Inducción estructural

Clase 23

IIC 1253

Prof. Cristian Riveros

Equivalencia de principios de inducción (clase pasada)

Teorema

Las siguientes condiciones son equivalentes:

- 1. Principio del buen orden.
- 2. Principio de inducción simple.

$$(P(0) \land (\forall n. P(n) \rightarrow P(n+1))) \rightarrow \forall n. P(n)$$

3. Principio de inducción fuerte.

$$(\forall n. (\forall k < n. P(k)) \rightarrow P(n)) \rightarrow \forall n. P(n)$$

Demostraremos solo que $2. \Rightarrow 3.$

Equivalencia de principios de inducción (clase pasada)

Demostración: $2. \Rightarrow 3.$

Suponemos que se cumple el principio de inducción simple sobre \mathbb{N} :

$$(P(0) \land (\forall n. P(n) \rightarrow P(n+1))) \rightarrow \forall n. P(n)$$

PD:
$$(\forall n. (\forall k < n. P(k)) \rightarrow P(n)) \rightarrow \forall n. P(n).$$

Suponga que se cumple:
$$\forall n. (\forall k < n. P(k)) \rightarrow P(n)$$
 (*)

PD: $\forall n. P(n)$

¿se cumplen las condiciones del principio de inducción simple?

- 1. P(0) es verdadero ?
- 1. I (0) es verdadero :
- 2. $\forall n. P(n) \rightarrow P(n+1)$ es verdadero ?

?

Equivalencia de principios de inducción (clase pasada)

Demostración: $2. \Rightarrow 3.$

Suponemos que se cumple el principio de inducción simple sobre \mathbb{N} .

PD:
$$(\forall n. (\forall k < n. P(k)) \rightarrow P(n)) \rightarrow \forall n. P(n)$$
.

Suponga que se cumple:
$$\forall n. (\forall k < n. P(k)) \rightarrow P(n)$$
 (*)

PD: $\forall n$. P(n)

Defina el predicado $P'(n) := \forall k < n. P(k)$.

Defina el predicado
$$I''(n) := \forall k < n. \ I'(k)$$

1.
$$P'(0)$$
 es verdadero ?
2. $\forall n. P'(n) \rightarrow P'(n+1)$ es verdadero ?

■ Entonces,
$$\forall n. P'(n)$$
.

Por lo tanto,
$$\forall n. P(n)$$
. (¿por qué?)

(¿por qué?)

Inducción sobre los naturales

Principio de inducción simple

Para todo predicado $P(\cdot)$ en \mathbb{N} , la siguiente formula es siempre verdadera:

$$(P(0) \land (\forall n. P(n) \rightarrow P(n+1))) \rightarrow \forall n. P(n)$$

Principio de inducción fuerte

Para todo predicado $P(\cdot)$ en \mathbb{N} , la siguiente formula es siempre verdadera:

$$(\forall n. (\forall k < n. P(k)) \rightarrow P(n)) \rightarrow \forall n. P(n)$$

¿podemos generalizar este principio sobre cualquier estructura?

Outline

Definiciones recursivas

Inducción estructural

Definiciones recursivas

Definición

Una definición se dice recursiva si puede ser definida a partir de:

- 1. Casos bases sencillos.
- 2. Una serie de reglas que reducen la definición a casos anteriores.

Ejemplo

```
Caso base: F(0) = 0

F(1) = 1
```

Regla recursiva: F(n) = F(n-1) + F(n-2) para $n \ge 2$

Definiciones recursivas

Mas ejemplos

Sumatorias
$$\sum_{i=0}^{n} i$$

Caso base:
$$\sum_{i=0}^{0} i = 0$$

Regla recursiva:
$$\sum_{i=0}^{n} i = \left(\sum_{i=0}^{n-1} i\right) + n$$

Exponencial 2^n

Caso base:
$$2^0 = 1$$

Caso base:
$$2^0 = 1$$

Regla recursiva: $2^n = 2^{n-1} \cdot 2$

¿cómo generalizamos esta idea para definir conjuntos?

Definición

Una definición recursiva de un conjunto S consta de:

- 1. Un conjunto base $B = \{b_1, \ldots, b_N\}$ tal que $b_i \in \mathbb{S}$ para todo $i \leq N$.
- 2. Reglas recursivas R de la forma:

si
$$s_1, \ldots, s_n \in \mathbb{S}$$
 entonces $R(s_1, \ldots, s_n) \in \mathbb{S}$

3. Una afirmación de exclusión de la forma: "El conjunto S son todos los elementos que se construyen solamente a partir de B y las reglas R."

¿para qué necesitamos la afirmación de exclusión?

Ejemplos

■ Se define el conjunto N tal que:

Caso base: $0 \in \mathbb{N}$

Regla recursiva: Si $a \in \mathbb{N}$, entonces $a + 1 \in \mathbb{N}$.

 $\ensuremath{\mathbb{N}}$ es el conjunto que se construye solo a partir de las reglas anteriores.

■ Se define el conjunto S tal que:

Caso base: $3 \in \mathbb{S}$

Regla recursiva: Si $a \in \mathbb{S}$ y $b \in \mathbb{S}$, entonces $a + b \in \mathbb{S}$.

 $\mathbb S$ es el conjunto que se construye solo a partir de las reglas anteriores.

Desde ahora, siempre omitiremos la afirmación de exclusión.

Palabras

Sea Σ un alfabeto. El conjunto Σ^* se define recursivamente como:

- 1. $\epsilon \in \Sigma^*$.
- 2. si $w \in \Sigma^*$, entonces $wa \in \Sigma^*$ para todo $a \in \Sigma$.

Otro conjunto de palabras

Sea Σ un alfabeto. El conjunto \mathcal{P}_{Σ} se define recursivamente como:

- 1. $\epsilon \in \mathcal{P}_{\Sigma}$ y $a \in \mathcal{P}_{\Sigma}$ para todo $a \in \Sigma$.
- 2. si $w \in \mathcal{P}_{\Sigma}$, entonces $a \cdot w \cdot a \in \mathcal{P}_{\Sigma}$ para todo $a \in \Sigma$.

¿a qué corresponde el conjunto \mathcal{P}_{Σ} ?

Otra definición recursiva

Sea • un símbolo cualquiera.

El conjunto \mathcal{T}_2 se se define recursivamente como:

- 1. $\bullet \in \mathcal{T}_2$.
- 2. si $t_1 \in \mathcal{T}_2$ y $t_2 \in \mathcal{T}_2$ entonces:

$$t_1$$
 t_2
 $\in \mathcal{T}$

¿a qué corresponde el conjunto \mathcal{T}_2 ?

Otra definición recursiva

Sea • un símbolo cualquiera.

El conjunto \mathcal{T}_2 se se define recursivamente como:

- 1. $\bullet \in \mathcal{T}_2$.
- 2. si $t_1 \in \mathcal{T}_2$ y $t_2 \in \mathcal{T}_2$ entonces:

(todos los árboles binarios)

Funciones sobre definiciones recursivas

Podemos utilizar la naturaleza recursiva de un conjunto $\mathbb S$ para definir funciones o propiedades sobre $\mathbb S$.

Ejemplo de funciones sobre palabras

Se define $f: \Sigma^* \to \mathbb{N}$ tal que:

$$f(\epsilon) = 0$$

 $f(wa) = f(w) + 1$ para $w \in \Sigma^*$ y $a \in \Sigma$

¿qué define la función f?

Funciones sobre definiciones recursivas

Podemos utilizar la naturaleza recursiva de un conjunto $\mathbb S$ para definir funciones o propiedades sobre $\mathbb S$.

Ejemplo de funciones sobre palabras

Para $b \in \Sigma$ se define $|\cdot|_b : \Sigma^* \to \mathbb{N}$ como:

$$\begin{array}{rcl} \mid \epsilon \mid_b & = & 0 \\ \\ \mid w \cdot a \mid_b & = & \left\{ \begin{array}{ll} \mid w \mid_b + 1 & \text{ si } a = b \\ \\ \mid w \mid_b & \text{ si } a \neq b \end{array} \right. \end{array} \quad \text{para } w \in \Sigma^* \text{ y } a \in \Sigma$$

¿qué define la función $|\cdot|_b$?

Funciones sobre definiciones recursivas

¿qué definen las siguientes funciones sobre \mathcal{T}_2 ?

Se define la función $g: \mathcal{T}_2 \to \mathbb{N}$ como:

$$g(ullet) = 1$$
 $g\left(ullet box{}{\downarrow} \begin{picture}(20,0) \put(0,0){\line(0,0){120}} \put(0,0){\lin$

Se define la función $g': \mathcal{T}_2 \to \mathbb{N}$ como:

Outline

Definiciones recursivas

Inducción estructural

Inducción estructural

Sea S un conjunto definido a partir de:

- un conjunto base B y
- lacktriangle un conjunto de reglas recursivas \mathcal{R} .

Definimos la capa S[n] de S para todo $n \ge 0$ como:

$$\begin{split} \mathbb{S}[0] &= B \\ \mathbb{S}[n+1] &= \mathbb{S}[n] \cup \left\{ T(s_1,\ldots,s_k) \mid T \in \mathcal{R} \wedge s_1,\ldots,s_k \in \mathbb{S}[n] \right\} \end{split}$$

¿cuál es el conjunto de capas para las definiciones anteriores?

Inducción estructural

Definimos la capa S[n] de S para todo $n \ge 0$ como:

$$\begin{split} \mathbb{S}[0] &= B \\ \mathbb{S}[n+1] &= \mathbb{S}[n] \cup \left\{ T(s_1,\ldots,s_k) \mid T \in \mathcal{R} \wedge s_1,\ldots,s_k \in \mathbb{S}[n] \right\} \end{split}$$

Principio de inducción estructural

Para todo predicado $P(\cdot)$ sobre \mathbb{S} , es siempre verdadero:

$$\left[\left(\forall s \in \mathbb{S}[0]. \ P(s) \right) \land \\ \forall n. \left(\forall s \in \mathbb{S}[n]. \ P(s) \right) \rightarrow \left(\forall s' \in \mathbb{S}[n+1]. \ P(s') \right) \right]$$

$$\rightarrow \forall s \in \mathbb{S}. \ P(s)$$

Demostración: defina $P'(n) := \forall s \in \mathbb{S}[n]$. P(s).

Ejemplo de inducción estructural

Ejemplo

Demuestre la afirmación para $w \in \mathcal{P}_{\Sigma}$:

$$P(w) := \sin |w| \text{ es par, entonces } |w|_b \text{ es par para todo } b \in \Sigma.$$

- 1. $P(\epsilon)$ o P(a) para $a \in \Sigma^*$.
- 2. si P(w) es verdadero, entonces demostramos para $P(a \cdot w \cdot a)$:
 - si $|a \cdot w \cdot a|$ es par y $b \in \Sigma$:

$$\Rightarrow$$
 | w | es par.

$$\Rightarrow |w|_b$$
 es par.

$$\Rightarrow |a \cdot w \cdot a|_b$$
 es par.

(por HI)

Por lo tanto, P(w) se cumple para todo $w \in \mathcal{P}_{\Sigma}$.

Ejemplo de inducción estructural

Ejemplo

Demuestre la afirmación para $t \in \mathcal{T}_2$:

$$P(t) := \operatorname{nodos}(t) < 2 \cdot \operatorname{hojas}(t).$$

2. si $P(t_1)$ y $P(t_2)$ es verdadero, entonces dem. para $P(\bullet(t_1, t_2))$:

Por lo tanto, P(t) se cumple para todo $t \in \mathcal{T}_2$.