# 信道

## 信道的概念和实际信道

## 信道的概念

定义: 信号传输的通道

#### 如何研究信道



$$r(t) = h(t) * s(t) + n(t)$$

从信道来说,h(t)就是信道冲激响应,也称信道特性。

### 无线信道

#### 电磁波频谱划分

• 按工作波段分类

#### 频率

3KHz 30KHz 300KHz 3MHz 30MHz 300MHz 3GHz 30GHz 300GHz

| VLF               | LF       | MF       | HF        | VHF        | UHF | SHF | EHF              |
|-------------------|----------|----------|-----------|------------|-----|-----|------------------|
| <b>甚低频</b>        | 低频       | 中频       | <b>高频</b> | <b>甚高频</b> | 特高频 | 超高频 | <mark>极高频</mark> |
| VLW<br><b>甚长波</b> | LW<br>长波 | MW<br>中波 | SW<br>短波  | VSW<br>甚短波 | 分米波 | 厘米波 | 毫米波              |

$$10^5 m$$
  $10^4 m$   $10^3 m$   $10^2 m$   $10^1 m$   $1 m$   $10^{-1} m$   $10^{-2} m$   $10^{-3} m$   $1 m$ 

• 国际通用的频段名称

| 频段名<br>称    | VHF              | UHF             | L               | S               | C               | X                | Ku                | K                 | Ka                | F                 | E                 | V                 |
|-------------|------------------|-----------------|-----------------|-----------------|-----------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| 频段<br>(GHz) | 0.03<br>~<br>0.3 | 0.3<br>~<br>1.0 | 1.0<br>~<br>2.0 | 2.0<br>~<br>4.0 | 4.0<br>~<br>8.0 | 8.0<br>~<br>12.5 | 12.5<br>~<br>18.0 | 18.0<br>~<br>26.5 | 26.5<br>~<br>40.0 | 40.0<br>~<br>60.0 | 60.0<br>~<br>90.0 | 90.0<br>~<br>140. |

#### 电磁波的特性

- 电磁波频率越高,则同样的天线,通信波束越窄,功率利用越充分。
- 电磁波频率越高,则其他条件不变的情况下,天线发射(接收)效率越高,天线口径可越小。
- 电磁波频率越高, 其穿透能力和绕射能力越弱。

#### 电波主要传播模式

- 天波传播
- 地波传播
- 散射传播
- 视距传播

## 有线信道

#### 几种典型的有线信道

| 线路种类 | 构造                  | 特征                                 | 主要用途                        |  |
|------|---------------------|------------------------------------|-----------------------------|--|
| 双绞线  | 绝缘材料铜线              | 便宜、结构简单,<br>传输频带宽,有漏话<br>现象,易混入杂音。 | 用户电话线<br>低速LAN              |  |
| 同轴电缆 | 外部导线<br>内部导线<br>绝缘体 | 价格稍高,传输频带宽,漏话感应少,分支、接头容易           | CATV分配电缆<br>程控交换机           |  |
| 光纤   | 红花<br>保护材料<br>包层    | 低损耗,频带宽,重<br>量轻,直径小,无感<br>应,无漏话    | 国际间主干线<br>国内城市间主干线<br>高速LAN |  |

### 双绞线

#### 为什么要纽绞

目的是为了提高抗干扰性能,绞度越大,抗干扰性能越好,同时成本也越高

#### 同轴电缆

#### 光纤

光纤传输原理:全反射原理

多模光纤 (MMF)单模光纤 (SMF)

光源: LED、激光

光纤中的色散: 限制了光纤的无中继传输的距离

## 信道特性及其数学模型

## 信道的数学模型

#### 调制信道和编码信道

• 调制信道: 从调制器的输出端到解调器的输入端

使调制信号发生波形变化

• 编码信道: 从编码器的输出端到解码器的输入端

。 对信号的影响是数字序列的变化

#### 调制信道模型

- 1. 调制信道的主要特性
  - 。 有一对或多对输入端, 必然有一对或多对输出端
  - 。 绝大部分信道是线性的, 即满足叠加原理
  - 。 信号通过信道需要经过一定的延时
  - 。 信道对信号有损耗 (固定或时变损耗)
  - 即使没有信号输入,接收端仍有信号输出(噪声),通常称为**加性噪声**或**加性干扰**
- 2. 二对端的调制信道模型

$$e_o(t) = f[e_i(t)] + n(t)$$
  $e_o(t) = k(t) \cdot e_i(t) + n(t)$   $\begin{cases} k(t)$  为乘性噪声 $n(t)$  为加性噪声

- 3. 信道对信号的影响
  - ∘ 加性干扰n(t)
  - 乘性干扰k(t)

包含的要素: 线性失真、非线性失真、时间延迟以及衰减等

随时间变换的特性

调制信道的分类

■ 恒参信道: k(t)不随时间变化或变化极为缓慢; 有线信道通常可以看成恒参信道

■ 随参信道: k(t)随时间t随机变化; 移动无线信道为随参信道

- 4. 调制信道的数学模型
  - ① 加性噪声恒参信道



② 具有加性噪声的线性滤波信道



③ 加性噪声线性时变滤波信道模型



#### 编码信道模型

- 1. 编码信道包括调制器、解调器和传输媒介
- 2. 与调制信道的关系
  - 。 调制信道不理想会导致编码信道中产生错码
- 3. 编码信道模型
  - 采用数字信号的转移概率来描述

## 信道特性对信号传输的影响

#### 信道的传输特性

信道的传输特性可用其幅-频特性和相-频特性来描述。(适用于恒参信道)

• 理想信道的幅频和相频特性



• 实际信道的幅、相特性



解决办法: 采用线性网络进行补偿, 如时域均衡

#### 信道引起的信号失真

1. 码间串扰: 传输特性不理想或多径引起

2. 频率偏移: 主要由多普勒效应引起

3. 信号衰落: 多径或信道自身变化引起

衰落: 信号包络因传播有了起伏的现象

- · 多径传播会引起信号衰落(快衰落),主要由于信号叠加
- · 信道自身特性的变化也会引起传输信号的衰落, 慢衰落。如短波信道
- - 多径引起的衰落以频率选择性衰落为主
  - 传输频偏可引起时间选择性衰落
  - 平衰落出现在低速数据传输时

### 无线信道的统计模型

1. 瑞利(Rayleigh)分布衰落

当电磁波经过反射、折射、散射等丰富路径传播至接收端时,接收信号包络服从Rayleigh分布。假设r为接收信号包络,其概率密度函数为:

$$p(r) = \left\{ egin{array}{ll} rac{r}{\sigma^2} exp(rac{r^2}{2\sigma^2}) & 0 \leq r \leq \infty \ \ 0 & r < 0 \end{array} 
ight.$$

2. 莱斯(Rician)分布衰落

如果电磁波除经反射、散射等路径传播以外还存在直射路径,则接收信号包络服从Rician分布。假设r为接收信号包络,则概率密度函数:

$$p(r) = egin{cases} rac{r}{\sigma^2} exp(rac{r^2+A^2}{2\sigma^2})I_0(rac{Ar}{2\sigma^2}) & 0 \leq r, A \geq 0 \ \ 0 & r < 0 \end{cases}$$

3. SUI信道模型

美国斯坦福大学提出的信道统计模型,共有SUI1-SUI6六套典型参数。其中SUI-1和SUI-2描述较为平坦和轻微树木遮挡信道,SUI-3和SUI-4描述中等路损地区,SUI-5和SUI-6描述山区和树木遮挡严重区域。

## 信道中的噪声和干扰

#### 信道中的噪声

加性噪声N(t)分为**自然噪声**和**人为干扰**两类。

- 自然噪声包括自然界辐射的噪声和接收机内部的热噪声
- 热噪声是任何温度高于绝对零度的电子设备所固有的。热噪声来自电阻性元器件中电子的热运动。

#### 信道中的干扰

- 1. 己方和民用设备造成的干扰
  - 。 同频干扰
  - 。 邻频干扰
  - 。 互调干扰
  - 。 杂散辐射干扰
  - 。 谐波辐射干扰
- 2. 敌方施放的恶意干扰
  - 。 定频式干扰
  - 。 瞄准式干扰
  - 。 阻塞式干扰
  - 。 扫频式干扰

## 信道容量

## 连续信道的信道容量

### 信道容量的概念

• 信道容量:信道中信息能够无差错传输的最大平均信息速率

#### 香农公式

对于带宽有限、平均功率有限的高斯白噪声连续信道,设信道带宽为B(HZ),信道输出信号功率 S(W),输出加性高斯噪声功率为N(W),则可以证明该信道的信道容量为

$$C = B\log(1 + rac{S}{N})(b/s)$$

令加性高斯噪声的单边功率谱密度为 $n_0$ ,则

$$N = n_0 B \ C = B \log (1 + rac{S}{n_0 B}) (b/s)$$

保持 $\frac{S}{n_0}$ 一定,信道带宽 $B o \infty$ 

$$\lim_{B \rightarrow \infty} C = \lim_{B \rightarrow \infty} [\frac{Bn_0}{S} \log_2(1 + \frac{S}{Bn_0})] \cdot \frac{S}{n_0} = 1.44 \frac{S}{n_0}$$

- ①  $\frac{S}{n_0}$  一定时无限大带宽对应的信道容量称为**信道容量极限**
- ② 带宽与信噪比的互换

$$C = B \log_2(1 + \frac{S}{N})$$

- 带宽和信噪比的互换能保持信道容量不变
- 增加较小的带宽可以节省较多的功率
- 通过增加信噪比来节省带宽往往付出较大代价
- ③ 令信息传输速率R = C,比特平均能量为 $E_b$ ,信道容量极限可以表示为:

$$\begin{split} \lim_{B \to \infty} C &= 1.44 \frac{S}{n_0} = 1.44 \frac{E_b C}{n_0} \\ &\to \frac{E_b}{n_0} = \frac{1}{1.44} = -1.6 dB \end{split}$$

## 离散信道的信道容量