$2SAT \in P$ Ejercicio 27 de Sipser

Juan Carlos Alcausa Luque

Universidad de Málaga

Contenido

- Introducción
- ② Grafo de Implicaciones
- Algoritmo y Demostración
- 4 Análisis de Complejidad

Problema 2SAT

Definición

Una 2cnf-fórmula es un *AND* de cláusulas, donde cada cláusula es un *OR* de a lo sumo dos literales.

Problema

 $2SAT = \{\langle \phi \rangle \mid \phi \text{ es una 2cnf-fórmula}\}$

¿Es $2SAT \in P$? Es decir, ¿existe un algoritmo polinómico para decidir si una 2cnf-fórmula es satisfacible?

Ejemplos de Fórmulas 2-CNF

Fórmula 1

$$\phi_1 = (x_1 \lor x_2) \land (x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3)$$

Fórmula 2

$$\phi_2 = (x \vee y) \wedge (y \vee z) \wedge (\neg x \vee \neg z)$$

Fórmula 3

$$\phi_3 = (x_1 \vee x_2) \wedge (\neg x_1 \vee x_2) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee \neg x_2)$$

Transformación a Grafo

Equivalencias Lógicas

Para cualquier cláusula $(a \lor b)$:

- $(a \lor b) \equiv (\neg a \rightarrow b)$
- $\bullet \ (a \lor b) \equiv (\neg b \to a)$

Construcción del Grafo

- Por cada variable x_i , creamos dos nodos: x_i y $\neg x_i$
- Por cada cláusula $(a \lor b)$, añadimos dos aristas dirigidas:
 - $\bullet \neg a \rightarrow b$
 - \bullet $\neg b \rightarrow a$
- Para cláusulas unitarias (a), añadimos $\neg a \rightarrow a$

Teorema

Una fórmula 2-CNF ϕ es satisfacible si y solo si no existe ninguna variable x_i tal que x_i y $\neg x_i$ estén en la misma componente fuertemente conexa (SCC) del grafo de implicaciones.

Idea

- Si x_i y $\neg x_i$ están en la misma SCC, entonces $x_i \Rightarrow \neg x_i$ y $\neg x_i \Rightarrow x_i$
- Esto crea una contradicción lógica: no existe ninguna asignación válida
- Un ciclo de inconsistencia es un ciclo que contiene tanto x_i como $\neg x_i$

Ejemplo: Fórmula No Satisfacible

Consideremos:

$$\phi_3 = \begin{array}{c} (x \lor y) \land \\ (\neg x \lor y) \land \\ (x \lor \neg y) \land \\ (\neg x \lor \neg y) \end{array}$$

Transformando a implicaciones:

- $(\neg x \rightarrow y), (\neg y \rightarrow x)$
- $(x \rightarrow y), (\neg y \rightarrow \neg x)$
- $\bullet \ (\neg x \to \neg y), \ (y \to x)$
- $(x \rightarrow \neg y), (y \rightarrow \neg x)$

Resultado

¡Todos los nodos están en la misma SCC! Contradicción: ϕ_3 no es satisfacible.

Ejemplo: Fórmula Satisfacible

Consideremos:

$$\phi_2 = \begin{array}{c} (x \lor y) \land \\ (y \lor z) \land \\ (\neg x \lor \neg z) \end{array}$$

Transformando a implicaciones:

$$\bullet (\neg x \rightarrow y), (\neg y \rightarrow x)$$

$$\bullet \ (\neg y \to z), \ (\neg z \to y)$$

•
$$(x \rightarrow \neg z)$$
, $(z \rightarrow \neg x)$

Análisis correcto

Este grafo no tiene SCCs grandes, solo SCCs triviales (nodos individuales).

No hay ciclos que contengan tanto una variable como su negación.

Por tanto, la fórmula ϕ_2 es satisfacible. Una asignación válida es:

$$x = 1, y = 1, z = 0.$$

Demostración Formal

Teorema

 ϕ es satisfacible si y solo si no hay un ciclo de inconsistencia en su grafo de implicaciones.

Demostración.

- (\Rightarrow) Si existe un ciclo de inconsistencia, entonces $x_i \Rightarrow \neg x_i$ y $\neg x_i \Rightarrow x_i$ para algún i. Esto crea la equivalencia lógica $x_i \leftrightarrow \neg x_i$, que es una contradicción.
- (⇐) Si no existe ciclo de inconsistencia, podemos construir una asignación satisfactoria: elegimos una variable no asignada x_i, le asignamos un valor (y a todos sus implicados), eliminamos esos nodos y repetimos hasta asignar todas las variables.

Algoritmo para 2SAT

Algorithm 1 2SAT (vars, cláusulas)

- $1: \ grafo \leftarrow construir_grafo_de_implicación(vars, \ cláusulas)$
- 2: mapa_scc ← encontrar_SCCs(grafo)
- 3: **for** cada $x \in \text{vars } \mathbf{do}$
- 4: **if** mapa_scc[x] = mapa_scc[-x] **then**
- 5: **return** falso
- 6: end if
- 7: end for
- 8: return verdadero

Explicación

- Construimos el grafo de implicación
- Encontramos todas las componentes fuertemente conexas (SCCs)
- Verificamos que ninguna variable y su negación estén en la misma SCC

Complejidad Temporal

$$T(V, E) = O(|V| + |E| + |V| + |E| + \frac{|V|}{2} * 2) = O(|V| + |E|)$$

- **1** Construcción del grafo de implicación: |V| + |E|
- **2** Encontrar las componentes fuertemente conexas: O(|V| + |E|)
 - La función encontrar_SCCs(grafo) implementa el algoritmo de Kosaraju
 - Este algoritmo tiene una complejidad temporal de O(|V| + |E|)
 - Esta es la parte dominante de la complejidad total
- **3** Verificación de contradicciones: |V|
 - El bucle for itera sobre cada variable, habiendo $\frac{|V|}{2}$ variables
 - La comprobación de si una variable y su negación están en la misma SCC es una operación de tiempo constante (2 para cada iteración) gracias al mapa que devuelve el algoritmo.

Conclusión

El algoritmo tiene complejidad temporal O(|V| + |E|), que expresado en términos de variables y cláusulas es O(n + m).

Por tanto, $2SAT \in P$

Implicaciones Prácticas

Aplicaciones de 2SAT

- Programación lógica: Resolución eficiente de restricciones binarias
- Planificación: Problemas con restricciones mutuamente exclusivas
- Verificación de hardware: Circuitos con restricciones de dos literales
- **Toma de decisiones**: Problemas con opciones binarias y restricciones sencillas

Conclusiones

- 2SAT es un problema de satisfacibilidad resoluble en tiempo polinómico, lo que implica que $2SAT \in P$
- La clave del enfoque es la transformación del problema a un grafo de implicaciones
- La verificación de satisfacibilidad se reduce a comprobar la ausencia de ciclos de inconsistencia
- El algoritmo tiene una complejidad temporal de O(|V| + |E|)

