Задание

Когда следует добавлять молоко в кофе, дабы тот дольше оставался тёплым?

Решение

Для ответа на поставленный вопрос проведем построение и анализ приближенной модели иземенения температуры кофе с течением времени. Процесс остывания кофе можно разделить на три этапа:

- 1. Остывание заваренного кофе за счет темплообмена с окружающей средой
- 2. Добавление в заваренный кофе молока с образованием смеси с новой температурой
- 3. Остывание полученной смеси до полного термодинамического равновесия с окружающей средой

Остывание кофе (или смеси) за счет теплообена с окружающей средой подчиняется дифференциальному уравнению:

$$\frac{dT(t)}{dt} = -k\left(T(t) - T_{amb}\right),\tag{1}$$

где k — константа остывания [c $^{-1}$], T_{amb} — температура окружающей среды. Начальное условие для первого этапа:

$$T\big|_{t=0} = T_0 \tag{2}$$

Третий этап физически ничем не отличается от первого, поэтому закон остывания смеси такой же как и для первого этапа, но с другими параметрами. В частности, изменится начальное условие - начальной температурой будет являтся температура после смешивания кофе и молока. Будем считать, что скорости остывания кофе до добавления молока и после одинаковы. При добавлении молока в кофе теплообмен между кофе и молоком осуществляется с конечной скоростью. Однако при достаточно медленной скорости остывания жидкости и при перемешивании смеси можно считать, что установление температуры смеси происходит мгновенно в момент добавления молока.

Для подсчета температуры смеси T_{mix} можно воспользоваться следующим выражением:

$$T_{mix} = \frac{m_c c_c T_c + m_m c_m T_m}{m_c c_c + m_m c_m},$$
(3)

где m_c – масса заваренного кофе, c_c – теплоемкость заваренного кофе, T_c – начальная температура заваренного кофе, m_m – масса молока, c_m - теплоемкость молока, T_m – начальная темпераутра молока. Будем считать, что теплоемкости молока и кофе равны теплоемкости воды, что приводит к упрощению выражения для T_{mix} :

$$T_{mix} = \frac{m_c T_c + m_m T_m}{m_c + m_m} \tag{4}$$

Кроме того, будем считать, что плотности молока и кофе также равны плотности воды $\rho = 999.97~{\rm kr/m^3}$. Масса заваренного кофе:

$$m_c = \gamma_c N_{spoon} + m_w, \tag{5}$$

где γ_c – масса кофе на одну чайную ложку до заварки, N_{spoon} – количество чайных ложек кофе, m_w – масса воды для заварки, которе можно подсчитать следующим образом:

$$m_w = \rho(V_{cup} - N_{spoon}V_{spoon})p,\tag{6}$$

где V_{cup} — объем чашки, V_{spoon} - объем чайной ложки, p — процентное содержание заваренного кофе в чашке. Масса добавляемого молока:

$$m_m = \rho(V_{cup} - N_{spoon}V_{spoon})(1-p) \tag{7}$$

Численное решение дифференциального уравнения будем проводить с помощью метода Эйлера. Для *i*-ой итерации:

$$T_i = T_{i-1} - (t_i - t_{i-1})k(T_{i-1} - T_{amb}), (8)$$

Для учета температуры смеси, необходимо сначала найти номер итерации, который будет соответствовать времени добавления молока и для этой итерации темература будет равна температуре смеси T_{mix} (начальной температурой кофе до смешивания будет являться темпертура кофе на предыдущей итерации).

Проведем расчет для следующих параметров:

Обозначение	Значние	Описание
T_0	85°	Температура кофе сразу после заварки
T_{cool}	25°	Температура окружающей среды
T_m	4°	Температура молока
T_{opt}	50°	Температура кофе, при которой его можно пить
\vec{k}	$1/60 \ { m c}^{-1}$	Константа остывания
V_{cup}	350 мл	Объем чашки
V_{spoon}	$4.92 { m MJ}$	Объем чайной ложки
N_{spoon}	2	Количество чайных ложек кофе
γ_c	$3.3~{ m K}{ m \Gamma}$	Масса кофе на одну чайную ложку
p	0.8	Процентное содержание кофе в чашке
t_0	20 c	Время добавления молока

Рис. 1: Остывание кофе при добавлении молока (красной пункцтирной линией отмечен уровень, соответсвующий температуре T_{opt})

Из графика видно, что при разбавлении кофе молоком, температура которого ниже температуры кофе, то общая температура смеси снизится относительно изначальной темпераутры кофе. Если константа остывания k не изменяется после разбавления, то для максимизации времени остывания до температуры, при которой кофе можно пить, необходимо добавлять молоко сразу после заварки.