МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ЛЬВІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ІВАНА ФРАНКА

М. В. Ваврух, С. В. Смеречинський, Н. Л. Тишко

НОВІ МОДЕЛІ В ТЕОРІЇ СТРУКТУРИ ВИРОДЖЕНИХ КАРЛИКІВ

Львів Растр-7 2018

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

ЛЬВІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ІВАНА ФРАНКА

М. В. Ваврух, С. В. Смеречинський, Н. Л. Тишко

НОВІ МОДЕЛІ В ТЕОРІЇ СТРУКТУРИ ВИРОДЖЕНИХ КАРЛИКІВ

Монографія

Рекомендовано до друку Вченою Радою Львівського національного університету імені Івана Франка Протокол № 36/12 від "24.12.2014" р.

Львів Растр-7 2018 УДК 524.31.084, 524.384, 524.352.3 ББК 22.632

Рецензенти:д-р фіз.-мат наук, ст. н. сп., завідувач відділу фізики зір і галактик НДІ "Астрономічна обсерваторія" Одеського національного університету ім. І. І. Мечникова

Т. В. Мішеніна

д-р фіз.-мат наук, пров. н. сп. Астрономічної обсерваторії Київського національного університету імені Тараса Шевченка **Б. І. Гнатик**

д-р фіз.-мат наук, ст. н. сп.,провідний науковий співробітник Інституту прикладних проблем механіки і математики ім. Я. С. Підстригача **Р. М. Пляцко**

Рекомендовано Вченою Радою Львівського національного університету імені Івана Франка Протокол № 36/12 від 24 грудня 2014 р.

Ваврух М. В.

Нові моделі в теорії структури вироджених карликів : монографія / М. В. Ваврух, С. В. Смеречинський, Н. Л. Тишко — Львів: Растр-7, 2018.-268 с. : 84 іл. та 25 табл.

У монографії узагальнено теорію вироджених карликів С. Чандрасекара шляхом побудови багатопараметричних та багатофазних моделей, що враховують неповне виродження електронної підсистеми, наявність міжчастинкових взаємодій, магнітних полів, змінного вздовж радіуса хімічного вмісту та осьового обертання зір. Це дозволило адекватно описати всю різноманітність характеристик вироджених карликів і забезпечити інтерпретацію сучасних спостережуваних даних. На основі розв'язку рівнянь рівноваги визначено залежність структурних та енергетичних характеристик карликів від параметрів моделей. Розв'язано обернену задачу теорії вироджених карликів — визначення основних стурктурних та термодинамічних параметрів моделей за даними про маси, радіуси та ефективні температури спостережуваних польових карликів та карликів у подвійних системах.

УДК 524.31.084, 524.384, 524.352.3 ББК 22.632

- © Ваврух М. В., Смеречинський С. В., Тишко Н. Л., 2018
- © ЛНУ імені Івана Франка, 2018
- © Pactp-7, 2018

3MICT

Π	еред	мова	7
Π	ерелі	ік основних позначень	11
1.	Осн	ови політропної теорії зір	13
	1.1.	Теорія політроп Лена-Емдена-Фаулера	14
		1.1.1. Характеристики політропних моделей зір	18
	1.2.	Модель Еддінгтона і складні політропи	23
	1.3.	Політропна теорія зір з осьовим обертанням	26
		1.3.1. Політропа з $n = 0.$	28
		1.3.2. Політропа з $n = 1. \dots \dots \dots$	32
		1.3.3. Політропи з $n > 1$	35
		1.3.4. Наближений спосіб розв'язування рівнянь рівно-	
		ваги	38
2.	Mo	дель Чандрасекара в теорії холодних вироджених	
	кар	ликів	42
	2.1.	Рівняння стану ідеального виродженого релятивістсько-	
		го електронного газу	42
	2.2.	Рівняння рівноваги холодних вироджених карликів	45
	2.3.	Характеристики холодних карликів	49
	2.4.	Обернена задача в теорії хододних кардиків	55

	2.5.	Залежність енергія – радіус і спостережуваний розподіл	
		карликів за радіусами (масами)	62
	2.6.	Альтернативні зображення рівняння рівноваги	65
	2.7.	Варіаційна оцінка характеристик вироджених релятивіст-	
		ських конфігурацій	67
	2.8.	Напіваналітичні розв'язки рівняння рівноваги виродже-	
		них карликів	71
3.	Три	параметричні моделі холодних вироджених карли-	-
	ків		7 6
	3.1.	Моделювання радіальної залежності хімічного вмісту .	77
		3.1.1. Обернена задача для гелій-водневих карликів	79
		3.1.2. Радіальна залежність компонент. Парціальні маси.	87
	3.2.	Модель холодного карлика зі спін-поляризованою еле-	
		ктронною підсистемою	92
		3.2.1. Характеристики моделі	97
4.	Ось	ове обертання холодних вироджених карликів	102
	4.1.	Рівняння рівноваги	102
	4.2.	Розклади за базисними функціями	110
5.	Вплив неповного виродження на характеристики к		-
	лик	ів	116
	5.1.	Просторово однорідна модель з неповним виродженням	119
	5.2.	Моделювання радіального розподілу температури в одно-	
		фазній моделі	120
	5.3.	Обернена задача для низькотемпературних карликів	124
	5.4.	Енергетична залежність характеристик вироджених кар-	
		ликів	135

	5.5.	Опис структури карлика у рамках двофазної моделі	140
		5.5.1. Структура периферійної області	150
	5.6.	Визначення параметрів моделі за спостережуваними да-	
		ними	161
	5.7.	Трифазна модель у теорії вироджених карликів	165
	5.8.	Обертання гарячих карликів	179
6.	Рів	няння стану електрон-ядерної моделі при високи	X
	густ	гинах	181
	6.1.	Загальні співвідношення	182
	6.2.	Кореляційні функції ідеального релятивістського електрог	H-
		ного газу	187
		6.2.1. Двочастинкова кореляційна функція	188
		6.2.2. Тричастинкова кореляційна функція	192
	6.3.	Кореляційні функції моделі електронної рідини	197
	6.4.	Енергія основного стану моделі	201
	6.5.	Рівняння стану моделі при низьких температурах	210
7.	Впл	ив міжчастинкових взаємодій та осьового обертанн	я213
	7.1.	Характеристики холодного виродженого карлика без осьо-	
		вого обертання	214
	7.2.	Карлики з осьовим обертанням	218
	7.3.	Вплив взаємодій на характеристики ядер гарячих виро-	
		джених карликів	222
8.	Кри	итична маса і стійкість вироджених карликів	225
	8.1.	Розрахунок маси карлика за рівнянням рівноваги	226
	8.2.	Варіаційний метод розрахунку характеристик виродже-	
		них карликів	232

238
244
252
264

Передмова

Як кінцевий результат еволюції зір малих та середніх мас вироджені карлики є одним з найбільш численних класів зір у Всесвіті. Серед компактних об'єктів, до яких належать ще нейтронні зорі та чорні діри, вироджені карлики є найпростішими за своєю будовою і найбільш вивченими, а стан речовини вироджених карликів найменш відрізняється від стану речовини земних об'єктів, незважаючи на високі густини, тиски та температури, характерні для карликів. Цей факт є підставою для побудови достовірної теорії внутрішньої будови вироджених карликів на основі адекватних моделей та спостережуваних даних.

Дослідження вироджених карликів мають столітню історію. У 1914 р. американський астроном В.Адамс, аналізуючи спектри бінарної системи Сіріуса, яка є найяскравішим об'єктом північного неба, виявив, що обидві зорі мають близькі температури фотосфер. Враховуючи, що світність супутника, — Сіріуса Б, є дуже малою, В.Адамс зробив висновок про малі розміри його, хоч на той час вже було відомо зі спостережень орбітального руху компонент цієї системи, що маса супутника близька до маси Сонця. Як тепер відомо, маса Сіріуса Б дорівнює $1{,}06M_{\odot}$, а перший відкритий карлик є класичним представником цього класу зір.

Відкриття вироджених карликів породило проблему побудови теорії внутрішньої будови зір на релятивістських стадіях еволюції, характерною ознакою яких є високі та надвисокі густини речовини у надрах цих об'єктів. З метою пояснення стійкості зір, у яких відсутні джерела енергії, Р.Фаулер у 1926 р. висловив ідею, яка ґрунтувалась на рівнянні стану холодного нерелятивістського виродженого електронного газу. Це одна з визначальних праць, що стала віхою не тільки в галузі теорії зоряної структури, а й у фізиці загалом. Адже задовго до створення мікроскопічних теорій явищ надплинності та надпровідності Р. Фаулер припустив, що стійкість вироджених карликів є макроскопічним проявом квантових властивостей електронів, а саме виродження електронної підсистеми білого карлика. Уперше в астрофізиці застосувавши статистику Фермі-Дірака до моделі однорідного ідеального нерелятивістського електронного газу, він одержав рівняння стану, згідно з яким в асимптотиці низьких температур тиск не залежить від температури і визначається лише концентрацією електронів. Максимальні швидкості електронів у центрах вироджених зір співмірні зі швидкістю світла, тому те8 Передмова

орія Р.Фаулера потребувала узагальнення, а саме урахування ефектів спеціальної теорії відносності. Таке узагальнення виконав С.Чандрасекар у 40-х роках XX ст. у рамках двокомпонентної моделі, що складається з ідеального релятивістського повністю виродженого електронного газу та ядерної підсистеми з однорідним хімічним вмістом, яку він розглядав як статичне безструктурне неперервне середовище. Праці С.Чандрасекара і Р.Фаулера в галузі вироджених карликів були відзначені Нобелівською премією (1983). З теорії С.Чандрасекара випливають два фундаментальні висновки — існування максимальної маси виродженого карлика і специфічне співвідношення "маса — радіус", підтверджене спостережуваними даними для масивних холодних карликів.

З точки зору сучасних уявлень модель С. Чандрасекара є занадто ідеалізованою, вона не враховує багатьох важливих чинників формування структури вироджених карликів - неповного виродження електронної підсистеми (впливу температурних ефектів), неоднорідного хімічного вмісту як наслідку гравітаційної диференціації речовини, міжчастинкових кулонівських взаємодій, осьового обертання зір, наявності магнітних полів, можливих фазових перетворень в процесі охолодження карлика, тощо. У другій половині ХХ ст. з'явились праці, у яких в рамках моделі С. Чандрасекара досліджувались важливі аспекти фізики вироджених карликів. У працях Е.Шацмана, С. Чандрасекара, С. Каплана, Р. Джеймса, Л. Местелла, Я. Зельдовича та І. Новікова побудовано елементарну теорію охолодження вироджених карликів, стійкості щодо процесів нейтронізації та ефектів загальної теорії відносності (ЗТВ), впливу осьового обертання та ін. Узагальненню моделей внутрішньої структури карликів приділено набагато менше уваги. У цьому контексті слід відзначити працю Е.Солпітера про рівняння стану електрон-ядерної моделі за високих густин з наближеним урахуванням кулонівських взаємодій (при $T=0~{\rm K}$) та працю Е.Солпітера і Т.Гамади, присвячену розрахунку співвідношення "маса – радіус" для однорідних двокомпонентних моделей, що відповідають деяким хімічним елементам із зарядом ядра $2 \le z \le 26$ на основі одержаного Е.Солпітером рівняння стану і з урахуванням процесів нейтронізації, але без урахування ефектів ЗТВ.

Невеликий обсяг спостережуваних даних стримував розвиток теорії вироджених карликів. Становище різко змінилося наприкінці XX ст., коли за допомогою космічних обсерваторій в околицях Сонця було відкрито тисячі вироджених карликів з різними світностями, масами та радіусами, що належать до різних спектральних класів. Найбільш вражаючим фактом, що свідчить про велику різноманітність характеристик карликів, є розподіл карликів на площині "маса — радіус", чого не можна пояснити у рамках теорії С. Чандрасекара. Для інтерпретації сучасних спостережуваних даних необхідне узагальнення теорії С. Чандрасекара на основі удосконалених, аде-

кватних моделей. З огляду на відкриття великої різноманітності характеристик як польових карликів, так і карликів у подвійних системах виникли актуальні задачі теорії, розв'язання яких потребує побудови моделей, наближених до реальних об'єктів. Це стосується передусім молодих гарячих польових карликів малих мас та карликів у подвійних системах. Гіпотеза про те, що карлики подвійних систем можуть бути попередниками наднових типу Іа, потребує обґрунтування існування і стійкості масивних карликів та визначення їхніх критичних характеристик (маса і густина в центрі) з одночасним урахуванням основних чинників, що формують їхню структуру.

Поряд із дослідженням структури вироджених карликів актуальною проблемою є дослідження внутрішньої будови зір, що перебувають на стадії субгігантів та гігантів і мають сформоване вироджене ядро. Наступним етапом еволюції цих зір буде утворення виродженого карлика і планетарної туманності. Задача про сучасну структуру цих зір та прогноз щодо часу утворення карликів є безумовно актуальною.

У серії наших робіт запропоновано багатопараметричні та багатофазові моделі, що узагальнюють стандартну модель С.Чандрасекара щодо урахування неоднорідного хімічного вмісту, неповного виродження електронної підсистеми, урахування електростатичних взаємодій у рамках сучасної багатоелектронної теорії, наближеного врахування магнітних полів та осьового обертання. Ми вперше розглянули обернену задачу теорії — визначення параметрів таких моделей на основі даних про маси, радіуси та ефективні температури спостережуваних карликів.

Пропонована монографія написана в основному за результатами досліджень авторів. Перший розділ має характер вступу, тут викладено основи політропної теорії зір, що грунтується на рівнянні Лена-Емдена-Фаулера, а також його узагальненні для опису політроп з осьовим обертанням згідно з роботами Е.Мілна та С.Чандрасекара. Математичний апарат цієї теорії є базовим для побудови теорії вироджених карликів. Введено інтегральну форму рівняння рівноваги політропних моделей, що спрощує використання теорії збурень при знаходженні розв'язків.

Другий розділ присвячено опису холодних вироджених карликів у рамках однофазної двопараметричної (стандартної) моделі С.Чандрасекара, де фігурують x_0 — параметр релятивізму у центрі зорі та μ_e — так звана безрозмірна ефективна електронна молекулярна маса. Чисельним методом тут знайдено розв'язки рівняння рівноваги у формі, максимально наближеній до рівняння Емдена. Запропоновано напіваналітичний метод знаходження розв'язків, що грунтується на використанні базису універсальних функцій (типу функцій Емдена), що не залежать від параметра релятивізму x_0 . Досліджено залежність макроскопічних характеристик (маса, радіус, енергія) від параметра x_0 , а також енергетичну залежність розподілу карликів за 10 Передмова

радіусами. Вперше розв'язано обернену задачу про визначення параметрів моделі за відомими масами і радіусами спостережуваних карликів.

Врахування радіальної залежності хімічного вмісту виконано у третьому розділі у рамках трипараметричної моделі. Тут розглянуто також модель карлика при T=0K з частковою спіновою поляризацією електронної підсистеми, на відміну від парамагнітного стану у стандартній моделі С. Чандрасекара.

Четвертий розділ присвячено теорії холодних вироджених карликів із твердотільним осьовим обертанням у різних наближеннях. Зокрема запропоновано опис у рамках базису універсальних функцій, що не залежать від параметра x_0 . Це дає змогу розрахувати залежність характеристик карлика від параметра x_0 і кутової швидкості в аналітичній формі.

Вплив неповного виродження електронної підсистеми на структуру та характеристики карликів досліджено у п'ятому розділі на основі одно-, двота трифазних моделей, що дозволяють врахувати особливості фізичних умов у різних областях зорі. Встановлено залежність розміру і маси ядра та периферійної області карлика від параметрів моделі, зокрема від температури у центрі зорі. Вперше дано інтерпретацію розподілу спостережуваних карликів на площині "маса — радіус" та встановлено, що визначальну роль у цьому розподілі відіграє температура ядра.

Базисний підхід, створений раніше у роботах одного з авторів для опису нерелятивістських багатоелектронних систем, у шостому розділі узагальнено на випадок електрон-ядерної моделі при високих густинах, що дозволило одержати адекватне рівняння стану у вироджених карликах із врахуванням міжчастинкових кулонівських взаємодій.

У сьомому розділі досліджено вплив міжчастинкових взаємодій та осьового обертання на характеристики масивних холодних карликів.

За допомогою рівняння рівноваги, а також варіаційного підходу у восьмому розділі виконано аналіз стійкості масивних вироджених карликів із врахуванням кулонівських взаємодій, осьового обертання, ефектів загальної теорії відносності та спінової поляризації. Оцінено критичну масу карлика як функцію параметрів моделі — параметра релятивізму, кутової швидкості обертання та хімічного вмісту. У цьому розділі також проаналізовано особливості характеристик карликів у подвійних системах, серед яких зустрічаються карлики великих мас, що можуть бути попередниками наднових.

Перелік основних позначень

M – маса зорі

 M_{ch} – так звана межа С.Чандрасекара

 m_u – атомна одиниця маси

 μ_e – безрозмірна ефективна електронна молекулярна маса

 $\mu_e(0)$ – безрозмірна ефективна електронна молекулярна маса у центрі зорі

 m_0 — маса електрона

T — температура

 T_{eff} – ефективна температура фотосфери

 $T_* \equiv k_B T/m_0 c^2$ – безрозмірна температура

 T_0 – температура у центрі карлика

P – тиск

 P_{ph} – світловий тиск

V – об'єм

G – гравітаційна стала

 $\Phi_{arav}(\mathbf{r})$ – гравітаційний потенціал

 $\Phi_c(\mathbf{r})$ – відцентровий потенціал

E – енергія

F – вільна енергія

 E_{corr} – так звана кореляційна енергія моделі електронної рідини

W – гравітаційна енергія

r – радіус-вектор

 ξ – безрозмірна радіальна координата

 ∇ – оператор градієнта

 Δ – оператор Лапласа

 Δ_r — радіальна складова оператора Лапласа $r^{-2}\Delta_{\theta}$ — кутова складова оператора Лапласа

Z — статистична сума

 \hat{N} – оператор числа електронів

 \hat{H} – гамільтоніан

 \hat{H}_0 — гамільтоніан ідеальної системи електронів (базисної)

 $a_{\mathbf{k},s}^+, a_{\mathbf{k},s}$ – оператори породження і знищення електронів

 \mathbf{q}, \mathbf{k} — хвильові вектори

s — проекція спіна електрона

 $\mu_n^0(\mathbf{q}_1,\mathbf{q}_2,...,\mathbf{q}_n|\nu_1,...,\nu_n)$ – n-частинкові кореляційні функції

базисної системи в імпульсно-частотному зображенні

 $\mu_n(\mathbf{q}_1,...,\mathbf{q}_n|\nu_1,...,\nu_n)$ – спектральне зображення n-частинкових кореляційних функцій релятивістської виродженої однорідної моделі електронів

 ν — частоти Бозе-Мацубари

 $V_q = 4\pi e^2/q^2$ – зображення Фур'є потенціалу Кулона

 $\vec{G}({f q},
u)$ — динамічна поправка на локальне поле моделі електронної рідини

 μ – хімічний потенціал

n(r) – локальна концентрація електронів

 $n_p(\mathbf{r})$ – локальне значення розподілу електронів за імпульсами

 $p_F(\mathbf{r})$ – локальний імпульс Фермі

 k_F – хвильове число Фермі

c — швидкість світла

 $x(\mathbf{r})$ – локальне значення параметра релятивізму

 M_0 – масштаб зоряних мас

 R_0 – масштаб радіусів вироджених карликів

 M_{\odot} , R_{\odot} – маса і радіус Сонця

 E_0 – масштаб зоряних енергій

z — заряд ядра

 γ — показник адіабати

ж – коефіцієнт поглинання (непрозорість)

 ϵ – функція енерговиділення

 ζ – ступінь спінової поляризації електронного газу

 r_s – параметр неідеальності моделі електронної рідини

 x_0 – параметр релятивізму у центрі виродженого карлика

 α_0 – стала тонкої структури

ао – радіус Бора

 θ – полярний кут

 ω – кутова швидкість обертання

 Ω – безрозмірна кутова швидкість

e — ексцентриситет

 ξ_e – безрозмірний екваторіальний радіус зорі

 ξ_p — безрозмірний полярний радіус зорі

 $\varepsilon(\mathbf{r})$ – локальна густина кінетичної енергії

 \tilde{E} – повна енергія зорі (разом з енергією спокою електронів)

 $\rho(\mathbf{r})$ – густина речовини

x – параметр релятивізму в однорідній моделі

 λ – масштаб довжини

 $y(\xi)$ – функція Емдена

 $Y(\xi, \theta)$ – розв'язок рівняння рівноваги для зорі з обертанням

РОЗДІЛ 1

Основи політропної теорії зір

Дослідження вироджених карликів розпочались 1914 року, коли американський астроном В.Адамс, аналізуючи спектри подвійної зорі Сіріус, виявив, що обидві компоненти мають близькі температури фотосфер [1]. Враховуючи, що світність супутника дуже мала, В.Адамс зробив висновок про дуже малі розміри його. На той час зі спостережень орбітального руху зір у системі Сіріуса було вже відомо, що маса супутника близька до маси Сонця M_{\odot} [2]. Оцінка світності Сіріуса В була виконана за спостережуваним світловим потоком і відомою відстанню і виявилась близькою до $3\cdot 10^{-3}$ світності Сонця. Приписуючи Сіріусу В на основі спектральних вимірювань ефективну температуру 8000K і використовуючи вираз для світності абсолютно чорного тіла $L=4\pi R^2\sigma T_{eff}^4$, В.Адамс знайшов, що радіус R цієї зорі дорівнює приблизно 18800 км.

Існуюча на той час теорія внутрішньої будови зір закінчувала перший етап свого розвитку і не могла пояснити фізичні причини існування і стійкості білих карликів. На цьому етапі розглядали лише механічну рівновагу нормальних зір — рівновагу сил тяжіння і внутрішнього тиску, а енергетичні процеси не брались до уваги. Теорія рівноваги зір у моделі політропних газових куль створена працями Г.Лена [3], К.Емдена [4], Р.Фаулера [5], К.Ріттера [6], У.Кельвіна [7], А.Еддінгтона [8] та інших дослідників. Підсумком цього етапу стала книга К.Емдена [4], опублікована у 1907 р. У роботах Е.Мілна [9], С.Чандрасекара [10], Р.Джеймса [11] та інших авторів, виконаних у першій половині двадцятого століття, ця теорія була узагальнена на випадок політропних моделей зір з осьовим обертанням.

Теорія холодних вироджених карликів як об'єктів, позбавлених джерел енергії, в математичному відношенні є по суті узагальненням політропної теорії внутрішньої будови зір на квантовому рівні опису речовини при високих густинах. Адже рівняння стану холодного виро-

дженого електронного газу асимптотично є аналогом політроп з термодинаміки класичних систем, а внутрішня структура холодних карликів визначається рівнянням механічної рівноваги. У зв'язку з цим ми розглянемо теорію політроп, математичний апарат якої буде використовуватись у наступних розділах для опису моделей вироджених карликів.

1.1. Теорія політроп Лена-Емдена-Фаулера

В основі механіки неперервного середовища лежать рівняння збереження маси

$$\frac{\partial \rho}{\partial t} + (\nabla, \rho \mathbf{v}) = 0 \tag{1.1}$$

і рівняння збереження імпульсу [12]

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v}, \nabla) \mathbf{v} = -\frac{1}{\rho(\mathbf{r})} \nabla P(\mathbf{r}) - \nabla \Phi(\mathbf{r}), \tag{1.2}$$

де $\rho(\mathbf{r})$ – густина середовища, $\mathbf{v} \equiv \mathbf{v}(\mathbf{r})$ – швидкість, $P(\mathbf{r})$ – тиск, а $\Phi(\mathbf{r})$ – потенціал у точці, що задається радіус-вектором \mathbf{r} . Умова рівноваги одержується з рівнянь (1.1), (1.2) при $\mathbf{v} = 0$: у цьому випадку густина явно не залежить від часу і задовольняє рівняння

$$\nabla P(\mathbf{r}) = -\rho(\mathbf{r}) \nabla \Phi(\mathbf{r}). \tag{1.3}$$

У випадку зорі без осьового обертання є сферична симетрія, а $\Phi(\mathbf{r})$ є гравітаційним потенціалом

$$\Phi_{\text{grav}}(\mathbf{r}) = -G \int \frac{\rho(\mathbf{r}')d\mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|},$$
(1.4)

де інтегрування виконується за об'ємом зорі. Гравітаційний потенціал і густина середовища пов'язані рівнянням Пуассона

$$\nabla^2 \Phi_{\text{grav}}(\mathbf{r}) = 4\pi G \rho(\mathbf{r}). \tag{1.5}$$

У теорії Лена-Емдена-Фаулера розглядаються моделі зір без обертання, що мають сферичну симетрію. Згідно з формулами (1.3), (1.5) густина $\rho(r)$ визначається рівнянням

$$\nabla \left\{ \frac{\nabla P(r)}{\rho(r)} \right\} = -4\pi G \rho(r). \tag{1.6}$$

Моделюючи зв'язок між тиском і густиною політропною залежністю

$$P(r) = K\rho^{\nu}(r) = K\rho^{1+1/n}(r), \tag{1.7}$$

де K і ν є сталими $(n = [\nu - 1]^{-1})$, а також враховуючи, що

$$\left(1 + \frac{1}{n}\right)\rho^{1/n-1}(r)\nabla\rho(r) = (1+n)\nabla(\rho^{1/n}(r)),\tag{1.8}$$

рівнянню (1.6) надамо такого вигляду

$$K(1+n)\Delta_r \rho^{1/n}(r) = -4\pi G \rho(r). \tag{1.9}$$

Тут

$$\Delta_r = \frac{1}{r^2} \cdot \frac{d}{dr} \left(r^2 \frac{d}{dr} \right) \tag{1.10}$$

є радіальною складовою оператора Лапласа, ν має назву показника політропи, а n — індекса політропи.

Для зручності дослідження і розв'язування рівняння (1.9) введемо безрозмірну координату $\xi = r/\lambda$ і зробимо підстановку

$$\rho(r) = \rho_c y^n(\xi), \tag{1.11}$$

де ρ_c – густина у центрі зорі.

Визначаючи масштаб довжини λ умовою

$$K(1+n) = 4\pi G \lambda^2 \rho_c^{1-1/n}, \qquad (1.12)$$

одержуємо рівняння Емдена для політропи з індексом n у безрозмірній формі

$$\Delta_{\xi} y(\xi) = -y^{n}(\xi), \tag{1.13}$$

$$\Delta_{\xi} = \frac{d^{2}}{d\xi^{2}} + \frac{2}{\xi} \cdot \frac{d}{d\xi}$$

з очевидною граничною умовою

$$y(0) = 1. (1.14)$$

Крім того, регулярним в нулі розв'язкам відповідає умова $dy(\xi)/d\xi=0$ при $\xi=0$. Згідно з означенням функції $y(\xi)$ маємо також фізичну

умову $y(\xi) \geq 0$, а рівність $y(\xi_1) = 0$ визначає безрозмірний радіус зорі $(R = \lambda \xi_1)$. На жаль, рівняння (1.13) не є універсальним – у ньому фігурує індекс політропи n як параметр теорії. Значення індексу політропи n = 5 є критичним: при n < 5 розв'язки є знакозмінними функціями ξ , а при $n \geq 5$ вони є додатними в усій області $0 \leq \xi \leq \infty$ і гранична умова на краю зорі не може реалізуватися $(\xi_1(5) = \infty)$, що відповідає зорі без зовнішньої границі). Надалі розглядатимемо лише модель з $n < 5(\nu > 6/5)$. Особливості $y(\xi)$ добре ілюструються відомими точними аналітичними розв'язками при n = 0, 1, 5, а саме [13]:

$$y_0(\xi) = 1 - \frac{\xi^2}{6}; \quad \xi_1(0) = \sqrt{6};$$

$$y_1(\xi) = \frac{\sin \xi}{\xi}; \quad \xi_1(1) = \pi;$$

$$y_5(\xi) = \left\{1 + \frac{\xi^2}{3}\right\}^{-\frac{1}{2}}; \quad \xi_1(5) = \infty,$$
(1.15)

де $y_n(\xi) \equiv y(\xi)$ за заданого значення індексу політропи. На рис. 1.1, 1.2 відображено розв'язки рівняння (1.13), знайдені числовим інтегруванням. У табл. 1.1 наведено значення величин ξ_1 , $\alpha_n = \xi_1^2 |y'(\xi_1)|$, а також $(5-n)\xi_1$ як функцій n в області $n \leq 5$. Як бачимо з табл. 1.1, $\xi_1(n)$ є монотонно зростаючою функцією n і має асимптотику $32\sqrt{3}\,\pi(5-n)^{-1}$ у границі $n \to 5$. Величина $\xi_1^2 |y'(\xi_1)|$ є монотонно спадною функцією n, а величина $(5-n)\xi_1$ — монотонно зростаючою.

Таблиця 1.1 Параметри політропних моделей зір

n	0	1	1.5	2	3	4	5
ξ_1	$\sqrt{6}$	π	3.654	4.35	6.896	14.97	∞
$\alpha_n \equiv \xi_1^2 y'(\xi_1) $	$2\sqrt{6}$	π	2.714	2.41	2.018	1.80	$\sqrt{3}$
$(5-n)\xi_1$	$5\sqrt{6}$	12.566	12.79	13.05	13.792	14.97	$32\sqrt{3}\pi^{-1}$

Оскільки в околі точки $\xi = \xi_1(n)$ функція $y_n(\xi)$ близька до нуля, то рівняння (1.13) при $2 \le n < 5$ у цій області можна "лінеаризувати", нехтуючи членом $y^n(\xi)$. Розв'язком рівняння $\Delta_{\xi} y_n(\xi) = 0$ є функція

$$\tilde{y}_n(\xi) = \alpha_n \left(\frac{1}{\xi} - \frac{1}{\xi_1(n)} \right), \tag{1.16}$$

яка визначає асимптотику розв'язку рівняння (1.13) в околі $\xi_1(n)$.

Рис. 1.1. Розв'язки рівняння (1.13) при $n \le 3$.

Функції Емдена $y(\xi)$ мають такі розклади в області малих значень змінної ξ [13]

$$y(\xi) = 1 - \frac{1}{3!} \xi^2 + \frac{n}{5!} \xi^4 - \frac{n(8n-5)}{3 \cdot 7!} \xi^6 + \dots, \tag{1.17}$$

звідки випливає, що асимптотика $y(\xi)$ в області $\xi \ll 1$ не залежить від індекса n, що є наслідком граничної умови (1.14).

Через те, що аналітичні розв'язки рівняння Емдена відомі лише при деяких значеннях індекса політропи, а в інших випадках необхідно шукати розв'язки шляхом чисельного інтегрування, то корисною може виявитись інтегральна форма рівняння для функції $y(\xi)$. З формальної точки зору рівняння (1.13) можна розглядати як рівняння Пуассона для гравітаційного потенціалу, створеного розподілом речовини з густиною $-1/4\pi y^n(\xi)$. Легко бачити, що $y(\xi)$ задовольняє рівняння

$$y(\xi) = C + \frac{1}{4\pi} \int \frac{d\xi'}{|\xi - \xi'|} y^n(\xi'),$$
 (1.18)

де C – стала інтегрування. Діючи оператором Лапласа на праву і ліву сторону рівняння (1.18), переходимо до рівняння (1.13). Умова y(0) = 1 дає змогу знайти сталу інтегрування, в результаті чого рівняння (1.18)

Рис. 1.2. Розв'язки рівняння (1.13) при $n \ge 3$.

набуває такого вигляду:

$$y(\xi) = 1 + \frac{1}{4\pi} \int d\xi' \ y^n(\xi') \left\{ \frac{1}{|\xi - \xi'|} - \frac{1}{\xi'} \right\}. \tag{1.19}$$

Оскільки $y(\xi')$ не залежить від кутів вектора $\boldsymbol{\xi}'$, то після інтегрування за кутовими змінними вектора $\boldsymbol{\xi}'$ одержуємо одновимірне рівняння

$$y(\xi) = 1 + \int_{0}^{\xi} \left\{ \frac{(\xi')^2}{\xi} - \xi' \right\} y^n(\xi') d\xi', \tag{1.20}$$

яке зручно розв'язувати методом послідовних наближень в аналітичному або числовому варіантах. У випадку n=0 рівняння (1.20) фактично є розв'язком, записаним у квадратурах, а $y_0(\xi)=1-\xi^2/6$. Неважко переконатися, що при n=1 розв'язком рівняння (1.20) є сферична функція Бесселя $j_0(\xi)=\xi^{-1}\sin\xi$ [14].

1.1.1. Характеристики політропних моделей зір. Розв'язками рівнянь (1.13) чи (1.20) визначаються густина і тиск зорі-політропи:

$$\rho(r) = \rho_c y^n(r/\lambda), \qquad (1.21)$$

$$P(r) = K \rho_c^{1+1/n} y^{1+n}(r/\lambda).$$

Використовуючи рівняння стану ідеального газу, знаходимо також розподіл температури

$$T(r) = \frac{P(r)\mu_*}{\rho(r)R_*} = \frac{\mu_*}{R_*} K \rho_c^{1/n} y(r/\lambda), \qquad (1.22)$$

де $R_* = k_B/m_u$, m_u – атомна одиниця маси, k_B – стала Больцмана, μ_* – середня молекулярна маса в одиницях m_u .

У формулах (1.21) фігурують три параметри (ρ_c , λ , K) та індекс політропи n. Зв'язок між параметрами K, λ та ρ_c дає рівняння (1.12). Ще одне рівняння знайдемо, обчисливши повну масу зорі

$$M = 4\pi \int_{0}^{\infty} dr \, r^{2} \rho(r) = 4\pi \rho_{c} \lambda^{3} \int_{0}^{\xi_{1}(n)} d\xi \, \xi^{2} y_{n}^{n}(\xi) =$$

$$(1.23)$$

$$= -4\pi \rho_c \lambda^3 \int_0^{\xi_1(n)} d\xi \frac{d}{d\xi} \left\{ \xi^2 \frac{dy_n(\xi)}{d\xi} \right\} = 4\pi \rho_c \lambda^3 \alpha_n.$$

Система рівнянь для параметрів політропи [13]

$$K(1+n) = 4\pi G \rho_c^{1-1/n} \lambda^2, \quad M = 4\pi \rho_c \alpha_n \lambda^3, \quad \xi_1(n) = R/\lambda \quad (1.24)$$

дає можливість розв'язати обернену задачу теорії — визначення параметрів моделі за відомими даними про масу та радіус зорі.

Припустимо, що маса і радіус зорі — відомі. У цьому випадку рівняння (1.24) дають змогу визначити три параметри, а четвертий — незалежний. Отже, теорія Лена—Емдена є однопараметричною. Як незалежний параметр можна вибрати значення густини в центрі зорі ρ_c . У цьому випадку

$$K = \frac{4\pi G}{1 + n^*} \cdot \frac{R^2}{\xi_1^2(n^*)}, \quad \lambda = R/\xi_1(n^*), \tag{1.25}$$

а індекс політропи n^* є коренем рівняння

$$4\pi \rho_c \alpha_n = \xi_1^3(n) M / R^3. \tag{1.26}$$

У випадку, коли радіує зорі невідомий, а незалежними параметрами вибрано ρ_c та n, знаходимо, що

$$\lambda^{-1} = \left\{ \frac{4\pi \rho_c \alpha_n}{M} \right\}^{1/3}, \tag{1.27}$$

$$K = (4\pi)^{1/3} G \alpha_n^{-2/3} M^{2/3} (1+n)^{-1} \rho_c^{1/3-1/n},$$

а величини M та R пов'язані співвідношенням

$$\xi_1^3(n)M = 4\pi \rho_c \alpha_n R^3 \tag{1.28}$$

і не є незалежними.

Розглянемо далі енергетичні характеристики зорі, і першою з них – енергію гравітаційної взаємодії

$$W = -\frac{G}{2} \int d\mathbf{r}_1 \rho(r_1) \int d\mathbf{r}_2 \rho(r_2) |\mathbf{r}_1 - \mathbf{r}_2|^{-1}.$$
 (1.29)

Для векторів \mathbf{r}_1 та \mathbf{r}_2 виберемо сферичні системи координат зі спільним початком. В результаті інтегрування за кутовими змінними знаходимо, що

$$W = -16\pi^2 G \int_0^R dr_1 \, r_1 \rho(r_1) \int_0^{r_1} dr_2 \, r_2^2 \rho(r_2). \tag{1.30}$$

Перехід до безрозмірних змінних $\xi = r/\lambda$ та використання рівняння (1.13) дають змогу записати W у вигляді одновимірного інтеграла

$$W = 16\pi^{2}G\lambda^{5}\rho_{c}^{2} \int_{0}^{\xi_{1}(n)} d\xi \xi^{3}y^{n}(\xi) \frac{dy}{d\xi} =$$

$$= 16\pi^{2}G\lambda^{5}\rho_{c}^{2} \frac{1}{1+n} \int_{0}^{\xi_{1}(n)} d\xi \xi^{3} \frac{d}{d\xi} \left(y^{n+1}(\xi)\right) =$$

$$= -48\pi^{2}G\lambda^{5}\rho_{c}^{2} \frac{1}{1+n} I_{n}.$$

$$(1.31)$$

Безрозмірний інтеграл

$$I_n = \int_0^{\xi_1(n)} d\xi \, \xi^2 y^{n+1}(\xi) \tag{1.32}$$

розраховують методом інтегрування частинами з використанням рівняння (1.13). Таким способом при n < 5 одержуємо рівняння

$$I_n = \frac{1}{3\xi_1(n)}\alpha_n^2 + I_n\left\{\frac{4}{3} - \frac{2}{n+1}\right\},\tag{1.33}$$

з якого знаходимо, що

$$I_n = \frac{n+1}{(5-n)\xi_1(n)}\alpha_n^2. \tag{1.34}$$

При n=5 рівняння (1.33) перетворюється в тотожність. Гравітаційна енергія

$$W = -\frac{48\pi^2 G\lambda^5}{(5-n)\xi_1(n)} \alpha_n^2 \rho_c^2$$
 (1.35)

є монотонно зростаючою від'ємною функцією індексу політропи, оскільки α_n є монотонно спадною, а $(5-n)\xi_1(n)$ — монотонно зростаючою функцією n (див. табл. 1.1). Якщо у формулі (1.35) виразити $\xi_1(n)$ через R/λ , а для λ використати перше зі співвідношень (1.27), то для W одержимо часто вживаний вираз [15]

$$W = -\frac{3}{5-n} \frac{M^2 G}{R}.$$
 (1.36)

Потрібно пам'ятати, що M і R <u>не є незалежними</u>, а пов'язані співвідношенням (1.28). Скориставшись ним, запишемо гравітаційну енергію у вигляді

$$W = -\frac{3G}{(5-n)\xi_1(n)} M^{5/3} \left\{ 4\pi \rho_c \alpha_n \right\}^{1/3}.$$
 (1.37)

Цей вираз визначає гравітаційну енергію зорі маси M за заданих значень параметрів ρ_c та n.

Як бачимо з формули (1.37), ніякої особливості при n=5 функція W не має. Величину $(5-n)\xi_1(n)$ при n=5 (яка фігурує в табл. 1.1) можна знайти прямим розрахунком гравітаційної енергії, оскільки

$$I_5 = \int_0^\infty d\xi \, \xi^2 \left(1 + \frac{\xi^2}{3} \right)^{-3} = \frac{3^{3/2} \pi}{16}. \tag{1.38}$$

Щоб знайти повну енергію зорі-політропи, розрахуємо внутрішню енергію E. Згідно з першим законом термодинаміки, в однорідній системі

$$P = -\left. \frac{\partial E}{\partial V} \right|_{S},\tag{1.39}$$

де P — тиск, E — внутрішня енергія, V — об'єм системи, S — ентропія. Співвідношення (1.39) зручно переписати в еквівалентному вигляді

$$P = -\frac{\partial \left(\frac{E}{N}\right)}{\partial \left(\frac{V}{N}\right)} = -\frac{\partial \left(\frac{\varepsilon}{\rho}\right)}{\partial \left(\frac{1}{\rho}\right)},\tag{1.40}$$

де N/V – концентрація частинок; $\rho = m_u \mu_* N/V$ – густина маси; $\varepsilon = E/V$ – об'ємна густина енергії. Інтегруючи співвідношення (1.40), знаходимо, що

$$\varepsilon(\rho) = A\rho^{\nu}; \qquad A = \frac{K}{\nu - 1}.$$
 (1.41)

У разі політропної залежності тиску від густини

$$\varepsilon(\rho) = \frac{P(\rho)}{\nu - 1}.\tag{1.42}$$

Застосувавши це співвідношення до неоднорідної системи, у локальному наближенні знаходимо внутрішню енергію зорі-політропи у вигляді:

$$U = \int d\mathbf{r}\varepsilon(\rho) = 4\pi n K \rho_c^{1+1/n} \int_0^R dr r^2 y_n^{n+1}(r/\lambda) = (1.43)$$
$$= 16\pi^2 G \rho_c^2 \lambda^5 \frac{n}{(5-n)\xi_1(n)} \alpha_n^2.$$

З урахуванням виразу (1.35) повну енергію зорі запишемо у вигляді

$$E = U + W = 16\pi^2 G \lambda^5 \frac{n-3}{(5-n)\xi_1(n)} \alpha_n^2.$$
 (1.44)

Тому стійким конфігураціям відповідає область n < 3 для індексу політропи. Часто повну енергію записують у вигляді, аналогічному до (1.36), тобто

$$E = -\frac{M^2G}{R} \frac{3-n}{5-n},\tag{1.45}$$

однак треба пам'ятати, що M і R тут не є незалежними. Цінність формули (1.45) лише в тому, що вона коректно визначає область значень індексу політропи, які відповідають стійким конфігураціям з від'ємною енергією, а також порядок величини для повної енергії зорі.

Випадок n=3 є найбільш цікавим і фізично важливим. Далі ми з'ясуємо, що він прямо стосується вироджених карликів та гарячих масивних зір. Навіть для Сонця найближчими до реальності є політропні моделі з n=3. При заданому рівнянні політропи із системи рівнянь (1.24) при n=3 знаходимо, що

$$\lambda \rho_c^{1/3} = \left(\frac{K}{\pi G}\right)^{1/2}; \qquad (1.46)$$

$$M = 4\pi^{-1/2}\alpha_3 \left(\frac{K}{G}\right)^{3/2}; \quad R = \frac{\xi_1(3)}{\rho_c^{1/3}} \left(\frac{K}{\pi G}\right)^{1/2}.$$

Отже, при n=3 повна енергія зорі дорівнює нулю, маса не залежить від радіуса, а радіус зорі може бути довільним — він визначається густиною в центрі ρ_c .

1.2. Модель Еддінгтона і складні політропи

Для оцінки співвідношення маса — світність А.Еддінгтон [8] побудував модель, яка дала змогу інтерпретувати політропну залежність між тиском і густиною. Ця модель грунтується на одночасному врахуванні газового і світлового тиску. Нехай на сфері радіуса r

$$P_{gas}(r) = \rho(r) T(r) \frac{R_*}{\mu_*}, \qquad P_{ph}(r) = \frac{a}{3} T^4(r), \qquad (1.47)$$

де μ_* – безрозмірна молекулярна маса (в атомних одиницях маси m_u), стала по всій зорі, T(r) – температура, $R_* \equiv k_B/m_u$, $a = \pi^2/15 k_B^4 (\hbar c)^{-3}$. В моделі А.Еддінгтона приймається, що $P_{gas}(r)$ і $P_{ph}(r)$ пропорційні до повного тиску P(r), а саме

$$P_{gas}(r) = \beta P(r), \qquad P_{ph}(r) = (1 - \beta) P(r), \qquad (1.48)$$

де множник β є сталою величиною, що не залежить від координати. Виключаючи температуру з рівнянь (1.47), (1.48), одержуємо залежність між тиском і густиною зоряної речовини у вигляді

$$P(r) = \rho^{4/3}(r)K, \qquad K = \left\{ \frac{1-\beta}{\beta^4} \cdot \frac{3R_*^4}{a\mu_*^4} \right\}^{1/3}. \tag{1.49}$$

Співвідношення (1.49) є політропною залежністю з показником $\nu = 4/3$ (з індексом n = 3).

Оскільки при n=3 з формул (1.24) випливає співвідношення

$$K = \pi^{1/3} G \left(\frac{M}{4\alpha_3}\right)^{2/3}, \tag{1.50}$$

то для невідомого β одержується рівняння четвертого степеня

$$(1 - \beta) \frac{3R_*^4}{a\mu_*^4} = \pi G^3 \left(\frac{M}{4\alpha_3}\right)^2 \beta^4. \tag{1.51}$$

Параметр β може змінюватись від нуля до одиниці, тому для зір малих мас β близьке до одиниці (переважає газовий тиск). Для зір дуже великих мас β є малим:

$$\beta \simeq \left(\frac{M}{4\alpha_3}\right)^{-1/2} \pi^{-1/4} G^{-3/4} \left(\frac{3}{a}\right)^{1/4} \frac{R_*}{\mu_*} + \dots = \left(\frac{M_0}{M}\right)^{1/2} \frac{8^{1/2} (15)^{1/4}}{\pi} \mu_*^{-1} + \dots, \tag{1.52}$$

де

$$M_0 = \left(\frac{3}{2}\right)^{1/2} \frac{1}{4\pi} \left(\frac{hc}{G}\right)^{3/2} \frac{1}{m_u^2} \approx 2.88695... M_{\odot}$$
 (1.53)

є масштабом зоряних мас. Тобто при $M \leq M_{\odot}$ внесок світлового тиску є малим, а при $M \gg M_{\odot}$ він є суттєвим. Для Сонця світловий тиск складає біля 3% повного тиску.

Для зір малих та середніх мас головної послідовності використання політроп з індексом $n \leq 3$ є обгрунтованим і забезпечує їхню стійкість, як це випливає зі співвідношення (1.44). Однак таке політропне наближення не може описати характеристики субгігантів і гігантів та зір подвійних систем у фазі акреції. Причина полягає в тому, що модель Еддінгтона однофазна, вона описує всю зорю єдиним чином. В субгігантах, гігантах та зорях з розвинутою акрецією фізичні умови в ядрі відрізняються від умов у периферії, що вимагає принаймні двофазного опису. Великі радіуси таких зір вимагають застосування політроп з індексом, близьким до n=5. Цього можна досягти, узагальнюючи модель А.Еддінгтона — вважаючи, що параметр β у співвідношеннях (1.48) не є сталою величиною для зорі даної маси, а є функцією густини, $\beta \equiv \beta(r)$. При умові, що

$$(1 - \beta(r)) \left(\frac{\rho(r)}{\rho_c}\right)^{3z} = \beta^4(r), \qquad (1.54)$$

співвідношення між повним тиском і густиною набувають вигляду:

$$P(r) = D(\rho(r))^{4/3-z}, \qquad D = \left\{ \frac{3R_*^4}{a\mu_*^4} \rho_c^{3z} \right\}^{1/3}.$$
 (1.55)

В області, де $\rho(r)/\rho_c \ll 1$, функція $\beta(r)$ є малою величиною,

$$\beta(r) \approx \left(\frac{\rho(r)}{\rho_c}\right)^{3/4z} + \dots$$
 (1.56)

Вимагаючи, щоб виконувалась умова

$$\frac{4}{3} - z = \frac{6}{5} + \delta, \quad \delta > 0; \ \delta \to 0,$$
 (1.57)

знаходимо, що

$$z = \frac{2}{15} - \delta, \tag{1.58}$$

а тому

$$\beta(r) \cong \left(\frac{\rho(r)}{\rho_c}\right)^{1/10-\delta}.$$
 (1.59)

Така політропа забезпечує добрий опис периферії зорі, де завдяки малій густині речовини світловий тиск відіграє основну роль. Для коректного опису ядра і периферії зорі слід використати складну політропу

$$P(r) = C\rho^{\nu_1}(r)$$
 при $0 \le r \le R_c$, (1.60)
 $P(r) = D\rho^{\nu_2}(r)$ при $r > R_c$,

де R_c – радіус ядра, з умовами на границі двох областей

$$C\rho^{\nu_1}(R_c) = D\rho^{\nu_2}(R_c),$$

$$\nu_1 C(\rho(R_c))^{\nu_1} = \nu_2 D(\rho(R_c))^{\nu_2}.$$
(1.61)

При цьому $\nu_1 \geq 4/3$ ($n_1 \leq 3$), $\nu_2 \geq 6/5$ ($n_2 \leq 5$), що забезпечить відповідність розрахованих радіусів і мас спостережуваним даним і не порушить енергетичну стійкість зорі, оскільки основна доля маси зосереджена в ядрі.

Модель політропи з $n \approx 5$ часто називають моделлю Роша.

1.3. Політропна теорія зір з осьовим обертанням.

Обертання зір є чинником, що в більшій чи меншій мірі впливає на характеристики всіх зір. Узагальнення політропної моделі на випадок зір з осьовим обертанням зводиться до заміни гравітаційного потенціалу у рівнянні (1.3) на суму гравітаційного та відцентрового потенціалів [12],

$$\nabla P(\mathbf{r}) = -\rho(\mathbf{r}) \, \nabla \{\Phi_{arav}(\mathbf{r}) + \Phi_{c}(\mathbf{r})\}. \tag{1.62}$$

Якщо вісь 0Z сферичної системи координат збігається з віссю обертання, то

$$\Phi_c(\mathbf{r})\} = -\frac{1}{2}\,\omega^2 r^2 \sin^2 \theta,\tag{1.63}$$

а θ є кутом між віссю обертання і радіус-вектором (полярний кут). У загальному випадку кутова швидкість ω є функцією координат r, θ . Звичайно розглядають моделі зір, у яких ω є сталою величиною, що оправдано при невеликих швидкостях обертання. Густина речовини є функцією змінних r, θ , що відповідає конфігурації з осьовою симетрією.

Використовуючи політропне рівняння стану (1.7) та враховуючи відцентровий потенціал (1.63), надамо рівнянню (1.62) такого вигляду:

$$K(1+n)\Delta \rho^{1/n}(\mathbf{r}) = -4\pi G \rho(\mathbf{r}) + \Delta \left\{ \frac{1}{2} \omega^2 r^2 \sin^2 \theta \right\}. \tag{1.64}$$

Для моделі з осьовою симетрією оператор Лапласа

$$\Delta = \Delta_r + \frac{1}{r^2} \Delta_\theta, \qquad \Delta_r = \frac{1}{r^2} \cdot \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right), \qquad (1.65)$$

$$\Delta_\theta = (\sin \theta)^{-1} \frac{\partial}{\partial \theta} \left\{ \sin \theta \, \frac{\partial}{\partial \theta} \right\} = \frac{\partial}{\partial t} \left(1 - t^2 \right) \frac{\partial}{\partial t},$$

де $t = \cos \theta$. Враховуючи, що

$$\Delta \left\{ r^2 \sin^2 \theta \right\} = 4, \tag{1.66}$$

вводячи безрозмірну радіальну координату $\xi = r/\lambda$, а також використовуючи підстановку

$$\rho(r,\theta) = \rho_c Y^n(\xi,\theta), \tag{1.67}$$

одержуємо узагальнення рівняння (1.13), а саме

$$\Delta(\xi, \theta)Y(\xi, \theta) = \Omega^2 - Y^n(\xi, \theta). \tag{1.68}$$

При цьому масштаб λ визначений співвідношенням (1.12),

$$\Omega^2 = \omega^2 (2\pi G \rho_c)^{-1} \tag{1.69}$$

є квадратом безрозмірної частоти, а

$$\Delta(\xi, \theta) = \Delta_{\xi} + \frac{1}{\xi^{2}} \, \Delta_{\theta}; \quad \Delta_{\xi} = \frac{1}{\xi^{2}} \cdot \frac{\partial}{\partial \xi} \, \left(\xi^{2} \, \frac{\partial}{\partial \xi} \right). \tag{1.70}$$

Згідно з означенням (1.67), цьому рівнянню відповідають граничні умови

$$Y(0,\theta) = 1, \quad \frac{\partial}{\partial \xi} Y(\xi,\theta) |_{\xi=0} = 0. \tag{1.71}$$

При n>1 рівняння (1.68) є двовимірним нелінійним диференціальним рівнянням другого порядку у частинних похідних, у якому фігурують безрозмірні параметри n і Ω . На відміну від теорії Лена-Емдена, теорія політроп з осьовим обертанням є двопараметричною.

Узагальненням рівняння (1.19) є запропоноване нами інтегральне рівняння

$$Y(\xi,\theta) = 1 + \sum_{l=1}^{\infty} C_l \xi^l P_l(t) - \frac{1}{4\pi} \int \{\Omega^2 - Y^n(\xi',\theta')\} \left\{ \frac{1}{|\xi - \xi'|} - \frac{1}{\xi'} \right\} d\xi',$$
(1.72)

у якому інтегрування виконується за об'ємом зорі ($\xi = \mathbf{r}/\lambda$), $P_l(t)$ – поліном Лежандра l-го порядку [16], $t = \cos \theta$, а C_l – сталі інтегрування. Беручи до уваги рівність

$$\Delta(\xi, \theta) \left\{ \xi^l P_l(t) \right\} = 0, \tag{1.73}$$

переконуємось, що рівняння (1.72) і (1.68) еквівалентні. Фактично у рівнянні (1.72) фігурують лише поліноми Лежандра парного порядку, що пов'язано з симетрією задачі.

Розв'язок рівняння $Y(\xi_0(\theta), \theta) = 0$ визначає рівняння кривої другого порядку (близької до еліпса), обертанням якої утворюється поверхня зорі. Вираз для маси зорі узагальнює формулу (1.23), а саме

$$M(\Omega) = 2\pi \rho_c \lambda^3 \int_0^{\pi} \sin\theta \, d\theta \int_0^{\xi_0(\theta)} \xi^2 Y^n(\xi, \theta) d\xi.$$
 (1.74)

Об'єм зорі також залежить від швидкості обертання

$$V(\Omega) = \frac{2\pi}{3} \lambda^3 \int_0^{\pi} \sin\theta \, \xi_0^3(\theta) \, d\theta. \tag{1.75}$$

Щоб виявити основні відмінності розв'язків рівнянь (1.68), (1.72) від розв'язків рівняння Емдена, розглянемо часткові випадки n=0 і n=1, коли рівняння є лінійними і допускають розв'язки в аналітичній формі. Це дозволить також виявити переваги рівняння (1.72) порівняно з (1.68).

1.3.1. Політропа з n = 0. Рівняння (1.68) у цьому випадку

$$\Delta(\xi, \theta) Y_0(\xi, \theta) = \Omega^2 - 1 \tag{1.76}$$

можна переписати у вигляді

$$\Delta(\xi, \theta) \left\{ Y_0(\xi, \theta) + \frac{\xi^2}{6} - \frac{\Omega^2 \xi^2}{4} \sin^2 \theta \right\} = 0.$$
 (1.77)

Згідно з рівністю (1.73) та умовою (1.71) знаходимо, що

$$Y_0(\xi,\theta) = 1 - \frac{1}{6} \xi^2 + \frac{\Omega^2 \xi^2}{4} \sin^2 \theta + \sum_{l=1}^{\infty} D_{2l} \xi^{2l} P_{2l}(t) = (1.78)$$
$$= y_0(\xi) + \Omega^2 \left\{ \frac{1}{6} \xi^2 - \frac{1}{6} \xi^2 P_2(t) \right\} + \sum_{l=1}^{\infty} D_{2l} \xi^{2l} P_{2l}(t),$$

де $y_0(\xi)$ – функція Емдена для індекса n=0.

Сталі інтегрування D_{2l} можна визначати з умови неперервності гравітаційного потенціалу на поверхні зорі (див. [10]). Строга процедура вимагає додаткового розрахунку потенціалу і повинна бути самоузгодженою, оскільки рівняння поверхні визначається розв'язком рівняння (1.76). Замість цього ми скористаємось рівнянням (1.72), покладаючи n=0 і використовуючи розклади

$$\frac{1}{|\boldsymbol{\xi} - \boldsymbol{\xi}'|} - \frac{1}{\xi'} = \begin{cases}
\frac{1}{\xi} - \frac{1}{\xi'} + \frac{1}{\xi} \sum_{l=1}^{\infty} P_l(t) P_l(t') \left(\frac{\xi'}{\xi}\right)^l & \text{при } \xi' < \xi; \\
\frac{1}{\xi'} \sum_{l=1}^{\infty} P_l(t) P_l(t') \left(\frac{\xi}{\xi'}\right)^l & \text{при } \xi' > \xi,
\end{cases} (1.79)$$

де $t = \cos \theta$, $t' = \cos \theta'$. Припустимо, що карлик є еліпсоїдом обертання з ексцентриситетом e і екваторіальним радіусом ξ_e . Тоді інтегрування за вектором ξ' у рівнянні (1.72) зводиться до обчислення потенціалу всередині однорідного еліпсоїда обертання (див., напр. [12]) і дає такий результат:

$$Y_0(\xi,\theta) = 1 + \sum_{l=1} C_{2l} \xi^{2l} P_{2l}(t) - (1 - \Omega^2) \xi^2 / 6 + \qquad (1.80)$$

$$+\frac{1}{2}\left(1-\Omega^{2}\right)\xi^{2}P_{2}(t)\int_{-1}^{+1}dt'P_{2}(t')\int_{\xi}^{\xi'_{0}(t')}\frac{d\xi'}{\xi'},$$

де

$$\xi_0'(t') = \xi_e \left\{ 1 + (t')^2 \frac{e^2}{1 - e^2} \right\}^{-1/2}$$
 (1.81)

є рівнянням поверхні еліпсоїда. Після інтегрування за змінною ξ' знаходимо, що

$$Y_0(\xi,\theta) = 1 + \sum_{l=1}^{\infty} C_{2l} \, \xi^{2l} P_{2l}(t) - (1 - \Omega^2) \, \frac{1}{6} \, \xi^2 -$$

$$- \frac{1}{2} (1 - \Omega^2) \, \xi^2 \, P_2(t) \, I(e),$$
(1.82)

де

$$I(e) = \int_{0}^{1} dt P_{2}(t) \ln[1 + t^{2}\alpha^{2}] = \frac{2}{3} + \frac{1}{\alpha^{2}} - \frac{1 + \alpha^{2}}{\alpha^{3}} \operatorname{arctg} \alpha; \qquad \alpha = e(1 - e^{2})^{-1/2}.$$
(1.83)

При $e^2 \ll 1$

$$I(e) = \frac{2}{15}e^2 + \frac{8}{105}e^4 + \dots$$
 (1.84)

Для знаходження сталих інтегрування C_{2l} скористаємось рівнянням (1.72) і визначимо з нього безрозмірний гравітаційний потенціал

$$\Phi_n(\xi,\theta) = -\frac{1}{4\pi} \int d\boldsymbol{\xi}' \, \frac{Y^n(\xi',\theta')}{|\boldsymbol{\xi} - \boldsymbol{\xi}'|}, \tag{1.85}$$

пов'язаний з потенціалом (1.4) співвідношенням

$$\Phi_{grav}(\mathbf{r}) = 4\pi G \,\rho_c \lambda^2 \,\Phi_n(\xi,\theta). \tag{1.86}$$

Згідно з рівнянням (1.72) і означенням (1.85) при n=0

$$\Phi_0(\xi,\theta) - \Phi_0(0,0) + Y(\xi,\theta) = 1 + \Omega^2 \{ \Phi_0(\xi,\theta) - \Phi_0(0,0) \} + \sum_{l=1}^{\infty} C_{2l} \xi^{2l} P_{2l}(t).$$
(1.87)

Зі співвідношення (1.62)випливає рівність

$$\frac{\partial}{\partial \xi} \left\{ \Phi_n(\xi, \theta) + Y(\xi, \theta) \right\} = \frac{\Omega^2}{3} \xi \left[1 - P_2(t) \right]. \tag{1.88}$$

Враховуючи, що

$$\Phi_0(\xi,\theta) - \Phi_0(0,0) = \frac{\xi^2}{6} + \frac{\xi^2}{2} P_2(t) I(e), \qquad (1.89)$$

та беручи до уваги співвідношення (1.87), (1.88) одержуємо рівняння

$$\Omega^{2} \left\{ \frac{1}{3} + P_{2}(t)I(e) \right\} + 2\sum_{l=1}^{\infty} C_{2l} \, l \, \xi^{2l-2} P_{2l}(t) = \frac{\Omega^{2}}{3} \left(1 - P_{2}(t) \right). \tag{1.90}$$

Згідно з властивістю ортогональності поліномів Лежандра знаходимо, що

$$C_2 = -\frac{\Omega^2}{6} (1 + 3I(e)),$$
 (1.91)

а всі коефіцієнти C_{2l} при $l \geq 2$ рівні нулю. Отже, у випадку n=0 розв'язок рівняння рівноваги набуває вигляду

$$Y_0(\xi,\theta) = y_0(\xi) + \frac{\xi^2 \Omega^2}{6} (1 - P_2(t)) - \frac{\xi^2}{2} P_2(t) I(e).$$
 (1.92)

З умови $Y_0(\xi,\theta)=0$ знаходимо рівняння поверхні

$$\xi_0(\theta) = \sqrt{6} \left\{ 1 - \Omega^2 (1 - P_2(t)) + 3P_2(t) I(e) \right\}^{-1/2}. \tag{1.93}$$

Визначивши зі співвідношення (1.93) полярний ξ_p та екваторіальний ξ_e радіуси і скориставшись означенням

$$1 - e^2 = \xi_p^2 / \xi_e^2, \tag{1.94}$$

одержуємо рівняння

$$e^{2}\{1+3I(e)\}-\frac{9}{2}I(e)=\frac{3}{2}\Omega^{2},$$
 (1.95)

з якого можна визначити залежність ексцентриситету від кутової швидкості. У наближенні (1.84)

$$e^{2} = \frac{15}{4} \Omega^{2} - \frac{225}{112} \Omega^{4} + \dots,$$

$$I(e) = \frac{1}{2} \Omega^{2} - \frac{2}{15} \Omega^{4} + \dots.$$

$$(1.96)$$

У цьому наближенні

$$Y_0(\xi,\theta) = y_0(\xi) + \frac{\xi^2 \Omega^2}{6} \left(1 - \frac{5}{2} P_2(t) \right) + \frac{\xi^2 \Omega^4}{15} P_2(t) + \dots, \qquad (1.97)$$

а тому

$$\xi_0(\theta) = \sqrt{6} \left\{ 1 - \Omega^2 + \frac{5}{2} P_2(t) \left[\Omega^2 - \frac{4}{25} \Omega^4 \right] \right\}^{-1/2} \simeq
\simeq \sqrt{6} \left\{ 1 + \frac{\Omega^2}{2} \left[1 - \frac{5}{2} P_2(t) \right] +
+ \frac{3}{8} \Omega^4 \left[1 - \frac{67}{15} P_2(t) + \frac{25}{4} P_2^2(t) \right] + \ldots \right\}.$$
(1.98)

Звідси знаходимо, що

$$\xi_p = \sqrt{6} \left\{ 1 - \frac{3}{4} \Omega^2 + \frac{167}{160} \Omega^4 + \dots \right\},$$

$$\xi_e = \sqrt{6} \left\{ 1 + \frac{9}{8} \Omega^2 + \frac{1151}{640} \Omega^4 + \dots \right\}.$$
(1.99)

Звідси випливає також, що об'єм і маса зорі-політропи з індексом n=0 визначаються співвідношеннями

$$V(\omega) \cong V(0) \left\{ 1 + \frac{3}{2} \Omega^2 + \frac{11}{2} \Omega^4 + \dots \right\},$$

$$M(\omega) \cong M(0) \left\{ 1 + \frac{3}{2} \Omega^2 + \frac{11}{2} \Omega^4 + \dots \right\},$$
(1.100)

де V(0) і M(0) є характеристиками зорі без обертання.

1.3.2. Політропа з n=1. У цьому випадку рівняння (1.68) зручно записати у вигляді неоднорідного рівняння

$$\Delta(\xi,\theta)\varphi(\xi,\theta) + \varphi(\xi,\theta) = -\frac{\Omega^2}{4}\,\xi^2\,\sin^2\theta, \quad \varphi(\xi,\theta) = Y_1(\xi,\theta) - \frac{\Omega^2}{4}\,\xi^2\,\sin^2\theta.$$
(1.101)

У відповідному однорідному рівнянні змінні розділяються, а його загальний розв'язок

$$\varphi(\xi, \theta) = \sum_{l=0}^{\infty} B_{2l} j_{2l}(\xi) P_{2l}(t), \qquad (1.102)$$

де $j_{2l}(\xi)$ – сферичні функції Бесселя [14], B_{2l} – сталі інтегрування.

Щоб знайти частковий розв'язок неоднорідного рівняння, зручно ввести підстановку $\varphi(\xi,\theta) = \Omega^2 \tilde{\varphi}(\xi,\theta)$, де $\tilde{\varphi}(\xi,\theta)$ задовольняє рівняння

$$\Delta(\xi,\theta)\,\tilde{\varphi}(\xi,\theta) + \tilde{\varphi}(\xi,\theta) = -\frac{\xi^2}{4}\,\sin^2\theta,\tag{1.103}$$

яке вже не має параметра Ω^2 . Його розв'язок представимо у вигляді

$$\tilde{\varphi}(\xi,\theta) = \sum_{l=2}^{\infty} b_{2l}(\xi \sin \theta)^{2l}. \tag{1.104}$$

Використовуючи рівність

$$\Delta(\xi, \theta) \{ \xi \sin \theta \}^{2l} = (2l)^2 (\xi \sin \theta)^{2l-2}, \tag{1.105}$$

знаходимо, що

$$b_{2l} = (-1)^{l-1} 2^{-2l} (l!)^{-2}, (1.106)$$

тому

$$\frac{1}{4}\xi^2\sin^2\theta + \tilde{\varphi}(\xi,\theta) = 1 - J_0(\xi\sin\theta), \tag{1.107}$$

де $J_0(z)$ – функція Бесселя нульового порядку [14]. Згідно зі співвідношеннями (1.101), (1.102), (1.107) і граничною умовою (1.71)

$$Y_1(\xi,\theta) = \frac{\sin \xi}{\xi} + \Omega^2 \{1 - J_0(\xi \sin \theta)\} + \sum_{l=1}^{\infty} B_{2l} j_{2l}(\xi) P_{2l}(t).$$
 (1.108)

Цей вираз зручний для розрахунку маси зорі, бо при цьому значення коефіцієнтів B_{2l} несуттєві.

У наближенні $B_{2l}=0$ при малих значеннях Ω^2 форма поверхні зорі визначається співвідношенням

$$\xi_0(\theta) \cong \pi \{ 1 + \Omega^2 [1 - J_0(\pi \sin \theta)] \},$$
 (1.109)

тому полярний радіус $\xi_p = \xi_0(0) = \pi$, а екваторіальний $\xi_e = \xi_0(\pi/2) \cong \pi\{1+1.30...\Omega^2\}.$

Як легко переконатися, функція $J_0(\xi \sin \theta)$ має такий розклад за поліномами Лежандра $(t = \cos \theta)$ і сферичними функціями Бесселя:

$$J_0(\xi \sin \theta) = \sum_{l=0}^{\infty} D_{2l} j_{2l}(\xi) P_{2l}(t), \quad D_0 = 1; \quad D_2 = \frac{5}{2}; \quad D_4 = \frac{27}{8}; \dots$$
(1.110)

У зв'язку з цим виразу (1.108) можна надати вигляду

$$Y_1(\xi,\theta) = \frac{\sin \xi}{\xi} + \Omega^2 \left\{ 1 - \frac{\sin \xi}{\xi} \right\} + \sum_{l=1}^{\infty} A_{2l} j_{2l}(\xi) P_{2l}(t), \qquad (1.111)$$

де коефіцієнти $A_{2l} = B_{2l} - \Omega^2 D_{2l}$.

Маса зорі не залежить від цих коефіцієнтів, тому при малих значеннях Ω^2

$$M(\Omega) \cong 2\pi \rho_c \lambda^3 \int_{-1}^{+1} dt \int_{0}^{\pi} \{\xi \sin \xi + \Omega^2 \xi^2 [1 - J_0(\xi \sqrt{1 - t^2})]\} d\xi =$$

$$= M(0) \left\{ 1 + \Omega^2 \left[\frac{\pi^2}{3} - 1 \right] \right\}. \tag{1.112}$$

Використовуючи рівняння (1.72) і співвідношення (1.111), одержуємо зображення гравітаційного потенціалу при n=1

$$\Phi_{1}(\boldsymbol{\xi}) = \Phi_{1}(0) + (1 - \Omega^{2}) \left(1 - \frac{\sin \xi}{\xi} \right) +
+ \Omega^{2} \left\{ \frac{1}{6} \xi^{2} + \frac{1}{2} \xi^{2} P_{2}(t) I(e) \right\} +
+ \sum_{l=1} C_{2l} \xi^{2l} P_{2l}(t) - \sum_{l=1} A_{2l} j_{2l}(\xi) P_{2l}(t).$$
(1.113)

Згідно зі співвідношенням (1.88) знаходимо, що C_2 визначається формулою (1.91), всі інші коефіцієнти C_{2l} рівні нулеві. Остаточний вираз

для потенціалу всередині еліпсоїда є таким:

$$\Phi_1(\boldsymbol{\xi}) = \Phi_1(0) + (1 - \Omega^2) \left(1 - \frac{\sin \xi}{\xi} \right) + \frac{\Omega^2}{6} \xi^2 \left\{ 1 - P_2(t) \right\} - \sum_{l=1} A_{2l} j_{2l}(\xi) P_{2l}(t).$$
(1.114)

Як відомо з теорії гравітаційного потенціалу, за межами еліпсоїда обертання його потенціал зображається розкладом

$$\tilde{\Phi}(\mathbf{r}) = \text{const} - GM/r - GM \sum_{l=1}^{\infty} P_{2l}(t) J_{2l} \cdot a^{2l} / r^{1+2l}, \qquad (1.115)$$

де M — маса тіла, a — характерний лінійний розмір його, а J_{2l} — безрозмірні моменти інерції [17]. У безрозмірній формі

$$\tilde{\Phi}(\mathbf{r}) = \text{const} - g_0 \xi^{-1} - \sum_{l=1}^{\infty} P_{2l}(t) g_{2l} \, \xi^{-1-2l}. \tag{1.116}$$

Для наближеного розрахунку сталих A_{2l} скористаємось властивістю неперервності гравітаційного потенціалу на поверхні сфери радіуса $\xi = \xi_1$, де ξ_1 є близьким до першого нуля функції $y(\xi) = \xi^{-1} \sin \xi$:

$$\Phi_1(\xi_1, \theta) = \tilde{\Phi}(\xi_1, \theta), \quad \frac{\partial}{\partial \xi} \Phi_1(\xi, \theta) = \frac{\partial}{\partial \xi} \tilde{\Phi}(\xi, \theta) \quad \text{при } \xi = \xi_1. \quad (1.117)$$

Таке наближення забезпечує розрахунок функції $Y_1(\xi,\theta)$ з точністю до $\Omega^2 \ll 1$. У явному вигляді система рівнянь для знаходження A_2 є такою:

$$\frac{g_2}{\xi_1^3} = A_2 j_2(\xi_1) + \frac{1}{6} \Omega^2 \xi_1^2, \quad \frac{g_2}{\xi_1^3} = -\frac{1}{3} A_2 \xi_1 j_2'(\xi_1) - \frac{1}{9} \xi_1^2 \Omega^2, \quad (1.118)$$

де $j_2^{'}(\xi_1) \equiv \partial j_2(\xi)/d\xi$ при $\xi=\xi_1$. Звідси знаходимо, що

$$A_2 = -\frac{5}{6} \Omega^2 \xi_1^2 \{ 3j_2(\xi_1) + \xi_1 j_2'(\xi_1) \}^{-1} \equiv -\Omega^2 \tilde{A}_2(\xi_1). \tag{1.119}$$

Аналогічним способом знаходимо, що $A_{2l}=0$ при $l\geq 2$. Остаточно

$$Y_1(\xi,\theta) \cong \frac{\sin \xi}{\xi} + \Omega^2 \left\{ 1 - \frac{\sin \xi}{\xi} - \tilde{A}_2(\xi_1) j_2(\xi) P_2(t) \right\}.$$
 (1.120)

Поверхня зорі визначається умовою

$$Y_1(\xi_0(\theta), \theta) = 0, (1.121)$$

що у наближенні $\xi_1 = \pi$ описується рівнянням

$$\xi_0(\theta) \cong \pi \{ 1 + \pi^2 \Omega^2 [1 - \tilde{A}_2(\pi) j_2(\pi) P_2(\cos \theta)] \}. \tag{1.122}$$

Звичайно, що маса зорі-політропи у цьому наближенні визначається формулою (1.112), але форма поверхні є цілком коректною і збігається з результатами роботи [10] при n=1. У цій роботі для знаходження сталих інтегрування також розраховується гравітаційний потенціал і використовується умова неперервності на поверхні зорі. Оригінальність методики, застосованої нами, полягає у використанні інтегрального рівняння (1.72).

1.3.3. Політропи з n > 1. У випадку n > 1 рівняння для функції $Y(\xi,\theta)$ є нелінійними, що ускладнює знаходження їхніх розв'язків. Однак при малих швидкостях обертання можливе застосування теорії збурень, що зводиться до наближеної лінеаризації рівнянь (1.68), (1.72). Як і в роботі [10], представимо $Y(\xi,\theta)$ у вигляді

$$Y(\xi, \theta) \cong y(\xi) + \Omega^2 \Psi(\xi, \theta), \tag{1.123}$$

нехтуючи вищими поправками відносно Ω^2 . Підстановка (1.123) узгоджується з формулами (1.92) та (1.120). Враховуючи рівняння (1.13), (1.19), у лінійному наближенні одержуємо рівняння для функції $\Psi(\xi,\theta)$ у диференціальній формі

$$\Delta \Psi(\xi, \theta) = 1 - n y^{n-1}(\xi) \Psi(\xi, \theta)$$
 (1.124)

та в інтегральній

$$\Psi(\xi,\theta) = \{\Phi_0(\xi,\theta) - \Phi_0(0,0)\} + \sum_{l=1}^{\infty} \tilde{C}_{2l} \, \xi^{2l} P_{2l}(t) + \{\Phi_{\Psi}(\xi,\theta) - \Phi_{\Psi}(0,0)\},$$
(1.125)

де

$$\Phi_{\Psi}(\xi,\theta) = -\frac{n}{4\pi} \int d\xi' y^{n-1}(\xi') \Psi(\xi',\theta') |\xi - \xi'|^{-1}$$
(1.126)

визначає поправку до повного гравітаційного потенціалу зорі.

У роботі [10] використано розклад за поліномами Лежандра,

$$\Psi(\xi,\theta) = \psi_0(\xi) + \sum_{l=1}^{\infty} \alpha_{2l} \psi_{2l}(\xi) P_{2l}(t). \tag{1.127}$$

Підставляючи $\Psi(\xi,\theta)$ у рівняння (1.124), одержуємо систему незалежних диференціальних рівнянь:

$$\Delta_{\xi}\psi_{0}(\xi) = 1 - n y^{n-1}(\xi)\psi_{0}(\xi), \qquad (1.128)$$

$$\Delta_{\xi}\psi_{l}(\xi) = \psi_{l}(\xi) \left\{ \frac{l(l+1)}{\xi^{2}} - n y^{n-1}(\xi) \right\}, \quad l \geq 1.$$

Згідно з рівнянням (1.125), поправка до гравітаційного потенціалу у цих змінних

$$\Phi_{\Psi}(\xi,\theta) = \Phi_{\Psi}(0,0) + \Omega^{2} \{\Phi_{0}(\xi,\theta) - \Phi_{0}(0,0)\} - \Psi(\xi,\theta) + \sum_{l=1}^{\infty} \tilde{C}_{2l} \, \xi^{2l} P_{2l}(t).$$
(1.129)

де $\Phi_0(\xi,\theta)$ визначено формулою (1.85) при n=0. Як і у випадку політропи з n=1, з умови

$$\frac{\partial}{\partial \xi} \{ \Phi_{\Psi}(\xi, \theta) + \Psi(\xi, \theta) \} = \frac{\xi}{3} (1 - P_2(t))$$
 (1.130)

знаходимо, що $\tilde{C}_2=-1/6~(1+3I(e))$, а при $l\geq 2$ всі $\tilde{C}_{2l}=0$. Оскільки поправка до потенціалу всередині зорі

$$\Phi_{\Psi}(\xi,\theta) = \text{const} - \psi_0(\xi) + \frac{\xi^2}{6} \left(1 - P_2(t) \right) - \sum_{l=1}^{\infty} \alpha_{2l} \psi_{2l}(\xi) P_{2l}(t), \quad (1.131)$$

а за її межами

$$\Phi_{\Psi}(\xi,\theta) = \text{const} - \tilde{g}_0 \xi^{-1} - \sum_{l=1}^{\infty} \tilde{g}_{2l} P_{2l}(t) \, \xi^{-1-2l}, \tag{1.132}$$

то з умови "зшивання" цих виразів на поверхні знаходимо, що

$$\alpha_2 = -\frac{5}{6} \cdot \frac{\xi_1^2}{3\psi_2(\xi_1) + \xi_1 \psi_2'(\xi_1)}, \quad \alpha_{2l} = 0 \quad \text{при} \quad l \ge 2, \tag{1.133}$$

де $\xi_1 \equiv \xi_1(n)$ — безрозмірний радіус зорі без обертання, що описується політропою з індексом n. Таким чином функція $Y_n(\xi,\theta)$ набуває вигляду

$$Y_n(\xi,\theta) \cong y_n(\xi) + \Omega^2 \{ \psi_0(\xi) + \alpha_2 \psi_2(\xi) P_2(t) \},$$
 (1.134)

де функції $\psi_0(\xi)$ та $\psi_2(\xi)$ визначаються диференціальними рівняннями (1.128). Згідно з означенням, цим рівнянням відповідають граничні умови

$$\psi_0(0) = \psi_2(0) = 0;$$
 $\frac{\partial \psi_0(\xi)}{\partial \xi} = 0,$ $\frac{\partial \psi_2(\xi)}{\partial \xi} = 0$ при $\xi \to 0,$ (1.135)

що призводить до такої асимптотики в околі $\xi = 0$ [10]:

$$\psi_0(\xi) = \frac{1}{6} \xi^2 - \frac{n}{120} \xi^4 + \frac{n(13n - 10)}{42 \cdot 360} \xi^6 + \dots, \qquad (1.136)$$

$$\psi_2(\xi) = \xi^2 - \frac{n}{14} \xi^4 + \frac{n(10n - 7)}{42 \cdot 36} \xi^6 + \dots.$$

Тобто при довільних значеннях індекса n асимптотика функцій $Y_n(\xi,\theta)$ в околі $\xi \to 0$ є однаковою, незалежно від n. При великих значеннях ξ справедлива асимптотика $\psi_0(\xi) \sim \xi^2$; $\psi_2(\xi) \sim \xi^2$. В роботі [10] функції $\psi_0(\xi)$, $\psi_2(\xi)$ розраховано чисельним методом для n=1;1.5;2.0;3.0;4.0.

При малих значеннях Ω^2 поверхня зорі описується рівнянням

$$\xi_0(\theta) = \xi_1 + \Omega^2 |y(\xi_1)|^{-1} \{ \psi_0(\xi_1) + \alpha_2 \psi_2(\xi_1) P_2(\cos \theta) \}, \tag{1.137}$$

а маса дорівнює

$$M(\Omega) \cong 4\pi \rho_c \lambda^3 \int_0^{\xi_1} \xi^2 \{ y^n(\xi) + n \Omega^2 y^{n-1}(\xi) \psi_0(\xi) \} d\xi, \qquad (1.138)$$

де $\xi_1 \equiv \xi_1(n)$. Використовуючи рівняння, якими визначаються функції $y(\xi)$ та $\psi_0(\xi)$, знаходимо, що [10]

$$\int_{0}^{\xi_{1}} y^{n}(\xi) \, \xi^{2} d\xi = -\int_{0}^{\xi_{1}} \frac{d}{d\xi} \left\{ \xi^{2} \frac{dy}{d\xi} \right\} = \xi_{1}^{2} \left| \frac{dy}{d\xi} \right|_{\xi_{1}};$$

$$\int_{0}^{\xi_{1}} ny^{n-1}(\xi) \psi_{0}(\xi) \, \xi^{2} d\xi = -\int_{0}^{\xi_{1}} \left\{ \frac{d}{d\xi} \left(\xi^{2} \frac{d\psi_{0}}{d\xi} \right) - \xi^{2} \right\} d\xi = (1.139)$$

$$= -\xi_{1}^{2} \left(\frac{d\psi_{0}}{d\xi} \right)_{\xi_{1}} + \frac{1}{3} \, \xi_{1}^{3}.$$

Таким чином

$$M(\Omega) = M(0) \left\{ 1 + \Omega^{2} \left(\frac{1}{3} \xi_{1} - \psi'_{0}(\xi_{1}) \right) \left| y'(\xi_{1}) \right|^{-1} \right\}, \quad (1.140)$$

$$M(0) = 4\pi \rho_{c} \lambda^{3} \xi_{1}^{2} \left| y'(\xi_{1}) \right|.$$

1.3.4. Наближений спосіб розв'язування рівнянь рівноваги. На завершення розділу наведемо тут ще один варіант знаходження розв'язків рівняння рівноваги для моделей політроп з осьовим обертанням, який не використовує наближеної процедури "зшивання" гравітаційного потенціалу в околі поверхні зорі. Розглянемо випадок $n \ge 1$ при малій кутовій швидкості обертання, що дозволяє лінеаризувати рівняння (1.68),

$$Y_n(\xi,\theta) = y_n(\xi) + \Omega^2 v_n(\xi,\theta),$$
 (1.141)

де $y_n(\xi)$ – функція Емдена для політропи з індексом n, а $v_n(\xi,\theta)$ – невідома функція, що описує вплив обертання. У наближенні Ω^2 функція $v_n(\xi,\theta)$ задовольняє неоднорідне лінійне рівняння

$$\Delta(\xi, \theta) v_n(\xi, \theta) = 1 - n(y_n(\xi))^{n-1} v_n(\xi, \theta).$$
 (1.142)

з граничною умовою $v_n(0,\theta)=0$. Рівнянню (1.142) відповідає однорідне лінійне рівняння, яке в області поверхні, де $y_n^{n-1}(\xi)\to 0$, має загальний розв'язок з такою асимптотикою:

$$v_n(\xi,\theta) \Rightarrow \sum_{l=1}^{\infty} C_{2l} \, \xi^{2l} \, P_{2l} \, (\cos \theta). \tag{1.143}$$

Частковий розв'язок рівняння (1.142) будемо шукати у вигляді

$$v_n(\xi,\theta) = v_n^{(1)}(\xi) + v_n^{(2)}(\xi) \sin^2 \theta,$$
 (1.144)

де $v_n^{(1)}(\xi)$, $v_n^{(2)}(\xi)$ — невідомі функції змінної ξ . Підставляючи вираз (1.144) у рівняння (1.142), одержуємо систему рівнянь

$$\Delta_{\xi} v_n^{(1)}(\xi) = 1 - \frac{4v_n^{(2)}(\xi)}{\xi^2} - n(y_n(\xi))^{n-1}v_n^{(1)}(\xi), \qquad (1.145)$$

$$\Delta_{\xi} v_n^{(2)}(\xi) - \frac{6}{\xi^2} v_n^{(2)}(\xi) = -n(y_n(\xi))^{n-1}v_n^{(2)}(\xi).$$

Друге з рівнянь (1.145) є лінійним однорідним рівнянням. При n=1 його розв'язком є сферична функція Бесселя

$$j_2(\xi) = \left(\frac{3}{\xi^3} - \frac{1}{\xi}\right) \sin \xi - \frac{3}{\xi^2} \cos \xi,$$
 (1.146)

що має асимптотику [14]

$$j_2(\xi) = \frac{\xi^2}{15} \left(1 - \frac{\xi^2}{14} + \dots \right) \tag{1.147}$$

при $\xi \ll 1$. Ми виберемо розв'язок при n=1 у вигляді

$$v_n^{(2)}(\xi) = \frac{15}{4} j_2(\xi), \qquad (1.148)$$

що забезпечує регулярність функції $v_1(\xi)$ при $\xi \ll 1$, а саме

$$v_n^{(1)}(\xi) = \frac{1}{280} \, \xi^4 + \dots \,. \tag{1.149}$$

Рис. 1.3. Розв'язки системи рівнянь для функцій $v_n^{(1)}(\xi)$.

У випадку n>1 розв'язок другого з рівнянь (1.145) подібний до розв'язку при n=1, але має асимптотику

$$v_n^{(2)}(\xi) = \frac{\xi^2}{4} \left\{ 1 - n \frac{\xi^2}{14} + \dots \right\},$$
 (1.150)

що призводить до асимптотики

$$v_n^{(1)}(\xi) = \frac{n}{280} \, \xi^4 + \dots \tag{1.151}$$

в області $\xi \ll 1$. Розв'язки системи рівнянь (1.145) зображено на рисунках 1.3 та 1.4 для індексів n=1,2,3.

Рис. 1.4. Розв'язки системи рівнянь $v_n^{(2)}(\xi)$.

Функція

$$v(\xi,\theta) = \sum_{l=1}^{\infty} C_{2l} \, \xi^{2l} P_{2l}(\cos\theta) + v_n^{(1)}(\xi) + v_n^{(2)}(\xi) \, \sin^2\theta \tag{1.152}$$

при $C_2 = -\Omega^2/6$, $C_{2l} = 0$ при $l \geq 2$ є наближеним розв'язком рівняння (1.142). Поверхня зорі-політропи у цьому наближенні описується рівнянням

$$\xi_0(\theta) \cong \xi_1 + \Omega^2 \frac{\xi_1^2}{\alpha_n} \{ a_n - b_n P_2(\cos \theta) \},$$
 (1.153)

де $\xi_1 \equiv \xi_1(n)$ – перший нуль функції Емдена для політропи з індексом n,

$$a_n = v_n^{(1)}(\xi_1) + \frac{2}{3}v_n^{(2)}(\xi_1),$$

$$b_n = \frac{1}{6}\xi_1^2 + \frac{2}{3}v_n^{(2)}(\xi_1),$$
(1.154)

а величини α_n наведено у таблиці 1.1. У таблиці 1.2 подано значення коефіцієнтів a_n і b_n для індексів n=1,2,3, розраховані за формулами (1.154), а також значення b_n з роботи [10]. Значення коефіцієнтів a_n , розраховані нами і в роботі [10], збігаються точно. Коефіцієнти b_n , розраховані за формулою (1.154), дещо відрізняються від одержаних у роботі роботи [10]. Найменше відхилення досягається при n=1. Виходячи з рівнянь (1.145), у випадку n=1 легко переконатися, що сума $f_1(\xi) = v_n^{(1)}(\xi) + 2v_n^{(2)}(\xi)/3$ задовольняє рівняння

$$\Delta_{\xi} f_1(\xi) = 1 - f_1(\xi), \tag{1.155}$$

розв'язком якого є $1-1/\xi \sin \xi$, у відповідності до формули (1.120). Так само при n>1 сума $f_n(\xi)=v_1(\xi)+v_2(\xi)$ задовольняє рівняння

$$\Delta_{\xi} f_n(\xi) = 1 - n (y_n(\xi))^{n-1} f_n(\xi), \tag{1.156}$$

що відповідає рівнянню (1.128).

n	a_n	$b_n \; (\phi.(1.149))$	b_n ([10])
1	1.000	2.40484	2.5000
2	1.91532	4.09808	3.6260
3	5.83794	9.80666	8.1568

Розраховані за допомогою інтегрування функції $v_n^{(1)}(\xi)$ та $v_n^{(2)}(\xi)$ при n=3 можуть пригодитись для розрахунку характеристик вироджених карликів. Їх можна апроксимувати виразами

$$v_3^{(1)}(\xi) = \frac{a_4 \xi^4 + a_6 \xi^6}{1 + b_2 \xi^2 + b_4 \xi^4},$$

$$v_3^{(2)}(\xi) = \frac{d_2 \xi^2 + d_4 \xi^4}{1 + c_2 \xi^2 + c_4 \xi^4}$$
(1.157)

при $a_4=0.0111234,\ a_6=0.000555271,\ b_2=0.245072,\ b_4=0.00388421,\ d_2=0.276491,\ d_4=0.0120964,\ c_2=0.355109,\ c_4=-0.00158721.$

РОЗДІЛ 2

Модель Чандрасекара в теорії холодних вироджених карликів

Двокомпонентна модель Чандрасекара відіграє роль базисної при врахуванні впливу основних чинників, що формують внутрішню структуру вироджених карликів. У цьому розділі викладено основні положення теорії Чандрасекара, досліджено залежність макроскопічних характеристик від параметрів моделі, вперше розв'язано обернену задачу теорії — визначення параметрів моделі за відомими масами і радіусами спостережуваних карликів. Запропоновано новий варіант рівняння рівноваги, а також напіваналітичний метод розв'язування цього рівняння і розрахунку характеристик масивних карликів на основі базису універсальних функцій, що не залежать від параметра релятивізму у центрі зорі.

2.1. Рівняння стану ідеального виродженого релятивістського електронного газу

На відміну від політропної теорії, в моделі Фаулера-Чандрасекара [13, 18-20] фігурує рівняння стану, яке одержується з основних співвідношень статистичної теорії ідеальних фермі-систем. Ми розглянемо модель однорідного ідеального релятивістського виродженого електронного газу при низьких температурах в об'ємі V за концентрації N/V= const у термодинамічній границі $N,V\to\infty$. Як відомо, рівняння стану можна одержати на основі вільної енергії F, або термодинамічного потенціалу Ω , а саме

$$P = -\frac{\partial F}{\partial V}\Big|_{N,T} = -\frac{\partial}{\partial V} \{\Omega(\mu_0) + \mu_0 N\} = -\frac{\partial \Omega(\mu_0)}{\partial V}\Big|_{\mu_0,T}, \qquad (2.1)$$

оскільки хімічний потенціал $\mu_0 \equiv \mu_0 (N/V, T)$ є коренем рівняння

$$N + \frac{\partial}{\partial \mu_0} \Omega(\mu_0) = 0. \tag{2.2}$$

Використовуючи добре відомий вираз для термодинамічного потенціалу ідеальної системи ферміонів зі спектром E_k

$$\Omega(\mu) = -\frac{1}{\beta} \sum_{\mathbf{k},s} \ln\{1 + \exp[-\beta(E_k - \mu)]\},$$
 (2.3)

де $\beta = (k_B T)^{-1}$ – обернена температура, знаходимо шляхом переходу від суми за вектором \mathbf{k} до інтеграла та подальшим інтегруванням частинами такий вираз для тиску:

$$P = \frac{8\pi}{3h^3} \int_{0}^{\infty} dp \ p^3 \frac{dE_p}{dp} n_p.$$
 (2.4)

Тут змінною інтегрування є імпульс $p = k\hbar$, а

$$n_p = \{1 + \exp[\beta(E_p - \mu_0)]\}^{-1}$$
 (2.5)

є розподілом Фермі для електронів із заданою проекцією спіну. Обчислюючи похідну $\partial\Omega(\mu_0)/\partial\mu_0$, рівнянню (2.2) надамо вигляду

$$\frac{N}{V} = \frac{8\pi}{h^3} \int_{0}^{\infty} dp \ p^2 n_p.$$
 (2.6)

Густина маси ρ (в основному зосередженої в ядрах) може бути виражена через концентрацію електронів N/V співвідношенням

$$\rho = m_u \mu_e \frac{N}{V},\tag{2.7}$$

де m_u – атомна одиниця маси, μ_e – так звана безрозмірна ефективна електронна молекулярна маса (частка маси ядра, що припадає на один електрон, який утворився внаслідок повної іонізації атома, виражена в одиницях m_u ; для чисто гелієвого карлика, наприклад, $\mu_e = 2$). Система співвідношень (2.4)-(2.7) визначає рівняння стану ідеальної фермі-системи з довільним спектром E_p .

У границі абсолютного нуля температури, коли

$$n_p = \begin{cases} 1 & \text{при } E_p < \mu_0, \\ 0 & \text{при } E_p > \mu_0, \end{cases}$$
 (2.8)

інтеграли (2.4) та (2.6) виражаються в елементарних функціях. У випадку релятивістського електронного газу [21,22]

$$E_{p} = [(m_{0}c^{2})^{2} + p^{2}c^{2}]^{1/2} - m_{0}c^{2},$$

$$P = \frac{8\pi c^{2}}{3h^{3}} \int_{0}^{p_{F}} dp \ p^{4} \{(m_{0}c^{2})^{2} + (pc)^{2}\}^{-1/2} = \frac{\pi}{3h^{3}} m_{0}^{4}c^{5}\mathcal{F}(x), \quad (2.9)$$

$$\mathcal{F}(x) = 8 \int_{0}^{x} dy \ y^{4} \{1 + y^{2}\}^{-1/2} =$$

$$= x(2x^{2} - 3)(1 + x^{2})^{1/2} + 3\ln[x + (1 + x^{2})^{1/2}].$$

Тут p_F — граничний імпульс, який визначає хімічний потенціал при T=0 К і є коренем рівняння $(E_{p_F}=\mu_0); x=p_F/m_0c$ — безрозмірний параметр релятивізму, $y=p/m_0c$. Границя $x\ll 1$ відповідає нерелятивістській системі, $x\gg 1$ — ультрарелятивістській. З рівняння (2.6) знаходимо, що

$$p_F = \hbar k_F = \hbar \left(3\pi^2 \frac{N}{V}\right)^{1/3},$$
 (2.10)

а тому

$$\rho = m_u \mu_e \left(3\pi^2\right)^{-1} \left(\frac{m_0 c}{\hbar}\right)^3 x^3.$$
 (2.11)

Співвідношення (2.9), (2.11) визначають рівняння стану релятивістського електронного газу при T=0 К у параметричній формі для випадку однорідної моделі у парамагнітній фазі. Наведемо тут асимптотику функції $\mathcal{F}(x)$ за малих і великих значень параметра релятивізму:

$$\mathcal{F}(x) \to \begin{cases} \frac{8}{5}x^5 - \frac{4}{7}x^7 + \dots & \text{при} \quad x \ll 1; \\ 2x^2(x^2 - 1 + \dots) & \text{при} \quad x \gg 1. \end{cases}$$
 (2.12)

Вона визначає концентраційну залежність тиску електронного газу при $T=0~{
m K}$ у цих граничних випадках,

$$P \to \begin{cases} \frac{1}{5} (3\pi^2)^{2/3} \frac{\hbar^2}{m_0} \left(\frac{N}{V}\right)^{5/3} + \dots & \text{при } x \ll 1; \\ \frac{1}{4} (3\pi^2)^{1/3} \hbar c \left(\frac{N}{V}\right)^{4/3} + \dots & \text{при } x \gg 1. \end{cases}$$
 (2.13)

Ультрарелятивістська границя відповідає заміні $dE_p/dp \to c$ у формулі (2.4).

У випадку відмінних від нуля температур інтеграли, підінтегральна функція яких має множник n_p , у більшості випадків не виражаються в елементарних функціях. Однак за низьких температур ($T \ll T_F$, де $T_F = k_B^{-1} E_{p_F}$ — температура Фермі), в області сильного виродження їх можна обчислити наближено, використовуючи метод асимптотичних розкладів Зоммерфельда [23].

Асимптотика (2.13) відповідає політропній залежності між тиском і густиною, а індекс політропи змінюється від 5/3 до 4/3 при зміні параметра релятивізму в області $0 \le x \le \infty$. Зокрема в асимптотиці високих густин

$$P = K_{4/3}\rho^{4/3}, \quad K_{4/3} = 4^{-2/3}\pi^{1/3} \frac{GM_0^{2/3}}{\mu_e^{4/3}},$$
 (2.14)

що відповідає формулі (1.50), де M_0 означене формулою (1.53).

Рівняння стану для неоднорідної моделі одержується з формули (2.9), у якій слід виконати заміну $x \to x(r)$, де

$$x(r) = \frac{\hbar k_F(r)}{m_0 c} = \frac{\hbar}{m_0 c} \left(3\pi^2 n(r) \right)^{1/3}, \qquad (2.15)$$

що відповідає концентрації електронів n(r).

2.2. Рівняння рівноваги холодних вироджених карликів

Згідно зі співвідношеннями (1.3) - (1.6) при використанні рівняння стану у вигляді

$$P(r) = \pi m_0^4 c^5 (3h^3)^{-1} \mathcal{F}(x(r))$$
 (2.16)

рівняння механічної рівноваги виродженого карлика

$$\frac{\pi m_0^4 c^5}{3h^3} \nabla \left\{ \rho^{-1}(r) 8x^4(r) \left(1 + x^2(r)\right)^{-1/2} \nabla x \right\} = -4\pi G \rho(r) \tag{2.17}$$

при

$$\rho(r) = m_u \mu_e (3\pi^2)^{-1} \left(\frac{m_0 c}{\hbar}\right)^3 x^3(r)$$
 (2.18)

є диференціальним рівнянням для локального значення параметра релятивізму

$$\nabla^2 \{ (1 + x^2(r))^{1/2} - 1 \} = -\frac{32\pi^2 G}{3(hc)^3} (m_u \mu_e m_0 c^2)^2 x^3(r).$$
 (2.19)

Вводячи безрозмірні змінні

$$\xi = r/\lambda, \quad y(\xi) = \{(1+x^2(r))^{1/2} - 1\} \varepsilon_0^{-1},$$

$$\varepsilon_0 \equiv \varepsilon_0(x_0) = (1+x_0^2)^{1/2} - 1, \quad x_0 \equiv x(0),$$
(2.20)

і визначаючи масштаб довжини λ умовою

$$\frac{32\pi^2 G}{3(hc)^3} \left\{ (m_0 c^2 m_u \mu_e \varepsilon_0 \lambda) \right\}^2 = 1, \tag{2.21}$$

одержуємо однопараметричне диференціальне рівняння [24]

$$\frac{d^2y}{d\xi^2} + \frac{2}{\xi} \cdot \frac{dy}{d\xi} = -\left(y^2(\xi) + \frac{2}{\epsilon_0}y(\xi)\right)^{3/2},\tag{2.22}$$

де згідно з означенням (2.20) y(0)=1. Параметром тут виступає x_0 – значення параметра релятивізму в центрі зорі. Функція $y(\xi)$ – безрозмірний локальний хімічний потенціал (в одиницях $m_0c^2\varepsilon_0(x_0)$). Модель Чандрасекара — двопараметрична і однофазна, крім x_0 у ній фігурує параметр хімічного складу μ_e , який вважається сталою величиною, що відповідає однорідному за радіусом хімічному вмісту. Вибір функції $y(\xi)$ у вигляді (2.20) забезпечує природну нульову асимптотику її на границі зорі, як і в рівнянні Лена-Емдена, а умова $y(\xi_1)=0$ визначає безрозмірний радіус зорі.

Рівняння (2.22) — нелінійне, а його точні аналітичні розв'язки невідомі. Регулярний розв'язок в околі $\xi = 0$ зображається рядом

$$y(\xi) = 1 + a_2 \xi^2 + a_4 \xi^4 + \dots,$$

$$a_2 = -\frac{1}{6} \left(1 + \frac{2}{\varepsilon_0} \right)^{3/2}; \quad a_4 = \frac{1}{40} \left(1 + \frac{1}{\varepsilon_0} \right) \left(1 + \frac{2}{\varepsilon_0} \right)^2, \dots.$$
(2.23)

Рис. 2.1. Розв'язки рівняння (2.22).

Звідси одержуємо граничну умову у вигляді y'(0) = 0.

Асимптотично рівняння (2.22) збігається з рівнянням Лена-Емдена: при $x_0\gg 1$ рівняння (2.22) переходить у рівняння політропної теорії з індексом n=3, а при $x_0\ll 1$ – з індексом n=3/2. Тому розв'язки цього рівняння близькі до розв'язків рівняння Лена-Емдена для області $3/2\leq n\leq 3$. Це ілюструє рис. 2.1, на якому зображено розв'язки, знайдені чисельним методом, у широкій області зміни параметра x_0 . Залежність безрозмірного радіуса зорі $\xi_1(x_0)$ від параметра релятивізму наведено на рис. 2.2. В околі $\xi_1(x_0)$ розв'язки рівняння (2.22) близькі до розв'язків однорідного рівняння

$$y''(\xi) + \frac{2}{\xi} y'(\xi) = 0, \qquad (2.24)$$

а саме

$$y(\xi) = \alpha(x_0) \left(\frac{1}{\xi} - \frac{1}{\xi_1(x_0)}\right) \approx \frac{\alpha(x_0)}{\xi_1^2(x_0)} (\xi_1(x_0) - \xi).$$
 (2.25)

При цьому

$$\alpha(x_0) \equiv \xi_1^2(x_0) \left| \frac{dy(\xi)}{d\xi} \right|_{\xi_1(x_0)}$$
 (2.26)

Рис. 2.2. Залежність безрозмірного радіуса зорі ξ_1 та коефіцієнта α від параметра релятивізму x_0 .

можна визначити з результату чисельного розв'язування рівняння (2.22). Залежність коефіцієнта $\alpha(x_0)$ від параметра x_0 також ілюструє рисунок 2.2. В ультрарелятивістській границі $(x_0 \gg 1)$

$$\xi_1(x_0) \to \xi_1(n=3) = 6.89685, \dots,$$
 $\alpha(x_0) \to \alpha_3 = 2.01824 \dots.$
(2.27)

У нерелятивістській границі $(x_0 \ll 1)$ знехтуємо доданком $y^2(\xi)$ у фігурній дужці рівняння (2.22) і перейдемо від ξ до нової змінної $\eta = \xi \beta^{-1}$, де $\beta = (\varepsilon_0/2)^{3/4}$. Це дозволяє звести рівняння (2.22) до вигляду безрозмірного рівняння Лена-Емдена з n = 3/2

$$\frac{1}{\eta^2} \cdot \frac{d}{d\eta} \left(\eta^2 \frac{d}{d\eta} \, \tilde{y}(\eta) \right) = -\tilde{y}^{3/2}(\eta). \tag{2.28}$$

Скориставшись таблицею 1.1 та співвідношенням $y(\xi) = \tilde{y}(\xi/\beta)$, бачимо, що у цій границі

$$\xi_1(x_0) \to 3.654 (x_0/2)^{3/2},$$
 (2.29)
 $\alpha(x_0) \to \alpha_{3/2} (x_0/2)^{3/2} = 2.71 \dots (x_0/2)^{3/2}.$

2.3. Характеристики холодних карликів

Визначаючи масштаб λ з рівності (2.21), знаходимо радіує зорі як функцію параметрів моделі [24]:

$$R(x_0, \mu_e) = R_0 \frac{\xi_1(x_0)}{\mu_e \varepsilon_0(x_0)},$$

$$R_0 = \left(\frac{3}{2}\right)^{1/2} \frac{1}{4\pi} \left(\frac{h^3}{cG}\right)^{1/2} \frac{1}{m_0 m_u}.$$
(2.30)

Маса зорі

$$M(x_0, \mu_e) = 4\pi \int_0^R dr r^2 \rho(r) = 4\pi (\lambda \varepsilon_0)^3 \frac{m_u \mu_e}{3\pi^2} \left(\frac{m_0 c}{\hbar}\right)^3 \mathcal{M}(x_0) = \frac{M_0}{\mu_e^2} \mathcal{M}(x_0),$$
(2.31)

де

$$M_{0} = \left(\frac{3}{2}\right)^{1/2} \frac{1}{4\pi} \left(\frac{hc}{G}\right)^{3/2} \frac{1}{m_{u}^{2}}, \tag{2.32}$$

$$\mathcal{M}(x_{0}) = \int_{0}^{\xi_{1}(x_{0})} \xi^{2} \left(y^{2}(\xi) + \frac{2}{\varepsilon_{0}}y(\xi)\right)^{3/2} d\xi.$$

Скориставшись рівнянням (2.22), безрозмірну величину $\mathcal{M}(x_0)$ можна виразити через $\alpha(x_0)$:

$$\mathcal{M}(x_0) = \xi_1^2(x_0) \left| \frac{dy}{d\xi} \right|_{\xi_1(x_0)} = \alpha(x_0).$$
 (2.33)

Числові значення масштабів довжини і маси [24]

$$R_0 \approx 0.776885 \cdot 10^9 \text{cM} \cong 1.116231 \cdot 10^{-2} R_{\odot};$$

 $M_0 \approx 5.740247 \cdot 10^{33} \Gamma \cong 2.886649 M_{\odot}$ (2.34)

за порядком величини відповідають спостережуваним даним. Варто зауважити, що комбінація універсальних сталих M_0 вперше з'явилась у моделі Еддінгтона для нормальних зір.

Рис. 2.3. Залежність між масою і радіусом вироджених холодних карликів.

Формули (2.30), (2.31) параметрично задають залежність між масою і радіусом вироджених холодних карликів, зображену на рисунку 2.3.

Згідно зі співвідношенням (2.32) в ультрарелятивістській границі маса карлика не залежить від радіуса і прямує до значення $M_0\mu_e^{-2} \cdot 2.01824...$. Це так звана границя С.Чандрасекара [13]. А радіус залежить лише від густини у центрі зорі і прямує до нуля як x_0^{-1} . Однак з рисунка 2.3 видно, що область, у якій маса слабко залежить від радіуса, є невеликою ($R \le R_0/2\mu_e \approx R_0/4$) і лише незначне число спостережуваних карликів потрапляють у цю область параметрів.

У нерелятивістській границі, для якої справджуються співвідношення (2.29), маси і радіуси карликів мають асимптотику

$$M(x_0, \mu_e) = \frac{M_0 \alpha_{3/2}}{\mu_e^2} \left(\frac{x_0}{2}\right)^{3/2},$$

$$R(x_0, \mu_e) = \frac{R_0 \cdot 3.654...}{\mu_e} (2x_0)^{-1/2},$$
(2.35)

внаслідок чого

$$M(x_0, \mu_e) R^3(x_0, \mu_e) = \frac{1}{8} M_0 R_0^3 (3.654...)^3 \alpha_{3/2} \mu_e^{-5}$$
 (2.36)

 ϵ величиною, що залежить лише від хімічного вмісту, але не залежить від x_0 .

Політропний характер рівняння стану виродженого ідеального релятивістського електронного газу створює ілюзію про повну аналогію між теорією С. Чандрасекара для холодних карликів і теорією політроп Лена-Емдена. Розрахунок енергії виродженого карлика ілюструє суттєві відмінності між цими теоріями. Ми розрахуємо тут енергію гравітаційної взаємодії речовини у моделі С. Чандрасекара

$$W = -\frac{G}{2} \int_{V} \int \rho(r_1)\rho(r_2) |\mathbf{r}_1 - \mathbf{r}_2|^{-1} d\mathbf{r}_1 d\mathbf{r}_2, \qquad (2.37)$$

використовуючи розклади за поліномами Лежандра для інтегрування за кутовими змінними векторів \mathbf{r}_1 та \mathbf{r}_2 і переходячи до безрозмірних змінних (2.20). Згідно з означенням функції $y(\xi)$

$$W(x_0, \mu_e) = -\frac{16}{9} G \pi^4 \lambda^5 \left\{ \frac{2\varepsilon_0 m_0 c^2}{hc} \right\}^6 m_u^2 \mu_e^2 \times$$
 (2.38)

$$\times \int_{0}^{\xi_{1}(x_{0})} d\xi \, \xi \left\{ y^{2}(\xi) + \frac{2}{\varepsilon_{0}} y(\xi) \right\}^{3/2} \int_{0}^{\xi} d\xi_{2} \, \xi_{2}^{2} \left\{ y^{2}(\xi_{2}) + \frac{2}{\varepsilon_{0}} y(\xi_{2}) \right\}^{3/2}.$$

З використанням рівняння (2.22) розрахуємо інтеграл за змінною ξ_2 :

$$\int_{0}^{\xi} d\xi_2 \, \xi_2^2 \left\{ y^2(\xi_2) + \frac{2}{\varepsilon_0} y(\xi_2) \right\}^{3/2} = -\xi^2 \frac{dy}{d\xi},\tag{2.39}$$

що дає змогу звести вираз (2.38) до одновимірного інтеграла,

$$W(x_0, \mu_e) = \frac{E_0 \varepsilon_0}{\mu_e^3} \int_0^{\xi_1(x_0)} d\xi \, \xi^3 \frac{dy}{d\xi} \left\{ y^2(\xi) + \frac{2}{\varepsilon_0} y(\xi) \right\}^{3/2}, \tag{2.40}$$

де $E_0=GM_0^2/R_0$ – природний масштаб енергії зорі. Оскільки $y(\xi)=\varepsilon_0^{-1}\left\{\left(1+x^2(\xi)\right)^{1/2}-1\right\}$, то

Оскільки
$$y(\xi) = \varepsilon_0^{-1} \left\{ (1 + x^2(\xi))^{1/2} - 1 \right\}$$
, то
$$\frac{dy}{d\xi} = \frac{x(\xi)}{\varepsilon_0} \left(1 + x^2(\xi) \right)^{-1/2} \frac{dx}{d\xi},$$

$$x(\xi) = \varepsilon_0 \left\{ y^2(\xi) + \frac{2}{\varepsilon_0} y(\xi) \right\}^{1/2}.$$
(2.41)

Це дозволяє спростити інтеграл у формулі (2.40) і записати його у такому вигляді:

$$W(x_0, \mu_e) = \frac{E_0}{\mu_e^3 \varepsilon_0^3} \int_0^{\xi_1(x_0)} d\xi \, \xi^3 \frac{x^4(\xi)}{(1 + x^2(\xi))^{1/2}} \frac{dx}{d\xi} = \frac{1}{8} \frac{E_0}{\mu_e^3 \varepsilon_0^3} \int_0^{\xi_1(x_0)} d\xi \, \xi^3 \frac{d\mathcal{F}(x(\xi))}{d\xi} \,,$$
(2.42)

де $\mathcal{F}(x)$ означено формулою (2.9). Після інтегрування частинами одержуємо остаточний вираз

$$W(x_0, \mu_e) = -\frac{3}{8} \frac{E_0}{\mu_e^3 \varepsilon_0^3} \int_0^{\xi_1(x_0)} d\xi \ \xi^2 \mathcal{F}(x(\xi)). \tag{2.43}$$

Для розрахунку середнього значення кінетичної енергії електронної підсистеми при T=0 К густину енергії в точці ${\bf r}$ запишемо у вигляді

$$\varepsilon(\mathbf{r}) = \frac{2}{V} \sum_{\mathbf{p}} E_p n_p(\mathbf{r}) = \frac{1}{\pi^2 \hbar^2} \int_0^{p_F(r)} dp p^2 E_p =$$

$$= \frac{m_0^4 c^5}{\pi^2 \hbar^3} \int_0^{x(\xi)} d\eta \, \eta^2 \{ (1 + \eta^2)^{1/2} - 1 \}; \quad \eta \equiv p/m_0 c.$$
(2.44)

Кінетичну енергію всієї (неоднорідної) електронної підсистеми одержимо інтегруванням $\varepsilon(\mathbf{r})$ за об'ємом зорі

$$E_{\text{кін}}(x_0, \mu_e) = \int_{V} d\mathbf{r} \, \varepsilon(\mathbf{r}) =$$

$$= \frac{3\lambda}{G} \left(\frac{m_0 c^2}{\varepsilon_0 m_u \mu_e} \right)^2 \int_{0}^{\xi_1(x_0)} d\xi \, \xi^2 \int_{0}^{x(\xi)} d\eta \, \eta^2 \{ (1 + \eta^2)^{1/2} - 1 \} =$$

$$= \frac{E_0}{\mu_e^3 \varepsilon_0^3} \int_{0}^{\xi_1(x_0)} d\xi \, \xi^2 \left\{ x^3(\xi) \left[(1 + x^2(\xi))^{1/2} - 1 \right] - \frac{1}{8} \mathcal{F}(x(\xi)) \right\}.$$

Співвідношення (2.43), (2.45) визначають повну енергію системи як функцію параметрів моделі [24,25]:

$$E(x_0, \mu_e) = W(x_0, \mu_e) + E_{\text{кін}}(x_0, \mu_e) = \frac{E_0}{\mu_e^3} \mathcal{E}(x_0); \qquad (2.46)$$

$$\mathcal{E}(x_0) = \varepsilon_0^{-3} \int_0^{\xi_1(x_0)} d\xi \, \xi^2 \left\{ -x^3(\xi) + \frac{3}{2}x(\xi) \left[1 + x^2(\xi) \right]^{1/2} - \frac{3}{2} \ln \left[x(\xi) + \left(1 + x^2(\xi) \right)^{1/2} \right] \right\} =$$

$$= \varepsilon_0^{-3} \int_0^{\xi_1(x_0)} d\xi \, \xi^3 x^2(\xi) \left\{ 1 - \left[1 + x^2(\xi) \right]^{-1/2} \right\} \frac{dx(\xi)}{d\xi}.$$

Для релятивістських систем зі змінним числом частинок доцільно розглядати повну енергію, до якої входить й енергія спокою. Враховуючи формулу для кількості електронів у системі

$$N(x_0, \mu_e) = 4\pi \int_0^R dr \ r^2 n(r) = \frac{M_0}{m_u \mu_e^3 \varepsilon_0^3} \int_0^{\xi_1(x_0)} d\xi \ \xi^2 x^3(\xi)$$
 (2.47)

і співвідношення $E_0 = m_0 c^2 M_0 m_u^{-1}$, запишемо вираз для повної енергії зорі з урахуванням енергії спокою електронів

$$\tilde{E}(x_0, \mu_e) = E(x_0, \mu_e) + N(x_0, \mu_e) m_0 c^2 = \frac{E_0}{\mu_e^3} \tilde{\mathcal{E}}(x_0), \tag{2.48}$$

$$\tilde{\mathcal{E}}(x_0) = \frac{3}{2} \varepsilon_0^{-3} \int_0^{\xi_1(x_0)} d\xi \, \xi^2 \left\{ x(\xi) \left\{ 1 + x^2(\xi) \right\}^{1/2} - \ln \left[x(\xi) + \left(1 + x^2(\xi) \right)^{1/2} \right] \right\}.$$

З використанням числового розв'язку рівняння (2.22) легко розрахувати залежність макроскопічних характеристик карлика в моделі Чандрасекара від параметра x_0 (за заданого μ_e), що показано на рис. 2.4. Як бачимо з цього рисунка, радіус зорі є монотонно спадною функцією x_0 , маса — монотонно зростаючою функцією, а енергія — від'ємною монотонно спадною функцією в усій області зміни цього параметра. З формул (2.46), (2.47) отримуємо, що мінімальне значення $E(x_0, \mu_e)$ досягається у границі $x_0 \to \infty$, де $E(x_0, \mu_e)$ прямує до

Рис. 2.4. Залежність макроскопічних характеристик карлика в моделі Чандрасекара від параметра x_0 .

 $-m_0c^2N_e(x_0,\mu_e)$. Повна енергія зорі $\tilde{E}(x_0,\mu_e)$ – це додатна немонотонна функція параметра x_0 , що має максимум в околі точки $x_0 \simeq 2.57...$

Як відомо з теорії Лена-Емдена, повна енергія зорі-політропи є від'ємною монотонно зростаючою функцією індекса політропи і при n=3 перетворюється в нуль. Оскільки асимптотика $x_0\to\infty$ відповідає політропі з індексом n=3, то за аналогією можна було б очікувати, що повна енергія карлика з дуже високою густиною в центрі теж буде рівною нулеві. Як видно з формул (2.43), (2.45), гравітаційна енергія карлика в ультрарелятивістській області має асимптотику

$$W^{ac}(x_0, \mu_e) = -\frac{3}{4} \cdot \frac{E_0 \varepsilon_0}{\mu_e^3} \int_0^{\xi_1} d\xi \, \xi^2 \, y^4(\xi) + \dots, \qquad (2.49)$$

а кінетична

$$E_{\text{кін}}^{ac}(x_0, \mu_e) = \frac{E_0 \varepsilon_0}{\mu_e^3} \int_0^{\xi_1} d\xi \, \xi^2 \left\{ \frac{3}{4} \, y^4(\xi) - \varepsilon_0^{-1} y^3(\xi) \right\}, \tag{2.50}$$

де $\xi_1(\infty) = 6.89685...$ Внески, пропорційні $y^4(\xi)$, точно компенсуються, а внесок, пропорційний $y^3(\xi)$, дає скінчене значення енергії [24,25]

$$E(x_0, \mu_e) \Rightarrow -\frac{E_0}{\mu_e^3} \int_0^{\xi_1(\infty)} d\xi \, \xi^2 y^3(\xi)$$
 (2.51)

при $x_0 \to \infty$. Згідно з формулами (2.47), (2.51) функція $E(x_0, \mu_e)$ прямує до суми енергій спокою електронів, взятій з протилежним знаком.

Відмінності у поведінці енергії карлика від політропної картини зумовлені тим, що рівняння стану (2.9) не є точною політропою навіть при дуже великих значеннях x(r).

Однак повна енергія карлика, що включає енергію спокою електронів, в ультрарелятивістській границі дорівнює нулеві, як і енергія зоріполітропи при n=3.

2.4. Обернена задача в теорії холодних карликів

Якщо зі спостережень відомі маса M і радіус R конкретного виродженого карлика, то можна розв'язати обернену задачу — знайти параметри моделі μ_e та x_0 для цього об'єкта. Вперше таку задачу розв'язано у роботі [25]. Виключаючи зі співвідношень (2.30) - (2.33) параметр μ_e , одержуємо рівняння

$$\alpha(x_0) \frac{\varepsilon_0^2(x_0)}{\xi_1^2(x_0)} = \frac{M}{M_0} \left(\frac{R_0}{R}\right)^2, \tag{2.52}$$

корінь якого визначає параметр релятивізму у центрі зорі x_0 . За відомим x_0 визначаємо параметр хімічного вмісту,

$$\mu_e = \frac{R_0}{R} \cdot \frac{\xi_1(x_0)}{\varepsilon_0(x_0)}.$$
 (2.53)

Знайдені таким способом у роботі [25] мікроскопічні параметри для вироджених карликів (як польових, так і в подвійних системах) з відомими паралаксами, отриманими під час місії *Hipparcos* [26,27], наведено у табл. 2.1.

Параметр релятивізму в центрі зорі x_0 для більшості карликів цієї групи задовольняє нерівність $0.8 \le x_0 \le 1.6$, і тільки для Sirius B

Таблиця 2.1

Мікроскопічні параметри стандартної моделі Чандрасекара для групи вироджених карликів з відомими радіусами і масами (місія *Hipparcos* [27]), знайдені в праці [25]

Номер	Зоря	R/R_0	M/M_0	x_0	μ_e
1	Procyon B	0.8593	0.20924	1.5695	2.2458
2	Sirius B	0.75189	0.34642	2.3806	1.9879
3	40 Eri B	1.2173	0.17356	1.0157	2.0346
4	CD-38 10980	1.1144	0.25635	1.3363	1.9027
5	W485A	1.3427	0.20439	1.0004	1.8603
6	L268-92	1.3337	0.2425	1.0915	1.7839
7	L481-60	1.0741	0.1836	1.1758	2.124
8	G154-B5B	1.1636	0.15935	1.018	2.1257
9	G181-B5B	0.98461	0.17321	1.2442	2.2438
10	G156-64	0.98461	0.20439	1.3504	2.1404
11	GD279	1.1547	0.15243	1.0043	2.1585
12	Feige 22	1.2236	0.14203	0.92085	2.1368
13	EG 21	1.0294	0.20093	1.2811	2.1105
14	EG 50	0.93091	0.17321	1.315	2.2989
15	GD 140	0.76084	0.27368	2.0612	2.1504
16	G238-44	1.0741	0.1455	1.0518	2.2614
17	G226-29	0.93091	0.25982	1.6161	2.0374
18	WD2007-303	1.1457	0.15243	1.0116	2.1665
19	Wolf 1346	1.2012	0.15243	0.96784	2.1177
20	G93-48	1.2621	0.25982	1.19	1.7954
21	L711-10	1.1815	0.18707	1.0825	2.0229

 $x_0 \approx 2.38$, а для GD 140 $x_0 \approx 2.06$. Це означає, що речовина у центрі більшості карликів перебуває в околі точки релятивістського виродження, а тому всі їхні характеристики набувають значень, далеких від тих, що були б у границі Чандрасекара $(x_0 \gg 1)$.

Однак для того, щоб зробити достовірні висновки про мікроскопічні параметри спостережуваних вироджених карликів, потрібна більша вибірка таких зір. У праці [25] проаналізовано дані про радіуси та маси 170 вироджених карликів спектрального типу DA, отримані спектроскопічним методом [28,29] (табл. 2.2). На рис. 2.5 зображено параметри стандартної моделі Чандрасекара для цієї групи карликів.

Як бачимо, параметри моделі не є незалежними між собою. Зі збільшенням x_0 параметр хімічного вмісту зростає при $x_0 \approx 1$ досягає 2.0, а далі майже не змінюється, дещо перевищуючи значення 2.0. Більшим значенням x_0 відповідають більші маси вироджених карликів

Номер	Зоря	R/R_0	M/M_0	x_0	μ_e	Номер	Зоря	R/R_0	M/M_0	x_0	μ_e
1	BPM16274	1.2792	0.1746	0.9724	1.9835	27	BPM21970	1.2468	0.1819	1.0153	1.9870
2	GD659	1.1778	0.2144	1.1595	1.9526	28	Wolf486A	1.2519	0.1739	0.9904	2.0064
3	WD 0229-481	1.8332	0.1878	0.7251	1.6232	29	BPM38165	1.3059	0.1746	0.9539	1.9637
4	BPM2819	1.1025	0.2089	1.2207	2.0258	30	GD165	1.2451	0.1756	1.0001	2.0064
5	EG21	1.0923	0.2172	1.2556	2.0119	31	GD173	1.2201	0.1982	1.0792	1.9625
6	LB 1663	1.4831	0.1635	0.8238	1.8732	32	BPM9518	1.3608	0.1666	0.8987	1.9471
7	WD 0343-007	1.5022	0.1957	0.8837	1.7801	33	G152B4B	1.2254	0.1798	1.0263	2.0095
8	GD50	0.4664	0.4244	4.7056	2.0255	34	G153-41	1.0964	0.2297	1.2859	1.9772
9	BPM3523	1.2992	0.1781	0.9672	1.9587	35	GR274	1.0772	0.2300	1.3097	1.9914
10	GD71	1.4890	0.1614	0.8161	1.8752	36	BPM24273	1.1756	0.1971	1.1153	1.9994
11	G104-27	1.1809	0.2068	1.1365	1.9695	37	G21-15	1.4604	0.1365	0.7702	1.9726
12	GD80	1.0344	0.2498	1.4215	1.9777	38	BPM11593	1.2185	0.1874	1.0523	1.9930
13	BPM18398	0.7537	0.3270	2.2986	2.0276	39	Lanning 18	1.3136	0.1850	0.97449	1.9291
14	BPM33039	1.0767	0.2200	1.2816	2.0173	40	G92-40	0.8470	0.2924	1.9015	2.0300
15	BPM18615	1.0123	0.2442	1.4364	2.0084	41	LTT7983	1.0018	0.2397	1.4381	2.0282
16	LTT3218	1.1603	0.1916	1.1141	2.0271	42	LTT7987	1.2441	0.1774	1.0054	2.0021
17	BPM5109	1.1242	0.2137	1.2112	1.9955	43	L210-114	1.2659	0.1905	1.023	1.9488
18	BPM6082	1.3672	0.1555	0.8671	1.9763	44	L711-10	1.2755	0.1781	0.9839	1.9762
19	BPM6114	1.9531	0.1160	0.5568	1.7515	45	LTT8190	0.8298	0.3021	1.9788	2.0220
20	LP550-052	1.5917	0.1216	0.6781	1.9372	46	LTT8452	1.0371	0.2280	1.3540	2.0290
21	BPM6502	1.2590	0.1829	1.0087	1.9748	47	G93-48	1.1478	0.2051	1.1633	1.9997
22	WD 2204+071	1.1694	0.2061	1.1454	1.9801	48	GD125	0.9519	0.2657	1.5976	2.0061
23	LTT4013	1.2121	0.1829	1.0455	2.0109	49	BPM27891	1.1928	0.1916	1.0851	2.0013
24	G163-050	1.2901	0.1677	0.9467	1.9959	50	GD246	1.1372	0.2415	1.2714	1.9188
25	LTT4816	0.6792	0.3534	2.7027	2.0284	51	BPM15727	1.5549	0.1226	0.6948	1.9577
26	BPM7961	1.1339	0.2072	1.1830	2.0052	52	LTT9857	0.74206	0.3312	2.3557	2.0277

Рис. 2.5. Залежність між параметрами μ_e та x_0 у моделі Чандрасекара для групи карликів спектрального типу DA. Трикутники відповідають значенням параметрів, що розраховані за даними праці [28], кільця — за даними праці [29].

(рис. 2.5), у ході еволюції такі зорі мали б нагромаджувати продукти горіння водню і гелію – карбон та оксиген. За сучасними даними (див., наприклад, [30,31]), це найпоширеніші елементи, які містяться у вироджених карликах. Чим більша маса карлика, тим більший вміст у його надрах важчих елементів (див., наприклад, [32]), тому, очевидно, у них μ_e дещо перевищує 2.0. Якщо ж маса карлика мала, то його ядро, імовірно, містить гелій, а у приповерхневих шарах міститься водень, тому параметр усередненого хімічного складу для таких зір має бути дещо меншим від 2.0. Наведена залежність $\mu_e(x_0)$ якісно узгоджується з загальноприйнятими міркуваннями, проте в області малих значень параметра x_0 параметр хімічного складу зменшується до досить низьких значень (~ 1.7, що відповідає достатньо великій кількості водню в карлику). Це може бути наслідком допущених наближень і свідчити про те, що певні чинники, які не враховані в моделі Чандрасекара (наприклад, неповне виродження електронної підсистеми), мають бути враховані при описі внутрішньої будови таких зір, а значення параметрів, отримані в рамках цієї моделі, є наближеними.

Номер	Зоря	x_0	μ_e	Номер	Зоря	x_0	μ_e	Номер	Зоря	x_0	μ_e
1	GD 251	0.6899	1.8572	44	GD 462	1.0721	1.9949	87	PG 1015+161	1.2671	1.9994
2	GD 9	1.1711	2.0093	45	GD 173	0.9724	1.9528	88	PG 1459+306	1.0376	1.9628
3	PHL 972	1.0604	1.9663	46	GD 178	1.1711	2.0093	89	PG 1507+220	0.9518	1.9692
4	G269-93	1.1711	2.0266	47	GD 304	1.3263	2.0082	90	PG 1019+129	1.1327	1.9950
5	GD 11	0.9219	1.9362	48	Ton 229	1.0489	1.9557	91	PG 1513+442	0.9724	1.9343
6	GD 13	0.9518	1.9692	49	GD 185	1.8504	2.0171	92	PG 1038+634	1.8504	2.0052
7	GD 14	0.9121	1.9447	50	GD 360	0.62395	1.8426	93	PG 1039+748	0.7960	1.8814
8	GD 419	1.2671	1.9994	51	GD 125	1.8967	2.0094	94	PG 1548+149	0.9829	1.9829
9	GD 420	0.8562	1.9825	52	G153-41	1.0958	1.9636	95	PG 1553+354	0.9417	1.9389
10	GD 421	0.7879	1.8703	53	GD 466	1.8054	2.0129	96	PG 1554+215	1.0153	1.9592
11	GD 279	1.0376	1.9994	54	G197-4	1.2249	2.0009	97	PG 1608+119	1.0604	1.9841
12	GD 282	1.1079	2.0090	55	G163-50	0.9620	2.0004	98	PG 1609+045	1.0489	1.9557
13	PB 5486	1.1843	2.0029	56	G240-51	1.0489	2.0104	99	PG 1614+137	0.5879	1.8274
14	G171-2	1.0604	2.0024	57	GD 533	1.0263	1.9700	100	PG 1011+364	0.6117	1.9336
15	Feige 22	0.9219	1.9761	58	GD 310	1.0721	1.9770	101	PG 1647+376	1.0376	1.9808
16	GD 559	1.0604	1.9841	59	Feige 45	0.9417	1.9582	102	PG 1041+580	0.9121	1.9062
17	G174-5	1.5804	2.0206	60	GD 140	2.0704	2.0173	103	PG 1113+413	0.9620	1.9419
18	GD 38	0.8653	1.9092	61	G148-7	1.1582	2.0161	104	Lanning 18	0.9219	1.9171
19	GD 41	0.9317	1.9093	62	GD 222	0.9829	1.9637	105	G142-B2A	0.9724	2.0117
20	GD 43	0.9317	1.9669	63	GD 543	0.8474	1.9277	106	PG 1125-026	1.4381	1.9884
21	GD 45	0.7718	1.9602	64	Ton 75	0.9219	1.9362	107	PG 1145+188	0.9121	1.9251
22	Rubin 70	0.6693	1.9526	65	GD 391	1.0153	1.9592	108	G142-50	0.9417	1.9781
23	GD 47	1.0489	2.0104	66	GD 148	1.0489	2.0104	109	PG 1201-001	1.5804	2.0206
24	GD 50	5.6276	2.0252	67	GD 231	0.6761	1.9094	110	PG 1204+451	0.8930	1.9425

Закінчення табл. 2.3

Зоря Зоря Зоря Номер x_0 μ_e Номер x_0 μ_e x_0 Номер μ_e 0.5224 2.4144 2.0152 GD 151 0.9026 1.9744 25 LB 1497 PG 1241-010 1.7465 68 111 26 GD 56 1.1843 2.0029 69 PB 4421 0.8744 1.9615 112 PG 1449+168 $1.\overline{0153}$ 1.9776 27 HZ 2 $\overline{\mathrm{GD}}$ 267 L711-10 1.0958 1.9983 70 1.0839 1.9877 113 1.0839 1.9877 GD 394 PG 1301+545 0.993628 $40 \mathrm{\ Eri\ B}$ 1.9939 71 0.97241.8988 114 1.2111 1.9593 G231-40 PG 2115+011 29 GH 7-191 1.1711 1.9925 72 0.9936 2.0138 0.9829 1.9451 115 GH 7-233 1.2528 G177-31 PG 1305+018 30 1.9894 73 0.64291.9334 116 0.96201.9419 PG 1330+473 31 HZ 7 1.2387 1.9950 74 G177-34 1.4381 2.0166 1.0376 1.9808 117 HZ 14 32 1.2387 75 G261-45Wolf 485A 1.0721 1.9793 0.9829 2.0026 118 2.0133 76 PG 1333+498 33 GD 64 0.85622.0054GD 234 1.2671 1.9994 119 1.13271.9615 34 G104-27 77 GD 396 PG 1335+701 1.5252 1.0958 1.9807 0.9829 1.9637 120 1.9936 PG 1003-023 GD 74 L762-21 35 1.1582 1.9989 78 1.6986 2.0081 121 1.0604 1.9841 PG 2204+071 36 G87-7 1.3111 1.9984 79 G93-48 1.1976 1.9967 122 1.0839 1.9877 37 G238-44 PG 0817+386 GD 448 0.65601.9009 80 1.0489 1.9734 123 1.1711 1.9761 PG 0839+232 38 GD 86 2.0968 2.0247 81 G223-241.1203 2.0197 124 0.8837 1.9313 LP 354-382 PB 999 39 0.71841.8791 82 GD 236 0.8298 1.9706 125 1.0263 1.9700 40 GD 163 1.1327 1.9950 83 GD 404 1.0489 1.9734 126 PG 2328+108 0.9724 1.9528 41 GD 98 1.0263 1.1327 127 PG 0216+144 0.9417 1.9700 84 Ton 197 1.9781 1.9389 1.6382 1.7834 PG 0048+202 42 Ton 458 2.0077 85 Ton 214 2.0169 128 1.1327 1.995 43 GD 398 1.0153 1.9966 86 G186-31 0.9724 1.9718 129 H Per 1166 0.9724 1.9718

Щоб переконатись у цьому, використаємо дані про маси, радіуси та ефективні температури, узяті з огляду SDSS DR4, що містить 3071 карлик спектрального типу DA [33] (див. табл. 2.3). Параметри моделі Чандрасекара для цієї вибірки зображено на рис. 2.6. Характер залежності між параметрами моделі Чандрасекара є тим самим, проте мінімальні значення параметра усередненого хімічного вмісту в області малих x_0 сягають 1, що є нефізичним результатом і свідчить про незастосовність моделі Чандрасекара для опису таких карликів. Причиною отримання таких низьких значень μ_e може бути температура, яка досягає достатньо високих значень у ядрах вироджених карликів (десятків і сотень мільйонів градусів [31,34]). На рис. 2.7 різними символами позначено параметри карликів з різними ефективними температурами. Легко побачити загальну тенденцію: для гарячіших карликів параметр хімічного складу набуває менших значень, а це свідчить про необхідність урахування неповного виродження електронного газу в ядрах зір завдяки достатньо високій центральній температурі.

Накінець зазначимо, що усереднений параметр хімічного вмісту μ_e не може перевищувати деякого граничного значення, що відповідає залізному карлику, $\mu_e^* = 2.1538...$ Тому в тих випадках, коли у

Рис. 2.6. Залежність параметрів моделі Чандрасекара для спостережуваних карликів спектрального типу DA [33].

Рис. 2.7. Залежність параметрів моделі Чандрасекара для спостережуваних карликів спектрального типу DA [33]. Наведено послідовності, до яких входять карлики з близькими ефективними температурами.

Таблиця 2.4 Приклади карликів із недостовірними спостережуваними даними. Цифра (1) відповідає даним праці [27]; (2) – [28]

Зоря	R/R_0	M/M_0	x_0	μ_e	Примітка
Procyon B	0.8593	0.20924	1.5695	2.2458	1
G181-B5B	0.98461	0.17321	1.2442	2.2438	1
EG 50	0.93091	0.17321	1.315	2.2989	1
G238-44	1.0741	0.1455	1.0518	2.2614	1
G86-B1B	0.7067	0.15728	1.6581	2.643	2
L619-50	0.8631	0.17391	1.4215	2.3701	2
G165-B5B	1.0612	0.16975	1.1454	2.182	2
LP 696-4	0.86584	0.15243	1.3263	2.4596	2
LP 25-436	0.65336	0.2231	2.1782	2.4195	2
G156-64	0.6685	0.18984	1.9445	2.537	2
L577-71	0.78613	0.19019	1.6382	2.3931	2

стандартній моделі Чандрасекара отримуємо значення $\mu_e^* > 2.1538...$, результати треба вважати невірогідними або через неточності у спостережуваних даних, або через метод їхнього опрацювання, або ж унаслідок тих наближень, які закладено в основі моделі. Наприклад, у праці [27] наведено оцінки мас вироджених карликів, отриманих за різними методиками. Розв'язавши обернену задачу в рамках моделі Чандрасекара, ми виявили, що для деяких із них параметр хімічного вмісту суттєво залежить від методу розрахунку маси зорі й у певних випадках перевищує граничне значення для повністю залізного карлика [24]. Отже, визначення параметра хімічного вмісту може слугувати додатковим аргументом на користь того чи іншого методу розрахунку маси зорі за спостережуваними даними. Як приклад, у табл. 2.4 наведено короткий перелік карликів, спостережувані дані яких приводять у стандартній моделі Чандрасекара до значення $\mu_e^* > 2.1538...$ (див. [25]).

2.5. Залежність енергія – радіус і спостережуваний розподіл карликів за радіусами (масами)

Ми з'ясували [24,25], що знайдена область зміни параметра x_0 для вироджених карликів узгоджується з залежністю повної енергії (що враховує енергію спокою електронів) $\tilde{\mathcal{E}}(x_0)$ від цього параметра (рис. 2.8,

2.9): конфігурації, що відповідають області максимуму $\tilde{\mathcal{E}}(x_0)$, енергетично невигідні, тому вони малоймовірні.

Рис. 2.8. Залежність повної енергії зорі (з урахуванням енергії спокою електронів) від параметра x_0 при $\mu_e=2$. Розподіл карликів за цим параметром, отриманий за даними про маси і прискорення вільного падіння на поверхні карликів, з праць [27-29,35].

Рис. 2.9. Залежність енергії від параметра x_0 при $\mu_e = 2$. Розподіл карликів за цим параметром, отриманий за даними праці [33].

Основна область існування карликів розташована ліворуч від точки $x_0^* \equiv 2.57...$ Звичайно, конфігурації, яким відповідає $x_0 > x_0^*$, також імовірні, проте обмаль спостережуваних даних про такі карлики з дуже малими радіусами не дає змоги зробити достовірні висновки. На рис. 2.10, 2.11 показано розраховану залежність повної енергії карлика $\tilde{\mathcal{E}}$ від його радіуса, а також спостережуваний розподіл великої групи карликів за радіусами (дані про спостережувані радіуси взято з праць [27-29,33,35]). Порівняння цих характеристик свідчить про те, що основна область існування карликів енергетично зумовлена.

Залежність повної енергії зорі $\mathcal{E}(x_0)$ від параметра релятивізму у центрі зорі дає обмеження на найбільш імовірне мінімальне значення радіуса (максимальну масу) вироджених карликів: $R_{min} \equiv R(x_0^*, \mu_e) \approx 0.8 \times 10^{-2} \frac{2}{\mu_e} R_{\odot}$, $M_{max} \equiv M(x_0^*, \mu_e) \approx 1.03 \left(\frac{2}{\mu_e}\right)^2 M_{\odot}$.

Пряму оцінку максимального значення радіуса карлика у стандартній моделі Чандрасекара виконати неможливо. Наближену оцінку виконаємо на підставі припущення про межу переходу релятивістського

Рис. 2.10. Спостережуваний розподіл карликів за радіусами та залежність повної енергії зорі від радіуса при $\mu_e = 2$. Радіуси розраховано за даними праць [27-29,35].

Рис. 2.11. Те саме, що й на рисунку 2.10. Радіуси розраховано за даними праці [33].

виродження в центрі зорі в нерелятивістське. Це припущення передбачає, що у розкладі

$$\varepsilon_0(x_0) = \frac{1}{2}x_0^2 - \frac{1}{8}x_0^4 + \dots$$
(2.54)

другий член за модулем є малим порівняно з першим. У разі вибору

$$x_0^{min} = \frac{1}{2} (\sqrt{5} - 1) \approx 0.618034 \dots$$
 (2.55)

("золотий переріз" відрізка [0;1]) знаходимо, що

$$\frac{1}{8}[x_0^{min}]^4 \left\{ \frac{1}{2}[x_0^{min}]^2 \right\}^{-1} = \frac{1}{4}(1 - x_0^{min}) \cong 0.09549\dots$$
 (2.56)

Значенню x_0^{min} відповідають такі значення радіуса і маси:

$$R_{max} \approx 1.62 \dots \frac{2}{\mu_e} R_0 \approx 1.81 \dots 10^{-2} \frac{2}{\mu_e} R_{\odot},$$

 $M_{min} \approx 0.102 \dots \left(\frac{2}{\mu_e}\right)^2 M_0 \approx 0.31 \left(\frac{2}{\mu_e}\right)^2 M_{\odot}.$ (2.57)

Ці значення досить добре узгоджуються з даними, знайденими зі спостережень [27-29,33,35]:

$$R_{max} \le 1.6...10^{-2} R_{\odot}, \quad M_{min} \ge 0.4...M_{\odot}.$$
 (2.58)

Ми розглянули оцінки характеристик для реальних спостережуваних карликів. Визначення області існування карликів дуже малих радіусів з масами, більшими від маси Сонця, пов'язане з питанням стійкості.

2.6. Альтернативні зображення рівняння рівноваги

Рівняння рівноваги у моделі С.Чандрасекара сильно нелінійне, а через це воно може мати різні математичні зображення, хоча фізичні результати від цього не змінюються. У виразі $\rho^{-1}(r)dP/dr$ фігурує множник $x(\mathbf{r})(1+x^2(\mathbf{r}))^{-1/2}\nabla x(r)$, який можна записати як $\nabla\{1+x^2(r)\}^{1/2}$, або ж як $\nabla\{(1+x^2(r)^{1/2}-1\}$. При записі рівняння (2.17) вибрано другий варіант, що забезпечує нульове значення функції $y(\xi)$ на поверхні зорі, як і в рівнянні Лена-Емдена. В оригінальних роботах С.Чандрасекара вибрано перший варіант, у зв'язку з чим рівняння рівноваги набуває вигляду [13]

$$\nabla^2 (1 + x^2(r))^{1/2} = -\frac{32\pi^2 G}{3(hc)^3} (m_u \mu_e m_0 c^2)^2 x^3(r). \tag{2.59}$$

Вводячи безрозмірні змінні

$$\eta = r/k, \quad \Phi(\eta) = [1 + x_0^2]^{-1/2} [1 + x^2(r)]^{1/2},$$
(2.60)

одержуємо рівняння

$$\frac{1}{\eta^2} \cdot \frac{d}{d\eta} \left\{ \eta^2 \frac{d\Phi}{d\eta} \right\} = -\{\Phi^2(\eta) - (1 + x_0^2)^{-1}\}^{3/2}, \tag{2.61}$$

з очевидними умовами $\Phi(0)=1,\;\Phi'(0)=0.$ При цьому масштаб k визначається співвідношенням

$$\frac{32\pi^2 G}{3(hc)^3} \left\{ m_0 m_u \mu_e k c^2 \right\}^2 (1 + x_0^2) = 1.$$
 (2.62)

Оскільки на поверхні зорі (при r=R) концентрація частинок перетворюється в нуль (x(R)=0), то область існування розв'язку визначена нерівністю

$$0 \le \eta \le \eta_1(x_0), \tag{2.63}$$

Рис. 2.12. Розв'язки рівняння (2.61) для заданих значеннях x_0 .

а в точці $\eta_1(x_0)$ функція $\Phi(\eta)$ задовольняє умову

$$\Phi(\eta_1) = [1 + x_0^2]^{-1/2}. \tag{2.64}$$

Це означає, що для заданого x_0 розв'язок рівняння (2.61) на поверхні зорі не перетворюється в нуль, а прямує до деякого значення, відмінного від нуля. Звичайно, таке формулювання рівняння рівноваги є цілком еквівалентним до рівняння (2.22), проте з погляду рівняння Лена—Емдена умова (2.65) виглядає неприродною. Саме у формі (2.61) рівняння рівноваги досліджував С. Чандрасекар, який знайшов його числовий розв'язок для заданих значень x_0 (див. рис. 2.12).

Звернемо увагу на те, що функція $[1+x^2(r)]^{1/2}$ є безрозмірним хімічним потенціалом у точці r (в одиницях m_0c^2), якщо кінетичну енергію релятивістського електрона визначати формулою

$$E_p = \left[m_0^2 c^4 + p^2 c^2 \right]^{1/2},$$
 (2.65)

яка відрізняється від (2.9) іншим початком відліку. Звичайно, це не може вплинути на кінцеві фізичні результати. Продемонструємо це

розрахунком повної маси зорі

$$M(x_0) = \frac{32\pi^2}{3h^3} m_u \mu_e(m_0 c)^3 \int_0^R dr \ r^2 x^3(r) =$$
 (2.66)

$$= \frac{32\pi^2}{3h^3} m_u \mu_e(m_0 ck)^3 (1 + x_0^2)^{\frac{3}{2}} \int_0^{\eta_1} d\eta \, \eta^2 \, \left\{ \Phi^2(r) - \frac{1}{1 + x_0^2} \right\}^{3/2}.$$

Беручи до уваги рівняння (2.61) і умову (2.62), одержуємо такий остаточний вираз:

$$M(x_0) = k \left(1 + x_0^2\right)^{1/2} \frac{m_0 c^2}{m_u \mu_e G} \eta_1^2(x_0) \left| \frac{d\Phi}{d\eta_1} \right| . \tag{2.67}$$

У границі $x_0 \gg 1$ у рівнянні (2.61) можна знехтувати доданком (1 + x_0^2)⁻¹ у фігурній дужці, а граничну умову (2.62) замінити на $\Phi(\eta_1) = 0$. У цій границі рівняння (2.61) збігається з рівнянням Лена-Емдена при n = 3, а $\eta_1^2(x_0) |d\Phi/d\eta_1| = \alpha_3$. Оскільки

$$k (1 + x_0^2)^{1/2} = \left(\frac{3}{2}\right)^{1/2} \frac{h^{3/2}}{4\pi} (cG)^{-1/2} (m_0 m_u \mu_e)^{-1}, \qquad (2.68)$$

то з формули (2.67) одержуемо масу С. Чандрасекара.

Як і в теорії політропних моделей, рівняння рівноваги в моделі С. Чандрасекара можна зобразити в інтегральній формі, а саме

$$y(\xi) = 1 + \frac{1}{4\pi} \int d\xi' \left\{ \frac{1}{|\xi - \xi'|} - \frac{1}{\xi'} \right\} \left\{ y^2(\xi') + \frac{2}{\varepsilon_0} y(\xi') \right\}^{3/2}, \quad (2.69)$$

що дає можливість використовувати метод послідовних наближень при його розв'язуванні. Звичайно, у випадку стандартної моделі С. Чандрасекара це не дає реальних переваг. Однак інтегральну форму рівняння рівноваги доцільно використовувати у випадку складніших моделей, які узагальнюють модель С. Чандрасекара.

2.7. Варіаційна оцінка характеристик вироджених релятивістських конфігурацій

Існування граничної маси виродженого карлика — такий важливий результат, що корисно одержати його якимсь іншим, незалежним

способом. У цьому параграфі наведено варіаційний метод, найпростіший варіант якого запропонований Л. Ландау (див. [36]).

Із рівняння механічної рівноваги відомо, що маса і радіус карлика є однозначними функціями концентрації електронів у центрі зорі. Ми розглянемо однорідну (зі сталою густиною) модель виродженого карлика для наближеного варіаційного розрахунку його маси, радіуса й енергії. Повну енергію моделі можна виразити через масу і концентрацію, або ж радіус і концентрацію. В ультрарелятивістській області маса зорі є величиною, нечутливою до зміни концентрації, на відміну від радіуса. Тому для спрощення опису моделі в рамках варіаційного підходу використаємо запис повної енергії в термінах числа частинок (пропорційного до маси) і їхньої концентрації.

Для зручності замість концентрації електронів використовуватимемо еквівалентну їй величину— параметр релятивізму

$$x = (m_0 c)^{-1} \left(\frac{3\pi^2 N}{V}\right)^{1/3} \hbar = \hbar \gamma (m_0 c R)^{-1} N^{1/3}, \qquad (2.70)$$

де N=N(x) — число частинок; $V=4/3~\pi R^3$ — об'єм моделі; R — її радіус; $\gamma=(9\pi/4)^{1/3}$.

Енергія гравітаційної взаємодії зорі зі сталою густиною ρ_0

$$W = -\frac{G}{2} \rho_0^2 \int |\mathbf{r}_1 - \mathbf{r}_2|^{-1} d\mathbf{r}_1 d\mathbf{r}_2 =$$

$$= -\frac{16}{15} G \rho_0^2 \pi^2 R^5 = -\frac{3}{5} G M^2 R^{-1} = -\frac{3}{5} G N^2 m_u^2 \mu_e^2 R^{-1}.$$
(2.71)

Середнє значення кінетичної енергії виродженої ідеальної системи релятивістських електронів за абсолютного нуля температури

$$\langle E_{\text{кін}} \rangle = \sum_{\mathbf{p};s} n_{\mathbf{p},s} E_p = \frac{V}{\pi^2 \hbar^3} \int_0^{p_F} dp \ p^2 E_p =$$

$$= \frac{V m_0^4 c^5}{\pi^2 \hbar^3} \int_0^x dy \ y^2 \{ (1 + y^2)^{1/2} - 1 \},$$
(2.72)

де $y = p/m_0 c$. У термінах (x, N(x)) повна енергія моделі

$$E = -\frac{3}{5}\mu_e^2 G m_u^2 m_0 c(\hbar \gamma)^{-1} x N^{5/3}(x) + 3m_0 c^2 N(x) \varphi(x), \qquad (2.73)$$

де

$$\varphi(x) = x^{-3} \int_{0}^{x} dy \ y^{2} \{ (1+y^{2})^{1/2} - 1 \} =$$

$$= \frac{1}{3} \left\{ (1+x^{2})^{1/2} - 1 - \frac{x^{-3}}{8} \mathcal{F}(x) \right\}.$$
(2.74)

З умови екстремуму dE/dx=0 одержуємо рівняння для знаходження N(x):

$$N^{2/3}(x) = af(x) - N^{-1}(x)\frac{dN}{dx} \left\{ \frac{5}{3}xN^{2/3}(x) - a\varphi(x) \right\}, \quad (2.75)$$

$$a = 5\hbar\gamma c(G\mu_e^2 m_u^2)^{-1},$$

$$f(x) = \frac{d}{dx}\varphi(x) = \frac{1}{8}x^{-4}\mathcal{F}(x).$$

Розв'язуватимемо це рівняння методом послідовних наближень. Нехтуючи похідною dN/dx, одержуємо нульове наближення для числа електронів

$$N^{(0)}(x) = a^{3/2} f^{3/2}(x) = \frac{15\sqrt{5}}{4\sqrt{2}\pi} \left(\frac{hc}{Gm_u^2}\right)^{3/2} \frac{f^{3/2}(x)}{\mu_e^3}.$$
 (2.76)

У цьому наближенні маса зорі

$$M^{(0)}(x) = m_u \mu_e N^{(0)}(x) = \frac{5\sqrt{15}}{\mu_e^2} M_0 f^{3/2}(x). \tag{2.77}$$

Радіус знаходимо зі співвідношення (2.70):

$$R^{(0)}(x) = \frac{\sqrt{15}}{x} \frac{f^{1/2}(x)}{\mu_e} R_0.$$
 (2.78)

Масштаби маси і радіуса визначені співвідношеннями (2.28), (2.29). Екстремальне значення енергії моделі в цьому наближенні

$$E^{(0)}(x) = \frac{45\sqrt{5}m_0c^2}{4\sqrt{2}\pi\,\mu_e^3} \left(\frac{hc}{Gm_u^2}\right)^{3/2} f^{3/2}(x) \{\varphi(x) - xf(x)\}. \tag{2.79}$$

У термінах $M^{(0)}(x)$, $R^{(0)}(x)$

$$E^{(0)}(x) = -\frac{3}{5}G\frac{[M^{(0)}(x)]^2}{R^{(0)}(x)} \left\{ 1 - \frac{\varphi(x)}{xf(x)} \right\}. \tag{2.80}$$

В ультрарелятивістській границі $(x\gg 1)$ функції $\varphi(x)$ та f(x) мають асимптотику

$$\varphi(x) \Rightarrow \frac{x}{4} - \frac{1}{3} + \frac{1}{4x} \dots, \quad f(x) \Rightarrow \frac{1}{4} - \frac{1}{4x^2} + \dots,$$
 (2.81)

що приводить до такої асимптотики маси, радіуса та енергії зорі:

$$M^{(0)}(x) \Rightarrow \frac{5\sqrt{15}}{8\mu_e^2} M_0, \quad R^{(0)}(x) \Rightarrow \frac{\sqrt{15}}{2\mu_e x} R_0,$$

$$E^{(0)}(x) \Rightarrow -\frac{5\sqrt{15}}{8} \frac{M_0^2 G}{\mu_e^3 R_0} = -m_0 c^2 N^{(0)}(x).$$
(2.82)

У нерелятивістській границі, коли $\varphi(x) \to x^2/10 + \dots$, $f(x) \to x/5 + \dots$, характеристики моделі мають іншу асимптотику:

$$M^{(0)}(x) \Rightarrow \frac{\sqrt{3}}{\mu_e^2} M_0 x^{3/2} + \dots, \quad R^{(0)}(x) \Rightarrow \frac{3}{\mu_e} R_0 x^{1/2} + \dots,$$

$$E^{(0)}(x) \Rightarrow -\frac{3\sqrt{3}}{10} G \frac{M_0^2}{R_0 \mu_e^3} x^{7/2} + \dots;$$

$$M^{(0)}(x) \left[R^{(0)}(x) \right]^3 \Rightarrow 9\mu_e^{-5} M_0 R_0^3.$$
(2.83)

Співвідношення (2.82), (2.83) задають у параметричній формі залежність маса — радіус, яка якісно узгоджується з результатом, отриманим з рівняння рівноваги. Як бачимо з формули (2.82), гранична маса моделі дещо перевищує масу С.Чандрасекара. Енергія моделі є від'ємною монотонно спадною функцією параметра релятивізму, яка має нульову асимптотику при $x \to 0$. Зазначимо, що в асимптотиці великих значень x повна енергія моделі дорівнює енергії спокою електронів, узятій з протилежним знаком (див. (2.82)). Однак у розглянутій моделі радіус зорі в області $x \gg 1$ набагато менший від його значення, одержаного з рівняння рівноваги.

Члени, пропорційні до $(N(x))^{-1} dN/dx$, у рівнянні (2.75) можна врахувати методом послідовних наближень. Справді, в області $x \gg 1$,

згідно з формулами (2.76) та (2.81),

$$\left\{N^{(0)}(x)\right\}^{-1} \frac{dN^{(0)}}{dx} = \frac{3}{2} f^{-3/2}(x) \frac{df}{dx} \Rightarrow \frac{6}{x^3} + \dots,$$
 (2.84)

а тому з рівняння (2.75) знаходимо, що в першому наближенні

$$\left[N^{(1)}(x)\right]^{2/3} = af(x) - \frac{a}{x^2} + \dots , \qquad (2.85)$$

або

$$N^{(1)}(x) = N^{(0)}(x) \left\{ 1 - \frac{3}{2x^2 f(x)} + \dots \right\} =$$

$$= N^{(0)}(x) \left\{ 1 - \frac{6}{x^2} + \dots \right\}.$$
(2.86)

Звідси випливає, що нульове наближення в границі $x \gg 1$ дає якісно правильні значення характеристик моделі, а відкинуті члени дають нехтовно малі поправки. Одержане нами граничне значення маси (див. (2.82)), дещо завищене порівняно з виразом (2.29), є наслідком однорідності моделі, а не застосованого наближення у рівнянні (2.75). Таке ж зауваження справджується і щодо відмінності радіусів у цих двох моделях.

Використання простої однорідної моделі може бути корисним для якісного дослідження впливу ефектів, що не враховані в моделі С.Чандрасекара, а саме — кулонівських взаємодій, світлового тиску, неповного виродження за скінченних температур, теплового руху ядерної підсистеми тощо.

2.8. Напіваналітичні розв'язки рівняння рівноваги вироджених карликів

Рівняння механічної рівноваги є основою теорії С. Чандрасекара, а тому доцільно зобразити розв'язки так, щоб виділити аналітичну залежність від параметра x_0 . Це дасть змогу виразити залежність макроскопічних характеристик зорі від цього параметра в аналітичному вигляді, що спрощує обернену задачу — знаходження мікроскопічних параметрів моделі (x_0, μ_e) для реальних карликів за спостережуваними даними. У роботі [24] розглянуто дві області: ультрарелятивістську,

де параметр релятивізму $x_0 \gg 1$, що відповідає карликам з масами, близькими до чандрасекарівської границі, а також область $x_0 \leq 1$, до якої належать карлики малих і проміжних мас.

В ультрарелятивістській області $2/\varepsilon_0(x_0)$ є малою величиною і розв'язок рівняння рівноваги (2.22) можна зобразити у вигляді розкладу за малим параметром,

$$y(\xi) = \sum_{n>0} y_n(\xi) \varepsilon_0^{-n}(x_0),$$
 (2.87)

де $y_0(\xi)$ – функція Емдена для індексу політропи n=3,

$$\hat{L}_{\xi}y_0(\xi) + y_0^3(\xi) = 0, \quad \hat{L}_{\xi} = \frac{d^2}{d\xi^2} + \frac{2}{\xi}\frac{d}{d\xi},$$
 (2.88)

а $y_n(\xi)$ при $n \ge 1$ визначені таким ланцюжком лінійних неоднорідних рівнянь:

$$\hat{L}_{\xi}y_{1}(\xi) + 3y_{1}(\xi)y_{0}^{2}(\xi) = -3y_{0}^{2}(\xi),$$

$$\hat{L}_{\xi}y_{2}(\xi) + 3y_{2}(\xi)y_{0}^{2}(\xi) = -\frac{3}{2}y_{0}(\xi)\left\{1 + 4y_{1}(\xi) + 2y_{1}^{2}(\xi)\right\}, (2.89)$$

$$\hat{L}_{\xi}y_{3}(\xi) + 3y_{3}(\xi)y_{0}^{2}(\xi) = -\left\{\frac{3}{2}y_{1}(\xi) + 3y_{1}^{2}(\xi) + y_{1}^{3}(\xi) + 6y_{0}(\xi)y_{2}(\xi) + 6y_{0}(\xi)y_{1}(\xi)y_{2}(\xi) - \frac{1}{2}\right\}; \dots.$$

Система рівнянь (2.88), (2.89) задовольняє граничні умови

$$y_0(0) = 1$$
, $y_n(0) = 0$ при $n \ge 1$, $y'_n(0) = 0$ при $n \ge 0$. (2.90)

Оскільки $y_n(\xi)$ не залежать від жодних параметрів, то сукупність цих універсальних функцій відіграє роль базису для представлення розв'язків рівняння (2.22) і розрахунку макроскопічних характеристик.

Знайдені числовим інтегруванням функції $y_n(\xi)$ зображено на рисунку 2.13, з якого видно, що розклад (2.87) є знакозмінним і при $x_0 \ge 10$ має дуже добру збіжність, у цьому разі достатньо враховувати y_n при $n \le 3$ (див. рис. 2.14). Функції $y_n(\xi)$ можна апроксимувати виразами типу

$$y_n(\xi) = \frac{\delta_{n,0} + a_n^{(2)} \xi^2 + a_n^{(4)} \xi^4 + a_n^{(6)} \xi^6}{1 + b_n^{(2)} \xi^2 + b_n^{(4)} \xi^4 + b_n^{(6)} \xi^6}.$$
 (2.91)

Таблиця 2.5 Коефіцієнти Паде-апроксимант (2.91)

n	$a_n^{(2)}$	$a_n^{(4)}$	$a_n^{(6)}$	$b_n^{(2)}$	$b_n^{(4)}$	$b_n^{(6)}$
0	37.9322	-0.339691	-0.00963653	38.0974	5.9891	0.038207
1	-0.499189	-0.034939	$-1.42124 \cdot 10^{-5}$	0.315363	0.0286252	0.0
2	-0.377538	0.162672	0.000116145	1.00894	0.057591	0.0

Коефіцієнти цих Паде-апроксимант для n=0,1,2 наведено у табл. 2.5. Розклад (2.87) забезпечує аналітичні розклади макроскопічних характеристик карликів. Зокрема, корінь рівняння $y(\xi)=0$ зображає-

Рис. 2.13. Розв'язки системи рівнянь (2.88),(2.89).

Рис. 2.14. Збіжність розкладу (2.87): послідовність функцій $P_{n_0}(\xi)=\sum_{n=0}^{n_0}y_n(\xi)\varepsilon_0^{-n}(x_0)$ при $x_0=10$. Кривій 1 відповідає $n_0=0$; кривій 2 — $n_0=1$; кривій 3 — $n_0=2$. Хрестиками позначено розв'язок рівняння (2.22), знайдений чисельним інтегруванням.

ться у вигляді

$$\xi_{1} \equiv \xi_{1}(x_{0}) = \xi_{0}^{(3)} - \frac{C_{1}}{\varepsilon_{0}(x_{0})} + \frac{C_{2}}{\varepsilon_{0}^{2}(x_{0})} + \dots,$$

$$C_{1} = \left\{ y_{1}(\xi) \left[\frac{dy_{0}}{d\xi} \right]^{-1} \right\}_{\xi_{0}^{(3)}} \simeq 29.6238; \qquad (2.92)$$

$$C_{2} = \left[\frac{dy_{0}}{d\xi} \right]^{-1} \left\{ -y_{2}(\xi) + y_{1}(\xi) \frac{dy_{1}}{d\xi} \left[\frac{dy_{0}}{d\xi} \right]^{-1} - \frac{1}{2} \frac{d^{2}y_{0}}{d\xi^{2}} y_{1}^{2}(\xi) \left[\frac{dy_{0}}{d\xi} \right]^{-2} \right\}_{\xi_{0}^{(3)}} \simeq 168.4604.$$

Тут $\xi_0^{(3)} = 6.89685$ – корінь рівняння $y_0(\xi) = 0$. З огляду на це для радіуса зорі маємо такий розклад:

$$R(x_0, \mu_e) = \frac{R_0}{\mu_e} \left\{ \frac{\xi_0^{(3)}}{\varepsilon_0(x_0)} - \frac{C_1}{\varepsilon_0^2(x_0)} + \frac{C_2}{\varepsilon_0^3(x_0)} + \dots \right\}.$$
 (2.93)

Аналогічний розклад одержуємо для безрозмірної маси зорі

$$\mathcal{M}(x_0) = \mu_e^2 \frac{M(x_0, \mu_e)}{M_0} = \sum_{n \ge 0} \frac{b_n}{\varepsilon_0^n(x_0)}, \quad b_n = -\left\{\xi^2 \frac{dy_n}{d\xi}\right\}_{\xi = \xi_1}.$$
 (2.94)

Коефіцієнти b_n є функціями параметра x_0 і можуть бути також записані у вигляді розкладів за спепенями $\varepsilon_0^{-1}(x_0)$, що дає еквівалентне зображення для безрозмірної маси:

$$\mathcal{M}(x_0) = b_0^* + b_2^* \varepsilon_0^{-2}(x_0) + b_3^* \varepsilon_0^{-3}(x_0) + b_4^* \varepsilon_0^{-4}(x_0) + b_5^* \varepsilon_0^{-4}(x_0) \ln \varepsilon_0(x_0) + \dots$$
(2.95)

Тут $b_0^* = 2.01824$, $b_2^* = -11.4669$, $b_3^* = 55.0261$, $b_4^* = -65.9691$, $b_5^* = -29.8172$.

В аналогічному вигляді зображається і енергія зорі. Для повної енергії, що включає енергію спокою електронів, маємо таке зображення (в одиницях E_0/μ_e^3):

$$\tilde{\mathcal{E}}(x_0) = \frac{a_1 + b_1}{\varepsilon_0(x_0)} + \frac{a_2 + b_2}{\varepsilon_0^2(x_0)} + \frac{a_3 + b_3}{\varepsilon_0^3(x_0)} - \frac{\xi_1^3}{2\varepsilon_0^3(x_0)} \ln \varepsilon_0(x_0) + \dots = (2.96)$$

$$= \frac{d_1^*}{\varepsilon_0(x_0)} + \frac{d_2^*}{\varepsilon_0^2(x_0)} + \frac{d_3^*}{\varepsilon_0^3(x_0)} - \frac{\left[\xi_0^{(3)}\right]^3}{2\varepsilon_0^3(x_0)} \ln \varepsilon_0(x_0) + \dots,$$

де $d_1^*=6.10059,\ d_2^*=7.91068,\ d_3^*=176.582.$ Вирази (2.95), (2.96) дуже добре описують результати прямого обчислення цих характеристик при $x_0\geq 8.0.$

РОЗДІЛ 3

Трипараметричні моделі холодних вироджених карликів

Стандартна модель С.Чандрасекара є однофазною і хімічно однорідною. Вважається, що електронна підсистема знаходиться у виродженому стані при абсолютному нулі температури, а рівняння стану описується співвідношенням (2.9). Це добре наближення для внутрішніх областей карлика, де завдяки високій концентрації електронів вплив неповного виродження є слабким. Однак таке наближення неадекватно описує стан електронів у приповерхневих шарах, де хімічний потенціал електронів стає від'ємним.

У цій моделі не враховується також ефект гравітаційної диференціації речовини, внаслідок чого важкі хімічні елементи зосереджуються у внутрішніх областях зорі, а легкі — на периферії, що в першу чергу стосується вироджених карликів малої маси. Наприклад, на відміну від масивніших вироджених зір, що складаються переважно з карбону та оксигену (у яких частка гелію і водню не перевищує 10^{-2} та 10^{-4} маси зорі [30,34,36] і для яких параметр хімічного вмісту $\mu_e = \langle A/Z \rangle \approx 2$ у майже всьому об'ємі зорі), у гелій-водневих вироджених карликах унаслідок більшого вмісту водню радіальна зміна цього параметра буде відчутною і тому стандартна модель С. Чандрасекара зі сталим значенням параметра хімічного вмісту незастосовна для опису таких зір.

У моделі С.Чандрасекара вважається, що електронна підсистема знаходиться у парамагнітному стані. Вплив магнітного поля може призвести до часткової спінової поляризації і зміни рівняння стану. Крім того, у стандартній моделі не враховується вплив міжчастинкових взаємодій та осьового обертання зір.

У цьому розділі розглянуто прості узагальнення стандартної моделі холодних вироджених карликів. Це однофазні моделі, які відрізняються від моделі С. Чандрасекара лише наявністю додаткового фізичного параметра, а рівняння рівноваги є одновимірним диференціальним рівнянням другого порядку, як і в стандартній моделі. Перша з цих моделей враховує неоднорідний вздовж радіуса хімічний вміст, що актуально для маломасивних вироджених карликів. Друга модель описує карлики з частковою спіновою поляризацією електронної підсистеми, що призводить до збільшення маси зорі і є важливим для карликів великих мас.

3.1. Моделювання радіальної залежності хімічного вмісту

Вважатимемо параметр хімічного вмісту локальним параметром і запишемо його у вигляді

$$\mu_e(r) = \mu_e t(r/R),$$
(3.1)

де $t(r/R) \equiv t(r/R|\alpha,s)$ – безрозмірна функція свого аргументу (α,s) – числові параметри), r – відстань від центра зорі, R – радіус зорі, $\mu_e \equiv \mu_e(0)$ – значення параметра хімічного вмісту в центрі зорі; t(0) = 1; 0 < t(1) < 1. У ході розрахунку розглянемо два варіанти моделювання функції t(r/R) [24,25]:

$$t_1(r/R|\alpha, s) = \{1 + \alpha(r/R)^s\}^{-1}, \quad t_2(r/R|\alpha, s) = 1 - \alpha \arctan(r/R)^s.$$
 (3.2)

Функції $t_1(r/R|\alpha, s)$, $t_2(r/R|\alpha, s)$ за фіксованих значень параметрів α, s показано на рис. 3.1. Форма цих залежностей визначається вибором числових параметрів.

Рис. 3.1. Залежність функцій t_1 та t_2 (3.2) від радіальної координати при s=2.

Використавши ту саму схему, що й у стандартній моделі Чандрасекара, і врахувавши радіальну залежність параметра хімічного вмісту, зводимо рівняння рівноваги (1.3) до нелінійного рівняння для x(r) або до рівняння для локального хімічного потенціалу

$$\frac{1}{r^2}\frac{d}{dr}\left(\frac{r^2}{t(r/R)}\frac{d\mu}{dr}\right) = -\frac{32\pi^2}{3(hc)^3}G(m_u\mu_e)^2\{\mu^2(r) + 2\mu(r)\ m_0c^2\}^{3/2}\ t(r/R).$$
(3.3)

де $\mu(r) = m_0 c^2 \left\{ [1 + x^2(r)]^{1/2} - 1 \right\}$ є локальною енергією Фермі на сфері радіусом $r; m_u$ – атомна одиниця маси.

Як і в стандартній моделі, перейдемо до безрозмірних змінних $\xi = r/\lambda$, використовуючи підстановку (2.20). Оскільки $R = \lambda \xi_1$, де ξ_1 – безрозмірний радіус зорі, то

$$t(r/R) \equiv t(\xi/\xi_1). \tag{3.4}$$

Вибираючи масштаб λ з тієї ж умови, що й у випадку стандартної моделі, зведемо рівняння (3.3) до безрозмірної форми

$$\frac{1}{\xi^2} \frac{d}{d\xi} \left(\frac{\xi^2}{t(\xi/\xi_1)} \frac{dy}{d\xi} \right) = -\left\{ y^2 + \frac{2y}{\varepsilon_0(x_0)} \right\}^{3/2} t(\xi/\xi_1). \tag{3.5}$$

Рівнянню (3.5) відповідають граничні умови y(0) = 1, y'(0) = 0 та умова $y(\xi) \ge 0$. Воно містить три параметри: параметр релятивізму в центрі зорі x_0 , а також два числові параметри з модельованої радіальної залежності параметра хімічного вмісту α , s. Нелінійність рівняння (3.5) зумовлена як нелінійністю правої сторони відносно $y(\xi)$, так і залежністю функції $t(\xi/\xi_1)$ від невідомого $\xi_1 \equiv \xi_1(x_0|\alpha,s)$ – значення змінної, за якого $y(\xi)$ перетворюється в нуль.

На рис. 3.2 відображено характер розв'язків рівняння рівноваги (3.5), знайдених за допомогою числового інтегрування методом послідовних наближень за заданих α , s та x_0 . Як бачимо з рис. 3.2, безрозмірний радіус карлика в неоднорідній моделі більший від того, який отримують у стандартній моделі за того ж значення параметра x_0 .

За аналогією до випадку стандартної моделі Чандрасекара за заданих параметрів $(x_0, \mu_e | \alpha, s)$ радіус, маса зорі й кількість електронів

Рис. 3.2. Розв'язки рівняння (3.5) за значень параметрів $x_0=1;\ \alpha=0.5;$ s=2. Кривій 1 відповідає розв'язок у стандартній моделі Чандрасекара, крива 2 відповідає функції t_1 , крива 3 — функції t_2 .

визначаються такими виразами:

$$R(x_{0}, \mu_{e}|\alpha, s) = R_{0} \frac{\xi_{1}(x_{0}|\alpha, s)}{\mu_{e}\varepsilon_{0}(x_{0})}; \quad M(x_{0}, \mu_{e}|\alpha, s) = \frac{M_{0}}{\mu_{e}^{2}} \mathcal{M}(x_{0}|\alpha, s);$$

$$\mathcal{M}(x_{0}|\alpha, s) = \varepsilon_{0}^{-3}(x_{0}) \int_{0}^{\xi_{1}} d\xi \, \xi^{2} \, t(\xi/\xi_{1}) x^{3}(\xi) =$$

$$= [t(1)]^{-1} \left\{ \xi^{2} \left| \frac{dy}{d\xi} \right| \right\} \quad \text{при} \quad \xi = \xi_{1}(x_{0}|\alpha, s);$$

$$N_{e}(x_{0}, \mu_{e}|\alpha, s) = \frac{M_{0}}{m_{u}\mu_{e}^{3}\varepsilon_{0}^{3}(x_{0})} \int_{0}^{\xi_{1}} d\xi \, \xi^{2} x^{3}(\xi);$$

$$x(\xi) = \varepsilon_{0}(x_{0}) \left\{ y^{2}(\xi) + \frac{2}{\varepsilon_{0}(x_{0})} y(\xi) \right\}^{1/2}.$$

$$(3.6)$$

3.1.1. Обернена задача для гелій-водневих карликів. Для отримання параметрів моделі, що відповідають спостережуваним гелій-водневим виродженим карликам з відомими масами та радіусами, використаємо співвідношення (3.6). У розглянутій моделі маємо чотири

невідомі параметри $(x_0, \mu_e(0) \equiv \mu_e, \alpha \text{ та } s)$, однак лише дві характеристики, відомі зі спостережень. Тому два із чотирьох параметрів потрібно зафіксувати, щоб знайти інші два з оберненої задачі. Оскільки ми розглядаємо зорі з гелієвим ядром, то для них параметр хімічного вмісту в центрі зорі $\mu_e = 2.0$, також зафіксуємо числовий параметр s = 2. Тоді з даних про маси та радіуси вироджених зір знаходимо параметр релятивізму в центрі зорі, а також параметр α , що визначає радіальну залежність параметра хімічного вмісту.

Для відбору можливих гелій-водневих карликів використаємо стандартну модель Чандрасекара. Таким зорям у цій моделі має відповідати параметр хімічного вмісту, менший від 2.0. Припускаючи, що всі вироджені карлики з $\mu_e < 2.0$ є гелій-водневими, ми розв'язали для них обернену задачу та отримали параметри моделі. Значення, що наведені у табл. 3.1 і мають індекс 1, відповідають вибору функції t_1 з формули (3.2), а ті, що мають індекс 2, — функції t_2 .

Рис. 3.3. Параметри неоднорідної моделі для групи з 130 карликів (розраховані за даними праць [27-29]), для яких $\mu_e < 2.0$ у стандартній моделі. Хрестики відповідають вибору функції t_1 , кільця — функції t_2 .

Рис. 3.4. Параметри неоднорідної моделі для маломасивних вироджених гелій-водневих карликів з помірними ефективними температурами (дані про маси та радіуси взяті з праці [33]). Хрестики відповідають вибору функції t_1 , кільця — функції t_2 .

Параметри з табл. 3.1 зображено на рис. 3.3. Для більшості об'єктів з цієї вибірки параметр α задовольняє умову $0 < \alpha \le 0.33 \ (1.6 - x_0)$. Значення α , що лежать вище пунктирної прямої, відповідають карликам з високою ефективною температурою фотосфери (наприклад,

Таблиця 3.1

Параметри неоднорідної моделі для карликів спектрального типу DA, яким у стандартній моделі відповідає $\mu_e < 2.0$: $\alpha^{(i)}, x_0^{(i)}$ відповідають функціям $t_i(r/R|\alpha,2)$. Цифра 1 у правому стовпці означає, що використано дані про маси і радіуси спостережуваних карликів з праці [27], а 2 – з праці [28]

Зоря	$\alpha^{(1)}$	$x_0^{(1)}$	$\alpha^{(2)}$	$x_0^{(2)}$	Прим.
Sirius B	0.02465	2.4026	0.026117	2.40125	1
CD-38 10980	0.18470	1.4108	0.183890	1.40921	1
W485A	0.26103	1.0713	0.252124	1.07110	1
L268-92	0.45521	1.2277	0.409888	1.23358	1
G93-48	0.43447	1.3364	0.394240	1.34206	1
BPM16274	0.02663	0.9796	0.028581	0.97915	2
GD659	0.08189	1.1870	0.085403	1.18579	2
WD 0229-481	0.90595	0.8771	0.713162	0.89947	2
LB 1663	0.22551	0.8718	0.221074	0.87122	2
WD 0343-007	0.44339	0.9842	0.400100	0.98804	2
BPM3523	0.06848	0.9854	0.072002	0.98457	2
GD71	0.22100	0.8626	0.217071	0.86203	2
G104-27	0.05136	1.1534	0.054358	1.15250	2
GD80	0.03928	1.4389	0.041689	1.43791	2
BPM5109	0.00754	1.2138	0.008143	1.21361	2
BPM6082	0.03803	0.8759	0.040615	0.87544	2
BPM6114	0.48616	0.6188	0.431124	0.62163	2
LP550-052	0.10149	0.6954	0.105233	0.69474	2
BPM6502	0.04129	1.0203	0.043973	1.01968	2
G163-050	0.00657	0.9484	0.007126	0.94830	2
BPM21970	0.02109	1.0212	0.022690	1.02087	2
BPM38165	0.05980	0.9695	0.063148	0.96871	2
GD173	0.06313	1.0985	0.066476	1.09754	2
BPM9518	0.08763	0.9199	0.091339	0.91899	2
G153-41	0.03919	1.3011	0.041650	1.30031	2
GR274	0.01464	1.3154	0.015744	1.31508	2
BPM24273	0.00107	1.1156	0.001157	1.11558	2
G21-15	0.04326	0.7789	0.046128	0.77841	2
BPM11593	0.01138	1.0557	0.012305	1.05546	2
Lanning 18	0.12141	1.0069	0.124501	1.00578	2
L210-114	0.08657	1.0477	0.090190	1.04663	2
L711-10	0.03880	0.9945	0.041383	0.99397	2
WD 2204+071	0.03320	1.1564	0.035445	1.15577	2
GD246	0.14910	1.3278	0.150746	1.32619	2
BPM15727	0.06723	0.7066	0.070868	0.70606	2

для об'єкта WD 0229–481 $T_{\rm eff}\approx 77\cdot 10^3~{\rm K})$, або ж карликам невеликих мас із достатньо високою ефективною температурою (зорі BPM6114 відповідають $T_{\rm eff}\approx 27\cdot 10^3~{\rm K},~M\approx 0.33 M_{\odot})$. Вироджені зорі такого типу не можна розглядати в рамках стандартної моделі Чандрасекара, що застосовна до холодних карликів. Як бачимо із табл. 3.1, а також рис. 3.3, результати розрахунку параметра α мало чутливі до вибору функції $t(r/R|\alpha,s)$.

З еволюційного підходу [37,38] випливає, що гелій-водневі виродженні карлики мають бути маломасивними $M \leq 0.45 M_{\odot}$. Такі вироджені зорі з вибірки об'єктів спектрального типу DA огляду SDSS DR4 [33], маси яких задовольняють згадане вище обмеження, наведено у табл. 3.2. Як бачимо, для всіх цих зір усереднений параметр хімічного вмісту μ_e в моделі Чандрасекара менший за 2.0.

Крім того, оскільки в моделі Чандрасекара не враховано відхилення від повного виродження електронного газу завдяки скінченним температурам, нашу вибірку потрібно обмежити зорями з низькими та помірними ефективними температурами фотосфер (у другому випадку необхідно, щоб вони були достатньо масивними) для забезпечення умови нехтовно малого впливу температури на рівняння стану електронного газу.

З використанням усіх цих умов ми розв'язали обернену задачу для маломасивних гелій-водневих вироджених карликів з помірними ефективними температурами. Відповідні параметри наведено в табл. 3.3 і зображено на рис. 3.4 [25]. Нумерація карликів в табл. 3.3 відповідає нумерації в каталозі SDSS DR4 [33].

Таблиця 3.2 Параметри маломасивних вироджених карликів спектрального типу DA [33] у моделі Чандрасекара

Номер	R/R_{\odot}	M/M_{\odot}	$T_{ m eff}$	x_0	μ_e	Номер	R/R_{\odot}	M/M_{\odot}	$T_{ m eff}$	x_0	μ_e
3	0.0204	0.42	23010	0.649	1.72	1706	0.0235	0.41	37710	0.571	1.61
62	0.0214	0.41	23230	0.618	1.69	1721	0.0206	0.37	14380	0.612	1.77
71	0.0176	0.42	13590	0.741	1.87	1736	0.0202	0.44	33350	0.669	1.72
111	0.0214	0.41	25740	0.618	1.69	1744	0.0214	0.42	29360	0.624	1.68
122	0.0188	0.40	14240	0.683	1.82	1774	0.0257	0.39	34340	0.517	1.55
125	0.0211	0.41	25360	0.624	1.70	1775	0.0178	0.44	18490	0.748	1.84
132	0.0250	0.30	17420	0.474	1.66	1784	0.0186	0.43	22270	0.711	1.80
158	0.0427	0.43	78960	0.352	1.13	1820	0.0186	0.42	18290	0.704	1.81
174	0.0242	0.39	26650	0.543	1.60	1821	0.0209	0.43	29970	0.643	1.69
195	0.0184	0.42	18780	0.711	1.82	1845	0.0222	0.42	35830	0.606	1.65
223	0.0248	0.40	31090	0.538	1.57	1854	0.0431	0.17	17740	0.240	1.37
256	0.0240	0.42	49520	0.565	1.58	1879	0.0193	0.42	21980	0.683	1.78
266	0.0195	0.44	28480	0.690	1.75	1914	0.0237	0.40	26990	0.560	1.61
276	0.0219	0.42	34170	0.612	1.66	1976	0.0272	0.39	39700	0.493	1.50
278	0.0202	0.40	19190	0.643	1.76	1995	0.0513	0.42	88290	0.300	1.02
334	0.0231	0.27	7590	0.483	1.78	2008	0.0219	0.42	29070	0.612	1.66
350	0.0219	0.43	42690	0.618	1.65	2017	0.0406	0.38	25360	0.349	1.20
368	0.0234	0.39	22330	0.560	1.63	2028	0.0174	0.43	13970	0.756	1.87
377	0.0236	0.37	20890	0.543	1.64	2037	0.0157	0.43	7280	0.830	1.97
397	0.0364	0.43	73560	0.402	1.24	2088	0.0271	0.38	31850	0.488	1.51
434	0.0227	0.42	35300	0.594	1.63	2119	0.0159	0.43	8010	0.821	1.96
502	0.0180	0.43	16970	0.733	1.83	2137	0.0179	0.38	7600	0.697	1.89
503	0.0168	0.40	6930	0.756	1.94	2158	0.0172	0.42	12460	0.756	1.89
532	0.0174	0.43	14770	0.756	1.87	2163	0.0208	0.38	17350	0.612	1.75
533	0.0177	0.37	6270	0.697	1.92	2164	0.0189	0.43	22400	0.704	1.79
567	0.0170	0.44	15830	0.780	1.88	2174	0.0195	0.44	25460	0.690	1.75
618	0.0275	0.23	8860	0.391	1.67	2225	0.0219	0.42	35460	0.612	1.66
629	0.0184	0.43	20170	0.718	1.81	2228	0.0254	0.39	31460	0.522	1.56
646	0.0387	0.28	44860	0.320	1.31	2229	0.0243	0.32	17620	0.498	1.66
651	0.0178	0.43	16250	0.741	1.85	2242	0.0184	0.41	15060	0.704	1.83
681	0.0363	0.41	70640	0.395	1.26	2264	0.0168	0.43	12780	0.780	1.90
688	0.0219	0.41	27970	0.606	1.67	2270	0.0351	0.23	17780	0.320	1.45
691	0.0229	0.41	31260	0.582	1.63	2287	0.0232	0.41	32640	0.576	1.62
704	0.0195	0.44	25230	0.690	1.75	2322	0.0191	0.42	18830	0.690	1.79
706	0.0170	0.41	7810	0.756	1.91	2325	0.0182	0.41	15180	0.711	1.84
729	0.0199	0.39	16060	0.643	1.78	2335	0.0180	0.44	21370	0.741	1.82
785	0.0200	0.42	23690	0.663	1.75	2404	0.0166	0.43	12500	0.788	1.91
792	0.0381	0.42	73380	0.384	1.22	2435	0.0216	0.41	28560	0.612	1.68
820	0.0260	0.39	37130	0.512	1.54	2453	0.0224	0.41	29860	0.594	1.65
827	0.0157	0.44	9090	0.839	1.96	2456	0.0204	0.40	19150	0.637	1.75
838	0.0172	0.44	16370	0.772	1.87	2476	0.0209	0.43	31860	0.643	1.69
870	0.0204	0.44	34160	0.663	1.71	2477	0.0157	0.43	6970	0.830	1.97
882	0.0210	0.28	5910	0.533	1.86	2517	0.0177	0.38	6850	0.704	1.90
894	0.0244	0.36	20800	0.522	1.62	2534	0.0227	0.42	35430	0.594	1.63
900	0.0202	0.40	17960	0.643	1.76	2542	0.0204	0.41	21310	0.643	1.73
931	0.0170	0.40	7180	0.748	1.93	2606	0.0279	0.44	59480	0.507	1.44
936	0.0179	0.37	6530	0.690	1.91	2608	0.0182	0.44	19870	0.733	1.81
956	0.0176	0.43	15980	0.748	1.86	2634	0.0186	0.43	18890	0.711	1.80
974	0.0335	0.40	62620	0.418	1.32	2653	0.0184	0.38	8990	0.683	1.87

Zarinnonna	mo 6 17	•	9

Номер	R/R_{\odot}	M/M_{\odot}	$T_{ m eff}$	x_0	μ_e	Номер	R/R_{\odot}	M/M_{\odot}	$T_{ m eff}$	x_0	μ_e
981	0.0191	0.44	25640	0.704	1.77	2656	0.0239	0.37	21060	0.538	1.63
997	0.0320	0.42	64340	0.443	1.34	2657	0.0195	0.42	23440	0.676	1.77
1007	0.0257	0.39	30450	0.517	1.55	2714	0.0332	0.43	69680	0.435	1.31
1138	0.0166	0.40	6940	0.764	1.95	2728	0.0200	0.42	23090	0.663	1.75
1233	0.0243	0.40	36010	0.549	1.59	2729	0.0168	0.41	7110	0.764	1.92
1246	0.0295	0.41	58620	0.469	1.41	2742	0.0221	0.41	27850	0.600	1.66
1255	0.0209	0.40	21400	0.624	1.72	2747	0.0265	0.38	31250	0.498	1.53
1273	0.0200	0.41	18760	0.656	1.76	2779	0.0190	0.34	7640	0.630	1.88
1307	0.0195	0.42	21810	0.676	1.77	2820	0.0260	0.44	54910	0.538	1.49
1310	0.0222	0.42	34510	0.606	1.65	2822	0.0313	0.44	67640	0.460	1.35
1316	0.0200	0.43	28240	0.669	1.74	2824	0.0235	0.36	19260	0.538	1.65
1318	0.0195	0.41	19290	0.669	1.78	2829	0.0243	0.40	34420	0.549	1.59
1348	0.0257	0.41	46220	0.528	1.53	2831	0.0191	0.43	23200	0.697	1.78
1351	0.0221	0.40	22580	0.594	1.67	2838	0.0234	0.39	24320	0.560	1.63
1374	0.0265	0.38	29720	0.498	1.53	2841	0.0208	0.37	15850	0.606	1.76
1401	0.0180	0.40	12610	0.711	1.87	2868	0.0189	0.42	20140	0.697	1.80
1405	0.0184	0.43	18230	0.718	1.81	2870	0.0193	0.44	28400	0.697	1.76
1410	0.0172	0.39	7450	0.733	1.93	2872	0.0216	0.41	23010	0.612	1.68
1415	0.0193	0.42	20640	0.683	1.78	2885	0.0339	0.44	70590	0.430	1.29
1419	0.0195	0.43	23830	0.683	1.76	2889	0.0202	0.43	26380	0.663	1.73
1477	0.0195	0.40	15380	0.663	1.79	2915	0.0272	0.41	52740	0.502	1.48
1490	0.0174	0.44	18850	0.764	1.86	2919	0.0283	0.36	31340	0.460	1.49
1527	0.0229	0.41	30130	0.582	1.63	2922	0.0316	0.39	55320	0.435	1.38
1536	0.0226	0.39	21000	0.576	1.66	2941	0.0242	0.38	23150	0.538	1.61
1594	0.0217	0.42	29450	0.618	1.67	2942	0.0248	0.40	30460	0.538	1.57
1616	0.0209	0.41	21230	0.630	1.71	2964	0.0242	0.39	27610	0.543	1.60
1627	0.0376	0.44	75860	0.395	1.21	2994	0.0279	0.29	23180	0.426	1.58
1654	0.0260	0.39	32150	0.512	1.54	3026	0.0235	0.41	34370	0.571	1.61
1657	0.0192	0.38	12830	0.656	1.82	3027	0.0170	0.40	6910	0.748	1.93
1669	0.0204	0.43	27170	0.656	1.71	3033	0.0214	0.35	13410	0.576	1.75
1676	0.0203	0.37	13530	0.618	1.78	3058	0.0207	0.43	29400	0.649	1.70

Таблиця 3.3 Параметри гелій-водневих вироджених карликів у моделі з неоднорідним хімічним складом. Параметри з індексом 1 відповідають вибору функції t_1 , $2-t_2$ (див. (3.2))

Номер	R/R_0	M/M_0	$T_{ m eff}$	$\alpha^{(1)}$	$x_0^{(1)}$	$\alpha^{(2)}$	$x_0^{(2)}$
3	1.8295	0.14550	23010	0.56712	0.73551	0.48999	0.74108
62	1.9147	0.14203	23230	0.65738	0.71067	0.55204	0.71856
71	1.5752	0.14550	13590	0.23359	0.78427	0.22826	0.78384
111	1.9147	0.14203	25740	0.65738	0.71067	0.55204	0.71856
122	1.6855	0.13857	14240	0.32614	0.73723	0.30694	0.73780
125	1.8928	0.14203	25360	0.62684	0.71395	0.53135	0.72096
132	2.2350	0.10393	17420	0.72187	0.54810	0.59332	0.55526
195	1.6494	0.14550	18780	0.32746	0.76845	0.30804	0.76907
266	1.7476	0.15243	28480	0.50663	0.77330	0.44668	0.77758
276	1.9604	0.14550	34170	0.75181	0.71550	0.61424	0.72655

Продовження табл. 3.3

					Ir	LODMCIIIM	
Номер	R/R_0	M/M_0	$T_{ m eff}$	$\alpha^{(1)}$	$x_0^{(1)}$	$\alpha^{(2)}$	$x_0^{(2)}$
278	1.8061	0.13857	19190	0.48185	0.71598	0.42824	0.71928
334	2.0720	0.09353	7590	0.41775	0.52894	0.37948	0.53031
350	1.9608	0.14896	42690	0.78258	0.72681	0.63405	0.73921
368	2.0953	0.13511	22330	0.85164	0.66407	0.67642	0.67743
377	2.1126	0.12818	20890	0.80897	0.63962	0.64964	0.65095
434	2.0292	0.14550	35300	0.85262	0.70605	0.67761	0.72057
502	1.6123	0.14896	16970	0.30265	0.78838	0.28750	0.78868
503	1.5022	0.13857	6930	0.10347	0.77622	0.10716	0.77544
532	1.5575	0.14896	14770	0.23315	0.80063	0.22786	0.80019
533	1.5842	0.12818	6270	0.13501	0.72055	0.13780	0.71980
567	1.5221	0.15243	15830	0.20972	0.82154	0.20700	0.82091
618	2.4636	0.079677	8860	0.70469	0.44951	0.58145	0.45486
629	1.6499	0.14896	20170	0.35128	0.78046	0.32743	0.78146
651	1.5938	0.14896	16250	0.27903	0.79241	0.26759	0.79242
688	1.9593	0.14203	27970	0.72027	0.70425	0.59368	0.71402
691	2.0516	0.14203	31260	0.85371	0.69189	0.67808	0.70606
704	1.7476	0.15243	25230	0.50663	0.77330	0.44668	0.77758
706	1.5209	0.14203	7810	0.14608	0.78433	0.14831	0.78351
729	1.7834	0.13511	16060	0.42584	0.70796	0.38599	0.71008
785	1.7879	0.14550	23690	0.51021	0.74252	0.44918	0.74667
827	1.4042	0.15243	9090	0.06561	0.85308	0.06916	0.85239
838	1.5397	0.15243	16370	0.23192	0.81725	0.22677	0.81678
870	1.8299	0.15243	34160	0.62191	0.75872	0.52828	0.76617
882	1.8806	0.09700	5910	0.23782	0.56259	0.23205	0.56232
894	2.1820	0.12471	20800	0.87167	0.62084	0.68808	0.63375
900	1.8061	0.13857	17960	0.48185	0.71598	0.42824	0.71928
931	1.5196	0.13857	7180	0.12388	0.77210	0.12707	0.77129
936	1.6025	0.12818	6530	0.15618	0.71683	0.15788	0.71610
956	1.5756	0.14896	15980	0.25587	0.79650	0.24771	0.79626
981	1.7078	0.15243	25640	0.45226	0.78086	0.40628	0.78385
1138	1.4850	0.13857	6940	0.08346	0.78038	0.08726	0.77966
1255	1.8696	0.13857	21400	0.56676	0.70592	0.48958	0.71118
1273	1.7869	0.14203	18760	0.48275	0.73094	0.42895	0.73435
1307	1.7472	0.14550	21810	0.45544	0.74971	0.40860	0.75262
1310	1.9830	0.14550	34510	0.78476	0.71231	0.63526	0.72446
1316	1.7883	0.14896	28240	0.53700	0.75418	0.46863	0.75911
1318	1.7462	0.14203	19290	0.42891	0.73803	0.38841	0.74033
1351	1.9803	0.13857	22580	0.71975	0.68996	0.59320	0.69945
1401	1.6097	0.13857	12610	0.23191	0.75226	0.22678	0.75184
1405	1.6499	0.14896	18230	0.35128	0.78046	0.32743	0.78146
1410	1.5355	0.13511	7450	0.12158	0.75595	0.12485	0.75516
1415	1.7272	0.14550	20640	0.42885	0.75336	0.38840	0.75573

Продовження табл. 3.3

	1		1			довження	
Номер	R/R_0	M/M_0	$T_{ m eff}$	$\alpha^{(1)}$	$x_0^{(1)}$	$\alpha^{(2)}$	$x_0^{(2)}$
1419	1.7476	0.14896	23830	0.48134	0.76146	0.42801	0.76503
1477	1.7448	0.13857	15380	0.40173	0.72641	0.36739	0.72816
1490	1.5575	0.15243	18850	0.25456	0.81300	0.24658	0.81275
1527	2.0516	0.14203	30130	0.85371	0.69189	0.67808	0.70606
1536	2.0241	0.13511	21000	0.75035	0.67284	0.61284	0.68299
1594	1.9379	0.14550	29450	0.71951	0.71873	0.59332	0.72874
1616	1.8711	0.14203	21230	0.59689	0.71726	0.51074	0.72346
1657	1.7203	0.13164	12830	0.32074	0.70686	0.30249	0.70733
1669	1.8300	0.14896	27170	0.59486	0.74708	0.50950	0.75356
1676	1.8189	0.12818	13530	0.41808	0.67867	0.37997	0.68054
1706	2.0994	0.14203	37710	0.92447	0.68593	0.72094	0.70265
1721	1.8400	0.12818	14380	0.44478	0.67544	0.40036	0.67777
1736	1.8090	0.15243	33350	0.59225	0.76230	0.50777	0.76887
1744	1.9157	0.14550	29360	0.68784	0.72200	0.57248	0.73102
1775	1.5938	0.15243	18490	0.30116	0.80467	0.28627	0.80496
1784	1.6689	0.14896	22270	0.37629	0.77657	0.34745	0.77799
1820	1.6685	0.14550	18290	0.35207	0.76461	0.32807	0.76560
1821	1.8726	0.14896	29970	0.65501	0.74015	0.55067	0.74839
1845	1.9830	0.14550	35830	0.78476	0.71231	0.63526	0.72446
1879	1.7272	0.14550	21980	0.42885	0.75336	0.38840	0.75573
1914	2.1220	0.13857	26990	0.92429	0.67209	0.72059	0.68836
2008	1.9604	0.14550	29070	0.75181	0.71550	0.61424	0.72655
2028	1.5575	0.14896	13970	0.23315	0.80063	0.22786	0.80019
2037	1.4042	0.14896	7280	0.04708	0.84014	0.05008	0.83961
2119	1.4205	0.14896	8010	0.06621	0.83554	0.06978	0.83487
2137	1.6055	0.13164	7600	0.18200	0.72857	0.18186	0.72790
2158	1.5393	0.14550	12460	0.18929	0.79247	0.18852	0.79176
2163	1.8647	0.13164	17350	0.50431	0.68341	0.44466	0.68700
2164	1.6883	0.14896	22400	0.40180	0.77272	0.36752	0.77462
2174	1.7476	0.15243	25460	0.50663	0.77330	0.44668	0.77758
2225	1.9604	0.14550	35460	0.75181	0.71550	0.61424	0.72655
2229	2.1791	0.11086	17620	0.72410	0.57614	0.59500	0.58381
2242	1.6485	0.14203	15060	0.30308	0.75651	0.28785	0.75680
2264	1.5047	0.14896	12780	0.16754	0.81333	0.16845	0.81251
2287	2.0754	0.14203	32640	0.88874	0.68890	0.69945	0.70431
2322	1.7074	0.14550	18830	0.40276	0.75707	0.36824	0.75893
2325	1.6297	0.14203	15180	0.27933	0.76035	0.26784	0.76036
2335	1.6123	0.15243	21370	0.32515	0.80058	0.30616	0.80121
2404	1.4875	0.14896	12500	0.14650	0.81767	0.14869	0.81680
2435	1.9369	0.14203	28560	0.68852	0.70744	0.57281	0.71624
2453	2.0049	0.14203	29860	0.78567	0.69799	0.63567	0.70986
2456	1.8270	0.13857	19150	0.50961	0.71259	0.44863	0.71649

Закінчення табл. 3.3

							10071. 0.0
Номер	R/R_0	M/M_0	$T_{ m eff}$	$\alpha^{(1)}$	$x_0^{(1)}$	$\alpha^{(2)}$	$x_0^{(2)}$
2476	1.8726	0.14896	31860	0.65501	0.74015	0.55067	0.74839
2477	1.4042	0.14896	6970	0.04708	0.84014	0.05008	0.83961
2517	1.5871	0.13164	6850	0.16039	0.73234	0.16182	0.73160
2534	2.0292	0.14550	35430	0.85262	0.70605	0.67761	0.72057
2542	1.8285	0.14203	21310	0.53872	0.72401	0.46972	0.72872
2608	1.6309	0.15243	19870	0.34961	0.79654	0.32610	0.79755
2634	1.6689	0.14896	18890	0.37629	0.77657	0.34745	0.77799
2653	1.6429	0.13164	8990	0.22648	0.72116	0.22200	0.72072
2656	2.1370	0.12818	21060	0.84335	0.63687	0.67096	0.64926
2657	1.7472	0.14550	23440	0.45544	0.74971	0.40860	0.75262
2728	1.7879	0.14550	23090	0.51021	0.74252	0.44918	0.74667
2729	1.5035	0.14203	7110	0.12531	0.78850	0.12845	0.78767
2742	1.9820	0.14203	27850	0.75265	0.70110	0.61462	0.71189
2779	1.7039	0.11778	7640	0.20244	0.66134	0.20054	0.66082
2824	2.1080	0.12471	19260	0.76871	0.62889	0.62413	0.63875
2831	1.7078	0.14896	23200	0.42780	0.76892	0.38763	0.77133
2838	2.0953	0.13511	24320	0.85164	0.66407	0.67642	0.67743
2841	1.8613	0.12818	15850	0.47198	0.67225	0.42078	0.67509
2868	1.6879	0.14550	20140	0.37718	0.76081	0.34814	0.76222
2870	1.7276	0.15243	28400	0.47918	0.77705	0.42645	0.78067
2872	1.9369	0.14203	23010	0.68852	0.70744	0.57281	0.71624
2889	1.8090	0.14896	26380	0.56566	0.75061	0.48903	0.75629
2941	2.1657	0.13164	23150	0.91925	0.64486	0.71714	0.66010
3026	2.0994	0.14203	34370	0.92447	0.68593	0.72094	0.70265
3027	1.5196	0.13857	6910	0.12388	0.77210	0.12707	0.77129
3033	1.9175	0.12125	13410	0.48632	0.64095	0.43131	0.64390
3058	1.8512	0.14896	29400	0.62464	0.74359	0.53005	0.75093

3.1.2. Радіальна залежність компонент. Парціальні маси. Для знаходження розподілу гелію і водню вздовж радіуса скористаємось співвідношенням між $\mu_e(r)$ і локальними масовими частками гелію та водню $Y(r) = \rho_{He}(r)/\rho(r), \, X(r) = \rho_H(r)/\rho(r)$ (тут $\rho(r)$ – загальна густина, а $\rho_{He}(r), \, \rho_H(r)$ – парціальні густини):

$$\mu_e^{-1}(r) = X(r) + \frac{1}{2}Y(r), \quad X(r) + Y(r) = 1.$$
 (3.7)

Характер розв'язків цієї системи рівнянь

$$Y(r) = 2 - t^{-1}(r/R), \quad X(r) = t^{-1}(r/R) - 1$$
 (3.8)

для двох вироджених карликів відображено на рис. 3.5, 3.6 (суцільна та пунктирна криві відповідають вибору функцій $t_1(r)$ та $t_2(r)$ відповідно).

Рис. 3.5. Радіальний розподіл гелію Y(r) та водню X(r) для виродженого карлика з порядковим номером 132 у вибірці карликів спектрального типу DA огляду SDSS DR4 [33].

Рис. 3.6. Радіальний розподіл гелію Y(r) та водню X(r) для виродженого карлика з порядковим номером 533 у вибірці карликів спектрального типу DA огляду SDSS DR4 [33].

Кількість водню, що міститься у виродженому карлику, залежить від його маси: як бачимо з рис. 3.5, і табл. 3.4, у зорях меншої маси відносна частка водню є більшою. У такій моделі парціальні маси гелію та водню в карлику визначені співвідношеннями

$$M_{He} = \frac{M_0}{\mu_e^2} \int_0^{\xi_1} d\xi \, \xi^2 \left\{ y^2(\xi) + \frac{2}{\varepsilon_0} y(\xi) \right\}^{3/2} \left\{ 2t(\xi/\xi_1) - 1 \right\}, \qquad (3.9)$$

$$M_H = \frac{M_0}{\mu_e^2} \int_0^{\xi_1} d\xi \, \xi^2 \left\{ y^2(\xi) + \frac{2}{\varepsilon_0} y(\xi) \right\}^{3/2} \left\{ 1 - t(\xi/\xi_1) \right\}.$$

Значення цих величин для групи карликів у моделі $\mu_e(0)=2, s=2$ наведено у табл. 3.4.

Таблиця 3.4 Парціальні маси гелію та водню для гелій-водневих вироджених карликів спектрального типу DA [33]. Індексу 1 відповідає вибір функції $t_1,\ 2-t_2$ (див. (3.2)).

Номер	R/R_0	M/M_0	$T_{ m eff}$	$M_{He}^{(1)}$	$M_H^{(1)}$	$M_{He}^{(2)}$	$M_{H}^{(2)}$
3	1.8295	0.14550	23010	0.12533	0.020171	0.12580	0.019696
62	1.9147	0.14203	23230	0.11973	0.022305	0.12051	0.021524
71	1.5752	0.14550	13590	0.13632	0.009176	0.13624	0.009262
111	1.9147	0.14203	25740	0.11973	0.022305	0.12051	0.021524
122	1.6855	0.13857	14240	0.12668	0.011888	0.12666	0.011909
125	1.8928	0.14203	25360	0.12059	0.021444	0.12125	0.020779
132	2.2350	0.10393	17420	0.08604	0.017886	0.08683	0.017097
195	1.6494	0.14550	18780	0.13301	0.012490	0.13299	0.012509
266	1.7476	0.15243	28480	0.13329	0.019141	0.13360	0.018825
276	1.9604	0.14550	34170	0.12004	0.025455	0.12127	0.024230
278	1.8061	0.13857	19190	0.12180	0.016769	0.12203	0.016538
334	2.072	0.093534	7590	0.08336	0.010177	0.08343	0.010104
350	1.9608	0.14896	42690	0.12209	0.026875	0.12350	0.025459
368	2.0953	0.13511	22330	0.10888	0.026222	0.11055	0.024558
377	2.1126	0.12818	20890	0.10422	0.023953	0.10559	0.022591
434	2.0292	0.14550	35300	0.11736	0.028143	0.11915	0.026352
502	1.6123	0.14896	16970	0.13707	0.011891	0.13703	0.011936
503	1.5022	0.13857	6930	0.13451	0.004057	0.13444	0.004130
532	1.5575	0.14896	14770	0.13960	0.009363	0.13951	0.009451
533	1.5842	0.12818	6270	0.12331	0.004867	0.12323	0.004944
567	1.5221	0.15243	15830	0.14375	0.008670	0.14366	0.008766
618	2.4636	0.07968	8860	0.06612	0.013558	0.06669	0.012990
629	1.6499	0.14896	20170	0.13537	0.013596	0.13537	0.013589
651	1.5938	0.14896	16250	0.13792	0.011044	0.13786	0.011107
688	1.9593	0.14203	27970	0.11800	0.024038	0.11904	0.022989
691	2.0516	0.14203	31260	0.11449	0.027541	0.11625	0.025783
704	1.7476	0.15243	25230	0.13329	0.019141	0.13360	0.018825
706	1.5209	0.14203	7810	0.13626	0.005777	0.13617	0.005865
729	1.7834	0.13511	16060	0.12040	0.014709	0.12051	0.014591
785	1.7879	0.14550	23690	0.12706	0.018438	0.12737	0.018126
827	1.4042	0.15243	9090	0.14958	0.002849	0.14952	0.002905
838	1.5397	0.15243	16370	0.14291	0.009519	0.14282	0.009609
870	1.8299	0.15243	34160	0.12967	0.022759	0.13036	0.022069
882	1.8806	0.09700	5910	0.09065	0.006346	0.09059	0.006406
894	2.1820	0.12471	20800	0.09996	0.024755	0.10161	0.023102
900	1.8061	0.13857	17960	0.12180	0.016769	0.12203	0.016538
931	1.5196	0.13857	7180	0.13375	0.004824	0.13367	0.004904

Продовження табл. 3.4

				(4)			1 таол. 3.4
Номер	R/R_0	M/M_0	$T_{ m eff}$	$M_{He}^{(1)}$	$M_H^{(1)}$	$M_{He}^{(2)}$	$M_H^{(2)}$
936	1.6025	0.12818	6530	0.12259	0.005590	0.12251	0.005672
956	1.5756	0.14896	15980	0.13876	0.010202	0.13868	0.010280
981	1.7078	0.15243	25640	0.13507	0.017355	0.13525	0.017171
1138	1.4850	0.13857	6940	0.13528	0.003296	0.13521	0.003359
1255	1.8696	0.13857	21400	0.11931	0.019258	0.11976	0.018804
1273	1.7869	0.14203	18760	0.12484	0.017190	0.12508	0.016952
1307	1.7472	0.14550	21810	0.12878	0.016719	0.12896	0.016536
1310	1.9830	0.14550	34510	0.11915	0.026348	0.12055	0.024951
1316	1.7883	0.14896	28240	0.12927	0.019689	0.12967	0.019296
1318	1.7462	0.14203	19290	0.12652	0.015514	0.12665	0.015385
1351	1.9803	0.13857	22580	0.11510	0.023472	0.11612	0.022450
1401	1.6097	0.13857	12610	0.12986	0.008709	0.12978	0.008792
1405	1.6499	0.14896	18230	0.13537	0.013596	0.13537	0.013589
1410	1.5355	0.13511	7450	0.13048	0.004627	0.13040	0.004704
1415	1.7272	0.14550	20640	0.12963	0.015865	0.12976	0.015735
1419	1.7476	0.14896	23830	0.13104	0.017928	0.13128	0.017683
1477	1.7448	0.13857	15380	0.12426	0.014313	0.12434	0.014233
1490	1.5575	0.15243	18850	0.14205	0.010372	0.14197	0.010453
1527	2.0516	0.14203	30130	0.11449	0.027541	0.11625	0.025783
1536	2.0241	0.13511	21000	0.11140	0.023704	0.11254	0.022566
1594	1.9379	0.14550	29450	0.12093	0.024566	0.12200	0.023498
1616	1.8711	0.14203	21230	0.12145	0.020587	0.12201	0.020026
1657	1.7203	0.13164	12830	0.12048	0.011159	0.12046	0.011184
1669	1.8300	0.14896	27170	0.12750	0.021464	0.12808	0.020887
1676	1.8189	0.12818	13530	0.11441	0.013772	0.11450	0.013673
1706	2.0994	0.14203	37710	0.11272	0.029312	0.11494	0.027095
1721	1.8400	0.12818	14380	0.11364	0.014537	0.11378	0.014391
1736	1.8090	0.15243	33350	0.13058	0.021849	0.13116	0.021268
1744	1.9157	0.14550	29360	0.12182	0.023681	0.12274	0.022755
1775	1.5938	0.15243	18490	0.14033	0.012094	0.14029	0.012141
1784	1.6689	0.14896	22270	0.13451	0.014455	0.13455	0.014411
1820	1.6685	0.14550	18290	0.13217	0.013328	0.13218	0.013320
1821	1.8726	0.14896	29970	0.12571	0.023254	0.12651	0.022448
1845	1.9830	0.14550	35830	0.11915	0.026348	0.12055	0.024951
1879	1.7272	0.14550	21980	0.12963	0.015865	0.12976	0.015735
1914	2.1220	0.13857	26990	0.10994	0.028634	0.11210	0.026469
2008	1.9604	0.14550	29070	0.12004	0.025455	0.12127	0.024230
2028	1.5575	0.14896	13970	0.13960	0.009363	0.13951	0.009451
2037	1.4042	0.14896	7280	0.14695	0.002014	0.14691	0.002056
2119	1.4205	0.14896	8010	0.14615	0.002814	0.14609	0.002869
2137	1.6055	0.13164	7600	0.12502	0.006620	0.12493	0.006708
2158	1.5393	0.14550	12460	0.13795	0.007545	0.13786	0.007640

Закінчення табл. 3.4

							1 10001. 0.1
Номер	R/R_0	M/M_0	$T_{ m eff}$	$M_{He}^{(1)}$	$M_H^{(1)}$	$M_{He}^{(2)}$	$M_H^{(2)}$
2163	1.8647	0.13164	17350	0.11503	0.016616	0.11530	0.016344
2164	1.6883	0.14896	22400	0.13365	0.015316	0.13373	0.015233
2174	1.7476	0.15243	25460	0.13329	0.019141	0.13360	0.018825
2225	1.9604	0.14550	35460	0.12004	0.025455	0.12127	0.024230
2229	2.1791	0.11086	17620	0.09178	0.019078	0.09262	0.018231
2242	1.6485	0.14203	15060	0.13065	0.011388	0.13060	0.011431
2264	1.5047	0.14896	12780	0.14209	0.006875	0.14199	0.006971
2287	2.0754	0.14203	32640	0.11361	0.028425	0.11559	0.026447
2322	1.7074	0.14550	18830	0.13048	0.015017	0.13056	0.014932
2325	1.6297	0.14203	15180	0.13146	0.010574	0.13140	0.010634
2335	1.6123	0.15243	21370	0.13947	0.012960	0.13944	0.012983
2404	1.4875	0.14896	12500	0.14291	0.006056	0.14281	0.006147
2435	1.9369	0.14203	28560	0.11886	0.023170	0.11977	0.022262
2453	2.0049	0.14203	29860	0.11625	0.025782	0.11762	0.024411
2456	1.8270	0.13857	19150	0.12097	0.017595	0.12127	0.017299
2476	1.8726	0.14896	31860	0.12571	0.023254	0.12651	0.022448
2477	1.4042	0.14896	6970	0.14695	0.002014	0.14691	0.002056
2517	1.5871	0.13164	6850	0.12576	0.005878	0.12568	0.005963
2534	2.0292	0.14550	35430	0.11736	0.028143	0.11915	0.026352
2542	1.8285	0.14203	21310	0.12315	0.018881	0.12353	0.018500
2608	1.6309	0.15243	19870	0.13859	0.013831	0.13860	0.013826
2634	1.6689	0.14896	18890	0.13451	0.014455	0.13455	0.014411
2653	1.6429	0.13164	8990	0.12352	0.008119	0.12344	0.008199
2656	2.1370	0.12818	21060	0.10342	0.024756	0.10496	0.023215
2657	1.7472	0.14550	23440	0.12878	0.016719	0.12896	0.016536
2728	1.7879	0.14550	23090	0.12706	0.018438	0.12737	0.018126
2729	1.5035	0.14203	7110	0.13704	0.004991	0.13696	0.005074
2742	1.9820	0.14203	27850	0.11713	0.024909	0.11833	0.023706
2779	1.7039	0.11778	7640	0.11120	0.006582	0.11112	0.006661
2824	2.1080	0.12471	19260	0.10231	0.022404	0.10345	0.021267
2831	1.7078	0.14896	23200	0.13278	0.016183	0.13291	0.016052
2838	2.0953	0.13511	24320	0.10888	0.026222	0.11055	0.024558
2841	1.8613	0.12818	15850	0.11287	0.015305	0.11307	0.015109
2868	1.6879	0.14550	20140	0.13133	0.014171	0.13137	0.014126
2870	1.7276	0.15243	28400	0.13418	0.018246	0.13443	0.018001
2872	1.9369	0.14203	23010	0.11886	0.023170	0.11977	0.022262
2889	1.8090	0.14896	26380	0.12839	0.020575	0.12887	0.020095
2941	2.1657	0.13164	23150	0.10448	0.027163	0.10651	0.025132
3026	2.0994	0.14203	34370	0.11272	0.029312	0.11494	0.027095
3027	1.5196	0.13857	6910	0.13375	0.004824	0.13367	0.004904
3033	1.9175	0.12125	13410	0.10635	0.014897	0.10657	0.014683
3058	1.8512	0.14896	29400	0.12660	0.022357	0.12729	0.021671

3.2. Модель холодного карлика зі спін-поляризованою електронною підсистемою

Стандартна модель С. Чандрасекара відповідає немагнітним карликам, у яких електронна підсистема перебуває у парамагнітному стані. Водночає зі спостережень відомі вироджені карлики, маси яких дуже близькі до маси С. Чандрасекара $M_{ch}\approx 1.44 M_{\odot}$, або навіть перевищують її. Згідно з сучасними уявленнями про механізми вибуху наднових типу Іа у подвійних системах, такі зорі перебувають на межі стійкості. Відомо також, що серед карликів бінарних систем є магнітні, як зі слабкими, так і з сильними магнітними полями, про що свідчить наявність чи відсутність акреційних дисків навколо таких зір. Модель холодного магнітного карлика забезпечує просту інтерпретацію особливостей масивних карликів.

Ми не розглядатимемо явно магнітне поле, яке в локальному наближенні можна вважати однорідним. У моделі, яку тут використовуємо, середні значення чисел заповнення електронних станів $n_{k,s}(r)$ залежать від проекції спіна на напрям магнітного поля. Насамперед розглянемо однорідну модель релятивістського ідеального виродженого електронного газу, що складається з N електронів в об'ємі V за наявності сталого зовнішнього магнітного поля в термодинамічній границі $N, V \to \infty, N/V = \mathrm{const.}$

За означенням ступінь поляризації визначається співвідношенням

$$\zeta = \frac{1}{n} (n_+ - n_-), \quad n = n_+ + n_-,$$
 (3.10)

де $n_{\sigma} = N_{\sigma}V^{-1}$ — концентрація електронів з заданою проєкцією спіна на напрям поля; n — загальна концентрація. З рівнянь (3.10) знаходимо, що

$$n_{+} = \frac{1}{2}n(1+\zeta), \quad n_{-} = \frac{1}{2}n(1-\zeta).$$
 (3.11)

3 умов нормування $n_{\sigma} = V^{-1} \sum_{\mathbf{k}} n_{\mathbf{k},\sigma}$ одержуємо вирази для хвильових чисел Фермі, що відповідають різним проекціям спінів:

$$k_F^{\sigma} = k_F \lambda_{\sigma}; \quad k_F = (3\pi^2 n)^{1/3};$$

$$\lambda_{+} = (1+\zeta)^{1/3}; \quad \lambda_{-} = (1-\zeta)^{1/3}.$$
(3.12)

Рівняння стану електронної підсистеми при $T=0~{\rm K}$ одержуємо простим узагальненням виразу (2.9), а саме [39,40]

$$P(x) = \sum_{\sigma} P_{\sigma}(x_{\sigma});$$

$$P_{\sigma} = \frac{\pi m_{0}^{4} c^{5}}{3h^{3}} \mathcal{F}_{\sigma}(x_{\sigma}), \quad \mathcal{F}_{\sigma}(x_{\sigma}) = 4 \int_{0}^{x_{\sigma}} \frac{dy \ y^{4}}{(1+y^{2})^{1/2}};$$

$$\rho = m_{u} \mu_{e} \sum_{\sigma} n_{\sigma} = \frac{m_{u} \mu_{e}}{6\pi^{2}} \left(\frac{m_{0} c}{\hbar}\right)^{3} \sum_{\sigma} x_{\sigma}^{3}; \quad \sigma = (+, -).$$
(3.13)

Щоб одержати рівняння стану для неоднорідної моделі, треба виконати заміну $x \to x(r), P_{\sigma} \to P_{\sigma}(r), \rho \to \rho(r), x_{\sigma} \to x_{\sigma}(r)$. Згідно з формулами (3.13)

$$x_{\sigma}(r) = x(r) \lambda_{\sigma}, \tag{3.14}$$

де $x(r) = \hbar k_F(r)(m_0c)^{-1}$ – значення параметра релятивізму у парамагнітному стані. Рівняння механічної рівноваги карлика зводиться до нелінійного рівняння для x(r),

$$\frac{1}{r^2} \frac{d}{dr} \left\{ r^2 \left[\frac{\lambda_+^5}{\sqrt{1 + x^2(r) \lambda_+^2}} + \frac{\lambda_-^5}{\sqrt{1 + x^2(r) \lambda_-^2}} \right] x(r) \frac{dx}{dr} \right\} =$$

$$= -G(m_u \mu_e)^2 \frac{64\pi^2 m_0^2 c^4}{3(hc)^3} x^3(r), \tag{3.15}$$

у якому λ_+, λ_- – задані параметри, причому $\lambda_+^3 + \lambda_-^3 = 2.$

У частковому випадку повної поляризації, коли $\zeta=1$ ($\lambda_-=0$, $\lambda_+=2^{1/3}$), у безрозмірних змінних

$$\xi = \frac{r}{\lambda}, \quad y_{+}(\xi) = (\varepsilon_{0}^{+})^{-1} \{ [1 + \lambda_{+}^{2} x^{2}(t)]^{1/2} - 1 \}$$
 (3.16)

рівняння (3.15) набуває стандартного вигляду (2.22),

$$\frac{1}{\xi^2} \frac{d}{d\xi} \left\{ \xi^2 \frac{dy_+}{d\xi} \right\} = -\left\{ y_+^2(\xi) + \frac{2}{\varepsilon_0^+} y_+(r) \right\}^{3/2}, \tag{3.17}$$

однак у цьому рівнянні замість x_0 фігурує параметр $x_0\lambda_+$. У цьому разі масштаб λ визначений співвідношенням

$$\frac{16G\pi^2}{3(ch)^3} \left[m_u \mu_e m_0 c^2 \varepsilon_0^+ \lambda \right]^2 = 1, \tag{3.18}$$

де $\varepsilon_0^+ = [1 + x_0^2 \lambda_+^2]^{1/2} - 1$. Знайдений з рівняння (3.18) добуток

$$\lambda \varepsilon_0^+ = \frac{\sqrt{3}(hc)^{3/2}}{4\pi G^{1/2}} \left(m_u \mu_e m_0 c^2 \right)^{-1}$$
 (3.19)

відрізняється від аналогічного добутку, одержаного з рівняння (2.21), множником $2^{1/2}$, а параметр релятивізму дорівнює

$$x_0^+ \equiv x_0 \lambda_+ = 2^{1/3} \hbar (3\pi^2 n_0)^{1/3} (m_0 c)^{-1}.$$
 (3.20)

Вирази для всіх макроскопічних характеристик карлика одержуємо з формул (2.30) - (2.32) заміною $\lambda \varepsilon_0 \to \sqrt{2}\lambda \varepsilon_0^+, \ x_0 \to x_0^+.$ Зокрема, повна маса карлика

$$M(x_0^+, \mu_e) = \frac{\sqrt{2}}{\mu_e^2} M_0 \mathcal{M}(x_0^+), \quad \mathcal{M}(x_0^+) = \int_0^{\xi_1(x_0^+)} d\xi \xi^2 \left\{ y_+^2(\xi) + \frac{2}{\varepsilon_0^+} y_+(\xi) \right\}^{3/2}.$$
(3.21)

З останньої формули випливає, що максимальна маса карлика, яка відповідає $x_0\gg 1,$

$$M_{max} = 2.01824 \dots \frac{M_0}{\mu_e^2} \sqrt{2}, \tag{3.22}$$

тобто перевищує масу Чандрасекара в $\sqrt{2}$ разів. Радіус карлика дорівнює

$$R(x_0^+, \mu_e) = \xi_1(x_0^+) \lambda = \frac{R_0 \xi_1(x_0^+)}{\mu_e} \frac{\sqrt{2}}{\varepsilon_0^+}.$$
 (3.23)

У загальному випадку за довільного значення параметра ζ рівняння (3.15) теж можна звести до рівняння типу (3.17) за допомогою підстановки

$$\lambda_{+}^{3}\{(1+x^{2}(r)\lambda_{+}^{2})^{1/2}-1\} + \lambda_{-}^{3}\{(1+x^{2}(r)\lambda_{-}^{2})^{1/2}-1\} = \varepsilon_{0}^{\zeta}y(\xi), \quad (3.24)^{2}(\xi) + (3.24$$

де

$$\varepsilon_0^{\zeta} \equiv \lambda_{\perp}^3 \{ (1 + x_0^2(r)\lambda_{\perp}^2)^{1/2} - 1 \} + \lambda_{\perp}^3 \{ (1 + x_0^2(r)\lambda_{\perp}^2)^{1/2} - 1 \}. \tag{3.25}$$

Щоб записати праву сторону рівняння (3.15) через $y(\xi)$, визначимо x(r) зі співвідношення (3.25). Звільняючись від радикалів, зведемо це співвідношення до біквадратного рівняння

$$ax^4 - bx^2 + c = 0, (3.26)$$

у якому

$$a = (\lambda_{+}^{8} - \lambda_{-}^{8})^{2};$$

$$b(y) = 2\{\lambda_{+}^{8} + \lambda_{-}^{8}\} [(\varepsilon_{0}^{\zeta}y)^{2} + 4\varepsilon_{0}^{\zeta}y] + 4(\lambda_{+}\lambda_{-})^{3}(\lambda_{+}^{5} + \lambda_{-}^{5})\}; (3.27)$$

$$c(y) = [(\varepsilon_{0}^{\zeta}y)^{2} + 4\varepsilon_{0}^{\zeta}y]\{ [(\varepsilon_{0}^{\zeta}y)^{2} + 4\varepsilon_{0}^{\zeta}y] + 4(\lambda_{+}\lambda_{-})^{3}\}.$$

Рівняння (3.27) має чотири дійсні корені – два додатні і два від'ємні. Фізичний зміст мають лише додатні корені. З них виберемо той, який у границі $\zeta \to 0$ (коли $\lambda_+, \lambda_- \Rightarrow 1$) є додатним коренем квадратного рівняння $c(y) - b(y)x^2 = 0$, оскільки у цій границі $a \Rightarrow 0$. Таким чином знаходимо, що

$$x(r) = 2^{-1/2} (\lambda_{+}^{8} - \lambda_{-}^{8})^{-1} [b(y) - \varphi(y)]^{1/2}, \tag{3.28}$$

де

$$\varphi(y) = \{b^{2}(y) - 4ac(y)\}^{1/2} =$$

$$= 4(2 + \varepsilon_{0}^{\zeta}y)(\lambda_{+}\lambda_{-})^{3} \left\{ (\lambda_{+}\lambda_{-})^{2} [(\varepsilon_{0}^{\zeta}y)^{2} + 4\varepsilon_{0}^{\zeta}y] + (\lambda_{+}^{5} + \lambda_{-}^{5})^{2} \right\}^{1/2}.$$
(3.29)

Зазначимо, що c(0)=0, тому на границі зорі (при $y(\xi)=0)$ $b(0)=\varphi(0)=8(\lambda_+\lambda_-)^3(\lambda_+^5+\lambda_-^5)$, що забезпечує виконання рівності x(R)=0 за довільного значення ζ . Також неважко переконатися, що у границі $\zeta\to 0$

$$x(r) = \varepsilon_0 \left\{ y^2(\xi) + \frac{2}{\varepsilon_0} y(\xi) \right\}^{1/2}, \quad \varepsilon_0 = (1 + x_0^2)^{1/2} - 1.$$
 (3.30)

У безрозмірній формі рівняння (3.15) набуває такого вигляду:

$$\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{dy}{d\xi} \right) = -\left\{ \sqrt{2} (\lambda_+^8 - \lambda_-^8)^{-1} (\varepsilon_0^\zeta)^{-1} [b(y) - \varphi(y)]^{1/2} \right\}^3. \tag{3.31}$$

Цьому рівнянню відповідають граничні умови y(0)=1, y'(0)=0, а також умова $y(\xi)\geq 0.$ У цьому випадку масштаб λ визначений рівністю

$$\frac{32\pi^2 G}{3(hc)^3} \left\{ m_u \mu_e m_0 c^2 \lambda \frac{\varepsilon_0^{\zeta}}{2} \right\}^2 = 1, \tag{3.32}$$

Рис. 3.7. Залежність розв'язків рівняння (3.31) від параметра x_0 : кривій 1 відповідає $x_0=1;\ 2-x_0=2;\ 3-x_0=5;\ 4-x_0=10.$

яка у границі $\zeta \to 0$ збігається з рівністю (2.21).

Рівняння (3.31) — двопараметричне, у ньому фігурують параметри x_0 і ζ . У випадку досить великих значень x_0

$$x(r) \approx \varepsilon_0^{\zeta} (\lambda_+^4 + \lambda_-^4)^{-1} \{ y^2(\xi) + 4(\varepsilon_0^{\zeta})^{-1} y(\xi) \}^{1/2},$$
 (3.33)

завдяки чому рівняння (3.31) спрощується,

$$\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{dy}{d\xi} \right) \approx -\left\{ y^2(\xi) + \frac{4}{\varepsilon_0^{\zeta}} y(\xi) \right\}^{3/2}, \tag{3.34}$$

а параметр λ знаходимо з рівності

$$\frac{64\pi^2 G}{3(hc)^3} \left\{ m_0 c^2 \lambda \, \varepsilon_0^{\zeta} m_u \mu_e \right\}^2 (\lambda_+^4 + \lambda_-^4)^{-3} = 1.$$
 (3.35)

Залежність розв'язків рівняння (3.31) від параметра x_0 за фіксованого значення ζ ілюструє рис. 3.7, а залежність цих розв'язків від параметра ζ за заданого x_0 – рис. 3.8.

Рис. 3.8. Залежність розв'язків рівняння (3.31) від параметра ζ : крива $1-\zeta=0.2$; крива $2-\zeta=0.4$; крива $3-\zeta=0.6$; крива $4-\zeta=0.8$.

3.2.1. Характеристики моделі. Повна маса зорі є функцією параметрів $x_0, \, \mu_e, \, \zeta$:

$$M(x_{0}, \mu_{e}|\zeta) = \frac{M_{0}}{\mu_{e}^{2}} \mathcal{M}(x_{0}|\zeta),$$

$$\mathcal{M}(x_{0}|\zeta) = 2\sqrt{2} \{ \varepsilon_{0}^{\zeta} (\lambda_{+}^{8} - \lambda_{-}^{8}) \}^{-3} \times$$

$$\times \int_{0}^{\xi_{1}(x_{0}|\zeta)} d\xi \, \xi^{2} \{ b(y(\xi)) - \varphi(y(\xi)) \}^{3/2} = \xi_{1}^{2}(x_{0}|\zeta) \left| \frac{dy}{d\xi} \right|_{\xi = \xi_{1}(x_{0}|\zeta)}.$$
(3.36)

Радіус зорі

$$R(x_0, \mu_e | \zeta) = \lambda \, \xi_1(x_0 | \eta) = 2R_0 \, \frac{\xi_1(x_0 | \zeta)}{\mu_e \varepsilon_0^{\zeta}}.$$
 (3.37)

Середні значення кінетичної енергії електронів E_{kin} , енергії гравітаційної взаємодії ядерної підсистеми W, повної енергії E та енергії з

урахуванням енергії спокою електронів \tilde{E} визначаються виразами

$$E_{kin}(x_{0}, \mu_{e}|\zeta) = \frac{E_{0}}{\mu_{e}^{3}} \left(\frac{2}{\varepsilon_{0}^{\zeta}}\right)^{3} \int_{0}^{\xi_{1}} d\xi \, \xi^{2} \times \frac{1}{2} \sum_{\sigma} \left\{ x_{\sigma}^{3}(\xi) \left[(1 + x_{\sigma}^{2}(\xi))^{1/2} - 1 \right] - \frac{1}{4} \, \mathcal{F}_{\sigma}(x_{\sigma}(\xi)) \right\};$$

$$W(x_{0}, \mu_{e}|\zeta) = \frac{E_{0}}{\mu_{e}^{3}} \left(\frac{2}{\varepsilon_{0}^{\zeta}}\right)^{2} \int_{0}^{\xi_{1}} d\xi \, \xi^{3} x^{3}(\xi) \, \frac{dy}{d\xi} =$$

$$= -\frac{3}{4} \frac{E_{0}}{\mu_{e}^{3}} \left(\frac{2}{\varepsilon_{0}^{\zeta}}\right)^{3} \int_{0}^{\xi_{1}} d\xi \, \xi^{2} \frac{1}{2} \sum_{\sigma} \mathcal{F}_{\sigma}(x_{\sigma}(\xi));$$

$$E(x_{0}, \mu_{e}|\zeta) = E_{kin}(x_{0}, \mu_{e}|\zeta) + W(x_{0}, \mu_{e}|\zeta) =$$

$$= \frac{E_{0}}{2\mu_{e}^{3}} \left(\frac{2}{\varepsilon_{0}^{\zeta}}\right)^{3} \int_{0}^{\xi_{1}} d\xi \, \xi^{2} \sum_{\sigma} \left\{ x_{\sigma}^{3} \left[(1 + x_{\sigma}^{2}(\xi))^{1/2} \right] - \mathcal{F}_{\sigma}(x_{\sigma}(\xi)) \right\};$$

$$\tilde{E}(x_{0}, \mu_{e}|\zeta) = E_{kin}(x_{0}, \mu_{e}|\zeta) + W(x_{0}, \mu_{e}|\zeta) +$$

$$+ m_{0}c^{2}N(x_{0}, \mu_{e}|\zeta) = \frac{3}{4} \frac{E_{0}}{\mu_{e}^{3}} \left(\frac{2}{\varepsilon_{0}^{\zeta}}\right)^{3} \sum_{\sigma} \int_{0}^{\xi_{1}} d\xi \, \xi^{2} \times$$

$$\times \left\{ x_{\sigma}(\xi) \left[1 + x_{\sigma}^{2}(\xi) \right]^{1/2} - \ln[x_{\sigma}(\xi) + (1 + x_{\sigma}^{2}(\xi))^{1/2} \right] \right\},$$

що узагальнюють відповідні формули розділу 2. У цьому разі

$$x_{\sigma}(\xi) = \lambda_{\sigma} x(\xi), \ \sigma = (+, -), \ x(\xi) = 2^{-1/2} (\lambda_{+}^{8} - \lambda_{-}^{8}) \{b(y(\xi)) - \varphi(y(\xi))\}^{1/2},$$
 (3.39) де $y(\xi)$ – розв'язок рівняння (3.31).

Співвідношення маса—радіус за різних значень ступеня поляризації відображено на рис. 3.9, а залежність повної енергії зорі від параметра релятивізму x_0 за заданих значень параметра ζ — на рис. 3.10. Як бачимо з цих рисунків, маса зорі є монотонно зростаючою функцією параметра ζ , а максимальна маса може значно перевищувати границю Чандрасекара. Відповідно, енергія є монотонно спадною функцією параметра ζ .

Рис. 3.9. Залежність маса—радіус за різних значень параметра ζ : штрихова крива — $\zeta=0$; крива $1-\zeta=0.2;\ldots$; крива $4-\zeta=0.8;$ $\Delta\zeta=0.2.$

Вище розглянуто спрощену модель, у якій параметри μ_e і ζ є сталими величинами, незалежними від координат. Із загальних фізичних міркувань зрозуміло, що ступінь поляризації електронної підсистеми залежить від температури і напруженості магнітного поля. Очевидно, що глобальне магнітне поле карлика має дипольний характер, тому воно зосереджене в зовнішніх областях зорі, де температура нижча, ніж у ділянці ядра. З огляду на це ступінь поляризації більший у зовнішніх областях карлика. За умов сильної акреції на масивний магнітний карлик у його поверхневих шарах може розпочатись термоядерна реакція, що призведе до їхнього нагрівання і зменшення ступеня спінової поляризації. Можуть виникнути умови, за яких маса зорі перевищить допустиму критичну масу (що ϵ функцією ζ), унаслідок чого настане колапс і вибух наднової. Звідси випливає також необхідність точнішого опису карлика в рамках моделі з параметром ζ , який є функцією відстані від центра зорі. Зазначимо, що модель зі спін-поляризованою електронною підсистемою, проте без урахування взаємодії між частинками, формально можна інтерпретувати як модель нейтральних ферміонів зі спіном, що перебувають у середовищі зі спонтанним намагніченням.

Рис. 3.10. Залежність повної енергії зорі від параметра x_0 за різних значень параметра ζ : штрихова крива – $\zeta=0$; крива $1-\zeta=0.2;\ldots$; крива $4-\zeta=0.8;$ $\Delta\zeta=0.2.$

Імовірно також, що фізичний зміст має модель з малим значенням параметра поляризації. У цьому випадку рівняння (3.15) спрощується, оскільки з точністю до ζ^2

$$\lambda_{+}^{5} \left(1 + x^{2}(r)\lambda_{+}^{2}\right)^{-1/2} + \lambda_{-}^{5} \left(1 + x^{2}(r)\lambda_{-}^{2}\right)^{-1/2} =$$

$$= 2\left(1 + x^{2}(r)\right)^{-1/2} \left\{1 + \zeta^{2} f(x(r)) + \dots\right\},$$

$$f(x) = \frac{5}{9} - \frac{1}{2}x^{2} \left(1 + x^{2}\right)^{-1} + \frac{1}{6}x^{4} \left(1 + x^{2}\right)^{-2}.$$
(3.40)

Перейдемо до безрозмірних змінних (2.20), перенесемо доданки функції f(x), пропорційні до x^2 та x^4 , у праву сторону рівняння (3.15), зводячи його до такого безрозмірного вигляду:

$$\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{dy}{d\xi} \right) = -\left(y^2 + \frac{2}{\varepsilon_0} y \right)^{3/2} +$$

$$+ \frac{\zeta^2}{6\xi^2} \frac{d}{d\xi} \left\{ \xi^2 \frac{\left(y^2 + \frac{2}{\varepsilon_0} y \right) \left(2y^2 + 4\frac{y}{\varepsilon_0} + \frac{1}{\varepsilon_0} \right)}{\left(y + \frac{1}{\varepsilon_0} \right)^4} \frac{dy}{d\xi} \right\}.$$
(3.41)

При цьому параметр $\lambda = r/\xi$ визначається рівністю

$$\frac{32\pi^2 G}{3(hc)^3} \left(m_u \mu_e m_0 c^2 \lambda \varepsilon_0 \right)^2 = 1 + \frac{5}{9} \zeta^2, \tag{3.42}$$

на відміну від (2.21). Щоб спростити знаходження розв'язку рівняння (3.41), знехтуємо членами, пропорційними ε_0^{-1} , у фігурній дужці, що застосовно для карликів проміжних та великих мас. У цьому наближенні рівняння (3.41) набуває вигляду

$$\left(1 - \frac{1}{3}\zeta^2\right) \frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{dy}{d\xi}\right) \cong -\left(y^2 + \frac{2}{\varepsilon_0}y\right)^{3/2}.$$
(3.43)

Якщо перейти до нової безрозмірної змінної $\xi' = \xi/k$, де $k = (1 - \xi^2/3)^{1/2}$, то рівняння (3.43) зводиться до рівняння (2.22), причому масштаб λ визначається тепер співвідношенням

$$\frac{32\pi^2 G}{3(hc)^3} \left(m_u \mu_e m_0 c^2 \lambda \varepsilon_0 \right)^2 \cong 1 + \frac{2}{9} \zeta^2.$$
 (3.44)

У зв'язку з цим залежність маси зорі і її радіуса від параметрів моделі визначають такі вирази:

$$M(x_0, \mu_e, \zeta) \cong \frac{M_0}{\mu_e^2} \left(1 + \frac{1}{3} \zeta^2 \right) \mathcal{M}(x_0),$$
 (3.45)
 $R(x_0, \mu_e, \zeta) \cong \frac{R_0}{\mu_e \varepsilon_0} \left(1 + \frac{1}{9} \zeta^2 \right) \xi_1(x_0),$

де $\mathcal{M}(x_0)$, $\xi_1(x_0)$ – характеристики стандартної моделі.

РОЗДІЛ 4

Осьове обертання холодних вироджених карликів

Як і у випадку зір-політроп, обертання вироджених карликів призводить до збільшення їхньої маси та зміни форми зорі. Для спрощення розрахунку характеристик карликів за наявності обертання ми використовуємо у цьому розділі двокомпонентну модель з ідеальною електронною підсистемою при T=0K у парамагнітній фазі та з однорідним хімічним вмістом. Обертання вважається твердотільним, зі сталою кутовою швидкістю ω . Це модель, у якій фігурують параметри x_0, μ_e та ω . Але на відміну від моделей розділу 3, ця модель має осьову, а не сферичну просторову симетрію, що значно ускладнює розв'язування рівняння рівноваги. Основною метою цього розділу є визначення впливу обертання на величину маси карликів та зміну форми поверхні.

4.1. Рівняння рівноваги

Використовуючи рівняння стану ідеального виродженого релятивістського електронного газу (2.9), (2.11), одержуємо аналог рівняння рівноваги (1.62)

$$\Delta \left\{ [1 + x^{2}(\mathbf{r})]^{1/2} - 1 \right\} = 2\omega^{2} \frac{m_{u}\mu_{e}}{m_{0}c^{2}} - C x^{3}(\mathbf{r}), \tag{4.1}$$

$$C \equiv \frac{32\pi^{2}G(m_{u}\mu_{e}m_{0}c^{2})^{2}}{3(hc)^{3}},$$

у якому ω – кутова швидкість, $x(\mathbf{r})$ – локальне значення параметра релятивізму. Як і в теорії зір-політроп, використаємо сферичну систему координат зі змінними (r, θ) і введемо безрозмірні змінні

$$\xi = r/\lambda, \quad Y(\xi, \theta) = \varepsilon_0^{-1} \left\{ [1 + x^2(r, \theta)]^2 - 1 \right\},$$
 (4.2)

де $\varepsilon_0 = (1+x_0^2)^{1/2} - 1$. Визначаючи масштаб λ рівністю (2.21), одержуємо безрозмірне рівняння

$$\Delta(\xi,\theta) Y(\xi,\theta) = \Omega^2 - \left\{ Y^2(\xi,\theta) + \frac{2}{\varepsilon_0} Y(\xi,\theta) \right\}^{3/2}, \tag{4.3}$$

що узагальнює рівняння (1.68). Тут

$$\Omega^2 = 2\omega^2 m_u \mu_e \,\lambda^2 \,(m_0 c^2 \varepsilon_0)^{-1} \tag{4.4}$$

є квадратом безрозмірної кутової швидкості. Рівнянню (4.3) відповідає гранична умова

$$Y(0,\theta) = 1;$$
 $\frac{\partial}{\partial \xi} Y(\xi,\theta) = 0$ при $\xi = 0.$ (4.5)

Одержане рівняння — двовимірне і двопараметричне — у ньому фігурують безрозмірні параметри x_0 і Ω .

При великих значеннях параметра x_0 рівняння (4.3) асимптотично збігається з рівнянням (1.68) для політропи з індексом n=3. При $x_0 \ll 1$ за допомогою відповідного масштабування це рівняння зводиться до рівняння політропи з обертанням при n=3/2.

Умова

$$Y(\xi, \theta) = 0 \tag{4.6}$$

визначає форму поверхні зорі.

У відповідності до умов (4.5) розв'язок рівняння (4.3) в області $\xi \ll 1$ можна зобразити рядом

$$Y(\xi,\theta) = 1 + \xi^2(a_2 + b_2\Omega^2\sin^2\theta) + \xi^4(a_4 + b_4\Omega^2\sin^2\theta) + \dots, \qquad (4.7)$$

де

$$a_{2} = -\frac{1}{6} \left(1 + \frac{2}{\varepsilon_{0}} \right)^{3/2}; \quad b_{2} = \frac{1}{4};$$

$$b_{4} = -\frac{3}{56} \left(1 + \frac{1}{\varepsilon_{0}} \right) \left(1 + \frac{2}{\varepsilon_{0}} \right)^{1/2};$$

$$a_{4} = \frac{1}{40} \left(1 + \frac{1}{\varepsilon_{0}} \right) \left(1 + \frac{2}{\varepsilon_{0}} \right)^{2} + \frac{3}{280} \Omega^{2} \left(1 + \frac{1}{\varepsilon_{0}} \right) \left(1 + \frac{2}{\varepsilon_{0}} \right)^{1/2}; \dots$$
(4.8)

Враховуючи, що

$$\Delta(\xi, \theta) \left\{ \xi^2 \sin^2 \theta \right\} = 4, \tag{4.9}$$

рівняння (4.3) вигідно переписати в еквівалентній формі:

$$\Delta(\xi,\theta)\left\{Y(\xi,\theta) - \delta(\xi,\theta)\right\} = -\left\{Y^2(\xi,\theta) + \frac{2}{\varepsilon_0}Y(\xi,\theta)\right\}^{3/2},\qquad(4.10)$$

де

$$\delta(\xi, \theta) = \frac{1}{4} \Omega^2 \xi^2 \sin^2 \theta. \tag{4.11}$$

Далі введемо допоміжну функцію

$$\varphi(\xi,\theta) = Y(\xi,\theta) - \delta(\xi,\theta), \tag{4.12}$$

яка задовольняє рівняння

$$\Delta(\xi,\theta)\,\varphi(\xi,\theta) = -\left\{ \left[\varphi(\xi,\theta) + \delta(\xi,\theta) \right]^2 + \frac{2}{\varepsilon_0} \left[\varphi(\xi,\theta) + \delta(\xi,\theta) \right] \right\}^{3/2}.$$
(4.13)

Функція $\delta(\xi,\theta)$ пропорційна до ξ^2 , тому граничні умови для $\varphi(\xi,\theta)$ такі ж, як і для $Y(\xi,\theta)$:

$$\varphi(0,\theta) = 1, \quad \frac{\partial}{\partial \xi} \varphi(\xi,\theta) = 0 \quad \text{при} \quad \xi = 0.$$
 (4.14)

Поверхня зорі визначається умовою

$$\varphi(\xi,\theta) + \delta(\xi,\theta) = 0. \tag{4.15}$$

Згідно з розкладом (4.7) в області малих значень змінної ξ

$$\varphi(\xi,\theta) = 1 + a_2 \xi^2 + \xi^4 (a_4 + b_4 \Omega^2 \sin^2 \theta) + \dots$$
 (4.16)

Звідси випливає, що функція $\varphi(\xi,\theta)$ в області малих значень ξ значно менш залежна від змінної θ (і також Ω^2), ніж $Y(\xi,\theta)$. Це дозволяє легко розрахувати наближений розв'язок рівняння (4.13), нехтуючи доданком

$$\frac{1}{\xi^2} \, \Delta_\theta \, \varphi(\xi, \theta) \tag{4.17}$$

і переходячи від рівняння у частинних похідних (4.13) до одновимірного рівняння

$$\frac{d^2}{d\xi^2} \varphi_0(\xi, \theta) + \frac{2}{\xi} \cdot \frac{d}{d\xi} \varphi_0(\xi, \theta) = -\left\{ [\varphi_0(\xi, \theta) + \delta(\xi, \theta)]^2 + \left(4.18 \right) + \frac{2}{\varepsilon_0} \left[\varphi_0(\xi, \theta) + \delta(\xi, \theta) \right] \right\},$$

у якому змінна θ відіграє роль параметра. Залежність функцій $Y(\xi,\theta)$, $\varphi(\xi,\theta)$ та $\varphi_0(\xi\theta)$ від параметра x_0 загалом така ж, як у випадку розв'язків рівняння рівноваги вироджених карликів без осьового обертання. Але згадані функції є монотонно спадними функціями змінної ξ лише в області $\Omega \leq \Omega_{max}(x_0)$. Безрозмірну кутову швидкість, означену формулою (4.4), можна оцінити за допомогою масштабів M_0 і R_0 (див. ф. (2.30), (2.32)):

$$\Omega^2 = \frac{2}{\mu_e} \left(\frac{\omega}{\omega_0}\right)^2 \frac{1}{\varepsilon_0^3},\tag{4.19}$$

де $\omega_0^2 = GM_0R_0^{-3}$. Через те, що максимальна швидкість обертання, при якій порушується стійкість зорі в околі екватора,

$$\omega_{max}^2 \approx G \, \frac{M(x_0|\mu_e)}{R^3(x_0|\mu_e)},$$
(4.20)

TOMY

$$\Omega_{max}^2(x_0) \approx 2 \, \frac{\mathcal{M}(x_0)}{\xi_1^3(x_0)}.$$
(4.21)

Звідси випливає, що $\Omega^2_{max}(x_0)$ є малою величиною, а в ультрарелятивістській області має порядок 10^{-2} .

Умови стійкості зорі в околі екватора

$$Y(\xi, \pi/2) = 0, \quad \frac{\partial}{\partial \xi} Y(\xi, \pi/2) = 0 \tag{4.22}$$

визначають максимально допустиме значення безрозмірного параметра $\Omega_{max}(x_0)$ і відповідне йому значення безрозмірного екваторіального радіуса $\xi_e^{max}(x_0)$. При $\Omega > \Omega_{max}(x_0)$ порушується стійкість зорі: густина перестає бути монотонно спадною функцією координати ξ в околі екватора.

На рис. 4.1 зображено функцію $\varphi_0(\xi,\theta)$ та $Y(\xi,\theta) = \varphi_0(\xi,\theta) + \delta(\xi,\theta)$ при $\theta = \pi/2$ і $\Omega = \Omega_{max}(x_0)$ при $x_0 = 10$, а також розв'язок рівняння рівноваги у випадку $\Omega = 0$, що відповідає карлику без обертання (крива 1). У наближенні (4.18) умова $\theta = 0$ еквівалентна умові $\Omega = 0$, тому полярний радіус у цьому наближенні збігається з радіусом зорі без обертання і відповідає стандартній моделі.

Рис. 4.1. Залежність функцій $\varphi(\xi,\theta)$ (крива 2) та $Y(\xi,\theta)$ (крива 3) від ξ для заданих значень x_0 і Ω при $\theta=\pi/2$ (крива 1 відповідає стандартній моделі без обертання).

Знайдену з умов (4.22) залежність безрозмірної швидкості обертання від параметра x_0 у наближенні (4.18) ілюструє рис. 4.2.

Згідно з означенням (4.2), маса зорі визначається співвідношенням

$$M(x_0, \mu_e, \Omega) = \frac{M_0}{\mu_e^2} \mathcal{M}(x_0 | \Omega), \qquad (4.23)$$

$$\mathcal{M}(x_0 | \Omega) = \int_0^{\pi/2} \sin \theta \, d\theta \int_0^{\xi_1} \xi^2 \left\{ Y^2(\xi, \theta) + \frac{2}{\varepsilon_0} Y(\xi, \theta) \right\}^{3/2},$$

де $\xi_1 \equiv \xi_1(\theta, x_0, \Omega)$ є розв'язком рівняння (4.6) і визначає форму поверхні зорі,

$$R(\theta, x_0, \Omega, \mu_e) = \frac{R_0}{\mu_e \varepsilon_0(x_0)} \, \xi_1(\theta, x_0, \Omega), \tag{4.24}$$

Рис. 4.2. Залежність Ω_{max} від параметра релятивізму x_0 .

що близька до еліпсоїда обертання.

На рис. 4.3 зображено залежність безрозмірної маси карлика від параметра релятивізму x_0 , розраховану за формулою (4.23) у наближенні (4.18) при $\Omega = \Omega_{max}(x_0)$ (крива 1). Крива 2 відповідає стандартній моделі карлика без обертання. Хрестики відповідають значенням маси, розрахованим у роботі [11] шляхом чисельного інтегрування рівняння рівноваги з використанням розкладів за поліномами Лежандра. Результати розрахунків характеристик вироджених карликів у роботі [1] подано у вигляді таблиць як функції двох безрозмірних параметрів

$$D = D(x_0) = [1 + x_0^2]^{-1}, \quad A \equiv A(\omega, x_0) = \omega^2 (8\pi G \rho_c)^{-1}, \quad (4.25)$$

де ρ_c – густина у центрі зорі. Як легко переконатися,

$$A = \frac{\Omega^2}{4} \left(\frac{\varepsilon_0(x_0)}{x_0} \right)^3. \tag{4.26}$$

При заданому значенні D параметр A змінюється від 0 до $A_{max}(x_0)$ з малим кроком, але D приймає лише значення 0.025; 0.05; 0.1; 0.2; 0.4; 0.6; 0.8, чому відповідає зміна x_0 від 6.24 до 0.5. Ця область відповідає карликам малих та проміжних мас. Як видно з таблиці 4.1, максимальне значення маси карлика, розраховане у наближенні (4.18), виявилось дуже близьким до результатів роботи [11].

Рис. 4.3. Залежність безрозмірної маси карлика від параметра релятивізму x_0 у різних наближеннях (крива 1 розрахована за формулою (4.23) у наближенні (4.18); крива 2 відповідає стандартній моделі; хрестики відповідають результатам роботи [11]; кружечки відповідають формулі (4.23) у наближенні (4.30)).

Через те, що полярний радіус у наближенні (4.18) виявляється рівним радіусу зорі без обертання, то наближення $\varphi_0(\xi,\theta)$ приводить до деякого завищення об'єму зорі і її маси. Розв'язок рівняння для функції $\varphi(\xi,\theta)$ можна уточнити, враховуючи доданок $\xi^{-2}\Delta_{\theta}\varphi(\xi,\theta)$ наближено. Оскільки функція $Y(\xi,\theta)$ при досить великих значеннях x_0 близька до розв'язку рівняння рівноваги для політропи з індексом n=3, то нульове наближення для $Y(\xi,\theta)$ можна вибрати у вигляді (1.129), або ж (1.136), використовуючи функцію $v(\xi,\theta)$ у вигляді (1.148). Якщо взяти нульове наближення

$$Y_0(\xi, \theta) = y(\xi|x_0) + \Omega^2 \{ \psi_0(\xi) + \alpha \psi_2(\xi) P_2(\cos \theta) \},$$
(4.27)

де $y(\xi|x_0)$ – розв'язок рівняння рівноваги у стандартній моделі, а $\psi_0(\xi)$, $\psi_2(\xi)$ – поправки на обертання для політропи з індексом n=3 (див. [10]), то в такому наближенні

$$\frac{1}{\xi^2} \Delta_\theta \varphi(\xi, \theta) \Rightarrow \frac{1}{\xi^2} \Delta_\theta \left\{ Y_0(\xi, \theta) - \frac{1}{4} \Omega^2 \xi^2 \sin^2 \theta \right\} =$$

$$= \Omega^2 P_2(\cos \theta) L(\xi), \tag{4.28}$$

Таблиця 4.1

Залежність безрозмірної маси від параметра релятивізму у різних наближеннях: $\mathcal{M}(x_0)$ відповідає стандартній моделі, $\mathcal{M}_J(x_0)$ розрахована у роботі [11], $\mathcal{M}(x_0,\Omega)$ розрахована у наближенні (4.18), $\mathcal{M}'(x_0,\Omega)$ – у наближенні (4.30).

x_0	$\mathcal{M}(x_0)$	$\mathcal{M}_J(x_0)$	$\mathcal{M}(x_0,\Omega)$	$\mathcal{M}'(x_0,\Omega)$
0.5	0.312596	0.363745	0.374143	_
1.0	0.710438	0.819404	0.835164	_
2.0	1.24624	1.40298	1.42165	_
3.0	1.52172	1.68242	1.69812	_
4.0	1.67442	1.82893	1.84226	_
5.0	1.76691	1.91241	1.92539	_
6.0	1.82695	1.96490	1.97659	_
8.0	1.89746	_	2.03194	2.02218
10.0	1.93564	_	2.05574	2.05129
15.0	1.97893	_	2.08311	2.07876
20.0	1.99608	_	2.0906	2.0856
25.0	2.00454	_	2.08978	2.08877

де $L(\xi)=1+6\alpha_2\psi_2(\xi)/\xi^2$, а функцію $\alpha_2\psi_2(\xi)$ можна апроксимувати виразом

$$\alpha_2 \psi_2(\xi) = -\frac{a_1 \xi^2 + a_2 \xi^4 + a_3 \xi^6}{1 + b_1 \xi^2 + b_2 \xi^4}$$
(4.29)

при $a_1=0.71508,\,a_2=0.0281033,\,a_3=0.00189918,\,b_1=0.246087,\,b_2=0.0107494.$ У такому наближенні рівняння для $\varphi(\xi,\theta)$ набуває вигляду

$$\Delta_{\xi}\varphi(\xi,\theta) = \Omega^{2} P_{2}(\cos\theta) L(\xi) - \left\{ \left[\varphi(\xi,\theta) + \delta(\xi,\theta) \right]^{2} + \frac{2}{\varepsilon_{0}} \left[\varphi(\xi,\theta) + \delta(\xi,\theta) \right] \right\}^{3/2}. \tag{4.30}$$

Як видно з рис. 4.4, $L(\xi)$ є від'ємною функцією змінної ξ . Тому доданок, пропорційний $P_2(\cos\theta)$, має від'ємний знак при $\cos\theta > 3^{-1/2}$ і додатний – при $\cos\theta < 3^{-1/2}$. Це призводить до зменшення правої сторони рівняння (4.30) при малих значеннях кута θ і збільшення – при великих. Рис. 4.5 ілюструє залежність функції $Y(\xi,\theta)$ від змінної ξ при $\Omega^2_{max}(x_0)$ у випадку $x_0=10$. Для порівняння наведено також розв'язок рівняння рівноваги у стандартній моделі. Як видно з цього рисунка, таке уточнення розв'язку рівняння для функції $\varphi(\xi,\theta)$ коректно опи-

Рис. 4.4. Залежність функції $L(\xi)$ від змінної ξ .

сує форму поверхні карлика з осьовим обертанням. Маса, розрахована за формулою (4.24) у наближенні (4.30), мало відрізняється від маси, розрахованої у наближенні $\varphi_0(\xi,\theta)$, особливо при великих значеннях x_0 , що видно з таблиці 4.1.

Значення максимальної швидкості обертання, а також полярного і екваторіального радіусів при цій швидкості, наведені в табл. 4.2, зна-йдено чисельним інтегруванням рівняння (4.30).

4.2. Розклади за базисними функціями

Спосіб одержання напіваналітичних розв'язків рівняння рівноваги карликів без обертання, викладений у розділі 2, можна узагальнити з метою одержання аналогічних розв'язків рівняння (4.3). Ми обмежимось випадком карликів відносно великих мас з невеликими швидкостями обертання. В цьому випадку в рівнянні (4.3) фігурує малий параметр $\varepsilon_0^{-1}(x_0)$, тому розв'язок будемо шукати у вигляді ряду

$$Y(\xi, \theta) = Y_3(\xi, \theta) + \sum_{l=1}^{\infty} F_l(\xi, \theta) \,\varepsilon_0^{-1}(x_0), \tag{4.31}$$

у якому $Y_3(\xi,\theta)$ є розв'язком рівняння рівноваги для моделі політропи з індексом n=3 за наявності обертання, що розглядалось у розділі 1.

Рис. 4.5. Залежність функції $Y(\xi,\theta)$ від змінної ξ при $x_0=10$ та $\Omega_{max}(x_0)$ (крива 1 відповідає куту $\theta=0$; крива 3 – куту $\theta=\pi/2$; крива 2 – розв'язок рівняння рівноваги для стандартної моделі).

Підставимо ряд (4.31) у рівняння (4.3) і розкладемо праву сторону рівняння у ряд за степенями параметра $\varepsilon_0^{-1}(x_0)$. Прирівнюючи множники біля однакових степенів параметра $\varepsilon_0^{-1}(x_0)$, одержуємо таку систему рівнянь ($\Delta \equiv \Delta(\xi, \theta)$):

$$\Delta Y_3(\xi,\theta) + Y_3^3(\xi,\theta) = \Omega^2,$$

$$\Delta F_1(\xi,\theta) + 3F_1(\xi,\theta) Y_3^2(\xi,\theta) = -3Y_3^2(\xi,\theta);$$

$$\Delta F_2(\xi,\theta) + 3F_2(\xi,\theta) Y_3^2(\xi,\theta) = -\frac{3}{2} Y_3(\xi,\theta) \{1 + 4F_1(\xi,\theta) + 2F_1^2(\xi,\theta)\};$$
(4.32)

У лінійному наближенні за Ω^2 функція $Y_3(\xi,\theta)$ відома (див. (4.27), або ж (1.137), (1.148)), а всі функції $F_l(\xi,\theta)$ задовольняють лінійні рівняння з граничними умовами $F_l(0,\theta)=0,\ \partial F_l(\xi,\theta)/\partial \xi=0$ при $\xi=0$. Система рівнянь (4.32) має безрозмірний параметр Ω^2 і узагальнює систему (2.89), яка не має жодних параметрів і є універсальною.

За аналогією з функцією $Y_3(\xi,\theta)$ представимо функції $F_l(\xi,\theta)$ у вигляді

$$F_1(\xi,\theta) = y_1(\xi) + \Omega^2 f_1(\xi,\theta), \qquad F_2(\xi,\theta) = y_2(\xi) + \Omega^2 f_2(\xi,\theta), \dots$$
 (4.33)

Таблиня 4.2

Залежність максимального значення параметра Ω_{max}^2 , безрозмірних полярного і екваторіального радіусів, що відповідають цьому значенню, а також безрозмірного радіуса карлика без обертання, від параметра x_0 .

x_0	Ω_{max}^2	$\xi_1(x_0)$	ξ_e	ξ_p
6.0	0.0192	4.023	5.736	3.737
8.0	0.0144	4.493	6.409	4.213
10.0	0.0118	4.828	6.770	4.555
15.0	0.0088	5.358	7.538	5.098
20.0	0.0074	5.670	7.808	5.421
25.0	0.0067	5.887	8.243	5.632

Для спрощення запису функцію $Y_3(\xi, \theta)$ зобразимо аналогічним чином:

$$Y_3(\xi,\theta) = y_0(\xi) + \Omega^2 f_0(\xi,\theta).$$
 (4.34)

Такі підстановки дають змогу звільнитись від параметра Ω^2 у системі (4.32) і надати їй універсальної форми. Тут введено $y_0(\xi)$ – функцію Емдена при n=3, а також функції $y_1(\xi),\ y_2(\xi),\ ...$ – розв'язки рівнянь (2.89), апроксимовані виразами (2.91). Функції $f_1(\xi,\theta),\ f_2(\xi,\theta)$ є розв'язками таких рівнянь:

$$\Delta f_1 + 3f_1 y_0^2 = -6(1+y_1) y_0 f_0;$$

$$\Delta f_2 + 3f_2 y_0^2 = -6\{f_1(1+y_1) + f_0 y_0 y_2\}, ...,$$

$$(4.35)$$

де функції $f_i \equiv f_i(\xi,\theta),$ а $y_i \equiv y_i(\xi);$ $i=1,2,\dots$. За допомогою підстановки

$$f_i(\xi,\theta) = \psi_{i,0}(\xi) + P_2(t) \,\psi_{i,2}, \quad i = 1, 2,$$

$$f_0(\xi,\theta) = \psi_{0,0}(\xi) + P_2(t) \,a_2 \,\psi_{0,2}(\xi)$$

$$(4.36)$$

система рівнянь (4.35) зводиться до таких двох ланцюжків лінійних одновимірних рівнянь для функцій $\psi_{1,0}(\xi)$, $\psi_{2,0}(\xi)$; $\psi_{1,2}(\xi)$, $\psi_{2,2}(\xi)$:

$$\Delta_{\xi}\psi_{1,0}(\xi) + 3y_0^2(\xi) \ \psi_{1,0}(\xi) = -6(1+y_1(\xi))y_0(\xi) \ \psi_{0,0}(\xi),$$

$$\Delta_{\xi}\psi_{2,0}(\xi) + 3y_0^2(\xi) \ \psi_{2,0}(\xi) = -6(1+y_1(\xi)) \ \psi_{1,0}(\xi) - 6y_0(\xi)y_2(\xi)\psi_{0,0}(\xi);$$

$$\dots \qquad (4.37)$$

$$\Delta_{\xi} \ \psi_{1,2}(\xi) - \frac{6}{\xi^2} \ \psi_{1,2}(\xi) + 3y_0^2(\xi) \ \psi_{1,2}(\xi) = -6a_2(1+y_1(\xi)) \ \psi_{0,2}(\xi),$$

$$\Delta_{\xi} \ \psi_{2,2}(\xi) - \frac{6}{\xi^2} \ \psi_{2,2}(\xi) + 3y_0^2(\xi) \ \psi_{2,2}(\xi) = -6(1+y_1(\xi)) \ \psi_{1,2}(\xi)$$

$$-6y_0(\xi)y_2(\xi)a_2 \ \psi_{0,2}(\xi).$$

За відомими функціями $y_0(\xi), y_1(\xi), y_2(\xi), \dots$ та $\psi_{0,0}(\xi), \psi_{0,2}(\xi)$ розв'язки рівнянь (4.37) знаходяться методом чисельного інтегрування. Функції $\psi_{i,0}(\xi), \psi_{i,2}(\psi)$ (i=0,1,2) є універсальними і не залежать від жодних параметрів, як і функції $y_0(\xi), y_1(\xi), y_2(\xi), \dots$. Функції $\psi_{i,0}(\xi), \psi_{i,2}(\psi)$ зображено на рисунках 4.6. При цьому $\psi_{0,0}(\xi) = v_1(\xi) + v_2(\xi), \psi_{0,2}(\xi) = -\xi^2/6 - 2/3v_2(\xi),$ де $v_1(\xi)$ та $v_2(\xi)$ є розв'язками системи рівнянь (1.142).

Згідно з формулами (4.31)–(4.37) розв'язок рівняння (4.3) записується у вигляді

$$Y(\xi,\theta) = y(\xi|x_0) + \Omega^2 \{ \Psi_0(\xi|x_0) + P_2(t)\Psi_2(\xi|x_0) \}, \tag{4.38}$$

де $y(\xi|x_0)$ – розв'язок рівняння рівноваги у моделі карлика без обертання, що відповідає параметру x_0 , функції $\Psi_0(\xi|x_0)$ і $\Psi_2(\xi|x_0)$ означені співвідношеннями

$$\Psi_0(\xi|x_0) = \psi_0(\xi) + \sum_{l \ge 1} \psi_{l,0}(\xi) \, \varepsilon_0^{-l}(x_0), \tag{4.39}$$

$$\Psi_2(\xi|x_0) = a_2 \psi_2(\xi) + \sum_{l \ge 1} \psi_{l,2}(\xi) \, \varepsilon_0^{-l}(x_0),$$

а $\psi_{l,0}(\xi)$, $\psi_{l,2}(\xi)$ визначаються рівняннями (4.37). Функції (4.37) зображено на рис. 4.7.

Рівняння поверхні зорі за малих значень Ω^2 і при фіксованому значенні параметра x_0 задається співвідношенням

$$\xi(0|x_0) = \xi_1(x_0) + \Omega^2 \left| y'(\xi_1|x_0) \right|^{-1} \left\{ \Psi_0(\xi_1(x_0)|x_0) + P_2(\cos\theta) \Psi_2(\xi_1(x_0)|x_0) \right\}.$$
(4.40)

Рис. 4.6. Розв'язки системи диференціальних рівнянь (4.37) для функцій $\psi_{0,0}(\xi),\,\psi_{0,2}(\xi),\,\psi_{1,0}(\xi),\,\psi_{1,2}(\xi),\,\psi_{2,0}(\xi),\,\psi_{2,2}(\xi).$

При заданих значеннях параметрів μ_e, x_0 та малих Ω^2 маса зорі

$$M(x_0, \mu_e, \Omega) = \frac{M_0}{\mu_e^2} \{ \mathcal{M}(x_0) + \Omega^2 \mathcal{M}_1(x_0) \}, \tag{4.41}$$

Рис. 4.7. Залежність функцій (4.39) від змінної ξ при різних значеннях x_0 .

де $\mathcal{M}(x_0)$ – безрозмірна маса зорі без обертання,

$$\mathcal{M}_{1}(x_{0}) = 3 \int_{0}^{1} dt \int_{0}^{\xi(\theta|x_{0})} \left\{ y^{2}(\xi|x_{0}) + \frac{2}{\varepsilon_{0}} y(\xi|x_{0}) \right\}^{1/2} \times \left\{ \Psi_{0}(\xi|x_{0}) + P_{2}(t) \Psi_{2}(\xi|x_{0}) \right\} \left\{ y(\xi|x_{0}) + \frac{1}{\varepsilon_{0}} \right\} \xi^{2} d\xi$$

$$(4.42)$$

при $t = \cos \theta$.

Розвинутий тут спосіб побудови розв'язку рівняння рівноваги виродженого карлика за базисними функціями $y_0(\xi), y_1(\xi), y_2(\xi) \dots \psi_{i,0}(\xi), \psi_{i,2}(\xi)$ дозволяє виконувати розрахунки характеристик карликів з обертанням при досить великих значеннях параметра x_0 . Функцію (4.38) можна використати як нульове наближення при інтегруванні рівняння (4.27).

Наведемо ще аналог рівняння (1.72),

$$Y(\xi,\theta) = 1 + \sum_{i=1}^{\infty} C_{2i} \, \xi^{2i} \, P_{2i}(t) -$$

$$- \frac{1}{4\pi} \int \left\{ \Omega^2 - \left[Y^2(\xi,\theta) + \frac{2}{\varepsilon_0} Y \right]^{3/2} \right\} \, \left\{ \frac{1}{|\xi - \xi'|} - \frac{1}{\xi'} \right\} \, d\xi',$$
(4.43)

що можна використовувати для уточнення розв'язків рівняння рівноваги шляхом чисельного інтегрування. Нульовим наближенням може служити розв'язок рівняння (4.27), або ж вираз (4.38).

РОЗДІЛ 5

Вплив неповного виродження на характеристики карликів

Грубі оцінки температури всередині більшості вироджених карликів, отримані на основі їхньої низької світності [12], дають значення порядку $(10^6 \div 10^7) K$. Протягом останніх двох десятиліть відкрито карлики з широким спектром характеристик, зокрема карлики високої світності з ефективними температурами атмосфер порядку $(5 \div 9)10^4 K$. Найбільш вражаючим проявом впливу неповного виродження електронної підсистеми є розподіл карликів на площині "маса радіус", зображений на рис. 5.1, який сильно відрізняється від кривої маса - радіус, що одержана з теорії С.Чандрасекара. Послідовна

Рис. 5.1. Координати карликів спектрального класу DA з різними ефективними температурами на площині M — R (дані про маси і радіуси взято з праці [33]). Ланцюжки відповідають карликам з близькими значеннями ефективних температур. Штрихова крива — залежність маса—радіус для абсолютно холодних карликів.

теорія внутрішньої структури вироджених карликів, яка дозволила б інтерпретувати всю різноманітність спостережуваних даних, повинна

враховувати такі фактори, як неповне виродження електронної підсистеми, світловий тиск, а також тепловий рух ядерної підсистеми. Проте для карликів з невисокими ефективними температурами природно вважати, що неповне виродження електронної підсистеми відіграє основну роль, бо дає внесок до тиску, пропорційний до $T^2(r)$, тоді як світловий тиск та фононна підсистема дають поправки порядку $T^4(r)$, де T(r) — розподіл локальної температури вздовж радіуса зорі.

У цьому розділі побудовано одно-, дво- та трифазну моделі, що відповідають карликам різних мас і ефективних температур. Розрахунки характеристик вироджених карликів виконано на основі рівняння механічної рівноваги, використовуючи моделювання розподілу температури, а також хімічного вмісту вздовж радіуса. Розв'язано обернену задачу теорії – визначено параметри моделей для конкретних карликів з відомими зі спостережень масами, радіусами та світностями.

Наближене рівняння стану ідеального релятивістського електронного газу в області температур $T \ll T_F = E_{P_F}/k_B$ одержується з рівнянь (2.4) - (2.6) шляхом застосування розкладів Зоммерфельда [23]. Згідно з цим підходом інтеграл загального виду

$$K = \int_{0}^{\infty} dp \, p^2 n_p \, F(E_p) \tag{5.1}$$

за допомогою підстановки $t = \beta(E_p - \mu)$ приводиться до вигляду:

$$K = \int_{0}^{p_{\mu}} dp p^{2} F(E_{p}) + \frac{1}{\beta c^{3}} \int_{0}^{\infty} \frac{dt}{e^{t} + 1} \left\{ \varphi\left(\frac{t}{\beta} + \mu\right) - \varphi\left(\mu - \frac{t}{\beta}\right) \right\} + O(e^{-\beta \mu}), \tag{5.2}$$

де

$$\varphi\left(\frac{t}{\beta} + \mu\right) \equiv F\left(\frac{t}{\beta} + \mu\right) \left(\frac{t}{\beta} + \mu\right)^{1/2} \left\{\frac{t}{\beta} + \mu + 2m_0c^2\right\}^{1/2},$$

$$p_{\mu} = \frac{1}{c} \left\{\mu^2 + 2\mu m_0c^2\right\}^{1/2}.$$
(5.3)

Розкладаючи функції $\varphi(t/\beta + \mu)$ у ряди за степенями t/β в околі точки μ та інтегруючи почленно, одержуємо асимптотичний розклад за

степенями температури:

$$K = \int_{0}^{p_{\mu}} p^{2} F(E_{p}) dp + \frac{1}{c^{3}} \sum_{n=1}^{\infty} \beta^{-2n} b_{2n} \varphi^{(2n-1)}(\mu) + O(e^{-\beta \mu}), \tag{5.4}$$

де $\varphi^{(2n-1)}(\mu)$ – похідна функції $\varphi(\mu)$ порядку (2n-1),

$$b_{2n} = \frac{\pi^{2n}}{n} \left(2^{2n-1} - 1 \right) |B_{2n}|, \tag{5.5}$$

а B_{2n} – так звані числа Бернуллі $\left(B_2 = \frac{1}{6}, B_4 = -\frac{1}{30}, B_6 = \frac{1}{42}, \ldots\right)$ [16].

Згідно з формулами (2.4) - (2.6) та (5.4) у випадку однорідної моделі при низьких температурах одержуємо таке параметрично задане рівняння стану електронного газу:

$$P = \frac{\pi m_0^4 c^5}{3h^3} \left\{ \mathcal{F}(x_\mu) + 4\pi^2 T_*^2 x_\mu \sqrt{1 + x_\mu^2} + \frac{7}{15} \pi^4 T_*^4 \frac{(2x_\mu^2 - 1)\sqrt{1 + x_\mu^2}}{x_\mu^3} + \dots \right\},$$

$$\frac{N}{V} = \frac{8\pi (m_0 c)^3}{3h^3} \left\{ x_\mu^3 + \pi^2 T_*^2 \frac{2x_\mu^2 + 1}{2x_\mu} + \frac{7\pi^4}{40} T_*^4 \frac{1}{x_\mu^5} + \dots \right\},$$
(5.6)

де $x_{\mu} = p_{\mu}/m_0c$ – аналог параметра релятивізму, визначеного співвідношенням $x = p_F/m_0c$, а $T_* = k_BT(m_0c^2)^{-1}$. Виключаючи із системи рівнянь (5.4) параметр x_{μ} , знаходимо рівняння стану з точністю до T_*^4 , а саме

$$P_e(x) = \frac{\pi m_0^4 c^5}{3h^3} \left\{ \mathcal{F}(x) + \frac{4\pi^2}{3} T_*^2 \frac{x[2+x^2]}{\sqrt{1+x^2}} - - \frac{\pi^4 T_*^4 \frac{72+136x^2+77x^4+18x^6}{45x^3(1+x^2)^{3/2}} + \dots \right\}.$$
 (5.7)

З умови, щоб перша температурна поправка була меншою основного доданка, можна дістати оцінку області застосування розкладу (5.7):

$$T_* < \begin{cases} (3/5)^{1/2} x^2/\pi & \text{при } x < 1, \\ (3/2)^{1/2} x/\pi & \text{при } x \ge 1. \end{cases}$$
 (5.8)

Звідси випливає, що розклад (5.7) у більшій мірі застосовний до низькотемпературних масивних карликів, ніж до маломасивних гарячих.

5.1. Просторово однорідна модель з неповним виродженням

Грубу аналітичну оцінку впливу неповного виродження на характеристики карликів можна одержати з варіаційного підходу, мінімізуючи вільну енергію однорідної моделі

$$F = \Omega(\mu) + \mu N + W, \tag{5.9}$$

де μ – хімічний потенціал електронів,

$$\mu = m_0 c^2 \left\{ \sqrt{1 + x_\mu^2} - 1 \right\}, \tag{5.10}$$

а x_{μ} є коренем другого з рівнянь (5.6). Енергія гравітаційної взаємодії W визначена формулою (2.7). Використавши формулу (2.4) та проінтегрувавши частинами, знаходимо, що

$$F = -VP + \mu N + W, (5.11)$$

де тиск P та концентрація N/V означені виразами (5.6). У лінійному наближенні за параметром T_*^2

$$F = N(x)m_0c^2 \left\{ (1+x^2)^{1/2} - 1 - \frac{1}{8x^3} \mathcal{F}(x) - \frac{\pi^2}{2} T_*^2 \frac{(1+x^2)^{1/2}}{x^2} \right\} - \frac{3}{5} \frac{G}{\gamma \hbar} (m_u \mu_e)^2 m_0 c x N^{5/3}(x).$$
 (5.12)

Цей вираз узагальнює співвідношення (2.73) на випадок відмінних від нуля температур.

З умови dF/dx = 0 знаходимо диференціальне рівняння для N(x), що є аналогом рівняння (2.75). В інтервалі середніх і великих значень параметра релятивізму знехтуємо похідною dN/dx, одержуючи нульове наближення для N(x):

$$N^{(0)}(x,\mu_e,T) = N^{(0)}(x,\mu_e,0) \left\{ 1 + \frac{4\pi^2}{3} T_*^2 \varphi(x) \right\}^{3/2}, \quad (5.13)$$
$$\varphi(x) = x(2+x^2)(1+x^2)^{-1/2} \mathcal{F}^{-1}(x),$$

а $N^{(0)}(x, \mu_e, 0)$ визначене формулою (2.76).

Повна маса і радіус моделі мають таку залежність від температури:

$$M^{(0)}(x,\mu_e,T) = M^{(0)}(x,\mu_e,0) \left\{ 1 + \frac{4\pi^2}{3} T_*^2 \varphi(x) \right\}^{3/2}, \quad (5.14)$$

$$R^{(0)}(x,\mu_e,T) = R^{(0)}(x,\mu_e,0) \left\{ 1 + \frac{4\pi^2}{3} T_*^2 \varphi(x) \right\}^{1/2},$$

де $M^{(0)}(x,\mu_e,0)$ і $R^{(0)}(x,\mu_e,0)$ відповідають моделі з $T_*=0$ (див. (2.82), (2.83)).

Як випливає зі співвідношень (5.13) і (5.14), неповне виродження електронної підсистеми карлика приводить до збільшення кількості електронів, маси зорі та її радіуса (за заданої концентрації частинок) порівняно з аналогічними характеристиками при T=0 K.

Оскільки функція $\varphi(x)$ є спадною функцією параметра x ($\varphi(x) \sim x^{-4}$ при $x \ll 1$, $\varphi(x) \sim x^{-2}$ при $x \gg 1$), то може виникнути ситуація, коли маса карлика стане немонотонною функцією параметра релятивізму в околі значення $x \approx 1$, на відміну від монотонно зростаючої функції у стандартній моделі. Аналогічна ситуація може виникнути і щодо повної енергії (або вільної енергії) зорі.

5.2. Моделювання радіального розподілу температури в однофазній моделі

Для переходу до неоднорідної моделі використаємо рівняння стану (5.7) у локальному наближенні, виконуючи заміну $x \to x(r), T_* \to T_*(r)$. Ізотермічне наближення для всієї зорі незастосовне, бо у такому випадку порушується умова застосування розкладів (5.6) у периферійній області зорі. Однак для основної області карлика наближення ізотермічності цілком застосовне. Згідно із загальноприйнятими уявленнями ядро виродженого карлика є майже ізотермічним завдяки механізму теплопровідності металічного типу. Для спрощення розрахунків використаємо тут однофазну модель, вважаючи, що електронна підсистема вироджена у всьому об'ємі зорі, причому відхилення від абсолютного виродження є невеликими. Приймемо, що $T(r) = T_0$ при $0 \le r \le R_c = \xi_0 R$, де $\xi_0 < 1$. Щоб змоделювати функцію T(r) у периферійній області, врахуємо, що відхилення від абсолютного виродження буде суттєвим тоді, коли величина $k_B T(r)$ сумірна з локальною енер-

гією Фермі, тобто

$$k_B T(r) \approx \alpha \, m_0 c^2 \, \{ [1 + x^2(r)]^{1/2} - 1 \}.$$
 (5.15)

Вважаючи α сталою величиною, з умови неперервності одержуємо залежність локальної температури від координати,

$$T(r) \approx T_0 \{ [1 + x^2(r)]^{1/2} - 1 \} \{ [1 + x^2(R_c)]^{1/2} - 1 \}^{-1}$$
 (5.16)

при $R_c < r \le R$. Так виникає модель з чотирма безрозмірними параметрами x_0, μ_e, T_0^* і ξ_0 . У наближенні (5.16) всі члени розкладу (5.7) при $x(r) \ll 1$ мають ту саму асимптотику, а саме $x^5(r)$. При цьому вираз $P(x(r))\mathcal{F}^{-1}(x(r))$ є майже сталою величиною. У квадратичному наближенні за температурою ця величина прямує до значення 5 $T_0^*/4(\varepsilon_c)^2$ при $x(r) \ll 1$, де $T_0^* \equiv T_0 k_B (m_0 c^2)^{-1}$; $\varepsilon_c \equiv \varepsilon_0(x_c) = (1 + x_c^2)^{1/2} - 1$, $x_c \equiv x(R_c)$. З огляду на цю обставину можна спростити розрахунки, виконавши усереднення відношення $P(x(r))/\mathcal{F}(x(r))$ за радіальною координатою з ваговою функцією $x^3(r)$, одержуючи наближену форму рівняння стану у вигляді

$$P_e(r) \cong \frac{\pi m_0^4 c^5}{3h^3} \mathcal{F}(x(r)) \left\{ 1 + \frac{4\pi^2}{3} \left(\frac{T_0^*}{\varepsilon_0(x_0)} \right)^2 S(x_0; \xi_0) \right\},$$
 (5.17)

де

$$S(x_0; \xi_0) = \varepsilon_0^2(x_0) \left\{ \int_0^R dr \, r^2 x^3(r) \right\}^{-1} \left\{ \int_0^{R_c} dr \, r^2 f(x(r)) + \int_{R_c}^R dr \, r^2 f(x(r)) (\sqrt{1 + x^2(r)} - 1)^2 \varepsilon_0^{-2}(x_c) \right\},$$
(5.18)
$$f(x(r)) = x^4(r) [2 + x^2(r)] [1 + x^2(r)]^{-1/2} \mathcal{F}^{-1}(x(r)).$$

Тут R – радіус зорі, а усереднення проводиться з використанням розв'язків рівняння рівноваги при T=0 К. Залежність $S(x_0;\xi_0)$ від параметра x_0 за фіксованих значень ξ_0 показано на рис. 5.2. Використовуючи рівняння стану електронної підсистеми у вигляді (5.17) та безрозмірні змінні (2.20), зведемо рівняння рівноваги до безрозмірної форми (2.22):

Рис. 5.2. Залежність функції $S(x_0; \xi_0)$ від параметра релятивізму в центрі зорі за різних розмірів ізотермічного ядра (див. (5.18)).

$$\frac{1}{\xi^2} \frac{d}{d\xi} \left\{ \xi^2 \frac{dy}{d\xi} \right\} = -\left\{ y^2(\xi) + \frac{2}{\varepsilon_0(x_0)} y(\xi) \right\}^{3/2}, \tag{5.19}$$

якщо масштаб λ визначений умовою

$$\frac{32\pi^2 G}{3(hc)^3} \left\{ m_0 m_u c^2 \mu_e \lambda \, \varepsilon_0(x_0) \right\}^2 = 1 + \frac{4\pi^2}{3} \left(\frac{T_0^*}{\varepsilon_0(x_0)} \right) \, S(x_0; \xi_0). \tag{5.20}$$

Рівняння (5.19) збігається з безрозмірним рівнянням рівноваги стандартної моделі (2.22) і задовольняє умови $y(0)=1, y'(0)=0; y(\xi)\geq 0$. Розв'язки рівняння (5.19) залежать тільки від параметра x_0 , тоді як λ залежить не тільки від x_0 та μ_e , але на відміну від стандартної моделі, від T_0^* та ξ_0 .

Розв'язки рівняння (5.19), а також параметри моделі визначають характеристики зорі. Зокрема вирази для радіуса та маси мають такий

вигляд:

$$R(x_0, \mu_e, T_0^*; \xi_0) = R_0 \frac{\xi_1(x_0)}{\mu_e \varepsilon_0(x_0)} \left\{ 1 + \frac{4}{3} \pi^2 \left(\frac{T_0^*}{\varepsilon_0(x_0)} \right)^2 S(x_0; \xi_0) \right\}^{1/2};$$

$$M(x_0, \mu_e, T_0^*; \xi_0) = \frac{M_0}{\mu_e^2} \mathcal{M}(x_0) \left\{ 1 + \frac{4}{3} \pi^2 \left(\frac{T_0^*}{\varepsilon_0(x_0)} \right)^2 S(x_0; \xi_0) \right\}^{3/2}, (5.21)$$

$$\mathcal{M}(x_0) = \int_0^{\xi_1(x_0)} d\xi \, \xi^2 \left\{ y^2(\xi) + \frac{2}{\varepsilon_0} y(\xi) \right\}^{3/2}.$$

Рис. 5.3. Залежність маси та радіуса карлика від параметра x_0 за фіксованих значень T_0^* і $\xi_0=0.5,~\mu_e=2.035.$ Штрихова крива відповідає $T_0^*=0,$ крива $1-T_0^*=0.01,$ крива $4-T_0^*=0.04;~\Delta T_0^*=0.01.$

Залежність цих характеристик карлика від параметрів x_0 і T_0^* за фіксованого ξ_0 та $\mu_e=2.035$ показана на рис. 5.3. Ми формально вважаємо, що параметри незалежні між собою. Зображені криві відповідають моделі з безрозмірним радіусом ядра $\xi_0=0.5$, яка, імовірно, не відповідає реальним фізичним умовам для переважної більшості карликів, проте зручна для аналізу впливу температурних ефектів на його характеристики. Як бачимо з рис. 5.3a, маса карлика є монотонно зростаючою функцією параметра x_0 тільки при $T_0^*=0$. Вплив температури виявляється в інтервалі невеликих значень параметра x_0 , а розраховані криві виявляють немонотонну залежність маси від цього

параметра (маса зростає з підвищенням T_0^*). В інтервалі великих значень параметра x_0 вплив температури стає малим. Радіус є монотонно спадною функцією параметра x_0 і монотонно зростає з підвищенням T_0^* (див. рис. 5.3,6). На рис. 5.4 показано ті самі характеристики, про-

Рис. 5.4. Залежність маси та радіуса карлика від параметра x_0 за фіксованих значень T_0^* і $\xi_0=0.9,\ \mu_e=2.035$. Значення параметра T_0^* ті ж, що й на рис. 5.3.

те для реалістичнішої моделі, у якій $\xi_0 = 0.9$. Порівнюючи ці рисунки, бачимо, що вплив температурних ефектів збільшується зі зростанням параметра ξ_0 .

5.3. Обернена задача для низькотемпературних карликів

З метою визначення параметрів моделі для карликів з відомою ефективною температурою фотосфери розглянемо розміщення великого масиву білих карликів спектрального типу DA [33] на площині "маса — радіус" (рис. 5.1~a). Температури фотосфер у цьому разі змінюються від $5\cdot 10^3~$ до $10^5~$ К.

Природно припустити, що карлики з однаковими ефективними температурами розміщені на окремих кривих на площині "маса–радіус", неперервна послідовність яких формує загальну картину. Це підтверджує рис. 5.1~6, на якому виділено ланцюжки, утворені карликами з близькими значеннями ефективних температур фотосфер: хрестики відповідають зорям із $T_{\rm eff} \leq 8 \cdot 10^3~{\rm K}$, кружечки – зорям із $19.5 \cdot 10^3~{\rm K} \leq$

 $T_{\rm eff} \leq 20.5 \cdot 10^3~{\rm K}$, трикутники – карликам, температури фотосфер яких змінюються в інтервалі $48 \cdot 10^3 \leq T_{\rm eff} \leq 52 \cdot 10^3~{\rm K}$. Ліва межа смуги на рис. 5.1 відповідає найхолоднішим карликам (штрихова крива рис. 5.1 б). Використовуючи селекцію спостережуваних даних за температурами фотосфер, визначимо параметри моделі $x_0, \, \mu_e, \, T_0^*$ за фіксованого ξ_0 , який розглядаємо як незалежний параметр, для зір із близькими значеннями $T_{\rm eff}$, що відповідає спектральній класифікації.

Приймаючи $T_0^* = 0$ і змінивши μ_e на $\tilde{\mu}_e$, x_0 на \tilde{x}_0 у формулах (5.21), переходимо до стандартної моделі Чандрасекара, у якій

$$R(\tilde{x}_0, \tilde{\mu}_e) = R_0 \frac{\xi_1(\tilde{x}_0)}{\tilde{\mu}_e \varepsilon_0(\tilde{x}_0)}; \quad M(\tilde{x}_0, \tilde{\mu}_e) = \frac{M_0}{\tilde{\mu}_e^2} \mathcal{M}(\tilde{x}_0).$$
 (5.22)

Прирівнявши праві частини відповідних рівностей (5.21) і (5.22), а також знехтувавши відхиленням $\xi_1(x_0)$ від $\xi_1(\tilde{x}_0)$, отримуємо наближені співвідношення між параметрами моделі Чандрасекара \tilde{x}_0 , $\tilde{\mu}_e$ і параметрами моделі, яку розглядаємо в цьому розділі:

$$\mu_e \approx \tilde{\mu}_e \left\{ 1 + \frac{4\pi^2}{3} \left(\frac{T_0^*}{\varepsilon_0(x_0)} \right)^2 S(x_0; \xi_0) \right\}^{3/4},$$

$$\varepsilon_0(x_0) \approx \varepsilon_0(\tilde{x}_0) \left\{ 1 + \frac{4\pi^2}{3} \left(\frac{T_0^*}{\varepsilon_0(x_0)} \right)^2 S(x_0; \xi_0) \right\}^{-1/4}.$$
(5.23)

Звідси випливає, що визначені в рамках моделі Чандрасекара параметри μ_e та x_0 є неточними навіть у випадку достатньо холодних карликів з невисокою температурою ядра, і передусім це стосується параметра μ_e , значення якого дає інформацію про хімічний вміст зорі.

Для визначення параметрів x_0 , μ_e , T_0^* використаємо рівняння (5.21), підставляючи в них $R(x_0,\mu_e,T_0^*;\xi_0)=R$, $M(x_0,\mu_e,T_0^*;\xi_0)=M$, де R та M – значення, отримані зі спостережуваних даних. Оскільки двох рівнянь (5.21) недостатньо для визначення трьох параметрів, то використаємо таку наближену процедуру. Припустимо, що під час охолодження карлика його маса і хімічний вміст не змінюються, що відповідає відсутності термоядерних реакцій. У цьому разі радіус зменшується від величини $R(x_0,\mu_e,T_0^*;\xi_0)$, яка відповідає значенню температури фотосфери $T_{\rm eff}$, до величини $R(x_0^0,\mu_e,0)$, що відповідає $T_{\rm eff}=0$. Для абсолютно холодного карлика отримуємо систему рівнянь

$$R(x_0^0, \mu_e, 0) = \frac{R_0}{\mu_e} \frac{\xi_1(x_0^0)}{\varepsilon_0(x_0^0)}, \qquad M(x_0^0, \mu_e, 0) = \frac{M_0}{\mu_e^2} \mathcal{M}(x_0^0), \tag{5.24}$$

де x_0^0 – значення параметра релятивізму для абсолютно холодного (неспостережуваного) карлика, якому цілком відповідає стандартна модель Чандрасекара з параметрами x_0^0 , μ_e .

Рис. 5.5. Залежність радіусів вироджених карликів від ефективної температури для зір заданої маси.

Використавши дані про радіуси, маси та ефективні температури фотосфер карликів з праці [33], можна визначити залежність радіуса зорі від $T_{\rm eff}$ за сталої маси $R_M(T_{\rm eff})$, що зображена на рис. 5.5. На ньому квадратики відповідають зорям з масою $M=0.2M_0$, кружечки – $M=0.25M_0$, трикутники – $M=0.3M_0$. Якщо екстраполювати отримані криві в область низьких температур, то при $T_{\rm eff}=0$ знайдемо радіуси абсолютно холодних карликів заданої маси $R_M(0)$. Якщо прийняти $R(x_0^0, \mu_e, 0) = R_M(0), M(x_0^0, \mu_e, 0) = M$ у рівняннях (5.24), то знайдемо параметри $x_0^0 \equiv x_0^0(M), \ \mu_e \equiv \mu_e(M).$ За відомого $\mu_e(M)$ значення параметрів x_0 та T_0^* для карликів однакової маси можна знайти з рівнянь (5.21). Такі параметри були розраховані для 3 048 зір при $\xi_0 = 0; 0.5; 0.7; 0.9; 0.95; 0.99$. Характерні значення параметрів, а також їхню залежність від ξ_0 наведено в табл. 5.1, з якої бачимо, що $x_0 < x_0^0$ відповідно до співвідношень (5.23). Вплив параметра ξ_0 на $x_0 \in$ незначним, проте від нього суттєво залежить величина T_0^* . Параметр релятивізму x_0 для цієї вибірки вироджених карликів змінюється в межах від 0.28 до 3.56.

На рис. 5.6~a показано залежність параметра μ_e від маси карлика, а як бачимо з рис. 5.6 б, між параметрами x_0^0 і μ_e є однозначна залежність. Параметр μ_e для більшості карликів цієї вибірки дуже мало відхиляється від значення 2.0. Цікавою особливістю параметра μ_e є наявність двох максимумів, що можна пояснити так. Існування максимуму в інтервалі великих мас (великих x_0^0) цілком зрозуміле, оскільки в ході еволюції таких зір відбулися декілька стадій ядерного горіння і тому в них переважають ядра важких елементів. Зі зменшенням маси зорі-попередниці кількість стадій термоядерного синтезу зменшується, а в маломасивних зорях відбувається горіння водню та гелію, або ж тільки водню. При цьому в периферійних шарах зорі залишаються легкі елементи. Звідси випливає, що параметр μ_e повинен монотонно зростати зі збільшенням маси карлика, що й простежується в інтервалі середніх та великих мас. Оскільки ж маломасивні карлики внаслідок малого гравітаційного потенціалу втрачають значну частину легких елементів на стадії формування туманності, то в утвореному карликові параметр μ_e знову зростає. Імовірно, що зоря-попередниця дуже малої маси перед фазою утворення карлика містить водень не тільки в периферійній області, тому з неї утворюється гелій-водневий карлик, для якого $\mu_e < 2.0$.

Рис. 5.6. Залежність параметра μ_e від маси карлика та залежність між параметрами μ_e та x_0^0 .

Таблиця 5.1 Мікроскопічні та макроскопічні параметри моделі для вибірки карликів спектрального класу DA із каталога SDSS DR4 [33]

R/R_0	M/M_0	.,	x_{0}^{0}	<i>m</i> -			7	T* 0		
n/n_0	101 / 1010	μ_e	x_0	x_0	$\xi_0 = 0$	$\xi_0 = 0.5$	$\xi_0 = 0.7$	$\xi_0 = 0.9$	$\xi_0 = 0.95$	$\xi_0 = 0.99$
0.8718	0.29446	2.0234	1.9033	1.8436	0.065242	0.037666	0.027133	0.019221	0.017305	0.015373
0.9216	0.27368	2.0262	1.7118	1.6735	0.049846	0.028971	0.020821	0.014687	0.013206	0.011716
1.8295	0.14550	2.0071	0.8396	0.6154	0.045945	0.028012	0.019976	0.013800	0.012328	0.010854
1.1439	0.21132	2.0309	1.2434	1.1745	0.051331	0.030493	0.021796	0.015197	0.013617	0.012039
1.1061	0.22171	2.0310	1.3136	1.2430	0.054442	0.032239	0.023057	0.016100	0.014433	0.012766
1.2967	0.18360	2.0270	1.0665	0.9682	0.051114	0.030660	0.021885	0.015198	0.013600	0.012008
0.7991	0.31871	2.0210	2.1654	2.1185	0.061770	0.035305	0.025537	0.018219	0.016437	0.014632
1.2939	0.18707	2.0278	1.0879	0.9771	0.054613	0.032745	0.023374	0.016235	0.014529	0.012828
0.9986	0.24943	2.0293	1.5145	1.4658	0.051463	0.030173	0.021629	0.015180	0.013629	0.012074
1.4856	0.18707	2.0278	1.0879	0.8391	0.068247	0.041188	0.029383	0.020361	0.018207	0.016060
1.2806	0.20093	2.0301	1.1755	1.0146	0.067500	0.040401	0.028845	0.020048	0.017946	0.015849
0.9322	0.27368	2.0262	1.7118	1.6506	0.062056	0.036102	0.025937	0.018285	0.016439	0.014583
1.2761	0.19053	2.0285	1.1095	0.9990	0.055719	0.033374	0.023826	0.016555	0.014818	0.013085
1.2729	0.19400	2.0292	1.1313	1.0084	0.059128	0.035400	0.025274	0.017564	0.015722	0.013884
0.9225	0.28060	2.0253	1.7729	1.6886	0.073420	0.042646	0.030655	0.021632	0.019453	0.017261
1.2695	0.19746	2.0297	1.1533	1.0180	0.062431	0.037361	0.026675	0.018541	0.016597	0.014658
0.8182	0.31178	2.0215	2.0851	2.0395	0.060033	0.034408	0.024857	0.017699	0.015958	0.014197
1.2844	0.18014	2.0260	1.0453	0.9718	0.044557	0.026723	0.019075	0.013247	0.011855	0.010467
1.2357	0.18707	2.0278	1.0879	1.0287	0.042356	0.025335	0.018090	0.012576	0.011258	0.009944
0.9168	0.27714	2.0258	1.7420	1.6926	0.056801	0.032988	0.023713	0.016735	0.015050	0.013354
0.8472	0.29792	2.0230	1.9378	1.9182	0.038827	0.022353	0.016119	0.011441	0.010306	0.009160
0.9168	0.27714	2.0258	1.7420	1.6926	0.056801	0.032988	0.023713	0.016735	0.015050	0.013354
1.0809	0.22171	2.0310	1.3136	1.2764	0.040690	0.024059	0.017212	0.012027	0.010784	0.009541

3	aki	нче	ВНН	Tab	П)

D/D	M/M		x_0^0	~	T_0^*					
R/R_0	M/M_0	μ_e	x_0	x_0	$\xi_0 = 0$	$\xi_0 = 0.5$	$\xi_0 = 0.7$	$\xi_0 = 0.9$	$\xi_0 = 0.95$	$\xi_0 = 0.99$
0.9986	0.24943	2.0293	1.5145	1.4658	0.051463	0.030173	0.021629	0.015180	0.013629	0.012074
0.9527	0.26675	2.0272	1.6529	1.5918	0.060659	0.035374	0.025396	0.017878	0.016065	0.014245
0.9322	0.27368	2.0262	1.7118	1.6506	0.062056	0.036102	0.025937	0.018285	0.016439	0.014583
0.9370	0.27021	2.0267	1.6821	1.6321	0.055917	0.032555	0.023384	0.016477	0.014812	0.013137
0.9846	0.25982	2.0281	1.5961	1.5149	0.067425	0.039449	0.028294	0.019881	0.017855	0.015824
1.2090	0.20093	2.0301	1.1755	1.0824	0.055276	0.032979	0.023556	0.016393	0.014681	0.012971
0.9021	0.28753	2.0243	1.8367	1.7519	0.075162	0.043548	0.031330	0.022143	0.019922	0.017685
1.9284	0.17321	2.0237	1.0032	0.6171	0.058569	0.035707	0.025463	0.017591	0.015714	0.013836
1.0640	0.23557	2.0305	1.4113	1.3307	0.061219	0.036108	0.025846	0.018082	0.016219	0.014355
1.1215	0.20785	2.0307	1.2205	1.1938	0.032697	0.019406	0.013873	0.009677	0.008672	0.007668
0.6388	0.37067	2.0265	3.0184	2.9798	0.061528	0.034284	0.025142	0.018333	0.016648	0.014917
1.2439	0.19400	2.0292	1.1313	1.0347	0.053985	0.032281	0.023050	0.016027	0.014348	0.012673
1.2806	0.20093	2.0301	1.1755	1.0146	0.067500	0.040401	0.028845	0.020048	0.017946	0.015849
1.1841	0.21132	2.0309	1.2434	1.1293	0.063263	0.037661	0.026909	0.018745	0.016791	0.014841
1.0429	0.24250	2.0300	1.4622	1.3777	0.064284	0.037837	0.027096	0.018977	0.017028	0.015076
1.2328	0.19053	2.0285	1.1095	1.0383	0.046733	0.027940	0.019951	0.013873	0.012420	0.010970
1.0764	0.23557	2.0305	1.4113	1.3131	0.066638	0.039336	0.028151	0.019687	0.017657	0.015626
1.1625	0.21825	2.0310	1.2899	1.1673	0.067351	0.040024	0.028606	0.019942	0.017868	0.015797
1.3026	0.19400	2.0292	1.1313	0.9828	0.063083	0.037814	0.026993	0.018750	0.016781	0.014817
0.9527	0.26675	2.0272	1.6529	1.5918	0.060659	0.035374	0.025396	0.017878	0.016065	0.014245
0.9733	0.25982	2.0281	1.5961	1.5356	0.059016	0.034498	0.024749	0.017399	0.015629	0.013852
0.9637	0.26675	2.0272	1.6529	1.5702	0.069596	0.040623	0.029156	0.020514	0.018432	0.016341
1.1439	0.21132	2.0309	1.2434	1.1745	0.051331	0.030493	0.021796	0.015197	0.013617	0.012039
1.1625	0.21825	2.0310	1.2899	1.1673	0.067351	0.040024	0.028606	0.019942	0.017868	0.015797
0.9168	0.27714	2.0258	1.7420	1.6926	0.056801	0.032988	0.023713	0.016735	0.015050	0.013354
1.3089	0.18707	2.0278	1.0879	0.9647	0.056741	0.034042	0.024298	0.016873	0.015099	0.013330

Рис. 5.7. Залежність маси карлика від параметра x_0 за фіксованих значень T_0^* (див. рис. 5.3 a) і $\xi_0=0.5,\,\mu_e=2.035$. Також тут нанесено координати карликів з температурами, близькими до температур відповідних кривих.

Розрахована теоретично залежність маси карлика від параметра x_0 (тобто від густини), що зображена на рис. 5.3 а, приводить до парадоксального на перший погляд висновку, що маса є немонотонною функцією цього параметра. З використанням відомих значень параметра x_0 у моделі з $\xi_0 = 0.9$ на рис. 5.3 *а* було нанесено координати спостережуваних карликів $(x_0 \text{ та } M)$, температури яких незначно відхиляються від T_0^* . Як бачимо з рис. 5.7, криві якого збігаються з кривими рис. 5.3 а, координати карликів (точки) розміщені лише на тій гілці кривої, де маса монотонно зростає зі збільшенням x_0 (а також в околі мінімуму), а гілка кривої, де маса є монотонно спадною функцією параметра x_0 , нефізична. Отже, температура ізотермічного ядра карлика формує обмеження на його мінімальну масу (максимальний радіус). Цей висновок є наслідком аналізу спостережуваних даних і свідчить про те, що параметри x_0 і T_0^* не є незалежними. Зазначимо, що згадані обмеження неможливо отримати в рамках стандартної моделі Чандрасекара $(T_0^* = 0).$

Оскільки радіус карлика можна розглядати як функцію маси та ефективної температури, то параметри x_0 і T_0^* фактично є функціями M і $T_{\rm eff}$. Цю залежність ілюструє рис. 5.8 a, де зображено поверхню

 $T_0^* \equiv T_0^*(M, T_{\rm eff})$ у моделі з $\xi_0 = 0.9$. Для цієї ж моделі залежність x_0 від параметрів $M, T_{\rm eff}$ зображена на рис. 5.8 б. Ці поверхні можна апроксимувати такими однорідними поліномами, в яких аргументами є M та $t = 10^{-4} T_{\rm eff}$:

$$T_0^*(M, T_{eff}) = \sum_{i,j \ge 0} a_{ij} t^i M^j, \quad x_0(M, T_{eff}) = \sum_{i,j \ge 0} b_{ij} t^i M^j,$$
 (5.25)

а коефіцієнти a_{ij} , b_{ij} наведено у табл. 5.2.

Таблиця 5.2 Коефіцієнти поліномів у формулі (5.25)

	a_{ij}											
i	\overline{j}											
<i>t</i>	0	1	2	3	4							
0	0.025069	-0.61319	5.0278	-15.708	16.439							
1	0.002001	0.077922	-0.27879	0.65078								
2	-0.0020954	-0.00062488	-0.016891									
3	0.00020889	0.00063401										
4	$-1.5372 \cdot 10^{-05}$											

	b_{ij}											
i		Ĵ	i									
<i>ι</i>	0	1	2	3	4							
0	0.31941	0.73152	41.459	-180.44	316.12							
1	-0.40648	2.2273	-1.5163	-6.3188								
2	0.078757	-0.5641	0.92556									
3	-0.0033844	0.013675										
4	$3.1741 \cdot 10^{-05}$											

Як бачимо з рис. 5.8, параметр T_0^* є монотонно зростаючою функцією маси та ефективної температури. Залежність T_0^* від маси є слабкою у випадку холодних (старих) карликів, проте стає суттєвою у випадку зір з достатньо високою ефективною температурою $T_{\rm eff}$ (порівняно молодих).

Рисунок 5.9 відображає майже лінійну залежність між параметрами T_0^* та ξ_0 . Мінімальне значення температури відповідає границі

a

Рис. 5.8. Залежність безрозмірної температури T_0^* (a) та параметра x_0 (б) від маси та ефективної температури фотосфери в моделі з $\xi_0=0.9$.

 $\xi_0 \to 1-\delta, \ \delta \to +0.$ Як ілюстрацію нижче наведено інтервали зміни $T_0^* \ (T_c)$ для розглянутих карликів за різних значень параметра ξ_0 :

Рис. 5.9. Температура ізотермічного ядра як функція параметра ξ_0 для трьох карликів різних мас ($M=0.55M_{\odot}(№ 1009),~M=0.53M_{\odot}(№ 2662),~M=0.42M_{\odot}(№ 2008))$ з каталогу SDSS DR4.

```
\begin{array}{lll} \xi_0 = 0.90: & 0.0035 \leq T_0^* \leq 0.0438 & (21.7 \cdot 10^6 \text{ K} \leq T_c \leq 264.6 \cdot 10^6 \text{ K}) \\ \xi_0 = 0.95: & 0.0031 \leq T_0^* \leq 0.0394 & (18.7 \cdot 10^6 \text{ K} \leq T_c \leq 238.0 \cdot 10^6 \text{ K}) \\ \xi_0 = 0.99: & 0.0028 \leq T_0^* \leq 0.0350 & (16.9 \cdot 10^6 \text{ K} \leq T_c \leq 211.4 \cdot 10^6 \text{ K}) \end{array}
```

Отримані значення T_0^* (T_c) доцільно порівняти з результатами праці [42], у якій у рамках еволюційного підходу розраховано залежність $\log T_c - \log \frac{L}{L_\odot}$ для моделі холодних карликів ($T_{\rm eff} < 10000~{\rm K}$). Загалом результати, отримані в нашій моделі, близькі до результатів праці [42], а також праць [43,44], у яких виконано аналогічні теоретичні розрахунки залежності $\log T_c - \log \frac{L}{L_\odot}$. Проте за однакових значень світності наша модель дає дещо вищі значення T_c . Це можна пояснити вищою ефективною температурою розглянутих карликів, а також тим, що процедура визначення параметра μ_e для гарячих карликів є точнішою, ніж для холодних.

Наголосимо, що особливого розгляду потребують маломасивні карлики з великими світностями, які мають великі радіуси і високі ефективні температури. У табл. 5.3 наведено спостережувані характеристики 65 карликів (що становить $\approx 2~\%$ від загальної кількості) з радіусами $R>2R_0$ та світностями $L>0.5L_{\odot}$.

5. Вплив неповного виродження на характеристики карликів

Параметри маломасивних яскравих карликів у моделі з $\xi_0 = 0.9$

D/D	3.5/3.5	T / T					D / D	3.5/3.5	T / T	-	1	T	
R/R_0	M/M_0	L/L_{\odot}	$T_{ m eff}$	μ_e	x_0	T_0^*	R/R_0	M/M_0	L/L_{\odot}	$T_{ m eff}$	μ_e	x_0	T_0^*
2.3415	0.17668	14.292	72130	2.0250	0.50655	0.015639	2.3240	0.13511	0.5557	32150	1.9963	0.46742	0.011415
2.8755	0.18014	40.463	84430	2.0260	0.41199	0.013008	2.0994	0.14203	0.8584	37710	2.0039	0.52812	0.012911
3.8234	0.14896	54.722	78960	2.0100	0.28952	0.007774	2.0994	0.15935	2.9442	51320	2.0172	0.54854	0.015047
2.1945	0.16628	5.2339	57960	2.0208	0.53115	0.015383	2.2974	0.13511	0.7069	34340	1.9963	0.47305	0.011497
2.0040	0.18707	8.3332	68130	2.0278	0.60836	0.018922	3.7785	0.15589	65.6620	83130	2.0150	0.29727	0.008243
2.1495	0.14550	2.6757	49520	2.0071	0.51931	0.013185	2.1563	0.18014	8.9321	66830	2.0260	0.55588	0.017134
2.0265	0.16282	2.6465	50860	2.0191	0.57342	0.015794	2.9366	0.18360	51.1310	88580	2.0270	0.40574	0.012958
2.1274	0.18360	9.2645	67900	2.0270	0.56752	0.017705	2.4335	0.13511	1.4167	39700	1.9963	0.44562	0.011061
3.2542	0.14896	29.861	73560	2.0100	0.34100	0.009360	3.6358	0.13164	0.5266	25360	1.9918	0.29309	0.007280
3.0966	0.19053	80.882	96740	2.0285	0.38899	0.012661	2.4300	0.13164	0.5852	31850	1.9918	0.44265	0.010714
2.0292	0.14550	0.6158	35300	2.0071	0.55162	0.013549	2.1520	0.18360	10.6780	69950	2.0270	0.56068	0.017544
2.2249	0.15589	3.7702	53030	2.0150	0.51240	0.014084	2.6107	0.16282	15.3940	69590	2.0191	0.44017	0.012925
2.4255	0.19400	31.895	86620	2.0292	0.50404	0.016748	2.1174	0.16975	4.9915	58310	2.0224	0.55530	0.016185
3.4617	0.09700	4.6737	44860	1.8969	0.28249	0.005399	2.0408	0.19400	13.4380	76080	2.0292	0.60433	0.019496
3.2516	0.14203	25.354	70640	2.0039	0.33614	0.008918	2.0292	0.14550	0.62488	35430	2.0071	0.55162	0.013549
3.4067	0.14550	32.406	73380	2.0071	0.32303	0.008682	2.4971	0.15243	7.5163	59480	2.0127	0.45105	0.012511
2.3240	0.13511	0.9886	37130	1.9963	0.46742	0.011415	2.8369	0.18360	47.4170	88440	2.0270	0.42045	0.013457
2.3105	0.18014	15.094	73610	2.0260	0.51704	0.016170	2.0357	0.18014	6.8518	64370	2.0260	0.59064	0.017881
2.2773	0.20093	30.061	88080	2.0301	0.54497	0.018468	2.1316	0.18014	8.7446	66860	2.0260	0.56265	0.017288
2.5229	0.18707	29.289	83140	2.0278	0.47780	0.015503	2.9679	0.14896	19.9970	69680	2.0100	0.37468	0.010332
2.0593	0.18014	7.156	64700	2.0260	0.58351	0.017737	2.3747	0.13164	0.5179	31250	1.9918	0.45334	0.010882
2.0902	0.17321	5.949	61320	2.0237	0.56676	0.016738	2.3304	0.15243	4.7547	54910	2.0127	0.48462	0.013243
2.9974	0.13857	13.304	62620	2.0003	0.36246	0.009464	2.8018	0.15243	15.8250	67640	2.0127	0.40048	0.011229
2.8664	0.14550	13.559	64340	2.0071	0.38538	0.010438	2.1714	0.13857	0.6373	34420	2.0003	0.50577	0.012278
2.1714	0.13857	0.764	36010	2.0003	0.50577	0.012278	3.0369	0.15243	22.0540	70590	2.0127	0.36867	0.010332
2.6430	0.14203	7.944	58620	2.0039	0.41572	0.010975	2.4384	0.14203	4.4301	52740	2.0039	0.45186	0.011744
4.0487	0.15589	76.888	83540	2.0150	0.27723	0.007581	2.5343	0.12471	0.5967	31340	1.9813	0.41677	0.009702
2.3870	0.18360	18.181	75870	2.0270	0.50299	0.016031	3.6065	0.15935	53.6830	80910	2.0172	0.31385	0.008901
2.3020	0.14203	2.329	46220	2.0039	0.47970	0.012249	2.8264	0.13511	7.2054	55320	1.9963	0.38189	0.009747
2.2228	0.18707	16.060	76220	2.0278	0.54541	0.017446	2.6677	0.20439	68.1530	99860	2.0304	0.46472	0.016026

5.4. Енергетична залежність характеристик вироджених карликів

Розглянемо енергетичну залежність радіусів (мас) карликів у рамках низькотемпературної моделі. Виразу (5.7) для тиску у квадратичному наближенні за температурою відповідає такий вираз для середнього значення об'ємної густини внеску електронної підсистеми у вільну енергію моделі:

$$f_e(r) = \frac{\pi m_0^4 c^5}{3h^3} \left\{ 8x^3(r) \left[(1 + x^2(r))^{1/2} - 1 \right] - \mathcal{F}(x(r)) - \left(5.26 \right) - 4\pi^2 \left(\frac{k_B T(r)}{m_0 c^2} \right)^2 x(r) \left[1 + x^2(r) \right]^{1/2} + \dots \right\}.$$

У випадку однорідної моделі з виразу (5.26) випливає електронний внесок формули (5.12). Використовуючи моделювання розподілу температури вздовж радіуса та інтегруючи за об'ємом зорі, отримуємо середнє значення внеску електронної підсистеми (включаючи енергію спокою електронів) у вільну енергію моделі:

$$\tilde{F}_{e} = \frac{E_{0}}{\mu_{e}^{3} \varepsilon_{0}^{3}(x_{0})} \left[1 + \frac{4\pi^{2}}{3} S(x_{0}) \left(\frac{T_{0}^{*}}{\varepsilon_{0}(x_{0})} \right)^{2} \right]^{3/2} \times \\
\times \int_{0}^{\xi_{1}(x_{0})} d\xi \, \xi^{2} \left\{ x^{3}(\xi) (1 + x^{2}(\xi))^{1/2} - \frac{1}{8} \mathcal{F}(x(\xi)) - \\
- \frac{\pi^{2}}{2} x(\xi) (1 + x^{2}(\xi))^{1/2} [(1 + x^{2}(\xi))^{1/2} - 1]^{2} \left(\frac{T_{0}^{*}}{\varepsilon_{0}(x_{0})} \right)^{2} + \ldots \right\},$$
(5.27)

де
$$x(\xi) = \varepsilon(x_0) \left\{ y^2(\xi) + \frac{2}{\varepsilon_0(x_0)} y(\xi) \right\}^{1/2}$$
, а $E_0 = GM_0^2/R_0$.

Енергію гравітаційної взаємодії ядерної підсистеми у цьому наближенні можна записати у вигляді

$$W = -\frac{3}{8} \frac{E_0}{\mu_e^3 \varepsilon_0^3(x_0)} \left\{ 1 + \frac{4}{3} \pi^2 S(x_0) \left(\frac{T_0^*}{\varepsilon_0(x_0)} \right)^2 \right\}^{\frac{5}{2}} \int_0^{\xi_1(x_0)} d\xi \, \xi^2 \mathcal{F}(x(\xi)), \quad (5.28)$$

тому для вільної енергії моделі одержуємо такий вираз:

$$\tilde{F}(x_0, \mu_e, T_0^*) = \frac{E_0}{\mu_e^3 \varepsilon_0^3(x_0)} \left[1 + \frac{4\pi^2}{3} S(x_0) \left(\frac{T_0^*}{\varepsilon_0(x_0)} \right)^2 \right]^{3/2} \times \\
\times \int_0^{\xi_1(x_0)} d\xi \, \xi^2 \left\{ x^3(\xi) (1 + x^2(\xi))^{1/2} - \frac{1}{2} \mathcal{F}(x(\xi)) - \right. \\
\left. - \frac{\pi^2}{2} \left(\frac{T_0^*}{\varepsilon_0(x_0)} \right)^2 \left[x (1 + x^2(\xi))^{1/2} [(1 + x^2(\xi))^{1/2} - 1]^2 \right. \\
+ \left. S(x_0) \mathcal{F}(x(\xi)) \right] + \dots \right\}.$$
(5.29)

Отриманий вираз узагальнює формулу для енергії зорі в моделі холодного карлика [25], у якій у рамках стандартної моделі були зіставлені залежність повної енергії зорі від параметра x_0 із розподілом карликів за цим параметром, а також залежність енергія—радіус — зі спостережуваним розподілом карликів за радіусами. Розглянемо ці співвідношення у рамках чотирипараметричної моделі.

Рис. 5.10. Залежність вільної енергії карлика від параметра x_0 для різних температур ізотермічного ядра в моделі з $\xi_0 = 0.9$ та $\mu_e = 2.035$ та відповідний розподіл карликів (a). Залежність вільної енергії від параметра x_0 при $T_0^* = 0.01$ та розподіл за параметром x_0 карликів з температурами $T_0^* \geq 0.01$ (б).

На рис. 5.10~a зображено залежність вільної енергії карлика від параметра x_0 при $\xi_0=0.9,~\mu_e=2.035$ для трьох значень температури

ізотермічного ядра T_0^* згідно з формулою (5.29). Як бачимо з рис. 5.10, енергія карлика збільшується з підвищенням температури ізотермічного ядра (за фіксованого x_0), а малі значення параметра x_0 енергетично невигідні, унаслідок чого температура ядра накладає обмеження на мінімальне значення параметра x_0 . Як з'ясовано в [25], максимум енергії у стандартній моделі настає при $x_0^* \approx 2.57$, що є наближеною оцінкою верхньої границі параметра релятивізму ($x_0 \leq x_0^*$). Також із рис. 5.10 випливає, що з підвищенням T_0^* зменшується область існування карликів відносно параметра x_0 . За температури $T_0^* \approx 0.05$ замість максимуму на кривій енергії виникає перегин, що свідчить про неможливість існування карликів з вищими температурами ($T_c \geq 3 \cdot 10^8$ K).

Рис. 5.11. Та ж залежність, що й на рис. 5.10, при $T_0^*=0.018$ (суцільна крива) та при $T_0^*=0$ (штрихова). Хрестики – координати 659 карликів з температурами $0.017 \le T_0^* \le 0.019$.

Також на рис. 5.10~a показано розподіл усіх карликів, які ми розглядали (з довільними R, M та $T_{\rm eff}$), за параметром x_0 . Крива рис. 5.10~b відображає вільну енергію, розраховану в тій же моделі для температури $T_0^*=0.02$, проте при побудові діаграми розподілу карликів за x_0 відбирались тільки ті карлики, для яких $T_0^*\geq 0.02$. Несиметричний характер розподілу і той факт, що лівий край розподілу майже збігається з мінімумом кривої для вільної енергії, засвідчують, що значне зменшення x_0 порівняно з $x_0^{min}(T_0^*)$ енергетично невигідне ($x_0^{min}(T_0^*)$)

координата точки мінімуму вільної енергії за заданого T_0^*). Це добре ілюструє рис. 5.11, на якому крива відповідає параметрам $T_0^*=0.018$, $\mu_e=2.025,\ \xi_0=0.9,\$ а хрестики — карликам з такими параметрами: $T_0^*=0.018\pm0.001,\ \mu_e=2.025\pm0.006,\ \xi_0=0.9$ (659 карликів). Як бачимо з рис. 5.11, в області $x_0>2.5$ температура практично не впливає на залежність вільної енергії від параметра x_0 .

Область існування вироджених карликів. На рис. 5.12 зображено область параметрів x_0 та T_0^* для всіх розглянутих спостережуваних карликів (з довільними масами, радіусами та ефективними температурами) у рамках моделі з $\xi_0=0.9$. Чорні кружечки відповідають карликам з високими світностями, зірочки – усім іншим із цієї вибірки.

Рис. 5.12. Область зміни параметрів карликів на площині температура ядрапараметр релятивізму у моделі з $\xi_0=0.9$. Чорні кружечки — координати карликів з табл. 5.3.

Оскільки параметр релятивізму однозначно визначає радіус карлика за заданих μ_e , T_0^* , ξ_0 , то доцільно розглянути залежність енергіярадіус і зіставити її зі спостережуваним розподілом карликів за радіусами (рис. 5.13). Вплив температури на залежність вільної енергії від радіуса є незначним зліва від точки максимуму. Максимум вільної енергії накладає обмеження на максимальне значення параметра x_0 (мінімального радіуса), а мінімум дає оцінку максимального значення

радіуса. Отже, розглянута модель дає змогу визначити області зміни параметра x_0 та радіусів спостережуваних карликів. Такі обмеження неможливо отримати в рамках стандартної моделі Чандрасекара.

Рис. 5.13. Залежність вільна енергія—радіус для трьох значень температури ядра в моделі з $\xi_0=0.9$; спостережуваний розподіл карликів за радіусами (a). Залежність вільна енергія—радіус за температури $T_0^*=0.02$; розподіл за радіусами карликів з $T_0^*\geq 0.02$ (б).

Отже, з'ясовано, що для більшості спостережуваних одинарних карликів застосовне низькотемпературне наближення, де температурні ефекти можна враховувати за теорією збурень, оскільки температурна поправка до рівняння стану виродженого релятивістського електронного газу не перевищує 10% від його значення при T=0 K. У такому наближенні отримано оцінки для центральної температури декількох тисяч спостережуваних карликів спектрального типу DA і проаналізовано залежність цієї величини від вільного параметра моделі – безрозмірного радіуса ізотермічного ядра ξ_0 . Встановлено, що зі збільшенням області карлика, яку займає ізотермічне ядро, значення його центральної температури знижується. Наприклад, у разі вибору $\xi_0 = 0.99$ центральні температури змінюються в межах $16.9 \cdot 10^6 \ \mathrm{K} \le$ $T_c \leq 211.4 \cdot 10^6 \; \mathrm{K}$, а при $\xi_0 = 0.9 - 21.7 \cdot 10^6 \; \mathrm{K} \leq T_c \leq 264.6 \cdot 10^6 \; \mathrm{K}$. На відміну від центральної температури, параметр релятивізму в центрі зорі x_0 є малочутливим до вибору ξ_0 і для розглянутих одинарних спостережуваних карликів змінюється в інтервалі $0.28 \le x_0 \le 3.55$, у цьому разі для переважної більшості з них $x_0 < 2.5$, а тому макроскопічні характеристики цих зір далекі від чандрасекарівської границі.

На відміну від стандартної моделі Чандрасекара, у якій можна визначити лише верхню межу значення параметра релятивізму у центрі зорі x_0 із наявності максимуму в залежності повної енергії карлика (що включає енергію спокою електронів) від цього параметра, у запропонованій моделі центральна температура карлика, що є мірою неповного виродження електронної підсистеми ядра, визначає і нижню межу області існування карликів відносно параметра x_0 . З'ясовано, що з підвищенням температури область існування зменшується. Ці закономірності дають змогу інтерпретувати спостережуваний розподіл карликів за радіусами (масами).

5.5. Опис структури карлика у рамках двофазної моделі

Рис. 5.14. Схема двофазової моделі виродженого карлика.

Недоліком однофазної моделі виродженого карлика, використаної у попередніх параграфах, є недостатньо коректний опис приповерхневих шарів зорі, у яких відбувається перехід від релятивістського виродження до невиродженого стану речовини. Згаданий неrдолік можна усунути у рамках двофазної моделі, схема якої зображена на рис. 5.14. У цій моделі виділено три області з різним термодинамічним станом речовини. Радіус виродженого ізотермічного ядра R_c визначено умовою $\mu(R_c) = 0$, де $\mu(r)$ – локальний хімічний потенціал електронів. У перехідному шарі $(R_c < r < R_\Delta)$ електронна підсистема перебуває на межі виродже-

ння $(\mu(r) < 0)$, тому зовнішній радіус цього шару визначено з умови зникнення виродження $\exp\{-\beta\mu(R_\Delta)\}\gg 1$, або $\beta\mu(R_\Delta)=-C$, де C – додатнє число порядку одиниці. Периферією вважається область, де реалізується рівняння стану класичного ідеального газу, а квантові поправки несуттєві. Рівняння структури зорі у цій області враховують

світловий тиск, унаслідок чого виникає політропна залежність тиску від густини. Використовуючи значення мас, радіусів та ефективних температур, взятих з огляду SDSS DR 4 [33], ми одержали параметри моделі x_0, μ_e, T_0^* (які визначають характеристики ядра) для реальних вироджених карликів.

Маючи на увазі опис карликів з широким спектром мас та ефективних температур, ми не будемо використовувати розкладів Зоммерфельда. Для запису рівняння рівноваги скористаємось рівняннями (2.4) - (2.6), які у випадку неоднорідної ідеальної виродженої релятивістської підсистеми електронів мають такий вигляд:

$$P(r) = \frac{8\pi}{3h^3} \int_{0}^{\infty} dp \, n_p(r) \, p^3 \, \frac{dE_p}{dp},$$

$$n(r) = \frac{8\pi}{h^3} \int_{0}^{\infty} dp \, n_p(r) \, p^2,$$
(5.30)

де P(r) – тиск, n(r) – концентрація електронів на сфері радіуса r,

$$n_p(r) = \{1 + \exp[\beta(r)(E_p - \mu(r))]\}^{-1}$$
 (5.31)

є локальним розподілом електронів (із заданою проекцією спіна) за імпульсами, який визначається локальними значеннями хімічного потенціалу $\mu(r)$ та оберненої температури $\beta(r) = [k_B T(r)]^{-1}$. Функції $\mu(r)$ та $\beta(r)$ визначають градієнт тиску,

$$\frac{dP}{dr} = \frac{8\pi}{3h^3} \int_{0}^{\infty} p^3 \frac{dE_p}{dP} \left\{ \frac{d\mu}{dr} \cdot \frac{dn_p(r)}{d\mu} + \frac{d\beta}{dr} \cdot \frac{dn_p(r)}{d\beta} \right\} dp.$$
 (5.32)

Враховуючи, що

$$\frac{dn_p(r)}{d\mu} = -\frac{dn_p(r)}{dE_p},$$

$$\frac{dn_p(r)}{d\beta} = -\beta^{-1}(r) \left[E_p - \mu(r) \right] \frac{dn_p(r)}{dE_p},$$
(5.33)

після інтегрування частинами одержуємо вираз для градієнта тиску у вигляді

$$\frac{dP}{dr} = n(r)\frac{d\mu}{dr} + \beta^{-1}(r)\frac{d\beta}{dr}\left\{n(r)\mu(r) - \varepsilon(r) - P(r)\right\},\qquad(5.34)$$

у якому фігурує локальне значення об'ємної густини кінетичної енергії електронів

$$\varepsilon(r) = \frac{8\pi}{h^3} \int_0^\infty p^2 n_p(r) E_p dp.$$
 (5.35)

У внутрішніх областях виродженого карлика основним механізмом перенесення енергії є електронний, тому градієнт температури є малим. Через те у рівнянні (5.34) множник $\beta^{-1}(r)d\beta/dr = dT/dr$ відіграє роль малого параметра. За допомогою інтегрування частинами знаходимо, що

$$n(r) \mu(r) - \varepsilon(r) - P(r) = n(r) \mu(r) + \frac{8\pi}{3h^3} \int_{0}^{\infty} dp \, p^3 E_p \, \frac{dn_p(r)}{dp}.$$
 (5.36)

Підінтегральна функція в інтегралі за змінною p суттєво відмінна від нуля в околі точки p_{μ} , що визначається рівнянням $E_{p_{\mu}} = \mu(r)$. Виносячи з-під інтеграла множник E_p у цій точці згідно з теоремою про середнє значення, бачимо, що вираз (5.36) перетворюється в нуль. Тому вираз

$$\frac{dP}{dr} = n(r)\frac{d\mu}{dr} \tag{5.37}$$

є добрим наближенням для градієнта тиску в області ядра виродженого карлика.

Щоб переконатись у цьому, виконаємо розрахунок виразу $n\mu - \varepsilon - P$ в однофазній моделі, застосувавши розклади Зоммерфельда. Оскільки функція (5.35) має розклад

$$\varepsilon = \frac{\pi m_0^4 c^5}{3h^3} \left\{ 8x_\mu^3 \left[(1 + x_\mu^2)^{1/2} - 1 \right] - \mathcal{F}(x_\mu) \right\} + \frac{4\pi^3 m_0^2 c}{3h^3 \beta^2} \left\{ x_\mu \left[\frac{5}{2} (1 + x_\mu^2)^{1/2} - 1 \right] + \frac{1}{2} (1 + x_\mu^2)^{1/2} \times \left[\frac{(1 + x_\mu^2)^{1/2} - 1]^{3/2}}{[(1 + x_\mu^2)^{1/2} + 1]^{1/2}} + \dots \right\},$$
(5.38)

а також беручи до уваги розклади (5.6), бачимо, що основні (явно не залежні від температури) доданки у виразі $(n\mu - \varepsilon - P)$ точно взаємно компенсуються. Доданки, зумовлені температурними поправками,

компенсуються лише частково. Тому їхній внесок до градієнта тиску є малим,

$$\frac{\pi m_0^4 c^5}{h^3} f(x(r)) T(r) \frac{d}{dr} T(r), \tag{5.39}$$

але для моделі з ізотермічним ядром він обертається в нуль. В області, де ізотермічність відсутня, другий доданок у правій стороні рівняння (5.34) даватиме невелику температурну поправку до виразу $\nabla P(r) = n(r) d\mu/dr$.

Використовуючи наближення ізотермічного ядра та наближення (5.37), бачимо, що рівняння рівноваги зводиться до такого рівняння для локального хімічного потенціалу

$$\frac{1}{r^2} \cdot \frac{d}{dr} \left(r^2 \frac{d\mu}{dr} \right) = -\frac{32\pi^2 G(m_u \mu_e)^2}{3h^3} \int_0^\infty dp \, p^2 n_p(r). \tag{5.40}$$

В інтегралі за змінною p функція $\mu(r)$ відіграє роль параметра,

$$n_p(r) = \{1 + \exp\left[\beta_0(E_p - \mu(r))\right]\}^{-1},$$
 (5.41)

де $\beta_0 = (k_B T_0)^{-1}$ – обернена температура ядра. Переходячи до безрозмірних змінних згідно зі співвідношеннями

$$r = \lambda_1 \xi, \quad \mu(r) = \mu(0) y_1(\xi), \quad p = z m_0 c,$$
 (5.42)

де $\mu(0) \equiv \mu(r)$ при $r=0,\ y_1(\xi)$ – безрозмірна функція, і визначаючи масштаб λ_1 умовою

$$\frac{32\pi^2}{3(hc)^3}G[\lambda_1 m_u m_0 c^2 \mu_e \mu_0^*]^2 = 1,$$
(5.43)

зведемо рівняння рівноваги до безрозмірної форми

$$\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{dy_1}{d\xi} \right) = -\frac{3}{(\mu_0^*)^3} \int_0^\infty dz \ z^2 n_z(\xi), \tag{5.44}$$

у якій

$$n_z(\xi) = \{1 + \exp\left[\beta_0^*((1+z^2)^{1/2} - 1 - \mu_0^* y_1(\xi))\right]\}^{-1}, \quad (5.45)$$

$$\beta_0^* \equiv m_0 c^2 \beta_0, \quad \mu_0^* = \mu(0) / m_0 c^2.$$

Рівняння (5.44) доповнимо стандартними граничними умовами

$$y_1(0) = 1, \quad \frac{dy_1}{d\xi} \mid_{\xi=0} = 0,$$
 (5.46)

а також умовою виродження $y_1(\xi_{\Delta}) = -CT_0^*/\mu_0^*$. При цьому μ_0^* визначене з умови нормування числа електронів при r=0 і є функцією параметра релятивізму в центрі ядра x_0 та безрозмірної температури $T_0^* = (\beta_0^*)^{-1}$ як корінь рівняння

$$3\int_{0}^{\infty} dz \, z^{2} \{1 + \exp\left[\beta_{0}^{*}((1+z^{2})^{1/2} - 1 - \mu_{0}^{*})\right]\}^{-1} = x_{0}^{3}.$$
 (5.47)

У границі абсолютного нуля температури хімічний потенціал $\mu(r)$ є локальною енергією Фермі, а рівняння (5.44) є рівнянням для локального значення параметра релятивізму (локальної енергії Фермі чи концентрації електронів). У цьому випадку рівняння (5.44) стає однопараметричним,

$$\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{dy_1}{d\xi} \right) = -\left(y_1^2(\xi) + \frac{2}{\varepsilon_0(x_0)} y_1(\xi) \right)^{3/2}, \tag{5.48}$$

у ньому фігурує тільки параметр x_0 , оскільки $\mu_0^* = (1+x_0^2)^{1/2} - 1 \equiv \varepsilon_0(x_0)$.

Рівняння (5.47) визначає хімічний потенціал у центрі ядра, де параметр x_0 не є надто малим навіть у випадку маломасивних карликів, що дає змогу використати розклади Зоммерфельда [23]. Застосовуючи підстановку

$$\mu_0^* = (1 + x_\mu^2)^{1/2} - 1,$$
 (5.49)

а також розклади Зоммерфельда, рівняння (5.46) зведемо до простого алгебричного рівняння

$$x_0^3 = x_\mu^3 \left\{ 1 + \pi^2 (T_0^*)^2 \frac{2x_\mu^2 + 1}{2x_\mu^4} + \frac{7\pi^4 (T_0^*)^4}{120} \frac{1}{x_\mu^8} + \cdots \right\}.$$
 (5.50)

Збіжність розкладу (5.50) продемонстровано на рис. 5.15, де наведено залежність μ_0^* від T_0^* за фіксованих x_0 для різних наближень:

Рис. 5.15. Температурна залежність безрозмірного хімічного потенціалу в центрі зорі у різних наближеннях за двох значень параметра x_0 .

крива 1 відповідає числовому розрахунку згідно з рівнянням (5.47), крива 2 – аналітичному виразу з точністю до $(T_0^*)^2$, а саме

$$\mu_0^* \approx (1+x_0^2)^{1/2} - 1 - \frac{\pi^2}{3} (T_0^*)^2 \frac{2x_0^2 + 1}{2x_0^2} (1+x_0^2)^{-1/2} + \dots,$$
 (5.51)

а крива 3 відображає чисельно знайдений корінь рівняння (5.50).

Оскільки μ_0^* залежить від параметрів x_0 та T_0^* , то рівняння (5.44) також залежить від цих параметрів і є двопараметричним. Проте розклади Зоммерфельда у правій частині рівняння (5.44) не можна застосувати в усій області зміни ξ , оскільки $\mu_0^*y_1(\xi)$ стає малою величиною і навіть змінює знак біля поверхні ядра. Характер розв'язків рівняння (5.44), знайдених числовим інтегруванням при C=e ($e^C=15.154...$), показано на рис. 5.16. Кожному значенню x_0 відповідає сім'я кривих для різних значень температур в інтервалі $5\cdot 10^7$ К $\leq T_c \leq 2\cdot 10^8$ K, а жирна крива — розв'язок однопараметричного рівняння (5.48). Залежність величини $\xi_\Delta \equiv \xi_\Delta(x_0, T_0^*)$, яка є коренем рівняння $y_1(\xi) = -CT_0^*/\mu_0^*$, від параметра x_0 за фіксованого значення T_0^* зображено на рис. 5.17: жирна крива відповідає $T_0^* = 0$, а верхня крива $-T_0^* \approx 0.01686$ ($T_c = 10^8$ K). Штрихова крива відображає залежність величини ξ_c від параметра x_0 за тієї самої температури. Із рис. 5.16,

5.17 бачимо, що в області $x_0 \ge 0.3$ безрозмірний радіус ізотермічного ядра $\xi_{\Delta}(x_0, T_0^*)$ збільшується з підвищенням температури, проте в цьому випадку радіус його виродженої частини $\xi_c(x_0, T_0^*)$ зменшується. За достатньо малих значень x_0 виродження в центрі ядра зникає.

Рис. 5.16. Розв'язки рівняння (5.44), отримані числовим інтегруванням, для двох значень параметра x_0 . Крива 1 відповідає температурі $5 \cdot 10^7$ K, крива $2 - 1 \cdot 10^8$ K, крива $3 - 2 \cdot 10^8$ K. Жирні криві – розв'язки в наближенні абсолютного нуля температури.

Величина $\xi_{\Delta}(x_0, T_0^*)$ визначає залежність радіуса ізотермічного ядра від параметрів моделі,

$$R_{\Delta}(x_0, T_0^*, \mu_e) = \lambda_1 \xi_{\Delta}(x_0, T_0^*) = \frac{R_0}{\mu_e \mu_0^*} \xi_{\Delta}(x_0, T_0^*), \tag{5.52}$$

де масштаб довжини R_0 визначено формулою (2.28).

Маса ядра визначається розв'язком рівняння (5.44)

$$M_{\Delta}(x_0, T_0^*, \mu_e) = 4\pi \int_0^{R_{\Delta}} dr \, r^2 \rho(r) = 32\pi^2 \lambda_1^3 m_u(\mu_0^*)^3 \mu_e \frac{(m_0 c)^3}{h^3} \times (5.53)$$

$$\times \int_{0}^{\xi_{\Delta}} d\xi \, \xi^{2} \int_{0}^{\infty} dz \, z^{2} n_{z}(\xi) = \frac{M_{0}}{\mu_{e}^{2}} \left\{ \xi^{2} \left| \frac{dy_{1}}{d\xi} \right| \right\} \Big|_{\xi \equiv \xi_{\Delta}(x_{0}, T_{0}^{*})}.$$

Рис. 5.17. Залежність безрозмірного радіуса ізотермічного ядра ξ_{Δ} від параметра релятивізму в центрі зорі x_0 при $T_c=10^8$ К.

Співвідношення (5.52), (5.53) узагальнюють відповідні формули для радіуса та маси холодних карликів та збігаються з ними при $T_0^* = 0$.

Залежність маси ядра від параметра x_0 за фіксованої температури T_0^* зображена на рис. 5.18 (штрихова крива відповідає холодному карлику з $T_0^* = 0$). Відхилення маси ядра карлика за скінченних температур від маси холодного карлика зумовлене підвищенням тиску електронного газу.

Розрахунок кінетичної енергії електронної підсистеми ядра зводиться до обчислення такого двократного інтеграла:

$$E_{kin}^{\Delta}(x_0, T_0^*, \mu_e) = \frac{3E_0}{(\mu_e \mu_0^*)^3} \int_0^{\xi_{\Delta}} d\xi \, \xi^2 \int_0^{\infty} dz \, z^2 [(1+z^2)^{1/2} - 1] n_z(\xi).$$

З використанням рівняння (5.44) розрахуємо енергію гравітаційної взаємодії речовини в ядрі

$$E_{grav}^{\Delta}(x_0, T_0^*, \mu_e) = -\frac{G}{2} \int d\mathbf{r}_1 \int d\mathbf{r}_2 \rho(r_1) \rho(r_2) |\mathbf{r}_1 - \mathbf{r}_2|^{-1} =$$

$$= \frac{3E_0}{\mu_e^3(\mu_0^*)^2} \int_0^{\xi_{\Delta}} d\xi \, \xi^3 \frac{dy_1}{d\xi} \int_0^{\infty} dz \, z^2 n_z(\xi). \tag{5.54}$$

Рис. 5.18. Залежність маси ядра від параметра x_0 при $\mu_e=2,0$. Крива 1 відповідає центральній температурі карлика $T_c=5\cdot 10^7$ K, крива $2-T_c=1\cdot 10^8$ K, крива $3-T_c=2\cdot 10^8$ K. Штрихова крива — випадок абсолютно холодного карлика.

Повне число електронів ядра

$$N_{\Delta}(x_0, T_0^*, \mu_e) = 4\pi \int_0^{R_{\Delta}} dr \, r^2 n(r) =$$

$$= \frac{3E_0}{(\mu_e \mu_0^*)^3} \int_0^{\xi_{\Delta}} d\xi \, \xi^2 \int_0^{\infty} dz \, z^2 n_z(\xi) = (m_u \mu_e)^{-1} M_{\Delta}(x_0, T_0^*, \mu_e).$$
(5.55)

Тому повну енергію ядра (з урахуванням енергії спокою електронів) запишемо у такому вигляді:

$$\tilde{E}_{\Delta}(x_0, T_0^*, \mu_e) = E_{kin}^{\Delta} + E_{grav}^{\Delta} + N_{\Delta} m_0 c^2 =$$

$$= \frac{3E_0}{(\mu_e \mu_0^*)^3} \int_0^{\xi_{\Delta}} d\xi \, \xi^2 \int_0^{\infty} dz \, z^2 n_z(\xi) \left\{ (1 + z^2)^{1/2} + \xi \, \mu_0^* \frac{dy_1}{d\xi} \right\}.$$
(5.56)

Залежність $\tilde{E}_{\Delta}(x_0, T_0^*, \mu_e)$ від параметра x_0 за фіксованих T_0^* для $\mu_e = 2,0$ показано на рис. 5.19. Штрихова крива відповідає абсолютно холодному карлику, у якому ядро займає весь його об'єм. Відхилення

енергії при $T_0^* \neq 0$ від енергії холодного карлика в загальних рисах таке саме, що й для маси, та зумовлене тими ж чинниками.

Рис. 5.19. Залежність повної енергії ядра від параметра x_0 при $\mu_e=2,0$. Крива 1 відповідає температурі в центрі карлика $T_c=5\cdot 10^7$ K, крива $2-T_c=1\cdot 10^8$ K, крива $3-T_c=2\cdot 10^8$ K. Штрихова крива відповідає $T_c=0$ K.

Залежність товщини перехідного шару від параметра x_0 за фіксованої температури зображено на рис. 5.20. Бачимо, що перехідний шар робить відчутний внесок у масу карлика при $x_0 \le 1$, і цей внесок збільшується з підвищенням температури. Наведемо значення тиску та його градієнта на поверхні ядра, що знадобиться для опису периферійної області карлика, згідно з умовою $\mu(R_{\Delta}) = -Ck_BT_c$:

$$P_e(R_{\Delta}) = \frac{8\pi m_0^4 c^5}{3h^3} \int_0^{\infty} \frac{dz \, z^4}{\sqrt{1+z^2}} \{1 + \exp[\beta_0^* ((1+z^2)^{1/2} - 1) + C]\}^{-1}, \quad (5.57)$$

$$n(R_{\Delta}) = \frac{8\pi (m_0 c)^3}{h^3} \int_0^{\infty} dz \, z^2 \{1 + \exp[\beta_0^* ((1+z^2)^{1/2} - 1) + C]\}^{-1}.$$

Рис. 5.20. Залежність товщини перехідного шару від параметра x_0 . Крива t відповідає температурі у центрі карлика t0 t1 к, крива t2 – t3 t4 крива t3 – t4 t5 К, крива t5 – t6 К.

Переходячи до змінної $t=\beta_0^*\{(1+z^2)^{1/2}-1\},$ отримуємо вирази

$$P_e(R_\Delta) = (2m_0)^{3/2} \frac{(k_B T_c)^{5/2}}{3\pi^2 \hbar^3} \int_0^\infty \frac{dt \, t^{3/2}}{e^{(t+C)} + 1} \left\{ 1 + \frac{t}{2} T_0^* \right\}^{3/2}, \tag{5.58}$$

$$n(R_{\Delta}) = (2m_0)^{3/2} \frac{(k_B T_c)^{3/2}}{3\pi^2 \hbar^3} \int_0^{\infty} \frac{dt \ t^{1/2}}{e^{(t+C)} + 1} \left\{ 1 + t T_0^* \right\} \left\{ 1 + \frac{t}{2} T_0^* \right\}^{1/2},$$

у яких використаємо розклади за малим параметром T_0^* . Відповідно до формули (5.37),

$$\frac{dP_e}{dr}|_{r=R_{\Delta}} = \frac{\mu_0^* m_0 c^2}{\lambda_1} n(R_{\Delta}) \frac{dy_1}{d\xi} |_{\xi=\xi_{\Delta}}.$$
 (5.59)

5.5.1. Структура периферійної області. У стандартних позначеннях рівняння структури периферійної області можна записати у вигляді

$$\frac{dP}{dr} = -G\frac{M(r)}{r^2}\rho(r),$$

$$\frac{dP_{\Phi}}{dr} = -\frac{L(r)\rho(r)\kappa(r)}{4\pi cr^2}.$$
(5.60)

Тут $\kappa(r)$ – непрозорість на сфері радіусом r; L(r) – світність; $P_{\Phi}(r) = \frac{1}{3}aT^4(r)$ – світловий тиск; T(r) – температура; $P(r) = P_g(r) + P_{\Phi}(r)$ – сума газового та світлового тисків $(R_{\Delta} \leq r \leq R)$. Газовий тиск задамо рівнянням стану ідеального газу

$$P_g(r) = \rho(r) \frac{R_*}{\mu_*} T(r),$$
 (5.61)

де $R_* \equiv k_B/m_u$, а $\mu_* \equiv \langle \mu \rangle/m_u$ – безрозмірна середня молекулярна маса.

Розділивши почленно рівняння (5.60), отримуємо таке диференціальне рівняння:

$$\frac{dP_g}{dP_{\Phi}} = \frac{4\pi cGM(r)}{\kappa(r)L(r)} - 1. \tag{5.62}$$

Далі використаємо стандартні наближення, які застосовують звичайно у теорії холодних карликів. Для коефіцієнта непрозорості приймемо наближення Крамерса

$$\kappa(r) = \kappa_0 \ \rho(r) \ T^{-7/2}(r),$$
(5.63)

де κ_0 залежить тільки від хімічного вмісту (див., наприклад, [12]), а також виконаємо заміну $M(r) \to M, L(r) \to L$, де M, L — маса та світність карлика. Такі наближення дають змогу в рівнянні (5.62) перейти від змінної r до змінної T(r). Якщо підставити вираз (5.63) у рівняння (5.62) та виключити $\rho(r)$, використовуючи рівняння стану (5.61), то отримаємо рівняння

$$P_g(r)dP_g(r) = \frac{4\pi c \, GM}{\kappa_0 L} T^{9/2}(r) \frac{R_*}{\mu_*} \, dP_\Phi - P_g(r) dP_\Phi, \tag{5.64}$$

яке визначає залежність газового тиску від температури. Оскільки світловий тиск становить невелику частку від повного тиску, то другий доданок у правій стороні рівняння (5.64) можна враховувати за теорією збурень. Такий спосіб дає змогу легко визначити структуру розв'язку рівняння (5.64) з граничними умовами $P_g(R) = T(R) = 0$ та шукати його у вигляді такого ряду:

$$P_g(r) = A^{1/2} T^{17/4}(r) \sum_{n>0} b_n \left(\frac{a}{A^{1/2}}\right)^n T^{-n/4}(r)$$
 (5.65)

із невідомими коефіцієнтами b_n при

$$A = \frac{64 \pi c \, GM}{51 \kappa_0 L} \frac{R_*}{\mu_*} \, a. \tag{5.66}$$

Підставимо розклад (5.65) у рівняння (5.64) та проінтегруємо почленно на інтервалі $(r \div R)$, де $r \ge R_\Delta$. Прирівнюючи коефіцієнти при однакових степенях T(r), отримуємо ланцюжок рекурентних співвідношень: $b_0^2=1$; $2b_0b_1=-\frac{32}{99}\,b_0$; $b_1^2+2b_0b_2=-\frac{1}{3}\,b_1$; $2b_0b_3+2b_1b_2=-\frac{32}{99}\,b_2$; $b_2^2+2b_0b_4+2b_1b_3=-\frac{32}{90}\,b_3$ і т. д., з яких знаходимо

$$b_0 = 1;$$
 $b_1 = -\frac{16}{99};$ $b_2 = \frac{8 \cdot 17}{(99)^2} \approx \frac{1}{2} b_1^2;$ (5.67)
 $b_3 = -\frac{16^2 \cdot 17}{31(99)^3} \approx \frac{1}{31} b_1^3;$ $b_4 \approx -\frac{1}{2} b_2^2 \sim 10^{-4},$ і т.д.

Якщо врахувати, що всі коефіцієнти b_n при $n \geq 3$ достатньо малі, то задля компактності запису розклад (5.65) можна зобразити у вигляді такої апроксимації:

$$P_g(r) \cong A^{1/2} T^{17/4}(r) \exp \left\{ -\frac{16}{99} \frac{a}{A^{1/2}} T^{-1/4}(r) \right\}.$$
 (5.68)

Згідно з рівнянням стану (5.61) одержуємо таку температурну залежність густини:

$$\rho(r) = \frac{\mu_*}{R_*} A^{1/2} T^{13/4}(r) \exp\left\{-\frac{16}{99} \frac{a}{A^{1/2}} T^{-1/4}(r)\right\}.$$
 (5.69)

Вона справджується у всій області, яку ми розглядаємо. Якщо прийняти $r=R_{\Delta}$, то з формули (5.69) знайдемо співвідношення між $\rho(R_{\Delta})$, $T(R_{\Delta})$ та L. Для того, щоб отримати оцінку залежності $T_0 \equiv T(R_{\Delta})$ від L, запишемо співвідношення між $\rho(R_{\Delta})$ і $T(R_{\Delta})$, використовуючи головний член розкладу для тиску у формулі (5.58),

$$\alpha_{3/2} \frac{(2m_0)^{3/2}}{3\pi^2\hbar^3} (k_B T_0)^{5/2} \cong \rho(R_\Delta) \frac{k_B T_0}{\mu_* m_u}, \quad \alpha_\gamma = \int_0^\infty \frac{dt \, t^\gamma}{e^{(t+C)} + 1}, \quad (5.70)$$

із якого знаходимо, що

$$\rho(R_{\Delta}) \simeq \mu_* m_u T^{3/2}(R_{\Delta}) \,\alpha_{3/2} \,\frac{(2k_B m_0)^{3/2}}{3\pi^2 \hbar^3}.\tag{5.71}$$

Виключивши $\rho(R_{\Delta})$ із системи рівнянь (5.69) (при $r=R_{\Delta}$) та (5.71), отримуємо рівняння, що визначає залежність температури ядра від світності та маси зорі:

$$Z = \exp\left\{-Z^{1/2} (T_0^*)^{3/2} \frac{16\pi^4}{99 \cdot 5\sqrt{2} \,\alpha_{3/2}}\right\}.$$
 (5.72)

Тут використано такі позначення:

$$Z \equiv LT_0^{-7/2} d^{-1}; \quad d = \frac{\pi^4}{85} \frac{GMh^3}{\kappa_0 \mu_* m_u c^2 \alpha_{3/2}^2 m_0^3}.$$
 (5.73)

Розглянемо рівняння (5.72) як рівняння відносно Z за заданої T_0^* і застосуємо до нього метод послідовних наближень. У нульовому наближенні $Z^{(0)}(T_0^*)=1$ (що відповідає моделі низькотемпературних карликів) і тому $T_0^{(0)}=(L/d)^{2/7}$. У першому наближенні

$$Z^{(1)}(T_0^*) = \exp\left\{-\left(T_0^*\right)^{3/2} \frac{16}{99} \frac{\pi^4}{5\sqrt{2} \alpha_{3/2}}\right\},$$

$$T_0^{(1)} = \left(\frac{L}{d}\right)^{2/7} \exp\left\{\frac{32}{99 \cdot 35\sqrt{2} \alpha_{3/2}} \left(\frac{L}{d}\right)^{3/7} \left(\frac{k_B}{m_0 c^2}\right)^{3/2}\right\},$$
(5.74)

і т. д. Оскільки $T_0^*=1$ за температури $T_c=6.04\cdot 10^9$ K, то відхилення кореня рівняння (5.72) від одиниці буде значним за температури порядку 10^9 K, що, ймовірно, значно перевищує температури ядер найгарячіших карликів. Як приклад розглянемо холодний карлик масою $M=M_{\odot}$, світністю $L=10^{-2}L_{\odot}$ та хімічним складом із такими масовими частками водню, гелію та важких елементів: $X=0;\ Y=0.9;\ Z=0.1.$ Уважатимемо, що речовина в периферійній області повністю іонізована, тому

$$\mu_* = \left[2X + \frac{3}{4}Y + \frac{1}{2}Z\right]^{-1},\tag{5.75}$$

а $\kappa_0=4.34\cdot 10^{24}Z(1+X)~{\rm cm}^2/{\rm r}$. Із формул (5.74) отримаємо оцінку температури ядра $T_c\approx 10^7~{\rm K}$. Для гарячого карлика масою $M=0.4M_\odot$, світністю $L=10L_\odot$ і тим самим хімічним вмістом отримаємо $T_c\approx 1.5\cdot 10^8~{\rm K}$.

Розглянута схема опису периферійної області близька до політропного наближення: згідно з формулами (5.60), (5.68) повний тиск у цій області

$$P(r) = A^{1/2} T^{17/4}(r) \left\{ 1 + \frac{a}{3A^{1/2}} T^{-1/4}(r) \left[1 - \frac{16}{33} \right] + \dots \right\} \approx$$

$$\approx A^{1/2} T^{17/4}(r) \exp \left\{ \frac{17}{99} \frac{a}{A^{1/2}} T^{-1/4}(r) \right\}. \tag{5.76}$$

Формулу (5.69) перепишемо в такому вигляді:

$$T(r) = \left(\rho(r) \frac{R_*}{\mu_* A^{1/2}}\right)^{4/13} \exp\left\{\frac{64}{13 \cdot 99} \frac{a}{A^{1/2}} T^{-1/4}(r)\right\} \approx (5.77)$$

$$\approx \left(\rho(r) \frac{R_*}{\mu_* A^{1/2}}\right)^{4/13} \left\{1 + \frac{64}{13 \cdot 99} \frac{a}{A^{1/2}} \left(\rho(r) \frac{R_*}{\mu_* A^{1/2}}\right)^{-1/13} + \dots\right\},$$

оскільки $a/A^{1/2}$ є малим параметром. Підставивши вираз (5.77) у формулу (5.76), отримаємо майже політропну залежність між тиском та густиною

$$P(r) \cong A^{-2/13} \left(\rho(r) \frac{k_B}{\mu_* m_u} \right)^{17/13} + \frac{17}{13} \cdot \frac{29}{99} a A^{-8/13} \left(\rho(r) \frac{k_B}{\mu_* m_u} \right)^{16/13} + \dots$$
(5.78)

Оскільки другий доданок в останньому співвідношенні є малою величиною, то отримана політропа має показник $\nu=17/13$, що дуже близький до значення $\nu_E=4/3$ у стандартній моделі Еддінгтона для нормальних зір (див., наприклад, [8]), у якій використано припущення, що відношення світлового тиску до повного є величиною сталою вздовж радіуса зорі. Зазначимо, що таке припущення більше підходить для периферійної області карлика, ніж для нормальної зорі загалом.

Співвідношення (5.69) та (5.78) дають змогу перетворити перше з рівнянь (5.60) і записати його як рівняння, що визначає радіальний розподіл температури

$$\frac{dT}{dr}\left(1 + \frac{a}{3A^{1/2}}T^{-1/4}(r)\right) \approx -\frac{4}{17}\frac{GM(r)}{r^2}\frac{\mu_* m_u}{k_B}.$$
 (5.79)

Якщо замінити масу M(r) її середнім значенням у периферійній області зорі $(< M> \approx 1/2(M_{\Delta}+M))$ і проінтегрувати в межах від r до R

за умови T(R) = 0, то отримаємо співвідношення

$$T(r) + \frac{4}{9} \frac{a}{A^{1/2}} T^{3/4}(r) \cong \frac{4}{17} \frac{G < M > \mu_* m_u}{k_B} \left(\frac{1}{r} - \frac{1}{R}\right).$$
 (5.80)

При $r = R_{\Delta}$ знаходимо співвідношення між T_0, R_{Δ} і R:

$$R = R_{\Delta} \left\{ 1 - T_0 \left(1 + \frac{4}{9} \frac{a}{A^{1/2}} T_0^{-1/4} \right) \frac{17}{4} \frac{k_B R_{\Delta}}{G < M > \mu_* m_u} \right\}^{-1}.$$
 (5.81)

Це співвідношення дає змогу оцінити відношення R_{Δ}/R за відомої температури ядра T_0 . Для холодного карлика з масою $M_{\Delta} \approx M_{\odot}$, радіусом $R \approx 10^{-2} R_{\odot}$ та світністю $L = 10^{-2} L_{\odot}$ отримуємо $(R - R_{\Delta}) R_{\Delta}^{-1} \approx 1.5 \cdot 10^{-2}$, що відповідає стандартним уявленням [12]. Проте для карлика з масою $M \approx M_{\odot}/3$, радіусом $R \approx 2 \cdot 10^{-2} R_{\odot}$ і світністю $L = 10 L_{\odot}$ отримуємо $R_{\Delta}/R \approx 1/2$. Тому периферійна область гарячих карликів може робити суттєві внески в їхні макроскопічні характеристики. Співвідношення (5.50) можна розглядати і як рівняння для оцінки температури ядра за відомими значеннями повної маси та радіуса (R_{Δ}) та M_{Δ} визначені температурою ядра). Для грубої оцінки температури запишемо співвідношення (5.50) в такому вигляді:

$$T_0^* \approx \frac{4}{17} \frac{\langle M \rangle}{M_0} \frac{R_0}{R} \,\mu_* \left(\frac{R}{R_\Delta} - 1\right).$$
 (5.82)

У випадку холодного карлика, для якого $< M > /M_0 \approx 1/3$, $R \approx R_0$, $R/R_{\Delta}-1 \approx 10^{-2}$, знаходимо, що $T_0^* \approx 10^{-3}$, або $T_0 \approx 6 \cdot 10^6$ К. Для гарячого маломасивного карлика з $< M > /M_0 \approx 1/6$, $R \approx 2R_0$, $R_{\Delta} \approx R_0$ маємо $T_0^* \approx 2 \cdot 10^{-2}$, або ж $T_0 \approx 10^8$ К. Зі співвідношення (5.51) також випливає висновок, що розмір периферійної області пропорційний до температури ізотермічного ядра.

Як з'ясовано вище, рівняння (5.60) приводять до політропної залежності між тиском і температурою. Хоча ці рівняння ми розглядали наближено, наявність політропної залежності та отримані якісні висновки не викликають сумнівів. З огляду на це для розрахунку характеристик периферійної області використаємо політропну модель як альтернативний підхід, без наближень, зроблених вище.

З урахуванням основного члена ряду (5.78) отримаємо політропну залежність

$$P(r) = K \rho^{\nu}(r). \tag{5.83}$$

Згідно з формулою (5.69), співвідношення (5.76) еквівалентне такому зображенню політропи:

$$P(r) = D T^{1+n}(r), \qquad \rho(r) = D T^{n}(r) \frac{\mu_* m_u}{k_B},$$
 (5.84)

де $n=(\nu-1)^{-1},\,D=\left(\frac{k_B}{\mu_*m_u}\right)^{1+n}K^{-n}$. Формули (5.84) справджуються для довільних значень K та ν . Згідно з попередніми розрахунками $\nu=17/13,\,K=A^{(1-\nu)/2},\,$ тому $D=A^{1/2}.$

Відповідно до альтернативного підходу, у цьому розділі використаємо зображення (5.84), однак параметр D визначимо з умови рівності тисків на внутрішній межі периферійної області

$$P_e(R_\Delta) = D T_c^{1+n}.$$
 (5.85)

Прирівнявши градієнти тиску зліва та справа від точки $r=R_{\Delta}$ (що є умовою стійкої механічної рівноваги)

$$\frac{dP_e(r)}{dr}\Big|_{r=R_{\Delta}-\delta} = D\left(1+n\right)T_c^n\frac{dT}{dr}\Big|_{r=R_{\Delta}+\delta},\qquad(5.86)$$

 $(\delta \to +0)$, знайдемо градієнт температури в точці $r=R_\Delta+\delta$

$$\frac{dT}{dr}|_{r=R_{\Delta}+\delta} = \frac{T_c}{1+n} \frac{1}{P_e(R_{\Delta})} \frac{dP_e}{dr}|_{r=R_{\Delta}-\delta}.$$
 (5.87)

Індекс політропи вважатимемо вільним параметром, що може змінюватись в околі значення $n_* = 3.0$.

Підставляючи (5.84) у рівняння механічної рівноваги, отримуємо рівняння для локальної температури у сферичному шарі $R_{\Delta} \leq r \leq R$

$$(1+n)\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dT}{dr}\right) = -4\pi GD\left(\frac{\mu_* m_u}{k_B}\right)^2 T^n(r)$$
 (5.88)

з граничними умовами $T(R_{\Delta}) = T_c$, T(R) = 0, а згідно з (5.58), (5.59) та (5.88), враховуючи головні члени розкладу за параметром T_0^* –

$$\frac{dT}{dr}|_{r=R_{\Delta}+\delta} = \frac{3}{2} \frac{\alpha_{1/2}}{\alpha_{3/2}} \frac{\mu_0^*}{\lambda_1 k_B} m_0 c^2 \frac{dy_1}{d\xi}|_{\xi=\xi_{\Delta}}.$$
 (5.89)

Рівняння (5.88) відрізняється від рівняння Лена–Емдена в теорії нормальних зір граничною умовою для похідної $(dT/dr \mid_{r=R_{\Delta}} \neq 0)$. Якщо використати безрозмірні змінні

$$r = \lambda_2 \eta, \quad T(r) = T_c y_2(\eta) \tag{5.90}$$

і визначити масштаб λ_2 умовою

$$1 + n = 4\pi GD \left(\frac{\mu_* m_u}{k_B} \lambda_2\right)^2 T_c^{n-1}, \tag{5.91}$$

то рівняння (5.87) набуде безрозмірної форми рівняння Лена-Емдена

$$\frac{1}{\eta^2} \frac{d}{d\eta} \left(\eta^2 \frac{dy_2}{d\eta} \right) = -y_2^n(\eta). \tag{5.92}$$

Безрозмірна координата змінюється в інтервалі $\eta_{\Delta} \leq \eta \leq \eta_R$, де $\eta_{\Delta} \equiv R_{\Delta}/\lambda_2 = \xi_{\Delta}\lambda_1/\lambda_2$, а η_R визначене умовою на границі зорі $y_2(\eta_R) = 0$. Рівняння (5.92) задовольняє умови на границі ядра:

$$y_2(\eta_{\Delta}) = 1, \qquad \frac{dy_2}{d\eta}|_{\eta = \eta_{\Delta}} = \frac{3}{2} \frac{\alpha_{1/2}}{\alpha_{3/2}} \mu_0^* \frac{\lambda_2}{\lambda_1 T_0^*} \frac{dy_1}{d\xi}|_{\xi = \xi_{\Delta}}.$$
 (5.93)

Відповідно до (5.91)

$$\lambda_2 = R_0 \left(\frac{1+n}{\alpha_{3/2}} \right)^{1/2} \frac{1}{\mu_*} 2^{-3/4} (T_0^*)^{-1/4}, \tag{5.94}$$

де R_0 задане виразом (2.28), тому похідна

$$\frac{dy_2}{d\eta}|_{\eta=\eta_{\Delta}} = \frac{3}{2^{7/4}} \frac{\alpha_{1/2}}{\alpha_{3/2}^{3/2}} (1+n)^{1/2} (\mu_0^*)^2 \frac{\mu_e}{\mu_*} \frac{dy_1}{d\xi}|_{\xi=\xi_{\Delta}} (T_0^*)^{-5/4}$$
 (5.95)

є великою за модулем від'ємною величиною (оскільки $T_0^* \ll 1$), з чим і пов'язані особливості розв'язків рівняння (5.92). Як відомо [13], крім регулярних розв'язків, рівняння Лена-Емдена має розв'язки типу $y(\eta) \sim c_1 + c_2/\eta$, які при $\eta \to 0$ стають сингулярними та не мають фізичного змісту. Біля поверхні зорі можна знехтувати правою частиною рівняння (5.92) (при $n \approx n_*$), тому асимптотика його розв'язку близька до розв'язку лінійного рівняння

$$\frac{d^2y}{d\eta^2} + \frac{2}{\eta} \frac{dy}{d\eta} = 0, \tag{5.96}$$

що має асимптотику

$$y_2(\eta) \xrightarrow{\eta \to \eta_R} C_2\left(\frac{1}{\eta} - \frac{1}{\eta_R}\right).$$
 (5.97)

Рис. 5.21. Розв'язки рівняння (5.92) за початкової умови $dy_2/d\eta = -b$ при $\eta = \eta_{\Delta}$ (b = 1, 2, 3, 4, 5): отримані числовим інтегруванням – суцільні криві, в аналітичній формі (5.98) – штрихові.

Якщо рівняння (5.92) задовольняє граничну умову $|dy_2/d\eta|_{\eta=\eta_{\Delta}}\gg 1$, то права частина цього рівняння є несуттєвою за всіх значень $\eta\geq\eta_{\Delta}$, а його розв'язок не надто відхиляється від функції

$$y_2(\eta) = 1 + \left| \frac{dy_2}{d\eta} \right|_{\eta = \eta_{\Delta}} \left(\frac{1}{\eta} - \frac{1}{\eta_{\Delta}} \right). \tag{5.98}$$

Це підтверджено числовими розв'язками модельної задачі, а саме — рівнянням (5.92) при $dy_2/d\eta|_{\eta=\eta_\Delta}=-b$, де b=1,2,3,5 (рис. 5.21). Підставивши $\eta=\eta_R,\,y_2(\eta_R)=0$ у вираз (5.94), отримаємо, що

$$\eta_R \approx \eta_\Delta + \left| \frac{dy_2}{d\eta} \right|_{\eta=\eta_\Delta}^{-1} + \dots,$$
(5.99)

a

$$R - R_{\Delta} = \lambda_2 (\eta_R - \eta_{\Delta}) \simeq R_0 T_0^* \frac{2}{3} \frac{\alpha_{3/2}}{\alpha_{1/2}} \frac{1}{(\mu_0^*)^2 \mu_e} \left| \frac{dy_1}{d\xi} |_{\xi = \xi_{\Delta}} \right|^{-1}.$$
 (5.100)

Із цієї формули, яка має якісний характер, випливає висновок, що розмір периферійної області пропорційний до температури ізотермічного ядра. Числові розв'язки рівняння (5.92) для моделі карлика з конкретними параметрами (x_0 , μ_e , T_0^*) зображено на рис. 5.22, а залежність η_R від цих параметрів — на рис. 5.23.

Рис. 5.22. Розв'язки рівняння (5.92), знайдені числовим інтегруванням. Суцільні криві відповідають $x_0=0.5$, штрихові — $x_0=1.0$. Кривим 1 відповідає $T_c=5\cdot 10^7$ K, кривим $2-T_c=1\cdot 10^8$ K, кривим $3-T_c=2\cdot 10^8$ K.

Розв'язки рівняння (5.92) визначають макроскопічні характеристики карлика – його радіує та масу:

$$R = R_{\Delta} + \lambda_2(\eta_R - \eta_{\Delta}); \tag{5.101}$$

$$M = M_{\Delta} + 4\pi \frac{\mu_* m_u}{k_B} T_0^n D \lambda_2^3 \int_{\eta_{\Delta}}^{\eta_R} d\eta \eta^2 y_2^n(\eta) = M_{\Delta} + 4\pi \lambda_2^3 \rho_{\Delta} \left\{ \gamma_R - \gamma_{\Delta} \right\},$$

де

$$\gamma_{\Delta} = \left\{ \eta^2 \left| \frac{dy_2}{d\eta} \right| \right\} |_{\eta = \eta_{\Delta}}; \quad \gamma_R = \left\{ \eta^2 \left| \frac{dy_2}{d\eta} \right| \right\} |_{\eta = \eta_R}.$$
 (5.102)

Як відомо, густина внутрішньої енергії в політропній моделі пропорційна до тиску,

$$\mathcal{E}(\rho) = \frac{P(\rho)}{\nu - 1} = nDT^{n+1}(r). \tag{5.103}$$

Рис. 5.23. Залежність безрозмірного радіуса зорі від параметра x_0 . Крива t_0 відповідає t_0 від t_0 відповідає t_0 від t_0 від t_0 відповідає

Тому повна внутрішня енергія периферійної області

$$U = 4\pi \int_{R_{\Delta}}^{R} dr r^{2} \mathcal{E}(r) = 4\pi n D T_{0}^{n+1} \lambda_{2}^{3} I_{n}, \qquad (5.104)$$

$$I_{n} = \int_{\eta_{\Delta}}^{\eta_{R}} d\eta \eta^{2} y_{2}^{n+1}(\eta).$$

Гравітаційна енергія речовини периферії в полі ядра

$$W_{12} = 4\pi \int_{R_{\Delta}}^{R} dr r^{2} \rho(r) \left\{ -G \frac{M_{\Delta}}{r} \right\} = -4\pi G M_{\Delta} \lambda_{2}^{2} \rho_{\Delta} J_{n},$$

$$J_{n} = \int_{\eta_{\Delta}}^{\eta_{R}} d\eta \, \eta y_{2}^{n}(\eta). \tag{5.105}$$

Енергія гравітаційної взаємодії речовини в периферійній області теж визначена інтегралами I_n , J_n :

$$W_{22} = -\frac{1}{2}G \int_{V}^{\infty} d\vec{r_1} d\vec{r_2} \rho(r_1) \rho(r_2) |\vec{r_1} - \vec{r_2}|^{-1} =$$

$$= -16\pi^2 G \int_{R_{\Delta}}^{R} dr_1 r_1 \rho(r_1) \int_{R_{\Delta}}^{r_1} dr_2 r_2^2 \rho(r_2) =$$

$$= 16\pi^2 G \lambda_2^5 \rho_{\Delta}^2 \left\{ \int_{\eta_{\Delta}}^{\eta_R} d\eta \, \eta^3 y_2^n(\eta) \frac{dy_2(\eta)}{d\eta} + \gamma_{\Delta} J_n \right\} =$$

$$= 16\pi^2 G \lambda_2^5 \rho_{\Delta}^2 \left\{ -\frac{\eta_{\Delta}^3}{1+n} - \frac{3}{1+n} I_n + \gamma_{\Delta} J_n \right\}.$$
(5.106)

Використавши рівняння (5.92) та проінтегрувавши частинами, знаходимо значення безрозмірних інтегралів (див. (5.102)):

$$I_{n} = \frac{1+n}{5-n} \left\{ \frac{\gamma_{R}^{2}}{\eta_{R}} - \frac{\gamma_{\Delta}^{2}}{\eta_{\Delta}} + \gamma_{\Delta} - 2\frac{\eta_{\Delta}^{3}}{1+n} \right\}, \qquad J_{n} = 1 + \frac{\gamma_{R}}{\eta_{R}} - \frac{\gamma_{\Delta}}{\eta_{\Delta}}. \quad (5.107)$$

5.6. Визначення параметрів моделі за спостережуваними даними

Фактично у розглянутій моделі можна виділити параметри, що стосуються опису ізотермічного ядра (x_0, μ_e, T_0^*) , і параметри, що описують периферійну область (μ_*, n) . Як уже зазначено, n може змінюватись у невеликій області біля значення n=3.0, тому розрахунки характеристик були виконані для двох граничних значень $(n_1=3.0$ та $n_2=3.25)$. Виявилось, що результати слабо залежать від вибору n. Параметр μ_* визначений хімічним вмістом, та оскільки периферія складається з легких елементів, то як перше наближення ми прийняли значення $\mu_*=1.4$, що відповідає середньому хімічному вмісту Сонця.

Визначимо параметри двофазної моделі для тих самих зір, що розглянуті вище у рамках однофазової моделі. З огляду на це для параметра μ_e взято значення, отримані у цій моделі. Невідомі параметри ізотермічного ядра x_0 і T_0^* знайдемо, використовуючи значення мас та радіусів вироджених карликів спектрального типу DA [33] і зіставимо

Рис. 5.24. Область зміни параметрів карликів з каталогу [33] на площині температура ядра — параметр релятивізму. Чорні кружечки відповідають однофазній моделі в разі вибору параметра $\xi_0=0.9$, хрестики — двофазній моделі.

їх з результатами, одержаними у рамках однофазної моделі. Значення x_0 і T_0^* , отримані в рамках двофазної моделі, мало відрізняються від аналогічних результатів з однофазної моделі для випадку типових (холодних та масивних) карликів. Найбільш суттєве відхилення результатів обох моделей стосується значень центральної температури карликів та її залежності від параметра релятивізму в центрі зорі x_0 , а також ефективної температури фотосфери $T_{\rm eff}$. На рис. 5.24 на площині параметрів $x_0 - T_0^*$ зображено координати близько трьох тисяч карликів. Координати, отримані в рамках однофазної моделі при $\xi_0 = R_c/R = 0.9$, позначені точками, а знайдені у рамках двофазної моделі – хрестиками. Як бачимо з рис. 5.24, відхилення незначні в області $x_0 \ge 1.5$, однак за малих значень x_0 центральні температури, отримані в однофазній моделі, значно занижені (до трьох – чотирьох разів). Як видно з рис. 5.25, залежність між центральною та ефективною температурами в рамках двофазної моделі не суперечить загальним фізичним уявленням, на відміну від результатів однофазної моделі, які для маломасивних карликів є неправдоподібними.

Рис. 5.25. Залежність центральної температури T_0^* від ефективної $T_{\rm eff}$ для вибірки карликів спектрального типу DA [33].

У додатку II наведено характеристики і параметри вироджених карликів спектрального типу DA [33], отримані в моделях, розглянутих вище. Опис гарячих маломасивних карликів є основним завданням цього розділу, тому доцільно окремо навести параметри, отримані у двофазній моделі, для невеликої вибірки саме таких зір (таблиця 5.4).

Таблиця 5.4

Характеристики та параметри гарячих вироджених карликів ($T_{\rm eff} \geq 45000{
m K}$) із розглянутої вибірки (див. додаток) у рамках двофазної моделі. Для порівняння наведено параметри однофазної моделі (з індексом 1) при виборі значення радіуса ізотермічного ядра $\xi_0=0.995$.

Номер	R/R_0	M/M_0	$T_{ m eff}$	L/L_{\odot}	T_0^*	x_0	ξ_{Δ}	$x_0^{(1)}$	$T_0^{*(1)}$	μ_e
387	1.31	0.225	49890	1.020	0.0754	1.12	0.800	1.030	0.0210	2.031
880	1.37	0.215	47210	0.899	0.0786	1.04	0.776	0.964	0.0196	2.031
921	1.30	0.232	54370	1.420	0.0858	1.13	0.784	1.050	0.0222	2.031
1186	1.26	0.239	55640	1.460	0.0825	1.19	0.802	1.100	0.0231	2.030
1300	1.39	0.215	48520	1.030	0.0883	1.02	0.752	0.952	0.0197	2.031
2472	1.28	0.232	51770	1.140	0.0790	1.15	0.800	1.070	0.0220	2.031
2531	1.35	0.222	50170	1.100	0.0833	1.07	0.775	0.996	0.0206	2.031
2665	1.39	0.211	45150	0.775	0.0798	1.01	0.767	0.943	0.0191	2.031
2836	0.89	0.322	58380	0.888	0.0749	2.02	0.896	1.860	0.0342	2.021
2929	1.25	0.246	60420	2.000	0.0926	1.21	0.788	1.130	0.0244	2.030

Відмінність між результатами, отриманими у цьому та в попередньому розділах, суттєва в області малих значень x_0 , що відповідає маломасивним гарячим карликам. У цій області вплив неповного виродження електронної системи зумовлює слабшу температурну залежність маси та енергії.

Температура ядра суттєво впливає на всі три складові частини карлика. Її підвищення призводить до збільшення радіуса всього ядра R_{Δ} , а також зростання товщини периферійної області. У цьому разі відношення товщини периферії до радіуса ядра $(R-R_{\Delta})/R_{\Delta}$ значно залежить як від температури, так і від параметра релятивізму в центрі зорі x_0 (рис. 5.26). За середніх та великих значень параметра релятивізму ця залежність лінійна, і це узгоджується з теорією охолодження масивних карликів з проміжними температурами; проте за невеликих значень x_0 вона лінійна лише в області невеликих T_c , а загалом якісно відповідає формулі (5.60).

Рис. 5.26. Залежність відносної товщини периферійної області від параметрів x_0 та T_0^* (див. (5.60)).

Отримані в цьому розділі центральні температури ядер спостережуваних маломасивних гарячих карликів виявились досить високими і сягають значень порядку $5 \cdot 10^8$ K, тоді як температури масивних карликів не перевищують значень $1.8 \cdot 10^8$ K. На площині $x_0 - T_0^*$ області існування масивних карликів та маломасивних карликів досить

чітко розділені (див. рис. 5.24). Розрахована залежність "центральна температура—ефективна температура" загалом близька до результатів праць [42-44].

Зазначимо також певну універсальність запропонованої моделі, яка застосовна в широкій області зміни характеристик карликів — від масивних низькотемпературних до маломасивних з високими значеннями ефективних температур.

5.7. Трифазна модель у теорії вироджених карликів

У цьому параграфі розвинуто такий варіант теорії вироджених карликів, який дає змогу одночасно враховувати вплив двох найважливіших чинників — неповного електронного виродження і змінного вздовж радіуса хімічного вмісту — на характеристики цих об'єктів [47]. Узагальнюючи моделі праць [45,46], співставимо виродженому карлику радіуса R сферично-симетричну модель, зображену на рис. 5.14. У центральній частині ядра (область 1) електронна підсистема сильно вироджена, тому там застосовне наближення ізотермічності $(T(r) = T_c$ при $0 \le r \le R_c$), що зумовлено механізмом теплопровідності металічного типу. Структура цієї області визначена рівнянням механічної рівноваги за нульового градієнта температури і світлового тиску, а градієнт тиску ідеального релятивістського електронного газу за заданої температури визначено густиною електронів і градієнтом хімічного потенціалу (див. (5.37)).

В області 1' $(R_c \leq r \leq R_{\Delta})$ відбувається перехід від виродженого стану електронної підсистеми до невиродженого, з огляду на що змінюється механізм теплопровідності, а тому градієнт температури стає відмінним від нуля. З метою наближеного опису цієї перехідної зони моделюватимемо розподіл температури вздовж радіуса однопараметричною функцією

$$T(r) = T_c \left\{ 1 + \gamma \left(\frac{r - R_c}{R_\Delta} \right)^2 \right\}^{-1}, \tag{5.108}$$

де γ – невідомий параметр. Згідно з умовою неперервності температури на сфері радіуса R_c

$$T(R_c - \delta) = T(R_c + \delta), \quad \frac{dT(r)}{dr} \Big|_{r=R_c - \delta} = \frac{dT(r)}{dr} \Big|_{r=R_c + \delta} = 0; \quad (5.109)$$

$$P_e(R_c - \delta) = P_e(R_c + \delta), \quad \frac{dP_e}{dr}\Big|_{r=R_c - \delta} = \frac{dP_e}{dr}\Big|_{r=R_c + \delta} = \left(n(r)\frac{d\mu}{dr}\right)\Big|_{r=R_c}$$

при $\delta \to +0$.

Щоб врахувати гравітаційну диференціацію речовини ядра, ефективну електронну молекулярну масу моделюватимемо функцією

$$\mu_e(r/R_\Delta) = \mu_e t(r/R_\Delta), \quad 0 \le r \le R_\Delta, \tag{5.110}$$

де $\mu_e \equiv \mu_e(0), \ t(0) = 1, \ t(1) < 1.$ У практичних розрахунках використаємо функції

$$t_1(x) = [1 + \alpha x^2]^{-1}; \quad t_2(x) = 1 - \alpha \operatorname{arctg} x^2,$$
 (5.111)

за аналогією з нашою працею [25], у якій розглянуто модель холодного карлика зі змінним хімічним вмістом.

Радіус виродженої частини ядра R_c визначимо умовою $\mu(R_c)=0$. У перехідному шарі (область 1') електронна підсистема перебуває на грані виродження ($\mu(r)<0$), тому зовнішній радіус шару знайдемо з умови $\exp\{-\beta(R_\Delta)\mu(R_\Delta)\}\gg 1$, тобто $\beta(R_\Delta)\mu(R_\Delta)=-C$, де C-додатна стала. Використана умова відповідає зниканню виродження. У конкретних розрахунках у праці [46] використано значення C=e.

Для опису периферійної області (область 2) використаємо рівняння стану політропного типу згідно з формулами (5.78). Сталу D у цих співвідношеннях визначимо з умови рівності тисків на внутрішній межі периферійної області:

$$P_e(R_\Delta) + P_\Phi(R_\Delta) = DT^{1+n_*}(R_\Delta),$$
 (5.112)

де $P_{\Phi}(R_{\Delta}) = \frac{a}{3}T^4(R_{\Delta})$ — світловий тиск на границі ядра. Прирівнявши градієнти тиску ліворуч і праворуч від точки $r=R_{\Delta}$, одержимо співвідношення

$$\frac{d}{dr} \left(P_e(r) + P_{\Phi}(r) \right) \bigg|_{r=R_{\Delta} - \delta} = D(1 + n_*) T^{n_*}(R_{\Delta}) \frac{dT}{dr} \bigg|_{r=R_{\Delta} + \delta}, \quad (5.113)$$

 $\delta \to +0$. З іншого боку,

$$\left. \frac{d}{dr} T \right|_{r=R_{\Delta}-\delta} = -2\gamma T_c \, \frac{R_{\Delta} - R_c}{R_{\Delta}^2} \left\{ 1 + \gamma \, \left(\frac{R_{\Delta} - R_c}{R_{\Delta}} \right)^2 \right\}^{-2}. \tag{5.114}$$

Приймаючи умову $\left. dT/dr \right|_{r=R_{\Delta}-\delta} = \left. dT/dr \right|_{r=R_{\Delta}+\delta},$ одержуємо рівність

$$\begin{aligned}
\{P_e(r) + P_{\Phi}(r)\}^{-1} \frac{d}{dr} \{P_e(r) + P_{\Phi}(r)\} \Big|_{R=R_{\Delta}} &= (5.115) \\
&= -2\gamma (1 + n_*) \frac{R_{\Delta} - R_c}{R_{\Delta}^2} \left\{ 1 + \gamma \left(\frac{R_{\Delta} - R_c}{R_{\Delta}} \right)^2 \right\}^{-1},
\end{aligned}$$

з якої визначимо параметр γ за відомими R_c і R_Δ .

Рівняння механічної рівноваги в області 2 зводиться до рівняння, що визначає розподіл температури,

$$(1+n_*)\frac{1}{r^2}\frac{d}{dr}\left\{r^2\frac{dT}{dr}\right\} = -4\pi GD\left(\frac{\mu_* m_u}{k_B}\right)^2 T^{n_*}(r),$$
 (5.116)

причому T(R)=0 (або ж $T(R)=T_{eff}$), а $dT/dr|_{r=R_{\Delta}+\delta}$ збігається з правою частиною рівняння (5.88).

Отже, у моделі, яку тут розглядаємо, фігурують параметри

$$x_0, T_c, \mu_e(0), \alpha, \gamma, D, n_*, \mu_*.$$
 (5.117)

Параметр $\mu_e(0)$ змінюється в дуже вузькому інтервалі близько до значення $\mu_e(0)=2.0$; параметр n_* приймаємо таким, що дорівнює 3.0; μ_* використаємо таке, що відповідає хімічному вмісту Сонця; вище описано, як визначають параметри D і γ . Отже, залишаються три параметри – параметр релятивізму в центрі зорі x_0 , центральна температура T_c і параметр α , який моделює хімічний вміст (див. розділ 3). Знаходження цих параметрів для конкретного карлика можливе за відомими зі спостережень його масою, радіусом і світністю, або ефективною температурою фотосфери.

Запропонована модель узагальнює всі часткові моделі, що розглянуті в працях [24,25,45,46].

Рівняння механічної рівноваги ядра. Згідно з рівнянням (5.37), в ізотермічній області ядра рівняння рівноваги зводиться до диферен-

ціального рівняння другого порядку

$$\frac{1}{r^2} \frac{d}{dr} \left\{ \frac{r^2}{t(r/R_{\Delta})} \frac{d\mu}{dr} \right\} = -\frac{32\pi^2}{h^3} G(m_u \mu_e)^2 t(r/R_{\Delta}) \int_0^\infty dp \ p^2 n_p(r), \quad (5.118)$$

інтеграл у правій частині якого залежить від $\mu(r)$ як від параметра.

У строгому описі області 1' треба враховувати градієнт світлового тиску, що приводить до заміни $dP_e(r)/dr$, на $d(P_e(r) + a/3T^4(r))/dr$ у рівнянні рівноваги, яке набуває такого вигляду:

$$\frac{1}{r^2} \frac{d}{dr} \left\{ \frac{r^2}{t(r/R_{\Delta})} \frac{d\mu}{dr} \right\} = \frac{1}{r^2} \frac{d}{dr} \left\{ \frac{r^2}{t(r/R_{\Delta})} V(\mu(r)) \right\} - (5.119)$$

$$-32\pi^2 \frac{G(m_u \mu_e)^2}{h^3} t(r/R_{\Delta}) \int_0^\infty dp \, p^2 n_p(r).$$

Тут уведено такі позначення:

$$V(\mu(r)) = -\frac{4a}{3} T^{3}(r) n^{-1}(r) \frac{dT}{dr} + \frac{1}{T(r)} \frac{dT}{dr} W(\mu(r)); \qquad (5.120)$$

$$W(\mu(r)) = \frac{1}{3} n^{-1}(r) \frac{8\pi}{h^{3}} \int_{0}^{\infty} dp \, n_{p}(r) \frac{d}{dp} \{ p^{3}(E_{p} - \mu(r)) \} =$$

$$= \left\langle E_{p} - \mu(r) + \frac{p}{3} \frac{dE_{p}}{dp} \right\rangle_{p},$$

де символ $\langle \dots \rangle_p$ означає усереднення за змінною p з ваговою функцією $p^2 n_p(r)$, тобто

$$\langle A \rangle_{p} = \left\{ \int_{0}^{\infty} dp \, p^{2} n_{p}(r) \right\}^{-1} \int_{0}^{\infty} dp \, p^{2} n_{p}(r) \, A(p),$$

$$n_{p}(r) = \left\{ 1 + \exp[\beta(r)(E_{p} - \mu(r))] \right\}^{-1},$$

$$\beta(r) = (k_{B}T_{c})^{-1} \left\{ 1 + \gamma \left(\frac{r - R_{c}}{R} \right)^{2} \right\}.$$
(5.121)

Надалі розглядатимемо лише рівняння (5.119), маючи на увазі, що в області 1 функція $V(\mu(r))=0$. Перейдемо до безрозмірних змінних за співвідношеннями

$$r = \lambda_1 \xi, \quad \mu(r) = \mu(0)y_1(\xi), \quad p = zm_0 c,$$
 (5.122)

де λ_1 – масштаб довжини, $\mu(0) \equiv \mu(r)$ при $r=0,\ y_1(\xi)$ – безрозмірна функція. Визначивши λ_1 умовою (5.43), зведемо рівняння (5.119) до безрозмірної форми

$$\frac{1}{\xi^2} \frac{d}{d\xi} \left\{ \frac{\xi^2}{t(\xi/\xi_\Delta)} \frac{dy_1}{d\xi} \right\} = -\frac{3t(\xi/\xi_\Delta)}{(\mu_0^*)^3} \int_0^\infty dz \ z^2 n_z(\xi) + (5.123) + \frac{1}{\xi^2} \frac{d}{d\xi} \left\{ \frac{\xi^2}{t(\xi/\xi_\Delta)} v(\xi) \right\}.$$

У цьому рівнянні $0 \le \xi \le \xi_{\Delta} = R_{\Delta}/\lambda_1$, v(r) = 0 при $0 \le \xi \le \xi_c \equiv R_c/\lambda_1$, а при $\xi_c \le \xi \le \xi_{\Delta}$

$$v(\xi) = \frac{4}{15} \pi^4 \left(\frac{T_0^*}{\mu_0^*}\right)^4 f^{-5}(\xi) \frac{df}{d\xi} \left\{ \frac{3}{(\mu_0^*)^3} \int_0^\infty dz \ z^2 n_z(\xi) \right\} - f^{-1}(\xi) \frac{df}{d\xi} W(\xi);$$

$$(5.124)$$

$$W(\xi) = \langle (\mu_0^*)^{-1} [(1+z^2)^{1/2} - 1 + 2/3z^2 (1+z^2)^{-1/2} - y_1(\xi)] \rangle_z;$$

$$\langle A \rangle_z \equiv \left\{ \int_0^\infty dz \ z^2 n_z(\xi) \right\}^{-1} \int_0^\infty n_z(\xi) A(z) z^2 dz;$$

$$n_z(\xi) = \left\{ 1 + \exp[\beta_0^* ((1+z^2)^{1/2} - 1 - \mu_0^* y_1(\xi))] \right\}^{-1}$$

при $0 \le \xi \le \xi_c$;

$$n_z(\xi) = \{1 + \exp[\beta_0^* f(\xi)((1+z^2)^{1/2} - 1 - \mu_0^* y_1(\xi))]\}^{-1} (5.125)$$
$$f(\xi) = 1 + \gamma \left(\frac{\xi - \xi_c}{\xi_\Delta}\right)^2; \quad \beta_0^* = \beta_0 m_0 c^2$$

при $\xi_c \leq \xi \leq \xi_\Delta$. Рівняння (5.123) задовольняє стандартні граничні умови в нулі

$$y_1(0) = 1, \quad \frac{dy_1}{d\xi}\Big|_{\xi=0} = 0.$$
 (5.126)

Величина ξ_c визначена з умови $y_1(\xi)=0,$ а межа розділення областей ξ_Δ – умовою

$$y_1(\xi_{\Delta}) = -CT_0^* [\mu_0^* f(\xi_{\Delta})]^{-1}.$$
 (5.127)

Величина μ_0^* є коренем рівняння

$$3\int_{0}^{\infty} dz \ z^{2} \{1 + \exp[\beta_{0}^{*}((1+z^{2})^{1/2} - 1 - \mu_{0}^{*})]\}^{-1} = x_{0}^{3}.$$
 (5.128)

Рівняння (5.123) і (5.128) нами розв'язано числовим методом. Оскільки μ_0^* залежить від параметрів x_0 і $T_0^* = (\beta_0^*)^{-1}$, то рівняння (5.123) також залежить від цих параметрів, а також від α та γ і є чотирипараметричним. На рис. 5.27 показано залежність μ_0^* від безрозмірної температури T_0^* за фіксованих x_0 , α , γ .

Рис. 5.27. Залежність безрозмірного хімічного потенціалу μ_0^* від температури T_c^* за заданих значень параметра x_0 ($\alpha=0.5,\ \gamma=0.5$).

При розв'язуванні рівняння (5.123) за нульове наближення вибрано розв'язок при $v(\xi)=0$ на відрізку $0 \geq \xi \geq \xi_{\Delta}$. Характер розв'язків ілюструє рис. 5.28, на якому зображено сім'ю кривих за фіксованих значень x_0 , α і γ для температур в інтервалі $5 \cdot 10^7 \text{ K} \leq T_c \leq 2 \cdot 10^8 \text{ K}$. З рис. 5.28 бачимо, що температурні ефекти відіграють важливу роль в області малих значень параметра релятивізму x_0 і стають слабкими в разі збільшення цього параметра.

На підставі рис. 5.29 можна проаналізувати вплив температури та неоднорідності хімічного вмісту на розв'язки рівняння рівноваги. На ньому зображено криві, отримані в рамках різних моделей (див.

Рис. 5.28. Сім'я розв'язків рівняння (5.123) за фіксованих значень параметра релятивізму в центрі зорі: крива 1 відповідає $T_c = 5 \cdot 10^7$ K, крива 2 – $T_c = 1 \cdot 10^8$ K, крива 3 – $T_c = 1.5 \cdot 10^8$ K, крива 4 – $T_c = 2 \cdot 10^8$ K ($\alpha = 0$, $\gamma = 0.5$).

[24,25,46,47]): крива 1 відповідає розглянутій моделі, що одночасно враховує неповне виродження електронної підсистеми (центральна температура дорівнює $5 \cdot 10^7$ K) та неоднорідність хімічного вмісту ядра виродженого карлика (параметр $\alpha = 0.5$); крива 2 — моделі з ізотермічним ядром (та ж центральна температура, що й для кривої 1) і однорідним хімічним вмістом; крива 3 — моделі абсолютно холодного виродженого карлика з неоднорідним хімічним вмістом (параметр α такий самий, як і у випадку кривої 1); точки відповідають стандартній моделі Чандрасекара (однорідний хімічний вміст при $T_c = 0$ K). У випадку $x_0 = 1.0$ крива 1 близька до кривої 3, оскільки за цієї температури неповне виродження не є значущим, на відміну від випадку $x_0 = 0.5$, коли одночасно важливими є обидва чинники.

Залежність ξ_{Δ} від параметра x_0 за фіксованих T_c , $\alpha=0.5$, $\gamma=0.5$ відображено на рис. 5.30. Штрихова крива зображає залежність ξ_c від параметрів x_0 , T_c . Криві 1 відповідають $T_c=2\cdot 10^7$ К, $2-T_c=2\cdot 10^8$ К. Як бачимо з рис. 5.30, підвищення температури приводить до зростання радіуса ядра за одночасного зменшення радіуса його ізотермічної частини. За досить малих значень x_0 і відмінних від нуля температурах виродження в центрі ядра зникає.

На рис. 5.31 показано залежність товщини перехідного шару при $\gamma=0.5$ від параметра x_0 за фіксованих значень центральних темпе-

Рис. 5.29. Розв'язки рівняння рівноваги за двох значень параметра x_0 для різних моделей: крива 1 — одночасне врахування неповного виродження електронної підсистеми ($T_c = 5 \cdot 10^7$ K, $\gamma = 0.5$) та неоднорідності хімічного вмісту ($\alpha = 0.5$) [47]; крива 2 — ізотермічне ядро з температурою $T_c = 5 \cdot 10^7$ K і сталим хімічним вмістом [46]; крива 3 — абсолютно холодний карлик з неоднорідним хімічним складом ($\alpha = 0.5$) [25]; точкам відповідає розв'язок стандартної моделі Чандрасекара (див. [25]).

ратур: $1 - T_c = 5 \cdot 10^7$ K, $2 - T_c = 1 \cdot 10^8$ K, $3 - T_c = 2 \cdot 10^8$ K. Для порівняння зображено відповідні криві з праці [46], що відповідають моделям з тими самими центральними температурами, проте з однорідним хімічним вмістом. Порівняння цих моделей засвідчує, що врахування неоднорідності хімічного вмісту, як і підвищення центральної температури, призводить до збільшення товщини перехідного шару в ядрі виродженого карлика.

Величина $\xi_{\Delta} \equiv \xi_{\Delta}(x_0, T_0^*, \alpha, \gamma)$ визначає залежність радіуса ядра від параметрів моделі:

$$R_{\Delta}(x_0, T_0^*, \alpha, \gamma) = \lambda_1 \xi_{\Delta}(x_0, T_0^*, \alpha, \gamma) = \frac{R_0}{\mu_e \mu_0^*} \xi_{\Delta}(x_0, T_0^*, \alpha, \gamma).$$
 (5.129)

Рис. 5.30. Залежність розмірів ядра карлика ξ_{Δ} (суцільні криві), а також його ізотермічної частини ξ_c (штрихові криві) від параметра x_0 . Криві 1 відповідають $T_c = 2 \cdot 10^7$ K, криві $2 - T_c = 2 \cdot 10^8$ K.

Масу ядра визначає розв'язок рівняння (5.123)

$$M_{\Delta}(x_0, T_0^*, \alpha, \gamma) = 4\pi \int_0^{R_{\Delta}} dr \, r^2 \rho(r) =$$

$$\frac{M_0}{\mu_e^2} \int_0^{\xi_{\Delta}} d\xi \, \xi^2 \, t(\xi/\xi_{\Delta}) \left\{ \frac{3}{(\mu_0^*)^3} \int_0^{\infty} dz \, z^2 n_z(\xi) \right\}.$$
(5.130)

Середнє значення кінетичної енергії електронної підсистеми ядра також визначене двократним інтегралом,

$$E_{kin}^{\Delta}(x_0, T_0^*, \alpha, \gamma) = \frac{E_0}{\mu_e^3} \int_0^{\xi_{\Delta}} d\xi \, \xi^2 \left\{ \frac{3}{(\mu_0^*)^3} \int_0^{\infty} dz \, z^2 n_z(\xi) [(1+z^2)^{1/2} - 1] \right\}, \tag{5.131}$$

де $E_0 = GM_0^2/R_0$. Повне число електронів у ядрі

$$N_{\Delta}(x_0, T_0^*, \alpha, \gamma) = 4\pi \int_0^{R_{\Delta}} dr \, r^2 n(r) = (m_u \mu_e)^{-1} M_{\Delta}(x_0, T_0^*, \alpha, \gamma). \quad (5.132)$$

0 1 2 3 4 5 Рис. 5.31. Залежність товщини перехідного шару (при $\gamma=0.5$) від параметра x_0 за фіксованих значень центральних температур: крива $1-T_c=5\cdot 10^7$ K, крива $2-T_c=1\cdot 10^8$ K, крива $3-T_c=2\cdot 10^8$ K. Штрихові криві відповідають результатам праці [46].

З використанням рівняння (5.132) енергію гравітаційної взаємодії речовини ядра запишемо у вигляді

$$E_{grav}^{\Delta}(x_0, T_0^*, \alpha, \gamma) = -\frac{1}{2} G \iint_{|\vec{r_i}| < R_{\Delta}} d\mathbf{r}_1 d\mathbf{r}_2 \rho(r_1) \rho(r_2) |\mathbf{r}_1 - \mathbf{r}_2| =$$

$$= \frac{3E_0}{\mu_e^3 (\mu_0^*)^2} \int_0^{\xi_{\Delta}} d\xi \, \xi^3 \left[\frac{dy_1}{d\xi} - v(\xi) \right] \int_0^{\infty} dz \, z^2 n_z(\xi). \tag{5.133}$$

Тому середнє значення повної енергії ядра (з урахуванням енергії спокою електронів та енергії фотонної підсистеми E_{Φ}) має таке зображення:

$$\tilde{E}_{\Delta}(x_0, T_0^*, \alpha, \gamma) = E_{kin}^{\Delta} + E_{grav}^{\Delta} + N_{\Delta} m_0 c^2 + E_{\Phi} = (5.134)$$

$$= \frac{3E_0}{\mu_e^3 (\mu_0^*)^3} \int_0^{\xi_{\Delta}} d\xi \, \xi^2 \int_0^{\infty} dz \, z^2 n_z(\xi) \times$$

$$\times \left\{ (1+z^{2})^{1/2} + \xi \mu_{0}^{*} \left[\frac{dy_{1}}{d\xi} - v(\xi) \right] \right\} + E_{\Phi};$$

$$E_{\Phi} = a \int T^{4}(r) d\mathbf{r} =$$

$$= \frac{E_{0}}{(\mu_{e}\mu_{0}^{*})^{3}} \frac{1}{15} (\pi T_{0}^{*})^{4} \left\{ \xi_{c}^{3} + 3 \int_{0}^{\xi_{\Delta}} d\xi \, \xi^{2} \left[1 + \gamma \left(\frac{\xi - \xi_{x}}{\xi_{\Delta}} \right)^{2} \right]^{-4} \right\}.$$

Залежність маси ядра від параметра x_0 за фіксованого T_0^* , α , γ зображено на рис. 5.32, а залежність $\tilde{E}_{\Delta}(x_0, T_0^*, \alpha, \gamma)$ від тих же параметрів — на рис. 5.33. В обох випадках підвищення температури призводить до збільшення відповідної характеристики в області малих x_0 і до невеликого спаду в області більших значень цього параметра.

Рис. 5.32. Залежність маси ядра M_{Δ} від параметра x_0 за фіксованих значень центральної температури: крива 1 відповідає $T_c=2\cdot 10^7$ K, крива $2-T_c=5\cdot 10^7$ K, крива $3-T_c=1\cdot 10^8$ K, крива $4-T_c=2\cdot 10^8$ K. Для всіх розрахунків $\alpha=0.5,\ \gamma=0.5$.

Розглянемо ще вільну енергію моделі. Як відомо, в однорідному випадку вільна енергія електронної підсистеми дорівнює $\Omega(\mu) + \mu N$, де μ – хімічний потенціал. З урахуванням гравітаційної енергії ядерної підсистеми, енергії спокою електронів та енергії фотонного поля вільна

Рис. 5.33. Залежність повної енергії ядра E_{Δ} від параметра x_0 за фіксованих значень центральної температури. Індекси відповідають тим самим температурам, що й на рис. 5.32.

енергія однорідної моделі

$$\tilde{F} = N\mu - P_eV + Nm_0c^2 + E_{grav} + E_{\Phi}.$$
 (5.135)

У локальному наближенні для неоднорідної моделі виразу (5.135) відповідає таке узагальнення:

$$\tilde{F}_{\Delta}(x_0, T_0^*, \alpha, \gamma) = \int_V \mu(r) n(r) d\mathbf{r} - \int_V P_e(r) d\mathbf{r} +$$

$$+4\pi a \int_V T^4(r) d\mathbf{r} + m_0 c^2 \int_V nr d\mathbf{r} + E_{grav}^{\Delta}(x_0, T_0^*, \alpha, \gamma),$$
(5.136)

де $E_{grav}^{\Delta}(x_0, T_0^*, \alpha, \gamma)$ визначене формулою (5.133). Враховуючи співвідношення (5.131)–(5.134), запишемо $\tilde{F}_{\Delta}(x_0, T_0^*, \alpha, \gamma)$ у такому вигляді:

$$\tilde{F}_{\Delta}(x_0, T_0^*, \alpha, \gamma) = \tilde{E}_{\Delta}(x_0, T_0^*, \alpha, \gamma) - E_{kin}^{\Delta}(x_0, T_0^*, \alpha, \gamma) +$$

$$+4\pi a \int_V T^4(r) d\mathbf{r} + \int_V \mu(r) n(r) d\mathbf{r} - \int_V P_e(r) d\mathbf{r} =$$
 (5.137)

$$= \frac{3E_0}{(\mu_e \mu_0^*)^3} \int_0^{\xi_\Delta} d\xi \, \xi^2 \int_0^\infty dz \, z^2 n_z(\xi) \times \left\{ 1 + \mu_0^* y_1(\xi) - \xi \mu_0^* \left[\frac{dy_1}{d\xi} - v(\xi) \right] - \frac{z^2}{3} (1 + z^2)^{-1/2} \right\} + E_\Phi,$$

де E_{Φ} визначене формулою (5.134). На рис. 5.34 показано залежність $\tilde{F}_{\Delta}(x_0, T_0^*, \alpha, \gamma)$ від x_0 при фіксованих значеннях параметрів T_0^*, α, γ .

Рис. 5.34. Залежність вільної енергії від параметра релятивізму x_0 за $\alpha=0.5,~\gamma=0.5.$ Крива 1 відповідає $T_c=10^8$ K, крива $2-T_c=2\cdot 10^8$ K.

Onuc периферійної області. У цій моделі лише опис ядра відрізняється від опису ізотермічного ядра, а опис периферійної області виконується так само, як і в двофазній моделі. Використаємо безрозмірні змінні $\eta=r/\lambda_2,\ y_2(\eta)=T(r)/T(R_\Delta),\$ а масштаб λ_2 визначимо умовою

$$1 + n_* = 4\pi G D \left(\frac{\mu_* m_u}{k_B} \lambda_2\right)^2 T^{n-1}(R_\Delta). \tag{5.138}$$

Це дає змогу записати рівняння (5.116) у вигляді безрозмірного рівняння Лена-Емдена:

$$\frac{1}{\eta^2} \frac{d}{d\eta} \left(\eta^2 \frac{dy^2}{d\eta} \right) = -y_2^{n_*}(\eta). \tag{5.139}$$

У цьому разі $\eta_{\Delta} \leq \eta \leq \eta_R$, де $\eta_{\Delta} \equiv R_{\Delta/\lambda_2} = \xi_{\Delta}\lambda_1/\lambda_2$, а η_R визначене умовою на поверхні зорі $y_2(\eta_R) = 0$ (або ж $\frac{T_{eff}}{T_{\Delta}}$). Рівняння (5.115) задовольняє граничні умови на поверхні ядра:

$$y_2(\eta_{\Delta}) = 1, \quad \left. \frac{dy_2}{d\eta} \right|_{\eta = \eta_{\Delta}} = -2\gamma \lambda_2 \frac{\xi_{\Delta} - \xi_c}{\xi_{\Delta}^2} \left\{ 1 + \gamma \left(\frac{\xi_{\Delta} - \xi_c}{\xi_{\Delta}} \right)^2 \right\}^{-1}.$$

$$(5.140)$$

Ці умови забезпечують неперервність T(r) уздовж радіуса зорі. Визначаючи параметр γ з рівності (5.115), запишемо $dy_2/d\eta|_{\eta=\eta_{\Delta}}$ у такому вигляді:

$$\left. \frac{dy_2}{d\eta} \right|_{\eta=\eta_{\Lambda}} = \frac{\lambda_2}{1+n_*} \left\{ P^{-1}(r) \frac{dP}{dr} \right\} \bigg|_{r=R_{\Lambda}}, \tag{5.141}$$

де P(r) – повний тиск на сфері радіусом r. З метою наближеної оцінки замінимо P(r) та dP/dr відповідними величинами в ізотермічній моделі (нехтуючи градієнтом світлового тиску) в умовах відсутності виродження, коли

$$P_{e}(R_{\Delta}) \cong (2m_{0})^{3/2} \frac{(k_{B}T_{\Delta})^{5/2}}{3\pi^{2}\hbar^{3}} \alpha_{3/2}, \quad \frac{dP_{e}}{dr} \Big|_{r=R_{\Delta}} = \left(n_{e}(r) \frac{d\mu}{dr} \right) \Big|_{r=R_{\Delta}};$$

$$n_{e}(r_{\Delta}) \cong (2m_{0})^{3/2} \frac{(k_{B}T_{\Delta})^{5/2}}{3\pi^{2}\hbar^{3}} \alpha_{1/2}. \tag{5.142}$$

У цьому наближенні

$$\frac{dy_2}{d\eta}\Big|_{\eta=\eta_{\Delta}} \cong \frac{\lambda_2}{\lambda_1(1+n_*)} (T_{\Delta}^*)^{-1} \frac{\alpha_{1/2}}{\alpha_{3/2}} \mu_0^* \frac{dy}{d\xi}\Big|_{\xi=\xi_{\Delta}}, \tag{5.143}$$

де $T_{\Delta}^* \equiv k_B T(R(\Delta)/m_0 c^2$. З урахуванням співвідношень (5.37) та (5.138) знаходимо, що

$$\lambda_2 = R_0 \left(\frac{1 + n_*}{\alpha_{3/2}} \right)^{1/2} \frac{2^{-3/4}}{\mu_*} (T_{\Delta}^*)^{-1/4}, \tag{5.144}$$

а тому

$$\frac{dy_2}{d\eta}\bigg|_{\eta=\eta_{\Delta}} \simeq \frac{3}{2^{7/4}} \frac{\alpha_{1/2}}{\alpha_{3/2}^{3/2}} (1+n_*)^{1/2} (\mu_0^*)^2 \frac{\mu_e}{\mu^*} \left. \frac{dy_1}{d\xi} \right|_{\xi=\xi_{\Delta}} (T_{\Delta}^*)^{-5/4} \tag{5.145}$$

і є від'ємною величиною, великою за модулем, оскільки $T_{\Delta}^* \ll 1$. У цих умовах розв'язок рівняння (5.139) є близьким до функції

$$y_2(\eta) \approx 1 + \left| \frac{dy_2}{d\eta} \right|_{\eta = \eta_\Delta} \eta_\Delta^2 \left(\frac{1}{\eta} - \frac{1}{\eta_\Delta} \right).$$
 (5.146)

Прийнявши $\eta = \eta_R$ в останній формулі, знаходимо, що

$$\eta_R = \eta_\Delta \left\{ 1 - \left[\left| \frac{dy_2}{d\eta} \right|_{\eta = \eta_\Delta} \eta_\Delta \right]^{-1} \right\}^{-1} \approx \eta_\Delta + \left| \frac{dy_2}{d\eta} \right|_{\eta = \eta_\Delta}^{-1} + \dots, \quad (5.147)$$

звідки випливає, що

$$R - R_{\Delta} = \lambda_2 (\eta_R - \eta_{\Delta}) \approx R_0 T_{\Delta}^* \frac{2}{3} \frac{\alpha_{3/2}}{\alpha_{1/2}} \mu_e^{-1} (\mu_0^*)^{-2} \left\{ \left| \frac{dy_1}{d\xi} \right|_{\xi = \xi_{\Delta}} \right\}^{-1}.$$
 (5.148)

Отже, товщина периферійної області карлика пропорційна до температури на поверхні його ядра.

Розв'язки рівняння (5.139) визначають внесок у повну масу карлика:

$$M = M_{\Delta} + 4\pi \frac{\mu_* m_u}{k_B} T_{\Delta}^n D \lambda_2^3 \int_{\eta_{\Delta}}^{\eta_R} d\eta \, \eta^2 y_2^{n_*}(r) =$$

$$= M_{\Delta} + 4\pi \lambda_2^3 \rho_{\Delta} (f_R - f_{\Delta}), \qquad (5.149)$$

$$f_{\Delta} = \left\{ \eta^2 \left| \frac{dy_2}{d\eta} \right\} \right|_{n=n_{\Delta}}; \quad f_R = \left\{ \eta^2 \left| \frac{dy_2}{d\eta} \right\} \right|_{n=n_{B}}.$$

Внесок периферійної області в інші характеристики карлика визначаємо так само, як і в двофазній моделі.

5.8. Обертання гарячих карликів

У зв'язку з відносно великими радіусами гарячих маломасивних карликів осьове обертання може відігравати значну роль у формуванні їхньої структури. У моделі з твердотільним обертанням рівняння механічної рівноваги узагальнює рівняння (5.19) та (5.40). У змінних

 $\xi = r/\lambda, \, \mu(r) = \mu^*(0) mc^2 \, \tilde{Y}(\xi,\theta)$ рівняння механічної рівноваги ізотермічного ядра, що обертається з кутовою швидкістю ω , набуває вигляду

$$\Delta(\xi,\theta)\,\tilde{Y}(\xi,\theta) = \tilde{\Omega}^2 - 3(\mu^*(0))\int_0^\infty dz \cdot z^2\,\tilde{n}_z(\xi,\theta),\tag{5.150}$$

$$\tilde{n}_z(\xi,\theta) = \left\{ 1 + \exp\left[\beta_0^* ((1+z^2)^{1/2} - 1 - \mu^*(0) \,\tilde{Y}(\xi,\theta))\right] \right\}^{-1},$$

де

$$\tilde{\Omega}^2 = 2\omega^2 m_u \,\mu_e \,\lambda_1^2 \,\{mc^2 \mu^*(0)\}^{-1}, \qquad (5.151)$$

а масштаб λ_1 визначається рівнянням (5.43) з граничними умовами

$$\tilde{Y}(\xi,\theta) = 1, \quad \frac{\partial}{\partial \xi} \tilde{Y}(\xi,\theta) = 0 \quad \text{при} \quad \xi = 0.$$
 (5.152)

У границі абсолютного нуля температури рівняння (5.150) збігається з рівнянням (4.3).

За малих кутових швидкостей рівняння (5.150) можна лінеаризувати за допомогою традиційної підстановки

$$\tilde{Y}(\xi,\theta) = y_1(\xi) + \tilde{\Omega}^2 \, \tilde{v}(\xi,\theta), \tag{5.153}$$

де $y_1(\xi)$ визначається рівнянням (5.43). Розкладаючи функцію $\tilde{n}_z(\xi,\theta)$ у ряд за степенями $\tilde{v}(\xi,\theta)$, у лінійному наближенні одержуємо рівняння для поправки $\tilde{v}(\xi,\theta)$, зумовленої обертанням

$$\Delta(\xi, \theta) \ \tilde{v}(\xi, \theta) = 1 - \tilde{v}(\xi, \theta) \left\{ \frac{3\beta_0^*}{(\mu^*(0))^2} \int_0^\infty dz \cdot z^2 n_z(\xi, \theta) \left[1 - n_z(\xi, \theta) \right] \right\}. \tag{5.154}$$

Тут $n_z(\xi,\theta)$ є нульовим наближенням $\tilde{n}_z(\xi,\theta)$ і визначається виразом (5.150) при заміні $\tilde{Y}(\xi,\theta)$ на $y_1(\xi,\theta)$. При переході до абсолютного нуля температури рівняння (5.153) набуває вигляду

$$\Delta(\xi, \theta) \ v(\xi, \theta) = 1 - 3v(\xi, \theta) \ \left(y(\xi) + \frac{1}{\varepsilon_0} \right) \left(y^2(\xi) + \frac{2}{\varepsilon_0} \ y(\xi) \right)^{1/2}, \ (5.155)$$

що відповідає лінеаризації рівняння (4.3) за допомогою підстановки

$$Y(\xi, \theta) = y(\xi) + \Omega^2 v(\xi, \theta),$$
 (5.156)

де $y(\xi)$ — розв'язок рівняння рівноваги для холодного карлика без обертання (2.20).

РОЗДІЛ 6

Рівняння стану електрон-ядерної моделі при високих густинах

Теорія внутрішньої будови холодних вироджених карликів, розроблена Чандрасекаром у 40-х роках XX ст., ґрунтується на рівнянні стану ідеального виродженого релятивістського електронного газу, що перебуває у парамагнітній фазі за абсолютного нуля температури. Висока густина речовини у вироджених карликах ($\rho \sim (10^5-10^6) \Gamma/\text{см}^3$) призводить до того, що існування локалізованих станів є неможливим, усі електрони колективізовані й сильно вироджені. Тому речовина ядер вироджених карликів перебуває у металічному стані, а швидкості електронів на поверхні Фермі співмірні зі швидкістю світла ($\hbar k_F/m_0 \sim c$).

Роль міжчастинкових взаємодій належить до найменш досліджених питань у сучасній теорії вироджених карликів, які за електронною структурою є найпростішими металами. Однак ці метали перебувають під високим тиском, тому їхня електронна підсистема суттєво релятивістська, що ускладнює задачу. Водночас вони є слабко неідеальними – параметр неідеальності щодо міжелектронних взаємодій має порядок α_0 , а щодо електрон-ядерних – $z\alpha_0$ (де $\alpha_0=e^2/\hbar c$ – стала тонкої структури), що полегшує побудову рівняння стану. Зазначимо, що неповне виродження електронної підсистеми і взаємодія між частинками є конкурентними чинниками: взаємодія призводить до зниження тиску, а відхилення від повного виродження – до його підвищення. Тому тільки одночасне врахування цих чинників може забезпечити адекватний опис стану речовини в реальних карликах. Однак у випадку масивних карликів вплив неповного виродження є несуттєвим, тому структура цих об'єктів визначається конкуренцією між впливом осьового обертання та міжчастинкових взаємодій.

У праці Е. Солпітера [48], виконаній тоді, коли ще тільки формувалась сучасна мікроскопічна теорія металів, уперше оцінено внески до тиску та енергії у просторово-однорідній електрон-ядерній моделі за

високих густин завдяки кулонівським взаємодіям при T=0 К. У рамках моделі Вігнера—Зейтца та наближення Томаса—Фермі з'ясовано, що кулонівські взаємодії призводять до невеликого зниження тиску порівняно з тиском ідеального виродженого суттєво релятивістського електронного газу: за значення параметра релятивізму $x=\hbar k_F/m_0c=1$ відхилення становить 1% у випадку z=2; 2.5% при z=6; 4% при z=12; 7% при z=26, де z – порядковий номер хімічного елемента. Ці оцінки використовують і в сучасній астрофізичній літературі [12] для обґрунтування моделі Чандрасекара. Знайдене Е. Солпітером рівняння стану використано у праці [49] для побудови кривої маса—радіус і дослідження впливу взаємодій на стійкість вироджених карликів. Міжчастинкові взаємодії розглядались також з приводу побудови теорії охолодження вироджених карликів на основі моделі Вігнера—Зейтца (див. [12]).

У цьому розділі побудовано рівняння стану електрон-ядерної макроскопічно однорідної моделі з кулонівськими взаємодіями при густинах, що відповідають реальним карликам. Розглянуто двокомпонентну модель — повністю вироджений релятивістський неідеальний електронний газ і статичну ядерну підсистему, що перебуває у кристалічному стані. Математичний апарат, що тут використовується — базисний підхід, розвинутий у працях [50-54] для опису нерелятивістської моделі однорідної електронної рідини й електрон-іонних моделей металів, який ми адаптували до опису релятивістської електронної підсистеми.

6.1. Загальні співвідношення

Розглянемо електронейтральну макроскопічно однорідну електронядерну модель, що складається з N_e електронів і $N_n=z^{-1}N_e$ ядер в об'ємі V у термодинамічній границі $N_e,V\to\infty,\ N_e/V={\rm const}$ і за низьких температур (набагато нижчих від температури виродження). Цій моделі відповідає гамільтоніан

$$\hat{H} = \hat{H}_0 + \hat{H}_{int} + \hat{V}_{nn},\tag{6.1}$$

де

$$\hat{H}_0 = \sum_{\mathbf{k}, s} E_k \, a_{\mathbf{k}, s}^+ \, a_{\mathbf{k}, s} - \tag{6.2}$$

стандартний гамільтоніан вільних релятивістських електронів ($E_k = [(m_0c^2)^2 + \hbar^2k^2c^2]^{1/2} - m_0c^2$),

$$\hat{H}_{int} = \hat{V}_{ee} + \hat{V}_{en} \quad - \tag{6.3}$$

сума операторів міжелектронних та електрон-ядерних взаємодій,

$$\hat{V}_{ee} = (2V)^{-1} \sum_{\mathbf{q} \neq 0} V_q \sum_{\mathbf{k}_1, \mathbf{k}_2} \sum_{s_1, s_2} a_{\mathbf{k}_1 + \mathbf{q}, s_1}^+ a_{\mathbf{k}_2 - \mathbf{q}, s_2}^+ a_{\mathbf{k}_2, s_2} a_{\mathbf{k}_1, s_1}, \quad (6.4)$$

$$\hat{V}_{en} = -zV^{-1} \sum_{\mathbf{q} \neq 0} V_q S_{\mathbf{q}} \sum_{\mathbf{k}, s} a_{\mathbf{k} + \mathbf{q}, s}^+ a_{\mathbf{k}, s}.$$

Оператор

$$\hat{V}_{nn} = z^2 (2V)^{-1} \sum_{\mathbf{q} \neq 0} V_q \{ S_{\mathbf{q}} S_{-\mathbf{q}} - N_n \}$$
(6.5)

описує кулонівські між'ядерні взаємодії. Тут $S_{\bf q} = \sum_{j=1}^{N_n} \exp[i({\bf q},{\bf R}_j)]$ — структурний фактор ядерної підсистеми; $V_q = 4\pi e^2/q^2$ — зображення Фур'є потенціалу Кулона; $a_{{\bf k},s}^+$, $a_{{\bf k},s}$ — оператори породження і знищення електронів у квантових станах із заданим хвильовим вектором ${\bf k}$ і проекцією спіну s, вони підлягають статистиці Фермі—Дірака.

Для розрахунку статистичної суми електронної підсистеми в полі ядер у великому канонічному ансамблі

$$Z(\mu) = \text{Sp}_e \exp\{-\beta [\hat{H}_0 + \hat{H}_{int} - \mu \hat{N}_e]\}$$
 (6.6)

використаємо базисний підхід, розвинутий для опису нерелятивістської електронної рідини в роботах [50-56]. Тут

$$\hat{N}_e = \sum_{\mathbf{k},s} a_{\mathbf{k},s}^+ a_{\mathbf{k},s} - \tag{6.7}$$

оператор числа частинок; μ – змінна хімічного потенціалу; $\beta = (k_B T)^{-1}$. Для переходу до так званого частотного зображення використаємо традиційне зображення взаємодії у статистичному операторі на

підставі гамільтоніана $\hat{\mathcal{H}}_{\mu}=\hat{H}_{0}-\mu\hat{N}_{e},$ а саме:

$$\exp\{-\beta(\hat{H}_{0} + \hat{H}_{int} - \mu\hat{N}_{e})\} = \exp[-\beta\hat{\mathcal{H}}_{\mu}]\hat{S}_{\beta},$$

$$\hat{S}_{\beta} = T_{\beta} \exp\left\{-\int_{0}^{\beta} \hat{H}_{int}(\beta')d\beta'\right\},$$

$$H_{int}(\beta') = (2V)^{-1} \sum_{\mathbf{q}\neq 0} V_{q} \,\hat{\rho}_{\mathbf{q}}(\beta') \,\hat{\rho}_{-\mathbf{q}}(\beta') - zV^{-1} \sum_{\mathbf{q}\neq 0} V_{q}S_{-\mathbf{q}} \,\hat{\rho}_{\mathbf{q}}(\beta'),$$

$$\hat{\rho}_{\mathbf{q}}(\beta') = \sum_{\mathbf{k},s} a_{\mathbf{k}+\mathbf{q},s}^{+}(\beta')a_{\mathbf{k},s}(\beta').$$
(6.8)

Оператор T_{β} є дещо узагальненим оператором хронологічного впорядкування, що має такі властивості:

$$T_{\beta}\{C_1(\beta_1)C_2(\beta_2)\} = \begin{cases} C_1(\beta_1)C_2(\beta_2) \text{ при } \beta_1 > \beta_2; \\ -C_2(\beta_2)C_1(\beta_1) \text{ при } \beta_1 < \beta_2; \end{cases}$$
(6.9)

$$T_{\beta}\{a_{\mathbf{k}_1,s_1}(\beta_1) \ a_{\mathbf{k}_2,s_2}^+(\beta_1)\} = -a_{\mathbf{k}_2,s_2}^+(\beta_1) \ a_{\mathbf{k}_1,s_1}(\beta_1),$$

де $C(\beta') = a_{\mathbf{k},s}(\beta')$ або $a_{\mathbf{k},s}^+(\beta')$.

Перейдемо від операторів $a_{\mathbf{k},s}(\beta')$ до нових фермі-амплітуд [51]

$$a_{\mathbf{k},s}(\beta') = \sum_{\nu_*} a_{\mathbf{k},s}(\nu_*) \,\Psi_{\nu_*}(\beta'),$$
 (6.10)

де

$$\Psi_{\nu_*}(\beta') = \beta^{-1/2} \exp(-i\nu_*\beta') \tag{6.11}$$

утворюють повну й ортогональну систему функцій змінної β' на інтервалі $(0 \le \beta' \le \beta)$ і у випадку $\nu_* = (2n+1)\pi\beta^{-1}$ (частоти Фермі–Мацубари; $n=0;\pm 1;\pm 2;\pm 3;...$) задовольняють умову періодичності $\Psi_{\nu_*}(\beta'+\beta)=-\Psi_{\nu_*}(\beta')$. Перетворення, обернене до співвідношення (6.10), а саме

$$a_{\mathbf{k},s}(\nu_*) = \int_0^\beta a_{\mathbf{k},s}(\beta') \, \Psi_{\nu_*}^*(\beta') \, d\beta',$$
 (6.12)

дає змогу визначити правило обчислення середніх, побудованих на операторах $a_{\mathbf{k},s}(\nu_*)$:

$$- \left\langle T_{\beta} \{ a_{\mathbf{k}_{1}, s_{1}}(\nu_{1}) \ a_{\mathbf{k}_{2}, s_{2}}^{+}(\nu_{2}) \} \right\rangle_{\mathcal{H}_{\mu}} = G_{\mathbf{k}_{1}, s_{1}}(\nu_{1}) \ \delta_{\mathbf{k}_{1}, \mathbf{k}_{2}} \ \delta_{s_{1}, s_{2}} \ \delta_{\nu_{1}, \nu_{2}}, \tag{6.13}$$

де $G_{\mathbf{k}_1,s_1}(\nu_*) = \{i\nu_* - E_k + \mu\}^{-1} \exp[i\nu_*\delta]$ — спектральне (імпульсночастотне) зображення одночастинкових функцій Гріна ідеальної моделі електронів $(\delta \to +0)$. Ця модель відіграє роль базисної для опису моделі електронної рідини (моделі з гамільтоніаном $\hat{H}_0 + \hat{V}_{ee}$), яка в свою чергу відіграє роль базисної в описі електрон-ядерних взаємодій.

У термінах операторів $a_{\mathbf{k},s}(\nu_*)$

$$Z(\mu) = Z_0(\mu) \langle T_\beta \{ \hat{S}_{ee} \hat{S}_{en} \} \rangle_0 =$$

$$= Z_0(\mu) \langle T_\beta \{ \hat{S}_{ee} \rangle_0 \langle T_\beta \{ \hat{S}_{en} \rangle_e, \} \rangle_0$$
(6.14)

де

$$\hat{S}_{ee} = \exp\left\{-(2\beta V)^{-1} \sum_{\nu; \mathbf{q} \neq 0} V_q \, \hat{\rho}_{\mathbf{q},\nu} \rho_{-\mathbf{q},-\nu}\right\},$$

$$\hat{S}_{en} = \exp\left\{zV^{-1} \sum_{\mathbf{q} \neq 0} V_q \, S_{-\mathbf{q}} \hat{\rho}_{\mathbf{q},0}\right\},$$

$$\hat{\rho}_{\mathbf{q},\nu} = \sum_{\mathbf{k};\nu_*;s} a^{+}_{\mathbf{k}+\mathbf{q},s} (\nu_* + \nu) \, a_{\mathbf{k},s} (\nu_*),$$
(6.15)

причому у формулах (6.15) ν є різницею двох частот Фермі–Мацубари і через це вона є парною (частоти Бозе-Мацубари $\nu = 2\pi n \beta^{-1}$, $n = 0; \pm 1; \pm 2; ...$). У формулі (6.14) символ $\langle ... \rangle_0$ означає статистичне усереднення за станами ідеальної моделі електронів, а символ $\langle ... \rangle_e$ – аналогічне усереднення за станами неідеальної моделі (електронної рідини),

$$\langle T_{\beta} \hat{S}_{en} \rangle_e \equiv \langle T_{\beta} \{ \hat{S}_{ee} \hat{S}_{en} \} \rangle_0 \{ \langle T_{\beta} \hat{S}_{ee} \rangle_0 \}^{-1}. \tag{6.16}$$

У формулі (6.14)

$$Z_0(\mu) = \operatorname{Sp}_{e} \left\{ \exp[-\beta \hat{\mathcal{H}}_{\mu}] \right\} = \exp[-\beta \Omega_0(\mu)] \tag{6.17}$$

є статистичною сумою ідеальної моделі, а

$$\Omega_0(\mu) = -\beta^{-1} \sum_{k,s} \ln\{1 + \exp[\beta(\mu - E_k)]\} -$$
(6.18)

її термодинамічним потенціалом.

Розкладаючи оператор \hat{S}_{en} у формулі (6.16) у ряд та виконуючи усереднення за станами моделі електронної рідини почленно, зобразимо результат в експонентній формі,

$$\langle T_{\beta} \hat{S}_{en} \rangle_{e} = \exp \left\{ \beta \sum_{n \geq 2} (n! V^{n})^{-1} z^{n} \sum_{\mathbf{q}_{1}, \dots, \mathbf{q}_{n}} V_{q_{1}} \cdots V_{q_{n}} \times S_{-\mathbf{q}_{1}} \cdots S_{-\mathbf{q}_{n}} \delta_{\mathbf{q}_{1} + \dots + \mathbf{q}_{n}, 0} \tilde{\mu}_{n}(\mathbf{q}_{1}, \dots, \mathbf{q}_{n} | 0) \right\},$$

$$(6.19)$$

де

$$\tilde{\mu}_n(\mathbf{q}_1, ..., \mathbf{q}_n | 0) = \beta^{-1} \langle T_\beta \{ \hat{\rho}_{\mathbf{q}_1, 0} ... \hat{\rho}_{\mathbf{q}_n, 0} \} \rangle_e^{\mathrm{BB}}$$

$$(6.20)$$

є зв'язною частиною середнього від добутку n операторів $\hat{\rho}_{\mathbf{q},0}$ — статичною границею n-частинкової кореляційної функції моделі електронної рідини в імпульсно-частотному зображенні (див. [55]).

Середнє $\langle T_{\beta}S_{ee}\rangle_0$, яке визначає внесок міжелектронних взаємодій до термодинамічного потенціалу моделі електронної рідини, можна розрахувати або у рамках звичайної теорії збурень, або ж методом динамічних колективних змінних [51]. Цей внесок виражається у термінах n-частинкових динамічних кореляційних функцій ідеальної системи

$$\tilde{\mu}_{n}^{0}(y_{1},...,y_{n}) = \frac{1}{\beta} \langle T_{\beta} \{ \hat{\rho}_{\mathbf{q}_{1},\nu_{1}} \cdots \hat{\rho}_{\mathbf{q}_{n},\nu_{n}} \} \rangle_{0}^{\mathsf{3B}}, \tag{6.21}$$

де $y_i \equiv (\mathbf{q}_i, \nu_i)$. Оскільки модель (6.1)–(6.5) розглядається в області термодинамічних параметрів, де вона є слабко неідеальною, то в записі термодинамічного потенціалу досить враховувати як статичні, так і динамічні кореляційні функції дво-, три- та чотиричастинкові. У теорії нерелятивістської електронної рідини таке наближення має назву наближення роst-RPA [51] і узагальнює добре відоме наближення хаотичних фаз (RPA) [57].

Термодинамічний потенціал системи електронів у полі статичних ядер записується у вигляді

$$\Omega(\mu) = -\beta^{-1} \ln Z(\mu) = \Omega_e(\mu) -$$

$$-\sum_{n=2}^4 \frac{z^n}{n!} V^{-n} \sum_{\mathbf{q}_1, \dots, \mathbf{q}_n} V_{\mathbf{q}_1} \cdots V_{\mathbf{q}_n} S_{-\mathbf{q}_1} \cdots S_{-\mathbf{q}_n} \tilde{\mu}_n(\mathbf{q}_1, \dots, \mathbf{q}_n | 0),$$
(6.22)

де $\Omega_e(\mu)$ – термодинамічний потенціал моделі релятивістської електронної рідини. Функції $\tilde{\mu}_n(\mathbf{q}_1,...,\mathbf{q}_n|0)$ – статичні границі n-частинкових

кореляційних функцій моделі електронної рідини — системи електронів з кулонівськими взаємодіями на фоні рівномірно розподіленого позитивного заряду.

6.2. Кореляційні функції ідеального релятивістського електронного газу

Як вище зазначено, ідеальний електронний газ є базисною системою для опису моделі електронної рідини. Тому динамічні і статичні кореляційні функції ідеального релятивістського виродженого електронного газу є базою для розрахунку кореляційних функцій моделі релятивістської електронної рідини. Кореляційні функції $\tilde{\mu}_n^0(y_1,...,y_n)$ при $2 \le n \le 4$ для нерелятивістського ідеального електронного газу добре відомі. Функція $\tilde{\mu}_{2}^{0}(y,-y)$ – поляризаційний оператор наближення хаотичних фаз – розрахована у праці [57] для випадку абсолютного нуля температури. Статичну тричастинкову кореляційну функцію розраховано в праці [59], а в працях [60,61] досліджено статичні функції третього і четвертого порядку при $T=0~{
m K}$ – так звані багатохвостки теорії збурень за потенціалом електрон-іонних взаємодій у напівфеноменологічній теорії металів. Динамічні три- та чотиричастинкові функції $\tilde{\mu}_3^0(y_1, y_2, -y_1 - y_2)$ і $\tilde{\mu}_4^0(y_1, -y_1, y_2, -y_2)$ розраховано у працях [50,51]. Дослідження динамічних і статичних функцій за відмінних від нуля температур виконано у праці [54]. Розрахунки енергетичних характеристик електрон-ядерної моделі за густин, які відповідають виродженим карликам, потребують розрахунку функцій $\tilde{\mu}_n^0(y_1,...,y_n)$ для ідеальної фермі-системи з одночастинковим спектром $E_k=[(m_0c^2)^2+\hbar^2k^2c^2]^{1/2}-m_0c^2.$ Нижче розрахуємо їх у наближенні повного виродження – для основного стану моделі.

Згідно з означенням (6.21), функції $\tilde{\mu}_n^0(y_1,...,y_n)$ є дійсними величинами і зображаються у вигляді згорток одночастинкових функцій Гріна ідеальної моделі:

$$\tilde{\mu}_{2}^{0}(y, -y) = -\beta^{-1} \sum_{\mathbf{k}: s: \nu_{*}} G_{\mathbf{k}, s}(\nu_{*}) G_{\mathbf{k} + \mathbf{q}, s}(\nu_{*} + \nu);$$

$$\tilde{\mu}_{3}^{0}(y_{1}, y_{2}, y_{3}) = 2\beta^{-1}\delta_{\mathbf{q}_{1}+\mathbf{q}_{2}+\mathbf{q}_{3},0} \, \delta_{\nu_{1}+\nu_{2}+\nu_{3},0} \sum_{\mathbf{k}, s; \nu_{*}} G_{\mathbf{k}, s}(\nu_{*}) \times
\times G_{\mathbf{k}+\mathbf{q}_{1}, s}(\nu_{*}+\nu_{1}) \, G_{\mathbf{k}-\mathbf{q}_{2}, s}(\nu_{*}-\nu_{2});
\tilde{\mu}_{4}^{0}(y_{1}, -y_{1}, y_{2}, -y_{2}) = \beta^{-1} \sum_{\mathbf{k}, s; \nu_{*}} G_{\mathbf{k}, s}(\nu_{*}) \times
\times G_{\mathbf{k}-\mathbf{q}_{1}, s}(\nu_{*}-\nu_{1}) \sum_{\sigma=\pm 1} G_{\mathbf{k}-\sigma\mathbf{q}_{2}, s}(\nu_{*}-\sigma\nu_{2}) \times
\times \{2G_{\mathbf{k}, s}(\nu_{*}) + G_{\mathbf{k}+\mathbf{q}_{1}+\sigma\mathbf{q}_{2}, s}(\nu_{*}+\nu_{1}+\sigma\nu_{2})\}$$
(6.23)

і т. д. Розкладаючи добутки функцій Гріна на прості множники і використовуючи співвідношення

$$\beta^{-1} \sum_{\nu_*} G_{\mathbf{k},s}(\nu_*) = n_{\mathbf{k},s} = \{1 + \exp[\beta(E_k - \mu)]\}^{-1}, \tag{6.24}$$

одержуємо таке зображення функцій $\tilde{\mu}_n^0(y_1,...,y_n)$:

$$\tilde{\mu}_{2}^{0}(y, -y) = \gamma_{2}(y) = -2\operatorname{Re} \sum_{\mathbf{k}, s} n_{\mathbf{k}, s} \{i\nu + E_{\mathbf{k}} - E_{\mathbf{k} + \mathbf{q}}\}^{-1},$$

$$\tilde{\mu}_{3}^{0}(y_{1}, y_{2}, y_{3}) = \delta_{y_{1} + y_{2} + y_{3}, 0} \{\gamma_{3}(y_{1}, -y_{2}) + + \gamma_{3}(y_{2}, -y_{3}) + \gamma_{3}(y_{3}, -y_{1})\};$$

$$\gamma_{3}(y_{1}, y_{2}) = 2\operatorname{Re} \sum_{\mathbf{k}, s} n_{\mathbf{k}, s} \{i\nu_{1} + E_{\mathbf{k}} - E_{\mathbf{k} + \mathbf{q}_{1}}\}^{-1} \times \{i\nu_{2} + E_{\mathbf{k}} - E_{\mathbf{k} + \mathbf{q}_{2}}\}^{-1}; \dots.$$
(6.25)

6.2.1. Двочастинкова кореляційна функція. Переходячи від суми за вектором ${\bf k}$ до інтеграла, використаємо сферичну систему координат, вісь OZ якої напрямлена вздовж вектора ${\bf q}$, і введемо "релятивістські" безрозмірні змінні

$$k_* = \frac{|\mathbf{k}|\hbar}{m_0 c}, \quad q_* = \frac{|\mathbf{q}|\hbar}{m_0 c}, \quad \tilde{\nu} = \frac{\nu}{m_0 c^2},$$
 (6.26)

а також $x=k_F\hbar/m_0c$ – параметр релятивізму. Інтегруючи за кутовими змінними вектора ${\bf k}$, одержуємо зображення $\tilde{\mu}_2^0(y,-y)$ у вигляді

одновимірного інтеграла:

$$\tilde{\mu}_{2}^{0}(y, -y) = \frac{3N_{e}}{m_{0}c^{2}x^{2}}J_{2}(q_{*}, \tilde{\nu}|x), \qquad (6.27)$$

$$J_{2}(q_{*}, \tilde{\nu}|x) = (xq_{*})^{-1} \int_{0}^{\infty} dk_{*} k_{*} n(k_{*})A(k_{*}|q_{*}, \tilde{\nu}),$$

$$A(k_{*}|q_{*}, \tilde{\nu}) = \sum_{\sigma=\pm 1} \sigma \left\{ \left[1 + (k_{*} + \sigma q_{*})^{2}\right]^{1/2} - \tilde{\nu} \arctan\left[\tilde{\nu}^{-1}\eta_{\sigma}(k_{*}, q_{*})\right] + \frac{1}{2}(1 + k_{*}^{2})^{1/2} \ln\left[\tilde{\nu}^{2} + \eta_{\sigma}^{2}(k_{*}, q_{*})\right] \right\},$$

$$\eta_{\sigma}(k_{*}, q_{*}) = \left[1 + (k_{*} + \sigma q_{*})^{2}\right]^{1/2} - \left[1 + k_{*}^{2}\right]^{1/2}.$$

Одержаний вираз точний, але подальше точне інтегрування за змінною k_* навіть у випадку $T=0~{\rm K}~{\rm \varepsilon}$ дуже громіздким. Однак у статичному випадку точний аналітичний вираз легко одержується прямим інтегруванням за формулою (6.27) [62]

$$\tilde{\mu}_{2}^{0}(\mathbf{q}, -\mathbf{q}|0) = 3N_{e}(m_{0}c^{2}x^{2})^{-1}J_{2}(q_{*}|x),$$

$$q_{*}x J_{2}(q_{*}|x) = \frac{2}{9}(R_{+} - R_{-}) \left[1 + \frac{7}{4}x^{2} - \frac{1}{8}q_{*}^{2} \right] +$$

$$+ \frac{1}{12}q_{*}xR_{0} + \frac{5}{72}q_{*}x(R_{+} + R_{-}) +$$

$$+ \frac{1}{3}R_{0}^{3} \ln \left| \frac{R_{+} - R_{0}}{R_{-} - R_{0}} \right| + \frac{1}{4}q_{*} \left[1 + \frac{1}{6}q_{*}^{2} \right] \ln |x + R_{0}| -$$

$$- \frac{1}{8}q_{*} \left(1 + \frac{1}{6}q_{*}^{2} \right) \ln |(R_{+} + x + q_{*})(R_{-} + x - q_{*})| +$$

$$+ \frac{1}{6}S_{q}^{3} \left\{ \ln \left| \frac{1 + \frac{1}{2}q_{*}^{2} + \frac{1}{2}xq_{*} + S_{q}R_{+}}{1 + \frac{1}{2}q_{*}^{2} - \frac{1}{2}xq_{*} + S_{q}R_{-}} \right| -$$

$$- \ln \left| \frac{1 + \frac{1}{2}xq_{*} + S_{q}R_{0}}{1 - \frac{1}{2}xq_{*} + S_{q}R_{0}} \right| - 2 \ln \left| \frac{x + \frac{1}{2}q_{*}}{x - \frac{1}{2}q_{*}} \right| \right\},$$

$$R_{0} = (1 + x^{2})^{1/2}, \quad S_{q} = \left(1 + \frac{1}{4}q_{*}^{2} \right)^{1/2}, \quad R_{\pm} = [1 + (q_{*} \pm x)^{2}]^{1/2}.$$

Як і в нерелятивістському випадку, функція $J_2(q_*|x)$ має слабку логарифмічну особливість типу $\left(x-\frac{1}{2}q_*\right)\ln\left|x-\frac{1}{2}q_*\right|$ в околі точки $q_*=2x$ або ж $|\mathbf{q}|=2k_F$.

Зауважимо, що кореляційні функції релятивістської моделі загалом подібні до відповідних функцій нерелятивістської моделі, але суттєво залежать від параметра релятивізму x, що добре видно з їхньої асимптотики. Зокрема

$$\tilde{\mu}_{2}^{0}(\mathbf{q}, -\mathbf{q}|0) \Rightarrow \begin{cases} 3N_{e}(m_{0}c^{2}x^{2})^{-1}(1+x^{2})^{1/2} & \text{при} \quad q \to 0; \\ 2N_{e}(m_{0}c^{2}q_{*})^{-1} & \text{при} \quad q \to \infty, \end{cases}$$
(6.29)

у релятивістському випадку, а в нерелятивістському

$$\tilde{\mu}_{2}^{0}(\mathbf{q}, -\mathbf{q}|0) \Rightarrow \begin{cases} 3N_{e}(2\varepsilon_{F})^{-1} & \text{при} \quad q \to 0; \\ 2N_{e}(\hbar^{2}q^{2}/2m_{0})^{-1} & \text{при} \quad q \to \infty, \end{cases}$$
(6.30)

причому $2\varepsilon_F = m_0 c^2 x^2$. Залежність функції $J_2(q_*|x)$ від хвильового вектора та параметра релятивізму ілюструє рис. 6.1. Тут використано "нерелятивістську" безрозмірну змінну $q = |\mathbf{q}| k_F^{-1}$.

Рис. 6.1. Залежність статичної функції $2\varepsilon_F(3N_e)^{-1}\tilde{\mu}_2^0(\mathbf{q}, -\mathbf{q}|0, 0)$ від параметра релятивізму.

Для розрахунку термодинамічного потенціалу моделі електронної рідини ми використовуємо динамічну кореляційну функцію $\tilde{\mu}_2^0(y,-y)$, розраховану чисельним методом за формулою (6.27). Однак для виявлення загальних властивостей цієї функції корисно одержати наближений аналітичний вираз. Виходячи з формул (6.27), за допомогою

тотожних перетворень представимо $\tilde{\mu}_{2}^{0}(y,-y)$ у такому вигляді:

$$\tilde{\mu}_{2}^{0}(y, -y) = 2 \sum_{\mathbf{k}, s} n_{\mathbf{k}, s} (\tilde{E}_{\mathbf{k}+\mathbf{q}} + \tilde{E}_{\mathbf{k}}) (\tilde{E}_{\mathbf{k}+\mathbf{q}}^{2} - \tilde{E}_{\mathbf{k}}^{2}) \times \\ \times \left\{ (\tilde{E}_{\mathbf{k}+\mathbf{q}}^{2} - \tilde{E}_{\mathbf{k}}^{2})^{2} + \tilde{\nu}^{2} (\tilde{E}_{\mathbf{k}+\mathbf{q}} + \tilde{E}_{\mathbf{k}})^{2} \right\}^{-1} = \\ = \frac{3N_{e}}{2m_{0}c^{2}} \cdot \frac{1}{q_{*}x^{3}} \int_{-1}^{+1} dt \int_{0}^{x} dk_{*}k_{*} \left(t + \frac{q_{*}}{2k_{*}} \right) C(k_{*}, t|q_{*}) \times \\ \times \left\{ \left(t + \frac{q_{*}}{2k_{*}} \right)^{2} + \left(\frac{\tilde{\nu}}{2k_{*}q_{*}} C(k_{*}, t|q_{*}) \right)^{2} \right\}^{-1}, \\ C(k_{*}, t|q_{*}) = \left\{ 1 + k_{*}^{2} + q_{*}^{2} + 2k_{*}q_{*}t \right\}^{1/2} + \left\{ 1 + k_{*}^{2} \right\}^{1/2}; \\ \tilde{E}_{\mathbf{k}} = E_{\mathbf{k}} + m_{0}c^{2}.$$

$$(6.31)$$

Щоб одержати наближену аналітичну формулу, використаємо таке спрощення:

$$C(k_*, t|q_*) \Rightarrow C(x, t_0|q_*); \quad k_*^{-1}C(k_*, t|q_*) \Rightarrow x^{-1}C(x, t_0|q_*).$$

В результаті наступного елементарного інтегрування одержуємо вираз

$$\tilde{\mu}_{2}^{0}(y, -y) \cong \frac{3N_{e}}{m_{0}c^{2}x^{2}}J_{2}(q_{*}, \tilde{\nu}|x),$$

$$J_{2}(q_{*}, \tilde{\nu}|x) = \frac{1}{4}C(x, t_{0}|q_{*})\left\{1 + \frac{x}{2q_{*}}\left(1 + v^{2} - \frac{q_{*}^{2}}{4x^{2}}\right) \times \left(1 + \frac{v^{2} + (1 + q_{*}/2x)^{2}}{v^{2} + (1 - q_{*}/2x)^{2}} - v\left[\arctan\frac{1 + q_{*}/2x}{v} + \arctan\frac{1 - q_{*}/2x}{v}\right]\right\},$$

$$(6.32)$$

у якому

$$v = \tilde{\nu}(2xq_*)^{-1}C(x, t_0|q_*) \approx \nu(2\varepsilon_F q/k_F)^{-1}(1+x^2)^{1/2}.$$
 (6.33)

Залежність функції $\tilde{\mu}_2^0(y,-y)$ від частоти і параметра релятивізму ілюструє рисунок 6.2. Одержаний вираз відрізняється від нерелятивістської формули множником $(1+x^2)^{1/2}$ та перенормованою безрозмірною частотою v і добре узгоджується з результатом чисельного інтегрування за формулами (6.27) або (6.31).

Рис. 6.2. Залежність динамічної функції $2\varepsilon_F(3N_e)^{-1}\tilde{\mu}_2^0(y,-y)$ у наближенні (6.32) від параметра релятивізму при $\tilde{\nu}=0.15$.

6.2.2. Тричастинкова кореляційна функція. Функція $\tilde{\mu}_3^0$ (y, -y, 0), яка є частковим випадком тричастинкової кореляційної функції при $\mathbf{q}_2 = -\mathbf{q}_1$, при T = 0K має точне аналітичне зображення:

$$\tilde{\mu}_3^0(y, -y, 0) = \frac{3N_e}{(m_0 c^2)^2 q_* x^3} (1 + x^2)^{1/2} A(x|q_*, \tilde{\nu}). \tag{6.34}$$

У статичній границі

$$\tilde{\mu}_{3}^{0}(\mathbf{q}, -\mathbf{q}, 0|0) = \frac{3N_{e}}{(m_{0}c^{2}x^{2})^{2}} J_{3}(\mathbf{q}, -\mathbf{q}, 0|x),$$

$$J_{3}(\mathbf{q}, -\mathbf{q}, 0|x) = q^{-1}R_{0} \left\{ \tilde{R}_{+} - \tilde{R}_{-} + R_{0} \ln \left| \frac{\tilde{R}_{+} - R_{0}}{\tilde{R}_{-} - R_{0}} \right| \right\},$$

$$\tilde{R} \pm = \left\{ 1 + x^{2}(q \pm 1)^{2} \right\}^{1/2}, \quad R_{0} = (1 + x^{2})^{1/2}.$$
(6.35)

У цій формулі використано "нерелятивістську" шкалу для хвильового числа $q \equiv |\mathbf{q}|/k_F$. Функцію $J_3(\mathbf{q}, -\mathbf{q}, 0|x)$ зображено на рис. 6.3.

Розрахунок тричастинкової кореляційної функції $\tilde{\mu}_3^0(y_1, y_2, y_3)$ та чотиричастинкової функції $\tilde{\mu}_4^0(y_1, -y_1, y_2, -y_2)$ у статичному чи в динамічному варіантах у нерелятивістській теорії грунтується на використанні тотожності Фейнмана [63], яка дозволяє проінтегрувати за

Рис. 6.3. Залежність функції $J_3(\mathbf{q}, -\mathbf{q}, 0|x)$ від параметра релятивізму.

кутовими змінними вектора \mathbf{k} при довільній конфігурації векторів \mathbf{q}_1 і \mathbf{q}_2 . На жаль, при строгому розрахунку через складну залежність енергії електрона від хвильового вектора ця тотожність незастосовна в релятивістському випадку. Однак у довгохвильовому наближенні (при малих значеннях векторів \mathbf{q}_1 , \mathbf{q}_2) задана тотожність дозволяє звести розрахунок до одновимірного інтегралу, або ж одержати наближений аналітичний вираз.

Згідно з означенням (6.25) статичну границю функції $\gamma_3(\mathbf{q}_i,\mathbf{q}_j)$ представимо у вигляді

$$\gamma_3(\mathbf{q}_i, \mathbf{q}_j) = 2 \sum_{\mathbf{k}, s} n_{\mathbf{k}, s} \frac{\tilde{E}_{\mathbf{k}} + \tilde{E}_{\mathbf{k} + \mathbf{q}_i}}{\tilde{E}_{\mathbf{k}}^2 - \tilde{E}_{\mathbf{k} + \mathbf{q}_i}^2} \cdot \frac{\tilde{E}_{\mathbf{k}} + \tilde{E}_{\mathbf{k} + \mathbf{q}_j}}{\tilde{E}_{\mathbf{k}}^2 - \tilde{E}_{\mathbf{k} + \mathbf{q}_i}^2}.$$
 (6.36)

Довгохвильове наближення відповідає заміні

$$\tilde{E}_{\mathbf{k}} + \tilde{E}_{\mathbf{k}+\mathbf{q}} \Rightarrow 2\tilde{E}_k = 2\{(m_0c^2)^2 + \hbar^2c^2k^2\}^{1/2},$$

внаслідок чого

$$\gamma_3(\mathbf{q}_i, \mathbf{q}_j) \approx 2 \sum_{\mathbf{k}, s} n_{\mathbf{k}, s} (1 + \hbar^2 k^2 / m_0^2 c^2) \left(\frac{2m_0}{\hbar^2}\right)^2 \times$$

$$\times \left\{ 2(\mathbf{k}, \mathbf{q}_i) + q_i^2 \right\}^{-1} \left\{ 2(\mathbf{k}, \mathbf{q}_j) + q_i^2 \right\}^{-1}.$$
(6.37)

До цього виразу тотожність Фейнмана вже застосовна, кутова залежність функції під знаком суми за вектором \mathbf{k} така ж, як і в нерелятивістській теорії, а відмінність полягає лише у наявності множника $(1 + \hbar^2 k^2/m_0 c^2)$.

Згідно з тотожністю Фейнмана

$$(2(\mathbf{k}, \mathbf{q}_{i}) + q_{i}^{2})^{-1}(2(\mathbf{k}, \mathbf{q}_{j} + q_{j}^{2})^{-1} = \int_{0}^{1} dz F^{-2}(\mathbf{q}_{i}, \mathbf{q}_{j} | \mathbf{k}),$$

$$F(\mathbf{q}_{i}, \mathbf{q}_{j} | \mathbf{k}) = z[q_{i}^{2} + 2(\mathbf{k}, \mathbf{q}_{i})] + (1 - z)[q_{j}^{2} + 2(\mathbf{k}, \mathbf{q}_{j})] = \Omega_{ij} + 2(\mathbf{k}, \boldsymbol{\rho}_{ij}),$$

$$\Omega_{ij} = q_{i}^{2} + z(q_{i}^{2} - q_{i}^{2}), \quad \boldsymbol{\rho}_{ij} = z\mathbf{q}_{i} + (1 - z)\mathbf{q}_{j}.$$
(6.38)

Переходимо від суми за вектором \mathbf{k} до інтегралу, а інтегрування виконуємо у сферичній системі координат, вісь Oz якої співпадає з вектором $\boldsymbol{\rho}_{ij}$. В результаті цих операцій одержуємо зображення

$$\gamma_3(\mathbf{q}_i, \mathbf{q}_j) = \frac{3N_e}{(m_0 c^2 x^2)^2} \int_0^1 dk \{1 + x^2 k^2\} f_{ij}(k),$$

$$f_{ij}(k) = -\frac{1}{2} \int_0^1 \frac{dz}{\rho_{ij}^2 - (4k^2)^{-1} \Omega_{ij}^2}.$$
(6.39)

У явному вигляді квадратний тричлен, що фігурує тут, записується так:

$$\rho_{ij}^{2} - \frac{1}{4k^{2}} \Omega_{ij}^{2} = C_{ij}z^{2} + B_{ij}z + A_{ij},$$

$$C_{ij} = (\mathbf{q}_{i} - \mathbf{q}_{j})^{2} - \frac{1}{4k^{2}} (q_{i}^{2} - q_{j}^{2})^{2},$$

$$B_{ij} = 2\{(\mathbf{q}_{i}, \mathbf{q}_{j}) - q_{j}^{2}\} - \frac{1}{2k^{2}} q_{j}^{2} (q_{i}^{2} - q_{j}^{2}),$$

$$A_{ij} = q_{j}^{2} - \frac{1}{4k^{2}} q_{j}^{4},$$
(6.40)

причому

$$\delta_{ij} \equiv \delta_{ij}(k) = 4A_{ij}C_{ij} - B_{ij}^2 = \Delta_{ij} - q_i^2 q_j^2 (\mathbf{q}_i - \mathbf{q}_j)^2 k^{-2} =$$

$$= \Delta_{ij} \left\{ 1 - \frac{q_R^2}{k^2} \right\},$$

$$\Delta_{ij} = 4q_i^2 q_j^2 (1 - t_{ij}^2), \quad q_R^2 = (\mathbf{q}_i - \mathbf{q}_j)^2 \{4(1 - t_{ij}^2)\}^{-1}.$$
(6.41)

Тут q_R — радіус кола, описаного навколо трикутника, побудованого на векторах $\mathbf{q}_i, \mathbf{q}_j, -\mathbf{q}_i - \mathbf{q}_j$, а t_{ij} — косинус кута між векторами \mathbf{q}_i та \mathbf{q}_j . Враховуючи, що $\Delta_{ij} \geq 0$, одержуємо такий результат:

$$f_{ij}(k) = (-\delta_{ij})^{-1/2} \ln \left| \frac{R_{ij} + (-\delta_{ij})^{-1/2}}{R_{ij} - (-\delta_{ij})^{-1/2}} \right| \quad \text{при} \quad k < q_R;$$

$$f_{ij}(k) = 2(\delta_{ij})^{-1/2} \operatorname{arctg}\{(\delta_{ij})^{1/2} R_{ij}^{-1}\} \quad \text{при} \quad k > q_R.$$

$$(6.42)$$

Тут

$$R_{ij} \equiv R_{ij}(k) = 2A_{ij} + B_{ij} = 2(\mathbf{q}_i, \mathbf{q}_j) - \frac{1}{2k^2} q_i^2 q_j^2.$$
 (6.43)

Згідно з формулою (6.39) $\tilde{\mu}_3^0(\mathbf{q}_1, \mathbf{q}_2, -\mathbf{q}_1 - \mathbf{q}_2|0)$ можна записати у вигляді однократного інтеграла [55, 56]

$$\tilde{\mu}_{3}^{0}(\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}|0) = \frac{3N_{e}}{(2\varepsilon_{F})^{2}} \int_{0}^{1} dk(1 + x^{2}k^{2}) \Phi(k|q_{1}, q_{2}, q_{3}),$$

$$\Phi(k|q_{1}, q_{2}, q_{3}) = f_{12}(k) + f_{23}(k) + f_{31}(k).$$
(6.44)

Суму доданків у формулі (6.44) можна звести до компактного вигляду, користуючись тим, що елементи Δ_{ij} та δ_{ij} є інваріантами задачі:

$$\Delta_{12} = \Delta_{23} = \Delta_{31},$$

$$q_R^2 = \frac{q_3^2}{4(1 - t_{12}^2)} = \frac{q_2^2}{4(1 - t_{13}^2)} = \frac{q_1^2}{4(1 - t_{23}^2)},$$
(6.45)

де t_{ij} – косинус кута між векторами \mathbf{q}_i та \mathbf{q}_j , а $q_3 \equiv |\mathbf{q}_1 + \mathbf{q}_2|$. Кінцевий результат є таким:

$$\Phi(k|q_1, q_2, q_3) = \frac{k}{\gamma_1(k)} \cdot \frac{1}{q_1 q_2 q_3} \ln \left| \frac{1 + \gamma_1(k) D_k}{1 - \gamma_1(k) D_k} \right| \quad \text{при} \quad k < q_R;
\Phi(k|q_1, q_2, q_3) = 2 \frac{k}{\gamma_2(k)} \cdot \frac{1}{q_1 q_2 q_3} \operatorname{arctg} \{ \gamma_2(k) D_k \} \quad \text{при} \quad k > q_R.$$
(6.46)

Тут використано такі позначення:

$$\gamma_1(k) = \left[1 - \frac{k^2}{q_R^2}\right]^{1/2}; \quad \gamma_2(k) = \left[\frac{k^2}{q_R^2} - 1\right]^{1/2};
D_k = \frac{q_1 q_2 q_3}{4k^3} \left(1 - \frac{1}{8k^2} (q_1^2 + q_2^2 + q_3^2)\right) P^{-1}(k);
P(k) = 1 - \frac{q_1^2 + q_2^2 + q_3^2}{4k^2} + \frac{q_1^4 + q_2^4 + q_3^4}{32k^4} + \frac{(q_1 q_2 q_3)^2}{64k^6}.$$
(6.47)

Функції $\Phi(k|q_1,q_2,q_3)$ і $\tilde{\mu}_3^0(\mathbf{q}_1,\mathbf{q}_2,-\mathbf{q}_1-\mathbf{q}_2|0)$ фактично залежать від трьох незалежних змінних $q_1,q_2,t\equiv\cos(\mathbf{q}_1,\mathbf{q}_2)$.

У наближеному варіанті розрахунку винесемо у формулі (6.39) зпід знака інтеграла множник $(1+x^2k^2)$ на верхній границі інтегрування і проінтегруємо за змінною k. У цьому наближенні

$$\gamma_{3}(\mathbf{q}_{i}, \mathbf{q}_{j}) = \frac{3N_{e}}{(m_{0}c^{2}x^{2})^{2}}(1+x^{2})\tilde{\gamma}_{ij},$$

$$\tilde{\gamma}_{ij} = -2\int_{0}^{1} \frac{dz}{\rho_{ij}^{2}} \left\{ 1 + \frac{\Omega_{ij}}{4\rho_{ij}} \ln \left| \frac{2\rho_{ij} - \Omega_{ij}}{2\rho_{ij} + \Omega_{ij}} \right| \right\} = \varphi_{ij} - \frac{\delta_{ij}(1)}{\Delta_{ij}} I_{ij},$$

$$I_{ij} = \int_{0}^{1} \frac{dz}{\rho_{ij}^{2} - \Omega_{ij}^{2}/4},$$

$$\varphi_{ij} = -\frac{2q_{i}}{\Delta_{ij}} \{q_{j}^{2} - (\mathbf{q}_{i}, \mathbf{q}_{j})\} \ln \left| \frac{1 - \frac{1}{2}q_{i}}{1 + \frac{1}{2}q_{i}} \right| - \frac{2q_{j}}{\Delta_{ij}} \{q_{i}^{2} - (\mathbf{q}_{i}, \mathbf{q}_{j})\} \ln \left| \frac{1 - \frac{1}{2}q_{j}}{1 + \frac{1}{2}q_{j}} \right|.$$
(6.48)

Зводячи суму $\gamma_3(\mathbf{q}_1, -\mathbf{q}_2) + \gamma_3(\mathbf{q}_2, \mathbf{q}_1 + \mathbf{q}_2) + \gamma_3(\mathbf{q}_1, \mathbf{q}_1 + \mathbf{q}_2)$ до компактного вигляду, одержуємо для $\tilde{\mu}_3^0(\mathbf{q}_1, \mathbf{q}_2, -\mathbf{q}_1 - \mathbf{q}_2|0)$ аналітичне представлення, подібне до знайденого в роботі [61] для нерелятивістської моделі,

$$\tilde{\mu}_{3}^{0}(\mathbf{q}_{1}, \mathbf{q}_{2}, -\mathbf{q}_{1} - \mathbf{q}_{2}|0) \cong \frac{3N_{e}}{(m_{0}c^{2}x^{2})^{2}}(1+x^{2}) \times \\ \times \frac{4q_{R}^{2}}{q_{1}q_{2}q_{3}} \left\{ \sum_{i=1}^{3} \cos\theta_{i} \ln \left| \frac{1+q_{i}/2}{1-q_{i}/2} \right| - Y(q_{1}, q_{2}, q_{3}) \right\}, \\ Y(q_{1}, q_{2}, q_{3}) = \frac{1}{2}\gamma_{2} \ln \left| \frac{1-\gamma_{2}D}{1+\gamma_{2}D} \right| \quad \text{при} \quad q_{R} > 1, \quad \gamma_{2} = \left[1 - \frac{1}{q_{R}^{2}} \right]^{1/2}; \\ Y(q_{1}, q_{2}, q_{3}) = \gamma_{1} \arctan[\gamma_{1}D] \quad \text{при} \quad q_{R} < 1, \quad \gamma_{1} = \left[\frac{1}{q_{R}^{2}} - 1 \right]^{1/2}; \\ D = \frac{1}{4}q_{1}q_{2}q_{3} \left[1 - \frac{1}{8}(q_{1}^{2} + q_{2}^{2} + q_{3}^{2}) \right] \times \\ \times \left\{ 1 - \frac{1}{4}(q_{1}^{2} + q_{2}^{2} + q_{3}^{2}) + \frac{1}{32}(q_{1}^{4} + q_{2}^{4} + q_{3}^{4}) + \frac{1}{64}(q_{1}q_{2}q_{3})^{2} \right\}^{-1}.$$

Тут $q_3 = |\mathbf{q}_1 + \mathbf{q}_2|$, а кут θ_i знаходиться навпроти сторони q_i трикутника, утвореного векторами $\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3$, як показано на рисунку 6.4.

Рис. 6.4

6.3. Кореляційні функції моделі електронної рідини

Використовуючи модель з гамільтоніаном \hat{H}_0 як базисну, внески міжчастинкових взаємодій, яким відповідає оператор \hat{V}_{ee} (або \hat{S}_{ee}) можна враховувати за теорією збурень. Однак її особливість полягає в тому, що у другому та вищих порядках такої теорії збурень виникають розбіжні діаграми. Причиною цього є далекосяжний характер потенціалів кулонівських взаємодій. Через це виникає необхідність підсумовування безмежних рядів розбіжних діаграм. Наближення, у якому підсумовуються найбільш розбіжні (так звані поляризаційні) діаграми, має назву наближення хаотичних фаз (random phase approximation — RPA).

За аналогією до формули (6.21) n-частинкові кореляційні функції моделі електронної рідини, якій відповідає гамільтоніан $\hat{H}_0 + \hat{V}_{ee}$, означимо співвідношенням

$$\tilde{\mu}_n(y_1, ..., y_n) = \beta^{-1} \left\langle T_{\beta} \{ \hat{\rho}_{\mathbf{q}_1, \nu_1} \cdots \hat{\rho}_{\mathbf{q}_n, \nu_n} \hat{S}_{ee} \} \right\rangle_0^{^{3B}}.$$
 (6.50)

Розкладаючи оператор \hat{S}_{ee} у степеневий ряд і усереднюючи почленно, одержуємо безмежний ряд діаграм, побудованих на багаточастинкових функціях (6.21). Якщо врахувати лише ті діаграми, у яких фігурують функції $\tilde{\mu}_{2}^{0}(y,-y)$, то одержимо наближення хаотичних фаз:

$$\tilde{\mu}_{2}^{RPA}(y, -y) = \tilde{\mu}_{0}^{2}(y, -y) \, \varepsilon_{RPA}^{-1}(y);$$

$$\tilde{\mu}_{3}^{RPA}(y_{1}, y_{2}, y_{3}) = \tilde{\mu}_{3}^{0}(y_{1}, y_{2}, y_{3}) \, \prod_{i=1}^{3} \varepsilon_{RPA}^{-1}(y_{i}); \dots,$$

$$(6.51)$$

де

$$\varepsilon_{RPA}(y) = 1 + \frac{V_{\mathbf{q}}}{V} \tilde{\mu}_2^0(y, -y). \tag{6.52}$$

Це наближення усуває розбіжність діаграм теорії збурень для термодинамічного потенціалу, але немає такої області параметрів моделі електронної рідини, у якій воно було б точним.

Врахування діаграм, у яких фігурують кореляційні функції $\tilde{\mu}_2^0(y,-y)$, $\tilde{\mu}_3^0(y_1,y_2,y_3)$ і $\tilde{\mu}_4^0(y_1,-y_1,y_2,-y_2)$, відповідає наближенню локального поля, у якому

$$\tilde{\mu}_{2}(y, -y) = \tilde{\mu}_{2}^{0}(y, -y) \,\varepsilon^{-1}(y),$$

$$\tilde{\mu}_{3}(y_{1}, y_{2}, y_{3}) = \tilde{\mu}_{3}^{0}(y_{1}, y_{2}, y_{3}) \prod_{i=1}^{3} \varepsilon^{-1}(y_{i}),$$

$$\varepsilon(y) = 1 + \frac{V_{\mathbf{q}}}{V} \,\tilde{\mu}_{2}^{0}(y, -y) \,\{1 - G(y)\},$$
(6.53)

де $G(\mathbf{q}, \nu)$ – так звана поправка на локальне поле. Мікроскопічна теорія поправки на локальне поле для моделі електронної рідини та споріднених моделей побудована у роботах [52, 53, 56, 62].

Як відомо з нерелятивістської теорії електронної рідини [53], у слабко неідеальній моделі поправка на локальне поле є універсальною функцією змінної $y=(\mathbf{q},\nu)$, вона не залежить від жодних параметрів і відповідає наближенню

$$G_{id}(y) = -(2\beta V_q)^{-1} \{ \tilde{\mu}_2^0(y, -y) \}^{-2} \sum_{y_1} V_{q_1} \tilde{\mu}_4^0(y, -y, y_1, -y_1).$$
 (6.54)

Звідси випливає, що наближення хаотичних фаз не є точним навіть у границі слабкої неідеальності.

Виконуючи підсумовування за частотами ν_1 та ν_* (ν_* фігурує в $\mu_4^0(y,-y,y_1,-y_1)$) за формулою (6.24), вираз (6.54) представимо у такому вигляді:

$$G_{id}(y) = -V_q^{-1} \{ \mu_2^0(y, -y) \}^{-2} \sum_{s} \sum_{\mathbf{k}_1, \mathbf{k}_2} n_{\mathbf{k}_1, s} n_{\mathbf{k}_2, s} \times$$

$$\times \left\{ V(\mathbf{k}_1 - \mathbf{k}_2) f_{\mathbf{k}_1, \mathbf{k}_2}^{-}(\mathbf{q}, \nu) - V(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{q}) f_{\mathbf{k}_1, \mathbf{k}_2}^{+}(\mathbf{q}, \nu) \right\},$$

$$f_{\mathbf{k}_1, \mathbf{k}_2}^{\mp}(\mathbf{q}, \nu) = Re\{ [i\nu + E_{\mathbf{k}_1} - E_{\mathbf{k}_1 + \mathbf{q}}]^{-1} \mp [\pm i\nu + E_{\mathbf{k}_2} - E_{\mathbf{k}_2 + \mathbf{q}}]^{-1} \}^{2}.$$
(6.55)

Асимптотика виразу (6.55) при малих та великих значеннях хвильового вектора ${\bf q}$ збігається з асимптотикою поправки на локальне поле у

нерелятивістській теорії:

$$G_{id}(y) \Rightarrow \begin{cases} \frac{1}{4} (q/k_F)^2 + \cdots \text{ при} \quad \nu = 0; \quad q \ll k_F; \\ \frac{3}{20} (q/k_F)^2 + \cdots \text{ при} \quad \nu \gg \varepsilon_F; \quad q \ll k_F; \\ \frac{1}{3} + \cdots \text{ при} \quad q \gg k_F \quad \text{і довільних } \nu. \end{cases}$$
 (6.56)

Для комп'ютерного розрахунку $G_{id}(y)$ при абсолютному нулі температури використаємо циліндричну систему координат для векторів $\mathbf{k}_1, \mathbf{k}_2(\mathbf{k}_j = (z_j, \rho_j, \varphi_j))$, у яких $(\mathbf{k}_j, \mathbf{q}) = qz_j$, $(\mathbf{k}_1 - \mathbf{k}_2)^2 = \rho_1^2 + \rho_2^2 + (z_1 - z_2)^2 - 2\rho_1\rho_2\cos(\varphi_1 - \varphi_2)$, $(\mathbf{k}_1, \mathbf{k}_2) = z_1z_2 + \rho_1\rho_2\cos(\varphi_1 - \varphi_2)$, $k_j^2 = z_j^2 + \rho_j^2$. Інтегруючи за змінними φ_1, φ_2 , зводимо $G_{id}(y)$ до такого 4-вимірного інтегралу [60]:

$$G_{id}(q,\nu) = \frac{q^2 x^4}{8} J_2^{-2}(qx,\tilde{\nu}) \int_{-1}^{1} dz_1 \int_{-1}^{1} dz_2 \int_{0}^{\sqrt{1-z_1^2}} \rho_1 d\rho_1 \int_{0}^{\sqrt{1-z_2^2}} \rho_2 d\rho_2 \times \left\{ \frac{f_{q,\nu}^+(z_1, z_2, \rho_1, \rho_2)}{W_+(z_1, z_2, \rho_1, \rho_2)} - \frac{f_{q,\nu}^-(z_1, z_2, \rho_1, \rho_2)}{W_-(z_1, z_2, \rho_1, \rho_2)} \right\},$$
(6.57)

де

$$f_{q,\nu}^{\pm}(z_{1}, z_{2}, \rho_{1}, \rho_{2}) = \left\{ \frac{\eta_{1}}{\eta_{1}^{2} + \tilde{\nu}^{2}} \pm \frac{\eta_{2}}{\eta_{2}^{2} + \tilde{\nu}^{2}} \right\}^{2} - \tilde{\nu}^{2} \left\{ \frac{1}{\eta_{1}^{2} + \tilde{\nu}^{2}} - \frac{1}{\eta_{2}^{2} + \tilde{\nu}^{2}} \right\}^{2},$$

$$\eta_{i} = \left[1 + x^{2} (z_{i}^{2} + \rho_{i}^{2}) \right]^{1/2} - \left[1 + x^{2} (\rho_{i}^{2} + (z_{i} + q)^{2}) \right]^{1/2},$$

$$W_{+}(z_{1}, z_{2}, \rho_{1}, \rho_{2}) = \left\{ (z_{1} + z_{2} + q)^{4} + (\rho_{1}^{2} - \rho_{2}^{2})^{2} + 2(\rho_{1}^{2} + \rho_{2}^{2})(z_{1} + z_{2} + q)^{2} \right\}^{1/2},$$

$$W_{-}(z_{1}, z_{2}, \rho_{1}, \rho_{2}) = \left\{ (z_{1} - z_{2})^{4} + (\rho_{1}^{2} - \rho_{2}^{2})^{2} + 2(\rho_{1}^{2} + \rho_{2}^{2})(z_{1} - z_{2})^{2} \right\}^{1/2}.$$

$$(6.58)$$

Переходячи до границі $x \to 0$ у формулах (6.57), (6.58), одержуємо поправку на локальне поле нерелятивістської теорії:

$$G_{id}^{0}(q,\nu) = \frac{1}{8} \left\{ J_{2}(q,\nu) \right\}^{-2} \int_{-1}^{1} dz_{1} \int_{-1}^{1} dz_{2} \int_{0}^{\sqrt{1-z_{1}^{2}}} \rho_{1} d\rho_{1} \int_{0}^{\sqrt{1-z_{2}^{2}}} \rho_{2} d\rho_{2} \times \left\{ \frac{\varphi_{q,\nu}^{+}(z_{1},z_{2},\rho_{1},\rho_{2})}{W_{+}(z_{1},z_{2},\rho_{1},\rho_{2})} - \frac{\varphi_{q,\nu}^{-}(z_{1},z_{2},\rho_{1},\rho_{2})}{W_{-}(z_{1},z_{2},\rho_{1},\rho_{2})} \right\},$$

$$\varphi_{q,\nu}^{\pm}(z_{1},z_{2},\rho_{1},\rho_{2}) = \left\{ \frac{z_{1}+q/2}{(z_{1}+q/2)^{2}+u^{2}} \pm \frac{z_{2}+q/2}{(z_{2}+q/2)^{2}+u^{2}} \right\}^{2} - -u^{2} \left\{ \frac{1}{(z_{1}+q/2)^{2}+u^{2}} - \frac{1}{(z_{2}+q/2)^{2}+u^{2}} \right\}^{2},$$

$$u = \nu \left[\frac{\hbar^{2}k_{F}^{2}}{m} q \right]^{-1}, \quad q \equiv |\mathbf{q}| k_{F}^{-1},$$

$$(6.59)$$

функції $W_{\pm}(z_1,z_2,\rho_1,\rho_2)$ визначені формулами (6.58), а $J_2(q,\nu)$ фор-

Рис. 6.5. Залежність динамічної поправки на локальне поле від параметра релятивізму поблизу статичної границі ($\tilde{\nu}=0.01$). Кривій 1 відповідає значення параметра релятивізму $x=0.05;\ 2-x=0.2;\ 3-x=0.5;\ 4-x=1.0;\ 5-x=2.0;\ 6-x=5.0$.

мулою (6.32) У такому наближенні поправка на локальне поле вперше

одержана у роботі [52]. Оскільки $\varphi_{q,\nu}^{\pm}(z_1,z_2,\rho_1,\rho_2)$ не залежить від змінних ρ_1, ρ_2 , то інтегрування за цими змінними виконується в аналітичній формі і $G_{id}(q,\nu)$ зводиться до розрахунку двовимірного інтеграла за змінними z_1, z_2 чисельним методом. З метою порівняння $G_{id}(q, \nu)$ із поправкою на локальне поле нерелятивістської теорії у формулах (6.57), (6.58) використано змінну $q = |\mathbf{q}|k_F^{-1}$, а $\tilde{\nu} = \bar{\nu}x^2$, $\bar{\nu} = \nu(\hbar^2 k_F^2/m)^{-1}$. На рисунку 6.5 зображено динамічну поправку, розраховану за формулою (6.57) при $\tilde{\nu}=0.01$, що дуже близько до статичної границі. Як видно з рисунка, асимптотика $G_{id}(q,\nu)$ при малих та великих значеннях хвильового вектора майже не залежить від параметра релятивізму і збігається з асимптотикою функції $G^0_{id}(q,\nu)$. Відхилення $G_{id}(q,\nu)$ від $G_{id}^0(q,\nu)$ суттєве в області максимуму: величина його монотонно зменшується зі збільшенням параметра релятивізму, що пов'язано з поведінкою $\mathcal{J}(q,\nu)$ як функції параметра релятивізму. На рисунку 6.6 наведено залежність $G_{id}(q,\nu)$ від хвильового вектора при досить великому значенні частоти ($\bar{\nu} = 0.5$). У цьому випадку характер залежності від хвильового вектора відповідає поведінці нерелятивістської поправки, але висота максимуму суттєво зменшується зі збільшенням параметра релятивізму, що зумовлено перенормуванням частоти ($\tilde{\nu} = \bar{\nu} x^2$) при x > 1. Це зауваження відноситься також до зсуву максимуму в область великих значень хвильового вектора.

6.4. Енергія основного стану моделі

З метою побудови рівняння стану перейдемо від термодинамічного потенціалу $\Omega(\mu)$ до вільної енергії

$$F = \Omega(\mu_*) + \mu_* N_e, \tag{6.60}$$

де $\mu_* = \mu_0\left(\frac{N}{V},T\right)$ – хімічний потенціал, що є коренем рівняння $N_e = -\partial\Omega(\mu)/\partial\mu$. Як відомо з теорії нерелятивістської електронної рідини, коректний перехід від термодинамічного опису до квантово-механічного потребує дотримання такої процедури: як μ_* використовують хімічний потенціал ідеальної системи $\mu_0 = E_F$ (де $E_F = E(k_F)$ – енергія електрона на поверхні Фермі у базисній системі), а в $\Omega(\mu)$ треба враховувати лише так звані "нормальні" складові, тому що зсув хімічного потенціалу $\mu_* - \mu_0$ компенсується внеском так званих "аномальних" складових, які виникають у кореляційних функціях вищого порядку

Рис. 6.6. Залежність динамічної поправки на локальне поле від параметра релятивізму у випадку великої частоти ($\bar{\nu}=0.5$). Кривій 1 відповідає значення параметра релятивізму $x=0.05;\ 2-x=0.2;\ 3-x=0.5;\ 4-x=1.0;\ 5-x=2.0;\ 6-x=5.0$.

 $\tilde{\mu}_n^0(y_1,...,y_n)$ (при $n\geq 4$). У підході функцій Гріна цей факт уперше виявлено у праці [64], а в базисному підході — у праці [65] у рамках теорії збурень.

Беручи до уваги слабку неідеальність речовини в карликах, ми будемо враховувати лише дво- та тричастинкові електронні кореляції, тому в такому наближенні енергія основного стану моделі задається співвідношенням

$$E = \Omega(\mu_0) + \mu_0 N_e, (6.61)$$

Як легко довести прямим обчисленням,

$$\Omega_0(\mu_0) = -N_e \mu_0 + \sum_{\mathbf{k},s} n_{\mathbf{k},s}(\mu_0) E_k,$$
(6.62)

тому енергію основного стану можна записати у вигляді

$$E = E_e + E_1 + E_2, (6.63)$$

де E_e — енергія електронної підсистеми із врахуванням кулонівських взаємодій,

$$E_{1} = \frac{z^{2}}{2V} \sum_{\mathbf{q}}^{'} V_{q} \left\{ S_{\mathbf{q}} S_{-\mathbf{q}} - N_{n} \right\} -$$
 (6.64)

електростатична енергія точкових ядер на фоні негативного однорідно розподіленого компенсуючого заряду, а складова

$$E_{2} = -\sum_{n\geq 2} \frac{z^{n}}{V^{n} n!} \sum_{\mathbf{q}_{1},\dots,\mathbf{q}_{n}}^{'} V_{q_{1}} \cdots V_{q_{n}} S_{\mathbf{q}_{1}} \cdots S_{\mathbf{q}_{n}} \times \tilde{\mu}_{n}(\mathbf{q}_{1},\dots,\mathbf{q}_{n}|0) \delta_{\mathbf{q}_{1}+\dots+\mathbf{q}_{n},0}$$

$$(6.65)$$

описує внесок електрон-ядерних взаємодій. У зв'язку з електронейтральністю системи у всіх доданках відсутні компоненти зі значенням хвильового вектора $\mathbf{q}=0$.

Енергію моделі електронної рідини E_e зручно розраховувати за допомогою співвідношення, яке має назву теореми про енергію основного стану (див. напр. [66]), а саме

$$E_e = E_0 + (2\beta V)^{-1} \sum_{\mathbf{q} \neq 0; \nu} V_q \int_0^1 \tilde{\mu}_2^{\lambda}(y, -y) d\lambda, \tag{6.66}$$

в якому E_0 – енергія ідеальної підсистеми електронів (без взаємодії)

$$E_0 = \sum_{k,s} n_{k,s}(\mu_0) E_k = N_e m_0 c^2 \varepsilon_0(x), \tag{6.67}$$

де

$$\varepsilon_0(x) = (2x)^{-3} \left\{ 3x(1+x^2)^{1/2}(1+2x^2) - 8x^3 - 3\ln\left[x + (1+x^2)^{1/2}\right] \right\}. (6.68)$$

У формулі (6.66) $\tilde{\mu}_2^{\lambda}(y,-y)$ є двочастинковою динамічною кореляційною функцією модельної підсистеми електронів з потенціалом міжчастинкових взаємодій λV_a .

Виділяючи з другого доданка формули (6.66) внесок ідеальних кореляцій

$$E_{HF} = (2\beta V)^{-1} \sum_{\mathbf{q} \neq 0; \nu} V_q \tilde{\mu}_2^0(y, -y) = -(2V)^{-1} \sum_{\mathbf{q} \neq 0; \mathbf{k}, s} V_q n_{k+q/2, s} n_{k-q/2, s} =$$

$$= -\frac{3}{4\pi} N_e \alpha_0 m_0 c^2 x, \tag{6.69}$$

де $\alpha_0 = e^2/\hbar c$, представимо енергію електронної підсистеми у традиційному вигляді

$$E_e = E_0 + E_{HF} + E_c, (6.70)$$

де

$$E_c = (2\beta V)^{-1} \sum_{\mathbf{q} \neq 0, \nu} V_q \int_0^1 \{ \tilde{\mu}_2^{\lambda}(y, -y) - \tilde{\mu}_2^0(y, -y) \} d\lambda$$
 (6.71)

є так звана кореляційна енергія (енергія неідеальних кореляцій). У наближенні локального поля з функцією

$$\tilde{\mu}_2^{\lambda}(y, -y) = \tilde{\mu}_2^0(y, -y) \left\{ 1 + \lambda \frac{V_q}{V} \, \tilde{\mu}_2^0(y, -y) \left[1 - G_{id}(y) \right] \right\}^{-1}. \tag{6.72}$$

У зв'язку з тим, що $G_{id}(y)$ в околі максимуму може перевищувати одиницю, то з метою спрощення розрахунку кореляційної енергії моделі, яка є слабко неідеальною, доцільно використати двочастинкову кореляційну функцію у так званому наближенні post-RPA, а саме [55]

$$\tilde{\mu}_{2}^{\lambda}(y, -y) = M_{2}^{\lambda}(y, -y) \left\{ 1 + \frac{V_{q}}{V} \lambda M_{2}^{\lambda}(y, -y) \right\}^{-1}, \qquad (6.73)$$

$$M_{2}^{\lambda}(y, -y) = \tilde{\mu}_{2}^{0}(y, -y) \left\{ 1 + \lambda G_{id}(y) \, \tilde{\mu}_{2}^{0}(y, -y) \right\}.$$

Інтегрування за параметром λ у формулі (6.71) дає такий результат:

$$E_c = (2\beta)^{-1} \sum_{\mathbf{q},\nu} \left\{ \frac{1}{2} \ln[1 + L(y) (1 + L(y) G_{id}(y))] - L(y) + \Phi(y) \right\}.$$
(6.74)

Тут використано позначення:

$$L(y) = V_q V^{-1} \tilde{\mu}_2^0(y, -y); \qquad \Delta \equiv \Delta(y) = 4G_{id}(y) - 1;$$

$$\Phi(y) = \begin{cases} \frac{1}{2}(-\Delta)^{-1/2} \sum_{\sigma=\pm 1} \sigma \ln\{1 + \frac{1}{2}L(y)[1 + \sigma(-\Delta)^{1/2}]\} \text{при } \Delta < 0; \\ 2G_{id}(y)L(y)[1 + 2G_{id}(y)L(y)]^{-1} \text{ при } \Delta = 0; \\ \Delta^{-1/2} \operatorname{arctg}\{\frac{1}{2}\Delta^{1/2}L(y)[1 + \frac{1}{2}L(y)]^{-1}\} \text{ при } \Delta > 0. \end{cases}$$
(6.75)

Функція $\Delta(y)$ має асимптотику $(\gamma(\nu) \sim 1)$

$$\Delta(y) \to \begin{cases}
-1 + 4\gamma(\nu) (q/k_F)^2 + \dots & \text{при } q \le k_F; \\
\frac{1}{3} + \dots & \text{при } q \gg k_F;
\end{cases}$$
(6.76)

яка приводить до того, що фігурна дужка у формулі (6.74) в області малих хвильових векторів прямує до значення

$$ln [1 + L(y)] - L(y), (6.77)$$

що збігається з відповідним виразом наближення хаотичних фаз. Проте в області великих хвильових векторів фігурна дужка має значення у 2 рази менше, ніж у наближенні хаотичних фаз, що свідчить про суттєвий вплив ефекту локального поля.

Згідно зі співвідношенням (6.70)

$$E_e = N_e m_0 c^2 \left\{ \varepsilon_0(x) - \frac{3}{4\pi} \alpha_0 x + \alpha_0^2 \varepsilon_c(x) \right\}, \tag{6.78}$$

а безрозмірну функцію параметра релятивізму $\varepsilon_c(x)$ можна апроксимувати таким виразом [55, 67]

$$\varepsilon_c(x) = -\frac{b_0}{2} \int_0^x \frac{b_1 a + t^{1/2}}{t^{3/2} + tb_1 a + b_2 t^{1/2} a^2 + b_3 a^3} \cdot \frac{1 + a_1 t + a_2 t^2}{1 + d_0 t} dt,$$

$$a = (\alpha_0 \eta)^{1/2}; \quad a_1 = 2.25328; \quad a_2 = 4.87991; \quad d_0 = 0.924022,$$

$$b_0 = 0.0621814; \quad b_1 = 9.81379; \quad b_2 = 2.82214; \quad b_3 = 0.69699.$$
(6.79)

Враховуючи співвідношення

$$m_0 c^2 \alpha_0^2 = \frac{e^2}{a_0}, \quad \frac{\alpha_0}{x} = \frac{r_s}{\eta},$$
 (6.80)

де $\eta=(9\pi/4)^{1/3}$, a_0 – радіус Бора, $r_s=\eta(k_Fa_0)^{-1}$ – параметр Вігнера-Бракнера, бачимо, що при $a_1=a_2=d_0=0$ вираз (6.79) збігається з кореляційною енергією нерелятивістської моделі, вираженою через параметр r_s [67]:

$$\lim_{x \to 0} E_c = N_e \frac{e^2}{2a_0} \tilde{\varepsilon}_c^{MC}(r_s) = N_e m_0 c^2 \alpha_0^2 \varepsilon_c^{MC}(x),$$

$$\tilde{\varepsilon}_c^{MC}(r_s) = -2b_0 \int_{(r_s)^{1/2}}^{\infty} \frac{\left(b_1 + \frac{1}{z}\right) dz}{1 + b_1 z + b_2 z^2 + b_3 z^3}.$$
(6.81)

Безрозмірна енергія ідеальної моделі в розрахунку на один електрон в одиницях m_0c^2 має таку асимптотику: $\varepsilon_0(x) \approx 3x^2/10 + \dots$

при $x \ll 1$; $\varepsilon_0(x) \sim 3x/4 + ...$ при $x \ge 1$. В області $x \le 1$ величина $\alpha_0^2 \varepsilon_c(x)$ близька до кореляційної енергії нерелятивістської моделі, розрахованої методом Монте-Карло [66, 67], але має лінійну залежність від параметра релятивізму при $x \ge 1$, як це видно з формули (6.79). Точнішу інформацію дає таблиця 6.1, у якій наведено залежність кореляційної енергії від параметра релятивізму (в атомних одиницях на електрон): методом Монте-Карло для нерелятивістської моделі; розрахунку за формулою (6.74) та наближенню хаотичних фаз (ф. (6.74) при $G_{id}(y) = 0$).

Таблиця 6.1 Залежність кореляційної енергії $E_c a_0 (N_e e^2)^{-1}$ від параметра релятивізму.

x	0.1	0.5	1	2	3	4
(6.81)	0.118168	0.165755	0.186850	0.208081	0.220578	0.229458
RPA	0.133039	0.189519	0.281749	0.467307	0.668235	0.874738
(6.74)	0.116445	0.156390	0.255084	0.386803	0.526346	0.667914

Основні внески, зумовлені прямими між'ядерними та електронядерними взаємодіями, до енергії основного стану моделі легко розрахувати у наближенні нерухомої кристалічної ґратки. Як відомо, електростатичну енергію позитивних точкових зарядів, що утворюють кристалічну ґратку, за наявності негативного компенсуючого однорідного фону, можна розрахувати за методом Евальда-Фукса [69 - 72], тому

$$E_1 = -\frac{N_n \alpha}{2r_0} z^2 e^2 = -N_e m_0 c^2 \frac{\alpha}{\eta} \alpha_0 z^{2/3} x, \tag{6.82}$$

де $r_0 = \{3V[4\pi N_n]^{-1}\}^{1/3}$. При цьому числове значення коефіцієнта α , що має назву сталої Маделунга, залежить від типу кристалічної ґратки: $\alpha = 1.760$ для простої кубічної ґратки [71]; 1.79168 для гексагональної щільно упакованої (див. [70]); 1.79172 для кубічної гранецентрованої та 1.79186 для кубічної об'ємоцентрованої [70].

У наближенні нерухомої кристалічної ґратки ядер структурний фактор $S_{\bf q}$ відмінний від нуля лише тоді, коли вектор ${\bf q} \neq 0$ збігається з будь-яким ненульовим вектором оберненої ґратки,

$$S_{\mathbf{q}} = N_n \sum_{\mathbf{K}_l \neq 0} \delta_{\mathbf{q}} \, \mathbf{K}_l. \tag{6.83}$$

Тому розрахунок енергії зонної структури зводиться до обчислення сум за векторами оберненої ґратки. Внесок двочастинкових електронних кореляцій до енергії зонної структури у випадку простої кубічної ґратки

$$E_{2} = -\frac{z^{2}}{2V^{2}} \sum_{\mathbf{q} \neq 0} V_{q}^{2} \mu_{2}(q, -q|0) = N_{e} m_{0} c^{2} \alpha_{0}^{2} z^{4/3} \varepsilon_{2}(x|z),$$

$$\varepsilon_{2}(x|z) = -\frac{3^{1/3}}{2\pi^{10/3}} \sum_{j>1} \frac{\mathcal{N}_{j}}{j^{2}} J_{2}(q_{i}|x) \times$$

$$\times \left\{ 1 + \alpha_{0} J_{2}(q_{i}|x)(\pi j x)^{-1} \left(\frac{3z}{\pi} \right)^{2/3} [1 - G(q_{j}|x)] \right\}^{-1},$$
(6.84)

де $J_2(q|x) \equiv (3N_e)^{-1}m_0c^2\tilde{\mu}_2^{(0)}(\mathbf{q}, -\mathbf{q}|0)$ – безрозмірний множник статичної двочастинкової кореляційної функції моделі ідеального виродженого релятивістського електронного газу; $q_j = 2j^{1/2}(\pi/3z)^{1/3}$; \mathcal{N}_j – число однакових векторів оберненої ґратки, модуль яких дорівнює q_j . Формула (6.75) – не що інше, як підсумовування за "координаційними сферами" в просторі хвильових векторів, а \mathcal{N}_j – число вузлів на jтій сфері. Розраховану чисельним методом функцію $\varepsilon_2(x|z)$ з високою точністю можна апроксимувати таким виразом:

$$\varepsilon_2(x|z) = z^{1/6}\varepsilon_2(x),
\varepsilon_2(x) = -\{c_0 + c_1 x + c_2 x^2\}\{1 + d_1 x\}^{-1}$$
(6.85)

при $c_0 = 0.10582$; $c_1 = 0.11136$; $c_2 = 0.15535$; $d_1 = 1.29493$. Як видно з рис. 6.7, функції $\varepsilon_c(x)$ і $\varepsilon_2(x)$ мають однаковий порядок величини. Як легко бачити з формули (6.65), внесок тричастинкових електронних кореляцій також є від'ємною величиною. Виконані нами оцінки свідчать, що внесок тричастинкових кореляцій до енергії зонної структури має порядок $z\alpha_0E_2$ і не може суттєво впливати на значення енергії і рівняння стану моделі. У наближенні двоелектронних кореляцій енергія основного стану моделі має таке зображення:

$$E = N_e m_0 c^2 \left\{ \varepsilon_0(x) - \alpha_0 \left[\frac{3}{4\pi} + \frac{\alpha}{2\eta} z^{2/3} \right] x + \alpha_0^2 \left[\varepsilon_c(x) + z^{4/3} \varepsilon_2(x|z) \right] \right\}.$$
(6.86)

У роботах [55, 56] використано інший спосіб розрахунку енергії основного стану електрон-ядерної моделі, який ґрунтується на виділенні ефективних n-частинкових між'ядерних взаємодій у формулі

(6.65). У наближенні двоелектронних кореляцій енергію основного стану електрон-ядерної моделі можна записати у вигляді

$$E = E_e + \frac{1}{2!} \sum_{j \neq l} V_{eff}(\mathbf{R}_j - \mathbf{R}_l) + E_{pol} + E_{comp},$$
 (6.87)

де

$$V_{eff}(\mathbf{R}) = \frac{1}{V} \sum_{\mathbf{q}} V_{eff}(\mathbf{q}) \exp[i(\mathbf{q}, \mathbf{R})],$$

$$V_{eff}(\mathbf{q}) = z^{2} V_{q} \left\{ 1 - \frac{V_{q}}{V} \tilde{\mu}_{2}(\mathbf{q}, -\mathbf{q}|0) \right\}.$$
(6.88)

При цьому

$$E_{pol} = -\frac{N_n z^2}{2V^2} \sum_{\mathbf{q} \neq 0} V_q^2 \,\tilde{\mu}_2(\mathbf{q}, -\mathbf{q}|0)$$
 (6.89)

є енергією поляризації однорідної електронної моделі ядрами, а останній доданок у формулі (6.87)

$$E_{comp} = -\frac{1}{V} N_n \left(N_n - 1 \right) \lim_{\mathbf{q} \to 0} V_{eff}(\mathbf{q})$$
 (6.90)

пов'язаний з тим, що у співвідношенні (6.65) відсутні компоненти з нульовими хвильовими векторами, а у формулі (6.88) сума за вектором \mathbf{q} включає значення $\mathbf{q} = 0$. Розраховану чисельним методом у наближенні локального поля енергію поляризації представимо у вигляді

$$E_{pol} = N_e m_0 c^2 z \, \alpha_0^{3/2} \varepsilon_{pol}^{(2)}(x), \tag{6.91}$$

де безрозмірна функція $\varepsilon_{pol}(x)$ за порядком величини близька до $\varepsilon_c(x)$ і може бути апроксимована виразом

$$\varepsilon_{pol}^{(2)}(x) = -\int_{0}^{x} \frac{c_0 + c_1 t + c_2 t^2 + c_3 t^3}{1 + d_1 t + d_2 t^2 + d_3 t^3} dt,$$

$$c_0 = 4.06151; \quad c_1 = 32.6118; \quad c_2 = -43.6587; \quad c_3 = 104.13;$$

$$d_1 = 73.8252; \quad d_2 = -67.1028; \quad d_3 = 189.781.$$

$$(6.92)$$

Як бачимо, енергія поляризації перевищує кореляційну енергію моделі електронної рідини приблизно у $z\alpha_0^{-1/2}\approx 10z$ разів.

У наближенні двоелектронних кореляцій на малих та середніх віддалях двоядерний потенціал близький до виразу

$$V_{eff}(R) = \frac{z^2 e^2}{R} \exp\left\{-Rk_F \frac{2}{\sqrt{\pi}} \alpha_0^{1/2} (1+x^2)^{1/4} x^{-1/2}\right\} =$$

$$= \frac{z^2 e^2}{R_0 R_*} \exp\left\{-R_* \frac{2}{\sqrt{\pi}} \alpha_0^{1/2} (1+x^2)^{1/4}\right\},$$
(6.93)

де $R_0=\hbar/m_0c=\alpha_0\hbar^2/m_0c^2$ є природним масштабом між'ядерних відстаней при "карликових" густинах. Величина E_{comp} у цьому наближенні дорівнює

$$E_{comp} = -\frac{N_e}{6} m_0 c^2 x^2 (1 + x^2)^{-1/2}.$$
 (6.94)

Енергію ефективних між'ядерних взаємодій ми обчислили для випадку простої кубічної ґратки, використовуючи чисельно розрахований за формулою (6.88) потенціал $V_{eff}(R)$, шляхом підсумовування за координаційними сферами. В результаті часткової взаємної компенсації суму доданків (ґраткову енергію)

$$E_L \equiv E_{comp} + \frac{1}{2} \sum_{j \neq l} V_{eff}(\mathbf{R}_j - \mathbf{R}_l)$$
 (6.95)

наближено можна представити у вигляді

$$E_L = N_e m_0 c^2 \alpha_0 z^{0.61803} \varepsilon_L(x), \qquad (6.96)$$

$$\varepsilon_L(x) = -\int_0^x \frac{a_1 + ta_2 + t^2 a_3}{1 + tb_1 + t^2 b_2 + t^3 b_3} t \, dt, \tag{6.97}$$

при $a_1 = 18.5394$, $a_2 = -15.7018$, $a_3 = 52.9999$, $b_1 = 42.5037$, $b_2 = -39.1122$, $b_3 = 132.253$.

Безрозмірні функції $\varepsilon_{pol}(x)$ та $\varepsilon_L(x)$ в області x>1 є лінійними функціями параметра релятивізму. Всі внески, зумовлені міжчастинковими взаємодіями, є від'ємними функціями, лінійними за параметром релятивізму в області проміжних та великих його значень. В границі $x\ll 1$ вони збігаються з відповідними характеристиками нерелятивістської моделі. При досить великих значеннях заряду ядра $(z\alpha_0^{1/2}\approx 1)$ енергія поляризації і ґраткова енергія сумірні між собою і

набагато перевищують кореляційну енергію електронної рідини. Відзначимо, що вирази (6.96) і (6.82) близькі між собою, але мають дещо відмінну залежність від заряду ядра, що пов'язано з використанням різних потенціалів (кулонівського у випадку (6.82) та екранованого у випадку (6.96)).

У цьому підході ми розрахували також внесок в енергію поляризації, зумовлений тричастинковими міжелектронними кореляціями

$$-\frac{z^{3}N_{n}}{2!V^{3}}\sum_{\mathbf{q}_{1},\mathbf{q}_{2}}\tilde{\mu}_{3}(\mathbf{q}_{1},\mathbf{q}_{2},-\mathbf{q}_{1}-\mathbf{q}_{2}|0)V_{\mathbf{q}_{1}}V_{\mathbf{q}_{2}}V_{-\mathbf{q}_{1}}V_{-\mathbf{q}_{2}} =$$

$$=N_{e}m_{0}c^{2}z^{2}\alpha_{0}^{5/2}\varepsilon_{pol}^{(3)}(x). \tag{6.98}$$

Безрозмірну функцію $\varepsilon_{pol}^{(3)}(x)$ можна зобразити такою апроксимаційною формулою:

$$\varepsilon_{pol}^{(3)}(x) = -ax + c_0 \int_{x}^{\infty} \frac{1 + c_1/t + c_2 t}{1 + d_1 t + d_2 t^2 + d_3 t^3} dt, \tag{6.99}$$

де $a=0.0450,\ c_0=0.12607,\ c_1=-0.93695,\ c_2=78.85520,\ d_1=-23.2602,\ d_2=114.5030,\ d_3=164.0600.$ Як видно з викладеного вище, $z^2\alpha_0^{5/2}\varepsilon_{pol}^{(3)}(x)\{z\alpha_0^{3/2}\varepsilon_{pol}^{(2)}(x)\}^{-1}\sim 0.1z\alpha_0\leq 2\cdot 10^{-2}$ і цим визначається порядок величини внеску тричастинкових кореляцій в характеристики моделі.

6.5. Рівняння стану моделі при низьких температурах

За відомою залежністю енергії моделі від параметра релятивізму і заряду ядра розрахуємо за лежність внутрішнього тиску від цих змінних згідно зі співвідношенням

$$P(x|z) = \frac{dE(x|z)}{dV} = \frac{x^4}{N_e} \left(\frac{m_0 c}{\hbar}\right)^3 (9\pi^2)^{-1} \frac{dE(x|z)}{dx}.$$
 (6.100)

Згідно з формулою (6.86)

$$P(x|z) = \frac{\pi m_0^4 c^5}{3h^3} \{ \mathcal{F}(x) - f(x|z) \}, \tag{6.101}$$

де

$$\mathcal{F}(x) = x(2x^2 - 3)(1 + x^2)^{1/2} + 3\ln\left[x + (1 + x^2)^{1/2}\right]$$
 (6.102)

 внесок ідеального виродженого релятивістського просторово однорідного електронного газу;

$$f(x|z) = \alpha_0 \left\{ \frac{2}{\pi} + \frac{4\alpha}{3\eta} z^{2/3} \right\} x^4 - \frac{8}{3} \alpha_0^2 \left\{ \frac{d\varepsilon_c(x)}{dx} + z^{4/3} \frac{d\varepsilon_2(x|z)}{dx} \right\} x^4.$$
 (6.103)

При малих значеннях заряду ядра z внесок другого доданка у виразі (6.103) є малим, проте при великих z він співмірний з доданком, пропорційним α_0 .

Незважаючи на те, що Е. Солпітером використано інший підхід та інші наближення (кореляційна енергія для нерелятивістської моделі, рівняння Томаса-Фермі для врахування електрон-ядерних взаємодій та ін.), вираз (6.101) близький до знайденого в роботі [48], що ілюструє табл. 6.2, у якій наведено величину $f(x|z)/\mathcal{F}(x)$ для z=2, 6, 12, 26.

Таблиця 6.2 Залежність відношення $f(x|z)/\mathcal{F}(x)$ від параметра релятивізму та заряду ядра.

	1		1		ī		T	
	z=2		z = 6		z = 12		z = 26	
	[48]	(6.102)	[48]	(6.102)	[48]	(6.102)	[48]	(6.02)
0.5	0.0235	0.0260	0.0449	0.0474	0.0692	0.0717	0.1140	0.1166
1.0	0.0119	0.0156	0.0248	0.0285	0.0395	0.0431	0.0668	0.0703
1.2	0.0102	0.0141	0.0218	0.0257	0.0316	0.0399	0.0599	0.0636
1.4	0.0091	0.0131	0.0199	0.0239	0.0323	0.0362	0.0553	0.0592
1.6	0.0083	0.0124	0.0186	0.0226	0.0303	0.0343	0.0521	0.0560
1.8	0.0078	0.0119	0.0176	0.0217	0.0289	0.0329	0.0489	0.0538
2.0	0.0074	0.0115	0.0169	0.0210	0.0279	0.0319	0.0481	0.0520
2.5	0.0068	0.0109	0.0158	0.0199	0.0262	0.0301	0.0454	0.0493
3.0	0.0065	0.0105	0.0152	0.0192	0.0252	0.0292	0.0438	0.0477
4.0	0.0062	0.0101	0.0147	0.0185	0.0243	0.0281	0.0415	0.0460
5.0	0.0061	0.0010	0.0144	0.0182	0.0239	0.0276	0.0415	0.0451
7.5	0.0061	0.0098	0.0142	0.0178	0.0235	0.0270	0.0408	0.0442
10.0	_	0.0097	_	0.0177	-	0.0269	-	0.0439
15.0	_	0.0096	_	0.0176	_	0.0267	_	0.0437
20.0	_	0.0096	_	0.0176	_	0.0267	_	0.0436
25.0	_	0.0096	_	0.0176	_	0.0267	_	0.0436

Як видно з таблиці 6.2, відхилення наших результатів від результатів роботи [8] тим менші, чим більший заряд ядра z. Однак це не

пов'язано з наближенням двоелектронних кореляцій, яке ми використали, бо внесок тричастинкових кореляцій до енергії зонної структури ϵ від'ємним, хоча й малим.

Виразами (6.101) – (6.103) визначається рівняння стану електронядерної моделі при абсолютному нулі температури. При відмінних від нуля температурах слід враховувати також внесок неповного виродження електронної підсистеми. Використовуючи розклади Зоммерфельда, рівняння стану запишемо у вигляді

$$P(x|z|T) \cong \frac{\pi m_0^4 c^5}{3h^3} \{ \mathcal{F}(x) + \frac{4\pi^2}{3} T_*^2 \frac{x(2+x^2)}{(1+x^2)^{1/2}} - f(x|z) + \cdots \}, (6.104)$$

де $T_* = k_B T (m_0 c^2)^{-1}$. Внесок, пов'язаний з відхиленням від повного виродження, призводить до збільшення тиску, а внесок кулонівських взаємодій — до зменшення. Конкуруючий характер цих внесків ілюструє рисунок 6.7, з якого видно, що в області малих та проміжних значень параметра релятивізму переважає температурна поправка, а в області великих значень x — внесок міжчастинкових взаємодій. Суттєву роль відіграє при цьому величина заряду ядра z.

Рис. 6.7. Поправки до тиску завдяки неповному виродженню релятивістського електронного газу (штрихові криві), кулонівських взаємодій (пунктирні криві) та їхня сума (суцільні криві) в одиницях $\pi m_0^4 c^5/3h^3$ (ф. (6.104)) за температур $T_0^*=0.1$ та 0.2.

РОЗДІЛ 7

Вплив міжчастинкових взаємодій та осьового обертання

Міжчастинкові кулонівські взаємодії, осьове обертання та неповне виродження електронної підсистеми притаманні всім без винятку виродженим карликам. Як показано у розділах 4 і 5, вплив неповного виродження суттєвий у випадку карликів з невеликими і проміжними масами. Тому формування структури немагнітних масивних вироджених карликів відбувається під впливом двох конкуруючих факторів — кулонівських взаємодій та осьового обертання. Якщо вплив осьового обертання до певної міри досліджений (див. розділ 4), то достовірні дані про вплив кулонівських взаємодій, а тим більше про одночасний вплив взаємодій та обертання практично відсутні. Конкретні розрахунки характеристик вироджених карликів, при яких одночасно враховуються різні фактори формування структури цих об'єктів, є актуальною задачею у зв'язку з встановленням коректного обмеження на масу реальних карликів.

У рамках хімічно однорідної моделі у цьому розділі досліджено одночасний вплив кулонівських взаємодій, хімічного вмісту та осьового обертання на характеристики холодних немагнітних карликів. Зокрема встановлено межі зміни маси карлика при заданих значеннях параметра релятивізму у центрі зорі x_0 , хімічного вмісту та швидкості обертання.

7.1. Характеристики холодного виродженого карлика без осьового обертання

Використовуючи рівняння стану у вигляді (6.101) в локальному наближенні, одержуємо таке рівняння рівноваги:

$$\Delta\{[1+x^{2}(\mathbf{r})]^{1/2}-1\} = -\frac{32\pi^{2}G}{3(hc)^{3}}(m_{u}\mu_{e}m_{0}c^{2})x^{3}(\mathbf{r}) +$$

$$+ (2x(\mathbf{r}))^{-3}\left\{\frac{d}{dx(\mathbf{r})}f(x(\mathbf{r}))|z\right\}\Delta x(\mathbf{r}) +$$

$$+ 2^{-3}\left\{\frac{d}{dx(\mathbf{r})}\left(\frac{1}{x^{3}(\mathbf{r})}\frac{d}{dx(\mathbf{r})}f(x(\mathbf{r})|z)\right)\right\}(\nabla x(\mathbf{r}))^{2}.$$

$$(7.1)$$

Модель, яку ми розглядаємо, має сферичну симетрію, тому у змінних (2.20) рівняння (7.1)набуває вигляду

$$\Delta_{\xi}y(\xi) = -\left\{y^{2}(\xi) + \frac{2}{\varepsilon_{0}}y(\xi)\right\}^{3/2} + \varphi_{1}(\xi|z)\Delta_{\xi}\left[y^{2}(\xi) + \frac{2}{\varepsilon_{0}}y(\xi)\right]^{1/2} + \varphi_{2}(\xi|z)\left\{\frac{d}{d\xi}\left[y^{2} + \frac{2}{\varepsilon_{0}}y(\xi)\right]^{1/2}\right\}^{2},$$

$$(7.2)$$

узагальнюючи рівняння (2.22). Функції $\varphi_i(x|z)$ означені такими співвідношеннями:

$$\varphi_1(\xi|z) = (2x)^{-3} df(x|z)/dx \Big|_{x=x(\xi)};$$

$$\varphi_2(\xi|z) = \frac{\varepsilon_0}{8} \cdot \frac{d}{dx} \left\{ \frac{1}{x^3} df(x|z)/dx \right\} \Big|_{x=x(\xi)},$$

$$x(\xi) \equiv \varepsilon_0 \left\{ y^2(\xi) + \frac{2}{\varepsilon_0} \right\}^{1/2}; \varepsilon_0 = (1 + x_0^2)^{1/2} - 1.$$
(7.3)

Рівняння (7.2) – двопараметричне – тут фігурують параметри x_0 і z. Регулярні розв'язки цього рівняння задовольняють стандартні граничні умови $y(0)=0,\ y'(0)=0,\ a$ умова $y(\xi)=0$ визначає безрозмірний радіус зорі $\xi_1(x_0|z)$. При $\varphi_1=\varphi_2=0$ рівняння (7.2) стає однопараметричним рівнянням стандартної моделі, у якій безрозмірний радіус дорівнює $\xi_1(x_0)$. Розв'язки рівняння (7.2) знайдено нами чисельним методом, вони близькі до розв'язків стандартної моделі, про що

можна судити з таблиці 7.1, у якій наведено залежність безрозмірного радіуса карлика $\xi_1(x_0|z)$ від параметрів x_0 та z. Для порівняння подано також $\xi_1(x_0)$ — радіус зорі у стандартній моделі. Як видно з цієї таблиці, відносне зменшення радіуса при врахуванні міжчастинкових взаємодій в області великих значень параметра релятивізму $\{\xi_1(x_0) - \xi_1(x_0|z)\}(\xi_1(x_0))^{-1}$ складає 0.7% при z=2, 1.2% при z=6, 1.85% при z=12 і 3% при z=26.

Таблиця 7.1 Залежність безрозмірного радіуса зорі $\xi_1(x_0|z)$ від параметрів x_0 і z ($\xi_1(x_0)$ відповідає стандартній моделі).

x_0	$\xi_1(x_0)$	$\xi_1(x_0 z)$						
		z=2	z = 6	z = 12	z = 26			
1.0	1.03401	1.00101	0.98801	0.97401	0.94801			
2.0	2.06001	2.02501	2.00601	1.98501	1.94801			
3.0	2.78201	2.74601	2.72401	2.70001	2.65601			
4.0	3.30701	3.27001	3.24701	3.22001	3.17201			
5.0	3.70701	3.67001	3.64501	3.61701	3.56601			
6.0	4.02301	3.98601	3.96001	3.93101	3.87801			
7.0	4.28001	4.24301	4.21701	4.18701	4.13201			
8.0	4.49301	4.45601	4.43001	4.39901	4.34401			
9.0	4.67401	4.63701	4.61001	4.57901	4.52201			
10.0	4.82801	4.79101	4.76401	4.73301	4.67601			
15.0	5.35801	5.32201	5.29401	5.26301	5.20301			
20.0	5.67001	5.63501	5.60701	5.57501	5.51501			
25.0	5.87701	5.84201	5.81401	5.78201	5.72201			
30.0	6.02401	5.98901	5.96101	5.92901	5.86901			

Маса і радіус зорі визначаються співвідношеннями

$$M(x_{0}|\mu_{e}|z) = \frac{M_{0}}{\mu_{e}^{2}} \mathcal{M}(x_{0}|z),$$

$$\mathcal{M}(x_{0}|z) = \int_{0}^{\xi_{1}(x_{0}|z)} \left\{ y^{2}(\xi) + \frac{2}{\varepsilon_{0}} y(\xi) \right\}^{3/2} \xi^{2} d\xi, \qquad (7.4)$$

$$R(x_{0}|\mu_{e}|z) = \frac{R_{0}}{\mu_{e}} \cdot \frac{\xi_{1}(x_{0}|z)}{\varepsilon_{0}},$$

що узагальнюють відповідні співвідношення стандартної моделі.

У таблиці 7.2 наведено залежність безрозмірної маси $\mathcal{M}(x_0|z)$ від параметрів x_0 і z, а також масу стандартної моделі $\mathcal{M}(x_0)$ – для порівняння. Відносне зменшення маси за рахунок міжчастинкових взаємодій $\{\mathcal{M}(x_0) - \mathcal{M}(x_0|z)\}(\mathcal{M}(x_0))^{-1}$ складає приблизно 1.4% при z=2; 2.7% при z=6; 4.1% при z=12; 7% при z=26 (див. табл. 2) в області $x_0 \geq 10$.

Таблиця 7.2 Залежність безрозмірної маси зорі $\mathcal{M}(x_0|z)$ від параметрів x_0, z ($\mathcal{M}(x_0)$ відповідає стандартній моделі).

or.	$\mathcal{M}(x_0)$	$\mathcal{M}(x_0 z)$					
x_0		z=2	z = 6	z = 12	z = 26		
1.0	0.707066	0.689037	0.673304	0.65581	0.624491		
2.0	1.24303	1.22092	1.20126	1.17904	1.13834		
3.0	1.51862	1.49465	1.47331	1.44912	1.4045		
4.0	1.67141	1.64646	1.62426	1.59907	1.55247		
5.0	1.76395	1.73843	1.71573	1.68996	1.64222		
6.0	1.82404	1.79816	1.77515	1.74901	1.70056		
7.0	1.86521	1.83909	1.81586	1.78948	1.74054		
8.0	1.89462	1.86832	1.84495	1.81839	1.76911		
9.0	1.91634	1.88992	1.86645	1.83976	1.79023		
10.0	1.93284	1.90633	1.88277	1.85599	1.80626		
15.0	1.97619	1.94943	1.92567	1.89863	1.84839		
20.0	1.99337	1.96651	1.94268	1.91554	1.86508		
25.0	2.00186	1.97495	1.95108	1.92389	1.87331		
30.0	2.00665	1.97972	1.95583	1.92861	1.87795		

В області проміжних та великих значень параметра релятивізму функція f(x|z) приблизно пропорційна до x^4 , тому вираз $x^{-3}df/dx$ близький до сталої величини, а його похідна відносно x є дуже малою. Це дає можливість одержати наближену оцінку характеристик карлика без чисельного розв'язування рівняння (7.2). Через те, що в ядрі масивного карлика x(r) близьке до значення x_0 , то $x^{-3}(r)df(x(r))/dx(r)$ можна наближено замінити на $\varphi_1(x_0|z) = (2x_0)^{-3}df(x_0|z)/dx_0$. Нехтуючи доданком, пропорційним до $(\nabla x(r))^2$ і вводячи нову безрозмірну координату $\eta = \xi/k$ при $k = \{1 - \varphi_1(x_0|z)\}^{1/2}$, зведемо рівняння (7.2)

до рівняння стандартної моделі. У такому наближенні розв'язком рівняння (7.2) є $y(\xi) = \tilde{y}(\eta)$, де $\tilde{y}(\eta)$ – розв'язок рівняння стандартної моделі

$$\Delta_{\eta}\tilde{y}(\eta) = -\left\{\tilde{y}^{2}(\eta) + \frac{2}{\varepsilon_{0}}\tilde{y}(\eta)\right\}^{3/2},$$

$$\xi_{1}(x_{0}|z) = k\eta_{1}(x_{0}), \quad \mathcal{M}(x_{0}|z) = k^{3}\mathcal{M}(x_{0}),$$

$$\mathcal{M}(x_{0}) = \int_{0}^{\eta_{1}(x_{0})} \eta^{2}\left\{\tilde{y}^{2}(\eta) + \frac{2}{\varepsilon_{0}}\tilde{y}(\eta)\right\}^{3/2} d\eta.$$

$$(7.5)$$

У формулах (7.5) $\mathcal{M}(x_0)$ та $\eta_1(x_0)$ є характеристиками стандартної моделі. Безрозмірна маса та безрозмірний радіус, обчислені за формулами (7.5), наведено у табл. 7.3.

r_{\circ}	$\mathcal{M}(x_0 z)$				$\xi_1(x_0 z)$			
x_0	z=2	z = 6	z = 12	z = 26	z=2	z = 6	z = 12	z = 26
1.0	0.698071	0.689712	0.680305	0.663335	1.03067	1.02654	1.02185	1.01328
2.0	1.22614	1.21149	1.19504	1.16539	2.05071	2.04251	2.03323	2.01627
3.0	1.49846	1.48056	1.46048	1.42434	2.76986	2.75879	2.74626	2.72342
4.0	1.64937	1.62967	1.60756	1.5678	3.29291	3.27975	3.26485	3.23771
5.0	1.74063	1.71984	1.6965	1.65452	3.69122	3.67647	3.65977	3.62933
6.0	1.79981	1.77832	1.75418	1.71075	4.00587	3.98986	3.97173	3.93868
7.0	1.84033	1.81835	1.79366	1.74923	4.26151	4.24447	4.22518	4.19000
8.0	1.86927	1.84694	1.82186	1.77671	4.47378	4.4559	4.43563	4.39868
9.0	1.89065	1.86807	1.84269	1.79701	4.65315	4.63455	4.61347	4.57502
10.0	1.9069	1.88412	1.85852	1.81242	4.80689	4.78768	4.7659	4.72616
15.0	1.94967	1.92639	1.9002	1.853	5.33474	5.31341	5.28922	5.24507
20.0	1.9667	1.9432	1.91678	1.86913	5.64552	5.62295	5.59735	5.55058
25.0	1.97512	1.95153	1.92498	1.8771	5.85091	5.82752	5.80097	5.75247
30.0	1.97988	1.95623	1.92961	1.8816	5.99691	5.97294	5.94573	5.896

Як видно з порівняння таблиць 7.1, 7.2 з таблицею 7.3, похибка в обчисленні маси за формулою (7.5) в області $x_0 \ge 5$ не перевищує 1%, а при $x_0 \ge 10$ менша 0.3%. Похибка в області радіуса є більшою і зростає при збільшенні z (при $x_0 \ge 10$ і z=2 вона менша 0.4%, а при z=26 менша 3%).

7.2. Карлики з осьовим обертанням

Щоб записати рівняння рівноваги у моделі виродженого карлика з осьовим обертанням, слід додати у праву сторону рівняння (7.1) сталу $2\omega m_u \mu_e (m_0 c^2)^{-1}$. Ця модель має осьову симетрію, тому рівняння рівноваги, записане у безрозмірних змінних

$$\xi = r/\lambda, \quad Y(\xi, \theta) = \varepsilon_0^{-1}\{[1 + x^2(\mathbf{r})]^{1/2} - 1\}$$
 (7.6)

при виборі масштабу λ згідно зі співвідношенням (2.21), має такий вигляд:

$$\Delta(\xi,\theta)Y(\xi,\theta) = \Omega^2 - \Gamma^3(\xi,\theta) + \varphi_1(\xi,\theta|z)\Delta(\xi,\theta)\Gamma(\xi,\theta) + (7.7)$$
$$+\varphi_2(\xi,\theta|z)\left\{ \left[\frac{\partial}{\partial \xi}\Gamma(\xi,\theta) \right]^2 + \frac{1-t^2}{\xi^2} \left[\frac{\partial}{\partial t}\Gamma(\xi,\theta) \right]^2 \right\}.$$

Тут використано такі позначення:

$$\Gamma(\xi,\theta) = \left[Y^{2}(\xi,\theta) + \frac{2}{\varepsilon_{0}} Y(\xi,\theta) \right]^{1/2}; \quad \Omega^{2} = 2 \frac{\omega^{2} m_{u} \mu_{e} \lambda^{2}}{m_{0} c^{2} \varepsilon_{0}},
\varphi_{1}(\xi,\theta|z) = (2x)^{-3} \frac{df(x|z)}{dx} \Big|_{x=x(\xi,\theta)};
\varphi_{2}(\xi,\theta|z) = \frac{\varepsilon_{0}}{8} \frac{d}{dx} \left\{ \frac{1}{x^{3}} \frac{df(x|z)}{dx} \right\} \Big|_{x=x(\xi,\theta)};
x(\xi,\theta) = \varepsilon_{0} \Gamma(\xi,\theta); \quad t = \cos\theta;
\Delta(\xi,\theta) = \Delta_{\xi} + \frac{1}{\xi^{2}} \Delta_{\theta}; \quad \Delta_{\xi} = \frac{1}{\xi^{2}} \frac{\partial}{\partial \xi} \left(\xi^{2} \frac{\partial}{\partial \xi} \right); \quad \Delta_{\theta} = \frac{\partial}{\partial t} \left(1 - t^{2} \right) \frac{\partial}{\partial t}.$$

Рівнянню в частинних похідних (7.7), у якому фігурують незалежні параметри x_0 , Ω^2 , z, відповідають граничні умови

$$Y(0,\theta) = 1;$$
 $\frac{\partial}{\partial \xi} Y(\xi,\theta) = 0$ при $\xi = 0.$ (7.9)

Трипараметричне рівняння другого порядку в частинних похідних (7.7) дуже складне. Як випливає з порівняння таблиць 7.1, 7.2 і 7.3, це рівняння можна значно спростити, якщо знехтувати доданком, пропорційним $\varphi_2(\xi,\theta|z)$, а $\varphi_1(\xi,\theta|z)\Delta\Gamma(\xi,\theta)$ замінити на $\varphi_1(x_0|z)\Delta Y(\xi,\theta)$

без суттєвої втрати точності. Якщо безрозмірну радіальну координату означити співвідношенням $\tilde{\xi}=r/\tilde{\lambda}$, а масштаб $\tilde{\lambda}$ визначити з рівняння

$$\frac{32\pi^2 G}{3(hc)^3} \left(m_u \mu_e m_0 c^2 \varepsilon_0 \tilde{\lambda} \right)^2 = 1 - \varphi_1(x_0|z), \tag{7.10}$$

то рівняння (7.7) набуває вигляду

$$\Delta(\tilde{\xi}, \theta)\tilde{Y}(\tilde{\xi}, \theta) = \tilde{\Omega}^2 - \left\{\tilde{Y}^2(\tilde{\xi}, \theta) + \frac{2}{\varepsilon_0}\tilde{Y}(\tilde{\xi}, \theta)\right\}^{3/2}, \tag{7.11}$$

де

$$\tilde{\Omega}^2 = \frac{2\omega^2 m_u \mu_e}{m_0 c^2 \varepsilon_0} \tilde{\lambda}^2 = \Omega^2 (1 - \varphi_1(x_0|z)). \tag{7.12}$$

Формально рівняння (7.11) збігається з рівнянням рівноваги виродженого карлика з осьовим обертанням у стандартній моделі, записаним у безрозмірній формі. Розв'язок рівняння (7.7) пов'язаний з розв'язком рівняння (7.11) співвідношеннями

$$Y(\xi, \theta) = \tilde{Y}(\tilde{\xi}, \theta); \qquad k = \tilde{\lambda}/\lambda = \{1 - \varphi_1(x_0|z)\}^{1/2}.$$
 (7.13)

Методи знаходження розв'язків рівняння (7.11), а також залежність характеристик карликів з обертанням у стандартній моделі від параметрів x_0 і Ω розглянуто у розділі 4. Згідно зі співвідношеннями (7.13) маса, рівняння поверхні карлика та максимальна кутова швидкість карлика у моделі, яка тут розглядається, визначаються такими співвідношеннями: маса

$$M(x_0, z, \mu_e, \Omega) = \frac{M_0}{\mu_e^2} \left\{ 1 - \varphi_1(x_0|z) \right\}^{3/2} \mathcal{M}(x_0, \Omega);$$

рівняння поверхні

$$R(\theta|x_0, z, \mu_e, \Omega) = \frac{R_0}{\mu_e \varepsilon_0} \, \xi_0(\theta|x_0, z, \Omega),$$

$$\xi_0(\theta|x_0, z, \Omega) = \{1 - \varphi_1(x_0|z)\}^{1/2} \xi_0(\theta|x_0, \Omega),$$
(7.14)

максимальна кутова швидкість

$$\Omega_{max}(x_0|z) = \Omega_{max}(x_0) \left\{ 1 - \varphi_1(x_0|z) \right\}^{-1/2},$$

де $\mathcal{M}(x_0,\Omega)$, $\xi_0(\theta|x_0,\Omega)$, $\Omega_{max}(x_0)$ є безрозмірними характеристиками моделі з обертанням, але без врахування міжчастинкових взаємодій. З цих співвідношень випливає, що вплив кулонівських взаємодій призводить до зменшення об'єму зорі, її маси та збільшення максимального значення кутової швидкості.

У таблиці 7.4 наведено залежність безрозмірної маси карлика (в одиницях M_0/μ_e^2) у різних моделях: $\mathcal{M}(x_0) \equiv \mathcal{M}(x_0, \Omega=0)$ – маса у стандартній моделі; $\mathcal{M}(x_0, \Omega_{max})$ – маса у моделі, що враховує обертання, але не враховує міжчастинкових взаємодій; $\{1-\varphi_1(x_0|z)\}^{3/2}\mathcal{M}(x_0)$ – маса карлика без обертання у моделі, що враховує взаємодії; $\{1-\varphi_1(x_0|z)\}^{3/2}\mathcal{M}(x_0, \Omega_{max})$ – маса карлика у моделі з обертанням та міжчастинковими взаємодіями.

Таблиця 7.4 Залежність безрозмірної маси карлика від параметрів x_0 і z у різних наближеннях (див. текст).

x_0 $\mathcal{M}(x_0)$	14(m)	$(1 - \varphi_1(x_0, z))^{3/2} \mathcal{M}(x_0)$			$\mathcal{M}(x_0, \tilde{\Omega}_{max})$	$(1 - \varphi_1(x_0, z))^{3/2} \mathcal{M}(x_0, \tilde{\Omega}_{max})$		
	$\mathcal{N}(x_0)$	z=2	z = 12	z = 26	$\mathcal{N}(x_0, s_{max})$	z=2	z = 12	z = 26
1.0	0.707066	0.697700	0.679943	0.662983	0.835164	0.824101	0.803127	0.783095
2.0	1.24303	1.226509	1.195403	1.165746	1.42165	1.402755	1.367179	1.333261
3.0	1.51862	1.498396	1.460419	1.424280	1.69812	1.675506	1.633040	1.592629
4.0	1.67141	1.649128	1.607329	1.567568	1.84226	1.817701	1.771629	1.727804
5.0	1.76395	1.740419	1.696298	1.654323	1.92539	1.899706	1.851547	1.805730
6.0	1.82404	1.799697	1.754065	1.710638	1.97659	1.950211	1.900763	1.853704
7.0	1.86521	1.840310	1.7936401	1.7492106	2.01138	1.984528	1.934201	1.886290
8.0	1.89462	1.869321	1.821909	1.776757	2.03194	2.004807	1.953959	1.905534
9.0	1.91634	1.890746	1.842785	1.797095	2.04535	2.018033	1.966842	1.918078
10.0	1.93284	1.907022	1.858643	1.812542	2.05574	2.028280	1.976825	1.927793
15.0	1.97619	1.949781	1.900299	1.853099	2.08311	2.055272	2.003113	1.953359
20.0	1.99337	1.966725	1.916804	1.869154	2.0906	2.062655	2.010299	1.9603251
30.0	2.00665	1.979821	1.929557	1.881546	2.09306	2.065076	2.012647	1.962568

Як випливає з табл. 7.4, осьове обертання може компесувати зменшення маси за рахунок міжчастинкових взаємодій при $z \leq z_0 \approx 17$. Але оскільки обертання карликів з максимальною кутовою швидкістю є малоймовірним, то у більшості випадків збільшення маси за рахунок обертання не може повністю компенсувати зменшення маси за рахунок кулонівських взаємодій. Звідси випливає, що маси немагнітних карликів при $z < z_0$ можуть перевищувати масу, яка одержується з моделі С. Чандрасекара, при відповідному значенні швидкості обертання. При $z > z_0$ маси немагнітних карликів менші за значення маси, що одержується зі стандартної моделі, безвідносно до величини кутової швидко-

сті. Рис. 7.1, що ілюструє залежність маси карлика від заряду ядра z при значенні параметра релятивізму $x_0 = 20$, встановлює характерний інтервал зміни мас холодних масивних карликів, що зумовлено осьовим обертанням. При великих значеннях параметра x_0 цей інтервал сягає 5%. Звідси випливає висновок про те, що серед немагнітних карликів максимальну масу мають ті, що побудовані з хімічних елементів з невеликим зарядом ядра z (середнім значенням заряду у реальній ситуації, коли присутні ядра декількох хімічних елементів). Рис. 7.2

Рис. 7.1. Залежність безрозмірної маси карлика від заряду ядра при $x_0 = 20$. Крива 1 відповідає моделі з міжчастинковими взаємодіями і обертанням при $\Omega_{max}(x_0)$; крива 2 відповідає тій же моделі при $\Omega = 0$; лінія 3 — маса карлика у стандартній моделі.

ілюструє залежність безрозмірної маси виродженого карлика у різних моделях від параметра x_0 . Крива 1 відповідає моделі з з максимальним обертанням без врахування міжчастинкових взаємодій; крива 2 — модель з максимальним обертанням і міжчастинковими взаємодіями при z=12; крива 3 відповідає моделі С. Чандрасекара; крива 4 — модель без обертання, але з міжчастинковими взаємодіями при z=12.

Рис. 7.2. Залежність безрозмірної маси виродженого карлика від параметра x_0 у різних моделях. Пунктирна лінія відповідає значенню 2.01824.

7.3. Вплив взаємодій на характеристики ядер гарячих вироджених карликів

Як видно з рис. 6.8, у суттєво релятивістській області густин ($x\gg 1$) визначальною є поправка до тиску, зумовлена кулонівськими взаємодіями. Однак в області проміжних густин — на границі релятивістського виродження — важливими є і кулонівські взаємодії, і відхилення від повного виродження електронної підсистеми, що є конкуруючими ефектами. Щоб оцінити вплив кулонівських взаємодій на характеристики гарячих карликів, узагальнимо двофазну модель з ізотермічним ядром, описану у розділі 5, у якій фігурують параметри x_0, μ_e, T_0^* . З урахуванням внеску кулонівських взаємодій до тиску електронної підсистеми ядра карлика одержуємо чотирипараметричну модель з параметрами x_0, μ, T_0^*, z . Внесок кулонівських взаємодій має характер поправки, то для спрощення розрахунків використаємо редуковане рівняння стану

$$P(\mathbf{r}, T_0^*, z) \cong P_{id}(x(\mathbf{r}), T_0^*) \{1 - S(x_0, T_0^*, z)\},$$
 (7.15)

де $P_{id}(x(\mathbf{r}), T_0^*)$ є тиском ідеальної електронної підсистеми,

$$S(x_{0}, T_{0}^{*}, z) = \frac{\pi m_{0}^{4} c^{5}}{3h^{3}} \left\langle f(x(r)|z) P_{id}^{-1}(x(r), T_{0}^{*}) \right\rangle =$$

$$= \left\{ \int_{0}^{R_{\Delta}} r^{2} x^{3}(r, T_{0}^{*}, x_{0}) dr \right\}^{-1} \times$$

$$\times \frac{\pi m_{0}^{4} c^{5}}{3h^{3}} \int_{0}^{R_{\Delta}} r^{2} x^{3}(r, T_{0}^{*}, x_{0}) f(x(r, T_{0}^{*}, x_{0})|z) P_{id}^{-1}(x(r, x_{0}, T_{0}^{*}) dr,$$

$$(7.16)$$

де $x(r, T_0^*, x_0)$ визначене розв'язком рівняння (5.48) при заданих значеннях параметрів x_0 і T_0^* , а саме

$$x(r, T_0^*, x_0) = \mu_0^* \left\{ y_1^2(\xi) + \frac{2}{\mu_0^*} y_1(\xi) \right\}^{1/2}.$$
 (7.17)

У цьому випадку μ_0^* є функцією параметрів x_0, T_0^* (див. (5.51)). За допомогою підстановки

$$r = \Lambda \xi, \quad \mu(r, T_0^*) = m_0 c^2 \mu_0^* f(\xi)$$
 (7.18)

рівняння механічної рівноваги набуває безрозмірної форми (5.44),

$$\frac{1}{\xi^2} \frac{d}{d\xi} \left\{ \xi^2 \frac{df}{d\xi} \right\} = -3(\mu_0^*)^{-3} \int_0^\infty dz \, z^2 n_z(\xi), \tag{7.19}$$

$$n_z(\xi) = \left\{ 1 + \exp[(T_0^*)^{-1} ((1+z^2)^{1/2} - 1 - \mu_0^* f(\xi))] \right\}^{-1},$$

якщо масштаб довжини Λ визначений співвідношенням

$$\frac{32\pi^2}{3(hc)^3}G[\Lambda m_0 c^2 m_u \mu_e \mu_0^*]^2 = 1 - S(x_0, T_0^*, z).$$
 (7.20)

Функція $f(\xi)$ задовольняє звичайні граничні умови f(0) = 1, f'(0) = 0, а також фізичні умови, що визначені структурою моделі $(f(\xi_c) = 0, f(\xi_\Delta) = -CT_0^*/\mu_0^*)$, як і функція $y_1(\xi)$ у розділі 5.

З рівняння (7.20) випливає, що

$$\Lambda = \lambda_1 \{ 1 - S(x_0, T_0^*, z) \}^{1/2}, \tag{7.21}$$

де λ_1 є коренем рівняння (5.43). З огляду на це макроскопічні характеристики ядра одержуються з відповідних характеристик двофазової моделі розділу 5 за допомогою масштабного перетворення:

$$R_{c}(x_{0}, T_{0}^{*}, \mu_{e}, z) = \{1 - S(x_{0}, T_{0}^{*}, z)\}^{1/2} \frac{R_{0}}{\mu_{e} \mu_{0}^{*}} \xi_{c}(x_{0}, T_{0}^{*}),$$

$$R_{\Delta}(x_{0}, T_{0}^{*}, \mu_{e}, z) = \{1 - S(x_{0}, T_{0}^{*}, z)\}^{1/2} \frac{R_{0}}{\mu_{e} \mu_{0}^{*}} \xi_{\Delta}(x_{0}, T_{0}^{*}),$$

$$M_{\Delta}(x_{0}, T_{0}^{*}, \mu_{e}, z) = \{1 - S(x_{0}, T_{0}^{*}, z)\}^{3/2} \frac{M_{0}}{\mu_{e}^{2}} \left\{ \xi^{2} \left| \frac{dy_{1}}{d\xi} \right| \right\}_{\xi \equiv \xi_{\Delta}(x_{0}, T_{0}^{*})}.$$

$$(7.22)$$

З одержаних співвідношень випливає, що кулонівські взаємодії приводять до зменшення радіуса та маси карлика за заданих значень параметрів x_0, T_0^* порівняно з відповідними результатами розділу 5.

РОЗДІЛ 8

Критична маса і стійкість вироджених карликів

Як зазначено вище, з моделі С. Чандрасекара випливають два важливі висновки: специфічне співвідношення маса—радіус, що протягом довгого часу вважалось тестом для спостережуваних даних, та обмеження на максимальну масу карлика (межа С. Чандрасекара),

$$M \le M_{ch} = 2.01824...M_0 \,\mu_e^{-2}, \tag{8.1}$$

$$M_0 = \left(\frac{3}{2}\right)^{1/2} (4\pi)^{-1} \left(\frac{hc}{G}\right)^{3/2} m_u^{-2} \approx 2.886649 \,M_{\odot}.$$

У цій моделі всі карлики з масами, меншими від M_{ch} , є стійкими. Оскільки M_{ch} відповідає границі $x_0 \to \infty$, то насправді M_{ch} є математичною ідеалізацією, бо існування карликів дуже малого радіуса спостереженнями не підтверджено. У рамках стандартної моделі неможливо одержати коректніше обмеження на масу карлика, як і пояснення спостережуваного розподілу за радіусами. Крива маса—радіус відповідає розташуванню на площині M-R лише холодних карликів з ефективними температурами фотосфер $T_{eff} \le 10^4$ К. Нині відомо багато гарячих карликів, для яких T_{eff} сягає 10^5 К, які на площині M-R утворюють не одну криву, а неперервну послідовність кривих маса—радіус, кожна з яких відповідає карликам з фіксованим значенням T_{eff} (див. розділ 5).

Необхідність узагальнення теорії Чандрасекара стала очевидною ще в середині XX ст., що привело до появи праць С. Каплана, Е. Солпітера і Т. Гамади, нових праць С. Чандрасекара, а пізніше Я. Зельдовича та І. Новікова. Зокрема С. Каплан вперше розглянув рівняння рівноваги карлика не у просторі Ньютона, а в просторі Айнштайна. У цьому разі ефекти ЗТВ враховувались у першому порядку теорії збурень, а нульовим наближенням слугувало рівняння Емдена для політропи з індексом n=3 [72], що відповідає виродженому ультрарелятивістському ідеальному електронному газу при T=0 К і надвисоких

густинах. До висновку про необхідність урахування ефектів ЗТВ незалежно прийшов також С. Чандрасекар [73]. Наближеному врахуванню впливу кулонівських взаємодій в електрон-ядерній моделі за високих густин і процесів нейтронізації присвячені праці [48,49]. Варіаційний метод оцінки впливу ефектів ЗТВ на стійкість вироджених карликів розроблений у праці [74]. У цій праці кулонівські взаємодії та обертання не брались до уваги. Завищені значення параметра релятивізму в центрі зорі x_0^* , за яких виникає нестійкість завдяки ефектам ЗТВ, одержані у працях С. Каплана, Я. Зельдовича та І. Новікова, що є наслідком прийнятих наближень щодо рівняння стану і точності розрахунку енергії як функції параметра x_0 , привели до переконання про важливу роль процесів нейтронізації. Хоча С. Чандрасекар вважав основним чинником нестабільності саме ефекти ЗТВ.

У XX ст. проблему стійкості вироджених карликів зводили до того, щоб обґрунтувати відсутність карликів великих мас $(M < M_{ch})$. З огляду на відкриття в подвійних системах карликів з масами, що знаходяться в околі M_{ch} , актуальними стали дві задачі— коректний розрахунок критичної маси з урахуванням усіх суттєвих чинників формування цих об'єктів у рамках уже відомих моделей, а також пошук механізмів, що можуть забезпечити стійкість карликів з масами в околі M_{ch} (зокрема, $M > M_{ch}$).

Цей розділ присвячено розрахунку критичної маси карлика і критичного значення параметра релятивізму x_0^* з урахуванням ефектів ЗТВ, у рамках як однофазної хімічно однорідної моделі з ідеальною електронною підсистемою, так і моделі з кулонівськими взаємодіями, а також у моделі з частковою спіновою поляризацією електронної підсистеми, що відповідає наявності слабкого магнітного поля.

8.1. Розрахунок маси карлика за рівнянням рівноваги

Традиційний метод розрахунку характеристик зорі ґрунтується на розв'язуванні системи рівнянь зоряної структури. Основна область масивного карлика перебуває в металічному стані з виродженою релятивістською електронною підсистемою, що потребує врахування ефектів ЗТВ. Насамперед розглянемо механічну рівновагу зорі без обертання з рівнянням стану (6.101), використовуючи рівняння Оппенгеймера—

Волкова [75]

$$\frac{dP}{dr} = -G\rho(r)\frac{M(r)}{r^2} \left(1 + \frac{P(r)}{\rho(r)c^2}\right) \left(1 + \frac{4\pi P(r)r^3}{M(r)c^2}\right) \left(1 - \frac{2GM(r)}{rc^2}\right)^{-1},$$

$$\frac{dM(r)}{dr} = 4\pi r^2 \rho(r).$$
(8.2)

Ці рівняння описують сферично-симетричну модель зорі у полі Айнштайна [12]. Тут прийнято традиційні позначення: P(r) — тиск на сфері радіуса r; $\rho(r)$ — густина; M(r) — маса всередині цієї сфери; c — швидкість світла. У наближенні хімічно однорідної ядерної підсистеми ідеального релятивістського електронного газу при при T=0 К і в границі $c\to\infty$ система рівнянь (8.2) відповідає теорії Чандрасекара. У роботі [72] наближено враховано поправки порядку c^{-2} у першому з рівнянь (8.2) за теорією збурень.

Вираз для тиску у формі (6.101) підставимо у ліву частину першого з рівнянь (8.2), а праву частину його розкладемо за степенями c^{-2} , зберігаючи лише лінійні члени і покладаючи в них f(x(r)|z) = 0. У безрозмірних змінних (2.20), (2.21) система рівнянь (8.2) зводиться до такого диференціального рівняння

$$\frac{1}{\xi^2} \frac{d}{d\xi} \left\{ \xi^2 \frac{dy}{d\xi} - \xi^2 \varphi(\xi|z) \frac{d}{d\xi} \left[y^2 + \frac{2}{\varepsilon_0} y \right]^{1/2} \right\} =$$

$$= -\left\{ y^2 + \frac{2}{\varepsilon_0} y \right\}^{3/2} \left(1 + \gamma(x_0) g(\xi) - \frac{\gamma(x_0)}{\xi^2} \mathcal{M}(\xi) \frac{d}{d\xi} g(\xi) \right\}.$$
(8.3)

Тут використано позначення:

$$\varphi(\xi|z) = (2x)^{-3} \frac{d}{dx} f(x|z) \quad \text{при} \quad x = \varepsilon_0 \left(y^2 + \frac{2}{\varepsilon_0} y \right)^{1/2}; \tag{8.4}$$

$$g(\xi) = \frac{1}{4} \left(y^2 + \frac{2}{\varepsilon_0} y \right)^{1/2} + \frac{2}{\xi} \mathcal{M}(\xi) + \frac{\xi^3}{4\mathcal{M}(\xi)} \left(y^2 + \frac{2}{\varepsilon_0} y \right)^2;$$

$$\mathcal{M}(\xi) = \int_0^{\xi} (\xi')^2 \left\{ y^2(\xi') + \frac{2}{\varepsilon_0} y(\xi') \right\}^{3/2} d\xi'; \quad y \equiv y(\xi).$$

У нелінійному інтегро-диференціальному рівнянні (8.3) фігурують два незалежні параметри x_0 та z, а також безрозмірний параметр

$$\gamma(x_0) = \varepsilon_0(x_0) \frac{m_0}{m_0 u_0} \sim \frac{x_0}{4} \cdot 10^{-3}.$$
 (8.5)

Замінюючи $\varphi(\xi|z)$ на $\varphi(x_0|z)$ і переходячи від змінної ξ до змінної $\tilde{\xi} = \xi/k$ (де $k = [1 - \varphi(x_0|z)]^{1/2}$), перетворимо рівняння (8.3) до такого вигляду:

$$\frac{1}{\tilde{\xi}^2} \frac{d}{d\tilde{\xi}} \left(\tilde{\xi}^2 \frac{d\tilde{y}}{d\tilde{\xi}} \right) = -\left\{ \tilde{y}^2 + \frac{2}{\varepsilon_0} \tilde{y} \right\}^{3/2} \left\{ 1 + \gamma(x_0)\tilde{g} \right\} - \frac{\gamma(x_0)}{\tilde{\xi}^2} \tilde{\mathcal{M}}(\tilde{\xi}) \frac{d\tilde{g}}{d\tilde{\xi}}, \tag{8.6}$$

де

$$\tilde{\mathcal{M}}(\tilde{\xi}) = \int_{0}^{k\tilde{\xi}} d\xi'(\xi')^{2} \left(\tilde{y}(\xi') + \frac{2}{\varepsilon_{0}} \, \tilde{y}(\xi') \right)^{3/2}, \tag{8.7}$$

а $\tilde{g}(\tilde{\xi})$ пов'язане з $\tilde{y}(\tilde{\xi})$ співвідношенням

$$\tilde{g}(\tilde{\xi}) = \frac{1}{4} \left(\tilde{y}^2 + \frac{2}{\varepsilon_0} \, \tilde{y} \right)^{1/2} + \frac{2k^2}{\xi} \, \tilde{\mathcal{M}}(\tilde{\xi}) + \frac{1}{4\tilde{\mathcal{M}}(\tilde{\xi})} \left(\tilde{y}^2 + \frac{2}{\varepsilon_0} \, \tilde{y} \right)^2. \tag{8.8}$$

Доданки у рівнянні (8.6), що пропорційні параметру γ , відіграють роль малих поправок, тому для спрощення знаходження розв'язку розрахуємо їх на основі $\tilde{y}_0(\tilde{\xi})$, що задовольняє рівнянню нульового наближення

$$\frac{1}{\tilde{\xi}^2} \frac{d}{d\tilde{\xi}} \left(\tilde{\xi}^2 \frac{d}{d\tilde{\xi}} \right) \, \tilde{y}_0(\tilde{\xi}) = -\left(\tilde{y}_0^2(\tilde{\xi}) + \frac{2}{\varepsilon_0} \, \tilde{y}_0(\tilde{\xi}) \right)^{3/2}. \tag{8.9}$$

У цьому наближенні функції $\tilde{g}(\tilde{\xi})$ і $d\tilde{g}(\tilde{\xi})/d\tilde{\xi}$ стають просто заданими функціями змінної $\tilde{\xi}$ та параметра x_0 . Функція $\tilde{g}(\tilde{\xi})$ зображена на рис. 8.1 при $x_0=15;20;25$.

За допомогою підстановки

$$\tilde{y}(\tilde{\xi}) = \tilde{y}_0(\tilde{\xi}) + \gamma(x_0)\tilde{y}_1(\tilde{\xi}) \tag{8.10}$$

одержуємо рівняння для функції $\tilde{y}_1(\tilde{\xi})$, яка репрезентує вплив ефектів ЗТВ·

$$\frac{1}{\tilde{\xi}^2} \frac{d}{d\tilde{\xi}} \left\{ \tilde{\xi}^2 \frac{d}{d\tilde{\xi}} \, \tilde{y}_1(\tilde{\xi}) \right\} + 3\tilde{y}_1(\tilde{\xi}) \left(\tilde{y}_0(\tilde{\xi}) + \frac{1}{\varepsilon_0} \right) \left[\tilde{y}_0^2(\tilde{\xi}) + \frac{2}{\varepsilon_0} \, \tilde{y}_0(\tilde{\xi}) \right]^{1/2} =$$

$$= -\tilde{g}(\tilde{\xi}) \left[\tilde{y}_0^2(\tilde{\xi}) + \frac{2}{\varepsilon_0} \, \tilde{y}_0(\tilde{\xi}) \right]^{3/2} - \frac{\tilde{\mathcal{M}}(\tilde{\xi})}{\tilde{\xi}^2} \frac{d}{d\tilde{\xi}} \, \tilde{g}(\tilde{\xi}). \tag{8.11}$$

Цьому рівнянню відповідають граничні умови

$$\tilde{y}(\tilde{\xi}) = 0, \quad \frac{d}{d\xi} \, \tilde{y}_1(\tilde{\xi}) = 0 \quad \text{при } \tilde{\xi} = 0.$$
 (8.12)

Рис. 8.1. Залежність функції $\tilde{g}(\tilde{\xi})$ від змінної $\tilde{\xi}$ для великих значень параметра x_0 (крива $1-x_0=15;\ 2-x_0=20;\ 3-x_0=25$).

Оскільки $\tilde{g}(\tilde{\xi}) = \tilde{g}(0) + \beta \tilde{\xi}^2 + \dots$

$$\tilde{y}_0(\tilde{\xi}) = 1 + \alpha \tilde{\xi}^2 + \dots, \quad \tilde{\mathcal{M}}(\tilde{\xi}) = \delta \tilde{\xi}^3 + \dots$$
 (8.13)

при $\tilde{\xi}_1 \ll 1$, то в цій області функція $\tilde{y}_1(\tilde{\xi})$ має таку асимптотику:

$$\tilde{y}_1(\tilde{\xi}) = -\frac{1}{24} \,\tilde{\xi}^2 \left\{ 1 + \frac{2}{\varepsilon_0} \right\}^2 \left\{ 1 + 3 \, \left(1 + \frac{2}{\varepsilon_0} \right)^{3/2} \right\} + \dots.$$
 (8.14)

Одержаний шляхом чисельного інтегрування розв'язок рівняння (8.11) зображено на рис. 8.2.

Маса зорі визначається співвідношенням

$$M(x_0|z) = \frac{M_0}{\mu_e^2} \left\{ 1 - \varphi(x_0|z) \right\}^{3/2} \left\{ \mathcal{M}(x_0) - \gamma(x_0) \mathcal{M}_1(x_0) \right\}, \tag{8.15}$$

де $\mathcal{M}(x_0)$ відповідає стандартній моделі, а

$$\mathcal{M}_1(x_0) = -3 \int_0^{\xi_1(x_0)} \left\{ y_0^2 + \frac{2}{\varepsilon_0} y_0 \right\}^{1/2} \left(y_0 + \frac{1}{\varepsilon_0} \right) y_1(\xi) \xi^2 d\xi.$$
 (8.16)

Рис. 8.2. Розв'язки рівняння (8.11): Крива 1 відповідає $x_0 = 15$; $2 - x_0 = 20$; $3 - x_0 = 25$.

Величина $\mathcal{M}_1(x_0)$ слабо залежить від параметра релятивізму ($\mathcal{M}_1(x_0) = 4.1453$ при $x_0 = 15$; $\mathcal{M}_1(x_0) = 4.1118$ при $x_0 = 20$; $\mathcal{M}_1(x_0) = 4.0874$ при $x_0 = 25$).

Співвідношенням (8.15) визначається мінімальна маса виродженого карлика у моделі, що враховує взаємодію та ефекти ЗТВ, але не враховує обертання. Як видно з таблиці 7.4, під впливом осьового обертання маса карлика зростає на величину

$$\Delta \mathcal{M}(x_0, z, \Omega) = (1 - \varphi_1(x_0|z))^{3/2} \{ \mathcal{M}(x_0, \Omega) - \mathcal{M}(x_0) \}.$$
 (8.17)

Через те безрозмірна маса виродженого карлика у моделі, що враховує міжчастинкову взаємодію, обертання та ефекти ЗТВ, визначається виразом

$$\mathcal{M}^{3TB}(x_0, z, \Omega) = \mathcal{M}(x_0, z) + \Delta \mathcal{M}(x_0, z, \Omega) =$$

$$= \{1 - \varphi_1(x_0|z)\}^{3/2} \{\mathcal{M}(x_0, \Omega) - \gamma(x_0)\mathcal{M}_1(x_0)\}.$$
(8.18)

Максимальне значення цієї величини відповідає $\Omega = \Omega_{max}(x_0)$, а мінімальне – $\Omega = 0$. Через те, що парметр $\gamma(x_0)$ пропорційний до $\varepsilon_0(x_0)$, то $\mathcal{M}^{\rm 3TB}(x_0,z,\Omega)$ як функція x_0 перестає бути монотонною функцією цього параметра і досягає максимуму в деякій точці $x_0^* \equiv x_0^*(z,\Omega)$.

Щоб оцінити значення x_0^* , розкладемо праву сторону співвідношення (8.18) в ряд Тейлора в околі x_0^* . Враховуючи, що похідна $\varphi(x_0|z)$ за параметром x_0 є малою, одержуємо таке наближене рівняння

$$\frac{m_0}{m_u \mu_e} \mathcal{M}_1(x_0^*) \simeq \frac{d}{dx_0^*} M(x_0^*, \Omega).$$
 (8.19)

Звідси випливає, що x_0^* знаходиться в області великих значень параметра релятивізму, у якій похідна $dM(x_0,\Omega)/dx_0$ є величиною порядку 10^{-3} . Як видно з таблиці 7.4, ця похідна зменшується зі зростанням Ω , тому збільшення кутової швидкості обертання призводить до зменшення x_0^* . Поведінку величини $\mathcal{M}^{\rm 3TB}(x_0,z,\Omega)$ як функції x_0 при заданих значеннях z та при $\Omega=0$ і $\Omega=\Omega_{max}(x_0)$ ілюструє рис. 8.3. З цього рисунка випливає, що максимальне значення маси залежить від заряду ядра, на відміну від x_0^* , яке від z практично не залежить.

У таблиці 8.2 наведено значення $x_0^*(z,\Omega)$ та максимальне значення маси $\mathcal{M}_{max}^{\rm 3TB}(x_0)$ – критичні параметри карлика, що визначають область стійкості його на площині $\mathcal{M}-x_0$ в залежності від z та Ω .

Таблиця 8.1 Критичні параметри вироджених карликів у різних моделях.

$x_0^{(2)}$	$\mathcal{M}^{\mathrm{3TB}}(x_0,z,0)$						
26.2	SM	z=2	z = 12	z = 26			
	1.97531	1.94889	1.89942	1.85217			
(1)	$\mathcal{M}^{\mathrm{3TB}}(x_0,z, ilde{\Omega})$						
$x_0^{(1)}$		$\mathcal{M}^{\text{STB}}(:$	x_0, z, Ω				
$\frac{x_0^{(1)}}{23.2}$	SM	z = 2	z = 12	z = 26			

Як випливає з чисельного розрахунку, x_0^* змінюється в межах

$$x_0^{(1)} \le x_0^* \le x_0^{(2)}$$

при зміні кутової швидкості від Ω_{max} до $\Omega=0$. Максимальна маса карлика при заданому значенні z змінюється в межах від $\mathcal{M}^{GTR}(x_0^{(1)},z,\Omega_{max})$ до $\mathcal{M}^{GTR}(x_0^{(2)},z,0)$, де $x_0^{(1)}=23.2,\,x_0^{(2)}=26.2.$

8.2. Варіаційний метод розрахунку характеристик вироджених карликів

Для розрахунків характеристик вироджених карликів доцільно використовувати різні варіанти варіаційного підходу. Відомо, що в ньютонівській теорії умова екстремуму повної енергії зорі за незмінного хімічного складу і збереження ентропії в кожному елементі об'єму є умовою гідростатичної рівноваги [68]. У випадку сферично-симетричної моделі холодного карлика (що відповідає карликам без осьового обертання при $T=0~{\rm K}$) з міжчастинковими кулонівськими взаємодіями повну енергію можна записати у вигляді

$$E = E_1 - G \int_0^M \frac{dM \ M(r)}{r}, \tag{8.20}$$

де

$$E_1 = 4\pi \int_0^R dr \, r^2 \varepsilon_1(r) \quad - \tag{8.21}$$

негравітаційна енергія (кінетична енергія електронів та енергія кулонівських взаємодій), а $\varepsilon_1(r)$ – її об'ємна густина,

$$M(r) = 4\pi \int_{0}^{r} dr \, r^{2} \rho(r) \quad - \tag{8.22}$$

маса у сфері радіуса r, $\rho(r)$ – густина.

В однорідній моделі P і E_1 є функціями параметра релятивізму, а зв'язок між ними описує співвідношення (див. (6.100))

$$dE_1(x) = 9\pi^2 \left(\frac{\hbar}{m_0 c}\right)^3 N_e \frac{P(x)}{x^4} dx.$$
 (8.23)

Інтегруючи, знаходимо, що в однорідній моделі

$$\varepsilon_1(x) = 3x^3 \int_0^x \frac{dx}{x^4} P(x). \tag{8.24}$$

Тому у локальному наближенні для неоднорідної моделі

$$\varepsilon_1(r) \equiv \varepsilon_1(x(r)) = 3x^3(r) \int_0^{x(r)} \frac{dx}{x^4} P(x),$$
 (8.25)

а через те

$$E_1 = \frac{3}{8} \frac{E_0}{\mu_e^3} \int_0^{\xi_1(x_0)} d\xi \, \xi^2 \left(\frac{x(\xi)}{\varepsilon_0}\right)^3 \int_0^{x(\xi)} \frac{dx}{x^4} \, \mathcal{F}_1(x), \tag{8.26}$$

де

$$\mathcal{F}_1(x) = P(x) \, 3h^3 (\pi m_0^4 c^5)^{-1} \equiv \mathcal{F}(x) - f(x|z),$$

$$E_0 = G M_0^2 R_0^{-1}. \tag{8.27}$$

3 формули (8.26) одержуємо варіацію E_1 у вигляді

$$\delta E_1 = -\frac{1}{8} \frac{E_0}{\mu_e^3} \int_0^{\mathcal{M}} d\mathcal{M} \frac{\delta x}{x^4(\xi)} \, \mathcal{F}_1(x(\xi)), \tag{8.28}$$

де

$$\mathcal{M}(\xi) = \varepsilon_0^{-3} \int_0^{\xi} d\xi \, \xi^2 \, x^3(\xi) - \tag{8.29}$$

безрозмірна маса у сфері радіуса ξ . Використовуючи рівність $d\mathcal{M} = \xi^2 x^3(\xi) d\xi \varepsilon_0^{-3}$, запишемо формулу (8.28) в еквівалентній формі, а саме

$$\delta E_{1} = -\frac{E_{0}}{8(\mu_{e}\varepsilon_{0})^{3}} \int_{0}^{\mathcal{M}} d\mathcal{M} \mathcal{F}_{1}(x(\xi)) \, \delta(x^{-3}(\xi)) =$$

$$= -\frac{E_{0}}{8(\mu_{e}\varepsilon_{0})^{3}} \int_{0}^{\mathcal{M}} d\mathcal{M} \mathcal{F}_{1}(x(\xi)) \, \delta\left(\xi^{2} \frac{d\xi}{d\mathcal{M}}\right) =$$

$$= -\frac{E_{0}}{8(\mu_{e}\varepsilon_{0})^{3}} \left\{ 2 \int_{0}^{\mathcal{M}} d\mathcal{M} \, \mathcal{F}_{1}(x)\xi \delta\xi \, \frac{d\xi}{d\mathcal{M}} - \int_{0}^{\mathcal{M}} d\mathcal{M} \, \delta\xi \, \frac{d}{d\mathcal{M}}(\xi^{2}\mathcal{F}_{1}(x)) \right\} =$$

$$= \frac{E_{0}}{8(\mu_{e})^{3}} \int_{0}^{\mathcal{M}} d\mathcal{M} \, \delta\xi \, x^{-3}(\xi) \, \frac{d}{d\xi} \, \mathcal{F}_{1}(\xi).$$
(8.30)

Варіація повної енергії набуває вигляду

$$\delta E = \frac{E_0}{\mu_e^3} \int_0^{\mathcal{M}} d\mathcal{M} \, \delta \xi \left\{ x^{-3}(\xi) \frac{d}{d\xi} \, \mathcal{F}_1(x(\xi)) + \frac{\mathcal{M}(\xi)\varepsilon_0}{\xi^2} \right\}. \tag{8.31}$$

З умови $\delta E=0$ одержуємо рівняння

$$x^{-3}(\xi) \left\{ \frac{d}{d\xi} \mathcal{F}(x) - \frac{df}{d\xi} \right\} = -\frac{\mathcal{M}(\xi)\varepsilon_0}{\xi^2}, \tag{8.32}$$

яке разом з означенням (8.29) дає рівняння рівноваги (8.2) без релятивістських поправок.

З викладеного вище випливає, що розподіл концентрації електронів (або густини речовини) уздовж радіуса зорі можна знайти прямою мінімізацією виразу (8.20), підбираючи різні пробні функції x(r). У моделі, яку ми розглядаємо,

$$E_{1} = \frac{E_{0}}{\mu_{e}^{3}} \left\{ \tilde{E}_{0}(x_{0}) + \tilde{E}_{coul}(x_{0}, z) \right\};$$

$$\tilde{E}_{0}(x_{0}) = \varepsilon_{0}^{-3} \int_{0}^{\xi_{1}(x_{0}|z)} d\xi \, \xi^{2} \left\{ x^{3}(\xi) [(1 + x^{2}(\xi))^{1/2} - 1] - \frac{1}{8} \, \mathcal{F}(x(\xi)) \right\};$$

$$\tilde{E}_{coul}(x_{0}, z) = -\alpha_{0} \varepsilon_{0}^{-3} \int_{0}^{\xi_{1}(x_{0}|z)} d\xi \, \xi^{2} x^{3}(\xi) \left\{ \left[\frac{3}{4\pi} + \frac{\alpha z^{2/3}}{2\eta} \right] x(\xi) - (8.33) - \alpha_{0} [\varepsilon_{c}(x(\xi)) + z^{3/2} \varepsilon_{2}(x(\xi))] \right\}.$$

Гравітаційну енергію можна зобразити у вигляді

$$-G \int_{0}^{M} \frac{dm \ m(r)}{r} = \frac{E_0}{\mu_e^3} \tilde{E}_{grav}(x_0), \tag{8.34}$$

$$\tilde{E}_{grav}(x_0) = -\varepsilon_0^{-5} \int_{0}^{\xi_1(x_0|z)} d\xi \ \xi \ x^3(\xi) \int_{0}^{\xi} d\xi_2 \ \xi_2^2 x^3(\xi_2).$$

Мінімальне значення суми

$$\tilde{E}(x_0|z) \equiv \tilde{E}_0(x_0) + \tilde{E}_{coul}(x_0|z) + \tilde{E}_{grav}(x_0)$$
(8.35)

за заданих значень параметрів (x_0, z) визначає найліпшу пробну функцію $x(\xi)$, а вираз

$$\varepsilon_0^{-3} \int_0^{\xi_1(x_0|z)} d\xi \, \xi^2 x^3(\xi) = \mathcal{M}(x_0|z) - \tag{8.36}$$

масу зорі. Оскільки границею інтегрування у виразах (8.35) є невідоме $\xi_1(x_0|z)$, то функцію $\tilde{E}(x_0|z)$ доцільно записати в еквівалентному вигляді

$$\tilde{E}(x_0|z) = \mathcal{M}(x_0|z)[\Phi_1(x_0|z) - 1 - \alpha_0\Phi_2(x_0|z)] - \mathcal{M}^{5/3}(x_0|z)\Phi_3(x_0|z),$$
(8.37)

де використано такі позначення:

$$\Phi_{1}(x_{0}|z) = \left\{ \int_{0}^{\xi_{1}} d\xi \, \xi^{2} x^{3}(\xi) \right\}^{-1} \int_{0}^{\xi_{1}} d\xi \, \xi^{2} \times \\
\times \left\{ x^{3}(\xi)(1 + x^{2}(\xi))^{1/2} - \frac{1}{8} \mathcal{F}(x(\xi)) \right\}; \\
\Phi_{2}(x_{0}|z) = \left\{ \int_{0}^{\xi_{1}} d\xi \, \xi^{2} x^{3}(\xi) \right\}^{-1} \int_{0}^{\xi_{1}} d\xi \, \xi^{2} x^{3}(\xi) \times \\
\times \left\{ \left[\frac{3}{4\pi} + \frac{\alpha z^{2/3}}{2\eta} \right] x(\xi) - \alpha_{0} [\varepsilon_{c}(x(\xi)) + z^{3/2} \varepsilon_{2}(x(\xi))] \right\}; \\
\Phi_{3}(x_{0}|z) = \left\{ \int_{0}^{\xi_{1}} d\xi \, \xi^{2} x^{3}(\xi) \right\}^{-5/3} \int_{0}^{\xi_{1}} d\xi \, \xi \, x^{3}(\xi) \int_{0}^{\xi} d\xi_{2} \, \xi_{2}^{2} \, x^{3}(\xi_{2}). \right\}$$

Співвідношення (8.35)–(8.38) можна використати для мінімізації повної енергії методом послідовних наближень. Справді, у нульовому наближенні функції $\Phi_i(...)(i=1,2,3)$ можна розрахувати наближено, використовуючи пробну функцію $\tilde{x}(\xi) = \varepsilon_0 \left(y_0^2(\xi) + \frac{2}{\varepsilon_0} y_0(\xi)\right)^{1/2}$, де $y_0(\xi)$ – розв'язки рівняння (2.22). Границя інтегрування за змінною ξ у цьому наближенні відома – $\xi_1(x_0)$ визначена умовою $y_0(\xi_1(x_0)) = 0$. У такому наближенні вираз (8.37) можна розглядати як зображення

енергії моделі в термінах "маса зорі, параметр релятивізму в її центрі". За умов рівноваги зв'язок між цими величинами визначений рівнянням $d\tilde{E}(x_0|z)/dx_0=0$. У явному вигляді ця умова є таким диференціальним рівнянням:

$$\left(\frac{d}{dx_0}\mathcal{M}\right) \left\{ \Phi_1 - 1 - \alpha_0 \Phi_2 - \frac{5}{3} \mathcal{M}^{2/3} \Phi_3 \right\} +
+ \mathcal{M} \left\{ \frac{d}{dx_0} (\Phi_1 - \alpha_0 \Phi_2) - \mathcal{M}^{2/3} \frac{d}{dx_0} \Phi_3 \right\} = 0,$$
(8.39)

де $\Phi_i \equiv \Phi_i(x_0|z)$ або $\Phi_i(x_0)$. За великих значень x_0 розв'язок цього рівняння є розкладом за оберненими степенями x_0 :

$$\mathcal{M}(x_0|z) = \mathcal{M}_0(z) - \frac{a_2}{x_0^2} + \frac{a_3}{x_0^3} + \dots,$$
 (8.40)

де $\mathcal{M}_0(z)$ відіграє роль межі Чандрасекара:

$$\mathcal{M}_{0}(z) = \lim_{x_{0} \to \infty} \left[\left\{ \frac{d}{dx_{0}} (\Phi_{1} - \alpha_{0} \Phi_{2}) \right\} \left\{ \frac{d}{dx_{0}} \Phi_{3} \right\}^{-1} \right]^{3/2} = (8.41)$$

$$= \lim_{x_{0} \to \infty} \left\{ (\Phi_{1} - \alpha_{0} \Phi_{2}) \Phi_{3}^{-1} \right\}^{3/2},$$

оскільки $\Phi_i \sim x_0$ при $x_0 \gg 1$.

За довільних значень параметра x_0 рівняння (8.39) можна розв'язувати чисельно. Знайшовши $\mathcal{M}(x_0|z)$ у нульовому наближенні, можна уточнити $\xi_1(x_0|z)$ за формулою (8.36) і розрахувати чисельно мінімальне значення суми (8.35), вибираючи найліпшу пробну функцію. За відомою величиною $\tilde{E}(x_0|z)$ з рівняння (8.37) можна знайти уточнену величину маси і т. д.

З усього викладеного випливає, що мінімізація виразу (8.37) на основі функцій $\Phi_i(x_0|z)(i=1,2,3)$ відповідає першому порядку само-узгодженої теорії збурень.

Альтернативний варіант розрахунку ґрунтується на прямій наближеній мінімізації виразу (8.35) на основі $y_0(\xi)$ з подальшим визначенням маси з алгебраїчного рівняння (8.37). За відомою масою радіус карлика визначиться з рівняння (8.36).

У випадку карликів з осьовим обертанням теж можна використовувати варіаційний метод, узагальнюючи вираз для повної енергії зорі

(8.35), а саме доповнюючи його енергією обертання:

$$E = \frac{E_0}{\mu_e^3} \left\{ \tilde{E}_0(x_0) + \tilde{E}_{coul}(x_0, z) + \tilde{E}_{grav}(x_0) + \tilde{E}_{rot}(x_0) \right\} =$$

$$= \frac{E_0}{\mu_e^3} \left\{ \mathcal{M}(x_0|z, \Omega) \left[\Phi_1(x_0|z, \Omega) - 1 - \alpha_0 \Phi_2(x_0|z, \Omega) \right] - (8.42) - \mathcal{M}^{5/3}(x_0|z, \Omega) \left[\Phi_3(x_0|z, \Omega) + \Omega^2 \Phi_4(x_0|z, \Omega) \right] \right\}.$$

Однак у цьому випадку функціонали $\Phi_i(x_0, z)$ ускладнюються, бо задача є двовимірною:

$$\mathcal{M}(x_{0}|z,\Omega) = \varepsilon_{0}^{-3} I(x_{0}|z,\Omega);$$

$$I(x_{0}|z,\Omega) = \int_{0}^{1} dt \int_{0}^{\xi_{0}(t)} \xi^{2}x^{3}(\xi,t) d\xi; \quad t = \cos\theta;$$

$$\Phi_{1}(x_{0}|z,\Omega) = I^{-1}(x_{0}|z) \int_{0}^{1} dt \int_{0}^{\xi_{0}(t)} \xi^{2}x^{3}(\xi,t) - \left\{ [1 + x^{2}(\xi,t)]^{1/2} - \frac{1}{8} \mathcal{F}(x(\xi,t)) \right\} d\xi;$$

$$\Phi_{2}(x_{0}|z,\Omega) = I^{-1}(x_{0},z) \int_{0}^{1} dt \int_{0}^{\xi_{0}(t)} \xi^{2}x^{3}(\xi,t) \times$$

$$\times \left\{ \left[\frac{3}{4\pi} + \frac{\alpha z^{2/3}}{2\eta} \right] x(\xi,t) - \alpha_{0}[\varepsilon_{c}(x(\xi,t)) + z^{3/2}\varepsilon_{2}(x(\xi,t))] \right\} d\xi;$$

$$\Phi_{4}(x_{0}|z,\Omega) = I^{-5/3}(x_{0}|z,\Omega) \int_{0}^{1} dt (1 - t^{2}) \int_{0}^{\xi_{0}(t)} \xi^{4}x^{3}(\xi,t) d\xi;$$

$$\Phi_{3}(x_{0}|z,\Omega) = \frac{1}{2} I^{-5/3}(x_{0}|z,\Omega) \sum_{n=0}^{\infty} \int_{0}^{1} dt_{1} P_{2n}(t_{1}) \int_{0}^{\xi_{0}(t_{1})} \xi_{1}^{2}x^{3}(\xi_{1},t_{1}) d\xi_{1} \times$$

$$\times \int_{0}^{1} dt_{2} P_{2n}(t_{2}) \left\{ \xi_{1}^{-(2n+1)} \int_{0}^{\xi_{1}^{2}x^{2}+2} x^{3}(\xi_{2},t_{2}) d\xi_{2} + \xi_{1}^{2n} \int_{\xi_{1}}^{\xi_{0}(t_{2})} x^{3}(\xi_{2},t_{2}) d\xi_{2} \right\},$$

де $P_{2n}(t)$ – поліноми Лежандра порядку 2n, а $x(\xi,t)$ є пробною функцією змінних ξ і t. Наявність поліномів Лежандра парного порядку

пов'язана із симетрією розподілу речовини зорі відносно екваторіальної площини. Верхня границя інтегрування $\xi_0(t) \equiv \xi_0(t|x_0,z,\Omega)$ визначається умовою $x(\xi_0,t)=0$. Згідно з розв'язками рівняння рівноваги, одержаними у розділі 4, функцію $x(\xi,t)$ можна шукати у вигляді розкладів за поліномами Лежандра.

8.3. Особливості структури карликів у подвійних системах

Спостереження за допомогою космічних телескопів, виконані впродовж двох останніх десятиліть, значно розширили традиційні уявлення про виродженні карлики. Нині відомо тисячі карликів різних спектральних класів у Галактиці, де вони становлять найчисленнішу сукупність астрономічних об'єктів. Особлива різноманітність характеристик карликів простежується у подвійних системах, де є карлики як з дуже малими масами $M \leq 0.3 M_{\odot}$, так і з дуже великими $M \geq 1.2 M_{\odot}$, що зумовлено особливостями еволюції зір у бінарних системах. Серед них наявні холодні карлики та дуже гарячі (див. [38,77]), тобто молоді й старі (охолоджені). Оскільки характеристики карликів у подвійних системах визначають зі спостережень із значними похибками, то з переважної більшості каталогів свідомо видаляють карлики, належні до подвійних систем. Інтерес до вивчення карликів у подвійних системах посилився останніми роками, після того, як спостереженнями виявлено можливість вибухів наднових у цих системах. Як відомо [78], вибухи повторних нових у подвійних системах давно вже підтверджені спостереженнями. З огляду на це дослідження вироджених карликів у подвійних системах є фундаментальною проблемою з погляду побудови загальної теорії вироджених карликів та вироблення критеріїв, які дали б змогу виявляти карлики, що є попередниками наднових.

Не менш цікавою і валивою проблемою є вивчення процесів формування карликів у надрах субгігантів, що входять до подвійних систем. Для систем типу β Ліри, RY Щита та інших накопичено великий обсяг спостережуваних даних, що дозволяє вивчати еволюцію структури зір з виродженими ядрами, які є попередниками вироджених карликів, або ж чорних дір, в сучасну епоху.

Сучасна теорія еволюції тісних подвійних систем добре розроблена і дає змогу зрозуміти походження в складі цих систем таких об'єктів, як зорі типу Вольфа—Райє, вироджені карлики, нейтронні зорі та чорні

діри [78]. Їхніми компаньйонами є об'єкти різної природи: нормальні зорі головної послідовності, субгіганти, надгіганти, субкарлики. У системах типу RW Тельця, RY Близнюків, SX Кассіопеї та інших дискова акреція йде на звичайну зорю через внутрішню точку Лагранжа, а в нових та новоподібних системах — на вироджений карлик. Прикладом подвійної системи з акрецію на карлик є система DQ Her. Це колишня нова, що спалахнула в 1934 р., вона є затемнювано-подвійною і має період зміни блиску, що становить 4 години і 39 хвилин.

Найчастіше розглядають механізм утворення нейтронних зір унаслідок обміну масою в бінарних системах з великими початковими масами компонентів. У випадку невеликих початкових мас можливе утворення виродженого карлика і подальше перетікання речовини з нормального компонента, початкова маса якого була меншою від маси зорі-сусіда. Коли маса виродженого карлика стає досить великою (близькою до граничної маси Чандрасекара), він спалахує як наднова чи повторна нова внаслідок порушення стійкості, зумовленої ефектами загальної теорії відносності, або ж явищем нейтронізації.

Зазначимо, що згідно із загальноприйнятим поглядом, м'яке і жорстке рентгенівське випромінювання, яке простежується від відомих подвійних систем типу AM Her, DQ Her і SS Cyg, є наслідком акреції на магнітні вироджені карлики. Сильна поляризація оптичного випромінювання AM Her свідчить про те, що на поверхні деяких карликів є магнітні поля з напруженістю $B \leq 10^7 - 10^8$ Гс. Джерела типу DQ Her спалахують як нові зорі і мають когерентні пульсації малої амплітуди. Дані оптичних спостережень свідчать про існування акреційних дисків навколо вироджених карликів. Сильні магнітні поля руйнують диски і зумовлюють радіальне перетікання речовини на карлик.

Особливості формування та умови існування вироджених карликів у подвійних системах накладають свій відбиток на характеристики карликів – їхні маси і радіуси. Вище вже зазначено, що у подвійних системах простежуються карлики з широким спектром мас. На рис. 8.3 показано розподіл близько 1.6 тис. карликів у подвійних системах за масами згідно з даними каталогу [38]. Цей розподіл зображено на фоні розподілу приблизно у два рази більшої кількості карликів польових з огляду неба SDSS [33] (світле штрихування, для зручності вибрано масштаб 1:2). Як бачимо, середня статистична маса польових карликів близька до середньої статистичної маси карликів у подвійних системах ($\approx 0.6 M_{\odot}$). Однак область зміни мас карликів у подвійних

Рис. 8.3. Розподіл за масами вироджених карликів у подвійних системах (WDMS) [38] та польових карликів з огляду неба SDSS [33]. Розподіл польових карликів для зручності показаний у масштабі 1:2.

системах є ширшою, ніж у звичайних $(0.1 \le M/M_{\odot} \le 1.5$ порівняно з $0.3 \le M/M_{\odot} \le 1.2$). З рис. 8.3 також бачимо, що частка карликів з малими масами у подвійних системах більша, ніж частка карликів з дуже великими масами. Загалом можна констатувати, що карлики у подвійних системах менш масивні, проте є невелика частина їх з дуже великими масами, близькими до маси Чандрасекара.

На рис. 8.4 зображено розподіл польових (одинарних) карликів за ефективними температурами фотосфер (масштаб 1:2). Як бачимо з рис. 8.5, де показано розподіл карликів у подвійних системах за температурами на фоні аналогічного розподілу польових карликів, ефективні температури фотосфер карликів у подвійних системах суттєво вищі від ефективних температур польових. З рис. 8.4 і 8.5 бачимо, що T_{eff} для обох груп карликів змінюється в інтервалі $5 \cdot 10^3 - 5 \cdot 10^4$ К. Відмінності в розподілах є суттєвими в інтервалі середніх значень температур $(1.5 \cdot 10^4 \le T_{eff} \le 4 \cdot 10^4)$ К, хоча невелика кількість карликів має температури аж до 10^5 К.

На рис. 8.6 показано координати карликів обох груп на площині маса—ефективна температура. Тут хрестики відповідають польовим, а кружечки — карликам у подвійних системах. Як бачимо, основний

Рис. 8.4. Розподіл близько 3 тис. польових вироджених карликів з огляду неба SDSS [33] за ефективними поверхневими температурами.

Рис. 8.5. Розподіли вироджених карликів у подвійних системах (WDMS) [38] і польових карликів за ефективними температурами.

масив карликів у подвійних системах займає область $0.2 \leq M/M_{\odot} \leq 1.2$; $8 \cdot 10^3~{\rm K} \leq T_{eff} \leq 4.5 \cdot 10^4~{\rm K}$. Карлики у подвійних системах з великою масою мають низькі температури: $8 \cdot 10^3~{\rm K} \leq T_{eff} \leq 1.8 \cdot 10^4~{\rm K}$. Суттєві відмінності характеристик карликів у подвійних системах від аналогічних величин для карликів польових є підставою для окремого дослідження цих об'єктів.

Рис. 8.6. Маси та ефективні температури вироджених карликів як польових, так і у подвійних системах [33, 38].

Рис. 8.7. Площина параметрів стандартної моделі Чандрасекара для вибірки вироджених карликів у подвійних системах [38].

Згідно з нашою робочою гіпотезою, критеріями відбору потенційних кандидатів на попередники наднових є велика маса і значна частка водню. Усереднений за хімічними елементами і координатами хімічний склад є одним з параметрів моделі Чандрасекара. У праці [24] з'ясовано, що визначення параметрів моделі Чандрасекара є необхідним кроком, який дає змогу видалити з розгляду невірогідні дані про маси і радіуси карликів, зумовлені значними похибками спостережень, або їхнім опрацюванням. Це дає змогу також вибрати метод точнішого опису внутрішньої структури цих об'єктів.

Розв'язання оберненої задачі — знаходження значень параметрів x_0 , μ_e для спостережуваних карликів у подвійних системах — дає змогу виділити з вибірки карлики з великим значення x_0 (великими масами), карлики, у яких $\mu_e < 2.0$ (що може свідчити про наявність у їхніх периферійних шарах водню, зумовленого акрецією), а також протестувати вірогідність даних каталогу [77] щодо умови $\mu_e \le 2.15$.

Результати розрахунків у рамках стандартної моделі показано на рис. 8.7, з якого бачимо, що обидва параметри змінюються у досить широких межах:

$$1.083 \le \mu_e \le 2.023, \quad 0.15 \le x_0 \le 9.57.$$
 (8.44)

Для більшості маломасивних карликів з великими радіусами параметр μ_e є малим. Це свідчить про те, що вони є воднево-гелієвими або

Таблиця 8.2 Параметри стандартної моделі С.Чандрасекара для масивних вироджених карликів

Номер	R/R_0	M/M_0	T_{eff}	x_0	μ_e
1193	0.45382	0.43303	10307	4.9257	2.0151
1083	0.45919	0.43303	91870	4.8552	2.0120
2143	0.44845	0.43649	10073	5.0205	2.0111
2145	0.44845	0.43649	10670	5.0205	2.0111
648	0.44845	0.43649	10670	5.0205	2.0111
64	0.44934	0.43649	16340	5.0087	2.0106
1378	0.44934	0.43996	30071	5.0323	2.0037
739	0.43234	0.44169	13857	5.2869	2.0096
1624	0.43234	0.44342	87730	5.2993	2.0061
1391	0.42159	0.44689	16525	5.4904	2.0050
1581	0.40548	0.45035	10189	5.7829	2.0064
219	0.40101	0.45278	14472	5.8810	2.0038
190	0.39385	0.45382	11433	6.0200	2.0054
1558	0.40011	0.45382	99580	5.9052	2.0022
957	0.33924	0.47114	10793	7.3809	1.9963
259	0.34014	0.47460	84750	7.3901	1.9891
297	0.31776	0.47980	16836	8.0756	1.9881
2195	0.30702	0.48499	11173	8.4718	1.9822
33	0.27927	0.49192	13745	9.5720	1.9789

ж мають високі ефективні температури (див. рис. 8.7, а також [45]). Незначна кількість карликів має великі маси, що дає великі значення x_0 , та все ж значно менші, ніж критичне значення x_0^* . Саме ці карлики за умови, що $\mu_e < 2.0$, можна вважати кандидатами на попередників наднових. У табл. 8.2 наведено вибірку масивних карликів (за винятком карлика 505, для якого $\mu_e = 2.243$, отже, його маса і радіус визначені зі спостережень зі значними похибками). Температури їхніх фотосфер є невисокими. Переважна кількість карликів середніх мас $(0.5M_{\odot} \leq M \leq 1.0M_{\odot})$ має значення параметра μ_e , що значно відхиляється від 2.0, а температури фотосфер змінюються від 10^4 до 10^5 К. Загалом одержані результати є наближеними, бо отримані у найпростішій моделі. Однак вони дають змогу вибрати метод опису карликів, що ґрунтується на реалістичніших моделях.

Список використаної літератури

- Adams W. S. The Spectrum of the Companion of Sirius / W. S. Adams // Publ. Astr. Soc. Pasif. – 1915. – Vol. 27. – P. 236– 237.
- [2] Boss L. Preliminary General Catalogue of 6188 stars for the eopoch 1900 / L. Boss. Washington, D.C.: Carnegie Institution, 1910. 345 p.
- [3] Homer Lane J. On the Theoretical Temperature of the Sun under the Hypothesis of a gaseous mass Maintining Its Volume by Its Internal Heat and Depending on the Law of Gases Known to Terrestrial Experiment / J. Homer Lane // The American J. of Science and Arts. 2d ser. 1870. Vol. 50. P. 57.
- [4] Emden K. Gaskugeln: Anwendungen der mechanischen Wärmetheorie / K. Emden. Leipzig; Berlin, 1907. 497 p.
- [5] Fowler R. H. Emden's equation: The solutions of Emden's and similar differential equations / R. H. Fowler // MNRAS. 1930. Vol. 91. P. 63.
- [6] Ritter A. / Ritter A. // Wiedemann Annalen. 1878. Vol. 5. P. 543.
- [7] Kelvin W. / Kelvin W. // Mathematical and Physical Papers. 1911. Vol. 3. P. 255.
- [8] Eddington A. S. The Internal Constitution of the Stars / A. S. Eddington. Cambridge: Cambridge University Press, 1926. 424 p.
- [9] Milne E.A. / Milne E.A. // MNRAS. 1923. Vol. 83. P. 118.
- [10] Chandrasekhar S. The Equilibrium of Distorted Polytropes. I. The Rotational Problem / Chandrasekhar S. // MNRAS. – 1933. – Vol. 33. – P. 390.

- [11] James R.A. The Structure and Stability of Rotating Cas Masses // ApJ. 1964. V.140. P. 552.
- [12] Shapiro S. L. Black Holes, White Dwarfs and Neutron Stars / S. L. Shapiro, S. A. Teukolsky // Cornell University, Ithaca, New York 1983. 661 р. (Переклад: Шапиро С. Л. Черные дыры, белые карлики и нейтронные звезды: в 2 ч. / С. Л. Шапиро, С. А. Тьюколски. М.: Мир, 1985. 656 с.).
- [13] Chandrasekhar S. An Introduction to the Study of Stellar Structure / S. Chandrasekhar // Chicago: University of Chicago Press 1939. 509 р. (Переклад: Чандрасекар С. Введение в учение о строении звезд / С. Чандрасекхар. М.: Иностр. л-ра, 1950. 466 с.).
- [14] Справочник по специальным функциям с формулами, графиками и математическими таблицами / Под. ред. М.Абрамовица и И.Стиган. М.: Наука, 1979. 830 с.
- [15] Соболев В. В. Курс теоретической астрофизики / В. В. Соболев. М.: Наука, 1975. 504 с.
- [16] Градштейн И. С. Таблицы интегралов, сумм, рядов и произведений / И. С. Градштейн, И. М. Рыжик. М.: Физматгиз, 1963. 1100~ с.
- [17] Дубошин Г.Н. Небесная механика. М.: Наука, 1975. 799 с.
- [18] Fowler R. H. On dense matter / R. H. Fowler // MNRAS. 1926. Vol. 87. P. 114.
- [19] Chandrasekhar S. The Maximum Mass of Ideal White Dwarfs / S. Chandrasekhar // Astrophys. J. 1931. Vol. 74. P. 81.
- [20] Chandrasekhar S. Stellar configurations with degenerate cores / S. Chandrasekhar // MNRAS. 1935. Vol. 95. P. 676.
- [21] Chandrasekhar S. The Pressure in the Interior of a Star / S. Chandrasekhar // MNRAS. 1936. Vol. 96. P. 644.
- [22] Chandrasekhar S. The Pressure in the Interior of a Star / S. Chandrasekhar // Astrophys. J. 1937. Vol. 85. P. 372.

- [23] Sommerfeld A. Zur Elektronentheorie der Metalle auf Grund der Fermischen Statistik / A. Sommerfeld // Zeitschrift für Physik. 1928. Bd. 47. S. 1.
- [24] Ваврух М. В. Мікроскопічні параметри та макроскопічні характеристики реальних вироджених карликів / М. В. Ваврух, Н. Л. Тишко, С. В. Смеречинський // Журн. фіз. досліджень 2010. Т. 14. № 4. С. 4901.
- [25] Ваврух М. В. Обратная задача теории вырожденных карликов / М. В. Ваврух, Н. Л. Тышко, С. В. Смеречинский // Астрон. журн. 2011. Т. 88. № 6. С. 549.
- [26] European Space Agency. The Hipparcos and Tycho Catalogues (Noordwijk, Netherlands: ESA SP-1200) / European Space Agency, 1997.
- [27] Provencal J. L. Testing the White Dwarf Mass-Radius Relation with HIPPARCOS / J. L. Provencal, H. L. Shipman, E. Hog, P. Thejll // Astrophys. J. 1998. Vol. 494. P. 759.
- [28] Bragaglia A. Temperatures, gravities, and masses for a sample of bright DA white dwarfs and the initial-to-final mass relation / A. Bragaglia, A. Renzini, P. Bergeron // Astrophys. J. – 1995. – Vol. 443. – P. 735.
- [29] Bergeron P. A spectroscopic determination of the mass distribution of DA white dwarfs / P. Bergeron, R. A. Saffer, J. Liebert // Astrophys. J. 1992. Vol. 394. P. 228.
- [30] Althaus L. G. Evolutionary and pulsational properties of white dwarf stars / L. G. Althaus, A. H. Corsico, J. Isern, E. Garcia-Berro // Astron. Astrophys. Rev. 2010. Vol. 18. P. 471.
- [31] Camenzind M. Compact Objects in Astrophysics: White Dwarfs, Neutron Stars and Black Holes / M. Camenzind. – Berlin, Heidelberg: Springer-Verlag, 2007. – 681 p.
- [32] Ritossa C. On the Evolution of Stars that Form Electron-degenerate Cores Processed by Carbon Burning. V. Shell Convection Sustained by Helium Burning, Transient Neon Burning, Dredge-out, URCA

- Cooling, and Other Properties of an 11 M_solar Population I Model Star / C. Ritossa, E. Garcia-Berro, I. Iben Jr. // Astrophys. J. 1999.— Vol. 515. P. 381.
- [33] Tremblay P.-E. An Improved Spectroscopic Analysis of DA White Dwarfs from the Sloan Digital Sky Survey Data Release 4 / P.-E. Tremblay, P. Bergeron, A. Gianninas // Astropys. J. 2011. Vol. 730. P. 128.
- [34] Fontaine G. The Potential of White Dwarf Cosmochronology / G. Fontaine, P. Brassard, P. Bergeron // Publ. Astron. Soc. Pacific. 2001. Vol. 113. P. 409.
- [35] Shipman H. L. Masses and radii of white-dwarf stars. III Results for 110 hydrogen-rich and 28 helium-rich stars / H. L. Shipman // Astrophys. J. 1979. Vol. 228. P. 240.
- [36] Wood M. A. Astero-Archaeology: Reading The Galactic History Recorded in the White Dwarf Stars / M. A. Wood // Thesis. Austin: Univ. of Texas, 1990.
- [37] Marsh T. R. Low-Mass White Dwarfs Need Friends Five New Double-Degenerate Close Binary Stars / T. R. Marsh, V. S. Dhillon, S. R. Duck // MNRAS. 1995. Vol. 275. P. 828.
- [38] Rebassa-Mansergas A. Post-common envelope binaries from SDSS VII. A catalogue of white dwarf-main sequence binaries / A. Rebassa-Mansergas, B. T. Gänsicke, M. R. Schreiber, D. Koester, P. Rodriguez-Gil // Monthly Notices of the Royal Astronomical Society. 2010. Vol. 402. P. 620-640.
- [39] Ваврух М. В. Модель виродженого карлика зі спінполяризованою електронною системою / М. В. Ваврух, Д. В. Дзіковський, Н. Л. Тишко // Вісник Львів. ун-ту. Серія фізична. — 2014. — Вип. 49. — С. 83.
- [40] Vavrukh M.V. Model of degenerate dwarf with spin-polarized electron system / Vavrukh M.V., Dzikovskyi D.V., Tyshko N.L. // Odessa Astron Publ. 2015. Vol. 28, N 1. P. 82-87.

- [41] Vavrukh M.V. The influence of the axial rotation on the degenerate dwarfs characteristics / Vavrukh M.V., Smerechynskyi S.V., Dzikovskyi D.V. // Matem. Model. and Computing. 2017. Vol. 4, N 4. P. 107-115.
- [42] Chabrier G. Cooling Sequences and Color-Magnitude Diagrams for Cool White Dwarfs with Hydrogen Atmospheres / G. Chabrier, P. Brassard, G. Fontaine, D. Saumon // Astrophys. J. – 2000. – Vol. 543. – P. 216.
- [43] Althaus L. G. The age and colors of massive white dwarf stars / L. G. Althaus, E. Garcia-Berro, J. Isern et al. // Astr. & Aph. 2007. Vol. 465. P. 249.
- [44] Panei J. A. The evolution of iron-core white dwarfs / J. A. Panei, L. G. Althaus, O.G. Benvenuto // MNRAS. 2000. Vol. 312. P. 531.
- [45] Ваврух М. В. Модель Чандрасекхара при конечных температурах: определение параметров и расчет характеристик вырожденных карликов / М. В. Ваврух, С. В. Смеречинский // Астрон. журн. 2012. Т. 89. № 5. С. 407.
- [46] Ваврух М. В. Горячие вырожденные карлики в рамках двухфазной модели / М. В. Ваврух, С. В. Смеречинский // Астрон. журн. – 2013. – Т. 90. – N_2 12. – С. 993.
- [47] Ваврух М. Трифазна модель в теорії вироджених карликів / М. Ваврух, Н. Тишко, С. Смеречинський // Вісник Львів. унту. Серія фізична. 2013. Вип. 48. С. 199.
- [48] Salpeter E. E. Energy and pressure of a zero-temperature plasma / E. E. Salpeter // Astrophys. J. 1961. Vol. 134. P. 669.
- [49] Hamada T. Models for Zero-Temperature Stars / T. Hamada, E. E. Salpeter // Astrophys. J. – 1961. – Vol. 134. – P. 683.
- [50] Ваврух М. n-частичные корреляционные функции взаимодействующего электронного газа / М. Ваврух // Теор. и матем. физика. 1982. Т. 50, № 3. С. 438.

- [51] Vavrukh M. Reference System Approach in the Electron Theory.

 General Relations / M. Vavrukh, T. Krohmalskii // Phys. stat.
 sol. (b) 1991. Vol. 168. P. 519.
- [52] Vavrukh M. Reference System Approach in the Electron Theory.
 2. Ground state characteristic in the Medium Density Region / M. Vavrukh, T. Krohmalskii // Phys. stat. sol. (b) 1992. Vol. 169. P. 451.
- [53] Ваврух М. Обобщение концепции локального поля в теории ферми-жидкостей / М. Ваврух, Н. Ваврух // Физика низких температур. 1996. Т. 22. С. 9.
- [54] Ваврух М. Температурна залежність поправки на локальне поле / М. Ваврух, Н. Тишко, В. Паславський // Журн. фіз. досліджень. – 2000. – Т. 4. – С. 6.
- [55] Ваврух М. Базисний підхід в теорії багатоелектронних систем / Ваврух М., Костробій П., Маркович Б. Львів, 2017. 508 с.
- [56] Vavrukh M. Reference System Approach within the white-dwarfs theory / Vavrukh M., Dzikovskyi D., Tyshko N. // Condensed Matter Physics. – 2017. V. 20. – №4. – P. 1.
- [57] Gell-Mann M. Correlation energy of an electron gas at high density / M. Gell-Mann, K. Brueckner // Phys. Rev. – 1957. – Vol. 106 – P. 364.
- [58] Ceperley D. Ground state of the electron gas by a stochastic method / D. Ceperley, B. Alder // Phys. Rev. Lett. 1980. Vol. 45. P. 566.
- [59] Lloyd P. A structural expansion of the cohesive energy of simple metals in the effective Hamiltonian appoximation / P. Lloyd, C. Sholl // J. Phys. C. 1969. Vol. 1. P. 1620.
- [60] Бровман Е. Об особенностях многохвостных кольцевых диаграмм для ферми-систем / Е. Бровман, Ю. Каган // Журн. эксперим. и теор. физики. 1972. Т. 63. С. 1937.

- [61] Бровман Е. Общий метод интегрирования многохвостных кольцевых диаграмм для ферми-систем / Е. Бровман, С. Холас // Журн. эксперим. и теор. физики. 1974. Т. 63. С. 1877.
- [62] Vavrukh M. Correlation functions of the degenerate relativistic electron gas with high density / M. Vavrukh, D. Dzikovskyi, V. Solovyan, N. Tyshko // Math. Model. and Comp. – 2016. – Vol. 3. – №1. – P. 97.
- [63] Hwa P. Homology and Feynman integrals / P. Hwa, V. Teplitz // New York, Amsterdam, 1968.- 223 p.
- [64] Kohn W. Ground-state energy of a many-fermion system / W. Kohn, J. Luttinger // Phys. Rev. 1960. Vol. 118. P. 41.
- [65] Ваврух М. В. Химический потенциал взаимодействующего вырожденного электронного газа и связанные с ним вопросы / М. В. Ваврух, Т. Е. Крохмальский. Киев, 1985. С. 37 (Препринт АН УССР, Ин-т теор. физики, ИТФ 85 119 Р).
- [66] Pines D. The theory of quantum liquids / Pines D., Noziers P. W.A. Benjamin, inc. New York, Amsterdam, 1960. 382 p.
- [67] Vosko S. H. Accurate spin-depent electron-liquid correlation energies for local spin density calculations. A critical analisis / S. H. Vosko, L. Wilk, N. Nusair // Can. J. Phys. – 1980. – Vol. 58. – P. 1200.
- [68] Vavrukh M. Interparticle interactions, general relativity effects, and critical parameters of white dwarfs / M. Vavrukh, N. Tyshko, S. Smerechynskyj // Mathematical Modeling and Computing. − 2014. Vol. 1, № 2. P. 263.
- [69] Ewald P.P. Die Berechnung optischer und electrostatischer Gitterpotentiale / P.P. Ewald // Ann. Phys. 1921. B. 64. P. 253.
- [70] Fuchs K. A Quantum Mechanical Investigation of the Cohesive Forces of Methalic Copper / K. Fuchs // Proc. Roy. Soc. – 1935. – Vol. A151. – P. 585.

- [71] Carr W.J.,Jr. Energy, Specific Heat, and Magnetic Properties of the Low-Density Electron Gas / W. J. Carr, Jr. // Phys. Rev. 1961. Vol. 122. P.1437.
- [72] Каплан С. А. "Сверхплотные звезды" / С. А. Каплан // Уч. зап. Львов. ун-та. Серия физ.-мат. 1949. Т. 15. Вып. 4. С. 109.
- [73] Chandrasekhar S. The Dynamical Instability of the White-Dwarf Configuration Approaching the Limiting Mass. / S. Chandrasekhar, R. F. Tooper // Astroph. J. – 1964. – Vol. 139. – P. 1396.
- [74] Зельдович Я. Б. Релятивистская астрофизика / Я. Б. Зельдович, И. Д. Новиков. М.: Наука, 1967. 656 с.
- [75] Oppenheimer J. R. On Massive Neutron Cores / J. R. Oppenheimer, G. M. Volkoff // Phys. Rev. – 1939. – Vol. 55. P. 540.
- [76] Shatzman E. Theorie des Supernovae / E. Shatzman // Ann. der Astrophys. 1946. Bd. 9. S. 144.
- [77] Rebassa-Mansergas A. Post-common envelope binaries from SDSS XIV. The DR7 white dwarf-main-sequence binary catalogue / A. Rebassa-Mansergas, A. N. Gomez-Moran, M. R. Schreiber et al. // MNRAS. 2012. Vol. 419. P. 806.
- [78] Звезды и звездные системы / Под ред. Д.Я. Мартынова М.: Наука, 1981. 417 с.

Додаток

Каталог параметрів моделей з неповним виродженням електронної підсистеми

Параметри моделей, розглянутих у розділі 5, розраховані для вибірки вироджених карликів спектрального типу DA з огляду SDSS DR4 [33]. Стовпці 6 — 8 містять параметри двофазової моделі, 9 — 11 — параметри однофазової моделі ($\xi_0=0,995$). Нумерація карликів у цій таблиці збігається з нумерацією у згаданому каталозі. Повний каталог параметрів моделей для трьох тисяч карликів опубліковано в роботі [46].

						1	ı	(1)	*(1)	1
Номер	R/R_0	M/M_0	$T_{ m eff}$	L/L_{\odot}	T_0^*	x_0	ξ_{Δ}	$x_0^{(1)}$	$T_0^{*(1)}$	μ_e
1	0.872	0.294	10850	0.00101	0.0149	1.890	0.976	1.840	0.0150	2.023
2	0.922	0.274	8620	0.00045	0.0096	1.710	0.982	1.670	0.0114	2.026
4	1.140	0.211	13090	0.00370	0.0157	1.230	0.955	1.170	0.0117	2.031
5	1.110	0.222	13710	0.00416	0.0164	1.300	0.956	1.240	0.0124	2.031
6	1.300	0.184	18560	0.01920	0.0211	1.030	0.923	0.968	0.0117	2.027
7	0.799	0.319	8690	0.00035	0.0120	2.160	0.984	2.120	0.0143	2.021
9	1.290	0.187	16410	0.01170	0.0238	1.040	0.916	0.977	0.0125	2.028
10	0.999	0.249	8710	0.00055	0.0119	1.510	0.974	1.470	0.0118	2.029
11	1.490	0.187	39040	0.49400	0.0615	0.904	0.780	0.839	0.0156	2.028
12	1.280	0.201	23590	0.04890	0.0353	1.100	0.888	1.010	0.0154	2.030
13	0.932	0.274	9620	0.00072	0.0150	1.700	0.972	1.650	0.0142	2.026
14	1.280	0.191	20150	0.02590	0.0239	1.070	0.918	0.999	0.0127	2.029
15	1.270	0.194	20240	0.02620	0.0267	1.080	0.911	1.010	0.0135	2.029
16	0.922	0.281	10460	0.00098	0.0205	1.750	0.964	1.690	0.0168	2.025
17	1.270	0.197	24570	0.05660	0.0295	1.090	0.904	1.020	0.0143	2.030
18	0.818	0.312	10240	0.00071	0.0116	2.080	0.983	2.040	0.0138	2.021
19	1.280	0.180	12680	0.00411	0.0158	1.020	0.941	0.972	0.0102	2.026
20	1.240	0.187	11270	0.00237	0.0130	1.070	0.954	1.030	0.0097	2.028
21	0.917	0.277	9600	0.00069	0.0123	1.730	0.978	1.690	0.0130	2.026
22	0.847	0.298	9920	0.00067	0.0051	1.940	0.992	1.920	0.0089	2.023
23	0.917	0.277	8870	0.00050	0.0123	1.730	0.978	1.690	0.0130	2.026
24	1.080	0.222	8960	0.00072	0.0089	1.310	0.977	1.280	0.0093	2.031
25	0.999	0.249	8590	0.00052	0.0119	1.510	0.974	1.470	0.0118	2.029
26	0.953	0.267	9300	0.00065	0.0150	1.640	0.971	1.590	0.0139	2.027
27	0.932	0.274	9640	0.00072	0.0150	1.700	0.972	1.650	0.0142	2.026
28	0.937	0.270	8060	0.00036	0.0124	1.670	0.977	1.630	0.0128	2.027
29	0.985	0.260	12870	0.00256	0.0195	1.580	0.960	1.510	0.0154	2.028

									вження 1	гаолиці
Номер	R/R_0	M/M_0	$T_{ m eff}$	L/L_{\odot}	T_0^*	x_0	ξ_{Δ}	$x_0^{(1)}$	$T_0^{*(1)}$	μ_e
30	1.210	0.201	16020	0.00927	0.0206	1.150	0.935	1.080	0.0126	2.030
31	0.902	0.288	11800	0.00152	0.0206	1.820	0.965	1.750	0.0172	2.024
33	1.060	0.236	11850	0.00215	0.0189	1.390	0.955	1.330	0.0140	2.030
34	1.120	0.208	7110	0.00031	0.0063	1.220	0.981	1.190	0.0075	2.031
35	0.639	0.371	8930	0.00025	0.0100	3.010	0.990	2.980	0.0146	2.027
36	1.240	0.194	16630	0.01140	0.0211	1.100	0.930	1.030	0.0123	2.029
37	1.280	0.201	24000	0.05240	0.0353	1.100	0.888	1.010	0.0154	2.030
38	1.180	0.211	18750	0.01670	0.0255	1.200	0.926	1.130	0.0144	2.031
39	1.040	0.242	11400	0.00177	0.0199	1.440	0.954	1.380	0.0147	2.030
40	1.230	0.191	12860	0.00400	0.0157	1.090	0.946	1.040	0.0107	2.029
41	1.080	0.236	16410	0.00809	0.0228	1.380	0.945	1.310	0.0152	2.030
42	1.160	0.218	22060	0.03080	0.0276	1.240	0.924	1.170	0.0154	2.031
43	1.300	0.194	25460	0.06870	0.0323	1.060	0.892	0.983	0.0144	2.029
44	0.953	0.267	11370	0.00146	0.0150	1.640	0.971	1.590	0.0139	2.027
45	0.973	0.260	12540	0.00226	0.0147	1.580	0.970	1.540	0.0135	2.028
46	0.964	0.267	13750	0.00320	0.0199	1.630	0.961	1.570	0.0159	2.027
47	1.140	0.211	10190	0.00136	0.0157	1.230	0.955	1.170	0.0117	2.031
48	1.160	0.218	19070	0.01720	0.0276	1.240	0.924	1.170	0.0154	2.031
49	0.917	0.277	8700	0.00046	0.0123	1.730	0.978	1.690	0.0130	2.026
50	1.310	0.187	20260	0.02780	0.0265	1.040	0.906	0.965	0.0130	2.028
51	1.120	0.208	8040	0.00051	0.0063	1.220	0.981	1.190	0.0075	2.031
52	1.160	0.208	14590	0.00588	0.0165	1.200	0.951	1.150	0.0118	2.031
53	1.330	0.194	27350	0.09570	0.0379	1.040	0.872	0.958	0.0151	2.029
54	0.957	0.263	10040	0.00090	0.0124	1.620	0.976	1.570	0.0125	2.028
55	0.847	0.298	9500	0.00056	0.0051	1.940	0.992	1.920	0.0089	2.023
56	1.610	0.159	23410	0.07510	0.0433	0.786	0.799	0.727	0.0120	2.017
57	1.100	0.229	18320	0.01310	0.0214	1.330	0.946	1.270	0.0144	2.031
58	1.210	0.211	22720	0.03770	0.0318	1.180	0.907	1.100	0.0157	2.031
59	1.320	0.204	31040	0.15600	0.0476	1.070	0.852	0.986	0.0171	2.030
60	1.160	0.197	6930	0.00030	0.0056	1.150	0.982	1.130	0.0067	2.030
61	1.010	0.246	10180	0.00106	0.0139	1.480	0.969	1.430	0.0125	2.030
63	0.932	0.274	9650	0.00073	0.0150	1.700	0.972	1.650	0.0142	2.026
64	0.833	0.308	11110	0.00102	0.0149	2.040	0.978	1.990	0.0156	2.022
65	0.897	0.284	8770	0.00046	0.0122	1.800	0.979	1.760	0.0132	2.025
67	1.110	0.236	22990	0.03340	0.0340	1.350	0.918	1.260	0.0180	2.030
68	1.080	0.232	12650	0.00288	0.0202	1.360	0.950	1.300	0.0142	2.031
69	1.090	0.222	8280	0.00054	0.0127	1.300	0.966	1.260	0.0110	2.031
70	0.969	0.263	14680	0.00420	0.0173	1.610	0.966	1.550	0.0147	2.028
71	1.580	0.145	13590	0.00815	0.0229	0.780	0.876	0.722	0.0094	2.007
72	1.250	0.184	10160	0.00161	0.0132	1.050	0.952	1.010	0.0096	2.027
73	0.780	0.326	9640	0.00051	0.0127	2.240	0.983	2.200	0.0150	2.021
74	0.713	0.350	17030	0.00411	0.0176	2.600	0.980	2.540	0.0187	2.022
75	1.190	0.204	16940	0.01130	0.0202	1.170	0.938	1.110	0.0127	2.030
76	1.230	0.211	23580	0.04470	0.0349	1.170	0.898	1.090	0.0162	2.031
77	0.877	0.291	11930	0.00150	0.0119	1.860	0.980	1.820	0.0133	2.024
78	1.350	0.187	26760	0.09070	0.0344	1.010	0.877	0.928	0.0141	2.028
79	1.250	0.201	22230	0.03680	0.0295	1.120	0.907	1.040	0.0145	2.030
80	1.120	0.232	24570	0.04390	0.0313	1.330	0.922	1.250	0.0172	2.031
81	1.020	0.249	12380	0.00236	0.0208	1.490	0.955	1.430	0.0153	2.029
82	1.140	0.215	15470	0.00717	0.0183	1.240	0.949	1.190	0.0127	2.031
84	0.722	0.343	9600	0.00043	0.0049	2.490	0.994	2.480	0.0096	2.021
85	0.722	0.343	6930	0.00012	0.0049	2.490	0.994	2.480	0.0096	2.021
86	0.953	0.267	11190	0.00137	0.0150	1.640	0.971	1.590	0.0139	2.027
		_				_	_	_		

87 0.964 0.267 13390 0.00288 0.0199 1.630 0.915 1.250 0.0152 2.027 89 1.130 0.222 14690 0.01020 0.0234 1.280 0.935 1.200 0.0112 2.028 90 0.932 0.274 11600 0.0037 0.0124 1.380 0.970 1.330 0.0113 2.031 91 1.060 0.232 7680 0.00037 0.0124 1.380 0.970 1.330 0.0113 2.015 93 0.596 0.388 11070 0.00037 0.0124 1.380 0.970 1.230 0.0133 2.010 94 0.892 0.288 10590 0.00096 0.0150 1.830 0.975 1.780 0.0171 2.021 95 1.140 0.292 55400 0.00072 0.081 2.20 0.0171 2.021 97 1.120 0.222 14450 0.00526 0.0199 1.360 0	Номер	R/R_0	M/M_0	$T_{ m eff}$	L/L_{\odot}	T_0^*	x_0	ξ_{Δ}	$x_0^{(1)}$	$T_0^{*(1)}$	μ_e
89 1.130 0.222 16660 0.01020 0.0234 1.280 0.937 1.210 0.0146 2.026 90 0.932 0.274 11600 0.00152 0.0150 1.700 0.972 1.650 0.0142 2.026 91 1.060 0.332 7680 0.00037 0.0124 1.380 0.970 1.330 0.0131 2.031 92 1.590 0.156 21120 0.04860 0.0359 0.791 0.826 0.730 0.0113 2.015 94 0.892 0.288 10590 0.00096 0.0150 1.830 0.975 1.780 0.0147 2.024 95 1.140 0.229 25400 0.05580 0.0391 2.300 0.918 1.220 0.0115 2.022 97 1.120 0.221 14450 0.00526 0.0199 1.200 0.011 0.0011 2.022 97 1.120 0.222 14450 0.00460 0.0176 <t< td=""><td>87</td><td>0.964</td><td>0.267</td><td>13390</td><td>0.00288</td><td></td><td>1.630</td><td></td><td></td><td></td><td>2.027</td></t<>	87	0.964	0.267	13390	0.00288		1.630				2.027
90 0.932 0.274 11600 0.00152 0.0150 1.700 0.972 1.650 0.0142 2.031 91 1.060 0.232 7680 0.0037 0.0144 1.380 0.970 1.330 0.0113 2.031 92 1.590 0.156 21120 0.04860 0.0359 0.791 0.826 0.730 0.0113 2.031 94 0.892 0.288 1170 0.00053 0.0239 3.00 0.980 3.320 0.0239 2.026 95 1.140 0.229 25400 0.05180 0.032 1.300 0.918 1.220 0.0171 2.031 96 0.823 0.308 1020 0.0052 0.0199 1.290 0.947 1.230 0.0115 2.022 97 1.120 0.2221 14450 0.00566 0.0199 1.290 0.947 1.230 0.0115 2.028 190 1.000 0.201 13420 0.00446 0.0	88	1.090	0.229	14530	0.00505	0.0177	1.340	0.955	1.290	0.0132	2.031
91 1,060 0,232 7880 0,00037 0,0124 1,380 0,970 1,330 0,0113 2,015 93 1,590 0,156 21120 0,04860 0,0339 3,040 0,980 0,320 0,0239 2,026 94 0,892 0,288 11590 0,00096 0,0150 1,830 0,975 1,780 0,0147 2,021 95 1,140 0,229 25400 0,00086 0,0322 1,300 0,918 1,220 0,0171 2,031 96 0,823 0,308 10240 0,00026 0,0199 1,290 0,947 1,230 0,0115 2,022 97 1,120 0,222 14450 0,00526 0,0199 1,290 0,947 1,230 0,0118 2,032 99 1,380 0,177 21190 0,03690 0,0278 0,962 0,941 1,00 0,0118 2,025 100 1,060 0,239 16130 0,00732 <td< td=""><td>89</td><td>1.130</td><td>0.222</td><td>16960</td><td>0.01020</td><td>0.0234</td><td>1.280</td><td>0.937</td><td>1.210</td><td>0.0146</td><td>2.031</td></td<>	89	1.130	0.222	16960	0.01020	0.0234	1.280	0.937	1.210	0.0146	2.031
92 1.590 0.156 21120 0.04860 0.0359 0.791 0.826 0.730 0.0113 2.015 93 0.596 0.388 11170 0.00053 0.0239 3.400 0.980 3.320 0.0239 2.024 95 1.140 0.228 10590 0.00068 0.0150 1.830 0.975 1.780 0.0147 2.024 95 1.140 0.222 15400 0.00526 0.0199 1.200 0.947 1.230 0.0136 2.031 98 1.200 0.201 13420 0.00446 0.0176 1.150 0.945 1.100 0.016 2.031 199 1.380 0.177 21190 0.03690 0.027 0.945 1.100 0.0136 2.031 100 1.060 0.239 16130 0.00732 0.0214 1.410 0.950 1.340 0.0150 2.031 101 1.060 0.229 7380 0.00632 0.099 <t< td=""><td>90</td><td>0.932</td><td>0.274</td><td>11600</td><td>0.00152</td><td>0.0150</td><td>1.700</td><td>0.972</td><td>1.650</td><td>0.0142</td><td>2.026</td></t<>	90	0.932	0.274	11600	0.00152	0.0150	1.700	0.972	1.650	0.0142	2.026
93 0.596 0.388 11170 0.00053 0.0239 3.400 0.980 3.320 0.0239 2.024 95 1.140 0.229 25400 0.00160 0.0322 1.300 0.918 1.220 0.0117 2.031 96 0.823 0.308 10240 0.00072 0.0081 2.040 0.988 2.020 0.0115 2.029 97 1.120 0.222 14450 0.00526 0.0199 1.290 0.947 1.230 0.0136 2.031 98 1.200 0.201 13420 0.00466 0.0176 1.150 0.945 1.100 0.0118 2.030 100 1.060 0.239 16130 0.0032 0.0014 1.40 0.951 1.340 0.0104 2.030 101 1.060 0.223 1630 0.00623 0.0014 1.450 0.974 1.420 0.0102 2.030 101 1.060 0.225 0.300 0.014	91	1.060	0.232	7680	0.00037	0.0124	1.380	0.970	1.330	0.0113	2.031
93 0.596 0.388 11170 0.00053 0.0239 3.400 0.980 3.320 0.0239 2.024 95 1.140 0.229 25400 0.00160 0.0322 1.300 0.918 1.220 0.0117 2.031 96 0.823 0.308 10240 0.00072 0.0081 2.040 0.988 2.020 0.0115 2.029 97 1.120 0.222 14450 0.00526 0.0199 1.290 0.947 1.230 0.0136 2.031 98 1.200 0.201 13420 0.00466 0.0176 1.150 0.945 1.100 0.0118 2.030 100 1.060 0.239 16130 0.0032 0.0014 1.40 0.951 1.340 0.0104 2.030 101 1.060 0.223 1630 0.00623 0.0014 1.450 0.974 1.420 0.0102 2.030 101 1.060 0.225 0.300 0.014	92	1.590	0.156	21120	0.04860	0.0359	0.791	0.826	0.730	0.0113	2.015
95 1,140 0.229 25400 0.05180 0.0322 1.300 0.918 1.220 0.0171 2.031 96 0.823 3.038 10240 0.00072 0.0081 2.040 0.988 2.020 0.0115 2.031 97 1.120 0.222 14450 0.00526 0.0199 1.290 0.947 1.230 0.0136 2.031 98 1.200 0.201 13420 0.00446 0.0176 1.150 0.945 1.100 0.0182 2.025 100 1.060 0.239 16130 0.00632 0.099 1.360 0.975 1.320 0.0100 2.031 101 1.060 0.223 7580 0.00623 0.099 1.360 0.975 1.320 0.0100 2.031 102 1.020 0.242 8860 0.00062 0.0999 1.360 0.975 1.320 0.0191 2.028 105 0.980 0.623 15370 0.00546 <t< td=""><td>93</td><td></td><td>0.388</td><td>11170</td><td>0.00053</td><td>0.0239</td><td>3.400</td><td>0.980</td><td>3.320</td><td>0.0239</td><td>2.026</td></t<>	93		0.388	11170	0.00053	0.0239	3.400	0.980	3.320	0.0239	2.026
96 0.823 0.308 10240 0.00072 0.0081 2.040 0.988 2.020 0.0115 2.022 97 1.120 0.221 14450 0.00526 0.0199 1.290 0.947 1.230 0.0136 2.031 98 1.200 0.201 13420 0.00466 0.0176 1.150 0.945 1.300 0.0181 2.031 100 1.360 0.177 21190 0.03690 0.0278 0.962 0.891 1.802 0.0102 2.032 100 1.060 0.229 7880 0.00032 0.0999 1.360 0.975 1.320 0.0100 2.031 101 1.060 0.229 7880 0.00062 0.0114 1.450 0.955 1.320 0.0103 2.208 103 1.280 0.187 17410 0.01450 0.0212 1.050 0.925 0.990 0.0113 2.031 105 0.980 0.263 15370 0.00166	94	0.892	0.288	10590	0.00096	0.0150	1.830	0.975	1.780	0.0147	2.024
97 1.120 0.222 14450 0.00526 0.0199 1.290 0.947 1.230 0.0136 2.031 98 1.200 0.201 13420 0.00446 0.0176 1.150 0.947 1.100 0.0184 2.031 199 1.380 0.177 21190 0.03690 0.962 0.891 0.892 0.0124 2.202 100 1.060 0.239 16130 0.00732 0.0214 1.410 0.950 1.340 0.0150 2.030 101 1.060 0.229 7880 0.00032 0.0099 1.360 0.975 1.320 0.0103 1.320 0.0113 1.230 0.141 1.450 0.974 1.420 0.0113 2.028 107 1.320 0.194 25000 0.06530 0.0550 1.530 0.0148 2.029 108 1.320 0.194 2500 0.06530 0.0550 1.582 0.970 0.0148 2.029 108	95	1.140	0.229	25400	0.05180	0.0322	1.300	0.918	1.220	0.0171	2.031
98 1.200 0.201 1.3420 0.00446 0.0176 1.150 0.945 1.100 0.0118 2.030 100 1.060 0.239 16130 0.00782 0.0214 1.410 0.950 1.340 0.0150 2.035 101 1.060 0.239 16130 0.00032 0.0994 1.360 0.975 1.320 0.0100 2.031 102 1.020 0.224 8860 0.00062 0.0114 1.450 0.975 1.320 0.0103 2.030 103 1.280 0.187 17410 0.01450 0.0221 1.600 0.925 0.990 0.0113 2.030 105 0.980 0.263 15370 0.00530 0.0350 1.050 0.882 0.970 0.0148 2.029 108 1.320 0.173 12440 0.00410 0.0154 0.982 0.938 0.931 0.0072 0.0132 2.031 110 1.250 0.187 13760	96	0.823	0.308	10240	0.00072	0.0081	2.040	0.988	2.020	0.0115	2.022
99 1.380 0.177 21190 0.03690 0.0278 0.962 0.891 0.892 0.0124 2.025 100 1.060 0.239 16130 0.00732 0.0214 1.410 0.955 1.320 0.0100 2.031 102 1.020 0.242 8860 0.00062 0.0114 1.450 0.974 1.420 0.0113 2.030 103 1.280 0.187 17410 0.01450 0.0211 1.600 0.955 0.990 0.0119 2.028 105 0.980 0.631 15370 0.00516 0.0211 1.600 0.956 1.530 0.0165 2.028 105 0.980 0.053 0.0550 0.0550 1.050 0.882 0.970 0.0148 2.029 108 1.320 0.173 12440 0.00401 0.0154 0.982 0.938 0.931 0.0097 2.024 109 1.090 0.229 10550 0.00014 0.0160	97	1.120	0.222	14450	0.00526	0.0199	1.290	0.947	1.230	0.0136	2.031
100	98	1.200	0.201	13420	0.00446	0.0176	1.150	0.945	1.100	0.0118	2.030
101	99	1.380	0.177	21190	0.03690	0.0278	0.962	0.891	0.892	0.0124	2.025
102	100	1.060	0.239	16130	0.00732	0.0214	1.410	0.950	1.340	0.0150	2.030
103	101	1.060	0.229	7380	0.00032	0.0099	1.360	0.975	1.320	0.0100	2.031
105	102	1.020	0.242	8860	0.00062	0.0114	1.450	0.974	1.420	0.0113	2.030
107 1.320 0.194 25000 0.06530 0.0350 1.050 0.882 0.970 0.0148 2.029 108 1.320 0.173 12440 0.00401 0.0154 0.982 0.938 0.931 0.0097 2.024 109 1.090 0.229 10150 0.00120 0.0177 1.340 0.955 1.290 0.0132 2.031 110 1.250 0.187 13760 0.00539 0.0158 1.070 0.944 1.020 0.0106 2.028 112 1.110 0.222 13010 0.00338 0.0164 1.300 0.956 1.240 0.0124 2.031 113 1.030 0.246 12500 0.00248 0.0124 1.400 0.0154 2.031 114 0.882 0.288 11110 0.00144 0.0099 1.830 0.957 1.400 0.0115 2.031 115 1.100 0.215 8230 0.00033 0.0077 1.260	103	1.280	0.187	17410	0.01450	0.0212	1.050	0.925	0.990	0.0119	2.028
108	105	0.980	0.263	15370	0.00516	0.0221	1.600	0.956	1.530	0.0165	2.028
109	107	1.320	0.194	25000	0.06530	0.0350	1.050	0.882	0.970	0.0148	2.029
110 1.250 0.187 13760 0.00539 0.0158 1.070 0.944 1.020 0.0166 2.028 112 1.110 0.222 13010 0.00338 0.0164 1.300 0.956 1.240 0.0124 2.031 113 1.030 0.246 12500 0.00248 0.0182 1.470 0.959 1.410 0.0113 2.030 114 0.882 0.288 11110 0.00044 0.0077 1.260 0.979 1.230 0.0084 2.031 115 1.100 0.215 8230 0.00038 0.0077 1.260 0.979 1.230 0.0084 2.031 117 1.270 0.173 6780 0.00038 0.0124 1.620 0.976 1.570 0.0072 2.024 120 0.957 0.263 8120 0.00038 0.0124 1.620 0.976 1.570 0.0125 2.024 122 1.690 0.139 14240 0.01130	108	1.320	0.173	12440	0.00401	0.0154	0.982	0.938	0.931	0.0097	2.024
112 1.110 0.222 13010 0.00338 0.0164 1.300 0.956 1.240 0.0124 2.031 113 1.030 0.246 12500 0.00248 0.0182 1.470 0.959 1.410 0.0143 2.030 114 0.882 0.288 11110 0.0014 0.0090 1.830 0.985 1.800 0.0143 2.031 115 1.100 0.215 8230 0.00034 0.0077 1.260 0.979 1.230 0.0084 2.031 117 1.270 0.173 6780 0.00038 0.0124 1.620 0.976 1.570 0.0125 2.028 120 0.957 0.263 8120 0.00038 0.0124 1.620 0.976 1.570 0.0125 2.028 121 0.837 0.305 8830 0.00041 0.0116 2.000 0.983 1.960 0.0136 2.022 122 1.690 0.338 9440 0.00027	109	1.090	0.229	10150	0.00120	0.0177	1.340	0.955	1.290	0.0132	2.031
113 1.030 0.246 12500 0.00248 0.0182 1.470 0.959 1.410 0.0143 2.030 114 0.882 0.288 11110 0.00114 0.0090 1.830 0.985 1.800 0.0115 2.024 115 1.100 0.215 8230 0.00054 0.0077 1.260 0.979 1.230 0.0084 2.031 117 1.270 0.173 6780 0.00033 0.0078 0.997 0.969 0.967 0.0072 2.022 120 0.957 0.263 8120 0.00038 0.0124 1.620 0.976 1.570 0.0125 2.028 121 0.837 0.305 8830 0.00041 0.0116 2.000 0.983 1.960 0.0136 2.022 122 1.690 0.139 14240 0.01130 0.0221 0.716 0.841 0.661 0.0092 2.000 122 1.690 0.388 9440 0.00025	110	1.250	0.187	13760	0.00539	0.0158	1.070	0.944	1.020	0.0106	2.028
114 0.882 0.288 11110 0.00114 0.0090 1.830 0.985 1.800 0.0115 2.024 115 1.100 0.215 8230 0.00054 0.0077 1.260 0.979 1.230 0.0084 2.031 117 1.270 0.173 6780 0.00033 0.0078 0.997 0.969 0.967 0.0072 2.024 120 0.957 0.263 8120 0.00038 0.0124 1.620 0.976 1.570 0.0125 2.028 121 0.837 0.305 8830 0.00041 0.0116 2.000 0.983 1.960 0.0136 2.022 122 1.690 0.139 14240 0.01130 0.0271 0.716 0.841 0.661 0.0092 2.000 123 1.110 0.225 13460 0.00393 0.0225 1.310 0.941 1.240 0.0145 2.031 126 0.596 0.388 9440 0.00024	112	1.110	0.222	13010	0.00338	0.0164	1.300	0.956	1.240	0.0124	2.031
115 1.100 0.215 8230 0.00054 0.0077 1.260 0.979 1.230 0.0084 2.031 117 1.270 0.173 6780 0.00033 0.0078 0.997 0.969 0.967 0.0072 2.024 120 0.957 0.263 8120 0.00038 0.0124 1.620 0.976 1.570 0.0125 2.028 121 0.837 0.305 8830 0.00041 0.0116 2.000 0.983 1.960 0.0136 2.022 122 1.690 0.139 14240 0.01130 0.0271 0.716 0.841 0.661 0.0092 2.000 123 1.110 0.225 13460 0.00393 0.0225 1.310 0.941 1.240 0.0145 2.031 126 0.596 0.388 9440 0.00027 0.0239 3.400 0.980 3.320 0.0239 2.026 127 0.639 0.371 9210 0.00028	113	1.030	0.246	12500	0.00248	0.0182	1.470	0.959	1.410	0.0143	2.030
117 1.270 0.173 6780 0.00033 0.0078 0.997 0.969 0.967 0.0072 2.024 120 0.957 0.263 8120 0.00038 0.0124 1.620 0.976 1.570 0.0125 2.028 121 0.837 0.305 8830 0.00041 0.0116 2.000 0.983 1.960 0.0136 2.022 122 1.690 0.139 14240 0.01130 0.0271 0.716 0.841 0.661 0.0092 2.000 123 1.110 0.225 13460 0.00393 0.0225 1.310 0.941 1.240 0.0145 2.031 126 0.596 0.388 9440 0.00028 0.0100 3.010 0.980 3.320 0.0239 2.026 127 0.639 0.371 9210 0.00028 0.0100 3.010 0.990 2.980 0.0146 2.027 128 1.230 0.197 15460 0.00828	114	0.882	0.288	11110	0.00114	0.0090	1.830	0.985	1.800	0.0115	2.024
120 0.957 0.263 8120 0.00038 0.0124 1.620 0.976 1.570 0.0125 2.028 121 0.837 0.305 8830 0.00041 0.0116 2.000 0.983 1.960 0.0136 2.022 122 1.690 0.139 14240 0.01130 0.0271 0.716 0.841 0.661 0.0092 2.000 123 1.110 0.225 13460 0.00393 0.0225 1.310 0.941 1.240 0.0145 2.031 126 0.596 0.388 9440 0.00028 0.0100 3.010 0.990 2.980 0.0146 2.027 128 1.230 0.197 15460 0.00828 0.0209 1.120 0.932 1.060 0.0125 2.030 129 1.210 0.204 1809 0.01500 0.0233 1.160 0.929 1.090 0.0135 2.030 130 1.030 0.246 11810 0.00197	115	1.100	0.215	8230	0.00054	0.0077	1.260	0.979	1.230	0.0084	2.031
121 0.837 0.305 8830 0.00041 0.0116 2.000 0.983 1.960 0.0136 2.022 122 1.690 0.139 14240 0.01130 0.0271 0.716 0.841 0.661 0.0092 2.000 123 1.110 0.225 13460 0.00333 0.0225 1.310 0.941 1.240 0.0145 2.031 126 0.596 0.388 9440 0.00027 0.0239 3.400 0.980 3.320 0.0239 2.026 127 0.639 0.371 9210 0.00028 0.0100 3.010 0.990 2.980 0.0146 2.027 128 1.230 0.197 15460 0.00828 0.0209 1.120 0.932 1.060 0.0125 2.030 129 1.210 0.204 1890 0.01500 0.0233 1.160 0.929 1.090 0.0135 2.030 130 1.030 0.246 11810 0.00197	117	1.270		6780	0.00033	0.0078	0.997	0.969	0.967	0.0072	2.024
122 1.690 0.139 14240 0.01130 0.0271 0.716 0.841 0.661 0.0092 2.000 123 1.110 0.225 13460 0.00393 0.0225 1.310 0.941 1.240 0.0145 2.031 126 0.596 0.388 9440 0.00027 0.0239 3.400 0.980 3.320 0.0239 2.026 127 0.639 0.371 9210 0.00028 0.0100 3.010 0.990 2.980 0.0146 2.027 128 1.230 0.197 15460 0.00828 0.0209 1.120 0.932 1.060 0.0125 2.030 129 1.210 0.204 18090 0.01500 0.0233 1.160 0.929 1.090 0.0135 2.030 130 1.030 0.246 11810 0.00197 0.0149 2.040 0.978 1.410 0.0143 2.031 131 0.833 0.308 11250 0.00107	120	0.957	0.263	8120	0.00038	0.0124	1.620	0.976	1.570	0.0125	2.028
123 1.110 0.225 13460 0.00393 0.0225 1.310 0.941 1.240 0.0145 2.031 126 0.596 0.388 9440 0.00027 0.0239 3.400 0.980 3.320 0.0239 2.026 127 0.639 0.371 9210 0.00028 0.0100 3.010 0.990 2.980 0.0146 2.027 128 1.230 0.197 15460 0.00828 0.0209 1.120 0.932 1.060 0.0125 2.030 129 1.210 0.204 18090 0.01500 0.0233 1.160 0.929 1.090 0.0135 2.030 130 1.030 0.246 11810 0.00197 0.0182 1.470 0.959 1.410 0.0143 2.030 131 0.833 0.308 11250 0.00177 0.0149 2.040 0.978 1.990 0.0156 2.022 133 1.120 0.218 1290 0.00342	121	0.837	0.305	8830	0.00041	0.0116	2.000	0.983	1.960	0.0136	2.022
126 0.596 0.388 9440 0.00027 0.0239 3.400 0.980 3.320 0.0239 2.026 127 0.639 0.371 9210 0.00028 0.0100 3.010 0.990 2.980 0.0146 2.027 128 1.230 0.197 15460 0.00828 0.0209 1.120 0.932 1.060 0.0125 2.030 129 1.210 0.204 18090 0.01500 0.0233 1.160 0.929 1.090 0.0135 2.030 130 1.030 0.246 11810 0.00197 0.0182 1.470 0.959 1.410 0.0143 2.030 131 0.833 0.308 11250 0.00107 0.0149 2.040 0.978 1.990 0.0156 2.022 133 1.120 0.218 12950 0.00342 0.0174 1.270 0.952 1.210 0.0126 2.031 134 0.818 0.312 11040 0.00086	122	1.690		14240	0.01130	0.0271	0.716	0.841	0.661	0.0092	2.000
127 0.639 0.371 9210 0.00028 0.0100 3.010 0.990 2.980 0.0146 2.027 128 1.230 0.197 15460 0.00828 0.0209 1.120 0.932 1.060 0.0125 2.030 129 1.210 0.204 18090 0.01500 0.0233 1.160 0.929 1.090 0.0135 2.030 130 1.030 0.246 11810 0.00197 0.0182 1.470 0.959 1.410 0.0143 2.030 131 0.833 0.308 11250 0.00107 0.0149 2.040 0.978 1.990 0.0156 2.022 133 1.120 0.218 12950 0.00342 0.0174 1.270 0.952 1.210 0.0126 2.031 134 0.818 0.312 11040 0.00096 0.0116 2.080 0.983 2.040 0.0138 2.021 135 1.490 0.156 17140 0.01840	123	1.110	0.225	13460	0.00393	0.0225	1.310	0.941	1.240	0.0145	2.031
128 1.230 0.197 15460 0.00828 0.0209 1.120 0.932 1.060 0.0125 2.030 129 1.210 0.204 18090 0.01500 0.0233 1.160 0.929 1.090 0.0135 2.030 130 1.030 0.246 11810 0.00197 0.0182 1.470 0.959 1.410 0.0143 2.030 131 0.833 0.308 11250 0.00107 0.0149 2.040 0.978 1.990 0.0156 2.022 133 1.120 0.218 12950 0.00342 0.0174 1.270 0.952 1.210 0.0126 2.031 134 0.818 0.312 11040 0.00096 0.0116 2.080 0.983 2.040 0.0138 2.021 135 1.490 0.156 17140 0.01840 0.0228 0.847 0.890 0.786 0.0102 2.015 136 0.808 0.319 9990 0.00063	126	0.596	0.388	9440	0.00027	0.0239		0.980	3.320	0.0239	
129 1.210 0.204 18090 0.01500 0.0233 1.160 0.929 1.090 0.0135 2.030 130 1.030 0.246 11810 0.00197 0.0182 1.470 0.959 1.410 0.0143 2.030 131 0.833 0.308 11250 0.00107 0.0149 2.040 0.978 1.990 0.0156 2.022 133 1.120 0.218 12950 0.00342 0.0174 1.270 0.952 1.210 0.0126 2.031 134 0.818 0.312 11040 0.00096 0.0116 2.080 0.983 2.040 0.0138 2.021 135 1.490 0.156 17140 0.01840 0.0228 0.847 0.890 0.786 0.0102 2.015 136 0.808 0.319 9990 0.00063 0.0190 2.150 0.974 2.090 0.0180 2.021 137 1.100 0.239 25250 0.04710	127	0.639	0.371	9210	0.00028	0.0100		0.990	2.980	0.0146	2.027
130 1.030 0.246 11810 0.00197 0.0182 1.470 0.959 1.410 0.0143 2.030 131 0.833 0.308 11250 0.00107 0.0149 2.040 0.978 1.990 0.0156 2.022 133 1.120 0.218 12950 0.00342 0.0174 1.270 0.952 1.210 0.0126 2.031 134 0.818 0.312 11040 0.00096 0.0116 2.080 0.983 2.040 0.0138 2.021 135 1.490 0.156 17140 0.01840 0.0228 0.847 0.890 0.786 0.0102 2.015 136 0.808 0.319 9990 0.00063 0.0190 2.150 0.974 2.090 0.0180 2.021 137 1.100 0.239 25250 0.04710 0.0330 1.380 0.922 1.290 0.0180 2.030 138 1.350 0.187 25550 0.07530	128	1.230	0.197	15460	0.00828	0.0209	1.120	0.932	1.060	0.0125	2.030
131 0.833 0.308 11250 0.00107 0.0149 2.040 0.978 1.990 0.0156 2.022 133 1.120 0.218 12950 0.00342 0.0174 1.270 0.952 1.210 0.0126 2.031 134 0.818 0.312 11040 0.00096 0.0116 2.080 0.983 2.040 0.0138 2.021 135 1.490 0.156 17140 0.01840 0.0228 0.847 0.890 0.786 0.0102 2.015 136 0.808 0.319 9990 0.00063 0.0190 2.150 0.974 2.090 0.0180 2.021 137 1.100 0.239 25250 0.04710 0.0330 1.380 0.922 1.290 0.0180 2.030 138 1.350 0.187 25550 0.07530 0.0344 1.010 0.877 0.928 0.0141 2.028 139 1.160 0.208 11940 0.00264	129	1.210	0.204	18090	0.01500	0.0233	1.160	0.929	1.090	0.0135	2.030
133 1.120 0.218 12950 0.00342 0.0174 1.270 0.952 1.210 0.0126 2.031 134 0.818 0.312 11040 0.00096 0.0116 2.080 0.983 2.040 0.0138 2.021 135 1.490 0.156 17140 0.01840 0.0228 0.847 0.890 0.786 0.0102 2.015 136 0.808 0.319 9990 0.00063 0.0190 2.150 0.974 2.090 0.0180 2.021 137 1.100 0.239 25250 0.04710 0.0330 1.380 0.922 1.290 0.0180 2.030 138 1.350 0.187 25550 0.07530 0.0344 1.010 0.877 0.928 0.0141 2.028 139 1.160 0.208 11940 0.00264 0.0165 1.200 0.951 1.150 0.0118 2.031 140 0.969 0.263 12320 0.00208		1.030			0.00197	0.0182	1.470	0.959	1.410	0.0143	2.030
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								l .			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.120		12950		0.0174	1.270	0.952	1.210	0.0126	2.031
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.818								0.0138	2.021
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	135										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								l .			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
144 1.040 0.236 8010 0.00043 0.0107 1.400 0.974 1.370 0.0107 2.030 146 0.847 0.298 9670 0.00060 0.0051 1.940 0.992 1.920 0.0089 2.023 148 1.110 0.225 15060 0.00616 0.0225 1.310 0.941 1.240 0.0145 2.031 149 1.340 0.197 30870 0.15800 0.0441 1.040 0.855 0.955 0.0161 2.030 150 1.320 0.208 33240 0.20400 0.0511 1.080 0.845 0.995 0.0177 2.031											
146 0.847 0.298 9670 0.00060 0.0051 1.940 0.992 1.920 0.0089 2.023 148 1.110 0.225 15060 0.00616 0.0225 1.310 0.941 1.240 0.0145 2.031 149 1.340 0.197 30870 0.15800 0.0441 1.040 0.855 0.955 0.0161 2.030 150 1.320 0.208 33240 0.20400 0.0511 1.080 0.845 0.995 0.0177 2.031											
148 1.110 0.225 15060 0.00616 0.0225 1.310 0.941 1.240 0.0145 2.031 149 1.340 0.197 30870 0.15800 0.0441 1.040 0.855 0.955 0.0161 2.030 150 1.320 0.208 33240 0.20400 0.0511 1.080 0.845 0.995 0.0177 2.031							ļ				
149 1.340 0.197 30870 0.15800 0.0441 1.040 0.855 0.955 0.0161 2.030 150 1.320 0.208 33240 0.20400 0.0511 1.080 0.845 0.995 0.0177 2.031											
150 1.320 0.208 33240 0.20400 0.0511 1.080 0.845 0.995 0.0177 2.031											
151 1.170 0.211 14210 0.00538 0.0223 1.210 0.935 1.140 0.0137 2.031											
	151	1.170	0.211	14210	0.00538	0.0223	1.210	0.935	1.140	0.0137	2.031

									вження т	шолиці
Номер	R/R_0	M/M_0	$T_{ m eff}$	L/L_{\odot}	T_0^*	x_0	ξ_{Δ}	$x_0^{(1)}$	$T_0^{*(1)}$	μ_e
152	1.330	0.197	29270	0.12500	0.0411	1.050	0.865	0.967	0.0158	2.030
153	1.140	0.222	19570	0.01850	0.0269	1.270	0.928	1.190	0.0154	2.031
154	1.500	0.166	26280	0.10300	0.0349	0.864	0.848	0.796	0.0123	2.021
155	1.120	0.218	10490	0.00147	0.0174	1.270	0.952	1.210	0.0126	2.031
156	1.280	0.170	7810	0.00058	0.0052	0.979	0.979	0.958	0.0058	2.022
157	1.070	0.232	13150	0.00329	0.0164	1.370	0.960	1.320	0.0129	2.031
159	0.862	0.294	11330	0.00118	0.0086	1.900	0.986	1.870	0.0115	2.023
160	1.430	0.170	24140	0.06700	0.0287	0.913	0.880	0.844	0.0120	2.022
161	1.120	0.218	12170	0.00266	0.0174	1.270	0.952	1.210	0.0126	2.031
162	1.280	0.201	26150	0.07390	0.0353	1.100	0.888	1.010	0.0154	2.030
163	0.973	0.260	8010	0.00038	0.0147	1.580	0.970	1.540	0.0135	2.028
164	1.130	0.211	11670	0.00228	0.0123	1.230	0.965	1.190	0.0105	2.031
165	1.150	0.208	12800	0.00340	0.0132	1.210	0.961	1.160	0.0107	2.031
166	1.190	0.222	24030	0.00540	0.0132	1.240	0.900	1.150	0.0174	2.031
168	1.200	0.222	13560	0.00465	0.0376	1.150	0.945	1.100	0.0114	2.030
169	1.240	0.194	17950	0.00400	0.0211	1.100	0.930	1.030	0.0113	2.029
170	0.901	0.194	8600	0.00043	0.0094	1.770	0.984	1.740	0.0123	2.029
171	1.210	0.231	22950	0.00043	0.0034	1.180	0.907	1.100	0.0113	2.023
172	1.190	0.211	13180	0.003320	0.0202	1.170	0.938	1.110	0.0137	2.030
173	1.450	0.204	24830	0.07650	0.0202	0.912	0.860	0.841	0.0127	2.030
175	1.130	0.215	11490	0.00213	0.0344	1.250	0.958	1.200	0.0123	2.024
176	0.780	0.326	10210	0.00213	0.0143	2.240	0.983	2.200	0.0110	2.031
177	0.780	0.320	13020	0.0004	0.0127	1.690	0.963	1.630	0.0164	2.021
178	1.180	0.214	17770	0.00240	0.0255	1.200	0.926	1.130	0.0104	2.020
179	1.120	0.211	7600	0.00040	0.0233	1.240	0.920	1.210	0.0089	2.031
181	1.020	0.242	7640	0.00040	0.0114	1.450	0.974	1.420	0.0003	2.030
183	1.260	0.242	25180	0.06170	0.0353	1.120	0.891	1.040	0.0113	2.030
184	0.828	0.312	14150	0.00264	0.0333	2.070	0.973	2.010	0.0137	2.021
185	1.050	0.239	13090	0.00204	0.0174	1.420	0.959	1.360	0.0174	2.030
186	0.713	0.350	7310	0.00010	0.0174	2.600	0.980	2.540	0.0130	2.022
187	1.090	0.222	9670	0.00114	0.0170	1.300	0.966	1.260	0.0110	2.022
188	1.130	0.222	7840	0.00101	0.0098	1.210	0.971	1.180	0.0093	2.031
189	1.150	0.208	13070	0.00374	0.0038	1.240	0.939	1.170	0.0033	2.031
191	0.744	0.213	9480	0.00043	0.0217	2.430	0.980	2.380	0.0137	2.031
191	1.370	0.339	16950	0.00043	0.0169	0.934	0.980	0.880	0.0097	2.021
193	1.060	0.100	20770	0.01490	0.0109	1.430	0.945	1.360	0.0037	2.021
193	1.330	0.242	14760	0.01990	0.0240	0.975	0.943	0.919	0.0100	2.030
194	1.650	0.175	18780	0.00814	0.0178	0.745	0.929	0.687	0.0103	2.024
196	0.771	0.145	10830	0.00079	0.0048	2.250	0.833	2.230	0.0092	2.007
196	1.230	0.320	26630	0.00079	0.0048	1.170	0.898	1.090	0.0092	2.021
197	0.953	0.211	10620	0.07280	0.0349	1.640	0.898	1.590	0.0102	2.031
199	1.230	0.207	11870	0.00111	0.0130	1.110	0.971	1.050	0.0139	2.027
200	1.320	0.194	10140	0.00289	0.0183	0.951	0.958	0.914	0.0116	2.029
200	1.160	0.100	21880	0.00178	0.0099	1.240	0.938	1.170	0.0077	2.021
201	1.090	0.216	17070	0.02980	0.0276	1.370	0.924	1.300	0.0163	
202	1.050	0.236	13580	0.00359	0.0266	1.420	0.959	1.360	0.0136	2.030
203	1.030	0.239	18720	0.00339	0.0174	1.420	0.939	1.330	0.0162	2.030
204	0.704	0.259	9340		0.0255	2.600	0.940	2.570	0.0102	
205	1.270	0.350	20990	0.00036	0.0088	1.080	0.990	1.010	0.0131	2.022
207	0.937	0.194	10360	0.03030	0.0207	1.670	0.911	1.630	0.0133	
207	0.937	0.270	10380	0.00097	0.0124	2.250	0.977	2.230	0.0128	2.027
208	0.771	0.326	10700	0.00007	0.0048	2.230	0.994	1.940	0.0092	2.021
210	0.847	0.305	8380	0.00091	0.0181	1.760	0.973	1.710	0.0169	2.022
410	0.014	0.201	0900	0.00040	0.0100	1.700	0.310	1.710	0.0140	2.020

									вження т	аотта
Номер	R/R_0	M/M_0	$T_{ m eff}$	L/L_{\odot}	T_0^*	x_0	ξ_{Δ}	$x_0^{(1)}$	$T_0^{*(1)}$	μ_e
211	1.080	0.232	12280	0.00256	0.0202	1.360	0.950	1.300	0.0142	2.031
213	1.140	0.222	18610	0.01510	0.0269	1.270	0.928	1.190	0.0154	2.031
214	0.994	0.253	9730	0.00085	0.0144	1.530	0.969	1.480	0.0130	2.029
215	1.390	0.177	23500	0.05710	0.0302	0.952	0.882	0.881	0.0127	2.025
216	1.150	0.225	21630	0.02810	0.0330	1.280	0.914	1.190	0.0170	2.031
217	1.240	0.201	20840	0.02780	0.0266	1.130	0.916	1.050	0.0140	2.030
218	1.190	0.222	24250	0.04680	0.0370	1.240	0.900	1.150	0.0174	2.031
219	1.040	0.246	13710	0.00367	0.0224	1.460	0.950	1.390	0.0157	2.030
220	1.330	0.173	13680	0.00600	0.0178	0.975	0.929	0.919	0.0103	2.024
221	1.090	0.222	7810	0.00043	0.0127	1.300	0.966	1.260	0.0110	2.031
222	0.948	0.270	11420	0.00147	0.0176	1.670	0.967	1.610	0.0152	2.027
224	1.210	0.201	16410	0.01020	0.0206	1.150	0.935	1.080	0.0126	2.030
225	0.937	0.270	10280	0.00094	0.0124	1.670	0.977	1.630	0.0128	2.027
226	1.070	0.229	8310	0.00053	0.0139	1.350	0.965	1.300	0.0118	2.031
227	1.300	0.194	23010	0.04580	0.0323	1.060	0.892	0.983	0.0144	2.029
228	1.120	0.222	13820	0.00440	0.0199	1.290	0.947	1.230	0.0136	2.031
229	1.480	0.170	28020	0.13000	0.0360	0.882	0.849	0.813	0.0127	2.022
230	0.922	0.274	8820	0.00049	0.0096	1.710	0.982	1.670	0.0114	2.026
231	1.010	0.242	7650	0.00034	0.0069	1.460	0.984	1.430	0.0088	2.030
232	0.818	0.312	8270	0.00030	0.0116	2.080	0.983	2.040	0.0138	2.021
233	1.150	0.215	14960	0.00641	0.0217	1.240	0.939	1.170	0.0137	2.031
234	0.892	0.288	10610	0.00097	0.0150	1.830	0.975	1.780	0.0147	2.024
235	1.160	0.222	19580	0.01900	0.0303	1.260	0.919	1.180	0.0162	2.031
236	1.010	0.260	19860	0.01520	0.0285	1.560	0.942	1.470	0.0183	2.028
237	1.210	0.197	13520	0.00473	0.0180	1.130	0.942	1.070	0.0117	2.030
238	1.060	0.236	13620	0.00375	0.0189	1.390	0.955	1.330	0.0140	2.030
239	1.130	0.225	17400	0.01120	0.0261	1.300	0.932	1.220	0.0155	2.031
240	0.897	0.284	11320	0.00127	0.0122	1.800	0.979	1.760	0.0132	2.025
241	1.150	0.218	19100	0.01690	0.0243	1.250	0.933	1.180	0.0146	2.031
242	1.010	0.253	16530	0.00727	0.0189	1.520	0.960	1.460	0.0149	2.029
243	1.280	0.211	34100	0.21400	0.0477	1.120	0.860	1.030	0.0178	2.031
244	0.837	0.305	10150	0.00072	0.0116	2.000	0.983	1.960	0.0136	2.022
246	0.987	0.249	7830	0.00035	0.0071	1.510	0.985	1.490	0.0092	2.029
248	1.310	0.180	17090	0.01420	0.0209	1.010	0.921	0.947	0.0114	2.026
249	1.250	0.201	21730	0.03360	0.0295	1.120	0.907	1.040	0.0145	2.030
250	1.150	0.215	16490	0.00947	0.0217	1.240	0.939	1.170	0.0137	2.031
252	1.040	0.242	12690	0.00272	0.0199	1.440	0.954	1.380	0.0147	2.030
253	0.882	0.294	18230	0.00827	0.0208	1.880	0.966	1.820	0.0176	2.023
254	1.010	0.246	9230	0.00072	0.0139	1.480	0.969	1.430	0.0125	2.030
255	1.670	0.163	35510	0.42500	0.0764	0.758	0.678	0.706	0.0127	2.019
257	0.771	0.333	11550	0.00102	0.0216	2.320	0.973	2.250	0.0199	2.021
258	1.070	0.229	8240	0.00051	0.0139	1.350	0.965	1.300	0.0118	2.031
259	1.080	0.232	13510	0.00375	0.0202	1.360	0.950	1.300	0.0142	2.031
260	1.090	0.229	11400	0.00192	0.0177	1.340	0.955	1.290	0.0132	2.031
261	1.330	0.184	19040	0.02230	0.0262	1.010	0.904	0.944	0.0127	2.027
262	1.400	0.173	20310	0.03200	0.0272	0.942	0.890	0.873	0.0121	2.024
263	0.901	0.281	8780	0.00047	0.0094	1.770	0.984	1.740	0.0115	2.025
264	1.020	0.242	7660	0.00034	0.0114	1.450	0.974	1.420	0.0113	2.030
265	1.300	0.180	15170	0.00861	0.0184	1.020	0.931	0.959	0.0109	2.026
267	0.923	0.288	20710	0.01510	0.0313	1.790	0.947	1.700	0.0210	2.024
268	0.852	0.301	7680	0.00024	0.0149	1.960	0.977	1.910	0.0152	2.023
269	1.120	0.222	13810	0.00439	0.0199	1.290	0.947	1.230	0.0136	2.031
270	1.060	0.225	7310	0.00031	0.0074	1.330	0.981	1.310	0.0086	2.031

-									вження т	аолиці
Номер	R/R_0	M/M_0	$T_{ m eff}$	L/L_{\odot}	T_0^*	x_0	ξ_{Δ}	$x_0^{(1)}$	$T_0^{*(1)}$	μ_e
271	0.842	0.308	14480	0.00300	0.0214	2.030	0.968	1.960	0.0186	2.022
272	0.837	0.305	10370	0.00078	0.0116	2.000	0.983	1.960	0.0136	2.022
273	0.973	0.260	8490	0.00047	0.0147	1.580	0.970	1.540	0.0135	2.028
274	1.210	0.204	19340	0.01960	0.0233	1.160	0.929	1.090	0.0135	2.030
275	1.140	0.236	29150	0.09040	0.0413	1.330	0.899	1.230	0.0193	2.030
277	0.927	0.277	13210	0.00252	0.0177	1.730	0.968	1.670	0.0155	2.026
278	1.810	0.139	19190	0.04260	0.0432	0.659	0.749	0.614	0.0097	2.000
279	0.943	0.274	9670	0.00075	0.0202	1.690	0.963	1.630	0.0164	2.026
280	1.290	0.166	7530	0.00052	0.0050	0.958	0.979	0.938	0.0056	2.021
281	1.180	0.211	19340	0.01890	0.0255	1.200	0.926	1.130	0.0144	2.031
282	1.220	0.194	12710	0.00371	0.0154	1.110	0.949	1.060	0.0108	2.029
284	0.912	0.281	11450	0.00138	0.0150	1.760	0.973	1.710	0.0145	2.025
285	1.570	0.163	28970	0.16800	0.0416	0.813	0.813	0.751	0.0123	2.019
286	1.240	0.194	17150	0.01290	0.0211	1.100	0.930	1.030	0.0123	2.029
287	1.500	0.173	30130	0.17800	0.0425	0.879	0.827	0.810	0.0134	2.024
288	0.937	0.270	8760	0.00050	0.0124	1.670	0.977	1.630	0.0128	2.027
289	1.370	0.184	24720	0.06780	0.0339	0.984	0.875	0.908	0.0138	2.027
290	1.140	0.218	13080	0.00364	0.0209	1.260	0.943	1.200	0.0137	2.031
291	0.877	0.298	16510	0.00550	0.0238	1.910	0.962	1.840	0.0190	2.023
292	1.220	0.184	7280	0.00040	0.0076	1.060	0.973	1.030	0.0074	2.027
293	1.170	0.197	7840	0.00050	0.0088	1.150	0.972	1.110	0.0084	2.030
294	0.897	0.284	10950	0.00111	0.0122	1.800	0.979	1.760	0.0132	2.025
295	0.746	0.350	34020	0.07180	0.0477	2.530	0.946	2.400	0.0310	2.022
297	1.030	0.246	12570	0.00253	0.0182	1.470	0.959	1.410	0.0143	2.030
298	1.060	0.236	11640	0.00200	0.0189	1.390	0.955	1.330	0.0140	2.030
300	0.980	0.263	13660	0.00322	0.0221	1.600	0.956	1.530	0.0165	2.028
302	0.744	0.339	16800	0.00424	0.0163	2.430	0.980	2.380	0.0175	2.021
303	1.030	0.242	7680	0.00036	0.0157	1.450	0.964	1.400	0.0131	2.030
304	1.300	0.180	17240	0.01440	0.0184	1.020	0.931	0.959	0.0109	2.026
305	1.200	0.201	14940	0.00685	0.0176	1.150	0.945	1.100	0.0118	2.030
306	1.480	0.173	30000	0.17100	0.0396	0.890	0.839	0.820	0.0133	2.024
308	1.330	0.208	35320	0.26600	0.0546	1.070	0.835	0.983	0.0179	2.031
309	1.370	0.170	18050	0.01910	0.0196	0.947	0.918	0.888	0.0105	2.022
310	1.210	0.215	26210	0.06630	0.0346	1.200	0.902	1.110	0.0165	2.031
311	1.160	0.211	17410	0.01180	0.0191	1.220	0.945	1.160	0.0128	2.031
312	1.000	0.256	11230	0.00153	0.0215	1.550	0.955	1.480	0.0159	2.029
313	1.400	0.194	34390	0.26200	0.0501	0.988	0.830	0.910	0.0161	2.029
314	1.380	0.208	41820	0.56100	0.0674	1.020	0.796	0.946	0.0184	2.031
315	0.901	0.281	9890	0.00075	0.0094	1.770	0.984	1.740	0.0115	2.025
316	1.220	0.194	13180	0.00429	0.0154	1.110	0.949	1.060	0.0108	2.029
317	1.110	0.225	17090	0.01020	0.0225	1.310	0.941	1.240	0.0145	2.031
318	1.340	0.159	5960	0.00022	0.0068	0.915	0.969	0.888	0.0063	2.017
319	0.799	0.319	11110	0.00094	0.0120	2.160	0.984	2.120	0.0143	2.021
321	1.020	0.242	10410	0.00117	0.0114	1.450	0.974	1.420	0.0113	2.030
322	1.160	0.208	10850	0.00180	0.0165	1.200	0.951	1.150	0.0118	2.031
323	0.901	0.281	10100	0.00081	0.0094	1.770	0.984	1.740	0.0115	2.025
324	0.983	0.253	7170	0.00025	0.0097	1.540	0.980	1.500	0.0108	2.029
325	1.010	0.253	12320	0.00224	0.0189	1.520	0.960	1.460	0.0149	2.029
326	1.160	0.211	14700	0.00602	0.0191	1.220	0.945	1.160	0.0128	2.031
327	1.270	0.194	19080	0.02070	0.0267	1.080	0.911	1.010	0.0135	2.029
328	1.060	0.232	10410	0.00126	0.0124	1.380	0.970	1.330	0.0113	2.031
329	1.350	0.173	16140	0.01190	0.0202	0.967	0.919	0.907	0.0109	2.024
330	0.973	0.260	9180	0.00065	0.0147	1.580	0.970	1.540	0.0135	2.028

									вження т	аолиці
Номер	R/R_0	M/M_0	$T_{ m eff}$	L/L_{\odot}	T_0^*	x_0	ξ_{Δ}	$x_0^{(1)}$	$T_0^{*(1)}$	μ_e
331	1.320	0.204	31130	0.15800	0.0476	1.070	0.852	0.986	0.0171	2.030
332	1.020	0.260	24720	0.03740	0.0329	1.550	0.933	1.450	0.0195	2.028
333	1.050	0.236	12000	0.00221	0.0149	1.400	0.964	1.350	0.0125	2.030
335	0.886	0.284	8140	0.00033	0.0062	1.800	0.989	1.780	0.0094	2.025
336	0.993	0.270	26930	0.04990	0.0366	1.620	0.930	1.520	0.0212	2.027
337	1.200	0.197	13380	0.00443	0.0150	1.140	0.952	1.090	0.0108	2.030
338	1.070	0.239	16700	0.00861	0.0253	1.400	0.940	1.330	0.0162	2.030
339	1.070	0.249	29660	0.08530	0.0372	1.450	0.918	1.350	0.0197	2.029
340	1.040	0.236	8520	0.00055	0.0107	1.400	0.974	1.370	0.0107	2.030
343	1.430	0.163	19250	0.02720	0.0227	0.892	0.899	0.830	0.0106	2.019
344	0.953	0.267	11060	0.00131	0.0150	1.640	0.971	1.590	0.0139	2.027
345	0.978	0.256	8770	0.00055	0.0122	1.560	0.975	1.520	0.0122	2.029
346	1.440	0.194	37220	0.38600	0.0623	0.946	0.790	0.876	0.0165	2.029
347	0.762	0.333	9710	0.00050	0.0141	2.330	0.982	2.290	0.0160	2.021
348	0.957	0.263	11060	0.00132	0.0124	1.620	0.976	1.570	0.0125	2.028
349	1.200	0.194	11450	0.00239	0.0124	1.120	0.959	1.080	0.0098	2.029
351	0.872	0.294	13090	0.00215	0.0149	1.890	0.976	1.840	0.0150	2.023
352	1.200	0.218	26000	0.06370	0.0374	1.210	0.896	1.120	0.0172	2.031
353	0.902	0.288	10980	0.00114	0.0206	1.820	0.965	1.750	0.0172	2.024
354	1.210	0.201	16200	0.00970	0.0206	1.150	0.935	1.080	0.0126	2.030
355	1.150	0.215	16900	0.01040	0.0217	1.240	0.939	1.170	0.0137	2.031
356	1.040	0.239	7680	0.00036	0.0132	1.430	0.969	1.380	0.0120	2.030
357	1.230	0.197	15330	0.00800	0.0209	1.120	0.932	1.060	0.0125	2.030
358	1.200	0.211	20170	0.02290	0.0287	1.190	0.917	1.110	0.0151	2.031
359	1.190	0.194	9850	0.00128	0.0094	1.120	0.969	1.090	0.0086	2.029
360	1.080	0.218	7070	0.00028	0.0064	1.290	0.983	1.260	0.0078	2.031
361	0.828	0.312	10230	0.00072	0.0184	2.070	0.973	2.010	0.0174	2.021
362	0.852	0.308	24440	0.02490	0.0275	2.020	0.959	1.930	0.0210	2.022
363	0.922	0.281	11260	0.00132	0.0205	1.750	0.964	1.690	0.0168	2.025
364	1.320	0.177	15750	0.01030	0.0181	0.996	0.930	0.939	0.0106	2.025
365	1.220	0.204	18180	0.01560	0.0265	1.150	0.919	1.080	0.0142	2.030
366	1.270	0.194	18550	0.01850	0.0267	1.080	0.911	1.010	0.0135	2.029
367	0.937	0.270	8350	0.00041	0.0124	1.670	0.977	1.630	0.0128	2.027
369	1.200	0.201	14900	0.00678	0.0176	1.150	0.945	1.100	0.0118	2.030
370	1.290	0.177	10550	0.00198	0.0131	1.010	0.949	0.963	0.0092	2.025
371	1.040	0.239	8440	0.00052	0.0132	1.430	0.969	1.380	0.0120	2.030
372	0.933	0.281	19250	0.01150	0.0257	1.740	0.954	1.670	0.0187	2.025
373	1.260	0.204	25220	0.06210	0.0353	1.120	0.891	1.040	0.0157	2.030
374	1.120	0.222	13680	0.00422	0.0199	1.290	0.947	1.230	0.0136	2.031
375	1.210	0.204	18290	0.01570	0.0233	1.160	0.929	1.090	0.0135	2.030
376	1.490	0.187	37560	0.42300	0.0615	0.904	0.780	0.839	0.0156	2.028
378	0.784	0.329	18810	0.00742	0.0243	2.270	0.969	2.200	0.0209	2.021
379	1.040	0.242	11300	0.00171	0.0199	1.440	0.954	1.380	0.0147	2.030
380	1.180	0.229	30120	0.11000	0.0427	1.270	0.891	1.170	0.0189	2.031
381	1.330	0.201	31490	0.16600	0.0443	1.060	0.859	0.976	0.0164	2.030
382	1.190	0.191	6780	0.00029	0.0068	1.110	0.977	1.080	0.0072	2.029
384	1.100	0.236	20720	0.02150	0.0303	1.360	0.927	1.280	0.0172	2.030
385	1.120	0.222	14900	0.00594	0.0199	1.290	0.947	1.230	0.0136	2.031
386	1.330	0.184	20220	0.02830	0.0262	1.010	0.904	0.944	0.0127	2.027
387	1.310	0.225	49890	1.02000	0.0754	1.120	0.800	1.030	0.0210	2.031
388	1.130	0.208	7710	0.00044	0.0098	1.210	0.971	1.180	0.0093	2.031
389	1.130	0.236	25290	0.05000	0.0376	1.340	0.909	1.250	0.0187	2.030
390	1.070	0.232	12600	0.00277	0.0164	1.370	0.960	1.320	0.0129	2.031

									вження т	аолиці
Номер	R/R_0	M/M_0	$T_{ m eff}$	L/L_{\odot}	T_0^*	x_0	ξ_{Δ}	$x_0^{(1)}$	$T_0^{*(1)}$	μ_e
391	1.110	0.225	16080	0.00800	0.0225	1.310	0.941	1.240	0.0145	2.031
392	0.887	0.291	11340	0.00125	0.0179	1.860	0.970	1.800	0.0162	2.024
393	1.520	0.156	18010	0.02350	0.0269	0.830	0.870	0.767	0.0107	2.015
394	0.933	0.281	16360	0.00601	0.0257	1.740	0.954	1.670	0.0187	2.025
395	0.762	0.333	10100	0.00058	0.0141	2.330	0.982	2.290	0.0160	2.021
396	1.190	0.229	31280	0.13100	0.0462	1.250	0.881	1.160	0.0194	2.031
400	0.986	0.267	17680	0.00915	0.0293	1.610	0.943	1.530	0.0190	2.027
401	1.330	0.173	15020	0.00872	0.0178	0.975	0.929	0.919	0.0103	2.024
402	1.020	0.256	24960	0.03920	0.0302	1.520	0.937	1.440	0.0186	2.029
403	1.240	0.197	17850	0.01500	0.0238	1.110	0.923	1.040	0.0132	2.030
405	1.170	0.215	17270	0.01170	0.0250	1.230	0.930	1.160	0.0145	2.031
406	1.340	0.197	32260	0.18900	0.0441	1.040	0.855	0.955	0.0161	2.030
407	1.100	0.218	6780	0.00024	0.0102	1.280	0.972	1.250	0.0098	2.031
408	0.999	0.249	10070	0.00099	0.0119	1.510	0.974	1.470	0.0118	2.029
409	1.280	0.201	25210	0.06380	0.0353	1.100	0.888	1.010	0.0154	2.030
410	1.040	0.239	9340	0.00079	0.0132	1.430	0.969	1.380	0.0120	2.030
412	1.130	0.222	17360	0.01120	0.0234	1.280	0.937	1.210	0.0146	2.031
413	1.150	0.229	25010	0.04980	0.0357	1.290	0.909	1.200	0.0178	2.031
415	1.270	0.194	19710	0.02360	0.0267	1.080	0.911	1.010	0.0135	2.029
416	1.260	0.191	18160	0.01670	0.0212	1.080	0.927	1.010	0.0121	2.029
417	1.160	0.204	11230	0.00208	0.0139	1.180	0.958	1.140	0.0108	2.030
418	0.757	0.336	13090	0.00162	0.0190	2.380	0.977	2.320	0.0188	2.021
420	1.190	0.204	14500	0.00604	0.0202	1.170	0.938	1.110	0.0127	2.030
421	1.350	0.163	12670	0.00455	0.0118	0.926	0.948	0.884	0.0082	2.019
422	1.300	0.201	27630	0.09420	0.0383	1.080	0.878	1.000	0.0158	2.030
423	1.180	0.201	9980	0.00133	0.0145	1.160	0.954	1.110	0.0108	2.030
424	1.010	0.249	15040	0.00503	0.0164	1.500	0.964	1.450	0.0137	2.029
426	1.360	0.177	20560	0.03200	0.0254	0.971	0.901	0.904	0.0120	2.025
427	0.828	0.305	7250	0.00018	0.0046	2.010	0.993	1.990	0.0087	2.022
428	1.120	0.218	13120	0.00360	0.0174	1.270	0.952	1.210	0.0126	2.031
429	1.150	0.218	17400	0.01170	0.0243	1.250	0.933	1.180	0.0146	2.031
430	0.957	0.263	8890	0.00055	0.0124	1.620	0.976	1.570	0.0125	2.028
431	1.180	0.204	12770	0.00355	0.0171	1.180	0.948	1.120	0.0118	2.030
432	1.050	0.263	32730	0.12200	0.0482	1.520	0.903	1.410	0.0230	2.028
433	1.310	0.204	32280	0.17900	0.0444	1.080	0.862	0.998	0.0168	2.030
436	1.290	0.191	19140	0.02150	0.0266	1.060	0.908	0.986	0.0133	2.029
437	1.340	0.191	25000	0.06720	0.0347	1.030	0.880	0.949	0.0145	2.029
438	1.320	0.208	32880	0.19500	0.0511	1.080	0.845	0.995	0.0177	2.031
439	1.050	0.249	20100	0.01720	0.0291	1.470	0.936	1.390	0.0178	2.029
440	1.190	0.208	18500	0.01590	0.0229	1.190	0.932	1.120	0.0136	2.031
442	0.932	0.274	10010	0.00084	0.0150	1.700	0.972	1.650	0.0142	2.026
443	1.130	0.222	19380	0.01740	0.0234	1.280	0.937	1.210	0.0146	2.031
444	1.140	0.215	12600	0.00315	0.0183	1.240	0.949	1.190	0.0127	2.031
445	1.360	0.194	29750	0.14000	0.0437	1.010	0.852	0.934	0.0157	2.029
446	1.240	0.194	18700	0.01820	0.0211	1.100	0.930	1.030	0.0123	2.029
447	1.130	0.215	13460	0.00401	0.0149	1.250	0.958	1.200	0.0116	2.031
448	0.959	0.270	16950	0.00731	0.0225	1.660	0.957	1.590	0.0171	2.027
449	1.210	0.187	7330	0.00040	0.0073	1.080	0.975	1.060	0.0073	2.028
450	0.980	0.263	11350	0.00153	0.0221	1.600	0.956	1.530	0.0165	2.028
451	1.300	0.180	15460	0.00929	0.0184	1.020	0.931	0.959	0.0109	2.026
452	1.140	0.215	16440	0.00914	0.0183	1.240	0.949	1.190	0.0127	2.031
453	1.270	0.201	22880	0.04230	0.0324	1.110	0.897	1.030	0.0150	2.030
454	1.040	0.242	12210	0.00233	0.0199	1.440	0.954	1.380	0.0147	2.030

									вження т	аолиці
Номер	R/R_0	M/M_0	$T_{ m eff}$	L/L_{\odot}	T_0^*	x_0	ξ_{Δ}	$x_0^{(1)}$	$T_0^{*(1)}$	μ_e
455	1.300	0.201	29700	0.12600	0.0383	1.080	0.878	1.000	0.0158	2.030
456	1.210	0.204	17730	0.01380	0.0233	1.160	0.929	1.090	0.0135	2.030
457	0.877	0.298	13910	0.00277	0.0238	1.910	0.962	1.840	0.0190	2.023
458	1.040	0.239	7750	0.00037	0.0132	1.430	0.969	1.380	0.0120	2.030
459	1.280	0.191	18270	0.01750	0.0239	1.070	0.918	0.999	0.0127	2.029
460	1.330	0.177	17120	0.01470	0.0206	0.988	0.920	0.927	0.0111	2.025
461	0.932	0.274	9760	0.00076	0.0150	1.700	0.972	1.650	0.0142	2.026
462	1.250	0.187	15090	0.00780	0.0158	1.070	0.944	1.020	0.0106	2.028
463	1.170	0.215	17100	0.01120	0.0250	1.230	0.930	1.160	0.0145	2.031
464	1.010	0.249	12130	0.00213	0.0164	1.500	0.964	1.450	0.0137	2.029
465	1.130	0.222	17140	0.01060	0.0234	1.280	0.937	1.210	0.0146	2.031
466	0.907	0.284	12800	0.00213	0.0178	1.790	0.969	1.730	0.0159	2.025
467	1.240	0.201	20050	0.02380	0.0266	1.130	0.916	1.050	0.0140	2.030
468	1.380	0.177	20960	0.03530	0.0278	0.962	0.891	0.892	0.0124	2.025
469	1.110	0.225	13560	0.00405	0.0225	1.310	0.941	1.240	0.0145	2.031
471	1.330	0.201	30440	0.14500	0.0443	1.060	0.859	0.976	0.0164	2.030
472	0.983	0.253	7830	0.00035	0.0097	1.540	0.980	1.500	0.0108	2.029
473	1.040	0.242	12330	0.00242	0.0199	1.440	0.954	1.380	0.0147	2.030
474	1.290	0.191	20710	0.02950	0.0266	1.060	0.908	0.986	0.0133	2.029
475	0.978	0.256	8980	0.00060	0.0122	1.560	0.975	1.520	0.0122	2.029
476	1.010	0.256	15010	0.00501	0.0259	1.540	0.946	1.460	0.0174	2.029
478	1.450	0.156	15300	0.01110	0.0188	0.863	0.910	0.806	0.0095	2.015
479	0.872	0.294	9160	0.00052	0.0149	1.890	0.976	1.840	0.0150	2.023
480	0.906	0.277	8970	0.00051	0.0066	1.740	0.988	1.720	0.0096	2.026
481	1.110	0.218	11110	0.00181	0.0138	1.280	0.962	1.230	0.0113	2.031
482	0.813	0.315	16680	0.00493	0.0153	2.110	0.978	2.060	0.0160	2.021
483	1.220	0.194	10900	0.00201	0.0154	1.110	0.949	1.060	0.0108	2.029
484	1.100	0.215	8370	0.00057	0.0077	1.260	0.979	1.230	0.0084	2.031
485	1.390	0.177	23020	0.05260	0.0302	0.952	0.882	0.881	0.0127	2.025
486	1.220	0.194	14280	0.00592	0.0154	1.110	0.949	1.060	0.0108	2.029
487	1.120	0.222	12820	0.00326	0.0199	1.290	0.947	1.230	0.0136	2.031
488	0.942	0.267	9660	0.00074	0.0098	1.650	0.981	1.610	0.0113	2.027
489	1.690	0.159	28170	0.17300	0.0715	0.742	0.686	0.692	0.0122	2.017
490	0.969	0.263	13120	0.00268	0.0173	1.610	0.966	1.550	0.0147	2.028
491	1.190	0.194	7310	0.00039	0.0094	1.120	0.969	1.090	0.0086	2.029
492	1.170	0.194	7680	0.00046	0.0063	1.130	0.979	1.100	0.0070	2.029
493	0.957	0.263	8760	0.00052	0.0124	1.620	0.976	1.570	0.0125	2.028
494	0.957	0.263	9510	0.00072	0.0124	1.620	0.976	1.570	0.0125	2.028
495	0.798	0.326	16660	0.00473	0.0269	2.220	0.964	2.140	0.0218	2.021
496	1.010	0.256	17850	0.01000	0.0259	1.540	0.946	1.460	0.0174	2.029
497	1.280	0.201	26930	0.08310	0.0353	1.100	0.888	1.010	0.0154	2.030
498	1.200	0.191	8530	0.00074	0.0099	1.100	0.966	1.070	0.0086	2.029
499	0.959	0.270	15170	0.00469	0.0225	1.660	0.957	1.590	0.0171	2.027
500	1.520	0.163	26650	0.11200	0.0337	0.846	0.848	0.780	0.0119	2.019
501	1.010	0.246	8160	0.00044	0.0139	1.480	0.969	1.430	0.0125	2.030
502	1.610	0.149	16970	0.02080	0.0304	0.770	0.842	0.710	0.0104	2.010
503	1.500	0.139	6930	0.00050	0.0099	0.785	0.943	0.747	0.0066	2.000
504	0.926	0.270	7630	0.00028	0.0069	1.680	0.987	1.650	0.0096	2.027
505	1.260	0.177	7350	0.00044	0.0079	1.020	0.970	0.988	0.0073	2.025
506	0.623	0.378	9240	0.00027	0.0190	3.160	0.983	3.100	0.0207	2.027
507	0.887	0.291	9260	0.00056	0.0179	1.860	0.970	1.800	0.0162	2.024
508	1.280	0.197	23760	0.05060	0.0324	1.080	0.894	1.000	0.0147	2.030
509	1.090	0.253	34540	0.16300	0.0478	1.440	0.897	1.330	0.0220	2.029

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										вження т	гаолиці
510 0.959 0.270 14370 0.0038 0.0285 1.660 0.975 1.210 0.011 2.027 512 1.200 0.201 15110 0.00088 1.240 0.975 1.210 0.0082 2.031 513 1.560 0.163 23780 0.07450 0.0388 0.825 0.825 0.761 0.0112 2.030 514 0.722 0.343 7920 0.00020 0.0049 2.490 0.0994 0.0090 0.0068 2.021 516 1.190 0.194 6940 0.00094 1.120 0.999 0.0080 0.008 2.029 517 1.170 0.022 23650 0.0444 0.0366 1.250 0.990 0.0082 1.009 0.118 0.018 2.031 518 1.180 0.229 16500 0.00490 0.0251 1.330 0.936 1.250 0.0154 2.031 521 1.260 0.024 25390 0.0535	Номер	R/R_0	M/M_0	$T_{\rm eff}$	L/L_{\odot}	T_0^*	x_0	ξ_{Δ}	$x_0^{(1)}$	$T_0^{*(1)}$	μ_e
511 1.120 0.211 7480 0.00038 0.0088 1.240 0.945 1.100 0.0089 2.031 512 1.200 0.201 1.5110 0.00717 0.0176 1.150 0.945 1.100 0.0118 2.2019 514 0.722 0.333 7920 0.00020 0.049 2.490 0.994 2.480 0.0096 2.021 515 1.260 0.197 20670 0.02770 0.0267 1.100 0.913 1.030 0.0138 2.030 516 1.190 0.194 6940 0.0032 0.094 1.120 0.969 1.090 0.0086 2.029 517 1.170 0.222 23650 0.04440 0.0336 1.250 0.910 1.160 0.016 2.031 517 1.170 0.229 29050 0.0440 3.033 0.930 1.250 0.0154 2.031 521 1.950 0.020 1.520 0.0152 0.00550	510	, -					_			0.0171	
512 1.200 0.201 15110 0.00717 0.0176 1.150 0.945 1.100 0.0118 2.030 513 1.560 0.163 23780 0.07450 0.0388 0.825 0.825 0.761 0.0122 2.019 514 0.722 0.343 7920 0.00020 0.0049 2.490 0.0994 2.020 515 1.260 0.197 2670 0.00770 0.0267 1.100 0.918 0.009 0.0086 0.009 0.0086 0.009 0.0086 0.009 0.0086 0.009 0.0086 0.009 0.0080 0.009 0.0090 0.0080 0.009 0.0090 0.0090 0.0091 1.100 0.019 0.0080 0.0036 0.0036 0.0036 0.0036 0.0035 1.100 0.0091 1.100 0.0091 1.0000 0.0000 0.0000 0.0000 0.0000 1.500 0.0154 2.031 521 1.260 0.020 1.5200 0.00531 0.0000<	511	1.120	0.211	7480	0.00038	0.0088	1.240	0.975			2.031
5131 1.560 0.163 23780 0.07450 0.0388 0.825 0.761 0.0122 2.019 514 0.722 0.343 7920 0.00020 0.0049 2.490 0.994 2.480 0.0096 2.021 515 1.260 0.194 6940 0.0032 0.094 1.120 0.999 1.090 0.0086 2.039 517 1.170 0.022 2950 0.04440 0.0336 1.250 0.910 1.160 0.0169 2.031 518 1.180 0.229 2950 0.0949 0.027 1.270 0.891 1.170 0.0189 2.031 520 0.985 0.260 15210 0.0050 0.0195 1.580 0.960 1.100 0.024 2.5399 0.06380 0.0353 1.120 0.991 1.400 0.0157 2.028 521 1.960 0.260 1.520 0.06313 0.0241 1.570 0.951 1.580 0.965 1.750	512						1.150			0.0118	l .
514 0.722 0.343 7920 0.00020 0.0049 2.490 0.994 2.480 0.0096 2.021 515 1.260 0.197 20670 0.02770 0.0267 1.100 0.913 1.030 0.0138 2.030 517 1.170 0.022 23650 0.04140 0.0336 1.250 0.910 1.160 0.0169 2.031 518 1.180 0.229 29050 0.0440 0.0427 1.270 0.991 1.710 0.0189 2.031 519 1.110 0.229 16660 0.00790 0.0251 1.330 0.936 1.250 0.0154 2.031 520 0.986 0.260 15210 0.00500 0.0353 1.120 0.991 1.400 0.0154 2.031 521 1.260 0.204 25290 0.06380 0.0353 1.030 0.991 1.400 0.0154 2.031 521 1.260 0.225 28310 0.0634											
515 1,260 0.197 20670 0.02770 0.0267 1,100 0.913 1,030 0.0138 2,039 516 1,190 0.194 6940 0.00032 0.094 1,120 0.969 1,090 0.0066 2,031 517 1,170 0.222 23650 0.04140 0.0336 1,250 0.0160 2,031 518 1,180 0.229 16060 0.0790 0.0251 1,330 0.936 1,250 0.0154 2,031 520 0.985 0.260 15210 0.00500 0.0155 1,580 0.960 1,510 0.0154 2,031 522 0.996 0.260 15220 0.0061 1,520 0.0051 1,1570 0.951 1,140 0.0154 2,031 522 0.996 0.260 15220 0.00513 0.0231 1,150 0.915 1,140 0.0154 2,031 523 1,110 0.225 28310 0.00253 0.0261											
516 1,190 0.194 6940 0.00032 0.0094 1,120 0.969 1,090 0.0086 2,029 517 1,170 0.222 23650 0.04140 0.0336 1,250 0.910 1,160 0.0169 2.031 518 1,180 0.229 29050 0.0949 0.0247 1,270 0.891 1,170 0.0154 2.031 519 1,110 0.229 16060 0.00790 0.0551 1,330 0.936 1,250 0.0154 2.031 520 0.985 0.260 15210 0.00513 0.0155 0.580 1,500 0.151 0.0154 2.038 521 1.260 0.260 15220 0.00513 0.0251 1,333 0.936 1,150 0.0157 2.038 523 1,110 0.225 28310 0.08430 0.0364 1,260 0.056 1,150 0.0176 2.031 524 1,170 0.225 28310 0.08430											
517 1,170 0.222 23650 0.04140 0.0336 1.250 0.910 1,160 0.0169 2.031 518 1.180 0.229 29050 0.09490 0.0427 1.270 0.891 1.170 0.0189 2.031 519 1.110 0.229 16060 0.00790 0.0251 1.330 0.936 1.250 0.0154 2.031 520 0.985 0.260 15210 0.00500 0.0152 0.891 1.040 0.0154 2.031 522 0.996 0.260 15220 0.00513 0.0241 1.570 0.951 1.490 0.0154 2.031 522 0.996 0.260 15220 0.0051 0.0261 1.570 0.936 1.260 0.0154 2.031 524 1.170 0.225 28310 0.0842 0.956 1.750 0.0172 2.024 525 0.907 0.284 13360 0.00250 0.0184 1.330 0.991											
518 1,180 0.229 2050 0.09490 0.0427 1,270 0.891 1,170 0.0184 2,031 519 1,110 0.229 16060 0.00790 0.0251 1,330 0.936 1,250 0.0154 2,038 520 0.985 0.260 15210 0.00500 0.0155 1,580 0.960 1,510 0.0154 2,038 521 1,260 0.204 2530 0.06380 0.0351 1,120 0.891 1,040 0.0170 2,028 522 0.996 0.260 15220 0.0051 1,330 0.936 1,250 0.0176 2,031 524 1,170 0.225 82810 0.0843 0.0364 1,260 0.905 1,180 0.0176 2,031 525 0.907 0.284 13360 0.00252 0.0178 1,790 0.969 1,730 0.0159 2,025 527 1,080 0.239 19020 0.0156 0.0174											
519 1.110 0.229 16060 0.00700 0.0251 1.330 0.936 1.250 0.0154 2.031 520 0.985 0.260 15210 0.00500 0.0195 1.580 0.960 1.510 0.0154 2.028 521 1.260 0.204 2539 0.06380 0.0353 1.120 0.891 1.040 0.0170 2.028 523 1.110 0.229 18600 0.01420 0.0251 1.330 0.936 1.250 0.0154 2.031 524 1.170 0.225 2831 0.08430 0.0364 1.260 0.995 1.730 0.0176 2.031 526 0.907 0.284 13360 0.00250 0.0266 1.820 0.965 1.750 0.0175 2.031 526 0.907 0.284 13360 0.0025 0.0178 1.770 0.059 1.360 0.0166 2.031 527 1.080 0.225 8680 0.00063											
520 0.985 0.260 15210 0.00500 0.0195 1.580 0.960 1.510 0.0154 2.028 521 1.260 0.260 15220 0.06380 0.0353 1.120 0.891 1.040 0.0177 2.038 522 0.996 0.260 15220 0.00513 0.0241 1.570 0.951 1.490 0.0170 2.028 523 1.110 0.229 18600 0.01420 0.0251 1.330 0.936 1.250 0.0154 2.031 525 0.902 0.288 13360 0.00262 0.0178 1.750 0.969 1.730 0.0172 2.025 526 0.907 0.284 13360 0.00262 0.0178 1.790 0.969 1.730 0.0159 2.025 527 1.080 0.225 8680 0.00063 0.0141 1.370 0.969 1.730 0.0159 2.025 527 1.080 0.239 10920 0.00153											
521 1.260 0.204 25390 0.06380 0.0333 1.120 0.891 1.040 0.0157 2.030 522 0.996 0.260 15220 0.00513 0.0241 1.570 0.951 1.490 0.0175 2.028 523 1.110 0.225 28310 0.04840 0.0364 1.260 0.905 1.180 0.0176 2.031 525 0.902 0.288 13360 0.00250 0.0206 1.820 0.965 1.180 0.0176 2.031 526 0.907 0.284 13360 0.00250 0.006 1.820 0.965 1.180 0.0176 2.031 526 0.907 0.284 13360 0.00253 0.0178 1.790 0.969 1.730 0.0159 2.025 527 1.080 0.223 1860 0.0063 0.0114 1.420 0.959 1.360 0.0136 2.030 529 0.882 0.294 13560 0.00233		0.985									
522 0.996 0.260 15220 0.00513 0.0241 1.570 0.951 1.490 0.0170 2.028 523 1.110 0.229 18600 0.01420 0.0251 1.330 0.936 1.250 0.0174 2.031 524 1.170 0.225 28310 0.08430 0.0364 1.260 0.995 1.180 0.0176 2.031 525 0.907 0.284 13360 0.00250 0.0261 1.820 0.965 1.750 0.0172 2.024 526 0.907 0.284 13360 0.00253 0.0178 1.790 0.965 1.750 0.0159 2.025 527 1.080 0.225 8680 0.0063 0.0174 1.420 0.959 1.360 0.0136 2.030 528 1.050 0.239 1.900 0.0023 0.0208 1.880 0.966 1.820 0.0136 2.030 530 1.912 0.0234 1.360 0.01570											
523 1.110 0.229 18600 0.01420 0.0251 1.330 0.936 1.250 0.0154 2.031 524 1.170 0.225 28310 0.08430 0.0366 1.260 0.905 1.180 0.0176 2.031 525 0.902 0.288 13360 0.00250 0.018 1.820 0.965 1.750 0.0172 2.024 526 0.907 0.284 13360 0.00253 0.0174 1.790 0.969 1.730 0.0159 2.025 527 1.080 0.239 10900 0.01160 0.0174 1.420 0.959 1.360 0.0136 2.03 529 0.882 0.294 13560 0.0023 0.0208 1.880 0.966 1.820 0.0176 2.03 531 1.280 0.191 17790 0.0157 0.0239 1.070 0.1150 1.760 0.973 1.710 0.0142 2.029 532 1.560 0.149			0.260			0.0241	1.570				l .
524 1.170 0.225 28310 0.08430 0.0364 1.260 0.995 1.180 0.0176 2.031 525 0.907 0.284 13360 0.00250 0.0206 1.820 0.965 1.750 0.0172 2.024 527 1.080 0.225 8680 0.00063 0.0114 1.330 0.971 1.290 0.0166 2.031 528 1.050 0.239 1920 0.00150 0.0174 1.420 0.959 1.360 0.0166 2.031 529 0.882 0.294 13560 0.00253 0.0208 1.880 0.966 1.820 0.0176 2.023 530 0.912 0.281 9730 0.00072 0.0150 1.760 0.973 1.710 0.0145 2.025 531 1.260 0.141 1770 0.01570 0.0239 1.070 0.918 0.999 0.0127 2.025 532 1.560 0.149 14770 0.0110											
525 0.902 0.288 13360 0.00250 0.0206 1.820 0.965 1.750 0.0172 2.024 526 0.907 0.284 13360 0.00252 0.0178 1.790 0.969 1.730 0.0159 2.025 527 1.080 0.225 8880 0.00063 0.0114 1.320 0.971 1.290 0.0106 2.031 528 1.050 0.239 10920 0.00150 0.0174 1.420 0.959 1.360 0.0136 2.030 529 0.882 0.294 13560 0.00253 0.0208 1.880 0.966 1.820 0.0176 2.033 530 0.912 0.221 9730 0.00072 0.0150 1.760 0.9733 1.710 0.0145 2.025 531 1.280 0.191 17770 0.01110 0.0243 0.797 0.874 0.737 0.0098 2.010 532 1.560 0.149 14770 0.01170											l .
526 0.997 0.284 13360 0.00252 0.0178 1.790 0.999 1.730 0.0159 2.025 527 1.080 0.225 8680 0.00063 0.0114 1.330 0.971 1.290 0.0106 2.031 528 1.050 0.239 10920 0.00150 0.0174 1.420 0.959 1.360 0.0136 2.031 530 0.912 0.281 9730 0.00072 0.0150 1.760 0.973 1.710 0.0145 2.025 531 1.280 0.191 17790 0.01570 0.0239 1.070 0.918 0.999 0.0127 2.029 532 1.560 0.149 14770 0.01110 0.0243 0.797 0.874 0.737 0.0098 2.010 533 1.580 0.128 6270 0.00037 0.0032 1.750 0.895 1.060 0.0160 2.031 533 1.240 0.204 34340 0.1380											
527 1.080 0.225 8680 0.00063 0.0114 1.330 0.971 1.290 0.0106 2.031 528 1.050 0.239 10920 0.00150 0.0174 1.420 0.959 1.360 0.0136 2.031 529 0.882 0.294 13560 0.00072 0.0150 1.760 0.966 1.820 0.0116 2.023 530 0.912 0.281 9730 0.00072 0.0150 1.760 0.973 1.710 0.0145 2.025 531 1.280 0.191 17790 0.01570 0.0239 1.070 0.918 0.999 0.0127 2.029 533 1.580 0.128 6270 0.00037 0.0093 0.725 0.939 0.688 0.0059 1.987 535 1.240 0.204 30430 0.1380 0.0413 1.100 0.872 1.010 0.0165 2.031 536 1.290 0.204 30430 0.1380											
528 1.050 0.239 10920 0.00150 0.0174 1.420 0.959 1.360 0.0136 2.030 529 0.882 0.294 13560 0.00253 0.0208 1.880 0.966 1.820 0.0176 2.023 530 0.912 0.281 9730 0.00072 0.0150 1.760 0.973 1.710 0.0145 2.025 531 1.280 0.191 17790 0.01570 0.0239 1.070 0.918 0.999 0.0127 2.029 532 1.560 0.149 14770 0.01110 0.0243 0.797 0.874 0.737 0.0098 2.010 533 1.580 0.128 6270 0.00037 0.0352 1.150 0.895 1.060 0.0160 2.031 535 1.240 0.2084 30430 0.13800 0.0413 1.100 0.872 1.010 0.0162 2.030 537 1.150 0.218 16910 0.01040											
529 0.882 0.294 13560 0.00253 0.0208 1.880 0.966 1.820 0.0176 2.023 530 0.912 0.281 9730 0.00072 0.0150 1.760 0.973 1.710 0.0145 2.025 531 1.280 0.191 17790 0.01570 0.0239 1.070 0.918 0.999 0.0127 2.029 532 1.560 0.149 14770 0.01110 0.0243 0.977 0.874 0.737 0.0098 2.010 533 1.580 0.128 6270 0.00037 0.0033 0.725 0.939 0.688 0.0059 1.987 535 1.240 0.208 24960 0.05780 0.0352 1.150 0.895 1.060 0.0160 2.031 536 1.290 0.0244 30430 0.1380 0.0431 1.200 0.931 1.800 0.0146 2.031 537 1.500 0.0180 0.350 9150											
530 0.912 0.281 9730 0.00072 0.0150 1.760 0.973 1.710 0.0145 2.025 531 1.280 0.191 17790 0.01570 0.0239 1.070 0.918 0.999 0.0127 2.029 532 1.560 0.149 14770 0.01110 0.0243 0.797 0.874 0.737 0.0098 2.010 533 1.580 0.128 6270 0.00037 0.0093 0.725 0.939 0.688 0.0059 1.987 535 1.240 0.208 24960 0.05780 0.0352 1.150 0.895 1.060 0.0160 2.031 536 1.290 0.204 30430 0.13800 0.0413 1.100 0.872 1.010 0.0165 2.030 537 1.150 0.218 16910 0.01040 0.0243 1.250 0.931 1.910 0.0165 2.031 538 1.300 0.180 16370 0.01170										0.0176	
531 1.280 0.191 17790 0.01570 0.0239 1.070 0.918 0.999 0.0127 2.029 532 1.560 0.149 14770 0.01110 0.0243 0.797 0.874 0.737 0.0098 2.010 533 1.580 0.128 6270 0.00037 0.0093 0.725 0.939 0.688 0.0059 1.987 535 1.240 0.204 30430 0.13800 0.0413 1.150 0.895 1.060 0.0166 2.031 536 1.290 0.204 30430 0.1380 0.0413 1.100 0.872 1.010 0.0165 2.030 537 1.150 0.218 16910 0.01040 0.0243 1.250 0.933 1.180 0.0146 2.031 539 1.300 0.180 16370 0.01170 0.0184 1.020 0.931 0.959 0.0109 2.026 540 0.882 0.288 8980 0.00049				9730						0.0145	
532 1.560 0.149 14770 0.01110 0.0243 0.797 0.874 0.737 0.0098 2.010 533 1.580 0.128 6270 0.00037 0.0093 0.725 0.939 0.688 0.0059 1.987 535 1.240 0.204 30430 0.13800 0.0413 1.100 0.872 1.010 0.0165 2.030 537 1.150 0.218 16910 0.01040 0.0243 1.250 0.933 1.180 0.0146 2.031 538 0.704 0.350 9150 0.00034 0.0088 2.600 0.990 2.570 0.0131 2.022 539 1.300 0.180 16370 0.01170 0.0184 1.020 0.931 0.959 0.0109 2.026 540 0.882 0.288 8980 0.00049 0.0090 1.830 0.985 1.800 0.0171 2.027 542 0.983 0.253 6730 0.00019						0.0239					l .
533 1.580 0.128 6270 0.00037 0.0093 0.725 0.939 0.688 0.0059 1.987 535 1.240 0.208 24960 0.05780 0.0352 1.150 0.895 1.060 0.0160 2.031 536 1.290 0.204 30430 0.13800 0.0413 1.100 0.872 1.101 0.0165 2.030 537 1.150 0.218 16910 0.01040 0.0243 1.250 0.933 1.180 0.0146 2.031 538 0.704 0.350 9150 0.00034 0.0088 2.600 0.990 2.570 0.0131 2.022 539 1.300 0.180 16370 0.01170 0.0184 1.020 0.931 0.959 0.0109 2.026 540 0.882 0.288 8980 0.00048 0.0091 1.830 0.985 1.800 0.0117 2.027 541 0.959 0.270 12190 0.00196											
535 1.240 0.208 24960 0.05780 0.0352 1.150 0.895 1.060 0.0160 2.031 536 1.290 0.204 30430 0.13800 0.0413 1.100 0.872 1.010 0.0165 2.030 537 1.150 0.218 16910 0.01040 0.0243 1.250 0.933 1.180 0.0146 2.031 538 0.704 0.350 9150 0.00034 0.0088 2.600 0.990 2.570 0.0131 2.022 539 1.300 0.180 16370 0.01170 0.0184 1.020 0.931 0.959 0.0109 2.026 540 0.882 0.288 8980 0.00019 0.0090 1.830 0.985 1.800 0.0115 2.024 541 0.959 0.270 12190 0.00196 0.0225 1.660 0.957 1.590 0.0171 2.027 541 0.983 0.253 6730 0.00018											
536 1.290 0.204 30430 0.13800 0.0413 1.100 0.872 1.010 0.0165 2.030 537 1.150 0.218 16910 0.01040 0.0243 1.250 0.933 1.180 0.0146 2.031 538 0.704 0.350 9150 0.00034 0.0088 2.600 0.990 2.570 0.0131 2.022 539 1.300 0.180 16370 0.01170 0.0184 1.020 0.931 0.959 0.0109 2.026 540 0.882 0.288 8980 0.00049 0.0090 1.830 0.985 1.800 0.0115 2.024 541 0.959 0.270 12190 0.00196 0.0225 1.660 0.957 1.590 0.0171 2.027 542 0.983 0.253 6730 0.00019 0.0097 1.540 0.980 1.500 0.0108 2.029 543 1.210 0.211 23990 0.04680	535			24960						0.0160	
537 1.150 0.218 16910 0.01040 0.0243 1.250 0.933 1.180 0.0146 2.031 538 0.704 0.350 9150 0.00034 0.0088 2.600 0.990 2.570 0.0131 2.022 539 1.300 0.180 16370 0.01170 0.0184 1.020 0.931 0.959 0.0109 2.026 540 0.882 0.288 8980 0.00049 0.0090 1.830 0.985 1.800 0.0115 2.024 541 0.959 0.270 12190 0.00196 0.0225 1.660 0.957 1.590 0.0171 2.027 542 0.983 0.253 6730 0.00019 0.0097 1.540 0.980 1.500 0.0108 2.029 543 1.210 0.211 23990 0.04680 0.0318 1.180 0.907 1.100 0.0157 2.031 544 1.450 0.170 23260 0.05910		1.290								0.0165	2.030
538 0.704 0.350 9150 0.00034 0.0088 2.600 0.990 2.570 0.0131 2.022 539 1.300 0.180 16370 0.01170 0.0184 1.020 0.931 0.959 0.0109 2.026 540 0.882 0.288 8980 0.00049 0.0090 1.830 0.985 1.800 0.0115 2.024 541 0.959 0.270 12190 0.00196 0.0225 1.660 0.957 1.590 0.0171 2.027 542 0.983 0.253 6730 0.00019 0.0097 1.540 0.980 1.500 0.0108 2.029 543 1.210 0.211 23990 0.04680 0.0318 1.180 0.997 1.100 0.0157 2.031 544 1.450 0.170 23260 0.05910 0.0311 0.903 0.870 0.834 0.0123 2.022 545 1.260 0.191 17760 0.01520		1.150		16910						0.0146	
540 0.882 0.288 8980 0.00049 0.0090 1.830 0.985 1.800 0.0115 2.024 541 0.959 0.270 12190 0.00196 0.0225 1.660 0.957 1.590 0.0171 2.027 542 0.983 0.253 6730 0.00019 0.0097 1.540 0.980 1.500 0.0108 2.029 543 1.210 0.211 23990 0.04680 0.0318 1.180 0.997 1.100 0.0157 2.031 544 1.450 0.170 23260 0.05910 0.0311 0.903 0.870 0.834 0.0123 2.022 545 1.260 0.191 17760 0.01520 0.0212 1.080 0.927 1.010 0.0121 2.029 546 0.991 0.263 16690 0.00734 0.0267 1.590 0.947 1.510 0.0180 2.028 547 0.809 0.312 9750 0.00057	538	0.704	0.350	9150		0.0088	2.600	0.990	2.570	0.0131	2.022
540 0.882 0.288 8980 0.00049 0.0090 1.830 0.985 1.800 0.0115 2.024 541 0.959 0.270 12190 0.00196 0.0225 1.660 0.957 1.590 0.0171 2.027 542 0.983 0.253 6730 0.00019 0.0097 1.540 0.980 1.500 0.0108 2.029 543 1.210 0.211 23990 0.04680 0.0318 1.180 0.997 1.100 0.0157 2.031 544 1.450 0.170 23260 0.05910 0.0311 0.903 0.870 0.834 0.0123 2.022 545 1.260 0.191 17760 0.01520 0.0212 1.080 0.927 1.010 0.0121 2.029 546 0.991 0.263 16690 0.00734 0.0267 1.590 0.947 1.510 0.0180 2.028 547 0.809 0.312 9750 0.00057	539	1.300	0.180	16370	0.01170	0.0184	1.020	0.931	0.959	0.0109	2.026
542 0.983 0.253 6730 0.00019 0.0097 1.540 0.980 1.500 0.0108 2.029 543 1.210 0.211 23990 0.04680 0.0318 1.180 0.907 1.100 0.0157 2.031 544 1.450 0.170 23260 0.05910 0.0311 0.903 0.870 0.834 0.0123 2.022 545 1.260 0.191 17760 0.01520 0.0212 1.080 0.927 1.010 0.0121 2.029 546 0.991 0.263 16690 0.00734 0.0267 1.590 0.947 1.510 0.0180 2.028 547 0.809 0.312 9750 0.00057 0.0044 2.080 0.994 2.070 0.0085 2.021 548 1.000 0.281 40010 0.24700 0.0541 1.660 0.903 1.530 0.0258 2.025 550 0.823 0.338 9510 0.00053	540	0.882		8980	0.00049	0.0090	1.830	0.985	1.800	0.0115	2.024
543 1.210 0.211 23990 0.04680 0.0318 1.180 0.907 1.100 0.0157 2.031 544 1.450 0.170 23260 0.05910 0.0311 0.903 0.870 0.834 0.0123 2.022 545 1.260 0.191 17760 0.01520 0.0212 1.080 0.927 1.010 0.0121 2.029 546 0.991 0.263 16690 0.00057 0.0044 2.080 0.994 2.070 0.0085 2.021 547 0.809 0.312 9750 0.00057 0.0044 2.080 0.994 2.070 0.0085 2.021 548 1.000 0.281 40010 0.24700 0.0541 1.660 0.993 1.530 0.0258 2.025 550 0.823 0.308 9510 0.00053 0.0081 2.040 0.988 2.020 0.0115 2.022 551 1.380 0.197 34250 0.25100	541	0.959	0.270	12190	0.00196	0.0225	1.660	0.957	1.590	0.0171	2.027
544 1.450 0.170 23260 0.05910 0.0311 0.903 0.870 0.834 0.0123 2.022 545 1.260 0.191 17760 0.01520 0.0212 1.080 0.927 1.010 0.0121 2.029 546 0.991 0.263 16690 0.00057 0.0044 2.080 0.947 1.510 0.0180 2.028 547 0.809 0.312 9750 0.00057 0.0044 2.080 0.994 2.070 0.0085 2.021 548 1.000 0.281 40010 0.24700 0.0541 1.660 0.993 1.530 0.0258 2.025 550 0.823 0.308 9510 0.00053 0.0081 2.040 0.988 2.020 0.0115 2.022 551 1.380 0.197 34250 0.25100 0.0505 1.010 0.834 0.931 0.0165 2.030 552 0.946 0.263 7850 0.00033	542	0.983	0.253	6730	0.00019	0.0097	1.540	0.980	1.500	0.0108	2.029
545 1.260 0.191 17760 0.01520 0.0212 1.080 0.927 1.010 0.0121 2.029 546 0.991 0.263 16690 0.00734 0.0267 1.590 0.947 1.510 0.0180 2.028 547 0.809 0.312 9750 0.00057 0.0044 2.080 0.994 2.070 0.0085 2.021 548 1.000 0.281 40010 0.24700 0.0541 1.660 0.903 1.530 0.0258 2.025 550 0.823 0.308 9510 0.00053 0.0081 2.040 0.988 2.020 0.0115 2.022 551 1.380 0.197 34250 0.25100 0.0505 1.010 0.834 0.931 0.0165 2.030 552 0.946 0.263 7850 0.00033 0.0072 1.620 0.986 1.600 0.0096 2.028 553 1.390 0.184 28140 0.11700	543	1.210	0.211	23990	0.04680	0.0318	1.180	0.907	1.100	0.0157	2.031
546 0.991 0.263 16690 0.00734 0.0267 1.590 0.947 1.510 0.0180 2.028 547 0.809 0.312 9750 0.00057 0.0044 2.080 0.994 2.070 0.0085 2.021 548 1.000 0.281 40010 0.24700 0.0541 1.660 0.903 1.530 0.0258 2.025 550 0.823 0.308 9510 0.00053 0.0081 2.040 0.988 2.020 0.0115 2.022 551 1.380 0.197 34250 0.25100 0.0505 1.010 0.834 0.931 0.0165 2.030 552 0.946 0.263 7850 0.00033 0.0072 1.620 0.986 1.600 0.0096 2.028 553 1.390 0.184 28140 0.11700 0.0366 0.973 0.865 0.897 0.0140 2.027 554 0.823 0.308 10220 0.00071	544	1.450	0.170	23260	0.05910	0.0311	0.903	0.870	0.834	0.0123	2.022
547 0.809 0.312 9750 0.00057 0.0044 2.080 0.994 2.070 0.0085 2.021 548 1.000 0.281 40010 0.24700 0.0541 1.660 0.903 1.530 0.0258 2.025 550 0.823 0.308 9510 0.00053 0.0081 2.040 0.988 2.020 0.0115 2.022 551 1.380 0.197 34250 0.25100 0.0505 1.010 0.834 0.931 0.0165 2.030 552 0.946 0.263 7850 0.00033 0.0072 1.620 0.986 1.600 0.0096 2.028 553 1.390 0.184 28140 0.11700 0.0366 0.973 0.865 0.897 0.0140 2.027 554 0.823 0.308 10220 0.00071 0.0081 2.040 0.988 2.020 0.0115 2.022 555 0.794 0.329 23240 0.01770	545	1.260	0.191	17760	0.01520	0.0212	1.080	0.927	1.010	0.0121	2.029
548 1.000 0.281 40010 0.24700 0.0541 1.660 0.903 1.530 0.0258 2.025 550 0.823 0.308 9510 0.00053 0.0081 2.040 0.988 2.020 0.0115 2.022 551 1.380 0.197 34250 0.25100 0.0505 1.010 0.834 0.931 0.0165 2.030 552 0.946 0.263 7850 0.00033 0.0072 1.620 0.986 1.600 0.0096 2.028 553 1.390 0.184 28140 0.11700 0.0366 0.973 0.865 0.897 0.0140 2.027 554 0.823 0.308 10220 0.00071 0.0081 2.040 0.988 2.020 0.0115 2.022 555 0.794 0.329 23240 0.01770 0.0311 2.260 0.960 2.170 0.0236 2.021 556 0.980 0.263 16550 0.00694	546	0.991	0.263	16690	0.00734	0.0267	1.590	0.947	1.510	0.0180	2.028
550 0.823 0.308 9510 0.00053 0.0081 2.040 0.988 2.020 0.0115 2.022 551 1.380 0.197 34250 0.25100 0.0505 1.010 0.834 0.931 0.0165 2.030 552 0.946 0.263 7850 0.00033 0.0072 1.620 0.986 1.600 0.0096 2.028 553 1.390 0.184 28140 0.11700 0.0366 0.973 0.865 0.897 0.0140 2.027 554 0.823 0.308 10220 0.00071 0.0081 2.040 0.988 2.020 0.0115 2.022 555 0.794 0.329 23240 0.01770 0.0311 2.260 0.960 2.170 0.0236 2.021 556 0.980 0.263 16550 0.00694 0.0221 1.600 0.956 1.530 0.0165 2.028 557 0.687 0.357 12660 0.00117	547	0.809	0.312	9750	0.00057	0.0044	2.080	0.994	2.070	0.0085	2.021
551 1.380 0.197 34250 0.25100 0.0505 1.010 0.834 0.931 0.0165 2.030 552 0.946 0.263 7850 0.00033 0.0072 1.620 0.986 1.600 0.0096 2.028 553 1.390 0.184 28140 0.11700 0.0366 0.973 0.865 0.897 0.0140 2.027 554 0.823 0.308 10220 0.00071 0.0081 2.040 0.988 2.020 0.0115 2.022 555 0.794 0.329 23240 0.01770 0.0311 2.260 0.960 2.170 0.0236 2.021 556 0.980 0.263 16550 0.00694 0.0221 1.600 0.956 1.530 0.0165 2.028 557 0.687 0.357 12660 0.00117 0.0142 2.720 0.985 2.680 0.0170 2.023 558 1.350 0.191 25870 0.07880	548	1.000	0.281	40010	0.24700	0.0541	1.660	0.903	1.530	0.0258	2.025
552 0.946 0.263 7850 0.00033 0.0072 1.620 0.986 1.600 0.0096 2.028 553 1.390 0.184 28140 0.11700 0.0366 0.973 0.865 0.897 0.0140 2.027 554 0.823 0.308 10220 0.00071 0.0081 2.040 0.988 2.020 0.0115 2.022 555 0.794 0.329 23240 0.01770 0.0311 2.260 0.960 2.170 0.0236 2.021 556 0.980 0.263 16550 0.00694 0.0221 1.600 0.956 1.530 0.0165 2.028 557 0.687 0.357 12660 0.00117 0.0142 2.720 0.985 2.680 0.0170 2.023 558 1.350 0.191 25870 0.07880 0.0375 1.020 0.870 0.937 0.0148 2.029 559 1.420 0.187 30820 0.17500					0.00053	0.0081	2.040			0.0115	2.022
553 1.390 0.184 28140 0.11700 0.0366 0.973 0.865 0.897 0.0140 2.027 554 0.823 0.308 10220 0.00071 0.0081 2.040 0.988 2.020 0.0115 2.022 555 0.794 0.329 23240 0.01770 0.0311 2.260 0.960 2.170 0.0236 2.021 556 0.980 0.263 16550 0.00694 0.0221 1.600 0.956 1.530 0.0165 2.028 557 0.687 0.357 12660 0.00117 0.0142 2.720 0.985 2.680 0.0170 2.023 558 1.350 0.191 25870 0.07880 0.0375 1.020 0.870 0.937 0.0148 2.029 559 1.420 0.187 30820 0.17500 0.0458 0.958 0.835 0.883 0.0151 2.028 560 1.430 0.173 24490 0.07080	551	1.380		34250	0.25100	0.0505	1.010	0.834	0.931	0.0165	2.030
554 0.823 0.308 10220 0.00071 0.0081 2.040 0.988 2.020 0.0115 2.022 555 0.794 0.329 23240 0.01770 0.0311 2.260 0.960 2.170 0.0236 2.021 556 0.980 0.263 16550 0.00694 0.0221 1.600 0.956 1.530 0.0165 2.028 557 0.687 0.357 12660 0.00117 0.0142 2.720 0.985 2.680 0.0170 2.023 558 1.350 0.191 25870 0.07880 0.0375 1.020 0.870 0.937 0.0148 2.029 559 1.420 0.187 30820 0.17500 0.0458 0.958 0.835 0.883 0.0151 2.028 560 1.430 0.173 24490 0.07080 0.0319 0.922 0.870 0.852 0.0126 2.024 561 1.390 0.184 27380 0.10400					0.00033	0.0072				0.0096	l .
555 0.794 0.329 23240 0.01770 0.0311 2.260 0.960 2.170 0.0236 2.021 556 0.980 0.263 16550 0.00694 0.0221 1.600 0.956 1.530 0.0165 2.028 557 0.687 0.357 12660 0.00117 0.0142 2.720 0.985 2.680 0.0170 2.023 558 1.350 0.191 25870 0.07880 0.0375 1.020 0.870 0.937 0.0148 2.029 559 1.420 0.187 30820 0.17500 0.0458 0.958 0.835 0.883 0.0151 2.028 560 1.430 0.173 24490 0.07080 0.0319 0.922 0.870 0.852 0.0126 2.024 561 1.390 0.184 27380 0.10400 0.0366 0.973 0.865 0.897 0.0140 2.027 562 1.210 0.222 30550 0.12300		1.390		28140	0.11700	0.0366	0.973		0.897	$0.0\overline{140}$	2.027
556 0.980 0.263 16550 0.00694 0.0221 1.600 0.956 1.530 0.0165 2.028 557 0.687 0.357 12660 0.00117 0.0142 2.720 0.985 2.680 0.0170 2.023 558 1.350 0.191 25870 0.07880 0.0375 1.020 0.870 0.937 0.0148 2.029 559 1.420 0.187 30820 0.17500 0.0458 0.958 0.835 0.883 0.0151 2.028 560 1.430 0.173 24490 0.07080 0.0319 0.922 0.870 0.852 0.0126 2.024 561 1.390 0.184 27380 0.10400 0.0366 0.973 0.865 0.897 0.0140 2.027 562 1.210 0.222 30550 0.12300 0.0436 1.210 0.882 1.120 0.0184 2.031 563 0.978 0.256 11020 0.00136											
557 0.687 0.357 12660 0.00117 0.0142 2.720 0.985 2.680 0.0170 2.023 558 1.350 0.191 25870 0.07880 0.0375 1.020 0.870 0.937 0.0148 2.029 559 1.420 0.187 30820 0.17500 0.0458 0.958 0.835 0.883 0.0151 2.028 560 1.430 0.173 24490 0.07080 0.0319 0.922 0.870 0.852 0.0126 2.024 561 1.390 0.184 27380 0.10400 0.0366 0.973 0.865 0.897 0.0140 2.027 562 1.210 0.222 30550 0.12300 0.0436 1.210 0.882 1.120 0.0184 2.031 563 0.978 0.256 11020 0.00136 0.0122 1.560 0.975 1.520 0.0122 2.029	555	0.794	0.329	23240	0.01770	0.0311	2.260	0.960	2.170		2.021
558 1.350 0.191 25870 0.07880 0.0375 1.020 0.870 0.937 0.0148 2.029 559 1.420 0.187 30820 0.17500 0.0458 0.958 0.835 0.883 0.0151 2.028 560 1.430 0.173 24490 0.07080 0.0319 0.922 0.870 0.852 0.0126 2.024 561 1.390 0.184 27380 0.10400 0.0366 0.973 0.865 0.897 0.0140 2.027 562 1.210 0.222 30550 0.12300 0.0436 1.210 0.882 1.120 0.0184 2.031 563 0.978 0.256 11020 0.00136 0.0122 1.560 0.975 1.520 0.0122 2.029		0.980				0.0221					2.028
559 1.420 0.187 30820 0.17500 0.0458 0.958 0.835 0.883 0.0151 2.028 560 1.430 0.173 24490 0.07080 0.0319 0.922 0.870 0.852 0.0126 2.024 561 1.390 0.184 27380 0.10400 0.0366 0.973 0.865 0.897 0.0140 2.027 562 1.210 0.222 30550 0.12300 0.0436 1.210 0.882 1.120 0.0184 2.031 563 0.978 0.256 11020 0.00136 0.0122 1.560 0.975 1.520 0.0122 2.029											
560 1.430 0.173 24490 0.07080 0.0319 0.922 0.870 0.852 0.0126 2.024 561 1.390 0.184 27380 0.10400 0.0366 0.973 0.865 0.897 0.0140 2.027 562 1.210 0.222 30550 0.12300 0.0436 1.210 0.882 1.120 0.0184 2.031 563 0.978 0.256 11020 0.00136 0.0122 1.560 0.975 1.520 0.0122 2.029							<u> </u>				
561 1.390 0.184 27380 0.10400 0.0366 0.973 0.865 0.897 0.0140 2.027 562 1.210 0.222 30550 0.12300 0.0436 1.210 0.882 1.120 0.0184 2.031 563 0.978 0.256 11020 0.00136 0.0122 1.560 0.975 1.520 0.0122 2.029											
562 1.210 0.222 30550 0.12300 0.0436 1.210 0.882 1.120 0.0184 2.031 563 0.978 0.256 11020 0.00136 0.0122 1.560 0.975 1.520 0.0122 2.029											
563 0.978 0.256 11020 0.00136 0.0122 1.560 0.975 1.520 0.0122 2.029											
564 1.330 0.201 32960 0.20000 0.0443 1.060 0.859 0.976 0.0164 2.030											
	564	1.330	0.201	32960	0.20000	0.0443	1.060	0.859	0.976	0.0164	2.030

									вження т	аолиці
Номер	R/R_0	M/M_0	$T_{ m eff}$	L/L_{\odot}	T_0^*	x_0	ξ_{Δ}	$x_0^{(1)}$	$T_0^{*(1)}$	μ_e
565	0.953	0.267	10140	0.00092	0.0150	1.640	0.971	1.590	0.0139	2.027
567	1.520	0.152	15830	0.01400	0.0237	0.822	0.882	0.761	0.0100	2.013
568	0.748	0.336	8620	0.00030	0.0111	2.390	0.986	2.350	0.0143	2.021
569	1.090	0.229	11700	0.00212	0.0177	1.340	0.955	1.290	0.0132	2.031
570	0.804	0.315	9210	0.00045	0.0081	2.120	0.989	2.090	0.0117	2.021
571	0.943	0.274	11910	0.00172	0.0202	1.690	0.963	1.630	0.0164	2.026
572	1.300	0.208	32440	0.18100	0.0477	1.100	0.856	1.010	0.0174	2.031
574	0.953	0.267	12150	0.00190	0.0150	1.640	0.971	1.590	0.0139	2.027
575	1.390	0.177	24580	0.06840	0.0302	0.952	0.882	0.881	0.0127	2.025
576	0.969	0.263	12090	0.00193	0.0173	1.610	0.966	1.550	0.0147	2.028
577	1.170	0.208	15780	0.00823	0.0197	1.190	0.942	1.130	0.0128	2.031
578	1.280	0.191	16770	0.01240	0.0239	1.070	0.918	0.999	0.0127	2.029
579	1.420	0.159	14770	0.00923	0.0176	0.889	0.919	0.834	0.0095	2.017
582	1.040	0.236	10140	0.00110	0.0107	1.400	0.974	1.370	0.0107	2.030
583	0.892	0.288	12240	0.00172	0.0150	1.830	0.975	1.780	0.0147	2.024
584	1.180	0.236	37500	0.26500	0.0522	1.280	0.872	1.180	0.0208	2.030
585	1.350	0.177	17490	0.01640	0.0230	0.980	0.911	0.915	0.0116	2.025
586	1.200	0.208	20070	0.02260	0.0260	1.180	0.923	1.100	0.0143	2.031
587	0.983	0.253	9240	0.00068	0.0097	1.540	0.980	1.500	0.0108	2.029
588	1.210	0.211	23690	0.04450	0.0318	1.180	0.907	1.100	0.0157	2.031
589	0.887	0.291	11750	0.00144	0.0179	1.860	0.970	1.800	0.0162	2.024
590	1.010	0.249	9360	0.00075	0.0164	1.500	0.964	1.450	0.0137	2.029
591	1.280	0.197	23800	0.05100	0.0324	1.080	0.894	1.000	0.0147	2.030
593	1.010	0.249	12120	0.00212	0.0164	1.500	0.964	1.450	0.0137	2.029
594	0.985	0.260	12080	0.00199	0.0195	1.580	0.960	1.510	0.0154	2.028
595	0.973	0.260	8120	0.00040	0.0147	1.580	0.970	1.540	0.0135	2.028
597	1.310	0.180	18760	0.02060	0.0209	1.010	0.921	0.947	0.0114	2.026
598	1.360	0.184	22450	0.04510	0.0313	0.994	0.885	0.920	0.0135	2.027
599	0.959	0.270	17950	0.00919	0.0225	1.660	0.957	1.590	0.0171	2.027
600	1.010	0.249	9930	0.00096	0.0164	1.500	0.964	1.450	0.0137	2.029
601	1.120	0.222	16280	0.00847	0.0199	1.290	0.947	1.230	0.0136	2.031
602	1.130	0.222	16850	0.00995	0.0234	1.280	0.937	1.210	0.0146	2.031
603	1.050	0.236	7590	0.00035	0.0149	1.400	0.964	1.350	0.0125	2.030
604	1.350	0.166	13770	0.00634	0.0146	0.941	0.938	0.892	0.0092	2.021
605	1.320	0.191	24400	0.05960	0.0320	1.040	0.889	0.961	0.0141	2.029
606	1.380	0.197	35790	0.29900	0.0505	1.010	0.834	0.931	0.0165	2.030
608	1.160	0.211	14760	0.00612	0.0191	1.220	0.945	1.160	0.0128	2.031
609	1.150	0.201	6870	0.00029	0.0081	1.170	0.975	1.140	0.0082	2.030
610	0.994	0.253	11250	0.00152	0.0144	1.530	0.969	1.480	0.0130	2.029
613	1.060	0.225	7420	0.00033	0.0074	1.330	0.981	1.310	0.0086	2.031
614	1.270	0.201	25480	0.06510	0.0324	1.110	0.897	1.030	0.0150	2.030
615	0.994	0.253	12000	0.00197	0.0144	1.530	0.969	1.480	0.0130	2.029
616	1.090	0.236	18060	0.01210	0.0266	1.370	0.936	1.300	0.0163	2.030
617	1.230	0.211	24560	0.05260	0.0349	1.170	0.898	1.090	0.0162	2.031
619	1.200	0.211	21070	0.02720	0.0287	1.190	0.917	1.110	0.0151	2.031
620	1.270	0.194	21140	0.03120	0.0267	1.080	0.911	1.010	0.0135	2.029
621	0.780	0.326	11480	0.00102	0.0127	2.240	0.983	2.200	0.0150	2.021
622	1.230	0.211	23440	0.04370	0.0349	1.170	0.898	1.090	0.0162	2.031
623	0.862	0.294	9990	0.00071	0.0086	1.900	0.986	1.870	0.0115	2.023
625	1.270	0.194	19780	0.02390	0.0267	1.080	0.911	1.010	0.0135	2.029
626	0.973	0.260	8700	0.00052	0.0147	1.580	0.970	1.540	0.0135	2.028
627	1.450	0.184	34050	0.27400	0.0484	0.925	0.821	0.853	0.0148	2.027
628	1.280	0.187	18550	0.01870	0.0212	1.050	0.925	0.990	0.0119	2.028

Закінчення таблиці

									пичення т	гаолиці
Номер	R/R_0	M/M_0	$T_{ m eff}$	L/L_{\odot}	T_0^*	x_0	ξ_{Δ}	$x_0^{(1)}$	$T_0^{*(1)}$	μ_e
629	1.650	0.149	20170	0.04340	0.0350	0.750	0.818	0.692	0.0106	2.010
630	1.300	0.180	16580	0.01230	0.0184	1.020	0.931	0.959	0.0109	2.026
631	1.060	0.239	14980	0.00544	0.0214	1.410	0.950	1.340	0.0150	2.030
632	1.010	0.249	12370	0.00230	0.0164	1.500	0.964	1.450	0.0137	2.029
633	0.804	0.315	11830	0.00122	0.0081	2.120	0.989	2.090	0.0117	2.021
634	1.350	0.194	28720	0.11900	0.0407	1.030	0.862	0.946	0.0154	2.029
636	1.130	0.222	16560	0.00928	0.0234	1.280	0.937	1.210	0.0146	2.031
637	1.290	0.191	22780	0.04320	0.0266	1.060	0.908	0.986	0.0133	2.029
638	1.400	0.159	14280	0.00788	0.0156	0.895	0.929	0.844	0.0090	2.017
639	1.050	0.246	19910	0.01670	0.0265	1.450	0.941	1.370	0.0169	2.030
640	1.200	0.218	25690	0.06070	0.0374	1.210	0.896	1.120	0.0172	2.031
641	1.110	0.225	16660	0.00922	0.0225	1.310	0.941	1.240	0.0145	2.031
643	0.790	0.319	7310	0.00017	0.0044	2.160	0.994	2.150	0.0087	2.021
644	1.250	0.191	12740	0.00395	0.0185	1.080	0.937	1.030	0.0115	2.029
645	1.190	0.215	23340	0.04070	0.0314	1.210	0.911	1.130	0.0159	2.031
647	0.907	0.284	11800	0.00154	0.0178	1.790	0.969	1.730	0.0159	2.025
648	1.060	0.232	7180	0.00029	0.0124	1.380	0.970	1.330	0.0113	2.031
649	0.962	0.260	8420	0.00045	0.0098	1.590	0.980	1.560	0.0111	2.028
650	0.794	0.329	26140	0.02830	0.0311	2.260	0.960	2.170	0.0236	2.021
651	1.590	0.149	16250	0.01710	0.0283	0.779	0.853	0.718	0.0102	2.010
652	1.180	0.211	17970	0.01410	0.0255	1.200	0.926	1.130	0.0144	2.031
653	1.040	0.246	17230	0.00915	0.0224	1.460	0.950	1.390	0.0157	2.030
654	0.658	0.367	9270	0.00031	0.0206	2.930	0.980	2.860	0.0211	2.026
655	1.000	0.256	12140	0.00209	0.0215	1.550	0.955	1.480	0.0159	2.029
656	0.985	0.260	11800	0.00181	0.0195	1.580	0.960	1.510	0.0154	2.028
657	1.270	0.208	30260	0.13100	0.0413	1.120	0.876	1.030	0.0168	2.031
658	1.130	0.222	16950	0.01020	0.0234	1.280	0.937	1.210	0.0146	2.031
659	1.310	0.180	18990	0.02160	0.0209	1.010	0.921	0.947	0.0114	2.026
660	1.190	0.215	22120	0.03290	0.0314	1.210	0.911	1.130	0.0159	2.031
662	1.240	0.197	18930	0.01900	0.0238	1.110	0.923	1.040	0.0132	2.030
663	0.603	0.388	9210	0.00025	0.0339	3.380	0.971	3.270	0.0288	2.026
664	1.110	0.215	10100	0.00124	0.0113	1.260	0.968	1.220	0.0102	2.031
665	1.140	0.218	13120	0.00368	0.0209	1.260	0.943	1.200	0.0137	2.031
666	1.260	0.197	21370	0.03160	0.0267	1.100	0.913	1.030	0.0138	2.030
669	1.170	0.215	19640	0.01950	0.0250	1.230	0.930	1.160	0.0145	2.031
670	1.040	0.239	7250	0.00028	0.0132	1.430	0.969	1.380	0.0120	2.030
672	0.809	0.312	7320	0.00018	0.0044	2.080	0.994	2.070	0.0085	2.021
673	1.200	0.222	30020	0.11200	0.0403	1.230	0.891	1.130	0.0179	2.031
674	1.330	0.194	27060	0.09170	0.0379	1.040	0.872	0.958	0.0151	2.029
675	1.280	0.187	19350	0.02210	0.0212	1.050	0.925	0.990	0.0119	2.028
676	1.270	0.197	21050	0.03050	0.0295	1.090	0.904	1.020	0.0143	2.030
677	1.010	0.256	17560	0.00938	0.0259	1.540	0.946	1.460	0.0174	2.029
679	1.150	0.215	15340	0.00709	0.0217	1.240	0.939	1.170	0.0137	2.031
680	0.852	0.301	9870	0.00066	0.0149	1.960	0.977	1.910	0.0152	2.023
682	1.230	0.191	14770	0.00697	0.0157	1.090	0.946	1.040	0.0107	2.029
683	1.220	0.204	21100	0.02840	0.0265	1.150	0.919	1.080	0.0142	2.030
684	1.070	0.232	11470	0.00190	0.0164	1.370	0.960	1.320	0.0129	2.031
685	0.969	0.263	13330	0.00285	0.0173	1.610	0.966	1.550	0.0147	2.028
686	1.080	0.222	6500	0.00020	0.0089	1.310	0.977	1.280	0.0093	2.031
687	1.380	0.197	32890	0.21300	0.0505	1.010	0.834	0.931	0.0165	2.030
689	1.090	0.229	13550	0.00382	0.0177	1.340	0.955	1.290	0.0132	2.031
690	1.280	0.180	14550	0.00712	0.0158	1.020	0.941	0.972	0.0102	2.026
692	1.230	0.197	17640	0.01400	0.0209	1.120	0.932	1.060	0.0125	2.030

Предметний покажчик

\mathbf{A}

Апроксиманти Паде для складових енергії релятивістської електронядерної моделі 205-208

Адамс В. 7, 13

Б

Багаточастинкові кореляційні функції моделі ідеальної виродженої релятивістської електронної підсистеми 187–196

Багаточастинкові кореляційні функції моделі релятивістської електронної рідини 197, 198

В

Варіанти запису рівняння рівноваги виродженого карлика у моделі С. Чандрас
екара 65--67

Варіаційний метод в теорії вироджених карликів 67–71

Вплив ефектів загальної теорії відносності на стійкість карликів 227—231

Вплив неповного виродження на характеристики карликів 121-124, 171-176

 Γ

Граничне значення кутової швидкості осьового обертання виродженого карлика 105, 107, 112

Д

Джеймс Р. 8, 107

E

Енергетична залежність характеристик вироджених карликів 63–64

Енергія основного стану нерелятивістської моделі електронної рідини у парамагнітній фазі (метод Монте-Карло) 205

3

Залежність "ефективна температура фотосфери — температура у центрі зорі" 163

Залежність макроскопічних характеристик карликів від параметра релятивізму у його центрі 49-54, 75, 97-101, 105-107, 109, 112

Залежність "маса – радіус" 50, 90, 116

K

Критичні значення маси і параметра релятивізму у центрі зорі у різних моделях 231

\mathbf{M}

Масштаб зоряних мас 49

Масштаб радіусів вироджених карликів 49

Модель Еддінгтона 23, 24

Модель Роша 25

Модель Фаулера-Чандрасекара 42

Модель карлика однофазна 42

Модель карлика двофазна 140–149

Модель карлика з частковою спіновою поляризацією 92–97

Модель виродженого карлика трифазна 165–172

Модель виродженого карлика однорідна 68–71, 119–120

Модель зі змінним хімічним складом 77

Моделювання координатної залежності

температури 120–124

- хімічного складу 77-79

\mathbf{H}

Напіваналітичний розв'язок рівняння рівноваги карлика при T=0K 72–74

0

Обернена задача в теорії вироджених карликів 55-62, 80, 124-130

Опис ізотермічного ядра виродженого карлика 143–149

Опис периферії карлика 150–156

Π

Параметр релятивізму у центрі зорі x_0 57, 59, 62, 81, 83–87 Параметри моделі виродженого карлика, розраховані за спостережуваними даними 56–62, 81–86, 128, 129, 134, 163

Поверхня зорі з осьовим обертанням 31, 33–35 Поліноми Лежандра 28 - 35Політропи Лена-Емдена 14 - 23Політропи з осьовим обертанням 26-41Поправка на локальне поле 198 - 201P Рівняння механічної рівноваги 14, 26, 27, 46, 93, 102–105, 148, 227 Рівняння стану виродженого релятивістського ідеального електронного газу 43 - 45Рівняння стану редуковане 121 Рівняння стану, що враховує кулонівські міжчастинкові взаємодії 210, 211 Рівняння рівноваги зорі-політропи з осьовим обертанням 26-28 Рівняння рівноваги в інтегральній формі 17, 18, 27 Розв'язки рівняння рівноваги, одержані чисельним інтегруванням 17–18, 37–41, 47, 72, 73, 79, 96, 97 Розклади за базисними функціями 72, 111–115 Розклади енергії основного стану виродженого карлика за степенями сталої тонкої структури 205 - 208Розклади гравітаційного потенціалу зорі-політропи за поліномами 29, 30, 33–35 Лежандра Розклади термодинамічного потенціалу електрон-ядерної моделі за кореляційними функціями 186 Розподіл спостережуваних карликів на площині "маса – радіус" та його інтерпретація 116 Розрахунок рівняння стану релятивістської підсистеми електронів у полі ядер (базисний метод) 202 - 211 \mathbf{C} Солпітер Е. 18 Співвідношення "маса – радіус" в теорії С. Чандрасекара 50 Статистична сума релятивістської електрон-ядерної моделі 178 Стійкість вироджених карликів 231 - 240Сферичні функції Бесселя 32, 39

 \mathbf{T}

Таблиці параметрів моделей, розрахованих на основі спостережуваних даних 248-258

Температурна залежність маси карлика 123, 124, 128–130

У

Узагальнення моделі С.Чандрасекара 68, 77, 78, 92, 93, 115, 119–124,

Φ

Фаулер Р. 7

Функції Бесселя з цілим індексом 33

 \mathbf{X}

Характеристики зір-політроп 18–22, 37, 38

Характеристики холодних карликів 49–55, 97–100, 215–222

Ч

Чандрасекар С. 8, 10, 65, 66

Наукове видання

Ваврух Маркіян Васильович, Смеречинський Святослав Всеволодович, Тишко Нестор Любомирович

НОВІ МОДЕЛІ В ТЕОРІЇ СТРУКТУРИ ВИРОДЖЕНИХ КАРЛИКІВ

Монографія

Редактор *Маркіян Ваврух*Технічний редактор *Нестор Тишко*Комп'ютерна верстка *Святослав Смеречинський*Комп'ютерний набір *Надія Воробець*

Формат $70 \times 100/16$. Умовн. друк. арк. Тираж 100 пр. Зам.