

Aula 02 - Representações Avançadas em Binário

Circuitos Digitais - CRT 0384Prof. Rennan Dantas
Ciência da Computação

2020.1

Na Aula Anterior...

- Fundamentação dos sistemas Numéricos Posicionais
- Sistema Numéricos
 - Decimal
 - Binário
 - Octal
 - Hexadecimal
- Conversão de bases

Nesta Aula

- Representação de números negativos em binário;
- Representação de números reais em base binária;
- Conversão de bases de números reais;
- Complementos de 1 e 2;
- Extensão do sinal em complemento de 2;

- Notação de ponto flutuante;
- Motivação para Códigos Binários;
- Código BCD;
- Código Johnson;
- Código Excesso de 3;
- Código Gray;
- Código ASCII.

Números Inteiros Sinalizados

- Utiliza-se um tamanho fixo de palavra;
- Geralmente o bit mais significativo é reservado para o sinal do número;

Exemplos

Representações Alternativas para Números Inteiros Sinalizados

- Os números de magnitude com sinal são fáceis de entender, mas eles requerem demasiado hardware para adição e subtração. Isso tem levado ao uso amplo de complementos para aritmética binária.
- Existem dois tipos de complemento:
 - Complemento de 1
 - Complemento de 2

Complemento de 1

- O complemento de 1 é calculado pela inversão de cada um dos bit do número;
- Existe duas possíveis representações par o número 0.

Decimal	Comp. 1
7	0111
6	0110
5	0101
4	0100
3	0011
2	0010
1	0001
0	0000
-1	1110
-2	1101
-3	1100
-4	1011
-5	1010
-6	1001
-7	1000
-0	1111

7

Complemento de 2

 O complemento de 2 é calculado pela inversão de cada um dos bits do número.
 Subsequentemente soma-se 1 ao valor dos bits invertidos;

Decimal	Comp. 2
7	0111
6	0110
5	0101
4	0100
3	0011
2	0010
1	0001
0	0000
-1	1111
-2	1110
-3	1101
-4	1100
-5	1011
-6	1010
-7	1001
-8	1000

Extensão de Sinal Positivo

 Considere por exemplo a representação do número 12 em complemento de 2

0 1 1 0 0
$$\Rightarrow$$
 12₁₀

- No computador, por conveniência de arquitetura, o tamanho da palavra binária (número de bits) é sempre múltiplo de 2 (4, 8, 16, 32, ...)
- Para acomodar um número de 5 bits em uma palavra de 8 bits, basta estender o sinal para os demais bits

$$0 0001100 \Rightarrow 12_{10}$$

Extensão de Sinal Negativo

 Considere por exemplo a representação do número -12 em complemento de 2

- Se completarmos os bits restantes para uma palavra de 8 bits com zeros, o número deixará de ser zero
- Em complemento de 2, basta que completemos os demais bits com o bit de sinal

$$1 1110100 \Rightarrow 12_{10}$$

Números Reais em Binário

- Extensão simples do sistema posicional;
- A parte inteira fica inalterada, a parte fracionária utiliza potências negativas.

$$10,5_{10} \Rightarrow \frac{1|0|5}{10^{1}|10^{0}|10^{-1}}$$

Pot.	valor
2 ⁻¹	0,5
2 ⁻²	0,25
2 ⁻³	0,125
2-4	0,0625
2 ⁻⁵	0,03125
2 ⁻⁶	0,015625
2 ⁻⁷	0,0078125
2 ⁻⁸	0,00390625

$$2^3$$
 2^2 2^1 2^0 2^{-1} 2^{-2}

Conversão (Reais) Decimal - Binário

$$42,42_{10} \rightarrow 42_{10} + 0,42_{10} \qquad \begin{array}{r} 0,42 \\ x 2 \\ \hline 0,84 \\ x 2 \\ \hline 1,68 \\ x 2 \\ \hline 1,36 \\ x 2 \\ \hline 0,72 \\ \end{array}$$

Um Exemplo Mais Simples

Conversão binário →decimal

$$1010,01_{2}$$

$$0x2^{-1}+1x2^{-2}$$

Notação em Ponto Flutuante

Fundamentada na notação numérica científica;

$$42,42 = 42,42 \times 10^0 = 4,242 \times 10^1 = 0,4242 \times 10^2$$

- Utilização otimizada do espaço de representação;
- Note que o sinal fracionário "flutua" dependendo do expoente associado a base; +/0, $mantissa \times base^{+/expoente}$ • A mantissa está contida no intervalo [0,1[
- É importante notar que a notação em ponto flutuante pode induzir à erros de arredondamento.

Padrões de Representação

Precisão Simples

IEEE Standard for Floating-Point Arithmetic, IEEE 754'2008

Precisão Dupla

Conversão (Precisão simples)

- Expoente possui um bias de 127 (01111111₂);
- Ao contrário da notação científica tradicional, que coloca todos os dígitos significativos a direita da vírgula, em ponto flutuante deixamos um '1' a esquerda da vírgula.
- Equação para conversão binário → decimal:

$$n = (-1)^s \times \left(1 + \sum_{i=1}^{23} b_{23-i} \times 2^i\right) \times 2^{e-127}$$

Exemplo

- $10,25_{10} \Rightarrow 1010,01_2 \Rightarrow 1,01001x2^3$
 - sinal \rightarrow +
 - expoente \rightarrow 127+3 = 130 \rightarrow (01111111+11) = 10000010
 - mantissa → 01001000000000000000000

Casos Especiais

Números (não normalizados)

Números Representáveis

- Em matemática, o conjunto dos números reais é infinito;
- Entre dois números reais quaisquer, há infinitos números reais;
- Para tal, infinitos dígitos devem ser potencialmente utilizados;
- A representação de números reais utilizando a notação de ponto flutuante, utiliza um número finito de bits;
- Por definição, apenas números racionais podem ser representados em ponto flutuante;

Números Representáveis

• $0.1_{10} \rightarrow 0.0001100110011...$

$$Fra = \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^8} + \frac{1}{2^9} + \frac{1}{2^{12}} + \frac{1}{2^{13}} + \cdots \to 0.1$$

• s = 0 | m = 1.1001100110011 ... e = -4

_31	30 23	22 0
0	01111100	1001100110011001100

- Convertendo de volta para decimal ...
- m = 0,100000001490116119384765625
- erro = 0,000000001490116119384765625

Exercícios

Converta para representação em ponto flutuante (precisão simples)

- 42,42₁₀
- 0,11100110₂x2²
- 0,11100111₂x2²
- 3,6₁₀

Códigos Binários

- O computador trabalha apenas com números;
- Estes números são sempre em binário, devido a aspectos de construção;
- Códigos binários fornecem uma forma de representar outros conceitos que não números, de maneira a serem mapeados diretamente para suas representações em binário, e desta forma, passiveis de serem processados pelo computador.

BCD 8421

- BCD significa "Binary Coded Decimal", ou seja,
- Representa números de 0-9 em binário;
- Utiliza quatro bits para cada dígito decimal;
- Para representar o número 10 por exemplo, são necessários oito bits em BCD 8421;
- 8421 referem-se as potências de cada uma das quatro casas do sistema de codificação.

BCD 8421

Decimal	Binário Puro	BCD 8421
0	0000	0000
1	0001	0001
2	0010	0010
3	0011	0011
4	0100	0100
5	0101	0101
6	0110	0110
7	0111	0111

Decimal	Binário Puro	BCD 8421
8	1000	1000
9	1001	1001
10	1010	0001 0000
11	1011	0001 0001
12	1100	0001 0010
13	1101	0001 0011
14	1110	0001 0100
15	1111	0001 0101

Código de Johnson

 Muito utilizado na construção de circuitos contadores;

Dec	Johnson	Binário
0	00000	0000
1	00001	0001
2	00011	0010
3	00111	0011
4	01111	0100
5	11111	0101
6	11110	0110
7	11100	0111
8	11000	1000
9	10000	1001

Código Excesso de 3

 Código simples, soma-se 11₂ ao número binário puro;

 $0111_{2} \Rightarrow 1010_{e3}$

Dec	Exc 3	Binário
0	0011	0000
1	0100	0001
2	0101	0010
3	0110	0011
4	0111	0100
5	1000	0101
6	1001	0110
7	1010	0111
8	1011	1000
9	1100	1001

Código Gray

- Sistema de numeração binário no qual dois valores sucessivos diferem em apenas 1 bit;
- Aplicado em correção de erros, controle de dispositivos eletromecânicos, etc.

_		
1	001	001
2	011	010
3	010	011
4	110	100
5	111	101
6	101	110
7	100	111

Gray

000

Dec

0

Binário

000

Tabela ASCII

000	(nul)	016 ▶	(dle)	032	sp	048	Ò	064	@	080	P	096	`	112	р
001 ☺	(soh)	017 ◀	(dc1)	033	1	049	1	065	Α	081	Q	097	а	113	q
002 \varTheta	(stx)	018 ‡	(dc2)	034	**	050	2	066	В	082	R	098	b	114	r
003 ♥	(etx)	019 ‼	(dc3)	035	#	051	3	067	C	083	S	099	C	115	ន
004 ♦	(eot)	020 ¶	(dc4)	036	\$	052	4	068	D	084	T	100	d	116	t
005 뢒	(enq)	021 §	(nak)	037	왕	053	5	069	E	085	U	101	е	117	u
006 🛦	(ack)	022 -	(syn)	038	&	054	6	070	F	086	V	102	f	118	V
007 •	(bel)	023 🛊	(etb)	039	•	055	7	071	G	087	W	103	g	119	W
008	(bs)	024 🕇	(can)	040	(056	8	072	H	088	Χ	104	h	120	X
009	(tab)	025 ↓	(em)	041)	057	9	073	I	089	Y	105	i	121	У
010	(lf)	026	(eof)	042	*	058	:	074	J	090	Z	106	j	122	Z
011 ♂	(vt)	027 ←	(esc)	043	+	059	;	075	K	091	[107	k	123	{
012 🕏	(np)	028 ∟	(fs)	044	,	060	<	076	L	092	/	108	1	124	1
013	(cr)	029 ↔	(gs)	045	_	061	=	077	Μ	093]	109	m	125	}
014 🞜	(so)	030 🛦	(rs)	046		062	>	078	N	094	^	110	n	126	~
015 ☆	(si)	031 ▼	(us)	047	1	063	?	079	0	095		111	0	127	\triangle

Tabela ASCII

128 Ç 129 ü 130 é 131 â 132 ä 133 à 134 å 135 ç 136 ê 137 ë 138 è 139 ï 140 î	143 Å 144 É 145 æ 146 Æ 147 ô 148 ö 149 ò 150 û 151 ÿ 153 ö 154 ÿ 155 ¢	158 Rs 159 f 160 á 161 í 162 ó 163 ú 164 ñ 165 Ñ 166 ª 167 ° 169 - 170 ¬	172 ¼ 173 ; 174 « 175 » 176 177 178 179 180 181 182 183 184 185	186 187 188 189 190 191 192 193 194 195 196 197 198	200 L 201 <u>T</u> 202 T 203 T 204 = <u>1</u> 205 T 206 T 207 T 208 T 210 <u>T</u> 211 L 212 <u>E</u>	214 # 215 # 216 # 217 218 219 220 221 222 223 224 α 225 β 226 Γ 227 Π	228 Σ 229 σ 230 μ 231 τ 232 Φ 233 Θ 234 Ω 235 δ 236 ∞ 236 ∞ 237 φ 238 ε 239 Π 240 ≡ 241 +	242 ≥ 243 ≤ 244
141 ì	156 £	171 1/2	185	199 ⊩	213 _F	227 п	241 ±	255
142 Ä	157 ¥							

Leitura obrigatória

- Leitura: (Tocci) 6.2 (pgs. 254-259)
- Leitura: (Tocci) 2.4-2.8 (pgs. 31-38)
- Exercícios: (Tocci): E={2.19 − 2.26}

Aula 02 - Representações Avançadas em Binário

Circuitos Digitais - CRT 0384Prof. Rennan Dantas
Ciência da Computação

2020.1