简单 NOIP 模拟赛

A1B2C3D4&anaccount

题目名称	ZZH的游戏	ZZH与背包	ZZH与计数	ZZH的旅行
题目名称	game	knapsack	counting	journey
题目类型	传统题	传统题	传统题	传统题
程序名称	game	knapsack	counting	journey
输入文件名	game.in	knapsack.in	counting.in	journey.in
输出文件名	game.out	knapsack.out	counting.out	journey.out
时间限制	1s	4s	3s	3s
内存限制	512MB	2048MB	1024MB	512MB
测试点数量	20	20	20	20
测试点是否等分	是	是	是	是

编译选项:

C++	-lm -Wl,stack=2147483647 -O2
其它语言	del *

注意事项:

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3. 若无特殊说明,结果比较方式为忽略行末空格、文末回车后的全文比较。
- 4. 评测时采用的机器配置为: Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz, 内存 8GB。上述时限以此配置为准。
- 5. 选手应将各题的源程序放在选手文件夹内,不要建立子文件夹。
- 6. 评测使用 Windows 系统,系统为 64 位。
- 7. 部分题目的输入文件较大,请使用快速输入/输出,下发文件中提供了 fastio.cpp 作为参考。
- 8. 题目不一定按难度顺序排列。
- 9. 此比赛真的非常简单。
- 10. 请选手 AK 后不要大声喧哗,以免影响他人 AK 。

ZZH的游戏 (game)

题目背景

因为出题人只会出签到题, 所以这场比赛有很多签到题。

题目描述

ZZH 在和 GVZ 玩游戏。

ZZH 和 GVZ 各有一棵树,每棵树都有 n 个点。

两棵树上各自有一枚棋子。ZZH 的棋子初始在它树上的点 s , GVZ 的棋子初始在树上的点 t 。

两人轮流操作。一个人操作时,可以选择不移动自己树上的棋子,也可以选择将自己树上的棋子移动到自己树上相邻的一个点。

当两枚棋子都在所在树的点1上时,游戏结束。游戏的分数是所有时刻中,两个棋子所在的点编号的和的最大值。

ZZH 和 GVZ 会合作让游戏结束时的分数尽量小。两人都极其聪明,因此两人都会采用最优策略。

ZZH 和 GVZ 一共会进行 T 次游戏,每次游戏的树与之前不同,n 也不一定相同,但两人的树的点数一定相等。

你需要求出在每一次游戏中,游戏结束时的分数的最小值。

输入格式

第一行一个非负整数T,表示游戏的次数。

对于每次游戏,第一行一个正整数 n ,表示树的点数。

然后 n-1 行,每行两个正整数 a_i,b_i ,表示 ZZH 树上的一条边 (a_i,b_i) 。

然后 n-1 行,每行两个正整数 a_i,b_i ,表示 GVZ 树上的一条边 (a_i,b_i) 。

然后一行两个正整数 s,t ,分别表示 ZZH 树上棋子初始的位置和 GVZ 树上棋子初始的位置。

输出格式

输出T行,第i行一个整数,表示第i个游戏结束时的最小分数。

样例

样例输入1

```
1 5 1 5 5 4 3 4 4 2 5 1 3 4 4 4 5 3 3 3
```

样例输出1

7

样例解释

首先 ZZH 将棋子移动到 4,接下来 GVZ 不动。

然后 ZZH 将棋子移动到 2, 接下来 GVZ 将棋子移动到 4。

然后 ZZH 不动,GVZ 将棋子移动到 5。

然后 ZZH 不动, GVZ 将棋子移动到 1。

接下来 ZZH 将棋子移动至 1 即可。

样例输入/输出 2~4

见下发文件

这些样例分别满足测试点2,2,5,9的限制。

数据范围

对于所有数据,保证 $\sum n \leq 10^6, T \leq 10^4$ 。

测试点编号	特殊限制
1	T=0
2,3,4	$\sum n \leq 100$
5,6,7,8	$\sum n \leq 1000$
9,10,11,12	$\sum n \leq 2 imes 10^5$,两棵树均为随机生成
13,14,15,16,17	$\sum n \leq 2 imes 10^5$
18,19,20	无特殊限制

ZZH与背包 (knapsack)

题目背景

因为出题人不想写很长的代码,所以这场比赛所有题目std都很短。

题目描述

ZZH 有一个背包。

ZZH有 n 个物品, 第 i 个物品的体积为 v_i 。

ZZH 要去学校,她想带 n 个物品中的一些去学校。为了使背包不过于空,放入背包中的物品体积总和不能小于 l 。因为背包有容量上限,所以放入背包中的物品体积总和不能大于 r 。

ZZH 想知道,她能带去学校的物品的集合一共有多少种。ZZH觉得这个问题太简单了,于是她把这个问题交给了你。

ZZH一共要去 q 次学校,因为ZZH还有一些必须带的东西(例如显卡),所以每次的 l,r 会改变。你需要对于每一个给出的 l,r 求出答案。

输入格式

第一行两个非负整数 n,q,表示物品个数和询问次数。

第二行 n 个正整数 v_1, \ldots, v_n ,表示每个物体的体积。

然后 q 行,每行两个正整数 l_i, r_i ,表示第 i 次询问的 l_i, r_i 。

输出格式

输出 q 行, 第 i 行一个整数表示第 i 个询问的方案数。

样例

样例输入1

4 2 1 2 3 4 3 8

6 6

样例输出1

11 2

样例解释

对于第一个询问,除了 {}, {1}, {2}, {1,3,4}, {2,3,4} 外都满足要求。

对于第二组询问,只有 {1,2,3}, {2,4} 满足要求。

样例输入/输出 2~7

见下发文件

这些样例分别满足测试点2,2,2,6,9,12,17的限制。

数据范围

对于所有数据,保证 $1 \le n \le 40, q \le 500, 1 \le l_i \le r_i \le \sum v_i$ 。

测试点编号	特殊限制
1	q = 0
2,3,4,5	$n \leq 20$
6,7,8	$n \leq 25$
9,10,11	q = 1
12,13,14,15,16	$n \leq 32$
17,18,19,20	$n \leq 40$

ZZH与计数 (counting)

题目背景

因为出题人水平很低, 所以这场比赛的题水平都很低。

题目描述

ZZH 喜欢计数。

ZZH 有很多的数,经过统计,ZZH一共有 v_0 个 0 , v_1 个 1 ,…, v_{2^n-1} 个 2^n-1 。因为一些原因,ZZH 只有这 2^n 种数。

ZZH 和 GVZ 要对这些数进行 m 次操作。每一次操作由一个人进行。每一次,有 p 的概率由 ZZH 操作,1-p 的概率由 GVZ 操作。

两人进行操作的时候都会依次操作每一个数。对于一个数s,如果 ZZH 对这个数进行操作,她会在 $0,1,\ldots,2^n-1$ 中找出所有的t,满足t or s=s,然后将s 等概率随机变成找出的t 中的一个。

如果 GVZ 对这个数进行操作,她会在 $0,1,\ldots,2^n-1$ 中找出所有的 t ,满足 t and s=s ,然后将 s 等概率随机变成找出的 t 中的一个。(这里的and/or指二进制与/或操作)

因为操作需要非常长的时间,她们想要知道所有操作结束后,对于每一个i, i 的个数的期望。因为期望值可能不是整数,所以她们想知道期望值模 998244353 的结果。

因为她们觉得这个问题太简单了,于是她们把这个问题交给了你。

输入格式

第一行四个非负整数 n, m, a, b , 含义同题目, 其中 p = a/b 。

第二行 2^n 个正整数,表示 $v_0, v_1, \ldots, v_{2^n-1}$ 。

输出格式

输出一行 2^n 个整数,依次表示 0 的个数的期望, 1 的个数的期望, ..., 2^n-1 的个数的期望。

样例

样例输入1

2 1 1 3 1 2 3 4

样例输出1

665496237 499122178 2 831870299

样例解释

如果 ZZH 进行操作,0 会随机变为 $\{0\}$,1 会随机变为 $\{0,1\}$,2 会随机变为 $\{0,2\}$,3 会随机变为 $\{0,1,2,3\}$ 。

如果 GVZ 进行操作,0 会随机变为 $\{0,1,2,3\}$,1 会随机变为 $\{1,3\}$,2 会随机变为 $\{2,3\}$,3 会随机变为 $\{3\}$ 。

可以得到期望为 $\frac{5}{3}$, $\frac{3}{2}$, 2, $\frac{29}{6}$ 。

样例输入/输出 2~4

见下发文件

这些样例分别满足测试点2,2,9,15的限制。

数据范围

对于所有数据,保证 $1 \le n \le 17, m \le 10^9, 0 \le a < b < 998244353, 0 \le v_i < 998244353$ 。

测试点编号	特殊限制
1	m=0
2,3	$m \leq 1000, n \leq 7$
4,5,6	$n \leq 7$
7,8	$p=0, n \leq 13$
9,10,11,12	$n \leq 13$
13,14	$n \leq 16$,只存在一个 i 满足 $v_i > 0$
15,16	$p=0, n \leq 16$
17	$n \leq 16$
18,19,20	$n \leq 17$

ZZH的旅行 (journey)

题目背景

因为出题人天天被 ZZH 吊打,所以这场比赛的题目中出现了 ZZH 。

题目描述

假期到了, ZZH 决定外出旅行。

ZZH 所在的城市由 n 个景点组成,每个景点有两个权值 a_i, b_i , n 个景点间由 n-1 条双向道路连接,每条道路有长度 d_i 。其中景点 1 是城市的首都。保证任意两个景点间都能互相到达。

但因为道路拥堵,在 ZZH 旅行的这一天,所有道路只能单向通行。此时从首都出发,仍然能到达所有景点。

ZZH 会在前一天晚上选择任意一个景点作为起点。第二天,她会选择游览若干个景点,**她一定会游览起点处的景点**。初始时,ZZH 的心情值为 0 ,旅行的有趣度为 0 ,每经过一条边,她的心情值会减去 d_i 。当她游览一个景点 x 时,旅行的有趣度会增加心情值与 b_x 的乘积,之后 ZZH 的心情值将会变为 a_x

ZZH 还没有决定应该从哪里开始,因此你需要算出对于每个点,以这个点作为起点时旅行的有趣度的最大值。

简要题面:

给一棵有根树, 1 为根。对于每个点 x ,求出对于满足如下条件的序列 $\{s_1,\ldots,s_k\}$

1. s_{i-1} 是 s_i 的祖先,且 $s_{i-1} \neq s_i$

2. $s_1 = x$

中, $\sum_{i=2}^{x} (a_{s_{i-1}} - dis(s_{i-1}, s_i))b_{s_i}$ 的最大值。

输入格式

第一行一个正整数 n , 表示景点数量。

然后 n 行,一行两个整数 a_i, b_i ,依次表示每个景点的 a, b 。

然后 n-1 行,一行两个整数 a_i,b_i,d_i ,表示每条道路的两个端点以及道路长度。

注意:以 1 为根, a_i 不一定是 b_i 的祖先

输出格式

输出 n 行,第 i 行表示从 i 开始时的最大旅行有趣度。

样例

样例输入1

```
7
4 5
6 10
2 0
1 2
4 6
5 5
5 5
1 2 10
2 3 2
3 4 1
3 5 3
1 6 3
6 7 3
```

样例输出1

```
15
6
2
0
0
10
```

样例解释

最优旅行序列分别为:

{1,6,7} {2,5} {3,4} {4} {5} {6,7} {7}

样例输入/输出 2~6

见下发文件

这些样例分别满足测试点2,2,2,2,5,8的限制。

数据范围

对于所有数据,保证 $n \leq 10^6, 0 \leq a_i, b_i, d_i \leq 10^9$,从 1 出发到每个点的距离不超过 10^9 , 所有答案 不超过 2×10^{17} 。

测试点编号	特殊限制
1	$a_i,b_i=0$
2,3,4	$n \leq 1000$
5,6,7	$n \leq 10^5$, a_i, b_i, d_i 在某个范围内随机生成
8,9,10	$n \leq 10^5$,保证树是一条以 1 为端点的链
11,12,13,14	$n \leq 10^5$
15,16,17,18,19,20	无特殊限制