

A Tutorial on Using the SSO Toolbox

Eduardo Rodrigues Della Noce Garching, 02.09.2024

General Content

- 1. Defining a System Response Function
- 2. Finding an Optimal Box-shaped Solution Space (and visualization 3D plot; selective design space projection)
- 3. Using Surrogate Modeling (with Active Learning)
- 4. Stacking Evaluators (Multi-fidelity simulation, Solution-Compensation Spaces)
- 5. Interlude: Finding an Optimal Design
- 6. Interlude: Using Python Bottom-up Mappings
- 7. Interlude: Performing Batch Analysis
- 8. Interlude: Requirement Spaces
- 9. Using Component Solution Space Optimization Simple Example
- 10. Using Component Solution Space Optimization Advanced Example

Getting Started

Code is available on both GitLab and the OneDrive

Gitl ab Instructions:

- Clone the tutorial project into your PC in a folder of your choosing (Project: Tutorial SSO Toolbox)
 - git clone https://gitlab.lrz.de/lpl-tum/sso-toolbox-lpl/tutorial-sso-toolbox.git

OneDrive Instructions:

Copy the tutorial folder, and create a copy of the sso-toolbox inside of that

Open this folder in MATLAB (or VScode) and run 'setup_sso_toolbox.m'

run('sso-toolbox/setup_sso_toolbox')

1. Defining a System Response Function

File: tutorial_01_euclidean_distance_3d

A system response function must look like this:

[performanceMeasure, physicalFeasibilityMeasure, systemOutput] = f(designSample, systemParameter)

- designSample: array with all design sample points; each column is a design variable, each row is a different point
- performanceMeasure: system response (in terms of performance); each column is a performance measure, each row is a different point
- systemParameter : constant system parameter (doesn't change with the samples), when applicable
- physicalFeasibilityMeasure : physical feasibility of the designs, when applicable
- systemOutput : any extra information, when applicable

Task:

Write a function that computes the distances of all given sample points to a center (constant parameter)

Phase I: Exploration

Phase II: Consolidation

Classical optimization on Ω_{ds} . Identify one good design \mathbf{x}_0 .
The first candidate box Ω is constructed at $\mathbf{x_0}$ with zero volume.
Phase I. While $\mu(\Omega)$ is changing:
Modification Step B: Extend candidate box.
Compute Monte Carlo sample in Ω .
Modification Step A: Remove bad sample designs.
Compute Monte Carlo sample in Ω .
Phase II. While $m/N < a_c$:
Modification Step A. Remove bad sample designs.
Compute Monte Carlo sample in Ω .

File: tutorial_02_sso_box_sphere

First, the problem must be setup correctly. For that, a Design Evaluator is needed.

- First setup a Bottom-up Mapping (BottomUpMappingFunction).
- Then, use it to create a design evaluator (DesignEvaluatorBottomUpMapping).
- Finally, call the box SSO function (sso_box_stochastic)

Tip: for more information on functions/classes, you can always use "help <NAME>" or "doc <NAME>"

Task 1:

Run the box-shaped solution space optimization function and obtain the optimal solution space with the following:

- System response: tutorial_01_euclidean_distance_3d
- Design Space: $-6 \le x_1, x_2, x_3 \le 6$
- Performance Limits: $distance \le 5$ (center: [0,0,0])
- Initial Design: $[x_1, x_2, x_3] = [3,0,0]$

File: tutorial_02_sso_box_sphere

Visualization tools:

- Boxes in 2D and 3D can be easily plotted using the functions: plot_design_box_2d, plot_design_box_3d
- Selective Design Space Projection: plot_selective_design_space_projection

Common performance metrics can also be automatically plotted: postprocess_sso_box_stochastic \rightarrow plot_sso_box_stochastic_metrics

Task 2:

Visualize the solution space box in 3D, and then also use selective design space projection

Task 3:

Plot the algorithm performance metrics for this solution

3. Using Surrogate Modeling (with Active Learning)

From: Lukas Krischer, DokSem #7

Source: https://www.researchgate.net/profile/Tom-Dhaene/publication/265152921/figure/fig1/AS:335678228451328@1457043334234/Surrogate-modeling-versus-Design-Optimization.png

3. Using Surrogate Modeling (with Active Learning)

File: tutorial_03_surrogate_modeling

Special class of surrogate modeling for top-down systems design: DesginFastForwardBase Active learning method: active_learning_model_training

Visualization of performance metrics: postprocess_active_learning_model_training

plot_active_learning_model_training_metrics

<u>Task 1:</u>

Train a surrogate model for the following problem:

- System response: tutorial_01_euclidean_distance_3d
- Design Space: $-6 \le x_1, x_2, x_3 \le 6$
- Performance Limits: $2 \le distance \le 5$ (center: [0,0,0])

Task 2:

Visualize how the algorithm performance metrics evolved at each iteration.

4.1 Stacking Evaluators – Multifidelity Evaluation

4.1 Stacking Evaluators – Multifidelity Evaluation

File: tutorial_04_1_multifidelity

Transforming a DesignFastForwardBase object to a DesignEvaluatorBase object: DesignEvaluatorFastForward Estimating region of uncertainty: design_fast_forward_find_uncertainty_score

Task 1:

Train a surrogate model for the following problem:

- System response: tutorial_01_euclidean_distance_3d
- Design Space: $-6 \le x_1, x_2, x_3 \le 6$
- Performance Limits: $distance \le 5$ (center: [0,0,0])
- Maximum number of iterations: 1
- Number of samples to be evaluated per iteration: 20

Task 2:

Estimate the region of uncertainty.

4.1 Stacking Evaluators – Multifidelity Evaluation

File: tutorial_04_1_multifidelity

Setting up a multi-fidelity evaluator: DesignEvaluatorMultiFidelity

Task 3:

Solve a box SSO problem using the Multifidelity evaluator with the following additional considerations:

• Initial Design: $[x_1, x_2, x_3] = [3,0,0]$

4.2 Stacking Evaluators – Solution-compensation Spaces

Solution Spaces:

$$\min_{\substack{[\alpha_l,\alpha_u,r_l,r_u]\\\text{s.t. }g(r,\alpha)\leq 0}} -\mu(\Omega)$$

Solution Compensation Spaces:

$$\min_{\substack{[r_l, r_u] \\ \text{s.t. }} \forall x_a \in \Omega_a \ \exists \ x_b \in \Omega_b}$$

early decision variables (limited controllability, PFD): sensor characteristics, $x_a = r$

late decision variables (controllable):

sensor positionings, $x_b = \alpha$

From: Nicola Barthelmes, DokSem #5

4.2 Stacking Evaluators – Solution-compensation Spaces

File: tutorial_04_2_compensation

Setting up an evaluator for solution-compensation spaces: DesignEvaluatorCompensation

Task:

Solve a box SCSO problem with the following considerations:

- System response: tutorial_01_euclidean_distance_3d
- Design Space: $-6 \le x_1, x_2, x_3 \le 6$
- Performance Limits: $distance \le 5$ (center: [0,0,0])
- Initial Design: $[x_1, x_2, x_3] = [3,0,0]$
- A-space: [x₁, x₂]; B-space: x₃

5. Interlude: Finding an Optimal Design

File: tutorial_05_point_based_optimal_design

Special optimization functions:

- design_optimize_quantities_of_interest
- design_optimize_performance_score

Task:

Find optimal designs for the 2D car crash problem: one with the best acceleration, another with the best score.

6. Interlude: Using Python Bottom-up Mappings

File: tutorial_06_python_bottom_up_mapping

Setting up a bottom-up mapping that uses Python code for its system response: BottomUpMappingPython

Task:

- Find the optimal box for the 2D car crash problem using the MATLAB function car_crash_2d
- Find the optimal box for the 2D car crash problem using the Python function car_crash_2d_python.py

7. Interlude: Performing Batch Analysis

ID	ReferenceID	Number Samples Per Iteration	Growth Rate	Tolerance Purity Consolidation
S001	-	200	0.2	1
S002	S001	100	0.2	1
S003	S001	300	0.2	1
S004	S001	200	0.1	1
S005	S001	200	0.3	1
S006	S001	200	0.2	0.85
S007	S001	200	0.2	1
S008	S001	200	0.2	1

7. Interlude: Performing Batch Analysis

File: tutorial_07_batch_analysis

Reading a table: batch_analysis_read_table

Batch SSO analysis: batch_sso_stochastic_analysis

Task:

Perform a batch analysis for the following problem:

- System response: tutorial_01_euclidean_distance_3d
- Design Space: $-6 \le x_1, x_2, x_3 \le 6$
- Performance Limits: $distance \le 5$ (center: [0,0,0])
- Initial Design: $[x_1, x_2, x_3] = [3,0,0]$
- Batch options: 'BatchTestHollowSphere.xlsx'

8. Interlude: Requirement Spaces

8. Interlude: Requirement Spaces

File: tutorial_08_requirement_spaces

Important option:

- 'RequirementSpacesType' (in sso_stochastic_options)
- 'PhysicalFeasibilityUpperLimit' (in DesignEvaluatorBottomUpMapping)

Task:

Solve the following requirement spaces problem:

- System response: two_ellipses_requirement_space
- Design Space: $-2 \le x_1 \le 14$; $-2 \le x_2 \le 12$
- Performance Limit: ellipsenorm ≤ 1
- Physical Feasibility Limit: ellipsenorm ≤ 1
- Initial Design: $[x_1, x_2] = [10,6]$
- Number of evaluations per iteration: 200
- Apply leanness condition only at the end

9. Component Solution Space Optimization – Simple Example

Example: Sphere Stochastic Algorithm Components: Corner Box Removal $\mathbf{x_{(1)}} = [x_1, x_2]$ $x_{(2)} = [x_3]$ **Analytical Solution**

Solution Box Area:

$$A_b = l_b^2 = \left(\frac{2R}{\sqrt{3}}\right)^2 = R^2 \frac{4}{3}$$

Component Solution Space Area:

$$A_c = \pi r_c^2 = \pi \left(R \sqrt{\frac{2}{3}} \right)^2 = R^2 \frac{2\pi}{3}$$

~57% increase in area

9. Component Solution Space Optimization – Simple Example

- Candidate space operations:
 - Expand (given a growth rate g)
 - o Identify x_{sample} as inside or outside
 - o Be updated given samples x_{in} , x_{out}

9. Component Solution Space Optimization – Simple Example

File: tutorial_09_component_solution_space_simple

Candidate Space Definition: CandidateSpaceBase

Trimming Methods: component_trimming_method_<NAME>

Component SSO function: sso_component_stochastic

Performance metrics: postprocess_sso_component_stochastic \rightarrow

plot_sso_component_stochastic_metrics

Task:

Solve the following requirement spaces problem:

- System response: tutorial_01_euclidean_distance_3d
- Design Space: $-6 \le x_1, x_2, x_3 \le 6$
- Performance Limits: $distance \le 5$ (center: [0,0,0])
- Initial Design: $[x_1, x_2, x_3] = [3,0,0]$
- Number of samples per iteration: 300

10. Component Solution Space Optimization – Advanced

10. Component Solution Space Optimization – Advanced

File: tutorial_10_component_solution_space_advanced

Options to use:

Growth rate: 0.1

Number of exploration/consolidation iterations: 30

Number of evaluations per iteration: 300

Tasks:

- Setup the bottom-up mapping
- Find the optimum design with minimum displacement
- Find the optimum solution space box starting from the optimum design and having as performance limit a 10% tolerance from the optimum displacement
- Find the optimum component solution space under the same conditions
- Visualize both box and component solution space in the same plot to compare
- Plot performance metrics for each

Thank you for your attention!

C Eduardo R. Della Noce, M.Sc.

eduardo.noce@tum.de

Research funded by the DFG (German Research Foundation)

Deutsche Forschungsgemeinschaft

Project Number: 454149634

