FATTI DI EGA

NOTAZIONI ED INTRODUZIONE

Il corso da cui sono tratti gli enunciati è diviso in alcune parti: nella prima si cerca di dare un'introduzione più concreta alla geometria algebrica attraverso anche esempi di curve in \mathbb{P}^2 , nella seconda si fanno altre cose... bla bla bla...

ENUNCIATI PRIMA PARTE

• (Irriducibilità di $y^2 - f(x)$) $p(x,y) = y^2 - f(x) \in \mathbb{K}[x][y]$. Se nella fattorizzazione di $f(x) = c \cdot p_1^{\alpha_1} \dots p_k^{\alpha_k}$ con p_i irriducibili e distinti, $\alpha_i > 0$ esiste un i tale che α_i è dispari allora si ha p(x,y) irriducibile. Inoltre se \mathbb{K} è algebricamente chiuso questa condizione è anche necessaria.

STUDIO LOCALE DELLE IPERSUPERFICI

 $f \in \mathbb{K}[x_1, \dots, x_n], p \in V(f) \subseteq \mathbb{A}^n$. Sia l retta di \mathbb{A}^n passante per p, ovvero $l = \{p+tv \mid t \in \mathbb{K}\}$ con $v \in \mathbb{K}^n \setminus \{0\}$.

Consideriamo il polinomio $g(t) := f(p + tv) \in \mathbb{K}[t]$ e distinguiamo due casi:

- $g\equiv 0$: Significa che la retta l è contenuta in V(f) e quindi diciamo che l interseca \mathcal{I}_f in p con molteplicità infinita.
- $g \not\equiv 0$, ma g(0) = 0 perché $p \in V(f)$. Quindi in t = 0 ha una radice con una certa molteplicità $g(t) = t^m h(t)$ con $h(0) \neq 0$. Allora dico che l interseca \mathcal{I}_f in p con molteplicità m.

Se m > 1 diciamo che l è tangente a \mathcal{I}_f in p.

Invece diciamo che p è un punto liscio o non singolare di \mathcal{I}_f se esiste almeno una retta l che passa per p e non è tangente.

Fissato un punto p vengono chiamate tangenti principali le rette tangenti che intersecano \mathcal{I}_f con molteplicità massima.

In generale, a meno di una traslazione possiamo supporre p=(0,0) e $p\in V(f)$. Allora considero una retta per l'origine $l=\{tv\mid t\in \mathbb{K}\}$ e g(t):=f(tv), con $v=(v_1,\ldots,v_n)\in \mathbb{K}^n\setminus\{0\}$. Allora l è tangente a f in $p\Leftrightarrow g'(0)=0$. $g'(t)\mid_{t=0}=\sum_{i=1}^n\frac{\partial f}{\partial x_i}(tv)\cdot v_i\mid_{t=0}=\sum_{i=1}^n\frac{\partial f}{\partial x_i}(p)\cdot v_i$ quindi $g'(0)=0\Leftrightarrow \sum_{i=1}^n\frac{\partial f}{\partial x_i}(p)\cdot v_i=0$ e distinguiamo dunque due casi:

- $\frac{\partial f}{\partial x_i}(p) = 0$ $\forall i$ allora p è un punto singolare
- $\exists i$ t.c. $\frac{\partial f}{\partial x_i}(p) \neq 0$ allora p è liscio e l'insieme delle direazioni in \mathbb{K}^n tangenti a \mathcal{I}_f in p è un iperpiano di equazione $\sum_i \frac{\partial f}{\partial x_i}(p) \cdot v_i = 0$

Inoltre, se scriviamo $f(x_1,\dots,x_n)=f_m(\boldsymbol{x})+h(\boldsymbol{x})$ dove f_m è omogeneo di grado $m\geq 1$ e tutti i monomi di h hanno grado maggiore di m allora abbiamo \mathcal{I}_f è liscia in $p\Leftrightarrow m=1$ e inoltre sappiamo che ogni retta interseca \mathcal{I}_f in p con molteplicità $\geq m$. E se il campo è infinito, per il principio di identità dei polinomi ho che m è il minimo della molteplicità d'intersezione di l con \mathcal{I}_f in p al variare di l tra le rette in p. Essa viene chiamata molteplicità del punto. Una retta si dice trasversale se molt (l)=1.

Si chiama cono tangente a \mathcal{I}_f in p l'insieme delle rette che intersecano \mathcal{I}_f in p con molteplicità maggiore del minimo m. è dato dall'equazione $f_m=0$.

Inoltre la molteplicità di p per \mathcal{I}_f è uguale a $m \Leftrightarrow$ tutte le derivate parziali di f di ordine minore di m si annullano in p e c'è almeno una derivata parziale m-esima che non è nulla.