KUNJUNGAN POHON BINER

- Pohon (dalam struktur data)
 - → struktur berisi sekumpulan elemen dimana salah satu elemen adalah **akar** (**root**) dan elemen-elemen lain adalah bagian-bagian pohon yang membentuk susunan hirarki dengan akar sebagai awal mula.
- Elemen-elemen Pohon disebut **simpul** (**node**).

DEFINISI

Struktur pohon telah biasa digunakan dalam kehidupan sehari-hari seperti :

- Silsilah keluarga
- Daftar isi buku
- Struktur organisasi
- Pohon keputusan

Definisi Pohon Biner

• Pohon biner adalah bentuk graf yang terhubung yang tidak memiliki sirkuit dan pada pohon biner selalu terdapat *path* atau jalur yang menghubungkan dua simpul dalam pohon.

TERMINOLOGI POHON BINER

Beberapa terminologi pada pohon biner:

- Simpul akar (root)
 - simpul pohon dengan tingkatan tertinggi
- Simpul daun (*leaf*)
 - simpul-simpul pada pohon yang **tidak lagi** memiliki simpul anak (*child*)
- Induk (parent)
 - simpul yang merupakan induk dari children-nya
- Anak dari simpul x
 - akar-akar (root) dari subpohon—subpohon dari simpul x adalah anak dari x
- Siblings
 - anak dari induk yang sama

TERMINOLOGI POHON BINER

Beberapa terminologi pada pohon biner:

- Moyang (anchestor)
 simpul-simpul disepanjang jalur dari simpul ke root
- Level suatu node
 jika simpul pada level p, maka children-nya adalah
 berada pada level p + 1
- *Height* atau *depth*Pohon memiliki ketinggian (height) atau kedalaman yang merupakan level tertinggi + 1.
- Weight
 Pohon memiliki berat (weight) yang merupakan banyaknya Daun pada Pohon.

TERMINOLOGI POHON BINER

CONTOH:

Dari contoh diatas diperoleh:

Banyak simpul (node) : 6 (n)

Banyak ruas (*edge*) : 5 (n-1)

Root: A

Leaf : D, E dan F

: A parent dari B dan C Parent

B parent dari D dan E

: 0 = A

 $1 = B \operatorname{dan} C$

2 = D, E dan F

Height (ketinggian) : level tertinggi + 1

2 + 1 = 3

Level

BINARY TREE (POHON BINER)

 Jumlah maximum tingkatan simpul dari pohon biner adalah 2, jika ada penambahan dilakukan penelusuran ke kiri dan ke kanan yang ditetapkan sebagai subpohon.

BINARY TREE (POHON BINER)

- Jumlah maximum tingkatan simpul dari pohon biner adalah 2, jika ada penambahan dilakukan penelusuran ke kiri dan ke kanan yang ditetapkan sebagai subpohon.
- Dua pohon biner bisa dikatakan sama jika keduanya memiliki struktur yang sama.
- Dua pohon biner dikatakan equivalent jika keduanya sama dan berisi informasi yang sama.

POHON UMUM DAN POHON BINER

- Pohon Umum
 - Pohon yang simpulnya terhubung lebih dari 2 simpul anak
 - Pohon umum tidak dapat diproses komputer dan harus dijadikan pohon biner
- Algoritma untuk mengubah pohon umum ke pohon biner
 - 1. Hubungkan semua simpul yang bersaudara 1 parent
 - 2. Hapus ruas yang terhubung ke setiap simpul anak, kecuali ruas yang paling kiri
 - 3. Ruas mendatar hasil penambahan, diputar searah jarum jam sebesar 45 derajat (1/8 lingkaran)

SEQUENTIAL SEARCH

- Proses mengunjungi melalui satu pohon dengan cara setiap simpul dikunjungi hanya satu kali yang disebut tree travesal (kunjungan pohon)
- Aktifitas sequential search adalah Mengunjungi akar / root, Menelusuri subtree kiri, dan Menelusuri subtree kanan dari sebuah pohon biner.

BINARY SEARCH TREE SEBAGAI INDEKS

- Pohon juga berguna untuk menggambarkan sekumpulan data yang memiliki cabang struktur logik.
- Contoh pohon biner yang menggambarkan pernyataan aritmatika :

REVIEW

INFIX

A + B

A - B * C

 $A - B * C ^ D$

POSTFIX

AB+

ABC*-

ABCD^*-

PREFIX

+AB

- A * B C

- A * B ^ C D

METODE SEQUENTIAL SEARCH (1)

- > Traversal PRE-ORDER
 - 1. Kunjungi akar
 - 2. Menelusuri subtree kiri dalam pre-order
 - 3. Menelusuri subtree kanan dalam pre-order

TRAVERSAL IN-ORDER (PREFIX)

• Notasi infix : ((A - B) / (C * D) + E)

tentukan transversal pre-order (prefix) pohon biner nya, yaitu dari atas ke bawah (**akar-kiri-kanan**), dinyatakan dengan urutan simpul bertanda panah, mulai dari awal yaitu dari root sampai akhir simpul yaitu simpul E.

Dengan urutan pre-order (prefix) : / - A B + * C D E.

METODE SEQUENTIAL SEARCH (2)

- > Traversal IN-ORDER
 - 1. Menelusuri subtree kiri dalam in-order
 - 2. Kunjungi akar
 - 3. Menelusuri subtree kanan dalam in-order

TRAVERSAL IN-ORDER (INFIX)

- Dari pohon tentukan transversal yaitu berturutturut dari kiri ke tengah dan ke kanan (**kiriakar-kanan**).
- Dari panah yang menunjukkan urutan simpul tersebut didapat transversal in-order (infix)
- Dengan urutan : A B / C * D + E

METODE SEQUENTIAL SEARCH (3)

- > Traversal POST-ORDER
 - 1. Menelusuri subtree kiri dalam post-order
 - 2. Menelusuri subtree kanan dalam post-order
 - 3. Kunjungi akar

TRAVERSAL POST-ORDER (POSTFIX)

- Dari urutan transversal post-order (postfix) dapat kita tentukan dari simpul bawah yaitu A sampai simpul atas yaitu bagi (/), (kiri-kananakar) dapat kita lihat urutannya yaitu
- \circ A B C D * E + /