B.Tech. (Computer Engg.) VIIIth Semester Examination, 2019 Network Security Paper No. CEN-805

Time: Three Hours Maximum Marks: 60

Write your roll no. immediately on receipt of this question paper Note: Attempt all question. All questions carry equal marks. Assume suitable missing data, if any.

Q.No./CO's	Statements of Questions	Marks
No. 1. (a)/ CO1	For a defined Galois Field over GF (2 ⁸) having 8 elements. Using	6
1. (a)/ CO1	Extended Euclidean algorithm, find the inverse of (x^s) modulo x^8	0
	$+ x^4 + x^3 + x + 1$.	
1. (b)/ CO1	Using Miller Rabin Primality Test, find the number 341 is prime	6
	or not.	
OR		
1'. (a)/	Using the properties of Discrete logarithms, find the value of	6
COI		
	$2X^{11} \equiv 22 \mod 19.$	
1'. (b)/	What are the different types of security services and security	6
COI	mechanisms used to provide network security?	
2. (a)/ CO2	If the plain text in ASCII "COMPUTER" is supplied as input to	6
	the DES, what is the initial and inverse initial permutation of this	
	Plain text? (Use the code for ASCII as: C: 01000011, O:	
	01001111, M: 01001101, P: 01010000, U: 01010101, T:	
	01010100, E:	
	01000101, R: 01010010)	
2. (b)/ CO2	Jenifer creates a pair of keys for herself. She chooses p= 397 and	6
	$q=401$. She calculates $\varphi(n)=158400$. She choose $e=343$ and $d=$	
	12007. Show how Ted can send a message "NO" to Jenifer if she	
	knows e and n using RSA Cryptographic method. (Use positional	
	value for N= 13 and O= 14)	
OR		
2'. (a)/	If the value of first, second, third and fourth words in the round	6
CO2	of AES is given as W_{00} = 2475A2B3, W_{01} = 34755688, W_{02} =	
	$31E21200$ and W_{03} = 13AA5487. Find the value of temporary	
	word (t) used for the round number 1.	
2'. (b)/	Write the procedure for creation of digital signature and its	6
CO2	verification by using Schnorr Digital signature scheme.	
3. (a)/ CO3	If the ASCII Character "ENGG" is passed as a message to the	6
	SHA-512 as input, find the values in HEX assigned to the words	
	W0, W1, W2,W15 for the defined message. (Use	
	ASCII code for E: 01000101, N: 01001110 and G: 01000111).	

3. (b)/ CO3	Explain the following with respect to MD5:	6
	i. Function to generate temporary constant	
	ii. Values of chaining variables.	
	iii. Compression function	
4. (a)/ CO4	Bob Alice (verifier)	6
	(claimant)	
	Original entry Alice $h^n(P_0)$	
	$ \begin{array}{c c} & n \\ \hline & h^{n-1}(P_0) \\ \hline & h() \\ \hline & Same? Ycs \\ \hline & Grant access $	
	No	
	Alice $n-1$ $h^{n-1}(P_0)$	
	In the above figure, Lamport one-time password is defined, show	
	two more exchanges of the authentication procedure in the above OTP method.	
4. (b)/ CO4	What is Kerberos? Explain the various types of the servers used in Kerberos.	6
5. (a)/ CO5	How security is provided by following two security protocols in	6
	IPSec?	
	i. Authentication Header	
	ii. Encapsulating Security Payload	
5. (b)/ CO5	How the security is preserved in web service using SSL? Briefly describe about the Hand shake protocol of SSL.	6