集中講義: 高次元エクスパンダーとその応用

清水 伸高 (東工大)

2024年5月

Contents

1	グラフ上のランダムウォーク		
	1.1	グラフ	
	1.2	グラフ上の単純ランダムウォーク	
	1.3	単純ランダムウォークの収束性と定常分布	
	1.4	混交時間とエクスパンダーグラフ	
2	高次	プロスプンダー	
	2.1	定義	
	2.2	単体複体上のランダムウォーク	
	2.3	局所スペクトルエクスパンダー	
	2.4	Oppenheim のトリクルダウン定理	
3	マトロイド		
	3.1	定義	
	3.2	例	
		3.2.1 グラフ的マトロイド	
		3.2.2 線形マトロイド	
	3.3	モチベーション	
		3.3.1 組合せ最適化	
		3.3.2 組合せ論	
	3.4	基の数え上げ	
4	Ana	ari, Liu, Gharan, Vinzant の定理	

1 グラフ上のランダムウォーク

1.1 グラフ

まず基礎的な概念の定義を与える。本講義では有限単純無向グラフを単に**グラフ (graph)** と呼ぶ。すなわち,グラフとは有限集合 V とその二元部分集合 $E\subseteq\binom{V}{2}$ の組 G=(V,E) である。V の元を**頂点 (vertex)**,E の元を**辺 (edge)** と呼ぶ。特に混乱が生じない限りは辺 $\{u,v\}$ を省略して uv と記す。二頂点 $u,v\in V$ が $uv\in E$ を満たすとき,u は v に隣接しているという(v もまた u に隣接している).頂点 $u\in V$ に対し $\deg(u)=|\{v\in V:uv\in E\}|$ を次数 (degree) と呼ぶ.全ての頂点の次数が d に

等しいとき, G は d-正則 (d-regular) であるという. 以下で定義される行列 $A \in \mathbb{R}^{V \times V}$ を**隣接行列** (adjacency matrix) という:

$$A(u,v) = \begin{cases} 1 & \text{if } uv \in E, \\ 0 & \text{otherwise.} \end{cases}$$

考えているグラフGが明らかな場合は次数や隣接行列などを $\deg(u)$, A などと表すが, そうでなく考えるグラフがGであることを強調する場合は $\deg_G(u)$, A_G などと表す.

1.2 グラフ上の単純ランダムウォーク

ランダムウォークは高次元エクスパンダーの定義やその解析に不可欠な概念である. そこで本節ではまず最も基本的なグラフ上の単純ランダムウォークを定義し, その基本的な性質を紹介する. 後に単純ランダムウォークを拡張した一般的なランダムウォークを導入し, その重要なクラスである可逆なランダムウォークについて説明する.

定義 1.1 (単純ランダムウォーク)

グラフG = (V, E) を考える. 頂点集合 V 上に値をとる確率変数の列 $(X_t)_{t=0,1,...}$ であって, 任意の $t \ge 0$, 頂点列 $(v_0, \ldots, v_{t-1}) \in V^t$, および $v \in V$ に対して

$$\Pr[X_t = v \mid X_0 = v_0, \dots, X_{t-1} = v_{t-1}] = \Pr[X_t = v_t \mid X_{t-1} = v_{t-1}] = \frac{1}{\deg(v_{t-1})}$$

を満たすものをG上の**単純ランダムウォーク** (simple random walk) という. さらに,

$$P(u,v) = \begin{cases} \frac{1}{\deg(u)} & \text{if } uv \in E, \\ 0 & \text{otherwise} \end{cases}$$

で定義される行列 $P \in [0,1]^{V \times V}$ を**遷移確率行列 (transition matrix)** と呼ぶ.

本稿では連続時間の確率過程は考えないので、 $(X_t)_{t=0,1,\dots}$ は略して $(X_t)_{t\geq 0}$ と表す.単純ランダムウォークの初期地点 X_0 については何も仮定していない.例えば X_0 は決定的な頂点 $X_0=u$ であったり一様ランダムな頂点であっても単純ランダムウォークと呼ぶ.

初期頂点 X_0 の分布が決まれば各時刻 t における X_t の分布は一意に定まる. 実際, $t \ge 0$ に対し $x_t \in [0,1]^V$ を X_t の分布とすると, 任意の $t \ge 1$ に対し

$$\begin{split} x_t(v) &= \Pr[X_t = v] \\ &= \sum_{u \in V} \Pr[X_t = v \text{ and } X_{t-1} = u] \\ &= \sum_{u \in V} \Pr[X_t = v \mid X_{t-1} = u] \Pr[X_{t-1} = u] \\ &= \sum_{u \in V} P(u, v) x_{t-1}(u) \end{split}$$

という漸化式を得る. これは $x_t = x_{t-1}P$ とも表せる (ここで x_t は行ベクトルとして扱う) ので

$$x_t = x_0 P^t \tag{1}$$

を得る.

グラフ G=(V,E) の各頂点を対角に並べた $V\times V$ 行列を**次数行列 (degree matrix)** という. すなわち, 次数行列 $D\in\mathbb{R}^{V\times V}$ は

$$D(u,v) = \begin{cases} \deg(u) & \text{if } u = v, \\ 0 & \text{otherwise.} \end{cases}$$

グラフG上の単純ランダムウォークの遷移確率行列Pは、次数行列Dと隣接行列Aを用いて $P=D^{-1}A$ と表せる.

- 1.3 単純ランダムウォークの収束性と定常分布
- 1.4 混交時間とエクスパンダーグラフ
- 2 高次元エクスパンダー
- 2.1 定義
- 2.2 単体複体上のランダムウォーク
- 2.3 局所スペクトルエクスパンダー
- 2.4 Oppenheim のトリクルダウン定理
- 3 マトロイド
- 3.1 定義
- 3.2 例
- 3.2.1 グラフ的マトロイド
- 3.2.2 線形マトロイド
- 3.3 モチベーション
- 3.3.1 組合せ最適化
- 3.3.2 組合せ論
- 3.4 基の数え上げ
- 4 Anari, Liu, Gharan, Vinzant の定理

定理 4.1 (Oppenheim のトリクルダウン定理)

hoge

定理 4.1より, 以下を得る.

系 4.2

jimei na kei

系 4.2 定理 4.1