- Predator phylogenetic diversity decreases predation rate
 via antagonistic interactions
- A. Andrew M. MacDonald, Diane S. Srivastava, Gustavo Q. Romero

4	##	tr	eat	tment	5												
5	##			a	andro	o co	ontrol		E	elong	g elo	ng + ;	andı	0 (elong	g +]	leech
6	##				į	5	5			5	5			5			5
7	##		elo	ong +	⊦ tal	D	leech		tab	anid	l						
8	##				ļ	5	5			5	5						
9	##		eu	Id	wt		name	N	Х	(15N	d15N	emer	ged	-	fine	n15.	leaves
10	##	1	1	EU1	5.8		B1	46.9	0.3	3653	-2.8		0	0.	5783		31
11	##	2	2	EU2	6.2		В6	82.2	0.3	3713	13.6		0	0.6	6755		26
12	##	3	3	EU3	6.2		В7	46.8	0.3	8694	8.4		0	0.	1966		6
13	##	4	4	EU4	6.2		D6	34.4	0.3	3714	13.9		1	1.3	3413		4
14	##	5	5	EU5	5.9	Romero_T	ray1_A1	51.4	0.3	3700	10.1		4	0.8	8255		11
15	##	6	6	EU6	5.8		D7	59.6	0.3	3733	19.1		2	0.4	4996		40
16	##		lea	af.ma	ass l	oromeliad	growth	1	trea	tmer	nt fi	ne.de	trit	tus	mass	s.g.	decomp
17	##	1		0.96	677	6	5.06			andr	0			1	1.	514	0.3608
18	##	2		0.91	127	9	5.58		ta	bani	.d			10	1.	498	0.3908
19	##	3		1.00	063	12	6.48		ta	bani	.d			18	1.	506	0.3319
20	##	4		1.01	193	3	3.50	elong	g +	andr	0			33	1.	504	0.3221
21	##	5		0.90)35	10	3.34		cc	ntro)1			20	1.	502	0.3985
22	##	6		0.94	169	8	-1.12	elong	g +	andr	0			8	1.	.514	0.3748

23	##		Culicidae	Chironomidae	Tipulidae	Psychodidae	Scirtidae	total.surv	leech
24	##	1	0	1	1	0	0	2	0
25	##	2	0	0	0	0	5	5	0
26	##	3	1	1	0	0	3	5	0
27	##	4	0	2	1	1	3	7	0
28	##	5	3	13	1	1	2	20	0
29	##	6	0	0	1	0	0	1	0
30	##		andro tab	elong					
31	##	1	1 0	0					
32	##	2	0 1	0					
33	##	3	0 1	0					
34	##	4	1 0	1					
25	##	5	0 0	0					

37 Introduction

1

38 We test three related hypotheses:

0

1

- 1. species co-occurance: closely-related predators occur together more frequently than less-related predators, due to their similar habitat requirements. Additionally, very closely related species never co-occur because they are too similar.
- 2. diet similarity: similarity in diet (as measured by feeding trials) decreases with phylogenetic distance.
- 3. ecosystem-level effects: similarity in the effect of predators on whole ecosystems declines with phylogenetic distance. Additionally, the non-additive effect of predators will have a greater absolute value when their phylogenetic diversity is larger.

47 Methods

48 Results

- 49 metabolic capacity and phylogenetic distance
- 50 Predators which are closer in the phylogeny are more likely to occur in the same bromeliads,
- $_{\mbox{\scriptsize 51}}$ and to do so with a similar overall metabolic capacity. (F_{1,89}=3.9381,P=0.0503).
- 52 diet similarity and phylogenetic distance
- Phylogenetic distance was not correlated with similarity in diet ($F_{1,4}=0.2807, P=0.6243$).
- Indeed, all predators in this system appeared to feed readily on a wide range of prey species.
- 55 Ecosystem-level effects and phylogenetic distance
- ⁵⁶ All increases in predator phylogenetic diversity beyond damselflies resulted in a reduction of
- 57 prey mortality.
- 58 Figures
- 59 Discussion
- 60 Works Cited

Figure 1: FALSE

Figure 2: FALSE

Figure 3: FALSE