangle$. Draw the circle for N = 9.
- (b) Which are the other $x \in \mathbb{Z}_N$ that generate the cyclic group $\langle x \rangle = (\mathbb{Z}_N, +)$? How many generators are there?
- (c) Easy discrete-logarithm problem. Explain why the discrete-logarithm problem (as described above Def 8.62 in [KL]) in the additive group $(\mathbb{Z}_N,+)$ generated by $\langle x \rangle$ is easy to solve, while the discrete-logarithm problem in multiplicative groups (\mathbb{Z}_p^*,\cdot) for some (suitably chosen) large prime p is believed to be hard.

Problem 3: Diffie-Hellman

- (a) Computational Diffie-Hellman Define the hardness of the Computational Diffie-Hellman problem with respect to the group-generation algorithm \mathcal{G} .
- (b) DDH is hard ⇒ CDH is hard ⇒ DLog is hard Prove that hardness of the CDH problem implies hardness of the discrete-logarithm problem, and that hardness of the Decisional Diffie-Hellman problem implies hardness of the CDH problem.

Problem 4: RSA

(a) Let N=pq be a RSA-modulus and let $(N,e,d)\leftarrow$ GenRSA. Show that the ability of efficiently factoring N allows to compute d efficiently. Given

N = 2140310672120493293362298457402658192652108411554313695782475927669427

try to compute $\phi(N)$. If that takes too long compute $\phi(p \cdot q)$, where

```
p = 58240080352490526776497122885950201,

q = 36749789134330529121473391864214027.
```

Knowing that compute d for given N and e = 11. Is it

1945736974654993903056634961275143725147489931575688907101782888641091?

- **(b) Factoring RSA Moduli** Let N = pq be a RSA-modulus and let $(N, e, d) \leftarrow \text{GenRSA}$. In this exercise, you show that for the special case of e = 3, computing d is equivalent to factoring N. Show the following:
 - 1. The ability of efficiently factoring N allows to compute d efficiently. This shows one implication.
 - 2. Given $\phi(N)$ and N, show how to compute p and q. Hint: Derive a quadratic equation (over the integers) in the unknown p.
 - 3. Assume we know e=3 and $d\in\{1,2,\ldots,\phi(N)-1\}$ such that $ed\equiv 1 \mod \phi(N)$. Show how to efficiently compute p and q. **Hint:** Obtain a small list of possibilities for $\phi(N)$ and use 2.
 - 4. Given e = 3, d = 29531 and N = 44719, factor N using the method above.

Problem 5: Diffie-Hellman Key Exchange

- (a) Man-In-The-Middle Attacks Describe in detail a man-in-the-middle attack on the Diffie-Hellman key-exchange protocol whereby the adversary ends up sharing a key k_A with Alice and a (different) key k_B with Bob, and Alice and Bob cannot detect that anything has gone wrong. What happens if Alice and Bob try to detect the presence of a man-in-the-middle adversary by sending each other (encrypted) questions that only the other party would know how to answer?
- (b) **Diffie-Hellman problem** Let us consider the cyclic group \mathbb{Z}_{13}^* .
 - 1. Show that 2 is a generator of \mathbb{Z}_{13}^* . Draw the circle of the cyclic group.
 - 2. In \mathbb{Z}_{13}^* , it holds that

$$\mathsf{DH}_2(6,9) = \mathsf{DH}_2(2^5,2^8) = 2^{40} = 2^{40 \mod 12} = 2^4 = 3$$

Show in the same way that $DH_2(12, 10) = 1$.

Problem 6: Key Exchange with Bit Strings

Consider the following key-exchange protocol:

- 1. Alice chooses $k, r \leftarrow \{0, 1\}^n$ at random, and sends $s := k \oplus r$ to Bob.
- 2. Bob chooses $t \leftarrow \{0,1\}^n$ at random and sends $u := s \oplus t$ to Alice.
- 3. Alice computes $w := u \oplus r$ and sends w to Bob.
- 4. Alice outputs k and Bob computes $w \oplus t$.

Show that Alice and Bob output the same key. Analyze the security of the scheme (i.e., either prove its security or show a concrete attack).