Oraux de la MPX1 de Chaptal

Table des matières

(Centrale, Python, Aymane) — Actions de groupes planquées et per-	
mutations	1
(Centrale, Python, Paul) — Complexité moyenne d'un tri rapide	2
(Centrale, Python, Momo) — Autour de la concentration de la mesure	3
(Centrale, Python, Cécile) — Autour de la fonction Γ et ses représen-	
tations	4
(Centrale, Cécile) — Autour de $SL_n(\mathbb{K})$	4
(Mines Télécom, Robert) — Une série et une intégrale	4
(Mines Télécom, Robert) — Condition suffisante de diagonalisabilité .	5
(Mines Télécom, Paul) — Série avec une bonne tronche d'arctangente	5
(Mines Télécom, Paul) — Espaces stables mais pas sur leurs appuis .	5
(Mines Télécom, Arthur) — Le bon vieux trick log – exp et la DES	5
(Mines Télécom, Arthur) — Endomorphisme de moyennage	5
(Mines-Ponts, Ali) — Équation fonctionnelle (opérateurs de somme) .	6
(Mines-Ponts, Ali) — Équation fonctionnelle (morphisme de l'addition	
vers la multiplication)	6
(Mines-Ponts, Ali) — Dimension et diagonalisabilité	6
(Mines-Télécom, Aymane) — Autour des racines de P et P'	6
(Mines-Télécom, Aymane) — Nature d'une série dont le terme général	
est l'inverse d'une somme partielle divergente	7
(CCP, Aymane) — Un peu de projection	7
(CCP, Mathilde) — Calcul de distance à un hyperplan	7
(CCP, Paul) — Suites de noyaux qui passent par une année de prépa .	7
(CCP, Samy) — Opérateur de translation	8
(ENS LCR, Charles) — Étude probabiliste des records	8

(Centrale, Python, Aymane) — Actions de groupes planquées et permutations

Soit A partie de E, on note $\sigma\cdot A=\sigma(A)$ pour σ une permutation.

On note B_n le nombre de partitions à n éléments.

(1) Calcul de B_1, B_2, B_3 .

- (2) Montrer que : $\forall n \in \mathbb{N}, B_{n+1} = \sum_{k=0}^{n} {n \choose k} B_k$.
- (3) Écrire B(n) qui renvoie la liste $(B_k)_{k \in [[0,n]]}$. Vérifier que $B_6 = 203$.
- (4) À l'aide de Python, calculer : $B_{p+m} B_m B_{m+1}$ pour $m \in [[0, 50]], p \in \{2, 3, 5, 7\}.$
- (5) Pour P,Q deux partitions, on introduit la relation : $P \sim Q$ si $\exists k \in \mathbb{Z}, Q = c^k \circ P$ où $c = (1, \ldots, p)$ permutation de [[1, p + m]].

Montrer que \sim est une relation d'équivalence.

- (6) Soit P partition, supposons $P \neq cP$, montrer alors : $\{P, cP, \ldots, c^{p-1}P\}$ est une classe d'équivalence pour \sim .
- (7) Si P = cP, montrer qu'il y a une alternative (?).
- (8) En déduire $B_{p+m} = B_m + B_{m+1} \pmod{p}$.

(Centrale, Python, Paul) — Complexité moyenne d'un tri rapide

Soient X_1, \ldots, X_n des VA d'un espace probabilisé $(\Omega, \tau, \mathbb{P})$.

On pose $M_n = \max_{i \in [[1,n]]} X_i$ et H_n la n-ième somme partielle de la série harmonique.

L'objectif est de déterminer l'espérance de M_n . ¹

- (1) Dans cette partie, supposons que les $(X_i)_i$ suivent une loi uniforme et sont à valeurs dans [[1, N]].
- a. Coder EspU(n, N)\$ qui renvoie l'espérance de M_n pour n, N donnés. ²
- b. Calculer l'espérance de M_n pour $N \in \{50, 100, 200\}$ et n=100. Comparer à $N\frac{n}{n+1}$. Conjectures ?
- (2) Dans cette partie, supposons que les $(X_i)_i$ suivent une loi géométrique de paramètre p.
- a. Coder EspG(n, p) qui renvoie $\mathbb{E}(M_n)$.
- b. Supposons que p=1/2, calcul de $\mathbb{E}(M_n)$ pour $n\in\{100,200,500\}$. Calculer $\frac{-H_n}{\ln(1-p)}$ et $1-\frac{H_n}{\ln(1-p)}$. Conjectures?
- (3) Soit X une VA admettant un moment d'ordre 2.

Montrer:

^{1.} Contexte et intérêt : calculer des complexités moyennes, évaluer des coûts amortis dans des algorithmes qui reçoivent en entrée des données suivant une loi uniforme, gaussienne, ...

^{2.} Question orale : Résultat mathématiques justifiant la démarche utilisée ?

$$\mathbb{E}(X) = \sum_{k=0}^{+\infty} \mathbb{P}(X > k)$$

et

$$\mathbb{E}(X^2) = \sum_{k=0}^{+\infty} (2k+1) \mathbb{P}(X > k)$$

Annexe Python fournie : import numpy.random as rnd et donc il sera possible de s'en servir pour simuler les lois. Voici la documentation : https://docs.scipy.org/doc/numpy/reference/routines.random.html

(Centrale, Python, Momo) — Autour de la concentration de la mesure

Soit $M \in S_n(\mathbb{R})$ à diagonale nulle et telles que :

$$\forall i < j, m_{ij} \sim \mathcal{B}\left(p_n = \frac{\lambda \ln(n)}{n}\right) \text{ (indépendantes)}$$

- (1) Construire M à l'aide d'une fonction : def mat(\lambda, n)
- (2) Définir une fonction def prob
(\lambda, n) qui renvoie la probabilité de quelque chose... 3
- (3) On prend $\lambda \in \left\{ \left. \frac{1}{2} + \frac{2k}{10} \right| k \in [[0, 5]] \right\}$ et $n \in \{50 + 100k \mid k \in [[0, 5]]\}$.

Calculer $(\operatorname{Prob}(\lambda, n))_{(\lambda, n)}$ avec Python et les mettre dans une liste.

(4) Soit X_n le nombre de coefficients non nuls de M, déterminer la loi de $\frac{X_n}{2}$, puis $\mathbb{E}(X_n)$ et enfin $\mathbb{V}(X_n)$.

Soit Z_n le nombre de « je m'en rappelle plus ». 4 (pas grave, ça n'importe pas trop)

- (5) Montrer que : $\mathbb{P}(Z_n \ge 1) \le \mathbb{E}(Z_n)$ et $\mathbb{P}(Z_n = 0) \mathbb{E}(Z_n)^2 \le \mathbb{V}(Z_n)$.
- 3. À clarifier.
- 4. Verbatim
- 5. Ce qu'est \mathbb{Z}_n n'est pas très important, mais on peut supposer qu'elle est au moins de moment d'ordre 2.

(Centrale, Python, Cécile) — Autour de la fonction Γ et ses représentations

Posons $I_n = \int_0^{+\infty} t^n e^{-t} dt, n \ge 0.$

(1) Montrer que I_n converge et donner sa valeur.

On pose $v_n = \int_0^{+\infty} \left(1 + \frac{t}{n}\right)^n e^{-t} dt, n \ge 0.$

- (2) Montrer que v_n converge.
- (3) Conjecturer un équivalent de v_n à une constante près à l'aide de Python.
- (4) Démontrer qu'il s'agit bien d'un équivalent de v_n et déterminer la constante.

On pose $S_n = e^{-n} \sum_{k=0}^n \frac{n^k}{k!}$.

- (5) Analyser le comportement de S_n au voisinage de l'infini, à l'aide de Python.
- (6) Démontrer ce que vous voyez. ⁶

(Centrale, Cécile) — Autour de $SL_n(\mathbb{K})$

On pose $SL_n(\mathbb{K}) = \{ M \in \mathcal{M}_n(\mathbb{K}) \mid \det(M) = 1 \}$, dans la suite : \mathbb{K} est un surcorps commutatif de \mathbb{R} , ie : $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

- On sait que $SL_n(\mathbb{K})$ est un sous groupe fermé de $GL_n(\mathbb{K})$ pour le produit matriciel, en effet : $SL_n(\mathbb{K}) = \operatorname{Ker} \det = \det^{-1}(\{1\})$, où : det : $(GL_n(\mathbb{K}), \times) \to (\mathbb{K}^*, \times)$ est un morphisme de groupe multiplicatif.
- On prend $\|\cdot\|$ sous multiplicative, i.e. $\forall A, B \in \mathcal{M}_n(\mathbb{K}), \|AB\| \leq \|A\| \|B\|$.
- (1) Montrer que pour tout $M \in SL_n(\mathbb{K}), ||M|| \geq 1$.
- (2) Montrer que pour tout $M \in SL_2(\mathbb{K})$, M est semblable à une matrice de la forme :

$$\begin{bmatrix} \lambda & 0 \\ 0 & \frac{1}{\lambda} \end{bmatrix}, \begin{bmatrix} \pm 1 & \lambda \\ 0 & \pm \lambda \end{bmatrix}, \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

Pour $\lambda \in \mathbb{K}$ et $\theta \in \mathbb{R}$.

(3) Pour tout $M \in SL_2(\mathbb{K})$, en déduire qu'il existe $B \in \mathcal{M}_n(\mathbb{K})$ de trace nulle telle que : $M^2 = \exp(B)$.

(Mines Télécom, Robert) — Une série et une intégrale

On regarde $f: x \mapsto \sum_{n\geq 0} \frac{x^n}{(n!)^2}$ définie sur \mathcal{D} son domaine de convergence.

^{6.} Indication : Montrer que la limite aperçu par Python est bien celle vers laquelle S_n tend quoi.

(1) Déterminer \mathcal{D} (rayon de convergence)

(2) Comparer avec
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \exp\left[2\sqrt{\pi}\sin(t)\right] dt$$

(Mines Télécom, Robert) — Condition suffisante de diagonalisabilité

Soit $A \in \mathcal{M}_n(\mathbb{C})$, supposons que :

- (1) A^2 soit diagonalisable dans $\mathcal{M}_n(\mathbb{R})$
- (2) $\operatorname{Sp}(A^2) \subset \mathbb{R}_+^*$

Montrer que A est diagonalisable.

(Mines Télécom, Paul) — Série avec une bonne tronche d'arctangente

Définissons, pour tout $x \in \mathbb{R}_+^*$, $f: x \mapsto \sum_{n=1}^{+\infty} \frac{1}{n + xn^2}$.

- (1) Convergence de f? Montrer que f est continue sur son domaine de convergence.
- (2) Équivalent de f en 0 et $+\infty$.

(Mines Télécom, Paul) — Espaces stables mais pas sur leurs appuis

Soit $u \in \mathcal{L}(\mathbb{R}^3)$.

On a :
$$u^3 = 0$$
 et $u^2 \neq 0$.

Décrire les sous espaces stables par u.

(Mines Télécom, Arthur) — Le bon vieux trick $\log - \exp$ et la DES

Montrer la convergence de $\sum \ln \frac{(2n+1)n}{(2n-1)(n+1)}$ et calculer sa somme.

(Mines Télécom, Arthur) — Endomorphisme de moyennage

Soit E l'espace vectoriel des fonctions continues de [0,1] dans \mathbb{R} .

Posons:

$$\varphi: \ E \ \longrightarrow \ E$$

$$f \ \longmapsto \ \left\{ \begin{array}{ccc} F(f): & [0,1] & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \left\{ \frac{f(0) \text{ si } x = 0}{\frac{1}{x} \int_0^x f(t) \, \mathrm{d}t \text{ si } x \in]0,1]} \right. \\ \text{Justifier que } \varphi \text{ est bien définie.} \end{array} \right.$$

- (1) Justifier que φ est bien définie.
- (2) Donner les valeurs propres de φ et ses vecteurs propres.

(Mines-Ponts, Ali) — Équation fonctionnelle (opérateurs de somme)

Trouver toutes les fonctions continues de $\mathbb R$ dans $\mathbb R$ vérifiant :

$$\forall (x,y) \in \mathbb{R}^2, f(x+y) = f(x) + f(y)$$

(Mines-Ponts, Ali) — Équation fonctionnelle (morphisme de l'addition vers la multiplication)

Trouver toutes les fonctions continues de $\mathbb R$ dans $\mathbb C$ vérifiant :

$$\forall (x,y) \in \mathbb{R}^2, f(x+y) = f(x)f(y)$$

(Mines-Ponts, Ali) — Dimension et diagonalisabilité

Soit $A, B \in GL_n(\mathbb{C})$ telles que AB + BA = 0.

- (1) Montrer que n est pair.
- (2) Si n = 2, montrer que A et B sont diagonalisables.

(Mines-Télécom, Aymane) — Autour des racines de P et

Soit $P \in \mathbb{R}[X]$ scindé à racines simples.

- (1) Exprimer $\frac{P'}{P}$ 8 (2) Pour $a \in \mathbb{R}$, une racine de P+aP' peut-elle être une racine de P?
- (3) P + aP' est-il scindé à racines simples?

^{7.} Dites aussi : anticommutantes.

^{8.} t'as dead ça chakal.

(Mines-Télécom, Aymane) — Nature d'une série dont le terme général est l'inverse d'une somme partielle divergente

Soit
$$a_n = \left[\sum_{k=1}^n \ln^2(k)\right]^{-1}$$
.

Nature de $\sum_{n\geq 2} a_n$.

(CCP, Aymane) — Un peu de projection

Soit $(E, \|\cdot\|)$ euclidien, $u \in O(E)$.

On pose $v = u - \mathrm{Id}_E$.

(1) Montrer que $\operatorname{Ker} v = (\operatorname{Im} v)^{\perp}$.

Soit $x \in E$.

On pose, pour tout $n \in \mathbb{N}^*$, $u_n(x) = \frac{1}{n} \sum_{k=0}^n u^k(x)$.

(2) Montrer que $(u_n(x))_n$ tend vers la projection orthogonale de x sur Ker v.

(CCP, Mathilde) — Calcul de distance à un hyperplan

Posons $E=\mathbb{R}_2[X]$ en tant que \mathbb{R} -espace, muni du produit scalaire canonique 10

On pose $F = \{ P \in E \mid P(1) = 0 \}.$

- (1) Montrer que F est un sous espace vectoriel de E et en donner une base.
- (2) Soit P = X, calculer la distance de P à F. ¹¹

(CCP, Paul) — Suites de noyaux qui passent par une année de prépa

Soit E un \mathbb{K} -espace vectoriel de dimension finie.

Soit $u \in \mathcal{L}(E)$.

On note $N = \bigcup_{i>1} \operatorname{Ker} u^i$.

Montrer que $E = \operatorname{Im} u \oplus \operatorname{Ker} u \iff N = \operatorname{Ker} u$. 12

^{9.} Indication de l'énoncé : utiliser 1 pour décomposer x judicieusement.

^{10.} Penser $\sum a_i b_i$ pour $(a_i), (b_i)$ les suites de coefficients respectifs

^{11.} Indication donnée par l'examinateur : Se mettre dans une base orthonormée de F.

^{12.} Indication donnée par l'examinateur : « On pourra prouver d'abord $E=\Im u\oplus \operatorname{Ker} u\iff \operatorname{Ker} u=\operatorname{Ker} u^2$ ».

(CCP, Samy) — Opérateur de translation

Soit S l'espace des suites à valeurs complexes.

Soit $L \in \mathcal{L}(S)$ tel que $\forall u \in S, L(u) = u'$ où $\forall nn \mathbb{N}, u'_n = u_{n+1}$. ¹³

(1) Déterminer, pour tout $\lambda \in \mathbb{C}$, $\operatorname{Ker}(L - \Lambda \operatorname{Id})$ et $\operatorname{Ker}(L - \Lambda \operatorname{Id})^2$.

Soit ${\mathcal F}$ l'ensemble des suites vérifiant la relation suivante :

(*)
$$\forall n \in \mathbb{N}, u_{n+4} = \frac{1}{2}u_{n+3} + 3u_{n+2} - \frac{7}{2}u_{n+1} + u_n$$

- (2) Montrer que : $\mathcal{F} = \operatorname{Ker}\left(L \frac{1}{2}\operatorname{Id}\right) \oplus \operatorname{Ker}(L + 2\operatorname{Id}) \oplus \operatorname{Ker}(L \operatorname{Id})^2$
- (3) En déduire la dimension et une base de \mathcal{F} .

Soit S_B l'ensemble des suites bornées vérifiant (*).

(4) Déterminer la dimension et une base de S_B .

(ENS LCR, Charles) — Étude probabiliste des records

On travaillera dans S_n l'ensemble des permutations sur [[1, n]], on munit S_n de la probabilité uniforme \mathbb{P} . ¹⁴

Pour $k \in [[1, n]]$, on dit que k est un record de $\sigma \in \mathcal{S}_n$ si k maximise σ sur [[1, k]], autrement dit :

$$k = \max_{1 \le i \le k} \sigma(i)$$

On note $\mathcal{R}(\sigma)$ l'ensemble des records.

On note $X_k = \mathbbm{1}_{k \in \mathcal{R}(\sigma)}$ la variable aléatoire indicatrice de records, i.e. 1 si k est un record ou 0 sinon.

- (1) Donner la loi des X_k , $k \in [[1, n]]$.
- (2) X_k et X_{k-1} sont elles indépendantes pour $k \in [[2, n]]$
- (3) Montrer l'indépendance mutuelle de la famille $(X_k)_{k \in [[1,n]]}$ 15

^{13.} Soit donc, un opérateur de translation.

^{14.} On pioche aléatoirement σ une permutation.

^{15.} Requiert une indication selon Charles.