Quantum Notation and Quantum Computing

Seyed Ali Mousavi

March 3, 2025

Courses Taken

- CAS 701, Logic & Discrete Mathematics
- COMPSCI 6TE3, Continuous optimization
- CAS 721, Combinatorics & Computing
- ► CAS 741, Development of Scientific Computation Software

Seminars

Poster

The Hartley Transform

item Let N be a positive integer, and let \mathbb{Z}_N be the additive cyclic group of integers modulo N. The Hartley transform of a function $f: \mathbb{Z}_N \to \mathbb{R}$ is the function $H_N(f): \mathbb{Z}_N \to \mathbb{R}$ defined by

$$H_N(f)(a) = \frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} \operatorname{cas}\left(\frac{2\pi ay}{N}\right) f(y),$$

where cas(x) = cos(x) + sin(x)

For a single basis element of the cyclic group \mathbb{Z}_N , the quantum Hartly transform simplifies to

$$QHT_N: |a\rangle \mapsto \frac{1}{\sqrt{N}} \sum_{v=0}^{N-1} \cos\left(\frac{2\pi ay}{N}\right) |y\rangle. \tag{1}$$

First, let us briefly explain how the algorithm for QFT_N works:

$$\begin{aligned}
QFT_{N} |a\rangle &= \frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} \omega_{N}^{ay} |y\rangle \\
&= \frac{1}{\sqrt{N}} \sum_{y=0}^{N/2-1} \omega_{N}^{ay} |y\rangle + (-1)^{a} \sum_{y=0}^{N/2-1} \omega_{N}^{ay} |y + N/2\rangle \\
&= \frac{1}{\sqrt{N/2}} \sum_{y=0}^{N/2-1} \omega_{N}^{ay} \frac{1}{\sqrt{2}} (|0\rangle + (-1)^{a} |1\rangle) |y\rangle ,
\end{aligned} (2)$$

Let $|a\rangle=|t\rangle\,|b\rangle$, where b is the least significant bit of a, so that a=2t+b. Applying QFT_{N/2} to the first register, we obtain the state

$$\frac{1}{\sqrt{N/2}}\sum_{y=0}^{N/2-1}\omega_N^{2ty}\ket{y}\ket{b}.$$

Next, we apply the phase unitary $P(y,b):|y\rangle\,|b\rangle\mapsto\omega_N^{by}\,|y\rangle\,|b\rangle$, and finally, we apply a Hadamard transform to the last qubit. The result is the state in (2).

$$\frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} \cos\left(\frac{2\pi ay}{N}\right) |y\rangle \tag{3}$$

$$= \frac{1}{\sqrt{N}} \sum_{y=0}^{N/2-1} \cos\left(\frac{2\pi ay}{N}\right) |y\rangle + \frac{1}{\sqrt{N}} \sum_{y=N/2}^{N-1} \cos\left(\frac{2\pi ay}{N}\right) |y\rangle. \tag{4}$$

The second sum in the right-hand side can be written as

$$\sum_{y=N/2}^{N-1} \cos\left(\frac{2\pi ay}{N}\right) |y\rangle = \sum_{y=0}^{N/2-1} \cos\left(\frac{2\pi ay}{N} + \pi a\right) |y + N/2\rangle$$
$$= (-1)^a \sum_{y=0}^{N/2-1} \cos\left(\frac{2\pi ay}{N}\right) |y + N/2\rangle,$$

$$= \frac{1}{\sqrt{N/2}} \sum_{y=0}^{N/2-1} \cos\left(\frac{2\pi ay}{N}\right) \frac{1}{\sqrt{2}} (|0\rangle + (-1)^a |1\rangle) |y\rangle, \tag{5}$$

We now show how to compute QHT_N recursively.

$$\begin{aligned} |0\rangle |t\rangle |b\rangle &\mapsto \frac{1}{\sqrt{N/2}} \sum_{y=0}^{N/2-1} \cos\left(\frac{2\pi ty}{N/2}\right) |0\rangle |y\rangle |b\rangle \\ &= \frac{1}{\sqrt{N/2}} \sum_{y=0}^{N/2-1} \cos\left(\frac{4\pi ty}{N}\right) |0\rangle |y\rangle |b\rangle \\ &\mapsto \frac{1}{\sqrt{N}} \sum_{y=0}^{N/2-1} \cos\left(\frac{4\pi ty}{N}\right) (|0\rangle + |1\rangle) |y\rangle |b\rangle \,. \end{aligned}$$

$$= \frac{1}{\sqrt{N/2}} \sum_{y=0}^{N/2-1} \cos\left(\frac{2\pi ay}{N}\right) \frac{1}{\sqrt{2}} (|0\rangle + (-1)^a |1\rangle) |y\rangle, \tag{6}$$

We now show how to compute QHT_N recursively.

$$\begin{aligned} |0\rangle |t\rangle |b\rangle &\mapsto \frac{1}{\sqrt{N/2}} \sum_{y=0}^{N/2-1} \operatorname{cas} \left(\frac{2\pi t y}{N/2}\right) |0\rangle |y\rangle |b\rangle \\ &= \frac{1}{\sqrt{N/2}} \sum_{y=0}^{N/2-1} \operatorname{cas} \left(\frac{4\pi t y}{N}\right) |0\rangle |y\rangle |b\rangle \\ &\mapsto \frac{1}{\sqrt{N}} \sum_{y=0}^{N/2-1} \operatorname{cas} \left(\frac{4\pi t y}{N}\right) (|0\rangle + |1\rangle) |y\rangle |b\rangle \,. \end{aligned}$$

Application: Quantum Money

A public-key quantum money scheme consists of two QPT algorithms:

▶ Gen(1^λ): This algorithm takes a security parameter λ as input and outputs a pair (s, ρ_s) , where s is a binary string called the serial number, and ρ_s is a quantum state called the banknote. The pair (s, ρ_s) , or simply ρ_s , is sometimes denoted by \$.

Ver (s, ρ_s) : This algorithm takes a serial number and an alleged banknote as input and outputs either 1 (accept) or 0 (reject).

Quantum Money From Group Actions

▶ Gen(1 $^{\lambda}$). Begin with the state $|0\rangle |x_{\lambda}\rangle$, and apply the quantum Fourier transform over G_{λ} to the first register producing the superposition

$$\frac{1}{\sqrt{|X_{\lambda}|}}\sum_{g\in G_{\lambda}}|g\rangle|x_{\lambda}\rangle.$$

Next, apply the unitary transformation $|h\rangle\,|y\rangle\mapsto|h\rangle\,|h*y\rangle$ to this state, followed by the quantum Fourier transform on the first register. This results in

$$\frac{1}{|G_{\lambda}|} \sum_{h \in G_{\lambda}} \sum_{g \in G_{\lambda}} \chi(g, h) |h\rangle |g * x_{\lambda}\rangle = \frac{1}{\sqrt{|G_{\lambda}|}} \sum_{h \in G_{\lambda}} |h\rangle |G^{(h)} * x_{\lambda}\rangle$$

Quantum Money From Group Actions

▶ Ver $(h, |\psi\rangle)$. First, check whether $|\psi\rangle$ has support in X_{λ} . If not, return 0. Then, apply cmpIndex to the state $|\psi\rangle|0\rangle$, and measure the second register to obtain some $h' \in G_{\lambda}$. If h' = h, return 1; otherwise return 0.

Quantum Money With The Hartley Transform

▶ Gen. Begin with the state $|0\rangle |x\rangle$, and apply the quantum Hartley transform over \mathbb{Z}_N to the first register producing the superposition

$$\frac{1}{\sqrt{N}}\sum_{g\in\mathbb{Z}_N}|g\rangle\,|x\rangle\,.$$

Next, apply the unitary $|h\rangle\,|y\rangle\mapsto|h\rangle\,|h*y\rangle$ to this state, followed by a QHT_N on the first register. This results in

$$\frac{1}{N} \sum_{h \in \mathbb{Z}_N} \sum_{g \in \mathbb{Z}_N} \cos\left(\frac{2\pi gh}{N}\right) |h\rangle |g * x\rangle = \frac{1}{\sqrt{N}} \sum_{h \in \mathbb{Z}_N} |h\rangle |\mathbb{Z}_N^{(h)} * x\rangle_H$$

Measure the first register to obtain a random $h \in \mathbb{Z}_N$, collapsing the state to $|\mathbb{Z}_N^{(h)} * x\rangle_H$. Return the pair $(h, |\mathbb{Z}_N^{(h)} * x\rangle_H)$.

Quantum Money With The Hartley Transform

In the original scheme, using the quantum Fourier transform, we could directly obtain h from the money state $|\mathbb{Z}_N^{(h)}*x\rangle$ and compare it to the given h. However, this approach does not work when we use the Hartley transform. To address this, we design an algorithm for computing h that utilizes quantum walks.

Group Action Quantum Walks

Let G be an abelian group and let $Q=\{q_1,q_2,\ldots,q_k\}\subset G$ be a symmetric set, i.e., $q\in Q$ if and only if $-q\in Q$. The Cayley graph associated to G and Q is a graph $\Gamma=(V,E)$, where the vertex set is V=G, and the edge set E consists of pairs $(a,b)\in G\times G$ such that there exists $q\in Q$ with b=q+a. The adjacency matrix of Γ can be expressed as

$$A = \sum_{a \in G} \lambda_a \ket{\hat{a}} \bra{\hat{a}},$$

where $|\hat{a}\rangle$ is the quantum Fourier transform of $|a\rangle$. The eigenvalues λ are given by

$$\lambda_{\mathsf{a}} = \sum_{\mathsf{q} \in \mathsf{Q}} \chi(\mathsf{a}, \mathsf{q}).$$

Note that the eigenvectors $|\hat{a}\rangle$ of A depend only on G and not on the set Q.

Group Action Quantum Walks

Cayley graphs can also be constructed using group actions. Given a regular group action (G,X,*) with a fixed element $x\in X$ and a set $Q=\{q_1,q_2,\ldots,q_k\}\subset G$, let $\Gamma=(X,E)$ be a graphs with vertex set X and edge set consisting of pairs $(x,y)\in X\times X$ such that y=q*x for some $q\in Q$. The adjacency matrix of Γ is

$$A = \sum_{h \in G} \lambda_h |G^{(h)} * x\rangle \langle G^{(h)} * x|,$$

where:

- $\lambda_h = \sum_{q \in Q} \chi(h, q)$
- ▶ the eigenvectors $|G^{(h)} * x\rangle$ depend only on G

Computing the serial Number

Given a state $|\mathbb{Z}_N^{(h)}*x\rangle_H$, we show how to compute h using continuous-time quantum walks. For any $q\in\mathbb{Z}_N$, define a Cayley graph $\Gamma=(\mathbb{Z}_N,E)$ with the generating set $Q=\{-q,q\}$. Let A denote the adjacency matrix of Γ . The eigenvectors and corresponding eigenvalues of A are $|\mathbb{Z}_N^{(h)}*x\rangle$ and $\lambda_h=2\cos(2\pi uh/N)$, respectively, for $h\in\mathbb{Z}_N$. the unitary $W=e^{iAt}$ can be efficiently simulated to exponential accuracy. We need the following lemma.

Computing the serial Number

Lemma: The money state $|\mathbb{Z}_N^{(h)} * x\rangle_H$ is an eigenstate of W with eigenvalue $e^{i\lambda_h t}$.

Proof.

$$\begin{split} e^{iAt} \left| \mathbb{Z}_{N}^{(h)} * x \right\rangle_{H} &= \sum_{g \in \mathbb{Z}_{N}} e^{i\lambda_{g}t} \left| \mathbb{Z}_{N}^{(g)} * x \right\rangle \left\langle \mathbb{Z}_{N}^{(g)} * x \middle| \mathbb{Z}_{N}^{(h)} * x \right\rangle_{H} \\ &= \sum_{g \in \mathbb{Z}_{N}} e^{i\lambda_{g}t} \left| \mathbb{Z}_{N}^{(g)} * x \right\rangle \left\langle \mathbb{Z}_{N}^{(g)} * x \middle| \left(\frac{1-i}{2} \left| \mathbb{Z}_{N}^{(h)} * x \right\rangle + \frac{1+i}{2} \left| \mathbb{Z}_{N}^{(h)} * x \right\rangle \right. \\ &= e^{i\lambda_{h}t} \frac{1-i}{2} \left| \mathbb{Z}_{N}^{(h)} * x \right\rangle_{H}, \end{split}$$

where the last equality follows from the fact that $\lambda_h = \lambda_{-h}$.

