Data Science for Actuaries (ACT6100)

Arthur Charpentier

Rappels # 4.6 (Convex Optimization)

automne 2020

Floating-point Arithmetic

To study computational time, consider basic operations.

See floating point operations (FLOP) on wikipedia

A 3GHz processor can carry out 300 billions of flops (300 GFLOPS)

- lacktriangle operations a+b, a-b, ab, a/b (where $a,b\in\mathbb{R}$) = 1 flop
- ▶ addition a + b (where $a, b \in \mathbb{R}^n$) = n flops
- ▶ inner product $\mathbf{a}^{\top}\mathbf{b}$ (where $\mathbf{a},\mathbf{b} \in \mathbb{R}^n$) = 2n flops
- ▶ matrix product **AB** $(m \times n \text{ and } n \times p \text{ matrices}) = 2mnp \text{ flops}$
- solving $\mathbf{A}\mathbf{x} = \mathbf{b}$ in $\mathbb{R}^n = \text{(generally) } n^3$ flops (for triangular matrix $\mathbf{A} = n^2$ flops) (for orthogonal matrix $\mathbf{A} = 2n^2$ flops) (for definite positive matrix $\mathbf{A} = 2n^2$ flops via Cholesky $\mathbf{A} = \mathbf{L}\mathbf{L}^{\top}$, solve $\mathbf{L}\mathbf{y} = \mathbf{b}$ and then $\mathbf{L}^{\top}\mathbf{x} = \mathbf{y}$)
- ▶ solving a least square problem = np^2 flops