

Projeto de Redes de Computadores

Unidade 5 - Projeto de Redes de Computadores
Parte 1

Sistemas de Informação

- Além da tecnologia, é preciso considerar uma série de outros fatores na implementação do projeto de uma rede de computadores:
 - Qual tecnologia adotar
 - Compatibilidade entre equipamentos novos e existentes
 - Suporte técnico
 - Obsolescência
 - Confiabilidade e performance esperados...
- Um dos grandes desafios enfrentados pelo projetista de redes: fazer com que cada componente se conecte a todos os outros

 Conexões com pontos remotos podem apresentar problemas de lentidão, tornando-se de manutenção difícil e dispendiosa

 Protocolos de rede, largura de banda de transmissão e gerenciamento da rede são desafios de implementação da parte lógica

- Existem diversas topologias e layouts de rede
- O projetista deve considerar todas as possibilidades e parâmetros relacionados ao projeto, entre eles:
 - Custo
 - Segurança
 - Performance
 - Escalabilidade
 - Gerenciamento
 - Crescimento tecnológico
 - Custos e retorno do investimento

- Também é necessário considerar outros pontos importantes sobre a infraestrutura de rede:
 - Distâncias
 - Limitações
 - Cabeamento novo ou já existente
 - Seleção das tecnologias e dispositivos (Ethernet, Fast Ethernet, ATM, Frame Relay. Roteador, hub, switch, servidor)
 - Testes
 - Documentação de toda a rede

Projeto de Redes – Metas de um Projeto de Redes

Funcionalidade

Rede deve permitir ao funcionário alcançar sua meta individual de trabalho, atendendo os requisitos comerciais globais da empresa

Escalabilidade

A rede deve ser capaz de crescer com a organização

Adaptabilidade

Suportar e permitir a adição de tecnologias futuras (ex: VoIP)

Gerenciamento

Permitir o monitoramento e o gerenciamento por meio de protocolos padronizados

Eficácia de Custos

O benefício da rede para a empresa deve pagar ou superar os seus custos

Projeto de Redes – Metodologia – Fluxograma

Projeto de Redes – Metodologia – Fluxograma

QUAL O OBJETIVO MAIOR DO CLIENTE? PARA QUE ELE QUER A NOVA REDE?

- Analisar a necessidade
 - Empresas estão dependendo cada vez mais de redes:
 - √ Aumento da experiência dos usuários e serviços de rede
 - ✓ Para reduzir o tempo de desenvolvimento e colocação no mercado de produtos funcionários precisam de acesso imediato a mais informação
 - ✓ Comunicação rápida entre funcionários, fornecedores, mercado

- Conhecimento prévio
 - Objetivos do negócio: a rede será usada para que?
 - Área de atuação: é uma empresa de TI ou uma padaria?
 - Objetivo do projeto: atender que tipo de tráfego?
 - Escopo do projeto: nova instalação ou atualização?
 - Fatores de sucesso: o que é esperado para dar certo?
 - ✓ Diminuir os custos operacionais
 - ✓ Aumentar o faturamento
 - √ Construir parcerias
 - Fatores de fracasso: o que pode dar errado?
 - ✓ Quais são os efeitos de uma má operação da rede nos aspectos operacionais do negócio?

- Lista de requisitos que podem ser analisados nesta etapa
 - Largura de Banda
 - Níveis de Serviço (SLA)
 - Disponibilidade
 - Latência
 - Perda de pacotes
 - Taxa de transmissão para segmentos horizontais

 Largura de Banda – Exemplo de requisitos de aplicações para definir a largura de banda de links WAN

APLICAÇÕES X UNIDADE - Empresa Exemplo							
APLICAÇÃO	CONSUMO MÉDIO	Acesso Sede	Acesso Filial 1	Acesso Filial 2	GARANTIA EXIGIDA	CRITICIDADE	
Sistema de Suporte Remoto	100Kbps	100	80	70	75%	ALTA	
ERP ADMINISTRATIVO	70Kbps	70	50	40	75%	ALTA	
INTRANET	56Kbps	20	10	10	20%	BAIXA	
CORREIO ELETRONICO (IMAP)	56Kbps	6Kbps 20		10	50%	MÉDIA	
WORKFLOW	56Kbps	10	10	10	50%	MÉDIA	
VoIP	50Kbps	10	10	10	50%	MÉDIA	
Video Conferencia	512Kbps	4	4	4	100%	ALTA	
Aplicações WEB	30Kbps	20	20	15	30%	MÉDIA	
Aplicações Legadas	80Kbps	10	10	10	20%	BAIXA	

APLICAÇÃO	Acesso Filial 1	Acesso Filial 2	
Sistema de Suporte			
Remoto	100Kbps x 75% x 80 = 6Mb	100Kbs x 75% x 70 = 5,25Mb	
Erp administrativo	70Kbps x 75% x 50 = 2,625Mb	70Kbps x 75% x 40 = 2,1MB	
Intranet	56Kbps x 20% x 10 = 0,112Mb	56Kbps x 20% x 10 = 0,112Mb	
Correio eletronico (imap)	56Kbps x 50% x 20 = 0,560Mb	56Kbps x 50% x 10 = 0,280Mb	
Workflow	56Kbps x 50% x 10 = 0,280Mb	56Kbps x 50% x 10 = 0,280Mb	
VoIP	50Kbps x 50% x 10 = 0,250Mb	50Kbps x 50% x 10 = 0,250Mb	
Vídeo Conferência	512Kbps x 100% x 4 = 2,048Mb	512Kbps x 100% x 4 = 2,048Mb	
Aplicações WEB	30Kbps x 30% x 20 = 0,180Mb	30Kbps x 30% x 15 = 0,135Mb	
Aplicações Legadas	80Kbps x 20% x 10 = 0,160Mb	80Kbps x 20% x 10 = 0,160Mb	
Total	Soma Filial 01: 12,215Mb	Soma Filial 02: 10,615Mb	
iotai		,	

Valores mínimos para links WAN

 Acordos de Níveis de Serviço - SLA (Service Level Agreement): garantia mínima de certos requisitos do sistema, definidos em contrato

SLA - Exemplo				
CONECTIVIDADE EM GERAL				
CONECTIVIDADE-GATEWAY INTERNET				
Nível de disponibilidade do serviço (up-time) - Conectividade				
Latência média mensal				
Perda de pacotes mensal				
FIREWALL				
Nível de disponibilidade do serviço (up-time)	99,95%			
CONECTIVIDADE REDE INTERNA				
Nível de disponibilidade do serviço de conectividade LAN (up-time) para configuração padrão	99,50%			
Nível de disponibilidade do serviço de conectividade LAN (up-time) para configuração em alta disponibilidade				
Latencia média mensal	< 10ms			
Perda de pacotes mensal				
CONECTIVIDADE REDE REMOTA (WAN)				
Nível de disponibilidade do serviço de conectividade WAN (up-time) para configuração padrão	99,95%			
Latencia média mensal	< 50ms			
Perda de pacotes mensal	1.0			

- Disponibilidade: tempo de operação no "ar" que as empresas esperam operar
 - Requisitos:

MTBF Tempo médio entre as falhas

MTTR Tempo médio para reparar

- Disponibilidade = MTBF / (MTBF + MTTR)
- A maioria das aplicações trabalha com 99,95%
- Aplicações críticas almejam 99,98%
- 99,99% é o limite da tecnologia

MTBF: Mean Time Between Failures

MTTR: Mean Time to Repair

- Latência
 - Medido entre ponto a ponto (roteador a roteador ou de host a host) tempo de viagem do pacote
 - Tempo de transmissão dos bits: aplicações em tempo real exigem tempos em torno de 150 ms.
- Taxa de transmissão para segmentos horizontais
 - Cabeamento no mesmo andar
 - Tráfego previsto = No. de dispositivos x 2 x fator de uso da velocidade do link horizontal (%)
 - Porque "X2"?
 - Fator de uso, 20 a 40% para redes empresariais médias a 80% para redes com CAD ou hospitalares

- Latência
 - Medido entre ponto a ponto (roteador a roteador ou de host a host) tempo de viagem do pacote
 - Tempo de transmissão dos bits: aplicações em tempo real exigem tempos em torno de 150 ms.
- Taxa de transmissão para segmentos horizontais
 - Cabeamento no mesmo andar
 - Tráfego previsto = No. de dispositivos x 2 x fator de uso da velocidade do link horizontal (%)
 - Porque "X2"?
 - ✓ Porque em algum momento dispositivos adicionais serão instalados
 - Fator de uso, 20 a 40% para redes empresariais médias a 80% para redes com CAD ou hospitalares

- Exemplo:
- Um escritório "médio" será equipado com oito computadores e duas impressoras em rede (um total de 10 aparelhos).
 - O plano é usar Gigabit Ethernet com 1 Gbps no *backbone* e 100 Mbps para cada área de trabalho
 - Utilizando o fator de uso de 40% produz um cálculo:
 - 10 dispositivos x 2 x (40% de 100 Mbps) = 800 Mbps de tráfego para este segmento
 - Significa que o *backbone* de 1 Gbps será capaz de proporcionar a largura de banda suficiente para esse escritório.

Projeto de Redes – Metodologia – Fluxograma

- Uma topologia é um mapa de uma rede que indica segmentos de rede, pontos de interconexão e comunidades de usuários
 - Queremos projetar a rede logicamente e não fisicamente (neste ponto)
 - Identificam-se redes, pontos de interconexão, o tamanho e alcance de redes
 - Não lidamos (ainda) com tecnologias específicas, dispositivos específicos, nem considerações de cabeamento

Visão geral e Diretrizes

- Elaboração do mapa da rede
- Prever recursos de segurança (Firewall, Proxy, IDS/IPS e VPN)
- Optar por modelos hierárquicos minimiza custos, já que os equipamentos de cada camada são especializados para uma função específica

Identificar a conectividade – preferencialmente Mesh parcial ou total

Topologia Mesh Parcial

Estrutura de Distribuição

- Modelo Hierárquico (1, 2 ou 3 camadas): rede altamente flexível e escalável
 - Camada de núcleo: transporte rápido entre sites
 - Camada de distribuição: implementa políticas de segurança, roteamento
 - Camada de acesso: conectividade dos usuários finais

Estrutura de Distribuição - Modelo hierárquico - Projeto em 1 camada

Estrutura de Distribuição – Modelo hierárquico – Projeto em 2 camadas

Fonte: Birkner, 2003

Estrutura de Distribuição – Modelo hierárquico – Projeto em 3 camadas

- Camada de Acesso: Faz a interface com dispositivos finais, como PCs, impressoras e telefones IP. Fornece um meio de conectar dispositivos à rede e controlar permissões
- Camada de Agregação ou Distribuição: Agrega os dados recebidos dos switches de acesso antes de serem transmitidos para a camada Central. Controla o fluxo do tráfego da rede usando políticas e realiza funções de roteamento entre VLANs
- Camada Central ou de Núcleo: É o backbone de alto desempenho da rede. Conecta através de roteamento extranets, WAN e Internet utilizando um protocolo de roteamento

- Ao fazer o desenho do projeto lógico da rede, use um software de diagramação (Visio ou Dia)
- Necessidade de fazer um mapa em mais alto nível mostrando as filiais, um mapa de cada filial mostrando os servidores e estações e um mapa de cada armário de telecomunicações mostrando a conexão entre switches e patch panels

Exemplo de topologia WAN

Segurança – Conceitos e fundamentos

- Riscos As maiores demandas de segurança são devido a:
 - Conexões para Internet
 - Transações bancárias
 - E-Commerce
 - Uso da rede corporativa por usuários móveis e empregados que trabalham em casa
 - Relação de confiança entre clientes e fornecedores
- Política de segurança é um conjunto de diretrizes cuja função é orientar todos os usuários da empresa a agirem de forma segura no trabalho
 - É como uma lei, uma legislação
 - Necessária para uma operação, assegurando os negócios da empresa

- Propriedades da informação aspectos de segurança
 - Confidencialidade: criptografia apenas as partes envolvidas irão ter acesso ao conteúdo trafegado
 - Integridade: certeza que a informação não foi alterada
 - Disponibilidade: estar à disposição do usuário no momento em que ele precisar
 - Autenticidade: saber com quem está se comunicando e que a informação é de autoria de determinada pessoa
 - Legalidade: o material é legal
 - Não Repúdio: a pessoa que transmitiu um conteúdo não pode negar a ação

<u>Segurança</u> – Etapas do projeto de segurança

- Identificar os recursos de rede
- Analisar os riscos de segurança
- Analisar os requisitos de segurança
- Elaborar um plano de segurança
- Elaborar políticas de segurança
- Elaborar procedimentos para aplicar as políticas de segurança
- Elaborar uma estratégia de implementação
- Obter o compromisso de usuários, gerentes e equipe técnica
- Treinar usuários, gerentes e equipe técnica
- Implementar a estratégia a procedimentos de segurança
- Testar a segurança e rever as decisões, se necessário
- Manter a segurança

Segurança – Conceitos e fundamentos

- Autenticação
 - Mecanismo normal: nome de login e senha
 - Senhas descartáveis (one-time passwords OTP)
 - Autenticação multi-fator
 - ✓ Algo que você sabe: senhas, PIN, padrões
 - ✓ Algo que você possui: smartcard, telefone celular, tokens
 - ✓ Algo que apenas você é: características biométricas (íris do olho, digitais, voz, face)

Verifique sua conta

Não recebeu seu código? Às vezes, pode levar até 15 minutos. Caso demore mais do que isso, tente novamente.

Projeto de Redes – Metodologia – Fluxograma

Backbone distribuído

Backbone colapsado

Princípios

- Esquema global de endereçamento por meio da atribuição de blocos de endereços nas porções de rede: simplifica o gerenciamento
- Enfoque no protocolo IP
- Transição do IPV4 para IPV6: usar NAT para facilitar

Princípios

- Endereço interno 10.0.0.0:
 - 10.0.0.0 = matriz
 - 10.1.0.0 = filial 1
 - 10.2.0.0 = filial 2
 - √ 10.2.3.0 = terceiro andar da segunda filial
- Usar preferencialmente nomes ao invés de endereços IP
 - Nomes representativos dentro da organização
 - Nomes são dados a vários tipos de dispositivos: Switches, Roteadores, Servidores, Impressoras, Hosts

Plano de endereçamento – Exemplo

Net ▼	С	IDR 🔻	Sub-Mask -	A	ocado para	~	Descrição ▼
172.28.0.0	/2	23	255.255.254.0	SI	P - SEDE		VLAN-ID 6 - YZ1
172.28.2.128	/2	26	255.255.255.192	SI	P - SEDE		VLAN-ID 1 - SWITCHES
172.28.4.0	/2	22	255.255.252.0	SI	P - SEDE		VLAN-ID 8 - SERVERS
172.28.9.0	/2	24	255.255.255.0	SI	P - SEDE		VLAN-ID 9 - ENGENHARIA
172.28.18.128	/2	26	255.255.255.192	S	P - SEDE		VLAN-ID 10 - ADM
172.28.11.0	/2	24	255.255.255.0	SI	P - SEDE		VLAN-ID 11 - COMERCIAL
172.28.12.0	/2	22	255.255.252.0	SI	P - SEDE		VLAN-ID 12 - PRODUCAO

Recomenda-se usar o protocolo DHCP (Dynamic Host Configuration Protocol) para a configuração de IPs dos hosts. Você também precisará de um servidor de nomes para fazer a tradução de IP para nomes DNS (Domain Name System)

Atribuição de endereçamento IP com DHCP