Algorithmen Tutorium 11

Beginn: 16:15

Organisation

• Frohes Neues!

Inhalt

- AVL Bäume
 - Knotenbalance
 - Bildung
 - Operationen (v.A. (Doppel-)Rotation)
 - Nutzen
 - Fibonacci-Baum
- Konvexe Hülle
 - Wieso Innenwinkel <= 180 Grad
 - Präsenzlösung: Anmerkungen bei b)

AVL Bäume

- Balanciertere Binäre Suchbäume
 - · Laufzeit von der Höhe abhängig
- Balance (v_n) = Höhe $(right_child(v_n))$ Höhe $(left_child(v_n))$
- Für alle Konten gilt die AVL- Bedingung: $-1 \le Balance(v_n) \le 1$
- Datenstruktur muss beim Einfügen/Entfernen rebalanciert werden

AVL Bäume (AVL Bedingung)

- Für alle Knoten v (beginnend mit den Blättern)
 - Berechne die Anzahl der Knoten im Teilbaum mit v als Wurzel
 - 1 Für Blätter
 - Summe der Werte der Kinder + 1
 - Berechne Balance von v
 - Wenn Balance ungültig, stelle AVL Bedingung her (Rebalancierung)
- Operationen zum Rebalancieren (Links falls Balance > 1, Rechts falls Balance < 1)
 - Einfachrotation
 - Zweifachrotation

AVL Bäume (Einfachrotation)

- Knoten x verletzt AVL Bedingung
- Tausche Knoten x mit Elternknoten z

AVL Bäume (Zweifachrotation)

as

Fibbonacci-Bäume

- Spezieller Fall von AVL-Bäumen
 - Baum mit den wenigsten Knoten zu einer gegeben Höhe

Linker Teilbaum repräsentiert Fibonacci-Baum mit Höhe-1

Alle internen Knoten haben Balance-1

Von user:Nomen40men - Eigenes Werk, CC BY 3.0 de, https://commons.wikimedia.org/w/index.php?curid=75141161