## CENTRO UNIVERSITÁRIO FEI MESTRADO ENGENHARIA ELÉTRICA ALGORITMOS COMPUTACIONAIS – PEL201

## RELATÓRIO 2 ALGORITMOS DE GRAFOS PRIM E DIJKSTRA

## O código fonte está disponível em:

https://github.com/apparecidoo/master-computational-algorithms

1)

O algoritmo Prim é um algoritmo guloso que tem como objetivo achar um árvore geradora mínima afim de achar o menor custo para interligar todos os vértices de um grafo sem haver repetição de ligações entre os vértices, consequentemente que minimize o peso total. Importante ressaltar que o grafo deverá ser não direcionado e conexo.

O raciocínio do algoritmo é percorrer cada vértice atualizando o seu peso baseado na menor aresta conectada com seus vizinhos. A cada iteração o vértice atual é atualizado com o menor peso das arestas conectadas aos vizinhos e quando isso é feito o vértice é marcado como finalizado (explorado) adicionando a solução final, daí que vem a característica de ser um algoritmo guloso pois a cada iteração é uma parte resolvida da árvore final, e assim sucessivamente até que todos os vértices sejam explorados.

2)

O algoritmo Djikstra é um algoritmo com o objetivo de achar uma árvore com o onde os pesos dos vértices são o menor caminho do mesmo até o vértice inicial sem haver repetições de conexões. Dijkstra não possui restrições com relação a ser direcionado ou não, mas os pesos das arestas deve ser positivas ou zero, ou seja, não negativa.

O raciocínio do Dijkstra é parecido com o do Prim, possui a mesma forma de iteração e exploração dos vértices calculando os pesos baseados nas arestas vizinhas mas a forma que é calculado o peso e atribuído ao vértice é diferente. O cálculo é baseado no vértice inicial, ou seja, a distância do vértice em questão até o inicial (soma do peso atribuído ao vértice conectado a ele mais a aresta que o interliga) acarretando em indiretamente em uma somatória, obviamente a menor distância.

3)

Os dois algoritmos apresentam uma árvore geradora onde há apenas uma conexão entre os vértices, mas com objetivos diferentes.

A primeira diferença é que o Dijkstra possui a flexibilidade de ser direcionado ou não, já o Prim necessariamente necessita ser não direcionado.

O Dijkstra tem objetivo de achar o menor caminho entre dois vértices, já o Prim acha o menor peso entre os vértices para que a arvore geradora tenha um custo mínimo na ligação de todos os vértices.

No Prim o cálculo do peso do vértice é baseado somente na menor aresta que o conecta, já no Dijkstra na menor soma do Vértice vizinho + Aresta que o conecta.

O Dijkstra é geralmente utilizado para descobrir a menor distância de um vértice a outro, e o Prim para descobrir o menor custo afim de visitar todos os vértices.

4)

Grafo, onde existem funções para criar a matriz de adjacência: <a href="https://github.com/apparecidoo/master-computational-algorithms/blob/master/ComputationalAlgorithms/graph.cpp">https://github.com/apparecidoo/master-computational-algorithms/blob/master/ComputationalAlgorithms/prim.h</a>
Dijkstra, funções para aplicar o algoritmo Dijkstra:
<a href="https://github.com/apparecidoo/master-computational-algorithms/blob/master/ComputationalAlgorithms/blob/master/ComputationalAlgorithms/djikstra.h">https://github.com/apparecidoo/master-computational-algorithms/blob/master/ComputationalAlgorithms/djikstra.h</a>

5)

Para os experimentos de desempenho foram gerados 15 grafos de 400 a 2200 vértices, para cada grafo foi executado o algoritmo Prim e Dijkstra 500 vezes. A seguir a tabela que mostra o tempo de execução em microssegundos para cada algoritmo e o gráfico correspondente.

Podemos concluir a partir do gráfico que o algoritmo Prim e Dijkstra seguem a complexidade N² no pior caso, pois no grafo denso de ambos apresentou uma linha de função tendendo a N². No caso esparso apresentou ser linear a complexidade.

| Al       | goritmo Pri | im       |          | Denso<br>cionado | Grafo Esparso<br>Não Direcionado |           |  |
|----------|-------------|----------|----------|------------------|----------------------------------|-----------|--|
| Iteração | Repetição   | Vértices | Arestas  | Tempos<br>(s)    | Arestas                          | Tempo (s) |  |
| 1        | 500         | 400      | 159600   | 0                | 1594                             | 0         |  |
| 2        | 500         | 600      | 359400   | 1                | 2394                             | 1         |  |
| 3        | 500         | 800      | 639200   | 2                | 3194                             | 2         |  |
| 4        | 500         | 1000     | 999000   | 4                | 3994                             | 3         |  |
| 5        | 500         | 1200     | 1438800  | 6                | 4794                             | 5         |  |
| 6        | 500         | 1400     | 1958600  | 8                | 5594                             | 7         |  |
| 7        | 500         | 1600     | 2558400  | 11               | 6394                             | 9         |  |
| 8        | 500         | 1800     | 3238200  | 14               | 7194                             | 12        |  |
| 9        | 500         | 2000     | 3998000  | 17               | 7994                             | 14        |  |
| 10       | 500         | 2200     | 4837800  | 20               | 8794                             | 17        |  |
| 11       | 500         | 2400     | 5757600  | 24               | 9594                             | 20        |  |
| 12       | 500         | 2600     | 6757400  | 28               | 10394                            | 24        |  |
| 13       | 500         | 2800     | 7837200  | 32               | 11194                            | 26        |  |
| 14       | 500         | 3000     | 8997000  | 36               | 11994                            | 29        |  |
| 15       | 500         | 3200     | 10236800 | 41               | 12794                            | 33        |  |





| Algoritmo Dijkstra |           | Grafo Denso<br>Direcionado |          | Grafo Esparso<br>Direcionado |         | Grafo Denso<br>Não Direcionado |          | Grafo Esparso<br>Não Direcionado |         |            |
|--------------------|-----------|----------------------------|----------|------------------------------|---------|--------------------------------|----------|----------------------------------|---------|------------|
| Iteração           | Repetição | Vértices                   | Arestas  | Tempos<br>(s)                | Arestas | Tempos (s)                     | Arestas  | Tempos<br>(s)                    | Arestas | Tempos (s) |
| 1                  | 500       | 400                        | 159600   | 0                            | 800     | 0                              | 159600   | 0                                | 800     | 0          |
| 2                  | 500       | 600                        | 359400   | 1                            | 1200    | 1                              | 359400   | 1                                | 1200    | 1          |
| 3                  | 500       | 800                        | 639200   | 3                            | 1600    | 1                              | 639200   | 3                                | 1600    | 2          |
| 4                  | 500       | 1000                       | 999000   | 4                            | 2000    | 3                              | 999000   | 4                                | 2000    | 3          |
| 5                  | 500       | 1200                       | 1438800  | 7                            | 2400    | 4                              | 1438800  | 6                                | 2400    | 5          |
| 6                  | 500       | 1400                       | 1958600  | 9                            | 2800    | 5                              | 1958600  | 9                                | 2800    | 6          |
| 7                  | 500       | 1600                       | 2558400  | 12                           | 3200    | 7                              | 2558400  | 12                               | 3200    | 9          |
| 8                  | 500       | 1800                       | 3238200  | 16                           | 3600    | 9                              | 3238200  | 15                               | 3600    | 11         |
| 9                  | 500       | 2000                       | 3998000  | 19                           | 4000    | 12                             | 3998000  | 19                               | 4000    | 14         |
| 10                 | 500       | 2200                       | 4837800  | 24                           | 4400    | 14                             | 4837800  | 24                               | 4400    | 17         |
| 11                 | 500       | 2400                       | 5757600  | 28                           | 4800    | 17                             | 5757600  | 28                               | 4800    | 19         |
| 12                 | 500       | 2600                       | 6757400  | 34                           | 5200    | 20                             | 6757400  | 34                               | 5200    | 21         |
| 13                 | 500       | 2800                       | 7837200  | 39                           | 5600    | 23                             | 7837200  | 39                               | 5600    | 24         |
| 14                 | 500       | 3000                       | 8997000  | 45                           | 6000    | 26                             | 8997000  | 45                               | 6000    | 28         |
| 15                 | 500       | 3200                       | 10236800 | 50                           | 6400    | 28                             | 10236800 | 51                               | 6400    | 31         |



