What does $O(\langle expr \rangle)$ mean?	What does $\Theta(< expr>)$ mean?
What does $\Omega()$ mean?	What are the best, average and worst case complexities of Bubble Sort?
What are the best, average and worst case complexities of Merge Sort?	Give pseudo code for merging 2 sorted lists, as part of merge sort.
$Give\ pseudo\ code\ for\ Merge Sort(L).$	What are the best, average and worst case complexities of Quick Sort?

The complexity (i.e. space/running time) has the complexity The complexity (i.e. running time/space) is bounded by the proportional to $\langle expr \rangle$. < expr >. 2 1 Best: O(n), The complexity (i.e. running time/space) is at least by the Average: $O(n^2)$, < expr >. Worst: $O(n^2)$ 4 3 $Merge(L_1, L_2)$ if $L_1 = []$ return L_2 $if L_2 = \begin{bmatrix} return L_1 \\ x_1 = L_1[0] \end{bmatrix}$ $x_1 = L_1[0]$ $x_2 = L_2[0]$ $L'_1 = L_1[1:|L_1|-1]$ $L'_2 = L_2[1:|L_2|-1]$ Best: $O(nlog \log_2 n)$, Average: $O(nlog \log_2 n)$, Worst: $O(nlog \log_2 n)$ if $x_1 \leq x_2$ $return [x_1] + Merge(L'_1, L_2)$ $return [x_2] + Merge(L_1, L'_2)$ Merge two sorted lists 6 5 MergeSort(L)if $|L| \leq 1$ Best: $O(nlog \log_2 n)$, return L

Average: $O(nlog \log_2 n)$,

Worst: $O(n^2)$

8

MergeSort(L)

Split L into roughly equal halves, L_l and L_r

 $return Merge(MergeSort(L_l), MergeSort(L_r))$

What would the pseudo code be for Quick Sort?	Say that the input represents a positive integer, x , what is the size of n ?
What does it mean by $O(1)$?	What is the minimum time for any sorting algorithm that uses only number comparisons?
What would the pseudo code be for Euclid's algorithm?	What would the pseudo code be for Fast Modular Exponentiation?
Consider the equation $a^x = y mod p$. If a is a primitive root modulo p , then for every $y(1 \le y < p)$, such an $x(1 \le x < p)$ exists. What is x ?	The is the inverse of exponentiation.

```
quicksort(L)
                                                                         if length of L \leq 1
                                                                            return L
                                                                         remove\ the\ first\ element,\ x,\ from\ L
  |\log_b x| + 1 Where b is the number representation, usually
                                                                         L_{\leq} := elements \ of \ L \ less \ than \ or \ equal \ to \ x
                                                                         L_{>} := elements of L greater than x
                          binary (so 2).
                                                                         L_l := quicksort(L_<)
                                                                         L_r := quicksort(L_>)
                                                                         return L_l + [x] + L_r
                                                                                                 Quick\ Sort
                                                                 10
                                                                                                                                        9
                                                                       It takes a constant time, no matter the amount of data, to
                             n \log_2 n
                                                                                           perform the operation.
                                                                 12
                                                                                                                                       11
fme(a,b,k)
   d = a
                                                                     // Assume a>=b
   e = b
   s = 1
                                                                     hcf(a,b)
   While e > 0
                                                                         if b = 0
       if\ e\ is\ odd
                                                                            return\ a
          s = (s.d) mod k
                                                                         r = amodb
       d = d^2 mod k
                                                                         return \ hcf(b,r)
       e = \lfloor e/2 \rfloor
                                                                                             Euclid's\ algorithm
   return\ s
                  Fast Modular Exponentiation
                                                                 14
                                                                                                                                       13
    The discrete logarithm is the inverse of exponentiation.
                                                                        X is the discrete logarithm of y with base a, modulo p.
```

16 15

Why can the private key not, in practice, be recovered from the public key when p is large?	What is one way you can argue correctness of Euclid's algorithm?
What would half the correctness proof be for Euclid's algorithm?	(a.b)modk =
Let p be a prime number. What is meant by a primitive root modulo p?	What does saying that algorithm A runs in time g mean?

Let r = amodb. hcf(a,b) = hcf(b,r) because all factors of a and b are also factors of b and r and vice versa. If they have the same factors, they have the same highest common factor.

To calculate a public key, y, a private key, x is needed. The equation for modular exponentiation can be used: $y = g^x mod p$. It is considered a one-way function - easy to compute, hard to invert. For a large p, the only way to figure out the private key would be to use brute force, which would take a large amount of time.

18 17

(a.b)modk = (amodk.bmodk)modk

As r = amodb, $\exists q$ such that a = bq + r, $\therefore r = a - bq$. Suppose x is a factor of a and b, then $\exists yandz$ such that a = xy, b = xz. Hence: r = xy - xzq, r = x(y - zq). $\therefore x$ is a factor of r (and also of b and r).

20 19

Given an input of size n, the number of operations executed by A is bounded above by g(n).

The numbers r_x between 1 and p-1 that, when raised by the numbers between 1 and p-1 compute all the numbers between 1 and p-1 in some order with no repetitions.

21