A LATERIAL-LOAD TEST OF A FULL-SCALE PILE GROUP IN SAND (U) TEXAS UNIV AT AUSTIN GEOTECHNICAL ENGINEERING CENTER C S MORRISON ET AL FEB 88 MES/MP/GL-88-1 DACM39-83-C-8861 AD-A194 216 174 UNCLASSIFIED NL

Sees Operation (November Operators) Commission (November Opera

. . . Lile Luc.

MISCELLANEOUS PAPER GL-88-1

A LATERAL-LOAD TEST OF A FULL-SCALE PILE GROUP IN SAND

by

Clark S. Morrison, Lymon C. Reese

Geotechnical Engineering Center Bureau of Engineering Research The University of Texas at Austin Austin, Texas 78712

February 1988
Reprint of Geotechnical Engineering Report GR86-1

Approved For Public Release; Distribution Unlimited

Prepared for US Army Engineer Waterways Experiment Station PO Box 631, Vicksburg, Mississippi 39180-0631

Under Contract No. DACW39-83-C-0061

88 4 15

uu 9

Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

	دندگخند			المناشدة		
-	•		. ,		<	PALLE

A	DA	1942	16
---	----	------	----

	REPORT DOCUMENTATION PAGE				Form Approved OMB No 0704 0188 Exp. Date: Jun 30, 1986
There at Secrety Classication Thyliass It led		16 RESTRICTIVE MARKINGS			
La SEC RETY CLASSECATION AUTHORITY	_	3 DISTRIBUTION AVAILABILITY OF REPORT			
LD DEC. ASS F CATION DOWNGRADING SCHEDU	Approved unlimited	for public L	release	; distribution	
4 PERFORMING ORGANIZATION REPORT NUMBE	•	5 MONITORING ORGANIZATION REPORT NUMBER(S)			
dectechnical Engineering Repor	Miscellan	eous Paper	GL-88-1		
63 NAME OF PERFORMING ORGANIZATION Sec. reverse	6b OFFICE SYMBOL (If applicable)	7a NAME OF M Geotechn Waterway		atory, U	S Army Engineer
6c ADDRESS (City, State, and ZIP Code)	· · · · · · · · · · · · · · · · · · ·	76 ADDRESS (C			
Mustin, IX 78712		PO Box 6 Vicksbur	31 g, MS 3918	80-0631	222224
Ba NAME OF FUNDING SPONSORING ORGANIZATION	8b OFFICE SYMBOL (If applicable)	9 PROCUREMEN	T INSTRUMENT	IDENTIFICAT	ION NUMBER
See reverse	<u> </u>	10.10:100.55	Francisco		
Bc. ADDRESS (City, State, and ZIP Code)		10 SOURCE OF	PROJECT	TASK	WORK UNIT
Sec reverse		ELEMENT NO	NO	NO	ACCESSION NO
1: ** LE (Include Security Classification)	•	 	<u> </u>		
A Lateral-Load Test of a Full-	Scale Pile Grou	ıp in Sand			
12 PERSONAL AUTHOR(S)					
Morrison, Clark S.; Reese, Lym		14 DATE OF REPO	RT (Year Mont	h Dayl Is	PAGE COUNT
Final report FROM TO February 1988 323					
16 SUPPLEMENTARY NOTATION					
Available from National Techn VA 22161.					
F-ELD GROUP SUB-GROUP	18 SUBJECT TERMŠ (Continue on reven	se if necessary a	ind identify	by block number)
F-ELD GROUP SUB-GROUP	Cohesionless s		Pile grou	ıps	
	Cyclic lateral		Scour		
Lateral-load tests were performed on a large-scale, well-instrumented group of piles in sand. A similar single pile, also well-instrumented, was tested in the same soil. The group of piles and the single pile were installed in Houston for previous research projects. The native clay soil was removed from the upper portion of the piles and replaced with clean sand. Cyclic lateral loads were applied to the piles, and the response of the instrumentation was recorded. The results of the load test of the group are compared with the results of current design methods. The methods include DEFPIG, the Focht-Koch method, the single-pile method, and the Bogard-Matlock method. Because none of the methods provided entirely satisfactory results, in analytical procedure is provided which yields good agreement with the results of the load-test.					
D. DISTRIBUTON AVAILABLITY OF AHSTRACT □ NO. ACSTED N. MITO □ SAME AS F	PPT □ DT C USERS	21 ABSTRACT SE Unclassi	fied		
Carthada, Francisco Artificial (1990)		JV6 TELEPHONE	(Include Area Co	de) 220 OF	F.CE SYMBOL
DD 608M 1473 21 MAP 41 AF	Place to may be used or	** exhausted			110100 1 (01)

Fig. NAME OF PERFORMING ORGANIZATION (Continued).

Geotochnical Engineering Center Bareau at Engineering Research Le University of Texas at Austin

si, and c. NAME OF FUNDING/SPONSORING ORGANIZATION AND ADDRESS (Continued).

Minerals Management Service 13 Department of Interior Sestion, VA 22090

Separation of Research Sederal either Administration Lassington, DC 20590

 18 Army Chaineer Waterways Experiment Station PolBox 631 Tiessburg, MS=39180--0631

US Army Engineer Division Lower Mississippi Valley Vicksburg, MS 39180-0080

PREFACE

This study was performed by the Geotechnical Engineering Center, Bureau of Engineering Research, The University of Texas at Austin, under contract to the US Army Engineer Waterways Experiment Station (WES), Vicksburg, Mississippi, for the Minerals Management Service, US Department of Interior, the Department of Research, Federal Highway Administration, and the US Army Engineer Division, Lower Mississippi Valley. The study was performed under Contract No. DACW 39-83-C-0061.

This report was prepared by Mr. Clark S. Morrison and Dr. Lymon C. Reese, University of Texas at Austin, and reviewed by Mr. Gerald B. Mitchell, Chief, Engineering Group, Soil Mechanics Division (SMD), Geotechnical Laboratory (GL), WES. General supervision was provided by Mr. Clifford L. Mc-Anear, Chief, SMD, and Dr. William F. Marcuson III, Chief, GL.

COL Dwayne G. Lee is Commander and Director of WES. Dr. Robert W. Whalin is Technical Director.

Access	ion For		Ĺ
NIIS DTIC T Unanno Justif	AB		COPA
By Distri	bution/		SPECTED
Avail	ability	Codes	
Dist	Avail and Special		
A-I			

TABLE OF CONTENTS

			Page
PREFACE .	• • • •		i
LISTING	OF	TABLES	vi
LISTING	OF	FIGURES	vii
CHAPTER	1.	INTRODUCTION	1
CHAPTER	2.	SITE PREPARATION AND SOIL PROPERTIES	3
		Introduction Description of Site Excavation Placement of Sand Properties of Sand Concluding Comment	3 7 10 12 18
CHAPTER	3.	APPARATUS AND INSTRUMENTATION	21
		Introduction	21
		Test of Pile Group	21 21 22 26
		Loading Apparatus and Measurement of Load	28 36
		Apparatus and Instrumentation for Load Test of Single Pile	36 36 37
		Measurement of Deflection and Slope	38
		Loading Apparatus and Measurement of Load	38 41 41

CHAPTER	4.	TESTING PROCEDURE AND OBSERVATION	45
		Introduction	45
		Testing	45
		Load Test of Single Pile	46
		Load Test of Pile Group	50
		Test of October 18, 1984	50
		Failure of the Loading Apparatus.	51
		Description of Failure	51
		Cause of Failure	51
		Repair and Modification of	
		the Loading System	55
		Test of December 13, 1984	56
		Concluding Comment	58
CHAPTER	5.	SUMMARY OF TEST RESULTS	59
		Introduction	59
		Results of Load Test of Single	J
		Pile	59
		Dependency of Pile-Head Load	39
			59
		on Cycling	
			61
		Moment Curves	61
		Load versus Maximum Moment	68
		Soil Response	68
		Results of Load Test of Pile Group	78
		Dependency of Pile-Head Load	
		on Cycling	78
		Pattern of Deflection of the	
		Pile Group	78
		Load Distribution	83
		Load versus Deflection	83
		Moment Curves	94
		Load versus Maximum Moment	100
		Soil Response	100
		Concluding Comments	109
CHAPTER	6.	COMPARISON OF MEASURED BEHAVIOR OF	
		GROUP OF PILES WITH THE BEHAVIOR	
		PREDICTED BY CURRENT DESIGN METHODS	129
		Introduction	129
		DEFPIG	130
		Calculated Behavior of the Group	
		of Piles Using Program DEFPIG	
		with no Local Yielding for	
		Static Loading	122

Calculated Behavi	ior of the Group
of Piles Using	Program DEFPIG
with Local Yie	
	J
Summary	
Focht-Koch Method	
Calculated Behavi	
of Piles Using	
	tic Loading 143
Calculated Behavi	
	g the Focht-Koch
	clic Loading 146
Summary	150
Single-Pile Method	
Calculated Behavi	ior of the Group
	g the Single-Pile
	atic Loading 154
Calculated Behavi	
	g the Single-Pile
	156
Summary	
Bogard-Matlock Method	
Calculated Behav	
of Piles Using	
Matlock Method	d for Static
Loading	163
Calculated Behav	ior of the Group
of Piles Using	
Matlock Method	
v	
Concluding Comment	
CHAPTER 7. A PROCEDURE FOR CALCULATI	
OF THE TESTED GROUP OF	F PILES 173
Introduction	
Important Aspects of (Group Behavior 173
Demonstration of the I	Proposed
Procedure	
Concluding Comment	
Concluding Comment	
CHAPTER 8. CONCLUSION	
	•
REFERENCES	201

APPENDIX A:	Results of the load test of the single pile, October 11, 1984	203
APPENDIX B:	Results of the load test of the group of piles, October 18, 1984	221
APPENDIX C:	Results of the load test of the group of piles, December 13, 1984	239

LISTING OF TABLES

<u>Table</u>		Page
2.1	Density Measurements	15
6.1	Summary of Results of Comparisons of Calculated and Measured Group Behavior	170

LISTING OF FIGURES

Figure		Page
2.1.	Site plan (after Brown and Reese, 1985)	5
2.2.	Group pile labels	6
2.3.	Plan view of excavation and pipe system	8
2.4.	Elevation view of excavation and pipe system	9
2.5.	Compaction of sand with vibratory-plate compactor	11
2.6.	Compaction of sand with hand tamper	13
2.7.	Nuclear density gage	14
2.8.	Grain-size distribution of sand	16
2.9.	Photograph of sand	17
2.10.	Angle of internal friction vs. depth based on cone penetration test (after Ochoa and O'Neill, 1986)	19
3.1.	Strain-gage circuit for measurement of bending moment (after Brown and Reese, 1985)	24
3.2.	Schematic drawing of a pile in the group and of the instrumentation pipe (after Brown and Reese, 1985)	25
3.3.	Photograph of reference frame	27
3.4.	Plan view of loading frame	29
3.5.	Pile-to-loading-frame connection with 1.25-indiameter load cell	30
3.6.	Pile-to-loading-frame connection with 2.0-indiameter load cell	32
3.7.	Schematic drawing of the loading system for the pile group	34

3.8.	Photograph of electronic load-control system	35
3.9.	Schematic drawing of single pile	39
3.10.	Photograph of reference frame for the single pile	4(
3.11.	Photograph of loading apparatus for the single pile	42
4.1.	Topography of depression around the single pile	49
4.2.	Failure mechanism of loading frame	52
4.3.	Position of load-control devices	54
5.1.	Loads and deflections applied on compression stroke of cycle, single-pile test	60
5.2.	Loads and deflections applied on tension stroke of cycle, single-pile test	62
5.3.	Load-deflection curve for single pile for cycle 1	63
5.4.	Load-deflection curves for single pile for cycle 100	64
5.5.	Normalized moment curves for single pile for first deflection increment	65
5.6.	Normalized moment curves for single pile for third deflection increment	66
5.7.	Normalized moment curves for single pile for fifth deflection increment	67
5.8.	Pile-head load vs. maximum moment for single pile	69
5.9.	Experimental p-y curves for depths of 12 in. and 24 in. for single pile	7;
5.10.	Experimental p-y curves for depths of 36 in.	7 .

5.11.	Experimental p-y curves for depths of 60 in. and 72 in. for single pile	74
5.12.	Comparison of experimental and computed p-y curves for single pile	75
5.13.	Comparison of experimental and computed p-y curves for single piles	76
5.14.	Comparison of experimental and computed p-y curves for single pile	77
5.15.	Comparison of computed and measured deflections for the single pile	79
5.16.	Comparison of computed and measured maximum bending moment for the single pile	80
5.17.	Loads and deflections applied on compression stroke of cycle, pile-group test	81
5.18.	Loads and deflections applied on tension stroke of cycle, pile-group test	82
5.19.	Pattern of deflection for load 1, pile-group test	84
5.20.	Pattern of deflection for load 3, pile-group test	85
5.21.	Pattern of deflection for load 5, pile-group test	86
5.22.	Load distribution for load 1, cycle 1, pile group test	87
5.23.	Load distribution for load 1, cycle 100, pile group test	88
5.24.	Load distribution for load 3, cycle 1, pile group test	89
5.25.	Load distribution for load 3, cycle 100, pile group test	90
5.26.	Load distribution for load 5, cycle 1, pile	0.1

5.27.	Load distribution for load 5, cycle 100, pile group test	92
5.28.	Load-deflection curves for cycle 1, pile group test	93
5.29.	Load deflection curves for cycle 100, pile group test	95
5.30.	Bending moment curves for load 3, compression stroke, pile-group test	96
5.31.	Bending moment curves for load 3, tension stroke, pile-group test	97
5.32.	Bending moment curves for load 5, compression stroke, pile-group test	98
5.33.	Bending moment curves for load 5, tension stroke, pile-group test	99
5.34.	Load-maximum moment curves for cycle 1, pile group test	101
5.35.	Load-maximum moment curves for cycle 100, pile group test	102
5.36.	Experimental p-y curves, cycle 1c, depth = 12 in., pile-group test	103
5.37.	Experimental p-y curves, cycle 1c, depth = 24 in., pile-group test	104
5.38.	Experimental p-y curves, cycle 1c, depth = 36 in., pile-group test	105
5.39.	Experimental p-y curves, cycle 1c, depth = 48 in., pile-group test	106
5.40.	Experimental p-y curves, cycle 1c, depth = 60 in., pile-group test	107
5.41.	Experimental p-y curves, cycle 1c, depth = 72 in., pile-group test	108
5.42.	Experimental p-y curves, cycle 1T,	111

5.43.	<pre>Experimental p-y curves, cycle 1T, depth = 24 in., pile-group test</pre>	112
5.44.	<pre>Experimental p-y curves, cycle 1T, depth = 36 in., pile-group test</pre>	113
5.45.	<pre>Experimental p-y curves, cycle 1T, depth = 48 in., pile-group test</pre>	114
5.46.	<pre>Experimental p-y curves, cycle 1T, depth = 60 in., pile-group test</pre>	115
5.47.	Experimental p-y curves, cycle 1T, depth = 72 in., pile-group test	116
5.48.	Experimental p-y curves, cycle 100c, depth = 12 in., pile-group test	117
5.49.	Experimental p-y curves, cycle 100c, depth = 24 in., pile-group test	118
5.50.	Experimental p-y curves, cycle 100c, depth = 36 in., pile-group test	119
5.51.	Experimental p-y curves, cycle 100c, depth = 48 in., pile-group test	120
5.52.	Experimental p-y curves, cycle 100c, depth = 60 in., pile-group test	121
5.53.	Experimental p-y curves, cycle 100c, depth = 72 in., pile-group test	122
5.54.	<pre>Experimental p-y curves, cycle 100T, depth = 12 in., pile-group test</pre>	123
5.55.	Experimental p-y curves, cycle 100T, depth = 24 in., pile-group test	12
5.56.	Experimental p-y curves, cycle 100T, depth = 36 in., pile-group test	12
5.57.	Experimental p-y curves, cycle 100T, depth = 48 in., pile-group test	12
5.58.	Experimental p-y curves, cycle 100T,	12

5.59.	Experimental p-y curves, cycle 100T, depth = 72 in., pile-group test	128
6.1.	Comparison of measured deflections with single-pile deflections computed by elastic analysis	133
6.2.	Comparison of measured deflections with deflections computed by DEFPIG without local yield	134
6.3.	Comparison of measured load distribution with load distribution computed by DEFPIG without local yield	136
6.4.	Comparison of measured load distribution with load distribution computed by DEFPIG without local yield (continued)	137
6.5.	Comparison of measured deflections with deflections computed by DEFPIG with local yield	139
6.6.	Comparison of measured load distribution with load distribution computed by DEFPIG with local yield	140
6.7.	Comparison of measured load distribution with load distribution computed by DEFPIG with local yield (continued)	141
6.8.	Comparison of measured deflections with static deflections computed by the Focht-Koch method	144
6.9.	Comparison of measured maximum moments with static maximum moments computed by the Focht-Koch method	145
6.10.	Comparison of measured load distribution with load distribution computed by the Focht-Koch method	147
6.11.	Comparison of measured load distribution with load distribution computed by the Focht-Koch method (continued)	148
	~1 cue rocue nocu meentor (constitued)	740

6.12.	Comparison of measured deflections with cyclic deflections computed by the Focht-Koch method	149
6.13.	Comparison of measured maximum moments with cyclic maximum moments computed by the Focht-Koch method	151
6.14.	Comparison of measured load distribution with load distribution computed by the Focht-Koch method	152
6.15.	Comparison of measured load distribution with load distribution computed by the Focht-Koch method(continued)	153
6.16.	Comparison of measured deflections with static deflections computed by the single pile method	155
6.17.	Comparison of measured maximum moments with static maximum moments computed by the single pile method	157
6.18.	Comparison of measured deflections with cyclic deflections computed by the single-pile method	158
6.19.	Comparison of measured maximum moments with cyclic maximum moments computed by the single-pile method	159
6.20.	Construction of p-y curves by the method of Bogard and Matlock (after Bogard and Matlock, 1983)	162
6.21.	Comparison of measured deflections with static deflections computed by the Bogard-Matlock method	164
6.22.	Comparison of measured maximum moments with static maximum moments computed by the Bogard-Matlock method	165
6.23.	Comparison of measured deflections with cyclic deflections computed by the Bogard-Matlock method	167

6.24.	Comparison of measured maximum moments with cyclic maximum moments computed	
	by the Bogard-Matlock method	168
7.1.	Comparison of deflection for the static case with the computed deflections for the	176
	piles	1/6
7.2.	Comparison of measured maximum moments for the static case with the computed maximum moments for the leading row of piles	177
7.3.	Comparison of measured deflections for the	
	static case with the computed deflections for the middle row of piles	178
7.4.	Comparison of measured maximum moments for	
,	the static case with the computed maximum	
	moments for the middle row of piles	179
7.5.	Comparison of measured deflections for the static case with the computed deflections	
	for the trailing row of piles	180
7.6.	Comparison of measured maximum moments for	
	the static case with the computed maximum moments for the trailing row of piles with	181
7.7.	Construction for the static case of an	
	average curve for the pile group giving load versus deflection of the pile load	183
7.8.	Comparison of measured deflections for the	
	static with the computed deflections by the proposed procedure	184
7.9.	Comparison of measured maximum moments for	
	the static case with maximum moments computed by the proposed procedure	185
7.10.	Comparison of the measured load distribtion	
	for the static case for the load distribution computed by the proposed	
	procedure	186
7.11.	Comparison of measured deflections for the	
	cyclic case with the computed deflections for the leading row of piles	188

7.12.	Comparison of measured maximum moments for the cyclic case with the computed maximum moments for the leading row of piles	189
7.13.	Comparison of measured deflections for the cyclic case with computed deflections for the middle row of piles	190
7.14.	Comparison of measured maximum moments for the cyclic case with the computed maximum moments for the middle row of piles	191
7.15.	Comparison of measured deflections for the cyclic case with the computed deflections for the trailing row of piles	192
7.16.	Comparison of measured maximum moments for the cyclic case with the computed maximum moments for the trailing row of piles	193
7.17.	Construction for the cyclic case of an average curve for the pile group pile-head load vs. deflection	194
7.18.	Comparison of measured deflections with cyclic deflections computed by the proposed procedure	195
7.19.	Comparison of cyclic maximum moments calculated by the proposed procedure and measured maximum moments	196
7.20.	Comparison of load distribution calculated by the proposed procedure and the measured load distribution for the cyclic case	197

CHAPTER 1

INTRODUCTION

Closely-spaced groups of piles can be used in a variety of structures to support lateral loads. These structures include lock-and-dam structures, bridge foundations, waterfront structures, and offshore platforms. The use of closely-spaced piles in a group for offshore platforms has increased in recent years as platforms are placed in deeper water and in more severe environments. Under such conditions it is desirable to minimize the number of legs supporting the platform; thus, reducing environmental lateral loads on the structure from waves and currents. The use of groups of piles allows the number of legs to be minimized.

To provide a better understanding of the behavior of closely-spaced piles in a group, load tests were performed on a large-scale, well-instrumented group of piles in sand, and a similar single pile. A 3 x 3 group of piles and a single pile, installed in Houston for previous research projects, were used for the load tests. The native-clay soil was removed from the upper portion of the piles and replaced with clean sand. The piles were instrumented for the measurement of load deflections, slopes at the tops of the piles, and of bending moments at

various depths along the piles. Cyclic, lateral loads were then applied to the piles, and the response of the instrumentation was recorded. The results of the load tests were used to generate load-vs.-deflection curves for the tops of the piles, moment curves as a function of pile length, load-vs.-maximum moment curves, and p-y (soil response) curves for both the group of piles and the single pile.

The results of the load tests were compared with the results of several current design methods. The methods included an elastic method (computer program DEFPIG), the Focht-Koch method, the single-pile method, and the Bogard-Matlock method. Because none of the methods that were studied provided entirely satisfactory results, an analytical procedure is provided which yields good agreement with the results of the load-test.

CHAPTER 2

SITE PREPARATION AND SOIL PROPERTIES

INTRODUCTION

The load tests were performed at a site on the campus of the University of Houston in Houston, Texas. The site was selected because a nine-pile group and several single piles had been installed at the site for a previous research project. The pile group and one single pile were in good condition, and were suitable for use in this project. Using these piles resulted in saving the cost of purchasing and installing piles at a new site. Because the objective of this project was to measure the behavior of a pile group in sand, and the soil at the selected site was an overconsolidated clay, a considerable volume of the native soil was removed and replaced with a suitable sand.

DESCRIPTION OF SITE

The native surface soils at the test site consist of stiff over-consolidated clays. The surface layer, know locally as Beaumont clay, is a very stiff, highly-plastic clay which was overconsolidated by desiccation. The clay contains numerous fissures and slickensides and has a depth of 24 feet. Below this layer is the Montgomery formation, another desiccated clay with

fewer fissures and some seams of fine, silty sand. The properties of the soil at this site have been documented in detail by Mahar and O'Neill (1983).

A group of nine, 10.75-in.-diameter, steel-pipe piles with a spacing of three diameters and a similar single pile had been installed at the site for previous research projects. These piles were used in this investigation and are described in detail in Chapter 3. A 2-ft-deep pit had been excavated around the piles for a previous research project. All elevations quoted in this report are referenced to the bottom of this shallow pit, not to the original ground surface. A drilled shaft 6 ft in diameter and 36 ft deep had been installed at the site and was used in this project as a reaction for the load test of the pile group. A 48-in. pipe pile had been installed at the site and was used in this project as a reaction for the load test of the single pile. Two 48in.-diameter casings had been installed at the site and were used as supports for the reference frame. Figure 2.1 shows the site with all relevant structures. Each pile in the group was given a letter label. The pile group and these labels are shown in Fig. 2.2.

Fig. 2.1. Site plan (after Brown and Reese, 1985).

→ Mindeline Control of the Control

Fig. 2.2. Group pile labels.

EXCAVATION

In July 1983, the native clay around the pile group and around the single pile was removed to a depth of 9 1/2 feet. Most of the clay was excavated with a backhoe, though some hand excavation was required between the piles of the pile group. The surface of each pile was scraped with a wire brush, and then sprayed clean with water to ensure that no clay remained on any of the piles. A plan view of the excavation is shown in Fig. 2.3. An elevation view is shown in Fig. 2.4. Sketches of PVC pipe are shown in the figures. The function of the pipe will be described later. The dimensions of the excavation were chosen so that the expected surfaces of the soil failure would lie entirely within the mass of sand.

The side slopes of the excavation were left unsupported for one week while the strain gauges were placed on the single pile, and for the two weeks required to place the sand. Early during this three week period, chunks of clay ranging in size from several inches to several feet in diameter would slough off of the side slopes. This was thought to be due to the drying of the fissured clay after being exposed to the air. The sloughing was remedied by covering the side slopes with sheets of clear plastic which retarded or minimized loss of moisture from the clay.

Fig. 2.3. Plan view of excavation and pipe system.

Fig. 2.4. Elevation view of excavation and pipe system.

STATES ST

PLACEMENT OF SAND

Because it was desired to test the piles while the sand was saturated, and because it is difficult to saturate a soil completely by flooding it from the top, a system of pipes was constructed to introduce water to the bottom of the mass of sand. The system consisted of 4 long and 2 short sections of 4-in., perforated PVC pipe running parallel to the long axis of the excavation into a transverse, horizontal section of 6-in. PVC pipe. Two 6-in. risers led to the surface. This system is shown in Figs. 2.3 and 2.4. The system was useful both for introducing water to the sand, and for pumping water out of the sand.

The sand was compacted in place in 6-in. layers. Sand was dumped into the excavation with a backhoe. The plastic sheets on the side slopes ensured that no clay was mixed with the sand. The sand was then spread with shovels into loose layers 8 in. thick. A small vibratory-plate compactor, a Dyna-pac EY15, was used to compact the sand. The vibratory-plate compactor is shown in Fig. 2.5. Each layer was subjected to three passes of the compactor. The compactor would not fit between the northwest and west-central piles. In this area, and around the sides of all piles, a hand tamper consisting of 12 in. by 12 in. by

Fig. 2.5. Compaction of sand with vibratory-plate compactor.

1 in. plate, attached to a 3-in. hollow rod, was used to compact the sand. The hand tamper is shown in Fig. 2.6.

The density and moisture content of the sand were measured using a nuclear density gauge. The device used to measure density is shown in Fig. 2.7. Density measurements were taken at nine different elevations. The results of those measurements, dry density and water content, are shown in Table 2.1.

PROPERTIES OF SAND

The sand used in this investigation was a uniform, fine-medium sand, Unified Soil Classification SP. Sieve analyses were performed on seven samples of the sand taken at random. The range of the grain-size-distribution curves obtained is shown in Fig. 2.8. The effective grain size, D₁₀, ranged from 0.21 mm to 0.24 mm. The coefficient of uniformity, C_u, ranged from 1.70 to 1.96. The coefficient of curvature, C_c, ranged from 0.88 to 1.32. The angle of internal friction, as measured by direct shear tests, was 38.5 degrees for sand at a dry density of 98.5 pcf. A photomicrograph of the sand used in this experiment is shown in Fig. 2.9.

After the load test described in this report was performed, Ochoa and O'Neill (1986) performed several cone penetration tests in the sand mass. One test, conducted

Fig. 2.6. Compaction of sand with hand tamper.

Fig. 2.7. Nuclear density gage.

TABLE 2.1. DENSITY MEASUREMENTS

Elevation	No. of	۲	γ dry, 1b/ft ³	m		3/6	
	S luamarna ay	ava	high	low	avg.	. 4	7
0.8.	<u> </u>	94.7	97.0	91.9	9.9	8.4	3.2
0.9-	ব	94.6	95.4	93.8	7.8	8.5	7.4
-4.5	ςς	98.9	99.5	97.2	4 . 4	4.5	4.3
-3.5	ગ	99.1	100.6	98.2	2.6	3.5	1.6
-2.5	un.	98.6	99.8	1.96	2.6	3.1	1.8
-1.5	ις.	0.86	100.0	94.9	2.4	3.6	1.5
-1.0	ın	98.4	6.66	0.96	2.4	3.1	1.8
-0.5	\$	98.3	100.4	94.7	2.0	2.9	1.2
0.0-	5	98.0	9.66	94.5	2.1	3.1	1.7

Fig. 2.8. Grain-size distribution of sand.

Fig. 2.9. Photomicrograph of sand (approximate magnification 70 \times).

some distance away from the group of piles may represent initial soil conditions. The results of this test are presented in Fig. 2.10.

CONCLUDING COMMENT

A description of the testing site, and the modifications made to the site in preparation for the load tests described in this report were presented in this chapter. It is believed that, as modified, the site provided an economical and experimentally satisfactory opportunity to measure the behavior of a group of piles in sand under lateral load, and to compare the behavior to that of a similarly loaded single pile.

Fig. 2.10. Angle of internal friction vs. depth based on cone penetration test (after Ochoa and O'Neill, 1986).

CHAPTER 3

APPARATUS AND INSTRUMENTATION

INTRODUCTION

The apparatus used for the load test of the pile group was designed and used by Brown and Reese (1985) for testing the pile group in the native clay. Modifications that were made to the loading apparatus before testing and after a failure of the loading system are described in detail in this chapter. The apparatus used in the load test of the single pile, also described in this chapter, was designed to simulate the conditions of the load test of the pile group as closely as economically possible.

APPARATUS AND INSTRUMENTATION FOR LOAD TEST OF PILE GROUP

History of Pile Group

As mentioned previously, the pile group tested in this experiment consisted of a 3 by 3 array of steel-pipe piles that were installed in 1979. The outside diameter of the piles was 10.75 in. and the wall thickness was 0.365 inch. The piles were driven closed-ended into the native clay to a depth of 43 feet. A detailed account of the installation of the piles is provided by O'Neill et al (1982a).

was cast on the pile group. The group was then loaded axially to failure several times during 1979 and 1980. The axial load tests are described by O'Neill et al (1982b). The dynamic response of the group to a vibrator mounted atop the pile cap was measured between 1980 and 1982.

Starting in the fall of 1983, the pile group was prepared for a lateral-load test. The concrete pile cap was removed. In order to measure bending moment in the piles, a 6 in., schedule 40, steel pipe with strain gauges attached at 11 different elevations was grouted inside each pile in the group. This instrumented insert pipe is described later. After installation of the instrumented pipes, the piles in the group were attached with pin connections to a steel loading frame to which the load was applied. The pile group was then subjected to a deflection-controlled, cyclic, lateral-load test. This load test is described in detail by Brown and Reese (1985). It is believed that none of the piles were stressed above the elastic limit during any of the testing mentioned above.

Measurement of Bending Moment

As mentioned previously, an instrumented pipe had been inserted and grouted into each of the piles in

the group for the previous lateral load test. A detailed account of the fabrication and installation of the insert pipes is presented by Brown and Reese (1985). A brief summary is presented here. Strain gauges were placed at 11 elevations, beginning at a depth of 1.0 ft below the surface of the sand, and extending to a depth 13.0 feet. Each gauge-level consisted of two gauges on each side of the pipe. All gauges were placed parallel to the axis of the pipe and were wired in a bridge to cancel axial load and temperature effects. The bridge is schematically in Fig. 3.1. Lead wires were attached and the gauges were waterproofed. Spacers were attached to the insert pipe to ensure proper centering in the pile. Care was taken to ensure that the gauges lined up with the direction of loading. Cement grout was pumped down the inside of each insert pipe, and allowed to flow up the annular space between the pile and the insert pipe. Lead wires ran from the piles through PVC pipe into the instrumentation trailer and connected with the dataacquisition system. A schematic drawing of the pile and insert pipe is shown in Fig. 3.2. After the excavation of the clay described in Chapter 2, and before the subsequent placement of the sand, each pile was subjected to a small lateral load that was carefully measured. With the pile acting as a cantilever beam over the depth of

Fig. 3.1. Strain-gage circuit for measurement of bending moment (after Brown and Reese, 1985).

Fig. 3.2. Schematic drawing of a pile in the group and of the instrumentation pipe (after Brown and Reese, 1985).

SISSISIO RECESSOS PERIODES PER

excavation the strain-gauge bridges could be calibrated against a bending moment of known magnitude.

Measurement of Deflection and Slope

Deflections and slopes of each pile in the group were measured using the system developed for the lateral-load test of the pile group in clay. The deflections at two points above the loading point on each pile were measured with 12-in., conductive-plastic, linear potentiometers, which were calibrated prior to the load test. The potentiometers were mounted on a steel reference frame that was supported by two 48-in.-diameter steel casings that extended to a depth of 50 feet. The reference frame is shown in Fig. 3.3.

The distances between the two potentiometers on each pile were measured (ranging from 38.875 in. to 68.125 in.) and recorded. The distances from the loading points up to the bottom potentiometers were also measured and recorded. These measurements allowed calculation of the deflection and slope of each pile at the loading point.

Two additional potentiometers were mounted on the reference frame and attached to the loading frame described in the following section in order to measure the rotation of the frame about a vertical axis.

MANAGE (COMMENT DESCRIPTION COMMENTS DESCRIPTION OF THE PROPERTY OF THE COMMENTS OF THE PROPERTY OF THE COMMENTS OF THE COMMEN

Fig. 3.3. Photograph of reference frame.

Loading Apparatus and Measurement of Load

The loading apparatus was designed and fabricated for the lateral-load test of the pile group in the native clay. Each pile was connected to a load cell with a pin. The load cells were in turn rigidly bolted to the loading frame. The load cells were constructed by attaching a full-bridge of T-rosette strain gauges to a 0.125-in.-diameter steel rod. The rod with gauges attached was epoxied into a 0.25-in.-diameter hole that was bored down the centerline of a 1.25-in. diameter rod of cold-rolled steel.

A view of the loading frame is shown in Fig. 3.4. During the load test in clay, problems were encountered with the welds connecting the load-cell-mounting plate to the cross members fabricated of steel channels. In addition, many of the load cells were bent at the end of the load tests in clay.

For economic reasons it was desired to use the loading frame and load cells that were previously used. The bent load cells were carefully straightened with a hydraulic machine and were recalibrated. The connections between the load-cell-mounting plates and the cross members were redesigned using bolts instead of welds. This connection is shown in Fig. 3.5.

Fig. 3.4. Plan view of loading frame.

STATES DESCRIPTION OF SERVICE SERVICE OF SER

Fig. 3.5. Pile-to-loading-frame connection with 1.25-in.-diameter load cell.

When the load test of the pile group in sand was first attempted, a structural failure occurred in which most of the load cells were bent. This structural failure is described in detail in Chapter 4. New load cells were designed and fabricated. Each of the new load cells consisted of a 2-in.-diameter rod of cold-rolled steel with a full bridge of T-rosette strain gauges attached to the outside surface and waterproofed. One end of the 2-in.-diameter rod was machined to a diameter of 1.25 in. and cut with threads to match those of the clevis for the pin connection to the pile. A new load cell and its connection to the loading frame and the pile are shown in Fig. 3.6. These new load cells survived the further testing with no damage.

A hydraulic-loading system had been designed for the test of the pile group in clay. The system was used unchanged for the load test described in this report. The 6-ft-diameter drilled shaft on the site was used as a reaction. A steel frame, referred to henceforth as the reaction frame, was welded to the casing on the drilled shaft. Load was applied with a 12-in.-diameter-bore, double-acting hydraulic actuator, manufactured by the Miller Fluid Power Corporation. The actuator, with a load cell attached to the ram, was bolted to both the reaction frame and the loading frame. The loading system is shown

Fig. 3.6. Pile-to-loading-frame connection with 2.0-in.-diameter load cell.

in Fig. 3.7. An MTS model 510.21B hydraulic pump provided fluid pressure to the actuator.

The load-control system was designed for the test of the pile group in clay. The actuator and pump were controlled by an MTS servo valve and a Pegasus Electro Hydraulic Servo Controller. The desired sinusoidal loading pattern was electronically produced with an MTS model 410 Digital Function Generator. linear potentiometer of the same type used to measure pile deflections provided feedback to the servo controller. The feedback from the potentiometer was monitored with a Dana model 5403 digital voltmeter. The electronic loadcontrol system is shown in Fig. 3.8. For the first attempt, the feedback potentiometer was mounted on the reference frame and attached to the loading frame. the structural failure, the potentiometer was mounted on the hydraulic actuator and attached to the reaction frame. The reason for this change is discussed in Chapter 4. Limit switches, which would shut off the pump if activated, were mounted on the reference frame on both sides of a vertical extension of the actuator clamp plate. The limit switches were to ensure that no large loads that would damage the piles could be applied accidentally.

Fig. 3.7. Schematic drawing of the loading system for the pile group.

Fig. 3.8. Photograph of electronic load-control system.

Data-Acquisition System

The data-acquisition system was designed for the lateral-load test of the pile group in clay. The system was used unchanged for the load described in this report. All strain-gauge bridge circuits, linear potentiometers, and load cells were supplied an input potential of about 5 volts with a Hewlett-Packard model 6267B DC power supply. Under the control of a Hewlett-Packard microprocessor, the applied voltage and output voltages from the strain-gaugebridge circuits, potentiometers and load cells were measured and converted to digital signals by two Hewlett-Packard 3497A Data Acquisition/Control units. The digital signals were then relayed to the microprocessor and stored on a cassette tape. Using the previously measured calibration factors for all the measuring devices and the measured voltages, the microprocessor then calculated bending moments, deflections and slopes, and pile loads. The data were stored on magnetic tape but could be printed on paper tape as the testing proceeded.

APPARATUS AND INSTRUMENTATION FOR LOAD TEST OF SINGLE PILE

History of Single Pile

As mentioned previously, the single pile tested in this experiment was installed in 1979. The outside diameter of the steel-pipe pile was 10.75 in. and the wall

thickness was 0.365 inch. Several pressure cells and a 1.5 in. square tube were attached to the inside wall of the pile. The pile was driven closed-ended into the native clay to a depth of 43 feet. A detailed account of the installation of the pile is provided by O'Neill et al (1982).

After installation, the pile was loaded axially several times to failure during 1979 and 1980. The pile was subjected to a load-controlled, lateral-load test in the native clay in the summer of 1984. It is believed that the pile was not stressed above the elastic limit during any of the testing mentioned above.

Measurement of Bending Moments

After the excavation described in Chapter 2, the outside of the single pile was exposed to a depth of 9.5 feet. Strain gauges could then be placed on the outside of the pile instead of on an insert pipe. Gauges were placed at 11 elevations, beginning at a depth of 0.0 ft and extending to a depth of 9.0 feet. Each gauge level consisted of 2 gauges on each side of the pipe. All gauges were placed parallel to the axis of the pile and were wired in the same way as was used on the instrumented-insert pipes. Lead wires were attached, and the gauges were water-proofed. The lead wires were tied snugly to the face of the pile to a level above the ground

surface. A drawing of the pile, showing the strain-gauge elevations, is shown in Fig. 3.9. After the gauges were placed, and before the subsequent placement of sand, the pile was subjected to a small lateral load that was carefully measured. With the pile acting like a cantilever beam over the depth of the excavation, the bending moments were known and calibration data could be obtained.

Measurement of Deflection and Slope

Deflections and slopes of the pile were measured using a system similar to the one used for the pile group. The potentiometers were mounted on a wooden frame that was supported by two wooden columns driven 2 ft into the ground, 8 ft away (transverse to the direction of loading) from the pile. The reference frame is shown in Fig. 3.10.

The distance between the two potentiometers was 75.6 inches. The bottom potentiometer was 3.0 in. above the loading point. The slope and deflection of the pile at the loading point was calculated in the same way as described for the piles in the pile group.

Loading Apparatus and Measurement of Load

One of the original load cells designed and fabricated for the pile group test (1.25 in.-diameter rod with an internal strain-gauge bridge) was used for the single-pile load test. The load cell was connected to the

Fig. 3.9. Schematic drawing of single pile.

Fig. 3.10. Photograph of reference frame for the single pile.

pile with the same pin-and-clevis apparatus used for the pile group. Instead of mounting into a loading frame, the load cell was connected directly to the ram of a hydraulic actuator with an adapter. The actuator was rigidly bolted to a 1/2 in. plate welded to the end of a W8 x 31 beam which was in turn connected to the 48-in. reaction pile with a single bolt (making a pin connection). The double-acting actuator had a 5-in. diameter bore and was manufactured by the Miller Fluid Power Corporation. The loading apparatus is shown in Fig. 3.11. The actuator was controlled with the same electronic system used in the load test of the pile group.

Data-Acquisition System

The same electronic system used for data acquisition in the pile group load test was used with the single-pile load test. Because fewer measurements were taken and recorded, however, only one Hewlett-Packard 3497A Data Acquisition/Control unit was required.

CONCLUDING COMMENT

The apparatus and instrumentation used in the testing of a nine-pile group and a single pile have been described in this chapter. Although a failure occurred during the first loading and some changes were required in the loading system for the pile group, the apparatus

Fig. 3.11. Photograph of loading apparatus for the single pile

eventually allowed the successful completion of a lateralload test of the single pile and the pile group.

WASSER SECTION OF THE PROPERTY OF THE PROPERTY

CHAPTER 4

TESTING PROCEDURE AND OBSERVATIONS

INTRODUCTION

Presented in this chapter are the procedures followed for performing both the load tests of the single pile and of the nine-pile group. Events that occurred during the tests and observations made during the tests are also described. A structural failure of the loading system occurred during the test of the nine-pile group. The failure, its cause, and remedial measures that were taken are described in detail in the chapter.

PROCEDURE FOR DEFLECTION-CONTROLLED TESTING

both the single-pile load test and the pile-group load test. Two-way cyclic load was applied with the peak deflection being maintained constant in both the forward and backward directions (compression and tension directions) during each loading sequence. For each loading sequence, the deflection was cycled 100 or 200 times. There was some change in the magnitude of the load that was required to achieve the given deflection as cycling continued. Deflection, rather than load, was held constant to reduce the effect of a loading sequence on the behavior of the group during subsequent loading sequences.

For the first loading sequence the deflection was found that corresponded to a load of about 4 kips per pile. Using the manual control on the servo-controller the deflection of the pile or pile group was increased while the load was monitored with a data-acquisition unit. When the desired load was reached the deflection was noted and readings were taken from all instrumentation. same deflection was then applied in the opposite direction and readings were again taken. The servo-controller then automatically cycled the deflection between the two established maxima. Deflections were held constant while readings were taken at the peaks of cycles 5, 10, 20, 50, 100 and 200. The next loading sequence was for a load of about 8 kips per pile. The same procedure described above was used. The loading was increased in 4-kip increments with deflection being controlled for each loading level. The loading sequences were continued with increasing deflections until it was estimated that the bending stress in the pile (or piles) was the yield stress.

LOAD TEST OF SINGLE PILE

The load test of the single pile began at 9:15 a.m., October 11, 1984. An initial load of about 4 kips was placed on the pile. A 15 second period was used for the automatic cycling. At about cycle 30 of the first

load, a popping noise was heard just before the peak deflection of the compression stroke. The noise came from inside the pile and is thought to be due to the welded connections of the inclinometer tube to the inside of the wall of the pile. This noise continued intermittently throughout the test. One hundred cycles of the first deflection were applied.

The initial cycle of the second deflection corresponded to a load of about 8 kips. At cycle 180 a small funnel-shaped depression was noticed to have formed around the pile. Two hundred cycles of this deflection were applied.

The initial cycle of the third deflection corresponded to a load of about 12 kips. At cycle 100 it was noticed that the pin connection at the reaction pile was slipping back and forth about 1/16 in. during cycling. Two hundred cycles of this deflection increment were applied.

The initial cycle of the fourth deflection corresponded to a load of about 16 kips. At cycle 50 the funnel-shaped depression had a depth of 7 in. and a radius of 2 feet. Two hundred cycles of this deflection were applied.

The initial cycle of the fifth deflection corresponded to a load of about 20 kips. Two hundred

cycles of this deflection were applied. The shape of the depression in the sand surface at the end of this deflection cycle is shown in Fig. 4.1.

The initial cycle of the sixth deflection corresponded to a load of about 22 kips. Only one cycle was applied. The pile yielded plastically at the sixth gauge level (at a depth of 4 ft).

The initial cycle of the seventh deflection corresponded to a load of about 24 kips. After the first cycle, the HP3497A Data Acquisition/Control unit malfunctioned. A replacement was borrowed from the University of Houston and the test continued after a delay of about 2 hours. One hundred cycles of this deflection were applied.

The eighth deflection corresponded to a load of 26 kips. Only one cycle was applied.

The initial cycle of the ninth deflection corresponded to a load of 28 kips. One hundred cycles of this deflection were applied.

The initial cycle of the tenth deflection corresponded to a load of 32 kips. Ten cycles of this deflection were applied.

The load test concluded at 7:45 p.m. The results of this load test are given in Appendix A.

Elevations shown are relative to original sand surface in inches.

Fig. 4.1. Topography of depression around the single pile.

LOAD TEST OF PILE GROUP Test of October 18, 1984

The load test of the nine-pile group began at 8:45 a.m., Istober 18, 1984. An initial deflection corresponding to a load of about 4 kips per pile was imposed on the group. After taking readings, the same deflection was then imposed in the opposite direction. The deflection was then cycled using a 15-second period. At cycle 20 it was noticed that the connections between the two potentiometers measuring the displacement of the loading frame were not functioning properly. The potentiometers were disconnected from the loading frame. One hundred cycles of the first deflection were applied.

Prior to the application of the second load, the disconnected potentiometers were reconnected to the loading frame. The initial cycle of the second deflection corresponded to a load of about 8 kips per pile. The deflection was first applied to the south (frames in tension). Due to an error in operating the servo-controller the deflection applied to the north on the first cycle was too large by a factor of about 2. Because of this error, it was decided to skip the remaining cycles of the second deflection and proceed directly to the third deflection.

The initial cycle of the third deflection corresponded to a load of about 12 kips per pile. The deflection was first applied to the south. The deflection was then applied to the north. Before readings could be taken a structural failure occurred in the loading system. A description and analysis of the failure are presented in the following section. The failure made further testing that day impossible. Testing concluded at 10:30 a.m. The results of this load test are given in Appendix B.

Failure of the Loading Apparatus

Description of Failure. When the failure occurred, both the loading frame and the reaction frame were in compression under a load of about 108 kips. Most of the load cells bent, causing the loading frame to rotate with the north end moving up and the south end moving down. At the same time the north end of the reaction frame moved up. The configurations of the loading system, both before and after the failure, are shown in Fig. 4.2.

Cause of Failure. The loading frame was supported entirely by the 9 pins connecting the piles to the load cells. The weight of the loading frame and any misalignment of the hydraulic actuator caused bending moment in the load cells. Under a load of 108 kips (the load applied when failure occurred) the outer fibers of

Fig. 4.2. Failure mechanism of loading frame.

the load cells would start to yield if the actuator was installed more than 0.4 in. off-center vertically or if the actuator was installed at an angle greater than 0.25°. It is believed that the actuator was installed at too great an angle, causing the load cells to yield and the loading frame to rotate. The rotation of the loading frame increased the angle of the actuator, causing further bending of the load cells and buckling of the reaction frame. The failure process was stopped by pushing the emergency shut-off button on the servo-controller.

The failure mechanism should have been stopped quickly, after it started, by the servo-controller and by the limit switches. This was prevented by the placement of the potentiometer providing feedback to the servo-controller and the placement of the limit switches. The position of the loading frame both before and after failure, and the positions of the feedback potentiometer and limit switches are shown in Fig. 4.3. The feedback potentiometer was mounted on the reference frame about 18 in. above the loading frame, and was connected to a 2-ft length of angle welded to the loading frame. The limit switches were mounted on the reference frame and positioned on both sides of a vertical extension of the actuator-clamp plate. When the failure occurred, the loading frame was moving to the north and rotating at the

Fig. 4.3. Position of load-control devices.

same time. The rotation caused the point of attachment to the feedback potentiometer to move south. As a result, the servo-controller continued to provide pressure to the actuator after the desired displacement had been reached. The rotation of the loading frame also caused the extension of the actuator-clamp plate to move out from between the limit switches without tripping either one. The automatic shut-off system was thus neutralized, and the loading continued until the hydraulic pump was manually turned off.

Repair and Modification of the Loading Constraints on time and funding prevented a System. complete redesign of the loading apparatus. Instead, the portions that suffered damage were repaired or replaced. The reaction frame was bent back into its original position with hydraulic jacks. A horizontal beam, supported by two steel H-piles, was erected over the north end of the reaction frame. Struts were placed between the beam and reaction frame to ensure that no vertical movement of the frame could take place. The sections of the reaction frame that had yielded were reinforced with steel plate. New load cells with a larger cross section, were fabricated and installed in the loading frame. new load cells were described in Chapter 3. The new load cells would start to yield at a load of 180 kips if the actuator was installed more than 2.1 in. off center or at an angle of more than 1.0° .

apparatus, the feedback potentiometer was moved from its original position. The potentiometer was mounted on the actuator casing and attached to the adapter mounted on the ram of the actuator. As a result, any change in the deflection of the reaction shaft after the initial application of each deflection would result in a change in the deflection of the pile group. This effect was thought to be small, and was considered a reasonable trade-off for preventing another structural failure. The location of the limit switches was not changed. It was believed that the measures that were taken were adequate to prevent another failure.

Test of December 13, 1984

The second attempt to load the nine-pile group began at 10:15 a.m., December 13, 1984. An initial deflection corresponding to a load of about 4 kips per pile was imposed on the group towards the north. After taking readings, the same deflection was imposed on the group towards the south. The deflection was then cycled using a 20-second period. Due to an error in operating the servo-controller, for cycles 2 through 4 the deflection was applied in only one direction, towards the

north. One hundred cycles of this deflection were applied.

The initial application of the second deflection corresponded to a load of about 8 kips per pile. After cycle 10, the position of the actuator on the loading frame was adjusted because the west side of the loading frame was deflecting more than the east side. One hundred cycles of this deflection were applied.

The initial application of the third deflection corresponded to a load of about 12 kips per pile. Two hundred cycles of this deflection were applied.

The initial application of the fourth deflection corresponded to a load of 16 kips per pile. At cycle 17 vertical movement of the loading frame was noticed. Cycling was stopped, and the position of the actuator was adjusted. No further vertical movement was noticed. Two hundred cycles of this deflection were applied.

The initial application of the fifth deflection corresponded to a load of about 20 kips per pile. During cycling of this deflection the water level in the risers of the saturation system would change elevation by about 0.9 inch. At all times the level of the water in the riser was 1 to 2 in. above the level of the water ponded on the sand. At cycle 168 the potentiometer providing feedback to the servo-controller broke. It was replaced

with top potentiometer from pile H. Two hundred cycles of this deflection were applied.

The test concluded at $9:30~\mathrm{p.m.}$ The results of this test are given in Appendix C.

CONCLUDING COMMENT

The procedures followed for performing both the single-pile and pile-group load tests have been presented in this shapter. A description of the failure of the loading system that occurred during the pile group test was also included. The procedures that were followed allowed the collection of a large amount of data that is given in Appendices A, B, and C and summarized in the following chapter.

CHAPTER 5

SUMMARY OF TEST RESULTS

INTRODUCTION

A large amount of data was collected during the load tests of the single pile and the group of piles. These data are tabulated in Appendices A, B, and C. A summary of the test results is presented in this chapter. This summary includes presentations of dependency of pilehead load on cycling, load vs. deflection curves, pile moment curves, load vs. maximum moment curves, and soil-response curves for both the single pile and the group of piles.

RESULTS OF LOAD TEST OF SINGLE PILE Dependency of Pile-Head Load on Cycling

As mentioned previously, a number of cycles of each deflection was applied to the single pile. Each cycle consisted of applying the deflection first to the south (referred to here as the compression stroke since the loading apparatus was in compression) and then applying the same deflection to the north (referred to here as the tension stroke). The measured pile-head loads and corresponding load-point deflections for the compression strokes are shown in Fig. 5.1. Those for the

Fig. 5.1. Loads and deflections applied on compression stroke of cycle, single-pile test.

tension stroke are shown in Fig. 5.2. As can be seen from these figures, deflections were maintained constant to within 0.02 inch. For a given deflection, the pile-head load only changed slightly as additional deflection cycles were applied. In most cases the pile-head load decreased slightly up to cycle 10 and then increased slightly up to the last cycle. The load measured on the tension stroke was always less than that applied on the compression stroke.

Load versus Deflection

The variation of pile-head load with deflection for cycle 1 of each deflection is shown in Fig. 5.3. A similar relationship for cycle 100 is shown in Fig. 5.4. The load-deflection curve for cycle 100 shows a slightly "softer" behavior than the load-deflection curve for cycle 1. "Softer" indicates more deflection for a load of the same magnitude.

Moment Curves

Measured moment curves for cycle 1 and cycle 100 deflections 1, 3, and 5 are shown in Figs. 5.5, 5.6, and 5.7. The moments are normalized by dividing by the pilehead load in order to compare curves for different loads. For the first load the maximum normalized moment is slightly smaller for cycle 100 than for cycle 1. This implies that cycling at small deflections caused the cand

ASSOCIATION DESCRIPTION OF THE PROPERTY OF THE

Loads and deflections applied on tension stroke of cycle, single-pile test. 5.2. Fig.

Fig. 5.3. Load-deflection curve for single pile for cycle 1.

Fig. 5.4. Load-deflection curves for single pile for cycle 100.

Fig. 5.5. Normalized moment curves for single pile for first deflection increment.

Fig. 5.6. Normalized moment curves for single pile for third deflection increment.

Fig. 5.7. Normalized moment curves for single pile for fifth deflection increment.

to densify and the soil response to become stiffer. For the third and fifth deflections the maximum normalized moment is larger for cycle 100 than for cycle 1. This implies that cycling larger deflections causes the sand to loosen and the soil response to become softer.

Load versus Maximum Moment

The relationship between pile-head load and maximum bending moment in the pile is shown in Fig. 5.8 for both cycle 1 and cycle 100. For higher loads, the maximum moment for cycle 100 is higher than for cycle 1. This is consistent with the normalized curves discussed in the previous paragraph.

Soil Response

The soil pressure (soil resistance) at a point along a pile can be obtained from the second derivative of the moment curve. The deflection at any point along a pile can be obtained by integrating the moment curve twice, using the pile-head slope and deflection as integration constants. These relationships are given mathematically by the following two equations.

$$p = \frac{d^2 M(z)}{dz^2}$$
 (5.1)

$$y = \frac{1}{ET} \iint M(z) dz$$
 (5.2)

where z = distance below loading point,

Fig. 5.8. Pile-head load vs. maximum moment for single pile.

- M(z) = bending moment as a function of depth,
- EI = flexural rigidity,
- p = soil resistance per unit length of pile, and
- y = lateral deflection of the pile.

In order to apply Eqs. 5.1 and 5.2 to the measured data, a polynomial function was fitted to the measured bending moments using the method of least squares. The polynomial was then integrated twice to obtain the deflection and differentiated twice to obtain soil resistance. To obtain the deflection and soil resistance at a given gauge level, a third-degree polynomial was fitted through seven points. possible, the gauge level at which deflection and soil resistance were to be determined was the middle gauge of the seven used for curve fitting. Where this was not possible (near the top and bottom of the instrumented section), the gauge under consideration was placed as close to the middle as possible. As an example, to obtain p-y data for gauge level 3 (depth = 12 in. below mudline) a polynomial was fitted to the loading point and the moments measured at gauge level 1 through 6, corresponding to depths of -12 in. to 48 inches. Because the polynomial is fitted to points extending 36 in. below gauge level 3, but only 24 in. above it, the generated p-y data might be expected to be somewhat stiffer than the "true" p-y data. Similarly for gauge levels near the bottom of the instrumented section, generated p-y data might be expected to be softer than the "true" p-y data.

The measured p-y curves for gauges 3 through 8, representing depths of 12 in. to 72 in., are shown in figs. 5.9, 5.10, and 5.11. Curves are presented for both cycle 1 and cycle 100. The p-y curves become stiffer with increasing depth. For depths of 12 in. to 36 in. the p-y curve for cycle 100 is softer than for cycle 1. Below 36 in. cycling has little or no effect on the p-y curve.

The measured p-y curves are compared with calculated p-y curves in Figs. 5.12, 5.13, and 5.14. One set of p-y curves was generated according to the procedure of Reese, Cox, and Koop (1975). This set of curves is labelled RCK in Figs. 5.12 through 5.14. Another set of p-y curves was calculated using a modified procedure in which the soil resistances from the procedure of Reese, Cox, and Koop were multiplied by 1.55. This set of curves is labelled MRCK in Figs. 5.12 through 5.14. The p-y curves generated by the modified procedure were then used with program COM 624 to calculate deflections and maximum moments for a pile with the properties of the pile used in the load test. The deflections and moments calculated in this manner are compared with the measured values in

Fig. 5.9. Experimental p-y curves for depths of 12 in. and 24 in. for single pile.

Fig. 5.10. Experimental p-y curves for depths of 36 in. and 48 in. for single pile.

Fig. 5.11. Experimental p-y curves for depths of 60 in. and 72 in. for single pile.

Fig. 5.12. Comparison of experimental and computed p-y curves for single pile.

Madella Caracter Constitutes Constitutes

Fig. 5.13. Comparison of experimental and computed p-y curves for single piles.

Fig. 5.14. Comparison of experimental and computed p-y curves for single pile.

Figs. 5.15 and 5.16. It is believed that the p-y curves generated by the modified procedure adequately model the response of the soil for the single-pile load test.

RESULTS OF LOAD TEST OF PILE GROUP Dependency of Pile-Head Load on Cycling

A number of cycles of each deflection increment was applied to the pile group. Each cycle consisted of applying the deflection first to the north (referred to as the compression stroke since the loading apparatus was in compression) and then applying the same deflection to the south (referred to as the tension stroke). As mentioned in chapter 3, for the second and third deflection during the first attempt of the load test of the pile group, the order was reversed. The measured average pile head loads and corresponding average load-point deflections for the compression strokes are shown in Fig. 5.17. Those for the tension stroke are shown in Fig. 5.18. For the compression stroke, the pile-head load only changed slightly as additional cycles were applied. For the tension stroke, the load decreased substantially after the first cycle.

Pattern of Deflection of the Pile Group

During the load tests, the same deflection was not imposed on all of the piles. As the test progressed

any arreson of computed and measured deflections for the single pile.

A LATERIAL-LOAD TEST OF A FULL-SCALE PILE GROUP IN SAND (U) TEXAS UNIV AT AUSTIN GEOTECHNICAL ENGINEERING CENTER C S MORRISON ET AL. FEB 88 NES/NP/GL-88-1 DACU39-83-C-8861 F/G 13/13 AD-A194 216 2/4 UNCLASSIFIED NL

Fig. 5.16. Comparison of computed and measured maximum bending moment for the single pile.

Fig. 5.17. Loads and deflections applied on compression stroke of cycle, pile-group test.

Fig. 5.18. Loads and deflections applied on tension stroke of cycle, pile-group test.

the pile group rotated about a vertical axis. As the deflections were cycled, the heads of the piles in the group translated while maintaining the rotation. The deflection pattern is shown in Figs. 5.19 through 5.21. The rotation could not be corrected by moving the point of load application on the loading frame. The point of load application would have had to move east on the compression stroke and west on the tension stroke.

Load Distribution

The load applied to the loading frame was not distributed evenly among the piles. Typical load distributions are shown in Figs. 5.22 through 5.27. The leading row takes a larger portion of the total load than the middle row which in turn takes a larger portion than the trailing row. There is no clear pattern for the distribution of load to piles in a single row. Any pattern that may have been present would be obscured by the non-uniform pattern of deflection.

Load versus Deflection

The variation of average pile-head load with average deflection for cycle 1 of each deflection increment is shown in Fig. 5.28. Also shown in Fig. 5.28 is the variation of pile-head load with deflection for an isolated pile with properties similar to the piles in the group. This behavior was determined using program COM624

Fig. 5.19. Pattern of deflection for load 1, pile-group test.

Fig. 5.20. Pattern of deflection for load 3, pile-group test.

CONTRACTOR CONTRACTOR

Note: Deflections are shown in inches.

Fig. 5.21. Pattern of deflection for load 5, pile-group test.

Numbers in circles represent pile-head loads in kips.

Fig. 5.22. Load distribution for load 1, cycle 1, pile-group test.

Fig. 5.23. Load distribution for load 1, cycle 100, pilegroup test.

Fig. 5.24. Load distribution for load 3, cycle 1, pile-group test.

Fig. 5.25. Load distribution for load 3, cycle 100, pile-group test.

Fig. 5.26. Load distribution for load 5, cycle 1, pile-group test.

Fig. 5.27. Load distribution for load 5, cycle 100, pilegroup test.

THE THE PROPERTY OF THE PROPER

Fig. 5.28. Load-deflection curves for cycle 1, pile-group test.

and p-y curves generated by the modified procedure described earlier. For a given average load, the deflection of the pile group is larger than the deflection of a similar isolated pile. The pile group exhibits stiffer behavior on the compression stroke of the cycle than on the tension stroke.

The variation of average pile-head load with average pile-head deflection for cycle 100 of each deflection increment is shown in Fig. 5.29. Also shown is the load-deflection curve for an isolated pile with properties similar to the piles in the group. Again, for a given average load, the deflection of the group is larger than the deflection of an isolated pile. By comparing Figs. 5.28 and 5.29, it can be seen that the response of the pile group to load is softer at cycle 100 than at cycle 1. It can also be seen that the difference between the load-deflection curves for the tension and compression strokes is larger for cycle 100 than for cycle 1.

Moment Curves

Typical curves of bending moment versus depth for the pile group, as determined from the instrumentation, are shown in Figs. 5.30 through 5.33. The curves represent average moment for each row of piles. In all cases, moments are highest for the leading row of piles

Fig. 5.29. Load deflection curves for cycle 100, pile-group test.

Fig. 5.30. Bending moment curves for load 3, compression stroke, pile-group test

Fig. 5.31. Bending moment curves for load 3, tension stroke, pile-group test

Fig. 5.32. Bending moment curves for load 5, compression stroke, pile-group test

Fig. 5.33. Bending moment curves for load 5, tension stroke, pile-group test

and smallest for the trailing row. For the compression stroke, moments are larger for cycle 100 than for cycle 1. This increase in moment with repeated application of the load implies that soil resistance is decreasing. For the tension stroke, moments are smaller for cycle 100 than for cycle 1. This is due to the fact that the load for the tension stroke of cycle 100 is smaller than the load for the tension stroke of cycle 1.

Load versus Maximum Moment

The relationship between pile-head load and maximum bending moment for the pile group is shown in Fig. 5.34 for cycle 1 and Fig. 5.35 for cycle 100. It can be seen that for a given average of pile-head load, the maximum moment in the pile group is larger than the maximum moment in the isolated pile. It can also be seen that for any pile-head load, the maximum moment for cycle 100 is larger than for cycle 1. The difference between the behavior of the pile group on the compression stroke and that on the tension stroke is again apparent, and again the difference is larger for cycle 100 than for cycle 1.

Soil Response

The measured p-y curves for the compression stroke of cycle 1 for depths of 12, 24, 36, 48, 60, and 72 inches are shown in Figs. 5.36 to 5.41. The measured p-y

Fig. 5.34. Load-maximum moment curves for cycle 1, pile-group test.

Fig. 5.35. Load-maximum moment curves for cycle 100, pile-group test.

Fig. 5.36. Experimental p-y curves, cycle 1c, depth = 12 in., pile-group test.

PARTICLE - BESSESSES - COUNTY - REVERSE

Fig. 5.37. Experimental p-y curves, cycle 1c, depth = 24 in., pile-group test.

Fig. 5.39. Experimental p-y curves, cycle 1c, depth = 48 in., pile-group test.

Fig. 5.40. Experimental p-y curves, cycle 1c, depth = 60 in., pile-group test.

Fig. 5.41. Experimental p-y curves, cycle 1c, depth = 72 in., pile-group test.

curves for the compression stroke of cycle 1 are shown in Figs. 5.42 to 5.47. The measured p-y curves for the compression stroke of cycle 100 are shown in Figs. 5.48 to 5.53. The measured p-y curves for the tension stroke of cycle 100 are shown in Figs. 5.54 to 5.59. Separate curves are presented for each row of piles.

An examination of Figs. 5.36 through 5.59 reveals that the soil resistance for the leading row of piles is greater than the resistance for the middle and trailing rows. For the upper portion of the instrumented sections of the piles, the soil resistance for the middle and trailing rows is similar. For the lower portion, the soil resistance for the middle row is greater than the resistance for the trailing row. Comparing a soil response curve for the static case with the corresponding curve for the cyclic case shows that the resistance curve for the static case is greater than for the cyclic case.

CONCLUDING COMMENTS

The results of load tests for a single pile and a group of piles have been summarized in this chapter. Based on the results presented, the following conclusions can be drawn.

1. The response of the single pile to lateral load is stiffer than the response of the average pile in the pile group.

- 2. For both the single pile and the pile group, the response of the piles to static loading is stiffer than the response to cyclic loading.
- 3. The distribution of load to the piles in the group is not uniform. The leading row takes a larger portion of the load than the middle row, which in turn takes a larger portion than the trailing row.
- 4. The ultimate soil resistance for the leading row of piles is larger than the ultimate soil resistance for the middle row which is in turn larger than that for the trailing row.

Fig. 5.42. Experimental p-y curves, cycle 1T, depth = 12 in., pile-group test.

Fig. 5.43. Experimental p-y curves, cycle 1T, depth = 24 in., pile-group test.

Fig. 5.44. Experimental p-y curves, cycle 1T, depth = 36 in., pile-group test.

Fig. 5.45. Experimental p-y curves, cycle 1T, depth = 48 in., pile-group test.

Fig. 5.46. Experimental p-y curves, cycle 1T, depth = 60 in., pile-group test.

Fig. 5.48. Experimental p-y curves, cycle 100c, depth = 12 in., pile-group test.

Fig. 5.49. Experimental p-y curves, cycl 100c, depth = 24 in., pile-group test.

Fig. 5.50. Experimental p-y curves, cycle 100c, depth = 36 in., pile-group test.

Fig. 5.51. Experimental p-y curves, cycle 100c, depth = 48 in., pile-group test.

Fig. 5.52. Experimental p-y curves, cycle 100c, depth = 60 in., pile-group test.

Fig. 5.53. Experimental p-y curves, cycle 100c, depth = 72 in., pile-group test.

Fig. 5.54. Experimental p-y curves, cycle 100T, depth = 12 in., pile-group test.

Fig. 5.55. Experimental p-y curves, cycle 100T, depth = 24 in., pile-group test.

Fig. 5.56. Experimental p-y curves, cycle 100T, depth = 36 in., pile-group test.

Fig. 5.57. Experimental p-y curves, cycle 100T, depth = 48 in., pile-group test.

Fig. 5.58. Experimental p-y curves, cycle 100T, depth = 60 in., pile-group test.

SANSANT SANSANT PROGRAM BEAUTIONS OF THE SANSANT PARTY.

Fig. 5.59. Experimental p-y curves, cycle 100T, depth = 72 in., pile-group test.

CHAPTER 6

COMPARISON OF MEASURED BEHAVIOR OF THE GROUP OF PILES WITH THE BEHAVIOR PREDICTED BY CURRENT DESIGN METHODS

INTRODUCTION

A number of analytical methods are currently available to the design professional to predict the behavior of a group of closely-spaced piles in sand. Presented in this chapter are comparisons of the measured behavior of the group of piles with the results of some of these methods. In all cases an attempt was made to calculate group behavior based on the measured behavior of the single pile. The methods examined in this chapter include DEFPIG, the Focht-Koch method, the single-pile method, and the Bogard-Matlock method. These methods have been described in detail by Brown and Reese (1985). A brief description of each method is included in this chapter.

While the comparisons presented in this chapter may be useful in evaluating the validity of the various analytical procedures, several differences between the conditions of the load test and those that might be expected in the field should be kept in mind. First, though the scale of the tested group is much larger than possible in a laboratory, actual pile groups, particularly

those used offshore, may include much larger piles. Second, for this load test, sand was placed around the piles. Driving the piles into the sand is a more common construction procedure and results in a change in density of the sand in the neighborhood of the piles. Third, as noted in Chapter 4, the peak deflection was held constant in this experiment as the load was cycled. In most cases a group of piles would be designed for cycling at a constant peak load. Despite these differences, the comparisons presented in this chapter should provide some insight into the usefulness of the analytical methods considered.

DEFPIG

DEFPIG is a computer program that uses a method based on the solutions presented by Poulos (1971a & b) to calculate the behavior of a group of piles under lateral loading. The deflection of an isolated pile is determined by assuming the soil mass behaves as an elastic half space and by integrating Mindlin's equation. Interaction factors, a_{kj} , that represent the displacement of pile k due to a unit load on pile j, divided by the displacement of pile k due to its own unit load are calculated. Then, for each pile, an equation of the following form can be written:

$$\rho_{S} = \rho_{H} \left(\sum_{\substack{j=1\\ j \neq k}}^{m} H_{j} \alpha_{kj} + H_{k} \right)$$

where

 ρ_G = pile group deflection

 ρ_{H} = deflection of an isolated pile under a unit load

 H_j = horizontal load on pile j

m = number of piles in the group

akj = displacement of pile k due to pile j
displacement of pile k due to its own load.

Using these equations and an equation that states that the sum of the loads on each pile is equal to the total load on the group, DEFPIG solves for the load on each pile and the deflection of the group. The program allows the user to model local yielding of the soil and to use an elastic modulus that varies with depth. DEFPIG cannot provide the user with moment or deflection curves as a function of depth or the response of the group to cyclic loading.

For the DEFPIG analysis performed for these comparisons the modulus of elasticity of the soil was assumed to increase linearly with depth according to the equation

$$E_s = kx$$

where

 E_s = modulus of elasticity of the soil (psi)

- k = a constant
- x = depth below the ground surface (in.).

The measured load-deflection relationship for cycle 1 of the single-pile load test was used to obtain appropriate values of the parameter k to use in the analysis of the group. Shown in Fig. 6.1 is the measured load-deflection relationship for cycle 1 of the single-pile load tests and linear load-deflection relationships for various values of k. For each value of k the load was selected at which the measured single pile deflection matched the deflection calculated by the elastic analysis. These loads were then used with the corresponding values of k in DEFPIG to predict the behavior of the group of piles.

Calculated Behavior of the Group of Piles Using Program DEFPIG with No Local Yielding for Static Loading

The load vs. deflection curve calculated using DEFPI3 is shown in Fig. 6.2 along with points representing measured loads and deflections for cycle 1 of the load test of the group of piles. In this case, the results of the DEFPIG analysis agree with the measured points for lower load levels, and overpredict deflections by up to about 18 percent for higher load levels.

Fig. 6.1. Comparison of measured deflections with single-pile deflections computed by elastic analysis.

Fig. 6.2. Comparison of measured deflections with deflections computed by DEFPIG without local yield.

The distribution of the load to the piles in the group calculated with program DEFPIG is compared with typical measured load distributions and shown in Figs. 6.3 and 6.4. The measured load distribution shows that the leading row of piles takes the largest portion of the load, and the trailing row takes the smallest portion. The load distribution calculated with DEFPIG indicates that the leading and trailing rows of piles take the same portion of the load applied to the group while the middle row takes a smaller portion. The DEFPIG distribution also indicates that the corner piles take the largest load and the center pile takes the smallest load.

Calculated Behavior of the Group of Piles Using Program DEFPIG with Local Yielding for Static Loading

For the calculation of the behavior of the group of piles using DEFPIG with local yielding, the modulus of elasticity of the soil was assumed to vary linearly according to the equation

 $E_s = 75x$

where

 E_s = modulus of elasticity of the soil, psi

x = depth below ground surface, in.

The pressures at which the soil was assumed to yield correspond to the maximum soil pressures calculated

	oad Distribution n Stroke Cycl (7.34 ^k /pile)	•		Portion of Load Taken by Each Row
Leading Row	1.16	1.25	1.26	41%
Middle Row	1.10	1.21	0.83	35%
Trailing Row	1.01	0.53	0.66	24%
Load Distril by DEFPIG	bution Calcula i E _s = 75x	beti		Portion of Load Taken by Each Row
		0.96	1.09	
	E ₈ = 75x		0.96	Taken by Each Row

Fig. 6.3. Comparison of measured load distribution with load distribution computed by DEFPIG without local yield.

Fig. 6.4. Comparison of measured load distribution with load distribution computed by DEFPIG without local yield (continued).

according to the modified Reese, Cox and Koop procedure described in Chapter 5.

The load vs. deflection curve calculated using DEFPIG with local yielding is shown in Fig. 6.5 along with points representing measured loads and deflections for cycle 1 of the load test of the group of piles. The agreement is quite good.

The distribution of the load to the piles in the group calculated with DEFPIG using local yielding is compared with typical measured load distributions as shown in Figs 6.6 and 6.7. Including local yielding in the DEFPIG calculation does not change the load distribution much. The comments made on the distribution of load calculated with DEFPIG without local yielding also apply to the distribution calculated with local yielding.

Summary

Program DEFPIG appears to be useful for calculating the load-vs.-deflection relationship for a group of piles under lateral load. The distribution of the load to the piles in the group calculated using DEFPIG does not correspond well with the distribution of load measured in the load test described herein. The maximum moment in the group of piles cannot be calculated with

Fig. 6.5. Comparison of measured deflections with deflections computed by DEFPIG with local yield.

Parassesses Contracted Characters Contracted Contracted

Measured Load Distribution Compression Stroke Cycle 1 Portion of Load Load = 66k (7.34 k/pile)Taken by Each Row Leading Row Middle 35% Row Trailing 24% Row Load Distribution Calculated Portion of Load by DEFPIG with Local Yield. Load = 72^{k} (8.00 k /pile) Taken by Each Row 35% 30% 35%

Fig. 6.6. Comparison of measured load distribution with load distribution computed by DEFPIG with local yield.

Compressio	Load Distributi on Stroke Cycl k (19.94 k/pile)	le 1		Portion of Load Taken by Each Row
Leading Row	1.26	1.28	1.34	43%
Middle Row	1.03	1.10	0.85	33%
Trailing Row	0.87	0.59	0.68	24%
by DEFPIG	bution Calcul with Local Y k(20.0 ^k /pile)			Portion of Load Taken by Each Row
by DEFPIG	with Local Y		1.09	
by DEFPIG	with Local Y k(20.0k/pile)	(ield	0.96	Taken by Each Row

Fig. 6.7. Comparison of measured load distribution with load distribution computed by DEFFIG with local yield (continued).

DEFPIG, and the cyclic loading case cannot be considered with DEFPIG.

FOCHT-KOCH METHOD

Focht and Koch (1973) presented a method of calculating the behavior of a group of piles that combined analysis of a single pile using a nonlinear p-y curve with the elastic-group interaction described by Poulos. In the Focht-Koch method the deflection of a single pile under a given horizontal load is determined both by using p-y curves and the elastic half-space analysis of Poulos. A relative stiffness factor is then calculated according to

 $R = Y_S/p_H$

where

R = relative stiffness factor

Y_S = deflection of an isolated pile calculated

by p-y analysis

 p_H = deflection for an isolated pile calculated

by elastic analysis

Then for each pile an equation can be written

$$\rho_{G} = \rho_{H} \left(\sum_{\substack{j=1 \ j \neq k}}^{m} H_{j} \alpha_{kj} + RH_{k} \right)$$

where

 p_G = pile group deflection

H; = horizontal load on pile j

α_{kj} = displacement of pile k due to pile j

displacement of pile k due to its own load

m = number of piles in the group.

Using these equations and an equation that states that the sum of the loads on each pile is equal to the total load on the group, the load on each pile and the deflection of the group can be found. The curves for moment and deflection for the pile with the largest load can then be calculated by multiplying the deflection values of the p-y curves used in the analysis of the isolated pile by a constant, y_{mult} , such that the pile-head deflection computed with the resultant p-y curves is equal to the deflection of the group. This constant is found by successive trials.

Calculated Behavior of the Group of Piles Using the Focht-Koch Method for Static Loading

The load vs. deflection curve for static loading calculated using the Focht-Koch method is shown in Fig. 6.8 along with points representing measured loads and deflections for cycle 1 of the load test of the group of piles. In this case the agreement between calculated and measured deflection is good.

The curve of load vs. maximum moment for static loading calculated using the Focht-Koch method is shown in Fig. 6.9, along with points representing the measured

Fig. 6.8. Comparison of measured deflections with static deflections computed by the Focht-Koch method .

Fig. 6.9. Comparison of measured maximum moments with static maximum moments computed by the Focht-Koch method.

maximum moments and loads for cycle 1 of the load test of the group of piles. The agreement between calculated and measured maximum moment is good for lower load levels. For higher levels the Focht-Koch method underpredicted moments by up to 47 percent. The higher moments may be due in part to the rotation of the pile group around a vertical axis as the load test proceeded.

The distribution of the load to the piles in the group calculated by the Focht-Koch method is compared with typical measured load distributions for static loading in Fig. 6.10 and 6.11. The measured load distribution shows that the leading row of piles takes the largest portion of the load, and the trailing row takes the smallest portion. The load distribution calculated using the Focht-Koch method shows a pattern similar to that calculated with DEFPIG: the outside piles take a larger load than the interior pile, and the distribution is more nearly uniform than the measured distribution.

Calculated Behavior of the Group of Piles Using the Focht-Koch Method for Cyclic Loading

The load-vs.-deflection curve for cyclic loading calculated using the Focht-Koch method is shown in Fig. 6.12 along with points representing measured loads and deflections for cycle 100 of the load test of the group.

Fig. 6.10. Comparison of measured load distribution with load distribution computed by the Focht-Koch method.

Compression	Load Distributi on Stroke Cyc k (19.94 k/ pile	le 1		Portion of Load Taken by Each Row
Leading Row	1.26	1.28	1.34	43%
Middle Row	1.03	1.10	0.85	33%
Trailing Row	0.87	0.59	0.68	24%
Focht & Ko	oution Calcula ch Method ^k (20 ^k /pile) S	Portion of Load Taken by Each Row		
	1.07	0.97	1.07	35%
	0.96	0.86	0.96	30%
	1.07	0.97	1.07	35%

Fig. 6.11. Comparison of measured load distribution with load distribution computed by the Focht-Koch method (continued).

Fig. 6.12. Comparison of measured deflections with cyclic deflections computed by the Focht-Koch method.

In this case the agreement between the calculated and measured deflections is good.

The curve for the load vs. maximum moment for cyclic loading from the Focht-Koch method is shown in Fig. 6.13 along with points representing the measured maximum moments and loads for cycle 100 of the load test. The agreement between measured and calculated maximum moments is good for low levels of load. For the higher loads, the Focht-Koch method underpredicted moments by up to 75 percent. Again, the higher measured moments may be due in part to the rotation of the pile group around a vertical axis as the load test proceeded.

The distribution of the load to the piles in the group from the Focht-Koch method is compared with typical measured distributions for cyclic loading and is shown in Figs. 6.14 and 6.15. The measured loads show the leading row taking a larger portion of the load. The calculated loads show a more uniform distribution.

Summary

The curve of load vs. deflection calculated using the Focht-Koch method agreed relatively well with the measured deflections of the group. Maximum moments calculated with the Focht-Koch method were smaller than the measured values at higher load levels. The

Fig. 6.13. Comparison of measured maximum moments with cyclic maximum moments computed by the Focht-Koch method.

Fig. 6.14. Comparison of measured load distribution with load distribution computed by the Focht-Koch method.

Compress	Load Distribution Stroke Cyc 4 k (19.30 k/ pil	cle 100	Portion of Load Taken by Each Row
1.28	1.28	1.39	44 %
1.00	1.10	0.83	33 %
(0.85)	0.59	0.68	23 %
Load Dist			
Focht & K	ribution Cal cul och Method 0 ^k (20.00 ^k / pi	ated by le) Cyclic Load	Portion of Load Taken by Each Row
Focht & K	och Method	•	
Focht & K Load = 18	och Method 0 k (20.00 k / pi	le) Cyclic Load	Taken by Each Row

Fig. 6.15. Comparison of measured load distribution with load distribution computed by the Focht-Koch method (continued).

distribution of loads to piles in the group calculated with the Focht-Koch method was much more uniform than the distributions that were measured.

SINGLE-PILE METHOD

Reese (1984) presented a method of calculating the behavior of a group of piles that was intended to establish an upper bound on the pile group deflection and bending moment. In this method, p-y curves are generated for an imaginary pile according to standard procedures. The diameter of the imaginary pile is taken as the circumference of the group divided by π . The stiffness of the imaginary pile is taken as the sum of the stiffnesses of the individual piles. The shear and moments obtained from the analysis of the imaginary pile are then distributed equally among the piles in the group (assuming all piles in the group have the same stiffness). The deflection of the group is taken to be equal to the deflection of the imaginary pile.

Calculated Behavior of the Group of Piles Using the Single-Pile Method for Static Loading

The curve of load vs. deflection for static loading, calculated using the single-pile method, is shown in Fig. 6.16 along with points representing measured loads and deflections for cycle 1 of the load test of the group.

Fig. 6.16. Comparison of measured deflections with static deflections computed by the single pile method.

SESSESSE TRANSPORTE PROSESSES PROCESSES PROCES

In this case, the single-pile method significantly overpredicted the measured deflections.

The curve of load vs. maximum moment for static loading, calculated using the single-pile method, is shown in Fig. 6.17 along with points representing measured maximum moments for cycle 1 of the load test of the group. The agreement between calculated and measured maximum moments is good for low levels of load, but the single-pile method underpredicted measured maximum moments for higher loads.

The single-pile method assumes that the load on the group is uniformly distributed among the individual piles. This does not agree with the measured distribution of load.

Calculated Behavior of the Group of Piles Using the Single-Pile Method for Cyclic Loading

The curve of load vs. deflection for cyclic loading, calculated using the single-pile method, is shown in Fig. 6.18 along with points representing measured loads and deflections for cycle 100 of the load test of the group. The single-pile method overpredicted deflections for all load levels.

The curve of load vs. maximum moment for cyclic loading, calculated using the single-pile method, is shown in Fig. 6.19 along with points representing measured

CONTROL SECTION OF THE SECTION OF TH

Fig. 6.17. Comparison of measured maximum moments with static maximum moments computed by the single pile method.

Fig. 6.18. Comparison of measured deflections with cyclic deflections computed by the single-pile method.

Fig. 6.19. Comparison of measured maximum moments with cyclic maximum moments computed by the single-pile method.

maximum moments for cycle 100 of the load test of the group. In this case the agreement between calculated and measured maximum moments is good.

Summary

For static loading, the single-pile method overpredicted measured deflections. The method showed good agreement with measured maximum moments for low levels of load but underpredicted maximum moments at higher levels of load. For cyclic loading, the single-pile method overpredicted measured deflections, but showed good agreement with measured maximum moments. The single-pile method assumes a uniform distribution of load to the individual piles. This does not agree with the measured behavior of the group.

BOGARD-MATLOCK METHOD

Bogard and Matlock (1983) presented a method of calculating the behavior of a group of piles that combined the behavior of an isolated pile with the behavior of a large imaginary pile, similar to that defined in the single-pile method. In this method p-y curves are generated for an isolated pile according to a standard procedure. Also, p-y curves are generated for an imaginary pile in the same way as specified previously for the single-pile method. The p-y curves for the imaginary

pile are modified by dividing the soil resistance, p, by the number of piles in the group and dividing the deflection, y, by the pile spacing expressed in pile diameters. The p-y curves for the individual pile are then combined with the modified p-y curves for the imaginary pile by adding the two values of deflection for a corresponding soil resistance value. The maximum soil resistance is the smaller value of the two curves. The method of generating these p-y curves is demonstrated in Fig. 6.20. The load in the group is assumed to be distributed equally among the piles in the group. The deflection of a pile in the group, and its moment curve can be obtained using the derived p-y curves.

For cyclic loading, Bogard and Matlock recommended generating the modified p-y curves for the imaginary pile with a procedure for static loading. Bogard and Matlock developed their method using the results of an experiment with a group of piles in soft clay, where the degradation of soil response due to cyclic loading is due primarily to the formation of a gap around an individual pile. In sand, the changes in the response of the soil due to cyclic loading are due either to a change in the density of the sand or a change in the state of stress in the soil mass. Both these changes can extend some distance away from an individual pile and affect the

Fig. 6.20. Construction of p-y curves by the method of Bogard and Matlock (after Bogard and Matlock, 1983).

behavior of the group as a whole. For this reason, the results of cycle 100 of this load test are compared to the results of the Bogard-Matlock method using both a static and cyclic procedure to generate the modified p-y curves for the imaginary pile.

Calculated Behavior of the Group of Piles Using the Bogard-Matlock Method for Static Loading

The curve of load vs. deflection for static loading is shown in Fig. 6.21 along with points representing measured loads and deflections for cycle 1 of the load test of the group. In this case, the Bogard-Matlock method slightly overpredicts the measured deflections.

The curve of load vs. maximum moment for static loading, calculated using the Bogard-Matlock method, is shown in Fig. 6.22 along with points representing measured maximum moments for cycle 1 of the load test of the group. The Bogard-Matlock method underpredicted the measured maximum moments by up to 48%. The higher measured moments may be due in part to the rotation of the pile group around a vertical axis as the test proceeded.

The Bogard-Matlock method assumes that the load on the group is uniformly distributed among the individual piles. This does not agree with the measured distribution of load.

Fig. 6.21. Comparison of measured deflections with static deflections computed by the Bogard-Matlock method.

Fig. 6.22. Comparison of measured maximum moments with static maximum moments computed by the Bogard-Matlock method.

Calculated Behavior of the Group of Piles Using the Bogard-Matlock Method for Cyclic Loading

The curves of load vs. deflection for cyclic loading, calculated with the Bogard-Matlock method, using both static and cyclic procedures to generate the modified p-y curves for the imaginary pile, are shown in Fig. 6.23 along with points representing measured loads and deflections for cycle 100 of the load test of the group. The Bogard-Matlock method, using either procedure to generate modified p-y curves for the imaginary pile, overpredicts deflections at lower load levels. When the static procedure is used to generate p-y curves for the imaginary pile, there is good agreement between measured and calculated deflections at higher load levels. When the cyclic procedure is used, the method overpredicts the measured deflections.

The curves of load vs. maximum moment for cyclic loading, calculated with the Bogard-Matlock method, using both static and cyclic procedures to generate modified p-y curves for the imaginary pile, are shown in Fig. 6.24 along with points representing measured maximum moments for cycle 100 of the load test of the group. In this case, the Bogard-Matlock method, using the static procedure to generate modified p-y curves for the imaginary pile, underpredicts measured maximum moments by

Fig. 6.23. Comparison of measured deflections with cyclic deflections computed by the Bogard-Matlock method.

Fig. 6.24. Comparison of measured maximum moments with cyclic maximum moments computed by the Bogard-Matlock method.

up to 60%. When the cyclic procedure is used to generate the modified p-y curves for the imaginary pile the agreement between calculated and measured maximum moments is good.

Summary

For static loading the Bogard-Matlock method overpredicted measured deflections and underpredicted measured maximum moments. For cyclic loading two procedures can be used to generate modified p-y curves for the imaginary pile. When the static procedure is used, the Bogard-Matlock method overpredicts deflections for low load levels and underpredicts maximum moments for all load levels. When the cyclic procedure is used, the Bogard-Matlock method overpredicts deflections, but shows good agreement with measured maximum moments. The Bogard-Matlock method assumes a uniform distribution of load to the individual piles. This does not agree with the measured group behavior.

CONCLUDING COMMENT

The results of comparisons between the measured behavior of the group of piles and the behavior calculated by several analytical procedures have been presented in this chapter. These results are summarized in Table 6.1. Although several of the methods were successful in

TABLE 6.1. SUMMARY OF RESULTS OF COMPARISONS OF CALCULATED AND MEASURED GROUP BEHAVIOR.

		Static			Cyclic	
Method	Deflection	Maximum Moment	Load Distribution	Deflection	Maximum Moment	Load Distribution
DEFPIG No Local Yield	Low load levels: good agreement high load levels: overprediction	:	Too uniform	÷	:	:
DEFPIG With Local Yield	Good agreement		Too uniform	-	:	:
Focht-Koch	Good agreement	Low load levels: good agreement high load levles: underprediction	Too uniform	Good agreement	Low load levels: good agreement high load levels: underprediction	Too uniform
Single-Pile	Overprediction	Low load levels: good agreement high load levles: underprediction	Too uniform	Overprediction	Good agreement	Tœ uniform
Bogard-Matlock (static imaginary)	Overprediction	Underprediction	Too uniform	Low load levels: overprediction high load levels: good agreement	Underprediction	Tœ uniform
Bogard-Mattock (cyclic imaginary)	:	÷	:	Overprediction	Good agreement	Too uniform

predicting either deflections or maximum moments, no method was able to make correct predictions of deflections, maximum moments, and the distribution of load to the piles. This fact suggests that areas of agreement between measured and calculated results could be due to coincidence rather than a correct modeling of the mechanics of group behavior.

CHAPTER 7

A PROCEDURE FOR CALCULATING THE BEHAVIOR OF THE TESTED GROUP OF PILES

INTRODUCTION

Presented in this chapter is a procedure for calculating the behavior of a group of closely-spaced piles under lateral loadings. The procedure is based on the results of the testing of the group considered in this report. The procedure allows the calculation of the deflection of the group, the maximum bending moment, and the distribution of load to the individual piles. The procedure is intended to be one step toward a better understanding of the behavior of groups of piles in sand. Design professionals choosing to use this procedure should carefully consider differences between their design problem and the details of the test considered in this report.

IMPORTANT ASPECTS OF GROUP BEHAVIOR

Some aspects of the behavior of the group noted from the results of the load test were not taken into account by any of the analytical methods examined in Chapter 6. These aspects are important to the behavior of

the group, and will be taken into account in the proposed procedure.

It should be noted that the distribution of load to the individual piles in the group is not uniform. In both the static and cyclic cases, the leading row carried the largest share of the load, and the trailing row carried the smallest share of the load. No clear pattern could be detected in the distribution of load to the piles in an individual row. In the proposed procedure the load will be distributed equally among the piles in an individual row, but each row will carry a different portion of the load.

Also, it should be noted from the measured p-y curves shown in Chapter 5 for the piles in the group that the ultimate soil resistance is different for different rows. The ultimate soil resistance for piles in the leading row is larger than the ultimate resistance for the middle row which is in turn larger than that for the trailing row. This suggests that the p-y curves for the piles in the group should be modified by a p-factor as proposed by Brown and Reese (1985) rather than by a y-factor as used by Focht and Koch (1973), and that different p-factors should be used for piles in different rows.

DEMONSTRATION OF THE PROPOSED PROCEDURE

The proposed procedure is used here to calculate a load-vs.-deflection curve, a load vs. maximum moment curve, and the distribution of load to the individual piles for both static and cyclic loading of the group used in the load test. The calculated results are compared with the measured results of the load tests.

Static Case

Separate sets of p-y curves are first generated for each row of piles. These curves are generated by multiplying the soil-resistance values of the p-y curves for an isolated pile by a factor, p_{mult} . For the case considered here the p-y curves for the isolated pile were generated using the modified Reese, Cox, and Koop procedures for static loading described in Chapter 5. The factors applied to the soil-resistance values were 0.8, 0.4, and 0.2, for the leading row, middle row trailing row respectively. These factors were determined by trial. That they are appropriate is demonstrated by the curves for load vs. deflection and for load vs. maximum moment shown in Figs. 7.1 through 7.6. The curves were calculated using the p-y curves generated with the soil resistance factors and are shown with points representing measured deflections and maximum moments for the individual piles.

Fig. 7.1. Comparison of deflections for the static case with the computed deflection for the leading row of piles.

STALL TANDAL TANDALA DESERVICA REGISSES DESERVICA REGISSES REGISSES REGISSES DECERCION DESCRIPTION DE CONTROL DE

Fig. 7.2. Comparison of measured maximum moments for the static case with the computed maximum moments for the leading row of piles.

Fig. 7.3. Comparison of measured deflections for the static case with the computed deflections for the middle row of piles.

Fig. 7.4. Comparison of measured maximum moments for the static case with the computed maximum moments for the middle row of piles.

Fig. 7.5. Comparison of measured deflections for the static case with the computed deflections for the trailing row of piles.

Fig. 7.6. Comparison of measured maximum moments for the static case with the computed maximum moments for the trailing row of piles with.

Using the load deflection curves for the piles in the individual rows shown in Figs. 7.1, 7.3, and 7.5, an average pile-head load vs. deflection curve is constructed by averaging the pile head loads for a given deflection. This curve is shown in Fig. 7.7 and represents the load vs. deflection curve for the group as a whole. The curve is plotted again in Fig. 7.8 along with measured deflections of the group.

The curve of maximum moment vs. load for the group is constructed by first using Fig. 7.7 to determine the maximum load on an individual pile for a given average load per pile for the group. The maximum moment for the average load is then found from the moment corresponding to the maximum load in Fig. 7.2. The curve for maximum moment vs. load for the group constructed in this manner is shown in Fig. 7.9 along with points representing the measured maximum moments.

The distribution of load to the piles in the group is easily determined from Fig. 7.7. A load distribution determined in this manner is compared with a typical measured load distribution in Fig. 7.10.

Cyclic Case

The proposed design procedure is the same for cyclic loading. First, p-y curves are generated for an isolated pile using the modified Reese, Cox and Koop

Fig. 7.7. Construction for the static case of an average curve for the pile group giving load versus deflection of the pile load..

Fig. 7.8. Comparison of measured deflections for the static with the computed deflections by the proposed procedure.

Fig. 7.9. Comparison of measured maximum moments for the static case with maximum moments computed by the proposed procedure.

Compress	Load Distrition Stroke C	Portion of Load Taken by Each Row		
Leading Row	1.16	1.25	1.26	41%
Middle Row	1.10	1.21	0.83	35%
Trailing Row	1.01	0.53	0.66	24%
Proposed	ribution Calo Design Pro	Portion of Load Taken by Each Row		
Leading Row	1.31	1.31	1.31	44%
Middle Row	(1.01)	1.01	1.01	34%
Trailing Row	0.68	0.68	0.68	23%

Values shown represent the pile-head load divided by the average pile-head load.

Fig. 7.10. Comparison of the measured load distribtion for the static case for the load distribution computed by the proposed procedure.

procedure for cyclic loading described in Chapter 5. Factors of 0.8, 0.4, and 0.2, for the leading, middle and trailing rows, respectively, were applied to the soil resistance values. The factored p-y curves were then used to calculate the curves for load vs. deflection and for load vs. maximum moment shown in Fig. 7.11 through 7.16.

The average-load-vs.-deflection curve for the group of piles was constructed using the same procedure as used for static loading. This curve is shown in Fig. 7.17 and again in Fig. 7.18 with points representing measured deflections of the group.

The load-vs.-maximum moment curve for cyclic loading is constructed using the same procedure as used for static loading. The curve is shown in Fig. 7.19 along with points representing measured maximum moments in the group.

The distribution of load to the individual piles in the group is easily determined from Fig. 7.17. The distribution of load determined in this manner is compared with a typical measured load distribution in Fig. 7.20.

CONCLUDING COMMENT

The proposed design procedure was successful in calculating the behavior of the group of piles used in the load test described in this report. This is not

Fig. 7.11. Comparison of measured deflections for the cyclic case with the computed deflections for the leading row of piles.

Fig. 7.12. Comparison of measured maximum moments for the cyclic case with the computed maximum moments for the leading row of piles.

Fig. 7.13. Comparison of measured deflections for the cyclic case with computed deflections for the middle row of piles.

Fig. 7.14. Comparison of measured maximum moments for the cyclic case with the computed maximum moments for the middle row of piles.

Fig. 7.15. Comparison of measured deflections for the cyclic case with the computed deflections for the trailing row of piles.

Fig. 7.16. Comparison of measured maximum moments for the cyclic case with the computed maximum moments for the trailing row of piles.

Fig. 7.17. Construction for the cyclic case of an average curve for the pile group pile-head load vs. deflection .

Fig. 7.18. Comparison of measured deflections with cyclic deflections computed by the proposed procedure.

Fig. 7.19. Comparison of measured maximum moments with cyclic maximum moments computed by the proposed procedure.

Compress	I Load Distrit sion Stroke C i ^k (7.20 ^k / pile	ycle 100		Portion of Load Taken by Each Row
Leading Row	1.17	1.78	1.34	42 %
Middle Row	1.08	1.22	0.81	35 %
Trailing Row	1.00	0.48	0.62	23 %
Proposed	ribution Calc Design Proc k (8.00 k/pile			Portion of Load Taken by Each Row
Leading Row	1.38	1.38	1.38	46 %
Middle Row	0.97	0.97	0.97	32 %

Values shown represent the pile-head load divided by the average pile-head load.

Fig. 7.20. Comparison of measured load distribution for the cyclic case with load distribution computed by the proposed procedure.

surprising since the procedure was based upon the load test. The critical step in the procedure is the determination of the factors applied to the soil resistance values of the p-y curves for an isolated pile. In this case the factors were determined by trial and error. For other cases, the factors are expected to vary with pile spacing, pile stiffness, soil stiffness, and soil strength. Unfortunately, the data obtained from this group of piles provide limited insight into what factors should be chosen for a different group of piles in a different sand. Data from other pile groups are necessary if this procedure is to be developed into a design method of broad applicability.

CHAPTER 8

CONCLUSIONS

This report has described load tests performed in sand on a single pile and a group of closely-spaced piles. Both the single pile and the group of piles were well-instrumented. The results of measurements taken are presented in Appendices A, B, and C, and are summarized in Chapter 5. The following conclusions can be drawn from the data:

- 1. The response of the single pile to lateral load is stiffer than the response of the average pile in the group.
- 2. For both the single pile and the piles in the group, the response of the piles to static loading is stiffer than the response to cyclic loading.
- 3. The distribution of load to the piles in the group is not uniform. The leading row takes a larger portion of the load than the middle row which in turn takes a larger portion than the trailing row.
- 4. The ultimate soil resistance for the leading row of piles is larger than the ultimate soil resistance for the middle row which in turn is larger than that for the trailing row.

The results of comparisons between the measured behavior of the pile group and the behavior computed by several analytical procedures are presented in Chapter 6. Although several of the methods were successful in

predicting either deflections or maximum moments, no method was able to predict both correctly. None of the methods took into account the non-uniform distribution of load distribution that was observed in the load test, or the difference in ultimate soil resistance observed for piles in different rows.

A procedure for calculating the behavior of the tested group of piles was presented in Chapter 7. The procedure accounts for the non-uniform load distribution and the difference in ultimate soil resistance for piles in different rows. The procedure was successful in calculating the behavior of the group of piles in the load test.

The information presented in this report is judged to be of value to engineering professionals engaged in the design of groups of closely-spaced piles in sand. The computation procedure presented in Chapter 7 may be of limited value at present because of the use of empirical factors applied to the ultimate soil resistance for an isolated pile. These factors are expected to vary with pile spacing, pile stiffness, soil stiffness, and soil strength. Further research, including additional load testing, is probably required over a range of the controlling variables in order to develop sound procedures for predicting the behavior of pile groups in sand.

REFERENCES

- Bogard, D. and Matlock, H., "Procedures for Analysis of Laterally loaded Pile Groups in Soft Clay," <u>Proceedings</u>, Specialty Conference on Geotechnical Engineering in Offshore Practice, American Society of Civil Engineers, April, 1983, pp. 499-535.
- Brown, D. A. and Reese, L. C., "Behavior of a Large-Scale Pile Group Subjected to Cyclic Lateral Loading," Report to Minerals Management Service, U. S. Department of Interior, Reston, Virginia; Department of Research, Federal Highway Administration, Washington, D. C.; U. S. Army Engineer, Waterways Experiment Station, Vicksburg, Mississippi, May, 1985, 399 pp.

Control of the Contro

- Focht, J. A., Jr., and Koch, K. J., "Rational Analysis of the Lateral Performance of Offshore Pile Groups," <u>Proceedings</u>, Fifth Offshore Technology Conference, Houston, Texas, Volume 2, 1973, pp. 701-708.
- Mahar, L. J., and O'Neill, M. W., "Geotechnical Characterization of Desiccated Clay," <u>Journal of the Geotechnical Engineering Division</u>, American Society of Civil Engineers, Volume 109, No. GT1, January, 1983, pp. 56-71.
- Ochoa, M. and O'Neill, M. W., "Lateral Pile-Group Interaction Factors for Free-Headed Pile Groups in Sand From Full-Scale Experiments," Report to U. S. Army Waterways Experiment Station, Vicksburg, Mississippi, 1986, 192 pp.
- O'Neill, M. W. Hawkins, R. A., and Audibert, J. M. E., "Installation of Pile Group in Overconsolidated Clay," <u>Journal of Geotechnical Engineering Division</u>, American Society of Civil Engineers, Volume 108, No. GT11, November, 1982a, pp. 1369-1386.
- O'Neill, Michael W., Hawkins, R. A., and Mahar, L. J.,
 "Load Transfer Mechanisms in Pile and Pile Groups,"

 <u>Journal of Geotechnical Engineering Division</u>,

 American Society of Civil Engineers, Volume 108, No.
 GT12, December, 1982b, pp.1605-1623.

- Poulos, H. G., "Behavior of Laterally Loaded Piles: I Single Piles" <u>Journal of the Soil Mechanics and Foundations Division</u>, American Society of Civil Engineers, Volume 97, No. SM5, May, 1971a, pp. 711-731.
- Poulos, H. G., "Behavior of Laterally Loaded Piles: II Pile Groups," <u>Journal of the Soil Mechanics and Foundations Division</u>, American Society of Civil Engineers, Volume 97, No. SM5, May, 1971b, pp. 733-751.
- Reese, Lymon C., "Handbook on Design of Piles and Drilled Shafts Under Lateral Load," Report to U. S. Department of Transportation, Federal Highway Administration, Office of Research, Development and Technology, Washington, D.C., Report No. FHWA-IP-84-11, July, 1984.
- Reese, L. C., Cox, W. R., and Koop, F. D., "Field Testing and Analysis of Laterally Loaded Piles in Stiff Clay," <u>Proceedings</u>, Seventh Offshore Technology Conference, Houston, Texas, Volume 2, 1975 pp. 671-690.

APPENDIX A

Results of the load test of the single pile, October 11, 1984

LOAP DC. 1 CMIIS - ITCHESOMIPSORADIANS

FFTF			CING PO	PEN1S.	INCF-KI	PS		
いいはしない	כאנונ	ن	CYCIF	CYCLF	CYCLE	CYCLE	CYCLE	_
	1001	••	1005	2005	1010	2010	1020	
• 5	• • •	•	300	-29.	· 10	-33.	40.	
:	£ 13.	•	52.	-63-	52.	90.41	59.	
3.7.	6.0	•	-f7. 695P.	-5.P	69	-65.	17.	-96-
• • • .	120.	•	966	-84.	•66	-93.	107.	
• •	17.1	•	115.	-102.	119.	-109-	126.	
• d 47	1.6.	ı	122.	-109.	122.	-115.	127.	
ر. ن •	131.	1	112.	-103.	112.	-108-	116.	
7.	154.	•	92.	-R9.	P;	-93.	96.	
• 4 .	75.	•	* # *	-10-	76.	-13.	72.	
• 7	• 7. *	•	46.	-46	47.	-51.	49.	
1 1:4.	• • • • • • • • • • • • • • • • • • • •	•	27.	-31.	28.	-34.	29.	
11 1 () (
	•13	12	.12	11	.13	11	-12	10
331	10 10 U	.66210-	00189	.00173-	00 184	.00186	. 00190	-00163
			0000			79.7-	3.67	70-1-

* FIELD DATA FROM LATERAL LOAD TEST OF OCT 110 1964 **

LOAD NO. 1

UNITS - INCHESOKIPSOKADIANS

PEPTH.		REN	RENDING MOMENTS.	HENTS.	INCH-KIPS	S		
INCHES	CYCLE	CYCLE	CYCLF	CYCLE	CYCLE	CYCLE	CYCLE	CVCL
	1056	2050	1100	2100				
0.	* S P	-32.	46.	-30-				
•9	52.	.44.	68.	-45				
12.	• 6.3	- 65 -	. a. a.	-60-				
2.	97.	-41.	121.	-86.				
36.	115.	-101-	139.	-100.				
- B-	118.	-112.	137.	-104-				
£ 0.	109.	-105.	123.	-97.				
72.	91.	-00-	66	-8-				
. 40.	70.	-711.	73.	-44.				
96.	4 B.	-0.5-	50.	-46.				
108.	æ (;•	-13.30	30.	-10				
AT LOAD								
POINT:								
nifi	• 12	11 -13	.13	10				
SLOPF	66145	-06178-	.00196	. 60176				
IOAE	06 • 1	-2.40	3.74	-2.38				

+ FIELD DATA FROM LATERAL LOAD TEST OF OCT 119 1984 m

LOAD FO. 2

UNITS - INCHESOKIPPORADIANS

DF PTH9		REF	DING MO	MENTS.	INCH-KI	Ps		
NUHUNI	CYCLE	CYCLF CYCLE CYCLF	CYCLE	CYCLF	CYCLE CY	CYCLE	CYCLE	CYCLE
		2001	1005	2005	1010	2010	1020	2020
.		-65	82.	-19.	84.	-84-	94.	-11.
,		-137.	122.	-117.	126.	-123.	140.	-114.
32.		-182.	162.	-155-	165.	-164-	183.	-153.
24.		-25f.	232.	-223.	238.	-232.	259.	-221.
36.		-301.	281.	-267.	287.	-276-	308.	-266.
• u •		-313.	29B.	-287	304.	-294	321.	-286.
60 •		-295	284.	-277-	289.	-283-	301.	-275
72.		-25R	247.	-247.	244.	-256.	250	-247
34.		-500-	199.	-203-	201.	-204	204	-199.
• 98		-2554-	147.	-153	146.	-153	149.	-149.
10%		-104-	99.	-105-	-66	-105-	98	-103-
AT LC/D				i))) -	
PC TNT:								
נונו	♥ (7)	33	•33	32		32		31
idulis	95600-	-90500	02400	-00487-		-94600		-00480
U 7 U 1	7.90	-7.42	6.59	-6.35	69.9	-6.72	7.56	-6.12

* FIELD DATA FROM LATERAL LOAD TEST OF OCT 11, 1984 -

6 03 370

PRITS - INCHESOKIPSOKADIANS

nf PTH.		FIR	DINE HO	MENIS.	INCH-K]	PS		
INCHES	CALIE	CYCLF	YCLF CYCLF CYCLF	CYCLE	CYCLF CY	CYCLE	CVCLE	CYCLE
	10.50	2050	1100	2100	1200	2200		
•	•66	- 40	102.	-89-		-98-		
•	146.	-132.	151.	-132.	158.	-146-		
17.	102.	-17f.	199.	-177.		-194.		
24.	271.	-250-	2AD.	-253.		-275.		
• 9 •	321.	-255	331.	-29A.		-321.		
- 8-	* CI (F)	-310.	341.	-312.		-331.		
£ 0 •	4 C P .	-243 e	314.	-263-		-305-		
12.	253.	-265.	25.A.	-256.		-262		
•	43€	-202-	0000	-201-		-205-		
• ·) 6	146.	-151.	143.	-148.		-149.		
1 GR .	4 0	-105-	91.	-100-		-100-		
SE LOAD								
POINT:								
1.1.1.	. 3.	C 27 - 1	.34	32	.33	32		
ido ti	12400-	-66400.	. 9050B	-00487-	00512	.00515		
ICAL	7.93	3 -7-18 8	8-20	-7.08	99.8	-7.83		

HOUSTON PILE STUFY

• FIELD DATA FROM LATERAL LOAD TEST OF OCT 319 1984 •

1.0 A C . . .

Shellenessine stable - Shine

: () 70.			ירואה שר	PENTS.	IN CH-K	FS		
INCHI S	LICAS	5	CVCLE	TIL CACIE CACIE	CYCLF CY	CYCLE	CYCLE	
	100	••	1005	2005	1010	2010	1020	
•	1, 1.	7	146.	-175.	137.	-121.	134.	
•	• • • • • • • • • • • • • • • • • • •	ï	:0¢ •	-187.	262.	-180-	198.	
• • • • •	• # 15 C.	ï	274.	-25.0-	26 H.	-242.	262.	-253
● €.	413.	7	. A. B. B.	-356-	3830	-349	377.	-361.
	• Jul •	1	• ÷ ÷	-42 A.	45.4	-420-	453.	-431
• 4 =	• C.F.	7	4FF.	-4534	4700	-447.	476.	-456.
• .		1	456.	-432	4:0.	-42R.	448.	-435
7.	• 4 2 6	Ĩ	469.	-361.	* P.	-379.	382.	-384
• € 2.	e cir.	<u>آ</u>	311.	-310-	305.	-304-	305.	-312
•	21.	Y	224.	-2350	224	-2350	223.	-236.
• • • •	19.3	7	152	-165.	149.	-165.	148-	-166-
			ı	ı	;)) ; ,	
1 1 1 1 1 1 1								
1334	66° 64° 64°	ë 9 • •	66.	64	64.	54	64.	50
.111.	1.233	-63753-	242 ac .	-GFC 798-		-00 741-	-00742	.00743
40.0	17.66	-11.14	11.18	-10.03 10.54	10.54	-9-67 10-73	10.73	-10.26

+ FILL PATA FROM LATERAL LOAD TEST OF OCT 11+ 1984 +

LUAF NO. 3

SMILL INCHES MIPS PEALING

"FPIF.		るしょ	DING PC	HENIS.	INCH-K	i di		
I PLOME S	LACIE	5	CYCLE	TELF CYCLE CYCLF	CYCLF CY	CYCLE	CYCLF	CYCLE
	1050	()	1100	2100	1200	2200		
0	1.1.	7	146.	-131-	147.	-138.		
6.	20%	7	215.	-105.	216.	-202-		
12.	· 11:	1	284.	-261-	246.	-274.		
24.	4 3 6 E	ï	407.	-375-	411-	-344		
36.	.74.	7	486.	-447.	· 36+	-46.70		
		1	50£.	-469.	512.	-486-		
•99	4630	7	471.	-445.	474.	-457		
72.	341.	7	394	- N B B -	396	-392.		
3.	711.	7	310.	-311.	307.	-313.		
96.	4. 1.	ï	222.	-532.	218.	-232.		
178.	145.	7	144.	-161.	139.	-159.		
PT LORP								
F01K1:								
111	J	6 ° 0 1		C (0	G • • 1		
id 3 Fs	06754	- FB 750-	.10771	-60754-	19703.	.00769		
10.30	110.20	-16.40 11.73	11.73	-16.59	-16.59 11.76	-11.06		

HOUSTON FILE STUCY

• IELE DATA FROM LATERAL LGAD TEST OF OCT 119 1984 •

4 O D W O D

- NLGI.			DING MC	PFKTS.	1 NCH-K	PS		
0 1001	1343	CACIF CYCIF CYCIF	CYCLF	CYCLF	כאניונ כא	CYCLF	CYCLE	
	1001	1001	1005	2005	1010	2010	1020	
.;	• 4 ·	-196.	175.	-172.	148.	-171-	184.	
•	• ; ;	-276.	272.	-756.	276.	-254.	270.	
• : •	25.70	-4676-	.09:	-848-	366.	-339.	357.	
• • •	F.1 7.	- 4 . A .	. 19.	-494-	527.	-493.	518.	
٠ و •	11 K.	· 5 . 1 -	£ 29.	-596-	636.	-595-	630.	
• C.	• 1 1	- 6 6 3 -	ecs.	-6.3 Je	674.	-633.	669.	
٠ ن ن	. A C .	-(32)-	634.	-t.12.	639.	-613.	637.	
7:0		-253-	5.41.	59.	542.	-551.	542.	-545
• • •	4 C .	-45.0	447.	-447-	445.	-450.	443.	
•)	***	-341.	. OPE		331.	-347	330.	
• 65 M	:17.	-240	723	-1148.	224.	-250.	223	
1201 1.								
11 22 10 4								
••• ••• •••	.7.	-17	.73	72	.71	12	.71	- 1
.451,	01067	-54015-	.01042	-01053-	61042	.01046	01044	.010
٠. ٠. ٢.	15.73	1 -14.FF 14.A2	14.82	-17.87	-17.87 14.98	-13.73 14.56	14.56	-13.4

A FIELD DATA FACE LATEFAL LEAD TEST OF CCT 110 1984 a

LOAT 20. 4

UNITS - INCHISONIPSONADIANS

HADIC		N 1-1	DINE MO	PEN1S.	NCH-K	IPS		
INCHES	CYCL	CYCLF CYCLF CYCLF	נגכונ	CYCLF	CYCLE CY	CYCLF	CYCLF	CYCLE
	1050	20.0	1100	2100	1200	2200		
. ن	100	-1tR.	190.	-173.	197.	-177.		
f.	200°	-250	270.	-257	289.	-262		
17.	370.	-334	.69:	-343-	362.	-349		
24.	. 3 E. a	-4Pf.	× 36.	-600	553.	-512.		
36.	(.47	-661	651.	-6.06.	675.	-620-		
* *	696.	-f 30.	691.	-642.	7111.	-655.		
÷ ()	6 ° 0 •	-f 12.	652.	-622.	667.	-629-		
72.	554.	- 24 -	556.	-551.	565	-544.		
	447.	-446 -		-447.	446.	-444-		
96.	* CF . F .	-345-	326	-339.	323.	-335		
1 CF.	٠ ن ن ن ن ن ن ن	- 246	216.	-242-	212	-237.		
AT LOAN								
POINT								
نالدا	.71	11. 11	.71	71	.72			
1.101.1	F10.7	-61621-	. F1054	-01071-	01071	.010A		
100		-17.67	15.00	-12.91	15.61			

** FILLS DETE FROM LATERAL LOAD HEST OF OCT 119 1984 **

CYCLF CYCLF CYCLF CYCLF CYCLF CYCLF CYCLF CYCLF 1010 2010 1020 1010 2010 1020 1010 2010 1020 1010 2010 1020 1010 2010 1020 1010 2010 1020 1010 2010 1020 1010 2010 1010 1020 101	• 11 11			DA UNIO	·SLilla.	1KCH-K	IFS		
10(1 2021 1005 2005 1010 2010 1020 1000 100	いしょして	しているし	L	LACIE	CYCLE	CYCLE	CYCLF	CVCLE	CYCL
Cofe		17:01	٠.	1005	2002	1010	2010	1020	202
31 F3850 35 F3250 3420 -3160 3460 4530 -4610 4570 4570 4570 4570 4570 4570 4570 457	•	• 3 0 3	ç	203	-218.	233.	-212.	236.	-211
#53466. 476432. 452421. 457. 707186. 681675. 654619. 669. 707187. 835776. 809762. 819. 707876. 861812. 830807. 838. 741749. 737731. 721729. 728. 741749. 737731. 721729. 728. 741749. 737731. 721729. 728. 741749. 737731. 721729. 728. 741749. 737740. 445473. 443. 767666. 667604. 367473. 443. 767676. 877749. 367347. 362. 7766. 883749. 367347. 362. 78740747749. 367347. 362. 78740747749. 18.3516.99. 18.4917.49. 18.3516.99. 18.4917.49.	•	7 f F	7	356.	-325.	342	-316-	346.	-314
700187. 681635. 654619. 669. 601837. 835776. 809762. 819. 601877. 960870. 830807. 741749. 727731. 723729. 728. 741749. 727731. 723729. 728. 741749. 727731. 723473. 443. 767666. 667604. 590605. 591. 77677677349. 307347. 302. 779797979796. 969696. 77677979797979797.	37.	AF3.	7	476	-437	452.	-421.	457	-418
- F3C.	• • •	7:5	ī	f P 1.	-6.2 E	65E.	-619.	6699	-616
COT	, j.	* ct * Li	4	. F. Q	-176.	P 0 C	-762.	8 19.	-759
0f0647-851812-830807-838-741-729-729-728-741-721-729-728-728-741-721-729-729-728-728-741-965-991-965-991-965-991-965-99-18-89-89-89-89-89-89-89-89-89-89-89-89-89	٠ ښ	* 20%	7	• 00 b	-6:3-	386	-804-	909	-112
741749. 727731. 721729. 728.	€ 100 × 1	96 De	1	851.	-915-	830.	-807.	838.	-804
	1.	741.	-	7.7.	-731.	723.	-729.	728.	-726
**************************************	•	101	-	£ C D •	-6.04	590	-605.	591.	-602
**************************************	• };	. 144	7		-470-	445.	-473	* E & *	-470
- 96 - 96 - 96 - 96 - 96 - 96 - 96 - 96	*	م از ر	-3	313.	-144.	367.	-347	302	-346
96 -96 -96 -96 -96 -96 -96 -97 -99 -96 -98 -98 -98 -98 -98 -98 -98 -98 -98 -98									
10-44 - 11-44 10-13 - 17-49 18-33 - 16-99 18-49	e de la	13,	30 - 1	101	76.	70	70		ď
10-48 - 10-48 - 10-11 - 17-49 - 18-49 - 18-49	1	16610	-12463.	83212	61400-	. 61327	01410		
	يان مان نه د	10.48	-15.0	10.13	-17.40	18033	-16.99		-16.93

I TO A D. A. C.

UNITS - INCHESOKIFSORADIANS

CFPTH.		4 50	PING PC	MENIS.	INCH-K	P.S		
1 VCHFS	נאנונ	J	CYCLF	VILF CYCLF CYCLF	CYCLF CY	CYCLE	CYCLF	CVCLE
	1050		1100	2100	1200	2200		
•0	90 k L	1	241.	-216.	244.	-220.		
•	35.10	٠	354	-321.	355	-328-		
12.	4 (4 .	١	469.	-427.	473.	-435		
24.	678.	ı	685.	-630	694.	-641.		
36.	- T . J	1	941.	-776.	P.5.3.	-194.		
9.8	0.3%	•	964.	-76.30	1047.	-669-		
0.0	* 0 V.2	ı	F57.	-P1.	876.	-813.		
17.	747.	•	742.	-126.	747.	-731.		
• • •	r 0 1 .	•	£96.	-601.	4000	-£01.		
• 95	446	ı	442.	-464.	438	-462.		
16A.	P O F	ł	294.	-3 3Pe		-334		
AT LOAF								
Pn INT:								
٠. روا ١٠ وا	to.	Ju* Ju*-	, ac	1. JA	96.	96 • -		
1401	01323	-11414	.01330	-C1426-	61329	.01444		
ICAC	19.75	-11.074	1 P . AE	-17.33	-17.33 18.97	-17-74		

LOAD NO. 6

UNITS - INCHESOKIPSORADIANS

DEPTH.		BEN	OING MG	HENTS.	INCH-KI	ا در		
INCHES	CVCLE	CYCLE	CYCLE	CYCLE	TE CYCLE CYCLE CYCLE CYCLE	CYCLE	CYCLE	CYCLE
	1001	2001						
•	283.	-263.						
•9	416.	-391.						
12.	550.	-520.						
24.	808	-767-						
36.	991.	-947.						
48.	1117.	-802.						
•09	1011.	-959.						
72.	867.	-866.						
84.	694.	-712.						
96.	515.	-549.						
108.	348.	-398-						
AT LOAD								
POINT:								
DEFL	1-12	-1-13						
SLOPE	01562	.01694						
LOAD	22.04	-21.04						

* FIELD DATA FROM LATERAL LOAD TEST OF OCT 119 1984 *

LOAD NO. 7

UNITS - INCHESOKIPSORADIANS

	BENDING NOMENTS, CYCLE	DING NO	MENTS, CYCLE	INCH-KIPS CYCLE CY	PS CYCLE	CYCLE	CYCLE
1001	2001	1005	2005		2010	1020	2020
314.	-284	297.	-264.		-264.	293.	-256.
460.	-422.	434.	-394.		-394.	129.	-384
608.	-260	574.	-523-		-524.	567.	-510.
893.	-830	840.	-116.		-111.	630.	-757-
.860	-1032	1036.	-971.		-971.	1029.	-951.
328.	-850.	1351.	-651.		-100-	1404.	-683.
137.	-1056.	1147.	-976-		-996-	1163.	-537.
978.	-696-	• 096	-961•		-956-	963.	-947.
192.	-803-	793-	-806-		-801.	795.	-797-
598.	-627.	607.	-638.		-634.	609	-631.
414.	-461.	427.	-477.		-475.	428.	-473.
1-29	-1.29	1.29	-1.29	1.29	-1.29		-1.28
1764	-01885	01704	.01863-		-01868-	01702	.01839
4-29	-22.80	22.16	-21.54		-21.46		-20.93

* FIELD DATA FROM LATERAL LOAD TEST OF OCT 11, 1984 *

LOAD NO. 7

UNITS - INCHES, KIPS, RADIANS

DEP TH+		BEN	DING MO	HENTS.	INCH-K1	PS		
INCHES	CVCLE	CYCLE	LE CYCLE CYCLE	CYCLE	CYCLE	CYCLE	CYCLE	CYCLE
	1050	2050	1100	2160				
•	295.	-265.	293.	-263.				
•9	432	-396.	428.	-394				
12.	571.	-526.	566.	-524.				
24.	837.	-780.	831.	-719.				
36.	1038.	-981.	1030.	-978-				
48.	1449.	-631.	1506.	-484-				
60.	1205.	-896.	1311.	-587.				
72.	971.	-960-	•996	-963-				
84.	798.	-803.	194.	-805-				
96.	603	-632.	602.	-632				
108.	426.	-470.	418.	-470.				
AT LOAD								
POINT:								
DEFL	1.29	-1.28	1.27	-1.29				
SLOFE	01704	-01860-	-01727	-01855				
LOAD	22.58	-21.63 22.29	22.29	-21.44				

* FIELD DATA FROM LATERAL LOAD TEST OF OCT 11, 1984 *

LOAD NO. 8

UNITS - INCHES, KIPS, RADIANS

DEP TH,		BUN	DING MO	MENTS.	INCH-KI	PS		
INCHES	CYCLE	CYCLE	LE CYCLE CYCLE CYCLE CYCLE	CYCLE	CYCLE	CYCLE	CYCLE	Ü
	1001	2001						
•	341.	-318.						
•9	49B.	-475.						
12.	659	-631.						
24.		-937.						
36.		-1171.						
48.		-667.						
•09	1424.	-465						
72.		-1140.						
84.		-646-						
-96		-743.						
108.		-550-						
AT LOAD								
POINT:								
DEFL		-1.51						
SLOPE	02010	.02197						
S O A D	25.92	25.92 -25.83						

• FIELD DATA FROM LATERAL LOAD TEST OF OCT 11, 1984 •

ASSESSED RESERVED BOSSESSED BY SECRETARIAN CONTRACTOR OF THE SECRE

LOAD NO. 9

UNITS - INCHESOKIPSORADIANS

CYCLE 1001 364.
-623. 1741388. -145. 1767. 44. -1218. 11911178. -1018. 9921005.

LOAD NO. 10

UNITS - INCHESOKIPSORADIANS

DEP TH,		BEN	DING MO	MENTS.	INCH-KI	Ps		
INCHES	CYCLE	C	CYCLE	CYCLE	CLE CYCLE CYCLE CYCLE CYCLE	CYCLE	CYCLE	CYCLE
	1001	7	1010					
•	415.	-385-	395.					
•9	607.	-576-	577.					
12.	803.	-765. 764.	764.					
24.	1184.	-1138.	1131.					
36.	1394.	-1387.2	24430.					
18.	-8993.	-7530	11632.					
.09	-5765-	-2236	16541.					
72.	-316.	-4611	13225.					
84.		-1188.	1280.					
96.		-995-	982.					
108.	718.	-159.	723.					
AT LOAD								
POINT:								
DEFL	2.09	-2-10 2-06	2.06					
SLOPE	02783	-02913-	02746					
LOAD	31.89	-30.75	30.92					

APPENDIX B

Results of the load test of the group of piles, October 18, 1984

٠		•
ē		
٠		•
=		3
3		5
ē		-
٠		•
=		•
Ξ		-
-		_
ě		ū
٠		ō
•	_	
=	=	<u></u>
3	3	0
ē	=	_
٠	S	S
•	_	14
-	=	-
-	ನ	_
ē	æ	₹
٠	HOUSTON FILE GROUP STUDY	Õ
•		_
-	4	
-	=	4
ě	4	œ
٠		J
•	z	
-	2	7
ĕ	7	_
•	3	I
٠	0	Š
٠	T	4
•		7
=		a
ĕ		-
٠		4
•		C
		FIELD DATA FROM LATLAR LOAD TEST OF DCT 18, 1984 .
ē		۲
•		ū
•		4
•		•
4		
•		

S	KIPS D CELLS	. LOAD CELLS	AU CLLL, KIPS Pilë Load Cells	JIG LOAD CELL, KI Sum of Pile Load Es	SLM OF PILE LOAD	35.69 FROM SUN OF PILE LOAD	SS-L4 FROM GIG LOAD CELL, KI SS-69 FROM SUM OF PILE LOAD
				S	0		C. HOLL MANAGER IN THE CALL
					INCH	- K - SED AS INC	THE CAMPACAN INC.
				5	2	247 747 7HC	
_	H-KIPS			HOME NTS.	HOME NTS.	HOME NTS.	HOME NTS.
PILE	ILE PILE	PILE	PILE	- PILE PILE	- PILE PILE	PILE PILE PILE	olle Pile Pile Pile Pile
9	9			u.	اما	D E F	d C D i F
109.	3. 10	3. 10	93. 10	93. 10	, 128. 82. 93. 10	, 128. 82. 93. 10	44. 4. 12d. d2. 93. 10
134.	2. 1	132. 1	132. 1	. 104. 132. 1	. 168. 184. 132. 1	. 124. 168. 184. 132. 1	140. 124. 168. 184. 132. 1
1+1.	1. 1.	141. 14	141. 14	. 1110 1910 19	. 19ce 111e 191e 14	145. igu. ille 141. 14	1520 1950 1900 1110 1910 19
166.	3. 1	153. 1	153. 1	. 140. 153. 1	. 185. 140. 153. 1	. 185. 140. 153. 1	2. 157. 148. 185. 140. 153. 1
157.	6- 15	156. 15	156. 15	. 135. 156. 15	173. 135. 156. 15	146. 173. 135. 156. 15	3. inc. 146. 173. i35. 156. 15
135.	*5. 13	145. 13	145. 13	131. 145. 13	, 155. 131. 145. 13	152. 155. 131. 145. 13	152. 155. 131. 145. 13
124.	4. 12	134. 12	134. 12	134. 124. 12	124. 115. 134. 12	117. 124. 115. 134. 12	J2. 117. 124. Alb. 154. 12
96.	06. 9	106. 9	28. 106. 9	128. 106. 9	97. 128. 106. 9	90. 97. 128. 106. 9	90. 97. 128. 106. 9
-	82. 67	82. 67	19. 82. 67.	19. 82. 67.	64. 19. 82. 67.	6. 64. 79. 82. 67.	. Ale bee 64. 19. 82. 67.
. · · ·	0. 45.	50.	50.	58. 50. 45.	37 58 50 45	37. 58. 50. 45.	05 05 05 05 05 05 05 05 05 05 05 05 05 0
•0	•0•	•0•	•0•	900 900 •		11 12 25 20 10 10 10 10 10 10 10 10 10 10 10 10 10	
 	06. 96. 82. 67. 50. 45.	106. 96. 82. 67. 50. 45.	28. 106. 96. 79. 82. 67. 58. 50. 45.	128. 106. 96. 19. 82. 67. 58. 50. 45.	97. 128. 106. 96. 64. 79. 82. 67. 37. 58. 50. 45.	90. 97. 128. 106. 96. 6 64. 79. 82. 67. 30. 37. 58. 50. 45.	. 114. 9u. 97. 128. 106. 96
900000000000000000000000000000000000000				135 156 157 151 151 151 151 151 151 151 151 151	173. 135. 156. 157. 155. 157. 157. 157. 157. 157. 154. 154. 154. 154. 154. 154. 154. 154	173. 135. 156. 157. 157. 158. 156. 157. 157. 157. 157. 157. 157. 157. 157	3. 103. 146. 173. 135. 156. 157. 157. 157. 157. 157. 157. 157. 157
	7 L L L L L L L L L L L L L L L L L L L	=		# OME & TS = P ILE = P	NDING MOMENTS. PILE PILE 124. 82. 168. 134. 194. 111. 185. 144. 175. 135. 155. 135. 155. 136. 156. 137. 178. 128.	BENDING MOMENTS, PILL PILL PILE C D E 9.0 120 82 124 160 100 145 190 111 146 173 135 131 155 131 117 124 115 90 97 128	BENDING MOMENTS. J.L. PIL. PIL. PILE J. C. D. E. J. C. J. C. D. D. E.

•	•	•
		1984
		18.
		100
	7 0	0
	P ST	TEST
	HOUSTON PILL GROUP STUDY	LOAD
	PILL	BAL .
	STON	LATE
	70+	FROM
		DA IA
		FIELD DATA FROM LATERAL LOAD TEST OF OCT 18, 1984 .
		_

_	<		I	Ú	•	LEGEND		9		.94	-132.	51.	-158.	54.	41.	-115.	-16-	60.	33.	11.		•15	00267	00.
NORTH	G		w	H	,	LEG		◀		٠	7	-15	7	51-	17-					•		•	000	ī
ž	a		4	2)	PILE		PILE	-	-110.	-156.	-178.	-175.	-163.	-125	-95.	-11-	-34.	-24.	-10-		11	-03267	-4.48
								PILE	I	-91.	-126.	-155.	-159.	-155.	-141-	-117.	-16-	-55-	-23.	-6-		15	.30251	-5.43
				rrs			P.S	PILE	و	-19.	-10 d.	-126.	-145.	-134	-101-	-121-	-165-	-10-	-39.	-12.			.60252	•
			LOAG CLLL, KIPS	LOAD CE		,	INCH-KIPS	PILE	u.	-10-	-107-	-123-	-134.	-134.	-1++	-112.	-134	-72.	-++-	-1.4.		15	.602+4	
			DAC CLL	F PILE			MOME IS.	PILE	J	-67.	-116.	-130.	****	-155	-1.4.	-119	- 60-	- 16.	-47.	-11.		16	84770-	
			0 I G	**************************************	INCH_S		OF STICKE HO	2 11 c	0	-80	-112-	-141-	-, 51.	-1001-	-105	-1 57 .	-573	- 72 -	-37.	-11-		10		-3.45
			-STess FROM	-65.98 FROM	Sebuda IN	,	2	PILi	U	-120.	- 164	-147.	- 187	-166.	-138	- 691 -	. 70-	-21.	-20-	-1-		* 7 * -	UZa E	-4.73
			-37	n 11	11			PILL	Ð	-151-	-187-	-215.	-4 19.	-45.7-	-104-	-t - j.	- 42.	-35-	- c j.			9	86777	pc·c-
	. 1	10. 2.01	N GROUP		CAP DEFL			PILÉ	·1	-16-	- 1 4 4 -	. •	~	- 51.9	14	-1.20	-26-	-570	-34.	•	•	64	ភ	~
	LUAD NO.	CYCLE	L3A0 01	F.2	MEST CA	,	3	ENCHES		12.	· • ٧	36.	• 12 •	• • • • • • • • • • • • • • • • • • • •	72.	.	J6.	.14.	.32.	. 10	כאטן אַאַ		SLUPE	

FIELD DATA FROM LATERAL LOAD TEST OF OCT 18, 1984 •

NORTH	9			-	•		E LEGEN																
							PILE	I	90.	114.	143.	157.	165.	165.	153.	134.	102.	68.	26.			•22	
			ELLS	<u> </u>		:0	PILE	g	127.	159.	175.	-017	208.	188.	172.	136.	35.	62.	27.			•25	
		2017				I NCH-KIPS	PILE	u.	101.	145.	162.	182.	197.	187.	186.	149.		19.	34.			• 26	100400
		1130 640	UF PILL LOA			MOMENTS. 1	ILE	W	57.	125.	1.29.	. 77.		i 76.	158.	1 76.	1 09.	£5.	30.			•2•	182
		216	35,7	SIT	INCHES			9	.961	249.	241.	.46.	238.	218.	. 96 .	.41.	91.	53.	24.			• 25	
		MOC 9 LI	. L FROM	356	52	9 T CN7 B	PILE	ပ	96•	134.	, 59 ·	.75.	173.	166.	15.	.36.	98.	61.	43.			• 7 •	
		- C - I		7	13.5- 1		PILE	t	*	1.00	153.	1000	. / d.	181.	1000	141	119.	4 J.	32.			\$2.	7. 4. 7.
	4	NO. L.	3	UE!	שלים א		PILL	4	3.	104	153°	•6.0•	.77.	, j.j.	-671		36.	*0	.5 4.			.21	
	LCAD ND.	CYCLENC		EAST CAP	5	DEPTH.	INCHES		• <u>2</u> •	24.	Jö.	• 00 •	6 L •	12.		96.	• • • •	. 52.	156.	AT LLAD	POINT:	DUFL	S. UP.

I	•	•
		FIELD DATA FROM LATEMAL LOAD TEST OF UCT 18, 1984
		18.
		100
•	101	90
	HOUSTON FILE GROUP STUDY	TE ST
	GROL	CVOT
	FILE	C NAL
••••	STON	[7]
	HOC	10 Y L
		DATA
		CTT
		7 4

I	<	I		U	LEGEND		AVG		-62.	-91.	-1111-	122.	-124.	-115	-93.	- 70 -	-41.	-18.	-2.			11	01192	-2.41
NORTH	ی	نيا		-							•	1	•										-	•
ž	0	L		30	PILE		PILE		-91.	-135.	-161.	-165.	-161.	-121-	-88-	-57.	~	-2.	+			13	. 30221	-3.37
							PILE	I	-67.	-96-	-122.	-131.	-132.	-123.	-101-	-76.	-39.	-11-	-1-			12	. 33233	-1.92
			CELLS			در	PILE	و	-52•	-1	-90-		-95-	_	•	-15.	-51.	-25.	• 0 •			11	. +2101.	-2.08
		L. KIPS	LOAD CLI			INCH-KIPS	PILE	u.	-00-	-19-	- 15.	-90-	•	ı		-73	-45-	-22-	;			11	.03143	-2-14
		LOAU CELL, KIPS	OF PILL LOAD				PILL	ų	-53.	- 16.	- 48	-101-	-111-	-114	- 54.	-55.	-17.	- 55 -	-7-			12	·611.00•	-1.94
		116	-	INCH: S INCH: S		BENDING MOMENTS.	PILL	٥	-36-	-58.	-82.	-93.	-101-	-108.	-96-	-18.	-52.	-25.	-9-			710-	.6.138	-1 .8 A
		-23.57 F 304	4	2-55567 IN		ZIE	PILL	ပ	-61-	-113.	-139.	-146.	-144.	-119.	-95.	-10-	-33.	-12.	. •			- · · b	• t t 2553	- 5. 17
	ې		17	= -2.5 = -3.6			PILE	ם	-76-	-129	-454	-105.	-101·	-147-	- 78.	- 10.	-46-	•	ۍ.			£ 1	.JC. 84	-3.11
	0. 1 NO. 25.5	Ċ.		CAP DEFL			PILL	₹	-+1.	• 9 R -	-040-	・コートー		-101-	15.	-75.	-11-	-70.	-3.	~		11	-0.3284	- 2 - 28
	LUAD NO.	LOAD O		EAST C		DLP TH.	ENCHE S		12.	24.	36.	•8•	20	72.	84.	96•	114.	.32.	.961	AT LOA	- 2702	DIFL	4	LVAD

-	•	•
		FIELD DATA F40M LATERAL LOAD TEST OF DCT 16, 1984 .
		16.
		100
	HOUSTON PILE GROUP STUDY	5T 0F
	oup:	O TES
	Li GR	T 104
	N PII	TERAL
	ousto	N LA
	Ť	A F4(
• • • •) OAT
		FIELL
•		

NO KIT	V		E J	3 1		LEGEND		y vc		100	139.	161.	180.	1.86.	181.	1 66.	144.	109.	73.	31.			.24	.03336	4.51
2	٥	ų.	.	3 2		PILE		PIL	~	49.	86.	117.	135.	135.	153.	153.	125.	117.	61.	36.			. 25	.00276-	3.16
								PILE	I	77.	113.	139.	154.	164.	167.	158.	140.	109.	7.	29.			.23	.00302-	3.51
			ST			9		PILE	·9	128.	162.	179.	215.	215.	197.	181.	142.	99.	•••	28.			•26	.30327-	5.00
		2017	LOAD CELLS				ŧ	PILE	u.	99.	143.	161.	182.	200-	193.	195.	158.	132.	87.	37.			.27	.00325-	4.30
			OF PILE LOA					PILE	4	**	1.45.	i 59.	1 78.	. 18.	. 60 ·	5	. e9 .	114.	99	41.			•25	-16300-	+•5+
		17.1	35.0	HES	HL S			2 IL:	9	156.	213.	246.	.53.	×48.	230.	. 9i.	.49.	96.	57.	26.			.27	-246.1	5.34
		# C	4	23	91 11 INC		2	PILE	U	45.	130.	155.	- 191	171.	168.	.53.	133.	94	• 00	•97			.13	. 34ci	3. + J
) 	, •	= -4.759	5.26		1	Ple	10	* T	132.	1 48.	. 04.	177.	1840	10%	1500	•077	52.	57.			97.	50347-	4.04
	-4	0414 00		OEF	DEFL			PILE	4	• 6 4 4	•54•	. c. S.	. 12.	1.91.	• L L 4	. 54.	.11.	d J.		~ ~ ~			. 22	i	5. dd
	LUND INC.			ENST CAP	S I			2 1 1 2 1		12.	24.	.97	• 8 •	•	72.	9.	.96	. 4 4 .	. 32.	.56.	U404 14	POINT:	DLFL	SLOPE-	LOAU

•	•	•
•		•
•		98
•		-
٠		•
i		7
:		_
•		၁
•		
	HUUSTON PILE GROUP STUDY	FIELD DAIA FROM LATERAL LOAD TEST OF OCT 18, 1984 .
•	2	_
ë	7	'n
•	۵	7
•	3	_
:	3	¥
ë	3	0
;	4.1	_
•	7	7
ē	۵	3
	,	ے :
-	5	₹
•	7	_
•	ä	*
•	3	2
•	_	Ţ
•		_
ē		=
•		3
•		_
•		3
•		4
•		<u>-</u>
		_

I	∢	I	J	LEGENO		AVG		-96-	-114.	-133.	-143	1.11.	-129.	102.	-75.	-43.	-11.	-1-		11	13252	3.2
RORTH	9	U	1-4									•		•							•	•
~	3	u .	23	PILE		PILE	-	-115.	-165	-191-	-191-	-181-	-136.	-91.	-61.	-11-	-	•9		14	.60273	-4.55
						PILE	I	-84	-114.	-145.	-155-	-150-	-137.	-111-	-85.	• 7 • -	-13.	0		12	. 13253	-2.60
		<u>.</u>	ວຸ		PS	₫	و	-64.	-88-	-105-	-121-	-103.	-118.	-66-	-82.	•	-27.	Ī		11	.38254	-2.67
		LOAU CELLO KIPS	רסים רבו		INCH-KIP	PILE	LL	-55-		-6-	99	-112.	17.	-85.	-11.	-45	-50-	-3.			171	-3-6-
		OAU CEL	777		MOME NTS.		J	- 13	-65-	-101-	-126-	- F 34 ·	-128	-103-	-53.	-61.	- 23.	• •		-114	•6 v 22 9	-2.57
		911	INCHES OF		DM SNICHT	2115	۵	-64-	-11.	• P6 -	-108-	-129-	13.	-167.	-84	-55-	-25.	-5-		7 ***	242	15.2-
		31.90 FRO	5.15		BIS	PIL	ပ	- 106.	-140.	-117.	-173.	-16+	-135.	-105-	-10.	-37.	-11-	· V		© • • • • • • • • • • • • • • • • • • •	2333	-4-24
	7	•	1 11 11			PILE	Ð	-1100	-104.	• • 6 • -	-194.	-144-	-157-	-101-	- 2 2 -	-30-	-1-	•		77.		*7.*
	⊸ •``	' <u>ā</u>	CAP DEFL			PILE	4	-88-	-95•	·65-	-1:5.	- 4 1 8 .	-112.	-105-	-42.	-53.	-< d•	•	2	11	197	68.7-
	CVCAF NO.	LOAD	EAST C	•	OLPTH,	LWCHLS		12.	24.	36.	+8•	ő ť.	12.	8.	90.	114.	432.	. 56.	AT LUAD	DEFL		CVOT

-	•	•	-
		FILLU DATA FROM LATLAAL LOAD TEST OF OCT 18, 1984	
		18.	
	_	100 2	
	TUDY	10 10	
	SOPE	TES	
	HOUSTON FILE GROUP STUDY	LOAC	
	FIL	L FA L	***
	STON	LAI	*
	70 K	NO Y L	
• • • •		A TA	****
••••		10.0	***
		FIL	
•		_	

Ţ	<	I			LEGEND		AVG			134.	157.	1 78.	187.	8	1	152.	117.	81.	36.			.26 .324
NORTH	G	ıJ		-																		0:
Z	0	L		0	PILE		PILE	~	:	77.	108	129.	3	150.	in	~	~	90.	42.			03271
							PILE	I	71.	103.	•	153.	•		•		-	8.	34.			.24 60288
			rs			S	PILE	ی	·V	160.	8	~	3	3	P	151.	a	69	30.			.28 00319
		. KIPS	LOAD CEL			INCH-KIPS	PILE	u.	94•	2	S	178.	0	ō	0	9	•	98•	••			.003.9-
		AD CEL	F PILE 1			NTS.	PILL	u	96.	121.	i 36.	176.	, 8 2 •	184.	169.	g	423.	97.	46 •			.27 .06.277
		. 1 6.	0 W)	S 17 17 17 17 17 17 17 17 17 17 17 17 17		9	0	٥		<117°			Ś	240.	232.	•	. 90 t	. 49	29.			.29 432-
		-	•	76119 INCHE))	HENO1:	PILE	ပ	• 29		. 647	163.	1	172.	S	•	7	14.	3.7.			• i • •-9955 v•
	<u>.</u>	ار س	•	. 3)) }		Pier	ສ	• + 7	124.	141.	. 56e	1 74.	_	171.	157.	135.	1040	• • •			.29 .Jü 321-
	-	400 4		P DEFL)		PILE	· t	3 1	152.	104	. 74.	+46.	167.	142.	1.9.	32.	٠٢٠	1, 2, 4			. 3.297
	LOAD NO.	LOAD ON		ELST CAP		LPTH.	STHUNI		. 2.	24.	36.	• 0 •	• • •	72.	**	96.	. 14.	.32.	.56.	·Š	. INIC	OLFL Slüpe

•	•	•
		* FIELD DATA FROM LATERAL LOAD TEST OF OCT 18, 1984 .
		180
***		OCT
* * * * *	TUDY	T 0F
	S dni	1:5
	GRO	LOAD
	FILE	RAL
	HOUSTON FILE GROUP STUDY	LAT
	705	FROM
***		ATA
** **		ני ניז.
***		FLE
		•

NO. 1 NO. 2320 NO. 2221 NO. 2222	:	∀	Ξ	ن د		LESEND		AVG		-65•	-96-	-i.15.	-125.	-124.	-113.	-88-	-55	-30	-7-	•		,	6 0.	.00263	-2.47	
NO. 1 NO. 2320 NO. 2320 NO GROUP = -23.57 FROM GIG LOAD CELL. KIPS = -22.19 FROM JUM GF PILL LOAD CELLS = -22.19 FROM JUM GF PILL LOAD CELLS = -22.10 FROM JUM GF PILL LOAD CELLS A B C D E F G H -4010088325642571037210410412452189136	•			33				PILE		-134.	-151-	-178.	-180-	-114.	. 4	88	-51.	0	12.				~	0.235	3.72	
NO. 1 NO. 2320 NO GROUP = -23.57 FROM GIG LOAD CELL, KIPS = -22.19 FROM GIG LOAD CELL, KIPS A DEFL = -3.66666 INCHES PILE PILE PILE PILE PILE PILE PILE PILE								PILE	I	-72.	-103-	-127.	-136.	-135.	-124.	-99-	-69-	~	-3.	ů. •		,	10	0.1212	-1.94	
NO. 1 NO. 2320 NO. 2320 NO. 2320 SACUP = -22.19 FROM SIG LOAD CELL. KI = -22.19 FROM SUM CF PILE LOAD A DEFL = -3.66566 INCHES PILE PILE PILE PILE PILE PILE -4010088325642 -7814212452785642 -130142124527856 -10088527865 -100885278 -100885278 -1001421245278 -1001441259611099 -1001001239011099 -10010010095 -10010010096 -10010010010090 -100.			0	در،				PILE	و	-50-		-81.	-103-	- 48.	-98-	-86.	-65-	-45-	-18.				1. 20.	3		
NO. 1 NO. 2320 UN GRGUP = -23.57 FROM GIG E -22.19 FROM SUN SAP DEFL = -2.76225 INCHES SAP DEFL = -3.66666 INCHES SAP DEFL = -2.76225 INCHES SAP DEFL = -2.76225 INCHES SAP DEFL = -2.7625 INCHES SAP DEFL = -2.7625 INCHES SAP DEFL = -2.7666 INCHES SAP DEFL = -2.7666 INCHES SAP DEFL = -2.7666 INCHES SAP INC			L. KIPS	LUAU CE			INCH-KI	PILE	u.	-45.	-63.	-16.	-96-	-94-	-66-	-67.	-60-	-29.	~	•			i	70	ċ	
NO. 1 NO. 2320 UN GRGUP = -23.57 FROM GIG E -22.19 FROM SUN SAP DEFL = -2.76225 INCHES SAP DEFL = -3.66666 INCHES SAP DEFL = -2.76225 INCHES SAP DEFL = -2.76225 INCHES SAP DEFL = -2.7625 INCHES SAP DEFL = -2.7625 INCHES SAP DEFL = -2.7666 INCHES SAP DEFL = -2.7666 INCHES SAP DEFL = -2.7666 INCHES SAP INC			OAJ CEL	r			MENIS	PILE	الد	- 56 •	-18.	-88-	-167.	-113.	-111-	-88-	- 24-	-48	·V	• •			i c	.0.179	-1.83	
NO. 2320 NO. 2320 UN GRCUP = -23.5 CAP UEFL = -2.75 A B B B B B B B B B B B B B B B B B B B			916	L 0 2	CHES			PILL	٥	3	-55.	-13.	-83.	-96-	-96-	-87.	-69-	7	-16.	-1-			1.03	12.17	-1.82	
NO. 1 NO. 2320 UN GRCUP = 1 CAP DEFL = 1 PILE P PILE P THOSE = 1 THOSE			ندان				S I	PILE	ပ	-88.	-124-	- 147-	-155.	-149.	-123.	-95-	-65-	-23.		٥			• : 3	•6 u3 28	- 3.38	
1		2.0		11 11	ti			PILE	מ	-166.	-145.	-111.	-176.	-1000	-144	-96-	-36-	-11-	1.5.	14.			010-	.11106	-3.27	
		٠.	GRC	90	P .			714	4	-40	8	-87-	-96-	-100-	-25.	-88°	7	~	22	-1-	•		•• 19	1260	2.0	
CYCAD CYCAD LUAD CAST ESST CAST CAST CAST CAST CAST CAST CAST C				AST	187		D.PTH.	INCHES		N	*	36.	48.	64.			36.		132.	.56.	1	200	DEFL	LOP	LJAD	

٠		_
•		*
Ξ		36
-		-
ē		•
٠		•
•		92
Ξ		_
ī		-
ě		Ü
٠		0
•	_	
=	Ξ	7
:	3	_
ē	=	—
٠	5	S
	_	\mathbf{H}
:	3	_
=	5	۵
ā	ž	⋖
	9	0
•	HOUSTON PILE GROUP STUDY	_
Ξ		_
ē	=	4
*	3	4
#	_	7
•	É	=
ī	\succeq	
ē	S	
٠	\supset	I
٠	0	0
•	7	E
-		_
•		⋖
ē		_
*		₹
•		a
-		· O
# \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		FIELU DATA FROM LATERAL LOAD TEST OF OCT 18, 1984
4		u.
		-
4		_
=		

•	∀ 9		Ξ Ξ		3		LEGEND		A VG		119.	163.	187.	Э	-	-	1 99.	8	142.	102.	47.			.33	.00 354	5
?	٥		Ŀ		æ		PILE		PILE	H		93.	128.	148.	•	169.	~	•			54.			3	.00299-	3.4
									PILE	I	91.	128.	161.	178.	9	G	189.	_	•	106.	45.			• 31	63322-	1.1
				LS.				S	σ,	g	S	9	-	9	9	M	220.	1	130.	87.	39.			M	00372-	6.
			L. KIPS					INCH-KIPS		u.	-	9	8	9	~	~	232.	9	~	125.				m	.00372-	1.11
			LOAD CELL.	F PILE 1				N TS.	4	w	114.	145.	162.	2u5.	212.	213.	197.	239.	1.48.	119.	59.			.33	3	5.20
			91 B	NO.	Ξ	빞		9 N 1	2 ILE	٥	1 92.	255.	294.	588 •	293.	274.	233.	189.	131.	83.	39.			• 30		
			7 E	SF	9352 INC	ALAT INC		CNTR	PILE	ပ	139.	150.	178.	194.	202.	263.	184.	173.	134.	91.	41.			S	. 6294-	•
		7	*	45	-2.2	= -2.34			PILE	r	1.01.	147.	Love	1300	1 +40.	< . 6.	193.		ů	127.	540			~	JO 357-	Š
	4	. lua	3) DEFL			PILE	4	140	149.	2:00	2 0 9 •	5:9.	195	158.	142.	112.	÷8€	-67			• 23		6
	LUAU NO.	CYCLE No.	LJAD UN			MEST LAP		OLP TH .	INCHES		12.	24.	36.	48.	90.	72.	t 4 •	90.	114.	132.	156.	AT LOAD	POINT:	DiFL	·	

•	* \$86	****
	CT 18, 1	
STUDY	- FIELD DATA FROM LATEMAL LOAD TEST OF OCT 18, 1984 +	
HOUSTON PILE GROUP STUDY	LOAD TE	
TON PIL	LATENAL	
S DOH	A FROM	
	ELD DAT	
•	- FI	****

26.50									
1 1	-26.30	-26.30 FROM	3.1G 3.UM	LOAD CELL. OF PILE LOA	LOAD CELL, KIPS OF PILE LOAD CELLS	רר רר		L	W
77	2.23370		SOLE) 		89	1
								PILE	LEGEN
		SIS	BENDING MC	MENTS	INCH-KIPS	PS			
PILE		PILi	PILE	PILE PILE	Φ.	PILE	PILE	PILE	AVG
D		ر	۵	'n	L	و	I	-	
-1100		101	-32.	-60	-46.	-51•	-19.	-115.	-7
-159.		-139.	-5°	-82.	-68•	-14.	-113.	-164.	-102
-1 d6.		-101-	-71.	-15-	-78.	-83.	-133	-189.	-11
-1H6	,	165.	-11.	-106-	-96-	-97.	-138.	-187.	-12
-171-		-150-	-85.	-111-	-96-	-80	-134.	-177.	-12
-145-	•	114.		-103-	-16-	-86.	-118.	-126.	-106
-87.		-85•	- 70 -	- 16.	-54-	-99-	-87.	-83	
55.		-15-	-46.	-8-	-44-	-64-	-53	-40	Ī
~7	3•	-12.	-19.	-29.	-5-	-23.	- β.	15.	-1
54.		15.	2.	-3.	15.	-1-	16.	27.	~
		16.		11.	16.	Ď.	15.	24.	~
` Э		80	100 m	T0	60	30.	07	UB	7.
5265	•	0.420.0	45	.0 U 162	.60128	.00159	.30201	. 10233	.03
4		A 11 A -	101	9	1 4 6 7	•	•		•

		18, 1984
		18,
***		OCT
	STUDY	ST OF
	ROUP	AD TES
	ILE G	AL LO!
	HOUSTON PILE GROUP STUDY	FIELD DATA FROM LATERAL LOAD TEST OF DC
	HOUS	HOY
		DATA
		נירט
		ī

	•	1	I	•	U		LEGEND		9	•	-	י כ	20	_			•	•	~	_	•	32	٠.	• 20		•) t	421	.70
2 2 2 2	ی	•	la.	1	-				⋖		-	4 •	→	~	^	10	4 0	V	8	7	-	-	4				,	3	S
Ž	Q)	ų.		8		PILE		PILE	_		1	3	•	165.) a	n (7	1	7	133.	5			D# (ດຸ	3. e3
									PILE	1	106.		• / • 7	185.	205	220	229		677	213.	181.	139.	42	90		2		- 767	4.73
				rrs			9	ŗ	PILE	ی	179.	, (u,	•	\mathbf{a}	_	•	_ 14	n	_	'n	116.		•		-	202 4 00	•	9.00
			L. KIPS	O CE				NUMBER 1	PILE	u.	120.	<u> </u>		203	233.	257.	251	25.0	• • • • •	230.	209.	155.				5.4.4		7 F	20.00
			OAU CEL	CF PILE LOA			-	2	PILE	L.J	1.20.	162.		181	- ენ ⊱	- 647 ×	243.	500	• (77	-187		151.	78.			0	-075 (10)		30 • C
			9I A	HO.	SHONE		07 07 100 10		P 11 E	a	214.	4) (N	~	2	-		• (N	164.		53.))		.43			•
			ш	4	-	7	12		PILE	ပ	121.	16.70		733	218.	230.	233.	226.		202	170.	131.	S.B.			.35			•
		0.0	*	S	, , , , , , , , , , , , , , , , , , ,	7		- 1	PILE	70	1,00	Loss) ,	• 70 *	4 7 R •	220.	229.	21.7	· 1	. C . J	194.	155.	74.			7.0	00415-		•
	-	ù. 1130	GROUP	1	P DEFL	j			PILE	1	109.	-116		• • • • •	241.	i. 5 3.	228.	20.00) i	•	1430	76.	42.			. 37	00:3924-	, 3	
	LUAU NO.	CYCLL NO.	LUAD ON		EAST CAP		DEPTH.		LICHES		12.	, to	7	• 6	* 2 *	, 0	72.	* 7 72		•0.	- 6 T 7	132.	156.	AT LUM	PUINT:	DEFL	SLOPL -	LiAD) [

	*
	9
	-
	-
	8
	-
	_
	ā
	0
>	La
a	ö
)	
_	_
(C)	S
Δ.	=
Ē	
0	C
æ	₹
9	9
LL	
J	_
7	3
4	Z
Z	
5	₹
-	_
2	_
Ξ	Ŧ
¥	~
•	ů.
	_
	≤
	₹
	à
	_
	ď
	FIELD DATA FROM LATERAL LOAD TEST OF OCT 18, 1984
	LL.
	_
	_
	+OUSTON PILE GROUP STUDY

:	∀ 9		I		o I		LESEND		A VG		-81.	-112.	-127.	-i30.	-129.	-66-	-64.	-25.	10.	34.	29.			02	•00 168	-3.18
	C)		t L		æ		PILEL		PILE	1	-128.	-119.	•	-1961-			-72.	-27.	30.	•9•	38.			U.S	.60217 .	7.7
									PILE	I	-81.	-116.	-141-	-140.	-131.	-109.	-73.	-33.	18.	41.	31.			ú.2		-2.52
				CELLS				PS	PILE	g	-55-	-75.	-84-	-98-	-16.	-11.	-53.	-31.	-1-	21.	18.			10	-C0142	-2.35
			L. KIPS	LOAD CE				INCH-KIPS	PILE	Œ	-53.	-16.	-85-	-64-	-83	-85.	-43.	-25.	17.	•0	31.			.02	.00114	-2.93
			LOAJ CELL, KIPS	F PILE				HOME NTS.	PILE	'n	-68-	-89-	-96-	-601-	-En 1-	-57.	-65.	25.	-9-	20.	27.			70	.0.153	-2.43
			919	NO.S	. 1	INCHES		BENDING MO	P 11 c	٥	-36.	-54.	-75.	-16.	-81.	-74.	-55.	-27.	5.	25.	21.			77.	.0.134	-2.61
			4	-28.64 FROM		-2-34147 IN		BEN	PILE	ပ	-111.	-150.	-116.	-172.	- 153.	-116.	-73.	-33.	14.	41.	31.			\$ 0 · I	0492	-4.84
		2100		87- =	= -2.2	= -2.3			PILL	α	-133.	-617-	-215.	-201-	-178.	-145.	-61.	• > 7	21.	36.	• 4 *			10	902:n.	-3.19
	-4	•	GRO		AP DEFL	CAP DEFL			PILE	4	• R • -	-18.	-19-	-88-	-36-	-14.	-53.	-38.	-3-	.7.	19.	C		61	. i 11 7i	-2.49
	LOAU NO.	CYCLE NO	LUAU UN		AST	HIST C		U-PIH.	INCHES		12.	24.	36.	48.	60.	72.	84.	96.	114.	132.	150.	AT LUAD	PULNT:	DUFL	SLOPE	LJAD

*	•	4
		1984
		8
***		OCT
	Y Or	OF
	P ST	TEST
	HOUSTON PILE GROUP STUDY	OAD
***	PILE	FAL
	TON	LATE
	SUCF	FAOM
		FIELD DATA FROM LATERAL LOAD TEST OF OCT 18, 1984 .
* * * * *		IELD
		4

:	∀		Ŧ		J		LEGENO		AVG		-183.	-257	-302.	-326.	-327.	-307.	-265.	-222.	-164.	-102.	-33.			04.	-03569	-7.44
?	0		L		20	ı	PILE		PILE	-	-244.	-340-	-397.	-402.	-382.	÷	-246.	•	-92•	•	-18.			24	.03615	-9.78
									PILE	I	-184.	-257.	-314	-334	-338.	-323.	-282.	-239.	-191-	-93.	-27.			0+	-00585	-6.37
				ELLS				PS	PILE	ٯ	-129.	-180	-220.	-250.	-253.	-274.	-264.	-248.	-200-	-137	-50.			0+	.30516	-5.28
			L. KIPS	LOAD CE				INCH-KIPS	PILE	L	-145	-216.	-241.	-278-	-287.	-295	-249.	-228.	-170.	-101-	-39.			37	96+00•	-1.66
			LOAD CELL, KIPS	UF PILE				MOME N TS.	PILE	لد:	- T 65.	-219.	-249.	-767-	-310.	-305-	-469-	-119.	-2u1.	-133.	-55.			04.1	.00533	-0.67
			91 8	NO.				ON SWICKS	> ILE	٥	-121-	-176.	-226.	-251.	-279.	-284.	-273.	-248.	-161-	-125.	-42.			~	085rg•	-5.71
			.47 FROM	-67.0 FRO	.57402 IN	.58566 IN		Z 13	PILE	U	- 264.	-362.	-423.	-434-	-416.	-345-	-283.	-222.	-144.	-11.	-11.			+1	8690 C*	-10.21
		1 3 7		•	ı	11			PILE	£	-276.	-3H1.	-4 4 7	-446.	-426.	-375.	-211.	-2420	-1540	-010-	-16.				.02633	-9.81
	2 • 6	•	UN GROUP			CAP DEFL			PILE	-1	-122.	-190-	-201-	-<39.	-252.	-253	-246.	- 777-	- 26.	-116.	-39.	3		38	•3 € ⊃ 56	-5.51
	LJAU N	CICLE NO.	LUAD U		LAST C			DEPTH.	INCHES		12.	24.	30.	.8.	96.	12.	8.	96.	114.	132.	. 50	AT LUM	Puln1:	_4	i.i	LVAD

FIELD DATA FROM LATERAL LOAD TEST OF OCT 18, 1984 •		•		1
FIELD DATA FROM LATERAL LOAD TEST OF OCT 18.	******		1984	****
HOUSTON FILE GROUP STUDY FIELD DATA FROM LATERAL LOAD TEST OF OCT			18,	4444
HOUSTON FILE GROUP STUDY FIELD DATA FROM LATERAL LOAD TEST OF	***		100	
HOUSTON FILL GROUP ST FIELD DATA FROM LATERAL LOAD TEST		UOY	OF.	444
HOUSTON FILL GROUFIELD DATA FROM LATERAL LOAD		IS di	TEST	444
HOUSTON FILL FIELD DATA FROM LATERAL L	4 4 4 4 4	GROU	OAD.	4 4 4 4
HOUSTON LATE		FILL	RAL L	1000
FIELD DATA FROM	* * * *	101	LATL	444
FIELD DATA	4 * * * *	HOUS	ROM	4444
FIELD			MIN	4444
FI			פרים ם	****
			FIL	444

PROCESSES BOUNDARY CONTROL OF THE PROCESSES BOUNDARY BOUNDARY CONTROL OF THE PROCESSES BOUNDARY CONTROL OF THE

		# F1 £1	ELD DATA	HOUSTON FROM LAT	LATERAL L	GROUP OAD TE	STUDY ST OF OC	T 189 1	989	
									ON	NORTH
LUAU NO									a	ور
CYCLE NO.	_				,	i			1	;
LOAD ON	æ	76 1	<u>. </u>	9 4	AU CEL	L. KIPS	<i>S</i> 1		LL.	ئين
EAST CAP	P DEFL		, T :	S			1		cc	н
200	3	•	0						PILE	LEGEN
OLP TH.			BLND	9	MOMENTS.	INCH-KIP	S			
LNCHES	PILE	PILE		H		PILE	٩	PILE	PILE	AVG
	7	33	J	0	٦.	L.	o	T		
12.	3, 7.	207.	223.	165	238.	238.	348.	214.	135.	726
24.	424	305.	315.	521.	3 49.	349.	+3+	306.	218.	353
36.	459.	348.	38.	505	549.		497.	38 5•	293.	412
* 8 *	549.	3.91.	432.	627.	+42.	455	3	429.	~	4.58
•09		+34.	461.	u26.	467.	500.	7	457.	339.	181
12.		4 55 •	47¢.	594.	4 BB •	501.	535.	+13.	8	• 86
• • •		424°	455.	524.	461.	507.	9	453.	3	191
96.	353.	4220	433.	***	505	• • • •	402.	423.	348.	4.20
114.	≥9û•	358.	374.	330.	366.	9		561.	347.	549
.32.	2.3.	304	292.	233.	308 .	0	24 9.	8	271.	272
156.	69.	1.45.	133.	114.	166.	149.	117.	128.	151	133
AT LOAD										
DEFL	.75	.19	.13	.84		. 82	TR •	.11	.11	
SLOPE	0 0 9 0 3 - 1 3 9 9 3		0779 7-33	13.04	.c.: 783 10.16	.6c868-	.00313 12.54	.i 38+u 8-84	.30782- 7-52	9°67 13°6
) ;)	}	ı))) })))) }) }

=	•	•
		FIRELU DATA FROM LATERAL LOAD TEST OF DCT 18, 1984
		18.
		3CT
	HOUSTON PILE GROUP STUDY	1 OF
••••	S ANC	TES
	E GR	LOAC
	PIL	LAAL
	JSTON	H LAI
	10+	F 20
		UMIA
		Icho
		L

	Ŧ	< *	I	U	SENO	A VG		218.	.317.	-386.	.4 30.		•	-589.	-335	.259.	11	-58.		090-	0 7 0	7.95
1984	NORTH	9	T.	89	PILE LES	PILE	-	7887-	9.	_	•	-526.	-463	80.	•	-162	-112	-22.			00821 -0	-9.34
CT 18.						PILE	I	-216.	-311.	-390-	-429.	-450-	-447	-407-	-360-	-263-	-167.	-48-		61	.00751 .	7.40
ST OF			•		ď	_	9	-151-	-215.	-278.	-309.	-334	-370-	-371.	-357.	3	-228.	-93.			• 9000	1
040			L. KIPS	ے ا	T M C M C M T	PILE P		17	-262.	-309.	-369.	-393.	-604-	-362.	-339.		-185.	- 10-		58	-00647	-9.75
ATLAA			LOAD CELL.	111			 }	-197.	11.	•	96.	18.	-421.	-385.	-28i.		-213.	-93.		100-	~	-1.99
T			911	500	ن		a ;	- i 38 -	-<16.	-211.	-320.	-364.	-319.	-377.	-359.	9		-81-		54		•
LU DATA			9.3	• 23 52.95 78.92	1	PILE	ပ	-325-	- 100	- 261.	- 400 -	-598•	- 272 -	-439.	-352.	(4	-125.	-454-			0821	11.76
FILLU		-	• •			PILE	ב ב	-255-	-4 d D.	-281-	-6220	-710-	<u>-5556</u>	-438	-3*9•	-756	-127.	-55-		59	849 CC .	-1.43
		•	נאפר	CAP DEFL		2	∢ .	- 4 56 •	- 4.8.	- 6 4 2 -	- c 9 Jo	- 32.20	- 334	-343.	- 326.	-215.	2	-75-	0	54	:0	-6 • 01
		CV CAU	LOAD CN	EAST C.	2 · C	INCHES			. 67	36.	+8 •	• • •	72.	6	.96	114.	.32.	*26*	PCINT:	DLFL	ı,	LUAD

APPENDIX C

Results of the load test of the group of piles, December 13, 1984

••••		1984
		13.
• • • •		DEC
	700	5
	UP ST	TEST
	GROI	LOAD
	HOUSTON PILE GROUP STUDY	FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984
	HOUST	FROM L
		DATA
		FIELD
•	•	

±	∀ 9	3)		LFGEND		ت ٧ ٦		12.	102.	C	137.	146.	148.	139.	115.	87.	56.	22.			-25	00265	E)
NOF 11	۵			2		PILELE		PILE	-	35.	62.	83.	103.	111.	127.	135.	105.		64.				•25	00213-	1.84
								FILE	I	67.	96.	121.	131.	136.	136.	125.	100.	10	18.	17.			•19	00	3.00
			ST)			S	PILE	ی		93.	115.	133.	143.	153.	149.	116.	83	54.	19.			•22	.00260-	3.41
		KIPS	TLE LOAD CELL				INCH-KIPS	PILE	L	11.	110.	126.	145.	163.	164.	159.	136.	102.	711.	26.			.25	81-	3.93
		AD CFII	OF PILE] } •				plié	<u>.</u>	92.	118.	128.	151.	154.	148.	129.	110.	80.	62.	26.			-22	-65	4.19
		A T G	SUR	HS	INCHES		BENDING NO	PILE	٥	82.	115.	141.	158.	9	171.	161.	134.	91.	59.	21.			•24	.00329-	3.63
		97 F		S	9		DENI	PILE	U	.09	83.	103.	116.	129.	130.	125.	108.	116.	62.	25.			•20		2.48
					=13			PILE	&	9.6	142.	158.	169.	180.	176.	152.	127.	92.		26.			-24	00311-	3.82
	-	0. 1601 Georg		9	P DEFI			PILE	<	•69		109.	123.	132.	N	2	•	65.	26.	15.			.19	00258	3.71
	OAD NO	3		AST CA	MEST CA		DEPTHO	INCHES			24.	36.	18.	60.		-68	96	114.	132.	156.	AT LOAD	POINT:	ū	_	

	•		
		1984	
		13,	
		DEC	
	10.4	5	
	IP STU	TEST	
	GROL	LOAD	
	TON PILE	FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 *	
	HOUS	FROM	
7 4 4 4 4 4		DATA	
		FIELD	
-	_	•	

11 10N

⋖	I	ပ	G- 13 11		ن ح ح		-63	-	134.	-	1 4 to	-144.	132.	~	•	-65.	-51		0:-	120	6402
ن	¥	_	1					•	•	•	•	•	•	•						•	•
ప	-	<u>-</u>	PILL		PILE		-116.	-177.	-212-	-239.	-151-	-1.6.	-120.	-84	-49.	-31.	- 18.		20		-5-4
					FILE	I	-711.	-95	-113.	-122.	-130.	-133.	-128.	-131.	-106.	-67.	-56.		26	•0 r2 53	-2.62
	S11			PS	PILE	و	-69-	-83-	-57.	-113.	-121-	-131-	-132.	-132.	-125.	-96-	-37.		21	. 00245	~
	L. KIPS LOAD CEL			INCH-KIPS	PILE	L.	-65-	•	ò	-125.	m	1		-137.		-18.	-34		22		-3 - 35
	OF PILE LOAD			HOMEN 1S.	PILE	ليا	-49.	-62.	-72.	-98-	-113.	2	-133.	-145.		-94.	-56.		~	.00226	-1.96
	A I C	3 3	?	RENDING MO	PILE	۵	-90-	-108.	-135.	-144.	-158.	-163.	-155.	-142.	-109.	-60-	-24.			.00307	•
	-85 FROM	1969	`	BER	PILE	U	-128.	-175.	-202-	-205.	-192.	-164.	-134.	-113.		-36.	-9-		19	28	-5.0
	-32		;		PILE		-112.		-182.	-189.	-180.	-167.	-129.	-116.	-80-	-45	-13.		Ñ	31	(A
1 28	GROUP	IP DEFL			PILE	•	-52-	-	•	-94	-1111-	11	-	-120.				6	19		•
OAD N	LOAD ON	EAST CA		EPTH	INCHES	ı	12.		• •	8	9	~	-	96.	•	5	67	AT LOAD	EFL	1001	DAC

•	•	•
÷		•
4		8
•		5
;		_
•		•
•		M
:		_
ě		Ü
•		Ē
7		2
ē	>	4
•	0	8
2	2	_
-	S	5
ë	••	ü
•	₾	-
:	HOUSTON PILE GROUP STUDY	_
ē	ž	₹
•	9	0
-	٨.,	_
ě	Ξ	_
•	=	⋖
•	•	~
3	,	2
ë	5	4
•	-	نہ
=	ã	_
-	5	5
ē	Ĭ	ĕ
•		L
2		•
ě		7
٠		4
2		0
ē		0
ē		=
		FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 .
•		<u>-</u>
é		_
•		
•	•	•

<u>.</u>	•	I	U	01.3931	AVG		10.	105.	127.	147.	158.	159.	148.	118.	98.	54.	20.		(N	02	3,55
11 40 X	0	L.	9	הורג ונ	PILE	-	26.	51.	73.	97.	110.	131.	142.	111.	95.	71.	26.		9	•23	.001930	1.51
					plle	I	• 09	95.	126.	142.	150.	150.	137.	104.	69	4 55	-			92.	0 02 12-	3-10
		v.) i	ري	•	9	72.	105.	131.	154.	161.	168.	157.	119.	76.		13.		;	•21	. 00 24 0-	3.94
		OAD CFIES		INCH-KIPS	PILE	L	75.	113.	135.	158.	178.	175.	169.	141.	101.	68.	24.			7	.00259-	
		LOAD CELLS I		ŝ	-	u	105.	140.	155.	184.	186.	176.	147.	116.	72.	50.	15.			N	. 10252-	4.97
		BIG	E S	981	PILE	۵	72.	100.	137.	156.	167.	168.	157.	130.	93.	62.	23.			N	.00295-	3.61
		40 FROM	462))	PILE	U	52.	78.	100	119.	133.	138.	134	113.	132.	67.	29.			•13	.00217-	2.52
	<u>د</u>	H H			PILE		93.	142.			152.			132.			24.		;		.00252-	4.60
	1 1 1 1	SROUP	P DEFL		PILE	<	71.	108.	120.	137.	145.	138.	127.	92.	64.	25.	14.		•	•19	.00246-	4.23
	OAD NO	3	EAST CA		INCHES			24.			68.	12.		96.		132.	n	2		<u> </u>	LOPE-	040

•	•	•	
		FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 .	
		13.	
		DEC	
	TUCY	1 05	
	HOUSTON PILE GROUP STUCY	TES	
	E GR	LOAL	
	PILI	ERAL	
	STON		
	HOC	FROM	
		ATA	
****		073	
		FI	
7	_	_	

O A D									ಬ	ب
CYCLE	NO. 2	605 F = -32	<u>د</u> د	BIG	LOAD CELL, KIPS	L, KIPS				II.
		= -3(30.63 FROM	SUR	OF PILE LOA	LOAD CE	CELLS			
EAST	CAP DEFL	11 1	6	INCHES					ٺ	3 1
	-	•	7	INCIES					7 11 d	0112112116
E P TH	•		BEN	BENDING PI	HOMENTS.	INCH-KIPS	PS			
INCHE	S PILE	P 11 E	PILE	PILE	PILE	PILE	PILF	FILE	PILE	JAC
	<	Œ	ပ	٥		L	ی	I	9-4	
12.	-40-	-92.	-109.	-70.	-22.	-55.	-53	-58	-112.	-6 ¹ 6
24.	-63.	-134	-153	-99.	-34	-80	-11-	-62-	-175.	-66-
36.	-111-	-155.	-184-	-127.	-46.	-94.	-88-	-100.	-213-	-120-
48.	-96-	-169.	-188-	-139.	-73.	-113.	-106.	-110.	-211.	-133.
60.	-105.	-162.	-119.	-153	-93.	-125.	-114.	-119.	-1A9.	- 13 3 to -
12.	3	-152.	-150.	-159.	-110.	-133.	-125.	-124.	-149.	-131-
84.	-110.	-120.	-120.	-150.	-121.	-130.	-126-	-121.	-112.	-123.
96	-118.	-110.	-104.	-135.	-140.	-131.	-128.	-126.	-75.	-115.
		-76.	-23.	-98-	-133.	-116.	-119.	-101-	-40-	-84
132.	-75	-51	-28.	-49.	-96-	-12.	-08-	-64	-22.	-69-
156.	-24.	-15.	-2-	-19.	-50	-31.	-34	-25	-13.	-24.
1 10	AD									
POINT	••									
	18	19	17	19		20	20	18	18	61.
-	22	.00267	.00252	. 80270	.00182	.00216	.00206	.00216	.00284	. 60235
2001	-2.55	S	-5.1	-3.07	-1.49	-3-13	-2.19	-2.33	-5.61	-2.40

		1984
		13.
		DEC
•	101	5
	JP STE	TEST
	GROL	LOAD
	HOUSTON PILE GROUP STUDY	. FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984
	HOUS	FROM
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		DATA
		FIELD
•	•	•

 V 9 0	1	В 1 С	TLE LECEND		LE AVE	1. 88.	0.	7. 15	2. 174.	3. 18	2. 17	. 15	2. 113.		•	•		•2	3002	14 3.78
_	_	_	P 1		E PI		9	Œ	. 11	CI	14:	•	~	2		53			9	1:1
					PIL	-	114	150	166			•	91,			ý		•	N	3.2
	211	ľ		Sel	PILL	102.	141.	166.	198.	190.	187.	161.		55.		សំ		~		4.52
	LOAD CEL			INCH-KIPS	PILE		137.	9		0		186.	•	88.	54.	15.				4.33
	LOAD CEL	,		HOMENTS.	PILE	126.	164.	183.	-	=	0		119.	58.		7.		•	23	5.32
	9 2			ENDING M	PILE	99.	•	173.	187.			5	115.			19.			52	3.87
	5.05 FRG	1477		BE	PILE	62.	89.	115.		147.		139.		129.				-	2	2.44
0	P3 P3 	• •			PILE	108.	9	185.	200	~	207.	173.	7	 	41.	16.		(4	-00284	4.15
• 0	6 ROU	IP DEFL			PILE	96	P	5	163.	9	•	C		46.	•		_	7	N	
LOAD NO	0 10 0	EAST CA		EPJH	INCHES		24.			£0.	12.	84.	ف	114.	32	156.	7 #)	OPE	•

historians Proceeded Parancial Processing Processes

	FIELD	DATA	la 🖷	ROM LATERAL	LOAD TE	ST OF	DEC 13,	1984	
								ž	NORIL
•								<u> </u>	9
UF = -21-88 FR		0 C C C C C C C C C C C C C C C C C C C	BIG	LOAD CELL	L. KIPS			L	فينا
12479	. D. VI	; = z	H S S S S		<u> </u>	4		x	—
NJ8	E E	. =	HENDING MO		INCH-KI	IPS		PILE	LEGERD
IE PI		1	PILE	PILE PILE	벌.	•	PILE	PILE	U A K
•			-69-	-14	-46.		_	1 -169.	79-
11614	41.		16	•		-67.	-15.	-171-	-91
4017 5213	71.		-126. -138.	-35	1886	-83-	-93-	-269-	-112
147	69.		53	-82.	11	-109.			-132
431	45.		10	-101-	N	-119.	~	-151-	-130
116	18.		-150	-116.	21	-122.	-	-114.	-121
-112105. -8522.	92.		-137.	-139	-132	-127.	-127.	- 78	
623			5	50	~	-85	69	2	-65
-206-			-20•	-57.	-35	-38.	-28.	-14.	-27.
	-					00,1	•	-	-
0254 .0024	35	•		17			.06217		600.
4.26 -4.48	7		-2 • 85	91	-2.60	-1.92	-1.88	?	6.

•	4	#	
ï		•	
4		8	
-		13	
•		_	1
ī		5	3
•		~	1
-		ں	4
•		Ĭ	4
-		_	
Ė	>	<u>L</u>	1
-	3	_	3
•	E	_	1
=	S	2	1
ē	<u>a</u>	-	1
ë	3	0	3
ė	ď	₹	4
•	9	2	4
•	لبا	_	4
=	=	=	1
•	۵	×	4
=	_	H	1
ē	HOUSTON PILE GROUP STUDY	<	4
=	5	-	1
ē	ä	£	•
•	0	2	1
ē	-		4
=		_	1
ā		=	•
•		\	4
ē		_	3
		FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 *	
•			•
•		-	•
•		-	
•	_	_	•

,	<		I		U			A V G		96	138.	159.	178.	8	170.	147.	102.	56.		<u>.</u>			•20	0245	1.22
NOF TE	9		نيا		—			_								_								0.1	
Ž	۵		L		3	1110	111	PILE	-	35.	64	88	111.	119.	135.	•	101.	80.	59.	19.				.00183	1.60
								PILE	I	81.	121.	155.	168.	168.	158.	133.	87.	4 0.	22.	9			-	0 02 17-	3.55
				rs			U.	Δ.	l	115.		175.	0	194.	185.	154.	97.	43.	19.	•	}		•20	00 257-	5.04
			• KIPS	5			TMCHIKIDS	שו	4	100.		167.	9	206.	192.	173.	130.	78.	47.	11.			•23	005	4.76
			9	PI			-514	PILE	ı.	134.	175.	191.		221.	0	157.	111.	46.	23.	-9-				0025	5.83
			BIG	SC	NCHES	NCHES	THE MOME	PILE	٥	109.	156.	182.	191.	187.	170-	141.	101.	64.		18.			•25	002	4.45
			2	6 FR	418]	990 I	AF MD	PILE	U		97.	118.		143.	141.	130.	98.	45.	45.	23.			•	0019	2.75
		0	g	= 37.	11. =	= .28		PILE	&	116.	175.	194.	204.	219.		170.	128.	11.	32.	12.			2	002	4.63
	-	-	GROUF		P DEFL			PILE	<	0	S	160.	9	9	•	-	9	35.	9.	2.			-	00233-	5.3
	OAC NO	CYCLE N	OVO		EAST CA	EST CA	Fell	INCHES		12.	24.	36.	48.	• 0 9		84.	96.	114.	F7	156.	1 10	0 12	_	LOPE.	040

		FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984	
		0EC 1	
	JCY	9	
	HOUSTON PILE GROUP STUCY	TEST	
	GROL	LOAD	
	PILE	ERAL	
	101	LAT	
	HOUS	FROM	
		DATA	
		FIELD	
•	_	_	

GROUF = -26.83 FROM BIG LOAD CELLS F -26.93 FROM SUM OF PILE LOAD CELLS B DEFL =11858 INCHES BENDINCHES B DEFL =15252 INCHES BENDING MOMENTS INCH-KIPS PILE BENDING MOMENTS INCH-KIPS FILE A B C D E F G H -49.		-	9							G	9
FST CAP DEFL =11858 INCHES EVTH: BENDING MOMENTS, INCH-KIPS NCHES PILE PILE PILE PILE PILE FILE FILE FILE FILE 12.		0 2 9 N	7 7	12 14 17 17	BI6 SUR	OAD CEL	L, KIPS LOAD CE	ن انہ		<u>. </u>	#
FORMERS PILE PILE PILE PILE PILE PILE PILE PILE	AST	A P 0	1 1	300	H S S H	i :				Œ) I
EPTH BERDING HOMENTS INCH-KIPS NCHES PILE PILE <th></th> <th>) L</th> <th>)</th> <th>- V</th> <th>200</th> <th></th> <th></th> <th></th> <th></th> <th>PILE</th> <th>TEGE 1D</th>) L)	- V	200					PILE	TEGE 1D
NCHES PILE PILE PILE PILE PILE PILE PILE PILE	r P TH			BEN			INCH-KI	PS			
12491001228431656472130. 24751401661134194819419319316019114350105951102291601911435010595110229156154151731221131171241961721131141141141141181551181311251251251331251251331251261277918199199124199124199124199124199124199113125126127791262720354810374856828281528152828282828282828	E E	P.IA	-	PILE			PILE	P 11.E	FILF	PILE	
12491001228431656472136. 247514016611341948194193193. 248216019114350105948194193193. 268216019114350105113117229. 27155115144194194122113114194194194125117126127126127126127126127126127126127126127126137126127137126127137137126127137126127137137126127137126127137137126127137137126127137126127137126127127137126127127137126127		.	•	Ú	۵	<u>u</u>	L.	9	I	-	
247514016611341948194193126821601911435010595110229229165165191731221131172212211311314419116491125117124196197126127126125137126125135137126125135137126127126137126127126137126127127127126137127		•	_	-122.	•	31	65	-64.	-72.	-136.	
36. -82. -160. -191. -143. -50. -105. -95. -110. -229. 48. -95. -165. -151. -73. -122. -117. -221. 60. -112. -154. -154. -164. -91. -125. -117. -124. -196. 72. -113. -144. -147. -166. -107. -137. -125. -125. -155. 84. -111. -116. -140. -142. -125. -127. -79. 96. -123. -111. -106. -140. -142. -134. -121. -79. 114. -99. -160. -141. -141. -134. -127. -79. 132. -79. -62. -35. -48. -103. -74. -85. -68. -28. 1 LOAD -3. -18. -59. -34. -39. -28. -18. 1 COPE -00277 -00297 -00297 -00297 -2.72 -2.02 -19 -18	i •		-140-	-166.	113	-41.	46	-81.	-94-	-193.	11
469516519015173122113117221. 6011215417516491125117124196. 72113144147166107137126125155. 84111114118155118137126125155. 9612311110614014113412112779. 114998510810114111912410844. 1327962354810374856823. 15627203185934392815. 1 LOAD 0 INT: EFL181817191920202020. 0 A0 -2.17 -4.21 -4.40 -2.8894 -2.72 -2.02 -2.05 -5.54	9	. 60	-160	-191.	-143.	-50.	105	-95.	-110.	-229.	-129
60 - 112 - 154 - 175 - 164 - 91 - 129 - 117 - 124 - 196 - 128 - 113 - 114 - 147 - 166 - 107 - 137 - 126 - 125 - 155 - 155 - 166 - 107 - 137 - 126 - 125 - 155 - 155 - 118 - 134 - 125 - 120 - 113 - 114 - 196 - 140 - 142 - 134 - 121 - 127 - 79 - 132 - 198 - 108 - 101 - 141 - 119 - 124 - 10844 - 132 - 19 - 27 - 20 - 20 - 28 - 23 - 27 - 20 - 3 - 18 - 18 - 19 - 29 - 20 - 20 - 20 - 20 - 15 - 15 - 15 - 15 - 15 - 15 - 15 - 1	60	9	-165.	-190 -	51	-73.	22	-113.	-1117.	-221.	-138
721131441471661071371261251551551551551131141141181551341251201271		11	-154	-175.	-164.	-91.	-125.	-117.	-124	-196.	14
84111114118155118133125120113. 9612312311110614014213412112779. 114998510810114111912410844. 1327963354810374856823. 1562720318593439282815. 156. 1561818 -19 -19 -292020202020202020	N	11	-144	-147.	-166.	10		126	-125.	-155.	
9612311110614014213412112779. 114998510810114111912410844. 1327962354810374856823. 15627203185934392815. 156. 15617418 -18 -17 -18 -19 -19 -19 -100. 10020202020202020	4	1	-114.	-118-	-155.	-118.	•	125	-120.	113	-123
114998510810114111912410844. 1327963354810374856823. 15627203185934392815. 156. 15627203185934392815. 15. 16. 1719 -19 -2020202818181719 -392020202020202020		10	-111	106	-140-	-142.	•	-131.	-127.	-19.	-121-
1327963354810374856823. 15627203185934392815. 156. 15627203185934392815. 15. 15. 15. 15. 15. 15. 15. 15. 15.	•	16	89	108	10	-141.	119	-124.	-108.	*	10
15627203185934392815. 1 LOAD 0INT: EFL -18 -17 -19 -19 -20 -20 -19 -18 0AD -2:17 -4.21 -4.40 -2.88 -94 -2.72 -2.02 -2.05 -5.54	-		9	35	8	10	-74.	85	-68-	23	-64-
T_LOAD OINT: EFL181817191920201918 LOPE -00227 -00277 -00293 -00201 -00228 -00230 -00238 -00322 - OAD -2-17 -4-21 -4-40 -2-8894 -2-72 -2-02 -2-05 -5-54	36	N	~	M	18	5	34		28	15	
OINT: EFL181817191920201918 LOPE -00227 -00277 -00257 -00293 -00201 -00228 -00230 -00238 -00322 - OAD -2-17 -4-21 -4-40 -2-8894 -2-72 -2-02 -2-05 -5-54	1 10	_									
EFL181817191920201918 LOPE -00227 -00277	OINT	••					,	(•	,	•
LOPE -00227 -00217 -00257 -00293 -00201 -00228 -00230 -00238 -00322 -010 -2-17 -4-21 -4-40 -2-8894 -2-72 -2-02 -2-05 -5-54	43	•		7	19	-	20	- 20	19	-	1
OAD -2-17 -4.21 -4.40 -2.8894 -2.72 -2.02 -2.05 -5.54 -2.	107	0 0 2	0027	0.025	002	0020	8	.00230	.00238	0032	.00253
	OVO	5	-4.2	-4.4	2	• •	2.7	2.0	2.0	T. B	er a.

•	•	•	
*****		1984	
		13,	***
		DEC	
	λor	8	4
****	IP STL	TEST	***
****	GROU	LOAD	****
	HOUSTON PILE GROUP STUDY	FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 *	
	HOUS	FROM	****
		DATA	***
		FIELD	****
•	•	_	4

«	=			GEND		DAV		101	148.	176.		191.	_	50	0			9			N	025	. 7	
U			•	-																		•		
ü	Ľ,	٥	ن	PILE		PILE	-	38.	•69	95.	120.	127.		147.	105.	81.					•23	00179	•	
						FILE	I	86.	130.	165.	177.	176.	163.	135.			20.	2•			-17	0 62 18-	•	
		لب			S	PILF	9	127.	172.	192.	228.	0	194.	157.	•96	38.	17.	0			•19	00 267-	•	
	KIPS	LOAD CEL			INCH-KIF	PILE	u,		S	7	0	-	0	179.							3	00 282-	•	
	CE	PILE			rs.	=	ш	•	8	0	239.	234.	~	165.	114.			-1.			2	00271-	n	
	91	E /	ES S		DING HO	PILE	۵	117.	170.	198.	205.	197.	~	•	98.	_	_	17.			•25	00318-	•	
	a c	~ E	22		BENE	PILE	U		0	8	•	150.	147.	135.	98.			24.			-17	00205-	•	
0	•	•	, •			PILE	8	118.	179.	201.	214.	8	-	-	m			10.			. 23	00316-	7	
-	8	<u> </u>	범			PILE	<	111.	164.	173.	181.	174.	147.	120.	65.	31.	•	1.			_	51-		
LOAD NO	LOAD ON	J LSV	EST C		OEPTHS	INCHES											~	56	1 10	OINT	EFL	L CPE-	040	
	NO. 1 RG. 1050	. 1 0. 1050 GROUF = 43.98 FROM BIG LOAD CELL, KIPS F	NO. 1 NO. 1050 NO. 1050	NO. 1 NO. 1050 NO. 1050 ON GROUF = 43.98 FROM BIG LOAD CELL, KIPS = 42.92 FROM SUM OF PILE LOAD CELLS CAP DEFL = .16388 INCMES CAP DEFL = .29257 INCMES	NO. 1 NO. 1050 NO. 1050 NO. 1050 N GROUF = 43.98 FROM BIG LOAD CELL, KIPS = 42.92 FROM SUM OF PILE LOAD CELLS CAP DEFL = .16388 INCHES CAP DEFL = .29257 INCHES	NO. 1 NO. 1050 NO. 1050 NO. 1050 ON GROUF = 43.98 FROM BIG LOAD CELL, KIPS = 42.92 FROM SUM OF PILE LOAD CELLS CAP DEFL = .16388 INCHES CAP DEFL = .29257 INCHES PILE LEGEN PILE LEGEN	NO. 1 NO. 1050 NO. 1050 NO. 1050 ON GROUF = 43.98 FROM BIG LOAD CELL, KIPS EAP DEFL = 42.92 FROM SUM OF PILE LOAD CELLS EAP DEFL = .29257 INCHES CAP DEFL = .29257 INCHES BENDING MOMENTS, INCH-KIPS S PILE PILE PILE PILE PILE PILE AVG	NO. 1 NO. 1050 NO. 1050 NO. 1050 ON GROUF = 43.98 FROM BIG LOAD CELL, KIPS EAP DEFL = .16388 INCHES CAP DEFL = .29257 INCHES PILE PILE PILE PILE PILE PILE PILE AVG S PILE PILE PILE PILE PILE PILE PILE II	NO. 1 NO. 1050 NO. 1050 NO. 1050 NO. 1050 S. 42.92 FROM BIG LOAD CELL, KIPS EAP DEFL = .16388 INCHES CAP DEFL = .29257 INCHES S. PILE PILE PILE PILE PILE PILE PILE PILE	NO. 1 NO. 1050 NO. 1050 NO. 1050 S. 43.98 FROM BIG LOAD CELL, KIPS EAP DEFL = 42.92 FROM SUM OF PILE LOAD CELLS CAP DEFL = .16388 INCHES CAP DEFL = .29257 INCHES CAP DEFL = .29257 INCHES S. PILE PILE PILE PILE PILE PILE PILE AVG A B C D E F 6 H I 111. 118. 69. 117. 141. 105. 130. 69. 148 164. 179. 102. 170. 186. 156. 172. 130. 69. 148	DO. 1 NO. 1050 NO. 1050 NO. 1050 S. 43.98 FROM BIG LOAD CELL. KIPS EAP DEFL = .16388 INCHES CAP DEFL = .29257 INCHES CAP DEFL = .29257 INCHES CAP DEFL = .29257 INCHES S. PILE PILE PILE PILE PILE PILE PILE AVG A B C D E F G H 111. 111e. 69. 117. 141. 105. 127. 86. 38. 101 164. 179. 102. 170. 186. 179. 165. 95. 170	D G G G G G G G G G G G G G G G G G G G	NO. 1 NO. 1050 NO. 1050 NO. 1050 A Q 092 FROM BIG LOAD CELL, KIPS EAP DEFL = .16388 INCHES CAP DEFL = .29257 INCHES CAP DEFL = .29257 INCHES CAP DEFL = .29257 INCHES S PILE PILE PILE PILE PILE PILE PILE PILE	NO. 1 NO. 1050 NO. 1050 NO. 1050 NO. 1050 EAP DEFL = .16388 INCHES CAP DEFL = .29257 INCHE	NO. 1 NO. 1050 NO. 1050 NO. 1050 NO. 1050 A 2.92 FROM BIG LOAD CELLS, KIPS LAP DEFL = .16388 INCHES CAP DEFL = .29257 INCHES S PILE PILE PILE PILE PILE PILE PILE PILE	NO. 1 NO. 1050 NO. 1050 NO. 1050 A 2.92 FROM BIG LOAD CELL, KIPS EAP DEFL = .29257 INCHES S PILE PILE PILE PILE PILE PILE FILE PILE LEGEN A B C C D E F G H 111. 118. 69. 117. 141. 105. 127. 86. 38. 101 164. 179. 102. 170. 186. 156. 172. 165. 95. 170 181. 214. 142. 205. 239. 202. 228. 177. 120. 190 181. 214. 142. 205. 234. 218. 208. 176. 163. 147. 150 180. 175. 135. 141. 165. 179. 157. 150. 191 181. 214. 142. 205. 234. 218. 208. 177. 163. 147. 150 181. 214. 147. 175. 211. 200. 194. 163. 147. 155. 165. 65. 103. 147. 156. 156. 157. 150. 157. 150. 157. 150. 157. 157. 155. 157. 157. 155. 157. 157	NO. 1 NO. 1050 NO GROUF = 43.98 FROM BIG LOAD CELL, KIPS EAP DEFL = .16388 INCHES CAP DEFL = .29257 INCHES S PILE PILE PILE PILE PILE PILE PILE PILE	NO. 1 NO. 1050 NO GROUF = 43.98 FROM BIG LOAD CELL, KIPS LAP DEFL = .16388 INCHES CAP DEFL = .29257 INCHES CAP DEFL PILE PILE PILE PILE PILE PILE A B C D E F G H III	NO. 1 NO. 1050 NO. 1050 NO. 1050 A PLE LOAD CELLS S PILE .29257 INCHES CAP DEFL = .1050 INCHES CAP DEFL = .1	NO. 1050 NO. 1050 NO. 1050 NO. 1050 NO. 1050 LAP DEFL = .2925 FROM SUM OF PILE LOAD CELLS CAP DEFL = .29257 INCHES S PILE PILE PILE PILE PILE PILE FILE PILE FILE PILE FILE PILE PILE PILE PILE PILE PILE PILE P	NO. 1050 NO. 1050 NO. 1050 NO. 1050 NO. 1050 E 42.92 FROM SUM OF PILE LOAD CELLS EAP DEFL = .16388 INCHES CAP DEFL = .29257 INCHES CAP DEFL E PILE PILE PILE PILE PILE PILE PILE P	NO. 14 NO. 1050 NO. 1050 S. 43.98 FROM BIG LOAD CELL, KIPS = 42.92 FROM SUM OF PILE LOAD CELLS CAP DEFL = .16388 INCHES CAP DEFL = .29257 INCHES CAP DEFL = .29257 INCHES S. PILE PILE PILE PILE PILE PILE FILE FILE AVG 111. 118. 69. 117. 141. 156. 172. 86. 38. 101 144. 229. 150. 170. 186. 156. 172. 186. 199 173. 201. 125. 198. 204. 179. 192. 165. 95. 170 181. 214. 142. 205. 239. 202. 228. 177. 120. 190 174. 229. 150. 197. 234. 218. 208. 176. 127. 150. 190 175. 120. 175. 175. 218. 208. 176. 157. 150. 150. 150. 150. 150. 150. 150. 150	NO. 150 NO. 1050 NO. 1050 NO. 1050 S. 42.92 FROM BIG LOAD CELL, KIPS = 42.92 FROM SUM OF PILE LOAD CELLS CAP DEFI = .16388 INCHES CAP DEFI = .29257 INCHES CAP DEFI = .29257 INCHES S. PILE PILE PILE PILE PILE PILE PILE PILE	NO. 1 NO. 1050 NO. 1050 NO. 1050 NO. 1050 S. 42.92 FROM BIG LOAD CELL. KIPS EAP DEFL = .16.388 INCHES S. 42.92 FROM SUN OF PILE LOAD CELLS EAP DEFL = .2922 FROM SUN OF PILE LOAD CELLS S. PILE PILE PILE PILE PILE PILE PILE PILE

•	•	•
=		_
=		8
ā		5
		-
7		
•		
•		F)
3		_
ē		L
ě.		\Box
4		
4	_	
•	~	<u> </u>
Ξ	Ξ	•
-	\equiv	_
4	'n	S
•	••	ŭ
4	•	>
•	$\bar{\mathbf{z}}$	_
•	2	9
=	E	5
=	•	_
ē	HOUSTON PILE GROUP STUCY	_
•		-
4	\blacksquare	•
4	٩	Œ
•		ш
-	Z	LATE
-	2	3
ē	Ġ	_
•	ä	X
4	0	0
	I	œ
=		4
]		•
ë		7
#		< □
•		
4		_
•		٩
		FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 *
-]
ē		4
#		_
•		

_	•	I	ပ	i e gend	AVG		-69-	-94	-115.	-126.	130.	- 12t -	114.	114.	-97.	-5H.	-24.		19	0 6241	3.47
NOF 1+	9	سا	-	<u>.</u>	_			Ť	ı	•	٠	•	7	- 1		•	•		·	0	Ĭ
2	0	ie.	æ	PILE	PILE	-	-119.	-180.	-219.	-214.	-189.	-146.	-105.	-73.	-38-	-17.	-11.		17	.00309	90*9-
					PILE	I	-62•	-78-	-97.	-108.	-116.	-119.	-114.	-121.	-103.	-63.	-27.		19	.00226	-2.39
		(cres	e S	PILE	ت	-51•	-64-	-80-	-61-	-104.	-114.	-115.	-123.	-119.	-80.	-37.		25	.00206	-2 •27
		LOAD CELL, KIPS	LOAD	INCH-K IP	PILE	L	-53	-75.	-85-	-109-	~	-127.	2	-126.	-110.	-65	-29.		20	.00213	-3.22
		OAD CEL	+ P.I.E.	HOMENTS	PILÉ	لي	-19.	-23.	-33.	-58	-19.	-96-	C	-128.	-135.	-98-	-56.		20	.00179	-1.35
		916	A A S S S	HENDING MO		۵	-73.	-95.	-126.	-137	-151-	-155.	-144.	-131.	-94.	-42.	-15.		19	.00273	-3.23
			.11.22 FKU .10969 IN .14096 IN	N I R	PILE	ပ	-111.	-148.	-175.	-178.	-167.	-139.	-109.	-101-	-97.	-30-	1.		17	.00263	
	2050	•			PILE	æ	-91•	-125.	-145.	-153.	-143.	-134.	-105.	-103-	-18.	-58	-15.		- 18	.00269	5 - 4
		6 RO	AP DEFL AP DEFL		PILE	<	F	-62.	•	m	-102.	5	104	-118.	9	-69-		۵	18	-00231	2.6
	LOAD NO	LOAD ON	EAST C	EPTH	INCHES			24.			60 •	12.	84-	96.		77	3	AT LOAD	EFL	SLOPE	50

	HOUSTON PILE GROUP STUCY FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984
--	--

1	◀	I	S	LEGEND		9 A C	106.	51.	170.	188.	186.	171.	143.	94.	38.	27.	7.			•19	1256 1.72
NOR TF	9	u	=	LE					-		_	_	_								-
Ž	۵	L	•	PILE		PILE	38	68.	92.	115.	121.	134.	139.	98.	74.	58.	19.				in a
						PILE	89.	130.	164.	174.	170.	156.	27		29.	17.	0			• 16	1
		<i>S</i>	2			PILE	135.	178.	195.	230.	206.	190.	25	98.	31.	11.	•			•19	00277 5.83
		CELLO KIPS	ı		INCH-KIPS	PILE	109.	158.	178.	199.	213.	194.		124.			10.				002 5.
		9	•		•	PILE	145	. 40	204.	F)	231.	205.	157.	102.	37.	16.	-10.				.00270 6.38
		BIG	S H			PILE	10.5	177.	201.	204.	194.	170.	133.	89.	53.	42.	17.			-21	5.88
		71 FROM	901 1		BENDING	PILE	,	101	121.	135.	142.	137.	123.	86.	-47.		23.			7	2.97
		~ ~		;		PILE			0	-	227.	10	169.	122.	69	24.	°.			•23	00302 5-69
	1 1100	680	DEFL			PILE	110.	170.	177.	182.			m	56.	N		-2.			.15	·
	CYCLF NO.	LOAD ON	EAST CAP	•	DEP1H.	INCHES	12.	24.	36.	48.	•09	72.	84.	96.		132.	156.	2	Point:	1	SLOPE0

	NOR 11	ی	w	-	PILE LEGE		2		7	-10	-12	-12	- 13	-12	-11	- 11	-10	-5	-2
1984	Z	0	•	20	PILE		PILE	-	-124	-188	-226.	-217.	-190	-145.	-101-	- 70	-37.	-14.	-9-
DEC 13, 1984							PILE	I	-64.	-87.	-104.	-112.	-118.	-118.	-1111-	-119.	-102.	-60	-25.
TUDY				3		s	PILE	9	-52-	-67.	-62•	-98-	-102.	-110.	-110	-120.	-1117.	-18.	-36-
HOUSTON PILE GROUP STUDY FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 .			LOAD CELL, KIPS			INCH-KIPS	PILE	L.	-56-	-83	-16-	-114.	-120-	-126.	-119.	-122.	-104-	-58-	-26.
ON PILE ATERAL			OAD CELL			BENDING HOMENTS,	PILE	W	-21.	-29.	-39.	-62.	-80	- 46-	-105.	-133.	-133.	-94	-54
HOUST FROM L			816	2 4 4 2 8 8 8 8		JING MC	PILE	0	-74.	-66-	-130.	-138.	-150	-151-	-139.	-127.	-90	-36-	-13.
LD DATA			-32.98 FROM	31.64 FROM 10617 INC.		BENE	PILE	U	-115.	-156.	-184.	-183.	-168.	-138.	-108.	-101-	-169.	-28-	1.
F 1E		•					PILE	₽	-63-	-125.	-151-	-156.	-142.	-125.	-66-	-66-	-15.	-56.	-16.
			680CF =	DEFL			PILE	<	-45.	-65.	-72.	-82.	-103.	-103.	-101-	-118.	-95.	-81.	-25-
		LOAD NO.	LOAD ON GROUP	EAST CAP		DEPTH	INCHES		12.	24.	36.	18.	- 09	72.			114.	132.	156.

LEGEND

AVC

-133.

-124.

-110.

-129.

-120.

-12. -103-112.

-56.

156. AT LOAD

POINT:

DEFL

-. 18

--16

.06238 -1.52

.00306 -6.17

-019 -00228 -2-49

-019 -00202 -2.27

.00269

.00179

-1.39

--19

--18 .00267 -3.21

-117 -5.16

-- 17 .00263 -4.94

.00229 --18

SLCPE

LOAD

•	•	•	
		1984	
		13.	3
		DEC	
	700	9	4
	IP STL	TEST	
	GROU	LOAD	•
	HOUSTON PILE GROUP STUDY	FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 .	< < < < < < < < < < < < < < < < < < <
	HOUS	FROM	
		DATA	
		FIELD	
•	_	_	

	•		I	O	LEGEND) V C		176.	46.	11.	105.	302.	.84.	45.	180.	109.	78.	28.			.35	111	.34	
	9		W	~	LEC		_		_	••	••	-,	••	••	••	_	_						- 0	,-	
Ŕ	٥		L	£	PILE		PILE	m	80.	136.	176.	212.	212.	236.	237.	179.	46	109.	41.			•	.00375	3.90	
							PILE	I	150.	-	263.		277.	9	223	158.	95	63.	19.			.30	9042	6.12	
			S1			s	PILE	و	230.	294.	316.	373.	331.	306.	252.	164.	5	56.	18.)		.35	005	9.16	
			ELLO KIPS			INCH-KIP	PILE	L	179.	S	287.	2	339.		8	\blacksquare		102.				7	-00500-	8 . 85	
			LOAD CELI			s.	LE PILE	u	212.	273.	296.	348.	345.	N	261.	0	112.		19.			• 36	+00	8.86	
			95	NCHES			_	۵	227.	311.	•	349.	332.	296.	240-	-	115.	84.	35.			m	00585-	8.53	
			-81 FROM	8326 INCHE		BENDING	PILE	U	128.	179.	216.	•		•	229.	8		95.				m	.00382-	4.82	
		11	# H	= 5			PILE	æ	186.	273.	305.	8		333.	279.		145.	. 9 G	32.			96.	-00533-	7.40	
	8	0	GROLF	P DEFL	\$		PILE	<			•		284.			64	12.	33.	14.			2	458-	9.24	
	OAD NO	CLE N	310	EAST CA		DEPTH®	INCHES			•		8	60 •		4			P)	56	1 10	7	4	10	OAC	

•	•	•	•
:		_	-
ě		à	•
•		0	•
:		_	:
ě			ē
•		m	•
•		_	•
ī		u	ā
•		ŭ	•
•		0	•
-	>		ě
ā	Ó	5	•
•	5	_	•
:	2	5	Ξ
ē	•	ŭ	ē
•	•	-	•
=	HOUSTON PILE GROUP STUDY	_	-
ē	ĕ	Ĭ	ē
•	9	Ö	•
•		_	•
:	=	_	-
é	=	₹	ě
	٩	~	4
:	-	ш	-
ē	5	4	ē
•	Ē	-	•
•	Š	_	2
ī	5	5	ï
4	Ĭ	æ	•
•		<u>. </u>	2
ï		•	-
ě		F	•
•		\	•
=		•	:
ē		۵	•
		FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 .	
•		I	-
-		=	÷
•		_	•
•	_	_	•
-	-	-	_

070	NO. 2								۵	و	<
ш	NO. 21	2001									
070	ON GROUI	19- = 1	-64-98 FROM	910	TOYD CEL	AD CELL, KIPS	••		-	w	I
		9- =	2.47 FR(ROS	OF PILE	LOAD CE	:T18				
_	CAP DEFI			INCHES					<u>~</u>	-	J
HEST C	4		.34048 IN	INCHES							
									PILE	LEGEND	2
EPTH	_		BEA	BENDING M	HOMENTS.	INCH-KIPS	(PS				
INCHES	S PILE	PILE	PILE	PILE	PILE	PILE	PILE	PILE	PILE	2	ن
	<	&	ပ	۵	w	L	9	I	-		
12.	-121-	-213.	-281.	-138.	-117.	-134.	-124.	-166.	-242.	-17	=
24.	-179.	-305-	-391.	-189.	-153	-195.	-163.	-228.	-448-	-23	7.
36.	-199.	-345-	-461.	-239.	-177.	-218.	-198.	-217.	-416.	- 2 B	=
48.		-354.	-468	-259.	-229.	-251.	-227.	-299.	-407-	-203	5.
60	-263.	-326.	-441.	-285	-253.	Φ	-247.	-314.	-376.	-306	8.
12.	-267.	-295.	-375.	-293.	-266.	-272.	-266.	-316.	-306-	-195	5
84.		-230.	-309	-284	-266.	-261.	-273.	-300-	-239.	-26	.2
-96	-279.	-211.	-270.	-270.	-289.	-253.	-282.	-301.	-186.	-268	<u>.</u>
114.		53	-296-	-216	-269.	-219.	-261.	-250-	-116.	- 22	5
	-194.	-	-109.	-128-	-197.	-142.	-194	167	- 18.	-147	7
156.	-11.	-42.	-26.	-52.	-110.	-65-	-84	-69-	-41.	9-	5
1 10	90										
O INT	••										
DEFL	84	40	84	41	46	41	46	50	43	•	5
SLOPE	.00560	.00547	.00630	.00554	.00476	.00470	.00500	.00584	.00653	.00553	53
1010	9.5-		-10.97	-5.26	04-70	-6.25	-4.56	-5.99	-10.82	-	0.5
	•	,									

HOUSTON PILE GROUP STUDY	1. 1984 .
	7
 ΔQ	OF DE
 IP STU	TEST
 E GROL	LOAD
 ION PILI	ATERAL
 Hous	FROM
	DATA
	FIELD

SOO MOOOG PEECESSE PEECESSES POODOOR - HE

Ξ	_	_	
		1984	
		13,	
		OEC	
•	101	P	
	HOUSION PILE GROUP STUDY	TEST	
	GROL	LOAD	•
	PILE	ERAL	•
	TON	LAT	•
*****	HOUS	FROM	
		DATA	
		FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984	
	_	_	•

LOAD NO. 2 CVCLE NO. 2005 LOAD ON GROUF = -58-45 FROM SIG LOAD CELLS KIPS EAST CAP DEFL = -41057 INCHES WEST CAP DEFL = -42925 INCHES DEFTH: BENDING HOMENTS, INCH-KIPS INCHES PILE PILE PILE PILE PILE PILE PILE PILE	-	۷ و	T U) I	LEGEND	DAY		-142	-203.	-246.	-271.	-285-	-281-	-261.	-257.	-224.	-145-	-64				-6.14
VALE NO. 2 405 A ST CAP DEFL = -44.057 INCHES EST CAP DEFL = -43.925 INCHES EST CAP DEFL = -40.925 INCH		ຍ	L	æ			-	-212.	-308-	-3P1.	-383	-367.	-307.	-244.	-141.	-118.	-11.	P 7		CV-0		
VCLE NO. 2 VCLE NO. 2005 VAD ON GROUF = -56.45 FROM SUR GLOAD CELLS AST CAP DEFL = -41057 INCHES EST CAP DEFL = -41057 INC						PILE	I	-136.	-191-	-238-	265	290	301	291	300	252	171			0		
OAD NO. 2 VCLE NO. 2605 VCLE NO. 2605 VCLE NO. 2605 VCLE NO. 2607 AST CAP DEFL =41057 INCHES EST CAP DEFL =41057 INCHES EST CAP DEFL =42925 INCHES EFTH. NCHES PILE PILE PILE PILE PILE PILE PILE 129818023411785105 24151261334164117164 36171305424232194225 6023631041426022624 132199323424255268 134247231305268255255 84247231305268269216 132197116111127199142 1368240225211366 137. LOAD 13840225211366 1405240525211366 1506240225211366 16052405252135566 1705240525252525266 1805240525252525266					ů Q	PILF	g	-104.	-139.	-173.	-199.	223	246	257	273	257	194	æ			00453	-3.96
OAD NO. 2 VILE NO. 2605 VALE NO. 2605 AST CAP DEFL = -58.45 FROM SUM AST CAP DEFL = -41057 INCHES EFTH. RCHES PILE PILE PILE PILE 24151261334117. 24151261334117. 24151261334164. 36272261334273. 48234117305273. 48234117424256. 12247231305273. 132247231305268. 14234158305268. 156272268363273. 156824022268. 15682402252. 167402252. 16740234139. 16862402252. 16962402252.			LOAD CE		TATALATAL	PILE	u.	109	164	186	222	245	255	252	249	218	142	99			.00429	-5.31
OAD NO. 2 VLE NO. 2605 VALE NO. 2605 AST CAP DEFL = -41057 INCHES EFTH. REFL = -41057 INCHES EFTH. REFL = -41057 INCHES EFTH. BENDING F 1298180234117. 24151261334164. 36171261334164. 36171261334164. 36272261334273. 48246298424252. 48247231305268. 132197218363273. 132197116111127. 13682402252. 1605216050. 00500.			OAD CEL			PILE	w	85	-117.	-141.	-194.	ف	•	10	286	-269.		11		•	0042	-3.7
OAD NO. 2 VILE NO. 2005 AST CAP DEFL = -5105 129818023925 2417126132925 2417126133 2417126133 3617126133 3617126133 3617126133 3617126133 3617126133 3617126133 3617126133 3627229036 31423415030 31627221330 31627221330 31627221330 31760 31760 318.			PIG SUM	A S S		PILE	۵	-117.	-164.	-212-	-232-	-260.	-273.	-268.	-260.	-211.	-127.	-55.		96	9	•
AST CAP DEFL =				~		-	ပ	-234	-334	-405-	-424.	-414.	-363。	30	272	302	111	22			a	, 1
AST CAP DEFLEST CA		9	' '	• •		1	\$	18	26	-308-	-323.	-310.	29	23	21	15	11	•			045	8 . 2
C			2 C E	AP DE		=		9		-	~	23	24	N	27	R	19	C	_	•	80200	-5.21
		OAD W Vele	0 000	AST CEST C	10 10	NCHE		N	24.	36.	•	. 6 0 .	Ň	Ť	96.	~	(77)	36	T LOA			0.0

•	•	•	
		1984	
		13,	
		DEC	
	λOI	CF	
	P STL	TEST	
	GROU	LOAD	
	HOUSTON PILE GROUP STUDY	FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 .	
	HOUS	FRON	
		DATA	
••••		1610	
# #		•	

9			1		E LEGEND		9AV	.	170.		~	P 2	116.	00.	261	187	103	9	-			+30
٥		•	Œ)	PILE		PILE		73,	126.	168	206.	208	-	240	œ	46			•	86.4	0
							PILE	E	143.	207.	262.	285	288	276.	238	164.	87.	46.		•	•29	-00400-
		CELLS	ı !			25	BILE	9	228.	299.	336.	399.	368.	344	Ņ	175.	78.	32.	-6-	4	.35.	99-
	I. KIPS	: =				INCH-KIPS	PILE	-	168.	•	~	-	•	N	299.	m	5	9	33.0		. 41	-00453-
	OAD CEL	UF PILE LOA				HOMENTS.	PILE	.	203.	566 .	291.	350.	354.	335.	277.	204.	113.	70.	•		.36	9
	816	SUM		NCHES		BENDING MO	PILE	٩	220.	305.	358.	372.	364.	329.	269.	188.	111.	72.	27.	1	• 39	-00584-
	.05 FROM		730	387 1		BER	PILE	U	122.	173.	210.	238.	253.	250.	231.	180.	21.	87.	- + +		.29	-00364-
	•	£9 =		II			PILE	6 0	171.	258.	B	~	m	331.	282.		156.	84.	34.		. 41	-00514-
N	680EF			P CEFL			PILE	<	202.		-	~	2	8		132.	S	-10.	-11.		•28	-+2+00
OVO	LOAG ON		ST C	MEST CAP	ı	OE PTH.	2		12.	24.	36.	-8	•09	12.	84.	96.	114.	132.	156.	AT LOAD	EF	SLOPE

•	•	•
		1984
		13,
		DEC
	UDY	CF
	UP ST	TEST
	GROI	LOAD
	HOUSTON PILE GROUP STUDY	FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984
	HOUS	FROM
		DATA
		FIELD
•		

+	4	I)	t E GE t.D	AVG	142.	-503-		.273.	-286.	280.	.259.	.255.	231.	-147.	-64.		+ • •	.00557	-£ .23
± 52	ی	-	-					•			•	•	•	•	•					
2	C	۱.	<u>-</u>	PILE	PILE	1-212.	-309.	-384.	-387.	-369.	-310.	-246.	-190	-1117.	-74.	-37.		42	.00601	-9.57
					PILE	H -136.	-191-	-238.	-266.	-288-	-298.	-289.	-298	-252-	-172.	-13.		64	.00542	-5.07
		11 8	i 1	S	PILE	-104.	-138-	-173	-199.	-221.	-241.	-252.	-269.	-256.	-195-	-63-		45	.00453	-4.05
		DICELLO KIPS		INCH-KIPS	PILE	-109.	-165.	-188.	-224.	-242-	-253	-249.	-246.	-215.	-139-	-64.		40	-00427	-5.43
		LOAD CEL OF PILE		HOMEN 1S.	PILE	-85.	-118.	-142.	-195.	-226.	-246.	-252	-283.	-267.	-198.	-113.		1	. 80425	-3.83
		BIG	S 学 学		PILE	-117.	•	-212-	-232-	-259.	-270.	-264.	-257.	-509-	-125.	-51.		39	.00499	-4.85
		58.67 FROM			PILE	-234.	-334.	-407-	-426.	-416.	-363.	-304.	-271.	-378.	-1111.	-23.		47	.00590	-9.77
	~	UF 11 - 56	11 11		PILE		-265.	-310.	~	-315.	29	-234.	-213.	-156.	-1114.	-39.		87.	.00564	•
	2	680	AP DEFL		PILE	-	-150.	9	-199.	-235.	243	m	9	232		2	6	84	. 00523	12.5
	2	0 40 0	EAST CL	e H L d 3	INCHES		24.		48.		12.	. 6			1	3	32	EFL		70

•	•	•	
		FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 .	
		13,	
		DEC	
	UCV	Ç	
	HOUSTON PILE GROUP STUCK	TEST	
	GROU	040	
	ILE	1 1	
	PONOL	ATER	
	HOUST	1 HO	
	_		
		DAT	
		ELO	
•			
	_	_	

		•			•	•		•		NOR TE	
040	~ (;							٥	9	•
LOAD GN		•	4.38 FR01	616	LOAD CELL, P	L, KIPS			L	L	I
1		9	31 F	SUM	F PILE	LOAD CEI	S11				•
EAST CA VEST CA	1P DEFL	11 11	72 IN 53 IN	CHES					œ	-	0
			ı						PILE	LEGEND	2
EP JH			REN	ENDING NO		INCH-KIP	P.S				
INCHES	PILE	PILE	لب		ILÉ	1 1	PILE	PILE	PILE	2	ی
,	8		د	-		_ (و و	E (1	
12.		~	-	2	205		229.	138.	:		3
24.	8		9	-	9	S	0	9	N	•	~
36.		0			G	90	m	50	9	~	
-8+		~	-	4	5	331.	0		0	-	ູ່
• 09		358.	228.	284.	354.	362.	1	271.	209.	31	;
12.		◀	N	ŝ	m	346.	48	Ñ	m	0	•
84.		0	0		275.	2		-	1	5	6
-96		•	•	0	0	251.		3	18	œ	
_			8	N	0	~			Ň		رة •
m	-40.	98.		87.	63.	124.	24.	16.	0	ម៉ា	6
156.	•	• 0 •				;			39.		Ĵ
- 0	•										
7	N	•	N	•42	1	•		•25	.38	•	5
-340 T		.00549	00301-	-00617-	-00443-	.00527-	. 00491-	.00356-	-00341-	+30.	4
0	9.16	7.22		8.11	8.56	~		5.55	3.38	•	

=	•	•
		FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 .
		13,
		DEC
	ruby	10 P
	IP SI	TESI
	HOUSTON PILE GROUP STUDY	OVO
	11.5	7 T
	O NO	ATER
	DUST) HO
	Ī	A FR
		DAT
		ELD
		Ę

									Ž	NOR 1+
OVO	~								Ω.	9
CYCLE LOAD O	ON GROUF	න II 1	~	9	LOAD CELL, H	- 5			L	ب
EAST C	AP OEFL	B1	15-58 FRG	INCHES	OF PILE	_	CELLS		Œ	· ~
- -		•	707	1 H 3					P 31 G	176 10 19 11
EPIH				DENDING MO	HOMENTS	INCH-KIP	P S		1	
INCHES	•	PILE	PILE	_	PILE	PILE		FILE	PILE	AVC
	⋖	•	ပ	۵	4	L	0	I	~	
12.	-106.	-171.	-253.	-107.	00	-66-	-103.	-146.	-212.	-142
24.	Ö	-248.	-363。	•	-119.	S	-137.	-208-	~	-205
36.	æ	-288-	-446-	-194.		~	-174.	-261.	2	-250
48.	\tilde{a}	-306-	-473.	-211.	9	0	-199.	-594-	5	-277
0		-288.	9	-235-	-231.	-218.	-221.	-321-	~	-291
12.		4	7	-243	5	0	-243.	-335.	~	C
84.	ř	8	5	-236.	-259.	0	10	28		-265
96		-188.		-229.	29	21	-273.	3	9	~
=	9	-133.	-342.	-181-	8	184	26	-291.	-120.	-225
~)		-94.	•	-100-		-	-198.	0	~	-153
36	0	-30.	-39.	-39.	—	-64-	-61.	-88-	-36-	-66
T LOA	۵						l			
F	S	33	S	34	47	- 34	46	58	42	•••
10	.00583		.00658	.00445			. 00463	• 3 06 08	.00641	7
50	-5.5	7.6	0.3	-4.38	-3.80	-4.91	-3.99	-5.42	-9.54	-6.10

•	•	•	4
		1984	4444
		13.	
		Drc	
-	λOſ	CF	4
	IP STL	TEST	
	GROU	LOAD	
	HOUSTON PILE GROUP STUCY	FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 .	
-	-	L	-
7 4 8 6 7		DATA	****
		FIELD	*****
•		•	

KIPS
CLILS
CH-KIPS
LE PILF
g
• 24
1. 319.
•
•
6. 385.
•
2. 288.
. 17
•
R. 18.
5 .3
24504970 83 9-30

•		4
•		
•		œ
#		9
•		-
-		
Ÿ.		3
•		~
-		د.،
•		Till I
•		
-	_	L.
•	ن	5
#	\supset	
•	-	<u>~</u>
=	V	ŭ
•	٩	=
•	\equiv	_
Ξ	2	
ē	3	3
•		_
=	4	
ē	1	₹
4	٩	œ
•	_	W
:	5	=
÷	HOUSTON PILE GROUP STUCY	_
•	S	_
7	2	7
ē	Ĭ	æ
•		4
=		_
ā		=
•		<
		FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 *
=		0
4		7
•		Щ
=		_
•		
4		
-	-	-

∢ ∵	x) I	LEGEND		SAV		-143.	-266.	-251.		-293-	- 586	-56%	- 225 b		- 145.	-63		44.	.0(519	-5-97	
G	L.	ŭ	PILE		PILE	1	-214.	-312.	-390-	-396-	-380•	-319.	-255-	-191-	-114.	-68-	- 35-		42	.00639	-9.38	
					FILE	I	-147-	-209-	-263-	5	- 328-	- 141 -	-332-	-338.	-290-	-202-	œ		58	.06621	-5-27	
	8	i i		PS	PILF	ပ	-162.	-136.	-171-	-199.	-222-	-243-	-254-	-270.	-255.	-195	5		46	. 50463	3.8	
	LOAD CELL, KIPS			INCH-KIP	PILE	¥	-100.	-152.	-171.	-205-	2	22	21	-		-98-			32	.00379	-4.75	
	OAD CEL			MOMENTS.	PILE	لسا	-85-	-119.	-144.	202	-233.	-254.	-258.	-289.	-269.	-196.	-113.		46		• 6	
	ON BIG L	E S	CHES	ENDING MO	PILE	۵	-106-	-147.	9	-208-	-233	-241.	-232.	-220.	-168.	-89-	-33.		32	.00439	-4-	
			بط ح	BEN	PILE	ပ	-250.	9	-443.	-470-	-466.	-413.	-352-	-316-	-340-	-143.	-39.		56	9	-9.9	
050	' ' 11		•		PILE	8	-176.	-254.	-295.	-311.	-295.	-269.	-208-	-183.	-123.	8	-25.		32	P7)	
	6ROL	AP DEFL	AP DEF		PILE	<	-106.	-163.	-186.	-218.	9	-272-	~	-300	9	-232.	0	۷.	5	ה ה ה		
LOAD N		EAST C	EST	E P TH	INCHES		12.		36.			12.	84.	-96	1	132.		1 10	-	-	0 40	

1	•	•
		1984
		13,
		DEC
-	JOY	P
	IP ST	TEST
	GROU	LOAD
	HOUSTON PILE GROUP STUDY	FROM LATERAL
****		DATA
		FIELD
_		

		11	ELD DATA	HOUS	PIL	4 11	F	139		
									02	NORTH
O A D NO	2								د	ú
CYCLEN	0. 110	00							.	,
NO OF O	GRO	9 =	4.43	16	ND CEL	KIP			ų.	L.
		9	4-83	K	OF PILE	LOAD CEL	rrs			•
EAST CAP	P DEFL P DEFL	• •	16384 1 54212 I	NCHES NCHES					©	-
									PILE	LEGENO
EPTH			BENE		MOMENTS.	INCH-KIP	Ps			
INCHES	PILE	PILE	PII	E PILE	PILE	PILE	PILE	PILE	PILE	AVG
	≪	æ	ပ	۵	ш	ı.	ပ	I	-	
12.		178.		230.	215.	178.	245.	147.	77.	176.
24.		260.	-	327.		259.	8	213.	130.	S
36.		296-	210.	382.	306.	295.		268	173.	292
18.		320.	m	0		336.	430-	289.	-	
•09		352.	•	395.		368.	394.	288.	-	
72.		346.	m	359.	349.	355.	364.	267.	237.	
•		296.	210.	295.	285.	326.	294.	220.	•	264
96		253.	•	212.	203.	255.	176.	134.	Œ	
-		173.	-21.	136.	106.	184.	68•	46.	•	95.
	-55-	100.	47.	95.	61.	134.	17.	•	111.	58,
56		42.		41.	8	51.	-10.	-16.	43.	15,
- 0										
EFL	-21	• 46	.2	**	m	• 46	.34	N	• 38	. 34
0	-60400		00294-	9	•	5	495-	347-	-00345-	-004
50	9	7.19	**	8-45	8.76	1.11	9.24	5.83	3.48	7.20

Ξ	-	•
		•
•		FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984
።	,	5
•		
=		~
ī		<u> </u>
•		
:	1	۲
ē	i	ā
•	_	
ï	HOUSTON PILE GROUP STUDY	8
•	5	_
•		_
=	V 2	M S
•	<u> </u>	=
•	Ξ	_
ē	2	
•	<u> </u>	Õ
4		ن
-	Ξ.	_
#	=	-
•	a 9	Z.
ï	2	
•	5	<
•	<u>, </u>	-
ī	S	•
#	5	ō
:	X.	~
ï	,	
•		<
•		
ī	ì	2
#		_
•	- 1	o,
ī	i	
•	i	=
=	ı	—
-		

٧	Ξ ω) I	LEGEND	AVG	-142	-206.	-252-	-276.	-291.	-263.	-261.	-250.	-215.	-138.	-55.		4	2	-6.50
د	lden.	э.	p TLE	PILE	1-215-	-316-	-395-	-398.	-381.	-317.	-247.	-184.	-167.	-59.	-56-		41	.00635	-10.02
				PILE	H -147	-210.	-5993-	-299.	-328-	-341.	-329.	-334	-283.	-198.	-86.		80°	.00621	-5-85
	718		ů	<u> </u>	-99•	-133.	-169.	-193.	-216.	-237.	-247.	-263.	-249.	-189.	-87.		45	.00451	-4.22
	LOAD CELL, KIPS OF PILE LOAD CELLS		JNCH-K ID	PILE	F -99•	-153.	-173.	-202-	-217.	-220-	-212.	-203-	-161.	-86.	-34.		31	.00361	
	OAD CEL		MFWTS	PILE	n -84.	-119.	-144.	-198.	-232.	-251.	-253-	-282.	-260.	-188.	-106.		1 ·	-00430	-4.20
	BIESUM	INCHES	orne mo	LE PILE PIL	D -104.	-145	-190-	-205-	-228.	-236.	-226.	-213	-159.	-80-	-27.		31	.00425	-4.55
	60-77 FROM 58-48 FROM	.48906 IN		PILE	c -248.	-359.	-446.	-471.	-466.	-410-	-347.	-310.	-341.	-137.	-37.		56	.00678	-10.57
2100	' '	" "		PILE	-180-	-261.	-302-	-316-	-298.		-208-	-172.	_	-111.	-21.		- 30	-00435	S.
. 0	680	AP DEFL AP DEFL		PILE	-102.	-161.	-184.	-215-	-256.	-268.	-278.	-294.	-261.	-226.	-105.	۵	56		80
CYCLE N	LOAD ON	EAST CA West ca	7 6 7	INCHES	12.	24.	36.	48.	-09	12.	84.	96.		32		AT LOA		SLCPE	070

		FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984
		13,
****	_	DEC
	STUCI	STOF
	HOUSTON PILE GROUP STUCY	AD TE
	1E 61	ור ויסי
	DN PI	ATERA
	IOUS T	I HO
	.	TA FR
		VO O
****		FIEL
Ē		

		<	I	•	ر	GEND		9		3		Ñ	-	7.		9	2.	9	9.	-		•	7	7	2	
	NOR TE	9	w	•	4	LEGE		7		24	•	39	43	43	41	35	26	16	109	m			•	.0667	\$	
1984 .	ON	<u>a</u>	14.	. a	.	PILE		PILE	H	112.	189.	247.	299.	294.	325.	329.	259.	209.	160.	63.				-002500	5.38	
DEC 139								PILE	I	208	295	367.	392.	390.	366,	310-	216.	114.	57.	'n		7	•	•00555-	8.12	
STUCY ST OF DI				ST.			S	PILE	9	337.	434	477.	564.	509.	465	384.	249.	129.	67.	14.		•		0 130-	12.51	
GROUP S LOAD TES			Ä				INCH-KIP	PILE	L.	•	351.		•	-08	464.	N	345.	5		16.		;	TQ •	-961	10.52	
N PILE Teral			AD CEL	PILE				PILE	لبا	~	360.		471.	473.	Ś	~	292.	•	8	32.		ď		-00663-	11.31	
HOUSTO FROM LA			BI6	ROM SUM OF	NCHES		1NG	PILE	۵	325.	454.	520.	536.	522.	475.	391.	9		ñ	59.		•	3	899-	12.00	
DATA				.56 FR0) =		BEND	PILE	ပ	-	242.	293.	327.	346.	334	305.	237.	71.	100.	39.		72	• !	-90500	6.39	
FIELD		=	. 91	60				PILE	æ	(*7)	•	395.	428.	468.		402.	352.	255.	_	70.			700	-911	82.0	
		F 0	GROUF		2 2			PILE	<	8		m	465.	•	8	7	-	76.	-15.	-27.	_	P	7 (00635-	2.9	
		LOAD NO.	OAD	101	BEST CAP		DEPTHO	INCHES		12.	24.	36.	-84	•09	12.	84.	-96	-	132.	3.6	07 1	INT OF			5 0	

:	•	•	
		FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 .	
		13,	
		DEC	
	JOV	6	
	HOUSTON PILE GROUP STUDY	TEST	
* * * * *	GROU	LOAD	
	PILE	RALI	
****	STON	LATE	****
	HOUS	FROM	* * * *
****		MIN	* * * *
		9	1
		FIEL	***
	•	•	4

Sport Described Control of Sessions (Session) Reserved Controls (Session) Reserved Described (Session) Reserved Described (Session) Reserved (Sess

			****************		*******	*******	******		*******	
		•		HOUST	TON PILE	GROUP			•	
		• F.E.	FIELD DATA	FROM	ATERAL	LOAD TEST	9	DEC 13.	1984 •	
			********				*****		******	
									N	NOR 1 F
LOAD	0								۵	٧ ن
L.	NO. 2	100								
•	N GROU	11 11	80.93 FROM	616	LOAD CELLS I	LA KIPS	0		L	II Li
EAST C	AP DEF	ا : ۱۱ ۱۱ ا اعم (ب	. 20	光光の	•		1		1 1	1 C
))		1)						PILF	L F GE D
FPIH			NI G	BENDING MC	HOMENTS	INCH-KIP	ا		1	1 3 3
INCHES	4	PILE	PILE		PILE	PILE	PILL	PILC	PILE	5 A 2
ľ	•	8	J	9		L	9	I	-	
12.	-179.	-290.	-411.	-177.	-186.	-179.	-170.	-248.	-323	-240-
24.	-265.	-423.	-582-	-247.	-245.	-268.	-226-	•	-465.	-241
36.	-305-	-480.	-669-	-313	-285.	-299.	-281.	•	-571.	-407
48-	-347.	-495.	-722.	-341.	-360.	-340-	-314.	-472.	-562.	-430
• 09	-394	-458.	-688 -	-372.	-386.	-355.	-348		-527.	-447.
12.	-405	-404-	-598 -	-379.	-396.	-351.	-374.	•	-445.	-42P.
84.	-426.	-308-	-206-	-367	-385-	-330.	-383.	-476-	-350.	-365-
96	-421.	-257.	-439.	-345-	-405-	_	-389.	-467.	-2711.	-367
114.	3	-181.	-411-	-273.	-364	-254.	-357.	-392.	-176.	-30%-
32	-311.	-121.	-208-	ø		-155.	-276.	-278.	-118.	=
56	-	-40.	-69-	-64-	-152.	-99-	-124.	-123.	-69-	-93
25	9. .									
EFL		50		53	67	51	83	81	61	65
	.00851	-00675	9600	9	.00682	.00569	.00677	.00912	92	.00772
LOAD	8.3	-12.07	-15.63	-6.87	-7.61	-8.40	-6.42	-4.3	-14.47	16.6-

•	•		4
		FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 +	
****		13,	
		DEC	
	JOY	9	4 4
****	HOUSTON PILE GROUP STUDY	TEST	****
	GROU	LOAD	
	PILE	RAL	
-	Z 0	ATE	
	USI	Ĕ	
# # #	呈	FRO	-
		17	
# # #		40	
į		ונים	
		F 1E	7 4 4
•	_	_	

	<	I	S	LEGEND	AVG		N	24.	~	127.	3.	117.	62.	75.	-43	105.	31.		64.	• 🛈 •
TON TON	Ģ	w	-					F 7	-,		•	•	ω,	"		_				00
2	a	•	©	PILE	PILE	-	102.	176.	234.	287.	286.	316.	326.	257.	208	160.		i	· C	00513
					PILE	I	191.	274.	347.	378.	384.		316.	0		51.	5.		• 36	06539-
		<i>S</i>)	Ų	PILE	ပ	317.	415.	472.	561.	522.	3	403.	9	126.	54.	6) 	8	90
		OAD CFL		TNCH_KIDA	PILE	L		325.			-	462.	430.	C	265.	9	75.		•	.00726-
		DAO CELL	•		- w	u	256.	337.	372.	455.	464.	452.	8	296.		-	27.		10	10.54
		BIG LO SUM OF	E S	TNG MO	PILE	٥	305.	434.	510.	539.	536.	495.	412.	307.	9	128.	52.		• 60	89-
		59 FROM	138 1		PILE	ပ	157.	225.	276.	312.	333.	325.	299.	233.	74.	97.	36.		•36	000
		₽			PILE	©	218.	331.	-	413.		S	9	353.	5	170.	~			00745-
	E .	6ROUP	DEFL		PILE	<		•	F7		9	0	293.	9		-28.			•3•	0623-
	LOAD NO.	O VO GN	EAST CAP	Folke	INCHES		12.	24.	36.	18.	60 •	72.		-96	114.	77	56		EFL	L OPE0 0 AD 3

:	•	•
		1984
****		13,
		DEC
•	JCY	9
	HOUSTON PILE GROUP STUCY	TEST
	GROL	LOAD
	PILE	RAL
444	STON	LAT
	HOC	FROM
		DATA
		FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 .
T .	_	_

		######################################	FIRE 139 1 202 - 291 -	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	INCH-K) INC					CA P CA	LOAD LOAD LOAD LOAD NEAS 126- 136- 136- 136-
Ft8150815368516882	37 30.138 30.8-			- 68 - 00630 -5-35	.00534 -6.84			-00305 -13-17	50 -00619 -10.15	81 -00782 -7-4 G	DEFL SLOPE LOAD
											PO 1NT
										9	_
LOAD	10	5	135	136	-	16	7.5	8	•	7	200
LOAD NT:	V					1	• 1		;	•) (
56160427872163741361356410	2.2.2	126	S.	288	168	28	17	224	12	3	~
3232312822417428116828829512622 56160427872163741361356410 LOAD	317	188	•	359	264	37	278	42	13	m	
14371191428278372264359404188317 32323128224174281168288295126222 561604278721637413613564103 INT:	7	-2 ×6.	2	313	770	0	000	P	0 N	7	'n.
9640726555655651051946924656. 14371191428278372264359404188317 32323128224174281168288295126222 561604278721637413613564102 INT:	,	1 (1				9			- (,
96 -407 -265 -452 -338 -405 -310 -319 -469 -286 -361 14 -371 -191 -428 -278 -372 -264 -359 -404 -188 -317 32 -323 -128 -224 -174 -281 -168 -288 -285 -126 -222 56 -160 -42 -78 -72 -163 -74 -136 -135 -64 -103	- 356	-363.	9	363	322	375	-351.	51	32		84.
84406320510351375322363466363. 96407265452338405310379469286. 14371191428278372264359404188. 32323128224174281168288295126. 561604278721637413613564.	-410.	-448	-	347	331	37	-355.	286			12.
72 -375 -400 -587 -355 -372 -331 -347 -477 -448 -466 -320 -350 -353 -466 -363 -466 -363 -466 -363 -466 -363 -466 -363 -466 -363 -466 -363 -466 -363 -466 -363 -466 -363 -466 -363 -466 -363 -467 -186 -371 -191 -191 -428 -278 -372 -264 -359 -404 -188 -323 -323 -128 -224 -174 -281 -168 -288 -288 -295 -126 -126 -160 -42 -136 -135 -64 -136 -135 -64		-100%	_	070	200	ו ויי	- 7 - 7	ה פ	-435	n I	
72 - 327 - 437 - 537 - 537 - 537 - 537 - 477 - 448 - 406 - 520 - 537 - 457 - 448 - 406 - 520 - 510 - 5	3	4 (4	8			
60 -357 -432 -650 -341 -350 -323 -315 -457 -509 - 72 -375 -400 -587 -355 -372 -331 -347 -477 -488 - 84 -406 -320 -510 -351 -375 -322 -363 -466 -363 - 96 -407 -265 -452 -338 -405 -310 -379 -469 -286 - 14 -371 -191 -428 -278 -372 -264 -359 -404 -188 - 32 -323 -128 -224 -174 -281 -168 -288 -295 -126 - 10.00	300	-521	17	275	299	310	-305	65	•	-304	18.
48304446655305310299275417521. 60357432650341350322315457509. 72375400587355372331347477448. 84406320510351375322363466363. 96407265452338405310379469286. 14371191428278372264359404188. 32323128721637413613564. LOAD	732	-510.	9	245	254	23	-275	-610.	-	٠	36.
36260413610275232254245369510. 48304446655305310299275417521. 60357432650341350323345457509. 72375400587355372331347477448. 84406320510351375322363466363. 96407265452358405310379469286. 14371191428278372264359404188. 32323128224174281168288295126. LOAD LOAD INT:	-28C	-4C3.	291	_	222	13	-212-	-483.	n	N	
24222351489212192222190791463. 36260413610275232254245369510. 48304446655305310299275417521. 60357432650341350323315457509. 72375400587355372331347477448. 84406320510351375322363466363466363466363469786. 14371191428278372264359404188. 32323128274174281168288295126. 5616042721637413613564.	-191	273	202	-141.	111	140	-148.	337	36	Ŧ,	
12146236337148140144141202275. 24222351489212192222190791463. 36220369212192222190791463. 36260413610275232275417521. 48367466357417521. 357406357457577448. 3574063510351372351347477448. 36406320510351375363466363. 363466363466363469286363469286363469286371191428278372264359404188. 22437216828828828829512612613613613564.		-		9		L.		ပ		≪ ;	,
12146236337148140144141202275. 24222351489212192222190791463. 36222351469212192222190791463. 36260413610275232254245369510. 48304446265305310299275417521. 5093574963634663634663634663634663634663634663634663634663634663634663634692783723794092781263722643594041882782783722643594041882787216828828829512613513564.	AVG		1	1	11	PILE	_	1	1	S PIL	INCHE
CHES FILE FILE FILE FILE FILE FILE FILE FILE				l P S	INCH-K	OMEN 1S.	NDING W			•	DEPIH
CHES PILE PILE PILE PILE PILE FILE FILE FILE FILE FILE FILE FILE F	LECEN	PILE									
PILE PILE PILE PILE PILE PILE PILE PILE	•	-					CHES	70	•	AP DE	<u>انا</u>)
FILE PILE PILE PILE PILE PILE PILE PILE P				_	3	or Fill	E 0 L	_ [90	•
ST CAP DEFL = -73443 INCHES ST CAP DEFL =44040 INCHES ST CAP DEFL =44040 INCHES FILE PILE PILE PILE PILE FILE FILE FILE FILE FILE FILE FILE F		L		•	7	LOAD CEI	914	۱ ۱	•		T C V C
ST CAP DEFL = -67-95 FROM RIG LOAD CELL, KIPS ST CAP DEFL =73443 INCHES ST CAP DEFL =44040 INCHES FROM SUM OF PILE LOAD CELLS FROM SUM OF PILE LOAD						,	ļ	1	ر.		CYCLE
CLE NU. 2 205 AD ON GROUF = -67-95 FROM RIG LOAD CELL, KIPS SI CAP DEFL = -34-040 INCHES SI CAP DEFL = -4-04-040 INCHES BENDING MOMENTS, INCH-KIPS PILE PILE PILE PILE PILE PILE AVG 12146236337148140141202191292197471498410294406357457509410357457407448410406357457509410363364363363364363364363364363364363364363364364363364364364364364365364365365364365365366.	- ن	٥									LOAD
CLE NG. 2005 CLE NG. 2005 AD ON GROUF = -67.95 FROM RIG LOAD CELL, KIPS SI CAP DEFL = -74.31 FROM SUM OF PILE LOAD CELLS SI CAP DEFL = -44.040 INCHES SI CAP DEFL = -40.040 INCHES S	•	4								5	
AD NO. 3 CLE NO. 2105 AD ON GROUF = -67.95 FROM BIG LOAD CELL. KIPS ST CAP DEFL = -73443 INCHES ST CAP DEFL = -04040 INCHES FILE PILE PILE PILE PILE PILE FILE PILE FILE AVG LOAD 12146222137148140141202275158286386286386286386286386286386286386286386286386286386286386286386286386286386286286386286386286386286386286386286386286386286386286386286386286386.	0R 1 F	Ž									
NOS. 2 005 NO 2 005 NO 2 005 NO 6 000		• • • • • • •		•		•	•	:	•		
NO. 3 NO. 3 NO. 3 NO. 205 NO. 205 CAP DEFL = -74-31 FROM SUN OF PILE LOAD CELLS CAP DEFL = -44-040 INCHES CAP DEFL = -40-040 INCHES CAP DEFL = -44-040 INCHES CAP DEFL = -44-0		1984		- 04	LOAD TI	LATERAL					

•	•	•
:		
ē		è
•		0
=		
•		
•		M
÷		_
•		Ç
=		닞
ē		_
•	>	پيا
=	3	J
•	F	-
•	S	S
-	۵	1
•	5	•
•	2	9
ī	6	3
•		_
=	u	
ē	Ξ	₹
•	4	Œ
•	_	닏
ē	ō	₹
•	<u></u>	-
3	S	=
•	5	5
•	I	×
•		_
•		⋖
•		<u> </u>
5		2
		_
	HOUSTON PILE GROUP STUDY	2
		—
•		_

	·	2	E	3	LEGEND		DAV		229.	326.	319.	428.	436.	420.	365.	276.	168.	C	300		.49	0065	5 \
1984 *		2	L	8	PILE)	PILE	_	103.	176.	3	9	286.	-	Ñ	¥	-	_	•		• 55	00	98.
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6							PILE	I	193.	277.	349.	379.	385.	369.	318.	123.	116.		-7-		.35	0 05	S
STUEY ST OF DE			•	6		Sc	٥	ن	321.	418.	474.	564.				264.			•		£ 7.	.00724-	11.93
GROUP LOAD TE			KIPS			INCH-KIP	4	Ŀ	223.		373.					355.	9	192.	76.		9	.00725-	
PILE			AD CELI	7166			PILÉ	L.	258.	m	374.	456.	465.	454.	386.	298.	œ	119.	26.		.50	-00640-	10.64
HOUSTON FROM LAT			M BIG LO	E S E		ENDING MOP	PILE	۵	308.	ñ	-	540.	M	498.		311.	•	127.	51.		9	.00892-	11.39
0 DA1A			69 FR0	848 IN 801 IN) 	HE NE		ပ	9	N	278.	314.			303.	236.		.16			•36	9-	6.0
FIEL		0	11 19 1				PILE	©	220.	331.	376.				399.	355		_	73.		• 62	-91100	8 - 52
			6R0U	P DEFL			PILE	•	273.	g	F7	7	466.	05	g	0	•	0	•		•3•	0062	12.53
		בי נ	0 040	EAST CA		Ŧ			N			48 •	•09	Ñ			_		26	101	DEFL	2	5 0

	1984
	13,
	DEC
HOUSTON PILE GROUP STUDY	FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984
Ī	FIELD DATA FR

OAD		•							ت	9
CACE		.	-68-86 FROM	B16	LOAD CELL .	×			u	_
		= -75	-	SUA	1	9	CELLS			
EAST C	AP CEFL	[· · · · · · · · · · · · · · · · · · ·	3842	INCHES					÷	_
• •									PILE	1 205 25
EPTH	•		BER		MOMENTS	INCH-KIP) d			
INCHES	S PILE	PILE	PILE	TIE PILE	PILÉ	PILE	٩	FILE	PILE	AVC
	<	6	ပ	۵	u	-	O	I	-	
12.	-144.	-234	-333.	-147.	-139.	-142.	-139.	-201.	-274.	-14
24.		-351	-484-	-211.	-189.	-220.	-188-	-787-	-461-	1.15
36.		-413.	-605.	-273.	-231.	-252-	-243.	-366.	-600-	(U)
18.	-300	-448.	-650.	-303	-308	-298-	-273-	-415.	-521.	15.
•09		-434	-649-	-339.	-349.	-322.	-314.	-454-	-510.	-414
Ň		-402.	-585	-354.	-371.	-330.	-346-	-476.	-449.	-419
84.		-324	-209	-351.	-374.	-322.	-362.	-466.	-365.	- 386
-96		-270.	-452.	-338-	-406-	-310-	-378.	-469.	-267.	-364
114.	-370.	-192.	-428.	-278.	-371.	-263-	-359.	-404-	-188.	-317
m		-130.	-224.	-177.		-168.	30	-297.	-125.	-224
56	-163.	-43	-11.	-74-	-165.	-74.	-138.	-137.	-63-	-104
0 -	Q.,									
EFL	8	0 % 0	81	53	68	52	68	83	62	- 65
	78	-00624	.00910	.00641	.00620	.00535	•00629	.00859	.00E78	.0072
0	-1-	0 . 2		-6.11	-5.96	16-9-	-5.43	-7.59	-12.19	-6.35

•	•	•
		1984
		13,
		DEC
	ruby	7 OF
	JP ST	TESI
	GROL	LOAD
	PILE	KAL
	TON	LATE
	HOUSTON PILE GROUP STUDY	FROM
		DATA
		FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 +
	•	•

									2	NOKTE	
LOAD NO.	3 162	0							۵	و	<
z	GROUP	83	-30 FROM B	9 [9	. X			Ŀ		Ξ
		S	2	E 3	OF PILE	LOAD CEL	377				
<	DEFL	•	26821 INC	HES					Œ	-	S
CAP	DEFL	= .7	62	HES							
									PILF	1 E CE 10	Ş
•			NIGNIG	و	MOMENTS	INCH-KIP	6;				
CHES	PILE	PILE	PILE	PILE	PILÉ	PILE	PILE	PILE	PILE	AVG	ون
	~	3	U	۵	لسا		9		-		
•	26.7.	* P + C +		D	252.	216.	312.	187.	99.	i de	6
.,	393.		0	2	335.	320.	413.	273.		~	Ĵ
•	434.	# 1 P	274.	507.	371.	368.	473.	346.	231.		
•		407.	311.	F	456.	427.	565.	379.	Œ	8	7
•	469.		332.	3	465.	470.	526.	385.		43	9
•		45.	326.	0	454.	462.	490	36.8.	~	419	6
•			BUE.	416.	386.	431.	410.	318.		36	•
•		• C S S S	234.	311.	296.	6	264.	223.	ď)	27	-
			71.	196.	184.	266.	S	Ť	208.	16	
•	-33.	170.	•96	125.	~	9	49.	48.	9	0	
		7	35.	49.	25.	76.	-3.	-9.	62.	2	
OVO											
••											
	.34	• 62	•36	•60	.50	9	.48	.36	.55	•	6
E 0(12.12	.00726-	.00462 5.78	11.02	10.38	-00714-	11.60	-00520-	-00503-	• 00 e	98
	7	•)))	•	•)	}	•)

•	•	•
		1984
		13.
		DEC
-	101	占
	P STU	TEST
	GROU	TOAD
	HOUSTON PILE GROUP STUDY	TERAL
*	S 10	7
	HOC	FROM
		DATA
		. FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 .
•	•	•

UP = -70.62 FROM PIG LOAD CELL. KIPS = -76.44 FROM SUM OF PILE LOAD CELLS FL =44478 INCHES -2343301461371421 -2343301461371422 -3504812101882261 -4126493023072982 -4356493523703323 -4356493523703323 -1274533584073123 -1282251772831682 -1282251772831682 -417974165741 -417974165741 -50806376665266.	. O	50	,		•				•	_
L =4478 INCHES L =4478 INCHES L =4478 INCHES PILE PILE PILE FILE FILE FILE FILE FILE FILE FILE F	3	11 11	~ ~	FIG	OAD CEI JF PILE	20	115		_	I L
BENDING MOMENTS, INCH-KIPS -234 -330 -146 -137 -142 -234 -330 -146 -137 -142 -350 -481 -210 -188 -226 -413 -602 -272 -230 -251 -445 -649 -302 -307 -298 -445 -648 -337 -347 -322 -435 -585 -352 -370 -330 -272 -453 -350 -373 -323 -128 -225 -177 -283 -168 -41 -50 -80 -53 -66 -55			3816 1 4478 I	CHES					æ	7
BENDING MOMENTS, INCH-KIPS B C D E F F B C D C E F B C D C D E F B C D C D E F B C D C D E F B C D D E									PILE	1 F GE • D
E PILE PILE PILE PILE PILE PILE PILE PIL			BEB	IDING HC	S	INCH-KI	ا			
B C D E F F 142. -234330146137142. -350481210188220. -412602272230251. -445649302307298. -445648352370322. -405585352370323. -272453350407312. -192427279372265. -192427279372265. -128225177283168. -41797416574.	w	1	PILE	PILE	PILÉ		PILF	PILE	PILE	SAV
-234330146137142. -412602272230251. -445649302307298. -445649337347298. -405585352370322. -327509350373323. -122453358407312. -192427279372265. -417974283168. -41797453 -66.		8	Ü	٥	w	L	9	I	7	
-350481210188220413649272230251435649302307298405585347322327347322327347322372373323323407312192427279372265177283168741657452	•	S	-330.	-146.	137	-142.	13	-199.	-273.	-193
-413602272230251. -445649302307298. -435648337347322. -405585352370332. -327509350373323. -272453338407312. -192427279372265. -128225177283168. -41797416574.	•	1	-481.	-210.	188	-226-	-187-	-286-	-400	- 283
-445649302307298. -435648337347322. -405585352370330. -327509350373323. -272453338407312. -192427279372265. -128225177283168. -41797416574.	•	•	-602	-272.	230	-251.	241	-364.	-569-	4
-435648337347322. -405585352370330. -327509350373323. -272453338407312. -192427279372265. -128225177283168. -41797416574. -50 -80536255		•	-649-	-302-	~		-271.	-413.	-521.	-39€-
-40558535237033032150935037332327245333840731231219242727937226517728316841797416574	-	•	-648	-337	~	-322.	311	-452.	-511.	-412
-327509350373323. -272453338407312. -192427279372265. -128225177283168. -41797416574. -50 -80536852	6	40.5	-585-	-352.	0	-330.	-342.	-475	-452.	-400
-272453338407312. -192427279372265. -128225177283168. -41797416574. -50 -86536852 5.00630.00914.00637.00619.00534.0	•	327	-505-	-350.	10	-323.	359	-465	-367.	- 386.
0192427279372265. 4128225177283168. 541797416574. 81 -50 -86 -53 -68 -55 95.00630.00914.00637.00619.00534.6	1.	272	-453.	-338		-312.	379	-470.	-290.	-500
4128225177283168 541797416574 81 -50 -86 -53 -68 -52 95.00630.00914.00637.00619.00534.0	•	19	427	-279.	N	-265.	360	-404-	-190.	-316-
541797416574 81 -50 -86 -53 -62 -52 95.00630.00914.00637.00619.00534.0	•	12	225	-177.	m	-168.	291	-298-	-125.	4001
815086536252 95 .00630 .00914 .00637 .00619 .00534 .0	S.	•	7	-74.	10	-74.	140	-138.	-63.	-104
15080536852 5 .00630 .00914 .00637 .00619 .00534 .0										
15080536252 5 .00630 .00914 .00637 .00619 .00534 .0										
5 .00630 .00914 .00637 .00619 .00534 .0		000	08	53	68	52	68	82	61	(6
	9	2900	1600	0063	900	0	9	.00857	87	•
-10.41 -13.36 -6.24 -6.21 -7.13 -		-	-13.36	-6.24	-6.21	-7-13	-5.54	-7.72	-12.33	٠ - -

•	•	•	•
		FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 .	
		13,	
		DEC	
•	JOY	9	
	HOUSTON PILE GROUP STUDY	TEST	
	GROI	LOAD	* * * * *
	PILE	ERAL	4 4 4 4
:	HOL		4
	HOUS	FROM	
		DATA	
		FIELD	4444
	•	_	4

ON OF	m								0	ی
Z	0. 1	0							1)
NO OF	GRO	= 91	•	BIG	ے	•			L	u
		. 83	~	SUN	OF PILE	LOAD CELL	115		•	ı
SI CA			568	五SS		!			=	-
EST CA	P DEFL		16 1							ı
									PILE	LEGEND
PTH			BEND	ING M	OMENTS	INCH-KIP	٦ د			i
NCHES	FILE	PILE	PILE	٩	PILE	<u>ب</u>	PIL	PILE	PILE	>
		6 2	ပ	٥	ا ا	ر الله	9		-	
12.		217.	161.	303.	260.		318.	193.		22
24.	401.	329.	230.	434.	342.	324.	419.	279.	177.	
36.	•	377.	282.	-			481.	352.	233.	
18.	8	409.	318.	547.	463.	430.	574.	385.	289.	
• 09	8	455	339.	•	473.	476.		393.	290.	
•	-	456.	334.		462.	469.	499.	376.	321.	42
Ť	0	399.	308.	424.	394.	437.	416.	323.	331.	37
96.	-	356.	M	316.	301.	358.	269.	229.	263.	28
114.		262.		199.		269.	N	115.	211.	16
~	m		97.	126.	117.	195.	48.	47.	162.	10
9		75.	36.	50.	24.	77.	, ,	-10	63.	
-							}	•		
	46.	E) "	737	19"	V	4	4	72	Ü	,
LOPE-	900	000		-00895-	900	8	. 6	5	-00524-	900
4		۷	6	•		١				•

		• 6161	A1 A0 0 17	HOUS	TON PILE	GROUP GROUP	STUCY	טני ואי	• •		
		•			•			•			
									0	NOF TE	
OAD N		6							2	ی	<
LOAD ON	670 5	F = -64	.15 F	ROM BIG I	LOAD CEL	CELLO KIPS			Ĺ	u	I
EAST CA	P DEFL		. 85	古古の			4		Œ.	~	C
) 						PILE	7~3331	Ş
DEPTH STREET	PILE	PILE			MOMENTS.	INCH-KIP PILE	PS PILE	PILE	PILE	AVC	د
•	4:	B	۲	٥		L	ن }	I S	•		ι
77.		-235	-326-	-144	-136	-141-	-1.50	-198-	v a		• :
Ġ	248	414	59	267	228	250	۵ (-361	-510		• •
	•	-452.	-647.	-298.	-308-	-300-	-2 70.	-415.	-527.	-390	0
	349	-441.	-651.	33	-352.	mı	-314.	-458	-518.	-	7.
12.	~ 0	-333	-587-	-356	-376-	-336	-347	-481-	-458-		• •
	402		-450	-340	409	314	-381.	-467	2 69		
114.	-368	190	•	~	37	~	-359	-401-	-187.	- 31	٠.
7 7 6	36	-121-	-220-	-1/4-	-280-	9 ~	-140-	-295	-122.	- 22	21.
)		١) 	ı		•)		•	,
EFL		ı	19		67		19	82	61	•	- • 6.6
LOAD	00768	-9-53	.00911 -12.35	.00632 -5.63	-5.58	-6.44	.00624 -4.98	.00855 -7.09	-11.74	.007	714

Ξ	_	_
•		4
•		96
#		_
#		2
		~
•		C
Ē		<u>=</u>
į	HOUSTON PILE GROUP STUDY	۳
•	5	_
-	S	S
•	۵	7
•	20	0
•	25	¥0
ē		_
ē	۳	<u></u>
-	7	2
	z	1
•	10	7
=	S	_
ě	₫	ਣ
Ē	_	
į		5
ī		\
		FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984
•		2
•		IE
•		<u>.</u>
ē	_	_

	<u>.</u>	4.5	X	.	LEGEND	AVG	238	339.	393.	447.	453.	431.	372.	278.	165.	0	27.		.49	9.58
	NOR 1 F	O	w	-	LE															•
1984	ž	۵	L	Œ	PILE	PILE	109.	183.	1	D	293.	322.	m	9	-		64.		•	-00240-
13.						PILE	203	292.	367.	398.	401.	381.	324.	230.	112.	4 3.	-12.			00553- 7.88
TUDY T OF DEC			<u>.</u>	4	y	PILE	334.	438	498.	594.	546.	502.	416.		122.	43.	-6-		•	12.29
GROUP SOAD TES			• KIPS		INCH-KIDS	PILE	230.	m	376.			473.		5	•	192.			•	9.99
PILE ERAL L			LOAD CELL	,	S.	116	273.	357.	P	~	482.	9	395.	9			22.		.50	0066 11.0
HOUS FROM			BIG	子 子 S S	THE MOMEN			5	M	9	559.		2	-	Ō	123.	48.		•	1100
DATA			00	642 I 930 I	AFIND THE	PILE	168.	239.	9	••	346.	m	-		70.		35.		•	0047
FIELD		•	€	2.		PILE		338.	387.	427.	470.		P	354.	S	168.	74.			9.1
		ຕົ	GROUF	DEFL		PILE	: ©	417.	S	•	9	N	0	-	72.	-37.	5		.33	12.87
			0 40 9N	EAST CAP	7 6	INCHES	12.	24.	36.	-94	60.	72.	84.	96	114.	132.	26	AT LOAD POINT:	EFL	L CPE O AO

•	•	•	
化电子 化电子 化化物 医化物性 化电子 医电子 医电子 医电子性 医乳球虫 医乳球虫 医乳球虫 医乳球虫 医乳球虫 医乳球虫 医乳球虫 医二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	•	* FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 *	
		**	4
• • •		13,	
-		DEC	
**	JCY	5	
	HOUSTON PILE GROUP STULY	ES1	
#	a UP	_	
	6 R	TO T	
		=	
	٦	ER/	
	MOL	LAT	
	Snc	E	
	Ĭ	FR	
		YI	
		2	
		ELD	
		£ 1	
	•	•	•

OAD N	NO. 3	6							a	ح ن
36	680		-61-66 FRC	ROM PIG	LOAD CELL!	LOAD CELL	81		L	Ξ u
EAST C.	AP DEFL AP DEFL	11 11	· ~.~	도 보 보			4		£	1 C
; 6					•	3	6		PILE	1 E C E ND
INCHES	۵.	PILE	PILE	BENDING ME	MUMENIS, E PILE	INCH-KIPS PILE	PS PILE	FILE	PILE	A V C
	•	8	S	۵		L.	9	I	-	
	-146.	-250.	-343.	-153.		-153.	-146.	-213	-287.	-204
	-225.	-376-	-206-	-221.		-239.	-199.	-308	-423.	-305-
36.	-566.	-445	-633	-287	-253.	-283-	-2555-	-391.	-541.	-373
	-	-474.	-678.	-318.		-322.	-288.	-439.	-549.	-412
	9	-456	-670.	-353.		-344	-327.	-475.	-5.30	-432.
12.	~	-423.	-296 -	-366			-356.	-491.	-466.	-423
84.	-409.	-33E-	-512.	-360		-3350	-369.	-473.	-370.	-354
	9	-273.	-448	-341.	1	-316.	-382-	-463.	-286.	-271.
_	-365-	18	-422.	-275.	-367.	-258.	-356.	-396-	-154.	_
	_	-121-	-215.	-172.	-276.	-159.	-286.		-118.	-217.
156-	-163.	-37.	-74.	-70.	-160.	-68.	-139.	-134.	-63-	-101-
T LOA	0									
		540	78		999-	0 2 0	66	18.0-	61	f. 5.
3		02900	0	.00632	•00626	.00533	.00628	00820	.0087B	91733.
0	-6.2	-9.14	-111-	-5.43	•			-7.03	11.	-7.56

		FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984
:		13
		DEC
	UCY	9
	JP ST	TEST
	GROL	LOAD
	PILE	RAL
:	NOP	LATE
	HOUSTON PILE GROUP STUCY	FROM
		DATA
		FIELD
•	_	_

				,,,,,,,,		*******		*********			
		• F 1	FLD DATA	FROM 1 AT	TON PILE	GROUP LOAD TE	STUCY ST OF	050 130	1984		
		•									
									2	NOP I F	
ONDAD	P)								c	ی	
CYCLE NO.	_	00)	•	•
OAD ON 6	ROLF	0 0	6-39 FROM	PIG SUM	LOAD CEL	LL & KIPS	<i>y</i> :		L	w	-
EAST CAP	DEFL	• •	3036	H H) 		1		\$	-	-
	!	I))	!					PILE	LEGEND	3
EPIH			BENE	DING MO	18.	JNCH-KIP	Ps				
INCHES	11. E	PILE	PILE	ILE PILE	W L	. W	٩	PILE	PILE	9 A C	9
	<	6	ပ		w	Ŀ	و	I	-		
2. 2	0	223.	167.		274.		338.	207	109.	23	6
4.	E	341.	241.	S	362.	17	447.		Œ	4	è
6. 4		\mathbf{v}	296.		9	385.	-	-	•	40	6
8. 5	15.		333.	575.	487.	448.	611.	409.	297.	45	6
0.	0	467.	351.	570.	491.	491.	S	=	9	46	ö
2. 4	3		342.	517.	474.	480-	0	40	8	436	ف
4. 3	Ħ	401.	311.	424.	398.	439.	~		3	-	m
6. 2	~	353.	238.		292.	357.	9	2		28.1	=
14.	Ō	Ś	•99	•	181.	263.			Õ	162	~
32	42.	166.	91.	-	108.	189.	36.		160.	36	مّ
156	9	72.	32.	45.	18.	7.	-14.	-15.	63.	~	÷
AT LOAD											
EFI.	.33	9	•36	•61	.50	.63	€	•36	.55	•	5
LCFE00	7077	77200	-87 400	Ō	-006		-		-00531-		: 2
OAD 13	94.	9.61	6.57	12.00	11.2	10.14	12.44	7.93)	. Z

Ξ	_	_
Ξ		_
Ξ		~
Ξ		~
7		뜨
:		_
Ξ		_
7		Ξ
Ξ.		~,
Ψ.		-
7		
•		Ų
•		M
•		0
٠	_	
٠	HOUSTON PILE GROUP STUDY	₩.
•		0
•	3	
٠		-
	w	w
		ŭ
ē	Δ.	☴
ě	5	•
ā	×	_
Ξ	Ξ	=
Ξ		3
Ξ	9	ب
		_
•	w	
•	نے	_
		4
٠	•	œ
•	_	ũ
ė.	2	=
è	8	
ē	=	
ě	in	_
Ξ	×	•
Ξ	Z	Ξ
Ξ	\simeq	9
2	Ξ	<u>, 5</u>
7		•
•		_
•		5
•		
•		⋖
•		O
٠		FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984
•		0
ā		コ
ē		ᇳ
Ē		=
Ξ		_
Ξ		_

		•		HOUS	HOUSTON PILE GROUP STUDY	GROUP	STUDY		•	
		FIL	FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 .	FROM I	ATERAL	LOAD TE	ST OF C	DEC 13, 1984	1984 •	
									2	NOR I F
LOAD NO.		9							9	ø
LOAD ON	. ŭ	9 II		BIG	LOAD CELL, KIPS	L. KIPS	(L	u
EAST CAP	P DEFL	!! !! ! !	-78.01 FRUM 74176 INC! 45321 INC!	F S F S	OF FILE LOAD CELES	LOAU CE	S T T		Œ	-
									PILE	LEGEN
DEPTHS			80.0	BENDING HOMENTS,	OMENTS.	INCH-KIPS	PS			•
INCHES	711E	9 1 6	ה בר ה	ה ה ה	אורר ה	116		7 E	אור אור	7
12.	-137	-2410	-332	-144	-141.	-145.	-135.	-203	-278.	-195
24.	-211.	-365	-490	-210	-197.	-229.	-185.	-293.	-411.	-284
36.	-251.	-4334	-618.	-273.	-242.	-270-	-240.	-376.	-532.	- 259
18•	-295.	-454	-667.	-304	-322.	-314.	-268	-427.	-543.	562-
60.	-348	-457	-662.	-339.	-360 •	-336.	-311	-464.	-526.	-423
72.	-365.	-418.	-588-	-354	-378.	-340	-339.	-482.	-462.	-414
84.	-398.	-334	-504-	-350.	-373.	-328.	-353	-464.	-364.	- 385
-96	-382.	-267.	-438.	-329.	-407-	-306-	-367.	-449.	-278.	- 256
114.	-353.	-178.	-409-	-264.	-354	-246.	-344	-383.	-175.	-301
132.	-308.	-1111-	-203.	-164.	-265.	-147.	-278-	-277.	-108.	-207
156.	-161.	-31-	-67.	-67.	-152.	-60-	-136-	-127-	-55-	-95
AT LOAD	_									
POINT:										
	80	61.1	78	51		64	99*-	80	60	J ••
SLOPE.	12100	.00612		•	•	.00516	• 00596	.00844	.00859	0670
LOAD	-7.21	-10.33	-13.30	-6.15		-7.29	-5.40	-7.76	-12.46	-8-6

-		•	
		1984	**
		13,	***
		DEC	444
	UCY	9	***
****	JP ST	TEST	***
	GROL	LOAD	
	PILL	FRAL	4444
	NOL	LAT	444
	HOUSTON PILE GROUP STUCY	FROM	****
		* FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 4	
		IELD	***
	•	•	***

	NORTH	V 9	ш Т	•	1 C	LEGEND		AVG		406.	575.	1	755.	S	N	•	531.	Ø	~	115.		66	.01259 15.93	
	2	9	L.		Œ	PILE		PILE	-	206.		442.	516.	514.	568.	580.	489.	425.	337.		ı	9		
								PILE	I	365.	515.	643.	692.	697.	671.	594.	478.	327.	217.	71.	,	-84	8 -	
				77			S	٩	S	555.	724.	810.	953.	873.	788.	-	482.	306.	208.	78.		.97	40	
			L. KIPS	LOAD CELLS			INCH-KIP	PILE	4	9	583.	5	S	0	9	738.	623.	496.	380.	165.		1.14	20-	
			AD CEL	ILE			NTS	PILÉ	.	442.	575.	643.	781.	782.	769.	672.	560.	411.	0	128.	ŀ	1.01	-	
. •			B I 6	SUM	H S	יי	JING HOME	PIL	۵	•	765.	9	930.	914.	843.	-		402-		2		7		
			<u>ب</u>	•	9 4	•	REND	-	ပ	Ö	439.	542.	610.	647.	643.	603.		317.				.87	18- 95	
		•	118	143	an e	•		PILE	6	370.	-		741.		771.	686.	627.	494.	366.	166.		1.13	14.36	
		•			P DEFI	•		PILE	<		685.	N,	N		0	-	429.	•	0			.81	01262-	
		NOVO	LOAD ON		EAST CA		EPTH	INCHES		12.	24.	36.	48.		12.	•	-96		32	26	10	EFL	SI CPE-	

÷	•	•
		1984
		13,
		DEC
:	9	6
	HOUSTON PILE GROUP STUDY	FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984
	GROL	LOAD
	PILE	ERAL
	STON	LAT
	201	FROM
		ATA
••••		FIE
•	_	_

		•		JOH (STON PILE	GROUP GAS AT	STUDY	•		
			SECO DAIA		LA I E R A L		5	DEC 139	* * * * * * *	
									2	NOR I F
LOAD	\$.02 80.03	2601							9	9
0.00	DN GRO	, ,	133.60 FRO	KON BIG L	LOAD CELL	X	PS		L	₩.
EAST (CAP DEFI			五 元 S S) }	?		æ) I
									PILE	LEGEND
EPTH	•		85	BENDING MOMENTS	OMENTS.	INCH-KIPS	IPS			
INCHE	S PILE	PILE	PILE	PILE	PILÉ	PILE	PILE	PILE	PILE	AVG
	<	Œ	U	0	L.	u.	g	I	-	
	-269	-474.	-909-	-281.	-324.	-303-	-270.	-383	-485	-277.
24.	- 400 -	-714.	-885-	-403.	-438	-456-	-369.	-550.	- 708.	-547
36.	-471.	-825-	-1082.	-505-	-519.	-536-	-464.	-687	-891.	-664.
18.	-562.		13	-572-	-641.	-612.	-513.	-754.	-884-	-126.
60.	-631.	-834	-1093.	-619.	-682.	-639.	-585-	-795.	-833.	-146.
12.	-654	-742.	-957.	-647.	-682.	-647.	-641.	-605-	-742.	-724.
84.	-619-	-610.	-827.	-642.	-659-	-612.	-654.	-166.	-545.	-671.
96	S	@	0	-616-	-684	-280-	-651.	-733.	-475.	-623-
-	-588	-356-	-623.	-522•	-594	-477-	-593.	-620.	-336.	-523-
m	-499 •	S	•	-371.	-459.	-326-	-493.	-463.	-250•	-386
156.	-258.	-96-	-137.	-164.	-266.	-149.	-250.	-215.	-135.	-186.
120	Q									
EFL	-1.31	15	-1.31	-1.01	~	98	1.1	M	-1.10	-1.15
10	013	.01212	.01506	.01201	115	.01033	112	142	-01454	.01268
LOAE	2.3		-22.83	-10.74	-15.18	-14.07	-10.04	-14.47	-21.58	-15.59

Ξ	•	•	
		FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984	
		98	•
:		-	
:		8	
Ē		-	
ē		ပ	
•		90	•
•	>	<u>.</u>	1
•	9	Ç	•
•	E	-	٠
Ē	•	ŭ	
ī	3	_	
#	HOUSTON PILE GROUP STUDY	2	
•	9	2	
•	ш	_	
ē	ž	¥	
Ī	_	Ē	
#	5	7	
•	SI		
*	2	T	
į	Ĭ	¥	
Ē		_	
ā		=	
4		20	1
4		_	4
ē			
Ē		Ξ	
•		_	•
#	•	•	•

1	<	I	: 4	د	LEGEND		AVG		370.	531.	623.	122.	741.	730.	•099	551.		291.			•	1237 4.48
• NOR T F	9	u	٠	-													_					0 -
. 2	٥	<u>.</u>	٥	۵	PILE		PILE	-	183.	302.	404	478.	489.	546.		487.			~			01041-8-23
							PILE	I	326.	465	587.	649.	671.	664.	603.	496	347.	233.			t	01086- 12-05
			1 S			Ñ	PILE	9	515.	682.	788.	937.	892.	829.	730.	526.	N	0	63.		8	.78 01334
		CELL, KIPS	OAD CELL			INCH-KIP	PILE	u.	S	m	-	707	-	8	•	•	2	-	8		•	1-1/ 01257 15-66
		LOAD CELL	. PILE 1			TS.		L	401.	527.	595.	736.	755.	762.	681.	580.	434.	322.			•	15.86
		91	5 ,	XES.		BENDING MONEN	PILE	٥	0	=	S	915.	N	879.	9	612.	2	8	2		•	.01633 18.30
		.64 FRO	ME	554		BEND	PILE	ပ	275.	398.	498.	564.	611.	617.	590.	515.	327.	315.	138.		•	9.80
	u	135	130.	• -			911E	æ	m	508.	0	9	725.	•	~	~	=	392.	189.			1.17 01315 13.03
	•	GROUP =		P DEFL			PILE		m	S	Ñ	813.	~	◂	8		9	9		ı		.81 01249 19.40
	LOAD NO.	90	AST CA	NEST CAF		EP1H	INCHES		12.	24.	36.	-8+	60 •	72.	84.	86.		32	56	1 10/1		SE OPE(

•	•	•
*****		1984
		139
		DEC
	JCY	9
	HOUSTON PILE GROUP STUCY	TEST
	GROL	LOAD
	PILE	ERAL
	TON	LAT
	SOOH	FROM
		DATA
		FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 *
#		

		. f I	FIELD DATA	FROM	PILERAL	E GROUP S LOAD TES	TUCY	DEC 139	1984	
									N	NOR IF
LOAD NO	• •	K							ပ	9
	680	-11	3.04 FROM	E 1 G	LOAD CELL	XX.	-		L	¥
EAST CA	P DEFL		.9u r 1436 3211	를 보고 S S S	7	רסשה רנד	6		ت	1 C
0.00			3	DENDING MO		מרא אלוני	ų G		PILE	LEGEND
INCHES	PILE	PILE	PILE			PILE	rs Pilr 6	FILE	PILE	INC
•			-483.	-232.	-242.	-239.	-219.	-307	-396-	-302-
24.	-330 •			-343.	P	-367.	-304.	-446.	-586.	-445-
9,	00	-686. 759	-917	-438	-418	9	- 4	-578.	-767.	562
	-572.	7 60	-1021	-574	-614	3 60	-531	-727	-792	-688-
12.	0		D	-607	-639.		-596-	-166.	-145.	-694
- 49 - 95 - 95	-650 -	-629	4 17	-619-	-643-	-605-	-625-	-753-	-44	-£66.
114.	-595-	0	-675.	5	٠		8	843	369	V
32.		27		-403	0	9	-518.	-505-	9	13
156. T LOAD	N	-110.	-162.	-189.	-297.	-172.	-279.	-241.	-149.	-211
POINT:	-1.35	-1.00	-1-34	-1.003		100	1.2	-1-36	-1-13	41-1-
LGPE .	N •	12	144	36	-	.00993	.01069	13	13	20

•	•	•
3		_
ē		8
•		õ
•		-
Ξ		_
ē		m
Ü		-
•		
=		ပ
ĕ		Ħ
•		_
•	_	<u>L</u>
Ξ	2	0
š	Ξ	-
	S	S
#	_	1
2	=	_
ē	5	0
	œ	₹
•	9	0
=	HOUSTON PILE GROUP STUDY	_
ē	=	_
•	=	₹
4	•	~
•	_	핃
7	5	=
ē	=	7
•	8	
•	Ξ	Ŧ
3	¥	2
ē	_	
		_
•		2
Ξ		=
ě		2
		FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 *
•		9
=		
ē		Ξ
•		<u> </u>
•		
•		

÷	V	Ξ ω) I	LEGEND	77.4	•	9	£25.	S	23	•	3	68	3	404	95	-		0	01241	
NOR TE	0	<u>.</u>	E	PILE LE	1	!	182.	300.	0	9		•	570.	9	5	5	8		0	01043-	,
•					2112	j T	325.	466.	590.	654	677.	673.	612.	505.	353.	36	71.			•01091-• 12•06	
		<i>S</i>	!		9S D11 F	9	510.	6.80.	790.	42	0	=	745.	F	333.	60	58.		••	-01341- 18-53)
		OAD CEL			INCH-KIP DII F	4 4 L	S	526.	-	0	8	8	•	•		Ħ	œ		1.1	-653 -97)
•		LOAD CELL				ا الما	• 00 •	527.	.965	739.	760.	768.	6A8.	585.	440.	326.	137.		1.0	.01188 15-88)
		/n =	こと こと こと		-	:0		7111.	50	\blacksquare	m	9		3	1	0	120.		1.1	640-	
		.16 FROM	501)	BENE		272.	393.	494.	561.	610.	618.	593.	519.	320.	321.	138.		8	-00994 9-75	•
	e	135	25.	,	0 10	. 6	336.	503.	597.	9	723.	•	681.	630.		0	195.		1.1	.01315 12.96)
	•		AP DEFL		4		435.	652.		N		ທ	0	•		0	-12.		8	01257-)
	CYCLE NO	OAD	EAST CA	1	DEPTHO		12.		36.				84.				-95	-0	EFL	St. OPE)

•	•	•	
		1984	
		13,	
		DEC	
-	JOY	4	
	UP STI	TEST	
	GRO	LOAD	
	HOUSTON PILE GROUP STUDY	FERAL	
-	2101	3	
4 4 4 4	HOH	FROM	
		DATA	
		FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 .	
#	_	_	

				ï	4	GROUP	TUBY	1 		
		• F1E	IELD DATA	FROM:	LATERAL	L 1	ST OF D	EC 139	1984	
									2	NOR T F
070	NO.								£	ں
LOAD O	MO. 251	= -11	.13	916	LOAD CELL, KIPS	L, KIPS	•		i.	H
EAST C	AP DEFL		.91 F 3057 4086	E S S S		בסאט כבר			<u>a</u>	-
		•							PILE	LEGENO
1	_		BEN	BENDING MO	P. OMENTS.	INCH-KIP	PS			
INCHES		PILE	PILE	_	PILÉ	PILE	PILT	PILE	PILE	3 A C
12.	-213.	-368.	-474-	-228	-238	-235.	-216.	-300-	-390	-296
24.	-320	-566.		-337	M	-361.	-298.	-436.	-576.	-437
36.	-390 -	-676.	-903.	-429.	-411.	-441.	-393.	-2.66	-758.	-555
48.	-478.	-751.	-1016.	-200	-541.	-526-	-436.	-651.	-195.	-633
	- 560	•		-266.	-607-	-576-	-525.	-718.	-793.	-682
12.	-597			-600	-635.	-909-	-589.	-759.	٠.	-691
1	-643.	m	85	-614.	_	-609-	-619.	-751.	GJ (£6
96.	N 1	N	•	-608-	-684	י ק	-636.	• 6 6 2 -	51	A 1
114.	-596.	D (-701-	-557	-619-	-200-	-601.	-6320	-3/3	
132.	-530	102) (u u		7	7 6
56. 10	0 0		997-	n	Š	-	0	2	-	7 7
	-1.3	0	-1.34	•	-1.20	-1.01	~	-1.36		-1.18
ں .	.01238	.01123	-	-	107	560	0		.01293	. 61235
LOAD	10.8	15.6	18.8	6	10.4	1.4	P	-11.62	5	•

•	•	•
	HOUSTON PILE GROUP STUDY	1984
		P.
***		DEC
	ruoy	9
	IP SI	TESI
	GROL	OAD.
	ILE	141
	NOI	ATER
	tous	HON
	-	IN F
		T DA
		IEL D
•		-

		_	<	I	ပ	LEGEND	AVG	365.	£22.	622.	115.	135.	133.	667.	562.	414.	302.	125.		1.62	1257	,) }
		NORTE	9	w	-	T										-					0 -	•
• • • • • • • • • • • • • • • • • • • •	1984 .	Z	•	L	æ	PILE	PILE	1 191	300	Ö	472.	492.	549.	574.	498.	443.	9	184.		1.09	-01053 8-62	j))
• • • • • •	EC 139						PILE	324.	462.	584	647.	672.	669 •	611.	510.	362.	245.	17.		.87	-01106- 12-18	
STUDY	- 4 - 4			רנ	l .	Ü	PILE	506.	668.	.111	926.	890.	834.	•	•	341.	~	•99		•60	18.03	
_	LOAD TE			L. KIPS LOAD CELI		2017 1701	PILE	347.	518.	603.	698.	745.	€	747.	S		2	190.			.01311 15.09)
• • •	ERAL			LOAD CELI			- W	398.	523.		733.	755.	166.	688.	585.	•		142.		•	16-04	
**************************************	FROM L			BIG	분 분 왕	4	_	497.	705.	841.	908	8	884.	771.	N	443.	9	126.		1.16	1)
•	D DATA			.14 FROM .82 FROM	26			262.	382.	483.	549.	601.	611.	592.	521.	352.	329.	143.		. 88	.01010- 10-10	1
•	* FIEL			136	= 1.25		PILE	333.	9	595.	9	721.	750.	683.	3	525.	0	201.		1.18	.01345-, 13.57	•
			•	GROU	P DEFL		PILE	434.	644.	718.	806.	816.	746.	594.	483.	281.	110.		_		01270-	•
			LOAD NO	_	EAST CA		INCHES	12.	24.	36.	48.		12.		96	114.	F	156.	~ 0	EFL	SL GPE.)

•	•	#	
		1984	
		13,	
		DEC	
) DY	4	
	HOUSTON PILE GROUP STUDY	TEST	
	GROL	LOAD	
	PILE	ERAL	
1	NO.	7	•
	HOUS	FROM	
*****		DATA	
		* FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 *	
	•	•	

									ž	NOR 1+	
O A D	9								0	ပ	⋖
CYCLE	NO. 20	620									
0 40	ğ	77	18-94 FROM	BIE	LOAD CEI	ELL & KIPS	PS		L	w	I
EAST (CAP DEFL	77	40	上 こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ		•) i		I.	-	ပ
	:	•							PILE	LEGEND	Q
FPIH	•		BEN	BENDING MC	MOMENTS.	INCH-KIPS	Ps				
INCHE	S PILE	PILE	PILE	PILE	PILE	PILE	PILE	PILE	PILE	7	ر. × ر،
,			U	0	ш	u.	و	I	-		
12.	-204.	-379.	-456-	-239	-240	-246.	-216.	-291.	-386-	-29	
24.	-303.	-586-	-676.	-353	-330	-375.	-296-	-418.	-567.	-43	
36.	-364	-688•	-852.	-440.	-402.	-449.	-380.	-532.	-737.	-53	38.
	-435	-756-	-943.	-504	-519.	-527.	-419.	-602.	-768.	C 3 -	æ
•09	-206-	-111.	-934	-562.	-573.	-581.	-493.	-653.	-758.	-64	49.
	-531.	-726.	-854	-588-	-592.	-591.	-547.	-684	-7111.	-64	.7
84.	-573.	-620-	- 761 •	-596-	-593.	-590-	-569.	-669-	-585-	-61	7.
	-552	-503-	-650-	-580.	-636.	-557.	81	-654-	-471.	-576	6.
114.	-519.	-363.	-581.	-502-	-556.	-468-	-542-	-563.	-330.	-49	12.
P		-247.	-334	-370.	-440	-337。	-462.	-430.	-232.	-36	
156.	-259	-85	-129.	-169.	-264	-153-	-247.	-210.	-120.	- 18	2.
107	AD										
OINT	••										
DEFL	-1-17		1.1	16	-1.09	95	-1.09	•	-	-1.	90•
SLOPE	.01110	11	.01302	-01101	.00988	.00963	• 00 9 7 9	.01242	29	.011	21
LOAD	-9-87	-15.67	-17.75	-9.42	-10.07	-11.58	-7.96	-16.96	-16.80	-12.	E,
1	1									1	

•	•	•	
		1984	
		13,	
		DEC	
4	JOY	Ç	
	IP STI	TES 1	
	GROU	LOAD	
	HOUSTON PILE GROUP STUDY	FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 .	
	IOUS TO	I HO	***
*	I	æ	4
		DATA	•
		FIELD	* * * * * * *
	_	_	

P STUDY TEST OF DEC 13, 1984 •	NORTE	¥ 9 0	PS F E H	j L	5	14S	LE P	6 H 1	14. 519. 178. 36	. 790. 584. 398. 623.	• 942• 649• 462• 71	. 677. 495. 14	51. 675. 546. 7	54. 617. 573. 6	01.	38. 366. 444. 4	10. 248. 364. 3	• 58. 79. 188. 124.
HOUSTON PILE GROUFRON LATERAL LOAD			M BIG LOAD CELL. KIPS	表 表 表 表 表		G HUMENIS, INCH.	PIL		95. 596. 55	4. 594. 5	26. 737. 69	46. 760. 74	1. 773.	82. 695. 74	0. 58	35. 447. 5	. 327. 41	
FIELD DATA		e V	3	= .55956 I		((((רנ ה		•	587. 473.	87. 5	2. 5	42. 6	•		22. 3	0.6. 3	٦ •
		LOAD NO. 4		EAST CAP DEFL	•	i	<u>م</u>	•	12. 442.	7	8 81	60. 830.	2.	84. 604.	6.	14. 2	132. 109.	

	1.09 1.02	SLGPE01275013360100701670012080130501360011160105301259 LOAD 19-01 13-23 9-73 17-75 15-82 14-66 17-87 11-96 8-35 14-26
	.87	.0111601 11-96 8
	66.	.01360 17.87
	1.18	01305- 14.66
	1.03	01208-
	.89 1.15	01670- 17.75
	.89	.01007- 9.73
	13 1.16	.01336- 13.23
Ω.	₩,	-01275- 19-01
AT LOAD POINT:	DEFL	SLGPE- LOAD

•		•	
•		_	
ï		8	
ë		5	
•		-	
•		_	
:		m	
ē		-	,
Œ			,
#		U	•
Ξ		Ħ	
ī		_	,
ä	>	4	•
•	<u></u>	0	
7	2	_	
ī	S	5	
ē	••	ŭ	
•	•	\vdash	•
•	\equiv	_	•
3	2	9	
-	3	2	
ë	_	$\overline{}$	•
•	HOUSTON PILE GROUP STUCY		•
•	_	=	•
-	_	\geq	
ē	-	ū	,
ė.	2	F	•
•	9	4	•
=	<u></u>	_	
ī	š	x	
ė.	ō	õ	•
•	I	Œ	•
=		<u></u>	1
ä		•	
ē		=	•
#		⋖	•
•			•
-		_	•
		FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 .	
é		₩.	4
•		H	•
_		u	•
Ž			
é	•	•	•

AL MOI

OAD	• • • • • • • • • • • • • • • • • • •	2020					·		a	ی
LOAD	ON GRO	F = -102.74 = -109.07	2-74 FROM	BIG	LOAD CEL	LOAD CELL KIPS	PS CFLLS		L	w
EAST (CAP DEFL	11 11	, 	ES ES					g.	-
) 									PILE	LEGEN
DEPTH	•		REA	RENDING ROMENTS	DHENTS,	INCH-KIPS	PS			
N CHE	S PILE	PILE	PILE	PILE	PILÉ	PILE	PILE	FILE	PILE	DVC
	⋖	∞	ပ	٥	wi	u.	9	I	_	
12.	9	-384	-466.	-234.	-242.	-246-	-214.	-292-	-393.	163-
24.	0	-594.	-692 •	-358	-333.	-376-	-254.	-420.	-580.	-43
36.	9	-702.	-877.	-434.	-409	-456.	-378.	-539.	-760.	-546
48.	F 7	-778.	-972.	-500.		-537	-418.	-£12.	-196.	-62i
• 09		-800	- 096 -	-559.		-593.	-464-	-662·	-119.	393-
12.	3	-747-	-872.	-588.		-602	-546-	-(.91.	-729.	-65(
84.	-572.	-631.	- 169.	-597.	-599.	-603.	-568.	-672.	-595°	-624
96	•	-503-	-648.	-580.		-565.	-578-	-649-	-472.	-570
114.	10	-362.	-519.	-503.	-550 •	-466.	-536.	-550	-322.	-486
F 3	4	-239.	-311.	-373.	-432	-332	-456-	-414.	-219.	-358
5	51	-78.	-109.	-172.	-255	-148.	-243.	-198.	-107.	-172
1 10	₽.									
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,1	₹5	_	0	9	9	90	•	•	•
. ل	* 6		60640	5			() U C C	7 7 9 7 9	7007	٠,
•	.0108/	.01117	-17-46	9 4	-11.60	-11-28	20200	-10.85	-16-99	1110.
K S	Y	7		•) 	7		0		71 -

•	4	•
		1984
		13,
		DEC
	JOY	9
	JP STI	TEST OF DEC 13,
	GROL	LOAD
	HOUSTON PILE GROUP STUDY	FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 *
	I	FR
		DAT
		FIELD
•		

L	<	I		ပ	I ECEND		DV		367.	532.	645.	135.	156.	748.	677.	563.	0	o	118.			_	12	4.86	
Z KOZ	9 0	u.		8	PILE 1E		PILE	-	160.	299.	407.	465.	505.	547.	576.	499.	439.	360.	185.		•		010560	8.55 1	
							FILE	I	323.	468.	597.	664.	.063	(.84.	623.	516.	361.	241.	75.		(-87	1124-	12.19	
			LLS			20	PILF	ၒ	520.	.169	821.	981.	938.	866.	160.	Ť	328.	195.	46.		1	•66•	379-	18.68	
		L, KIPS	JAD CE			INCH-KIP	PILE	L.	•	_		704.	754.	9	752.	4	528.	-	183.				•	0.	
		Q	PI			MOMENTS	11	ليعة	403.	536.	610.	755.	176.	784.	•	œ	441.	319.	7			0	-01219-	16.5	
		9	ROM SUM OF	CHES	NCH! S	ENDING MO	_	0	509.	M	8	957.	972.	917.	789.	27	425.	267.	0			1.15	-01688-	8.7	
		<u>ل</u> ا	74 5	522	92 09 IN	3 H S		را	251.	2	-	544.	599.	609	95	520	347.	333.	151.			ھ	-01003-	10.1	
		911	= 133				P 11 E	. 8	327.	498	606.	696	720		· 00	630	N	₫				1.16	-01339-	13.7	1
	•	NO. 110		<u> </u>	AP DEFI		o It E		455.		•	10	853	10	٠.	• 0	L/O	60	-16.	0		.83		20-19	
		CYCLE NO 10 ON		EAST CA	r ST	OF PIX	INCHE		12.	24.	9.2	A 8.	, U.S.		• 7 6			5	מאנ	1 10	10	7	_	. ພ	,

			FIELD DATA	TROUT	PIL	GROUP LOAD TE	STUDY ST OF	DEC 13, 198	1984	
									ž	NOR TE
OVO	•								۵	9
	ON GROUF	ζ.	12.22 FROM	P16	LOAD CELL,	LL, KIPS			•	ж ш
EAST C	AP CEF		286	ES S	7166	5	_		x	-
			•		•				PILE	0 E G C + D
INCHES	g.	PILE	PILE	E PILE	HUMENIS, E	4 3	IPS PILC	PILE	PILE	AVC
	4		ပ	٥		L	ဖ	I	~	
12.	-199	-397	₩,	-227	248	24	2	-292	9 :	-301
Ì	v m		-907	-426.	-343	-461	-374	-543-	-561. -787.	2 47 F 47
•	4	8	-1001-		•	N.	-414.	-617.	-824	-630
• 0 9	9			-553.	-594	-601.	-489.	-667.	-198.	-667
12.	N	in :	6 1	-583-	0	0 !	-541.	-694	-740.	-666.
96	n	1000 1000 1000	-644	-577	-634	-613-	-5764	-645	-575	-624
~	50	3	S	-503.	-545-	9	-533.	-543	-313.	-478
132.	-441	-226.	-296-	-372.	-424 ·	-324	-454	-404-	-208-	1350
1 10	}		•					•		•
INT										
EFL	-1-15	£5	7		7	•	=	-	-1.00	-1.35
2	106	0111	_	.01061	16	0095	.00948	121	.01297	.01191
0	-9.6	7,	-18.76	-9.14	-10.62	-11.64	-7.84	-11.11	-17.83	-12.56

Ξ	7	•
		FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984
		13,
		DEC
	UCY	P.
	JP ST	1EST
	HOUSTON PILE GROUP STUCY	LOAD
	PILE	RAL
	STON	LATE
	HOO	FROM
		ATA
		רם ב
4 4 4		FIE
•		

									144 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
		• FIELD	LD DATA	FROM	TON PILE	GROUP OAD TE	STUDY ST OF D	DEC 13.	1984 *		
		• • • • •			• • • • • • • •	•••••			* * * * * * * * * * * * * * * * * * * *		
									S	NON TE	
2	•								٥	ပ	•
LOAD ON	GROU	izo u IF = 137	1.04 FROM	910	ND CEL	×			•	L	I
EAST CA	P 0E	-	.61 F 9203	SES ES	OF PILE	LOAD CFLL	LLS		©	H	S
באו	_			CHES					P 11 F	I F GF KD	22
EPTH			BEN	DING MO	MENTS.	INCH_KIPS	Ps		i i	,	
INCHES	PILE	PILE	PILE	IE PILE PIL	PILÉ	PILE	PILE	PILE	PILE	=	N _C
(~ !	6	U	<u>م</u>	ٍّ ب	L (9	I (—		
12.			241.	509.	+0+	339.	528.	320.	181.	77	65.
24.		495	376.	755.	547.	515.	712.	463.	293	K)	39.
36.		g,	465.	899.	611.	593.	834.	580.	399.	Ü	38.
18.		683.	537.	982.	767.	708.	1022.	673.	465.	Ž	5
•09		724.	608 •	1008.	196.	765.	972.	701.	505.	_	7.
72.			607.	938.	793.	804.	888	693.	544.	35	56.
84.	623.	702.	599.	790.	712.	761.	775.	635.	585.	9	687.
-96		630.	524.	2	592.	647.	546.	521.	500.	33	55
-		519.	319.		437.	N	319.	362.	439.	•	1:
~		0	336.	249.	312.	+0+	181.	239.		26	3 £•
156.	•	203.	155.		127.	177.	33.	72.	₩.	=	1
- 0	_										
L	8	1.16	•89	1.15	0	1.17	66.	.88	1.08	—	. 02
L GPE -	-01312-	-01325-	61005-	-01703-	-012	-01310-	-01390-	.0112	0	0 12	272
2	20.1		9.83	18.70	M	-	18.59	11.17	8.10	14.	4.62

•	•	•	
:		•	
#		8	
ī		13	
•		_	
:		F7	
•		-	
ï		U	
•		Ÿ	
÷			
1	>	4	
ē	5		
#	-	_	
ī	•,	E	
•	₫		
ī	HOUSTON PILE GROUP STUDY	0	
•	æ	*	
ī	G	7	
•	ų		
ï	1	=	
•	•	œ	
7	2	1	
•	ē	4	
÷	5	-	
	Ë	Ē	
ï	H	2	
•	_	<u></u>	
ï		<	
•		-	
•		2	
ě		Ξ	
:			
		FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 *	
-		Ξ	
		_	
٠			

						*******			******	
		•		HOUS		SR S			•	
			FIELD DATA	FROM	RAL	LOAC		DEC 13,	1984	
			*****	***		• • • • • • • •			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
									2	NORTE
LOAD NO	•								0	∀ 9
ш `	0.0		9			2			U	
	3	• •	101-68 FROM	S LC	LUAD LEI OF PILE	LUAD LILL, KIPS OF PILE LOAD CELL	511		L	I
EAST C	AP DEFI	ı	ي و	E S					Œ) I
•									PILE	LEGEND
EPTH			BEN	BENDING M	MOMENTS.	INCH-KIPS	PS		 -	
INCHES	PILE	PILE	PILE	PILE	PILÉ	PILE	PILE	PILE	PILE	AVG
	<	•	ပ	۵	.	L	9	I	-	
12.	-188	-394	-480	-218.	-241.	-239.	-202-	-284.	-405-	-295-
24.		~	-723.	-348	-339	-373.	-286.	-414.	-£ 03•	- 44 -
36.	-350.	-725.	-925.	-419.	-425	-460-	-370.	-541.	-199.	
48.	-424.	-825-	-1028.	-489.	-555	-551.	-395-	-624.	-847.	-637
•09	9	-844.	-1007-	-549.	-607.	-614.	-480	-680-	-824	-613-
12.	-525.	-777.	-903-	-584.	-622.	-623-	-541.	-708.	-761.	-67i.
84.	~	-629.	-784.	-615.	-612.	-625.	-565.	-684	-665	-632
96		0	-648	-517.	-641.	-584-	-575	-620	-471.	-517.
-		•	-575-	-505-	-543-	-458.	-532•	-541.	-310.	~
m		-212-	-281-	-370.	-	-315-	-451.	9	-197.	-345-
56.	-25	-57.	-86.	-173.	-240.	-135.	-243	-185.	-87.	-162
AT LOAD Point:	۵									
EF	7	£ 5.33	-1.13	96		\$5 • -	-1.07	-1.15	99	-1.64
	•01023	-01164	•	-01037	.00963	•00935	.00527	.01202	.01287	• 010 ₄₅
LOAD	•	-12,90	-18.21	-8-49	•	-10.93	-7.24	-10.41	-17.35	-11.96

•	•	•
		FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 .
		13,
		DEC
	JOY	6
	IP STI	TEST
	HOUSTON PILE GROUP STUDY	FIELD DATA FROM LATERAL LOAD TEST OF DEC 13.
	PILE	RAL
	STON	LATE
***	HOU	FROM
** * * *		DATA
		ברס ו
		L

•	1	
ł		
(1	
(٤	1
i		į

OAD N	• 0	0							۵	9
100	N GRO	= 181 = 175	-12 FROM	BIGSUM	LOAD CEL	CELL, KIPS	211		L.	- u
EAST CL	AP DEFL		696	를 보 문 S		ı	} 		@	-
			3	•					PILE	LEGEN
F F TH			BEND	ING	HOMENTS.	INCH-KIP	PS			•
INCHES	٩	PILE	PILF	۵	PILÉ	PILE	PILE	PILE	PILE	AVG
	<	8	U	٥	نعا	li.	9	I	-	
12.	~	437	361.		561.		736.	459.	263.	515
•		9	36	02	748.	723.	986.	662.	~	•
36.	05	815.	687.	2	859.	5	•	847.	0	g
•8₩	1188.	•	795.	1329.	1059.	995.	1383.	952.	664.	1035
€0.	-	987.	888	m	1082.	۵	1311.	992	-	1064
12.	0.89	4	899.	2	60	1115.	197	988	8	1054
84.	~		892.	1091.	991.	9	S	911.	N	965
96.	\tilde{c}	O	802.	900	7	~	~	783.	2	R24
-		774.	580.	649.	3	_	518.	600	9	634
132-		2	579.	441-	528.		367.	446.	558.	491
56		336.	28R .	198.	267.	9	144.	188.	~	234
1 10	AD									
OINT										
i L	1.36	1.71	1.45	1.70	10	-	1.53	1-42	9	1.5
SL CPE-	90	.01931- 17.29	13.64	.02458- 25.13	-01797-	-01921- 20-51	-02033- 25-57	-01719- 16-86	.01613- 11.82	0188 19.9
))	!)))))	}	•	•

•	•	•	
		FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 *	
****		13,	
		DEC	
	104	占	
	HOUSTON PILE GROUP STUDY	TEST	
	GROL	LOAD	
	PILE	RAL	
	TON	LATE	
	HOUS	FROM	
****		DATA	
		ELD	
		F	
•	_	_	

		FIELD	FIELD DATA	FRO	USTON PILE M LATERAL	GRO LOAD	STUDY ST OF	DEC 139	1984 .	
									2	NOR 1
LOAD	5 .0								0	V 9
LOAD	N GRO	-7	4 (E16	3	L, KIPS			L	ï
EAST	CAP DEFI	= 178° = -1°71	99 F 004 132	E S E	OF PILE	LOAD CE	CELLS		2) I
			 						PILE	I ECEND
DEPTH			REN	RENDING MC	MOMENTS,	INCH-KIPS	PS			
INCHE	د د	PILE	PILE	PILE	PILE	PILE	PILE	PILE	PILE	AVG
	< ;	2 (ပ	١	, , ,		ِ ا	r (- 1	
	333.	-647	- 787 -	-356	-456	-416	-348	-477.	-639.	-436.
24.	•	-1015	-1180.	-540	-624	-629	-481.		-044	-734.
36.		-1190.	-1491-	-651-	9	-166.	-611.		-1247.	51
48-	-	-1324	-1684.	-758.	-942.	-904-	-999-		-1279.	-1031.
		7	-1593.	-848-	-466-	-911-	-190.	-1077.	-1207.	-1066.
72.	-848-	-1155	-1402.	-891.	-686-	-992.	-866.	•	-1103.	-1638
-	-898-	-937	-1191.	-928.	-955.	-971.	-833	-1050-	-861.	-366
	85	-757-	- 984	-887.	-975.	-897.	-893.	-992.	-105.	-883-
114.	S	-556.	-826.	-190.	-822	-717-	-F 18.	-829-	-491.	-137.
	16	36	•	N			-167.	-626.	-356.	-55%
26	- 100	-129.	-166.	-304	-372.	-236.	-391.	-596-	-181-	•
AT LO Point	Q									
EFL	-1.7	-1.47	-1.77	-1.52	-1.65	-	~	-1.79	-1.59	-
	•016	10	0 (0 -	5:	5	.01523	01859	0199	55
>	-14.79	-25.18	-57.64	£1.01-	-11-33	/8 • RT -	-12.40	20 · 2 T -	-28.51	-15.39

•	•	•	•
		1964	
		13,	
		DEC	4 4
-	JCY	9	4
***	P STL	TEST	
	GROU	LOAD	* * * * *
电电子电弧 化化合物 医多种性 医二甲甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲	HOUSTON PILE GROUP STUCY	FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1964 .	
	STO	1	4
	HOU	FROM	4 4 4 4
		DATA	***
		IELD	4 4 4 4
		1444	4 4 4

		r 1E	LD DATA	HOUSTON FROM LAT	TON PILE LATERAL	GROUP LOAD TE	STUCY ST OF D		1964	
									Z	NORTH
LOAD NO.	S								0	∀
YCLE NO	1 00	0.5							i	•
OVO	OUF	185	-81 FROM	BIG	LOAD CEL	ELL, KIPS	_		L	I
EAST CAP D	CEFL		1 4216 1 4216	E (5)	1	בסאט כב	617		&) I
ESI CAP	EFL	= 1.7	4235 1	MCHES					D 11 G	ונכנים
E P TH				BENDING MO	HOMENTS.	INCH-KI	IPS			
INCHES PI	ונ.	PILE	PILE	_	7		PILF	PILE	PILE	DAV .
5			ָּ בַּ		en La	474	731.	# # P 2 9	25.80	_
24. 95	. 2	654.	540			. 0	992	53	19	743.
6. 10			685.	~		830.	1167.	1	580.	9
8- 12		-	761.	35	B	-	1412.	951.	in.	m
0. 12			856.	1382.	90	05	1	00	710.	1074.
2. 11		1	887.	1317.	11	12	~	0	8	07
4. 9		~	g	1135.	1012.		1113.	937.	2	9
2 .96		901.	813.	934.	892.	945.	819.	808	m	
14. 4		~		657.	695.	00	m	-	~	æ
32. 2		629.	∞	N	530.	625.	354.		9	8
156.		346.	288.		263.	9	-	179.	320.	224.
INT										
EFL 1	.36	1.72	1.45	. 1	S	1.73	1.54	1.43	1.65	1.58
LOPE02	-	19	.0157	248	.018	0	- 02062-	-01724-	-01623-	.01900
3	73	17.3	13.8	5	21.90	20.17	15.78	16.75	0	-

Ξ	•	_
		984
i		-
		13,
		FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984
•	_	_
	9	0
	HOUSTON PILE GROUP STUDY	EST
፤	Ž	_
:	6RO	9
:	ų	_
፤	ĭ	7
•	2	15
	5	3
:	Š	Ē
:	Ĭ	FRO
=		5
:		7
4		a
=		IEL
		-
•	_	_

_	<	I	J	LECELO	. 74		-415-	-62t.	-194.	-922-	-988-	-594.	-54t.	-88A-	-767.	- £01.	312.		1.69	.01687	16.88	
•	9	w	H						•	1	•	Ì				•	1		•		ı	
	a	•	9	PILE	PILE	-	-544	-812.	-1076	-1146.	-1129.	-1 0 78.	-895	-738.	-537	-404-	-215	1	-1.63	91	-23.42	
					PILE	I	-406-	-593.	-119.	- 404 -	- 991.	-1044.	-1025.	*96÷-	-862.	-681.	-342	1	-1.83	.01843	-15.28	
		PS CELLS		S	PILF	ဟ	-303.	-419.	-553-	-604-	-740.	-821.	-870.	-878-	-823.	-732.	-428.	•	-1.72	.01476	-10.83	
		L. KIPS LOAD CE		INCH-KIPS	PILE	L.	-354	-534.	-668.	-807.	-898-	-934	-947	-894	-746.	-591.	-272.	•	-1.55	.01502	-12.95	
		LOAD CELL, KIPS OF PILE LOAD CE			PILÉ	w	-373-	-520 •	-647.	-830	-806-	-931.	-925-	-974.	-849.	-688 -	-417.		_		8	
		BIG	F F S	HENDING ROMENTS	PILE	۵	-315	-486-	-593.	-701-	-797.	-852.	-850.	-875.	-802.	-656.	-339.		-1.57	.01645	-11.86	
		-10 FROM	้ทษ	i 1	PILF	ပ	-624	-986-	-1280-	-1496.	-1485.	-1366.	-1190.	-1015.	-890-	-539.	-210-		-1.81	.21939	-24.93	
		= -152.10 = -151.93			PILE	£	-536.	-849.	-1011-	-1166.	-1192	-11113.	-939	-186-	-608-	-420.	-166.			.01655	1.57	
	NO. 5	R GRO	AP DEFL	}	PILE	<		-430 -	-539.	43.	•	-805-		-838-	- 788 -		-423.	9	8	.01640	7	
	OAD N		EAST C	F P TM s	INCHES		12.	24.	36.	-94	-09	72.	-68	96	114.	132-	156.	1 10		SLCPE		

•	•	•	
		FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 *	
		13,	
		DEC	
* * *	JOY	CF.	
****	HOUSTON PILE GROUP STUDY	1531	
	GROU	LOAD	
	PILE	RAL	
	NO	LATE	* * *
	HOUS	- HOX	
	_		•
		DAT	•
•••		ELD	•
Ξ		=	
		Ξ	•

	<	I	ပ			9 A.C		. 36	127.	£82.	2	65.	9	.95	55.	3	.02.	~			. 59	Ð	11.
NOF TF	9	u	-	2		•		•		w	1 6	10	3	יט	w	9	₹ 3	"				01	1 9
Ž	Q	L	æ	9116	-	PILE	-	253.	410.		•	701.	176.	824.	737.	679.	573.	331.			•	.01625	11.79
						PILE	I	441.	638.	B20.	9	991.	1003.	939.	E18.	9	461.	187.			1.45	-01722-	16,35
		(S		S	PILE	ပ	714.	974.	15	1355.		S	1127.		549.	367.	121.	ì		1.55	3-	25.26
		KI	LOAD CEL		INCH-KIP	PILE	L	460.	689.	813.	•096	1044.	1114.	1072.	4		m	308.	l		1.75	-01905-	19 • 75
		_	ור ור		MOMENTS.	PILE	ينا	543.	723.	838.	0	0	\blacksquare	0	8 o 6 •	0	542.				9	• 01B	21.63
		518	SCH KFS	NCHES	FENDING MC	PILE	۵	681.	0	2	1338.	1371.	1318.		950	-		178.			•	• 05	•
		18		163	NJU	PILE	U	351.	529.	• 699	746.	841.	876.	g	816.	0	g	9			1.47	.01	3.7
	01	182	= 171 = 1.1	1.		PILE	62	418.		4	904	961.	1018.	_	895.	Œ	641.	S			1.74	-01914-	7.1
	. 0	GROLF	AP DEFL			PILE	•4	622.	1	0	22	1241.	15	•	9	0	0	•	_		1.37	02014-	-
	LOAD NO	LOAD ON	S	EST C	E P TH	INCHES		12.		36.		€0.	72.	84.	-96	114.	(۳)	3,0		0	T T	SL CPE-	0

•	•	•
	HOUSTON PILE GROUP STUCY	1984
		13,
		DEC
	UCY	P
	UP ST	TEST
	GR0	LOAD
	PILE	ERAL
	TON	LAT
	HOUS	FROM
		DATA
		FIELD
•	_	_

	• • • •				****				
								Z	NORIF
LOAD NO. 5								C	9
CYCLE NO.	2010 46 - 16	•			7			L	
		152-92 FROM	e Le	LUAD LELL, KIPS OF PILE LOAD CE	ILE LOAD CE	rs Cells		-	 E
EAST CAP DE	1	5 2	보 보 S					3	-
								PILE	LEGEND
EP TH		BEN	BENDING MOMENTS	MENTS.	INCH-KIPS	PS			
INCHES PIL	E PILE	PILC	PILE	PILÉ	PILE	۵	PILE	PILE	AVG
•		U	0		L	9	I	-	
-2	-52	-637.	-308-	-363.	-348-	-256.	-393.	-533	-409
7	•	9	-474-	-508-	-523.	-410-	-577.	-197.	-6:1
	-066-	-1254.	-582-	-637.	-656.	-543	-761.	-1060-	-115.
9- •	1	-1476.	-689-	-818-	-194.	-593.	-887.	-1135	- 50p
	118	-1475.	-783.	-897.	-886-	-129.	-976-	-1124.	-576
27	•	-1365.	-840.	-922.	-924.	-608-	-1032	-1078.	-586
-8	•6-	-1193.	-835.	-920 •	-941.	LC)	-1018.	-906-	-541
8-	•	-1021-	-868-	-980-	-892	-872.	691	-745.	-888
47	-615.	- 895	-802.	-851.	-449.	-821.	-866.	-544.	-176
327	-42	-549.		-694-	-599.	-735-	-690-	-410.	-605
•	-170.	-218.	-349.	-425.	-279.	-438-	-354	-219.	-321
T LOAD									
EFL -	5 -1.5	~	•	1.7	-1.56	~	-1.83	-1.64	-1.69
SLGPE .0163	9 .0169		Ħ	15	145	.01472	~	.01908	.01663
0 A D -1	2 -21.6	24.9	-12.04	-15.37	-16.06	-10.96	-15.20	-23,36	-16.09

NOR IL

LOAD NO.	0. 5 NO. 102	90							ဌ	9
LOAD G	380	71 =	4	BIG	LOAD CELL,	LL, KIPS			<u>u.</u>	u
EAST C	AP DE		5722	H S S S	-	72 0407	ا د		£	-
ر ا	Ì	•	3	CHE S					PILE	LFEFN
E P TH			BEN	ENDING MC	ROMENTS.	INCH-KI	IPS		1	
INCHES	_	PILE	PILE	-4	PILE	PILE	PILE	PILE	PILE	N
	<	6	U	۵	نيا	L.	9	I	H	•
	596.	403.	338 •	648.	525.	441.	7	424.	246.	478
24.	898.	621.	512.	957.	714.	663.	932.	615.	398.	101
	0	763.	650.	1183.	820.	5	3	797.	564	861
	1212.	887.	727.	1318.	03	940.	3	920.	£32.	1004
	N	948	827.	1367.	1072.	M	1355.	983.	. 469	1056
12.	-	1007.	864.	1324.	10	1106.	1272.	1001.	768.	1068
84-	9	•696	886.	1171.	1016.	90	1146.	942.	819.	598
56.	0	893.	~	965.	0	946	853.	826.	734.	(1)
=	13	785.	591.	£87.	710.	796.	561.	632.	619.	662
132.	9	648.	9	452.	•	4	375.	9	576.	0
5		363.	0	182.	278.	316.	20	193.	337.	M
1 60	AD									
POINT:										
f.F		1.75	1.48	1.74	1.61	1.76	1.56	1.46	1.67	1.6
St OPE-	• 02	0	15	N	-01195-	8	•	• 017	•	•
	9	16.49	7	23.71	20.84	18.58	24.05	15.74	11.47	18.9

*****		1984	
		13,	
***		DEC	
	UCY	9	
	ITS OF	TEST	
	GROL	LOAD	
	N PILE	FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984	
	US TO	5	
4 4 4 4	Ē	FRO	
		DATA	
		IELD	
•		_	,

		+ FI		FROM	RAL	LOAD TEST	6	C 13,	198	
		# }		* * * *	- - - - - - - - - - - - - - - - - - -					
									2	NOK TH
LOAD NO	S								a	9
CYCLE	•	50								
ō	N GROUF	7	1.34 FROM	B16	AD CE	CELL, KIPS			L	ب
EAST C	AP DEFL	777 """	38.88 FK -78791 II	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	or Pile	LOAD CEL	, II.		£	-
) :		•	\ {						PILE	LEGEN
PIM			95	ND ING M	MENTS.	INCH-KIP	Ps S		1	:
INCHES	PILE	PILE	PILE	ILE PILE	ILE PILE	PILE	PILL	PILE	PILE	AVC
	⋖	6	U	٥	, w		9	I	-	
12.	-566.	0	-616.	-295	-345-	-336.	-283-	-374	-518.	£95.
24.	-397.	-008-	934	-460.	-486.	-503-	-391.	-550.	-770-	E83.
36.	-	-962.	-1220.	-558	-611.	-633.	-518.	-725.	-1033	-751
48.	-296-	-1127.	•	9	-791.	-164.	-563	-653.	-11118.	-863
• 09	60	-1167.	-1466.	-754.	-876.	-864	-708.	-953	-1121.	1255-
72.	-169.	-11112.	36	-821.	-912.	-	-190.	-1019.	-1086.	115-
84.	-847.	-945	-1203.	-822.	-915.	-937	-847.	-1013	-912.	20 E U =
-96	-824	-801.	m	-862.	-985-	9	-866	-990-	-754.	-685
114.	-788.	-620.	-919-	-805-	-852.	-753.	-820.	-£70.	-549.	-116
132.	-7111.	-430.	5	-666.	0	0	-739.	-698-	-411.	-613
56	-443.	-169.	-221.	-356-	-432	-285.	-447.	-362.	-219.	-326
T LOA	0									
	•		•		•	,	•	•	,	
		-1 - 23	1.8	-1.56	-1.11		-1.72	-1.83	-I•63	-1.6
LOPE		.01670	.01921	•01618	20	.01477	.01452	.01821	.01694	• 0166
OVO	~	e La	2.8	-10.89	-13.38	-14. 69	-9.87	-13.99	-22.02	-15.4

4	4	•
		1964
		13,
		DEC
	ΙOΥ	Ę,
	P STU	TEST
	6ROU	OVO
	PILF	PAL
	NOLS	LATE
	HOU	FROM
		DATA
化化物 化银矿 化邻苯基 计数据记录器 机铁 医眼球 医阴茎 医阴茎 医阴茎 医乳腺 医乳腺素 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	HOUSION FILE GROUP STUDY	If 1 D
•		•

₹ 5	E		ت د		LEGEND		AVG)	469	690	868.	1013.		1075.		E62 •	663.	505	235.			1.60	018	18.44	
<u>a</u>	L		œ		PILEL		PILE	-	237.	391.	566.	629.	690.	765.	795.	735.	692.	577.	•			1.67	5	11.07	
							PILE	I	414.	-60 ⁷	804.	925.	989	1007.	948.	830.	633.	467.	191.			1.45	0	15.40	
		LS				S	PILE	9	671.	N	1149.	an a	1384.	1298.	1164.	861.	559.	366.	110.			1.56	.02048	23.74	
	* KIFS	OAD CELLS				NCH-KIP	PILE	L.	431.	652.	800.	.946	1036-	1112.	1070.	945.	793.	642.	316.				.01890-	_	
	LOAD CFIL, KIFS	PILEL				•	بنا	ų.	517.	704.	830.	1044.	1082.	1112.	1025.	905.	$\overline{}$	541.	~			1.61	01794-	20.39	
	9 I 13	SUM	HE S	INCHE S		ING MON	PILE PIL	۵	643.	947.	1200.	1342.	38	1342.	6	971.	8	_	174.				02461		
	167.56 FROM	93 FROM	6.17 INCHE			BENDING	PILE	U	327.	• 96 •	647.	726.	821.	8.18.	884.	810.	-964	£00°	312.			1-47	01540-	12.48	
0		= 165.	1.10677	= 1-14			PILE	£	385.	597.	753.	875.	941.	.866	964.	888	782.	648.	364.			20	1877-	m	
• 5 0• 1850	GROU		IJ	DEFL			PILE	<	593.	889.	1060.	1236.	1267.	185	8	ø	4	261.	~				200	_	
C NO	O AC ON		AST CA	T CA		-	INCHES			24.	•9	8.		2.	84.	-96		132.	•	1 10	z	EF	PE-	0 4 0	

•	•	•	
		84	
		19	
		3.	
		<u>ر</u>	
		90	
	UCY	9	
#	SI	ST	
	P C	F	
:	GRC	OAC	
:		_	
	PI	ERA	
	HOUSTON PILE GROUP STUCY	FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 .	
	US	E	
-	3	FRO	
4 4		7	
•		O	
•		10	
-		FIE	
:	_	_	

LOAD ON										
	GROUF	= -142.3	-36 FROM	SUN	OF PILE LOA	LOAD CELI	רוצ		L.	w
AST CA	AP DEFL	11 11	92	분 당 S					<u>ت</u>	-
•	ì								PILE	LFCEN
PTHO			HEN	HENDING MC	MOMENTS.	INCH-KIPS	Ps			
INCHES	PILE	PILE	PILE	PILE	PILE	PILE	PILE	FILE	PILE	>
	₹ ,	0	د	>	ا ا نه	_ '	و	C	-	
	-286 -	-536.	-642.	-315.	-378.	9	-307-	-400	-1440	-41
24.	-426.	-845	-996-	-487.	-524	-534.	-419.	-61.3-	-863	-62
	-525-	-1006.	-1253.	-581.	-646.	-660	-541.	-753.	-1071.	-78
	-614.	-1169.	-1483.	-680	-826.	-190.	æ	-876-	-1154.	05-
	-123.	-1202.	-1500.	9	-902-	-883-	-721.	-69 6 -	-1151.	15-
12.	-111.	-1138	-1397。	2	-932	N	-792.	03	-1139.	55-
84.	-851.	-6963	-1224.	-817.	-922.		-845	1 622	-941.	451
-96	-822.	-812.	-1043.	5	-994	9	-860-	-992.	-764.	-89
114.	-788.	-626.	N	0	-852.	-753.	-817.	-874	-548	- 77
132.	-714.	-431	-558.	-672.	-701-	-909-	-740.	-702.	-467.	-61
56	0	-167.	-216.	9	-431.	-283-	-452.	-365.	-212.	(1) (1)
T LOAD	_									
=	8	-1.53	1.8	1.	1.7	4	-1.73	1.8	-1.67	-1-
OPE	.01602	.01668	.01924	162	01	.01513	.01509	.01832	.01967	.0166
9	12.2	Œ	9	40.01	4 4 4	•	40		•	•

		FIE	ELD DATA	HOUSTON FROM LATE	ON PILE ATERAL	GROUP LOAD TE	STUDY ST OF DE	FC 13,	1984	
									0	NOR TF
LOAD NO.		9							c	v
O VE ON	GROU	179	-25 FROM	BIG	LOAD CEL	L, KIPS	<i>u</i> .		<u>.</u>	E W
EAST CAP	DEFL	1.0	NI 70		:				E	г Г
				72	-	3	Ų.		PILE	LEGEND
INCHES	PILE	PILE B	PILT	PIL	TUTE PILE	PILE F	PS PILE 6	FILE	PILE	9 1 6
12.	7	0	347.	.069	~	9		435.		497.
24.	0		507.	98	M	8	916.	637.	0	711.
• •	10	~	664.	249	® (831.	203	839.	575.	899
48• 60•	3 G	~	822.	1423	0 7			. 5	S O	1039
2.	21	0	868.	371	36	1	1332.	1035		16
	9	9	890.	20	03	0	-	958.	Œ	0
96.	820.	885.	812.	967.	909	9 4 E -	856.	834	741.	863
32	•	· m	587) 🗝	· (~	•	341.	4 4	S C) @
15	-	349.	297.	153.	255.	298.	88	173.	330.	
FL GPE-	1.36	1.73	1.46	1.71	1.5	1.73	1.54	1.43	1.66	1.58 .01886
0 4 0	6.19	16 • 3	3.1	24.62	21.31	19-31	24.80	16.00	11.30	15.30

•	•	
		1984
		13,
		DEC
	701	8
	IP ST	TEST
	GROL	LOAD
	HOUSTON PILE GROUP STUDY	FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 .
	SOOH	FROM
		DATA
		FIELD
-		

130-17 FROM BIG LOAD CELL, KIPS 134-94 FROM SUN OF PILE LOAD CELLS 1-46594 INCHES		⋖	I	J	LEGEND		Ç A		7%	9			5 a	83.	•	92.		رن د .	2		•	.57		
AD NO. 5 CLE NO. 21G0 AD ON GROUP = -130-17 FROM BIG LOAD CELL, KIPS SI CAP DEFL = -1-64594 INCHES BENDING HOMENTS, INCH-KIPS CHES PILE PILE PILE PILE PILE FILE PILE PILE PILE FILE PILE PILE PILE FILE PILE PILE PILE FILE PILE PILE SI CAP DEFL = -1-64594 INCHES SI CAP DEFL = -1-64594 INCHES SI CAP DEFL = -1-6504 INCHES SI CAP DEFL = -10404 INCHES	0R 1 H	9	w	H	LEG		•		F)		-	8	5					9-				7 6	70.	
AD NO. 5 CLE NO. 2160 AD ON GROUP = -134.37 FROM BIG LOAD CELL, KIPS = -134.94 FROM SUM OF PILE LOAD CELLS SI CAP DEFL = -1.84.647 INCHES SI CAP DEFL = -1.86.640 INCHES SI CAP DEFL = -1.84.640 INCHES SI CAP DEFL = -	ž	۵	L	.	PILE		-	-	_	_	03	13	15	11	952	768	551	400	206			• •	7010	-21-48
AD NO. 5 CLE NO. 2160 AD ON GROUP = -134.94 FRON BIG LOAD CELL, KIPS = -134.94 FRON SUN OF PILE LOAD CELLS ST CAP DEFL = -1.846.47 INCHES ST CAP DEFL = -1.46.594 INCHES ST CAP DEFL = -1.46.944 INCHES ST CAP DEFL = -							PILE	I	359	-530		8	949	10	1619	989	871	697	363			• 0 1 •	1010	96-671-
AD NO. 5 CLE NO. 2100 CLE NO			-	i I			=	G	269	M	499	-540.	-691.	-169.	-830.	852	811	7				1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	24.64.5
AD NO. 5 CLE NO. 2100 CLE NO. 2100 AD ON GROUP = -134.94 FRON SUN OF SI CAP DEFL = -1.84647 INCHES SI CAP DEFL = -1.46594 INCHES SI CAP DEFL = -1.465			L. KIPS			INCH-KI	\vdash	i.	52	192	620	151	Ä	P 7	-940-	895	48	000	27				r 	21.41-
AD NO. 5 CLE NO. 2100 AD ON GROUP = -134.94 FROM SUN ST CAP DEFL = -1.46594 INCHES ST CAP			OAD CEL		,	S	I	lui	4	-476.	-602.	-195.	-883-	*	-	690	848	169	28			9410		FB-01-
AD NO. 5 CLE NO. 2100 AD ON GROUP = -134.94 ST CAP DEFL = -1.46594 ST CAP DEFL = -1.46594 1225049559 2437679559 266801136145 606801136145 606801136145 606801137139 61837968123 6245362191 INT: FL -1.86165104 INT: FL -1.86165104 OPE. 01578. 01663.019			BIG	是 是 是 S			֡֝֟֝֟֝֟֝֟֝֟֝֟֝ ֡	0	~	-440.	-531.	-637	-721.	-199.	-797-	-848-	-805-	-699-	36					?•aT
AD NO. 5 CLE NO. 2100 AD ON GROUP = - ST CAP DEFL = - ST CAP DEFL = - 1225049 1225049 12567113 4068091 4068091 4068091 14752113 6068091 1476362 1476362 1476362 1476362 1663091 1776362			-17 F	4647			PILE	u	593	-905-	-	=	=	-1399.	~	104	3	2	21		1 . 0	010	74.70	Z T = 2
AD NO. 5 CLE NO. 5 AD ON GRO ST CAP DE CHES P11 CHES P12 12250 46453 14762 14763 14763 16689 16689 16689 17763 17763 18763		991	1 1	1 1			PILE		4	-		-	190		•	8	62	42	16		•	7710		7 7 • C
PULL SUL SUL SUL SUL SUL SUL SUL SUL SUL			680				a	<	-250	-376.	-478.	-567.	89	2	83	8	78	20	5	e		74.6		77
		OAD (000	ST		E P 1H	35			24.			Ö	Ň	Ť	ø	İ	32	26	1 10	7 7 11 1	9		

1	•	•	
****		1984	
		13,	
		DEC	
	UDY	9	
	IP ST	TEST	
	GROU	COVO	
	HOUSTON PILE GROUP STUDY	FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984	
*******		FIELD D	

								化氯化苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	****		
									2	NOR IF	
N OVO	٠. د	G							0	9	
	GROUF	190	55 6	9 :	LOAD CELL.	U,	•		i.	w .	_
EAST C	AP DEFL AP DEFL		6706 8008	INCHES INCHES	2	_	כדווא		Œ		
)) 	i			2					PILE	LEGEN	Z
PIH			200	RENDING NO		INCH-KIP	PS				,
INCHES	PILE	PILE	PILE	PILE	PILE	PILE	PILE	PILE	PILE	>	9
	<	æ	U	0	u	L.	IJ	I	-		
12.	644.	~	355.	703.	566.	8	732.	461.	261.		•
24.	à		544.	1034.	780.	725.	1016.	.919	426.	75	و
36.	1163.	810.	703.	1309.	913.		1286.	885.	603.	55	Ö
48-	•	•	199.	1501.	1172.	9	1571.	1036.	695.	13	F)
•09	m	1025.	910.	1561.	1222.	1197.	S	-	759.	120	m
72.	m	•	958.	1516.	27	2	1486.	1160.	857.	21	-
84.	'n	1072.	1003.	1342.	1175.	-	n	89	884.	13	N
•	9	0	939.	0	05	07	975.	963.	857.	986	œ
14	ě	896.	760.	791.	M	908	659.	755.	800.	77	6
132.	356.		743.	553.	647.	+	465.	581.	682.	61	J
56.	7	5	414.		361.	400			429.	310	æ
AT LOAD POINT:	٥										
2	1.6		1.79	2.04		2.07	1.86	2.02	•	~	5
SLOPE-	-12313-	•	-01804-	-	02067-	-02176-	• 02	-00315-	-01875-	.019	Ä
2	27.0	16.	13.5	Õ	-	20.32	25.57	16,98	12.01	9	8

=	•	
****		1984
		13.
		DEC
1111	JOY	96
	IP STI	TEST
****	GROU	LOAD
****	HOUSTON PILE GROUP STUDY	RAL
	STON	LATE
	Ü E	FROM
		DATA
		FIELD DATA FROM LATERAL LOAD TEST OF DEC 13, 1984 *
•		-

									2	NOR TE	
LOAD N	NO. 5								۵	9	<
CYCLE	0.2	,	,						ı	1	
		- 140	40-41 FROM	E I G	LOAD CEL Of Pile	CELL, KIPS ILE LOAD CELLS	511		L	u	I
EAST CA	AP DEFL		71187	是 是 S					&	H	ပ
	·		I						PILE	LEGEND	Ş
DEPTHS			REE	RENDING MOMENTS	MENTS.	INCH-KIPS	PS				
INCHES	PILE	PILE	PILE	PILE	PILE	PILE	PILE	PILE	PILE	A	9
,	S	D •	د	3	ا ب	L !	פ	E	4		
12.	-240.	-504-	-608-	-263.	-330	-322.	-259.	-359	-515-	-378	18.
24.	-361.	-804.	-925.	-420-	-470-	-485.	-354.	-527.	-160-	1.6	7.
36.	-444-	-955.	-1216.	-495-	-586 •	-604-	-451.	-695-	-1038	-12	21.
· • • • • • • • • • • • • • • • • • • •	-12.	-1132	-1455.	-577-	-762.	-7111.	-481-	-603-	-1131.	-63	39.
•09	-612.	-1162.	-1474.	-642.	-828	-780-	-613.	-880-	-1132	- 503	33.
72.	-699-	-1011-	-1340.	-698-	-808-	-824.	-667	-932.	-1063.	-898	98.
=	-750.	-878-	-1132.	-690	-811.	-831.	-724-	-917.	-870.	-845	5.
96.	-697.	-698-	-916-	-735	-854	-772.	-733.	-858-	-654-	-1691-	9.6
=	-659-	-474-	-763.	-652	-695.	-599.	-672.	-713.	-420.	-62	26.
132.	-260.	-266.	-361.	-492.	-537.	-428.	-574.	-525-	-252.	+++-	*
156.	-331.	-40.	-67.	-237	-290•	-158.	-325-	-234.	-77.	- 19	96.
	2										
DEFL	7	-1.17	1.4	-1.22	17)	-1.20		-2.14	-1.29	-1-	41
SLOPE		.01428	.01692	.01263	.01251	-01194	- 1	.04252	.01653		141
0.00	-11-62	20	-23.29	-10.38	-13.47	-14 - 34		-13.50	-21.83	-15.	