
Experimento 2

FECHADURA DIGITAL SÍNCRONA

	Turmas A e C	Turmas B e D
Pré Relatório	01/09/2015	03/09/2015
	01/09/2015	03/09/2015
Visto	Visto 08/09/2015 10/09/2	
Relatório	15/09/2015	17/09/2015

Figura 1 - Diagrama temporal que exemplifica o funcionamento do circuito lógico da fechadura. Neste exemplo, supõe-se que o código que abre a fechadura é 0011 — 0100 — 1010 — 1000 — 0110

Tabela 1 - Funcionamento do circuito lógico da fechadura. Neste exemplo, supõe-se que o código que abre a fechadura é 0011 – 0100 – 1010.

Ciclo	Entered of Companies and a constraint				
	Entrada fornecida pelo usuário				
1	0011 → primeira palavra de 4 bits do código				
2	0100				
3	1010				
4	1000				
5	0110 → a fechadura se abre (sequência correta); S = 1				
6	0110 → fechadura aberta (última entrada				
	repetida); S = 1				
7	1001 → a fechadura se fecha; S = 0				
8	0111				
9	1111				
10	0011 → primeira palavra de 4 bits do código				
11	0111 → erro no código fornecido				
12	0011 → primeira palavra de 4 bits do código				
13	0100				
14	1110 → erro no código fornecido				
15	0011 → primeira palavra de 4 bits do código				
16	0100				
17	1010				
18	0000 → erro no código fornecido				
19	0011 → primeira palavra de 4 bits do código				
20	0100				
21	1010				
22	1000				
23	1111 → erro no código fornecido				
24	0011 → primeira palavra de 4 bits do código				
25	0100				
26	1010				
27	1000				
28	0110 → a fechadura se abre (sequência correta);				
	S = 1				
29	0110 → fechadura aberta (última entrada				
	repetida); S = 1				
30	0111 → a fechadura se fecha; S = 0				
	· ·				

I. OBJETIVO

O objetivo deste experimento é o projeto da parte lógica de uma fechadura digital síncrona, utilizando flip-flops do tipo JK e circuitos combinacionais básicos. A saída do sistema será ativa quando o usuário fornece uma sequência correta de palavras binárias de entrada, uma a cada pulso do relógio, e segundo um código previamente estabelecido. Serão abordadas técnicas usuais de projeto de máquinas de estado síncronas e de circuitos combinacionais.

II. DESCRIÇÃO DO PROBLEMA

O circuito a ser implementado terá 4 bits de entrada e um de saída. A ideia básica consiste em fazer com que a saída, S, assuma o nível lógico 1 (ativo) somente quando o usuário fornecer, na sequência, 5 palavras pré-estabelecidas de 4 bits (A, B, C, D), uma a cada pulso do relógio.

Uma vez aberta a fechadura (S=1), ela deverá permanecer nesse estado enquanto for repetida a última palavra de entrada, ou seja, para levar S ao nível inativo basta que se aplique uma palavra diferente durante a próxima borda ativa do sinal de relógio.

Note que, caso uma entrada incorreta seja fornecida ao sistema num dado pulso de relógio, será necessário, para que a fechadura abra, que o usuário forneça a partir do novo pulso toda a sequência correta, a partir da primeira palavra. Isto se aplica mesmo que, nos pulsos anteriores, parte da sequência tenha sido fornecida corretamente.

• Código de abertura a ser utilizado

Cada grupo deverá utilizar uma sequência de abertura diferente, determinada a partir dos 5 últimos dígitos do maior número de matrícula dentre os componentes do grupo (desconsiderados os dois primeiros dígitos das matrículas). Por exemplo:

Maior matrícula é $11/0151259 \rightarrow$ desconsideram-se os dígitos 1, 1 e obtém-se a sequência 0101-0001-0010-0101-1001, correspondente a 5, 1, 2, 5, 9 em binário. Maior matrícula é $13/0012378 \rightarrow$ desconsideram-se os dígitos 1, 3, 0 e 0 e obtém-se a sequência 0001-0010-0011-0111-1000, correspondente a 1, 2, 3, 7, 8 em binário.

III. PROJETO DA FECHADURA DIGITAL

O circuito da fechadura deverá ser implementado utilizando-se flip-flops do tipo JK para representar as variáveis de estado.

O pré-relatório deve ser feito em grupo de dois ou três alunos e deve ser feito à mão. Nesse pré-relatório, deverão ser apresentados, obrigatoriamente:

- 1. O diagrama de estados que representa o sistema, com o menor conjunto possível de estados que permita atender as especificações da seção 2.
- A atribuição de estados, considerando-se o critério da adjacência lógica entre os estados consecutivos (só mudar 1 bit de estado para estado) quando é fornecida a sequência correta de abertura.

- 3. Os mapas de Karnaugh para as entradas J e K dos flipflops, como funções do estado atual da máquina e dos 4 bits de entrada, ou ainda do estado atual e da variável auxiliar Z (ver sugestão a seguir).
- 4. As equações de excitação, obtidas dos mapas de Karnaugh.
- 5. O esquemático completo do circuito, elaborado no Circuit Maker, com as pinagens para montagem.

<u>Sugestão</u>: Durante o projeto, gere uma variável auxiliar Z que, em função do estado atual do circuito e dos 4 bits de entrada, informa se foi fornecido o código correto (Z=1) ou incorreto (Z=0). Assim, as entradas J e K dos flip-flops poderão ser expressas como funções apenas de Z e das variáveis de estado, fazendo com que os mapas de Karnaugh fiquem muito menores.

O circuito combinacional que gera a variável Z pode ser facilmente implementado com o uso de um decodificador binário/hexadecimal e um multiplexador com 2^n entradas, onde n é o número de variáveis de estado.

IV. INSTRUÇÕES PARA A REALIZAÇÃO DO EXPERIMENTO

IV.1 – Pré Relatório

Apresentação do projeto, conforme mostrado na seção 3.

IV.2 – Realização do Experimento

O experimento será realizado em duas aulas e terá apenas um visto. Cada grupo deve implementar a fechadura digital descrita no item 2 deste roteiro, usando o código de acordo com o número de matrícula de um dos integrantes, conforme descrito na seção 3.

Recomenda-se fortemente implementar a variável Z, conforme sugerido na seção 3, de modo a simplificar o projeto. Use um LED na variável Z, para mostrar se o código digitado está certo para o estado atual da máquina. Isso facilitará a rotina de testes e correção de erros de montagem. Monte primeiro a variável Z e teste.

A seguir, monte a máquina de estados, usando uma chave como variável Z, e teste. Só então conecte os dois circuitos. Sugere-se montar a máquina de estados na primeira aula e o circuito da variável Z na segunda aula.

Recomenda-se ainda o uso das práticas para montagem e teste de máquinas de estado aprendidas no experimento anterior, entre elas:

- 1. Usar LEDs nas saídas dos flip-flops para indicar o estado atual da máquina.
- Como clock, usar uma chave ou botão ao invés do relógio de 1 Hz.
- Usar um flip-flop tipo D para eliminar a trepidação da chave ou botão utilizado como clock (circuito de debouncing).
- 4. Desativar (nível alto) o PRESET de todos os flip-flops.
- 5. Conectar uma chave ao CLEAR de todos os flipflops (uma única chave para todos os flip-flops), para voltar a máquina ao estado inicial.
- 6. Ao constatar que uma transição não está ocorrendo conforme esperado, tente identificar qual dos flipflops não está atuando corretamente e determine se o problema está na entrada J ou na entrada K. A seguir, use a ponta lógica no circuito conectado a essa entrada para encontrar o problema.

IV.3 - Relatório

O relatório é individual, deve ser feito à mão, e consiste em responder ao questionário a seguir. Não é necessário entregar um relatório formal, com introdução, metodologia, resultados, etc. O relatório deve ser entregue no início da primeira aula do experimento seguinte.

Situação hipotética: Joãozinho chegou atrasado na aula e por isso teve que montar correndo o circuito da fechadura digital. Quando ele conseguiu acabar de montá-lo, faltavam apenas 15 minutos para o fim da aula, e para o seu desespero o circuito não funcionou da maneira esperada. Joãozinho preparou o projeto em casa, e tomou o cuidado de simular o circuito previamente. Portanto, ele sabia que o erro não estava no projeto, mas sim na montagem. No entanto, não havia tempo suficiente para o aluno revisar toda a montagem, por isso ele precisa usar uma maneira mais eficiente para debugar o circuito. A matrícula de Joãozinho é 01/23456. Ele projetou o seu circuito segundo a seguinte tabela de transição de estados.

Estado	Código	Estado	Estado	Saída
atual	esperado	se Z=1	se Z=0	
000	2	001	000	0
001	3	010	000	0
010	4	011	000	0
011	5	100	000	0
100	6	101	000	0
101	6	101	000	1

- Joãozinho não sabe por onde começar a procurar o erro na montagem. Ele montou o circuito todo de uma vez, por isso não sabe em que parte do circuito pode ter errado. Explique como o aluno poderia ter dividido o circuito em partes, de modo a facilitar a busca por erros na montagem. (1,5 ponto)
- 2) Explique detalhadamente (lógica, CIs, funcionamento, entradas, saídas, etc.) como o grupo montou o sub-circuito utilizado para gerar a variável auxiliar Z (sugestão dada na seção III). (2,5 pontos)
- 3) Joãozinho não sabe, mas devido à pressa na montagem, ele trocou os fios das entradas 2 e 3 do multiplexador. Explique, passo-a-passo, como ele pode usar LEDs adicionais no circuito para achar o erro quase que imediatamente. (2 pontos)

- 4) Corrigido esse problema, o circuito ainda não funciona. Novamente observando os LEDs, Joãozinho notou que o problema acontecia quando o circuito chegava ao estado 010. Se Z=0, o circuito voltava para o estado 000, como esperado. Mas, se Z=1, o circuito permanecia no estado 010, ao invés de avançar para o estado 011. Explique onde está o provável erro e como resolvê-lo. (1 ponto)
- 5) Apesar da fechadura de Joãozinho ter 5 códigos, e cada código ter 10 possibilidades, gerando um total de 100.000 códigos possíveis, a fechadura como foi projetada neste experimento pode ser 50 com no máximo tentativas (considerando que o circuito indica que o código correto foi aceito – seja indicando que passou para o próximo estado, ou que o número atual foi inserido da maneira correta, por exemplo, colocando um * no display). Isso acontece porque qualquer código errado leva a fechadura novamente para o estado inicial. Como isso poderia ser evitado? Que tipo de circuito poderia ser utilizado para corrigir essa falha na fechadura? Explique a sua solução, mostrando o novo diagrama de estados do circuito. (3 pontos)