Announcements: (from +W3 on)
Announcements: from HV33 on) - All HW prohed back 1 week
- We way or many not have HWB, TBD.
Multiple Linear Regressia Model
There are some variations on how to specify the
MR woll leg. mdex order, # of productors no por p-1)
In order to all be on the same page, lit's all use
7;=8+7x1;++ Bp-1 X(p-1)i +=;
V=XBts
Where XII X21 1 / X (p-1)2 Bo
1 X 12 X
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
desisa

$$\hat{\beta} = avamin Q(\beta) = avamin (Y-XB)^T(Y-XB)$$

Fitted Values:

$$\sqrt{2} \times 8 = \times (x \times x)^{-1} \times 7 = + 1$$

Mesiduels:

Sum of Squared Error:

$$SSE = \sum_{i=1}^{N} e_i^2 = e^T e = ||e||^2$$

$$AW \sim N(A\mu, AZA^7)$$

Howabout 9's distribution? (Co(Bo)B) = -X02 1~N(XB,027) J=HY~N(HXB) H 027 HT) ETT) Vereg) ETY)=HXB=X(XXX)XXXB $\frac{1}{2} \times \frac{1}{2} \times \frac{1}$ Properties of H. Any matrix A sa projection motive it: D A & symmetric A is idempotent claim: H is a project- matrix (Apo) = CTBTAT

 $\langle e, \hat{\gamma} \rangle = e^{T} \hat{\gamma} = ((J-H)\gamma)^{T} (H\gamma)$ $= y^T (Z-H)^T H y$ $=\sqrt{1}(I-H)H\gamma$ = yT (H-H2) Y = YT(H-H) Y= YT.O.Y= 0 AND THE STATE OF THE -malane NEW SE. co|space (x) Je colspace (x)

It was a project notic
His also a projection.
How can we estimate 52?
$MSE = 6^2 = \frac{SSE}{n-p} = \frac{e^{-1}e^{-1}}{n-p}$
Why is this a god estimate?
We want to know something about the dist
$y \sim N(9CB) = 2(T-11)$
(I-H) Y2 Y-Y=e~N((I-H)XB, D-(I-T))
$= (X-HX)B \qquad e \sim N(O, o^2(T-H))$

$$= (X - X(XX)^*XX)^*\beta$$

$$= (X - X)^*\beta = 0$$

$$Vay((I + 1)^*Y) = (I + 1)^*Var(Y)(I + 1)^*T$$

$$= (Z - H)^*\delta^2 I(I - H)$$

$$= \sigma^2(I - H)(I - H)$$

$$= \sigma^2(I - H)(I - H)$$

$$= \sigma^2(I - H - H + H^2)$$

$$= \sigma^2(I - H)(I - H)$$

$$= \sigma^2(I - H)$$

$$= \sigma^2(I - H)$$

$$= \sigma^2(I - H)$$

$$= \sigma^2(I - H)$$

$$= \sigma^2(I$$

dempotent matrices have very special eigenals.
They're always 0 of 1.
H= U/ UT creigendeening where 1 holds eigenvals
Wholds the eigenvectors
$+ V^2 = (U \wedge U $
$= \mathcal{U} \mathcal{A} \mathcal{U} \mathcal{U} \mathcal{A} \mathcal{U} \mathcal{U} \mathcal{A} \mathcal{U} \mathcal{U} \mathcal{A} \mathcal{U} \mathcal{U} \mathcal{U} \mathcal{U} \mathcal{U} \mathcal{U} \mathcal{U} U$
$\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right)$
$\Rightarrow \lambda i = 0 \text{ or } J$

SS Decomp
$$=$$
 Projects

Note that $=$ Projects

Note