МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

КУРСОВАЯ РАБОТА

по дисциплине «Дифференциальные уравнения»
Тема: Аппроксимация данных линейной комбинацией
экспоненциальных функций

Студент гр. 2384	Поглазов Н.В.	
Преподаватель	Колоницкий С.Б	

Санкт-Петербург

2024

ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ

Студент Поглазов Н.В.		
Группа 2384		
Тема работы: Аппроксимация данных линейн экспоненциальных функций	ой комбинацией	
Исходные данные:		
Содержание пояснительной записки: содержание, введение,, заключение, список использованных источников,		
Предполагаемый объём пояснительной записки: не менее 00 страниц.		
Дата выдачи задания: 17.10.2024		
Дата сдачи реферата: 14.12.2024		
Студент	Поглазов Н.В.	
Преполаватель	Колоницкий С.Б.	

АННОТАЦИЯ

Кратко (в 8–10 строк) указать основное содержание курсового проекта (курсовой работы), методы исследования (разработки), полученные результаты.

SUMMARY

Summary in English.

СОДЕРЖАНИЕ

BE	ведені	ie	5
1.	Вып	олнение работы	9
	1.1.	Детали реализации	9
		1.1.1. Предобработка данных	9
		1.1.2. Обновление параметров	9
		1.1.3. Критерии сходимости	10
	1.2.	Программная реализация алгоритма	10
		1.2.1. Структура проекта	11
		1.2.2. Класс ExponentialRegression	11
		1.2.3. Kлаcc Chi2Loss	14
2.	Дем	онстрация работы программы	15
	2.1.	Пример с одним экспоненциальным членом	15
	2.2.	Пример с двумя экспоненциальными членами	15
За	ключ	ение	18
Cı	іисок	использованных источников	19
Пј	копи	сение А. Исходный код программы	20
	A.1.	exponential_regression.py	20
	A.2.	loss/loss_function.py	23
	A.3.	loss/chi2_loss.py	24
	A.4.	main.py	25

ВВЕДЕНИЕ

Цель работы.

Разработка и реализация метода аппроксимации ряда данных линейной комбинацией экспоненциальных функций с неизвестными вещественными показателями.

Задание.

Даны
$$(t_i, y_i)_{i=1}^n$$
, где $t_i \in \mathbb{R}, y_i \in \mathbb{R}, i = 1, \dots, n$.

Рассмотрим p — количество экспоненциальных членов, тогда мы подбираем функцию:

$$f: X \to Y; \ f(t, \mathbf{p}) = \sum_{i=1}^{p} \lambda_i \alpha_i^t$$

где $\mathbf{p}=(\lambda_1,\ldots,\lambda_p,\alpha_1,\ldots,\alpha_p)$ — параметры, которые необходимо подобрать.

Предполагая, что $\forall i \ \alpha_i > 0$, можно переписать $f(t, \mathbf{p})$ как:

$$f(t, \mathbf{p}) = \sum_{i=1}^{p} \lambda_i \exp(\ln(\alpha_i)t) = \sum_{i=1}^{p} \lambda_i \exp(\omega_i t),$$

где
$$\mathbf{p} = (\lambda_1, \dots, \lambda_p, \omega_1, \dots, \omega_p)$$

Функция потерь для оптимизации — это χ^2 , или взвешенный MSE, так как он часто используются в задачах аппроксимации кривых:

$$L(\mathbf{p}) = \chi^{2}(\mathbf{p}) = \sum_{i=1}^{n} \left(\frac{y_{i} - f(t_{i}, \mathbf{p})}{\sigma_{i}} \right)^{2} = \left[\mathbf{y} - \mathbf{f}(\mathbf{p}) \right]^{T} \mathbf{W} \left[\mathbf{y} - \mathbf{f}(\mathbf{p}) \right],$$

где
$$m{W}=\operatorname{diag}\left(rac{1}{\sigma_1^2},\ldots,rac{1}{\sigma_n^2}
ight)$$
 - матрица весов: $\sigma_i^2=\mathbb{D}[y_i].$

Метод оптимизации — алгоритм Левенберга-Марквардта, встроенный во множество библиотек для оптимизации, например, в SciPy.

Основные теоретические положения.

Подобно другим численным методам минимизации, алгоритм Левенберга-Марквардта является итеративной процедурой. Для начала минимизации необходимо задать начальное приближение для вектора параметров. Начальное значение $\mathbf{p}^T = \begin{pmatrix} 1, 1, \dots, 1 \end{pmatrix}$ подходит в большинстве случаев; в задачах с множеством локальных минимумов алгоритм сходится к глобальному минимуму, только если начальное приближение достаточно близко к решению.

На каждом шаге итерации вектор параметров **p** заменяется новой оценкой $\mathbf{p}+\mathbf{\Delta}$. Чтобы определить $\mathbf{\Delta}$, функция $f(t_i,\mathbf{p}+\mathbf{\Delta})$ линеаризуется:

$$f(t_i, \mathbf{p} + \boldsymbol{\Delta}) \approx f(t_i, \mathbf{p}) + \mathbf{J}_i \boldsymbol{\Delta},$$

где

$$\mathbf{J}_i = \frac{\partial f\left(t_i, \mathbf{p}\right)}{\partial \mathbf{p}}$$

— это градиент f по параметрам \mathbf{p} .

Таким образом, для текущей задачи $\forall j\leqslant p$:

$$\mathbf{J}_{ij} = \frac{\partial f(t_i, \mathbf{p})}{\partial \lambda_{\mathbf{j}}} = \exp(\omega_j t_i),$$

$$\mathbf{J}_{ij+p} = \frac{\partial f\left(t_i, \mathbf{p}\right)}{\partial \omega_i} = \lambda_j t_i \exp(\omega_j t_i).$$

Функция потерь достигает минимума, когда её градиент по ${\bf p}$ равен нулю. Для первого приближения $f\left(t_i,{\bf p}+{m \Delta}\right)$:

$$L\left(\mathbf{p} + \boldsymbol{\Delta}\right) \approx \sum_{i=1}^{n} \left[\frac{y_i - f\left(t_i, \mathbf{p}\right) - \mathbf{J}_i \boldsymbol{\Delta}}{\sigma_i} \right]^2$$

или в векторной форме:

$$L(\mathbf{p} + \boldsymbol{\Delta}) \approx \left\| \boldsymbol{W}^{1/2} \left[\mathbf{y} - \mathbf{f}(\mathbf{p}) - \mathbf{J} \boldsymbol{\Delta} \right] \right\|_{2}^{2}$$

$$= \left[\mathbf{y} - \mathbf{f}(\mathbf{p}) - \mathbf{J} \boldsymbol{\Delta} \right]^{T} \boldsymbol{W} \left[\mathbf{y} - \mathbf{f}(\mathbf{p}) - \mathbf{J} \boldsymbol{\Delta} \right]$$

$$= \left[\mathbf{y} - \mathbf{f}(\mathbf{p}) \right]^{T} \boldsymbol{W} \left[\mathbf{y} - \mathbf{f}(\mathbf{p}) \right] - 2 \left[\mathbf{y} - \mathbf{f}(\mathbf{p}) \right]^{T} \boldsymbol{W} \mathbf{J} \boldsymbol{\Delta} + \boldsymbol{\Delta}^{T} \mathbf{J}^{T} \boldsymbol{W} \mathbf{J} \boldsymbol{\Delta}.$$

Взяв производную от $L\left(\mathbf{p}+\mathbf{\Delta}\right)$ по $\mathbf{\Delta}$ и приравняв её к нулю, получим:

$$(\mathbf{J}^{\mathrm{T}}\mathbf{W}\mathbf{J}) \Delta = \mathbf{J}^{\mathrm{T}}\mathbf{W} [\mathbf{y} - \mathbf{f}(\mathbf{p})].$$

Выражение выше соответствует методу Гаусса—Ньютона. Матрица Якоби **J** обычно не квадратная, а прямоугольная размерности $m \times n$, где n — количество параметров. Перемножение $\mathbf{J}^T \mathbf{W} \mathbf{J}$ дает квадратную матрицу размерности $n \times n$. Результат — это система из n линейных уравнений, решаемая для Δ .

Вклад Левенберга заключается в использовании демпфированной версии уравнения:

$$(\mathbf{J}^{\mathrm{T}}\mathbf{W}\mathbf{J} + \lambda \mathbf{E}) \boldsymbol{\Delta} = \mathbf{J}^{\mathrm{T}}\mathbf{W} [\mathbf{y} - \mathbf{f}(\boldsymbol{p})].$$

где λ — коэффициент демпфирования, изменяемый после каждого вычисления Δ . Если снижение L быстрое, значение λ уменьшается, приближая алгоритм к методу Гаусса—Ньютона:

$$oldsymbol{\Delta} pprox [\mathbf{J}^T oldsymbol{W} \mathbf{J}]^{-1} \mathbf{J}^T oldsymbol{W} [\mathbf{y} - \mathbf{f}(\mathbf{p})],$$

иначе λ увеличивается, приближая шаг к направлению градиентного спуска:

$$\Delta \approx \lambda^{-1} \mathbf{J}^T \mathbf{W} [\mathbf{y} - \mathbf{f}(\mathbf{p})].$$

На старте алгоритма λ обычно берется достаточно большим (≈ 1), чтобы делать первые шаги в направлении градиентного спуска. После каждой итерации λ умножается или делится на определенный фактор, чтобы менять скорость сходимости. Подробности см. в разделе "Выполнение работы" подраздел "Детали реализации".

1. ВЫПОЛНЕНИЕ РАБОТЫ

1.1. Детали реализации

Так как производительность реализации, основанной исключительно на теоретических выкладках, оказалась недостаточной для практического применения, в итоговом решении были внесены несколько улучшений.

1.1.1. Предобработка данных

Для повышения численной устойчивости было принято решение стандартизировать данные перед обучением модели. Для этого используется формула:

$$x_i = \frac{x_i - \mu}{\sigma},$$

то есть, после предобработки все значения признаков будут иметь нулевое среднее и единичное стандартное отклонение. Также этот метод не меняет форму распределения данных, что важно для сохранения интерпретируемости результатов.

1.1.2. Обновление параметров

Ранее, найденная Δ применялась, если функция потерь уменьшалась, иначе она отклонялась, а коэффициент демпфирования увеличивался. Теперь шаг принимается, если метрика ρ (была предложена Нильсеном в его статье 1999 года [3]) больше порогового значения $\varepsilon_4 > 0$. Эта метрика измеряет фактическое уменьшение χ^2 по сравнению с улучшением, достигаемым шагом метода Левенберга-Марквадта:

$$\begin{split} \rho &= \frac{\chi^2(\boldsymbol{p}) - \chi^2(\boldsymbol{p} + \boldsymbol{\Delta})}{|(\boldsymbol{y} - \hat{\boldsymbol{y}})^T \mathbf{W} (\boldsymbol{y} - \hat{\boldsymbol{y}}) - (\boldsymbol{y} - \hat{\boldsymbol{y}} - \mathbf{J} \boldsymbol{\Delta})^T \mathbf{W} (\boldsymbol{y} - \hat{\boldsymbol{y}} - \mathbf{J} \boldsymbol{\Delta})|} \\ &= \frac{\chi^2(\boldsymbol{p}) - \chi^2(\boldsymbol{p} + \boldsymbol{\Delta})}{|\boldsymbol{\Delta}^T (\lambda \boldsymbol{\Delta} + \mathbf{J}^T \mathbf{W} (\boldsymbol{y} - \hat{\boldsymbol{y}}))|} \end{split}$$

где $\hat{m{y}} = \mathbf{f}(m{p})$.

Коэффициент демпфирования и параметры модели обновляются согласно следующим правилам:

Если $\rho > \varepsilon_4$:

$$\lambda = \max \left[\frac{\lambda}{L_{\downarrow}}, 10^{-7} \right], \mathbf{p} \leftarrow \mathbf{p} + \mathbf{\Delta}$$

иначе:

$$\lambda = \min\left[\lambda L_{\uparrow}, 10^7\right], \mathbf{p} \leftarrow \mathbf{p}$$

где $L_{\downarrow}\approx 9$ и $L_{\uparrow}\approx 11$ — фиксированные константы. Эти значения хорошо показали себя на практике и были выбраны на основе статьи [2].

1.1.3. Критерии сходимости

Алгоритм останавливается, когда выполняется *одно* из следующих условий:

- Сходимость по градиенту: max $|\mathbf{J}^T\mathbf{W}(\boldsymbol{y}-\hat{\boldsymbol{y}})|<arepsilon_1$
- Сходимость по коэффициентам: max $|\mathbf{\Delta}/\mathbf{p}|<arepsilon_2$
- Сходимость по (редуцированному) χ^2 : $\chi^2_{\nu} = \chi^2/(m-n) < \varepsilon_3$

1.2. Программная реализация алгоритма

Для реализации алгоритма был выбран язык программирования Python, так как он предоставляет широкие возможности для научных вычислений и

имеет большое количество библиотек для работы с данными. В качестве основной библиотеки для работы с данными была выбрана библиотека NumPy, а для работы с графиками — Matplotlib.

1.2.1. Структура проекта

Проект разделен на следующие модули:

- exponential_regression.py модуль с реализацией алгоритма в классе ExponentialRegression
- loss/loss_function.py модуль с реализацией базового класса для функций потерь LossFunction
- loss/chi2_loss.py модуль с реализацией функции потерь χ^2 в классе Chi2Loss
- main.py точка входа в программу, содержит пример использования алгоритма

1.2.2. Класс ExponentialRegression

Класс ExponentialRegression peanusyer perpeccuoнную модель на основе экспоненциальных функций. Он наследует BaseEstimator и RegressorMixin из библиотеки scikit-learn, что делает его совместимым с её API. Основное назначение класса ExponentialRegression— обучение и предсказание на основе экспоненциальной зависимости.

При создании экземпляра класса задаются следующие параметры:

- n_terms (int, по умолчанию 1): число экспоненциальных членов в модели.
- max_iter (int, по умолчанию 1000): максимальное число итераций для процедуры оптимизации.

- gradient_tol (float, по умолчанию 10^{-3}): порог для остановки оптимизации по величине градиента.
- coefficients_tol (float, по умолчанию 10^{-3}): порог для изменения коэффициентов модели.
- chi2_reduced_tol (float, по умолчанию 0.1): порог для среднего значения χ^2 .
- step_acceptance (float, по умолчанию 0.1): минимальное значение отношения улучшения шага для принятия шага.
- reg_init (float, по умолчанию 0.1): начальное значение регуляризации.
- loss_function (LossFunction, по умолчанию Chi2Loss): функция потерь, используемая для вычисления градиента, гессиана и значения ошибки.

В дополнение к параметрам инициализации, класс определяет несколько предустановленных констант, таких как коэффициенты изменения регуляризации REG_INCREASE_FACTOR, REG_DECREASE_FACTOR, а также минимальные и максимальные значения регуляризации REG_MIN и REG_MAX.

fit(data, target, initial_lambda=None,
initial omega=None):

Метод обучает модель на основе входных данных:

- data (np.ndarray): одномерный массив временных значений.
- target (np.ndarray): одномерный массив значений целевой переменной.
- initial_lambda (Optional[np.ndarray]): начальные значения коэффициентов, если заданы.

 initial_omega (Optional[np.ndarray]): начальные значения параметров, если заданы.

Для решения системы $[\mathbf{J}^T\mathbf{W}\mathbf{J}]\mathbf{\Delta} = \mathbf{J}^T\mathbf{W}(\mathbf{y} - \mathbf{\hat{y}})$ используется функция scipy.linalg.solve из библиотеки SciPy.

predict(data):

Метод делает предсказания для входных данных data:

• data (np.ndarray): одномерный массив временных значений.

Приватные (вспомогательные) методы:

- init parameters (n terms): инициализация параметров ${\bf p}$.
- jacobian(t): вычисление якобиана.
- _regularize_hessian (hessian): добавление регуляризации к гессиану.
- _accept_step(t, y_true, y_pred, delta, gradient):проверка, является ли шаг улучшением, и обновление параметров в случае успеха.
- _increase_regularization(): увеличение параметра регуляризации.
- _decrease_regularization(): уменьшение параметра регуляризации.
- _check_convergence(gradient, lambda_delta, omega_delta, loss, measurements amount): проверка условий сходимости.
- model(t, lambda =None, omega =None):вычисление $f(\mathbf{t}, \mathbf{p})$.

1.2.3. Класс Chi2Loss

Класс Chi2Loss реализует функцию потерь χ^2 . Он наследует LossFunction и реализует методы для вычисления градиента, гессиана и значения функции потерь.

При создании экземпляра класса задаются следующие параметры:

- measurements amount (int): количество измерений;
- measurement_variance(np.ndarray | float | None, по умолчанию None): дисперсия каждого измерения или общая дисперсия;

с помощью которых вычисляется матрица весов W.

Метод вычисляет значение функции потерь:

$$\chi^2 = [\mathbf{y} - \mathbf{\hat{y}}]^T \mathbf{W} [\mathbf{y} - \mathbf{\hat{y}}],$$

gradient(t, y true, y pred, jacobian):

Метод вычисляет (анти-) градиент функции потерь деленный на 2 (для удобства в использовании):

$$-\frac{1}{2}\frac{\partial \chi^2}{\partial \mathbf{p}} = \mathbf{J}^T \mathbf{W} (\mathbf{y} - \mathbf{\hat{y}})$$

hessian(jacobian):

Метод (приближенно) вычисляет гессиан функции потерь:

$$\frac{\partial^2 \chi^2}{\partial \mathbf{p}^2} \approx \mathbf{J}^T \mathbf{W} \mathbf{J}$$

где $\hat{\mathbf{y}}$ - y_pred, \mathbf{y} - y_true, \mathbf{J} - jacobian, \mathbf{W} - диагональная матрица весов.

2. ДЕМОНСТРАЦИЯ РАБОТЫ ПРОГРАММЫ

2.1. Пример с одним экспоненциальным членом

Для примера были сгенерированы данные, соответствующие зависимости $f(t) = 2\exp(-0.25t) + \varepsilon, \varepsilon \in \mathcal{N}(0,1)$ — случайный шум.

Было проведено 100 замеров в диапазоне $t \in [-10, 10]$. После обучения модели были получены следующие результаты:

Рисунок 1 – Пример с одним экспоненциальным членом

Как видно из графика, модель хорошо отфильтровала шум и восстановила исходную зависимость.

2.2. Пример с двумя экспоненциальными членами

Для примера были сгенерированы данные, соответствующие зависимости $f(t)=2\exp(-0.25t)-5\exp(-2t)+arepsilon,$ $arepsilon\in\mathcal{N}(0,0.1^2)$ — случайный шум.

Было проведено 100 замеров в диапазоне $t \in [0, 10]$. После обучения модели были получены следующие результаты:

Рисунок 2 – Пример с двумя экспоненциальными членами

Как видно из графика, модель не смогла восстановить исходную зависимость. Это связано с тем, что функция потерь $\chi^2(\mathbf{p})$ может иметь множество локальных минимумов. В таких случаях метод Левенберга-Марквардта может сходиться к неудовлетворительному решению. Если это происходит, пользователь может попытаться задать лучшее начальное приближение для параметров, например, с помощью случайного поиска, или поиска по сетке, либо путем анализа данных.

Попробуем улучшить результат, вручную задав начальные приближения для параметров:

$$\lambda = \begin{bmatrix} 1 & -1 \end{bmatrix}$$
$$\omega = \begin{bmatrix} -1 & -1 \end{bmatrix}$$

После обучения модели с начальными приближениями были получены следующие результаты:

Как видно из графика, модель восстановила исходную зависимость. Это показывает, что правильный выбор начальных приближений для параметров может существенно повлиять на результат.

Рисунок 3 – Пример с двумя экспоненциальными членами (улучшенный результат)

Написанный алгоритм позволяет удобно и быстро решать задачи аппроксимации данных линейной комбинацией экспоненциальных функций. Он легко расширяется на случай большего числа экспоненциальных членов, а также на случай других функций потерь.

Реализованный код см. в приложении А.

ЗАКЛЮЧЕНИЕ

В процессе выполнения работы удалось глубже изучить тему экспоненциальной регрессии, разработать её алгоритм и проверить его эффективность. Были рассмотрены различные методы оптимизации, такие как алгоритм Левенберга-Марквардта.

В итоге был разработан и протестирован алгоритм, который подтвердил свою эффективность и практическую ценность. Полученные результаты открывают возможности для дальнейшей работы над улучшением методов регрессии и их применением для решения более сложных задач анализа данных.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1] Wikipedia contributors. *Levenberg-Marquardt algorithm*. Wikipedia, The Free Encyclopedia. Available at: https://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt algorithm.
- [2] H. P. Gavin. *The Levenberg-Marquardt algorithm for nonlinear least squares curve-fitting problems*. 2020. Available at: https://people.duke.edu/~hpgavin/ce281/lm.pdf.
- [3] H. B. Nielsen. Damping Parameter in Marquardt's Method. 1999. Available at: https://www2.imm.dtu.dk/documents/ftp/tr99/tr05_99.pdf.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММЫ

A.1. exponential_regression.py

```
from typing import Self, Optional
import numpy as np
from sklearn.base import BaseEstimator, RegressorMixin
from sklearn.utils.validation import check X y, check array
from .loss import LossFunction, Chi2Loss
class ExponentialRegression(BaseEstimator, RegressorMixin):
    GRADIENT TOL: float = 1e-3
    COEFFICIENTS TOL: float = 1e-3
    CHI SQR_REDUCED_TOL: float = 1e-1
    STEP ACCEPTANCE: float = 1e-1
   REG INIT: float = 1e-1
   REG INCREASE FACTOR: float = 11.
   REG DECREASE FACTOR: float = 9.
   REG_MIN: float = 1e-7
   REG MAX: float = 1e7
    def __init__(self,
                 n terms: int = 1,
                 max iter: int = 1000,
                 gradient tol: float = GRADIENT TOL,
                 coefficients_tol: float = COEFFICIENTS_TOL,
                 chi2_reduced_tol: float = CHI_SQR_REDUCED_TOL,
                 step acceptance: float = STEP ACCEPTANCE,
                 reg init: float = REG INIT,
                 loss function: LossFunction = None) -> None:
        self.n terms = n terms
        self.max iter = max iter
        self.gradient tol = gradient tol
        self.coefficients_tol = coefficients_tol
        self.chi2_reduced_tol = chi2 reduced tol
        self.step acceptance = step acceptance
        self.reg init = reg init
        self.loss function = loss function
        self.regularization : None | float = None
        self.lambda : None | np.ndarray = None
        self.omega : None | np.ndarray = None
    def fit(self,
            data: np.ndarray,
            target: np.ndarray,
            initial lambda: Optional[np.ndarray] = None, initial omega:
               Optional[np.ndarray] = None) -> Self:
        data, target = check X y(data, target, ensure 2d=False)
        t = data.ravel()
```

```
if initial lambda is not None and initial omega is not None:
        self.lambda_ = initial_lambda
        self.omega_ = initial_omega
    else:
        self. init parameters(self.n terms)
    self.regularization = self.reg init
    new y pred = self. model(t)
    is_step_accepted = True
   hessian = gradient = None
    for in range(self.max iter):
        y pred = new y pred
        if is step accepted:
            jacobian = self. jacobian(t)
            gradient = self.loss function.gradient(
                target, y pred, jacobian)
            loss = self.loss function.loss(target, y pred)
            if self. check convergence(gradient, self.lambda , self.omega
               , loss, data.size):
                break
            hessian = self.loss function.hessian(jacobian)
        hessian = self. regularize hessian(hessian)
        delta = np.linalg.solve(hessian, gradient)
        is_step_accepted, new_y_pred = self._accept_step(
           t, target, y_pred, delta, gradient)
        if is_step_accepted:
            self. decrease regularization()
        else:
            self. increase regularization()
    else:
        print(f"Failed_to_converge_after_{(self.max iter)_iterations")
    return self
def init parameters(self, n terms: int) -> None:
    self.lambda_ = np.ones(n_terms)
    self.omega_ = np.ones(n Terms)
def _jacobian(self, t: np.ndarray) -> np.ndarray:
    exp_terms = np.exp(np.outer(t, self.omega_))
    jacobian_lambda = exp_terms
    jacobian omega = exp terms * self.lambda * t[:, np.newaxis]
    jacobian = np.hstack((jacobian lambda, jacobian omega))
   return jacobian
def regularize hessian(self, hessian: np.ndarray) -> np.ndarray:
    return hessian + np.eye(hessian.shape[0]) * self.regularization
def accept step(self, t: np.ndarray, y true: np.ndarray, y pred: np.
   ndarray, delta: np.ndarray,
                 gradient: np.ndarray) -> tuple[bool, np.ndarray]:
    new y pred = self. model(t,
                             self.lambda_ + delta[:self.n_terms],
                             self.omega + delta[self.n terms:])
    chi sqr = self.loss function.loss(y true, y pred)
```

```
new chi sqr = self.loss function.loss(y true, new y pred)
    rho = (
            (chi_sqr - new_chi_sqr) /
            np.abs(delta.T @ (self.regularization * delta + gradient))
    if rho > self.step acceptance:
        self.lambda += delta[:self.n terms]
        self.omega_ += delta[self.n terms:]
        return True, new y pred
    return False, y pred
def increase regularization(self) -> None:
    self.regularization_ *= self.REG_INCREASE_FACTOR
    self.regularization_ = min(self.regularization , self.REG MAX)
def decrease regularization(self) -> None:
    self.regularization_ /= self.REG_DECREASE_FACTOR
    self.regularization = max(self.regularization , self.REG MIN)
def check convergence (self, gradient: np.ndarray, lambda delta: np.
   ndarray, omega delta: np.ndarray,
                       loss: float, measurements amount: int) -> bool:
    return (
            np.max(np.abs(gradient)) < self.gradient tol or</pre>
            np.max(np.abs(lambda delta / self.lambda )) < self.</pre>
               coefficients tol {\bf or}\,
            np.max(np.abs(omega delta / self.omega )) < self.</pre>
               coefficients tol or
            loss / (measurements_amount -
                    gradient.shape[0]) < self.chi2_reduced_tol</pre>
    )
def predict(self, data: np.ndarray) -> np.ndarray:
    data = check array(data, ensure 2d=False)
    t = data.ravel()
    return self. model(t)
def model(self, t: np.ndarray, lambda : np.ndarray = None, omega : np.
   ndarray = None) -> np.ndarray:
    lambda_ = self.lambda_ if lambda_ is None else lambda_
    omega = self.omega if omega is None else omega
    exp terms = np.exp(np.outer(t, omega ))
    return exp terms @ lambda
```

A.2. loss/loss function.py

```
from abc import ABC, abstractmethod
import numpy as np
from typing import Optional
class LossFunction(ABC):
    def __repr__(self) -> str:
         return self.__class__.__name__
    @abstractmethod
    def loss(self, y true: np.ndarray, y pred: np.ndarray) -> float:
\verb"uuuuuuu" Compute \verb"uthe" loss \verb"ufunction" given \verb"uthe" residuals
עם : paramuy_true: utrue uvalues
עם יים:paramuy_pred:upredicted values
_____"""
        pass
    @abstractmethod
    def gradient(self, y_true: np.ndarray, y_pred: np.ndarray, jacobian: np.
        ndarray) -> np.ndarray:
\verb"\uu_{uuuuuu}Compute" the \verb"\ugradient" of \verb"\uthe" loss \verb"\ufunction"
יייים:paramuy_true:utrueuvalues
בוטוים:paramuy pred:upredicteduvalues
uuuuuuu:paramujacobian:ujacobianuofutheumodel
pass
    @abstractmethod
    def hessian(self, jacobian: np.ndarray) -> np.ndarray:
\verb"uuuuuuu" Compute" the \verb"uhessian" of \verb"uthe" loss \verb"ufunction"
עווועויוים:paramujacobian:ujacobianuofutheumodel
_____"""
        pass
```

A.3. loss/chi2 loss.py

```
import numpy as np
from typing import Optional
from .loss function import LossFunction
class Chi2Loss(LossFunction):
    # Chi-squared (or weighted MSE) loss function
   def __init__(self, measurements_amount: int, measurement_variance: float |
        np.ndarray | None = None) -> None:
        if isinstance(measurement_variance, float):
            self. weights = np.eye(measurements amount) / measurement variance
        elif isinstance(measurement_variance, np.ndarray):
            self. weights = np.diag(1 / measurement variance)
        else:
            self._weights = np.eye(measurements_amount)
   def loss(self, y_true: np.ndarray, y_pred: np.ndarray) -> float:
        residuals = y_true - y_pred
       return np.float (residuals.T @ self. weights @ residuals)
   def gradient(self, y_true: np.ndarray, y_pred: np.ndarray, jacobian: np.
       ndarray) -> np.ndarray:
       residuals = y_true - y_pred
        return jacobian. T @ self. weights @ residuals
   def hessian(self, jacobian: np.ndarray) -> np.ndarray:
        return jacobian. T @ self. weights @ jacobian
```

A.4. main.py

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from src.exponential regression import ExponentialRegression
from src.loss.chi2 loss import Chi2Loss
def main():
   measurements = 100
   measurement\_errors = 1 / 20
   x = np.linspace(0, 10, measurements).reshape(-1, 1)
   y = (2 * np.exp(-0.25 * x) + (-5) * np.exp(-2 * x)).ravel()
   y += np.random.normal(0, measurement_errors, measurements)
   scaler = StandardScaler()
   x = scaler.fit transform(x)
   loss = Chi2Loss(measurements, measurement errors)
   er = ExponentialRegression(n_terms=2, loss_function=loss)
   er.fit(x, y, initial_lambda=np.array([1., -1.]), initial_omega=np.array
       ([-1., -1.]))
   coefficients = np.hstack((er.lambda , er.omega ))
   print(coefficients)
   plt.scatter(x, y)
   plt.plot(x, er.predict(x), color='red')
   plt.show()
if __name__ == '__main__':
   main()
```