ME 319/320 SEGUNDA PROVA 14/06/2012 TEMA 1

Escreva nome, Tema e RA na primeira folha em branco.

Fique com a folha de enunciados. Não são permitidas consultas.

Interpretação de enunciados e uso de tabelas fazem parte da prova. Justifique suas afirmações. Deve citar os resultados utilizados.

Não é permitido o uso de calculadora. Celulares desligados.

As provas corrigidas serão disponibilizadas para consulta na aula de 3ª feira 19/05

Exercício 1 (1 ponto) Sejam $X_1, X_2, ..., X_n$ i.i.d. Poisson (θ) , onde $\theta > 0$.

Calcule o EMV de $(4 \theta + 2)^{-3}$ seno $^2(1 + \theta^{-22})$. Justifique.

Exercício 2 (3 pontos) Um fenômeno é modelado por uma variável aleatória X que segue alguma das duas distribuições p_0 ou p_1 , onde p_0 e p_1 estão definidas abaixo:

\boldsymbol{x}	1	4	6	11
$p_0(x)$	0,25	0,40	0,10	0,25 506 Ho
$p_I(x)$	0,10	0,10	0,30	0,50 Solo HJ

Pretende-se testar H_0 : { $p = p_0$ } contra H_1 : { $p = p_1$ } com base numa única observação da variável aleatória X.

a) (1 ponto) Construa o teste mais poderoso de nível 0,35 e calcule seu poder; (Vorev = 0,8 -> a)
b) (2 pontos) Construa o teste mais poderoso de nível 0,40 e calcule seu poder. (Vorev = 0,81% -> b)

Exercício 3 (2 pontos, 1 ponto cada item).

Sejam $X_1 \in X_2$ i.i.d. Poisson(θ). Por experiência anterior sabe-se que $1 \le \theta \le 3$

Calcule o EQM dos seguintes 3 estimadores de θ : $\hat{\theta}_3 = 4^{-1}(X_1 + 3X_2), \quad \hat{\theta}_2 = 2^{-1}(X_1 + X_2)$ e $\hat{\theta}_3$ a constante 1;
b) Faça os gráficos e compare os estimadores.

Exercício 4 (2 pontos)

Temés 2 moedas cujas probabilidades de cara são 0,1 e 0,5. Uma moeda é escolhida ao acaso e é jogada 2 vezes (lances independentes) e computado o número de caras obtido. Construa o estimador de máxima verossimilhança (EMV) da probabilidade de cara.

Exergício 5 (2 pontos)

Deseja-se estimar a média μ de uma distribuição X com variância finita, conhecida ou não. Para tal, dispõe-se de uma amostra X_1 , X_2 e X_3 (ou seja, X_1 , X_2 , X_3 i.i.d. X). Compare os seguintes 5 estimadores de µ através do seu EQM:

$$3X_1 + 3X_2 - 5X_3$$
; $5X_1 + 6X_2 - 10X_3$; $8X_2 - 7X_3$;

$$3^{-1}(X_1 + X_2 + X_3)$$
 e $2^{-1}(X_1 + X_2)$.

7 R: Pois possoi o menor EQM.

Caso utilize algum resultado para evitar fazer comparações desnecessárias, deve mencioná-lo com enunciado completo.