Luis Norberto Zúñiga Morales

21 de agosto de 2022

- Gradiente Descendiente es un algoritmo de optimización iterativo de primer orden.
- Permite encontrar mínimos locales en una función diferenciable.
- La idea básica es dar pasos pequeños en dirección contraria al gradiente.

Requisitos:

La función debe ser diferenciable.

Requisitos:

- La función debe ser diferenciable.
 - ¿Qué significa que una función sea diferenciable?

Requisitos:

- La función debe ser diferenciable.
 - ¿Qué significa que una función sea diferenciable?
- La función debe ser convexa.

Requisitos:

- La función debe ser diferenciable.
 - ¿Qué significa que una función sea diferenciable?
- La función debe ser convexa.
 - ¿Qué significa que una función sea convexa?

$$f(\lambda x_1 + (1-\lambda)x_2) < \lambda f(x_1) + (1-\lambda)f(x_2)$$

Ejercicio #1

Dibujen una función diferenciable.

Ejercicio #1

Dibujen una función diferenciable.

Ejercicio #2

Dibujen un función convexa y una que no sea convexa.

Definición: Gradiente

Para $f: \mathbb{R}^n \to \mathbb{R}$ su gradiente $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$ en un punto $p = (x_1, \dots, x_n)$ se define como:

$$\nabla f(p) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(p) \\ \vdots \\ \frac{\partial f}{\partial x_n}(p) \end{bmatrix}.$$

Ejercicio #3

Determinar al gradiente de la función

$$f(x,y) = 0.5x^2 + y^2$$

en el punto p = (5, 5).

Algoritmo

- Gradiente Descendiente calcula iterativamente el siguiente punto usando el gradiente en el punto en turno.
- Lo escala (razón de aprendizaje).
- Resta este resultado a la posición actual.

Algoritmo

- Gradiente Descendiente calcula iterativamente el siguiente punto usando el gradiente en el punto en turno.
- Lo escala (razón de aprendizaje).
- Resta este resultado a la posición actual.

$$p_{m+1} = p_m - \eta \nabla f(p_m)$$

Algoritmo

Gradiente Descendiente

$$p_{m+1} = p_m - \eta \nabla f(p_m)$$

• El parámetro η permite escalar el valor del gradiente, lo que hace cada paso más grande o más pequeño.

Algoritmo

$$p_{m+1} = p_m - \eta \nabla f(p_m)$$

- El parámetro η permite escalar el valor del gradiente, lo que hace cada paso más grande o más pequeño.
- En Machine Learning, η es la razón de aprendizaje (*learning rate*).

Algoritmo

$$p_{m+1} = p_m - \eta \nabla f(p_m)$$

- El parámetro η permite escalar el valor del gradiente, lo que hace cada paso más grande o más pequeño.
- En Machine Learning, η es la razón de aprendizaje (*learning rate*).
 - Si es muy pequeño, tarda más en converger.

Algoritmo

$$p_{m+1} = p_m - \eta \nabla f(p_m)$$

- El parámetro η permite escalar el valor del gradiente, lo que hace cada paso más grande o más pequeño.
- En Machine Learning, η es la razón de aprendizaje (*learning rate*).
 - Si es muy pequeño, tarda más en converger.
 - Si es muy grande, da saltos grandes, inclusive no llegando a converger.

Algoritmo

- Elegir un punto de salida (random).
- Calcular el gradiente en ese punto.
- O Determinar el nuevo punto según

$$p_{m+1} = p_m - \eta \nabla f(p_m)$$

- 4 Condición de paro:
 - Número máximo de iteraciones.
 - El tamaño del paso es menor que un valor de tolerancia.

Ejercicio: Consideren el siguiente estado del gradiente descendiente. ¿Qué resultaría en la siguiente iteración del algoritmo?

Una de las preguntas que se pueden realizar es cómo elegir la razón de aprendizaje η ya que no es un parámetro obvio.

Figura: Efectos de la razón de aprendizaje.

La mejor forma es graficar diferentes valores de η vs el número de iteraciones.

Making sure gradient descent is working correctly.

- For sufficiently small $\, lpha , \, \, \underline{J(heta)} \,$ should decrease on every iteration.
- But if lpha is too small, gradient descent can be slow to converge.

Figura: Probables problemas con el gradiente descendiente.

Razón de Aprendizaje

Lo mejor es elegir η pequeño. Si es lo suficientemente pequeño, gradiente descendiente converge. Si es muy pequeño, tarda en converger.

Lo mejor en práctica es utilizar valores iniciales de $\eta=0.001,0.01,0.1$ y graficar su rendimiento. Aumentar gradualmente (doble o triple) el mejor valor para encontrar un buen parámetro.