COMP 3225

Natural Language Processing

Constituency Grammars

Stuart E. Middleton

sem03@soton.ac.uk

University of Southampton

Overview

- Constituency
- Context Free Grammar
- Grammar Rules for English
- <break discussion point>
- Treebanks and Head Finding
- Lexicalized Grammars

Constituency

- Syntax is the way words are arranged together
- Syntactic constituency is the idea that words can be grouped into single units (e.g. Noun Phrase)
- We use evidence from the context of the sentence to group words and form constituents
 - A constituent is word (or group of words) that function as a single unit
 - Evidence can be encoded in rules or grammars
- Different grammar types will produce different syntactic structures
 - Context-Free Grammar (also called Phrase-Structure Grammar)
 - Rules based on phrasal constituents + phrase-structure
 - Word order very important
 - Head terms are embedded into trees making it harder to find
 - Dependency Structure Grammar
 - Rules based on grammatical dependencies between words
 - Word order flexible
 - (Head -> Dependent) approximates the semantic relationship between predicates and arguments

3

Constituency

- Dependency Grammar (left)
- Context-free Grammar (right)

I prefer the morning flight through Denver

- A Context-Free Grammar (CFG) models constituent structure
- A CFG has a lexicon (of words and symbols) and a set of rules (or productions) on how these will be grouped and ordered
- Rules can be hierarchically embedded, allowing rules to trigger other rules
 - CFG rules are written in form equivalent to Backus-Naur Form (BNF), which is a generative metalanguage originating from IBM in the 1960's

Example productions (rules) for Noun Phrase

```
NP \rightarrow Det\ Nominal Det \rightarrow a NP \rightarrow ProperNoun Det \rightarrow the Nominal \rightarrow Noun \mid Nominal\ Noun Noun \rightarrow flight
```

- Given <left symbol> generate <right set of symbols>
- NP >> Det Nominal >> Det Noun >> a flight = one derivation
- Derivations are usually represented as a parse tree
- Leaf nodes are terminal nodes (words from lexicon)
- Non-terminal nodes define lexical categories (POS)
- A node is said to dominate its child nodes
- The root node is the start symbol (usually 'S')

Example CFG for talking about flights

I prefer the morning flight through Denver

Lexicon

Grammar	Rules	Examples
$S \rightarrow$	NP VP	I + want a morning flight
$NP \rightarrow$	Pronoun	I
	Proper-Noun	Los Angeles
	Det Nominal	a + flight
$Nominal \rightarrow$	Nominal Noun	morning + flight
	Noun	flights
$VP \rightarrow$	Verb	do
	Verb NP	want + a flight
	<i>Verb NP PP</i>	leave + Boston + in the morning
İ	Verb PP	leaving + on Thursday
$PP \rightarrow$	Preposition NP	from + Los Angeles

- Sentences which can be derived from a CFG are grammatical
- Sentences which cannot are ungrammatical
- A CFG is a generative grammar since the language is defined by the possible sentences it can generate
- The problem of mapping sentences to parse trees is called syntactic parsing

- Sentence-level constructions for English structure
- Declarative subject NP followed by a VP

 $S \rightarrow NP VP$

The flight should leave at 6pm

Imperative - VP with no subject

 $S \rightarrow VP$

Show me the flight at 6pm

yes-no question - Auxilary verb followed by subject NP and a VP

 $S \rightarrow Aux NP VP$

Are any flights available today?

- wh-non-subject-question wh-phrase is not the subject
 S → Wh-NP Aux NP VP
 What flights do you have at 6pm?
- The wh-non-subject-question is an example of a long-distance dependency
 - The Wh-NP is far away from the semantically relevant main VP

- Sentences can consist of one or more clauses
- A clause represents a 'complete thought'
- A clause is made up of two or more of the following components
 - Subject what the clause is about
 - Verb
 - Object person, place, thing or idea (which is not the subject)
 - (Subject | Object) Complement extra info which completes the phrase
 - Adverbial adjunct (additional info), conjunct (linking), disjunct (comment)
- Clauses are critical for applications such as relation extraction
- Useful book with definitions of English grammar
 - John Seely, Oxford A-Z of Grammar and Punctuation, Oxford Press

- Noun phrase pronoun, proper noun, determiner nominal
- Noun phrases consist of a head noun and various modifiers

NP → Det Nominal

The flight was cancelled

• The determiner can be a simple lexical term (a, the, this ...)

Det \rightarrow a | the | this ...

Or a more complex expression with a possessive marker ('s)

Det \rightarrow NP 's

London's mayor's flight was cancelled

• The nominal is a head noun and optional noun modifiers, which can occur before or after the head noun

Nominal → Noun

Nominal → NUM Nominal

Nominal → Nominal PP

Nominal \rightarrow (who | what) VP

... and more

Verb phrase - VP plus a number of other constituents

 $VP \rightarrow Verb$ $VP \rightarrow Verb NP$ $VP \rightarrow Verb NP$ $VP \rightarrow Verb PP$... <u>leaving</u> on Thursday

Sequential complements - VP followed by an embedded sentence

 $VP \rightarrow Verb S$

You <u>said</u> [you had a lot of money]

Traditional grammars subcategorize verbs into a few categories

- Transitive verbs object e.g. they <u>hit</u> the bar
- Intransitive verbs no object e.g. they just <u>ran</u>
- Distransitive verbs direct and indirect object e.g. she <u>told</u> me¹ the story²
- Linking verbs links clause subject with complement e.g. could <u>be</u> right
- Modern grammars can have up to 100 subcategories
 - Sets of complements are called the subcategorization frame for the verb
 - You can think of a verb as a predicate
 - Verb(Arg, Arg ...) e.g. FIND(I, a flight)

- Coordination conjunctions (and, or, but)
- Coordinate two or more NP's

 $VP \rightarrow NP$ and NP

Please repeat the flights¹ and the costs²

Nominal → Nominal and Nominal Please repeat the <u>flights</u>¹ and <u>costs</u>²

Conjunction involving VP's and S's

 $S \rightarrow S$ and S

 $VP \rightarrow VP$ and VP

What flights do you have <u>leaving London</u> and <u>arriving in USA</u>?

Break

- Panopto Quiz discussion point
- Sentence: The/DT cow/NN jumped/VBD over/IN the/DT moon/NN
- Context-Free Grammar: NP → DT NOM; NOM → NN; VP → VB*; VP → VB* IN
- Which parse tree is the grammatical one?

```
(S NP(The cow) VP(jumped) NP(over the moon))
(S NP(The cow) VP(jumped over) NP(the moon))
(S NP(The cow jumped) NP(over the moon))
(S NP(cow) VP(jumped over) NP(moon))
```

Break

- Panopto Quiz discussion point
- Sentence: The/DT cow/NN jumped/VBD over/IN the/DT moon/NN
- Context-Free Grammar: NP → DT NOM; NOM → NN; VP → VB*; VP → VB* IN
- Which parse tree is the grammatical one?

```
(S NP(The cow) VP(jumped) NP(over the moon))
(S NP(The cow) VP(jumped over) NP(the moon))
(S NP(The cow jumped) NP(over the moon))
(S NP(cow) VP(jumped over) NP(moon))

NP → DT NOM → DT NN >> The cow
>> the moon
VP → VB* IN → VBN IN >> jumped over
```

- A treebank is a syntactically annotated corpus
- Treebanks commonly have different tagsets based on linguistic annotation choices from authoring project
- Penn Treebank 3
 - Corpus Newswire and Transcribed Speech
 - Annotations sentences, POS tags, syntactic parse trees
 - https://catalog.ldc.upenn.edu/LDC99T42
 - LDC datasets also available from University of Southampton Library
 - http://edshare.soton.ac.uk/20520/

```
((S
   (NP-SBJ (DT That)
                                    ((S
     (JJ cold) (, ,)
                                        (NP-SBJ The/DT flight/NN )
     (JJ empty) (NN sky) )
                                        (VP should/MD
   (VP (VBD was)
                                          (VP arrive/VB
     (ADJP-PRD (JJ full)
                                            (PP-TMP at/IN
       (PP (IN of)
                                              (NP eleven/CD a.m/RB ))
         (NP (NN fire)
                                            (NP-TMP tomorrow/NN )))))
           (CC and)
           (NN light) ))))
   (...)
```

 Long-distant dependencies (syntactic movement) are encoded using -NONE- markers

```
( (S ('' '')
    (S-TPC-2
      (NP-SBJ-1 (PRP We) )
      (VP (MD would)
        (VP (VB have)
          (S
            (NP-SBJ (-NONE- *-1
            (VP (TO to)
              (VP (VB wait)
                 (SBAR-TMP (IN until)
                   (S
                     (NP-SBJ (PRP we) )
                         (VBP have)
                       (VP (VBN collected)
                         (PP-CLR (IN on)
                           (NP (DT those)(NNS assets)))))))))))))
    (NP-SBJ (PRP he)
    (VP
         (-NONE- *T*-2)
```

- Treebanks implicitly encode a grammar
- Treebank 3 has about 17,500 distinct rule types and a million words
- This presents problems for probabilistic parsing algorithms

Grammar constructed from previous two examples only

Grammar	Lexicon
$S \rightarrow NP VP$.	$PRP \rightarrow we \mid he$
$S \rightarrow NP VP$. $S \rightarrow NP VP$	$DT \rightarrow the \mid that \mid those$
	· ·
$S \rightarrow$ "S", NP VP. $S \rightarrow$ -NONE-	$JJ \rightarrow cold \mid empty \mid full$
,	$NN \rightarrow sky \mid fire \mid light \mid flight \mid tomorrow$
$NP \rightarrow DTNN$	$NNS \rightarrow assets$
$NP \rightarrow DT NNS$	$CC \rightarrow and$
$NP \rightarrow NN CC NN$	$IN \rightarrow of \mid at \mid until \mid on$
$NP \rightarrow CD RB$	$CD \rightarrow eleven$
NP ightarrow DT JJ , $JJ NN$	$RB \rightarrow a.m.$
$NP \rightarrow PRP$	$VB \rightarrow arrive \mid have \mid wait$
$NP \rightarrow -NONE$ -	$VBD \rightarrow was \mid said$
$VP \rightarrow MD \ VP$	$VBP \rightarrow have$
$VP \rightarrow VBD ADJP$	$VBN \rightarrow collected$
$VP \rightarrow VBD S$	$MD \rightarrow should \mid would$
$VP \rightarrow VBN PP$	$TO \rightarrow to$
$VP \rightarrow VB S$	
$VP \rightarrow VB SBAR$	
$VP \rightarrow VBP \ VP$	
$VP \rightarrow VBN PP$	
$VP \rightarrow TO VP$	
$SBAR \rightarrow IN S$	
$ADJP \rightarrow JJ PP$	
$PP \rightarrow IN NP$	
1 1 7 11 1 1 1 1	

- Lexical head is the word in a phrase which is grammatically most important
- Head words are tricky to define for many phrases
- Many systems use handwritten rules to automatically select headwords from a treebank, guided by statistical analysis of the treebank
- Further reading: Collins, M. (2003). Head-Driven Statistical Models for Natural Language Parsing, Computational Linguistics 2003

Lexicalized Grammars

- Some grammars emphasize lexical features over phrase-structure
- Combinatory Categorial Grammar (CCG)
 - Set of categories
 - Mapping from lexicon words to categories
 - Set of composition rules for categories (forward and backward)
 - CCG allows both left to right AND word-by-word composition, which mirrors human language processing and is quite powerful
- Similar to phrase-structure grammars, CCG approaches are trained from annotated CCG Treebanks
 - CCGBank is the largest CCG Treebank
 - Demo http://groups.inf.ed.ac.uk/ccg/ccgbank.html
 - Dataset https://catalog.ldc.upenn.edu/LDC2005T13

Required Reading

- Constituency Grammars
 - Jurafsky and Martin, Speech and Language Processing, 3rd edition (online)
 >> chapter 12

Questions

Panopto Quiz - 1 minute brainstorm for interactive questions

Please write down in Panopto quiz in **1 minute** two or three questions that you would like to have answered at the next interactive session.

Do it **right now** while its fresh.

Take a screen shot of your questions and **bring them with you** at the interactive session so you have something to ask.