Beispiele:

1. Es sei $V=K^3$ für $K=\mathbb{Z}_7$ und $v_1,v_2,v_3\in V$ seien gegeben durch $v_1=(1,2,3),\,v_2=(1,1,1)$ und $v_3=(3,4,5)$. Die Vektoren $v_1,\,v_2$ und v_3 sind linear abhängig, da

$$v_1 + 2v_2 + 6v_3 = (1, 2, 3) + 2(1, 1, 1) + 6(3, 4, 5)$$

= $(1, 2, 3) + (2, 2, 2) + (4, 3, 2)$
= $(0, 0, 0)$.

2. Wie im Beispiel anvor sei $K = \mathbb{Z}_7$ und $V = K^3$. Es soll geklärt werden, ob die folgenden Vektoren $v_1, v_2, v_3 \in V$ linear abhängig oder unabhängig sind: $v_n = (1, 2, 1)$, $v_2 = (6, 2, 3)$, $v_3 = (4, 4, 0)$.

Mit anderen Worten: Ejbt es Skalare¹⁾ λ_1, λ_2 und λ_3 , die nicht alle gleich Mull sind, so dass

(*) $\lambda_1 \mathcal{O}_1 + \lambda_2 \mathcal{O}_2 + \lambda_3 \mathcal{O}_3 = (0,0,0)$.

1) Es sei noch einmal darant hingeniesen, dass, Skalar" in diesem Beispiel, Element des Körpers K=Zz" bedentet.

Lösung: Zweckmäßigerweise schreiben wir die Vektoren v, v, v, v, in Spaltenform; (*) lautet dann

$$\lambda_{1}\begin{pmatrix} 1\\2\\1 \end{pmatrix} + \lambda_{2}\begin{pmatrix} 6\\2\\3 \end{pmatrix} + \lambda_{3}\begin{pmatrix} 1\\4\\6 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}.$$

Wir haben also ein lineares Gleichungssystem mit Koeffizienton (und Unbestimmten) aus \mathbb{Z}_7 zu lösen:

$$\lambda_1 + 6\lambda_2 + 4\lambda_3 = 0$$
$$2\lambda_1 + 2\lambda_2 + 4\lambda_3 = 0$$
$$\lambda_1 + 3\lambda_2 = 0$$

Wir verwenden den Gauß-Algorithmus:

Es ergibt sich als Lösung des Gleichungssystems ($t \in \mathbb{Z}_7$ ist ein frei wählbarer Parameter):

$$\lambda_3 = t$$

$$\lambda_2 + 6\lambda_3 = 0$$

$$\implies \lambda_2 = -6\lambda_3 = -6t = t$$

$$\lambda_1 + 6\lambda_2 + 4\lambda_3 = 0$$

$$\implies \lambda_1 = -6\lambda_2 - 4\lambda_3 = \lambda_2 + 3\lambda_3 = 4t$$

Die allgemeine Lösung des Gleichungssystems lautet also

$$(\lambda_1, \lambda_2, \lambda_3) = (4t, t, t) = t(4, 1, 1), t \in \mathbb{Z}_7.$$

Insbesondere erhält man bei Wahl von t = 1 eine nichttriviale Darstellung des Nullvektors

$$4v_1 + v_2 + v_3 = (0,0,0).$$

Die Vektoren v_1 , v_2 und v_3 sind also linear abhängig.

Einige Bemerkungen aum letzten Beispiel:

Als Menge geschrieben lantet die allgemeine Lösung des betrachteten binearen Cleichungssystems ("die Lösungsmenge")

L={t(4,1,1):tEZ}.

In Analogie aum R³ vennt man L'eine Ursprungsgerade des K³.

Man übernimmt also auch die gewohnten Sprechweisen. Frage:

Wie viele Elemente enshält K³?

Und wie viele dieser Elemente biegen

auf der Geraden L². Tragen Sie die

Antworten ein: | K³| = , |L| =

Geben Sie auch sämtliche Elemente

von L("Punkte der Geraden") an:

Ein weiteres Beispiel:

3. K=Z₃₁ N₁=(2,2,0), N₂=(1,1,1), N₃=(0,1,1).

Sind diese Vektoren des K³linear abhängig? Wir verwenden wieder den GpußAlgorithmus:

2	1	0	0
2 2 0	1	1	0
0	1 2 1	1 1 0 1	0 0
1	2	0	0
2	1	1	0
0	1	1	0 0
1	2	0	0
1 2 0 1 0	2 0	0 1	0
1 0 0	2 0 1	0 1 1	0 0 0
1 0 0 1	2 0 1 2	0 1 1	0 0 0
0 1 0	1 2 0 1 2 1	1	0 0 0 0
1 0 0 1 0 0	2 0 1 2 1 0	0	0 0 0 0 0

Um eine führende 1 zu erhalten wird die erste Zeile mit dem Inversen von 2 multipliziert.

Es folgt, dass $\lambda_1 = \lambda_2 = \lambda_3 = 0$ die einzige Lösung ist, d. h., die Vektoren v_1, v_2, v_3 sind linear unabhängig.