MATH 651: PROBLEM SET 7 SOLUTIONS ARE IN CLASS ON FRIDAY, DEC. 7.

1. (5 points) Given metric spaces X and Y let

$$C_b(X,Y) = \{ f \in C(X,Y) : \sup_{x,z \in X} d_Y(f(x),f(z)) < \infty \}.$$

For $f, g \in C_b(X, Y)$ we consider

$$d_{\infty}(f,g) = \sup_{x \in X} d_Y(f(x), g(x)).$$

It is straightforward to check that $(C_b(X,Y),d_\infty)$ is a metric space. Show that the metric space $(C_b(X;Y),d_\infty)$ is complete if and only if (Y,d_Y) is complete.

- 2. (10 points) Show that every locally compact Hausdorff space is a Baire space.
- 3. (10 points) Consider the metric space C([0,1]) with the sup metric and for every $n \in \mathbb{N}$ let

$$X_n := \{ f \in C([0,1]) : \text{ there is } x \in [0,1] \text{ such that } |f(x) - f(y)| \le n |x - y| \text{ for all } y \in [0,1] \}.$$

- (a) Fix $n \in \mathbb{N}$ and prove that each $f \in C([0,1])$ can be approximated by a zigzag function $g \in C([0,1])$ with very large slopes so that it does not belong to X_n and such that $d_{\infty}(f,g)$ is small.
- (b) Fix $n \in \mathbb{N}$ and prove that every open set $U \subset C([0,1])$ contains an open set that does not intersect X_n .
- (c) Prove that there exists a dense G_{δ} set in C([0,1]) that consists of nowhere differentiable functions.
- 4. (10 points) Let (X, d) be a metric space, let $E \subset X$ be a nonempty precompact set, and let $f: E \to \mathbb{R}$. Assume that there exist L > 0 and $\alpha \in (0, 1]$ such that

$$|f(x) - f(y)| \le L (d(x, y))^{\alpha}$$

for all $x, y \in E$. Define

$$h(x):=\inf\left\{ f(y)+L\left(d\left(x,y\right)\right)^{\alpha}:\,y\in E\right\} ,\quad x\in X.$$

- (a) Prove that h(x) = f(x) for every $x \in E$.
- (b) Prove that

$$\inf_{x \in X} h\left(x\right) = \inf_{y \in E} f\left(y\right).$$

(c) Prove that

$$|h(x) - h(y)| \le L(d(x,y))^{\alpha}$$

for all $x, y \in X$.

5. (5 points) Show that the system of equations:

$$\frac{x^4}{3}\sin(xy) - \frac{7x - y}{8} = 0$$
$$\frac{y^2\cos y}{8} - y + \frac{e^x}{24} = 0$$

has a solution.

6. (10 points) Let $K \in C([-1,1],\mathbb{R})$. Consider the set of continuous functions $X = C([0,1],\mathbb{R})$. Given $f \in X$ let $Tf : [0,1] \to \mathbb{R}$ be defined by

$$Tf(x) := \int_0^1 K(x - y)f(y)dy.$$

Let

$$\mathcal{F}:=\{Tf\ :\ f\in X \text{ and } \max_{x\in[0,1]}|f(x)|\leq 1\}$$

Show that every sequence in \mathcal{F} has a uniformly convergent subsequence.

7. (10 points) Let $f_0(x) = x^2$ on [0,1]. Let us define functions $f_n: [0,1] \to \mathbb{R}$ recursively:

$$f_{n+1}(x) = \int_0^x (f_n(s))^{1/3} ds$$
 for $n = 0, 1, \dots$

Show that for all $n, f_n \in C([0,1],[0,\infty))$. Then show that the sequence of function $\{f_n\}_{n=1,2,...}$ has a uniformly convergent subsequence.