$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2} k(2k^2 r_1 + t_1)}{(t_1 + 2k^2 t_1)^2}$	0	$\frac{2 k^2 (2 k^2 r_1 + t_1)}{(t_1 + 2 k^2 t_1)^2}$
$\tau_{1^-}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{2k^2r_1+t_1}{(t_1+2k^2t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_1^{\#1}{}_+\alpha\beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{ik}{(1+k^2)^2t_1}$	$\frac{k^2}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_1^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{1}{(1+k^2)^2 t_1}$	$-\frac{ik}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_1^{\#1} + \alpha^{eta}$	$\sigma_1^{\#_2} + \alpha^{\beta}$	$\tau_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{lpha}$	$\tau_{1}^{#2} + ^{\alpha}$

_	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}_{\alpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_2^{\#1} \dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

 ikt_1

0

 $\frac{t_1}{\sqrt{2}}$

 $-k^2 r_1 - \frac{t_1}{2}$

0

0

0

 $\omega_{1}^{\#1} \dagger^{\alpha}$

0

0

0

0

0

0

0

 $f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$

0

0

0

¢1/2

0

0

0

 $\omega_1^{\#2} \uparrow^{\alpha}$

0

0

0

 $-\bar{u} k t_1$

0

0

0

 $\omega_{2}^{\#1} \dagger^{\alpha\beta}$

 $f_{2^{+}}^{#1} \dagger^{\alpha\beta}$

 $\omega_2^{\sharp 1} \dagger^{\alpha\beta\chi}$

0

0

0

0

0

0

 $\frac{i\,k\,t_1}{\sqrt{2}}$

 $f_1^{\#1} \dagger^{\alpha\beta}$

0

0

0

0

0

0

 $\frac{t_1}{\sqrt{2}}$

 $\omega_1^{\#_2^2} +^{\alpha\beta}$

0

0

0

0

 $-\frac{t_1}{\sqrt{2}}$

- t1 - 2

 $\omega_1^{\#1} + \alpha \beta$

 $\omega_{1}^{#2} \alpha f_{1}^{#1} \alpha$

 $\omega_{1^{-}}^{\#1}{}_{\alpha}$

 $f_{1}^{\#1}_{\alpha\beta}$

 $\omega_1^{\#2} + \alpha \beta$

 $\omega_{1}^{\#1}$

	$\omega_{0^+}^{\sharp 1}$	$f_{0}^{#1}$	$f_{0+}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\sharp 1}$ †	-t ₁	$i\sqrt{2} kt_1$	0	0
$f_{0}^{#1}\dagger$	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	-t ₁

 $\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$

 $-\frac{ikt_1}{\sqrt{2}}$

 $k^2 t_1$

0

0

0

 $k^2 r_1 + \frac{t_1}{2}$

Source constraints			
SO(3) irreps	#		
$\tau_{0^{+}}^{\#2} == 0$	1		
$\tau_{0^{+}}^{\#1} - 2 \bar{\imath} k \sigma_{0^{+}}^{\#1} == 0$	1		
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3		
$\tau_1^{\#1\alpha} == 0$	3		
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3		
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	5		
Total #:	16		

$\sigma_{0}^{\#}$	0	0	0	$-\frac{1}{t_1}$
$\tau_0^{\#2}$	0	0	0	0
$ au_0^{\#1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\sigma_{0}^{\#1}$	$-\frac{1}{(1+2k^2)^2t_1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_0^{\#2}$ †	$\sigma_{0}^{\#1}$ \dagger

 $+2t_1 \omega_{ik\theta} \partial^k f^{i\theta}$ -

 $-2r_1\partial_\theta\omega_\lambda^{\alpha}\partial^\lambda\omega^{\theta\kappa}_{\kappa}$

	Massive particle		
? /	Pole residue:	$-\frac{1}{r_1} > 0$	
$J^P = 2^-$	Polarisations:	5	
	Square mass:	$-\frac{t_1}{2r_1} > 0$	
?	Spin:	2	
	Parity:	Odd	

(No massless particles)

Unitarity conditions $r_1 < 0 \&\& t_1 > 0$