

Problem Sheet 5

1. The spectral density function $f(\omega)$ of a stationary time series model having autocovariance function $\{\gamma_k\}$ (k = 0, 1, 2, ...) may be written as:

$$f(\omega) = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \gamma_k e^{-i\omega k}, \quad \text{for } -\pi < \omega < \pi$$
 (1)

Stating any general properties of the autocorrelation function that you assume, show that $f(\omega)$ may be written equivalently as:

$$f(\omega) = \frac{\gamma_0}{2\pi} \left[1 + 2 \sum_{k=1}^{\infty} \rho_k \cos(k\omega) \right]$$
 (2)

where ρ_k is the autocorrelation function of the time series. Deduce that:

$$f(\omega) = f(-\omega), \quad \text{for } -\pi < \omega < \pi$$
 (3)

- 2. (a) Consider the simple moving-average filter $L\{W_t\} = \sum_{j=-q}^q g_j W_{t-j}$ with weights $g_j = \frac{1}{2q+1}, -q \leq j \leq q$. If $W_t = a + \beta t$ where a and β are non-zero constants, show that $L\{W_t\} = W_t$.
 - (b) Now let $L\{e_t\} = X_t$, where e_t a zero mean white noise process with variance σ^2 . By finding the mean and variance of X_t describe the behaviour of X_t when q is large.
- 3. Consider the ARMA(p, q) process

$$\phi(B)X_t = \theta(B)e_t \tag{4}$$

where $\phi(B) = 1 - \phi_1 B - \dots - \phi_p B^p$ and $\theta(B) = 1 - \theta_1 B - \dots - \theta_q B^q$, $\theta_q \neq 0$, $\phi_p \neq 0$.

- (a) Derive the form of the spectral density function S(f) of $\{X_t\}$.
- (b) Hence, or otherwise, identify the stationary and invertible process $\{X_t\}$ having the spectral density

$$S(f) = \frac{17 - 8\cos(2\pi f)}{13 - 12\cos(2\pi f)}\tag{5}$$

obtaining values for any autoregressive parameters $\{\phi_j\}$, any moving average parameters $\{\theta_j\}$, and σ^2 . Hint: Start by considering the moving average part (numerator).