

Benchmark Tema 1 Grupo B resuelto.pdf Exámenes Resueltos (teoría y Prácticas)

- 2° Arquitectura de Computadores
- **©** Grado en Ingeniería Informática
- Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación UGR - Universidad de Granada

Reservados todos los derechos. No se permite la explotación económica ni la transformación de esta obra. Queda permitida la impresión en su totalidad

ARQUITECTURA DE COMPUTADORES GRUPO B. BENCHMARK del TEMA 1

Estudiante:

- 1. En la expresión de la ley de Amdahl, $Sp \le p/(1+f(p-1))$, para la ganancia de velocidad de un computador al mejorar uno de sus recursos (Responda verdadero (V) o falso (F)):
 - p es el factor de incremento de prestaciones del recurso que se mejora

(V)

- f es la fracción del tiempo antes de la mejora en la que se utiliza el recurso mejorado

(F)

- La máxima ganancia de velocidad que se puede conseguir, por mucho que se mejore el recurso es 1/f

(V)

- p puede ser mayor que 1

(V)

2. En un procesador segmentado a pleno rendimiento, el número de ciclos por instrucción (CPI) es (estrictamente) menor que 1 (responda Verdadero, V, o Falso, F)

(F)

3. Los núcleos de la arquitectura Sunday Bridge de Intel pueden terminar hasta 8 operaciones en coma flotante (FLOP) por ciclo.

¿Cuál es la máxima velocidad (en GFLOPS) de un microprocesador con 4 núcleos Sunday Bridge que funciona a una frecuencia de reloj de 2 GHz?

8 FLOP/(núcleo*ciclo)* 2 Gciclos/s * 4 núcleos = 64 GFLOPS

- 4. Responda Verdadero (V) o Falso (F):
 - Un computador UMA, es un multiprocesador donde la memoria está físicamente distribuida.

(F)

Un multicomputador también se denomina computador NORMA

(V)

5. Si el bucle siguiente: for i=1 to N do a(i)=b(i)*c; se ejecuta en 2 segundos y N=10¹¹, siendo c, a(), y b() datos en coma flotante. ¿Cuántos GFLOPS alcanza la máquina al ejecutar el código?.

1*10¹¹ FLOP / 2 s *10⁹ = 100/2 GFLOPS = 50 GFLOPS

- 6. Responda Verdadero (V) o Falso (F):
 - Las hebras de un proceso necesitan recurrir a llamadas al sistema operativo para comunicarse

(F)

- El paralelismo entre hebras permite aprovechar una granularidad menor que el paralelismo entre procesos

(V)

- Un multiprocesador puede funcionar como computador MISD con la correspondiente sincronización entre sus procesadores

(V)

- 7. En la secuencia de instrucciones:
 - (a) add r1, r2, r3; r1 \leftarrow r2 + r3
 - (b) sub r1, r1, r4; r1 \leftarrow r1 r4
 - Hay dependencia WAW entre las instrucciones debido al registro r1

(V)

- No hay dependencia WAR entre las instrucciones debido al registro r1

(V)

