Lezione 21

Saverio Salzo*

2 novembre 2022

1 Teorema degli zeri e dei valori intermedi

Teorema 1.1 (degli zeri di Bolzano). Sia A un intervallo di \mathbb{R} e $f: A \to \mathbb{R}$ continua. Siano $a, b \in A$ con a < b e tali che f(a)f(b) < 0 (cioè f(a) e f(b) hanno segni discordi). Allora esiste $x_0 \in]a, b[$ tale che $f(x_0) = 0$.

Dimostrazione. Utilizzeremo il metodo di bisezione per produrre degli intervalli incapsulati e applicare il principio degli intervalli incapsulati. La proprietà che consideriamo qui per un intervallo generico $I = [\alpha, \beta] \subset A$ è

$$P([\alpha, \beta]): f(\alpha)f(\beta) < 0, \tag{1}$$

cioè che f assume valori di segno opposto agli estremi dell'intervallo I. Notiamo che se si prende il punto medio $\gamma = (\alpha + \beta)/2$ degli estremi di I potrebbe succedere che $f(\gamma) = 0$ e in tal caso la proprietà P non sarebbe vera per nessuno dei sottointervalli $[\alpha, \gamma]$ e $[\gamma, \beta]$, in quando si avrebbe $f(\alpha)f(\gamma) = 0 = f(\gamma)f(\beta)$. Però in questo caso il problema è risolto, cioè si è trovato un punto in $]\alpha, \beta[$ su cui la funzione si annulla. Se invece $f(\gamma) \neq 0$, allora chiaramente il segno di $f(\gamma)$ è discorde con $f(\alpha)$ o con $f(\beta)$ e quindi si ha $P([\alpha, \gamma])$ vera oppure $P([\gamma, \beta])$ vera. Il metodo di bisezione quindi applicato alla proprietà (1) e con intervallo iniziale $I_0 = [a, b]$ o termina dopo un numero finito di bisezioni e in tal caso trova uno zero di f in [a, b[, oppure prosegue indefinitamente e definisce una successione $(I_n)_{n \in \mathbb{N}}$ di intervalli incapsulati chiusi e limitati $I_n = [a_n, b_n]$, contenuti in [a, b], e tale che $I_0 = [a, b]$ e

$$\forall n \in \mathbb{N} : \begin{cases} I_{n+1} \subset I_n \\ |I_{n+1}| = \frac{|I_n|}{2} \\ f(a_n)f(b_n) < 0. \end{cases}$$

Allora si ha

$$\forall n \in \mathbb{N} \colon |I_n| = \frac{b-a}{2^n} \quad e \quad \bigcap_{n \in \mathbb{N}} I_n = \{x_0\}.$$

^{*}DIAG, Sapienza Università di Roma (saverio.salzo@uniroma1.it).

Figura 1: Illustrazione del Teorema 1.1 degli zeri di Bolzano.

Adesso è chiaro che $a_n, b_n, x_0 \in I_n$ e quindi

$$\forall n \in \mathbb{N}: |a_n - x_0|, |b_n - x_0| \le |I_n| = \frac{b - a}{2^n}$$
 (2)

e perciò $a_n \to x_0$ e $b_n \to x_0$. Allora, essendo f una funzione continua, si ha

$$\lim_{n \to +\infty} f(a_n) = f(x_0) \quad \text{e} \quad \lim_{n \to +\infty} f(b_n) = f(x_0)$$

e quindi

$$\lim_{n \to +\infty} f(a_n)f(b_n) = f(x_0)^2.$$

Ma risulta $f(a_n)f(b_n) < 0$ per ogni $n \in \mathbb{N}$ e quindi per il teorema del prolungamento delle disuguaglianze $f(x_0)^2 \leq 0$, che implica $f(x_0) = 0$.

Osservazione 1.2.

- (i) Il Teorema degli zeri fornisce un metodo costruttivo per approssimare uno zero della funzione f. Infatti le successioni $(a_n)_{n\in\mathbb{N}}$ e $(b_n)_{n\in\mathbb{N}}$ convergono entrambe a x_0 e l'equazione (2) dà un indicazione dell'errore al passo n-esimo.
- (ii) Il Teorema degli zeri non vale se la funzione non è continua. Per esempio la funzione

$$f: [-1, 1] \to \mathbb{R}, \quad f(x) = \text{sgn}(x) + \frac{1}{2}$$

assume valori opposti agli estremi dell'intervallo di definizione, ma non si annulla mai, cioè per ogni $x \in [-1,1]$: $f(x) \neq 0$.

(iii) Il teorema degli zeri non vale se il dominio non è un intervallo.

Figura 2: Illustrazione del Teorema 1.3 di Bolzano sui valori intermedi.

(iv) Il teorema degli zeri non vale nel campo Q dei numeri razionali. Infatti la funzione

$$f: [0,2] \cap \mathbb{Q} \to \mathbb{Q}, \quad f(x) = x^2 - 2$$

è continua e assume valori opposti agli estremi di definizione ma non si annulla mai. Qui il problema è che il dominio è in qualche modo *bucato*. Si vede quindi come nel teorema degli zeri è fondamentale l'ipotesi della completezza del campo dei numeri reali.

Teorema 1.3 (dei valori intermedi di Bolzano). Sia $f: I \to \mathbb{R}$ una funzione continua definita in un intervallo I (qualunque: chiuso, aperto, semiaperto, limitato o illimitato) di \mathbb{R} . Allora posto

$$m = \inf_{I} f \quad e \quad M = \sup_{I} f,$$

risulta che $\forall y \in [m, M]$ esiste $x \in I$ tale che f(x) = y.

Dimostrazione. Sia $y \in \mathbb{R}$ con m < y < M. Allora per le proprietà dell'estremo inferiore e superiore esistono $a, b \in I$ tali che

$$m \le f(a) < y < f(b) \le M.$$

Supponiamo che a < b. Definiamo la funzione $g: [a,b] \to \mathbb{R}$ con g(x) = f(x) - y. Evidentemente g è continua e g(a) < 0 e g(b) > 0. Perciò per il Teorema 1.1 esiste $x \in]a,b[\subset I$ tale che f(x) = y. Se invece b < a, si definisce $g: [b,a] \to \mathbb{R}$ con g(x) = f(x) - y e si procede allo stesso modo.

Una formulazione alternativa del Teorema di Bolzano-Weierstrass è la seguente

Teorema 1.4 (dei valori intermedi di Bolzano, 2° forma). Sia $f: I \to \mathbb{R}$ una funzione continua definita in un intervallo I di \mathbb{R} . Allora f(I) è un intervallo.

Dimostrazione. Il Teorema 1.3 garantisce che $\inf_I f, \sup_I f \subset f(I)$. Poi chiaramente risulta $f(I) \subset [\inf_I f, \sup_I f]$. Perciò f(I) è necessariamente un intervallo (aperto, chiuso o semiaperto) di estremi $\inf_I f$ e $\sup_I f$.

Osservazione 1.5. Se f(I) è un intervallo, è chiaro che se $\alpha, \beta \in f(I)$ con $\alpha < \beta$, allora inf $f(I) \le \alpha < \beta \le \sup f(I)$ e quindi

$$]\alpha, \beta[\subset]\inf f(I), \sup f(I)[\subset f(I),$$

e perciò $[\alpha, \beta] \subset f(I)$. Allora il Teorema 1.4 dei valori intermedi, stabilisce che se α e β sono due valori della funzione f (cioè appartengono all'immagine f(I)), allora tutti i numeri compresi tra α e β sono pure valori assunti dalla funzione f (cioè, se $\alpha < \beta$, $[\alpha, \beta] \subset f(I)$).

2 Conseguenze del teorema dei valori intermedi

Teorema 2.1 (del punto fisso). Sia $f: [a,b] \to [a,b]$ continua. Allora esiste $x_0 \in [a,b]$ tale che $f(x_0) = x_0$.

Dimostrazione. Consideriamo la funzione $g: [a,b] \to \mathbb{R}$, definita come g(x) = f(x) - x, per ogni $x \in [a,b]$. Per ipotesi $a \le f(a) \le b$ e $a \le f(b) \le b$ e quindi $g(a) \ge 0$ e $g(b) \le 0$. Se g(a) = 0 o g(b) = 0 la tesi è ovvia. Supponiamo che g(a) > 0 e g(b) < 0. Allora per il Teorema 1.1 esiste $x_0 \in [a,b]$ tale che $g(x_0) = 0$. Si veda Figura 3.

Teorema 2.2. Sia $I \subset \mathbb{R}$ un intervallo di \mathbb{R} e $f: I \to \mathbb{R}$ una funzione continua. Allora

$$f \ \dot{e} \ iniettiva \Leftrightarrow f \ \dot{e} \ strettamente monotona.$$

Dimostrazione. L'implicazione " \Leftarrow " è immediata. Proviamo l'altra implicazione. Supponiamo quindi che f sia iniettiva. La dimostrazione consiste in tre passi preliminari e una conclusione. Il primo passo consiste nel provare il seguente

$$\forall a, b \in I: \quad a < b \in f(a) < f(b) \Rightarrow f([a, b]) \subset [f(a), f(b)]. \tag{passo 1}$$

Siano quindi $a, b \in I$ tali che a < b e f(a) < f(b). Dobbiamo provare che, per ogni $x \in [a, b]$: $f(a) \le f(x) \le f(b)$. Sia $x \in [a, b]$. Se fosse f(x) > f(b), allora sarebbe

$$f(a) < f(b) < f(x)$$

e per il Teorema 1.3, sui valori intermedi, esisterebbe $c \in [a, x]$ (e quindi $c \neq b$) tale che f(c) = f(b), contraddicendo l'iniettività di f. Allo stesso modo se fosse f(x) < f(a), allora sarebbe

$$f(x) < f(a) < f(b)$$

e per il Teorema 1.3, sui valori intermedi, esisterebbe $c \in [x, b]$ (e quindi $c \neq a$) tale che f(c) = f(a), di nuovo contraddicendo l'iniettività di f. Il secondo passo consiste nel provare che

f è strettamente crescente su ogni intervallo $[a, b] \subset I$ tale che f(a) < f(b). (passo 2)

Infatti sia $[a, b] \subset I$ intervallo tale che f(a) < f(b) e siano $x_1, x_2 \in [a, b]$ con $x_1 < x_2$. Allora, per quando già provato in (passo 1) si ha

$$a \le x_1 < x_2 \le b$$
, $f(a) \le f(x_1) < f(b)$.

E quindi, applicando nuovamente (passo 1) (sull'intervallo $[x_1, b]$), si ha $f([x_1, b]) \subset [f(x_1), f(b)]$. Ma, $x_2 \in [x_1, b]$ e quindi $f(x_2) \in [f(x_1), f(b)]$, cioè $f(x_1) < f(x_2)$. Il terzo passo è una estensione del passo 2 e consiste nel provare che

$$f$$
 è strettamente monotona su ogni intervallo $[a, b] \subset I$. (passo 3)

Infatti da (passo 2) applicata alla funzione -f (che è ancora continua e iniettiva) si ottiene che -f è strettamente crescente su ogni intervallo $[a,b] \subset I$ tale che -f(a) < -f(b), che è equivalente a

f è strettamente decrescente su ogni intervallo $[a,b] \subset I$ tale che f(a) > f(b).

Ma, dato che in ogni caso si presenta uno dei due casi: f(a) < f(b) o f(a) > f(b), allora si può affermare che f è strettamente monotona su ogni intervallo $[a,b] \subset I$. Finalmente si può concludere la dimostrazione. Supponiamo per assurdo che f non sia strettamente monotona in I. Allora

$$\exists a_1, b_1 \in I \text{ tali che } a_1 < b_1 \text{ e } f(a_1) < f(b_1)$$

 $\exists a_2, b_2 \in I \text{ tali che } a_2 < b_2 \text{ e } f(a_2) > f(b_2).$

Posto $a = \min\{a_1, a_2\}$ e $b = \max\{b_1, b_2\}$ si avrebbe che f non è strettamente monotona nell'intervallo [a, b], e questo contraddice quanto provato nel (passo 3). La funzione f deve quindi necessariamente essere strettamente monotona in I.

Teorema 2.3 (continuità delle funzioni inverse). Sia $f: I \to \mathbb{R}$ una funzione continua, iniettiva e definita in un intervallo di \mathbb{R} . Allora la funzione inversa $f^{-1}: f(I) \to \mathbb{R}$ è continua.

Dimostrazione. Per il Teorema 2.2, f è strettamente monotona. Inoltre per i Teorema 1.3, f(I) è un intervallo di \mathbb{R} . Allora la funzione inversa $f^{-1}: f(I) \to \mathbb{R}$ è monotona e ha per codominio l'intervallo I e quindi, per il teorema sulla continuità delle funzioni monotone, è continua.

3 Insiemi compatti e teorema di Weierstrass

Ricordiamo che, dato un insieme A, indichiamo con $A^{\mathbb{N}}$ l'insieme di tutte le successioni di elementi di A.

Proposizione 3.1. Sia $A \subset \mathbb{R}$ e $x \in \mathbb{R}$. Allora

$$x \in \overline{A} \iff \exists (a_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}} \ tale \ che \ a_n \to x$$

Figura 3: Teorema dei punti fissi.

Dimostrazione. Proviamo prima l'implicazione " \Leftarrow ". Se $(a_n)_{n\in\mathbb{N}}$ è una successione di elementi di A e $a_n \to x$, allora per ogni V intorno di x esiste $\nu \in \mathbb{N}$ tale che

$$\forall n \in \mathbb{N}, \ n > \nu \colon \ a_n \in V,$$

e quindi $V \cap A \neq \emptyset$ (per esempio $x_{\nu+1} \in V \cap A$). Viceversa, supponiamo che $x \in \overline{A}$. Consideriamo gli intorni di x del tipo

$$V_n = \left[x - \frac{1}{n+1}, x + \frac{1}{n+1} \right] \quad \text{con } n \in \mathbb{N}.$$

Allora, essendo $x \in \overline{A}$, si ha

$$\forall n \in \mathbb{N} : V_n \cap A \neq \emptyset$$

e quindi, per ogni $n \in \mathbb{N}$ esiste $a_n \in V_n \cap A$. Si definisce così una successione $(a_n)_{n \in \mathbb{N}}$ di elementi di A e chiaramente risulta

$$\forall n \in \mathbb{N} \colon \ x - \frac{1}{n+1} < a_n < x + \frac{1}{n+1}.$$

Perciò dal teorema dei carabinieri si deduce che $a_n \to x$.

Esempio 3.2.

(i) Sia I un intervallo limitato di \mathbb{R} (aperto, semiaperto o chiuso). Allora se a e b sono gli estremi di I, risulta che $\overline{I} = [a, b]$.

Proposizione 3.3. Sia $A \subset \mathbb{R}$. Allora sono equivalenti

(i) A è chiuso

(ii) Per ogni successione $(a_n)_{n\in\mathbb{N}}\in A^{\mathbb{N}}$, se $a_n\to x\in\mathbb{R}$, allora $x\in A$.

Dimostrazione. Evidentemente A chiuso vuol dire che $\overline{A} \subset A$ (perché vale sempre $A \subset \overline{A}$). Ma $\overline{A} \subset A$ equivale a

$$x \in \overline{A} \implies x \in A.$$
 (3)

Allora è chiaro dalla proposizione precedente che (3) equivale a (ii).

Proposizione 3.4. Sia $A \subset \mathbb{R}$ non vuoto. Se A è limitato superiormente (risp. inferiormente), allora sup A (risp. inf A) è un punto aderente ad A. Perciò se A è un insieme chiuso e limitato, allora è dotato di massimo e di minimo.

Dimostrazione. Supponiamo che A sia limitato superiormente e poniamo $\bar{x} = \sup A \in \mathbb{R}$. Sia $V =]\bar{x} - \varepsilon, \bar{x} + \varepsilon[$ un intorno (generico) di \bar{x} . Dobbiamo provare che $A \cap V \neq \emptyset$. Evidentemente $\bar{x} - \varepsilon < \bar{x}$ e quindi, per la seconda proprietà dell'estremo superiore, esiste $a \in A$ tale che $\bar{x} - \varepsilon < a$. Ma allora, essendo $a \leq \bar{x}$, si ha

$$a \in V \cap A$$

e quindi $V \cap A \neq \emptyset$. Consideriamo adesso la seconda parte dell'enunciato. Se A è limitato, allora esistono inf A e sup A e sono numeri reali. Per quanto già provato risulta inf A, sup $A \in \overline{A}$. Ma A è chiuso, cioè $A = \overline{A}$, e quindi inf A, sup $A \in A$, cioè A ha massimo e minimo. \square

Definizione 3.5. Un insieme non vuoto $A \subset \mathbb{R}$ si dice *compatto (per successioni)* se da ogni successione $(a_n)_{n\in\mathbb{N}}$ di elementi di A si può estrarre una sottosuccessione $(a_{n_k})_{k\in\mathbb{N}}$ convergente ad un punto di A.

Teorema 3.6 (di Heine-Cantor). Sia $A \subset \mathbb{R}$. Allora sono equivalenti

- (i) A è compatto
- (ii) A è chiuso e limitato.

Dimostrazione. (i) \Rightarrow (ii): Supponiamo che A sia compatto, cioè che da ogni successione di suoi elementi si possa estrarre una sottosuccessione convergente ad un elemento di A. Proviamo prima che A è limitato. Se, per assurdo, non lo fosse, per esempio se fosse non limitato superiormente, allora sup $A = +\infty$, e quindi per ogni $n \in \mathbb{N}$ si potrebbe trovare $a_n \in A$ tale che $a_n > n$. La successione $(a_n)_{n \in \mathbb{N}}$ sarebbe una successione di elementi di A e $a_n \to +\infty$. E dalla successione $(a_n)_{n \in \mathbb{N}}$ non si potrebbe estrarre alcuna sottosuccessione convergente (ogni sottosuccessione di $(a_n)_{n \in \mathbb{N}}$ sarebbe divergente positivamente come $(a_n)_{n \in \mathbb{N}}$). Proviamo adesso che A è chiuso, utilizzando la caratterizzazione data nella Proposizione 3.3. Sia quindi $(a_n)_{n \in \mathbb{N}}$ una successione di elementi di A convergente ad un punto $x \in \mathbb{R}$. Si deve provare che $x \in A$. Allora, dato che A è compatto, esiste una sottosuccessione $(a_{n_k})_{k \in \mathbb{N}}$ convergente ad un elemento $x_0 \in A$. Ma, sappiamo che una sottosuccessione ha lo stesso limite della successione dalle quale è estratta, perciò $a_{n_k} \to x_0$ per $k \to +\infty$. Quindi, si ha $a_{n_k} \to x_0$ e $a_{n_k} \to x$ e per l'unicità del limite si ha $x = x_0 \in A$.

Figura 4: Teorema di Weierstrass.

(ii) \Rightarrow (i): Sia $(a_n)_{n\in\mathbb{N}}$ una successione di elementi di A. Dato che A è limitato, la successione $(a_n)_{n\in\mathbb{N}}$ è limitata. Allora per il teorema di Bolzano-Weierstrass esiste una successione estratta $(a_{n_k})_{k\in\mathbb{N}}$ convergente ad un punto $x\in\mathbb{R}$. Ma A è anche chiuso e quindi deve necessariamente essere $x\in A$.

Definizione 3.7. Sia $f: A \subset \mathbb{R} \to \mathbb{R}$ Si dice che f ammette minimo (risp. massimo) in A se l'insieme immagine f(A) è dotato di minimo (risp. massimo). In tal caso esso si denota con uno dei simboli

$$\min_{x \in A} f(x), \ \min_{A} f \quad \left(\text{risp.} \max_{x \in A} f(x), \ \max_{A} f\right)$$

e ogni punto $x_0 \in A$ tale che $f(x_0) = \min_A f$ (risp. $f(x_0) = \max_A f$) si chiama punto di minimo (risp. massimo) (globale) per f.

Teorema 3.8 (di Weierstrass). Sia $A \subset \mathbb{R}$ un compatto di \mathbb{R} , cioè un insieme chiuso e limitato. Sia $f: A \to \mathbb{R}$. Allora f ammette minimo e massimo. In particolare f è limitata.

Dimostrazione. Occupiamoci solo dell'esistenza del massimo (per il minimo si procede allo stesso modo). Poniamo

$$M = \sup_{x \in A} f(x).$$

Si noti che in principio non sappiamo ancora che M è finito, sappiamo solo che $M \in]-\infty, +\infty]$. Definiamo una successione $(b_n)_{n\in\mathbb{N}}$ di numeri reali tale che

$$b_n < M$$
 e $b_n \to M$.

¹Una tale successione si dice massimizzante per f. Invece una successione $(b_n)_{n \in \mathbb{N}}$ tale che $m < b_n$ e $b \to m$ si dice minimizzante per f.

A tal fine basta porre

$$b_n = \begin{cases} M - \frac{1}{n+1} & \text{se } M < +\infty \\ n & \text{se } M = +\infty. \end{cases}$$

Allora, essendo $b_n < M$, per la seconda proprietà dell'estremo superiore, esiste $a_n \in A$ tale che $b_n < f(a_n)$. Quindi si ha

$$\forall n \in \mathbb{N} : b_n < f(a_n) \leq M.$$

Dato che $b_n \to M$, per confronto si deduce che $f(a_n) \to M$. Adesso $(a_n)_{n \in \mathbb{N}}$ è una successione di elementi di A e A è compatto, perciò esiste una sottosuccessione $(a_{n_k})_{k \in \mathbb{N}}$ convergente a qualche elemento di A, cioè $a_{n_k} \to x_0 \in A$. Poi, essendo f una funzione continua, da $a_{n_k} \to x_0 \in A$ segue che $f(a_{n_k}) \to f(x_0) \in \mathbb{R}$. Ma $(f(a_{n_k}))_{k \in \mathbb{N}}$ è una successione estratta da $(f(a_n))_{n \in \mathbb{N}}$ che ha per limite M e quindi $f(a_{n_k}) \to M$. Perciò si ha

$$f(a_{n_k}) \to M$$
 e $f(a_{n_k}) \to f(x_0)$

e per l'unicità del limite si può concludere che $M = f(x_0)$ e quindi f ha massimo.

Osservazione 3.9.

- (i) Un intervallo chiuso e limitato [a, b] è un insieme chiuso (cioè [a, b] = [a, b]) e limitato, e quindi è un compatto. Perciò il teorema di Weierstrass garantisce che una funzione continua $f: [a, b] \to \mathbb{R}$ è dotata di minimo e di massimo.
- (ii) Il Teorema 3.8 stabilisce l'esistenza del massimo e minimo di una funzione continua anche quando la funzione non è definita in un intervallo. Per esempio la funzione

$$f: \{0\} \cup \{1/n \mid n \in \mathbb{N}^*\} \to \mathbb{R}, \quad f(x) = x^2$$

ammette massimo e minino, dato che l'insieme $\{0\} \cup \{1/n \mid n \in \mathbb{N}^*\}$ è chiuso e limitato e quindi compatto.

Osservazione 3.10. Le ipotesi del teorema di Weierstrass (A è chiuso e limitato e f è continua) sono tutte necessarie. Infatti

- (caso A non chiuso) la funzione $f: [0,1] \to \mathbb{R}$ con $f(x) = x^2$ è continua è definita in un insieme limitato che non è chiuso e non ammette minimo.
- (caso f non continua) la funzione $f: [0,1] \to \mathbb{R}$ con

$$f(x) = \begin{cases} x^2 & \text{se } x > 0\\ 1 & \text{se } x = 0. \end{cases}$$

è definita in un compatto è discontinua (in 0) e non ammette minimo.

• (caso A non limitato) la funzione $f: [0, +\infty[\to \mathbb{R} \text{ con } f(x) = e^{-x} \text{ è continua ed è definita in un insieme chiuso che non è limitato, e non ha minimo.$

Osservazione 3.11. Sia $f:[a,b] \to \mathbb{R}$ continua. Per il Teorema 3.8 di Weierstrass esistono

$$m = \min_{x \in [a,b]} f(x)$$
 e $M = \max_{x \in [a,b]} f(x)$.

Quindi $f([a,b]) \subset [m,M]$. Ma essendo m,M due valori della funzione f, per il teorema dei valori intermedi $[m,M] \subset f([a,b])$. In definitiva

$$f([a,b]) = [m,M].$$

4 Complementi sul teorema di Weierstrass

Il teorema di Weierstrass si può generalizzare nel modo seguente.

Teorema 4.1 (di Weierstrass). Sia $f: A \to \mathbb{R}$ una funzione continua con $A \subset \mathbb{R}$ compatto, cioè un insieme chiuso e limitato. Allora f(A) è compatto.^a

Dimostrazione. Sia $(b_n)_{n\in\mathbb{N}}$ una successione di elementi di f(A). Allora, per ogni $n\in\mathbb{N}$ esiste $a_n\in A$ tale che $f(a_n)=b_n$. Dato che A è compatto esiste una successione estratta $(a_{n_k})_{k\in\mathbb{N}}$ che è convergente a qualche elemento di A. In altre parole esiste $x_0\in A$ tale che $\lim_{k\to+\infty}a_{n_k}=x_0$. Ma f è continua in x_0 , e quindi $\lim_{n\to+\infty}f(a_{n_k})=f(x_0)$. In definitiva si è provato che dalla successione $(b_n)_{n\in\mathbb{N}}$ si può estrarre una sottosuccesione convergente ad un elemento di f(A).

Il Teorema 4.1 è più generale del Teorema 3.8, infatti quest'ultimo si può derivare dal Teorema 4.1 nel modo seguente

Dimostrazione del Teorema 3.8 dal Teorema 4.1. Ricordiamo che il teorema di Heine-Cantor, stabilisce che i compatti di \mathbb{R} corrispondono ai sottoinsiemi chiusi e limitati di \mathbb{R} . Perciò, dal Teorema 4.1 di Weierstrass possiamo concludere che f(A) è compatto e quindi chiuso e limitato. Allora, la Proposizione 3.4 garantisce l'esistenza del minimo e massimo dell'insieme f(A) e quindi la tesi.

5 Ulteriori osservazioni sui limiti

Teorema 5.1 (di Casaro). Sia $(a_n)_{n\in\mathbb{N}}$ una successione reale a termini strettamente positivi $(a_n > 0)$. Allora

$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = l \in \overline{\mathbb{R}} \ \Rightarrow \ \lim_{n \to +\infty} \sqrt[n]{a_n} = l.$$

 $[^]a$ Si dice anche che f trasforma compatti in compatti.

Il teorema precedente è utile per calcolare i limiti di successioni del tipo

$$\lim_{n \to +\infty} \sqrt[n]{a_n}$$

Di seguito si forniscono alcuni esempi.

Esempio 5.2.

(i) Se $\alpha > 0$, allora $\sqrt[n]{n^{\alpha}} \to 1$. Infatti

$$\frac{(n+1)^{\alpha}}{n^{\alpha}} = \left(1 + \frac{1}{n}\right)^{\alpha} \to 1 \quad \text{per } n \to +\infty.$$

(ii)
$$\sqrt[n]{\binom{2n}{n}} \to 4$$
. Infatti

$$\frac{\binom{2n+2}{n+1}}{\binom{2n}{n}} = \frac{(2n+2)!}{(n+1)!(n+1)!} \frac{n!n!}{(2n)!} = \frac{(2n+2)(2n+1)}{(n+1)^2} \to 4$$

Consideriamo adesso limiti generali della forma

$$\lim_{x \to x_0} f(x)^{g(x)},\tag{4}$$

dove f(x) > 0 e $g(x) \in \mathbb{R}$. Questi limiti si possono scrivere nella forma equivalente

$$\lim_{x \to x_0} \exp \log(f(x)^{g(x)}) = \lim_{x \to x_0} e^{g(x) \log f(x)}.$$

Si tratta quindi di studiare il limite

$$\lim_{x \to x_0} g(x) \log f(x) \tag{5}$$

e le forme indeterminate nel limite (5) danno luogo a forme indeterminate nel limite (4). In particolare le seguenti sono forme indeterminate:

$$1^{\infty}$$
, ∞^0 e 0^0 .

Esempio 5.3.

1. $\lim_{x\to+\infty} \left(\frac{x-3}{x+2}\right)^{x-4}$. Questa è una forma indeterminata del tipo 1^{∞} . Ci si riconduce al limite $\lim_{x\to+\infty} (1+\alpha/x)^x = e^{\alpha}$. Infatti

$$\lim_{x \to +\infty} \left(\frac{x-3}{x+2} \right)^{x-4} = \lim_{x \to +\infty} \left(\frac{x+2-5}{x+2} \right)^{x-4} = \lim_{x \to +\infty} \left(1 - \frac{5}{x+2} \right)^{x+2-6}$$
$$= \lim_{x \to +\infty} \left(1 - \frac{5}{x+2} \right)^{x+2} \left(1 - \frac{5}{x+2} \right)^{-6}$$
$$= e^{-5}.$$