분반: 02 분반 학번: 201802143 이름: 이현진

실습 문제

<논리식>

$$Y = A \cdot B + \overline{A} \cdot C \cdot D + \overline{A} \cdot B \cdot D + \overline{A} \cdot C \cdot \overline{D} + A \cdot B \cdot C \cdot D$$

- 1. 위의 논리식에 대응되는 회로도를 그리시오.
 - Logisim을 이용하여 작성할 것
 - 각 입력 Pin 출력과 Probe를 사용할 것
 - 모든 입출력에 레이블을 반드시 표기할 것
 - 입력 개수에 맞게 게이트를 사용할 것 (ex : 2-input AND Gate)
- <u>circuit3-1을 아래 그림과 같이 생성하여 회로도 작성 후, 'Logic3.cird' 파일로 저장하여</u> <u>제출</u>

2. 위의 논리식 Y을 간소화하시오.

- 간소화 과정을 생략하지 말고 모두 작성할 것
- 간소화 과정에 사용된 부울대수 성질의 이름을 작성할 것 (분배법칙/결합법칙)

3. 위의 2번문제에서 간소화된 논리식 Y에 대응되는 회로도를 그리시오.

- Logisim을 이용하여 작성할 것
- 각 입력 Pin 출력과 Probe를 사용할 것
- 모든 입출력에 레이블을 반드시 표기할 것
- 입력 개수에 맞게 게이트를 사용할 것 (ex : 2-input AND Gate)
- - circuit3-2을 아래 그림과 같이 생성하여 회로도 작성 후, 'Logic3.circ' 파일로 저장하여

 제출

4. 실험 결과에 따라 진리표를 작성하시오.

입력				출력 (기본식)	출력 (간소화 식)
А	В	С	D	$Y = A \cdot B + \overline{A} \cdot C \cdot D$ $+ \overline{A} \cdot B \cdot D + \overline{A} \cdot C \cdot \overline{D}$ $+ A \cdot B \cdot C \cdot D$	$Y = A \cdot B + \overline{A} \cdot (C + B \cdot D)$
0	0	0	0	0	다왼쪽이랑같음
0	0	0	1	0	
0	0	1	0	1	
0	0	1	1	1	
0	1	0	0	0	
0	1	0	1	1	
0	1	1	0	1	
0	1	1	1	1	
1	0	0	0	0	
1	0	0	1	0	
1	0	1	0	0	
1	0	1	1	0	
1	1	0	0	1	
1	1	0	1	1	
1	1	1	0	1	
1	1	1	1	1	

5. 정리

- 부울 함수를 이용하면 동일한 기능을 하는 회로를 다양한 형태로 표시할 수 있게 된다. 어떤 부울 함수가 주어졌을 때, 이 함수를 구현하기에 가장 간단한지 여부를 무슨 기준으로 판단하면 좋을지 설명하시오. (자유롭게 작성)

간단한지의 여부는 사람이 읽었을 때 인 것 같다. 사람이 읽기만 쉬우면 된다.

일단 사람이 읽었을 때 길면 가독성이 떨어진다. 길면 짧게 구성할 수 있는 확률도 많아진다고 생각한다. or 게이트에서 둘중에 하나만 1이면 무조건 이니까 이걸 잘활용해서 식을 많이 풀일수 있다. and 게이트는 둘다 1이어야 1이므로 각게이트의 특성에 맞게 효율적으로식을 줄이면 가독성도좋고 성능도 좋아질 것이다!

6. 느낀점(자율)

- 쓰시고 싶으신 분만 적어주세요.

재밌어요^ ^