WHAT IS FUNCTIONAL GENOMICS?

Rory Stark
CRUK Bioinformatics Summer School
22 July 2020

What is functional genomics?

Determination of the relationship between an organism's genome and its phenotype

- Each cell contains a complete copy of the genome, distributed along chromosomes (compressed and entwined DNA)
- 3x10⁹ (3Gb) base pairs in human DNA: 5-6 meters in each cell!
- Encodes blueprint for all cellular structures and activities and which cells go where (somehow...)

What accounts for differences in phenotype?

What accounts for differences in phenotype?

What is functional genomics?

Determination of the relationship between an organism's **genome** and its **phenotype**

How do genomes determine function?

Gene expression

- Ideally, we'd measure all protein levels
- Instead, use mRNA ("transcript") levels as a proxy for protein levels
- Measure the expression levels of many genes in parallel
- Analyses:
 - Expression levels
 - Differences in expression levels (DE)
 - Patterns of expression
 - Splicing and isoforms

Ghaemmaghami et al Nature 2003

Comparing gene expression (DE)

- Different tissues, same organism
 - human brain/human liver
- Same tissue, different organism
 - human liver/mouse liver
 - wt/ko/CRISPR

- Same tissue, same organism, different condition
 - benign/tumour
 - treated/untreated
- Time course
- In vivo vs In vitro

- ..

Bulk (RNA-seq) vs single-cell (scRNA) analysis

Semi-Unsupervised Gene Expression Array Analysis of a Cohortof Breast Cancers Identifies Several Intrinsic SubtypesFigure

Shown are luminal A (outlined in dark blue), luminal B (pale blue), HER2-enriched (pink), basal-like (red), claudin-low (yellow), and normal-like (green) lumors. Heat map courtesy of CM Perou.

Transcriptional regulatory elements

Transcriptional regulatory elements

Transcription Factors

- ChIP

Histone marks

- ChIP

DNA Methylation

- RRBS
- MeDIP

Open chromatin

ATAC

Chromatin structure

- HiC

RNA Polymerase

- Pol II ChIP

Functional genomics: the ultimate challenge

