```
In [2]:
          #PROJECT 2 [Heart Disease Diagnostic Analysis]
          import pandas as pd
In [11]:
          import numpy as np
          heart_data=pd.read_csv(r"C:\Users\user\Documents\Unified Mentor Projects\Heart D
          heart_data
Out[11]:
                           cp trestbps chol fbs restecg thalach exang oldpeak slope ca
                 age
                      sex
                                                                                                2
              0
                                          212
                  52
                        1
                             0
                                    125
                                                 0
                                                          1
                                                                 168
                                                                           0
                                                                                   1.0
                                                                                            2
              1
                                                          0
                  53
                        1
                             0
                                    140
                                          203
                                                  1
                                                                 155
                                                                           1
                                                                                   3.1
                                                                                            0
                                                                                                0
              2
                                                                           1
                  70
                        1
                             0
                                    145
                                          174
                                                 0
                                                          1
                                                                 125
                                                                                   2.6
                                                                                            0
                                                                                                0
              3
                                                                           0
                  61
                        1
                             0
                                          203
                                                                 161
                                                                                   0.0
                                                                                            2
                                    148
                                                 0
                                                          1
                                                                           0
                                                                                                3
              4
                  62
                        0
                             0
                                          294
                                                 1
                                                                 106
                                                                                   1.9
                                                                                            1
                                    138
                                                                                            2
           1020
                  59
                        1
                             1
                                    140
                                          221
                                                 0
                                                          1
                                                                 164
                                                                           1
                                                                                   0.0
                                                                                                0
           1021
                                                                           1
                  60
                                    125
                                          258
                                                 0
                                                                 141
                                                                                   2.8
           1022
                             0
                                                          0
                                                                           1
                                                                                            1
                                                                                                1
                  47
                        1
                                    110
                                          275
                                                 0
                                                                 118
                                                                                   1.0
                                                                           0
                                                                                            2
           1023
                  50
                             0
                                    110
                                          254
                                                  0
                                                                 159
                                                                                   0.0
           1024
                             0
                                                          1
                                                                           0
                                                                                            1
                                                                                                1
                  54
                                    120
                                          188
                                                 0
                                                                 113
                                                                                   1.4
          1025 rows × 14 columns
                                                                                                 >
In [12]:
          heart_data.isnull().sum()
Out[12]:
                        0
           age
                        0
           sex
                        0
           ср
           trestbps
                        0
           chol
                        0
           fbs
                        0
                        0
           restecg
           thalach
                        0
           exang
                        0
           oldpeak
                        0
           slope
                        0
                        0
           ca
           thal
                        0
```

dtype: int64

target

In [13]:

heart_data.notnull().sum()

```
Out[13]:
           age
                        1025
                        1025
           sex
                         1025
           ср
                        1025
           trestbps
           chol
                        1025
           fbs
                        1025
           restecg
                        1025
           thalach
                        1025
           exang
                        1025
           oldpeak
                        1025
           slope
                        1025
           ca
                         1025
           thal
                        1025
           target
                         1025
           dtype: int64
In [142...
           heart_data.head()
Out[142...
                         cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal
           0
               52
                      1
                          0
                                  125
                                       212
                                              0
                                                       1
                                                              168
                                                                        0
                                                                                1.0
                                                                                        2
                                                                                            2
                                                       0
           1
                53
                      1
                                  140
                                       203
                                                              155
                                                                        1
                                                                                3.1
                                                                                        0
                                                       1
           2
               70
                      1
                          0
                                  145
                                       174
                                              0
                                                              125
                                                                        1
                                                                                2.6
                                                                                        0
                                                                                            0
                                                                        0
                                                                                        2
           3
                61
                                  148
                                       203
                                              0
                                                              161
                                                                                0.0
                                                       1
                                                                        0
                62
                      0
                          0
                                  138
                                       294
                                              1
                                                              106
                                                                                1.9
                                                                                         1
                                                                                            3
                                                                                                 >
In [140...
           heart_data.describe()
Out[140...
```

	age	sex	ср	trestbps	chol	fbs	
count	1025.000000	1025.000000	1025.000000	1025.000000	1025.00000	1025.000000	10
mean	54.434146	0.695610	0.942439	131.611707	246.00000	0.149268	
std	9.072290	0.460373	1.029641	17.516718	51.59251	0.356527	
min	29.000000	0.000000	0.000000	94.000000	126.00000	0.000000	
25%	48.000000	0.000000	0.000000	120.000000	211.00000	0.000000	
50%	56.000000	1.000000	1.000000	130.000000	240.00000	0.000000	
75%	61.000000	1.000000	2.000000	140.000000	275.00000	0.000000	
max	77.000000	1.000000	3.000000	200.000000	564.00000	1.000000	
<							>

heart_data.corr() #Correlation In [141...

Out[141		age	sex	ср	trestbps	chol	fbs	restecg	t
	age	1.000000	-0.103240	-0.071966	0.271121	0.219823	0.121243	-0.132696	-0.
	sex	-0.103240	1.000000	-0.041119	-0.078974	-0.198258	0.027200	-0.055117	-0.0
	ср	-0.071966	-0.041119	1.000000	0.038177	-0.081641	0.079294	0.043581	0
	trestbps	0.271121	-0.078974	0.038177	1.000000	0.127977	0.181767	-0.123794	-0.0
	chol	0.219823	-0.198258	-0.081641	0.127977	1.000000	0.026917	-0.147410	-0.0
	fbs	0.121243	0.027200	0.079294	0.181767	0.026917	1.000000	-0.104051	-0.
	restecg	-0.132696	-0.055117	0.043581	-0.123794	-0.147410	-0.104051	1.000000	0.0
	thalach	-0.390227	-0.049365	0.306839	-0.039264	-0.021772	-0.008866	0.048411	1.0
	exang	0.088163	0.139157	-0.401513	0.061197	0.067382	0.049261	-0.065606	-0.
	oldpeak	0.208137	0.084687	-0.174733	0.187434	0.064880	0.010859	-0.050114	-0.
	slope	-0.169105	-0.026666	0.131633	-0.120445	-0.014248	-0.061902	0.086086	0.
	ca	0.271551	0.111729	-0.176206	0.104554	0.074259	0.137156	-0.078072	-0.
	thal	0.072297	0.198424	-0.163341	0.059276	0.100244	-0.042177	-0.020504	-0.0
	target	-0.229324	-0.279501	0.434854	-0.138772	-0.099966	-0.041164	0.134468	0.4
	<								>
In [23]:	-	atplotlib. eaborn as		plt					
In []:		NG THE KEY Variable a				esent]			
In [30]:	<pre>labels=[plt.xlab plt.ylab plt.xtic</pre>	tplot(x='t "HEART DIS el('HEART el('NUMBER ks(ticks=[e('DISTRIB	EASE", "NO DISEASE ST OF PATIEN 0,1], labe	D HEART DIS TATUS') NT') els=labels	SEASE"]	rder=[1,0]	,palette=['red','gre	en'

DISTRIBUTION OF HEART DISEASE


```
In [168... #Created the digram for better understanding
   import matplotlib.pyplot as plt
   import seaborn as sns
   #Calculate correlation matrix
   plt.figure(figsize=(10,8))
   sns.heatmap(heart_data.corr(), annot=True, cmap='coolwarm')
   plt.xlabel('Attribute',fontsize=15)
   plt.ylabel('Attribute',fontsize=15)
   plt.title('CORRELATION HEATMAP',fontsize=20)
   plt.show()
```



```
In [59]: #AGE DISTRIBUTION BY SEX AND HEART DISEASE
sns.boxplot(x='sex',y='age',data=heart_data, hue='target')
plt.xlabel('Male=0,Female=1')
plt.xticks([0,1],['Male','Female'])
plt.title('AGE DISTRIBUTION BY SEX AND HEART DISEASE')
plt.show()
```

AGE DISTRIBUTION BY SEX AND HEART DISEASE


```
In [222...
sns.lineplot(x='cp', data=heart_data, y='age', hue='sex')
plt.legend(labels=['Male','Female'])
sns.set(rc={'figure.figsize':(15,5)})
plt.xlabel('Chest Pain',fontsize=15)
plt.ylabel('Age',fontsize=15)
plt.title('Chest Pain as per Age',fontsize=20)
plt.show()
```

C:\ProgramData\anaconda3\Lib\site-packages\seaborn_oldcore.py:1119: FutureWarnin g: use_inf_as_na option is deprecated and will be removed in a future version. Co nvert inf values to NaN before operating instead.

with pd.option_context('mode.use_inf_as_na', True):

C:\ProgramData\anaconda3\Lib\site-packages\seaborn_oldcore.py:1119: FutureWarnin g: use_inf_as_na option is deprecated and will be removed in a future version. Co nvert inf values to NaN before operating instead.

with pd.option_context('mode.use_inf_as_na', True):


```
In [88]: #Age Distribution
sns.distplot(heart_data['age'])
plt.xlabel('Age')
plt.ylabel('Destiny')
plt.title('AGE DISTRIBUTION')
plt.show()
```

C:\Users\user\AppData\Local\Temp\ipykernel_10344\2845624387.py:2: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(heart_data['age'])

C:\ProgramData\anaconda3\Lib\site-packages\seaborn_oldcore.py:1119: FutureWarnin g: use_inf_as_na option is deprecated and will be removed in a future version. Co nvert inf values to NaN before operating instead.

with pd.option_context('mode.use_inf_as_na', True):

AGE DISTRIBUTION


```
In [89]: sns.distplot(heart_data['ca'])
  plt.xlabel('Number of coloured vessel(0-3)')
  plt.ylabel('Density')
  plt.title('Number of coloured vessels Distribution')
  plt.show()
```

C:\Users\user\AppData\Local\Temp\ipykernel_10344\2679143531.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(heart_data['ca'])

C:\ProgramData\anaconda3\Lib\site-packages\seaborn_oldcore.py:1119: FutureWarnin
g: use_inf_as_na option is deprecated and will be removed in a future version. Co
nvert inf values to NaN before operating instead.

with pd.option_context('mode.use_inf_as_na', True):

Number of coloured vessels Distribution


```
In [93]: #Distribution of age by the number of coloured vessels
sns.histplot(x='age', hue='ca', data=heart_data, multiple='dodge', alpha=.7)
plt.xlabel('Age')
plt.ylabel('Number of People')
plt.title('DISTRIBUTION OF AGE BY NUMBER OF COLOURED VESSELS')
plt.legend(title='Number of coloured vessels')
plt.show()
```

C:\ProgramData\anaconda3\Lib\site-packages\seaborn_oldcore.py:1119: FutureWarnin
g: use_inf_as_na option is deprecated and will be removed in a future version. Co
nvert inf values to NaN before operating instead.
 with pd.option_context('mode.use_inf_as_na', True):
No artists with labels found to put in legend. Note that artists whose label sta
rt with an underscore are ignored when legend() is called with no argument.

DISTRIBUTION OF AGE BY NUMBER OF COLOURED VESSELS


```
In [104...
sns.scatterplot(x='age', y='thal', hue='thal', data=heart_data, style='thal')
plt.xlabel('Age')
plt.ylabel('thal (0: normal, 1: fixed defect, 2: reversible defect)')
plt.title('thal Severity Distribution by Age')
plt.xticks(rotation=45)
plt.legend(title='thal Severity')
plt.tight_layout()
plt.show()
```

thal Severity Distribution by Age


```
In [111... sns.boxplot(x='sex',y='oldpeak',showmeans=True,data=heart_data)
    plt.xlabel('(0:male,1:female)')
    plt.ylabel('Oldpeak (ST depression)')
    plt.title('oldpeak distribution by Sex')
    plt.xticks([0,1],['male','female'])
    plt.tight_layout()
    plt.show()
```


In []:	
In []:	

In []:	
In []:	
In []:	