Recitation #11 Solutions 1.

2. State-assigned table for next state:

ate-assigned table for next state.									
q2	q1	q0	Input I	Q2	Q1	Q0			
0	0	0	0	0	0	0			
0	0	0	1	0	0	1			
0	0	1	0	0	1	0			
0	0	1	1	0	1	1			
0	1	0	0	1	0	0			
0	1	0	1	1	0	1			
0	1	1	0	1	1	0			
0	1	1	1	1	1	1			
1	0	0	0	0	0	0			
1	0	0	1	0	0	1			
1	0	1	0	0	1	0			
1	0	1	1	0	1	1			
1	1	0	0	1	0	0			
1	1	0	1	1	0	1			
1	1	1	0	1	1	0			
1	1	1	1	1	1	1			

$$Q2 = q1$$

$$Q1 = q0$$

$$Q0 = I$$

$$OO = I$$

State-assigned table for output:

- ussigned tuele let output							
q2	q1	q0	Output F				
0	0	0	0				
0	0	1	0				
0	1	0	0				
0	1	1	1				
1	0	0	0				
1	0	1	0				
1	1	0	0				
1	1	1	0				

 $\overline{F = q2'.q1.q0}$

Circuit diagram:

3. Let S be the Start/Stop signal, C be the Clear signal, and F be the Freeze signal. We first design a 3-bit synchronous up-counter with Start/Stop and Clear using T flip-flops. Assume the current count value is QQ2 QQ1 QQ0.

S	С	Behavior	T2	T1	T0
0	0	Keep count value	0	0	0
0	1	Clear	QQ2	QQ1	QQ0
1	0	Increment count value	QQ1.QQ0	QQ0	1
1	1	Clear	QQ2	QQ1	QQ0

T2 = C.QQ2 + C'.S.QQ1.QQ0

T1 = C.QQ1 + C'.S.QQ0

T0 = C.QQ0 + C'.S

Then we add the Freeze feature using some D flip-flops and multiplexers. The value displayed is Q2 Q1 Q0.

4. Solution not provided.