

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC140887
Page: 1 of 83

FCC Radio Test Report FCC ID: XMF-MID1024

Original Grant

Report No. : TB-FCC140887

Applicant: Lightcomm Technology Co., Ltd.

Equipment Under Test (EUT)

EUT Name : MID

Model No. : MID1024-Z Series Model : TM1088

No.

Brand Name : N/A

Receipt Date : 2014-06-16

Test Date : 2014-06-17 to 2014-06-24

Issue Date : 2014-06-24

Standards: FCC Part 15, Subpart C(15.247)

Test Method : ANSI C63.4:2003

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

Test/Witness Engineer :

Approved& Authorized :

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1. 0

Contents

CON	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	4
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	
	1.5 Description of Test Mode	
	1.6 Description of Test Software Setting	
	1.7 Test Facility	
2.	TEST SUMMARY	9
3.	CONDUCTED EMISSION TEST	10
	3.1 Test Standard and Limit	10
	3.2 Test Setup	
	3.3 Test Procedure	10
	3.4 Test Equipment Used	11
	3.5 EUT Operating Mode	11
	3.6 Test Data	11
4.	RADIATED EMISSION TEST	14
	4.1 Test Standard and Limit	14
	4.2 Test Setup	15
	4.3 Test Procedure	16
	4.4 EUT Operating Condition	
	4.5 Test Equipment	16
5.	RESTRICTED BANDS REQUIREMENT	32
	5.1 Test Standard and Limit	32
	5.2 Test Setup	32
	5.3 Test Procedure	32
	5.4 EUT Operating Condition	
	5.5 Test Equipment	33
6.	NUMBER OF HOPPING CHANNEL	46
	6.1 Test Standard and Limit	46
	6.2 Test Setup	46
	6.3 Test Procedure	
	6.4 EUT Operating Condition	46
	6.5 Test Equipment	
	6.6 Test Data	46
7 .	AVERAGE TIME OF OCCUPANCY	48
	7.1 Test Standard and Limit	48
	7.2 Test Setup	48
	7.3 Test Procedure	48

Page: 3 of 83

	7.4 EUT Operating Condition	48
	7.5 Test Equipment	48
	7.6 Test Data	
8.	CHANNEL SEPARATION AND BANDWIDTH TEST	61
	8.1 Test Standard and Limit	61
	8.2 Test Setup	61
	8.3 Test Procedure	61
	8.4 EUT Operating Condition	61
	8.5 Test Equipment	62
	8.6 Test Data	62
9.	PEAK OUTPUT POWER TEST	70
	9.1 Test Standard and Limit	70
	9.2 Test Setup	70
	9.3 Test Procedure	70
	9.4 EUT Operating Condition	70
	9.5 Test Equipment	70
	9.6 Test Data	70
10.	ANTENNA CONDUCTED SPURIOUS EMISSION	75
	10.1 Test Standard and Limit	75
	10.2 Test Setup	
	10.3 Test Procedure	75
	10.4 EUT Operating Condition	76
	10.5 Test Equipment	76
	10.6 Test Data	76
11.	ANTENNA REQUIREMENT	83
	11.1 Standard Requirement	83
	11.2 Antenna Connected Construction	
	11.2 Result	83

Page: 4 of 83

1. General Information about EUT

1.1 Client Information

Applicant: Lightcomm Technology Co., Ltd.

Address: RM 1708-10, 17/F, PROSPERITY CENTRE, 25 CHONG YIP

STREET, KWUN TONG, KOWLOON, HONG KONG

Manufacturer: Huizhou Hengdu Electronics Co., Ltd.

Address : DIP South Area, Huiao Highway, Huizhou, Guangdong, China

1.2 General Description of EUT (Equipment Under Test)

	1		
:	MID		
:	MID1024-Z, TM1088		
:	All models are identical in the same PCB layout, interior structure and electrical circuits, The only difference is model name for		
	commercial purpose.	•	
Operation Frequency: Bluetooth:2402~2480MHz			
	Number of Channel:	Bluetooth:79 Channels see note (2)	
:	Max Peak Output Power:	GFSK: 7.62 dBm (Conducted Power)	
Antenna Gain:		0 dBi PIFA Antenna	
	Modulation Type:	GFSK 1Mbps(1 Mbps)	
		π/4-DQPSK(2 Mbps)	
	DC power supplied by AC/	8-DPSK(3 Mbps)	
•		•	
:	USB DC 5V form PC.	Errognior battery.	
	AC/DC Adapter(TEKA012-0502000UK) (DC Power Jack):		
	Input: AC 100~240V 50/60Hz 0.35A Max. Output: DC 5V 2A		
	DC 3.7V 5000mAh from Li-Polymer battery		
:	The equipent have USB port for link with PC, so the equipment is		
	considered as a Computing Device Peripheral.		
	Please refer to the User's I	Manual	
	:	 MID1024-Z, TM1088 All models are identical in and electrical circuits, The commercial purpose. Operation Frequency: Bluetooth:2402~2480MHz Number of Channel: Max Peak Output Power:	

Note: The equipment with Bluetooth and Wifi(802.11b/g/n) function, WiFi(802.11b/g/n) have test comply with FCC Part 15C Rules. More detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Note:

- (1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (2) This Test Report is FCC Part 15.247 for Bluetooth, and test procedure in accordance with

Page: 5 of 83

Public Notice: DA 00-705.

(3) Channel List:

Channel	Frequency	Channel	Frequency	Channel	Frequency
	(MHz)		(MHz)		(MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

⁽⁴⁾ The Antenna information about the equipment is provided by the applicant.

1.3 Block Diagram Showing the Configuration of System Tested

TX Mode

1.4 Description of Support Units

Equipment Information								
Name Model FCC ID/DOC Manufacturer Used "√"								
Cable Information								
Number	Number Shielded Type Ferrite Core Length Note							
Cable 1 No No 1.0M Accessories								

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test		
Final Test Mode Description		
Mode 1	AC Charging with TX B Mode	

For Radiated Test			
Final Test Mode Description			
Mode 1	AC Charging with TX B Mode		
Mode 2	TX Mode(GFSK) Channel 00/39/78		
Mode 3	TX Mode(π /4-DQPSK) Channel 00/39/78		

Report No.: TB-FCC140887 Page: 7 of 83

Mode 4	TX Mode(8-DPSK) Channel 00/39/78
Mode 5	Hopping Mode(GFSK)
Mode 6	Hopping Mode(π /4-DQPSK)
Mode 7	Hopping Mode(8-DPSK)

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate. We have pretested all the test mode above.

According to ANSI C63.4 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

TX Mode: GFSK (1 Mbps)
TX Mode: 8-DPSK (3 Mbps)

(2) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on X-plane as the normal use. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of Bluetooth mode.

Test Software Version	Test Program: Mediatek Connectivity Combo Tool. apk			
Frequency	2402 MHz	2441MHz	2480 MHz	
GFSK	DEF	DEF	DEF	
π /4-DQPSK	DEF	DEF	DEF	
8-DPSK	DEF	DEF	DEF	

Page: 8 of 83

1.7 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:

1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

FCC List No.: (811562)

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 811562.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 9 of 83

2. Test Summary

FCC Part 15 Subpart C(15.247)					
Standard Section Test Item		Judgment	Remark		
15.203	Antenna Requirement	PASS	N/A		
15.207	Conducted Emission	PASS	N/A		
15.205	Restricted Bands	PASS	N/A		
15.247(a)(1)	Hopping Channel Separation	PASS	N/A		
15.247(a)(1)	Dwell Time	PASS	N/A		
15.247(b)(1)	Peak Output Power	PASS	N/A		
15.247(b)(1)	Number of Hopping Frequency	PASS	N/A		
15.247(c)	Radiated Spurious Emission	PASS	N/A		
15.247(c)	Antenna Conducted Spurious Emission	PASS	N/A		
15.247(a)	20dB Bandwidth	PASS	N/A		
Note: N/A is an abbreviation for Not Applicable.					

Page: 10 of 83

3. Conducted Emission Test

3.1 Test Standard and Limit

3.1.1Test Standard FCC Part 15.207

3.1.2 Test Limit

Conducted Emission Test Limit

Fraguency	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

3.2 Test Setup

3.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Report No.: TB-FCC140887 Page: 11 of 83

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

3.4 Test Equipment Used

Description	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date
EMI Test	ROHDE&		400004	2013-08-10	2014-08-09
Receiver	SCHWARZ	ESCI	100321	2013-00-10	2014-00-09
50ΩCoaxial	Anritsu	MP59B	X10321	2013-08-10	2014-08-09
Switch	Aillisu	MESSE	X10321	2013-00-10	2014-00-09
L.I.S.N	Rohde & Schwarz	ENV216	101131	2013-08-10	2014-08-09
L.I.S.N	SCHWARZBECK	NNBL 8226-2	8226-2/164	2013-08-10	2014-08-09

3.5 EUT Operating Mode

Please refer to the description of test mode.

3.6 Test Data

Please see the next page.

EUT: MID Model Name: MID1024-Z 25 ℃ **Relative Humidity:** Temperature: 55% **Test Voltage:** AC 120V/60 Hz Terminal: Line **Test Mode:** AC Charging with TX GFSK Mode 2402 MHz Remark: Only worse case is reported 90.0 dBuV QP: AVG: -10 0.150 0.5 (MHz) 30.000 Reading Correct Measure-Over Limit No. Mk. Freq. Level Factor ment MHz dBuV dΒ dBuV dBuV dΒ Detector Comment 1 0.4500 40.56 10.02 50.58 56.87 -6.29 QΡ 46.87 -8.47 2 0.4500 28.38 10.02 38.40 AVG 37.97 56.00 -7.94 3 0.8260 10.09 48.06 QΡ 4 0.8260 22.87 10.09 32.96 46.00 -13.04 AVG 5 1.4100 37.81 10.06 47.87 56.00 -8.13 QΡ 1.4100 23.27 46.00 -12.67 6 10.06 33.33 AVG 2.1140 7 37.36 10.06 47.42 56.00 -8.58 QΡ 2.1140 23.78 10.06 33.84 46.00 -12.16 AVG 8 3.3380 35.71 56.00 -10.27 QΡ 9 10.02 45.73 21.93 46.00 -14.05 AVG 10 3.3380 10.02 31.95 Emission Level= Read Level+ Correct Factor

Page: 13 of 83

EUT:	М	ID		Model I	Name :		MID1024-	Z
Temperatur	re: 25	5 °C		Relativ	e Humi	dity:	55%	
Test Voltage	e: A	C 120V/60	Hz					
Terminal:	Ne	eutral						
Test Mode:	A	C Charging	with TX G	FSK Mode	2402 [ИНz		
Remark:	Oı	nly worse c	ase is rep	orted				
90.0 dBuV								
							QP: AVG:	
			××	×				
				ally of the same o	de population de la constitución	Mary Magazin Ladjoorg		
40	1 / DMM/ 1/1	a. Walkhan ala	1. In .		17		Hall water	
M 'M	'n ^v a /\\	144 444	JANNA J	MANAAAAAAAA	4-4/12-4-4/14/14/14	MANUAL MANUELL	, adalah	hule.
	MWY	A Judal Salar Line	at Alan ad			. An dividi	ananakallalanda la la	""" Mily Holos
	/						uHilish	peak
ν.	٧							peak
-10 0.150		0.5	ſM	Hz)	5			30.000
0.100		0.0	(,	ŭ			00.000
NI- MI-	F	Reading	Correct	Measure-	Limit	Over		
No. Mk.	Freq.	Level dBuV	Factor dB	ment dBuV		dB	Detector	0
4 *		40.01			dBuV 56.73		Detector	Commen
1 *	0.4580		10.03	50.04		-6.69	QP	
2	0.4580	25.68	10.03	35.71 47.96	46.73	-11.02	AVG	
3	1.1260	37.81	10.15		56.00	-8.04	QP	
4	1.1260	21.43	10.15	31.58		-14.42	AVG	
5	1.4060	36.93	10.12	47.05	56.00	-8.95	QP	
6	1.4060	21.29	10.12	31.41		-14.59	AVG	
7	2.4620	36.80	10.06	46.86	56.00	-9.14	QP	
8	2.4620	21.90	10.06	31.96		-14.04	AVG	
	3.1820	34.60	10.06	44.66	56.00	-11.34	QP	
9								

Page: 14 of 83

4. Radiated Emission Test

4.1 Test Standard and Limit

4.1.1 Test Standard FCC Part 15.209

4.1.2 Test Limit

Radiated Emission Limit (9 kHz~1000MHz)

radiated Elification Elifit (5 KHZ 1000MHZ)						
Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)				
0.009~0.490	2400/F(KHz)	300				
0.490~1.705	24000/F(KHz)	30				
1.705~30.0	30	30				
30~88	100	3				
88~216	150	3				
216~960	200	3				
Above 960	500	3				

Radiated Emission Limit (Above 1000MHz)

Frequency	Class B (dBuV/m)(at 3m)				
(MHz)	Peak	Average			
Above 1000	74	54			

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)

Page: 15 of 83

4.2 Test Setup

Bellow 30MHz Test Setup

Bellow 1000MHz Test Setup

Above 1GHz Test Setup

4.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (3) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (4) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (5) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (6) For the actual test configuration, please see the test setup photo.

4.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power in TX mode.

4.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Loot Col	Cal. Due
Equipment	Manufacturer	woder No.	Serial No.	Last Cal.	Date

Page: 17 of 83

Spectrum	Agilent		MY45106456	Mar. 20, 2014	Mar. 19, 2015
Analyzer	Aglient	E4407B	W1145100450	IVIAI. 20, 2014	Wai. 19, 2013
Spectrum	Rohde & Schwarz		DE25181	Aug. 10, 2013	Aug.09, 2014
Analyzer	Ronde & Schwarz	FSP30	DE25161	Aug. 10, 2013	Aug.09, 2014
EMI Test Receiver	Rohde & Schwarz	ESCI	101165	Aug. 10, 2013	Aug.09, 2014
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 07, 2014	Mar.06, 2015
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 07, 2014	Mar.06, 2015
Pre-amplifier	HP	11909A	185903	Mar. 07, 2014	Mar.06, 2015
Pre-amplifier	HP	8447B	3008A00849	Mar. 07, 2014	Mar.06, 2015
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar. 07, 2014	Mar.06, 2015
Signal	Rohde & Schwarz	SML03	IKW682-054	Feb. 11, 2014	Feb.10, 2015
Generator	Nonue & Schwarz	OIVILOO	11.77002-004	1 60. 11, 2014	1 60.10, 2015
Positioning	ETS-LINDGREN	2090	N/A	N/A	N/A
Controller	LIGILINDGILLIN	2030	IN/A	11//	IN/A

4.6 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Test data please refer the following pages.

Page: 18 of 83

EUT:	MID	Model Name :	MID1024-Z						
Temperature:	25 ℃	Relative Humidity:	55%						
Test Voltage:	AC 120V/60 Hz								
Ant. Pol.	Horizontal	Horizontal							
Test Mode:	TX GFSK Mode 2402	MHz							
Remark:	Only worse case is rep	ported							
80.0 dBuV/m									
-20		(RF)F	FCC 15C 3M Radiation Margin -6 dB S A A A A A A A A A A A A						
30.000 40 50	60 70 80	(MHz) 300 400	500 600 700 1000.000						
No. Mk. Fi	_	rrect Measure- actor ment Limi	t Over						
M	lHz dBuV d€	_{B/m} dBuV/m dBuV	//m dB Detector						
1 * 145.	3506 59.68 -2°	1.55 38.13 43.5	50 -5.37 peak						
2 218.	3085 54.43 -19	9.60 34.83 46.0	00 -11.17 peak						
3 291.	0360 50.06 -17	7.26 32.80 46.0	00 -13.20 peak						
4 510.	0436 47.94 -1 ²	1.07 36.87 46.0	00 -9.13 peak						
5 ! 768.	7481 47.23 -6	.82 40.41 46.0	00 -5.59 peak						
6 875.	2470 39.80 -6	.01 33.79 46.0	00 -12.21 peak						
Emission Level=	Read Level+ Correct F	Factor							

Page: 19 of 83

UT:		MI	D				Mc	del Nan	ne :		MID	1024	-Z		
emper	ature:	25	$^{\circ}$ C				Re	lative H	umi	dity:	55%				
est Vol	tage:	AC	120)V/6	60 H	z									
nt. Pol		Ve	Vertical												
est Mo	de:	TX	GF	SK	Mod	e 2402MI	Ηz								
emark	:	Or	ıly w	ors	e ca	se is repo	rted								
80.0 dBu	V/m														1
30	1 X	landra M	2		har kannanaya	3 //\	~~~~~	4 W M M		(RF)FC	C 15C 3₩	A Radia Margii		B	
-					_										ĺ.
20	40 50	n 60	70 9	QO.		(ML	la)		300	400	500	600 70	nn	1000	
20 30.000	40 50	0 60		80		(МН			300	400	500	600 70	00	1000.	00
		req.		Rea	adine		ect	Measur ment		400 Limit		600 70		1000.	00
30.000	Mk. F			Rea Le	,	g Corre	ect		e-					1000.	
30.000	Mk. F	Freq.	F	Rea Le	vel	g Corre Fact	ect	ment	e-	Limit	m	Over			to
30.000 No.	Mk. F 1 41.	Freq.	F	Rea Le	vel BuV	g Corre Fact	ect for	ment dBuV/m	e-	Limit dBuV/i	m 0 -	Over dB) etec	to
No. 1	Mk. F 1 41.	Freq. MHz .8596	F	Rea Le dE 57	vel 3u∀ 7.95	G Corre Fact dB/m	ect for 05	ment dBuV/m 37.00	n)	Limit dBuV/i	m D -	Over)))etec	to ak
No. 1 !	Mk. F 1 41. 66.	Freq. MHz .8596	F	Rea Le 57 62	vel 3uV 7.95 2.66	g Corre Fact dB/m -20.9	ect for 05 06	ment dBuV/m 37.00 38.70	e-	Limit dBuV/i 40.00	m D -	Over dB -3.00))etec pea	to ak ak
No. 1 ! 2 * 3 !	Mk. F 41. 66. 145	Freq. MHz .8596 .2662	F	Rea Le 57 62 59	evel 3uV 7.95 2.66 0.72	g Corre Fact dB/m -20.9 -23.9	ect for 95 96 95	ment dBuV/m 37.00 38.70 38.17	n))	Limit dBuV// 40.00 40.00 43.50	0 -	Over dB ·3.00 ·1.30	(i) (i) (i) (i)	pea pea pea	to ak ak

Page: 20 of 83

EUT:	MID	Model Name :	MID1024-Z			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60 Hz					
Ant. Pol.	Horizontal					
Test Mode:	TX GFSK Mode 2402MH	lz				
Remark:	No report for the emission which more than 10 dB below the					
	prescribed limit.					

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4804.120	38.63	13.44	52.07	74.00	-21.93	peak
2	*	4804.120	31.80	13.44	45.24	54.00	-8.76	AVG

Page: 21 of 83

EUT:	MID	Model Name :	MID1024-Z
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60 Hz		
Ant. Pol.	Vertical		
Test Mode:	TX GFSK Mode 2402MH	z	
Remark:	No report for the emissio prescribed limit.	n which more than 10 o	dB below the

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4804.120	35.22	13.44	48.66	74.00	-25.34	peak
2	*	4804.120	28.03	13.44	41.47	54.00	-12.53	AVG

Page: 22 of 83

EUT:	MID	Model Name :	MID1024-Z			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60 Hz					
Ant. Pol.	Horizontal					
Test Mode:	TX GFSK Mode 2441MH	z				
Remark:	No report for the emission which more than 10 dB below the					
	prescribed limit.					

N	lo.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1			4882.110	37.84	13.90	51.74	74.00	-22.26	peak
2	1	k	4882.110	31.31	13.90	45.21	54.00	-8.79	AVG

Page: 23 of 83

EUT:	MID	Model Name :	MID1024-Z		
Temperature:	25 ℃	Relative Humidity:	55%		
Test Voltage: AC 120V/60 Hz					
Ant. Pol.	Vertical				
Test Mode:	TX GFSK Mode 2441MH	z			
Remark: No report for the emission which more than 10 dB below the prescribed limit.					
	l				

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4882.110	34.79	13.90	48.69	74.00	-25.31	peak
2	*	4882.110	28.15	13.90	42.05	54.00	-11.95	AVG

Page: 24 of 83

EUT:	MID	Model Name :	MID1024-Z			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	Test Voltage: AC 120V/60 Hz					
Ant. Pol.	Horizontal					
Test Mode:	TX GFSK Mode 2480MH	z				
Remark: No report for the emission which more than 10 dB below the prescribed limit.						
	-					

No	. Mk	. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4960.100	37.38	14.36	51.74	74.00	-22.26	peak
2	*	4960.100	30.25	14.36	44.61	54.00	-9.39	AVG

Page: 25 of 83

EUT:	MID	Model Name :	MID1024-Z			
Temperature:	25 °C Relative Humidity: 55%					
Test Voltage:	AC 120V/60 Hz					
Ant. Pol.	Vertical					
Test Mode:	TX GFSK Mode 2480MH	z				
Remark: No report for the emission which more prescribed limit.			dB below the			

No.	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4960.100	34.30	14.36	48.66	74.00	-25.34	peak
2	*	4960.100	27.87	14.36	42.23	54.00	-11.77	AVG

Page: 26 of 83

EUT:	MID	Model Name :	MID1024-Z			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60 Hz					
Ant. Pol.	Horizontal					
Test Mode:	TX 8-DPSK Mode 2402N	1Hz				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4804.210	35.13	13.44	48.57	74.00	-25.43	peak
2	*	4804.210	26.45	13.44	39.89	54.00	-14.11	AVG

Page: 27 of 83

EUT:	MID	Model Name :	MID1024-Z			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60 Hz					
Ant. Pol.	Vertical					
Test Mode:	TX 8-DPSK Mode 2402N	1Hz				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4804.210	32.58	13.44	46.02	74.00	-27.98	peak
2	*	4804.210	26.03	13.44	39.47	54.00	-14.53	AVG

Page: 28 of 83

EUT:	MID	Model Name :	MID1024-Z			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	Test Voltage: AC 120V/60 Hz					
Ant. Pol.	Horizontal					
Test Mode:	TX 8-DPSK Mode 2441M	1Hz				
Remark: No report for the emission which more than 10 dB below the prescribed limit.						

N	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4882.240	34.15	13.90	48.05	74.00	-25.95	peak
2	*	4882.240	25.90	13.90	39.80	54.00	-14.20	AVG

Page: 29 of 83

EUT:	MID	Model Name :	MID1024-Z					
Temperature:	25 ℃	Relative Humidity:	55%					
Test Voltage:	AC 120V/60 Hz	AC 120V/60 Hz						
Ant. Pol.	Vertical							
Test Mode:	TX 8-DPSK Mode 2441N	1Hz						
Remark:	No report for the emission which more than 10 dB below the							
	prescribed limit.							

No	. Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4882.240	32.46	13.90	46.36	74.00	-27.64	peak
2	*	4882.240	25.24	13.90	39.14	54.00	-14.86	AVG

Page: 30 of 83

EUT:	MID	Model Name :	MID1024-Z				
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60 Hz						
Ant. Pol.	Horizontal						
Test Mode:	TX 8-DPSK Mode 2480N	1Hz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4960.250	33.70	14.36	48.06	74.00	-25.94	peak
2	*	4960.250	25.42	14.36	39.78	54.00	-14.22	AVG

Page: 31 of 83

EUT:	MID	Model Name :	MID1024-Z				
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60 Hz						
Ant. Pol.	Vertical						
Test Mode:	TX 8-DPSK Mode 2480N	1Hz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						

No	. Mk.	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4960.250	32.46	14.36	46.82	74.00	-27.18	peak
2	*	4960.250	24.74	14.36	39.10	54.00	-14.90	AVG

Page: 32 of 83

5. Restricted Bands Requirement

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209 FCC Part 15.205

5.1.2 Test Limit

Class B (dBuV/m)(at 3m)			
Peak	Average		
74	54		
74	54		
	Peak 74		

Note: All restriction bands have been tested, only the worst case is reported.

5.2 Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (3) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked

Report No.: TB-FCC140887 Page: 33 of 83

and then Quasi Peak detector mode re-measured.

(4) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.

- (5) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (6) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

5.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Mar. 20, 2014	Mar. 19, 2015
Spectrum Analyzer	Rohde & Schwarz	FSP30	DE25181	Aug. 10, 2013	Aug.09, 2014
EMI Test Receiver	Rohde & Schwarz	ESCI	101165	Aug. 10, 2013	Aug.09, 2014
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 07, 2014	Mar.06, 2015
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 07, 2014	Mar.06, 2015
Pre-amplifier	HP	11909A	185903	Mar. 07, 2014	Mar.06, 2015
Pre-amplifier	HP	8447B	3008A00849	Mar. 07, 2014	Mar.06, 2015
Cable	HUBER+SUHNE R	100	SUCOFLEX	Mar. 07, 2014	Mar.06, 2015
Signal	Rohde & Schwarz	SML03	IKW682-054	Feb. 11, 2014	Feb.10, 2015
Generator	rtondo a conwaiz	0200		. 55. 11, 2011	. 55.15, 2016
Positioning	ETS-LINDGREN	2090	N/A	N/A	N/A
Controller			1		

5.6 Test Data

All restriction bands have been tested, only the worst case is reported.

Page: 34 of 83

(1) Radiation Test

Page: 35 of 83

EUT:	MID	Model Name :	MID1024-Z			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60 Hz					
Ant. Pol.	Vertical					
Test Mode:	TX GFSK Mode 2402MH	z				
Remark:	N/A					
100.0 dBu∀/m						

No.	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	50.57	0.77	51.34	74.00	-22.66	peak
2		2390.000	39.49	0.77	40.26	54.00	-13.74	AVG
3	Χ	2401.900	84.22	0.82	85.04	74.00	11.04	peak
4	*	2401.900	74.30	0.82	75.12	54.00	21.12	AVG

Page: 36 of 83

EUT:	MID	Model Name :	MID1024-Z					
Temperature:	25 ℃	Relative Humidity:	55%					
Test Voltage:	AC 120V/60 Hz	AC 120V/60 Hz						
Ant. Pol.	Horizontal							
Test Mode:	TX GFSK Mode 2480 MHz							
Remark:	N/A							

No	o. Mk	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2480.200	75.48	1.15	76.63	74.00	2.63	peak
2	*	2480.200	64.11	1.15	65.26	54.00	11.26	AVG
3		2483.500	53.90	1.17	55.07	74.00	-18.93	peak
4		2483.500	41.21	1.17	42.38	54.00	-11.62	AVG

Page: 37 of 83

EUT:	MID	Model Name :	MID1024-Z			
Temperature:	25 ℃	Relative Humidity:				
Test Voltage:	AC 120V/60 Hz					
Ant. Pol.	Vertical					
Test Mode:	TX GFSK Mode 2480 MHz					
Remark:	N/A					

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2480.100	80.31	1.15	81.46	74.00	7.46	peak
2	*	2480.100	69.54	1.15	70.69	54.00	16.69	AVG
3		2483.500	57.18	1.17	58.35	74.00	-15.65	peak
4		2483.500	44.81	1.17	45.98	54.00	-8.02	AVG

Page: 38 of 83

EUT:	MID	MID1024-Z					
Temperature:	25 ℃	°C Relative Humidity:					
Test Voltage:	AC 120V/60 Hz	AC 120V/60 Hz					
Ant. Pol.	Horizontal						
Test Mode:	TX 8-DPSK Mode 2402M	TX 8-DPSK Mode 2402MHz					
Remark:	N/A						
	•						

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	42.75	0.77	43.52	74.00	-30.48	peak
2		2390.000	32.18	0.77	32.95	54.00	-21.05	AVG
3	Χ	2402.200	77.16	0.82	77.98	74.00	3.98	peak
4	*	2402.200	66.77	0.82	67.59	54.00	13.59	AVG

Page: 39 of 83

EUT:	MID	MID1024-Z					
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	Test Voltage: AC 120V/60 Hz						
Ant. Pol.	Vertical						
Test Mode:	TX 8-DPSK Mode 2402N	1Hz					
Remark:	N/A						
100.0 dBuV/m	100.0 dBuV/m						
3							

No.	. Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	49.38	0.77	50.15	74.00	-23.85	peak
2		2390.000	38.87	0.77	39.64	54.00	-14.36	AVG
3	Χ	2401.900	82.98	0.82	83.80	74.00	9.80	peak
4	*	2401.900	72.16	0.82	72.98	54.00	18.98	AVG

Page: 40 of 83

EUT:	MID	Model Name :	MID1024-Z		
Temperature:	25 ℃	Relative Humidity:			
Test Voltage:	AC 120V/60 Hz				
Ant. Pol.	Horizontal				
Test Mode:	TX 8-DPSK Mode 2480MHz				
Remark:	N/A				

No	o. Mk	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2479.700	74.71	1.15	75.86	74.00	1.86	peak
2	*	2479.700	64.43	1.15	65.58	54.00	11.58	AVG
3		2483.500	51.63	1.17	52.80	74.00	-21.20	peak
4		2483.500	39.19	1.17	40.36	54.00	-13.64	AVG

Page: 41 of 83

EUT:	MID	MID1024-Z			
Temperature:	25 ℃	Relative Humidity:			
Test Voltage:	AC 120V/60 Hz				
Ant. Pol.	Vertical				
Test Mode:	TX 8-DPSK Mode 2480MHz				
Remark:	N/A				

No	. Mk	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2480.000	79.54	1.15	80.69	74.00	6.69	peak
2	*	2480.000	69.17	1.15	70.32	54.00	16.32	AVG
3		2483.500	53.00	1.17	54.17	74.00	-19.83	peak
4		2483.500	41.22	1.17	42.39	54.00	-11.61	AVG

(2) Conducted Test

EUT: MID **Model Name:** MID1024-Z Temperature: 25 ℃ **Relative Humidity:** 55% **Test Voltage:** AC 120V/60 Hz **Test Mode: GFSK Hopping Mode** Remark: N/A **%** *RBW 100 kHz Marker 4 [T1]
*VBW 300 kHz -48. 20 dBm *Att 35 dB Center 2.376 GHz Span 100 MHz 10 MHz/ Date: 20.JUN.2014 12:02:48 **%** *RBW 100 kHz Marker 4 [T1]

*VBW 300 kHz -38.93 dBm
SWT 10 ms 2.484400000 GHz *Att 35 dB Ref 20 dBm 20 Offset Center 2.502 GHz Span 100 MHz Date: 21.JUN.2014 13:29:30

EUT: MID1024-Z MID **Model Name:** 25 ℃ **Relative Humidity:** Temperature: 55% **Test Voltage:** AC 120V/60 HZ **Test Mode:** TX 8-DPSK Mode 2402MHz / 2480 MHz Remark: N/A *RBW 100 kHz Marker 1 [T1]
*VBW 300 kHz 6.0 Ref 20 dBm *Att 35 dB [T1] -45 56 dBm -33.63 dBt More Span 100 MHz Center 2.368 GHz 10 MHz/ Date: 19.JUN.2014 17:31:38 **%** *RBW 100 kHz Marker 4 [T1]

*VBW 300 kHz -46.08 dBm
SWT 10 ms 2.489800000 GHz 15 dBm • Att 30 dB 6 479800. 000 GHz 1 PK MAXH 483500 00 GHz 3.57 00 GHz Date: 19.JUN.2014 17:15:14

EUT: MID MID1024-Z **Model Name:** Temperature: 25 ℃ **Relative Humidity:** 55% **Test Voltage:** AC 120V/60 HZ **Test Mode:** 8-DPSK Hopping Mode Remark: N/A *RBW 100 kHz Marker 4 [T1]

*VBW 300 kHz -47.69 dBm
SWT 10 ms 2.374400000 GHz **%** *Att 35 dB 01 6.32 13.68 Span 100 MHz Center 2.376 GHz 10 MHz/ Date: 21.JUN.2014 13:04:09 *RBW 100 kHz Marker 4 [T1]

*VBW 300 kHz -44.27 dBm
SWT 10 ms 2.488000000 GHz *Att 35 dB Ref 20 dBm 20 Offset Center 2.502 GHz Span 100 MHz Date: 21.JUN.2014 13:11:45

Page: 46 of 83

6. Number of Hopping Channel

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.247 (a)(1)

6.1.2 Test Limit

Section	Test Item	Limit
15.247	Number of Hopping Channel	>15

6.2 Test Setup

6.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=100 KHz, VBW=100 KHz, Sweep time= Auto.

6.4 EUT Operating Condition

The EUT was set to the Hopping Mode by the Customer.

6.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Mar. 20, 2014	Mar. 19, 2015

6.6 Test Data

Page: 47 of 83

EUT:	MID		Model:	MID1024-Z		
Temperature:	25 ℃		Relative Humidity:	55%		
Test Voltage:	AC 120V/60 H	ΗZ				
Test Mode:	Hopping Mod	Hopping Mode (GFSK/ 8-DPSK)				
Frequency Range		Quantity of Hopping		Limit		

Frequency Range	Quantity of Hopping Channel	Limit
24020442490044-	79	>15
2402MHz~2480MHz	79	/15

GFSK Mode

Date: 21.JUN.2014 13:23:55

D-8PSK Mode

Date: 21.JUN.2014 13:18:48

Page: 48 of 83

7. Average Time of Occupancy

7.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.247 (a)(1)

5.1.2 Test Limit

Section	Test Item	Limit	
15.247(a)(1)/ RSS-210	Average Time of	0.4 sec	
Annex 8(A8.1d)	Occupancy		

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=1MHz, VBW=1MHz.
- (3) Use video trigger with the trigger level set to enable triggering only on full pulses.
- (4) Sweep Time is more than once pulse time.
- (5) Set the center frequency on any frequency would be measure and set the frequency span to zero.
- (6) Measure the maximum time duration of one single pulse.
- (7) Set the EUT for packet transmitting.
- (8) Measure the maximum time duration of one single pulse.

7.4 EUT Operating Condition

The EUT was set to the Hopping Mode by the Customer.

7.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Mar. 20, 2014	Mar. 19, 2015

TOBY

7.6 Test Data

EUT:		MID			Model	Model:		MID1	MID1024-Z	
Temperature	9:	25 ℃			Relativ	ve Hum	idity:	55%		
Test Voltage):	AC 120V/	60 HZ							
Test Mode:		Hopping I	Mode (GFSK D	H1)					
Channel (MHz)	Pu	lse Time (ms)		tal of II (ms)	Period (s			mit ns)	Result	
2402		0.420	13	4.40						
2441		0.420	13	4.40	31.	.60	4	.00	PASS	
2480		0.645	20	6.40						
			GFSH	(Hoppi	ng Mod	e DH1				
1 PK *		dBm set 1 dB	*Att 35	* VE	BW 1 MHz BW 1 MHz WT 2.5 ms		[T1] -4.07 (0.000000] [T1] -55.63 (μs		
	20 Offs		* Att 35	* VE	BW 1 MHz	420	-4.07 (0.000000 1 [T1] -55 63 (dBm A SGL		
	20 Offi			* VE	BW 1 MHz	Marker 1	-4.07 (0.000000) [T1] -55.63 (0.00000)	dBm A SGL LVL PS 3DB		

GFSK Hopping Mode DH1 2441 MHz RBW 1 MHz *VBW 1 MHz SWT 2.5 ms -4.07 dB Ref 20 dBm *Att 35 dB 420.000000 μs 20 Offset 1 dB May May be supply to the second secon John Thailteld bear or may provide the Center 2.441 GHz 250 μs/ Date: 21.JUN.2014 13:45:46 **GFSK Hopping Mode DH1** 2480 MHz Delta 2 [T1] RBW 1 MHz 2.91 dB 1.090000 ms *VBW 1 MHz Ref 20 dBm *Att 35 dB SWT 2.5 ms [T1 40 dB Marana brada palan rata prada palan palangan kata palangan kata palangan Center 2.48 GHz Date: 21.JUN.2014 13:51:51

Report No.: TB-FCC140887 Page: 51 of 83

EUT:MIDModel:MID1024-ZTemperature:25 °CRelative Humidity:55%

Test Voltage: AC 120V/60 HZ

Test Mode: Hopping Mode (GFSK DH3)

	riopping mode (c. c.t.z.io)						
Channel	Pulse Time	Total of	Period Time	Limit	Popult		
(MHz)	(ms)	Dwell (ms)	(s)	(ms)	Result		
2402	1.700	272.00					
2441	1.700	272.00	31.60	400	PASS		
2480	1.710	272.00					

GFSK Hopping Mode DH3

2402 MHz

Date: 21.JUN.2014 13:57:37

Page: 52 of 83

Page: 53 of 83

EUT:	MID	Model:	MID1024-Z				
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60 HZ	AC 120V/60 HZ					
Test Mode:	Hopping Mode (GFSK DH5)						

root model	•	Tiopping Mode (Cr. Str 2116)					
Channel	Puls	se Time	Total o	of	Period Time	Limit	Popult
(MHz)	(ms)	Dwell (n	ns)	(s)	(ms)	Result
2402	2	.880	307.20	0			
2441	2	.880	307.20)	31.60	400	PASS
2480	2	.880	307.20)			

GFSK Hopping Mode DH5

2402 MHz

Date: 23.JUN.2014 13:52:49

54 of 83 Page:

Page: 55 of 83

EUT:	MID	Model:	MID1024-Z				
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60 HZ	AC 120V/60 HZ					
Test Mode:	Hopping Mode (8-DPSK DH1)						

root mode.		Tiopping Mode (6 2) Cit 2111)					
Channel	Puls	se Time	Total of	f	Period Time	Limit	Result
(MHz)		(ms)	Dwell (m	s)	(s)	(ms)	Result
2402	C).445	142.40				
2441	C).445	142.40		31.60	400	PASS
2480	C).445	142.40				

8-DPSK Hopping Mode DH1

2402 MHz

Date: 21.JUN.2014 14:25:08

Page: 56 of 83

Page: 57 of 83

EUT:	MID	Model:	MID1024-Z
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60 HZ		

Test Mode: Hopping Mode (8-DPSK DH3)

1001 1110 1101	i ioppilig i	riepping mede (e.g. en gran)						
Channel	Pulse Time	Total of	Period Time	Limit	Result			
(MHz)	(ms)	Dwell (ms)	(s)	(ms)	Result			
2402	1.700	272.00						
2441	1.700	272.00	31.60	400	PASS			
2480	1.700	272.00						

8-DPSK Hopping Mode DH3

2402 MHz

Date: 23.JUN.2014 13:51:11

8-DPSK Hopping Mode DH3 2441 MHz RBW 1 MHz -0.27 dB 1.700000 ms *VBW 1 MHz SWT 5 ms Ref 20 dBm *Att 35 dB 20 Offset 1 dB Center 2.441 GHz 500 μs/ Date: 23.JUN.2014 13:49:32 8-DPSK Hopping Mode DH3 2480 MHz Delta 1 [T1] 0.30 dB 1.700000 ms RBW 1 MHz *VBW 1 MHz Ref 20 dBm *Att 35 dB SWT 5 ms 20 Offset 19 dB LVL -80 Center 2.48 GHz Date: 23.JUN.2014 13:48:21

EUT:	MID	Model:	MID1024-Z
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60 HZ		

Test Mode:	Hopping Mode (8-DPSK DH5)
TEST MICHE.	I hopping wode (o-di on di id)

100111101101					
Channel	Pulse Time	Total of	Period Time	Limit	Popult
(MHz)	(ms)	Dwell (ms)	(s)	(ms)	Result
2402	2.880	307.20			
2441	2.880	307.20	31.60	400	PASS
2480	2.880	307.20			

8-DPSK Hopping Mode DH5

2402 MHz

Date: 23.JUN.2014 13:52:49

8-DPSK Hopping Mode DH5 2441 MHz **%** RBW 1 MHz -6.11 dB 2.880000 ms *VBW 1 MHz SWT 10 ms Ref 20 dBm *Att 35 dB 20 Offset 1 dB 60 dBn -51 the house the same hararay and the second of the second Landelle Markethe Center 2.441 GHz 1 ms/ Date: 23.JUN.2014 13:54:30 8-DPSK Hopping Mode DH5 2480 MHz Delta 1 [T1] RBW 1 MHz -6.51 dB 2.880000 ms *VBW 1 MHz Ref 20 dBm *Att 35 dB SWT 10 ms 20 Offset 14 dB LVL the whole was here the walk th Lungaphrach -80 Center 2.48 GHz Date: 23.JUN.2014 13:55:21

Report No.: TB-FCC140887 Page: 61 of 83

8. Channel Separation and Bandwidth Test

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247

8.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)	
Bandwidth	<=1 MHz	2400~2483.5	
	(20dB bandwidth)		
	>25KHz or >two-thirds of		
Channel Separation	the 20 dB bandwidth	2400~2483.5	
	Which is greater		

8.2 Test Setup

8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Channel Separation: RBW=30 kHz, VBW=100 kHz.

Bandwidth: RBW=30 kHz, VBW=100 kHz.

- (3) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (4) Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:30 kHz, and Video Bandwidth:100 kHz. Sweep Time set auto.

8.4 EUT Operating Condition

The EUT was set to the Hopping Mode for Channel Separation Test and continuously transmitting for the Bandwidth Test.

8.5 Test Equipment

Description	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Mar. 20, 2014	Mar. 19, 2015

8.6 Test Data

Page: 64 of 83

EUT:	MID	Model:	MID1024-Z
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60 HZ		
Test Mode:	TX Mode (8-DPSK)		

	, ,				
Channel frequency	99% OBW (kHz)	20dB Bandwidth	20dB Bandwidth		
(MHz)		(kHz)	*2/3 (kHz)		
2402	1086.00	1140.00	760.00		
2441	1086.00	1140.00	760.00		
2480	1086.00	1140.00	760.00		

8-DPSK TX Mode 2402 MHz

Date: 19.JUN.2014 16:43:22

Page: 65 of 83

Page: 66 of 83

EUT:	MID	Model:	MID1024-Z
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60 HZ		

Test Mode: Hopping Mode (GFSK)

Channel frequency (MHz)	Separation Read Value (kHz)	Separation Limit (kHz)
2402	1002.00	816.00
2441	1002.00	822.00
2480	1002.00	822.00

GFSK Hopping Mode

2402 MHz

Date: 20.JUN.2014 09:52:13

GFSK Hopping Mode 2441 MHz **%** Delta 1 [T1] 0.10 dB 1.002000000 MHz *RBW 30 kHz *VBW 100 kHz *SWT 5 ms 20 dBm *Att 35 dB 20 Offset Center 2.4415 GHz 300 kHz/ Date: 20.JUN.2014 10:01:31 **GFSK Hopping Mode** 2480 MHz *RBW 30 kHz *VBW 100 kHz *SWT 5 ms Delta 1 [T1] 0.00 dB 1.002000000 MHz Ref 20 dBm *Att 35 dB 20 Offset Center 2.4795 GHz 300 kHz/ Span 3 MHz

Date: 20.JUN.2014 10:13:17

EUT: MID Model: MID1024-Z

Temperature: 25 °C Relative Humidity: 55%

Text Voltage: AC 420 V/C0 LIZ

Test Voltage: AC 120V/60 HZ

Test Mode: Hopping Mode (8-DPSK)

Channel frequency (MHz)	Separation Read Value (kHz)	Separation Limit (kHz)
2402	1002.00	760.00
2441	1002.00	760.00
2480	1002.00	760.00

8-DPSK Hopping Mode

2402 MHz

Date: 20.JUN.2014 10:31:38

Page: 69 of 83

Page: 70 of 83

9. Peak Output Power Test

9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (b) (1)

9.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Peak Output Power	Hopping Channels>75 Power<1W(30dBm) Other <125 mW(21dBm)	2400~2483.5

9.2 Test Setup

9.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Peak Detector: RBW=1 MHz, VBW=3 MHz for bandwidth less than 1MHz. RBW=3 MHz, VBW=3 MHz for bandwidth more than 1MHz.

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

9.5 Test Equipment

Description	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Mar. 20, 2014	Mar. 19, 2015

9.6 Test Data

EUT: MID Model: MID1024-Z

Temperature: 25 °C Relative Humidity: 55%

Test Voltage: AC 120V/60 HZ

Test Mode:	TX Mode (GFSK)
rest wode.	17 Mode (GI SIK)

Channel frequency (MHz)	Test Result (dBm)	Limit (dBm)
2402	7.48	
2441	7.62	30
2480	7.58	

GFSK TX Mode

2402 MHz

Date: 21.JUN.2014 11:53:31

GFSK TX Mode 2441 MHz *RBW 3 MHz Marker 1 [T1] *VBW 3 MHz SWT 2.5 ms 7.62 dBm 2.440960000 GHz Ref 20 dBm *Att 35 dB 20 Offset 1 dB LVL Span 5 MHz Center 2.441 GHz 500 kHz/ Date: 21.JUN.2014 11:56:13 **GFSK TX Mode** 2480 MHz Marker 1 [T1] 7.58 dBm 2.479970000 GHz *RBW 3 MHz *VBW 3 MHz Ref 20 dBm *Att 35 dB SWT 2.5 ms 20 Offset 1 dB LVL -80 Center 2.48 GHz 500 kHz/

Date: 21.JUN.2014 11:56:41

Page: 73 of 83

EUT:	MID	Model:		MID1024-Z		
Temperature:	25 ℃		Relative Humidity:		55%	
Test Voltage:	AC 120V/60 HZ					
Test Mode:	TX Mode (8-DPSK)					
Channel frequency (MHz) Test		Test Res	sult (dBm)		Limit (dBm)	

	· ·		
Channel frequency (MHz)	Test Result (dBm)	Limit (dBm)	
2402	6.55		
2441	6.72	21	
2480	6.72		

8-DPSK TX Mode

2402 MHz

Date: 21.JUN.2014 11:58:34

Page: 75 of 83

10. Antenna Conducted Spurious Emission

10.1 Test Standard and Limit

10.1.1 Test Standard FCC Part 15.247 (d)

10.1.2 Test Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above~960	500	3

10.2 Test Setup

10.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

RBW=100 KHz, VBW=300 KHz.

Frequency range: from 30MHz to 25 GHz

Page: 76 of 83

10.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

10.5 Test Equipment

Description	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date
Spectrum	Agilent		MY45106456	Mar. 20. 2014	Mar. 19. 2015
Analyzer	Aglient	E4407B	WIT45100450	IVIAI. 20, 2014	Mai. 19, 2013

10.6 Test Data

TX CH 00 2402MHz (1 Mbps)

Bellow 1 GHz

TX CH 39 2441MHz (1 Mbps)

Bellow 1 GHz

TX CH 78 2480MHz (1 Mbps)

Bellow 1 GHz

TX CH 00 2402MHz (3 Mbps)

Bellow 1 GHz

TX CH 39 2441MHz (3 Mbps)

Bellow 1 GHz

TX CH 78 2480MHz (3 Mbps)

Bellow 1 GHz

Page: 83 of 83

11. Antenna Requirement

11.1 Standard Requirement

11.1.1 Standard

FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is 0 dBi, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

11.2 Result

The EUT antenna is a PIFA Antenna. It complies with the standard requirement.