

# 本国特許庁

PATENT OFFICE
JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

1999年 6月16日

出 願 番 号 Application Number:

平成11年特許願第169419号

出 願 人 Applicant (s):

味の素株式会社

CERTIFIED COPY OF PRIORITY DOCUMENT

1999年 8月17日

特許庁長官 Commissioner, Patent Office 保佐山建體門

【書類名】

特許願

【整理番号】

P6616AJ

【提出日】

平成11年 6月16日

【あて先】

特許庁長官 殿

【国際特許分類】

A23L 1/236

【発明者】

【住所又は居所】

神奈川県川崎市川崎区鈴木町1-1 味の素株式会社

アミノサイエンス研究所内

【氏名】

網野 裕右

【発明者】

【住所又は居所】

神奈川県川崎市川崎区鈴木町1-1 味の素株式会社

アミノサイエンス研究所内

【氏名】

湯沢 和子

【発明者】

【住所又は居所】

神奈川県川崎市川崎区鈴木町1-1 味の素株式会社

アミノサイエンス研究所内

【氏名】

竹本 正

【発明者】

【住所又は居所】

神奈川県川崎市川崎区鈴木町1-1 味の素株式会社

アミノサイエンス研究所内

【氏名】

中村 良一郎

【特許出願人】

【識別番号】

000000066

【氏名又は名称】

味の素株式会社

【代理人】

【識別番号】

100080229

【弁理士】

【氏名又は名称】

石田 康昌

【電話番号】

045-476-1131

【選任した代理人】

【識別番号】 100080816

【弁理士】

【氏名又は名称】 加藤 朝道

【先の出願に基づく優先権主張】

【出願番号】

平成10年特許願第264252号

【出願日】

平成10年 9月18日

【手数料の表示】

【予納台帳番号】 059042

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【包括委任状番号】 9803677

【プルーフの要否】 要

【書類名】

明細書

【発明の名称】

N-アルキルアスパルチルジペプチドエステル誘導体及び

甘味剤

【特許請求の範囲】

### 【請求項1】

下記一般式(1)で示されるN-アルキルアスパルチルジペプチドエステル誘導体(塩の形態にあるものを含む。)。

### 【化1】

上記一般式(1)中、 $R_1$ 、 $R_2$ 、 $R_3$ 、 $R_4$ 及び $R_5$ はそれぞれ相互に独立していて、水素原子、水酸基、炭素数が1から3のアルコキシ基、炭素数が1から3のアルキル基及び炭素数が2又は3のヒドロキシアルキルオキシ基から選ばれる置換基を、又は $R_1$ と $R_2$ とは、若しくは $R_2$ と $R_3$ とは一緒になってメチレンジオキシ基を、それぞれ表す。

但し、ここで $\mathbf{R}_1$ と $\mathbf{R}_2$ とが、又は $\mathbf{R}_2$ と $\mathbf{R}_3$ とが一緒になってメチレンジオキシ基を表す場合、 $\mathbf{R}_4$ 、 $\mathbf{R}_5$ 及び一緒にならない場合の $\mathbf{R}_1$ 又は $\mathbf{R}_3$ はそれぞれ相互に独立していて前記置換基の何れかを表す。

 $R_6$ 、 $R_7$ 、 $R_8$ 、 $R_9$ 及び $R_{10}$ はそれぞれ相互に独立していて、水素原子及び炭素数が 1 から 3 のアルキル基から選ばれる置換基を、又は $R_6$ 、 $R_7$ 、 $R_8$ 、 $R_9$ 及び $R_{10}$ から選ばれる任意の 2 つの置換基は一緒になって炭素数が 1 から 5 のアルキレン基を、それぞれ表す。

但し、ここで $R_6$ 、 $R_7$ 、 $R_8$ 、 $R_9$ 及び $R_{10}$ から選ばれる任意の2つが一緒になって炭素数1から5のアルキレン基を表す場合、その選ばれた2つ以外の置換基

はそれぞれ相互に独立していて前記置換基の何れかを表す。

 $R_{11}$ は水素原子、ベンジル基、p-ヒドロキシベンジル基、シクロヘキシルメチル基、フェニル基、シクロヘキシル基、フェニルエチル基及びシクロヘキシルエチル基から選ばれる置換基を、 $R_{12}$ は水素原子及び炭素数が1から3のアルキル基から選ばれる置換基を、及び $R_{13}$ は炭素数が1から4のアルキル基から選ばれる置換基を、それぞれ表す。

但し、 $R_6$ 、 $R_7$ 、 $R_8$ 、 $R_9$ 及び $R_{10}$ の全てが同時に水素原子を表す誘導体、 $R_6$ がメチル基を、 $R_1$ 、 $R_2$ 、 $R_3$ 、 $R_4$   $R_5$ 、 $R_7$   $R_8$   $R_9$   $R_{10}$ 及び $R_{12}$ が同時に水素原子を、 $R_{11}$ がベンジル基又はP-ヒドロキシベンジル基をそれぞれ表す誘導体、並びに $R_2$ がメトキシ基を、 $R_3$ が水酸基を、 $R_{10}$ がメチル基を、 $R_1$ 、 $R_4$ 、 $R_5$ 、 $R_6$   $R_7$   $R_8$ 及び $R_9$ が同時に水素原子を、 $R_{11}$ がベンジル基又はP-ヒドロキシベンジル基を、それぞれ表す誘導体は除かれる。

### 【請求項2】

### 【請求項3】

式中、 $R_2$ が水酸基であり、 $R_1$ 、 $R_3$ 、 $R_4$ 、 $R_5$ 、 $R_7$ 、 $R_8$ 、 $R_9$ 、 $R_{10}$ 及び  $R_{12}$ が水素原子であり、 $R_6$ 及び  $R_{13}$ がメチル基であり、 $R_{11}$ がベンジル基である請求項 1 記載の誘導体。

#### 【請求項4】

式中、 $R_2$ がメトキシ基であり、 $R_3$ が水酸基であり、 $R_1$ 、 $R_4$ 、 $R_5$ 、 $R_7$ 、 $R_8$ 、 $R_9$ 、 $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_6$ 及び $R_{13}$ がメチル基であり、 $R_{11}$ がベンジル基である請求項 1 記載の誘導体。

### 【請求項5】

式中、 $R_2$ が水酸基であり、 $R_3$ がメトキシ基であり、 $R_1$ 、 $R_4$ 、 $R_5$ 、 $R_7$  R 8、 $R_9$ 、 $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_6$ 及び $R_{13}$ がメチル基であり、 $R_{11}$ がベンジル基である請求項 1 記載の誘導体。

#### 【請求項6】

式中、 $R_2$ がメトキシ基であり、 $R_3$ が水酸基であり、 $R_1$ 、 $R_4$ 、 $R_5$ 、 $R_7$  R 8、 $R_9$ 、 $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_6$ 及び $R_{13}$ がメチル基であり、 $R_{11}$ がP-ヒドロキシベンジル基である請求項 1 記載の誘導体。

### 【請求項7】

式中、 $R_2$ が水酸基であり、 $R_3$ がメトキシ基であり、 $R_1$ 、 $R_4$ 、 $R_5$ 、 $R_7$ 、 $R_8$ 、 $R_9$ 、 $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_6$ 及び $R_{13}$ がメチル基であり、 $R_{11}$ がシクロヘキシルメチル基である請求項1記載の誘導体。

### 【請求項8】

式中、 $R_3$ がメトキシ基であり、 $R_1$ 、 $R_2$ 、 $R_4$ 、 $R_5$ 、 $R_8$ 、 $R_9$ 、 $R_{10}$ 及び $R_1$ 2が水素原子であり、 $R_6$ 、 $R_7$ 及び $R_{13}$ がメチル基であり、 $R_{11}$ がベンジル基である請求項1記載の誘導体。

### 【請求項9】

式中、 $R_3$ が水酸基であり、 $R_1$ 、 $R_2$ 、 $R_4$ 、 $R_5$ 、 $R_8$ 、 $R_9$ 、 $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_6$ 、 $R_7$ 及び $R_{13}$ がメチル基であり、 $R_{11}$ がベンジル基である請求項1記載の誘導体。

### 【請求項10】

式中、 $R_2$ がメトキシ基であり、 $R_3$ が水酸基であり、 $R_1$ 、 $R_4$ 、 $R_5$ 、 $R_8$ 、 $R_9$ 、 $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_6$ 、 $R_7$ 及び $R_{13}$ がメチル基であり、 $R_{11}$ がベンジル基である請求項 1 記載の誘導体。

#### 【請求項11】

式中、 $R_2$ が水酸基であり、 $R_3$ がメトキシ基であり、 $R_1$ 、 $R_4$ 、 $R_5$ 、 $R_8$ 、 $R_9$ 、 $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_6$ 、 $R_7$ 及び $R_{13}$ がメチル基であり、 $R_{11}$ がベンジル基である請求項 1 記載の誘導体。

### 【請求項12】

式中、R $_2$ がメチル基であり、R $_3$ が水酸基であり、R $_1$ 、R $_4$ 、R $_5$ 、R $_7$ 、R $_8$ 、R $_9$ 、R $_{10}$ 及びR $_{12}$ が水素原子であり、R $_6$ 及びR $_{13}$ がメチル基であり、R $_{11}$ がベンジル基である請求項 $_1$ 記載の誘導体。

### 【請求項13】

式中、 $R_2$ が水酸基であり、 $R_3$ がメトキシ基であり、 $R_1$ 、 $R_4$ 、 $R_5$ 、 $R_6$ 、 $R_6$ 

7、 R  $_9$ 、 R  $_{10}$ 及び R  $_{12}$ が水素原子であり、 R  $_8$ 及び R  $_{13}$ がメチル基であり、 R  $_{11}$ がベンジル基である請求項 1 記載の誘導体。

### 【請求項14】

式中、 $R_1$ が水酸基であり、 $R_2$ 、 $R_3$ 、 $R_4$ 、 $R_5$ 、 $R_8$ 、 $R_9$ 、 $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_6$ 、 $R_7$ 及び $R_{13}$ がメチル基であり、 $R_{11}$ がベンジル基である請求項1記載の誘導体。

### 【請求項15】

式中、 $R_1$ が水酸基であり、 $R_3$ がメトキシ基であり、 $R_2$ 、 $R_4$ 、 $R_5$ 、 $R_8$ 、 $R_9$ 、 $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_6$ 、 $R_7$ 及び $R_{13}$ がメチル基であり、 $R_{11}$ がベンジル基である請求項1記載の誘導体。

### 【請求項16】

式中、 $R_1$ が水酸基であり、 $R_3$ がメチル基であり、 $R_2$ 、 $R_4$ 、 $R_5$ 、 $R_8$ 、 $R_9$ 、  $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_6$ 、 $R_7$ 及び $R_{13}$ がメチル基であり、 $R_{11}$ がベンジル基である請求項1記載の誘導体。

#### 【請求項17】

式中、 $R_2$ と $R_3$ とが一緒になってメチレンジオキシ基であり、 $R_1$ 、 $R_4$ 、 $R_5$ 、 $R_8$ 、 $R_9$ 、 $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_6$ 、 $R_7$ 及び $R_{13}$ がメチル基であり、 $R_{11}$ がベンジル基である請求項1記載の誘導体。

### 【請求項18】

式中、 $R_2$ がメチル基であり、 $R_3$ がメトキシ基であり、 $R_1$ 、 $R_4$ 、 $R_5$ 、 $R_8$ 、  $R_9$ 、 $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_6$ 、 $R_7$ 及び $R_{13}$ がメチル基であり、 $R_1$  がベンジル基である請求項 1 記載の誘導体。

### 【請求項19】

式中、R $_2$ がメチル基であり、R $_3$ が水酸基であり、R $_1$ 、R $_4$ 、R $_5$ 、R $_8$ 、R $_9$ 、R $_{10}$ 及びR $_{12}$ が水素原子であり、R $_6$ 、R $_7$ 及びR $_{13}$ がメチル基であり、R $_{11}$ がベンジル基である請求項 $_1$ 記載の誘導体。

### 【請求項20】

式中、R $_2$ が水酸基であり、R $_3$ がメチル基であり、R $_1$ 、R $_4$ 、R $_5$ 、R $_8$ 、R $_9$ 、R $_{10}$ 及びR $_{12}$ が水素原子であり、R $_6$ 、R $_7$ 及びR $_{13}$ がメチル基であり、R $_{11}$ が

ベンジル基である請求項1記載の誘導体。

### 【請求項21】

式中、 $R_2$ がメトキシ基であり、 $R_3$ が水酸基であり、 $R_1$ 、 $R_4$ 、 $R_5$ 、 $R_8$ 、 $R_9$ 、 $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_6$ と $R_7$ とが一緒になってテトラメチレン基であり、 $R_{11}$ がベンジル基であり、 $R_{13}$ がメチル基である請求項1記載の誘導体。

#### 【請求項22】

式中、 $R_2$ が水酸基であり、 $R_3$ がメトキシ基であり、 $R_1$ 、 $R_4$ 、 $R_5$ 、 $R_8$ 、 $R_9$ 、 $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_6$ 及び $R_7$ がメチル基であり、 $R_{11}$ がベンジル基であり、 $R_{13}$ がエチル基である請求項1記載の誘導体。

### 【請求項23】

式中、 $R_2$ が水酸基であり、 $R_3$ がメトキシ基であり、 $R_1$ 、 $R_4$ 、 $R_5$ 、 $R_8$ 、 $R_9$ 、及び $R_{10}$ が水素原子であり、 $R_6$ 、 $R_7$ 、 $R_{12}$ 及び $R_{13}$ がメチル基であり、 $R_1$ 1がベンジル基である請求項1記載の誘導体。

### 【請求項24】

式中、 $R_6$ と $R_7$ の置換基が異なる場合、 $R_6$ が結合する炭素原子の立体配置が (R)、(S)及び(RS)の何れかである請求項 $1\sim7$ 及び12何れか記載の 誘導体。

#### 【請求項25】

式中、R<sub>8</sub>とR<sub>9</sub>の置換基が異なる場合、R<sub>8</sub>が結合する炭素原子の立体配置が(R)、(S)及び(RS)の何れかである請求項1及び13何れか記載の誘導体。

### 【請求項26】

式中、 $R_{10}$ が水素原子以外の置換基である場合、 $R_{10}$ が結合する炭素原子の立体配置が(R)、(S)及び(RS)の何れかである請求項1記載の誘導体。

### 【請求項27】

請求項1記載の誘導体を有効成分として含有することを特徴とする甘味剤又は 甘味が付与された食品その他の製品。

更に、甘味剤用の担体又は増量剤を含んでいてもよい。

### 【発明の詳細な説明】

[0001]

#### 【発明の属する技術分野】

本発明は新規Nーアルキルアスパルチルジペプチドエステル誘導体並びにこれ を有効成分として含有する甘味剤及び甘味が付与された食品等の製品に関する。

[0002]

#### 【従来の技術】

近年、食生活の高度化に伴い特に糖分の摂取過多による肥満及びこれに伴う各 種の疾病が問題となっており、砂糖に替わる低カロリー甘味剤の開発が望まれて いる。現在、広汎に使用されている甘味剤として、安全性と甘味の質の面で優れ ているアスパルテームがあるが安定性にやや問題が残されている。国際特許WO 94/11391号公開公報には、アスパルテームを構成するアスパラギン酸の の窒素原子上にアルキル基を導入した誘導体の甘味倍率が著しく向上することが 記載されており、安定性の点でも若干の改善がみられたことが報告されている。 この公報に記載されている化合物の中で最も優れているのはアルキル基として3 ,3-ジメチルブチル基を導入したN-[N-(3,3-ジメチルブチル)-L -α-アスパルチル] -L-フェニルアラニン 1-メチルエステルであり、甘 味度はシュークロースの10000倍と報告されている(2、5、10%のシュ ークロース溶液と比較)。3,3ージメチルブチル基以外に20種類の置換基を 導入したアスパルテーム誘導体が記載されているが、これらの甘味度は全て25 00倍以下と報告されている。アルキル基として3-(置換フェニル)プロピル 基を導入した誘導体も記載されており、その中で比較的甘味度が高い誘導体とし てN-「N-(3-フェニルプロピル)-L-α-アスパルチル]-L-フェニ ルアラニン 1-メチルエステルが甘味度1500倍、N-[N-[3-(3-メトキシー4 - ヒドロキシフェニル)プロピル] - L - α - アスパルチル] - L ーフェニルアラニン 1ーメチルエステルが甘味度2500倍と報告されている 。しかしこれらの誘導体の甘味度はN-[N-(3,3-ジメチルブチル)-L -α-アスパルチル]-L-フェニルアラニン 1-メチルエステルの1000 0倍には及ばない。また、3-フェニルプロピル基の3位に更にメチル基を導入

した構造である置換基、即ち3-フェニルブチル基をアルキル基として持つN- $[N-[(RS)-3-Jr=nJ+nJ+n]-L-\alpha-PJ+nJ+nJ-L-Jr$ ニルアラニン 1ーメチルエステルの甘味度は1200倍と報告されており、3 位にメチル基が導入されたことにより、N- [N- (3-フェニルプロピル) -L-α-アスパルチル]-L-フェニルアラニン 1-メチルエステルに比べ若 干甘味度が低下している。また、N- [N- [3- (3-メトキシー4-ヒドロ キシフェニル) プロピル] -L-α-アスパルチル] -L-フェニルアラニン 1-メチルエステルのプロピル基の1位にメチル基を導入した構造であるN−「 N- 「3- (3-メトキシ-4-ヒドロキシフェニル) - (RS) -1-メチル プロピル] - L - α - アスパルチル] - L - フェニルアラニン 1 - メチルエス テルの甘味度は500倍と報告されており、1位にメチル基が導入されたことに より、著しく甘味度が低下している。更に、L-フェニルアラニン メチルエス テル部分を他のアミノ酸エステルと置き換えた例としてN-[N-(3,3-ジ メチルブチル) $-L-\alpha-$ アスパルチル]-L-チロシン 1-メチルエステル が記載されているが、この誘導体の甘味度は4000倍と報告されている。この ような状況下、甘味度に優れた低カロリーの甘味剤の開発が求められている。

[0003]

#### 【発明が解決しようとする課題】

本発明の課題は、安全性に優れ、上記N-[N-(3,3-i)メチルブチル)  $-L-\alpha-P$ スパルチル] -L-Dェニルアラニン 1-メチルエステルと同等 又はこれ以上の甘味度を有する新規N-Pルキルアスパルチルジペプチドエステル誘導体及びこれを有効成分として含有する低カロリー甘味剤等を提供すること にある。

[0004]

### 【課題を解決するための手段】

本発明者等は、前記課題を解決すべく、フェニル基上に種々の置換基を有しかつ主鎖上に1から4個のアルキル置換基を有する、3-フェニルプロピオンアルデヒド誘導体、シンナムアルデヒド誘導体又は(2-フェニルエチル)アルキルケトン誘導体等を用い、還元的アルキル化反応により、アスパルテーム及びアス

パルテーム誘導体(アスパルテームのL-フェニルアラニン メチルエステル部 分を他のアミノ酸エステルで置き換えた化合物)を構成するアスパラギン酸の窒 素原子上に種々の3-(置換フェニル)プロピル基「例えば3,3-ジアルキル -3-(置換フェニル)プロピル基、又は(RS)-3-アルキルー3-(置換 フェニル)プロピル基等〕を導入した種々の化合物を合成してそれらの甘味度を 調べた。その結果、甘味倍率の点で上記国際特許WO94/11391号公開公 報に記載の甘味度1200倍と報告されているN-[N-[(RS)-3-フェ ニルブチル] ーLーαーアスパルチル] ーLーフェニルアラニン 1ーメチルエ ステル、甘味度4000倍と報告されているN-[N-(3,3-ジメチルブチ ル) - L - α - アスパルチル] - L - チロシン 1 - メチルエステル等は言うに 及ばず、甘味度10000倍と報告されているN-[N-(3,3-ジメチルブ チル) - L - α - アスパルチル] - L - フェニルアラニン 1 - メチルエステル を遙かに上回るものがあり、特に下記一般式(1)で示される化合物が甘味剤と して優れていることを見出し、この知見に基づいて本発明を完成するに到った。 即ち本発明は下記一般式(1)で示されるN-アルキルアスパスチルジペプチド 誘導体(塩の形態にあるものを含む。)並びにこれを含有する甘味剤及び食品等 の製品に存する。

[0005]

【化2】

[0006]

上記式中、 $R_1$ 、 $R_2$ 、 $R_3$ 、 $R_4$ 及び $R_5$ はそれぞれ相互に独立していて、水素原子、水酸基、炭素数が1から3のアルコキシ基、炭素数が1から3のアルキル基及び炭素数が2又は3のヒドロキシアルキルオキシ基から選ばれる置換基を、

又は $R_1$ と $R_2$ とは、若しくは $R_2$ と $R_3$ とは一緒になってメチレンジオキシ基を、それぞれ表す。

[0007]

但し、ここで $\mathbf{R}_1$ と $\mathbf{R}_2$ とが、又は $\mathbf{R}_2$ と $\mathbf{R}_3$ とが一緒になってメチレンジオキシ基を表す場合、 $\mathbf{R}_4$ 、 $\mathbf{R}_5$ 、及び一緒にならない場合の $\mathbf{R}_1$ 又は $\mathbf{R}_3$ はそれぞれ相互に独立していて前記それぞれのために指定又は例示される置換基の何れかを表す

[0008]

 $R_6$ 、 $R_7$ 、 $R_8$ 、 $R_9$ 及び $R_{10}$ はそれぞれ相互に独立していて、水素原子及び炭素数が 1 から 3 のアルキル基から選ばれる置換基を、又は  $R_6$ 、 $R_7$ 、 $R_8$ 、 $R_9$ 及び  $R_{10}$ から選ばれる任意の 2 つの置換基は一緒になって炭素数が 1 から 5 のアルキレン基を、それぞれ表す。

[0009]

但し、ここで $R_6$ 、 $R_7$ 、 $R_8$ 、 $R_9$ 及び $R_{10}$ から選ばれる任意の2つが一緒になって炭素数が1から5のアルキレン基を表す場合、その選ばれた2つ以外の置換基はそれぞれ相互に独立していて前記それぞれのために指定又は例示される置換基の何れかを表す。

[0010]

上記一般式(1)中、波線で表される結合は、一重結合であり、結合の方向に 制限はない。

[0011]

 $R_6$ と $R_7$ とが、若しくは $R_8$ と $R_9$ とが異なる置換基を表す場合、又は $R_{10}$ が水素原子以外の置換基を表す場合、 $R_6$ と $R_7$ とが結合する炭素原子、 $R_8$ と $R_9$ とが結合する炭素原子、及び $R_{10}$ が結合する炭素原子の立体配置には制限がない(例えば、それぞれ独立して(R)、(S)、(RS)等)。

[0012]

 $R_{11}$ は水素原子、ベンジル基、p-ヒドロキシベンジル基、シクロヘキシルメチル基、フェニル基、シクロヘキシル基、フェニルエチル基及びシクロヘキシルエチル基から選ばれる置換基を、 $R_{12}$ は水素原子及び炭素数が1から3のアルキ

ル基から選ばれる置換基を、及び $R_{13}$ は炭素数が1から4のアルキル基から選ばれる置換基を、それぞれ表す。

[0013]

但し、 $R_6$ 、 $R_7$ 、 $R_8$ 、 $R_9$ 及び $R_{10}$ の全てが同時に水素原子を表す誘導体、 $R_6$ がメチル基を、 $R_1$ 、 $R_2$ 、 $R_3$ 、 $R_4$ 、 $R_5$ 、 $R_7$ 、 $R_8$ 、 $R_9$ 、 $R_{10}$ 及び $R_{12}$ が同時に水素原子を、 $R_{11}$ がベンジル基又は $P_1$  ーヒドロキシベンジル基を、それぞれ表す誘導体、並びに $R_2$ がメトキシ基を、 $R_3$ が水酸基を、 $R_{10}$ がメチル基を、 $R_1$ 、 $R_4$ 、 $R_5$ 、 $R_6$ 、 $R_7$ 、 $R_8$ 及び $R_9$ が同時に水素原子を、 $R_{11}$ がベンジル基又は $P_1$  ーヒドロキシベンジル基を、それぞれ表す誘導体は除かれる。

[0014]

### 【発明の実施の形態】

本発明の新規N-アルキルアスパルチルジペプチドエステル誘導体には上記一般式(1)で示される化合物が含まれ、更にその塩の形態にあるものが含まれる。上記誘導体を構成するアミノ酸のうち、アスパラギン酸はL-体であるが、その他のアミノ酸は、L-体であってもD-体であってもよい。

[0015]

本発明の化合物には、好ましい形態として下記の化合物が含まれる。

[0016]

### [1] 上記一般式(1)で示される化合物。

但し、上記一般式(1)において、 $R_1$ 、 $R_2$ 、 $R_3$ 、 $R_4$ 及び $R_5$ はそれぞれ相互に独立していて、水素原子(H)、水酸基(OH)、炭素数が 1 から 3 のアルコキシ基(OCH $_3$ 、OCH $_2$ CH $_3$ 、OCH $_2$ CH $_3$ 、OCH $_2$ CH $_3$ 等)、炭素数が 1 から 3 のアルキル基(CH $_3$ 、CH $_2$ CH $_3$ 、CH $_2$ CH $_3$ 年)、炭素数が 2 又は 3 のヒドロキシアルキルオキシ基(O(CH $_2$ ) $_2$ OH、OCH $_2$ CH(OH)CH $_3$ 等)から選ばれる置換基、又は  $R_1$ と  $R_2$ とは、若しくは  $R_2$ と  $R_3$ とは一緒になってメチレンジオキシ基(OCH $_2$ O)である。

[0017]

但し、ここで $R_1$ と $R_2$ とが、又は $R_2$ と $R_3$ とが一緒になってメチレンジオキシ基である場合、 $R_4$ 、 $R_5$ 、及び一緒にならない場合の $R_1$ 又は $R_3$ はそれぞれ相互

に独立していて前記それぞれのために指定又は例示される置換基の何れかである

[0018]

 $R_6$ 、 $R_7$ 、 $R_8$ 、 $R_9$ 及び $R_{10}$ はそれぞれ相互に独立していて、水素原子及び炭素数が1から3のアルキル基から選ばれる置換基であるか、又は $R_6$ 、 $R_7$ 、 $R_8$ 、 $R_9$ 及び $R_{10}$ から選ばれる任意の2つの置換基は一緒になって炭素数が1から5のアルキレン基( $CH_2$ 、 $CH_2$ CH $_2$ 、 $CH_2$ CH $_3$ 等)である。

[0019]

但し、ここで $R_6$ 、 $R_7$ 、 $R_8$ 、 $R_9$ 及び $R_{10}$ から選ばれる任意の2つが一緒になって炭素数 1 から 5 のアルキレン基である場合、その選ばれた 2 つ以外の置換基はそれぞれ相互に独立していて前記それぞれのために指定又は例示される置換基である。

[0020]

上記一般式(1)中、波線で表される結合は、一重結合であり、結合の方向に 制限はない。

[0021]

 $R_6$ と $R_7$ とが、若しくは $R_8$ と $R_9$ とが異なる置換基である場合、又は $R_{10}$ が水素原子以外の置換基である場合、 $R_6$ と $R_7$ とが結合する炭素原子、 $R_8$ と $R_9$ とが結合する炭素原子、及び $R_{10}$ が結合する炭素原子の立体配置に制限はなく、(R)、(S)、(RS)等の何れでもよい。

[0022]

 $R_{11}$ は水素原子、ベンジル基( $CH_2C_6H_5$ )、p-ヒドロキシベンジル基( $CH_2C_6H_5-p-OH$ )、シクロヘキシルメチル基( $CH_2C_6H_{11}$ )、フェニル基( $C_6H_5$ )、シクロヘキシル基( $C_6H_{11}$ )、フェニルエチル基( $CH_2CH_2C_6H_1$ )及びシクロヘキシルエチル基( $CH_2CH_2C_6H_1$ )から選ばれる置換基であり、 $R_{12}$ は水素原子及び炭素数が 1 から 3 のアルキル基から選ばれる置換基であり、 $R_{13}$ は炭素数が 1 から 4 のアルキル基から選ばれる置換基である。

[0023]

但し、R<sub>6</sub>、R<sub>7</sub>、R<sub>8</sub>、R<sub>9</sub>及びR<sub>10</sub>の全てが同時に水素原子である化合物、R

 $6^{\it m}$ メチル基であり、 $R_1$ 、 $R_2$ 、 $R_3$ 、 $R_4$   $R_5$   $R_7$   $R_8$   $R_9$   $R_{10}$ 及び $R_{12}$  が同時に水素原子であり、 $R_{11}$ がベンジル基又はp-ヒドロキシベンジル基である化合物、並びに $R_2$ がメトキシ基であり、 $R_3$ が水酸基であり、 $R_{10}$ がメチル基であり、 $R_1$ 、 $R_4$ 、 $R_5$ 、 $R_6$ 、 $R_7$ 、 $R_8$ 及び $R_9$ が同時に水素原子であり、 $R_{11}$ がベンジル基又はp-ヒドロキシベンジル基である化合物は除かれる。

[0024]

- [2] R<sub>6</sub>がメチル基である上記[1]記載の化合物。
- [3] R<sub>7</sub>がメチル基である上記[2]記載の化合物。
- [4] R<sub>8</sub>、R<sub>9</sub>及びR<sub>10</sub>が水素原子である上記[3]記載の化合物。
- [5]  $R_{10}$ がメチル基である上記[1]  $\sim$  [3]記載の化合物。

[0025]

[6]  $R_6$ と $R_7$ とが一緒になって炭素数が1から5のアルキレン基 $_6$ である上記[1]記載の化合物。

[0026]

[7]  $R_1$ 、 $R_2$ 、 $R_3$ 、 $R_4$ 及び $R_5$ の全てが水素原子である化合物を除く上記[2]記載の化合物。

[0027]

[8]  $R_6$ がメチル基であり、 $R_1$ 、 $R_2$ 、 $R_3$ 、 $R_4$ 、 $R_5$ 、 $R_7$ 、 $R_8$ 、 $R_9$ 及び $R_{10}$ が全て水素原子である上記[1]記載の化合物。

[0028]

- [9] R<sub>6</sub>が炭素数2又は3のアルキル基である上記[1]記載の化合物。
- $[1\ 0]\ R_{6}$ 、 $R_{7}$ 、 $R_{8}$ 、 $R_{9}$ 及び $R_{10}$ から選ばれる任意の 2 つが一緒になって炭素数が 1 から 5 のアルキレン基である上記 [1] 記載の化合物。

[0029]

[11]  $R_6$ 、 $R_7$ 、 $R_8$ 及び $R_9$ が全て水素原子であり、 $R_{10}$ がメチル基であり、 $R_2$ が水素原子、水酸基、炭素数が 2 若しくは 3 のアルコキシ基、炭素数が 1 から 3 のアルキル基及び炭素数が 2 若しくは 3 のヒドロキシアルキルオキシ基から選ばれる置換基、又は、 $R_2$ と、 $R_1$ 若しくは  $R_3$ の何れかとが一緒になってメチレンジオキシ基である上記 [1] 記載の化合物。

[0030]

[12]  $R_6$ 、 $R_7$ 、 $R_8$ 及び $R_9$ が全て水素原子であり、 $R_{10}$ がメチル基であり、  $R_3$ が水素原子、炭素数が 1 から 3 のアルコキシ基、炭素数が 1 から 3 のアルキル基及び炭素数が 2 若しくは 3 のヒドロキシアルキルオキシ基から選ばれる置換基、又は、 $R_3$ と、 $R_2$ 若しくは  $R_4$ の何れかとが一緒になってメチレンジオキシ基である上記 [1] 記載の化合物。

[0031]

[13]  $R_1$ 、 $R_4$ 、 $R_5$ 、 $R_6$ 、 $R_7$ 、 $R_8$ 及び $R_9$ が全て水素原子であり、 $R_{10}$ がメチル基であり、 $R_2$ がメトキシ基であり、 $R_3$ が水酸基であり、 $R_{11}$ が水素原子、シクロヘキシルメチル基、フェニル基、シクロヘキシル基、フェニルエチル基( $CH_2CH_2C_6H_5$ )及びシクロヘキシルエチル基( $CH_2CH_2C_6H_{11}$ )から選ばれる置換基である上記 [1] 記載の化合物。

[0032]

[14]  $R_6$ 及び $R_7$ が水素原子であり、 $R_{10}$ が炭素数が2又は3のアルキル基である上記[1]記載の化合物。

[0033]

[15]  $R_6$ 及び $R_7$ が水素原子であり、 $R_8$ 、 $R_9$ 及び $R_{10}$ から選ばれる任意の 2 つが一緒になって炭素数が 1 から 5 のアルキレン基である上記 [1] 記載の化合物

[0034]

[16]  $R_6$ 、 $R_7$ 及び $R_{10}$ が水素原子であり、 $R_8$ と $R_9$ のうち少なくとも1つが 炭素数が1から3のアルキル基であるか、又は $R_8$ 及び $R_9$ が一緒になって炭素数が1から5のアルキレン基である上記[1]記載の化合物。

[0035]

[0036]

[18]  $R_2$ が水酸基であり、 $R_1$ 、 $R_3$ 、 $R_4$ 、 $R_5$ 、 $R_7$ 、 $R_8$ 、 $R_9$ 、 $R_{10}$ 及び $R_1$ 

2が水素原子であり、 $R_{6}$ 及び $R_{13}$ がメチル基であり、 $R_{11}$ がベンジル基である上記 [1] 記載の化合物。

[0037]

[19]  $R_2$ がメトキシ基であり、 $R_3$ が水酸基であり、 $R_1$ 、 $R_4$ 、 $R_5$ 、 $R_7$ 、 $R_8$ 、 $R_9$ 、 $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_6$ 及び $R_{13}$ がメチル基であり、 $R_{11}$ がベンジル基である上記 [1] 記載の化合物。

[0038]

[20]  $R_2$ が水酸基であり、 $R_3$ がメトキシ基であり、 $R_1$ 、 $R_4$ 、 $R_5$ 、 $R_7$ 、 $R_8$ 、 $R_9$ 、 $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_6$ 及び $R_{13}$ がメチル基であり、 $R_5$ がベンジル基である上記 [1] 記載の化合物。

[0039]

[21]  $R_2$ がメトキシ基であり、 $R_3$ が水酸基であり、 $R_1$ 、 $R_4$ 、 $R_5$ 、 $R_7$ 、 $R_8$ 、 $R_9$ 、 $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_6$ 及び $R_{13}$ がメチル基であり、 $R_{11}$ が P-ヒドロキシベンジル基である上記 [1] 記載の化合物。

[0040]

[22]  $R_2$ が水酸基であり、 $R_3$ がメトキシ基であり、 $R_1$ 、 $R_4$ 、 $R_5$ 、 $R_7$ 、 $R_8$ 、 $R_9$ 、 $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_6$ 及び $R_{13}$ がメチル基であり、 $R_{11}$ がシクロヘキシルメチル基である上記[1]記載の化合物。

[0041]

[23]  $R_3$ がメトキシ基であり、 $R_1$ 、 $R_2$ 、 $R_4$ 、 $R_5$ 、 $R_8$ 、 $R_9$ 、 $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_6$ 、 $R_7$ 及び $R_{13}$ がメチル基であり、 $R_{11}$ がベンジル基である上記[1]記載の化合物。

[0042]

[24]  $R_3$ が水酸基であり、 $R_1$ 、 $R_2$ 、 $R_4$ 、 $R_5$ 、 $R_8$ 、 $R_9$ 、 $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_6$ 、 $R_7$ 及び $R_{13}$ がメチル基であり、 $R_{11}$ がベンジル基である上記 [1] 記載の化合物。

[0043]

[25]  $R_2$ がメトキシ基であり、 $R_3$ が水酸基であり、 $R_1$ 、 $R_4$ 、 $R_5$ 、 $R_8$ 、 $R_9$ 、 $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_6$ 、 $R_7$ 及び $R_{13}$ がメチル基であり、 $R_{11}$ が

ベンジル基である上記[1]記載の化合物。

[0044]

[26]  $R_2$ が水酸基であり、 $R_3$ がメトキシ基であり、 $R_1$ 、 $R_4$ 、 $R_5$ 、 $R_8$ 、 $R_9$ 、 $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_6$ 、 $R_7$ 及び $R_{13}$ がメチル基であり、 $R_{11}$ がベンジル基である上記 [1] 記載の化合物。

[0045]

[27]  $R_2$ がメチル基であり、 $R_3$ が水酸基であり、 $R_1$ 、 $R_4$ 、 $R_5$ 、 $R_7$ 、 $R_8$ 、  $R_9$ 、 $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_6$ 及び $R_{13}$ がメチル基であり、 $R_{11}$ がベンジル基である上記 [1] 記載の化合物。

[0046]

[28]  $R_2$ が水酸基であり、 $R_3$ がメトキシ基であり、 $R_1$ 、 $R_4$ 、 $R_5$ 、 $R_6$ 、 $R_7$ 、 $R_9$ 、 $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_8$ 及び $R_{13}$ がメチル基であり、 $R_{11}$ がベンジル基である上記 [1] 記載の化合物。

[0047]

[29]  $R_1$ が水酸基であり、 $R_2$ 、 $R_3$ 、 $R_4$ 、 $R_5$ 、 $R_8$ 、 $R_9$ 、 $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_6$ 、 $R_7$ 及び $R_{13}$ がメチル基であり、 $R_{11}$ がベンジル基である上記 [1] 記載の化合物。

[0048]

[30]  $R_1$ が水酸基であり、 $R_3$ がメトキシ基であり、 $R_2$ 、 $R_4$ 、 $R_5$ 、 $R_8$ 、 $R_9$ 、 $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_6$ 、 $R_7$ 及び $R_{13}$ がメチル基であり、 $R_{11}$ がベンジル基である上記 [1] 記載の化合物。

[0049]

[31]  $R_1$ が水酸基であり、 $R_3$ がメチル基であり、 $R_2$ 、 $R_4$ 、 $R_5$ 、 $R_8$ 、 $R_9$ 、  $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_6$ 、 $R_7$ 及び $R_{13}$ がメチル基であり、 $R_{11}$ がベンジル基である上記 [1] 記載の化合物。

[0050]

[32]  $R_2$ と $R_3$ とが一緒になってメチレンジオキシ基であり、 $R_1$ 、 $R_4$ 、 $R_5$ 、  $R_8$ 、 $R_9$ 、 $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_6$ 、 $R_7$ 及び $R_{13}$ がメチル基であり、  $R_{11}$ がベンジル基である上記 [1] 記載の化合物。

[0051]

[33]  $R_2$ がメチル基であり、 $R_3$ がメトキシ基であり、 $R_1$ 、 $R_4$ 、 $R_5$ 、 $R_8$ 、  $R_9$ 、 $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_6$ 、 $R_7$ 及び $R_{13}$ がメチル基であり、 $R_1$  がベンジル基である上記 [1] 記載の化合物。

[0052]

[34]  $R_2$ がメチル基であり、 $R_3$ が水酸基であり、 $R_1$ 、 $R_4$ 、 $R_5$ 、 $R_8$ 、 $R_9$ 、  $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_6$ 、 $R_7$ 及び $R_{13}$ がメチル基であり、 $R_{11}$ がベンジル基である上記 [1] 記載の化合物。

[0053]

[35]  $R_2$ が水酸基であり、 $R_3$ がメチル基であり、 $R_1$ 、 $R_4$ 、 $R_5$ 、 $R_8$ 、 $R_9$ 、  $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_6$ 、 $R_7$ 及び $R_{13}$ がメチル基であり、 $R_{11}$ がベンジル基である上記 [1] 記載の化合物。

[0054]

[36]  $R_2$ がメトキシ基であり、 $R_3$ が水酸基であり、 $R_1$ 、 $R_4$ 、 $R_5$ 、 $R_8$ 、 $R_9$ 、 $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_6$ と $R_7$ とが一緒になってテトラメチレン基であり、 $R_{11}$ がベンジル基であり、 $R_{13}$ がメチル基である上記[1]記載の化合物

[0055]

[37]  $R_2$ が水酸基であり、 $R_3$ がメトキシ基であり、 $R_1$ 、 $R_4$ 、 $R_5$ 、 $R_8$ 、 $R_9$ 、  $R_{10}$ 及び $R_{12}$ が水素原子であり、 $R_6$ 及び $R_7$ がメチル基であり、 $R_{11}$ がベンジル基であり、 $R_{13}$ がエチル基である上記 [1] 記載の化合物。

[0056]

[38]  $R_2$ が水酸基であり、 $R_3$ がメトキシ基であり、 $R_1$ 、 $R_4$ 、 $R_5$ 、 $R_8$ 、 $R_9$ 、及び $R_{10}$ が水素原子であり、 $R_6$ 、 $R_7$ 、 $R_{12}$ 及び $R_{13}$ がメチル基であり、 $R_{11}$ がベンジル基である上記 [1] 記載の化合物。

[0057]

[39]  $R_6$ が結合する炭素原子の立体配置が(R)、(S)及び(RS)の何れかである上記 [17] ~ [22] 及び [27] 記載の化合物。

[0058]

[40] R<sub>8</sub>が結合する炭素原子の立体配置が(R)、(S)及び(RS)の何れかである上記[28]記載の化合物。

[0059]

 $\begin{bmatrix} 4 & 1 \end{bmatrix}$  R  $_{10}$ が結合する炭素原子の立体配置が(R)、(S)及び(RS)の何れかである上記  $\begin{bmatrix} 1 \end{bmatrix}$ 記載の化合物。

本発明には、好ましい形態として更に以下の発明も含まれる。

[0060]

[42] 本発明の前記誘導体を有効成分として含有する甘味剤、甘味が付与された食品その他の製品。更に、この中に甘味剤用の担体又は増量剤を含んでいてもよい。

[0061]

[43] 甘味が要求される製品(飲食品、医薬品、口内衛生品等)に本発明の誘導体を含有させる(混合、添加)甘味付与方法。

[0062]

[44] 下記一般式(2)で示されるアルデヒドと、下記一般式(3)で示されるアスパルテーム誘導体とを、還元的アルキル化の条件下で反応させる工程を含む、R<sub>10</sub>が水素原子である上記一般式(1)に示される化合物の製造方法。

[0063]

【化3】

$$R_3$$
 $R_4$ 
 $R_5$ 
 $R_7$ 
 $R_9$ 
 $R_8$ 
 $R_9$ 
 $R_9$ 
 $R_9$ 
 $R_9$ 

[0064]

但し上記一般式 (2) 中、 $R_1$ 、 $R_2$ 、 $R_3$ 、 $R_4$ 、 $R_5$ 、 $R_6$ 、 $R_7$ 、 $R_8$ 及び  $R_9$ 

は上記一般式(1)中の $R_1$ 、 $R_2$ 、 $R_3$ 、 $R_4$ 、 $R_5$ 、 $R_6$ 、 $R_7$ 、 $R_8$ 及び $R_9$ と同じ意味を表す。

[0065]

更に上記一般式(2)中、波線で表される結合は、一重結合であり、結合の方向に制限はない。

[0066]

また $R_6$ と $R_7$ とが、又は $R_8$ と $R_9$ とが同一の置換基でない場合、 $R_6$ 及び $R_7$ が、又は $R_8$ 及び $R_9$ が結合する炭素原子の立体配置は特に制限されず、(R)、(S)、及び(RS)等の何れでもよい。

[0067]

【化4】

$$\begin{array}{c} \text{COOR}_{13} \\ \text{OC} & \text{H} \\ \text{R}_{14} \text{HN} & \text{H} \\ \text{E}_{12} \\ \text{COOR}_{15} \end{array}$$

[0068]

但し上記一般式(3)中、 $R_{11}$ 、 $R_{12}$ 及び $R_{13}$ は上記一般式(1)中の $R_{11}$ 、 $R_{12}$ 及び $R_{13}$ と同じ意味を表し、 $R_{14}$ は水素原子又は当該還元的アルキル化の条件下で水素原子に変換しうる置換基を、 $R_{15}$ は水素原子又はベンジル基若しくは t ーブチル基等のカルボキシル基の保護に用いることのできる置換基を、それぞれ表す。

[0069]

 $[4\ 5]$  下記一般式(4)で示されるアルデヒドと、上記一般式(3)で示されるアスパルテーム誘導体とを、還元的アルキル化の条件下で反応させる工程を含む、 $R_7$ 、 $R_9$ 及び $R_{10}$ が水素原子である上記一般式(1)に示される化合物の製造方法。

[0070]

【化5】

[0071]

但し上記一般式(4)中、 $R_1$ 、 $R_2$ 、 $R_3$ 、 $R_4$ 、 $R_5$ 、 $R_6$ 及び $R_8$ は上記一般式(1)中の $R_1$ 、 $R_2$ 、 $R_3$ 、 $R_4$ 、 $R_5$ 、 $R_6$ 及び $R_8$ と同じ意味を表す。

[0072]

[46] 下記一般式(5)で示されるアルデヒドと、上記一般式(3)で示されるアスパルテーム誘導体とを、還元的アルキル化の条件下で反応させる工程を含む、上記一般式(1)に示される化合物の製造方法。

[0073]

【化6】

$$R_{2}$$
 $R_{1}$ 
 $R_{6}$ 
 $R_{8}$ 
 $R_{10}$ 
 $R_{7}$ 
 $R_{9}$ 
 $R_{10}$ 
 $R_{10}$ 

[0074]

但し、上記一般式(5)中、 $R_1$ 、 $R_2$ 、 $R_3$ 、 $R_4$ 、 $R_5$ 、 $R_6$ 、 $R_7$ 、 $R_8$ 、 $R_9$  及び $R_{10}$ は上記一般式(1)中の $R_1$ 、 $R_2$ 、 $R_3$ 、 $R_4$ 、 $R_5$ 、 $R_6$ 、 $R_7$ 、 $R_8$ 、 $R_9$  及び $R_{10}$ と同じ意味を表す。

[0075]

更に上記一般式(5)中、波線で表される結合は、一重結合であり、結合の方

向に制限はない。

[0076]

また $R_6$ と $R_7$ とが、又は $R_8$ と $R_9$ とが同一の置換基でない場合、 $R_6$ 及び $R_7$ が、又は $R_8$ 及び $R_9$ が結合する炭素原子の立体配置は特に制限されず、(R)、(S)、及び(RS)等の何れでもよい。

[0077]

上記[44]~[46]記載の製造方法は、当該還元的アルキル化の条件下で反応させる工程を含んでおればよく、更にそれ以外の工程を含むものでもよく、当該還元的アルキル化の条件化で反応させる工程の後に、脱保護のための工程や塩を形成させるための工程等の、それぞれ目的とする化合物を得るための任意の工程を含むものであってもよい。

[0078]

当該還元的アルキル化の条件下で水素原子に変換しうる置換基としては、ベンジルオキシカルボニル基等の通常そのために使用可能な置換基を当該条件に応じて任意に選択することができる。当該還元的アルキル化の条件には、それ自体公知の又は将来開発される適当な還元条件、例えば金属水素化物等を用いる条件等を適宜選択することができる。

[0079]

また本発明には好ましい形態として、上記一般式(2)、(4)又は(5)で示されるアルデヒドが水酸基を有するものである場合、その水酸基が適当な保護基(例えばベンジル基)により保護されたアルデヒドを用いた上記[44]~[46]記載の製造方法も含まれる。

[0080]

本発明の誘導体に含まれる本発明の化合物の塩としては例えばナトリウム、カリウム等のアルカリ金属との塩、カルシウム、マグネシウム等のアルカリ土類金属との塩、アンモニアとのアンモニウム塩、リジン、アルギニン等のアミノ酸との塩、塩酸、硫酸等の無機酸との塩、クエン酸、酢酸等の有機酸との塩及びサッカリン(saccharin)、アセスルフェーム(acesulfame)、シクラミン酸(cyclamic acid)、グリチルリチン酸(glycy

rrhizic acid)等の他の甘味剤との塩が挙げられ、これらも前述の通り本発明の誘導体に含まれる。

[0081]

本発明のN-アルキルアスパルチルジペプチドエステル誘導体はアスパルテー ム或いはアスパルテーム誘導体(アスパルテームのL-フェニルアラニン メチ ルエステル部分を他のアミノ酸エステルで置き換えた化合物)を、フェニル基上 に種々の置換基を持ち、なおかつ主鎖上に1から4個のアルキル置換基を持つ3 ーフェニルプロピオンアルデヒド誘導体、シンナムアルデヒド誘導体或いは(2) ーフェニルエチル)アルキルケトン誘導体と還元剤(例えば水素/パラジウム炭 素触媒)とを用いて還元的にアルキル化することによって容易に合成できる。或 いは通常のペプチド合成法(泉屋等 ペプチド合成の基礎と実験:丸善 1985.1. 20 発行)に従って得ることができるβ位のカルボン酸に保護基を持つアスパル テーム誘導体 (例えば $\beta$ -O-ベンジル- $\alpha$ -L-アスパルチル-L-アミノ酸 メチルエステル)を、上記3-フェニルプロピオンアルデヒド誘導体、シンナム アルデヒド誘導体或いは(2-フェニルエチル)アルキルケトン誘導体と還元剤 (例えばNaB(OAc)<sub>3</sub>H)とを用いて還元的にアルキル化(A.F.Abdel-Mag idら Tetrahedoron Letters,31,5595(1990)) した後に保護基を除去する方法、 或いは必要に応じて不飽和結合を還元剤で飽和する方法によって得ることができ るが、本発明の化合物の合成法はこれらに限るものではない。上記3-フェニル プロピオンアルデヒド誘導体、シンナムアルデヒド誘導体或いは(2-フェニル エチル)アルキルケトン誘導体の代わりにこれらのアセタール或いはケタール誘 導体等が還元的アルキル化の際のアルデヒド或いはケトン成分として用いられ得 ることはもちろんである。

[0082]

本発明の誘導体、即ち本発明の化合物及びその塩の形態は、官能試験の結果、砂糖に類似した甘味質で強い甘味を持つことが解った。例えばN-[N-[3-(3-k+1)] - k+1] - k+1 (3-k+1) - k+1 (4-k+1) - k+1 (4-k+1) - k+1 (5-k+1) - k+1 (6-k+1) - k+1 (6-k+1) - k+1 (7-k+1) - k+1 (8-k+1) - k+1 (8-k+1) - k+1 (9-k+1) - k+1 (9-k+1) - k+1 (1) - k+1 (1)

-3 ーメチルブチル] ー L ー  $\alpha$  ー P スパルチル] ー L ー D ェニルアラニン 1 ーメチルエステルの甘味度は約70000倍(対砂糖)、N ー [N ー [3 ー (3 ー E ドロキシー4 ーメチルフェニル) -3 ーメチルブチル] ー E ー  $\alpha$  ー B アスパルチル] ー E ー E ー E ー E ルフェニルアラニン E ー E ー E ルエステルの甘味度は約E 60000倍(対砂糖)、E N ー E [E R S ) E ー E ー E ー E ー E トキシフェニル ブチル] ー E ー E ー E ー E ー E ー E ルエステルの甘味度は約E 50000倍(対砂糖)であった。また、E N ー E N ー E 1 ー E ー E ー E ののが ツファー中、E 2 E 0 E C における半減期はE 3 年 4 時間であり、E N ー E N ー E 1 ー E ー E ルエステル (同条件で半減期E 3 1 年 9 日間)とほぼ同等であった。

また、アスパルテーム、N-[N-(3,3-ジメチルブチル)ーL- $\alpha$ -アスパルチル]ーL-フェニルアラニン 1-メチルエステル、N-[N-[3-(3-ヒドロキシー4-メトキシフェニル)ー3-メチルブチル]ーL- $\alpha$ -アスパルチル]ーL-フェニルアラニン 1-メチルエステル、及びN-[N-[3-(4-ヒドロキシフェニル)ー3-メチルブチル]ーL- $\alpha$ -アスパルチル]ーL- $\alpha$ -アスパルチル]ーL-フェニルアラニン 1-メチルエステルのp H=3.0のバッファー中、70.0℃における半減期を測定したところ、それぞれ23.5時間、38.3時間、44.5時間及び43.6時間であった。

[0083]

合成したいくつかのN-アルキルアスパルチルジペプチドエステル誘導体(下記一般式(6)で示される。)について構造と官能試験の結果を表1に示す。

[0084]

表1の結果から明らかなように、本発明の新規誘導体が甘味度において特に優れていることが理解される。

[0085]

【化7】

[0086]

N-アルキルアスパルチルジペプチドエステル誘導体の構造と甘味倍数

## 【表1】

| 化合物<br>番号 | $\mathbf{R}_1$ | R,               | D                | $\mathbf{R}_{6}$                  | D                              | D               | R <sub>11</sub>                                     | $\mathbf{R}_{12}$ | D                               | 甘味<br>倍数*' |
|-----------|----------------|------------------|------------------|-----------------------------------|--------------------------------|-----------------|-----------------------------------------------------|-------------------|---------------------------------|------------|
| TET "J    | 161            | 102              | 103              | 106                               | 167                            | 11.8            | 1011                                                | 112               | It 1 3                          | 1090       |
|           |                | ··· · <u>-</u>   |                  |                                   |                                |                 |                                                     |                   |                                 |            |
| 1         | H              | H                | OCH <sub>3</sub> | CH <sub>3</sub>                   | H                              | H               | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>       | H                 | CH <sub>3</sub>                 | 16000      |
| 2         | H              | OH               | H                | CH <sub>3</sub>                   | H                              | H               | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>       | H                 | CH <sub>3</sub>                 | 12000      |
| 3         | H              | OCH <sub>3</sub> | ОН               | CH <sub>3</sub>                   | H                              | H               | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>       | H                 | CH <sub>3</sub>                 | 30000      |
| 4         | H              | OH               | OCH <sub>3</sub> | CH <sub>3</sub>                   | H                              | H               | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>       | H                 | CH3                             | 50000      |
| 5         | H              | OCH <sub>3</sub> | OH               | CH <sub>3</sub>                   | H                              | H               | CH <sub>2</sub> C <sub>5</sub> H <sub>4</sub> -p-OH | H                 | CH <sub>3</sub>                 | 25000      |
| 6         | H              | OH               | OCH <sub>3</sub> | CH <sup>3</sup>                   | H                              | H               | CH <sub>2</sub> C <sub>6</sub> H <sub>1 1</sub>     | H                 | CH <sub>3</sub>                 | 40000      |
| 7         | H              | H                | OCH <sub>3</sub> | CH <sub>3</sub>                   | CH <sub>3</sub>                | H               | $\mathrm{CH_2}\mathrm{C_6}\mathrm{H_5}$             | Ħ                 | CH <sub>3</sub>                 | 25000      |
| 8         | H              | H                | ОН               | CH <sub>3</sub>                   | CH <sub>3</sub>                | H               | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>       | H                 | $\mathrm{CH_3}$                 | 25000      |
| 9         | H              | OCH <sub>3</sub> | OH               | CH <sub>3</sub>                   | CH <sub>3</sub>                | H               | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>       | H                 | CH <sub>3</sub>                 | 40000      |
| 10        | H              | OH               | OCH3             | CH <sub>3</sub>                   | CH <sub>3</sub>                | H               | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>       | H                 | CH <sub>3</sub>                 | 70000      |
| 11        | H              | CH <sub>3</sub>  | ОН               | CH <sub>3</sub>                   | Ħ                              | H               | $\mathrm{CH_2C_6H_5}$                               | H                 | CH <sub>3</sub> .               | 50000      |
| 12        | H              | OH               | OCH <sub>3</sub> | H                                 | H                              | CH <sub>3</sub> | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>       | H                 | CH <sub>3</sub>                 | 5000       |
| 13        | OH             | H                | H                | CH <sub>3</sub>                   | CH <sub>3</sub>                | H               | $\mathrm{CH_2C_6H_5}$                               | H                 | CH <sub>3</sub>                 | 8000       |
| 14        | ОН             | H                | OCH <sub>3</sub> | CH <sub>3</sub>                   | CH3                            | H               | $\mathrm{CH_2C_6H_5}$                               | H                 | CH <sub>3</sub>                 | 20000      |
| 15        | ОН             | H                | CH3              | CH <sub>3</sub>                   | CH <sub>3</sub>                | <b>H</b> .      | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>       | H                 | CH <sub>3</sub>                 | 25000      |
| 16        | H              | OCI              | $I_2 0$          | CH <sub>3</sub>                   | CH <sub>3</sub>                | H               | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>       | H                 | CH <sub>3</sub>                 | 30000      |
| 17        | H              | CH <sub>3</sub>  | OCH <sub>3</sub> | CH <sub>3</sub>                   | CH <sub>3</sub>                | H               | $\mathrm{CH_2}\mathrm{C_6}\mathrm{H_5}$             | H                 | CH <sub>3</sub>                 | 30000      |
| .18       | H              | CH <sub>3</sub>  | ОН               | CH <sub>3</sub>                   | CH <sub>3</sub>                | H               | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>       | H                 | CH <sub>3</sub>                 | 70000      |
| 19        | H              | OH               | CH <sub>3</sub>  | CH <sub>3</sub>                   | CH <sub>3</sub>                | H               | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>       | H                 | CH <sub>3</sub>                 | 60000      |
| 20        | H              | OCH <sub>3</sub> | OH               | CH <sub>2</sub> CH <sub>2</sub> C | H <sub>2</sub> CH <sub>2</sub> | H               | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>       | H                 | CH <sub>3</sub>                 | 30000      |
| 21        | H              | OH               | OCH <sub>3</sub> | CH <sub>3</sub>                   | CH <sub>3</sub>                | H               | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>       | H                 | CH <sub>2</sub> CH <sub>3</sub> | 15000      |
| 22        | H              | OH               | OCH3             | CH <sub>3</sub>                   | CH <sub>3</sub>                | H               | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>       | CH <sub>3</sub>   | CH <sub>3</sub>                 | 40000      |
|           |                |                  |                  |                                   |                                |                 |                                                     |                   |                                 |            |

<sup>\*) 4%</sup>シュークロース水溶液と比較した値

[0087]

なお、本発明の誘導体(本発明の化合物及びその塩の形態にあるものも含む。 )を甘味剤として使用する場合、特別の支障のない限り、他の甘味剤と併用して もよいことはもちろんである。

[0088]

本発明の誘導体を甘味剤として使用する場合、必要により担体及び/又は増量 剤を使用してもよく、例えば従来から知られ、又は使用されている甘味剤用の担 体、増量剤等を使用することができる。

[0089]

本発明の誘導体は甘味剤又は甘味剤成分として使用することができるが、更に甘味の付与を必要とする食品等の製品、例えば菓子、チューインガム、衛生製品、化粧品、薬品及び人以外の動物用製品等の各種製品の甘味剤として使用することができる。更に、本発明の誘導体を含有し甘味が付与された製品の形態として、また甘味の付与を必要とする当該製品に対する甘味付与方法において本発明の誘導体を使用することができ、その使用方法等については、従来法その他公知の方法に従うことができる。

[0090]

【実施例】

以下、実施例により本発明を詳細に説明する。なお、本発明の範囲は以下の実施例の範囲に限定されるものではない。

[0091]

なお、NMRスペクトルはVarian Gemini-300 (300MHz) により、MSスペクトルはThermo Quest TSQ700により 測定した。

[0092]

(実施例1)

N- [N- [3-(3-ヒドロキシー4-メトキシフェニル) -3-メチルブチル] - L -  $\alpha$  -  $\gamma$  -

 $N-t-プトキシカルボニルー<math>\beta-O-$ ベンジルー $\alpha-L-$ アスパルチルーL-フェニルアラニン メチルエステル703mg (1. 45ミリモル) に4N-HC1/ジオキサン溶液10m1を加え、室温で1時間撹拌した。反応液を減圧下に濃縮し、残滓に5%炭酸水素ナトリウム水溶液50m1を加え、酢酸エチル50m1で2回抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、硫酸マグネシウムを濾過して除き、濾液を減圧下に濃縮して、 $\beta-O$ ーベンジルー $\alpha-L-$ アスパルチルーL-フェニルアラニン メチルエステル57mg (1. 45ミリモル) を粘稠な油状物として得た。

### [0093]

上記 $\beta$ -O-ベンジルー $\alpha$ -L-アスパルチルーL-フェニルアラニン メチルエステル557mg(1.45ミリモル)をテトラヒドロフラン(THF)15m1に溶解し、この溶液を0℃に保った。これに、3ー(3ーベンジルオキシー4ーメトキシフェニル)-3ーメチルブチルアルデヒド432mg(1.45ミリモル)、酢酸 0.083m1(1.45ミリモル)及びNaB(OAc)3H462mg(2.18ミリモル)を加え、0℃で1時間、更に室温で1夜撹拌した。反応液に飽和炭酸水素ナトリウム水溶液50m1を加え、酢酸エチル50m1で2回抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、硫酸マグネシウムを濾過して除き、濾液を減圧下に濃縮した。残滓を分取薄層クロマトグラフィー(PTLC)で精製し、N-[N-[3-(3-ベンジルオキシー4-メトキシフェニル)-3ーメチルブチル]- $\beta$ -O-ベンジルーLー $\alpha$ -アスパルチル]-Lーフェニルアラニン 1ーメチルエステル832mg(1.25ミリモル)を粘稠な油状物として得た。

#### [0094]

 して $N-[N-[3-(3-ヒドロキシ-4-メトキシフェニル)-3-メチルブチル]-L-<math>\alpha$ -アスパルチル]-L-フェニルアラニン 1-メチルエステル400mg(0.82ミリモル)を固体として得た。

[0095]

 $^{1}$ HNMR (DMSO-d<sub>6</sub>) δ: 1. 14 (s, 6H), 1. 54-1. 6 8 (m, 2H), 2. 04-2. 22 (m, 3H), 2. 24-2. 34 (dd, 1H), 2. 84-2. 94 (dd, 1H), 3. 00-3. 08 (dd, 1H), 3. 31-3. 36 (m, 1H), 3. 59 (s, 3H), 3. 71 (s, 3H), 4. 46-4. 55 (m, 1H), 6. 60-6. 65 (dd, 1H), 6. 73 (s, 1H), 6. 80 (d, 1H), 7. 10-7. 28 (m, 5H), 8. 45 (d, 1H), 8. 75 (brs, 1H).

ESI-MS 487. 3 (MH<sup>+</sup>)

甘味度(対砂糖) 70000倍

[0096]

(実施例2)

 $N-[N-[3-(4-メトキシフェニル)-3-メチルブチル]-L-<math>\alpha$ -アスパルチル]-L-フェニルアラニン 1-メチルエステル (表 1 化合物番号 7) の合成

 $3-(3-\text{ベンジルオキシ-}4-\text{メトキシフェニル})-3-\text{メチルブチルアル デヒドの代わりに}3-(4-\text{メトキシフェニル})-3-\text{メチルブチルアルデヒド を用いる以外は実施例<math>1$ と同様にして $N-[N-[3-(4-\text{メトキシフェニル})-3-\text{メチルブチル}]-L-\alpha-\text{アスパルチル}]-L-フェニルアラニン <math>1$ -メチルエステルを総収率72.2%で固体として得た。

[0097]

 $^{1}$ HNMR (DMSO- $^{1}$ d<sub>6</sub>) δ:1.17 (s, 6H), 1.62-1.7 2 (m, 2H), 2.04-2.20 (m, 3H), 2.24-2.34 (dd, 1H), 2.84-2.94 (dd, 1H), 2.95-3.07 (dd, 1H), 3.30-3.35 (m, 1H), 3.51 (s, 3H), 3.70 (s, 3H), 4.46-4.54 (m, 1H), 6.83 (d, 2H), 7.14 -7.28 (m, 7H), 8.43 (d, 1H).

ESI-MS 471. 3 (MH<sup>+</sup>)

甘味度(対砂糖) 25000倍

[0098]

(実施例3)

 $N-[N-[3-(4-ヒドロキシフェニル)-3-メチルブチル]-L-<math>\alpha-$ アスパルチル]-L-フェニルアラニン 1-メチルエステル(表1 化合物番号8)の合成

3-(3-ベンジルオキシ-4-メトキシフェニル)-3-メチルブチルアルデヒドの代わりに<math>3-(4-ベンジルオキシフェニル)-3-メチルブチルアルデヒドを用いる以外は実施例1と同様にして<math>N-[N-[3-(4-ヒドロキシフェニル)-3-メチルブチル]-L-α-アスパルチル]-L-フェニルアラニン <math>1-メチルエステルを総収率64.5%で固体として得た。

[0099]

<sup>1</sup>HNMR (DMSO-d<sub>6</sub>) δ: 1. 15 (s, 6H), 1. 58-1. 7 2 (m, 2H), 2. 04-2. 20 (m, 3H), 2. 24-2. 34 (dd, 1H), 2. 85-2. 94 (dd, 1H), 3. 00-3. 08 (dd, 1H), 3. 30-3. 36 (m, 1H), 3. 59 (s, 3H), 4. 46-4. 55 (m, 1H), 6. 67 (d, 2H), 7. 07 (d, 2H), 7. 10-7. 27 (m, 5H), 8. 44 (d, 1H), 9. 15 (brs, 1H).

ESI-MS 457. 3 (MH<sup>+</sup>)

甘味度(対砂糖) 25000倍

[0100]

(実施例4)

N- [N- [3- (3-メトキシー4-ヒドロキシフェニル) -3-メチルブチル] -L- $\alpha$ -アスパルチル] -L-フェニルアラニン 1-メチルエステル (表1 化合物番号9)の合成

3-(3-ベンジルオキシ-4-メトキシフェニル)-3-メチルブチルアル デヒドの代わりに3-(3-メトキシ-4-ベンジルオキシフェニル)-3-メ チルブチルアルデヒドを用いる以外は実施例1と同様にしてN-[N-[3-(3-(3-x)++)-4-(2-x)]-1-x+ N-[3-(3-x)++)-4-(3-x) N-[3-x] N-[

[0101]

<sup>1</sup>HNMR (DMSO-d<sub>6</sub>) δ:1.17 (s, 6H), 1.63-1.7 2 (m, 2H), 2.08-2.22 (m, 3H), 2.25-2.33 (dd, 1H), 2.86-2.94 (dd, 1H), 3.00-3.08 (dd, 1H), 3.33-3.38 (m, 1H), 3.59 (s, 3H), 3.75 (s, 3H), 3.47-3.55 (m, 1H), 6.67 (s, 2H), 6.81 (s, 1H), 7.14-7.27 (m, 5H), 8.46 (d, 1H), 8.70 (brs, 1H),

ESI-MS 487. 3 (MH<sup>+</sup>)

甘味度(対砂糖) 40000倍

[0102]

(実施例5)

N-[N-[3-(3-L)] - L-4-L - L

[0103]

<sup>1</sup>HNMR (DMSO-d<sub>6</sub>) δ:1.18 (s, 6H), 1.22 (s, 3 H), 1.66-1.76 (m, 2H), 2.18-2.38 (m, 4H), 3

#### . 特平11-169419

. 00 (d, 1H), 3. 19 (d, 1H), 3. 36-3. 42 (m, 1H), 3. 49 (s, 3H), 3. 72 (s, 3H), 6. 67 (dd, 1H), 6. 74 (d, 1H), 6. 80 (d, 1H), 7. 02-7. 06 (m, 2H), 7. 20-7. 30 (m, 3H), 8. 29 (brs, 1H), 8. 75 (brs, 1H).

ESI-MS 501. 3 (MH<sup>+</sup>)

甘味度(対砂糖) 40000倍

[0104]

(実施例6)

 $N-[N-[3-(2-ヒドロキシフェニル)-3-メチルブチル]-L-<math>\alpha-$ アスパルチル]-L-フェニルアラニン 1-メチルエステル (表1 化合物番号 1 3) の合成

 $3-(3-\text{ペンジルオキシ-}4-\text{メトキシフェニル})-3-\text{メチルブチルアル デヒドの代わりに}3-(2-\text{ペンジルオキシフェニル})-3-\text{メチルブチルアル デヒドを用いる以外は実施例<math>1$ と同様にして $N-[N-[3-(2-\text{ヒドロキシ フェニル})-3-\text{メチルブチル}]-L-\alpha-\text{アスパルチル}]-L-フェニルアラ ニン <math>1-\text{メチルエステルを総収率}64.5\%$ で固体として得た。

[0105]

<sup>1</sup>HNMR (DMSO-d<sub>6</sub>) δ:1. 26 (s, 6H), 1. 84-2. 3 0 (m, 6H), 2. 88 (dd, 1H), 3. 02 (dd, 1H), 3. 32 -3. 38 (m, 1H), 3. 59 (s, 3H), 4. 45-4. 54 (m, 1H), 6. 68-6. 78 (m, 3H), 6. 96-7. 06 (m, 2H), 7 . 12-7. 30 (m, 5H), 8. 50 (d, 1H), 9. 30 (brs, 1H).

ESI-MS 457. 4 (MH<sup>+</sup>)

甘味度(対砂糖) 8000倍

[0106]

(実施例7)

ル]  $-L-\alpha-$ アスパルチル] -L-フェニルアラニン 1-メチルエステル (表1 化合物番号 14 ) の合成

3-(3-ベンジルオキシー4-メトキシフェニル)-3-メチルブチルアルデヒドの代わりに3-(2-ベンジルオキシー4-メトキシフェニル)-3-メチルブチルアルデヒドを用いる以外は実施例1と同様にしてN-[N-[3-(2-ヒドロキシー4-メトキシフェニル)-3-メチルブチル]-L-α-アスパルチル]-L-フェニルアラニン 1-メチルエステルを総収率44.1%で固体として得た。

[0107]

<sup>1</sup>HNMR (DMSO-d<sub>6</sub>) δ: 1. 22 (s, 6H), 1. 82-2. 2 0 (m, 5H), 2. 26 (dd, 1H), 2. 88 (dd, 1H), 3. 01 (dd, 1H), 3. 34-3. 40 (m, 1H), 3. 59 (s, 3H), 3 . 64 (s, 3H), 4. 46-4. 53 (m, 1H), 6. 28 (dd, 1H), 6. 36 (d, 1H), 6. 92 (d, 1H), 7. 14-7. 26 (m, 5H), 8. 52 (d, 1H), 9. 40 (brs, 1H).

ESI-MS 487. 3 (MH<sup>+</sup>)

甘味度(対砂糖) 20000倍

[0108]

(実施例8)

N- [N- [3- (2-ヒドロキシー4-メチルフェニル) -3-メチルブチル ] -L- $\alpha$ -アスパルチル] -L-フェニルアラニン 1-メチルエステル (表 1 化合物番号15)の合成

[0109]

<sup>1</sup>HNMR (DMSO-d<sub>6</sub>) δ: 1. 23 (s, 6H), 1. 82-2. 2 0 (m, 5H), 2. 14 (s, 3H), 2. 25 (dd, 1H), 2. 88 (dd, 1H), 3. 01 (dd, 1H), 3. 33-3. 39 (m, 1H), 3. 58 (s, 3H), 4. 46-4. 54 (m, 1H), 6. 51 (d, 1H), 6. 87 (s, 1H), 6. 90 (d, 1H), 7. 10-7. 23 (m, 5H), 8. 51 (d, 1H), 9. 20 (brs, 1H).

ESI-MS 471. 2 (MH<sup>+</sup>)

甘味度(対砂糖) 25000倍

[0110]

(実施例9)

N-[N-[3-(3,4-メチレンジオキシフェニル)-3-メチルブチル]  $-L-\alpha-アスパルチル]-L-フェニルアラニン 1-メチルエステル (表1 化合物番号16)の合成$ 

3-(3-ベンジルオキシー4-メトキシフェニル)-3-メチルブチルアルデヒドの代わりに3-(3,4-メチレンジオキシフェニル)-3-メチルブチルアルデヒドを用いる以外は実施例1と同様にしてN-[N-[3-(3、4-メチレンジオキシフェニル)-3-メチルブチル]-L-α-アスパルチル]-L-フェニルアラニン 1-メチルエステルを総収率69.7%で固体として得た。

[0111]

<sup>1</sup>HNMR (DMSO-d<sub>6</sub>) δ: 1. 16 (s, 6H), 1. 60-1. 7 0 (m, 2H), 2. 05-2. 20 (m, 3H), 2. 27 (dd, 1H), 2. 89 (dd, 1H), 3. 03 (dd, 1H), 3. 31-3. 35 (m, 1H), 3. 59 (s, 3H), 4. 46-4. 54 (m, 1H), 5. 94 (s, 2H), 6. 72 (dd, 1H), 6. 79 (d, 1H), 6. 88 (d, 1H), 7. 15-7. 28 (m, 5H), 8. 44 (d, 1H).

ESI-MS 485. 4 (MH<sup>+</sup>)

甘味度(対砂糖) 30000倍

[0112]

(実施例10)

N-[N-[3-(3-x+n-4-x++)] N-[N-[3-x+n-4-x++]] N-[3-x+n-4-x++] N-[3-x+n-2-x++] N-[

 $3-(3-べンジルオキシー4-メトキシフェニル)-3-メチルブチルアルデヒドの代わりに<math>3-(3-メチルー4-メトキシフェニル)-3-メチルブチルアルデヒドを用いる以外は実施例1と同様にして<math>N-[N-[3-(3-メチルー4-メトキシフェニル)-3-メチルブチル]-L-\alpha-アスパルチル]-L-フェニルアラニン 1-メチルエステルを総収率66.0%で固体として得た。$ 

[0113]

<sup>1</sup>HNMR (DMSO-d<sub>6</sub>) δ: 1. 16 (s, 6H), 1. 63-1. 7 2 (m, 2H), 2. 13 (s, 3H), 2. 08-2. 20 (m, 3H), 2 . 25-2. 32 (dd, 1H), 2. 85-2. 95 (dd, 1H), 3. 0 0-3. 06 (dd, 1H), 3. 31-3. 36 (m, 1H), 3. 59 (s , 3H), 3. 73 (s, 3H), 4. 47-4. 55 (m, 1H), 6. 79 -6. 82 (m, 1H), 7. 03-7. 06 (m, 2H), 7. 15-7. 2 7 (m, 5H), 8. 44-8. 47 (d, 1H).

ESI-MS 485. 5 (MH<sup>+</sup>)

甘味度(対砂糖) 30000倍

[0114]

(実施例11)

N-[N-[3-(3-メチル-4-ヒドロキシフェニル)-3-メチルブチル ]  $-L-\alpha-$ アスパルチル] -L-フェニルアラニン 1-メチルエステル (表 1 化合物番号18)の合成

チル] - L - フェニルアラニン 1 - メチルエステルを総収率63.2%で固体 として得た。

[0115]

<sup>1</sup>HNMR (DMSO-d<sub>6</sub>) δ: 1. 14 (s, 6H), 1. 59-1. 6 8 (m, 2H), 2. 09 (s, 3H), 2. 09-2. 18 (m, 3H), 2 . 25 (dd, 1H), 2. 90 (dd, 1H), 3. 02 (dd, 1H), 3 . 30-3. 36 (m, 1H), 3. 59 (s, 3H), 4. 46-4. 54 (m, 1H), 6. 68 (d, 1H), 6. 88 (dd, 1H), 6. 96 (s, 1H), 6. 14-6. 73 (m, 5H), 8. 46 (d, 1H), 9. 01 (brs, 1H).

ESI-MS 471. 4 (MH<sup>+</sup>)

甘味度(対砂糖) 70000倍

[0116]

(実施例12)

3-(3-ペンジルオキシ-4-メトキシフェニル)-3-メチルブチルアルデヒドの代わりに2-[1-(3-メトキシ-4-ヒドロキシフェニル)シクロペンチル]アセトアルデヒドを用いる以外は実施例1と同様にして<math>N-[N-[2-[1-(3-メトキシ-4-ヒドロキシフェニル)シクロペンチル]エチル]-L-α-アスパルチル]-L-フェニルアラニン <math>1-メチルエステルを総収率68.4%で固体として得た。

[0117]

 $^{1}$ HNMR (DMSO-d<sub>6</sub>) δ:1.48-1.82 (m, 10H), 2. 00-2.16 (m, 3H), 2.24 (dd, 1H), 2.90 (dd, 1H), 3.01 (dd, 1H), 3.30-3.40 (m, 1H), 3.59 (s, 3H), 3.74 (s, 3H), 4.45-4.53 (m, 1H), 6.59 (dd, 1H), 6.65 (d, 1H), 6.75 (dd, 1H), 7.147. 28 (m, 5H), 8. 44 (d, 1H), 8. 70 (brs, 1H). ESI-MS 513. 4 (MH<sup>+</sup>)

甘味度(対砂糖) 30000倍

[0118]

(実施例13)

N- [N- [3-(3-ヒドロキシー4-メトキシフェニル) -3-メチルブチル] - L- $\alpha$ -アスパルチル] - L-フェニルアラニン 1-エチルエステル (表1 化合物番号21)の合成

N-t-ブトキシカルボニル-β-O-ベンジル-α-L-アスパルチル-L -フェニルアラニン メチルエステルの代わりにN-t-ブトキシカルボニル-β-O-ベンジル-α-L-アスパルチル-L-フェニルアラニン エチルエステルを用いる以外は実施例1と同様にしてN-[N-[3-(3-L)]-L-4-X) -X-1 -X

[0119]

<sup>1</sup>HNMR (DMSO-d<sub>6</sub>) δ: 1. 09-1. 13 (m, 9H), 1. 5 8-1. 67 (m, 2H), 2. 08-2. 37 (m, 4H), 2. 86-2. 93 (dd, 1H), 2. 99-3. 06 (dd, 1H), 3. 32-3. 37 (m, 1H), 3. 71 (s, 3H), 4. 00-4. 07 (m, 2H), 4. 44-4. 51 (m, 1H), 6. 62-6. 65 (d, 1H), 6. 74-6 . 81 (m, 2H), 7. 15-7. 27 (m, 5H), 8. 46 (d, 1H), 8. 78 (brs, 1H).

ESI-MS 501. 3 (MH<sup>+</sup>)

甘味度(対砂糖) 15000倍

[0120]

(実施例14)

N- [N- [(RS) -3- (3-メトキシー4-ヒドロキシフェニル) ブチル  $-L-\alpha-$  アスパルチル] - L- フェニルアラニン 1-メチルエステル (表 1 化合物番号3) の合成

実施例1と同様にして得た $\beta$ -O-ベンジルー $\alpha$ -L-アスパルチルーL-フェニルアラニン メチルエステル419 mg(1.09ミリモル)をTHF10 m1に溶解し、この溶液を0℃に保った。これに、3-(3-メトキシー4-ベンジルオキシフェニル)-2-ブテナール308 mg(1.09ミリモル)、酢酸0.062 m1(1.09ミリモル)及びNaB(OAc) $_3$ H345 mg(1.63ミリモル)を加え、0℃で1時間、更に室温で1夜撹拌した。反応液に飽和炭酸水素ナトリウム水溶液30 m1を加え、酢酸エチル30 m1で2 回抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、硫酸マグネシウムを濾過して除き、濾液を減圧下に濃縮した。残滓を分取薄層クロマトグラフィー(PTLC)で精製し、N-[N-[3-(3-メトキシー4-ベンジルオキシフェニル)-2-ブテニル]- $\beta$ -O-ベンジルーL- $\alpha$ -アスパルチル]-L-フェニルアラニン 1-メチルエステル534 mg(0.82ミリモル)を粘稠な油状物として得た。

#### [0121]

上記N-[N-[3-(3-メトキシー4-ベンジルオキシフェニル) -2-ブテニル] - $\beta$ -O-ベンジルーL- $\alpha$ -アスパルチル] -L-フェニルアラニン 1-メチルエステル534mg (0.82ミリモル)をメタノール20m1と水1m1の混合溶媒に溶解し10%パラジウム炭素 (50%含水)200mgを加えた。これを水素雰囲気下に室温で3時間還元した。触媒を濾過して除き、濾液を減圧下に濃縮した。付着した臭いを除くために残滓をPTLCで精製してN-[N-[(RS)-3-(3-メトキシー4-ヒドロキシフェニル)ブチル] -L- $\alpha$ -アスパルチル] -L-フェニルアラニン 1-メチルエステル269mg (0.57ミリモル)を固体として得た。

### [0122]

 $^{1}$ HNMR (DMSO-d<sub>6</sub>) δ: 1. 10 (2 d, 3 H), 1. 50-1. 60 (m, 2 H), 2. 10-2. 40 (m, 4 H), 2. 55-2. 65 (m, 1 H), 2. 85-2. 95 (m, 1 H), 3. 03-3. 09 (dd, 1 H), 3. 34-3. 40 (m, 1 H), 3. 60 (s, 1. 5 H), 3. 61 (s, 1. 5 H), 3. 74 (s, 1. 5 H), 3. 75 (s, 1. 5 H), 4.

50-4.60 (m, 1H), 6.55 (d, 1H), 6.67 (d, 1H), 6.72 (s, 1H), 7.15-7.30 (m, 5H), 8.50 (brd, 1H), 8.70 (brs, 1H).

ESI-MS 473.3 (MH<sup>+</sup>)

甘味度(対砂糖) 30000倍

[0123]

(実施例15)

 $N-[N-[(RS)-3-(4-メトキシフェニル) ブチル]-L-\alpha-アスパルチル]-L-フェニルアラニン <math>1-メチルエステル$  (表 1 化合物番号 1 ) の合成

 $3-(3-\lambda++\nu-4-\kappa)$  ンジルオキシフェニル) $-2-\pi$ テナールの代わりに $3-(4-\lambda++\nu)$  フェニル) $-2-\pi$ テナールを用いる以外は実施例 14 と同様にして $N-[N-[(RS)-3-(4-\lambda++\nu)]$  フェニル) ブチル] ー  $L-\alpha-\pi$ スパルチル] ー  $L-\pi$  コーメチルエステルを総収率 37.3%で固体として得た。

[0124]

<sup>1</sup>HNMR (DMSO-d<sub>6</sub>) δ: 1. 09 (d, 1. 5H), 1. 11 (d, 1. 5H), 1. 54 (m, 2H), 2. 17-2. 23 (m, 3H), 2. 28-2. 38 (m, 1H), 2. 64 (m, 1H), 2. 85-2. 95 (m, 1H), 3. 02-3. 10 (dd, 1H), 3. 60 (s, 1. 5H), 3. 61 (s, 1. 5H), 3. 70 (s, 3H), 4. 54 (m, 1H), 6. 83 ((d, 2H), 7. 07 (d, 2H), 7. 18-7. 28 (m, 5H)

ESI-MS 457. 3  $(MH^{+})$ 

甘味度(対砂糖) 16000倍

[0125]

(実施例16)

N-[N-[(RS)-3-(3-E)] N-[N-[(RS)-3-(3-E)] N-[N-[(RS)-3-(3-E)] N-[N-[(RS)-3-(3-E)] N-[N-[(RS)-3-(3-E)] N-[N-[(RS)-3-(3-E)] N-[N-[(RS)-3-(3-E)] N-[(RS)-3-(3-E)] N-[(RS)-3-(2-E)] N-[(RS)-3-(2-E)] N-[(RS)-3-(2-E)] N-[(RS)-3-(2-E)] N-[(RS)-3-(2-E)] N-[(RS)-3-(2-E)] N-[(RS)-3-(2-E)] N-[(RS)

### 2) の合成

 $3-(3-\lambda)$ トキシー4-ベンジルオキシフェニル)-2-ブテナールの代わりに3-(3-ベンジルオキシフェニル)-2-ブテナールを用いる以外は実施例14と同様にしてN-[N-[(RS)-3-(3-ヒドロキシフェニル)ブチル]-L- $\alpha-$ アスパルチル]-L-フェニルアラニン 1-メチルエステルを総収率31.1%で固体として得た。

[0126]

<sup>1</sup>HNMR (DMSO-d<sub>6</sub>) δ: 1. 09 (m, 3H), 1. 55 (m, 2 H), 2. 10-2. 24 (m, 3H), 2. 26-2. 34 (dd, 1H), 2. 58 (m, 1H), 2. 85-2. 98 (m, 1H), 3. 01-3. 10 (dd, 1H), 3. 60 (s, 1. 5H), 3. 61 (s, 1. 5H), 4. 53 (m, 1H), 6. 55-6. 62 (m, 3H), 7. 05 (t, 1H), 7. 16-7. 30 (m, 5H), 8. 47 (m, 1H), 8. 75 (brs, 1H).

ESI-MS 443. 2 (MH<sup>+</sup>)

甘味度(対砂糖) 12000倍

[0127]

(実施例17)

N- [N- [(RS) -3- (3-ヒドロキシー4-メトキシフェニル) ブチル ] -L- $\alpha$ -アスパルチル] -L-フェニルアラニン 1-メチルエステル (表 1 化合物番号4) の合成

 $3-(3-\lambda)+キシ-4-ベンジルオキシフェニル)-2-ブテナールの代わりに3-(3-ベンジルオキシ-4-\lambda)+キシフェニル)-2-ブテナールを用いる以外は実施例<math>14$ と同様にして $N-[N-[(RS)-3-(3-ヒドロキシ-4-\lambda)+キシフェニル)ブチル]-L-α-アスパルチル]-L-フェニルアラニン <math>1-\lambda$ チルエステルを総収率38.8%で固体として得た。

[0128]

<sup>1</sup>HNMR (DMSO-d<sub>6</sub>) δ:1.08 (m, 3H), 1.53 (m, 2 H), 2.13-2.21 (m, 3H), 2.28 (dd, 1H), 2.56 (

m, 1H), 2. 86-3. 00 (m, 1H), 3. 02-3. 12 (dd, 1H), 3. 29-3. 40 (m, 1H), 3. 60 (s, 1. 5H), 3. 61 (s, 1. 5H), 3. 71 (s, 3H), 4. 53 (m, 1H), 6. 53 (d, 1H), 6. 60 (d, 1H), 6. 79 (d, 1H), 7. 15-7. 26 (m, 5H), 8. 46 (m, 1H), 8. 75 (brs, 1H).

ESI-MS 473.3  $(MH^{+})$ 

甘味度(対砂糖) 50000倍

[0129]

(実施例18)

N- [N- [3-((RS)-3-ヒドロキシー4-メトキシフェニル) ブチル ]  $-L-\alpha-$ アスパルチル] -3-シクロヘキシルーL-アラニン 1-メチル エステル (表 1 化合物番号 6) の合成

N-t-ブトキシカルボニルーβ-O-ベンジルーα-L-アスパルチルーLーフェニルアラニン メチルエステルの代わりにN-t-ブトキシカルボニルーβ-O-ベンジルーα-L-アスパルチルー3-シクロヘキシルーL-アラニンメチルエステルを、<math>3-(3-メトキシー4-ベンジルオキシフェニル)-2ーブテナールの代わりに3-(3-ベンジルオキシー4-メトキシフェニル)-2ーブテナールを用いる以外は実施例14と同様にしてN-[N-[(RS)-3-(3-ヒドロキシー4-メトキシフェニル)ブチル]-L-α-アスパルチル]-3-シクロヘキシルーL-アラニン <math>1-メチルエステルを総収率41.7%で固体として得た。

[0130]

<sup>1</sup>HNMR (DMSO-d<sub>6</sub>) δ:0.75-1.34 (m, 5H), 1.1 1 (d, 3H), 1.50-1.70 (m, 10H), 2.18-2.28 (m, 2H), 2.35-2.45 (m, 2H), 2.58-2.65 (m, 1H), 3.27-3.36 (m, 1H), 3.60 (m, 3H), 3.71 (s, 3H), 4.35 (m, 1H), 6.53-6.60 (m, 1H), 6.61 (d, 1H), 6.79 (d, 1H), 8.44 (m, 1H), 8.80 (brs, 1H).

ESI-MS 479.4 (MH<sup>+</sup>)

甘味度(対砂糖) 40000倍

[0131]

(実施例19)

N- [N- [(RS) -3- (3-メトキシ-4-ヒドロキシフェニル) ブチル ] -L- $\alpha$ -アスパルチル] -L-チロシン 1-メチルエステル (表1 化合物番号5) の合成

 $N-t-ブトキシカルボニルー<math>\beta-O-ベンジル-\alpha-L-アスパルチルーL$   $-フェニルアラニン メチルエステルの代わりに<math>N-t-ブトキシカルボニル-\beta-O-ベンジル-\alpha-L-アスパルチルーL-チロシン メチルエステルを用いる以外は実施例<math>14$  と同様にして $N-[N-[(RS)-3-(3-メトキシ-4-ヒドロキシフェニル)ブチル]-L-<math>\alpha$ -アスパルチル]ーLーチロシン1-メチルエステルを総収率37.5%で固体として得た。

[0132]

<sup>1</sup>HNMR (DMSO-d<sub>6</sub>) δ:1. 10 (d, 3H), 1. 55 (m, 2 H), 2. 16-2. 41 (m, 4H), 2. 58 (m, 1H), 2. 70-2. 82 (m, 1H), 2. 85-2. 95 (dd, 1H), 3. 58 (s, 3H), 3. 78 (s, 3H), 4. 43 (m, 1H), 6. 53-6. 75 (m, 5H), 6. 96 (d, 2H), 8. 49 (brd, 1H), 8. 75 (brs, 1H), 9. 80 (brs, 1H).

ESI-MS 489. 3 (MH<sup>+</sup>)

甘味度(対砂糖) 25000倍

[0133]

(実施例20)

N- [N- [(RS) -3- (3-メチルー4-ヒドロキシフェニル) ブチル] -L- $\alpha$ -アスパルチル] -L-フェニルアラニン 1-メチルエステル (表 1 化合物番号 1 1) の合成

3-(3-メトキシー4-ベンジルオキシフェニル)-2-ブテナールの代わりに3-(3-メチルー4-ベンジルオキシフェニル)-2-ブテナールを用い

る以外は実施例 14 と同様にして $N-[N-[(RS)-3-(3-メチル-4-ヒドロキシフェニル) ブチル] - <math>L-\alpha-P$ スパルチル] - L-Dェニルアラニン 1-メチルエステルを総収率 19. 7%で固体として得た。

[0134]

 $^{1}$ HNMR (DMSO-d<sub>6</sub>) δ: 1. 06-1. 09 (m, 3H), 1. 4 9-1. 54 (m, 2H), 2. 08 (s, 3H), 2. 11-2. 20 (m, 3H), 2. 17-2. 33 (m, 1H), 2. 85-2. 95 (m, 2H), 3. 05-3. 09 (m, 1H), 3. 33-3. 37 (m, 1H), 3. 61 (s, 3H), 4. 50-4. 55 (m, 1H), 6. 65 (m, 1H), 6. 76 (m, 1H), 6. 84 (s, 1H), 7. 16-7. 28 (m, 5H), 8. 47-8. 50 (m, 1H), 9. 02 (brs, 1H).

ESI-MS 457. 2 (MH<sup>+</sup>)

甘味度(対砂糖) 50000倍

[0135]

(実施例21)

N-[N-[3-(3-E)] + N-[N-[3-(3-E)] + N-[N-[N-[3-(3-E)]] + N-[N-[3-(3-E)]] + N-[N-[3-(3-E)] + N-[N-[3-(3-E)]] + N-[N-[3-(3-E)] + N-[N-[3-(3-E)]] + N-[N-[3-(3-E)] + N-[N-[3-E]] + N-[N-[

3-(3-メトキシー4-ベンジルオキシフェニル)-2-ブテナールの代わりに3-(3-ベンジルオキシー4-メトキシフェニル)-2-メチル-2-プロペナールを用いる以外は実施例14と同様にしてN-[N-[3-(3-ヒドロキシ-4-メトキシフェニル)-(RS)-2-メチルプロピル]-L-α-アスパルチル]-L-フェニルアラニン 1-メチルエステルを総収率45.6%で固体として得た。

[0136]

 $^{1}$ HNMR (DMSO-d<sub>6</sub>) δ: 0. 68-0. 85 (m, 3H), 1. 6 5-1. 82 (m, 1H), 2. 08-2. 37 (m, 2H), 2. 27-2. 30 (d, 4H), 2. 94-3. 10 (m, 2H), 3. 43-3. 45 (m, 1H), 3. 62 (s, 3H), 3. 72 (s, 3H), 4. 48-4. 59

(m, 1H), 6. 49-6. 59 (m, 2H), 6. 77-6. 80 (m, 1H), 7. 20-7. 29 (m, 5H), 8. 57-8. 58 (m, 1H), 8. 92 (brs, 1H).

ESI-MS 473.4 (MH<sup>+</sup>)

甘味度(対砂糖) 5000倍

[0137]

(実施例22)

N- [N- [3- (3-ヒドロキシー4-メチルフェニル) -3-メチルブチル ] -L- $\alpha$ -アスパルチル] -L-フェニルアラニン 1-メチルエステル (表 1 化合物番号19)の合成

 $3-[(3-ベンジルオキシー4-メチル) フェニル] -3-メチルブチルアルデヒド274mg(0.97ミリモル)、アスパルテーム353mg(1.2ミリモル)及び10%パラジウム炭素(50%含水)100mgをメタノール7m1に加え、これを水素雰囲気下、室温で4時間撹拌した。触媒を濾過して除き、濾液を減圧下に濃縮した。残滓を分取薄層クロマトグラフィー(PTLC)で精製してN-[N-[3-(3-ヒドロキシー4-メチルフェニル)-3-メチルブチル]-L-<math>\alpha$ -アスパルチル]-L-フェニルアラニン 1-メチルエステル299mg(0.64ミリモル,65.5%)を固体として得た。

[0138]

 $^{1}$ HNMR (DMSO-d<sub>6</sub>) δ: 1. 14 (s, 6H), 1. 58-1. 7 0 (m, 2H), 2. 05 (s, 3H), 2. 07-2. 42 (m, 4H), 2 . 89 (dd, 1H), 3. 03 (dd, 1H), 3. 30-3. 40 (m, 1H), 3. 59 (s, 3H), 4. 46-4. 54 (m, 1H), 6. 60 (d, 1H), 6. 73 (s, 1H), 6. 94 (d, 1H), 7. 15-7. 30 (m, 5H), 8. 46 (brs, 1H), 9. 08 (brs, 1H).

ESI-MS 471. 3 (MH<sup>+</sup>)

甘味度(対砂糖) 60000倍

[0139]

【発明の効果】

本発明の新規Nーアルキルアスパルチルジペプチドエステル誘導体は、低カロリーで、従来の甘味剤と比較して特に甘味度に優れた性質を有する。本発明により甘味剤として優れた性質を有する新規化学物質を提供することができる。従って、この新規誘導体を甘味剤として使用できる外に、甘味を要求する飲料、食品等の製品に甘味を付与することも可能である。

【書類名】

要約書

【要約】

### 【課題】

従来品と比較して特に甘味度に優れた低カロリー物質を提供する。

#### 【解決手段】

N-[N-[3-(3-k+1)] - k+1] - k+1 -

## 【選択図】

なし

# 出願人履歴情報

識別番号

[000000066]

1. 変更年月日 1991年 7月 2日

[変更理由] 住所変更

住 所 東京都中央区京橋1丁目15番1号

氏 名 味の素株式会社