OOPython

Задача 8. Метод конечных элементов: решение ОДУ

Мотивация

Метод конечных элементов и метод конечных объемов являются наиболее используемыми методами для решения промышленных задач (в связи со сложной геометрией расчетной 3D-области последних).

Элементы теории

Обозначения

- $e \phi$ ункционал, e[y] значение функционала на функции <math>y
- $y \phi$ ункция, $y(x) \beta$ значение функции на числе $x \in \mathbb{R}$.

Постановка задачи:

$$-u'' = f, \ x \in I = (0,1)$$

$$u(0) = u(1) = 0.$$
 (1)

В Задаче 7 мы обсуждали применение метода МКЭ к аппроксимации аналитически заданной функции u; аппроксимант мы искали в виде кусочно-линейной функции u_n , которую возможно разложить по базису из функций-«шляпок» $\{\varphi_i\}$:

$$u_n = \sum_{j=0}^n \alpha_j \varphi_j \,. \tag{2}$$

С учетом того, что решение на границах отрезка принимает нулевые значения, коэффициенты при функциях-«полушляпках» φ_0 , φ_n должны быть равны нулю:

$$u_n = \sum_{j=1}^{n-1} \alpha_j \varphi_j \,. \tag{3}$$

Коэффициенты разложения по базису мы искали исходя из манипуляций со значением функционала-ошибки $e[y] \equiv u - y$ на функции u_n . Рассматривались следующие методы нахождения коэффициентов:

Название	Формула	
метода		
Интерполяция	$e[u_n](x_i;\alpha_1,\ldots,\alpha_{n-1})=0,$	$x_i \in$ точки интерполяции

Регрессия	$\sum_{i=0}^m e[u_n](x_i;\alpha_1,\dots,\alpha_{n-1})^2 = F_m(\alpha_1,\dots,\alpha_{n-1}) \to \min_{\{\alpha_1,\dots,\alpha_{n-1}\}'},$ $x_i \in$ точки регрессии
Наименьших квадратов	$\int_{0}^{1} e[u_n](x;\alpha_1,\ldots,\alpha_{n-1})^2 dx = F_{\infty}(\alpha_1,\ldots,\alpha_{n-1}) \to \min_{\{\alpha_1,\ldots,\alpha_{n-1}\}}$
L_2 -проекция	$(e[u_n],v)=0, \forall v \in V_n, \qquad$ где $V_n = \left\{v: v = \sum_{j=1}^{n-1} \beta_j \varphi_j, v(0) = 0, v(1) = 0\right\}.$

Другими словами, V_n — пространство кусочно-линейных функций, принимающих нулевые значения на границах отрезка.

В случае с ОДУ мы не можем пользоваться функционалом e т.к. нам неизвестно точное решение u. Однако, вместо этого мы можем рассматривать κ меру ошибки — функционал-невязку r:

$$r[y] \equiv f + y''. \tag{4}$$

Можно заметить, что на точном решении u значение функционала-невязки $r[u] \equiv 0$ (свойство, также свойственное функционалу-ошибке e).

Все методы нахождения коэффициентов в случае решения ОДУ находятся из тех же принципов/манипуляций, что и для аппроксимации функций, только вместо $e[u_n]$ в формулы выше формально подставляют значение функционала-невязки $r[u_n]$:

Название	Формула	Название
метода		аналога
		метода
Коллокация	$r[u_n](x_i;lpha_1,\ldots,lpha_{n-1})=0, \qquad x_i\in$ точки коллокации	Интерполяция
Наименьших		Регрессия
квадратов	$\sum_{i=0} r[u_n](x_i; \alpha_1, \dots, \alpha_{n-1})^2 = G_m(\alpha_1, \dots, \alpha_{n-1}) \to \min_{\{\alpha_1, \dots, \alpha_{n-1}\}'},$	
(дискретный)	$x_i \in$ точки регрессии	
Наименьших	1 C	Наименьших
квадратов	$\int\limits_0^{\cdot} r[u_n](x;\alpha_1,\ldots,\alpha_{n-1})^2 dx = G_{\infty}(\alpha_1,\ldots,\alpha_{n-1}) \to \min_{\{\alpha_1,\ldots,\alpha_{n-1}\}}$	квадратов
Галеркина	$(r[u_n], v) = 0, \qquad \forall v \in V_n,$	L_2 -проекция.
	где $V_n = \left\{ v : v = \sum_{j=1}^{n-1} \beta_j \varphi_j$, $v(0) = 0$, $v(1) = 0 \right\}$	

При этом результаты применений метода Галеркина и наименьших квадратов **не совпадают**, в отличие от задачи аппроксимации функций. Далее рассмотрим подробно метод Галеркина.

Метод Галеркина

Получение СЛАУ

Исходная формула метода:

$$(r_{u_n}, v) = 0, \quad \forall v \in V_n.$$

 $(f + u''_n, v) = 0, \quad \forall v \in V_n,$
 $(u''_n, v) = -(f, v), \quad \forall v \in V_n.$

Преобразуем формулу с помощью интегрирования по частям:

$$(u_n'',v) \equiv \int\limits_0^1 u_n''(x)v(x)dx = \underbrace{\widetilde{u_n^{\prime}(x)v(x)|_{0}^{\frac{1}{2}}}}_{\text{граничные условия для }v} - \int\limits_0^1 u_n'(x)v'(x)dx \equiv -(u_n',v').$$

Примечание: в случае кусочно-линейной функции мы не можем применять формулу интегрирования по частям, но в случае кусочно-полиномиальной степени p > 1 это уместно. Поэтому представим, что мы работаем с последней.

Получаем:

$$(u'_n, v') = (f, v), \qquad \forall v \in V_n. \tag{5}$$

Введем обозначения:

- билинейная форма: $a[u, v] \equiv \int_0^1 u'(x)v'(x)dx$,
- линейная форма: $l[v] \equiv \int_0^1 f(x)v(x)dx$

и получим финальный вид записи:

$$a[u_n, v] = l[v], \qquad \forall v \in V_n. \tag{6}$$

Т.к. любую кусочно-линейную функцию v можно разложить по базису $v = \sum_{i=1}^{n-1} \beta_i \varphi_i(x)$, то равенство (6) эквивалентно выполнению условий (доказательство см. в теоретическом материале для **Задачи 7**):

$$a[u_n, \varphi_i] = l[\varphi_i], \qquad i = 1, \dots, n-1.$$

Подставим $u_n = \sum_{i=1}^{n-1} \alpha_i \varphi_i$ в предыдущее равенство:

$$a\left[\sum_{j=1}^{n-1} \alpha_j \varphi_j, \varphi_i\right] = l[\varphi_i], \qquad i = 1, ..., n-1.$$

После раскрытия скобок получаем:

$$\sum_{j=1}^{n-1} \alpha_j \cdot a[\varphi_j, \varphi_i] = l[\varphi_i], \qquad i = 1, \dots, n-1.$$

$$(7)$$

Эта система равенств представляет собой СЛАУ:

$$S\boldsymbol{\alpha} = \boldsymbol{b}$$

$$S_{ij} = a[\varphi_j, \varphi_i]$$

$$b_i = l[\varphi_i]$$

$$i, j = 1, ..., n - 1$$
(8)

По историческим причинам матрица S именуется **матрицей жесткости**, а вектор правой части b — вектором нагрузки. Найдя решение α , подставим его в исходное разложение (3) — получим приближенное решение u_n .