Projection matrix P: projection onto a plane 01, Pa= x for any no that lies on the plane if taking cos(0) = P2 > Share x mus Since Px = X. then o = 0° hence is dies in column space of P any vector a in same is eigenvector if taking co(0): Px = 0 -0 given x +0. then cos(0) = 0 = 0 0 = cos-1(0) = 90° orthogonal to solumn space of hence my a 1' to plane is eigenvector. and Px = 121 Summay: (giran x to) if or I'm to column if a lies in column space of P space of P

Characteristic polynomial of A = 111. 12- (1+3) x + (1*3-2*1)=0 $\lambda^{2} - 4\lambda + 1 = 0$ $\Delta^{2} - b\lambda + c = 0$ $\lambda = -b \pm \sqrt{b^{2} - 4ac} \qquad (Avadratic born/h)$ Δa 2(1) = 4 ± \16 -4 $= 4 \pm \sqrt{12} \qquad = 4 \pm \sqrt{3}$ 1 2 ± 13 : 1 = 2 + 13, h2 = 2 - 13 are the Eigenvalues of A = \[\begin{picture} 1 & 1 \\ 2 & 3 \end{picture} he know that c-1 Aks = xk or |Akx = xkx; Qlo. 1) Ax, = A, x, An = (0) x =) A37, 232, = (0)32, = [0]21 2) An = 0272 => A3n2 = 13n2 = (-1)32 = 12n2 $\frac{3}{3} + \frac{3}{4} \times \frac{3}{3} \times \frac{3}$: Eigenvalues of A3 ane 0, -1,125

6	If one of the eigenvalues of A are zero,
	Al : product of eigenvalue
	and multiplying my number of eigenvalues of A
	and multiplying my number of eigenvalues of A with zero leads to answer being 0.
	. [A] = O.
,	tence, option (B) is FALSE.
c	An = An [multiply both sides by scalar k']
	V C 1 J
	k.An = k.An
	$A(kn) = \lambda(kn)$
	If n is an eigenvector of A, then so are all the multiples of n.
	the multiples of n.
	Runce, option (C) is TRUE.
d	If o is an eigenvalue of A,
	as etated in () (A) = 0
	Since A-1 = 1 adj (A); if A1 = 0, A-1 is
	[A]
	indefined and hence, A commot be invested
	Hence, option (D) is TRUE.
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	False Statements include option (B) -) Correct ons: (B).
813	$A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$
	(haracteristic polynomial: 12- (1+4) 1 + (1*4-2+2)=0
· ·	$\frac{\lambda^2 - 5\lambda = 0}{\lambda(\lambda - 5) = 0}$
	\\(\frac{1}{2}\) = \(\frac{1}{2}\)

