- What are ribbons and what do they tell us about Riemann surfaces?
- Riemann-Surfaces

Riemann surface = Connected compact complex 1-manifold

= Connected, projective, smooth algebraic curve over C.

Topology

captured by genus $g \ge 0$.

But there's much more.

Three perspectives

1. Branched covers

Ex:
$$f(x) = \sqrt[3]{x^2+1}$$
 \(\(\text{multivalued} \) function".

Graph of
$$f = \{ (x,y) \mid y^3 = x^2 + 1 \}$$

Gives a Riemann ourface X (g genus 1).

Suggests another invariant = # of branches = 3

$$X$$
 also graph of $g(y) = \sqrt[2]{y^3 - 1}$. # hranches = 2.

Gonality of X := Smallest d such that

X is the graph of a "d-valued holomorphic function!"

More precisely: Smallest d'such that 7 suj. holomorphic map

X->CP

Gonality X=1 X = 1P

Thm (Segre): Gonality $\leq \lceil \frac{9 \text{enus}}{2} \rceil + 1$ and all values from $2, -7, \lceil \frac{2}{2} \rceil + 1$ are attained.

2. Fields.

{Riemann surfaces} ~ { fin.gen. fields of tr. dey 1/e}.

 \times = field of mer. fun. on \times

 $\mathbb{C} \subset \mathbb{C}(t) \subset \mathbb{K}$

degree d

3. Projective geometry. \times \subseteq $P^N = \{ [x_0 : \dots : x_N] \}$ X = Zero locus of homog polys in Xo,--, XNI. $S := \mathbb{C}[X_0, \ldots, X_N]$ X = Zero lows of a homog. ideal ICS. Invariant of I. as an S-module. I < Fo < F < --- < F minimal free resolution. Fi = PS(-i-j)(Si) Invariants Betti-table of I = (Pij) Rem: These depend on I, which depends on the map X-> PP But there is a canonical map X - 1P⁹⁻¹ given by differential forms on X. Henceforth use this. Conj (Green, rough):-

Conj (Green, rough):Gonality of $X \longleftrightarrow Support of betti table <math>X \subset P^{g-1}$.

Thm: (Aprodutarkas, -): Green's conj holds for "almost all" curves of every gonality. (Using Thm of Voisin for curves of max. gonality.).

· Ribbons

$$XY-Z^2=0$$
 wy

curre.

A singular curve.

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial y} = 0$$
 at p.

Smooth, some as X=0

als singular curve,

verywhere!

Grothendiech - "Schemes" to formalizes the second choice.

Scheme = top. space + sheet of sings. " functions on X" may have nil potents.

genus (CIP'xE) = -1

Can also define "gonality" of a ribbon 85 make
Conj (Green's conj for ribbons, Bayer-Eisenbud) 1990 Gonality of ribbon Beffi table of ribbon.
Thm: (-) Green's conj holds for nibbons.
Green's conj for a smooth curve of higheot gonality (Voisin) Aprodu-Farkas Voisin. D. Green's conj for all ribbans of higheot gonality D.
Green's conj for conj. for all ribbons. Easy. given gonality.
Space of all curves
smooth sing Ribbon

Common feature of many statements in alg. geo.:-
holds for one curve, then it holds for "almost all" curves.
So need to exhibit one curve.
Smooth curves are difficult to write down & analyze.
9 ~ ()
introduce 9-1 1
Singularity -> simplifies global geometry complicates local geometry
Non reduced structures takes to an extreme.
gennety of algebra of rings attached
1 to CIP
Some times easier

