2024 矩阵分析与应用

作业七

- 1. 以 $\mathbf{x} = (x_0, x_1, x_2, \dots, x_{15})^T$ 为例,简要写出快速傅里叶变换 FFT 的实现过程。
 - 2. 设 \mathcal{X} 和 \mathcal{Y} 分别为 \mathcal{R}^3 的子空间,且

$$\mathcal{B}_{\mathcal{X}} = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \right\}, \quad \mathcal{B}_{\mathcal{Y}} = \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \right\},$$

分别为其一组基。(1) 试说明 \mathcal{X} 和 \mathcal{Y} 为 \mathcal{R}^3 的一对补空间;

- (2) 分别给出沿 \mathcal{Y} 空间到 \mathcal{X} 空间的投影矩阵 \mathbf{P} ,以及沿 \mathcal{X} 空间到 \mathcal{Y} 空间的投影矩阵 \mathbf{Q} ,并验证矩阵 \mathbf{P} 和 \mathbf{Q} 是幂等矩阵。
- 3. 设 $\mathcal{R}^{n\times n}$ 为所有 $n\times n$ 的矩阵构成的向量空间, 试说明 $\mathcal{R}^{n\times n}=\mathcal{S} \bigoplus \mathcal{K}$ 成立, 这里 \mathcal{S} 和 \mathcal{K} 分别表示所有 $n\times n$ 的对称矩阵和反对称矩阵构成的集合。

4. 对于矩阵
$$\mathbf{A} = \begin{pmatrix} -2 & 0 & -4 \\ 4 & 2 & 4 \\ 3 & 2 & 2 \end{pmatrix}$$
, 计算出 core-nilpoten 的分解形式,

并给出对应的 Drazin 逆的形式。