CLAIMS

A compound of the formula

- 5 in which:
 - R1 is hydrogen;
 - R₂ is the methyl group;
 - or R_1 and R_2 together form a group -(CH2)3- or -(CH2)4-;
- Ar₁ is a phenyl which is unsubstituted or monosubstituted or polysubstituted by a substituent selected from a halogen atom, a hydroxyl, a (C₁-C₄)alkoxy, a (C₁-C₄)alkyl, a trifluoromethyl and a methylenedioxy, said substituents being identical or different; a thienyl which is unsubstituted or substituted by a halogen atom; a benzothienyl which is unsubstituted or substituted by a halogen atom; a naphthyl which is unsubstituted or substituted by a halogen atom; an indolyl which is unsubstituted or N-substituted by a (C₁-C₄)alkyl or a benzyl; an imidazolyl which is unsubstituted or substituted by a halogen atom; a pyridyl which is unsubstituted or substituted by a halogen atom; or a biphenyl;
 - T is a group -CH₂-; a group -CO-; a group -COO-; or a group -CONR₃- in which R₃ is a hydrogen or a (C₁-C₄)alkyl;
- A is a direct bond; a group -(CH₂)_t-, in which t is one, two or three; or a vinylene group;
 - or -T-A- is the group -SO₂-;
 - Z is an optionally substituted, mono-, di- or tri-cyclic aromatic or heteroaromatic group; and
- 25 B is:
 - i either a group B_1 of the formula

$$J_1 \longrightarrow N -$$

in which J₁ is:

-
$$i_1$$
 - either a group Ar_2 - $(CH_2)_x$ - C
 X_1

- x is zero or one;
- Ar₂ is a phenyl which is unsubstituted or monosubstituted or polysubstituted by a substituent selected from a halogen atom, a nitro, a hydroxyl, a trifluoromethyl, a (C₁-C₄)alkyl, a (C₁-C₄)alkoxy and a methylenedioxy, said substituents being identical or different; a pyridyl; a thienyl; a pyrimidyl; or an imidazolyl which is unsubstituted or substituted by a (C₁-C₄)alkyl; and
 - X₁ is a group selected from:
 - (1) hydrogen;
- 10 (2) (C_1-C_7) alkyl;
 - (3) formyl;
 - (4) (C₁-C₇)alkylcarbonyl;
 - $(5) (CH_2)_m OR_4;$
 - $(6) (CH_2)_m OCOR_5;$
- 15 (7) - $(CH_2)_m$ -OCONH- (C_1-C_7) alkyl;
 - (8) $-O-CH_2CH_2-OR_6$;
 - (9) $-(CH_2)_n SR_7$;
 - (10) $-CH_2-S(O)_j-(C_1-C_7)alkyl;$
 - (11) -NR₈R₉;
- 20 (12) $-(CH_2)_p NR_{10}R_{11}$;
 - (13) $-NR_{12}COR_{13}$;
 - (14) -NR₁₄COCOR₁₅;
 - $(15) (CH_2)_p NR_{14}C(=W_1)R_{16};$
 - $(16) (CH_2)_m NR_{14}COOR_{17};$
- 25 $(17) (CH_2)_m NR_{14}SO_2R_{18}$;
 - (18) $-(CH_2)_m NR_{14}C(=W_1)NR_{19}R_{20}$;
 - (19) $-(CH_2)_n$ -COOR₂₁;
 - (20) $-(CH_2)_n C(=W_1)NR_{19}R_{20}$;
 - (21) -CO-NR₂₂-NR₂₃R₂₄;
- 30 (22) -CN;

or X_1 forms a double bond between the carbon atom to which it is bonded and the adjacent carbon atom of the piperidine ring; in which groups:

- m is zero, one or two:
- 5 n is zero or one;

15

- p is one or two;
- j is one or two;
 - W1 is an oxygen atom or a sulfur atom;
 - R₄ is a hydrogen or a (C₁-C₇)alkyl;
- R₅ is a hydrogen; a (C₁-C7)alkyl; a (C3-C7)cycloalkyl which is unsubstituted or substituted by one or more methyls; a phenyl; or a pyridyl;
 - R_6 is a hydrogen; a (C_1-C_7) alkyl; a formyl; or a (C_1-C_7) alkylcarbonyl;
 - R₇ is a hydrogen or a (C₁-C₇)alkyl;
 - R_8 and R_9 are each independently a hydrogen or a (C_1-C_7) alkyl; R_9 can also be a (C_3-C_7) cycloalkylmethyl, a benzyl or a phenyl;
 - or R₈ and R₉, together with the nitrogen atom to which they are bonded, form a heterocycle selected from azetidine, pyrrolidine, piperidine, morpholine, thiomorpholine, perhydroazepine and piperazine which is unsubstituted or substituted in the 4-position by a (C₁-C₄)alkyl;
- R₁₀ and R₁₁ are each independently a hydrogen or a (C₁-C₇)alkyl; R₁₁ can also be a (C₃-C₇)cycloalkylmethyl or a benzyl;
 - R_{12} is a hydrogen or a (C_1-C_7) alkyl;
 - R₁₃ is a hydrogen; a (C₁-C₇)alkyl; a (C₃-C₇)cycloalkyl which is unsubstituted or substituted by one or more methyls; a phenyl; a benzyl; a vinyl; a pyridyl; a furyl; a thienyl; a pyrrolyl; or an imidazolyl;
 - or R_{12} and R_{13} together are a group -(CH₂)_u-, in which u is three or four;
 - R₁₄ is a hydrogen or a (C₁-C₇)alkyl;
 - R_{15} is a (C_1-C_4) alkoxy;
- R₁₆ is a hydrogen; a (C₁-C₇)alkyl; a (C₃-C₇)cycloalkyl which is unsubstituted or substituted by one or more methyls; a phenyl; a benzyl; a vinyl; a pyridyl; a furyl; a thienyl; a pyrrolyl; or an imidazolyl;
 - R_{17} is a (C_1 - C_7)alkyl or a phenyl;

- R₁₈ is a (C₁-C₇)alkyl; an amino which is free or substituted by one or two (C₁-C₇)alkyls; or a phenyl which is unsubstituted or monosubstituted or polysubstituted by a substituent selected from a halogen atom, a (C₁-C₇)alkyl, a trifluoromethyl, a hydroxyl, a (C₁-C₇)alkoxy, a carboxyl, a (C₁-C₇)alkoxycarbonyl, a (C₁-C₇)alkylcarbonyloxy, a cyano, a nitro and an amino which is free or substituted by one or two (C₁-C₇)alkyls, said substituents being identical or different;
- R_{19} and R_{20} are each independently a hydrogen or a (C_1-C_7) alkyl; R_{20} can also be a (C_3-C_7) cycloalkyl; a (C_3-C_7) cycloalkylmethyl; a hydroxyl; a (C_1-C_4) alkoxy; a benzyl; a phenyl; or a (C_1-C_7) alkyl substituted by a hydroxyl, a (C_1-C_3) alkoxy, a phenyl, a carboxyl, a (C_1-C_3) alkoxycarbonyl or a carbamoyl which is unsubstituted or substituted by one or two (C_1-C_7) alkyls;
- or R₁₉ and R₂₀, together with the nitrogen atom to which they are bonded, form a heterocycle selected from azetidine, pyrrolidine, piperidine, morpholine, thiomorpholine, perhydroazepine and piperazine which is unsubstituted or substituted in the 4-position by a (C₁-C₄)alkyl;
 - R_{21} is a hydrogen or a (C_1-C_7) alkyl;

5

10

25

- R_{22} is a hydrogen or a (C_1-C_7) alkyl;
- R_{23} and R_{24} are each independently a hydrogen or a (C_1 - C_7)alkyl;
- 20 R₂₅ is a hydrogen or a (C₁-C₇)alkyl; and
 - R_{26} and R_{27} are each independently a hydrogen or a (C_1-C_7) alkyl; R_{27} can also be a formyl or a (C_1-C_7) alkylcarbonyl;

in which Ar2 is as defined above;

in which Ar2 is as defined above;

in which Ar2 is as defined above;

-
$$i_5$$
- or a group Ar_2 - C-CH- $||$ N-O-(CH₂),- Am_1

in which:

- Ar2 is as defined above;
- Am_1 is an amino group substituted by two $(C_1\text{-}C_4)$ alkyls; and
- 5 r is two or three;

in which:

- Ar₂ is as defined above;
- W_2 is an oxygen atom; a sulfur atom; a sulfinyl; a sulfonyl; or a group -NL₁-;
 - L_1 is a hydrogen; a $(C_1$ - $C_4)$ alkyl; a $(C_1$ - $C_4)$ alkylcarbonyl; or a group - $(CH_2)_v$ - Am_2 ;
 - v is one, two or three; and
- Am₂ is an amino group which is unsubstituted or monosubstituted or disubstituted by a (C₁-C₄)alkyl; Am₂ can also be a pyrrolidino, piperidino or morpholino group;
 - ii or a group B_2 of the formula

in which J₂ is:

-
$$ii_3$$
- or a group Ar_2 -C-N

-
$$ii_5$$
- or a group Ar_2 - C - N
 N -O- $(CH_2)_f$ - Am_1

in which:

5

15

20

- Ar₂ is as defined above;
- r is two or three; and
- Am₁ is as defined above;
- iii or a group B3 of the formula

$$J_3$$
 N -

in which J₃ is:

 $\begin{array}{c} R_{28} \\ W_3 \\ ||^3 \\ | \end{array}$ - a group : $R_{29}\text{-C-N-CH}$

- 10 · W₃ is an oxygen atom; a sulfur atom; or a group NR_{30} , in which R_{30} is a hydrogen or a (C_1-C_3) alkyl;
 - R₂₈ is a hydrogen; a (C₁-C₆)alkyl; a (C₃-C₆)alkenyl in which one vinylic carbon atom is not bonded to the nitrogen atom; a 2-hydroxyethyl; a (C₃-C₇)cycloalkyl; a phenyl which is unsubstituted or monosubstituted or polysubstituted by a substituent selected from a halogen atom, a trifluoromethyl, a (C₁-C₄)alkyl, a (C₁-C₄)alkoxy, a nitro, an amino and a hydroxyl, said substituents being identical or different; or a 6-membered heteroaryl containing one or two nitrogen atoms as heteroatoms, said heteroaryl being unsubstituted or monosubstituted or polysubstituted by a substituent selected from a halogen atom, a trifluoromethyl, a (C₁-C₄)alkyl, a (C₁-C₄)alkoxy, a nitro, an amino and a hydroxyl, said substituents being identical or different;
- R₂₉ is a hydrogen; a (C₁-C₆)alkyl which is unsubstituted or substituted by a hydroxyl and/or by one, two or three fluorine atoms; a (C₃-C₆)cycloalkyl; a (C₁-C₅)alkoxy (only when W₃ is an oxygen atom); a (C₃-C₆)cycloalkoxy (only when W₃ is an oxygen atom); or a group -NR₃₁R₃₂ containing from zero to seven carbon atoms, R₂₉ being other than an unsubstituted (C₁-C₄)alkyl when simultaneously W₃ is an oxygen and R₂₈ is a phenyl which is unsubstituted or monosubstituted or polysubstituted by a substituent selected from a halogen atom, a nitro, a hydroxyl, a trifluoromethyl, a (C₁-C₄)alkyl and a (C₁-C₄)alkoxy, said substituents being identical or different; a pyridyl; or a pyrimidyl;
 - or R₂₈ and R₂₉ together form a divalent hydrocarbon group L₂, in which the 1-position is bonded to the carbon atom carrying the substituent W₃, the divalent

hydrocarbon group L_2 being selected from a trimethylene, a cis-propenylene, a tetramethylene, a cis-butenylene, a cis, cis-butadienylene, a pentamethylene and a cis-pentenylene, said divalent hydrocarbon group L_2 being unsubstituted or substituted by one or two methyls; and

- R₃₁ and R₃₂ are each independently a hydrogen, a (C₁-C₅)alkyl or a (C₃-C₆)cycloalkyl; or R₃₁ and R₃₂, together with the nitrogen atom to which they are bonded, form a heterocycle selected from pyrrolidine, piperidine, morpholine, thiomorpholine (or its S-oxide) and piperazine which is unsubstituted or substituted in the 4-position by a (C₁-C₄)alkyl;
- 10 iv or a group B₄ of the formula

- W₄ is a (C₁-C₈)alkyl or a (C₃-C₈)cycloalkyl, said alkyl and cycloalkyl groups being unsubstituted or substituted by one or more substituents selected from a halogen atom; a (C₃-C₆)cycloalkyl; a cyano; a nitro; a hydroxyl; a (C₁-C₄)alkoxy; a formyloxy; a (C₁-C₄)alkylcarbonyloxy; an arylcarbonyl; a heteroarylcarbonyl; an oxo; an imino which is unsubstituted or substituted on the nitrogen atom by a (C₁-C₆)alkyl, a (C₃-C₆)cycloalkyl, a formyl, a (C₁-C₄)alkylcarbonyl or an arylcarbonyl; a hydroxyimino which is unsubstituted or substituted on the oxygen atom by a (C₁-C₄)alkyl or a phenyl; a group -NR₃₃R₃₄ containing from zero to seven carbon atoms; a group -NR₃₅R₃₆; a group -C(=NR₃₇)NR₃₈R₃₉, in which the group -NR₃₈R₃₉ contains from zero to seven carbon atoms; and a group -CON(OR₄₀)R₄₁, said substituents being identical or different;
- 25 R₃₃ and R₃₄ are each independently a hydrogen, a (C₁-C₅)alkyl or a (C₃-C₆)cycloalkyl; or R₃₃ and R₃₄, together with the nitrogen atom to which they are bonded, form a heterocycle selected from pyrrolidine, piperidine, morpholine, thiomorpholine (or its S-oxide) and piperazine which is unsubstituted or substituted in the 4-position by a (C₁-C₄)alkyl;
- 30 R₃₅ is a hydrogen or a (C₁-C₄)alkyl;
 - R_{36} is a formyl; a (C_1 - C_4)alkylcarbonyl; an arylcarbonyl; a heteroarylcarbonyl; or a group - $C(=W_5)NR_{38}R_{39}$, in which the group - $NR_{38}R_{39}$ contains from zero to seven carbon atoms;
 - W₅ is an oxygen atom; a sulfur atom; a group NR₃₇; or a group CHR₄₂;

- R₃₇ is a hydrogen or a (C₁-C₄)alkyl; or R₃₇ and R₃₉ together form an ethylene group or a trimethylene group;
- R₃₈ and R₃₉ are each independently a hydrogen, a (C₁-C₅)alkyl or a (C₃-C₆)cycloalkyl; or R₃₈ and R₃₉, together with the nitrogen atom to which they are bonded, form a heterocycle selected from pyrrolidine, piperidine, morpholine, thiomorpholine (or its S-oxide) and piperazine which is unsubstituted or substituted in the 4-position by a (C₁-C₄)alkyl; or R₃₈ is a hydrogen or a (C₁-C₄)alkyl and R₃₉ and R₃₇ together form an ethylene group or a trimethylene group;
- R₄₀ and R₄₁ are each independently a (C₁-C₃)alkyl;
 - R₄₂ is a cyano; a nitro; or a group SO₂R₄₃;
 - R₄₃ is a (C₁-C₄)alkyl or a phenyl;

and when W_4 is a cyclic group or when a substituent of W_4 is a cyclic group or contains a cyclic group, said cyclic groups can also be substituted on a carbon atom by one or more (C_1-C_3) alkyls; and when a substituent of W_4 contains an aryl group or a heteroaryl group, said aryl or heteroaryl groups can also be monosubstituted or polysubstituted by a substituent selected from a halogen atom, a (C_1-C_4) alkyl, a (C_1-C_4) alkoxy, a cyano, a trifluoromethyl and a nitro, said substituents being identical or different;

- v - or a group B5 of the formula

in which:

5

15

20

25

- W₆ and W₇ are each a hydrogen; or W₆ is a hydrogen and W₇ is a hydroxyl;
- W₈ is an aryl or a heteroaryl which are unsubstituted or substituted by an aryl, an arylcarbonyl, a heteroaryl or a heteroarylcarbonyl; said aryl or heteroaryl groups can also be monosubstituted or polysubstituted on the aromatic or heteroaromatic moiety and on a carbon atom by a substituent selected from a halogen atom; a cyano; a trifluoromethyl; a nitro; a hydroxyl; a (C₁-C₅)alkoxy; a formyloxy; a (C₁-C₄)alkylcarbonyloxy; a group -NR₃₃R₃₄ containing from zero to seven carbon atoms; a group -NR₃₅R₃₆; a group -C(=NR₃₇)NR₃₈R₃₉, in which the group -NR₃₈R₃₉ contains from zero to seven carbon atoms; a group -COOR₄₄; a group -CONR₄₅R₄₆, in which the group NR₄₅R₄₆ contains from zero to seven carbon atoms; a mercapto; a group -S(O)₅R₄₇; a (C₁-C₅)alkyl; a formyl;

and a (C_1-C_4) alkylcarbonyl, said substituents being identical or different; when W_6 and W_7 are each a hydrogen, W_8 is other than a phenyl which is unsubstituted or monosubstituted or polysubstituted by a substituent selected from a halogen atom, a nitro, a hydroxyl, a trifluoromethyl and a (C_1-C_4) alkoxy, said substituents being identical or different; a pyridyl; a thienyl; a pyrimidyl; or an imidazolyl which is unsubstituted or substituted by a (C_1-C_4) alkyl;

- or W₇ is a hydrogen and W₆ and W₈, together with a diradical W₉ and the piperidine carbon atom to which they are bonded, form a spiro ring in which W₈ is a phenyl substituted in the *ortho* position by a diradical W₉, which is itself joined to W₆, said phenyl being unsubstituted or substituted by a substituent selected from a halogen atom, a (C₁-C₃)alkyl, a (C₁-C₃)alkoxy, a hydroxyl, a (C₁-C₃)alkylthio, a (C₁-C₃)alkylsulfinyl and a (C₁-C₃)alkylsulfonyl; the diradical W₉ is a methylene, a carbonyl or a sulfonyl; and W₆ is an oxygen atom or a group -NR₄₈-, in which R₄₈ is a hydrogen or a (C₁-C₃)alkyl;
- R₃₃, R₃₄, R₃₅, R₃₆, R₃₇, R₃₈ and R₃₉ are as defined above for the group B₄;
 - R₄₄ is a hydrogen; a (C₁-C₅)alkyl; an aryl; a heteroaryl; an arylmethyl; or a heteroarylmethyl;
 - R₄₅ and R₄₆ are each independently a hydrogen, a (C₁-C₅)alkyl or a (C₃-C₆)cycloalkyl; or R₄₅ and R₄₆, together with the nitrogen atom to which they are bonded, form a heterocycle selected from pyrrolidine, piperidine, morpholine, thiomorpholine (or its S-oxide) and piperazine which is unsubstituted or substituted in the 4-position by a (C₁-C₄)alkyl;
 - s is zero, one or two;

5

10

15

- R_{47} is a (C_1-C_6) alkyl; a (C_3-C_6) cycloalkyl; an aryl; or a heteroaryl;
- and when W₈ or a substituent of W₈ contains a cyclic group, said cyclic group can also be substituted by one or more methyls; and when a heteroaryl group forming part of W₈ or of a substituent of W₈ contains a nitrogen atom as the heteroatom, said nitrogen atom can also be substituted by a (C₁-C₅)alkyl; and when W₈ or a substituent of W₈ contains a (C₁-C₅)alkyl, (C₁-C₅)alkoxy, formyl or (C₁-C₄)-alkylcarbonyl group, said (C₁-C₅)alkyl, (C₁-C₅)alkoxy, formyl or (C₁-C₄)alkylcarbonyl groups can also be substituted by a hydroxyl, a (C₁-C₃)alkoxy or one or more halogen atoms, with the proviso that a carbon atom bonded to a nitrogen atom or to an oxygen atom is not substituted by a hydroxyl or an alkoxy group, and with the proviso that a carbon atom in the α-position of a (C₁-C₄)alkylcarbonyl group is not substituted by a chlorine, bromine or iodine atom;
 - vi or a group B6 of the formula

in which J4 is:

-
$$v_{10}$$
 - either a group V_{11}

in which:

10

- W₁₀ is a phenyl which is unsubstituted or monosubstituted to trisubstituted by a substituent selected from a halogen atom, a (C₁-C₆)alkoxy, a (C₁-C₆)alkyl and a trifluoromethyl, said substituents being identical or different; a benzyl which is unsubstituted or monosubstituted to trisubstituted by a substituent selected from a halogen atom, a (C₁-C₆)alkoxy, a (C₁-C₆)alkyl and a trifluoromethyl, said substituents being identical or different; a naphthyl which is unsubstituted or monosubstituted to trisubstituted by a substituent selected from a halogen atom, a (C₁-C₆)alkoxy, a (C₁-C₆)alkyl and a trifluoromethyl, said substituents being identical or different; a pyridyl which is unsubstituted or monosubstituted or disubstituted by a substituent selected from a halogen atom, a (C₁-C₆)alkyl and a (C₁-C₆)alkoxy, said substituents being identical or different; a thienyl; a pyrimidyl; or an imidazolyl; and
 - W₁₁ is a group -CONHR₄₉;
 - R_{49} is a group CH_3 -CHOH-CH-COO-(C_1 - C_6) alkyl;
 - a group (C_1-C_6) alkyl-OCO-CH $_2$ -CH $_2$ -CH-COO- (C_1-C_6) alkyl ;
- 20 a group $-CH_2CH_2N(CH_3)_2$;

$$-vi_2$$
 - or a group : R_{50} R_{51} R_{51} R_{51} R_{51} R_{51} R_{51} R_{52} R_{53} R_{54} R_{55} R_{55

in which:

5

- R_{50} is a hydrogen, a (C_1-C_6) alkyl or a benzyl; and
- R₅₁ is from one to three substituents selected from a hydrogen, a halogen atom, a trifluoromethyl, a (C₁-C₆)alkyl and a (C₁-C₆)alkoxy, said substituents being identical or different;
 - vii or a group B7 of the formula

- f and g are each independently zero, one, two, three, four or five, with the proviso that f + g is equal to one, two, three, four or five;
 - W₁₂ is a direct bond; a (C₁-C₃)alkylene which is unsubstituted or substituted by an oxo, a group OR₅₂, a halogen, a trifluoromethyl or a phenyl which is itself

unsubstituted or mono-, di- or tri-substituted by a substituent selected from a hydroxyl, a cyano, a halogen and a trifluoromethyl; a group $-S(O)_k$ -; a group $-S(O)_k$ -; a group $-S(O)_k$ -(C_1 - C_2)alkylene; a group $-S(O)_k$ -NH-; a group $-S(O)_j$ -NR₅₂-; a group $-S(O)_j$ -NR₅₂-; a group $-S(O)_j$ -NR₅₂-(C_1 - C_2)alkylene; a group $-CONR_{52}$ -; a group $-CONR_{52}$ -; a group -COO-; or a group -COO-(C_1 - C_2)alkylene;

- W_{13} is a group -NR₅₃-; an oxygen atom; a sulfur atom; a sulfinyl; or a sulfonyl, with the proviso that when W_{12} is a direct bond and when W_{14} is a (C₁-C₃)alkylene, W_{13} is a group -NR₅₃-;
- W₁₄ is a direct bond; a (C₁-C₃)alkylene which is unsubstituted or substituted by an oxo, a group OR₅₂, a halogen, a trifluoromethyl or a phenyl which is itself unsubstituted or mono-, di- or tri-substituted by a substituent selected from a group OR₅₂, a halogen and a trifluoromethyl; a group -S(O)_k-; a group (C₁-C₃)alkylene-S(O)_k-; a group -S(O)_k-(C₁-C₂)alkylene; a group -NHS(O)_j-; a group -S(O)_jNR₅₂-; a group -S(O)_j-NR₅₂-(C₁-C₂)alkylene; a group -NHCO-(C₁-C₂)alkylene; a group -NR₅₂-CO-; a group -NR₅₂-(C₁-C₂)alkylene-OCO-; a group -OCO-; or a group (C₁-C₂)alkylene-OCO-;
 W₁₅-W₁₆ together form two adjacent atoms of a cyclic radical of the formula

said cyclic radical being a phenyl, a naphthyl or a heteroaryl group selected from a benzimidazolyl, a benzofuranyl, a benzoxazolyl, a furanyl, an imidazolyl, an indolyl, an isoxazolyl, an isothiazolyl, an oxadiazolyl, an oxazolyl, a pyrazinyl, a pyrazolyl, a pyridyl, a pyrimidyl, a pyrrolyl, a quinolyl, a tetrazolyl, a thiadiazolyl, a thiazolyl, a thienyl and a triazolyl, and said phenyl, naphthyl or heteroaryl cyclic radical being unsubstituted or mono-, di- or tri-substituted by R₅₄;

- k is zero, one or two;

•)

5

- j is one or two;

30

- R₅₂ is a hydrogen; a (C₁-C₆)alkyl which is unsubstituted or monosubstituted or disubstituted by a substituent selected independently from a hydroxyl, an oxo, a cyano, a halogen atom, a trifluoromethyl and a phenyl which is itself unsubstituted or substituted by a hydroxyl, a (C₁-C₃)alkyl, a cyano, a halogen, a trifluoromethyl or a (C₁-C₄)alkoxy; a phenyl, a pyridyl or a thiophene, said phenyl, pyridyl or thiophene being unsubstituted or mono-, di- or tri-substituted

by a substituent selected independently from a hydroxyl, a (C_1-C_4) alkyl, a cyano, a halogen atom and a trifluoromethyl; or a (C_1-C_3) alkoxy;

- R₅₃ is a hydrogen; a (C₁-C₈)alkyl which is unsubstituted or monosubstituted or polysubstituted by a substituent selected from a group -OR₅₂, an oxo, a group -NHCOR₅₂, a group -NR₅₅R₅₆, a cyano, a halogen atom, a trifluoromethyl and a phenyl which is itself unsubstituted or substituted by a hydroxyl, a cyano, a halogen atom or a trifluoromethyl; a group -S(O)R₅₇; a group -CO₂R₅₇; a group -CO₂R₅₇; a group -CO₂R₅₇; or a group -CONR₅₆R₅₇;
- R₅₄ is a hydrogen; a (C₁-C₆)alkyl which is unsubstituted or monosubstituted or disubstituted by a hydrogen or a hydroxyl; an oxo; a group -OR₅₂; a halogen atom; a trifluoromethyl; a nitro; a cyano; a group -NR₅₅R₅₆; a group -NR₅₅CO₂R₅₆; a group -NR₅₅CO₂R₅₆; a group -NR₅₅S(O)_jR₅₆; a group -CONR₅₅R₅₆; a group -CO₂R₅₂; a group -S(O)_jR₅₂; or a heteroaryl group, said heteroaryl being selected from a benzimidazolyl, a benzofuranyl, a benzoxazolyl, a furanyl, an imidazolyl, an indolyl, an isoxazolyl, an isothiazolyl, an oxadiazolyl, an oxazolyl, a pyrazinyl, a pyrazolyl, a pyridyl, a pyrimidinyl, a pyrrolyl, a quinolyl, a tetrazolyl, a thiadiazolyl, a thiazolyl, a thienyl and a triazolyl, and said heteroaryl being unsubstituted or monosubstituted or disubstituted by R₅₈;
- 20 R₅₅ is R₅₂;

- R₅₆ is R₅₂; .
- or R₅₅ and R₅₆, together with the atoms to which they are bonded, form a five-, six- or seven-membered, saturated monocyclic heterocycle containing one or two heteroatoms, said heteroatoms being selected independently from a nitrogen atom, an oxygen atom and a sulfur atom, said heterocycle being unsubstituted or monosubstituted or disubstituted by a substituent selected from a hydroxyl, an oxo, a cyano, a halogen atom and a trifluoromethyl;
- R₅₇ is a (C₁-C₆)alkyl which is unsubstituted or mono-, di- or tri-substituted by a substituent selected from a hydroxyl, an oxo, a cyano, a group -OR₅₂, a group -NR₅₅R₅₆, a group -NR₅₅COR₅₆, a halogen atom, a trifluoromethyl and a phenyl which is itself unsubstituted or mono-, di- or tri-substituted by a substituent selected from a hydroxyl, an oxo, a cyano, a group -NHR₅₂, a group -NR₅₅R₅₆, a group -NR₅₅COR₅₆, a halogen atom, a trifluoromethyl and a (C₁-C₃)alkyl;
- R₅₈ is a hydrogen; a (C₁-C₆)alkyl which is unsubstituted or monosubstituted or disubstituted by a hydrogen or a hydroxyl; an oxo; a group -OR₅₂; a trifluoromethyl; a nitro; a cyano; a group -NR₅₅R₅₆; a group -NR₅₅COR₅₆; a

group -NR₅₅CO₂R₅₆; a group -NHS(O)_jR₅₂; a group -NR₅₅S(O)_jR₅₆; a group -CONR₅₅R₅₆; a group -CO₂R₅₂; a group -S(O)_jR₅₂; or a phenyl, and the group B₇ being other than the group B₅ when W₇ is a hydrogen and W₆ and W₈, together with a diradical W₉ and the piperidine carbon atom to which they are bonded, form a spiro ring;

- viii - or a group B₈ of the formula

in which:

10

15

20

25

- W₁₇ is a direct bond; a double bond; or a divalent hydrocarbon radical;
- W₁₈ is a radical which is joined to the carbon atom of the heterocycle either by a single bond when W₁₇ is a double bond, or by a double bond in the other cases;
 - W₁₉ is an unsubstituted or optionally substituted heteroatom;
 - W₂₀ is a hydrocarbon radical of which the 1-position is joined to W₁₉; and
 - the meanings of W₁₇, W₁₈, W₁₉ and W₂₀ are selected from:
 - (a) W_{17} is a direct bond; W_{18} is an oxo or thioxo group; W_{19} is an oxy or thio group or a group NR_{59} ; and W_{20} is a hydrocarbon radical L_3 ; or
 - (b) W_{17} is a direct bond; W_{18} is a group NR_{60} ; W_{19} is a group NR_{61} ; and W_{20} is a hydrocarbon radical L_3 ; or
 - (c) W_{17} is a double bond; W_{18} is a group OR_{61} , SR_{61} or $NR_{62}R_{63}$; W_{19} is a nitrogen atom; and W_{20} is a hydrocarbon radical L_3 ; or
 - (d) W_{17} is a methylene which is unsubstituted or substituted by one or two methyl groups; W_{18} is an oxo or thioxo group or a group NR_{64} ; W_{19} is an oxy, thio, sulfinyl or sulfonyl group or a group NR_{61} ; and W_{20} is a hydrocarbon radical L_4 ; or
 - (e) W_{17} is a direct bond; W_{18} is an oxo or thioxo group or a group NR_{64} ; W_{19} is a nitrogen atom; and W_{20} is a hydrocarbon radical L_5 ; or
 - (f) W_{17} is a methine group which is unsubstituted or substituted by one or two methyl groups; W_{18} is an oxo or thioxo group or a group NR_{64} ; W_{19} is a nitrogen atom; and W_{20} is a hydrocarbon radical L_6 ; and
- .(g) W_{17} is a cis-vinylene group which is unsubstituted or substituted by one or two methyl groups; W_{18} is an oxo or thioxo group or a group NR_{64} ; W_{19} is a nitrogen atom; and W_{20} is a hydrocarbon radical L_7 ;
- R₅₉ is a hydrogen; a (C₁-C₃)alkyl; a group -CH₂COOR₆₅; or a group -CH₂CONR₆₆R₆₇;

- R_{60} is a hydrogen; a (C_1-C_3) alkyl; a cyano; a nitro; or a (C_1-C_3) alkylsulfonyl group;
- R₆₁ is a hydrogen or a (C₁-C₃)alkyl;
- R_{62} and R_{63} are each independently a hydrogen or a $(C_1\text{-}C_3)$ alkyl;
- or R₆₂ and R₆₃, together with the nitrogen atom to which they are bonded, form a
 heterocycle selected from pyrrolidine, piperidine, morpholine, thiomorpholine
 (or its S-oxide) and piperazine which is unsubstituted or substituted in the 4position by a (C₁-C₄)alkyl;
 - R₆₄ is a hydrogen or a (C₁-C₃)alkyl;
- 10 R_{65} is a hydrogen or a (C_1-C_3) alkyl;
 - R_{66} and \hat{R}_{67} are each independently a hydrogen; a $(C_1\text{-}C_3)$ alkyl; a phenyl; or a benzyl;
 - L₃ is an ethylene, a cis-vinylene, a trimethylene or a tetramethylene, said hydrocarbon radical L₃ being unsubstituted or substituted by one or two methyl
- 15 groups;
 - L₄ is an ethylene or a trimethylene, said hydrocarbon radical L₄ being unsubstituted or substituted by one or two methyl groups;
 - L_5 is a prop-2-en-1-yliden-3-yl which is unsubstituted or substituted by one or two methyl groups;
- 20 L_6 is a cis-vinylene which is unsubstituted or substituted by one or two methyl groups; and
 - L_7 is a methine which is unsubstituted or substituted by a (C_1-C_3) alkyl;
 - ix or a group B9 of the formula

25 in which J_5 is:

- a group

$$W_{21}$$
 $N-C$ X_{2} X_{2}

in which:

- X_2 is a (C₁-C₆)alkyl; a group -CH₂-OR₆₈; a group -CH₂-SR₆₈; a group -CH₂-S(O)R₆₉; a group -CH₂-SO₂R₆₉; a group -COOR₆₈; a group -C(=W₂₄)NR₇₀R₇₁; a group -C(R₆₈)(OR₇₂)(OR₇₃); a group

-CH₂NR₆₈C(=W₂₄)R₇₄; a group -CH₂-NR₆₈COOR₇₄; or a group -CH₂NR₆₈C(=W₂₄)NR₇₀R₇₁;

- W₂₁ is a direct bond and W₂₂ is a hydrocarbon radical of which the 1-position is joined to W₂₁, the hydrocarbon radical W₂₂ being selected from a trimethylene, a tetramethylene, a cis-1-butenylene and a cis,cis-butadienylene;
- or W_{21} is a group NR_{75} and W_{22} is a hydrocarbon radical selected from an ethylene, a trimethylene and a cis-vinylene;
- or W₂₁ is a nitrogen atom and W₂₂ is a cis,cis-prop-2-en-1-yliden-3-yl radical of which the 1-position is joined to W₂₁;
- 10 W₂₃ is an oxygen atom or a sulfur atom;
 - W24 is an oxygen atom or a sulfur atom;
 - R₆₈ is a hydrogen or a (C₁-C₆)alkyl;
 - R_{69} is a (C_1-C_6) alkyl;
- R_{70} and R_{71} are each independently a hydrogen; a $(C_1\text{-}C_6)$ alkyl which is unsubstituted or substituted by a hydroxyl or a $(C_1\text{-}C_3)$ alkoxy; an $\omega\text{-HO-}(C_1\text{-}C_6)$ alkyl; an $\omega\text{-}(C_1\text{-}C_3)$ alkoxy- $(C_1\text{-}C_6)$ alkyl; an $\omega\text{-phenyl-}(C_1\text{-}C_6)$ alkyl; an $\omega\text{-}R_{76}\text{OOC-}(C_1\text{-}C_6)$ alkyl; or an $\omega\text{-}R_{77}R_{78}\text{NCO-}(C_1\text{-}C_6)$ alkyl;
 - or R₇₀ and R₇₁, together with the nitrogen atom to which they are bonded, form a heterocycle selected from pyrrolidine, piperidine, morpholine, thiomorpholine (or its S-oxide) and piperazine which is unsubstituted or substituted in the 4-position by a methyl group or an ethyl group;
 - R_{72} and R_{73} are each independently a (C_1-C_3) alkyl;
 - or R₇₂ and R₇₃ together form a divalent hydrocarbon radical selected from an ethylene and a trimethylene;
- 25 R₇₄ is a hydrogen or a (C₁-C₆)alkyl;
 - R_{75} is a hydrogen or a (C_1-C_6) alkyl;
 - R₇₆ is a hydrogen or a (C₁-C₃)alkyl; and
 - R_{77} and R_{78} are each independently a hydrogen or a $(C_1 C_3)$ alkyl;
 - x or a group B_{10} of the formula

30

20

in which J₆ is:

- X_1 is as defined above for the group B_1 , X_1 being other than hydrogen when W_{25} is a (C_1-C_7) alkyl or a (C_3-C_7) cycloalkyl;
- W_{25} is a (C_1-C_7) alkyl or a (C_3-C_7) cycloalkyl; W_{25} can also be a group -NR₇₉R₈₀ when X_1 is a hydrogen, a cyano, a carboxyl, a (C_1-C_7) alkoxycarbonyl or a group
- 5 -CONR₁₉R₂₀; and
 - R_{79} and R_{80} are each independently a (C_1-C_7) alkyl;
 - or R₇₉ and R₈₀, together with the nitrogen atom to which they are bonded, form a heterocycle selected from azetidine, pyrrolidine, piperidine, morpholine, thiomorpholine and perhydroazepine,
- with the proviso that:

1/ when simultaneously:

- R₂ is a methyl group or R₁ and R₂ together form a group -(CH₂)₃-;
- Ar₁ is a 3,4-dichlorophenyl;
- T is a group -CH₂-; a group -CO-; a group -COO-; or a group -CONR₃;
- A is a direct bond; a group -(CH₂)_t- in which t is one, two or three; or a vinylene group;
 - or -T-A- is the group -SO₂-; and
 - Z is a phenyl which is unsubstituted or monosubstituted or polysubstituted by a halogen, a (C₁-C₄)alkyl, a (C₁-C₄)alkoxy or a nitro,
- B is a group B_1 of the formula

in which J₁ is a group

$$Ar_2$$
- $(CH_2)_x$ - C
 X_1

- 25 x is zero;
 - Ar₂ is a pyrid-2-yl or a phenyl which is unsubstituted or substituted by a halogen, a methyl or a (C₁-C₄)alkoxy; and
 - X₁ is other than a group selected from: formyl;
- (C_1-C_6) alkylcarbonyl;
 - -(CH₂)_m-OR₄ in which m is zero or one and R₄ is a hydrogen or a (C₁-C₇)alkyl;
 - -(CH₂)_m-OCOR₅ in which m is zero or one and R₅ is a hydrogen or a (C₁-C₆)alkyl;

- $(CH_2)_m$ -OCONH $(C_1$ - C_7)alkyl in which m is one;

5

- -NR₈R₉ in which R₈ and R₉ are each independently a hydrogen or a $(C_1$ - C_7)alkyl; R₉ can also be a $(C_3$ - C_7)cycloalkylmethyl, a benzyl or a phenyl; or R₈ and R₉, together with the nitrogen atom to which they are bonded, form a heterocycle selected from azetidine, pyrrolidine, piperidine, morpholine, thiomorpholine and perhydroazepine;
- - $(CH_2)_p$ - $NR_{10}R_{11}$ in which p is one and R_{10} and R_{11} are each independently a hydrogen or a $(C_1$ - $C_7)$ alkyl; R_{11} can also be a $(C_1$ - $C_7)$ cycloalkylmethyl or a benzyl;
- -NR₁₂COR₁₃ in which R₁₂ is a hydrogen or a (C_1-C_4) alkyl and R₁₃ is a hydrogen, a (C_1-C_7) alkyl, a phenyl, a benzyl, a pyridyl or a (C_3-C_7) cycloalkyl which is unsubstituted or substituted by one or more methyls; or R₁₂ and R₁₃ together are a group - $(CH_2)_u$ in which u is three or four;
 - - $(CH_2)_p$ -NR₁₄C(=W₁)R₁₆ in which p is one, W₁ is an oxygen atom, R₁₄ is a hydrogen or a (C₁-C₄)alkyl and R₁₆ is a hydrogen, a (C₁-C₇)alkyl, a phenyl, a benzyl, a pyridyl or a (C₃-C₇)cycloalkyl which is unsubstituted or substituted by one or more methyls;
 - - $(CH_2)_m$ - $NR_{14}COOR_{17}$ in which m is zero or one, R_{14} is a hydrogen or a $(C_1$ - C_4)alkyl and R_{17} is a $(C_1$ - C_7)alkyl or a phenyl;
- -(CH₂)_m-NR₁₄SO₂R₁₈ in which m is zero or one, R₁₄ is a hydrogen or a (C₁-C₄)alkyl and R₁₈ is a (C₁-C₇)alkyl, an amino which is free or substituted by one or two (C₁-C₇)alkyls, or a phenyl which is unsubstituted or monosubstituted or polysubstituted by a substituent selected from a halogen atom, a (C₁-C₇)alkyl, a trifluoromethyl, a hydroxyl, a (C₁-C₇)alkoxy, a carboxyl, a (C₁-C₇)alkoxyl, a carboxyl, a (C₁-C₇)alkyl, a (C₁-C₇)a
- C₇)alkoxycarbonyl, a (C_1-C_7) alkylcarbonyloxy, a cyano, a nitro and an amino which is free or substituted by one or two (C_1-C_7) alkyls, said substituents being identical or different;
- -(CH₂)_m-NR₁₄C(=W₁)NR₁₉R₂₀ in which m is zero or one, W₁ is an oxygen atom, R₁₄ is a hydrogen or a (C₁-C₄)alkyl and R₁₉ and R₂₀ are each independently a hydrogen or a (C₁-C₇)alkyl; R₂₀ can also be a (C₃-C₇)cycloalkyl, a (C₃-C₇)cycloalkylmethyl, a hydroxyl, a (C₁-C₄)alkoxy, a benzyl or a phenyl; or R₁₉ and R₂₀, together with the nitrogen atom to which they are bonded, form a heterocycle selected from azetidine, pyrrolidine, piperidine, morpholine, thiomorpholine and perhydroazepine;
- -(CH₂)_n-COOR₂₁ in which n is zero and R₂₁ is a (C₁-C₇)alkyl;

-(CH₂)_n-C(=W₁)NR₁₉R₂₀ in which n is zero, W₁ is an oxygen atom and R₁₉ and R₂₀ are as defined above; and

-CN;

5

.10

15

20

or X_1 does not form a double bond between the carbon atom to which it is bonded and the adjacent carbon atom of the piperidine ring;

or Ar_2 and X_1 , together with the carbon atom to which they are bonded, are other than a group of the formula

2/ when R_1 is hydrogen, R_2 is the methyl group, Ar_1 is the 3,4-dichlorophenyl group and T-A-Z is the thenoyl group, B is the group B_1 in which J_1 is the group

in which x is one, Ar_2 is the phenyl group and X_1 is other than hydrogen; 3/ when R_1 is hydrogen, R_2 is the methyl group, Ar_1 is the 3,4-dichlorophenyl group and T-A-Z is the 2,4-dichlorobenzoyl group, B is the group B_1 in which J_1 is the group

$$Ar_2$$
- $(CH_2)_x$ - C
 X_1

in which x is one, Ar_2 is the phenyl group and X_1 is other than hydrogen; or 4/ when R_1 and R_2 together form a group -(CH₂)₃-, Ar_1 is the 3,4-dichlorophenyl group and T-A-Z is the 2-(3-methoxyphenyl)acetyl group, B is the group B_1 in which J_1 is the group

$$Ar_2$$
- $(CH_2)_x$ - C
 X_1

in which x is one, Ar_2 is phenyl and X_1 is other than hydrogen; and its salts, where appropriate, with mineral or organic acids.

- 2. A compound of formula (I) according to claim 1 in which:
- 25 Z is Z' and is:

. a phenyl which is unsubstituted or monosubstituted or polysubstituted by a substituent selected from a halogen atom; a trifluoromethyl; a cyano; a hydroxyl;

a nitro; an amino which is unsubstituted or monosubstituted or disubstituted by a (C_1-C_4) alkyl; a benzylamino; a carboxyl; a (C_1-C_{10}) alkyl; a (C_3-C_8) cycloalkyl which is unsubstituted or monosubstituted or polysubstituted by a methyl; a (C_1-C_{10}) alkoxy; a (C_3-C_8) cycloalkoxy which is unsubstituted or monosubstituted or polysubstituted by a methyl; a mercapto; a (C_1-C_{10}) alkylthio; a formyloxy; a (C_1-C_6) alkylcarbonyloxy; a formylamino; a (C_1-C_6) alkylcarbonylamino; a benzoylamino; a (C_1-C_4) alkoxycarbonyl; a (C_3-C_7) cycloalkoxycarbonyl; a carbamoyl which is unsubstituted or monosubstituted or disubstituted by a (C_1-C_4) alkyl; a ureido which is unsubstituted or monosubstituted or disubstituted in the 3-position by a (C_1-C_4) alkyl or a (C_3-C_7) cycloalkyl; and a (pyrrolidin-1-yl)-carbonylamino, said substituents being identical or different;

- . a naphthyl which is unsubstituted or monosubstituted or polysubstituted by a halogen, a trifluoromethyl, a (C_1-C_4) alkyl, a hydroxyl or a (C_1-C_4) alkoxy; or
- . a pyridyl; a thienyl; an indolyl; a quinolyl; a benzothienyl; or an imidazolyl;
- 15 . Ar₁ is a 3,4-dichlorophenyl;

5

- . R_1 and R_2 together form a group -(CH2)3- or -(CH2)4-; and
- . B, T and A are as defined for (I) in claim 1, and its salts with mineral or organic acids.
- A compound of formula (I) according to claim 1 in which:
- Z is Z* and is a pyridyl, thiadiazolyl, indolyl, indazolyl, imidazolyl, benzimidazolyl, benzotriazolyl, benzofuranyl, benzothienyl, benzothiazolyl, benzisothiazolyl, quinolyl, isoquinolyl, benzoxazolyl, benzisoxazolyl, benzoxazinyl, benzodioxinyl, isoxazolyl, benzopyranyl, thiazolyl, thienyl, furyl, pyranyl, chromenyl, isobenzofuranyl, pyrrolyl, pyrazolyl, pyrazinyl, pyrimidinyl,
- pyridazinyl, indolizinyl, phthalazinyl, quinazolinyl, acridinyl, isothiazolyl, isochromanyl or chromanyl group, in which one or more double bonds can be hydrogenated, it being possible for said groups to be unsubstituted or optionally to contain one or more substituents such as an alkyl, phenyl, cyano, hydroxyalkyl, hydroxyl, alkylcarbonylamino, alkoxycarbonyl or thioalkyl group,
- in which the alkyl and alkoxy groups are C_1 - C_4 ;
 - R₁ and R₂ together form a group -(CH₂)₃-;
 - Ar₁ is a 3,4-dichlorophenyl;
 - T is a group -CO-;
 - A is a direct bond; and
- B is as defined for a compound of formula (I) in claim 1, and its salts with mineral or organic acids.

4. A compound of the formula according to one of claims 1 or 3 of the formula

$$\begin{array}{c|c} CH_2 & CH_2 \\ CH_2 & CH_2 \\ \hline B^{\bullet}\text{-}(CH_2)_3\text{-}C & CH_2 \\ \hline CH_2 & N\text{-}CO-Z^{\bullet} \\ \hline Cl & Cl \\ \end{array}$$

in which:

- Z° is as defined in claim 3; and
- 5 B° is a group of the formula

in which J° is:

- i^{\bullet} - either a group of the structure

$$\begin{array}{c|c}
 & W^{\bullet} \\
R_{19} & C \\
R_{20} & O
\end{array}$$

- in which:
 - W^{\bullet} is a phenyl or a benzyl and R_{19} and R_{20} are as defined for a compound of formula (I) in claim 1;
 - or W^{\bullet} is a group -NR₇₉R₈₀ in which R₇₉ and R₈₀ are as defined for (I) in claim 1 and R₁₉ and R₂₀ are each hydrogen;
- 15 i** or a group of the structure

- R° is hydrogen, a methyl group, an acetyl group, a methoxycarbonyl group, a dimethylaminocarbonyl group or a methanesulfonyl group,
- and its salts with mineral or organic acids.

5. A compound according to one of claims 1, 3 or 4 of the formula

$$CH_2$$
 CH_2
 CH_2
 CH_2
 N -CO-Z**
 CI

in which:

- B^{\bullet} is as defined for a compound of formula (I^{\bullet}) in claim 4; and
- Z** is a pyridyl, for example a 4-pyridyl, a 2-thienyl, a 3-thienyl, a 2-furyl or a 3-furyl,

and its salts with mineral or organic acids.

6. A compound according to one of claims 1, 3, 4 or 5 of the formula

$$\begin{array}{c|c} & CH_2 \\ CH_2 \\ N\text{-}(CH_2)_3\text{-}C \\ CH_2 \\ N\text{-}CO-Z \\ \end{array} \qquad \begin{array}{c} CH_2 \\ N\text{-}CO-Z \\ \end{array} \qquad \begin{array}{c} (I^{\bullet \bullet}a) \\ CI \\ \end{array}$$

- in which:
 - Z^{••} is as defined in claim 5, and its salts with mineral and organic acids.
 - 7. A compound according to claim 1 or claim 2 of formula (I) in which simultaneously:
- B is a group B₃ in which:
 - . either W_3 is oxygen, R_{29} is a (C_1-C_4) alkyl or a trifluoromethyl and R_{28} is a (C_1-C_6) alkyl, especially an ethyl;
 - . or W_3 is oxygen, R_{28} is an allyl or a cyclohexyl and R_{29} is a methyl;
 - . or W_3 is oxygen, R_{28} is an ethyl and R_{29} is a methylamino or a dimethylamino;
- or W₃ is oxygen and R₂₈ and R₂₉ together form a 1,3-propylene, 1,4-butylene or cis,cis-1,4-butadienyl group;
 - . or W_3 is sulfur and R_{28} and R_{29} together form a 1,4-butylene group;
 - R_1 and R_2 together form a group -(CH₂)₃- or -(CH₂)₄-;
 - Ar₁ is a 3,4-dichlorophenyl;

- Z = Z' as defined in claim 2; and
- T and A are as defined above for a compound of formula (I) in claim 1, and its salts with mineral or organic acids.
- A compound according to claim 1 or claim 2 of formula (I) in which simultaneously:
 - B is B₄ in which: W₄ is 1-hydroxypropyl, 1-hydroxyethyl, 1-hydroxybutyl, 2hydroxybut-2-yl, 4-hydroxyhept-4-yl, 2-hydroxyethyl, 1-hydroxyiminopropyl (syn or anti), 1-methoxyiminopropyl (syn or anti), 2-acetoxyethyl, 2acetamidoethyl, carboxyl, ethoxycarbonyl or pyrrolidin-1-ylcarbonyl;
- R_1 and R_2 together form a group -(CH₂)₃- or -(CH₂)₄-;
 - Ar₁ is a 3,4-dichlorophenyl;
 - Z = Z' as defined in claim 2; and
 - T and A are as defined above for a compound of formula (I) in claim 1, and its salts with mineral or organic acids.
- A compound according to claim 1 or claim 2 of formula (I) in which 15 simultaneously:
 - B is a group B5 in which: W7 is a hydroxyl, W6 is a hydrogen and W8 is a phenyl; or W₆ and W₇ are hydrogen and W₈ is selected from the following groups: 5-methyl-1,3,4-oxadiazol-2-yl, 4-ethoxycarbonylimidazol-2-yl,
- 20 fluoropyrid-3-yl, 2-methylthiophenyl, 4-methylthiophenyl, 2methylsulfinylphenyl, 4-methylsulfinylphenyl 4-(Nmethylcarbamoyl)phenyl; or W7 is hydrogen and W6 and W8, together with the piperidine to which they are bonded, form a spiro[isobenzofuran-1(3H),4'piperid]-1'-yl group or a 3-oxospiro[isobenzofuran-1(3H),4'-piperid]-1'-yl 25 group;
- - R_1 and R_2 together form a group -(CH₂)₃- or -(CH₂)₄-;
 - Arı is a 3,4-dichlorophenyl;
 - -Z = Z' as defined in claim 2; and
 - T and A are as defined above for a compound of formula (I) in claim 1,
- and its salts with mineral or organic acids. 30
 - A compound according to claim 1 or claim 2 of formula (I) in which 10. simultaneously:
 - B is a group B₆ as defined in claim 1;
 - R_1 and R_2 together form a group -(CH₂)₃- or -(CH₂)₄-;
- Arı is a 3,4-dichlorophenyl; 35
 - Z = Z' as defined in claim 2; and

```
- T and A are as defined above for a compound of formula (I) in claim 1, and its salts with mineral or organic acids.
```

- 11. A compound according to claim 1 or claim 2 of formula (I) in which simultaneously:
- 5 B is a group B₇ selected from:

- a) a 1-methanesulfonyl-spiro(indoline-3,4'-piperid-1'-yl)
- b) a 1-benzyloxycarbonyl-spiro(indoline-3,4'-piperid-1'-yl)
- c) a spiro(indoline-3,4'-piperid-1'-yl)
- d) a 1-acetyl-spiro(indoline-3,4'-piperid-1'-yl)
- e) a 1-propionyl-spiro(indoline-3,4'-piperid-1'-yl)
 - f) a 1-formyl-spiro(indoline-3,4'-piperid-1'-yl)
 - g) a 1-tert-butylcarbonyl-spiro(indoline-3,4'-piperid-1'-yl)
 - h) a 1-methylaminocarbonyl-spiro(indoline-3,4'-piperid-1'-yl)
 - i) a 1-ethoxycarbonyl-spiro(indoline-3,4'-piperid-1'-yl)
- j) a 1-ethanesulfonyl-spiro(indoline-3,4'-piperid-1'-yl)
 - k) a 1-isopropanesulfonyl-spiro(indoline-3,4'-piperid-1'-yl)
 - l) a 1'-methyl-1-methanesulfonyl-spiro(indoline-3,4'-piperidinio-1') iodide
 - m) a 1-(2-aminoacetyl)-spiro(indoline-3,4'-piperid-1'-yl)
 - n) a 1-methyl-spiro(indol-2-one-3,4'-piperid-1'-yl)
- o) a 2-methyl-spiro(isoindol-1-one-3,4'-piperid-1'-yl)
 - p) a spiro(2-oxotetrahydroquinoline-4-4'-piperid-1'-yl)
 - q) a 1-methyl-spiro(2-oxotetrahydroquinoline-4,4'-piperid-1'-yl)
 - r) a spiro(2,3-dihydrobenzothiophene-3,4'-piperid-1'-yl)
 - s) a 5-fluoro-spiro(2,3-dihydrobenzofuran-3,4'-piperid-1'-yl)
- t) a spiro(2,3-dihydrobenzofuran-3,4'-piperid-1'-yl)
 - u) a spiro(2,3-dihydrobenzothiophene-3,4'-piperid-1'-yl) 1-oxide
 - v) a spiro(2,3-dihydrobenzothiophene-3,4'-piperid-1'-yl) 1,1-dioxide
 - w) a 5-fluoro-1-methanesulfonyl-spiro(indoline-3,4'-piperid-1'-yl)
 - x) a 1-methanesulfonyl-5-methoxy-spiro(indoline-3,4!-piperid-1'-yl)
- y) a 1-methanesulfonyl-5-methyl-spiro(indoline-3,4'-piperid-1'-yl)
 - z) a 5-chloro-1-methanesulfonyl-spiro(indoline-3,4'-piperid-1'-yl)
 - aa) a 7-fluoro-1-methanesulfonyl-spiro(indoline-3,4'-piperid-1'-yl)
 - ab) a 1-acetyl-5-fluoro-spiro(indoline-3,4'-piperid-1'-yl)
 - ac) a 1-acetyl-5-chloro-spiro(indoline-3,4'-piperid-1'-yl)
- ad) a 1-acetyl-5-methyl-spiro(indoline-3,4'-piperid-1'-yl)
 - ae) a 1-acetyl-6-fluoro-spiro(indoline-3,4'-piperid-1'-yl)

- af) a l-acetyl-4-fluoro-spiro(indoline-3,4'-piperid-l'-yl) ag) a l-(N,N-dimethylcarbamoyl)-spiro(indoline-3,4'-piperid-l'-yl);
- R_1 and R_2 together form a group -(CH₂)₃- or -(CH₂)₄-;
- Arı is a 3,4-dichlorophenyl;
- 5 Z = Z' as defined in claim 2; and
 - T and A are as defined above for (I) in claim 1, and its salts with mineral or organic acids.
 - 12. A compound according to claim 1 or claim 2 of formula (I) in which simultaneously:
- B is a group B₈ in which: W₁₇ is a direct bond, W₁₈ is an oxo or thioxo group,
 W₁₉ is an oxy group or a group NH and W₂₀ is an ethylene or trimethylene group;
 - R_1 and R_2 together form a group -(CH_2)3- or -(CH_2)4-;
 - Arı is a 3,4-dichlorophenyl;
- 15 Z = Z' as defined according to claim 2; and
 - T and A are as defined above for (I) for claim 1, and its salts with mineral or organic acids.
 - 13. A compound according to claim 1 or claim 2 of formula (I) in which simultaneously:
- B is a group B₉ in which: X₂ is a group -COOR₆₈ or a group -C(=W₂₄)NR₇₀R₇₁ and W₂₁, W₂₂ and W₂₃, together with the nitrogen atom, form a 2-oxopiperidino group or a 2-oxoperhydropyrimidin-1-yl group;
 - R_1 and R_2 together form a group -(CH_2)3- or -(CH_2)4-;
 - Ar₁ is a 3,4-dichlorophenyl;
- 25 Z = Z' as defined in claim 2; and
 - T and A are as defined above for (I) in claim 1, and its salts with mineral or organic acids.
 - 14. A compound according to claim 1 or claim 2 of formula (I) in which simultaneously:
- B is a group B₁₀ as defined in claim 1;
 - R_1 and R_2 together form a group -(CH_2)3- or -(CH_2)4-;
 - Ar₁ is a 3,4-dichlorophenyl;
 - Z = Z' as defined-in claim 2; and
 - T and A are as defined above for (I) in claim 1,
- and its salts with mineral or organic acids.

- 15. A compound according to claim 1, 2 or 14 of formula (I) in which simultaneously:
- B is a group B_{10} in which J_6 is a group

1

$$W_{\overline{25}}$$
 C X_1

- 5 in which:
 - W_{25} is a piperid-1-yl and X_1 is a hydrogen, or W_{25} is an azetidin-1-yl, a pyrrolidin-1-yl, a piperid-1-yl, a morpholin-4-yl, a thiomorpholin-4-yl or a perhydroazepin-1-yl and X_1 is a carbamoyl;
 - R_1 and R_2 together form a group -(CH_2)₃-;
- Ar₁ is a 3,4-dichlorophenyl;
 - Z = Z' as defined in claim 2;
 - T is a group -CO-; and
 - A is a direct bond,

and its salts with mineral or organic acids.

15 16. A compound according to one of claims 1 or 2 of the formula

$$\begin{array}{c|c} CH_2 \\ CH_2 \\ CH_2 \\ CH_2 \\ CH_2 \\ N\text{-CO-A'-Z'} \\ Ar'_1 \end{array} (Ia)$$

in which:

- Ar'₁ is a phenyl which is unsubstituted or monosubstituted or polysubstituted by a substituent selected from a halogen atom, a hydroxyl, a (C₁-C₄)alkoxy; a (C₁-C₄)alkyl, a trifluoromethyl and a methylenedioxy, said substituents being identical or different;
 - A' is a direct bond or a group -CH₂-;
 - Z' is as defined in claim 2; and
- 25 Ba is a group Bla of the formula

in which J_{1a} is a group Ar_{2a} - $(CH_2)_x$ -C X_{1a}

- x is zero;

5

25

- Ar_{2a} is a phenyl which is unsubstituted or monosubstituted or polysubstituted by a substituent selected from a halogen atom, a hydroxyl, a (C_1-C_4) alkoxy, a (C_1-C_4) C₄)alkyl, a trifluoromethyl and a methylenedioxy, said substituents being identical or different; and
- X_{la} is a group selected from:
 - . hydrogen;
 - . $(C_1-C_7)alkyl;$
 - . -(CH₂)_m-OR₄ in which m is two and R₄ is a hydrogen or a (C₁-C₇)alkyl;
- 10 . -(CH₂)_m-OCOR₅ in which: m is two and R_5 is a hydrogen; a $(C_1\text{-}C_7)$ alkyl; a $(C_3\text{-}C_7)$ cycloalkyl which is unsubstituted or substituted by one or more methyls; a phenyl; or a pyridyl; or m is zero or one and R_5 is a (C_3-C_7) cycloalkyl which is unsubstituted or substituted by one or more methyls; a phenyl; or a pyridyl;
- . $-(CH_2)_m$ -OCONH(C₁-C₇)alkyl in which m is zero or two; 15
 - . -O-CH₂-CH₂-OR₆ in which R₆ is a hydrogen; a (C₁-C₇)alkyl; a formyl; or a (C₁-C₇)alkylcarbonyl;
 - . -(CH₂)_n-SR₇ in which n is zero or one and R₇ is a hydrogen or a (C₁-C₇)alkyl;
 - . $-CH_2-S(O)_j-(C_1-C_7)$ alkyl in which j is one or two;
- . -NR₈R₉ in which R₈ and R₉, together with the nitrogen atom to which they are 20 bonded, form a piperazine heterocycle which is unsubstituted or substituted in the 4-position by a (C₁-C₄)alkyl;
 - . -(CH₂)_p-NR₁₀R₁₁ in which p is two and R₁₀ and R₁₁ are each independently a hydrogen or a (C_1-C_7) alkyl; R_{11} can also be a (C_3-C_7) cycloalkylmethyl or a benzyl;
 - . -NR₁₂COR₁₃ in which R_{12} is a hydrogen or a (C₁-C₇)alkyl and R_{13} is a vinyl, a furyl, a thienyl, a pyrrolyl or an imidazolyl;
 - . -NR14COCOR15 in which R14 is a hydrogen or a (C1-C7)alkyl and R15 is a (C1-C₄)alkoxy;
- . -(CH₂)_p-NR₁₄C(=W₁)R₁₆ in which p is two, W₁ is an oxygen atom or a sulfur 30 atom, R_{14} is a hydrogen or a (C_1-C_7) alkyl and R_{16} is a hydrogen; a (C_1-C_7) alkyl and R_{16} is a hy C₇)alkyl; a (C₃-C₇)cycloalkyl which is unsubstituted or substituted by one or more methyls; a phenyl; a benzyl; a vinyl; a pyridyl; a furyl; a thienyl; a pyrrolyl; or an imidazolyl; and p is one, W_1 is a sulfur atom and R_{14} and R_{16} are as just defined, or W_1 is an oxygen atom, R_{14} is as just defined and R_{16} is a 35

vinyl, a furyl, a thienyl, a pyrrolyl or an imidazolyl;

. -(CH₂)_m-NR₁₄COOR₁₇ in which m is two, R₁₄ is a hydrogen or a (C₁-C₇)alkyl and R_{17} is a (C_1-C_7) alkyl or a phenyl;

-(CH₂)_m-NR₁₄SO₂R₁₈ in which m is two, R₁₄ is a hydrogen or a (C₁-C₇)alkyl and R₁₈ is a (C₁-C₇)alkyl; an amino which is free or substituted by one or two (C₁-C₇)alkyls; or a phenyl which is unsubstituted or monosubstituted or polysubstituted by a substituent selected from a halogen atom, a (C1-C7)alkyl, a trifluoromethyl, a hydroxyl, a (C_1-C_7) alkoxy, a carboxyl, a (C_1-C_7) alkylcarbonyloxy, a cyano, a nitro and an amino which is free or substituted by one or two (C₁-C₇)alkyls, said substituents being identical or different;

5

20

. -(CH₂)_m-NR₁₄C(=W₁)NR₁₉R₂₀ in which m is two, W₁ is an oxygen atom or a 10 sulfur atom, R_{14} is a hydrogen or a $(C_1\text{-}C_7)$ alkyl and R_{19} and R_{20} are each independently a hydrogen or a (C_1-C_7) alkyl; R_{20} can also be a (C_3-C_7) C_7)cycloalkyl; a (C_3-C_7) cycloalkylmethyl; a hydroxyl; a (C_1-C_4) alkoxy; a benzyl; a phenyl; or a (C_1-C_7) alkyl substituted by a hydroxyl, a (C_1-C_3) alkoxy, a phenyl, a carboxyl, a $(C_1\text{-}C_3)$ alkoxycarbonyl or a carbamoyl which is 15 unsubstituted or substituted by one or two (C_1 - C_7)alkyls; or R_{19} and R_{20} , together with the nitrogen atom to which they are bonded, form a heterocycle selected from azetidine, pyrrolidine, piperidine, morpholine, thiomorpholine, perhydroazepine and piperazine which is unsubstituted or substituted in the 4position by a (C_1-C_4) alkyl; and m is zero or one, W_1 is a sulfur atom and R_{14} , $R_{\rm 19}$ and $R_{\rm 20}$ are as just defined, or $W_{\rm 1}$ is an oxygen atom, $R_{\rm 14}$ and $R_{\rm 19}$ are each independently a hydrogen or a (C_1-C_7) alkyl and R_{20} is a (C_1-C_7) alkyl substituted by a hydroxyl, a $(C_1\text{-}C_3)$ alkoxy, a phenyl, a carboxyl, a $(C_1\text{-}$ C₃)alkoxycarbonyl or a carbamoyl which is unsubstituted or substituted by one

or two (C_1-C_7) alkyls; or R_{19} and R_{20} , together with the nitrogen atom to which 25 they are bonded, form a piperazine heterocycle which is unsubstituted or substituted in the 4-position by a (C_1-C_4) alkyl;

. -(CH₂)_n-COOR₂₁ in which n is one and R₂₁ is a hydrogen or a (C₁-C₇)alkyl; and n is zero and R₂₁ is a hydrogen;

. -(CH₂)_n-C(=W₁)NR₁₉R₂₀ in which n is one, W₁ is an oxygen atom or a sulfur 30 atom and R_{19} and R_{20} are each independently a hydrogen or a (C1-C7)alkyl; R_{20} can also be a (C_3-C_7) cycloalkyl; a (C_3-C_7) cycloalkylmethyl; a hydroxyl; a (C_1-C_7) cycloalkyl; a (C_3-C_7) cycloalkyl; a (C_1-C_7) cycloalkyl; a (C_3-C_7) cycloalkyl; a (C_1-C_7) cycloalkyl; a (C_3-C_7) cy C_4)alkoxy; a benzyl; a phenyl; or a (C_1-C_7) alkyl substituted by a hydroxyl, a (C_1-C_3) alkoxy, a phenyl, a carboxyl, a (C_1-C_3) alkoxycarbonyl or a carbamoyl which is unsubstituted or substituted by one or two (C_1-C_7) alkyls; or R_{19} and 35 R₂₀, together with the nitrogen atom to which they are bonded, form a

heterocycle selected from azetidine, pyrrolidine, piperidine, morpholine, thiomorpholine, perhydroazepine and piperazine which is unsubstituted or substituted in the 4-position by a (C_1-C_4) alkyl; and n is zero, W_1 is a sulfur atom and R_{19} and R_{20} are as just defined, or W_1 is an oxygen atom, R_{19} is a hydrogen or a (C_1-C_7) alkyl and R_{20} is a (C_1-C_7) alkyl substituted by a hydroxyl, a (C_1-C_3) alkoxy, a phenyl, a carboxyl, a (C_1-C_3) alkoxycarbonyl or a carbamoyl which is unsubstituted or substituted by one or two (C_1-C_7) alkyls; or R_{19} and R_{20} , together with the nitrogen atom to which they are bonded, form a piperazine heterocycle which is unsubstituted or substituted in the 4-position by a (C_1-C_4) alkyl;

. -CO-NR₂₂NR₂₃R₂₄ in which R₂₂ is a hydrogen or a (C_1 - C_7)alkyl and R₂₃ and R₂₄ are each independently a hydrogen or a (C_1 - C_7)alkyl;

$$R_{25}$$
 S $NR_{26}R_{27}$

in which R_{25} is a hydrogen or a (C_1-C_7) alkyl and R_{26} and R_{27} are each independently a hydrogen or a (C_1-C_7) alkyl; R_{27} can also be a formyl or a (C_1-C_7) alkylcarbonyl; and

and its salts with mineral or organic acids.

17. A compound according to any one of claims 1, 2 or 16 of the formula

in which:

- B'a is a group B'1a of the formula

25 in which J'_{la} is a group

15

10

5

in which:

- x is zero;
- Ar_{2a} is as defined for a compound of formula (Ia) in claim 16; and
- 5 X'_{1a} is a group selected from:
 - . -O-CH₂-CH₂-OR₆ in which R₆ is a hydrogen; a (C₁-C₇)alkyl; a formyl; or a (C₁-C₇)alkylcarbonyl;
 - . -NR₁₂COR₁₃ in which R_{12} is a hydrogen or a (C₁-C₇)alkyl and R_{13} is a vinyl, a furyl, a thienyl, a pyrrolyl or an imidazolyl;
- 10 . -NR₁₄COCOR₁₅ in which R₁₄ is a hydrogen or a (C₁-C₇)alkyl and R₁₅ is a (C₁-C₄)alkoxy;
 - . $-(CH_2)_p$ -NR₁₄C(=W₁)R₁₆ in which p is one, W₁ is an oxygen atom, R₁₄ is a hydrogen or a (C₁-C₇)alkyl and R₁₆ is a vinyl, a furyl, a thienyl, a pyrrolyl or an imidazolyl;
- 15 -(CH₂)_m-NR₁₄C(=W₁)NR₁₉R₂₀ in which m is zero, W₁ is an oxygen atom, R₁₄ is a hydrogen or a (C₁-C₇)alkyl, R₁₉ is a hydrogen or a (C₁-C₇)alkyl and R₂₀ is a (C₁-C₇)alkyl substituted by a hydroxyl, a (C₁-C₃)alkoxy, a phenyl, a carboxyl, a (C₁-C₃)alkoxycarbonyl or a carbamoyl which is unsubstituted or substituted by one or two (C₁-C₇)alkyls;
- 20 . -CO-NR₂₂-NR₂₃R₂₄ in which R₂₂ is a hydrogen or a (C_1 - C_7)alkyl and R₂₃ and R₂₄ are each independently a hydrogen or a (C_1 - C_7)alkyl;

$$R_{25}$$
 S $NR_{26}R_{27}$

in which R_{25} is a hydrogen or a (C_1-C_7) alkyl and R_{26} and R_{27} are each independently a hydrogen or a (C_1-C_7) alkyl; R_{27} can also be a formyl or a (C_1-C_7) alkylcarbonyl; and

and its salts with mineral or organic acids.

18. A compound according to any one of claims 1, 2, 16 or 17 of the formula

in which:

- X"_{1a} is a group selected from:

. -O-CH₂-CH₂-OR₆ in which R₆ is a hydrogen; a (C_1-C_7) alkyl; a formyl; or a (C_1-C_7) alkylcarbonyl, preferably a hydrogen or an acetyl;

. -NR $_{12}$ COR $_{13}$ in which R $_{12}$ is a hydrogen or a (C $_1$ -C $_7$)alkyl, preferably a hydrogen, and R $_{13}$ is a vinyl, a furyl, a thienyl, a pyrrolyl or an imidazolyl, preferably a furyl or a thienyl;

. -NR₁₄COCOR₁₅ in which R₁₄ is a hydrogen or a (C_1-C_7) alkyl, preferably a hydrogen, and R₁₅ is a (C_1-C_4) alkoxy, preferably an ethoxy; and

$$R_{25}$$
 S $NR_{26}R_{27}$

in which R_{25} is a hydrogen or a (C_1-C_7) alkyl, preferably a hydrogen, and R_{26} and R_{27} are each independently a hydrogen or a (C_1-C_7) alkyl; R_{27} can also be a formyl or a (C_1-C_7) alkylcarbonyl; R_{26} and R_{27} are preferably a hydrogen; and

and its salts with mineral or organic acids.

19. A compound according to claim 1 or claim 2 of the formula

$$\begin{array}{c|c} CH_2 & CH_2 \\ CH_2 & CH_2 \\ \downarrow & \downarrow \\ B_b\text{-}(CH_2)_3\text{-}C \\ Ar'_1 & CH_2 \\ \end{array}$$
 (Ib)

in which:

- Ar'₁ is a phenyl which is unsubstituted or monosubstituted or polysubstituted by a substituent selected from a halogen atom, a hydroxyl, a (C₁-C₄)alkoxy, a (C₁-C₄)

10

15

 C_4)alkyl, a trifluoromethyl and a methylenedioxy, said substituents being identical or different;

- A' is a direct bond or a group -CH2-;
- Z' is as defined in claim 2; and
- 5 B_b is a group B_{1b} of the formula

in which J_{1b} is a group

$$Ar_{2a}$$
- $(CH_2)_x$ - C
 X_{11}

- 10 x is one;
 - Ar_{2a} is a phenyl which is unsubstituted or monosubstituted or polysubstituted by a substituent selected from a halogen atom, a hydroxyl, a (C_1-C_4) alkoxy, a (C_1-C_4) alkyl, a trifluoromethyl and a methylenedioxy, said substituents being identical or different; and
- 15 X_{1b} is a group selected from:
 - . hydrogen;
 - . (C_1-C_7) alkyl;
 - . formyl;
 - . (C₁-C₇)alkylcarbonyl;
- 20 . $-(CH_2)_m$ -OR₄;
 - $\cdot -(CH_2)_m OCOR_5;$
 - . $-(CH_2)_m$ -OCONH- (C_1-C_7) alkyl;
 - . -O-CH₂CH₂ -OR₆;
 - $-(CH_2)_n-SR_7;$
- 25 . $-CH_2-S(O)_{j}-(C_1-C_7)$ alkyl;
 - .-NR₈R₉;
 - $.-(CH_2)_p-NR_{10}R_{11};$
 - .-NR₁₂COR₁₃;
 - .-NR₁₄COCOR₁₅;
- 30 .- $(CH_2)_p$ -NR₁₄C(=W₁)R₁₆;
 - .-(CH₂)_m-NR₁₄COOR₁₇;
 - $-(CH_2)_m-NR_{14}SO_2R_{18};$
 - $-(CH_2)_m$ -NR₁₄C(=W₁)NR₁₉R₂₀;

- .-(CH₂)_n-COOR₂₁;
- $-(CH_2)_n-C(=W_1)NR_{19}R_{20};$
- .-CO-NR₂₂-NR₂₃R₂₄;
- .-CN;

5

25

$$R_{25}$$
 N
 $NR_{26}R_{27}$
 N
 NH_{2}

. or X_{1b} forms a double bond between the carbon atom to which it is bonded and the adjacent carbon atom of the piperidine ring,

in which groups:

- 10 m is zero, one or two;
 - n is zero or one;
 - p is one or two;
 - j is one or two;
 - W₁ is an oxygen atom or a sulfur atom;
- R_4 is a hydrogen or a (C_1-C_7) alkyl;
 - R_5 is a hydrogen; a (C_1-C_7) alkyl; a (C_3-C_7) cycloalkyl which is unsubstituted or substituted by one or more methyls; a phenyl; or a pyridyl;
 - R_6 is a hydrogen; a (C_1-C_7) alkyl; a formyl; or a (C_1-C_7) alkylcarbonyl;
 - R₇ is a hydrogen or a (C₁-C₇)alkyl;
- R₈ and R₉ are each independently a hydrogen or a (C₁-C₇)alkyl; R₉ can also be a (C₃-C₇)cycloalkylmethyl, a benzyl or a phenyl;
 - or R₈ and R₉, together with the nitrogen atom to which they are bonded, form a heterocycle selected from azetidine, pyrrolidine, piperidine, morpholine, thiomorpholine, perhydroazepine and piperazine which is unsubstituted or substituted in the 4-position by a (C₁-C₄)alkyl;
 - R₁₀ and R₁₁ are each independently a hydrogen or a (C₁-C₇)alkyl; R₁₁ can also be a (C₃-C₇)cycloalkylmethyl or a benzyl;
 - R₁₂ is a hydrogen or a (C₁-C₇)alkyl;
- R₁₃ is a hydrogen; a (C₁-C₇)alkyl; a (C₃-C₇)cycloalkyl which is unsubstituted or substituted by one or more methyls; a phenyl; a benzyl; a vinyl; a pyridyl; a furyl; a thienyl; a pyrrolyl; or an imidazolyl;

- or R₁₂ and R₁₃ together are a group -(CH₂)_u- in which u is three or four;
- R₁₄ is a hydrogen or a (C₁-C₇)alkyl;
- R_{15} is a (C_1-C_4) alkoxy;

10

- R₁₆ is a hydrogen; a (C₁-C₇)alkyl; a (C₃-C₇)cycloalkyl which is unsubstituted or substituted by one or more methyls; a phenyl; a benzyl; a vinyl; a pyridyl; a furyl; a thienyl; a pyrrolyl; or an imidazolyl;
- R_{17} is a (C_1-C_7) alkyl or a phenyl;
- R₁₈ is a (C₁-C₇)alkyl; an amino which is free or substituted by one or two (C₁-C₇)alkyls; or a phenyl which is unsubstituted or monosubstituted or polysubstituted by a substituent selected from a halogen atom, a (C₁-C₇)alkyl, a trifluoromethyl, a hydroxyl, a (C₁-C₇)alkoxy, a carboxyl, a (C₁-C₇)alkoxycarbonyl, a (C₁-C₇)alkylcarbonyloxy, a cyano, a nitro and an amino which is free or substituted by one or two (C₁-C₇)alkyls, said substituents being identical or different;
- R₁₉ and R₂₀ are each independently a hydrogen or a (C₁-C₇)alkyl; R₂₀ can also be a (C₃-C₇)cycloalkyl; a (C₃-C₇)cycloalkylmethyl; a hydroxyl; a (C₁-C₄)alkoxy; a benzyl; a phenyl; or a (C₁-C₇)alkyl substituted by a hydroxyl, a (C₁-C₃)alkoxy, a phenyl, a carboxyl, a (C₁-C₃)alkoxycarbonyl or a carbamoyl which is unsubstituted or substituted by one or two (C₁-C₇)alkyls;
- or R₁₉ and R₂₀, together with the nitrogen atom to which they are bonded, form a heterocycle selected from azetidine, pyrrolidine, piperidine, morpholine, thiomorpholine, perhydroazepine and piperazine which is unsubstituted or substituted in the 4-position by a (C₁-C₄)alkyl;
 - R_{21} is a hydrogen or a (C_1-C_7) alkyl;
- 25 R_{22} is a hydrogen or a (C_1-C_7) alkyl;
 - R_{23} and R_{24} are each independently a hydrogen or a $(C_1\text{-}C_7)$ alkyl;
 - R₂₅ is a hydrogen or a (C₁-C₇)alkyl; and
 - R_{26} and R_{27} are each independently a hydrogen or a (C_1-C_7) alkyl; R_{27} can also be a formyl or a (C_1-C_7) alkylcarbonyl,
- 30 with the proviso that:
 - when Ar'_1 is the 3,4-dichlorophenyl group and -A'-Z' is the 3-methoxybenzyl group, B_b is the group B_{1b} of the formula

in which J_{1b} is the group

in which x is one, Ar_{2a} is a phenyl group and X_{1b} is other than hydrogen, and its salts with mineral or organic acids.

20. A compound according to any one of claims 1, 2 or 19 of the formula

$$\begin{array}{c|c} & CH_2 \\ CH_2 \\ CH_2 \\ \hline \\ CH_2 \\ \hline \\ CH_2 \\ \hline \\ CI \\ \end{array} \qquad \begin{array}{c} CH_2 \\ N\text{-CO} \\ \hline \\ CI \\ \end{array} \qquad \begin{array}{c} (I'b) \\ \end{array}$$

in which:

5

- B'b is a group B'lb of the formula

in which J'_{1b} is a group

$$Ar_{2a}$$
- $(CH_2)_x$ - C

- x is one;
- Ar_{2a} is a phenyl which is unsubstituted or monosubstituted or polysubstituted by a substituent selected from a halogen atom, a hydroxyl, a (C₁-C₄)alkoxy, a (C₁-C₄)alkyl, a trifluoromethyl and a methylenedioxy, said substituents being identical or different; and
 - X'1b is as group selected from:
 - . (C_1-C_7) alkyl;
- . $-(CH_2)_m-OR_4$ in which m is one or two and R_4 is a hydrogen or a (C_1-C_7) alkyl;
 - . $-(CH_2)_m$ -OCOR₅ in which:
 - m is zero and R_5 is a (C_3-C_7) cycloalkyl which is unsubstituted or substituted by one or more methyls; a phenyl; or a pyridyl; or

m is one or two and R_5 is a hydrogen; a (C_1-C_7) alkyl; a (C_3-C_7) cycloalkyl which is unsubstituted or substituted by one or more methyls; a phenyl; or a pyridyl;

- . $-(CH_2)_m$ -OCONH- (C_1-C_7) alkyl in which m is zero, one or two;
- O-CH₂-CH₂-OR₆ in which R₆ is a hydrogen; a (C_1 - C_7)alkyl; a formyl; or a (C_1 - C_7)alkylcarbonyl;
 - . $-(CH_2)_n$ -SR₇ in which n is zero or one and R₇ is a hydrogen or a $(C_1$ -C₇)alkyl;
 - . $-CH_2-S(O)_j-(C_1-C_7)$ alkyl in which j is one or two;

10

20

- -NR₈R₉ in which R₈ is a hydrogen or a (C₁-C₇)alkyl and R₉ is a (C₃-C₇)cycloalkylmethyl or a benzyl; or R₈ and R₉, together with the nitrogen atom to which they are bonded, form a heterocycle selected from azetidine, thiomorpholine, perhydroazepine and piperazine which is unsubstituted or substituted in the 4-position by a (C₁-C₄)alkyl;
- -(CH₂)_p-NR₁₀R₁₁ in which p is one or two and R₁₀ and R₁₁ are each independently a hydrogen or a (C₁-C₇)alkyl; R₁₁ can also be a (C₃-C₇)cyclo-alkylmethyl or a benzyl;
 - . -NR₁₂COR₁₃ in which R₁₂ is a hydrogen or a (C₁-C₇)alkyl and R₁₃ is a (C₃-C₇)-cycloalkyl which is unsubstituted or substituted by one or more methyls; a phenyl; a benzyl; a vinyl; a pyridyl; a furyl; a thienyl; a pyrrolyl; or an imidazolyl; or R₁₂ and R₁₃ together are a group -(CH₂)_u- in which u is three or four;
 - . -NR₁₄COCOR₁₅ in which R₁₄ is a hydrogen or a (C₁-C₇)alkyl and R₁₅ is a (C₁-C₄)alkoxy;
- -(CH₂)_p-NR₁₄C(=W₁)R₁₆ in which p is one or two, W₁ is an oxygen atom or a sulfur atom, R₁₄ is a hydrogen or a (C₁-C₇)alkyl and R₁₆ is a hydrogen; a (C₁-C₇)alkyl; a (C₃-C₇)cycloalkyl which is unsubstituted or substituted by one or more methyls; a phenyl; a benzyl; a vinyl; a pyridyl; a furyl; a thienyl; a pyrrolyl; or an imidazolyl;
- . $-(CH_2)_m$ -NR₁₄COOR₁₇ in which m is zero, one or two, R₁₄ is a hydrogen or a (C₁-C₇)alkyl and R₁₇ is a (C₁-C₇)alkyl or a phenyl;
 - -(CH₂)_m-NR₁₄SO₂R₁₈ in which m is zero, one or two, R₁₄ is a hydrogen or a (C₁-C₇)alkyl and R₁₈ is a (C₁-C₇)alkyl; an amino which is free or substituted by one or two (C₁-C₇)alkyls; or a phenyl which is unsubstituted or monosubstituted or polysubstituted by a substituent selected from a halogen atom, a (C₁-C₇)alkyl, a trifluoromethyl, a hydroxyl, a (C₁-C₇)alkoxy, a carboxyl, a (C₁-C₇)alkoxycarbonyl, a (C₁-C₇)alkylcarbonyloxy, a cyano, a nitro

5

10

15

20

25

30

and an amino which is free or substituted by one or two (C_1-C_7) alkyls, said substituents being identical or different;

. -(CH₂)_m-NR₁₄C(=W₁)NR₁₉R₂₀ in which m is zero, one or two, W₁ is an oxygen atom or a sulfur atom, R₁₄ is a hydrogen or a (C₁-C₇)alkyl and R₁₉ and R₂₀ are each independently a hydrogen or a (C₁-C₇)alkyl; R₂₀ can also be a (C₃-C₇)cycloalkyl; a (C₃-C₇)cycloalkylmethyl; a hydroxyl; a (C₁-C₄)alkoxy; a benzyl; a phenyl; or a (C₁-C₇)alkyl substituted by a hydroxyl, a (C₁-C₃)alkoxy, a phenyl, a carboxyl, a (C₁-C₃)alkoxycarbonyl or a carbamoyl which is unsubstituted or substituted by one or two (C₁-C₇)alkyls; or R₁₉ and R₂₀, together with the nitrogen atom to which they are bonded, form a heterocycle selected from azetidine, pyrrolidine, piperidine, morpholine, thiomorpholine, perhydroazepine and piperazine which is unsubstituted or substituted in the 4-position by a (C₁-C₄)alkyl;

. $-(CH_2)_n$ -COOR₂₁ in which n is one and R₂₁ is a hydrogen or a (C₁-C₇)alkyl;

. $-(CH_2)_n$ - $C(=W_1)NR_{19}R_{20}$ in which n is zero or one, W_1 is an oxygen atom or a sulfur atom and R_{19} and R_{20} are each independently a hydrogen or a $(C_1$ - $C_7)$ -alkyl; R_{20} can also be a $(C_3$ - $C_7)$ cycloalkyl; a $(C_3$ - $C_7)$ cycloalkylmethyl; a hydroxyl; a $(C_1$ - $C_4)$ alkoxy; a benzyl; a phenyl; or a $(C_1$ - $C_7)$ alkyl substituted by a hydroxyl, a $(C_1$ - $C_3)$ alkoxy, a phenyl, a carboxyl, a $(C_1$ - $C_3)$ alkoxycarbonyl or a carbamoyl which is unsubstituted or substituted by one or two $(C_1$ - $C_7)$ alkyls; or R_{19} and R_{20} , together with the nitrogen atom to which they are bonded, form a heterocycle selected from azetidine, pyrrolidine, piperidine, morpholine, thiomorpholine, perhydroazepine and piperazine which is unsubstituted or substituted in the 4-position by a $(C_1$ - $C_4)$ alkyl;

. -CO-NR₂₂-NR₂₃R₂₄ in which R₂₂ is a hydrogen or a (C_1-C_7) alkyl and R₂₃ and R₂₄ are each independently a hydrogen or a (C_1-C_7) alkyl;

$$R_{25}$$
 N
 N
 $NR_{26}R_{27}$
 $NR_{26}R_{27}$

in which R_{25} is a hydrogen or a (C_1-C_7) alkyl and R_{26} and R_{27} are each independently a hydrogen or a (C_1-C_7) alkyl; R_{27} can also be a formyl or a (C_1-C_7) alkylcarbonyl; and

and its salts with mineral or organic acids.

21. A compound according to any one of claims 1, 2, 19 or 20 of the formula

$$CH_2$$
 CH_2
 CH_2

in which:

10

15

5 - X"_{1b} is a group selected from:

. $-(CH_2)_0$ -NR₁₀R₁₁ in which p is one and R₁₀ and R₁₁ are each a hydrogen;

. $-(CH_2)_p-NR_{14}C(=W_1)R_{16}$ in which p is one, W_1 is an oxygen atom, R_{14} is a hydrogen or a (C_1-C_7) alkyl and R_{16} is a (C_1-C_7) alkyl, preferably an ethyl;

-(CH₂)_m-NR₁₄COOR₁₇ in which m is zero, R₁₄ is a hydrogen and R₁₇ is a (C₁-C₇)alkyl, preferably an ethyl; and

-(CH_2)_n- $C(=W_1)NR_{19}R_{20}$ in which n is zero, W_1 is an oxygen atom and R_{19} and R_{20} , together with the nitrogen atom to which they are bonded, form a heterocycle selected from azetidine, pyrrolidine, piperidine, morpholine, thiomorpholine, perhydroazepine and piperazine which is unsubstituted or substituted in the 4-position by a (C_1-C_4) alkyl, preferably pyrrolidine,

and its salts with mineral or organic acids.

22. A compound according to claim 1 or claim 2 of the formula

$$CH_2$$
— CH_2
 CH_2

20 in which:

- Ar'₁ is a phenyl which is unsubstituted or monosubstituted or polysubstituted by a substituent selected from a halogen atom, a hydroxyl, a (C₁-C₄)alkoxy, a (C₁-C₄)alkyl, a trifluoromethyl and a methylenedioxy, said substituents being identical or different;

25 - A' is a direct bond or a group -CH₂-;

- Z' is as defined above in claim 2; and

- B_c is a group B_{1c} of the formula

in which J_{1c} is a group

$$Ar_{2a}$$
- $(CH_2)_x$ - C
 X_{1b}

in which:

x is zero or one;

- Ar_{2a} is a phenyl which is unsubstituted or monosubstituted or polysubstituted by a substituent selected from a halogen atom, a hydroxyl, a (C₁-C₄)alkoxy, a (C₁-C₄)alkyl, a trifluoromethyl and a methylenedioxy, said substituents being identical or different; and
- X_{1b} is as defined for a compound of formula (I_b) in claim 19,
 and its salts with mineral or organic acids.
 - 23. A compound according to any one of claims 1, 2 or 22 of the formula

$$\begin{array}{c} \text{CH}_2 - \text{CH}_2 \\ \text{CH}_2 \\ \text{CH}_2 \\ \text{CH}_2 \\ \text{N-CO} \end{array}$$

in which:

- B'c is a group B'1c of the formula

in which J'1c is a group

$$Ar_{2a}$$
- $(CH_2)_x$ - C
 X'_{1b}

20 in which:

- x is zero or one;
- Ar_{2a} is a phenyl which is unsubstituted or monosubstituted or polysubstituted by a substituent selected from a halogen atom, a hydroxyl, a (C₁-C₄)alkoxy, a (C₁-

C₄)alkyl, a trifluoromethyl and a methylenedioxy, said substituents being identical or different; and

- X'1b is a group selected from:
 - . $(C_1-C_7)alkyl;$

5

10

20

25

- . $-(CH_2)_m$ -OR₄ in which m is one or two and R₄ is a hydrogen or a (C_1-C_7) alkyl;
- . -(CH₂)_m-OCOR₅ in which m is zero and R₅ is a (C₃-C₇)cycloalkyl which is unsubstituted or substituted by one or more methyls; a phenyl; or a pyridyl; and m is one or two and R₅ is a hydrogen; a (C₁-C₇)alkyl; a (C₃-C₇)cycloalkyl which is unsubstituted or substituted by one or more methyls; a phenyl; or a pyridyl;
- . $-(CH_2)_m$ -OCONH- (C_1-C_7) alkyl in which m is zero, one or two;
- . -O-CH₂-CH₂-OR₆ in which R₆ is a hydrogen; a $(C_1$ -C₇)alkyl; a formyl; or a $(C_1$ -C₇)alkylcarbonyl;
- . $-(CH_2)_n$ -SR₇ in which n is zero or one and R₇ is a hydrogen or a $(C_1$ -C₇)alkyl;
- 15 . $-CH_2-S(O)_i-(C_1-C_7)$ alkyl in which j is one or two;
 - . -NR₈R₉ in which R₈ is a hydrogen or a (C₁-C₇)alkyl and R₉ is a (C₃-C₇)cycloalkylmethyl or a benzyl; or R₈ and R₉, together with the nitrogen atom to which they are bonded, form a heterocycle selected from azetidine, thiomorpholine, perhydroazepine and piperazine which is unsubstituted or substituted in the 4-position by a (C₁-C₄)alkyl;
 - . -(CH₂)_p-NR₁₀R₁₁ in which p is one or two, R₁₀ is a hydrogen or a (C₁-C₇)alkyl and R₁₁ is a hydrogen, a (C₁-C₇)alkyl, a (C₃-C₇)cycloalkylmethyl or a benzyl;
 - -NR₁₂COR₁₃ in which R₁₂ is a hydrogen or a (C₁-C₇)alkyl and R₁₃ is a (C₃-C₇)-cycloalkyl which is unsubstituted or substituted by one or more methyls; a phenyl; a benzyl; a vinyl; a pyridyl; a furyl; a thienyl; a pyrrolyl; or an imidazolyl; or R₁₂ and R₁₃ together form a group -(CH₂)_u in which u is three or four;
 - . -NR₁₄COCOR₁₅ in which R₁₄ is a hydrogen or a (C₁-C₇)alkyl and R₁₅ is a (C₁-C₄)alkoxy;
- -(CH₂)_p-NR₁₄C(=W₁)R₁₆ in which p is one or two, W₁ is an oxygen atom or a sulfur atom, R₁₄ is a hydrogen or a (C₁-C₇)alkyl and R₁₆ is a hydrogen or a (C₁-C₇)alkyl; a (C₃-C₇)cycloalkyl which is unsubstituted or substituted by one or more methyls; a phenyl; a benzyl; a vinyl; a pyridyl; a furyl; a thienyl; a pyrrolyl; or an imidazolyl;
- . - $(CH_2)_m$ -NR₁₄COOR₁₇ in which m is zero, one or two, R₁₄ is a hydrogen or a $(C_1$ -C₇)alkyl and R₁₇ is a $(C_1$ -C₇)alkyl or a phenyl;

. -(CH₂)_m-NR₁₄SO₂R₁₈ in which m is zero, one or two, R₁₄ is a hydrogen or a (C₁-C₇)alkyl and R₁₈ is a (C₁-C₇)alkyl; an amino which is free or substituted by one or two (C₁-C₇)alkyls; or a phenyl which is unsubstituted or monosubstituted or polysubstituted by a substituent selected from a halogen atom, a (C₁-C₇)alkyl, a trifluoromethyl, a hydroxyl, a (C₁-C₇)alkoxy, a carboxyl, a (C₁-C₇)alkoxycarbonyl, a (C₁-C₇)alkylcarbonyloxy, a cyano, a nitro and an amino which is free or substituted by one or two (C₁-C₇)alkyls, said substituents being identical or different;

-(CH₂)_m-NR₁₄C(=W₁)NR₁₉R₂₀ in which m is zero, one or two, W₁ is an oxygen atom or a sulfur atom, R₁₄ is a hydrogen or a (C₁-C₇)alkyl and R₁₉ and R₂₀ are each independently a hydrogen or a (C₁-C₇)alkyl; R₂₀ can also be a (C₃-C₇)cycloalkyl; a (C₃-C₇)cycloalkylmethyl; a hydroxyl; a (C₁-C₄)alkoxy; a benzyl; a phenyl; or a (C₁-C₇)alkyl substituted by a hydroxyl, a (C₁-C₃)alkoxy, a phenyl, a carboxyl, a (C₁-C₃)alkoxycarbonyl or a carbamoyl which is unsubstituted or substituted by one or two (C₁-C₇)alkyls; or R₁₉ and R₂₀, together with the nitrogen atom to which they are bonded, form a heterocycle selected from azetidine, pyrrolidine, piperidine, morpholine, thiomorpholine, perhydroazepine and piperazine which is unsubstituted or substituted in the 4-position by a (C₁-C₄)alkyl;

. -(CH₂)_n-COOR₂₁ in which n is one and R₂₁ is a hydrogen or a (C₁-C₇)alkyl; . -(CH₂)_n-C(=W₁)NR₁₉R₂₀ in which n is zero or one, W₁ is an oxygen atom or a sulfur atom and R₁₉ and R₂₀ are each independently a hydrogen or a (C₁-C₇)-alkyl; R₂₀ can also be a (C₃-C₇)cycloalkyl; a (C₃-C₇)cycloalkylmethyl; a hydroxyl; a (C₁-C₄)alkoxy; a benzyl; a phenyl; or a (C₁-C₇)alkyl substituted by a hydroxyl, a (C₁-C₃)alkoxy, a phenyl, a carboxyl, a (C₁-C₃)alkoxycarbonyl or a carbamoyl which is unsubstituted or substituted by one or two (C₁-C₇)alkyls; or R₁₉ and R₂₀, together with the nitrogen atom to which they are bonded, form a heterocycle selected from azetidine, pyrrolidine, piperidine, morpholine, thiomorpholine, perhydroazepine and piperazine which is unsubstituted or substituted in the 4-position by a (C₁-C₄)alkyl;

. -CO-NR₂₂-NR₂₃R₂₄ in which R₂₂ is a hydrogen or a (C₁-C₇)alkyl and R₂₃ and R₂₄ are each independently a hydrogen or a (C₁-C₇)alkyl;

in which R_{25} is a hydrogen or a (C_1-C_7) alkyl and R_{26} and R_{27} are each independently a hydrogen or a (C_1-C_7) alkyl; R_{27} can also be a formyl or a (C_1-C_7) alkylcarbonyl; and

5

10

-15

20

25

30

and its salts with mineral or organic acids.

24. A compound according to any one of claims 1, 2, 3, 4, 5, 6, 8, 11, 14, 15 and 16 to 23 selected from:

l-benzoyl-3-(3,4-dichlorophenyl)-3-[3-[4-(pyrrolidin-1-ylcarbonyl)-piperid-1-yl]propyl]piperidine;

1-benzoyl-3-(3,4-dichlorophenyl)-3-[3-(4-piperidinopiperid-1-yl)-propyl]piperidine;

1-benzoyl-3-(3,4-dichlorophenyl)-3-[3-(4-carbamoyl-4-piperidinopiperid-1-yl)propyl]piperidine;

3-[3-[4-(acryloyl-N-methylamino)-4-phenylpiperid-1-yl]propyl-1-benzoyl-3-(3,4-dichlorophenyl)piperidine;

3-[3-[4-(2-aminothiazol-4-yl)-4-phenylpiperid-1-yl]propyl]-1-benzoyl-3-(3,4-dichlorophenyl)piperidine;

3-[3-(4-acetyl-4-benzylpiperid-1-yl)propyl]-1-benzoyl-3-(3,4-dichlorophenyl)piperidine;

3-[3-[4-(acetylamino)-4-benzylpiperid-1-yl]propyl]-1-benzoyl-3-(3,4-dichlorophenyl)piperidine;

1-benzoyl-3-[3-[4-benzyl-4-(propionylaminomethyl)piperid-1-yl]propyl]-3-(3,4-dichlorophenyl)piperidine;

1-benzoyl-3-[3-[4-benzyl-4-(ethoxycarbonylamino)piperid-1-yl]propyl]-3-(3,4-dichlorophenyl)piperidine;

1-benzoyl-3-[3-[4-benzyl-4-(pyrrolidin-1-ylcarbonyl)piperid-1-yl]propyl]-3-(3,4-dichlorophenyl)piperidine;

l-benzoyl-3-(3,4-dichlorophenyl)-3-[3-[4-(dimethylaminocarbonyl)-4-phenylpiperid-1-yl]propyl]perhydroazepine;

1-benzoyl-3-(3,4-dichlorophenyl)-3-[3-[4-(2-hydroxyethoxy)-4-phenyl-piperid-1-yl]propyl]piperidine;

3-[3-[4-(2-acetoxyethoxy)-4-phenylpiperid-1-yl]propyl]-1-benzoyl-3-(3,4-dichlorophenyl)piperidine;

- 1-benzoyl-3-(3,4-dichlorophenyl)-3-[3-[4-(2-furoylamino)-4-phenyl-piperid-1-yl]propyl]piperidine;
- 1-benzoyl-3-(3,4-dichlorophenyl)-3-[3-[4-(2-thenoylamino)-4-phenyl-piperid-1-yl]propyl]piperidine;
- 3-(3,4-dichlorophenyl)-1-isonicotinoyl-3-[3-[4-phenyl-4-(pyrrolidin-1-ylcarbonyl)piperid-1-yl]propyl]piperidine;

5

10

15

20

25

salts.

- 1-benzoyl-3-(3,4-dichlorophenyl)-3-[3-spiro(indoline-3,4'-piperid-1'-yl)propyl]piperidine;
- 1-benzoyl-3-(3,4-dichlorophenyl)-3-[3-[1-acetylspiro(indoline-3,4'-piperid-1'-yl)]propyl]piperidine;
- 3-(3,4-dichlorophenyl)-3-[3-[4-phenyl-4-(pyrrolidin-1-ylcarbonyl)piperid-1-yl]propyl]-1-(2-thenoyl)piperidine;
- 3-(3,4-dichlorophenyl)-3-[3-[4-phenyl-4-(pyrrolidin-1-ylcarbonyl)piperid-1-yl]propyl]-1-(3-thenoyl)piperidine;
- 3-(3,4-dichlorophenyl)-1-(2-furoyl)-3-[3-[4-phenyl-4-(pyrrolidin-1-ylcarbonyl)piperid-1-yl]propyl]piperidine;
- 3-(3,4-dichlorophenyl)-1-(3-furoyl)-3-[3-[4-phenyl-4-(pyrrolidin-1-ylcarbonyl)piperid-1-yl]propyl]piperidine;
- 3-[3-[4-(2-amino-1,3,4-oxadiazol-5-yl)-4-phenylpiperid-1-yl]propyl]-1-benzoyl-3-(3,4-dichlorophenyl)piperidine;
- 1-benzoyl-3-(3,4-dichlorophenyl)-3-[3-[4-(ethoxalylamino)-4-phenyl-piperid-1-yl]propyl]piperidine;
- 1-benzoyl-3-(3,4-dichlorophenyl)-3-[3-(4-carbamoyl-4-morpholinopiperid-1-yl)propyl]piperidine;
- 1-benzoyl-3-(3,4-dichlorophenyl)-3-[3-[1-(methoxycarbonyl)spiro-(indoline-3,4'-piperid-1'-yl)]propyl]piperidine;
- 1-benzoyl-3-(3,4-dichlorophenyl)-3-[3-[1-(N,N-dimethylcarbamoyl)spiro-(indoline-3,4'-piperid-1'-yl)]propyl]piperidine; and
- l-benzoyl-3-(3,4-dichlorophenyl)-3-[3-[1-(methanesulfonyl)spiro(indoline-3,4'-piperid-1'-yl)]propyl]piperidine,
 - in the form of racemates or one of their (+) or (-) enantiomers, and their salts with mineral or organic acids.
 - 25. Solvates of the compounds according to any one of claims 1 to 24 and their
- 35 26. Method of preparing a compound of formula (I) according to claim 1 and its salts, characterized in that:

1) a compound of the formula

$$E-O-(CH2)3-C-CH2-NH (II)$$

$$Ar1$$

in which Ar_1 , R_1 and R_2 are as defined for a compound of formula (I) in claim 1 and E is hydrogen or an O-protecting group, is treated:

- either with a halogenated derivative of the formula Hal-CH₂-A-Z (III)

in which Hal is a halogen atom, preferably bromine, and A and Z are as defined for a compound of formula (I) in claim 1, when it is desired to prepare a compound of formula (I) in which T is a group -CH₂-;

- or with a functional derivative of an acid of the formula

HO-CO-A-Z (IIIa)

in which A and Z are as defined above, when it is desired to prepare a compound of formula (I) in which T is a group -CO-;

- or with a chloroformate of the formula Cl-COO-A-Z (IIIb)

in which A and Z are as defined above, when it is desired to prepare a compound of formula (I) in which T is group -COO-;

- or with an isocyanate of the formula O=C=N-A-Z (IIIc)

in which A and Z are as defined above, when it is desired to prepare a compound of formula (I) in which T is a group -CO-NR₃- in which R₃ is hydrogen;

- or with a carbamoyl chloride of the formula

in which A and Z are as defined above and R'_3 is a (C_1-C_4) alkyl, when it is desired to prepare a compound of formula (I) in which T is -CONR₃- in which R_3 is a (C_1-C_4) alkyl;

- or with a sulfonyl chloride of the formula $Cl\text{-}SO_2\text{-}Z$ (IIIe)

in which Z is as defined above, when it is desired to prepare a compound of formula (I) in which -T-A- is a group -SO₂-, to give a compound of the formula

15

5

10

20

25

30

$$R_1$$
 R_2
E-O-(CH₂)₃-C-CH₂-N-T-A-Z (IV)

2) the O-protecting group, if present, is removed from the compound of formula (IV), by reaction with an acid or a base, to give the alcohol of the formula

3) the alcohol (V) is treated with a compound of the formula G-SO₂-Cl (VI)

in which G is a methyl, phenyl, tolyl or trifluoromethyl group, to give a compound of the formula

$$G-SO_2-O-(CH_2)_3-C-CH_2-N-T-A-Z$$
 (VII)

- 4) the compound (VII) is reacted:
- either with a cyclic secondary amine of the formula

in which J'₁ is:

5

10

20

*either a group
$$Ar_2$$
-(CH₂)_x-C

in which Ar_2 and x are as defined for (I) in claim 1 and X'_1 is either X_1 as defined for (I), or a precursor of X_1 , it being understood that when X'_1 contains a hydroxyl group or an amino group, these groups can be protected;

in which Ar2 is as defined for (I) in claim 1;

in which Ar2 is as defined for (I) in claim 1;

)

. 5

10

20

in which Ar_2 is as defined for (I) in claim 1;

in which Ar2, Am1 and r are as defined for (I) in claim 1; * or a group Ar₂-W₂-CH-

in which Ar2 and W2 are as defined for (I) in claim 1; - or with a cyclic secondary amine of the formula

in which J_2 is as defined above for (I) in claim 1;

- or with a cyclic secondary amine of the formula

in which J_3 is as defined above for (I) in claim 1;

- or with a cyclic secondary amine of the formula

in which W_4 is as defined above for (I) in claim 1; 15

- or with a cyclic secondary amine of the formula

in which W_6 , W_7 and W_8 are as defined above for (I) in claim 1;

- or with a cyclic secondary amine of the formula

in which J_4 is as defined above for (I) in claim 1; - or with a compound of the formula

$$W_{13}$$
 W_{12} $(CH_2)_f$ NH $(VIIIg)$ W_{15} W_{16} $(CH_2)_g$

in which f, g, W₁₂, W₁₃, W₁₄, W₁₅ and W₁₆ are as defined above for (I) in claim 1;
- or with a cyclic secondary amine of the formula

$$W_{17} \xrightarrow{W_{18}} NH \quad (VIIIh)$$

$$W_{19} = W_{20}$$

in which W₁₇, W₁₈, W₁₉ and W₂₀ are as defined above for (I) in claim 1;

- or with a cyclic secondary amine of the formula

in which J₅ is as defined above for (I) in claim 1;

- or a cyclic secondary amine of the formula

10

15

20

in which J'6 is a group

in which W_{25} is as defined above for (I) and X'_1 is X_1 as defined for (I) in claim 1, or a precursor of X_1 , it being understood that when X'_1 contains a hydroxyl group or an amino group, these groups can be protected; and

- 5) after deprotection of the hydroxyl groups or amino groups, if appropriate, or conversion of X'_1 to X_1 , if appropriate, the resulting product is optionally converted to one of its salts with a mineral or organic acid.
- 27. Method of preparing a compound of formula (I) according to claim 1 and its salts, characterized in that:
- 1') the nitrogen atom of the compound of formula (II) as defined in claim 25 is protected to give a compound of the formula

$$\begin{array}{c|c} R_1 & R_2 \\ & & | \\ E\text{-O-(CH}_2)_3\text{-C-CH}_2\text{-N-Pr} & (XVII) \\ & & \\ & Ar_1 & \end{array}$$

in which Ar₁, R₁ and R₂ are as defined for a compound of formula (I) in claim 1, E is hydrogen or an O-protecting group and Pr is an N-protecting group such as the trityl, *tert*-butoxycarbonyl or benzyloxycarbonyl group;

2') the O-protecting group, if present, is removed from the compound of formula (XVII), by reaction with an acid or a base, to give the alcohol of the formula

5

10

15

20

$$R_1$$
 R_2
 $HO-(CH_2)_3-C-CH_2-N-Pr$ (XVIII)
 Ar_1

3') the alcohol (XVIII) is treated with a compound of formula (VI) as defined in claim 25 to give a compound of the formula

$$G-SO_2-O-(CH_2)_3-C-CH_2-N-Pr$$
 (XIX)

4') the compound (XIX) is reacted with a compound of formula (VIIIa), (VIIIb), (VIIIc), (VIIId), (VIIIf), (VIIIf), (VIIIf), (VIIIf), (VIIIf) or (VIIIf) as defined in claim 25 to give a compound of the formula

$$\begin{array}{c|c}
R_1 & R_2 \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\$$

in which B is as defined for a compound of formula (I) in claim 1, it being understood that when B contains a hydroxide group or an amino group, these groups can be protected;

5') the protecting group Pr is selectively removed from the compound of formula (XX) to give the compound of the formula

$$\begin{array}{c|cccc} R_1 & R_2 \\ & & 1 \\ & & 1 \\ & & 1 \\ B-(CH_2)_3-C-CH_2-NH & (XXI) \\ & & Ar_1 \end{array}$$

- 6') the compound of formula (XXI) is treated with a compound of formula (III), (IIIa), (IIIb), (IIIc), (IIId) or (IIIe) as defined in claim 25; and
- 7') after deprotection of the hydroxyl groups or amino groups, if appropriate, the resulting product is optionally converted to one of its salts with a mineral or organic acid.
- 28. Method according to claim 27 for the preparation of a compound of formula (I°) according to claim 4 and its salts, characterized in that:
 - 1°) a compound of the formula

5

10

15

20

G-SO₂-O-(CH₂)₃-C
$$CH_2$$
 CH_2 CH_2 N -Pr CH_2 CH_2 CH_2 N -Pr CH_2 CH_2 CH_2 N -Pr CH_2 CH_2

in which G is a methyl, phenyl, tolyl or trifluoromethyl group and Pr is an N-protecting group such as the trityl, *tert*-butoxycarbonyl or benzyloxycarbonyl group, is reacted with a compound of the formula

in which J^{\bullet} is as defined for a compound of formula (I^{\bullet}) in claim 4, to give a compound of the formula

$$CH_2$$
 CH_2
 CH_2

2°) the protecting group Pr is selectively removed from the compound of formula (XX°) to give the compound of the formula

3°) the compound of formula (XXI°) is treated with a functional derivative of an acid of the formula

in which Z is as defined for a compound of formula (I in claim 4; and

- 4°) after deprotection, if appropriate, the resulting product (I°) is optionally converted to one of its salts with a mineral or organic acid.
- 29. An enantiomer of a compound according to claim 1 of the formula

in which:

15

5

- "*" denotes that the carbon atom carrying this label has the determined (+) or (-) absolute configuration; and
- R₁, R₂, Ar₁, T, A, Z and B are as defined for the compounds of formula (I) in claim 1,

and its salts with mineral or organic acids, and their solvates.

- 30. Pharmaceutical composition comprising, as the active principle, a compound according to any one of claims 1 to 24 or 29 or one of its pharmaceutically acceptable salts and solvates.
- 20 31. Pharmaceutical composition according to claim 30 in the form of a dosage unit in which the active principle is mixed with at least one pharmaceutical excipient.
 - 32. Pharmaceutical composition according to claim 31 containing 0.5 to 1000 mg of active principle.
- Pharmaceutical composition according to claim 32 containing 2.5 to 250 mg of active principle.