Ai AutoML

Dado que los resultados obtenidos con las herramientas de AutoML previamente utilizadas no alcanzaron el nivel de precisión y desempeño esperado, se tomó la decisión de explorar una alternativa más robusta. En este contexto, se optó por emplear **AutoTS**, una herramienta especializada en la automatización de modelos de series temporales. Esta elección busca mejorar la calidad de las predicciones y optimizar el proceso de modelado, permitiendo obtener resultados más confiables y ajustados a las necesidades del proyecto.

Explicación de AutoTS y sus Modelos

AutoTS es una herramienta diseñada para la predicción de series temporales que automatiza el proceso de selección de modelos y la optimización de hiperparámetros. Su objetivo es facilitar a los usuarios la obtención de pronósticos precisos sin necesidad de tener un profundo conocimiento en técnicas de modelado de series temporales. A través de un enfoque automatizado, AutoTS evalúa múltiples modelos y elige el que mejor se adapta a los datos proporcionados.

Proceso de Selección de Modelos de AutoTS

Modelos Utilizados por AutoTS

AutoTS incluye una amplia gama de modelos para la predicción de series temporales. Algunos de los más destacados son:

- **AverageValueNaive**: Modelo ingenuo que predice el promedio de los valores históricos como la estimación futura.
- **DatepartRegression**: Utiliza regresión basada en componentes temporales (día, mes, hora, etc.) para predecir valores futuros.
- ETS (Error, Trend, Seasonal): Modelo estadístico que descompone la serie de tiempo en error, tendencia y estacionalidad.

- **GLM (Generalized Linear Model)**: Extensión de los modelos lineales que permite diferentes distribuciones de error y funciones de enlace.
- GLS (Generalized Least Squares): Similar a OLS, pero ajusta la autocorrelación y heterocedasticidad en los datos.
- LastValueNaive: Modelo ingenuo que usa el último valor observado como predicción para el futuro.
- **SeasonalNaive**: Modelo ingenuo que repite los valores estacionales pasados en los periodos futuros.
- VAR (Vector Autoregression): Modelo multivariado que predice cada variable en función de sus valores pasados y los de otras variables en el sistema.
- **WindowRegression**: Modelo de regresión que usa una ventana deslizante de valores pasados para hacer predicciones.
- **ConstantNaive**: Predice siempre el mismo valor, generalmente el promedio o un valor constante predefinido.
- **FBProphet**: Modelo desarrollado por Facebook para modelar series temporales con tendencias y estacionalidad, manejando bien datos faltantes y cambios en la tendencia.
- ARDL (Autoregressive Distributed Lag): Modelo de regresión que maneja la relación entre una variable dependiente y varias variables independientes con retardos.
- **UnivariateMotif**: Identifica patrones recurrentes (motifs) en una serie temporal univariada para predecir futuros valores.
- **SectionalMotif**: Similar a UnivariateMotif, pero aplica la detección de patrones en secciones específicas de la serie de tiempo.
- ARCH (Autoregressive Conditional Heteroskedasticity): Modelo usado en series financieras para modelar la volatilidad condicional.
- Cassandra: Algoritmo basado en detección de anomalías y patrones en datos de series temporales.
- **SeasonalityMotif**: Detecta patrones estacionales y los usa para predecir valores futuros.
- FFT (Fast Fourier Transform): Usa transformadas de Fourier para descomponer la serie temporal en componentes de frecuencia.
- **BasicLinearModel**: Modelo de regresión lineal simple aplicado a datos de series temporales.
- RRVAR (Regularized Robust Vector Autoregression): Variante robusta y regularizada del modelo VAR para manejar ruido en los datos.
- **MetricMotif**: Basado en la detección de patrones métricos recurrentes en series temporales.
- **Ensemble**: Combinación de múltiples modelos para mejorar la precisión de la predicción.

Mejores Modelos en AutoTS

Tras ejecutar múltiples iteraciones en **AutoTS**, se identificaron los siguientes modelos como los de mejor rendimiento, evaluados según el error absoluto medio (**MAE**):

1. SeasonalityMotif - MAE: 24.9471

Ensemble – MAE: 30.0835
Ensemble – MAE: 30.1027
Ensemble – MAE: 30.1027

5. **Ensemble** – MAE: **30.1583**

6. Ensemble – MAE: 30.6042
7. Ensemble – MAE: 31.6061
8. Cassandra – MAE: 31.7482

9. Ensemble – MAE: 31.7782
10. Ensemble – MAE: 31.7782

El modelo **SeasonalityMotif** fue el mejor en términos de precisión, con el menor **MAE** (24.9471), seguido de varios modelos **Ensemble**, que también lograron un desempeño sólido. **Cassandra** también destacó, aunque con un error ligeramente mayor.

Estos resultados indican que los modelos **Ensemble** y **SeasonalityMotif** fueron los más efectivos para la serie temporal analizada.

Comparación de Modelos de Series Temporales por MAE