THURSDAY, NOVEMBER 18, 2021 - 17:20

Radboud University makes sustainability a mandatory subject for everyone

Students at Radboud University in Nijmegen will all be taught sustainability as part of their education, whether that's law or microbiology. "The climate crisis is a complex, global problem. That is why we have chosen to have all students think about this problem from their own discipline. All knowledge and research contribute to the solution and a better view of problems," said senior university executive Daniel Wigboldus.

Djoerd Hiemstra (Radboud University)
Wessel Kraaij (Leiden University)

ENVIRONMENTAL IMPACT OF 'SEARCH' (AI AND DATA CENTERS)

The success of search

- Faster
- More diverse (search is everywhere, in most apps)
- Larger
- Market of almost \$100 billion
 - Google pays Apple \$15 billion alone to remain default search engine on Apple devices
 - 63,000 searches per second, 5.4 billion per day, 2 trillion per year

Search is 'my cup of tea'

- Sunday Times, 11 January 2009*:
 - "Revealed: The environmental impact of Google searches"
 - One search releases 7 g of CO
 - Alex Wissner-Gross (Harvard): "performing two Google searches uses up as much energy as boiling the kettle for a cup of tea"
 - "Google are very efficient but their primary concern is to make searches fast and that means they have a lot of extra capacity that burns energy,"
 - A separate estimate from John Buckley, managing director of <u>carbonfootprint.com</u>, a
 British environmental consultancy, puts the CO2 emissions of a Google search at
 between 1g and 10g, depending on whether you have to start your PC or not. Simply
 running a PC generates between 40g and 80g per hour, he says. of CO2 Chris Goodall,
 author of Ten Technologies to Save the Planet, estimates the carbon emissions of a
 Google search at 7g to 10g (assuming 15 minutes' computer use).
 - https://business.directenergy.com/blog/2017/november/powering-a-google-search :
 - https://www.technologyreview.com/2011/09/09/257912/what-it-takes-to-power-google/

Google PR: "Not true"

- Google Blog, 11 January 2009*:
 - "Powering a Google search"
 - One search releases 0.2 g of CO

^{*}https://googleblog.blogspot.com/2009/01/powering-google-search.html

What happened next?

- Wissner-Gross' paper was never accepted/published
- Google publishes yearly sustainability updates
 - https://sustainability.google/progress/energy/
 - https://blog.google/outreachinitiatives/sustainability/

Environmental impact of 'search'

- A 'macro' point of view
 - Search as key functionality for apps
 - Web search
 - Life Cycle Analysis
 - Energy use
 - Today: Preliminary analysis
- A 'micro' point of view
 - Energy requirements of search functionality elements (e.g. deep learning)
 - Today: Preliminary analysis

Macro Succes of large scale cloud computing

- CPUs becoming faster
- Standard memory size increasing even more rapidly
- Sharp development of mobile networks

Bang for your \$

- 2G-3G-4G-5G
- Mobile computing in combination with cloud services is dominant

- A.I. thrives due to more data/CPU and strong GPUs!!
 - We get used to all these services... (Iphone was introduced in 2007)

Data is the new oil

- Big tech: Amazon, Meta(FB), Google, Microsoft, Apple
- Business model: advertizing, cloud platform services
 (Amazon, Microsoft, Apple, Alibaba)
- The cycle of an annual new model, or new software updates that make old hardware obsolete
- Big tech wants us to make many photos and videos and store them online, share them
- This is big money, supported by investors (including our pension funds) all around the world
- Cloud computing and search rely on data centers (example hyperscalers)

Cloud services enable a new way of working

- Economy could continue and even grow during pandemic
- Was able to reduce commuting
- Perhaps will reduce (intercontinental) business travel

But there are downsides

- Energy use (mobile computing) hyperscalers
 - the amount of land surface necessary for the center and for the energy generation, is kind of offshoring the problem, while the money is going elsewhere
- Use of (rare) resources (cobalt, etc)
 - Google: reducing e-waste from land-fills
- Emission of greenhouse gases during production, transport, operation and disposal

Energy use of data centers

- Difficult to find data on energy use of data centers (and their growth)
 - MIT: Google uses 260MW continuously (2011), 80-90% data centers (running and cooling)
 - This means: 2.2 Tera watt hour annually
- Platform companies' strategy:
 - Buy energy offset certificates
 - Compensate with renewable energy on a global scale (variant of 'salderingsregeling' for PV)
 - Do not use any fossil fuel based energy anymore
- However, energy demands outgrow carbon-free energy growth!

Recent Google energy use data

Key performance Indicator ENERGY	Assured for 2020	Unit	2016	2017	Fiscal year 2018	2019	2020
Energy use							
Energy consumption ³⁸	•	MWh	6,513,719	8,029,409	10,572,485	12,749,458	15,439,538
Total electricity consumption	•	MWh	6,209,191	7,609,089	10,104,295	12,237,198	15,138,543

Google environmental report 2021

Google 1998

Micro what does this mean for (IT) research

- How do we measure environmental impact of cloud technology?
- Can algorithms be used for LifeCycleAnalysis?
 (Blockchain)?
- Are there specific architectures /regimens that would help to cut down on energy consumption?

What does it mean for (web) search?

- Can we quantify the footprint of one search query, or supporting search for 8 billion users?
 - Very difficult
- Models
- architecture (decentral)?

How would a 'green' search infrastructure look like?

Energy impact of search algorithms

- Crawlers (freshness)
- Selection of content for indexing
- Every page is personalized (with ads) so caching is difficult
- One global vs multiple local search engines?
 - Meta search engine relaying
- Neural approaches are energy intensive
- Energy use is not charged (services are 'free')

Green AI vs Red AI (Schwartz et al 2020)

- Red AI: Object detection and NLP research strictly focused on accuracy
- Law of diminishing returns (~80/20 rule)
 - Relatively easy and efficient to build a (very) good system
 - Exponential effort needed to move to #1 on the leaderboard
 - Teams "buy" stronger results
- Green Al:
 - Focus on efficiency

Non linear increase of computing for DL

Year

Consumption	CO ₂ e (lbs)	
Air travel, 1 person, NY↔SF	1984	
Human life, avg, 1 year	11,023	
American life, avg, 1 year	36,156	
Car, avg incl. fuel, 1 lifetime	126,000	
Training one model (GPU)		
Training one model (GPU) NLP pipeline (parsing, SRL)	39	
	39 78,468	
NLP pipeline (parsing, SRL)		

Table 1: Estimated CO₂ emissions from training common NLP models, compared to familiar consumption.¹

OpenGPT-3: 175 billion parameters (2020)

Mode1	Hardware	Power (W)	Hours	kWh-PUE	CO_2e	Cloud compute cost
T2T _{base}	P100x8	1415.78	12	27	26	\$41-\$140
$T2T_{big}$	P100x8	1515.43	84	201	192	\$289-\$981
ELMo	P100x3	517.66	336	275	262	\$433-\$1472
$BERT_{base}$	V100x64	12,041.51	79	1507	1438	\$3751-\$12,571
$BERT_{base}$	TPUv2x16	_	96	_	_	\$2074-\$6912
NAS	P100x8	1515.43	274,120	656,347	626,155	\$942,973-\$3,201,722
NAS	TPUv2x1	_	32,623	_	_	\$44,055-\$146,848
GPT-2	TPUv3x32	_	168	_	_	\$12,902-\$43,008

What should we do?

- Governments: tax / cap emissions, do not allow companies to monopolize renewable energy
- Make environmental impact of cloud services/ Al transparent
 - E.g. energy use (Strubell at al)
 - Or # Floating Point Operations for training (Schwartz et al)
- Adapt lifestyle: consume less technology or invest in upgradeable technology
- Creating awareness of the link between behaviour on micro level and macro level effects

Conclusions

- Difficult to estimate the environmental impact of 'one search'
- However, design choices (e.g. search quality, speed and freshness / exhaustivity) have substantial impact
- Law of diminishing returns ("good enough?")
- Platform companies just focus on growth
- Will use a large part of the available renewable resources that are needed for e.g. home energy conversion or green hydrogen production.

Conclusions 2:

- We need to prioritize quality over quantity
- New business models are needed
- Regulation is needed for prioritizing services that should use renewable energy (4K Netflix or heating homes?)

References

- Jonathan Leake and Richard Woods (2009). "Revealed: the environmental impact of Google searches", The Sunday Times.
- Urs Hölzle, Urs (2009). "Powering a Google search." The Official Google Blog.
- Joel Gombiner (2011) "Carbon Footprinting the Internet", Journal of Sustainable Development 5(1), 119-124
- Rod Liddle (2019) "Google your carbon footprint, Prince Harry, and you can kill a few more polar bears", The Sunday Times
- Schwartz, Dodge, Smith, Etzioni (2020) "Green AI", Communications of the ACM
- Strubell, Ganesh, McCallum, "Energy and policy considerations for deep learning", proceedings of ACL, 2019
- Google environmental report 2021
- Clicking Clean: who is winning the race to build a green internet, Greenpeace,
 2017

Images

Teacup by omakinse, OpenClipart

- Alex Wissner-Gross from Google Scholar
- Washing Machine by hatalar205, OpenClipart
- Urs Hölzle from Google Research
- Timnit Gebru from Wikipedia

• . . .