

AD-A100 818 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO--ETC F/G 11/6
CRYSTALLIZATION KINETICS OF TWO METALLIC GLASSES BY MOSSBAUER S--ETC(II)
MAR 81 D E BELLER
UNCLASSIFIED AFIT/ANE/PH/81M-1

NL

1 OF 1
AFIT/ANE/PH/81M-1

END
DATE
FILED
7-81
DTIC

AD A 160 818

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By	
Distribution/	
Availability Codes	
Aveff and/or	
Dist	Special
A	

CRYSTALLIZATION KINETICS OF TWO
METALLIC GLASSES BY MOSSBAUER
SPECTROSCOPY.

Thesis,

Denis E. Beller
AFIT/GNE/PH/81M-1 Captain USAF

Approved for public release; distribution unlimited.

AFIT/GNE/PH/81M-1

CRYSTALLIZATION KINETICS OF TWO METALLIC
GLASSES BY MOSSBAUER SPECTROSCOPY

THESIS

Presented to the Faculty of the School of Engineering of
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of
Master of Science

by

Denis E. Beller, B.S.
Captain USAF

Graduate Nuclear Engineering

March 1981

Approved for public release; distribution unlimited.

Preface

This thesis describes my efforts to determine the crystallization kinetics of two amorphous iron alloys, $Fe_{80}B_{20}$ and $Fe_{80}P_{6.5}C_{3.5}B_{10}$. The objectives of this study were: 1) to anneal the glasses at various temperatures, 2) to take Mossbauer spectra during the annealing, 3) to analyze the spectra to determine the growth of crystals, and 4) to use the crystallization rates to calculate the activation energy and projected lifetimes at 473 K. This thesis will summarize past work in this area, describe the equipment and methods, and present analysis of the Mossbauer spectra and the results, conclusions and recommendations.

I thank Dr. Harold Gegel of the Air Force Materials Laboratory for sponsoring this study and supplying the glassy metal ribbons. I especially thank my advisor, Dr. George John, for his continuous support and guidance. Finally, I am grateful to my wife, Judy, and my sons, David and Timothy, for their constant devotion and support during this long study.

Contents

	<u>Page</u>
Preface	ii
List of Figures	v
List of Tables	vii
Abstract	viii
I. Introduction	1
Background	1
Problem	2
Scope	2
Review of the Literature	2
Assumptions	5
Overview	5
II. Theory	6
III. Equipment and Procedures	10
Mossbauer Equipment	10
Annealing System	10
Sample Preparation	13
Heater Assembly	13
Annealing and Data Collection	14
Data Processing	15
Subroutine CALFUN (Gaussian fit to Fe ₈₀ B ₂₀ glass)	15
Subroutine CALFUN (Crystallized Fe ₈₀ B ₂₀)	16
Subroutine CALFUN (for α-Fe, peaks one and six)	17
Goodness of Fit	18
IV. Results and Discussion	19
Discussion	36
V. Conclusions and Recommendations	40
Recommendations	40

	<u>Page</u>
Bibliography	42
APPENDIX A: GAUSSCALF	44
APPENDIX B: FIVECALF	48
APPENDIX C: ALPHA-BG	54
APPENDIX D: GENFIT Instructions	58
APPENDIX E: Applications of Metallic Glasses	62
Vita	65

List of Figures

<u>Figure</u>	<u>Page</u>
1 Heater	11
2 Mossbauer/Annealing System	12
3 Sample/Heater Assembly	14
4 Mossbauer Spectrum of $\text{Fe}_{80}\text{B}_{20}$, 573 K, 2.08 Hr, GAUSSCALF, $x = 0$	21
5 Mossbauer Spectrum of $\text{Fe}_{80}\text{B}_{20}$, 573 K, 48.9 Hr, GAUSSCALF, $x = 0$	22
6 Mossbauer Spectrum of $\text{Fe}_{80}\text{B}_{20}$, 573 K, 111 Hr, FIVECALF, $x = 0.0512$	23
7 Mossbauer Spectrum of $\text{Fe}_{80}\text{B}_{20}$, 573 K, 281 Hr, FIVECALF, $x = 0.190$	24
8 Mossbauer Spectrum of $\text{Fe}_{80}\text{B}_{20}$, 573 K, Fully Crystallized, FIVECALF.	25
9 Mossbauer Spectrum of $\text{Fe}_{80}\text{B}_{20}$, 611 K, Fully Crystallized, FIVECALF.	26
10 Mossbauer Spectrum of $\text{Fe}_{80}\text{B}_{20}$, 611 K, Fully Crystallized, FIVECALF with Quadrupole Splitting.	27
11 Mossbauer Spectrum of $\text{Fe}_{80}\text{B}_{20}$, 611 K, Run 3 Fully Crystallized, FIVECALF.	28
12 Mossbauer Spectrum of $\text{Fe}_{80}\text{B}_{20}$, 604 K, 13.8 Hr, FIVECALF, $x = 0.316$	29
13 Mossbauer Spectrum of $\text{Fe}_{80}\text{B}_{20}$, 604 K, Fully Crystallized, FIVECALF.	30

<u>Figure</u>	<u>Page</u>
14 Mossbauer Spectrum of $Fe_{80}P_{6.5}C_{3.5}B_{10}$, 716 K, 2.87 Hr, ALPHA-BG, $x \approx 1$	31
15 Mossbauer Spectrum of $Fe_{80}P_{6.5}C_{3.5}B_{10}$, 716 K, Fully Crystallized, ALPHA-BG	32
16 Crystallized Fraction $x(t)$ vs Time.	34
17 Arrhenius Plot.	35

List of Tables

<u>Table</u>	<u>Page</u>
I Annealing Runs	20

Abstract

In this study, Mossbauer spectroscopy was used to examine thermal aging of two metallic glasses. $Fe_{80}B_{20}$ was isothermally annealed at 573, 604, 611, and 626 K; and $Fe_{80}P_{6.5}C_{3.5}B_{10}$ was annealed at 614, 716, and 744 K. The activation energy of $Fe_{80}B_{20}$, determined from the growth of α -Fe crystals, was 0.256 ± 0.006 MJ/mole. The projected lifetime of this glass, based on the onset of crystallization, is 400 years. No quantitative data were obtained for $Fe_{80}P_{6.5}C_{3.5}B_{10}$; however, based on the higher temperature required for crystallization, it is expected to have a longer lifetime.

CRYSTALLIZATION KINETICS OF TWO METALLIC
GLASSES BY MOSSBAUER SPECTROSCOPY

I. Introduction

Mossbauer spectroscopy is becoming an increasingly important tool for studying the environments of nuclei. In this study, it was used to examine the crystallization characteristics of $Fe_{80}B_{20}$ and $Fe_{80}P_{6.5}C_{3.5}B_{10}$ amorphous alloys. These materials, commonly called metallic glasses, crystallize during accelerated aging at high temperatures.

Background

The glassy metals exhibit useful magnetic, as well as material (tensile strength, hardness, flexibility), properties.¹ The Air Force Materials Laboratory has become interested in their possible use in magnetic devices for Air Force weapons systems. As a result of this interest, in 1978 Schmidt (Ref 1) and Roberts (Ref 2) used Mossbauer spectroscopy to study the atomic structure of a few of the glassy metals, including $Fe_{80}B_{20}$. Because of projected high-temperature applications, the Materials Laboratory is concerned about thermal aging of these materials. Knowledge of the glasses' expected lifetimes at operating temperatures around 473 K is needed. To predict the aging rates of these amorphous materials, one must know

¹See Appendix E for a review of possible applications.

their crystallization characteristics. Many methods have been used to determine these rates; all require measurements at 100 to 200 K above the expected operating temperature. In this study, Mossbauer spectroscopy was used to examine the growth of crystals in the metallic glasses $Fe_{80}B_{20}$ and $Fe_{80}P_{6.5}C_{3.5}B_{10}$.

Problem

The problem investigated in this study was to determine the thermal aging rate of metallic glasses. Specifically, the kinetics of crystallization of $Fe_{80}B_{20}$ and $Fe_{80}P_{6.5}C_{3.5}B_{10}$ were studied. These glasses were examined by: 1) isothermal annealing, 2) taking Mossbauer spectroscopy during annealing, 3) evaluating the spectra to determine growth of α -Fe crystals, and 4) using the crystallization rates at various temperatures to determine the Arrhenius constant.

Scope

This study was limited to the investigation of only two of the glassy metals, $Fe_{80}B_{20}$ and $Fe_{80}P_{6.5}C_{3.5}B_{10}$. The temperature ranges were respectively 573 to 626 K and 716 to 744 K. The annealing periods were from one day at the high temperatures to two weeks at the lowest temperatures. No attempt was made to determine the structure of either the amorphous or the crystalline material. In addition, the literature studied was limited to only sources available at the School of Engineering, Air Force Institute of Technology.

Review of the Literature

This section contains a review of some of the many studies of the metallic glasses. These studies are mainly

concerned with three characteristics of the glasses: 1) amorphous structure, 2) temperature dependence of their magnetic properties, and 3) thermal aging (or crystallization) characteristics. Some of the results of these studies will be presented in the discussion section in Chapter IV.

Luborsky studied the crystallization of $\text{Fe}_{80}\text{B}_{20}$, $\text{Fe}_{40}\text{Ni}_{40}\text{P}_{14}\text{B}_6$, and $\text{Fe}_{40}\text{Ni}_{40}\text{B}_{20}$, using magnetic methods and differential scanning calorimetry (Ref 3). Using the temperature of onset of crystallization at various heating rates, he determined the activation energy for the three materials. He also showed that thermal stability increased with the number of atomic species, i.e., that $\text{Fe}_{80}\text{B}_{20}$ was the least stable of the three glasses. Fukamichi and others studied the magnetization, electrical resistivity, thermal expansion, and differential thermal change of a variety of Fe-B glasses (Ref 4). They determined that the crystallization mechanism of the Fe-B glasses depended on the concentration of boron. Chien studied $\text{Fe}_{80}\text{B}_{20}$ from 4.2 K up to 1050 K, using Mossbauer spectroscopy, and found that it crystallized to α -Fe and Fe_3B when annealed at a high heating rate, but found only Fe_2B at low heating rates (Ref 5). Luborsky and Lieberman examined the crystallization kinetics of the Fe-B glasses (12 to 28 percent boron) by differential scanning calorimetry (Ref 6). They determined that for 18 to 28 percent boron, the activation energy for the onset of crystallization was independent of boron concentration. However, Tarnoczi and others studied the role of Fe_3B in the crystallization of Fe-B glasses, and concluded

that $\text{Fe}_{80}\text{B}_{20}$ was most stable (Ref 7). Matsuura, in a study similar to Luborsky and Lieberman's above, used differential thermal analysis on 12 to 20 percent boron Fe-B glasses (Ref 8). His results, obtained above 700 K, led to the conclusion that the formation of α -Fe accompanies the crystallization of Fe_3B . Chien and others did a lengthy study on Fe-B glasses (14 to 28 percent boron) and crystalline Fe_3B using Mossbauer spectroscopy and magnetization measurements (Ref 9). Kemeny and others used Mossbauer spectroscopy, differential scanning calorimetry, and magnetization measurements for a thorough investigation of the structure and crystallization of Fe-B metallic glasses (12 to 25 percent boron) (Ref 10). For 16 to 25 percent boron, they concluded that crystallization proceeds by the formation of α -Fe and Fe_3B in an eutectic process. They also deduced that the glass structure should be based on locally distorted, quasi-crystalline Fe_3B . Schaafsma and others have also done a lengthy crystallization study on two $\text{Fe}_{80}\text{B}_{20}$ glasses (Ref 11). They concluded that the crystallization mechanism did not change between 580 and 640 K. They also found that nucleation did not control the crystallization rate; i.e., that crystal nuclei exist in the as-quenched amorphous material. Finally, Kopcewicz used Mossbauer spectroscopy to study radio-frequency annealing of $\text{Fe}_{40}\text{Ni}_{40}\text{B}_{20}$ (Ref 12). He found that as a result of magnetostriictively induced atomic vibrations, a strong rf field caused crystallization in LN_2 -cooled samples.

Assumptions

The following were assumed to be true at the outset:

- 1) The $\text{Fe}_{80}\text{B}_{20}$ and $\text{Fe}_{80}\text{P}_{6.5}\text{C}_{3.5}\text{B}_{10}$ alloys were amorphous.
- 2) During annealing α -Fe and metastable Fe_3B were formed.
- 3) The compositions were true to within one percent.

Overview

The theory of the Mossbauer effect has been well documented and will not be presented here; however, the use of Mossbauer spectroscopy to study nuclear environments is presented in Chapter II, along with the theory of crystallization of Fe-B glasses. The Mossbauer equipment, annealing system, experimental procedures, and data processing are described in Chapter III. Chapter IV contains the results and discussion, and Chapter V contains the conclusions and recommendations.

II. Theory

The theory of the Mossbauer effect has been fully developed and is well understood (see, e.g., Ref 13 and 14). For a condensed and simplified explanation, see Roberts' thesis (Ref 2: 3-11). Mossbauer spectroscopy measures the hyperfine fields of nuclei. This is possible because the hyperfine field interacts with the nuclear dipole moment, which, for iron-57, splits the resonant-absorption energy into six energy levels. The magnitudes of these energies are directly proportional to the value of the hyperfine field, which is characteristic of the electron environment of the nucleus. Thus, for nuclei in a crystal, there are different six-peak spectra (with Lorentzian line shapes) for each magnetically inequivalent site. For an amorphous material which has only short-range order, there are very few magnetically equivalent sites. The glass spectrum, then, is a combination of many different six-peak spectra, with a probability distribution $P(H)$ describing the nuclear hyperfine fields. The $P(H)$ of $\text{Fe}_{80}\text{B}_{20}$ have been described by Schmidt (Ref 1) and Vincze (Ref 15) as a binomial distribution. This distribution was related to the number of nearest neighbors of iron and non-iron nuclei. However, others have shown that the glass spectra can be described by a model-independent probability distribution (Refs 15, 16, and 17). Schurer and

and Morrish have shown that a single six-line pattern, using Gaussian line shapes, describes the glass spectrum reasonably well (Ref 16: 819). This method is used in this study for the $\text{Fe}_{80}\text{B}_{20}$ glass.

When a metastable metallic glass is heated, it undergoes atomic rearrangement to a more stable, but still amorphous, state (Ref 18: 577). With further heating, it begins to crystallize. This crystallization has been described as a diffusion process, as one or more species migrates out of the amorphous region (Ref 11: 4428). For the Fe-B glasses, the possible crystalline states are α -Fe, FeB, Fe_2B , and Fe_3B . Fe_2B is expected to form during crystallization of the amorphous phase because it is much more stable than Fe_3B . For $\text{Fe}_{80}\text{B}_{20}$, however, the metastable Fe_3B (or $\text{Fe}_{75}\text{B}_{25}$) is much nearer the original composition than Fe_2P (or $\text{Fe}_{67}\text{B}_{33}$). Thus, others have found that α -Fe and Fe_3B are the species formed during annealing of $\text{Fe}_{80}\text{B}_{20}$ (Refs 7: 1026; 8:232; 10: 485; 11: 4429). While some determined that iron diffused from the glass to form α -Fe, leaving amorphous $\text{Fe}_{75}\text{B}_{25}$, which subsequently crystallized to Fe_3B (Ref 11: 4429), others deduced that Fe_3B crystallized accompanied by the simultaneous formation of α -Fe (Ref 8: 233). For a glass with many species, such as $\text{Fe}_{80}\text{P}_{6.5}\text{C}_{3.5}\text{B}_{10}$, there are many possible crystalline states. These include FeB, Fe_2B , Fe_3B , Fe_3C , Fe_5C , and combinations of these by atomic substitution, also α -Fe.

The isothermal crystallization of an iron-based glass can be followed, then, by examining the growth of the six-peak

α -Fe spectrum in a series of Mossbauer spectra. The crystalline fraction $x(t)$ is the ratio of the volume of α -Fe crystals formed at time t to the volume in the fully crystallized sample. It can be described by the Johnson-Mehl-Avrami equation (Ref 11: 4426):

$$x(t) = 1 - \exp [-(k(T)t)^n] \quad (1)$$

When rearranged, Eq (1) becomes

$$\ln \ln \frac{1}{1-x(t)} = n \ln k(T) + n \ln t \quad (2)$$

which yields a straight line plot with slope n . Above, $k(T)$ is a temperature dependent constant, and the exponent n is determined by the nucleation and growth characteristics of the crystallization. The time $t_x(T)$ to crystallized fraction x can be determined from Eq (2) for a series of isothermal measurements. Then, for a thermally-activated diffusion process, the Arrhenius equation describes the lifetime t_x at constant x as a function of temperature T :

$$t_x = k_0^{-1} \exp (E_A/k_B T) \quad (3)$$

where k_0 is a frequency factor, k_B is the Boltzman constant, and E_A is the activation energy of the crystallization process expressed as energy per atom (or per mole) (Ref 11: 4427). Eq (3), when rearranged, also yields a straight line plot, with slope E_A/k_B :

$$\ln t_x = \ln k_0^{-1} + (E_A/k_B)T^{-1} \quad (4)$$

The above kinetic parameters can be derived from relatively quick measurements at high temperatures. If the assumption is valid that the crystallization process is the same over a large range of temperatures, then these constants can be used to predict the crystallization rate at lower temperatures. In this study, the crystallized fractions $x(t)$ were determined from the amplitudes of the α -Fe portions of Mossbauer spectra. The half lives $t_{.5}$ were then determined by least-squares curve fitting, and were used to determine the activation energy from the Arrhenius plot.

III. Equipment and Procedures

In this section the Mossbauer spectroscopy equipment and annealing system are described. The procedures for preparing the glass samples and assembling them in the heater are included. Annealing the samples, taking the Mossbauer spectra during annealing, and analyzing the spectra are also described.

Mossbauer Equipment

The major Mossbauer spectroscopy components included a constant-acceleration velocity transducer (motor), a linear amplifier/single channel analyzer, a krypton-filled proportional counter, and a Mossbauer control unit (MCU). All were manufactured by Ranger Electronics. The Mossbauer spectrum was taken on an RIDL 400 multichannel analyzer (MCA), operated in the time-sequential scaling mode. With the exception of the time-base oscillator, which was an RIDL model 54-6, the equipment is the same as that described by Skluzacek (Ref 19: 5-11), Schmidt (Ref 1: 11-15), and Roberts (Ref 2: 12). The source, connected directly to the motor, was approximately 6 mCi cobalt-57 in a rhodium foil.

Annealing System

The annealing system consisted of a heater, a thermocouple reader, a vacuum system, and one of two temperature controllers. Ranger Engineering built the heater (Fig 1) as

Fig 1. Heater (not to scale)

a prototype. The heating elements were two graphite discs (0.135 ± 0.002 mm x 25.4 mm). The sample was held between the heating discs and aligned with two aluminum foil windows (0.025 ± 0.001 mm x 25.4 mm). There were two iron-constantan thermocouples inside the heater; one was located in a slot at the edge of the heating element frame, the other was centered on the sample. The Omega thermocouple reader was calibrated with ice, boiling water, and molten tin. The vacuum system consisted of a forepump and an oil diffusion pump trapped with liquid nitrogen. Its purpose was to prevent convective heat transfer to the heater body. The first temperature controller,

Fig 2. Mossbauer/A annealing System

a Lambda regulated DC power supply, was designed to provide manually-set constant current. Because of the failure of this power source, it was replaced with a Gardsman temperature controller, which was connected through a filament transformer to the heater. It supplied AC power, which produced an alternating field between the heating elements. This produced a problem which is discussed in Chapter IV. The edge thermocouple supplied feedback to the controller. Neither controller regulated the temperature adequately; temperatures varied ± 2 K throughout the runs, with occasional drops (less than 1% of annealing time) of up to 10 K.

A sketch of the source-absorber-detector is shown in Fig 2. The distance from the source to the detector window was approximately 10 cm.

Sample Preparation

Dr. Harold Gegel, of the Air Force Materials Laboratory, provided the glassy metal ribbons which were used to prepare the samples. Battelle Laboratories at Columbus, Ohio, manufactured the ribbons by spin-cooling the molten alloy on a cooled rotating drum. The $Fe_{80}B_{20}$ (nominal atom percent) glass ribbons were $28.8 \pm 0.5 \mu m$ thick, the $Fe_{80}P_{6.5}C_{3.5}B_{10}$ ribbons were $27.9 \pm 0.5 \mu m$ thick, and the width of both varied from 0.5 to 1.2 mm with an average width of about 0.8 mm. The samples were prepared as a parallel array of the ribbons in 32 ± 2 mm long strips, to form an absorber 25 mm wide. The strips were held parallel with cellophane tape at the top and bottom and then bonded at one end with cyanoacrylate cement to a boron nitride disc (25.4 mm diameter). This was done to prevent thermal stresses which have been observed to affect the spectra (Ref 20). When the cement had dried, the glass strips were trimmed to the dimension of the boron nitride disc. Since the cement degraded during the annealing, the strips were held unfettered and remained free of thermal stress.

Heater Assembly

The sample and heating discs were assembled into the heater as shown in Fig 3. One graphite disc was inserted into the ceramic frame, followed by a clean boron nitride disc. The fine thermocouple was then centered on the boron nitride disc. The second boron nitride disc, with the glass sample attached, was then inserted, followed by the second graphite disc. The assembly was secured by two small plates and screws.

Fig 3. Sample/heater Assembly

The heater assembly was then inserted into the heater body, secured, and vacuum was applied.

Annealing and Data Collection

Once the heater was assembled and degassed overnight, the isothermal annealing run began. The heating rate was 5 to 15 K/min up to 473 K, and held there until again degassed. When the vacuum dropped below 10^{-3} Pa, the temperature was increased to the desired annealing point. Generally, it took about five minutes. The initial Mossbauer spectrum was started as soon as this temperature was reached. Additional spectra were then taken in sequence until the sample was near full

crystallization. The time between the end of one spectrum and the beginning of the next was about ten minutes, which was the time necessary to punch the 400 channels of data onto paper tape. The isothermal annealing runs lasted from 10.5 hrs for $\text{Fe}_{80}\text{B}_{20}$ at 626 K, up to 315 hrs for $\text{Fe}_{80}\text{B}_{20}$ at 573 K. To fully crystallize the samples, the temperature was increased for about 18 hrs following each annealing run (to 640 K for $\text{Fe}_{80}\text{B}_{20}$, 750 K for $\text{Fe}_{80}\text{P}_{6.5}\text{C}_{3.5}\text{B}_{10}$). The temperature was then lowered to the original annealing point, and a final Mossbauer spectrum was taken. The spectrum collection periods were between 1 and 24 hrs, depending upon the crystallization rate of the sample.

Data Processing

The Mossbauer spectra were analyzed by a least-squares minimization curve fitting program developed at the Argonne National Laboratory. This program, GENFIT, has been modified by Skluzacek (Ref 1: 21), Schmidt (Ref 1: 21-22), and Roberts (Ref 2: 18). It is listed as Appendix A of Roberts' thesis (Ref 2: 50-60), and will not be repeated here. A user-supplied subroutine, CALFUN, provides the mathematical model to be fitted, along with the desired variable parameters. Three different CALFUNS were used for this study. They are explained below.

Subroutine CALFUN (Gaussian fit to $\text{Fe}_{80}\text{B}_{20}$ glass).
This subroutine fits Gaussian line shapes to the $\text{Fe}_{80}\text{B}_{20}$ glass spectra taken at the beginning of each annealing run, though

the method can lead to erroneous values of the average hyperfine field (Ref 10: 478), it did provide reasonable fits. Its purpose was to provide the glass spectra to be included in the CALFUN below. The variables which were included in this subroutine were:

1. Baseline: the average counts in the background of the Mossbauer spectrum.
2. Magnetic field: one value of average hyperfine field, in kOe (100 kOe = 7.96 MA/m).
3. Isomer shift: one value of average isomer shift for the glass, in mm/sec.
4. Quadrupole split: one value of average quadrupole split for the glass, in mm/sec.
5. Total intensity: one value for total intensity (average) of peaks one and six, expressed as a fraction.
6. Relative intensity: one value of the ratio of the average intensity of peaks two and five to the average intensity of peaks one and six.
7. Linewidths: six values of the full width at half maximum intensity (FWHM); one for each of the six Gaussian line shapes, in mm/sec.

The areal ratios of peaks three and four were constrained to one-third the area of peak one. This subroutine is listed as Appendix A. It was called GAUSSCALF.

Subroutine CALFUN (Crystallized Fe₈₀R₂₀). This subroutine provides for fitting the data with one six-peak α -Fe

spectrum, three six-peak Fe_3B spectra, and one six-peak (Gaussian) glass spectrum. The variable parameters are:

1. Baseline: as in GAUSSCALF above.
2. Magnetic fields: one hyperfine field for α -Fe and one each for three Fe_3B sites, in kOe.
3. Isomer shifts: one each for α -Fe and the three Fe_3P sites, in mm/sec.
4. Linewidths: one value of FWHM for peaks one and six, one for peaks two and five, and one for peaks three and four, of all three Fe_3B sites, in mm/sec.
5. Total intensities: one value of total intensity for each of α -Fe, Fe_3B , and the glass.

To simplify--and reduce the time and cost of--processing, this subroutine required many constraints. The glass spectrum was constrained to those parameters found in GAUSSCALF above, only its intensity was variable. The linewidth of α -Fe was constrained to that value found for the fully crystallized spectrum, and all six peaks used this same value. The areal ratios were 3:2:1:1:2:3 for peaks 1:2:3:4:5:6 of α -Fe and Fe_3B . The relative intensities of the three Fe_3B sites were 1:1:1, and their linewidths were constrained to be equal for similar peaks. Finally, the quadrupole splits of α -Fe and the three Fe_3B sites were constrained to zero. This subroutine, called INVICALF, is listed as Appendix B.

Subroutine CALFUN (for α -Fe, peaks one through six). This version of CALFUN provides for analysis of only peaks one and six of the α -Fe crystallized from the glass. It includes a

Gaussian shaped background, and does not fit the center portion of the spectrum. The required variables are:

1. Baseline: as in GAUSSCALF.
2. Magnetic fields: one value for the α -Fe hyperfine field, and one value for the background, in kOe.
3. Total intensities: one value for the total intensity of peaks one and six of α -Fe, and one value for the background.
4. Linewidths: one value of FWHM for α -Fe, and one value for the background, in mm/sec.
5. Isomer shifts: one value of isomer shift for α -Fe and one value for the background, in mm/sec.

This subroutine is listed in Appendix C, and was called ALPHA-BG. Appendix D contains instructions for using GENFIT and CALFUN, and discusses required alterations to FIVECALF for spectra taken at other temperatures.

Goodness of Fit

The goodness of fit to the Mossbauer spectra is measured by Chi-squared, which is generated by GENFIT. Its value is defined by:

$$\text{Chi}^2 = \sum_{i=1}^N \frac{(\text{data point}_i - \text{calculated point}_i)^2}{\text{data point}_i} \quad (5)$$

where N is the number of data points fitted. Theoretically, the values of Chi-squared obtained for a number of spectra should be randomly distributed around the number of data points, in the limit approaching this number.

IV. Results and Discussion

In this section, the results of the spectra analyses and crystallization rate determinations are presented. These results are compared in the discussion to those derived by others. Table I lists the isothermal annealing runs with the sample material, temperature, annealing period, slope of the Johnson-Mehl-Avrami plot, crystallization half-life $t_{.5}$, and heater power (AC or DC). Figures 4 through 15 are examples of the Mossbauer spectra taken during the annealing runs. The title of each figure lists the sample material, temperature, annealed time, CALFUN used, and crystalline fraction. The crystalline fraction was calculated as the ratio of the value of the α -Fe intensity of that run to the value of the fully crystallized state. Figures 4 (2.89 hr at 573 K) and 5 (48.9 hr at 573 K) show that the glass spectrum changes very little before crystallization. Figure 6 shows the α -Fe peaks just after the onset of crystallization; note that the remainder of the spectrum still resembles the glass spectra. Figures 7 and 8 (19 and 100 percent crystallized) include the locations of the peaks of the α -Fe and three Fe_3B spectra, along with the values of their hyperfine fields (in MA/m). Note that the values of the three Fe_3B fields increased with time, which was true of all isothermal annealing runs. However, the linewidths of these peaks decreased with time, as much as 50 percent. Figures 9 and 10

TABLE I
Annealing Runs

Run	Glass	Temperature (K ± 2 K)	Annealing Period (hr)	Half-life (hr)	Slope n	Power Type
1	Fe ₈₀ B ₂₀	573	315	604 ± 57	1.60±0.22	DC
2	Fe ₈₀ B ₂₀	604	45	34.0 ± .5	1.77±.24	AC
3	Fe ₈₀ B ₂₀	611	76	18.0 ± 0.7	1.50±0.06	DC
4	Fe ₈₀ B ₂₀	611*	48	21.1 ± 1.8	1.17±0.08	DC
5	Fe ₈₀ B ₂₀	626	10.5	6.69 ± 0.54	1.57±0.14	DC
6	Fe ₈₀ P _{6.5} C _{3.5} B ₁₀	614	27	No crystallization observed	AC	
7	Fe ₈₀ P _{6.5} C _{3.5} B ₁₀	716	48	<2.9	AC	
8	Fe ₈₀ P _{6.5} C _{3.5} B ₁₀	744	25	<0.5	AC	

*This sample was annealed 13 days at 573 K, and was about 22% crystallized at the beginning of this run.

Fig. 4. Mossbauer Spectrum of $\text{Fe}_{30}\text{B}_{20}$, 573 K, 2.08 Hr, GAUSSCALF, $x = 0$

Fig. 5. Mossbauer Spectrum of $\text{Fe}_{80}\text{B}_{20}$, 573 K, 48.9 Hr, GAUSSCALF, $x = 0$

Fig. 6. Mossbauer Spectrum of $\text{Fe}_{80}\text{B}_{20}$, 573 K, 111 hr, FIVECALF, $x = 0.0512$

Fig. 7. Mossbauer Spectrum of $\text{Fe}_{80}\text{B}_{20}$, 573 K, 281 Hr, FIVECALF, $x = 0.190$

Fig. 9. Mossbauer Spectrum of $\text{Fe}_{80}\text{B}_{20}$, 611 K, Fully Crystallized, FIVECALF

Fig 10. Mossbauer Spectrum of $\text{Fe}_{30}\text{Rh}_{20}$, 611 K, Fully Crystallized
FIVECALF with Quadrupole Splitting

Fig. 11. Mossbauer Spectrum of $\text{Fe}_{80}\text{B}_{20}$, 611 K, Run 3, Fully Crystallized
FIVECALF

Fig. 12. Mossbauer Spectrum of $\text{Fe}_{80}\text{B}_{20}$, 604 K, 13.8 Hr, FIVECALF, $\chi = 0.316$

Fig. 13. Mossbauer Spectrum of $\text{Fe}_{80}\text{B}_{20}$, 604 K, Fully Crystallized, FIVLCALF

Fig. 11. Mossbauer Spectrum of $\text{Fe}_{80}\text{P}_{6.5}\text{C}_{3.5}\text{B}_{10}$, 716 K, 2.87 Hz, ALPHA-MG, $x \approx 1$

Fig. 15. Mossbauer Spectrum of $\text{Fe}_{80}\text{P}_{6.5}\text{C}_{3.5}\text{B}_{10}$, 716 K, Fully Crystallized
ALPHA-BG

clearly demonstrate the effect of constraining the local quadrupole splits to zero: Chi-squared was 508 for Fig 9, but with quadrupole splitting included in FIVECALF, it was 326 (for 330 data points). Figure 11 is the fully crystallized spectrum of Run 4, and except for total intensity, it is nearly identical to Fig 9 (Run 3 at the same temperature). Figures 12 and 13 show the poorly resolved spectra obtained when using AC power for the heater. Sample motion induced by an alternating magnetic field caused extreme line-broadening which resulted in overlapping of the absorption lines. Figures 14 and 15 are two spectra obtained with $\text{Fe}_{80}\text{P}_{6.5}\text{C}_{3.5}\text{B}_{10}$ (Run 7). Although the intensity of the α -Fe peak of Fig 14 indicated a fully crystallized state, visual inspection of these two spectra show a substantial change.

The crystallized fractions for $\text{Fe}_{80}\text{B}_{20}$ (Runs 1 thru 5) are plotted against time in Fig 16. Representative error bars are indicated on the first and last points of the 626 K data. The data of Run 4 were plotted such that the first data point fell on the calculated Run 3 line. Had the third data point been plotted on this line, the remaining points would have fallen very close to the Run 3 data. Because of low counts and line-broadening of the Mossbauer spectra of Run 2, only the last three data points were useable, and are included in Fig 16. The crystallization half lives, determined from least-squares fits to the data of Fig 16 (between $x = 0$, and $x = 0.80$), are plotted versus time in Fig 17. The value of the activation energy E_A for α -Fe crystallization was determined

Fig 16. Crystallized Fraction $x(t)$ vs Time,
Plotted as $\ln \ln(1/(1-x))$ vs $\ln t$

Fig 17. Arrhenius Plot. Crystallization half lives of $\text{Fe}_{80}\text{Ni}_{20}$ versus time, plotted as $\ln t_{0.5}$ vs $1000/T$
(with 1σ error bars)

from a least-squares fit to the data of this Arrhenius plot. The value of E_A was 0.256 ± 0.006 MJ/mole (2.65 ± 0.007 eV/atom), and $\ln k_0^{-1}$ was -47.5. Using these constants and $T = 473$ K in Eq (3), the predicted half-life of this $\text{Fe}_{80}\text{B}_{20}$ sample is 5500 ± 450 years at the expected operating temperature of 473 K.

The $\text{Fe}_{80}\text{P}_{6.5}\text{C}_{3.5}\text{B}_{10}$ did not crystallize at 614 K, but crystallized extremely fast at 716 and 744 K. Only one or two spectra were taken before full crystallization at these two temperatures. Hence, no kinetic data were obtained for this material. Only qualitative statements can be made about the crystallization of $\text{Fe}_{80}\text{P}_{6.5}\text{C}_{3.5}\text{B}_{10}$; these will be presented in the following section.

Discussion

The values of Chi-squared obtained when analyzing the Mossbauer spectra of Runs 1 through 5 varied over a large range--from less than the number of data points for some runs to up to four times the number of data points for others. This indicates a failure of the mathematical model used to describe the Mossbauer spectra. However, this failure was expected, considering the large number of constraints on the model used for FIVECALF (the values of Chi-squared for the GAUSSCALF and ALPHA-BG fits were generally very close to the number of data points). By visual inspection, the fits were good in the area of the α -Fe peaks, and its growth was probably followed accurately. The same cannot be said for the growth

of Fe_3B , due to the change in the hyperfine field and FWHM during crystallization. Since the glass spectrum does broaden slightly during crystallization, it may continue to change throughout the transformation. The fit to the Fe_3B spectra would then have to account for this change. An alternative view might be to consider the Fe_3B as still semi-amorphous during crystallization.

In Mossbauer spectra taken during early annealing runs, the values of FWHM for the Fe_3B peaks increased for peaks farther from the center. This is typical of glass spectra (Ref 16: 821). For the fully crystallized spectra, the FWHM's were nearly constant, which indicates a crystalline state. This view tends to support Kemeny's (Ref 10: 485) and Schaafsma's (Ref 11: 4429) conclusions that crystal nuclei exist in the as-quenched glass and that the structure should be based on a locally distorted, quasi-crystalline Fe_3B . It appears that the material is transformed from a glass to a semi-amorphous Fe_3B , and finally to a tetragonal Fe_3B crystal. This may be due to a stress relaxation rather than a crystallization process.

Because of the long time required to reach full crystallization at 573 K, Run 1 was terminated at 315 hrs, and the temperature was raised to 611 K. This was done to try to detect a change in the crystallization process at the lower temperature. The first crystallization time of Run 4 was adjusted by Δt so that this data point fell on the line calculated for Run 3. The other times of Run 4 were then adjusted by this

s , and the data was compared to that of Run 3. Because of the data scatter, no conclusion was made concerning a change in the crystallization rate or process.

Using the methods described in Chapter I, others have found the activation energy of $\text{Fe}_{80}\text{B}_{20}$ to be between 0.195 and 0.257 MJ/mole, with the average toward the upper value (Refs 3: 42; 6: 139; 10: 485; 11: 4427). This range is significant: Luborsky, using calorimetric and magnetic methods to measure the onset of crystallization in $\text{Fe}_{80}\text{B}_{20}$, determined that the activation energy was 0.202 MJ/mole. He used this value to calculate an expected lifetime of 25 years at 473 K. He determined that "after the onset of crystallization, the magnetic properties deteriorate catastrophically [Ref 3: 139]."
Schaafsma determined that the onset of crystallization corresponds to a crystallized fraction of less than 0.02 (Ref 11: 4425). Using his data, with $E_A = 0.242$ MJ/mole, to calculate the onset of crystallization, the projected lifetime of his glass is 1000 years at 473 K. The same calculation yields a lifetime of 400 years at 473 K for the $\text{Fe}_{80}\text{B}_{20}$ of this study. These calculations assume that the crystallization rate is determined by the growth of α -Fe, not Fe_3B ; and that the crystallization mechanism does not change between 573 and 473 K.

The data obtained during the crystallization of $\text{Fe}_{80}\text{P}_{6.5}\text{C}_{3.5}\text{B}_{10}$ were insufficient for analysis of its crystallization kinetics. However, a much higher temperature was required for crystallization. Therefore, qualitatively, its activation energy would be greater than that of $\text{Fe}_{80}\text{B}_{20}$. This

is true for other similar glasses with many atomic species
(i.e., $\text{Fe}_{40}\text{Ni}_{40}\text{B}_{20}$, $\text{Fe}_{80}\text{P}_{13}\text{C}_7$, $\text{Fe}_{40}\text{Ni}_{40}\text{P}_{14}\text{B}_6$, Ref 3: 140).
Thus, the lifetime of $\text{Fe}_{80}\text{P}_{6.5}\text{C}_{3.5}\text{B}_{10}$ is expected to be greater
than that of $\text{Fe}_{80}\text{B}_{20}$.

V. Conclusions and Recommendations

The metallic glasses $Fe_{80}B_{20}$ and $Fe_{80}P_{6.5}C_{3.5}B_{10}$ have been crystallized by isothermal annealing at high temperatures. The crystallization was followed with Mossbauer spectroscopy, and the rates of formation of α -Fe crystals in $Fe_{80}B_{20}$ were determined. These rates were used to determine the activation energy and rate constant of the crystallization process. These constants were used to calculate the expected lifetime of $Fe_{80}B_{20}$ at 473 K, 100 K below the lowest isothermal run. If the crystallization mechanism does not change between 473 and 573 K, the onset of crystallization is projected to be approximately 400 years. No kinetic data were obtained for the crystallization of $Fe_{80}P_{6.5}C_{3.5}B_{10}$, or for the formation of Fe_3B in the $Fe_{80}B_{20}$.

Recommendations

This study can be expanded in the following ways:

- 1) Use a stronger Mossbauer source to increase counts per channel. This would permit a more careful study of the crystallized spectra to determine Fe_3B growth rates.
- 2) Use an accurate temperature controller (with direct current), and continue the study at lower temperatures.
- 3) Study the magnetic and material properties of partially crystallized samples. This would relate crystallized fraction to material performance.

4) Since an alternating field can accelerate the aging of the glass (Ref 12), include a strong rf field during some of the isothermal annealing runs. The field strength must be great enough to displace the atoms in the amorphous metal. Kopcewicz found that 800 A/M at 67 MHz was enough to cause crystallization, but 400 A/M at 53 MHz was not.

Bibliography

1. Schmidt, T.A. "An Analysis of Metallic Glasses by Mossbauer Spectroscopy." Unpublished MS thesis. Wright-Patterson AFB, Ohio: School of Engineering, Air Force Institute of Technology March 1978.
2. Roberts, L.D. "Mossbauer Studies of Metallic Glasses." Unpublished MS thesis. Wright-Patterson AFB, Ohio: School of Engineering, Air Force Institute of Technology, December 1978. AD A064049.
3. Luborsky, F.E. "Crystallization of Some Fe-Ni Metallic Glasses," Materials Science and Engineering, 28: 139-144 (1977).
4. Fukamichi, K., et al. "Invar-type New Ferromagnetic Amorphous Fe-B Alloys," Solid State Communications, 23(12): 955-958 (September 1977).
5. Chien, C.L. "Mossbauer Study of a Binary Amorphous Ferromagnet: $Fe_{80}B_{20}$," Physical Review B, 18(3): 1003-1015 (1 August 1978).
6. Luborsky, F.E. and H.H. Lieberman. "Crystallization Kinetics of Fe-B Amorphous Alloys," Applied Physics Letters, 33(3): 233-234 (1 August 1978).
7. Tarnoczi, T., et al. "The Role of Fe_3B Compound in the Crystallization of Fe-B Metallic Glasses," IEEE Transactions on Magnetism, Mag-14(5): 1025-1027 (September 1978).
8. Matsuura, M. "Crystallization Kinetics of Amorphous Fe-B Alloys by DTA," Solid State Communications, 30(4): 231-233 (April 1979).
9. Chien, C.L., et al. "Magnetic Properties of Fe_xB_{100-x} ($72 \leq x \leq 86$) and Crystalline Fe_3B ," Physical Review B, 20(1): 283-295 (1 July 1979).
10. Kemeny, T., et al. "Structure and Crystallization of $Fe-B_x$ Metallic Glasses," Physical Review B, 20(2): 471-483 (15 July 1979).

11. Chikuma, A.S., et al. "Amorphous to Crystalline Transformation of Fe₈₀B₂₀," Physical Review B, 20(11): 4429-4430 (1 December 1979).
12. Kopkewicz, M. "Radio-Frequency Annealing Effects in Amorphous Fe₄₀Ni₄₀B₂₀," Applied Physics, 23(1): 1-6 (September 1980).
13. May, L. An Introduction to Mossbauer Spectroscopy. New York: Plenum Press, 1971.
14. Gonser, Uli. "From a Strange Effect to Mossbauer Spectroscopy," in Topics in Applied Physics, Volume 5: Mossbauer Spectroscopy, edited by Uli Gonser. New York: Springer-Verlag, 1975.
15. Vincze, I. "Evaluation of Complex Mossbauer Spectra in Amorphous and Crystalline Ferromagnets," Solid State Communications, 25(9): 689-693 (March 1978).
16. Schurer, P.J. and A.H. Morrish. "Continuous Versus Discrete Hyperfine-Field Distributions in Amorphous Ferromagnetic Iron Alloys," Solid State Communications, 28(9): 819-823 (December 1978).
17. Hesse, J. and A. Rubartsh. "Model Independent Evaluation of Overlapped Mossbauer Spectra," Journal of Physics F, 7(6): 526-532 (June 1974).
18. Schurer, P.J. and A.H. Morrish. "Mossbauer Study of Magnetic Anisotropy in Amorphous Fe₄₀Ni₃₈Mo₄B₁₈," Journal of Magnetism and Magnetics, 15-18: 577-578 (1980).
19. Skluzacek, E.W. "Analysis of the Mossbauer Spectra of NdCo₅." AFML-TR-75-162. Wright-Patterson AFB, Ohio: Air Force Materials Laboratory, 1976.
20. Lafleur, L.D. "Mossbauer Study of Stress-Induced Rotation of Magnetization in Amorphous Fe₈₀B₂₀," Physical Review B, 20(7): 2581-2585 (1 October 1979).

SUBROUTINE CALFUN(NP,NPAR,F,X)

C THIS VERSION OF CALFUN USES A GAUSSIAN LINE SHAPE TO FIT THE
 C ABSORPTION SPECTRUM OF A METALLIC GLASS. IT GIVES ONE AVERAGE
 C VALUE FOR HYPERFINE FIELD, ONE FOR ISOMER SHIFT, AND ONE FOR
 C QUADRUPOLF SHIFT. IT GIVES A LINEWIDTH FOR EACH OF THE SIX
 C PEAKS, AND THE INTENSITY RATIO OF PEAK 2 TO PEAK 1. THE AREAL
 C RATIO FOR PEAKS 3 AND 4 TO PEAK 1 IS 1:3. THESE VALUES CAN
 C BE SUBSTITUTED INTO THE CALFUN CALLED FIVECALF, TO PERMIT
 C FITTING THE CRYSTALLIZED GLASS SPECTRA.

GAUSSCALF 15 OCT 80

THE REQUIRED VARIABLES ARE:

CNE VALUE FOR H-FIELD: X(1)
 ONE VALUE OF ISOMER SHIFT: X(2)
 ONE VALUE OF NIAD SPLIT: X(3)
 CNE VALUE FOR TOTAL INTENSITY OF PEAK 1: X(4)
 ONE VALUE FOR RELATIVE INTENSITY TO PEAK 1: X(5)
 SIX VALUES OF LINE WIDTH: X(6), TO X(11)
 BASELINE IS LAST VARIABLE: X(12)
 TOTAL OF 12 VARIABLES REQUIRED

COMMON /HEADING/TITLE(18)

COMMON /NAME/XINIT(25),PRM(25),ERX(25),NBASE

COMMON /CALF/IFLAG

COMMON /NAME/SPIN F(LG2),X(25)

REAL V(G),MUEX,MUGND,MUSUBN,LIGHT

60 0113
 60 0115
 60 0120
 60 0125
 60 0127
 60 0130
 60 0133
 60 0135
 60 0137
 60 0139
 60 0140
 60 0141
 60 0142
 60 0143
 60 0144
 60 0145
 60 0146
 60 0147
 60 0148
 60 0149
 60 0150
 60 0151
 60 0152
 60 0153
 60 0154
 60 0155
 60 0156
 60 0157
 60 0158
 60 0159
 60 0160
 60 0161
 60 0162
 60 0163
 60 0164
 60 0165
 60 0166
 60 0167
 60 0168
 60 0169
 60 0170
 60 0171
 60 0172
 60 0173
 60 0174
 60 0175
 60 0176
 60 0177
 60 0178
 60 0179
 60 0180
 60 0181
 60 0182
 60 0183
 60 0184
 60 0185
 60 0186
 60 0187
 60 0188
 60 0189
 60 0190
 60 0191
 60 0192
 60 0193
 60 0194
 60 0195
 60 0196
 60 0197
 60 0198
 60 0199
 60 0200
 60 0201
 60 0202
 60 0203
 60 0204
 60 0205
 60 0206
 60 0207
 60 0208
 60 0209
 60 0210
 60 0211
 60 0212
 60 0213
 60 0214
 60 0215
 60 0216
 60 0217
 60 0218
 60 0219
 60 0220
 60 0221
 60 0222
 60 0223
 60 0224
 60 0225
 60 0226
 60 0227
 60 0228
 60 0229
 60 0230
 60 0231
 60 0232
 60 0233
 60 0234
 60 0235
 60 0236
 60 0237
 60 0238
 60 0239
 60 0240
 60 0241
 60 0242
 60 0243
 60 0244
 60 0245
 60 0246
 60 0247
 60 0248
 60 0249
 60 0250
 60 0251
 60 0252
 60 0253
 60 0254
 60 0255
 60 0256
 60 0257
 60 0258
 60 0259
 60 0260
 60 0261
 60 0262
 60 0263
 60 0264
 60 0265
 60 0266
 60 0267
 60 0268
 60 0269
 60 0270
 60 0271
 60 0272
 60 0273
 60 0274
 60 0275
 60 0276
 60 0277
 60 0278
 60 0279
 60 0280
 60 0281
 60 0282
 60 0283
 60 0284
 60 0285
 60 0286
 60 0287
 60 0288
 60 0289
 60 0290
 60 0291
 60 0292
 60 0293
 60 0294
 60 0295
 60 0296
 60 0297
 60 0298
 60 0299
 60 0300
 60 0301
 60 0302
 60 0303
 60 0304
 60 0305
 60 0306
 60 0307
 60 0308
 60 0309
 60 0310
 60 0311
 60 0312
 60 0313
 60 0314
 60 0315
 60 0316
 60 0317
 60 0318
 60 0319
 60 0320
 60 0321
 60 0322
 60 0323
 60 0324
 60 0325
 60 0326
 60 0327
 60 0328
 60 0329
 60 0330
 60 0331
 60 0332
 60 0333
 60 0334
 60 0335
 60 0336
 60 0337
 60 0338
 60 0339
 60 0340
 60 0341
 60 0342
 60 0343
 60 0344
 60 0345
 60 0346
 60 0347
 60 0348
 60 0349
 60 0350
 60 0351
 60 0352
 60 0353
 60 0354
 60 0355
 60 0356
 60 0357
 60 0358
 60 0359
 60 0360
 60 0361
 60 0362
 60 0363
 60 0364
 60 0365
 60 0366
 60 0367
 60 0368
 60 0369
 60 0370
 60 0371
 60 0372
 60 0373
 60 0374
 60 0375
 60 0376
 60 0377
 60 0378
 60 0379
 60 0380
 60 0381
 60 0382
 60 0383
 60 0384
 60 0385
 60 0386
 60 0387
 60 0388
 60 0389
 60 0390
 60 0391
 60 0392
 60 0393
 60 0394
 60 0395
 60 0396
 60 0397
 60 0398
 60 0399
 60 0400
 60 0401
 60 0402
 60 0403
 60 0404
 60 0405
 60 0406
 60 0407
 60 0408
 60 0409
 60 0410
 60 0411
 60 0412
 60 0413
 60 0414
 60 0415
 60 0416
 60 0417
 60 0418
 60 0419
 60 0420
 60 0421
 60 0422
 60 0423
 60 0424
 60 0425
 60 0426
 60 0427
 60 0428
 60 0429
 60 0430
 60 0431
 60 0432
 60 0433
 60 0434
 60 0435
 60 0436
 60 0437
 60 0438
 60 0439
 60 0440
 60 0441
 60 0442
 60 0443
 60 0444
 60 0445
 60 0446
 60 0447
 60 0448
 60 0449
 60 0450
 60 0451
 60 0452
 60 0453
 60 0454
 60 0455
 60 0456
 60 0457
 60 0458
 60 0459
 60 0460
 60 0461
 60 0462
 60 0463
 60 0464
 60 0465
 60 0466
 60 0467
 60 0468
 60 0469
 60 0470
 60 0471
 60 0472
 60 0473
 60 0474
 60 0475
 60 0476
 60 0477
 60 0478
 60 0479
 60 0480
 60 0481
 60 0482
 60 0483
 60 0484
 60 0485
 60 0486
 60 0487
 60 0488
 60 0489
 60 0490
 60 0491
 60 0492
 60 0493
 60 0494
 60 0495
 60 0496
 60 0497
 60 0498
 60 0499
 60 0500
 60 0501
 60 0502
 60 0503
 60 0504
 60 0505
 60 0506
 60 0507
 60 0508
 60 0509
 60 0510
 60 0511
 60 0512
 60 0513
 60 0514
 60 0515
 60 0516
 60 0517
 60 0518
 60 0519
 60 0520
 60 0521
 60 0522
 60 0523
 60 0524
 60 0525
 60 0526
 60 0527
 60 0528
 60 0529
 60 0530
 60 0531
 60 0532
 60 0533
 60 0534
 60 0535
 60 0536
 60 0537
 60 0538
 60 0539
 60 0540
 60 0541
 60 0542
 60 0543
 60 0544
 60 0545
 60 0546
 60 0547
 60 0548
 60 0549
 60 0550
 60 0551
 60 0552
 60 0553
 60 0554
 60 0555
 60 0556
 60 0557
 60 0558
 60 0559
 60 0560
 60 0561
 60 0562
 60 0563
 60 0564
 60 0565
 60 0566
 60 0567
 60 0568
 60 0569
 60 0570
 60 0571
 60 0572
 60 0573
 60 0574
 60 0575
 60 0576
 60 0577
 60 0578
 60 0579
 60 0580
 60 0581
 60 0582
 60 0583
 60 0584
 60 0585
 60 0586
 60 0587
 60 0588
 60 0589
 60 0590
 60 0591
 60 0592
 60 0593
 60 0594
 60 0595
 60 0596
 60 0597
 60 0598
 60 0599
 60 0600
 60 0601
 60 0602
 60 0603
 60 0604
 60 0605
 60 0606
 60 0607
 60 0608
 60 0609
 60 0610
 60 0611
 60 0612
 60 0613
 60 0614
 60 0615
 60 0616
 60 0617
 60 0618
 60 0619
 60 0620
 60 0621
 60 0622
 60 0623
 60 0624
 60 0625
 60 0626
 60 0627
 60 0628
 60 0629
 60 0630
 60 0631
 60 0632
 60 0633
 60 0634
 60 0635
 60 0636
 60 0637
 60 0638
 60 0639
 60 0640
 60 0641
 60 0642
 60 0643
 60 0644
 60 0645
 60 0646
 60 0647
 60 0648
 60 0649
 60 0650
 60 0651
 60 0652
 60 0653
 60 0654
 60 0655
 60 0656
 60 0657
 60 0658
 60 0659
 60 0660
 60 0661
 60 0662
 60 0663
 60 0664
 60 0665
 60 0666
 60 0667
 60 0668
 60 0669
 60 0670
 60 0671
 60 0672
 60 0673
 60 0674
 60 0675
 60 0676
 60 0677
 60 0678
 60 0679
 60 0680
 60 0681
 60 0682
 60 0683
 60 0684
 60 0685
 60 0686
 60 0687
 60 0688
 60 0689
 60 0690
 60 0691
 60 0692
 60 0693
 60 0694
 60 0695
 60 0696
 60 0697
 60 0698
 60 0699
 60 0700
 60 0701
 60 0702
 60 0703
 60 0704
 60 0705
 60 0706
 60 0707
 60 0708
 60 0709
 60 0710
 60 0711
 60 0712
 60 0713
 60 0714
 60 0715
 60 0716
 60 0717
 60 0718
 60 0719
 60 0720
 60 0721
 60 0722
 60 0723
 60 0724
 60 0725
 60 0726
 60 0727
 60 0728
 60 0729
 60 0730
 60 0731
 60 0732
 60 0733
 60 0734
 60 0735
 60 0736
 60 0737
 60 0738
 60 0739
 60 0740
 60 0741
 60 0742
 60 0743
 60 0744
 60 0745
 60 0746
 60 0747
 60 0748
 60 0749
 60 0750
 60 0751
 60 0752
 60 0753
 60 0754
 60 0755
 60 0756
 60 0757
 60 0758
 60 0759
 60 0760
 60 0761
 60 0762
 60 0763
 60 0764
 60 0765
 60 0766
 60 0767
 60 0768
 60 0769
 60 0770
 60 0771
 60 0772
 60 0773
 60 0774
 60 0775
 60 0776
 60 0777
 60 0778
 60 0779
 60 0780
 60 0781
 60 0782
 60 0783
 60 0784
 60 0785
 60 0786
 60 0787
 60 0788
 60 0789
 60 0790
 60 0791
 60 0792
 60 0793
 60 0794
 60 0795
 60 0796
 60 0797
 60 0798
 60 0799
 60 0800
 60 0801
 60 0802
 60 0803
 60 0804
 60 0805
 60 0806
 60 0807
 60 0808
 60 0809
 60 0810
 60 0811
 60 0812
 60 0813
 60 0814
 60 0815
 60 0816
 60 0817
 60 0818
 60 0819
 60 0820
 60 0821
 60 0822
 60 0823
 60 0824
 60 0825
 60 0826
 60 0827
 60 0828
 60 0829
 60 0830
 60 0831
 60 0832
 60 0833
 60 0834
 60 0835
 60 0836
 60 0837
 60 0838
 60 0839
 60 0840
 60 0841
 60 0842
 60 0843
 60 0844
 60 0845
 60 0846
 60 0847
 60 0848
 60 0849
 60 0850
 60 0851
 60 0852
 60 0853
 60 0854
 60 0855
 60 0856
 60 0857
 60 0858
 60 0859
 60 0860
 60 0861
 60 0862
 60 0863
 60 0864
 60 0865
 60 0866
 60 0867
 60 0868
 60 0869
 60 0870
 60 0871
 60 0872
 60 0873
 60 0874
 60 0875
 60 0876
 60 0877
 60 0878
 60 0879
 60 0880
 60 0881
 60 0882
 60 0883
 60 0884
 60 0885
 60 0886
 60 0887
 60 0888
 60 0889
 60 0890
 60 0891
 60 0892
 60 0893
 60 0894
 60 0895
 60 0896
 60 0897
 60 0898
 60 0899
 60 0900
 60 0901
 60 0902
 60 0903
 60 0904
 60 0905
 60 0906
 60 0907
 60 0908
 60 0909
 60 0910
 60 0911
 60 0912
 60 0913
 60 0914
 60 0915
 60 0916
 60 0917
 60 0918
 60 0919
 60 0920
 60 0921
 60 0922
 60 0923
 60 0924
 60 0925
 60 0926
 60 0927
 60 0928
 60 0929
 60 0930
 60 0931
 60 0932
 60 0933
 60 0934
 60 0935
 60 0936
 60 0937
 60 0938
 60 0939
 60 0940
 60 0941
 60 0942
 60 0943
 60 0944
 60 0945
 60 0946
 60 0947
 60 0948
 60 0949
 60 0950
 60 0951
 60 0952
 60 0953
 60 0954
 60 0955
 60 0956
 60 0957
 60 0958
 60 0959
 60 0960
 60 0961
 60 0962
 60 0963
 60 0964
 60 0965
 60 0966
 60 0967
 60 0968
 60 0969
 60 0970
 60 0971
 60 0972
 60 0973
 60 0974
 60 0975
 60 0976
 60 0977
 60 0978
 60 0979
 60 0980
 60 0981
 60 0982
 60 0983
 60 0984
 60 0985
 60 0986
 60 0987
 60 0988
 60 0989
 60 0990
 60 0991
 60 0992
 60 0993
 60 0994
 60 0995
 60 0996
 60 0997
 60 0998
 60 0999
 60 1000
 60 1001
 60 1002
 60 1003
 60 1004
 60 1005
 60 1006
 60 1007
 60 1008
 60 1009
 60 1010
 60 1011
 60 1012
 60 1013
 60 1014
 60 1015
 60 1016
 60 1017
 60 1018
 60 1019
 60 1020
 60 1021
 60 1022
 60 1023
 60 1024
 60 1025
 60 1026
 60 1027
 60 1028
 60 1029
 60 1030
 60 1031
 60 1032
 60 1033
 60 1034
 60 1035
 60 1036
 60 1037
 60 1038
 60 1039
 60 1040
 60 1041
 60 1042
 60 1043
 60 1044
 60 1045
 60 1046
 60 1047
 60 1048
 60 1049
 60 1050
 60 1051
 60 1052
 60 1053
 60 1054
 60 1055
 60 1056
 60 1057
 60 1058
 60 1059
 60 1060
 60 1061
 60 1062
 60 1063
 60 1064
 60 1065
 60 1066
 60 1067
 60 1068
 60 1069
 60 1070
 60 1071
 60 1072
 60 1073
 60 1074
 60 1075
 60 1076
 60 1077
 60 1078
 60 1079
 60 1080
 60 1081
 60 1082
 60 1083
 60 1084
 60 1085
 60 1086
 60 1087
 60 1088<br

```

C   LOAN VALUES OF BINOMIAL PROBABILITIES
C
C   MUEXY = .15491
MUGND = -.954206
Q=MUEXY*(MUGND*Z.)
C
C   FACTOR CONVERTS FROM ENERGY UNITS TO VELOCITY UNITS.
C
C   GZERO*MUSUBN*LIGHT*F1*F2
C   FACTOR = -----
C   2.*EZERO*F3
C
C   GZERO=.18048
MUSUBN=.6E-27
LIGHT=2.399E11
F1=.3
F2=1.0
F3=4
F7E20=14.4125E7
FR=1.6*2E-15
C
FACTR2=(GZERO*MUSUBN*LIGHT*F1*F2)/(EZERO*F3*2.)
C
A=FACTOR*(3.*R-1.)
B=FACTOR*( R-1.)
C=FACTOR*( R+1.)
C
T6((FLAG)25,25,1)
C
C   IF T6 IS NOT POSITIVE CALFUN IS BEING CAL-ED FOR PRINTING ONLY
C   AT THIS TIME
C
C   CALCULATE PEAK VELOCITIES FOR EACH SITE
C
S=X(2)
D=X(3)/2.

```

```
X(1)=ABS(X(1))
```

```
Y(1)=A*X(1)+S+Q
```

```
V(2)=D*X(1)+S-Q
```

```
V(3)=-C*X(1)+S-Q
```

```
V(4)=C*X(1)+S-Q
```

```
V(5)=-D*X(1)+S-Q
```

```
V(6)=-A*X(1)+S+Q
```

```
DO 27 I=1,11
```

```
X(I)=ANS(X(I))
```

```
33
```

```
CONTINUE
```

```
C CALCULATE THE SPECTRUM
```

```
C
```

```
25 L=X(.5)*X(7)/X(6)
```

```
TF(2*L*61*1.4) X(5)=1.4*X(6)/X(7)
```

```
DO 27 I=1,NP
```

```
X(I)=0.
```

```
I=(K-.5) K=1,E
```

```
I=(K-.5) K=1,E TI=X(L)
```

```
I=(K-.5) K=1,E TI=X(4)*X(5)
```

```
I=(K-.5) K=1,E TI=X(6)/(3.*X(8))
```

```
I=(K-.5) K=1,E TI=X(4)*X(6)/(3.*X(9))
```

```
I=(K-.5) K=1,E TI=X(4)*X(5)*X(7)/X(11)
```

```
I=(K-.5) K=1,E TI=X(4)*X(6)/X(11)
```

```
K=K+1
```

```
YYV=(X0(I)-V(K))**2/(2.*X(KP5)**.4247*X(KP5)**.4247)
```

```
TF(YYV,61*1.4) YYV=105.
```

```
YC(I)=YC(I)+(I1/SQRT(6.2832*X(KP5)**4.247**4.247))*EXP(-YYV)
```

```
YS(I)=(1.-YC(I))*X(NBASE)
```

```
FC(I)=(YD(I)-YC(I))/SQRT(YD(I))
```

```
RETURN
```

```
35
```

```
ON THE FINAL CALL OF CALFUN PRINT THE PEAK VELOCITIES
```

```
C
```

```
CONTINUE
```

```
25
```

```
PRINT 90
```

```
DO 1173
```

```
60 1173
```

```
61 1173
```

```
62 1173
```

```
63 1173
```

```
64 1173
```

```
65 1173
```

```
66 1173
```

```
67 1173
```

```
68 1173
```

```
69 1173
```

```
70 1173
```

```
60 1173
```

```
61 1173
```

```
62 1173
```

```
63 1173
```

```
64 1173
```

```
65 1173
```

```
66 1173
```

```
67 1173
```

```
68 1173
```

```
69 1173
```

```
70 1173
```

```
71 1173
```

```
72 1173
```

```
73 1173
```

```
74 1173
```

```
75 1173
```

```
76 1173
```

```
77 1173
```

```
78 1173
```

```
79 1173
```

```
80 1173
```

```
81 1173
```

```
82 1173
```

```
83 1173
```

```
84 1173
```

```
85 1173
```

```
86 1173
```

```
87 1173
```

```
88 1173
```

```
89 1173
```

```
90 1173
```

```
91 1173
```

```
92 1173
```

```
93 1173
```

```
94 1173
```

```
95 1173
```

```
96 1173
```

```
97 1173
```

```
98 1173
```

```
99 1173
```

```
POINT *, " "
POINT *, " "
POINT *, " THE PEAK VELOCITIES ARE: "
POINT *, " "
POINT 100, (V(I), I=1,6)
POINT *, " "
POINT *, " "
POINT *, " "
FORMAT (1H1)
FORMAT (5X,7F16.4)
SETIF N
END
```

```
9C1210
9C1250
6B1250
6C1270
6C1270
6C1290
6C1290
6C1290
6C1290
6B1310
6B1310
6C1310
6C1320
6C1320
6B1340
```

SUBROUTINE CALFUN(NP,NPAR,F,X)

```

C CALFUN USES SUPERPOSITION OF FIVE 5-SPEAK SPECTRA: ONE FOR
C ALPHA-FE, THREE FOR FE38, AND ONE FOR THE GLASS. THE VARIABLE
C PARAMETERS ARE LISTED BELOW. THE LINWIDTH FOR ALPHA-FE MUST
C BE ANDED AT LINE 173!. AREA RATIOS ARE NORMALIZED TO PEAK 1
C FOR EACH SPECTRUM. ALL THREE FE38 SPECTRA ARE REQUIRED TO HAVE
C THE SAME AMPLITUDE, AND AREA RATIOS FOR PEAKS 1:2:3:4:5:6 OF
C 3:2:1:1:2:3. FOR THE GLASS SPECTRUM, ONLY THE INTENSITY IS A
C VARIABLE PARAMETER, THE OTHERS MUST BE SUPPLIED IN LINES 146!
C TO 143! AND 182! TO 192!. THIS CALFUN ALSO GIVES THE COUNTS
C ASSORBED BY ALPHA-FE AND THE TOTAL COUNTS ABSORBED. THIS VERSION
C OF FIVECALF IS FOR 336 C DATA ONLY.

```

FIVECALF 22 NOV 80

THE REQUIRED VARIABLES ARE:

```

C ONE VALUE OF H-FIELD FOR ALPHA IRON: X(1)
C THREE VALUES OF H-FIELD FOR FE38: X(2) TO X(4)
C ONE VALUE OF TOTAL INTENSITY FOR ALPHA FE: X(5)
C ONE VALUE OF TOTAL INTENSITY FOR FE38: X(6) TO X(9)
C THREE VALUES OF LINewidth FOR FE38: X(7) TO X(9)
C ONE VALUE OF ISOMER SHIFT FOR ALPHA FE: X(10)
C THREE VALUES OF ISOMER SHIFT FOR FE38: X(11) TO X(13)
C ONE VALUE OF TOTAL INTENSITY FOR THE FE38: X(14)
C ONE VALUE OF TOTAL INTENSITY FOR THE FE38: X(15)
C BASELINE IS LAST VARIABLE: X(15)
C TOTAL OF 15 VARIABLES REQUIRED

```

```

C      COMMON W(13(2)),X0(402),Y0(402),YDY(402),YCY(402),FSN(402) U 2170
C      COMMON /HEADINGS/TITL(18)          U 2150
C      COMMON /NAME/XINIT(25),PRN(25),ERX(25),NRASE U 2150
C      COMMON /CALF/IFLAG U 2150
C      DIMENSION F(4(2)),X(25)          U 2150
C      REAL V(30),MUEX,MUSUBN,LIS4f,H,B1(5) U 2150
C
C
C      MUEX=.1!+91
C      MUEND=-.1!+21E
C      R=MUE X/(MUEND*3.)
C
C      FACTOR CONVERTS FROM ENERGY UNITS TO VELOCITY UNITS.
C
C
C      GZERO=MUSUBN*LIGHT*F1*F2
C      FACTOR = -----
C      2.*EZERO*F3
C
C      GZERO=1.0000
C      MUSUBN=5.05E-27
C      LIGHT=2.99E11
C      F1=1.0E3
C      F2=1.0E-4
C      EZERO=16.4125E3
C      F3=1.5E-19
C
C      FACTOR=(GZERO*MUSUBN*LIGHT*F1*F2)/(EZERO*F3*2.)
C
C      FACTOR = -----
C      R = FACTOR ( R-1. )
C      R = FACTOR ( R+1. )
C
C      IF(IFLAG)25,25,17
C
C      IF IFLAG IS NOT POSITIVE CALFUN IS BEING CALLED FOR PRINTING ONLY

```

```

C      CONTINUE
C      CALCULATE PEAK VELOCITIES FOR EACH SITE
C
C      NO 11 I=1,9
11    X(1)=ABS(X(1))
C
C      THE FOLLOWING IS FOR THE ALPHA IRON SPECTRUM.
C      H IS THE HYPERFINE FIELD AND S IS THE ISOMER SHIFT.
C      V(1) TO V(6) ARE THE VELOCITIES OF PEAKS ONE TO SIX.
C
H=X(1)
S=X(11)
V(1)=A*H+S
V(2)=L*H+S
V(3)=-C*H+S
V(4)=C*H+S
V(5)=-D*H+S
V(6)=-A*H+S
C
C      THE FOLLOWING IS FOR THE FIRST FE33 SPECTRUM.
C
H=V(2)
S=X(11)
I=1.
V(7)=A*H+S+0
V(15)=D*H+S-0
V(19)=-C*H+S-0
V(23)=C*H+S-0
V(14)=-D*H+S-0
V(8)=-A*H+S+0
C
C      THE FOLLOWING IS FOR THE SECOND FE33 SPECTRUM.
C
H=X(3)

```



```

      YC(I)=(T/I)/SORT(1.133+31*(K-24)*2)+EXP(-YYY)
C   CALCULATE COUNTS ABSORBED BY ALPHA-AFE.
C
      33    TF(K,LT,J)  AAFE=AAFE+YCP
      35    YC(I)=YC(I)+YCP
C
      36    CALCULATE TOTAL COUNTS ABSORBED.
C
      36    ATOT=ATOT+YC(I)
      YC(I)=(1.-YC(I))*X(NBASE)
      F(I)=(YD(I)-YC(I))/SORT(YD(I))
      R=F(J)?N
C
      37    ON THE FINAL CALL OF CALFUN PRINT THE PEAK VELOCITIES AND
      37    THE COUNTS ABSORBED.
C
      25    COUNT NUE
      POINT 92
      FORMAT(1H1,/,38H THE PEAK VELOCITIES ARE (IN KM/SEC):,,/)
      PRINT 1:,,(V(I)),I=1,6)
      POINT 93
      FORMAT(//,F3H THE PEAK VELOCITIES FOR THE THREE FE33 SPECTRA ARE:
      1,/,)
      DO 35 I=7,11,2
      POINT 1:,,(V(I),V(I+5),V(I+12),V(I+13),V(I+7),V(I+1))
      POINT 94
      POINT 91,AAFE
      FORMAT(1H1,/,L3H THE TOTAL ALPHA IRON AREA (SIX PEAKS) IS://,
      1F4.0,/,/,/,)
      POINT 95,ATOT
      POINT 95,37H THE AREA UNDER THE ENTIRE CURVE IS:,,/,,F10.4)
      POINT 96
      POINT 96
      POINT 97,ATOT(1H1)
      POINT 97,37H
      POINT 98,FONCAT(5X,7F10.4)
      RETURN
      END

```

SUBROUTINE CALFUN(NP,NPAR,F,XI)

C THIS CALFUN FILLS ONLY PEAKS ONE AND SIX OF THE ALPHA-FE SPECTRUM.
C IT ADDS A GAUSSIAN SHAPED BACKGROUND TO THE ALPHA-FE TO ACCOUNT FOR
C THE CLOSNESS OF THE GLASS SPECTRUM TO THE CRYSTALLIZED ALPHA-FE
C SPECTRUM. IT FITS THE CENTER PORTION OF THE SPECTRUM WITH THE
C APPROXIMATE DATA VALUES.

ALPHA-BG 22 OCT 89

THE REQUIRED VARIABLES ARE:

ONE VALUE OF H-FIELD FOR ALPHA IRON: X(1)

ONE VALUE OF H-FIELD FOR THE BACKGROUND CURVE: X(2)

ONE VALUE OF ISOMER SHIFT FOR ALPHA IRON: X(3)

ONE VALUE OF ISOMER SHIFT FOR THE BACKGROUND CURVE: X(4)

TWO VALUES OF LINE WIDTH: X(5) TO X(6)

ONE VALUE OF TOTAL INTENSITY OF PEAK 1: X(7)
FOR ALPHA IRONONE VALUE OF TOTAL INTENSITY OF THE BACKGROUND: X(8)
BASELINE IS LAST VARIABLE: X(9)

TOTAL OF 9 VARIABLES REQUIRED

COMMON W(13), XC, XD(4,2), YD(4,2), Y2(4,2), YDY(4,2), YCY(4,2), FS3(4,2)
COMMON /HEADING/TITL(18)
COMMON /NAME/XINIT(25), PRM(25), ERX(25), NRASE

APPENDIX C

ALPHA-BG

```
CONVON /CALF/ IFLAG  
DIMENSION F(12),X(25)  
REAL V(6),MUEX,MUGND,MUSUBN,LIGHT
```

LOAN VALUES OF BINOMIAL PROBABILITIES

```
MUEX=.15E91  
MUSUBN=-.19E25E  
R=4JEX/(MUGND*3.)
```

```
FACTOR CONVERTS FROM ENERGY UNITS TO VELOCITY UNITS.
```

```
GZERO*MUSUBN*LIGHT*F1*F2  
FACTOR = -----  
2.*ZERO*F3
```

```
G7E20=.16E48  
MUSUBN=.15E-27  
LIGHT=2.*99E11  
F1=1.*.9E3  
F2=1.*.8E-4  
ZERO=.14.*4125E3  
FR=1.*.6E2E-15
```

```
FACTOR=(G7E0*MUSUBN*LIGHT*F1*F2)/(ZERO*F3*2.)
```

```
A=FACTOR*(3.*R-1.)  
D=FACTOR*( R-1.)  
C=FACTOR*( F+1.)
```

```
IF(IFLAG)25,25,15
```

```
1 IF IFLAG IS NOT POSITIVE CALFUN IS BEING CALLED FOR PRINTING ONLY
```

```
2 CONTINUE
```

```
3 C  
4 C
```

```
C31550  
C315450  
C315420  
C315380  
C315350  
C315320  
C315290  
C315260  
C315230  
C315200  
C315170  
C315140  
C31510  
C315070  
C315040  
C315010  
C315000  
C314970  
C314940  
C314910  
C314880  
C314850  
C314820  
C314790  
C314760  
C314730  
C314700  
C314670  
C314640  
C314610  
C314580  
C314550  
C314520  
C314500  
C314470  
C314440  
C314410  
C314380  
C314350  
C314320  
C314290  
C314260  
C314230  
C314200  
C314170  
C314140  
C314110  
C314080  
C314050  
C314020  
C314000
```

```

C CALCULATE PEAK VELOCITIES FOR EACH SITE
C
      DO 14 I=1,2
11      X(I)=ARS(X(1))
      V(1)=A*X(1)+X(3)
      V(2)=A*X(2)+X(4)
      V(3)=-A*X(2)+X(4)
      V(4)=-A*X(1)+X(3)
      DO 13 I=5,5
13      X(I)=ARS(X(I))
      20 NTT NUE
C
C CALCULATE THE SPECTRUM
C
      AAFF=0.0
      ATOT=0.0
      DO 3 Y=1,NP
      IF(I.LT.102 .OR. I.GT.214) GO TO 31
      YC(I)=1-(0.45*YD(I-1)+0.35*YD(I+1)+0.39*YD(I))/X(NBASE)
      GO TO 36
      YC(I)=0.
31      DO 35 K=1,4
      IF(K.EQ.1 .OR. K.EQ.4) TI=X(7)
      IF(K.EQ.2 .OR. K.EQ.3) TI=X(8)
      IF(K.EQ.2 .OR. K.EQ.3) GO TO 32
      YC=TI*((XD(I)-V(K))*2*4.)/X(5)**2+1.0
      AAFF=AAFE+YCP
      GO TO 35
      YYY=(XD(1)-V(K))**2/(2.+(0.42+.7*X(5))**2)
      IF(YYY.GT.1.0) YYY=1.0.
      YD=TT/SQRT((0.2836)/.4247/X(6)*EXP(-YYY))
      YC(I)=YC(I)+YCF
      ATOT=ATOT+YC(I)
      YC(I)=(1.-YC(I))*X(NBASE)
      F(I)=(YD(I)-YC(I))/SORT(YD(I))
      RETURN
32      ON THE FINAL CALL OF CALFUN PRINT THE PEAK VELOCITIES
C
      CONTINUE
25

```

```

PRINT 9F
PRINT ",," "
PRINT ",," "
PRINT ",," THE PEAK VELOCITIES AREA"
PRINT ",," "
PRINT 10L,(V(I),I=1,4)
PRINT ",," "
PRINT ",," "
PRINT ",," "THE AREA UNDER PEAKS 1 AND 5 OF ALPHA IRON IS: ",A=FE
PRINT ",," THE TOTAL ALPHA IRON AREA IS TWICE THAT AREA."
PRINT ",," "
PRINT ",," "
PRINT ",," "THE AREA UNDER THE ENTIRE CURVE IS: ",ATOT
PRINT ",," "
PRINT ",," "
PRINT 9C
FORMAT(1H1)
FORMAT(5X,7F1E+4)
RETURN
END

```

30
105

APPENDIX D

GENFIT Instructions

This appendix contains instructions for using GENFIT with one of the three CALFUNs listed in Appendices A, B, and C. It is presented in two parts; the first explains the control cards and parameters used when running GENFIT, the second describes how to alter FIVECALF for different temperature runs.

Control Deck

The following control deck precedes the data. It permits processing on the AFIT terminal only.

```
DEB,T300,CM120000,STCSB. M799999,DBELLER,4369.  
ATTACH,A,GENFIT,MR=1  
FIN,I=A,OPT=0,R=2,L=0.  
ATTACH,COMPILE,GAUSSCALF,MR=1  
FIN,I,OPT=0,R=2,L=0.  
ATTACH,P,CCPLOT56X,ID=LIBRARY,SN=ASD.  
LIBRARY,P.  
LDSET,PRESET=ZERO  
LGO.  
7/8/9
```

The first two cards of the data deck are title cards. They are used to identify the material and run number, and the CALFUN used for processing the data. The third data card contains processing parameters as explained below.

FEB1(11/13)80. 611 X.
FIVCALI

12,188,218,2,1,200,0.

includes baseline as a variable parameter

maximum calls of CALFUN

type of plot

number of times timing channels have
exceeded one million counts

}GENFIT does not fit the velocity curve

}between these channel numbers

number of variable parameters in the
attached CALFUN

The parameter cards then follow this card. In this case, there are twelve (as in above card). TWC are given for example (format I6, open):

HFIELD 310.

.

.

.

.

BASELN 52000

The Mossbauer data deck follows immediately after the parameter cards. There are forty data cards, in I3, 10I7 format. They contain the channel number of the first data entry on each card plus 10 channels of data. The final two cards contain more processing parameters.

1, 1, 2, 21, 60, 550, 505, 0

- number of times the data is smoothed before processing
- range of channels of right-hand zone for polynomial baseline fitting
- range of channels of left-hand zone for polynomial baseline fitting
- number of zones to be used for baseline fitting
- number of times baseline has exceeded one million counts
- order of the polynomial fit to the baseline

9.0, 2.25

- distance between tick marks on the horizontal (velocity) scale of the CALCOMP plot, in mm/sec
- horizontal scale distance (-9 to +9 mm/sec)

The final card for processing Mossbauer data is the end-of-job card:

6/7/8/9 END OF JOB

Altering FIVECALF

FIVECALF must be changed for different temperature runs because the glass spectrum changes over a given temperature range. The average hyperfine field, the distribution of fields, the relative intensity of peak two to peak one, and the isomer shift and quadrupole split all vary with temperature. Altering FIVECALF is rather simple, however. Once GAUSSCALF has been run with a non-crystallized spectrum and the parameters

obtained, the necessary changes to FIVECALF can be made.

They are listed below by line number in Appendix B.

- 000220 change temperature to that which this copy of FIVECALF will be for
- 001460 change H=145. to the hyperfine field obtained with GAUSSCALF
- 001470 change S=-.200 to the isomer shift obtained
- 001480 change Q=-.005 to the quadrupole split obtained
- 001840 change B1(1) to the value obtained for the linewidth of peak one
- 001850 change B1(2) to the value obtained for the linewidth of peak two
- 001860 change B1(3) to the value obtained for the linewidth of peak three
- 001870 change B1(4) to the value obtained for the linewidth of peak four
- 001880 change B1(5) to the value obtained for the linewidth of peak five
- 001890 change B1(6) to the value obtained for the linewidth of peak six
- 001950 change 1.30 to the value of the ratio of peak two to peak one
- 001980 change 1.30 to the value of the ratio of peak two to peak one

APPENDIX E

Applications of Metallic Glasses

In this appendix some of the existing and proposed applications of the metallic glasses are described. The mechanical, electrical, and magnetic properties of some of the glasses make them suitable for many uses. Two commercial applications have existed since 1976. A woven fabric has been manufactured for use as magnetic shielding. It performs as well as $Fe_{80}Ni_{20}$ foil, and it has the advantage of high flexibility. The other current application of metallic glass is in magnetostriuctive delay lines, which take advantage of the large magnetostriction of the metallic glasses and the high change in Young's modulus with applied magnetic field. Other uses are envisioned which take advantage of various combinations of magnetic "softness," mechanical hardness, and high electrical resistivity.

Due to the ease of reversing magnetic fields in the metallic glasses, power transformers with these materials in their cores would lose much less energy to heating. These glassy metals have been proposed for winding the cores of inversion transformers, current and pulse transformers, and magnetic amplifiers. They also are likely candidates for the "read" and "write" heads in magnetic tape recorders and disc

new systems. Their electrical resistance properties make them suitable for electrical resistors, low temperature heating wires, and resistance thermometers.

The various mechanical properties of the glassy metals make them useful for many other applications. Because of high tensile strength, some of the glasses might be used as reinforcing filaments in tires, transmission belts, or high pressure tubing; or as stress transducers in a multi-vibrator configuration. Their corrosion resistance makes them useful in underwater cables or biomaterials. The hardness and ability to be sharpened make some of the glassy metals suitable materials for manufacturing cutting devices.

Besides the above applications which are based on the macro-properties of the metallic glasses, there is at least one use based on their micro-structure: they have been proposed as the storage medium for magnetic "bubble" memory systems. Since the bubbles in the metallic glasses are one-fifth the size of those in synthetic garnet, the storage density would be 25 times greater. The vortices (important in superconductors) are 10 times smaller. If these can be used for storage, the information density could be 250 times greater than that now projected in synthetic garnet bubble memory systems.

All of the above applications can take advantage of two common properties of the metallic glasses: they are very easy to work with, due to their flexible-fiber form; and they are inexpensive to manufacture, due to the one-step production

process, with no subsequent treatments necessary. A few of the authors who have researched the applications of the metallic glasses--and will probably continue--are: C.D. Graham, T. Egami, J.J. Gilman, P. Chaudhari, and F.E. Luborsky.

Vita

Denis Eugene Beller was born on November 22, 1950, in Okmulgee, Oklahoma, and is the son of Ernest E. and Ezma I. Beller. He graduated from Norte Del Rio High School in Sacramento, California in June 1968. He attended the University of Nevada and American River College before enlisting in the Air Force in 1971. In May 1976 he graduated with honors from the University of Colorado with a degree of Bachelor of Science in Chemical Engineering. Following graduation from Air Force Officer Training School, he served as a test engineer at the Air Force Rocket Propulsion Laboratory, Edwards AFB, California. Prior to attending the Air Force Institute of Technology, he served as a test section chief and senior test engineer at Edwards. He and his wife Judy have two sons.

Permanent Address: 2101 Middleberry Rd.
Sacramento, Ca. 95815

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1 REPORT NUMBER AFIT/GNE/PH/81M-1	2 GOVT ACCESSION NO. AD-A100 818	3 RECIPIENT'S CATALOG NUMBER
4 TITLE (and Subtitle) CRYSTALLIZATION KINETICS OF TWO METALLIC GLASSES BY MOSSBAUER SPECTROSCOPY	5 TYPE OF REPORT & PERIOD COVERED MS Thesis	
7 AUTHOR(S) Denis L. Beller Captain, USAF	6 PERFORMING ORG. REPORT NUMBER	
9 PERFORMING ORGANIZATION NAME AND ADDRESS Air Force Institute of Technology (AFIT/EN) Wright-Patterson AFB, Ohio 45433	10 PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
11 CONTROLLING OFFICE NAME AND ADDRESS	12 REPORT DATE 7 March 1981	
14 MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	13 NUMBER OF PAGES 75	
	15 SECURITY CLASS. (of this report) UNCLASSIFIED	
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
16 DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
APPROVED FOR PUBLIC RELEASE AFR 17 1861 NOV 11		
18 SUPPLEMENTARY NOTES APPROVED ASE AFR 190-12	<i>Audrie C. Lynch</i> FREDRIC C. LYNN, Major USAF Director of Public Affairs	
19 KEY WORDS (Continue on reverse side if necessary and identify by block number) Metallic Glasses Aging Kinetics Fe ₈₀ B ₂₀	Crystallization Kinetics Mossbauer Spectroscopy Air Force Institute of Technology (AFIT) Wright-Patterson AFB, OH 45433	
20 ABSTRACT (Continue on reverse side if necessary and identify by block number) In this study, Mossbauer spectroscopy was used to examine thermal aging of two metallic glasses. Fe ₈₀ B ₂₀ was isothermally annealed at 573, 604, 611, and 626 K, and Fe ₈₀ P _{6.5} C _{3.5} B ₁₀ was annealed at 614, 716, and 744 K. The activation energy of Fe ₈₀ B ₂₀ , determined from the growth of		

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Block 20:

+ or -

α -Fe crystals, was 0.256 ± 0.006 MJ/mole. The projected lifetime of this glass, based on the onset of crystallization, is 400 years. No quantitative data were obtained for Fe₈₀P_{6.5}C_{3.5}B₁₀; however, based on the higher temperature required for crystallization, it is expected to have a longer lifetime.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

END

DATE

FILMED

7 - 81

DTIC