

PROJECTING DATA PROJECTION EXERCISES

Realizado por Jonatan David Contreras B Código: 20192025124.

TABLA DE CONTENIDO

- Proyección Cartográfica.
- SRID
- Manejo de proyecciones
- ¿Cómo PostGis determina la mejor proyección?
- Comparación de datos
- Transformación de datos
- Funciones
- Ejercicios de proyección

¿QUÉ ES UNA PROYECCIÓN CARTOGRÁFICA?

Las proyecciones cartográficas tienen como objetivo representar la superficie tridimensional de la Tierra (esférica o geoidal) en un mapa bidimensional plano. Debido a las diferencias entre una esfera y un plano, siempre se generan distorsiones en algún aspecto (forma, área, distancia o ángulos)

WordPress(Proyecciones cartográficas)

SRID

SPATIAL REFERENCE SYSTEM IDENTIFIER

Spatial Reference System Identifier (Identificador de Sistema de Referencia Espacial). Es un número único que define un Sistema de Referencia Espacial (SRS) específico utilizado para representar y manipular datos geoespaciales en bases de datos y aplicaciones de Sistemas de Información Geográfica (SIG).

Necesidad de proyectar entre sistemas de referencia espacial

- datos
- Integración de Precisión y minimización
 Visualización de distorsiones
 - adecuada

Ejemplo

SELECT * FROM spatial_ref_sys WHERE srid = 4326;

loca_engativa- SRID(4326)

- Nombre Completo: GEOGCS WGS 84
- Datum: WGS_1984
- Eipsiode: WGS 84
- Meridiano: Greenwich Unit: Grados decimales

Authority: EPSG 4326

SRID IN A DATABASE

Spatial Reference System Identifier

A unique identifier associated with a specific coordinate system

SRID: 4326

MANEJO DE PROYECCIONES Funciones

ST_Transform(geometría, srid).

Permitir la conversión de una geometría de un sistema de referencia espacial a otro.

Ejemplo

```
SELECT ST_AsText(ST_Transform(geom,9377))
FROM barrios_enga
WHERE nombre = 'VILLAS DE GRANADA';
```

ST_SRID(geometría)

Obtener el SRID de una geometría específica.

Ejemplo

```
SELECT ST_SRID(geom)
FROM barrios_enga LIMIT 1;
```

ST_SetSRID(geometría, srid)

Establecer un SRID específico para una geometría que puede no tener uno asignado.

Ejemplo

```
UPDATE vias_enga
SET geom = ST_SetSRID(geom, 4326)
WHERE ST_SRID(geom) = 0 OR ST_SRID(geom) IS NULL;
SELECT ST_SRID(geom) AS srid FROM vias_enga;
```

¿CÓMO POSTGIS DETERMINA LA PROYECCIÓN?

spatial_ref_sys

• Contiene las definiciones de diferentes sistemas de referencia espacial, que son necesarios para interpretar y proyectar datos geoespaciales. Cada entrada en esta tabla describe cómo se relacionan las coordenadas de un sistema particular con la superficie de la Tierra.

1

auth_name /auth_srid

Si PostGIS puede identificar un nombre de autoridad válido y un SRID de autoridad en su catálogo interno, utilizará estos para generar la definición de la proyección.

2

Srtext- (Well-Known Text - WKT)

Si el motor puede analizar y crear una definición de proyección a partir del texto srtext, lo usará.

3

proj4text

• Finalmente, si las dos anteriores no están disponibles, PostGIS intentará procesar la definición desde el texto

COMPARACIÓN DE DATOS

Ubicación

- Una coordenada y un SRID juntos definen una ubicación específica en el mundo.
- Sin un SRID, una coordenada es solo una noción abstracta.

Sistema de coordenadas

- Un plano de coordenadas "Cartesiano" se define como un sistema "plano" sobre la superficie de la Tierr&.
- Las funciones de PostGIS operan en este plano, requiriendo que ambas geometrías tengan el mismo SRID para comparaciones.

Precauciones al usar

ST_Transform

 Los índices espaciales se construyen con el SRID de las geometrías almacenadas.
 Comparaciones en diferentes SRID pueden evitar el uso de estos índices.

Mejores prácticas

• Elige un único SRID para todas las tablas de la base de datos.

Ejemplo: Si ingresa geometrías con SRID diferentes, solo obtendrá un error:

```
SELECT ST_Equals(
ST_GeomFromText('POINT(0 0)', 4326),
ST_GeomFromText('POINT(0 0)', 26918)

ERROR: ST_Equals: Operation on mixed SRID geometries (Point, 4326) != (Point, 26918)
```

TRANSFORMACIÓN DE DATOS

SELECT srtext FROM spatial_ref_sys WHERE srid = 9377;

• Conversión a coordenadas proyectadas

SRID 9377 - Corresponde a proyección cónica en el WGS84 spheroid"

Ejemplo: Convierta las coordenadas del barrio 'VILLAS DE GRANADA' en proyectadas

```
SELECT ST_AsText(ST_Transform(geom,9377))
FROM barrios_enga
WHERE nombre = 'VILLAS DE GRANADA';
```

• Creación de geometría sin especificar SRID:

```
CREATE TABLE geometries (

id SERIAL PRIMARY KEY,

geom geometry
);
```

SELECT f_table_name AS name, srid FROM geometry_columns;

	name name	srid integer
1	incidentes	4326
2	barrios_enga	4326
3	localidad	4326
4	vias_enga	4326
5	geometrias	0

FUNCIONES

ST_AsText

Devuelve la representación de Texto Bien Conocido (WKT) de la geometría/geografía sin metadatos SRID.

ST_SetSRID (geometría, srid)

Establece el SRID en una geometría en un valor entero particular.

ST_SRID (geometría)

Devuelve el identificador de referencia espacial para la ST_Geometry como se define en la tabla spatial_ref_sys.

ST_Transform (geometría, srid)

Devuelve una nueva geometría con sus coordenadas transformadas al SRID referenciado por el parámetro entero.

EJERCICIOS DE PROYECCIÓN

Otras Funciones

• Un recordatorio de algunas de las funciones que hemos visto

1

Suma(expresión): agregar para devolver una suma para un conjunto de registros.

2

ST_Length(linestring): devuelve la longitud del linestring.

3

ST_GeomFromTexto(texto): devoluciones geometry.

Cuál es la longitud de todas las calles de la localidad de Engativa?

```
SELECT Sum(ST_Length(geom))
FROM vias_enga;
```

	sum double precision	
1	6.892241855680622	

¿Cuál es la definición WKT de SRID 9733?

SELECT srtext FROM spatial_ref_sys
WHERE SRID = 9377;

PROJCS["MAGNA-SIRGAS 2018 / Origen-Nacional",GEOGCS["MAGNA-SIRGAS 2018",DATUM["Marco_Geocentrico_Nacional_de_Referencia_2018",SPHEROID["GRS 1980",6378137,298.257222101],TOWGS84[0,0,0,0,0,0,0]],PRIMEM["Greenwich",0,AUTH ORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","20046"]],PROJECTION["Transverse_Mercator"],PARAMETER["latit ude_of_origin",4],PARAMETER["central_meridian",-73],PARAMETER["scale_factor",0.999 2],PARAMETER["false_easting",5000000],PARAMETER["false_northing",2000000],UNIT["metre",1,AUTHORITY["EPSG","9001"]],AUTHORITY["EPSG","9377"]]

¿Cuál es la longitud de todas las calles de Engativa, medida en SRID 9377?

```
SELECT Sum(ST_Length(ST_Transform(geom,9377)))
FROM vias_enga;
```

sum double precision

762923.0850653197

¿Cuántas calles cruzan la avenida calle 80?

```
SELECT count (vias)
FROM vias_enga vias, vias_enga comparada
WHERE ST_intersects(ST_Transform (vias.geom,9377),
ST_Transform (comparada.geom,9377))
AND comparada.mvietiquet = 'Avenida Calle 80';
```


MUCHAS GRACIAS