| TABLE 3 Approximate pH Range of Some Common Materials (at 25°C) |         |                  |         |
|-----------------------------------------------------------------|---------|------------------|---------|
| Material                                                        | рН      | Material         | рН      |
| Gastric juice                                                   | 1.0-3.0 | Bread            | 5.0-6.0 |
| Lemons                                                          | 1.8–2.4 | Rainwater        | 5.5–5.8 |
| Vinegar                                                         | 2.4–3.4 | Potatoes         | 5.6-6.0 |
| Soft drinks                                                     | 2.0-4.0 | Milk             | 6.3–6.6 |
| Apples                                                          | 2.9–3.3 | Saliva           | 6.5–7.5 |
| Grapefruit                                                      | 2.9–3.4 | Pure water       | 7.0     |
| Oranges                                                         | 3.0-4.0 | Blood            | 7.3–7.5 |
| Cherries                                                        | 3.2–4.7 | Eggs             | 7.6–8.0 |
| Tomatoes                                                        | 4.0–4.4 | Sea water        | 8.0-8.5 |
| Bananas                                                         | 4.5–5.7 | Milk of magnesia | 10.5    |

Suppose the  $[H_3O^+]$  in a solution is greater than the  $[OH^-]$ , as is true for acidic solutions. For example, the pH of an acidic solution at 25°C with a  $[H_3O^+]$  of  $1\times 10^{-6}$  M is 6.0.

$$pH = -log [H_3O^+] = -log (1 \times 10^{-6}) = -(-6.0) = 6.0$$

The pH of this solution is less than 7. This is the case for all acidic solutions at 25°C. The following calculation shows that the pOH is greater than 7.0, as is true for all acidic solutions at 25°C.

$$pOH = 14.0 - pH = 14.0 - 6.0 = 8.0$$

Similar calculations show that the pH of a basic solution at 25°C is more than 7.0 and the pOH is less than 7.0. These and other relationships are listed in **Table 4.** Remember that as the temperature changes, the exact values will change because the value of  $K_w$  changes. However, the relationship pH + pOH = p $K_w$  will remain the same.





| TABLE 4 [H <sub>3</sub> O <sup>+</sup> ], [OH <sup>-</sup> ], pH, and pOH of Solutions |                                                                   |                                                                                           |  |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|
| Solution                                                                               | <b>General condition</b>                                          | At 25°C                                                                                   |  |
| Neutral                                                                                | [H <sub>3</sub> O <sup>+</sup> ] = [OH <sup>-</sup> ]<br>pH = pOH | $[H_3O^+] = [OH^-] = 1 \times 10^{-7} \text{ M}$<br>pH = pOH = 7.0                        |  |
| Acidic                                                                                 | [H <sub>3</sub> O <sup>+</sup> ] > [OH <sup>-</sup> ]<br>pH < pOH | $[H_3O^+] > 1 \times 10^{-7} M$<br>$[OH^-] < 1 \times 10^{-7} M$<br>pH < 7.0<br>pOH > 7.0 |  |
| Basic                                                                                  | [H <sub>3</sub> O <sup>+</sup> ] < [OH <sup>-</sup> ]<br>pH > pOH | $[H_3O^+] < 1 \times 10^{-7} M$<br>$[OH^-] > 1 \times 10^{-7} M$<br>pH > 7.0<br>pOH < 7.0 |  |