Homework no 1

1. Stress tensor

$$oldsymbol{\sigma} = egin{bmatrix} a & b & c \\ b & ac & ab \\ c & ab & abc \end{bmatrix}.$$

Choose values for constants a, b, c from table according to your variant (see file "VARIANTS_FOR_HW1_2021.pdf"). Here ab, ac and abc mean multiplication of corresponding constants.

Please give all answers to four decimal places, i.e., for example like 15.9741, 0.3459, 1.4500, 0.5000 etc.

- (a) Calculate principal stresses σ_1, σ_2 and σ_3 and principal directions $\mathbf{N}_1, \mathbf{N}_2$ and \mathbf{N}_3 . $/max\ 5 + 5 = 10\ points/$ IMPORTANT!
 - i. For calculation of principal stresses and directions mathematical software is recommended to use.
 - ii. Principal values must be ordered $\sigma_1 \geq \sigma_2 \geq \sigma_3$.
 - iii. Vectors \mathbf{N}_1 , \mathbf{N}_2 and \mathbf{N}_3 must be unit vectors and they must form right hand triplet, i.e. $\mathbf{N}_3 = \mathbf{N}_1 \times \mathbf{N}_2$.
- (b) Draw N_1 , N_2 and N_3 at point (0; 0; 0) in case of Cartesian coordinates. $/max\ 4\ points/$
- (c) Calculate invariants I^{σ} , II^{σ} and III^{σ} for stress tensor σ . /max 3 * $2 = 6 \ points$ /
- (d) Calculate maximal shear stress $\tau_{\rm max}$ and present it in a figure together with extremal normal stresses. /max 3 + 5 = 8 points/
- 2. Take E=110 GPa and given stress tensor 100σ MPa. Use Hooke's law to calculate two separate strain tensors:
 - (a) one $(\varepsilon_{0.33})$ for $\nu = 0.33$ (metals) /max 10 points/
 - (b) the second $(\varepsilon_{0.5})$ for $\nu = 0.5$ (incompressibles) /max 10 points/
- 3. In file "VARIANTS_FOR_HW1_2021.pdf" two stress tensors σ_I and σ_{II} are given by tables. Either σ_I or σ_{II} is equivalent to σ differing only by a coordinate transformation. Which one is equivalent to σ and which one represents different stress state? $/max\ 5 + 5 + 2 = 12$ points/