## 1

## Matrices in Geometry 4.13.42

## EE25BTECH11037 - Divyansh

**Question:** Let  $0 < \alpha < \frac{\pi}{2}$  be a fixed angle. If  $\mathbf{P} = (\cos \theta, \sin \theta)$  and  $\mathbf{Q} = (\cos (\alpha - \theta), \sin (\alpha - \theta))$ , then  $\mathbf{Q}$  can be obtained from  $\mathbf{P}$  by

- (a) clockwise rotation around the origin through an angle  $\alpha$
- (b) anticlockwise rotation around the origin through an angle  $\alpha$
- (c) reflection in the line through origin with slope  $\tan \alpha$
- (d) reflection in the line through origin with slope  $\tan \left(\frac{\alpha}{2}\right)$

## **Solution:**

We know that 
$$\mathbf{Q} = \begin{pmatrix} \cos(\alpha - \theta) \\ \sin(\alpha - \theta) \end{pmatrix}$$
 and  $\mathbf{P} = \begin{pmatrix} \cos\theta \\ \sin\theta \end{pmatrix}$ 

We also know that the rotation matrix  $\mathbf{R} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$ , where  $\alpha$  is anticlockwise.

We can obtain **Q** by

$$\mathbf{Q} = \mathbf{RP} \implies \mathbf{Q} = \begin{pmatrix} \cos\theta\cos\alpha - \sin\theta\sin\alpha \\ \sin\theta\cos\alpha + \cos\theta\sin\alpha \end{pmatrix}$$
(1)

We know from trigonometric identities that

$$\cos(\alpha - \theta) = \cos\theta\cos\alpha + \sin\theta\sin\alpha \tag{2}$$

$$\sin(\alpha - \theta) = \cos\theta \sin\alpha - \sin\theta \cos\alpha \tag{3}$$

If we take  $\alpha$  clockwise, that is, exchange it with  $-\alpha$ , we will get the rotation matrix as

$$\mathbf{R} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \tag{4}$$

Thus, the required rotation matrix is **R** using which **Q** can be obtained from **P** by clockwise rotation around the origin through an angle  $\alpha$ , therefore the correct option is (a)

Let us plot a graph for  $\theta = 45^{\circ}$  and  $\alpha = 30^{\circ}$ 



Fig. 1: Graph for 4.13.42, where  $\theta = 45^{\circ}$  and  $\alpha = 30^{\circ}$