

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS14100084802

FCC & IC REPORT (BLE)

Applicant: Binatone Electronics International Limited

Address of Applicant: Floor 23A, 9 Des Voeux Road West, Sheung Wan, Hong Kong

Equipment Under Test (EUT)

Product Name: DECT Phone

Model No.: Smart 63, KS7106

FCC ID: VLJ-SMART63

Canada IC: 4522A-SMART63

FCC CFR Title 47 Part 15 Subpart C Section 15.247

Applicable standards: RSS-210 Issue 8, December 2010

RSS-Gen Issue 4, November 2014

Date of sample receipt: 14 Oct., 2014

Date of Test: 14 Oct., 2014 to 06 Nov., 2014

Date of report issued: 06 Nov., 2014

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	06 Nov., 2014	Original

Tested by: Date: 06 Nov., 2014

Test Engineer

Reviewed by: 06 Nov., 2014

Project Engineer

3 Contents

			Page
1	COV	ER PAGE	
2	VER	SION	2
3		ITENTS	
4	TES.	T SUMMARY	4
5		IERAL INFORMATION	
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	LABORATORY FACILITY	
	5.6	LABORATORY LOCATION	
	5.7	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	20
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	SPURIOUS EMISSION	
	6.7.1	00	
	6.7.2		
7	TES	T SETUP PHOTO	35
Ω	FIIT	CONSTRUCTIONAL DETAILS	27

4 Test Summary

Test Item	Section in CFR 47	Section	Result
Antenna requirement	15.203/15.247 (c)	RSS-210,RSS-GEN	Pass
AC Power Line Conducted Emission	15.207	RSS-210,RSS-GEN	Pass
Conducted Peak Output Power	15.247 (b)(3)	RSS-210,RSS-GEN	Pass
6dB Emission Bandwidth	15.247 (a)(2)	RSS-210,RSS-GEN	Pass
Power Spectral Density	15.247 (e)	RSS-210,RSS-GEN	Pass
Band Edge	15.247(d)	RSS-210,RSS-GEN	Pass
Spurious Emission	15.205/15.209	RSS-210,RSS-GEN	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Binatone Electronics International Limited
Address of Applicant:	Floor 23A, 9 Des Voeux Road West, Sheung Wan, Hong Kong
Manufacturer:	ShenZhen Concox Information Technology Co., Ltd
Address of Manufacturer:	4F, Building B, Gaoxinqi Industrial Park, Liuxian 1st Road, District 67,Bao'an, Shenzhen, Guangdong, China
Factory:	Huizhou Goldenchip Electronics Co., Ltd
Address of Factory:	No. 12 Factory, Songyang Road, Zhongkai Hi-tech Development Zone, Huizhou City, Guangdong Province, China

5.2 General Description of E.U.T.

Product Name:	DECT Phone
Model No.:	Smart 63, KS7106
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V 1100mAh
AC adapter:	Model:MLF-A00060501000U0021
	Input:100-240VAC,50/60Hz 0.18A
	Output:5.0VDC MAX1A
Remark:	The Model: Smart 63, KS7106 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz	
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz	
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz	
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz	
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz	
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz	
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz	
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz	
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz	
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

Report No: CCIS14100084802

5.3 Test environment and mode

Operating Environment:					
Temperature:	24.0 °C				
Humidity:	54 % RH				
Atmospheric Pressure:	1010 mbar				
Test mode:					
Operation mode	Keep the EUT in continuous transmitting with modulation				

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Radia	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	Aug 23 2014	Aug 22 2017		
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	Apr 19 2014	Apr 19 2015		
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	Apr 19 2014	Apr 19 2015		
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
5	Coaxial Cable	CCIS	N/A	CCIS0016	Apr. 01 2014	Mar. 31 2015		
6	Coaxial Cable	CCIS	N/A	CCIS0017	Apr. 01 2014	Mar. 31 2015		
7	Coaxial cable	CCIS	N/A	CCIS0018	Apr. 01 2014	Mar. 31 2015		
8	Coaxial Cable	CCIS	N/A	CCIS0019	Apr. 01 2014	Mar. 31 2015		
9	Coaxial Cable	CCIS	N/A	CCIS0087	Apr. 01 2014	Mar. 31 2015		
10	Amplifier(10kHz- 1.3GHz)	HP	8447D	CCIS0003	Apr. 01 2014	Mar. 31 2015		
11	Amplifier(1GHz- 18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	June 09 2014	June 08 2015		
12	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Apr. 01 2014	Mar. 31 2015		
13	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2014	Mar. 29 2015		
14	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A		
15	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A		
16	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	Apr 19 2014	Apr 19 2015		
17	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	Apr 01 2014	Mar. 31 2015		
18	Loop antenna	Laplace instrument	RF300	EMC0701	Apr 01 2014	Mar. 31 2015		
19	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	May. 29 2014	May. 28 2015		
20	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	Apr 19 2014	Apr 19 2015		

Cond	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	Oct 10 2012	Oct 09 2015				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	Apr 10 2014	Apr 09 2015				
3	LISN	CHASE	MN2050D	CCIS0074	Apr 10 2014	Apr 10 2015				
4	Coaxial Cable	CCIS	N/A	CCIS0086	Apr. 01 2014	Mar. 31 2015				
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement:

FCC Part15 C Section 15.203 /247(c) and RSS-Gen Section 7.1.2

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 0 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.207	and RSS-Gen Section	n 7.1.4					
Test Method:	ANSI C63.4: 2003							
Test Frequency Range:	150 kHz to 30 MHz							
Class / Severity:	Class B							
Receiver setup:	RBW=9kHz, VBW=30kHz							
Limit:		Limit (dRu\/)						
	Prequency range (MHz) Quasi-peak Average							
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
Test procedure	* Decreases with the logarithm 1. The E.U.T and simulator a line impedance stabili. 50ohm/50uH coupling im 2. The peripheral devices through a LISN that prowith 50ohm termination. test setup and photograp 3. Both sides of A.C. line interference. In order to positions of equipment changed according to measurement.	rs are connected to the zation network (L.I.S.I pedance for the measure also connected ovides a 50ohm/50uH (Please refer to the lhs). The are checked for a find the maximum of and all of the interfer.	N.), which provides a uring equipment. to the main power coupling impedance block diagram of the maximum conducted emission, the relative					
Test setup:	LISN 40cm	U.T EMI Receiver	er — AC power					
Test Instruments:	Refer to section 5.7 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Measurement Data

Neutral:

Trace: 1

Site

: CCIS Shielding Room : FCC CLASS-B QP LISN NEUTRAL Condition

: 848RF Job. no EUT : DECT Phone Model : Smart 63

Test Mode : BLE mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: A-bomb

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	dB	dBu₹	dBu∜	<u>ab</u>	
1	0.150	55.41	0.25	0.00	55.66	66.00	-10.34	QP
2	0.150	39.40	0.25	0.00	39.65	56.00	-16.35	Average
3	0.182	50.83	0.25	0.00	51.08	64.42	-13.34	QP
4	0.198	33.55	0.25	0.00	33.80	53.71	-19.91	Average
5	0.230	46.80	0.25	0.00	47.05	62.44	-15.39	QP
6	0.238	46.28	0.25	0.00	46.53	62.17	-15.64	QP
7	0.238	27.03	0.25	0.00	27.28	52.17	-24.89	Average
8	0.286	43.17	0.26	0.00	43.43	60.63	-17.20	QP
9	0.289	24.06	0.26	0.00	24.32	50.54	-26.22	Average
10	0.337	22.77	0.26	0.00	23.03	49.27	-26.24	Average
11	0.385	22.20	0.25	0.00	22.45	48.17	-25.72	Average
12	0.686	38.09	0.19	0.00	38.28		-17.72	

Line:

Trace: 3

Site : CCIS Shielding Room Condition : FCC CLASS-B QP LISN LINE

Job. no : 848RF
EUT : DECT Phone
Model : Smart 63
Test Mode : BLE mode

Power Rating: AC 120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: A-bomb

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	dB	dBu₹	—dBu∀	<u>dB</u>	
1	0.170	48.53	0.27	0.00	48.80	64.94	-16.14	QP
2	0.174	29.92	0.27	0.00	30.19	54.77	-24.58	Average
3	0.206	43.67	0.28	0.00	43.95	63.36	-19.41	QP
4	0.253	41.85	0.27	0.00	42.12	61.64	-19.52	QP
5	0.253	23.67	0.27	0.00	23.94	51.64	-27.70	Average
6	0.299	39.07	0.26	0.00	39.33	60.28	-20.95	QP
7	0.381	22.97	0.28	0.00	23.25	48.25	-25.00	Average
8 9	0.454	36.47	0.29	0.00	36.76	56.80	-20.04	QP
9	0.555	20.30	0.27	0.00	20.57	46.00	-25.43	Average
10	0.697	36.98	0.22	0.00	37.20	56.00	-18.80	QP
11	0.697	19.72	0.22	0.00	19.94	46.00	-26.06	Average
12	0.938	19.63	0.24	0.00	19.87	46.00	-26.13	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3) and RSS-210 A8.4 section 4					
Test Method:	ANSI C63.4:2003 and KDB 558074D01 v03r02 / RSS-Gen section 4.8					
Limit:	30dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					
Remark:	Test method refer to KDB 558074D01 v03r02 (DTS Measure Guidance) section 9.2.2.2					

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-1.22		
Middle	-0.57	30.00	Pass
Highest	-0.98		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2) and RSS-210 section A8.2(a)					
Test Method:	ANSI C63.4:2003 and KDB 558074D01 v03r02 / RSS-Gen section 4.6.2					
Limit:	>500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.76		
Middle	0.76	>500	Pass
Highest	0.76		

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	1.04			
Middle	1.04	N/A	N/A	
Highest 1.04				

Test plot as follows:

Test mode:6dB EBW GFSK

Highest channel

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e) and FCC Part15 C Section 15.247 (e)						
Test Method:	ANSI C63.4:2003 and KDB 558074D01 v03r02 / RSS-210 section A8.2 (b)						
Limit:	8 dBm						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-1.94		
Middle	-1.33	8.00	Pass
Highest	-1.70		

Test plots as follow:

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d) and RSS-210 section A8.5					
Test Method:	ANSI C63.4:2003 and KDB 558074D01 v03r02 / RSS-210 section A8.5					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer					
	E.U.T					
	Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205 and RSS-210 section A8.5						
Test Method:	ANSI C63.4: 20	03 / RSS-Gen	section 4.9				
Test Frequency Range:	2.3GHz to 2.5G	Hz					
Test site:	Measurement D	Distance: 3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Remark		
	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
	Above 10112	Peak	1MHz	10Hz	Average Value		
Limit:			L : :	/ @ O\	Damadi		
	Freque	ency	Limit (dBuV/ 54.0		Remark Average Value		
	Above 1	GHz —	74.0		Peak Value		
Test Procedure:	the ground to determing to determing antenna, we tower. 3. The antenry the ground Both horizon make the result of the test-result of the emission of the EUT have 10 determing the determinant of the second the	at a 3 meter cane the position of the position of the position of the position of the position and height is varied to determine the position and vertical and vertical and vertical easurement. The position of the position	amber. The toof the highests away from the on the too the too the too the ded from one maximum all polarizations as turned from the too the to	table was rost radiation. The interfer op of a variation are meter to for a value of the ons of the are to heights from 0 degreeak Detect old Mode. It is knode was the stopped arise the emit one by one	rence-receiving able-height antenna our meters above the field strength. Intenna are set to anged to its worst from 1 meter to 4 trees to 360 degrees		
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table A A A Amplifier						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section	5.3 for details					
Test results:	Passed						

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : DECT Phone : Smart 63 : BLE-L Mode Model Test mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: A-bomb :

REMARK

	Freq		Antenna Factor						
	MHz	dBu∇	$\overline{dB}/\overline{m}$	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1 2	2390.000 2390.000						74.00 54.00	DECEMBER OF STREET	Peak Average

Test channel: Lowest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : DECT Phone Condition

EUT Model : Smart 63 Test mode : BLE-L Mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: A-bomb

REMARK

	Freq		Antenna Factor						
	MHz	dBu₹		dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000								

Test channel: Highest

Horizontal:

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : DECT Phone Condition

EUT : Smart 63 Model Test mode : BLE-H Mode Power Rating : AC120V/60Hz

Environment : Temp:25.5C Huni:55%

Test Engineer: A-bomb REMARK :

	Freq		Antenna Factor						
	MHz	—dBu∇		d <u>B</u>	<u>ab</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	2483.500		50 (C. C. C		0.00				DED TO THE ROY
2	2483.500	13.64	27.52	5.70	0.00	46.86	54.00	-7.14	Average

Test channel: Highest

Vertical:

Frequency (MHz)

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : DECT Phone Model : Smart 63
Test mode : BLE-H Mode
Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: A-bomb REMARK :

	2000		Antenna Factor						
2	MHz	dBu₹	— <u>dB</u> /m	<u>d</u> B	<u>ab</u>	dBuV/m	dBuV/m	<u>dB</u>	 _
	2483.500 2483.500								

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d) and RSS-210 section A8.5						
Test Method:	ANSI C63.4:2003 and KDB 558074D01 v03r02 / RSS-210 section A8.5						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Test mode: GFSK Lowest channel

30MHz~25GHz Middle channel

30MHz~25GHz Highest channel

Date: 6.NOV.2014 16:34:59 30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205 and RSS-Gen section 4.9						
Test Method:	ANSI C63.4:200	ANSI C63.4:2003 / RSS-Gen section 4.9					
Test Frequency Range:	9KHz to 25GHz						
Test site:	Measurement D	istance: 3m					
Receiver setup:							
receiver setup.	Frequency	Detector	RBW	VBW	Remark		
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value		
		Peak	1MHz	3MHz	Peak Value		
	Above 1GHz	Peak	1MHz	10Hz	Average Value		
Limit:							
	Frequency		Limit (dBuV/m	@3m)	Remark		
	30MHz-88MHz		40.0		Quasi-peak Value		
	88MHz-216MHz		43.5		Quasi-peak Value		
	216MHz-960MH	z	46.0		Quasi-peak Value		
	960MHz-1GHz		54.0		Quasi-peak Value		
	Above 1GHz		54.0		Average Value		
			74.0		Peak Value		
Test Procedure:	the ground to determin 2. The EUT of antenna, we tower. 3. The antenry the ground Both horizon make the make the make the make the make to find the meters and to find the make the limit specified B. If the emission of the EUT have 10 dB.	at a 3 meter e the position was set 3 m hich was mount and ver neasurement. Suspected ementhe anterest the rota table maximum reasurement with the rota table and width with sion level of the cified, then the would be resumargin would	camber. The of the highes eters away funted on the traried from one the maximutical polarizations on the Enna was turned ding. In was set on Maximum Hama was turned ding. In was set on Maximum Hama was turned ding. In was set on Maximum Hama EUT in peresting could be orted. Other did be re-tested.	table was st radiation. from the in op of a variance meter to um value of the EUT was and to height from 0 deg to Peak Dold Mode. ak mode woe stopped wise the end one by on	ele 0.8 meters above rotated 360 degrees atterference-receiving liable-height antenna of four meters above of the field strength, antenna are set to arranged to its worst as from 1 meter to 4 rees to 360 degrees retect Function and as 10 dB lower than and the peak values missions that did not e using peak, quasimareported in a data		

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : DECT Phone Condition

EUT Model : Smart 63 Test mode : BLE Mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni: 55%

Test Engineer: A-bomb

REMARK

VENIENV	•								
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
_	MHz	dBu₹	$\overline{-}\overline{dB}/\overline{m}$	<u>d</u> B	ā <u>ā</u>	$\overline{dBuV/m}$	dBuV/m	āB	
1	77.865	51.13	8.26	0.84	29.66	30.57	40.00	-9.43	QP
1 2 3 4	103.806	40.36	12.78	0.99	29.50	24.63	43.50	-18.87	QP
3	129.923	50.99	8.93	1.19	29.33	31.78	43.50	-11.72	QP
4	155.910	50.67	8.51	1.33	29.17	31.34	43.50	-12.16	QP
5	181.920	50.18	9.84	1.36	28.96	32.42	43.50	-11.08	QP
6	965.542	49.38	21.52	3.48	27.63	46.75	54.00	-7.25	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : DECT Phone Condition

EUT Model : Smart 63 : BLE Mode Test mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: A-bomb REMARK :

KEMAKK	:								
	Freq		Antenna Factor				Limit Line		
-	MHz	dBu₹	dB/m		<u>d</u> B	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1	38.078	44.82	13.11	0.51	29.92	28.52	40.00	-11.48	QP
2 3 4 5	77.865	46.31	8.26	0.84	29.66	25.75	40.00	-14.25	QP
3	103.806	41.46	12.78	0.99	29.50	25.73	43.50	-17.77	QP
4	155.910	44.11	8.51	1.33	29.17	24.78	43.50	-18.72	QP
5	181.920	41.57	9.84	1.36	28.96	23.81	43.50	-19.69	QP
6	965.542	50.71	21.52	3.48	27.63	48.08	54.00	-5.92	QP

Above 1GHz

Test channe	l:	L	west Level:			Peak				
		•								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00	47.23	31.53	8.90	40.24	47.42	74.00	-26.58	Vertical		
4804.00	46.14	31.53	8.90	40.24	46.33	74.00	-27.67	Horizontal		
4004.00	40.14	31.33	0.90	40.24	40.55	74.00	-21.01	Honzontal		
T					1					
Test channe	l:	L	owest		Level:		Average			
	T			•	T	T		,		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00	37.89	31.53	8.90	40.24	38.08	54.00	-15.92	Vertical		
4804.00	36.34	31.53	8.90	40.24	36.53	54.00	-17.47	Horizontal		
Test channe	ŀ	N/	1iddle		Level:		Peak			
1 CSt Charling	1.	IV	ilaalo		LCVCI.		1 Cak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4884.00	46.21	31.58	8.98	40.15	46.62	74.00	-27.38	Vertical		
4884.00	46.47	31.58	8.98	40.15	46.88	74.00	-27.12	Horizontal		
100 1100	10.17	01.00	0.00	10110	10.00	7 1.00		Honzona		
Test channe	l·	N/	1iddle		Level:		Average			
Test Charline	1.	IV	liddie		Level.		Average	Tivolago		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4884.00	36.85	31.58	8.98	40.15	37.26	54.00	-16.74	Vertical		
4884.00	36.49	31.58	8.98	40.15	36.90	54.00	-17.10	Horizontal		
							_			
Test channe	ŀ	Н	lighest		Level:		Peak			
TOST CHAINIC	1.		iigriost		LCVCI.		1 Car			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4960.00	46.41	31.69	9.08	40.03	47.15	74.00	-26.85	Vertical		
4960.00										
								Horizontal		
	47.10	31.69	9.08	40.03	47.84	74.00	-26.16	Horizontal		
Test channe	47.10	31.69		40.03	47.84 Level:	74.00	-26.16 Average	Horizontal		
Test channe Frequency (MHz)	47.10 I: Read Level (dBuV)	31.69 H Antenna Factor (dB/m)	9.08 lighest Cable Loss (dB)	Preamp Factor (dB)	Level: Level (dBuV/m)	Limit Line (dBuV/m)	Average Over Limit (dB)	Polarization		
Test channe	47.10 I: Read Level	31.69 H Antenna Factor	9.08 lighest Cable Loss	Preamp Factor	Level:	Limit Line	Average Over Limit			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.