Gov 50: 23. More Hypothesis testing

Matthew Blackwell

Harvard University

Roadmap

1. Reviewing hypothesis testing

1/ Reviewing hypothesis testing

Difference-in-means

```
library(gov50data)
trains <- trains |>
  mutate(treated = if_else(treatment == 1, "Treated", "Untreated"))
trains
```

```
## # A tibble: 115 x 15
       age male income white college usborn treatment
##
     <dbl> <dbl> <dbl> <dbl> <dbl>
##
                              <dbl> <dbl>
                                                  <fdh>>
        31
               0 135000
##
   1
        34
               0 105000
##
   2
##
   3
        63
           1 135000
   4 45
              1 300000
##
##
   5 55
           1 135000
        37
               0 87500
##
   6
        53
               0 87500
##
##
        36
               1 135000
   8
##
        54
               0 105000
##
  10
        42
               1 135000
  # i 105 more rows
      8 more variables: ideology <dbl>, numberim.pre <dbl>,
## #
      numberim.post <dbl>, remain.pre <dbl>,
## #
      remain.post <dbl>, english.pre <dbl>,
## #
```

Calculating the ATE

```
## Response: numberim.post (numeric)
## Explanatory: treated (factor)
## # A tibble: 1 x 1
## stat
## <dbl>
## 1 0.383
```

Difference in means hypotheses

Hypotheses:

$$H_0: \mu_T - \mu_C = 0$$

 $H_1: \mu_T - \mu_C \neq 0$

Observed difference in means:

$$\widehat{ATE} = \overline{Y}_T - \overline{Y}_C$$

Difference in means hypotheses

Hypotheses:

$$H_0: \mu_T - \mu_C = 0$$

 $H_1: \mu_T - \mu_C \neq 0$

$$\widehat{ATE} = \overline{Y}_T - \overline{Y}_C$$

How can we approximate the **null distribution? Permute** the outcome/treatment variables.

Permuting the treatment

Let's do 2 permutations to see how things vary:

generate(type = "permute") shuffles to the outcomes, keeping
treatment the same:

perm |> filter(replicate == 1)

3 Untreated

3 Treated

i 105 more rows

##

##	# A tibble	: 115 x 3		##	# A	tibble:	115 x 3	_
	# # Groups: replicate [1]			## # Groups: replicate [1]				
##	numberim	.post treated	replicate	##	nu	ımberim.po	st treated	replicate
##	<d< td=""><td>bl> <fct></fct></td><td><int></int></td><td>##</td><td></td><td><dbl< td=""><td>> <fct></fct></td><td><int></int></td></dbl<></td></d<>	bl> <fct></fct>	<int></int>	##		<dbl< td=""><td>> <fct></fct></td><td><int></int></td></dbl<>	> <fct></fct>	<int></int>
##	1	3 Treated	1	##	1		2 Treated	2
##	2	2 Treated	1	##	2		3 Treated	2
##	3	5 Treated	1	##	3		3 Treated	2
##	4	3 Treated	1	##	4		3 Treated	2
##	5	3 Untreated	1	##	5	3	3 Untreated	2
##	6	3 Treated	1	##	6		4 Treated	2
##	7	2 Untreated	1	##	7	2	2 Untreated	2
##	8	2 Treated	1	##	8		3 Treated	2

9

10

i 105 more rows

perm |> filter(replicate == 2)

3 Untreated

2 Treated

2

Null distribution

The distribution of the differences-in-means under permutation will be mean 0 because shuffling the outcomes means that the outcomes in each permutation's treated and control group are coming from the same distribution.

```
null_dist |>
  visualize() +
  shade_p_value(obs_stat = ate, direction = "both")
```


Interpreting p-values

<dbl>## 1 0.022

```
get_p_value(null_dist, obs_stat = ate, direction = "both")
## # A tibble: 1 x 1
## p_value
```

Interpreting p-values

get_p_value(null_dist, obs_stat = ate, direction = "both")

```
## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.022
```

Hypotheses:

$$H_0 : \mu_T - \mu_C = 0$$

 $H_1 : \mu_T - \mu_C \neq 0$

Observed difference in means:

$$\widehat{ATE} = \overline{Y}_T - \overline{Y}_C$$

Interpreting p-values

get_p_value(null_dist, obs_stat = ate, direction = "both")

```
## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.022
```

Hypotheses:

$$H_0: \mu_T - \mu_C = 0$$

 $H_1: \mu_T - \mu_C \neq 0$

Observed difference in means:

$$\widehat{ATE} = \overline{Y}_T - \overline{Y}_C$$

p-value: probability of an estimated ATE as big as $|\widehat{ATE}|$ by random chance if there is no treatment effect.

Rejecting the null

Decision rule: "reject the null if the p-value is below the **test level** α "

Rejecting the null

Decision rule: "reject the null if the p-value is below the **test level** α "

Rejecting the null in two-sample tests: there is a true difference in means.

Rejecting the null

Decision rule: "reject the null if the p-value is below the **test level** α "

Rejecting the null in two-sample tests: there is a true difference in means.

Test level α controls the amount of false positives:

	Null False (True difference)	Null True (No true difference)
Reject Null	True Positive	False Positive (Type I error)
Retain Null	False Negative (Type II error)	True Negative

• There is a deep connection between confidence intervals and tests.

- · There is a deep connection between confidence intervals and tests.
- Any value outside of a $100 \times (1-\alpha)\%$ confidence interval would have a p-value less than α if we tested it as the null hypothesis.

- · There is a deep connection between confidence intervals and tests.
- Any value outside of a $100 \times (1-\alpha)\%$ confidence interval would have a p-value less than α if we tested it as the null hypothesis.
 - 95% CI for social pressure experiment: [0.016, 0.124]

- · There is a deep connection between confidence intervals and tests.
- Any value outside of a $100 \times (1-\alpha)\%$ confidence interval would have a p-value less than α if we tested it as the null hypothesis.
 - 95% CI for social pressure experiment: [0.016, 0.124]
 - \rightsquigarrow p-value for $H_0: \mu_T \mu_C = 0$ less than 0.05.

- · There is a deep connection between confidence intervals and tests.
- Any value outside of a $100 \times (1-\alpha)\%$ confidence interval would have a p-value less than α if we tested it as the null hypothesis.
 - 95% CI for social pressure experiment: [0.016, 0.124]
 - \rightsquigarrow p-value for $H_0: \mu_T \mu_C = 0$ less than 0.05.
- Confidence intervals are all of the null hypotheses we can't reject with a test.

CI in the trains example

```
## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.0893 0.698
```