Mathematical Preliminaries

Mathematical Preliminaries

- Sets
- Functions
- Relations
- Graphs
- Proof Techniques

SETS

A set is a collection of elements

$$A = \{1, 2, 3\}$$

$$B = \{train, bus, bicycle, airplane\}$$

We write

$$1 \in A$$

$$ship \notin B$$

Set Representations

$$C = \{a, b, c, d, e, f, g, h, i, j, k\}$$

$$C = \{a, b, ..., k\} \longrightarrow finite set$$

$$S = \{2, 4, 6, ...\} \longrightarrow infinite set$$

$$S = \{j : j > 0, and j = 2k \text{ for some } k > 0\}$$

$$S = \{j : j \text{ is nonnegative and even}\}$$

$$A = \{1, 2, 3, 4, 5\}$$

Universal Set: all possible elements

Set Operations

$$A = \{1, 2, 3\}$$

$$B = \{ 2, 3, 4, 5 \}$$

Union

Intersection

$$A \cap B = \{2, 3\}$$

· Difference

$$A - B = \{ 1 \}$$

$$B - A = \{4, 5\}$$

Venn diagrams

Complement

Universal set = $\{1, ..., 7\}$ $A = \{1, 2, 3\}$ $\overline{A} = \{4, 5, 6, 7\}$

{ even integers } = { odd integers }

Integers

DeMorgan's Laws

$$\overline{A \cup B} = \overline{A \cap B}$$

$$\overline{A \cap B} = \overline{A \cup B}$$

Empty, Null Set: Ø

$$\emptyset = \{\}$$

$$SUØ =$$

Empty, Null Set: Ø

$$\emptyset = \{\}$$

$$SUØ = S$$

$$S \cap \emptyset = \emptyset$$

$$S - \emptyset = S$$

Subset

$$A = \{1, 2, 3\}$$
 $B = \{1, 2, 3, 4, 5\}$
 $A \subseteq B$

Proper Subset: $A \subseteq B$

Disjoint Sets

$$A = \{1, 2, 3\}$$
 $B = \{5, 6\}$

$$A \cap B = \emptyset$$

Set Cardinality

For finite sets

$$A = \{ 2, 5, 7 \}$$

$$|A| = 3$$

(set size)

Powersets

A powerset is a set of sets

$$S = \{ a, b, c \}$$

Powerset of S = the set of all the subsets of S

$$2^{5} = \{ \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\} \}$$

Observation:
$$|2^{5}| = 2^{|5|}$$
 (8 = 2³)

Cartesian Product

$$A = \{ 2, 4 \}$$

$$B = \{ 2, 3, 5 \}$$

$$A \times B = \{ (2, 2), (2, 3), (2, 5), (4, 2), (4, 3), (4, 5) \}$$

$$|A \times B| = |A| |B|$$

Generalizes to more than two sets

FUNCTIONS

 $f:A \rightarrow B$

If A = domain

then f is a total function (every element of is associated with one element of range) otherwise f is a partial function

RELATIONS

$$R = \{(x_1, y_1), (x_2, y_2), (x_3, y_3), ...\}$$

$$x_i R y_i$$

e. q. if
$$R = '>': 2 > 1, 3 > 2, 3 > 1$$

Equivalence Relations

- · Reflexive: x R x
- · Symmetric: xRy yRx
- Transitive: x R y and $y R z \longrightarrow x R z$

Example: R = '='

- x = x
- $\cdot x = y$ y = x
- x = y and y = z x = z

Equivalence Classes

For equivalence relation R

equivalence class of
$$x = \{y : x R y\}$$

Example:

$$R = \{ (1, 1), (2, 2), (1, 2), (2, 1), (3, 3), (4, 4), (3, 4), (4, 3) \}$$

Equivalence class of $1 = \{1, 2\}$

Equivalence class of $3 = \{3, 4\}$

GRAPHS

A directed graph

Nodes (Vertices)

$$V = \{ a, b, c, d, e \}$$

Edges

$$E = \{ (a,b), (b,c), (b,e), (c,a), (c,e), (d,c), (e,b), (e,d) \}$$

Labeled Graph

Walk

Walk is a sequence of adjacent edges (e, d), (d, c), (c, a)

Path

Path is a walk where no edge is repeated

Simple path: no node is repeated

Cycle

Cycle: a walk from a node (base) to itself

Simple cycle: only the base node is repeated

Euler Tour

A cycle that contains each edge once

Hamiltonian Cycle

A simple cycle that contains all nodes

Finding All Simple Paths

(c, a) (c, e)

(c, a)

(c, a), (a, b)

(c, e)

(c, e), (e, b)

(c, e), (e, d)

(c, a)

(c, a), (a, b)

(c, a), (a, b), (b, e)

(c, e)

(c, e), (e, b)

(c, e), (e, d)

Binary Trees

PROOF TECHNIQUES

Proof by induction

Proof by contradiction

Induction

We have statements P_1 , P_2 , P_3 , ...

If we know

- for some b that P_1 , P_2 , ..., P_b are true
- for any k >= b that

$$P_1, P_2, ..., P_k$$
 imply P_{k+1}

Then

Every P_i is true

Proof by Induction

Inductive basis

Find P₁, P₂, ..., P_b which are true

Inductive hypothesis

Let's assume P_1 , P_2 , ..., P_k are true, for any $k \ge b$

Inductive step

Show that P_{k+1} is true

Example

Theorem: A binary tree of height n has at most 2ⁿ leaves.

Proof by induction:

let L(i) be the maximum number of leaves of any subtree at height i

Inductive basis

$$L(0) = 1$$
 (the root node)

Inductive hypothesis

Let's assume
$$L(i) \leftarrow 2^i$$
 for all $i = 0, 1, ..., k$

Induction step

we need to show that
$$L(k + 1) \leftarrow 2^{k+1}$$

Induction Step

From Inductive hypothesis: $L(k) \leftarrow 2^k$

Induction Step

$$L(k+1) \leftarrow 2 * L(k) \leftarrow 2 * 2^{k} = 2^{k+1}$$

(we add at most two nodes for every leaf of level k)

Proof by Contradiction

We want to prove that a statement P is true

- we assume that P is false
- then we arrive at an incorrect conclusion
- therefore, statement P must be true

Example

Theorem: $\sqrt{2}$ is not rational

Proof:

Assume by contradiction that it is rational

$$\sqrt{2}$$
 = n/m

n and m have no common factors

We will show that this is impossible

$$\sqrt{2} = n/m$$
 $2 m^2 = n^2$

Therefore,
$$n^2$$
 is even $n = 2 k$

$$2 m^2 = 4k^2 \qquad m^2 = 2k^2 \qquad m = 2 p$$

Thus, m and n have common factor 2

Contradiction!