

Math 1300-005 - Spring 2017 Inverse Trig Derivatives - 3/8/17

Guidelines: Please work in groups of two or three. This will not be handed in, but is a study resource for Midterm 2.

The goal of this worksheet is to discover the derivatives of arctangent, arcsine, and arccosine using implicit differentiation.

1. The Derivative of Arcsine

On the axes below, sketch a graph of $y = \sin(x)$ from $-\pi/2 < x < \pi/2$.

Why does $f(x) = \sin(x)$, when restricted to $-\pi/2 < x < \pi/2$, have an inverse?

(c) Sketch the graph of the inverse $y = f^{-1}(x) = \arcsin(x)$ on the axes below.

(d) By properties of inverse functions, we have the following identity.

$$\sin(\arcsin(x)) = x$$

Differentiate both sides of this equation to find a formula for the derivative of $\arcsin(x)$. Express your answer in terms of $\cos(\arcsin(x))$.

$$\frac{d}{dx}\sin(\arcsin(x)) = \frac{d}{dx} \times \cos(\arcsin(x)) = \frac{d}{dx} \arccos(x) = 1$$

$$\frac{d}{dx} \arcsin(x) = \frac{1}{\cos(\arcsin(x))}$$

(e) Referring to the triangle below, explain why $\cos(\arcsin(x)) = \sqrt{1-x^2}$.

Let
$$arcsin(x) = \Theta$$
.
Then $sin(\Theta) = \frac{x}{1} = \frac{opp}{hyp_1}$
 $so \Theta B$

Then $cos(arcsin(x)) = cos(\Theta) = \frac{adj}{hup} = \sqrt{1-x^2} = \sqrt{1-x^2}$

(f) Combining the results of part (d) and part (e), we conclude

$$\frac{d}{dx}\arcsin(x) = \frac{1}{\sqrt{1-x^2}}$$

2. The Derivative of Arccosine

Here I will just state the result. You can arrive at this by a method very similar to that for arctangent and arcsine.

$$\frac{d}{dx}\arccos(x) = -\frac{1}{\sqrt{1-x^2}}.$$

What is the difference between the derivatives of $y = \arcsin(x)$ and $y = \arccos(x)$?

$$\frac{d}{dx} \arctan(\cos(x) = -\frac{d}{dx} \arcsin(x)$$
.

3. Derivative practice using inverse trig. Find dy/dx for the following.

(a)
$$y = (\arctan(x))^2$$

$$\frac{dy}{dx} = 2 \arctan(x) \cdot \left(\frac{1}{1+x^2}\right)$$

(b)
$$y = \arcsin(2x + e^x)$$

$$\frac{dy}{dx} = \frac{1}{\sqrt{1 - (2x + e^x)^2}} \cdot (2 + e^x)$$

(c) $y = \arccos(\arcsin(x))$

$$\frac{dy}{dx} = \frac{1}{\sqrt{1 - (arcsm(x))^2}} \cdot \frac{1}{\sqrt{1 - x^2}}$$

(d) $arccos(xy) = 1 + x^2y$ [This involves implicit differentiation]

arccos(
$$xy$$
) = $1 + x^2y$ [This involves implicit differentiation]

$$\frac{d}{dx} \operatorname{arccos}(xy) = \frac{d}{dx}(1+x^3y)$$

$$-y - 2xy\sqrt{1-x^2y^3} = xy^1 + x^2y^1 \sqrt{1-x^2y^3}$$

$$\frac{d}{dx}(xy) = 2xy + x^2y^1 - y - 2xy\sqrt{1-x^2y^3} = y'(x+x^3\sqrt{1-x^2y^3})$$

$$\frac{d}{dx}(xy) = 2xy + x^2y^1 - y - 2xy\sqrt{1-x^2y^3}$$

$$\frac{d}{dx}(xy) = 2xy + x^2y^1 - x^2y^3$$

$$\frac{d}{dx}(xy) = 2xy + x^2y^2 - x^2y^3$$

$$\frac{d}{dx}(xy) = 2xy + x^2y^2$$

$$\frac{-1}{\sqrt{1-x^2y^2}} \circ (y + xy'') = 2xy + x^2y''$$

$$-y - xy' = 2xy \sqrt{1-x^2y^2} + x^2y' \sqrt{1-x^2y^2}$$

(e) $y = x \arcsin(x) + \sqrt{1 - x^2}$

$$\frac{dy}{dx} = \arcsin(x) + \frac{x}{\sqrt{1-x^2}} + \frac{1}{2\sqrt{1-x^2}} \cdot (-2x)$$

$$= ar(sin(x) + \frac{x}{\sqrt{1-x^2}} - \frac{x}{\sqrt{1-x^2}}$$

Tarcsin(x) =
$$xarcsin(x) + Ji + xa$$

By the antiderivative of $f(x) = arcsin(x)!$

4. Compute the following limit.

$$\lim_{x \to 4^{-}} \arctan\left(\frac{1}{4-x}\right)$$

So
$$\lim_{x\to 4^{-}} (4-x)$$

So $\lim_{x\to 4^{-}} (4-x)$

So $\lim_{x\to 4^{-}} (4-x)$