Case for Design-Specific Machine Learning in Timing Closure of FPGA Designs

Que Yanghua, Chinnakkannu Adaikkal Raj, Harnhua Ng, Kirvy Teo, Nachiket Kapre nachiket@ieee.org + nachiket@plunify.com

Problem

- Problem: Timing Closure of FPGA designs hard.
 FPGA CAD tools difficult to control.
- Opportunity: Timing influenced by FPGA CAD parameters.
- Solution: Machine Learning + Cloud Computing.
- Design-Specific customisation of FPGA CAD parameter selection >> Generic selection
 - Not sufficient to simply use machine learning
 - Tailor the learning procedure to each design,

Eric Chung (Microsoft) — "Agile Co-design for a Reconfigurable Datacenter" FPGA 2016 Designer's Day (yesterday!)

"Speed up Timing Closure with parallel seeds"

Eric Chung (Microsoft) — "Agile Co-design for a Reconfigurable Datacenter" FPGA 2016 Designer's Day (yesterday!)

We do parallel seeds + machine learning!

Eric Chung (Microsoft) — "Agile Co-design for a Reconfigurable Datacenter" FPGA 2016 Designer's Day (yesterday!)

High-Level View

- Idea:
 - Run multiple CAD tool instances in parallel
 - Build models of timing, devise strategies
- Machine Learning
 - Each CAD run == data
 point
 - Gather data
- Run machine-learning routines to revise models

Flow

- Organized as a series of "rounds"
 - Each "round" consists of multiple CAD "runs"
- Model used to generate candidate sets of CAD parameters
 - Refined/corrected after each "round"
 - Final round is a trivial seed exploration

Learning Approach

Learning Approach

best classification 1.00 True Positive Rate Design-Specific Generic 0.00 0.00 1.00 0.25 0.75 0.50 False Positive Rate

Conclusions

- Timing closure for FPGA designs is a challenge!
- FPGA CAD parameter selection offers a mechanism to deliver convergence

 made possible by cheap cloud computing
- Design specific customisation AUC 0.7-0.8
 One-size fits all AUC 0.5-0.6 (random coin toss)
- Microsoft We can give you a great discount!

Ranked Features (aes)

Rank	Design-Specific	Generic Model
1	Optimize_Ioc_Register_ Placement_For_Timing	Remove_Redundant_ Logic_Cells
2	Physical_Synthesis_ Register_Retiming	Remove_Duplicate_ Registers
3	State_Machine_Proces.	Auto_Ram_Recog.
4	Physical_Synthesis_ Map_Logic_To_ Memory_For_Area	Not_Gate_Push_Back
5	Auto_Rom_Recognition	Physical_Synthesis_ Register_Duplication
6	Synth_Timing_ Driven_Synthesis	Allow_Synch_Ctrl_Usg.
7	Extract_Vhdl_ State_Machines	Auto_Resource_Shar.
8	Dsp_Block_Balancing	$Physical_Synthesis_Eff.$
9	Fitter_Aggressive_ Routability_Optimiz.	Allow_Any_Ram_Size_ For_Recognition
10	Cycloneii_Optimiz Technique	Optimize_Timing