(AUTO)INDUTTANZA

Esempio qualitativo: spira

campo magnetico al centro della spira

Per calcolare il flusso devo sapere quanto vale il campo in ogni punto della spira.

$$\Phi_{\vec{B}} = \bigcup_{i=1}^{n} \lambda_i$$

NDUTTANZA

- · dipende dalla geometria del circuito e del materiale;
- si misura in $\frac{\overline{1 \cdot m^2}}{\Delta} = H$ (henry)

Se la corrente varia nel tempo $\frac{di}{dt} \neq 0$

allora ci sarà anche una variazione nel tempo del flusso del campo magnetico

$$\frac{d}{dt} \phi_{\vec{B}} = \frac{d}{dt} (Li)$$

$$= L \frac{di}{dt} = -\varepsilon_{i}$$

Se L non cambia, allora

$$= L \frac{di}{dt} = -\varepsilon_i$$

Che ci riporta alla legge di Faraday-Lenz: $\mathcal{E}_{i} = -\frac{d}{d+}\phi_{\vec{R}}$

C'è un caso in cui è facile calcolare quanto vale il flusso: solenoide rettilineo

Esempio quantitativo: solenoide rettilineo di lunghezza infinita

Ricordiamo che il campo magnetico all'esterno del solenoide è nullo e che all'interno è costante, è diretto lungo l'asse del solenoide e vale

Calcoliamo l'induttanza.

flusso del campo magnetico attraverso un avvolgimento

$$\Phi_{\vec{B}, 1 \text{ Spira}} = 4\pi \, \text{km} \, \text{n.i.} \, S$$

Se ora prendo non una spira ma un tratto lungo \mathcal{L} , avrò

$$\oint_{\vec{B}} = N \oint_{\vec{B}, 1 \text{ spine}} = 4\pi K_{n} S f_{n} N i = 4\pi K_{n} S f_{n}^{2} i$$

$$\implies L = 4\pi k_{\text{M}} S \frac{N^2}{\ell} = \mu_0 S \frac{N^2}{\ell}$$

INDUTTORE

Un induttore viene inserito in un circuito elettrico per far sì che questo si opponga a variazioni di correnti indotte che percorrono il circuito.

Supponiamo di avere un circuito formato da un resistore e un induttore in serie, percorsi da una corrente λ , collegati ad una fem:

Supponiamo che ci sia un aumento di corrente: per contrastare questo aumento, L si comporta come una fem con potenziale nel punto B maggiore di quello in C a parità di resistenza.

$$\frac{di}{dt} > 0$$
 $\frac{di}{dt} > 0$
 $\frac{di}{dt} > 0$

Se invece abbiamo una variazione di R con diminuzione di corrente, L si comporta come una fem in cui il potenziale in B è minore di quello in C

In entrambi i casi, scrivendo la legge di Kirchhoff, risulta:

$$V_0 - iR - L \frac{di}{dt} = 0$$

Circuiti RL in corrente continua (chiudo T)

Nell'istante in cui chiudo l'interruttore:

$$\Rightarrow i(t) = \frac{\varepsilon_0}{R} (1 - e^{-\frac{t}{R}})$$
where $t = \frac{L}{R}$

Quando chiudo l'interruttore (¿=0):

$$i(t=0) = \frac{\epsilon_0}{R} (1 - e^\circ) = 0$$

Dopo che passa del tempo
$$(t \rightarrow +\infty)$$
:
$$\lim_{t \rightarrow +\infty} i(t) = \lim_{t \rightarrow +\infty} \frac{\mathcal{E}_{0}}{R} (1 - e^{-\frac{t}{R}}) = \frac{\mathcal{E}_{0}}{R}$$

L si composta come un corto circuito

Dai grafici osserviamo che:

• Subito dopo la chiusura di T

$$\dot{\mathcal{L}}(t=0^+)=0$$
 \rightarrow stessa corrente di $t=0^-$
 $\dot{\mathcal{L}}(t=0^+)=\mathcal{E}_0$ \rightarrow diff di potenziale $\neq 0$

alla stazionarietà

$$\lim_{t\to +\infty} i(t) = \frac{\varepsilon_0}{R}$$

$$\lim_{t\to +\infty} V_L(t) = 0 \quad \longrightarrow \quad L \text{ si comporta come un corto circuito}$$