WHAT IS CLAIMED IS:

1. A compound of Formula (I):

$$\begin{array}{c|c}
R^9 & & \\
R^8 & & \\
\hline
R^7 & & \\
R^6 & & \\
\end{array}$$
(I)

5

or a stereoisomer or a pharmaceutically acceptable salt form thereof, wherein:

R¹ is selected from

10 H, $C(=O)R^{2a}$, $C(=O)OR^{2a}$, $S(=O)R^{2a}$, $S(=O)_2R^{2a}$,

C₃₋₇ cycloalkyl,

C₁₋₄ alkyl substituted with 0-3 R²,

C₂₋₄ alkenyl substituted with 0-2 R²,

C₂₋₄ alkynyl substituted with 0-2 R²,

aryl substituted with 0-5 R⁴²,

C₃₋₁₀ carbocyclic residue substituted with 0-3 R⁴¹, and

5-6 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R41:

20

R², at each occurrence, is independently selected from

halo, C₁₋₃ haloalkyl, C₁₋₄ alkoxy, C₁₋₄ alkyl,

C2-4 alkenyl, C2-4 alkynyl, C3-6 cycloalkyl,

aryl substituted with 0-5 R⁴²;

25 C₃₋₁₀ carbocyclic residue substituted with 0-3 R⁴¹, and

- 5-6 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R^{41} ;
- 5 R^{2a} is H, C₁₋₄ alkyl, (aryl)C₁₋₄ alkyl-, or (C₃₋₆ cycloalkyl)C₁₋₄ alkyl-;

R^{4a} is H or C₁₋₄ alkyl;

10 R⁵ is H, C₁₋₄ alkyl substituted with 0-2 R²⁰, $-C(=O)(C_{1-4} \text{ alkyl}), -C(=O)O(C_{1-4} \text{ alkyl}), \text{ or } C_{1-4} \text{ haloalkyl};$

R⁶ is selected from

halo, -CF₃, -OCF₃, -CN, -NO₂, -OCH₃, -SCH₃, -CF₂CF₃, -O-R¹¹,

-OCF₂CF₃, -OCF₂H, -OCF₂CH₃,

 $-S-R^{11}$, $-S(=O)-R^{11}$, $-S(=O)_2-R^{11}$, $-S(=O)-NR^{10}-R^{11}$,

 $-S(=O)_2-NR^{10}-R^{11}$, $-NR^{10}-R^{11}$, $-CH_2O-R^{11}$, $-CH_2S-R^{11}$,

 $\text{CH}_2\text{S}(=\text{O})\text{-R}^{11}\text{, CH}_2\text{S}(=\text{O})\text{ 2-R}^{11}\text{,-CH}_2\text{NR}^{10}\text{-R}^{11}\text{, -C}(=\text{O})\text{NR}^{10}\text{-R}^{11}$

C₁₋₄ haloalkyl, (C₁₋₄ haloalkyl)oxy;

20 C_{1-4} alkyl substituted with 0-2 R^{20} ,

C₂₋₄ alkenyl substituted with 0-2 R²⁰,

 C_{2-4} alkynyl substituted with 0-1 R^{20} , and

 C_{3-6} carbocyclic residue substituted with 0-3 R^{21} ,

 R^7 and R^9 are independently selected from

H, F, Cl, Br, -CF3, -OCF3, -OH, -CN, -NO2, -CF2CF3, C1-4 alkyl,

C2-4 alkenyl, C2-4 alkynyl, C1-4 haloalkyl, C1-4 alkoxy, and

(C₁₋₄ haloalkyl)oxy;

```
R<sup>8</sup> is selected from
```

halo, -CF3, -OCF3, -OH, -CN, -NO2, -OCH3, -SCH3, -CF2CF3,
-OR12, -SR12, -NR12R13, -C(O)H, -C(O)R12, -C(O)NR12R13,
-NR14C(O)R12, -C(O)OR12, -OC(O)R12, -OC(O)OR12,
-S(O)R12, -S(O)2R12, -S(O)NR12R13, -S(O)2NR12R13,
-NR14S(O)R12, -NR14S(O)2R12, -NR12C(O)R15, -NR12C(O)OR15,
-NR12S(O)2R15, -NR12C(O)NHR15;
C1-6 alkyl substituted with 0-2 R8a,
C2-6 alkenyl substituted with 0-2 R8a,
C3-6 cycloalkyl substituted with 0-2 R8a,
C3-6 cycloalkyl substituted with 0-2 R8a,
C3-10 carbocyclic residue substituted with 0-3 R33;

R8a, at each occurrence, is independently selected from

15 halo, -CF3, -OCF3, -OH, -CN, -NO2, -CF2CF3,
methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl,
-OR¹², -SR¹², -NR¹²R¹³, -C(O)H, -C(O)R¹², -C(O)NR¹²R¹³,
-NR¹⁴C(O)R¹², -C(O)OR¹², -OC(O)R¹², -OC(O)OR¹²,
-S(O)R¹², -S(O)2R¹², -S(O)NR¹²R¹³, -S(O)2NR¹²R¹³,
-NR¹⁴S(O)R¹², -NR¹⁴S(O)2R¹², -NR¹²C(O)R¹⁵, -NR¹²C(O)OR¹⁵,
-NR¹²S(O)2R¹⁵, -NR¹²C(O)NHR¹⁵;

phenyl substituted with 0-5 R³³;

 C_{3-10} carbocyclic residue substituted with 0-3 R^{33} , and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R^{33} ;

R¹⁰ is H or C₁₋₄ alkyl;

25

R¹¹ is selected from

C₁₋₆ alkyl substituted with 0-2 R²⁰,

C₂₋₆ alkenyl substituted with 0-2 R²⁰,

C₂₋₆ alkynyl substituted with 0-1 R²⁰,

C₃₋₁₀ carbocyclic residue substituted with 0-3 R²¹,

aryl substituted with 0-5 R²³, and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R²¹:

alternatively, R^{10} and R^{11} join to form a 5- or 6-membered ring optionally substituted with -O- or -N(R^{14})-;

alternatively, R¹⁰ and R¹¹ when attached to N may be combined to form a 9- or 10membered bicyclic heterocyclic ring system containing from 1-3 heteroatoms
selected from the group consisting of N, O, and S, wherein said bicyclic
heterocyclic ring system is unsaturated or partially saturated, wherein said
bicyclic heterocyclic ring system is substituted with 0-3 R¹⁶;

20

25

5

10

R¹² is selected from H,

C₁₋₆ alkyl substituted with 0-2 R^{12a},

C₂₋₆ alkenyl substituted with 0-2 R^{12a},

C₂₋₆ alkynyl substituted with 0-2 R^{12a},

C₃₋₆ cycloalkyl substituted with 0-3 R³³,

aryl substituted with 0-5 R³³;

C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³, and

- 5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R³³;
- 5 R^{12a}, at each occurrence, is independently selected from

$$H$$
, halo, -OH, -CN, -NO₂, -CO₂ H , -SO₂ R^{45} , -SOR⁴⁵, -SR⁴⁵,

$$-CONR^{46}R^{47}$$
, $-OR^{45}$, =0.

phenyl substituted with 0-5 R³³;

C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³, and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R³³:

15

25

- R^{13} , at each occurrence, is independently selected from H, C_{1-4} alkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl;
- alternatively, R^{12} and R^{13} join to form a 5- or 6-membered ring optionally substituted with -O- or -N(R^{14})-;
 - alternatively, R¹² and R¹³ when attached to N may be combined to form a 9- or 10-membered bicyclic heterocyclic ring system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S, wherein said bicyclic heterocyclic ring system is unsaturated or partially saturated, wherein said bicyclic heterocyclic ring system is substituted with 0-3 R¹⁶;
 - R¹⁴, at each occurrence, is independently selected from H and C₁₋₄ alkyl;
- 30 R¹⁵, at each occurrence, is independently selected from

.

5

25

H, C₁₋₄ alkyl, C₂₋₄ alkenyl, and C₂₋₄ alkynyl;

R¹⁶, at each occurrence, is independently selected from

H, OH, halo, CN, NO₂, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, -C(=O)H,

C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ haloalkyl,

C₁₋₃ haloalkyl-oxy-, and C₁₋₃ alkyloxy-;

R²⁰ is selected from

H, halo, -OH, -CF3, -CN, -NO2, -CO2H, -SO2R⁴⁵,

-SOR⁴⁵, -SR⁴⁵, -NR⁴⁶SO2R⁴⁵, -NR⁴⁶COR⁴⁵, -NR⁴⁶R⁴⁷,

C1-4 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-4 alkoxy,

C1-4 haloalkyl;

C3-10 carbocyclic residue substituted with 0-3 R²¹;

aryl substituted with 0-5 R²³; and

- 5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R²¹:
- R²¹, at each occurrence, is independently selected from

 H, OH, halo, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, CN, NO₂, =O, C₁₋₄ alkyl,

 C₁₋₄ alkoxy, and (C₁₋₄ haloalkyl)oxy;
 - R²³, at each occurrence, is independently selected from
 H, OH, halo, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, CN, NO₂, C₁₋₄ alkyl,
 C₁₋₄ alkoxy, and (C₁₋₄ haloalkyl)oxy;
 - R^{33} , at each occurrence, is independently selected from H, OH, halo, -CN, -NO₂, -CF₃, -OCF₃, -SO₂ R^{35} , -S(=O) R^{35} , -SR³⁵, -NR³⁶ R^{37} , -NHC(=O) R^{35} , -C(=O)NR³⁶ R^{37} , -C(=O)H, -C(=O)R³⁵,

```
-C(=O)OR^{35}, -OC(=O)R^{35}, -OR^{35}.
                     C<sub>1-6</sub> alkyl, C<sub>2-6</sub> alkenyl, C<sub>2-6</sub> alkynyl, C<sub>1-4</sub> haloalkyl,
                     C<sub>1-4</sub> alkoxy, (C<sub>1-4</sub> haloalkyl)oxy,
                     C<sub>3-6</sub> cycloalkyl, phenyl, aryl substituted with 0-2 R<sup>34</sup>,
                     C<sub>1-6</sub> alkyl substituted with R<sup>34</sup>, and
  5
                     C<sub>2-6</sub> alkenyl substituted with R<sup>34</sup>;
         R<sup>34</sup>, at each occurrence, is independently selected from
                     OH, C<sub>1-4</sub> alkoxy, -SO<sub>2</sub>R<sup>35</sup>, -NR<sup>36</sup>R<sup>37</sup>, NR<sup>36</sup>R<sup>37</sup>C(=O)-, and
10
                     (C<sub>1-4</sub> alkyl)CO<sub>2</sub>-;
         R<sup>35</sup>, at each occurrence, is independently selected from
                     C<sub>1-4</sub> alkyl, C<sub>1-4</sub> haloalkyl, C<sub>3-6</sub> cycloalkyl,
                     (C<sub>3-6</sub> cycloalkyl)methyl-, and (C<sub>3-6</sub> cycloalkyl)ethyl-;
15
         R<sup>36</sup>, at each occurrence, is independently selected from H and C<sub>1-4</sub> alkyl;
         R<sup>37</sup>, at each occurrence, is independently selected from H, C<sub>1-4</sub> alkyl,
                     -C(=O)NH(C_{1-4} \text{ alkyl}), -SO_2(C_{1-4} \text{ alkyl}),
20
                     -C(=O)O(C_{1-4} \text{ alkyl}), -C(=O)(C_{1-4} \text{ alkyl}), \text{ and } -C(=O)H;
         R<sup>41</sup>, at each occurrence, is independently selected from
                     H, CF<sub>3</sub>, halo, OH, CO<sub>2</sub>H, SO<sub>2</sub>R<sup>45</sup>, NR<sup>46</sup>R<sup>47</sup>, NO<sub>2</sub>, CN, =O,
                     C<sub>1-4</sub> alkyl, C<sub>2-8</sub> alkenyl, C<sub>2-8</sub> alkynyl, C<sub>1-4</sub> alkoxy, and C<sub>1-4</sub> haloalkyl;
25
         R<sup>42</sup>, at each occurrence, is independently selected from
                     H, CF<sub>3</sub>, halo, OH, CO<sub>2</sub>H, SO<sub>2</sub>R<sup>45</sup>, SOR<sup>45</sup>, SR<sup>45</sup>, NR<sup>46</sup>SO<sub>2</sub>R<sup>45</sup>,
                     NR<sup>46</sup>COR<sup>45</sup>, NR<sup>46</sup>R<sup>47</sup>, NO<sub>2</sub>, CN,
                     C<sub>1-4</sub> alkyl, C<sub>2-6</sub> alkenyl, C<sub>2-6</sub> alkynyl, C<sub>1-4</sub> alkoxy, and C<sub>1-4</sub> haloalkyl;
```

 R^{45} is C_{1-4} alkyl;

R⁴⁶, at each occurrence, is independently selected from H and C₁₋₄ alkyl;

5

15

 R^{47} , at each occurrence, is independently selected from H, C_{1-4} alkyl,

 $-C(=O)NH(C_{1-4} \text{ alkyl}), -SO_2(C_{1-4} \text{ alkyl}),$

-C(=O)O(C₁₋₄ alkyl), -C(=O)(C₁₋₄ alkyl), and -C(=O)H;

10 m is 1 or 2;

provided that when R^{11} is C_{1-6} alkyl, then R^{1} is not a C_{1-4} alkyl substituted by a) an unsubstituted 3H-pyrimidine-4-one moiety, b) a substituted 3H-pyrimidine-4-one moiety, c) an unsubstituted bicyclic derivative of 3H-pyrimidine-4-one, or d) a substituted bicyclic derivative of 3H-pyrimidine-4-one;

provided that when R^6 is -O-R¹¹ and R^6 is C_{1-6} alkyl; then R^{8a} is not a substituted or unsubstituted indole moiety.

20 2. A compound of Claim 1 of Formula (Ia):

$$R^{8}$$
 R^{9}
 R^{9}
 R^{4a}
 R^{7}
 R^{6}
 R^{5}
 R^{6}
 R^{5}

or a stereoisomer or a pharmaceutically acceptable salt form thereof, wherein:

```
R<sup>1</sup> is selected from
```

H, C₁₋₃ haloalkyl, C₃₋₆ cycloalkyl,

 C_{1-4} alkyl substituted with 0-2 R^2 ,

C2-4 alkenyl substituted with 0-2 R2, and

C₂₋₄ alkynyl substituted with 0-2 R²;

 R^2 , at each occurrence, is independently selected from

halo, C₁₋₃ haloalkyl, C₁₋₄ alkoxy, C₁₋₄ alkyl,

C₃₋₆ cycloalkyl, and phenyl substituted with 0-5 R⁴²;

10

5

R^{4a} is H or C₁₋₄ alkyl;

 R^5 is H, C_{1-4} alkyl substituted with 0-1 R^{20} , or C_{1-4} haloalkyl;

15 R⁶ is selected from

halo, -CF3, -OCF3, -CN, -NO2, -OCH3, -SCH3, -CF2CF3, -O-R11,

-OCF2CF3, -OCF2H, -OCF2CH3,

 $-S-R^{11}, -S(=O)-R^{11}, -S(=O)2-R^{11}, -NR^{10}-R^{11}, -CH_2O-R^{11},\\$

-CH₂S-R¹¹, CH₂S(=O)-R¹¹, CH₂S(=O)₂-R¹¹, -CH₂NR¹⁰-R¹¹,

20 C₁₋₄ haloalkyl, (C₁₋₄ haloalkyl)oxy;

C₁₋₄ alkyl substituted with 0-2 R²⁰,

C₂₋₄ alkenyl substituted with 0-2 R²⁰,

C₂₋₄ alkynyl substituted with 0-1 R²⁰, and

C₃₋₆ carbocyclic residue substituted with 0-3 R²¹,

25

R⁷ and R⁹ are independently selected from

H, F, Cl, Br, -CF3, -OCF3, -OH, -CN, -NO2, CF2CF3, C1-4 alkyl,

C2-4 alkenyl, C2-4 alkynyl, C1-4 haloalkyl, C1-4 alkoxy, and

(C₁₋₄ haloalkyl)oxy;

```
R<sup>8</sup> is selected from
```

halo, -CF3, -OCF3, -OH, -CN, -NO2, -OCH3, -SCH3, -CF2CF3,

5 $-OR^{12}$, $-SR^{12}$, $-NR^{12}R^{13}$, -C(O)H, $-C(O)R^{12}$, $-C(O)NR^{12}R^{13}$,

 $-NR^{14}C(O)R^{12}$, $-C(O)OR^{12}$, $-OC(O)R^{12}$, $-OC(O)OR^{12}$,

 $-S(O)R^{12}$, $-S(O)_2R^{12}$, $-S(O)NR^{12}R^{13}$, $-S(O)_2NR^{12}R^{13}$,

 $-NR^{14}S(O)R^{12}$, $-NR^{14}S(O)_2R^{12}$, $-NR^{12}C(O)R^{15}$, $-NR^{12}C(O)OR^{15}$,

-NR¹²S(O)₂R¹⁵, -NR¹²C(O)NHR¹⁵;

10 C₁₋₆ alkyl substituted with 0-2 R^{8a},

C₂₋₆ alkenyl substituted with 0-2 R^{8a},

C₂₋₆ alkynyl substituted with 0-2 R^{8a},

C₃₋₆ cycloalkyl substituted with 0-2 R^{8a}, and

C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³;

15

 R^{8a} , at each occurrence, is independently selected from

 ${\rm halo, -CF_3, -OCF_3, -OH, -CN, -NO_2, -CF_2CF_3,}$

methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl,

 $-OR^{12}$, $-SR^{12}$, $-NR^{12}R^{13}$, -C(O)H, $-C(O)R^{12}$, $-C(O)NR^{12}R^{13}$.

 $-NR^{14}C(O)R^{12}$, $-C(O)OR^{12}$, $-OC(O)R^{12}$, $-OC(O)OR^{12}$.

 $-S(O)R^{12}$, $-S(O)2R^{12}$, $-S(O)NR^{12}R^{13}$, $-S(O)2NR^{12}R^{13}$.

 $-NR^{14}S(O)R^{12}$, $-NR^{14}S(O)_2R^{12}$, $-NR^{12}C(O)R^{15}$, $-NR^{12}C(O)OR^{15}$.

-NR¹²S(O)₂R¹⁵, -NR¹²C(O)NHR¹⁵;

phenyl substituted with 0-5 R³³;

25 C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³, and

5-6 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R^{33} ;

R¹⁰ is H or C₁₋₄ alkyl;

R¹¹ is selected from

5 C_{1-6} alkyl substituted with 0-2 R^{20} ,

C₂₋₆ alkenyl substituted with 0-2 R²⁰,

C₂₋₆ alkynyl substituted with 0-1 R²⁰,

C₃₋₁₀ carbocyclic residue substituted with 0-3 R²¹,

aryl substituted with 0-5 R²³, and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R²¹;

alternatively, R^{10} and R^{11} join to form a 5- or 6-membered ring optionally substituted with -O- or -N(R^{14})-;

alternatively, R¹⁰ and R¹¹ when attached to N may be combined to form a 9- or 10membered bicyclic heterocyclic ring system containing from 1-3 heteroatoms
selected from the group consisting of N, O, and S, wherein said bicyclic
heterocyclic ring system is unsaturated or partially saturated, wherein said
bicyclic heterocyclic ring system is substituted with 0-3 R¹⁶;

R¹² is selected from H,

15

C₁₋₆ alkyl substituted with 0-2 R^{12a},

25 C₂₋₆ alkenyl substituted with 0-2 R^{12a},

C₂₋₆ alkynyl substituted with 0-2 R^{12a},

C₃₋₆ cycloalkyl substituted with 0-3 R³³,

aryl substituted with 0-5 R³³;

 C_{3-10} carbocyclic residue substituted with 0-3 R^{33} , and

- 5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R³³;
- 5 R^{12a}, at each occurrence, is independently selected from

 $-CONR^{46}R^{47}$, $-OR^{45}$, =0.

C₁₋₄ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl,

phenyl substituted with 0-5 R³³;

C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³, and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R^{33} ;

15

20

- R¹³, at each occurrence, is independently selected from H, C₁₋₄ alkyl, C₂₋₄ alkenyl, and C₂₋₄ alkynyl;
- alternatively, R^{12} and R^{13} join to form a 5- or 6-membered ring optionally substituted with -O- or -N(R^{14})-;
- alternatively, R¹² and R¹³ when attached to N may be combined to form a 9- or 10membered bicyclic heterocyclic ring system containing from 1-3 heteroatoms
 selected from the group consisting of N, O, and S, wherein said bicyclic
 heterocyclic ring system is unsaturated or partially saturated, wherein said
 bicyclic heterocyclic ring system is substituted with 0-3 R¹⁶;
 - R¹⁴, at each occurrence, is independently selected from H and C₁₋₄ alkyl;
- 30 R¹⁵, at each occurrence, is independently selected from

5

25

H, C₁₋₄ alkyl, C₂₋₄ alkenyl, and C₂₋₄ alkynyl;

R¹⁶, at each occurrence, is independently selected from

H, OH, halo, CN, NO₂, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, -C(=O)H,

C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ haloalkyl,

C₁₋₃ haloalkyl-oxy-, and C₁₋₃ alkyloxy-;

R²⁰ is selected from

 R^{21} :

H, halo, -OH, -CF3, -CN, -NO2, -CO2H, -SO2R⁴⁵,

-SOR⁴⁵, -SR⁴⁵, -NR⁴⁶SO2R⁴⁵, -NR⁴⁶COR⁴⁵, -NR⁴⁶R⁴⁷,

C1-4 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-4 alkoxy,

C1-4 haloalkyl;

C3-10 carbocyclic residue substituted with 0-3 R²¹;

aryl substituted with 0-5 R²³; and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3

- R²¹, at each occurrence, is independently selected from

 H, OH, halo, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, CN, NO₂, =O, C₁₋₄ alkyl;

 C₁₋₄ alkoxy, and (C₁₋₄ haloalkyl)oxy;
 - R²³, at each occurrence, is independently selected from

 H, OH, halo, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, CN, NO₂, C₁₋₄ alkyl;

 C₁₋₄ alkoxy, and (C₁₋₄ haloalkyl)oxy;
 - $R^{33},$ at each occurrence, is independently selected from $\begin{array}{l} \text{H, OH, halo, -CN, -NO}_2, \text{-CF}_3, \text{-OCF}_3, \text{-SO}_2R^{35}, \text{-S}(=\text{O})R^{35}, \\ \text{-SR}^{35}, \text{-NR}^{36}R^{37}, \text{-NHC}(=\text{O})R^{35}, \text{-C}(=\text{O})\text{NR}^{36}R^{37}, \end{array}$

```
-C(=O)H, -C(=O)R^{35}, -C(=O)OR^{35}, -OC(=O)R^{35}, -OR^{35},
                    C<sub>1-6</sub> alkyl, C<sub>2-6</sub> alkenyl, C<sub>2-6</sub> alkynyl, C<sub>1-4</sub> haloalkyl,
                    C<sub>1-4</sub> alkoxy, (C<sub>1-4</sub> haloalkyl)oxy,
                    C<sub>3-6</sub> cycloalkyl, phenyl, aryl substituted with 0-2 R<sup>34</sup>,
                    C<sub>1-6</sub> alkyl substituted with R<sup>34</sup>, and
  5
                    C<sub>2-6</sub> alkenyl substituted with R<sup>34</sup>:
         R<sup>34</sup>, at each occurrence, is independently selected from
                    OH, C<sub>1-4</sub> alkoxy, -SO<sub>2</sub>R<sup>35</sup>, -NR<sup>36</sup>R<sup>37</sup>, NR<sup>36</sup>R<sup>37</sup>C(=O)-, and
10
                    (C<sub>1-4</sub> alkyl)CO<sub>2</sub>-;
         R<sup>35</sup>, at each occurrence, is independently selected from
                    C<sub>1-4</sub> alkyl, C<sub>1-4</sub> haloalkyl, C<sub>3-6</sub> cycloalkyl,
                    (C<sub>3-6</sub> cycloalkyl)methyl-, and (C<sub>3-6</sub> cycloalkyl)ethyl-;
15
         R<sup>36</sup>, at each occurrence, is independently selected from H and C<sub>1-4</sub> alkyl;
         R<sup>37</sup>, at each occurrence, is independently selected from H, C<sub>1-4</sub> alkyl,
                    -C(=O)NH(C_{1-4} \text{ alkyl}), -SO_2(C_{1-4} \text{ alkyl}),
20
                    -C(=O)O(C_{1-4} \text{ alkyl}), -C(=O)(C_{1-4} \text{ alkyl}), \text{ and } -C(=O)H;
         R<sup>41</sup>, at each occurrence, is independently selected from
                    H. CF<sub>3</sub>, halo, OH, CO<sub>2</sub>H, SO<sub>2</sub>R<sup>45</sup>, NR<sup>46</sup>R<sup>47</sup>, NO<sub>2</sub>, CN, =O.
                    C<sub>1-4</sub> alkyl, C<sub>2-8</sub> alkenyl, C<sub>2-8</sub> alkynyl, C<sub>1-4</sub> alkoxy, and C<sub>1-4</sub> haloalkyl;
25
```

 R^{42} , at each occurrence, is independently selected from H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, SOR⁴⁵, SR⁴⁵, NR⁴⁶SO₂R⁴⁵, NR⁴⁶COR⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN, C₁₋₄ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₄ alkoxy, and C₁₋₄ haloalkyl;

 R^{45} is C_{1-4} alkyl;

 R^{46} , at each occurrence, is independently selected from H and C_{1-4} alkyl;

5

R⁴⁷, at each occurrence, is independently selected from H, C₁₋₄ alkyl,

- $-C(=O)NH(C_{1-4} \text{ alkyl}), -SO_2(C_{1-4} \text{ alkyl}),$
- $-C(=O)O(C_{1-4} \text{ alkyl}), -C(=O)(C_{1-4} \text{ alkyl}), \text{ and } -C(=O)H;$
- 10 m is 1 or 2.
 - 3. A compound of Claim 2 of Formula (Ia):

$$R^{8}$$
 R^{9}
 R^{9}
 R^{4a}
 R^{7}
 R^{6}
 R^{5}
 R^{6}
 R^{5}

15

or a stereoisomer or a pharmaceutically acceptable salt form thereof, wherein:

R¹ is selected from

20 H, CF₃, m

H, CF3, methyl, ethyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl,

C₁₋₄ alkyl substituted with 0-1 R²,

 C_{2-4} alkenyl substituted with 0-1 R^2 , and

C₂₋₄ alkynyl substituted with 0-1 R²;

25 R² is selected from

F, Cl, CH₂F, CHF₂, CF₃, methyl, ethyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and phenyl;

R^{4a} is H or methyl;

5

R⁵ is H, methyl, or ethyl;

R⁶ is selected from

F, Cl, -CF₃, -OCF₃, -CF₂CF₃, -OCF₂CF₃, -OCF₂H, -OCF₂CH₃, -CN, -NO₂, -O-R¹¹, -S-R¹¹, -S(=O)-R¹¹, -S(=O)₂-R¹¹, -CH₂O-R¹¹, -CH₂S-R¹¹, CH₂S(=O)-R¹¹, CH₂S(=O)₂-R¹¹, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, and s-butyl;

 ${\sf R}^7$ and ${\sf R}^9$ are independently selected from

15 H, F, Cl, -CH₃, -OCH₃, -CF₃, -OCF₃, -CN, and -NO₂;

R⁸ is selected from

 $-OR^{12}$, $-SR^{12}$, $-NR^{12}R^{13}$, $-C(O)R^{12}$, $-S(O)R^{12}$, $-S(O)_2R^{12}$,

C₁₋₆ alkyl substituted with 0-2 R^{8a},

20 C₂₋₆ alkenyl substituted with 0-2 R^{8a},

C₂₋₆ alkynyl substituted with 0-2 R^{8a},

 C_{3-6} cycloalkyl substituted with 0-2 R^{8a} , and

C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³;

25 R^{8a}, at each occurrence, is independently selected from

halo, -CF3, -OCF3, -OH, -CN, -NO2, -CF2CF3,

methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl,

 $-OR^{12}$, $-SR^{12}$, $-NR^{12}R^{13}$, -C(O)H, $-C(O)R^{12}$, $-C(O)NR^{12}R^{13}$,

 $-NR^{14}C(O)R^{12}$, $-C(O)OR^{12}$, $-OC(O)R^{12}$, $-OC(O)OR^{12}$,

 $-S(O)R^{12}, -S(O)_2R^{12}, -S(O)NR^{12}R^{13}, -S(O)_2NR^{12}R^{13}, \\ -NR^{14}S(O)R^{12}, -NR^{14}S(O)_2R^{12}, -NR^{12}C(O)R^{15}, -NR^{12}C(O)OR^{15}, \\ -NR^{12}S(O)_2R^{15}, -NR^{12}C(O)NHR^{15}; \\ phenyl substituted with 0-5 R^{33};$

- C3-10 carbocyclic residue substituted with 0-3 R³³, and
 5-6 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R³³:
- 10 R¹¹ is selected from methyl, ethyl, propyl, and phenyl substituted with 0-5 R²³,
 - R^{12} is selected from

C₁₋₆ alkyl substituted with 0-2 R^{12a},

15 C₂₋₆ alkenyl substituted with 0-2 R^{12a},

C₂₋₆ alkynyl substituted with 0-2 R^{12a},

C₃₋₆ cycloalkyl substituted with 0-3 R³³,

aryl substituted with 0-5 R³³;

C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³, and

- 5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R^{33} ;
 - R^{12a}, at each occurrence, is independently selected from

25 H, halo, -OH, -CN, -NO₂, -CO₂H, -SO₂R⁴⁵, -SOR⁴⁵,
-SR⁴⁵, -NR⁴⁶SO₂R⁴⁵, -NR⁴⁶COR⁴⁵, -NR⁴⁶R⁴⁷,
-SO₂NR⁴⁶R⁴⁷, -CONR⁴⁶R⁴⁷, -OR⁴⁵, =O,
C₁₋₄ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl,

phenyl substituted with 0-5 R³³;

C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³, and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R³³:

R¹³, at each occurrence, is independently selected from H, C₁₋₄ alkyl, C₂₋₄ alkenyl, and C₂₋₄ alkynyl;

- alternatively, R¹² and R¹³ join to form a 5- or 6-membered ring selected from pyrrolyl, pyrrolidinyl, imidazolyl, piperidinyl, piperizinyl, methylpiperizinyl, and morpholinyl;
- alternatively, R¹² and R¹³ when attached to N may be combined to form a 9- or 10membered bicyclic heterocyclic ring system containing from 1-3 heteroatoms
 selected from the group consisting of N, O, and S; wherein said bicyclic
 heterocyclic ring system is selected from indolyl, indolinyl, indazolyl,
 benzimidazolyl, benzimidazolinyl, and benztriazolyl; wherein said bicyclic
 heterocyclic ring system is substituted with 0-1 R¹⁶;

20

5

 R^{14} is H, methyl, ethyl, propyl, or butyl;

R¹⁵ is H, methyl, ethyl, propyl, or butyl;

- 25 R¹⁶, at each occurrence, is independently selected from H, OH, F, Cl, CN, NO₂, methyl, ethyl, methoxy, ethoxy, trifluoromethyl, and trifluoromethoxy;
 - R^{23} , at each occurrence, is independently selected from

H, OH, F, Cl, CF₃, SO_2R^{45} , $NR^{46}R^{47}$, CN, NO_2 , methyl, ethyl, propyl, and butyl;

 R^{33} , at each occurrence, is independently selected from

5 H, OH, halo, -CN, -NO₂, -CF₃, -OCF₃, -SO₂R³⁵, -S(=O)R³⁵,

-SR35, -NR36R37, -NHC(=O)R35, -C(=O)NR36R37,

-C(=O)H, $-C(=O)R^{35}$, $-C(=O)OR^{35}$, $-OC(=O)R^{35}$, $-OR^{35}$,

C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₄ haloalkyl,

C₁₋₄ alkoxy, (C₁₋₄ haloalkyl)oxy,

10 C₃₋₆ cycloalkyl, phenyl, aryl substituted with 0-2 R³⁴,

C₁₋₆ alkyl substituted with R³⁴, and

C₂₋₆ alkenyl substituted with R³⁴;

R³⁴, at each occurrence, is independently selected from

OH, C_{1-4} alkoxy, -SO₂R³⁵, -NR³⁶R³⁷, NR³⁶R³⁷C(=O)-, and (C₁₋₄ alkyl)CO₂-;

 R^{35} , at each occurrence, is independently selected from

C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₃₋₆ cycloalkyl,

20 (C₃₋₆ cycloalkyl)methyl-, and (C₃₋₆ cycloalkyl)ethyl-;

R³⁶, at each occurrence, is independently selected from H and C₁₋₄ alkyl;

R³⁷, at each occurrence, is independently selected from H, C₁₋₄ alkyl,

-C(=O)NH(C₁₋₄ alkyl), -SO₂(C₁₋₄ alkyl),

 $-C(=O)O(C_{1-4} \text{ alkyl}), -C(=O)(C_{1-4} \text{ alkyl}), \text{ and } -C(=O)H;$

 R^{45} is C_{1-4} alkyl;

25

R⁴⁶, at each occurrence, is independently selected from H and C₁₋₄ alkyl;

 R^{47} , at each occurrence, is independently selected from H, C_{1-4} alkyl,

 $-C(=O)NH(C_{1-4} \text{ alkyl}), -SO_2(C_{1-4} \text{ alkyl}),$

 $-C(=O)O(C_{1-4} \text{ alkyl}), -C(=O)(C_{1-4} \text{ alkyl}), \text{ and } -C(=O)H;$

m is 1 or 2.

4. A compound of Claim 3 of Formula (Ib):

10

5

$$R^8$$
 R^9
 R^7
 R^6
 R^5
 R^5

or a stereoisomer or a pharmaceutically acceptable salt form thereof, wherein:

15

 R^1 is selected from H, methyl, and ethyl;

R⁵ is H, methyl, or ethyl;

20 R⁶ is selected from

-F, -Cl, -CF3, -OCF3, -CF2CF3, -OCF2CF3, -OCF2H, -OCF2CH3, -CN,

-NO₂, -OCH₃, -OCH₂CH₃, -SCH₃, -SCH₂CH₃, -S(=O)CH₃,

-S(=O)₂CH₃, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, and s-butyl;

25 R⁷ is H, F, or Cl;

R⁸ is selected from

 $-\mathsf{OR}^{12},\,-\mathsf{SR}^{12},\,-\mathsf{NR}^{12}\mathsf{R}^{13},\,-\mathsf{C}(\mathsf{O})\mathsf{R}^{12},\,-\mathsf{S}(\mathsf{O})\mathsf{R}^{12},\,-\mathsf{S}(\mathsf{O})_2\mathsf{R}^{12},$

C₁₋₆ alkyl substituted with 0-2 R^{8a},

C₃₋₆ cycloalkyl substituted with 0-2 R^{8a}, and

C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³;

 R^{8a} , at each occurrence, is independently selected from

H, F, Cl, Br, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl,

t-butyl, -OH, methoxy, ethoxy, n-propoxy, i-propoxy, -CF3, -OCF3,

-CN, -NO₂, -CF₂CF₃,-SCH₃, -SCH₂CH₃, -SO₂CH₃, -NH₂,

-CH2NH(CH3), -CH2N(CH3)2, -NH(CH3), -N(CH3)2, -CO(CH3),

-CO(OCH₃), -NHCO(CH₃), -CONH₂, -C(=O)H, -CH(OH)CH₃, -CH₂OH,

-CH2CH2OH, -CH2OCH3, -CH2CH2OCH3, -CH2OCH2CH3,.

phenyl substituted with 0-5 R³³, and pyridyl substituted with 0-5 R³³

15

25

10

5

 R^9 is H;

R¹² is selected from

C₁₋₆ alkyl substituted with 0-2 R^{12a},

20 cyclopropyl substituted with 0-2 R³³,

cyclobutyl substituted with 0-2 R³³.

cyclopentyl substituted with 0-2 R³³,

cyclohexyl substituted with 0-2 R³³.

bicyclo[3.1.1]heptane substituted with 0-2 R³³,

bicyclo[2.2.1]heptane substituted with 0-2 R³³,

phenyl substituted with 0-3 R³³; and

pyridyl substituted with 0-3 R³³;

R^{12a}, at each occurrence, is independently selected from

PH7483 NP

H, F, Cl, -OH, methyl, ethyl,

cyclopropyl substituted with 0-2 R³³,

cyclobutyl substituted with 0-2 R³³,

cyclopentyl substituted with 0-2 R³³,

5 cyclohexyl substituted with 0-2 R³³,

bicyclo[3.1.1]heptane substituted with 0-2 R³³,

bicyclo[2.2.1]heptane substituted with 0-2 R³³, and

phenyl substituted with 0-3 R³³;

10 R¹³ is H, methyl, or ethyl;

R³³, at each occurrence, is independently selected from

H, F, Cl, Br, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl,

t-butyl, -OH, methoxy, ethoxy, n-propoxy, i-propoxy, -SCH₃, -SCH₂CH₃,

-SO₂CH₃, -CF₃, -OCF₃, CF₂CF₃, -CN, -NO₂, -NH₂, -CH₂NH(CH₃),

-CH₂N(CH₃)₂, -NH(CH₃), -N(CH₃)₂, -CO(CH₃), -CO(OCH₃),

-NHCO(CH₃), -CONH₂, -C(=O)H, -CH(OH)CH₃, -CH₂OH, -CH₂CH₂OH,

-CH₂OCH₃, -CH₂CH₂OCH₃, and -CH₂OCH₂CH₃.

5. A compound of Claim 4 of Formula (Ib):

$$R^8$$
 R^9
 R^1
 R^7
 R^6
 R^5
(Ib)

or a stereoisomer or a pharmaceutically acceptable salt form thereof, wherein:

```
PH7483 NP
```

R¹ is H or methyl; R⁵ is H or methyl; R⁶ is selected from 5 -F, -Cl, -CF3, -CF2CF3, -OCF3, -OCF2CF3, -OCF2H, -OCF2CH3,-CN, -OCH₃, -SCH₃, -S(=O)CH₃, -S(=O)₂CH₃, or methyl; R⁷ is H, F, or Cl; 10 R⁸ is selected from -OR¹², -SR¹², -NR¹²R¹³, C₁₋₆ alkyl substituted with 0-2 R^{8a}, and C₃₋₆ cycloalkyl substituted with 0-2 R^{8a}. 15 R^{8a}, at each occurrence, is independently selected from H, F, Cl, Br, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, -OH, methoxy, ethoxy, n-propoxy, i-propoxy, -CF3, -OCF3, -CN, -CF2CF3,-SCH3, -SCH2CH3, -CH2NH(CH3), -CH2N(CH3)2, 20 -NH(CH₃), -N(CH₃)₂, -CO(CH₃), -CO(OCH₃), -NHCO(CH₃), -CONH₂, -CH(OH)CH3, -CH2OH, -CH2CH2OH, -CH2OCH3, -CH2CH2OCH3, -CH2OCH2CH3, phenyl substituted with 0-5 R³³, and pyridyl substituted with 0-5 R³³ R^9 is H; 25 R¹² is selected from methyl, ethyl, propyl, butyl, pentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, bicyclo[3.1.1]heptane, bicyclo[2.2.1]heptane, 30

PH7483 NP

methyl substituted with R^{12a};
ethyl substituted with R^{12a};
propyl substituted with R^{12a};
phenyl substituted with 0-2 R³³; and
pyridyl substituted with 0-2 R³³;

R^{12a} is selected from cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, bicyclo[3.1.1]heptane, bicyclo[2.2.1]heptane, and phenyl substituted with 0-2 R³³;

R¹³ is H, methyl, or ethyl;

R³³, at each occurrence, is independently selected from

H, F, Cl, Br, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl,
t-butyl, -OH, methoxy, ethoxy, n-propoxy, i-propoxy, -SCH₃, -SCH₂CH₃,
-SO₂CH₃, -CF₃, -OCF₃, -CN, -NO₂, -NH₂, -CH₂NH(CH₃),
-CH₂N(CH₃)₂, -NH(CH₃), -N(CH₃)₂, -CO(CH₃), -CO(OCH₃),
-NHCO(CH₃), -CONH₂, -C(=O)H, -CH(OH)CH₃, -CH₂OH, -CH₂CH₂OH,
-CH₂OCH₃, -CH₂CH₂OCH₃, and -CH₂OCH₂CH₃.

6. A compound of Claim 1 of Formula (Ic):

$$R^{8}$$
 R^{9}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{5}
 R^{5}
 R^{5}

25

10

5

10

or a pharmaceutically acceptable salt thereof.

- 7. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 1 or a pharmaceutically acceptable salt thereof.
- 8. A method for treating a human suffering from a disorder associated with $5HT_{2C}$ receptor modulation comprising administering to a patient in need thereof a therapeutically effective amount of a compound of Claim 1 or a pharmaceutically acceptable salt thereof.
- 9. A method of Claim 8 for treating a human suffering from a disorder associated with $5HT_{2C}$ receptor modulation wherein the compound is a $5HT_{2C}$ agonist.
- 15 10. A method for treating obesity comprising administering to a patient in need thereof a therapeutically effective amount of a compound of Claim 1 or a pharmaceutically acceptable salt thereof.