# ECE 523: Homework #1

# Solution

MVA := 1000kW MVAR := MVA

pu := 1

#### 1. Problem 1.1 in the text book



Divide the system into 3 zones. Zone I is the generator, Zone II is the transmission line, and Zone III is the motor. The transformers are the boundaries between zones.

#### Zone II Calculations:

$$V_{b2} := 100kV$$

$$Z_{b2} := \frac{{V_{b2}}^2}{S_b}$$
  $Z_{b2} = 1000 \Omega$ 

$$Z_{line} := 200 \text{ohm} + j \cdot 500 \text{ohm}$$

$$Z_{line\_pu} := \frac{Z_{line}}{Z_{h2}}$$
 
$$Z_{line\_pu} = (0.2 + 0.5i) \cdot pu$$

# **Zone I Calculations**

$$V_{b1} := V_{b2} \cdot \left( \frac{14kV}{132kV} \right) \quad V_{b1} = 10.61 \cdot kV$$

• Change of base calculation on the generator reactance:

$$V_{gen\_rated} := 13.8kV \qquad S_{gen\_rated} := 15MVA$$
 
$$X_{gen\_pu\_new} := 0.15pu \left( \frac{V_{gen\_rated}}{V_{b1}} \right)^2 \cdot \left( \frac{S_b}{S_{gen\_rated}} \right)$$
 
$$X_{gen\_pu\_new} = 0.1693 \cdot pu$$

• Transformer T1 change of base:

$$\begin{split} V_{low\_T1\_rated} &\coloneqq 14kV & S_{T1\_rated} \coloneqq 20MVA \\ X_{T1\_pu\_new} &\coloneqq 0.10pu \Bigg( \frac{V_{low\_T1\_rated}}{V_{b1}} \Bigg)^2 \cdot \Bigg( \frac{S_b}{S_{T1\_rated}} \Bigg) \\ \hline \\ X_{T1\_pu\_new} &= 0.0871 \cdot pu \end{split}$$

# **Zone III Calculations:**

$$V_{b3} := V_{b2} \cdot \left(\frac{13kV}{115kV}\right)$$
  $V_{b3} = 11.3 \cdot kV$ 

• Transformer T2 change of base:

$$\begin{split} V_{low\_T2\_rated} &:= 13 \text{kV} & S_{T2\_rated} := 15 \text{MVA} \\ & X_{T2\_pu\_new} := 0.10 \text{pu} \Bigg( \frac{V_{low\_T2\_rated}}{V_{b3}} \Bigg)^2 \cdot \Bigg( \frac{S_b}{S_{T2\_rated}} \Bigg) \\ & \underbrace{X_{T2\_pu\_new} = 0.09 \cdot \text{pu}} \end{split}$$

• Motor impedance change of base:

$$V_{motor\_rated} := 12kV \qquad S_{motor\_rated} := 10MVA$$
 
$$X_{motor\_pu\_new} := 0.07pu \left(\frac{V_{motor\_rated}}{V_{b3}}\right)^2 \cdot \left(\frac{S_b}{S_{motor\_rated}}\right)$$

$$X_{motor\_pu\_new} = 0.08 \cdot pu$$



2. Sketch a per phase, per unit equivalent circuit for the system below. Use a system MVA base of 100MVA, and a voltage base of 220 kV on the high voltage transmission line section.



Load

Using the following equipment nameplate data:

G1: 50 MVA, 13.8 kV, X = 15% G2: 25 MVA, 14.4 kV, X = 15%

T1: 60 MVA, 13.8 : 230 kV, X = 10% T2: 30 MVA, 230 : 13.8 kV, X = 10%

Line 1: 10 + j100 Ohm

Line 2: 0.05 + j0.5 Ohm

Line 3: 0.05 + j0.5 Ohm

Load: 25 MVA, 0.9pf lagging

• System MVA Base

 $S_B := 100MVA$ 

• Voltage base for the high voltage part of the system (Line 1):

$$V_{B2} := 220kV$$

• Voltage base for the rest of the system

$$V_{B1} := V_{B2} \cdot \left(\frac{13.8kV}{230kV}\right)$$
  $V_{B1} = 13.2 \cdot kV$ 

• Impedance Bases

$$Z_{B1} := \frac{{V_{B1}}^2}{S_B} \qquad \qquad Z_{B1} = 1.74 \, \Omega$$
 
$$Z_{B2} := \frac{{V_{B2}}^2}{S_B} \qquad \qquad Z_{B2} = 484 \, \Omega$$

• Change of Base Calculations:

Generator G1 
$$X_{G1} := 0.15 \text{pu} \cdot \left(\frac{13.8 \text{kV}}{V_{B1}}\right)^2 \cdot \left(\frac{S_B}{50 \text{MVA}}\right)$$
  $X_{G1} = 0.33 \cdot \text{pu}$ 

Generator G2 
$$X_{G2} := 0.15 \text{pu} \cdot \left(\frac{14.4 \text{kV}}{V_{B1}}\right)^2 \cdot \left(\frac{S_B}{25 \text{MVA}}\right)$$
  $X_{G2} = 0.71 \cdot \text{pu}$ 

Transformer T1: 
$$X_{t1} := 0.10 \text{pu} \cdot \left(\frac{13.8 \text{kV}}{V_{B1}}\right)^2 \cdot \left(\frac{S_B}{60 \text{MVA}}\right)$$
  $X_{t1} = 0.18 \cdot \text{pu}$ 

Transformer T2: 
$$X_{t2} := 0.10 \text{pu} \cdot \left(\frac{13.8 \text{kV}}{V_{B1}}\right)^2 \cdot \left(\frac{S_B}{30 \text{MVA}}\right)$$
  $X_{t2} = 0.36 \cdot \text{pu}$ 

• Convert Line Impedances to Per Unit

$$Z_{L1} := 10 \text{ohm} + j \cdot 100 \text{ohm}$$

$$Z_{L1pu} := \frac{Z_{L1}}{Z_{R2}}$$
  $Z_{L1pu} = (0.02 + 0.21i) \cdot pu$ 

$$Z_{L2} := 0.05 ohm + j \cdot 0.5 ohm$$

$$Z_{L2pu} := \frac{Z_{L2}}{Z_{P1}}$$
  $Z_{L2pu} = (0.03 + 0.29i) \cdot pu$ 

$$Z_{L3} := 0.05 \text{ohm} + j \cdot 0.5 \text{ohm}$$

$$Z_{L3pu} := \frac{Z_{L3}}{Z_{B1}}$$
  $Z_{L3pu} = (0.03 + 0.29i) \cdot pu$ 

• Equialent Load Impedance (can consider it parallel or series connected RL circuit)

$$P_{load} := MagSload \cdot pfload$$
  $P_{load} = 22.5 \cdot MW$ 

$$\theta_{load} := acos(pfload)$$
  $\theta_{load} = 25.84 \cdot deg$ 

$$Q_{load} := MagSload \cdot sin(\theta_{load})$$
  $Q_{load} = 10.9 \cdot MVAR$ 

$$S_{load} := P_{load} + j \cdot Q_{load}$$
  $S_{load} = (22.5 + 10.9i) \cdot MVA$ 

$$S_{load\_pu} \coloneqq \frac{S_{load}}{S_B}$$

$$\left| S_{load\_pu} \right| = 0.25 \cdot pu$$

Parallel Load

$$R_{load} \coloneqq \frac{{V_{B1}}^2}{P_{load}}$$

$$R_{load} = 7.74 \Omega$$

$$R_{load\_pu} \coloneqq \frac{R_{load}}{Z_{B1}}$$

$$R_{load\_pu} = 4.44 \cdot pu$$

$$X_{load} := \frac{{V_{B1}}^2}{Q_{load}}$$

$$X_{load} = 15.99 \Omega$$

$$X_{load\_pu} := \frac{X_{load}}{Z_{R1}}$$

$$X_{load\_pu} = 9.18 \cdot pu$$

As a check:  $V_{rated} := 1.0pu$ 

$$S_{check} := \frac{V_{rated}^2}{R_{load\ pu}} + \frac{jV_{rated}^2}{X_{load\ pu}}$$

$$S_{check} = 0.23 + 0.11i$$

$$\left| \mathbf{S}_{\text{check}} \right| = 0.25 \cdot \text{pu}$$

Correct magnitude

$$\frac{Re\!\left(S_{check}\right)}{\left|S_{check}\right|}\,=\,0.9$$

Correct power factor, and since imaginary part is positive, it is lagging

Series Connected Load

Recall:

$$S = V \cdot \overline{I}$$

(Complex conjugate of I)

$$S = V \cdot \overline{\left(\frac{V}{Z}\right)} = \frac{(|v|)^2}{\overline{Z}}$$
 So:  $Z := \overline{\left[\frac{(|v|)^2}{S}\right]}$  Take complex conjugate of both sides...

$$Z := \overline{\left[\frac{(|v|)^2}{S}\right]}$$

$$Z_{load\_series} := \boxed{ \frac{\left(V_{rated})(V_{B1})^2}{S_{load}}}$$

$$Z_{load\_series} = (6.27 + 3.04i) \Omega$$

$$Z_{load\_series\_pu} := \frac{Z_{load\_series}}{Z_{B1}}$$

$$Z_{load\_series\_pu} = (3.6 + 1.74i) \cdot pu$$

ECE 523: Session 3; Page 6/17 Symmetrical Components Fall 2019

# • Check result:

$$\begin{split} S_{check\_ser} &:= \frac{V_{rated}^2}{\overline{Z_{load\_series\_pu}}} & S_{check\_ser} = 0.23 + 0.11i \\ & \left| S_{check\_ser} \right| = 0.25 \cdot pu & arg(S_{check\_ser}) = 25.84 \cdot deg & positive angle, lagging pf \\ & \frac{Re(S_{check\_ser})}{\left| S_{check\_ser} \right|} = 0.9 & correct power factor. \end{split}$$

• Per Phase/Per Unit Equivalent Circut (using parallel R-L load):



3. A three-phase generator feeds three large synchronous motors over a 16km, 115kV transmission line, through a 115kV:13.8kV transformer bank, as shown below.

(a) Draw a per unit, per phasequivalent circuit with all reactances indicated in per unit on a 100 MVA base and 13.8kV or 115kv base.



(a) Draw a per unit, per phasequivalent circuit with all reactances indicated in per unit on a 100 MVA base and 13.8kV or 115kv base.

$$S_B := 100MVA$$

$$V_{B1} := 13.8kV$$

$$V_{B2} := V_{B1} \cdot \left(\frac{115}{13.8}\right)$$
  $V_{B2} = 115 \cdot kV$ 

$$V_{B3} := V_{B2} \cdot \left(\frac{13.8}{115}\right)$$
  $V_{B3} = 13.8 \cdot kV$ 

$$Generator \hspace{1cm} X_{dpp} := 0.20pu \cdot \left(\frac{13.2kV}{V_{B1}}\right)^2 \cdot \left(\frac{S_B}{50MVA}\right) \hspace{1cm} X_{dpp} = 0.37 \cdot pu$$

$$\text{Transformer 1:} \qquad \quad X_{t1} := 0.12 pu \cdot \left(\frac{13.8 kV}{V_{B1}}\right)^2 \cdot \left(\frac{S_B}{50 MVA}\right) \qquad \qquad X_{t1} = 0.24 \cdot pu$$

$$Z_{bII} := \frac{(V_{B2})^2}{S_B}$$
  $Z_{bII} = 132.25 \Omega$ 

Per unit line impedance 
$$X_{line\_pu} := \frac{\left(0.5 \frac{ohm}{km}\right) \cdot 16km}{Z_{bII}}$$
  $X_{line\_pu} = 0.06 \cdot pu$ 

Transformer 2: 
$$X_{t2} := 0.10 \cdot \left(\frac{115 \text{kV}}{V_{B2}}\right)^2 \cdot \left(\frac{S_B}{20 \text{MVA}}\right)$$
  $X_{t2} = 0.5$ 

Per unit equivalent circuit diagram:



(b) The generator is controlled to maintain the voltage at the motor bus at 1.0pu at an angle of 0 degrees. The three motors are operating at full rating and 90% PF lagging. Determine the voltage required at the generator terminals assuming that there is no voltage regulating taps or similar equipment in this system.

The motors have a total rating of 20 MVA

$$\begin{split} S_{load\_mag} &:= 20 MVA & pfload := 0.90 & \varphi_{load} := acos(0.90) & \varphi_{load} = 25.84 \cdot deg \\ S_{load} &:= S_{load\_mag} \cdot e^{\mathbf{j} \cdot \varphi_{load}} \\ S_{load\_pu} &:= \frac{S_{load}}{100 MVA} & S_{load\_pu} = 0.18 + 0.09\mathbf{i} & \left| S_{load\_pu} \right| = 0.2 \\ V_{load\_pu} &:= 1.0e^{\mathbf{j} \cdot 0} \end{split}$$

$$I_{load\_pu} := \frac{\overline{S_{load\_pu}}}{V_{load\_pu}} \qquad \qquad I_{load\_pu} = 0.18 - 0.09i$$

$$\left|I_{load\_pu}\right| \, = \, 0.2 \qquad \qquad arg\!\left(I_{load\_pu}\right) \, = \, -25.84 \cdot deg$$

Generator Terminal Voltage:

$$V_{t} := V_{load\_pu} + I_{load\_pu} \cdot (j \cdot X_{t1} + j \cdot X_{line\_pu} + j \cdot X_{t2})$$

$$|V_t| = 1.08$$
  $|arg(V_t)| = 7.67 \cdot deg$   $|V_t| \cdot V_{B1} = 14.9 \cdot kV$  line to line

(c) Calculate the voltage required behind the subtransient reactance for the generator and each of the motors

Generator Internal Voltage:

$$\begin{split} E_a &:= V_t + I_{load\_pu} \cdot \left( j \cdot X_{dpp} \right) \\ \hline \left| E_a \right| &= 1.12 \quad \text{arg} \left( E_a \right) = 10.79 \cdot \text{deg} \quad \left| E_a \right| \cdot \frac{V_{B3}}{\sqrt{3}} = 8.94 \cdot \text{kV} \quad \text{line to neutral states} \end{split}$$

# Motor 1:

$$I_{motor1} := I_{load\_pu} \cdot \left(\frac{10MVA}{\left|S_{load}\right|}\right)$$
 $I_{motor1} = (0.09 - 0.04i) \cdot pu$ 

$$|I_{motor1}| = 0.1 \cdot pu$$
  $arg(I_{motor1}) = -25.84 \cdot deg$ 

$$E_{am1} := V_{load\_pu} - I_{motor1} \cdot (j \cdot X_{m1})$$

$$|E_{am1}| = 0.93$$
 
$$|E_{am1}| \cdot \frac{V_{B3}}{\sqrt{3}} = 7.41 \cdot kV$$
 line to neutral

#### Motor 2:

$$I_{motor2} := I_{load\_pu} \cdot \left( \frac{5MVA}{\left| S_{load} \right|} \right) \qquad \qquad I_{motor2} = (0.05 - 0.02i) \cdot pu$$

$$\left|I_{motor2}\right| = 0.05 \cdot pu$$
  $arg(I_{motor2}) = -25.84 \cdot deg$ 

$$E_{am2} := V_{load\_pu} - I_{motor2} \cdot (j \cdot X_{m2})$$

$$|E_{am2}| = 0.93$$

$$\arg(E_{am2}) = -11.16 \cdot \deg$$

$$\left| \mathbf{E}_{am2} \right| \cdot \frac{\mathbf{V}_{B3}}{\sqrt{3}} = 7.41 \cdot \mathbf{k} \mathbf{V}$$

line to neutral

# Motor 3:

$$I_{motor3} := I_{load\_pu} \cdot \left( \frac{5MVA}{\left| S_{load} \right|} \right) \qquad \qquad I_{motor3} = (0.05 - 0.02i) \cdot pu$$

$$\left| I_{\text{motor3}} \right| = 0.05 \cdot \text{pu}$$

$$arg(I_{motor3}) = -25.84 \cdot deg$$

$$E_{am3} := V_{load\_pu} - I_{motor3} \cdot (j \cdot X_{m3})$$

$$|E_{am3}| = 0.94$$

$$arg(E_{am3}) = -9.38 \cdot deg$$

$$\left| \mathbf{E}_{am3} \right| \cdot \frac{\mathbf{V}_{B3}}{\sqrt{3}} = 7.48 \cdot \mathbf{k} \mathbf{V}$$

line to neutral

# (d) Calculate the line current in Amperes

Base current on the transmission line segment:

$$I_{B2} := \frac{S_B}{\sqrt{3} \cdot V_{B2}}$$
  $I_{B2} = 502.04 \, A$ 

$$I_{line} := I_{load\_pu} \cdot I_{B2}$$

$$I_{line}$$
 = 100.41 A

- 4. Draw the per unit, Thevenin equivalent circuit for the system below looking out from the load bus if:
- (a) The generator internal voltages are equal in magnitude and angle (label both as  $E_1$  and present your results as a function of  $E_1$ )
- (b) The generator internal voltages are not equal (label one as  $E_1$  and the other  $E_2$  in your solution, and present your results as a function of  $E_1$  and  $E_2$ )

Impedance values (all on consistent bases, no change of base needed):

G1: X = 0.1 puG2: X = 0.1 pu

Line 1: X = 0.1 pu

Line 2: X = 0.1 puLoad: Z = j 0.1 pu



Session 3; Page 11/17

Fall 2019

# Answer part (b) first to get a general approach, and then apply that result to part (a)

(b) The generator internal voltages are not equal (label one as  $E_1$  and the other  $E_2$  in your solution, and present your results as a function of  $E_1$  and  $E_2$ )

$$Z_{g1} := j \cdot 0.1 pu$$

$$Z_{Line1} := j \cdot 0.1pu$$

$$Z_{load} := j \cdot 0.1 pu$$

$$Z_{g2} := j \cdot 0.1 pu$$

$$Z_{Line2} := j \cdot 0.1 pu$$

• Impedance to the left of the load:

$$Z_{left} := Z_{g1} + Z_{Line1}$$

$$Z_{left} = 0.2i \cdot pu$$

• Impedance to the right of the load:

$$Z_{right} := Z_{g2} + Z_{Line2}$$

$$Z_{right} = 0.2i \cdot pu$$

• Resulting equivalent circuit



• Now take Norton Equivalent to left and the right, leading to this circuit:



$$I_{N\_left} = \frac{E_1}{Z_{left}} \qquad \qquad I_{N\_right} = \frac{E_2}{Z_{right}}$$

• Now combine the two Norton equivalents in parallel

$$I_{N\_total} = I_{N\_left} + I_{N\_right} = \frac{E_1}{Z_{left}} + \frac{E_2}{Z_{right}}$$

• Equivalent impedance

$$Z_{equiv} := \left(\frac{1}{Z_{left}} + \frac{1}{Z_{right}}\right)^{-1}$$
  $Z_{equiv} = 0.1i \cdot pu$ 

• Convert Norton Equivalent Back to Thevenin' Equivalent

$$V_{thev} = I_{N\_total} \cdot Z_{equiv} = E_1 \cdot \frac{Z_{equiv}}{Z_{left}} + E_2 \cdot \frac{Z_{equiv}}{Z_{right}}$$



• In this case:

$$V_{\text{thev}} = E_1 \cdot \left(\frac{j \cdot 0.1}{j \cdot 0.2}\right) + E_2 \cdot \left(\frac{j \cdot 0.1}{j \cdot 0.2}\right) = 0.5 \cdot E_1 + 0.5 \cdot E_2$$

(a) The generator internal voltages are equal in magnitude and angle (label both as  $E_1$  and present your results as a function of  $E_1$ )

Now we have identical voltages, so:

$$V_{\text{thev}} = 0.5 \cdot E_1 + 0.5 \cdot E_1 = E_1$$
 As one would expect.....

Z.equiv stays the same, it does not depend on the voltage output of the source

#### 5. Problem 1.4 in the text book

The following table of values has been prepared for various line sections in a small electric system. Find the total p.u. impedance and shunt susceptance of each line on a 10 MVA base, using the nominal line voltage as a base.

$$S_{b4} := 10MVA$$

The table has two different voltage bases:

$$V_{b13 \ 8} := 13.8kV$$
  $V_{b69} := 69kV$ 

Impedance and admittance bases

$$\begin{split} Z_{b13\_8} &\coloneqq \frac{V_{b13\_8}^{}}{S_{b4}} & Z_{b13\_8} = 19.04\,\Omega \\ Y_{b13\_8} &\coloneqq \frac{1}{Z_{b13\_8}} & Y_{b13\_8} = 0.05 \cdot \text{mho} \\ Z_{b69} &\coloneqq \frac{V_{b69}^{}}{S_{b4}} & Z_{b69} = 476.1\,\Omega \\ Y_{b69} &\coloneqq \frac{1}{Z_{b69}} & Y_{b69} = 0.0021\,\frac{1}{\Omega} \end{split}$$

# Line 1:

$$\begin{array}{lll} \text{Length1} \coloneqq 5\text{mi} & R_1 \coloneqq 0.278 \frac{\text{ohm}}{\text{mi}} & X_1 \coloneqq 0.690 \frac{\text{ohm}}{\text{mi}} & X_{c1} \coloneqq 0.16\text{M}\Omega \cdot \text{mi} \\ \\ Z_{total1} \coloneqq \left(R_1 + j \cdot X_1\right) \cdot \text{Length1} & Z_{total1} = (1.39 + 3.45i) \, \Omega \\ \\ B_{c1} \coloneqq \frac{\text{Length1}}{X_{c1}} & B_{c1} = 3.13 \times 10^{-5} \cdot \text{mho} \end{array}$$

Per Unit results:

$$\begin{split} Z_{1\_pu} &\coloneqq \frac{Z_{total1}}{Z_{b13\_8}} \\ B_{c1\_pu} &\coloneqq \frac{B_{c1}}{Y_{b13\_8}} \end{split} \qquad & & & & & & & \\ \hline Z_{1\_pu} &= (0.07 + 0.18i) \cdot pu \\ \hline B_{c1\_pu} &\coloneqq \frac{B_{c1}}{Y_{b13\_8}} & & & & & & \\ \hline B_{c1\_pu} &= 0.000595 \cdot pu & & & & \\ \hline Admittance & & & & & \\ \hline \end{split}$$

It is ok to express Bc as a capactive reactance instead:

$$X_{c1_pu} := \frac{1}{B_{c1_pu}}$$
  $X_{c1_pu} = 1680.32 \cdot pu$ 

Line 2:

$$\begin{split} \text{Length2} &:= 2 \text{mi} \qquad R_2 := 1.374 \frac{\text{ohm}}{\text{mi}} \qquad X_2 := 0.816 \frac{\text{ohm}}{\text{mi}} \qquad X_{c2} := 0.193 \text{M}\Omega \cdot \text{mi} \\ \\ Z_{total2} &:= \left(R_2 + \text{j} \cdot X_2\right) \cdot \text{Length2} \qquad \qquad Z_{total2} = (2.75 + 1.63 \text{i}) \, \Omega \\ \\ B_{c2} &:= \frac{\text{Length2}}{X_{c2}} \qquad \qquad B_{c2} = 1.04 \times 10^{-5} \cdot \text{mho} \end{split}$$

Per Unit results:

$$\begin{split} Z_{2\_pu} &\coloneqq \frac{Z_{total2}}{Z_{b13\_8}} \\ B_{c2\_pu} &\coloneqq \frac{B_{c2}}{Y_{b13\_8}} \end{split}$$
 
$$B_{c2\_pu} &\coloneqq \frac{B_{c2}}{Y_{b13\_8}}$$
 
$$B_{c2\_pu} = 0.000197$$

It is ok to express Bc as a capactive reactance instead:

$$X_{c2\_pu} := \frac{1}{B_{c2\_pu}}$$
  $X_{c2\_pu} = 5067.21 \cdot pu$ 

Line 3:

$$\begin{split} \text{Length3} &:= 3.9 \text{mi} \quad R_3 := 0.445 \frac{\text{ohm}}{\text{mi}} \quad X_3 := 0.711 \frac{\text{ohm}}{\text{mi}} \quad X_{c3} := 0.157 \text{M}\Omega \cdot \text{mi} \\ \\ Z_{total3} &:= \left(R_3 + \text{j} \cdot X_3\right) \cdot \text{Length3} \quad Z_{total3} = \left(1.74 + 2.77 \text{i}\right) \Omega \\ \\ B_{c3} &:= \frac{\text{Length3}}{X_{c3}} \quad B_{c3} = 2.48 \times 10^{-5} \cdot \text{mho} \end{split}$$

Per Unit results:

$$Z_{3\_pu} := \frac{Z_{total3}}{Z_{b13\_8}}$$
 
$$Z_{3\_pu} = 0.09 + 0.15i$$
 
$$B_{c3\_pu} := \frac{B_{c3}}{Y_{b13\_8}}$$
 
$$B_{c3\_pu} = 0.000473$$

It is ok to express Bc as a capactive reactance instead:

$$X_{c3_pu} := \frac{1}{B_{c3_pu}}$$
  $X_{c3_pu} = 2113.86 \cdot pu$ 

Line 4:

$$\begin{split} \text{Length4} &:= 6.2 \text{mi} \quad R_4 := 0.278 \frac{\text{ohm}}{\text{mi}} \quad X_4 := 0.730 \frac{\text{ohm}}{\text{mi}} \quad X_{c4} := 0.172 \text{M}\Omega \cdot \text{mi} \\ \\ Z_{total4} &:= \left( R_4 + \text{j} \cdot \text{X}_4 \right) \cdot \text{Length4} \quad Z_{total4} = (1.72 + 4.53 \text{i}) \, \Omega \\ \\ B_{c4} &:= \frac{\text{Length4}}{X_{c4}} \quad B_{c4} = 3.6 \times 10^{-5} \cdot \text{mho} \end{split}$$

Per Unit results:

$$Z_{4\_pu} := \frac{Z_{total4}}{Z_{b13\_8}}$$

$$Z_{4_pu} = 0.09 + 0.24i$$

$$B_{c4\_pu} := \frac{B_{c4}}{Y_{b13.8}}$$

$$B_{c4_pu} = 0.000686$$

It is ok to express Bc as a capactive reactance instead:

$$X_{c4\_pu} := \frac{1}{B_{c4\_pu}}$$

$$X_{c4 pu} = 1456.73 \cdot pu$$

Line 5:

$$R_5 := 0.088 \frac{\text{ohm}}{\text{mi}}$$

Length5 := 7.3mi 
$$R_5 := 0.088 \frac{\text{ohm}}{\text{mi}}$$
  $X_5 := 0.330 \frac{\text{ohm}}{\text{mi}}$   $X_{c5} := 0.142 \text{M}\Omega \cdot \text{mi}$ 

$$X_{c5} := 0.142M\Omega \cdot m^2$$

$$Z_{total5} := (R_5 + j \cdot X_5) \cdot Length5$$

$$Z_{\text{total5}} = (0.64 + 2.41i) \Omega$$

$$B_{c5} \coloneqq \frac{Length5}{X_{c5}}$$

$$B_{c5} = 5.14 \times 10^{-5} \cdot \text{mho}$$

Per Unit results:

$$Z_{5\_pu} \coloneqq \frac{Z_{total5}}{Z_{b13\_8}}$$

$$Z_{5_pu} = 0.03 + 0.13i$$

$$B_{c5\_pu} := \frac{B_{c5}}{Y_{h13.8}}$$

$$B_{c5\_pu} = 0.000979$$

It is ok to express Bc as a capactive reactance instead:

$$X_{c5\_pu} := \frac{1}{B_{c5\_pu}}$$

$$X_{c5_pu} = 1021.43 \cdot pu$$

Line 6:

Length6 := 10.0mi 
$$R_6 := 0.445 \frac{\text{ohm}}{\text{mi}}$$
  $X_6 := 0.711 \frac{\text{ohm}}{\text{mi}}$   $X_{c6} := 0.157 \text{M}\Omega \cdot \text{mi}$ 

$$X_6 := 0.711 \frac{\text{ohm}}{\text{mi}}$$

$$X_{c6} := 0.157 M\Omega \cdot mi$$

$$Z_{total6} := (R_6 + j \cdot X_6) \cdot Length6$$

$$Z_{\text{total6}} = (4.45 + 7.11i) \Omega$$

$$B_{c6} := \frac{\text{Length6}}{X_{c6}}$$

$$B_{c6} = 6.37 \times 10^{-5} \cdot \text{mho}$$

Per Unit results:

$$Z_{6\_pu} := \frac{Z_{total6}}{Z_{b69}}$$

$$Z_{6_pu} = 0.01 + 0.01i$$

$$B_{c6\_pu} := \frac{B_{c6}}{Y_{b69}}$$

$$B_{c6_pu} = 0.030325$$

It is ok to express Bc as a capactive reactance instead:

$$X_{c6\_pu} := \frac{1}{B_{c6\_pu}}$$

$$X_{c6\_pu} = 32.98 \cdot pu$$

# Line 7:

$$\begin{split} \text{Length7} &:= 25 \text{mi} \quad R_7 := 0.278 \frac{\text{ohm}}{\text{mi}} \quad X_7 := 0.730 \frac{\text{ohm}}{\text{mi}} \quad X_{c7} := 0.172 \text{M}\Omega \cdot \text{mi} \\ \\ Z_{total7} &:= \left(R_7 + j \cdot X_7\right) \cdot \text{Length7} \quad Z_{total7} &= (6.95 + 18.25 \text{i}) \, \Omega \\ \\ B_{c7} &:= \frac{\text{Length7}}{X_{c7}} \quad B_{c7} &= 1.45 \times 10^{-4} \cdot \text{mho} \end{split}$$

Per Unit results:

$$\begin{split} Z_{7\_pu} &:= \frac{Z_{total7}}{Z_{b69}} \\ B_{c7\_pu} &:= \frac{B_{c7}}{Y_{b69}} \end{split}$$
 
$$\begin{split} & Z_{7\_pu} = 0.01 + 0.04i \\ & B_{c7\_pu} = 0.069201 \end{split}$$

It is ok to express Bc as a capactive reactance instead:

$$X_{c7_pu} := \frac{1}{B_{c7_pu}}$$
  $X_{c7_pu} = 14.45 \cdot pu$