SUBIECTELE TEMEI 1 LA "MATEMATICĂ" (seria 2012 - 2013 / I1A & I1B & I1X)

1. Se consideră $a, b \in \mathbb{R}_+^*$ și o relație binară \mathcal{R} pe \mathbb{R} , prin intermediul cărora se definește relația binară \mathcal{S} , pe $\mathbb{R} \times \mathbb{R}$, după cum urmează:

$$(x,y) \mathcal{S}(u,v) \iff (ax^2 + by^2) \mathcal{R}(au^2 + bv^2), \forall x, y, u, v \in \mathbb{R}.$$

- i) Arătați că, în situația în care \mathcal{R} reprezintă egalitatea pe \mathbb{R} , \mathcal{S} este o relație de echivalență pe $\mathbb{R} \times \mathbb{R}$. Stabiliți atunci clasa de echivalență cu reprezentantul (0,0) și precizați, argumentat, ce este, din punct de vedere geometric, mulțimea cât $(\mathbb{R} \times \mathbb{R})/\mathcal{S}$.
- ii) Ce semnifică perechea $(\mathbb{R} \times \mathbb{R}, \mathcal{S})$ atunci când \mathcal{R} este relația uzuală "\leq", de ordine totală, pe \mathbb{R} ?
- **2.** Fie X și Y două mulțimi nevide, iar f o funcție de la X la Y, în raport cu care sunt definite următoarele alte două funcții:

$$g: \mathcal{P}(X) \longrightarrow \mathcal{P}(Y), \ g(A) = \{y \in Y \mid \exists x \in A, \ y = f(x)\}, \ \forall A \in \mathcal{P}(X),$$

 $h: \mathcal{P}(Y) \longrightarrow \mathcal{P}(X), \ h(B) = \{x \in X \mid \exists y \in B, \ y = f(x)\}, \ \forall B \in \mathcal{P}(Y).$

Să se arate că f este bijectivă dacă și numai dacă oricare dintre funcțiile g și h este bijectivă.

- **3.** Să se demonstreze că, pentru o latice (L, \vee, \wedge) , sunt echivalente următoarele afirmații:
 - j) L este modulară.

 - $jjj) \ \forall \ x,y,z \in L,$ dacă $x \leq y, \ x \wedge z = y \wedge z$ și $x \vee z = y \vee z,$ atuncix = y.
 - **4.** Fie $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}_+^*$, astfel încât $x_n^2\geq x_{n-1}x_{n+1}, \forall n\in\mathbb{N}^*$.
 - a) Să se arate că șirul cu termenul general $\sqrt[n]{x_n}$ este fundamental.
- b) Oricare ar fi $r \in \mathbb{R}_+$, dați un exemplu de şir $(x_n)_{n \in \mathbb{N}} \subset \mathbb{R}_+^*$, pentru care $x_n^2 \ge x_{n-1}x_{n+1}, \forall n \in \mathbb{N}^*$ și $\lim_{n \to \infty} \sqrt[n]{x_n} = r$.
 - 5. Să se analizeze seria $\sum\limits_{n=1}^{\infty} \ln(1-\frac{1}{4n^2})$ și să se arate că

$$\lim_{n \to \infty} \sum_{k=1}^{n} \left[\ln\left(1 + \frac{1}{2k-1}\right) - \ln\left(1 + \frac{1}{2k}\right) \right] = \ln \frac{\pi}{2}.$$

Precizare: Rezolvările tuturor celor cinci probleme din cadrul acestei teme, redactate manual și personal, se vor preda cadrului didactic titular de seminar, până joi, 1 noiembrie 2012, cel mai târziu.