Graphs and Algorithms

January 7, 2019

1 Graphs

- A graph is a pair(v, e) where v is a set of nodes called *vertices* and e is a collection of pairs of vertices, called *edges*
- Vertices and Edges are positions and store elements
- insert graph example here

2 Edge Types

- 1. Directed Edge
 - Ordered pair of vertices (u, v)
 - First vertex u is the origin
 - \bullet Second vertex v is the destination
 - \bullet e.g. a flight
- 2. Undirected Edge
 - Unordered pair of vertices (u, v)
 - e.g. a flight route
- 3. Directed Path
 - All edges are directed
 - e.g. a route network
- 4. Undirected Path
 - All the edges are undirected
 - e.g. a flight network

3 Subgraphs

- A subgraph S of a graph G is such that
 - The vertices of S are a subset of the vertices of G
 - The edges of S are a subset of the edges of G
- A $spanning \ subgraph$ of G is a subgraph that contains all the vertices of G, but not necessarily all the edges of G

4 Connectivity

- A graph is considered *Connected* if there is a path between every pair of vertices
- • A ${\it Connected}$ ${\it Component}$ of a graph ${\it G}$ is a maximal connected subgraph of ${\it G}$

5 Trees and Forests

- A (free) tree is an undirected graph T such that
 - T is connected
 - T has no cycles
 - Note that a free tree is different from a rooted tree
- ullet A forest is an undirected graph without cycles
 - The connected components of a forest are trees
- \bullet A $spanning\ tree$ of a connected graph is a spanning subgraph that is a tree
 - Is not unique unless the graph is a tree
- ullet A $spanning\ forest$ of a graph is a spanning subgraph that is a forest

6 Depth-First Search

- \bullet Depth-First Search (DFS) is a general technique for traversing a graph
- $\bullet\,$ A DFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a Spanning Forest of ${\cal G}$