A - UOIAUAI

Time Limit: 2 sec / Memory Limit: 256 MB

 $\mathsf{Score}: 100\,\mathsf{points}$

Problem Statement

Given a lowercase English letter c, determine whether it is a vowel. Here, there are five vowels in the English alphabet: a, e, i, o and u.

Constraints

ullet c is a lowercase English letter.

Input

The input is given from Standard Input in the following format:

c

Output

If c is a vowel, print vowel. Otherwise, print consonant.

Sample Input 1

а

Sample Output 1

vowel

Since a is a vowel, print vowel.

Sample Input 2

z

Sample Output 2

consonant			

Sample Input 3

s

Sample Output 3

consonant

B-Thin

Time Limit: 2 sec / Memory Limit: 256 MB

Score: 200 points

Problem Statement

There is an image with a height of H pixels and a width of W pixels. Each of the pixels is represented by either \cdot or *. The character representing the pixel at the i-th row from the top and the j-th column from the left, is denoted by $C_{i,j}$.

Extend this image vertically so that its height is doubled. That is, print a image with a height of 2H pixels and a width of W pixels where the pixel at the i-th row and j-th column is equal to $C_{(i+1)/2,j}$ (the result of division is rounded down).

Constraints

- $1 \leq H, W \leq 100$
- $C_{i,j}$ is either or *.

Input

The input is given from Standard Input in the following format:

Output

Print the extended image.

Sample Input 1

2 2 *•

•*

Sample Output 1

	*.
	*.
	•*
	.*
L	

Sample Input 2

```
1 4
***.
```

Sample Output 2

```
***.
***.
```

Sample Input 3

```
9 20 ....***...***...
...*...**...**...
...*...**...*...
...*...**...*...
...**...**...
...**...**...
...**...**...
...**...**...
...**...**...
```

Sample Output 3

**	
**	
**	

**.*	
**.*	
**	
**	

C - Daydream

Time Limit: 2 sec / Memory Limit: 256 MB

Score: 300 points

Problem Statement

You are given a string S consisting of lowercase English letters. Another string T is initially empty. Determine whether it is possible to obtain S=T by performing the following operation an arbitrary number of times:

• Append one of the following at the end of T: dream, dreamer, erase and eraser.

Constraints

- $1 \le |S| \le 10^5$
- ullet consists of lowercase English letters.

Input

The input is given from Standard Input in the following format:

S

Output

If it is possible to obtain S=T, print YES. Otherwise, print NO.

Sample Input 1

erasedream

Sample Output 1

YES

Append erase and dream at the end of T in this order, to obtain S=T.

Sample Input 2

dreameraser

Sample Output 2

YES

Append dream and eraser at the end of T in this order, to obtain S=T.

Sample Input 3

dreamerer

Sample Output 3

N0

D - Connectivity

Time Limit: 2 sec / Memory Limit: 256 MB

Score: 400 points

Problem Statement

There are N cities. There are also K roads and L railways, extending between the cities. The i-th road bidirectionally connects the p_i -th and q_i -th cities, and the i-th railway bidirectionally connects the r_i -th and s_i -th cities. No two roads connect the same pair of cities. Similarly, no two railways connect the same pair of cities.

We will say city A and B are connected by roads if city B is reachable from city A by traversing some number of roads. Here, any city is considered to be connected to itself by roads. We will also define connectivity by railways similarly.

For each city, find the number of the cities connected to that city by both roads and railways.

Constraints

- $2 \leq N \leq 2 * 10^5$
- $1 \le K, L \le 10^5$
- $1 \leq p_i, q_i, r_i, s_i \leq N$
- $p_i < q_i$
- $r_i < s_i$
- When $i \neq j$, $(p_i,q_i) \neq (p_j,q_j)$
- When i
 eq j , $(r_i, s_i)
 eq (r_j, s_j)$

Input

The input is given from Standard Input in the following format:

Output

Print N integers. The i-th of them should represent the number of the cities connected to the i-th city by both roads and railways.

Sample Input 1

4 3 1

1 2

2 3

3 4

2 3

Sample Output 1

1 2 2 1

All the four cities are connected to each other by roads.

By railways, only the second and third cities are connected. Thus, the answers for the cities are 1, 2, 2 and 1, respectively.

Sample Input 2

4 2 2

1 2

2 3

1 4

2 3

Sample Output 2

1 2 2 1

Sample Input 3

7 4 4		
1 2		
2 3		
2 5		
6 7		
3 5		
4 5		
3 4		
6 7		
0 /		

Sample Output 3

1 1 2 1 2 2 2