High School Students' DSGE Modelling With Dynare

Weijie Chen¹

Department of Political and Economic Studies

University of Helsinki

April 1, 2012

 $^{^1\}mathrm{Any}$ questions, please send email to weijie.chen@helsinki.fi.

Abstract

This the simplest DSGE model ever, even a high school student can understand what this is. The purpose of this note is to illustrate a two-equation linear rational expectation model and how to employ Dynare to play with it. If you do not have faith on climbing the mountain of DSGE yet, this shall be your first step. We will work through solution and Bayesian estimation in this note.

1 Simplest DSGE Model

We only have two endogenous variables in this linear DSGE (LRE) model, y and x. And we will start with a single exogenous variable first, u.

We specify an agent behaviour rule,

$$y_t = \beta E_t y_{t+1} + x_t \tag{1}$$

and an exogenous Markov process to describe the behaviour of nature,

$$x_t = \rho x_{t-1} + \varepsilon_t \qquad \varepsilon_t \sim iid(0, \sigma^2), \quad |\rho| < 1$$
 (2)

 y_t is forward-looking variable and x_t backward-looking variable. The basic idea of solving (1) is to find a difference equation to describe the dynamic of y_t by its own history and its shocks ε .¹ x_t is already fully described by its history and nature, namely x_{t-1} and ε , thus we don't need to worry about x_t .

We solve y_t forwards, move one period forwards,

$$y_{t+1} = \beta E_{t+1} y_{t+2} + x_{t+1}$$

Take condition expectation,

$$E_t y_{t+1} = \beta E_t [E_{t+1} y_{t+2}] + E_t x_{t+1} = \beta E_t y_{t+2} + E_t x_{t+1}$$
 (3)

where the second equation makes use of iterated law of expectation. Substitute back to (1),

$$y_t = \beta(\beta E_t y_{t+2} + E_t x_{t+1}) + x_t = \beta^2 E_t y_{t+2} + \beta E_t x_{t+1} + x_t \tag{4}$$

Then move (1) forwards two periods,

$$y_{t+2} = \beta E_{t+2} y_{t+3} + x_{t+2}$$

¹ This is the core idea of solving DSGE model.

Take conditional expectation,

$$E_t y_{t+2} = \beta E_t [E_{t+2} y_{t+3}] + E_t x_{t+2} = \beta E_t y_{t+3} + E_t x_{t+2}$$

Substitute into (3),

$$E_t y_{t+1} = \beta^2 (\beta E_t y_{t+3} + E_t x_{t+2}) + \beta E_t x_{t+1} + x_t$$
$$= \beta^3 E_t y_{t+3} + \beta^2 E_t x_{t+2} + \beta E_t x_{t+1} + x_t$$

Perform recursive substitution infinite times, we get

$$y_t = E_t \sum_{i=0}^{\infty} \beta^i x_{t+i} \tag{5}$$

where we have used the transversality condition

$$\lim_{i \to \infty} E_t y_{t+i} = 0$$

We find the time path of y_t described by x, we need to take a deeper look into x_t , move (2) one period forwards and take conditional expectation,

$$E_t x_{t+1} = E_t [\rho x_t + \varepsilon_t] = \rho x_t$$

Move two periods and take conditional expectation,

$$E_t x_{t+2} = E_t [\rho x_{t+1} + \varepsilon_{t+2}] = \rho E_t x_{t+1} = \rho^2 x_t$$

Then we can deduct that

$$E_t x_{t+i} = \rho^i x_t$$

Substitute to (5),

$$y_t = \sum_{i=0}^{\infty} \beta^i E_t x_{t+i} = \sum_{i=0}^{\infty} \beta^i \rho^i x_t = x_t \sum_{i=0}^{\infty} \beta^i \rho^i$$

where the third equation holds because x_t has no i anymore. If we make a key assumption here $|\beta| < 1$, we can use geometric series rewrite the last equation,

$$y_t = x_t \sum_{i=0}^{\infty} \beta^i \rho^i = \frac{x_t}{1 - \beta \rho} \tag{6}$$

However, we still need to replace x_t by ε 's, we come back to (??),

$$x_{t} - \rho x_{t-1} = \varepsilon_{t}$$

$$(1 - \rho L)x_{t} = \varepsilon_{t}$$

$$x_{t} = \frac{\varepsilon_{t}}{1 - \rho L}$$
(7)

Substitute (7) back to (6),

$$y_{t} = \frac{\varepsilon_{t}}{1 - \rho L} \frac{1}{1 - \beta \rho}$$

$$y_{t} - \rho y_{t-1} = \frac{1}{1 - \beta \rho} \varepsilon_{t}$$

$$y_{t} = \rho y_{t-1} + \frac{1}{1 - \beta \rho} \varepsilon_{t}$$
(8)

(8) is the final solution of first equation. Together with (2),

$$y_t = \rho y_{t-1} + \frac{1}{1 - \beta \rho} \varepsilon_t$$
$$x_t = \rho x_{t-1} + \varepsilon_t$$

In vector form,

$$\begin{bmatrix} y_t \\ x_t \end{bmatrix} = \rho \begin{bmatrix} y_{t-1} \\ x_{t-1} \end{bmatrix} + \varepsilon_t \begin{bmatrix} \frac{1}{1-\beta\rho} \\ 1 \end{bmatrix}$$
 (9)

(9) is the so-called *policy and transition function*, which describes the dynamics of the system on a saddle-path.

However, since the system can be collapsed into one equation, the policy function can simply be (8) too.

2 Dynare Code and Results

Here is the Dynare code for the simplest DSGE model

var x y;
varexo e;

```
parameters rho beta;
beta=0.9;
rho=0.9;
model(linear);
y=beta*y(+1)+x;
x=rho*x(-1)+e;
end;
initval;
x = 0;
y = 0;
end;
steady;
check;
resid;
shocks;
var e; stderr 0.1;
end;
stoch_simul(periods=900,order=1,irf=40,drop=400,aim_solver) y x;
```

Recalibrate with $\rho=0.2$ and $\beta=0.2$ 2 we can see that parameters determines the persistence and amplification of the model economy, the parameters summerise the core behavioural features of economy. From the first graph, we can see the 1% increse in e will push x up 10% and y by 52%.

Figure 1: Impulse response of e

We come back to transition and policy function, the impulse response function at period t will take the form as following, first the state variable x_t

$$x_t = \rho \cdot 0 + 0.1 = 0.1$$

then to endogenous variable y_t ,

$$y_t = \rho \cdot 0 + 0.1 \times \frac{0.1}{1 - 0.9 \times 0.9} = 0.5263$$

The impulse response function for t + 1, state variable

$$x_{t+1} = \rho x_t + 0 = 0.9 \times 0.1 = 0.09$$

and endogenous variable y_{t+1}

$$y_{t+1} = \rho y_t + 0 = 0.9 \times 0.5263 = 0.4737$$

Figure 2: Impulse response of e

Following this pattern you can see that IRF can be represented by

$$x_{t+i} = \rho^i x_t$$

$$y_{t+i} = \rho^i y_t$$

And we can also plot the simulated data 3.

3 Maximum Likelihood Estimation

MLE is a full information estimation method, but we won't talk about any theoretical ideas here. First we need to add another shock u to the system in order to initialise the Kalman filter which will simulate the likelihood

Figure 3: Simulated data

function. Thus our system will be

$$y_t = \beta E_t y_{t+1} + x_t + u_t \qquad u_t \sim N(0, \sigma_u^2)$$

$$x_t = \rho x_{t-1} + e_t \qquad \varepsilon_t \sim N(0, \sigma_\varepsilon^2)$$

Then we add these codes behind

```
save Simul_data y x;

varobs y x;

estimated_params;
beta, 0.8, 0.01, 0.99;
rho, 0.8, 0.01, 0.99;
end;
```

which specifies the parameters we intend to estimate, namely ρ and β .² 0.8 is our initial value setting for estimated parameters, rest of two figures are lower and upper bound.

² For code details refer to Dynare User Guide and Dynare Manual.

Then we estimate with code

The estimation machanism is beyond the scope of this note, for interested readers, please study through *Structural Macroeconometrics* by Dejong.

Here is the log-likelihood function and its mode 4, as you can see from

Figure 4: Log-likelihood function

both plots, the estimated mode is very close to 0.9 as we previous set, which completely reflects the basic idea of Monte Carlo experiment we are implementing here. This MLE is a just-identified case, next we will add more parameters to render the underidentificiation.

We modify the code block with two more parameters to estiamte σ_{ε} and σ_{u}

```
estimated_params;
beta, 0.8, 0.01, 0.99;
rho, 0.8, 0.01, 0.99;
stderr e, 0.1;
```

stderr u, 0.1; end;

Next we can see that Matlab is optimising the log-likelihood function by using Newton-Raphson method iteratively, eighty-six times.

			Max	Line search	Directional	First-order	
Iter	F-count	f(x)	constraint	steplength	derivative	optimality	Procedure
0	5	14016.7	-0.19				
1	14	13635.3	-0.1781	0.0625	-3.12e+005	7.79e+004	
2	19	11180.6	-8.674e-018	1	-29.1	440	
3	39	10009.7	-8.674e-018	3.05e-005	-440	2.86e+004	Hessian modified
4	75	9861.87	-8.674e-018	4.66e-010	-1.41e+003	6.81e+010	Hessian modified twice
5	113	9770.5	-8.674e-018	1.16e-010	-1.47e+003	5.18e+012	Hessian modified twice
6	118	9753.7	0	1	-641	7.34e+003	
7	125	9685.34	-0.004278	0.25	-617	803	
8	130	9657.78	-0.0227	1	-511	920	
9	136	9533.74	-0.04105	0.5	-613	1.12e+004	
10	141	9101.15	-0.03298	1	-2.9e+003	1.15e+003	
11	146	9026.68	0	1	-968	9.2e+003	
12	151	8949.85	-0.02912	1	-2.14e+003	1.04e+003	
13	156	8925.06	-0.02855	1	-490	865	
14	161	8918.35	-0.02853	1	-265	98.6	
15	166	8917.58	-0.02867	1	-96.2	146	
16	171	8917.54	-0.02877	1	-17.1	65.5	
17	176	8917.52	-0.02888	1	-4.5	1.14	
18	181	8917.52	-0.02888	1	-0.119	0.961	
19	186	8917.52	-0.02889	1	-0.0489	1.01	Hessian modified
20	191	8917.52	-0.02892	1	-0.0385	2.05	Hessian modified
21	196	8917.52	-0.02899	1	-0.034	4.23	Hessian modified
22	201	8917.51	-0.02917	1	-0.0317	7.74	Hessian modified
23	206	8917.5	-0.02964	1	-0.0304	13.4	
24	211	8917.47	-0.03086	1	-0.0297	22.7	
25	216	8917.37	-0.03406	1	-0.0292	37.5	
26	221	8917.14	-0.04246	1	-0.029	61.7	
27	226	8916.51	-0.06445	1	-0.0288	101	
28	231	8914.86	-0.1155	1	-0.0287	164	
29	236	8910.51	-0.136	1	-0.0286	266	
30	241	8898.8	-0.1712	1	-0.0284	432	
31	246	8883.37	-8.674e-018	1	-0.042	448	
32	251	8869.43	0	1	-6.08	1.03e+003	Hessian modified
33	256	8865.71	0	1	-3.49	1e+003	

	538	-3.65	1	0	8862.36	261	34
	165	-4.76	1	0	8861.54	266	35
	60.5	-1.31	1	0	8861.34	271	36
	60.8	-0.0602	1	0	8861.31	276	37
	61	-0.0502	1	0	8861.04	281	38
	61	-0.0382	1	0	8860.53	286	39
	122	-0.0354	1	0	8858.99	291	40
	214	-0.033	1	0	8855.14	296	41
	365	-0.0318	1	0	8844.69	301	42
	602	-0.0308	1	0	8815.44	306	43
	984	-0.0297	1	0	8699.09	311	44
Hessian modified	1.6e+003	-0.0388	1	0	8648.74	316	45
	935	-0.183	1	0	8494.19	321	46
	944	-0.071	1	0	8112.33	326	47
Hessian modified	6.62e+003	-0.147	0.25	0	6318.63	333	48
	530	-1.51	0.25	0	6225.19	340	49
	8.87e+003	-2.07	0.5	-0.01626	5539.79	346	50
	3.27e+004	-1.83	0.25	-0.01219	5048.06	353	51
Hessian modified	5.7e+004	-3.44	0.00195	-0.01217	4215.27	367	52
Hessian modified	7e+004	-18.1	0.00781	-0.01973	3268.6	379	53
	5.93e+004	-87.6	0.5	-0.09381	2870.01	385	54
	5.15e+004	-752	0.125	-0.2046	2807.01	393	55
	4.46e+004	-111	0.000977	-0.2044	2209.46	408	56
	3.15e+004	-159	1	0	1311.22	413	57
	2.99e+004	-389	0.25	-0.1431	675.729	420	58
Hessian modified	2.87e+004	-524	0.0625	-0.1535	550.541	429	59
	1.81e+004	-2.41e+003	1	0	-59.13	434	60
	1.44e+004	-4.1e+003	0.25	0	-182.125	441	61
	1.04e+004	-1.73e+003	1	0	-536.142	446	62
Hessian modified	1.87e+004	-2.17e+003	0.0156	-0.01531	-1038.48	457	63
	2.28e+004	-2.23e+003	0.25	-0.0683	-1220.03	464	64
	3.1e+004	-3.46e+003	0.0625	-0.06403	-1245.34	473	65
	2.35e+004	-1.29e+004	0.25	-0.08475	-1362.74	480	66
	9.55e+003	-1.25e+004	0.5	-0.04603	-1472.13	486	67
	3.1e+003	-1.09e+003	0.5	-0.06875	-1492.98	492	68
	2.48e+004	-3.23e+003	0.0313	-0.06726	-1538.59	502	69
	2.72e+003	-3.63e+003	1	-0.07776	-1559.46	507	70
	2.63e+003	-1.12e+003	1	-0.08666	-1572.43	512	71
	3.47e+003	-445	1	-0.07284	-1574.41	517	72
	2.34e+003	-256	0.5	-0.08842	-1576.46	523	73
	2.34e+003	-899	1	-0.0881	-1577.56	528	74
	2.22e+003	-808	1	-0.08907	-1579.4	533	75

	1.95e+003	-766	1	-0.08968	-1581.09	538	76
	1.43e+003	-1.01e+003	1	-0.08807	-1583.72	543	77
	1.27e+003	-1.27e+003	1	-0.08661	-1587.46	548	78
	724	-835	1	-0.08655	-1589.02	553	79
	290	-270	1	-0.0861	-1589.2	558	80
	113	-33.6	1	-0.08537	-1589.23	563	81
	16.3	-10.7	1	-0.08442	-1589.23	568	82
	9.63	-4.43	1	-0.08371	-1589.24	573	83
	2.52	-2.16	1	-0.08345	-1589.24	578	84
Hessian modified	0.543	-1.98	1	-0.08343	-1589.24	583	85
Hessian modified	0.139	-0.182	1	-0.08344	-1589.24	588	86

It is not a fancy technique once you have studied the theory behind it.

However, we get it a notice from Matlab

POSTERIOR KERNEL OPTIMIZATION PROBLEM!

(minus) the hessian matrix at the "mode" is not positive definite!
=> posterior variance of the estimated parameters are not positive.
You should try to change the initial values of the parameters using the estimated_params_init block, or use another optimization routine.
Warning: The results below are most likely wrong!

Just pay attention to last sentence, we know what we are doing above might be completely wrong, even if we can get a nice graph 5 (you will see the strangeness of this graph soon). This is the famous *indentification* problem, which renders a negative definite Hessian matrix.

The most ridiculous part comes, here we are

RESULTS FROM MAXIMUM LIKELIHOOD

parameters

Estimate s.d. t-stat
beta 0.8935 0.0000 0.0000
rho 0.9066 0.0000 0.0000

standard deviation of shocks

Figure 5: Mode Plot Check

```
Estimate s.d. t-stat
e -0.0995 0.0023 42.4270
u -0.1005 0.0024 42.4266
```

For parameters β and ρ , we have quite precise estimated value 0.89 and 0.91, however the t-statistic seems very strange, very close to 0. And for standard deviations of shocks σ_{ε} and σ_{u} are negative numbers, which is impossible. And more funny is that they even have highly significant t-statistics. However, you can notice easily, the estimated standard errors of shocks are simply reversed sign.

4 Bayesian Estimation

Now come to the Bayesian estimation, again, no theories will be discussed here. In order not to waste time on computer, we only estimate one parameter with very short Markov chain.

```
estimated_params;
rho, normal_pdf, 0.7, 0.2;
```

```
end;
```

The details of the codes can be seen on the reference manual. Here we simply demean the data, use two parallel Markov chain with 500 replication, and scale the jumping distribution down to 40%. This is the estimation result

ESTIMATION RESULTS

```
Log data density is 1582.649230.
```

```
parameters

prior mean post. mean conf. interval prior pstdev

rho 0.700 0.9000 0.8990 0.9007 norm 0.2000
```

Posterior mean is exactly 0.9. Since the model is using simulated data, the posterior will look like a spike 6 the gray line on the bottom is normal distribution which is collapse nearly into a straight line, and green dashed line is posterior mode. And here is the Bayesian IRFs 7, Because using simulated model, DGP is exactly we are using here, so the confidence bounds collapse together with IRF makes it look thick line.

Note that here we only provide a parsimonious example, so the results might seen very inappropriate there are lots of functions we have not shown here, reading reference manual would be a good choice.

Figure 6: Prior and posterior

Figure 7: Bayesian IRFs