

La dérivée d'une fonction

I. La notion de dérivée d'une fonction

1.Dérivabilité et fonction dérivée

Définition : le nombre dérivé

On considère une fonction f définie sur un intervalle I de $\mathbb R$ ainsi que deux nombres réels a et h tel que a et a+h appartiennent à I.

La fonction f est dérivable en a si et seulement si $\lim_{h \ arrow \ 0} \frac{f(a+h)-f(a))}{h} = l \ \ \text{avec} \ l \in \mathbb{R}.$

Si c'est le cas, le réel l est appelé le **nombre dérivée** de f en a et se note f'(a).

Définition :

On considère une fonction f définie sur un intervalle I de $\mathbb R$.La fonction f est dérivable sur I si elle est dérivable en tout x de I.

La fonction $f':x\mapsto f'(x)$ définie sur l'est appelée la **fonction dérivée** de f sur l'intervalle l.

2.Applications à la dérivation

Propriété : tangente en un point à la courbe.

On considère une fonction f dérivable en a et C_f sa courbe dans un repère orthonormé du plan.Une équation de la **tangente à la courbe** C_f au point d'abscisse a est :

$$y = f'(a)(x - a) + f(a).$$

Propriété : passage du signe de f'(x) aux variations de f.

On considère une fonction f définie et dérivable sur un intervalle I de \mathbb{R} .

- ullet Si f' est **strictement positive** sur I alors f est **strictement croissante** sur I;
- Si f' est strictement négative sur l alors f est strictement décroissante sur l;
- Si f' est nulle sur I alors f est **constante** sur I.

f' est strictement positive $sur] - \infty$; $1[\cup]2$; $\infty[$ donc f n' est pas **strictement** croissante $sur \mathbb{R}$.

Propriété : extremums locaux d'une fonction.

On considère une fonction f définie et dérivable sur un intervalle I de $\mathbb R$ et $a\in I.$ Si f admet un **extremum local** en a alors f'(a)=0.

Si f' s'annule et change de signe en a alors f admet un extremum local en a.

3.Calculs de dérivées

Propriétés : dérivée des fonction usuelles.

On note D_f le domaine de définition de la fonction f. Toutes les fonctions du tableau ci-dessous sont dérivables sur D_f à l'exception de la fonction racine carrée qui n'est pas dérivable en 0.

Fonction f		\mathscr{D}_f	Dérivée f'	
$f(x) = k \qquad (k$	$x \in \mathbb{R}$	\mathbb{R}	f'(x) = 0	
$f(x) = x^n \qquad (n$	$\in \mathbb{N}^*)$	\mathbb{R}	$f'(x) = nx^{n-1}$	
$f(x) = \frac{1}{x}$		\mathbb{R}^*	$f'(x) = -\frac{1}{x^2}$	
$f(x) = \sqrt{x}$	[(0;+∞[$f'(x) = \frac{1}{2\sqrt{x}}$	

Propriétés : opérations sur les fonctions dérivées.

On considère un nombre réel k et deux fonctions u et v dérivables sur un intervalle I.Les fonction u+v, ku et uv sont dérivables sur I;

Les fonctions $\frac{1}{u}$ et $\frac{1}{v}$ sont dérivables sur I sauf là où v s'annule.

Fonction	u + v	ku	uv	$\frac{1}{v}$	$\frac{u}{v}$
Dérivée	u' + v'	ku'	u'v + uv'	$-\frac{v'}{v^2}$	$\frac{u'v - uv'}{v^2}$

II. Dérivées des fonctions composées

Propriété:

- Si la fonction u est dérivable et strictement positive sur l alors \sqrt{u} est dérivable sur l.
- Si c'est le cas, nous avons : $(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$.

Propriété:

Soit n un entier naturel non nul. Si u est dérivable sur l alors :

- La fonction u^n est dérivable sur l et $(u^n)' = nu^{n-1}u'$.
- La fonction u^{-n} est dérivable sur I sauf là où u s'annule et $(u^{-n})' = -nu^{-n-1}u'$.

Propriété :

On considère deux nombres réels a et b.Si u est dérivable sur l alors :

La fonction $f:x\mapsto u(ax+b)$ est dérivable là où $(ax+b)\in\ I.$

Si c'est le cas , f'(x) = au'(ax + b).

Propriété:

Soit u une fonction dérivable sur I et f une fonction dérivable sur un intervalle J telle que :Pour tout $x\in I,\,u(x)\in J.$

La fonction fou composée de u suivie de ${\bf f}$ est dérivable sur ${\bf I}$, et pour tout $x\in I$:

$$(fou)'(x) = u'(x) \times (f'ou)(x)$$
 ou encore $[f(u(x))]' = u'(x) \times f'(u(x))$.