Problem

(AMC) In $\triangle ABC$, M is the midpoint of side BC, AN bisects $\angle BAC$, $BN \perp AN$ and θ is the measure of $\angle BAC$. If sides AB and AC have lengths 14 and 19, respectively, then length MN equals

(A) 2
(B)
$$\frac{5}{2}$$

(C) $\frac{5}{2} - \sin \theta$
(D) $\frac{5}{2} - \frac{1}{2} \sin \theta$
(E) $\frac{5}{2} - \frac{1}{2} \sin \left(\frac{\theta}{2}\right)$

Solution

(B). In the adjoining figure, BN is extended past N and meets AC at E. Triangle BNA is congruent to $\triangle ENA$, since $\angle BAN = \angle EAN$, AN = AN and $\angle ANB = \angle ANE = 90^{\circ}$.

Therefore N is the midpoint of BE, and AB = AE = 14. Thus EC = 5. Since MN is the line joining the midpoints of sides BC and BE of $\triangle CBE$, its length

is
$$\frac{1}{2}EC = \frac{5}{2}$$
.