UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO

ÁLGEBRA MODERNA III (ejemplo)

HORAS A LA SEMANA/SEMESTRE

SEMESTRE: Séptimo u octavo

CLAVE: **0003**

TEÓRICAS	PRÁCTICAS	CRÉDITOS
5/80	0	10

CARÁCTER: **OPTATIVO**. MODALIDAD: **CURSO**.

SERIACIÓN INDICATIVA ANTECEDENTE: Álgebra Moderna II. SERIACIÓN INDICATIVA SUBSECUENTE: Álgebra Moderna IV.

OBJETIVO(S): Introducir al alumno a la teoría de categorías, a la teoría general de módulos y empezar a profundizar en la teoría de anillos.

NUM. HORAS	UNIDADES TEMÁTICAS
10	1. Categorías y funtores
	1.1 Categorías.
	1.2 Ejemplos.
	1.3 Funtores.
	1.4 Transformaciones naturales y funtores adjuntos.
	1.5 Propiedades universales.
	1.6 Productos y coproductos.
	1.7 Categorías aditivas.
	1.8 Funtores aditivos.
12	2. Módulos, submódulos, cocientes
	2.1 Anillos.
	2.2 Ideales izquierdos, derechos, bilaterales.
	2.3 Submódulos.
	2.4 La retícula de submódulos de un módulo.
	2.5 Sumas directas.
	2.6 Complementos, seudocomplementos.
	2.7 Cocientes de módulos, anillos cocientes.

12	3. La categoría R-mod
	3.1 Morfismos de anillos y sus propiedades.
	3.2 Monomorfismos, epimorfismos.
	3.3 Productos de anillos.
	3.4 Teoremas de isomorfismos.
	3.5 Generadores y cogeneradores de R-mod.
	3.6 Sucesiones exactas.
	3.7 Sucesiones exactas cortas.
	3.8 Lema de los 5, Lema de la serpiente. Cacerías en diagramas.
	3.9 Escisión de una sucesión exacta corta y sumas directas.
	3.10 Construcción del producto y del coproducto en R-mod.
	3.11 Sumas directas internas y sumas directas externas.
	3.12 Módulos libres.
	3.13 Un módulo es libre si y sólo si tiene base.
	3.14 Todo módulo es cociente de un libre.
	3.15 Un anillo es anillo con división si y sólo si cada módulo tiene
	base.
	3.16 Productos y sumas fibradas.

14	4. Módulos inyectivos y proyectivos
	4.1 Módulos inyectivos y escisión de sucesiones exactas cortas.
	4.2 Módulos inyectivos y Hom.
	4.3 Criterio de Baer para inyectividad.
	4.4 Productos y factores de módulos inyectivos.
	4.5 Inyectivos en Z-mod= grupos abelianos divisibles.
	4.6 Q/Z es un cogenerador para Z-mod.
	4.7 Cápsulas inyectivas.
	4.8 Todo módulo tiene cápsula inyectiva
	4.9 Cápsulas inyectivas y extensiones esenciales máximas.
	4.10 Cubiertas proyectivas.
	4.11 Submódulos superfluos.
	4.12 Radical de Jacobson.
	4.13 No siempre hay cubiertas proyectivas.
	4.14 Módulos proyectivos.
	4.15 Módulos proyectivos y sucesiones exactas cortas.
	4.16 Los módulos proyectivos son los sumandos directos de los libres.
	4.17 Submódulos esenciales de un módulo.
	4.18 El submódulo singular.
	4.19 El zoclo de un módulo es la intersección de sus submódulos
	esenciales.
	4.20 Complementos.
	4.21 La retícula [0,M] de submódulos de M tiene seudocomplementos.
	4.22 Submódulos esencialmente cerrados.
	4.23 El (seudo) complemento del (seudo) complemento de un módulo
	es esencialmente cerrado.
	4.24 Anillos semiartinianos.
	4.25 Módulos proyectivos y coproductos.
	4.26 Módulos proyectivos y Hom.
	4.27 Anillos hereditarios.
	4.28 Caracterización por medio de proyectivos.
	4.29 Caracterización por medio de inyectivos.
8	5. Anillos y módulos semisimples
	5.1 Caracterizaciones de los anillos semisimples.
	5.2 Propiedades de los módulos semisimples.

14	6. Módulos artinianos y módulos neterianos
	6.1 Definiciones.
	6.2 Condiciones de cadena.
	6.3 Submódulos finitamente generados.
	6.4 La condición máxima (mínima).
	6.5 La clase de los módulos neterianos (artinianos) es una clase de
	Serre (cerrada bajo submódulos, cocientes y extensiones).
	6.6 Anillos artinianos y neterianos.
	6.7 Anillos neterianos. Anillos semiartinianos.
	6.8 Anillos semiprimarios.
	6.9 Son equivalentes para un anillo: i) R es artiniano izquierdo; ii) R
	es neteriano y semiartiniano.
	6.10 El Radical de Jacobson de un artiniano es nilpotente.
	6.11 Módulos finitamente cogenerados.
	6.12 Caracterización de los módulos finitamente cogenerados por me-
	dio de propiedades de su zoclo.
	6.13 Un anillo es neteriano si y sólo si sumas directas de inyectivos
	son inyectivas si y sólo si todo módulo inyectivo es una suma directa
	de submódulos inescindibles.
	6.14 Un anillo es artiniano si y sólo si todo módulo inyectivo es suma
	directa de cápsulas inyectivas de simples.
10	7. Anillos semilocales
	7.1 Anillos semilocales y el radical de Jacobson.
	7.2 Anillos buenos (Rad(M)=Rad(R)M). Anillos locales.
	7.3 Anillos de endomorfismos locales.
	7.4 Teorema de Krull-Schmidt Azumaya.

BIBLIOGRAFÍA BÁSICA:

- 1. Anderson, F., Fuller, K., Rings and Categories of Modules, 2nd edition, New York: Springer Verlag, 1992.
- 2. Gentile, E.R., Estructuras Algebraicas II, Washington: OEA, 1971.
- 3. Kasch, F., Modules Rings, London: Academic Press 1982.
- 4. Lam, T.Y., A First Course in Non-commutative Rings, Berlin: Springer Verlag, 1991.
- 5. Lambek, J., Lectures on Rings and Modules, Waltham, Mass.: Blaisdell, 1966.

- 6. Rotman, J.J., An Introduction to Homological Algebra, New York: Academic Press, 1979.
- 7. Wisbauer, R., Foundations of Module and Ring Theory, Philadelphia: Gordon and Breach, 1991.

BIBLIOGRAFÍA COMPLEMENTARIA:

- Bican, L., Kepka, T., Nemec, P., Rings, Modules and Preradicals, New York: Marcel Dekker, 1982.
- 2. Dauns, J., Modules and Rings, Cambridge: Cambridge University Press, 1994.
- 3. Faith, C.C., Algebra II. Ring Theory, New York: Springer Verlag, 1976.
- 4. Goodearl, K.R., Ring Theory, Nonsingular Rings and Modules, New York: Marcel Dekker, 1976.
- 5. Goodearl, K.R., Von Neumann Regular Rings, Marshfield, Mass.: Pitman.
- 6. Lam, T.Y., Lectures on Modules and Rings, New York: Springer Verlag, 1998.
- 7. Lam, T.Y., Exercises in Classical Ring Theory, New York: Springer Verlag, 1995.
- 8. McLane, S., Categories for the Working Mathematician, New York: Springer Verlag, 1972.
- 9. Rowen, L.H., Ring Theory, I, II, Boston: Academic Press, 1998.
- 10. Stenström, B., Rings of Quotients, New York: Springer Verlag, 1975.

SUGERENCIAS DIDÁCTICAS: Lograr la participación activa de los alumnos mediante exposiciones.

SUGERENCIA PARA LA EVALUACIÓN DE LA ASIGNATURA: Además de las calificaciones en exámenes y tareas se tomará en cuenta la participación del alumno.

PERFIL PROFESIOGRÁFICO: Matemático, físico, actuario o licenciado en ciencias de la computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos.