

## PATENT ABSTRACTS OF JAPAN

(11) Publication number : 2002-171126  
 (43) Date of publication of application : 14.06.2002

(51) Int.CI.

H01Q 21/30  
 H01Q 1/24  
 H01Q 5/01  
 H01Q 9/40  
 H01Q 13/08

(21) Application number : 2000-365819

(71) Applicant : MITSUBISHI ELECTRIC CORP

(22) Date of filing : 30.11.2000

(72) Inventor : NISHIOKA YASUHIRO  
 FUKAZAWA TORU  
 OMINA HIROYUKI  
 IMANISHI YASUTO  
 TANAKA TETSUYA  
 TAKETOMI KOICHI  
 SHOJI HIDEAKI

## (54) ANTENNA DEVICE

## (57) Abstract:

PROBLEM TO BE SOLVED: To obtain an antenna device which can operate simultaneously with respect to a plurality of frequency bands, and does not project from a case body of a wireless installation by reducing extremely a physical occupied space.

SOLUTION: An antenna device comprises a radial conductor 22 formed in a flat plane manner in an upward direction of an earth conductor 21 so that an electric length is set to be generally about quarter times a first wavelength; a radial conductor 23 which is installed so as to surround the radial conductor 22 away from an edge of the radial conductor 22 at a sufficiently smaller gap than the first wavelength, and is formed linearly with bending so that the electric length is generally about quarter times a second wavelength; a conductor line 24 for electrically connecting the radial conductors 22, 23; and a feeding point 25 to be fed from between the radial conductors 22, 23 and the earth conductor 21.



## LEGAL STATUS

[Date of request for examination]

27.03.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号  
特開2002-171126  
(P2002-171126A)

(43)公開日 平成14年6月14日 (2002.6.14)

(51)Int.Cl.  
H 01 Q 21/30  
1/24  
5/01  
9/40  
13/08

識別記号

F I  
H 01 Q 21/30  
1/24  
5/01  
9/40  
13/08

マーク (参考)  
5 J 0 2 1  
Z 5 J 0 4 5  
5 J 0 4 7

審査請求 未請求 請求項の数12 O L (全 9 頁)

(21)出願番号 特願2000-365819(P2000-365819)

(22)出願日 平成12年11月30日 (2000.11.30)

(71)出願人 000006013  
三菱電機株式会社  
東京都千代田区丸の内二丁目2番3号

(72)発明者 西岡 泰弘  
東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内

(72)発明者 深沢 徹  
東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内

(74)代理人 100066474  
弁理士 田澤 博昭 (外1名)

最終頁に続く

(54)【発明の名称】 アンテナ装置

(57)【要約】

【課題】 複数の周波数帯に対して同時に動作することができると共に、物理的な占有空間を極力小さくして、無線機の筐体から突出しないアンテナ装置を得る。

【解決手段】 地導体21の上方に電気長が第1の波長の概略4分の1程度になるように平板状に形成された放電導体22と、その放射導体22の辺から第1の波長に比して十分小さい間隙を隔ててその放射導体22を取り巻くように設置され、電気長が第2の波長の概略4分の1くように設置され、電気長が第2の波長の概略4分の1くのように屈曲を有する直線状に形成された放射導体23と、放射導体22、23を電気的に接続する導体線24と、放射導体22、23と地導体21との間から給電する給電点25とを備えた。



## 【特許請求の範囲】

【請求項1】 有限の大きさを有する地導体と、上記地導体の上方にその地導体と概略平行に設置され、第1の波長に対して直列共振を発生する電気長を有する第1の放射導体と、上記地導体の上方に上記第1の放射導体と概略同一平面上かつ、その第1の放射導体の辺から第1の波長に比して十分小さい間隙を隔てて設置され、第2の波長に対して直列共振を発生する電気長を有する第2の放射導体と、上記第1の放射導体および上記第2の放射導体とを電気的に接続する導体線とを備えたアンテナ装置。

【請求項2】 第1の放射導体の電気長は、第1の波長の概略4分の1程度であると共に平板状または曲面状に形成され、第2の放射導体は、上記第1の放射導体を取り巻くように配置され、電気長が第2の波長の概略4分の1程度になるように屈曲を有する直線状または曲線状の導体によって構成され、上記第1の放射導体または上記第2の放射導体と地導体との間から給電されることを特徴とする請求項1記載のアンテナ装置。

【請求項3】 切り欠き部が設けられた有限の大きさを有する地導体と、上記地導体の上方にその地導体と概略平行に設置され、第1の波長に対して直列共振を発生する電気長を有する第1の放射導体と、上記切り欠き部による上記第1の放射導体に対して概略平行に配置され、第2の波長に対して直列共振を発生する電気長を有する第3の放射導体と、上記第1の放射導体および上記第3の放射導体とを電気的に接続する導体線とを備えたアンテナ装置。

【請求項4】 第1の放射導体は、平板状または曲面状に形成されると共に切り欠き部上に配置され、第3の放射導体は、上記切り欠き部に螺旋状線状に形成されたことを特徴とする請求項3記載のアンテナ装置。

【請求項5】 第1の放射導体は、平板状または曲面状に形成されると共に切り欠き部上に配置され、第3の放射導体は、上記切り欠き部にメアンド状に形成されたことを特徴とする請求項3記載のアンテナ装置。

【請求項6】 切り欠き部は、地導体の一角に設けられることを特徴とする請求項3から請求項5のうちのいずれか1項記載のアンテナ装置。

【請求項7】 平板状または曲面状に形成された第1の放射導体に、1つまたは複数の切り込みを設けたことを特徴とする請求項1から請求項6のうちのいずれか1項記載のアンテナ装置。

【請求項8】 切り欠き部が設けられた有限の大きさを有する地導体と、上記地導体と概略同一平面上になるように上記切り欠き部に配置され、第1の波長に対して直列共振を発生する電気長を有する第4の放射導体と、上記地導体と概略同一平面上になるように上記切り欠き部に配置され、第2の波長に対して直列共振を発生する電気長を有する第5の放射導体とを備えたアンテナ装置。

【請求項9】 第4の放射導体は、螺旋状線状に形成されると共に切り欠き部に配置され、第5の放射導体は、上記第4の放射導体と互いに概略平行になるように配置され螺旋状線状に形成されたことを特徴とする請求項8記載のアンテナ装置。

【請求項10】 第4および第5の放射導体のうちのいずれか一方の放射導体の一端を地導体に短絡し、他方の放射導体の一端と地導体との間から給電されることを特徴とする請求項8または請求項9記載のアンテナ装置。

【請求項11】 第4および第5の放射導体の上方に地導体と概略平行に設置され、第3の波長に対して直列共振を発生する電気長を有すると共に平板状または曲面状に形成された第6の放射導体と、上記第6の放射導体と給電点とを電気的に接続した線導体とを備えたことを特徴とする請求項8から請求項10のうちのいずれか1項記載のアンテナ装置。

【請求項12】 地導体の上方に第6の放射導体と概略同一平面上かつ、その第6の放射導体を取り巻くように設置され、第4の波長に対して直列共振を発生する電気長を有すると共に屈曲を有する直線状または曲線状に形成された第7の放射導体を備え、線導体は、第6の放射導体と共に上記第7の放射導体と給電点とを電気的に接続したことを特徴とする請求項11記載のアンテナ装置。

## 【発明の詳細な説明】

## 【0001】

【発明の属する技術分野】 この発明は、携帯電話、P H S、およびBlue tooth等の無線システムに利用されるアンテナ装置に関するものである。

## 【0002】

【従来の技術】 図11は例えば特開平9-46259号公報に示された従来のアンテナ装置を示す構成図であり、図において、1, 2は電気長の異なる2つの素子アンテナ、3は2つの素子アンテナ1, 2を一体化するモールド樹脂、4は無線回路、5, 6は素子アンテナ1, 2と無線回路4との間にそれぞれ設けられたトラップ回路である。また、図12は例えば「共振周波数切替型逆Fアンテナ」(1997年電子情報通信学会総合大会講演論文集、分冊 通信1、B-1-74、p. 74)に示された従来のアンテナ装置を示す構成図であり、図において、11はグランド端子を有する逆Fアンテナ、12, 13は逆Fアンテナ11に直列接続されたキャバシタおよびインダクタ、14はそれらキャバシタ12およびインダクタ13の間に接続されたpinダイオードである。

【0003】 次に動作について説明する。図11および図12は、2共振のアンテナ装置を示したものであり、図11では、電気長の異なる2つの素子アンテナ1, 2と、各素子アンテナ1, 2の給電部に装荷された2つのトラップ回路5, 6とから構成されている。トラップ回

3

路5, 6は、一方の素子アンテナが動作しているときに、他方の素子アンテナが動作しないように設計されている。こうすることによって、2つの異なる周波数帯に對して動作するアンテナ装置を実現している。また、図12は、単共振特性を有する逆Fアンテナ11に、キヤバシタ12およびインダクタ13からなる負荷を装荷し、pinダイオード14のオン、オフを利用して負荷の値を変化させることで逆Fアンテナ11の共振周波数を変化させ、これによって複数の周波数帯に對して動作するアンテナ装置を実現している。

## 【0004】

【発明が解決しようとする課題】従来のアンテナ装置は以上のように構成されているので、図11に示したアンテナ装置では、素子アンテナ1, 2の寸法が大きいため、携帯無線端末機の筐体からアンテナが大きく突き出てしまうという課題があった。また、図12に示したアンテナ装置では、複数の周波数帯に對して同時に動作することができないという課題があった。

【0005】この発明は上記のような課題を解決するためになされたもので、複数の周波数帯に對して同時に動作することができると共に、物理的な占有空間を極力小さくして、無線機の筐体から突出しない、または突出量を削減するアンテナ装置を得ることを目的とする。

## 【0006】

【課題を解決するための手段】この発明に係るアンテナ装置は、地導体の上方に概略平行に設置され、第1の波長に對して直列共振を発生する電気長を有する第1の放射導体と、地導体の上方に第1の放射導体と概略同一平面上かつ、その第1の放射導体の辺から第1の波長に比して十分小さい間隙を隔てて設置され、第2の波長に對して直列共振を発生する電気長を有する第2の放射導体と、第1および第2の放射導体を電気的に接続する導体線とを備えたものである。

【0007】この発明に係るアンテナ装置は、第1の放射導体の電気長を、第1の波長の概略4分の1程度であると共に平板状または曲面状に形成され、第2の放射導体は、第1の放射導体を取り巻くように配置され、電気長が第2の波長の概略4分の1程度になるように屈曲を有する直線状または曲線状の導体によって構成され、第1の放射導体または第2の放射導体と地導体との間から給電されるように構成したものである。

【0008】この発明に係るアンテナ装置は、切り欠き部が設けられた地導体の上方に概略平行に設置され、第1の波長に對して直列共振を発生する電気長を有する第1の放射導体と、切り欠き部に第1の放射導体に對して概略平行に配置され、第2の波長に對して直列共振を発生する電気長を有する第3の放射導体と、第1および第3の放射導体とを電気的に接続する導体線とを備えたものである。

【0009】この発明に係るアンテナ装置は、第1の放

射導体を、平板状または曲面状に形成すると共に切り欠き部上に配置し、第3の放射導体を、切り欠き部に螺旋状線状に形成したものである。

【0010】この発明に係るアンテナ装置は、第1の放射導体を、平板状または曲面状に形成すると共に切り欠き部上に配置し、第3の放射導体を、切り欠き部にメアンダ状に形成したものである。

【0011】この発明に係るアンテナ装置は、切り欠き部を、地導体の一角に設けたものである。

【0012】この発明に係るアンテナ装置は、平板状または曲面状に形成された第1の放射導体に、1つまたは複数の切り込みを設けたものである。

【0013】この発明に係るアンテナ装置は、切り欠き部が設けられた地導体と概略同一平面上になるようにその切り欠き部に配置され、第1の波長に對して直列共振を発生する電気長を有する第4の放射導体と、地導体と概略同一平面上になるように切り欠き部に配置され、第2の波長に對して直列共振を発生する電気長を有する第5の放射導体とを備えたものである。

【0014】この発明に係るアンテナ装置は、第4の放射導体を、螺旋状線状に形成すると共に切り欠き部に配置し、第5の放射導体を、第4の放射導体と互いに概略平行になるように配置し螺旋状線状に形成したものである。

【0015】この発明に係るアンテナ装置は、第4および第5の放射導体のうちのいずれか一方の放射導体の一端を地導体に短絡し、他方の放射導体の一端と地導体との間から給電されるようにしたものである。

【0016】この発明に係るアンテナ装置は、第4および第5の放射導体の上方に地導体と概略平行に設置され、第3の波長に對して直列共振を発生する電気長を有すると共に平板状または曲面状に形成された第6の放射導体と、第6の放射導体と給電点とを電気的に接続した線導体とを備えたものである。

【0017】この発明に係るアンテナ装置は、地導体の上方に第6の放射導体と概略同一平面上かつ、その第6の放射導体を取り巻くように設置され、第4の波長に對して直列共振を発生する電気長を有すると共に屈曲を有する直線状または曲線状に形成された第7の放射導体を備え、線導体は、第6の放射導体と共に第7の放射導体と給電点とを電気的に接続したものである。

## 【0018】

【発明の実施の形態】以下、この発明の実施の一形態を説明する。

実施の形態1. 図1はこの発明の実施の形態1によるアンテナ装置を示す構成図であり、図において、21は有限の大きさを有する地導体、22は地導体21の上方にその地導体21と概略平行に設置された平板状または曲面状に形成された放射導体（第1の放射導体）、23は地導体21の上方に放射導体22と概略同一平面上か

5  
つ、その放射導体22を取り巻くように設置された屈曲を有する直線状または曲線状に形成された放射導体(第2の放射導体)、24は放射導体22および放射導体23を電気的に接続する導体線、25は放射導体22および放射導体23と地導体21との間から給電する給電点である。

【0019】次に動作について説明する。地導体21の上方に、それと概略平行に、周囲長が第1の波長の概略8分の1から1程度の大きさの平板状または曲面状の放射導体22を配置する。この放射導体22の電気長は、所望の周波数f1の波長に対して直列共振を発生するように設定される。例えば、周波数f1の波長の概略4分の1になるように設定する。また、地導体21の上方に、放射導体22と概略同一平面上かつ、その辺から第1の波長に比べて十分狭い間隙を隔てて、電気長が第2の波長の概略4分の1程度の、屈曲を有する直線状または曲線状の放射導体23を、放射導体22を取り巻くように配置する。この放射導体23の電気長についても、同様に所望の周波数f2の波長に対して直列共振を発生するように設定される。なお、ここでは直列共振を生じさせる長さとして1/4の電気長を記載しているが、これとは異なる長さを有するアンテナの給電部に整合回路を用いることで代用も可能である。例えば、通常第2の波長の2分の1以下の値を設定することが多い。この点、上述の放射導体22についても同様である。また、第2の波長の信号を効率良く送信または受信できる限りにおいて、放射導体22と全く同一平面上に放射導体23を設ける必要はなく、多少の傾き、地導体21に対する高さについて高低の違いがあってもかまわない。さらに、放射導体22上的一角と放射導体23の一端とを導体線24を介して電気的に接続する。放射導体22上的一角および放射導体23の一端と地導体21との間を給電点25とし、そこに同軸線路、マイクロストリップ線路、トリプレート線路、またはコプレーナ線路等を介して電力を供給する。但し、地導体21および放射導体22の形状は、動作原理の観点からは必ずしも方形である必要はなく、長方形、台形、または菱形等の多角形、橢円形、またはこれらを変形した形状でも良い。また、放射導体22、23は、電気長に比べて物理長を短くできるヘリカルアンテナのような立体的な形状を用いてもかまわず、メアンドラインアンテナのような平面的なアンテナを用いて、同一プリント基板上に放射導体22、23を配置することもできる。放射導体23は、屈曲を有するものに限らず、整合回路を含めて、アンテナとして動作しうる電気長を有する限り屈曲のない直線状または曲線状の構成をしていても良い。さらに、放射導体22と放射導体23の地導体21からの高さは、必ずしも同一である必要はないが、これらは地導体21のほぼ投影内に位置するもの、即ち、地導体21より突出しないようにする。この制約は、物理的に小型化を図るという観

点からくるものである。従って、小型化する必要がそれほどない場合には、無線機等の筐体から突出しない範囲内であれば、地導体21の投影内から突出してもかまわない。

【0020】図2はこの発明の実施の形態1によるアンテナ装置の周波数特性を示す特性図であり、図1に示した構造と概略同一のアンテナ装置を実際に試作し、給電点25での反射減衰量の周波数特性を測定した結果を示したものである。2つの周波数帯f1およびf2において反射減衰量が極小になっていることから、試作アンテナ装置は異なる2つの周波数帯に対して同時に動作していることが確認できる。

【0021】以上のように、この実施の形態1によれば、アンテナ装置を上述のように構成し、放射導体22の大きさと、放射導体23の電気長を、適当に調節することによって、所望の2つの周波数帯に対して同時に動作させることが可能となる。また、放射導体22と導体線24との接合点を、放射導体22の一角とすることにより、放射導体22を小型化できる。さらに、放射導体23は、放射導体22を取り巻くように配置し、かつ、放射導体23と放射導体22を共に地導体21のほぼ投影内に配置することによって、アンテナ全体の体積の小形化を図ることが可能となり、無線機等の筐体から突出することのない構成を実現することができる。

【0022】実施の形態2、図3はこの発明の実施の形態2によるアンテナ装置を示す構成図であり、図において、31は一角に切り欠き部32が設けられた有限の大きさを有する地導体、33は切り欠き部32に放射導体22に対して概略平行に配置され、螺旋状線状に形成されたヘリカルアンテナ(第3の放射導体)である。なお、導体線24は放射導体22およびヘリカルアンテナ33を電気的に接続し、給電点25は放射導体22およびヘリカルアンテナ33と地導体31との間から給電するようにしたものである。その他の構成は、図1と同等である。

【0023】次に動作について説明する。地導体31の一角を切り欠き、切り欠き部32を設ける。地導体31の切り欠き部32に、放射導体22と概略平行になるように、第2の波長の概略4分の1程度の電気長を有する導体線を螺旋状に巻いたヘリカルアンテナ33を配置する。ヘリカルアンテナ33の一端と放射導体22の一端とを導体線24で電気的に接続し、その接続点と地導体31との間の給電点25に同軸線路やマイクロストリップ線路等を介して電力を供給する。このアンテナ装置の基本的な動作原理は、上記実施の形態1に示したものと概ね同一である。なお、図3では、地導体31の一角に切り欠き部32を設けたが、地導体31の他の位置に切り欠き部を設けてもかまわない。また、放射導体22は、切り欠き部32の真上にある必要はなく、第1の波長を送信または受信できる限りにおいて多少のずれがあ

7  
ってもかまわない。この実施の形態2では、ヘリカルアンテナ33は切り欠き部32に配置されるため、ヘリカルアンテナ33のように立体的な形状をしているアンテナでも、アンテナ装置全体のスペースを削減することができ、小型化を図ることができる。ここでヘリカルアンテナ33は、地導体31と同一の平面と放射導体22によって形成される空間内の任意の位置に収納される。

【0024】以上のように、この実施の形態2によれば、上記実施の形態1に加えて、地導体31の切り欠き部32に、放射導体23に代えたヘリカルアンテナ33を用いることにより、上記実施の形態1のものよりもより一層小型化を図ることが可能となる。

【0025】実施の形態3。図4はこの発明の実施の形態3によるアンテナ装置を示す構成図であり、図において、36は切り欠き部32に放射導体22に対して概略平行に配置され、線状導体がジグザグに折り曲げられたメアンドラインアンテナ（第3の放射導体）である。その他の構成は、図3と同等である。

【0026】以上のように、この実施の形態3によれば、上記実施の形態2に加えて、メアンドラインアンテナ36を用いることにより、ヘリカルアンテナ33を用いた場合に比べて、放射導体22との物理的距離を増加させることができる。その結果として、放射導体22およびメアンドラインアンテナ36の動作周波数帯域はより広帯域になる。また、メアンドラインアンテナ36は地導体31と同一平面にあるので、地導体31と共にプリント基板のエッチング加工によって容易に製作できる。

【0027】実施の形態4。図5はこの発明の実施の形態4によるアンテナ装置を示す構成図であり、図において、42は実施の形態1から3に示した平板状または曲面状に形成された放射導体22に、1つまたは複数の切り込みを設けた放射導体（第1の放射導体）である。その他の構成は、図3と同等である。

【0028】以上のように、この実施の形態4によれば、上記実施の形態1から3に加えて、1つまたは複数の切り込みを設けた放射導体42を設けたので、第1の波長に対する放射導体の大きさを小さくすることができ、より一層小型化が可能となる。

【0029】実施の形態5。図6はこの発明の実施の形態5によるアンテナ装置を示す構成図であり、図において、33aは地導体31と概略同一平面上になるように切り欠き部32に配置され、第1の波長の概略4分の1程度の電気長を有する導体線を螺旋状に巻いたヘリカルアンテナ（第4の放射導体）、33bは地導体31と互いに概略平行になるように配置され、第2の波長の概略4分の1程度の電気長を有する導体線を螺旋状に巻いたヘリカルアンテナ（第5の放射導体）である。ヘリカルアンテナ33a、33bは共に、地導体の同一の給電点25

から給電されるものとする。

【0030】以上のように、この実施の形態5によれば、上記実施の形態1から4のものに比べて大幅に薄型化を図ることができる。なお、ヘリカルアンテナ33a、33bの位置関係は、図7に示すように、図6における位置関係と逆であっても構わない。

【0031】実施の形態6。図8はこの発明の実施の形態6によるアンテナ装置を示す構成図であり、図において、実施の形態5における2つのヘリカルアンテナ33a、33bのうちの一方（33b）を、地導体31に短絡する。こうすると、ヘリカルアンテナ33bは非励振素子となるが、ヘリカルアンテナ33aとの電磁結合によって励振され、実施の形態5と同様な効果がある。

【0032】以上のように、この実施の形態6によれば、短絡点の位置に左右されず、給電点25の設計の自由度を高めることができる。

【0033】実施の形態7。図9はこの発明の実施の形態7によるアンテナ装置を示す構成図であり、図において、52はヘリカルアンテナ33a、33bの上方に地導体31と概略平行に設置され、電気長が第3の波長の概略4分の1程度になるように平板状または曲面状に形成され、かつ1つまたは複数の切り込みが設けられた放射導体（第6の放射導体）である。放射導体52は導体線24を通じて給電点25から給電されるものである。その他の構成は、図6と同等である。

【0034】以上のように、この実施の形態7によれば、実施の形態5に加えて3つの異なる周波数帯に対して同時に動作することが可能となる。

【0035】実施の形態8。図10はこの発明の実施の形態8によるアンテナ装置を示す構成図であり、図において、53は地導体31の上方に放射導体52と概略同一平面上かつ、その放射導体52を取り巻くように設置され、電気長が第4の波長の概略4分の1程度になるよう屈曲を有する直線状または曲線状に形成された放射導体（第7の放射導体）である。放射導体53は、放射導体52と共に導体線24を通じて給電点25から給電されるものである。その他の構成は、図9と同等である。

【0036】以上のように、この実施の形態8によれば、実施の形態7に加えて4つの異なる周波数帯に対して同時に動作することが可能となる。

【0037】なお、上記実施の形態1から8では、第1から7の放射導体として特定形状のアンテナを例示したが、この発明はこれらの例に限らず、複数の周波数を適切に送信または受信でき、また、小型化が可能な限りにおいて、様々なタイプのアンテナを使用することができる。例えば、第1から7の放射導体として、平板上アンテナ、ヘリカルアンテナ、メアンドラインアンテナ、平板上アンテナであって1つあるいは複数の切り込みを設けたアンテナ、直線状または曲線状のアンテナを使用す

9  
ことができる。また、第1から7の放射導体の電気長として概略4分の1を例示したが、この発明はこれらの例に限らず、電気長が所望の波長に対して直列共振を発生するように設定されれば良く、また、この共振の発生は各放射導体に電気的に接続される共振調整回路によって調整しても良い。従って、共振調整回路によって共振点を調整しても、所望の周波数において各放射導体の反射減衰量が極小点近傍となる限り、この発明の効果を損なうものではない。

## 【0038】

【発明の効果】以上のように、この発明によれば、地導体の上方に概略平行に設置され、第1の波長に対して直列共振を発生する電気長を有する第1の放射導体と、地導体の上方に第1の放射導体と概略同一平面上かつ、その第1の放射導体の辺から第1の波長に比して十分小さい間隙を隔てて設置され、第2の波長に対して直列共振を発生する電気長を有する第2の放射導体と、第1および第2の放射導体を電気的に接続する導体線とを備えるように構成したので、所望の第1の波長および第2の波長に応じて第1の放射導体および第2の放射導体の電気長を調節することによって、2つの周波数帯に対して同時に動作させることができる。また、第1および第2の放射導体を地導体のほぼ投影内に配置することによって、アンテナ装置全体の体積の小形化を図ることができ、無線機等の筐体から突出することのない構成または突出を抑制する構成を実現することができる効果が得られる。

【0039】この発明によれば、第1の放射導体の電気長は、第1の波長の概略4分の1程度であると共に平板状または曲面状に形成され、第2の放射導体は、第1の放射導体を取り巻くように配置され、電気長が第2の波長の概略4分の1程度になるように屈曲を有する直線状または曲線状の導体によって構成され、第1の放射導体または第2の放射導体と地導体との間から給電されるように構成したので、第1の放射導体を取り巻くように第2の放射導体を配置することによって、アンテナ装置全体の体積の小形化をさらに図ることができ、無線機等の筐体から突出することのない構成または突出を抑制する構成を実現することができる効果が得られる。

【0040】この発明によれば、切り欠き部が設けられた地導体の上方に概略平行に設置され、第1の波長に対して直列共振を発生する電気長を有する第1の放射導体と、切り欠き部に第1の放射導体に対して概略平行に配置され、第2の波長に対して直列共振を発生する電気長を有する第3の放射導体と、第1および第3の放射導体とを電気的に接続する導体線とを備えるように構成したので、所望の第1の波長および第2の波長に応じて第1の放射導体および第3の放射導体の電気長を調節することによって、2つの周波数帯に対して同時に動作させることができる。また、地導体の切り欠き部に第3の放射

導体を配置し、かつ、第1および第3の放射導体を地導体のほぼ投影内に配置することによって、アンテナ装置全体の体積の小形化をさらに図ることができ、無線機等の筐体から突出することのない構成または突出を抑制する構成を実現することができる効果が得られる。

【0041】この発明によれば、第1の放射導体は、平板状または曲面状に形成されると共に切り欠き部上に配置され、第3の放射導体は、切り欠き部に螺旋状線状に形成されるように構成したので、地導体の切り欠き部に螺旋状線状に形成された第3の放射導体を配置することによって、アンテナ装置全体の体積の小形化をさらに図ることができ、無線機等の筐体から突出することのない構成または突出を抑制する構成を実現することができる効果が得られる。

【0042】この発明によれば、第1の放射導体は、平板状または曲面状に形成されると共に切り欠き部上に配置され、第3の放射導体は、切り欠き部にメアンダ状に形成されるように構成したので、地導体の切り欠き部にメアンダ状に形成された第3の放射導体を配置することによって、アンテナ装置全体の体積の小形化をさらに図ることができ、無線機等の筐体から突出することのない構成または突出を抑制する構成を実現することができる効果が得られる。

【0043】この発明によれば、切り欠き部は、地導体の一角に設けられるように構成したので、アンテナ装置の製作を容易にすることができる効果が得られる。

【0044】この発明によれば、平板状または曲面状に形成された第1の放射導体に、1つまたは複数の切り込みを設けるように構成したので、小さな第1の放射導体で第1の波長に応じた電気長を形成することができ、アンテナ装置全体の体積の小形化をさらに図ることができるものである。

【0045】この発明によれば、切り欠き部が設けられた地導体と概略同一平面上になるようにその切り欠き部に配置され、第1の波長に対して直列共振を発生する電気長を有する第4の放射導体と、地導体と概略同一平面上になるように切り欠き部に配置され、第2の波長に対して直列共振を発生する電気長を有する第5の放射導体とを備えるように構成したので、所望の第1の波長および第2の波長に応じて第4の放射導体および第5の放射導体の電気長を調節することによって、2つの周波数帯に対して同時に動作させることができる。また、地導体の概略同一平面上の切り欠き部に第4および第5の放射導体を配置することによって、アンテナ装置を薄型化することができ、アンテナ装置全体の体積の小形化をさらに図ることができ、無線機等の筐体から突出することのない構成または突出を抑制する構成を実現することができる効果が得られる。

【0046】この発明によれば、第4の放射導体は、螺旋状線状に形成されると共に切り欠き部に配置され、第

第5の放射導体は、第4の放射導体と互いに概略平行になるように配置され螺旋状線状に形成されるように構成したので、地導体の切り欠き部に螺旋状線状に形成された第4および第5の放射導体を配置することによって、アンテナ装置全体の体積の小形化をさらに図ることができ、無線機等の筐体から突出することのない構成または突出を抑制する構成を実現することができる効果が得られる。

【0047】この発明によれば、第4および第5の放射導体のうちのいずれか一方の放射導体の一端を地導体に短絡し、他方の放射導体の一端と地導体との間から給電されるように構成したので、短絡点の位置に左右されず、給電点の設計の自由度を高めることができる効果が得られる。

【0048】この発明によれば、第4および第5の放射導体の上方に地導体と概略平行に設置され、第3の波長に対して直列共振を発生する電気長を有すると共に平板状または曲面状に形成された第6の放射導体と、第6の放射導体と給電点とを電気的に接続した線導体とを備えるように構成したので、所望の第1から第3の波長に応じて、第4から第6の放射導体の電気長を調節することによって、3つの周波数帯に対して同時に動作させることができ。また、地導体の概略同一平面上の切り欠き部に第4および第5の放射導体を配置し、かつ、第6の放射導体を地導体および切り欠き部のほぼ投影内に配置することによって、アンテナ装置全体の体積の小形化をさらに図ることができ、無線機等の筐体から突出するとのない構成または突出を抑制する構成を実現することができる効果が得られる。

【0049】この発明によれば、地導体の上方に第6の放射導体と概略同一平面上かつ、その第6の放射導体を取り巻くように設置され、第4の波長に対して直列共振を発生する電気長を有すると共に屈曲を有する直線状または曲線状に形成された第7の放射導体を備え、線導体は、第6の放射導体と共に第7の放射導体と給電点とを電気的に接続するように構成したので、所望の第1から第4の波長に応じて、第4から第7の放射導体の電気長を調節することによって、4つの周波数帯に対して同時に動作させることができる。また、地導体の概略同一平

[图1]



画面上の切り欠き部に第4および第5の放射導体を配置し、かつ、第6および第7の放射導体を地導体および切り欠き部のほぼ投影内に配置することによって、アンテナ装置全体の体積の小形化をさらに図ることができ、無線機等の筐体から突出することのない構成または突出を抑制する構成を実現することができる効果が得られる。

### 【図面の簡単な説明】

【図1】 この発明の実施の形態1によるアンテナ装置を示す構成図である。

【図2】 この発明の実施の形態1によるアンテナ装置の周波数特性を示す特性図である。

【図3】 この発明の実施の形態2によるアンテナ装置を示す構成図である。

【図4】 この発明の実施の形態3によるアンテナ装置を示す構成図である。

【図5】この発明の実施の形態4によるアンテナ装置を示す構成図である。

【図6】 この発明の実施の形態5によるアンテナ装置を示す構成図である。

【図7】 この発明の実施の形態5によるアンテナ装置を示す構成図である。

【図8】 この発明の実施の形態6によるアンテナ装置を示す構成図である。

【図9】 この発明の実施の形態7によるアンテナ装置を示す構成図である。

【図10】この発明の実施の形態8によるノンノノ装置を示す構成図である。

【図11】 従来のアンテナ装置を示す構成図である。  
【図12】 従来のアンテナ装置を示す構成図である。

0 【符号の説明】  
21, 31 地導体、22, 42 放射導体（第1の放  
射導体） 24

## 【符号の説明】

21, 31 地導体、22, 42 放射導体(第1の放射導体)、23 放射導体(第2の放射導体)、24 導体線、25 給電点、32 切り欠き部、33 ヘリカルアンテナ(第3の放射導体)、33a ヘリカルアンテナ(第4の放射導体)、33b ヘリカルアンテナ(第5の放射導体)、36 メアンドラインアンテナ(第3の放射導体)、52 放射導体(第6の放射導体)、53 放射導体(第7の放射導体)。

〔圖2〕



【図3】



【図4】



【図5】



【図6】



【図7】



【図8】



【図9】



【図10】



【図11】



【図12】



## フロントページの続き

(72)発明者 大嶺 裕幸  
東京都千代田区丸の内二丁目2番3号 三  
菱電機株式会社内

(72)発明者 今西 康人  
東京都千代田区丸の内二丁目2番3号 三  
菱電機株式会社内

(72)発明者 田中 徹哉  
東京都千代田区丸の内二丁目2番3号 三  
菱電機株式会社内

(72)発明者 武富 浩一  
東京都千代田区丸の内二丁目2番3号 三  
菱電機株式会社内

(72)発明者 東海林 英明  
東京都千代田区丸の内二丁目2番3号 三  
菱電機株式会社内

F ターム(参考) 5J021 AA02 AA09 AB02 AB06 JA03  
JA07  
5J045 AA03 AB05 DA09 GA01 NA01  
5J047 AB06 AB12 AB13 FD01