Algorithmn HW3

5140379032 JIN YI FAN

Problem 1.38

```
Require: set of n positive integers S
Ensure: two subsets S_1, S_2 with maximum sum difference

1: QuickSort(S[])
2: S_1 \leftarrow S[0:n/2+1]
3: S_2 \leftarrow S[n/2+1:n]
4: return S_1, S_2
The time complexity is O(n \log n)
```

Problem 1.39

```
Require: set of n positive integers S
Ensure: two subsets S_1, S_2 with minimum sum difference
 1: function NEXT_PERM(A[])
       count the next permutation of elements in A[]
 2:
        return an array containing this permutation.
 4: end function
 5: \ dif \leftarrow Max\_int
 6: whole \leftarrow sum(S[])
 7: while next_Perm exists do
        S[] \leftarrow \text{NEXT\_PERM}(S[])
       tempDif \leftarrow (whole - 2sum(S[0:n/2]))
       if tempDif < dif then
10:
           dif \leftarrow tempDif
11:
           Candidiate \leftarrow S[]
12:
       end if
13:
14: end while
15: S_1 \leftarrow Candidate[0:n/2]
16: S_2 \leftarrow Candidate[n/2 + 1 : n]
17: return S_1, S_2
The time complexity is O(n^2 \cdot sum)
```

Problem 5.4

```
Require: an array with n real numbers A[1 \dots n]
Ensure: the average number
1: function AVE(A[],k)
2: if k is 1 then
3: return A[0]
4: else
```

```
res \leftarrow (\text{AVE}(A[], k-1)*(k-1) + A[k])/k
5:
6:
          return res
      end if
7:
8: end function
9: return AVE(A[], n)
```

Problem 5.7

(a) 4567, 2463, 6523, 7461, 4251, 3241, 6491, 7563

Step 1:	Step 2:	Step 3:	Step 4:
1:7461,4251,3241	2:6523	2:3241,4251	2:2463
2:6492	4:3241	4:7461,2463,6492	3:3241
3:2463,6523,7563	5:4251	5:6523,7563,4567	$4:4251,\!4567$
7:4567	6:7461,2463,7563,4567		6:6492,6523
	9:6492		7:7461,7563

(b) 16543, 25895, 18674, 98256, 91428, 73234, 16597, 73195

Step 1:	Step 2:	Step 3:	Step 4:	Step 5:
3:16543	2:91428	1:73195	1:91428	1:16543,16597,18674
4:18674,73234	3:73234	2:73234,98256	$3\!:\!73195,\!73234$	2:25895
5:25895,73195	4:16543	4:91428	5:25895	7:73195,73234
6:98256	5:98256	5:16543,16597,18674	6:16543,16597	9:91428,98256
7:16597	8:18674	8:25895	8:98256,18674	
8:91428	9:25895,73195,16597			

Sorting variable-length items

```
Require: L[] containing n ints in range[0:n^3-1]
```

Ensure: Sorted array within O(n) time

14: ${f return}\ L$

```
1: k \leftarrow |\log_n(n^3 - 1)|
2: for unit \leftarrow 1 to k do
        Prepare n empty list L_0, L_1, \dots, L_9
3:
        while A[] isn't empty do
 4:
            temp \leftarrow L.first
            remove L.first in L
 6:
            i \leftarrow \text{the } unit^{th} \text{ number of } temp
 7:
            L_i.insert(temp)
 8:
        end while
 9:
        for i \leftarrow 0 to 9 do
10:
             L.append(L_i)
11:
        end for
12:
13: end for
```