COL778: Principles of Autonomous Systems Semester II, 2023-24

Markov Decision Processes

Rohan Paul

Outline

- Last Class
 - State Estimation
- This Class
 - Sequential decision-making under uncertainty
 - Markov Decision Processes
- Reference Material
 - Primary reference are the lecture notes. For basic background refer to AIMA Classical Planning Ch. 17 (Sec 17.1 17.3). Other reference is Sutton and Barto, Reinforcement Learning Ch 3.

Acknowledgements

These slides are intended for teaching purposes only. Some material has been used/adapted from web sources and from slides by Nicholas Roy, Wolfram Burgard, Dieter Fox, Sebastian Thrun, Siddharth Srinivasa, Dan Klein, Pieter Abbeel, Max Likhachev and others.

Decision-making over time (deterministic vs. stochastic case)

- Previously considered the deterministic case.
 - Actions (up, down, left, right) are deterministic, and each action incurs cost 1.
 - Deterministic means transition function is $T: S \times A \mapsto S$
 - Once the plan was computed, we can simply execute it.
- Now, consider the case where action outcomes are stochastic:
 - Transition function $T: S \times A \times S \mapsto [0,1], \sum_{s_i} T(\cdot, \cdot, s_j) = 1.$
 - Transition function for (3,2) and (3,1) is terminal; once reached, the agent cannot leave those states
 - Reward is -.1 everywhere except the terminal states, which have reward +1 and -1.
 - In this example, with probability .8 action has the "intended" outcome, and with some uniform probability (0.067) the agent ends up in one of the other feasible 4-connected states.
 - If the transition is into an obstacle or outside the grid, the agent's state does not change.

Plans vs. Policies

If the environment was *deterministic*, then we would just need an optimal plan (a sequence of actions) from start to the goal. If there is *non-determinism*, we are not sure where we will land up, hence need a policy that prescribes actions from each state.

Plans Vs. Policies

- Deterministic single-agent search problems
 - we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy $\pi^*: S \rightarrow A$
 - A policy π gives an action for each state
 - The agent arrives at a state and looks up the action according to the policy.
- Will any policy work?
 - No. We want an optimal policy is one that maximizes the expected utility if followed

At any time, the agent will land up in a state.

- Which action to take in that state?
- Take the action prescribed by the policy.

Example of a policy (arrows). The colors indicate the value of a state given the policy (see Value functions in a later slide).

Formulating and MDP Model

- \blacksquare Recall that the input to any solver is a model M.
- The MDP is defined as a tuple $(S, A, T, R, \gamma, s^0)$
 - Finite set of states, $S = \{s^0, \dots, s^n\}$
 - Finite set of actions, $\mathcal{A} = \{a^0, \dots, a^m\}$
 - State transition function $T(s^i, a^j, s^k)$ such that $T: S \times A \times S \mapsto [0, 1]$
 - Reward for each state-action-state transition $R(s^i, a^j, s^k)$ such that $R: S \times A \times S \mapsto \mathcal{R}$
 - Discount factor $\gamma \in [0, 1]$
 - Initial state s_0 .
- Why is it called "Markov"?
 - Because the state dynamics depends *only* on the current state and action. $s_{t+1} \perp s_{t-1} | s_t, a_t$.
- Called a decision process
 - Because we choose the actions

MDPs

- Another view of an MDP.
- Assume that the state is known.
- Solving an MDP means
 - Find a policy that maximizes the future expected reward.
 - That is, find a prescription of actions from each state such that the future expected reward is maximized.

$$\pi^* = \arg \max_{\pi} E[\sum_{t=0}^{H} \gamma^t R_t(S_t, A_t, S_{t+1}) | \pi]$$

MDP Example: Mars Rover

States and rewards (encode the agent's goal)

Transition function.

Actions: Left or Right. Policy: prescription of actions to states.

Value Function

- Policy prescribes actions to a particular state (a look up table): $\Pi: S \mapsto A$
- Value function of an MDP for horizon-length T starting at state s_0 :

$$V_T^{\pi}(s_0) = E_{s_0:T} \left[\sum_{t=0}^{T} \gamma^t R(s_t, \pi(s_t), s_{t+1}) \right]$$

$$= \sum_{s_1} p(s_1|s_0, \pi(s_0)) \left(R(s_0, \pi(s_0), s_1) + \gamma \cdot E_{s_1:T} \left[\sum_{t=1}^{T} \gamma^t R(s_t, \pi(s_t), s_{t+1}) \right] \right)$$

$$= \sum_{s_1} p(s_1|s_0, \pi(s_0)) \left(R(s_0, \pi(s_0), s_1) + \gamma \cdot V_{T-1}^{\pi}(s_1) \right).$$

$$(2)$$

$$= \sum_{s_1} p(s_1|s_0, \pi(s_0)) \left(R(s_0, \pi(s_0), s_1) + \gamma \cdot V_{T-1}^{\pi}(s_1) \right).$$

$$(3)$$

Value function under a policy

- Called a function because it is defined for each state.
- What does it intuitively mean?
- Given the policy what is the goodness of this state. What is the reward the agent can expect from here
 over a time horizon.

Value Function

- Vector Equation Formulation
 - \blacksquare We want the full policy over the entire state space, hence V is a vector.
 - For a given policy $\pi: S \mapsto A$,
 - Define R^{π} to be an $S \times 1$ matrix of the expected rewards for the action $\pi(s)$ for each state, and T^{π} to be an $S \times S$ matrix of the transition probability for the action $\pi(s)$ for each state.

$$V_t^{\pi} = R^{\pi} + \gamma T^{\pi} V_{t-1}^{\pi} \tag{7}$$

- Given the "time horizon" τ , then we can iterate Eqn 7 for τ steps to obtain the total amount of expected reward over that horizon.
- V_T can be computed recursively by solving for successive value functions $V_0, V_1, \dots V_T$.
 - Each recursion is known as a "back-up" and is a form of dynamic programming.

Vector Equation Formulation (an intuition)

 Value function is a discrete function. For each state it is a value. Writing it as a vector we can use the relationship above to compute it.

Sequential Decision-making: Assigning rewards to sequences)

- An MDP models a sequential decision making task till a time horizon τ
- What if we don't know τ , and so may need to run for an arbitrarily-long horizon (or literally expect to run forever).
 - Known as the "infinite horizon" setting.
- The discount factor biases the value towards getting more reward sooner.
 - Getting a rupee today is better than getting it tomorrow which is better than the day after.
- Value function is guaranteed to exist in the infinite horizon case if $\gamma < 1$ and the reward function R is bounded.

Assigning Rewards to Sequences

- Additive utility: $U([r_0, r_1, r_2, ...]) = r_0 + r_1 + r_2 + \cdots$
- Discounted utility: $U([r_0, r_1, r_2, ...]) = r_0 + \gamma r_1 + \gamma^2 r_2 ...$

Discounting appears to be a good model for both animal and human preferences over time.

• With discounted rewards, the utility of an infinite sequence is finite.

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\text{max}}/(1-\gamma)$$

Value Function

■ The finite horizon value function given by Eq 3 becomes an increasingly good approximation as $t \to \infty$, and V^{π} represents a fixed point of this recursion.

$$V^{\pi}(s) = E_{s_{0:\infty}} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, \pi(s_{t}), s_{t+1}) \right]$$

$$= \sum_{s'} p(s'|s, \pi(s)) \left(R(s, \pi(s), s') + \gamma \cdot E_{s_{0:\infty}} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, \pi(s_{t}), s_{t+1}) \right] \right)$$

$$= \sum_{s'} p(s'|s, \pi(s)) \left(R(s, \pi(s), s') + \gamma \cdot V^{\pi}(s') \right).$$
(9)

■ We can also solve this fixed point as a vector equation as before:

$$V^{\pi} = R^{\pi} + \gamma T^{\pi} V^{\pi} \tag{11}$$

$$\Rightarrow V^{\pi} - \gamma T^{\pi} V^{\pi} = T^{\pi} R^{\pi} \tag{12}$$

$$\Rightarrow (I - \gamma T^{\pi})V^{\pi} = T^{\pi}R^{\pi} \tag{13}$$

$$\Rightarrow V^{\pi} = (I - \gamma T^{\pi})^{-1} T^{\pi} R^{\pi} \tag{14}$$

Policy Evaluation

- An approach is iterative policy evaluation.
- Calculate the utilities (values) if the agent follows a given fixed policy until convergence.
- The computed value function may not be the optimal. It is the "best" we can get with a given policy.

Algorithm 1 Computing the value of an MDP policy.

```
POLICY-EVALUATION(\mathcal{S}, \pi, R, T, \gamma, \epsilon)

1 t = 0

2 for each state s \in \mathcal{S}

3 V_0[s] = 0

4 repeat

5 change = 0

6 t = t + 1

7 for each state s \in \mathcal{S}

8 V_t[s] = \left(\sum_{s'} T(s, \pi[s], s') \left[R(s, \pi[s], s') + \gamma \cdot V_{t-1}(s')\right]\right)

9 change = \max(change, V_t[s] - V_{t-1}[s])

10 until change < \epsilon

11 return V_t
```

Given the policy what is the value of each state when we are using this policy?

Policy Evaluation: Example

- Recall the grid world. Let us guess a policy at random, and evaluate it.
- The MDP model:
 - $S = \{(0,0), (0,1), (0,2), (1,1) \dots (3,2)\}$
 - T(s, a, s') = .8 if s' is the nominal destination given s and a
 - T(s, a, s') = .2/n if s' is a neighbour of the nominal destination given s and a and is a legal state (for n legal states)
 - R(s) = +1 if s = (3,2)
 - R(s) = -1 if s = (3,1)
 - \blacksquare R(s) = -.1 otherwise
 - $\gamma = 0.9$

Policy Evaluation: Example

(b) V^1

Let us consider the state (2,2)

$$V^{1}(2,2) = R((2,2)) + \gamma \sum_{s'} p(s'|s,a)V^{0}(s')$$

$$= -.1 + .9(.8 \times 0 + .1 \times 0 + .1 \times 0)$$

$$= -.1$$

$$V^{2}(2,2) = R((2,2)) + \gamma \sum_{s'} p(s'|s,a)V^{1}(s')$$

$$= -.1 + .9(.8 \times 1 + .1 \times -.1 + .1 \times -1)$$

$$= .521$$

Policy Improvement

Illustration in a grid world example.

Policy Iteration

- Consider improving the policy
 - Given the fixed utility values for states (obtained via policy evaluation)
 - Examine if there is a better policy using one step look ahead.

Algorithm 2 An algorithm for computing an MDP policy by repeated evaluation and improvement.

```
POLICY-ITERATION(S, A, R, T, \gamma, \epsilon)
  1 for each state s \in S
             i = rand(0, |A|)
             \pi[s] = a_i
      V_0 = \text{Policy-Evaluation}(S, \pi, R, T, \gamma, \epsilon)
  6 repeat
             change = 0
             t = t + 1
             for each state s \in \mathcal{S}
                    \pi_t[s] = \operatorname{argmax}_a \left( \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma \cdot V_{t-1}(s') \right] \right)
10
             V_t = \text{Policy-Evaluation}(S, \pi, R, T, \gamma, \epsilon)
11
             for each state s \in S
12
                    change = change + V_t[s] - V_{t-1}[s]
13
      until change < \epsilon
```

Key Idea:

- Evaluate and improve the policy.
- Interleave evaluation and improvement

Policy Iteration

Remember to evaluate the policy, we fixed π and constructed R^{π} an T^{π} .

```
2 Construct new T^{\pi}, R^{\pi}
 V = (I - \gamma T^{\pi})^{-1} R^{\pi}
Policy-Iteration(S, A, R, T, \gamma, \epsilon)
     for each state s \in \mathcal{S}
          i = rand(0, |A|)
           \pi[s] = a_i
    V_0 = \text{Policy-Evaluation}(S, \pi, R, T, \gamma, \epsilon)
  6 repeat
            change = 0
           t = t + 1
          for each state s \in S
  9
                  \pi_t[s] = \operatorname{argmax}_a \left( \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma \cdot V_{t-1}(s') \right] \right)
 10
           V_t = \text{Policy-Evaluation}(S, \pi, R, T, \gamma, \epsilon)
 11
            for each state s \in \mathcal{S}
 12
 13
                  change = change + V_t[s] - V_{t-1}[s]
      until change < \epsilon
```

Policy Iteration Example

- Interleaving policy evaluation and policy improvement.
- Notice the policy changing over time.
- We are guaranteed to reach the optimal policy.

Important Quantities

The value (utility) of a state s:

V*(s) = expected utility starting in s and acting optimally

The value (utility) of a q-state (s,a):

Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

The optimal policy:

 $\pi^*(s)$ = optimal action from state s

Grid World Values

Value (utility) of states V(s) for all states

Value (utility) of a q-states Q(s,a) for all states and all actions at each state.

Bellman Equations

 Definition of "optimal" utility via a simple one-step lookahead relationship amongst optimal values.

Optimal value function for a state s maximizes the Q-values of the state s and applicable actions a.

$$V^*(s) = \max_{a} Q^*(s, a)$$

Q value function: how can we express it? Take the action a on state s and then act optimally.

$$Q^*(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^*(s')]$$

Recursive way to write the value function (we have seen this definition before).

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

 The utility of a state is the immediate reward for that state plus the expected discounted utility of the next state assuming that the agent is acting optimally.

Key Idea

 Calculate the optimal value function for each state. Then use the optimal value function to extract the optimal policy.

Bellman Equations

• The utility of a state is the immediate reward for that state plus the expected discounted utility of the next state assuming that the agent is acting optimally.

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

What is the intuition?

- Value of a state is not arbitrary, it is influenced by the neighbors.
- The Bellman equation encode this relationship.
- Methods to compute the policy exploit this relationship.

• Bellman equations *characterize* the optimal values:

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

• Value iteration *computes* them with a fixed-point iteration also called the Bellman update/backup:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- In essence, value iteration provides the optimal policy for a finite horizon problem of length one, then two-step, then three step, and so on.
- Equivalently, one step of policy evaluation and one step of policy improvement.

```
Value Iteration, for estimating \pi pprox \pi_*
Algorithm parameter: a small threshold \theta > 0 determining accuracy of estimation
Initialize V(s), for all s \in S^+, arbitrarily except that V(terminal) = 0
Loop:
   Loop for each s \in S:
        v \leftarrow V(s)
        V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]
        \Delta \leftarrow \max(\Delta, |v - V(s)|)
until \Delta < \theta
Output a deterministic policy, \pi \approx \pi_*, such that
   \pi(s) = \operatorname{arg\,max}_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]
```

Stopping Criteria

Assuming and infinite horizon MDP with a discount factor less then a relationship between successive difference between value functions and w.r.t to the optimal can be shown.

The relationship leads to a stopping criteria for value iteration.

```
if ||U_{i+1} - U_i|| < \epsilon(1 - \gamma)/\gamma then ||U_{i+1} - U|| < \epsilon
        function VALUE-ITERATION(mdp, \epsilon) returns a utility function
           inputs: mdp, an MDP with states S, actions A(s), transition model P(s' \mid s, a),
                         rewards R(s), discount \gamma
                     \epsilon, the maximum error allowed in the utility of any state
           local variables: U, U', vectors of utilities for states in S, initially zero
                                \delta, the maximum change in the utility of any state in an iteration
           repeat
                U \leftarrow U' : \delta \leftarrow 0
                for each state s in S do
                    U'[s] \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s' \mid s, a) \ U[s']
                    if |U'[s] - U[s]| > \delta then \delta \leftarrow |U'[s] - U[s]|
           until \delta < \epsilon(1-\gamma)/\gamma
           return U
```

k=0

k=1

k=2

k=3

k=4

k=5

k=6

k=7

k=8

k=9

k = 10

k = 11

k=12

k = 100

How to extract the policy?

- Assume that we have the optimal values V*(s)
 - After applying the value iteration algorithm
- Policy Extraction
 - Extract the policy implied by the computed value function by (using 1-step look ahead).

$$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

Once we have the values computed, how to get the policy (arrows)?

Asynchronous Value Iteration (Prioritized Sweeping)

- Value iteration so far assumes all states in V_t are updated using values from prior value function V_{t-1} .
 - Requires keeping two functions
- Alternate approach is to keep a single value function estimate \hat{V} and update states in order

$$\hat{V}(s) = R(s) + \gamma \max_{a} \sum_{s} p(s'|s, a) V(s')$$

- Sweeping through the states in order: Gauss-Seidel value iteration
- Can perform updates to a smaller number of states. Still the algorithm converges as long as a state is not starved.
- In essence backup with priority states whose successors change the most. Avoid backing up a state if the successors are not changing.
- After a backup update the priority queue.

Policy Iteration vs. Value Iteration

- Value Iteration and Policy Iteration both compute the optimal values.
- Policy iteration may in many cases by more computationally expensive.
- For a finite policy space (i.e., discrete state, discrete actions), policy iteration is guaranteed to converge in a finite number of iterations.
 - Value iteration does not have the same guarantees.