Language_Model_(Rafael_Ito)

March 25, 2020

1 Language Model (Bengio, 2003)

MLP with Word Embeddings

Author: Rafael Ito

e-mail: ito.rafael@gmail.com

1.1 0. Dataset and Description

Name: WikiText-2

Description: this notebook uses the WikiText-2 dataset which is a language modeling dataset with over 2 millions tokens. The aim here is to build a language model that predicts the next word based on a sequence of NGRAM previous words, such as that found in the paper "A Neural Probabilistic Language Model" from Yoshua Bengio, 2003.

1.2 1. Libraries and packages

1.2.1 1.1 Install packages

1.2.2 1.2 Import libraries

```
#-----
from sklearn.preprocessing import OneHotEncoder
#------
# data visualization
#------
import matplotlib.pyplot as plt
#------
# additional config
#-------
# random seed generator
torch.manual_seed(42);
```

1.2.3 1.3 Check device

```
[3]: device = torch.device('cpu')
  if torch.cuda.is_available():
    device = torch.device('cuda')
  print('Device:', device)
```

Device: cuda

1.2.4 1.4 Constants definition

1.3 2. Dataset

1.3.1 2.1 Download

```
[5]: # download dataset
!wget -nc https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-v1.zip
!unzip -o wikitext-2-v1.zip
```

```
--2020-03-25 23:19:52--
```

https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-v1.zip Resolving s3.amazonaws.com (s3.amazonaws.com)... 52.216.18.163 Connecting to s3.amazonaws.com (s3.amazonaws.com)|52.216.18.163|:443... connected.

```
HTTP request sent, awaiting response... 200 OK
Length: 4475746 (4.3M) [application/zip]
Saving to: 'wikitext-2-v1.zip'

wikitext-2-v1.zip 100%[============]] 4.27M 9.91MB/s in 0.4s

2020-03-25 23:19:58 (9.91 MB/s) - 'wikitext-2-v1.zip' saved [4475746/4475746]

Archive: wikitext-2-v1.zip
    creating: wikitext-2/
    inflating: wikitext-2/wiki.test.tokens
    inflating: wikitext-2/wiki.valid.tokens
    inflating: wikitext-2/wiki.train.tokens
```

1.3.2 2.2 Dataset preparation

Function that loads the text dataset and return the tokens.

```
[0]: def load_tokens(path):
    text = open(path).read().lower()
    # Split sem argumentos remove quebras de linha e espaços duplicados.
    return text.split()
```

Function that take as input the tokens and return the vocab organized based on the frequency of the words.

```
[0]: def build_vocab(tokens, vocab_size):
    word_frequency = collections.Counter(tokens)

vocab = {token: index for index, (token, _) in enumerate(
        word_frequency.most_common(vocab_size))}

# Adicionamos o token "<unk>" para lidar com palavras não presentes no
    # vocabulário . O dataset text8 já contem este token, mas pode ser que ele
    # não tenha sido adicionado quando filtramos com `vocab_size`.
    if '<unk>' not in vocab:
        vocab['<unk>'] = len(vocab)
    return vocab
```

Loading training, validation and test tokens.

```
[0]: train_tokens = load_tokens('wikitext-2/wiki.train.tokens')
valid_tokens = load_tokens('wikitext-2/wiki.valid.tokens')
test_tokens = load_tokens('wikitext-2/wiki.test.tokens')
```

```
[9]: # size of the each dataset len(train_tokens), len(valid_tokens), len(test_tokens)
```

[9]: (2051910, 213886, 241211)

1.3.3 2.3 Check if in DEBUG mode

If in DEBUG mode, limit the dataset taking the first 10,000 tokens.

If in DEBUG mode, limit the vocab to the 1,000 most frequent words.

```
[11]: vocab_size = 1_000 if DEBUG else 10_000
vocab = build_vocab(train_tokens, vocab_size=vocab_size)
print(f'Vocab has {len(vocab)} tokens')
print(f'10 sample tokens: {list(itertools.islice(vocab.keys(), 10))}')
```

```
Vocab has 4124 tokens
10 sample tokens: ['the', ',', '.', '<unk>', 'of', 'and', 'in', 'to', 'a', '=']
```

1.3.4 2.4 Padding

Create "padding word in vocab:

```
[0]: # replace the last vocab with the '<pad>' padding token:
if '<pad>' not in vocab:
    vocab['<pad>'] = len(vocab)
    vocab_size = len(vocab)
```

Add the padding token at the beginning of each dataset:

```
[13]: # create padding list to be concatenated with tokens dataset padding_list = NGRAM * ['<pad>'] padding_list
```

```
[13]: ['<pad>', '<pad>', '<pad>', '<pad>']
```

```
[0]: # concatenate the padding list removing the last NGRAM tokens
train_tokens = padding_list + train_tokens
valid_tokens = padding_list + valid_tokens
test_tokens = padding_list + test_tokens
```

1.3.5 2.5 Token indexes list

```
[0]: # for each token in the dataset append its correspondent index,

# if the token is not in vocab, append the index of the '<unk>' token

idx_train = [vocab[token] if token in vocab else vocab['<unk>'] for token in

→train_tokens]

idx_val = [vocab[token] if token in vocab else vocab['<unk>'] for token in

→valid_tokens]
```

```
idx_test = [vocab[token] if token in vocab else vocab['<unk>'] for token in utest_tokens]
```

1.3.6 2.6 Format inputs and targets

```
[0]: # get the size of each dataset
train_size = len(idx_train) - NGRAM
val_size = len(idx_val) - NGRAM
test_size = len(idx_test) - NGRAM
```

Initialize X and y for all datasets with zeros

```
[0]: '''
    X type: torch. Tensor
    X "dim": 2
    X "shape": (set_size x NGRAM)
    y type: torch. Tensor
    y dim: 1
    y shape: set_size
     _____
     \# create X and y for training set
    X_train = train_size * [NGRAM * [0]]
    y_train = train_size * [0]
    # create X and y for validation set
    X_val = val_size * [NGRAM * [0]]
    y_val = val_size * [0]
    # create X and y for test set
    X_test = test_size * [NGRAM * [0]]
    y_test = test_size * [0]
```

Fill X and y with correspondent values

```
[0]: # training set
for i in range(train_size - NGRAM):
    X_train[i] = idx_train[i:i+NGRAM]
    y_train[i] = idx_train[i+NGRAM]
# validation set
for i in range(val_size - NGRAM):
    X_val[i] = idx_val[i:i+NGRAM]
    y_val[i] = idx_val[i+NGRAM]
# test set
for i in range(test_size - NGRAM):
    X_test[i] = idx_test[i:i+NGRAM]
    y_test[i] = idx_test[i:i+NGRAM]
```

1.3.7 2.7 PyTorch dataset Creation

```
[0]: ds_train = TensorDataset(torch.LongTensor(X_train), torch.LongTensor(y_train))
ds_val = TensorDataset(torch.LongTensor(X_val), torch.LongTensor(y_val))
ds_test = TensorDataset(torch.LongTensor(X_test), torch.LongTensor(y_test))
```

1.3.8 **2.8** Embedding

```
[0]: def my_embedding_function(dataset, ngram, vocab_size, encoder):
        dim = dataset.ndim
         #-----
         # in case of one dimension
        if dim == 1:
            return enc.transform(dataset.reshape(ngram,-1))
         #-----
         # in case of two dimensions
        elif dim == 2:
            #embeddings = torch.zeros()
            size = len(dataset)
            embeddings = np.zeros(shape=(size, ngram, vocab_size), dtype=np.float32)
            for idx, token_index in enumerate(dataset):
                embeddings[idx] = enc.transform(token_index.reshape(ngram,-1)).toarray()
            return torch.from_numpy(embeddings)
         # in case of other dimensions
        else:
            print('dimension error')
            return 0
```

```
[0]: # using torch.nn.Embedding
    if PYTORCH_EMBEDDING:
        pytorch_embedding = torch.nn.Embedding(num_embeddings=vocab_size,,,
     \rightarrowembedding_dim=EMBEDDING_DIM)
        # embedding
        X_train_emb = pytorch_embedding(ds_train[:][0])
        X_val_emb = pytorch_embedding(ds_val[:][0])
        X_test_emb = pytorch_embedding(ds_test[:][0])
        #-----
        y_train_emb = pytorch_embedding(ds_train[:][1])
        y_val_emb = pytorch_embedding(ds_val[:][1])
        y_test_emb = pytorch_embedding(ds_test[:][1])
        # Create new dataset based on embeddings
        ds_train_emb = TensorDataset(X_train_emb.reshape(-1, NGRAM*EMBEDDING_DIM), torch.
     →LongTensor(y_train))
        ds_val_emb = TensorDataset(X_val_emb.reshape(-1, NGRAM*EMBEDDING_DIM), torch.
     →LongTensor(y_val))
        ds_test_emb = TensorDataset(X_test_emb.reshape(-1, NGRAM*EMBEDDING_DIM), torch.
     →LongTensor(y_test))
     # using my embedding (based on one-hot encoding)
    else:
```

1.3.9 2.9 PyTorch loader creation

- BATCH_SIZE definition
- training dataset
- validation dataset

```
[0]: BATCH_SIZE_TRAIN = 100
    BATCH_SIZE_VAL = 100
    #-----
    # training data loader
    dl_train = torch.utils.data.DataLoader(
        dataset = ds_train_emb if PYTORCH_EMBEDDING else ds_train_oh,
        drop_last = False,
        shuffle = True,
        #batch_size = BATCH_SIZE)
        batch_size = BATCH_SIZE_TRAIN)
     #-----
     # validation data loader
    dl_val = torch.utils.data.DataLoader(
        dataset = ds_val_emb if PYTORCH_EMBEDDING else ds_val_oh,
        drop_last = False,
        shuffle = True,
        #batch_size = BATCH_SIZE)
        batch_size = BATCH_SIZE_VAL)
```

Verifying shape, batch data type from loader and optionally its visualization

```
[23]: if PYTORCH_EMBEDDING:
    print('shape of sample from embedding dataset:', ds_train_emb[0][0].shape)
else:
    print('shape of sample from one-hot dataset:', ds_train_oh[0][0].shape)
```

shape of sample from embedding dataset: torch.Size([160])

```
[24]: tx, ty = iter(dl_train).next()
print('train:', tx.shape, tx.dtype, ty.shape, ty.dtype)
tx, ty = iter(dl_val).next()
```

```
print('val:', tx.shape, tx.dtype, ty.shape, ty.dtype)
print('last batch size:', len(ds_train)%BATCH_SIZE_TRAIN, len(ds_val)%BATCH_SIZE_VAL)
```

```
train: torch.Size([100, 160]) torch.float32 torch.Size([100]) torch.int64
val: torch.Size([100, 160]) torch.float32 torch.Size([100]) torch.int64
last batch size: 0 0
```

1.4 3. Network Model

1.4.1 3.1 Network class definition

```
[0]: # using my Embedding
    if not PYTORCH_EMBEDDING:
        N = NGRAM
        E = EMBEDDING_DIM
        H = HIDDEN_DIM
        V = vocab_size
        layer
                  inputs outputs obs.
                    -----
                                  (already done during dataset creation)
        one\_hot: N N*V \\ embedding: N*V N*E
                                  (remeber to force bias=0)
        hidden:
                   N*E
                          H
        output:
                    H
        class NN(torch.nn.Module):
            def __init__(self, ngram, embedding_dim, hidden_size, vocab_size):
                super(NN, self).__init__()
                #----
                self.ngram = ngram
                self.embedding_dim = embedding_dim
                self.hidden_size = hidden_size
                self.vocab_size = vocab_size
                # embedding layer: force bias equal to zero
                self.embedding = torch.nn.Linear(in_features=self.ngram*self.vocab_size, __
      →out_features=self.ngram*self.embedding_dim, bias=False)
                # hidden layer
                self.hidden = torch.nn.Linear(in_features=self.ngram*self.embedding_dim,_u
      →out_features=self.hidden_size)
                # hidden layer activation
                self.tanh = torch.nn.Tanh()
                # output layer
                self.output = torch.nn.Linear(in_features=self.hidden_size,__
      →out_features=self.vocab_size)
            def forward(self, x):
                # embedding layer
                x = self.embedding(x)
                #-----
                # hidden layer layer
                x = self.hidden(x)
```

```
x = self.tanh(x)
#-----
# output layer
x = self.output(x)
#------
return x
```

```
[0]: # using torch.nn.Embedding
    if PYTORCH_EMBEDDING:
        N = NGRAM
        E = EMBEDDING_DIM
        H = HIDDEN_DIM
        V = vocab_size
        #-----
        layer inputs outputs
        _____
                  -----
                 N*E H
        hidden:
                 H
        output:
        111
        class NN(torch.nn.Module):
           def __init__(self, ngram, embedding_dim, hidden_size, vocab_size):
               super(NN, self).__init__()
               #-----
               self.ngram = ngram
               self.embedding_dim = embedding_dim
               self.hidden_size = hidden_size
               self.vocab_size = vocab_size
               #-----
               # hidden layer
               self.hidden = torch.nn.Linear(in_features=self.ngram*self.embedding_dim,_u
     →out_features=self.hidden_size)
               # hidden layer activation
               self.tanh = torch.nn.Tanh()
               # output layer
               self.output = torch.nn.Linear(in_features=self.hidden_size,__
     →out_features=self.vocab_size)
           def forward(self, x):
               # hidden layer layer
               x = self.hidden(x)
               x = self.tanh(x)
               #-----
               # output layer
               x = self.output(x)
               #-----
               return x
```

1.4.2 3.2 Network instantiation

```
[27]: model = NN(
    ngram = NGRAM,
    embedding_dim = EMBEDDING_DIM,
    hidden_size = HIDDEN_SIZE,
    vocab_size = vocab_size,
)
    model.to(device)

[27]: NN(
    (hidden): Linear(in_features=160, out_features=100, bias=True)
    (tanh): Tanh()
    (output): Linear(in_features=100, out_features=4125, bias=True)
)
```

1.4.3 3.3 Network predict with few samples of batch from loader

1.5 4. Network training

1.5.1 4.1 Training definitions

- number of epochs
- optimizer and LR (learning rate)
- loss function

```
[0]: # Training parameters
    EPOCH = 25
    LR = 0.05
    loss_func = torch.nn.CrossEntropyLoss()
    opt = torch.optim.SGD(model.parameters(), lr=LR)
    # loss history
    loss_train_his = []
    loss_train_batch_his = []
    loss_val_his = []
    loss_val_batch_his = []
    ppl_train_his = []
    ppl_train_his = []
```

1.5.2 4.2 Training loop

```
b_x, b_y = b_x.to(device), b_y.to(device)
       y_logitos = model(b_x)
       loss = loss_func(y_logitos, b_y)
                                       # clear gradients for next train
       opt.zero_grad()
       #loss.backward()
                                        # backpropagation, compute gradients
       loss.backward(retain_graph=True) # backpropagation, compute gradients
                                       # apply gradients
       y_pred = torch.argmax(y_logitos, dim=1)
       # metrics
       loss_train_batch[b_i] = loss.item()
                                                      # training batch loss
       loss_train_batch_his.append(loss_train_batch[b_i].item())
        print('loss for this batch = {0:.2f}'.format(loss_train_batch[b_i].item()),_u
\Rightarrowsep='', end='\n')
# print('')
   loss_train = torch.mean(loss_train_batch)
                                                     # training cross-entropy (CE)
   loss_train_his.append(loss_train.item())
                                                      # training cross-entropy
→history
   ppl_train_his.append(torch.exp(loss_train).item()) # training perplexity history
   #______
    # evaluation mode
    #_____
   model.eval()
   # create tensor used to calculate batch metric
   loss_val_batch = torch.zeros(len(dl_val))
   # batch validation loop
   print('validating...')
   for b_ival, (b_xval, b_yval) in enumerate(dl_val):
       print('batch ', b_ival+1, ' out of ', len(dl_val), sep='', end='; ')
#
       b_xval, b_yval = b_xval.to(device), b_yval.to(device)
       y_logitos = model(b_xval)
       #----
       if using the trick to set the '<unk>' logit to -1_000 when the token is
       '<unk>', the cross-entropy loss gets too big (>300), thus making the
       perplexity to explode to infinite
       so here we put the value -1 to that logit
       # check if target doesn't belongs to vocab
       for idx, token in enumerate(b_yval):
           if (token == vocab['<unk>']):
               \#y\_logitos[idx][vocab['\langle unk \rangle']] = -1000
               y_logitos[idx][vocab['<unk>']] = -1
       loss_val = loss_func(y_logitos, b_yval)
       yval_pred = torch.argmax(y_logitos, dim=1)
       # metrics
       loss_val_batch[b_ival] = loss_val.item() # validation batch loss
       loss_val_batch_his.append(loss_val_batch[b_ival].item())
        print('loss for this batch = {0:.2f}'.format(loss_val_batch[b_ival].item()),__
 \Rightarrowsep='', end='\n')
```

```
# validation cross-entropy (CE)
    loss_val = torch.mean(loss_val_batch)
    loss_val_his.append(loss_val.item())
                                                     # validation cross-entropy history
    ppl_val_his.append(torch.exp(loss_val).item()) # validation perplexity history
    print('')
    print('loss_train = {0:.4f}'.format(loss_train_his[-1]), end='; ')
    print('loss_val = {0:.4f}'.format(loss_val_his[-1]), end='; ')
    print('ppl_train = {0:.1f}'.format(ppl_train_his[-1]), end='; ')
    print('ppl_val = {0:.2f}'.format(ppl_val_his[-1]), end='\n')
epoch = 0
training...
validating...
loss_train = 8.0292; loss_val = 7.7025; ppl_train = 3069.3; ppl_val = 2213.78
epoch = 1
training...
validating...
loss_train = 7.1509; loss_val = 7.2521; ppl_train = 1275.3; ppl_val = 1411.03
epoch = 2
training...
validating...
loss_train = 6.7502; loss_val = 7.0827; ppl_train = 854.3; ppl_val = 1191.16
epoch = 3
training...
validating...
loss_train = 6.5354; loss_val = 6.9793; ppl_train = 689.1; ppl_val = 1074.13
epoch = 4
training...
validating...
loss_train = 6.3948; loss_val = 6.9220; ppl_train = 598.7; ppl_val = 1014.39
epoch = 5
training...
validating...
loss_train = 6.2960; loss_val = 6.8779; ppl_train = 542.4; ppl_val = 970.61
epoch = 6
training...
validating...
loss_train = 6.2217; loss_val = 6.8616; ppl_train = 503.5; ppl_val = 954.89
epoch = 7
training...
validating...
loss_train = 6.1612; loss_val = 6.8372; ppl_train = 474.0; ppl_val = 931.88
epoch = 8
training...
validating...
loss_train = 6.1095; loss_val = 6.8333; ppl_train = 450.1; ppl_val = 928.23
epoch = 9
training...
validating...
loss_train = 6.0636; loss_val = 6.8146; ppl_train = 429.9; ppl_val = 911.08
epoch = 10
training...
validating...
loss_train = 6.0214; loss_val = 6.8143; ppl_train = 412.2; ppl_val = 910.82
```

```
epoch = 11
training...
validating...
loss_train = 5.9819; loss_val = 6.8028; ppl_train = 396.2; ppl_val = 900.36
epoch = 12
training...
validating...
loss_train = 5.9449; loss_val = 6.7965; ppl_train = 381.8; ppl_val = 894.72
epoch = 13
training...
validating...
loss_train = 5.9094; loss_val = 6.7919; ppl_train = 368.5; ppl_val = 890.61
epoch = 14
training...
validating...
loss_train = 5.8758; loss_val = 6.7888; ppl_train = 356.3; ppl_val = 887.84
epoch = 15
training...
validating...
loss_train = 5.8431; loss_val = 6.7950; ppl_train = 344.8; ppl_val = 893.35
epoch = 16
training...
validating...
loss_train = 5.8117; loss_val = 6.7799; ppl_train = 334.2; ppl_val = 879.97
epoch = 17
training...
validating...
loss_train = 5.7810; loss_val = 6.7829; ppl_train = 324.1; ppl_val = 882.59
epoch = 18
training...
validating...
loss_train = 5.7513; loss_val = 6.7789; ppl_train = 314.6; ppl_val = 879.12
epoch = 19
training...
validating...
loss_train = 5.7222; loss_val = 6.7771; ppl_train = 305.6; ppl_val = 877.49
epoch = 20
training...
validating...
loss_train = 5.6937; loss_val = 6.7759; ppl_train = 297.0; ppl_val = 876.47
epoch = 21
training...
validating...
loss_train = 5.6656; loss_val = 6.7792; ppl_train = 288.8; ppl_val = 879.33
epoch = 22
training...
validating...
loss_train = 5.6381; loss_val = 6.7841; ppl_train = 280.9; ppl_val = 883.70
epoch = 23
training...
validating...
loss_train = 5.6111; loss_val = 6.7744; ppl_train = 273.4; ppl_val = 875.12
epoch = 24
training...
```

```
validating...
loss_train = 5.5842; loss_val = 6.7813; ppl_train = 266.2; ppl_val = 881.19
```

1.6 5. Training evaluation

metrics:perplexity

1.6.1 5.1 Perplexity during training

```
[31]: # plot training loss
plt.plot(ppl_train_his, label='training loss', color='blue')
#------
# axis label
plt.xlabel('Epochs')
plt.ylabel('Perplexity')
# title
plt.title('Perplexity progression in training set')
#------
plt.autoscale(axis='x', tight=True) # axis adjust
plt.grid(True) # add grid
#plt.legend() # add legend
plt.show()
```


1.6.2 5.2 Perplexity during validation

```
[32]: # plot validation loss
plt.plot(ppl_val_his, label='validation loss', color='red')
#------
# axis label
plt.xlabel('Epochs')
plt.ylabel('Perplexity')
# title
plt.title('Perplexity progression in validation set')
#------
plt.autoscale(axis='x', tight=True) # axis adjust
plt.grid(True) # add grid
#plt.legend() # add legend
plt.show()
```


1.6.3 5.3 Both curves in a single plot

1.6.4 5.3 Zoom at the minimum of CE loss curve

Epoch with minimum perplexity value = 24

1.6.5 5.4 Print the final values of the main training monitoring variables:

- loss function final value:
- metrics final values:

1.7 6. Metrics on test set

1.7.1 6.1 Test data loader

```
[0]: BATCH_SIZE_TEST = len(ds_test)
#------
# test data loader
dl_test = torch.utils.data.DataLoader(
    dataset = ds_test_emb if PYTORCH_EMBEDDING else ds_test_oh,
    drop_last = False,
```

```
shuffle = True,
          #batch_size = BATCH_SIZE)
          batch_size = BATCH_SIZE_TEST)
[37]: tx, ty = iter(dl_test).next()
      print('test:', tx.shape, tx.dtype, ty.shape, ty.dtype)
     test: torch.Size([100000, 160]) torch.float32 torch.Size([100000]) torch.int64
     1.7.2 6.2 Cross-Entropy and Perplexity
[38]: # load model in CPU
      model.to('cpu');
      # evaluation mode
      model.eval()
[38]: NN(
        (hidden): Linear(in_features=160, out_features=100, bias=True)
        (tanh): Tanh()
        (output): Linear(in_features=100, out_features=4125, bias=True)
      )
[39]: | loss_test_batch = torch.zeros(len(dl_test))
      # batch test loop
      print('testing...')
      for b_itest, (b_xtest, b_ytest) in enumerate(dl_test):
          print('batch ', b_itest+1, ' out of ', len(dl_test), sep='', end='; ')
          #b_xtest, b_ytest = b_xtest.to(device), b_ytest.to(device)
          y_logitos = model(b_xtest)
          if using the trick to set the '<unk>' logit to -1_000 when the token is
          '<unk', the cross-entropy loss gets too big (>300), thus making the
          perplexity to explode to infinite
          so here we put the value -1 to that logit
          # check if target doesn't belongs to vocab
          for idx, token in enumerate(b_ytest):
              if (token == vocab['<unk>']):
                  \#y\_logitos[idx][vocab['\langle unk \rangle']] = -1000
                 y_logitos[idx][vocab['<unk>']] = -1
          loss_test = loss_func(y_logitos, b_ytest)
          ytest_pred = torch.argmax(y_logitos, dim=1)
          #-----
          # metrics
          loss_test_batch[b_itest] = loss_test.item() # test batch loss
      loss_test = torch.mean(loss_test_batch)
                                                  # test cross-entropy (CE)
      ppl_test = torch.exp(loss_test).item()
                                                     # test perplexity
      loss_test = loss_test.item()
     testing...
```

batch 0 out of 1

```
[40]: print('loss test = {0:.4f}'.format(loss_test), end='\n')
print('ppl test = {0:.4f}'.format(ppl_test), end='\n')

loss test = 6.7930
ppl test = 891.5722
```

1.8 End of the notebook