AUT202 - Automatique : dynamique et contrôle des systèmes

Stabilisation et observabilité

NICOLAS PETIT

Centre Automatique et Systèmes MINES Paris, PSL University nicolas.petit@minesparis.psl.eu

Mercredi 16 février 2022

https://cas.mines-paristech.fr/~petit/tmp/ 16fev.pdf

Plan

- Suivi de trajectoires
- Synthèse de contrôleur en cascade
- 3 Observer pour fermer la boucle
- Systèmes linéaires
- Observateur-contrôleur

Intérêt du suivi de trajectoire

Calculer en temps réel la correction Δu en fonction des écarts observés Δx (loi de rétroaction ou feedback) pour que Δx reste petit : stabilisation en 0 de Δx .

Dynamique de l'erreur

La planification de trajectoire donne une trajectoire de référence $t \mapsto (x_r, u_r)$ qui vérifie les équations $\frac{d}{dt}x_r = Ax_r + Bu_r$. Si on note $\Delta x = x - x_r$ et $\Delta u = u - u_r$, on a comme dynamique d'erreur

$$\frac{d}{dt}\Delta x = A \, \Delta x + B \, \Delta u.$$

On cherche un feedback $\Delta u = K \Delta x$ tel que le système bouclé $\frac{d}{dt} \Delta x = (A + BK) \Delta x$ soit asymptotiquement stable.

Dynamique de l'erreur

La planification de trajectoire donne une trajectoire de référence $t\mapsto (x_r,u_r)$ qui vérifie les équations $\frac{d}{dt}x_r=Ax_r+Bu_r$. Si on note $\Delta x=x-x_r$ et $\Delta u=u-u_r$, on a comme dynamique d'erreur

$$\frac{d}{dt}\Delta x = A \Delta x + B \Delta u.$$

On cherche un feedback $\Delta u = K \Delta x$ tel que le système bouclé $\frac{d}{dt} \Delta x = (A + BK) \Delta x$ soit asymptotiquement stable.

Dynamique de l'erreur

La planification de trajectoire donne une trajectoire de référence $t\mapsto (x_r,u_r)$ qui vérifie les équations $\frac{d}{dt}x_r=Ax_r+Bu_r$. Si on note $\Delta x=x-x_r$ et $\Delta u=u-u_r$, on a comme dynamique d'erreur

$$\frac{d}{dt}\Delta x = A \, \Delta x + B \, \Delta u.$$

On cherche un feedback $\Delta u = K \Delta x$ tel que le système bouclé $\frac{d}{dt} \Delta x = (A + BK) \Delta x$ soit asymptotiquement stable.

Exemple de stabilisation

$$A = \left(\begin{array}{rrr} 1 & 2 & 3 \\ -1 & 4 & 0 \\ 1 & 2 & 2 \end{array}\right), \quad B = \left(\begin{array}{r} 0 \\ 1 \\ 0 \end{array}\right)$$

$$A + BK = A + B(k_1 \ k_2 \ k_3) = \begin{pmatrix} 1 & 2 & 3 \\ -1 + k_1 & 4 + k_2 & k_3 \\ 1 & 2 & 2 \end{pmatrix}$$

Valeurs propres souhaitées -1, -2, -3

On identifie le polynôme caractéristique

$$s^{3} + (-k_{2} - 7)s^{2} + (-2k_{1} + 3k_{2} - 2k_{3} + 13)s + -2k_{1} + k_{2} + 6 = 0$$

$$a(s+1)(s+2)(s+3) = s^{3} + 6s^{2} + 11s + 6 = 0$$

3 équations linéaires à 3 inconnues

Exemple de stabilisation

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 4 & 0 \\ 1 & 2 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

$$A + BK = A + B(k_1 \ k_2 \ k_3) = \begin{pmatrix} 1 & 2 & 3 \\ -1 + k_1 & 4 + k_2 & k_3 \\ 1 & 2 & 2 \end{pmatrix}$$

Valeurs propres souhaitées -1, -2, -3

$$s^{3} + (-k_{2} - 7)s^{2} + (-2k_{1} + 3k_{2} - 2k_{3} + 13)s + -2k_{1} + k_{2} + 6 = 0$$

$$a(s+1)(s+2)(s+3) = s^{3} + 6s^{2} + 11s + 6 = 0$$

3 équations linéaires à 3 inconnues

Exemple de stabilisation

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 4 & 0 \\ 1 & 2 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

$$A + BK = A + B(k_1 \ k_2 \ k_3) = \begin{pmatrix} 1 & 2 & 3 \\ -1 + k_1 & 4 + k_2 & k_3 \\ 1 & 2 & 2 \end{pmatrix}$$

Valeurs propres souhaitées −1, −2, −3

On identifie le polynôme caractéristique

$$s^{3} + (-k_{2} - 7)s^{2} + (-2k_{1} + 3k_{2} - 2k_{3} + 13)s + -2k_{1} + k_{2} + 6 = 0$$

à $(s+1)(s+2)(s+3) = s^{3} + 6s^{2} + 11s + 6 = 0$

3 équations <u>linéaires</u> à 3 inconnues

Si le système est commandable, on aura toujours une solution.

Avec une seule commande : formule d'Ackermann

$$K = -[0 \dots 0 \quad 1] C^{-1} \mathcal{P}(A)$$

où $\mathcal P$ est le polynôme caractéristique désiré, $\mathcal C$ la matrice de commandabilité

Placement de pôles

Si la paire (A, B) est commandable alors, pour toute matrice réelle F de taille $n \times n$, il existe une matrice $m \times n$, K (non nécessairement unique si m > 1), telle que le spectre de A + BK coïncide avec celui de F

Si le système est commandable, on aura toujours une solution. Avec une seule commande : formule d'Ackermann

$$K = -[0 \dots 0 \quad 1] C^{-1} \mathcal{P}(A)$$

où $\mathcal P$ est le polynôme caractéristique désiré, $\mathcal C$ la matrice de commandabilité

Placement de pôles

Si la paire (A, B) est commandable alors, pour toute matrice réelle F de taille $n \times n$, il existe une matrice $m \times n$, K (non nécessairement unique si m > 1), telle que le spectre de A + BK coïncide avec celui de F

Si le système est commandable, on aura toujours une solution. Avec une seule commande : formule d'Ackermann

$$K = -\begin{bmatrix} 0 & \dots 0 & 1 \end{bmatrix} C^{-1} \mathcal{P}(A)$$

où ${\mathcal P}$ est le polynôme caractéristique désiré, ${\mathcal C}$ la matrice de commandabilité

Placement de pôles

Si la paire (A, B) est commandable alors, pour toute matrice réelle F de taille $n \times n$, il existe une matrice $m \times n$, K (non nécessairement unique si m > 1), telle que le spectre de A + BK coïncide avec celui de F

Si le système est commandable, on aura toujours une solution. Avec une seule commande : formule d'Ackermann

$$K = -\begin{bmatrix} 0 & \dots 0 & 1 \end{bmatrix} C^{-1} \mathcal{P}(A)$$

où $\mathcal P$ est le polynôme caractéristique désiré, $\mathcal C$ la matrice de commandabilité

Placement de pôles

Si la paire (A, B) est commandable alors, pour toute matrice réelle F de taille $n \times n$, il existe une matrice $m \times n$, K (non nécessairement unique si m > 1), telle que le spectre de A + BK coïncide avec celui de F

Liens avec la forme normale

$$\frac{d}{dt}x = Ax + Bu, \quad (\dim B = n \times 1)$$

Changement de variables z = Mx, v = Ex + Nu mettant le système sous forme normale de Brunovsky

$$\frac{d}{dt}z_1=z_2,\ldots,\frac{d}{dt}z_{n-1}=z_n,\ \frac{d}{dt}z_n=v$$

c.-à-d.
$$\frac{d^n}{dt^n}z_1 = v$$

Forme canonique

$$A_1 = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & 1 \\ 0 & \dots & 0 & 0 & 0 \end{pmatrix}, B_1 = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 1 \end{pmatrix}$$

Liens avec la forme normale

$$\frac{d}{dt}x = Ax + Bu, \quad (\dim B = n \times 1)$$

Changement de variables z = Mx, v = Ex + Nu mettant le système sous forme normale de Brunovsky

$$\frac{d}{dt}z_1=z_2,\ldots,\frac{d}{dt}z_{n-1}=z_n,\ \frac{d}{dt}z_n=v$$

c.-à-d.
$$\frac{d''}{dt''}z_1 = v$$

Forme canonique

$$A_1 = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & 1 \\ 0 & \dots & 0 & 0 & 0 \end{pmatrix}, B_1 = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 1 \end{pmatrix}$$

En boucle fermée, $v = K_1 z$: on obtient $A_1 + B_1 K_1$

$$A_1 + B_1 K_1 = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & \dots \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & 1 \\ k_0 & k_1 & \dots & \dots & k_{n-1} \end{pmatrix}$$

Polynôme caractéristique

$$s^{n} - k_{n-1}s^{n-1} - \dots - k_{1}s - k_{0} = 0$$

à identifier au polynôme désiré.

Enfin, changement de variables inverse pour revenir dans les variables d'origine (x, u)

Placement de pôles sur la forme normale

Il suffit de résoudre la placement de pôle sur la forme de Brunovsky (z, v) (le retour aux variables (x, u): un changement de variables sur z = Mx (ce qui ne change pas le spectre) et un feedback supplémentaire v = Ex + Nu pour avoir u). On part de $y^{(n)} = v$ et on note $\lambda_1, \ldots, \lambda_n$ le spectre d'une

matrice réelle de dimension n. Notons s_k les fonctions symétriques des λ_i (des quantités réelles donc) homogènes de degré k,

$$\prod_{k=1}^{n} (X - \lambda_k) = X^n - \mathbf{s_1} X^{n-1} + \mathbf{s_2} X^{n-2} + \ldots + (-1)^n \mathbf{s_n}$$

Alors, dès que les λ_k sont à partie réelle strictement négative le bouclage

$$v = s_1 y^{(n-1)} - s_2 y^{(n-2)} + \ldots + (-1)^{n-1} s_n y$$

assure la stabilité de $v^{(n)} = v$.

Placement de pôles sur la forme normale

Il suffit de résoudre la placement de pôle sur la forme de Brunovsky (z,v) (le retour aux variables (x,u): un changement de variables sur z=Mx (ce qui ne change pas le spectre) et un feedback supplémentaire v=Ex+Nu pour avoir u). On part de $y^{(n)}=v$ et on note $\lambda_1,\ldots,\lambda_n$ le spectre d'une matrice réelle de dimension n. Notons s_k les fonctions symétriques des λ_i (des quantités réelles donc) homogènes de degré k,

$$\prod_{k=1}^{n} (X - \lambda_k) = X^n - s_1 X^{n-1} + s_2 X^{n-2} + \ldots + (-1)^n s_n$$

Alors, dès que les λ_k sont à partie réelle strictement négative le bouclage

$$v = s_1 y^{(n-1)} - s_2 y^{(n-2)} + \ldots + (-1)^{n-1} s_n y$$

assure la stabilité de $v^{(n)} = v$

Il suffit de résoudre la placement de pôle sur la forme de Brunovsky (z,v) (le retour aux variables (x,u): un changement de variables sur z=Mx (ce qui ne change pas le spectre) et un feedback supplémentaire v=Ex+Nu pour avoir u). On part de $y^{(n)}=v$ et on note $\lambda_1,\ldots,\lambda_n$ le spectre d'une matrice réelle de dimension n. Notons s_k les fonctions symétriques des λ_i (des quantités réelles donc) homogènes de degré k,

$$\prod_{k=1}^{n} (X - \lambda_k) = X^n - s_1 X^{n-1} + s_2 X^{n-2} + \ldots + (-1)^n s_n$$

Alors, dès que les λ_k sont à partie réelle strictement négative, le bouclage

$$v = s_1 y^{(n-1)} - s_2 y^{(n-2)} + \ldots + (-1)^{n-1} s_n y$$

assure la stabilité de $v^{(n)} = v$.

Synthèse de contrôleur sur une cascade

$$\frac{d^2}{dt^2}x = f(x, \frac{d}{dt}x) + u$$

"cruise-control": f mal connue

Problème : asservir la position à \bar{x} 1 commande u pour 2 états $(x, \frac{d}{dt}x)^T$

$$\begin{cases} \frac{d}{dt}x = v\\ \frac{d}{dt}v = f(x, v) + u \end{cases}$$

Quelle dynamique cible?

Asservissement de x

Pour que x converge vers \bar{x} , on désire

$$v \approx -k_1(x-\bar{x}) \triangleq \bar{v}, \quad k_1 > 0$$

Peut-on l'assurer?

$$\frac{d}{dt}v = f(x, v) - \frac{k_2}{\epsilon}(v - \overline{v}), \quad k_2 > 0$$

c.-à-d. (u est un retour d'état)

$$u=-\frac{k_2}{\epsilon}(v+k_1(x-\bar{x}))$$

Cascade

Utilisation de la forme cascade en présence d'incertitudes : le grand gain

$$\frac{d}{dt}x = v$$

$$\frac{d}{dt}v = f(x, v) - \frac{k_2}{\epsilon}(v + k_1(x - \bar{x}))$$

Faire apparaître $\epsilon << 1$.

$$\Sigma^{\epsilon} \begin{cases} \frac{d}{dt} x = v & \text{lent} \\ \epsilon \frac{d}{dt} v = \epsilon f(x, v) - k_2 (v + k_1 (x - \bar{x})) & \text{rapide} \end{cases}$$

de solution $x_{\epsilon}(t)$, $v_{\epsilon}(t)$

Réduction par le théorème de Tikhonov

Le système rapide est asymptotiquement stable

$$g(x, v, \epsilon) = \epsilon f(x, v) - k_2(v + k_1(x - \bar{x}))$$

Pour $\epsilon = 0$, $g(x, v, 0) = k_2(v + k_1(x - \bar{x}))$ a pour solution $v = -k_1(x - \bar{x})$,

$$\frac{\partial g}{\partial v}(x,-k_1(x-\bar{x}),0)=-k_2<0$$

Le système réduit est

$$\frac{d}{dt}x = -k_1(x - \bar{x}), \quad v = -k_1(x - \bar{x})$$

Le système réduit est asymptotiquement stable

$$\frac{d}{dt}x = -k_1(x - \bar{x})$$

donc, sa solution $x_0(t)$ est une bonne approximation de la solution $x_{\epsilon}(t)$ pour tout t, et lorsque $\epsilon \longrightarrow 0$,

$$\lim_{t\to+\infty} x_{\epsilon}(t) = \bar{x}, \quad \lim_{t\to+\infty} v_{\epsilon}(t) = 0$$

sans aucune connaissance de f

Cascade

extensions : Cascades multi-échelles

Au delà du linéaire : moyennisation

Équations du mouvement

$$\frac{\mathit{d}^2}{\mathit{d}t^2}\theta = \left[g + \mathit{d}\omega^2\cos(\omega t)\right]\sin\theta$$

 $(m = 1, \ell = 1)$, équations obtenues par méthode Lagrangienne.

Le couple apparent découle du déplacement vertical (d'amplitude *d*) du point d'accroche.

Théorème de moyennisation

$$\frac{d^2}{dt^2}x = a(t,\epsilon)f(x)$$

avec $a(t, \epsilon)$, de période $0(\epsilon) << 1$ signal périodique oscillant rapidement est approché par

$$\frac{d^2}{dt^2}x^0 = \langle a\rangle f(x^0) - \langle v^2\rangle f'(x^0)f(x^0)$$

$$x = x^0 + o(\epsilon)$$

avec $\langle a \rangle$ moyenne de a , $v(t) = \int_0^t (a - \langle a \rangle) dt$

$$\begin{cases} \frac{d^2}{dt^2}x = a(t,\epsilon)f(x), & f(x) = \sin(x) \\ \frac{d^2}{dt^2}x^0 = \langle a\rangle f(x^0) - \langle v^2\rangle f'(x^0)f(x^0) \end{cases}$$

détails des calculs

$$\begin{array}{ll} \textit{a}(t,\epsilon) = g + d/\epsilon^2 \cos(\frac{t}{\epsilon}), & \langle \textit{a} \rangle = g \\ \textit{v}(t) = \int_0^t (g + d/\epsilon^2 \cos(\frac{t}{\epsilon}) - g) dt = d/\epsilon \sin(\frac{t}{\epsilon}), & \langle \textit{v}^2 \rangle = \frac{d^2}{2\epsilon^2} \end{array}$$

Le système moyen est donc

$$\frac{d^2}{dt^2}x^0 = g\sin(x^0) - \frac{d^2}{2\epsilon^2}\cos x^0 \sin x^0$$

$$\frac{d^2}{dt^2}x^0 = -\frac{d}{dx^0}(\underbrace{g\cos x^0 + \frac{d^2}{4\epsilon^2}\sin^2 x^0}_{\text{potential effectif}})$$

Le potentiel a un minimum local en 0 (stable asympt.).

Retour d'état

Placement de pôles

Si (A, B) est commandable, alors le système $\frac{d}{dt}x = Ax + Bu$ est stabilisable par retour d'état u = Kx. On peut même choisir toutes les valeurs propres de A + BK

Retour de sortie et non pas retour d'état

Seule la mesure y est accessible, en général $\dim y \neq n = \dim x$

Mesure et estimation d'état

Plusieurs cas de figure

- Les mesures sont en nombre insuffisant dim y < n : reconstruction d'état
- 2 Les mesures sont de mauvaise qualité
- Solution Les mesures sont redondantes mais de mauvaise qualité $\dim y \ge n$: fusion de données

Observateur

On va intercaler entre les mesures et le contrôleur un système dynamique pour estimer l'état du système

On dispose : du modèle du système, des valeurs de la commande *u* et des mesures *y* (avec leurs défauts)

Systèmes linéaires

$$\frac{d}{dt}x = Ax + Bu, \quad y = Cx$$

Définition (distinguabilité)

Deux états initiaux x et \widetilde{x} sont dits indistinguables (notés $x(\widetilde{x})$ si pour tout $t \ge 0$, les sorties y(t) et $\widetilde{y}(t)$ sont identiques pour toute entrée u(t). Ils sont dits distinguables sinon.

L'indistinguabilité est une relation d'équivalence. Notons I(x) la classe d'équivalence de x.

Définition (observabilité globale)

Le système est dit observable si $I(x) = \{x\}$ pour tout x.

Question

Peut-on distinguer la condition initiale d'un système linéaire?

$$\frac{d}{dt}x = Ax + Bu, \quad y = Cx$$

$$x(t) = \exp(tA)x(0) + \int_0^t \exp[(t-\tau)A]Bu(\tau)d\tau$$

$$y(t) = C\exp(tA)x(0) + \int_0^t C\exp[(t-\tau)A]Bu(\tau)d\tau$$

Équation d'inconnue x(0)

$$\underbrace{C \exp(tA)}_{\text{non inversible}} x(0) = y(t) - \int_0^t C \exp[(t-\tau)A] Bu(\tau) d\tau$$

$$C \exp(tA)x(0) = y(t) - \int_0^t C \exp[(t-\tau)A]Bu(\tau)d\tau$$

$$\underbrace{\exp(tA')C'C\exp(tA)}_{\text{non inversible}} x(0) = \text{Fonction}(y(t), u(t \in [0, t]))$$

$$\underbrace{\int_0^T \exp(tA')C'C \exp(tA)dt}_{\phi(T)} x(0) = \operatorname{Fonction}(y(t \in [0, T]), u(t \in [0, T]))$$

Si $\phi(T)$ est inversible alors on peut reconstruire x(0) à partir des mesures y et de la commande sur [0, T]

Si $\phi(T)$ n'est pas inversible alors on ne peut pas reconstruire x(0) à partir des mesures y et de la commande sur [0, T]. En effet, $\exists v \neq 0$ tel que

$$v'\left(\int_0^T \exp(tA')C'C\exp(tA)dt\right)v=0$$

et par suite

$$\int_0^T \|C\exp(tA)v\|^2 dt = 0$$

ďoù

$$C \exp(tA)v = 0$$

Les mesures issues de la condition initiale x(0) et x(0) + v sont identiques. Ces conditions initiales sont indistinguables

$$\exists v \neq 0$$
, $C \exp(tA)v = 0$, $\forall t \in [0, T]$

d'où, par dérivations $\frac{d}{dt}(.)$ (fonction analytique) en t=0

$$CA \exp(tA)v = 0$$
, $CA^2 \exp(tA)v = 0$, ...,
 $CA^{n-1} \exp(tA)v = 0$, $CA^n \exp(tA)v = 0$, ...
 $\iff \exists v \neq 0, Cv = 0, CAv = 0, ..., CA^{n-1}v = 0, CA^nv = 0, ...$
 $\iff \exists v \neq 0, Cv = 0, CAv = 0, ..., CA^{n-1}v = 0$
 $\iff [C: CA: ...; CA^{n-1}]$ n'est pas de rang plein

Critère d'observabilité de Kalman

Le système $\frac{d}{dt}x = Ax + Bu$, y = Cx est observable si et seulement si la matrice d'observabilité $\mathcal{O} = (C; CA; \dots CA^{n-1})$ est de rang $n = \dim(x)$

Dualité

Le système $\frac{d}{dt}x = Ax + Bu$, y = Cx est observable (resp. commandable) si et seulement si $\frac{d}{dt}x = A'x + C'u$, y = B'x est commandable (resp. observable)

Placement de pôles

Si (A, C) est observable, alors on peut choisir toutes les valeurs propres de A-LC

Observateur asymptotique

On intercale entre les mesures et le contrôleur un système dynamique pour estimer l'état du système

On dispose : du modèle du système, des valeurs de la commande u et des mesures y (avec leurs défauts)

Observateur-contrôleur

