Exchangeable random variables

detailed balance in time-reversible Markov chains

 $\pi(z)\kappa(\tilde{z}\mid z) = \pi(\tilde{z})\kappa(z\mid \tilde{z})$

ullet q is any proposal distribution

ullet only need to know π up to a normalizing constant

Metropolis — Hastings kernel from x to y:

	1 100 01111	90 1101 110
propose x^*	from $q(\cdot)$	x), then set

 $y = \begin{cases} x^* & \text{with prob. } \alpha, \\ x & \text{with prob. } 1 - \alpha, \end{cases}$

 $\alpha = \min \left(1, \frac{\pi(x^*)q(x \mid x^*)}{\pi(x)q(x^* \mid x)} \right)$

 $Z \sim \pi$, find conditional distribution kernel $\kappa(\cdot \mid z)$ such that if $\tilde{Z} \mid Z \sim \kappa(\cdot \mid Z)$, $(Z, \tilde{Z}) \stackrel{d}{=} (\tilde{Z}, Z)$

```
Equivalently, find conditional density \kappa(\cdot \mid z) such that
```

```
(only worry about conditional exchangeability, because the other condition, knockoff symmetry, is easy to satisfy)
                              (X_j, \tilde{X}_j) = (\tilde{X}_j, X_j) \mid X_{-j}, \tilde{X}_{1:(j-1)}, 1 \le j \le p
```


Exchangeable random variables

(only worry about conditional exchangeability, because the other condition, knockoff symmetry, is easy to satisfy) $(X_i, \tilde{X}_i) \stackrel{\mathcal{Q}}{=} (\tilde{X}_i, X_i) \mid X_{-i}, \tilde{X}_{1:(i-1)}, 1 \le j \le p$

 $Z \sim \pi$, find conditional distribution kernel $\kappa(\cdot \mid z)$ such that if $\tilde{Z} \mid Z \sim \kappa(\cdot \mid Z)$, $(Z, \tilde{Z}) \stackrel{d}{=} (\tilde{Z}, Z)$

Equivalently, find conditional density $\kappa(\cdot \mid z)$ such that $\pi(z)\kappa(\tilde{z} \mid z) = \pi(\tilde{z})\kappa(z \mid \tilde{z})$

detailed balance in time-reversible Markov chains

Metropolis — Hastings kernel from x to y:

propose x^* from $q(\cdot \mid x)$, then set

$$y = \begin{cases} x^* & \text{with prob. } \alpha, \\ x & \text{with prob. } 1 - \alpha, \end{cases} \qquad \alpha = \min\left(1, \frac{\pi(x^*)q(x \mid x^*)}{\pi(x)q(x^* \mid x)}\right)$$

$$\alpha = \min \left(1, \frac{\pi(x^*)q(x \mid x^*)}{\pi(x)q(x^* \mid x)} \right)$$

- $\bullet q$ is any proposal distribution
- only need to know π up to a normalizing constant

1. Introduction

- Variable selection and model-X knockoffs
- Knockoff sampling is difficult
- 2. Characterizing knockoff distributions
 - The characterization theorem
 - Connection to Markov chain Monte Carlo (MCMC)
- 3. Metropolized knockoff sampling (Metro)
 - How it works
 - Time complexity and graphical structure
- 4. Good proposals inspired by the MCMC literature
 - Covariance-guided proposal
 - Multiple-try Metropolis (MTM)
- 5. Simulation results
- 6. Discussion