Intro to Proofs

Aamod Varma

MATH - 2106, Fall 2024

Contents

Real Numbers

Definition 1 (Properties of real numbers). Properties of $\mathbb R$ are

- (d). \exists an order on $\mathbb R$ which means $\forall x,y\in\mathbb R, x< y$ or ,x>y, or x=y Ordering follows the following properties,
 - (1). $x < y, y < z \Rightarrow x < z$ (transitivity)
 - (2). $x < y \Rightarrow x + z < y + z, \forall z \in \mathbb{R}$
 - (3). $x < y, z > 0 \Rightarrow xz < yz$

Theorem 1. $xy = 0 \Leftrightarrow x = 0 \text{ or } y = 0$

Proof. \Leftarrow Without loss of generality take, x = 0 Then we get,

0y.

We can write this as,

$$(0+0)y = 0y + 0y.$$

So,

$$0y = 0y + 0y.$$

Or, m

 \Rightarrow

Assume the contrary that, $x \neq 0$ and $y \neq 0$ We have, xy = 0. Without loss of generality we take the multiplicative inverse of x so,

$$\frac{xy}{x} = \frac{0}{x}.$$

We showed that 0(k) = 0 so y = 0

Which contradicts our assumption, hence our assumptoin must be wrong and x=0 or y=0

Theorem 2. (-)x = -x

Proof. We start with (-1)x and add x to both sides so,

$$(-1)x + x = x(1-1) = 0x = 0.$$

So we showed that (-1)x is the additive identity of x.

We know that the additive identity is unique for any x

Therefore, (-1)x = -x

Theorem 3. $\forall x < y, z < 0$

xz > yz.

Theorem 4. $\forall x \in \mathbb{R}, x^2 \geq 0$ and if $x \neq 0$ then $x^2 > 0$

Theorem 5. $x^2 = -(-x^2)$

Case 1, x > 0:

$$x \times x > x$$

$$x \times x > 0x$$

$$x^2 > 0$$

Case 2, x < 0:

Example. $\forall a, b > 0$

$$\frac{a+b}{2} \ge \sqrt{ab}$$

Proof.

$$0 \le (\sqrt{a} - \sqrt{b})^2 = a - 2\sqrt{ab} + b.$$

 \Diamond

Example. $x^2 - x + 1$

 \Diamond

Theorem 6. $\forall x, y \in \mathbb{R}$ we have,

$$|x| \ge x$$
 and $|x + y| \le |x| + |y|$.

Proof.

Proof related to Sets

Theorem 7.

$$A \cup B \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A).$$

We need to show that,

$$A \cup B \setminus (A \cap B) \subseteq (A \setminus B) \cup (B \setminus A).$$

and,

$$(A \backslash B) \cup (B \backslash A) \subseteq A \cup B \backslash (A \cap B).$$

Theorem 8. $A \subseteq B \Leftrightarrow A \cup B = B$

Proof. \Rightarrow Take $\forall x \in A \cup B$, so either

Case 1, $x \in A$:

We know that by deifnition if, $A\subseteq B$ then for $x\in A, x\in B$ so $x\in B$

Case 2, $x \in B$: If $x \in B$ then we don't need to go further.

So we get $\forall x \in A \cup B, x \in B$

 \Leftarrow

 $\forall x \in A \Rightarrow x \in A \cup B = B$

So, $x \in B$ which means that, $A \subseteq B$