Fast Bayesian A/B and multivariate testing

Guillermo Navas Palencia

BBVA, Global Risk Management - Analytics

PyDay BCN 2019

Barcelona, 16th November 2019

Table of Contents

Bayesian testing framework

Introduction
Bayesian testing metrics
Computation of credible intervals

The CPrior library

Conjugate prior distributions Examples

Introduction (1/2)

- Frequentist inference (classical inference / classical point estimation)
 - ▶ Base on asymptotic performance ⇒ Central Limit Theorem (CLT).
 - P-value: the probability of seeing a result at least as extreme as a real result after a A/A test of the same size [Stu15]. It is defined as

$$\text{p-value} = P[t \geq t_e | H_0], \quad H_0: B \equiv A$$

- ▶ Hypothesis testing based on rejecting H_0 . p-value $\neq P[B > A]!$
- Confidence interval: if we repeated the same experiment used to construct an interval for an unobserved value n times $(n \to \infty)$, (100δ) % of the intervals would contain the true value. This is not a credible interval!
- Set and fix stopping rule and sample size (power test calculation).
- Bayesian inference
 - Bayes Theorem: given a prior distribution $p(\theta)$, update belief based on sample x

$$p(\theta|x) = \frac{f(x|\theta)p(\theta)}{f(x)}$$

- ▶ Choose of prior parameters ⇒ update ⇒ posterior parameters.
- Calculation of posterior distribution.
- Calculation of predictive posterior distribution.

Introduction (2 / 2)

- ► Bayesian inference: advantages
 - Ease interpretability.
 - ▶ Sample size is not fixed in advance ⇒ repeated/streaming testing.
 - ▶ Account for uncertainty; points estimates ⇒ random variables.
 - ► Immune to data peeking
- Bayesian inference: disadvantages
 - Analytical tractability
 - Computational cost

Bayesian testing metrics: probability to beat

▶ **A/B testing**: the error probability or probability of $X_B > X_A$

$$E(B) = P[X_B > X_A]$$

```
>>> from scipy import stats
>>> xa = stats.beta(2, 10).rvs(size=int(1e6))
>>> xb = stats.beta(3, 12).rvs(size=int(1e6))
>>> (xb > xa).mean()
```

▶ Multivariate testing: the probability to beat all

$$E(X_i) = P\left[X_i > \max_{j \neq i} X_j\right]$$

```
>>> import numpy as np
>>> from scipy import stats
>>> xa = stats.beta(2, 10).rvs(size=int(1e6))
>>> xb = stats.beta(3, 12).rvs(size=int(1e6))
>>> xc = stats.beta(5, 60).rvs(size=int(1e6))
>>> xd = stats.beta(7, 90).rvs(size=int(1e6))
>>> maxall = np.maximum.reduce([xa, xc, xd])
>>> (xb > maxall).mean()
```

Bayesian testing metrics: expected loss

► A/B testing: the expected value of the *loss function*

$$EL(B) = \mathrm{E}[\max(X_A - X_B, 0)]$$

```
>>> import numpy as np
>>> from scipy import stats
>>> xa = stats.beta(2, 10).rvs(size=int(1e6))
>>> xb = stats.beta(3, 12).rvs(size=int(1e6))
>>> np.maximum(xa - xb, 0).mean()
```

▶ Multivariate testing: the expected loss function vs all

$$EL(X_i) = \mathbb{E}[\max(\max_{j \neq i} X_j - X_i, 0)]$$

```
>>> import numpy as np
>>> from scipy import stats
>>> xa = stats.beta(2, 10).rvs(size=int(1e6))
>>> xb = stats.beta(3, 12).rvs(size=int(1e6))
>>> xc = stats.beta(5, 60).rvs(size=int(1e6))
>>> xd = stats.beta(7, 90).rvs(size=int(1e6))
>>> maxall = np.maximum.reduce([xa, xc, xd])
>>> np.maximum(maxall - xb, 0).mean()
```

Bayesian testing metrics: expected relative loss

► A/B testing: the expected value of the relative loss function

$$ERL(B) = E[(X_A - X_B)/X_B]$$

```
>>> import numpy as np
>>> from scipy import stats
>>> xa = stats.beta(2, 10).rvs(size=int(1e6))
>>> xb = stats.beta(3, 12).rvs(size=int(1e6))
>>>((xa - xb) / xb).mean()
```

► Multivariate testing: the expected relative loss function vs all

$$ERL(X_i) = E[(\max_{j \neq i} X_j - X_i)/X_i]$$

```
>>> import numpy as np
>>> from scipy import stats
>>> xa = stats.beta(2, 10).rvs(size=int(1e6))
>>> xb = stats.beta(3, 12).rvs(size=int(1e6))
>>> xc = stats.beta(5, 60).rvs(size=int(1e6))
>>> xd = stats.beta(7, 90).rvs(size=int(1e6))
>>> maxall = np.maximum.reduce([xa, xc, xd])
>>> ((maxall - xb) / xb).mean()
```

Computation of credible intervals

Definition: A credible interval is a region with a particular probability to contain an unobserved value. Bayesian equivalent of the confidence interval. Given a significance level δ :

▶ Equally-tailed Interval (ETI): Credible interval using the quantile method, with quantile function $Q = F^{-1}$, solving $F(z) = \delta/2$ and $F(z) = 1 - \delta/2$, satisfying

$$P(Q(\delta/2) < Z < Q(1-\delta/2)) = 1-\delta$$

- Assumption: distribution is symmetric.
- Highest Density Interval (HDI): Solving

$$P(I < Z < u) = 1 - \delta$$

for I and u, being the lower and upper bound of the interval.

▶ No assumptions, appropriate for symmetric and skewed distributions.

Computation of credible intervals: HDI – Monte Carlo sampling

The HDI computes the narrowest of the infinite intervals satisfying $P(I < Z < u) = 1 - \delta$. R code in [Kru15]. NumPy implementation to compute HDI given MC samples

```
>>> import numpy as np
>>> n = len(x)
>>> xsorted = np.sort(x)
>>> n_included = int(np.ceil(interval_length * n))
>>> n_ci = n - n_included
>>> ci = xsorted[n_included:] - xsorted[:n_ci]
>>> j = np.argmin(ci)
>>> hdi_min = xsorted[j]
>>> hdi_max = xsorted[j + n_included]
```

Computation of credible intervals: HDI – mathematical optimization

The HDI computes the narrowest interval by solving the minimization problem [CS99],

$$\min_{l < u} (|f(u) - f(l)| + |F(u) - F(l) - (1 - \delta)|).$$

Reformulation: remove absolute values and add term u - I

$$\begin{aligned} & \min_{u,l,t,w} & t + w + u - l \\ & \text{s.t.} & -t + f(u) - f(l) \ge 0 \\ & & t + f(u) - f(l) \ge 0 \\ & & -w + F(u) - F(l) - (1 - \delta) \ge 0 \\ & & w + F(u) - F(l) - (1 - \delta) \ge 0 \\ & & u - l - \epsilon \ge 0 \\ & & l \in [l_{\min}, l_{\max}]] \\ & u \in [u_{\min}, u_{\max}] \end{aligned}$$

where $\epsilon > 0$. Parameters I_{\min} , I_{\max} , u_{\min} and u_{\max} denote the bounds for the interval limits I and u.

Computation of credible intervals: scipy.optimize

```
def func(x):
   return x[3] + x[2] + x[1] - x[0]
def obj_f(x):
   return f.pdf(x[1]) - f.pdf(x[0])
def obi F(x):
   return f.cdf(x[1]) - f.cdf(x[0])
epsilon = 1e-6
cons = (
    {'type': 'ineq', 'fun': lambda x: x[1] - x[0] - epsilon},
    {'type': 'ineq', 'fun': lambda x: -x[2] + obj_f(x)},
    {'type': 'ineq', 'fun': lambda x: x[2] + obj_f(x)},
   {'type': 'ineq', 'fun': lambda x: -x[3] + obj F(x) - interval length},
   {'type': 'ineq', 'fun': lambda x: x[3] + obj F(x) - interval length}
res = optimize.minimize(func, (*x0, 0, 0), method="SLSQP",
                        constraints=cons, bounds=[*bounds, (0, 1). (0. 1)])
```

Computation of credible intervals: example 1

```
>>> from scipy import stats
>>> from cprior.cdist import ci_interval
>>> x = stats.gamma(4, 10).rvs(size=int(1e6), random_state=42)
>>> ci_interval(x=x, interval_length=0.9, method="ETI")
array([11.36321512, 17.75748775])
>>> ci_interval(x=x, interval_length=0.9, method="HDI")
array([10.92933934, 16.94237247])
```


Timings (%timeit)1: ETI: 18 ms, HDI: 107 ms

¹Intel(R) Core(TM) i5-3317 CPU at 1.70GHz.

Computation of credible intervals: example 2

```
>>> import numpy as np
>>> from scipy import stats
>>> from cprior.cdist import ci_interval
>>> dist = stats.gamma(4, 10)
>>> ci_interval_exact(dist=dist, interval_length=0.9, method="ETI")
array([11.3663184 , 17.75365653])
>>> bounds = [(0, np.inf), (0, np.inf)]
>>> ci_interval_exact(dist=dist, interval_length=0.9, method="HDI", bounds=bounds)
array([10.93729501, 16.94611345])
```


Timings (%timeit): ETI: 0.2 ms, HDI: 45 ms

The CPrior library

- ▶ Python/C++ library, open source (LGPL-3.0)
- ► Github: https://github.com/guillermo-navas-palencia/cprior
- Documentation: http://gnpalencia.org/cprior/
- ► Technical notes [NP19]
- Support several conjugate prior distributions
 - Beta distribution
 - Gamma distribution
 - ▶ Pareto distribution ✓
 - Normal-inverse-gamma distribution
 - ▶ Others: beta-binomial, inverse gamma, multivariate distributions...
- Fast and accurate results:
 - Development of closed-forms in terms of special functions
 - Fast Monte Carlo methods
 - Median Latin Hypercube Sampling
 - Parallel crude Monte Carlo
 - Numerical integration
 - Streaming Bayesian testing
- ightharpoonup ~15000 lines of code

CPrior testing metrics: probability to beat

Let us consider probability distributions X_i with support \mathbb{R} .

▶ A/B testing: the error probability or probability of $X_B > X_A$

$$P[X_B > X_A] = \int_{-\infty}^{\infty} \int_{x_A}^{\infty} f(x_A, x_B) dx_B dx_A,$$

where $f(x_A, x_B)$ is the joint probability distribution, under the assumption of independence, i.e. $f(x_A, x_B) = f(x_A)f(x_B)$.

Multivariate testing: the probability to beat all

$$P\left[X_i > \max_{j \neq i} X_j\right] = \int_{-\infty}^{\infty} f(x_i) \prod_{j \neq i} F_{X_j}(x_i) dx_i.$$

Given $X_{max} = \max\{X_1, \dots, X_n\}$. The cumulative distribution function is

$$F_{X_{max}}(z) = P\left[\max_{i=1,\ldots,n} X_i \leq z\right] = \prod_{i=1}^n P[X_i \leq z] = \prod_{i=1}^n F_{X_i}(z),$$

where $F_{X_i}(z)$ is the cdf of each random variable X_i .

CPrior testing metrics: expected loss

Let us consider probability distributions X_i with support \mathbb{R} .

▶ A/B testing: the expected loss function if variant X_B is chosen

$$EL(X_B) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \max(x_A - x_B, 0) f(x_A, x_B) dx_B dx_A.$$

▶ Multivariate testing: the expected loss function vs all, taking $Y = \max_{j \neq i} X_j$

$$EL(X_i) = \int_{-\infty}^{\infty} yf(y)F_{X_i}(y) dy - \int_{-\infty}^{\infty} f(y)F_{X_i}^*(y) dy,$$

where $F_{X_i}^*(y) = \int_{-\infty}^y x_i f(x_i) dx_i$. The probability density function is obtain after derivation of $F_{X_{max}}(z)$

$$f_{X_{max}}(z) = \sum_{i=1}^{n} f_{X_i}(z) \prod_{j \neq i} F_{X_j}(z),$$

where $f_{X_i}(z)$ is the pdf of each random variable X_i .

Beta distribution: A/B testing

▶ Probability to beat: given two distributions $X_A \sim \mathcal{B}(\alpha_A, \beta_A)$ and $X_B \sim \mathcal{B}(\alpha_B, \beta_B)$, $P[X_B > X_A]$ is given by²

$$P[X_B > X_A] = 1 - \frac{B(\alpha_A + \alpha_B, \beta_A)}{\alpha_B B(\alpha_A, \beta_A) B(\alpha_B, \beta_B)} \, {}_3F_2\left(\begin{matrix} \alpha_B, \alpha_A + \alpha_B, 1 - \beta_B \\ 1 + \alpha_B, \alpha_A + \alpha_B + \beta_A \end{matrix}; 1\right),$$

where B(a, b) is the beta function and ${}_{3}F_{2}(a, b, c; d, e; z)$ is the generalized hypergeometric function.

- ► Implementation hypergeometric series (C++) https://github.com/guillermo-navas-palencia/cprior/blob/ master/cprior/_lib/src/beta.cpp
 - ▶ Special cases in terms of the regularized incomplete beta function $I_x(a, b)$.
- ► Timings

%timeit abtest.probability(variant="B", method="exact") 10.2 μ s \pm 58.2 ns per loop (mean \pm std. dev. of 7 runs, 100000 loops each)

²http://gnpalencia.org/cprior/formulas_conjugate_beta.html

Beta distribution: Multivariate testing - MLHS

Probability to beat all:

$$P\left[X_{i} > \max_{j \neq i} X_{j}\right] = \int_{0}^{1} \frac{x^{\alpha_{i}-1}(1-x)^{\beta_{i}-1}}{B(\alpha_{i},\beta_{i})} \prod_{j \neq i} I_{x}(\alpha_{j},\beta_{j}) dx$$
$$= E\left[\prod_{j \neq i} I_{x}(\alpha_{j},\beta_{j})\right], \quad X \sim \mathcal{B}(\alpha_{i},\beta_{i}).$$

Median Latin Hypercube Sampling (MLHS)

```
r = np.arange(1, mlhs_samples + 1)
np.random.shuffle(r)
v = (r - 0.5) / mlhs_samples
x = self.models[variant].ppf(v)
```

1.
$$a \leftarrow 0, b \leftarrow 1$$

- 2. vector of indexes: π_i , $i = 1, \ldots, n$
- 3. random shuffle of π_i

4.
$$v_i = (b-a)\frac{\pi_i - 0.5}{n} + a$$

5.
$$x_i = F^{-1}(v_i)$$

Beta distribution: Multivariate testing - numerical integration

Probability to beat all:

$$P\left[X_i > \max_{j \neq i} X_j\right] = \int_0^1 \frac{x^{\alpha_i - 1} (1 - x)^{\beta_i - 1}}{B(\alpha_i, \beta_i)} \prod_{j \neq i} I_x(\alpha_j, \beta_j) dx.$$

```
def func_mv_prob(x, a, b, variant_params):
   pdf = (a - 1) * np.log(x) + (b - 1) * np.log(1 - x) - special.betaln(a, b)
   g = np.prod([special.betainc(a, b, x) for a, b in variant_params], axis=0)
   return np.exp(pdf) * g
```

integrate.quad(func=func_mv_prob, a=0, b=1, args=(a, b, variant_params))[0]

► Benchmark (5 variants)

Method	Samples	Rel. error	time
Monte Carlo	1e4	8e-2	50 ms
	1e5	1e-2	137 ms
	1e6	2e-3	1160 ms
MLHS	1e2	3e-3	2 ms
	1e3	3e-4	8 ms
	1e4	3e-5	65 ms
Quad	-	-	26 ms

Gamma distribution: A/B testing

▶ Probability to beat: given two distributions $X_A \sim \mathcal{G}(\alpha_A, \beta_A)$ and $X_B \sim \mathcal{G}(\alpha_B, \beta_B)$, $P[X_B > X_A]$ is given by³

$$P[X_B > X_A] = 1 - \frac{\beta_A^{\alpha_A} \beta_B^{\alpha_B}}{(\beta_A + \beta_B)^{\alpha_A + \alpha_B}} \frac{{}_{2}F_{1}\left(1, \alpha_A + \alpha_B; \alpha_B + 1; \frac{\beta_B}{\beta_B + \beta_A}\right)}{\alpha_B B(\alpha_A, \alpha_B)}$$
$$= I_{\frac{\beta_A}{\beta_A + \beta_B}}(\alpha_A, \alpha_B),$$

where ${}_{2}F_{1}(a,b;c;z)$ is the Gauss hypergeometric function and $I_{x}(a,b)$ is the regularized incomplete beta function.

Expected loss:

$$EL(X_B) = \frac{\alpha_A}{\beta_A} I_{\frac{\beta_B}{\beta_A + \beta_A}} (\alpha_B, \alpha_A + 1) - \frac{\alpha_B}{\beta_B} I_{\frac{\beta_B}{\beta_A + \beta_A}} (\alpha_B + 1, \alpha_A).$$

▶ Implementation $I_x(a, b)$: scipy.special.betainc.

³http://gnpalencia.org/cprior/formulas_conjugate_gamma.html

Gamma distribution: Multivariate testing - MLHS

Expected loss vs all:

$$\mathit{EL}(X_i) = \mathrm{E}\left[\mathit{YP}(\alpha_i, \beta_i \mathit{Y}) - rac{lpha_i}{eta_i}\mathit{P}(lpha_i + 1, eta_i \mathit{Y})\right], \quad \mathit{Y} \sim \max_{j \neq i} \mathcal{G}(lpha_j, eta_j),$$

where $P(\alpha, \beta)$ is the regularized lower incomplete gamma function.

Benchmark (5 variants)

Method	Samples	Rel. error	time
	1e4	2e-3	37 ms
MC	1e5	2e-4	100 ms
	1e2	9e-3	31 ms
MLHS	1e3	1e-3	255 ms
Quad	-	-	54 ms

Gamma distribution: Multivariate testing - MLHS

Expected relative loss vs all:

► Benchmark (5 variants)

Method	Samples	Rel. error	time
	1e4	4e-3	35 ms
MC	1e5	5e-4	90 ms
	1e2	6e-3	4 ms
MLHS	1e3	8e-4	16 ms
Quad	-	-	48 ms

Bayesian experiment: Bernoulli distribution (1/5)

A Bayesian multivariate test with control and 3 variants. Data follows a Bernoulli distribution with distinct success probability.

Generate control and variant models and build experiment. Select stopping rule and threshold (epsilon).

Bayesian experiment: Bernoulli distribution (2 / 5)

Check experiment description.

```
>>> experiment.describe()
```

```
Experiment: CTR
  Bayesian model:
                                  bernoulli-beta
  Number of variants:
                                                4
  Options:
    stopping rule
                              probability_vs_all
    epsilon
                                          0.99000
    min_n_samples
                                             1000
    max_n_samples
                                          not set
```

Priors:

beta	alpha	
1	1	Α
1	1	В
1	1	C
1	1	D

Bayesian experiment: Bernoulli distribution (3 / 5)

- Generate or pass new data and update models until a clear winner is found.
- ► The stopping rule will be updated after a new update.

```
with experiment as e:
    while not e.termination:
        data_A = stats.bernoulli(p=0.0223).rvs(size=25)
        data_B = stats.bernoulli(p=0.1128).rvs(size=15)
        data_C = stats.bernoulli(p=0.0751).rvs(size=35)
        data_D = stats.bernoulli(p=0.0280).rvs(size=15)

        e.run_update(**{"A": data_A, "B": data_B, "C": data_C, "D": data_D})

print(e.termination, e.status)
True winner B
```

Bayesian experiment: Bernoulli distribution (4 / 5)

▶ Reporting: experiment summary.

>>> experiment.summary()

	name	probability	expected_loss	improvement	probability_vs_all	expected_loss_vs_all	improvement_vs_all	n_samples
Α	control	-	-	-	0.00%	0.0881716	-572.15%	1675
В	variation	100.00%	1.30573e-27	84.43%	99.94%	1.63007e-06	32.00%	1005
C	variation	100.00%	5.95894e-21	76.97%	0.06%	0.0339692	-49.16%	2345
D	variation	97.89%	4.26579e-05	40.01%	0.00%	0.0764664	-288.51%	1005

▶ Reporting: statistics collected data throughout the experiment.

>>> experiment.stats()

	A	В	C	D
count	1675.000000	1005.000000	2345.000000	1005.000000
mean	0.019104	0.111443	0.073774	0.028856
std	0.136933	0.314836	0.261458	0.167484
min	0.000000	0.000000	0.000000	0.000000
25%	0.000000	0.000000	0.000000	0.000000
50%	0.000000	0.000000	0.000000	0.000000
75%	0.000000	0.000000	0.000000	0.000000
max	1.000000	1.000000	1.000000	1.000000

Bayesian experiment: Bernoulli distribution (5 / 5)

- ▶ Reporting: visualize stopping rule metric over time (updates).
- ▶ Reporting: visualize statistics over time (updates).

>>> experiment.plot_metric()

probability vs all 10 0.8 Model A (control) 0.6 Model B (variation) Model C (variation) 0.4 Model D (variation) 0.2 0.0 10 50 60 20 n updates

>>> experiment.plot_stats()

Bayesian experiment: normal distribution (1/4)

A Bayesian multivariate test with control and 3 variants. Data follows a normal distribution with distinct mean and standard deviation.

Generate control and variant models and build experiment. Select stopping rule and threshold (epsilon).

```
from scipy import stats
from cprior.models import NormalModel
from cprior.models import NormalMVTest
from cprior.experiment.base import Experiment
modelA = NormalModel(name="control")
modelB = NormalModel(name="variation")
modelC = NormalModel(name="variation")
modelD = NormalModel(name="variation")
mvtest = NormalMVTest({"A": modelA, "B": modelB, "C": modelC, "D": modelD})
experiment = Experiment(name="GPA", test=mvtest,
                        stopping rule="probability vs all", epsilon=0.99,
                        min n samples=500, max n samples=None,
                        nig metric="mu")
```

Bayesian experiment: normal distribution (2 / 4)

Check experiment description.

```
>>> experiment.describe()
```

Experiment: GPA Bayesian model: normal-normalinversegamma Number of variants: 4 Options: stopping rule probability_vs_all epsilon 0.99000 min_n_samples 500 max_n_samples not set

Priors:

	loc	variance_scale	shape	scale	
Α	0.001	0.001	0.001	0.001	
В	0.001	0.001	0.001	0.001	
C	0.001	0.001	0.001	0.001	
D	0.001	0.001	0.001	0.001	

Bayesian experiment: normal distribution (3 / 4)

- ▶ Generate or pass new data and update models until a clear winner is found.
- ▶ The stopping rule will be updated after a new update.

```
with experiment as e:
    while not e.termination:
        data_A = stats.norm(loc=8, scale=3).rvs(size=10)
        data_B = stats.norm(loc=7, scale=2).rvs(size=25)
        data_C = stats.norm(loc=7.5, scale=4).rvs(size=12)
        data_D = stats.norm(loc=6.75, scale=2).rvs(size=8)

        e.run_update(**{"A": data_A, "B": data_B, "C": data_C, "D": data_D})

print(e.termination, e.status)
```

True winner A

Bayesian experiment: normal distribution (4 / 4)

- ▶ Reporting: visualize stopping rule metric over time (updates).
- ▶ Reporting: visualize statistics over time (updates).

>>> experiment.plot_metric()

probability_vs_all

0.8

0.6

0.4

0.4

0.0

0.10

0.20

30

40

50

60

n updates

>>> experiment.plot_stats()

Bibliography

M. Chen and Q. Shao.

Monte Carlo Estimation of Bayesian Credible and HPD Intervals. Journal of Computational and Graphical Statistics, 8(1):69–92, 1999.

J. K. Kruschke.

Doing Bayesian Data Analysis: A Tutorial with R, JAGS and Stan. Academic Press, Inc., Orlando, FL, USA, 2nd edition, 2015.

G. Navas-Palencia.

CPrior: Technical notes, 2019.

http://gnpalencia.org/cprior/formulas_models.html.

C. Stucchio.

Bayesian A/B Testing at VWO.

Visual Web Optimizer, 2015.

Thank you!

https://github.com/guillermo-navas-palencia/cprior