VE311 Electronic Circuit Homework 3

Due: June 9th

Note:

- 1) Please use A4 size paper or page.
- 2) Please clearly state out your final result for each question.
- 3) Please attach the screenshot of Pspice simulation result if necessary.

Question 1. Op-amp Circuit

The following figure shows a single op-amp differential amp circuit. The output voltage of the differential amplifier can be written in terms of V_{ICM} and V_{ID} as: $V_O = A_d \cdot V_{ID} + A_{CM} \cdot V_{ICM}$. Assuming the op-amp is ideal, find A_d and A_{CM} for $R_1 = 10k\Omega$, $R_2 = 10k\Omega$, $R_3 = 20k\Omega$, $R_F = 10k\Omega$.

$$V_{cm} = V_{+} = \left(V_{Icm} + \frac{V_{ID}}{2}\right) \cdot \frac{R_{2}}{R_{1} + R_{2}} = \frac{1}{2} V_{Zcm} + \frac{1}{4} V_{ZD}$$

$$V_{-} = V_{+} = \left(V_{Icm} + \frac{V_{ID}}{2}\right) \cdot \frac{R_{2}}{R_{1} + R_{2}} = \frac{1}{2} V_{Zcm} + \frac{1}{4} V_{ZD}$$

$$V_{1cm} - \frac{V_{2D}}{2} - V_{-} = 2V_{-} - 2V_{0}$$

$$V_{0} = \frac{3}{2} V_{-} + \frac{1}{4} V_{ID} - \frac{1}{2} V_{Icm} = \frac{1}{4} V_{Zcm} + \frac{5}{8} V_{ID}$$

$$A_{cm} = \frac{1}{4} V_{Cm} + \frac{5}{8} V_{ID}$$

For the following questions, use the SPICE model below .model Qbreakn NPN IS=5e-16 BF=200 VAF=200

Question 2. BJT Forward-Active I-V Characteristics

For a npn BJT circuit as below:

- (a) When $V_{BE} = 0.5V$ and $V_{CE} = 1V$, calculate gm and r_o .
- (b) In Pspice, when $V_{CE} = 1V$, plot I_C versus V_{BE} (from 0 to 1V). Find out the slope at $V_{BE} = 0.5V$ and compare it with the gm value calculated in (a).
- (c) In Pspice, when $V_{BE} = 0.5V$, plot I_C versus V_{CE} (from 0 to 2V). Find out the inverse of the slope at $V_{CE} = 1V$ and compare it with the r_o value calculated in (a).

Question 3. BJT Common-Emitter Amplifier

For a npn BJT circuit as below:

- (a) When $V_{IN}=0.4V$, considering the Early Effect, calculate the small-signal voltage gain $(A_v=\frac{v_{out}}{v_{in}})$.
- (b) In Pspice, plot V_{OUT} versus V_{IN} (from 0 to 1V). Find out the slope at $V_{IN} = 0.4V$ and compare it with the voltage gain calculated in (a).
- (c) In Pspice, when $V_{in} = 0.4 + 0.001 \cdot \sin(2\pi 100 \cdot time)V$, plot V_{out} and V_{in} versus time (from 0 to 0.1 second). Find out $|A_v| = |\frac{v_{out}}{v_{in}}|$ and compare it with the absolute value of voltage gain calculated in (a)

