B - Séries entières

Les objectifs de ce chapitre sont les suivants :

- étudier la convergence d'une série entière et les propriétés de sa somme;
- introduire la notion de développement d'une fonction en série entière;
- établir les développements en série entière des fonctions usuelles.

Les séries entières donnent un outil puissant pour aborder certains calculs : résolution d'équations différentielles linéaires, fonctions génératrices en probabilités... Elles permettent également de revenir sur la thématique de la régularité des fonctions , introduite en première année, et donnent l'occasion d'introduire la « variable complexe ». Les coefficients des séries entières considérées sont réels ou complexes.

Contenus

Capacités & commentaires

a) Généralités

Série entière de la variable réelle, complexe.

Lemme d'Abel : si la suite $(a_n z_0^n)$ est bornée alors, pour tout nombre complexe z tel que $|z| < |z_0|$, la série $\sum a_n z^n$ est absolument convergente.

Rayon de convergence d'une série entière, défini comme borne supérieure dans l'ensemble $[0, +\infty]$, de l'ensemble des réels positifs r tels que la suite $(a_n r^n)$ est bornée.

Disque ouvert de convergence.

Intervalle ouvert de convergence.

Si $a_n = O(b_n)$, et donc en particulier si $a_n = o(b_n)$, $R_a \ge R_b$. Si $a_n \sim b_n$, $R_a = R_b$.

Application de la règle de d'Alembert pour les séries numériques au calcul du rayon.

Somme et produit de Cauchy de deux séries entières.

La série $\sum a_n z^n$ converge absolument si |z| < R, elle diverge grossièrement si |z| > R.

Rayon de convergence de $\sum n^{\alpha}x^{n}$.

La limite du rapport $\frac{|a_{n+1}?|}{|a_n|}$ peut être directement utilisée.

b) Continuité de la somme d'une série entière de la variable complexe

Convergence normale d'une série entière sur tout disque fermé de centre 0 contenu dans le disque ouvert de convergence .

Continuité de la somme d'une série entière sur le disque ouvert de convergence.

c) Régularité de la somme d'une série entière de la variable réelle

Théorème D'Abel radial :

Si $\sum a_n^n x^n$ a pour rayon de convergence $R \in \mathbb{R}_+^*$ et si

$$\sum a_n R^n \text{ converge alors } \sum_{n=0}^{+\infty} a_n x^n \xrightarrow[x \to R^-]{} \sum_{n=0}^{+\infty} a_n R^n.$$

La somme d'une série entière est de classe C^{∞} sur l'intervalle ouvert de convergence et ses dérivées s'obtiennent par dérivation terme à terme.

Expression des coefficients d'une série entière de rayon de convergence strictement positif à l'aide des dérivées en 0 de sa somme.

La démonstration est hors programme.

Relation
$$R\left(\sum a_n x^n\right) = R\left(\sum n a_n x^n\right)$$

Si les fonctions $x\mapsto \sum_{n=0}^{+\infty}a_nx^n$ et $x\mapsto \sum_{n=0}^{+\infty}b_nx^n$ coïncident sur un voisinage de 0, alors pour tout n, $a_n=b_n$.

d) Fonctions développables en série entière, développements usuels

Fonction développable en série entière sur le disque ouvert de centre 0 et de rayon R, sur l'intervalle]-R,R[

Dans le cas réel, lien avec la série de Taylor.

Développement de $\exp(z)$ sur \mathbb{C} . Développement de $\frac{1}{1-z}$ sur $\{z\in\mathbb{C},\ |z|<1\}$. Développement usuels dans le domaine réel.

Les étudiants doivent connaître les développements en série entière des fonctions exponentielle, hyperboliques, circulaires, Arctan, $x \mapsto \ln(1+x)$ et $x \mapsto (1+x)^{\alpha}$.

Les étudiants doivent savoir développer une fonction en série entière à l'aide d'une équation différentielle linéaire.

