Algoritmos Metaheurísticos en Ingeniería

Dr. Diego Oliva

Contenido

- Presentación
- Pagina 1
- 1. Introducción a la optimización
- 2. Conceptos en común
- 3. Formulación de problemas bajo el enfoque de optimización
- 4. Algoritmos metaheurísticos clásicos

Presentación

Cada alumno debe presentarse de acuerdo a lo siguiente:

- Nombre
- Ciudad de procedencia
- Situación laboral
- ¿Qué esperas de este curso?
- ¿Cuáles son tus intereses profesionales?
- ¿Cómo crees que este curso puede ayudarte en tus intereses personales?

Presentación

Dr. Diego Oliva

Grados académicos:

- Doctor en Informática (Universidad Complutense de Madrid)
- MCs. en Ingeniería Electrónica y Computación (Universidad de Guadalajara)

Áreas de interés:

- Procesamiento digital de señales e imágenes
- Algoritmos de computo evolutivo
- Solución de problemas en ingeniería mediante algoritmos evolutivos
- Machine learning

Publicaciones destacadas:

- "Improving segmentation velocity using an evolutionary method", Journal of Expert Systems with Applications.
- "White blood cell segmentation by circle detection using electromagnetism-like optimization," Journal of Computational and Mathematical Methods in Medicine.
- "Parameter identification of solar cells using artificial bee colony optimization," Journal of Energy.

Proyectos actuales:

- Segmentación de imágenes usando diferentes métricas de entropía.
- Algoritmos evolutivos para la segmentación de imágenes.
- Optimización de fuentes de energía alternativa.
- Optimización multiobjetivo

AMEXCOMP Academia Mexicana de Computación AC

¿Qué es la optimización?

Encontrar las mejores soluciones a un problema.

Prácticamente todo es optimizable:

- Trámites administrativos. (Tiempo)
- Calidad de productos o servicios. (Dinero, Calidad)
- Ahorrar energía o combustible. (Energía)

¿Cómo llega la optimización a las ciencias computacionales?

Métodos de búsqueda clásicos:

- Búsqueda en profundidad
- Búsqueda en anchura

Principales problemas:

- Costo computacional
- Complejidad computacional

Metaheurísticos

Rally semana i:

Supongamos que en equipo debemos encontrar un premio que se encuentras escondido en algún lugar del campus.

¿Cuál es la mejor forma de buscar?

Rally semana i:

Una vez que estamos en nuestras posiciones iniciales necesitamos comunicarnos.

Necesitamos conocer:

- Ubicación
- Información sobre objeto que se busca

Rally semana i:

Con la información que tenemos podemos cambiar nuestra posición buscando en nuevos lugares que no hayan sido previamente explorado.

¿Cómo sabemos hacia donde movernos?

Nos desplazaremos hacia la posición del que este mas cerca del objeto que buscamos.

Nombre del algoritmo	Proceso en el que se inspira	Operadores destacados	Autores	Año de publicación
Genetic Algorithm	Teoría neodarwiniana de la evolución	Herencia, mutación, selección y cruzamiento	Holland	1962
Evolutionary Programming	Evolución	Mutación y selección	Fogel et, al.	1966
Evolution Strategies	Evolución	Mutación, selección, cruzamiento multipadre	Rechenberg	1971
Simulated Annealing	Termodinámica	Calentamiento y enfriamiento	Kirkpatrick et, al.	1983
Artificial Immune Systems	Sistemas inmunes biológicos	Mutación, clonación y selección	Farmer et, al.	1986
Tabu Search	Tabúes culturales	Condiciones tabú, aspiraciones	Glover, Laguna	1989
Genetic Programming	Evolución	Mutación, selección y cruza de programas	Koza	1992
Ant Colony Optimization	Hormigas buscando alimento	Feromonas	Dorigo	1992
Particle Swarm Optimization	Cardúmenes de peces, parvadas de aves	Posición y velocidad	Kennedy y Eberhart	1995
Differential Evolution	Evolución	Mutación	Storn y Price	1996
Harmony Search	Músicos buscando armonía	Improvisación y ajuste de la mejor armonía	Geem et, al.	2001
Bacterial Foraging Algorithm	Búsqueda de alimento de las bacterias	Reproducción, eliminación, dispersión y selección	Passino	2002
Electromagnetism-like Optimization	Atracción y repulsión de cargas del electromagnetismo	Cargas, fuerza, movimiento	Birbil y Fang	2003
Artificial Bee Colony	Abejas mieleras en búsqueda de alimento	Búsqueda de fuente de alimento, explotación y abandono	Karaboga	2005
Cuckoo Search	Estrategia de reproducción del pájaro cuckoo	Selección, abandono y búsqueda de nuevos nidos	Yang y Deb	2009
Gravitational Search Algorithm	Ley de gravitación de Newton	Fuerza, aceleración, velocidad	Rashedi et, al.	2009

Algoritmos metaheurísticos

Probar Genetic Cars:

http://rednuht.org/genetic_cars_2/
http://www.whiletrue.it/genetic_3-wheelers/

Algoritmos metaheurísticos

Conceptos en común

- 1. Inicialización: se generan las soluciones candidatas (SC).
- **2. Evaluación:** se determina la calidad de cada SC evaluándola en la función objetivo.
- 3. Modificación: se realiza una copia de cada SC, la cual se modifica mediante un cierto nivel de aleatoriedad, finalmente se evalúa para determinar su calidad.
- **4. Selección:** de acuerdo a un criterio establecido, se eligen los mejores elementos existentes entre las SC y sus copias, tales valores sustituyen a los existentes en las SC

Estructura de un AM

Espacio de búsqueda

Optimo Local

Limites

El espacio de búsqueda depende del problema a optimizar.

En la practica es una variable o un arreglo que contiene los limites en los que se define la función objetivo.

Espacio de búsqueda

Límite superior

Un problema de optimización puede ser formulado como un proceso donde se desea encontrar el valor óptimo \mathbf{x} que minimiza o maximiza la función objetivo $f(\mathbf{x})$. Tal que por ejemplo:

Minimizar
$$f_i(\mathbf{x}), \quad i = 1, 2, ..., M,$$
 sujeto a $\phi_j(\mathbf{x}) = 0, \quad j = 1, 2, ..., J,$ $\psi_k(\mathbf{x}) \le 0, \quad k = 1, 2, ..., K,$ $\mathbf{x} = \{x_1, x_2, ..., x_n\}^T$

Espacio de búsqueda

Ejemplos de espacio de búsqueda en problemas reales:

- Imágenes: niveles de intensidad, resolución (cantidad de pixeles).
- Análisis de datos: cantidad máxima y mínima de datos a analizar.
- Diseño electrónico: rango de operación de los dispositivos a diseñar.

Inicialización

¿Cuáles son los limites de este espacio de búsqueda?

Inicialización

¿Cómo se realiza matemáticamente la inicialización?

Se genera un conjunto de soluciones, distribuidas uniformemente sobre el espacio de búsqueda que previamente se definió.

$$\mathbf{x}_{k}^{i,t} = \mathbf{I}_{k} + rand(\mathbf{u}_{k} - \mathbf{I}_{k}), \quad \mathbf{x}_{k}^{i,t} \in \mathbf{X}^{t}$$

x = partícula que pertenece a la población X

l = limite inferior

u = limite superior

Proceso de optimización

- Ya conozco el espacio de búsqueda
- Ya tengo la función objetivo
- Ya inicialice mis soluciones candidatas

Pero... ¿Qué hago con todo esto?

Iniciar el proceso de optimización aplicando los operadores propios de cada algoritmo

Proceso de optimización

El proceso de optimización cosiste en explorar el espacio de búsqueda, explotando las zonas o regiones donde existe la mayor probabilidad de encontrar la solución optima.

Debe existir un buen balance entre la Explotación y Exploración para que el proceso de búsqueda sea exitoso.

Proceso de optimización: Exploración

Proceso de optimización: Explotación

Iteración Local: 1 2 3

Dimensión: D1 D2

Criterios de paro BL:
Si (Max_It_Local = 3)
P1 = P1
Si (*P1, DX < P1)
P1 = *P1,DX

Comparando:

P1 vs. *P1,D1 P1 vs. *P1,D2

Proceso de optimización

Ya se aplico la exploración y explotación a las soluciones.

¿Ahora que hago?

Dependiendo del algoritmo, lo común es evaluar las nuevas posiciones en la función objetivo y elegir la mejor, dependiendo si es minimización o maximización.

Es importante mencionar que el proceso de optimización es iterativo, por lo tanto se ejecuta tantas veces como sea necesario.

Criterio de paro

El criterio de paro se puede dar cuando:

- Se ha alcanzado un numero máximo de iteraciones.
- Se ha alcanzado el criterio de convergencia, por ejemplo que el mejor valor encontrado por el algoritmo no cambie durante un determinado numero de iteraciones.
- Cuando se conoce el optimo y el error existente entre ambos óptimos es cero.

El criterio de paro usualmente depende del problema.

Actividad 1

Analizar el comportamiento e implementar el algoritmo Particle Swarm Optimization (PSO).

- 1. Entrar a https://goo.gl/J4hzuG y ver los tres video tutoriales sobre la implementación de PSO.
- 2. En conjunto con el texto que describe a PSO, analizar las partes del algoritmo PSO. (descargar el texto de: https://goo.gl/J7Fjxv)
- 3. Responder los ejercicios que vienen al final del documento descargado en el punto 2.
- *Actividad en equipos de 3 integrantes

Actividad Semana i

Actividad Semana i (parte 1 de 2)

En equipos de tres integrantes:

- Leer y analizar la información correspondiente al algoritmo asignado.
- Implementar el algoritmo en cualquier lenguaje de programación para dar solución a al menos 5 funciones matemáticas.
 - http://www.sfu.ca/~ssurjano/optimization.html
 - http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm

Actividad Semana i (parte 2 de 2)

En equipos de tres integrantes:

Dar solución a uno de los siguientes problemas en Ingeniería

- Diseño de celdas solares (Modelos: Diodo Simple, Diodo Doble, Tres Diodos)
- Segmentación de imágenes por Clustering (Kmeans, Fuzzy C means)
- Umbralización de multinivel de Imágenes (Otsu, Kapur, Tsallis)
- Diseño de Motores de Inducción (2 modelos)
- Diseño de Filtros Digitales de tipo IIR

Extra

• Hibridación (OBL, Chaos, Quantum)

Los resultados experimentales se deben reportar en el formato proporcionado.

*Toda la documentación se encuentra en el siguiente link: https://goo.gl/EofyAL

Descripción de los problemas

Diseño de filtros digitales

Diseño de filtros digitales

Filtro IIR:

$$\frac{Y(z)}{X(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_r z^{-r}}{a_0 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_c z^{-c}}$$

Donde:

 $Y(z) = \text{se} \tilde{n} \text{al de salida}$

X(z) = señal de entrada

 z^{-r} = cantidad de retardos de Y(z)

 z^{-c} = cantidad de retardos de X(z)

Encontrar:

$$\mathbf{A} \cup \mathbf{B} = \{b_0, b_1, b_2, \dots b_r, a_0, a_1, a_2, \dots a_c\}$$

Función a optimizar: Error cuadrático medio

$$J(\mathbf{s}) = \frac{1}{Ti} \sum_{t=1}^{Ti} (Y_p(t) - Y_{fil}(t))^2$$

Diseño de filtros IIR

Experimentos propuestos:

- Planta de segundo orden con un modelo de primer orden.
- Planta de segundo orden con un modelo de segundo orden.
- Planta de tercer orden con un modelo de segundo orden.
- Planta y filtro de orden superior.

Umbralización de multinivel de Imágenes

Imagen escala de grises e histograma

Criterio de umbralización binivel:

$$C_1 \leftarrow p$$
 si $0 \le p < th$,
 $C_2 \leftarrow p$ si $th \le p < L-1$

Criterio de umbralización multinivel:

$$C_1 \leftarrow p$$
 si $0 \le p < th_1$,
 $C_2 \leftarrow p$ si $th_1 \le p < th_2$,

$$\begin{array}{ccc} C_i \leftarrow p & \text{si} & th_i \leq p < th_{i+1}, \\ \vdots & \vdots & \vdots \end{array}$$

$$C_n \leftarrow p \quad \text{si} \quad th_n \le p < L - 1$$

Umbral (th)

Imagen binarizada e histograma

Métodos de Otsu y Kapur

Varianza entre clases (Otsu).

• Encontrar los mejores umbrales que maximicen la varianza entre las clases que se desean encontrar.

$$J(\mathbf{TH}) = \max(\sigma^2(\mathbf{TH}))$$

Entropía entre clases (Kapur).

• Encontrar los mejores umbrales que maximicen la entropía entre las clases que se desean encontrar.

$$J(\mathbf{TH}) = \max\left(\sum_{i=1}^{k} H_i\right)$$

Umbralización de multinivel de Imágenes

Imagen original

Histograma original

Imagen umbralizada Otsu

Histograma umbralizado Otsu

Imagen umbralizada Kapur

Histograma umbralizado Kapur

Diseño de celdas solares

Diodo simple

Modelo de diodo simple:

$$I_{t} = I_{ph} - I_{sd} \left[\exp \left(\frac{q(V_{t} + R_{s} \cdot I_{t})}{n \cdot k \cdot T} \right) - 1 \right] - \frac{V_{t} + R_{s} \cdot I_{t}}{R_{sh}}$$

Cinco parámetros a estimar: R_s , R_{sh} , I_{ph} , I_{sd} , n

Función de error:

$$f_{\text{SD}}(V_t, I_t, \mathbf{x}) = I_t - I_{ph} + I_{sd} \left[\exp\left(\frac{q(V_t + R_s \cdot I_t)}{n \cdot k \cdot T}\right) - 1 \right] + \frac{V_t + R_s \cdot I_t}{R_{sh}}$$

Función objetivo:

$$RMSE(\mathbf{x}) = \sqrt{\frac{1}{N} \sum_{c=1}^{N} \left(f_{SD}^{c} \left(V_{t}^{c}, I_{t}^{c}, \mathbf{x} \right) \right)^{2}}$$

Valores experimentales (mediciones o datos del fabricante)

Diseño de celdas solares

Modelo de doble diodo:

Diodo doble

$$I_{t} = I_{ph} - I_{sd1} \left[exp \left(\frac{q(V_{t} + R_{s} \cdot I_{t})}{n_{1} \cdot k \cdot T} \right) - 1 \right] - I_{sd2} \left[exp \left(\frac{q(V_{t} + R_{s} \cdot I_{t})}{n_{2} \cdot k \cdot T} \right) - 1 \right] - \frac{V_{t} + R_{s} \cdot I_{t}}{R_{sh}}$$

Siete parámetros a estimar: R_s , R_{sh} , I_{ph} , I_{sd1} , I_{sd2} , n_1 , n_2

Función de error:

$$f_{\text{DD}}(V_t, I_t, \mathbf{x}) = I_t - I_{ph} + I_{sd1} \left[\exp\left(\frac{q(V_t + R_s \cdot I_t)}{n_1 \cdot k \cdot T}\right) - 1 \right] + I_{sd2} \left[\exp\left(\frac{q(V_t + R_s \cdot I_t)}{n_2 \cdot k \cdot T}\right) - 1 \right] + \frac{V_t + R_s \cdot I_t}{R_{sh}}$$

Función objetivo:

$$RMSE(\mathbf{x}) = \sqrt{\frac{1}{N} \sum_{c=1}^{N} \left(f_{DD}^{c} \left(V_{t}^{c}, I_{t}^{c}, \mathbf{x} \right) \right)^{2}}$$

Valores experimentales (mediciones o datos del fabricante)

Diseño de celdas solares

Minimizar

$$RMSE(\mathbf{X}), \quad \mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{N_n}],$$

 $\mathbf{x}_{i} = \left[x_{i1}, x_{i2}, \dots x_{id} \right],$

Sujeto a

$$d = 5 \text{ (SD)}$$

$$0 \le x_{i,1} \left(R_s \right) \le 0.5$$

$$0 \le x_{i,2} \left(R_{sh} \right) \le 100$$

$$0 \le x_{i,3} \left(I_{ph} \right) \le 1$$

$$0 \le x_{i,4} \left(I_{sd} \right) \le 1$$

$$1 \le x_{i,5}(n) \le 2$$

$$d \in [5,7],$$

$$d = 7 \text{ (DD)}$$

$$0 \le x_{i,1} \left(R_s \right) \le 0.5$$

$$0 \le x_{i,2} \left(R_{sh} \right) \le 100$$

$$0 \le x_{i,3} \left(I_{ph} \right) \le 1$$

$$0 \le x_{i,4} \left(I_{sd1} \right) \le 1$$

$$0 \le x_{i,5} \left(I_{sd2} \right) \le 1$$

$$1 \le x_{i,6} \left(n_1 \right) \le 2$$

$$1 \le x_{i,7} \left(n_2 \right) \le 2$$

K- means como función objetivo:

Problema:

Encontrar los mejores centroides que generen la correcta formación de los clústers.

Función objetivo:

$$\underset{\mathbf{S}}{\operatorname{arg\,min}} \sum_{i=1}^{k} \sum_{\mathbf{x}_{j} \in S_{i}} \|\mathbf{x}_{j} - \boldsymbol{\mu}_{i}\|^{2}$$

Diseño de Motores de Inducción (2 modelos)

Modelo aproximado

minimize
$$J_A(\mathbf{x})$$
, $\mathbf{x}=(R_1,R_2,X_1,s)\in\mathbb{R}^4$, subject to $0\leqslant R_1\leqslant 1$, $0\leqslant R_2\leqslant 1$, $0\leqslant X_1\leqslant 10$, $0\leqslant s\leqslant 1$

$$J_{A}(\mathbf{x}) = (f_{1}(\mathbf{x}))^{2} + (f_{2}(\mathbf{x}))^{2} + (f_{3}(\mathbf{x}))^{2}$$

$$f_{1}(\mathbf{x}) = \frac{\frac{K_{t}R_{2}}{s[(R_{1}+R_{2}/s)^{2}+X_{1}^{2}]} - T_{fl}}{T_{fl}}$$

$$f_{2}(\mathbf{x}) = \frac{\frac{K_{t}R_{2}}{(R_{1}+R_{2})^{2}+X_{1}^{2}} - T_{lr}}{T_{lr}}$$

$$f_{3}(\mathbf{x}) = \frac{\frac{K_{t}}{2[R_{1}+\sqrt{R_{1}^{2}+X_{1}^{2}}]} - T_{max}}{T_{max}}$$

$$K_{t} = \frac{3V_{ph}^{2}}{\omega_{s}}$$

Diseño de Motores de Inducción (2 modelos)

Modelo exacto

minimize
$$J_E(\mathbf{x})$$
, $\mathbf{x} = (R_1, R_2, X_1, X_2, X_m, s) \in \mathbb{R}^6$, subject to $0 \le R_1 \le 1$, $0 \le R_2 \le 1$, $0 \le X_1 \le 1$, $0 \le X_2 \le 1$, $0 \le X_m \le 10$, $0 \le s \le 1$

$$\begin{split} J_E(\mathbf{x}) &= (f_1(\mathbf{x}))^2 + (f_2(\mathbf{x}))^2 + (f_3(\mathbf{x}))^2 + (f_4(\mathbf{x}))^2 \\ f_1(\mathbf{x}) &= \frac{\frac{K_t R_2}{s\left[(R_{th} + R_2/s)^2 + X^2\right]} - T_{fl}}{T_{fl}}, \ f_2(\mathbf{x}) &= \frac{\frac{K_t R_2}{(R_{th} + R_2)^2 + X^2} - T_{str}}{T_{str}} \\ f_3(\mathbf{x}) &= \frac{\frac{K_t}{2\left[R_{th} + \sqrt{R_{th}^2 + X^2}\right]} - T_{max}}{T_{max}(mf)}, \ f_4(\mathbf{x}) &= \frac{\cos\left(\tan^{-1}\left(\frac{X}{R_{th} + R_2/s}\right)\right) - pf}{pf} \\ R_{th} &= \frac{R_1 X_m}{X_1 + X_m}, \ V_{th} &= \frac{V_{ph} X_m}{X_1 + X_m}, \ X_{th} &= \frac{X_1 X_m}{X_1 + X_m}, \ K_t &= \frac{3V_{th}^2}{\omega_s}, \ X &= X_2 + X_{th} \\ \frac{p_{fl} - (I_1^2 R_1 + I_2^2 R_2 + P_{rot})}{p_{fl}} &= \eta_{fl} \end{split}$$

Reporte

- Se debe entregar en el formato establecido (ingles o español)
- Todas las secciones deben ser completadas
- Debe contener al menos 10 paginas
- Deben realizarse experimentos acorde al problema
- Las conclusiones deben ser acorde los integrantes del equipo
- *Anexo se deben incluir los problemas de PSO.
- *Se debe incluir el código y los archivos ejecutables de todas las actividades.