Vorlesung 7 – 03.11.2023

- Satz: Sei $f(z)=\sum_{k=0}^{\infty}\alpha_kz^k$ mit Konvergenzradius $R\in[0,\infty]$. Sei $|z_0|< R$. Definiere Taylorreihe $g(h):=\sum_{n=0}^{\infty}\frac{f^{(n)(z_0)}}{n!}h^n$. Dann hat g Konvergenzradius mindestens $R-|z_0|$ und $f(z_0+h)=g(h)$ falls $|h|< R-|z_0|$.
- Exponential function $\exp(z) := \sum_{k=0}^{\infty} \frac{1}{k!} z^k$.
- Lemma: $\exp(z_1 + z_2) = \exp(z_1) \exp(z_2)$.
- $\sin(z) := \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} z^{2k+1}$, $\cos(z) := \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} z^{2k}$
- Lemma: $\exp(iz) = \cos(z) + i\sin(z)$
- Lemma: $\sin'(z) = \cos(z)$, $\cos'(z) = -\sin(z)$
- Lemma: Für $y \in \mathbb{R}$ ist $|\exp(iy)| = 1$.