Measures of Similarity and Dissimilarity

Lecture-4 22 Jul 2020

Overview

- Concept of similarity and dissimilarity
- Data matrix and Dissimilarity matrix
- Concept of proximity:
 - Nominal attribute
 - Binary attribute
 - Numeric Data
 - Minkowski Distance
 - Euclidean distance
 - Manhattan distance
 - Ordinal attribute
 - Mixed types
- Cosine similarity

Today

- Concept of similarity and dissimilarity
- Data matrix and Dissimilarity matrix
- Concept of proximity:
 - Nominal attribute
 - Binary attribute
 - Numeric Data
 - Minkowski Distance
 - Euclidean distance
 - Manhattan distance
 - Ordinal attribute
 - Mixed types
- Cosine similarity

- Are the stars in figure similar?
- How will you compare them?

Similarity Concept

- Are the stars in figure similar?
- How will you compare them?

- A and B are similar
- A, B, C have same size
- A, B, and D have same color
- Any more?

Similarity Concept

- A, B, C have same size
- A, B, and D have same color
- Any more?

- Are the stars in figure similar?
- How will you compare them?

So, we are measuring similarity based some **features** like size or color.

Clusters

- Cluster groups of customers have "similar" interest / characteristics
- People within the same cluster are highly similar whereas people belongs to different clusters are highly "dissimilar"

Outliers

- Outliers are the data points which are highly "dissimilar" others
- Similarity/dissimilarity measure is important in identifying outliers

Similarity and dissimilarity

- Distance or similarity measures how close two distributions are
- Quantity that reflects the strength of relationship between two objects or two features
- Three terms:
 - Similarity: how alike two data objects
 - Dissimilarity: how different two data objects are (also called distance)
 - o **Proximity:** similarity or dissimilarity

Similarity and Dissimilarity

- Both are related (inversely)
- Similarity
 - value is between 0 and 1
 - Larger the value, higher the similarity
- Dissimilarity
 - Value is between 0 and 1
 - Higher the value, more dissimilar the objects
- Similarity can be expressed as a function of dissimilarity
 - \circ Sim(i,j) = 1- Dissim(i,j)

Two data structures

- In ML and DM, two common data structures
 - Data matrix
 - Dissimilarity matrix

Two data structures

- In ML and DM, two common data structures
 - Data matrix : used to store data objects
 - **Dissimilarity matrix:** store pairwise dissimilarity

Data matrix

- Object by feature (attribute) structure
- Each row corresponds to an object, a feature vector
- With n objects, and p features, data matrix will be a real matrix of order n by p
- Two mode matrix (object and feature)

Example for Data Matrix

(X_1	X_2	X_3	X_4	X ₅
	sepal length	sepal width	petal length	petal width	class
<i>x</i> ₁	5.9	3.0	4.2	1.5	Iris-versicolor
x ₂	6.9	3.1	4.9	1.5	Iris-versicolor
X 3	6.6	2.9	4.6	1.3	Iris-versicolor
X 4	4.6	3.2	1.4	0.2	Iris-setosa
X 5	6.0	2.2	4.0	1.0	Iris-versicolor
x 6	4.7	3.2	1.3	0.2	Iris-setosa
X 7	6.5	3.0	5.8	2.2	Iris-virginica
X 8	5.8	2.7	5.1	1.9	Iris-virginica
÷				:	:
X ₁₄₉	7.7	3.8	6.7	2.2	Iris-virginica
x_{150}	5.1	3.4	1.5	0.2	Iris-setosa

Table 1.1: Extract from the Iris Dataset

Dissimilarity matrix

- Pairwise dissimilarity (distance) between objects
- Its a square matrix of order n
- Each entry d_{ij} represents the dissimilarity between data points X_i and X_i
- It is a symmetric matrix :
 - Dissim(i,j) = Dissim(j,i)
- All diagonal elements are 0
 - o $d_{ii} = 0$ (since Dissim(i,i)= 0
- One mode matrix

Group	1	2	3	4	5	6	7	8
1	0							
2	4.15	0						
3	11.02	15.01	0					
4	7.16	3.03	18.02	0				
5	43.72	47.49	32.80	50.41	0			
6	54.37	58.23	43.36	61.19	11.12	0		
7	46.34	50.20	35.34	53.16	3.78	8.03	0	
8	55.42	59.27	44.4 2	62.23	12.05	1.12	9.08	0

Attribute Types

Nominal

- Categorical data, numbers given as codes to certain classes
- o Zip code, EmpID, Color
- Can be compared by = or ≠

Ordinal

- Data have meaningful order
- But cannot know how important it is
- Eg: Hardness of material, Toughness of exam (high/medium/low)

Binary

True or false, Yes or No, Male or Female, 0 or 1

Numeric

Integer/real values

- If objects are all nominal (categorical) then proximity measures can be used to measure similarity
- Similarity/Dissimilarity can be measured by simple matching
- The dissimilarity between two objects i and j can be computed based on the ratio of mismatches
- d(i,j) = (p-m)/p
 - o m is the number of matches
 - o p is the total number of attributes

Alternatively

$$\circ$$
 sim(i, j) = 1 - d(i,j) = m/p

Example

Roll Number	Mark	Grade
1	90	A
2	82	В
3	80	В
4	90	A

Dissimilarity Matrix

d(1,1)	d(1,2)	d(1,3)	d(1,4)
d(2,1)	d(2,2)	d(2,3)	d(2,4)
d(3,1)	d(3,2)	d(3,3)	d(3,4)
d(4,1)	d(4,2)	d(4,3)	d(4,4)

Roll Number	Mark	Grade
1	90	A
2	82	В
3	80	В
4	90	Α

Dissimilarity Matrix

d(1,1)= (2-2)/2 = 0	d(1,2)	d(1,3)	d(1,4)
d(2,1)	d(2,2)	d(2,3)	d(2,4)
d(3,1)	d(3,2)	d(3,3)	d(3,4)
d(4,1)	d(4,2)	d(4,3)	d(4,4)

- d(i,j) = (p-m)/p
 - o m is the number of matches
 - o p is the total number of attributes

Roll Number	Mark	Grade
1	90	А
2	82	В
3	80	В
4	90	A

Dissimilarity Matrix

d(1,1)= (2-2)/2 = 0	d(1,2)	d(1,3)	d(1,4)
d(2,1)= (2-0)/2 = 1	d(2,2)	d(2,3)	d(2,4)
d(3,1)	d(3,2)	d(3,3)	d(3,4)
d(4,1)	d(4,2)	d(4,3)	d(4,4)

- d(i,j) = (p-m)/p
 - o m is the number of matches
 - o p is the total number of attributes

Roll Number	Mark	Grade
1	90	Α
2	82	В
3	80	В
4	90	А

Dissimilarity Matrix

d(1,1)= (2-2)/2 = 0	d(1,2)	d(1,3)	d(1,4)
d(2,1)= (2-0)/2 = 1	d(2,2)	d(2,3)	d(2,4)
d(3,1)	d(3,2)	d(3,3)	d(3,4)
d(4,1)	d(4,2)	d(4,3)	d(4,4)

- d(i,j) = (p-m)/p
 - o m is the number of matches
 - o p is the total number of attributes

Roll Number	Mark	Grade
1	90	А
2	82	В
3	80	В
4	90	Α

Complete the computation!!