Probeklausur zum Ferienkurs Analysis I für Physiker

Florian Kollmannsberger, Jonas Habel

16.03.2018

Bearbeitungszeit: 90 Minuten

Erlaubte Hilfsmittel: **ein** doppelseitig handschriftlich beschriebenes DIN A4 Blatt Bei Multiple-Choice-Aufgaben sind **genau** die zutreffenden Aussagen anzukreuzen. Es können auch mehrere Antworten richtig sein.

1 Komplexe Zahlen

Berechnen sie Real- und Imaginärteil von

(a) $z = \left(\frac{1+i}{1-i}\right)^k$ $k \in \mathbb{N}$

Hinweis: Bringen Sie zuerst $\frac{1+i}{1-i}$ auf die übliche Form für eine komplexe Zahl.

(b) $z = (\sqrt{3} + i)^{100}$

Hinweis: Berechnen Sie zuerst die Polardarstellung von $\sqrt{3} + i$.

LÖSUNG:

(a) $(\frac{1+i}{1-i})^k = (\frac{(1+i)(1+i)}{(1-i)(1+i)})^k = (\frac{2i}{2})^k = i^k$ ist 1 für k=4n, i für k=4n+1, -1 für k=4n+2 und , -i für k=4n+3, $n\in\mathbb{N}$.

(b) Der Betrag von $\sqrt{3} + i$ ist 2, und es gilt $\frac{\sqrt{3}}{2} = \cos(\phi)$. Damit ist $\phi = \pm \frac{\pi}{6}$. Da $\sin(\frac{\pi}{6}) = -\frac{1}{2}$ negativ ist, ist der Winkel zur reelen Achse $\phi = \frac{\pi}{6}$ und deswegen, $\sqrt{3} + i = 2e^{i\frac{\pi}{6}}$. Eingesetzt ergibt $z^{100} = (2e^{i\frac{\pi}{6}})^{100} = 2^{100}e^{i\frac{100\pi}{6}} = 2^{100}e^{i\frac{2\pi}{3}} = 2^{100}(\cos(\frac{2\pi}{3} + i\sin(\frac{2\pi}{3})) = 2^{100}(\frac{1}{2} + i\frac{\sqrt{3}}{2})$

2 Vollständige Induktion

Sei $\binom{n}{k} := \frac{n!}{k!(n-k)!}$. Zeigen Sie:

(a) Für alle $k, n \in \mathbb{N}$ und $k \le n$ gilt :

$$\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$$

(b) Für alle $x \in \mathbb{R}$ und $n \in \mathbb{N}$ gilt der Binomische Lehrsatz:

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

1

Hinweis zu (b): Versuchen Sie, (a) zu verwenden.

LÖSUNG:

(a)
$$\binom{n}{k-1} + \binom{n}{k} = \frac{n!}{(k-1)!(n-k+1)!} + \frac{n!}{k!(n-k)!} = \frac{k \cdot n!}{k!(n-k+1)!} + \frac{(n-k+1) \cdot n!}{k!(n-k+1)!} = \frac{((n-k+1)+k) \cdot n!}{k!(n-k+1)!} = \binom{n+1}{k}$$

(b) I.A.:
$$(1+x)^1 = 1+x$$
, $\sum_{k=0}^{1} {1 \choose k} x^k = {1 \choose 0} x^0 + {1 \choose 1} x^1 = 1+x$
I.B.: $(1+x)^n = \sum_{k=0}^{n} {n \choose k} x^k$
I.S.:

$$(1+x)^{n+1} = (1+x)^n (1+x) \stackrel{\text{I.B.}}{=} (1+x) \sum_{k=0}^n \binom{n}{k} x^k = \sum_{k=0}^n \binom{n}{k} x^{k+1} + \sum_{k=0}^n \binom{n}{k} x^k$$
 (1)

$$= \sum_{k=1}^{n+1} \binom{n}{k-1} x^k + \sum_{k=0}^{n} \binom{n}{k} x^k = \sum_{k=1}^{n} \binom{n}{k-1} x^k + \sum_{k=1}^{n} \binom{n}{k} x^k + x^{n+1} + 1$$
 (2)

$$= \sum_{k=1}^{n} \left(\binom{n}{k-1} + \binom{n}{k} \right) x^k + x^{n+1} + 1 \stackrel{\text{(a)}}{=} \sum_{k=1}^{n} \binom{n+1}{k} x^k + x^{n+1} + 1 = \sum_{k=0}^{n+1} \binom{n+1}{k} x^k$$
 (3)

 \square 2

Folgen und Reihen

a)	Bestimmen Sie den	Grenzwert:			
			$n \rightarrow \infty$,	

$$\square-\infty \quad \square-1 \quad \square \ 0 \qquad \square \ \frac{1}{2} \qquad \square \ 1 \qquad \square \ 2 \qquad \square+\infty \quad \square \ e$$
b) Gegen welchen Wert konvergiert die Reihe
$$\sum_{n=0}^{\infty} \frac{e^{in\frac{\pi}{2}}}{2^n}?$$

$$\sum_{n=0}^{\infty} \frac{e^{in\frac{\pi}{2}}}{2^n} = \tag{4}$$

 $\Box + \infty$ \Box existiert nicht

c) Bestimmen Sie den Konvergenzradius
$$R$$
 der Potenzreihe $\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n n} z^{2n}$.

$$\square \ 0 \qquad \square \ \frac{1}{2} \qquad \square \ \frac{1}{\sqrt{2}} \qquad \square \ 1 \qquad \square \ \sqrt{2} \qquad \square \ 2 \qquad \square \ \infty$$

d) Welche Aussage(n) treffen auf die Potenzreihe
$$\sum_{n=0}^{\infty}\frac{(-1)^n}{2^nn}z^{2n}$$
zu, wenn $z=R$ ist?

$$\Box$$
konvergiert absolut \Box divergiert bestimmt \Box divergiert unbestimmt

LÖSUNG:

a)
$$\sqrt{n^4 + 1} - n^2 = \frac{\left(\sqrt{n^4 + 1} - n^2\right)\left(\sqrt{n^4 + 1} + n^2\right)}{\sqrt{n^4 + 1} + n^2} = \frac{n^4 + 1 - n^4}{\sqrt{n^4 + 1} + n^2} = \frac{1}{\sqrt{n^4 + 1} + n^2} = \frac{\frac{1}{n^2}}{\sqrt{1 + \frac{1}{n^4} + 1}} \xrightarrow{n \to \infty} 0$$

a)
$$\sqrt{n^4 + 1} - n^2 = \frac{\left(\sqrt{n^4 + 1} - n^2\right)\left(\sqrt{n^4 + 1} + n^2\right)}{\sqrt{n^4 + 1} + n^2} = \frac{n^4 + 1 - n^4}{\sqrt{n^4 + 1} + n^2} = \frac{1}{\sqrt{n^4 + 1} + n^2} = \frac{\frac{1}{n^2}}{\sqrt{1 + \frac{1}{n^4}} + 1} \xrightarrow{n \to \infty} 0$$
b) $\sum_{n=0}^{\infty} \frac{e^{in\frac{\pi}{2}}}{2^n} = \sum_{n=0}^{\infty} \left(\frac{e^{i\frac{\pi}{2}}}{2}\right)^n = \sum_{n=0}^{\infty} \left(\frac{i}{2}\right)^n \xrightarrow{\text{geom. Reihe}} \frac{1}{1 - \frac{i}{2}} = \frac{1 + \frac{i}{2}}{\left(1 + \frac{i}{2}\right)\left(1 - \frac{i}{2}\right)} = \frac{1 + \frac{i}{2}}{1 + \frac{1}{4}} = \frac{2}{5}\left(2 + i\right)$
Die geometrische Reihe kann man anwenden, da $\left|\frac{i}{2}\right| = \frac{1}{2} < 1$ ist.

c) Wir schreiben die Potenzreihe um als $\sum_{n=0}^{\infty} a_n z^n$, wobei $a_n = \begin{cases} \frac{(-1)^{n/2}}{2^{n/2} \frac{n}{2}} & n \text{ gerade} \\ 0 & n \text{ ungerade} \end{cases}$ Es gilt:

$$\sqrt[n]{|a_n|} = \begin{cases}
\sqrt[n]{\frac{1}{2^{n/2}\frac{n}{2}}} & n \text{ gerade} \\
0 & n \text{ ungerade}
\end{cases} = \begin{cases}
\frac{1}{\sqrt{2}} \frac{\sqrt[n]{2}}{\sqrt[n]{n}} & n \text{ gerade} \\
0 & n \text{ ungerade}
\end{cases} (5)$$

Wegen $\frac{\sqrt[n]{2}}{\sqrt[n]{n}} \xrightarrow{n \to \infty} 1$ hat die Folge $\sqrt[n]{|a_n|}$ die Häufungspunkte 0 und $\frac{1}{\sqrt{2}}$. Folglich ist $\limsup_{n \to \infty} \sqrt[n]{|a_n|} = \frac{1}{\sqrt{2}}$. Mit der Formel von Cauchy-Hadamard folgt für den Konvergenzradius $R = \sqrt{2}$.

ALTERNATIV:

Es gilt:

$$\sqrt[n]{\left|\frac{(-1)^n}{2^n n}z^{2n}\right|} = \sqrt[n]{\frac{1}{2^n n}}|z|^2 = \frac{1}{2}\frac{1}{\sqrt[n]{n}}|z|^2 \xrightarrow{n \to \infty} \frac{1}{2}|z|^2 \tag{6}$$

Damit die Reihe konvergiert, muss nach dem Wurzelkriterium gelten:

$$\limsup_{n \to \infty} \sqrt[n]{\frac{(-1)^n}{2^n n} z^{2n}} = \frac{1}{2} |z|^2 \stackrel{!}{<} 1 \tag{7}$$

Umformen ergibt $|z| < \sqrt{2}$. Damit ist der Konvergenzradius $R = \sqrt{2}$. d) Für $z = R = \sqrt{2}$ erhalten wir $\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n n} (\sqrt{2})^{2n} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^n n} 2^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{n}$. Nach dem Leibnitzkriterium konvergiert diese Reihe, jedoch nicht absolut.

4 Konvergenzkriterien für Reihen

Prüfen Sie mit dem Wurzel-, Quotienten- und Majorantenkriterium nach, ob die Reihe $\sum_{n=1}^{\infty} \frac{n^2}{3^n}$ konvergiert.

Hinweis zum Majorantenkriterium: Für $n \ge 4$ gilt $n^2 < 2^n$.

LÖSUNG:

- Wurzelkriterium: $\sqrt[n]{\frac{n^2}{3^n}} = \frac{\sqrt[n]{n^2}}{3} \xrightarrow{n \to \infty} \frac{1}{3} < 1$. Die Reihe konvergiert nach dem Wurzelkriterium.
- Quotientenkriterium: $\frac{\frac{(n+1)^2}{3^n+1}}{\frac{n^2}{3^n}} = \frac{1}{3} \left(\frac{n+1}{n}\right)^2 = \frac{1}{3} \left(1 + \frac{1}{n}\right)^2 \xrightarrow{n \to \infty} \frac{1}{3} < 1$. Die Reihe konvergiert nach dem Quotien-
- Majorantenkriterium: $\sum_{n=1}^{\infty} \frac{n^2}{3^n} = \sum_{n=1}^{3} \frac{n^2}{3^n} + \sum_{n=4}^{\infty} \frac{n^2}{3^n} < \underbrace{\sum_{n=1}^{3} \frac{n^2}{3^n}}_{} + \underbrace{\sum_{n=4}^{\infty} \frac{2^n}{3^n}}_{} < \infty.$ Die Reihe konvergiert nach dem

Majorantenkriterium. Dabei wurde verwendet, dass $\sum_{n=4}^{\infty} \frac{2^n}{3^n}$ nach dem Wurzelkriterium (alternativ: wegen der geometrischen Summenformel) konvergiert.

Funktionenkonvergenz $\mathbf{5}$

Berechnen sie folgende Grenzwerte:

(a)
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\sin(x)} \right)$$
(b)
$$\lim_{x \to 0} \left(\frac{e^x - 1}{x} \right)$$
(c)
$$\lim_{x \to 0} \left(\frac{\sqrt{\cos(ax)} - \sqrt{\cos(bx)}}{x^2} \right)$$

LÖSUNG:

(a)
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\sin(x)} \right) = \lim_{x \to 0} \left(\frac{\sin(x) - x}{x \sin(x)} \right) = \lim_{x \to 0} \left(\frac{\cos(x) - 1}{\sin(x) + x \cos(x)} \right) = \lim_{x \to 0} \left(\frac{-\sin(x)}{2 \cos(x) - x \sin(x)} \right) = 0$$

(b)
$$\lim_{x \to 0} \left(\frac{e^x - 1}{x} \right) = \lim_{x \to 0} \left(\frac{e^x}{1} \right) = 1$$

(c)
$$\lim_{x \to 0} \left(\frac{\sqrt{\cos(ax)} - \sqrt{\cos(bx)}}{x^2} \right) = \lim_{x \to 0} \frac{1}{2x} \left(\frac{b\sin(bx)}{2\sqrt{\cos(bx)}} - \frac{a\sin(ax)}{2\sqrt{\cos(ax)}} \right) = \lim_{x \to 0} \frac{1}{4} \left(\frac{b^2\cos(bx)\sqrt{\cos(bx)} + b^2\frac{\sin^2(bx)}{2\sqrt{\cos(bx)}}}{\cos(bx)} - \frac{a^2\cos(ax)\sqrt{\cos(ax)} + a^2\frac{\sin^2(ax)}{2\sqrt{\cos(ax)}}}{\cos(ax)} \right) = \frac{b^2 - a^2}{4}$$

6 Ableiten oder Taylor

Betrachten sie die Funktion $f:(-2,\infty)-\mathbb{R}, f(x)=-\ln(1-\frac{x}{2})$

- (a) Wie lautet das Taylorpolynom 2. Ordnung $(T_0^2 f)(x)$?
- (b) Zeigen sie das für alle $x \in [-1,1]$ gilt $|(R_0^2 f)(x)| = |f(x) (T_0^2 f)(x)| \le \frac{1}{3}$

LÖSUNG:

(a)
$$f(0) = 0, f'(x) = \frac{1}{2-x}, f'(0) = \frac{1}{2}, f''(x) = \frac{1}{(2-x)^2}, f''(0) = \frac{1}{4}$$

$$(T_0^2 f)(x) = \frac{1}{2}x + \frac{1}{8}x^2$$

(b)
$$f'''(x) = \frac{2}{(2-x)^3}$$

$$(R_0^2f)(x) = f(x) - (T_0^2f)(x) = \frac{f'''(\xi)}{3!}(x-0)^3$$
 mit ξ zwischen 0 und x.

 $f'''(\xi)$ ist maximal, falls der Nenner möglichst klein ist. Dies ist für $\xi = 1$ der Fall, damit ist $f'''(\xi) \le 2$. Der Term x^3 ist auch bei 1 maximal. Damit ist $|(R_0^2 f)(x)| \le \frac{1}{3}$.

7 Integration und gleichmäßige Konvergenz

a) Berechnen Sie das Integral $\int_1^{\sqrt{e}} \frac{\sin(\frac{\pi}{2}\ln(x))}{x} dx$

$$\int_{1}^{\sqrt{e}} \frac{\sin(\frac{\pi}{2}\ln(x))}{x} \, \mathrm{d}x = \tag{8}$$

b) Berechnen Sie das Integral $\int_0^1 n^2 x e^{-nx} dx$ für $n \in \mathbb{N}$.

$$\int_0^1 n^2 x e^{-nx} \, \mathrm{d}x = \tag{9}$$

c) Gegen welche Funktion $f:(0,1)\longrightarrow \mathbb{R}$ konvergiert die Funktionenfolge $f_n:(0,1)\longrightarrow \mathbb{R},\ x\longmapsto n^2xe^{-nx}$ punktweise?

$$f(x) = \tag{10}$$

d) Ist die Konvergenz von f_n gegen f auch gleichmäßig? Begründen Sie.

LÖSUNG:

- a) Integration durch Substitution: $\int_{1}^{\sqrt{e}} \frac{\sin\left(\frac{\pi}{2}\ln(x)\right)}{x} dx \stackrel{z=\ln(x)}{=} \int_{0}^{\ln(\sqrt{e})} \sin\left(\frac{\pi}{2}z\right) dz = \left[-\frac{2}{\pi}\cos\left(\frac{\pi}{2}z\right)\right]_{0}^{\frac{1}{2}} = \frac{2}{\pi} \frac{\sqrt{2}}{\pi}$
- b) partielle Integration: $\int_{0}^{1} n^{2}xe^{-nx} dx \stackrel{z=nx}{=} \int_{0}^{n} ze^{-z} dz \stackrel{\text{p.I.}}{=} \left[-ze^{-z}\right]_{0}^{n} \int_{0}^{n} -e^{-z} dz = -ne^{-n} \left[e^{-z}\right]_{0}^{n} = 1 (n+1)e^{-n}$
- c) Es gilt $\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} n^2 x e^{-nx} = x \lim_{n\to\infty} \frac{n^2}{e^{nx}} = 0$ für alle $x \in (0,1)$, da die Exponentialfunktion jedes Polynom dominiert. Die Grenzfunktion ist also $f(x) = \lim_{n\to\infty} f_n(x) = 0$.
- d) Die Konvergenz ist nicht gleichmäßig, da Limes und Integral nicht vertauschen. Es gilt:

$$\lim_{n \to \infty} \int_0^1 n^2 x e^{-nx} \, \mathrm{d}x = \lim_{n \to \infty} \left(1 - (n+1)e^{-n} \right) = 1 \neq 0 = \int_0^1 \lim_{n \to \infty} f_n(x) \, \mathrm{d}x \tag{11}$$

8 Differentialgleichungen

Betrachten Sie das Differentialgleichungssystem $\begin{cases} x'(t) = y(t) \\ y'(t) = y(t) \end{cases} \text{ mit } t \in \mathbb{R}.$

- a) Schreiben Sie das Differentialgleichungssystem in der Matrix-Vektor-Schreibweise X'(t) = AX(t), wobei $X \in \mathbb{R}^2$ und $A \in \mathbb{R}^{2 \times 2}$ ist.
- b) Berechnen Sie A^n für $n \in \mathbb{N}_0$.
- c) Berechnen Sie $\exp(tA)$ für $t \in \mathbb{R}$.
- d) Lösen Sie das Anfangswertproblem $\begin{cases} x'(t) = y(t) \\ y'(t) = y(t) \end{cases} \quad \text{mit } \begin{pmatrix} x(0) \\ y(0) \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$

LÖSUNG:

a)
$$\underbrace{\begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix}}_{=:X'(t)} = \underbrace{\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}}_{=:A} \underbrace{\begin{pmatrix} x(t) \\ y(t) \end{pmatrix}}_{=:X(t)}$$

b)
$$A^0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $A^1 = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$, $A^2 = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$, $A^n = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ für $n \in \mathbb{N}$

c)
$$\exp(tA) = \sum_{n=0}^{\infty} \frac{t^n A^n}{n!} = A^0 + \sum_{n=1}^{\infty} \frac{t^n A^n}{n!} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \sum_{n=1}^{\infty} \frac{t^n A^n}{n!} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} (e^t - 1) = \begin{pmatrix} 1 & e^t - 1 \\ 0 & e^t \end{pmatrix}$$

d) Die Lösung des AWP lautet
$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \exp(tA) \begin{pmatrix} x(0) \\ y(0) \end{pmatrix} = \begin{pmatrix} 1 & e^t - 1 \\ 0 & e^t \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 - e^t \\ -e^t \end{pmatrix}$$