MSMS 308 : Practical 01

Ananda Biswas

July 29, 2025

Question

Consider the following survival data of 40 patients with myeloma. Compute and plot the estimated survival function, the probability density function, and the hazard function.

Survival Time t (months)	Number of Patients Surviving at Beginning of the Interval	Number of Patients Dying in the Interval
0 - 5	40	5
5 - 10	35	7
10 - 15	28	6
15 - 20	22	4
20 - 25	18	5
25 - 30	13	4
30 - 35	9	4
35 - 40	5	0
40 - 45	5	2
45 - 50	3	1
≥ 50	2	2

• R Program, Plot and Interpretation

$$\widehat{S(t)} = \frac{\text{number of patients surviving longer than } t}{\text{total number of patients}}$$

$$\widehat{f(t)} = \frac{\text{number of patients dying in the interval beginning at time } t}{\left(\text{total number of patients}\;\right) \times \left(\text{ interval width}\right)}$$

$$\widehat{h(t)} = \frac{\text{number of patients dying per unit time in the interval}}{(\text{number of patients surviving at }t) - (\text{ number of deaths in the interval})/2}$$

```
total_number_of_patients <- survival_data$no_at_risk[1]</pre>
```

```
S_t_hat <- survival_data$no_at_risk / total_number_of_patients</pre>
```

```
interval_width <- 5

f_t_hat <- survival_data$no_of_death / (total_number_of_patients * interval_width)

f_t_hat[length(f_t_hat)] = NA</pre>
```

```
# a = number_of_patients_dying_per_unit_time_in_the_interval
a <- survival_data$no_of_death / interval_width
h_t_hat <- a / (survival_data$no_at_risk - survival_data$no_of_death / 2)
h_t_hat[length(h_t_hat)] = NA</pre>
```

```
analysis_table
##
     survival_time no_at_risk no_of_death t S_t_hat f_t_hat h_t_hat
## 1
             0--5
                         40
                                     5 0 1.000 0.025 0.027
## 2
                                     7 5
            5--10
                         35
                                           0.875
                                                  0.035 0.044
## 3
           10--15
                         28
                                     6 10
                                           0.700 0.030 0.048
## 4
           15--20
                         22
                                     4 15
                                           0.550 0.020 0.040
           20--25
                                     5 20
## 5
                                           0.450 0.025
                                                         0.065
                         18
## 6
           25--30
                         13
                                     4 25
                                           0.325 0.020 0.073
## 7
           30--35
                          9
                                     4 30
                                           0.225
                                                 0.020
                                                         0.114
## 8
                          5
           35--40
                                     0 35
                                           0.125 0.000 0.000
## 9
           40--45
                          5
                                     2 40
                                           0.125
                                                  0.010
                                                          0.100
## 10
                          3
                                                  0.005
                                                          0.080
           45--50
                                     1 45
                                           0.075
## 11
             >=50
                          2
                                     2 50 0.050 NA NA
```

Plot of Estimated Survival Function

The median sunvival time вой myeloma patients is арриохітатеру 17.5 months.

Plot of Estimated Density Function

Death due to myeloma is most likely occur in 5 to 10 months.

Plot of Estimated Hazard Function

The hazard function shows an increasing trend and reaches its peak in 30 to 35 months, so risk of death increases over time.