

统计机器学习实验

实验三: 使用K-近邻模型实现 空气质量的预测

主讲教师: 严资林

实验教师: 匡慈维

目录

本学期实验总体安排

本学期实验课程共 10 个学时, 5 个实验项目, 总成绩为 20 分。

实验项目	_	=	Ξ	匹	五			
学时	2	2	2	2	2			
实验内容	感知机模型	决策树模型	K近邻模型	支持向量机模型	聚类模型			
分数	3	4	4	4	5			
上课时间 (地点)	第11周 周四 (T2102)	第12周 周六 (T2102)	第14周 周四 (T2102)	第16周 周二 (T2102)	第17周 周四 (T2102)			
检查方式	提交实验截图文档	提交实验报告、工程文件						

5-6节 3&4班; 7-8节 1&2班

线上腾讯会议: 848-8762-6539

实验任务

空气污染是一个复杂现象,在特定时间和地点,空气污染浓度会受许多因素的影响。目前,参与空气质量等级评定的主要污染物包含细颗粒PM2.5、可吸入颗粒物PM10、SO2、CO、NO2、O3等等,现需要构建一个**K近邻**模型,预测其质量等级。

◆ **任务一**:使用Python自编程构建K近邻模型,实现空气质量的预测与评价。

◆ 附加题:使用sklearn中K近邻模型,对空气质量数据进行预测分类与评价。(选做)

注: 附加内容有10%的加分, 但总分不超过该次实验满分。

数据说明

◆ 数据集

- ➤ 包含**训练集train** (共1725条数据), **测试集test** (430条数据)
- ☑ 北京市空气质量数据test
- 北京市空气质量数据train

- ▶ 每一条数据由 7 个特征值及1个目标值组成。
- ▶ 7 个特征值分别为:

日期、PM2.5、PM10、SO2、CO、NO2、O3

目标值为6种不同类别的空气质量等级,分别为: 优、良、

轻度污染、中度污染、

严重污染、重度污染

4	Α	В	С	D	Е	F	G	Н
1	日期 ▼	PM2.5 ▼	PM10 ▼	SO2 ▼	CO 🔻	NO2 ▼	O3 🔽	质量等级 🔽
2	2014/1/1	45	111	28	1.5	62	52	良
3	2014/1/2	111	168	69	3.4	93	14	轻度污染
4	2014/1/3	47	98	29	1.3	52	56	良
5	2014/1/4	114	147	40	2.8	75	14	轻度污染
6	2014/1/5	91	117	36	2.3	67	44	轻度污染
7	2014/1/6	138	158	46	2.4	68	12	中度污染
8	2014/1/7	111	125	34	2	60	43	轻度污染
9	2014/1/8	15	25	13	0.5	21	53	优
10	2014/1/9	27	46	19	8.0	35	53	优
11	2014/1/10	63	94	53	1.9	71	19	良
12	2014/1/11	106	128	76	2.8	90	11	轻度污染
13	2014/1/12	27	47	27	0.7	39	59	优
14	2014/1/13	82	107	67	2.3	78	20	轻度污染
15	2014/1/14	82	108	68	2.4	74	24	轻度污染

🖺 数据集划分方法

- ◆ 基本准则:保持训练集、验证集、测试集之间的互斥性。
- ◆ 参考原则:
 - 1、对于小规模样本集(几万量级),常用的分配比例是 60% 训练集、20% 验证集、20% 测试集。
 - 2、对于大规模样本集(百万级以上),只要验证集和测试集的数量足够即可,例如有 100w 条数据,那么留 1w 验证集,1w 测试集即可。1000w 的数据,同样留 1w 验证集和 1w 测试集。
 - 3、超参数越少,或者超参数很容易调整,那么可以减少验证集的比例, 更多的分配给训练集。

🖺 数据集划分方法

◆ 划分方法: K折交叉验证 (一种动态验证的方式,这种方式可以降低数据划分带来的影响)

以10折交叉验证为例,具体步骤如下:

- 1、将数据集分为训练集和测试集,将测试集放在一边;
- 2、将训练集平均分成不相交的10个子集;
- 3、每一次挑选其中的1份作为验证集,其余的9份作为训练集进行模型 训练,得到模型以及评价指标;
- 4、重复第3步10次,通过10次训练后,得到了10个不同的模型;
- 5、将10个模型的评价指标取平均值,作为交叉验证的评估指标;
- 6、使用不同的超参数,重复以上2-5步,根据最好的交叉验证评估指
- 标,挑选出最优的超参数;
- 7、使用最优的超参数,将数据全部作为训练集重新训练模型;
- 8、最后使用测试集测试评估模型,计算评价指标。

🖺 数据集划分方法

◆ 实现方法: 比如 sklearn中的model_selection.KFold函数,格式如下:

sklearn.model_selection.KFold(n_splits=3, shuffle=False, random_state=None)

参数说明	含义
n_splits	分为几折交叉验证
shuffle	在每次划分时,是否进行洗牌。 若为Falses时,其效果等同于random_state等于整数,每次划分的结果相同; 若为True时,每次划分的结果都不一样,表示经过洗牌,随机取样的
random_state	随机种子数(设置了这个参数之后,每次生成的结果是一样的,而且设置了random_state之后就没必要设置shuffle)

代码示例:

```
# 导入包
from sklearn.model_selection import KFold
import numpy as np
# 构建数据集
X = np.arange(24).reshape(12,2)
Y = np.arange(12).reshape(12,1)

#调用k折交叉验证方法
kf = KFold(n_splits=3,shuffle=False)
for train_index,valid_index in kf.split(X):
        print("TRAIN:", train_index, "VALID:", valid_index)
        X_train, X_valid = X[train_index], X[valid_index]
        Y_train, Y_valid = Y[train_index], Y[valid_index]
```

运行结果:

```
TRAIN: [ 4 5 6 7 8 9 10 11] VALID: [0 1 2 3]
TRAIN: [ 0 1 2 3 8 9 10 11] VALID: [4 5 6 7]
TRAIN: [ 0 1 2 3 4 5 6 7] VALID: [ 8 9 10 11]
```


≌ 评分模型

对于多分类任务中,常用的评价指标有宏平均(Macro-Averaging)、微平均(Micro-Averaging)、加权平均。

- ◆ 宏平均(Macro-Averaging)是指所有类别的每一个统计指标值的算数平均值,也就是宏精确率(Macro-Precision),宏召回率(Macro-Recall),宏F值(Macro-F Score)。
- ◆ 微平均 (Micro-Averaging) 是对数据集中的每一个示例不分类别进行统计建立全局混淆矩阵,然后计算相应的指标。

$$P_{macro} = \frac{1}{n} \sum_{i=1}^{n} P_i$$

$$P_{micro} = \frac{\bar{TP}}{\bar{TP} + \bar{FP}} = \frac{\sum_{i=1}^{n} TP_{i}}{\sum_{i=1}^{n} TP_{i} + \sum_{i=1}^{n} FP_{i}}$$

$$R_{macro} = \frac{1}{n} \sum_{i=1}^{n} R_i$$

$$R_{micro} = \frac{\bar{TP}}{\bar{TP} + \bar{FN}} = \frac{\sum_{i=1}^{n} TP_i}{\sum_{i=1}^{n} TP_i + \sum_{i=1}^{n} FN_i}$$

$$F_{macro} = \frac{2 \times P_{macro} \times R_{macro}}{P_{macro} + R_{macro}}$$

$$F_{micro} = \frac{2 \times P_{micro} \times R_{micro}}{P_{micro} + R_{micro}}$$

≌ 评分模型

对于多分类任务中,常用的评价指标有**宏平均**(Macro-Averaging)、**微平均**(Micro-Averaging)、**加权平均**。

◆ 加权平均:是指所有类别的每一个统计指标值按照各自类别占测试集的比例,做加权计算,得到加权精确率,加权召回率,加权F值。比如 sklearn中的**metrics库**有两种方法计算**加权F值**,格式如下:

metrics.f1 score(y true, y pred, average='weighted')

metrics.classification_report(y_true, y_pred, labels=None, target names=None, sample weight=None, digits=2)

加权F值: 0.8937367776107534

	precision	recall f1-score		support	
中度污染	0.84	0.76	0.80	34	
优	0.90	0.96	0.93	103	
良	0.90	0.94	0.92	189	
轻度污染	0.90	0.81	0.85	95	
重度污染	1.00	0.67	0.80	9	
accuracy			0.90	430	
macro avg	0.91	0.83	0.86	430	
weighted avg	0.90	0.90	0.89	430	

实验步骤

◆实验步骤(使用Python自编程)

1、准备数据

- ✓读取数据,清理记录为0的数据,并提取合适有用的特征;
- ✓将数据分割为训练集、验证集、测试集

2、定义模型

算距离 找邻居 做分类

k-近邻算法的具体步骤如下:

- 1) 计算待分类样本点与所有已标注样本点之间的距离
- 2) 按照距离从小到大排序
- 3) 选取与待分类样本点距离最小的k个点
- 4) 确定前k个点中,每个类别的出现次数
- 5) 返回次数最高的那个类别

3、训练模型

✓使用训练集训练模型,调整k值,找到合适模型,使用验证集验证模型

4、评估模型

✓自定义评价指标,使用测试集评估模型

实验要求

- 1、使用K折交叉验证方法,划分训练集和验证集(可调库);
- 2、记录调参过程和结果,根据评价指标,选出最合适的K值;
- 3、使用加权平均指标来评价模型(可调库);
- 4、使用测试集评估模型,要求加权F值指标>0.85。

注意事项

◆1、数据集中的0记录要清理掉

	Α	В	С	D	Е	F	G	Н
1	日期 ▼	PM2.5 →	PM10 ▼	SO2 ▼	CO 🔻	NO2 ▼	O3 ~	质量等级 💌
674	2015/11/4	210	0	15	2	108	29	重度污染
675	2015/11/5	110	0	6	1	53	26	轻度污染
676	2015/11/6	20	9	2	0.5	29	38	优
677	2015/11/7	19	0	2	0.5	29	41	优
678	2015/11/8	60	89	3	0.9	46	37	良
679	2015/11/9	124	0	4	1.6	56	7	中度污染
680	2015/11/10	132	0	4	1.6	55	5	中度污染
681	2015/11/11	104	0	4	1.9	55	11	轻度污染
682	2015/11/12	155	136	6	2.5	60	3	重度污染
683	2015/11/13	208	188	15	3.1	70	4	重度污染
684	2015/11/14	274	298	17	3.6	83	11	严重污染
685	2015/11/15	196	0	13	3.2	70	31	重度污染

◆ 2、Python编程的warning日志,可以加如下图代码忽略掉

```
import warnings
warnings.filterwarnings(action_=_'ignore')
```

◆3、绘图时显示中文乱码,可以加两行代码解决

```
plt.rcParams['font.sans-serif']=['SimHei'] #解决中文显示乱码问题
plt.rcParams['axes.unicode_minus']=False
```

提交方式

实验报告提交至平台 http://grader.tery.top:8000/#/courses

注意:

- ▶1、用户名、密码默认均为学号(若之前有修改过密码的,请用新密码登陆);
- ▶2、请提交到相应的条目「2022春统计机器学习」课程 实验三;
- ▶3、提交截止时间:下周四晚24点前;
- ▶4、文件夹&压缩包命名要求: 学号_姓名_统计机器学习实验三
- ▶5、提交内容:实验报告(.pdf文件)+代码(.py文件),一起打包为zip格式压缩包。

统计机器学习实验

同学们, 请开始实验吧!