ECM404 – Estruturas de Dados e Técnicas de Programação

Grafos

Classificação e Forma Matricial

Grafo Simples

Não possui laços (self-loops)

Não possui arestas múltiplas

Passeio (Walk)

Sequência não nula, finita e alternada de vértices adjacentes e arestas incidentes.

W =
$$v_0 e_1 v_1 e_2 v_2 e_3 ... e_k v_k$$

onde:

- $1 \le k \le n \ (n \in N)$
- $\psi(e_k) = \{v_{k-1}, v_k\}$

- Antenas = 1a3c4b2
- Cabeça = 3c4e6f5d3 (fechado)
- $W_1 = 14t17r14n12n14m10$
- $W_2 = 5f6v10h8h10m14$
- Asa Esquerda = 5i15o13l9u5 (fechado)
- Patinha Direita Central = 12n14

Trajeto (Trail)

Passeio onde as <u>arestas</u> não se repetem.

- Antenas = 1a3c4b2
- Cabeça = 3c4e6f5d3 (fechado)
- Patinha Direita Central = 12n14
- $T_1 = 2b4e6j15p14t17$
- $T_2 = 11k13s16q13l9u5i15j6f5$

Caminho (Path)

Passeio onde os <u>vértices</u> não se repetem.

- Antenas = 1a3c4b2
- Patinha Direita Central = 12n14
- $P_1 = 11k13o15j6v10m14t17$
- $P_2 = 2b4e6j15p14t17$
- $P_3 = 8h10m14$

Ciclo (Cycle)

Trajeto fechado $(v_0=v_k)$.

- Cabeça = 3c4e6f5d3 (fechado)
- Asa Esquerda = 5i15o13l9u5 (fechado)
- Patona Direita = 14t17r14 (fechado)
- $C_1 = 6v10m14t17r14p15j6$ (fechado)
- Tronco = 5f6v10m14p15o13l9u5 (fechado)

Exemplo

Representação dos níveis de endentação de um trecho de programa em C.

Vértices Adjacentes

Grafo

- o vértice a é adjacente ao vértice b
- o vértice b é adjacente ao vértice a

Dígrafo

- o vértice a NÃO é adjacente ao vértice b
- o vértice b é adjacente ao vértice a

Representações

- representação analítica;
- representação gráfica;
- como armazenar no computador?

$$\Psi(A) = \{a, b\}$$
 $\Psi(B) = \{b, c\}$
 $\Psi(C) = \{c, c\}$
 $\Psi(D) = \{c, d\}$
 $\Psi(E) = \{b, d\}$
 $\Psi(F) = \{d, e\}$
 $\Psi(G) = \{b, e\}$
 $\Psi(H) = \{b, e\}$

Grafo e Matriz de Adjacências

 Cada elemento da matriz é a quantidade de arestas que vão do vértice i ao vértice j e viceversa (são adjacentes)

$$- \Psi(A) = \{a, b\}$$

$$- \Psi(B) = \{b, c\}$$

$$-\Psi(C) = \{c, c\}$$

$$-\Psi(D) = \{c, d\}$$

$$-\Psi(E) = \{b, d\}$$

$$-\Psi(F) = \{d, e\}$$

$$-\Psi(G) = \{b, e\}$$

$$- \Psi(H) = \{b, e\}$$

Escreva a matriz de adjacência para o grafo seguinte.

	1	2	3	4
1	0	2	0	1
2	2	0	1	1
3	0	1	0	1
4	1	1	1	0

Dígrafo e Matriz de Adjacências

 cada elemento da matriz é a quantidade de arestas que vão do vértice i ao vértice j (o j é adjacente ao i)

Escreva a matriz de adjacência para o dígrafo seguinte.

	1	2	3	4
1	0	1	0	0
2	1	0	2	1
3	0	0	0	0
4	0	0	0	0

Rede e Matriz de Adjacências e de Pesos

Rede e Matriz de Pesos

Somente para grafos sem arestas múltiplas.

Matriz de Adjacências - Operações Primitivas com Arcos

Matriz de Adjacências – Operações Primitivas com Arcos

Matriz de Adjacências — Operações Primitivas com Arcos

Escreva a matriz de adjacências dos grafos a seguir.

Esboce os grafos a partir da matriz de pesos.

	ta	te	ti	to	tu
ta	0	2	1	2	0
te	7	2	0	0	0
ti	3	0	1	0	2
to	0	0	3	0	1
tu	2	0	3	0	2

		u	C	a
	0	2	1	2
u	2	2	0	0
C	1	0	1	3
a	2	0	3	0

	V	i	I	m	а
V	7	1	1	2	0
i	1	2	0	3	1
I	3	1	2	0	1
m	0	1	2	0	1
a	2	0	1	0	1