Izvještaj iz Astrostatistike

Tatjana Novaković

4. avgust 2025.

Zadatak 1: Transformacija raspodjele i analiza

Opis zadatka

Cilj zadatka je proučiti kako se raspodjela slučajne promjenljive mijenja pri primjeni nelinearne transformacije, konkretno: **logaritamske transformacije**. Korišćena je uniformna raspodjela $x \sim \mathcal{U}(a, b)$, gdje su a = 1 i b = 10, a zatim je nad ovim podacima primijenjena transformacija $y = \ln(x)$.

Analiza grafika

Histogram jasno prikazuje gotovo ravnomjernu gustinu vjerovatnoće, što je u skladu sa teorijskom PDF uniformne raspodjele:

$$p(x) = \frac{1}{b-a}, \quad x \in [a, b].$$

Log-transformacija je nelinearna: kompresuje veće vrijednosti i širi manje. Ovo dovodi do koncentracije gustoće ka višim vrijednostima y, što je vidljivo iz oblika histograma. Histogram više ne izgleda uniformno.

Teorijska PDF funkcija za $y = \ln(x)$

Za slučaj transformacije slučajne promjenljive $x \to y = g(x)$, teorijska PDF funkcija se računa prema pravilu:

$$p_Y(y) = p_X(x(y)) \cdot \left| \frac{\mathrm{d}x}{\mathrm{d}y} \right|,$$

Za $x \sim \mathcal{U}(a, b)$ i $y = \ln(x)$:

$$x = e^y$$
, $\frac{\mathrm{d}x}{\mathrm{d}y} = e^y \Rightarrow p_Y(y) = \frac{1}{b-a}e^y$.

Crvena linija predstavlja teorijsku funkciju gustine $p_Y(y)$, dok histogram prikazuje empirijski procijenjenu gustinu na osnovu uzoraka. Saglasnost je odlična — potvrđuje pravilnu primjenu transformacije distribucije.

Slika 1: Histogram podataka $x \sim \mathcal{U}(1,10)$

Slika 2: Histogram log-transformisanih podataka $y=\ln(x)$

Slika 3: Empirijski i teorijski PDF za $y = \ln(x)$

Zadatak 2: Prošireni problem Uspavane ljepotice (Bayesian inference)

Opis problema

U ovoj varijanti problema, koristi se pristrasan novčić:

- Vjerovatnoća glave: p(H) = p

Ako padne glava, ljepotica se budi samo jednom (ponedjeljak). Ako padne pismo, budi se N puta, gdje je $N \sim \text{Poisson}(\lambda)$.

Cilj je da, u trenutku buđenja, procijeni vjerovatnoću da je pao ishod "glava". Rješenje se bazira na Bajesovoj formuli.

Bajesova formula

$$P(H \mid W) = \frac{P(W \mid H) \cdot P(H)}{P(W)}$$

Gdje je:

- $P(W \mid H) = 1$, jer se budi jednom ako padne glava.
- $P(W \mid T) = \mathbb{E}[N] = \lambda$, jer se očekuje λ buđenja.
- $P(W) = P(H) \cdot 1 + P(T) \cdot \lambda = p + (1-p)\lambda$.

Slika 4: Posteriorna vjerovatnoća $P(H \mid \text{Buđenje})$ u zavisnosti od Poasonovog parametra λ

Dakle:

$$P(H \mid W) = \frac{p}{p + (1-p)\lambda}$$

Simulacija i grafički prikaz

Korišćenjem Monte Carlo simulacije sa $N=10\,000$ eksperimenata, procijenjena je vjerovatnoća $P(H\mid W)$ za tri vrijednosti λ .

Očigledan je pad vjerovatnoće da je pao ishod "glava" sa porastom λ . Intuitivno, kako se broj mogućih buđenja kod "pisma" povećava, šansa da je do buđenja došlo zbog "glave" opada.

Numerički rezultati

λ	Simulirano $P(H \mid W)$	Teorijsko $P(H \mid W)$
2	0.4835	0.4815
3	0.3882	0.3846
4	0.3119	0.3077

Rezultati simulacije se odlično slažu sa teorijskim vrednostima dobijenim direktno iz Bajesove formule.

Zaključak

Prvi zadatak demonstrira efekat transformacije raspodjele i važnost pravilnog proračuna teorijskog PDF-a u skladu sa matematičkim pravilima transformacije.

Drugi zadatak ilustruje kako dodatna informacija (broj buđenja) utiče na vjerovatnoću u uslovnom (Bayesovom) smislu. Povećanjem broja buđenja kod "pisma", posteriorna vjerovatnoća za "glavu" opada, što je intuitivno i potvrđeno simulacijom i analitički.