Simplifications of Context-Free Grammars

A Substitution Rule

$$S \rightarrow aB$$

$$A \rightarrow aaA$$

$$A \rightarrow abBc$$

$$B \rightarrow aA$$

$$B \rightarrow b$$

Substitute

$$B \rightarrow b$$

Equivalent grammar

$$S \rightarrow aB \mid ab$$

$$A \rightarrow aaA$$

$$A \rightarrow abBc \mid abbc$$

$$B \rightarrow aA$$

A Substitution Rule

$$S \rightarrow aB \mid ab$$

$$A \rightarrow aaA$$

$$A \rightarrow abBc \mid abbc$$

$$B \rightarrow aA$$

Substitute

$$B \rightarrow aA$$

$$S \rightarrow aR \mid ab \mid aaA$$

$$A \rightarrow aaA$$

$$A \rightarrow abBc \mid abbc \mid abaAc$$

Equivalent grammar

In general:

$$A \rightarrow xBz$$

$$B \rightarrow y_1$$

Substitute
$$B \rightarrow y_1$$

$$A \rightarrow xBz \mid xy_1z$$

equivalent grammar

Nullable Variables

$$\lambda$$
 – production :

$$A \rightarrow \lambda$$

$$A \Rightarrow \ldots \Rightarrow \lambda$$

Removing Nullable Variables

Example Grammar:

$$S \to aMb$$

$$M \to aMb$$

$$M \to \lambda$$

Nullable variable

Final Grammar

$$S \rightarrow aMb$$

$$M \rightarrow aMb$$

Substitute

$$M \to \lambda$$

$$S \rightarrow aMb$$

$$S \rightarrow ab$$

$$M \rightarrow aMb$$

$$M \rightarrow ab$$

Unit-Productions

Unit Production: $A \rightarrow B$

(a single variable in both sides)

Removing Unit Productions

Observation:

$$A \rightarrow A$$

Is removed immediately

Example Grammar:

$$S \rightarrow aA$$
 $A \rightarrow a$
 $A \rightarrow B$
 $B \rightarrow A$

$$S \to aA$$

$$A \to a$$

$$A \to B$$

$$B \to A$$

$$B \to bb$$

$$S \rightarrow aA \mid aB$$
 $A \rightarrow a$
 $B \rightarrow A \mid B$
 $B \rightarrow bb$

$$S \to aA \mid aB$$

$$A \to a$$

$$B \to A \mid \mathcal{B}$$

$$B \to bb$$

Remove
$$B \rightarrow B$$

$$S \to aA \mid aB$$

$$A \to a$$

$$B \to A$$

$$A \to A$$

$$B \rightarrow bb$$

$$S \rightarrow aA \mid aB$$
 $A \rightarrow a$
 $B \rightarrow A$
 $B \rightarrow bb$
 $S \rightarrow aA \mid aB \mid aA$
 $Substitute$
 $A \rightarrow a$
 $B \rightarrow bb$
 $S \rightarrow bb$

Remove repeated productions

$$S \to aA \mid aB \mid aA$$

$$A \to a$$

$$B \to bb$$

Final grammar

$$S \rightarrow aA \mid aB$$

$$A \rightarrow a$$

$$B \rightarrow bb$$

Useless Productions

$$S o aSb$$
 $S o \lambda$ $S o A$ $A o aA$ Useless Production

Some derivations never terminate...

$$S \Rightarrow A \Rightarrow aA \Rightarrow aaA \Rightarrow ... \Rightarrow aa...aA \Rightarrow ...$$

Another grammar:

$$S o A$$
 $A o aA$
 $A o \lambda$
 $B o bA$ Useless Production

Not reachable from S

In general:

contains only terminals

if
$$S \Rightarrow ... \Rightarrow xAy \Rightarrow ... \Rightarrow w$$

$$w \in L(G)$$

then variable A is useful

otherwise, variable A is useless

A production $A \rightarrow x$ is useless if any of its variables is useless

$$S o aSb$$
 $S o \lambda$ Productions
Variables $S o A$ useless
useless $A o aA$ useless
useless $B o C$ useless
useless $C o D$ useless

Removing Useless Productions

Example Grammar:

$$S \rightarrow aS \mid A \mid C$$

$$A \rightarrow a$$

$$B \rightarrow aa$$

$$C \rightarrow aCb$$

First: find all variables that can produce strings with only terminals

$$S \rightarrow aS \mid A \mid C$$

Round 1:
$$\{A,B\}$$

$$A \rightarrow a$$

$$S \to A$$

$$B \rightarrow aa$$

Round 2:
$$\{A,B,S\}$$

$$C \rightarrow aCb$$

Keep only the variables that produce terminal symbols: $\{A,B,S\}$

(the rest variables are useless)

$$S \to aS \mid A \mid \mathscr{C}$$

$$A \to a$$

$$B \to aa$$

$$C \to aCb$$

$$S \to aS \mid A$$

$$A \to a$$

$$B \to aa$$

Remove useless productions

Second: Find all variables reachable from S

Use a Dependency Graph

$$S \rightarrow aS \mid A$$

$$A \rightarrow a$$

$$B \rightarrow aa$$

not reachable

Keep only the variables reachable from S

(the rest variables are useless)

Final Grammar

$$S \to aS \mid A$$

$$A \to a$$

$$B \to aa$$

$$S \to aS \mid A$$

$$A \to a$$

Remove useless productions

Removing All

Step 1: Remove λ -productions

Step 2: Remove Unit-productions

Step 3: Remove Useless productions

Normal Forms for Context-free Grammars

Chomsky Normal Form

Each productions has form:

Examples:

$$S \rightarrow AS$$

$$S \rightarrow a$$

$$A \rightarrow SA$$

$$A \rightarrow b$$

Chomsky Normal Form

$$S \rightarrow AS$$

$$S \rightarrow AAS$$

$$A \rightarrow SA$$

$$A \rightarrow aa$$

Not Chomsky Normal Form

Conversion to Chomsky Normal Form

Example:

$$S \rightarrow ABa$$

$$A \rightarrow aab$$

$$B \rightarrow Ac$$

Not Chomsky Normal Form

Introduce variables for terminals: T_a, T_b, T_c

$$S \to ABT_{a}$$

$$S \to ABT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

Introduce intermediate variable: V_1

$$S \to ABT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

$$S \to AV_{1}$$

$$V_{1} \to BT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

Fall 2004

Introduce intermediate variable:

$$S \rightarrow AV_{1}$$
 $V_{1} \rightarrow BT_{a}$
 $A \rightarrow T_{a}T_{a}T_{b}$
 $B \rightarrow AT_{c}$
 $T_{a} \rightarrow a$
 $T_{b} \rightarrow b$

COMP 335

 $T_c \rightarrow c$

Final grammar in Chomsky Normal Form:

$$S \rightarrow AV_1$$

$$V_1 \rightarrow BT_a$$

$$A \rightarrow T_{\alpha}V_{2}$$

$$V_2 \rightarrow T_a T_b$$

$$B \to AT_c$$

$$T_a \rightarrow a$$

$$T_b \rightarrow b$$

$$T_c \rightarrow c$$

Initial grammar

$$S \rightarrow ABa$$

$$A \rightarrow aab$$

$$B \rightarrow Ac$$

In general:

From any context-free grammar (which doesn't produce λ) not in Chomsky Normal Form

we can obtain:

An equivalent grammar in Chomsky Normal Form

The Procedure

First remove:

Nullable variables

Unit productions

Then, for every symbol a:

Add production $T_a \rightarrow a$

In productions: replace $\,a\,$ with $\,T_a\,$

New variable: T_a

Replace any production $A \rightarrow C_1 C_2 \cdots C_n$

with
$$A oup C_1 V_1$$

$$V_1 oup C_2 V_2$$
...
$$V_{n-2} oup C_{n-1} C_n$$

New intermediate variables: $V_1, V_2, ..., V_{n-2}$

Theorem:

For any context-free grammar (which doesn't produce λ) there is an equivalent grammar in Chomsky Normal Form

Observations

 Chomsky normal forms are good for parsing and proving theorems

 It is very easy to find the Chomsky normal form for any context-free grammar

Greibach Normal Form

All productions have form:

Examples:

$$S \to cAB$$

$$A \to aA \mid bB \mid b$$

$$B \to b$$

$$S \to abSb$$
$$S \to aa$$

Not Greibach Normal Form

Conversion to Greibach Normal Form:

$$S o abSb$$
 $S o aa$ $S o aT_bST_b$ $S o aT_a$ $T_a o a$ $T_b o b$ Greibach

Normal Form

Theorem:

For any context-free grammar (which doesn't produce λ) there is an equivalent grammar in Greibach Normal Form

Observations

 Greibach normal forms are very good for parsing

• It is hard to find the Greibach normal form of any context-free grammar

The CYK Parser

The CYK Membership Algorithm

Input:

 \cdot Grammar G in Chomsky Normal Form

• String W

Output:

find if
$$w \in L(G)$$

The Algorithm

Input example:

• Grammar
$$G\colon S \to AB$$

$$A \to BB$$

$$A \to a$$

$$B \to AB$$

• String w : aabbb

aabbb

a a b b b

aa ab bb bb

aab abb bbb

aabb abbb

aabbb

$$S \rightarrow AB$$

$$A \rightarrow BB$$

$$A \rightarrow a$$

$$B \rightarrow AB$$

$$B \rightarrow b$$

Fall 2004 COMP 335 48

$$S \rightarrow AB$$

$$A \rightarrow BB$$

$$A \rightarrow a$$

$$B \rightarrow AB$$

$$B \rightarrow b$$

a	a	b	b	b
A	A	В	В	В
aa	ab	bb	bb	
	S,B	A	A	
aab	abb	bbb		

aabb abbb

aabbb

Fall 2004 COMP 335 49

$$S \rightarrow AB$$

$$A \rightarrow BB$$

$$A \rightarrow a$$

$$B \rightarrow AB$$

$$B \rightarrow b$$

$$A \rightarrow a$$

$$A \rightarrow a$$

$$B \rightarrow AB$$

$$B \rightarrow b$$

$$A \rightarrow a$$

Therefore: $aabbb \in L(G)$

Time Complexity: $|w|^3$

Observation:

The CYK algorithm can be easily converted to a parser (bottom up parser)

Fall 2004 COMP 335 51