

Deep Reinforcement Learning

Function approximation

Julien Vitay

Professur für Künstliche Intelligenz - Fakultät für Informatik

https://tu-chemnitz.de/informatik/KI/edu/deeprl

=

1 - Limits of tabular RL

Tabular reinforcement learning

- All the methods seen so far belong to **tabular RL**.
- ullet Q-learning necessitates to store in a **Q-table** one Q-value per state-action pair (s,a).

Game Board:

Current state (s): 0 0 0 0 0 1 0

Q Table:	γ = 0.9	5

	000	0 0 0 0 1 0	000	100	0 1 0 0 0 0	0 0 1 0 0 0
1	0.2	0.3	1.0	-0.22	-0.3	0.0
J	-0.5	-0.4	-0.2	-0.04	-0.02	0.0
	0.21	0.4	-0.3	0.5	1.0	0.0
	-0.6	-0.1	-0.1	-0.31	-0.01	0.0

Source: https://towardsdatascience.com/qrash-course-deep-q-networks-from-the-ground-up-1bbda41d3677

Tabular reinforcement learning

• If a state has never been visited during learning, the Q-values will still be at their initial value (0.0), no policy can be derived.

Visited state

Optimal action: left

Not visited state

different pixel

Optimal action: ?

• Similar states likely have the same optimal action: we want to be able to **generalize** the policy between states.

Tabular reinforcement learning

• For most realistic problems, the size of the Q-table becomes quickly untractable.

Source: https://medium.com/@twt446/a-summary-of-deep-reinforcement-learning-rl-bootcamp-lecture-2-c3a15db5934e

- ullet If you use black-and-white 256x256 images as inputs, you have $2^{256*256}=10^{19728}$ possible states!
- Tabular RL is limited to toy problems.

Tabular RL cannot learn to play video games

Continuous action spaces

- Tabular RL only works for small discrete action spaces.
- Robots have continuous action spaces, where the actions are changes in joint angles or torques.
- A joint angle could take any value in $[0,\pi]$.

Continuous action spaces

 A solution would be to discretize the action space (one action per degree), but we would fall into the curse of dimensionality.

- The more degrees of freedom, the more discrete actions, the more entries in the Q-table...
- Tabular RL cannot deal with continuous action spaces, unless we approximate the policy with an **actor-critic** architecture.

2 - Function approximation

Feature vectors

- Let's represent a state s by a vector of d features $\phi(s) = [\phi_1(s), \phi_2(s), \dots, \phi_d(s)]^T.$
- For the cartpole, the feature vector would be:

$$\phi(s) = egin{bmatrix} x \ \dot{x} \ heta \ \dot{ heta} \end{bmatrix}$$

- x is the position, θ the angle, \dot{x} and $\dot{\theta}$ their derivatives.
- We are able to represent **any state** *s* using these four variables.

Feature vectors

For more complex problems, the feature vector should include all the necessary information (Markov property).

$$\phi(s) = egin{bmatrix} x ext{ position of the paddle} \ x ext{ position of the ball} \ y ext{ position of the ball} \ x ext{ speed of the ball} \ y ext{ speed of the position} \ ext{ presence of brick 1} \ ext{ presence of brick 2} \ ext{ \dots} \ ext{ } \$$

• In deep RL, we will learn these feature vectors, but let's suppose for now that we have them.

Feature vectors

Note that we can always fall back to the tabular case using one-hot encoding of the states:

$$\phi(s_1) = egin{bmatrix} 1 \ 0 \ 0 \ \cdots \ 0 \end{bmatrix} \qquad \phi(s_2) = egin{bmatrix} 0 \ 1 \ 0 \ \cdots \ 0 \end{bmatrix} \qquad \phi(s_3) = egin{bmatrix} 0 \ 0 \ 1 \ \cdots \ 0 \end{bmatrix} \qquad \ldots$$

• But the idea is that we can represent states with much less values than the number of states:

$$d \ll |\mathcal{S}|$$

• We can also represent continuous state spaces with feature vectors.

State value approximation

• In state value approximation, we want to approximate the state value function $V^\pi(s)$ with a parameterized function $V_\varphi(s)$:

• The parameterized function can have any form. Its has a set of parameters φ used to transform the feature vector $\phi(s)$ into an approximated value $V_{\varphi}(s)$.

Linear approximation of state value functions

• The simplest function approximator (FA) is the linear approximator.

• The approximated value is a linear combination of the features:

$$V_{arphi}(s) = \sum_{i=1}^d w_i \, \phi_i(s) = \mathbf{w}^T imes \phi(s)$$

- ullet The **weight vector** $\mathbf{w} = [w_1, w_2, \dots, w_d]^T$ is the set of parameters arphi of the function.
- A linear approximator is a single artificial neuron (linear regression) without a bias.

- Regardless the form of the function approximator, we want to find the parameters φ making the approximated values $V_{\varphi}(s)$ as close as possible from the true values $V^{\pi}(s)$ for all states s.
 - This is a **regression** problem.
- We want to minimize the **mean-square error** between the two quantities:

$$\min_{arphi} \mathcal{L}(arphi) = \mathbb{E}_{s \in \mathcal{S}}[(V^{\pi}(s) - V_{arphi}(s))^2]$$

ullet The **loss function** $\mathcal{L}(arphi)$ is minimal when the predicted values are close to the true ones on average.

• Let's suppose that we know the true state values $V^{\pi}(s)$ for all states and that the parametrized function is **differentiable**.

 We can find the minimum of the loss function by applying gradient descent (GD) iteratively:

$$\Delta arphi = -\eta \,
abla_arphi \mathcal{L}(arphi)$$

• $\nabla_{\varphi} \mathcal{L}(\varphi)$ is the gradient of the loss function w.r.t to the parameters φ .

$$abla_{arphi}\mathcal{L}(arphi) = egin{bmatrix} rac{\partial \mathcal{L}(arphi)}{\partial arphi_1} \ rac{\partial \mathcal{L}(arphi)}{\partial arphi_2} \ rac{\partial \mathcal{L}(arphi)}{\partial arphi_K} \end{bmatrix}$$

• When applied repeatedly, GD converges to a local minimum of the loss function.

To minimize the mean square error,

$$\min_{arphi} \mathcal{L}(arphi) = \mathbb{E}_{s \in \mathcal{S}}[(V^{\pi}(s) - V_{arphi}(s))^2]$$

we will iteratively modify the parameters φ according to:

$$egin{aligned} \Delta arphi &= arphi_{k+1} - arphi_n = -\eta \,
abla_arphi \mathcal{L}(arphi) \ &= -\eta \,
abla_arphi \mathbb{E}_{s \in \mathcal{S}}[(V^\pi(s) - V_arphi(s))^2] \ &= \mathbb{E}_{s \in \mathcal{S}}[-\eta \,
abla_arphi(V^\pi(s) - V_arphi(s))^2] \ &= \mathbb{E}_{s \in \mathcal{S}}[\eta \, (V^\pi(s) - V_arphi(s)) \,
abla_arphi V_arphi(s)] \end{aligned}$$

 As it would be too slow to compute the expectation on the whole state space (batch algorithm), we will sample the quantity:

$$\delta_arphi = \eta \left(V^\pi(s) - V_arphi(s)
ight)
abla_arphi V_arphi(s)$$

and update the parameters with stochastic gradient descent (SGD).

Gradient of the mse:

$$\Delta arphi = \mathbb{E}_{s \in \mathcal{S}}[\eta\left(V^{\pi}(s) - V_{arphi}(s)
ight)
abla_{arphi} V_{arphi}(s)]$$

ullet If we sample K states s_i from the state space:

$$\Delta arphi = \eta \, rac{1}{K} \sum_{k=1}^K (V^\pi(s_k) - V_arphi(s_k)) \,
abla_arphi V_arphi(s_k)$$

• We can also sample a single state s (online algorithm):

$$\Delta arphi = \eta \left(V^{\pi}(s) - V_{arphi}(s)
ight)
abla_{arphi} V_{arphi}(s)$$

 Unless stated otherwise, we will sample single states in this section, but the parameter updates will be noisy (high variance).

Linear approximation

• The approximated value is a linear combination of the features:

$$V_{arphi}(s) = \sum_{i=1}^d w_i \, \phi_i(s) = \mathbf{w}^T imes \phi(s)$$

• The weights are updated using stochastic gradient descent:

$$\Delta \mathbf{w} = \eta \left(V^{\pi}(s) - V_{arphi}(s)
ight) \phi(s)$$

• That is the **delta learning rule** of linear regression and classification, with $\phi(s)$ being the input vector and $V^{\pi}(s) - V_{\varphi}(s)$ the prediction error.

Function approximation with sampling

• The rule can be used with any function approximator, we only need to be able to differentiate it:

$$\Delta arphi = \eta \left(V^{\pi}(s) - V_{arphi}(s)
ight)
abla_{arphi} V_{arphi}(s)$$

- ullet The problem is that we do not know $V^\pi(s)$, as it is what we are trying to estimate.
- ullet We can replace $V^\pi(s)$ by a sampled estimate using Monte-Carlo or TD:
 - Monte-Carlo function approximation:

$$\Delta arphi = \eta \left(R_t - V_arphi(s)
ight)
abla_arphi V_arphi(s)$$

■ **Temporal Difference** function approximation:

$$\Delta arphi = \eta \left(r_{t+1} + \gamma \, V_{arphi}(s') - V_{arphi}(s)
ight)
abla_{arphi} V_{arphi}(s)$$

 Note that for Temporal Difference, we actually want to minimize the TD reward-prediction error for all states, i.e. the surprise:

$$\mathcal{L}(arphi) = \mathbb{E}_{s \in \mathcal{S}}[(r_{t+1} + \gamma \, V_{arphi}(s') - V_{arphi}(s))^2] = \mathbb{E}_{s \in \mathcal{S}}[\delta_t^2]$$

Gradient Monte Carlo Algorithm for value estimation

- Algorithm:
 - Initialize the parameter φ to 0 or randomly.
 - while not converged:
 - 1. Generate an episode according to the current policy π until a terminal state s_T is reached.

$$au=(s_o,a_o,r_1,s_1,a_1,\ldots,s_T)$$

- 2. For all encountered states $s_0, s_1, \ldots, s_{T-1}$:
 - 1. Compute the return $R_t = \sum_k \gamma^k r_{t+k+1}$.
 - 2. Update the parameters using function approximation:

$$\Delta arphi = \eta \left(R_t - V_arphi(s_t)
ight)
abla_arphi V_arphi(s_t)$$

• Gradient Monte-Carlo has no bias (real returns) but a high variance.

Semi-gradient Temporal Difference Algorithm for value estimation

- Algorithm:
 - Initialize the parameter φ to 0 or randomly.
 - while not converged:
 - \circ Start from an initial state s_0 .
 - \circ **foreach** step t of the episode:
 - Select a_t using the current policy π in state s_t .
 - \circ Observe r_{t+1} and s_{t+1} .
 - Update the parameters using function approximation:

$$\Delta arphi = \eta \left(r_{t+1} + \gamma \, V_{arphi}(s_{t+1}) - V_{arphi}(s_t)
ight)
abla_{arphi} V_{arphi}(s_t)$$

- \circ **if** s_{t+1} is terminal: **break**
- Semi-gradient TD has less variance, but a significant bias as $V_{\varphi}(s_{t+1})$ is initially wrong. You can never trust these estimates completely.

Function approximation for Q-values

- ullet Q-values can be approximated by a parameterized function $Q_{ heta}(s,a)$ in the same manner.
- There are basically two options for the structure of the function approximator:
- The FA takes a feature vector for both the state s and the action a (which can be continuous) as inputs, and outputs a single Q-value $Q_{\theta}(s,a)$.
 - State s Parameterized function parameters: θ

• The FA takes a feature vector for the state s as input, and outputs one Q-value $Q_{\theta}(s,a)$ per possible action (the action space must be discrete).

• In both cases, we minimize the mse between the true value $Q^{\pi}(s,a)$ and the approximated value $Q_{\theta}(s,a)$.

Q-learning with function approximation

- Initialize the parameters θ .
- while True:
 - Start from an initial state s_0 .
 - **foreach** step *t* of the episode:
 - \circ Select a_t using the behavior policy b (e.g. derived from π).
 - \circ Take a_t , observe r_{t+1} and s_{t+1} .
 - \circ Update the parameters θ :

$$\Delta heta = \eta \left(r_{t+1} + \gamma \, \max_{a} Q_{ heta}(s_{t+1}, a) - Q_{ heta}(s_{t}, a_{t})
ight)
abla_{ heta} Q_{ heta}(s_{t}, a_{t})$$

Improve greedily the learned policy:

$$\pi(s_t,a) = \operatorname{Greedy}(Q_{ heta}(s_t,a))$$

 \circ if s_{t+1} is terminal: break

3 - Feature construction

Feature construction

Before we dive into deep RL (i.e. RL with non-linear FA), let's see how we can design good feature vectors
for linear function approximation.

- The problem with deep NN is that they need a lot of samples to converge, what worsens the fundamental problem of RL: sample efficiency.
- By engineering the right features, we could use linear approximators, which converge much faster.
- The convergence of linear FA is **guaranteed**, not (always) non-linear ones.

Why do we need to choose features?

$$\phi(s) = egin{bmatrix} x \ \dot{x} \ heta \ \dot{ heta} \end{bmatrix}$$

- x is the position, heta the angle, \dot{x} and $\dot{ heta}$ their derivatives.
- Can we predict the value of a state linearly?

$$V_{arphi}(s) = \sum_{i=1}^d w_i \, \phi_i(s) = \mathbf{w}^T imes \phi(s)$$

- No, a high angular velocity $\dot{\theta}$ is good when the pole is horizontal (going up) but bad if the pole is vertical (will not stop).
- The value would depends linearly on something like $\dot{\theta} \sin \theta$, which is a non-linear combination of features.

Feature coding

- Let's suppose we have a simple problem where the state s is represented by two continuous variables x and y.
- ullet The true value function $V^\pi(s)$ is a non-linear function of x and y.

Linear approximation

- If we apply linear FA directly on the feature vector [x,y], we catch the tendency of $V^\pi(s)$ but we make a lot of bad predictions:
 - high bias (underfitting).

- To introduce non-linear relationships between continuous variables, a simple method is to construct the feature with **polynomials** of the variables.
- Example with polynomials of order 2:

$$\phi(s) = egin{bmatrix} 1 & x & y & xy & x^2 & y^2 \end{bmatrix}^T$$

- We transform the two input variables x and y into a vector with 6 elements. The 1 (order 0) is there to learn the offset.
- Example with polynomials of order 3:

$$\phi(s) = egin{bmatrix} 1 & x & y & xy & x^2 & y^2 & x^2y & xy^2 & x^3 & y^3 \end{bmatrix}^T$$

And so on. We then just need to apply linear FA on these feature vectors (polynomial regression).

$$V_{arphi}(s) = w_0 + w_1\,x + w_2\,y + w_3\,x\,y + w_4\,x^2 + w_5\,y^2 + \dots$$

• Polynomials of order 2 already allow to get a better approximation.

• Polynomials of order 6 are an even better fit for our problem.

- The higher the degree of the polynomial, the better the fit, but the number of features grows exponentially.
 - Computational complexity.
 - Overfitting: if we only sample some states, high-order polynomials will not interpolate correctly.

Fourier transforms

• Instead of approximating a state variable x by a polynomial:

$$V_{arphi}(s) = w_0 + w_1\,x + w_2\,x^2 + w_3\,x^3 + \dots$$

• we could also use its Fourier decomposition (here DCT, discrete cosine transform):

$$V_{arphi}(s) = w_0 + w_1 \, \cos(\pi \, x) + w_2 \, \cos(2 \, \pi \, x) + w_3 \, \cos(3 \, \pi \, x) + \dots$$

ullet Fourier tells us that, if we take enough frequencies, we can reconstruct the signal $V_{arphi}(s)$ perfectly.

Figure 9.3: One-dimensional Fourier cosine-basis features x_i , i = 1, 2, 3, 4, for approximating functions over the interval [0, 1]. After Konidaris et al. (2011).

• It is just a change of basis, the problem stays a linear regression to find w_0, w_1, w_2 , etc.

Fourier transforms

• Fourier transforms can be applied on multivariate functions as well.

Figure 9.4: A selection of six two-dimensional Fourier cosine features, each labeled by the vector \mathbf{c}^i that defines it (s_1) is the horizontal axis, and \mathbf{c}^i is shown with the index i omitted). After Konidaris et al. (2011).

Polynomial vs. Fourier basis

Figure 9.5: Fourier basis vs polynomials on the 1000-state random walk. Shown are learning curves for the gradient Monte Carlo method with Fourier and polynomial bases of order 5, 10, and 20. The step-size parameters were roughly optimized for each case: $\alpha = 0.0001$ for the polynomial basis and $\alpha = 0.00005$ for the Fourier basis. The performance measure (y-axis) is the root mean squared value error (9.1).

- A Fourier basis tends to work better than a polynomial basis.
- The main problem is that the number of features increases very fast with:
 - the number of input dimensions.
 - the desired precision (higher-order polynomials, more frequencies).

Discrete coding

- An obvious solution for continuous state variables is to discretize the input space.
- The input space is divided into a grid of non-overlapping tiles.

• The feature vector is a **binary** vector with a 1 when the input is inside a tile, 0 otherwise.

$$\phi(s) = egin{bmatrix} 0 & 0 & \dots & 0 & 1 & 0 & \dots & 0 \end{bmatrix}^T$$

- This ensures **generalization** inside a tile: you only need a couple of samples inside a tile to know the mean value of all the states.
- Drawbacks:
 - the value function is step-like (discontinuous).
 - what is the correct size of a tile?
 - curse of dimensionality.

Coarse coding

- A more efficient solution is coarse coding.
- The tiles (rectangles, circles, or what you need) need to overlap.
- A state s is encoded by a **binary vector**, but with several 1, for each tile it belongs.

$$\phi(s) = egin{bmatrix} 0 & 1 & 0 & \dots & 1 & 1 & 0 & \dots & 0 \end{bmatrix}^T$$

- This allows generalization inside a tile, but also across tiles.
- The size and shape of the "receptive field" influences the generalization properties.

Narrow generalization

Broad generalization

Asymmetric generalization

Tile coding

- A simple way to ensure that tiles overlap is to use several regular grids with an offset.
- Each tiling will be coarse, but the location of a state will be quite precise as it may belong to many tiles.

Figure 9.9: Multiple, overlapping grid-tilings on a limited two-dimensional space. These tilings are offset from one another by a uniform amount in each dimension.

• This helps against the curse of dimensionality: high precision, but the number of tiles does not grow exponentially.

Radial-basis functions (RBF)

- The feature vector in tile coding is a binary vector: there will be **discontinuous jumps** in the approximated value function when moving between tiles.
- We can use radial-basis functions (RBF) such as Gaussians to map the state space.

- ullet We set a set of centers $\{c_i\}_{i=1}^K$ in the input space on a regular grid (or randomly).
- ullet Each element of the feature vector will be a Gaussian function of the distance between the state s and one center:

$$\phi_i(s) = \exprac{-(s-c_i)^2}{2\,\sigma_i^2}$$

Radial-basis functions (RBF)

• The approximated value function now represents continuously the states:

$$V_{arphi}(s) = \sum_{i=1}^d w_i \, \phi_i(s) = \sum_{i=1}^d w_i \, \exp rac{-(s-c_i)^2}{2 \, \sigma_i^2}$$

• If you have enough centers and they overlap sufficiently, you can even decode the original state perfectly:

$$\hat{s} = \sum_{i=1}^d \phi_i(s) \, c_i$$

Summary of function approximation

- In FA, we project the state information into a **feature space** to get a better representation.
- We then apply a linear approximation algorithm to estimate the value function:

$$V_{arphi}(s) = \mathbf{w}^T \, \phi(s)$$

• The linear FA is trained using some variant of gradient decent:

$$\Delta \mathbf{w} = \eta \left(V^{\pi}(s) - V_{arphi}(s)
ight) \phi(s)$$

- Deep neural networks are the most powerful function approximators in supervised learning.
- Do they also work with RL?