Topological Time Series Analysis

Lecture 2: Persistent Homology of Sliding Window Point Clouds

Jose Perea

Sliding window embedding

Sliding Windows and Persistence: An application of topology to signal analysis, J. Perea and J. Harer, 2015

Periodicity

Period ($f(t+2\pi/L)=f(t)$)

of prominent harmonics (N)

of non-commensurate frequencies

Circularity

Roundness (window size
$$M \tau = \frac{M}{M+1} \frac{2\pi}{L}$$
)

Ambient Dimension ($M \ge 2N$)

Intrinsic Dimension ($\subset S^1 \times \cdots \times S^1$)

Today: Persistent Homology of Sliding Window Point Clouds

Sliding Windows and Persistence: An application of topology to signal analysis, J. Perea and J. Harer, 2015

Activity 1

- Open the jupyter notebook "2-PersistentHomology"
- Is there a relation between window size and maximum persistence?

$$mp \big(\mathsf{dgm} \big(\mathcal{R}(\mathbb{SW}_{M,\tau} f) \big) \big) = \max \Big\{ b - a \ : \ (a,b) \in \mathsf{dgm} \big(\mathcal{R}(\mathbb{SW}_{M,\tau} f) \big) \Big\}$$

Conjecture

Maximum persistence is maximized when

$$M\tau = \frac{M}{M+1} \frac{2\pi}{L}$$

Theorem (Adams, Adamaszek, 2015)

Let S^1 denote the circle of unit circumference with geodesic distance. Then

SW1PerS: Sliding Windows and 1-Persistence Scoring

SW1PerS: Sliding Windows and 1-Persistence Scoring

SW1PerS: Sliding Windows and 1-Persistence Scoring, J. Perea et. al., 2016

Yeast Metabolic Cycle Data

Gene	sw	DL	LS	JTK	Amp	Plot
ЕСМ33	137	1552	1194.5	1492	35.86	MMV
CDC9	291	1494	1993.5	2714.5	2.81	22
SAM1,2	628	1133	1723	3289.5	60.82	MMM
MSH6	715	3569	2381	3341.5	5.06	1

Rankings of genes in the top 10% (out of 9,330) according to SW, and not in the top 10% for any other algorithm

SW1PerS: Sliding Windows and 1-Persistence Scoring, J. Perea et. al., 2016

AUC for Algorithms by # Samples, Noise, Shape

- ◆ Cos ◆ Cos2
- ◆ Peak ◆ Peak2
- ◆ TrndE ◆ TrndL
- ◆ Damp ◆ Saw
- ◆ Sqr ◆ Cont

This page is intentionally left blank

Activity 2

 Can you differentiate sums of harmonics, from sums of non-commensurate frequencies, using persistence?

Goal:

Given $f \in L^2(\mathbb{R}/2\mathbb{Z}; \mathbb{R})$, understand

Strategy

• Replace f(t) by its N-truncated Fourier Series

$$S_N f(t) = \sum_{n=0}^{N} a_n \cos(nt) + b_n \sin(nt)$$

- ullet Understand the geometry of $SW_{M, au}S_Nf(t)$
- Take the limit of the resulting 1D-diagrams as

$$N \to \infty$$

Theorem 0 (P. and Harer)

distance

Let $\mathbb{T}=\mathbb{R}/2\pi\mathbb{Z}$, $f\in C^k(\mathbb{T},\mathbb{R})$ and let $T\subset\mathbb{T}$ be finite.

If dgm and dgm_N are the persistence diagrams of

 $SW_{M,\tau}f(T)$ and $SW_{M,\tau}S_Nf(T)$, respectively, then

$$d_B(\operatorname{dgm},\operatorname{dgm}_N) \leq 2\sqrt{\frac{2}{2k-1}} \left\| f^{(k)} - S_N f^{(k)} \right\|_2 \frac{\sqrt{M+1}}{N^{k-\frac{1}{2}}}$$
 Bottleneck

Sliding Windows and Persistence: An application of topology to signal analysis, J. Perea and J. Harer, 2015

Theorem 1 (P. and Harer)

Let
$$f\in C^1\left(\mathbb{R}/2\pi\mathbb{Z},\mathbb{R}\right)$$
 be s.t. $f\left(t+\frac{2\pi}{L}\right)=f(t)$ for all t ($L\in\mathbb{N}$) and so that $\|f\|_2=1$ and $\int f(t)\ dt=0$.

1. $t \mapsto SW_{M,\tau}S_Nf(t)$ is non-degenerate for $M \ge 2N$

2. $SW_{M,\tau}S_Nf$ is roundest when $L(M+1)\tau=2\pi$

On Convergence...

 $\mathbb{R}^{2N+1}\supset X_N$

Let
$$N\in\mathbb{N}$$
 , $au_N=rac{2\pi}{L(2N+1)}$, and $T\subset\mathbb{T}$

$$SW_{2N, au_N}f(T)$$
 Solution $SW_{2N, au_N}S_Nf(T)$ Pointwise mean-center and normalize

 $Y_N \subset \mathbb{R}^{2N+1}$

Theorem 2 (P. and Harer).

Let
$$N\in\mathbb{N}$$
 , $au_N=rac{2\pi}{L(2N+1)}$, and $T\subset\mathbb{T}$

Then
$$\{\operatorname{dgm}(X_N)\}_{N\in\mathbb{N}}$$
 and $\{\operatorname{dgm}(Y_N)\}_{N\in\mathbb{N}}$

are Cauchy with respect to $\,d_{B}$, $\,$ and

$$\lim_{N \to \infty} d_B(\operatorname{dgm}(X_N), \operatorname{dgm}(Y_N)) = 0$$

Theorem 3 (P. and Harer).

Let
$$f\in C^1\left(\mathbb{R}/2\pi\mathbb{Z},\mathbb{R}\right)$$
 be s.t. $f\left(t+\frac{2\pi}{L}\right)=f(t)$ for all t ($L\in\mathbb{N}$) and so that $\|f\|_2=1$ and $\int f(t)\ dt=0$.

As
$$M o \infty$$
 , with $L(M+1) au = 2\pi$ and $T \subset \mathbb{R}/2\pi\mathbb{Z}$ δ -dense,

then $dgm \Leftarrow SW_{\infty,0}f(T)^*$, with rational coefficients, satisfies

$$mp(\mathsf{dgm}) \ge 2\sqrt{3} \max_{n \in \mathbb{Z}} \left| \widehat{f}(n) \right| - 2\sqrt{2}\delta \|f'\|_2$$

Sliding Windows and Persistence: An application of topology to signal analysis, J. Perea and J. Harer, 2015

The Field of Coefficients...

Exercise: Let

$$g_1(t) = 0.6\cos(t) + 0.8\cos(2t)$$

$$g_2(t) = 0.8\cos(t) + 0.6\cos(2t)$$

Compute the maximum 1D-persistence of $dgm(SW_{M,\tau}g_i(T)^*)$ with \mathbb{F}_2 and \mathbb{F}_3 coefficients.

 $0.8\cos(t) + 0.6\cos(2t)$

Activity 3

• Why are the persistence diagrams different?

Why does this happen...

If
$$g(t)=r_1\cos(t-\alpha_1)+r_2\cos(2t-\alpha_2)$$
 where $r_1^2+r_2^2=1$, $r_1r_2\neq 0$ and $\alpha_i\in[0,2\pi]$, then up to isometry

$$SW_{M,\tau}g(t)^* = (r_1e^{it}, r_2e^{2it})$$

The bounding 2-chain for (r_1e^{it}, r_2e^{2it})

		\mathbb{F}_2	\mathbb{F}_3	
$r_1 < r$	' 2	Mobius strip $\sim 2r_1$	Disk $\sim \sqrt{3}r_2$	
$r_1 > r$	' 2	Disk $\sim \sqrt{3}r_1$	Disk $\sim \sqrt{3}r_1$	

 $0.8\cos(t) + 0.6\cos(2t)$

Thanks!

J. Perea, A. Deckard, S. Haase and J. Harer, SW1PerS: Sliding Windows and 1-Persistence Socring; Discovering Periodicity in Time Series Data, Preprint, 2016.

J. Perea and J. Harer, *Sliding Windows and Persistence: An Application of Topological Methods to Signal Analysis*, Foundations of Computational Mathematics, 2015.