Matgeo Presentation - Problem 12.485

ee25btech11056 - Suraj.N

October 2, 2025

Problem Statement

Let

$$\mathbf{M} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$

Which of the following is correct

- (1) Rank of M is 1 and M is diagonalizable
- (2) Rank of M is 2 and M is diagonalizable
- (3) 1 is the only eigenvalue and M is diagonalizable
- (4) 1 is the only eigenvalue and \mathbf{M} is not diagonalizable

Data

Name	Value
М	(0 1)
	$\setminus 0 \ 1$

Table : Matrix

First convert M into echelon form by applying row reduction

$$\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \xrightarrow{R_2 \to R_2 - R_1} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \tag{0.1}$$

From the echelon form we see that there is one nonzero row, hence

$$rank(\mathbf{M}) = 1 \tag{0.2}$$

Next find the eigenvalues. Because \mathbf{M} is upper triangular, its eigenvalues are the diagonal entries:

$$\lambda_1 = 0 \qquad \qquad \lambda_2 = 1 \tag{0.3}$$

Now find eigenvectors by solving

$$(\mathbf{M} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0} \tag{0.4}$$

For $\lambda = 0$ solve

$$\mathbf{Mv} = \mathbf{0} \tag{0.5}$$

$$\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \mathbf{v} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{0.7}$$

This gives

$$y = 0 (0.8)$$

And x can be anything Thus an eigenvector for $\lambda = 0$ is

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

(0.9)

(0.6)

For $\lambda = 1$ solve

$$(\mathbf{M} - \mathbf{I})\mathbf{v} = \mathbf{0} \tag{0.10}$$

$$\begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix} \mathbf{v} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

(0.11)

This gives

$$-x + y = 0$$

$$y = x$$

$$(0.13)$$
 (0.14)

Thus an eigenvector for $\lambda = 1$ is

$$\mathbf{v}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Since the eigenvalues λ_1 and λ_2 are distinct, the matrix ${\bf M}$ is diagonalizable.

Form the matrix ${\bf P}$ with eigenvectors as columns and the diagonal matrix ${\bf D}$ of eigenvalues:

$$\mathbf{P} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \tag{0.16}$$

$$\mathbf{D} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \tag{0.17}$$

Compute P^{-1}

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \xrightarrow{R_1 \to R_1 - R_2} \begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1 \end{pmatrix} \tag{0.18}$$

The right block gives

$$\mathbf{P}^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \tag{0.19}$$

Finally, the diagonalization:

$$\mathbf{M} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1} \tag{0.20}$$

$$\mathbf{M} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \tag{0.21}$$

Conclusion : The matrix \mathbf{M} has $rank(\mathbf{M}) = 1$ and is **diagonizable**. Therefore the correct option is (1).