```
import pandas as pd
import numpy as np
import seaborn as sns
import sklearn
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import metrics
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.feature_selection import SelectKBest
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.metrics import r2_score
from google.colab import drive
drive.mount('/content/drive', force_remount=True)
     Mounted at /content/drive
import os
path="/content/drive/MyDrive/"
os.chdir(path)
df = pd.read_csv('abalone1.csv')
df.describe()
```

	Viscera weight	Shucked weight	Whole weight	Height	Diameter	Length	
4	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	count
	0.180594	0.359367	0.828742	0.139516	0.407881	0.523992	mean
	0.109614	0.221963	0.490389	0.041827	0.099240	0.120093	std
	0.000500	0.001000	0.002000	0.000000	0.055000	0.075000	min
	0.093500	0.186000	0.441500	0.115000	0.350000	0.450000	25%
	0.171000	0.336000	0.799500	0.140000	0.425000	0.545000	50%
	0.253000	0.502000	1.153000	0.165000	0.480000	0.615000	75%
•							4

```
df['age'] = df.Rings + 1.5
df.drop('Rings', axis=1, inplace=True)
plt.hist(df['Sex'])
```


sns.barplot(x='Height',y='Sex',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f6e251ad910>

sns.pairplot(data=df[['Sex','Whole weight','Shucked weight','Shell weight']], hue='Sex')

- /// \

```
<seaborn.axisgrid.PairGrid at 0x7f6e24f37b90>
```

df.isnull().sum()

Sex 0
Length 0
Diameter 0
Height 0
Whole weight 0
Shucked weight 0
Viscera weight 0
Shell weight 0
age 0
dtype: int64

df = pd.get_dummies(df)
dummy_df = df

0.2

plt.grid(True)

var = 'Viscera weight'
plt.scatter(x = df[var], y = df['Height'])

.....


```
var = 'Viscera weight'
plt.scatter(x = df[var], y = df['Height'])
plt.grid(True)
```


df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 4173 entries, 0 to 4176
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	Length	4173 non-null	float64
1	Diameter	4173 non-null	float64
2	Height	4173 non-null	float64
3	Whole weight	4173 non-null	float64
4	Shucked weight	4173 non-null	float64
5	Viscera weight	4173 non-null	float64
6	Shell weight	4173 non-null	float64
7	age	4173 non-null	float64
8	Sex_F	4173 non-null	uint8
9	Sex_I	4173 non-null	uint8
10	Sex_M	4173 non-null	uint8
	67 (0)		

dtypes: float64(8), uint8(3)
memory usage: 305.6 KB

categorical_features = df.select_dtypes(include=[object]).columns

Χ

```
array([[ 0.455,  0.365,  0.095, ..., 16.5 ,  0. ,  0. ],  [ 0.35 ,  0.265,  0.09 , ..., 8.5 ,  0. ,  0. ],  [ 0.53 ,  0.42 ,  0.135, ..., 10.5 ,  1. ,  0. ],  ...,  [ 0.6 ,  0.475,  0.205, ..., 10.5 ,  0. ,  0. ],
```

```
[ 0.625, 0.485, 0.15 , ..., 11.5 , 1. ,
            [ 0.71 , 0.555, 0.195, ..., 13.5 , 0.
                                                                11)
Y = df.iloc[:, -1].values
     array([1, 1, 0, ..., 1, 0, 1], dtype=uint8)
scaler = StandardScaler()
scaler.fit_transform(X)
     array([[-0.57383628, -0.43128157, -1.14835115, ..., 1.57118153,
             -0.67492846, -0.68850377],
            [-1.44901676, -1.44007503, -1.27840432, ..., -0.90953755,
             -0.67492846, -0.68850377],
            [0.05129263, 0.12355484, -0.10792575, ..., -0.28935778,
              1.48163851, -0.68850377],
            [0.63474628, 0.67839124, 1.7128187, ..., -0.28935778,
            -0.67492846, -0.68850377],
            [0.84312258, 0.77927059, 0.28223378, ..., 0.02073211,
              1.48163851, -0.68850377],
            [1.55160201, 1.48542601, 1.45271235, ..., 0.64091188,
             -0.67492846, -0.68850377]])
X1 = df.drop('age', axis = 1)
Y1 = df['age']
selectkBest = SelectKBest()
X_new = selectkBest.fit_transform(X1, Y1)
X_train, X_test, y_train, y_test = train_test_split(X_new, Y1, test_size = 0.25)
lm = LinearRegression()
lm.fit(X train, y train)
     LinearRegression()
y train pred = lm.predict(X train)
y_test_pred = lm.predict(X_test)
s = mean_squared_error(y_train, y_train_pred)
print('Mean Squared error of training set :%2f'%s)
p = mean_squared_error(y_test, y_test_pred)
print('Mean Squared error of testing set :%2f'%p)
     Mean Squared error of training set :4.745019
     Mean Squared error of testing set :4.758223
s = r2_score(y_train, y_train_pred)
print('R2 Score of training set:%.2f'%s)
```

```
p = r2_score(y_test, y_test_pred)
print('R2 Score of testing set:%.2f'%p)

R2 Score of training set:0.54
   R2 Score of testing set:0.55
```

Colab paid products - Cancel contracts here

✓ 0s completed at 7:24 PM

X