

Address

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 1 of 63

FCC TEST REPORT

Client Name : General Procurement, Inc

800 E Dyer Road, Santa Ana, California, United States

92705

Product Name : Hyundai Koral_8W2

Date : Apr. 17, 2019

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 2 of 63

Contents

1. General information	
1.1. Client Information	5
1.2. Description of Device (EUT)	
1.3. Auxiliary Equipment Used During Test	Van 160/2/2
1.4. Description of Test Modes	
1.5. List of channels	8
1.6. Description Of Test Setup	\
1.7. Test Equipment List	10
1.8. Measurement Uncertainty	11
Description of Test Facility 2. Summary of Test Results	11
2. Summary of Test Results	
3. Conducted Emission Test	13
3.1. Test Standard and Limit	
3.2. Test Setup	13
3.3. Test Procedure	13
4. Radiation Spurious Emission and Band Edge	18
4.1. Test Standard and Limit	18
4.2. Test Setup	18
4.3. Test Procedure	19
4.4. Test Data	20
4.2. Test Setup	30
5.1 Test Standard and Limit	100te Ans 30
5.2. Test Setup	30
5.3. Test Procedure	30
5.4. Test Data	30
6. 6DB Occupy Bandwidth Test	32
6.1. Test Standard and Limit	32
6.2. Test Setup	34
6.3. Test Procedure	32
6.4. Test Data	32
6.4. Test Data	42
7.1. Test Standard and Limit	42
7.2. Test Setup	42
7.3. Test Procedure	42
7.4. Test Data	42
8. 100kHz Bandwidth of Frequency Band Edge Requirement	49
7.3. Test Procedure	49
8.2. Test Setup	49
nzhan Anhotek Compliance Lahoratory Limited	Code: AB-RF-05-a

Report No.: SZAWW190320006-03	FCC ID:	2AIOHHT0802	W16	Page 3 of 6	63
8.3. Test Procedure		And And And		,16 ^K	49
8.4. Test Data	Anbe	, otek	Anbote And		49
9. Antenna Requirement	Anbore	Vun.	botek	upo. Ai	60
9.1. Test Standard and Requirement	photen	Anbo	h. Ofek	Anbore.	60
9.2. Antenna Connected Construction.	الموبيلاي	ek Vupore	Vu. Yek	abotek	60
APPENDIX I TEST SETUP PHOTOGRA	PH	Yodo, Yan	Anbo	h. notek	61
APPENDIX II PHOTOGRAPH	boten An	Do k	otek Anbore	Ann	o¥ 63

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 4 of 63

TEST REPORT

Applicant : General Procurement, Inc

Manufacturer : Shen Zhen Cheng Fong Digital-Tech Limited

Product Name : Hyundai Koral 8W2

Model No. : Koral_8W2

Trade Mark : Hyundai

Rating(s)

Input: DC 5V, 2A(Via adapter Input: AC 100~240V, 50/60Hz, 0.35A; with DC

3.7V, 3500mAh Battery inside)

Test Standard(s) : FCC Part15 Subpart C 2018, Section 15.247

Test Method(s) : ANSI C63.10: 2013, KDB558074 D01 DTS Meas Guidance v05

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt	Mar. 20, 2019
Date of Test	Mar. 20~Apr. 10, 2019
Date of Test Compliance Anbotek	
Product Salety	alivau larg
Product Safety	Andrew Andrew
Prepared by *Approved*	botek Ant tok botek Anbo
botek Anbotek Anbote	(Engineer / Oliay Yang)
	Anbo ak tek above Ano tek
	Snavy Meng
	Snavy Mery
Reviewer	And tek nbotek
ek anboter And ak notek Ant	(Supervisor / Snowy Meng)
botek Anbotek Anbotek Anbotek	(Supervisor / Snowy Meng)
	Sally Zhong
Approved 9 Authorized Cignor	Swiff 20.
Approved & Authorized Signer	Mulps August Aug
	(Manager / Sally Zhang)

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 5 of 63

1. General Information

1.1. Client Information

Applicant	:	General Procurement, Inc
Address	:	800 E Dyer Road , Santa Ana, California, United States 92705
Manufacturer	:	Shen Zhen Cheng Fong Digital-Tech Limited
Address	:	Building A, ChengFong Industrial Area, Huaxing road, Dalang, Longhua, Shen Zhen, China
Manufacturer	:	Shen Zhen Cheng Fong Digital-Tech Limited
Address	:	Building A, ChengFong Industrial Area, Huaxing road, Dalang, Longhua, Shen Zhen, China

1.2. Description of Device (EUT)

Product Name	: Hyundai Koral_	_8W2					
Model No.	: Koral_8W2	Anbotek Anbotek Anbotek Anbotek Anbotek					
Trade Mark	: Hyundai	Anbotek Anbotek Anbotek Anbotek Anbotek					
Test Power Supply	181	C 120V, 60Hz for adapter / AC 240V, 60Hz for adapter/ C 3.7V Battery inside					
Test Sample No.	: 1-2-1(Normal S	1-2-1(Normal Sample), 1-2-2(Engineering Sample)					
	Operation Fred	BT: 2402~2480MHz quency: 2.4G Wifi: 802.11b/ g/ n(HT20) 2412-2462MHz 802.11n(HT40) 2422-2452MHz					
s.	Transfer Rate:	BT 4.1 EDR: 1/2/3 Mbits/s BT 4.1 BLE: 1 Mbits/s					
Product Description	Number of Cha	BT 4.1 EDR: 79 Channels BT 4.1 BLE: 40 Channels 2.4G Wifi: 11 Channels for 802.11b/ g/ n(HT20) 7 Channels for 802.11n(HT40)					
	Modulation Typ	BT 4.1 EDR: GFSK, π/4-DQPSK, 8-DPSK De: BT 4.1 BLE: GFSK 2.4G Wifi: 802.11b CCK; 802.11g/n OFDM					
	Antenna Type:	PIFA Antenna					
	Antenna Gain(Peak): 1.1 dBi					

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 6 of 63

Remark: 1)For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2) This report is for Wifi 2.4G module.

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 7 of 63

1.3. Auxiliary Equipment Used During Test

e	Adapter	:	MODEL: JHD-AP013U-050200BB-B	otek	Anbotek	Anbor	by.
			INPUT: 100-240V~ 50/60Hz, 0.35A				Anz
0			Output: DC 5V, 2000mA			abotek	PL

1.4. Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

RADIATED EMISSION TEST (BELOW 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Mode	Available Channel	Test Channel	Modulation Tech.	Modulation Type	Data Rate (Mbps)
802.11b	1 to 11	Anbote L	CCK	DBPSK	1.0

For the test results, only the worst case was shown in test report.

RADIATED EMISSION TEST (ABOVE 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports (if EUT with antenna diversity

Following channel(s) was (were) selected for the final test as listed below.

Mode	Mode Available Channel				Modulation Tech.	Modulation Type	Data Rate (Mbps)	
802.11b	nbote 1 to 11 mbo	1, 6, 11	CCK	DBPSK	1.0			
802.11g	1 to 11	1, 6, 11	OFDM	BPSK	ek 6.0 _{knbote}			
802.11n HT20	1 to 11	1, 6, 11	OFDM	BPSK	notek 6.5 Anb			
802.11n HT40	3 to 9	3, 6, 9	OFDM	BPSK	13.5			

POWER LINE CONDUCTED EMISSION TEST:

The EUT was tested with the following mode

Mode	Mode Available Channel		Test Channel Modulation Tech.		Data Rate (Mbps)	
802.11b	1 to 11	1, 6, 11	CCK	DBPSK	botek 1.0 Anbi	
802.11g	1 to 11	1, 6, 11	OFDM	BPSK	6.0	
802.11n HT20	1 to 11	1, 6, 11	OFDM	BPSK	6.5	
802.11n HT40	3 to 9	3, 6, 9	OFDM	BPSK	13.5	

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 8 of 63

BANDEDGE MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Mode Available Channel				Modulation Type	Data Rate (Mbps)	
802.11b	1 to 11	1, 11	CCK	DBPSK	1.0	
802.11g	1 to 11	1, 11	OFDM	BPSK	6.0	
802.11n HT20	1 to 11	1, 11	OFDM	BPSK	6.5 M	
802.11n HT40	3 to 9	3, 9	OFDM	BPSK	13.5	

ANTENNA PORT CONDUCTED MEASUREMENT:

This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Mode	Available Channel	Test Channel	Modulation Tech.	Modulation Type	Data Rate (Mbps)
802.11b	1 to 11	1, 6, 11	CCK	DBPSK	1.0
802.11g	1 to 11	1, 6, 11	OFDM	BPSK	6.0
802.11n HT20	1 to 11	1, 6, 11	OFDM	BPSK	6.5
802.11n HT40	3 to 9	3,6, 9	OFDM	BPSK	13.5

1.5. List of channels

Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
01	2412	04	2427	07	2442	10 more	2457
02	2417	otek 05 Anbo	2432	10d 10d 10d	2447	11	2462
ode 03 M	2422	06	2437	09	2452		

Report No.: SZAWW190320006-03

FCC ID: 2AIOHHT0802W16

Page 9 of 63

1.6. Description Of Test Setup

CE

RF

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 10 of 63

1.7. Test Equipment List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.
00	L.I.S.N.	(en Anbe		pore Am	N 0	Interva
nb 1 tek	Artificial Mains Network	Rohde & Schwarz	ENV216	100055	Nov. 05, 2018	1 Year
2.	EMI Test Receiver	Rohde & Schwarz	ESPI3	101604	Nov. 05, 2018	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Nov. 05, 2018	1 Year
4.	Spectrum Analysis	Agilent	E4407B	US39390582	Nov. 05, 2018	1 Year
5.	MAX Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 05, 2018	1 Year
6.	Preamplifier	SKET Electronic	BK1G18G30D	KD17503	Nov. 05, 2018	1 Year
7.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Nov. 20, 2018	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Nov. 19, 2018	1 Year
9.00	Loop Antenna	Schwarzbeck	FMZB1519B	00053	Nov. 20, 2018	1 Year
10.00	Horn Antenna	A-INFO	LB-180400-K F	J211060628	Nov. 20, 2018	1 Year
11.	Pre-amplifier	SONOMA	310N	186860	Nov. 05, 2018	1 Year
12.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A wotek	N/A
,13. ¹⁸	RF Test Control System	YIHENG	YH3000	2017430	Nov. 05, 2018	1 Year
14.	Power Sensor	DAER	RPR3006W	15I00041SN045	Nov. 05, 2018	1 Year
15.	Power Sensor	DAER	RPR3006W	15I00041SN046	Nov. 05, 2018	1 Year
16.	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 05, 2018	1 Year
A.17.	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Nov. 05, 2018	1 Year
18.	Signal Generator	Agilent	E4421B	MY41000743	Nov. 05, 2018	1 Year
19.	DC Power Supply	Anboton Anb	TPR-6420D	374470	Oct. 31, 2018	1 Year
20.	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ-KHWS80B	Anbote N/A Anbo	Nov. 01, 2018	1 Year
110	- Vi-	10 D. 11	187	- D	V V	ALCO

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 11 of 63

1.8. Measurement Uncertainty

Radiation Uncertainty	:	Ur = 3.9 dB (Horizontal)	nbotek	Anbote	Anbo Motek Anbo
		Ur = 3.8 dB (Vertical)		Anbore	And botek Ar
		Anboten Anbo	Anbotel	Anbote	ak abotek
Conduction Uncertainty	:	Uc = 3.4 dB	k Anb	otek Anbo	tek hin upotek

1.9. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, July 31, 2017.

ISED-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A-1, June 13, 2016.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 12 of 63

2. Summary of Test Results

Standard Section	Test Item	Result		
15.203/15.247(c)	Antenna Requirement	PASS		
15.207	Conducted Emission	PASS		
15.205/15.209	Spurious Emission	PASS		
15.247(b)(3)	Conducted Peak Output Power	PASS		
15.247(a)(2)	6dB Occupied Bandwidth	PASS		
15.247(e)	Power Spectral Density	PASS		
15.247(d)	Band Edge	PASS		

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 13 of 63

3. Conducted Emission Test

3.1. Test Standard and Limit

Test Standard	FCC Part15 Section 15.2	207 Anbote K Man Motek						
	Fraguenay	Maximum RF Line Voltage (dBuV)						
	Frequency	Quasi-peak Level	Average Level					
Test Limit	150kHz~500kHz	66 ~ 56 *	56 ~ 46 *					
	500kHz~5MHz	Anbotek 56 Anbou	46 de Andrew					
	5MHz~30MHz	Anbotek 60 Anbo tek	50 Mbotek					

Remark: (1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequency.

3.2. Test Setup

3.3. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

3.4. Test Data

During the test, pre-scan all modes, and found the 802.11b CH01 which is the worst case, only the worst case is recorded in the report.

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 14 of 63

Conducted Emission Test Data

Test Site: 1# Shielded Room 802.11b CH01 **Operating Condition:**

Test Specification: AC 240V for adapter

Comment: Live Line

Tem.: 22.9°C Hum.: 65%

56.00

peak

Code: AB-RF-05-a

400-003-0500 www.anbotek.com

4.2300

20.19

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 15 of 63

Conducted Emission Test Data

Test Site: 1# Shielded Room **Operating Condition:** 802.11b CH01

Test Specification: AC 240V for adapter

Comment: Neutral Line

Tem.: 22.9℃ Hum.: 65%

Email:service@anbotek.com

Tel:(86)755-26066440 Fax:(86)755-26014772

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 16 of 63

Conducted Emission Test Data

Test Site: 1# Shielded Room 802.11b CH01 **Operating Condition:**

Test Specification: AC 120V for adapter

Comment: Live Line

Tem.: 22.9°C Hum.: 65%

Email:service@anbotek.com

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 17 of 63

Conducted Emission Test Data

Test Site: 1# Shielded Room **Operating Condition:** 802.11b CH01

Test Specification: AC 120V for adapter

Comment: Neutral Line

Tem.: 22.9°C Hum.: 65%

Email:service@anbotek.com

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 18 of 63

4. Radiation Spurious Emission and Band Edge

4.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15	5.209 and 15.205	Anu	Anbotek	Anbore A
	Frequency (MHz)	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz~0.490MHz	2400/F(kHz)	abotek An	ote. Ann	300
	0.490MHz-1.705MHz	24000/F(kHz)	An upotok	Aupoles Au	30
	1.705MHz-30MHz	20 more	anbotek .	Anbotes.	30
Test Limit	30MHz~88MHz	100	40.0	Quasi-peak	3 notek
	88MHz~216MHz	150	43.5	Quasi-peak	ak 3 botek
	216MHz~960MHz	200	46.0	Quasi-peak	3
	960MHz~1000MHz	500	54.0	Quasi-peak	3
	Above 1000MUz	500	54.0	Average	Anboa 3
	Above 1000MHz	Anbotek - Anbote	74.0	Peak	Anbo 3

Remark:

- (1) The lower limit shall apply at the transition frequency.
- (2) 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

4.2. Test Setup

Figure 1. Below 30MHz

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 19 of 63

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

4.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane.

For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane.

The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Rotated the EUT through three orthogonal axes to determine the maximum emissions, both horizontal and vertical polarization of the antenna are set on test. The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 20 of 63

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW =1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW =30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 30MHz to 1000MHz, Set the spectrum analyzer as:

RBW = 100kHz, VBW =300kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For above 1GHz, Set the spectrum analyzer as:

RBW =1MHz, VBW =1MHz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple.

RBW =1MHz, VBW =10Hz, Detector= Average, Trace mode= Max hold, Sweep- auto couple.

4.4. Test Data

PASS

During the test, Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the X-axis is the worst case.

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

During the test, pre-scan all modes, and found the 802.11b CH01 which is the worst case, only the worst case is recorded in the report.

Report No.: SZAWW190320006-03 Page 21 of 63 FCC ID: 2AIOHHT0802W16

Test Results (30~1000MHz)

Job No.: SZAWW190320006-03 Temp.(°C)/Hum.(%RH): 22.5°C/50%RH

Standard: FCC PART 15C Power Source: DC 3.7V Battery inside

Test Mode: Polarization: Horizontal 802.11b CH01

Code: AB-RF-05-a

400-003-0500 www.anbotek.com

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 22 of 63

Test Results (30~1000MHz)

Job No.: SZAWW190320006-03 Temp.(℃)/Hum.(%RH): 22.5℃/50%RH

Standard: FCC PART 15C Power Source: DC 3.7V Battery inside

Test Mode: 802.11b CH01 Polarization: Vertical

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 23 of 63

Test Results (Above 1000MHz)

Test Mode:	802.11b Mod	le		Test	channel: Low	est		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4824.00	40.14	34.13	6.61	34.09	46.79	74.00	-27.21	NpoV ^k
7236.00	34.12	37.14	7.74	34.51	44.49	74.00	-29.51	No.
9648.00	32.65	39.35	9.26	34.80	46.46	74.00	-27.54	V
12060.00	** *	potek	Anbotek	Anbu	Anbotek	74.00	Am.	V V
14472.00	upor *	nbotek	Anbotek	Aup	anbote Anbote	74.00	Vok Vu	oteKV
16884.00	Anbu *	Anbotek	Anbores	VK VIII	otek Anb	74.00	*ek	No V
4824.00	38.84	34.13	6.61	34.09	45.49	74.00	-28.51	A Motor
7236.00	33.88	37.14	7.74	34.51	44.25	74.00	-29.75	H
9648.00	32.23	39.35	9.26	34.80	46.04	74.00	-27.96	6 H
12060.00	por *	abotek	Anbotel	Anbo	k Anbotel	74.00	ok Pun	ote ^K H
14472.00	Anbox *	An abotek	Anbores	KANDO	otek anb	74.00	rak bu	Hode
16884.00	Anbo.	nbo [†]	SK Aupo,	's Vill	notek p	74.00	por b	H
	30.07	10.	A	verage Valu	e	N.		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4824.00	29.24	34.13	6.61	34.09	35.89	54.00	-18.11	V
7236.00	22.99	37.14	7.74	34.51	33.36	54.00	-20.64	V
9648.00	23.00	39.35	9.26	34.80	36.81	54.00	-17.19	Yuper
12060.00	ek * Anbot	er Vu	hotek	Anbotek	Aupore	54.00	Anbotes	V
14472.00	potek * Ani	pote	protek spotek	Anbotek	Anboratek	54.00	Anbore	V
16884.00	Anbotek	Aupore Fek	Andotek	Anbotel	Anbo	54.00	sk Aupo	V
4824.00	28.38	34.13	6.61	34.09	35.03	54.00	-18.97	H
7236.00	22.47	37.14	7.74	34.51	32.84	54.00	-21.16	Pupon
9648.00	21.98	39.35	9.26	34.80	35.79	54.00	-18.21	\mathbb{H}_{p}
12060.00	otek * Ant	lose,	hotek	Anbotek	Anbote.	54.00	Anbotek	H
14472.00	inbotek*	Aupoter	Anbotek	Anbotek	Anbore	54.00	k Aupo	H
16884.00	Anbo*ek	Anbote	Aur Pole	k Anbo	lek Aupo,	54.00	otek Ar	H,

Shenzhen Anbotek Compliance Laboratory Limited

Code:AB-RF-05-a

Hotline 400-003-0500 www.anbotek.com

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 24 of 63

Test Results (Above 1000MHz)

Test Mode:	802.11b Mod	le		Test	channel: Mid	dle		
			I	Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4874.00	39.23	34.35	6.67	34.09	46.16	74.00	-27.84	$^{nb}\circ V^{k}$
7311.00	34.21	37.21	7.77	34.53	44.66	74.00	-29.34	No.
9748.00	33.68	39.45	9.33	34.80	47.66	74.00	-26.34	V
12185.00	*6* *	botek	Anbotek	Anbu	Anbotek	74.00	Ann Pote	× V
14622.00	Upor *	nbotek	Anbotek	Aup	k Anbote	74.00	lek ve	oteKV
17059.00	Anbo *	Anbotek	Anbotos	Anu.	otek Anb	74.00	tek bu	nbo Vk
4874.00	39.72	34.35	6.67	34.09	46.65	74.00	-27.35	, nbote
7311.00	32.86	37.21	7.77 N	34.53	43.31	74.00	-30.69	Harr
9748.00	33.57	39.45	9.33	34.80	47.55	74.00	-26.45	• Н
12185.00	por * Pr	abotek	Anboten	Anbo	r Anbotel	74.00	V. Vun	ote ^K H
14622.00	Aupor *	Anotek	Anbotes	- K Pupp	otek Anb	74.00	rok bus	Hodo
17059.00	Anbe otek	nbol	ek Anbo	o. And	hotek A	74.00	bor b	Hie
			A	verage Valu	e			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4874.00	30.09	34.35	6.67	34.09	37.02	54.00	-16.98	V
7311.00	22.53	37.21	7.77	34.53	32.98	54.00	-21.02	obo V
9748.00	22.93	39.45	9.33	34.80	36.91	54.00	-17.09	Nupo
12185.00	ek * Aupol	Vak Vu	hotek	Anbotek	Aupor	54.00	Anbotek	V
14622.00	otek * An'	pote	kin	Anbotek	Anbo	54.00	Aupote	VP
17059.00	Anbotek*	Aupor	Amanbotek	Anbotek	Anbo	54.00	ek Aupo	V
4874.00	29.84	34.35	6.67	34.09	36.77	54.00	-17.23	H
7311.00	21.95	37.21	1.77 AND	34.53	32.40	54.00	-21.60	Aupore
9748.00	23.29	39.45	9.33	34.80	37.27	54.00	-16.73	ARD
12185.00	otek * Ant	lose.	hotek	Anbotek	Anbore	54.00	Anbotek	H P
14622.00	mbotek*	Aupoter.	Amir	Anbotek	Anbore	54.00	K Anbo	H
17059.00	Anbo*ek	Anboto	k hup	k Anbo	ex Yupo,	54.00	otek Ar	H.

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 25 of 63

Test Results (Above 1000MHz)

Test Mode:	802.11b Mod	le		Test	channel: Higl	hest		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4924.00	44.67	34.57	6.74	34.09	51.89	74.00	-22.11	N.
7386.00	34.83	37.29	7.80	34.55	45.37	74.00	-28.63	V
9848.00	36.93	39.55	9.41	34.81	51.08	74.00	-22.92	V
12310.00	tek * Anbo	Ve. V.	100 FBK	abotek	Aupole	74.00	Anbotek	Λ_{u_l}
14772.00	otek *	hotek	Anbox	hotek	Anbotes	74.00	abote	V
17234.00	16K	abotek	Aupor	Andre	k Anbote	74.00	lok of	otekV
4924.00	44.01	34.57	6.74	34.09	51.23	74.00	-22.77	NO HE
7386.00	33.75	37.29	7.80	34.55	44.29	74.00	-29.71	Hite
9848.00	33.11	39.55	9.41	34.81	47.26	74.00	-26.74	VUD.
12310.00	lek * Anbo	len VL	otek.	abotek	Anbore	74.00	Anbotek	A.nic
14772.00	sotek *	potek	Aupo	abotek	Anbote	74.00	nbote	Н
17234.00	ote*	Anbotek	Aupor	All hotel	K Anbore	74.00	vek nb	otek H
			A۱	verage Valu	е			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4924.00	35.60	34.57	6.74	34.09	42.82	54.00	-11.18	V
7386.00	24.75	37.29	7.80	34.55	35.29	54.00	-18.71	V
9848.00	25.44	39.55	9.41	34.81	39.59	54.00	-14.41	V
12310.00	* tek	Anbotek	Aupo	ak abo	rek Anbo	54.00	otek .	Produ
14772.00	**	nboth	Sk Vupo.	N. K.	hotek A	54.00	18 × 1	Vel
17234.00	*	1/2 1/8	otek Ani	or A	otek	54.00	Aupo rok	V
4924.00	34.38	34.57	6.74	34.09	41.60	54.00	-12.40	H
7386.00	23.14	37.29	7.80	34.55	33.68	54.00	-20.32	H
9848.00	22.37	39.55	9.41	34.81	36.52	54.00	-17.48	H
12310.00	*otek	Anbotek	Anbo	, NO	lek Aupo	54.00	otek o	botek
14772.00	And * otek	Anbote	Anbor	*ek	botek Ar	54.00	atek .	onbHek
17234.00	Pup.	dr. 4	otek Ant	or by	botek	54.00	Vupo.	Hoo

Remark:

- 1. During the test, pre-scan the 802.11b,g,n(HT20N),n(HT40N) mode, and found the 802.11b mode is worse case, the report only record this mode.
- 2. Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 26 of 63

Radiated Band Edge:

	V. 11.							
Test Mode:	802.11b Mod	е		Tes	st channel: Lov	vest		
			F	Peak Valu	е			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2390.00	52.31	29.15	3.41	34.01	50.86	74.00	-23.14	nboH ^K
2400.00	61.54	29.16	3.43	34.01	60.12	74.00	-13.88	Ho
2390.00	54.04	29.15	3.41	34.01	52.59	74.00	-21.41	V
2400.00	63.52	29.16	3.43	34.01	62.10	74.00	-11.90	V
			Av	erage Val	lue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2390.00	38.88	29.15	3.41	34.01	37.43	54.00	-16.57	And
2400.00	47.25	29.16	3.43	34.01	45.83	54.00	-8.17	An
2390.00	40.75	29.15	3.41	34.01	39.30	54.00	-14.70	V
2400.00	48.42	29.16	3.43	34.01	47.00	54.00	-7.00	V

Antenna Factor (dB/m) 29.28 29.30	Cable Loss (dB)	Peak Value Preamp Factor (dB)	Level (dBuV/m)	Limit	Over Limit	
Factor (dB/m) 29.28	(dB)	Factor		Limit	Over Limit	
VILLE	3.53		(ubuv/III)	(dBuV/m)	(dB)	Pol.
20.20	5,50	34.03	52.03	74.00	-21.97	HP10dh
29.30	3.56	34.03	47.70	74.00	-26.30	VUPA: PIEN
29.28	3.53	34.03	54.42	74.00	-19.58	Vibo
29.30	3.56	34.03	50.33	74.00	-23.67	V
	Av	erage Valu	е			
Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
29.28	3.53	34.03	38.12	54.00	-15.88	And
29.30	3.56	34.03	34.15	54.00	-19.85	H
29.28	3.53	34.03	40.13	54.00	-13.87	V V
200	3.56	34.03	36.06	54.00	100	V
	Antenna Factor (dB/m) 29.28 29.30	Antenna Factor (dB/m) 29.28 3.53 29.30 3.56 29.28 3.53	Average Value Antenna Factor (dB/m) 29.28 29.30 29.28 3.53 34.03 29.28 3.53 34.03	Average Value Antenna Factor (dB/m) 29.28 3.53 34.03 34.15 29.28 3.53 34.03 40.13	Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB/m) 29.28 3.53 34.03 38.12 54.00 29.28 3.53 34.03 40.13 54.00	Average Value Antenna Factor (dB/m) 29.28 3.53 34.03 38.12 54.00 -19.85 29.28 3.53 34.03 40.13 54.00 -13.87

Remark:

1. Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 27 of 63

Radiated Band Edge:

Test Mode:	802.11g Mod	е		Test	channel: Low	est		
			F	Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2390.00	51.27	27.53	5.47	33.92	50.35	74.00	-23.65	nboH ^k
2400.00	60.15	27.55	5.49	29.93	63.26	74.00	-10.74	Hote
2390.00	52.92	27.53	5.47	33.92	52.00	74.00	-22.00	V
2400.00	61.84	27.55	5.49	29.93	64.95	74.00	-9.05	V
			Av	erage Valu	ie			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2390.00	38.14	27.53	5.47	33.92	37.22	54.00	-16.78	AND
2400.00	46.39	27.55	5.49	29.93	49.50	54.00	-4.50	Ant
2390.00	39.93	27.53	5.47	33.92	39.01	54.00	-14.99	V
2400.00	47.49	27.55	5.49	29.93	50.60	54.00	-3.40	V

Test Mode:	802.11g Mod	е		Test	channel: Higl	nest		
			F	Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2483.50	51.76	29.28	3.53	34.03	50.54	74.00	-23.46	HP10dh
2500.00	47.71	29.30	3.56	34.03	46.54	74.00	-27.46	VUPACE,
2483.50	53.94	29.28	3.53	34.03	52.72	74.00	-21.28	Vibo
2500.00	50.15	29.30	3.56	34.03	48.98	74.00	-25.02	V
			Av	rerage Valu	ie			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2483.50	38.44	29.28	3.53	34.03	37.22	54.00	-16.78	Anb H
2500.00	34.62	29.30	3.56	34.03	33.45	54.00	-20.55	H
2483.50	40.36	29.28	3.53	34.03	39.14	54.00	-14.86	A V P
2500.00	36.49	29.30	3.56	34.03	35.32	54.00	-18.68	V

Remark:

1. Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 28 of 63

Radiated Band Edge:

Test Mode:	802.11n20 M	ode		Test	Test channel: Lowest				
			F	Peak Value	:				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	
2390.00	50.74	27.53	5.47	33.92	49.82	74.00	-24.18	abol4k	
2400.00	59.45	27.55	5.49	29.93	62.56	74.00	-11.44	Hor	
2390.00	52.36	27.53	5.47	33.92	51.44	74.00	-22.56	V	
2400.00	61.00	27.55	5.49	29.93	64.11	74.00	-9.89	V	
			Av	erage Valu	ie				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	
2390.00	37.76	27.53	5.47	33.92	36.84	54.00	-17.16	AND	
2400.00	45.96	27.55	5.49	29.93	49.07	54.00	-4.93	Ant	
2390.00	39.51	27.53	5.47	33.92	38.59	54.00	-15.41	V	
2400.00	47.01	27.55	5.49	29.93	50.12	54.00	-3.88	V	

Test Mode:	802.11n20 M	ode		Test	Test channel: Highest					
			F	Peak Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.		
2483.50	51.00	29.28	3.53	34.03	49.78	74.00	-24.22	Hrode		
2500.00	47.12	29.30	3.56	34.03	45.95	74.00	-28.05	VUPA(6)		
2483.50	53.08	29.28	3.53	34.03	51.86	74.00	-22.14	Vib		
2500.00	49.46	29.30	3.56	34.03	48.29	74.00	-25.71	V		
			Av	rerage Valu	ie					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.		
2483.50	37.99	29.28	3.53	34.03	36.77	54.00	-17.23	Anu H		
2500.00	34.26	29.30	3.56	34.03	33.09	54.00	-20.91	H		
2483.50	39.85	29.28	3.53	34.03	38.63	54.00	-15.37	V V		
2500.00	36.11	29.30	3.56	34.03	34.94	54.00	-19.06	V		

Remark:

1. Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 29 of 63

Radiated Band Edge:

Test Mode:	802.11n40 M	ode		Tes	t channel: Low	est		
			F	Peak Value	•			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2390.00	50.08	27.53	5.47	33.92	49.16	74.00	-24.84	nboH ^K
2400.00	58.57	27.55	5.49	29.93	61.68	74.00	-12.32	How
2390.00	51.65	27.53	5.47	33.92	50.73	74.00	-23.27	V
2400.00	59.94	27.55	5.49	29.93	63.05	74.00	-10.95	V
			Av	verage Valu	ue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2390.00	37.29	27.53	5.47	33.92	36.37	54.00	-17.63	AND
2400.00	45.42	27.55	5.49	29.93	48.53	54.00	-5.47	An
2390.00	38.99	27.53	5.47	33.92	38.07	54.00	-15.93	V
2400.00	46.42	27.55	5.49	29.93	49.53	54.00	-4.47	V

Test Mode:	802.11n40 M	ode		Test	Test channel: Highest					
			F	Peak Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.		
2483.50	50.06	29.28	3.53	34.03	48.84	74.00	-25.16	HProdu		
2500.00	46.39	29.30	3.56	34.03	45.22	74.00	-28.78	VUPA:EA		
2483.50	52.00	29.28	3.53	34.03	50.78	74.00	-23.22	Vibo		
2500.00	48.61	29.30	3.56	34.03	47.44	74.00	-26.56	V		
			Av	rerage Valu	ie					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.		
2483.50	37.98	29.28	3.53	34.03	36.76	54.00	-17.24	And		
2500.00	34.26	29.30	3.56	34.03	33.09	54.00	-20.91	H		
2483.50	39.85	29.28	3.53	34.03	38.63	54.00	-15.37	A V P		
2500.00	36.11	29.30	3.56	34.03	34.94	54.00	-19.06	V		

Remark:

1. Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190320006-03 Page 30 of 63 FCC ID: 2AIOHHT0802W16

5. Maximum Peak Output Power Test

5.1. Test Standard and Limit

Test Standard	FCC Part15 (C Section 15.2	247 (b)(3)	Aupo, otek	nbotek	Anbote	P.
Test Limit	30dBm	Arr	Anboten	Anbo	nbotek	Anbole	V.

5.2. Test Setup

5.3. Test Procedure

- 1. The Transmitter output (antenna port) was connected to the power meter.
- 2. Turn on the EUT and power meter and then record the power value.
- 3. Repeat above procedures on all channels needed to be tested.

Note: The cable loss and attenuator loss were offset into measure device as amplitude offset.

5.4. Test Data

Test Item Test Mode CH Low ~ CH High Max. peak output power

Test Voltage DC 3.7V Battery inside **Temperature** 23.7℃

Test Result **PASS** Humidity 53%RH

Code: AB-RF-05-a

400-003-0500 www.anbotek.com

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 31 of 63

Test Channel	Frequency (MHz)	Maximum Peak Conducted Output Power (PK) (dBm)	Limit dBm	Results
otek Anbu		TX 802.11b Mode		Anbotek Ar
CH01	2412	Andrek 9.5100tek Andre	30 Ambotek	PASS
CH06	2437	9.20	Anbotek 30 Anbote	PASS
CH11	2462	9.50	Anbotek 30 Anbo	PASS
stek Anbotek	Anbotek A	TX 802.11g Mode	ek abotek A	Anbotek An
CH01	2412	6.70	otek 30 Anbotek	PASS
CH06	2437	6.90 hotek	Ambotek 30 Ambotek	PASS
CH11	2462	8.39 Annotes	Anbotek 30	PASS
ctek Anbotek	Anbotek A	TX 802.11n(20) Mode	ak Aupo	Anbotek Ant
CH01	2412	6.01	otek 30 hootek	PASS
CH06	2437	5.88 botek	inbotek 30 Anboten	PASS
CH11	2462	7.61	Anbote 30	PASS
otek Anbotek	Anbotek A	TX 802.11n(40) Mode	Anbotek A	Anbotek Ant
CH03	2422	Anbotek 5.60 Anbo	30 odek	PASS
CH06	2437	Anbotek 6.31	nbotek 30 Anbotes	PASS
CH09	2452	6.08 Anbotek	Anbore 30 Anb	PASS

Note: For power test the duty cycle is 100% in continuous transmitting mode.

Please see the plot of next page

Report No.: SZAWW190320006-03

FCC ID: 2AIOHHT0802W16 **Duty Cycle**

Page 32 of 63

802.11b mode

802.11g mode

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 33 of 63

802.11n(HT20) mode

802.11n(HT40) mode

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 34 of 63

6. 6DB Occupy Bandwidth Test

6.1. Test Standard and Limit

Test Standard	FCC Part15	C Section 15.	247 (a)(2)	Antonotek	Anbotek	Anbote A
Test Limit	>500kHz	A. nbotek	Anbote.	Ann	anbotek	Anbore

6.2. Test Setup

6.3. Test Procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as:

RBW= 100kHz, VBW≥3*RBW =300kHz

Detector= Peak

Trace mode= Max hold.

Sweep- auto couple.

- 4. Mark the peak frequency and -6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

6.4. Test Data

Test Item : 6dB Bandwidth Test Mode : CH Low ~ CH High

Test Voltage : DC 3.7V Battery inside : 23.7℃

Test Result : PASS Humidity : 53%RH

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 35 of 63

Mode	Channel	Frequency (MHz)	Bandwidth (MHz)	Limit (kHz)	Results
tek Anbotek	Low	2412	8.593	otek Anbotek	PASS
802.11b	Middle	2437	8.578	>500	PASS
Anbotek A	High	2462	9.077	Anbotek Anh	PASS PASS
Anbotek	Low	2412	16.38	Anbotek Anbotek	PASS
802.11g	Middle	2437	16.39	>500	PASS
potek Anbo	High	2462	16.36	nbotek Anbote	PASS
Anbote, Ac	Low	2412	17.35	Anbotek Anb	PASS
802.11n20	Middle	2437	17.57	>500	PASS MODEL
k Anbotek	High	2462	17.35	lek Anbotek	PASS
otek Aupo	Low	2422	35.56	botek Anbote	PASS
802.11n40	Middle	2437	35.51	>500	PASS
Anbotek	High	2452	35.52	Anbotek A	PASS

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 36 of 63

802.11b mode: Lowest

802.11b mode: Middle

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 37 of 63

802.11b mode: Highest

802.11g mode: Lowest

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 38 of 63

802.11g mode: Middle

802.11g mode: Highest

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 39 of 63

802.11n20 mode: Lowest

802.11n20 mode : Middle

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 40 of 63

802.11n20 mode : Highest

802.11n40 mode: Lowest

Hotline 400-003-0500 www.anbotek.com

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 41 of 63

802.11n40 mode: Middle

802.11n40 mode: Highest

Hotline 400-003-0500 www.anbotek.com

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 42 of 63

7. Power Spectral Density Test

7.1. Test Standard and Limit

Test Standard	FCC Part15 C Section	on Anboten	Anbo	Anbotek	Anbore A
Test Limit	8dBm/3KHz	tek Anbote	Ann	anbotek	Aupor

7.2. Test Setup

7.3. Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 1.5xDTS BW
- 3. Record the max. reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed

7.4. Test Data

Test Item : Power Spectral Density Test Mode : CH Low \sim CH High Test Voltage : DC 3.7V Battery inside Temperature : 23.7 $^{\circ}$ C Test Result : PASS Humidity : 53%RH

Mode	Channel	Frequency (MHz)	PSD (dBm/3KHz)	Limit (dBm/3KHz)	Results
Anbote	Low	2412	-17.101	8.00	PASS
802.11b	Middle	2437	-17.359	8.00	PASS
SK Vupote	High	2462	-16.045	8.00	PASS
potek Anbo	Low	2412	-23.352	8.00	PASS
802.11g	Middle	2437	-26.992	8.00	PASS
A. nbotek	High	2462	-23.598	8.00	PASS
potek	Low	2412	-25.764	8.00	PASS
802.11n20	Middle	2437	-27.212	8.00	PASS
rek wholek	High	2462	-25.461	8.00	PASS
00. Kr.	botek Low Anbote	2422	-29.725	8.00	PASS
802.11n40	Middle	2437	-29.875	8.00	PASS
Anbor	High	2452	-28.104	8.00	PASS

Shenzhen Anbotek Compliance Laboratory Limited

Code: AB-RF-05-a

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 43 of 63

802.11b mode: Lowest

802.11b mode: Middle

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 44 of 63

802.11b mode: Highest

802.11g mode: Lowest

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 45 of 63

802.11g mode: Middle

802.11g mode: Highest

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 46 of 63

802.11n20 mode : Lowest

802.11n20 mode: Middle

Shenzhen Anbotek Compliance Laboratory Limited

Hotline 400-003-0500 www.anbotek.com

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 47 of 63

802.11n20 mode: Highest

802.11n40 mode : Lowest

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 48 of 63

802.11n40 mode: Middle

802.11n40 mode: Highest

Shenzhen Anbotek Compliance Laboratory Limited

Hotline 400-003-0500 www.anbotek.com

Report No.: SZAWW190320006-03 Page 49 of 63 FCC ID: 2AIOHHT0802W16

8. 100kHz Bandwidth of Frequency Band Edge Requirement

8.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (d)				
p	in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the				
Test Limit	100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted				
0	bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).				

8.2. Test Setup

8.3. Test Procedure

Using the following spectrum analyzer setting:

- 1. Set the RBW = 100KHz.
- 2. Set the VBW = 300KHz.
- 3. Sweep time = auto couple.
- 4. Detector function = peak.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.

8.4. Test Data

Test Item Band edge Test Mode CH Low ~ CH High

DC 3.7V Battery inside 23.7℃ Test Voltage Temperature

Humidity Test Result **PASS** 53%RH

Code: AB-RF-05-a

www.anbotek.com

FCC ID: 2AIOHHT0802W16 Report No.: SZAWW190320006-03 Page 50 of 63

802.11b mode: Lowest

802.11b mode: Highest

Code: AB-RF-05-a

400-003-0500 www.anbotek.com

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 51 of 63

802.11g mode: Lowest

802.11g mode: Highest

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 52 of 63

802.11n20 mode : Lowest

802.11n20 mode: Highest

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 53 of 63

802.11n40 mode : Lowest

802.11n40 mode: Highest

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 54 of 63

Conducted Emission Method

802.11b mode: Lowest

802.11b mode: Middle

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 55 of 63

802.11b mode: Highest

802.11g mode: Lowest

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 56 of 63

802.11g mode: Middle

802.11g mode: Highest

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 57 of 63

802.11n20 mode: Lowest

802.11n20 mode : Middle

Shenzhen Anbotek Compliance Laboratory Limited

Hotline 400-003-0500 www.anbotek.com

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 58 of 63

802.11n20 mode: Highest

802.11n40 mode : Lowest

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 59 of 63

802.11n40 mode: Middle

802.11n40 mode: Highest

Shenzhen Anbotek Compliance Laboratory Limited

400-003-0500 www.anbotek.com

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 60 of 63

9. Antenna Requirement

9.1. Test Standard and Requirement

Test Standard	FCC Part15 Section 15.203 /247(c)
Requirement	1) 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 2) 15.247(c) (1)(i) requirement: Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

9.2. Antenna Connected Construction

The antenna is a PIFA Antenna which permanently attached, and the best case gain of the antenna is 1.1 dBi It complies with the standard requirement.

Shenzhen Anbotek Compliance Laboratory Limited

Code: AB-RF-05-a

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 61 of 63

APPENDIX I -- TEST SETUP PHOTOGRAPH

Photo of Conducted Emission Measurement

Photo of Radiation Emission Test

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 62 of 63

Report No.: SZAWW190320006-03 FCC ID: 2AIOHHT0802W16 Page 63 of 63

APPENDIX II -- PHOTOGRAPH

Reference to the test report SZAWW190320006-01

----- End of Report -----