Unit 5 Syllabus

Multiple Regression, The Model, Further Assumptions of the Least Squares Model, Fitting the Model, Interpreting the Model, Goodness of Fit, Digression: The Bootstrap, Standard Errors of Regression Coefficients, Regularization, Logistic Regression, The Problem, The Logistic Function, Applying the Model, Goodness of Fit, Support Vector Machines.

Multiple Regression

- Although the VP is pretty impressed with your predictive model, she thinks you can do better. To that end, you've collected additional data: you know how many hours each of your users works each day, and whether they have a PhD.
- You'd like to use this additional data to improve your model.
- minutes = $\alpha + \beta_1$ friends + β_2 work hours + β_3 phd + ε

The Model

Recall that we fit a model of the form:

$$y_i = lpha + eta x_i + arepsilon_i$$

- Now imagine that each **input xi** is not a single number but rather a vector of k numbers, xi1, ..., xik.
- The multiple regression model assumes that:

$$y_i = lpha + eta_1 x_{i1} + \ldots + eta_k x_{ik} + arepsilon_i$$

• In multiple regression the **vector of parameters is called** β .

```
beta = [alpha, beta_1, ..., beta_k]
```

- Include the constant term as well, which we can achieve by adding a column of 1s to our data:
- x_i = [1, x_i1, ..., x_ik]

Further Assumptions of the Least Squares Model

Assumption 1: No multicollinearity

Inputs x_1, x_2, \ldots, x_k must be linearly independent

If one column is a combination of others (e.g., num_acquaintances = num_friends), you can't uniquely determine the coefficients

Assumption 2: No correlation between inputs and error terms

If an input (say, friends) is correlated with an omitted variable (like work_hours) that affects y, the model's estimate will be **biased**

For example:

Actual model:
$$y = \alpha + \beta_1$$
 friends $+ \beta_2$ work hours $+ \epsilon$

But you forget to include work hours. If friends and work hours are correlated, then your estimate of β_1 will absorb some of β_2 's effect — biasing the result.

Fitting the Model: Gradient Descent Approach

Gradient Descent is used in multiple linear regression primarily as a way to efficiently find the optimal model parameters (the weights or coefficients) when dealing with many input variables (features).

```
def predict(x: Vector, beta: Vector) -> float:
  return dot(x, beta)
def error(x, y, beta):
  return predict(x, beta) - y
def sqerror_gradient(x, y, beta):
  err = error(x, y, beta)
  return [2 * err * x_i for x_i in x]
def gradient_step(v: List[float], gradient: List[float], step_size: float) -
> List[float]:
  return [v_i + step_size * grad_i for v_i, grad_i in zip(v, gradient)]
```

Fitting the Model: Gradient Descent Approach

```
def least_squares_fit(xs, ys, learning_rate=0.001, num_steps=1000,
batch_size=1):
  guess = [random.random() for _ in xs[0]]
  for _ in range(num_steps):
    for start in range(0, len(xs), batch_size):
       batch_xs = xs[start:start+batch_size]
       batch_ys = ys[start:start+batch_size]
       gradient = vector_mean([sqerror_gradient(x, y, guess)
         for x, y in zip(batch_xs, batch_ys) ])
       guess = gradient_step(guess, gradient, -learning_rate)
  return guess
```

Final Result: Interpreting Coefficients

After running the gradient descent (or using a closed-form solution), you get:

minutes = 30.58 + 0.972 friends -1.87 work hours +0.923 phd

Interpretations:

- Intercept (30.58): baseline minutes if all inputs are 0
- 0.972 for friends: Each additional friend adds ~0.97 daily minutes
- -1.87 for work hours: More work → less time on site
- 0.923 for PhD (binary): Having a PhD increases time spent by ~0.92 minutes

These are **marginal effects** — holding other variables constant.

Goodness of Fit

- R-squared (R²) measures how well the model explains the variability in the response variable.
- Formula:

$$R^2 = 1 - rac{ ext{Sum of Squared Errors (SSE)}}{ ext{Total Sum of Squares (TSS)}}$$

- SSE: Total difference between predicted and actual values.
- TSS: Total variance in the actual values (how far they are from the mean).

```
from scratch.simple_linear_regression import total_sum_of_squares
def multiple_r_squared(xs: List[Vector], ys: Vector, beta: Vector) -> float:
    sum_of_squared_errors = sum(error(x, y, beta) ** 2
    for x, y in zip(xs, ys))
    return 1.0 - sum_of_squared_errors / total_sum_of_squares(ys)
```

which has now increased to 0.68:

```
assert 0.67 < multiple_r_squared(inputs, daily_minutes_good, beta) < 0.68
```

Goodness of Fit

- Adding new variables to a regression will necessarily increase the R-squared. As the simple regression model is just the special case of the multiple regression model where the coefficients on "work hours" and "PhD" both equal 0.
- Any extra variable gives the model more flexibility, even if the variable is irrelevant.
- This reduces SSE, and since R² is inversely related to SSE, R² never decreases when new variables are added.
- But a higher R² doesn't always mean a better model, especially if the new variables are noise.

What is Regularization?

When we use **multiple linear regression** on datasets with **many features**, we run into two problems:

1. Overfitting

- •The model fits the training data too well, even capturing noise.
- •It performs poorly on new, unseen data (poor generalization).

2. Interpretability

If many features have non-zero coefficients, it's hard to **understand** or **explain** the model.

Solution: Regularization

• Add a **penalty** to the cost function (which we normally minimize)

Regularized Cost Function Original Linear Regression Error:

$$y_i = \alpha + eta_1 x_{i1} + \ldots + eta_k x_{ik} + arepsilon_i$$

Loss =
$$\sum (y_i - \hat{y}_i)^2 = \sum (y_i - \beta_0 - \beta_1 x_{i1} - \dots - \beta_n x_{in})^2$$

Regularized Loss:

Regularized Loss

Regularized Loss=ErrorTerm + PenaltyTerm

Types of Regularization

1. Ridge Regression (L2 Regularization)

Adds a **penalty proportional to the square** of the coefficients:

Penalty =
$$\alpha \sum_{j=1}^{n} \beta_j^2$$

- Does not force coefficients to zero.
- Good when all features are useful but need to reduce magnitude of coefficients.
 - 2. Lasso Regression (L1 Regularization)

Adds a **penalty proportional to the absolute values** of the coefficients:

Penalty =
$$\alpha \sum_{j=1}^{n} |\beta_j|$$

- Can force some coefficients to exactly zero \rightarrow gives sparse models.
- Useful for feature selection.

```
def ridge_penalty(beta: Vector, alpha: float) -> float:
        return alpha * dot(beta[1:], beta[1:])
def squared_error_ridge(x: Vector, y: float, beta: Vector,alpha: float) -> float:
    """estimate error plus ridge penalty on beta"""
    return error(x, y, beta) ** 2 + ridge_penalty(beta, alpha)
We can then plug this into gradient descent in the usual way:
from scratch.linear_algebra import add
def ridge_penalty_gradient(beta: Vector, alpha: float) -> Vector:
     """gradient of just the ridge penalty"""
     return [0.] + [2 * alpha * beta_j for beta_j in beta[1:]]
def sqerror_ridge_gradient(x: Vector, y: float,beta: Vector,alpha: float) -> Vector:
     the gradient corresponding to the ith squared error term
     including the ridge penalty
```

return add(sqerror_gradient(x, y, beta), ridge_penalty_gradient(beta, alpha))

```
lasso regression, which uses the penalty:
def lasso_penalty(beta, alpha):
    return alpha * sum(abs(beta_i) for beta_i in beta[1:])
```

Effects of Ridge Regularization

Alpha (Penalty Strength)	Coefficients (β)	R ² (Goodness of Fit)	Interpretation
0.0	[30.51, 0.97, -1.85, 0.91]	~0.68	No regularization
0.1	[30.8, 0.95, -1.83, 0.54]	~0.68	Small shrinkage
1.0	[30.6, 0.90, -1.68, 0.10]	~0.68	"PhD" nearly 0
10.0	[28.3, 0.67, -0.90, -0.01]	~0.55	Strong shrinkage

Why Ridge Helps

- Reduces overfitting by penalizing large weights.
- Controls complexity of the model.
- Especially useful when features are correlated or you have more features than data points.

Logistic Regression

- Data set of about 200 users, containing each user's salary, years of experience as a data scientist, and whether paid for a premium account.
- Represent the dependent variable as either 0 (no premium account) or 1 (premium account).
 - A dataset: Each row = [experience, salary, paid_account]
 - experience = number of years as a data scientist
 - salary = user's salary
 - paid_account = 1 if paid, ø otherwise

You're trying to predict paid_account from the other two features.

Figure 16-1. Paid and unpaid users

Logistic Regression

plt.show()

First Attempt: Linear Regression:

```
paid_account = \beta_0 + \beta_1 \cdot \text{experience} + \beta_2 \cdot \text{salary} + \varepsilon
xs = [[1.0] + row[:2]] for row in data] # adds intercept term, makes each row [1, experience, salary]
ys = [row[2] \text{ for row in data}]
                                    # gets 0 or 1 label
Program to apply the logistic function to a prediction from the linear model. Show how you convert this
linear prediction to a probability
from matplotlib import pyplot as plt
from scratch.working_with_data import rescale
from scratch.multiple_regression import least_squares_fit, predict
from scratch.gradient_descent import gradient_step
learning_rate = 0.001
rescaled_xs = rescale(xs)
beta = least_squares_fit(rescaled_xs, ys, learning_rate, 1000, 1)
# [0.26, 0.43, -0.43]
predictions = [predict(x_i, beta) for x_i in rescaled_xs]
plt.scatter(predictions, ys)
plt.xlabel("predicted")
plt.ylabel("actual")
```

Logistic Regression

Predictions Are Not Probabilities

- Linear regression gives predictions like -3, 1.5, 20, etc.
- These don't make sense when predicting a binary outcome (0 or 1):

Figure 16-2. Using linear regression to predict premium accounts

What is Logistic Regression?

What is Logistic Regression?

- It's a classification algorithm, typically used when the output variable (y) is binary (e.g., 0 or 1).
- Instead of predicting a continuous value (like in linear regression), it predicts the probability that y = 1.
- The model looks like:

$$y_i = f(x_i \cdot \beta) + \varepsilon_i$$

Where:

- *f* is the logistic function(Dot Product)
- β are the model parameters
- *xi* is a vector of input features
- *yi* is the binary output (0 or 1)

The Logistic Regression Code Snippet

 For large positive values of dot(x_i, beta) to correspond to probabilities close to 1, and for large negative values to correspond to probabilities close to 0. Use Sigmoid Function

```
def logistic(x: float) -> float:
    return 1.0 / (1 + math.exp(-x))
```

This function: Converts any real number into the rar

- Large positive inputs \rightarrow output near 1.
- Large negative inputs \rightarrow output near 0.

The Logistic Regression Code Snippet

• Its derivative is useful for gradient descent:

```
def logistic_prime(x: float) -> float:
    y = logistic(x)
    return y * (1 - y)
```

- Recall that for linear regression we fit the model by minimizing the sum of squared errors, which ended up choosing the β that maximized the likelihood of the data.
- In Logistic Regression the two aren't equivalent, so we'll use gradient descent to maximize the likelihood directly.
 This means we need to calculate the likelihood function and its gradient.

The Logistic Function

Given some β , our model says that each y_i should equal 1 with probability $f(x_i\beta)$ and 0 with probability $1 - f(x_i\beta)$.

In particular, the PDF for y_i can be written as:

$$p(y_i|x_i,eta) = f(x_ieta)^{y_i}(1-f(x_ieta))^{1-y_i}$$

since if y_i is 0, this equals:

$$1-f(x_i\beta)$$

and if y_i is 1, it equals:

$$f(x_i\beta)$$

It turns out that it's actually simpler to maximize the *log likelihood*:

$$\log L(eta|x_i,y_i) = y_i \log f(x_ieta) + (1-y_i) \log \left(1-f(x_ieta)
ight)$$

The Logistic Regression using gradient descent

- Log is a strictly increasing function, any beta that maximizes the log likelihood also maximizes the likelihood, and vice versa.
- But **gradient descent minimizes** things, so work with the **negative log likelihood**, since maximizing the likelihood is the same as minimizing its negative:

Code snippet to show how gradient descent updates the coefficients in logistic regression using the negative log likelihood gradient

```
import math
from scratch.linear_algebra import Vector, dot
def _negative_log_likelihood(x: Vector, y: float, beta: Vector) -> float:
  """The negative log likelihood for one data point"""
  if y == 1:
        return -math.log(logistic(dot(x, beta)))
  else:
        return -math.log(1 - logistic(dot(x, beta)))
Overall log likelihood is the sum of the individual log likelihoods:
from typing import List
def negative_log_likelihood(xs: List[Vector], ys: List[float], beta: Vector) -> float:
 return sum(_negative_log_likelihood(x, y, beta) for x, y in zip(xs, ys))
```

The Logistic Regression Code Snippet

We calculate the gradient of the loss function with respect to each β_j :

$$\frac{\partial}{\partial \beta_j} = -(y_i - f(x_i \cdot \beta)) \cdot x_{ij}$$

from scratch.linear_algebra import vector_sum

def _negative_log_partial_j(x: Vector, y: float, beta: Vector, j: int) -> float:

""" The jth partial derivative for one data point. Here i is the index of the data point. """

return -(y - logistic(dot(x, beta))) * x[j]

```
def _negative_log_gradient(x: Vector, y: float, beta: Vector) -> Vector:
    """ The gradient for one data point. """
    return [_negative_log_partial_j(x, y, beta, j) for j in range(len(beta))]
```

def negative_log_gradient(xs: List[Vector],ys: List[float],beta: Vector) -> Vector:
 return vector_sum([_negative_log_gradient(x, y, beta) for x, y in zip(xs, ys)])

The Applying Logistic Function

```
from scratch.machine_learning import train_test_split
import random
import tqdm
random.seed(0)
x_train, x_test, y_train, y_test = train_test_split(rescaled_xs, ys, 0.33)
learning_rate = 0.01

    negative_log_gradient(...) computes the gradient of the loss w.r.t. beta.

# pick a random starting point
                                                            2. gradient_step(...) updates beta using gradient descent:
beta = [random.random() for _ in range(3)]
                                                              \beta = \beta - \alpha \cdot \nabla L
                                                            negative_log_likelihood(...) computes the current loss.
with tqdm.trange(5000) as t:

    t.set_description(...) updates the progress bar with the current loss and beta.

for epoch in t:
   gradient = negative_log_gradient(x_train, y_train, beta)
   beta = gradient_step(beta, gradient, -learning_rate)
   loss = negative_log_likelihood(x_train, y_train, beta)
   t.set_description(f"loss: {loss:.3f} beta: {beta}")
after which we find that beta is approximately:
[-2.0, 4.7, -4.5]
```

What Is an SVM?

• Support Vector Machine (SVM) is a **supervised machine learning algorithm** used for **classification** and sometimes regression. It works by finding a **hyperplane** (decision boundary) that best separates the data into different classes.

Given two classes of data:

• SVM tries to find the **widest possible margin** (i.e., maximum distance) between the **hyperplane** and the **nearest points** of both classes.

10

15

- These nearest points are called support vectors.
- The larger the margin, the better the generalization of the classifier.

• For example, consider the simple one-dimensional dataset. There's no hyperplane that separates the positive examples from the negative ones.

Figure 16-7. A nonseparable one-dimensional dataset

- Solution: Kernel Trick
- Transforming the data into a higher dimensional space. Map this dataset to two dimensions by sending the point x to $(x, x^{**}2)$. Now there is a hyperplane that splits the data examples from the negative ones.
- This is usually called the kernel trick.

• If there are a lot of points and the mapping is complicated, use a "kernel" function to compute dot products in the higher-dimensional space and use

those to find a hyperplane.

SVM to classify a small dataset; plot the separating hyperplane, identify support vectors, and explain how the margin is determined.

BEGIN

- 1. Create a small dataset:
 - Define feature matrix X with 2D points
 - Define corresponding labels y (0 or 1)
- 2. Train a linear SVM:
 - Initialize SVM classifier with linear kernel
 - Fit the classifier to X and y
- 3. Plot data points:
 - For each point in X:
 - Plot with a color based on its label (0 or 1)
- 4. Plot support vectors:
 - Retrieve support vectors from the classifier
 - Highlight them with larger, outlined markers

6. Compute hyperplane:

- Get weight vector w (slope/Beta) from classifier
- Get bias b (Intercept) from classifier(Position hyperplane up/down)
- Create a range of x-values (x_range)
- For each x in x_range:
 - Compute y using y = -(w1 * x + b) / w2

7. Compute margin:

$$\text{margin} = \frac{1}{||w||} = \frac{1}{\sqrt{w_1^2 + w_2^2}}$$

8. Plot the hyperplane and margins:

- Plot the hyperplane using x_range and corresponding y values
- Plot dashed lines for margins above and below the hyperplane

9. Finalize plot:

- Add labels, title, legend, and grid
- Show the plot

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
# Create a small linearly separable dataset
X = \text{np.array}([[1, 2], [2, 3], [3, 3], [6, 5], [7, 8], [8, 6]])
y = [0, 0, 0, 1, 1, 1]
# Train a linear SVM
clf = svm.SVC(kernel='linear', C=1.0)
clf.fit(X, y)
# Plotting
plt.figure(figsize=(8, 6))
# Plot data points
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='bwr', label='Data Points')
# Plot support vectors
plt.scatter(clf.support vectors [:, 0], clf.support vectors [:, 1], s=100, facecolors='none',
edgecolors='k', label='Support Vectors')
# Get the hyperplane
w = clf.coef[0]
b = clf.intercept [0]
x range = np.linspace(0, 10, 100)
y hyperplane = -(w[0] * x range + b) / w[1]
# Margins
margin = 1 / np.sqrt(np.sum(w ** 2))
y margin up = y hyperplane + margin
y margin down = y hyperplane - margin
```

```
# Plot decision boundary and margins
plt.plot(x range, y hyperplane, 'k-', label='Hyperplane')
plt.plot(x range, y margin up, 'k--', label='Margins')
plt.plot(x range, y margin down, 'k--')
plt.xlabel('Feature 1')
plt.vlabel('Feature 2')
plt.title('Linear SVM with Margin and Support Vectors')
                                                  Linear SVM with Margin and Support Vectors
plt.legend()
plt.grid(True)
                                                                                     Data Points
                                  12.5
plt.show()
                                                                                     Support Vectors
                                                                                     Hyperplane
                                  10.0
                                                                                 --- Margins
                                   7.5
                                   5.0
                                   2.5
                                   0.0
                                  -2.5
                                  -5.0
                                                   2
                                                                                             10
                                                                Feature 1
```