Sources for s-CO₂ Corrosion Dataset

- [1] J. Brown, B. Graver, E. Gulbrandsen, A. Dugstad, and B. Morland, "Update of DNV Recommended Practice RP-J202 with Focus on CO2 Corrosion with Impurities," *Energy Procedia*, vol. 63, pp. 2432–2441, Jan. 2014, doi: 10.1016/j.egypro.2014.11.265.
- [2] Y.-S. Choi and S. Nešic, "Effect Of Water Content On The Corrosion Behavior Of Carbon Steel In Supercritical Co2 Phase With Impurities," presented at the CORROSION 2011, OnePetro, Mar. 2011. Accessed: Jul. 24, 2023. [Online]. Available: https://dx.doi.org/
- [3] Y.-S. Choi, S. Hassani, T. N. Vu, S. Nešić, and A. Z. B. Abas, "Effect of H2S on the Corrosion Behavior of Pipeline Steels in Supercritical and Liquid CO2 Environments," *Corrosion*, vol. 72, no. 8, pp. 999–1009, Mar. 2016, doi: 10.5006/2026.
- [4] A. Dugstad, M. Halseid, and B. Morland, "Effect of SO2 and NO2 on Corrosion and Solid Formation in Dense Phase CO2 Pipelines," *Energy Procedia*, vol. 37, pp. 2877–2887, Jan. 2013, doi: 10.1016/j.egypro.2013.06.173.
- [5] F. Farelas, Y. S. Choi, and S. Nešić, "Corrosion Behavior of API 5L X65 Carbon Steel Under Supercritical and Liquid Carbon Dioxide Phases in the Presence of Water and Sulfur Dioxide," *Corrosion*, vol. 69, no. 3, pp. 243–250, Oct. 2012, doi: 10.5006/0739.
- [6] Y. Zhang, K. Gao, and G. Schmitt, "Water Effect On Steel Under Supercritical CO2 Condition," presented at the CORROSION 2011, OnePetro, Mar. 2011. Accessed: Jul. 21, 2023. [Online]. Available: https://dx.doi.org/
- [7] Y. Hua, R. Barker, and A. Neville, "Effect of temperature on the critical water content for general and localised corrosion of X65 carbon steel in the transport of supercritical CO2," *International Journal of Greenhouse Gas Control*, vol. 31, pp. 48–60, Dec. 2014, doi: 10.1016/j.ijggc.2014.09.026.
- [8] Y. Hua, R. Barker, T. Charpentier, M. Ward, and A. Neville, "Relating iron carbonate morphology to corrosion characteristics for water-saturated supercritical CO2 systems," *The Journal of Supercritical Fluids*, vol. 98, pp. 183–193, Mar. 2015, doi: 10.1016/j.supflu.2014.12.009.
- [9] Y. Hua, R. Barker, and A. Neville, "Understanding the Influence of SO2 and O2 on the Corrosion of Carbon Steel in Water-Saturated Supercritical CO2," *Corrosion*, vol. 71, no. 5, pp. 667–683, Nov. 2014, doi: 10.5006/1504.
- [10] Y. Hua, R. Barker, and A. Neville, "The influence of SO2 on the tolerable water content to avoid pipeline corrosion during the transportation of supercritical CO2," *International Journal of Greenhouse Gas Control*, vol. 37, pp. 412–423, Jun. 2015, doi: 10.1016/j.ijggc.2015.03.031.
- [11] Y. Hua, R. Barker, and A. Neville, "Comparison of corrosion behaviour for X-65 carbon steel in supercritical CO2-saturated water and water-saturated/unsaturated supercritical CO2," *The Journal of Supercritical Fluids*, vol. 97, pp. 224–237, Feb. 2015, doi: 10.1016/j.supflu.2014.12.005.
- [12] Y. Hua, R. Barker, and A. Neville, "The effect of O2 content on the corrosion behaviour of X65 and 5Cr in water-containing supercritical CO2 environments," *Applied Surface Science*, vol. 356, pp. 499–511, Nov. 2015, doi: 10.1016/j.apsusc.2015.08.116.
- [13] Y. Hua, R. Jonnalagadda, L. Zhang, A. Neville, and R. Barker, "Assessment of general and localized corrosion behavior of X65 and 13Cr steels in water-saturated supercritical CO2 environments with SO2/O2," *International Journal of Greenhouse Gas Control*, vol. 64, pp. 126–136, Sep. 2017, doi: 10.1016/j.ijggc.2017.07.012.
- [14] P. Sui *et al.*, "Effect of temperature and pressure on corrosion behavior of X65 carbon steel in water-saturated CO2 transport environments mixed with H2S," *International Journal of Greenhouse Gas Control*, vol. 73, pp. 60–69, Jun. 2018, doi: 10.1016/j.ijggc.2018.04.003.
- [15] Y. Hua, R. Barker, and A. Neville, "Corrosion Behaviour of X65 Steels in Water-Containing Supercritical CO2 Environments With NO2/O2," presented at the NACE Corrosion 2018 Conference

- and Expo, 2018. Accessed: Jul. 24, 2023. [Online]. Available: https://onepetro.org/NACECORR/proceedings-abstract/CORR18/All-CORR18/NACE-2018-11085/126041
- [16] X. Jiang, D. Qu, X. Song, X. Liu, and Y. Zhang, "Impact of Water Content on Corrosion Behavior of CO2 Transportation Pipeline," presented at the CORROSION 2015, OnePetro, Mar. 2015. Accessed: Jul. 25, 2023. [Online]. Available: https://dx.doi.org/
- [17] B. Paschke and A. Kather, "Corrosion of Pipeline and Compressor Materials Due to Impurities in Separated CO2 from Fossil-Fuelled Power Plants," *Energy Procedia*, vol. 23, pp. 207–215, Jan. 2012, doi: 10.1016/j.egypro.2012.06.030.
- [18] J. Sun *et al.*, "Effect of O2 and H2S impurities on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system," *Corrosion Science*, vol. 107, pp. 31–40, Jun. 2016, doi: 10.1016/j.corsci.2016.02.017.
- [19] J. Sun, C. Sun, and Y. Wang, "Effects of O2 and SO2 on Water Chemistry Characteristics and Corrosion Behavior of X70 Pipeline Steel in Supercritical CO2 Transport System | Industrial & Engineering Chemistry Research," American Chemical Society: Industrial & Engineering Chemistry Research, vol. 57, no. 6, pp. 2365–2375, Jan. 2018, doi: https://doi.org/10.1021/acs.iecr.7b04870.
- [20] P. Sui, C. Sun, Y. Hua, J. Sun, and Y. Wang, "The Influence of Flow Rate on Corrosion Behavior of X65 Carbon Steel in Water-Saturated Supercritical CO2/H2S System," presented at the CORROSION 2019, OnePetro, Mar. 2019. Accessed: Jul. 24, 2023. [Online]. Available: https://dx.doi.org/
- [21] C. Sun, J. Liu, J. Sun, X. Lin, and Y. Wang, "Probing the initial corrosion behavior of X65 steel in CCUS-EOR environments with impure supercritical CO2 fluids," *Corrosion Science*, vol. 189, p. 109585, Aug. 2021, doi: 10.1016/j.corsci.2021.109585.
- [22] Y. Tang, X. P. Guo, and G. A. Zhang, "Corrosion behaviour of X65 carbon steel in supercritical-CO2 containing H2O and O2 in carbon capture and storage (CCS) technology," *Corrosion Science*, vol. 118, pp. 118–128, Apr. 2017, doi: 10.1016/j.corsci.2017.01.028.
- [23] W. Wang, K. Shen, S. Tang, R. Shen, T. Parker, and Q. Wang, "Synergistic effect of O2 and SO2 gas impurities on X70 steel corrosion in water-saturated supercritical CO2," *Process Safety and Environmental Protection*, vol. 130, pp. 57–66, Oct. 2019, doi: 10.1016/j.psep.2019.07.017.
- [24] Y. Xiang, Z. Wang, C. Xu, C. Zhou, Z. Li, and W. Ni, "Impact of SO2 concentration on the corrosion rate of X70 steel and iron in water-saturated supercritical CO2 mixed with SO2," *The Journal of Supercritical Fluids*, vol. 58, no. 2, pp. 286–294, Sep. 2011, doi: 10.1016/j.supflu.2011.06.007.
- [25] Y. Xiang, Z. Wang, X. Yang, Z. Li, and W. Ni, "The upper limit of moisture content for supercritical CO2 pipeline transport," *The Journal of Supercritical Fluids*, vol. 67, pp. 14–21, Jul. 2012, doi: 10.1016/j.supflu.2012.03.006.
- [26] Y. Xiang, Z. Wang, Z. Li, and W. Ni, "Long term corrosion of X70 steel and iron in humid supercritical CO2 with SO2 and O2 impurities," *Corrosion Engineering, Science and Technology*, vol. 48, no. 5, pp. 395–398, Aug. 2013, doi: 10.1179/1743278213Y.0000000099.
- [27] Y. Xiang, Z. Wang, Z. Li, and W. D. Ni, "Effect of Exposure Time on the Corrosion Rates of X70 Steel in Supercritical CO 2 /SO 2 /O 2 /H 2 O Environments," *Corrosion -Houston Tx-*, vol. 69, pp. 251–258, Oct. 2013, doi: 10.5006/0769.
- [28] Y. Xiang, Z. Wang, Z. Li, and W. D. Ni, "Effect of temperature on corrosion behaviour of X70 steel in high pressure CO2/SO2/O2/H2O environments," *Corrosion Engineering, Science and Technology*, vol. 48, no. 2, 2013, doi: 10.1179/1743278212Y.000000050.
- [29] M. Xu, W. Li, Y. Zhou, X. Yang, Z. Wang, and Z. Li, "Effect of pressure on corrosion behavior of X60, X65, X70, and X80 carbon steels in water-unsaturated supercritical CO2 environments," *International Journal of Greenhouse Gas Control*, vol. 51, pp. 357–368, Aug. 2016, doi: 10.1016/j.ijggc.2016.06.002.

- [30] O. Yevtushenko, R. Bäßler, and I. Carrillo-Salgado, "Corrosion Stability of Piping Steels in a Circulating Supercritical Impure CO2 Environment," presented at the CORROSION 2013, OnePetro, Mar. 2013. Accessed: Jul. 24, 2023. [Online]. Available: https://dx.doi.org/
- [31] O. Yevtushenko and R. Bä ßler, "Water Impact on Corrosion Resistance of Pipeline Steels in Circulating Supercritical CO2 with SO2- and NO2- Impurities," presented at the CORROSION 2014, OnePetro, Mar. 2014. Accessed: Jul. 24, 2023. [Online]. Available: https://dx.doi.org/
- [32] Y. Zeng, X. Pang, C. Shi, M. Arafin, R. Zavadil, and J. Collier, "Influence of Impurities on Corrosion Performance of Pipeline Steels in Supercritical Carbon Dioxide," presented at the CORROSION 2015, OnePetro, Mar. 2015.
- [33] K. Li and Y. Zeng, "Advancing the mechanistic understanding of corrosion in supercritical CO2 with H2O and O2 impurities," *Corrosion Science*, vol. 213, p. 110981, Apr. 2023, doi: 10.1016/j.corsci.2023.110981.
- [34] C. Sun *et al.*, "Synergistic effect of O2, H2S and SO2 impurities on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system," *Corrosion Science*, vol. 107, pp. 193–203, Jun. 2016, doi: 10.1016/j.corsci.2016.02.032.
- [35] C. Sun *et al.*, "Effect of impurity on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system," *The Journal of Supercritical Fluids*, vol. 116, pp. 70–82, Oct. 2016, doi: 10.1016/j.supflu.2016.05.006.
- [36] C. Sun, J. Sun, S. Liu, and Y. Wang, "Effect of water content on the corrosion behavior of X65 pipeline steel in supercritical CO2-H2O-O2-H2S-SO2 environment as relevant to CCS application," *Corrosion Science*, vol. 137, pp. 151–162, Jun. 2018, doi: 10.1016/j.corsci.2018.03.041.
- [37] K. Li, Y. Zeng, and J.-L. Luo, "Influence of H2S on the general corrosion and sulfide stress cracking of pipelines steels for supercritical CO2 transportation," *Corrosion Science*, vol. 190, p. 109639, Sep. 2021, doi: 10.1016/j.corsci.2021.109639.
- [38] Y. Xiang, C. Li, W. Hesitao, Z. Long, and W. Yan, "Understanding the pitting corrosion mechanism of pipeline steel in an impure supercritical CO2 environment," *The Journal of Supercritical Fluids*, vol. 138, pp. 132–142, Aug. 2018, doi: 10.1016/j.supflu.2018.04.009.
- [39] M. G. R. Mahlobo, K. Premlall, and P. A. Olubambi, "Effect of exposure time with SO2 as an impurity on the corrosion behaviour of pipeline steel in CCS transportation," *Corrosion Engineering, Science & Technology*, vol. 57, no. 1, pp. 44–54, Feb. 2022, doi: 10.1080/1478422X.2021.1982113.
- [40] K. Li and Y. Zeng, "Long-term corrosion and stress corrosion cracking of X65 steel in H2O-saturated supercritical CO2 with SO2 and O2 impurities," *Construction and Building Materials*, vol. 362, p. 129746, Jan. 2023, doi: 10.1016/j.conbuildmat.2022.129746.
- [41] J. Liu *et al.*, "Effect of H2O Content on the Corrosion Behavior of X52 Steel in Supercritical CO2 Streams Containing O2, H2S, SO2 and NO2 Impurities," *Energies*, vol. 16, no. 17, 2023, doi: 10.3390/en16176119.
- [42] Y.-S. Choi, S. Nesic, and D. Young, "Effect of Impurities on the Corrosion Behavior of CO2 Transmission Pipeline Steel in Supercritical CO2–Water Environments," *Environ. Sci. Technol.*, vol. 44, no. 23, pp. 9233–9238, Dec. 2010, doi: 10.1021/es102578c.
- [43] C. Sun, X. Yan, J. Sun, J. Pang, W. Zhao, and X. Lin, "Unraveling the effect of O2, NO2 and SO2 impurities on the stress corrosion behavior of X65 steel in water-saturated supercritical CO2 streams," *Corrosion Science*, vol. 209, p. 110729, Dec. 2022, doi: 10.1016/j.corsci.2022.110729.
- [44] Y.-S. Choi and S. Nešić, "Determining the corrosive potential of CO2 transport pipeline in high pCO2—water environments," *International Journal of Greenhouse Gas Control*, vol. 5, no. 4, pp. 788–797, Jul. 2011, doi: 10.1016/j.ijggc.2010.11.008.
- [45] Y. Zhang, X. Pang, S. Qu, X. Li, and K. Gao, "The relationship between fracture toughness of CO2 corrosion scale and corrosion rate of X65 pipeline steel under supercritical CO2 condition,"

International Journal of Greenhouse Gas Control, vol. 5, no. 6, pp. 1643–1650, Nov. 2011, doi: 10.1016/j.ijggc.2011.09.011.