实验名称: 自动控制系统的动态校正

姓名: 吴宇薇 班级: 电气 74 学号: 2173621848

一、实验目的

- 1. 为培养学生综合运用所学知识解决实际问题的能力,提高科研工作的能力,拟定了以下设计任务,要求学生先对系统进行设计,然后根据现有设备对系统予以实现,进而再通过实验研究系统的动态性能;
- 2. 掌握串联校正装置设计的方法;
- 3. 研究比例积分器(PI调节器)对系统动态性能的影响。

二、实验设备

- 1. THKKL-4型自动控制理论教学实验箱
- 2. 泰克 TDS210 实时示波器

三、 实验内容

1.未校正系统的模拟电路设计

已知未校正系统的结构如图 1 所示。

图 1 未校正系统的方框图

未校正系统的开环传递函数为

$$G_0(s) = \frac{5}{(0.5s+1)(0.1s+1)}$$

利用实验室现有的实验设备,设计相应的模拟电路,如图 2 所示。该模拟电路由一个反相器、两个一阶惯性环节串联而成,元件参数已在图中出标注出。

图 2 未校正系统的模拟电路

根据设计电路得到的开环传递函数为

$$G_0'(s) = \frac{5.1}{(0.51s+1)(0.1s+1)}$$

2.未校正系统的阶跃响应

①理论计算

a. 由
$$G_1'(s)$$
知, $\xi = 0.557$, $\omega_n = 10.95 \text{ rad/s}$

b.
$$\sigma = e^{-\frac{\pi\xi}{\sqrt{1-\xi^2}}} = 12.77\%$$

c.
$$t_p = \frac{\pi}{\omega_n \sqrt{1 - \xi^2}} = 0.343$$
s

d.
$$N = \frac{2}{\pi} \sqrt{\frac{1}{\xi^2} - 1} = 0.97$$

e.
$$t_s = \frac{4}{\xi \omega_n} = 0.667 \,\text{s}, \, \Delta = 0.02$$

f.
$$e_{ss} = 0.1667$$

②仿真结果

利用 matlab 软件仿真,得到未校正系统的阶跃响应,如图 3 所示。(程序见附录 1)

图 3 未校正系统阶跃响应的仿真结果

从仿真窗口可以读出相关动态指标。

③实测结果

按照图 2 搭接实验电路, 在示波器中观察阶跃响应输出波形, 如图 4 所示。

结合示波器的水平、竖直光标,可测量一些特征数值,由此计算出系统的动态指标。 理论计算、仿真与实测的动态指标及对比如表 1 所示。

表 1 未校正系统的动态指标

(大工人)(大正为136H)-376H						
	σ	t_p	N	t_s	$e_{_{SS}}$	
理论值	12.77%	0.343	0.97	0.667	0.1667	
仿真值	12.5%	0.347s	0.85	0.538s	0.15	
实测值	17.2%	0.356s	1	0.556s	0.400	
实测相对误差	34.7%	3.8%	3.8%	3.1%	16.6%	

3.设计校正装置的设计

设计选取的最佳二阶系统的开环传递函数为

$$G_1(s) = \frac{5}{s(0.1s+1)}$$

为了将系统校正至上述最佳二阶系统,校正装置的开环传递函数应为

$$G_J(s) = \frac{G_1(s)}{G_0(s)} = \frac{0.5s + 1}{s}$$

4.校正后系统的模拟电路设计

校正后系统的方框图如图 5 所示。

图 5 校正后系统的方框图

利用实验室现有的实验设备,设计相应的模拟电路如图 6,元件参数在图中出标注出。

图 6 校正后系统的模拟电路

其中, 电阻 R 是由 U11 单元中 $180k\Omega+100//180k\Omega$ 得到。

根据设计电路得到的开环传递函数为

$$G_1'(s) = \frac{(0.49s+1)}{s} \frac{5.1}{(0.51s+1)(0.1s+1)} \approx \frac{5.1}{s(0.1s+1)}$$

5.校正后系统的阶跃响应

①理论计算

a. 由
$$G_1'(s)$$
知, $\xi = 0.707$, $\omega_n = 7.1 \,\text{rad/s}$

b.
$$\sigma = e^{-\frac{\pi \xi}{\sqrt{1-\xi^2}}} = 4.3\%$$

c.
$$t_p = \frac{\pi}{\omega_n \sqrt{1 - \xi^2}} = 0.62 \,\mathrm{s}$$

d.
$$N = \frac{2}{\pi} \sqrt{\frac{1}{\xi^2} - 1} = 0.63$$

e.
$$t_s = \frac{4}{\xi \omega_n} = 0.79 \,\text{s}, \, \Delta = 0.02$$

f.
$$e_{ss} = 0$$

②仿真结果

利用 matlab 软件仿真,得到校正后系统的阶跃响应,如图 7 所示。(程序见附录 2)

图 7 校正后系统阶跃响应的仿真结果

从仿真窗口可以读出相关动态指标。

③实测结果

按照图 6 搭接实验电路, 在示波器中观察阶跃响应输出波形, 如图 8 所示。

图 8 校正后系统阶跃响应的实验结果

结合示波器的水平、竖直光标,可测量一些特征数值,由此计算出系统的动态指标。 仿真与实测的动态指标及对比如表 2 所示。

 t_p N t_{s} 理论值 4.3% 0.62s 0.79s 0 0.63 仿真值 4.59% 0.617s 0.837s 0 实测值 5.6% 0.6s 0.5 0.768s 0.004 实测相对误差 30.2% 3.2% 20.6% 2.8%

表 2 校正后系统的动态指标

6.串联校正装置设计的一般方法与步骤(工程计算法)

① 按照最佳二阶开环模型 $G_0(s) = \frac{K}{s(Ts+1)}$ 设计校正后系统的开环传递函数,利用校正装置的零点对消了对

象的一个极点,一般选择对消大惯性,保留小惯性;

- ② 求解串联校正装置的开环传递函数 $G_{J}(s) = \frac{G_{0}(s)}{G_{o}(s)}$;
- ③ 根据 $G_{I}(s)$ 设计模拟电路,选择合适的电阻、电容参数.

附录1

```
a=[0 0 5.1];
b=[0.051 0.61 6];
g=tf(a,b);
step(g)
附录2
a=[0 0 5.1];
b=[0.1 1 5.1];
g=tf(a,b);
step(g)
```