PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

re the Application of

Takeshi KIJIMA et al.

Application No.: 10/800,722

Filed: August 2, 2004

Docket No.: 119112

For:

METHOD OF FORMING FERROELECTRIC FILM

CLAIM FOR PRIORITY

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

The benefit of the filing date of the following prior foreign application filed in the following foreign country is hereby requested for the above-identified patent application and the priority provided in 35 U.S.C. §119 is hereby claimed:

Japanese Patent Application No. 2003-071953 filed on March 17, 2003 In support of this claim, a certified copy of said original foreign application:

is filed herewith.

It is requested that the file of this application be marked to indicate that the requirements of 35 U.S.C. §119 have been fulfilled and that the Patent and Trademark Office kindly acknowledge receipt of this document.

Respectfully submitted,

James A. Oliff

Registration No. 27,075

Thomas J. Pardini Registration No. 30,411

JAO:TJP/amo

Date: August 2, 2004

OLIFF & BERRIDGE, PLC P.O. Box 19928 Alexandria, Virginia 22320 Telephone: (703) 836-6400

DEPOSIT ACCOUNT USE AUTHORIZATION Please grant any extension necessary for entry; Charge any fee due to our Deposit Account No. 15-0461

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 3月17日

出願番号 Application Number:

特願2003-071953

[ST. 10/C]:

[JP2003-071953]

出 願 人
Applicant(s):

セイコーエプソン株式会社

CERTIFIED COPY OF PRIORITY DOCUMENT

The state of the s

人

٠. الد

2003年12月

康

特許庁長官 Commissioner, Japan Patent Office 【書類名】

特許願

【整理番号】

EP-0444201

【提出日】

平成15年 3月17日

【あて先】

特許庁長官殿

【国際特許分類】

H01L 27/10

【発明者】

【住所又は居所】 長野県諏訪市大和3丁目3番5号 セイコーエプソン株

式会社内

【氏名】

木島 健

【発明者】

【住所又は居所】

長野県諏訪市大和3丁目3番5号 セイコーエプソン株

式会社内

【氏名】

▲濱▼田 泰彰

【発明者】

【住所又は居所】

長野県諏訪市大和3丁目3番5号 セイコーエプソン株

式会社内

【氏名】

名取 栄治

【特許出願人】

【識別番号】

000002369

【氏名又は名称】

セイコーエプソン株式会社

【代理人】

【識別番号】

100090479

【弁理士】

【氏名又は名称】

井上 一

【電話番号】

03-5397-0891

【選任した代理人】

【識別番号】 100090387

【弁理士】

【氏名又は名称】 布施 行夫

【電話番号】 03-5397-0891

【選任した代理人】

【識別番号】 100090398

【弁理士】

【氏名又は名称】 大渕 美千栄

【電話番号】 03-5397-0891

【手数料の表示】

【予納台帳番号】 039491

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9402500

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 強誘電体薄膜の形成方法

【特許請求の範囲】

【請求項1】 有機金属気相成長法を用いて、Ptからなる金属薄膜上にP ZT系複合酸化物からなる強誘電体薄膜を形成するための方法であって、

Pb原料の供給を開始して、前記金属薄膜の上にPbとPtとの合金膜を形成すること、

その後、Ti原料の供給を開始して、前記合金膜の上にPbTiO3からなる複合酸化物の初期結晶核を形成すること、

さらにその後、Zr原料の供給を開始して、前記初期結晶核の上部にPZT系 複合酸化物の結晶成長層を形成すること、

を含む、強誘電体薄膜の形成方法。

【請求項2】 請求項1において、

前記合金膜の形成を、不活性ガス雰囲気中で行い、前記Ti原料の供給開始と ともに酸化ガスの供給を開始することを含む、強誘電体薄膜の形成方法。

【請求項3】 請求項1または2において、

前記合金膜を少なくとも400℃以下で形成する、強誘電体薄膜の形成方法。

【請求項4】 請求項1~3のいずれかにおいて、

前記初期結晶核を島状に形成する、強誘電体薄膜の形成方法。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$

【発明の属する技術分野】

本発明は、有機金属気相成長法を用いた強誘電体薄膜の形成方法に関する。

[0002]

【背景技術】

近年、強誘電体メモリや圧電素子への応用が期待されている強誘電体薄膜の形成技術において、量産性の向上を図るべく、化合物半導体の結晶成長技術において実績のある有機金属気相成長法(MOCVD法)を用いた成膜技術が注目され

ている。

[0003]

しかし、従来のMOCVD法を用いた成膜技術では、電極材料として用いられるPt金属薄膜上にPZT系複合酸化物を成膜する場合、PZT系複合酸化物とPt金属薄膜とは結晶格子の整合性がよくないため、良質な結晶状態の強誘電体薄膜を得ることが難しかった。また、MOCVD法でPZT系複合酸化物を行う場合には、一般的に全ての構成元素の原料ガスを一括に供給して成膜が行われるが、Pt金属薄膜上に成膜する時には上述した格子不整合を低減させるために、Ti原料と酸化ガスのみを先行供給して、TiOx膜をPt金属薄膜とPZT系複合酸化物結晶との間の緩衝層として形成する技術も提案されている。ところが、このTiOx膜は、その結晶の配向性がPZT系複合酸化物結晶の配向性に望ましからぬ影響を与えるおそれがあり、これに代わる技術が望まれている。

$[0\ 0\ 0\ 4\]$

【発明が解決しようとする課題】

本発明の目的は、Ptからなる金属薄膜上において、良好な結晶品質のPZT系複合酸化物からなる強誘電体薄膜を得ることができる強誘電体薄膜の形成方法を提供することにある。

[0005]

【課題を解決するための手段】

本発明の強誘電体薄膜の形成方法は、有機金属気相成長法を用いて、Ptからなる金属薄膜上にPZT系複合酸化物からなる強誘電体薄膜を形成するための方法であって、Pb原料の供給を開始して、前記金属薄膜の上にPbとPtとの合金膜を形成すること、その後、Ti原料の供給を開始して、前記合金膜の上にPbTiO3からなる複合酸化物の初期結晶核を形成すること、さらにその後、Zr原料の供給を開始して、前記初期結晶核の上部にPZT系複合酸化物の結晶成長層を形成すること、を含む。

[0006]

本発明の形成方法によれば、まず、Ptからなる金属薄膜上に、PZT系複合酸化物の構成元素の一つであるPb原料を用いてPbとPtとの合金膜を形成す

る。この合金膜は、Pt薄膜とPZT系複合酸化物との双方と格子整合しやすい格子定数を有するため、その上に形成されるPZT複合酸化物結晶の格子不整合に起因する歪みを緩和させることができ、強誘電体薄膜の疲労特性を決定する要因の一つとなる界面状態を良好なものとすることができる。そして、本発明の形成方法では、上述した合金膜を形成した後に、Ti原料の供給を開始して、合金膜の上にPbTiO3からなる複合酸化物の初期結晶核を形成する。一般に、PZT系複合酸化物においては、Zr元素の組成比が高くなるほど、結晶化温度が上昇することが知られており、Zr元素を有しないPbTiO3では、比較的に低温領域で良好な品質の結晶が得ることができる。そして、本発明の強誘電体薄膜の形成方法では、PZT系複合酸化物の形成の際に既に存在しているPbTiO3の初期結晶核を利用して、結晶化エネルギーを低減させることで、PZT系複合酸化物の結晶化温度を低減させることができる。したがって、本発明の形成方法を用いることによって、Pt薄膜との界面状態が良好であって、かつ良質なPZT系複合酸化物結晶からなる強誘電体薄膜を低い結晶化温度で得ることができる。

[0007]

本発明の強誘電体薄膜の形成方法は、以下の態様を採り得る。

[0008]

(A) 前記合金膜の形成を、不活性ガス雰囲気中で行い、前記Ti原料の供給 開始とともに酸化ガスの供給を開始することを含むことができる。

[0009]

かかる態様によれば、酸素と結合して雰囲気中に飛散しやすいPb元素の酸化を合金膜の形成工程において効果的に抑制することができる。

[0010]

(B) 前記合金膜を少なくとも400℃以下で形成することができる。

$[0\ 0\ 1\ 1]$

かかる態様においても、合金膜の形成工程において、比較的に低い温度領域から蒸気となりやすいPb元素が雰囲気中に飛散するのを効果的に防止することができる。

$[0\ 0\ 1\ 2\]$

(C) 前記初期結晶核を島状に形成することができる。

$[0\ 0\ 1\ 3]$

かかる態様によれば、 $PbTiO_3$ は、機械的強度がPZT系複合酸化物に比べて弱いため、初期結晶核を島状に散在させることにより、PZT複合酸化物の結晶成長層が初期結晶核を被覆するように形成されていくため、機械的強度の点から強誘電体薄膜の信頼性を向上させることができる。

$[0\ 0\ 1\ 4]$

【発明の実施の形態】

以下、本発明に好適な実施の形態について、図面を参照しながら説明する。

[0015]

1. 製造装置

図1は、本実施の形態に係る強誘電体薄膜の形成方法に用いられるMOCVD (有機金属気相成長)装置を模式的に示す図である。

[0016]

MOCVD装置100は、反応室10と、第1~第3原料室21,22,23を有する。反応室10の周囲には、反応室10内の基板50の温度を制御するためのヒーター40が設けられている。第1~第3原料室21,22,23のそれぞれと、反応室10とは、原料供給ライン31により接続されている。また、MOCVD装置100は、第1ガス供給ライン32を通じて、キャリアガスたるAr(アルゴン)ガスを反応室10内に供給することにより反応室10内へのガス流量の制御が可能に形成されている。なお、キャリアガスとしては、不活性ガスを用いることができ、上述したアルゴンガスの他に、N2(窒素)ガスなどが例示される。また、MOCVD装置100は、第2ガス供給ライン33を通じてP2T系複合酸化物を形成するための酸化ガスたるO2(酸素)ガスが反応室10内に供給可能に形成されている。酸化ガスとしては、上述した酸素ガスの他に、例えば、N2Oガスなどを用いることができる。

[0017]

原料室21には、Pb(鉛)原料21aが充填されている。Pb原料21aと

しては、例えば、Pb(C_2H_5) $_4$ などのアルキル鉛化合物や、 β $_-$ ジケトン 鉛錯体などを挙げることができる。

[0018]

原料室22には、Zr(ジルコニウム)原料22aが充填されている。Zr原料22aとしては、例えば、Zr($t-C_4H_9O$) $_4$ 等のアルコキシドなどが挙げられる。

[0019]

原料室 2 3 には、T i (チタン)原料 2 3 a が充填されている。T i 原料 2 3 a としては、例えば、T i C l $_4$ 、T i (i -C $_3$ H $_7$ O) $_4$ 等のアルコキシドなどが挙げられる。

[0020]

2. P Z T 系強誘電体薄膜の形成方法

図2 (A) ~図2 (D) は、本実施の形態に係るPZT系強誘電体薄膜の形成工程を模式的に示す断面図である。

[0021]

本実施の形態の形成工程では、まず、図2 (A) に示すように、所与の基体50上に例えば、スパッタリングなどによりPt金属薄膜60が形成されたものを用意し、これを図1に示すようなMOCVD装置100の反応室10に設置する。基体50としては、半導体基板、樹脂基板など強誘電体薄膜の用途に応じて好適なものを任意に採用することができ、特に限定されない。

[0022]

次に、図3の区間(イ)に示すように、MOCVD装置100において、Pb原料21aをキャリアガスのArガスとともに反応室10に供給を開始して、図2(B)に示すように、Pt金属薄膜60の上にPtとPbとの合金であるPbPt3からなる合金膜61を形成する。このとき、反応室10内の雰囲気は、酸化ガスである〇2ガスを含まない不活性ガスの雰囲気であることが好ましい。なぜなら、Pbは酸素と結合しやすく、雰囲気中の酸素分圧が高いとPt金属薄膜60上に一度堆積したものであっても酸素と結合して雰囲気中に飛散してしまうからである。すなわち、本実施の形態の形成工程では、ArガスやNゥガスなど

の不活性ガスによる非酸化雰囲気中で合金膜61の形成工程を行うことにより、合金膜61を構成するPbの雰囲気中への脱離を防止することができる。また、かかる工程においては、ヒーター40において基体50の温度が少なくとも400℃以下、より好ましくは150℃付近となるように制御することが好ましい。Pbは、比較的に低い温度領域から蒸気となりやすいため、かかる合金膜61の形成工程においては、温度の面からもPbの飛散を防止することが重要となるからである。

[0023]

次に、図3の区間(ロ)に示すように、Ti原料22aの供給を開始するとともに、酸化ガスである〇2ガスの供給を開始して、図2(C)に示すように、合金膜61の上にPbTi〇3からなる複合酸化物による初期結晶核71を形成する。このとき、初期結晶核71は、合金膜61上において島状となるように形成することが好ましい。PbTi〇3は、PZT系複合酸化物の結晶化温度を低減させることができるが、機械的強度がPZT系複合酸化物に比べて弱い。このため、本実施の形態の形成工程では、初期結晶核71を島状に散在させることにより、その後に形成されるPZT複合酸化物の結晶成長層72が初期結晶核71を被覆するように形成されていくため、機械的強度の点から強誘電体薄膜の信頼性を向上させることができる。

[0024]

そして、図3の区間(ハ)に示すように、Zr原料23aの供給を開始することにより、図2(D)に示すように、Pb(Zr、Ti) O_3 からなる複合酸化物の結晶成長層 72を初期結晶核 71の上部に形成することにより、PZT系強誘電体薄膜を得ることができる。

[0025]

以上に述べたように、本実施の形態の強誘電体薄膜の形成方法によれば、合金膜61は、Pt金属薄膜60とPZT系複合酸化物との双方と格子整合しやすい格子定数を有するため、その上に形成されるPZT系複合酸化物結晶の格子不整合に起因する歪みを緩和させることができ、強誘電体薄膜の疲労特性を決定する要因の一つとなる界面状態を良好なものとすることができる。そして、本実施の

形態の強誘電体薄膜の形成方法では、PZT系複合酸化物の結晶成長層 72の形成の際にPbTiO3の初期結晶核71を利用して、結晶化エネルギーを低減させることができるので、PZT系複合酸化物の結晶化温度を低減させることができる。したがって、本実施の形態の形成方法を用いることによって、Pt金属薄膜60上に界面状態が良好であって、かつ良好な結晶品質のPZT系複合酸化物の結晶成長層 72からなる強誘電体薄膜を低い結晶化温度で得ることができる。

[0026]

ここで、実際に本実施の形態の強誘電体薄膜の形成方法を用いて、既出の成膜工程により、厚さ150nmの $PbZr_{0.3}Ti_{0.7}O_3$ (PZT)薄膜をMOCVD法により、形成したところ、図4に示すような良好な表面モフォロジーと図5に示すような良好なヒステリシス特性を確認することが出来た。なお、ヒステリシス特性は、上記PZT薄膜上に直径100 μ m ϕ 、厚さ100nmのPt

[0027]

本実施の形態の強誘電体薄膜の形成方法は、この強誘電体薄膜を用いた強誘電体メモリや圧電素子の製造方法に適用することができる。以下では、一例として本実施の形態の強誘電体膜の形成方法を強誘電体メモリの製造方法への適用した場合について説明する。

[0028]

3. 強誘電体メモリの製造方法への適用例

図6は、本実施例に係る強誘電体メモリの製造工程の一例を模式的に示す断面 図である。

[0029]

本実施例では、まず図6(A)に示すように、基体50の上に強誘電体キャパシタ80の下部電極となるPt金属薄膜60が形成されたものに対して上述した強誘電体薄膜の形成方法を用いて、PbPt3合金膜61、PbTiO3初期結晶核71、およびPZT結晶成長層72を順次形成する。続いて、PZT結晶成長層72の上に、強誘電体キャパシタ80の上部電極となるPt金属薄膜62を形成する。なお、基体50は、例えば、図6に示すように、半導体基板51の上

にセル選択用のトランジスタ56が形成されたものを用いることができる。このトランジスタ56は、ソース/ドレイン53、ゲート酸化膜54、ゲート電極55を有することができる。また、トランジスタ56の一方のソース/ドレイン53の上には、例えば、タングステンなどからなるプラグ電極57を形成しておき、強誘電体キャパシタ80の下部電極となるPt金属薄膜60と接続可能に形成したスタック構造を採用することができる。また、基体50内においては、トランジスタ56はセル間で素子分離領域52によりセルごとに分離されており、トランジスタ56の上部には、例えば、酸化膜などからなる第1層間絶縁膜58を有することができる。

[0030]

次に、本実施例では、図6(B)に示すように、強誘電体キャパシタ80を所望の大きさ及び形状にパターニングする。そして、最終的には、図6(C)に示すように、強誘電体キャパシタ80を被覆するように水素バリア膜91を形成し、その後、第2層間絶縁膜92を形成するとともに、この第2層間絶縁膜92に形成されたスルーホールを通じて強誘電体キャパシタ80およびトランジスタ56を外部と接続するための金属配線層93、94を形成することにより強誘電体メモリを得る。本実施例の製造工程によれば、良好な結晶品質のPZT系強誘電体薄膜が形成されるので、特性に優れた強誘電体メモリを実現することができる

[0031]

なお、本実施例では、いわゆる1T1C型の強誘電体メモリの製造工程について説明したが、本実施の形態の強誘電体薄膜の形成方法は、この他に、いわゆる2T2C型や単純マトリクス型(クロスポイント型)などの各種のセル方式を用いた強誘電体メモリの製造工程にも適用することが可能である。

[0032]

以上に、本発明に好適な実施の形態について説明してきたが、本発明は上述したものに限られず、発明の要旨の範囲内で各種の変形態様により実施することができる。

【図面の簡単な説明】

- 【図1】 本発明の実施形態で用いるMOCVD装置を模式的に示す図。
- 【図2】 MOCVD装置における原料供給タイミングと昇温履歴を説明する図。
 - 【図3】 本発明の実施形態に係る強誘電体薄膜の形成工程を示す断面図。
- 【図4】 本実施の形態に係る強誘電体薄膜の表面モフォロジーの観察結果を示す図。
- 【図5】 本実施の形態に係る強誘電体薄膜のヒステリシス特性を測定した結果を示す図。
- 【図6】 本発明の実施形態に係る強誘電体薄膜の形成工程を適用した強誘電体メモリの製造工程を示す断面図。

【符号の説明】

50 基体、60 金属薄膜、61 合金膜、71 初期結晶核、72 結晶成長層、100 MOCVD装置

図面

【図1】

【図2】

【図3】

BEST AVAILABLE COPY

【図4】

【図5】

【図6】

【書類名】

要約書

【要約】

【課題】 Ptからなる金属薄膜上において、良好な結晶品質のPZT系複合酸化物からなる強誘電体薄膜を得ることができる強誘電体薄膜の形成方法を提供する。

【解決手段】 本発明の強誘電体薄膜の形成方法は、有機金属気相成長法を用いて、Ptからなる金属薄膜60上にPZT系複合酸化物からなる強誘電体薄膜を形成するための方法であって、Pb原料の供給を開始して、前記金属薄膜60の上にPbとPtとの合金膜61を形成すること、その後、Ti原料の供給を開始して、前記合金膜61の上にPbTiO3からなる複合酸化物の初期結晶核71を形成すること、さらにその後、Zr原料の供給を開始して、前記初期結晶核71の上部にPZT系複合酸化物の結晶成長層72を形成すること、を含む。

【選択図】

図 2

特願2003-071953

出願人履歴情報

識別番号

[000002369]

1. 変更年月日 [変更理由] 住 所 氏 名 1990年 8月20日 新規登録 東京都新宿区西新宿2丁目4番1号 セイコーエプソン株式会社