# Streaming Periodicity with Mismatches

Funda Ergun,
Elena Grigorescu,
Erfan Sadeqi Azer,
Samson Zhou





# Periodicity

❖ A portion of a string that repeats ABCDABCDABCDABCD
ABCDABCDABCDABCD

# Periodicity

- ❖ Alternate definition: prefix is the same as suffix
- ❖ If S has length n, and S[1:n-p] = S[p+1:n], then we say S has period p.

**ABCDABCDABCD** 

**ABCDABCDABCD** 

**ABCDABCDABCD** 

**ABCDABCDABCD** 

## Hamming Distance

Given strings X, Y, the Hamming distance between X and Y is defined as the positions i at which  $X_i \neq Y_i$ .

$$S = HAMMING$$

$$T = FALLING$$

$$HAM(S,T) = 3$$

# *k*-Periodicity

- $\clubsuit$  A string that is "almost" periodic, robust to k changes.
- Periodicity: S[1:n-p] = S[p+1:n]
- ❖ k-Periodicity: HAM(S[1:n-p], S[p+1,n])  $\leq k$ .

**ABCDABCDABCEABCE** 

**ABCDABCDABCEABCE** 

**ABCDABCDABCE** 

**ABCDABCEABCE** 

1-period: 4

**ABCDABCDABCEABCE** 

Long term periodic changes, but also encompasses "natural" definition.

## Streaming Model

- $\diamondsuit$  String of length n arrives one symbol at a time
- $\diamond$  Use o(n) space, ideally O(polylog n)

abaacabaccbabbbcbabbccababbccb abaacabaccbabbbcbabbccababbccb



# *k*-Periodicity Problem

 $\Leftrightarrow$  Given a string S of length n, which arrives in a data stream, identify the smallest k-period in space o(n).

 $\clubsuit$  Given a string S of length n, which arrives in a data stream, identify the smallest k-period in space o(n), with two passes.

#### Related Work

- ••  $O(\log^2 n)$  space to find the shortest period in one-pass, if  $p \le \frac{n}{2}$ . (ErgunJowhariSaglam10)
- $\Omega(n)$  space to find the period in one-pass, if  $p > \frac{n}{2}$ . (EJS10)
- ••  $O(\log^2 n)$  space to find the shortest period in two-passes, even if  $p > \frac{n}{2}$ . (EJS10)
- \* k-Mismatch Problem:  $O(k^2 \log^8 n)$  space to find all instances of a pattern P within a text T with up to k errors. (CliffordFontainePoratSachStarikovskaya16)

# *k*-Periodicity (Our results)

- ••  $O(k^4 \log^9 n)$  space to find the shortest k-period in one-pass, if  $p \le \frac{n}{2}$ .
- ••  $O(k^4 \log^9 n)$  space to find the shortest k-period in two-passes, even if  $p > \frac{n}{2}$ .
- $\Omega(n)$  space to find the k-period, if  $p>\frac{n}{2}$ , in one-pass.
- $\Omega(k \log n)$  space to find the k-period, even if  $p \leq \frac{n}{2}$ , in one-pass.

# Ideas from Streaming Periodicity

- $\clubsuit$  If  $p \le \frac{n}{2}$ , then  $S\left[1:\frac{n}{2}\right] = S\left[p+1,p+\frac{n}{2}\right]$ .

**ABCDABCDABCD** 

**ABCDABCDABCD** 

**ABCDABCDABCD** 

ABCDABCDABCD

**4** If  $p > \frac{n}{2}$ , then for some m,  $S[1:2^m] = S[p+1, p+2^m]$ .

# Karp-Rabin Fingerprints

- Given base B and a prime P, define  $\phi(S) = \sum_{i=1}^n B^i S[i] \pmod{P}$
- $\P$  If S = T, then  $\phi(S) = \phi(T)$
- $\Leftrightarrow$  If  $S \neq T$ , then  $\phi(S) \neq \phi(T)$  w.h.p. (Schwartz-Zippel)



# Ideas from Streaming Periodicity

First pass: Find all positions p such that first  $\frac{n}{2}$  characters match.

$$S\left[1:\frac{n}{2}\right] = S\left[p+1, p+\frac{n}{2}\right].$$

**ABCDABCDABCD** 

**ABCDABCDABCD** 

 $\clubsuit$  Second pass: For each p, check whether p is a k-period.

$$S[1:n-p] = S[p+1,n]$$
.

**ABCDABCDABCD** 

**ABCDABCDABCD** 

#### Overall Idea

- $\clubsuit$  A period p satisfies  $HAM(S[1:n-p],S[p+1,n]) \leq k$ .
- $\clubsuit$  If  $p \le \frac{n}{2}$ , then HAM  $\left(S\left[1:\frac{n}{2}\right], S\left[p+1, p+\frac{n}{2}\right]\right) \le k$ .
- $\clubsuit$  First pass: Find all positions p that match the first  $\frac{n}{2}$  characters.

$$\operatorname{HAM}\left(S\left[1:\frac{n}{2}\right],S\left[p+1,p+\frac{n}{2}\right]\right) \leq k.$$

 $\clubsuit$  Second pass: For each p, check whether p is a k-period.

$$HAM(S[1:n-p],S[p+1,n]) \le k.$$

❖ Reduction to Pattern Matching / k-Mismatch

 $\clubsuit$  First pass: Find all positions p, "candidate" k-periods.

$$\operatorname{HAM}\left(S\left[1:\frac{n}{2}\right],S\left[p+1,p+\frac{n}{2}\right]\right) \leq k.$$

 $\clubsuit$  Second pass: For each p, check whether p is a k-period.

$$HAM(S[1:n-p],S[p+1,n]) \le k.$$

- ABCDABCDABCDABCDABCD
- **A** Candidate positions  $p = \{4, 8, 12, 16, ...\}.$
- Candidates form an arithmetic progression!





- $\Leftrightarrow$  If p and q are periods, then  $d = \gcd(p, q)$  is a period.
- $\diamond$  Does not work for k-periodicity!
- p = 2: AAAABA, AAAABA AAAA 1 mismatch
- p = 3: AAAABA, AAAABA AAA ABA

  1 mismatch
- p = 1: AAAABA, AAAABA AAAABA 2 mismatches!

- Periodicity: Candidate positions  $p = \{4,8,12,16,...\}$ What's actually happening in the second pass? Using S[1:4], S[5:8], S[9:12],... to build S[5:n], S[9:n], S[13:n],... Can do this because S[1:4], S[5:8], S[9:12] are all the same!
- k-periodicity: Candidate positions  $p = \{8,16,20,28,32 \dots\}$ ?
- Attempt: Candidate positions  $p = \{4,8,12,16,20,24,28,32...\}$ ? Can still do above construction if "most" of S[1:4], S[5:8], S[9:12] are the same

Not sure if true...

- Candidates  $p = \{8,12,16,20\}, \{27,30,33,36,39\}, \{45,50,55\}$



- $\clubsuit$  If p and q are periods, then  $d = \gcd(p,q)$  is a period.
- $\clubsuit$  If p and q are "small", then  $d = \gcd(p, q)$  is a  $O(k^2)$ -period.
- At most  $O(k^2)$  of the substrings S[1:d], S[d+1:2d], S[2d+1:3d], can be different

 $\clubsuit$  If p and q are "small", then  $d = \gcd(p, q)$  is a  $O(k^2)$ -period.

If there are at most k indices i such that  $S[i] \neq S[i+p]$ , and at most k indices j such that  $S[j] \neq S[j+q]$ , then there are at most  $O(k^2)$  indices l such that  $S[l] \neq S[l+d]$ .

Consider the indices as a grid.



...AABAAABCCAA...

$$p = 3, q = 7$$

❖ Bound the number of indices l such that  $S[l] \neq S[l+d]$ .



- Connect adjacent points with edges.
- $\bullet$  "Good edge" if S[i] = S[i + p].
- $\bullet$  "Bad edge" if  $S[i] \neq S[i+p]$ .
- If there exists a path from i to j which "hops" along good edges, then S[i] = S[j].

...AABAAABCCAA...

$$p = 3, q = 7$$
...AABAAABCCAA...



If there are at most k indices i such that  $S[i] \neq S[i+p]$ , and at most k indices j such that  $S[j] \neq S[j+q]$ , then there are at most  $O(k^2)$  indices l such that  $S[l] \neq S[l+d]$ .

- Solution Bound the number of indices l such that  $S[l] \neq S[l+d]$ .
- $\P$  If  $S[l] \neq S[l+d]$ , then l must be enclosed by bad edges.
- $\clubsuit$  There are at most 2k bad edges.
- How many enclosed points can there be?



- $\clubsuit$  If there are at most 2k bad edges, there are  $O(k^2)$  enclosed points.
- ❖ There are  $O(k^2)$  indices l such that  $S[l] \neq S[l+d]$ .





#### In review

- $\clubsuit$  If p and q are "small", then  $d = \gcd(p,q)$  is a  $O(k^2)$ -period.
- Positions  $p = \{8,16,20,27,30,39,45,55\}$ ?
- **\Pi** Positions  $p = \{8, 12, 16, 20\}, \{27, 30, 33, 36, 39\}, \{45, 50, 55\}$





#### In review

 $\clubsuit$  First pass: Find all positions p such that

$$\operatorname{HAM}\left(S\left[1:\frac{n}{2}\right],S\left[p+1,p+\frac{n}{2}\right]\right) \leq k.$$

 $\clubsuit$  Second pass: For each p, check if

$$HAM(S[1:n-p],S[p+1,n]) \le k.$$



## Open Problems

- What can we say about these problems with other distance metrics (particularly, edit distance)?
- $\clubsuit$  Can we improve the space usage? Specifically, the  $k^4$  dependence comes from the structural property and the k-Mismatch Problem algorithm.
- What if we allow some special characters, such as wild cards?

### Questions?



