

Bootcamp IGTI: Desenvolvedor Business Intelligence

Trabalho Prático

Módulo 03

Aplicações em ETL

Objetivos

Exercitar os seguintes conceitos vistos em sala de aula:

- ✓ Modelagem dimensional.
- ✓ ETL.
- √ Ferramenta ETL.
- ✓ Processo de carga.

Enunciado

Vamos utilizar dois arquivos de entrada com informações da Capes, nos quais são feitas avaliações da pós-graduação stricto sensu. Essa avaliação tem como objetivo a certificação da qualidade da pós-graduação brasileira, bem como a identificação de assimetrias regionais e de áreas estratégicas do conhecimento. Ela é orientada pela Diretoria de Avaliação/CAPES, e realizada com a participação da comunidade acadêmicocientífica por meio de consultores ad hoc. Tem como pilares a formação pós-graduada de docentes para todos os níveis de ensino e de profissionais de recursos humanos qualificados para o mercado, bem como o fortalecimento das bases científicas, tecnológicas e de inovação.

Estes dois arquivos servirão como entradas de dados para executarmos algumas atividades de transformação no Pentaho DTI.

Objetivos

Construiremos uma transformação que, ao final, alimentará uma tabela Dimensão chamada dim-programa.

Atividades

Processo de carga:

O primeiro passo é baixar os arquivos no link abaixo ou pegá-los na plataforma do IGTI:

https://drive.google.com/drive/folders/1alWX2XKdbnCtH2UwnA3YsUcdZfwHe1Yr

- Producao-2018-Bibliografica-Artigo.xls.
- Programa-2018-Capes.csv.

Para iniciar, abra o Spoon e crie uma nova transformação (*menu File | Novo | Transformação*).

Abra a categoria input e selecione os steps Excel Input e CSV file Input.

Edite o step Excel input com os seguintes parâmetros:

Aba Files

File or directory: informe o arquivo Producao-2018-Bibliografica-Artigo.xls.
 Para ter certeza de que o arquivo foi localizado, clique no botão show filename para se certificar de que ele está sendo exibido.

Aba Sheets

o Clique no botão Get sheetname e escolha a planilha desejada.

Aba Content

- o Certifique-se que o campo *Header* esteja marcado.
- Se o arquivo fosse gravado em Linux (não é nosso caso), você precisaria mudar o campo *Encoding* para UTF-8.

Aba Fields

- Clique no botão Get fields from header now e veja todos os campos disponíveis.
- Dê uma olhada nos dados que serão extraídos do arquivo clicando no botão
 Preview rows. Clique Ok e salve a transformação.

Edite o step CSV file input com os seguintes parâmetros:

- Filename: localize o arquivo *Programa-2018-Capes.csv* com o botão *Navegar*.
- Delimiter: informe: ";" (ponto e vírgula).
- Desmarque a opção Lazy conversion.
- Clique no botão Obtem campos e veja os campos que serão lidos.
- Clique no botão Preview para visualizar uma amostra dos dados.
 - Retire o símbolo da moeda (R\$) da propriedade Currency. Basta apagar essa informação em todos os atributos.
- Confirme se o Header row present está marcado. Isso indica que o arquivo tem um header com o nome dos campos.

Adicione o step Stream lookup e faça as ligações conforme figura abaixo.

Selecione o step Stream lookup com os seguintes parâmetros:

- Lookup step: escolha o step do CSV.
- Clique nos botões Get fields e Get lookup fields. O lookup fará a ligação dos arquivos pela chave comum. É uma ligação de 1 para N, ou seja, um programa tem N publicações, e a ligação entre os arquivos se dá pelo campo CD_PROGRAMA_IES. Temos esse campo nos dois arquivos: é o identificador do Programa.

- Na grade de cima, remova todos os campos, deixando apenas o campo CD_PROGRAMA_IES.
- Na grade de baixo, deixe os campos que deseja que sejam mostrados à partir da junção.

Clique com o botão direito em cima do step Stream lookup e escolha as opções de visualização indicadas abaixo:

Suponha que não precisamos de todos os campos vindos da junção. Para isso, é necessário inserir o step *Select values*, fazendo a ligação necessária.

- Aba Select & After mostra os campos após você clicar no botão Get fields to select.
- Aba Remove mostra os campos após você clicar no botão Get fields to remove. Os campos que permanecerem nessa lista serão removidos.

Insira o step Text file output com os seguintes parâmetros:

- Aba File
 - o Filename: caminho onde irá salvar o arquivo + nome do arquivo txt.
- Aba Fields
 - o Clique no botão Obtém campos e veja os campos que serão gravados.

Você pode fazer alterações diretamente na grade. Clique no botão *Minimal width* e veja que o step fornece um formato padrão para os campos.

Rode o arquivo de transformação e veja se arquivo texto foi gravado no diretório indicado.

Observe que, inicialmente, ocorrerá um erro referente à linha 878. Na realidade, teremos erro em duas linhas. Isso porque há uma tentativa de converter valor no campo CD_CONCEITO_PROGRAMA de String para Integer.

```
2020/07/26 15:32:25 - CSV-Programa.0 - ERROR (version 9.0.0.0-423, build 9.0.0.0-423 from 2020-01-31 04.53.04 by buildguy) : Erro inesperado 2020/07/26 15:32:25 - CSV-Programa.0 - ERROR (version 9.0.0.0-423, build 9.0.0.0-423 from 2020-01-31 04.53.04 by buildguy) : org.pentaho.di.core.excep 2020/07/26 15:32:25 - CSV-Programa.0 - There were 1 conversion errors on line 878 2020/07/26 15:32:25 - CSV-Programa.0 - Unexpected conversion error while converting value [CD_CONCEITO_PROGRAMA String] to an Integer 2020/07/26 15:32:25 - CSV-Programa.0 - 2020/07/26 15:32:25 - CSV-Programa.0 - 2020/07/26 15:32:25 - CSV-Programa.0 - CD_CONCEITO_PROGRAMA String : couldn't convert String to Integer 2020/07/26 15:32:25 - CSV-Programa.0 - CD_CONCEITO_PROGRAMA String : couldn't convert String to Integer 2020/07/26 15:32:25 - CSV-Programa.0 - CD_CONCEITO_PROGRAMA String : couldn't convert String to Integer 2020/07/26 15:32:25 - CSV-Programa.0 - CD_CONCEITO_PROGRAMA String : couldn't convert String to Integer 2020/07/26 15:32:25 - CSV-Programa.0 - CD_CONCEITO_PROGRAMA String : couldn't convert String to Integer 2020/07/26 15:32:25 - CSV-Programa.0 - CD_CONCEITO_PROGRAMA String : couldn't convert String to Integer 2020/07/26 15:32:35 - CSV-Programa.0 - CD_CONCEITO_PROGRAMA String : couldn't convert String to Integer 2020/07/26 15:32:35 - CSV-Programa.0 - CD_CONCEITO_PROGRAMA String : couldn't convert String to Integer 2020/07/26 15:32:35 - CSV-Programa.0 - CD_CONCEITO_PROGRAMA String : couldn't convert String to Integer 2020/07/26 15:32:35 - CSV-Programa.0 - CD_CONCEITO_PROGRAMA String : couldn't convert String to Integer 2020/07/26 15:32:35 - CSV-Programa.0 - CD_CONCEITO_PROGRAMA String : couldn't convert String to Integer 2020/07/26 15:32:35 - CSV-Programa.0 - CD_CONCEITO_PROGRAMA String : couldn't convert String to Integer 2020/07/26 15:32:35 - CSV-Programa.0 - CD_CONCEITO_PROGRAMA String : couldn't convert String to
```

Você deve tratar o erro na transformação para que o processo não seja interrompido.

Insira o step *Dummy* (do nothing) e ligue o step *CSV* ao step *Dummy*. Na ligação selecione *Error handling for step*. Aparecerá uma caixa onde você deve aceitar a distribuição pelo botão *Distribuir*.

Rode novamente e veja que será concluído com sucesso.

Clique com o botão direito no step *Dummy* e selecione *Preview*. Veja as linhas que deram erro.

	Row	Rows of step: Dummy (do nothing) (2 rows)								
×	#	AN_BASE	NM_GRANDE_AREA_CONHECIMENTO	NM_AREA_CONHECIMENTO	NM_AREA_BASICA	NM_SUBAREA_CC				
	1	2018	MULTIDISCIPLINAR	CIÊNCIAS AMBIENTAIS	CIÊNCIAS AMBIENTAIS	NÃO SE APLICA				
\	2	2018	CIÊNCIAS HUMANAS	CIÊNCIA POLÍTICA	CIÊNCIA POLÍTICA	NÃO SE APLICA				

Agora é com você. Veja a figura abaixo e termine o trabalho prático.

Observe o conteúdo de cada step.

Select values 2

A saída desse step é:

#	Fieldname	Type	Length	Precision	Step origin	Storage	Mask	Currency	Decimal	Group	Trim	Comments
1	CODIGO-IES	String	-	2	Select values	normal					nenhum	
2	NM_PROGRAMA_IES	String	-	3	Excel-Producao-2018	normal					nenhum	
3	SG_ENTIDADE_ENSINO	String	-	-	Excel-Producao-2018	normal					nenhum	
4	NM_ENTIDADE_ENSINO	String	-	2	Excel-Producao-2018	normal					nenhum	
5	NM_REGIAO	String	12	-	Stream lookup	normal		R\$			nenhum	
6	SG_UF_PROGRAMA	String	2	-	Stream lookup	normal		R\$			nenhum	
7	NM_MUNICIPIO_PROGRAMA_IES	String	21		Stream lookup	normal		R\$,		nenhum	
В	NM_MODALIDADE_PROGRAMA	String	12		Stream lookup	normal		R\$		46	nenhum	

Sort rows

Unique rows

12	Sort rows				_		×		
	Nome	do Step Sort ro	ows						
	Sort di	rectory %%jav	79 %%java.io.tmpdir%%						
	TMP-file	e prefix out							
	Sort size (rows in m	emory) 10000	1000000						
	Free memory threshol	d (in %)					•		
	Compress TM	P Files? ♦□					•		
Fiel	Only pass unique rows? (verifies ke	ys only)							
#	Fieldname	Ascending	Case sensitive comp	are?	Sort based on current locale?	Collat	or Strength		
1	CODIGO-IES	S	N		N	0			
<							>		
?) Help	OK	Cancela	Ob	tem campos				
\leq	nique rows								

Essa transformação tem como função remover linhas duplicadas do fluxo de entrada e filtrar apenas as linhas exclusivas para seguimento no fluxo.

Pré-Requisito: para entregar um resultado correto, o fluxo de entrada deve ser classificado em uma etapa anterior. Caso contrário, apenas as linhas duplas consecutivas serão analisadas e filtradas. Podemos utilizar a step *Sort rows* para isso.

Text file output 2 - Resultado 2

DIM_Produção (step Table output)

🗎 Saída a Tabela	_		×
Nome do Step	DIM_Programa		
Connection	lgti_MySql_3307 Edit	New	Wizard
Target schema	igti	•	Navega
Target table	dim-programa	•	Navega
Commit size	1000		•
Truncate table			
Ignore insert errors			
Specify database fields	\checkmark		
Main options Database fields			
Partition data over tables			
Partitioning field			∨ ♦
Partition data per month			
Partition data per day			
Use batch update for inserts	abla		
O nome da tabela está definido em uma coluna?			
Coluna que tem o nome da tabela:			∨ ♦
Store the tablename field	✓		
Return auto-generated key			
Name of auto-generated key field			•
① Help	OK Cancela SQL		

O step *Table output* carrega dados em uma tabela do banco de dados. Esse step é equivalente ao operador SQL INSERT, e é uma solução quando você só precisa inserir registros. Se você quiser apenas atualizar linhas, use Update. Para executar os comandos *INSERT* e *UPDATE*, consulte a etapa Insert / Update.

Esta etapa fornece opções de configuração para uma tabela de destino e opções relacionadas ao desempenho, como *Commit Size* e *Use batch update* para inserções. Existem configurações de desempenho específicas para um tipo de banco de dados, que podem ser definidas nas propriedades JDBC da conexão com o banco de dados.

Use um gerenciador de Banco de Dados. No nosso caso é o *MySql*, mas você pode usar outro banco de dados se conseguir estabelecer a conexão.

Connection: conexão com o banco de dados.

Target schema: nome do schema.

Target table: nome da tabela.

Para esse caso, informe o nome da tabela e clique no botão *Navegar*. Se a conexão estiver ok, ele vai mostrar o caminho no banco de dados.

Se a tabela não existir ainda, clique no botão SQL. Uma nova janela com o script de criação da tabela abrirá. Clique no botão Execute, e a tabela será criada.

Rode a transformação.

Clique no step DIM_Producao com o botão direito e selecione Preview para ver os dados.

Rode um comando sql no Banco de Dados para verificar os dados que foram inseridos na tabela.

select * from igti.`dim-programa`;

Essa parte é opcional. Você também tem liberdade para melhorar qualquer um dos steps.

Esse caso servirá para carregar uma dimensão UF a partir dos dados do arquivo de Resultado 2.

Select values 3

- Table output (UF)
- Dummy (do nothing) 2

Dummy (do nothing) 2

• Criar um arquivo de Job e linkar a transformação.

Respostas Finais

Os alunos deverão desenvolver a prática e, depois, responder às seguintes questões objetivas: