

Lemma	: A day has a vertex of in-deg = 0,
PC:	
	· Let G te a dag.
-	· Start with any $v \in V$.
₩ `	 Start with any v∈ V. If it has a pre-neighbor u, i.e. (u,v)∈ E
<u></u>	then move to u.
	Else v has in-deg=0 & done.
	· Continuing this way the process stops
	in & v -1 steps with an in-deg=0 vertex. Note: The process cannot get in a cycle
	·—
Theore	m: Dag has a top, ordering 7.
Pf:	
	· Let veV be an in-deg=0 vertex.
	· Define $\tau(u) := i := 1$.
	· Remove v from VL its outgoing elges
	from E. Graph G remains a dag.
	· Repeat the process with the least label
	i < i+1.
	· At i= IVI all the vertices are labelled.

· Moreover, $\forall (u,v) \in E$, $\tau(u) \langle \tau(v) \rangle$ is maintained in every iteration, for the labelled vertices u, v. D Naively, & takes O(1V1) time to compute. - Can this be improved? - Yes: Find the in-deg = 0 vertex faster using a queue data structure. (array) - Given dag G= (V, E). · Create a queue Q + p; · For each xe V if (in-deg(x)=0) Enqueue (x,Q); · While $(Q \neq \phi)$ { v ~ Dequeue (Q); T(v) ← i; i←i+1; (contd.)

· For each (v, x) EE {
• For each $(v, x) \in E$ { in-dep $(x) \leftarrow \text{in-dep}(x) - 1;$ if $(\text{in-dep}(n) = 0)$ Enqueue $(x, Q);$
if $(in-dep(n)=0)$ Enqueue (x, Q) ;
3
return 7;

- Correctness: It is labelling in-deg=0 vertex & removing it.
- Time: The two loops have number of runs $\leq |V| + \sum deg(v) = |V| + 2|E|$.

Theorem (Knuth 1968): Topological sorting can be done in O(1VI+IEI) time.

Theorem: Single-source shortest paths, in a dag, can be found in linear time.

Proof:

Proof:
Given a dag G=(V,E,w,x) do topological

	sorting.
	· Initialize L(8) = 0 & L(v) = 00 to = V.
	· Initialize L(8) ← 0 & L(v) ← ∞, the V. · Vue V in order & not behind 8 }
Rossel 1	7V \(\((u,v) \) \(\) \(\)
D, -4/O(if $(L(v) > L(u) + \omega(u,v))$
<u>-</u>	L(v) ← L(u)+ ω(u,v);
	3
	· This works because, inductively, we
	are correctly computing L(u) for nodes
	closer to & in the topological order.
	· Jime: $O(V + \sum deg(u)) = O(V + E)$.
5	uev
Theorem	: Number of paths sort, in a day, can be
0 (computed in linear time.
Theorem	· This works because, inductively, we are correctly computing L(u) for nodes closer to s in the topological order. · Jime: $O(IVI + \sum deg(u)) = O(IVI + IEI)$. · Number of paths sort, in a dag, can be computed in linear time.

Given a dag G=(V, E, 8) do topological sorting.

· Initialize L(v)+0, tveV; · YueV in order & not behind & {
V(u,v) < E { $\frac{1}{3} L(v) \leftarrow L(v) + L(u);$ · By induction on the #hops from s, we can see that L(u) = # paths $s \sim u$. · Time: O(|V|+|E|). Theorem: Given dag G= (V,E) & vertices x1,-,2, we can compute the number of paths of the form x, ~0 x2 ~0.... ~0 xx1 ~0 x in linear time. · Do a topological sort on G. · Check that x, < x, < x, ... < xk. Otherwise the answer is zero. · Let ni be the number of vertices between xi to xi+1, \ i \i \ [k-1].

· Let mi be the respective number of edges. · We can compute $p_i := \# paths x_i \sim x_{i+1}$ in $O(n_i + m_i)$ time. $\Rightarrow \{ b_i \mid i \in [k-1] \} = can be computed in <math>\{ \sum_{i \in [k+1]} O(n_i + m_i) = O(|v| + |E|) time.$ > Number of paths of the form x1~0x2~0...~~0xx is T[pi.
iE[KH]