Mechanics of Materials Week 3

Lecturer: Viggo K. Hansen

Faculty of Engineering, Chulalongkorn University

Academic Year: 2024 Semester: Second

Overview

Deformation of Axially Loaded Members

Thermal Stress

Tension Test and Stress-Strain Behavior

Ductility and Brittleness

Strain Energy and Creep

Shear Stress and Poisson's Ratio

Fatigue and Long-term Behavior

Summary

Deformation of Axially Loaded Members

- Axially loaded members deform under applied axial forces.
- Normal stress (σ) : $\sigma = \frac{P}{A}$, where P is the axial force and Ais the cross-sectional area.
- **Axial deformation** (δ): $\delta = \frac{PL}{AE}$, where *L* is the length of the member, *E* is the modulus of elasticity.
- Assumptions include small deformations and linear elastic

Axial members with variable cross section and variable loading $\delta = \int_0^L \frac{F(x)}{E(x)A(x)} dx = \frac{FL}{EA}$

Thermal Stress

Definition: Stress induced in a material due to temperature changes when expansion or contraction is restrained.

Key Formula:

$$\sigma = E \alpha \Delta T$$

Where:

- E: Modulus of elasticity
- $ightharpoonup \alpha$: Coefficient of thermal expansion
- $ightharpoonup \Delta T$: Change in temperature

Tension Test

Tension Test:

- Evaluates material strength and behavior under axial tension.
- Generates a plot of normal stress (σ) versus normal strain (ε) .

Key Regions of the Stress-Strain Curve:

- ▶ Elastic Region: Linear relationship where $\sigma = E\varepsilon$.
- Yield Point: Transition from elastic to plastic deformation.
- Strain Hardening: Stress increases with strain post-yield.
- Necking and Fracture: Material begins to neck, leading to failure.

Stress-Strain Diagram

- ▶ **Modulus of Elasticity** (*E*): Slope in the elastic region.
- ▶ **Modulus of Resilience:** Area under the curve up to the yield point, indicating energy absorption before permanent deformation.
- ► Modulus of Toughness: Total area under the curve, representing energy absorption capacity until fracture.

Ductility and Brittleness

Ductile Materials:

- Undergo significant plastic deformation before failure.
- Examples include most metals and some polymers.
- Ductility measured by percent elongation or reduction in area.

Brittle Materials:

- Exhibit little to no plastic deformation before fracture.
- Examples include cast iron, glass, and some

Strain Energy and Creep

Strain Energy:

- Energy stored in a material due to deformation.
- Modulus of Resilience: Energy per unit volume up to yield.
- Modulus of Toughness: Total energy per unit volume until failure.

Creep:

- Gradual deformation under constant stress over time.
- Important in high-temperature applications.

Shear Stress and Poisson's Ratio

Poisson's Ratio (ν):

- Ratio of lateral strain to longitudinal strain.
- Ranges typically from 0 to 0.5 for most materials.
- Formula: $\nu = -\frac{\epsilon_{\text{lat}}}{\epsilon_{\text{long}}}$

Shear Stress (τ) vs. Shear Strain (γ) :

- ► Shear modulus (*G*): $G = \frac{\tau}{\gamma}$
- Relationship with Young's modulus: $G = \frac{E}{2(1+\nu)}$

Fatigue and Long-term Behavior

Creep:

- Time-dependent deformation under constant load.
- Accelerated by high stress and/or temperature.
- Design must ensure materials do not exceed creep limits.

Fatigue:

- Failure under repeated loading cycles.
- Critical in design to avoid below endurance limit or fatigue strength.

Summary

- Axial loading leads to deformation, crucial for structural integrity.
- ► Thermal stresses must be managed due to temperature changes.
- Stress-strain diagrams are key to understanding material behavior.
- Strain energy concepts explain material resilience and toughness.
- Shear stress and Poisson's ratio affect material response under various loads.
- Creep and fatigue are significant for long-term material performance.