TOWARDS QUANTUM-ENHANCED MACHINE LEARNING FOR FRAUD DETECTION

A project report submitted in partial fulfilment of the requirements for the award of the degree of

MASTER OF TECHNOLOGY

in

COMPUTER SCIENCE & TECHNOLOGY

Submitted by

PEDADA HARIKA

(Regd. No: 323206415012)

Under the esteemed guidance of

DR. K. VENKATA RAMANA

Associate Professor

Department of CS & SE

DEPARTMENT OF COMPUTER SCIENCE AND SYSTEMS ENGINEERING ANDHRA UNIVERSITY COLLEGE OF ENGINEERING(A) ANDHRA UNIVERSITY VISAKHAPATNAM-530003 (2023-2025)

DEPARTMENT OF COMPUTER SCIENCE AND SYSTEMS ENGINEERING ANDHRA UNIVERSITY COLLEGE OF ENGINEERING(A) ANDHRA UNIVERSITY VISAKHAPATNAM - 530003

CERTIFICATE

This is to certify that the project report entitled "TOWARDS QUANTUM-ENHANCED MACHINE LEARNING FOR FRAUD DETECTION" is the bonafide work carried out by PEDADA HARIKA with Regd. No: 323206415012, during the year 2023-2025, in partial fulfilment of the requirements for the degree of MASTER OF TECHNOLOGY, with a specialization in COMPUTER SCIENCE AND TECHNOLOGY from the department of COMPUTER SCIENCE AND SYSTEMS ENGINEERING, Andhra University College of Engineering(A), Andhra University, Visakhapatnam.

Project Guide

Dr. K. VENKATA RAMANA

Associate Professor

Dept of CS&SE

AUCE, AU.

Head of the Department

Prof. K. Venkata Rao

Head of the Department

Dept of CS&SE

AUCE, AU.

DECLARATION

I declare that the report entitled "TOWARDS QUANTUM-ENHANCED MACHINE LEARNING FOR FRAUD DETECTION" has been done by me in partial fulfilment of requirements for the award of the degree of MASTER OF TECHNOLOGY, in COMPUTER SCIENCE & TECHNOLOGY, during the academic year 2023-2025, under the guidance of "Dr. K. VENKATA RAMANA", Department of Computer Science and Systems Engineering, Andhra University College of Engineering(A), Andhra University, Visakhapatnam. I hereby declare that this project work has not been submitted to any other universities/institutions for the award of any degree.

Reg. No Student Name Signature

323206415012 PEDADA HARIKA

PLACE: VISAKHAPATNAM

DATE:

ACKNOWLEDGEMENT

It is with a great sense of satisfaction that I present "TOWARDS QUANTUM-

ENHANCED MACHINE LEARNING FOR FRAUD DETECTION" in the form of a

final project.

I express my deep sense of gratitude to my project guide, Dr. K. Venkata Ramana,

Department of Computer Science and Systems Engineering (CS&SE), Andhra University

College of Engineering (A), for guiding me all through the project work, giving the right

direction and shape to my learning by extending his expertise and experience in education.

Really, I am indebted to her excellent and enlightened guidance.

I am very thankful to our beloved Head of the Department, Prof. K. Venkata Rao,

Department of Computer Science and Systems Engineering (CS&SE), Andhra University

College of Engineering(A), for his valuable suggestions and constant motivation that greatly

helped the project to be successfully completed.

I wish to express thanks to Prof. D. Lalitha Bhaskari, Chairman, Board of Studies, Andhra

University College of Engineering (A), for the successful completion of the project.

I express sincere thanks to Prof. G. Sasibhusana Rao, Principal of Andhra University

College of Engineering (A), for his facilitation, which contributed significantly to the timely

completion of the project.

I also extend my heartfelt gratitude to all the teaching and nonteaching staff of the

Department of Computer Science and Systems Engineering (CS&SE) for their support. I

gratefully acknowledge the support, encouragement and patience of my parents.

PEDADA HARIKA

Regd. No: 323206415012

M.TECH (CST)

ABSTRACT

The study explores how advances in machine learning methods for identifying credit card fraud might benefit from quantum computing. The primary objective is to evaluate how well a Quantum Convolutional Neural Network (QCNN) performs relative to a classical Convolutional Neural Network (CNN) to determine whether quantum models deliver superior outcomes. The selection of this research topic stems from the increasing complexity of financial fraudulent activities combined with traditional models' inability to manage extensive and imbalanced datasets. Quantum computing provides advantages such as parallel processing, superposition, and entanglement, offering improved computational performance for these tasks. The research began with the creation of a CNN model using conventional deep learning approaches, followed by the design of a QCNN model through quantum circuit simulations using a quantum framework. Both models were trained on identical datasets, and their learning patterns and results were comparatively analyzed. Observational results indicated that the quantum model exhibited superior pattern recognition and learning abilities when processing the data. The findings highlight the growing potential of quantum-enhanced machine learning in detecting complex financial fraud more accurately and efficiently. This advancement can significantly strengthen fraud detection systems used by banks, financial institutions, and cybersecurity applications. Moreover, the proposed framework can be extended to other domains involving imbalanced and high-dimensional data, such as healthcare diagnostics and cyber intrusion detection. Future work will focus on implementing QCNNs on real quantum hardware, optimizing circuit depth, and exploring hybrid quantumclassical models for scalable, real-world deployment.

Keywords: Quantum Machine Learning, Fraud Detection, Quantum Convolutional Neural Network, CNN, PennyLane, SMOTE.

LIST OF ABBREVIATIONS

Abbreviation	Full Form
AI	Artificial Intelligence
ML	Machine Learning
DL	Deep Learning
CNN	Convolutional Neural Network
QCNN	Quantum Convolutional Neural Network
QML	Quantum Machine Learning
Qubit	Quantum Bit
PCA	Principal Component Analysis
SMOTE	Synthetic Minority Oversampling Technique
ROC	Receiver Operating Characteristic
AUC	Area Under the Curve
TPR	True Positive Rate
FPR	False Positive Rate

Table of Contents

Chapter	Title	Page
No	Title	No
1	Introduction	1-7
1.1	Overview of Fraud Detection and Machine Learning	1
1.2	Objectives of the Study	1
1.3	Background and Research Motivation	2
1.4	Foundations of Quantum Machine Learning (QML)	3
1.5	Challenges in Fraud Detection	4
1.6	Scope, Significance, and Application	5
1.7	Problem Statement	7
2	Literature Review	8-17
3	Requirements Elicitation and Analysis	18-22
3.1	Hardware and Software Requirements	18
3.2	Functional and Non-Functional Requirements	19
3.3	Key Challenges in Implementing the System	22
		•
4	System Design	25-31
4.1	Introduction to System Design	25
4.2	System Architecture	25
4.3	Component Descriptions	26
4.4	System Workflow	27
4.5	UML Diagrams	27
4.6	Security and Privacy Considerations	31
5	Implementation Details	33-41
5.1	Methodology	33
5.2	Algorithms	34
5.3	Sample Code from the Project Implementation	41

6	Results and Analysis	45-53
6.1	Expected Results and Analysis	45
6.2	Model Performance and Analysis	45
6.3	Application: Fraud Detection Recommendations	50
6.4	Automated Report Generation	51
6.5	Testing	53
7	Conclusion and Future Scope	56-57
7.1	Conclusion	56
7.2	Future Scope	57
8	References	59-60

List of Figures

Figure	Title	Page
No		No
Fig 1.1	Applications of QCNN-based Fraud Detection	06
Fig 4.1	Use Case Diagram of the Fraud Detection System	28
Fig 4.2	Class Diagram representing the structure, classes, attributes, and	29
	methods used in the CNN and QCNN-based fraud detection system	
Fig 4.3	Activity Diagram	30
Fig 4.4	Sequence Diagram illustrating the dynamic interaction of system	31
	components during fraud detection, from data input to output results	
Fig 5.1	Workflow diagram of the proposed Convolutional Neural Network	36
	(CNN) model	
Fig 5.2	Workflow diagram of the proposed Quantum Convolutional Neural	37
	Network (QCNN) model	
Fig 5.3	Simple example of CNN and QCNN architectures	39
Fig 6.1	Output Screens for CNN Model	46-47
Fig 6.2	Output Screens for QCNN Model	47-48
Fig 6.3	Bar charts comparing CNN and QCNN models across accuracy,	49-50
	precision, recall, and F1-score	

List of Tables

Table	Title	Page
No		No
Table 2.1	Categories of Model Analysis for Credit Card Fraud Detection and Quantum Machine Learning Approaches	13-16
Table 5.1	Epoch-wise Performance of the Convolutional Neural Network (CNN)	40
Table 5.2	Epoch-wise Performance of the Quantum Convolutional Neural Network (QCNN)	40
Table 6.1	Performance comparison between Classical CNN and Quantum QCNN models	48
Table 6.2	Fraud risk Classification and Recommended Actions	51
Table 6.3	Report Parameters and Thresholds for Fraud Classification	52
Table 6.4	Test Cases	54-55