Homotopy Theory and Characteristic Classes

CUI Jiaqi East China Normal University

March 19, 2025

Abstract

This is the notes of a course given by Prof. Ma Langte in 25spring at Shanghai Jiaotong University. The textbook is *Algebraic Topology* by Tammo tom Dieck.

Contents

1	H	omotopy Theory	2
1	Cof	fibrations and Fibrations	3
	1.1	Cofibrations	3
		1.1.1 Push-Out of Cofibration	4
		1.1.2 Replacing a Map by a Cofibration	6
		1.1.3 The Cofibre Sequence (Puppe's Sequence)	7
	1.2	Fibrations	10
		1.2.1 Pull-back of Fibration	12
		1.2.2 Replacing Maps by Fibration	12
		1.2.3 Fibre Exact Sequence (Puppe's Sequence)	14
	1.3	Duality of Cofibration and Fibration	16
		1.3.1 Duality of Reduced Suspension and Loop Space	16
		1.3.2 Duality of HLP and HEP	17
		1.3.3 Duality of Two Puppe's Sequences	17
2	Hoı	motopy Groups	18
	2.1	Definitions and Properties	18
	2.2	Change of Basepoint	19
	2.3	Serre Fibration	20
	2.4	Higher Connectivity	21
	2.5	Excision and Suspension	22
	2.6	Computation of Homotopy Groups	23
II	G	Generalized Homology	26
3	Но	mology Theory and CW-Complexes	26
•	3.1	Homology Theory	26
	0.1	3.1.1 Suspension Isomorphism	27
	3.2	CW-Complex	28
	0.2	C. Company	
TT	Τ (Characteristic Classes	29

Part I

Homotopy Theory

Let **TOP** be the category of topological spaces. Then we can take a quotient of **TOP** and get the homotopy category $h - \mathbf{TOP}$. The quotient may bring more algebraic structures. For example, Mor (S^1, X) , the homotopy classes of maps from S^1 to X, is the fundamental group of X. Our goal is to study functors from hmotopy category to some algebraic categories.

Let \mathbf{TOP}^o be the pointed topological category, where the sum is wedge sum $(X, x_0) \land (Y, y_0) = X \sqcup Y/x_0 \sim y_0$ and the product is the smash product $(X, x_0) \lor (Y, y_0) = X \times Y/\{x_0\} \times Y \cup X \times \{y_0\}$. Similarly, we can take a quotient to get $h - \mathbf{TOP}^o$.

Let TOP(2) be the category of pairs and h - TOP(2) be its quotient.

Fix $K \in \text{Ob}(\mathbf{TOP})$. Let's consider \mathbf{TOP}^K , the category of spaces under K. Its objects are maps $f \colon K \to X$ and morphisms are maps $\alpha \colon X \to Y$ such that $\alpha \circ f = g$.

If $K = \{*\}$ is a single point set, then $\mathbf{TOP}^{\{*\}} = \mathbf{TOP}^o$ is the pointed topological category. Take X = K. A morphism from $f: K \to X$ to id: $K \to K$ is $r: X \to K$ such that $r \circ f = \mathrm{id}$.

When $K \subset X$, $f = i : K \hookrightarrow X$, we say that r is a retraction.

We have $r: X \to K$ is a deformation retraction, if and only if $i \circ r \simeq \mathrm{id}_X$ rel K, if and only if $r: X \to K$ is a homotopy equivalence in \mathbf{TOP}^K .

Fix $B \in \text{Ob}(\mathbf{TOP})$. Let's consider \mathbf{TOP}_B , the category of spaces over B, where the objects are $p: X \to B$ and morphisms are $f: X \to Y$ such that $p = q \circ f$.

Take X = B. A morphism from id: $B \to B$ to $q: Y \to B$ is $s: B \to Y$ such that $q \circ s = \mathrm{id}_B$.

Then s is called a section of q.

Similarly, we can define $h - \mathbf{TOP}^K$ and $h - \mathbf{TOP}_B$.

1 Cofibrations and Fibrations

1.1 Cofibrations

Definition 1.1. A map $i: A \to X$ has the homotopy extension property (HEP) for a space Y if for all homotopy $h: A \times I \to Y$ and $f: X \to Y$ with $f \circ i(a) = h(a, 1)$, there exists $H: X \times I \to Y$ satisfies

We say $i: A \to X$ is a cofibration if it has HEP for each $Y \in \text{Ob}(\mathbf{TOP})$.

Recall the mapping cylinder: if $i: A \to X$ is a map, then $Z(i) := (A \times I) \sqcup X/(a,1) \sim i(a)$.

Proposition 1.2. Given a map $i: A \to X$. The followings are equivalent:

- 1. $i: A \to X$ is a cofibration.
- 2. i has HEP for Z(i).
- 3. The map

$$s: Z(i) \to X \times I$$

 $(a,t) \mapsto (i(a),t),$
 $x \mapsto (x,1)$

has a retraction.

Proof. $(1)\Longrightarrow(2)$ is only by definition.

(2) \Longrightarrow (1): By definition, there exists $K \colon X \times I \to Z(i)$ such that the following diagram is commutative.

For any Y and homotopy $h: A \times I \to Y$ and $f: X \to Y$ with $f \circ i(a) = h(a, 1)$, we define

$$F: Z(i) \to Y$$

 $(a,t) \mapsto h(a,t)$
 $x \mapsto f(x).$

Then $F \circ K$ is as desired.

(2) \Longrightarrow (3): We can easily check that the extension $K: X \times I \to Z(i)$ in the proof of (2) \Longrightarrow (1) is a retraction of s.

(3) \Longrightarrow (2): Let r be a retraction of s. For any homotopy $h: A \times I \to Z(i)$ and $f: X \to Z(i)$ with $f \circ i(a) = h(a, 1)$, we define

$$\sigma \colon Z(i) \to Z(i)$$
$$(a,t) \mapsto h(a,t)$$
$$x \mapsto f(x).$$

Then we can verify that $H = \sigma \circ r \colon X \times I \to Z(i)$ extends h.

Corollary 1.3. When $A \subset X$ is a close subset, $i: A \hookrightarrow X$ is the inclusion map. Then $i: A \to X$ is a cofibration $\iff Z(i) = A \times I \cup X \times \{1\}$ is a retraction of $X \times I$.

Therefore, we can construct many cofibrations. For example, let (X, A) be a manifold with boundary, then $i \colon A \hookrightarrow X$ is a cofibration.

1.1.1 Push-Out of Cofibration

Given a commutative diagram,

$$\begin{array}{c|c}
A & \xrightarrow{f} & B \\
\downarrow j & & \downarrow J \\
X & \xrightarrow{F} & Y
\end{array}$$

the push-out of j along f is the initial object of this diagram, i.e. $j \colon B \to Y, \ F \colon X \to Y, \ \text{s.t.} \ \forall Z$ with $J' \colon B \to Z, \ F' \colon X \to Z$ satisfying $J' \circ f = F' \circ j, \ \exists ! \ \text{map} \ p \colon Y \to Z$ such that the diagram is commutative.

In our setting, we can construct $Y = X \sqcup B/f(a) \sim j(a)$ directly.

Proposition 1.4. If $j: A \to X$ is a cofibration, then the push-out of j along $f: B \to Y$ is also a cofibration.

Proof. For any $Z, g: Y \to Z, h: B \times I \to Z$ such that $g \circ J = h \circ (i_1 \times id)$, we need to find $H: Y \times I \to Z$ such that the following diagram is commutative.

Because $j:A\to X$ is a cofibration, we have $G\colon X\times I\to Z$ such that the following diagram is commutative.

Using the fact that $J \times \text{id} : B \times I \to Y \times I$ is also the push-out of $j \times \text{id} : A \times I \to X \times I$ along $f \times \text{id} : A \times I \to B \times I$, we have unique $H : Y \times I \to Z$ such that the following diagram is commutative.

The $H: Y \times I \to Z$ is the extension of $h: B \times I \to Z$, as desired.

In terms of categorical language, let $\Pi(A, B)$ be a category, whose objects are continue maps from A to B and morphisms are homotopy of maps from A to B. Consider $\mathbf{COF}^B \subset \mathbf{TOP}^B$ the subcategory of cofibrations under B (i.e. $J \colon B \to Y$). Then we have homotopy category $h - \mathbf{COF}^B$. Given a cofibration $i \colon A \to X$, we get a contravariant functor

$$\beta \colon \Pi(A,B) \to h - \mathbf{COF}^B$$
.

In fact, we only need to check that if $f_0 \simeq f_1 \colon A \to B$, then we get a morphism from $J_0 \colon B \to Y_0$ to $J_1 \colon B \to Y_1$. Firstly, consider the homotopy $J_0 \circ f_t \colon A \times I \to Y_0$, we get its extension $\Psi \colon X \times I \to Y_0$.

Then by the universal property of the push-out $J_1: B \to Y_1$ of i along f_1 for $J_0: B \to Y_0$ and $\Psi_1: X \to Y_0$, we get a map $K: Y_1 \to Y_0$, as desired.

1.1.2 Replacing a Map by a Cofibration

Given a map $f: X \to Y$, consider the mapping cylinder Z(f). We can notice that Z(f) is the push-out.

$$X \xrightarrow{f} Y$$

$$\downarrow s$$

$$X \times I \xrightarrow{a} Z(f)$$

We also have a map

$$q \colon Z(f) \to Y$$

 $(x,t) \mapsto f(x).$

Note that by Proposition 1.2, $i_1: X \hookrightarrow X \times I$ is a cofibration $\iff X \times \{1\} \times I \cup X \times I \times \{1\}$ is a retraction of $X \times I \times I$, we have $s: Y \to Z(f)$ is a cofibration.

Proposition 1.5. Let

$$j \colon X \to Z(f)$$
$$x \mapsto (x,0),$$

we have

- 1. $j: X \to Z(f)$ is a cofibration.
- 2. $s \circ q \simeq \mathrm{id}_{Z(f)}$ rel Y.
- 3. If f is a cofibration, then $q: Z(f) \to Y$ is a homotopy equicalence in \mathbf{TOP}^X .

Proof. (1). We construct a retraction $R: Z(f) \times I \to X \times I \cup Z(f) \times \{1\}$ as follow. Let $R': I \times I \to I \times \{1\} \cup \{0\} \times I$ be a retraction. Then we define

$$\begin{aligned} R \colon Z(f) \times I &\to X \times I \cup Z(f) \times \{1\} \\ ((x,s),t) &\mapsto (x,R'(s,t)) \\ (y,t) &\mapsto (y,1) \end{aligned}$$

is as desired. By Proposition 1.2, $j: X \to Z(f)$ is a cofibration.

(2). The homotopy

$$h_t \colon Z(f) \to Z(f)$$

 $(x, \sigma) \mapsto (x, (1-t)\sigma + t)$

is as desired.

(3). By Proposition 1.2, there is a retraction $r: Y \times I \to Z(f)$. Define

$$g\colon Y\to Z(f)$$

$$y\mapsto r(y,1).$$

One can verifies that g is the homotopy inverse of q.

Summery 1. Any map $f: X \to Y$ factors into

$$X \xrightarrow{j} Z \xrightarrow{q} Y$$

where $j \colon X \to Z$ is a cofibration and $q \colon Z \to Y$ is a homotopy equivalence. Moreover, such a factorization is unique up to homotopy equivalence. In particular, we can choose Z = Z(f). We define $C_f = Z(f)/\operatorname{im} j$ as the homotopy cofibre of f, i.e. $C_f = X \times I \sqcup Y/(x,0) \sim *, (x,1) \sim f(x)$, is called the mapping cone of f.

$$X \xrightarrow{f} Y \xrightarrow{s} C_f$$

1.1.3 The Cofibre Sequence (Puppe's Sequence)

To get finer structure, we work in \mathbf{TOP}^o . Given a map $f: (X, x_0) \to (Y, y_0)$, we get an induced map

$$f^* \colon [Y, B]^o \to [X, B]^o$$

 $[\alpha] \mapsto [f \circ \alpha],$

where $[X, B]^o$ is the homotopy class of basepoint preserving maps. In particular, we have the constant map

$$[*]: X \to B$$

 $x \mapsto b_0.$

Definition 1.6. We say a sequence

$$(X, x_0) \xrightarrow{f} (Y, y_0) \xrightarrow{g} (Z, z_0)$$

in \mathbf{TOP}^o is h-coexact if $\forall (B, b_0) \in \mathrm{Ob}(\mathbf{TOP}^o)$,

$$[Z,B]^o \xrightarrow{g^*} [Y,B]^o \xrightarrow{f^*} [X,B]^o$$

is exact, i.e. $(f^*)^{-1}([*]) = \text{im } g^*$.

In **TOP**^o, we consider the reduced mapping cone $CX := X \times I/X \times \{0\} \cup \{x_0\} \times I$. The basepoint of CX is $X \times \{0\} \cup \{x_0\} \times I$. And we consider the reduced mapping cone: For $f: (X, x_0) \to (Y, y_0)$, $C(f) := CX \vee Y/(x, 1) \sim f(x)$. It is equivalent to the following push-out diagram.q

$$X \xrightarrow{f} Y$$

$$\downarrow_{i_1} \qquad \qquad \downarrow_{f_1}$$

$$CX \longrightarrow C(f)$$

In fact, f_1 maps y to (y, 1).

We will also use symbol X instead of (X, x_0) in \mathbf{TOP}^o for short.

Proposition 1.7. The sequence

$$X \xrightarrow{f} Y \xrightarrow{f_1} C(f)$$

is h-coexact.

Proof. Consider the following sequence

$$[C(f), B]^o \xrightarrow{f_1^*} [Y, B]^o \xrightarrow{f^*} [X, B]^o$$

for any (B, b_0) .

Assume that $[\alpha] \in [Y,B]^o$ s.t. $[\alpha \circ f] = [*] \in [X,B]^o$, i.e. $\alpha \circ f$ is null-homotopic. This is equivalent that there exists a map $h \colon CX \to B$. The mapping cone C(f) is the push-out of

$$X \xrightarrow{f} Y$$

$$\downarrow_{i_1} \qquad \qquad \downarrow_{f_1}$$

$$CX \longrightarrow C(f)$$

Using the universal property of push-out, we have the following commutative diagram,

i.e. $\alpha = \beta \circ f_1$. Therefore $[\alpha] = f_1^*[\beta]$ and this proposition follows.

Iterate the procedure, we get a long h-coexact sequence:

$$X \xrightarrow{f} Y \xrightarrow{f_1} C(f) \xrightarrow{f_2} C(f_1) \xrightarrow{f_3} C(f_2) \xrightarrow{} \cdots$$

Consider the injection $j_1: CY \to C(f_1)$, we have that

$$C(f_1)/j_1(CY) = X \times I/X \times \partial I \cup \{x_0\} \times I = \Sigma X$$

is the reduced suspension of X. Then we get a quotient map

Claim 1. q(f) is a homotopy equivalence.

Denote by $s(f): \Sigma X \to C(f_1)$ the homotopy inverse of q(f). Then our original sequence becomes

$$X \xrightarrow{f} Y \xrightarrow{f_1} C(f) \xrightarrow{f_2} C(f_1) \xrightarrow{f_3} C(f_2)$$

$$\downarrow^{q(f)} \qquad \qquad \downarrow^{q(f)}$$

$$\Sigma X$$

Consider the following diagram.

$$C\left(f_{1}\right) \xrightarrow{f_{3}} C\left(f_{2}\right)$$

$$q(f) \middle| \begin{matrix} \downarrow \\ s(f) \end{matrix} \middle| \begin{matrix} \downarrow \\ s(f) \end{matrix} \middle| \begin{matrix} \downarrow \\ q(f_{1}) \end{matrix}$$

$$\Sigma X \xrightarrow{-} \xrightarrow{-} \Sigma Y$$

$$q(f_{1}) \circ f_{3} \circ s(f)$$

Claim 2. Consider $\tau \colon \Sigma X \to \Sigma X$ which maps (x,t) to (x,1-t), we have $q(f_1) \circ f_3 \circ s(f) \simeq \Sigma f \circ \tau$ To prove it, denote $p(f_1) = q(f_1) \circ f_3$. In fact, $p(f_1)$ retracts the left triangle, i.e. CX to a point.

In the following diagram, s(f) is the union of id and $f \times id$, i.e. id maps the left triangle of ΣX to the left triangle of $C(f_1)$, $f \times id$ maps the right triangle of ΣX to the right triangle of $C(f_1)$. Then $\Sigma f = p(f_1) \circ s(f)$ naturally. Notice that τ flips ΣX left and right. Therefore, by symmetry, we have $p(f_1) \circ s(f) \simeq \Sigma f \circ \tau$, as desired.

Now we get

$$X \xrightarrow{\quad f \quad} Y \xrightarrow{\quad f_1 \quad} C(f) \xrightarrow{\quad p(f) \quad} \Sigma X \xrightarrow{\quad \Sigma f \quad} \Sigma Y \xrightarrow{\quad (\Sigma f)_1} C(\Sigma f)$$

Claim 3. There is a homeomorphism $\tau_1 \colon C(\Sigma f) \to \Sigma C(f)$ such that the following diagram is commutative.

$$\Sigma Y \xrightarrow{(\Sigma f)_1} C(\Sigma f)$$

$$\downarrow^{\tau_1}$$

$$\Sigma C(f)$$

In fact, regard both $C(\Sigma f)$ and $\Sigma C(f)$ as the quotient spaces of $X \times I \times I$ unioned with Y, τ_1 is induced from interchanging the two I-factors.

As conclusion, we have

Theorem 1.8 (Puppe's Sequence). The sequence

$$X \xrightarrow{f} Y \xrightarrow{f_1} C(f) \xrightarrow{p(f)} \Sigma X \xrightarrow{\Sigma f} \Sigma Y \xrightarrow{\Sigma f_1} \Sigma C(f) \xrightarrow{p(\Sigma f)} \Sigma^2 X \longrightarrow \Sigma^2 Y \longrightarrow \cdots$$

is h-coexact.

1.2 Fibrations

Definition 1.9. A map $p: E \to B$ has the homotopy lifting property (HLP) for the space X if \forall homotopy $h: X \times I \to B$ and $a: X \to E$ s.t. $p \circ a(x) = h(x, 0)$, there exists a homotopy $H: X \times I \to E$ s.t. $p \circ H = h$. H is called a lifting of h.

$$X \xrightarrow{a} E$$

$$\downarrow i_0 \qquad \downarrow f \qquad \downarrow p$$

$$X \times I \xrightarrow{h} B$$

A map $p: E \to B$ is called a fibration if it has HLP for all spaces X.

Definition 1.10. Given maps $f: A \to B$ and $p: E \to B$. The pull-back of p along f is the terminal object of the following diagram,

$$f^*E \longrightarrow E$$

$$\downarrow \qquad \qquad \downarrow^p$$

$$A \longrightarrow B$$

i.e. for any $C, g: C \to E, h: C \to A$, there exists unique r such that the following diagram is commutative.

Explicity,

$$f^*E = \{(a, e) \in A \times E : f(a) = p(e)\}$$

and $\pi \colon f^*E \to A$ is the projection.

Denote $B^I = \text{Map}(I, B)$. Consider the pull-back

$$W(p) \coloneqq \left\{ (x, w) \in E \times B^I : p(x) = w(0) \right\}$$

which is given by the pull-back

$$W(p) \xrightarrow{k} B^{I}$$

$$\downarrow b \qquad \qquad \downarrow e^{0}$$

$$E \xrightarrow{p} B$$

where e^0 maps w to w(0).

Proposition 1.11. Given a map $p: E \to B$, the followings are equivalence:

- 1. $p: E \to B$ is a fibration.
- 2. p has HLP for W(p).

3.

$$r \colon E^I \to W(p)$$

 $\alpha \mapsto (\alpha(0), p \circ \alpha)$

admits a section.

Proof. $(1) \Longrightarrow (2)$ is by definition.

(2) \Longrightarrow (3): Because W(p) is a pull-back, by its universal property, we have the following diagram and we want to find s such that $r \circ s = \mathrm{id}$.

Notice that Map $(W(p), E^I) = \text{Map}(W(p) \times I, E)$, because p has HLP for W(p), we have the following commutative diagram.

$$W(p) \xrightarrow{b} E$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow p$$

$$W(p) \times I \xrightarrow{k} B$$

We have $b \circ r \circ s = e^0 \circ s = b$ and $k \circ r \circ s = p^I s = k$. Using the universal property (uniqueness) of pull-back W(p) for W(p), we must have $r \circ s = \mathrm{id}$, i.e. s is a section of r.

(3) \Longrightarrow (1): Let s be the section of r. For any X, a, h as in the definition of fibration, we want to find H such that the following diagram is commutative.

$$X \xrightarrow{a} E$$

$$\downarrow i_0 \qquad \downarrow p$$

$$X \times I \xrightarrow{h} B$$

Using the universal property of pull-back W(p), we have unique f such that the following diagram is commutative, where $h: X \to B^I$ is the same as $h: X \times I \to B$.

Then because Map $(W(p), E^I) = \text{Map}(W(p) \times I, E)$, one can check that $H = s \circ f$ is as desired. In fact,

$$p \circ H(x,t) = (p \circ H(x))(t) = (k \circ r \circ s \circ f(x))(t) = (k \circ \operatorname{id} \circ f(x))(t) = h(x,t)$$

and $H \circ i_0 = a$ is similar.

1.2.1 Pull-back of Fibration

Proposition 1.12. If $p: E \to B$ is a fibration, then $f^*E \to A$ is also a fibration.

Proof. In the following diagram, F is induced by HLP for fibration $p: E \to B$ and then H is induced by universal property of pull-back f^*E .

1.2.2 Replacing Maps by Fibration

Proposition 1.13. The evaluation $e^1: Y^I \to Y$, $w \mapsto w(1)$ is a fibration.

Proof. We can define H directly:

$$H: X \times I \to Y^{I}$$

$$(x,s) \mapsto \begin{cases} [t \mapsto a|_{X}((1+s)t)], & when \ 0 \le (1+s)t \le 1\\ [t \mapsto h(x,(1+s)t-1)], & when \ (1+s)t \ge 1. \end{cases}$$

$$X \xrightarrow{a} Y^{I}$$

$$Y \times I \xrightarrow{h} Y$$

Given $f: X \to Y$, consider the following pull-back.

$$W(f) = f^*Y^I \longrightarrow Y^I$$

$$\downarrow i_0 \downarrow \qquad \qquad \downarrow e^1$$

$$X \xrightarrow{f} Y$$

In fact,

$$W(f) = \{(x, w) \in X \times Y^I : f(x) = w(1)\}.$$

Denote $p: W(f) \to Y$, $(x, w) \mapsto w(0)$ and $s: X \to W(f)$, $x \mapsto (x, k_{f(x)})$ where $k_{f(x)}$ is a constant path at f(x), and $q: W(f) \to X$, $(x, w) \mapsto x$. We can check that the following diagram is commutative.

$$W(f) = f^*Y^I \longrightarrow Y^I$$

$$\downarrow i_0 \mid \uparrow s \qquad p \qquad \downarrow e^1$$

$$X \longrightarrow Y$$

Theorem 1.14. In the following commutative diagram,

s is a homotopy equivalence and p is a fibration.

Proof. Consider the following fibration

$$\begin{array}{c|c} (f \times \mathrm{id})^* Y^I & \longrightarrow Y^I \\ \downarrow (q,p) & & \downarrow (e^1,e^0) \\ X \times Y & \xrightarrow{f \times \mathrm{id}} Y \times Y \end{array}$$

Claim 4. $(f \times id)^*Y^I = W(f)$.

To see that, notice that

$$(f \times id)^* Y^I = \{(x, y, w) \in X \times Y \times Y^I : f(x) = w(1), y = w(0)\},\$$

we can construct a map from W(f) to $(f \times id)^*Y^I$ that maps (x, w) to (x, w). It's one to one.

Then $p: W(f) \to Y$ is a fibration if and only if $(f \times id)^*Y^I \xrightarrow{(q,p)} X \times Y \xrightarrow{p_2} Y$ is a fibration. It's a composition of two fibration and then a fibration, as desired.

Claim 5. q is a homotopy inverse of s.

By this theorem, given any $f: X \to Y$, we can replace it by a fibration $p: W(f) \to Y$ homotopically. Then we can define the homotopy fibre at y_0 of $f: X \to Y$ to be

$$F(f) := p^{-1}(y_0) = \{(x, w) \in X \times Y^I : f(x) = w(1), y_0 = w(0)\}.$$

Remark 1.15. Apply HLP again, we can prove the factorization $f = s \circ p \colon X \to Y$ such that $s \colon X \to W$ is a homotopy equivalence and $p \colon W \to Y$ is a fibration. And this factorization is unique up to homotopy equivalence.

Theorem 1.16. Let $p: E \to B$ be a fibration and B is path-connected. Then all fibres $p^{-1}(b)$ are homotopy equivalent.

Proof. Given a path $\alpha: I \to B$, $\alpha(0) = b_0$ and $\alpha(1) = b_1$. Consider HLP property:

$$p^{-1}(b_0) \xrightarrow{F} E$$

$$\downarrow \qquad \qquad \downarrow p$$

$$p^{-1}(b_0) \times I \xrightarrow{h} B$$

where $h(x,t) = \alpha(t)$. Consider $H_1: p^{-1}(b_0) \to p^{-1}(b_1)$ the restriction of H at t = 1. Similarly, consider the reversed path $\overline{\alpha}$ of α , we get $\overline{H_1}: p^{-1}(b_1) \to p^{-1}(b_0)$.

Claim 6. $\overline{H_1} \circ H_1 \simeq id$.

It's by applying homotopy lifting to the homotopy from $\overline{\alpha}\alpha$ to k_{b_0} . Therefore, all fibres $p^{-1}(b)$ are homotopy equivalent.

1.2.3 Fibre Exact Sequence (Puppe's Sequence)

Definition 1.17. We say a sequence of pointed maps

$$(X, x_0) \xrightarrow{f} (Y, y_0) \xrightarrow{g} (Z, z_0)$$

is h-coexact if $\forall (B, b_0)$, the induced sequence

$$[B,X]^o \xrightarrow{f_*} [B,Y]^o \xrightarrow{g_*} [B,Z]^o$$

is exact, i.e. $g_*^{-1}([c_{z_0}]) = \operatorname{im} f_*$.

Recall the homotopy fibre of $f: X \to Y$ is

$$F(f) := p^{-1}(y_0) = \{(x, w) \in X \times Y^I : f(x) = w(1), y_0 = w(0)\}.$$

Denote $f^1: F(f) \to X$, $(x, w) \mapsto x$.

Proposition 1.18. For any $f: (X, x_0) \to (Y, y_0)$, the sequence

$$F(f) \xrightarrow{f^1} X \xrightarrow{f} Y$$

is h-coexact.

Proof. Assume $\alpha: B \to X$ satisfies $f \circ \alpha: B \to Y$ is null-homotopic and $f_*[\alpha] = [c_{y_0}]$. Apply HLP property:

$$B \longrightarrow FY = \{ w \in Y^I : w(0) = y_0 \}$$

$$\downarrow e^1$$

$$B \times I \longrightarrow Y$$

where h is a null-homotopy from $f \circ \alpha$ to c_{y_0} . Notice that $H_0: B \times \{1\} \to FY$ satisfies

where β is induced by the universal property of the pull-back F(f), such that $f^1 \circ \beta = \alpha$. Therefore, $f^1_*([\beta]) = [\alpha]$.

Iterate the procedure, we get a long h-exact sequence

$$\cdots \longrightarrow F\left(f^{2}\right) \xrightarrow{f^{3}} F\left(f^{1}\right) \xrightarrow{f^{2}} F(f) \xrightarrow{f^{1}} X \longrightarrow Y.$$

Question 1.19. How to understand $F(f^n) \xrightarrow{f^{n+1}} F(f^{n-1})$?

We consider the loop space

$$\Omega Y := \{ w \in Y^I : w(0) = w(1) = y_0 \}.$$

Notice that

$$(f^1)^{-1}(x_0) = \{(x_0, w) \in X \times Y^I : w(0) = y_0, w(1) = f(x_0) = y_0\},\$$

we have $\Omega Y = (f^1)^{-1}(x_0)$. We write $i(f): \Omega Y \to F(f)$ for the inclusion.

Theorem 1.20 (The puppe's fibre sequence). The sequence

$$\Omega^k F(f) \xrightarrow{\Omega^k f^1} \Omega^k X \xrightarrow{\Omega^k f} \Omega^k Y \xrightarrow{\Omega^k f} \Omega^k Y \xrightarrow{i \left(\Omega^{k-1} f\right)} \cdots \longrightarrow \Omega X \longrightarrow \Omega Y \longrightarrow F(f) \xrightarrow{f^1} X \longrightarrow Y$$

is h-exact.

Proof. Step 1:

$$F(f^{1}) = \{(x, w, v) \in X \times Y^{I} \times X^{I} : w(0) = y_{0}, v(0) = x_{0}, w(1) = f(x), v(1) = x\}$$
$$= \{(w, v) \in Y^{I} \times X^{I} : w(0) = g_{0}, v(0) = x_{0}, w(1) = f(v(1))\}.$$

Define $j(f): \Omega Y \to F(f^1), w \mapsto (w, k_{x_0}).$

Claim 7. j(f) is a homotopy equivalence.

In fact, define $r(f) \colon F\left(f^1\right) \to \Omega Y$, $(w,v) \mapsto w * \overline{(f \circ v)}$, then $r(f) \circ j(f) = \mathrm{id}$. The homotopy from $\mathrm{id}_{F(f^1)}$ to $j(f) \circ r(f)$ is $h_t(w,v) = \left(h_t^1,h_t^2\right)$, where $h_t^1(s) = \begin{cases} w(s(1+t)), \ s(1+t) \leq 1, \\ f(v(2-(1+t)s)), \ s(1+t) \geq 1 \end{cases}$ and $h_t^2(s) = v(s(1-t))$.

Step 2: From $F\left(f^{1}\right) \xrightarrow{f^{2}} F(f) \xrightarrow{f^{1}} X$, we get

$$F\left(f^{2}\right) \xrightarrow{f^{3}} F\left(f^{1}\right)$$

$$j(f^{1}) \uparrow \qquad \downarrow j(f^{1}) \qquad \uparrow j(f)$$

$$\Omega X \xrightarrow{\Omega f} \Omega Y$$

Because $j\left(f^{1}\right)$ is a homotopy equivalence, we have $i\left(f^{1}\right)\simeq j(f)\circ\Omega f.$

Step 3: Now we have $\Omega X \xrightarrow{\Omega f} \Omega Y i(f) \longrightarrow F(f)$. Then we get $F\Omega f \longrightarrow \Omega X \xrightarrow{\Omega f} \Omega Y$.

Claim 8. $F(\Omega f)$ is homotopy equivalent to $\Omega F(f)$.

To see that, notice that $F(\Omega f)$ and $\Omega F(f)$ are all quotient of $\operatorname{Map}(I \times I, Y)$. Finally, we get the h-exact sequence

$$\Omega F(f) \longrightarrow \Omega X \longrightarrow \Omega Y \longrightarrow F(f) \longrightarrow X \longrightarrow Y$$
.

1.3 Duality of Cofibration and Fibration

1.3.1 Duality of Reduced Suspension and Loop Space

Write $Y^X = \text{Map}(X,Y)$ equipped with compact-open topology. We define the adjunction

$$\alpha \colon Z^{X \times Y} \to \left(Z^Y \right)^X$$
$$f \mapsto [x \mapsto f(x, \cdot)].$$

Theorem 1.21. Suppose that X and Y are locally compact. Then α is a homeomorphism.

In the pointed version, we replace $X \times Y$ by $X \wedge Y = X \times Y / \{x_0\} \times Y \cup X \times \{y_0\}$ and $\operatorname{Map}^o(X,Y)$ is the space of basepoint preserving maps. Then $\alpha^o \colon \operatorname{Map}^o(X \wedge Y,Z) \to \operatorname{Map}^o(X,\operatorname{Map}^o(Y,Z))$ is a homeomorphism. Therefore, α^o induces a bijection $\alpha_*^o \colon [X \wedge Y,Z]^o \to [X,\operatorname{Map}^o(Y,Z)]^o$.

Choose $Y = S^1 = I/\partial I$, then $X \wedge Y = X \times I/X \times \partial I \cup \{x_0\} \times I = \Sigma X$ is the reduced suspension of X and $\operatorname{Map}^o(Y, Z) = \Omega Z$ is the loop space of Z. Therefore, we get a bijection $\alpha_*^o : [\Sigma X, Z]^o \to [X, \Omega Z]^o$. On $[\Sigma X, Z]^o$, we have a group structure:

Let τ be the inversion of ΣX . For any [f], $-[f] = [f \circ \tau]$. On $[X, \Omega Z]^o$, we have

$$\begin{split} m\colon \Omega Z\times \Omega Z &\to \Omega Z \\ (u,v) &\mapsto u*v. \end{split}$$

Define

$$[f] +_m [g] := [m \circ (f \times g) \circ d],$$

where

$$d \colon X \to X \times X$$

 $x \mapsto (x, x)$

is the diagonal embedding.

One can verify that

$$\alpha_*^o([f] +_M [g]) = \alpha_*^o([f]) +_m \alpha_*^o([g]).$$

Then the adjunction map $\alpha_*^o: [\Sigma X, Z]^o \to [X, \Omega Z]^o$ is an isomorphism. In categorical language, this means $\operatorname{Mor}(\Sigma X, Z) = \operatorname{Mor}(X, \Omega Z)$ in $\operatorname{\mathbf{TOP}}^o$. As conclusion, $\Sigma: \operatorname{\mathbf{TOP}}^o \to \operatorname{\mathbf{TOP}}^o$ and $\Omega: \operatorname{\mathbf{TOP}}^o \to \operatorname{\mathbf{TOP}}^o$ are dual functors.

1.3.2 Duality of HLP and HEP

Given a homotopy lifting diagram,

notice that $\operatorname{Map}(X \times I, Z) = \operatorname{Map}(X, Z^I)$, it is equivalent to

Dualize it, also by, $\operatorname{Map}(X \times I, Z) = \operatorname{Map}(X, Z^I)$, we have

It is equivalent to

which is the homotopy extension diagram.

1.3.3 Duality of Two Puppe's Sequences

Notice that $[id] \in [\Sigma X, \Sigma X]^o$, it induces $\alpha_*^o[id] = \eta \colon X \to \Omega \Sigma X$. For each map $f \colon X \to Y$, it induces

$$\begin{split} \eta \colon F(f) &\to \Omega C(f) \\ (x,w) &\mapsto \begin{cases} (x,2t), \ t \leq \frac{1}{2}, \\ w(2-2t), \ t \geq \frac{1}{2}, \end{cases} \end{split}$$

where $C(f) = X \times I \sqcup Y/\{x_0\} \times I$, $f(x) \sim (x,1)$ is the reduced cone of f. Then we get a diagram commutative up to homotopy.

$$\begin{array}{cccc} \Omega Y & \longrightarrow F(f) & \longrightarrow X \\ \downarrow & & \downarrow & & \downarrow \\ \Omega Y & \longrightarrow \Omega C(f) & \longrightarrow \Omega \Sigma X \end{array}$$

2 Homotopy Groups

2.1 Definitions and Properties

Given (X, x_0) , define *n*-th homotopy group

$$\pi_n\left(X,x_0\right) := \left[\left(I^n,\partial I^n\right),\left(X,x_0\right)\right],\,$$

where the identity element is the constant map and [f] + [g] can be represented by

$$f +_{i} g \colon (t_{1}, \dots, t_{n}) \mapsto \begin{cases} f(t_{1}, \dots, 2t_{i}, \dots, t_{n}), \ t_{i} \leq \frac{1}{2} \\ g(t_{1}, \dots, 2t_{i} - 1, \dots, t_{n}), \ t_{i} \geq \frac{1}{2} \end{cases}$$

for any i. The following picture shows that $f +_i g$ and $f +_j g$ are homotopy equivalent for any $i \neq j$, where the red parts are mapped into the base point so the homotopies work. Sometimes, we write $\pi_n(X)$ for short.

Given a pair (X, A, x_0) , $J^n = \partial I^n \times I \cup I^n \times \{0\} = I^n - I^n \times \{1\} \subset I^{n+1}$,

define the n + 1-th relative homotopy group to be

$$\pi_{n+1}\left(X,A,x_0\right) \coloneqq \left[\left(I^{n+1},\partial I^{n+1},J^n\right),\left(X,A,x_0\right)\right].$$

Similarly, we sometimes use $\pi_{n+1}(X, A)$ for short.

Proposition 2.1. When $n \geq 2$, $\pi_n(X, x_0)$ and $\pi_{n+1}(X, A, x_0)$ are both abelian.

Proof. Exchanging f and g in the picture after the definition of $\pi_n(X, x_0)$, we can know that $\pi_n(X, x_0)$ is abelian for $n \geq 2$. For the relative case, we can not process homotopy in the top red region. But for $n \geq 3$, the squares of f and g should be cubes, then we can place the cubes in front and behind to get new homotopy. Therefore, $\pi_n(X, A, x_0)$ is abelian for $n \geq 3$.

Theorem 2.2 (Exact Homotopy Sequence). Given a pair (X, A), we have a long exact sequence

$$\longrightarrow \pi_{n}\left(A,x_{0}\right) \xrightarrow{i_{*}} \pi_{n}\left(X,x_{0}\right) \xrightarrow{j_{*}} \pi_{n}\left(X,A,x_{0}\right) \xrightarrow{\partial} \pi_{n-1}\left(A,x_{0}\right) \xrightarrow{\longrightarrow} \pi_{0}\left(A,x_{0}\right) \xrightarrow{i_{*}} \pi_{0}\left(X,x_{0}\right),$$

where $j:(X,x_0,x_0)\to (X,A,x_0)$ is the inclusion and ∂ is induced from the restriction of I^n on $I^{n-1}\times\{1\}$.

Proof. Notice that each map $f: (I^n, \partial I^n) \to (X, x_0)$ induces a map

$$\overline{f_k} \colon I^{n-k} \to \Omega^k \left(X, x_0 \right)$$

$$(u_1, \dots, u_{n-k}) \mapsto \left[(t_1, \dots, t_k) \mapsto f \left(t_1, \dots, t_k, u_1, \dots, u_{n-k} \right) \right].$$

Then we get an isomorphism $\pi_n\left(X,x_0\right) \to \pi_{n-k}\left(\Omega^k X,c_{x_0}\right)$. This is because $\pi_n\left(X,x_0\right) = \left[S^n,X\right]^o$ and $\Sigma S^{n-1} = S^n$, then $\left[S^n,X\right]^o = \left[\Sigma S^{n-1},X\right]^o \cong \left[S^{n-1},\Omega X\right]^o \cong \left[S^{n-k},\Omega^k X\right]^o$ by duality (Section 1.3.1). Given a pair (X,A), the homotopy fibre of $\iota\colon A \hookrightarrow X$ is

$$F(\iota) = \{(a, w) \in A \times X^I : w(0) = x_0, w(1) = a\} = \{w \in X^I : w(0) = x_0, w(1) \in A\} := F(X, A).$$

Each map $f: (I^{n+1}, \partial I^{n+1}, J^n) \to (X, A, x_0)$ induces a map

$$\hat{f} \colon I^n \to F(X, A)$$
$$(t_1, \dots, t_n) \mapsto [t \mapsto f(t_1, \dots, t_n, t)],$$

induces an isomorphism $\pi_{n+1}(X, A, x_0) \to \pi_n(F(X, A), x_0)$.

The fibre sequence of $\iota \colon A \hookrightarrow X$ is

$$\Omega^n F(\iota) \longrightarrow \Omega^n A \longrightarrow \Omega^n X \longrightarrow \cdots \longrightarrow F(\iota) \longrightarrow A \stackrel{\iota}{\longrightarrow} X$$
.

Appling $[S^1,\cdot]^o$, we have

$$[S^{1}, \Omega^{n} F(\iota)]^{o} = \pi_{1} (\Omega^{n} F(\iota)) = \pi_{n+1}(F(\iota)) = \pi_{n+2}(X, A),$$
$$[S^{1}, \Omega^{n} A]^{o} = \pi_{1} (\Omega^{n} A) = \pi_{n+1}(A),$$
$$[S^{1}, \Omega^{n} X]^{o} = \pi_{1} (\Omega^{n} X) = \pi_{n+1}(X).$$

Then we get exact sequence

$$\pi_{n+2}(X,A) \longrightarrow \pi_{n+1}(A) \longrightarrow \pi_{n+1}(X) \longrightarrow \pi_1(X) \longrightarrow \pi_1(X,A) \longrightarrow \pi_0(A) \longrightarrow \pi_0(X)$$
,

where the exactness of the last a few places is straightforward to verify.

2.2 Change of Basepoint

Assume $v: I \to X$ is a continuous path with $v(0) = x_0$ and $v(1) = x_1$. We regard v as a homotopy

$$\hat{v}_t \colon I^n \to X$$

 $u \mapsto v(t).$

Note that $\partial I^n \hookrightarrow I^n$ is a cofibration (by Corollary 1.3), by HEP, we have the following commutative diagram,

where $[f] \in \pi_n(X, x_0)$.

Proposition 2.3. The map

$$v_{\sharp} \colon \pi_n (X, x_0) \to \pi_n (X, x_1)$$

 $[v_0] \mapsto [v_1]$

only depends on the homotopy class of v rel ∂_1 and defines an isomorphism.

Proof. Use HEP again.

Proposition 2.4. Suppose $f:(X,A) \to (Y,B)$ is a homotopy equivalence. Then $f_*: \pi_n(X,A,x_0) \to \pi_n(Y,B,f(x_0))$ is an isomorphism.

Proof. We only prove that homotopic maps induce isomorphic maps on π_n . Assume we have a homotopy $g_t : (X, A) \to (Y, B)$, we get a path in Y

$$w \colon I \to Y$$

 $t \mapsto g_t(x_0)$.

Then we have the following commutative diagram by HEP.

Remark 2.5. By the proposition, we get a right action of $\pi_1(X, x_0)$ on $\pi_n(X, x_0)$.

2.3 Serre Fibration

Definition 2.6. We say $p: E \to B$ is a Serre fibration, if it has HLP for all cube I^n , $\forall n \geq 0$.

Theorem 2.7. Let $p: E \to B$ be a Serre fibration. Fix $b_0 \in B$ and $e_0 \in E$ such that $p(e_0) = b_0$. Given $B_0 \subset B$, write $E_0 = p^{-1}(B_0)$. Then $p_*: \pi_n(E, E_0, e_0) \to \pi_n(B, B_0, b_0)$ is an isomorphism for all $n \ge 1$.

Proof. Surjectivity: Given $h: (I^n, \partial I^n, J^{n-1}) \to (B, B_0, b_0)$. Consider the lifting problem.

$$I^{n-1} \times \{0\} \cup \partial I^{n-1} \overset{c_{e_0}}{\times} I \xrightarrow{F} E$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow p$$

$$I^{n-1} \times I \xrightarrow{h} B$$

Notice that $I^{n-1} \times \{0\} \cup \partial I^{n-1} \times I \cong I^{n-1} \times \{0\}\}$, the map of the first line is c_{e_0} . Then we have the lifting $H: I^n \to E$ such that $H(\partial I^n) \subset E_0 = p^{-1}(B_0)$ and $H(J^{n-1}) = e_0$.

Injectivity: Assume $p_*[f_0] = p_*(f_1]$. We get a homotopy ϕ_t : $(I^n, \partial I^n, J^{n-1}) \to (B, B_0, b_0)$. Consider the lifting problem.

$$I^{n} \times \partial I \cup J^{n-1} \times I \xrightarrow{\phi} E$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$I^{n} \times I \xrightarrow{\phi_{t}} B$$

Notice that $I^n \times \partial I \cup J^{n-1} \times I \cong I^n$, we have the lifting ϕ .

Corollary 2.8. Given a Serre fibration $F \longrightarrow E \xrightarrow{p} B$ where F is a regular fibre, we have a long exact sequence

$$\pi_n(F) \xrightarrow{i_*} \pi_n(E) \xrightarrow{p_*} \pi_n(B) \longrightarrow \pi_{n-1}(F) \longrightarrow \cdots \longrightarrow pi_0(E) \longrightarrow \pi_0(B)$$
.

Proof. Consider the pair (E, F). By Theorem 2.2, we have exact sequence

$$\pi_n(F) \xrightarrow{i_*} \pi_n(E) \xrightarrow{p_*} \pi_n(B) \longrightarrow \pi_{n-1}(F) \longrightarrow \cdots$$

Choose $B_0 = b_0$ and $F = E_{b_0}$, we have $\pi_n(E, F, b_0) \cong \pi_n(E, b_0, b_0) \cong \pi_n(B, b_0)$ and this corollary follows.

Proposition 2.9. Every fibre bundle is a Serre fibration.

Proof. Given the lifting problem.

$$I^{n} \times \{0\} \xrightarrow{a} E$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$I^{n} \times I \xrightarrow{b} B$$

We choose an open cover $\{U_{\alpha}\}_{{\alpha}\in\Lambda}$ of B such that finitely many U_{α} 's cover im h and over each U_{α} , $E|_{U_{\alpha}}$ is trivialized. Choose a subdivision $\{I_{\beta}^n\}$ of I^n and partition $\{I_{\lambda}\}$ of I, such that $\forall \beta, \lambda, h\left(I_{\beta}^n \times I_{\lambda}\right) \subset U_{\alpha}$ for some α . Over each $I_{\beta}^n \times I_{\lambda}$, we consider

$$I_{\beta}^{n} \times \partial I_{\lambda} \cup \partial I_{\beta}^{n} \times I_{\lambda} \longrightarrow U_{\alpha} \times F$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$I_{\beta}^{n} \times I_{\lambda} \xrightarrow{\qquad \qquad \downarrow} U_{\alpha}$$

where $I_{\beta}^{n} \times \partial I_{\lambda} \cup \partial I_{\beta}^{n} \times I_{\lambda} \cong I_{\beta}^{n} \times \{0\}$ and $U_{\alpha} \times F \cong E|_{U_{\alpha}}$. We construct the lifting of h inductively on β and λ .

2.4 Higher Connectivity

Proposition 2.10. Let (X,A) be a pair, and $f:(I^n,\partial I^n)\to (X,A)$ a pointed map. The followings are equivalent.

- 1. f is null-homotopic.
- 2. f is homotopic rel ∂I^n to a map in A.

Proof. (1) \Longrightarrow (2): Consider a surjective continuous map $\lambda \colon I^n \times I \to I^n \times I$ such that $\lambda|_{\partial I^n \times I} \colon (x,t) \mapsto (x,0)$ and $\lambda|_{I^{\{0\}}} = \operatorname{id}_{I^n}$. Consider a null-homotopy $F \colon I^n \times I \to X$ of f, we let $H = F \circ \lambda \colon I^n \times I \to X$. Then H is a homotopy of f such that $H|_{\partial I^n \times \{t\}} = \operatorname{id}_{\partial I^n}$ and $H_1(I^n) \subset A$.

Then H is a homotopy of f such that $H|_{\partial I^n \times \{t\}} = \mathrm{id}_{\partial I^n}$ and $H_1(I^n) \subset A$. (2) \Longrightarrow (1): We may assume $f(I^n) \subset A$. J^{n-1} is a deformation retract of I^n . This is equivalent to that we get a homotopy $h_t \colon I^n \to I^n$ such that im $h_1 = J^{n-1}$ and $h_0 = \mathrm{id}$. Then $f \circ h_t$ is a homotopy from f to c_{x_0} .

Remark 2.11. By (2), $\pi_n(A, A) \to \pi_n(X, A)$ is trivial.

Definition 2.12. We say a pair (X, A) is n-connected if $\pi_q(X, A) = 0$, $\forall 1 \le q \le n$ and $\pi_0(A) \to \pi_0(X)$ is surjective. Note that $\pi_q(X, A) = 0$ is computed for all basepoints.

Proposition 2.13. The followings are equivalent.

- 1. (X, A) is n-connected.
- 2. $j_*: \pi_q(A,*) \to \pi_q(X,*)$ is an isomorphism for q < n and is an epimorphism for q = n.

Proof. The proof follows from exact sequence of the pair (X, A) (Proposition 2.2).

Definition 2.14. We say $f: X \to Y$ is n-connected if $f_*: \pi_k(X) \to \pi_k(Y)$ is an isomorphism for $1 \le k \le n-1$ and is an epimorphism for k=n.

Proposition 2.15. $f: X \to Y$ is n-connected if and only if (Z(f), X) is n-connected.

Proof. The proof follows from exact sequence of the pair (Z(f), X) (Proposition 2.2) and $Z(f) \simeq Y$. \square

2.5 Excision and Suspension

Theorem 2.16 (Blaskers-Massey). Let $Y = Y_1 \cup Y_2$ be union of two open subsets and $Y_0 = Y_1 \cap Y_2 \neq \emptyset$. Suppose $\pi_i(Y_1, Y_0) = 0$ for any 0 < i < p, $p \ge 1$ and $\pi_j(Y_2, Y_0) = 0$ for any 0 < j < q, $q \ge 1$. Then the map $\iota \colon \pi_n(Y_2, Y_0) \to \pi_n(Y, Y_1)$ is an isomorphism for $1 \le n \le p + q - 3$ and is an epimorphism for n = p + q - 2.

Proof. See textbook \S 6.7.

Proposition 2.17. Let $j: A \hookrightarrow X$ be a cofibration. Consider a push-out diagram

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow J & & \downarrow J \\
X & \xrightarrow{F} & Y
\end{array}$$

where $Y = X \sqcup B/f(a) \sim j(a)$. Suppose $\pi_i(X,A) = 0$, $\forall 0 < i < p$ and $\pi_i(Z(f),A) = 0$, $\forall 0 < i < q$. Then the induced map $(F,f)_*: \pi_n(X,A) \to \pi_n(Y,B)$ is an isomorphism for $1 \le n \le p+q-3$ and is an epimorphism for n = p+q-2.

Proof. Replace f by a cofibration

$$A \xrightarrow{k} Z(f) \xrightarrow{p} B$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X \xrightarrow{K} Z \xrightarrow{P} Y$$

where $Z = Z(f) \sqcup X/(a,0) \sim j(a)$, $f = p \circ k$, $F = P \circ K$. Since $p \colon Z(f) \to B$ is a homotopy equivelence and $P \colon Z \to Y$ is given by push-out, P is also a homotopy equivalence. Let $Z = Z_1 \cup Z_2$ where $Z_2 = X \sqcup A \times (\varepsilon, 1]/\sim$ and $Z_1 = B \sqcup A \times [0, \varepsilon)/\sim$. Then $Z_1 \cap Z_2 = A \times (\varepsilon, 1 - \varepsilon)$. Applying excision (Theorem 2.16),

$$\pi_n(X, A) \cong \pi_n(Z_2, Z_0) \to \pi_n(Z, Z_1) \cong \pi_n(Y, B)$$

has desired properties.

Theorem 2.18 (Quotient). Let $A \hookrightarrow X$ be a cofibration. Suppose $\pi_i(CA, A) = 0$ for 0 < i < p and $\pi_i(X, A) = 0$ for 0 < i < q. Then $p_* \colon \pi_n(X, A) \to \pi_n(X/A, *)$ is an isomorphism for $1 \le n \le p + q - 3$ and is an epimorphism for n = p + q - 2.

Proof. Note $X \cup CA$ fits into the following push-out diagram.

$$\begin{array}{ccc}
A & \longrightarrow CA \\
\downarrow & & \downarrow \\
X & \longrightarrow X \cup CA
\end{array}$$

Then we get the result for

$$\pi_n(X,A) \to \pi_n(X \cup CA,CA).$$

Since $A \hookrightarrow X$ is a cofibration, $CA \hookrightarrow X \cup CA$ is also a cofibration. Notice that because CA is contractible, $X \cup CA \to X \cup CA/CA$ is a homotopy equivalence (This is left as an exercise). Then

$$\pi_n(X, A) \to \pi_n(X \cup CA, CA) \cong \pi_n(X \cup CA/CA, *) \cong \pi_n(X/A, *)$$

has desired properties.

Definition 2.19. We say (X, x_0) is well-pointed if $x_0 \hookrightarrow X$ is a cofibration.

Example 2.20. • For any CW-complex or manifold, it is well-pointed for any point.

• $X = \left\{\frac{1}{n} : n \in \mathbb{Z}^+\right\} \cup \{0\}, x_0 = 0 \text{ is not well-pointed.}$

Theorem 2.21 (Freudenthal Suspension). Let (X, x_0) be a well-pointed *n*-connected space. Then $\Sigma_* : \pi_j(X) \to \pi_{j+1}(\Sigma X)$ is an isomorphism for $0 \le j \le 2n$ and is an epimorphism for j = 2n + 1.

Proof. The suspension map is given by

$$\pi_j(X) = \left[S^j, X\right]^o \xrightarrow{\Sigma_*} \left[S^{j+1}, \Sigma X\right]^o = \pi_{j+1}(X) \ .$$

We factor Σ_* into

$$\Sigma_* \colon \pi_j(X) \underset{\cong}{\longleftarrow} \pi_{j+1}(CX, X)$$

$$\downarrow^{p_*}$$

$$\pi_{j+1}(\Sigma X)$$

To use Theorem 2.18, we verify $X \hookrightarrow CX$ is a cofibration. Consider the push-out diagram

$$X \times \partial I \cup \{x_0\} \times f \longrightarrow X$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \times I \longrightarrow CX$$

where $CX = X \times I/X \times \{0\} \cup \{x_0\} \times I$. Because $\partial I \hookrightarrow I$ and $x_0 \hookrightarrow X$ are cofibrations, we have $\{x_0\} \times I \cup X \times \partial X \hookrightarrow X \times I$ is also a cofibration. By push-out diagram, $X \hookrightarrow CX$ is a cofibration. Now we have exact sequence

$$\pi_{j}(CX, X)\pi_{j-1}(X^{\hat{\partial}}) \longrightarrow 0$$

$$\uparrow \qquad \qquad \qquad \uparrow$$

$$\pi_{j}(CX) = 0$$

$$\uparrow \qquad \qquad \qquad \uparrow$$

$$\pi_{j}(X)$$

Then (CX,X) is (n+1)-connected. And $p_*: \pi_j(CX,X) \to \pi_j(\Sigma X)$ is isomorphism for $j \leq 2n-1$ and is an epimorphism for j=2n. Then we apply Theorem 2.18 with p=q=n+2 and get the desired properties for $\Sigma_*: \pi_{j-1}(X) \to \pi_j(X)$.

2.6 Computation of Homotopy Groups

Example 2.22.

$$\pi_k \left(S^n \right) \cong \begin{cases} 0, k < n \\ \mathbb{Z}, k = n \end{cases}.$$

$$\pi_1 \left(S^1 \right) \cong \mathbb{Z}, \quad \pi_1 \left(S^n \right) \cong 0, \ \forall n \ge 2.$$

To compute $\pi_2(S^2)$, consider the Hopf fibration

$$S^1 \longrightarrow S^2$$
.

This is given by the fibre bundle

$$S^2 = \mathbb{CP}^1 = \mathbb{C}^2 - \{0\}/\mathbb{C}^* = S^3/S^1.$$

We have the following fibre sequence

$$\pi_2(S^1) \longrightarrow \pi_2(S^3) \longrightarrow \pi_2(S^2) \xrightarrow{\partial} \pi_1(S^1) \longrightarrow \pi_1(S^3)$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$0 \qquad \qquad \mathbb{Z} \qquad 0$$

Because S^1 is 0-connected, by Suspension Theorem, $\pi_1\left(S^1\right) \to \pi_2\left(S^2\right)$ is an epimorphism. Then $\pi_2\left(S^2\right) \cong \mathbb{Z}$ and $\pi_2\left(S^3\right) = 0$.

For $n \geq 2$, assume S^n is (n-1)-connected, by Freudenthal's Suspension, $\pi_j(S^n) \to \pi_{j+1}(S^{n+1})$ is an isomorphism for $j \leq n \leq 2n$. By induction, $\pi_n(S^n) \cong \mathbb{Z}$ and $\pi_j(S^n) = 0$ for j < n.

Example 2.23. Notice that

$$\mathbb{CP}^n = \mathbb{C}^{n+1} - \{0\}/\mathbb{C}^* = S^{2n+1}/U(1)$$

for $n \geq 2$, we get a fibre bundle

$$U(1) \hookrightarrow S^{2n+1} \longrightarrow \mathbb{CP}^n$$
.

Then we have fibre sequence

$$\pi_j\left(S^{2n+1}\right) \longrightarrow \pi_j\left(\mathbb{CP}^n\right) \pi_{j-1}(U(1)) \longrightarrow \pi_{j-1}\left(S^{2n+1}\right).$$

Then when $j=2, \, \pi_2\left(\mathbb{CP}^n\right)\cong\mathbb{Z}$. When $2\neq j\leq 2n, \, \pi_j\left(\mathbb{CP}^n\right)=0$. Consider $\mathbb{CP}^{\infty}=\bigcup_{n\geq 1}\mathbb{CP}^n,$

$$\mathbb{CP}^{n} \longrightarrow \mathbb{CP}^{n+1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$S^{2n+1} \longrightarrow S^{2n+3}$$

$$\downarrow \qquad \qquad \downarrow$$

$$U(1) \qquad U(1)$$

is induced from Five-Lemma. Then $i_* \colon \pi_2\left(\mathbb{CP}^n\right) \to \pi_2\left(\mathbb{CP}^{n+1}\right)$ is an isomorphism. As conclusion,

$$\pi_n\left(\mathbb{CP}^\infty\right) \cong \begin{cases} \mathbb{Z}, & n=2\\ 0, & n\neq 2. \end{cases}$$

Example 2.24. We have the following fibre bundle by transitive group action.

$$O(n) \xrightarrow{j} O(n+1) \longrightarrow S^n$$
.

Since S^n is (n-1)-connected, the homotopy exact sequence for fibrations show $j \colon \mathcal{O}(n) \hookrightarrow \mathcal{O}(n+1)$ is (n-1)-connected.

Write
$$O(\infty) = \bigcup_{n=1}^{\infty} O(n)$$
.

Theorem 2.25 (Bott-Periodicity).

$$\pi_k(\mathcal{O}(\infty)) \cong \pi_{k+8}(\mathcal{O}(\infty)).$$

Example 2.26 (Stiefel Manifolds). Denote $V_k(\mathbb{R}^n)$ be the orthogonal k-frames in \mathbb{R}^n . Then we have

$$V_k(\mathbb{R}^n) = O(n)/O(n-k).$$

Then we get a fibration

$$O(n-k) \longrightarrow V_k(\mathbb{R}^n)$$
.

Notice that in

$$O(n-k)$$
 $O(n > k+1)$ $O(n)$,

j is (n-k-1)-connected, then

$$\pi_i(\mathcal{O}(n-k)) \xrightarrow{\cong} \pi_i(\mathcal{O}(n)) \longrightarrow \pi_i(\mathcal{V}_k(\mathbb{R}^n))$$

for $i \leq n-k-2$. Therefore, $\pi_i\left(\mathbf{V}_k\left(\mathbb{R}^n\right)\right) = 0$ when $i \leq n-k-1$.

Claim 9. $V_k(\mathbb{R}^n)$ is (n-k-1)-connected.

Consider the projection

$$p \colon V_{k+1}\left(\mathbb{R}^{n+1}\right) \to V_1\left(\mathbb{R}^{n+1}\right) \cong S^n$$
$$(v_1, \dots, v_{k+1}) \mapsto v_{k+1}.$$

The fibre is $V_k(\mathbb{R}^n)$. We know S^n is (n-1)-connected, then $j \colon V_k(\mathbb{R}^n) \to V_{k+1}(\mathbb{R}^{n+1})$ is (n-1)-connected. Therefore, we have $\pi_{n-k}(V_k(\mathbb{R}^n)) \cong \pi_{n-k}(V_2(\mathbb{R}^{n-k+2}))$. We know that $\pi_1(V_2(\mathbb{R}^{n-k+2})) = 0$. By Hurewicz Theorem, $H_i(V_2(\mathbb{R}^{n-k+2})) \cong \pi_i(V_2(\mathbb{R}^{n-k+2}))$ for $2 \le i \le n-k$, which is non-trivial. We will do these calculations later.

Part II

Generalized Homology

3 Homology Theory and CW-Complexes

Homology Theory 3.1

Denote $R - \mathbf{MOD}$ be the category of left R-modules and $\mathbf{TOP}(2)$ be the category of pairs (X, A) and

$$k \colon \mathbf{TOP}(2) \to \mathbf{TOP}(2)$$

 $(X, A) \mapsto (A, \varnothing)$

be the forgetful functor.

Definition 3.1 (Eilenberg-Steenrod Axioms). A homology theory on **TOP**(2) consists

- 1. a family of functors $h_n : \mathbf{TOP}(2) \to R \mathbf{MOD}$,
- 2. a family of natural transformations $\partial_n : h_n \to h_{n-1} \circ k$ such that
 - (a) Homotopy invariance: $h_n\left(f_0\right) = h_n\left(f_1\right)$ for $f_0 \simeq f_1$.
 - (b) Exact sequence:

$$\cdots \longrightarrow h_{n+1}(X,A) \xrightarrow{\partial_{n+1}} h_n(A) \longrightarrow h_n(X) \longrightarrow h_n(X,A) \longrightarrow \cdots$$

for any pair (X, A).

(c) Excison: Given a pair (X, A), for any $U \subset A$ such that $\overline{U} \subset Int(A)$, then inclusion induces an isomorphism $h_n(X-U,A-U) \to h_n(X,A)$.

Proposition 3.2. Given two pairs (X_i, A_i) , i = 1, 2, we get an isomorphism

$$\bigoplus_{i=1}^{2} h_n\left(X_i,A_i\right) \to h_n\left(X_1 \sqcup X_2,A_1 \sqcup A_2\right).$$

Proof. Consider the commutative diagram for $A_i = \emptyset$.

Injectivity of $i_1 \oplus i_2$ is easy to check. For its surjectivity, take $c \in h_n(X_1 \sqcup X_2)$, we have $j_1(c) = j_1 \circ i_1 \circ a_1^{-1}(j_1(c))$. Then $c - i_1 \circ a_1^{-1}(j_1(c)) \in \ker j_1$. Therefore, there exists $x \in h_n(X_2)$ such that $i_2(x) = c - i_1(a_1^{-1} \circ j_1(c))$. Then $c = i_1(y) + i_2(x)$ where $y = a_1^{-1} \circ j_1(c) \in h_n(X_1)$.

The general case will be proved later.

Let A = * be a single point. Define h(X) := h(X, *).

Assume there is a map $r: X \to A$ such that $r \circ i \simeq id$. Then $i_*: h_n(A) \to h_n(X)$ is injective. We get short exact sequences

$$0 \longrightarrow h_n(A) \xrightarrow{i_*} h_n(X) \longrightarrow h_n(X,A) \longrightarrow 0.$$

Then we have splitting $h_n(X) \cong h_n(A) \oplus h_n(X,A)$ and $h_n(X,A) = \ker r_*$. When A = *, take $r = c \colon X \to *$, then $\widetilde{h_n}(X) = h_n(X,*) = \ker (c_* \colon h_n(X) \to h_n(*))$.

Proposition 3.3. Let $A \hookrightarrow X$ be a cofibration. Then the quotient map induces an isomorphism $j_*: h_n(X,A) \to h_n(X/A,*)$.

Proof. Apply excision to $(X \cup CA, CA)$ for U = the cone point of CA, we have $h_n(X, A) \cong h_n(X \cup CA, CA)$. When $A \hookrightarrow X$ is a cofibration, $CA \hookrightarrow X \cup CA$ is a cofibre. Since CA is contractible, $X \cup CA/CA \cong X \cup CA$. Then $h_n(X \cup CA, CA) \cong h_n(X/A, *)$.

Proposition 3.4. Let (X,*) and (Y,*) be well-pointed spaces and $f: X \to Y$ is a pointed map. Then the cofibre sequence $X \xrightarrow{f} Y \xrightarrow{f^1} C(f)$ induces an exact sequence

$$\widetilde{h_n}(X) \xrightarrow{f_*} \widetilde{h_n}(Y) \xrightarrow{f_*^1} \widetilde{h_n}(C(f))$$
.

Proof. The proof follows the commutative diagrams

$$\widetilde{h_n}(X) \longrightarrow \widetilde{h_n}(Z(f)) \longrightarrow \widetilde{h_n}(Z(f), X)$$

$$\cong \bigvee_{\cong} \bigvee_{\cong} \bigvee_{\cong} \bigvee_{\cong} \bigvee_{\widetilde{h_n}(X) \longrightarrow \widetilde{h_n}(Y) \longrightarrow \widetilde{h_n}(C(f))}$$

and

$$\begin{array}{ccc} X \times \partial I \xrightarrow{(\mathrm{id},f)} X \sqcup Y \\ \downarrow & & \downarrow \\ X \times I \longrightarrow Z(f) \end{array}$$

Proposition 3.5. Given a triple (X, A, B). Assume $B \hookrightarrow X$ is a cofibration, we get an exact sequence

$$\cdots \longrightarrow h_n(A,B) \longrightarrow h_n(X,B) \longrightarrow h_n(X,A) \xrightarrow{\partial} h_{n-1}(A,B) \longrightarrow \cdots$$

Proof. Applying excision, we know that (X, A, B) and $(X \cup CB, A \cup CB, CB)$ have the same sequence. Applying homotopy equivalence, $(X \cup CB, A \cup CB, CB)$ and (X, A, *) have the same sequence. The triple sequence of (X, A, *) is the reduced pair sequence of (X, A).

3.1.1 Suspension Isomorphism

Given a pair (X, A), we have the suspension isomorphism

$$\sigma: h_n(X, A) \to h_n(\partial I \times X \cup I \times A, \{0\} \times X \cup I \times A)$$

by excision for $U=(0,1]\times A\cup\{0\}\times X$. Consider the boundary map $\partial_{n+1}\colon h_{n+1}(I\times X,\partial I\times X\cup I\times A)\to h_n(\partial I\times X\cup I\times A,\{0\}\times X\cup I\times A)$. Notice that $X\simeq I\times X\simeq\{0\}\times X\cup I\times A$, we have the exact sequence

$$h_{n+1}(I\times X,\partial I\times X\cup I\times A)\xrightarrow{\partial_{n+1}}h_n(\partial I\times X\cup I\times A,\{0\}\times X\cup I\times A)\xrightarrow{}h_n(I\times X,\{0\}\times X\cup I\times A)=0\ .$$

Then ∂_{n+1} is an isomorphism and so is ∂_{n+1}^{-1} . We get isomorphisms

$$h_n(x,A) \longrightarrow h_n(\partial I \times X \cup I \times A, \{0\} \times X \cup I \times A)^{-1} \longrightarrow h_{n+1}((I,\partial I) \times (X,A))$$
.

Choose A = *, define the suspension isomorphism by

$$h_n(X, *) \longrightarrow h_{n+1}^{\sigma}(X \times I, \partial I \times X \cup I \times *)$$

$$\cong \bigvee_{\text{quotient}} \bigvee_{\text{quotient}} (\Sigma X)$$

Assume (X, *) is well-pointed, by Hurwicz map, we have the commutative diagram

$$\pi_n(X) \xrightarrow{\Sigma_*} \pi_n(\Sigma X)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\widetilde{h_n}(X) \xrightarrow{\widetilde{\sigma}} \widetilde{h_{n+1}}(X)$$

3.2 **CW-Complex**

Definition 3.6. We say X is obtained from A by attaching an n-cell if there exists a push-out diagram

$$S^{n-1} \xrightarrow{\varphi} A$$

$$\downarrow \qquad \qquad \downarrow$$

$$D^n \xrightarrow{\Phi} X$$

where φ is attaching map and Phi is characteristic map. A CW-decomposition of (X,A) is a filtration $A=X^{-1}\subset X^0\subset \cdots \subset X$ such that

- 1. $X = \bigcup_{n \ge -1} X^n$,
- 2. X^n is obtained from X^{n-1} by attaching n-cells,
- 3. X carries the colimit topology (weak topology).

Part III Characteristic Classes