```
In [1]:
        import numpy as np
        import pandas as pd
        import matplotlib as plt
        import seaborn as sns
In [2]:
        import os
        import pandas as pd
        # Specify folder path with spaces (either use quotes or raw string)
        folder_path = r'D:\Training Dataset\Training Dataset\February 2024'
        csv_files = [file for file in os.listdir(folder_path) if file.endswith('.csv')
        # Combine CSV files into a single DataFrame
        combined_data = pd.concat([pd.read_csv(os.path.join(folder_path, file)) for fil
        # Display the combined DataFrame
        print(combined_data.head())
                                 humidity1 humidity2 humidity3 humidity4 humidity5
        \
           2024-02-01 00:02:02
                                     54.04
                                                53.58
                                                            49.96
                                                                       50.66
                                                                                  48.77
           2024-02-01 00:04:07
                                     52.74
                                                52.43
                                                            49.59
                                                                       50.33
                                                                                  48.95
        2 2024-02-01 00:06:12
                                     50.39
                                                50.01
                                                            49.78
                                                                       51.23
                                                                                  48.18
           2024-02-01 00:08:17
                                     48.73
                                                48.31
                                                            49.61
                                                                       51.67
                                                                                  47.29
        4 2024-02-01 00:10:22
                                     48.83
                                                48.38
                                                            49.68
                                                                       52.18
                                                                                  46.62
           humidity6 humidity7 humidity8 temperature1 temperature2 temperature3
        \
        0
               49.92
                           42.50
                                      48.98
                                                    15.57
                                                                   15.65
                                                                                 17.12
        1
               49.52
                           42.65
                                                                   16.23
                                                                                 17.17
                                      48.73
                                                    16.16
        2
               48.07
                           42.66
                                      48.41
                                                    16.81
                                                                   16.92
                                                                                 17.01
                           42.19
        3
               46.64
                                      47.82
                                                    17.17
                                                                   17.27
                                                                                 16.95
        4
               46.23
                           41.71
                                      47.52
                                                    16.92
                                                                   17.02
                                                                                 16.77
                         temperature5 temperature6 temperature7 temperature8
           temperature4
        0
                   16.79
                                 16.80
                                               16.66
                                                              19.10
                                                                            18.66
        1
                   16.73
                                 16.88
                                               16.95
                                                              19.05
                                                                            18.78
        2
                   16.29
                                 17.05
                                               17.34
                                                              18.90
                                                                            18.80
        3
                   16.04
                                 17.25
                                               17.68
                                                              19.02
                                                                            18.93
        4
                   15.73
                                 17.35
                                               17.65
                                                              19.10
                                                                            18.90
        len(folder_path)
In [3]:
```

Out[3]: 50

In [4]: combined_data

_				-
$^{\circ}$		- 1	1 1	
U	u	LI	14	1 .

	ts	humidity1	humidity2	humidity3	humidity4	humidity5	humidity6	humidity7	hı
0	2024- 02-01 00:02:02	54.04	53.58	49.96	50.66	48.77	49.92	42.50	
1	2024- 02-01 00:04:07	52.74	52.43	49.59	50.33	48.95	49.52	42.65	
2	2024- 02-01 00:06:12	50.39	50.01	49.78	51.23	48.18	48.07	42.66	
3	2024- 02-01 00:08:17	48.73	48.31	49.61	51.67	47.29	46.64	42.19	
4	2024- 02-01 00:10:22	48.83	48.38	49.68	52.18	46.62	46.23	41.71	
19593	2024- 02-29 23:53:17	47.15	47.82	47.46	46.09	37.32	45.81	51.04	
19594	2024- 02-29 23:55:22	46.56	47.16	47.18	45.75	36.98	45.32	51.20	
19595	2024- 02-29 23:57:27	46.13	46.62	47.03	45.56	36.68	44.90	51.38	
19596	2024- 02-29 23:59:32	46.07	46.44	48.51	46.42	36.62	44.91	53.53	
19597	2024- 03-01 00:00:47	47.03	47.27	50.57	48.20	37.10	45.93	55.57	

19598 rows × 17 columns

In [5]: combined_data.describe()

α			
w	ш	ו כו	
_			٠,

	humidity1	humidity2	humidity3	humidity4	humidity5	humidity6	
count	19598.000000	19598.000000	19598.000000	19598.000000	19598.000000	19598.000000	198
mean	46.523609	46.150217	47.827360	50.271272	41.010618	39.214451	
std	5.064873	5.103563	3.890336	4.668937	5.493304	8.086799	
min	31.020000	32.620000	34.790000	35.450000	27.010000	22.010000	
25%	42.820000	42.282500	44.920000	46.520000	36.730000	31.720000	
50%	46.120000	45.830000	47.580000	49.810000	40.390000	39.840000	
75%	49.600000	49.450000	50.430000	53.700000	44.477500	45.600000	
max	69.740000	69.200000	65.070000	67.980000	63.550000	64.390000	
4							•

In [6]: combined_data.isnull()

Out[6]:

	ts	humidity1	humidity2	humidity3	humidity4	humidity5	humidity6	humidity7	hum
0	False	False	False	False	False	False	False	False	_
1	False	False	False	False	False	False	False	False	
2	False	False	False	False	False	False	False	False	
3	False	False	False	False	False	False	False	False	
4	False	False	False	False	False	False	False	False	
19593	False	False	False	False	False	False	False	False	
19594	False	False	False	False	False	False	False	False	
19595	False	False	False	False	False	False	False	False	
19596	False	False	False	False	False	False	False	False	
19597	False	False	False	False	False	False	False	False	

19598 rows × 17 columns

In [7]: combined_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19598 entries, 0 to 19597
Data columns (total 17 columns):

		, .	
#	Column	Non-Null Count	Dtype
0	ts	19598 non-null	object
1	humidity1	19598 non-null	float64
2	humidity2	19598 non-null	float64
3	humidity3	19598 non-null	float64
4	humidity4	19598 non-null	float64
5	humidity5	19598 non-null	float64
6	humidity6	19598 non-null	float64
7	humidity7	19598 non-null	float64
8	humidity8	19598 non-null	float64
9	temperature1	19598 non-null	float64
10	temperature2	19598 non-null	float64
11	temperature3	19598 non-null	float64
12	temperature4	19598 non-null	float64
13	temperature5	19598 non-null	float64
14	temperature6	19598 non-null	float64
15	temperature7	19598 non-null	float64
16	temperature8	19598 non-null	float64
dtyp	es: float64(16), object(1)	
memo	ry usage: 2.5+	MB	

In [8]: combined_data.isna()

In [o]: complica_data:isna(

Out[8]:

	ts	humidity1	humidity2	humidity3	humidity4	humidity5	humidity6	humidity7	hum
0	False	False	False	False	False	False	False	False	
1	False	False	False	False	False	False	False	False	
2	False	False	False	False	False	False	False	False	
3	False	False	False	False	False	False	False	False	
4	False	False	False	False	False	False	False	False	
19593	False	False	False	False	False	False	False	False	
19594	False	False	False	False	False	False	False	False	
19595	False	False	False	False	False	False	False	False	
19596	False	False	False	False	False	False	False	False	
19597	False	False	False	False	False	False	False	False	

19598 rows × 17 columns

```
In [9]: missing_values = combined_data.isnull()

# Count the number of missing values in each column
missing_counts = missing_values.sum()

# Print the number of missing values in each column
print("Missing values in each column:")
print(missing_counts)
```

Missing values in each column: humidity1 0 humidity2 0 humidity3 0 humidity4 0 humidity5 0 humidity6 0 0 humidity7 humidity8 0 temperature1 0 temperature2 0 temperature3 0 0 temperature4 temperature5 0 0 temperature6 temperature7 0 temperature8 dtype: int64

```
dates = pd.date_range(start='2024-02-01', end='2024-02-29', freq='15T')
In [10]:
         # Convert the 'Date' column to datetime
         combined_data['ts'] = pd.to_datetime(combined_data['ts'])
         # Set 'Date' column as the index
         combined_data.set_index('ts', inplace=True)
         # Resample the data to hourly intervals and calculate the mean
         hourly_average = combined_data.resample('H').mean()
         # Display the hourly averages
         print(hourly_average.head())
                              humidity1 humidity2 humidity3
                                                               humidity4
                                                                          humidity5 \
         ts
         2024-02-01 00:00:00
                              50.822143
                                         50.118571
                                                    50.302500
                                                               52.369643
                                                                          46.929286
         2024-02-01 01:00:00 49.774828 48.998621 49.567586
                                                               51.576207
                                                                          45.660000
         2024-02-01 02:00:00 49.128621 48.376897
                                                   48.728276
                                                               50.805517
                                                                          44.840000
         2024-02-01 03:00:00 48.492759 47.743103 47.750690
                                                               49.729310
                                                                          44.209655
         2024-02-01 04:00:00 48.346897 47.555172 48.798966
                                                               50.993793 44.341379
                              humidity6 humidity7
                                                    humidity8
                                                              temperature1 \
         ts
         2024-02-01 00:00:00 47.326429 42.003571
                                                   48.216429
                                                                  16.282143
         2024-02-01 01:00:00 46.199310 41.366897 47.053103
                                                                  16.314828
         2024-02-01 02:00:00 45.541724 40.655172 46.251724
                                                                  16.301379
         2024-02-01 03:00:00 44.888966 39.915172 45.553448
                                                                  16.308276
         2024-02-01 04:00:00 44.975862 40.617586 46.179655
                                                                  16.473103
                              temperature2 temperature3 temperature4 temperature5
         \
         ts
         2024-02-01 00:00:00
                                 16.453929
                                               16.688929
                                                             15.860357
                                                                           17.235714
         2024-02-01 01:00:00
                                 16.516552
                                               16.672069
                                                             15.861034
                                                                           17.377241
         2024-02-01 02:00:00
                                 16.490345
                                               16.731724
                                                             15.888276
                                                                           17.438621
         2024-02-01 03:00:00
                                 16.503793
                                               16.869310
                                                             16.033448
                                                                           17.463103
         2024-02-01 04:00:00
                                 16.677931
                                               16.598621
                                                             15.736207
                                                                           17.504483
                              temperature6 temperature7 temperature8
         ts
         2024-02-01 00:00:00
                                 17.272500
                                               19.038214
                                                             18.692143
                                                             18.840345
         2024-02-01 01:00:00
                                 17.350690
                                               19.006207
         2024-02-01 02:00:00
                                 17.352414
                                               19.060000
                                                             18.907931
         2024-02-01 03:00:00
                                 17.375172
                                               19.168621
                                                             18.976552
         2024-02-01 04:00:00
                                 17.443448
                                               18.968621
                                                             18.823448
```

```
import matplotlib.pyplot as plt
In [11]:
         # Assuming 'combined_data' is your DataFrame containing humidity and temperatu
         # Replace 'combined_data' with the actual name of your DataFrame
         # Plot humidity data
         combined_data[['humidity1','humidity2','humidity3','humidity4','humidity5','hu
         plt.title('Humidity Readings')
         plt.xlabel('Timestamp')
         plt.ylabel('Humidity')
         plt.legend(loc='upper left')
         plt.show()
         # Plot temperature data
         combined_data[['temperature1','temperature2','temperature3','temperature4','te
         plt.title('Temperature Readings')
         plt.xlabel('Timestamp')
         plt.ylabel('Temperature')
         plt.legend(loc='upper left')
         plt.show()
```


Temperature Readings

In [12]: combined_data[['humidity1','humidity2']].plot(figsize=(10, 6))
 plt.title('Humidity Readings')
 plt.xlabel('Timestamp')
 plt.ylabel('Humidity')
 plt.legend(loc='upper left')
 plt.show()


```
In [13]:
         from statsmodels.tsa.seasonal import seasonal_decompose
         # Assuming 'combined_data' is your DataFrame containing humidity and temperatu
         # Replace 'combined_data' with the actual name of your DataFrame
         # Plot seasonal decomposition for humidity data
         fig, axs = plt.subplots(4, 2, figsize=(14, 10))
         for i in range(8):
             series = combined_data[f'humidity{i+1}']
             decomposition = seasonal_decompose(series, model='additive', period=365)
             axs[i//2, i%2].plot(decomposition.seasonal)
             axs[i//2, i%2].set_title(f'Humidity Seasonal Decomposition {i+1}')
         plt.tight_layout()
         plt.show()
         # Plot seasonal decomposition for temperature data
         fig, axs = plt.subplots(4, 2, figsize=(14, 10))
         for i in range(8):
             series = combined_data[f'temperature{i+1}']
             decomposition = seasonal_decompose(series, model='additive', period=365)
             axs[i//2, i%2].plot(decomposition.seasonal)
             axs[i//2, i%2].set_title(f'Temperature Seasonal Decomposition {i+1}')
         plt.tight_layout()
         plt.show()
```



```
In [14]:
         import numpy as np
         import pandas as pd
         import tensorflow as tf
         from sklearn.preprocessing import MinMaxScaler
         # Assuming 'combined_data' is your DataFrame containing humidity and temperatu
         # Replace 'combined_data' with the actual name of your DataFrame
         # Concatenate humidity and temperature data into one DataFrame
         data = combined_data[['humidity1', 'temperature1', 'humidity2', 'temperature2'
         # Normalize the data
         scaler = MinMaxScaler()
         scaled data = scaler.fit transform(data)
         # Define the sequence Length
         seq length = 30 # Example: using the past 30 days' data to predict the next d
         # Function to create sequences for LSTM
         def create sequences(data, seq length):
             X = []
             y = []
             for i in range(len(data) - seq_length):
                 X.append(data[i:i + seq_length])
                 y.append(data[i + seq_length])
             return np.array(X), np.array(y)
         # Create sequences for LSTM
         X, y = create_sequences(scaled_data, seq_length)
         # Split data into training and testing sets
         train_size = int(len(X) * 0.8)
         X_train, X_test = X[:train_size], X[train_size:]
         y_train, y_test = y[:train_size], y[train_size:]
         # Define the LSTM model
         model = tf.keras.models.Sequential([
             tf.keras.layers.LSTM(units=50, return_sequences=True, input_shape=(X_train
             tf.keras.layers.Dropout(0.2),
             tf.keras.layers.LSTM(units=50, return_sequences=False),
             tf.keras.layers.Dropout(0.2),
             tf.keras.layers.Dense(units=16),
             tf.keras.layers.Dense(units=len(data.columns)) # Output Layer: same numbe
         ])
         # Compile the model
         model.compile(optimizer='adam', loss='mse')
         # Train the model
         history = model.fit(X_train, y_train, epochs=50, batch_size=32, validation_spl
         # Evaluate the model
         mse = model.evaluate(X_test, y_test)
         # Plot loss during training
         plt.plot(history.history['loss'], label='train')
         plt.plot(history.history['val_loss'], label='validation')
```

```
plt.legend()
plt.show()
# Make predictions
predictions = model.predict(X_test)
# Inverse scaling
predictions = scaler.inverse_transform(predictions)
y_test = scaler.inverse_transform(y_test)
# Evaluate predictions (e.g., using MAE, MSE, etc.)
# Example:
mae = np.mean(np.abs(predictions - y_test))
print("Mean Absolute Error:", mae)
Epoch 1/50
C:\Users\lenovo\anaconda3\Lib\site-packages\keras\src\layers\rnn\rnn.py:20
4: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a lay
er. When using Sequential models, prefer using an `Input(shape)` object as
the first layer in the model instead.
  super().__init__(**kwargs)
                            - 13s 27ms/step - loss: 0.0328 - val_loss: 0.01
392/392 -
23
Epoch 2/50
392/392 -
                          -- 10s 25ms/step - loss: 0.0089 - val_loss: 0.01
07
Epoch 3/50
392/392 -
                            - 10s 25ms/step - loss: 0.0072 - val_loss: 0.00
97
Epoch 4/50
392/392 -
                            - 10s 27ms/step - loss: 0.0061 - val_loss: 0.00
79
Epoch 5/50
```

plt.figure(figsize=(12,8)) In [15]: sns.heatmap(data.corr().abs(), annot= True, cmap= 'coolwarm'); 0.76 0.74 0.6 0.0064 0.63 0.19 0.72 0.38 0.75 0.52 0.35 0.57 0.27 humidity1 temperature1 - 0.76 0.75 0.98 0.49 0.51 0.58 0.57 0.18 0.11 0.37 0.36 0.99 0.75 0.76 0.58 0.018 0.59 0.72 0.39 0.74 0.51 0.36 0.052 0.31 humidity2 -0.6 - 0.8 temperature2 - 0.74 0.76 0.49 0.51 0.56 0.55 0.41 0.41 humidity3 -0.6 0.58 0.57 0.69 0.3 0.66 0.35 0.51 0.28 0.62 0.6 0.31 temperature3 -0.0064 0.13 0.018 0.11 0.57 0.0018 0.24 0.29 0.48 0.44 0.55 0.32 0.46 - 0.6 humidity4 - 0.63 0.59 0.69 0.0018 0.68 0.37 0.076 0.46 0.32 0.36 0.0001 0.018 0.11 0.15 0.11 0.095 0.05 temperature4 -0.3 0.24 0.68 0.09 0.046 humidity5 - 0.72 0.49 0.72 0.49 0.66 0.29 0.37 0.018 0.73 0.58 0.41 0.099 0.62 0.4 temperature5 - 0.38 0.51 0.39 0.51 0.35 0.48 0.54 0.59 0.3 0.29 0.45 0.48 - 0.4 humidity6 - 0.75 0.58 0.74 0.56 0.51 0.099 0.46 0.73 0.54 0.47 0.53 0.31 temperature6 - 0.52 0.57 0.51 0.55 0.28 0.16 0.4 0.31 0.39 0.31 0.58 0.59 0.62 0.44 0.32 humidity7 - 0.35 0.36 0.41 0.3 0.47 0.4 0.58 0.46 - 0.2 temperature7 -0.06 0.11 0.052 0.12 0.55 0.05 0.099 0.29 0.31 0.31 0.43 humidity8 - 0.57 0.37 0.41 0.32 0.36 0.62 0.45 0.53 0.39 0.58 0.6 0.6 0.46 0.000180.046 temperature8 - 0.27 0.36 0.31 0.41 0.31 0.4 0.48 0.31 0.31 0.46 0.43 humidity2 humidity5 temperature8 temperature5 humidity8 humidity1 emperature temperature2 humidity3 temperature3 humidity4 temperature4 humidity6 temperature6 humidity7 temperature7

```
In [21]: import matplotlib.pyplot as plt
         # Visualize predictions vs actual values
         plt.plot(y_test, label='Actual')
         plt.plot(predictions, label='Predicted')
         plt.xlabel('Time')
         plt.ylabel('Temperature')
         plt.title('Actual vs Predicted Temperature')
         plt.legend()
         plt.show()
         # Compute additional metrics
         mse = np.mean((predictions - y_test)**2)
         rmse = np.sqrt(mse)
         r_squared = 1 - (np.sum((y_test - predictions)**2) / np.sum((y_test - np.mean(
         print("Mean Squared Error (MSE):", mse)
         print("Root Mean Squared Error (RMSE):", rmse)
         print("R-squared:", r_squared)
```

Actual vs Predicted Temperature

Mean Squared Error (MSE): 5.087653444278556 Root Mean Squared Error (RMSE): 2.255582728316245

R-squared: 0.9742197419799831