Lezione 1 - Introduzione ad MBSE

7 ottobre 2025

Ingegneria dei Sistemi

L'ingegneria dei sistemi è un approccio interdisciplinare che permette la realizzazione di sistemi di successo. Si concentra sulla definizione dei bisogni del cliente e delle funzionalità richieste sin dalle fasi iniziali del ciclo di sviluppo, sulla documentazione dei requisiti e prosegue con la sintesi della progettazione e la validazione del sistema, considerando l'intero problema: operazioni, costi e tempistiche, prestazioni, formazione e supporto, test, produzione e smaltimento. L'ingegneria dei sistemi tiene conto sia delle necessità aziendali sia di quelle tecniche di tutti i clienti, con l'obiettivo di fornire un prodotto di qualità che soddisfi le esigenze degli utenti.

Model Based System Engineering (MBSE)

Applicazione formalizzata della modellazione a supporto delle attività relative ai requisiti di sistema, progettazione, analisi, verifica e validazione durante lo sviluppo e nelle successive fasi del ciclo di vita. MBSE migliora l'approccio tradizionale basato sui documenti per ottenere:

- Comunicazioni migliorate tra le parti interessate
- Maggiore capacità di gestire la complessità dei sistemi
- Qualità del prodotto migliorata
- Riduzione dei tempi di ciclo
- Riduzione del rischio
- Migliore acquisizione e riutilizzo delle conoscenze

Cos'è un sistema?

Una raccolta finalizzata di componenti interrelati che lavorano insieme per raggiungere un obiettivo comune. Un sistema può includere software, hardware meccanico, elettrico ed elettronico ed essere gestito da persone. I componenti del sistema dipendono gli uni dagli altri. Le proprietà e il comportamento dei componenti del sistema sono strettamente interconnessi.

Categorie di Sistemi

- Sistemi tecnici basati su computer: comprendono hardware e software, ma gli operatori e i processi operativi non vengono normalmente considerati parte del sistema.
- Sistemi socio-tecnici: includono sistemi tecnici, processi operativi e persone che usano e interagiscono coi sistemi tecnici. Questi sistemi sono governati da politiche e regole organizzative.
- Sistemi socio-tecnici ad alta intensità software: sistemi nei quali il software rappresenta la parte maggiore in termini di costi e tempi di sviluppo, rischio di sviluppo o funzionalità.

Ingegneria dei Sistemi Software

Disciplina per la produzione di software fondata su principi ingegneristici consolidati (progettazione e validazione). È essenziale considerare il software come prodotto industriale. Quando mancano questi principi si osserva:

- Prodotti software che non raggiungono la qualità attesa
- Competitività ridotta: consegne ritardate, superamento dei costi previsti

Una disciplina giovane

Gli ingegneri elettrici ed elettronici, interessati a costruire computer, consideravano la programmazione come una mansione da assegnare ad altri – scienziati interessati ai risultati numerici o matematici che si occupavano di

metodi numerici. Gli ingegneri vedevano la programmazione come un compito banale, simile all'uso di una calcolatrice. Molti considerano la programmazione una "abilità" e negano che i principi ingegneristici debbano essere applicati nello sviluppo software.

Il matrimonio non consumato

Matrimonio non consumato tra:

- Scienza dell'informazione (teoria della programmazione)
- Principi ingegneristici (progettazione e validazione)

L'ingegneria del software deve unire una parte della scienza dell'informazione ai concetti e alla disciplina insegnata agli altri ingegneri:

- Gli ingegneri devono accettare di non conoscere abbastanza la scienza dell'informazione
- Gli informatici devono riconoscere che essere ingegneri è diverso dall'essere scienziati, e che gli ingegneri del software hanno bisogno di una formazione differente.

Esempio: ingegneria chimica, unione tra chimica e aree dell'ingegneria classica (termodinamica, meccanica, fluidodinamica). Oggi l'ingegneria chimica non viene vista come ramo della chimica. Il termine "Software Engineering" nasce circa 50 anni fa:

- Conferenza NATO a Garmisch, Germania (1968)
- Per testimoniare la necessità di considerare la produzione del software.

Risultati della conferenza NATO

La programmazione non è né scienza né matematica. I programmatori non aggiungono conoscenza, ma costruiscono prodotti. Usare scienza e matematica per costruire prodotti per altri è ciò che fanno gli ingegneri. Il software è una fonte importante di problemi per chi lo possiede e lo usa: proprio quelli attesi quando i prodotti sono realizzati da persone con formazione in altri ambiti e che ritengono che costruire cose non è il loro vero lavoro.

Aspetti tipici del prodotto software

Le difficoltà accidentali possono essere risolte con il progresso tecnologico:

- Attitudine
- Manutenzione
- Specifica e progettazione
- Lavoro di squadra

Ciclo di vita del software: 3 stadi, 6 fasi

Produzione software = sviluppo + manutenzione Sviluppo (stadio 1) = 6 fasi:

- 1. Definizione dei requisiti
- 2. Specifica dei requisiti (o analisi)
- 3. Pianificazione
- 4. Progettazione (architetturale e dettagliata)
- 5. Codifica
- 6. Integrazione

Manutenzione (stadio 2): copre il 60% dei costi nel ciclo di vita Dismissione (stadio 3): ritiro dal servizio