Question number	Scheme	Marks	
4 (a)	$v = \int (6t - 12) dt = 3t^2 - 12t (+c)$	M1A1	
	When $t = 0$, $v = 0$ so $c = 0$	Alcso	
	$v = 3t^2 - 12t = 3 \times 2^2 - 12 \times 2 = -12 \text{ (m/s)}$	[3]	
(b)	$v = 0$, $3t^2 - 12t = 0 \Rightarrow 3t(t - 4) = 0 \Rightarrow T = 4$	M1A1	
(c)	$s = \int (3t^2 - 12t) dt = t^3 - 6t^2 (+k)$	[2] M1	
	$d = \left \left[t^3 - 6t^2 \right]_0^4 \right + \left[t^3 - 6t^2 \right]_4^8 = 32 + 160 = 192 \text{ (m)}$	M1A1 [3]	
Alternative			
(c)	$s = \int (3t^2 - 12t) dt = t^3 - 6t^2 (+k)$	M1	
	At time $t = 0$, distance $= 0$, $k = 0$		
	$t = 4$ $s = 4^3 - 6 \times 4^2 = 64 - 96 = -32$		
	$t = 8$ $s = 8^3 - 6 \times 8^2 = 512 - 384 = 128$	M1	
	Total distance travelled = $32 + 32 + 128 = 192$ (m)	A1	
	Tota	al 8 marks	

()	3.71	A.,		
(a)	M1	Attempt to integrate $6t-12$, must see power of t increased by one in either		
		term and no decrease in powers. Do not accept $v = t(6t-12)$.		
	A1	Correct result of integration. Constant is not required.		
	A1cso	Correct velocity. Negative sign is required. Must show or state constant $= 0$.		
(b)	M1	$3t^2 - 12t = 0$ and attempt to solve.		
		ft their integration if M1 awarded in (a).		
	A1	T = 4 Allow $t = 4$. Do not allow if $T = 0$ is also given as an option.		
(c)	M1	Attempt to integrate their velocity providing it includes at least one term in		
		t^2 or higher powers. Must see power of t increased by one in at least one		
		term and no decrease in powers. Do not accept $s = t \times \text{their } v$.		
	M1	Attempt to use limits of 0 to 4 and 4 to 8 and then add the magnitudes of the		
		two values. It their $T = 4$ if M1 awarded in (b).		
	A 1	192		
Alte	Alternative			
(c)	M1	Attempt to integrate their velocity providing it includes at least one term in		
		t^2 or higher powers. Must see power of t increased by one in at least one		
		term and no decrease in powers. Do not accept $v = t(6t - 12)$.		
	M1	Substitute and attempt to find distance when $t = 4$ and when $t = 8$.		
		Working to confirm $k = 0$ must be shown.		
		ft their $T = 4$ if M1 awarded in (b).		
	A1	192		