Programme de colle n°24

Probabilité sur un univers fini

- 1) Définition d'une probabilité sur un univers Ω fini. Lien avec une distribution de probabilité.
- 2) Définition d'une variable aléatoire. Équiprobabilité. Probabilité conditionnelle.
- 3) Formule des probabilités composées, formule des probabilités totales, formule de Bayes.
- 4) Loi d'une variable aléatoire. Loi uniforme, loi de Bernoulli, loi binomiale.

Dimension finie

- 1) Un espace vectoriel est dit de dimension finie s'il possède une famille génératrice finie.
- 2) Théorèmes de la base incomplète et de la base extraite.
- 3) Dimension d'un espace vectoriel. Dimension de \mathbb{R}^n , $\mathbb{R}_n[X]$, $\mathcal{M}_{n,p}(\mathbb{R})$.
- 4) Dans E de dimension finie n, une famille libre à n éléments est une base. Une famille génératrice à n éléments est une base.
- 5) Dimension d'un sous-espaces vectoriel. Caractérisation des sous-espaces supplémentaires avec la dimension.
- 6) Formule de Grassmann.
- 7) Rang d'une famille de vecteurs.

Intégration

1) Révisions sur le calcul intégral.

Questions de cours

On commencera la colle par un calcul d'intégrale.

- 1) Donner et démontrer les formules pour $P(\overline{A}), P(A \setminus B)$ et $P(A \cup B)$.
- 2) Soit $A \subset \Omega$ tel que $P(A) \neq 0$. Montrer que P_A est une probabilité.
- 3) Énoncer et démontrer la formule des probabilités totales. En déduire la formule de Bayes pour un système complet d'événements.
- 4) On effectue 3 tirages successifs sans remise dans une urne contenant 7 boules rouges et 5 boules noires. Quelle est la probabilité d'obtenir dans cet ordre deux boules noires puis une boule rouge?
- 5) On dispose de N+1 urnes U_0, U_1, \ldots, U_N : l'urne U_k contient k boules blanches et N-k boules noires. On tire une boule de l'une de ces urnes choisie au hasard. Si cette boule est blanche, quelle est la probabilité que l'urne choisie soit U_N ?
- 6) On tire successivement et avec remise 3 boules dans une urne contenant 3 boules rouges et 2 boules bleues. Soit Y la variable aléatoire égale au nombre de boules rouges tirées. Déterminer la loi de Y.
- 7) Déterminer la dimension des espaces vectoriels suivants :

$$F_1 = \{(x, y, z) \mid x + y - 2z = 0\},$$
 $F_2 = \text{Vect } ((1, 1, 1), (3, -1, 2), (-1, 3, 0)).$

- 8) Soit u = (1, 2, -1), v = (0, 2, 3), w = (1, 0, 1). Montrer que (u, v, w) forment une base de \mathbb{R}^3 .
- 9) Soit G = Vect ((1,1,1),(3,-1,1)) et $F = \{(x,y,z) \in \mathbb{R}^3 \mid x+y-2z=0\}$ deux sous-espaces vectoriels de \mathbb{R}^3 . Montrer que F = G.

C. Darreye PTSI Lycée Dorian