HW #5 Due: 6/13/2019

1. The following is a simplified version of the variational autoencoder (VAE) to explain the reparameterization trick. In the figure, a node with "x" means multiplication, with "+" means addition, and with "exp" means $out = \exp(in)$. All other nodes use the sigmoid activation function. In addition, ℓ_1 is a random number generated from a Gaussian random variable with zero mean and uni-variance. Let the loss function $\mathcal{L} = -(\mathcal{L}_1 + \mathcal{L}_2)$, where

$$\mathcal{L}_1 = \sum_{i=1}^{2} [x_i \ln y_i + (1 - x_i) \ln(1 - y_i)]$$

and

$$\mathcal{L}_2 = \frac{1}{2} (\mu^2 + \sigma^2 - \ln \sigma^2 - 1).$$

- (a) Find $\frac{\partial \mathcal{L}_1}{\partial z_1}$.
- (b) Find $\frac{\partial \mathcal{L}_1}{\partial w_4}$.
- (c) Find $\frac{\partial \mathcal{L}_2}{\partial w_4}$.

- 2. Use the equations of optimal margin (linear) SVM (in pp. 12) to find \mathbf{w} given $\mathbf{x}_1 = \begin{bmatrix} 1 & 1 \end{bmatrix}^T \in C_{+1}$, $\mathbf{x}_2 = \begin{bmatrix} -1 & 1 \end{bmatrix}^T \in C_{-1}$, $\mathbf{x}_3 = \begin{bmatrix} 2 & 2 \end{bmatrix}^T \in C_{+1}$, $\mathbf{x}_4 = \begin{bmatrix} -2 & 2 \end{bmatrix}^T \in C_{-1}$. Hint: Recall the meaning of support vectors.
- 3. Assuming that the following is a part of subpixel convolution networks with stride $\frac{1}{2}$. Compute the resultant values with the ReLU activation function. For simplicity, you may assume that the resultant plane has a size of 9 \times 9.

Input plane

6	0	-4	0	1
4	4	0	2	1
3	-7	1	4	2
-2	2	1	-4	2
5	1	2	4	-1

Kernel

3	-1	2
-2	1	-3
-2	0	3

- 4. In the version 1 model of the LSTM, the activation function for f_t is sigmoid (represented by σ in pp. 21 of the notes). If we use ReLU instead, can the LSTM nodes still properly work? Why or why not?
- 5. In the lecture of Adaboost, we mentioned that we use three weak classifiers with a voting to correctly classify all samples (pp. 5). As the dataset is linearly non-separable, this problem cannot be correctly classified with a linear classifier, nor with the linear combination of some linear classifiers. Where did we introduce the nonlinear function when making decisions?