第四讲、 凸函数与不等式

凸函数在数学的众多领域中都很重要. 本讲将介绍凸函数性质和用凸函数为工具来证明不等式. 与积分相关的不等式放到"积分学"部分.

§4.1 凸函数的定义和基本性质

定义 设函数 f 在区间 I 上定义. 若对每一对点 $x_1, x_2 \in I, x_1 \neq x_2,$ 和每一个数 $\lambda \in (0,1)$, 成立不等式

$$f(\lambda x_1 + (1 - \lambda)x_2) \leqslant \lambda f(x_1) + (1 - \lambda)f(x_2),$$

则称 f 为区间 I 上的下凸函数. 又若在上式中成立严格不等号, 则称 f 为区间 I 上的严格下凸函数. 若函数 -f 为下凸函数(严格下凸函数), 则称 f 为上凸函数(严格上凸函数). 有时简称下凸函数为凸函数.

性质

1. 函数 f 在区间 I 上为下凸的充分必要条件是对于区间 I 中的任意三点 $x_1 < x_2 < x_3$,成立不等式

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \leqslant \frac{f(x_3) - f(x_1)}{x_3 - x_1} \leqslant \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

又如在不等式中的不等号 "≤" 都改为严格的不等号 "<",则就是严格下凸的充分必要条件._____

- 件. 2. 开区[[广] 的[1] [[必是连续函数]
- 3. 若 f 万开区间 I 上的下凸函数,则 (1) f 处处存在有限的两个单侧寻数,而且成立不等式 $f'_{-}(x) \leqslant f'_{+}(x), x \in I;$ (2) 若 $x,y \in I,$ 且 x < y, 则成立不等式 $f'_{-}(x) \leqslant f'_{+}(x) \leqslant f'_{-}(y) \leqslant f'_{+}(y).$
- 4. 设 f 在区间 I 上可微,则 (1) f 在 I 上为下凸函数的充分必要条件是 f' 在 I 上为单调增加函数; (2) f 在 I 上为严格下凸函数的充分必要条件是 f' 在 I 上严格单调增加.
- 5. 若 f 是区间 I 上的可微下凸函数,则过任意点 $(x_0, f(x_0)), x_0 \in I$ 的切线一定在曲 线 y = f(x) 的下方,即成立不等式

$$f(x) \geqslant f(x_0) + f'(x_0)(x - x_0) \quad \forall x \in I.$$

又若 f 严格下凸,则上述不等式成立等号的充分必要条件是 $x = x_0$.

- 6. 设函数 f 于区间 I 上二阶可微, 则 (1) f 在 I 上为下凸函数的充分必要条件是在 I 上处处有 $f''(x) \ge 0$; (2) f 在 I 上为严格下凸函数的充分必要条件是在 I 上处处有 $f''(x) \ge 0$, 而且在任一正长度的子区间上 f''(x) 不恒等于零.
- 7. **下凸函数的** Jensen **不等式** 如 f 为区间 I 上的下凸函数,则对任何 $x_1, x_2, \dots, x_n \in I$ 与满足条件 $\lambda_1 + \lambda_2 + \dots + \lambda_n = 1$ 的 n 个正数 $\lambda_1, \lambda_2, \dots, \lambda_n$ 成立不等式

$$f(\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n) \leq \lambda_1 f(x_1) + \lambda_2 f(x_2) + \dots + \lambda_n f(x_n).$$

又若 f 严格下凸,则上述不等式成立等号的充分必要条件是 $x_1 = x_2 = \cdots = x_n$.

例 1 设 f, g 是 (a,b) 上的下凸函数. 证明: $\max\{f(x),g(x)\}$ 也是 (a,b) 上的下凸函数.

例 2 设 f(x) 在区间 (a,b) 内为凸函数, 并且有界. 试证极限 $\lim_{x\to a+0} f(x)$ 与 $\lim_{x\to b-0} f(x)$ 存在.

例 3 设函数 f 在 $(-\infty, +\infty)$ 上有界, 且处处有 $f''(x) \ge 0$. 证明: f 为常值函数.

例 4 设 $D \subset \mathbb{R}^2$ 为凸区域, 若对 $\forall (x_1, y_1), (x_2, y_2) \in D, \forall \lambda \in (0, 1), f(x, y)$ 满足

$$f(\lambda x_1 + (1 - \lambda)x_2, \lambda y_1 + (1 - \lambda)y_2) \le \lambda f(x_1, y_1) + (1 - \lambda)f(x_2, y_2),$$

则称 f 为区域 D 上的凸函数. 证明 (H) 区域上的凸函数连续.

§4.2 一些经典不等式

例 1 利用 $f(x) = e^x$ 的严格凸性, 证明 Young 不等式

$$ab \le \frac{1}{p}a^p + \frac{1}{q}b^q,$$

其中 $a, b \ge 0$, $\frac{1}{p} + \frac{1}{q} = 1$, 当且仅当 $a^p = b^q$ 时取等号.

例 2 (广义的算术–几何平均值不等式) 设有 n 个非负数 x_1, x_2, \dots, x_n 和 n 个正数 $\lambda_1, \lambda_2, \dots, \lambda_n$, 且 $\lambda_1 + \lambda_2 + \dots + \lambda_n = 1$, 则成立不等式

苏州大学数学科学学院

其中当且仅当 $x_1 = x_2 = \cdots = x_n$ 时成立等号.

例 3 (Hölder 不等式) 设有 2 个非负数组 x_1, x_2, \cdots, x_n 和 y_1, y_2, \cdots, y_n , 又有 p > 1, q > 1, 且满足条件 $\frac{1}{n} + \frac{1}{n} = 1$, 则成立不等式

$$\sum_{k=1}^{n} x_k y_k \leqslant \left(\sum_{k=1}^{n} x^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} y^q\right)^{\frac{1}{q}},$$

其中当且仅当数组 $x_1^p, x_2^p, \cdots, x_n^p$ 和 $y_1^q, y_2^q, \cdots, y_n^q$ 成比例时成立等号.

例 4 (Minkowski 不等式) 设有 2 个非负数组 x_1, x_2, \dots, x_n 和 y_1, y_2, \dots, y_n , 又有 p > 1, 则成立不等式

$$\left(\sum_{k=1}^{n} (x_k + y_k)^p\right)^{\frac{1}{p}} \leqslant \left(\sum_{k=1}^{n} x_k^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} y_k^p\right)^{\frac{1}{p}},$$

其中当且仅当数组 x_1, x_2, \cdots, x_n 和 y_1, y_2, \cdots, y_n 成比例时成立等号.

§4.3 其它的一些不等式

例 1 证明 Jordan 不等式: 当 $0 \le x \le \frac{\pi}{2}$ 时, $\frac{2}{\pi}x \le \sin x \le x$.

例 2 证明: $\frac{1-x}{1+x} < e^{-2x}$ (0 < x < 1).

例 3 证明: x > 0, $t \le x$ 时, $e^{-t} - (1 - \frac{t}{x})^x \ge 0$.

例 4 设函数 $f(x) = \left(1 + \frac{1}{x}\right)^{x+\alpha}$. 证明: 当 $\alpha \geqslant \frac{1}{2}$ 时, f(x) 于 x > 0 时严格单调减少; 而当 $\alpha < \frac{1}{2}$ 时, f(x) 于 x 充分大时严格单调增加.

例 5 求出最大的 α 和最小的 β , 使得

$$\left(1+\frac{1}{n}\right)^{n+\alpha} \leqslant e \leqslant \left(1+\frac{1}{n}\right)^{n+\beta}, \ \forall n \in \mathbf{N}.$$

第四讲练习题

- 1. 设 f 在 $(-\infty, +\infty)$ 上为下凸函数, 又有 $\lim_{x\to \pm\infty} \frac{f(x)}{x} = 0$. 证明: f 是常值函数.
- 2. 设 f 是 [a,b] 上的凸函数, 且有 $c \in (a,b)$ 使得 f(a) = f(c) = f(b). 证明: f(x)是 [a,b] 上的常值函数.
- 3. 证明: 在 $(-\infty + \infty)$ 上定义的有界凸函数必是常数. 4. 证明: $\frac{2nx}{x} > \frac{r}{1} \frac{r}{1x}, \quad \sqrt{x} \in \mathbb{R}, \frac{r}{2}$. 5. 设 $a > \ln f 1$ 为在一点数. 式证 $2x 2ax + 1 < \epsilon^{r}$ (r > 0.
- 6. 证明: $\frac{1}{x(1+x)} > \ln^2(1+\frac{1}{x})$ (x>0).
- 7. 设 0 < x < 1,试证: $\sum_{i=1}^{n} x^{i} (1-x)^{2i} \le \frac{4}{23}$.
- 8. 证明: 当 0 < x < 1 时成立不等式 $\pi < \frac{\sin \pi x}{x(1-x)} \le 4$.
- 9. 设函数 f(x) 在 $[a, +\infty)$ 二阶可微, 且 $f(x) \ge 0$, $f''(x) \le 0$, $\forall x \ge a$. 证明: $f'(x) > 0, \quad \forall x > a.$
- 10. 证明: 在 x > 0, $x \neq 1$ 时, 成立 Karamata 不等式

$$\frac{\ln x}{x-1} \le x^{-\frac{1}{2}}.$$

11. 证明: 当 x > 0, y > 0 时成立不等式 $x^y + y^x > 1$.