Probability and Measure - Tutorial 4

1. Let $\Omega = \{a, b, c\}$ be a set consisting of three distinct elements and let $\mu^* : P(\Omega) \to [0, \infty]$ be defined by

$$\mu^*(\emptyset) = 0$$
, $\mu^*(\Omega) = 2$, $\mu^*(A) = 1$, otherwise.

Show that μ^* is an outer measure on Ω and determine the μ^* -measurable subsets of Ω .

- 2. Let μ^* be an outer measure on Ω and assume that $\mu^*(A) = 0$ for some $A \subset \Omega$. Show that $\mu^*(A \cup B) = \mu^*(B)$ for any $B \subset \Omega$.
- 3. Let Ω be a set with an outer measure μ^* . Let $A \subset \Omega$ be measurable. Let $B \subset \Omega$ be such that $A \subset B$, $\mu^*(A) = \mu^*(B)$, and $\mu^*(B) < \infty$. Show that B is measurable.
- 4. Let Ω be a set with an outer measure μ^* . Let $A \subset \Omega$ be measurable and let $B \subset \Omega$ with $\mu^*(B) < \infty$. Show that

$$\mu^*(A \cup B) = \mu^*(A) + \mu^*(B) - \mu^*(A \cap B).$$