编译原理第5次作业

姓名:胡瑞康

学号:22336087

Exercise 5.1

给定以下文法:

 $S \to (L) \mid a$

 $L o L, S \mid S$

- 为该文法构造一个LL(1)分析表。
 - 注意:必须首先消除左递归。
- 绘制对句子(a,(a,a))进行分析的详细过程,请参照之前幻灯片中的格式。

1 问题1

消除左递归后文法:

 $S o (L) \mid a$

 $L \to SL'$

 $L' \rightarrow$, $SL' \mid \varepsilon$

问题1: 计算消除左递归后文法的First集

消除左递归后的文法为:

$$S \rightarrow (L) \mid a$$

$$L \rightarrow SL'$$

$$L' \rightarrow , SL' \mid \varepsilon$$

求First集

根据S的产生式得到

$$\begin{aligned} \operatorname{FIRST}(S) &= \operatorname{FIRST}(()) \cup \operatorname{FIRST}(a) \\ &= \{(,\} \cup \{a\} \\ &= \{(,a\} \end{aligned}$$

根据L的产生式且 $S \Rightarrow ^* \varepsilon$

$$\begin{aligned} \text{FIRST}(L) &= \text{FIRST}(S) \\ &= \{(,a\} \end{aligned}$$

根据L'的产生式得到

$$\begin{aligned} \text{FIRST}(L') &= \text{FIRST}(,) \cup \text{FIRST}(\varepsilon) \\ &= \{,\} \cup \{\varepsilon\} \\ &= \{,,\varepsilon\} \end{aligned}$$

求Follow集

计算 FOLLOW(S)

- 从产生式 $L \to SL'$ 可知,将 FIRST(L') $-\{\varepsilon\}$ 加入 FOLLOW(S),由于 FIRST(L') $=\{,,\varepsilon\}$,所以 $\{,\} \in \text{FOLLOW}(S)$ 。
- 从产生式 $S \to (L)$ 可知,将 FOLLOW(S) 中的 } 加入 FOLLOW(L) 后,再将 FOLLOW(S) 中的元素加入 FOLLOW(S) (因为 L 后面跟着右括号,而右括号在 FOLLOW(S) 中隐含的是句子结束相关的概念,这里主要是将 } 视为和 \$ 一样的句子结束标志来传递),所以 } \in FOLLOW(S)。

 $FOLLOW(S) = \{,,,\},$ \$\;\).

计算 FOLLOW(L)

• 从产生式 $S \to (L)$ 可知,将 FOLLOW(S)中的 } 加入 FOLLOW(L),即 } \in FOLLOW(L)。

 $FOLLOW(L) = \{\}$

计算 FOLLOW(L')

• 从产生式 $L \to SL'$ 可知,将 FOLLOW(L) 中的元素加入 FOLLOW(L'),所以 $\} \in$ FOLLOW(L')。

 $FOLLOW(L') = \{\}$

求分析表

- 对于 S:
 - $S \rightarrow (L)$: FIRST(() = {(}, 所以 M[S, (] = $S \rightarrow (L)$
 - $S \rightarrow a$: FIRST(a) = {a}, 所以 M[S, a] = $S \rightarrow a$
- 对于 L
 - $\quad L \to SL' \text{: FIRST(S)} = \{(\texttt{, a}\}, 所以 \ \texttt{M[L, (]} = L \to SL', \texttt{M[L, a]} = L \to SL'$
- 对于 L':
 - $L' \rightarrow SL'$: FIRST(,) = {,}, 所以 M[L', ,] = $L' \rightarrow SL'$
 - $-L' \rightarrow \varepsilon$: FOLLOW(L') = {)}, 所以 M[L',)] = $L' \rightarrow \varepsilon$

非终结符	()	,	a	\$
S	S o (L)			S o a	
L	$L \to SL'$			L o SL'	
L'		L' o arepsilon	$L' \rightarrow$, SL'		

2 问题2

步骤	分析栈(右为栈顶)	剩余输入串	动作	输出产生式
0	\$ S	(a,(a,a))\$	用 S → (L) 推导	S → (L)
1	\$)L((a,(a,a))\$	匹配(-
2	\$)L	a,(a,a))\$	用 L → S L' 推导	L → S L'
3	\$) L' S	a,(a,a))\$	用 S → a 推导	S → a
4	\$) L' a	a,(a,a))\$	匹配 a	-
5	\$)L'	,(a,a))\$	用 L' → , S L' 推导	$L' \rightarrow , S L'$
6	\$)L'S,	,(a,a))\$	匹配,	-
7	\$) L' S	(a,a)	用 S → (L) 推导	$S \rightarrow (L)$
8	\$)L')L((a,a)	匹配 (-
9	\$)L')L	a,a))\$	用 L → S L' 推导	L → S L'
10	\$) L') L' S	a,a))\$	用 S → a 推导	S → a
11	\$) L') L' a	a,a))\$	匹配 a	-
12	\$)L')L'	,a))\$	用 L' → , S L' 推导	$L' \rightarrow$, $S L'$
13	\$)L')L'S,	,a))\$	匹配,	-
14	\$) L') L' S	a))\$	用 S → a 推导	S → a
15	\$) L') L' a	a))\$	匹配 a	-
16	\$)L')L'))\$	用 L' → ε 推导	L' → ε
17	\$)L')))\$	匹配)	-
18	\$)L')\$	用 L' → ε 推导	L' → ε
19	\$))\$	匹配)	-
20	\$	\$	接受	-

Exercise 5.2

给定以下文法:

 $A \to B \mid BC$

 $B o aB\mid\epsilon$

C o ab

- 对该文法进行左因子分解。
- 左因子分解之后,该文法是LL(1)文法吗?还是LL(k)文法?为什么?
 - 注意: 你可以尝试输入字符串ab。

1 问题1

注意到 A 的两个产生式都有公共前缀 B,可以将其提取出来,

$$\begin{split} A &\rightarrow B\,A' \\ A' &\rightarrow \epsilon \mid C \\ B &\rightarrow aB \mid \epsilon \\ C &\rightarrow ab \end{split}$$

2 问题2

• 对于 $B \rightarrow aB$, 显然有

$$FIRST(aB) = \{a\}.$$

• 对于 $B \rightarrow \epsilon$, 有

 $\epsilon \in \mathrm{FIRST}(B)$.

因此,

$$FIRST(B) = \{a, \epsilon\}.$$

由于 B 出现在产生式 $A \rightarrow BA'$ 中, 其后跟着 A'。

注意到FIRST(A') = FIRST($C \mid \epsilon$) = $\{a, \epsilon\}$

综合可得 $FOLLOW(B) = \{a, \$\}.$

 $\varepsilon \in FIRST(\epsilon)$,但是 $FIRST(aB) \cap FOLLOW(B) = \{a\}$ 不是空集

因此,使用1个符号的向前搜索时无法唯一确定应采用哪一产生式,也就是说该文法不满足 LL(1)条件。

考虑使用 2 个符号的向前搜索(LL(2)):

- 设输入串为 ab。
- 在分析 $A \rightarrow BA'$ 时, B 面临选择:
 - 若采用 $B \to aB$,则第一个 a会被匹配,接下来剩下的符号为 b; 而 A' 的产生式中 $A' \to C$ 要求输入的第一个符号必须为 a (因为 $C \to ab$),此时看2个符号就能发现不匹配。
 - 应当在 B 处直接选用 $B \rightarrow \epsilon$, 使得 A' 由 $A' \rightarrow C$ 推出 ab。

通过 2 个符号的向前搜索,能够区分这两种情况,因此该文法是 LL(2) 文法。