	INNOPOLIS UNIVERSITY
	64D : 4 T 1 422
	"Project Task4"
_	DYNAMICS OF NON-LINEAR
	DINAMICS OF NON-LINEAR
	ROBOTIC SYSTEMS
	By:
	Ahmed Mohsen Mohamed Abdelkhalek Elsayed Ali
	Date
	2-Oct-2021

Home Task 4

This report show the result of code implementation for Home Task 4. There are some code files attached with this report that contain the following:

- \bullet Dynamics_Symbolic.m show the derivation for M(q), C(q,dq), g used in the dynamics equation. It shows them in symbolic
- Dynamics.m show the values for the above three matrices based in the user input values.

Derivation

1) Center of mass equations

In order to find position equation for each center of mass, its CoM for joint i was assumed to be at distance ci from the local origin. Then using DH, we were able to determine the equations for each CoM as follow:


```
X_{c} = \frac{q_{b}[c_{b}[s_{1}s_{5}+c_{5}[c_{1}s_{2}s_{4}-c_{1}c_{2}c_{4}]] + s_{b}[c_{1}c_{2}s_{4}+c_{1}c_{4}s_{2}]}{-l_{5}[s_{1}s_{5}+c_{1}[c_{1}s_{2}s_{4}]] + (l_{2}+l_{3})c_{1}c_{2}+l_{4}[c_{1}c_{2}c_{4}-c_{4}s_{2}]}
Y = y_{c_{5}} = c_{c_{5}}[c_{6}[c_{6}[c_{1}s_{5}-c_{5}[s_{1}s_{2}s_{4}-c_{2}c_{4}s_{4}]] - s_{b}[c_{2}s_{1}s_{4}]
Y = c_{c_{5}} = c_{6}[s_{6}[c_{6}[c_{2}s_{4}-c_{2}c_{4}s_{4}]] - s_{b}[c_{2}s_{1}s_{4}]
Z = Z_{c_{5}} = c_{6}[s_{6}[s_{6}[c_{2}c_{4}-s_{2}s_{4}]] + c_{5}[s_{6}[c_{2}s_{4}+c_{4}s_{2}]]
```

This is the DH parameters used to calculate CoM equations:

2) Mass matrix:

The mass matrix was calculated symbolic as shown in the following code snippet:

```
M_q_lin = m1*transpose(jac_lin_1)*jac_lin_1+m2*transpose(jac_lin_2)*jac_lin_2+m3*transpose(jac_lin_3)*jac_lin_3+m4*transpose(jac_lin_4)*jac_li
M_q_ang = transpose(jac_ang_1)* rot_z1(1:3,1:3) *I* transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(jac_ang_2)* rot_z2(1:3,1:3) *I* transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(jac_ang_2)* rot_z2(1:3,1:3) *I* transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(jac_ang_2)* rot_z2(1:3,1:3) *I* transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(jac_ang_2)* rot_z2(1:3,1:3) *I* transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(jac_ang_2)* rot_z2(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transpose(rot_z1(1:3,1:3))*jac_ang_1+transp
```

To view the full matrix: write M_q in the command line

3) Corriolis matrix:

This is the equations used to calculate Corriolis matrix

```
C = sym(zeros(6));
for i=1:6
    for j=1:6
        eval(strcat('m', string(i), string(j), ' = M_q(', string(i), ', ', string(j), ');')) %mij = M_q(i,j)
        eval(strcat('c', string(i), string(j), ' = sym(0);')%cij = sym(0)
        for k=1:6
        eval(strcat('m', string(i), string(k), ' = M_q(', string(i), ', ', string(k), ');')) %mik = M_q(i,k)
        eval(strcat('m', string(j), string(k), ' = M_q(', string(j), ', ', string(k), ');')) %mjk = M_q(j,k)

        eval(strcat('c', string(i), string(j), string(j), ', ', string(i), string(j), ', theta_', string(k), ')+diff(m', string(i), string(i), string(j), ' + c', string(i), string(j), string(j), 'string(k), ', ')) %cij = end
        eval(strcat('Corlios(', string(i), ', ', string(j), ') = c', string(i), string(j), ';')) %C(i,j) = cij
end
end
```

To view the full matrix: write C in the command line.

4) Gravity matrix:

To view the full matrix: write g_final in the command line.

5) Dynamics Equation:

```
ddq1 dq1 dq2 dq2 dq3 dq3 M(q)ddq4 + C(q,dq) dq4 + g(q) = \tau ddq5 dq6 dq6
```

For the following parameters:

The τ was equal to:

T =

-735.4400
198.2900
40.0000
74.4400
-58.6200
5.0200