# **CORRECTION TD DE CINETIQUE**

### **Exercice 1**

Les anions peroxodisulfate  $S_2O_8^{2-}$  sont instables en solution aqueuse car ils oxydent lentement l'eau en dioxygène.

1) Ecrire l'équation de la réaction traduisant cette instabilité, sachant que des ions sulfate  $SO_4^{2-}$  sont formés.

Pour étudier la cinétique de la réaction de décomposition des ions peroxodisulfate, on suit l'évolution d'une solution de peroxodisulfate de sodium  $Na_2S_2O_8$  de concentration initiale  $C_0$  = 10,0 mmol.L<sup>-1</sup>. Le tableau ci-dessous donne la concentration C en ions  $S_2O_8^{-2}$  en fonction du temps, à 80°C.

| t (min)                      | 0    | 50   | 100  | 150  | 200  | 250  |
|------------------------------|------|------|------|------|------|------|
| C(t) (mmol.L <sup>-</sup> 1) | 10,0 | 7,80 | 6,05 | 4,72 | 3,68 | 2,86 |

- 2) a) Montrer que ces résultats sont compatibles avec une cinétique d'ordre 1.
  - b) Déterminer la valeur de la constante de vitesse à cette température.
- 3) a) L'énergie d'activation de cette réaction est  $E_a = 140 \text{ kJ.mol}^{-1}$ . A 25°C, pendant quelle durée peut-on conserver la solution de concentration  $C_0 = 10,0 \text{ mmol.L}^{-1}$  à une pureté au moins égale à 99% ?
  - b) Quelle serait cette durée pour une solution 10 fois plus concentrée ?

#### **Correction**

1)  

$$S_2O_8^{2-} + 2e^{-} = 2 SO_4^{2-}$$
  
 $H_2O = \frac{1}{2} O_2 + 2 H^+ + 2e^{-}$   
 $S_2O_8^{2-} + H_2O = 2 SO_4^{2-} + \frac{1}{2} O_2 + 2 H^+$ 

2)

a. Cinétique d'ordre  $0: [A] = [A]_0 - \alpha.k.t$ 

Cinétique d'ordre 1 :  $ln[A] = ln[A]_0 - \alpha.k.t$ 

Cinétique d'ordre 2 :  $\frac{1}{[A]} = \frac{1}{[A]_0} + \alpha . k.t$ 

On trace In(C(t)) = f(t)

| t (min) | Ln(C(t))   |
|---------|------------|
| 0       | 2,30258509 |
| 50      | 2,05412373 |
| 100     | 1,80005827 |
| 150     | 1,5518088  |
| 200     | 1,30291275 |
| 250     | 1,05082162 |



Nous obtenons une droite, donc nous venons de mettre en évidence que la réaction est bien d'ordre 1 par rapport à  $S_2O_8^{2-}$ .

b.

- Ici  $ln(C(t)) = -\alpha .k.t + cste$  et la pente est de  $-5,00.10^{-3}$  min<sup>-1</sup>
- $\alpha$  est le coefficient stœchiométrique de  $S_2O_8^{2-}$ , espèce réactif donc  $\alpha$ est négatif.
- donc  $k_{353} = 5,00.10^{-3} \text{ min}^{-1}$ .

3)

a.

Loi d'Arrhenius : 
$$\frac{d \ln k}{dT} = \frac{E_a}{RT^2} \qquad \text{Donc}: \qquad d \ln k = \frac{E_a}{R} \cdot \frac{dT}{T^2}$$
 On intègre entre 25°C et 80°C, c'est-à-dire entre T<sub>1</sub> = 298 K et T<sub>2</sub> = 353 K : 
$$\int_{\ln k_{T1}}^{\ln k_{T2}} d(\ln k) = \frac{E_a}{R} \cdot \int_{T_1}^{T_2} \frac{dT}{T^2}$$

$$\int_{\ln k_{T_1}} d(\ln k) = \frac{a}{R} \cdot \int_{T_1} \frac{1}{T^2}$$
Ainsi:  $\ln k_{T_2} - \ln k_{T_1} = \frac{E_a}{R} \cdot \left( -\frac{1}{T_2} + \frac{1}{T_1} \right)$  Soit:  $k_{T_1} = \exp \left[ \ln k_{T_2} + \frac{E_a}{R} \cdot \left( \frac{1}{T_2} - \frac{1}{T_1} \right) \right]$ 

$$k_{298} = \exp \left[ \ln \left( 5.10^{-3} \right) + \frac{140.10^3}{8,314} \cdot \left( \frac{1}{353} - \frac{1}{298} \right) \right]$$

Donc  $k_{298} = 7,50.10^{-7} \text{ min}^{-1}$ 

On veut  $C(t) \ge 0.99.C_0$ Nous savons que :  $ln(C(t)) = ln(C_0) - k.t$ Si on isole –kt nous obtenons : ln(C(t)) -  $ln(C_0)$  =  $ln(C(t)/C_0)$  = -k.t

Or il faut :  $C(t)/C_0 \ge 0.99$ Donc :  $ln(C(t)/C_0) \ge ln(0,99)$ 

Soit:  $-k.t \ge ln(0,99)$ Donc:  $t \leq -\ln(0.99)/k$ 

Ainsi<u>t<sub>max</sub> ≤ 13400 min</u> ou <u>9,3 jours</u>.

b. La même car le rapport  $t \le -\ln(0.99)/k$  est toujours valable.

#### **Exercice 2**

On étudie, à 25°C, l'action d'une solution de soude diluée sur le bromoéthane ; la réaction totale a pour équation :  $CH_3CH_2Br + HO^- = CH_3CH_2OH + Br^-$ 

On utilise des mélanges stœchiométriques en bromoéthane et en ion hydroxyde. Soit  $C_0$  la concentration initiale commune des deux réactifs. Le tableau ci-dessous donne les temps de demi-réaction pour différentes valeurs de  $C_0$ .

| C <sub>0</sub> (mmol.L <sup>-1</sup> ) | 10   | 25  | 50  | 75  | 100 |
|----------------------------------------|------|-----|-----|-----|-----|
| t <sub>1/2</sub> (min)                 | 1110 | 445 | 220 | 150 | 110 |

- 1) a) Démontrer que ces données sont compatibles avec une réaction d'ordre 1 par rapport à chacun des réactifs.
  - b) Déterminer la constante de vitesse de la réaction.
- 2) L'énergie d'activation de la réaction est  $E_a = 89 \text{ kJ.mol}^{-1}$ . En déduire le temps de demiréaction à  $40^{\circ}\text{C}$  lors d'une expérience où  $C_0$  vaut 50 mmol.L<sup>-1</sup>.

### **Correction**

1)

a. Cinétique d'ordre 2 : 
$$\frac{1}{[A]} = \frac{1}{[A]_0} + \alpha . k.t$$

Supposons l'ordre 1 par rapport à chacun des réactifs. L'ordre global serait donc de 2. <u>Rappel cours</u>: mélanges stœchiométriques utilisés pour déterminer l'ordre global d'une réaction.

On aurait donc : 
$$t_{1/2} = \frac{1}{k.C_0}$$
.

$$t_{1/2} = f \left( \frac{1}{C_0} \right)$$
 devrait être une droite.

| 1/C0 | t <sub>1/2</sub> (min) |
|------|------------------------|
| 0,10 | 1110                   |
| 0,04 | 445                    |
| 0,02 | 220                    |
| 0,01 | 150                    |
| 0,01 | 110                    |



C'est bien le cas ici. L'ordre global est donc bien de 2, 1 par rapport à chaque réactif.

b. La droite ainsi tracée a pour pente 1/k.

Graphiquement : 1/k = 11100.

Donc:  $k = 9,0.10^{-5} \text{ L.mmol}^{-1}.\text{min}^{-1} \text{ à } 298 \text{ K}.$ 

NB: l'unité de k est fonction du graphique utilisé, et donc de l'ordre suivi.

2) Application de la méthode développée dans l'exercice 1 :

$$k_{T_1} = \exp\left[\ln k_{T_2} + \frac{E_a}{R} \cdot \left(\frac{1}{T_2} - \frac{1}{T_1}\right)\right]$$

$$k_{313} = \exp\left[\ln(9.10^{-5}) + \frac{89000}{8,314} \cdot \left(\frac{1}{298} - \frac{1}{313}\right)\right]$$

Donc  $k_{313} = 50,3.10^{-5} L.mmol^{-1}.min^{-1}$ 

Or, 
$$t_{1/2} = \frac{1}{k \cdot C_0}$$
  
 $t_{1/2} = \frac{1}{50.3 \cdot 10^{-5} \times 50} = 39.7 \,\text{min}$ 

Donc t<sub>1/2</sub> = **39,7 min** 

#### **Exercice 3**

On mélange, à 25°C, 100 mL d'une solution d'ion  $Fe^{2+}$  à  $10^{-3}$  mol. $L^{-1}$  et 100 mL d'une solution d'ions  $Co^{3+}$  à  $10^{-3}$  mol. $L^{-1}$ . On détermine expérimentalement [Fe<sup>3+</sup>] en fonction du temps.

| t en s | 10 <sup>4</sup> [Fe <sup>2+</sup> ] en mol.L <sup>-1</sup> |
|--------|------------------------------------------------------------|
| 20     | 2,78                                                       |
| 40     | 1,92                                                       |
| 60     | 1,47                                                       |
| 80     | 1,19                                                       |
| 100    | 1,00                                                       |
| 120    | 0,86                                                       |

Montrer, à l'aide d'une construction graphique appropriée, que les résultats expérimentaux sont en accord avec une cinétique d'ordre global 2. En déduire la valeur de k.

## **Correction**

On sait que v =  $k.[Fe^{2+}]^p.[Co^{3+}]^q$ .

Or ici,  $[Fe^{2+}] = [Co^{3+}].$ 

Donc :  $v = k.C^{p}.C^{q} = k.C^{p+q}$ .

Si ordre global = 2, alors p+q = 2.

Donc:  $v = k.C^2$ .

NB: Cohérent puisque nous avons affaire à un mélange stœchiométrique.

<u>Rappel cours</u>: mélanges stœchiométriques utilisés pour déterminer l'ordre global d'une réaction.

Cinétique d'ordre 2 : 
$$\frac{1}{[A]} = \frac{1}{[A]_0} + \alpha . k.t$$

Traçons 
$$1/[Fe^{2+}] = f(t)$$
.

| t en s | 1/[Fe2+] |
|--------|----------|
| 20     | 3597,12  |
| 40     | 5208,33  |
| 60     | 6802,72  |
| 80     | 8403,36  |
| 100    | 10000,00 |
| 120    | 11627,91 |



C'est une droite, donc ordre global 2.

La pente de cette droite vaut k. On trouve  $k = 80 \text{ L.mol}^{-1}.\text{s}^{-1}$ .