CHAPITRE 10

TD

I Exercice 6

Table of	des	matières
----------	-----	----------

I Exercice 6	1
II Exercice 22	3
III Exercice 23	4
IV Exercice 25	4
V Exercice 27	5
VI Exercice 28	5
VII Exercice 18	5
VIII Exercice 24	6
IX Exercice 16	6
X Exercice 29	7
XI Exercice 26	9
Première partie	
Exercice 6	
Pour $n \in \mathbb{N}$. On pose $P(n)$: " $2^n \in A$ " — D'après l'énoncé, $2^0 = 1 \in A$ Donc $P(0)$ est vraie — Soit $n \in \mathbb{N}$, on suppose $P(n)$ vraie. $2^n \in A \text{ donc } 2 \times 2^n \in A \text{ donc } 2^{n+1} \in A$ Donc $P(n+1)$ est vraie	
On fixe $p \in A$. Pour $k \in \llbracket 0, p-1 \rrbracket$, on pose $Q_p(k)$: " $p-k \in A$ " — $p \in A$ par hypothèse donc $Q_p(0)$ est vraie — Soit $k \in \llbracket 0, p-2 \rrbracket$. On suppose $Q_p(k)$ vraie. $p-k \in A$ donc $p-k-1 \in A$ donc $p-(k+1) \in A$ donc $P(n+1)$ vra	ie.

I Exercice 6

— Soit $k \in \mathbb{N}_*$. On pose $n = \lfloor \log_2(k) \rfloor + 1$ de sorte que $2^n > k$. On pose $p = 2^n \in A$. Or, $Q_p(k)$ est vraie donc $k \in A$.

Ainsi, $\mathbb{N}_* \subset A \subset \mathbb{N}_*$ donc $A = \mathbb{N}_*$.

Soit P un prédicat sur \mathbb{N}_* tel que

- P(1) vraie
- $\forall n \in \mathbb{N}_*, P(n) \implies P(2n)$
- $-\forall n \geqslant 2, P(n) \implies P(n-1)$

On pose $A = \{ n \in \mathbb{N}_* \mid P(n) \text{ vrai} \}.$

Alors, $A = \mathbb{N}_*$, et donc

 $\forall n \in \mathbb{N}_*, P(n) \text{ est vraie}$

$$P(n): "\forall (a_1, a_2, \dots, a_n) \in (\mathbb{R}^+)^n, \qquad \underbrace{\frac{1}{n} \sum_{i=1}^n a_i}_{\text{Movenne arithmétique}} \geqslant \underbrace{\left(\prod_{i=1}^n a_i\right)^{\frac{1}{n}}}_{\text{movenne géométrique}}$$

- P(1) est vraie
- Soit $n \in \mathbb{N}_*$. On suppose P(n) vraie. Montrons P(2n). Soient $(a_1, a_2, \dots, a_{2n}) \in (\mathbb{R}^+)^{2n}$

$$\frac{1}{2n} \sum_{i=1}^{2n} a_i = \frac{1}{2} \left(\frac{1}{n} \sum_{i=1}^n a_i + \frac{1}{n} \sum_{i=n+1}^{2n} a_i \right)$$

$$\leq \frac{1}{2} \left(\left(\prod_{i=1}^n a_i \right)^{\frac{1}{n}} + \left(\prod_{i=n+1}^{2n} a_i \right)^{\frac{1}{n}} \right)$$

Or, P(2) est vraie : en effet, si $(a,b) \in \mathbb{R}^+$:

$$\frac{1}{2}(a+b) \geqslant \sqrt{ab} \iff a+b+2\sqrt{ab} \geqslant 0$$
$$\iff \left(\sqrt{a}+\sqrt{b}\right)^2$$

Donc,

$$\frac{1}{2n} \sum_{i=1}^{2n} a_i \geqslant \sqrt{\left(\prod_{i=1}^n a_i\right)^{\frac{1}{n}}} \times \left(\prod_{i=n+1}^{2n} a_i\right)^{\frac{1}{n}}$$

$$\geqslant \left(\left(\prod_{i=1}^{2n} a_i\right)^{\frac{1}{n}}\right)^{\frac{1}{2}}$$

$$= \left(\prod_{i=1}^{2n} a_i\right)^{\frac{1}{2n}}$$

Donc P(2n) est vraie

— Soit
$$n \in \mathbb{N}_*$$
. On suppose $P(n+1)$ vraie. Soit $(a_1, \dots, a_n) \in (\mathbb{R}^+_*)^n$
On pose $a_{n+1} = \frac{1}{n} \sum_{i=1}^n a_i$ On a alors

$$\frac{1}{n+1} \sum_{i=1}^{n+1} a_i = \frac{1}{n+1} \left(\sum_{i=1}^n a_i + \frac{1}{n} \sum_{i=1}^n a_i \right)$$
$$= \frac{1}{n+1} \left(1 + \frac{1}{n} \right) \sum_{i=1}^n a_i$$
$$= \frac{1}{n} \sum_{i=1}^n a_i$$

Comme P(n+1) est vraie

$$\frac{1}{n} \sum_{i=1}^{n} a_i = \frac{1}{n+1} \sum_{i=1}^{n+1} a_i \geqslant \left(\prod_{i=1}^{n+1} a_i \right)^{\frac{1}{n+1}}$$

Il suffit de prouver

$$(*): \left(\prod_{i=1}^{n+1} a_i\right)^{\frac{1}{n+1}} \geqslant \left(\prod_{i=1}^{n} a_i\right)^{\frac{1}{n}}$$

$$(*) \iff \frac{1}{n+1} \sum_{i=1}^{n+1} \ln(a_i) \geqslant \frac{1}{n} \sum_{i=1}^{n} a_i$$

$$\iff \frac{1}{n+1} \sum_{i=1}^{n+1} \ln(a_i) \geqslant \left(\frac{1}{n} - \frac{1}{n+1}\right) \sum_{i=1}^{n} \ln(a_i) \geqslant \frac{1}{n(n+1)} \sum_{i=1}^{n} \ln(a_i)$$

D'après l'inégalité de Jensen,

$$\ln\left(\frac{1}{n}\sum_{i=1}^{n}a_i\right) \geqslant \frac{1}{n}\sum_{i=1}^{n}\ln(a_i)$$

Donc

$$\frac{1}{n+1}\ln(a_{n+1}) \geqslant \frac{1}{n(n+1)} \sum_{i=1}^{n} \ln(a_i)$$

Donc P(n) est vraie

Deuxième partie

Exercice 22

$$4444 \equiv -2 \ [9]$$

III Exercice 23

$$4444^{4444} \equiv (-2)^{4444} \ [9]$$
$$\equiv 2^{4444} \ [9]$$

$$2^0 \equiv 1 \ [9]$$

$$2^1 \equiv 2 \ [9]$$

$$2^2 \equiv 3 \ [9]$$

$$2^3 \equiv -1 \ [9]$$

$$2^4 \equiv -2 \ [9]$$

$$2^5 \equiv 5 \ [9]$$

$$2^6 \equiv 1 \ [9]$$

$$4444 \equiv 4 \ [6]$$

$$2^{4444} \equiv 2^4 \ [9]$$

$$\equiv -2[9]$$

 $\equiv 7[9]$

Donc, $4444^{4444} \equiv 7 \ [9] \ donc \ c \equiv 7 \ [9]$

$$a \leqslant 9N$$

où N est le nombre de chiffre de 4444^{4444}

$$10^{N-1} \le 4444^{4444} < 10^N$$

$$\iff N - 1 \le 4444 \log_{10}(4444) < N$$

$$\iff 4444 \log_{10}(4444) < N \leqslant 4444 \log_{10}(4444) + 1$$

$$\iff N = 14211$$

Donc, $a \le 145899$ donc a a au plus 7 chiffres.

Donc

$$b \leqslant 1 + 5 \times 9 = 46$$

Donc

$$c \leqslant 4 + 9 = 13$$

Donc c = 17

V Exercice 27

Troisième partie

Exercice 23

$$15! = 2^{11} \times 3^6 \times 5^3 \times 7^2 \times 11 \times 13$$

Un diviseur positif d de 15! est de la forme

$$2^{a_1}3^{a_2}5^{a_3}7^{a_4}11^{a_5}13^{a_6}$$

avec

$$\begin{cases} 0 \leqslant a_1 \leqslant 11 \\ 0 \leqslant a_2 \leqslant 6 \\ 0 \leqslant a_3 \leqslant 3 \\ 0 \leqslant a_4 \leqslant 2 \\ 0 \leqslant a_5 \leqslant 1 \\ 0 \leqslant a_6 \leqslant 1 \end{cases}$$

Il y a donc $12 \times 7 \times 4 \times 3 \times 2 \times 2 = 4032$ diviseurs positifs

Quatrième partie

Exercice 25

$$\binom{p}{k} = \frac{p!}{k!(p-k)!}$$

$$\frac{1}{p} \binom{p}{k} = \frac{(p-1)!}{k!(p-k)!} \in \mathbb{N} ?$$

$$k \binom{p}{k} = \frac{p!}{(k-1)!(p-k)!} = p \underbrace{\binom{p-1}{k-1}}_{\in \mathbb{N}}$$

Donc,
$$p \mid k \binom{p}{k}$$

Or, $p \wedge k$

D'après le théorème de Gauss, $p \mid \binom{p}{k}$

Cinquième partie

Exercice 27

n < p

$$(p-1)(p-2)\dots(p-n) = \frac{(p-1)!}{(p-n-1)!}$$

VII Exercice 18

Donc,

$$\frac{(p-1)(p-2)\dots(p-n)}{n!} = \frac{(p-1)!}{n!(n-p-1)!}$$
$$= \binom{p-1}{n}$$

$$(p-1)(p-2)\dots(p-n) \equiv (-1)^n n! [p]$$

 $n! = 1 \times 2 \times \ldots \times n$ est premier avec p car $\forall k \in \llbracket 1, n \rrbracket, k \wedge p = 1$. Donc, n! est inversible modulo p. Donc,

$$\binom{p-1}{n} \equiv (-1)^n \ [p]$$

Sixième partie

Exercice 28

$$(n+1)! + 2, (n+1)! + 3, (n+1)! + 4...(n+1)! + n + 1$$

sont consécutifs non premiers

Septième partie

Exercice 18

$$147 = 3 \times 49 = 3 \times 7^2$$

On pose $N = \prod_{p \in \mathscr{P}} p^{\alpha_p}$.

$$\alpha_3 \geqslant 1$$
 $\alpha_7 \leqslant 2$

N est un carré parfait donc,

$$\forall p \in \mathscr{P}, a_p \in 2N$$

Donc, $\alpha_3 \geqslant 2$

$$3\times147=441$$

donc 441 | N donc $N = 441 \times k$

$$N\equiv 9\ [10]$$

IX Exercice 16

donc $k \equiv 9$ [10] De plus, $9 \leqslant k$. Or,

$$9 \times 441 = 3969 = 3^4 \times 7^2 = (3^2 \times 7)^2$$

Donc,

$$N = 3969$$

Huitième partie

Exercice 24

$$\begin{cases} x = \prod_{p \in \mathscr{P}} p^{\alpha_p} \\ y = \prod_{p \in \mathscr{P}} p^{\beta_p} \end{cases} \quad \text{donc} \quad \begin{cases} x^2 = \prod_{p \in \mathscr{P}} p^{2\alpha_p} \\ y^2 = \prod_{p \in \mathscr{P}} p^{2\beta_p} \end{cases}$$

$$x^{2} \mid y^{2} \iff \forall p \in \mathscr{P}, 2\alpha_{p} \leqslant 2\beta_{p}$$
$$\iff \forall p \in \mathscr{P}, \alpha_{p} \leqslant \beta_{p}$$
$$\iff x \mid y$$

Neuvième partie

Exercice 16

On note ${\mathscr P}$ l'ensemble des nombres premiers. On pose

$$\begin{cases} a = \prod_{p \in \mathscr{P}} p^{\alpha_p} \\ b = \prod_{p \in \mathscr{P}} p^{\beta_p} \end{cases}$$

où (α_p) et (β_p) sont presque nulles.

X Exercice 29

$$a^{2} \wedge ab \wedge b^{2} = \prod_{p \in \mathscr{P}} p^{\max(2\alpha_{p}, \alpha_{p} + \beta_{p}, 2\beta_{p})}$$

$$(*) = \prod_{p \in \mathscr{P}} p^{2\max(\alpha_{p}, \beta_{b})}$$

$$= \left(\prod_{p \in \mathscr{P}} p^{\max(\alpha_{p}, \beta_{p})}\right)^{2}$$

$$= (a \wedge b)^{2}$$

(*): Soit $p \in \mathscr{P}$.

$$\begin{split} &- \text{ Si } \alpha_p \leqslant \beta_p \text{ alors } \begin{cases} 2\alpha_p \leqslant 2\beta_p \\ \alpha_p + \beta_p \leqslant 2\beta_p \end{cases} \text{ donc } \max(2\alpha_p, \alpha_p + \beta_p, 2\beta_p) = 2\beta_p = \\ &2 \max(\alpha_p, \beta_p) \\ &- \text{ Si } \beta_p < \alpha_p, \max(2\alpha_p, \alpha_p + \beta_p, 2\beta_p) = 2\alpha_p = 2 \max(\alpha_p, \beta_p) \end{cases}$$

Dixième partie

Exercice 29

1. Soit $n \in \mathbb{N}_*$. Si n = 1, f(1) est connu car $1 = 2^0$. Si $n \geqslant 2$, $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$ avec

$$\begin{cases} \forall i \neq j, p_i \neq p_j \\ \alpha_i \in \mathbb{N} \\ p_i \in \mathscr{P} \end{cases}$$

$$\forall i \neq j, p_i^{\alpha_i} \land p_j^{\alpha_j}$$

Donc, $f(n) = f(p_1^{\alpha_1}) \dots f(p_k^{\alpha_k}).$

2. On pose

$$\begin{cases} a = \prod_{p \in \mathscr{P}} p^{\alpha(p)} \\ b = \prod_{p \in \mathscr{P}} p^{\beta(p)} \end{cases}$$

$$f(a)f(b) = \prod_{p \in \mathscr{P}} f(p^{\alpha(p)}) \prod_{p \in \mathscr{P}}$$
$$= \prod_{p \in \mathscr{P}} f(p^{\alpha(p)}) f(p^{\beta(b)})$$

Χ Exercice 29

$$\begin{split} f(a \wedge b)f(a \vee b) &= \prod_{p \in \mathscr{P}} f\left(p^{\min(\alpha(p),\beta(p))}\right) \times \prod_{p \in \mathscr{P}} f\left(p^{\max(\alpha(p),\beta(p))}\right) \\ &= \prod_{p \in \mathscr{P}} f\left(p^{\min(\alpha(p),\beta(p))}\right) f\left(p^{\max(\alpha(p),\beta(p))}\right) \end{split}$$

$$\forall p \in \mathscr{P}, f\left(p^{\min(\alpha(p),\beta(p))}\right) f\left(p^{\max(\alpha(p),\beta(b))}\right) = \begin{cases} f\left(p^{\alpha(p)}\right) f\left(p^{\beta(p)}\right) & \text{si } \alpha(p) \leqslant \beta(p) \\ f\left(p^{\beta(p)}\right) f\left(p^{\alpha(p)}\right) & \text{sinon} \end{cases}$$

$$= f\left(p^{\alpha(p)}\right) f\left(p^{\beta(b)}\right)$$

Donc, $f(a)f(b) = f(a \wedge b)f(a \vee b)$.

3. (a)

$$\sigma(o) = \sum_{ \begin{array}{c} d \mid p \\ d > 0 \end{array}} d = 1 + p$$

(b) $\alpha = 0, \, \sigma(1) = 1.$ $\alpha > 0$ les diviseurs positifs de p^{α} sont $1, p, p^2, \dots, p^{\alpha}$ donc

$$\sigma(p^{\alpha}) = \sum_{k=0}^{\alpha} p^{k} = \frac{1 - p^{\alpha+1}}{1 - p}$$
$$= \frac{p^{\alpha+1} - 1}{n - 1}$$

(c) On pose $a = \prod_{q \in \mathscr{P}} q^{\alpha(q)}$ $p \nmid a \text{ donc } \alpha(p) = 0$

Les diviseurs positifs de a sont $\prod_{p\in\mathscr{P}}q^{\beta(q)}$ avec $0\leqslant\beta(q)\leqslant\alpha(q)$ pour

tout $q \in \mathscr{P}$

Les diviseurs positifs de ap^{α} sont $\{dp^{\beta} \text{ avec } \beta \leq \alpha \text{ et } d \mid a\}$.

$$\sigma(ap^{\alpha}) = \sum_{\beta=0}^{\alpha} dp^{\beta}$$

$$\sum_{\beta=0}^{\alpha} p^{\beta} \sum_{\substack{d \mid a \\ d > 0}} d = \sigma(p^{\alpha})\sigma(a)$$

XI Exercice 26

(d)
$$(a,b) \in \mathbb{N}^2$$
 avec $a \wedge b = 1$
 $b = p_1^{\alpha_1} \dots p_n^{\alpha_n}$ avec
$$\begin{cases} p_i \neq p_j \text{ si } i \neq j \\ p_i \text{ premier} \end{cases}$$

 $ab = ap_1^{\alpha_1} \dots p_n^{\alpha_n}.$

On prouve le résultat par récurrence sur n.

:

Onzième partie

Exercice 26

1.

$$\begin{split} I_{p,q} &= \int_0^1 x^p (1-x)^p dx \\ &= \left[\frac{x^{p+1}}{p+1} (1-x)^q \right]_0^1 + \int_0^1 \frac{x^{p+1}}{p+1} q (1-x)^{q-1} dx \\ &= 0 + \frac{q}{q+1} I_{p+1,q-1} \end{split}$$

$$I_{p,0} = \frac{1}{p+1}$$

$$\begin{split} I_{p,q} &= \frac{q}{p+1} I_{p+1,q-1} \\ &= \frac{q}{p+1} \times \frac{q-1}{p+2} I_{p+2,q-2} \\ &= \frac{q}{p+1} \times \frac{q-1}{p+2} \times \ldots \times \frac{1}{p+q} \times I_{p+q,0} \\ &= \frac{q! \ p!}{(p+q)!} \times \frac{1}{p+q+1} \\ &= \frac{p! \ q!}{(p+q+1)!} \end{split}$$

2.

$$I_{n,n} = \int_0^1 x^n (1-x)^n dx$$

$$= \int_0^1 \sum_{k=0}^n \binom{n}{k} x^n (-x)^{n-k} dx$$

$$= \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} \int_0^1 x^{2n-k} dx$$

$$= \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} \left[\frac{2^{2n-k+1}}{2n-k+1} \right]_0^1$$

$$(*) = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} \frac{1}{2n-k+1}$$

Or,
$$I_{n,n} = \frac{(n!)^2}{(2n+1)!}$$
.

Avec (*), $I_{n,n}$ est une somme de rationnels (donc $I_{n,n} \in \mathbb{Q}$) dont les dénominateurs sont $n+1, n+2, \ldots, 2n+1$

Comme $D_n = (n+1) \vee (n+2) \vee \ldots \vee (2n+1)$, il existe $a \in \mathbb{Z}$ te lque $I_{n,n} = \frac{a}{D_n}.$ Or, $I_{n,n} > 0$ donc $a \in \mathbb{N}_*$ donc $a \ge 1$

donc
$$I_{n,n} \geqslant \frac{1}{D_n}$$

donc $D_n \geqslant \frac{1}{I_{n,n}} = \frac{(2n+1)!}{(n!)^2}$

3.
$$D_n = \prod_{pin\mathscr{P}} p^{\max(\alpha_1(p),...,\alpha_n(p))}$$
 où

$$\forall k \in \left[\!\left[1, n+1\right]\!\right], \frac{n}{k-1} = \prod_{p \in \mathscr{P}} p^{\alpha_k(p)}$$

Ce produit fait intervenir des nombres premiers qui divisent n+1 ou n+2 ou ... ou 2n+1, il y en a au plus $\pi(2n+1)$.

Pour chacun de ces nombres premiers, $q=p^{\max(\alpha_k(p)|k\in [\![1,n+1]\!])}$ apparaît dans la décomposition de l'un des nombres $n+1, n+2, \ldots, 2n+1$ donc $q \leq 2n + 1$. Donc,

$$D_n \leqslant (2n+1)^{\pi(2n+1)}$$

D'où,

$$\frac{(2n+1)!}{(n!)^2} \leqslant (2n+1)^{\pi(2n+1)}$$

 donc

$$\frac{(2n+1)!}{(n!)^2} = (2n+1)\frac{(2n)!}{n!}$$
$$= (2n+1)\binom{2n}{n} \in \mathbb{N}$$
$$\geqslant (2n+1)\frac{2^{2n}}{2n+1}$$