## Optimizing WiFi Network Performance

Devangam Kishan Teja

IIT Bombay

November 21, 2024

### Index

- Overview
- Model Components
- Objective Function and Constraints
- Convexity
- Optimization Tools
- Solution Scheme and Scalability
- Expected Results
- Conclusion and Applications

### Overview of the Problem

- **Goal**: Optimize WiFi network performance by efficiently allocating power and bandwidth across access points, minimizing interference, and ensuring required Quality of Service (QoS).
- Why?
  - Improve overall network performance.
  - Minimize interference and optimize resource usage.
- Challenge: Balancing power allocation, minimizing interference, and ensuring QoS across the network.

## Core Components of the Model

#### Variables:

- $P_i$ : Power allocated to access point i, influencing coverage.
- $B_i$ : Bandwidth allocated to access point i, affecting throughput.
- $C_i$ : Number of clients connected to access point i, affecting load.

#### Parameters:

- $P_{\text{max}}$ : Maximum power limit to prevent interference.
- $B_{\text{max}}$ : Maximum bandwidth allocation per access point.
- $Q_i$ : QoS requirement (throughput/latency) for access point i.
- $I_{ij}$ : Interference factor between access points i and j.

#### **Additional Considerations:**

• C<sub>B</sub>: Cost of bandwidth allocation.



# Objective Function and Constraints

**Objective:** Minimize interference and allocation costs:

$$Cost = \sum_{i=1}^{N} \left( I_{ii} + \sum_{j \neq i} I_{ij} \right) + \sum_{i=1}^{N} C_i \cdot P_i + C_B \cdot B_i$$

#### **Constraints:**

- Power:  $0 \le P_i \le P_{\text{max}}$ .
- Bandwidth:  $0 \le B_i \le B_{\text{max}}$ .
- QoS:  $Q_i \leq QoS_i$ , where  $QoS_i$  defines the required quality for access point i.
- Non-Negativity:  $P_i, B_i, C_i \geq 0$ .

## Convexity

- The objective function is convex, ensuring that any local minimum is also a global minimum, which is crucial for efficient optimization and guarantees optimality.
- Constraints are linear, forming a convex feasible region, which makes the problem well-suited for methods like linear programming.
- Decision variables  $P_i$ ,  $B_i$ , and  $C_i$  are in a **finite-dimensional vector space**, supporting the application of efficient optimization algorithms such as linear programming and gradient-based methods (e.g., gradient descent).
- Implication: The convexity of the problem ensures that optimization algorithms will converge to a global solution, even in large-scale networks, allowing for efficient solutions.

## Mathematical Tools for Optimization

- Linear Programming (LP): Solvers like Gurobi or CBC are used to handle the linear components of the model, ensuring that resource allocation and interference terms are efficiently optimized.
- Quadratic Programming (QP): Used to solve problems involving quadratic terms, such as interference models, where the relationship between variables is non-linear but still convex.
- Gradient-Based Solvers: Suitable for convex functions, where methods like Sequential Quadratic Programming (SQP) can be used to iteratively find the optimal allocation of power and bandwidth across the network.

# Solution Scheme and Scalability

#### Optimization Methods:

- Linear Programming (LP): Efficient solvers like Gurobi handle large-scale LP for linear models.
- Metaheuristics: Genetic Algorithms or Simulated Annealing address complex, non-linear models.
- Convex Optimization: Gradient-based solvers, such as SQP, work for smooth convex models.

#### Scalability:

- Heuristics balance solution quality and computation time as network size grows.
- Real-time optimization adjusts to dynamic networks and traffic.
- Decomposition or parallel computation helps with large networks.

#### Solution Approach:

- Define decision variables and formulate the objective function and constraints.
- Use solvers or heuristics based on model complexity.

## **Expected Results**

- Optimal Resource Allocation: Power and bandwidth are efficiently allocated across the network, reducing resource waste, improving overall network performance, and ensuring scalability as the system expands.
- Improved QoS: All access points meet or exceed the required QoS thresholds, ensuring reliable, high-quality connectivity with minimal latency and optimal throughput for all users, regardless of network load.
- Minimized Interference: Interference between access points is minimized, resulting in improved signal-to-noise ratios, better coverage, and enhanced user experience in dense network environments.

# Conclusion and Applications

 Optimizing WiFi networks is a complex yet rewarding challenge. The proposed solution provides a scalable and efficient approach, leading to improved performance through better resource allocation and reduced interference.

#### • Applications:

- Enterprise WiFi Networks: Optimize resource allocation in large office buildings and campuses to ensure efficient connectivity for employees and visitors.
- **Smart Cities:** Efficiently allocate bandwidth in public WiFi systems to support IoT devices, such as smart street lights, sensors, and cameras.
- **Hospital Networks:** Ensure quality of service for medical devices and critical infrastructure requiring low-latency and high reliability.
- Public WiFi Hotspots: Minimize interference and ensure consistent performance for users in crowded locations like airports, malls, or public parks.