Student Name: Student ID: Date: 20/05/2014

ELE222E Introduction to Electronics FINAL EXAM

Duration: 120 Minutes

Grading: 1) 20%, 2) 20%, 3) 20%, 4) 20%, 5) 20%

Exam is in closed-notes and closed-books format; calculators are allowed For your answers please use the space provided in the exam sheet GOOD LUCK!

1) Suppose that $V_B = 1,5V$ and all NMOS/PMOS transistors are identical. In DC analysis, use the following equation:

$$I_D = \frac{1}{2} k'_{p,n} \frac{W}{L} (V_{GS} - V_{T0p,n})^2.$$

Transistor parameters: $k_p' = \mu_p C_{ox} = 50 \mu A/V^2$, $k_n' = \mu_n C_{ox} = 100 \mu A/V^2$, $V_{An} = V_{Ap} = 100 V$, $V_{T0,p} = -1 V$, $V_{T0,n} = 1 V$, $V_{P} = 16 \mu m$

Common Source Amplifier

Determine the small signal gain v_{out}/v_{in} and the small signal output resistance r_{out} of the amplifier shown above.

2) Consider an amplifier shown below. Suppose that the value of the coupling capacitor C_E is high enough, so it can be considered shorted in small signal analysis.

Transistor parameters: $V_{BE} = 0.7V$, $\theta = h_{fe} = 100$, $V_T = 26mV$, $V_A = \infty$.

Common Emitter Amplifier

- a) Find the DC value of the collector current Ic.
- **b)** If a sine signal with 10mV peak-to-peak amplitude is applied to \mathbf{v}_i then determine the collector voltage \mathbf{v}_c 's peak-to-peak amplitude.
 - o Hint: you should find the small signal gain v_c/v_i of the amplifier.

3) Consider a differential amplifier shown below. In DC analysis, use the following equation:

$$I_D = \frac{\beta}{2} (V_{GS} - V_{TH})^2.$$

MOS transistor parameters: $\theta = 20 \text{ mA/V}^2$, $V_A = \infty$, $V_{TH} = 1V$.

Differential Amplifier

- a) If sine signals with 20mV and 5mV peak-to-peak amplitudes are applied to \mathbf{v}_{i1} and \mathbf{v}_{i2} , respectively then determine \mathbf{v}_{o} 's peak-to-peak amplitude.
 - \circ Hint: you should find the small signal differential gain $v_o/(v_{i1}-v_{i2})$ of the amplifier.
- b) If sine signals with 10mV and 10mV peak-to-peak amplitudes are applied to $\mathbf{v_{i1}}$ and $\mathbf{v_{i2}}$, respectively then determine $\mathbf{v_o}$'s peak-to-peak amplitude.
 - o Hint: you should find the small signal common-mode gain Vo/Vi of the amplifier.
- c) Design a BJT current source for I_K . Suppose that V_{BE} =0,6V and θ = 200 (base current is negligible). Neglect Early effect.
 - o Hint: the current source preferably has two BJT transistors and a resistor.

4) Consider ideal OP-AMP based integrator and differentiator circuits shown below. For an ideal OP-AMP, input voltage values are **same** and input current values are both **zero**.

Design an ideal OP-AMP based circuit satisfying the following specification:

$$V_o(t) = \frac{1}{RC} \int dt V_i(t) + RC \frac{dV_i(t)}{dt}$$

5) Consider the ideal OP-AMP based circuit shown below. For an ideal OP-AMP, input voltage values are **same** and input current values are both **zero**. Diodes have **0,7V** forward voltage values.

OP-AMP Based Circuit

For the circuit shown above, derive an expression of V_0 in terms of the inputs V_A and V_B .