DATA SCIENCE CLASS 6: LINEAR REGRESSION

- O. BASIC FORM
- I. COEFFICIENTS
- II. INTERPRETATION
- III. COMMON PROBLEMS
- IV. CATEGORICAL VARIABLES

LINEAR REGRESSION

O. BASIC FORM

Q: What is a regression model?

A: A functional relationship between input & response variables.

BASIC FORM

Q: What is a regression model?

A: A functional relationship between input & response variables.

The simple linear regression model captures a linear relationship between a single input variable x and a response variable y:

Q: What is a regression model?

A: A functional relationship between input & response variables.

The simple linear regression model captures a linear relationship between a single input variable x and a response variable y:

$$y = \alpha + \beta x + \varepsilon$$

BASIC FORM

Q: What do the terms in this model mean?

$$y = \alpha + \beta x + \varepsilon$$

$$y = \alpha + \beta x + \varepsilon$$

A: y =**response variable** (the one we want to predict)

BASIC FORM

Q: What do the terms in this model mean?

$$y = \alpha + \beta x + \varepsilon$$

A: y =**response variable** (the one we want to predict)

x =input variable (the one we use to train the model)

$$y = \alpha + \beta x + \varepsilon$$

A: y =**response variable** (the one we want to predict)

x =input variable (the one we use to train the model)

 α = intercept (where the line crosses the y-axis)

$$y = \alpha + \beta x + \varepsilon$$

A: y =**response variable** (the one we want to predict)

x =input variable (the one we use to train the model)

 α = intercept (where the line crosses the y-axis)

 β = regression coefficient (the model parameter)

$$y = \alpha + \beta x + \varepsilon$$

A: y =**response variable** (the one we want to predict)

x = input variable (the one we use to train the model)

 α = intercept (where the line crosses the y-axis)

 β = regression coefficient (the model parameter)

 ε = residual (the error)

$$y = \alpha + \beta x + \varepsilon$$

We can extend this model to several input variables, giving us the multiple linear regression model:

We can extend this model to several input variables, giving us the multiple linear regression model:

$$y = \alpha + \beta_1 x_1 + \dots + \beta_n x_n + \varepsilon$$

I. ESTIMATING COEFFICIENTS

ESTIMATING COEFFICIENTS

Q: How to determine the **impact** of a particular input variable on the response variable?

A: The coefficient estimates $(\hat{\beta})$

ESTIMATING COEFFICIENTS

Q: What is meant by estimates?

A: We are making an inference based off of a sample.

Q: What is meant by estimates?

A: We are making an inference based off of a sample.

Q: What is meant by estimates?

A: We are making an inference based off of a sample.

A fundamental part of statistics is quantifying our confidence that our estimates are reflective of truth.

$$SS_{residuals} = \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

$$SS_{residuals} = \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$
 Observed Result

Q: How to calculate estimates that minimize the sum of squared errors?

A: Through calculus, it can be shown that the following equation minimizes the sum of squared errors.

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

Let's walk through an trivial calculation to see how this works.

$$X = \begin{pmatrix} 1, & 3.385 \\ 1, & 0.48 \\ 1, & 1.35 \\ 1, & 465 \\ 1, & 36.33 \end{pmatrix} \qquad Y = \begin{pmatrix} 44.5 \\ 15.5 \\ 8.1 \\ 423 \\ 119.5 \end{pmatrix}$$

Along the way, we'll review some matrix math.

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

Transposing simply means flipping the columns and rows
$$X^{T}X = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 3.385 & 0.48 & 1.35 & 465 & 36.33 \end{pmatrix} \begin{pmatrix} 1, & 3.385 \\ 1, & 0.48 \\ 1, & 1.35 \\ 1, & 465 \\ 1, & 36.33 \end{pmatrix} = \begin{pmatrix} 5 & 506.54 \\ 506.54 & 217558.38 \end{pmatrix}$$

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

$$X^{T}X = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 3.385 & 0.48 & 1.35 & 465 & 36.33 \end{pmatrix} \begin{pmatrix} 1, & 3.385 \\ 1, & 0.48 \\ 1, & 1.35 \\ 1, & 465 \\ 1, & 36.33 \end{pmatrix} = \begin{pmatrix} 5 & 506.54 \\ 506.54 & 217558.38 \end{pmatrix}$$

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

Only square matrices can be inverted

$$(XX^{T})^{-1} = \begin{pmatrix} 5 & 506.54 \\ 506.54 & 217558.38 \end{pmatrix}^{-1} = \begin{pmatrix} 0.26 & -6.1 \cdot 10^{-4} \\ -6.1 \cdot 10^{-4} & 6.0 \cdot 10^{-6} \end{pmatrix}$$

Taking the inverse of a 2x2 matrix simply means swapping across diagonals and dividing each value by the determinant.

 $\frac{217558.38}{5 \times 217558.38 - 506.54 \times 506.54}$

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

$$X^{T}Y = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 3.385 & 0.48 & 1.35 & 465 & 36.33 \end{pmatrix} \begin{pmatrix} 44.5 \\ 15.5 \\ 8.1 \\ 423 \\ 119.5 \end{pmatrix} = \begin{pmatrix} 610.6 \\ 201205.4 \end{pmatrix}$$

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

$$\begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{pmatrix} = \begin{pmatrix} 0.26 & -6.1 \cdot 10^{-4} \\ -6.1 \cdot 10^{-4} & 6.0 \cdot 10^{-6} \end{pmatrix} \begin{pmatrix} 610.6 \\ 201205.4 \end{pmatrix} = \begin{pmatrix} 37.201 \\ 0.838 \end{pmatrix}$$

II. INTERPRETING THE OUTPUT

INTERPRETING THE OUPUT

There are many important features to understand of a linear regression output. For our purposes, we will discuss the following:

- 1) Coefficient estimate significance using p-value
- 2) Confidence Intervals
- 3) Fit assessment using R²

INTERPRETING THE OUPUT

There are many important features to understand of a linear regression output. For our purposes, we will discuss the following:

- 1) Coefficient estimate significance using p-value
- 2) Confidence Intervals
- 3) Fit assessment using R²

INTERPRETING THE OUPUT

- Q: How to determine the whether a coefficient estimate is significant?
- A: The p-value associated with the coefficient t-value.

Q: How to determine the whether a coefficient estimate is significant?

A: The p-value associated with the coefficient t-value.

Q: What is a p-value?

A: The probability of getting the observed outcome (e.g., the coefficient estimate) if the null hypothesis were true (p < 0.05 is typically considered significant).

Q: What is the null hypothesis for linear regression coefficients?

A: There is no relationship between X and Y.

$$H_0: \beta_j = 0$$

$$H_a: \beta_i \neq 0$$

There are many important features to understand of a linear regression output. For our purposes, we will discuss the following:

- 1) Coefficient estimate significance using p-value
- 2) Confidence Intervals
- 3) Fit assessment using R²

Q: What does the confidence interval mean?

A: 95% of the time, the true coefficients will be in this range.

Q: What does the confidence interval mean?

A: 95% of the time, the true coefficients will be in this range.

Confidence intervals are calculated based off of the error variance

INTERPRETING THE OUPUT

There are many important features to understand of a linear regression output. For our purposes, we will discuss the following:

- 1) Coefficient estimate significance using p-value
- 2) Confidence Intervals
- 3) Fit assessment using R²

INTERPRETING THE OUPUT

Q: How to determine model fit?

A: the R² value associated with the model.

Q: How to determine model fit?

A: the R² value associated with the model.

Q: What is the R² value?

A: The proportion of explained variance, ranges from 0 to 1.

Q: How is the R² value calculated?

$$R^{2} = \frac{SS_{regression}}{SS_{total}} = \frac{\sum_{i=1}^{N} (\hat{y}_{i} - \overline{y})}{\sum_{i=1}^{N} (y_{i} - \overline{y})}$$

Q: How is the R² value calculated?

$$R^{2} = \frac{SS_{regression}}{SS_{total}} = \frac{\sum_{i=1}^{N} (\hat{y}_{i} - y)}{\sum_{i=1}^{N} (y_{i} - y)}$$

Q: How is the R² value calculated?

INTERPRETING THE OUPUT

Q: How good does R² need to be?

A: Hard to be precise here. The threshold for a good R² value ranges widely depending on the domain.

Q: How good does R² need to be?

A: Hard to be precise here. The threshold for a good R² value ranges widely depending on the domain.

However, it provides a benchmark to evaluate different models against one another. We will devote an entire class to model evaluation next week.

INTERPRETING THE OUPUT

One additional caveat: The R^2 should be taken with a grain of salt, since adding more variables will always increase the R^2 , however, this does not mean we are necessarily improving our model.

One additional caveat: The R^2 should be taken with a grain of salt, since adding more variables will always increase the R^2 , however, this does not mean we are necessarily improving our model.

In reality, the Adjusted R², which takes into account the model complexity, is a better measure of performance.

One additional caveat: The R^2 should be taken with a grain of salt, since adding more variables will always increase the R^2 , however, this does not mean we are necessarily improving our model.

In reality, the Adjusted R², which takes into account the model complexity, is a better measure of performance.

Adjusted
$$R^2 = 1 - (1 - R^2) \frac{n - 1}{n - p - 1}$$
 $p = Input \ Variables \quad n = Samples$

As p increases:

- Denominator decreases
- Fraction increases
- Adjusted R² decreases

III. COMMON PROBLEMS

Linear modeling is a parametric technique, meaning that it relies on specific assumptions underlying data:

- 1) Linearity and additivity of the relationship between input and response variables
- 2) Homoscedasticity of the errors
- 3) Statistical independence of the errors
- 4) Normality of the Error Distribution

COMMON PROBLEMS

This section defines two common problems that arise when these assumptions are not met, along with how to identify and remediate them.

- 1) Multicollinearity
- 2) Heteroskedasticity

This section defines two common problems that arise when these assumptions are not met, along with how to identify and remediate them.

- 1) Multicollinearity
- 2) Heteroskedasticity

Q: What is multicollinearity?

A: Multicollinearity (also called collinearity) exists whenever there is a correlation between 2 or more dependent variables.

COMMON PROBLEMS

Q: How does multicollinearity affect my model?

A: Generally, Linear Regression relies on the assumption that each input variable is independent of the other.

- Q: How does multicollinearity affect my model?
- A: Generally, Linear Regression relies on the assumption that each input variable is independent of the other.
- This means that you can vary each input variable independently and still get accurate predictions.

- Q: How does multicollinearity affect my model?
- A: Generally, Linear Regression relies on the assumption that each input variable is independent of the other.
- This means that you can vary each input variable independently and still get accurate predictions.
- When this assumption is not met, it reduces confidence in your coefficient estimates.

COMMON PROBLEMS

Q: How do I identify whether multicollinearity is present in my data?

A: This can be difficult, however, a scatter matrix, or correlation coefficient matrix can help.

Q: How is the correlation coefficient matrix calculated?

A: Most popular method is the Pearson product-moment coefficient (a.k.a., correlation coefficient).

Covariance of x and y $r = \frac{Cov(x, y)}{S_y S_x}$

Sample standard deviation

Q: How is the correlation coefficient matrix calculated?

A: Most popular method is the Pearson product-moment coefficient (a.k.a., correlation coefficient).

$$r = \frac{Cov(x, y)}{S_y S_x} = \frac{\sum_{i=1}^{N} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{N} (x_i - \overline{x})} \sqrt{\sum_{i=1}^{N} (y_i - \overline{y})}}$$

COMMON PROBLEMS

Q: How can I deal with multicollinearity?

A: These variables can be removed, or included in the model as an interaction term.

COMMON PROBLEMS

This section defines two common problems that arise when these assumptions are not met, along with how to identify and remediate them.

- 1) Multicollinearity
- 2) Heteroskedasticity

Q: What is heteroskedasticity?

A: Heteroskedasticity means non-constant variance in the residuals (literally: hetero=different, skedasis=dispersion).

Q: How does heteroskedasticity affect my model?

A: It will distort and therefore decrease confidence in coefficient and prediction estimates.

Q: Why does heteroskedasticity reduce confidence in the model?

A: Because standard errors, confidence intervals, and hypothesis tests all rely on constant error variance.

Q: How to identify heteroskedasticity?

A: Plot the residuals against the predicted response variable (also input variables and time).

Q: How to deal with heteroskedasticity?

Option #1: Conduct log transformation of the response variable.

Coefficients now correspond to percentage change in response variable, rather than unit change.

Q: How to deal with heteroskedasticity?

Option #2: Use Weighted Least Squares.

The weights themselves are an input to the model. This typically means observations with greater deviation contribute less to estimates associated with the coefficients.

IV. CATEGORICAL VARIABLES

Q: How do we deal with categorical variables? (i.e., with k levels)

Major (k=4)

Computer Science

Engineering

Business

Literature

Business

Engineering

Q: How do we deal with categorical variables? (i.e., with k levels)

A: Create a k-1 binary ("dummy") variables.

Major (k=4)	Engineering	Business	Literature
Computer Science	0	0	0
Engineering	1	0	0
Business	0	1	0
Literature	0	0	1
Business	0	1	0
Engineering	1	0	0

Computer Science is the reference

CATEGORIAL VARIABLES

Q: Why k-1 and not k?

A: Because k-1 captures all possible outputs, and to avoid multicollinearity.

Q: Why k-1 and not k?

A: Because k-1 captures all possible outputs, and to avoid multicollinearity.

Q: Does it matter which factor level I leave out?

A: Yes, this is the reference point for all other factor levels.

- Q: Why k-1 and not k?
- A: Because k-1 captures all possible outputs, and to avoid multicollinearity.
- Q: Does it matter which factor level I leave out?
- A: Yes, this is the reference point for all other factor levels.
- Q: Is this a limitation?
- A: Not really, a comparison must have a baseline.

Q: Why k-1 and not k?

A: Because k-1 captures all possible outputs, and to avoid multicollinearity.

Q: Does it matter which factor level I leave out?

A: Yes, this is the reference point for all other factor levels.

Q: Is this a limitation?

A: Not really, a comparison must have a baseline.

Q: Is this the only way to represent categorical data?

A: This is the conventional way to represent nominal data, however, ordinal data can be represented with integers.

Q: What does this mean?

A: Categories that can be ranked (i.e., strongly disagree, disagree, neutral, agree, strongly agree) can be represented as 1, 2, 3, 4, 5.

LINEAR REGRESSION 78

What we covered:

- Basic Form
- Estimating Coefficients
- Interpreting Coefficient Significance
- Confidence Intervals
- R² and Adjusted R²
- Heteroskedasticity
- Multicollinearity
- Categorical Variables

What we covered:

- Basic Form
- Estimating Coefficients
- Interpreting Coefficient Significance
- Confidence Intervals
- R² and Adjusted R²
- Heteroskedasticity
- Multicollinearity
- Categorical Variables

What did we not cover:

- The F and t Distributions
- Deriving the line that minimizes the squared error
- Statistical independence of errors
- Normality of error distribution
- Log-Log / Lin-Log interpretation
- Polynomial Regression
- Stepwise Regression
- Regularization