SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA ELEKTROTECHNIKY A INFORMATIKY

RIADENIE NELINEÁRNYCH SPOJITÝCH SYSTÉMOV tímový projekt

Študijný program: Robotika a kybernetika

Študijný odbor: Kybernetika

Školiace pracovisko: Ústav robotiky a kybernetiky

Vedúci projektu: Prof. Ing. Ján Murgaš, PhD.

Bratislava 2020 Bc. Eva Štalmachová

Bc. Marek Trebul'a

Bc. Denis Vasko

Bc. Ján Urdianyk

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA ELEKTROTECHNIKY A INFORMATIKY ÚSTAV ROBOTIKY A KYBERNETIKY

TÍMOVÝ PROJEKT

ZADANIE

Študijný program: Robotika a kybernetika

Študijný odbor: Kybernetika

Vedúci projektu: prof. lng. Ján Murgaš, PhD.

Miesto vypracovania projektu: Ústav robotiky a kybernetiky

Riešitelia: Bc. Denis Vasko, Bc. Eva Štalmachová,

Bc. Marek Trebuľa, Bc. Ján Urdianyk

Názov projektu: Riadenie nelineárnych spojitých systémov

Špecifikácia zadania:

Cieľom projektu je navrhnúť a overiť metódy nelineárneho riadenia vybraných nelineárnych systémov za účelom pedagogického využitia.

Úlohy:

- 1. Pre zadané nelineárne systémy vypracujte súhrn najčastejšie sa vyskytujúcich riešení v literatúre.
- Navrhnite a realizujte v prostredí Matlab nelineárne simulačné modely pre zadané systémy..
- Navrhite a realizujte vybrané metódy riadenia
- Vypracujte návrh uplatnenia v predmete Riadenie nelineárnych systémov.
- Vypracujte a predneste prezentáciu.
- Pri riešení postupujte podľa zásad tímového projektu.

Termín odovzdania projektu: 15.5.2020

V Bratislave dňa 17.2.2020

prof. Ing. Jarmila Pavlovičová PhD. garantka študijného programu

Obsah

1	Úvod	4
2	Matematické základy	5
	Stavový opis	5
	Rovnovážne stavy	6
	Linearizácia	7
	Riešenie preurčenej sústavy rovníc	9
	Parciálne derivácie	10
3	Spätnoväzbová linearizácia - vstupno-stavová	12
	Úvodný príklad	12
	Rovnovážne stavy systému	12
	Prvý krok - určenie transformačných vzťahov	13
	Druhý krok - transformácia systému	13
	Tretí krok - návrh lineárneho stavového regulátora	14
	Overenie výsledkov	15
	Návrh PID regulátora	17
	Príklad druhý	20
	Opis systému	20
	Rovnovážne stavy	21
	Prvý krok - nájdenie transformačných vzťahov	21
	Druhý krok - transformácia systému	21
	Tretí krok - návrh parametrov lineárneho regulátora	23
	Návrh PID regulátora pre linearizáciu systému	25
	Simulačné overenie návrhu	26
4	Spätnoväzbová linearizácia - vstupno-výstupná	29
	Príklad prvý	29
	Prvý krok - derivácia rovnice výstupu	29
	Druhý krok - voľba zákona linearizácie	30
	Tretí krok - návrh lineárneho zákona riadenia	30

	Zhrnutie krokov metódy	32
	Rovnovážny stav systému	32
	Porovnanie s PID	33
	Príklad druhý	36
	Návrh riadenia	36
	Rovnovážny stav	38
	Návrh PID	39
	Porovnanie riadenia	41
	Záver	42
5	Integrácia do predmetu RNS	43
6	Riadenie projektu	44
	Predstavenie riešiteľského kolektívu	44
	Plán projektu	44
	Dohodnuté metódy práce	45
	Komunikácia a koordinácia projektu	45
	Kontrola rozhodnutí tímu	45
	Podrobná záznamy o stratnutí	46
	Podrobné záznamy o stretnutí	
7	Záver	57

1 Úvod

V tímovom projekte sa venujeme definovaniu niekoľkých modelov systémov v stavovom opise, vhodných na demonštráciu návrhu nelineárneho riadenia pomocou metód vstupno-stavovej a vstupno-výstupnej linearizácie a návrhom nelineárneho riadenia pre dané modely. Navrhnuté nelineárne riadenie porovnávame s lineárnym PID regulátorom a uvádzame aj základné matematické princípy, využívané pri návrhu pomocou uvedených metód.

V časti 2 sa venujeme niektorým matematickým princípom, ktorých znalosť je nevyhnutná pre pochopenie metód, ale aj ďalšieho textu, v celom rozsahu. Konkrétne táto časť zahŕňa opakovanie k nasledujúcim témam: stavový opis systému, rovnovažné stavy a linearizácia.

Časť 3 sa zaoberá návrhom nelineárneho riadenia pomocou metódy vstupnostavovej linearizácie. Sú tu prezentované dva príklady, ku každému je vypracovaný návrh riadenia danou metódou a pre porovnanie je navrhnutý aj PID regulátor pre linearizáciu systému v rovnovažnom stave.

Návrhu pomocou metódy vstupno-výstupnej linearizácie sa venujeme v časti 4. Podobne ako v predchádzajúcej časti, aj tu sa venujeme okrem návrhu pomocou hlavnej metódy aj návrhu PID regulátora pre linearizovaný systém.

V časti 5 stručne opíšeme spôsoby ako by sa daný materiál dal integrovať do predmetu Riadenie Nelineárnych Systémov.

V časti 6 sa venujeme predstaveniu riešiteľského kolektívu, plánu projektu, dohodnutým metódam práce a záznamom o stretnutí.

Príkladáme aj program písaný v matlabe, spolu s manuálom na použitie, vhodný na ukážku navrhnutých zákonov riadenia pre jednoduchý príklad riadenia polohy matematického kyvadla. V programe sú implementované nelineárne zákony riadenia a aj dva PID regulátory navrhnuté pre linearizáciu kyvadla v stabilnom a v nestabilnom rovnovažnom stave.

2 Matematické základy

Stavový opis

Stavový opis je jedna z foriem opisu dynamického lineárneho systému. Základom je definovanie vnútorných stavov systému, ako sa tieto stavy menia v čase a ako vyzerá výstup zo systému.

$$\dot{x} = Ax + Bu$$

$$y = Cx + Du$$
(1)

Pre SISO systémy je C vektor (riadkový) a D skalár. Pre MIMO systémy je C matica a D je vektor (stĺpcový). Majme systém opísaný rovnicami 2.

$$\dot{x_1} = x_2$$

$$\dot{x_2} = x_3$$

$$\dot{x_3} = -x_1 + 8x_2 + 3x_3 - 6u$$

$$y = x_1$$
(2)

Tento systém môžeme napísať aj v maticovom tvare:

$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \\ \dot{x_3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 8 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ -6 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + 0u$$

Laplaceovou transformáciou získame rovnice 3.

$$Ys^3 = -Y + 8Ys + 3Ys^2 - 6U (3)$$

$$Y(s^3 - 3s^2 - 8s + 1) = -6U (4)$$

$$\frac{Y}{U} = \frac{-6}{s^3 - 3s^2 - 8s + 1} = G(s) \tag{5}$$

kde rovnica 5 predstavuje prenosovú funkciu nášho systému.

Simulačná schéma je na obr. 1. V bloku integrátor je možné nastaviť počiatočné hodnoty stavov (počiatočné podmienky). Pri tejto schéme je dôležité uvedomiť si dimenzie (rozmer, či je to matica, vektor alebo skalár) jednotlivých signálov.

Obr. 1: Simulačná schéma systému definovaná pomocou stavového opisu

Rovnovážne stavy

Rovnovážny stav $\dot{x_r}$ systému je definovaný ako stav, kedy sa stavové premenné nelineárneho systému nemenia v čase.

V rovnovážnom stave platí pre vstup u, že je v každom čase nulový, u(t)=0. Pre stavove premenné platí $\dot{x}|_{x=x_r}=0$.

Uvažujme príklad 2 a nájdime jeho rovnovážne stavy. Ako prvé položíme všetky derivácie (označené bodkami nad premennými v stavovom opise) rovné 0 ($\dot{x}_1 = 0, \dot{x}_2 = 0, \dot{x}_3 = 0$). Dostaneme tak sústavu 6.

$$0 = x_2$$

$$0 = x_3$$

$$0 = -x_1 + 8x_2 + 3x_3$$
(6)

hodnoty x_2 a x_3 vieme priamo vyčítať z rovnice vyššie, majú byť $x_2=0$ a $x_3=0$. Hodnotu x_1 musíme vypočítať. Našťastie, pre tento jednoduchý prípad, stačí dosadiť $x_2=0$ a $x_3=0$ do tretej rovnice sústavy 6 a dostaneme $x_1=0$.

Bod $[x_{r1}, x_{r2}, x_{r3}] = [0, 0, 0]$ je riešením sústavy rovníc 6, preto je rovnovážnym stavom systému rovníc 2.

Uvažujme teraz systém opisaný rovnicami 7 a nájdime jeho rovnovážne stavy.

$$\dot{x}_{1} = x_{2}
\dot{x}_{2} = -\frac{b}{m}x_{2} - \frac{g}{L}sin(x_{1})$$
(7)

Položíme derivácie rovné nule, z čoho dostaneme sútavu 8.

$$0 = x_2$$

$$0 = -\frac{g}{L}sin(x_1) \implies sin(x_1) = 0$$
(8)

Riešení sútavy 8 je niekoľko. Rovnovážnym bodom je nielen bod $[x_{r1}, x_{r2}] = [0, 0]$, ale všetky body $[x_{r1}, x_{r2}] = [k * \pi, 0], k \in \mathbb{Z}$, kde $k \in \mathbb{Z}$ znamená, že k je z množiny \mathbb{Z} , kde \mathbb{Z} je množina celých čísel, teda, že k je celé číslo.

Linearizácia

Linearizácia je proces, pri ktorom z nelineárneho systému spravíme lineárny. Tento lineárny systém opisuje pôvodný systém "presne" len v okolí pracovného bodu. Veľkosť tohto okolia záleží od priebehu funkcií. Používa sa pri tom rozvoj do Taylorovho radu (rovnica 1), kedy použijeme len prvý člen.

$$f(x) = \sum_{n=0}^{inf} \frac{f^{(n)}(a)}{n!} (x - a)^n$$
 (9)

kde $f^{(n)}$ je n-tá derivácia funkcie f v bode a, v prípade funkcie viacerých premenných je to gradient. Funkcia f musí byť diferencovatelná.

Pri linearizácií pôvodná nelineárna funkcia nahradí prvý člen Taylorovho radu (ostatné členy členy niesú linearárne, pretože majú faktor $(x-a)^n$ s n > 1), ktorý je daný 10.

$$f(x) \approx \frac{f^{(1)}(x)}{1!} (x - x_0)^1 = \frac{\partial f}{\partial x}|_a (x - x_0) = \nabla f|_a \Delta x$$
 (10)

Majme systém opísaný rovnicami 11.

$$x = \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \\ \Delta x_3 \\ \Delta u \end{bmatrix}$$

$$\dot{x}_1 = x_1 + x_2 - x_3 + \sin(x_2)$$

$$\dot{x}_2 = -x_1 - x_2$$

$$\dot{x}_3 = \cos(x_2)(\sin(x_2) - x_3) - u$$

$$y = x_1$$
(11)

Keďže sa v sústave 11 vyskytujú aj nelineárne členy (všetko čo nieje konštanta po derivácii je nelineárne, napríklad: sínus, kosínus a ich súčin), tento systém je nelineárny.

Pri linearizácií tohto systému musíme počítať gradient každej rovnice podľa stavového vektora a vstupov, ďalej len vektora parametrov funkcií x. Nech bod P $[0\ 0\ 0\ 0]$ je pracovným bodom, v ktorom budeme systém linearizovať.

$$\nabla \dot{x}_{1} = \left[\frac{\partial \dot{x}_{1}}{\partial x_{1}}, \frac{\partial \dot{x}_{1}}{\partial x_{2}}, \frac{\partial \dot{x}_{1}}{\partial x_{3}}, \frac{\partial \dot{x}_{1}}{\partial u}\right] = \left[1, 1 + \cos(x_{2}), -1, 0\right]$$

$$\nabla \dot{x}_{2} = \left[\frac{\partial \dot{x}_{2}}{\partial x_{1}}, \frac{\partial \dot{x}_{2}}{\partial x_{2}}, \frac{\partial \dot{x}_{2}}{\partial x_{3}}, \frac{\partial \dot{x}_{2}}{\partial u}\right] = \left[-1, -1, 0, 0\right]$$

$$\nabla \dot{x}_{3} = \left[\frac{\partial \dot{x}_{3}}{\partial x_{1}}, \frac{\partial \dot{x}_{3}}{\partial x_{2}}, \frac{\partial \dot{x}_{3}}{\partial x_{3}}, \frac{\partial \dot{x}_{3}}{\partial u}\right] = \left[0, -\sin^{2}(x_{2}) + \cos^{2}(x_{2}), -\cos(x_{2}), -1\right]$$

$$y = \left[\frac{\partial y}{\partial x_{1}}, \frac{\partial y}{\partial x_{2}}, \frac{\partial y}{\partial x_{3}}, \frac{\partial y}{\partial u}\right] = \left[1, 0, 0, 0\right]$$

$$(12)$$

Gradient v pracovnom bode dostaneme dosadením hodnôt pracovného bodu.

$$\nabla \dot{x}_{1}|_{P} = [1, 1 + \cos(0), -1, 0] = [1, 2, -1, 0]$$

$$\nabla \dot{x}_{2}|_{P} = [-1, -1, 0, 0]$$

$$\nabla \dot{x}_{3}|_{P} = [0, -\sin^{2}(0) + \cos^{2}(0), -\cos(0), -1] = [0, 1, -1, -1]$$

$$\nabla y|_{P} = [1, 0, 0, 0]$$
(13)

Ak vynásobíme gradienty v pracovnom bode vektorom x, dostaneme linearizovanú sústavu diferenciálnych rovníc, ktoré opisujú správanie sa systému v

okolí pracovného bodu P, rovnice 14.

$$\Delta \dot{x}_1 = \Delta x_1 + 2\Delta x_2 - \Delta x_3$$

$$\Delta \dot{x}_2 = -\Delta x_1 - \Delta x_2$$

$$\Delta \dot{x}_3 = \Delta x_2 - \Delta x_3 - \Delta u$$

$$\Delta y = \Delta x_1$$
(14)

Riešenie preurčenej sústavy rovníc

Preurčená sústava rovníc, obsahuje viac rovníc ako neznámych premenných. Pri riešení preurčenej sústavy rovníc použijeme metódu najmenších štvorcov. Pomocou metódy najmenších štvorcov určíme riešenie preurčenej sústavy rovníc 15 s najmenšou chybou.

$$Ax = b ag{15}$$

Uvažujeme nasledovnú preurčenú sústavu rovníc:

$$x + y = 5$$

$$2x + 4y + 10 = 8$$

$$x + 5y = 15$$

$$-2x + 4y + 10 = 8$$
(16)

Preurčenú sústavu rovníc 16 môžeme maticovo zapísať v tvare:

$$\begin{bmatrix} 1 & 1 \\ 2 & 4 \\ 1 & 5 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ -2 \\ 15 \\ -2 \end{bmatrix}$$
 (17)

Na výpočet neznámych premenných x,y použijeme metódu najmenších štvorcov:

$$\begin{bmatrix} x \\ y \end{bmatrix} = (A^T A)^{-1} A^T b$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1.4265 \\ 0.9559 \end{bmatrix}$$
(18)

Parciálne derivácie

Majme funkciu f o viacerých premenných f(x,y,z,...). Parciálna derivácia funkcie f, je derivácia funkcie f vzhľadom na 1 premennú, pričom o ostatných premenných uvažujeme ako o konštantách.

Parciálnu deriváciu budeme označovať $\frac{\partial f(x,y,z,...)}{\partial x}$, $\frac{\partial f(x,y,z,...)}{\partial y}$, $\frac{\partial f(x,y,z,...)}{\partial z}$ Vypočítajme parciálne derivácie funkcie 19.

$$f(x,y) = \frac{x}{x^2 + y^2} \tag{19}$$

pričom najskôr vypočítame parciálnu deriváciu podľa premennej x. Aplikujeme pravidlo o derivácií podielu dvoch funkcií h,g: $(\frac{h}{g})'=\frac{h'g-g'h}{g^2}$.

$$\frac{\partial}{\partial x} \frac{x}{x^2 + y^2} = \frac{\frac{\partial x}{\partial x} (x^2 + y^2) - \frac{\partial (x^2 + y^2)}{\partial x} x}{(x^2 + y^2)^2}
= \frac{1(x^2 + y^2) - 2xx}{(x^2 + y^2)^2}
= \frac{-x^2 + y^2}{(x^2 + y^2)^2}$$
(20)

Parciálna derivácia podľa premennej y má nasledujúci tvar

$$\frac{\partial}{\partial y} \frac{x}{x^2 + y^2} = x \frac{\partial}{\partial y} \frac{1}{x^2 + y^2}$$

$$= x \frac{\partial}{\partial y} (x^2 + y^2)^{-1}$$

$$= x(x^2 + y^2)^{-2} \frac{\partial}{\partial y} (x^2 + y^2)$$

$$= \frac{2xy}{(x^2 + y^2)^2}$$
(21)

Ako druhú ukážku, parciálne derivácie funkcie danej ronvicou 22.

$$f(x,y) = \sin(xy) + \frac{1}{2}\cos(y) \tag{22}$$

pričom najskôr vypočítame parciálnu deriváciu podľa premennej x.

$$\frac{\partial}{\partial x}(\sin(xy) + \frac{1}{2}\cos(y)) = \frac{\partial}{\partial x}\sin(xy) + \frac{\partial}{\partial x}\frac{1}{2}\cos(y))$$

$$= \frac{\partial}{\partial x}\sin(xy)\frac{\partial}{\partial x}(xy)$$

$$= \cos(xy)y$$
(23)

Parciálnu deriváciu podľa podľa premennej y vieme vypočítať nasledovne:

$$\frac{\partial}{\partial y}(\sin(xy) + \frac{1}{2}\cos(y)) = \frac{\partial}{\partial y}\sin(xy) + \frac{\partial}{\partial y}\frac{1}{2}\cos(y))$$

$$= \frac{\partial}{\partial y}\sin(xy)\frac{\partial}{\partial y}(xy) - \frac{1}{2}\sin(y)$$

$$= \cos(xy)x - \frac{1}{2}\sin(y)$$
(24)

3 Spätnoväzbová linearizácia - vstupno-stavová

Úvodný príklad

Uvažujme nelineárny systém, opísaný stavovými rovnicami 25, ktorého bloková schéma je zobrazená na obrázku 2.

$$\dot{x_1} = x_1^2 + x_2 - x_1
\dot{x_2} = u - x_1 - x_2$$
(25)

Rovnovážne stavy systému

V rovnovážnom stave sú derivácie rovné nule. Z rovníc 26 vyplýva, že bod $x_1 = x_2 = 0$ je rovnovážnym bodom.

$$\begin{aligned}
\dot{x}_1|_{x_1=x_2=u=0} &= 0\\
\dot{x}_2|_{x_1=x_2=u=0} &= 0
\end{aligned} (26)$$

Obr. 2: Bloková schéma systému 25

Na riadenie nelineárneho systému (rovnica 25), použijeme metódu vstupnostavovej spätnoväzobnej linearizácie (obrázok 3), tak aby sme dosiahli požadovanú hodnotu r.

Obr. 3: Metóda vstupno-stavovej spätnoväzobnej linearizácie

Postup pri metóde vstupno-stavovej spätnoväzobnej linearizácie je nasledovný.

Prvý krok - určenie transformačných vzťahov

Najskôr si určíme transformačné vzťahy, tzn. určíme vektor r.

$$z_1 = x_1 z_2 = x_1^2 + x_2$$
 (27)

Druhý krok - transformácia systému

Následne transformujeme zadaný nelineárný systém (rovnica 25), pomocou nájdených transformačných vzťahov (rovnica 27).

$$\dot{z}_1 = \dot{x}_1 = z_2 - z_1
\dot{z}_2 = 2x_1\dot{x}_1 + \dot{x}_2
= 2x_1(x_1^2 + x_2 - x_1) + u - x_1 - x_2
= 2z_1(z_2 - z_1) + u - z_1 - z_2 + z_1^2
= u - z_1^2 + 2z_1z_2 - z_1 - z_2$$
(28)

Aby sme dosiahli lineárny transformovaný systém, zavedieme novú premennú v.

$$v = u - z_1^2 + 2z_1z_2 - z_1 - z_2 (29)$$

Z transformovanej sústavy získame vzťah pre nelineárne riadenie, akčný zásah u.

$$u = v + z_1^2 - 2z_1z_2 + z_1 + z_2 (30)$$

Zavedením novej premennej sme získali nový transformovaný lineárny systém.

$$\dot{z}_1 = z_2 - z_1
 \dot{z}_2 = v
 \tag{31}$$

Tretí krok - návrh lineárneho stavového regulátora

Po získaní lineárneho systému môžeme zaviesť lineárny stavový regulátor (rovnica 32).

$$v = k_1 z_1 + k_2 z_2 \tag{32}$$

Lineárny systém s regulátorom bude vyzerať nasledovne: rovnica 33.

$$\dot{z}_1 = z_2 - z_1
\dot{z}_2 = k_1 z_1 + k_2 z_2$$
(33)

Na vypočítanie parametrov regulátora a nastavenie dynamiky systému potrebujeme odvodiť charakteristickú rovnicu systému. Na získanie charakteristickej rovnice potrebujeme získať maticu A.

$$A = \begin{bmatrix} \frac{\partial \dot{z}_1}{\partial z_1} & \frac{\partial \dot{z}_1}{\partial z_2} \\ \frac{\partial \dot{z}_2}{\partial z_1} & \frac{\partial \dot{z}_2}{\partial z_2} \end{bmatrix}_{|z_1 = z_2 = 0}$$

$$= \begin{bmatrix} -1 & 1 \\ k_1 & k_2 \end{bmatrix}$$
(34)

Charakteristickú rovnicu získame z rovnice 35.

$$|\lambda I - A| = 0$$

$$|\lambda I - A| = \begin{bmatrix} \lambda + 1 & -1 \\ -k_1 & \lambda - k_2 \end{bmatrix}$$

$$|\lambda I - A| = (\lambda + 1)(\lambda - k_2) - k_1$$

$$\lambda^2 - \lambda(k_2 + 1) - k_1 = 0$$
(35)

Vieme, že korene charakteristickej rovnice musia ležať v zápornej polrovine. Preto si zvolíme korene $\lambda_1 = -1, \lambda_2 = -2$, pomocou ktorých získame parametre k_1, k_2 (rovnica 36).

$$\lambda^{2} - \lambda(k_{2} + 1) - k_{1} = (\lambda + 1)(\lambda + 2)$$

$$\lambda^{2} - \lambda(k_{2} + 1) - k_{1} = \lambda^{2} + 3\lambda + 2$$

$$k_{1} = -2$$

$$k_{2} = -4$$
(36)

Overenie výsledkov

Výsledky overíme simulačne pomocou schémy na obrázku 4.

Obr. 4: Bloková schéma systému s nelineárnym riadením

Z výsledkov simulácie, ktoré sú zobrazené na obrázkoch 8, 9, môžeme

vidieť, že s pomocou navrhnutého riadenia pre nelineárny systém sme dokázali dosiahnuť požadovanú hodnotu r.

Obr. 5: Priebeh stavovej premennej x_1 s nelineárnym riadením

Obr. 6: Priebeh akčného zásahu u s nelineárnym riadením

Návrh PID regulátora

Teraz môžeme pre porovnanie navrhnúť PID regulátor. Aby sme mohli navrhnúť PID regulátor potrebujeme získať prenosovú funkciu systému, preto náš systém linearzijeme v pracovnom bode $x_1 = x_2 = 0$ (rovnica 37).

$$\begin{bmatrix} \Delta \dot{x_1} \\ \Delta \dot{x_2} \end{bmatrix} = A \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \\ \Delta u \end{bmatrix}$$
 (37)

Pričom matica A má tvar:

$$A = \begin{bmatrix} \frac{\partial x_1}{\partial x_1} & \frac{\partial x_1}{\partial x_2} & \frac{\partial x_1}{\partial u} \\ \frac{\partial x_2}{\partial x_1} & \frac{\partial x_2}{\partial x_2} & \frac{\partial x_2}{\partial u} \end{bmatrix}_{|x_1 = x_2 = u = 0}$$

$$= \begin{bmatrix} 2x_1 - 1 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix}_{|x_1 = x_2 = u = 0}$$

$$= \begin{bmatrix} -1 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix}_{|x_1 = x_2 = u = 0}$$
(38)

Hl'adané linearizované rovnice:

$$\Delta \dot{x_1} = -\Delta x_1 + \Delta x_2$$

$$\Delta \dot{x_2} = -\Delta x_1 - \Delta x_2 + \Delta u$$
(39)

Keď sme získali linearizované rovnice nelineárneho systému, z ktorých vyjadríme prenosovú funkciu $\frac{\Delta x_1}{\Delta u}$. Použijeme Laplaceovú transformáciu, aby sme sa získali prenosovú funkciu (rovnica 40).

$$s\Delta \dot{x_1} = -\Delta x_1 + \Delta x_2 = \Delta x_2 = \Delta x_1(s+1)$$

$$s\Delta \dot{x_2} = -\Delta x_1 - \Delta x_2 + \Delta u$$

$$s\Delta x_1(s+1) = -\Delta x_1 - \Delta x_1(s+1) + \Delta u$$
$$s\Delta x_1(s+1) + \Delta x_1 + \Delta x_1(s+1) = \Delta u$$

$$\Delta u = \Delta x_1(s^2 + 2s + 2)$$

$$\frac{\Delta x_1}{\Delta u} = \frac{1}{(s^2 + 2s + 2)} \tag{40}$$

Na výpočet parametrov PID regulátora použijeme metódu Pole-Placement. Aby sme ju mohli použiť vyjadríme si charakteristický polynóm (N(s)) z prenosovej funkcie uzavretého regulačného obvodu G_{URO} (rovnica 41)

$$G_{URO} = \frac{(P + Ds + \frac{I}{s})(\frac{1}{s^2 + 2s + 2})}{1 + (P + Ds + \frac{I}{s})(\frac{1}{s^2 + 2s + 2})}$$

$$N(s) = s^3 + s^2(2 + D) + s(2 + P) + I$$
(41)

Keď sme získali charakteristický polynóm N(s), využijeme metódu Pole-Placement, ktorá spočíva v porovnaní charakteristického polynómu so želaným polynómom P(s). Umiestníme póly želaného polynómu P(s) do zápornej reálnej polroviny. My si zvolíme korene: $p_1 = -1$, $p_2 = -2$, $p_3 = -3$, čím zabezpečíme stabilitu lineárneho systému. Polynóm P(s) potom bude mať nasledujúci

tvar (rovnica 42).

$$P(s) = (s+1)(s+2)(s+3)$$

$$= s^3 + 6s^2 + 11s + 6$$
(42)

Porovnaním želaného polynómu P(s) s charakteristickým polynómom N(s) 43, dostaneme parametre regulátora 44.

$$P(s) = N(s)$$

$$s^{3} + 6s^{2} + 11s + 6 = s^{3} + s^{2}(2+D) + s(2+P) + I$$
(43)

$$\begin{bmatrix} P \\ I \\ D \end{bmatrix} = \begin{bmatrix} 9 \\ 6 \\ 4 \end{bmatrix} \tag{44}$$

Výsledky overíme simulačne pomocou schémy na obrázku 7.

Obr. 7: Bloková schéma systému s PID regulátorom

Z výsledkov simulácie, ktoré sú zobrazené na obrázkoch 8, 9, môžeme vidieť, že s pomocou PID regulátora sme dokázali dosiahnuť niektoré požadované hodnoty r, avšak pri vyšších požadovaných hodnotách bol už systém nestabilný.

Obr. 8: Priebeh stavovej premennej x_1 s PID regulátorom

Obr. 9: Priebeh akčného zásahu u s PID regulátorom

Príklad druhý

Opis systému

Majme systém, ktorý je určený stavovým opisom rovn. (45). Bloková schéma systému je na obr. 10.

$$\dot{x}_1 = x_1 + x_2 - x_3 + \sin(x_2)
\dot{x}_2 = -x_1 - x_2
\dot{x}_3 = \cos(x_2)(\sin(x_2) - x_3) - u
y = x_1$$
(45)

Obr. 10: Bloková schéma systému z rovn. (45)

Rovnovážne stavy

Tento systém má stavy x_1 , x_2 a x_3 . Stav x_1 je zároveň výstupom systému. Bod $[0\ 0\ 0]$ je rovnovážny stav systému. V tomto bode sú časové derivácie všetkých stavových premenných rovné nule.

$$\dot{x}_1|_{x_1=x_2=x_3=0} = 0 + 0 - 1 + \sin(0) = 0$$

$$\dot{x}_2|_{x_1=x_2=x_3=0} = -0 - 0 = 0$$

$$\dot{x}_3|_{x_1=x_2=x_3=0} = \cos(0)\sin(0) - 0\cos(0) - 0 = 0$$
(46)

Prvý krok - nájdenie transformačných vzťahov

Našim cieľom je riadiť tento systém tak, aby výstup y dosiahol žiadanú hodnotu r. Systém obsahuje nelinearity v dvoch rovniciach, preto je ťažké určiť zákon riadenia len pohľadom na tieto rovnice. Použijeme metódu Vstupno-stavovej linearizácie, pri ktorej navrhneme linearizačnú slučku, s ktorou sa náš systém bude správať ako lineárny. Pre tento lineárny systém potom navrhneme regulátor, ktorý zabezpečí, že sa výstup systému ustáli na žiadanej hodnote.

Prvým krokom metódy je určenie transformačných vzťahov rovn. (47).

$$z_1 = -x_2$$

 $z_2 = x_1 + x_2$ (47)
 $z_3 = \sin(x_2) - x_3$

Druhý krok - transformácia systému

Druhým krokom je transformácia nášho systému zo stavov x_1 , x_2 a x_3 na stavy z_1 , z_2 a z_3 . To dosiahneme derivovaním transformačných vzťahov (v čase) a dosadením vzťahov z pôvodných rovníc.

$$\dot{z}_1 = -\dot{x}_2
= x_1 + x_2
= z_2$$
(48)

$$\dot{z}_2 = \dot{x}_1 + \dot{x}_2
= x_1 + x_2 - x_3 + \sin(x_2) - x_1 - x_2
= z_3$$
(49)

$$\dot{z}_3 = \cos(x_2)\dot{x}_2 - \dot{x}_3
= \cos(x_2)(-x_1 - x_2) - \cos(x_2)(\sin(x_2) - x_3) + u
= u - \cos(z_1)(z_2 + z_3)$$
(50)

Transformovaný systém potom opisujú rovn. (51).

$$\dot{z}_1 = z_2
\dot{z}_2 = z_3
\dot{z}_3 = u - \cos(z_1)(z_2 + z_3)$$
(51)

Na základe rovn. (51) dokážeme zvoliť taký zákon riadenia, ktorý vykompenzuje nelinearity pôvodného systému, rovn. (52). Prvý člen tejto rovnice zabezpečí linearizáciu systému, tvorí linearizačnú slučku. Druhý člen v zabezpečí stabilitu dynamiky systému, rovn. (54). Posledný člen r predstavuje našu žiadanú hodnotu. Keďže náš linearizovaný systém nemusí mať jednotkové zosilnenie, musíme túto hodnotu predeliť statickým zosilnením linearizovaného systému K. Druhou možnosťou je zvoliť také konštanty k_1 , k_2 a k_3 aby zosilnenie bolo rovné jednej.

$$u(z, v, r) = \cos(z_1)(z_2 + z_3) + v + r/K$$
(52)

$$u(x, v, r) = \cos(x_2)(x_1 + x_2 + \sin(x_2) - x_3) + v + r/K$$
(53)

$$v = -k_1 z_1 - k_2 z_2 - k_3 z_3 (54)$$

Dosadením zákona riadenia do nášho transformovaného systému dosiahneme

lineárny systém, rovn. (55).

$$\dot{z}_1 = z_2
\dot{z}_2 = z_3
\dot{z}_3 = -k_1 z_1 - k_2 z_2 - k_3 z_3 + \frac{r}{K}$$
(55)

Tretí krok - návrh parametrov lineárneho regulátora

Tento systém môžeme zapísať v kanonickej forme riaditeľnosti pomocou matice A a vektorov b, c a d.

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -k_1 & -k_2 & -k_3 \end{bmatrix} b = \begin{bmatrix} 0 \\ 0 \\ \frac{1}{K} \end{bmatrix} d = 0$$

$$c = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Prenosová funkcia systému G(s).

$$G(s) = \frac{1}{K} \frac{1}{s^3 + k_3 s^2 + k_2 s + k_1}$$
 (56)

Zosilnenie systému získame ak limitujeme s k nule. Potom dostaneme rovn. (57), z ktorého si vyjadríme konštantu K, rovn. (58).

$$\frac{1}{K}\frac{1}{k_1} = 1\tag{57}$$

$$K = \frac{1}{k_1} \tag{58}$$

Konštanty k_1 , k_2 a k_3 majú zabezpečiť stabilitu dynamiky systému. Môže ich určiť na základe vlastných čísiel matice A. Aby bol systém stabilný, musí matica A mať záporne definitné vlastné čísla.

$$|\lambda I - A| = \begin{bmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ k_1 & k_2 & \lambda + k_3 \end{bmatrix} = \lambda^3 + k_3 \lambda^2 + k_2 \lambda + k_1 = 0$$
 (59)

Nech všetky tri λ majú hodnotu -1, dostaneme tak žiadaný polynóm pre vlastné čísla, rovn. (60).

$$(\lambda + 1)^3 = \lambda^3 + 3\lambda^2 + 3\lambda + 1 \tag{60}$$

Porovnaním rovn. (59) a rovn. (60) získame vzťahy, z ktorých určime koeficienty, rovn. (61).

$$k_1 = 1$$

$$k_2 = 3$$

$$k_3 = 3$$

$$(61)$$

Z toho určíme zosilnenie K, rovn. (62).

$$K = 1 \tag{62}$$

Návrh PID regulátora pre linearizáciu systému

Rozvojom do Taylorovho radu dostaneme z pôvodných rovn. (45) nové rovn. (63). Pracovný bod nech je [0 0 0]. Po linearizácií dokážeme odvodiť prenosovú funkciu rovn. (64) a navrhnúť PID regulátor pomocou PPM.

$$\dot{\Delta x_1} = \Delta x_1 + 2\Delta x_2 - \Delta x_3$$

$$\dot{\Delta x_2} = -\Delta x_1 - \Delta x_2$$

$$\dot{\Delta x_3} = \Delta x_1 - \Delta x_3 - \Delta u$$
(63)

$$G(s) = \frac{s+1}{s^3 + s^2 + s + 2} \tag{64}$$

$$R(s) = \frac{I + Ps + Ds^2}{s} \tag{65}$$

$$G_{URO}(s) = \frac{(s+1)(I+Ps+Ds^2)}{Ds^3 + (P+D)s^2 + (I+P)s + I}$$
(66)

Nech požadované póly uzavretého regulačného obvodu sú -1, -0.5 a -0.5. Porovnaním žiadaného polynómu (rovn. (67)) a polynómu uzavretého regulačného obvodu (rovn. (68)) dostaneme vzťahy na výpočet parametrov PID regulátora rovn. (69).

$$s^3 + 2s^2 + 1.25s + 0.25 = 0 (67)$$

$$Ds^{3} + (P+D)s^{2} + (I+P)s + I = 0$$
(68)

$$P = 1$$

$$I = 0.25$$

$$D = 1$$

$$(69)$$

Simulačné overenie návrhu

Navrhnuté riadenia môžeme porovnať pomocou simulácie v prostredí Matlabsimulink. Simulačná schéma s nelineárnym riadením je na obr. 11 a s PID regulátorom je na obr. 12. Pri nelineárnom riadení urobíme skok žiadanej hodnoty na 10. Pri PID regulátore urobíme dva skoky, na hodnotu 1 a 10.

Obr. 11: Bloková schéma systému s nelineárnym riadením

Obr. 12: Bloková schéma systému s PID regulátorom

Na obr. 14 môžeme vidieť, že takto navrhnutý PID regulátor dokáže pri malom skoku uriadiť náš systém. Pri väčšom skoku (obr. 15) sa náš uzavretý systém rozkmital. Je to spôsobené tým, že pri väčšej vzdialenosti od pracovného bodu sa chyba spôsobená linearizáciou zväčšuje a systému má iné vlastnosti ako systém, pre ktorý sme daný regulátor navrhovali.

Na obr. 13 a obr. 16 je vidieť, že nelineárny regulátor dokázal uriadiť náš systém bez problémov aj na hodnotu 10.

Obr. 13: Priebeh výstupu a stavových veličín s nelineárnym riadením

Obr. 14: Priebeh výstupu a stavových veličín s PID (skok na 1)

Obr. 15: Priebeh výstupu a stavových veličín s PID (skok na 10)

Obr. 16: Priebeh akčného zásahu s nelineárnym riadením

4 Spätnoväzbová linearizácia - vstupno-výstupná

Príklad prvý

Majme systém, ktorý je určený stavovým opisom rovn. (70). Bloková schéma systému je na obr. 17.

$$\dot{x_1} = u + \sin(x_1)x_2$$

$$\dot{x_2} = 2x_1 + \sin(x_1)$$

$$y = x_2$$

$$(70)$$

Obr. 17: Bloková schéma systému z rovn. (70)

Predpokladajme, že chceme tento systém riadiť tak, aby výstup dosiahol žiadanú hodnotu r a aplikujme nelineárne riadenie navrhnuté metódou vstupno výstupnej spätnoväzobnej linearizácie. Metódu vysvetlíme rovno počas návrhu.

Prvý krok - derivácia rovnice výstupu

Prvým krokom metódy je derivácia vzťahu pre výstup systému y. Derivujeme toľkokrát koľkokrát je potrebné, nato aby sa vstup systému u objavil v rovnici.

$$y = x_2$$

$$\Rightarrow \dot{y} = \dot{x_2} = 2x_1 + \sin(x_1)$$

$$\Rightarrow \ddot{y} = \ddot{x_2}$$

$$= 2 + \cos(x_1)\dot{x_1}$$

$$= 2 + \cos(x_1)(u + \sin(x_1)x_2)$$

vo výsledku dostaneme vzťah rovn. (71).

$$\ddot{y} = 2 + \cos(x_1)(u + \sin(x_1)x_2) \tag{71}$$

Druhý krok - voľba zákona linearizácie

Teraz si všimnime, že ak zvolíme vstup u do systému, tak ako je rovn. (72)

$$u = -\sin(x_1)x_2 + \frac{v}{2 + \cos x_1} \tag{72}$$

po dosadení do rovn. (71) dostaneme:

$$\ddot{y} = 2 + \cos(x_1)(u + \sin(x_1)x_2)$$

$$= 2 + \cos(x_1)(-\sin(x_1)x_2 + \frac{v}{2 + \cos x_1} + \sin(x_1)x_2)$$

$$= 2 + \cos(x_1)(\frac{v}{2 + \cos x_1})$$

$$= v$$

Dostávame tak vzťah medzi výstupom systému y a vstupom do zákona linearizácie v v rovn. (73).

$$\ddot{y} = v \tag{73}$$

Voľba takéhoto zákona, nazvime ho zákonom linearizácie, pre vstup u do systému, je druhým krokom metódy.

Tretí krok - návrh lineárneho zákona riadenia

Ako posledný krok, musíme zvoliť tvar v, tak aby sme dosiahli požadovanú dynamiku systému.

Zvolme si v podľa rovn. (74).

$$v = \ddot{r} + k_1 \dot{e} + k_0 e$$

$$= -k_1 \dot{y} + k_0 e \text{ keďže } r \text{ je konšt., tak jeho derivácie sú } 0$$
(74)

potom dosadením rovn. (74) do rovn. (73) dostaneme

$$\ddot{y} = \ddot{r} + k_1 \dot{e} + k_0 e$$
$$0 = \ddot{e} + k_1 \dot{e} + k_0 e$$

pre takúto voľbu v bude teda pre systém platiť rovn. (75).

$$0 = \ddot{e} + k_1 \dot{e} + k_0 e \tag{75}$$

kde k_1 a k_0 sú voliteľné parametre.

Parametre k_1 a k_0 vieme tiež navrhnúť podľa potreby. Ak si prepíšeme rovn. (75) na rovn. (76).

$$r_e = \ddot{e} + k_1 \dot{e} + k_0 e \tag{76}$$

kde r_e bude žiadaná hodnota odchýlky (ktorá je 0), tak vieme vyjadriť prenos $\frac{e}{r}$:

$$r_e = \ddot{e} + k_1 \dot{e} + k_0 e$$

$$R_e = E s^2 + k_1 E s + k_0 E$$

$$R_e = E (s^2 + k_1 s + k_0)$$

$$\frac{E}{R_e} = \frac{1}{s^2 + k_1 s + k_0}$$

charakteristický polynóm teda bude rovn. (77).

$$s^2 + k_1 s + k_0 = 0 (77)$$

zvolíme žiadanú polohu pólov p_1, p_2 potom žiadaný charakteristický polynóm bude rovn. (78).

$$(s - p_1)(s - p_2) = s^2 - (p_1 + p_2)s + p_1p_2$$
(78)

porovnaním rovn. (77) a rovn. (78) dostaneme sústavu rovníc rovn. (79).

$$p_1 p_2 = k_0 - (p_1 + p_2) = k_1$$
(79)

cez ktoré vieme vypočítať k_1 a k_0 pre ľubovoľné žiadané póly.

Zvolme si $p_1=-1$ a $p_2=-1$ potom z rovn. (79) dostaneme $k_1=2$ a $k_2=1$

Máme tak navrhnutý regulátor. Výsledok overíme simuláciou, pre niekoľko žiadaných úrovní výstupu. Priebehy zo simulácie sú na obr. 18.

Obr. 18: Regulácia výstupu na konštantnú hodnotu nelin. regulátorom navrhnutým pomocou metódy spätnoväzbovej linearizácie vstupno-výstupnej rovn. (70)

Zhrnutie krokov metódy

Kroky návrhu sumarizujeme v 3 bodoch:

- 1. Derivácia rovnice výstupu, až kým sa v rovnici neobjaví vstupná premenná
- 2. Voľba zákona linearizácie (napríklad odčítanie nelineárnych zložiek)
- 3. Návrh zákona riadenia (regulátora) pre linearizovaný systém

Rovnovážny stav systému

Bod $x_1 = x_2 = 0$ je rovnovážnym bodom tohto systému, čo si môžeme overiť dosadením:

$$\dot{x_1}|_{(x_1=x_2=0)} = \sin(0)0 = 0$$

$$\dot{x_2}|_{(x_1=x_2=0)} = 0 + \sin(0) = 0$$

všimnime si, že v tomto bode sú derivácie stavových premenných v čase nulové, čo je charakteristické pre rovnovážne body.

Porovnanie s PID

Pre porovnanie skúsme navrhnúť ešte PID regulátor pre systém linearizovaný v rovnovážnom bode $x_1 = x_2 = 0$. Po linearizovaný bude mať systém tvar rovn. (80).

$$\Delta \dot{x_1} = \Delta u$$

$$\Delta \dot{x_2} = 3\Delta x_1$$

$$\Delta y = \Delta x_2$$
(80)

Vyjadrime si prenosovú funkciu systému, pre jednoduchší návrh parametrov regulátora. Vyjadrenie prebieha v rovn. (81). V tomto momente ešte potrebujeme zapojiť pred systém regulátor a vyjadriť prenos uzavretého regulačného obvodu.

$$\Delta y = \Delta x_2 = \frac{1}{s} 3\Delta x_1 = \frac{1}{s^2} 3\Delta u$$

$$\implies \frac{\Delta y}{\Delta u} = \frac{3}{s^2}$$
(81)

Zapojme na vstup systému PID regulátor, ako je na obr. 19. Ktorý má prenos rovn. (82), kde P, D, I sú parametre regulátora. Pre zjednodušenie ešte prenosy systému a regulátora roznásobme, dostaneme tak prenos otvoreného obvodu G_{ORO} daný rovn. (83).

Obr. 19: Zapojenie PID regulátora

$$\frac{U(s)}{E(s)} = P + Ds + \frac{I}{s} \tag{82}$$

$$G_{ORO} = 3\frac{Ps + Ds^2 + I}{s^3}$$
 (83)

Následne vyjadrime prenos uzavretého regulačného obvodu G_{URO} podľa zná-

meho pravidla zápornej spätnej väzby rovn. (84). Dostaneme tak prenos rovn. (85).

$$G_{URO} = \frac{G_{ORO}}{1 + G_{ORO}} \tag{84}$$

$$G_{URO} = \frac{3\frac{Ps + Ds^2 + I}{s^3}}{1 + 3\frac{Ps + Ds^2 + I}{s^3}}$$

$$= \frac{3(Ps + Ds^2 + I)}{s^3 + 3Ps + 3Ds^2 + 3I}$$
(85)

Využime teraz metódu pole-placement na návrh parametrov regulátora, umiestnime póly na týchto pozíciách komplexnej roviny $p_1 = -1$, $p_2 = -1$, $p_3 = -1$. Teda nech sú póly reálne a záporné, čo zabezpečí stabilitu lineárneho systému, keďže na kvalitu riadenia zatiaľ nekladieme dôraz.

Polynóm, ktorý bude mať zvolené korene, získame roznásobením polynómov prvého stupňa, ktorých korene sú zvolené póly, teda roznásobením rovn. (86).

$$P(s) = (s - p_1)(s - p_2)(s - p_3)$$

$$= (s + 1)(s + 1)(s + 1)$$

$$= s^3 + 3s^2 + 3s + 1$$
(86)

Tento želaný polynóm porovnáme s charakteristickým polynómom uzavretého regulačného obvodu, teda rovn. (87), dostaneme tak rovnice rovn. (88) z ktorých vypočítame parametre regulátora.

$$s^{3} + 3s^{2} + 3s + 1 = s^{3} + 3Ps + 3Ds^{2} + 3I$$
 (87)

$$3P = 3$$
 $P = 1$
 $3D = 3 \Longrightarrow D = 1$
 $3I = 1$ $I = \frac{1}{3}$ (88)

Najprv aplikujme tento regulátor na linearizovaný systém, aby sme si overili návrh. Výsledok zo simulácie je na obr. 20.

Aplikujme teraz PID regulátor aj na nelineárny systém, ktorý chceme riadiť. Výsledok zo simulácie je na obr. 21.

Vidíme ako PID regulátor zvláda riadenie pre istú oblasť žiadaných hodnôt,

Obr. 20: PID regulátor na linearizácii systému v pracovnom bode

Obr. 21: PID regulátor na nelineárnom systéme

kde sa linearizácia nelineárneho systému nelíši do veľkej miery od pôvodného systému.

Avšak pre väčšie skoky PID regulátor prestáva fungovať ako to vidíme pre skok $w=\pi$. Z výsledku môžeme usúdiť, že použiť nelineárne riadenie je v niektorých prípadoch nevyhnutné.

Príklad druhý

Majme systém, ktorý je určený stavovým opisom rovn. (89). Bloková schéma systému je na obr. 22.

$$\dot{x}_1 = x_2 - x_1^3
\dot{x}_2 = 2x_3^2 + (x_1^2 + 1)u
\dot{x}_3 = x_1 + x_2^3 - 3x_3^3
y = x_1$$
(89)

Obr. 22: Bloková schéma systému z rovn. (89)

Návrh riadenia

Našim cieľom je riadiť tento systém tak, aby výstup dosiahol žiadanú hodnotu r.

Aplikujeme nelineárne riadenie, opäť navrhnuté metódou vstupno výstupnej spätnoväzobnej linearizácie použitú aj v predchádzajúcom príklade.

Rovnako ako v predchádzajúcom prípade je prvým krokom derivovanie vzťahu pre výstup systému y. Tento vzťah je potrebné derivovať pokiaľ sa v ňom neobjaví vstupný signál u.

$$y = x_{1}$$

$$\Rightarrow \dot{y} = \dot{x}_{1} = x_{2} - x_{1}^{3}$$

$$\Rightarrow \ddot{y} = \dot{x}_{2} - 3x_{1}^{2}\dot{x}_{1}$$

$$\Rightarrow \ddot{y} = 2x_{3}^{2} + (x_{1}^{2} + 1)u - 3x_{1}^{2}x_{2} + 3x_{1}^{5}$$

$$= 2x_{3}^{2} - 3x_{1}^{2}x_{2} + 3x_{1}^{5} + (x_{1}^{2} + 1)u$$

$$(90)$$

Pre zjednodušenie do budúcna upravme výslednú rovn. (90) nasledovne:

$$\ddot{y} = f(x_1, x_2, x_3) + (x_1^2 + 1)u$$

$$f(x_1, x_2, x_3) = 2x_3^2 - 3x_1^2x_2 + 3x_1^5$$
(91)

Ak zvolíme vstup do systému, tak ako je v rovn. (92), po dosadení dostaneme rovn. (93). Voľba takéhoto zákona je nazývaná zákonom linearizácie, pre vstup u do systému.

$$u = \frac{v - f(x_1, x_2, x_3)}{x_1^2 + 1} \tag{92}$$

$$\ddot{y} = 2x_3^2 - 3x_1^2x_2 + 3x_1^5 + (x_1^2 + 1)\frac{v - f(x_1, x_2, x_3)}{x_1^2 + 1}$$

$$\ddot{y} = v$$
(93)

Posledný krok. Ak si zvolíme v podľa rovn. (94), tak dostávame rovnicu pre dynamiku odchýlky rovn. (95). Ak zvolíme koeficienty k všetky kladné, dynamika odchýlky bude vždy stabilná a bude konvergovať k 0. Voľba tohto zákona, pre v, povedzme zákona riadenia linearizovaného systému. Pozn. e = (r - y)

$$v = \ddot{r} - k_1(\dot{y} - \dot{r}) - k_2(y - r) \tag{94}$$

$$v = \ddot{r} + k_1 \dot{e} + k_2 e$$

$$\implies \ddot{y} = \ddot{r} + k_1 \dot{e} + k_2 e$$

$$\implies 0 = \ddot{e} + k_1 \dot{e} + k_2 e$$

$$(95)$$

Máme navrhnutý lineárny regulátor. Kompletný systém vidíme na obr. 23. Výsledky zo simulácie, pre niekoľko žiadaných úrovní výstupu je na obr. 25.

Obr. 23: Kompletná schéma riadeného systému pomocou nelineárneho riadenia.

Rovnovážny stav

Teraz overíme, že bod $x_1=x_2=x_3=0$, je rovnovážnym bodom systému. Systém sa nachádza v rovnováhe, keď časové derivácie všetkých stavových

premenných sú nulové.

$$\begin{aligned}
\dot{x}_1|_{x_1=x_2=x_3=0} &= 0 - 0 = 0 \\
\dot{x}_2|_{x_1=x_2=x_3=0} &= 0 = 0 \\
\dot{x}_3|_{x_1=x_2=x_3=0} &= 0 + 0 - 0 = 0
\end{aligned} \tag{96}$$

Ako vidíme v bode $x_1=x_2=x_3=0$ sú derivácie stavových premenných v čase nulové, teda bod $x_1=x_2=x_3=0$ je rovnovážny bod systému.

Návrh PID

Pre porovnanie skúsme navrhnúť ešte PID regulátor pre systém linearizovaný v rovnovážnom bode $x_1 = x_2 = x_3 = 0$. Po linearizovaní bude mať systém tvar rovn. (97).

$$\Delta \dot{x_1} = \Delta x_2$$

$$\Delta \dot{x_2} = \Delta u$$

$$\Delta \dot{x_3} = \Delta x_1$$

$$\Delta y = \Delta x_1$$
(97)

Pre jednoduchší návrh parametrov regulátora si vyjadríme prenosovú funkciu systému. Vyjadrenie je ukázané v rovn. (98). V tomto momente ešte potrebujeme zapojiť pred systém regulátor a vyjadriť prenos uzavretého regulačného obvodu.

$$\Delta y = \Delta x_1 = \frac{1}{s} \Delta x_2 = \frac{1}{s^2} \Delta u$$

$$\implies \frac{\Delta y}{\Delta u} = \frac{1}{s^2}$$
(98)

Zapojíme na vstup systému PID regulátor, ako je na obr. 24. Ktorý má prenos rovn. (99), kde P, D, I sú parametre regulátora. Pre zjednodušenie, prenosy systému a regulátora roznásobíme a dostaneme tak prenos otvoreného obvodu G_{ORO} daný rovn. (100).

$$\frac{U(s)}{E(s)} = P + Ds + \frac{I}{s} \tag{99}$$

$$G_{ORO} = \frac{Ps + Ds^2 + I}{s^3}$$
 (100)

Obr. 24: Zapojenie PID regulátora

Vyjadríme prenos uzavretého regulačného obvodu G_{URO} podľa pravidla zápornej spätnej väzby rovn. (101). Dostaneme tak prenos rovn. (102).

$$G_{URO} = \frac{G_{ORO}}{1 + G_{ORO}} \tag{101}$$

$$G_{URO} = \frac{\frac{Ps + Ds^2 + I}{s^3}}{1 + \frac{Ps + Ds^2 + I}{s^3}}$$

$$= \frac{Ps + Ds^2 + I}{s^3 + Ps + Ds^2 + I}$$
(102)

Využijeme metódu Pole-Placement na návrh parametrov regulátora, umiestnime póly na nasledovných pozíciách komplexnej roviny $p_1=-1, p_2=-0.8, p_3=-0.5$. Teda nech sú póly reálne a záporné, čo zabezpečí stabilitu lineárneho systému, keďže na kvalitu riadenia zatiaľ nekladieme dôraz.

Polynóm, ktorý bude mať zvolené korene, získame roznásobením polynómov prvého stupňa, ktorých korene sú zvolené póly (rovn. (103)).

$$P(s) = (s - p_1)(s - p_2)(s - p_3)$$

$$= (s + 1)(s + 0.8)(s + 0.5)$$

$$= s^3 + 2.3s^2 + 1.7s + 0.4$$
(103)

Tento želaný polynóm porovnáme s charakteristickým polynómom URO, teda rovn. (104), dostaneme tak rovnice rovn. (105) z ktorých vypočítame parametre

regulátora.

$$s^{3} + 2.3s^{2} + 1.7s + 0.4 = s^{3} + Ps + Ds^{2} + I$$
 (104)

$$P = 1.7$$
 $D = 2.3$ (105)
 $I = 0.4$

Aplikujme PID regulátor na nelineárny systém (obr. 24), ktorý chceme riadiť. Výsledok zo simulácie je na obr. 26.

Porovnanie riadenia

Obr. 25: Regulácia výstupu na konštantnú hodnotu nelin. regulátorom navrhnutým pomocou metódy spätnoväzbovej linearizácie vstupno-výstupnej.

Obr. 26: Regulácia výstupu na konštantnú hodnotu PID regulátorom navrhnutým pomocou metódy pole-placement

Záver

Z výsledku môžeme usúdiť, že nelineárne riadenie je v tomto prípade, nevyhnutné. Systém regulovaný PID regulátorom nebol schopný sa stabilizovať v takom okolí pracovného bodu ako to dokázal systém s regulátorom navrhnutým pomocou metódy vstupno-výstupnej spätnoväzbovej linearizácie.

5 Integrácia do predmetu RNS

Vyššie uvedené príklady, môžu byť integrované do predmetu Riadenie Nelineárnych systémov niekoľkými spôsobmi. Jednou z možností je prezentovanie týchto príkladov priamo na prednáške.

Ďalším priestorm pre aplikáciu týchto príkladov sú cvičenia. Kde by študenti mohli počas cvičení precvičovať metódy návrhu regulátorov pre tieto príklady.

Alebo na začiatok, môžu byť poskytnuté ako dodatočný materiál s vypracovanými príkladmi k prednáškam alebo cvičeniam ako návod, na precvičenie si metód návrhu. A na základe odozvy študentov na tieto príklady by postupne mohli byť integrované do predchádzajúcich dvoch učebných procesov (prednášky, cvičenia).

Keďže obsahujú aj porovnanie s PID, čo zahŕňa návrh lin. regulátora v rovnovažnom stave linearizáciou, môžu byť využité na porovnanie lin. riadenia s nelineárnym, ale aj ako príklady alebo návody na precvičenie a odkontorlovanie linearizácie.

Ďalším produktom tímového projektu je animácia riadenia polohy kyvadla v programe Matlab. Túto animáciu je možné použit ako pedagogickú pomôcku, ktorá by mohla pomôcť študentom so získaním predstavy o prejednávanej problematike a možných riešeniach predmetu RNS.

6 Riadenie projektu

Predstavenie riešiteľského kolektívu

Na riešení projektu sa podieľali nasledovní študenti:

- Bc. Eva Štalmachová študentka inžinierského študijného programu Robotika a Kybernetika na Ústave Robotiky a Kybernetiky FEI STU
- Bc. Marek Trebul'a študent inžinierského študijného programu Robotika a Kybernetika na Ústave Robotiky a Kybernetiky FEI STU
- Bc. Ján Urdianyk študent inžinierského študijného programu Robotika a Kybernetika na Ústave Robotiky a Kybernetiky FEI STU
- Bc. Denis Vasko študent inžinierského študijného programu Robotika a Kybernetika na Ústave Robotiky a Kybernetiky FEI STU

Plán projektu

Vytvorili sme rozpis úloh na jednotlivé týždne semestra:

- 1. Voľba témy. Určenie spôsobu komunikácie, dohodnutie stretnutí.
- 2. Voľba vedúceho tímu, analýza problému, dohoda o obsahu riešenia. Zaučenie členov pre prácu s programom git.
- 3. Štúdium literatúry zaoberajúcou sa danou problematikou.
- 4. Určenie prvotných úloh jednotlivých členov tímu.
- 5. Kontrola splnenia pridelených úloh, odvodenie ďalších úloh.
- 6. Dokumentácia vyriešených častí úlohy. A príprava prezentácie čiastočného riešenia.
- 7. Prezentácia čiastočného riešenia vedúcemu projektu, analýza kritiky vedúceho a syntéza nových úloh.
- 8. Riešenie a dokumentácia nových úloh, konzultácia s vedúcim projektu.
- 9. Pokračovanie v riešení úloh z predchádzajúceho týždňa.

- 10. Destilácia obsahu riešenia do formy prezentácie.
- 11. Vypracovanie posudku na konkurenčný projekt.
- 12. Prezentácia.

Dohodnuté metódy práce

- Pre projekt bude vytvorený repozitár na stránkach github.com, do ktorého bude každý z členov prispievať svoju časť riešenia.
- Forma riešenia bude predpísaná šablónou, ktorou sa členovia budú riadiť pri štrukturovaní práce a dokumentácie.
- Dokumentácia bude vytvorená v dokumentačnom systéme LaTeX.
- Simulácie budú vytvorené v simulačnom prostredí Matlab/Simulink.
- Verzie riešenia budú spravované využitím programu git a jednotlivé verzie budú hostované na stránkach github.com ako súkromný repozitár.
- Pre zabezpečenie dodržania termínov sme zaviedli aj časové obmedzenia doby riešenia jednotlivých úloh pridelených členom skupiny.

Komunikácia a koordinácia projektu

- Komunikácia s pánom prof. Murgašom prebieha počas naplánovaných stretnutí, alebo mailom (neskôr prebiehala výlučne mailom).
- Medzi členmi tímu prostredníctvom facebookovej skupiny, alebo osobne.
- Neskôr väčšina komunikácie medzi členmi tímu prebiehala prostredníctvom programu MS teams, využitím textových správ ale aj videohovorov.

Kontrola rozhodnutí tímu

Rozhodnutia o forme riešenia sme robili v prvých týždňoch semestra. Uvažovali sme nad rôznymi rozdeleniami práce, ako aj nad tým, čo by v riešení malo byť.

Rozhodli sme predviesť každú metódu dvoma príkladmi. Čo umožňovalo priradiť každému členu tímu jeden príklad. Ukázalo sa, že to bolo dobré rozhodnutie, pretože takto mohli členovia tímu pracovať paralelne.

Rozhodli sme sa vytvoriť ukážkovú aplikáciu v Matlabe, kde by bolo možné demonštrovať rozdieli medzi PID regulátorom a nelineárnymi regulátormi. Avšak rozhodnutie použiť Matlab na vývoj tejto aplikácie sa ukázalo ako zlé rozhodnutie, pretože viedlo na problémy s kompatibilitou verzií Matlabu a zbytočnej zložitosti pri spúštaní programu.

Využitie programovacieho jazyka TeX a balíčka makier LaTeX na formátovanie dokumentácie bolo dobrým rozhodnutím, pretože sme sa nemuseli zaoberať napríklad manuálnym číslovaním obrázkov.

Ukladanie čiastočných riešení do git repozitáru na internet, sa ukázalo ako efektívny spôsob zaručenia aktuálnosti verzií a zosúladenia zmien súborov projektu medzi členmi tímu.

Zavedenie časových limitov (deadline), na dokončenie čiastočných úloh, viedlo, podľa nášho názoru, k výrazne vyššej produktivite. Čiže ich zavedenie bolo dobrým rozhodnutím.

Podrobné záznamy o stretnutí

Uvádzame vyhotovené zápisnice stretnutí, zápisnice vypracoval Bc. Marek Trebuľa.

Dátum: 18.2.2020

Účastníci: prof. Ing. Ján Murgaš, PhD., Bc. Eva Štalmachová, Bc. Ján Urdianyk, Bc. Denis Vasko, Bc. Marek Trebuľa, členovia druhého tímu

Miesto: D332, budova FEI STU

Čas: 10:30

Obsah stretnutia

- 1. Prof. Ján Murgaš predstavil tímom predmet "Tímový projektä oboznámil nás s ideou tohto predmetu.
- 2. Na stretnutí sme si na vyzvanie prof. Jána Murgaša zvolili za kapitána tímu Bc. Denisa Vaska. Ako kapitán tímu je zodpovedný za komunikáciu s profesorom Murgašom a následnú distribúciu informácií medzi ostatných členov tímu.
- 3. Prof. Ján Murgaš nám zadal úlohu do ďalšieho stretnutia.
- 4. Prof. Ján Murgaš prisľúbil dodanie zadaní pre tímy na nasledujúcom stretnutí.
- 5. Určili sme termín ďalšieho stretnutia s prof. Jánom Murgašom.
- 6. Tímovo sme sa dohodli, že podrobnejšie rozdelenie úloh medzi členov tímu preberieme po spresnení zadania prof. Murgašom.
- 7. Bc. Ján Urdianyk vytvoril git repozitár, kde budeme zálohovat, ukladat všetky súbory a informácie súvisiace s tímovým projektom.
- 8. Bc. Denis Vasko vytvoril facebookovú skupinu pre náš tím. Určená je na rýchlu komunikáciu a distribúciu informácií ohľadom tímového projektu.

Úlohy

 Individuálne si naštudovať informácie o predmete "Tímový projekt"na stránke ÚRK.

Dátum: 25.2.2020

Účastníci: prof. Ing. Ján Murgaš, PhD., Bc. Eva Štalmachová, Bc. Ján Urdianyk, Bc. Denis Vasko, Bc. Marek Trebuľa, členovia druhého tímu

Miesto: D332, budova FEI STU

Čas: 10:00

Obsah stretnutia

1. Prof. Ján Murgaš oboznámil jednotlivé tímy s ich zadaniami.

- 2. Prof. Ján Murgaš poslal zadania e-mailom kapitánom tímov a odovzdal tímom aj papierovú verziu.
- 3. Prof. Ján Murgaš nám zadal úlohu do ďalšieho stretnutia.
- 4. Po diskusií v tíme sme určili, že Bc. Marek Trebuľa bude spisovať zápisnice z jednotlivých stretnutí.
- 5. Určili sme termín ďalšieho stretnutia s prof. Jánom Murgašom.
- 6. Dohodli sme sa, že do stretnutia s prof. Jánom Murgašom prebehne minimálne jedno stretnutie samostatne, kde splníme úlohu, ktorú sme dostali.
- 7. Bc. Eva Štalmachová prebrala papierové zadanie a rozdistribuovala ho medzi ostatných členov tímu, prostredníctvom facebookovej skupiny.

Úlohy

 Do nasledujúceho stretnutia s prof. Jánom Murgašom prepracovať plán s konkrétnymi úlohami a návrhmi riešení, ktoré budú rozdelené medzi jednotlivých členov tímu. Tento plán úloh sa bude konzultovať s prof. Jánom Murgašom na nasledujúcom stretnutí.

Dátum: 2.3.2020

Účastníci: Bc. Eva Štalmachová, Bc. Ján Urdianyk, Bc. Denis Vasko, Bc. Marek

Trebuľa

Miesto: študovňa YNet, budova ŠD Mladosť

Čas: 12:00

Obsah stretnutia

1. Bc. Denis Vasko pripravil podúlohy, ktoré by sme ako tím mohli potenciálne splniť v rámci semestra.

- 2. Prebehla diskusia k jednotlivým podúlohám.
- 3. Následne sme si rozdelili/vybrali úlohy, ktoré budú jednotlivý člienovia tímu plniť.
- 4. Bc. Marek Trebuľa navrhol pridať do úloh tvorbu vizualizácie niektorého z príkladov zadania.
- 5. Návrh bol prediskutovaný členmi tímu. Avšak tento návrh bol vzhľadom na pochybnosti a abstraktnosť príkladov, odložený do času, keď budeme poznať konkrétne príklady a požiadavky od zadávateľa projektu.

Úlohy

 Do nasledujúceho stretnutia s prof. Jánom Murgašom sme nestanovili žiadne ďalšie úlohy.

Nasledujúce stretnutie

Naplánované na 3. marca 2020 o 10:00 v miestnosti D332 aj s prof. Jánom Murgašom.

Dátum: 3.3.2020

Účastníci: prof. Ing. Ján Murgaš, PhD., Bc. Eva Štalmachová, Bc. Ján Urdianyk, Bc. Denis Vasko, Bc. Marek Trebuľa, členovia druhého tímu

Miesto: D332, budova FEI STU

Čas: 10:00

Obsah stretnutia

- 1. Prof. Ján Murgaš odprezentoval postup ako si predstavuje priebeh prác na tímovom projekte.
- 2. Prof. Ján Murgaš stanovil priority a úlohy, ktoré treba splniť do 6. týždňa semestra.
- 3. Bc. Denis Vasko upravil rozdelenie úloh podľa aktuálnych priorít.
- 4. Dohodli sme sa na ďalšom stretnutí s prof. Jánom Murgašom.
- 5. Dohodli sme si ďalšie stretnutie v rámci nášho tímu.
- 6. Bc. Eva Štalmachová po konzultácií s kapitánom tímu, Bc. Denisom Vaskom, vypracovala osnovu, podľa ktorej vypracuje každý člen tímu svoje podúlohy.

- Do nasledujúceho stretnutia (6.týždeň) s prof. Jánom Murgašom pripraviť a spracovať príklady určené na pedgogické účely predmetu RNS.
- Do nedele (15.3.2020) si každý člen tímu pripraví príklad s riešením a náležitosťami vyplývajúcimi z osnovy, ktorú vypracovala Bc. Eva Štalmachová.

Dátum: 16.3.2020

Účastníci: Bc. Eva Štalmachová, Bc. Ján Urdianyk, Bc. Denis Vasko, Bc. Marek

Trebuľa

Miesto: Online, Microsoft Teams

Čas: 18:00 (trvanie cca 120 minút)

Z dôvodu pandémie ochorenia COVID-19 sa toto stretunie uskutočnilo online, keďže karanténne opatrenia to neumožnili inak.

Obsah stretnutia

- 1. Do stretnutia, každý splnil svoju úlohu, ktorou bolo pripraviť príklad s postupom návrhu riadenia, simuláciou a porovnaním s PID regulátorom.
- 2. Rozdelenie príkladov bolo nasledovné Bc. Eva Štalmachová a Bc. Ján Urdianyk mali po príklade na vstupno-stavovú spätnoväzbovú linearizáciu. Bc. Denis Vasko a Bc. Marek Trebuľa tvorili príklady na tému vstupno-výstupná spätnoväzbová linearizácia.
- 3. Na stretnutí sme si vzájomne prešli vypracovanie každého člena a odporučili si vylepšenia a prípadné korekcie.
- 4. Diskutovali sme o ďalších úlohách, ktoré je potrebné splniť.
- 5. Rozdelili sme si ďalšie úlohy medzi členov tímu.
- 6. Dohodli sme si ďalšie stretnutie v rámci nášho tímu, ktoré opäť prebehne kvôli pandémii pravdepodobne online.

- Do nasledujúceho stretnutia (6.týždeň) s prof. Jánom Murgašom pripraviť a spracovať príklady určené na pedgogické účely predmetu RNS. Splnené pripravené na odkonzultovanie s prof. Jánom Murgašom.
- Do pondelka (23.3.2020) sa pokúsime splniť nasledovné úlohy:

Dátum: 23.3.2020

Účastníci: Bc. Eva Štalmachová, Bc. Ján Urdianyk, Bc. Denis Vasko, Bc. Marek

Trebuľa

Miesto: Online, Microsoft Teams

Čas: 18:00 (trvanie cca 60 minút)

Z dôvodu pandémie ochorenia COVID-19 sa toto stretunie uskutočnilo online, keďže karanténne opatrenia to neumožnili inak.

Obsah stretnutia

- 1. Do stretnutia, každý splnil svoju úlohu. Bc. Eva Štalmachová s Bc. Jánom Urdianykom pripravili matematiku. Bc. Denis Vasko a Bc. Marek Trebuľa pripravili GUI.
- 2. Na stretnutí sa vzájomne zhodnotilo vypracovanie jednotlivých úloh a odporučili sa vylepšenia a prípadné korekcie.
- 3. Rozdelili sa úlohy medzi členov tímu.
- 4. Dohodli sa ďalšom stretnutí v rámci tímu, ktoré opäť prebehne kvôli pandémii pravdepodobne online.

- Bc. Denis Vasko má za úlohu kontaktovať prof. Jána Murgaša a informovať ho o našom postupe. A ďalej má doprogramovať predvolený PID regulátor do GUI.
- Bc. Eva Štalmachová sa doprogramuje do GUI reguláciu metódou vstupnostavovej spätnoväzbovej linearizácie.
- Bc. Ján Urdianyk dokončí matematickú časť zadania.
- Bc. Marek Trebuľa doprogramuje do GUI manuálne nastaviteľné regulátory P, PI a PID. Tiež začne písať používateľskú dokumentáciu.

Dátum: 30.3.2020

Účastníci: Bc. Eva Štalmachová, Bc. Ján Urdianyk, Bc. Denis Vasko, Bc. Marek

Trebuľa

Miesto: Online, Microsoft Teams

Čas: 18:00 (trvanie cca 40 minút)

Z dôvodu pandémie ochorenia COVID-19 sa toto stretunie uskutočnilo online, keďže karanténne opatrenia to neumožnili inak.

Obsah stretnutia

1. Do stretnutia, sa nepodarilo spojiť s prof. Murgašom.

- 2. Bc. Eva Štalmachová doprogramovala do GUI reguláciu metódou vstupnostavovej spätnoväzbovej linearizácie.
- 3. Bc. Ján Urdianyk dokončil matematickú časť.
- 4. Bc. Marek Trebuľa pripravil osnovu používateľskej dokumentácie.
- 5. Bc. Denis Vasko prešiel ešte raz všetky príklady a pripravil ich na prípadnú kontrolu prof. Murgašom. Navrhol doplniť prametre k1, k2 do GUI pri metóde vstupno-výstupnej spätnoväzbovej linearizácie.
- 6. Rozdelili sa úlohy medzi členov tímu.
- 7. Dohodlo sa ďalšie stretnutie v rámci tímu, ktoré opäť prebehne kvôli pandémii pravdepodobne online.

- Bc. Denis Vasko má za úlohu kontaktovať prof. Jána Murgaša a dohodnúť ďalší postup.
- Bc. Eva Štalmachová pripraví finálnu šablónu dokumentu v LaTex-u.
- Bc. Ján Urdianyk sa pokúsi optimalizovať GUI.

Dátum: 6.4.2020

Účastníci: Bc. Eva Štalmachová, Bc. Ján Urdianyk, Bc. Denis Vasko, Bc. Marek

Trebuľa

Miesto: Online, Microsoft Teams

Čas: 18:00 (trvanie cca 40 minút)

Z dôvodu pandémie ochorenia COVID-19 sa toto stretunie uskutočnilo online, keďže karanténne opatrenia to neumožnili inak.

Obsah stretnutia

- 1. Do stretnutia, sa podarilo spojiť s prof. Murgašom. Vyžiadal si príklady na kontrolu.
- 2. Bc. Eva Štalmachová pripravila šablónu v LaTex-u.
- 3. Bc. Ján Urdianyk zhodnotil, že optimalizácia GUI by už v programe Matlab bola príliš náročná vzhľadom na naše skúsenosti a možnosti, ktoré tento jazyk poskytuje.
- 4. Bc. Ján Urdianyk vidí ako možnosť iný programvací jazyk. Avšak po diskusii sme sa zhodli, že GUI v Matlabe môže tiež poslúžiť ako dobrá pomôcka čo do programovania GUI, na iných predmetoch v rámci FEI. Preto sme sa rozhodli nemeniť a prostredie tvorby GUI.
- 5. Bc. Marek Trebuľa doprogramoval do GUI ovládače pre parametre k1, k2 pre metódu vstupno-výstupnej spätnoväzbovej linearizácie.
- 6. Bc. Denis Vasko odkonzultoval so zvyškom tímu pripravené materály pre prof. Murgaša.
- 7. Dohodlo sa ďalšie stretnutie v rámci tímu, ktoré opäť prebehne kvôli pandémii pravdepodobne online.

Dátum: 14.4.2020

Účastníci: Bc. Eva Štalmachová, Bc. Ján Urdianyk, Bc. Denis Vasko, Bc. Marek

Trebuľa

Miesto: Online, Microsoft Teams

Čas: 18:00 (trvanie cca 40 minút)

Z dôvodu pandémie ochorenia COVID-19 sa toto stretunie uskutočnilo online, keďže karanténne opatrenia to neumožnili inak.

Obsah stretnutia

- 1. Prof. Ján Murgaš odsúhlasil príklady a pridal pár poznámok na vylepšenie. Ďalej dal pokyn na kompletizáciu TP.
- 2. Bc. Denis Vasko zdôraznil potrebné veci na dokončenie a úspešnú kompletizáciu TP.
- 3. Bc. Eva Štalmachová pripravila šablónu finálnu šablónu prezentácie.
- 4. Bc. Ján Urdianyk nenašiel, žiadne veľké nedostatky v TP, preklepy opravil.
- 5. Bc. Marek Trebuľa postúpil v písaní manuálu. Pokúsil sa GUI vyexportovať do formátu .exe. Avšak výsledný súbor bol príliš veľký a jeho spustenie trvalo dlho, preto sme od tohto riešenia upustili.
- 6. Dohodlo sa ďalšie stretnutie v rámci tímu, ktoré opäť prebehne kvôli pandémii pravdepodobne online.

- Bc. Denis Vasko má za úlohu dozerať na kompletizáciu TP.
- Bc. Eva Štalmachová a Bc. Ján Urdianyk pripravia prezentáciu.
- Bc. Marek Trebuľa dokončí manuál ku GUI.

Dátum: 21.4.2020

Účastníci: Bc. Eva Štalmachová, , Bc. Denis Vasko, Bc. Ján Urdianyk, Bc. Marek

Trebuľa

Miesto: Online, Microsoft Teams

Čas: 20:00 (trvanie cca 30 minút)

Z dôvodu pandémie ochorenia COVID-19 sa toto stretunie uskutočnilo online, keďže karanténne opatrenia to neumožnili inak.

Obsah stretnutia

- 1. Prof. Ján Murgaš poslal kapitánom pokyn na určenie termínu odovzdania TP.
- 2. Tím skonštatoval, že potrebujeme ešte týždeň, aby mohla v kľude prebehnúť kontrola dokumentácie a tvorba prezentácie.
- 3. Bc. Eva Štalmachová a Bc. Ján Urdianyk avizovali, že by bolo lepšie keby si každý určil čo chce mať v prezentácii, k príkladu.
- 4. Bc. Marek Trebuľa dokončil manuál.
- 5. Dohodlo sa ďalšie stretnutie v rámci tímu, ktoré opäť prebehne kvôli pandémii pravdepodobne online.

- Bc. Denis Vasko a Bc. Marek Trebuľa dodajú podklady k prezentácií.
- Bc. Eva Štalmachová a Bc. Ján Urdianyk dokončia prezentáciu.
- Každý člen si prečíta dokumentáciu k TP a prípadne vykoná opravu alebo aspoň upozorní na chyby.

7 Záver

V tímovom projekte sme sa zaoberali vytvorením niekoľkých cvičných modelov systémov, na ktorých sme potom ukázali vybrané metódy syntézy nelineárneho riadenia.

Tak ako sme vyššie demonštrovali, pre riadenie niektorých systémov môže byť využitie nelineárneho riadenia nevyhnutné, v takýchto prípadoch nám metóda vstupno-stavovej linearizácie a metóda vstupno-výstupnej linearizácie poskytujú spôsob ako riadenie syntetizovať, v iných prípadoch však riadenie pomocou lineárneho PID regulátora, ktorý má parametre navrhnuté pre systém linearizovaný v rovnovažnom stave, postačuje a je jednoduchší z hľadiska návrhu. Preto je nutné pre každý systém určiť, či je riadenie pomocou PID regulátora postačujúce a ak nie, využiť napríklad jednu z vyššie uvedených metód.

V prípade použitia uvedených metód návrhu nelineárneho riadenia, je potrebné analyzovať aj výsledný tvar nelineárneho zákona riadenia, pretože tento nemusí byť definovaný, pre všetky hodnoty stavových premenných.

Počas projektu sme museli riešiť aj rôzne problémy spojené s prácou v tíme. Napríklad určenie času stretnutí vyhovujúci všetkým členom tímu, zvoliť spôsob diaľkovej komunikácie, organizovanie obsahu stretnutí a ďalšie. Vzhľadom na situáciu, ktorá sa vyskytla, sme boli nútený organizovať stretnutia tímu cez internet.

Literatúra

[1] SLOTINE, Jean-Jacques E., et al. Applied nonlinear control. Englewood Cliffs, NJ: Prentice hall, 1991.