#1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset

```
1. Data type of columns in a table
select column_name, data_type
from `annular-sky-381308.Target_SQL.INFORMATION_SCHEMA.COLUMNS`
where table_name = 'customers'
```

Row	column_name	data_type
1	customer_id	STRING
2	customer_unique_id	STRING
3	customer_zip_code_prefix	INT64
4	customer_city	STRING
5	customer_state	STRING

2. Time period for which the data is given
select min(order_purchase_timestamp) data_from,max(order_purchase_timestamp) data_to
from `Target_SQL.orders`

Row	data_from	data_to	11
1	2016-09-04 21:15:19 UTC	2018-10-17 17:30:18 UTC	

3. Cities and States of customers ordered during the given period
select c.customer_id,order_id,customer_city,customer_state
from `Target_SQL.customers`c
left join `Target_SQL.orders`o
on c.customer_id=o.customer_id
limit 10

Observation - no need to add condition for min and max of time period, because all corresponding data is in between the dates as mentioned in case 1.1

Row /	customer_id	order_id	customer_city	customer_state
1	0735e7e4298a2ebbb46649346570476a	bf74f34eea55f16dd17b6212310074f8	acu	RN
2	903b3d86e3990db01619a4ebe3edef4e	667fc0af3acc404a6ef971908b1574b4	acu	RN
3	38c97666e962d4fea7fd6a83e69f20cd	9f738fc8b806bc3d86ccf78855e82eeb	acu	RN
4	77c2f46cf580f4874c9a5751c2d88474	9fd3d5bb20296499ef3fbcaa4db31c39	ico	CE
5	4d3ef4cfffb8ad4767c199c36a4cfee6	ecf6789fa93718435fc6279a4c051917	ico	CE
6	3000841b86e1fbe9493b523245d5c68d	9b41629ccbc3ae4be489cb815f3653f5	ico	CE
7	3c325415ccc7e622c66dec4bc9120030	5bb1e2f9ec792581a2209d429cfc1892	ico	CE
8	04f3a7b250e3be964f01bf22bccdc602	2e557b5d820cbc4f2f0e25b3867f8033	ico	CE
9	894202b8ef01f4719a4691e79dd24c17	d1ca60cfa5b276544043d344ad224285	ico	CE
10	9d715b9fb75a9d081c14126c09218b96	395522d74b4f19e9d229bacaab803c99	ico	CE

#2. In-depth Exploration:

1. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

```
select*
from(
select extract(year from order_purchase_timestamp) year,
extract(month from order_purchase_timestamp) month,
count(o.order_id) total_orders,
round(sum(payment_value),1) total_sales
from `Target_SQL.orders`o
left join `Target_SQL.payments`p
on o.order_id=p.order_id
group by extract(year from order_purchase_timestamp),
extract(month from order_purchase_timestamp))
order by year, month
```

Observations/Insights -

- 1. yes, there is huge growth in brazilian e-commerce market from Jan 2017 to Aug 2018.
- 2. No. of orders along with sales had increase in this period
- 3. year 2017 is the profitable year among these years
- 4. max sales in Nov-2017


```
2. What time do Brazilian customers tend to buy
   (Dawn, Morning, Afternoon or Night)?
   0-6: Dawn
   7-12: Morning
  13-18: Afternoon
   19-23: Night
select time_part, count(order_purchase_timestamp) total_orders
from
(select *,
case
when (order_hour >= 0 and order_hour <= 6)
then 'Dawn (0-6)'
when (order_hour >= 7 and order_hour <= 12)</pre>
then 'Morning (7-12)'
when (order_hour >= 13 and order_hour <= 18)
then 'Afternoon (13-18)'
else 'Night (19-23)'
end time_part
from (select *,
extract(hour from order_purchase_timestamp) order_hour
from `Target_SQL.orders`
order by order_hour))
group by time_part
order by total_orders desc
```

Row	time_part	total_orders
1	Afternoon (13-18)	38135
2	Night (19-23)	28331
3	Morning (7-12)	27733
4	Dawn (0-6)	5242

Obervations/Insights -

- 1. Brazilian's tend to buy more in Afternoon, so keep all shops open in this time period.
- 2. And keep limited shops open in dawn, because sales is less

```
#3. Evolution of E-commerce orders in the Brazil region:
    1. Get month on month orders by states
    select *
    from(
    select customer_state,
    extract(year from order_purchase_timestamp) year,
    extract(month from order_purchase_timestamp) month,
    count(order_id) total_orders
    from `Target_SQL.orders`o
    left join `Target_SQL.customers`c
    on o.customer_id=c.customer_id
    group by customer_state,extract(year from order_purchase_timestamp),extract(month
    from order_purchase_timestamp))
    order by customer_state,year,month
    limit 30
```

Row	customer_state	year //	month //	total_orders
1	AC	2017	1	2
2	AC	2017	2	3
3	AC	2017	3	2
4	AC	2017	4	5
5	AC	2017	5	8
6	AC	2017	6	4
7	AC	2017	7	5
8	AC	2017	8	4
9	AC	2017	9	5
10	AC	2017	10	6
11	AC	2017	11	5
12	AC	2017	12	5
13	AC	2018	1	6
14	AC	2018	2	3
15	AC	2018	3	2

Observations/insights-

For example of state BA, month on month growth in orders can be seen

Row	customer_state	year //	month //	total_orders
79	BA	2016	10	4
80	BA	2017	1	25
81	BA	2017	2	59
82	BA	2017	3	91
83	BA	2017	4	93
84	BA	2017	5	127
85	BA	2017	6	106
86	BA	2017	7	155
87	BA	2017	8	158
88	BA	2017	9	170
89	BA	2017	10	166
90	BA	2017	11	250
91	BA	2017	12	192
92	BA	2018	1	239
93	BA	2018	2	214

```
2. Distribution of customers across the states in Brazil
select customer_state,
count(c.customer_id) total_customers,
round(sum(payment_value),1) total_sales
from `Target_SQL.customers`c
join `Target_SQL.orders`o
on c.customer_id=o.customer_id
join `Target_SQL.payments`p
on p.order_id=o.order_id
group by customer_state
order by total_sales desc
```

Row	customer_state //	total_customers	total_sales
1	SP	43622	5998227.0
2	RJ	13527	2144379.7
3	MG	12102	1872257.3
4	RS	5668	890898.5
5	PR	5262	811156.4
6	SC	3754	623086.4
7	BA	3610	616645.8
8	DF	2204	355141.1
9	GO	2112	350092.3
10	ES	2107	325967.6

Observations/insights -

SP state max numbers of customers along with max sales, if there is a plan to open a new shop then SP state is great option

```
#4. Impact on Economy: Analyze the money movement by e-
commerce by looking at order
prices, freight and others.
   1. Get % increase in cost of orders from 2017 to 2018
      (include months between Jan to Aug only)
     - You can use "payment_value" column in payments table
 select *,
 round(((total_order_cost-lag1)/lag1)*100) month_wise_order_cost_percet_increase
 from(
 select *.
 lag(total_order_cost,1) over(order by year,month) lag1
 select extract(year from order_purchase_timestamp) year,
 extract(month from order_purchase_timestamp) month,
 round(sum(payment_value),1) total_order_cost
 from `Target_SQL.payments`p
 left join `Target_SQL.orders`o
 on o.order_id=p.order_id
 where (extract(year from order_purchase_timestamp)=2017
 or extract(year from orde r_purchase_timestamp)=2018)
 and extract(month from order_purchase_timestamp)>=1
 and extract(month from order_purchase_timestamp)<=8</pre>
 group by extract(year from order_purchase_timestamp),
 extract(month from order_purchase_timestamp))
```

order by year, month)

Row /	year //	month //	total_order_cost //	lag1	month_wise_order_cost_percet_increase
1	2017	1	138488.0	null	nuli
2	2017	2	291908.0	138488.0	111.0
3	2017	3	449863.6	291908.0	54.0
4	2017	4	417788.0	449863.6	-7.0
5	2017	5	592918.8	417788.0	42.0
6	2017	6	511276.4	592918.8	-14.0
7	2017	7	592382.9	511276.4	16.0
8	2017	8	674396.3	592382.9	14.0
9	2018	1	1115004.2	674396.3	65.0
10	2018	2	992463.3	1115004.2	-11.0
11	2018	3	1159652.1	992463.3	17.0
12	2018	4	1160785.5	1159652.1	0.0
13	2018	5	1153982.2	1160785.5	-1.0
14	2018	6	1023880.5	1153982.2	-11.0
15	2018	7	1066540.8	1023880.5	4.0
16	2018	8	1022425.3	1066540.8	-4.0

Note - Question asked for % increase in cost of orders year wise, to have more granularity wrote query to have month wise % increase in cost of orders, year wise % increase in cost of orders can also be calculated easily

```
Observations/insights — peak in % increase in cost of orders in Feb-2017
```

```
2. Mean & Sum of price and freight value by customer state
select *,
round((total_freight_value/sum_of_price)*100,2) freight_percet
from(
select customer_state,
round(sum(p.payment_value)/count(p.payment_value),1) mean_of_price,
round(sum(p.payment_value),1) sum_of_price,
round(sum(freight_value)) total_freight_value
from `Target_SQL.customers`c
left join `Target_SQL.orders`o
on c.customer_id=o.customer_id
join `Target_SQL.payments`p
on o.order_id=p.order_id
join `Target_SQL.order_items`oi
on oi.order_id=o.order_id
group by customer_state
order by sum_of_price
order by freight_percet desc
```

Row	customer_state //	mean_of_price	sum_of_price	total_freight_value /	freight_percet //
1	ТО	213.2	72281.2	13451.0	18.61
2	RR	239.7	12462.2	2235.0	17.93
3	RO	230.4	65886.0	11717.0	17.78
4	RN	204.3	116264.9	20074.0	17.27
5	PE	199.2	376377.3	61924.0	16.45
6	PI	238.7	136780.0	22481.0	16.44
7	SE	222.8	88437.5	14541.0	16.44
8	AM	203.2	34753.3	5657.0	16.28
9	MA	235.3	198566.3	32290.0	16.26
10	PB	283.2	180984.2	27642.0	15.27

Observation/insights -

Customer state TO has maximum freight percentage charges as compare to other states

```
#5. Analysis on sales, freight and delivery time
1. Calculate days between purchasing, delivering and estimated delivery
select order_id,
order_purchase_timestamp,
order_delivered_customer_date,
order_estimated_delivery_date,
date_diff(order_delivered_customer_date,order_purchase_timestamp,day)
days_purchase_to_deliver,
date_diff(order_estimated_delivery_date,order_delivered_customer_date,day)
diff_estimate_and_deliver
from `Target_SQL.orders`
```

Row	order_id //	order_purchase_timestamp	order_delivered_customer_date	order_estimated_delivery_date	days_purchase_to_deliver	diff_estimate_and_deliver_/
1	1950d777989f6a877539f5379	2018-02-19 19:48:52 UTC	2018-03-21 22:03:51 UTC	2018-03-09 00:00:00 UTC	30	-12
2	2c45c33d2f9cb8ff8b1c86cc28	2016-10-09 15:39:56 UTC	2016-11-09 14:53:50 UTC	2016-12-08 00:00:00 UTC	30	28
3	65d1e226dfaeb8cdc42f66542	2016-10-03 21:01:41 UTC	2016-11-08 10:58:34 UTC	2016-11-25 00:00:00 UTC	35	16
4	635c894d068ac37e6e03dc54e	2017-04-15 15:37:38 UTC	2017-05-16 14:49:55 UTC	2017-05-18 00:00:00 UTC	30	1
5	3b97562c3aee8bdedcb5c2e45	2017-04-14 22:21:54 UTC	2017-05-17 10:52:15 UTC	2017-05-18 00:00:00 UTC	32	0
6	68f47f50f04c4cb6774570cfde	2017-04-16 14:56:13 UTC	2017-05-16 09:07:47 UTC	2017-05-18 00:00:00 UTC	29	1
7	276e9ec344d3bf029ff83a161c	2017-04-08 21:20:24 UTC	2017-05-22 14:11:31 UTC	2017-05-18 00:00:00 UTC	43	-4
8	54e1a3c2b97fb0809da548a59	2017-04-11 19:49:45 UTC	2017-05-22 16:18:42 UTC	2017-05-18 00:00:00 UTC	40	-4
9	fd04fa4105ee8045f6a0139ca5	2017-04-12 12:17:08 UTC	2017-05-19 13:44:52 UTC	2017-05-18 00:00:00 UTC	37	-1
10	302bb8109d097a9fc6e9cefc5	2017-04-19 22:52:59 UTC	2017-05-23 14:19:48 UTC	2017-05-18 00:00:00 UTC	33	-5

Note:

Minus(-) in diff_estimate_and_deliver means order has been delivered after
estimated date

```
2. Find time_to_delivery & diff_estimated_delivery.
    Formula for the same given below:
    --time_to_delivery = order_purchase_timestamp-order_delivered_customer_date
    --diff_estimated_delivery = order_estimated_delivery_date-
order_delivered_customer_date

select order_id,
    date_diff(order_delivered_customer_date,order_purchase_timestamp,day)
    time_to_delivery,
    date_diff(order_estimated_delivery_date,order_delivered_customer_date,day)
    diff_estimated_delivery
    from `Target_SQL.orders`
```

Row	order_id	time_to_delivery //	diff_estimated_delivery
1	1950d777989f6a877539f53795b4c3c3	30	-12
2	2c45c33d2f9cb8ff8b1c86cc28c11c30	30	28
3	65d1e226dfaeb8cdc42f665422522d14	35	16
4	635c894d068ac37e6e03dc54eccb6189	30	1
5	3b97562c3aee8bdedcb5c2e45a50d5e1	32	0
6	68f47f50f04c4cb6774570cfde3a9aa7	29	1
7	276e9ec344d3bf029ff83a161c6b3ce9	43	-4
8	54e1a3c2b97fb0809da548a59f64c813	40	-4
9	fd04fa4105ee8045f6a0139ca5b49f27	37	-1
10	302bb8109d097a9fc6e9cefc5917d1f3	33	-5

3. Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery select customer_state. round(sum(freight_value)/count(freight_value),2) freight_mean_value, round(sum(date_diff(order_delivered_customer_date,order_purchase_timestamp,day))/ count(date_diff(order_delivered_customer_date,order_purchase_timestamp,day)),2) time_to_delivery, round(sum(date_diff(order_estimated_delivery_date,order_delivered_customer_date, day))/ count(date_diff(order_estimated_delivery_date,order_delivered_customer_date, day)),2) diff_estimated_delivery from `Target_SQL.customers`c join `Target_SQL.orders`o on c.customer_id=o.customer_id join `Target_SQL.order_items`oi on o.order_id=oi.order_id group by customer_state order by time_to_delivery desc 4. Sort the data to get the following: 5. Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5 - Top 5 select customer_state, round(sum(freight_value)/count(freight_value),2) freight_mean_value, round(sum(date_diff(order_delivered_customer_date,order_purchase_timestamp,day))/ count(date_diff(order_delivered_customer_date,order_purchase_timestamp,day)),2) t ime_to_delivery, round(sum(date_diff(order_estimated_delivery_date,order_delivered_customer_date,d ay))/ count(date_diff(order_estimated_delivery_date,order_delivered_customer_date,day)) ,2) diff_estimated_delivery from `Target_SQL.customers`c join `Target_SQL.orders`o on c.customer_id=o.customer_id join `Target_SQL.order_items`oi on o.order_id=oi.order_id

```
group by customer_state
order by freight_mean_value desc
limit 5
```

Row	customer_state	freight_mean_value	time_to_delivery	diff_estimated_delivery
1	RR	42.98	27.83	17.43
2	PB	42.72	20.12	12.15
3	RO	41.07	19.28	19.08
4	AC	40.07	20.33	20.01
5	PI	39.15	18.93	10.68

Observations/insights -

Freight mean value of customer states RR, PB, RO, AC greater than 40, these states need to work on freight value optimization

```
Bottom 5
 select customer_state,
 round(sum(freight_value)/count(freight_value),2) freight_mean_value,
 round(sum(date_diff(order_delivered_customer_date,order_purchase_timestamp,day))/
 count(date_diff(order_delivered_customer_date,order_purchase_timestamp,day)),2) t
ime_to_delivery.
 round(sum(date_diff(order_estimated_delivery_date,order_delivered_customer_date,d
ay))/
 count(date_diff(order_estimated_delivery_date,order_delivered_customer_date,day))
,2) diff_estimated_delivery
 from `Target_SQL.customers`c
 join `Target_SQL.orders`o
 on c.customer_id=o.customer_id
 join `Target_SQL.order_items`oi
 on o.order_id=oi.order_id
 group by customer_state
 order by freight_mean_value
 limit 5
```

Row /	customer_state	freight_mean_va	time_to_delivery	diff_estimated_c
1	SP	15.15	8.26	10.27
2	PR	20.53	11.48	12.53
3	MG	20.63	11.52	12.4
4	RJ	20.96	14.69	11.14
5	DF	21.04	12.5	11.27

```
6. Top 5 states with highest/lowest average time to delivery
Top 5
select customer_state,
round(sum(freight_value)/count(freight_value),2) freight_mean_value,
round(sum(date_diff(order_delivered_customer_date,order_purchase_timestamp,day))/
count(date_diff(order_delivered_customer_date,order_purchase_timestamp,day)),2) t
ime_to_delivery,
round(sum(date_diff(order_estimated_delivery_date,order_delivered_customer_date,day))/
```

```
count(date_diff(order_estimated_delivery_date,order_delivered_customer_date,day))
,2) diff_estimated_delivery

from `Target_SQL.customers`c
  join `Target_SQL.orders`o
  on c.customer_id=o.customer_id
  join `Target_SQL.order_items`oi
  on o.order_id=oi.order_id
  group by customer_state
  order by time_to_delivery desc
  limit 5
```

Row /	customer_state	freight_mean_value	time_to_delivery	diff_estimated_delivery
1	RR	42.98	27.83	17.43
2	AP	34.01	27.75	17.44
3	AM	33.21	25.96	18.98
4	AL	35.84	23.99	7.98
5	PA	35.83	23.3	13.37

Observations/insights -

RR state must work on time to deliver the order, has maximum delivery time as compared to other states

```
Bottom 5
 select customer_state,
 round(sum(freight_value)/count(freight_value),2) freight_mean_value,
 round(sum(date_diff(order_delivered_customer_date,order_purchase_timestamp,day))/
 count(date_diff(order_delivered_customer_date,order_purchase_timestamp,day)),2) t
ime_to_delivery,
 round(sum(date_diff(order_estimated_delivery_date,order_delivered_customer_date,d
ay))/
 count(date_diff(order_estimated_delivery_date,order_delivered_customer_date,day))
,2) diff_estimated_delivery
 from `Target_SQL.customers`c
 join `Target_SQL.orders`o
 on c.customer_id=o.customer_id
 join `Target_SQL.order_items`oi
 on o.order_id=oi.order_id
 group by customer_state
 order by time_to_delivery
 limit 5
```

Row	customer_state //	freight_mean_value	time_to_delivery	diff_estimated_delivery
1	SP	15.15	8.26	10.27
2	PR	20.53	11.48	12.53
3	MG	20.63	11.52	12.4
4	DF	21.04	12.5	11.27
5	SC	21.47	14.52	10.67

7. Top 5 states where delivery is really fast/ not so fast compared to estimated date

Top 5

```
select customer_state,
round(sum(diff_estimated_delivery)/count(diff_estimated_delivery),2)
delivery_compared_to_estimated_date
from(select *,
date_diff(order_estimated_delivery_date,order_delivered_customer_date,day)
diff_estimated_delivery
from `Target_SQL.customers`c
left join `Target_SQL.orders`o
on c.customer_id=o.customer_id)
group by customer_state
order by delivery_compared_to_estimated_date desc
limit 5
```

Row	customer_state //	delivery_compared_to_estimated_date
1	AC	19.76
2	RO	19.13
3	AP	18.73
4	AM	18.61
5	RR	16.41

Bottom 5

```
select customer_state,
round(sum(diff_estimated_delivery)/count(diff_estimated_delivery),2)
delivery_compared_to_estimated_date
from(select *,
date_diff(order_estimated_delivery_date,order_delivered_customer_date,day)
diff_estimated_delivery
from `Target_SQL.customers`c
left join `Target_SQL.orders`o
on c.customer_id=o.customer_id)
group by customer_state
order by delivery_compared_to_estimated_date
limit 5
```

Row	customer_state	delivery_compared_to_estimated_date
1	AL	7.95
2	MA	8.77
3	SE	9.17
4	ES	9.62
5	BA	9.93

```
#6. Payment type analysis:
   1.Month over Month count of orders for different payment types

select *
from(
   select extract(year from order_purchase_timestamp) year,
   extract(month from order_purchase_timestamp) month,
```

```
payment_type,
count(o.order_id) order_count
from `Target_SQL.payments`p
left join `Target_SQL.orders`o
on p.order_id=o.order_id
group by extract(year from order_purchase_timestamp),
extract(month from order_purchase_timestamp), payment_type)
order by year, month, order_count desc
```

Row	year	month	payment_type	order_count
1	2016	9	credit_card	3
2	2016	10	credit_card	254
3	2016	10	UPI	63
4	2016	10	voucher	23
5	2016	10	debit_card	2
6	2016	12	credit_card	1
7	2017	1	credit_card	583
8	2017	1	UPI	197
9	2017	1	voucher	61
10	2017	1	debit_card	9
11	2017	2	credit_card	1356
12	2017	2	UPI	398
13	2017	2	voucher	119
14	2017	2	debit_card	13
15	2017	3	credit_card	2016

<mark>Observations –</mark>

Customer prefers credit card as top payment type

```
2.Count of orders based on the no. of payment installments
select payment_installments,count(order_id) total_orders
from `Target_SQL.payments`
group by payment_installments
```

Row	payment_installments	total_orders
1	0	2
2	1	52546
3	2	12413
4	3	10461
5	4	7098
6	5	5239
7	6	3920
8	7	1626
9	8	4268
10	9	644
11	10	5328
12	11	23
13	12	133
14	13	16
15	14	15

#7. Actionable Insights

- Brazilian's tend to buy more in Afternoon, so keep all shops open in this time period
- keep limited shops open in dawn, because sales is less, to avoid labour cost
 etc
- Customer state TO has maximum freight percentage charges as compare to other states

#8. Recommendations

- SP state has maximum number of customers along with max sales, if there is a plan to open a new shop then SP state is great option
- RR state must work on time to deliver the order, has maximum delivery time as compared to other states
- Freight mean value of customer states RR, PB, RO, AC greater than 40, these states need to work on freight value optimization