Examen du 5 février 2007

Durée 2 heures

Les documents, calculatrices et téléphones portables sont interdits.

Toutes les réponses devront être soigneusement justifiées.

Exercice 1

- 1) Déterminer le reste de la division euclidienne de $19^{12} \times 23^{43}$ par 7.
- 2) Quels sont les entiers naturels de quatre chiffres divisibles à la fois par 175 et 245 ?
- 3) Déterminer les entiers naturels a possédant la propriété suivante : le reste de la division euclidienne de a par 64 est le cube du quotient de cette division.
- 4) Quel est l'ordre du groupe des éléments inversibles de l'anneau $\mathbb{Z}/5757\mathbb{Z}$?
- 5) Quel est l'inverse de la classe de 337 dans l'anneau $\mathbb{Z}/553\mathbb{Z}$?

Exercice 2

Soit P le polynôme X^3+X+1 dans $\mathbb{F}_5[X].$ On considère l'anneau quotient

$$K = \mathbb{F}_5[X]/(P)$$
.

- 1) Montrer que K est un corps.
- 2) Quelle est sa caractéristique ? Quel est son cardinal ?
- 3) Quels sont les ordres possibles des éléments de $K^* = K \{0\}$?

Soit α la classe de X modulo (P). On rappelle que le système $\mathcal{B}=(1,\alpha,\alpha^2)$ est une base du \mathbb{F}_5 -espace vectoriel K.

- 4) Expliciter les développements de α^3 , α^{15} et α^{30} dans \mathcal{B} .
- 5) En déduire l'ordre de α , et celui de 2α , dans K^* .
- 6) Déterminer les coordonnées de l'inverse de $\alpha+1$ dans \mathcal{B} .
- 7) Que vaut $P(\alpha^5)$? En déduire les racines de P dans K. On écrira leurs développements dans \mathcal{B} .

Exercice 3

Soit G la matrice de taille (2,4) à coefficients dans \mathbb{F}_3 définie par

$$G = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 1 & 0 & 1 & 2 \end{pmatrix}.$$

- 1) Quel est le rang de G ? Soit C le code linéaire sur \mathbb{F}_3 de matrice génératrice G.
- 2) Déterminer sa longueur, sa dimension et son cardinal.
- 3) Montrer que C est systématique.
- 4) Soit I_2 la matrice identité de taille (2,2). Trouver la matrice B de taille (2,2) à coefficients dans \mathbb{F}_3 telle que $(I_2|B)$ soit une matrice génératrice de C.
- 5) Déterminer une matrice de contrôle de C.
- 6) Quelle est la distance minimum de C? Quelle est sa capacité de correction?
- 7) Posons $x = (1, 0, 2, 0) \in \mathbb{F}_3^4$. Déterminer le mot de C le plus proche de x au sens de la distance de Hamming.