Chapter 1

Homework 12235005 谭焱

1.1 3.2.1

Exercise 1.1. Consider the differential equation

$$\frac{\partial u}{\partial t} = \sum_{j=0}^{4} a_j \frac{\partial^j u}{\partial x^j}$$

Derive the condition for stability corresponding to Eq. (3.2.3). Is it true that the problem is always stable if Re $a_4 < 0$?

Solution. Like Eq. (3.2.3) we are going prove exist Real α such that

Re
$$\kappa < \alpha$$
, $\kappa := a_4 \omega^4 - i a_3 \omega^3 - a_2 \omega^2 + i a_1 \omega + a_0$, For all Real ω .

If Re $a_4 < 0$, there is exist a Real W, such that $\forall |\omega| > W$, Re $\kappa < 0$.

So Take $\alpha=|a_4W^4|+|a_3W^3|+|a_2W^2|+|a_1W|+|a_0|$ will satisfy Re $\kappa<\alpha$.

Which means the problem is always stable.