Зміст

1	Комплексні числа			
	1.1	Вступ	2	
	1.2	Геометрична інтерпретація та ще трохи арифметики	2	
	1.3	Квадратні рівняння	5	
	1.4	Первинні результати	6	
2	TT	Числові послідовності, функції, границі та неперервність		
4	чис 2.1	числові послідовності, функції, границі та неперервність Числові послідовності	7	
	2.2	Функції комплексної змінної. Границі функцій	8	
	2.3		10	
	2.4		10	
	2.5	Ряди	11	
3	Дис	реренціювання	13	
	3.1		13	
	3.2	Умова Коші-Рімана в полярній системі координат		
	3.3	Гармонічні функції		
	3.4		17	
	5.4	теометричне застосування	11	
4	Інте	1 V	18	
	4.1	Основні методи інтегрування	18	
	4.2	Властивості та інші теореми	18	
	4.3	Степеневі ряди	25	
	4.4	Нулі аналітичної функції	29	
	4.5	Ряди Лорана	30	
	4.6		31	
			31	
		·	32	
			33	
	4.7	· ·	33	
			34	
		· ·	34	
			34	
	4.8	v	35	
	4.9	· · · · · · · · · · · · · · · · · · ·	36	
	1.0		37	
		the state of the s	$\frac{37}{38}$	
			38	
	1.10			
	4.10	Застосування лишків до дійсних інтегралів	38	
5	Ряд	ци Фур'є	43	
	5.1	Початок	43	
	5.2	Аналіз збіжності ряду	44	
	5.3	Додатковий зміст із практики (*)	49	
	5.4	Середнє за Чезаро	50	
	5.5		53	
	5.6		54	
•	0	••		
6			5 6	
	6.1		56	
	6.2		57	
	6.3	•	60	
		, ,	60	
			61	
	6.4	Трохи корисних прикладів використання	61	

1 Комплексні числа

1.1 Вступ

Комплексним числом будемо називати число такого формату:

$$a + ib$$

Тут $a, b \in \mathbb{R}$. А число i називають **уявною одиницею** - це таке число, що

$$i^2 = -1$$

Множину комплексних чисел ми позначимо за C.

Коли комплексні числа рівні

Якщо у нас є два комплексних числа a_1+ib_1 та a_2+ib_2 , то тоді

$$a_1 + ib_1 = a_2 + ib_2 \iff \begin{cases} a_1 = a_2 \\ b_1 = b_2 \end{cases}$$

Інтуїтивне пояснення буде згодом, чому саме так.

Основна арифметика

Ми можемо два комплексних числа довадати/віднімати, множити та ділити. Тобто якщо маємо a_1+ib_1 та a_2+ib_2 то

$$(a_1 + ib_1) \pm (a_2 + ib_2) = (a_1 \pm a_2) + i(b_1 \pm b_2)$$

$$(a_1 + ib_1) \cdot (a_2 + ib_2) = a_1a_2 + a_1ib_2 + ib_1a_2 + i^2b_1b_2 = (a_1a_2 - b_1b_2) + i(a_1b_2 + a_2b_1)$$

Із діленням ситуація цікавіша. Для числа z=a+bi введемо поняття **комплексно спряжене число** - це комплексне число такого формату:

$$\bar{z} = a - ib$$

Example 1.1.1 Маємо z = 3 + 4i. Спряженим буде $\bar{z} = 3 - 4i$.

Якщо тепер перемножити стандартне комплексне число на його спряжене, то ми отримаємо наступне:

$$(a+ib)(a-ib) = a^2 - (ib)^2 = a^2 + b^2$$

Ідея ділення двох комплексних чисел полягає в домноженні дроба на комплексно спряжене число знаменника, тобто:

$$\frac{a_1 + ib_1}{a_2 + ib_2} = \frac{(a_1 + ib_1)(a_2 - ib_2)}{(a_2 + ib_2)(a_2 - ib_2)} = \frac{(a_1a_2 + b_1b_2) + i(a_2b_1 - a_1b_2)}{a_2^2 + b_2^2} = \frac{a_1a_2 + b_1b_2}{a_2^2 + b_2^2} + i\frac{a_2b_1 - a_1b_2}{a_2^2 + b_2^2}.$$

Example 1.1.2
$$\frac{2+3i}{1-i} = \frac{(2+3i)\cdot(1+i)}{(1-i)\cdot(1+i)} = \frac{2+2i+3i+3i^2}{1^2-i^2} = \frac{2+5i-3}{2} = \frac{-1+5i}{2} = -\frac{1}{2} + \frac{5}{2}i$$
.

1.2 Геометрична інтерпретація та ще трохи арифметики

Нехай є комплексне число $z=x+iy, \quad x,y\in\mathbb{R}$. Уведемо нові позначення: $x=\operatorname{Re} z$ - цю частину комплексного числа називають ще дійсною частиною.

y = Im z - цю частину комплексного числа називають ще **уявною частиною**.

Нагадаю, що комплексно спряжене до числа z позначаємо так: $\bar{z} = x - iy$.

Копмлексне число можна інтерпретувати як ?вектор? на такій системі координат:

Можемо знайти довжину комплексного числа - відстань до початку координат

$$|z| = \sqrt{x^2 + y^2}$$

Із цього випливає наступна формула:

$$z \cdot \bar{z} = (x + iy)(x - iy) = x^2 + y^2 = |z|^2$$
.

Ще одне нове позначення:

 $\varphi = \arg z$ - аргумент комплексного числа. Зазвичай $\varphi \in (-\pi,\pi].$

При z=0 маємо |z|=0, а тому звідси $\arg z=?$. Тому надалі уникаємо тут випадок z=0.

Повернімось до малюнку вище та спробуємо знайти x, y. За геометрічними міркуваннями:

$$\begin{cases} x = |z| \cos \varphi \\ y = |z| \sin \varphi \end{cases}$$

Tакі значення x, y ми підставимо в комплексне число z = x + iy.

Отримаємо тригонометричну формулу комплексного числа:

$$z = |z|(\cos\varphi + i\sin\varphi)$$

З'ясуємо арифметику комплексних чисел в тригонометричній формулі. Нехай є 2 комплексних числа:

$$z_1 = |z_1|(\cos\varphi_1 + i\sin\varphi_1)$$

$$z_2 = |z_2|(\cos\varphi_2 + i\sin\varphi_2)$$

Множення

$$z_1 \cdot z_2 = |z_1||z_2|(\cos\varphi_1 + i\sin\varphi_2)(\cos\varphi_1 + i\sin\varphi_2)$$

= $|z_1||z_2|(\cos\varphi_1\cos\varphi_2 - \sin\varphi_1\sin\varphi_2 + i[\sin\varphi_1\cos\varphi_2 + \sin\varphi_2\cos\varphi_1])$
= $|z_1||z_2|(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2))$

Отримали, що коли ми множимо два комплексних числа, модулі ми **множимо**, а аргументи ми **додаємо**, тобто

$$\begin{cases} |z_1 \cdot z_2| = |z_1| \cdot |z_2| \\ \arg(z_1 \cdot z_2) = \arg z_1 + \arg z_2 \\ z_1 \cdot z_2 = |z_1| |z_2| (\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)) \end{cases}$$

Ділення

$$\frac{z_1}{z_2} \stackrel{\text{позначу}}{=} w$$
, де $w = |w|(\cos \psi + i \sin \psi)$.

Hаша мета: знайти |w| та $\arg w = \psi$.

Ми вже навчилися множити два комплексних числа в тригонометричній формі, тому зведемо та-

$$z_1 = wz_2 \implies \begin{cases} |z_1| = |z_2| \cdot |w| \\ \arg z_1 = \arg z_2 + \arg w \end{cases} \implies \begin{cases} |z_1| = |z_2| \cdot |w| \\ \varphi_1 = \varphi_2 + \psi \end{cases}$$
Я тут позначив $\arg z_1 = \varphi_1$ $\arg z_2 = \varphi_2$.

Звідси знайдемо, чому дорівнює |w| та ψ :

$$\begin{cases} |w| = \frac{|z_1|}{|z_2|} \\ \psi = \varphi_1 - \varphi_2 \end{cases}$$

В результаті оскільки $w = |w|(\cos\psi + i\sin\psi)$, ми отримаємо:

$$w = \frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} (\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2)).$$

Отримали, що коли ми ділимо два комплексних числа, модулі ми **ділимо**, а аргументи ми **відні**-

Зведення в степінь

$$z^n \stackrel{\text{позначу}}{=} w$$
, де $w = |w|(\cos \psi + i \sin \psi)$.

Знову наша мета: знайти |w| та $\arg w = \psi$.

Оскільки w=z z, то за множенням комплексним чисел, маємо, що $\begin{cases} |w|=|z| & \dots & |z| \\ \arg w = \arg z + & \dots & +\arg z \end{cases}$

$$\implies \begin{cases} |w| = |z|^n \\ \arg w = n \arg z = n\varphi \end{cases}.$$

$$z^n = |z|^n(\cos(n\varphi) + i\sin(n\varphi))$$

Remark 1.2.1 Вважаємо, що $z^0 = 1$ при $z \neq 0$.

Вилучення коренів

Definition 1.2.2 Комплексне число w буде n-м коренем від z, якщо $w^n = z$.

Позначення: $w = \sqrt[n]{z}$.

$$\sqrt[\eta]{z} \stackrel{\text{позн.}}{=} w$$
, де $w = |w|(\cos \psi + i \sin \psi)$.

Ще раз мета: знайти |w| та $\arg w = \psi$.

Ми щойно навчилися зводити комплексне число в степінь, тому зведемо таким чином:

 $z = w^n$.

$$z = |z|(\cos \varphi + i\sin \varphi) = |w|^n(\cos n\psi + i\sin n\psi) = w^n.$$

Отримаємо, що
$$\begin{cases} |w|^n = |z| \\ n\psi = \varphi + 2\pi k \end{cases} \implies \begin{cases} |w| = \sqrt[n]{|z|} \\ \psi = \frac{\varphi + 2\pi k}{n} \end{cases}.$$

Більш детальне пояснення другого рівняння системи.

Ми мали, що $\cos \varphi = \cos(n\psi)$. Оскільки $\cos - 2\pi$ -періодична функція, то нас влаштовують не лише $\varphi=n\psi,$ а також кути +2\pi, +4\pi,

В результаті отримаємо:

$$w = \sqrt[n]{z} = \sqrt[n]{|z|} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right), \quad k = 0, 1, \dots, n - 1$$

Якщо k=n, то ми отримаємо комплексне число для випадку k=0 через періодичність тригонометричних функцій

Якщо k=n+1, то ми отримаємо комплексне число для випадку k=1 через періодичність тригонометричних функцій

Тошо...

Якщо k=-1, то ми отримаємо комплексне число для випадку k=n-1 через періодичність тригонометричних функцій

Тощо...

Отже:

Proposition 1.2.3 $\sqrt[n]{z}$ має рівно n комплексних чисел при $z \neq 0$.

Example 1.2.4 Знайти $\sqrt[3]{i}$.

Розпишемо $i=0+i\cdot 1.$ Якщо це намалювати на площині, то отримаємо, що $|i|=\sqrt{0^2+1^2}=1, \quad \arg i=\varphi=\frac{\pi}{2}.$

А тепер витягуємо корінь:
$$\sqrt[3]{i} = \sqrt[3]{1} \left(\cos \frac{\frac{\pi}{2} + 2\pi k}{3} + i \sin \frac{\frac{\pi}{2} + 2\pi k}{3} \right), \qquad k = 0, 1, 2$$

$$k = 0 \implies \cos \frac{\pi}{6} + i \sin \frac{\pi}{6} = \frac{\sqrt{3}}{2} + \frac{1}{2}i$$

$$k = 1 \implies \cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} = -\frac{\sqrt{3}}{2} + \frac{1}{2}i$$

$$k = 2 \implies \cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2} = -i$$

Квадратні рівняння

Одна з головних мотивацій створення комплексних чисел - це квадратне рівняння $x^2 = -1$. В дійсних числах казали, що розв'язків нема. І дійсно, яке б ми число не зводили в квадрат, ми завжди отримуємо додатне число. Наразі ситуація змінюється і ми навчилися вилучати від'ємні корені. В результаті, $x = \sqrt{-1} = \pm i$.

Remark 1.3.1 Там не випадково не написано \pm перед коренем, тому що

$$\sqrt{z} = \sqrt{|z|} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right) = \begin{bmatrix} \sqrt{|z|} \left(\cos \frac{\varphi}{2} + i \sin \frac{\varphi}{2} \right) \\ \sqrt{|z|} \left(-\cos \frac{\varphi}{2} - i \sin \frac{\varphi}{2} \right) \end{bmatrix} = \pm \sqrt{|z|} \left(\cos \frac{\varphi}{2} + i \sin \frac{\varphi}{2} \right)$$

Тобто, вилучаючи квадратний корінь, ми вже отримуємо два значення, тобто виникає \pm після цього процесу. Але тепер можна спокійно розв'язувати квадратні рівняння.

$$az^{2} + bz + c = 0$$

$$a\left(z^{2} + \frac{2b}{2a}z + \left(\frac{b}{2a}\right)^{2}\right) + c - \frac{b^{2}}{4a} = 0$$

$$a\left(z + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a}$$
$$\left(z + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2}$$
$$z + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$
$$z = \frac{-b \pm \sqrt{D}}{2a}$$

Первинні результати 1.4

Proposition 1.4.1 Задані два комплексних числа z, w. Тоді

- 1. $\overline{z+w} = \bar{z} + \bar{w}$;
- $2. \ \overline{zw} = \bar{z}\bar{w};$
- 3. |zw| = |z||w|.

Ми маємо $z = x_1 + iy_1$ та $w = x_2 + iy_2$. Тоді звідси $z + w = (x_1 + x_2) + i(y_1 + y_2)$ $zw = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1).$ $|zw| = \sqrt{(x_1x_2 - y_1y_2)^2 + (x_1y_2 + x_2y_1)^2}.$ А далі вже доводимо ці тотожності вище:

- 1. $\overline{z+w} = (x_1+x_2) i(y_1+y_2) = (x_1-iy_1) + (x_2-1y_2) = \bar{z} + \bar{w}$.

2.
$$\overline{zw} = (x_1x_2 - y_1y_2) - i(x_1y_2 + x_2y_1) = (x_1 - iy_1)(x_2 - iy_2) = \bar{z}\bar{w}.$$

3. $|zw|^2 = x_1^2x_2^2 + y_1^2y_2^2 + x_1^2y_2^2 + x_2^2y_1^2 = x_1^2(x_2^2 + y_2^2) + y_1^2(x_2^2 + y_2^2) = |z|^2|w|^2.$

Proposition 1.4.2 Нерівність трикутника

Задані два комплексних числа z, w. Тоді $|z + w| \le |z| + |w|$.

Proof.

Хочемо довести, що $|z+w|^2 \leq (|z|+|w|)^2$. Спочатку зауважимо, що $|z+w|^2 = (z+w)\overline{(z+w)} = (z+w)(\bar z+\bar w)$. Далі просто розкриємо дужки в правій частині: $(z+w)(\bar{z}+\bar{w}) = |z|^2 + |w|^2 + z\bar{w} + w\bar{z} = |z|^2 + |w|^2 + z\bar{w} + \overline{z}\bar{w} = |z|^2 + |w|^2 + 2\operatorname{Re}(z\bar{w}).$ Маємо $\operatorname{Re}(z\bar{w}) \in \mathbb{R}$, а тому звідси $\operatorname{Re}(z\bar{w}) \leq |\operatorname{Re}(z\bar{w})| \leq |z\bar{w}|$. Дійсно, $\operatorname{Re}(a+bi) \leq |a+bi|$, тому що $\operatorname{Re}(a+bi) = a = \sqrt{a^2} \leq \sqrt{a^2+b^2} = |a+bi|$. Отже, $|z+w|^2 \leq |z|^2 + |w|^2 + 2|z\bar{w}| = |z|^2 + |w|^2 + 2|z||w| = (|z|+|w|)^2$.

Решта нерівностей, що пов'язані з модулями, також тут працюють. Просто тому що ми довели нерівність трикутника.

$\mathbf{2}$ Числові послідовності, функції, границі та неперервність

2.1 Числові послідовності

Definition 2.1.1 Послідовністю комплексних чисел назвемо набір чисел $\{z_n, n \ge 1\}$, де $z_n \in \mathbb{C}$.

Definition 2.1.2 Число $z \in \mathbb{C}$ називається **границею** числової послідовності $\{z_n, n \geq 1\}$, якщо

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n > N : |z_n - z| < \varepsilon$$

Дану числову послідовність будемо називати **збіжною**, якщо ліміт існує та $z \in \mathbb{C}$. У протилежному випадку - розбіжною.

Proposition 2.1.3 Задано
$$\{z_n, n \geq 1\}$$
 - числова послідовність, де $z_n + x_n + iy_n$, та $z = x + iy, z \in \mathbb{C}$. $\exists \lim_{n \to \infty} z_n = z \iff \begin{cases} \exists \lim_{n \to \infty} x_n = x \\ \exists \lim_{n \to \infty} y_n = y \end{cases}$.

Proof.
$$\exists \lim_{n \to \infty} = z \iff \forall \varepsilon > 0 : \exists N : \forall n \ge N : |z_n - z| < \varepsilon \iff |z_n - z| = \sqrt{(x_n - x)^2 + (y_n - y)^2} < \varepsilon \iff \begin{cases} |x_n - x| < \varepsilon \\ |y_n - y| < \varepsilon \end{cases} \iff \exists \lim_{n \to \infty} x_n = x, \exists \lim_{n \to \infty} y_n = y.$$

Хіба \dot{m} о в зворотному напрямку там будуть існувати N_1, N_2 для кожного ліміту, але можна потім записати $N = \max\{N_1, N_2\}.$

Definition 2.1.4 Числова послідовність $\{z_n, n \geq 1\}$ називається фундаментальною, якщо

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall m, n \ge N : |z_n - z_m| < \varepsilon$$

Lemma 2.1.5 Послідовність $\{z_n, n \geq 1\}$ - фундаментальна $\iff \{x_n, n \geq 1\}, \{y_n, n \geq 1\}$ - фундаментальні.

У цьому випадку $z_n = x_n + iy_n$.

Аналогічно доводиться, як попередне твердження.

Theorem 2.1.6 Критерій Коші

Послідовність $\{z_n, n \geq 1\}$ - збіжна $\iff \{z_n, n \geq 1\}$ - фундаментальна. Доведення зрозуміле.

Definition 2.1.7 Числова послідовність $\{z_n, n \ge 1\}$ називається **обмеженою**, якщо

$$\exists C > 0 : \forall n > 1 : |z_n| < M$$

Proposition 2.1.8 Задано послідовність $\{z_n, n \geq 1\}$ - збіжна. Тоді вона - обмежена. Доведення аналогічне, як в матані \mathbb{R} .

Proposition 2.1.9 Задані послідовності $\{z_n^{(1)}, n \geq 1\}$ та $\{z_n^{(2)}, n \geq 1\}$ - збіжні. Тоді $\{z_n^{(1)} + z_n^{(2)}, n \geq 1\}$ $1\},\{\lambda z_n^{(1)},n\geq 1\},\lambda\in\mathbb{C},\{z_n^{(1)}\cdot z_n^{(2)},\geq 1\}$ та $\left\{\frac{z_n^{(1)}}{z_n^{(2)}},\geq 1\right\}$ (тут якщо ліміт для $z_n^{(2)}$ ненулевий) - збіжні,

$$\lim_{n \to \infty} (z_n^{(1)} + z_n^{(2)}) = \lim_{n \to \infty} z_n^{(1)} + \lim_{n \to \infty} z_n^{(2)}.$$

$$\lim_{n \to \infty} (\lambda z_n^{(1)}) = \lambda \lim_{n \to \infty} z_n^{(1)}.$$

$$\lim_{n \to \infty} (z_n^{(1)} z_n^{(2)}) = \lim_{n \to \infty} z_n^{(1)} \lim_{n \to \infty} z_n^{(2)}$$

$$\lim_{n \to \infty} (z_n^{(1)} z_n^{(2)}) = \lim_{n \to \infty} z_n^{(1)} \lim_{n \to \infty} z_n^{(2)}.$$

$$\lim_{n \to \infty} \frac{z_n^{(1)}}{z_n^{(2)}} = \frac{\lim_{n \to \infty} z_n^{(1)}}{\lim_{n \to \infty} z_n^{(2)}}.$$
Therefore a present respective of the property of the propert

Доведення неважке.

Proposition 2.1.10 Достатня умова збіжності

Задано $\{z_n,n\geq 1\}$ - числова послідовність. Представимо в вигляді $z_n=\rho_n e^{i\varphi_n}$, де $\rho_n=|z_n|$ та $\varphi_n=\arg z_n$. Відомо, що $\rho_n o \rho_0, \varphi_n o \varphi_0$ при $n o \infty$. Тоді $z_n \to z_0 = \rho_0 e^{i\varphi_0}$ при $n \to \infty$.

Proof.

$$|z_n-z_0|=|\rho_n e^{i\varphi_n}-\rho_0 e^{i\varphi_0}| \stackrel{\text{самостійно}}{=} \sqrt{\rho_n^2+\rho_0^2-2\rho_n\rho_0\cos(\varphi_n-\varphi_0)} \rightarrow$$

 $|z_n-z_0|=|\rho_ne^{i\varphi_n}-\rho_0e^{i\varphi_0}|\stackrel{\mathrm{самостійно}}{=}\sqrt{\rho_n^2+\rho_0^2-2\rho_n\rho_0\cos(\varphi_n-\varphi_0)}$ Оскільки $\varphi_n o \varphi_0, n o \infty$, то в силу неперервності $\cos x$ як дійснозначної функції маємо $\cos(\varphi_n-\varphi_0) o$ $1, n \to \infty$.

Також \sqrt{x} неперервна функція як дійснозначна функція, тому можна отримати ось таке прямува-

$$\longrightarrow \sqrt{\rho_0^2 + \rho_0^2 - 2\rho_0\rho_0 \cdot 1} = 0, n \to \infty.$$

Функції комплексної змінної. Границі функцій

Ми будемо розглядати комплексні функції $f:A\to\mathbb{C}$, де множина $A\subset\mathbb{C}$. Зазвичай позначають як w = f(z).

Example 2.2.1 Розглянемо кілька прикладів:

$$w = \bar{z}$$
 $w = \operatorname{Re} z$ $w = \operatorname{Im} z$.

Ці три функції визначені на $A=\mathbb{C}$

Remark 2.2.2 Маємо z = x + iy, а також функцію f(z) = w = u + iv.

Тоді задання функції f(z) евківалентно заданню двох дійсних функцій u(x,y),v(x,y). І тоді

$$f(z) = f(x, y) = u(x, y) + iv(x, y),$$

де
$$\text{Re } f(z) = u(x, y), \text{Im } f(z) = v(x, y).$$

Example 2.2.3 Зокрема маємо $f(z) = \bar{z}$, або це перепишеться як

f(x,y) = x - iy. У цьому випадку u(x,y) = x, v(x,y) = -y.

Definition 2.2.4 Показникову функцію $w = e^z, z = x + iy \in \mathbb{C}$ визначимо таким чином:

$$e^z = e^x(\cos y + i\sin y)$$

Деколи це ще позначають як $w = \exp(z)$.

Proposition 2.2.5 Властивості показникової функції

- 1. $e^{\overline{z_1}} \cdot e^{\overline{z_2}} = e^{z_1 + z_2}$ при $z_1 = x_1 + iy_1$ та $z_2 = x_2 + iy_2$.
- 2. e^z періодична, де $T = 2\pi i$.
- 3. $|e^z| = e^x$.
- 4. $\arg e^z = y$.

Доведення неважке.

Corollary 2.2.6
$$e^{2\pi ni} = 1$$
 $e^{(2n+1)\pi i} = -1$.

Definition 2.2.7 Визначимо ще дві тригонометричні функції:

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$
$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$

Proposition 2.2.8 Властивості тригонометричних функцій

- 1. $\sin z$, $\cos z$ періодичні, де $T=2\pi$.
- $2. \sin z$ непарна функція та $\cos z$ парна функція.

Доведення неважке.

Remark 2.2.9 Комплексні функції $\sin z$, $\cos z$ підпорядковуються стандартним тригонометричним тотожностям.

Corollary 2.2.10 Формула Ейлера

$$e^{iz} = \cos z + i \sin z$$
, де $z \in \mathbb{C}$.

Corollary 2.2.11 Показникова форма комплексного числа

$$z=|z|e^{i\varphi}$$
, де $\varphi=\arg z$.

Definition 2.2.12 Логарифмічну функцію w = Ln z визначимо як функцію, для якого:

$$e^w = e^{\operatorname{Ln} z} = z$$

Вона визначена всюди, окрім z = 0.

Тепер розпишемо
$$e^w=z$$
 більш детально. Маємо $z=|z|e^{i\varphi}$ та $w=u+iv$, тоді
$$e^ue^{iv}=|z|e^{i\varphi}\implies \begin{cases} e^u=|z|\\v=\varphi+2\pi k,k\in\mathbb{Z} \end{cases} \implies \begin{cases} u=\ln|z|\\v=\varphi+2\pi k,k\in\mathbb{Z} \end{cases}$$
 В останній системі перша рівність - там всі числа дійсні. Тепер підставимо все отримане:

 $w = \ln|z| + i\varphi + 2\pi i k, k \in \mathbb{Z}.$

Але нам відомо, що $\varphi = \arg z$, а тому ми отримаємо:

$$\operatorname{Ln} z = \ln |z| = i \arg z + 2\pi i k, k \in \mathbb{Z}$$

Proposition 2.2.13 Властивості логарифма

$$1. \ \operatorname{Ln}(z_1 \cdot z_2) = \operatorname{Ln} z_1 + \operatorname{Ln} z_2.$$
 $2. \ \operatorname{Ln} \frac{z_1}{z_2} = \operatorname{Ln} z_1 - \operatorname{Ln} z_2.$ Доведення неважке.

Definition 2.2.14 Степеневу функцію визначимо таким чином:

$$z^{\alpha} = e^{\alpha \operatorname{Ln} z}$$

Тут степінь $\alpha \in \mathbb{C}$.

Definition 2.2.15 Визначимо деякі гіперболічні функції. Зокрема гіперболічний сінус, косінус, тангенс, котангенс:

Definition 2.2.16 Задано функцію $f:A\to\mathbb{C},$ де $z_0\in\mathbb{C}$ - гранична точка A.Число W називається границею функції f в т. z_0 , якщо

$$\forall \varepsilon>0: \exists \delta(\varepsilon)>0: \forall z\in A: z\neq z_0: |z-z_0|<\delta \implies |f(z)-W|<\varepsilon \text{ - за Коші} \\ \forall \{z_n,n\geq 1\}\subset A: \forall n\geq 1: z_n\neq z_0: \lim_{n\to\infty}z_n=z_0 \implies \lim_{n\to\infty}f(z_n)=W \text{ - за Гейне}$$

Позначення: $W = \lim_{z \to z_0} f(z)$.

Theorem 2.2.17 Означення Коші ⇔ Означення Гейне.

Доведення аналогічне, як в матані \mathbb{R} .

Remark 2.2.18 Думаю, мені не варто писати властивості границь функцій, більшість з яких просто копіюються сюди.

Theorem 2.2.19 Задано функцію $f:A\to\mathbb{C}$ та $z_0\in\mathbb{C}$ - гранична точка A. Нехай f(z)=u(x,y)+iv(x,y) при $z=x+iy,\,z_0=z_0+iy_0.$ Також нехай W=a+bi.

9

$$\exists \lim_{z \to z_0} f(z) = W \iff \begin{cases} \exists \lim_{(x,y) \to (x_0,y_0)} u(x,y) = a \\ \exists \lim_{(x,y) \to (x_0,y_0)} v(x,y) = b \end{cases}$$

Випливає з означення Гейне та твердження про збіжність комплексної послідовності.

2.3 Неперервність функції

Definition 2.3.1 Задано функцію $f: A \to \mathbb{C}$ та $z_0 \in A$ - гранична точка A. Функція f називається **неперервною в т.** z_0 , якщо

$$\exists \lim_{z \to z_0} f(z) = f(z_0)$$

Функція f називається **неперервною на** A, якщо $\forall z_0 \in A : f$ - неперервна в т. z_0 . Позначається як $f \in C(A)$.

Також в ізольованих точках функція f неперервна.

Theorem 2.3.2 Задано функцію $f:A\to\mathbb{C}$ та $z_0=x_0+iy_0\in A$ - гранична точка A. f(z) = u(x,y) + iv(x,y) - неперервна в т. $z_0 \iff u,v$ - неперервні в т. (x_0,y_0) . Зрозуміло.

Example 2.3.3 Зокрема ось такі функції неперервні на С:

- 1. $f(z) = C, C \in \mathbb{C}$;
- 2. f(z) = az + b;
- 3. $f(z) = z^n, n \in \mathbb{N};$
- 4. $f(z) = e^z$;
- 5. $f(z) = \cos z, f(z) = \sin z;$
- 6. f(z) = sh z, f(z) = ch z.

Definition 2.3.4 Задано функцію $f: A \to \mathbb{C}$ та $z_0 \in A$ - гранична точка A. Функція f називається **рівномірно неперервною на** A, якщо

$$\forall \varepsilon > 0 : \exists \delta(\varepsilon) > 0 : \forall z_1, z_2 \in A : |z_1 - z_2| < \delta \implies |f(z_1) - f(z_2)| < \varepsilon$$

Позначення: $f \in C_{unif}(A)$.

Theorem 2.3.5 Задано функцію $f \in C_{unif}(A)$. Тоді $f \in C(A)$.

Theorem 2.3.6 Теорема Кантора

Задано функцію $f \in C(A)$, де A - замкнена та обмежена множина. Тоді $f \in C_{unif}(A)$.

Всі ці теореми доводяться аналогічно, як в матані \mathbb{R} .

Кілька прикладів на це все

Example 2.3.7 Довести, що
$$\lim_{n\to\infty}\frac{1}{n^p}=0$$
, якщо $\operatorname{Re} p>0$. Маємо $\left|\frac{1}{n^p}\right|=\left|\frac{1}{n^{a+bi}}\right|=\left|\frac{1}{n^a}\right|\left|\frac{1}{n^{bi}}\right|=\left|\frac{1}{n^a}\right|\left|\frac{1}{e^{bi\operatorname{Ln} n}}\right|=\frac{1}{n^a}\to 0, n\to\infty$, просто тому що $a>0$.

Таким чином, $\lim_{n\to\infty}\frac{1}{n^p}=0$, якщо $\operatorname{Re} p>0$.

Example 2.3.8 Довести, що $\lim_{n\to\infty} \left(1+\frac{z}{n}\right)^n = e^z$.

Маємо $z_n = \left(1 + \frac{z}{n}\right)^n$, звідси отримаємо:

$$|z_n| = \left(\sqrt{\left(1 + \frac{x}{n}\right)^2 + \frac{y^2}{n^2}}\right)^n = \left(1 + \frac{x^2 + y^2 + 2xn}{n^2}\right)^{\frac{n}{2}} \to e^x$$
 при $n \to \infty$ (показати самостійно).

$$\arg z_n = \arg\left(1 + \frac{z}{n}\right)^n = n\arg\left(1 + \frac{z}{n}\right) = n \operatorname{arctg} \frac{\frac{y}{n}}{1 + \frac{x}{n}} = n \operatorname{arctg} \frac{y}{n + x} \to y, n$$
 при $n \to \infty$.

За достатньою умовою, отримаємо $z_n = \left(1 + \frac{z}{n}\right)^n \to e^x e^{iy} = e^z$.

2.4 Трошки про символіку Ландау

Definition 2.4.1 Задані дві функції $f,g:A\to\mathbb{C}$ та $z_0\in\mathbb{C}$ - гранична точка A. Функція f називається **о-малою** від функції g при $z \to z_0$, якщо

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall z \in A : z \neq z_0 : |z - z_0| < \delta \implies |f(x)| < \varepsilon |g(x)|$$

Позначення: $f(z) = o(g(z)), z \to z_0$.

Theorem 2.4.2
$$f(z) = o(g(z)) \iff \lim_{z \to z_0} \frac{f(x)}{g(x)} = 0.$$
 Зрозуміло.

Дійсно, маємо
$$\frac{z-z_0}{|z-z_0|} = \frac{(x-x_0)+i(y-y_0)}{\sqrt{(x-x_0)^2+(y-y_0)^2}}$$

Example 2.4.3 Зокрема маємо
$$o(z-z_0)=o(|z-z_0|)$$
 при $z\to z_0$. Дійсно, маємо $\frac{z-z_0}{|z-z_0|}=\frac{(x-x_0)+i(y-y_0)}{\sqrt{(x-x_0)^2+(y-y_0)^2}}.$ Зокрема $\lim_{(x,y)\to(x_0,y_0)}\frac{x-x_0}{\sqrt{(x-x_0)^2+(y-y_0)^2}}=0$ та $\lim_{(x,y)\to(x_0,y_0)}\frac{y-y_0}{\sqrt{(x-x_0)^2+(y-y_0)^2}}=0$ (див матан \mathbb{R}^m).

Таким чином, звідси $\lim_{z \to z_0} \frac{z - z_0}{|z - z_0|} = 0$. Тоді всі функції $f = o(z - z_0), z \to z_0$ стануть автоматично

Proposition 2.4.4 $o(|z-z_0|) = o(|z-z_0|) + io(|z-z_0|)$

Proof.

Нехай
$$f(z) = o(|z - z_0|)$$
, тобто $\lim_{z \to z_0} \frac{f(z)}{|z - z_0|} = 0$.

Водночає знаємо, що f(z)=u(x,y)+iv(x,y), а також $|z-z_0|=\sqrt{(x-x_0)^2+(y-y_0)^2}$, тож звідси випливає, що

$$\lim_{\substack{(x,y)\to(x_0,y_0)}}\frac{u(x,y)}{|z-z_0|}=0\qquad \lim_{\substack{(x,y)\to(x_0,y_0)}}\frac{v(x,y)}{|z-z_0|}=0.$$
 Отже, $u(x,y)=o(|z-z_0|)$ та $v(x,y)=o(|z-z_0|),z\to z_0.$ Таким чином, $o(|z-z_0|)=f(z)=u(x,y)+iv(x,y)=o(|z-z_0|)+io(|z-z_0|).$

2.5Ряди

Definition 2.5.1 Рядом визначимо ось таку нескінченну суму комплексних чисел:

$$\sum_{n=1}^{\infty} z_n = z_1 + z_2 + z_3 + \dots$$

Аналогічно визначимо часткові суми таким чином:

$$S_k = \sum_{n=1}^k z_n$$

Якщо послідовність часткових сум $\{S_k, k \geq 1\}$ буде збіжним, то тоді ряд зверху називається збіжним. Інакше - розбіжним.

Example 2.5.2 Зокрема маємо ряд $\sum_{n=0}^{\infty} q^n$, але тепер $q \in \mathbb{C}$.

Зауважимо, що $1-q^{k+1}=(1-q)(1+q+\cdots+q^k)$, навіть в комплексному випадоку. Тому все чудово,

$$\sum_{n=1}^k q^n = 1 + q + \dots + q^k = \frac{1 - q^{k+1}}{1 - q},$$
тільки якщо $q \neq 1.$

При
$$|q|<1$$
 маємо $\sum_{n=1}^k q^n=rac{1-q^{k+1}}{1-q}
ightarrowrac{1}{1-q},$ тому що $q^k
ightarrow 0, k
ightarrow\infty.$

При
$$|q|>1$$
 маємо $\sum_{n=1}^k q^n=rac{1-q^{k+1}}{1-q} o\infty$, тому що $q^k o\infty, k o\infty$.

При
$$q=1$$
 маємо взагалі $\sum_{n=1}^k q^n=1+1+\cdots+1=k+1 \to +\infty$ при $k\to\infty.$

При $q = e^{i\varphi}, \varphi \in (0, 2\pi)$ (при $\varphi = 0$ маємо q = 1, а для інших кутів відбувається періодичність) отримаємо неіснування границі. Треба просто обережно розписати дріб. Точки $q = e^{i\varphi}$ відповідають випадку |q| = 1.

Висновок: ряд $\sum_{n=0}^{\infty}q^n=rac{1}{1-q}$ та збігається до цього при |q|<1. Для випадку $|q|\geq 1$ ряд буде

Remark 2.5.3 Аналогічно виконуються властивості лінійності, якщо обидва ряди збіжні. Також аналогічно ряд збіжний 👄 його хвіст ряду збіжний.

Theorem 2.5.4 Критерій Коші

Theorem 2.5.4 Критеріи Коші
$$\sum_{n=1}^{\infty} z_n - \text{збіжний} \iff \forall \varepsilon > 0 : \exists K \in \mathbb{N} : \forall k \geq K : \forall p \geq 1 : \left| \sum_{n=k}^{k+p} z_n \right| < \varepsilon.$$

Corollary 2.5.5 Необхідна умова збіжності ряду Задано
$$\sum_{n=1}^{\infty} z_n$$
 - збіжний ряд. Тоді $\lim_{n \to \infty} z_n = 0$.

Definition 2.5.6 Ряд
$$\sum_{n=1}^{\infty} z_n$$
 називається **абсолютно збіжним**, якщо ряд $\sum_{n=1}^{\infty} |z_n|$ збіжний.

Theorem 2.5.7 Задано ряд - абсолютно збіжний. Тоді ряд - збіжний. Відносно зрозуміло.

3 Диференціювання

Всюди тут вважається, що множина $A\subset\mathbb{C}.$ Якщо десь потрібні додаткові умови, вони будуть зазначені.

3.1 Основні означення

Definition 3.1.1 Задано функцію $f: A \to \mathbb{C}$ та $z_0 \in A$ - внутрішня точка. Функція f нзивається **диференційованою в т.** z_0 , якщо

$$\exists L \in \mathbb{C} : f(z) - f(z_0) = L(z - z_0) + o(z - z_0), z \to z_0$$

А похідною в т. z_0 називають границю нижче, якщо вона існує

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

Proposition 3.1.2 Задано функцію $f:A\to \mathbb{C}$ та $z_0\in A$ - внутрішня точка. Відомо, що f - диференційована в т. z_0 . Тоді f - неперервна в т. z_0 .

Proof.

Маємо
$$\exists L \in \mathbb{C}: f(z) - f(z_0) = L(z - z_0) + o(z - z_0), z \to z_0$$
. Тоді звідси $\lim_{z \to z_0} (f(z) - f(z_0)) = \lim_{z \to z_0} (L(z - z_0) + o(z - z_0)) = 0$.

Proposition 3.1.3 Задано функцію $f: A \to \mathbb{C}$ та $z_0 \in A$ - внутрішня точка. Функція f - диференційована в т. $z_0 \in A \iff \exists f'(z_0)$.

Proof.

$$f$$
 - диференційована в т. $z_0 \iff \exists L \in \mathbb{C}: f(z) - f(z_0) = L(z-z_0) + o(z-z_0) \iff o(z-z_0) = f(z) - f(z_0) - L(z-z_0) \iff \lim_{z \to z_0} \frac{f(z) - f(z_0) - L(z-z_0)}{z-z_0} = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z-z_0} - L = 0 \iff \exists L = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z-z_0} = f'(z_0).$

Theorem 3.1.4 Теорема Коші-Рімана

Задано функцію $f=u+iv:A\to\mathbb{C}$ та $z_0=x_0+iy_0\in A$ - внутрішня точка.

f - диференційована в т. $z_0 \iff u,v$ - диференційовані в т. (x_0,y_0) та виконуються такі умови:

$$\begin{cases} \frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0) \\ \frac{\partial u}{\partial y}(x_0, y_0) = -\frac{\partial v}{\partial x}(x_0, y_0) \end{cases}$$

Proof.

$$f$$
 - диференційована в т. $z_0 \iff \exists L \in \mathbb{C}: f(z) - f(z_0) = L(z - z_0) + o(z - z_0) \iff \exists L = A + iB; A, B \in \mathbb{R}: u(x,y) + iv(x,y) - u(x_0,y_0) - iv(x_0,y_0) = (A + iB)(x + iy - x_0 - iy_0) + o(|z - z_0|) \iff \exists A, B \in \mathbb{R}: u(x,y) - u(x_0,y_0) + i(v(x,y) - v(x_0,y_0)) = = A(x - x_0) + B(y - y_0) + i(A(y - y_0) + B(x - x_0)) + o(|z - z_0|) + io(|z - z_0|) \iff \exists A, B \in \mathbb{R}: \begin{cases} u(x,y) - u(x_0,y_0) = A(x - x_0) + B(y - y_0) + o(|z - z_0|) \\ v(x,y) - v(x_0,y_0) = A(y - y_0) + B(x - x_0) + o(|z - z_0|) \end{cases}$

У цьому випадку $|z-z_0| = \|(x,y),(x_0,y_0)\| = \sqrt{(x-x_0)^2 + (y-y_0)^2}$. А також $z \to z_0 \iff (x,y) \to (x_0,y_0)$.

$$\Longrightarrow$$
 u,v - диференційовані в т. (x_0,y_0) та
$$\begin{cases} \frac{\partial u}{\partial x}(x_0,y_0) = A = \frac{\partial v}{\partial y}(x_0,y_0) \\ \frac{\partial u}{\partial y}(x_0,y_0) - B = -\frac{\partial v}{\partial x}(x_0,y_0) \end{cases}$$

Remark 3.1.5 Оскільки $f'(z_0) = L$, то за Коші-Рімана.

$$f'(z_0) = L = A + iB \stackrel{\text{наприклад}}{=} \frac{\partial u}{\partial x}(x_0, y_0) + i \frac{\partial v}{\partial x}(x_0, y_0).$$

Взагалі-то кажучи, ϵ чотири варіанти, як розписати похідну. Два варіанти A та два варіанти B.

Example 3.1.6 Знайти похідну від функції $f(z) = \bar{z}$.

Маємо $f(z) = x - iy \implies u(x,y) = x, v(x,y) = -y$. Шукаємо частинні похідні:

$$\frac{\partial u}{\partial x} = 1, \frac{\partial v}{\partial y} = -1.$$

Уже зауважимо, що $\frac{\partial u}{\partial x} \neq \frac{\partial v}{\partial u}$, а тому за Коші-Рімана, f(z) - не диференційована, причому ніде.

Example 3.1.7 Знайти похідну від функції $f(z)=z\operatorname{Re}(z-1)$. Маємо $f(z)=x(x-1)+iy(x-1) \implies u(x,y)=x^2-x, v(x,y)=xy-y$. Шукаємо частинні похідні: $\frac{\partial u}{\partial x}=2x-1, \frac{\partial v}{\partial y}=x-1, \frac{\partial u}{\partial y}=0, \frac{\partial v}{\partial x}=y$. Використаємо умову Коші-Рімана - отримаємо:

$$\frac{\partial u}{\partial x} = 2x - 1, \ \frac{\partial v}{\partial y} = x - 1, \frac{\partial u}{\partial y} = 0, \frac{\partial v}{\partial x} = y$$

$$\begin{cases} 2x-1=x-1\\ 0=y \end{cases} \Longrightarrow \begin{cases} x=0\\ y=0 \end{cases}.$$
 Отже, f - диференційована лише в т. $z_0=0+0i=0$, а похідна

$$f'(0) = -1 + 0 = -1.$$

Example 3.1.8 Знайти похідну $f(z)=e^z$. Розпишемо спочатку $e^z=e^{x+iy}=e^x(\cos y+i\sin y)=e^x\cos y+ie^x\sin y \implies u(x,y)=e^x\cos y;$ $v(x,y) = e^x \sin y.$

$$\partial u = e^x \cos y; \ \frac{\partial v}{\partial y} = e^x \cos y; \ \frac{\partial u}{\partial y} = -e^x \sin y; \ \frac{\partial v}{\partial x} = e^x \sin y;$$

$$\implies \begin{cases} e^x \cos y = e^x \cos y \\ -e^x \sin y = -(e^x \sin y) \end{cases}$$

 $\Longrightarrow \begin{cases} e^x \cos y = e^x \cos y \\ -e^x \sin y = -(e^x \sin y) \end{cases}.$ Дана система виконується $\forall x,y \in \mathbb{R}$. Отже, f - диференційована в будь-якій т. $z_0 \in \mathbb{C}$, а її похідна

$$f'(z_0) = \frac{\partial u}{\partial x}(x_0, y_0) + i\frac{\partial v}{\partial x}(x_0, y_0) = e^{x_0}\cos y_0 + ie^{x_0}\sin y_0 = e^{x_0}e^{iy_0} = e^{z_0}.$$

Remark 3.1.9 Насправді, всі функції з таблиці похідних (не лише e^z) мають таку ж саму похідну в комплекснозначному випадку. Також зазначу, що арифметика похідної та похідна від композиції теж зберігається для комплекснозначних функцій.

Theorem 3.1.10 Задано функцію $f:A\to\mathbb{C}$, де A - відкрита множина. Відомо, що f'(z)=0 в будь-якій точці $z \in A$.

Тоді
$$f(z) = C, C \in \mathbb{C}$$
.

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = 0 \implies \begin{cases} \frac{\partial u}{\partial x} = 0 \\ \frac{\partial v}{\partial x} = 0 \end{cases} \xrightarrow{\text{умова Коші-Рімана}} \begin{cases} du = 0 \\ dv = 0 \end{cases} \implies \begin{cases} u = C_1 \\ v = C_2 \end{cases}$$
 Отже, $f(z) = C_1 + iC_2 = C$, де $C \in \mathbb{C}$.

Corollary 3.1.11 Якщо f'(z) = g'(z) в будь-якій точці $z \in A$, то f(z) = g(z) + C. Вказівка: розглянути функцію h(z) = f(z) - g(z).

Умова Коші-Рімана в полярній системі координат 3.2

Задане комплексне число z = x + iy представимо в іншому вигляді:

$$z = |z|(\cos \varphi + i \sin \varphi).$$

Тоді якщо покласти $\rho = |z|$, то отримаємо:

$$\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \end{cases}$$

 $\dot{\mathbf{H}}$ ехай задано функцію $f: A \to \mathbb{C}$, ми маємо f(z) = u(x,y) + i(x,y).

Знайдемо такі частинні похідні для функції и:

$$\frac{\partial u}{\partial \rho} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial \rho} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial \rho} = \frac{\partial u}{\partial x} \cos \varphi + \frac{\partial u}{\partial y} \sin \varphi \quad (1)$$

$$\frac{\partial u}{\partial \varphi} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial \varphi} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial \varphi} = -\rho \sin \varphi \frac{\partial u}{\partial x} + \rho \cos \varphi \frac{\partial u}{\partial y} \quad (2)$$

Отримали систему двох рівнянь відносно $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}$, яку ми розв'яжемо.

Для отримання
$$\frac{\partial u}{\partial x}$$
 необхідно: $(1) \cdot \rho \cos \varphi - (2) \cdot \sin \varphi$ Для отримання $\frac{\partial u}{\partial y}$ необхідно: $(1) \cdot \rho \sin \varphi + (2) \cdot \cos \varphi$

Для отримання
$$\frac{\partial u}{\partial u}$$
 необхідно: $(1) \cdot \rho \sin \varphi + (2) \cdot \cos \varphi$

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial u}{\partial \rho} \cos \varphi - \frac{1}{\rho} \frac{\partial u}{\partial \varphi} \sin \varphi \\ \frac{\partial u}{\partial y} = \frac{\partial u}{\partial \rho} \sin \varphi + \frac{1}{\rho} \frac{\partial u}{\partial \varphi} \cos \varphi \end{cases}$$

Аналогічно проведемо все те саме для функції v, де хочемо знайти $\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$. Тоді отримаємо:

$$\begin{cases} \frac{\partial v}{\partial y} = \frac{\partial v}{\partial \rho} \sin \varphi + \frac{1}{\rho} \frac{\partial v}{\partial \varphi} \cos \varphi \\ \frac{\partial v}{\partial x} = \frac{\partial v}{\partial \rho} \cos \varphi - \frac{1}{\rho} \frac{\partial v}{\partial \varphi} \sin \varphi \end{cases}$$

Нарешті, застосуємо умову Коші-Рімана:
$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases} \implies \begin{cases} \frac{\partial u}{\partial \rho} \cos \varphi - \frac{1}{\rho} \frac{\partial u}{\partial \varphi} \sin \varphi = \frac{\partial v}{\partial \rho} \sin \varphi + \frac{1}{\rho} \frac{\partial v}{\partial \varphi} \cos \varphi \text{ (1)} \\ \frac{\partial u}{\partial \rho} \sin \varphi + \frac{1}{\rho} \frac{\partial u}{\partial \varphi} \cos \varphi = -\frac{\partial v}{\partial \rho} \cos \varphi + \frac{1}{\rho} \frac{\partial v}{\partial \varphi} \sin \varphi \text{ (2)} \end{cases}$$
 Зробимо ось такі перетворення системи:
$$\begin{cases} (1) \cos \varphi + (2) \sin \varphi \\ (1) \cos \varphi + (3) \sin \varphi \end{cases}$$

$$\int (1) \cdot \cos \varphi + (2) \cdot \sin \varphi$$

$$(1) \cdot \sin \varphi - (2) \cdot \cos \varphi$$

Остаточно отримаємо умову Коші-Рімана в полярній системі координат:

$$\begin{cases} \frac{\partial u}{\partial \rho} = \frac{1}{\rho} \frac{\partial v}{\partial \varphi} \\ \frac{1}{\rho} \frac{\partial u}{\partial \varphi} = -\frac{\partial v}{\partial \rho} \end{cases}$$

Показовим буде приклад нижче, навіщо взагалі умова Коші-Рімана через полярні координати.

Example 3.2.1 Знайти похідну $f(z) = z^n$.

Якщо розписати $z^n = (x+iy)^n$, то далі буде неприємно робити справу з формулою бінома Ньютона. Тому доцільно розглянути полярну заміну:

$$f(z) = z^n = |z^n|(\cos n\varphi + i\sin n\varphi) = \rho^n \cos n\varphi + i\rho^n \sin n\varphi.$$

$$= u(\rho,\varphi)$$

$$= v(\rho,\varphi)$$

Тому доцільно розглянути полярну заміну:
$$f(z) = z^n = |z^n| (\cos n\varphi + i \sin n\varphi) = \rho^n \cos n\varphi + i \rho^n \sin n\varphi.$$

$$= u(\rho,\varphi) = v(\rho,\varphi)$$
Далі шукаємо необхідні частинні похідна - отримаємо:
$$\begin{cases} n\rho^{n-1} \cos n\varphi = \frac{1}{\rho}\rho^n \cdot n \cos n\varphi \\ -\frac{1}{\rho} \cdot \rho^n n \sin n\varphi = -n\rho^{n-1} \sin n\varphi \end{cases}$$
Умова Коші-Рімана виконується завжди. А тому похідна існує всюди. Знайдемо її:
$$f(x) = \frac{1}{\rho} e^n - \cos n\varphi + \sin n\varphi = \frac{n-1}{\rho} (\cos n\varphi) + \sin n\varphi = \frac{n-1}{\rho} (\cos n\varphi) + \sin n\varphi$$

$$f'(z) = \frac{1}{\rho} \rho^n \cdot n \cos n\varphi + i n \rho^{n-1} \sin n\varphi = n \rho^{n-1} \left(\cos n\varphi + i \sin n\varphi \right) = n z^{n-1}.$$

Гармонічні функції 3.3

Definition 3.3.1 Задано функцію $f:A\to\mathbb{C}$ та $z_0\in A$ - внутрішня точка. Функція f називається **аналітичною в т.** z_0 , якщо f - диференційова в околі т. z_0 , тобто:

$$\exists \delta > 0: \forall z \in A: |z-z_0| < \delta \implies f$$
 -диференційована в т. z

Інколи таку функцію ще називають голоморфною або регулярною.

Функція f називається **аналітичноюна відкритій множині** A, якщо $\forall z_0 \in A: f$ - аналітична в

Функція f нахивається **аналітичною на довільній множині** A, якщо f можна продовжити до відкритої множини $B \supset A$, причому так, щоб f - аналітична на B.

 ${f Remark}$ 3.3.2 До речі, f аналітична на відкритій множині A - це теж саме саме, що сказати, що f диференційована на відкритій множині A.

Definition 3.3.3 Задано функцію $H:A\to\mathbb{R}^2$ (ось тут $A\subset\mathbb{R}^2$) і така точка $(x_0,y_0)\in A$, що на цьому околі існують частинні похідні другого порядку.

Функція H називається **гармонічною в т.** (x_0, y_0) , якщо справедлива рівність:

$$\frac{\partial^2 H}{\partial x^2}(x_0, y_0) + \frac{\partial^2 H}{\partial y^2}(x_0, y_0) = 0$$

Theorem 3.3.4 Задано функцію v (або u) - гармонічна в околі т. (x_0, y_0) . Тоді існує комплексна функція f - аналітична, для якого $\operatorname{Im} f(z) = v(x,y)$ (або $\operatorname{Re} f(z) = u(x,y)$).

Proof.

Оскільки v - гармонічна, то тоді $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0.$

Ми хочемо знайти u із розкладу f(z) = u(x,y) + iv(x,y). Причому ми хочемо, щоб f була аналітичною. Застосуємо умову Коші-Рімана:

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases}$$

Для знаходження u можна розписати повний диференціал:

$$du = \frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy = \frac{\partial v}{\partial y}dx - \frac{\partial v}{\partial x}dy = Pdx + Qdy.$$

Перевіримо, що ми зможемо знайти цю функцію через криволінійний інтеграл ІІ роду. Для цього перевіримо, що ми зможемо зналти до $\frac{\partial P}{\partial y}$ доведемо, що $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$. Справді, $\frac{\partial}{\partial y} \left(\frac{\partial v}{\partial y} \right) = \frac{\partial^2 v}{\partial y^2}$ та $\frac{\partial}{\partial x} \left(-\frac{\partial v}{\partial x} \right) = -\frac{\partial^2 v}{\partial x^2}$.

Справді,
$$\frac{\partial}{\partial y} \left(\frac{\partial v}{\partial y} \right) = \frac{\partial^2 v}{\partial y^2}$$
 та $\frac{\partial}{\partial x} \left(-\frac{\partial v}{\partial x} \right) = -\frac{\partial^2 v}{\partial x^2}$

Рівність є справедливою в силу гармонічності функції. Тому (за лемою Пуанкаре) наш криволінійний інтеграл II роду може бути обчисленим, а також він не залежить від шляху, тому:

нии інтеграл її роду може бут
$$u = \int_{(x_0, y_0)}^{(x,y)} \frac{\partial v}{\partial y} dx - \frac{\partial v}{\partial x} dy + C$$

Випадок, коли дано, що u - гармонічна, є аналогічним.

Remark 3.3.5 Зворотне твердження до даної теореми є вірним.

Дійсно, якщо дано функцію f - аналітична, то ми використовуємо умову Коші-Рімана. Якщо систему продиференціювати спочатку по x, додати обидві рядочки, а потім зробити ті самі процедури по y, то отримаємо умови гармонічності функцій для u, v.

Remark 3.3.6 Таке доведення, скоріш, є конструктивним на основі прикладів, аніж теоретичним.

Example 3.3.7 Дізнатись, чи є функція u(x,y) = 2xy + 3 гармонічною. Якщо так, відновити функцію f(x,y) = u(x,y) + iv(x,y).

$$\frac{\partial u}{\partial x} = 2y \implies \frac{\partial^2 u}{\partial x^2} = 0$$

$$\frac{\partial u}{\partial y} = 2x \implies \frac{\partial^2 u}{\partial y^2} = 0$$

 $ightharpoonup rac{\partial^2 u}{\partial x^2} + rac{\partial^2 u}{\partial y^2} = 0$ - гармонічна. Отже, за теоремою вище, ми можемо знайти уявну частину

функції для аналітичної функції f(z) = u(x,y) + iv(x,y). Скористаємось умовою Коші-Адамара:

$$\begin{cases} 2y = \frac{\partial v}{\partial y} \\ 2x = -\frac{\partial v}{\partial x} \end{cases} \implies dv = -2x \, dx + 2y \, dy$$

$$\implies v(x,y) = \int_{(0,0)}^{(x,y)} -2x \, dx + 2y \, dy = \dots = -x^2 + y^2 + C.$$

Отже, $f(x,y) = 2xy + 3 + i(y^2 - x^2 + C)$. Якщо звести до функції від змінної z = x + iy, то $f(z) = -iz^2 + C$.

3.4 Геометричне застосування

Задано функцію f - аналітична в т. z_0 . В околі т. z_0 розглянемо диференційовану криву $\gamma(t)=$ z(t) = x(t) + iy(t). Познаимо $z(t_0) = z_0$.

Подіємо функцією f на цю криву γ та отримаємо нову криву $\tilde{\gamma}(t) = f(z(t)).$

 $ilde{\gamma}(t)$ - диференційована в околі т. t_0 , причому

$$(\tilde{\gamma}(t))'=f'(z(t))z'(t)\iff \begin{cases} |\tilde{\gamma}(t)|'=|f'(z(t))||z'(t)|\\ \arg((\tilde{\gamma}(t))')=\arg(f'(z(t))+\arg(z'(t))\end{cases}$$
 Згадаємо формулу довжини кривої: $l(\gamma)=\int_{t_1}^{t_2}\sqrt{(x'(t))^2+(y'(t))^2}\,dt.$

У нашому випадку:

$$l(\tilde{\gamma}) = \int_{t_1}^{\tilde{t}_2} |(\tilde{\gamma}(t))'| dt$$
$$l(\gamma) = \int_{t_1}^{t_2} |z'(t)| dt$$

Тоді |f'(z(t))| - коефіцієнт розтягнення в т. z_0

 $(\tilde{\gamma}(t))', \gamma'(t))$ - дотичні вектори до кривої.

Tоді $\arg f'(z)$ - кут, на який повертається дотичний вектор

Більш розгорнуту інформацію про аналітичні функції можна побачити в підручнику Шабата "Введение в комплексный анализ".

Шматок кривої навколо т. z_0 розтянули та повернули на деякий кут. (на малюнку масштаб не відповідає реальності: тут z має бути близьким до z_0).

Example 3.4.1 Знайти кут повороту та коефіцієнт розтягнення в т. $z_0 = 1 + i$ для $f(z) = z^3$.

 $f(z_0)=(1+i)^3=(-2+2i),$ це нам ще знадобиться. Оскільки $f'(z)=3z^2,$ то $f'(z_0)=3(1+i)^2=6i \implies |f'(z_0)|=6, \arg f'(z_0)=\frac{\pi}{2}.$

4 Інтегрування

4.1 Основні методи інтегрування

Задано функцію $f:G\to\mathbb{C}$, де G - деяка область. Нехай $\Gamma\subset G$ - кусково-гладка крива орієнтовна крива, що має почааток z_0 та кінець z.

Розіб'ємо криву Γ на дуги точками $\tau = \{z_0, z_1, \dots, z_{n-1}, z_n\}$, що розташовані послідовно в додатному напрямку кривої. Оберемо ξ_k на кожній дузі між z_{k-1}, z_k .

Позначимо $|\tau| = \max_{k=\overline{1,n}} |z_k - z_{k-1}|.$

Складемо інтегральну суму $\sum_{k=1}^n f(\xi_k)(z_{k-1}-z_k) = \sigma(f,\tau,\xi).$

Definition 4.1.1 Число $C \in \mathbb{C}$ називається **інтегралом** від функції f вздовж кривої Γ , якщо

$$\forall \varepsilon > 0: \exists \delta > 0: \forall (\tau, \xi): |\tau| < \delta \implies |\sigma(f, \tau, \xi) - C| < \varepsilon$$

Позначення: $C = \int_{\Gamma} f(z) dz$.

Theorem 4.1.2 Задано функцію $f \in C_{\text{piecewise}}(G)$, де G - область. Нехай $\Gamma \subset G$ - кусково-гладка крива. Розкладемо f(z) = u(x,y) + iv(x,y). Тоді інтеграл від f вздовж кривої Γ буде існувати, причому

$$\int_{\Gamma} f(z) dz = \int_{\Gamma} u(x,y) dx - v(x,y) dy + i \int_{\Gamma} v(x,y) dx + u(x,y) dy.$$

Proof.

Маємо f(z)=u(x,y)+iv(x,y), також $z_k=x_k+iy_k$, а також $\xi_k=\tilde{x}_k+i\tilde{y}_k$. Тоді

$$\sigma(f,\tau,\sigma) = \sum_{k=1}^{n} f(\xi_k)(z_k - z_{k-1}) = \sum_{k=1}^{n} (u(\tilde{x}_k, \tilde{y}_k) + iv(\tilde{x}_k, \tilde{y}_k))(x_k - x_{k-1} + i(y_k - y_{k-1})) = \sum_{k=1}^{n} f(\xi_k)(z_k - z_{k-1}) = \sum_{k=1}^{n} (u(\tilde{x}_k, \tilde{y}_k) + iv(\tilde{x}_k, \tilde{y}_k))(x_k - x_{k-1} + i(y_k - y_{k-1})) = \sum_{k=1}^{n} f(\xi_k)(z_k - z_{k-1}) = \sum_{k=1}^{n} (u(\tilde{x}_k, \tilde{y}_k) + iv(\tilde{x}_k, \tilde{y}_k))(x_k - x_{k-1} + i(y_k - y_{k-1})) = \sum_{k=1}^{n} f(\xi_k)(z_k - z_{k-1}) = \sum_$$

$$= \sum_{k=1}^{n} (u(\tilde{x}_k, \tilde{y}_k) \Delta x_k - v(\tilde{x}_k, \tilde{y}_k) \Delta y_k) + i \sum_{k=1}^{n} (v(\tilde{x}_k, \tilde{y}_k) \Delta x_k + u(\tilde{x}_k, \tilde{y}_k) \Delta y_k).$$

Запишу я ось так: $\sigma = \sigma_{Re} + i\sigma_{Im}$.

Оскільки функція f кусково неперервна, то тоді функції u, v також. Зокрема векторні поля $(u, -v)^T$, (v, u) будуть кусково неперервними. Значить, у нас вже існують інтеграли ІІ роду, що знаходяться в теоремі праворуч від знака дорівнює. А тому далі неважко буде прийти до рівності.

Example 4.1.3 Обчислити
$$\int\limits_{\Gamma} \operatorname{Im}(z) \, dz$$
, де $\Gamma = \{(x,y): y=2x^2, 0 \leq x \leq 1\}$.

Маємо функцію f(z) = Im z. Запишемо f(z) = u(x,y) + iv(x,y), у цьому випадоку u(x,y) = y, v(x,y) = 0. Отже,

$$\int_{\Gamma} \operatorname{Im}(z) dz = \int_{\Gamma} y dx + i \int_{\Gamma} y dy.$$

Кожний криволінійний інтеграл ІІ роду обчислимо окремо. Але вже запишу параметризацію:

 $x = t, t \in [0, 1], y = 2t^2$ dx = dt, dy = 4t dt.

$$\int_{\Gamma} y \, dx = \int_{0}^{1} 2t^{2} \, dt = \frac{2}{3}t^{3} \Big|_{0}^{1} = \frac{2}{3}.$$

$$\int y \, dy = \int_{0}^{1} 2t^{2} \cdot 4t \, dt = 2t^{4} \Big|_{0}^{1} = 2.$$

Отже, остаточно
$$\int\limits_{\Gamma} \mathrm{Im}(z)\,dz = \frac{2}{3} + 2i.$$

4.2 Властивості та інші теореми

Proposition 4.2.1 Інтеграл $\int_{z}^{z} f(z) dz$ від параметризації кривої не залежить.

Випливає з властивостей криволінійного інтегралу ІІ роду

Proposition 4.2.2 Для цього ж інтегралу виконуються лінійні властивості та адитивність. Випливають з властивостей криволінійного інтегралу ІІ роду

Theorem 4.2.3 Ознака модуля

$$\left| \int_{\gamma} f(z) \, dz \right| \le \int_{\gamma} |f(z)| \, |dz|$$

Proof.

$$\left|\sum_{k=1}^{n} f(\xi_k)(z_{k-1}-z_k)\right| \leq \sum_{k=1}^{n} |f(\xi_k)| z_{k-1}-z_k| \leq \sum_{k=1}^{n} f(\xi_k)|z_{k-1}z_k|.$$
 Тут $|z_{k-1}-z_k| \leq |z_{k-1}z_k|$. Ліворуч - це довжина прямої між цими двома точками, а праворуч - це

довжина кривої між цими точками.

А далі ми просто робимо $|\tau| \to 0$, тоді буде граничний перехід. Отже,

$$\left| \int_{\gamma} f(z) \, dz \right| \le \int_{\gamma} |f(z)| \, |dz|.$$

Праворуч - це тіпа криволінійний інтеграл I роду по криві γ . Тут замість dl я написав |dz|, щоб був більш вагомий акцент.

Перед іншими теоремами нагадаю дещо.

 \in область D. Однозв'язним називають ту область D, де ∂D (границя області) \in зв'язною множиною.

Ліворуч - однозв'язна область. Праворуч - вже не є однозв'язною, оскільки вона містить (грубо кажучи) дірки.

Theorem 4.2.4 Теорема Коші

Задано D - обмежена область, ∂D - кусково-гладка границя та функцію f - аналітична в $D \cup \partial D$.

$$\int_{\partial D} f(z) dz = \int_{\partial D} u dx - v dy + i \int_{\partial D} v dx + u dy = 0$$

За теоремою Коші-Рімана, можна побачити, що коефіцієнти при dx рівні коефіцієнту при dy в кожному інтегралі. Тоді за лемою Пуанкаре про незалежність від шляху, ми отримаємо бажане. = 0.

Corollary 4.2.5 Задано функцію f - аналітична в однозв'язній області D. Тоді для довільного замкненого контуру γ в D виконується рівність:

$$\oint f(z) \, dz = 0.$$

Corollary 4.2.6 Інтеграл від комплексної функції не залежить від шляху. А тому якщо є якась крива γ , що проходить через z_1, z_2 , то ми можемо застосувати позначення:

$$\int_{z_1}^{z_2} f(z) \, dz = \int_{z_1}^{z_2} f(z) \, dz.$$

Однозв'язна область D і замкнений контур γ

Example 4.2.7
$$\oint_{|z|=\frac{1}{2}} \frac{z^2}{z-i} dz = 0$$

Звісно, є неприємна точка z=i, але незважаючи на це, в колі $|z|=\frac{1}{2}$ наша функція є аналітичною. Тому теорема Коші спрацьовує.

Перед наступною теоремою, я би хотів швидко обчислити один інтеграл.

Example 4.2.8 Обчислити $\int 1 \, d\zeta$, де крива γ сполучає точки z_1 (початок) та z_2 (кінець).

Оскільки $f(\zeta)=1$ - аналітична всюди, тоді не буде залежності від шляху. А тому ми можемо розглянути пряму, що проходить через z_1, z_2 .

$$\int_{\gamma} 1 \, d\zeta = \int_{\gamma} 1 \, dx + i \int_{\gamma} 1 \, dy =$$

$$x=t,t\in [x_1,x_2]$$
 та $y=rac{y_2-y_1}{x_2-x_1}(t-x_1)+y_1.$ Тоді звідси $dx=dt,dy=rac{y_2-y_1}{x_2-x_1}$ dt

Отже, $\int_{\gamma}^{z_1} 1 \, d\zeta = \int_{z_1}^{z_2} 1 \, d\zeta = z_2 - z_1$ - схоже на застосування формули Ньютона-Лейбніца. У цьому випадку F(z) = z буде первісною для функції f(z) = 1.

Theorem 4.2.9 Задано функцію f - аналітична в однозв'язній області D. Тоді функція f має первісну F в області D.

Розглянемо функцію $F(z) = \int_{z_0}^z f(\zeta) \, d\zeta$ - інтеграл з верхньою межею. Перевіримо, що F'(z) = f(z).

$$\frac{F(z) - F(z_1)}{z - z_1} = \frac{1}{z - z_1} \left[\int_{z_0}^z f(\zeta) \, d\zeta - \int_{z_0}^{z_1} f(\zeta) \, d\zeta \right] = \frac{1}{z - z_1} \int_{z_1}^z f(\zeta) \, d\zeta$$
 Водночас за попереднім прикладом, отримаємо
$$f(z_1) = f(z_1) \frac{1}{z - z_1} \cdot (z - z_1) = \frac{1}{z - z_1} \int_{z_1}^z f(z_1) \, d\zeta$$

$$f(z_1) = f(z_1) \frac{1}{z - z_1} \cdot (z - z_1) = \frac{1}{z - z_1} \int_{-z_1}^{z} f(z_1) d\zeta$$

Звідси випливає, що:
$$\left|\frac{F(z)-F(z_1)}{z-z_1}-f(z_1)\right|=\frac{1}{|z-z_1|}\left|\int_{z_1}^z f(\zeta)\,d\zeta-\int_{z_1}^z f(z_1)\,d\zeta\right|=\\ =\frac{1}{|z-z_1|}\left|\int_{z_1}^z f(\zeta)-f(z_1)\,d\zeta\right|\leq \frac{1}{|z-z_1|}\int_{z_1}^z |f(\zeta)-f(z_1)|\,|d\zeta||\leq \\ \text{Оскільки }f\text{ - аналітична, то вона є неперервною. Звідси - рівномірно неперервна, тобто }\forall \varepsilon>0\\ \exists \delta:\forall z:|z-z_0|<\delta\Rightarrow|f(z)-f(z_1)|<\varepsilon.\text{ Тоді }|\zeta-z_1|<\delta\Rightarrow|f(\zeta)-f(z_1)|<\varepsilon \\ \hline{} \Box\int_{-\infty}^z |d\zeta|=\varepsilon.$$

$$\leq \frac{1}{|z-z_1|} \int_{z_1}^{z_1} \varepsilon |d\zeta| = \varepsilon$$

Це означає, що
$$\exists \lim_{z \to z_1} \frac{F(z) - F(z_1)}{z - z_1} = f(z_1) = F'(z_1)$$
. І це $\forall z_1 \in D$

Corollary 4.2.10 Якщо
$$\Phi$$
 - первісна, то $\int_{z_0}^{z_1} f(z) dz = \Phi(z_1) - \Phi(z_0)$.

Proof.

 Φ - первісна $\implies \Phi'(z) = f(z)$

За щойно доведеною теоремою, F'(z)=f(z). Отже, $\Phi(z)=F(z)+C$

$$\begin{cases} \Phi(z_0) = 0 + C \\ \Phi(z_1) = F(z_1) + C \end{cases} \implies F(z_1) = \Phi(z_1) - \Phi(z_0)$$

Remark 4.2.11 Існування первісної не обов'язково в однозв'язній області.

Трохи ліричного відступу по темі

У нас взагалі ще існують функції вигляду $f:A\to\mathbb{C}$, де тепер $A\subset\mathbb{R}$. Тобто функція приймає дійсне число, а повертає вже комплексне. Тоді функцію f можна розписати як f(t)=u(t)+iv(t).

У цьому випадку $u(t) = \operatorname{Re} f(t), v(t) = \operatorname{Im} f(t),$ обидва $u, v : A \to \mathbb{R}$.

Оскільки $\mathbb{R} \subset \mathbb{C}$ (як множини чисел), то зокрема $A \subset \mathbb{C}$, а тому ось цей типаж функції ми можемо розглядати як функцію, що приймає комплексне число, а повертає комплексне значення. Ось так: u(t) = u(t,s), де s=0

v(t) = v(t, s), де s = 0

$$f(t) = u(t,s) + iv(t,s) = f(t+is),$$
 де $s = 0.$

Тепер розглянемо функцію $f:A\to\mathbb{C},$ де $A=[a,b]\subset\mathbb{R}.$ Наш відрізок [a,b] буде кривою $\gamma,$ починаючи з точки a. Тоді подивимось на інтеграл:

$$\int_{\gamma} f(z) dz = \int_{\gamma} u(x, y) dx - v(x, y) dy + i \int_{\gamma} v(x, y) dx + u(x, y) dy =$$

Параметризація кривої: $x=t, t\in [a,b], \overset{\gamma}{y}=0.$ Звідси маємо dx=dt, dy=0.

Із іншого боку, відрізок [a,b] на комплексній площині буде однов'язною (бо це одна границя, яка зв'язна), тому можна записати так:

$$\int f(z) dz = \int_a^b f(z) dz = \int_a^b u(t) + iv(t) dt.$$

Таким чином, ми чесно отримали, що

$$\int_{a}^{b} u(t) + iv(t) dt = \int_{a}^{b} u(t) dt + i \int_{a}^{b} v(t) dt$$

при u, v - дійсно значні функції.

Повернімось до основної теми

Theorem 4.2.12 Задано криву γ параметричним рівнянням z=z(t), причому $t\in [\alpha,\beta]$. Тоді $\int\limits_{\gamma} f(z)\,dz = \int\limits_{\alpha}^{\beta} f(z(t))z'(t)\,dt.$

Proof.

Маємо криву z(t) = x(t) + iy(t). Тоді розпишемо, що маємо:

$$\int_{\gamma} f(z) dz = \int_{\gamma} u(x(t), y(t)) dx - v(x(t), y(t)) dy + i \int_{\gamma} v(x(t), y(t)) dx + u(x(t), y(t)) dy = \int_{\alpha}^{\beta} u(x(t), y(t))x'(t) - v(x(t), y(t))y'(t) dt + i \int_{\alpha}^{\beta} v(x(t), y(t))x'(t) + u(x(t), y(t))y'(t) dt = \int_{\alpha}^{\beta} [u(x(t), y(t)) + iv(x(t), y(t))]x'(t) + [iu(x(t), y(t)) - v(x(t), y(t))]y'(t) dt = \int_{\alpha}^{\beta} [u(x, y) + iv(x, y)]x'(t) + i[u(x, t) + v(x, y)]y'(t) dt = \int_{\alpha}^{\beta} f(z(t))(x'(t) + iy'(t)) dt = \int_{\alpha}^{\beta} f(z(t))z'(t) dt.$$

Example 4.2.13 Важливий

Обчислити
$$\oint\limits_C \frac{dz}{(z-z_0)^n}$$
 по колу $C=\{z:|z-z_0|=R\}, n\in\mathbb{N}.$

Зробимо параметризацію: $z-z_0=Re^{it}, t\in \overline{[0,2\pi]}$ $dz = Rie^{it} dt$

$$\implies \oint \frac{dz}{(z-z_0)^n} = \int_0^{2\pi} \frac{Rie^{it} dt}{R^n e^{nit}} = i \int_0^{2\pi} R^{1-n} e^{(1-n)it} dt = \left[\frac{2\pi i, n=1}{\frac{1}{R^{n-1}} \frac{1}{(1-n)i}} e^{(1-n)it} \Big|_0^{2\pi} = 0, n \neq 1 \right].$$

По-перше, зауважимо, що при n=1 інтеграл ніяк не залежить від радіусу кола, а також від центру кола z_0 .

По-друге, цей приклад гарантує, що умова однозв'язності області важлива для теореми Коші. У цьому випадку область, що всередині кривої C без точки z_0 , не буде однозв'язною.

Theorem 4.2.14 Теорема Коші 2

Задано функцію f - аналітична в області D. Відомо, що замкнені контури $\gamma_1, \ \gamma_2$ обмежують однозв'язну область $D_{\gamma_1\gamma_2}$, де f - аналітична. Тоді

$$\oint_{\gamma_1} f(z) \, dz = \oint_{\gamma_2} f(z) \, dz$$

Тут $D_{\gamma_1\gamma_2}$ яскраво-блакитна область

Ргооf. Вважатимемо, що контури
$$\gamma_1^+, \gamma_2^+$$
 протилежно напрямлені.
$$\oint f(z) \, dz - \oint f(z) \, dz = \oint f(z) \, dz + \oint f(z) \, dz = \oint f(z) \, dz = f(z) \, d$$

Theorem 4.2.15 Інтегральна формула Коші

Задано функцію f - аналітична в області D і т. $z_0 \in D$. Відомо, що замкнений контур $\gamma \in D$ охоплює т. z_0 та обмежує однозв'язну область D_{γ} .

Тоді
$$\oint\limits_{\infty} \frac{f(z)}{z-z_0}\,dz = 2\pi i\cdot f(z_0).$$

Рис. 1: Контур γ утворює однозв'язну область.

Proof.

Розглянемо коло $C=\{z:|z-z_0|=\rho\}$ таке, що $C\subset D_\gamma.$ Тоді за попередньою теоремою,

$$\oint_{\gamma} \frac{f(z)}{z - z_0} dz = \oint_{C} \frac{f(z)}{z - z_0} dz$$

$$\begin{array}{l} \gamma & C \\ \Pi \text{ Покладемо } z-z_0=\rho e^{it} \implies dz=\rho i e^{it}\, dt \\ \hline \equiv \int_0^{2\pi} \frac{f(z_0+\rho e^{it})}{\rho e^{it}} \cdot \rho i e^{it}\, dt=i \int_0^{2\pi} f(z_0+\rho e^{it})\, dt=i \int_0^{2\pi} f(z_0+\rho e^{it})-f(z_0)\, dt+i \int_0^{2\pi} f(z_0)\, dt=i \int_0^{2\pi} f(z_0+\rho e^{it})-f(z_0)\, dt+2\pi i f(z_0). \end{array}$$

А далі зауважимо, що $\int_0^{2\pi} f(z_0 + \rho e^{it})\,dt \to 0$ при $\rho \to 0$ в силу того, що f аналітична. Тому легко отримаємо бажану рівніс

Example 4.2.16
$$\oint_{|z|=1} \frac{\sin z}{z} dz = 2\pi i \sin 0 = 0.$$

Більш просунуті речі

Definition 4.2.17 Первісною функції f в області D назвемо таку голоморфну в D функцію F,

$$F'(z) = f(z)$$

Theorem 4.2.18 Маємо функцію f в області D. Нехай F, Φ - дві первісні в області D. Тоді $\Phi(z) = F(z) + C$. Зрозуміло.

Lemma 4.2.19 Задано функцію $f \in C(U)$, де $U = \{z : |z-a| < r\}$ - коло. Візьмемо $\Delta \subset U$ будь-який трикутник, одна з вершин це точка a, причому границі лежать також всередині. Відомо, що $\oint_{\partial \Delta} f(z) dz = 0.$

Тоді існує первісна $F(z) = \int_a^z f(\zeta) \, d\zeta$ в області U.

Proof.

Оберемо довільну точку
$$z\in U$$
, беремо таке h , щоб $z+h\in U$. Тоді
$$\int_a^z f(\zeta)\,d\zeta+\int_z^{z+h}f(\zeta)\,d\zeta=\int_a^{z+h}f(\zeta)\,d\zeta.$$

Дана рівність виконана в силу того, що $\oint_{\partial \Delta} f(z) dz = 0.$

$$F(z+h) - F(z) = \int_{z}^{z+h} f(\zeta) d\zeta.$$

Також зауважимо, що $\int_{z}^{z+h} f(z) d\zeta = f(z)h$, а тому звідси

$$\left|\frac{F(z+h)-F(z)}{h}-f(z)\right| \leq \frac{1}{|h|} \int_{z}^{z+h} |f(\zeta)-f(z)| \, d\zeta < \varepsilon.$$
 Оскільки $f \in C(U)$, то тоді $\forall \varepsilon > 0: \exists \delta: \forall \zeta: |\zeta-z| < \delta \implies |f(\zeta)-f(z)| < \varepsilon.$ Таким чином, $F'(z)=f(z)$ в будь-якій точці $z \in U.$

Remark 4.2.20 Не обов'язково вимагати, щоб саме будь-який трикутник мав інтеграл нулевий. Адже цей трикутник можна розписати як суму трьох трикутників з вершиною a, а всі вони нулі автоматом.

Lemma 4.2.21 Задано функцію f - голоморфна в області D.

Тоді для будь-якого трикутника, $\Delta \subset D$ разом з границями маємо $\oint_{\mathbb{R}^n} f(z) \, dz = 0.$

Proof.

!Припустимо, що існує трикутник $\Delta\subset D$ разом з границями, для якого $\left|\oint_{\mathbb{R}^\Delta}f(z)\,dz\right|=M>0.$ Трикутник Δ розіб'ємо на 4 трикутника, проводячи середні лінії.

Будемо всі трикутники орієнтовувати в протилежний напрямок.
$$\oint_{\partial \Delta} f(z) \, dz = \oint_{\partial \Delta_{(1)}} f(z) \, dz + \oint_{\partial \Delta_{(2)}} f(z) \, dz + \oint_{\partial \Delta_{(3)}} f(z) \, dz + \oint_{\partial \Delta_{(4)}} f(z) \, dz.$$
 Думаю, цю рівність пояснювати не треба. Звідси випливає, що серед чотирьох трикутників існує

один, який я позначу Δ_1 , для якого

$$\left| \oint_{\partial \Delta_1} f(z) \, dz \right| \ge \frac{M}{4}.$$

 $\stackrel{\circ}{\mathrm{Oc}}_{\mathrm{b}}$ цей трикутник Δ_1 ми аналогічно розбиваємо, проводячи середнії лінії. Аналогічно записуємо інтеграл за $\partial \Delta_1$ як суму інтегралів по кожному трикутнику. Аналогічно знайдеться серед чотирьох трикутників трикутник, який позначу за Δ_2 , для якого

$$\left| \oint_{\partial \Delta_1} f(z) \, dz \right| \ge \frac{M}{4^2}.$$

. Так продовжуємо, отримаємо $\left|\oint_{\partial\Delta_n}f(z)\,dz\right|\geq \frac{M}{4^n}, \forall n\geq 1.$ Ці трикутники Δ_n зобов'язані мати спільну точку $z_0\in\Delta\subset D.$ У силу голоморфності функції f,

$$\forall \varepsilon > 0 : \exists \delta : \forall z \in U' : |\alpha(z)| = \left| \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0) \right| < \varepsilon.$$

маємо в т. z_0 , що $\forall \varepsilon>0:\exists \delta:\forall z\in U':|\alpha(z)|=\left|\frac{f(z)-f(z_0)}{z-z_0}-f'(z_0)\right|<\varepsilon.$ У цьому випадку $U'=\{z:0<|z-z_0|<\delta\}.$ Цей окіл має містити якийсь трикутник, що бере

участь у послідовності
$$\Delta_1, \Delta_2, \ldots$$
 Позначу за Δ_N . Отже,
$$\oint_{\partial \Delta_N} f(z) \, dz = \oint_{\partial \Delta_N} f(z_0) \, dz + \oint_{\partial \Delta_N} f'(z_0) (z-z_0) \, dz + \oint_{\partial \Delta_N} \alpha(z) (z-z_0) \, dz = \oint_{\partial \Delta_N} \alpha(z) (z-z_0) \, dz.$$
 Зауважимо, що $|z-z_0| \leq |\partial \Delta_N|$, де $|\partial \Delta_N|$ позначаю за периметр трикутника. Причому за нашою

побудовою, $|\partial \Delta_N| = \frac{|\partial \Delta|}{2^N}$. Отже,

$$\left| \oint_{\partial \Delta_N} f(z) \, dz \right| = \left| \oint_{\partial \Delta_N} \alpha(z) (z - z_0) \, dz < \varepsilon |\partial \Delta_N|^2 = \varepsilon \frac{|\partial \Delta|^2}{4^N}$$

 $\left|\oint_{\partial\Delta_N} f(z)\,dz\right| = \left|\oint_{\partial\Delta_N} \left|\alpha(z)(z-z_0)\,dz < \varepsilon|\partial\Delta_N|^2 = \varepsilon\frac{|\partial\Delta|^2}{4^N}.\right|$ Використовуючи найпершу нерівність разом з найостаннішою, отримаємо $0 \le M < \varepsilon|\partial\Delta|^2 \implies$ M=0. Суперечність!

Theorem 4.2.22 Існування первісної локально

Задано функцію f - голоморфна в області D.

Тоді для будь-якого кола $U = \{z : |z - z_0| < r\} \subset D$ існує первісна $F(z) = \int_{-z}^{z} f(\xi) d\xi$.

Спочатку друга лема, потім перша лема.

4.3 Степеневі ряди

Для комплексних чисел степеневий ряд визначається так само:

$$\sum_{n=0}^{\infty} c_n (z - z_0)^n$$

Так само радіус збіжності визначається або за Даламбером, або за Коші-Адамаром.

$$R = \lim_{n \to \infty} \frac{|c_n|}{|c_{n+1}|}$$
 або $R = \frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{|c_n|}}}$

Область збіжності визначає нерівність:

$$|z - z_0| < R$$

Example 4.3.1 Визначити область збіжності ряду $\sum_{n=1}^{\infty} \frac{(z-1)^n}{n^2 2^n}$.

Знайдемо радіус
$$R$$
 за Коші-Адамара:
$$R = \frac{1}{\varlimsup_{n \to \infty} \sqrt[n]{\frac{1}{|n^2 2^n|}}} = \frac{1}{\frac{1}{2} \lim_{n \to \infty} \sqrt[n]{\frac{1}{|n^2|}}} = 2$$

Отже, степеневий ряд збігається, коли |z-1| < 2.

Надалі будемо вважати, що ми вже знаємо про цей факт:

$$\sum_{z=0}^{\infty}z^n=\frac{1}{1-z}$$
при $|z|<1$

Хоча це доволі неважко показати, але тим не менш.

Theorem 4.3.2 Теорема Тейлора

Задано функцію f - аналітична в області D.

Тоді знайдеться коло $\{\zeta: |\zeta-z_0| < R\} \subset D$, де функція f розкладається в ряд

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$
$$c_n = \frac{1}{2\pi i} \oint_{|\zeta - z_0| = \rho < R} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta$$

Proof.

Скористаємось інтегральною формулою Коші: $\oint \frac{f(\zeta)}{\zeta - z} \, d\zeta = 2\pi i f(z)$

За ще одною теоремою Коші, ми можемо змінити контуру інтегрування. Тоді отримаємо:

$$f(z) = \frac{1}{2\pi i} \oint_{|\zeta - z_0| = \rho} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \oint_{|\zeta - z_0| = \rho} \frac{f(\zeta)}{\zeta - z_0 + z_0 - z} d\zeta = \frac{1}{2\pi i} \oint_{|\zeta - z_0| = \rho} \frac{f(\zeta)}{\zeta - z_0 + z_0 - z} d\zeta$$

Тут ми оберемо таке ho, щоб $\left| \frac{z-z_0}{\zeta-z_0} \right| < 1$

$$= \frac{1}{2\pi i} \oint_{|\zeta - z_0| = \rho} \frac{f(\zeta)}{\zeta - z_0} \cdot \frac{1}{1 - \frac{z - z_0}{\zeta - z_0}} d\zeta = \frac{1}{2\pi i} \oint_{|\zeta - z_0| = \rho} \frac{f(\zeta)}{\zeta - z_0} \cdot \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{(\zeta - z_0)^n} d\zeta =$$

$$= \sum_{n=0}^{\infty} \frac{1}{2\pi i} \oint_{|\zeta - z_0| = \rho} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta \cdot (z - z_0)^n$$

Нарешті, якщо покласти
$$c_n = \frac{1}{2\pi i} \oint_{|\zeta-z_0|=\rho} \frac{f(\zeta)}{(\zeta-z_0)^{n+1}} d\zeta$$
, то $f(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n$.

Ми внесли інтеграл в середину степеневого ряду. Це також можливо, як в степеневих рядах дійсного аналізу. ■

Corollary 4.3.3
$$|c_n| \leq \frac{M}{\rho^n}$$
, $\text{ge } M = \max_{z \in D} |f(z)|$.

Proof.

$$|c_n| = \left| \frac{1}{2\pi i} \right| \oint_{|\zeta - z_0| = \rho} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta \le \frac{1}{2\pi} \oint_{|\zeta - z_0| = \rho} \left| \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} \right| |dz| \stackrel{\zeta - z_0 = \rho e^{it}}{\leq}$$

$$|f(\zeta)| \le M \underbrace{\frac{1}{2\pi} \int_{0}^{2\pi} \frac{M}{\rho^n} dt}_{0} = \frac{M}{\rho^n}$$

Theorem 4.3.4 Теорема Луівілля

Задано функцію f - аналітична всюди, але обмежена. Тоді $f(z)=C,C\in\mathbb{C}.$

Proof.

За попередньою теоремою, ми можемо розкласти в ряд f(z). Оскільки вона всюди аналітична, ми можемо спрямувати $R \to \infty$. Тоді за щойно доведеним наслідком, $|c_n| \le \frac{M}{R^n} \to 0$, але c_n ніяк не залежить від обраного R.

Отже,
$$c_n = 0$$
 при $n \neq 0 \implies f(z) = c_0$.

Corollary 4.3.5 $\cos z$ та $\sin z$ не ε обмеженими.

Theorem 4.3.6 Розклад степеневого ряду є єдиним.

Це випливає, насправді, з теореми Тейлора. Можна спробувати припустити, що є два ряди, рівні за значенням, але коефіцієнти різні. Причому, радіус збіжності теж може бути різним. Але розписуючи коефіцієнти, ми прийдемо до їхньої рівності через всілякі теореми Коші.

Proposition 4.3.7 Задано функцію f, що має первісну в області D, Тоді f аналітична в D.

Proof

Отже, нехай є первісна F, яка може розкластися в ряд Тейлора:

$$F(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n, |z-z_0| < R.$$
 Тоді
$$f(z) = F'(z) = \sum_{n=1}^{\infty} nc_n (z-z_0)^{n-1} \implies f'(z) = \sum_{n=2}^{\infty} n(n-1)c_n (z-z_0)^{n-2}$$

Ряд має такий самий радіус збіжності.

Proposition 4.3.8 Задано функцію f - аналітична в області D. Тоді f - ∞ -диференційована.

From:

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n \implies$$

$$\forall k \ge 1 : \exists f^{(k)}(z) = \sum_{n=k}^{\infty} n(n-1) \cdots (n - (k-1)) c_n (z - z_0)^{n-k}.$$

У всіх такий самий радіус збіжності.

Theorem 4.3.9 Задані f,g - аналітичні в колі $|z-z_0| < R$ таким чином, що множина $S = \{z:$ f(z) = g(z)} містить граничну точку z_0 . Тоді f(z) = g(z) на всьому колі.

Розкладемо обидві функції в степеневий ряд:

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$
$$g(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

Далі розглянемо послідовність $\{z_k, k \geq 1\} \subset S$ таку, що $\lim_{k \to \infty} z_k = z_0$. Тоді $\forall k: f(z_k) = g(z_k) \implies$

$$\lim_{k \to \infty} f(z_k) = \lim_{k \to \infty} g(z_k)$$

$$\lim_{k\to\infty} f(z_k) = \lim_{k\to\infty} g(z_k)$$

$$\frac{c_0^{||}}{c_0^{||}} \qquad a_0^{||}$$

$$f(z_k) - c_0 = f(z_k) - a_0$$
 Ділимо на $z - z_k$. Тоді
$$\frac{1}{z_k - z_0} (f(z_k) - c_0) = \frac{1}{z_k - z_0} (f(z_k) - a_0)$$

$$\sum_{n=1}^{\infty} c_n (z_k - z_0)^{n-1} = \sum_{n=1}^{\infty} a_n (z_k - z_0)^{n-1}$$

$$\Longrightarrow c_1 = a_1 \text{ при } k \to \infty$$

$$f(z_k) - c_0 - c_1 (z - z_0) = g(z_k) - a_0 - a_1 (z - z_0)$$
 Ділимо на $(z - z_k)^2$. Тоді... За МІ, ми отримаємо, що $\forall n \geq 1 : c_n = a_n \Rightarrow f(z) = g(z)$.

Corollary 4.3.10 Маємо такі ряди:

$$e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!}$$

$$\sin z = \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n+1}}{(2n+1)!}$$

$$\cos z = \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n}}{(2n)!}$$

Радіус збіжності - всюди.

Proof.

Доведу лише перший ряд. Решта аналогічно.

Маємо
$$f(z) = e^z, g(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$
.

Якщо покласти $S=\mathbb{R},$ то тоді вона має 0 - гранична точка S та $f(x)=g(x), \forall x\in\mathbb{R}.$ Отже, f(z) = g(z).

Corollary 4.3.11 Задано функцію f - аналітична в D. Тоді функцію можна розкласти як ряд Тейлора:

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

Proof.

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n, |x - x_0| < R$$

$$g(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (z - x_0)^n$$

Якщо покласти $S=(x_0-R,x_0+R)$, де x_0 - гранична точка, то отримаємо f(z)=g(z).

Corollary 4.3.12 Узагальнена інтегральна формула Коші

Задано функцію f - аналітична в області D і т. $z_0 \in D$. Відомо, що замкнений контур $\gamma \in D$ охоплює т. z_0 та обмежує однозв'язну область D_{γ} .

Тоді
$$\oint \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(z_0).$$

Example 4.3.13 Розкласти функцію $\frac{1}{5+z^2}$ в ряд Тейлора

$$\frac{1}{5+z^2} = \frac{1}{5} \frac{1}{1+\frac{z^2}{5}} = \frac{z^2}{5} = \frac{1}{5} \frac{1}{1+t} = \frac{1}{5} \frac{1}{1-(-t)} = \frac{1}{5} \sum_{n=0}^{\infty} (-t)^n = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{5^{n+1}}$$

$$\text{\textsup} |-t| < 1 \Rightarrow \left| \frac{z^2}{5} \right| < 1 \Rightarrow |z| < \sqrt{5}$$

Example 4.3.14
$$\oint_{|z+i|=1} \frac{\sin z}{(z+i)^3} dz = \frac{2\pi i}{2!} (\sin z)'' \Big|_{z=-i} = -\pi \sinh 1$$

Theorem 4.3.15 Теорема Морери

Задано функцію $f \in C(D)$, де D - однозв'язна область. Відомо, що для довільного закмненого контуру γ в D виконується $\oint\limits_{-\infty} f(z) dz = 0$.

Тоді f - аналітична в D.

Proof.

Із умови випливає, що інтеграл не залежить від шляху. Отже, коректно визначеним буде наступний

$$F(z) = \int_{z_0}^z f(\zeta) \, d\zeta, z_0 \in D$$
. Доведемо, що F - первісна до f . $F(z_0 + \Delta z) - F(z_0)$ 1 $f^{z_0 + \Delta z}$

$$\frac{F(z_0+\Delta z)-F(z_0)}{\Delta z}=\frac{1}{\Delta z}\int_{z_0}^{z_0+\Delta z}f(\zeta)\,d\zeta$$
 Крім того, $\int_{z_0}^{z_0+\Delta z}f(z_0)\,d\zeta=f(z_0)\Delta z$. Тоді

Крім того,
$$\int_{z_0}^{z_0+\Delta z} f(z_0) d\zeta = f(z_0)\Delta z$$
. Тоді

$$\left| \frac{F(z_0 + \Delta z) - F(z_0)}{\Delta z} - f(z_0) \right| \le \frac{1}{|\Delta z|} \int_{z_0}^{z_0 + \Delta z} |f(\zeta) - f(z)| \, d\zeta \le 1$$

Оскільки $f \in C(D)$, то тоді вона неперервна в якомусь колі $\{z: |z-\zeta| > r\} \subset D$. Звідси вона рівномірно неперервна в колі, а далі можна аналогічно (як було на кілька теорем вище) прийти до нерівності $|f(\zeta) - f(z)| < \varepsilon$.

 $\overleftarrow{\mathrm{Oтж}}$ е, F'(z)=f(z). Тому F - аналітична, а тоді - ∞ -диференційована. Випливає, що $\exists F''(z)=f(z)$ $f'(z) \implies f$ - аналітична.

Theorem 4.3.16 Узагальнення

Задано функцію $f \in C(D)$, де D - однозв'язна область. Тоді наступні умови є еквівалентними:

$$\underbrace{\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases}}_{R} \iff \forall \gamma \in D : \underbrace{\oint_{\gamma} f(z) \, dz = 0}_{C} \iff f \underbrace{\underbrace{-\text{розкладається в Тейлора}}_{W}$$

Proof.

Схематичне доведення

Нулі аналітичної функції

Definition 4.4.1 Задано функцію f - аналітична в D. Точка $z_0 \in D$ називається **нулем функції** f(z), якщо

$$f(z_0) = 0$$

Точка $z_0 \in D$ називається **нулем кратності** k, якщо

$$\exists g$$
 — аналітична в $D: f(z) = (z - z_0)^k g(z), g(z_0) \neq 0$

Theorem 4.4.2 Задано функція f - аналітичн

$$z_0$$
 - корінь кратності $k \iff \begin{cases} f(z_0) = f'(z_0) = \cdots = f^{(k-1)}(z_0) = 0 \\ f^{(k)}(z_0) \neq 0 \end{cases}$

Proof.

 \Rightarrow Дано: z_0 - корінь кратності k, тобто $\exists g$ - аналітична: $f(z)=(z-z_0)^kg(z),\ g(z_0)\neq 0$.

Оскільки
$$g$$
 - аналітична, то $g(z) = \sum_{n=0}^{\infty} \frac{g^{(n)}(z_0)}{n!} (z - z_0)^n$.

$$\implies f(z) = \sum_{n=0}^{\infty} \frac{g^{(n)}(z_0)}{n!} (z - z_0)^{n+k} = \sum_{m=0}^{\infty} \frac{f^{(m)}(z_0)}{m!} (z - z_0)^m.$$

Ліворуч вираз починається з дужки номера k. А правий вираз - з дужки номера 0. Тому всі вирази

з дужками від
$$0$$
 до $k-1$ мають бути нулевими. Отже,
$$\begin{cases} f(z_0)=f'(z_0)=\cdots=f^{(k-1)}(z_0)=0\\ f^{(k)}(z_0)\neq 0 \end{cases}$$

Покладемо
$$g(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^{n-k}$$
, причому $g(z_0) \neq 0$. Тоді $f(z) = (z-z_0)^k g(z)$

 $\implies z_0$ - корінь кратності k

4.5 Ряди Лорана

Ряд Лорана має ось такий вигляд:

$$\sum_{n=-\infty}^{+\infty} c_n (z-z_0)^n$$

Розпишемо даний ряд іншим чином:

$$\sum_{n=-\infty}^{+\infty} c_n(z-z_0)^n = \sum_{n=-\infty}^{-1} c_n(z-z_0)^n + \sum_{n=0}^{+\infty} c_n(z-z_0)^n$$
 В першій сумі замінимо лічильник: $n=-k$

$$= \sum_{k=1}^{\infty} \frac{c_{-k}}{(z-z_0)^k} + \sum_{n=0}^{+\infty} c_n (z-z_0)^n.$$

головна частина правильнаа частина

Далі дізнаємось область збіжності для двох рядів:

- правильна частина:
$$R = \frac{1}{\varlimsup \limits_{n \to \infty} \sqrt[n]{|c_n|}} \implies |z - z_0| < R.$$

- головна частина: тимчасова заміна $t=\frac{1}{z-z_0}$. Тоді отримаємо степеневий ряд вигляду $\sum_{k=0}^{\infty} c_{-k} t^k$.

$$R' = \frac{1}{\varlimsup_{k \to \infty} \sqrt[k]{|c_{-k}|}} \Rightarrow |t| < R' \implies |z - z_0| > \frac{1}{R'} \stackrel{\text{покладемо}}{=} r.$$

Таким чином область збіжності ряду Лорану визначається кільцем:

$$\overline{\lim}_{k \to \infty} \sqrt[k]{|c_{-k}|} = r < |z - z_0| < R = \frac{1}{\overline{\lim}_{n \to \infty} \sqrt[n]{|c_n|}}$$

Ба більше, сума ряду Лорана є аналітичною в цьому кільці.

Theorem 4.5.1 Теорема Лорана

Задано функцію f - аналітична в кільці $K = \{z: r < |z-z_0| < R\}$. Тоді f розкладається в ряд Лорана:

$$f(z) = \sum_{k=1}^{\infty} \frac{c_{-k}}{(z - z_0)^k} + \sum_{n=0}^{\infty} c_n (z - z_0)^n$$
$$c_m = \frac{1}{2\pi i} \oint_{|\zeta - z_0| = \rho} \frac{f(\zeta)}{(\zeta - z_0)^{m+1}} d\zeta, \ r < \rho < R$$

Скористаємось інтегральною формулою Коші: $\oint \frac{f(\zeta)}{\zeta - z} d\zeta = 2\pi i f(z)$.

За ще одною теоремою Коші, ми можемо змінити контуру інтегрування. Тоді отримаємо: $f(z) = \frac{1}{2\pi i} \oint \frac{f(\zeta)}{\zeta - z} \, d\zeta \boxed{\equiv}$

$$f(z) = \frac{1}{2\pi i} \oint \frac{f(\zeta)}{\zeta - z} d\zeta =$$

$$\operatorname{Tyr} \ c = c_{1} \cup c_{2}^{-} = \{ \zeta : |\zeta - z_{0}| < R \} \cup \{ \zeta : |\zeta - z_{0}| > r \} \\
\equiv \frac{1}{2\pi i} \oint_{c_{1} \cup c_{2}^{-}} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \left(\oint_{c_{1}} \frac{f(\zeta)}{\zeta - z} d\zeta - \oint_{c_{2}} \frac{f(\zeta)}{\zeta - z} d\zeta \right) = \\
= \frac{1}{2\pi i} \left(\oint_{c_{1}} \frac{f(\zeta)}{\zeta - z_{0} + z_{0} - z} d\zeta - \oint_{c_{2}} \frac{f(\zeta)}{\zeta - z_{0} + z_{0} - z} d\zeta \right) = \\
= \frac{1}{2\pi i} \left(\oint_{c_{1}} \frac{f(\zeta)}{\zeta - z_{0}} \cdot \frac{1}{1 - \frac{z - z_{0}}{\zeta - z_{0}}} d\zeta + \oint_{c_{2}} \frac{f(\zeta)}{z - z_{0}} \cdot \frac{1}{1 - \frac{\zeta - z_{0}}{z - z_{0}}} d\zeta \right) = \\
= \frac{1}{2\pi i} \left(\oint_{c_{1}} \frac{f(\zeta)}{\zeta - z_{0}} \cdot \frac{1}{1 - \frac{z - z_{0}}{\zeta - z_{0}}} d\zeta + \oint_{c_{2}} \frac{f(\zeta)}{z - z_{0}} \cdot \frac{1}{1 - \frac{\zeta - z_{0}}{z - z_{0}}} d\zeta \right) = \\
= \frac{1}{2\pi i} \left(\oint_{c_{1}} \frac{f(\zeta)}{\zeta - z_{0}} \cdot \frac{1}{1 - \frac{z - z_{0}}{\zeta - z_{0}}} d\zeta + \oint_{c_{2}} \frac{f(\zeta)}{z - z_{0}} \cdot \frac{1}{1 - \frac{\zeta - z_{0}}{z - z_{0}}} d\zeta \right) = \\
= \frac{1}{2\pi i} \left(\oint_{c_{1}} \frac{f(\zeta)}{\zeta - z_{0}} \cdot \frac{1}{1 - \frac{z - z_{0}}{\zeta - z_{0}}} d\zeta + \oint_{c_{2}} \frac{f(\zeta)}{z - z_{0}} \cdot \frac{1}{1 - \frac{\zeta - z_{0}}{z - z_{0}}} d\zeta \right) = \\
= \frac{1}{2\pi i} \left(\oint_{c_{1}} \frac{f(\zeta)}{\zeta - z_{0}} \cdot \frac{1}{\zeta - z_{0}} d\zeta - \int_{c_{2}} \frac{f(\zeta)}{\zeta - z_{0}} d\zeta \right) = \\
= \frac{1}{2\pi i} \left(\oint_{c_{1}} \frac{f(\zeta)}{\zeta - z_{0}} \cdot \frac{1}{\zeta - z_{0}} d\zeta - \int_{c_{2}} \frac{f(\zeta)}{\zeta - z_{0}} d\zeta \right) = \\
= \frac{1}{2\pi i} \left(\oint_{c_{1}} \frac{f(\zeta)}{\zeta - z_{0}} \cdot \frac{1}{\zeta - z_{0}} d\zeta - \int_{c_{2}} \frac{f(\zeta)}{\zeta - z_{0}} d\zeta \right) = \\
= \frac{1}{2\pi i} \left(\oint_{c_{1}} \frac{f(\zeta)}{\zeta - z_{0}} \cdot \frac{1}{\zeta - z_{0}} d\zeta - \int_{c_{2}} \frac{f(\zeta)}{\zeta - z_{0}} d\zeta \right) = \\
= \frac{1}{2\pi i} \left(\oint_{c_{1}} \frac{f(\zeta)}{\zeta - z_{0}} \cdot \frac{1}{\zeta - z_{0}} d\zeta \right) = \\
= \frac{1}{2\pi i} \left(\oint_{c_{1}} \frac{f(\zeta)}{\zeta - z_{0}} \cdot \frac{1}{\zeta - z_{0}} d\zeta \right) = \\
= \frac{1}{2\pi i} \left(\oint_{c_{1}} \frac{f(\zeta)}{\zeta - z_{0}} \cdot \frac{1}{\zeta - z_{0}} d\zeta \right) = \\
= \frac{1}{2\pi i} \left(\oint_{c_{1}} \frac{f(\zeta)}{\zeta - z_{0}} + \frac{1}{\zeta} \int_{c_{1}} \frac{f(\zeta)}{\zeta - z_{0}} d\zeta \right) = \\
= \frac{1}{2\pi i} \left(\oint_{c_{1}} \frac{f(\zeta)}{\zeta - z_{0}} + \frac{1}{\zeta} \int_{c_{1}} \frac{f(\zeta)}{\zeta - z_{0}} d\zeta \right) = \\
= \frac{1}{2\pi i} \left(\oint_{c_{1}} \frac{f(\zeta)}{\zeta - z_{0}} + \frac{1}{\zeta} \int_{c_{1}} \frac{f(\zeta)}{\zeta - z_{0}} d\zeta \right) = \\
= \frac{1}{2\pi i} \left(\oint_{c_{1}} \frac{f(\zeta)}{\zeta - z_{0}} + \frac{1}{\zeta} \int_{c_{1}} \frac{f(\zeta)}{\zeta - z_{0}} d\zeta \right) = \\
= \frac{1}{2\pi i} \left(\oint_{c_{1}} \frac{f(\zeta)}{\zeta - z_{0}}$$

Вважаємо, що
$$\left|\frac{z-z_0}{\zeta-z_0}\right| < 1$$
 та $\left|\frac{\zeta-z_0}{z-z_0}\right| < 1$ $= \frac{1}{2\pi i} \oint_{c_1} \frac{f(\zeta)}{\zeta-z_0} \cdot \sum_{n=0}^{\infty} \frac{(z-z_0)^n}{(\zeta-z_0)^n} d\zeta + \frac{1}{2\pi i} \oint_{c_2} \frac{f(\zeta)}{z-z_0} \cdot \sum_{n=0}^{\infty} \frac{(\zeta-z_0)^n}{(z-z_0)^n} d\zeta =$

$$= \sum_{n=0}^{\infty} \frac{1}{2\pi i} \oint_{c_1} \frac{f(\zeta)}{(\zeta-z_0)^{n+1}} d\zeta \cdot (z-z_0)^n + \sum_{n=0}^{\infty} \frac{1}{2\pi i} \oint_{c_2} f(\zeta)(\zeta-z_0)^n d\zeta \cdot \frac{1}{(z-z_0)^{n+1}}$$

Прийшли до ряду Лорана. За теоремою Коші, ми можемо змінити коло c_1 та c_2 , щоб коло було радіусом ρ .

Нарешті, якщо покласти
$$c_m=\frac{1}{2\pi i}\oint\limits_{|\zeta-z|=\rho}\frac{f(\zeta)}{(\zeta-z_0)^{m+1}}\,d\zeta,\,m\in\mathbb{Z},$$
 то

$$f(z) = \sum_{k=1}^{\infty} \frac{c_{-k}}{(z - z_0)^k} + \sum_{n=0}^{\infty} c_n (z - z_0)^n.$$

Theorem 4.5.2 Розклад в ряд Лорана є єдиним в заданому кільці.

Випливае з теореми Лорана. Якщо вважати, що е різні розклади ряда Тейлора в різних кільцях, то ми можем взяти інше кільце, щоб ряд розпадався одночасно. А там буде супереченість.

Theorem 4.5.3 Розкласти
$$f(z) = \frac{1}{z(z-3)}$$
 в ряд Лорана в т. $z_0 = 0$.

$$f(z) = \frac{1}{z} \frac{1}{z - 3} = \frac{1}{z} \frac{1}{-3} \frac{1}{1 - \frac{z}{3}} = -\frac{1}{3z} \sum_{n=0}^{\infty} \frac{z^n}{3^n} = -\sum_{n=0}^{\infty} \frac{z^{n-1}}{3^{n+1}} = -\sum_{n=0}^{\infty} \frac{z^$$

$$=-rac{1}{3z}-\sum_{n=1}^{\infty}rac{z^{n-1}}{3^{n+1}},$$
 якщо $\left|rac{z}{3}
ight|<1\iff |z|<3$

$$f(z) = \frac{1}{z} \frac{1}{z-3} = \frac{1}{z} \frac{1}{z} \frac{1}{1-\frac{3}{z}} = \frac{1}{z^2} \sum_{n=0}^{\infty} \frac{3^n}{z^n} = \sum_{n=0}^{\infty} \frac{3^n}{z^{n+2}}, \text{ якщо } \left| \frac{3}{z} \right| < 1 \iff |z| > 3$$

Особливі точки 4.6

Definition 4.6.1 Точка z_0 називається **особливою** для f(z), якщо в ній вона не є визначеною.

Definition 4.6.2 Точка z_0 називається **ізольовано особливою для** f(z), якщо в деякому проколеному околі т. $z_0 f$ - аналітична.

Класифікація особливих ізольованих точок:

- усувна, якщо $\exists \lim_{z \to z_0} f(z) \in \mathbb{C};$ полюс, якщо $\exists \lim_{z \to z_0} f(z) = \infty;$ суттєва, якщо $\nexists \lim_{z \to z_0} f(z).$

4.6.1Усувна точка

Theorem 4.6.3 Задано функцію f - аналітична в проколеному околі т. z_0 .

Точка z_0 - усувна \iff при розкладі f(z) в ряд Лорана всі коефіцієнти головної частині є нулевими.

Proof.

Для доведення → ми оцінимо коефіцієнти головної частини:

$$|c_{-k}| = \left| \frac{1}{2\pi i} \oint_{|z-z_0|=\rho} \frac{f(z)}{(z-z_0)^{-k+1}} dz \right| = \frac{1}{2\pi} \left| \oint_{|z-z_0|=\rho} f(z)(z-z_0)^{k-1} dz \right| \le \frac{1}{2\pi} \oint_{|z-z_0|=\rho} |f(z)| |(z-z_0)^{k-1}| |dz| \le \frac{1}{2\pi} \oint_{|z-z_0|=\rho} |f(z)| \rho^{k-1}| dz| \le \frac{1}{2\pi} \int_{|z-z_0|=\rho} |f(z)| \rho^{k-1}| dz| = \frac{1}{2\pi} \int_{|z-z_0|=\rho}$$

 $|z-z_0|=
ho$ Через те, що z_0 - усувна, то $\exists\lim_{z\to z_0}f(z)\in\mathbb{C},$ а тому функція є обмеженою в околі т. z_0 .

$$\leq \frac{\rho^{k-1}}{2\pi} \oint\limits_{|z-z_0|=\rho} M |\, dz| = M \rho^{k-1}.$$

За наслідком теореми Коші, ми можемо $\rho \to 0$. Тоді $0 \le |c_{-k}| \le M \rho^{k-1} \to 0 \ \forall k \ge 1$.

У випадку \models ряд Лорана перетвориться в степеневий ряд, де можна обчислити ліміт при $z \to z_0$.

Corollary 4.6.4 Якщо т. z_0 - усувна, то при розкладі f(z) матиме вигляд степеневого ряду. Усувну точку z_0 можна довизначити значенням c_0 з ряду. Тоді f - аналітична в цій точці.

4.6.2 Полюс

Якщо т.
$$z_0$$
 є полюсом, то $\exists \lim_{z \to z_0} f(z) = \infty \iff \lim_{z \to z_0} \frac{1}{f(z)} = 0$.

Якщо т. z_0 є полюсом, то $\exists \lim_{z \to z_0} f(z) = \infty \iff \lim_{z \to z_0} \frac{1}{f(z)} = 0$. Розглянемо функцію $h(z) = \frac{1}{f(z)}$, для якого z_0 - усувна. Довизначивши функцію в т. z_0 , ми отри-

маємо, що
$$h(z_0)=0$$
. Звідси в ній вона аналітична, а також є нулем функції. Вважатимемо, що z_0 - нуль кратності k , тобто $h(z)=(z-z_0)^kg(z),\ g(z_0)\neq 0$. Тоді $f(z)=\frac{1}{(z-z_0)^kg(z)}$.

Definition 4.6.5 Точка z_0 для f ϵ полюсом степені (кратності) k, якщо для функції $h(z) = \frac{1}{f(z)}$ точка z_0 - нуль кратності k.

Lemma 4.6.6 z_0 - полюс для f степені $k \iff \exists \lim_{z \to z_0} (z - z_0)^k f(z) = a$. Причому $a \neq 0, a \neq \infty$.

 \Rightarrow Дано: z_0 - полюс степені k. Тод

$$\overline{\lim_{z \to z_0} (z - z_0)^k f(z)} = \lim_{z \to z_0} \frac{(z - z_0)^k}{h(z)} = \lim_{z \to z_0} \frac{(z - z_0)^k}{(z - z_0)^k g(z)} = \lim_{z \to z_0} \frac{1}{g(z)} \neq 0.$$

 \sqsubseteq Дано: $\exists \lim_{z \to z} (z-z_0)^k f(z) = a \neq 0$. Тоді для функції $(z-z_0)^k f(z)$ т. z_0 - усувна. Тому якщо

довизначити її, то створимо нову функцію:
$$g(z) = \frac{1}{(z-z_0)^k f(z)} - \text{аналітична} \implies g(z_0) = \lim_{z \to z_0} \frac{1}{(z-z_0)^k f(z)} = \frac{1}{a}.$$
 Тому $\frac{1}{f(z)} = g(z)(z-z_0)^k$ і z_0 - корінь кратності k для $h(z) = \frac{1}{f(z)}$.

Proposition 4.6.7 Задано таку функцію $f(z) = \frac{a(z)}{b(z)}$, що z_0 - корінь рівняння для чисельника і знаменника з відповідними кратностями k і m. Тоді z_0 - $\begin{bmatrix} & \text{усувна}, k \geq m \\ & \text{полюс степені } m-k, k < m \end{bmatrix}$

Дійсно, за умовою твердження, $f(z) = \frac{(z-z_0)^k a_1(z)}{(z-z_0)^m b_1(z)}$. При k < m отримаємо, що $z-z_0$ залишається в знаменнику. Тому при $z \to z_0$ функція прямує до нескінченності. А якщо $k \geq m$, то при $z \rightarrow z_0$ отримаємо $f(z) \rightarrow 0$.

Theorem 4.6.8 Задано функцію f - аналітична в проколеному околі т. z_0 .

Точка z_0 є полюсом степені $k \iff$ при розкладі f(z) в ряд Лорана головна частина містить лише k доданків.

$$z_0$$
 - полюс степені $k\iff$ для $\frac{1}{f(z)}=g(z)(z-z_0)^k,\ z_0$ - нуль кратності $k\iff f(z)=\frac{1}{(z-z_0)^k}\frac{1}{g(z)}=\frac{1}{(z-z_0)^k}h(z),\ h(z)$ - аналітична в околі т. $z_0\iff f(z)=\frac{1}{(z-z_0)^k}\sum_{n=0}^\infty a_n(z-z_0)^n,$ $a_0=h(z_0)\neq 0\iff f(z)=\sum_{n=0}^\infty a_n(z-z_0)^{n-k}=\sum_{n=-k}^\infty a_{m+k}(z-z_0)^m=\sum_{m=-k}^\infty c_m(z-z_0)^m$ \iff ряд Лорана містить лише k доданків головної частини.

Суттєва точка 4.6.3

Theorem 4.6.9 Задано функцію f - аналітична в проколеному околі т. z_0 .

Точка z_0 є суттєвою \iff при розкладі f(z) в ряд Лорана головна частини має нескінченну кількість доданків.

Просто тому, що при кількості д буде усувна точка. Якщо скінченна кількість, то це вже полюс.

Example 4.6.10 Знайти всі особливі точки для функції $f(z) = \frac{e^z - 1}{\sin z}$.

Проблема виникає в $\sin z = 0 \iff z_k = \pi k, k \in \mathbb{Z}$.

Перевіримо т. $z_0 = 0$:

$$\lim_{z\to 0} \frac{e^z-1}{\sin z} = \lim_{z\to 0} \frac{e^z-1}{z} \frac{z}{\sin z} \stackrel{\text{чудові границі}}{=} 1 \cdot 1 = 1.$$
 Отже, z_0 - усувна точка.

Розглянемо далі т. $z_k = \pi k, k \neq 0$:

Зауважимо, що $\sin z_k=0$, але $(\sin z_k)'=\cos z_k\neq 0$. Тому для знаменнику z_k - корінь кратності 1

 $\lim_{z \to \pi k} \frac{e^z - 1}{\sin z} = \infty$ (в чисельнику буде якесь ненульове число). Таким чином, z_k - полюс порядка 1.

Example 4.6.11 Знайти всі особливі точки для функції $f(z) = e^{\frac{1}{z}}$.

Проблемна точка: z = 0.

Розкладемо функцію в ряд Лорана в т. $z_0 = 0$:

$$e^{\frac{1}{z}} = \sum_{n=0}^{\infty} \frac{1}{z^n n!}.$$

Ряд Лорана містить нескінченну кількість головної частини. А тому z=0 - суттєва точка.

Remark 4.6.12 Першу/другу чудові границі варто було б показати окремо, що вони реально працюють в комплексному випадку.

$$\lim_{z \to 0} \frac{\sin z}{z} = \lim_{z \to 0} \frac{1}{z} \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} = \lim_{z \to 0} \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n+1)!} = \lim_{z \to 0} \left(1 + \sum_{n=1}^{\infty} (-1)^n \frac{z^{2n}}{(2n+1)!} \right) = 1 + \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} = \lim_{z \to 0} \left(1 + \sum_{n=1}^{\infty} (-1)^n \frac{z^{2n}}{(2n+1)!} \right) = 1 + \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} = \lim_{z \to 0} \left(1 + \sum_{n=1}^{\infty} (-1)^n \frac{z^{2n}}{(2n+1)!} \right) = 1 + \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} = \lim_{z \to 0} \left(1 + \sum_{n=1}^{\infty} (-1)^n \frac{z^{2n}}{(2n+1)!} \right) = 1 + \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} = \lim_{z \to 0} \left(1 + \sum_{n=1}^{\infty} (-1)^n \frac{z^{2n}}{(2n+1)!} \right) = 1 + \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n+1)!} = \lim_{z \to 0} \left(1 + \sum_{n=1}^{\infty} (-1)^n \frac{z^{2n}}{(2n+1)!} \right) = 1 + \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n+1)!} = \lim_{z \to 0} \left(1 + \sum_{n=1}^{\infty} (-1)^n \frac{z^{2n}}{(2n+1)!} \right) = 1 + \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n+1)!} = \lim_{z \to 0} \left(1 + \sum_{n=1}^{\infty} (-1)^n \frac{z^{2n}}{(2n+1)!} \right) = 1 + \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n+1)!} = \lim_{z \to 0} \left(1 + \sum_{n=1}^{\infty} (-1)^n \frac{z^{2n}}{(2n+1)!} \right) = 1 + \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n+1)!} =$$

Аналогічно для другої чудової границі, $\lim_{z\to 0} \frac{e^z-1}{z}=1.$

4.7 Лишки

Definition 4.7.1 Задано функцію f - аналітична в проколеному околі z_0 та контур γ , що охоплює т. z_0 та належить проколеному околу т. z_0 .

Лишком функції f(z) в т. z_0 називається ось такий вираз:

$$\mathop{\rm res}_{z=z_0} f(z) = \frac{1}{2\pi i} \oint\limits_{\gamma} f(z) \, dz$$

Remark 4.7.2 Із теореми Коші випливає, що нема різниці, яку криву γ , що охоплює z_0 , треба обирати. Тож означення є коректним.

Theorem 4.7.3 Задано функцію f - аналітична в проколеному околі z_0 .

Тоді
$$\underset{z=z_0}{\operatorname{res}} f(z) = c_{-1}.$$

Proof.

Дійсно, оскільки f - аналітична, ми можемо розкласти в Лорана. Зокрема

$$c_{-1} = \frac{1}{2\pi i} \oint_{|z-z_0|=\rho} f(z) dz = \operatorname{res}_{z=z_0} f(z).$$

Методи знаходження лишків для різних типів особливих точок:

4.7.1 Усувна точка

Lemma 4.7.4 Якщо т. z_0 - усувна, то $\underset{z=z_0}{\operatorname{res}} f(z) = 0$.

Proof.

Дійсно, при т. z_0 - усувна - отримаємо, що Лоран не містить головної частини, а тому

4.7.2 Полюс

Theorem 4.7.5 Якщо z_0 - полюс порядку k, то $\mathop{\mathrm{res}}_{z=z_0} f(z) = \frac{1}{(k-1)!} \lim_{z \to z_0} (f(z)(z-z_0)^k)^{(k-1)}$.

Proof.

 z_0 - полюс степені k, тоді

$$f(z) = \frac{c_{-k}}{(z - z_0)^k} + \dots + \frac{c_{-1}}{(z - z_0)} + \sum_{n=0}^{\infty} c_n (z - z_0)^n \implies$$

$$f(z)(z-z_0)^k = c_{-k} + \dots + c_{-1}(z-z_0)^{k-1} + \sum_{n=0}^{\infty} c_n(z-z_0)^{n+k}.$$

Далі продиферинціюємо
$$(k-1)$$
 разів, отримавши наступне:
$$(f(z)(z-z_0)^k)^{(k-1)}=(k-1)!c_{-1}+\sum_{n=0}^\infty (n-k)\cdots (n-2)c_n(z-z_0)^{n+1}.$$

В обох частинах рівності знайдемо границю:
$$\lim_{z\to z_0}(f(z)(z-z_0)^k)^{(k-1)}=(k-1)!c_{-1}+0=(k-1)!\mathop{\mathrm{res}}_{z=z_0}f(z).$$

- Corollary 4.7.6 Частинні випадки 1. Якщо z_0 полюс степені 1, тоді $\mathop{\mathrm{res}}_{z=z_0} f(z) = \lim_{z \to z_0} f(z)(z-z_0).$
- 2. Якщо $f(z)=rac{arphi(z)}{\psi(z)},$ де z_0 не нуль чисельника, але нуль знаменника кратності 1. Тоді z_0 полюс

$$\operatorname{res}_{z=z_0} f(z) = \lim_{z \to z_0} \frac{\varphi(z)}{\psi(z)} (z - z_0) = \lim_{z \to z_0} \frac{\varphi(z)}{\underline{\psi(z) - \psi(z_0)}} = \lim_{z \to z_0} \frac{\varphi(z)}{\psi'(z_0)}$$

$$\implies \underset{z=z_0}{\text{res}} f(z) = \lim_{z \to z_0} \frac{\varphi(z)}{\psi'(z_0)}.$$

4.7.3 Суттєва точка

Тут $\mathop{\mathrm{res}}_{z=z_0} f(z)$ рахується лише за розкладом в ряд Лорана за рахунок здобуття c_{-1} .

Example 4.7.7 Знайти всі лишки функції $f(z)=\frac{e^z-1}{\sin z}.$ Уже знаємо, що z=0 - усувна та $z=\pi k, k\neq 0$ - полюс порядку 1.

$$\underset{z=0}{\operatorname{res}} f(z) = 0.$$

$$\operatorname{res}_{z=\pi k} f(z) = \lim_{z \to \pi k} \frac{e^z - 1}{\sin z} (z - \pi k)^{z - \pi k = t} = \lim_{t \to 0} \frac{e^t e^{\pi k} - 1}{\sin (\pi k + t)} t = \lim_{t \to 0} \frac{e^t e^{\pi k} - 1}{(-1)^k \sin t} t = (-1)^k (e^{\pi k} - 1).$$

34

Example 4.7.8 Знайти всі лишки функції $f(z) = e^{\frac{1}{z}}$.

Уже знаємо, що т. z=0 є суттєвою. Але все рівно звернемось до ряду Лорана:

$$e^{\frac{1}{z}} = \sum_{n=0}^{k} \frac{1}{z^n n!}.$$

Коефіцієнтом перед $\frac{1}{z}$ буде $c_{-1} = 1$. Отже. $\underset{z=0}{\operatorname{res}} f(z) = c_{-1} = 1$.

4.8 Застосування лишків для обчислення інтегралів

Theorem 4.8.1 Теорема Коші для лишків, 1*

Задано функцію f - аналітична в області D за винятком скінченної кількості особливих точок - і замкнений контур γ , якийй охоплює особлиіві точки $z_1, z_2, \cdots z_n$.

Тоді
$$\oint_{\gamma} f(z) dz = 2\pi i \sum_{k=1}^{n} \underset{z=z_{k}}{\text{res}} f(z)$$

Proof.

Для кожної точки z_1, \cdots, z_n ми розглянемо коло $U_j = \{z: |z-z_j| < \delta_j\}$, причому вони не перетинаються між собою. Тут γ охоплює кожну U_j . Тоді

$$\oint_{\gamma} f(z) dz = \oint_{\gamma} f(z) dz - \left(\oint_{U_{1}} f(z) dz + \dots + \oint_{U_{n}} f(z) dz \right) + \left(\oint_{U_{1}} f(z) dz + \dots + \oint_{U_{n}} f(z) dz \right) = 1$$

Для кожного інтегралу з мінусом ми замінюємо знак, змінюючи напрямок контуру

$$\boxed{\exists} \oint_{\gamma \cup U_{n}^{-} \cup \cdots \cup U_{n}^{-}} f(z) dz + \left(\oint_{U_{1}} f(z) dz + \cdots + \oint_{U_{n}} f(z) dz \right) \boxed{\equiv}$$

Перший інтеграл обмежує всю область D, окрім тих, що потрапляють до кожного кола. А така область є однорідною. Тому за теоремою Коші, перший інтеграл буде нулевим

Example 4.8.2
$$\oint_{|z-2|=2} \frac{z dz}{(z-1)(z-2)} =$$

Розглянемо функцію $f(z)=\frac{z}{(z-1)(z-2)}$. Тут z=1,z=2 - обидві полюси 1 порядку, тому $\mathop{\mathrm{res}}_{z=1} f(z)=\lim_{z\to 1}\frac{z}{(z-1)(z-2)}(z-1)=-1$

$$\mathop{\rm res}_{z=1} f(z) = \lim_{z \to 1} \frac{z}{(z-1)(z-2)} (z-1) = -1$$

$$\mathop{\rm res}_{z=2} f(z) = \lim_{z \to 2} \frac{z}{(z-1)(z-2)} (z-2) = 2$$

$$\boxed{\equiv} 2\pi i (\mathop{\rm res}_{z=1} f(z) + \mathop{\rm res}_{z=2} f(z)) = 2\pi i.$$

$$= 2\pi i (\operatorname{res}_{z=1} f(z) + \operatorname{res}_{z=2} f(z)) = 2\pi i$$

Theorem 4.8.3 Теорема Коші для лишків, 2*

Задано функцію f - аналітична в $\mathbb C$ за винятком скінченної кількості особливих точок $z_1, z_2, \cdots z_n$.

Тоді (див. п. 2.9.3. про лишки в
$$\infty$$
) $\sum_{k=1}^n \mathop{\mathrm{res}}_{z=z_k} f(z) + \mathop{\mathrm{res}}_{z=\infty} f(z) = 0.$

Proof.

Розглянемо замкнений контур γ , що охоплює всі скінченні особливі точки

$$\operatorname{res}_{z=\infty} f(z) \stackrel{\text{def}}{=} \frac{1}{2\pi i} \oint_{\gamma^{-}} f(z) \, dz = -\frac{1}{2\pi i} \oint_{\gamma^{+}} f(z) \, dz = -\frac{1}{2\pi i} \cdot 2\pi i \sum_{k=1}^{n} \operatorname{res}_{z=z_{k}} f(z)$$

$$\Rightarrow \sum_{k=1}^{n} \operatorname{res}_{z=z_{k}} f(z) + \operatorname{res}_{z=\infty} f(z) = 0$$

Remark 4.8.4 Ми не розглядаємо нескінченну кількість особливих точок, оскільки в цьому випадку з'являються граничні точки. А вони не є ізольованими.

4.9 Нескінченна особлива точка

Хочеться піти здалеку, як зрозуміти цю дивну точку, $z = \infty$.

Вважаємо, що в нас є система координат, на якій ми побудуємо сферу радіусом $\frac{1}{2}$ таким чином, щоб сфера торкалась площини XOY в точці (0,0). На площині XOY кожна точка з координатами (x,y) буде відповідати значенню комплексного числа z=x+iy. І позначимо верхню точку сфери N

Через точку із XOY (скажімо, т. P) та т. N проведемо пряму. Отримаємо точку перетину M. Тоді кожна точка сфери відповідає точці XOY. Звідси якщо взяти якийсь окіл т. M, то вона відповідатиме окілу т. P.

I навпаки: кожна точка XOY відповідає т. сфери... Але не в т. N. Взагалі кажучи, жодна точка XOY не відповідає N, оскільки пряма буде паралельна до цієї площини. Тому вирішили, що для т. N ставимо в відповідність т. $z=\infty$.

Тепер візьмемо окіл т. N радіуса D і подивимось, який окіл відповідає XOY. Принаймні це нам знадобиться, якщо ми хочемо розкласти в ряд Лорана.

Отримаємо площину вигляду |z| > D. Тобто всі точки комплексної площини за межами кола.

Якось так.

4.9.1 Розклад в Лорана

Нехай f - аналітична на $\{z:|z|>D\}$. Зробимо перетворення $w=\frac{1}{z}$. Точка $z=\infty$ переводить в точку w=0.

Розглянемо ряд Лорана в околі $z=\infty,$ тобто для $\{z:|z|>D\}.$

$$f(z) = f\left(\frac{1}{w}\right) = g(w) =$$

$$|z| > D \iff \left|\frac{1}{w}\right| > D \iff |w| < \frac{1}{D}.$$

$$= \sum_{k=1}^{\infty} \frac{c_{-k}}{w^k} + \sum_{n=0}^{\infty} c_n w^n = \sum_{k=1}^{\infty} c_{-k} z^k + \sum_{n=0}^{\infty} \frac{c_n}{z_n}$$

Отримали ряд Лорана в околі $z = \infty$.

Коефіцієнти ряду обчислюються ось так:

$$c_n = \frac{1}{2\pi i} \oint_{\gamma} \frac{g(w)}{w^{n+1}} \, dw =$$

Проведемо заміну: $w = \frac{1}{z} \Rightarrow g(w) = f(z) \implies dw = -\frac{1}{z^2}\,dz.$

І візьмемо контур $|w|=\rho$ - коло, щоб було простіше рахувати. Тоді якщо $w=\rho e^{it}, t\in [0,\vec{2}\pi]$ - обхід проти годинникової стрілки, то

$$z = \frac{1}{w} = \frac{1}{\rho} e^{-it}, t \in [2\vec{\pi}, 0]$$
 - обхід за годинниковою стрілкою.

Отже, $|w|=\rho$ переводиться в $|z|=\frac{1}{\rho}$ зі зміном орієнтації.

Тому
$$\gamma \to \gamma_-$$
 (перед інтегралом буде ще знак мінус).
$$= -\frac{1}{2\pi i} \oint_{\gamma} -\frac{f(z)z^{n+1}}{z^2} \, dz = \frac{1}{2\pi i} \oint_{\gamma} f(z)z^{n-1} \, dz.$$

Остаточно:

$$f(z) = \underbrace{\sum_{k=1}^{\infty} c_{-k} z^k}_{\text{головна частина}} + \underbrace{\sum_{n=0}^{\infty} \frac{c_n}{z_n}}_{\text{правильна частина}}$$

$$c_n = \frac{1}{2\pi i} \oint_{\gamma} f(z) z^{n-1} \, dz$$

Ізольовані точки

Definition 4.9.1 Точка $z=\infty$ називається ізольованою особливою для f(z), якщо $\exists R: B$ області $\{z: |z| > R\}$ функція f - аналітична.

Класифікація ізольованих точок:

- усувна, якщо $\exists \lim f(z) \in \mathbb{C};$
- полюс, якщо $\exists \lim_{\substack{z \to \infty \\ z \to \infty}} f(z) = \infty;$ суттєва, якщо $\nexists \lim_{\substack{z \to \infty \\ z \to \infty}} f(z).$

Порядок полюса $z = \infty$: $\exists \lim_{z \to \infty} f(z) = \infty \iff \lim_{z \to \infty} \frac{1}{f(z)} = 0$.

Тоді порядком цієї точки функції f(z) називають кратність нуля функції $h(z) = \frac{1}{f(z)}$, а точніше кратність нуля точки $w_0 = 0$ для функції $g(w) = h\left(\frac{1}{w}\right)$.

Proposition 4.9.2 Maemo:

Точка $z=\infty$ - усувна \iff ряд Лорана не містить головної частини.

Точка $z=\infty$ - полюс порядку $k\iff$ ряд Лорана містить k доданків головної частини.

Точка $z=\infty$ - суттєва \iff ряд Лорана містить нескінченну кількість доданків головної частини.

Всі ці твердження випливають з того, що ряд Лорана в $z=\infty$ - це ряд Лорана в $w=\frac{1}{z}=0$.

4.9.3Лишки

Definition 4.9.3 Задано функцію f та ізольована точка $z=\infty$. **Лишком функції** f(z) в т. ∞ називається ось такий вираз:

$$\underset{z=\infty}{\operatorname{res}} f(z) = \frac{1}{2\pi i} \oint_{\gamma_{-}} f(z) \, dz$$

За межами γ_{-} немає інших особливих точок.

Theorem 4.9.4 Задана функція f та ізольована точка $z=\infty$. Тоді $\mathop{\mathrm{res}}_{z=\infty} f(z)=-c_1.$ Випливає з розкладу ряду Лорана та визначення коефіцієнтів

Шукати лишки можна за аналогічними теоремами в залежності від класифікації ізольованої точки.

Example 4.9.5 Визначити тип ізольованої точки $z_* = \infty$ для функції $f(z) = 1 - z + 2z^2$ і знайти

Тут вже функція розкладена в ряд Лорана в т. $z_* = \infty$, що містить дві доданки головної частини. A тому $z_* = \infty$ - полюс порядку 2.

Коефіцієнт перед z: $c_1 = -1$. Тому звідси $\mathop{\mathrm{res}}_{z=-c} f(z) = -c_1 = 1$.

Застосування лишків до дійсних інтегралів

Розглянемо
$$\int_0^{\infty} R(\cos x, \sin x) dx =$$
Заміна: $\cos x = \frac{e^{ix} + e^{-ix}}{\sin x} \sin x = \frac{e^{ix} - e^{-ix}}{\sin x}$

$$e^{-ix} = \frac{1}{z}$$

$$\Rightarrow \cos x = \frac{z + \frac{1}{z}}{2} = \frac{z^2 + 1}{2z}$$

$$\Rightarrow \sin x = \frac{z - \frac{1}{z}}{2} = \frac{z^2 - 1}{2zi}$$

$$= -\oint_{|z|=1} iR\left(\frac{z^2+1}{2z}, \frac{z^2-1}{2zi}\right) \frac{dz}{z} =$$

Підінтегральна функція - дробово-раціональний вираз від z, що має скінченну кількість особливих точок, в тому числі скінченну кількість полюсів в колі |z|=1

$$= 2\pi \sum_{j=1}^{n} \operatorname{res}_{z=z_{j}} \left(R\left(\frac{z^{2}+1}{2z}, \frac{z^{2}-1}{2zi}\right) \frac{1}{z} \right)$$

Example.
$$\int_0^{2\pi} \frac{dx}{2 + \cos x + \sin x} =$$

Проводимо ту саму заміну: $z = e^{ix} \Rightarrow \cos x = \frac{z^2 + 1}{2z}$, $\sin x = \frac{z^2 - 1}{2zi}$

$$dx = \frac{-i}{z} dz$$

$$= -i \oint_{|z|=1} \frac{1}{2 + \frac{z^2 + 1}{2z} + \frac{z^2 - 1}{2zi}} \frac{dz}{z} = \oint_{|z|=1} \frac{2}{4iz + iz^2 + i + z^2 - 1} dz =$$

$$= \oint_{|z|=1} \frac{2}{z^2 (1+i) + 4iz + i - 1} dz =$$

Перепозначу:
$$f(z) = \frac{1}{z^2(1+i) + 4iz + i - 1}$$

Подивимось на особливі точки підінтегрального виразу:

$$z^{2}(1+i) + 4iz + i - 1 = 0$$

$$z_{1} = \frac{\sqrt{2}-2}{2} + i\frac{\sqrt{2}-2}{2}$$

$$z_{2} = -\frac{\sqrt{2}+2}{2} - i\frac{\sqrt{2}+2}{2}$$

 $z_2=-rac{2}{\sqrt{2}+2}-irac{2}{\sqrt{2}+2}$ Обидва вони полюси першої кратності. Лише одна точка - z_1 - потрапляє в коло |z|=1

$$f(z) = \frac{1}{(1+i)(z-z_1)(z-z_2)}$$

$$= 2 \cdot 2\pi i \operatorname{res}_{z=z_1} f(z) = 4\pi i \lim_{z \to z_1} \frac{1}{(1+i)(z-z_2)} = 4\pi i \frac{1}{(1+i)(z_1-z_2)} = \dots = \sqrt{2}\pi$$

II. Невласні дійсні інтеграли

Розглянемо
$$\int_{-\infty}^{+\infty} f(x)dx \stackrel{\text{обчислимо}}{=} = p.v. \int_{-\infty}^{+\infty} f(x)dx = \lim_{A \to \infty} \int_{-A}^{+A} f(x)dx$$

Theorem. Задана функція f(x) на \mathbb{R} така, що вона продовжується аналітично на верхню півплощину \mathbb{C} (тобто Im $z \geq 0$) за виключенням скінченної кількості точок z_1, \cdots, z_n Наша функція f(z) така, що $\exists \lim_{|z| \to \infty} |zf(z)| = 0$

Тоді

$$\int_{-\infty}^{+\infty} f(x)dx = 2\pi i \sum_{j=1}^{n} \operatorname{res}_{z=z_{j}} f(z)$$

Proof.
$$\int_{-\infty}^{+\infty} f(x)dx = \lim_{R \to \infty} \int_{-R}^{R} f(x)dx =$$

$$= \lim_{R \to \infty} \left(\int_{[\overline{-R},\overline{R}]} f(z)dz + \int_{\substack{|z|=R \\ \text{Im } z \geq 0}} f(z)dz - \int_{\substack{|z|=R \\ \text{Im } z \geq 0}} f(z)dz \right) =$$

$$= \lim_{R \to \infty} \left(\int_{\substack{[\overline{-R},\overline{R}] \cup |z| = R \\ \text{Im } z > 0}} f(z)dz - \int_{\substack{|z| = R \\ \text{Im } z \geq 0}} f(z)dz \right) \boxed{\equiv}$$

Розглянемо
$$\left| \int\limits_{\substack{|z|=R\\ \text{Im }z\geq 0}} f(z)dz \right| \leq \int\limits_{\substack{|z|=R\\ \text{Im }z\geq 0}} |f(z)||dz| =$$
 Заміна: $z=Re^{it}, t\in [0,\pi], |dz|=R\,dt$

Заміна:
$$z = Re^{it}, t \in [0, \pi], |dz| = R dt$$

$$= \int_0^{\pi} f(Re^{it}) R \, dt$$

Нас цікавить границя цього модулю:
$$\lim_{R\to\infty} f(Re^{it})R = \lim_{\substack{|z|\to\infty\\|z|=R}} |zf(z)| \stackrel{\text{умова}}{=} 0$$

Звідси
$$\lim_{R o \infty} \int_0^\pi f(Re^{it}) R \, dt = 0$$

$$= \lim_{R \to \infty} \int_{\substack{[-R,R] \cup |z| = R \\ \text{Im } z > 0}} f(z)dz =$$

Для великих R наш контур охоплює всі особливі точки f(z). Але наша кількість скінченна

$$= \sum_{j=1}^{n} \underset{z=z_{j}}{\operatorname{res}} f(z) \blacksquare$$

Example.
$$\int_{-\infty}^{+\infty} \frac{x^2 + 1}{x^4 + 1} dx = \boxed{\equiv}$$

Розглянемо функцію $f(z) = \frac{z^2 + 1}{z^4 + 1}$, при цьому $\operatorname{Im} z > 0$

Для неї є чотири проблемні точки z_1, z_2, z_3, z_4 , але потрапляють лише z_1, z_4 - два полюси, обидва

першого порядку:
$$z_1 = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i \Rightarrow \mathop{\mathrm{res}}_{z=z_1} f(z) = \frac{i+1}{(z_1-z_2)(z_1-z_3)(z_1-z_4)^2} = \frac{1}{2\sqrt{2}i}$$

$$z_4 = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i \Rightarrow \mathop{\mathrm{res}}_{z=z_4} f(z) = \frac{-i+1}{(z_4-z_1)(z_4-z_2)(z_4-z_3)^2} = \frac{1}{2\sqrt{2}i}$$
 I нарешті, треба перевірити умову: $\lim_{z\to\infty} zf(z) = \lim_{z\to\infty} z\cdot\frac{z^2+1}{z^4+1} = 0$

$$= 2\pi i \frac{1}{\sqrt{2}i} = \pi \sqrt{2}$$

III. Розглянемо
$$\int_{-\infty}^{+\infty} f(x) \cos \alpha x \, dx$$
 або $\int_{-\infty}^{+\infty} f(x) \sin \alpha x \, dx$

$$\int_{-\infty}^{+\infty} f(x) \cos \alpha x \, dx = \operatorname{Re} \int_{-\infty}^{+\infty} f(x) e^{i\alpha x} \, dx$$

$$\int_{-\infty}^{+\infty} f(x) \sin \alpha x \, dx = \operatorname{Im} \int_{-\infty}^{+\infty} f(x) e^{i\alpha x} \, dx$$
Тоді далі будемо розглядати
$$\int_{-\infty}^{+\infty} f(x) e^{i\alpha x} \, dx = p.v. \int_{-\infty}^{+\infty} f(x) e^{i\alpha x} \, dx = \lim_{R \to \infty} \int_{-\infty}^{R} f(x) e^{i\alpha x} \, dx$$

Lemma. Лема Жордана

Задана функція f - аналітична на верхній півплощині $\mathbb C$ за виключенням скінченної кількості особливих точок.

Відомо, що $\lim_{|z| \to \infty} \max_{\substack{|z| = R \\ \text{Im } z > 0}} |f(z)| = 0$. Тоді

$$\lim_{R \to \infty} \int_{\substack{|z| = R \\ \text{Im } z \ge 0}} f(z)e^{i\alpha z} \, dz = 0$$

Рис. 2: Червоний - $\sin t$, Синій - g(t)

Отже,
$$e^{-\alpha R \sin t} \leq e^{-\alpha R g(t)}$$

$$\begin{aligned} & e^{-\alpha R \sin t} \leq e^{-\alpha R g(t)} \\ & \leq \max_{\substack{|z|=R\\ \text{Im } z \geq 0}} |f(z)| \int_0^\pi e^{-\alpha R g(t)} R \, dt = \max_{\substack{|z|=R\\ \text{Im } z \geq 0}} |f(z)| \left(\int_0^{\frac{\pi}{2}} e^{-\alpha R \frac{2\pi}{t}} R \, dt + \int_{\frac{\pi}{2}}^\pi e^{-\alpha R \frac{2}{\pi} (\pi - t)} R \, dt \right) = \\ & = \max_{\substack{|z|=R\\ \text{Im } z \geq 0}} |f(z)| R \left(-\frac{\pi}{2\alpha R} (e^{-\alpha R} - 1) + \frac{\pi}{2\alpha R} (1 - e^{-\alpha R}) \right) = \max_{\substack{|z|=R\\ \text{Im } z \geq 0}} |f(z)| \left(-\frac{\pi}{\alpha} e^{-\alpha R} + \frac{\pi}{\alpha} \right) = \\ & = \max_{\substack{|z|=R\\ \text{Im } z \geq 0}} |f(z)| \frac{\pi}{\alpha} \left(1 - e^{-\alpha R} \right) \end{aligned}$$

Якщо $R \to \infty$, то отриманий вираз прямує до нуля. Таким чином,

$$\lim_{R \to \infty} \int_{\substack{|z| = R \\ \text{Im } z > 0}} f(z)e^{i\alpha z} \, dz = 0 \, \blacksquare$$

Theorem. Задана функція f(x) на $\mathbb R$ така, що вона продовжується аналітично на верхню півплощину $\mathbb C$ за виключенням скінченної кількості точок z_1, \cdots, z_n

Наша функція
$$f(z)$$
 така, що $\exists\lim_{|z|\to\infty}\max_{|z|=R\atop {\rm Im}\,z\ge 0}|f(z)|=0$

Тоді

$$\int_{-\infty}^{+\infty} f(x)e^{i\alpha x} dx = 2\pi i \sum_{i=1}^{n} \mathop{\rm res}_{z=z_{j}} f(z)e^{i\alpha z}$$

Proof.

Proof.
$$\int_{-\infty}^{+\infty} f(x)e^{i\alpha x} \, dx = \lim_{R \to \infty} \left(\int\limits_{[-R,R]} f(z)e^{i\alpha z} dz + \int\limits_{|z|=R \atop \operatorname{Im} z \geq 0} f(z)e^{i\alpha z} dz - \int\limits_{|z|=R \atop \operatorname{Im} z \geq 0} f(z)e^{i\alpha z} dz \right) =$$

$$= \lim_{R \to \infty} \left(\int\limits_{[-R,R] \cup |z|=R \atop \operatorname{Im} z \geq 0} f(z)e^{i\alpha z} dz - \int\limits_{|z|=R \atop \operatorname{Im} z \geq 0} f(z)e^{i\alpha z} dz \right)^{\operatorname{Lm. } \operatorname{Kopdaha}} =$$

$$= \lim_{R \to \infty} (2\pi i) \sum_{i=1}^{n} \underset{z=z_{i}}{\operatorname{res}} f(z)e^{i\alpha z} = 2\pi i \sum_{i=1}^{n} \underset{z=z_{i}}{\operatorname{res}} f(z)e^{i\alpha z} \blacksquare$$

Example.
$$\int_{-\infty}^{+\infty} \frac{x \sin x}{x^2 + 4x + 20} = \text{Im} \int_{-\infty}^{+\infty} \frac{x e^{ix}}{x^2 + 4x + 20} =$$

Example.
$$\int_{-\infty}^{+\infty} \frac{x \sin x}{x^2 + 4x + 20} = \operatorname{Im} \int_{-\infty}^{+\infty} \frac{x e^{ix}}{x^2 + 4x + 20} \equiv$$
 Розглянемо функцію $f(z) = \frac{z}{z^2 + 4z + 20}$, де $\operatorname{Im} z \geq 0$ z_1, z_2 - корені знаменнику, але $z_1 = -2 + 4i$ - полюс першого порядку - потрапляє в нашу область Більш того, $\lim_{z \to \infty} f(z) = \lim_{z \to \infty} \frac{z}{z^2 + 4z + 20} = 0$ $\equiv \operatorname{Im} [2\pi i \mathop{\mathrm{res}}_{z = z_1} f(z) e^{iz}] = \operatorname{Im} \left[2\pi i \lim_{z \to -2 + 4i} \frac{z e^{iz}}{2 + 2 + 4i} \right] = \cdots =$ $= \operatorname{Im} \left[\frac{\pi}{4} e^{-4} (4i - 2)(\cos 2 - i \sin 2) \right] = \frac{\pi}{4} e^{-4} (4\cos 2 + 2\sin 2)$

Ряди Фур'є 5

Передмова до цієї теми

Зазвичай аби розповісти про ряди Фур'є та їхнє появлення на світ, необіхдно знати багато тем з лінійної алгебри 2 семестру. Користуючись нагодою, я хочу передати величезний "привіт" одному викладачу, що максимально завалив зміст дисципліни лін. ал. (із КН ММСА)

I водночає двічі вдячний ГБ за уникнення таких складнощів та дав, в принципі, достойне оповідання рядів Фур'є без лінійки.

5.1 Початок

Нехай задана g(z) - аналітична в кільці $K=\{z: 1-\varepsilon_1<|z|<1+\varepsilon_2\}$. Причому $\{z:|z|=1\}\subset K$ Розкладемо g(z) в ряд Лорана за степенем z в цьому кільці:

$$g(z) = \sum_{n=-\infty}^{\infty} c_n z^n,$$
 де $c_n = \frac{1}{2\pi i} \oint\limits_{|z|=1} \frac{g(z)}{z^{n+1}} dz$

А тепер зробимо наступне:

$$|z| = 1 \Rightarrow z = e^{ix}, x \in [0, 2\pi]$$
. Тоді

$$g(z) = g(e^{ix}) \stackrel{\text{позн}}{=} f(x)$$

А тепер зробимо наступне.
$$|z| = 1 \Rightarrow z = e^{ix}, x \in [0, 2\pi]. \text{ Тоді}$$

$$g(z) = g(e^{ix}) \stackrel{\text{позн}}{=} f(x)$$

$$c_n = \frac{1}{2\pi i} \oint \frac{g(z)}{z^{n+1}} dz \stackrel{z=e^{ix}}{=} \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(x)}{e^{(n+1)ix}} i e^{ix} dx = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} dx$$

Отримали комплексну форму ряду Фур'є
$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}, c_n = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} dx$$

Є деякі необхідні умови:

 $f \in D([0,2\pi]) \iff f$ - 2π -періодична інтегрована на будь-якому відрізку $\iff f \in D([-\pi,\pi])$ За функцією f(x) будуємо ряд Фур'є:

$$S(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}, c_n = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} dx$$

Головні питання до цього ряду:

- 1) збіжність ряду Фур'є
- 2) якщо збігається, то який зв'язок між S(x) та f(x)

Будемо вивчати для випадку f(x) - дійснозначна функція (в подальшому)

$$\sum_{n=-\infty}^{-1} c_n + c_0 + \sum_{n=1}^{\infty} c_n = c_0 + \sum_{k=1}^{\infty} c_{-k} e^{-ikx} + \sum_{n=1}^{\infty} c_n e^{inx}$$
 Коефіцієнти головної частини:

Коефіценти головної частини:
$$c_{-k} = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{ikx} dx = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-ikx} dx = \overline{c_k}$$
 Тому $c_{-k}e^{-ikx} = \overline{c_k}e^{ikx} = \overline{c_k}e^{ikx}$

$$= c_0 + \sum_{n=1}^{\infty} \left(\overline{c_n e^{inx}} + c_n e^{inx} \right) =$$

3'ясуемо більш детально про коефіцієнт:
$$c_n = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} dx = \frac{1}{2\pi} \int_0^{2\pi} f(x) \cos nx dx - i \frac{1}{2\pi} \int_0^{2\pi} f(x) \sin nx dx$$

$$\operatorname{Re}(c_n e^{-x}) = \operatorname{Re}\left(\left(\frac{1}{2\pi}\int_0^{2\pi} f(x)\cos nx \, dx - i\frac{1}{2\pi}\int_0^{2\pi} f(x)\sin nx \, dx\right) \cdot (\cos nx + i\sin nx)\right) = \frac{1}{2\pi i}\left(\int_0^{2\pi} f(x)\cos nx \, dx \cdot \cos nx + \int_0^{2\pi} f(x)\sin nx \, dx\right)$$

$$= \operatorname{Re}\left(\left(\frac{1}{2\pi}\int_0^{2\pi} f(x)\cos nx \, dx - i\frac{1}{2\pi}\int_0^{2\pi} f(x)\sin nx \, dx\right) \cdot (\cos nx + i\sin nx)\right)$$

$$c_0 = \frac{1}{2\pi} \int_0^{n-1} f(x) \, dx$$

Отримали дійсну формулу ряда Фур'є:

$$f(x) \leadsto \frac{a_0}{2} + \sum_{n=0}^{\infty} a_n \cos nx + b_n \sin nx$$
$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx \, dx, n \in \mathbb{N} \setminus \{0\}$$
$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx \, dx, n \in \mathbb{N}$$

Але ці формули для функції 2π -періодичних

Розглянемо відображення $[0, 2\pi] \leftarrow [0, 2l]$

$$[0, 2\pi] \to x, \ x = \frac{t}{l}\pi, t \in [0, 2l]$$

Тоді $f(x)=f(\frac{t}{l}\pi)\stackrel{\text{позн}}{=}g(t)$ - задана на [0,2l], тобто 2l-періодична

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx \, dx \stackrel{x = \frac{t}{l}\pi}{= \frac{1}{l} \int_0^{2l} g(t) \cos \left(\frac{\pi nt}{l}\right) \, dt$$

$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx \, dx = \frac{t}{l} \pi \frac{1}{l} \int_0^{2l} g(t) \sin \left(\frac{\pi nt}{l}\right) \, dt$$

$$g(t) \rightsquigarrow \frac{a_0}{2} + \sum_{n=0}^{\infty} a_n \cos\left(\frac{\pi nt}{l}\right) + b_n \sin\left(\frac{\pi nt}{l}\right)$$

$$a_n = \frac{1}{l} \int_{-l}^{l} g(t) \cos\left(\frac{\pi nt}{l}\right) dt$$
$$b_n = \frac{1}{l} \int_{-l}^{l} g(t) \sin\left(\frac{\pi nt}{l}\right) dt$$

5.2Аналіз збіжності ряду

Lemma 3.2.1. Лема Рімана

Задана функція $f \in D([a,b])$ (навіть в невласному сенсі абсолютно). Тоді

1)
$$\int_{a}^{b} f(x) \cos \lambda x \, dx \to 0, \lambda \to \infty$$

2) $\int_{a}^{b} f(x) \sin \lambda x \, dx \to 0, \lambda \to \infty$

Доведемо перший пукнт, другий аналогічно

Ми розглянемо чотири випадки функції f:

а)
$$f(x) = c$$
 (константа)

$$\Rightarrow \int_{a}^{b} f(x) \cos \lambda x \, dx = \frac{c}{\lambda} \sin \lambda x \Big|_{a}^{b} = \frac{c}{\lambda} \left(\sin \lambda b - \sin \lambda a \right) \stackrel{\lambda \to \infty}{\to} 0$$

б)
$$f(x) = \sum_{k=1}^{n} c_k 1_{<\alpha_k,\beta_k>}(x)$$
 (проста функція)

$$\Rightarrow \int_{a}^{b} f(x) \cos \lambda x \, dx = \sum_{k=1}^{n} \int_{a}^{b} 1_{\langle \alpha_{k}, \beta_{k} \rangle}(x) c_{k} \cos \lambda x \, dx = \sum_{k=1}^{n} c_{k} \int_{\alpha_{k}}^{\beta_{k}} \cos \lambda x \, dx = \frac{1}{\lambda} \sum_{k=1}^{n} c_{k} (\sin \lambda \beta_{k} - \sin \lambda \alpha_{k}) \xrightarrow{\lambda \to \infty} 0$$

в)
$$f \in D([a,b])$$
, або $\exists \{p_n(x), n \geq 1\} : p_n \Rightarrow f$ (інтегрована функція) $\Rightarrow \forall \varepsilon : \exists N : \sup_{x \in [a,b]} |p_N(x) - f(x)| < \varepsilon \iff \forall x \in [a,b] : p_N(x) - \varepsilon < f(x) < p_N(x) + \varepsilon$

$$\Rightarrow \forall \varepsilon : \exists N : \sup_{x \in \mathbb{R}^{N}} |p_N(x) - f(x)| < \varepsilon \iff$$

$$\forall x \in [a, b] : p_N(x) - \varepsilon < f(x) < p_N(x) + \varepsilon$$

$$\Rightarrow \left| \int_{a}^{b} f(x) \cos \lambda x \, dx - \int_{a}^{b} p_{N}(x) \cos \lambda x \, dx \right| = \left| \int_{a}^{b} (f(x) - p_{N}(x)) \cos \lambda x \, dx \right| \le \int_{a}^{b} |f(x) - p_{N}(x)| |\cos \lambda x| \, dx \le \int_{a}^{b} \varepsilon \, dx = \varepsilon (b - a)$$

Таким чином оскільки за п. б), $\int_{a}^{b} p_{N}(x) \cos \lambda x \, dx \stackrel{\lambda \to \infty}{\to} 0$, то

$$\forall \varepsilon > 0 : \exists \Lambda : \forall |\lambda| > \Lambda : \left| \int_a^b p_N(x) \cos \lambda x \, dx \right| < \varepsilon(b-a)$$

$$\left| \int_{a}^{b} f(x) \cos \lambda x \, dx \right| \le \left| \int_{a}^{b} f(x) \cos \lambda x \, dx - \int_{a}^{b} p_{N}(x) \cos \lambda x \, dx \right| + \left| \int_{a}^{b} p_{N}(x) \cos \lambda x \, dx \right| < 2\varepsilon (b-a)$$

Отже, за означенням,
$$\int_a^b f(x) \cos \lambda x \, dx \overset{\lambda \to \infty}{\to} 0$$

г) випадок невласного інтегралу, що збіжний абсолютно, тобто (наприклад)

г) випадок невласного інтегралу, що збіжний абсолютно, тобто (наприклад)
$$\int_a^b f(x) \cos \lambda x \, dx = \lim_{\delta \to 0+} \int_a^{b-\delta} f(x) \cos \lambda x \, dx$$
 (аналогічно для особливої точки a , або коли маємо безліч особливих точок $c_1, \dots, c_n \in (a,b)$)
$$\left| \int_a^b f(x) \cos \lambda x \, dx \right| = \left| \int_a^{b-\delta} f(x) \cos \lambda x \, dx + \int_a^b f(x) \cos \lambda x \, dx \right| \leq 1$$

$$\left| \int_{a}^{b} f(x) \cos \lambda x \, dx \right| = \left| \int_{a}^{b-\delta} f(x) \cos \lambda x \, dx + \int_{b-\delta}^{b} f(x) \cos \lambda x \, dx \right| \le$$

$$\le \left| \int_{a}^{b-\delta} f(x) \cos \lambda x \, dx \right| + \int_{b-\delta}^{b} |f(x)| |\cos \lambda x| \, dx \le$$

$$\le \left| \int_{a}^{b-\delta} f(x) \cos \lambda x \, dx \right| + \int_{b-\delta}^{b} |f(x)| |dx \le$$

Оскільки
$$\int_a^b |f(x)|\,dx$$
 збігається, то $\forall \varepsilon>0:\exists \delta:\int_{b-\delta}^b |f(x)|\,dx<rac{\varepsilon}{2}$

Більш того, за п. в),
$$\int_a^{b-\delta} f(x) \cos \lambda x \, dx \overset{\lambda \to \infty}{\to} 0$$
, тому $\exists \Lambda : \forall |\lambda| > \Lambda : \left| \int_a^{b-\delta} f(x) \cos \lambda x \, dx \right| < \frac{\varepsilon}{2}$

$$\boxed{<}\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$$

Отже, за означенням, $\int_a^b f(x) \cos \lambda x \, dx \stackrel{\lambda \to \infty}{\to} 0 \blacksquare$

Розглянемо частковий ряд:
$$S_k(x) = \frac{a_0}{2} + \sum_{n=1}^k a_n \cos nx + b_n \sin nx$$
, де

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos nt \, dt, \, b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin nt \, dt$$

$$S_k(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt + \frac{1}{\pi} \sum_{n=1}^{k} \int_{-\pi}^{\pi} f(t) \cos nt \, dt \cos nx + \int_{-\pi}^{\pi} f(t) \sin nt \, dt \sin nx = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt + \frac{1}{\pi} \sum_{n=1}^{k} \int_{-\pi}^{\pi} f(t) \cos nt \, dt \cos nx + \int_{-\pi}^{\pi} f(t) \sin nt \, dt \sin nx = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt + \frac{1}{\pi} \sum_{n=1}^{k} \int_{-\pi}^{\pi} f(t) \cos nt \, dt \cos nx + \int_{-\pi}^{\pi} f(t) \sin nt \, dt \sin nx = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt + \frac{1}{\pi} \sum_{n=1}^{k} \int_{-\pi}^{\pi} f(t) \cos nt \, dt \cos nx + \int_{-\pi}^{\pi} f(t) \sin nt \, dt \sin nx = \frac{1}{2\pi} \int_{-\pi}^{$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt + \frac{1}{\pi} \sum_{n=1}^{k} \int_{-\pi}^{\pi} f(t) (\cos nt \cos nx + \sin nt \sin nx) dt =$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt + \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sum_{n=1}^{k} \cos n(t-x) dt =$$

$$=\frac{1}{\pi}\int_{-\pi}^{\pi}f(t)\left(\frac{1}{2}+\sum_{n=1}^{k}\cos n(t-x)\right)\,dt$$
 Внайдемо суму підінтегрального виразу:

$$\frac{1}{2} + \sum_{n=1}^{k} \cos n\alpha = \frac{1}{2} + \sum_{n=1}^{k} \frac{\cos n\alpha \sin \frac{\alpha}{2}}{\sin \frac{\alpha}{2}} =$$

$$= \frac{1}{2} + \frac{1}{\sin \frac{\alpha}{2}} \cdot \frac{1}{2} \sum_{n=1}^{k} \left(\sin \left(\frac{\alpha}{2} + n\alpha \right) + \sin \left(\frac{\alpha}{2} - n\alpha \right) \right) =$$

$$= \frac{1}{2} + \frac{1}{2\sin\frac{\alpha}{2}} \left(\sin\frac{3\alpha}{2} - \sin\frac{\alpha}{2} + \sin\frac{5\alpha}{2} - \sin\frac{3\alpha}{2} + \dots + \sin\frac{(2k+1)\alpha}{2} - \sin\frac{(2k-1)\alpha}{2} \right)$$

$$= \frac{1}{2} + \frac{1}{2\sin\frac{\alpha}{2}} \left(\sin\frac{(2k+1)\alpha}{2} - \sin\frac{\alpha}{2} \right) = \frac{\sin\left(\frac{(2k+1)\alpha}{2}\right)}{2\sin\left(\frac{\alpha}{2}\right)}$$

Наша функція f - 2π -періодична, також і друга функція (як сума \cos). Тоді границю $[-\pi-x,\pi-x]$ можна замінити на $[-\pi,\pi]$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(u+x) \frac{\sin\left(\frac{(2k+1)}{2}u\right)}{\sin\left(\frac{1}{2}u\right)} du =$$

$$= \frac{1}{2\pi} \int_{0}^{\pi} f(u+x) \frac{\sin\left(\frac{(2k+1)}{2}u\right)}{\sin\left(\frac{1}{2}u\right)} du + \frac{1}{2\pi} \int_{-\pi}^{0} f(u+x) \frac{\sin\left(\frac{(2k+1)}{2}u\right)}{\sin\left(\frac{1}{2}u\right)} du =$$

потім на літеру u. Отримаємо наступне

$$\boxed{\equiv} \frac{1}{2\pi} \int_0^{\pi} f(x+u) \frac{\sin\left(\frac{(2k+1)}{2}u\right)}{\sin\left(\frac{1}{2}u\right)} + f(x-u) \frac{\sin\left(\frac{(2k+1)}{2}u\right)}{\sin\left(\frac{1}{2}u\right)} du =
= \frac{1}{\pi} \int_0^{\pi} (f(x+u) + f(x-u)) \frac{\sin\left(\frac{(2k+1)}{2}u\right)}{2\sin\left(\frac{1}{2}u\right)} du$$

Таким чином ми довели теорему

Theorem 3.2.2. Задана функція f - 2π -періодична, інтегрована. Тоді $S_k(x) = \frac{a_0}{2} + \sum_{i=1}^{k} a_i \cos nx + \frac{1}{2} \sin nx$ $b_n \sin nx$ - часткова сума ряду Фур'є - дорівнює іншому виразу:

$$S_k(x) = \frac{1}{\pi} \int_0^{\pi} (f(x+u) + f(x-u)) D_k(u) du$$

Перепозначення:
$$\frac{\sin\left(\frac{(2k+1)}{2}u\right)}{2\sin\left(\frac{1}{2}u\right)} = \frac{1}{2} + \sum_{n=1}^k \cos ku = D_k(u)$$
 - ядро Діріхле

Властивості ядра Діріхле:

1) $D_k(u)$ - парна, 2π -періодична функція

2)
$$\frac{1}{\pi} \int_{-\pi}^{\pi} D_k(u) du = 1$$

1. Вже доводили під час муток з формулами

2.
$$\int_{-\pi}^{\pi} D_k(u) du = \int_{-\pi}^{\pi} \frac{1}{2} du + \sum_{n=1}^{k} \int_{-\pi}^{\pi} \cos ku du = \frac{1}{2} 2\pi = \pi \blacksquare$$

Але нас ще цікавить збіжність часткового ряду

Розглянемо рівність:

$$S_k(x) - c = \frac{1}{\pi} \int_0^\pi (f(x+u) + f(x-u)) D_k(u) du - c \frac{1}{\pi} \int_{-\pi}^\pi D_k(u) du =$$

$$= \frac{1}{\pi} \int_0^\pi (f(x+u) + f(x-u)) D_k(u) du - c \frac{2}{\pi} \int_0^\pi D_k(u) du =$$

$$= \frac{1}{\pi} \int_0^\pi (f(x+u) + f(x-u) - 2c) D_k(u) du =$$
Позначимо $f(x+u) + f(x-u) - 2c = g_{c,x}(u)$

$$= \frac{1}{\pi} \int_0^\pi g_{c,x}(u) D_k(u) du$$

мулюємо зараз нову теорему та доведемо її:

Тheorem 3.2.3. Ознака Діні (для рядів $\Phi yp'\varepsilon$)

Задана функція
$$f$$
 - 2π -періодчина, інтегрована. Якщо $\exists \delta>0: \int_0^\delta \frac{|g_{c,x}(u)|}{u}\,du$ - збіжний, то $S_k(x)\to c, k\to\infty$

Вже з'ясували, що
$$S_k(x) - c = \frac{1}{\pi} \int_0^\pi g_{c,x}(u) D_k(u) \, du =$$

$$= \frac{1}{\pi} \int_0^{\delta} g_{c,x}(u) D_k(u) \, du + \frac{1}{\pi} \int_{\delta}^{\pi} g_{c,x}(u) D_k(u) \, du$$

2.
$$\frac{1}{\pi} \int_{\delta}^{\pi} g_{c,x}(u) \frac{\sin\left(\frac{(2k+1)}{2}u\right)}{2\sin\left(\frac{1}{2}u\right)} du \to 0, k \to \infty$$

за лемою Рімана, тому що $\frac{g_{c,x}(u)}{\sin\left(\frac{1}{2}u\right)}$ - функція без особових точок та інтегрована

1.
$$\frac{1}{\pi} \int_0^{\delta} g_{c,x}(u) \frac{\sin\left(\frac{(2k+1)}{2}u\right)}{2\sin\left(\frac{1}{2}u\right)} du$$

Можемо застосувати лему Рімана. Але треба зазначити, що $\int_0^{\delta} \left| \frac{g_{c,x}(u)}{2\sin(\frac{u}{2})} \right| du$ збіжний абсолютно.

Перевіримо за ознакою порівняння в граничній формі

За умовою теореми,
$$\int_0^\delta \frac{|g_{c,x}(u)|}{u} \, du$$
 - збіжний

$$\lim_{u \to 0} \frac{\frac{|g_{c,x}(u)|}{2\sin\frac{u}{2}}}{\frac{|g_{c,x}(u)|}{2\sin\frac{u}{2}}} = \lim_{u \to 0} \frac{u}{2\sin\frac{u}{2}} = 1$$

Отже, наш інтеграл збіжний. Тоді за лемою Рімана,
$$\frac{1}{\pi} \int_0^\delta g_{c,x}(u) \frac{\sin\left(\frac{(2k+1)}{2}u\right)}{2\sin\left(\frac{1}{2}u\right)} \, du \to 0, \, k \to \infty$$

Corollary 3.2.3.(1). Якщо f - диференційована в т. x_0 , то $S_k(x_0) \to f(x_0), k \to \infty$

Proof.

З ознаки Діні випливає, що достатньо перевірити збіжність інтеграла за умовою теореми

$$g_{c,x_0}(u) = f(x_0 + u) + f(x_0 - u) - 2c \stackrel{c = f(x_0)}{=} (f(x_0 + u) - f(x_0)) + (f(x_0 - u) - f(x_0))$$

$$\Rightarrow \frac{|g_{c,x_0}(u)|}{u} = \frac{|(f(x_0 + u) - f(x_0)) + (f(x_0 - u) - f(x_0))|}{u} =$$

$$= \left| \frac{f(x_0 + u) - f(x_0)}{u} + \frac{f(x_0) - f(x_0 - u)}{-u} \right| \stackrel{u \to 0}{\to} |f'(x_0) + f'(x_0)| = |f'(x_0)|$$

Таким чином, у підінтегрованої функції т. u = 0 є усувною. Тому збіжний Отже, $S_k(x_0) \to f(x_0), k \to \infty$

Corollary 3.2.3.(2). Якщо для f т. x_0 є стрибком та містить ліву і праву похідну, то $S_k(x_0) \to$

$$\frac{1}{2}(f(x_0, +) + f(x_0, -))$$
Proof.

$$c = \frac{1}{2}(f(x_0, +) + f(x_0, -))$$
Toni $g_{c,x_0}(u) = f(x_0 + u) - f(x_0, +) + f(x_0 - u) - f(x_0, -)$

$$\Rightarrow \frac{|g_{c,x_0}(u)|}{u} = \frac{|(f(x_0 + u) - f(x_0, +)) + (f(x_0 - u) - f(x_0, -))|}{u} =$$

$$= \left| \frac{f(x_0 + u) - f(x_0, +)}{u} + \frac{f(x_0, -) - f(x_0 - u)}{-u} \right| \xrightarrow{u \to 0} |f'(x_0, +) + f'(x_0, -)|$$

Тоді інтеграл в ознаку Діні збігається. Отже $S_k(x_0)$

Corollary 3.2.3.(3). Якщо f задовільняє умові Ліпшиця в околі т. x_0 , то $S_k(x) \to f(x_0), k \to \infty$ Proof.

$$\begin{array}{l} c=f(x_0)\\ \Rightarrow \frac{|g_{c,x_0}(u)|}{u}=\frac{|(f(x_0+u)-f(x_0))+(f(x_0-u)-f(x_0))|}{u}\leq \\ \leq \frac{|f(x_0+u)-f(x_0)|}{u}+\frac{|f(x_0-u)-f(x_0)|}{u}\leq \frac{Lu}{u}+\frac{Lu}{u}=2L \end{array}$$
 Тобто така функція є обмеженою в околі $(0,\delta)$, тому є інтегрованою

За ознаки Діні, $S_k(x) \to f(x_0) \blacksquare$

Проаналізуємо тепер ряд Фур'є на рівномірну збіжність

Theorem 3.2.4. Задана функція $f - 2\pi$ -періодчина, кусково неперервно-диференційована. Тоді ряд Φ ур'є рівномірно збігається до fБез доведення, бо я заплутався вже (в цей день ГБ не щастило)

Example. Розкласти функцію в ряд Фур'є f(x) = 6 - x на проміжку (3,9)

 \ddot{l} ї період T = 6 = 2l, тому l = 3

Ряд Фур'є містить таку форму:

$$S(x)=a_0+\sum_{n=1}^\infty a_n\cos\left(rac{\pi nx}{3}
ight)+b_n\sin\left(rac{\pi nx}{3}
ight)$$
 Знайдемо всі коефіцієнти за формулами: $a_n=rac{1}{3}\int_3^9 (6-x)\cos\left(rac{\pi nx}{3}
ight)\,dx=0,\, orall n
eq 0$

$$a_n = \frac{1}{3} \int_2^9 (6-x) \cos\left(\frac{\pi nx}{3}\right) dx = 0, \forall n \neq 0$$

Можна міркувати двома способами чому 0: або через періодичність ми можемо змінити границі інтегрування на [-3,3] та використати той факт, що функція - непарна; або площа фігури [3,6] рівний протилежно площі фігури [6.9]. Другий варіант все ж таки більш сприятливий

$$a_n = \frac{1}{3} \int_3^9 (6-x) \, dx$$
 $\stackrel{\text{ті самі міркування}}{=} 0$ $b_n = \frac{1}{3} \int_3^9 (6-x) \sin\left(\frac{\pi nx}{3}\right) \, dx \stackrel{u=6-x}{=} \dots \stackrel{dv=\sin\left(\frac{\pi nx}{3}\right)}{=} dx \ (-1)^n \frac{6}{\pi n}$ Отже, $f(x) \rightsquigarrow S(x) = \sum_{n=0}^\infty (-1)^n \frac{6}{\pi n} \sin\left(\frac{\pi nx}{3}\right)$

У нас тут функція f - диференційована в т. $x \neq 3 + 6k, k \in \mathbb{Z}$. Тоді за першим наслідком ознаки Діні, S(x) = f(x)

При $x_k = 3 + 6k$ ці точки є стрибками, а також містять ліву та праву похідні. Тоді за другим наслідком ознаки Діні,

$$S(x_k) = \frac{1}{2}(f(x_k+) + f(x_k-)) = 0$$

Рис. 3: Червоний графік відповідає розкладу в ряд Фур'є (тут я взяв лише 10 доданків; при нескінченної кількості вона буде схожа за наш початковий графік, оскім стрибків)

Додатковий зміст із практики (*) 5.3

Властивості ряду Φ ур'є

- 1. Якщо на (-l,l) задана непарная функція f, то $\forall n \geq 1: a_n = 0$
- 2. Якщо на (-l,l) задана парна функція f, то $\forall n\geq 1:b_n=0$
- 3. Якщо $f \in C((-l,l))$, що є 2l-періодична, то $f \in C(\mathbb{R})$
- Залишу без доведення

Розклад функції f(x), що задана на [0,l), в ряд за косінує та сінує

1. $\cos \Phi v p' \varepsilon$

Продовжимо нашу функцію на (-l,0) парним чином, тобто:

$$\tilde{f}(x) = \begin{cases} f(x), x \in [0, l) \\ f(-x), x \in (-l, 0) \end{cases}$$

Якщо обережно перевірити, то $\tilde{f}(-x)=\tilde{f}(x),\,x\in(-l,l)$ Оскільки вона парна, то $\forall n\geq 1:b_n=0$

$$\Rightarrow \tilde{f}(x) \rightsquigarrow S(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{\pi nx}{l}\right)$$

Причому
$$a_n=rac{1}{\pi}\int_{-l}^{l} ilde{f}(x)\cos\left(rac{\pi nx}{l}
ight)\,dx=rac{2}{l}\int_{0}^{l} f(x)\cos\left(rac{\pi nx}{l}
ight)\,dx$$

Ну а якщо виконаються ознаки Діні, то при $x \in [0, l)$:

$$S(x) = \tilde{f(x)} = f(x)$$

2. $\sin \Phi p'\varepsilon$

Продовжимо нашу функцію на (-l,0) непарним чином, тобто:

$$\tilde{f}(x) = \begin{cases} f(x), x \in [0, l) \\ -f(-x), x \in (-l, 0) \end{cases}$$

Продолживае исилу функцие на
$$(t,0)$$
 непарилы ином, г $\tilde{f}(x) = \begin{cases} f(x), x \in [0,l) \\ -f(-x), x \in (-l,0) \end{cases}$ Якщо обережно перевірити, то $\tilde{f}(-x) = -\tilde{f}(x), x \in (-l,l)$ Оскільки вона непарна, то $\forall n \geq 1: a_n = 0$ $\Rightarrow \tilde{f}(x) \leadsto S(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{\pi nx}{l}\right)$

Причому
$$b_n = \frac{1}{\pi} \int_{-l}^{l} \tilde{f}(x) \sin\left(\frac{\pi nx}{l}\right) dx = \frac{2}{l} \int_{0}^{l} f(x) \sin\left(\frac{\pi nx}{l}\right) dx$$

Ну а якщо виконаються ознаки Діні, то при $x \in [0, l)$:

$$S(x) = f(x) = f(x)$$

Example. Розкласти функцію f(x) = x - 1 в косінус-ряд, $x \in (0, 2)$

Робимо той самий алгоритм:
$$\tilde{f}(x) = \begin{cases} x-1, x \in (0,2) \\ -x-1, x \in (-2,0) \end{cases} - 4$$
-періодична, до речі $\Rightarrow l=2$ Обчислимо коефіцієнти:

$$a_n = \frac{2}{2} \int_0^2 (x-1) \cos \left(\frac{\pi nx}{2}\right) dx \overset{\text{ну там за частинами}}{=} \begin{bmatrix} 0, n = 2k \\ \frac{-8}{\pi^2 (2k+1)^2}, n = 2k+1 \end{bmatrix}$$

Таким чином,
$$S(x) = \sum_{k=1}^{\infty} \frac{-8}{\pi^2 (2k+1)^2} \cos\left(\frac{\pi (2k+1)x}{2}\right)$$

Функція
$$\tilde{f}(x)$$
 на $(0,2)$ є диференційованою, тому за наслідком ознаки Діні, $\tilde{f}(x)=f(x)=x-1=\sum_{k=1}^{\infty}\frac{-8}{\pi^2(2k+1)^2}\cos\left(\frac{\pi(2k+1)x}{2}\right)$

Remark! Функцію з прикладу можна розкласти в ряд Фур'є стандартним шляхом, не подовжуючи її. Це говорить про те, що розклад в якомусь сенсі не є єдиним

Середнє за Чезаро

Definition 3.4.1. Задана функція $f - 2\pi$ -періодчина, інтегрована і ряд Фур'є S для неї Середнім за Чезаро називають наступний вираз

$$\sigma_n(x) = \frac{1}{n} (S_0(x) + S_1(x) + \dots + S_{n-1}(x))$$

Отримаємо інтегральний вигляд середьного за Чезаро
$$\sigma_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} S_k(x) = \frac{1}{n} \sum_{k=0}^{n-1} \int_0^\pi \frac{f(x+u) + f(x-u)}{2\pi} \frac{\sin\left(\frac{(2k+1)}{2}u\right)}{\sin\left(\frac{1}{2}u\right)} \, du = 0$$

$$=\frac{1}{n}\int_0^\pi \frac{f(x+u)+f(x-u)}{2\pi\sin\left(\frac{1}{2}u\right)}\sum_{k=0}^{n-1}\sin\left(\frac{(2k+1)}{2}u\right)du$$
 Розпишемо суму в інтегралі:

$$\sum_{k=0}^{n-1} \sin\left(\frac{(2k+1)}{2}u\right) = \sum_{k=0}^{n-1} \frac{\sin\left(\frac{(2k+1)}{2}u\right)\sin\frac{u}{2}}{\sin\frac{u}{2}} =$$

$$= \frac{1}{\sin\frac{u}{2}} \sum_{k=0}^{n-1} \frac{1}{2} (\cos(ku) - \cos((k+1)u)) = \frac{1 - \cos nu}{2\sin\frac{u}{2}} = \frac{\sin^2\frac{nu}{2}}{\sin\frac{u}{2}}$$

$$= \frac{1}{n} \int_0^{\pi} \frac{f(x+u) + f(x-u)}{2\pi} \frac{\sin^2 \frac{nu}{2}}{\sin^2 \frac{u}{2}} du =$$

$$u = 2v, du = 2dv$$

$$= \int_0^{\frac{\pi}{2}} \frac{f(x+2v) + f(x-2v)}{2\pi} \frac{\sin^2 nv}{n\sin^2 v} dv$$

Lemma 3.4.2. Задана функція f - 2π -періодчина, інтегрована і ряд Фур'є S для неї. Тоді середне за Чезаро має інтегрований вираз:

$$\sigma_n(f)(x) = \frac{1}{\pi} \int_0^{\frac{\pi}{2}} (f(x+2v) + f(x-2v)) F_n(v) \, dv$$

Перепозначення:
$$\frac{\sin^2 nv}{2n\sin^2 v} = \frac{1}{n} \sum_{k=0}^{n-1} D_k(2v) = F_n(v)$$
 - ядро Феєра

Властивості ядра Феєра:

1) $F_k(v)$ - парна, 2π -періодчина

$$(2)$$
 $\frac{1}{\pi}\int_{-\pi}^{\pi}F_n(v)\,dv=1$ Для обох пунктів розглянути другу формулу ядра Феера

Theorem 3.4.3. Теорема Феєра

Задана функція f -, неперервна на $[0,2\pi]$. Тоді $\sigma_n(f) \stackrel{\rightarrow}{\to} f$ на $[0,2\pi]$ Поки що без доведення

Corollary 3.4.3.(1). $\forall \varepsilon > 0$ існує тригонометричний многочлен $T_{\varepsilon}(x) = A_0 + \sum_{n=1}^{N(\varepsilon)} A_n \cos nx + \sum_{n=1}^{N(\varepsilon)} A_n \cos nx$

 $B_n \sin nx$ такий, що $||f - T_{\varepsilon}|| < \varepsilon$

Proof.

Дійсно існує, можна $T_{\varepsilon}(x) = \sigma_n(f)(x)$

Corollary 3.4.3.(2). Якщо $f \in C([a,b])$, тоді $\forall \varepsilon > 0$ існує звичайний многочлен $P_{\varepsilon}(x)$ такий, що $||f - P_{\varepsilon}|| < \varepsilon$

Proof.

Задана функція $f(x), x \in [a, b]$

Задамо
$$t=\dfrac{x-a}{b-a}\cdot 2\pi, t\in [0,2\pi]$$

Звідси
$$x = \frac{t(b-a)}{2\pi} + a$$

Звідси
$$x=\frac{t(b-a)}{2\pi}+a$$
 $f(x)\stackrel{\text{підставляємо x і позначення}}{=}g(t), g\in C([0,2\pi])$ Тоді за теоремою Феєра, $\sigma_n(g) \stackrel{\rightarrow}{\to} g$, або $\forall \varepsilon>0:\exists N(\varepsilon): \left\|g_{N(\varepsilon)}(g)-g\right\|<\frac{\varepsilon}{2}$

$$\forall \varepsilon > 0 : \exists N(\varepsilon) : \|g_{N(\varepsilon)}(g) - g\| < \frac{\varepsilon}{2}$$

$$\sigma_{N(arepsilon)}(g)(t)=A_0+\sum_{n=1}^{N(arepsilon)}A_n\cos nt+B_n\sin nt$$
 - розкладається в ряд Тейлора $\sigma_{N(arepsilon)}(g)(t)=\sum_{k=0}^{\infty}c_kt^k$

Тоді $\exists K_{\varepsilon}$: для часткової суми цього ряду $\sum_{k=0}^{K(\varepsilon)} c_k t^k = P_{\varepsilon}(k)$ виконано $\|\sigma_n(g) - P_{\varepsilon}\| < \frac{\varepsilon}{2}$. Тому $\|g - P_{\varepsilon}\| = \|g - \sigma_{N(\varepsilon)}(g) + \sigma_{N(\varepsilon)}(g) - P_{\varepsilon}\| \le \|g - \sigma_{N(\varepsilon)}(g)\| + \|\sigma_{N(\varepsilon)}(g) - P_{\varepsilon}\| < \varepsilon$ $P_{\varepsilon}(t) = P_{\varepsilon}(\frac{x-a}{b-a} \cdot 2\pi) = P_{1\varepsilon}(x)$ $\Rightarrow \|g - P\| = \|f - P_{\varepsilon}\| \le T$

$$\|g - P_{\varepsilon}\| = \|g - \sigma_{N(\varepsilon)}(g) + \sigma_{N(\varepsilon)}(g) - P_{\varepsilon}\| \le \|g - \sigma_{N(\varepsilon)}(g)\| + \|\sigma_{N(\varepsilon)}(g) - P_{\varepsilon}\| < \varepsilon$$

$$P_{\varepsilon}(t) = P_{\varepsilon}(\frac{x-a}{b-a} \cdot 2\pi) = P_{1\varepsilon}(x)$$

$$\Rightarrow \|g - P_{\varepsilon}\| = \|f - P_{1\varepsilon}\| < \varepsilon \blacksquare$$

Theorem 3.4.4. Рівність Парсеваля

Задана функція f - 2π -періодчина, інтегрована. Тоді

$$\frac{1}{\pi} \int_0^{2\pi} f^2(x) \, dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} a_n^2 + b_n^2$$

де a_n, b_n - коефіцієнти як в ряду Фур'є

Proof.

$$S_k(x) = \frac{a_0}{2} + \sum_{n=1}^k a_n \cos nx + b_n \sin nx$$
. Тоді можна отримати, що

$$\int_0^{2\pi} \left(f(x) - S_k(x)\right)^2 \, dx \to 0, \text{ якщо } n \to \infty$$

$$\int_0^{2\pi} \left(f(x) - S_k(x)\right)^2 \, dx = \int_0^{2\pi} f^2(x) \, dx - 2 \int_0^{2\pi} f(x) S_k(x) \, dx + \int_0^{2\pi} S_k^2(x) \, dx =$$

$$= \int_0^{2\pi} f^2(x) \, dx -$$

$$-2\left(\int_{0}^{2\pi} \frac{a_0}{2} f(x) dx + \sum_{n=1}^{k} \left(a_n \int_{0}^{2\pi} \cos nx f(x) dx + b_n \int_{0}^{2\pi} \sin nx f(x) dx\right)\right) + \int_{0}^{2\pi} \left(\frac{a_0}{2} + \sum_{n=1}^{k} a_n \cos nx + b_n \sin nx\right)^2 dx$$

Зауважимо, що справедлива така рівність: $\left(\sum_{j=1}^m c_j\right)^2 = \sum_{l=1}^m \sum_{j=1}^m c_l c_j$

$$= \int_0^{2\pi} f^2(x) \, dx - 2 \left(\frac{a_0}{2} \cdot \pi a_0 + \sum_{n=0}^k a_n \cdot \pi a_n + b_n \cdot \pi b_n \right) +$$

$$+ \int_0^{2\pi} \left(\frac{a_0}{2}\right)^2 dx + \int_0^{2\pi} 2 \cdot \frac{a_0}{2} \cdot \sum_{n=1}^k a_n \cos nx + b_n \sin nx \, dx +$$

$$+ \int_0^{2\pi} \left(\sum_{n=1}^k a_n \cos nx + b_n \sin nx \right)^2 dx =$$

$$= \int_0^{2\pi} f^2(x) dx - 2\left(\frac{a_0}{2} \cdot \pi a_0 + \sum_{n=0}^k a_n \cdot \pi a_n + b_n \cdot \pi b_n\right) +$$

$$+\frac{\pi a_0^2}{2} + a_0 \sum_{n=0}^{k} \left(a_n \int_0^{2\pi} \cos nx \, dx + b_n \int_0^{2\pi} \sin nx \, dx \right) +$$

$$+\sum_{n=1}^{k}\sum_{m=1}^{k}a_{n}a_{m}\int_{0}^{2\pi}\cos nx\cos mx\,dx + \sum_{n=1}^{k}\sum_{m=1}^{k}2a_{n}b_{m}\int_{0}^{2\pi}\cos nx\sin mx\,dx + \sum_{n=1}^{k}\sum_{m=1}^{k}b_{n}b_{m}\int_{0}^{2\pi}\sin nx\sin mx\,dx = 0$$

$$n=1$$
 $m=1$ 3ауважимо, що $\int_0^{2\pi} \cos nx \, dx = \int_0^{2\pi} \sin nx \, dx = 0$

Також звідси випливає, що $\int_0^{2\pi} \cos nx \cos mx \, dx = \int_0^{2\pi} \cos nx \sin mx \, dx = \int_0^{2\pi} \sin nx \sin mx \, dx = 0,$

але при $m \neq n$. Тому пропадуть безліч доданків прямо зараз

$$\boxed{\boxed{\equiv}} \int_0^{2\pi} f^2(x) \, dx - \frac{\pi a_0^2}{2} - 2\pi \sum_{n=0}^k a_n^2 + b_n^2 + \sum_{n=1}^k \left(a_n^2 \int_0^{2\pi} \cos^2 nx \, dx + b_n \int_0^{2\pi} \sin^2 nx \, dx \right) = \\ = \int_0^{2\pi} f^2(x) \, dx - \pi \left(\frac{a_0^2}{2} + \sum_{n=0}^k a_n^2 + b_n^2 \right) \to 0 \text{ при } n \to \infty$$

І НАРЕШТІ, отримали довгоочікувану рівність:

$$\frac{1}{\pi} \int_0^{2\pi} f^2(x) \, dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} a_n^2 + b_n^2 \blacksquare$$

Example 3.4.4. Приклад застосування

Нехай $f(x) = x, x \in (-\pi, \pi)$. Вона є непарною, тому $a_n = 0 : \forall n \ge 0$

$$b_n = \dots = \frac{2(-1)^{n+1}}{n}$$

 $o_n = \cdots = \frac{n}{n}$ А тепер застосуємо рівність Парсеваля:

$$\frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \, dx = \frac{2\pi^2}{3} \stackrel{\text{Th. 3.3.4.}}{=} \sum_{n=1}^{\infty} \frac{4}{n^2} \Rightarrow$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Перетворення Фур'є 5.5

Definition 3.5.1. Задана функція f(x) на \mathbb{R} - абсолютно інтегрована **Перетворенням** Φ ур'є функції f(x) називається функція:

$$\int_{-\infty}^{+\infty} f(x)e^{i\lambda x} dx = \hat{f}(\lambda) \stackrel{\text{a6o}}{=} \mathcal{F}\{f(x)\}$$

Theorem 3.5.2. Властивості

1. $\int_{-\infty}^{+\infty} f(x)e^{i\lambda x} dx$ збіжний рівномірно на \mathbb{R}

2.
$$\hat{f}(\lambda) \in C(\mathbb{R})$$

3. Якщо функція f(x) є такою, що $\int_{-\infty}^{+\infty} (1+|x|^k)|f(x)|\,dx$ збіжний, то $\exists (\hat{f}(\lambda))^{(k)} = \widehat{((ix)^k f(x))}(\lambda)$

4. Якщо $f(x) \in C^{(k-1)}(\mathbb{R}), \ \exists f^{(k)}(x)$ - абсолютно інтегрована на \mathbb{R} та $f^{(n)}(x) \to 0, \ x \to \pm \infty, n = 0$ $\{0,\ldots,k-1\}$, to $\widehat{(f^{(k)})}(\lambda)=(-i\lambda)^k\widehat{f}(\lambda)$

Proof.

1. За ознакою Вейерштрасса та умовою властивості, $|f(x)e^{i\lambda x}|=|f(x)||e^{i\lambda x}|=|f(x)|$, тому і виконується рівномірна збіжність

- 2. Наслідок властивості 1
- 3. Для довільних n із $\{0,1,\dots,k\}$: $(1+|x|^n)<(1+|x|^k)$ Тому збіжним буде $\int_{-\infty}^{+\infty}(1+|x|^n)|f(x)|\,dx,$ а згодом

$$(\hat{f}(\lambda))^{(k)} = \left(\int_{-\infty}^{+\infty} f(x)e^{i\lambda x} dx\right)^{(k)} (*)$$

Обчислимо формально, чому дорівнює права частина (нам поки невідомо, чи виконується рівність):
$$\int_{-\infty}^{+\infty} \left(f(x) e^{i\lambda x} \right)^{(k)} \, dx = \int_{-\infty}^{+\infty} f(x) (ix)^k e^{i\lambda x} \, dx.$$
 Її ми перевіримо на рівномірну збіжність. Знову за

$$|f(x)(ix)^k e^{i\lambda x}| = |f(x)||(ik)^x||e^{i\lambda x}| = |f(x)||x^k| \le |f(x)|(1+|x|^k)$$

Враховуючи умову властивості, досліджуючий інтеграл є рівномірно збіжним

Тому рівність (*) є справедливою. Тому

$$(\hat{f}(x))^{(k)} = \overline{((ix)^k f(x))}(\lambda)$$

4.
$$(\widehat{f^{(k)}})(\lambda) = \int_{-\infty}^{+\infty} f^{(k)}(x)e^{i\lambda x} dx =$$

Інтегруємо за частинами так, щоб я знизив похідну, тому:

$$u = e^{i\lambda x} \Rightarrow du = i\lambda e^{i\lambda x} dx$$

$$u = e^{i\lambda x} \Rightarrow du = i\lambda e^{i\lambda x} dx$$
$$dv = f^{(k)}(x) dx \Rightarrow v = f^{(k-1)}(x)$$

$$= f^{(k-1)}(x)e^{i\lambda x}\Big|_{-\infty}^{+\infty} - i\lambda \int_{-\infty}^{+\infty} f^{(k-1)}(x)e^{i\lambda x} dx =$$

Робимо ту саму Санту-Барбару до кінця і отримаємо бажану формулу

$$= (-i\lambda)^k \int_{-\infty}^{+\infty} f(x)e^{i\lambda x} = (-i\lambda)^k \hat{f}(\lambda) dx \blacksquare$$

Example. Знайти перетворення Фур'є для функції $f(x) = e^{-ax^2 + bx + c}$,

Варто перевірити на абсолютну збіжність:
$$\int_{-\infty}^{+\infty} |f(x)| \, dx = \int_{-\infty}^{+\infty} e^{-ax^2 + bx + c} \, dx = e^c \int_{-\infty}^{+\infty} \frac{e^{bx}}{e^{ax^2}} \, dx$$

Скористаємось фактом (колись давно з 2 семестру), що $\int_{-\infty}^{+\infty} \frac{dx}{e^{kx^2}}$ - збіжний. Тоді за ознакою гра-

$$\lim_{x \to \infty} \frac{\frac{e^{bx}}{e^{ax^2}}}{\frac{1}{e^{bx^2}}} = \lim_{x \to \infty} e^{(k-a)x^2 + bx} = (0 < k < a) = (e^{-\infty}) = 0$$

Тому там наш інтеграл збігається абсолютно. А ТЕПЕР вже можна й перетворення
$$f(\lambda) = \int_{-\infty}^{+\infty} e^{-ax^2 + bx + c} e^{i\lambda x} \, dx = \int_{-\infty}^{+\infty} e^{-ax^2 + (b+i\lambda)x + c} \, dx =$$
 В степені виділяємо повний квадрат, мені впадлу вставляти це, тому одразу ж :с
$$= \int_{-\infty}^{+\infty} e^{-a\left(x - \frac{b+i\lambda}{2a}\right)^2} + c + \frac{(b+i\lambda)^2}{4a} \, dx =$$

$$= \int_{-\infty}^{+\infty} e^{-a\left(x - \frac{b+i\lambda}{2a}\right)^2} + c + \frac{(b+i\lambda)^2}{4a} dx =$$

Заміна:
$$x - \frac{b+i\lambda}{2a} = t$$

= $e^c + \frac{(b+i\lambda)^2}{4a} \int_{-\infty}^{+\infty} e^{-at^2} dt = e^c + \frac{(b+i\lambda)^2}{4a} \sqrt{\frac{\pi}{a}}$

Зворотнє перетворення Фур'є

Definition 3.6.1. Задана функція $g(\lambda)$ на $\mathbb R$ - абсолютно інтегрована Зворотнім перетворенням $\Phi y p' \epsilon$ функції $g(\lambda)$ називається функція:

$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} g(\lambda) e^{-i\lambda x} \, d\lambda = \check{g}(x)$$

Хочемо:
$$(\check{\widehat{f}})(x) = f(x)$$

Ну або в інакшому вигляді, ми пруфимо, що
$$\frac{1}{2\pi}\int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty}f(x)e^{i\lambda x}\,dx\right)e^{-i\lambda s}\,d\lambda=f(s)$$

$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(x) e^{i\lambda x} \, dx \right) e^{-i\lambda s} \, d\lambda = \frac{1}{2\pi} \lim_{A \to \infty} \int_{-A}^{A} \left(\int_{-\infty}^{+\infty} f(x) e^{i\lambda x} \, dx \right) e^{-i\lambda s} \, d\lambda$$
 і спростимо вираз в ліміті:

$$\int_{-A}^{A} \left(\int_{-\infty}^{+\infty} f(x) e^{i\lambda x} \, dx \right) e^{-i\lambda s} \, d\lambda = \int_{-A}^{A} \left(\int_{-\infty}^{+\infty} f(x) e^{i\lambda(x-s)} \, dx \right) \, d\lambda =$$

Через те, що $|f(x)e^{i\lambda(x-s)}|=|f(x)|$, то внутрішній інтеграл абсолютно збіжний. Тому можна змінити місцями порядок інтегрування

$$= \int_{-\infty}^{+\infty} \left(\int_{-A}^{A} f(x)e^{i\lambda(x-s)} d\lambda \right) dx = \int_{-\infty}^{+\infty} f(x) \left(\int_{-A}^{A} e^{i\lambda(x-s)} d\lambda \right) dx =$$

$$= \int_{-\infty}^{+\infty} f(x) \frac{e^{i\lambda(x-s)}}{i(x-s)} \Big|_{-A}^{A} dx = \int_{-\infty}^{+\infty} f(x) \frac{2\sin A(x-s)}{x-s} dx \stackrel{x-s=t}{=}$$

$$= \int_{-\infty}^{0} 2f(s+t) \frac{\sin At}{t} dt + \int_{0}^{+\infty} 2f(s+t) \frac{\sin At}{t} dt \stackrel{t=-t}{=} \underset{=}{\text{B першому}}$$

$$=\int_{0}^{+\infty}2(f(s+t)+f(s-t))\frac{\sin At}{t}\,dt$$
 Тоді
$$\frac{1}{2\pi}\int_{-A}^{A}\left(\int_{-\infty}^{+\infty}f(x)e^{i\lambda x}\,dx\right)e^{-i\lambda s}\,d\lambda-c=$$

$$=\frac{1}{\pi}\int_{0}^{+\infty}(f(s+t)+f(s-t))\frac{\sin At}{t}\,dt-c\frac{2}{\pi}\int_{0}^{+\infty}\frac{\sin At}{t}\,dt=$$

$$=\frac{1}{\pi}\int_{0}^{+\infty}(f(s+t)+f(s-t)-2c)\frac{\sin At}{t}\,dt=$$
 Позначимо $f(s+t)+f(s-t)-2c=h_{c,s}(t)$
$$=\int_{0}^{+\infty}h_{c,s}(t)\frac{\sin At}{t}\,dt$$
 Сформулюємо теорему та доведемо її:

Theorem 3.6.1. Ознака Діні (для перетворення Фур'є)

Задана така функція f, що є абсолютно збіжною на \mathbb{R} .

Якщо
$$\exists \delta>0: \int_0^\delta \frac{|h_{c,s}(t)|}{t}\,dt$$
 - збіжний, то $\int_0^{+\infty} h_{c,s}(t) \frac{\sin At}{t}\,dt \to 0, \, A \to \infty$

Якщо розписати наш інтеграл як сума $[0,\delta]$, $[\delta,+\infty)$, то ми матимемо два інтеграли, що прямують до нуля за лемою Рімана

Corollary 3.6.1.

- 1) Якщо f неперервно-диференційована в т. x_0 , то $(\check{f})(x_0) = f(x_0)$
- 2) Якщо f диференційована в лівому та правому околі т. x_0 , то $(\widetilde{f})(x_0) = \frac{f(x_0,+) + f(x_0,-)}{2}$ Proof.

1) Встановимо
$$c=f(x_0)$$
, тоді
$$(\check{f})(x_0)=\lim_{A\to\infty}\int_0^{+\infty}(f(x_0+t)-f(x_0)+f(x_0-t)-f(x_0))\frac{\sin At}{t}\,dt=0$$
 Майжее дослівно повторюємо доведення з 1-го наслідку з ознаки Діні для рядів

2) Майже дослівно повторюємо доведення з 2-го наслідку з ознаки Діні для рядів 🔳

Операційне числення 6

Оригінали функцій 6.1

Definition 4.1.1. Функція f(t) називається **оригіналом**, якщо вона під умовами:

- 1) f(t) = 0, t < 0
- f(t) кусково неперервна
- 3) $\exists M : \exists \alpha : |f(t)| < Me^{\alpha t}$

Example 4.1.1. $\sin t \to \begin{cases} \sin t, t \geq 0 \\ 0, t < 0 \end{cases}$ - функцію перевели в оригінал

Definition 4.1.2. Функція Хевісайда визначається наступним чином

$$\chi(t) = \begin{cases} 1, t \ge 0\\ 0, t < 0 \end{cases}$$

Example 4.1.2. $\sin t \rightarrow \sin t \cdot \chi(t)$ - скорочена версія **Ex. 4.1.1**

Definition 4.1.3. Задан f(t) - оригінал

Степенем зростання f(t) називається число:

$$\sigma(f) = \inf\{\alpha : \exists M : |f(t)| < Me^{\alpha t}\}\$$

Example 4.1.3.

 $1. f(t) = \sin t$. (тут автоматично вважаємо, що виконується перша умова). Перевіримо третю умову:

3)
$$|\sin t| \le 1 = 1 \cdot e^{0t}$$
, тобто $\exists M = 1, \alpha = 0$

Знайдемо степінь зростання:

 $\forall \alpha > 0 : |\sin t| < 1 \cdot e^{\alpha t}$

Припустимо, що для $\alpha < 0$: $\exists M : |\sin t| < M \cdot e^{\alpha t}$

Якщо $t \to \infty$, то $|\sin t| \to 0$, що є супереченням (в неї ліміту вопще нема)

Tomy $\sigma(f) = 0$

2.
$$f(t) = e^{\mu t}$$

Зрозуміло, що $|e^{\mu t}|<1\cdot e^{\mu t}$, тобто $\alpha=\mu$ $\forall \alpha>\mu:|e^{\mu t}|<1\cdot e^{\alpha t}$

$$\forall \alpha > \mu : |e^{\mu t}| < 1 \cdot e^{\alpha t}$$

Припустимо знову, що для $\alpha < \mu : \exists M : e^{\mu t} < Me^{\alpha t}$, або

$$e^{t(\mu-\alpha)} < M$$

Якщо $t \to \infty$, то $e^{(\mu - \alpha)t} \to \infty$, прийшли до суперечення

Tomy
$$\sigma(f) = \mu$$

3.
$$f(t) = t^{\mu}, \mu > 0$$

Перевіримо третю умову, тобто
$$\exists ?M: |t^{\mu}| \leq Me^{\alpha t} \iff \frac{t^{\mu}}{e^{\alpha t}} < M$$

Якщо $t\to\infty$, то $\frac{t^\mu}{e^{\alpha t}}\to 0$ ЗА УМОВОЮ, що $\alpha>0$, а тому така дріб є обмеженою. Отже знак питання прибираємо

Припустимо, що для $\alpha < 0 : \exists M : t^{\mu} < Me^{\alpha t}$

Зробимо аналогічні кроки, та отримаємо, що дріб прямує до нескінченності, що суперечить припу-

I окремо при $\alpha = 0$: $t^{\mu} < M$ - також суперечення

Але тим не менш,
$$\sigma(f) = \inf\{\alpha > 0\} = 0$$

Proposition 4.1.4. Арифметичні властивості оригіналів

Задані f(t), g(t) - оригінали. Тоді

1)
$$h(t) = g(t) + g(t)$$
 - оригінал, а $\sigma(h) = \max{\{\sigma(f), \sigma(g)\}}$

2)
$$h(t) = af(t), a \in \mathbb{R}$$
 - оригінал, а $\sigma(h) = \sigma(f)$

3)
$$h(t) = f(t)g(t)$$
 - оригінал, а $\sigma(h) = \sigma(f) + \sigma(g)$

Умови 1 та 2 всюди автоматично виконуються (в принципі)

3 умови твердження відомо, що
$$\begin{cases} |f(t)| < M_1 e^{\alpha_1 t} \\ |g(t)| < M_2 e^{\alpha_2 t} \end{cases}.$$
 Тоді
$$1) \ |h(t)| \leq |f(t)| + |g(t)| < M_1 e^{\alpha_1 t} + M_2 e^{\alpha_2 t} < (M_1 + M_2) e^{\alpha t}, \text{ якщо } \alpha = \max\{\alpha_1, \alpha_2\}$$

1)
$$|h(t)| \le |f(t)| + |g(t)| < M_1 e^{\alpha_1 t} + M_2 e^{\alpha_2 t} < (M_1 + M_2) e^{\alpha t}$$
, якщо $\alpha = \max\{\alpha_1, \alpha_2\}$ Пункт 3 виконується, тому h - оригінал. Більш того, $\sigma(h) = \max\{\sigma(f), \sigma(g)\}$

2) при перевірки п. 3 там просто нафіг піде константа а

3)
$$|h(t)| < M_1 e^{\alpha_1 t} M_2 e^{\alpha_1 t} = M_1 M_2 e^{(\alpha_1 + \alpha_2)t}$$

Пукнт 3 виконуєься, тому h - оригінал. Більш того, $\sigma(h) = \sigma(f) + \sigma(g)$

Definition 4.1.5. Згорткою функцій f(x) та g(x) на $\mathbb R$ називається функція:

$$f * g(x) = \int_{-\infty}^{+\infty} f(u)g(x - u) du$$

Що буде, якщо f,g - оригінали? Яким буде вигляд згортки?

Що буде, якщо
$$f,g$$
 - оригінали? Яким буд $f*g(t) \stackrel{\text{вэксе доводимо}}{=} \int_{-\infty}^{+\infty} f(s)g(t-s)\,ds = 3 \, s < 0$ випливає $f(s) = 0$

$$3 s < 0$$
 випливає $f(s) = 0$

$$3 s > t$$
 випливає $t - s < 0 \Rightarrow g(t - s) = 0$

$$= \int_0^t f(s)g(t-s) \, ds$$

Таким чином:

Proposition 4.1.5.(1). Якщо f, g - оригінали, то

$$f * g(t) = \int_0^t f(s)g(t-s) ds$$

Proposition 4.1.5.(2). Якщо f, g - оригінали, то f * g(t) = g * f(t)

 $\Pi i \partial$ час інтегрування провести заміну: t-s=u

Proposition 4.1.5.(3). Якщо f, g - оригінали, то f * g - теж оригінал, а $\sigma(f * g) = \max\{\sigma(f), \sigma(g)\}$ Proof.

Пункти 1, 2 виконані. Залишилось перевірити пункт 3

$$\begin{split} &|f*g(t)| = \left|\int_0^t f(s)g(t-s)\,ds\right| \leq \int_0^t |f(s)||g(t-s)|\,ds < \\ &< \int_0^t |f(s)||g(t-s)|\,ds < \int_0^t M_1e^{\alpha_1s}M_2e^{\alpha_2(t-s)}\,ds = e^{\alpha_2t}M_1M_2\int_0^t e^{(\alpha_1-\alpha_2)s}\,ds = \\ &= \frac{e^{\alpha_2t}M_1M_2}{\alpha_1-\alpha_2}(e^{(\alpha_1-\alpha_2)t}-1) = \frac{M_1M_2}{\alpha_1-\alpha_2}(e^{\alpha_1t}-e^{\alpha_2t}) = \frac{M_1M_2}{|\alpha_1-\alpha_2|}|e^{\alpha_1t}-e^{\alpha_2t}| \leq \\ &\leq \frac{M_1M_2}{\alpha_1-\alpha_2}2e^{\alpha t}, \text{ якщо } \alpha = \max\{\alpha_1,\alpha_2\} \end{split}$$

Таким чином, f*g - оригінал, а $\sigma(f*g) = \max\{\sigma(f), \sigma(g)\}$

6.2Перетворення Лапласа

Definition 4.2.1. Заданий f - оригінал

Перетворенням Лапласа f(t) називається

$$f(t) \leftrightarrow \int_0^{+\infty} f(t)e^{-pt} dt = F(p) \stackrel{\text{a6o}}{=} \mathcal{L}\{f(t)\}$$

F(p) називають **зображенням**, де $p \in \mathbb{C}$

$$\begin{array}{c|c}
f & F \\
\hline
\chi(t) & \frac{1}{p} \\
\hline
e^{\alpha t} & \frac{1}{p-\alpha} \\
\hline
ch \alpha t & \frac{p}{p^2 - \alpha^2} \\
sh \alpha t & \frac{\alpha}{p^2 - \alpha^2} \\
\hline
sin \alpha t & \frac{\alpha}{p^2 + \alpha^2} \\
\hline
to s \alpha t & \frac{p}{p^2 + \alpha^2} \\
\hline
t^n & \frac{n!}{p^{n+1}}
\end{array}$$

Табл. 1: Таблиця зображень

Proposition 4.2.2. Про збіжність

 $\int_0^{+\infty} f(t)e^{-pt}\,dt$ збіжний на комплексній півплощині $\{p: \operatorname{Re} p > \sigma(f)\}$, а рівномірно збіжний на $\{p: \operatorname{Re} p > \alpha > \sigma(f)\}$

Proof.

p = x + iy, Re $p = x > \sigma(f)$

Доведемо за ознакою порівняння
$$|f(t)e^{-pt}|=|f(t)||e^{-xt}e^{iyt}|< Me^{\alpha t}e^{-xt}=Me^{(\alpha-x)t},\,\forall\alpha>\sigma(f)$$

Якщо обрати таке α , щоб $x > \alpha > \sigma(f)$, то отримаємо:

$$|f(t)|_{\rho}-pt|_{\rho} = M_{\rho}(\alpha-x)t$$

якщо оорати таке
$$\alpha$$
, щоо $x>\alpha>\sigma(f)$, то $|f(t)e^{-pt}|< Me^{(\alpha-x)t}$
$$\int_0^{+\infty} Me^{(\alpha-x)t}\,dt = \cdots = \frac{M}{x-\alpha} \text{ - збіжний}$$

Отже, збіжний і початковий інтеграл - зображення

Theorem 4.2.3. Заданий f(t) - оригінал зі степенем вільності $\sigma(f)$. Тоді зображення F(p) є аналітичною функцією на півплощині

$${p: \operatorname{Re} p > \sigma(f)}$$

Формально, $F'(p) = -\int_{0}^{+\infty} f(t)te^{-pt} dt$. Для рівності треба, щоб права рівність збігалась рівномір-

До речі, f(t)t - теж оригінал, зі степенем вільності $\sigma(f(t)t) = \sigma(f)$

Тоді
$$\forall \alpha_0 > \sigma(f): \int_0^{+\infty} f(t)te^{-pt}$$
 - збіжний рівномірно на $\{p: \operatorname{Re} p > \alpha_0 > \sigma(f)\}$

Отже, рівність справедлива ■

Theorem 4.2.4. Заданий f(t) - оригінал. Тоді $F(p) \to 0$, $\operatorname{Re} p \to \infty$

Ргоот.
$$|F(p)| = \left| \int_0^{+\infty} f(t)e^{-pt} \, dt \right| \leq \int_0^{+\infty} |f(t)||e^{-(x+iy)t}| \, dt = \int_0^{+\infty} |f(t)|e^{-xt} \, dt < \text{Ми обираємо таке } \alpha, \, \text{щоб } \sigma(f) < \alpha < x < \int_0^{+\infty} Me^{\alpha t}e^{-xt} \, dt = \dots = \frac{M}{x-\alpha} \to 0, \, \text{якщо } x = \operatorname{Re} p \to \infty \, \blacksquare$$

Theorem 4.2.5. Властивості зображень

1. Лінійність, $\alpha f(t) + \beta g(t) \leftrightarrow \alpha F(p) + \beta G(p)$

- 2. Зміщенність, $e^{\alpha t} f(t) \leftrightarrow F(p-\alpha)$
- 3. Запізнення,

Нехай є оригінал f(t) та функція Хевісайда $\eta(t)$. Розглянемо $g(t)=f(t-\tau)\eta(t-\tau), \tau>0$. Тоді $q(t) \leftrightarrow F(p)e^{-p\tau}$

4. Диференціювання зображення,
$$f^{(n)}(t) \leftrightarrow p^n F(p) - (f^{(n-1)}(0) + p f^{(n-2)}(0) + \dots + p^{n-1} f(0)) \text{ (тут всі похідні ε оригіналами)}$$

- 5. Інтегрування оригіналу, $\int_{0}^{t} f(s) ds \leftrightarrow \frac{F(p)}{r}$
- 6. Диференціювання зображення, $t^k f(t) \leftrightarrow (-1)^k F^{(k)}(p)$
- 7. Інтегрування зображення, $\frac{f(t)}{t} \leftrightarrow \int_{r}^{+\infty} F(q) dq$, тут $q \to \infty$ таким чином, що $\operatorname{Re} q \to \infty$
- 8. $f * g(t) \leftrightarrow F(p)G(p)$

- 1. Випливає з лінійних властивостей інтегралів
- 2. Просто розписуемо інтеграл, а там властивості степеней буде
- 3. Зробити заміну: $t \tau = s$

4.
$$f'(t) \leftrightarrow \int_{0}^{+\infty} f'(t)e^{-pt} dt \stackrel{u=e^{-pt},dv=f'(t)}{=} f(t)e^{-pt} \Big|_{0}^{+\infty} - (-p) \int_{0}^{+\infty} f(t)e^{-pt} dt =$$

Оскільки
$$f$$
 - оригінал, то $|f(t)| < Me^{\alpha t}$. Далі, $|e^{-pt}| = e^{-xt}$, Тому $|f(t)e^{-pt}| < Me^{\alpha t}e^{-xt} \to 0$, коли $t \to \infty = pF(p) - f(0)$

$$= pF(p) - f(0)$$

Ну а далі чисто за МІ

$$5. \int_{0}^{+\infty} f(s) \, ds \leftrightarrow \int_{0}^{+\infty} \left(\int_{0}^{t} f(s) \, ds \right) e^{-pt} \, dt \stackrel{u = \int_{0}^{t} f(s) \, ds, dv = e^{-pt} \, dt}{=}$$
$$= \frac{-1}{p} \int_{0}^{t} f(s) \, ds \cdot e^{-pt} \Big|_{0}^{+\infty} + \frac{1}{p} \int_{0}^{+\infty} f(t) e^{-pt} \, dt = \frac{1}{p} F(p)$$

6.
$$tf(t) \leftrightarrow \int_0^{+\infty} tf(t)e^{-pt} = -\int_0^{+\infty} f(t)(e^{-pt})_p' dt = -\left(\int_0^{+\infty} f(t)e^{-pt} dt\right)' = -F'(p)$$

Потім тупо за МІ

7.
$$\frac{f(t)}{t} \leftrightarrow G(p)$$
 (якесь зображення)

За властивістю 6,
$$f \cdot \frac{f(t)}{t} \leftrightarrow -G'(p)$$

За властивістю 6,
$$f \cdot \frac{f(t)}{t} \leftrightarrow -G'(p)$$
 $\Rightarrow F(p) \leftrightarrow f(t) \leftrightarrow -G'(p) \Rightarrow G'(p) = -F(p)$

Також,
$$\left(\int_{p}^{+\infty} F(q) dq\right)_{n}' = -F(p)$$

Отже,
$$G(p) = \int_{p}^{+\infty} F(q) dq$$

$$8. f*g(t) \leftrightarrow \int_0^{+\infty} (f*g)(t)e^{-pt} dt = \int_0^{+\infty} \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, dt = \int_0^{+\infty} \int_0^t f(s)g(t-s)e^{-p((t-s)+s)} \, ds \, dt = \int_0^{+\infty} \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, dt = \int_0^{+\infty} \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, dt = \int_0^{+\infty} \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, dt = \int_0^{+\infty} \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, dt = \int_0^{+\infty} \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, dt = \int_0^{+\infty} \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, dt = \int_0^{+\infty} \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, dt = \int_0^{+\infty} \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, dt = \int_0^{+\infty} \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, dt = \int_0^{+\infty} \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, dt = \int_0^{+\infty} \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, dt = \int_0^{+\infty} \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, dt = \int_0^{+\infty} \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, dt = \int_0^{+\infty} \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, dt = \int_0^{+\infty} \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, dt = \int_0^{+\infty} \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, dt = \int_0^{+\infty} \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, ds = \int_0^{+\infty} \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, ds = \int_0^{+\infty} \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, ds = \int_0^{+\infty} \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, ds = \int_0^{+\infty} \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, ds = \int_0^t \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, ds = \int_0^t \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, ds = \int_0^t \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, ds = \int_0^t \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, ds = \int_0^t \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, ds = \int_0^t \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, ds = \int_0^t \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, ds = \int_0^t \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, ds = \int_0^t \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, ds = \int_0^t \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, ds = \int_0^t \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, ds = \int_0^t \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, ds = \int_0^t \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, ds = \int_0^t \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, ds = \int_0^t \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, ds = \int_0^t \left(\int_0^t f(s)g(t-s) \, ds \right) e^{-pt} \, ds = \int_0^t \left(\int_0^t f(s)g($$

Заміна змінних:
$$t-s=y, s=s$$
 $y=[0,+\infty), s=[0,+\infty), J=1$ $=\int_0^{+\infty}\int_0^{+\infty}f(s)g(y)e^{-p(y+s)}\,ds\,dy=\int_0^{+\infty}g(y)e^{-py}\,dy\int_0^{+\infty}f(s)e^{-ps}\,ds=g(p)F(p)$

Theorem 4.2.6. Теорема Мелліна

Заданий f(t), F(p) - диференційований оригінал зі степенем вільності $\sigma(f) = \alpha$ та його зображення. Тоді

$$f(t) = \frac{1}{2\pi i} \int_{x-i\infty}^{x+i\infty} e^{pt} F(p) \, dp, x > \alpha$$

Proof.

Розглянемо оригінал
$$g(t)=f(t)e^{-xt}$$
, такий, що $x>\alpha$ Покажемо, що $\int_{-\infty}^{+\infty}|g(t)|\,dt\stackrel{\mathrm{afo}}{=}\int_{0}^{+\infty}|g(t)|\,dt$ - абсолютно збіжний

Візьмемо якийсь $\alpha < x_* < x$. Тоді $|g(t)| < Me^{x_*t}e^{-xt} = Me^{(x_*-x)t}$

$$|g(t)| < Me^{x_*t}e^{-xt} = Me^{(x_*-x)t}$$

$$\int_0^{+\infty} Me^{(x_*-x)t} dt = \frac{M}{x_*-x}e^{(x_*-x)t}\Big|_0^{+\infty} < \infty$$

Tоді за Вейерштрасса, наш початковий інтеграл збіжний. Отже, для g(t) можна застосувати перетворення Фур'є (стандартне та зворотнє)

Оскільки f(t) - частково неперервно-диференційований, то за ознакою Діні та наслідками з неї отримаємо:

$$g(t) = \tilde{g}(t) \stackrel{\text{\tiny II.}}{=} \frac{3.6}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(s)e^{i\lambda(s-t)} \, ds \, d\lambda \stackrel{g(s)=f(s)e^{-sx}, s<0}{=}$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} \int_{0}^{+\infty} g(s)e^{i\lambda(s-t)} \, ds \, d\lambda$$

$$f(t)e^{-tx} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \int_{0}^{+\infty} f(s)e^{-sx}e^{i\lambda(s-t)} \, ds \, d\lambda =$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} \int_{0}^{+\infty} f(s)e^{-sx+i\lambda s}e^{-i\lambda t} \, ds \, d\lambda =$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left(\int_{0}^{+\infty} f(s)e^{-s(x-i\lambda)}e^{-i\lambda t} \, ds \right) \, d\lambda \stackrel{\lambda=-y}{=} \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left(\int_{0}^{+\infty} f(s)e^{-s(x+iy)}e^{iyt} \, ds \right) \, dy$$

$$\Rightarrow f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left(\int_{0}^{+\infty} f(s)e^{-s(x+iy)}e^{(x+iy)t} \, ds \right) \, dy \stackrel{x+iy=p}{=}$$

$$= \frac{1}{2\pi} \int_{x-i\infty}^{x+i\infty} \left(\int_{0}^{+\infty} f(s)e^{-ps} \, ds \right) e^{pt} \frac{1}{i} \, dp = \frac{1}{2\pi i} \int_{x-i\infty}^{x+i\infty} F(p)e^{pt} \, dp \blacksquare$$

Доведена формула називається формулою Мелліна. Більш детальне та красиве доведення буде в книжці Тихонова "Теория функций комплексного анализа"

6.3 Відновлення оригінала

За допомогою лишків

Theorem. Заданий f(t), F(p) - диференційований оригінал зі степенем вільності $\sigma(f) = \alpha$ та його зображення, яка є аналітичною всоди за виключенням скінченної кількості точок p_1, \ldots, p_n (такі, що $\operatorname{Re} p_t < \alpha$). Тоді

$$f(t) = \sum_{j=1}^{k} \operatorname{res}_{p=p_j} F(p)e^{pt}$$

Proof.

Через умови ми можемо скористатись формулою Мелліна:

$$f(t) = \frac{1}{2\pi i} \int_{x-i\infty}^{x+i\infty} F(p)e^{pt} \, dp =$$
Заміна: $p = qe^{i\frac{\pi}{2}} = iq \Rightarrow dp = i \, dq$

$$= \frac{1}{2\pi i} \int_{\infty+ix}^{-\infty+ix} F(iq)e^{qit}i \, dq =$$
Заміна2: $q = ip = i(x+iy) = ix - y \Rightarrow dq = -dy$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(x+iy)e^{(x+iy)t} \, dy \stackrel{F(x+iy)=g(y)}{=} \frac{1}{2\pi} e^{xt} \int_{-\infty}^{+\infty} g(y)e^{iyt} \, dy \stackrel{\text{за умовами особливих точок}}{=}$$

$$= \frac{1}{2\pi} e^{xt} 2\pi i \sum_{j=1}^{k} \underset{p=p_j}{\text{res }} g(z)e^{izt} = \sum_{j=1}^{k} \underset{p=p_j}{\text{res }} g(z)e^{izt} = \dots$$

 \mathcal{A} есь $\Gamma \mathcal{B}$ забув $i\colon \mathit{can}\,$ не можу знайти(((

За розкладом зображення в ряд Лорана

Lemma. Заданий f(t), F(p) - диференційований оригінал та його зображення. Якщо $F(p) = \sum_{n=0}^{\infty} \frac{c_n}{n^n}$ TO

$$f(t) = \sum_{n=1}^{\infty} c_n \frac{t^{n-1}}{(n-1)!}$$

Proof.
$$f(t) = \frac{1}{2\pi i} \int_{x-i\infty}^{x+i\infty} e^{pt} F(p) dp = \frac{1}{2\pi i} \int_{x-i\infty}^{x+i\infty} \sum_{n=1}^{\infty} \frac{c_n}{p^n} e^{pt} dp = \sum_{n=1}^{\infty} c_n \left(\frac{1}{2\pi i} \int_{x-i\infty}^{x+i\infty} \frac{1}{p^n} e^{pt} dp \right) = \sum_{n=1}^{\infty} \frac{c_n}{(n-1)!} t^{n-1} \blacksquare$$

Трохи корисних прикладів використання

Example 4.4.1. Розв'язати систему диференціальних рівнянь: $\begin{cases} x' = 3x + y \\ y' = -4x - y \end{cases}$

Додатково x(0) = 5, y(0) = -7

$$x(t) \rightarrow X(p) \Rightarrow x'(t) \rightarrow pX(p) - x(0) = pX(p) - 5$$

$$y(t) \rightarrow Y(p) \Rightarrow x'(t) \rightarrow pX(p) - x(0) = pX(p) + 7$$

 $y(t) \rightarrow Y(p) \Rightarrow y'(t) \rightarrow pY(p) - y(0) = pY(p) + 7$

Отже, система матиме такий вигляд:

$$\begin{cases} pX - 5 = 3X + Y \\ pY + 7 = -4X - Y \end{cases}$$
 Обчислимо систему, розв'язуючи відносно $X(p), Y(p)$. Використовуючи ма-

$$\begin{cases} PI+I=-4X-I\\ \text{гію метода Крамера, отримаємо} \end{cases}$$

$$\begin{cases} X(p)=\frac{5p-2}{(p-1)^2}\\ Y(p)=\frac{-7p+1}{(p-1)^2}\\ X(p)=\frac{5}{(p-1)}+\frac{3}{(p-1)^2}\to x(t)=5e^t+3te^t\\ Y(p)=\frac{-7}{(p-1)}+\frac{-6}{(p-1)^2}\to y(t)=-7e^t-6te^t \end{cases}$$

Example 4.4.2. Розв'язати інтегральне рівняння:

$$\int_{0}^{t} \operatorname{ch}(t - \tau)x(\tau) d\tau = \operatorname{ch} t - \cos t$$

$$x(t) \to X(p)$$

$$\operatorname{ch} t \to \frac{p}{p^{2} - 1}$$

$$\cos t \to \frac{p}{p^{2} + 1}$$

I нарешті, зауважимо згортку: $\int_0^t \operatorname{ch}(t-\tau)x(\tau)\,d\tau = ch*x(t) \to \frac{p}{p^2-1}X(p)$ Тому рівняння матиме вигляд: $\frac{p}{p^2-1}X(p) = \frac{p}{p^2-1} - \frac{p}{p^2+1}$ Виразимо X(p) і отримаємо: $X(P) = \frac{2}{p^2+1} \to x(t) = 2\sin t$

$$\frac{p}{p^2 - 1}X(p) = \frac{p}{p^2 - 1} - \frac{p}{p^2 + 1}$$

$$X(P) = \frac{2}{p^2 + 1} \to x(t) = 2\sin t$$