XC6204/XC6205 Series

ETR03004-010

300mA/150mA High Speed LDO Regulators with ON-OFF Control

GENERAL DESCRIPTION

The XC6204/XC6205 series are highly precise, low noise, positive voltage LDO regulators manufactured using CMOS processes. The series achieves high ripple rejection and low dropout and consists of a standard voltage source, an error correction, current limiter and a phase compensation circuit plus a driver transistor.

Output voltage is selectable in 0.05V steps within a range of 0.9V ~ 6.0V.

The series is also compatible with low ESR ceramic capacitors which give added output stability. This stability can be maintained even during load fluctuations due to the excellent transient response of the series.

The current limiter's foldback circuit also operates as a short protect for the output current limiter and the output pin.

The CE function enables the output to be turned off, resulting in greatly reduced power consumption.

APPLICATIONS

Smart phones / Mobile phones
Portable game consoles
Digital still cameras / Camcorders
Digital audio equipments
Reference voltage sources
Multi-function power supplies

FEATURES

Maximum Output Current : 150mA

300mA(XC6204 E to H type)

Dropout Voltage : 200mV @ 100mA

60mV @ 30mA

Operating Voltage : 2V ~ 10V

Output Voltage Range : 1.8V ~ 6.0V (XC6204)

0.9V ~ 1.75V (XC6205)

Highly Accurate : $\pm 2\%$, $\pm 1\%$ Low Power Consumption : $70 \mu A (TYP.)$ Standby Current : $0.1 \mu A (MAX.)$

High Ripple Rejection: 70dB@10kHz (XC6204)

60dB@10kHz (XC6205)

Low ESR Capacitor Compatible

: Ceramic capacitor

Operating Ambient Temperature

: -40 ~ 85

Packages : SOT-25, SOT-89-5, USP-6B Environmentally Friendly : EU RoHS Compliant, Pb Free

TYPICAL APPLICATION CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS

PIN CONFIGURATION

Vout 4 5 4 CE 6 VSS 5 d₂ NC NC 4 ☐3 VOUT 2 Vss 2 3 1 Vss USP-6B SOT-25 SOT-89-5 (BOTTOM VIEW) (TOP VIEW) (TOP VIEW)

PIN ASSIGNMENT

F	PIN NUMBEI	₹	DININIANA	FUNCTIONS		
SOT-25	SOT-89-5	USP-6B	PIN NAME	FUNCTIONS		
1	4	1	Vin	Input		
2	2	5	Vss	Ground		
3	3	6	CE	ON/OFF Control		
4	1	2, 4	NC	No Connection		
5	5	3	Vout	Output		

FUNCTIONS

XC6204/6205 A, B, E, F Type

	, <u>, , , , , , , , , , , , , , , , , , </u>
CE	OPERATIONAL STATE
Н	ON
L	OFF

H= High Level

L= Low Level

XC6204/6205 C, D, G, H Type

CE	OPERATIONAL STATE
Н	OFF
L	ON

PRODUCT CLASSIFICATION

Ordering Information

XC6204/XC6205 -

DESIGNATOR	ITEM	SYMBOL	DESCRIPTION
		Α	150mA Active High, pull-down resistor built-in (*2)(Semi-Custom)
		В	150mA Active High, no pull-down resistor built-in (Standard)
		С	150mA Active Low, pull-up resistor built-in (*2)(Semi-Custom)
(*1)	Type of Regulator	D	150mA Active Low, no pull-up resistor built-in (Semi-Custom)
	(CE pin Logic)	E	300mA ^(*1) Active High, pull-down resistor built-in ^(*2) (Semi-Custom)
		F	300mA ^(*1) Active High, no pull-down resistor built-in (Standard)
		G	300mA ^(*1) Active Low, pull-up resistor built-in ^(*2) (Semi-Custom)
		Н	300mA ^(*1) Active Low, no pull-up resistor built-in (Semi-Custom)
	Output Voltage	09 ~ 17	XC6205
	Output voltage	18 ~ 60	XC6204 e.g. Vout=2.0V =2, =0
		2 ^(*4)	0.1V increments, ±2% accuracy
			e.g. Vout=2.8V, ±2% =3, =8, =2
		1 ^(*3)	0.1V increments, ± 1% accuracy
	Output Voltage	'	e.g. Vout=3.0V, ±1% =3, =0, =1
	Accuracy	A ^(*4)	0.05V increments, ±2% accuracy
		, ,	e.g. Vout=2.85V, ±2% =2, =8, =A
		B ^(*3)	0.05V increments, ±1% accuracy
		_	e.g. Vout=3.85V, ±1% =3, =8, =B
		MR	SOT-25 (3,000/Reel)
		MR-G	SOT-25 (3,000/Reel)
_ (*5)	Packages	DR	USP-6B (3,000/Reel)
	(Order Unit)	DR-G	USP-6B (3,000/Reel)
		PR	SOT-89-5 (1,000/Reel)
		PR-G	SOT-89-5 (1,000/Reel)

⁽¹¹⁾ E to H types are compatible to 300mA of XC6204 series. (XC6205 can not draw 300mA depending on output voltage.)

With the pull-up resistor or pull-down resistor built-in types, the supply current during operation will increase by V_{IN} / $300k\Omega$ (TYP.)

 $^{^{(\}mbox{\tiny $^\circ$}3)}$ Output voltage range of the $\pm 1\%\,$ accuracy product is 2.95V to 6.0V.

 $^{\,^{(^*4)}\,}$ Output voltage accuracy of the $V_{\text{OUT}}\,$ $\,$ 1.5V is ±30mV.

^(*5) The "-G" suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.

BLOCK DIAGRAM

1) XC6204, XC6205 Series B, D, F, H Type

2) XC6204, XC6205 Series C, G Type

3) XC6204, XC6205 Series A, E Type

^{*}Diodes shown in the above circuit are protective diodes.

ABSOLUTE MAXIMUM RATINGS

Ta=25

PARAMETE	R	SYMBOL	RATINGS	UNITS
Input Voltag	Input Voltage		12.0	V
Output Curre	Output Current		500*	mA
Output Voltag	ge	Vout	Vss-0.3 ~ Vin+0.3	V
CE Input Volta	age	VCE	Vss-0.3 ~ Vin+0.3	V
	SOT-25		250	
	301-23		600(PCB mounted)*2	
Power Dissipation	USP-6B	Pd	120	mW
Fower Dissipation	03F-0B	Fu	1000(PCB mounted)*2	IIIVV
	SOT-89-5		500	
	301-69-5		1300(PCB mounted)*2	
Operating Ambient Te	emperature	Topr	-40 ~ +85	
Storage Temperature		Tstg	-55 ~ +125	

 $^{^{(*1)}}I_{OUT}$ =Pd/(V_{IN} - V_{OUT})

^(*2) The power dissipation figure shown is PCB mounted and is for reference only. Please refer to page 42~44 for details.

ELECTRICAL CHARACTERISTICS

XC6204A, B Type

DADAMETED	SYMBOL	CONDITIONS		Ta = 25		-40	<u><</u> Ta <u><</u> 8	5	UNITS	CIRCUIT
PARAMETER	STIVIBUL	CONDITIONS	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage			× 0.98		× 1.02	× 0.97		× 1.03		
(2% products)	$V_{OUT(E)}$	IOUT = 30mA	× 0.30	Vout(t)		× 0.57	Vout(t)		V	1
Output Voltage	V OUT(E)		× 0.99	× 1.01	× 0.98	V OO1(1)	× 1.02	V	'	
(1% products)			X 0.99		X 1.01	× 0.50		X 1.02		
Maximum Output Current	IOUTMAX	-	150	-	-	150	-	-	mA	1
Load Regulation	$\triangle V$ оит	1mA IOUT 100mA	-	15	50	-	30	80	mV	1
Dropout Voltage	Vdif1	IOUT = 30mA			E	-1			mV	1
Diopout voltage	Vdif2	IOUT = 100mA			E	-2			1117	'
Supply Current		VIN = VCE = VOUT(T)+1.0V	50	80	120	50	90	145		
(A type)	Ipp	VIIV - VCE - VOOT(1)+1.0V	30	00	120	30	30	143	μA	2
Supply Current	טטו	VIN = VCE = VOUT(T)+1.0V	40	70	100	40	80	120	μΑ	2
(B type)		VIN = VCE = VOUI(1)+1.0V	40	70	100	40	00	120		
Standby Current	I _{STBY}	VIN = VOUT(T)+1.0V, VCE = VSS	-	0.01	0.10	-	0.05	1.00	μΑ	2
Line Regulation	_∆Vouт	Vout(t)+1.0V Vin 10V	_	0.01	0.20	_	0.05	0.30	%/V	1
	△VIN• VOUT	IOUT = 30mA		0.01			0.00			
Input Voltage	Vin	-	2	-	10	2	-	10	V	-
Output Voltage	∆Vouт	IOUT = 30mA	_	100	_	_	_	_	ppm/	1
Temperature Characteristics	△Topr• Vout	-40 Topr 85								·
Output Noise	en	IOUT = 10mA		30	_	_ _	_	_	μ Vrms	3
	GII	300Hz~50kHz		00					μνιιιο	
Power Supply	PSRR	$VIN = {VOUT(T)+1.0}V+1.0Vp-pAC$	_	70	_	_	_	_	dB	4
Rejection Ratio	. 0.4.4	IOUT = 50mA, f=10kHz		, 0					45	•
Current Limiter	llim	VIN = VOUT(T)+1.0V, VCE = VIN	-	300	-	-	280	-	mA	1
Short-circuit Current	Ishort	VIN = VOUT(T)+1.0V, $VCE = VIN$	-	50	-	-	60	-	mA	1
CE "High" Voltage	VCEH	-	1.6	-	Vin	1.7	-	Vin	V	1
CE "Low" Voltage	VCEL	-	-	-	0.25	-	-	0.20	v	'
CE "High" Current		Vin = Vce = Vout(t)+1.0V	3.2	-	20.0	3.0		25.0		
(A type)	Ісен	VIN - VCE - VOUI(I)+1.0V	3.2	-	20.0	20.0 3.0	-	20.0		
CE "High" Current	ICEN	VIN = VCE = VOUT(T)+1.0V	-0.10	-	0.10	-0.15	_	0.15	μΑ	2
(B type)		VIN - VCE - VOUI(I)+1.0V	-0.10	_	0.10	-0.13		0.15		
CE "Low" Current	ICEL	VIN = VOUT(T)+1.0V, $VCE = VSS$	-0.10	-	0.10	-0.15	-	0.15		

NOTE:

- (*1) Unless otherwise stated, VIN=VOUT(T)+1.0V
- (*2) Vout(T)=Specified output voltage
- (*3) VOUT(E)=Effective output voltage (i.e. the output voltage when "VOUT (T)+1.0V" is provided at the VIN pin while maintaining a certain IOUT value).
- (*4) Vdif=VIN1-VOUT1

Vout1=A voltage equal to 98% of the output voltage whenever an amply stabilized Iout {Vout(t)+1.0V} is input. Vin1=The input voltage when Vout1 appears as input voltage is gradually decreased.

(*5) The values for -40 Ta 85 are designed values.

XC6204C, D Type

PARAMETER	SYMBOL	CONDITIONS	•	Ta = 25		-40	<u>≤</u> Ta <u><</u> 8	5	LIMITS	CIRCUIT
PARAMETER	STIVIBUL	CONDITIONS	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage			× 0.98		× 1.02	× 0.97		× 1.03		
(2% products)	VOUT(E)	IOUT = 30mA	× 0.30	Vout(t)		× 0.57	Vout(t)	X 1.03	V	1
Output Voltage	VOOT(L)	1001 – 3011IA	× 0.99	V OUI(I)		× 0.98	V OO1(1)	× 1.02	· •	'
(1% products)			× 0.99		× 1.01	× 0.90		X 1.02		
Maximum Output Current	Іоитмах	1	150	-	-	150	-	-	mA	1
Load Regulation	∆Vоит	1mA IOUT 100mA	-	15	50	-	30	80	mV	1
Dropout Voltage	Vdif1	IOUT = 30mA			E	-1			mV	1
Dropout voltage	Vdif2	IOUT = 100mA			E	-2			IIIV	!
Supply Current		VIN = VOUT(T)+1.0V, VCE = VSS	50	80	120	50	90	145		
(C type)		VIN = VOUT(T)+T.OV, VCE = VSS	50	80	120	50	90	145		
Supply Current	ldd	., ., ., ., .,			400	40	10 80	400	— μA Ο	2
(D type)		VIN = VOUT(T)+1.0V, $VCE = VSS$	40	70	100	40	80	120		
Standby Current	I _{STBY}	VIN = VCE = VOUT(T)+1.0V	-	0.01	0.10	-	0.05	1.00	μΑ	2
Line Regulation	Regulation \(\triangle \triangle \Vout(T) + 1.0V \) Vin 10V	_	0.01	0.20	_	0.05	0.30	%/V	1	
Line Regulation	△VIN• VOUT	Iоит = 30mA	-	0.01	0.20	-	0.03	0.30	707 V	'
Input Voltage	Vin	-	2	-	10	2	-	10	V	-
Output Voltage	△Vout	IOUT = 30mA	_	100	_	_	_	_	ppm/	1
Temperature Characteristics	\triangle Topr• Vout	-40 Topr 85	_	100	_	_	_	_		
Output Noise		IOUT = 10mA		30					u Vrme	3
Output Noise	en	300Hz~50kHz		30	_	_	_	_	μ Vrms	3
Power Supply	PSRR	$VIN = {VOUT(T)+1.0}V+1.0Vp-pAC$	_	70		_		_	dB	4
Rejection Ratio	TORK	IOUT = 50mA, f = 10kHz	_	70	_	_	_	_	uБ	7
Current Limiter	llim	VIN = VOUT(T)+1.0V, VCE = VSS	-	300	-	-	280	-	mA	1
Short-circuit Current	Ishort	VIN = VOUT(T)+1.0V, VCE = VSS	-	50	-	-	60	-	mA	1
CE "High" Voltage	VCEH	1	1.6	-	Vin	1.7	-	VIN	V	1
CE "Low" Voltage	VCEL	-	-	-	0.25	-	-	0.20	v	!
CE "High" Current	Ісен	VIN = VCE = VOUT(T)+1.0V	-0.10	-	0.10	-0.15	-	0.15		
CE "Low" Current		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	20.0		2.0	25.0		2.0		
(C type)	lo-:	VIN = VOUT(T)+1.0V, VCE = VSS	-20.0	-	-3.2	3.2 -25.0	-	-3.0	μΑ	2
CE "Low" Current	ICEL	Viv. = Vio. = = 4.0\/ Vio. = - 1/	0.40		0.40	0.45		0.45		
(D type)		VIN = VOUT(T)+1.0V, $VCE = VSS$	-0.10	-	0.10	-0.15	-	0.15		

NOTE:

- (*1) Unless otherwise stated, VIN=VOUT(T)+1.0V
- (*2) Vout(T)=Specified output voltage
- (*3) VOUT(E)=Effective output voltage (i.e. the output voltage when "Vout (T)+1.0V" is provided at the VIN pin while maintaining a certain IOUT value).
- (*4) Vdif=VIN1-VOUT1
 - Vout1=A voltage equal to 98% of the output voltage whenever an amply stabilized Iout {Vout(t)+1.0V} is input. Vin1=The input voltage when Vout1 appears as input voltage is gradually decreased.
- (*5) The values for -40 Ta 85 are designed values.

XC6204E, F Type

DADAMETED	CVMDOL	CONDITIONS	-	Га = 25		LINUTO	CIRCUIT
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCOIT
Output Voltage (2% products)	Vout(e)	louт = 30mA		E-0		V	1
Maximum Output Current	IOUTMAX	VIN = VOUT(T)+1.0V When VOUT 2.0V, VIN = 3.0V	300	ı	ı	mA	1
Load Regulation	$\triangle V$ оит	1mA IOUT 100mA	-	15	50	mV	1
Dropout Voltage	Vdif1	IOUT = 30mA		E-1		mV	1
Dropout voltage	Vdif2	IOUT = 100mA		E-2		IIIV	ı
Supply Current (E type)		VIN = VCE = VOUT(T)+1.0V	50	80	120	μА	2
Supply Current (F type)	IDD	VIN = VCE = VOUT(T)+1.0V	40	70	100	μΑ	2
Standby Current	I _{STBY}	VIN = VOUT(T)+1.0V, VCE = VSS	-	0.01	0.10	μA	2
Line Regulation	<u> </u>	Vout(t)+1.0V VIN 10V Iout = 30mA	-	0.01	0.20	%/V	1
Input Voltage	Vin	-	2	-	10	V	-
Output Voltage	△Vout	IOUT = 30mA	_	100		ppm/	1
Temperature Characteristics	$\triangle \text{Topr-Vout}$	-40 Topr 85	-	100	_		I.
Output Noise	en	IOUT = 10mA 300Hz~50kHz		30	-	μ Vrms	3
Power Supply Rejection Ratio	PSRR	$V_{IN} = \{V_{OUT(T)}+1.0\}V+1.0Vp-pAC$ $I_{OUT} = 50mA, f = 10kHz$	-	70	-	dB	4
Current Limiter	llim	VIN = VOUT(T)+1.0V, VCE = VIN	-	380	-	mA	1
Short-circuit Current	Ishort	VIN = VOUT(T)+1.0V, VCE = VIN	-	50	-	mA	1
CE "High" Voltage	VCEH	1	1.6	-	VIN	\ \	1
CE "Low" Voltage	VCEL	-	-	-	0.25	V	!
CE "High" Current (E type)	la	VIN = VCE = VOUT(T)+1.0V	3.2	-	20.0	4	2
CE "High" Current (F type)	Ісен	VIN = VCE = VOUT(T)+1.0V	-0.10	-	0.10	μA	2
CE "Low" Current	ICEL	VIN = VOUT(T)+1.0V, VCE = VSS	-0.10	•	0.10	μΑ	2

NOTE:

- (*1) Unless otherwise stated, VIN=VOUT(T)+1.0V
- (*2) Vout(t)=Specified output voltage
- (*3) Vout(E)=Effective output voltage (i.e. the output voltage when "Vout (T)+1.0V" is provided at the Vin pin while maintaining a certain Iout value).
- (*4) Vdif=VIN1-VOUT1

Vout1=A voltage equal to 98% of the output voltage whenever an amply stabilized lout $\{Vout(T)+1.0V\}$ is input. Vin1=The input voltage when Vout1 appears as input voltage is gradually decreased.

XC6204G, H Type

DADAMETED	CVMDOL	CONDITIONS	-	Га = 25		LINITO	CIRCUIT
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage (2% products)	Vout(E)	louт = 30mA		E-0		V	1
Maximum Output Current	Іоитмах	VIN = VOUT(T)+1.0V When VOUT 2.0V, VIN = 3.0V	300	1	-	mA	1
Load Regulation	$\triangle V$ оит	1mA lout 100mA	-	15	50	mV	1
Dropout Voltage	Vdif1	IOUT = 30mA		E-1		mV	1
Dropout voitage	Vdif2	IOUT = 100mA		E-2		IIIV	'
Supply Current (G type)	laa	VIN = VOUT(T)+1.0V, VCE = VSS	50	80	120	μА	2
Supply Current (H type)	ldd	VIN = VOUT(T)+1.0V, VCE = VSS	40	70	100	μА	2
Standby Current	I _{STBY}	VIN = VCE =VOUT(T)+1.0V	-	0.01	0.10	μΑ	2
Line Regulation	<u> </u>	Vout(t)+1.0V VIN 10V Iout = 30mA	-	0.01	0.20	%/V	1
Input Voltage	Vin	-	2	-	10	V	-
Output Voltage Temperature Characteristics		IOUT = 30mA -40 Topr 85	-	100	-	ppm/	1
Output Noise	en	IOUT = 10mA 300Hz~50kHz		30	-	μ Vrms	3
Power Supply Rejection Ratio	PSRR	$V_{IN} = \{V_{OUT(T)}+1.0\}V+1.0Vp-pAC$ $I_{OUT} = 50mA, f = 10kHz$	-	70	-	dB	4
Current Limiter	llim	VIN = VOUT(T)+1.0V, VCE = VSS	-	380	-	mA	1
Short-circuit Current	Ishort	VIN = VOUT(T)+1.0V, VCE = VSS	-	50	-	mA	1
CE "High" Voltage	VCEH	-	1.6	-	VIN	V	1
CE "Low" Voltage	VCEL	-	-	-	0.25]	ı
CE "High" Current	Ісен	VIN = VCE = VOUT(T)+1.0V	-0.10	1	0.10		
CE "Low" Current (G type)	ICEL	VIN = VOUT(T)+1.0V, VCE = VSS	-20.0	-	-3.2	μA	2
CE "Low" Current (H type)	ICEL	VIN = VOUT(T)+1.0V, VCE = VSS	-0.10	-	0.10		

NOTE:

- (*1) Unless otherwise stated, $V_{IN}=V_{OUT(T)}+1.0V$
- (*2) Vout(T)=Specified output voltage
- (*3) VOUT(E)=Effective output voltage (i.e. the output voltage when "Vout (T)+1.0V" is provided at the Vin pin while maintaining a certain Iout value).
- (*4) Vdif=VIN1-VOUT1

Vout1=A voltage equal to 98% of the output voltage whenever an amply stabilized Iout {Vout(t)+1.0V} is input. Vin1=The input voltage when Vout1 appears as input voltage is gradually decreased.

XC6205A, B Type

PARAMETER	SYMBOL	CONDITIONS	-	Га = 25	LIMITS	CIRCUIT	
PARAMETER	STIVIBUL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage(*5)	Vout(e)	IOUT = 30mA	× 0.98	Vout(t)	× 1.02	V	1
Maximum Output Current	Іоитмах		150	-	-	mA	1
Load Regulation	$\triangle V$ оит	1mA IOUT 100mA	-	15	50	mV	1
Dropout Voltage	Vdif1	IOUT = 30mA		E-1		mV	1
Dropout voitage	Vdif2	IOUT = 100mA		E-2		IIIV	ı
Supply Current		VIN = VCE = VOUT(T)+1.0V	50	80	120		
(A type)		When Vout 0.95V, Vin = VcE = 2.0V	50	80	120	^	0
Supply Current		VIN = VCE = VOUT(T)+1.0V	40	70	100	μA	2
(B type)		When Vout 0.95V, VIN = VCE = 2.0V	40	70	100		
Standby Current	_	VIN = VOUT(T)+1.0V, VCE = VSS	- 0.01 0.10	μA	2		
Standby Current	I _{STBY}	When Vout 0.95V, Vin = 2.0V	-	0.01	0.10	μΛ	2
	△Vout	Vout(t)+1.0V Vin 10V					
Line Regulation	△VIN• VOUT	IOUT = 30mA, VCE = VIN	-	0.01	0.20	%/V	1
Input Voltage	Vin	When Vout 0.95V, 2.0V Vin 10V	2	_	10	V	
		IOUT = 30mA		-	10		-
Output Voltage	$\triangle V$ out $\triangle T$ opr• V out	-40 Topr 85	-	100	-	ppm/	1
Temperature Characteristics	△ 10pi vooi	Iout = 10mA					
Output Noise	en	300Hz~50kHz	-	30	-	μ Vrms	3
		VIN = {Vout(T)+1.0}V+1.0Vp-pAC					
Power Supply	PSRR	When Vout 1.5V, Vin =2.5V+1.0Vp-pAC	_	65	_	dB	4
Rejection Ratio	FORK	Iout = 50mA, f = 10kHz	-	03	-	uБ	4
Current Limiter	llim	VIN = VOUT(T)+2.0V, VCE = VIN	_	300	-	mA	1
Short-circuit Current	Ishort	VIN = VOUT(T)+2.0V, VCE = VIN	_	50	-	mA	1
CE "High" Voltage	VCEH	-	1.6	-	Vin		-
CE "Low" Voltage	VCEL	-	_	_	0.25	V	1
CE "High" Current		VIN = VCE = VOUT(T)+1.0V					
(A type)		When Vout 0.95V, VIN = VCE = 2.0V	3.2	-	20.0		
CE "High" Current	ICEH -	Vin = VcE = Vout(T)+1.0V					
(B type)		When Vout 0.95V, VIN = VCE = 2.0V	-0.10	-	0.10	μA	2
		VIN = VOUT(T)+1.0V, VCE = VSS					
CE "Low" Current	ICEL	When Vout 0.95V, VIN = 2.0V	-0.10	-	0.10		

NOTE:

- (*1) Unless otherwise stated, VIN=VOUT(T)+1.0V However, when VOUT 0.95V, VIN=2.0V
- (*2) Vout(t)=Specified output voltage
- (*3) Vout(E)=Effective output voltage (i.e. the output voltage when "Vout (T)+1.0V" is provided at the Vin pin while maintaining a certain lout value).
- (*4) Vdif=VIN1-VOUT1
 - Vout1=A voltage equal to 98% of the output voltage whenever an amply stabilized Iout {Vout(T)+1.0V} is input. VIN1=The input voltage when Vout1 appears as input voltage is gradually decreased.
- (*5) When Vout(T) = 1.45V, MIN. Vout(T)-30mV, MAX. Vout(T)+30mV

XC6205C, D Type

PARAMETER	CVMDOL	CONDITIONS	-	Га = 25		UNITS	CIRCUIT
PARAIVIETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage(*5)	Vout(e)	IOUT = 30mA	× 0.98	Vout(t)	× 1.02	٧	1
Maximum Output Current	Іоитмах		150	-	-	mA	1
Load Regulation	∆Vоит	1mA IOUT 100mA	-	15	50	mV	1
Dropout Voltage	Vdif1	IOUT = 30mA		E-1		mV	1
Dropout voltage	Vdif2	IOUT = 100mA		E-2		IIIV	-
Supply Current		VIN = VOUT(T)+1.0V, VCE = VSS	50	80	120		
(C type)		When Vout 0.95V, Vin = 2.0V	50	80	120		0
Supply Current	IDD	VIN = VOUT(T)+1.0V, VCE = VSS	40	70	100	μA	2
(D type)		When Vout 0.95V, VIN = 2.0V	40	70	100		
Standby Current	_	VIN = VCE = VOUT(T) + 1.0V	-	0.01	0.10	μА	2
Standby Current	I _{STBY}	When Vout 0.95V, Vin = Vce = 2.0V	_	0.01	0.10		2
	_∆Vоит	Vout(t)+1.0V Vin 10V				0/0/	
Line Regulation	△VIN• VOUT	IOUT = 30mA, VCE = Vss	-	0.01	0.20	%/V	1
Input Voltage	Vin	When Vout 0.95V, 2.0V VIN 10V	2	_	10	V	_
Output Voltage		IOUT = 30mA		_	10	-	-
	∆Vouт _∆Topr•Vouт	-40 Topr 85	-	100	-	ppm/	1
Temperature Characteristics	△ 10pi • v001	Iout = 10mA					
Output Noise	en	300Hz~50kHz	-	30	-	μ Vrms	3
		VIN = {VOUT(T)+1.0}V+1.0Vp-pAC					
Power Supply	PSRR			65	_	dB	4
Rejection Ratio	PSKK	When Vout 1.5V, VIN =2.5V+1.0Vp-pAC Iout = 50mA, f = 10kHz	-	65	-	иь	4
Current Limiter	llim	VIN = VOUT(T)+2.0V, VCE = VSS	_	300		A	1
Short-circuit Current	Ishort	VIN = VOUT(T)+2.0V, VCE = VSS VIN = VOUT(T)+2.0V, VCE = VSS			-	mA	1
		, , ,	- 1.6	50	-	mA	ı
CE "High" Voltage	VCEH	-	1.6	-	Vin	V	1
CE "Low" Voltage	VCEL	-	-	-	0.25		
CE "High" Current	ICEH	VIN = VCE = VOUT(T)+1.0V	-0.10	-	0.10		
05 // 100		When Vout 0.95V, Vin = VcE = 2.0V					
CE "Low" Current		VIN = VOUT(T)+1.0V, $VCE = VSS$	-20.0	-	-3.2	μΑ	2
(C type)	ICEL	When Vout 0.95V, Vin = 2.0V					
CE "Low" Current		Vin = Vout(t)+1.0V, VcE = Vss	-0.10	-	0.10		
(D type)		When Vout 0.95V, Vin = 2.0V					

NOTE:

(*1) Unless otherwise stated, VIN=VOUT(T)+1.0V However, when Vout 0.95V, VIN=2.0V

- (*2) Vout(t)=Specified output voltage
- (*3) VOUT(E)=Effective output voltage (i.e. the output voltage when "VOUT (T)+1.0V" is provided at the VIN pin while maintaining a certain IOUT value).
- (*4) Vdif=VIN1-VOUT1

Vout1=A voltage equal to 98% of the output voltage whenever an amply stabilized Iout $\{Vout(T)+1.0V\}$ is input. Viv1=The input voltage when Vout1 appears as input voltage is gradually decreased.

(*5) When Vout(T) 1.45V, MIN. Vout(T)-30mV, MAX. Vout(T)+30mV

XC6204/XC6205 Series

ELECTRICAL CHARACTERISTICS (Continued)

XC6205E, F Type

PARAMETER	SYMBOL	CONDITIONS	-	Ta = 25		UNITS	CIRCUIT
	STIVIDOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CINCOIT
Output Voltage(*5)	Vout(e)	IOUT = 30mA	× 0.98	Vout(t)	× 1.02	V	1
Maximum Output Current(*6)	IOUTMAX	VIN = E-5	E-4			mA	1
Load Regulation	∆Vоит	1mA lout 100mA	-	15	50	mV	1
Dropout Voltage	Vdif1	IOUT = 30mA		E-1		mV	1
Dropout voltage	Vdif2	IOUT = 100mA		E-2		111 V	'
Supply Current		VIN = VOUT(T)+1.0V, VCE = VSS	50	80	120		
(E type)	IDD	When Vout $0.95V$, Vin = VcE = $2.0V$	30	80	120	μА	2
Supply Current	וטט	VIN = VCE = VOUT(T) + 1.0V	40	70	100	μΛ	2
(F type)		When Vout 0.95V, Vin = VcE = 2.0V	40	70	100		
Standby Current	I _{STBY}	VIN = VOUT(T)+1.0V, VCE = VSS	_	0.01	0.10	uА	2
Startuby Current	ISTBY	When Vout 0.95V, VIN = 2.0V	_	0.01	0.10	μΑ	2
	∆Vouт	Vout(t)+1.0V Vin 10V					
Line Regulation	△VIN• VOUT	IOUT = 30mA, VCE = VIN When VOUT 0.95V, 2.0V VIN 10V	-	0.01	0.20).20 %/V	1
Input Voltage	Vin	-	2	_	10	V	
Output Voltage	△Vout	Iout = 30mA	_		10	-	
Temperature Characteristics	△Topr• Vout	-40 Topr 85	-	100	-	ppm/	1
Temperature orial acteristics	- 10/21	Iout = 10mA					
Output Noise	en	300Hz~50kHz	-	30	-	μ Vrms	3
		Vin = {Vout(t)+1.0}V+1.0Vp-pAC					
Power Supply	PSRR	When Vout 1.5V, Vin =2.5V+1.0Vp-pAC	_	65	_	dB	4
Rejection Ratio		IOUT = 50mA, f = 10kHz					
Current Limiter	llim	VIN = VOUT(T)+2.0V, VCE = VIN	_	380	-	mA	1
Short-circuit Current	Ishort	VIN = VOUT(T)+2.0V, VCE = VIN	-	50	-	mA	1
CE "High" Voltage	VCEH	-	1.6	-	Vin	.,	
CE "Low" Voltage	VCEL	-	-	-	0.25	V	1
CE "High" Current		VIN = VCE = VOUT(T)+1.0V					
(E type)		When Vout 0.95V, VIN = VCE = 2.0V	3.2	-	20.0		
CE "High" Current	ІСЕН	VIN = VCE = VOUT(T)+1.0V	2.15		0.40	^	
(F type)		When Vout 0.95V, VIN = VCE = 2.0V	-0.10	-	0.10	μА	2
CE "Low" Current	lori	VIN = VOUT(T)+1.0V, VCE = VSS	0.10		0.10		
CE LOW Current	ICEL	When Vout 0.95V, Vin = 2.0V	-0.10	-	0.10		

NOTE:

- (*1) Unless otherwise stated, VIN=VOUT(T)+1.0V However, when Vout 0.95V, VIN=2.0V
- (*2) Vout(T)=Specified output voltage
- (*3) $V_{OUT(E)}$ =Effective output voltage (i.e. the output voltage when "Vout (T)+1.0V" is provided at the VIN pin while maintaining a certain Iout value).
- (*4) Vdif=VIN1-VOUT1

 $Vout_1=A$ voltage equal to 98% of the output voltage whenever an amply stabilized $Iout_1=A$ voltage when $Vout_1=A$ is input. $Vin_1=A$ input voltage when $Vout_1=A$ appears as input voltage is gradually decreased.

- (*5) When Vout(T) = 1.45V, MIN. Vout(T)-30mV, MAX. Vout(T)+30mV
- (*6) Refer to "Specification & Condition by Series"

XC6205G, H Type

PARAMETER	SYMBOL	CONDITIONS		Га = 25		UNITS	CIRCUIT
	STIVIDOL	CONDITIONS	MIN.	TYP.	MAX.	ONITO	CII (COII
Output Voltage ^(*5)	Vout(e)	IOUT = 30mA	× 0.98	Vout(t)	× 1.02	V	1
Maximum Output Current(*6)	IOUTMAX	VIN = E-5	E-4	-	-	mA	1
Load Regulation	∆Vоит	1mA Iout 100mA	-	15	50	mV	1
Dropout Voltage	Vdif1	IOUT = 30mA		E-1		mV	1
Bropout Voltage	Vdif2	Iоит = 100mA		E-2		111 V	'
Supply Current		VIN = VOUT(T)+1.0V, VCE = VSS	50	80	120		
(G type)	la-	When Vout 0.95V, Vin = 2.0V	30	80	120	μΑ	2
Supply Current	IDD	VIN = VOUT(T)+1.0V, VCE = VSS	40	70	100	μА	2
(H type)		When Vout 0.95V, VIN = 2.0V	40	70	100		
Standby Current	_	VIN = VCE =VOUT(T)+1.0V	_	0.01	0.10		2
Standby Current	I _{STBY}	When Vout 0.95V, VIN = VCE = 2.0V	_	0.01	0.10	μA	2
	_∆Vоит	Vout(t)+1.0V Vin 10V					
Line Regulation	△VIN• VOUT	IOUT = 30mA, VCE = Vss	-	0.01	0.20	%/V	1
Input Voltage	Vin	When Vout 0.95V, 2.0V Vin 10V	2	-	10	V	_
Output Voltage	△Vout	Iout = 30mA				ppm/	
Temperature Characteristics	△Topr• Vout	-40 Topr 85	-	100	-	ррпи	1
,	-	IOUT = 10mA					_
Output Noise	en	300Hz~50kHz	-	30	-	μ Vrms	3
		$V_{IN} = \{V_{OUT(T)} + 1.0\}V + 1.0Vp - pAC$					
Power Supply	PSRR	When Vout 1.5V, Vin =2.5V+1.0Vp-pAC	-	65	-	dB	4
Rejection Ratio		IOUT = 50mA, f = 10kHz					
Current Limiter	llim	VIN = VOUT(T)+2.0V, VCE = VSS	-	380	-	mA	1
Short-circuit Current	Ishort	VIN = VOUT(T)+2.0V, VCE = VSS	-	50	-	mA	1
CE "High" Voltage	VCEH	-	1.6	-	Vin	V	4
CE "Low" Voltage	VCEL	-	-	-	0.25	V	1
OF "High" Owners	la-u	VIN = VCE = VOUT(T)+1.0V	0.40		2.42		
CE "High" Current	ICEH	When Vout 0.95V, VIN = VCE = 2.0V	-0.10	-	0.10		
CE "Low" Current		VIN = VOUT(T)+1.0V, VCE = VSS	20.0		2.0		2
(G type)	ICEL	When Vout 0.95V, VIN = 2.0V	-20.0	-	-3.2	-3.2 µA 2	
CE "Low" Current	ICEL	VIN = VOUT(T)+1.0V, VCE = VSS	-0.10	-	0.10		
(H type)		When Vout 0.95V, VIN = 2.0V	-0.10		0.10		

NOTE:

- (*1) Unless otherwise stated, $V_{IN}=V_{OUT(T)}+1.0V$ However, when $V_{OUT}=0.95V$, $V_{IN}=2.0V$
- (*2) Vout(T)=Specified output voltage
- (*3) Vout(E)=Effective output voltage (i.e. the output voltage when "Vout (T)+1.0V" is provided at the Vin pin while maintaining a certain Iout value).
- (*4) Vdif=VIN1-VOUT1
 - Vout1=A voltage equal to 98% of the output voltage whenever an amply stabilized Iout {Vout(t)+1.0V} is input. Vin1=The input voltage when Vout1 appears as input voltage is gradually decreased.
- (*5) When Vout(T) = 1.45V, MIN. Vout(T)-30mV, MAX. Vout(T)+30mV
- (*6) Refer to "Specification & Condition by Series"

Voltage Chart

XC6204 series Note: For the XC6204E, F, G, H type, see the item "Ta=25" only.

SYMBOL	l E	-0		E	-1			E.	-2	
PARAMETER		VOLTAGE	DROPOUT VOLTAGE 1 (mV)			DROPOUT VOLTAGE 2 (mV)				
SETTING OUTPUT VOLTAGE (V)	(2% pr	/) oducts)	IOUT=30mA			Iout=100mA Vdif 2				
	Vo)UT			lif 1					
Vout (t)		I	Ta =			opr 85	Ta =	_		opr 85
	MIN.	MAX.	TYP.	MAX.	TYP.	MAX.	TYP.	MAX.	TYP.	MAX.
1.80	1.764	1.836	200	210	210	230	300	400	340	480
1.85	1.813	1.887	200	210	210	230	300	400	340	480
1.90	1.862	1.938	120	150	130	170	280	380	320	460
1.95	1.911	1.989	120	150	130	170	280	380	320	460
2.00	1.960	2.040	80	120	90	140	240	350	280	430
2.05	2.009	2.091	80	120	90	140	240	350	280	430
2.10	2.058	2.142	80	120	90	140	240	330	280	410
2.15	2.107	2.193	80	120	90	140	240	330	280	410
2.20	2.156	2.244	80	120	90	140	240	330	280	410
2.25	2.205	2.295	80	120	90	140	240	330	280	410
2.30	2.254	2.346	80	120	90	140	240	310	280	390
2.35	2.303	2.397	80	120	90	140	240	310	280	390
2.40	2.352	2.448	80	120	90	140	240	310	280	390
2.45	2.401	2.499	80	120	90	140	240	310	280	390
2.50	2.450	2.550	70	100	80	120	220	290	260	370
2.55	2.499	2.601	70	100	80	120	220	290	260	370
2.60	2.548	2.652	70	100	80	120	220	290	260	370
2.65	2.597	2.703	70	100	80	120	220	290	260	370
2.70	2.646	2.754	70	100	80	120	220	290	260	370
2.75	2.695	2.805	70	100	80	120	220	290	260	370
2.80	2.744	2.856	70	100	80	120	220	270	260	350
2.85	2.793	2.907	70	100	80	120	220	270	260	350
2.90	2.842	2.958	70	100	80	120	220	270	260	350
2.95	2.891	3.009	70	100	80	120	220	270	260	350
3.00	2.940	3.060	60	90	70	110	200	270	240	350
3.05	2.989	3.111	60	90	70	110	200	270	240	350
3.10	3.038	3.162	60	90	70	110	200	250	240	330
3.15	3.087	3.213	60	90	70	110	200	250	240	330
3.20	3.136	3.264	60	90	70	110	200	250	240	330
3.25	3.185	3.315	60	90	70	110	200	250	240	330
3.30	3.234	3.366	60	90	70	110	200	250	240	330
3.35	3.283	3.417	60	90	70	110	200	250	240	330
3.40	3.332	3.468	60	90	70	110	200	250	240	330
3.45	3.381	3.519	60	90	70	110	200	250	240	330
3.50	3.430	3.570	60	90	70	110	200	250	240	330
3.55	3.479	3.621	60	90	70	110	200	250	240	330
3.60	3.528	3.672	60	90	70	110	200	250	240	330
3.65	3.577	3.723	60	90	70	110	200	250	240	330
3.70	3.626	3.774	60	90	70	110	200	250	240	330
3.75	3.675	3.825	60	90	70	110	200	250	240	330
3.80	3.724	3.876	60	90	70	110	200	250	240	330
3.85	3.773	3.927	60	90	70	110	200	250	240	330
3.90	3.822	3.978	60	90	70	110	200	250	240	330
3.95	3.871	4.029	60	90	70	110	200	250	240	330

Voltage Chart (Continued) XC6204 series (Continued) Note: For the XC6204E, F, G, H type, see the item "Ta=25" only.

SYMBOL	Е	-0		Е	-1			Е	-2		
PARAMETER		VOLTAGE	DR	DROPOUT VOLTAGE 1 (mV)			DROPOUT VOLTAGE 2 (mV) lout=100mA				
SETTING OUTPUT VOLTAGE (V)		V) oducts)		Iout=30mA							
	Vo	DUT		Vd	lif 1			Vo	lif 2		
Vout(t)			Ta =	25	-40 T	Topr 85	Ta = 25		-40 To	-40 Topr 85	
	MIN.	MAX.	TYP.	MAX.	TYP.	MAX.	TYP.	MAX.	TYP.	MAX.	
4.00	3.920	4.080	60	80	70	100	180	230	220	310	
4.05	3.969	4.131	60	80	70	100	180	230	220	310	
4.10	4.018	4.182	60	80	70	100	180	230	220	310	
4.15	4.067	4.233	60	80	70	100	180	230	220	310	
4.20	4.116	4.284	60	80	70	100	180	230	220	310	
4.25	4.165	4.335	60	80	70	100	180	230	220	310	
4.30	4.214	4.386	60	80	70	100	180	230	220	310	
4.35	4.263	4.437	60	80	70	100	180	230	220	310	
4.40	4.312	4.488	60	80	70	100	180	230	220	310	
4.45	4.361	4.539	60	80	70	100	180	230	220	310	
4.50	4.410	4.590	60	80	70	100	180	230	220	310	
4.55	4.459	4.641	60	80	70	100	180	230	220	310	
4.60	4.508	4.692	60	80	70	100	180	230	220	310	
4.65	4.557	4.743	60	80	70	100	180	230	220	310	
4.70	4.606	4.794	60	80	70	100	180	230	220	310	
4.75	4.655	4.845	60	80	70	100	180	230	220	310	
4.80	4.704	4.896	60	80	70	100	180	230	220	310	
4.85	4.753	4.947	60	80	70	100	180	230	220	310	
4.90	4.802	4.998	60	80	70	100	180	230	220	310	
4.95	4.851	5.049	60	80	70	100	180	230	220	310	
5.00	4.900	5.100	50	70	60	90	160	210	200	290	
5.05	4.949	5.151	50	70	60	90	160	210	200	290	
5.10	4.998	5.202	50	70	60	90	160	210	200	290	
5.15	5.047	5.253	50	70	60	90	160	210	200	290	
5.20	5.096	5.304	50	70	60	90	160	210	200	290	
5.25	5.145	5.355	50	70	60	90	160	210	200	290	
5.30	5.194	5.406	50	70	60	90	160	210	200	290	
5.35	5.243	5.457	50	70	60	90	160	210	200	290	
5.40	5.292	5.508	50	70	60	90	160	210	200	290	
5.45	5.341	5.559	50	70	60	90	160	210	200	290	
5.50	5.390	5.610	50	70	60	90	160	210	200	290	
5.55	5.439	5.661	50	70	60	90	160	210	200	290	
5.60	5.488	5.712	50	70	60	90	160	210	200	290	
5.65	5.537	5.763	50	70	60	90	160	210	200	290	
5.70	5.586	5.814	50	70	60	90	160	210	200	290	
5.75	5.635	5.865	50	70	60	90	160	210	200	290	
5.80	5.684	5.916	50	70	60	90	160	210	200	290	
5.85	5.733	5.967	50	70	60	90	160	210	200	290	
5.90	5.782	6.018	50	70	60	90	160	210	200	290	
5.95	5.831	6.069	50	70	60	90	160	210	200	290	
6.00	5.880	6.120	50	70	60	90	160	210	200	290	

Voltage Chart (Continued) XC6204 series, 1% products

Note: \pm 1% output voltage accuracy products are available for the XC6204E~H type from V_{OUT}=2.95V.

SYMBOL	E-0		
PARAMETER	OUTPUT VOLTAGE		
SETTING	(V)		
OUTPUT VOLTAGE (V)	(1% products)		
	Vout		
$V_{OUT(T)}$	MIN.	MAX.	
2.95	2.921	2.980	
3.00	2.970	3.030	
3.05	3.020	3.081	
3.10	3.069	3.131	
3.15	3.119	3.182	
3.20	3.168	3.232	
3.25	3.218	3.283	
3.30	3.267	3.333	
3.35	3.317	3.384	
3.40	3.366	3.434	
3.45	3.416	3.485	
3.50	3.465	3.535	
3.55	3.515	3.586	
3.60	3.564	3.636	
3.65	3.614	3.687	
3.70	3.663	3.737	
3.75	3.713	3.788	
3.80	3.762	3.838	
3.85	3.812	3.889	
3.90	3.861	3.939	
3.95	3.911	3.990	
4.00	3.960	4.040	
4.05	4.010	4.091	
4.10	4.059	4.141	
4.15	4.109	4.192	
4.20	4.158	4.242	
4.25	4.208	4.293	
4.30	4.257	4.343	
4.35	4.307	4.394	
4.40	4.356	4.444	
4.45	4.405	4.494	
4.50	4.455	4.545	

SYMBOL	Е	-0	
PARAMETER	OUTPUT VOLTAGE		
SETTING	(V)		
OUTPUT VOLTAGE (V)	(1% pr	oducts)	
	Vo	DUT	
$V_{OUT(T)}$	MIN.	MAX.	
4.55	4.505	4.596	
4.60	4.554	4.646	
4.65	4.604	4.697	
4.70	4.653	4.747	
4.75	4.703	4.798	
4.80	4.752	4.848	
4.85	4.802	4.899	
4.90	4.851	4.949	
4.95	4.901	5.000	
5.00	4.950	5.050	
5.05	5.000	5.101	
5.10	5.049	5.151	
5.15	5.099	5.202	
5.20	5.148	5.252	
5.25	5.198	5.303	
5.30	5.247	5.353	
5.35	5.297	5.404	
5.40	5.346	5.454	
5.45	5.396	5.505	
5.50	5.445	5.555	
5.55	5.495	5.606	
5.60	5.544	5.656	
5.65	5.594	5.707	
5.70	5.643	5.757	
5.75	5.693	5.808	
5.80	5.742	5.858	
5.85	5.792	5.909	
5.90	5.841	5.959	
5.95	5.891	6.010	
6.00	5.940	6.060	

Voltage Chart (Continued)

XC6205 series

SYMBOL	E-0		E-1		E-2	
PARAMETER SETTING OUTPUT VOLTAGE (V)	OUTPUT VOLTAGE (V)		VOLTAG	POUT SE1 (mV) 30mA	DROPOUT VOLTAGE 2 (mV) IOUT=100mA	
	Vouт			Ta =	25	
Vout (t)	VC	001	Vd	if 1	Vd	if 2
	MIN.	MAX.	TYP.	MAX.	TYP.	MAX.
0.90	0.870	0.930	1050	1100	1150	1200
0.95	0.920	0.980	1050	1100	1150	1200
1.00	0.970	1.030	1000	1100	1050	1200
1.05	1.020	1.080	1000	1100	1050	1200
1.10	1.070	1.130	900	1000	950	1100
1.15	1.120	1.180	900	1000	950	1100
1.20	1.170	1.230	800	900	850	1000
1.25	1.220	1.280	800	900	850	1000
1.30	1.270	1.330	700	800	750	900
1.35	1.320	1.380	700	800	750	900
1.40	1.370	1.430	600	700	650	800
1.45	1.420	1.480	600	700	650	800
1.50	1.470	1.530	500	600	550	700
1.55	1.519	1.581	500	600	550	700
1.60	1.568	1.632	400	500	500	600
1.65	1.617	1.683	400	500	500	600
1.70	1.666	1.734	300	400	400	500
1.75	1.715	1.785	300	400	400	500

Specification Chart by Series

SYMBOL	S-1		S-1 S-2			
PRODUCT SERIES	SUPPLY CURRENT (µ A)				CE "H" CURRENT	CE "L" CURRENT
	MIN.	MAX.	(µ A)	(µ A)		
XC6205A	52.0	115.0	18.0	-0.1		
XC6205B	42.0	95.0	0.1	-0.1		
XC6205C	52.0	115.0	0.1	-18.0		
XC6205D	42.0	95.0	0.1	-0.1		

Specification & Condition by Series

	· · · · · · · · · · · · · · · · · · ·	
SYMBOL	E-5	E-4
SPECIFIED OUTPUT VOLTAGE	INPUT VOLTAGE (V)	MAXIMUM OUTPUT CURRENT (mA)
(V)	VIN	MIN.
0.90 ~ 0.95	2.5	260
1.00 ~ 1.05	2.5	260
1.10 ~ 1.15	2.6	270
1.20 ~ 1.25	2.7	290
1.30 ~ 1.35	2.8	
1.40 ~ 1.45	2.9	300
1.50 ~ 1.75	3.0	

^{*} Vout(T)=Specified output voltage

TYPICAL APPLICATION CIRCUIT

OPERATIONAL EXPLANATION

Output voltage control with the XC6204/6205 series:

The voltage divided by resistors R1 & R2 is compared with the internal reference voltage by the error amplifier.

The P-channel MOSFET, which is connected to the VouT pin, is then driven by the subsequent output signal. The output voltage at the VouT pin is controlled & stabilized by a system of negative feedback.

The current limit circuit and short protect circuit operate in relation to the level of output current. Further, the IC's internal circuitry can be shutdown via the CE pin's signal.

< Low ESR Capacitors >

With the XC6204/05 series, a stable output voltage is achievable even if used with a low ESR capacitor as a phase compensation circuit is built-in. In order to ensure the effectiveness of the phase compensation, we suggest that an output capacitor (CL) is connected as close as possible to the output pin (VOUT) and the Vss pin. Please use an output capacitor with a capacitance value of at least 1 μ F. Also, please connect an input capacitor (CIN) of 0.1 μ F between the VIN pin and the Vss pin in order to ensure a stable power input.

Recommended output capacitor values

Vout	0.9V ~ 1.2V	1.25V ~ 1.75V
CL	4.7 µ F	2.2 μ F

< Current Limiter, Short-Circuit Protection>

The XC6204/05 series includes a combination of a fixed current limiter circuit & a foldback circuit, which aid the operations of the current limiter and circuit protection. When the load current reaches the current limit level, the fixed current limiter circuit operates and output voltage drops. As a result of this drop in output voltage, the foldback circuit operates, output voltage drops further and output current decreases. When the output pin is shorted, a current of about 50mA flows. However, when the input/output voltage differential is quite small, this current will be about 200mA.

OPERATIONAL EXPLANATION (Continued)

<CE Pin>

The IC's internal circuitry can be shutdown via the signal from the CE pin with the XC6204/05 series. In shutdown mode, output at the Vout pin will be pulled down to the Vss level via R1 & R2. The operational logic of the IC's CE pin is selectable (please refer to the selection guide). Note that as the standard XC6204/05B type is 'High Active/No Pull Down', operations will become unstable with the CE pin open. Although the CE pin is equal to an inverter input with CMOS hysteresis, with either the pull-up or pull-down options, the CE pin input current will increase when the IC is in operation.

We <u>suggest</u> that you use this IC with either a <u>VIN voltage</u> or a <u>Vss voltage</u> input at the <u>CE pin</u>. If this IC is used with the correct specifications for the CE pin, the operational logic is fixed and the IC will operate normally. However, supply current may increase as a result of through current in the IC's internal circuitry if a voltage between 0.25V and 1.5V is input.

<Minimum Operating Voltage>

In order to stabilize the IC's operations, an input voltage of more than 2.0V is needed. Should the input voltage be less than 2.0V, the output voltage may not be regulated correctly. (Please refer to Input Voltage vs. Output Voltage characteristics below.)

When VIN is less than 2.0V, the CE pin remains in stand-by mode.

When VIN rises above 2.0V, the power supply will turn ON.

The input power supply will begin to rise after a few hundred msec.

(Please also refer to the transient response characteristics.)

Input Voltage vs. Output Voltage

Enable Response Time

XC6205B092

Turn-ON Response Time

XC6205B092

NOTES ON USE

- 1. Please use this IC within the stated maximum ratings. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.
- 2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current. Please strengthen V_{IN} and V_{SS} wiring in particular.
- 3. Please wire the input capacitor (C_{IN}) and the output capacitor (C_L) as close to the IC as possible.
- 4. Torex places an importance on improving our products and their reliability.
 We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their systems.

TEST CIRCUITS

Circuit 1

Circuit 2

*TEST CIRCUIT V_{CE}(CE Pin Voltage)

ACTIVE

STANDBY

XC6204/05A , B , E , F Type • • • • • $V_{\text{CE}} = V_{\text{SS}}$

TYPICAL PERFORMANCE CHARACTERISTICS

XC6204

(1) Output Voltage vs. Output Current

XC6204x252

XC6204x252

XC6204x302

XC6204x302

XC6204 (Continued)

(1) Output Voltage vs. Output Current (Continued)

(2) Output Voltage vs. Input Voltage

XC6204 (Continued)

(2) Output Voltage vs. Input Voltage (Continued)

(3) Dropout Voltage vs. Output Current

XC6204 (Continued)

(3) Dropout Voltage vs. Output Current (Continued)

* Since the operation of this IC is only guaranteed from V_{IN}=2.0V and above, it is essential that when using with applications where V_{OUT}=2.0V or less, the difference between V_{IN} and V_{OUT} be at least equal to 2V – V_{OUT}(T).

(4) Supply Current vs. Input Voltage

XC6204 (Continued)

(5) Output Voltage vs. Ambient Temperature

(6) Supply Current vs. Ambient Temperature

XC6204 (Continued)

(6) Supply Current vs. Ambient Temperature (Continued)

(7) CE Pin Threshold Voltage vs. Ambient Temperature

(8) Input Transient Response

XC6204 (Continued)

(8) Input Transient Response (Continued)

XC6204 (Continued)

(8) Input Transient Response (Continued)

(9) Load Transient Response

XC6204 (Continued)

(9) Load Transient Response (Continued)

XC6204 (Continued)

(9) Load Transient Response (Continued)

XC6204 (Continued)

(9) Load Transient Response (Continued)

XC6204 (Continued)

(9) Load Transient Response (Continued)

(10) Turn-On Response Time

XC6204 (Continued)

(10) Turn-On Response Time

XC6204 (Continued)

(10) Turn-On Response Time (Continued)

(11) Enable Response Time

(These characteristics will not be affected by the nature of the CE pin's logic)

XC6204 (Continued)

(11) Enable Response Time (Continued)

(These characteristics will not be affected by the nature of the CE pin's logic)

XC6204 (Continued)

(11) Enable Response Time (Continued)

(These characteristics will not be affected by the nature of the CE pin's logic)

(12) Ripple Rejection Rate

XC6204 (Continued)

(12) Ripple Rejection Rate (Continued)

(13) Output Noise Density

XC6204x302

XC6205

(1) Output Voltage vs. Output Current

(2) Output Voltage vs. Output Current (Current Limit)

XC6205 (Continued)

(3) Output Voltage vs. Input Voltage

XC6205x092

(4) Dropout Voltage VS. Output Current

XC6205 (Continued)

(5) Supply Current vs. Input Voltage

Input Voltage VIN (V)

XC6205x152

(6) Output Voltage vs. Ambient Temperature

XC6205x092

XC6205 (Continued)

(7) Supply Current vs. Ambient Temperature

XC6205x092

XC6205x152

(8) CE Pin Threshold Voltage vs. Ambient Temperature

XC6205xxx2

(9) Load Transient Response

XC6205x092

XC6205 (Continued)

(9) Load Transient Response (Continued)

(10) Input Transient Response 1

XC6205x152

(11) Input Transient Response 2

XC6205x092

XC6205 (Continued)

(11) Input Transient Response 2 (Continued)

XC6205x152

XC6205x152

(12) Enable Response Time

XC6205B092

XC6205x152

(13) Ripple Rejection Rate

XC6205x092

XC6204/XC6205 Series

SOT-25 Power Dissipation

Power dissipation data for the SOT-25 is shown in this page.

The value of power dissipation varies with the mount board conditions.

Please use this data as the reference data taken in the following condition.

1. Measurement Condition

Condition: Mount on a board

Ambient: Natural convection

Soldering: Lead (Pb) free

Board Dimensions: 40 x 40 mm (1600 mm2 in one side)

Metal Area: Copper (Cu) traces occupy 50% of the board

area in top and back faces.

Package heat-sink is tied to the copper traces

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm

Through-hole: 4 x 0.8 Diameter

Evaluation Board (Unit: mm)

2. Power Dissipation vs. Ambient temperature (85°C)

Board Mount (Tjmax=125)

Ambient Temperature ()	Power Dissipation Pd (mW)	Thermal Resistance (/W)
25	600	166.67
85	240	100.07

SOT-89-5 Power Dissipation

Power dissipation data for the SOT-89-5 is shown in this page.

The value of power dissipation varies with the mount board conditions.

Please use this data as the reference data taken in the following condition.

1. Measurement Condition

Condition: Mount on a board

Ambient: Natural convection

Soldering: Lead (Pb) free

Board Dimensions: 40 x 40 mm (1600 mm2 in one side)

Metal Area: Copper (Cu) traces occupy 50% of the board

area in top and back faces.

Package heat-sink is tied to the copper traces

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm

Through-hole: 5 x 0.8 Diameter

Evaluation Board (Unit: mm)

2. Power Dissipation vs. Ambient temperature (85°C)

Board Mount (Tjmax=125)

Ambient Temperature ()	Power Dissipation Pd (mW)	Thermal Resistance (/W)
25	1300	76.92
85	520	70.92

XC6204/XC6205 Series

USP-6B Power Dissipation

Power dissipation data for the USP-6B is shown in this page.

The value of power dissipation varies with the mount board conditions.

Please use this data as the reference data taken in the following condition.

1. Measurement Condition

Condition: Mount on a board

Ambient: Natural convection

Soldering: Lead (Pb) free

Board Dimensions: 40 x 40 mm (1600 mm2 in one side)

Metal Area: Copper (Cu) traces occupy 50% of the board

area in top and back faces.

Package heat-sink is tied to the copper traces

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm

Through-hole: 4 x 0.8 Diameter

Evaluation Board (Unit: mm)

2. Power Dissipation vs. Ambient temperature

Board Mount (Tj max = 125)

Ambient Temperature ()	Power Dissipation Pd (mW)	Thermal Resistance(/W)	
25	1000	100.00	
85	400	100.00	

PACKAGING INFORMATION

SOT-25

USP-6B

SOT-89-5

PACKAGING INFORMATION (Continued)

USP-6B Reference Pattern Layout

2.4 0.45 0.05 0

USP-6B Reference Metal Mask Design

MARKING RULE

[XC6204]

SOT-25, SOT-89-5

(TOP VIEW)

represents product series

MARK	PRODUCT SERIES
4	XC6204xxxxxx

represents type of regulator

OUTPUT VOLTAGE 1	OUTPUT VOLTAGE 100mV INCREMENTS		OUTPUT VOLTAGE 50mV INCREMENTS	
VOLTAGE =0.1~3.0V	VOLTAGE =3.1~6.0V	VOLTAGE =0.15 ~ 3.05V	VOLTAGE =3.15 ~ 6.05V	
V	А	Е	L	XC6204Axxxxx
X	В	F	M	XC6204Bxxxxx
Υ	С	Н	N	XC6204Cxxxxx
Z	D	K	Р	XC6204Dxxxxx
<u>V</u>	<u>A</u>	<u>E</u>	<u>L</u>	XC6204Exxxxx
<u>X</u>	<u>B</u>	<u>F</u>	<u>M</u>	XC6204Fxxxxx
<u>Y</u>	<u>C</u>	<u>H</u>	<u>N</u>	XC6204Gxxxxx
<u>Z</u>	<u>D</u>	<u>K</u>	<u>P</u>	XC6204Hxxxxx

represents output voltage

MARK	C	OUTPUT V	OLTAGE (\	/)	MARK	C	OUTPUT V	OLTAGE (\	/)
0	-	3.1	-	3.15	F	1.6	4.6	1.65	4.65
1	-	3.2	-	3.25	Н	1.7	4.7	1.75	4.75
2	-	3.3	-	3.35	K	1.8	4.8	1.85	4.85
3	-	3.4	-	3.45	L	1.9	4.9	1.95	4.95
4	-	3.5	-	3.55	M	2.0	5.0	2.05	5.05
5	-	3.6	-	3.65	N	2.1	5.1	2.15	5.15
6	-	3.7	-	3.75	Р	2.2	5.2	2.25	5.25
7	-	3.8	-	3.85	R	2.3	5.3	2.35	5.35
8	-	3.9	-	3.95	S	2.4	5.4	2.45	5.45
9	-	4.0	-	4.05	Т	2.5	5.5	2.55	5.55
Α	-	4.1	-	4.15	U	2.6	5.6	2.65	5.65
В	-	4.2	-	4.25	V	2.7	5.7	2.75	5.75
С	-	4.3	-	4.35	Х	2.8	5.8	2.85	5.85
D	-	4.4	-	4.45	Y	2.9	5.9	2.95	5.95
E	-	4.5	-	4.55	Z	3.0	6.0	3.05	6.05

represents production lot number

0 to 9, A to Z, reversed character of 0 to 9 and A to Z repeated. (G, I, J, O, Q, W excluded)

MARKING RULE (Continued)

[XC6204]

USP-6B

represents product series

MA	ARK	PRODUCT SERIES	
0	4	XC6204xxxxDx	

represents type of regulator

MARK	TYPE	PRODUCT SERIES
Α	CE pin: High Active, Pull-Down Resistor Built-In	XC6204AxxxDx
В	CE pin: High Active, No Pull-Down Resistor Built-In	XC6204BxxxDx
С	CE pin: High Active, Pull-Up Resistor Built-In	XC6204CxxxDx
D	CE pin: Low Active, No Pull-Up Resistor Built-In	XC6204DxxxDx
E	CE pin: High Active, Pull-Down Resistor Built-In	XC6204ExxxDx
F	CE pin: High Active, No Pull-Down Resistor Built-In	XC6204FxxxDx
Z	CE pin: Low Active, Pull-Up Resistor Built-In	XC6204GxxxDx
Н	CE pin: Low Active, No Pull-Up Resistor Built-In	XC6204HxxxDx

represents integer of the output voltage

MARK	VOLTAGE (V)	PRODUCT SERIES
3	3.X	XC6204x3xxDx
5	5.X	XC6204x5xxDx

represents decimal number of output voltage

MARK	VOLTAGE (V)	PRODUCT SERIES	MARK	VOLTAGE (V)	PRODUCT SERIES
0	X.0	XC6204xx0xDx	Α	X.05	XC6204xx0ADx
1	X.1	XC6204xx1xDx	В	X.15	XC6204xx1ADx
2	X.2	XC6204xx2xDx	С	X.25	XC6204xx2ADx
3	X.3	XC6204xx3xDx	D	X.35	XC6204xx3ADx
4	X.4	XC6204xx4xDx	E	X.45	XC6204xx4ADx
5	X.5	XC6204xx5xDx	F	X.55	XC6204xx5ADx
6	X.6	XC6204xx6xDx	Н	X.65	XC6204xx6ADx
7	X.7	XC6204xx7xDx	K	X.75	XC6204xx7ADx
8	X.8	XC6204xx8xDx	L	X.85	XC6204xx8ADx
9	X.9	XC6204xx9xDx	М	X.95	XC6204xx9ADx

represents production lot number

0 to 9, A to Z repeated. (G, I, J, O, Q, W excluded)

Note: No character inversion used.

MARKING RULE (Continued)

[XC6205]

SOT-25, SOT-89-5

represents product series

MARK	PRODUCT SERIES
5	XC6205xxxxxx

represents type of regulator

MARK		
OUTPUT VOLTAGE	OUTPUT VOLTAGE	PRODUCT SERIES
100mV INCREMENTS	50mV INCREMENTS	
V	E	XC6205Axxxxx
X	F	XC6205Bxxxxx
Υ	Н	XC6205Cxxxxx
Z	K	XC6205Dxxxxx
<u>V</u>	<u>E</u>	XC6205Exxxxx
<u>X</u>	<u>F</u>	XC6205Fxxxxx
<u>Y</u>	<u>H</u>	XC6205Gxxxxx
<u>Z</u>	<u>K</u>	XC6205Hxxxxx

represents output voltage

	-				
MARK	OUTPUT VOLTAGE (V)		MARK	OUTPUT VOLTAGE (V)	
8	0.9	0.95	D	1.4	1.45
9	1.0	1.05	E	1.5	1.55
Α	1.1	1.15	F	1.6	1.65
В	1.2	1.25	Н	1.7	1.75
С	1.3	1.35			

represents production lot number

0 to 9, A to Z, reversed character of 0 to 9 and A to Z repeated. (G, I, J, O, Q, W excluded)

MARKING RULE(Continued)

[XC6205]

USP-6B

represents product series

MARK		PRODUCT SERIES		
		PRODUCT SERIES		
0	5	XC6205xxxxDx		

represents type of voltage regulator

MARK	TYPE	PRODUCT SERIES
Α	CE pin: High Active with Pull-Down Resistor Built-In	XC6205AxxxDx
В	CE pin: High Active with No Pull-Down Resistor Built-In	XC6205BxxxDx
С	CE pin: Low Active with Pull-Up Resistor Built-In	XC6205CxxxDx
D	CE pin: Low Active with No Pull-Up Resistor Built-In	XC6205DxxxDx
E	CE pin: High Active with Pull-Down Resistor Built-In	XC6205ExxxDx
F	CE pin: High Active with No Pull-Down Resistor Built-In	XC6205FxxxDx
Z	CE pin: Low Active with Pull-Up Resistor Built-In	XC6205GxxxDx
Н	CE pin: Low Active with No Pull-Up Resistor Built-In	XC6205HxxxDx

represents integer of output voltage

MARK	VOLTAGE (V)	PRODUCT SERIES
3	3.X	XC6205x3xxDx
5	5.X	XC6205x5xxDx

represents decimal point of output voltage

MARK	OUTPUT VOLTAGE (V)		MARK	OUTPUT VOLTAGE (V)	
0	X.0	XC6205xx0xDx	Α	X.05	XC6205xx0ADx
1	X.1	XC6205xx1xDx	В	X.15	XC6205xx1ADx
2	X.2	XC6205xx2xDx	С	X.25	XC6205xx2ADx
3	X.3	XC6205xx3xDx	D	X.35	XC6205xx3ADx
4	X.4	XC6205xx4xDx	E	X.45	XC6205xx4ADx
5	X.5	XC6205xx5xDx	F	X.55	XC6205xx5ADx
6	X.6	XC6205xx6xDx	Н	X.65	XC6205xx6ADx
7	X.7	XC6205xx7xDx	K	X.75	XC6205xx7ADx
8	X.8	XC6205xx8xDx	L	X.85	XC6205xx8ADx
9	X.9	XC6205xx8xDx	M	X.95	XC6205xx9ADx

represents production lot number

0 to 9, A to Z repeated (G, I, J, O, Q, W excluded)

^{*}No character inversion used.

- 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datacheet is up to date.
- 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datacheet.
- 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datacheet.
- 4. The products in this datacheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user.
 (e.g. Atomic energy; aerospace; transport; combustion and associated safety
- equipment thereof.)5. Please use the products listed in this datacheet within the specified ranges.Should you wish to use the products under conditions exceeding the specifications,
- 6. We assume no responsibility for damage or loss due to abnormal use.

please consult us or our representatives.

7. All rights reserved. No part of this datacheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD.

TOREX SEMICONDUCTOR LTD.