Universidade Estadual Paulista Faculdade de Engenharia Campus de Bauru

Relatório nº1

Relatório Experimento 1

Disciplina: Laboratório de Física

Professor: Pablo A. Venegas

Integrantes do grupo:

Luis Guilherme Gatti D'Alarme – RA: 221013814 José Eduardo de Souza Pereira – RA: 221011226 Gustavo Isao Arakaki – RA: 221012631 João Vitor dos Santos – RA: 221011161 Samuel de Souza de Jesus – RA: 221010866 Tiago Costa Motter Florencio – RA: 221011341

Data de realização da experiência: 23/06/2022

1. OBJETIVOS

O presente trabalho tem por objetivo comprovar, a partir de dados empíricos, as equações horárias; 1) que relaciona a velocidade à posição; e 2) que relaciona a posição ao tempo:

(1)
$$v^2 = v^2 + 2.a.\Delta x$$

(2)
$$x = x_0 + v_0 t + a t^2 \cdot 2^{-1}$$

2. INTRODUÇÃO TEÓRICA

2.1 Equações

Primeiro vamos construir algebricamente o conceito de velocidade, onde um corpo de desloca por um determinado espaço (metros), em um determinado período de tempo (segundos), a velocidade é a razão entre o espaço para o tempo.

(3)
$$v = \Delta s \div \Delta t$$
$$v = s - s_0 \div t - t_0$$

Os conceitos supracitados não conseguem explicar como demonstrar a variação de velocidade, que se denomina aceleração (m/s²), a aceleração é dada para variação de velocidade por um determinado períodode tempos, algebricamente demonstrado por:

$$\mathbf{a} = \Delta \mathbf{v} \div \Delta \mathbf{t} \tag{4}$$

$$a = v - v_0 \div t - t_0 \tag{5}$$

Sabendo o conceito de velocidade e aceleração, vale acrescentar (em um movimento com aceleração constantemente) velocidade média (m/s) de dois instantes é dada pela equação:

Como as velocidades variam em dois instantes temos:

$$\mathbf{v}_{\text{med}} = \mathbf{v} - \mathbf{v}_0 \div \mathbf{t} \tag{6}$$

$$v_{\text{med}} = v - v_0 \div 2 \tag{7}$$

Obs: mesmo com essa Eq (6), a Eq (3) também pode ser usada para calcular velocidade média, tudo depende dos dados obtidos durante o experimento. Retomando na Eq (4), como já foi dito que seria adotado t0=0, a Eq(4) fica da seguinte forma:

$$a = v - v_0 \div t \ v = v_0 + a \times t$$
 (8)

Tendo essas informações conseguimos demonstrar como surgiu a primeira equação que será usada como ferramenta de estudo neste relatório, igualando a Eq (3) com a (7) e substituindo a Eq (8) na Eq (7):

1° Igualando Eq (3) a Eq (7):

$$\Delta s \div t = v - v_0 \div 2$$

2° Substituindo a Eq (8) na Eq(7):

$$\Delta s \div t = ([v_0 + a \times t] + v_0) \div 2$$

Agora vamos construir algebricamente o conceito de velocidade, onde um corpo de desloca por um determinado espaço (metros), em um determinado período de tempo (segundos), a velocidade é a razão entre o espaço pelo tempo.

desenvolvendo temos a primeira equação da Função Horária do Espaço

$$s = s0 + a \times t + (a \times t^2) \div 2 \tag{2}$$

Agora, usando a equação 2 e a equação 8, vamos demonstrar a equação de Torricelli:

1º modificando a equação 8, isolando o tempo, temos:

$$\mathbf{t} = (\mathbf{v} - \mathbf{v}_0) \div \mathbf{a} \tag{8.1}$$

2º modificando equação 2, colocando s0 do outro lado da equação é transformado

$$(8.1) s - s_0 = \Delta s$$

$$\Delta s = v_0 \times ([v - v_0] \div a) + (a \div 2) \times ([v - v_0] 2 \div a^2)$$

3º substituindo a equação 8.1 na equação 2.1 temos:

$$\Delta s = v_0 \times t \times (a \times t^2) \div 2 (2.1)$$

$$v^2 = v^2 + 2 \times a \times \Delta s$$

Assim com essas equações conseguimos calcular as informações necessárias para o prosseguimento do relatório.

2.2 Cálculo de Erro

Quando fazemos medições de grandezas físicas, e praticamente impossível se obter resultados com uma precisão com 100% de precisão, isso está ligado a vários fatores, como o equipamento ou até mesmo a imprecisão do experimentador, com isso é preciso lembrar em conta esses erros e usar de artifícios matemáticos para fazer que o experimento tenho um resultado mais próximo do exato possível, tornando necessário determinar o desvio padrão de cada medida e sua propagação, isso será utilizado em cada operação com finalidade de determinar o grau de precisão do experimento.

Como expressar o valor de uma grandeza física

O valor da grandeza física pode ser expressado através da soma de seu valor médio e do seu desvio padrão:

$$G = (G + S_g) (9)$$

Valor Médio (x)

O valor médio de uma grandeza é a média aritmética de todos os valores medidos:

$$x = (1 \div n) (x_2 + x_1 + ... + x_n)$$
 (10)

Desvio Padrão (S)

Medida que expressa o grau de dispersão de um conjunto de dados

$$S = \sqrt{(1+n) \times \left(\sum_{i}^{n} \left[x_{i} - \overline{x}\right]\right)^{2}}$$
 (11)

Desvio Absoluto (d_i)

É a diferença entre um valor particular medido e o valor mais provável (em geral o valor médio):

$$d_i = |x - \overline{x}| \quad (12)$$

2.3 Propagação do Erro:

Muitas grandezas físicas não podem ser medidas diretamente, mas elas são calculadas através de operações realizadas com grandezas que ja foram medidas e apresentam um desvio. Como as grandezas medidas tem um desvio, as calculadas também sofreram um desvio. Assim se encontra abaixo a maneira de como calcularesses desvios propagador para grandezas obtidas a partir da soma (e subtração), produto ou coeficiente de outras grandezas.

1 Soma (e subtração):

$$\overline{C} = \overline{A} \pm \overline{B}$$
 (13) ou $S_c = \sqrt{S_A^2 + S_B^2}$ (14) ou $A \pm B = \overline{C} \pm S_c = \overline{A} \pm \overline{B} \pm \sqrt{S_A^2 \pm S_B^2}$ (15)

2 Produto:

$$\overline{C} = \overline{A} \times \overline{B} \text{ (16) ou } S_c = \overline{C} \times \sqrt{\frac{S_{\underline{A}}^2 + \frac{S_{\underline{B}}^2}{A^2}}{A^2}} \text{ (17) ou } A \times B = \overline{C} \pm S_c = \overline{A} \times \overline{B} + \overline{C} \times \sqrt{\frac{S_{\underline{A}}^2 + \frac{S_{\underline{B}}^2}{B^2}}{B^2}} \text{ (18)}$$

3 Quociente:

$$\overline{C} = \frac{\overline{A}}{B}$$
 (19) ou $S_c = \overline{C} \times \sqrt{\frac{S_A^2}{A^2} + \frac{S_B^2}{B^2}}$ (20) ou $\frac{A}{B} = \overline{C} \pm S_c = \frac{\overline{A}}{B} + \overline{C} \times \sqrt{\frac{S_A^2}{A^2} + \frac{S_B^2}{B^2}}$ (21)

Onde:

 \overline{A} e \overline{B} : São os valores médios das grandezas medidas; \overline{A} e \overline{B} : São os valores médios das grandezas medidas;

 $\overline{S_A} \in \overline{S_B}$: São seu respectivo desvios padrão; $\overline{S_A} \in \overline{S_B}$: São seu respectivo desvios padrão;

 \overline{C} é a grandeza obtida pela operação com \overline{A} e \overline{B} ; \overline{C} é a grandeza obtida pela operação com \overline{A} e \overline{B} ;

 S_c é o desvio propagado da grandeza \overline{C} . S_c é o desvio propagado da grandeza \overline{C} .

3. PROCEDIMENTO

3.1 Materiais:

- Trilho de ar
- Soprador de ar
- Flutuador
- Paquímetro
- Trena
- Régua
- Cronômetro
- Photogate
- Suporte de Madeira

3.2 Procedimento experimento 1

A primeira etapa do experimento é dada utilizando os seguintes materiais: um trilho de ar, um flutuador que fará o processo de deslizamento sobre o trilho que estará posicionado de maneira inclinada à sua base, um suporte de madeira para elevar o trilho e manter o mesmo inclinado, um compresso r de ar para diminuir o atrito do trilho com o flutuador e evitar algum tipo de interferência no resultado do

experimento, e por fim um cronômetro que estará conectado a um sensor de movimento fotogate. Como mostrado na figura a baixo:

A primeira etapa do experimento consiste em posicionar em um determinado ponto no trilho de ar a haste com o sensor do cronômetro, se atentando em colocá-lo na função GATE, sendo assim, quando o flutuador for posicionado em determinado ponto do trilho e for solto, ele sairá em deslocamento em uma determinada velocidade que será cronometrada após a passagem do flutuador pelo sensor, o qual possui uma espessura de cerca de 1,1cm. Com esse tempo cronometrado será possível calcular a velocidade (instantânea) do flutuador.

Sendo assim, foram determinados os seguintes pontos de referência, em 1,655m, 1,500m, 1,100m, 0,800m, 0,500m e em 0,300m, sendo realizado o experimento 5 vezes em cada medida.

E para a demonstração, foi elaborado um gráfico dos dados coletados da equação 1.

3.3 Procedimento experimento 2

Na segunda etapa do experimento os sensores fotogate foram posicionados em dois pontos diferentes, x0 e x1 do trilho de ar , além de configurar o cronometro na função PULSE. A primeira posição do sensor ,X0, foi colocado a 20cm do inicio do trilho para coincidir com a bandeirola do flutador. A segunda posição do sensor,X1, inicialmente foi colocada em uma distânicia de 31,5 cm do fim do trilho, dando uma distância,D, de 148,5 cm para o flutuador percorrer.

Para tentar garantir a maior precisão, foram realizadas 5 repetições cronometradas na qual o flutuador percorre a distânia de 148,5 cm. Na sequência, deslocamos X1 em 20cm para o lado, deixando a distânia,D, com 128,5 cm na qual o flutuador percorreu e novamente com 5 repetições cronometradas.

O sensor X1 foi deslocado gradativemente de 20 em 20cm, por mais 5 vezes e cada deslocamento foram realizados 5 repetições cronometradas para descobrir o tempo que o flutuador levou para chegar no X0. As distânias que foram utilizadas para cronometrar o tempo que o flutuador perorreu no plano inclinado, foram 148,5 cm, 128,5 cm, 108,5 cm, 88,5 cm, 68,5 cm e 48,5 cm.

Nas figuras 3, 4 e 5 demonstram um esquema similar do flutuador partindo do repouso, passando pelo sensor inicial, X0, que iniciava a medição do tempo, e finalizava quando era detetado pelo sensor final,X1.

4. RESULTADO E DISCUSSÃO

4.1 Experimento 1

Primeiramente, com a passagem pelo *photogate* situado na posição 'x', pelo deslizamento do flutuador no trilho de ar e a variação da posição inicial (x_0) de 0.1m em 0.1m, obtivemos a variação do espaço (Δx) e cinco medidas de tempo (t_{1-5}) . Calculando a média aritmética dos tempos temos o intervalo médio (t_{med}) e o desvio padrão (S).

X(m)	t1(s)	t2(s)	t3(s)	t4(s)	t5(s)	tm(s)	S tm (s)
1,655	0,008	0,007	0,008	0,008	0,008	0,0078	9x10^-4
1,5	0,008	0,008	0,008	0,008	0,008	0,008	0
1,1	0,01	0,01	0,009	0,01	0,01	0,0098	9x10^-4
0,8	0,011	0,011	0,011	0,011	0,011	0,011	0
0,5	0,014	0,015	0,014	0,015	0,015	0,0146	1x10^-3
0,3	0,019	0,019	0,019	0,018	0,018	0,0186	9x10^-4

Utilizando a Eq.(3) pôde-se obter a Velocidade instantânea (v), para simplificarmos a curva do gráfico, elevase a velocidade ao quadrado, além do desvio padrão da velocidade (S_v)

X(m)	tm(s)	$v^2(m^2/s^2)2$	$S v^2(m^2/s^2)$
1,655	0,008	1,989	3x10^-1
1,500	0,008	1,891	0,000
1,100	0,010	1,260	2x10^-1
0,800	0,011	1,000	0,000
0,500	0,015	0,568	6x10^-2
0,300	0,019	0,350	2x10^-2

A partir desses dados pôde-se construir um gráfico de Velocidade instantânea elevada ao quadrado (v²) versus a variação do espaço (distância 'X' percorrida pelo flutuador).

Assim, observa-se através da Eq. m = $\Delta y/\Delta x$ que o coeficiente angular (m) da reta média do gráfico 1 é igual a 1.2 (os pontos analisados foram A(0.3;0.35) e B(1.655;1.989). Assim, utilizando a Eq(1) podemos encontrar aaceleração descrita pelo flutuador por meio do seguinte processo algébrico:

$$v^2=2.a.\Delta x$$
 $v^2/\Delta x=2a$
 $m=2a$
 $1,2=a$
 $a=0.6m/s^2$

4.2 Experimento 2

Para a segunda parte do experimento, o flutuador novamente desliza pelo trilho de ar passando por dois *photogates*, a posição inicial (x_0) representa o primeiro *photogate* fixo, já a posição final (x) representa o segundo *photogate* móvel, variando de 0.2m em 0.2m. Ao percorrer Δx , mediram-se cinco intervalos de tempo (t_{1-5}). Calculando a média aritmética dos tempos temos o intervalo médio (t_{med}) e o desvio padrão (t_{med}) para simplificar a curva do gráfico, eleva-se o tempo médio ao quadrado (t_{med}).

X(m)	t1(s)	t2(s)	t3(s)	t4(s)	t5(s)	t méd(s)	St(s)	t2(s2)	St ² (s ²)
0,1485	1,768	1,767	1,769	1,768	1,768	1,768	0,001414	3,125824	0,003536
0,1285	1,373	1,372	1,372	1,373	1,373	1,3726	0,001035	1,884031	0,00201
0,1085	1,075	1,075	1,075	1,074	1,074	1,0746	0,000955	1,154765	0,001451
0,0885	0,828	0,827	0,828	0,828	0,827	0,8276	0,000955	0,684922	0,001118
0,0685	0,61	0,61	0,611	0,61	0,611	0,6104	0,000955	0,372588	0,000824
0,0485	0,415	0,416	0,415	0,415	0,415	0,4152	0,000876	0,172391	0,000515

A partir desses dados pôde-se construir um gráfico de tempo elevado ao quadrado (t^2) versus a variação do espaço (distância ' Δx ' gráfico 2 percorrida pelo flutuador).

Assim, observa-se através da Eq. m = $\Delta y/\Delta x$ que o coeficiente angular (m) da reta média do gráfico 2 é igual a 0.029 (os pontos analisados foram C(0.37;0.07)) e D(3.1;0.15). Assim, utilizando a Eq(2) podemos encontrara aceleração descrita pelo flutuador por meio do seguinte processo algébrico:

 $x=x_0+v_0t+a.t^2.2^{-1}$ $x=a.t^2.2^{-1}$ $x/t^2=a.2^{-1}$ $m=a.2^{-1}$ $a=0.06m/s^2$

5.CONCLUSÕES

Por fim, comprovou-se; com os dados empíricos dispostos no "Gráfico 1 - Velocidade ao quadrado versus a variação do espaço"; a validade da Equação (1). Observou-se, neste "Experimento I", que a velocidade "instantânea" do flutuador aumentou rodada após rodada de acordo com o aumento da distância, Δx , percorrida pelo mesmo, em relação ao ponto de medição *photogate*. Comprovando, deste modo, a relação de proporcionalidade direta explicitada pela Equação (1). Essa relação de proporcionalidade também pôde ser observada na dinâmica do gráfico ao se projetar uma reta média, a qual tem no seu coeficiente angular correspondência com o dobro do valor da aceleração do movimento.

Com relação ao "Experimento II"; cujos dados foram apresentados no "Gráfico 2 - Tempo ao quadrado versus a variação do espaço"; não conseguimos constatar a validade da Equação (2). Observou-se uma variação não linear do tempo ao quadrado em relação ao espaço percorrido, descrita pelo referido gráfico.

6. BIBLIOGRAFIA

- Apostila Laboratório de Física I HALLIDAY, David; RESNICK, Robert; WALKER, Jearl. F