Autômatos e Linguagens Formais

• Terminologia básica

- ÁTOMO elemento básico da linguagem
- ALFABETO conjunto de átomos
- CADEIA concatenação arbitrária de símbolos do alfabeto
- SENTENÇA cadeia pertencente à linguagem
- LINGUAGEM conjunto de todas as sentenças válidas
- GRAMÁTICA enumeração ou conjunto de leis de formação
- DERIVAÇÃO obtenção de sentenças usando gramáticas
- RECONHECEDORES conjunto de regras de aceitação
- RECONHECIMENTO aceitação das sentenças da linguagem

Hierarquia de Chomsky

- Tipo 0 Gramáticas irrestritas
 - geram linguagens estruturadas em frases
- Tipo 1 Gramáticas sensíveis ao contexto
 - geram linguagens sensíveis ao contexto
- Tipo 2 Gramáticas livres de contexto
 - geram linguagens livres de contexto
- Tipo 3 Gramáticas lineares
 - geram linguagens regulares

Linguagem Gramática Reconhecedor

Tipo 0 Ling. estruturada em frases	Tipo 0 Gramáticas Irrestritas	Máq. de Turing com fita infinita
Tipo 1	Tipo 1	Máq. de Turing
Ling. Sensíveis	Gram. Sensíveis	com
ao contexto	ao contexto	fita limitada
Tipo 2 Ling. livres de contexto	Tipo 2 Gram. Livres de contexto	Autômatos de Pilha
Tipo 3	Tipo 3	Autômatos
Conj. regulares	Gram. Lineares	Finitos

Cadeias

Conceitos

- ALFABETO conjunto finito não-vazio de átomos
- CADEIA VAZIA seqüência de zero átomos
- CADEIA ELEMENTAR sequência de um só átomo
- COMPRIMENTO número de átomos de uma cadeia
- CONCATENAÇÃO DE CADEIAS obtida por justaposição das cadeias
- CONCATENAÇÃO DE CADEIA COM ÁTOMO = com cadeia elementar

Propriedades da concatenação de cadeias

- ASSOCIATIVA
- NÃO-COMUTATIVA
- ELEMENTO NEUTRO É A CADEIA VAZIA

Fechamentos

- FECHAMENTO TRANSITIVO conjunto de todas as cadeias não-vazias
- FECHAMENTO RECURSIVO E TRANSITIVO inclui a cadeia vazia
- Os fechamentos podem ser aplicados a operadores, indicando sua repetida aplicação

Gramáticas

- Dispositivos de geração de sentenças
- Componentes:
 - vocabulário da gramática (terminais e não-terminais)
 - terminais da gramática (átomos da linguagem)
 - símbolo inicial ou raiz da gramática (não-terminal)
 - produções da gramática (regras de substituição)
- Derivação direta é a operação resultante da aplicação de uma produção apenas
- Forma sentencial é qualquer cadeia sobre o vocabulário, derivável a partir da raiz
- Sentença é uma forma sentencial sem não-terminais
- Linguagem é o conjunto de todas as sentenças geradas pela gramática

Reconhecedores

- São dispositivos de aceitação da linguagem
- Elementos componentes:
 - texto de entrada
 - cursor de leitura
 - máquina de estados
 - memória auxiliar
 - indicação de reconhecimento

Configuração do reconhecedor

- estado corrente
- posição do cursor e conteúdo do texto de entrada
- conteúdo da memória auxiliar

Tipos

- determinísticos um único movimento possível por configuração
- não-determinísticos podem apresentar mais de um movimento

Reconhecimento

Configuração inicial

- estado inicial único
- cursor no início do texto de entrada
- memória auxiliar com conteúdo conhecido

• Configuração final

- estado pertencente ao conjunto de estados de aceitação
- cursor aponta além da cadeia de entrada
- conteúdo da memória auxiliar atende a critério pré-estabelecido

Aceitação

- parte-se de uma configuração inicial
- executam-se movimentos sucessivos da máquina de estados
- atinge-se uma configuração final

Autômatos finitos

• Componentes:

- conjunto de estados
- alfabeto de entrada
- função de transição de estados
- estado inicial
- conjunto de estados finais
- Reconhecem linguagens regulares (tipo 3)
- Sua potência independe de ser ou não determinístico
- Existe sempre uma versão determinística e mínima para qualquer autômato finito fornecido, e ela é única
- Autômatos finitos determinísticos operam em tempo proporcional ao comprimento da cadeia de entrada
- Não há dispositivo mais eficiente que este
- Qualquer linguagem regular pode ser reconhecida em tempo proporcional ao comprimento de suas sentenças

Autômatos de pilha

• Componentes:

- conjunto de estados
- alfabeto de entrada
- alfabeto de pilha
- função de transição
- estado inicial
- marcador de pilha vazia
- conjunto de estados finais
- Aceitam todas as linguagens livres de contexto (tipo 2)
- Reconhecedores LR(k) reconhecem deterministicamente o mais amplo subconjunto das linguagens do tipo 2
- Dependendo da técnica de reconhecimento adotada, os autômatos de pilha também podem ser muito eficientes
- No pior caso, o tempo de reconhecimento de uma linguagem do tipo 2 pode ser exponencial

Implementação de Autômatos de Pilha

- Autômatos de Pilha apresentam a capacidade de aceitação para todas as linguagens do tipo 2
- Na forma clássica, os autômatos de pilha não se mostram práticos
- A maioria dos reconhecedores propostos na literatura não mapeiam literalmente o modelo teórico
- Geram importantes reconhecedores determinísticos
 - Os métodos LL(k), descendentes, são mais eficientes porém limitados
 - Os métodos LR(k), ascendentes, são mais gerais
- Os métodos LR(k) permitem reconhecer todas as linguagens determinísticas do tipo 2
- Os Autômatos de Pilha Estruturados constituem uma alternativa prática para reconhecimento determinístico

Autômatos de Pilha Estruturados

- Incorporam aos Autômatos de Pilha clássicos:
 - conjunto de sub-máquinas
 - transições com não-terminais (chamadas de sub-máquinas)
- Cada sub-máquina se comporta como autômato finito:
 - conjunto de estados
 - alfabeto de entrada
 - conjunto de produções
 - estado inicial
 - conjunto de estados finais (de retorno)
- As sub-máquinas podem apresentar:
 - transições internas em vazio, de look-ahead, de consumo de átomo
 - transições de chamada de sub-máquina sempre em vazio
 - traansições de retorno de sub-máquina sempre em vazio
- A pilha se limita a armazenar estados de retorno

Relação entre os autômatos

Observações

- O autômato de pilha estruturado é capaz de simular qualquer autômato de pilha tradicional
- O autômato de pilha tradicional também é capaz de simular qualquer autômato de pilha estruturado
- Isto determina a equipotência dos dois modelos
- Ambos podem reconhecer qualquer linguagem do tipo 2
- É possível projetar autômatos de pilha estruturados que usem a pilha estritamente para o reconhecimento de construções sintáticas aninhadas
- Os reconhecedores assim obtidos são muito eficientes