Volume Three

Number Three

3 = MAY 23 Copy _/ 1961

SCHOOL OF MINES AND METALLURGY

UNIVERSITY OF MISSOURI

BULLETIN

FEBRUARY, 1917

TECHNICAL SERIES

A PRELIMINARY REPORT ON BLENDED PORTLAND CEMENT

ROLLA, MO. 1917

THE EXPERIMENT STATION

Officers of the Station

President of the University ALBERT ROSS HILL, Ph. D., LL. D., -AUSTIN D. MCRAE, S. D., Director GUY HENRY COX, Ph. D., E. M., Geology and Mineralogy CARROLL RALPH FORBES, E. M., Mining Chemistry VICTOR HUGO GOTTSCHALK, M. S., -HORACE THARP MANN, E. M., Metallurgy and Ore Dressing MARTIN HARMON THORNBERRY, B. S., Research Assistant FLOYD DIXIE JAMES, Research Assistant HOWELL SMITH CLARK Station Assistant

The Experiment Station was established June 1, 1909.

It is the object of the Station to conduct such original researches or to verify such experiments as relate to the properties and uses of mineral products; to investigate the engineering problems connected with the mineral industry, the economic methods of mining and the preparation of mineral products, the methods of preventing waste of the mineral resources and the methods of preventing accidents in mines, mills, and smelters; to assist in improving the conditions surrounding the labor in mines, mills, and smelters; and such other researches or experiments as bear directly upon the application of mining and metallurgical engineering to the mineral industry of the State of Missouri.

Any resident of the State may on request obtain bulletins as issued, or if particularly interested, may be placed on the regular mailing list. Correspondence regarding these bulletins or the work of the Station may be addressed to the Director, Mining Experiment Station, Rolla, Missouri.

EIBRARY
OF THE
ONIFED STATES
DEPARTMENT OF AGRICULTURE

Book MIR

SCHOOL OF MINES AND METALLURGY

UNIVERSITY OF MISSOURI

A PRELIMINARY REPORT ON BLENDED PORTLAND CEMENT

BY

EDGAR S. McCANDLISS, C. E.,

Assistant Professor of Civil Engineering

U.S.D.A. LIB

ROLLA, MO. 1**9**17

76

11. 4. 4

CUT OF CEMENT LAB.

DEPARTMENT OF CIVIL ENGINEERING

ELMO GOLIGHTLY HARRIS ProfessorEDGAR SCOTT MCCANDLISS -Assistant Professor R. STEWART LILLARD -InstructorByron Lee Ashdown* -Student Assistant EDGAR CARL BURKHART* -- Student Assistant THEODORE CHRISTIAN GERBER* - Student Assistant CLARENCE EDWARD BARDSLEY† - Student Assistant RAY OTTO SHRIVER† - -Student Assistant LESLIE CARLISLE SKEEN† -- Student Assistant

COMMITTEE ON PUBLICATIONS

J. W. BARLEY

H. L. WHEELER

F. P. DANIELS

*1915-16 †1916-17

CONTENTS

I	Page
Introduction	5
Calcareous Cements	6
Purpose	. 9
Scope of Tests	. 9
Materials	10
Procedure	10
Results of Test	
A—Neat Cement in Tension	. 12
B—Cement Mortar in Tension	20
C—Neat Cement in Compression	. 26
D—Cement Mortar in Compression	36
E—Normal Consistency	44
F—Time of Setting	44
G—Constancy of Volume	46
H—Fineness and Sieve Analysis	46
I —Chemical Analysis and Specific Gravity	. 51
Summary	51
Conclusions	52
Tabulated Observations—Appendix.	
Table A Results of Tests of Neat Cement in Tension	n
Table B Results of Tests of Mortar in Tension	
Table C Results of Tests of Neat and Mortar in C	om-
pression	
Table C ₁ Results of Tests of Neat in Compression	
Table C ₂ Results of Tests of Neat in Compression	
Table C ₃ Results of Tests of Neat in Compression	
Table C ₄ Results of Tests of Neat in Compression	
Table C ₅ Results of Tests of Mortar in Compression	
Table C ₆ Results of Tests of Mortar in Compression	
Table C ₇ Results of Tests of Mortar in Compression	
Table C ₈ Results of Tests of Mortar in Compression	
Table D Time of Setting and Normal Consistency	
Table E Fineness and Sieve Analysis	

BULLETIN

OF THE

School of Mines and Metallurgy UNIVERSITY OF MISSOURI

TECHNICAL SERIES

Vol. III

FEBRUARY, 1917

No. 3

INTRODUCTION

In the fall of 1913 in conjunction with the regular classwork in the cement testing laboratory of the Missouri School of Mines, the author undertook the study of the behavior of sand-blended cements. The results obtained were somewhat surprising, but owing to the limited facilities for carrying on the work, extended investigations were not made at that time. But in 1915 with the installation of the present well equipped laboratory for the testing of materials, it became feasible to carry out experimentation along more extensive lines. One of the problems to receive attention was the continued study of sand-blended cements.

The questions taken up were:

1. Can Portland Cement be blended with sand to produce a sand-blended cement having the same general physical properties as Portland Cement?

2. What amount of sand can be blended with Portland Cement without materially impairing the strength of the

blended mixture?

3. In grinding cement clinker, does introducing sand with the clinker in a tube or ball mill facilitate fine grinding?

About three thousand test specimens for tension and compression have been prepared. In order that differences due to personal equation might not affect the results all of these specimens were prepared by the author. It was planned to have the tests extend over a period of two years. The work was started in the fall of 1915 and will be completed in the summer of 1918. This Bulletin gives the tests made on question 1 during the first year. The results of tests on questions 2 and 3 for one year will be completed in October, 1917.

The author takes pleasure in thanking the various cement companies for their co-operation in supplying the cement for these investigations. He is indebted to Mr. H. A. Buehler, Director of the Missouri Bureau of Mines and Geology, for his assistance and advice, and to Messrs. B. L. Ashdown, E. C. Burkhart, C. E. Bardsley, and T. C. Gerber, students in civil engineering at the Missouri School of Mines, for their cheerful assistance.

CALCAREOUS CEMENTS

The term cement has been applied: To any substance or composition which at one temperature or one degree of moisture is plastic and at another is tenacious; to adhesive mixtures employed to unite objects or parts of objects; to any material, capable of adhering to and uniting into a coherent mass, fragments of a substance not in itself adhesive; to any substance which by hardening causes objects between which it is applied to adhere firmly; to a tenacious infusible substance; to an adhesive or viscous substance; in general to any substance capable of uniting or tending to unite particles of matter into a compact whole. Lutes, glues, solders, gums, putty, mucilage, plasters, limes, hydraulic cements, and similar substances are all comprehended in this definition. Such a definition embraces a large variety of substances which differ one from another in composition, behavior, and importance, and have but few characteristics in common. Because of this, the term cement has become more or less generally restricted to the designation of that group of adhesives which is employed in the construction of engineering works. Cements of this kind bear a chemical relationship to each other, consisting as they do of mixtures which contain compounds of lime as their principal ingredient, in consequence whereof they are termed calcareous ce-Of these the most important by far is Portland ments. Cement.

Portland Cement is a composition, the principal constituents of which are compounds of lime and clay. The abundance of these substances in nature, and the usefulness and cheapness of the cement combine to make it a universal material of construction.

The manufacture of Portland Cement is a highly specialized art, but in general it may be briefly outlined as follows: The clay and the lime are artificially mixed in predetermined proportions depending upon the purity of the materials. This mixture is reduced by grinding to a fine powder and the product roasted at a high temperature. This

roasting causes the powder to undergo chemical and physical changes and the result is a semi-vitrified clinker. This clinker is commonly adjudged to be inert, or devoid of the properties of cements, but when reduced to an extremely fine powder the finest particles possess the property of cements. Hence, in general, Portland Cement may be defined as the material obtained by finely pulverizing the clinker produced by calcining to incipient vitrifaction an intimate artificial admixture of properly proportioned argil-

laceous and calcareous substances.

Why it is that the particles of the cement clinker are inert when of appreciable size and those of inappreciable size are active, has never been conclusively determined. Nor has the exact size or upper limits in size of the active particles been ascertained. It has, however, been conclusively demonstrated that any particle which will not pass through a standard No. 200 screen has no cementing properties and also that such particles as do pass through this screen are not necessarily active, but that a considerable percentage of it is practically inert. The present standard specifications for fineness of Portland Cement permit of 22% by weight to be retained on a standard No. 200 sieve. Hence it follows that commercial Portland Cement is a material composed of both active and inert particles, the latter being inactive on account of their physical coarseness and their amount being a large percentage of the ce-The desirability of continuing the grinding to reduce this percentage of inactive clinker has been a much discussed problem. But since the apparent increase in strength in the cement is not in proportion to the increased cost of manufacture, and also since the physical behavior of the cement so changes with continued grinding that it sets more rapidly, it appears that the economic limit of grinding cement clinker has been reached. On the other hand, the very fact that these inert particles are present in the cement in large amounts and that they are in reality dormant cement, needing only the energy to break them down to bring out their latent cementing qualities, suggests the presence of a considerable economic waste. If it is necessary to maintain the present graduation in the size of the particles in order to control the behavior of the cement, it is quite possible that some other substance less expensive than cement clinker can be used for the large size particles. In other words, if it is necessary to have these inert particles present in the cement, there are other inert substances in nature, which might be used as a substitute for the inert

clinker particles in case the substitution could be made, thus permitting the further reduction of the clinker into active cement. It is assumed that such a substitution can be accomplished and it is here proposed to study the effect

of such a procedure.

The product obtained by mixing Portland Cement with some other finer pulverized substance in a dry condition before being used in mortar or concrete, is commonly termed "blended cement." The substance which is mixed with the Portland Cement is designated the "blending material, or the blend." This latter may be either entirely inactive as

a cement or may possess cementing qualities.

The blending of Portland Cement is no innovation as the practice probably made its first appearance in the early nineties. But, owing to the rapid development of the Portland Cement industry with the accompanying reduction in the cost of the product, the practice has been largely dis-These cements were manufactured in general continued. by merely mixing the ingredients, Portland Cement and the blend, in a ball or tube mill, no especial effort being made to continue the grinding of the cement. This product was marketed under various trade names such as "silica cement," "sand cement," "tufa cement," etc., the name depending largely upon the nature of the blending material used. While these cements have no importance in present construction as a general proposition, still the economic advantages derived from such methods have not passed into absolute obscurity. Several noteworthy instances might be cited where large constructions have been carried on in which blended cement has been used with satisfaction, whereby considerable economies have been effected. Among the more recent and important of these are the works of the U.S. Reclamation Service and the Los Angeles Aqueduct Commission. In these undertakings the justification for using blended cements has been based largely upon the excessive transportation charges due to the remoteness of the projects from industrial centers. While this condition existed, it is unfortunate that thereby the inference has been given that otherwise blended cements would not have been used, for it is quite possible that in creating this impression an injustice has been done to a worthy practice. The theory has also been advanced that only materials containing active or colloidal silica are suitable for blending Portland Cement. This, of course, excludes quartz sand, and here again it is possible that an erroneous notion is conveyed, for, although it is not proposed to discuss the relative merits of quartz sand as a blend, yet an endeavor will be made to show that it can be used satisfactorily for this purpose.

PURPOSE

The purpose of this investigation was to study the physical behavior of blended cement of which the blending material was quartz sand. It was proposed to manufacture the blended cements in such a way, as to approach as near as possible the same range in gradation in size of the particles, as occurs in the original Portland Cement. In other words, it was proposed to remove from the Portland Cement a large portion of the inert particles by screening, and for these inert particles to substitute other inert particles of about the same in size. No accurate means were devised for determining the precise amount of the particles removed from the Portland Cement, and therefore several combinations were used which it was thought would give sufficient range to obtain a satisfactory comparison. The end desired was to ascertain whether it is essential in Portland Cement, in order to maintain its present physical characteristics, to have unpulverized clinker for the coarser particles or whether a fine sand would serve the purpose equally well, sand being used because of its having no cementing tendencies and its being abundant in nature.

SCOPE OF TESTS

The data included in this Bulletin was obtained from testing three commercial Portland Cements and twelve blended cements. For convenience, the tests are grouped

in three series, namely, A, B, and C.

Series A comprises the tests of Atlas Portland Cement and four blended cements of this brand. These blended cements are composed (1) of such a portion of the Portland Cement as easily passes No. 200 sieve, and (2) quartz sand, all of which has passed a No. 65 sieve, and about seventeen per cent of which has passed a standard No. 200 sieve. These blended cements, for convenience of identification, are designated A_{10} , A_{20} , A_{30} and A_{40} , the numerals indicating the percentage of weight of sand present in the blended cement.

Series B comprises the tests of Lehigh Portland Cement and four blended cements of this brand. The composition of these blended cements is similar to that of series A and they are designated similarly as B_{10} , B_{20} , B_{30} , and B_{40} .

Series C comprises the tests of Red Ring Portland Ce-

ment and four blended cements of this brand. The composition of these blended cements is as before, and they are

designated as C_{10} , C_{20} , C_{30} , C_{40} .

Thus it is seen that the three series are identical except the Portland Cements used are different. Chemical analyses were made of each of the materials and the usual physical determinations were made of each of the commercial and blended cements. In addition test specimens for neat and mortar tension and compression were made to cover a two years' period of testing. The results of these tests, but only for the period of one year, are given complete in this Bulletin.

MATERIALS

In selecting the materials for use, an effort was made to choose such brands of Portland Cement as would give some range in the character of the component raw ingredients. The basic composition of the Atlas Portland Cement is Mississippian limestone and Pennsylvanian shale; that of the Lehigh Portland is hard Mitchell (Mississippian) limestone and shale; and of the Red Ring Portland, Missippian limestone, Pennsylvanian shale, together with Loess clay. There is no especial difference in the methods used in manufacturing these cements.

The blending material used was a natural quartz sand from Ottawa, Illinois. It was supplied by the Ottawa Silica Company and is marketed under the trade name of "Banding Sand." This sand is quite fine but well graded and with but slight sifting, as has been noted, was found to conform closely in gradation to that of the coarser particles in the Portland Cement, and was therefore a suitable

substitute for them in making the blended cement.

For mortar specimens, standard Ottawa sand was used. Each of these materials was received at the laboratory in good condition and stored in suitable containers. The respective Portland Cements were each passed through a No. 20 sieve before storing to insure uniformity throughout the samples.

PROCEDURE

The physical tests made were as follows: (a) Neat tension, (b) mortar tension (c) neat compression, (d) mortar compression, (e) normal consistency, (f) time of setting, (g) constancy of volume (normal and accelerated tests), (h) fineness and sieve analysis and (i) specific gravity. The methods for testing cement recommended by the American

Society of Civil Engineers (See Transactions Vol. 75) were followed but with the following exceptions: A sieve analysis was made of each of the cements. The percentage of water used in making mortar specimens was increased one per cent above the recommended values. Sufficient specimens for neat and mortar tension and compression were made to permit of making tests at intervals up to and including two years, the average of three breaks constituting a test. As has been stated above, the two-year tests have not been made, in consequence the results are com-

plete over only a period of one year.

Compressive test specimens were cylinders two inches in diameter and two inches high. They were made in wooden moulds which had been especially prepared for the purpose. These moulds were twelve inches long, four inches wide, and two inches high, and were made in two sections. The sections were held together with dowels and bolts and were provided with three two-inch holes symmetrically placed on the axis of the block. Poplar wood was used, and the moulds were finished and painted and, as an added precaution against absorption of the water from the specimens, the moulds were greased with hard engine oil each time before being used. The moulds were satisfactory, and good specimens were obtained. No tamping device was used, all moulds being filled by hand.

Compression tests were made with two-screw testing machine of the Riehle type, having a capacity of 50,000 pounds. Each specimen upon being removed from the storage tank was calibrated and weighed to ascertain the relative density. The specimens were at once mounted in the machine on a hemispherical bearing plate and imbedded in plaster of Paris. After centering the specimen in the machine, a light initial load was applied. After the plaster had hardened, continuous load was applied, the moving head of the testing machine travelling at a rate of about .06 inch per minute until failure. The load when first crack appeared in the specimen, as well as the ultimate load, was recorded. These loads were reduced to unit stresses for

comparison.

Each of the blended cements was put through the same tests as the Portland Cements except that the chemical analyses and specific gravities were computed and not determined experimentally and no determinations for fineness or sieve analysis were made. In preparing the blended cements each test was prepared separately, only enough of the materials being laid out at a time to make three test

The coarse particles were removed from the Portland Cements by screening through a standard No. 200 sieve and those of the banding sand by screening through a No. 65 sieve. Enough of each of these materials was then weighed out to produce 500 or 1,000 grams of blended cement in the proportion desired, 500 grams being used in making the test specimens for tension and 1,000 grams the specimens for compression. The sand and the cement were then mixed by passing the mixture successively through a No. 35 screen six times. The resulting blended cement was uniform in color and had every indication of being well combined. It was noted, however, that the materials separated slightly if the containers were dropped lightly upon the table a few times, a fine rim of sand appearing about the base of the cone of the cement. Therefore extreme care was taken not to disturb the blended cements after they were made until they were formed into test specimens.

RESULTS OF TESTS

The results of the tests for neat and mortar tension and compression are tabulated and appended to this bulletin, but for facilitating the interpretation of these data, curve sheets have been prepared and these follow:

(A) Neat Cement in Tension.

On curve sheet No. 1 are plotted the results obtained from tension tests of Atlas Portland Cement "A" and the blended cements made from the same. (See Table A. Appendix.) It will be noted from the curves here shown that each of these cements meets the requirements for neat cement in tension of the standard specifications of the American Society for Testing Materials (1916), which are 175: 500 and 600 pounds at twenty-four hours, seven days, and twenty-eight days respectively. In each case the maximum strength is attained within the first twelve weeks. Cement A, the Portland Cement, attains the greatest maximum strength. For comparison of relative strengths. Table 1 has been compiled. It is intended to show in this table the relative strengths of the five cements at the various ages of testing, the values one to five being assigned to the various relative strengths in their order of importance, 1 indicating the cement developing maximum strength and 5 indicating the one developing the minimum strength at the same period.

TABLE I
RELATIVE STRENGTHS

Age of test in weeks	(24 hr.)	1	4	8	12	24	52
A	1	1	1	2	1	3	3
A_{10}	2	5	5	5	5	5	5
A_{20}	5	2	4	4	3	4	4
A_{30}	4	3	2	1	4	2	1
A_{40}	3	4	3	3	2	1	2

From Table I it is seen that up to and including twelve weeks cement "A" ranges first in point of relative strength. A_{30} , second; A_{40} , third; A_{20} , fourth; and A_{10} , fifth. Upon considering the twenty-four and fifty-two week tests, it is seen that A_{20} and A_{40} rank higher than "A", A_{20} and A_{10} retaining fourth and fifth places respectively. This comparison would seem to indicate that within the scope of these tests the blended cements A_{30} and A_{40} are slightly superior to A_{20} and A_{10} in the tensile strength when used neat. From Curve Sheet I blended cement A_{40} seems to develop the most uniform strength, A_{10} the least. From a consideration of early tests, up to twelve weeks, cement "A" seems to be slightly superior to any of the blended cements, but at greater ages the more highly blended cements have equal or superior qualities.

On Curve Sheet II are plotted the results obtained from tests of Lehigh Portland Cement, "B", and the blended cements from the same. (See Table A, Appendix). Each of these cements meets the requirements of the standard specifications of the American Society for Testing Materials (1916). It is to be noted also that in each case the maximum strength is attained within the first twelve weeks, Cement "B" attaining the greatest maximum strength. Table II is similar to Table I.

TABLE II
RELATIVE STRENGTHS

Age of test in weeks	(24 hr.)	1	4	8	12	24	52
В	3	1	2	1	1	3	3
B_{10}	1	3	4	2	4	5	4
B_{20}	2	2	1	5	2	1	5
B_{30}	5	4	3	3	3	2	1
B_{40}	4	5	5	4	5	4	2

From Table II Cement B seems to rank first in relative strength up to and including twelve weeks. Over this period of time B_{20} ranks second, B_{10} , third; B_{30} , fourth; and B_{40} , fifth. This relationship is not pronounced, however, there being several conflicts. It is quite apparent, however, that after twelve weeks B_{30} and B_{40} increase in relative importance and are equal or superior to B, while B_{10} and B_{20} make a relatively less favorable showing. From Curve Sheet II it is seen that B_{30} develops the most uniform strength throughout the entire period of testing.

On Curve Sheet III are plotted the results obtained from testing Red Ring Portland Cement "C" and blended cements made from the same, in tension. (See Table A, Appendix). Each of these cements meets the requirements of the standard specifications of the American Society for Testing Materials (1916). In each case the maximum strength was attained in twelve weeks. Cement "C" attains the greatest maximum strength. Table III is similar to Table I.

TABLE III
RELATIVE STRENGTHS

Age of test in weeks	(24 hr.)	1	4	8	12	24	52
C	1	1	1	1	1	3	3
C_{10}	3	2	2	2	3	5	5
C_{20}	2	3	4	5	2	4	4
C_{30}	5	4	5	4	5	1	2
C_{40}	4	5	3	3	4	2	1

From Table III it is seen that Cement "C" ranks first in relative strength for the first twelve weeks; C_{10} , second; C_{20} , third; C_{40} , fourth; and C_{30} , fifth. This relationship is seen to change, however, as the age increases, C_{30} and C_{40} attaining the greatest relative strengths at the periods of twenty-four and fifty-two weeks, "C" assuming third place; C_{10} , fourth; and C_{20} , fifth. Blended cement C_{40} is seen to develop the most uniform strength throughout the entire range of testing.

On Curve Sheet IV are plotted the results obtained by averaging the corresponding tests plotted on Curve Sheets I. II, and III. (See Table A "Average of averages," Apdendix). From this Curve Sheet it is seen that in each case the requirements of the standard specifications of the American Society for Testing Materials (1916) are satisfied. The

maximum tensile strength is attained in each case in the first twelve weeks. The average of the commercial Portland Cements attains the greatest maximum strength. Table IV is similar to Table I.

TABLE IV
RELATIVE STRENGTHS

Age of test in weeks	(24 hrs.)	1	4	8	12	24	52
A-B-C	1	1	1	1	1	3	3
$A_{10} B_{10} C_{10}$	2	4	3	4	5	5	5
$A_{20} B_{20} C_{20}$	3	2	2	5	3	4	4
$A_{30} B_{30} C_{30}$	5	3	3	2	2	1	1
$A_{40} B_{40} C_{40}$	4	5	5	3	4	2	2

From Table IV it is seen that the average A, B, C rank first in relative strengths during the first twelve weeks; A_{20} , B_{20} , C_{20} and A_{30} , B_{30} , C_{30} second and third respectively; A_{10} , B_{10} , C_{10} ranking fourth and A_{40} , B_{40} , C_{40} fifth. With increased ages the relative strengths change, the blended cements A_{30} , B_{30} , C_{30} assuming first rank; A_{40} , B_{40} , C_{40} , second; A, B, C dropping into third place, A_{20} , B_{20} , C_{20} , fourth; and A₁₀, B₁₀, C₁₀ fifth. It is noted, however, that these changes in relative strengths are not due to increased strengths in the cements with 30 and 40 per cent of blend, but rather to decreasing strengths in the others. The average of the cements with a blend of 45 per cent develops a strength at the age of about four weeks. This strength it retains quite consistently as the age increases during the fifty-two weeks of test. The maximum range in variation during this period is about 70 pounds or about ten per cent of the average strength developed. It is intereting to note that the average variation or range in the strengths at the successive periods of testing is about 120 pounds. From a comparison of Curves A, B, and C from Curve Sheets I, II, III, it is seen that the average variation in strength of these commercial cements is about 108 pounds. From this observation, it would seem that had commercial Portland Cements been tested instead of the blended cements and in all other respects had the results been averaged as has been done on Curve Sheet IV, there would have been developed a variation in the strengths practically as great as shown here. In other words there seems to be but little more variation in the strength shown on Curve Sheet IV than might reasonably be expected from that number of commercial Portland Cements, and that in the matter of neat cement in

tension within the scope of this investigation the blended cements compare favorably with commercial Portland Cements.

(B) Cement Mortar in Tension.

On Curve Sheet V are plotted the results of tests for tension of 1 to 3 mortar specimens of Atlas Portland Cement A and blended cements of the same. (See Table B, Appendix). It will be noted that with the exception of Cement A each of the cements satisfied the requirements of the standard specifications of the American Society for Testing Materials for mortar briquettes in tension, which for 1916 are 200 and 275 pounds per square inch at the ages of seven and twenty-eight days respectively. The specifications for 1917 require 300 pounds per square inch to be developed at the age of twenty-eight days. In each case the maximum strength is attained in the first twelve weeks. Cement A attains the least maximum strength. Cement A₄₀ attained a strength of about 350 pounds at four weeks and maintained this strength throughout the remainder of the period. The maximum variation after the first four weeks was about 300 pounds. For the comparison of relative strengths Table V has been prepared. It is similar to Table I.

TABLE V
RELATIVE STRENGTHS

Age of test in weeks	1	4	8	12	24	52
A	5	5	5	5	5	5
A_{10}	1	1	1	1	1	2
A_{20}	2	2	2	3	2	1
A_{30}	3	3	3	2	3	3
A_{40}	4	4	4	4	4	4

From Table V it is seen that in relative strength A_{10} ranks first; A_{20} , third; A_{40} , fourth, while the commercial Portland Cement "A" ranks last throughout the entire period of testing.

A The sales

On Curve Sheet VI are plotted the results of tests for tension of 1 to 3 mortar specimens of Lehigh Portland Cement "B", and blended cements of the same. (See Table B, Appendix). It will be noted that each of these cements meets the requirements of the standard specifications of the American Society for Testing Materials (1916 or 1917), for mortar briquettes in tension. Cements B and B₄₀ are considered as conforming with the 1917 specifications at an age of one week, with strengths of 197 and 194 pounds per square inch, respectively, in view of their showing at the age of four weeks. Maximum strengths are attained within the first twelve weeks except in the case of B₁₀ which shows a maximum strength at fifty-two weeks. Table VI is similar to Table I.

TABLE VI
RELATIVE STRENGTHS

1	4	8	12	24	52
4	4	4	4	4	4
1	1	1	1	1	1
2	2	2	2	2	2
3	3	. 3	3	3	3
5	5	5	5	5	5
	1 4 1 2 3 5	1 4 4 1 1 2 2 2 3 3 5 5 5	1 4 8 4 4 4 1 1 1 2 2 2 3 3 3 5 5 5	1 4 8 12 4 4 4 4 1 1 1 1 2 2 2 2 3 3 3 3 5 5 5 5	1 4 8 12 24 4 4 4 4 4 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 5 5 5 5 5

By reference to Table VI it is seen that B_{10} easily ranks first in relative strength throughout the entire period of tension; B_{20} , second; B_{30} , third; "B", fourth; and B_{40} , fifth.

-00

On Curve Sheet VII are plotted the results of the tests for tension of 1 to 3 mortar specimens of Red Ring Portland Cement "C" and blended cements of the same. (See Table B, Appendix). These results seem to be less uniform than those shown on the two previous curve sheets. It will be noted, however, that each of these cements satisfactorily meets the requirements of the standard specifications of the American Society for Testing Materials of mortar briquettes in tension (1916). In each case the maximum strength is attained within the first twelve-week period. Table VII is similar to Table V.

TABLE VII
RELATIVE STRENGTHS

Age of test in weeks	1	4	8	12	24	52
С	4	2	3	1	2	3
C_{10}	1	4	3	1	1	1
C_{20}	2	1	1	3	4	2
C_{30}	3	5	2	4	3	4
C_{40}	5	3	5	5	5	5

From Table VII, while it is more difficult to fix relative compression strength than in some of the previous cases, it is apparent that C_{40} should be classified last or fifth in strength; C_{30} should probably receive fourth place; of the remainder, the classification is more difficult and less well defined, but the classification suggested places C_{10} first, C_{20} second, and C third. It will be noted that this classification corresponds to the relative strengths developed at 1, 12, and 52 weeks, respectively.

The values plotted on Curve Sheet VIII represent the results obtained by averaging corresponding values from those plotted on Curve Sheets V, VI, and VII. (See Table B, "Average of averages," Appendix). The results obtained from averaging A, B, and C, the three specimens of commercial cement mortar in tension, should represent approximately the behavior of an average commercial Portland This curve sheet corresponds with Curve Sheet IV except that the latter is for neat cement in tension. It will be noted here that each of these cements satisfies the requirements of the standard specifications of the American Society for Testing Materials (1916) for cement mortar in tension. Each of the cements attain maximum strength during the first twelve weeks. The differences in strength at any age is not radical, 100 pounds being an approximate average range in strength. For ascertaining relative strengths Table VIII is shown which is similar to Table I.

TABLE VIII
RELATIVE STRENGTHS

Age of test in weeks	1	4	8	12	24	52
A B C	4	5	4	4	4	4
A ₁₀ B ₁₀ C ₁₀	1	2	1	1	1	1
$A_{20} B_{20} C_{20}$	2	1	1	2	2	2
A ₃₀ B ₃₀ C ₃₀	3	3	3	3	3	3
$A_{40} \ B_{40} \ C_{40}$	5	4	5	5	5	5

Table VIII gives the following classifications: A_{10} , B_{10} , C_{10} first; A_{20} , B_{20} , C_{20} second; A_{30} , B_{30} , C_{30} third; A, B, C fourth; and A_{40} , B_{40} , C_{40} fifth. by reference to Curve Sheet VIII, it is seen that there is but little difference in strength in A, B, C and A_{40} , B_{40} , C_{40} . In the case of cement mortar in tension, the results of these investigations show that the blended cements are equal or superior to Portland Cement.

(C) Neat Cement In Compression.

The results obtained from each cement in compression cannot be considered satisfactory in all respects. They are apparently inconsistent and contradictory. Tests of a cement made at different time periods seem to follow no general law. In some cases, maximum strengths occur with

the oldest tests; in others, at the early test periods. cause of this eccentricity in results is not apparent. treme care was maintained throughout the entire period of experimentation in order to secure uniform conditions, and it is felt that all specimens were treated substantially alike. If it is characteristic of neat cement in compression to show no more uniformity in the results than those here obtained, there seem to be no data available to establish the fact. is significant, however, that the results obtained from the Portland Cements are no more consistent than those gotten from the blended cements, and in no single instance do the results obtained show uniformity of behavior throughout. The like blended cements of the three commercial Portlands show but slight similarity and the commercial Portlands differ one from the other in behavior. The results obtained are submitted without further apology, but it is hoped that further experimentation will afford a basis for a satisfactory explanation of the behavior of these cements in compression. Attention is called to the fact that this is not a standard test, and in consequence there is no specification to be satisfied, but none of all of these tests, with but a single slight exception, falls below the limit of safety for most large buildings, that is, 5000 pounds per square inch.

On Curve Sheet IX are plotted the results obtained from testing Atlas Portland Cement "A" and blended cements of the same in compression (neat). (See Table "C", Appendix). As has been noted, there seems to be no uniformity in the behavior of the various curves. Cement "A" shows a substantial increase in strength throughout the duration of the test, and it would appear that the maximum strength which this cement may attain has not been reached. It is probable, though, that the strength which is attained at 52 weeks will not be greatly increased at later periods. Cement A₁₀ follows closely that of "A" within the first 24 weeks, there being but slight preference between them. The unusual drop experienced in the 52-week test of A_{10} is one of the surprises encountered. A review of the results of this 52-week test shows that they have sufficient uniformity to warrant their acceptance and renders unnecessary the breaking of the two-year specimens at this time for check tests. The two-year tests, however, will be matched with interest. Cement A_{20} develops no unusual characteristics, the average results throughout the entire period being fairly consistent. The same may be observed of A₃₀. The most unusual development in the tests of A₄₀ seems to be the relatively low strength at 52 weeks. No effort is made at this

time to account for this drop in strength. It is hoped that the strength at two years will tend to offset this apparent inconsistency. Table IX is similar to the previous tables, used in comparing relative strength at the various time-intervals, numerals 1-5 being assigned to the highest and lowest strengths.

TABLE IX.

RELATIVE STRENGTHS

Age of test in weeks	4	12	24	52
A	3	2	2	1
A_{10}	4	1	1	5
A_{20}	1	3	4	2
A_{30}	2	4	3	3
A_{40}	5	5	5	4

Exclusive of the 52-week tests, A_{10} has developed the highest average relative strength; A_{10} , second; A_{20} , third; A_{30} , fourth; and A_{40} , fifth, although the first four classifications are not consistently defined. Inclusive of the 52-week tests the relative classification gives Cement "A" first rank; A_{20} , second; A_{10} , third; A_{30} , fourth; and A_{40} , fifth.

Curve Sheet X is similar to Curve Sheet IX, except that the results plotted are for Lehigh Portland Cement "B" and blended cements of the same. (See Table C, Appendix). Here again many inconsistencies seem to exist: the tests of Cement "B" show marked variation in strength, it having attained a maximum strength at twelve weeks with an accompanying falling off of about 2500 pounds at the 24-week test-period. B₁₀ develops an unusual strength at twelve weeks, but this is not maintained at the later periods of testing. This cement develops a very satisfactory average strength throughout the period of testing. B₂₀ develops very satisfactory strengths up to and including 24 weeks; but the 52-week test is unusually low. This 52-week test gave results, however, which are sufficiently uniform in range to warrant their acceptance and therefore no check tests were run. B₃₀ is similar to B₂₀, the average results being somewhat higher. B40 seems to give the most consistent results of any of the cements in this series in point of range in strength developed, although its average strength is the lowest. The average strength of B₄₀ is about 6400 pounds per square inch over the entire period of testing. Table X is similar to Table IX.

TAB	LE	X	
RELATIVE	ST	REN	GTHS

Age of test in weeks	4	12	24	50
В	3	2	5	1
B ₁₀ .	2	1	3	2
B_{20}	1	3	2	5
B_{30}	3	5	1	3
B_{40}	5	4	4	4

In point of relative strength B_{10} seems to rank first. Since "B" and B_{20} have the same relative strengths during the entire period of testing, there is but little preference between them for second relative rank. B_{30} assumes fourth place, and B_{40} , fifth; this distinction, however, is not well definied; in point of excellence there seems to be but little real preference between cements B, B_{10} , B_{20} , and B_{30} . B_{40} is on the average probably somewhat inferior in strength to the others, but this inferiority is not pronounced.

Curve Sheet XI is similar to IX, differing only in the commercial cements used. The results here plotted are those obtained from tests of Red Ring Portland Cement "C" and blended cements of the same. (See Table "C", Appendix). Were it not for the high strength attained at the 24-week period by Cement C_{20} , the curves here shown might seem to indicate that the various cements behave in a more or less uniform manner. The maximum strength in each case was developed at 24 weeks, with an accompanying falling off in strength at the test period of 52 weeks.

Table XI is similar to Table IX.

TABLE XI
RELATIVE STRENGTHS

Age of test in weeks		4	12	24	52
C		4	1	3	2
C_{10}		2	2	4	4
$C_{2\theta}$		1	5	2	3
C_{30}	4	3	3	1	1
C_{40}		5	4	5	5

The above table, like the two previous ones, shows so much variation that it is problematical whether it has much real significance. From this table and in conjunction with

Curve Sheet XI the following relative classification is made: It is seen that cement C_{30} is far superior to the other tests at the 24 and 52-week periods and is therefore given first relative rank. There is but little choice between C_{30} , and C_{20} , but should a distinction be made it is probable that "C" should receive second place, C_{20} , third; and C_{10} ,

fourth. C₄₀ ranks fifth in relative importance.

Curve Sheet XII is similar to Curve Sheet VIII in that the results plotted are the average of the three brands of commercial cement and the averages of the corresponding blended cements. (See Table "C", "Average of averages," Appendix). This sheet shows the average results of neat cements in compression and is intended to represent such results as may be expected from an average Portland Cement and blended cements from the same. Here, as with the results which have been averaged, inconsistencies appear, but in less degree than these have been previously noted to occur. From averaging the results from testing commercial cements A, B, and C, it is seen that the strength increases satisfactorily up to the 24-week period, after which there is a falling off in strength. This is not excessive, however, and a complete recovery is noted at the 52week test-period. In averaging the results of tests of A₁₀, B₁₀, C₁₀ an unusual increase is noted up to the 12-week period of testing. The succeeding tests, however, fall off very markedly, the strength at 52 weeks being considerably lower than that at 24. The averages obtained from A_{20} , B_{20} , and C_{20} show rather high strengths at four weeks. characteristic has been noted in each of the separate 20 per cent blended cements. This high strength is not maintained at the twelve-week test-period, although the falling off is not excessive, the unit stress being about 500 pounds; a recovery is noted at 24 weeks with an accompanying falling off at the 52-week test-period. It may be said that the average strength throughout the entire period of testing of this average cement is suite satisfactory and uniform. The results obtained from averaging the A₃₀, B₃₀, and C₃₀ give a curve which is not unusual, there is a consistent increase in strength up to and including 24 weeks with a subsequent reduction in strength at 52 weeks. This reduction is not excessive and a further increase may be expected at the age of two years. The results of the two years tests will be watched with interest. The average results of A₄₀, B₄₀, C₄₀ give a curve which is quite similar to A₃₀, B₃₀, C₃₀, the results obtained at any period of testing, however, being somewhat lower. The relative comparison of strengths is inter-

esting. This is afforded by a study of Table XII, which is similar to the other tables of relative strength previously alluded to.

TABLE XII
RELATIVE STRENGTHS

Age of test in weeks	4	12	24	52
АВС	3	2	4	1
$A_{10} B_{10} C_{10}$	4	1	2	4
A_{20} B_{20} C_{20}	1	3 .	2	3
${ m A}_{30}~{ m B}_{30}~{ m C}_{30}$	2	4	1	2
$A_{40} B_{40} C_{40}$	5	5	5	5

By reference to the above table and Curve Sheet XII, the following relative comparison is made. In reverse order it is noted that the average of cements A₄₀, B₄₀, C₄₀ is consistently lowest in strength and therefore is classified fifth. Due to the falling off in strength at the 24 and 52week periods, the average of cements A₁₀, B₁₀, C₁₀ is given fourth rank in relative importance. Of the three remaining averages, there is scarcely sufficient variation in strengths to warrant relative differentiation. The averages of the 30 per cent blended cements show a slight increase over the 20 per cent averages, the falling off in strength at the 12-week period is against the latter, and the greater strength developed in the former at the later periods may warrant the average of A_{30} , B_{30} , C_{30} being classified ahead of the average of A_{20} , B_{20} . C_{20} . No effort is made to differentiate between the average results of A, B, C, and A₃₀, $B_{30}, C_{30}.$

It should be noted throughout these tests in compression that while irregularities occur they are not confined to the blended cements. The Portland Cements manifest eccentricities difficult to explain. The results were not all that was expected, but if they have been interpreted aright they indicate that the blended cements compare faborably with the Portland Cements in tests for neat compression.

(D) Cement Mortar in Compression.

The American Society for Testing Materials, in the revision of standard specifications and tests for Portland Cement, proposed the addition of a test which has not hitherto been required, namely, a test for compressive strength of Portland Cement mortar. (See proceedings of the American Society for Testing Materials Vol. 16, page 590.) It is

proposed that the average strength in pounds per square inch of not less than three standard test pieces composed of one part of cement and three parts of sand, by weight, shall be equal to or greater than 1200 pounds per square inch at the age of seven days and 2000 pounds per square inch at the age of 28 days, the specimens having been stored one day in moist air the remaining time in water. It is proposed that the test pieces be cylinders 2 inches in diameter and 4 inches high. The results herein reported differ from the above suggestions only in the method of manufacture and in the height of cylinders. The specimens used were 2 inches high instead of 4 inches, as recommended. It should be noted that these specimens were prepared before the appearance of the tentative revisions of the American Society for Testing Materials. No tests were made at seven days.

On Curve Sheet XIII are plotted the results obtained from testing mortar speciments of Atlas Portland Cement "A' and blended cements of the same. (See Table "C" Appendix). The strengths obtained increased consistently during the first 12 weeks and with but one exception, (A_{40}) , atained strengths greater than 2000 pounds per square inch at 28 days (the proposed requirements as noted With the exception of A₁₀ all cements tain their maximum strength at 12 weeks, A₁₀ attaintaining it at 24 weeks. A relative comparison in strength is afforded by Table XIII, which is similar to the previous tables.

TABLE XIII RELATIVE STRENGTHS

Age of test in weeks		4	8	12	24
A	,	1	1	2	1
A_{10}		2	3	1	3
${ m A}_{20}$		3	2	3	1
A_{30}		4	4	4	4
$\mathbf{A_{40}}$		5	5	5	5

Cement "A" seems to have attained the highest relative strength throughout the period of testing although after the 12 week tests this classification is not so pronounced. There is but little choice between A₁₀ and A₂₀ and these are easily superior to A_{30} and A_{40} , the latter receiving fourth and fifth places respectively in relative strengths.

Curve Sheet XIV is similar to Curve Sheet XIII, the results plotted being attained from compressive tests of mortar specimens of Lehigh Portland Cement "B" and blended cements of the same. (See Table "C" Appendix). The results shown, with the exception of Cement B40 satisfy the proposed requirements, as has been previously noted, of the American Society for Testing Materials at 28 days. There is not quite the same consistency in results here as is shown on Curve Sheet XIII. Cement "B" shows a loss in strength at 12 weeks. This loss is not excessive and is overcome as shown in the 24 and 52-week tests. Cement B_{10} shows rather more uniform results than does A10 and the strengths attained average somewhat higher. The curve B₂₀ attains the highest strength at 12 weeks with an accompanying falling off at 24. The maximum strength, however, is attained at 52 weeks, the average strength of this cement throughout the entire period of testing is quite high, being about 3100 pounds per square inch. A consistent increase in strength is shown in the results of B₃₀, up to 24 weeks The loss at 52 when the maximum strength is attained. Cement B₄₀ weeks, however, is not excessive nor unusual. shows rather lower strengths at all periods of testing than do the other cements, the curve is quite uniform, however, and is probably quite representative of cement mortars having such high percentages of blending material in the cement. Table XIV is similar to Table XIII.

TABLE XIV
RELATIVE STRENGTHS

Age of test in weeks	4	12	24	52
В	1	2	1	2
B_{10}	2	1	1	1
B_{20}	3	3	4	3
B_{30}	4	4	3	4
B_{40}	5	5	5	5

A study of the above table in conjunction with Curve Sheet XIV shows but little choice between Cements "B" and B_{10} , but a slight preference at the early periods of testing for the former seems to be warranted. At the later periods, however, the preference is reversed. In consequence, the following classification is given: Cement B_{10} ranks first; "B", second; B_{20} , third; B_{30} , fourth: and B_{10} , fifth.

Curve Sheet XV shows the plotted results of mortar compression tests of Red Ring Portland Cement "C" and the blended cements of the same. (See Table "C", Ap-

pendix).

A wide range in the results obtained in this series of tests characterizes this curve sheet. The values obtained by Cement "C" are uniformly high; those by C40 are low; the difference in strength averages about 2300 pounds per square inch throughout the entire period of testing. It is felt that this range is probably excessive. Separately, the curves may be considered quite satisfactory. Curve "C" attaining a maximum strength at twelve weeks with a reduction at 24, followed by a gain at 52 weeks. Curve C₁₀ consistently increases in strength to a maximum at 24 weeks with a slight reduction in strength at 52 weeks. Curve C_{20} is similar to Curve "C" in outline; the strengths developed in the former range about two-thirds of those of the latter. The results of testing C_{30} give a curve which is in no sense unusual, a consistent increase in strength being noted up to twenty-four weeks with a slight falling off in the 52-week test. Curve C_{40} is consistently lower in strengths than the other curves. Table XV is similar to the previous tables of relative strengths.

TABLE XV
RELATIVE STRENGTHS

Age of test in weeks	4	12	24	52
С	1	1	1	1
C_{10}	2	2	2	2
C_{20}	3	3	4	3
$C_{3,0}$	4	4	3	4
C_{40}	5	5	5	5

The above table shows an easy comparison of relative strengths, the strengths decreasing as the blending material increases. The mortar from the commercial Portland Cement ranks higher in strength throughout the entire period of testing.

The results obtained from averaging the corresponding tests of the three previous curve sheets are plotted on Curve Sheet XVI. (See Table "C", "Average of averages," Appendix).

It will be noted that the results of tests of mortar specimens from the 40 per cent blended cements are relatively low, falling below the requirements of the proposed specifi-

cations of the American Society for Testing Material. Results from the tests of the 30 per cent blended cements reveal higher strengths than those of the 40 per cent but in this case the requirements of the proposed specifications of the American Society for Testing Materials are not satisfied, the strengths being about 60 pounds per square inch less than the requirements at 28 days. The results from the 10 and 20 per cent blended cement mortars are well within the specifications referred to and are quite satisfactory in strength throughout the entire period of testing. A relative comparison is made from Curve Sheet XVI. Here is it easily seen that the strengths developed throughout the entire period of testing vary inversely with the amount of blending material used in an almost direct ratio.

(E) Normal Consistency.

The amount of water required to bring the various cement pastes to normal consistency is plotted on Curve Sheet XVII. (See Table D, Appendix). As would be expected, the amount of water increases rapidly from that required for Portland Cement to that required for the 10 per cent blended cement. For, as has been previously stated, the latter carries a higher percentage of the extremely fine Portland Cement than does the former, and in consequence should demand more water if the same degree of hydration is to take place. As the percentage of the blending material increases, the amount of water required should decrease and this assumption is clearly shown to be correct by the accompanying curve sheet.

It was assumed in preparing the blended cements that about 30 per cent of the Portland Cement was removed, that which was retained on a No. 200 sieve being at least that amount. The sifting was not continued to the extent that would be required in a test for fineness. It is not unusual, then, that the 30 per cent blended cement requires approximately the same amount of water for normal consistency as the Portland Cement. As the percentage of water required for normal consistency for mortar specimens was obtained from the standard conversion tables of the specifications of the United States Government for Portland Cement mortar, the characteristics noted above apply also to mortar as well as to cement paste.

(F) Time of Setting.

The time required to produce initial and final setting was determined with the Vicat apparatus, and is shown plotted on Curve Sheets XVIII and XIX, respectively. It is tabulated in Table D of appendix. It is significant that

the time of setting is less in a case of the 10 per cent blended cements than with the Portland Cements. As the percentage of blending material increases, the time of setting increases until, when a blending material of between 20 and 30 per cent has been used, the time of setting of the blended cement is equal to that of the Portland Cement. The 40 per cent blended cements are somewhat slower in setting than the Portland Cements.

(G) Constancy of Volume.

The usual tests, normal and accelerated, for the determinations of soundness were made. The standard methods suggested by the American Society of Civil Engineers were followed in these tests. The specimens were observed for periods of one year and in every instance the standard specifications were fulfilled. Each of the specimens remained true and sound throughout this entire period.

(H) Fineness and Sieve Analysis.

The curves of sieve analysis shown on Sheet XX were plotted from the data compiled in Table "D" (Appendix). It will be noted that the fineness of these Portland Cements easily satisfied the specifications of the American Society for Testing Materials and that there was but little difference in the gradation of the size of particles, cements A and B having almost identical curves of sieve analysis. The banding sand is shown to be well graded between the No. 65 and No. 200 sieves, this portion of the curve comparing favorably with the same portion of the Portland Cement curves. By combining this cement and sand, as has been previously indicated, that is, by using only that portion of the cement passing the No. 200 sieve and that portion of the sand passing the No. 65 sieve, a combined curve can be obtained which is quite similar to the Portland Cement Curve Sheet XXI, therefore, has been prepared showing the gradation of the Portland Cement after the removal of the coarse particles (those retained upon a No. 200 sieve) and of the banding sand after the removal of particles larger than the No. 65 sieve openings. The combinations of these are shown as combined curves and are typical of the gradation of the blended cements. It will be noted here that the blended cement containing 30 per cent of sand has a gradation in size of particles almost identical with that of the Portland Cements. The data plotted on Curve Sheet XXI were computed but it is thought that they should reasonably approximate experimentally derived data.

(I) Chemical Analysis and Specific Gravity.

The chemical analyses recorded in Table XVI are partly laboratory determinations and partly determinations arrived at by computation. The three commercial Portland Cements and the Banding Sand were analyzed by Mr. R. P. Rinker, Chemist for the Missouri Bureau of Geology and Mines, through the courtesy of Mr. H. A. Buehler, Director. Analyses were furnished by the various cement companies. The results obtained by Mr. Rinker and those furnished by the cement companies are so nearly identical that only those of the former are shown. The analyses of the various blended cements are the results of combining the analysis of the banding sand with the analysis of the Portland Cement blended in the ratio of the combination, sand to cement.

SUMMARY

In summarizing the foregoing, the following observations have been noted:

(A) Neat Cement in Tension.

Portland Cement and blended cements gain in strength at approximately the same rate.

Portland Cement develops slightly greater strength at

early periods of testing than does a blended cement.

At 24 and 52 weeks the 30 and 40 per cent blended cements are equal in strength to the Portland Cement, the 10 and 20 per cent blended cements showing to slightly less advantage.

(B) Cement Mortar In Tension.

The rate of gain in strength in Portland Cement mortar and blended cement mortar is approximately the same.

Within the scope of this investigation Portland Cement mortar is not superior in strength to blended cement mortar.

When the amount of blending material used does not exceed 30 per cent, blended cement mortar develops greater strength than does Portland Cement mortar.

(C) Neat Cement In Compression

The results obtained are unsatisfactory, owing to lack

of uniformity.

When the amount of blending material used does not exceed 30 per cent, the relative strength of the blended cements compares favorably with that of commercial Portland Cement.

(D) Cement Mortar In Compression.

Within the scope of these tests Portland Cement mor-

tar develops greater strength than does blended cement mortar.

The strength of mortar varies inversely with the amount of blending material used.

When the amount of blending material does not exceed about 30 per cent, such blended cement mortar may be expected to pass satisfactorily the proposed specifications of the American Society for Testing Materials.

Note:—It seems unusual that the results obtained from testing cement mortars in tension are so contradictory to those obtained from testing similar cement mortars in compression; the former favoring the blended cements, while the latter show the Portland Cements to be superior in strength.

(E) Normal Consistency.

Within the scope of this investigation, Portland Cements differ in normal consistency within narrow limits.

The normal consistency of blended cements varies inversely with the amount of the blending material used.

(F) Time of Setting.

Within the scope of this investigation, Portland Cements differ in time of setting within wide limits.

Blended cements, having more than 20 per cent of blending material, seem to develop initial and final setting more slowly than do the Portland Cements of which they are composed.

Blended cements, having not to exceed 40 per cent of blending material, satisfy the requirements of the present standard specifications for the time of setting of Portland Cements.

(G) Constancy of Volume.

Blended cements, having not to exceed 40 per cent of blending material, satisfactorily meet the present standard specifications of Portland Cements for soundness.

(H) Fineness and Sieve Analysis.

Of the blended cements, those containing 30 per cent of sand most nearly approximate the Portland Cements in fineness and gradation of size of particles.

CONCLUSIONS

Portland Cements, of a fineness sufficient to pass a No. 200 sieve, may be blended as much as 40 per cent, by weight, with quartz sand, the latter of a fineness sufficient to pass a No. 65 sieve but not fine enough to permit of more than 20 per cent to pass a No. 200 sieve, and the resulting blend-

ed cement will satisfactorily pass the requirements of the present standard specifications for Portland Cement of the American Society for Testing Materials.

Quartz sand is a satisfactory substitute for the inert clinker particles in Portland Cement in maintaining the present physical characteristics of the latter, when used in

amounts not to exceed 30 per cent, by weight.

It is obviously impracticable to manufacture blended cements commercially in a manner followed in this investigation. It is thought to be feasible, however, to accomplish this end by incorporating the sand in the cement just prior to final grinding. Such procedure, it is thought, would have several advantages over the methods used here. It is thought that the reduction of the cement clinker in fineness much in excess of that attained at present would result and also that a more thorough mixing of the sand and cement would be accomplished than by any other method. With a view of ascertaining to what extent these assumptions are correct and also to what extent the blending of Portland Cement with quartz sand may be carried, an investigation has been started in which the Portland Cement is mixed with the sand in a tube mill and the grinding continued until a high percentage of the cement clinker is reduced to cement. The results of this investigation will appear in a subsequent bulletin.

CHEMICAL ANALYSIS AND SPECIFIC GRAVITY

Analysis of Cements

	1			Perc	entage	of:			Sp. (Gr.
Cement Serial Number	Ignition Loss	SiO_2	Fe ₂ O ₃	Al_2O_3	CaO	MgO	SO_3	Total	Computed	Determine
$egin{array}{c} { m A} \\ { m A}_{10} \\ { m A}_{20} \\ { m A}_{30} \\ { m A}_{40} \end{array}$	1.80 1.65 1.50 1.35 1.21	$\begin{bmatrix} 21.48 \\ 29.64 \\ 37.31 \\ 44.88 \\ 52.65 \end{bmatrix}$	$egin{array}{c} 2.57 \ 2.28 \ 2.02 \ 1.89 \ 1.66 \ \end{array}$	5.89 5.30 4.86 4.33 3.81	$\begin{array}{c} 63.32 \\ 56.97 \\ 50.66 \\ 44.33 \\ 38.01 \end{array}$	$egin{array}{c} 3.00 \ 2.70 \ 2.40 \ 2.10 \ 1.80 \ \end{array}$	$ \begin{array}{c c} 1.50 \\ 1.30 \\ 1.20 \\ 1.05 \\ 0.90 \end{array} $	$ \begin{array}{c} 100.06 \\ 99.90 \\ 99.95 \\ 99.93 \\ 100.04 \end{array} $	$egin{array}{c} 3.135 \ 3.084 \ 3.033 \ 2.984 \ \end{array}$	3.184
$egin{array}{c} { m B}_{10} \\ { m B}_{20} \\ { m B}_{30} \\ { m B}_{40} \end{array}$	1.80 1.65 1.50 1.35 1.21	$\begin{bmatrix} 29.18 \\ 36.90 \\ 44.62 \end{bmatrix}$	$\begin{array}{c c} 2.85 \\ 2.59 \\ 2.31 \\ 2.09 \\ 1.83 \end{array}$	$ \begin{array}{c c} 6.81 \\ 6.20 \\ 5.58 \\ 4.97 \\ 4.36 \end{array} $	63.56 57.21 50.85 44.49 38.14	$egin{array}{c} 2.10 \\ 1.89 \\ 1.68 \\ 1.47 \\ 1.26 \\ \end{array}$	1.46 1.31 1.17 1.02 .87	$100.04 \\ 100.03 \\ 99.99 \\ 100.01 \\ 99.99$	3.126	3.176
$\begin{array}{c} { m C} \\ { m C}_{10} \\ { m C}_{20} \\ { m C}_{30} \\ { m C}_{40} \end{array}$	$ \begin{vmatrix} 0.60 \\ .57 \\ .54 \\ .52 \\ .49 \end{vmatrix} $	$\begin{bmatrix} 22.70 \\ 30.08 \\ 37.88 \\ 45.49 \\ 53.08 \end{bmatrix}$	3.07 2.79 2.51 2.24 1.96	7.55 6.87 6.18 5.49 4.81	63.58 56.80 50.61 44.21 37.91	1.22 1.097 .97 .85 .73	$egin{array}{c c} 1.53 & 1.37 & 1.22 & 1.07 & .91 & $	99.85 99.57 99.91 99.87 99.89	$\begin{bmatrix} 3.155 \\ 3.102 \\ 3.049 \\ 2.996 \end{bmatrix}$	3.208
Banding Sand	.32	98.66	.31	.69	.04			100.02	j	2.681

RESULTS OF TENSION TESTS

(Neat Specimens)

Series No.	Specimen made1915	24 hours	days	8 days	56 days	84 days	24 weeks	2 weeks	104 weeks
В	12-20	295	743 812	843	769	755	830	671	
Avr.	12-20	$\begin{vmatrix} 312 \\ 317 \end{vmatrix}$	$\begin{vmatrix} 312 \\ 768 \\ 779 \end{vmatrix}$	$\begin{bmatrix} 784 & \\ 861 & \\ 855 & \end{bmatrix}$	$783 \\ 722 \\ 758$	943 875 789	$\begin{bmatrix} 635 \\ 696 \\ 744 \end{bmatrix}$	$\begin{array}{c} 686 \\ 739 \\ 728 \end{array}$	
B B	12-20	$\begin{vmatrix} 311 \\ 325 \end{vmatrix}$	$797 \\ 812$	$\begin{vmatrix} 802 \\ 784 \end{vmatrix}$	$ \begin{array}{c} 758 \\ 802 \\ 783 \end{array} $	912	762 635	$728 \\ 687 \\ 686$	
Avr.	12-20	282	835 815	878 821	815 801	784 784 883	$\begin{bmatrix} 768 \\ 722 \end{bmatrix}$	$\begin{array}{c} 670 \\ 681 \end{array}$	} [
C	12-20	400	$\begin{array}{c c} 710 \\ 612 \end{array}$	758 790	$ \begin{array}{c} 758 \\ 727 \\ \end{array}$	711 737	$\begin{bmatrix} 590 \\ 647 \end{bmatrix}$	$\begin{bmatrix} 642 \\ 562 \end{bmatrix}$	
Avr.		375	$\begin{array}{c c} 745 \\ 686 \end{array}$	789 779	788 758	788 745	673	$\begin{array}{c} 511 \\ 572 \end{array}$	
A_{10}	12-23	$\begin{array}{c} 325 \\ 332 \end{array}$	$\begin{bmatrix} 637 \\ 463 \end{bmatrix}$	$\begin{array}{ c c c }\hline 635\\ 674\\ \end{array}$	677	$\begin{bmatrix} 679 \\ 736 \end{bmatrix}$	$\begin{bmatrix} 627 \\ 583 \end{bmatrix}$	$\begin{array}{c} 610 \\ 598 \end{array}$	
Avr.		$\begin{array}{ c c c c }\hline 308 \\ 322 \\ \end{array}$	$\begin{array}{c c} 512 \\ 537 \end{array}$	738 682	$\begin{array}{c} 656 \\ 666 \end{array}$	$\begin{vmatrix} 719 \\ 711 \end{vmatrix}$	557 589	560 589	
B_{10}	12-23	388	$\begin{array}{c} 544 \\ 721 \end{array}$	$\begin{bmatrix} 645 \\ 753 \end{bmatrix}$	$\begin{array}{c} 791 \\ 793 \end{array}$	$\begin{array}{ c c c }\hline 714\\ 761\\ \end{array}$	$\begin{bmatrix} 683 \\ 675 \end{bmatrix}$	$\begin{array}{c} 677 \\ 617 \end{array}$	
Avr.		340	$\begin{bmatrix} 712 \\ 666 \end{bmatrix}$	699	$\begin{bmatrix} 790 \\ 792 \end{bmatrix}$	651	$\begin{bmatrix} 676 \\ 678 \end{bmatrix}$	$\begin{bmatrix} 553 \\ 616 \end{bmatrix}$	
C ₁₀	12-22	$\begin{array}{ c c c c }\hline 320 \\ 295 \\ \hline \end{array}$	$\begin{bmatrix} 521 \\ 648 \end{bmatrix}$	$\begin{bmatrix} 765 \\ 751 \end{bmatrix}$	$\begin{array}{c} 662 \\ 724 \end{array}$	686	$\begin{bmatrix} 635 \\ 593 \end{bmatrix}$	$\frac{412}{414}$	
Avr.		288	$\begin{bmatrix} 720 \\ 630 \end{bmatrix}$	758	$\begin{array}{c} 713 \\ 700 \end{array}$	$\left \begin{array}{c}610\\681\end{array}\right $	600 608	4 8 5 4 3 4	
A_{20}	12-27	235 274	777	755	$\begin{array}{c} 745 \\ 680 \end{array}$	$\begin{bmatrix} 763 \\ 764 \end{bmatrix}$	731 774	$\begin{bmatrix} 640 \\ 633 \end{bmatrix}$	
Avr.		220	745	$\begin{bmatrix} 675 \\ 715 \end{bmatrix}$	789 738	$\begin{bmatrix} 792 \\ 773 \end{bmatrix}$	$\begin{bmatrix} 720 \\ 742 \end{bmatrix}$	$\begin{array}{c} 765 \\ 679 \end{array}$	
B_{20}	12-27	323	$\begin{bmatrix} 716 \\ 726 \\ 750 \end{bmatrix}$	$\begin{vmatrix} 900 \\ 902 \\ 777 \end{vmatrix}$	$\begin{array}{c} 750 \\ 662 \\ \end{array}$	784 796	$\begin{bmatrix} 776 \\ 747 \\ 700 \end{bmatrix}$	590 554	
Avr.		320	759	777 859	794 735	$\begin{bmatrix} 797 \\ 792 \end{bmatrix}$	$\begin{bmatrix} 706 \\ 743 \\ 302 \end{bmatrix}$	$\begin{bmatrix} 552 \\ 565 \end{bmatrix}$	
C_{20}	12-27	$\begin{vmatrix} 327 \\ 314 \\ 977 \end{vmatrix}$	561	613	$\begin{array}{c} 620 \\ 623 \\ 600 \end{array}$	$\begin{bmatrix} 714 \\ 672 \\ 724 \end{bmatrix}$	$\begin{bmatrix} 686 \\ 626 \\ 570 \end{bmatrix}$	551 487	
Avr.		306	$\begin{array}{c c} 667 \\ 610 \\ 620 \end{array}$	$\begin{bmatrix} 652 \\ 622 \\ 744 \end{bmatrix}$	$\begin{array}{c} 600 \\ 614 \\ 872 \end{array}$	$\begin{bmatrix} 724 \\ 703 \\ 747 \end{bmatrix}$	$\begin{bmatrix} 579 \\ 630 \\ 796 \end{bmatrix}$	$\frac{498}{512}$	
A ₃₀	12-29	$\begin{vmatrix} 225 \\ 303 \\ 205 \end{vmatrix}$	622	744 820	872 865	747	$\begin{bmatrix} 726 \\ 790 \end{bmatrix}$	$\begin{bmatrix} 762 \\ 675 \\ 776 \end{bmatrix}$	
Avr.		$\begin{vmatrix} 305 \\ 278 \\ 249 \end{vmatrix}$	$egin{array}{c} 670 \\ 657 \\ 630 \\ \end{array}$	$egin{bmatrix} 750 & & 771 & & 797 & & & & & & & & & & & & & & & & & & $	$ \begin{array}{c c} 812 \\ 849 \\ 714 \end{array} $	$egin{array}{c c} 674 & 732 \\ 720 & 720 \\ \hline \end{array}$	758 775	738	
B ₃₀	12-29	$\begin{vmatrix} 249 \\ 272 \\ 255 \end{vmatrix}$	$\begin{bmatrix} 030 \\ 730 \\ 593 \end{bmatrix}$	$\begin{bmatrix} 731 \\ 762 \end{bmatrix}$	$ \begin{array}{c c} 714 \\ 830 \\ 778 \end{array} $	688	$\begin{bmatrix} 765 \\ 682 \\ 765 \end{bmatrix}$	$\begin{bmatrix} 697 \\ 717 \end{bmatrix}$	
Avr.		$\begin{vmatrix} 259 \\ 259 \\ 182 \end{vmatrix}$	$\begin{array}{ c c c c }\hline 651\\ 579\\ \end{array}$	$\begin{bmatrix} 763 \\ 664 \end{bmatrix}$	774 784	$\begin{bmatrix} 702 \\ 577 \end{bmatrix}$	$\begin{bmatrix} 741 \\ 620 \end{bmatrix}$	$\begin{bmatrix} 730 \\ 622 \end{bmatrix}$	
B_{30}	12-28	177	559 634	544 615	$\begin{array}{c} 730 \\ 620 \end{array}$	627 618	$\begin{array}{c c} 702 \\ 658 \end{array}$	580 564	
Avr.		$\begin{vmatrix} 178 \\ 325 \end{vmatrix}$	591	$\begin{bmatrix} 607 \\ 777 \end{bmatrix}$	$\begin{array}{c} 711 \\ 767 \end{array}$	$\begin{bmatrix} 607 \\ 797 \end{bmatrix}$	$\begin{bmatrix} 660 \\ 736 \end{bmatrix}$	588 735	
A_{40}	12-30	$\begin{vmatrix} 300 \\ 305 \end{vmatrix}$	$\begin{bmatrix} 629 \\ 694 \end{bmatrix}$	$\begin{bmatrix} 791 \\ 693 \end{bmatrix}$	$\begin{array}{c} 759 \\ 719 \end{array}$	$\begin{array}{c} 725 \\ 793 \end{array}$	781 765	690 743	
Avr.		$\begin{array}{c c} 310 \\ 265 \end{array}$	662 583	$egin{array}{c c} 754 \\ 651 \\ \hline \end{array}$	748 735	771	$\begin{bmatrix} 761 \\ 633 \end{bmatrix}$	$\begin{bmatrix} 722 \\ 644 \end{bmatrix}$	
B_{40}	12-29		482 576	$\begin{array}{ c c c } \hline 685 \\ \hline 631 \\ \hline \end{array}$	$\begin{array}{c} 775 \\ 820 \end{array}$	$\begin{bmatrix} 705 \\ 682 \end{bmatrix}$	$\begin{bmatrix} 743 \\ 704 \end{bmatrix}$	$\begin{array}{c} 697 \\ 702 \end{array}$	
Avr.		$\begin{array}{c c} 265 \\ 186 \end{array}$	$\begin{bmatrix} 547 \\ 525 \end{bmatrix}$	655	777 730	$\begin{bmatrix} 711 \\ 628 \end{bmatrix}$	$\begin{bmatrix} 693 \\ 679 \end{bmatrix}$	681 606	
C_{40}	12-30	$\begin{array}{c c} 208 \\ 205 \end{array}$	525	$\begin{bmatrix} 678 \\ 672 \end{bmatrix}$	$\begin{array}{c} 679 \\ 711 \end{array}$	$\begin{bmatrix} 611 \\ 694 \end{bmatrix}$	661 603	$\begin{bmatrix} 616 \\ 639 \end{bmatrix}$	
Avr.	A	200 Averag	511 e of <i>A</i>	637 Averag	706 es	644	648	618	
A - B A ₁₀ - B		335 330	$egin{array}{c c} 760 \ 611 \end{array}$	$ \begin{array}{c c} 818 \\ 713 \end{array} $	$772 \mid 719 \mid$	806 700	$\begin{bmatrix} 701 \\ 625 \end{bmatrix}$	660 546	
A_{20} - A_{30} - A_{30}	B_{20} - C_{20} B_{30} - C_{30}	294 238	$\begin{bmatrix} 692 \\ 633 \end{bmatrix}$	732 714	702 778	$\begin{bmatrix} 756 \\ 780 \end{bmatrix}$	$\begin{array}{c c} 705 \\ 720 \end{array}$	585 685	
A ₄₀ - E	$_{\rm A}^{\rm B_{40}}$ - $_{\rm C_{40}}^{\rm C_{40}}$	258 verage	573 of H	682 ighest	758 Breal	709 KS	701	673	
A - B A ₁₀ - E	- C B ₁₀ - C ₁₀	358 347	$\begin{vmatrix} 802 \\ 693 \end{vmatrix}$	843 752	$egin{array}{c c} 759 & \\ 731 & \end{array}$	$\begin{bmatrix} 869 \\ 728 \end{bmatrix}$	757 648	$\begin{bmatrix} 701 \\ 590 \\ \end{bmatrix}$	
A_{20} - E	$B_{20}^{10} - C_{20}^{10}$ $B_{30}^{10} - C_{30}^{10}$	$\begin{bmatrix} 322 \\ 253 \end{bmatrix}$	$\begin{array}{c} 713 \\ 681 \end{array}$	$\begin{bmatrix} 770 \\ 760 \end{bmatrix}$	$\begin{bmatrix} 735 & \\ 829 & \end{bmatrix}$	$\begin{bmatrix} 771 \\ 708 \end{bmatrix}$	$\begin{bmatrix} 745 \\ 756 \end{bmatrix}$	$\begin{bmatrix} 635 \\ 725 \end{bmatrix}$	

RESULTS OF TENSION TESTS

(Mortar Specimens)

	l e l	Str	ess in	Pour	nds pe	er Squ	are I	neh
	Spec's made 1915-1916		70	70	70	i s	K S	104 weeks
ø.	s;c,s	days	ays	days	ays	ree]	weeks	We
Series No.	spec 918	da	28 days	56 d	84 days	24 weeks	52 W	0.4
(<u>)</u>	02-1	192		340	<u>∞</u> 339	313		
A	12-21	$\begin{bmatrix} 165 \\ 200 \end{bmatrix}$	257 288 322 289	$\begin{array}{c} 322 \\ 314 \end{array}$	343 357	$\begin{bmatrix} 321 \\ 299 \end{bmatrix}$	$egin{array}{c} 278 \ 251 \ 241 \ \end{array}$	
Avr.		186	289	325	346	310	247	
В	12-21	$egin{array}{c c} 192 & 1\\ 175 & \end{array}$	-332 - 348	$\begin{array}{c} 345 \\ 381 \end{array}$	$\begin{bmatrix} 389 \\ 402 \end{bmatrix}$	$\left[egin{array}{c} 378 \ 362 \end{array} ight]$	$\begin{array}{c} 360 \\ 340 \end{array}$	
Avr.		$\begin{bmatrix} 224 \\ 197 \end{bmatrix}$	$\begin{array}{c} 339 \\ 339 \end{array}$	$\begin{array}{c} 383 \\ 369 \end{array}$	$\begin{vmatrix} 361 \\ 384 \end{vmatrix}$	$\begin{bmatrix} 369 \\ 369 \end{bmatrix}$	$\begin{array}{c} 366 \\ 355 \end{array}$	
1	1001	$\begin{bmatrix} 213 \\ 200 \end{bmatrix}$	-362	392	462	445	365	
C	12-21	$egin{array}{c} 213 \\ 228 \\ 254 \\ \end{array}$	$\begin{bmatrix} 366 \\ 395 \end{bmatrix}$	$\begin{array}{c} 387 \\ 369 \end{array}$	$oxed{ }466 \ oxed{ }485$	435	$\begin{bmatrix} 407 \\ 370 \end{bmatrix}$	
Avr.		$\begin{bmatrix} 232 \\ 334 \end{bmatrix}$	$\begin{array}{c} 374 \\ 462 \end{array}$	$\begin{array}{c} 382 \\ 527 \end{array}$	$\begin{vmatrix} 471 \\ 524 \end{vmatrix}$	$egin{bmatrix} 440 & \ 532 & \end{bmatrix}$	$\begin{array}{c} 381 \\ 404 \end{array}$	<u> </u>
A_{10}	12-31	$\begin{bmatrix} 337 \\ 343 \end{bmatrix}$	443 375	$\begin{array}{c} 428 \\ 428 \end{array}$	$\begin{array}{ c c c }\hline 476\\523\end{array}$	$\begin{bmatrix} 475 \\ 452 \end{bmatrix}$	$\begin{bmatrix} 4\check{1}\dot{1} \\ 374 \end{bmatrix}$	
Avr.		338	427	461	[-508]	486	396	
B_{10}	12-31	$\begin{bmatrix} 311 \\ 294 \end{bmatrix}$	$\begin{array}{c} 413 \\ 366 \end{array}$	$\begin{array}{c c} 412 \\ 426 \\ 522 \end{array}$	$\begin{bmatrix} 449 \\ 447 \end{bmatrix}$	$\begin{bmatrix} 432 \\ 435 \end{bmatrix}$	$\begin{array}{c} 481 \\ 492 \end{array}$	
Avr.		$\begin{bmatrix} 285 \\ 297 \end{bmatrix}$	$\begin{bmatrix} 496 \\ 425 \end{bmatrix}$	$\begin{array}{c} 522 \\ 453 \end{array}$	487 461	$\begin{vmatrix} 429 \\ 432 \end{vmatrix}$	$\begin{array}{c} \textbf{466} \\ \textbf{479} \end{array}$	
C ₁₀	12-30	$\begin{bmatrix} 320 \\ 230 \end{bmatrix}$	$egin{array}{c c} 425 & \\ 325 & \\ 304 & \end{array}$	$\begin{array}{c} 351 \\ 414 \end{array}$	$\begin{vmatrix} 457 \\ 511 \end{vmatrix}$	$\begin{bmatrix} 102 \\ 523 \end{bmatrix}$	$\begin{array}{c} 380 \\ 504 \end{array}$	
	12-90	[-273]	337		416	390	326	
Avr.		$egin{array}{c c} 274 \\ 308 \\ 252 \\ \end{array}$	$\begin{array}{c} 322 \\ 417 \end{array}$	$\begin{array}{c} 383 \\ 475 \end{array}$	$oxed{461}{389}$	$\begin{bmatrix} 457 \\ 441 \end{bmatrix}$	$\begin{array}{c} 403 \\ 400 \end{array}$	
A_{20}	12-31	257	$\begin{array}{c} 404 \\ 396 \end{array}$	$oxed{448} \ 453$	404 458	431 483	$\begin{array}{c} 397 \\ 408 \end{array}$	1
Avr.		$\begin{vmatrix} 272 \\ 284 \end{vmatrix}$	$\begin{array}{c} 405 \\ 422 \end{array}$	$\begin{array}{c} 459 \\ 430 \end{array}$	$\begin{bmatrix} 417 \\ 408 \end{bmatrix}$	452 448	$\begin{array}{c} 402 \\ 388 \end{array}$	
B_{20}	12-31	299 -	405 428	$\begin{vmatrix} 400 \\ 439 \end{vmatrix}$	476	421	400	
Avr.		248	418	423	462	434 434	$\begin{array}{c} 384 \\ 391 \end{array}$	
C_{20}	12-31	$\begin{bmatrix} 273 \\ 257 \end{bmatrix}$	$\begin{array}{c c} 460 \\ 416 \end{array}$	$\begin{array}{c c} 373 \\ 427 \end{array}$	$\begin{vmatrix} 426 \\ 491 \end{vmatrix}$	$\begin{bmatrix} 373 \\ 375 \end{bmatrix}$	389 388	
Avr.		$egin{array}{c c} 268 \ 266 \end{array}$	$\begin{vmatrix} 381 \\ 419 \end{vmatrix}$	455 418	$\begin{vmatrix} 468 \\ 462 \end{vmatrix}$	$\left \begin{array}{cc}411\\386\end{array}\right $	$\begin{vmatrix} 392 \\ 389 \end{vmatrix}$	
${ m A}_{30}$	1-1	$\begin{array}{c c} 220 \\ 220 \end{array}$	$\begin{vmatrix} 381 \\ 367 \end{vmatrix}$	400 350	484 426	$\left[egin{array}{c} 413 \ 452 \end{array} ight]$	$\begin{bmatrix} 370 \\ 362 \end{bmatrix}$	
	1-1	237	327	431	411	433	409	
Avr.		$\begin{array}{ c c c }\hline 225\\ 252\\ \end{array}$	$\begin{bmatrix} 358 \\ 306 \end{bmatrix}$	393 409	$oxed{440} \ 429$	$\left[\begin{array}{cc}433\\369\end{array}\right]$	$\begin{array}{c} 377 \\ 372 \end{array}$	
B_{30}	1-1	$\begin{array}{c c} & 232 \\ & 262 \end{array}$	$\begin{bmatrix} 346 \\ 350 \end{bmatrix}$	$\begin{vmatrix} 344 \\ 435 \end{vmatrix}$	$egin{array}{c c} 361 \\ 451 \end{array}$	$\left \begin{array}{cc} 437 \\ 403 \end{array} \right $	$\begin{array}{c} 343 \\ 383 \end{array}$	
Avr.	<u> </u> 	248	$\begin{bmatrix} 334 \\ 365 \end{bmatrix}$	396 346	413 444	$egin{array}{c c} 403 & 417 \\ 417 & 417 \end{array}$	$\begin{array}{c} 366 \\ 354 \end{array}$	F
C_{30}	1-1	260	382	476	414	[-407]	389	
Avr.	1	267 $ 258$	$\begin{vmatrix} 340 \\ 362 \\ 252 \end{vmatrix}$	402	385	$oxed{460} \ 425 \ oxed{425}$	389	
Λ_{40}	1-1	181 221	356 339	$\begin{vmatrix} 371 \\ 356 \end{vmatrix}$	$\begin{array}{ c c c c }\hline 381 \\ 364 \\ \end{array}$	$oxed{360} \ 357$	$\begin{vmatrix} 385 \\ 298 \end{vmatrix}$	
Avr.	 	$\begin{array}{c c} 203 \\ 201 \end{array}$	$\begin{vmatrix} 328 \\ 341 \end{vmatrix}$	$\begin{vmatrix} 354 \\ 360 \end{vmatrix}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{bmatrix} 337 \\ 351 \end{bmatrix}$	$\begin{array}{c} 309 \\ 331 \end{array}$	
B_{40}	 1-J	$\begin{array}{c c} \hline 187 \\ \hline 194 \end{array}$	318	308 358	$\begin{vmatrix} 372 \\ 332 \end{vmatrix}$	$\begin{bmatrix} 342 \\ 391 \end{bmatrix}$	314	
	1-3	203	318	362	403	356	$\begin{array}{ c c c c c }\hline 332\\ 345\\ \hline \end{array}$	
Avr.	1	194	324 382	$\begin{bmatrix} 343 \\ 342 \end{bmatrix}$	362 - 421	$oxed{363} \ 357$	$\begin{vmatrix} 330 \\ 314 \end{vmatrix}$	
C_{40}	1-1	218 185	$\begin{vmatrix} 362 \\ 352 \end{vmatrix}$	$\begin{vmatrix} 375 \\ 360 \end{vmatrix}$	$\begin{vmatrix} 39\overline{2} \\ 409 \end{vmatrix}$	$\begin{bmatrix} 387 \\ 386 \end{bmatrix}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ī
Avr.	Arica	194	365	359	1 407	373	323	
A - B	- C	rage o	334	359	400	373	331	!
A_{20} - 1	$B_{19} - C_{10} - C_{20}$	$\begin{array}{c c} & 303 \\ \hline & 272 \end{array}$	391 413	$\begin{vmatrix} 432 \\ 433 \end{vmatrix}$	477 442	$oxed{ }458 \ oxed{ }424 \ oxed{ }$	$egin{array}{c} 426 \ 394 \end{array}$	
A ₃₀ - I	$B_{30} - C_{30}$ $B_{40} - C_{40}$	244	$\begin{bmatrix} 351 \\ 342 \end{bmatrix}$	399	$\begin{vmatrix} 422 \\ 375 \end{vmatrix}$	$\begin{bmatrix} 420 \\ 362 \end{bmatrix}$	$\begin{vmatrix} 373 \\ 328 \end{vmatrix}$	
A - B	Average	of F	Highest	Brea	iks			
A ₁₀ - I	$B_{10} - C_{10}$	226 325	355	$\begin{array}{ c c c }\hline & 372 \\ 467 \\ \hline \end{array}$	$egin{array}{c c} 415 \\ 507 \end{array}$	$\begin{bmatrix} 381 \\ 497 \end{bmatrix}$	$\begin{bmatrix} 350 \\ 436 \end{bmatrix}$	
A_{30} - I	B_{20} - C_{20} - B_{30} - C_{30}	$\begin{array}{c c} & 233 \\ & 255 \end{array}$	435 371	$\begin{bmatrix} 456 \\ 447 \end{bmatrix}$	$egin{array}{cccc} 475 \ 460 \end{array}$	$egin{array}{c c} 447 \ 450 \end{array}$	$\begin{array}{c} 366 \\ 393 \end{array}$	
A ₄₀ - I	$B_{40} - C_{40}$	208	359	369	402	379	352	İ

	ge	S	Stress	in pour	nds pe	er Squa	re Inc	eh	
Series No.	Spec'c made	4 weeks Neat	4 weeks Mortar	12 weeks Neat	12 weeks Mortar	24 weeks Neat	24 weeks Mortar	52 weeks Neat	52 weeks Mortar
A Avr. B Avr. C Avr. A - 10 Avr. B - 10 Avr. C - 10 Avr. C - 20 Avr. B - 20 Avr. C - 20 Avr. C - 30 Avr. B - 30 Avr. B - 30 Avr. C - 30 Avr. A - 40 Avr.	Pod S	\$\frac{\pi}{2} \frac{\pi}{2}	WW 3920 33620 36230 36230 3700 3430 43540 3540 35560 2870 2	6490 7960 8860 7470 10380 8380 6700 8487 6790 6500 9520 7603 6250 6860 9520 7543 11000 10613 7980 6200 10613 7980 6200 17940 17373 6200 17940 17373 6200 17940 17373 16200 17940 17	$\begin{array}{c} \mathbf{OW} \\ 5220 \\ 4540 \\ 5170 \\ 4980 \\ 3780 \\ 4040 \\ 3380 \\ 3730 \\ 4720 \\ 4680 \\ 5100 \\ 4830 \\ 2580 \\ 4630 \\ 3720 \\ 3640 \\ 3590 \\ 3640 \\ 4120 \\ 44010 \\ 2710 \\ 3220 \\ 3310 \\ 4280 \\ 3740 \\ 4110 \\ 3220 \\ 3330 \\ 4280 \\ 3740 \\ 4110 \\ 3330 \\ 3220 \\ 3350 \\ 3150 \\ 3220 \\ 3350 \\ 3150 \\ 3220 \\ 3350 \\ 3120 \\ 2950 \\ 3350 \\ 3120 \\ 2950 \\ 3350 \\ 3220 \\ $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \bullet \mathbb{W} \\ 5020 \\ 3380 \\ 4020 \\ 4140 \\ 4180 \\ 5500 \\ 4840 \\ 4250 \\ 4220 \\ 4530 \\ 44530 \\ 44530 \\ 44530 \\ 44530 \\ 44530 \\ 4250 \\ 4350 \\ 4250 \\ 4250 \\ 2840 \\ 4250 \\ 2840 \\ 2840 \\ 2830 \\ 2600 \\ 2760 \\ 2830 \\ 2600 \\ 2760 \\ 2830 \\ 2600 \\ 2760 \\ 2830 \\ 2270 \\ 2470 \\ 2830 \\ 2270 \\ 2400 \\ 2270 \\ 2400 \\ 2270 \\ 2400 \\ 2270 \\ 2400 \\ 2270 \\ 2400 \\ 2270 \\ 2400 \\ 2270 \\ 2400 \\ 2270 \\ 2400 \\ 2270 \\ 2400 \\ 2270 \\ 2400 \\ 2270 \\ 2400 \\ 2270 \\ 2400 \\ 2270 \\ 2400 $	90 18 18 18 18 18 18 18 1	$\begin{array}{c} 3809 \\ 3304 \\ 6456 \\ 9304 \\ 6456 \\ 9456 \\ 9456 \\ 9456 \\ 9457 \\ 94$
Avr. C - 40		$ \begin{array}{r} 16280 \\ 14710 \\ 15470 \\ 16110 \\ 15450 \end{array} $	1900 1030 1820 1560 1470	$ \begin{array}{c c} & 6520 \\ & 7700 \\ & 6360 \\ & 6490 \\ & 6850 \end{array} $	$ \begin{array}{r} 2080 \\ 2500 \\ 2930 \\ 1870 \\ 2433 \\ \end{array} $	7030 8710 7340 6820 7620	$\begin{array}{c} 2410 \\ 2320 \\ 2010 \\ 2040 \end{array}$	5906 5828 5240 6380 5816	2011 2047 1428 2282 1919
Avr. A, B A-10, B- A-20, B- A-30, B- A-40, B-	& C 10, C-1 20, C-2 30, C-3 40, C-4	rage 0 	f Ave 3634 2993 2868 1944 1737	rages 7853 8509 6800 6630 6320	4510 3690 3540 3140	7300 7690 7700 8480 7070	4320 4020 2970 3180	8303 6252 6887 7213	4050 3876 3401 2521 2164
Avera A, B, A ₁₀ , B ₁₀ A ₂₀ , B ₂₀ A ₃₀ , B ₃₀ A ₄₀ , B ₄₀	age of & C & C & C ₁₀ & C ₂₀	Highes 6937 6567 8550 6400 6573	st Bres 3890 3260 3150 2260 2060	aks 9590 9500 8500 7220 7260	$\begin{vmatrix} 4570 \\ 4660 \\ 3390 \end{vmatrix}$	8920 8080 8730 9200 8540	$\begin{vmatrix} 4550 \\ 3310 \\ 3720 \end{vmatrix}$	$ \begin{vmatrix} 6691 \\ 7958 \\ 8600 \end{vmatrix} $	$ \begin{array}{r} 4703 \\ 4435 \\ 3641 \\ 3174 \\ 2506 \end{array} $

(Neat Specimens)

Tested at age of 24 weeks

	le	Dim'r	sions			Wei	ght	Loa	ad	Stre	ess
	c made Date			_						in	ii
Series No.	9e'e 6 D	Height inches	Diam. inches	Area in Sq. in.	in.	is.	<u>:</u>	st Cr. Ibs.	Ult. Ibs.	Cr.	Ult. Ib./sq. in
Serie No.	Spec'c 1916	He.	Dia		Vol.	Total Gms.	Unit Gms.	-		1st	
A	1-29		$\begin{vmatrix} 2.02 \\ 2.00 \end{vmatrix}$	$\begin{vmatrix} 3.20 \\ 3.14 \end{vmatrix}$	6.53 $ 6.41 $	$\begin{vmatrix} 237 \\ 239 \end{vmatrix}$	$\begin{vmatrix} 36.30 \\ 37.30 \end{vmatrix}$	$ 17740 \\ 20220 $	$\begin{vmatrix} 22190 \\ 34740 \end{vmatrix}$	5550 6450	$\begin{bmatrix} 6930 \\ 11050 \end{bmatrix}$
Avr.		2.03	2.01	3.17	6.44	239	37.12	$\begin{vmatrix} 18660 \\ 18873 \end{vmatrix}$	$\begin{vmatrix} 19360 \\ 25430 \end{vmatrix}$	5880	8030
В	1-29	$\begin{vmatrix} 2.03 \\ 2.02 \end{vmatrix}$	2.02 2.02	$\begin{bmatrix} 3.20 \\ 3.20 \end{bmatrix}$	$\begin{vmatrix} 6.50 \\ 6.47 \end{vmatrix}$	238	36.64	15490 8720	$\begin{vmatrix} 20690 \\ 14190 \end{vmatrix}$	4840 2720	6470
Avr.		2.04	$\begin{vmatrix} 2.02 \\ \\ 2.02 \end{vmatrix}$	$\begin{vmatrix} 3.20 \\ \\ 3.20 \end{vmatrix}$	$\begin{vmatrix} 6.53 \\ 6.66 \end{vmatrix}$	237 237	36.30 35.59	$ \begin{array}{c c} 16820 \\ 13677 \\ 19830 \end{array} $	$ \begin{array}{r} 22020 \\ 18967 \\ 25320 \\ \end{array} $	$egin{array}{c c} 5260 \\ 4270 \\ 6200 \\ \end{array}$	
C.	1-29	$\begin{vmatrix} 2.08 \\ 2.02 \end{vmatrix}$	$\begin{vmatrix} 2.02 \\ 2.02 \\ 2.04 \end{vmatrix}$	$\begin{vmatrix} 3.20 \\ 3.20 \\ \end{vmatrix}$	$\begin{vmatrix} 6.66 \\ 6.61 \end{vmatrix}$	226 238	$\begin{vmatrix} 33.93 \\ 36.01 \end{vmatrix}$	$\begin{vmatrix} 13850 \\ 25150 \\ 23050 \end{vmatrix}$	$\begin{vmatrix} 28240 \\ 23050 \end{vmatrix}$	$ \begin{array}{c} 7860 \\ 7050 \\ \end{array} $	8830 7050
Avr.		2.08	2.02		6.66	236	$\begin{vmatrix} 35.45 \end{vmatrix}$	$\begin{vmatrix} 22677 \\ 111450 \end{vmatrix}$	$\begin{vmatrix} 25537 \\ 24870 \end{vmatrix}$	$\begin{vmatrix} 7040 \\ 3580 \end{vmatrix}$	$\begin{vmatrix} 7930 \\ 7780 \end{vmatrix}$
A_{10}	1-31		$ \frac{2.04}{2.01}$	3.20 3.27 3.17	6.70 $ 6.37 $	$\begin{bmatrix} 236 \\ 220 \end{bmatrix}$	$\begin{vmatrix} 35.25 \\ 34.52 \end{vmatrix}$	$\begin{vmatrix} 10110 \\ 23840 \end{vmatrix}$	$\begin{vmatrix} 28230 \\ 25570 \end{vmatrix}$	$\begin{vmatrix} 3090 \\ 7530 \end{vmatrix}$	8640
Avr.		1.98	11.98	3.08	6.10	212	34.78	$\begin{vmatrix} 15133 \\ 12560 \end{vmatrix}$	$\begin{vmatrix} 26223 \\ 22210 \end{vmatrix}$	4730 4080	816u 7220
B ₁₀	2-2	$\frac{12.01}{12.02}$	2.00 $ 1.97 $	$\begin{vmatrix} 3.14 \\ 3.05 \end{vmatrix}$	$\begin{array}{c c} 6.31 \\ 6.16 \end{array}$	$\begin{bmatrix} 215 \\ 216 \end{bmatrix}$	$\begin{vmatrix} 34.08 \\ 35.07 \end{vmatrix}$	17200 $ 15030 $	20480	5480	$\begin{vmatrix} 6520 \\ 7160 \\ 3070 \end{vmatrix}$
C_{10}	1-31	2.06	$\begin{vmatrix} 2.04 \\ 2.02 \end{vmatrix}$	$\begin{vmatrix} 1 & 1 \\ 3.27 & 1 \\ 3.20 & 1 \end{vmatrix}$	$\begin{vmatrix} 6.78 \\ 6.59 \end{vmatrix}$	237 1240	$\begin{vmatrix} 1 & 34.97 \\ 36.42 \end{vmatrix}$	$ \begin{array}{r} 14930 \\ 25080 \\ 18530 \\ \end{array} $	$ \begin{array}{r} 21500 \\ 25140 \\ 24910 \\ \end{array} $	$\begin{vmatrix} 4830 \\ 7680 \\ 5800 \end{vmatrix}$	6970 7690 7780
$\Delta vr.$	1-31	$ \frac{2.06}{2.06} $	2.03	3.25	$\begin{vmatrix} 6.65 \\ 6.65 \end{vmatrix}$	240	36.10	$\begin{vmatrix} 18330 \\ 19000 \\ 20870 \end{vmatrix}$	$\begin{vmatrix} 24810 \\ 27030 \\ 25693 \end{vmatrix}$	5890 6460	8380 7950
${ m A}_{20}$	2-2	$\begin{vmatrix} 2.10 \\ 2.00 \end{vmatrix}$	$\begin{vmatrix} 2.01 \\ 2.02 \end{vmatrix}$	$\frac{3.17}{3.20}$	$\begin{vmatrix} 6.66 \\ 6.69 \end{vmatrix}$	238 240	$\begin{vmatrix} 35.77 \\ 35.90 \end{vmatrix}$	$\begin{vmatrix} 19330 \\ 10650 \end{vmatrix}$	$\begin{vmatrix} 22890 \\ 16510 \end{vmatrix}$	$\begin{vmatrix} 6100 \\ 3330 \end{vmatrix}$	$\begin{vmatrix} 7230 \\ 5170 \end{vmatrix}$
Avr.	j	2.06	$\begin{array}{c c} 2.02 \\ 2.02 \\ \end{array}$	3.20	6.59	238	36.14	15590 - 15190	$\begin{vmatrix} 26710 \\ 22037 \end{vmatrix}$	4870 4770	\$350 6920
B_{20}	2-3	$\begin{vmatrix} 2.05 \\ 2.06 \end{vmatrix}$	$\begin{vmatrix} 2.04 \\ 2.02 \end{vmatrix}$	$\begin{vmatrix} 3.27 \\ 3.20 \end{vmatrix}$	$\begin{bmatrix} 6.70 \\ 6.59 \end{bmatrix}$	$\begin{array}{c} 232 \\ 230 \end{array}$	$\begin{vmatrix} 34.63 \\ 34.92 \end{vmatrix}$	$\begin{vmatrix} 19920 \\ 11470 \end{vmatrix}$	$\begin{vmatrix} 29810 \\ 22470 \end{vmatrix}$	$\begin{array}{c c} 6100 \\ 7030 \end{array}$	$\begin{array}{ c c c c c }\hline 9120\\ 7030 \end{array}$
Avr.	 	2.03	2.00	3.14	6.37	217	34.08	11340 17910	$\begin{vmatrix} 24606 \\ 25627 \\ 22720 \end{vmatrix}$	$\begin{array}{c c} & 3620 \\ \hline & 5580 \\ \hline & & \end{array}$	1 7830 1 7993
C_{20}	2-16	$\begin{vmatrix} 2.01 \\ 2.00 \\ 2.01 \end{vmatrix}$	$\begin{vmatrix} 2.00 \\ 2.04 \\ 1.98 \end{vmatrix}$	$\begin{vmatrix} 3.14 \\ 3.27 \\ 3.08 \end{vmatrix}$	$\begin{vmatrix} 6.31 \\ 6.54 \\ 6.19 \end{vmatrix}$	$\begin{vmatrix} 221 \\ 234 \\ 219 \end{vmatrix}$	$\begin{vmatrix} 35.05 \\ 35.77 \\ 35.40 \end{vmatrix}$	$ \begin{array}{r} 12620 \\ 16940 \\ 22490 \\ \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{c c} 4020 \\ 5180 \\ 7300 \\ \end{array}$	7180 8720 8680
Avr.	 	2.00	$\begin{vmatrix} 1.38 \\ 2.00 \end{vmatrix}$	3.14	6.28	219	35.40 34.88	$\begin{vmatrix} 17350 \\ 23000 \end{vmatrix}$	$\begin{vmatrix} 25900 \\ 26690 \end{vmatrix}$	$\begin{vmatrix} 5500 \\ 7330 \end{vmatrix}$	8190 8510
A_{30}		$\begin{vmatrix} 2.00 \\ 12.04 \end{vmatrix}$	1.99 $ 2.02 $	$\begin{vmatrix} 3.11 \\ 3.20 \end{vmatrix}$	$\begin{vmatrix} 6.22 \\ 6.53 \end{vmatrix}$	$\begin{vmatrix} 220 \\ 232 \end{vmatrix}$	$\begin{vmatrix} 35.35 \\ 35.51 \end{vmatrix}$	$\begin{vmatrix} 20890 \\ 5130 \end{vmatrix}$	$\begin{vmatrix} 24610 \\ 22800 \end{vmatrix}$	$\begin{vmatrix} 6720 \\ 1600 \end{vmatrix}$	7840 7130
Avr.]	2.03	2.03	3.23	$\begin{vmatrix} 1 \\ 6.56 \end{vmatrix}$	 227	34.61	$\begin{vmatrix} 16340 \\ 23840 \end{vmatrix}$	$\begin{vmatrix} 24720 \\ 25550 \end{vmatrix}$	$ \begin{array}{c} 5220 \\ 7380 \end{array} $	7830 7910
B ₃₀	2-16 	$\begin{vmatrix} 2.02 \\ 2.01 \end{vmatrix}$	$\begin{vmatrix} 2.02 \\ 1.99 \end{vmatrix}$	$\begin{vmatrix} 2.20 \\ 3.11 \end{vmatrix}$	$\begin{vmatrix} 6.47 \\ 6.25 \end{vmatrix}$	228 217	$\begin{vmatrix} 35.25 \\ 34.72 \end{vmatrix}$	$\begin{vmatrix} 30770 \\ 22080 \end{vmatrix}$	$\begin{vmatrix} 30770 \\ 26510 \end{vmatrix}$	9620	$ \begin{array}{c c} $
Avr.	 	$\begin{vmatrix} 1 & 2.00 \\ 2.00 \end{vmatrix}$	$\begin{vmatrix} 2.04 \\ 1.97 \end{vmatrix}$	$\begin{vmatrix} 1 & 3 & 27 \\ 3 & 05 \end{vmatrix}$	$\begin{vmatrix} 1 & 1 & 6.54 \\ 16.10 & 1 & 6.10 \end{vmatrix}$	$\begin{vmatrix} 232 \\ 217 \end{vmatrix}$	35.48	$\begin{vmatrix} 25563 \\ 30980 \\ \begin{vmatrix} 30870 \end{vmatrix}$	27603 30980	8040 9470 9450	8690
Avr.	1	$\frac{12.00}{12.00}$	1.98	3.08	6.16	220	$\begin{vmatrix} 35.59 \\ 35.72 \end{vmatrix}$	$\begin{vmatrix} 21800 \\ 27885 \end{vmatrix}$	$\begin{vmatrix} 30870 \\ 24130 \\ 28660 \end{vmatrix}$	7080 8670	4950 $ 7840 $ $ 8920$
A_{40}	 2-19	2.04	12 02 11.98	3.20 3.08	$\begin{vmatrix} 6.53 \\ 6.25 \end{vmatrix}$	232 $ 217 $	$\begin{vmatrix} 35.53 \\ 34.74 \end{vmatrix}$	31840	$\begin{vmatrix} 31840 \\ 14520 \end{vmatrix}$	9950	9950
Avr.	[2.04	2.05	3.30	[6.73]	232	34.50	7580 $ 19710$	16520 - 120960	$\begin{array}{c c} & 2290 \\ \hline & 6120 \end{array}$	$\begin{array}{c c} & 5010 \\ \hline & 6560 \end{array}$
B_{40}	2-19	$\frac{12.02}{2.01}$	11.99	3.11	$\frac{16.28}{6.25}$	219 $ 217 $	34.88	$\begin{vmatrix} 19450 \\ 20340 \end{vmatrix}$	$\begin{vmatrix} 21610 \\ 22970 \end{vmatrix}$	$\begin{array}{c c} & 6260 \\ \hline & 6530 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Avr.		12.02	12.00	3.14	6.35	217	34.20	15329 $ 18370 $	$\begin{vmatrix} 21180 \\ 21920 \end{vmatrix}$	4880 5890	6750 7030
C_{4}	2-23	$\begin{array}{c} ?.04 \\ 2.04 \\ 2.04 \end{array}$	$ \begin{array}{c} 12.01 \\ 12.00 \\ 2.00 \end{array} $	3.27 3.14 3.14	16.67 16.32 16.41	235 $ 223 $ $ 224 $	35.23 35.30 34.94	$\begin{vmatrix} 28450 \\ 23040 \\ 21720 \end{vmatrix}$	$\begin{vmatrix} 28450 \\ 23040 \\ 121720 \end{vmatrix}$	$ \begin{array}{c c} 1 & 8710 \\ 1 & 7340 \\ 1 & 6820 \end{array} $	8710 7340 6820
Avr. Avera	ge of .		1		0.11			24403	24403	7620	7620
A - A ₁₀ -	B - B ₁₀ -	${ m C}_{10}$		1	1		1		1	5760 5340	$\begin{bmatrix} 7300 \\ 7690 \end{bmatrix}$
A ₃₀ -	$\frac{B_{20}}{B_{60}}$ -	C_{30}		1	 					5280 7310	1 7700 1 8480
Avera		Highe	st Bre	 aks	,		1			6540	1 7070
A ₁₀ -	B - B ₁₀ - B ₂₀ -	C_{10}			f 					$ \begin{vmatrix} 6520 \\ 6900 \\ 6810 \end{vmatrix} $	8920 8080 8720
A_{30} -	$\begin{array}{c} B_{20} = \\ B_{30} = \\ A_{40} = \end{array}$	C_{30}					1			8810 8810 8400	8720 9200 8540
-40	40	***								01170	1 0010

(Mortar Specimens)

Tested at age of 52 weeks

	Je	Dim'n	sion			We	eight	Loa	ad	Stress	
Series No.	Spec'c made 1916 Date	Diam. inches	Height inches	Area in Sq. in.	Vol. in Cu. in.	Total Gms.	Unit Gms.	st Cr. Ibs.	Ult. Ibs.	1st Cr. 1b./sq. in	Ult. Ib./sq. in
A	9211	2.04 1.99	1.98 1.98	$\begin{vmatrix} 3.08 \\ 3.08 \end{vmatrix}$	$\begin{vmatrix} 6.28 \\ 6.15 \end{vmatrix}$	$\begin{vmatrix} 230 \\ 226 \end{vmatrix}$	$\frac{36.62}{36.86}$	$\frac{-}{16800}$ 17500	$\frac{28300}{27550}$	5 fo 4 5 682	1188 8845
Avr.								17150	27925	5568	9066
В		$\begin{vmatrix} 2.00 \\ 2.00 \\ 2.03 \end{vmatrix}$	$\begin{vmatrix} 2.00 \\ 2.00 \\ 2.00 \end{vmatrix}$	$\begin{vmatrix} 3.14 \\ 3.14 \\ 3.14 \end{vmatrix}$	$\begin{vmatrix} 6.28 \\ 6.28 \\ 6.37 \end{vmatrix}$	$\begin{vmatrix} 239 \\ 238 \\ 237 \end{vmatrix}$	$\begin{vmatrix} 38.05 \\ 37.89 \\ 37.25 \end{vmatrix}$	$egin{array}{c} 21000 \ 16000 \ 20000 \ \end{array}$	$\begin{vmatrix} 25070 \\ 24800 \\ 28760 \end{vmatrix}$	6688 5095 6369	7984 7898 9159
Avr.		2.00	2.00	[3.14]	6.28	239	38.05	$\begin{vmatrix} 19000 \\ 19800 \end{vmatrix}$	$\begin{vmatrix} 26210 \\ 21850 \end{vmatrix}$	6050	8347
C Avr.		$\begin{bmatrix} 2.00 \\ 2.00 \end{bmatrix}$	$\begin{vmatrix} 1.90 \\ 2.00 \end{vmatrix}$	$\begin{vmatrix} 3.08 \\ 3.14 \end{vmatrix}$	$\begin{bmatrix} 6.75 \\ 6.28 \end{bmatrix}$	229	$\begin{vmatrix} 37.17 \\ 38.21 \end{vmatrix}$	$\begin{vmatrix} 20800 \\ 11500 \\ 17333 \end{vmatrix}$	$\begin{vmatrix} 25440 \\ 23040 \\ 23443 \end{vmatrix}$	6753 3667 5574	8259 7337 7513
A_{10}		$\begin{vmatrix} 2.00 \\ 2.01 \\ 2.00 \end{vmatrix}$	$\begin{vmatrix} 2.00 \\ 2.00 \\ 2.00 \end{vmatrix}$	3.14 3.14 3.14	$\begin{vmatrix} 6.28 \\ 6.31 \\ 6.28 \end{vmatrix}$	$\begin{vmatrix} 236 \\ 237 \\ 235 \end{vmatrix}$	37.58 37.56 37.42	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c} 12070 \\ 17620 \\ 16470 \end{array} $	$\begin{array}{ c c c }\hline & 1656 \\ & 2229 \\ & 2261 \\ \end{array}$	38441 5611 5245
Avr.		2.00	2.00	3.14	6.28	230	36.62	$\begin{vmatrix} 6433 \\ 13020 \end{vmatrix}$	$\begin{vmatrix} 15386 \\ 25000 \end{vmatrix}$	2049	$ \begin{array}{c} 4900 \\ 7961 \end{array} $
$ m B_{10}$ Avr.		$\begin{bmatrix} 2.00 \\ 2.00 \end{bmatrix}$	$\begin{bmatrix} 1.96 \\ 1.97 \end{bmatrix}$	$\begin{vmatrix} 3.02 \\ 3.05 \end{vmatrix}$	*.04 6.10	$\begin{vmatrix} 216 \\ 217 \end{vmatrix}$	$\begin{vmatrix} 35.76 \\ 35.57 \end{vmatrix}$	$\begin{vmatrix} 10500 \\ 12500 \\ 12340 \end{vmatrix}$	$\begin{vmatrix} 24150 \\ 25360 \\ 24837 \end{vmatrix}$	$ \begin{vmatrix} 3476 \\ 4098 \\ 3907 \end{vmatrix} $	$ \begin{array}{c c} 1 & 7996 \\ 1 & 8314 \\ \hline 1 & 8090 \end{array} $
C_{10}	 	$\begin{vmatrix} 2.05 \\ 2.05 \\ 2.03 \end{vmatrix}$	$\begin{vmatrix} 2.01 \\ 2.05 \\ 2.04 \end{vmatrix}$	$\begin{vmatrix} 3.17 \\ 3.30 \\ 3.27 \end{vmatrix}$	$\begin{vmatrix} 6.50 \\ 6.77 \\ 6.64 \end{vmatrix}$	$\begin{vmatrix} 240 \\ 241 \\ 243 \end{vmatrix}$	$\begin{vmatrix} 36.92 \\ 35.59 \\ 36.60 \end{vmatrix}$	$\begin{bmatrix} 17000 \\ 13400 \\ 6400 \end{bmatrix}$	$ \begin{array}{c c} 17800 \\ 16885 \\ 21470 \end{array} $	$\begin{bmatrix} 5362 \\ 4060 \\ 1954 \end{bmatrix}$	$ \begin{array}{r r} $
${ m Avr.} \ { m A}_{20}$		$\begin{vmatrix} 2.07 \\ 2.06 \\ 2.06 \end{vmatrix}$	$\begin{vmatrix} 2.00 \\ 2.01 \\ 2.01 \end{vmatrix}$	$\begin{vmatrix} 3.14 \\ 3.17 \\ 2.14 \end{vmatrix}$	6.50 $ 6.53 $ $ 6.28 $	$\begin{vmatrix} 239 \\ 238 \\ 221 \end{vmatrix}$	$\begin{vmatrix} 36.77 \\ 36.44 \\ 35.19 \end{vmatrix}$	$ \begin{array}{ c c c c c } 12133 \\ 17500 \\ 11000 \\ 16420 \end{array} $	$ \begin{array}{r} 18718 \\ 25570 \\ 23010 \\ 27910 \\ \end{array} $	3792 5573 3470 5229	5766 8143 7258 8888
Avr.		$\begin{vmatrix} 2.00 \\ 2.06 \end{vmatrix}$	$\begin{vmatrix} 2.00 \\ 2.04 \end{vmatrix}$	$\begin{vmatrix} 3.14 \\ 3.27 \end{vmatrix}$	6.74	233	34.57	$\begin{vmatrix} 14973 \\ 13000 \end{vmatrix}$	$\begin{vmatrix} 25496 \\ 21150 \end{vmatrix}$	4757	8096 6464
B_{20}		$\begin{vmatrix} 2.04 \\ 2.00 \end{vmatrix}$	$\begin{vmatrix} 2.03 \\ 2.00 \end{vmatrix}$	3.24	$\begin{vmatrix} 6.61 \\ 6.28 \end{vmatrix}$	$\begin{array}{c} 1232 \\ 220 \end{array}$	$\begin{vmatrix} 35.09 \\ 35.03 \end{vmatrix}$	$\begin{vmatrix} 11000 \\ 9200 \\ 11067 \end{vmatrix}$	$ \begin{array}{r} 16740 \\ 13030 \\ 16973 \\ \end{array} $	3395 2929 3433	$\begin{array}{ c c c c }\hline & 5166 \\ \hline & 4149 \\ \hline & 5259 \\ \hline \end{array}$
Avr. C ₂₀		$\begin{vmatrix} 1.98 \\ 2.00 \\ 2.00 \end{vmatrix}$	$\begin{vmatrix} 2.00 \\ 2.00 \\ 2.00 \end{vmatrix}$	$\begin{vmatrix} 3.14 \\ 3.14 \\ 3.14 \end{vmatrix}$	$\begin{vmatrix} 6.22 \\ 6.28 \\ 6.28 \end{vmatrix}$	$\begin{vmatrix} 220 \\ 235 \\ 200 \end{vmatrix}$	$\begin{vmatrix} 35.38 \\ 37.40 \\ 31.80 \end{vmatrix}$	$\begin{vmatrix} 17200 \\ 13800 \\ 26760 \end{vmatrix}$	$ \begin{array}{r} 21680 \\ 20390 \\ 26760 \end{array} $	5477 3494 8522	6904 6493 8522
Avr. A ₃₀		$\begin{vmatrix} 2.04 \\ 2.04 \end{vmatrix}$	2.00	3.14	 6.41 6.41	$\begin{vmatrix} 235 \\ 234 \\ 232 \end{vmatrix}$	36.65 36.48 36.95		$ \begin{array}{r} 22943 \\ 27090 \\ 16220 \\ 23180 \\ \end{array} $	$ \begin{vmatrix} 5831 \\ 5414 \\ 1656 \\ 4799 \end{vmatrix} $	$ \begin{array}{c c} 1 & 7306 \\ \hline 1 & 8624 \\ 1 & 5665 \\ 1 & 7382 \end{array} $
Avr.		$\begin{vmatrix} 2.00 \\ \\ \\ 2.00 \end{vmatrix}$	$\begin{vmatrix} 2.00 \\ 2.00 \end{vmatrix}$	3.14	6.28 6.28	232	36.48	$\begin{vmatrix} 12423 \\ 22000 \end{vmatrix}$	$\begin{vmatrix} 22163 \\ 26470 \end{vmatrix}$	$\frac{1}{7006}$	7057 8429
B ₃₀		$\begin{vmatrix} 2.00 \\ 2.00 \end{vmatrix}$	$\begin{vmatrix} 2.00 \\ 2.00 \end{vmatrix}$	$\begin{vmatrix} 3.14 \\ 3.14 \end{vmatrix}$	$\begin{vmatrix} 6.28 \\ 6.28 \end{vmatrix}$	$\begin{array}{c c} 232 \\ 219 \end{array}$	$\begin{vmatrix} 36.96 \\ 34.90 \end{vmatrix}$	$ \begin{vmatrix} 9500 \\ 17100 \\ 16200 \end{vmatrix} $	$ \begin{array}{r} 15440 \\ 19310 \\ 20406 \end{array} $	$\begin{array}{c c} & 3025 \\ \hline & 5445 \\ \hline & 5159 \end{array}$	4914 6149 6497
Avr. C ₃₀		$\begin{vmatrix} 2.00 \\ 2.05 \\ 2.04 \end{vmatrix}$	$\begin{vmatrix} 2.00 \\ 2.04 \\ 2.00 \end{vmatrix}$	$\begin{vmatrix} 3.14 \\ 3.27 \\ 3.14 \end{vmatrix}$	$\begin{vmatrix} 6.28 \\ 6.70 \\ 6.41 \end{vmatrix}$	$\begin{vmatrix} 224 \\ 240 \\ 227 \end{vmatrix}$	$\begin{vmatrix} 35.64 \\ 35.80 \\ 35.40 \end{vmatrix}$	$ \begin{array}{r} 23370 \\ 27500 \\ 19200 \end{array} $	$ \begin{array}{r} 23370 \\ 28600 \\ 25320 \end{array} $	7442 8409 6114	7442 8746 8063
Avr.		$ _{2.00}$	2.00		$\begin{vmatrix} 6.28 \\ 6.28 \end{vmatrix}$	$\begin{vmatrix} 1 & 17 \\ 217 \\ 207 \end{vmatrix}$	$\begin{vmatrix} 34.59 \\ 32.97 \end{vmatrix}$	$ \begin{vmatrix} 20023 \\ 10000 \\ 12000 \end{vmatrix} $		7322 3184 3821	8083 4516 4812
A_{40} Avr.		$\begin{vmatrix} 2.00 \\ 2.00 \end{vmatrix}$	$\begin{vmatrix} 2.00 \\ 2.00 \end{vmatrix}$	3.14 3.14 	$\begin{vmatrix} 6.28 \\ 6.28 \end{vmatrix}$	232	36.95	$\begin{vmatrix} 18000 \\ 13333 \end{vmatrix}$	$ 20000 \\ 16430$	5732 4245	$ 6369 \\ 5232$
B_{40}	† 	$\begin{vmatrix} 2.01 \\ +2.00 \\ 2.00 \end{vmatrix}$	$\begin{vmatrix} 1.98 \\ 2.00 \\ 1.99 \end{vmatrix}$	3.08 3.14 3.11	$ \begin{vmatrix} 6.19 \\ 6.28 \\ 6.22 \end{vmatrix} $		$\begin{vmatrix} 35.87 \\ 35.00 \\ 35.20 \end{vmatrix}$	$ \begin{array}{r} 18000 \\ 12000 \\ 23070 \\ 17690 \end{array} $	$ \begin{array}{r} 18000 \\ 14000 \\ 23070 \\ 18357 \end{array} $	5843 3821 7418 5694	5843 4458 7418 5906
Avr.		$\begin{vmatrix} 1 & 1 & 2 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 \end{vmatrix}$	$\begin{vmatrix} 1 & 1 & 2.00 \\ 1.99 & 1 & 3 \end{vmatrix}$	$\begin{vmatrix} 1 \\ 3.14 \\ 3.11 \end{vmatrix}$	$\begin{vmatrix} 1 & 6.27 \\ 6.22 \end{vmatrix}$	$\begin{vmatrix} 1 & 1 \\ 2 & 2 \\ 2 & 4 \end{vmatrix}$	$\begin{vmatrix} 1 & 35.90 \\ 136.00 \end{vmatrix}$	$ 17000 \\ 10100$	18310 - 16310	$\begin{array}{c c} & 5412 \\ \hline & 3246 \end{array}$	5828
C_{40} Avr.		2.00	1.98	3.08	6.16		36.36	$ 15500 \\ 14200$	$\begin{vmatrix} 19670 \\ 18097 \end{vmatrix}$	5030 4563	6380 5816
$egin{array}{c} { m Ave} \\ { m A} = \\ { m A}_{10} = \\ { m A}_{20} = \\ { m A}_{30} = \\ { m A}_{40} = \\ \end{array}$	rage of B & B ₁₀ & B ₂₀ & B ₃₀ & B ₄₀ &	$egin{array}{c} C \ C_{10} \ C_{20} \ C_{20} \ C_{40} \ \end{array}$								5731 3249 4674 5479 4834	8309 6252 6887 7212 5650
$\begin{array}{c} {\rm Ave} \\ {\rm A} \\ {\rm A}_{10} \\ {\rm A}_{20} \\ {\rm A}_{20} \end{array}$	rage of B & B $_{10}$ & B $_{20}$ & B $_{30}$ & B $_{40}$ & B $_{40}$ & B	highes C C ₁₀ C ₂₀ C ₃₀	st brea	aks 						6374 3923 6023 6943 <u> </u> 6187	8869 6691 7958 8600 6722

(Mortar Specimens)

Tested at age of 28 days

	de	Dim'r	nsions	1	ł.	W	eight	Lo	ad	Stres	ss
Series No.	Spec'c made 1916 Date	Height inches	Diam. inches	Area in Sq. in.	Vol. in Cu. in.	Total Gms.	Unit Gms.	1st Cr. 1bs.	Ult. Ibs.	1st Cr. 1b./sq. in	Ult. lb./sq. in
A	2-23		$\begin{bmatrix} 2.06 \\ 2.00 \\ 1.00 \end{bmatrix}$	3.33	$\begin{bmatrix} 6.83 \\ 6.37 \\ 6.37 \end{bmatrix}$	$\begin{vmatrix} 2.58 \\ 239 \\ \end{vmatrix}$	$\begin{vmatrix} 37.77 \\ 37.52 \\ 20.06 \end{vmatrix}$	$\begin{vmatrix} 13060 \\ 10560 \\ \end{vmatrix}$	$ \begin{bmatrix} 13060 \\ 10560 \end{bmatrix} $	$\begin{vmatrix} 3920 \\ 3360 \\ 360 \end{vmatrix}$	$\begin{vmatrix} 3920 \\ 3360 \\ 2630 \end{vmatrix}$
Avr.		$\begin{vmatrix} 2.02 \\ 2.06 \end{vmatrix}$	$\begin{vmatrix} 1.99 \\ 2.02 \end{vmatrix}$	$\begin{vmatrix} 3.11 \\ 3.20 \end{vmatrix}$	6.28 6.59	$\begin{vmatrix} 244 \\ 252 \end{vmatrix}$	38.86 38.21	$ \begin{array}{c cccc} 11240 \\ 11620 \\ 10240 \end{array} $		$\begin{vmatrix} 3620 \\ 3633 \\ 3200 \end{vmatrix}$	3620 3633 3200
В	2-23	$\begin{vmatrix} 2.10 \\ 2.08 \end{vmatrix}$	$\begin{bmatrix} 2.02 \\ 2.03 \end{bmatrix}$	$\begin{vmatrix} 3.20 \\ 3.23 \end{vmatrix}$	$\begin{bmatrix} 6.72 \\ 6.73 \end{bmatrix}$	$\begin{vmatrix} 256 \\ 257 \end{vmatrix}$	$\begin{bmatrix} 38.10 \\ 38.2 \end{bmatrix}$	10830 - 111970	$\begin{bmatrix} 10830 \\ 11970 \end{bmatrix}$	$\begin{vmatrix} 3390 \\ 3700 \end{vmatrix}$	$\begin{vmatrix} 3390 \\ 3700 \end{vmatrix}$
Avr.	 2-26 	$\begin{vmatrix} 2.10 \\ 2.10 \\ 2.99 \end{vmatrix}$	$\begin{vmatrix} 2.02 \\ 2.04 \\ 2.01 \end{vmatrix}$	$\begin{vmatrix} 3.20 \\ 3.27 \\ 3.17 \end{vmatrix}$	$\begin{vmatrix} 6.72 \\ 6.87 \\ 6.62 \end{vmatrix}$	$\begin{vmatrix} 258 \\ 260 \\ 254 \end{vmatrix}$	38.4 37.81 28.38	$ \begin{array}{c c} 11013\\ 12990\\ 12540\\ 11200\\ 11201\\ 11200\\ 11201\\ 112$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} 3430 \\ 4060 \\ \begin{vmatrix} 3920 \\ 3540 \end{vmatrix}$	3430 4060 3920 3540
A vr A_{10}	2-26	$\begin{vmatrix} 2.08 \\ 2.10 \\ 2.09 \end{vmatrix}$	$\begin{vmatrix} 2.00 \\ 2.02 \\ 2.02 \end{vmatrix}$	$\begin{vmatrix} 3.14 \\ 3.20 \\ 3.20 \end{vmatrix}$	$\begin{vmatrix} 6.53 \\ 6.72 \\ 6.68 \end{vmatrix}$	$\begin{vmatrix} 240 \\ 256 \\ 254 \end{vmatrix}$	 36.76 38.1 38.04	$ \begin{array}{c cccc} 12243 \\ 9450 \\ 10960 \\ 11400 \\ 110002 \end{array} $	$ \begin{array}{c cccc} 12243 \\ 9450 \\ 10960 \\ 11400 \\ 110002 \end{array} $	$ \begin{vmatrix} 3840 \\ 3010 \\ 3420 \\ 3560 \\ 2220 \\ 3560 \\ 35$	3840 3010 3420 3560
Avr. B ₁₀	2-26	$\begin{vmatrix} 2.05 \\ 2.04 \\ 2.05 \end{vmatrix}$	$\begin{vmatrix} 2.00 \\ 1.99 \\ 2.04 \end{vmatrix}$	$\begin{vmatrix} 3.14 \\ 3.11 \\ 3.27 \end{vmatrix}$	$\begin{vmatrix} 6.44 \\ 6.35 \\ 6.70 \end{vmatrix}$	$\begin{vmatrix} 235 \\ 233 \\ 247 \end{vmatrix}$	$\begin{vmatrix} 36.5 \\ 36.7 \\ 36.88 \end{vmatrix}$	$egin{array}{c c} 10603 \\ 7000 \\ 9020 \\ 9400 \\ 8172 \\ \end{array}$	$ \begin{array}{c c} 10603 \\ 8500 \\ 9020 \\ 9400 \\ 8773 \end{array} $	3330 2220 2900 2870	3330 2700 2900 2870
$Avr.$ C_{10}	2-26	$\begin{vmatrix} 2.10 \\ 2.07 \\ 2.06 \end{vmatrix}$	$\begin{vmatrix} 2.02 \\ 1.98 \\ 1.98 \end{vmatrix}$	$\begin{vmatrix} 3.20 \\ 3.08 \\ 3.08 \end{vmatrix}$	6.72 6.38 6.35	$\begin{vmatrix} 251 \\ 239 \\ 251 \end{vmatrix}$	$\begin{bmatrix} 37.38 \\ 37.47 \\ 39.52 \end{bmatrix}$	$egin{array}{c} 8473 \\ 8520 \\ 10210 \\ 7710 \\ \end{array}$	$ \begin{array}{c c} 8773 \\ 8520 \\ 10210 \\ 7710 \\ 80212 \end{array} $	$ \begin{vmatrix} 2663 \\ 2660 \\ 3320 \\ 2500 \\ $	$ \begin{array}{c c} 2823 \\ 2660 \\ 3320 \\ 2500 \\ 2827 \\ \end{array} $
A vr. A_{20}	2-28	$\begin{vmatrix} 2.05 \\ 2.04 \\ 2.05 \end{vmatrix}$	$\begin{vmatrix} 2.00 \\ 1.97 \\ 1.98 \end{vmatrix}$	$\begin{vmatrix} 3.14 \\ 3.05 \\ 3.08 \end{vmatrix}$	$\begin{vmatrix} 6.44 \\ 6.23 \\ 6.32 \end{vmatrix}$	$\begin{vmatrix} 246 \\ 242 \\ 243 \end{vmatrix}$	38.2 38.86 38.46	$ \begin{array}{r} 8813 \\ 11000 \\ 9000 \\ 8690 \\ \hline 8690 \\ \end{array} $	8813 12010 9000 8690	$ \begin{vmatrix} 2827 \\ 3500 \\ 2950 \\ 2850 \end{vmatrix} $	2827 3830 2950 2850
$\mathrm{Avr.}$ B_{20}	2-28	$\begin{vmatrix} 2.10 \\ 2.07 \\ 2.07 \end{vmatrix}$	$egin{array}{c} 2.01 \\ 2.03 \\ 1.97 \\ \end{array}$	$\begin{vmatrix} 3.17 \\ 3.28 \\ 3.05 \end{vmatrix}$	$egin{bmatrix} 6.65 \\ 6.69 \\ \hline 6.32 \\ \end{bmatrix}$	$egin{array}{c c} 252 \\ 252 \\ 237 \\ \end{array}$	$\begin{vmatrix} 37.9 \\ 37.66 \\ 37.5 \end{vmatrix}$	9563 9650 8900 8000	9900 9650 8900 8000	$egin{array}{c} 3100 \\ 3040 \\ 2750 \\ 2620 \\ \end{array}$	$\begin{vmatrix} 3210 \\ 3040 \\ 2750 \\ 2620 \end{vmatrix}$
A vr. C_{20}	2-28	$\begin{vmatrix} 2.06 \\ 2.06 \\ 2.05 \end{vmatrix}$	$\begin{vmatrix} 2.03 \\ 1.98 \\ 2.03 \end{vmatrix}$	$\begin{vmatrix} 3.23 \\ 3.08 \\ 3.23 \end{vmatrix}$	$\begin{vmatrix} 6.66 \\ 6.35 \\ 6.62 \end{vmatrix}$	$\begin{vmatrix} 249 \\ 241 \\ 236 \end{vmatrix}$	$\begin{bmatrix} 37.39 \\ 37.98 \\ 35.64 \end{bmatrix}$	5740 5720		$ \begin{array}{r} 2803 \\ 1860 \\ 1770 \\ \end{array} $	$\begin{vmatrix} 2803 \\ 1860 \\ 2590 \end{vmatrix}$
$egin{array}{c} ext{Avr.} & ext{A}_{39} & ext{.} & $	3-1	$\begin{vmatrix} 2.09 \\ 2.09 \\ 2.10 \end{vmatrix}$	$egin{array}{c} 1.98 \\ 2.03 \\ 2.10 \\ \hline \end{array}$	3.08 3.23 3.45	$\begin{vmatrix} 6.44 \\ 6.75 \\ 7.27 \end{vmatrix}$	$\begin{vmatrix} 236 \\ 254 \\ 243 \end{vmatrix}$	$\begin{bmatrix} 36.62 \\ 37.65 \\ 33.42 \end{bmatrix}$	5720 7710 5520 6550	$egin{array}{c c} 8380 & \\ 7710 & \\ 5520 & \\ 6550 & \end{array}$	$ \begin{array}{c} 1770 \\ 2500 \\ 1710 \\ 1890 \end{array} $	$egin{array}{c} 2590 \\ 2500 \\ 1710 \\ 1890 \\ \end{array}$
$\mathrm{Avr.}$ B_{30}	3-1	$egin{array}{c} 2.10 \\ 2.10 \\ 2.12 \\ \end{array}$	$egin{array}{c} 1.98 \\ 2.00 \\ 2.02 \\ \end{array}$	$\begin{vmatrix} 3.08 \\ 3.14 \\ 3.20 \end{vmatrix}$	$\begin{vmatrix} 6.47 \\ 6.60 \\ 6.78 \end{vmatrix}$	$egin{array}{c} 241 \\ 251 \\ 254 \\ \end{array}$	37.28 38.04 37.48	$ \begin{array}{c} 6593 \\ 7230 \\ 7220 \\ 6560 \end{array} $	$egin{bmatrix} 6593 \ 7230 \ 7220 \ 6560 \ \end{bmatrix}$	$ \begin{array}{c} 2033 \\ 2340 \\ 2300 \\ 2050 \end{array} $	$ \begin{array}{c} $
Avr.	3-1	$\begin{vmatrix} 2.10 \\ 2.08 \\ 2.12 \end{vmatrix}$	$\begin{vmatrix} 2.02 \\ 1.99 \\ 2.00 \end{vmatrix}$	$\begin{vmatrix} 3.20 \\ 3.11 \\ 3.14 \end{vmatrix}$	6.72 $ 6.47 $ $ 6.65 $	$\begin{vmatrix} 254 \\ 237 \\ 254 \end{vmatrix}$	$\begin{bmatrix} 37.78 \\ 36.62 \\ 38.18 \end{bmatrix}$	7003 4950 6030 3930	$egin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c} 2230 \\ 1550 \\ 1940 \\ 1250 \end{array} $	$ \begin{array}{c} $
$Avr.$ A_{40}	3-3	$\begin{vmatrix} 2.08 \\ 2.06 \\ 2.12 \end{vmatrix}$	$egin{array}{c} 1.99 \\ 1.97 \\ 2.02 \\ \end{array}$	$\begin{vmatrix} 3.11 \\ 3.05 \\ 3.20 \end{vmatrix}$	$\begin{vmatrix} 6.47 \\ 6.29 \\ 6.78 \end{vmatrix}$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{bmatrix} 37.10 \\ 37.56 \\ 37.16 \end{bmatrix}$	$ \begin{array}{r} 4970 \\ 5090 \\ 4760 \\ 7420 \\ \end{array} $	$egin{array}{c c} 4970 & \\ 5090 & \\ 4760 & \\ 7420 & \end{array}$	$ \begin{array}{c} 1580 \\ 1640 \\ 1560 \\ 2320 \end{array} $	$egin{array}{c} 1580 \\ 1640 \\ 1560 \\ 2320 \\ \end{array}$
$Avr.$ D_{40}	3-3	$\begin{vmatrix} 2.06 \\ 2.04 \\ 2.06 \end{vmatrix}$	$\begin{vmatrix} 2.02 \\ 2.00 \\ 2.02 \end{vmatrix}$	$\begin{vmatrix} 3.20 \\ 3.14 \\ 3.20 \end{vmatrix}$	$egin{array}{c c} 6.59 \\ 6.41 \\ 6.59 \\ \end{array}$	$egin{array}{c c} 251 \\ 237 \\ 248 \\ \end{array}$	$\begin{bmatrix} 38.1 \\ 36.98 \\ 37.62 \end{bmatrix}$	$5760 \\ 6100 \\ 5520 \\ 6550$	$egin{array}{c c} 5760 & 5760 & 6100 & 655$	$ \begin{array}{c} 1840 \\ 1900 \\ 1760 \\ 2040 \end{array} $	$ \begin{array}{c} 1840 \\ 1900 \\ 1760 \\ 2040 \end{array} $
Avr. C ₄₀	 3-3 	$\begin{vmatrix} 2.08 \\ 2.08 \\ 2.05 \end{vmatrix}$	$\begin{vmatrix} 2.02 \\ 2.03 \\ 1.98 \end{vmatrix}$		$\begin{vmatrix} 6.66 \\ 6.73 \\ 6.32 \end{vmatrix}$	$egin{bmatrix} & & & \\ 247 & & \\ 250 & & \\ 234 & & \\ \end{bmatrix}$	$\begin{bmatrix} 37.1 \\ 37.16 \\ 37.02 \end{bmatrix}$	$6057 \\ 3300 \\ 5870 \\ 4820$	$egin{bmatrix} 3300 & \ 5870 & \ 4820 & \end{bmatrix}$	$\begin{array}{c c} 1900 & \\ 1030 & \\ 1820 & \\ 1560 & \\ \end{array}$	$ \begin{array}{c} 1900 \\ 1030 \\ 1820 \\ 1560 \end{array} $
$egin{array}{c} A \\ A_{10} \\ A_{20} \\ A_{30} \\ A_{40} \\ AV \\ A \\ A_{10} \\ A_{20} \\ A_{30} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{c} C \ C_{10} \ C_{20} \ C_{30} \ C_{40} \ Of \ Hig \ C \ C_{10} \ C_{20} \ C_{20} \ C_{20} \ C_{20} \ \end{array}$						4663			3634 2993 2868 1944 1737 3890 3260 3150 2260 2060

(Mortar Specimens)

Tested at age of 12 weeks

		Dim'ns	sions			Weig	ht	Loa	đ	Stress	
Series No.		Height	Diam. inches	Area in Sq. in.	Vol. in Cu. in.	Total Gms.	Unit Gms.	1st Cr. 1bs.	Ult. lbs.	1st Cr. 1b./sq. in	Ult. Ib./sq. in
A	2-23	2.08 1	$\begin{bmatrix} 2.05 \\ 1.95 \\ 2.02 \end{bmatrix}$	$\begin{bmatrix} 3.30 \\ 2.98 \\ 3.20 \end{bmatrix}$	6.93 6.20 6.75		$\begin{vmatrix} 37.10 \\ 38.23 \\ 37.92 \end{vmatrix}$	$egin{array}{c c} 17220 & \\ 13510 & \\ 16540 & \end{array}$	$\begin{array}{c} 17220 \\ 13510 \\ 16540 \end{array}$	$\begin{vmatrix} 5.220 \\ 4540 \\ 5170 \end{vmatrix}$	$5220 \\ 4540 \\ 5170$
Avr. B	2-23	$\begin{bmatrix} 2.07 \\ 2.10 \end{bmatrix}$	$\begin{bmatrix} 2.02 & \\ 2.02 & \\ 2.01 & \\ 2.04 & \end{bmatrix}$	3.20 3.17 3.27	6.62 6.66 6.87	$\begin{vmatrix} 254 \\ 251 \\ 258 \end{vmatrix}$	 38.37 37.70 37.56	$\begin{array}{c c} 15757 \\ 15757 \\ 12080 \\ 12810 \\ 10600 \\ \end{array}$	$ \begin{array}{c} 15757 \\ 12080 \\ 12810 \\ 10600 \end{array} $	4980 3780 4040 3380	4980 3780 4040 3380
Avr.	2-26	$\begin{vmatrix} 2.08 \\ 2.10 \end{vmatrix}$	$\begin{bmatrix} 1.98 \\ 2.02 \\ 2.00 \end{bmatrix}$	$\begin{vmatrix} 3.11 \\ 3.20 \\ 3.14 \end{vmatrix}$	$\begin{vmatrix} 6.47 \\ 6.72 \\ 6.68 \end{vmatrix}$	$\begin{vmatrix} 247 \\ 255 \\ 262 \end{vmatrix}$	38.19 37.94 39.23	$ \begin{array}{c c} 11830 \\ 14690 \\ 14980 \\ 16000 \end{array} $	$ \begin{vmatrix} 11830 \\ 14690 \\ 14980 \\ 16000 \end{vmatrix} $	$ \begin{vmatrix} 3730 \\ 4720 \\ 4680 \\ 5100 \end{vmatrix} $	$\begin{vmatrix} 3730 \\ 4720 \\ 4680 \\ 5100 \end{vmatrix}$
Avr. A ₁₀	2-26	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{2.01}{2.00}$.	$\begin{bmatrix} 3.14 \\ 3.17 \\ 3.14 \\ 3.08 \end{bmatrix}$	 6.41 6.38	$\begin{vmatrix} 240 \\ 239 \\ 235 \end{vmatrix}$	37.44 37.46 37.42	15223 8190 14560 11460	$egin{array}{c} 15223 \\ 8190 \\ 14560 \\ 11460 \\ \end{array}$	4830 2580 4630 3720	$\begin{vmatrix} 4830 \\ 4830 \\ 2580 \\ 4630 \\ 3720 \end{vmatrix}$
Avr. B ₁₀	2-26	$\begin{vmatrix} 2.04 \\ 2.02 \end{vmatrix}$	1.98 2.04 1.97 2.04	$\begin{vmatrix} 3.05 \\ 3.27 \\ 3.27 \\ 3.27 \end{vmatrix}$	$\begin{vmatrix} 6.28 \\ 6.67 \\ 6.16 \\ 6.64 \end{vmatrix}$	$\begin{vmatrix} 235 \\ 247 \\ 236 \\ 247 \end{vmatrix}$	37.42 37.06 38.30 37.23	$ \begin{array}{c c} 11400\\ 11400\\ 11730\\ 15420\\ 12070 \end{array} $	$ \begin{vmatrix} 11400 \\ 11400 \\ 11730 \\ 15420 \\ 12070 \end{vmatrix} $	$\begin{vmatrix} 3640 \\ 3640 \\ 3590 \\ 5070 \\ 3690 \end{vmatrix}$	$\begin{vmatrix} 3640 \\ 3640 \\ 3590 \\ 5070 \\ 3640 \end{vmatrix}$
Avr.	2-26	2.11	2.04 2.02 2.02 2.02	$\begin{vmatrix} 3.21 \\ 3.20 \\ 3.20 \\ 3.20 \end{vmatrix}$	$\begin{vmatrix} 6.75 \\ 6.72 \\ 6.72 \end{vmatrix}$	254 253 252	37.83 37.64 37.51	$ \begin{vmatrix} 12070 \\ 13073 \\ 12810 \\ 8690 \\ 10310 \end{vmatrix} $	$ \begin{vmatrix} 12070 \\ 13073 \\ 12810 \\ 8690 \\ 10310 \end{vmatrix} $	$ \begin{vmatrix} 4120 \\ 4010 \\ 2710 \\ 3230 \end{vmatrix} $	$ \begin{vmatrix} 4120 \\ 4010 \\ 2710 \\ 3220 \end{vmatrix} $
$egin{array}{c} ext{Avr.} \ ext{A}_{20} \end{array}$	2-28		1.99 1.99	3.11	$\begin{vmatrix} 6.12 \\ 6.50 \\ 6.47 \end{vmatrix}$	$\begin{vmatrix} 242 \\ 242 \end{vmatrix}$	$\begin{vmatrix} 37.51 \\ 37.22 \\ 37.41 \end{vmatrix}$	$\begin{vmatrix} 10603 \\ 13300 \\ 11640 \end{vmatrix}$	10603 113300 111640	$\begin{vmatrix} 3310 \\ 4280 \\ 3740 \end{vmatrix}$	$\begin{vmatrix} 3310 \\ 4280 \\ 3740 \end{vmatrix}$
$\mathrm{Avr.}$ B_{20}	2-28	$egin{array}{c} 2.10 \\ 2.07 \\ 2.10 \\ \hline \end{array}$	$\begin{vmatrix} 2.03 \\ 1.98 \\ 2.02 \end{vmatrix}$	 3.23 3.08 3.20	$\begin{vmatrix} 6.78 \\ 6.38 \\ 6.72 \end{vmatrix}$	 258 237 255	38.08 37.16 37.64	$ \begin{array}{r} 12897 \\ 10740 \\ 10560 \\ 10310 \\ \end{array} $	$\begin{array}{c} 12897 \\ 10740 \\ 10560 \\ 10310 \\ \end{array}$	$ \begin{vmatrix} 4110 \\ 3330 \\ 3430 \\ 3220 \end{vmatrix} $	$ \begin{vmatrix} 4110 \\ 3330 \\ 3430 \\ 3220 \end{vmatrix} $
$\mathrm{Avr.}$ C_{20}	2-28	$\begin{vmatrix} 1 & 1 \\ 2.05 \\ 3 & 2.10 \end{vmatrix}$	$egin{array}{c} 2.00 \\ 2.02 \\ 1.98 \\ \hline \end{array}$	3.14 3.20 3.08	$\begin{vmatrix} 6.44 \\ 6.72 \\ 6.35 \end{vmatrix}$	$\begin{vmatrix} 1 & 1 & 238 \\ 1253 & 1240 \end{vmatrix}$	$\begin{vmatrix} 36.96 \\ 37.64 \\ 37.80 \end{vmatrix}$	$ \begin{array}{r} 10537 \\ 10030 \\ 10080 \\ 9920 \\ \end{array} $	$ \begin{array}{r} 10537 \\ 10030 \\ 10080 \\ 9920 \end{array} $	$ \begin{array}{r} 3330 \\ 3200 \\ 3150 \\ 3220 \end{array} $	$\begin{vmatrix} 3330 \\ 3200 \\ 3150 \\ 3220 \end{vmatrix}$
Avr. A ₃₀	3-1	$\begin{vmatrix} 2.08 \\ 2.12 \\ 2.04 \end{vmatrix}$	$\begin{vmatrix} 2.00 \\ 2.04 \\ 2.00 \end{vmatrix}$	$\begin{vmatrix} 3.14 \\ 3.27 \\ 3.14 \end{vmatrix}$	$\begin{vmatrix} 6.53 \\ 6.93 \\ 6.41 \end{vmatrix}$	$\begin{vmatrix} 240 \\ 255 \end{vmatrix}$	$\begin{vmatrix} 36.77 \\ 36.82 \\ 39.94 \end{vmatrix}$	$ \begin{vmatrix} 10010 \\ 9270 \\ 10930 \end{vmatrix} $	$ \begin{array}{r r} 10010 \\ 9270 \\ 10930 \\ 9780 \end{array} $	$\begin{vmatrix} 3190 \\ 12950 \\ 3350 \end{vmatrix}$	$\begin{vmatrix} 3190 \\ 2950 \\ 3350 \\ 3110 \end{vmatrix}$
Avr. B ₃₀	3-1	$\begin{vmatrix} 2.10 \\ 2.08 \end{vmatrix}$	$egin{array}{c} & & \\ 2.00 \\ 1.99 \\ & \end{array}$	3.14 3.14 3.11 3.11	6.60 6.47 6.47	$ 252 \\ 241$	38.17 37.26 37.08	$\begin{vmatrix} 9993 \\ 8960 \\ 11180 \end{vmatrix}$	9993 8960 11180 9490	$\begin{vmatrix} 3140 \\ 2850 \\ 3590 \end{vmatrix}$	3140 2850 3590 3050
Avr. C ₂₀	3-1	$\begin{vmatrix} 2.08 \\ 2.08 \\ 2.07 \end{vmatrix}$	1.99 1.98 1.98	 3.08 3.08	$\begin{vmatrix} 1 & 1 \\ 6.41 \\ 6.38 \end{vmatrix}$	$ 236 \\ 239$		$\begin{vmatrix} 9877 \\ 9920 \\ 9930 \end{vmatrix}$	$ \begin{vmatrix} 9430 \\ 9877 \\ 9920 \\ 9930 \\ 9370 \end{vmatrix} $	$\begin{vmatrix} 3160 \\ 3220 \\ 3220 \end{vmatrix}$	$ \begin{vmatrix} 3160 \\ 3220 \\ 3220 \\ 2930 \end{vmatrix} $
${ m Avr.}$ ${ m A}_{40}$	3-3	$ \begin{vmatrix} 2.10 \\ 2.10 \\ 2.10 \end{vmatrix} $	$\begin{vmatrix} 2.02 \\ 1.98 \\ 2.02 \end{vmatrix}$	$\begin{vmatrix} 3.20 \\ 3.08 \\ 3.20 \end{vmatrix}$		$\begin{bmatrix} & \\ $	$\begin{vmatrix} 36.64 \\ 37.04 \end{vmatrix}$	$egin{array}{c c} & 9740 \\ \hline & 6990 \\ \hline & 9500 \\ \end{array}$	$ \begin{vmatrix} 9740 \\ 6990 \\ 9500 \end{vmatrix} $	$egin{array}{c c} & 3120 \\ \hline & 2270 \\ \hline & 2970 \\ \hline \end{array}$	$ \begin{array}{c c} 3120 \\ 2270 \\ 2970 \end{array} $
Avr. B ₄₀	3-3		$\begin{vmatrix} 2.00 \\ 2.00 \\ 2.00 \end{vmatrix}$	$\begin{vmatrix} 3.14 \\ 3.14 \end{vmatrix}$	- 6.53	$egin{array}{c c} & \ & 240 \ & 243 \ \end{array}$	$\begin{vmatrix} 1 \\ 36.38 \\ 37.23 \end{vmatrix}$	$egin{array}{c c} & 8770 \\ 8 & 5960 \\ 3 & 6560 \\ \end{array}$	1 6560	$egin{array}{c c} 2790 \\ 1900 \\ 2090 \\ \end{array}$	$\begin{vmatrix} 2790 \\ 1900 \\ 2090 \end{vmatrix}$
Avr. C ₄₀	3-3		$\begin{vmatrix} 2.00 \\ 2.00 \\ 1.98 \end{vmatrix}$	$\begin{vmatrix} 3.14 \\ 3.08 \end{vmatrix}$	6.60	$egin{pmatrix} & & & & & & & & & $	$\begin{vmatrix} & \\ & 35.98 \\ & 37.39 \end{vmatrix}$	$egin{array}{c c} & 6543 \\ 8 & 7870 \\ 9 & 9040 \\ \hline \end{array}$	$ \begin{array}{ c c c c c c } \hline $	$egin{array}{cccc} 3 & 2080 \ 0 & 2500 \ 0 & 2930 \ \end{array}$	$\begin{vmatrix} 2080 \\ 2500 \\ 2930 \end{vmatrix}$
Avr. A A A A	$A - B$ $_{10} - B_{10}$ $_{20} - B_{20}$ $_{30} - B_{30}$	$C_{10} - C_{10}$ $C_{20} - C_{30}$ $C_{30} - C_{40}$		es 		2 232	36.7	0 5770 7560 			$\begin{array}{c c} 2433 \\ 4510 \\ 3690 \\ 3540 \\ 3140 \\ \end{array}$
A A A A	verag 1 - B 10 - B 10 - B 20 - B 20 - B 30 - B 40 - B	e of Hi - C - C ₁₀ - C ₂₀ - C ₃₀	ghest	Brea	ks					4796 4576 3666 3396 2776	$\begin{array}{c c} & 4790 \\ & 4570 \\ & 3660 \\ & 3390 \\ \end{array}$

Tested at age of 24 weeks

(Mortar Specimens)

	le l	Dim'	nsions	s		Wei	ight	Load	l	Stress	S
Series No.	Spec'c made 1916 Date	Height inches	Diam. inches	Area in Sq. in.	Vol. in Cu. in.	Total Gms.	Unit Gms.	1st Cr. lbs.	Ult. lbs.	1st Cr. 1b./sq. in	Ult. lb./sq. in
A	2-23	$\begin{vmatrix} 2.11 \\ 2.08 \end{vmatrix}$	$\begin{vmatrix} 2.01 \\ 2.04 \end{vmatrix}$	$\begin{vmatrix} 3.17 \\ 3.27 \end{vmatrix}$	$\begin{vmatrix} 6.69 \\ 6.80 \end{vmatrix}$	$ 258 \\ 257$	38.57 37.83	$ 13730 \\ 10290 $	15890 11060	4330 3150	5020 3380
Avr.		$\begin{bmatrix} 2.12 \\ 2.12 \end{bmatrix}$	$\begin{vmatrix} 2.01 \\ 2.03 \end{vmatrix}$	$\begin{vmatrix} 3.17 \\ 3.23 \end{vmatrix}$	6.72	259 254	$\begin{vmatrix} 38.52 \\ 37.08 \end{vmatrix}$	 12010 13480	$ \begin{array}{c c} 12710 \\ 13220 \\ 13480 \end{array} $	 3740 4180	$\begin{vmatrix} 4020 \\ 4140 \\ 4180 \end{vmatrix}$
В	2-23	$\begin{vmatrix} 2.10 \\ 2.08 \end{vmatrix}$	$\begin{bmatrix} 2.04 \\ 1.97 \end{bmatrix}$	$\begin{vmatrix} 3.27 \\ 3.05 \end{vmatrix}$	$\begin{vmatrix} 6.87 \\ 6.35 \end{vmatrix}$	$\begin{vmatrix} 252 \\ 249 \end{vmatrix}$	$\begin{vmatrix} 36.66 \\ 29.22 \end{vmatrix}$	$\begin{vmatrix} 11280 \\ 13480 \end{vmatrix}$	$ \begin{array}{c c} 17280 \\ 11770 \\ 15380 \end{array} $	 3700 4180	$\begin{vmatrix} 5500 \\ 3860 \\ 4840 \end{vmatrix}$
Avr.	2-26	$\begin{vmatrix} 2.11 \\ 2.09 \\ 2.11 \end{vmatrix}$	$\begin{vmatrix} 2.00 \\ 2.00 \\ 2.02 \end{vmatrix}$	$\begin{vmatrix} 3.14 \\ 3.14 \\ 3.20 \end{vmatrix}$	$ \begin{vmatrix} 6.63 \\ 6.57 \\ 6.75 \end{vmatrix} $	$\begin{vmatrix} 247 \\ 244 \\ 256 \end{vmatrix}$	$\begin{vmatrix} 37.24 \\ 37.16 \\ 37.94 \end{vmatrix}$	13180 11150 	$ \begin{array}{c c} 13180 \\ 111150 \\ 13490 \end{array} $	$\begin{vmatrix} 4130 \\ 4200 \\ 3550 \\ \end{vmatrix}$	$\begin{vmatrix} 4200 \\ 4200 \\ 3550 \\ 4220 \\ 3990 \end{vmatrix}$
$Avr.$ A_{10}	2-26	$egin{array}{c} 2.06 \ 2.12 \ 2.12 \ \end{array}$	$\begin{vmatrix} 1.98 \\ 2.02 \\ 2.03 \end{vmatrix}$	3.08 3.20 3.23	$\begin{vmatrix} 6.35 \\ 6.78 \\ 6.85 \end{vmatrix}$	$\begin{vmatrix} 236 \\ 255 \\ 256 \end{vmatrix}$	$\begin{vmatrix} 37.20 \\ 37.60 \\ 37.39 \end{vmatrix}$	$ \begin{array}{c c} 12165 \\ 12370 \\ 14410 \\ 14630 \\ 13800 \\ 14800 \\ 1$	$ \begin{array}{c c} 12607 \\ 12370 \\ 14410 \\ 14630 \\ 13803 \\ \end{array} $	$\begin{vmatrix} 4020 \\ 4510 \\ 4530 \end{vmatrix}$	$\begin{vmatrix} 4020 \\ 4510 \\ 4530 \end{vmatrix}$
Avr. B ₁₀	2-26	$egin{array}{c} 2.10 \ 2.07 \ 2.06 \ \end{array}$	$\begin{vmatrix} 2.00 \\ 2.05 \\ 2.05 \end{vmatrix}$	$\begin{vmatrix} 3.14 \\ 3.30 \\ 3.30 \end{vmatrix}$	6.60 6.83 6.80	$\begin{vmatrix} 245 \\ 249 \\ 246 \end{vmatrix}$	$\begin{vmatrix} 37.10 \\ 36.48 \\ 36.18 \end{vmatrix}$	$ \begin{array}{r} $	$ \begin{vmatrix} 13803 \\ 14000 \\ 9390 \\ 14010 \end{vmatrix} $	4350 4460 2840 4250	4350 4460 2840 4250
Avr. Avr. C ₁₀	2-26	2.10 2.11 2.10	$\begin{vmatrix} 2.03 \\ 2.04 \\ 1.99 \end{vmatrix}$	$\begin{vmatrix} 3.23 \\ 3.27 \\ 3.11 \end{vmatrix}$	$\begin{vmatrix} 6.78 \\ 6.90 \\ 6.54 \end{vmatrix}$	$\begin{vmatrix} 262 \\ 252 \\ 241 \end{vmatrix}$	$\begin{vmatrix} 37.14 \\ 36.52 \\ 36.87 \end{vmatrix}$	$ \begin{array}{c c} 12467 \\ 8340 \\ 15230 \\ 13380 \\ \end{array} $	$ \begin{array}{c c} 12467 \\ 8340 \\ 15230 \\ 13380 \\ 13381 \\ 13$	$ \begin{vmatrix} 3850 \\ 2580 \\ 4660 \\ 4310 \\ 4350 \end{vmatrix} $	$ \begin{vmatrix} 3850 \\ 2580 \\ 4660 \\ 4310 \\ 4350 \end{vmatrix} $
$egin{array}{c} ext{Avr.} \ ext{A}_{20} \ ext{.} \end{array}$	 2-28 [$ \begin{array}{c} 2.11 \\ 2.07 \\ 2.10 \end{array} $	$egin{array}{c} 2.05 \\ 2.00 \\ 2.00 \\ \end{array}$	$\begin{vmatrix} 3.30 \\ 3.14 \\ 3.14 \end{vmatrix}$	$egin{array}{c} 6.96 \\ 6.50 \\ 6.60 \\ \hline \end{array}$	$\begin{vmatrix} 257 \\ 242 \\ 242 \end{vmatrix}$	$\begin{vmatrix} 36.94 \\ 37.24 \\ 36.70 \end{vmatrix}$	$\begin{array}{c} 12317 \\ 13660 \\ 12160 \\ 8310 \\ \end{array}$	$ \begin{bmatrix} 12317 \\ 13660 \\ 12160 \\ 8750 \end{bmatrix} $	$\begin{vmatrix} 3850 \\ 4140 \\ 3870 \\ 2640 \end{vmatrix}$	3850 4140 3870 2780
Avr. B ₂₀	2-28	2.09 2.12 2.11	$egin{array}{c} 2.00 \\ 2.02 \\ 2.05 \\ \end{array}$	$\begin{vmatrix} 3.14 \\ 3.20 \\ 3.30 \end{vmatrix}$	$egin{array}{c} 6.57 \\ 6.78 \\ 6.96 \\ \end{array}$	$\begin{vmatrix} 240 \\ 253 \\ 255 \end{vmatrix}$	36.53 37.30 36.66	$ \begin{array}{c c} 11377 \\ 9080 \\ 7810 \\ 10020 \\ 3070 \\ \end{array} $	$ \begin{vmatrix} 11523 \\ 9080 \\ 8170 \\ 10020 \end{vmatrix} $	$ \begin{vmatrix} 3550 \\ 2890 \\ 2440 \\ 3040 \end{vmatrix} $	$\begin{vmatrix} 3690 \\ 2890 \\ 2550 \\ \begin{vmatrix} 3040 \\ \end{aligned}$
Avr. C_{20}	2-28	$2.08 \\ 2.07 \\ 2.08$	$egin{bmatrix} 1.99 \ 1.99 \ 2.05 \ \end{bmatrix}$	$\begin{vmatrix} 3.11 \\ 3.11 \\ 3.30 \end{vmatrix}$	$\begin{vmatrix} 6.48 \\ 6.45 \\ 6.87 \end{vmatrix}$	$\begin{vmatrix} 237 \\ 238 \\ 252 \end{vmatrix}$	$\begin{vmatrix} 36.58 \\ 36.90 \\ 36.66 \end{vmatrix}$	$egin{array}{c c} 8970 \\ 8100 \\ 4200 \\ 9120 \\ \hline 5110 \\ \end{array}$	$egin{array}{c} 9090 \ 8100 \ 6410 \ 9120 \ \end{array}$	$ \begin{bmatrix} 2790 \\ 2600 \\ \hline 1350 \\ 2760 \\ \hline $	$\begin{vmatrix} 2830 \\ 2600 \\ 2060 \\ 2760 \\ \end{vmatrix}$
$egin{array}{c} ext{Avr.} & \ A_{30} & \ \end{array}$	3-1	$2.08 \\ 2.07 \\ 2.10$	$\begin{bmatrix} 2.05 \\ 2.02 \\ 2.04 \end{bmatrix}$	$\begin{bmatrix} 3.30 \\ 3.20 \\ 3.27 \end{bmatrix}$	$6.87 \\ 6.63 \\ 6.87$	$egin{array}{c c} 255 & \\ 242 & \\ 256 & \end{array}$	$\begin{vmatrix} 37.12 \\ 36.50 \\ 37.30 \end{vmatrix}$	$oxed{6560} 10540$	$7877 \\ 11690 \\ 7700 \\ 10540 \\ 0.055$	$ \begin{array}{c} 2240 \\ 3190 \\ 2040 \\ 3230 \\ \end{array} $	$ \begin{vmatrix} 2470 \\ 3540 \\ 2400 \\ 3230 \end{vmatrix} $
Avr. B ₃₀	3-1	$2.00 \\ 2.11 \\ 2.12$	$egin{array}{c c} 1.99 \\ 2.02 \\ 2.04 \\ \hline \end{array}$	$\begin{bmatrix} 3.11 \\ 3.20 \\ 3.27 \end{bmatrix}$	$\begin{vmatrix} 6.22 \\ 6.75 \\ 6.93 \end{vmatrix}$	$egin{array}{c} 216 \\ 251 \\ 253 \\ \end{array}$	$\begin{vmatrix} 34.72 \\ 37.20 \\ 36.52 \end{vmatrix}$		$egin{array}{c} 9977 & \\ 7820 & \\ 8090 & \\ 12560 & \\ \end{bmatrix}$	2820 1820 2590 3840	$ \begin{vmatrix} 3060 \\ 2510 \\ 2530 \\ 3840 \end{vmatrix} $
Avr.	3-1	$\begin{bmatrix} 2.11 \\ 2.09 \\ 2.10 \end{bmatrix}$	$\begin{bmatrix} 2.02 \\ 1.97 \\ 2.00 \end{bmatrix}$	$\begin{bmatrix} 3.20 \\ 3.05 \\ 3.14 \end{bmatrix}$	$6.75 \\ 6.38 \\ 6.60$	254 237 248	$\begin{vmatrix} 37.66 \\ 37.14 \\ 37.58 \end{vmatrix}$	$\begin{array}{c c} 12070 & \\ 6380 & \\ 10690 & \end{array}$	$egin{array}{c c} 10325 & \\ 12070 & \\ 7500 & \\ 10690 & \\ 10087 & \\ \end{array}$	$ \begin{array}{c c} 3250 \\ 3770 \\ 2090 \\ 3490 \\ 3130 \end{array} $	$ \begin{vmatrix} 3250 \\ 3770 \\ 2450 \\ 3490 \\ 3240 \end{vmatrix} $
A vr. $\begin{vmatrix} A_{40} & A_{40} & A_{40} \end{vmatrix}$	3-3	$egin{array}{c c} 2.12 \\ 2.09 \\ 2.11 \\ \hline \end{array}$	$\begin{bmatrix} 2.01 \\ 2.00 \\ 2.04 \end{bmatrix}$	$\begin{bmatrix} 3.17 \\ 3.14 \\ 3.27 \end{bmatrix}$	$6.72 \\ 6.57 \\ 6.90$	$\begin{bmatrix} 244 \\ 235 \\ 252 \end{bmatrix}$	$\begin{vmatrix} 36.32 & \\ 35.77 & \\ 36.52 & \end{vmatrix}$	$egin{array}{c c} 9713 & \\ 5260 & \\ 8910 & \\ 9750 & \\ 7973 & \end{array}$	$\begin{array}{c c} 10087 & \\ 5560 & \\ 8910 & \\ 9750 & \\ 8072 & \end{array}$	$ \begin{array}{r} 3120 \\ 1660 \\ 2840 \\ 2980 \\ \end{array} $	$ \begin{vmatrix} 3240 \\ 1750 \\ 2840 \\ 2980 \\ 3520 \end{vmatrix} $
$egin{array}{c c} \operatorname{Avr.} & & \\ & & $	313	$egin{array}{c c} 2.13 & \\ 2.14 & \\ 2.14 & \\ \end{array}$		3.27	$ \begin{array}{c c} 6.69 \\ 6.72 \\ 6.72 \end{array} $	$egin{array}{c c} 242 & \\ 255 & \\ 242 & \\ \end{array}$	$egin{array}{c c} 36.18 & \ 37.96 & \ 36.00 & \ \end{array}$	$egin{array}{c c} 9220 & \\ 7430 & \\ 6420 & \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2490 2930 2270 2040	$ \begin{bmatrix} 2520 \\ 2930 \\ 2270 \\ 2040 \\ 2410 \end{bmatrix} $
Avr. C ₄₀ Avr.	3-3	$egin{array}{c c} 2.14 & \ 2.11 & \ 2.12 & \ \end{array}$	2.04		$\begin{array}{c c} 6.92 & \\ 6.90 & \\ 6.93 & \\ \end{array}$		$\begin{bmatrix} 36.88 & \\ 36.40 & \\ 36.66 & \end{bmatrix}$	$egin{array}{c c} 7690 & & & & \\ 7500 & & & & \\ 6570 & & & \\ 6660 & & & \\ & & & \end{array}$	$egin{array}{c c} 7690 & & & & \\ 7500 & & & & \\ 6570 & & & \\ 6660 & & & \\ & & & \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 2410 \\ 2320 \\ 2010 \\ 2040 \\ 2040 \\ \end{array} $
$egin{array}{c} { m A Ve} \\ { m A }_{10} \\ { m A }_{20} \\ { m A }_{30} \\ { m A }_{40} \\ { m A }_{Ve} \end{array}$	erage of B - B - B - B - B - B - B - B - B - B	$egin{array}{c c} C & \ C_{10} & \ C_{20} & \ C_{30} & \ C_{40} & \ \end{array}$		reaks						·	4320 4020 2970 3180 2320
$egin{array}{c} { m A}_{10} \ { m A}_{20} \ { m A}_{30} \end{array}$	- B - - B ₁₀ - - B ₂₀ - - B ₃₀ - - B ₄₀ -	C ₁₀ C ₂₀ C ₃₀									4910 4550 3310 3720 2740

(Mortar Specimens)

Tested at age of 52 weeks

	Dim'nsions			Weight		Load		Stress			
	made			_						in.	in.
Series No.	Spec'c 1 Date	Height	Diam. inches	Area in inches	Vol. in inches	cal ns.	it 1s.	Cr.	Ult. lbs.	Cr. /sq.	Ult. lb./sq. in.
Ser	Sp	He				Total Gms.	Unit Gms.	1st 1bs		1st (1b./	<u> </u>
A		$ \begin{bmatrix} 2.05 \\ 2.05 \\ 2.07 \end{bmatrix} $	$\begin{vmatrix} 2.05 \\ 2.00 \\ 2.00 \end{vmatrix}$	3.30	6.77	$ \begin{bmatrix} 258 \\ 241 \\ 260 \end{bmatrix} $	38.1	12570 - 10380 - 115830	$ \begin{array}{r} 12570 \\ 10380 \\ 15800 \\ \end{array} $	$\begin{vmatrix} 3809 \\ 3304 \\ 5056 \end{vmatrix}$	3809 3304 5056
Avr.		$\begin{vmatrix} 2.07 \\ 2.05 \end{vmatrix}$	$\begin{vmatrix} 2.00 \\ 2.00 \end{vmatrix}$	$\begin{vmatrix} 3.14 \\ \\ 3.14 \end{vmatrix}$	6.50 6.44	244	37.9	15890 - 12946 - 12110	$\begin{vmatrix} 13376 \\ 12946 \\ 12110 \end{vmatrix}$	4058 3859	4056 3859
В		$\begin{vmatrix} 2.04 \\ 2.03 \end{vmatrix}$	$\begin{bmatrix} 2 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}$	3.14	$\begin{vmatrix} 6.41 \\ 6.37 \end{vmatrix}$	$\begin{vmatrix} 238 \\ 237 \end{vmatrix}$	$\begin{vmatrix} 37.1 \\ 37.2 \end{vmatrix}$	$\begin{vmatrix} 11000 \\ 8000 \end{vmatrix}$	$\begin{vmatrix} 13000 \\ 10210 \end{vmatrix}$	$\begin{vmatrix} 3502 \\ 2547 \end{vmatrix}$	$\begin{vmatrix} 4140 \\ 3252 \end{vmatrix}$
Avr.		$\frac{1}{2.04}$	2.00	[3.14]	$\begin{bmatrix} 6.41 \end{bmatrix}$	246	38.4	$\begin{vmatrix} 10370 \\ 12000 \end{vmatrix}$	$\begin{vmatrix} 11773 \\ 13650 \end{vmatrix}$	$\begin{vmatrix} 3303 \\ 3822 \end{vmatrix}$	$\begin{vmatrix} 3750 \\ 4350 \end{vmatrix}$
C		$\begin{vmatrix} 2.04 \\ 2.02 \end{vmatrix}$	$\begin{bmatrix} 2.00 \\ 2.02 \end{bmatrix}$	$\begin{vmatrix} 3.14 \\ 3.21 \end{vmatrix}$	6.41	245 248	$\begin{vmatrix} 38.2 \\ 38.3 \end{vmatrix}$	10000 - 15000 - 12333	$\begin{vmatrix} 11850 \\ 15770 \\ 13757 \end{vmatrix}$	$\begin{vmatrix} 3180 \\ 4672 \\ 4225 \end{vmatrix}$	3772 4912 4345
$rac{ ext{Avr.}}{ ext{A}_{10}}$		$\begin{vmatrix} 2.00 \\ 2.04 \end{vmatrix}$	$\begin{bmatrix} 2.00 \\ 2.00 \end{bmatrix}$	3.14	6.28	257 233	40.9	$\begin{vmatrix} 12555 \\ 11500 \\ \end{vmatrix}$	118)0 11550	3660 3678	3782
Avr.		$\begin{bmatrix} 2.00 \end{bmatrix}$	$ \tilde{2}.00 $	3.14	6.28	260	41.4	12000 - 11683	$\begin{vmatrix} 12000 \\ 11813 \end{vmatrix}$	$\begin{vmatrix} 3821 \\ 3720 \end{vmatrix}$	$\begin{vmatrix} 3820 \\ 3760 \end{vmatrix}$
B_{10}		$\begin{vmatrix} 2.08 \\ 2.05 \end{vmatrix}$	$\begin{vmatrix} 2.00 \\ 2.02 \end{vmatrix}$	$\begin{vmatrix} 3.14 \\ 3.21 \end{vmatrix}$	$\begin{vmatrix} 6.53 \\ 6.58 \end{vmatrix}$	246	37.7	$\begin{bmatrix} 13000 \\ 10600 \end{bmatrix}$	$\begin{bmatrix} 13600 \\ 16080 \end{bmatrix}$	4138 3300	4331
Avr.		$\begin{vmatrix} 2.00 \\ \\ 2.10 \end{vmatrix}$	$\begin{vmatrix} 1.93 \\ 2.00 \end{vmatrix}$	$\begin{bmatrix} 2.93 \\ \end{bmatrix}$	$\begin{bmatrix} 5.86 \\ 6.59 \end{bmatrix}$	238 256	[40.7] [38.9]	$egin{array}{c} 14500 \\ 12700 \\ 9506 \\ \hline \end{array}$	$ \begin{array}{r} 14500 \\ 12927 \\ 9500 \\ \end{array} $	$\begin{vmatrix} 4950 \\ 4129 \\ 3240 \end{vmatrix}$	4948 4202 3025
C_{10}		$\begin{vmatrix} 2.10 \\ 2.06 \\ 2.05 \end{vmatrix}$	$\begin{vmatrix} 2.00 \\ 2.00 \end{vmatrix}$	$\begin{vmatrix} 3.14 \\ 3.14 \end{vmatrix}$	$\begin{vmatrix} 6.47 \\ 6.43 \end{vmatrix}$	$\begin{vmatrix} 256 \\ 256 \\ 242 \end{vmatrix}$	$\begin{vmatrix} 39.6 \\ 37.6 \end{vmatrix}$	$\begin{vmatrix} 14200 \\ 10800 \end{vmatrix}$	$\begin{vmatrix} 14250 \\ 10800 \end{vmatrix}$	4540 3440	4537 3440
Avr.		2.12	2.00	3.14	6.66	256	38.4	11500	$\begin{vmatrix} 11517 \\ 11970 \end{vmatrix}$	3740 2548	$\begin{vmatrix} 3667 \\ 3812 \end{vmatrix}$
A_{20}		$\begin{vmatrix} 2.12 \\ 2.04 \end{vmatrix}$	$\begin{bmatrix} 2.00 \\ 2.04 \end{bmatrix}$	$\begin{vmatrix} 3.14 \\ 3.27 \end{vmatrix}$	$\begin{vmatrix} 6.66 \\ 6.67 \end{vmatrix}$	255 $ 259 $	38.3 38.8	$\begin{vmatrix} 12860 \\ 13000 \\ \end{vmatrix}$	12860 $ 14120 $	4068 3976 2521	4069 4320
Avr.		$\begin{vmatrix} 2.05 \\ 2.04 \end{vmatrix}$	$\begin{vmatrix} 2.00 \\ 2.00 \end{vmatrix}$	 3.14 3.14	6.43 6.40	$\begin{vmatrix} 254 \\ 252 \end{vmatrix}$	 39.5 39.4	$ \begin{vmatrix} 11287 \\ 8000 \\ \hline 11500 $	$\begin{vmatrix} 12983 \\ 9940 \\ 11680 \end{vmatrix}$	$\begin{vmatrix} 3531 \\ 2547 \\ 3661 \end{vmatrix}$	$\begin{vmatrix} 4067 \\ 3166 \\ 3720 \end{vmatrix}$
$ m B_{20}$ Avr.		2.05	$\begin{bmatrix} 2.00 \\ \end{bmatrix}$	3.14	6.43	255	$\begin{bmatrix} 39.7 \\ \end{bmatrix}$	$ 11610 \\ 10370 $	11610 $ 11077 $	$\begin{vmatrix} 3700 \\ 3303 \end{vmatrix}$	$\begin{array}{r} 3700 \\ 3529 \end{array}$
C ₂₀		$\begin{vmatrix} 2.08 \\ 2.05 \\ 2.02 \end{vmatrix}$	$\begin{vmatrix} 2.00 & \cdot \\ 2.02 & \\ 2.02 & \end{vmatrix}$	$\begin{vmatrix} 3.14 \\ 3.21 \\ 3.21 \end{vmatrix}$	$\begin{bmatrix} 6.53 \\ 6.58 \\ 6.48 \end{bmatrix}$	$\begin{vmatrix} 244 \\ 257 \\ 255 \end{vmatrix}$	$\begin{vmatrix} 37.4 \\ 39.1 \\ 39.3 \end{vmatrix}$	$ \begin{vmatrix} 6200 \\ 9000 \\ 8500 \end{vmatrix} $	6860 9260 8800	$ \begin{vmatrix} 1973 \\ 2810 \\ 2647 \end{vmatrix} $	2184 2884 2740
Avr.		$\begin{bmatrix} 2.10 \\ 2.20 \end{bmatrix}$	2.00	3.14	6.59	257	39.0	7900 - 7000 - 1101000 - 110100 - 110100 - 110100 - 110100 - 110100 - 110100 - 1101000 - 1101000 - 1101000 - 1101000 - 1101000 - 1101000 - 1101000 - 1101000 - 1101000 - 11010000 - 11010000 - 110100000 - 110100000 - 11010000 - 110100000 - 110100000 - 11010000 - 11010000000 - 1	8307 7100	2477 $ 2228 $	$ \begin{array}{r} $
A ₃₀		$\begin{vmatrix} 2.04 \\ 2.07 \end{vmatrix}$	$\begin{vmatrix} 1.98 \\ 2.04 \end{vmatrix}$	$\begin{vmatrix} 3.08 \\ 3.27 \end{vmatrix}$	$\begin{vmatrix} 6.28 \\ 6.77 \end{vmatrix}$	$ 239 \\ 258 \\ $	38.1 38.1	10100 - 7260 - 8120	$egin{array}{c c} 10470 \\ 7260 \\ 8277 \\ \hline \end{array}$	$\begin{vmatrix} 3279 \\ 2220 \\ 2576 \end{vmatrix}$	$\begin{vmatrix} 3398 \\ 2220 \\ 2626 \end{vmatrix}$
Avr. B ₃₀		$\begin{vmatrix} 2.07 \\ 2.07 \\ 2.06 \end{vmatrix}$	$\begin{vmatrix} 2.00 \\ 2.04 \\ 2.00 \end{vmatrix}$	$\begin{vmatrix} 3.14 \\ 3.27 \\ 3.14 \end{vmatrix}$	$\begin{vmatrix} 6.50 \\ 6.77 \\ 6.47 \end{vmatrix}$	$\begin{vmatrix} 244 \\ 257 \\ 244 \end{vmatrix}$	37.6 38.0 37.7	$\begin{vmatrix} 5500 \\ 8740 \\ 10260 \end{vmatrix}$	$\begin{vmatrix} 5760 \\ 8740 \\ 10260 \end{vmatrix}$	$\begin{vmatrix} 1751 \\ 2673 \\ 3268 \end{vmatrix}$	$\begin{vmatrix} 1834 \\ 2672 \\ 3268 \end{vmatrix}$
Avr.		$\begin{vmatrix} 2.06 \\ 2.06 \end{vmatrix}$	$\begin{vmatrix} 2.00 \\ 2.00 \end{vmatrix}$	3.14	6.47	256	39.6	8166 6400	8253 6400	$\begin{vmatrix} 2564 \\ 2039 \end{vmatrix}$	$\begin{vmatrix} 2591 \\ 2039 \end{vmatrix}$
C ₃₀		$\begin{vmatrix} 2.04 \\ 2.05 \end{vmatrix}$	$\begin{vmatrix} 2.00 \\ 2.00 \end{vmatrix}$	$\begin{vmatrix} 3.14 \\ 3.14 \end{vmatrix}$	$\begin{vmatrix} 6.41 \\ 6.43 \end{vmatrix}$	$\begin{array}{c} 252 \\ 251 \end{array}$	$\begin{vmatrix} 39.3 \\ 39.1 \end{vmatrix}$	8470	8970	2857 2130	$\begin{vmatrix} 2857 \\ 2144 \end{vmatrix}$
Avr.		$\begin{vmatrix} 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 \end{vmatrix}$	1.98	$\begin{vmatrix} 3.08 \\ 3.14 \end{vmatrix}$	$\begin{vmatrix} 6.31 \\ 6.59 \end{vmatrix}$	$\begin{vmatrix} 239 \\ 253 \end{vmatrix}$	 37,9 38.4	$egin{array}{c c} 7203 \\ 6120 \\ 9290 \\ \end{array}$	7370 6260 9340	$ \begin{vmatrix} 2345 \\ 1987 \\ 2957 \end{vmatrix} $	
$egin{array}{c} A_{40} \ Avr. \end{array}$		$\begin{vmatrix} 2.10 \\ 2.08 \end{vmatrix}$	$\begin{bmatrix} 2.00 \\ 2.00 \end{bmatrix}$	3.14	6.53	240	36.8	8425 7945	8425	$\begin{vmatrix} 2681 \\ 2542 \end{vmatrix}$	$\begin{array}{c} 2680 \\ 2562 \end{array}$
D_{40}		$egin{array}{c} 2.10 \ 2.10 \ 2.10 \ \end{array}$	$\begin{bmatrix} 2.00 \\ 2.00 \\ 2.00 \end{bmatrix}$	$\begin{vmatrix} 3.14 \\ 3.14 \\ 3.14 \end{vmatrix}$	$ \begin{vmatrix} 6.59 \\ 6.59 \\ 6.59 \end{vmatrix} $	$ \begin{vmatrix} 252 \\ 246 \\ 252 \end{vmatrix} $	$\begin{vmatrix} 38.2 \\ 37.4 \\ 38.2 \end{vmatrix}$	5980 5870 7000	5980 5870 7100	$\begin{array}{c c} 1904 \\ 1870 \\ 2230 \end{array}$	$ \begin{array}{c c} 1904 \\ 1870 \\ 2260 \end{array} $
$ ext{Avr.}$ $ ext{C}_{49}$		$\begin{vmatrix} 2.08 \\ 2.10 \end{vmatrix}$	$\begin{bmatrix} 2.00 \\ 2.00 \\ 12.00 \end{bmatrix}$	 3.14 3.14 2.14	 6.53 6.59 6.62	$\begin{vmatrix} 251 \\ 249 \\ 250 \end{vmatrix}$	38.5 37.8 37.8	$ \begin{array}{c c} 6283 \\ 6000 \\ 4480 \\ 7170 \end{array} $	$ \begin{array}{ c c c c } 6317 \\ 6430 \\ 4480 \\ 7170 \end{array} $	$ \begin{vmatrix} 2001 \\ 1910 \\ 1428 \\ 2282 \end{vmatrix} $	
Avr.	 vera <i>e</i> e (2.11 of Ave	2.00 rages	3 14	6.62	200	131.0	-5883	6027	13383	1919
$A - A_{10} - A_{20}	B & C B ₁₀ & C B ₂₀ & C B ₃₀ & C B ₄₀ & C	7 7 7 7 9 0 7 9 0			•					3860 3863 73104 2405 2139	$\begin{array}{c} 4050 \\ 3876 \\ 3401 \\ 2521 \\ 2164 \end{array}$
A_{10} A_{10} A_{20} A_{30}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	of Hig 	hest B	reaks 						4529 4468 3526 9404 2490	4703 4435 3641 3174 2506

TIME OF SET AND NORMAL CONSISTENCY

			of Set Vicat.	N'rm'l C'nsistency			
	Initial		F	inal			
	Hours	Minutes	Hours	Minutes	Neat paste Per Cent	1:3 Sand Mortar Per Cent	
$egin{array}{c} A & & & & & & & & & & & & & & & & & & $	$\begin{bmatrix} 2\\0\\1\\4\\5 \end{bmatrix}$	$ \begin{array}{ c c c } \hline 50 \\ 20 \\ 35 \\ 40 \\ 03 \end{array} $	5 5 5 8 6	$\begin{array}{ c c c }\hline 20\\ 10\\ 30\\ 30\\ 23\\ \end{array}$	$ \begin{array}{ c c c c c } \hline 22 \\ 26 \\ 23 \\ 22 \frac{1}{2} \\ 21 \frac{1}{2} \\ \end{array} $	10.2 10.8 10.3 10.25 10.1	
$egin{array}{c} { m B} \\ { m B}_{10} \\ { m B}_{20} \\ { m B}_{30} \\ { m B}_{10} \end{array}$	4 3 2 5 7	55 15 15 45 35	$egin{array}{c c} 9 \\ 6 \\ 5 \\ 9 \\ 10 \\ \end{array}$	$egin{array}{c} 00 \\ 20 \\ 50 \\ 35 \\ 15 \\ \end{array}$	$\begin{bmatrix} 21 \\ 24 \\ 22 \frac{1}{2} \\ 22 \\ 21 \end{bmatrix}$	10.1 10.5 10.25 10.2 9.9	
$egin{array}{c} C \\ C_{10} \\ C_{20} \\ C_{30} \\ C_{40} \\ \end{array}$	3 3 4 5 4	$ \begin{vmatrix} 50 \\ 45 \\ 35 \\ 02 \\ 55 \end{vmatrix} $	5 6 8 7	$egin{array}{c c} 55 \\ \hline 10 \\ 25 \\ 25 \\ \end{array}$	$ \begin{array}{ c c c c c } \hline & 21 \frac{1}{2} & \\ & 25 & \\ & 23 \frac{1}{2} & \\ & 22 \frac{1}{2} & \\ & 21 \frac{1}{2} & \\ \hline \end{array} $	10.1 10.7 10.4 10.25 10.1	
$\begin{array}{ccccc} A, & B, & C \\ A_{10}, & B_{10}, & C_{10} \\ A_{20}, & B_{20}, & C_{20} \\ A_{30}, & B_{30}, & C_{20} \\ A_{40}, & B_{40}, & C_{40} \end{array}$	3 2 5 5 5	$ \begin{array}{ c c c } 52 \\ 27 \\ 48 \\ 09 \\ 51 \end{array} $	Averas 6 5 6 8 8	ses 45 50 30 30 01	$\begin{array}{c cccc} 21 \frac{1}{2} & \\ 25 & \\ 23 & \\ 22 \frac{1}{3} & \\ 21 \frac{1}{3} & \end{array}$	$10.13 \\ 10.66 \\ 10.32 \\ 10.23 \\ 10.03$	

SIEVE ANALYSIS

Cement Series No.	Passing No. 200	Retained on No. 200	Retained on No. 150	Retained on No. 100	Retained on No. 65	Retained on No. 48	Retained on No. 35
A B C Sand	78.0 78.2 77.3 17.9	$\begin{array}{ c c c }\hline & 22.0 \\ & 21.8 \\ & 22.7 \\ & 82.1 \\ \end{array}$	$ \begin{array}{ c c c } \hline 15.3 \\ 15.9 \\ 16.4 \\ 55.9 \\ \end{array} $	$ \begin{vmatrix} 5.6 \\ 6.1 \\ 4.6 \\ 16.4 \end{vmatrix} $	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c }\hline 0.1 \\ 0.0 \\ 0.3 \\ 1.8 \\ \end{array}$	0.0 0.0 0.1 0.6

MISSOURI SCHOOL OF MINES BULLETINS

TECHNICAL SERIES

- Vol. 1, No. 1. November, 1911. Friction in air pipes. E. G. Harris. (Continuation of General Series, Vol. 2, No. 4.)
- Vol. 1, No. 2. February, 1912. Metallurgical and ore dressing laboratories of the Missouri School of Mines and Metallurgy. D. Copeland, H. T. Mann, H. A. Roesler (Out of print.)
- Vol. 1, No. 3. May, 1912. Some apparatus and methods for demonstrating rock drilling and the loading of drill holes in tunneling. D. E. Young.
- Vol. 1, No. 4. August, 1912. Friction in air pipes. E. G. Harris. (Continuation of Vol. 1, No. 1, November, 1911.)
- Vol. 2, No. 1. August, 1915. Comparative Tests of Piston-Drill Bits. C. R. Forbes and L. M. Cummings.
- Vol. 2, No. 2. November, 1915. Orifice measurements of air in large quantities. Elmo G. Harris.
- Vol. 2, No. 3. February, 1916. Cupellation Losses in Assaying. H. T. Mann and C. Y. Clayton.
- Vol. 2, No. 4. May, 1916. Geologic Criteria for determining the structural position of sedimentary beds. G. H. Cox and C. L. Dake (Out of print.)
- Vol. 3, No. 1. August, 1916. Experiments from the flotation laboratory. C. Y. Clayton (Out of print.)
- Vol. 3, No. 2. November, 1916. Studies on the origin of Missouri cherts and zinc ores. G. H. Cox, R. S. Dean and V. H. Gottschalk.

GENERAL SERIES

- Vol. 8, No. 1. January, 1916. Bibliography on concentrating ores by flotation. Jesse Cunningham.
- Vol. 8, No. 3. June, 1916. The business of mining. W. R. Ingalls (Commencement address, May 26, 1916.)
- Vol. 8, No. 4. October, 1916. Register of graduates, 1874-1916.

0 019 454 007 3