ЛАБОРАТОРНА РОБОТА № 3 ДОСЛІДЖЕННЯ МЕТОДІВ РЕГРЕСІЇ

Мета роботи: використовуючи спеціалізовані бібліотеки та мову програмування Python дослідити методи регресії даних у машинному навчанні.

Хід роботи:

Зав. каф.

Завдання 1: Створення регресора однієї змінної Лістинг програми:

```
# Diachenko Viktor, ZPI-18, Lab3, Task 1
import pickle
import numpy as np
from sklearn import linear_model
import sklearn.metrics as sm
import matplotlib.pyplot as plt
# Вхідний файл, який містить дані
input_file = 'data_singlevar_regr.txt'
# Завантаження даних
data = np.loadtxt(input file, delimiter=',')
X, y = data[:, :-1], data[:, -1]
# Розбивка даних на навчальний та тестовий набори
num training = int(0.8 * len(X))
num_test = len(X) - num_training
# Тренувальні дані
X_train, y_train = X[:num_training], y[:num_training]
# Тестові дані
X_test, y_test = X[num_training:], y[num_training:]
# Створення об'єкта лінійного регресора
regressor = linear model.LinearRegression()
regressor.fit(X_train, y_train)
```

					ДУ «Житомирська політехн	rireov 20	121 02 (000 Пр2
					ду «житомирська политехн	11Ka».20.	121.03.0	700 – 71p3
Змн.	Арк.	№ докум.	Підпис	Дата				
Розр	об.	Дяченко В. В.				Літ.	Арк.	Аркушів
Пере	евір.	Пулеко I. B.			Звіт з		1	08
Керів	вник				V V			
Н. кс	онтр.				лабораторної роботи	ФІК	$(T \Gamma p)$	3ПІ-18

```
# Прогнозування результату
y_test_pred = regressor.predict(X_test)
# Побудова графіка
plt.scatter(X_test, y_test, color='green')
plt.plot(X_test, y_test_pred, color='black', linewidth=4)
plt.xticks(())
plt.yticks(())
plt.show()
regressor.fit(X_train, y_train)
# Прогнозування результату
y_test_pred = regressor.predict(X_test)
# Побудова графіка
plt.scatter(X_test, y_test, color='green')
plt.plot(X_test, y_test_pred, color='black', linewidth=4)
plt.xticks(())
plt.yticks(())
plt.show()
print("Linear regressor performance:")
print("Mean absolute error =",
round(sm.mean_absolute_error(y_test, y_test_pred), 2))
print("Mean squared error =",
round(sm.mean_squared_error(y_test, y_test_pred), 2))
print("Median absolute error =",
round(sm.median_absolute_error(y_test, y_test_pred), 2))
print("Explain variance score =",
round(sm.explained_variance_score(y_test, y_test_pred), 2))
print("R2 score =", round(sm.r2_score(y_test, y_test_pred), 2))
# Файл для збереження моделі
output_model_file = 'model.pkl'
# Збереження моделі
with open(output model file, 'wb') as f:
    pickle.dump(regressor, f)
# Завантаження моделі
y test pred new = regressor.predict(X test)
print("\nNew mean absolute error =",
round(sm.mean_absolute_error(y_test, y_test_pred_new), 2))
```

		Дяченко <i>В. В.</i>		
		Пулеко I. B.		
Змн.	Арк.	№ докум.	Підпис	Дата

Результат виконання програми:

Рис. 1. Регресивна модель на основі однієї змінної

Рис. 2. Результати оцінки якості

		Дяченко В. В.		
		Пулеко I. B.		
Змн.	Арк.	№ докум.	Підпис	Дата

Завдання 2. Передбачення за допомогою регресії однієї змінної Лістинг програми:

```
# Diachenko Viktor, ZPI-18, Lab3, Task 2
import pickle
import numpy as np
from sklearn import linear model
import sklearn.metrics as sm
import matplotlib.pyplot as plt
# Вхідний файл, який містить дані
input_file = 'data_regr_1.txt'
# Завантаження даних
data = np.loadtxt(input_file, delimiter=',')
X, y = data[:, :-1], data[:, -1]
# Розбивка даних на навчальний та тестовий набори
num_training = int(0.8 * len(X))
num_test = len(X) - num_training
# Тренувальні дані
X_train, y_train = X[:num_training], y[:num_training]
# Тестові дані
X_test, y_test = X[num_training:], y[num_training:]
# Створення об'єкта лінійного регресора
regressor = linear_model.LinearRegression()
regressor.fit(X_train, y_train)
# Прогнозування результату
y_test_pred = regressor.predict(X_test)
# Побудова графіка
plt.scatter(X_test, y_test, color='green')
plt.plot(X_test, y_test_pred, color='black', linewidth=4)
plt.xticks(())
plt.yticks(())
plt.show()
regressor.fit(X_train, y_train)
# Прогнозування результату
y_test_pred = regressor.predict(X_test)
# Побудова графіка
plt.scatter(X_test, y_test, color='green')
```

		Дяченко <i>В. В.</i>		
		Пулеко I. B.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
plt.plot(X_test, y_test_pred, color='black', linewidth=4)
plt.xticks(())
plt.yticks(())
plt.show()
print("Linear regressor performance:")
print("Mean absolute error =",
round(sm.mean_absolute_error(y_test, y_test_pred), 2))
print("Mean squared error =",
round(sm.mean_squared_error(y_test, y_test_pred), 2))
print("Median absolute error =",
round(sm.median_absolute_error(y_test, y_test_pred), 2))
print("Explain variance score =",
round(sm.explained_variance_score(y_test, y_test_pred), 2))
print("R2 score =", round(sm.r2_score(y_test, y_test_pred), 2))
# Файл для збереження моделі
output_model_file = 'model.pkl'
# Збереження моделі
with open(output_model_file, 'wb') as f:
    pickle.dump(regressor, f)
# Завантаження моделі
y test pred new = regressor.predict(X test)
print("\nNew mean absolute error =",
round(sm.mean_absolute_error(y_test, y_test_pred_new), 2))
```

Результат виконання програми:

		Дяченко В. В.		
		Пулеко I. B.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 3. Регресивна модель на основі однієї змінної

Рис. 4. Оцінка результату якості

		Дяченко В. В.		
		Пулеко І. В.		
Змн.	Арк.	№ докум.	Підпис	Дата

ДУ «Житомирська політехніка».
20.121.03.000 — $\mathit{Л}p3$

Завдання 4: Регресія багатьох змінних

Лістинг програми:

```
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model
from sklearn.metrics import mean squared error, r2 score
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split
diabetes = datasets.load_diabetes()
X = diabetes.data
y = diabetes.target
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size = 0.5, random_state =
0)
regr = linear_model.LinearRegression()
regr.fit(Xtrain, ytrain)
ypred = regr.predict(Xtest)
fig, ax = plt.subplots()
ax.scatter(ytest, ypred, edgecolors = (0, 0, 0))
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw = 4)
ax.set_xlabel('Виміряно')
ax.set_ylabel('Передбачено')
plt.show()
```

Результат виконання програми:

		Дяченко В. В.		
		Пулеко I. B.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 5. Регресивна модель на основі багатьох змінних

Посилання на GitHub: https://github.com/diachenkovv/AI_python

Висновки: в ході виконання лабораторної роботи, використовуючи спеціалізовані бібліотеки та мову програмування Python, було досліджено методи регресії даних у машинному навчанні.

		Дяченко В. В.		
		Пулеко I. B.		
Змн.	Арк.	№ докум.	Підпис	Дата