Graded quiz on Tangent Lines to Functions, Exponents and Logarithms

LATEST SUBMISSION GRADE

1	n	n	%

1. Convert $\frac{1}{49}$ to exponential form, using 7 as the factor.

1 / 1 point

- \bigcirc 49⁻¹
- \odot 7⁻²
- \bigcirc (7²)

✓ Correct

The rule for a factor to a Negative exponent is to divide by the same factor to a positive exponent with the same absolute value.

2. A light-year (the distance light travels in a vacuum in one year) is 9,460 trillion meters. Express in scientific notation.

1/1 point

- $\bigcirc \ 9.46 \times 10^{15} \ \text{kilometers}$
- $\bigcirc \ 9460 \times 10^{12} \ \text{meters}$
- $\bigcirc \ 0.946 \times 10^{16}$
- $\odot~9.46 imes 10^{15}$ meters.

9,460 is $\left(9.4\times10^3\right)$ meters and one trillion meters is 10^{12} meters. ($9.4\times10^3\right)(10^{12})$ = 9.4×10^{15} . A kilometer is 1000 meters.

3. Simplify $(x^8)(y^3)(x^{-10})(y^{-2})$

1 / 1 point

1 / 1 point

1 / 1 point

- $(x^{-2})(y)$
- $\bigcirc (x^2)(y)$
- $\bigcirc (x^{-80})(y^{-6})$
- $\bigcirc \ (x)(y^{-2})$

✓ Correct

By the Division and Negative Powers Rule, this is $(x^{(8-10)})(y^{(3-2)})$

- 4. Simplify $[(x^4)(y^{-6})]^{-1}$
 - $\bigcirc (x^{-4})(y^6)$
 - \bigcirc (x^-4) (y6)
 - $\bigcirc (x^3)(y^{-7})$
 - \bigcirc (x^4) (y^{-6})

By the Power to a Power Rule, each of the exponents is multiplied by $\left(-1\right)$

 $\log_2(39x) - \log_2(x-5) = 4$

- $\bigcirc \frac{39}{23}$

- \bigcirc $\frac{23}{80}$

 \checkmark Correct $\log_2 \frac{39x}{(x-5)} = 4 \ \ \mbox{by the Quotient Rule}.$

Since both sides are equal, we can use them as exponents in an equation. $2^{\log_2 \frac{39x}{(x-5)}} = 2^4$ $\frac{39x}{(x-5)} = 16$ $39x = 16 \times (x - 5)$ 39x = 16x - 8023x=-80 $x = \frac{-80}{23}$ 6. Simplify this expression: 1/1 point $\circ_{x^{\frac{1}{3}}}$ $\odot x^{\frac{-3}{4}}$ $\bigcirc x^{-1}$ $\bigcirc x^{\frac{4}{3}}$ We use the Power to a Power Rule -- multiply exponents: $x^{rac{1}{2} imesrac{-3}{2}}=x^{rac{-3}{4}}$ $^{\text{7.}}~~\text{Simplify} \log_{10} 1000 + \log_{10} \frac{1}{10000}$ 1/1 point $^{\bigcirc}\log_{10}-10$ \circ 1 $\bigcirc \frac{1}{10}$ ◎ -1 By the Product Rule, this is: $\log_{10}(\frac{1000}{10000}) = \log_{10}(\frac{1}{10}) = -1$ 1/1 point $^{\text{8.}}~~\text{If} \log_3 19 = 2.680\text{,}~\text{what}~\text{is} \log_9 19\text{?}$ 0.8934 \bigcirc 5.216 0.43471.304 To convert from \log_3 to \log_9 , divide by $\log_3 9.$ Which is equal to 2, so the answer is 1.341 / 1 point $^{9.}~$ If $\log_{10}b=1.8$ and $log_ab=2.5752$, what is a? \bigcirc 3 \circ 6 \bigcirc 4 5 To solve for a in the formula; $\log_a b = \frac{\log_x b}{\log_x a}$ $\log_a b = 2.5752$ and $\log_{10} b = 1.8$

Treating both sides of equation $\log_{10}a=0.69897$ as exponents of 10 gives $a=10^{0.69897}=5$

 $^{\rm 10.}$ An investment of 1,600 is worth 7,400 after 8.5 years. What is the continuously compounded rate of return of this investment?

1/1 point

1 / 1 point

1/1 point

1/1 point

- \bigcirc 20.01
- 18.02%
- 0 19.01%
- $\ ^{\bigcirc}\ 17.01\%$

$$\frac{\ln \frac{7400}{1600}}{8.5} = 0.18017$$

- 11 . A pearl grows in an oyster at a continuously compounded rate of .24 per year. If a 25-year old pearl weighs 1 gram, what did it weigh when it began to form?
 - 0.002478
 - 0.02478
 - \bigcirc 0.0002478
 - 0.2478

$$e^{(0.24 imes 25)} = rac{1}{x}$$
 $x = rac{1}{(e^{0.24 imes 25})}$
 $x = rac{1}{403.4288}$
 $x = 0.002478$

- $^{ ext{12.}} \, \log_2 z = 6.754.$ What is $\log_{10}(z)$?
 - 0.82956
 - \bigcirc 1.3508
 - 0.49185
 - 2.03316

Correct
$$\frac{\log_2 z}{\log_2 10} =$$

$$(\log_{10} z) \times (\log_2 10) = 3.321928$$
 Therefore,
$$\log_{10} z = \frac{6.754}{3.321928} = 2.03316$$

- 13. Suppose that $g:\mathbb{R} o\mathbb{R}$ is a function, and that g(1)=10. Suppose that g'(a) is negative for every single value of a.Which of the following could possibly be g(1.5)?
 - g(1.5) = 9.7
 - $\bigcirc g(1.5) = 10.1$
 - $\bigcirc \ g(1.5)=11$
 - $\bigcirc \ g(1.5) = 103.4$

✓ Correc

Since the slope of the tangent line to the graph of g is negative everywhere on the graph, we know that g is decreasing function! And therefore we must have g(1.5) < g(1). That is the case here, so this value is at least possible.