PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-307840

(43)Date of publication of application: 31.10.2003

(51)Int.CI.

GO3F 7/004 GO3F 7/039 HO1L 21/027

(21)Application number: 2003-035222

(71)Applicant: FUJI PHOTO FILM CO LTD

(22)Date of filing:

13.02.2003 (72)I

(72)Inventor: MOMOTA ATSUSHI

KAWABE YASUMASA

(30)Priority

Priority number: 2002035817

Priority date : 13.02.2002

Priority country: JP

(54) POSITIVE PHOTORESIST COMPOSITION

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a positive photoresist composition excellent in line edge roughness and PED stability and a positive photoresist composition excellent also in sensitivity. SOLUTION: A positive photoresist composition is provided which comprises (a) a resin which is decomposed by the action of an acid to increase solubility in an alkali developing solution and (b) a compound which has a specified oxime sulfonate structure and generates an acid upon irradiation with an actinic ray or a radiation and a compound which has a specified onium salt structure and generates an acid upon irradiation with an actinic ray or a radiation.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2003-307840

(P2003-307840A) (43)公開日 平成15年10月31日(2003.10.31)

(51) Int. Cl. ⁷	識別記号	FΙ		テーマコード (参考)
G03F 7/004	503	G03F 7/004	503	А 2НО25
7/039	601	7/039	601	
H01L 21/027		H01L 21/30	502	R

審査請求 未請求 請求項の数2 OL (全27頁) (21)出願番号 特願2003-35222(P2003-35222) (71)出願人 000005201 富士写真フイルム株式会社 (22)出願日 平成15年2月13日(2003.2.13) 神奈川県南足柄市中沼210番地 (72)発明者 百田 淳 (31)優先権主張番号 特願2002-35817(P2002-35817) 静岡県榛原郡吉田町川尻4000番地 富士写 (32)優先日 平成14年2月13日(2002.2.13) 真フイルム株式会社内 (33)優先権主張国 日本(JP) (72)発明者 河辺 保雅 静岡県榛原郡吉田町川尻4000番地 富士写 真フイルム株式会社内 (74)代理人 100105647 弁理士 小栗 昌平 (外4名)

最終頁に続く

(54) 【発明の名称】ポジ型フォトレジスト組成物

(57)【要約】

【課題】 ラインエッジラフネス及びPED安定性に優れたポジ型フォトレジスト組成物、更には感度にも優れたポジ型フォトレジスト組成物を提供する。

【解決手段】(a)酸の作用により分解し、アルカリ現像液に対する溶解性が増大する樹脂、及び、(b)特定のオキシムスルホネート構造を有する活性光線又は放射線の照射により酸を発生する化合物及び特定のオニウム塩構造を有する活性光線又は放射線の照射により酸を発生する化合物を含有することを特徴とするポジ型フォトレジスト組成物。

【請求項1】 (a)酸の作用により分解し、アルカリ 現像液に対する溶解性が増大する樹脂、(b)下記一般 式(1)で表される活性光線又は放射線の照射により酸 を発生する化合物と、下記一般式(2)~(4)で表さ れる活性光線又は放射線の照射により酸を発生する化合 物の群から選択される少なくとも1種を含有することを 特徴とするポジ型フォトレジスト組成物。

1

【化1】

$$R_1$$
 $N=0-0_2S-R_3$ (1)

一般式(1)中、R₁及びR₂は、各々独立に、アルキル 基、アルケニル基、アルキニル基、アリール基、複素環 基又はシアノ基を表す。 R, とR, は結合して環を形成し てもよい。R,はアルキル基又はアリール基を表す。ま た、R₁とR₂は、単結合又は連結基を介して、一般式 (1) で表される別の化合物のR₁ またはR₂ と結合され ていても良い。

【化2】

$$R_{15}$$
 S^{+} R_{17} X^{-} (3)

$$R_{18} - \stackrel{+}{l} - R_{19} \qquad X^- \qquad (4)$$

一般式(2)~(4)中、R₁₁~R₁₃は、各々独立に、 アルキル基、シクロアルキル基、アシル基又はアリール 30 する樹脂と光酸発生剤からなる2成分系、更に酸との反 基を表す。X は水酸陰イオン、または分子量100以 下のカルボン酸の陰イオンを表す。

【請求項2】 樹脂(a)が一般式(X)で表される基 を有する繰り返し単位、及び、一般式 (Y1) で表され る基を有する繰り返し単位と一般式(Y2)で表される 基を有する繰り返し単位との少なくともいずれかを有す る樹脂であることを特徴とする請求項1に記載のポジ型 フォトレジスト組成物。

【化3】

一般式(X)中、R,及びR,は、各々独立に、水素原子 又はアルキル基を表す。 Zはアルキル基を表す。mは1 ~20の整数を表す。

【化4】

$$R_{20}$$
 (Y1) R_{21} R_{22} (Y2)

一般式(Y1)において、R.。はアルキル基を表す。一 般式(Y2)において、R.,及びR.,は、各々独立に、 アルキル基を表す。

【発明の詳細な説明】

10 [0001]

> 【発明の属する技術分野】本発明は、半導体集積回路素 子、集積回路製造用マスク、プリント配線板、液晶パネ ル等の製造に用いるポジ型フォトレジスト組成物に関す るものである。

[0002]

【従来の技術】ポジ型フォトレジスト組成物として、特 許文献1 (米国特許第4,491,628号)、特許文献 2 (欧州特許第29, 139号) 等に記載されている化 学増幅系レジスト組成物がある。化学増幅型ポジレジス ト組成物は、遠紫外光等の放射線の照射により露光部に 酸を生成させ、この酸を触媒とする反応によって、活性 放射線の照射部と非照射部の現像液に対する溶解性を変 化させパターンを基板上に形成させるパターン形成材料 である。

【0003】上記化学増幅型ポジレジスト組成物は、ア ルカリ可溶性樹脂、放射線露光によつて酸を発生する化 合物(光酸発生剤)、及び酸分解性基を有するアルカリ 可溶性樹脂に対する溶解阻止化合物から成る3成分系 と、酸との反応により分解しアルカリ可溶となる基を有 応により分解しアルカリ可溶となる基を有する樹脂、酸 分解性基を有する低分子溶解阻止化合物、及び光酸発生 剤から成るハイブリット系に大別できる。

【0004】上記のような化学増幅型ポジ型レジスト組 成物において使用する酸の作用により分解して、アルカ リ現像液に対する溶解性が増大する樹脂(酸分解性樹 脂)を2種以上混合して性能改良をする技術は種々知ら れている。更に、特許文献3(欧州特許出願公開第10 24406号)には、酸分解性樹脂と光酸発生剤2種以 40 上を混合して性能改良する技術について記載されてい る。また、特許文献4 (特開2001-166478 号)は、PED安定性、定在波の問題を解消すべく、側 鎖に酸脱離性の脂環アルキル基を有する繰り返し単位と ポリヒドロキシスチレン繰り返し単位を含有する樹脂の 使用を提案している。

【0005】しかしながら、パターン微細化に伴う、ラ インエッジラフネス、及びPED安定性の改良による寸 法変動の抑制が望まれていた。ここで、エッジラフネス とは、レジストのパターンと基板界面のエッジがレジス 50 トの特性に起因して、ライン方向と垂直な方向に不規則

に変動するために、パターンを真上から見たときにエッ ジが凹凸に見えることを言う。この凹凸がレジストをマ スクとするエッチング工程により転写され、電気特性を 劣化させるため、歩留りを低下させる。特に、0.25 μm以下の超微細領域ではエッジラフネスは極めて重要 な改良課題となっている。また、PED (Post Exposur e Delay) 安定性とは、露光後に加熱操作を行なうまで の間、露光装置内、若しくは塗布装置内で放置した場合 の塗膜安定性である。

[0006]

【特許文献1】米国特許第4491628号明細書

【特許文献2】欧州特許第29139号明細書

【特許文献3】欧州特許出願公開第1024406号明 細書

【特許文献4】特開2001-166478号公報 [0007]

【発明が解決しようとする課題】従って、本発明の目的 は、ラインエッジラフネス及びPED安定性に優れた化 学増幅型ポジ型フォトレジスト組成物、更には感度にも 優れた化学増幅型ポジ型フォトレジスト組成物を提供す 20 ることにある。

[0008]

【課題を解決するための手段】本発明者は、かかる現状 に鑑み、鋭意検討した結果、酸分解性樹脂と2種以上の 光酸発生剤を含有するポジ型フォトレジスト組成物を用 いることで、上記目的が達成され、本発明を完成するに 到った。即ち、本発明に係るポジ型フォトレジスト組成 物は下記構成である。

【0009】(1)(a)酸の作用により分解し、アル カリ現像液に対する溶解性が増大する樹脂、(b)下記 30 一般式(1)で表される活性光線又は放射線の照射によ り酸を発生する化合物と、下記一般式(2)~(4)で 表される活性光線又は放射線の照射により酸を発生する 化合物の群から選択される少なくとも1種を含有するこ とを特徴とするポジ型フォトレジスト組成物。

[0010]

【化5】

$$\begin{array}{c}
R_1 \\
N-0-0_2S-R_3 \\
\end{array} (1)$$

【0011】一般式(1)中、R₁及びR₂は、各々独立 に、アルキル基、アルケニル基、アルキニル基、アリー ル基、複素環基又はシアノ基を表す。R₁とR₁は結合し て環を形成してもよい。R,はアルキル基又はアリール 基を表す。また、R」とR」は、単結合又は連結基を介し て、一般式(1)で表される別の化合物の R_i または R_1 と結合されていても良い。

[0012]

【化6】

$$\begin{array}{ccc} R_{11} & & & & & & & & \\ I_{+} & & & & & & & \\ R_{12} - N_{-} R_{14} & & \chi^{-} & & & & \\ I & & & & & & \\ R_{13} & & & & & & \end{array}$$
 (2)

$$R_{15}$$
 S^{+} R_{17} X^{-} (3)

$$R_{18} - \stackrel{+}{i} - R_{19} \quad X^-$$
 (4)

【0013】一般式 (2) ~ (4) 中、R₁₁~R₁₃は、 10 各々独立に、アルキル基、シクロアルキル基、アシル基 又はアリール基を表す。 X は水酸陰イオン、または分 子量100以下のカルボン酸の陰イオンを表す。

【0014】(2)樹脂(a)が一般式(X)で表され る基を有する繰り返し単位、及び、一般式 (Y1) で表 される基を有する繰り返し単位と一般式 (Y2) で表さ れる基を有する繰り返し単位との少なくともいずれかを 有する樹脂であることを特徴とする上記(1)に記載の ポジ型フォトレジスト組成物。

[0015]

【化7】

$$-O - \begin{matrix} H \\ I \\ C \\ CH_3 \end{matrix} - \begin{matrix} \begin{matrix} R^4 \\ C \\ R^5 \end{matrix} - \begin{matrix} Z \end{matrix} \qquad \cdots \propto$$

【0016】一般式(X)中、R,及びR,は、各々独立 に、水素原子又はアルキル基を表す。 2 はアルキル基を 表す。mは1~20の整数を表す。

[0017]

【化8】

$$R_{20} \longrightarrow (Y1) \qquad R_{21} \longrightarrow R_{22} \qquad (Y2)$$

【0018】一般式(Y1)において、R.。はアルキル 基を表す。一般式(Y 2)において、R., 及びR., は、 各々独立に、アルキル基を表す。

[0019]

【発明の実施の形態】以下、本発明を詳細に説明する。 【0020】(a) 酸の作用により分解し、アルカリ 現像液に対する溶解性が増大する樹脂(樹脂(a))

【0021】本発明における酸の作用により分解する基 (酸分解性基ともいう) を有する樹脂は、モノマーを重 合して得られる、分子量分布を有する化合物に、酸分解 性基を導入した構造を有し、酸の作用によりアルカリ可 溶性となる化合物のことである。

【0022】酸分解性基を有する樹脂としては、樹脂の 主鎖又は側鎖、あるいは、主鎖及び側鎖の両方に、酸分 解性基を有する樹脂である。この内、酸分解性基を側鎖 50 に有する樹脂がより好ましい。

5

【0023】次に、酸分解性基が側鎖として結合する場合の母体樹脂としては、側鎖に-OHもしくは-COOH、好ましくは-R°-COOHもしくは-Ar-OH基を有するアルカリ可溶性樹脂である。ここで、-R°-は置換基を有してもよい2価以上の脂肪族もしくは芳香族炭化水素を表し、-Ar-は単環もしくは多環の置換基を有してもよい2価以上の芳香族基を表す。

【0024】本発明において好ましい母体樹脂として は、フェノール性水酸基を有するアルカリ可溶性樹脂で ある。本発明に用いられるフェノール性水酸基を有する 10 アルカリ可溶性樹脂は、o-、m-又はp-ヒドロキシ スチレン(これらを総称してヒドロキシスチレンと言 う)、あるいはoー、mー又はpーヒドロキシーαーメ チルスチレン (これらを総称してヒドロキシーαーメチ ルスチレンと言う) に相当する繰り返し単位を少なくと も30モル%、好ましくは50モル%以上含有する共重 合体又はそのホモポリマー、あるいは該単位のペンゼン 核が部分的に水素添加された樹脂であることが好まし く、pーヒドロキシスチレンホモポリマーがより好まし い。上記共重合体を共重合により調製するためのヒドロ 20 キシスチレン及びヒドロキシーαーメチルスチレン以外 のモノマーとしては、アクリル酸エステル類、メタクリ ル酸エステル類、アクリルアミド類、メタクリルアミド 類、アクリロニトリル、メタクリロニトリル、無水マレ イン酸、スチレン、 α -メチルスチレン、アセトキシス チレン、アルコキシスチレン類、アルキルスチレン類が 好ましく、スチレン、アセトキシスチレン、 t ープチル スチレンがより好ましい。

【0025】本発明において、樹脂(a)としては、アルカリ現像液に対する溶解性が増大する樹脂であれば、何れでもよいが、例えば下記に示されるようなものが挙げられる。

[0026] [化9] OH

CO₂t-Bu

OH

CO₂t-Bu

OH

CO₂t-Bu

OH

【0027】上記式中、Wは酸分解性基を表す。 R''は 酸安定基を表す。

【0028】Wの酸分解性基としては、下記一般式(X)で表される基、下記一般式(X1)で表される基、下記一般式(X2)で表される基、下記一般式(X3)で表される基等が挙げられるが、下記一般式(X)で示される基が好ましい。

[0029]

【化10】

$$-O - \begin{matrix} H \\ C \\ C \\ C \\ CH_3 \end{matrix} - \begin{matrix} R^4 \\ C \\ C \\ R^5 \end{matrix} - z \qquad \cdots \infty$$

[0030]

【化11】

【0031】一般式(X)中、 R_4 及び R_4 は、各々独立に、水素原子又はアルキル基を表す。Zはアルキル基を表す。 $mは1\sim20$ の整数を表す。

【0032】一般式(X1)~(X3)におけるR、R'及びR'は、同一でも異なっていてもよく、アルキル基であり、置換基を有していてもよい。また、R'とR'は互いに結合して、環(例えば3~12員環)を形

成していてもよい。

【0033】R、及びR、としてのアルキル基としては、 直鎖、分岐又は環状のいずれでもよく、また、置換基を 有していてもよい。直鎖アルキル基としては、好ましく は炭素数1~30、さらに好ましくは1~20であり、 例えば、メチル基、エチル基、n-プロピル基、n-ブ チル基、n-ペンチル基、n-ヘキシル基、n-ヘプチ ル基、n-オクチル基、n-ノニル基、n-デカニル基 等が挙げられる。分岐アルキル基としては、好ましくは **炭素数1~30、さらに好ましくは1~20であり、例 10** えば、i-プロピル基、i-プチル基、t-プチル基、 i-ペンチル基、t-ペンチル基、i-ヘキシル基、t -ヘキシル基、i-ヘプチル基、t-ヘプチル基、i-オクチル基、t-オクチル基、i-ノニル基、t-デカ ノイル基等が挙げられる。環状アルキル基としては、好 ましくは炭素数3~30、さらに好ましくは3~20で あり、例えば、シクロプロピル基、シクロブチル基、シ クロペンチル基、シクロヘキシル基、シクロヘプチル 基、シクロオクチル基、シクロノニル基、テトラシクロ ドデカニル基等が挙げられる。

【0034】一般式(X)におけるZとしてのアルキル基としては、直鎖、分岐又は環状のいずれでもよく、また、置換基を有していてもよい。

【0035】直鎖又は分岐アルキル基としては、好ましくは、炭素数1~10であり、例えば、メチル基、エチル基、ロープロピル基、ロープチル基、iープロピル基、ローペンチル基、iーペンチル基、tーペンチル基、nーペンチル基、iーペンチル基、tーペンチル基、nーペプチル基、iーペプチル基、tーペプチル基、nーオクチル基、iーペプチル基、tーオクチル基、nーオクチル基、iーオクチル基、tープニル基、nーデカニル基、iーデカニル基、tーデカニル基、tーデカニル基、なーデカニル基、を挙げることができる。環状アルキル基としては、好ましくは、炭素数3~8であり、例えば、シクロプロピル基、シクロプチル基、シクロペンチル基、シクロペキシル基、シクロペプチル基、シクロペナル基、シクロペプチル基等を挙げることができる。

【0036】一般式 (X1) ~ (X3) におけるR、 R'及びR''としてのアルキル基は、好ましくは炭素数 1~12であり、例えば、メチル基、エチル基、n-プ 40 ロピル基、i-プロピル基、<math>n-プチル基、i-プチル基、t-プチル基、n-ペンチル基、i-ペンチル基、

t-ペンチル基、n-ヘキシル基、i-ヘキシル基、t-ヘキシル基、n-ヘプチル基、i-ヘプチル基、t-イプチル基、n-オクチル基、i-オクチル基、t-オクチル基、n-デカニル基、i-デカニル基、t-デカニル基等を挙げることができる。

8

【0037】また、上記各基の置換基としては、水酸 基、ハロゲン原子(フッ素、塩素、臭素、ヨウ素)、ニ トロ基、シアノ基、上記のアルキル基、上記のシクロア ルキル基、メトキシ基、エトキシ基、ヒドロキシエトキ シ基、プロポキシ基、ヒドロキシプロポキシ基、n-ブ トキシ基、イソプトキシ基、sec-プトキシ基、t-プトキシ基等のアルコキシ基、メトキシカルポニル基、 エトキシカルボニル基等のアルコキシカルボニル基、ベ ンジル基、フエネチル基、クミル基等のアラルキル基、 アラルキルオキシ基、ホルミル基、アセチル基、プチリ ル基、ベンゾイル基、シアナミル基、パレリル基等のア シル基、プチリルオキシ基等のアシロキシ基、上記のア ルケニル基、ビニルオキシ基、プロペニルオキシ基、ア リルオキシ基、プテニルオキシ基等のアルケニルオキシ 基、フェノキシ基等のアリールオキシ基、ベンゾイルオ キシ基等のアリールオキシカルボニル基を挙げることが できる。これらの置換基は更に置換基を有していてもよ 11

くは、炭素数 $1 \sim 10$ であり、例えば、メチル基、エチル基、 $n - \mathcal{I}$ 口ピル基、 $i - \mathcal{I}$ 口ピル基、 $i - \mathcal{I}$ 一パンチル基、 $i - \mathcal{I}$ チル基、 $i - \mathcal{I}$ ましい。

【0039】アルコキシ基としては、メトキシ基、エトキシ基、ヒドロキシエトキシ基、プロポキシ基、ヒドロキシプロポキシ基、n-プトキシ基、イソプトキシ基、sec-プトキシ基等の炭素数1~4個のアルコキシ基が好ましい。アシロキシ基としては、アセトキシ基、プロプノイルオキシ基、プタノイルオキシ基、ベンゾイルオキシ基等の炭素数2~7個のものが好ましい。

【0040】一般式(X)で示される基の具体例を以下に示すが、これらに限定されるものではない。

[0041]

【化12】

【0042】樹脂(a)としては、酸の作用によりアル カリ現像性が増大する樹脂であれば何れでもよいが、上 記一般式(X)で示される基を有し、酸の作用により分 解し、アルカリ現像液に対する溶解性が増大する樹脂 (以下一般式(X)で示される基を有する樹脂ともい う) が好ましく挙げられる。

【0043】本発明では、このような樹脂中における一 般式(X)で示される基を有する繰り返し単位(構造単 位) の含有量としては、全繰り返し単位に対して5モル %~50モル%が好ましく、より好ましくは5モル%~ 30モル%である。

【0044】本発明において一般式(X)で示される基 を有する樹脂中には、上記一般式(X)で示される基以 外に、他の酸分解性基を含んでいてもよい。

【0045】上記一般式(X)で示される基を含有する 樹脂は、対応するビニルエーテルを合成し、テトラヒド ロフラン等の適当な溶媒に溶解したフェノール性水酸基 含有アルカリ可溶性樹脂と既知の方法により反応させる ことで得ることができる。反応は、通常酸性の触媒、好 ましくは、酸性イオン交換樹脂や、塩酸、p-トルエン スルホン酸あるいは、ピリジニウムトシレートのような 50

塩の存在下実施される。対応する上記ピニルエーテル は、クロロエチルビニルエーテルのような活性な原料か ら、求核置換反応等の方法により合成することができ、 また水銀やパラジウム触媒を用いて合成することができ る。また、別の方法として、対応するアルコールとビニ ルエーテルを用いてアセタール交換する方法によっても 合成することができる。この場合、導入したい置換基を アルコールに持たせ、ビニルエーテルは t - プチルビニ ルエーテルのような比較的不安定なビニルエーテルを混 在させ、p-トルエンスルホン酸やピリジニウムトシレ 40 ートのような酸存在下実施される。

【0046】樹脂(a)において、一般式(X)で表さ れる基を有する繰り返し単位としては、下記一般式 (V I)で示される構造単位を挙げることができる。

[0047]

【化13】

【0048】一般式 (VI) における置換基W_iは、上記一般式 (X) で示される基を表す。

【0049】このような一般式 (VI) で示される構造単位の具体的構造を以下に例示するが、本発明はこれらに 10限定されるものではない。

[0050]

【化14】

【0051】 【化15】

【0052】一般式(VI)と共重合できる好ましい繰り返し単位としては、下記一般式(VII)、下記一般式(VIII)で表される構造単位を挙げることができる。前述の構造単位を樹脂に含有させることにより、該樹脂が酸の作用により分解し、アルカリ現像液中での溶解度を制御することができる。また、この構造単位を導入することによって矩形性の優れたプロファイルを達成できる。さらには、一般式(VI)で表される構造単位の量を調整するのに有効である。

[0053]

【化16】

【0054】 R''における酸の作用により分解しない基 (酸安定基という)としては、水素原子、ハロゲン原 子、アルキル基、アルコキシ基、アシロキシ基を表す。 R''の酸安定基において、アルキル基としては、メチル 基、エチル基、プロピル基、nープチル基、secープ チル基、tープチル基の様な炭素数1~4個のものが好 ましい。

【0055】アルコキシ基としては、メトキシ基、エトキシ基、ヒドロキシエトキシ基、プロポキシ基、ヒドロキシプロポキシ基、n-プトキシ基、イソプトキシ基、sec-プトキシ基等の炭素数1~4個のアルコキシ基が好ましい。アシロキシ基としては、アセトキシ基、プロプノイルオキシ基、ブタノイルオキシ基、ベンゾイルオキシ基等の炭素数2~7個のものが好ましい。

【0056】このような一般式 (VIII) で示される構造 単位の重合性モノマーの具体例としては、以下のものが 50 挙げられるが、これらに限定されるものではない。

13

[0057]

【化17】

$$\bigcap_{C_3H_6} \bigcap_{C_2H_6} \bigcap_{H_3CO} \bigcap_$$

[0058]

【化18】

【0059】一般式 (VII)又は (VIII)で示される構造

【0063】一般式 (VI) ~ (VIII) 中、R''は前記酸 安定基を表す。W₁は前記一般式(X)で示される基を 表す。x、yは1~100、zは0~100、但しx+ y + z = 1 0 0

【0064】前記一般式 (VI) 、一般式 (VII) からな る樹脂(a)において、一般式(VI)で表される繰り返 し単位の含有比率は、10モル%以上45モル%以下、 好ましくは15モル%以上40モル%以下である。

【0065】前記一般式 (VI) 、一般式 (VII) とt-プチルアクリレートからなる樹脂における各繰り返し単 位の含有比率は、一般式 (VI) が0モル%以上20モル %以下で t ープチルアクリレートが5モル%以上25モ ル%以下、好ましくは、一般式 (VI) が5モル%以上2 0 モル%以下で t ープチルアクリレートが 1 0 モル%以 50 ② 0.01 < z / (x + y + z) < 0.15、

単位を含む樹脂は、フェノール樹脂あるいは、そのモノ マーへ、塩基存在下で酸無水物と反応させることによ り、あるいは塩基存在下対応するハライドと反応させる ことなどにより得ることができる。

【0060】樹脂(a)としては、前記一般式 (VI)、 一般式 (VII) からなるもの、前記一般式 (VI) 、前記 一般式(VII)、前記一般式(VIII)からなるもの、一 般式(VI)、一般式(VII)とt-プチルアクリレート からなるもの等を挙げることができる。

【0061】尚、樹脂(a)としては、下記に示す、上 記の一般式 (VI) 、一般式 (VII) 、一般式 (VIII) か らなるもの(樹脂(A')) を含むプレンドが好まし

[0062]

【化19】

上20モル%以下である。

【0066】樹脂(a)が含有していてもよい樹脂 (A')のx、y、z比は下記条件を満足することが好 40 ましい。

【0067】 z=0の場合

0.05 < x / (x + y) < 0.50、より好ましくは0.1 < x/ (x+y) <0.45z>0の場合

- $\bigcirc 0.05 < x / (x + y + z) < 0.35$
- ② 0.005 < z / (x + y + z) < 0.25
- $3) \quad x \ge z ,$
- $\bigcirc 0.5 < x / (x + z) < 0.95$

より好ましくは

- ① 0.1 < x / (x + y + z) < 0.25,

 $3) x \ge z .$

4 0.5< x/(x+y) <0.85

【0068】本発明の樹脂は上記条件を満足することにより、プロファイルの矩形性が向上し、特に現像欠陥がさらに改善される。

【0069】一般式(VI)、一般式(VII)又は一般式(VIII)で示される繰り返し構造単位、又は他の重合性モノマーからの繰り返し構造単位は、各々一種、又は二種以上を組み合わせて樹脂中に存在させてもよい。また本発明のポジ型フォトレジスト組成物に含有される樹脂 10(a)は、アルカリ現像液に対する良好な現像性を維持するために、アルカリ可溶性基、例えばフェノール性水酸基、カルボキシル基が導入され得るように適切な他の重合性モノマーが共重合されていてもよい。

【0070】このような本発明の樹脂 (a) の具体的構造を以下に例示するが、本発明はこれらに限定されるものではない。

[0071]

【化20】

【化21】

[0073] [化22]

[0074] [化23]

【0076】 【化25】

【0077】また、樹脂(a)は、上記一般式(X)で 表される基を有する繰り返し単位、及び、一般式(Y 1) で表される基を有する繰り返し単位と一般式 (Y 2) で表される基を有する繰り返し単位との少なくとも いずれかを有する樹脂がPED安定性とともに感度向上 の点で好ましい。

[0078] 【化26】

【0079】一般式 (Y1) において、R.。はアルキル 基を表す。一般式 (Y2) において、R11 及びR11 は、 各々独立に、アルキル基を表す。R10~R11のアルキル 基としては、直鎖でも分岐であってもよく、炭素数1~ 8が好ましく、例えば、メチル基、エチル基、 n-プロ ピル基、イソプロピル基、n-ブチル基、イソブチル基 50

又はsecープチル基を挙げることができる。R₁₀、R 11及びR11としてのアルキル基は、置換基を有していて もよく、置換基としては、例えば、アルコキシ基 (好ま しくは炭素数1~4、例えば、メトキシ基、エトキシ 基、ヒドロキシエトキシ基、直鎖又は分岐プロポキシ 基、直鎖又は分岐プトキシ基)、ハロゲン原子(例え ば、フッ素原子、塩素原子、沃素原子)、シアノ基、ヒ ドロキシ基、カルボキシ基、ニトロ基、アリール基(好 ましくは炭素数6~14、例えば、フェニル基、ナフチ 10 ル基)、アリールオキシ基(好ましくは炭素数6~1 4)、アルキルチオ基 (好ましくは炭素数1~4) など を挙げることができる。

【0080】一般式(Y1)で表される基を有する繰り 返し単位と一般式 (Y2) で表される基を有する繰り返 し単位としては、下記一般式 (Y) で示される繰り返し 単位が好ましい。

[0081] 【化27】

$$\left(\begin{array}{c}
R \\
R \\
A - C - O - Y
\end{array}\right)$$
(Y)

【0082】ここで、Rは、水素原子、ハロゲン原子又 は1~4個の炭素原子を有する置換もしくは非置換の直 鎖もしくは分岐のアルキル基を表す。複数のRは、各々 同じでも異なっていてもよい。Aは、単結合、アルキレ ン基、置換アルキレン基、エーテル基、チオエーテル 30 基、カルボニル基、エステル基、アミド基、スルフォン アミド基、ウレタン基、又はウレア基よりなる群から選 択される単独あるいは2つ以上の基の組み合わせを表 す。Aとしての基は、炭素数20以下が好ましく、単結 合がより好ましい。Yは、上記一般式 (Y1) 又は (Y 2)で表される基を表す。

【0083】以下に、一般式(Y1)で表される基を有 する繰り返し単位と一般式 (Y2) で表される基を有す る繰り返し単位の具体例を挙げるが、これらの限定する ものではない。

[0084] 【化28】

[0087] 【化30】

【0089】樹脂(a)として、好ましい樹脂である上記一般式(X)で表される基を有する繰り返し単位、及び、一般式(Y1)で表される繰り返し単位と一般式(Y2)で表される繰り返し単位との少なくともいずれかを有する樹脂において、上記一般式(X)で表される基を有する繰り返し単位の含有量は、樹脂を構成する全繰り返し単位に対して、5モル%~30モル%が好ましく、より好ましくは5モル%~30モル%が好まして、5モル%~30モル%が好ましく、より好ましくは5モル%~30モル%が好ましく、より好ましくは5モル%~20モル%である。

【0090】樹脂 (a) の分子量は、重量平均 (Mw:ポリスチレン標準) で通常2,000以上、好ましくは3,000~200,000であり、より好ましくは5,000~70,000である。また、分散度 (Mw/Mn) は、好ましくは1.0~4.0、より好ましくは1.0~3.5、特に好ましくは1.0~3.0であり、分散度が小さい程、耐熱性、画像形成性 (パターンプロファイル、デフォーカスラチチュード等) が良好となる。

10 【0091】樹脂(a)のポジ型フォトレジスト組成物中(塗布溶媒を除く)の含有量は、好ましくは50~99重量%、更に好ましくは75~98重量%である。【0092】(b)一般式(1)で表される活性光線又は放射線の照射により酸を発生する化合物、及び、一般式(2)~(4)で表される活性光線又は放射線の照射により酸を発生する化合物本発明のレジスト組成物は、KrFエキシマレーザー光、ArFエキシマレーザー光、エレクトロンビーム等、パターニングする際に照射される活性光線又は放射線により酸を発生する化合物される活性光線又は放射線により酸を発生する化合物で、光酸発生剤として、上記一般式(1)で表される化合物と、上記一般式(2)~(4)で表される化合物(オニウム化合物)から選択される少なくとも1種とを含有する。

【0093】一般式(1)中、R₁及びR₁は、各々独立に、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基又はシアノ基を表す。R₁とR₁は結合して環を形成してもよい。R₁はアルキル基又はアリール基を表す。また、R₁とR₁は、単結合又は連結鎖を介して、一般式(1)で表される別の化合物のR₁またはR₁30と結合されていても良い。

【0094】R、及びR、としての各基は、好ましくは炭 素数1~16であり、置換基を有していてもよい。R₃ としての各基は、好ましくは炭素数1~16、より好ま しくは2~12であり、置換基を有していてもよい。R ı、R,、R,としてのアルキル基は、直鎖、分岐又は環 状のいずれであってもよく、炭素数1~16個のアルキ ル基が好ましい。直鎖又は分岐アルキル基としては、例 えば、メチル基、エチル基、プロピル基、i-プロピル 基、ブチル基、iープチル基、tープチル基、tーアミ 40 ル基、n-ヘキシル基、n-オクチル基、i-オクチル 基、n-デシル基、ウンデシル基、ドデシル基、ヘキサ デシル基等のアルキル基、トリフルオロメチル基、ペル フルオロプロピル基、ペルフルオロブチル基、ペルフル オロー t ープチル基、ペルフルオロオクチル基、ペルフ ルオロウンデシル基、1,1-ビストリフルオロメチル エチル基等が挙げられる。環状アルキル基としては、炭 素数3~8が好ましく、例えば、シクロプロピル基、シ クロペンチル基、シクロヘキシル基等が挙げられる。

【0095】R₁及びR₁としてのアルケニル基は、直) 鎖、分岐又は環状のいずれであってもよく、炭素数2~ 16個のアルケニル基が好ましい。直鎖又は分岐のアルケニル基としては、例えば、アリル基、メタリル基、ビニル基、メチルアリル基、1-プテニル基、3-プテニル基、2-プテニル基、1,3-ペンタジエニル基、5-ヘキセニル基、2-オキソ-3-ペンテニル基、デカペンタエニル基、7-オクテニル基等が挙げられる。環状アルケニル基としては、シクロプテニル基、シクロヘキセニル基、シクロペンタジエニル基、ピシクロ〔4.2.4〕ドデカ-3,7-ジエン-5-イル基等が挙げられる。

27

【0096】 R_1 及び R_1 としてのアルキニル基は、炭素数 $2\sim16$ が好ましく、例えば、エチニル基、プロパルギル基、2 - プチニル基、4 - ヘキシニル基、2 - オクチニル基、フェニルエチニル基、シクロヘキシルエチニル基等が挙げられる。

【0097】 R_1 、 R_1 及び R_3 としてのアリール基は、より好ましくは炭素数 $5\sim16$ であり、更に好ましくはフェニル基、トリル基、メトキシフェニル基、ナフチル基のような炭素数 $6\sim14$ 個のものが挙げられる。複素環基としては、好ましくは炭素数 $5\sim16$ であり、上記アリール基の環構成原子をヘテロ原子で置き換えたものを挙げることができる、例えば、チオフェンフリル基、チエニル基等を挙げることができる。

【0098】上記の各基が有してもよい置換基として

は、例えば、アルキル基(例えば、R₁としてのアルキル基と同様のもの、好ましくは炭素数 1~4、のえば、メトキシ基、好ましくは炭素数 1~4、例えば、メトキシ基、エトキシ基、ヒドロキシエトキシ基、直鎖又は分岐プロポキシ基、直鎖又は分岐プトキシ基)、ハロゲン原子(例えば、フッ素原子、塩素原子、沃素原子)、シアノ基、ヒドロキシ基、カルボキシ基、ニトロ基、アリールオキシ基(好ましくは炭素数 6~14)、アルキルチオ基、アラルキル基(好ましくは炭素数 6~14、例え10 ば、ベンジル基、ナフチルメチル基)、下記一般式(1A)で示される基等が挙げられる。

[0099]

【化32】

$$\nearrow N-O-O_2S- (1A)$$

【0100】上記式中、 $R_1 \sim R_1$ は、前記一般式 (1)中の $R_1 \sim R_1$ と同義である。

基のような炭素数 $6\sim1$ 4 個のものが挙げられる。複素 【0 10 1】一般式(1)で表される化合物の具体例を 環基としては、好ましくは炭素数 $5\sim1$ 6 であり、上記 20 以下に示すが、本発明はこれらに限定されるものではな アリール基の環構成原子をヘテロ原子で置き換えたもの い。

[0102] [化33]

$$C_3H_7SO_3-N$$
 $C \longrightarrow C$
 $C_3H_7SO_3-N$
 $C \longrightarrow C$
 $C_3H_7SO_3-N$
 $C \longrightarrow C$
 $C_3H_7SO_3-N$
 $C \longrightarrow C$
 $C_3H_7SO_3-N$
 $C_$

$$F = \begin{cases} F & F \\ F & SO_3 - N \\ F & F \end{cases} C - O - (CH_2)_3 - O - C - CF_3 \qquad F \qquad F \qquad F$$

$$C_8H_{17}-SO_3-N$$
 C
 CF_3
 CF_3

[0103]

【化34】

【0104】上記一般式(2)~(4)中、 R_{LI} ~ R_{LI} のアルキル基としては、炭素数1~10が好ましく、メチル基、エチル基、プロピル基、i ープロピル基、ブチル基、i ープチル基、t ーアミル基、n ーヘキシル基、n ーオクチル基、i ーオクチル基等が挙げられる。 R_{LI} ~ R_{LI} 。のシクロアルキル基としては、炭素数3~8が好ましく、シクロプロピル基、シクロペンチル基、シクロヘキシル基等が挙げられる。

【0105】R₁₁~R₁,のアシル基としては、好ましくは、アセチル基、プロパノイル基、ブタノイル基、2,2-ジメチルプロパノイル基、シクロヘキシルカルボニル基、ベンゾイル基等が挙げられる。

【0106】 $R_{11} \sim R_{1}$,のアリール基としては、炭素数 $4 \sim 12$ が好ましく、フェニル基、トリル基、メトキシフェニル基、ナフチル基等が挙げられる。

【0107】上記の各基は置換基を有していてもよく、置換基としては、アルキル基、シクロアルキル基、アルコキシ基、ハロゲン原子(フッ素原子、塩素原子、沃素原子)、シアノ基、ヒドロキシ基、カルボキシ基、ニトロ基、アリールオキシ基、アルキルチオ基、アラルキル40基等が挙げられる。ここでアルキル基、シクロアルキル基は上記で挙げたものと同義である。アルコキシ基としては、メトキシ基、エトキシ基、ヒドロキシエトキシ基、プロポキシ基、エーブトキシ基、イソブトキシ基、secーブトキシ基、tーブトキシ基のような炭素数1~4個のものが挙げられる。アラルキル基としては、ベンジル基、ナフチルメチル基、フリル基、チエニル基などが挙げられる。

【0108】上記一般式(2)~(4)中、X は水酸 陰イオン、または分子量100以下のカルボン酸の陰イ 50 オンを表す。分子量100以下のカルボン酸の陰イオンとしては、蟻酸、酢酸、プロピオン酸、n-酪酸、イソ酪酸、乳酸、ヒドロキシ酢酸、蓚酸等の陰イオンが挙げられる。

【0109】一般式(2)~(4)で表される化合物の 具体例を以下に示すが、本発明はこれらに限定されるも のではない。

[0110]

【化35】

30

$$(\bigcirc)_3^+ \text{S}^+ \text{CH}_3\text{COO}^- \qquad \text{(PAG-B1)}$$

$$(\bigcirc)_3^+ \text{S}^+ \text{C}_2\text{H}_5\text{COO}^- \qquad \text{(PAG-B2)}$$

(PAG-B3)

$$(\bigcirc)_{2}^{+} I^{+} n-C_{3}H_{7}COO^{-} (PAG-B6)$$

【0111】 【化36】

【0112】一般式(1)で表される化合物は、例えば S.R. Sandler & W. Karo, Organic functional group prepa rations, Vol.3, Academic Press)に記載された、例えば、ケトン類とヒドロキシルアミン又はその塩との反応、若しくは、「活性」メチレン基を亜硝酸又は重硝酸アルキルによりニトロソ化することにより合成されるオキシム化合物と、所望の酸ハロゲン化物との反応により 20 得る事ができる。

【0113】上記一般式(1)で表される活性光線又は放射線の照射により酸を発生する化合物と、上記一般式(2)~(4)で表される活性光線又は放射線の照射により酸を発生する化合物の群から選択される少なくとも1種を含有する。

【0114】上記一般式(1)で表される活性光線又は放射線の照射により酸を発生する化合物と、上記一般式(2)~(4)で表される活性光線又は放射線の照射により酸を発生する化合物の群から選択される少なくとも1種の使用量は、モル比(上記一般式(1)で表される活性光線又は放射線の照射により酸を発生する化合物/上記一般式(2)~(4)で表される活性光線又は放射線の照射により酸を発生する化合物の群から選択される少なくとも1種)で、通常95/5~20/80、好ま

しくは $95/5\sim40/60$ 、更に好ましくは80/20~50/50である。

【0115】上記一般式(1)で表される活性光線又は放射線の照射により酸を発生する化合物の添加量は、組成物中の固形分を基準として、通常0.1~7重量%、好ましくは0.2~5重量%、更に好ましくは0.2~4重量%である。

【0116】上記一般式(2)~(4)で表される活性 光線又は放射線の照射により酸を発生する化合物の群か 5選択される少なくとも1種の添加量は、組成物中の固 形分を基準として、通常0.01~5重量%、好ましく は0.05~3重量%、更に好ましくは0.1~2重量 %である。

【0117】本発明においては、上記一般式(1)~一般式(4)で表される化合物とともに、他の光酸発生剤を併用してもよい。

【0118】光酸発生剤の添加量(総量)は、組成物中の固形分を基準として、通常0.11~40重量%の範囲で用いられ、好ましくは0.2~20重量%、更に好ましくは1~10重量%の範囲で使用される。光酸発生剤の添加量が、0.11重量%より少ないと感度が低くなる傾向があり、また、添加量が40重量%より多いとレジストの光吸収が高くなりすぎ、プロファイルの悪化や、プロセス(特にベーク)マージンが狭くなる傾向がある。

【0119】本発明の組成物には、有機塩基性化合物を用いることができる。これにより、保存時の安定性が更に向上し、かつPEDによる線巾変化が更に少なくなるため好ましい。本発明で用いることのできる好ましい有機塩基性化合物とは、フェノールよりも塩基性の強い化合物である。中でも含窒素塩基性化合物が好ましい。好ましい化学的環境として、下記式(A)~(E)構造を挙げることができる。

[0120] 【化37】

ここで、R²⁵⁰、R²⁵¹およびR²⁵²は、同一または異なり、水素原子、炭 索数1~6のアルキル基、炭素数1~6のアミノアルキル基、炭素 数1~6のとドロキシアルキル基または炭素数6~20の置換もし くは非置換のアリール基であり、ここでR²⁵¹とR²⁵²は互いに結合して 環を形成してもよい。

$$-N-C=N- \qquad \cdots (B)$$

$$= C-N=C- \qquad \cdots (C)$$

$$= C-N- \qquad \cdots (D)$$

$$= C-N- \qquad \cdots (D)$$

$$R^{253}-C-N-C-R^{255} \cdots (E)$$

(式中、R^{253、R^{254、R²⁵⁵}およびR²⁵⁶は、同一または異なり、炭素数1} ~6のアルキル基を示す)

【0121】更に好ましい化合物は、窒素含有環状化合 物(環状アミン化合物ともいう)あるいは一分子中に異 なる化学的環境の窒素原子を2個以上有する含窒素塩基 性化合物である。環状アミン化合物としては、多環構治 であることがより好ましい。環状アミン化合物の好まし い具体例としては、下記一般式(F)で表される化合物 30 り好ましくは $2\sim5$ 個のものである。アルキレン基の置 が挙げられる。

[0122] [化38]

テロ原子を含んでいてもよく、置換してもよい直鎖、分 岐、環状アルキレン基を表す。ここで、ヘテロ原子とし ては、窒素原子、硫黄原子、酸素原子が挙げられる。ア ルキレン基としては、炭素数2~10個が好ましく、よ 換基としては、炭素数1~6個のアルキル基、アリール 基、アルケニル基の他、ハロゲン原子、ハロゲン置換ア ルキル基が挙げられる。更に、一般式(F)で示される 化合物の具体例としては、下記に示す化合物が挙げられ る。 [0124]

【0123】式 (F) 中、Y及びZは、各々独立に、へ

【化39】

【0125】上記の中でも、1、8-ジアザビシクロ [5.4.0] ウンデカー7ーエン、1、5ージアザビ シクロ〔4.3.0〕ノナー5-エンが特に好ましい。 【0126】一分子中に異なる化学的環境の窒素原子を

しくは、置換もしくは未置換のアミノ基と窒素原子を含 む環構造の両方を含む化合物もしくはアルキルアミノ基 を有する化合物である。好ましい具体例としては、置換 もしくは未置換のグアニジン、置換もしくは未置換のア 2個以上有する含窒素塩基性化合物としては、特に好ま 50 ミノピリジン、置換もしくは未置換のアミノアルキルピ

リジン、置換もしくは未置換のアミノピロリジン、置換もしくは未置換のインダーゾル、置換もしくは未置換のピラゾール、置換もしくは未置換のピラジン、置換もしくは未置換のプリン、置換もしくは未置換のピラゾリン、置換もしくは未置換のピラゾリン、置換もしくは未置換のアミノモルフォリン、置換もしくは未置換のアミノモルフォリン、置換もしくは未置換のアミノアルキルフォリン等が挙げられる。好ましい置換基は、アミノ基、アミノアルキル基、アルキルアミノ基、アミノアリール基、アリールア 10ミノ基、アルキル基、アルコキシ基、アシル基、アシロキシ基、アリール基、アリールオキシ基、アシル基、水酸基、シアノ基である。

【0127】特に好ましい化合物として、グアニジン、 1,1-ジメチルグアニジン、1,1、3,3-テトラメ チルグアニジン、2-アミノピリジン、3-アミノピリ ジン、4-アミノピリジン、2-ジメチルアミノピリジ ン、4-ジメチルアミノピリジン、2-ジエチルアミノ ピリジン、2-(アミノメチル) ピリジン、2-アミノ -3-メチルピリジン、2-アミノ-4-メチルピリジ 20 ン、2-アミノ-5-メチルピリジン、2-アミノ-6 -メチルピリジン、3-アミノエチルピリジン、4-ア ミノエチルピリジン、3-アミノピロリジン、ピペラジ ン、N-(2-アミノエチル)ピペラジン、N-(2-アミノエチル) ピペリジン、4-アミノ-2,2,6,6 ーテトラメチルピペリジン、4 - ピペリジノピペリジ ン、2-イミノピペリジン、1-(2-アミノエチル) ピロリジン、ピラゾール、3-アミノ-5-メチルピラ ゾール、5-アミノ-3-メチル-1-p-トリルピラ ゾール、ピラジン、2-(アミノメチル)-5-メチル 30 ピラジン、ピリミジン、2,4-ジアミノピリミジン、 4,6-ジヒドロキシピリミジン、2-ピラゾリン、3 -ピラゾリン、N-アミノモルフォリン、N-(2-ア ミノエチル) モルフォリン、トリメチルイミダゾール、 トリフェニルイミダゾール、メチルジフェニルイミダゾ ール等が挙げられるがこれに限定されるものではない。 【0128】これらの含窒素塩基性化合物は、単独であ るいは2種以上一緒に用いられる。含窒素塩基性化合物 の使用量は、ポジ型フォトレジスト組成物(溶媒を除 く) 100重量部に対し、通常、0.001~10重量 40 部、好ましくは0.01~5重量部である。0.001 重量部未満では上記効果が得られない傾向があり、10 重量部を超えると感度の低下や非露光部の現像性が悪化 する傾向がある。

【0129】本発明の化学増幅型ポジ型フォトレジスト組成物には必要に応じて、更に界面活性剤、染料、顔料、可塑剤、光増感剤及び現像液に対する溶解性を促進させるフエノール性OH基を2個以上有する化合物等を含有させることができる。

【0130】本発明のポジ型フォトレジスト組成物に

は、界面活性剤を含有することが好ましい。具体的に は、ポリオキシエチレンラウリルエーテル、ポリオキシ エチレンステアリルエーテル、ポリオキシエチレンセチ ルエーテル、ポリオキシエチレンオレイルエーテル等の ポリオキシエチレンアルキルエーテル類、ポリオキシエ チレンオクチルフェノールエーテル、ポリオキシエチレ ンノニルフェノールエーテル等のポリオキシエチレンア ルキルアリルエーテル類、ポリオキシエチレン・ポリオ キシプロピレンブロックコポリマー類、ソルビタンモノ ラウレート、ソルピタンモノパルミテート、ソルピタン モノステアレート、ソルビタンモノオレエート、ソルビ タントリオレエート、ソルビタントリステアレート等の ソルピタン脂肪酸エステル類、ポリオキシエチレンソル ピタンモノラウレート、ポリオキシエチレンソルピタン モノパルミテート、ポリオキシエチレンソルビタンモノ ステアレート、ポリオキシエチレンソルピタントリオレ エート、ポリオキシエチレンソルビタントリステアレー ト等のポリオキシエチレンソルビタン脂肪酸エステル類 等のノニオン系界面活性剤、エフトップEF301、E F303、EF352 (新秋田化成(株) 製)、メガフ アックF171、F173、F176、F189、R0 8 (大日本インキ化学工業(株) 製)、フロラードFC 430、FC431 (住友スリーエム (株) 製)、アサ ヒガードAG710、サーフロンS-382、SC10 1, SC102, SC103, SC104, SC10 5、SC106 (旭硝子 (株) 製) 等のフッ素系界面活 性剤、オルガノシロキサンポリマーKP341(信越化 学工業(株)製)やアクリル酸系もしくはメタクリル酸 系(共)重合ポリフローNo.75、No.95(共栄 社油脂化学工業(株)製)、トロイゾルS-366(ト ロイケミカル(株)製)等を挙げることができる。これ らの界面活性剤の中でも、フッ素系またはシリコン系界 面活性剤が塗布性、現像欠陥低減の点で好ましい。

【0131】界面活性剤の配合量は、本発明の組成物中の全組成物の固形分に対し、通常0.01重量%~2重量%、好ましくは0.01重量%~1重量%である。これらの界面活性剤は1種単独であるいは2種以上を組み合わせて用いることができる。

ェナントレン、2-二トロフルオレン、5-二トロアセナフテン、ペンゾキノン、2-クロロー4-二トロアニリン、N-アセチル-p-二トロアニリン、p-二トロアニリン、N-アセチル-4-二トロ-1-ナフチルアミン、ピクラミド、アントラキノン、2-エチルアントラキノン、2-tert-ブチルアントラキノン、1,2-ペンズアンスラキノン、3-メチル-1,3-ジアザー1,9-ペンズアンスロン、ジペンザルアセトン、1,2-ナフトキノン、3,3'-カルボニルーピス(5,7-ジメトキシカルボニルクマリン)及びコロネン等である10がこれらに限定されるものではない。

【0133】現像液に対する溶解性を促進させるフェノール性OH基を2個以上有する化合物としては、ポリヒドロキシ化合物が挙げられ、好ましくはポリヒドロキシ化合物には、フェノール類、レゾルシン、フロログルシン、フロログルシド、2,3,4ートリヒドロキシベンゾフェノン、2,3,4,4'ーテトラヒドロキシベンゾフェノン、 α , α ', α ''ートリス(4ーヒドロキシフェニル) α , α ', α ''ートリス(4ーヒドロキシフェニル) α , α ', α ''ートリス(4ーヒドロキシフェニル)エタン、トリス(4ーヒドロキシフェニル)エタン、トリス(4ーヒドロキシフェニル)エタン、1,1'ービス(4ーヒドロキシフェニル)シクロヘキサンがある。

【0134】本発明の化学増幅型ポジ型フォトレジスト 組成物は、上記各成分を溶解する溶媒に溶かして支持体 上に塗布するものであり、使用することのできる溶媒と しては、エチレンジクロライド、シクロヘキサノン、シ クロペンタノン、2-ヘプタノン、アープチロラクト ン、メチルエチルケトン、エチレングリコールモノメチ ルエーテル、エチレングリコールモノエチルエーテル、 2-メトキシエチルアセテート、エチレングリコールモ 30 ノエチルエーテルアセテート、プロピレングリコールモ ノメチルエーテル、プロピレングリコールモノメチルエ ーテルアセテート、トルエン、酢酸エチル、乳酸メチ ル、乳酸エチル、メトキシプロピオン酸メチル、エトキ シプロピオン酸エチル、ピルビン酸メチル、ピルビン酸 エチル、ピルビン酸プロピル、N、N-ジメチルホルム アミド、ジメチルスルホキシド、N-メチルピロリド ン、テトラヒドロフラン等が好ましく、これらの溶媒を 単独あるいは混合して使用する。

【0135】上記化学増幅型ポジ型フォトレジスト組成 40 物は精密集積回路素子の製造に使用されるような基板 (例:シリコン/二酸化シリコン被覆)上にスピナー、コーター等の適当な塗布方法により塗布後、所定のマスクを通して露光し、ベークを行い現像することにより良

【0136】本発明の化学増幅型ポジ型フォトレジスト組成物のアルカリ現像液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、リン酸ナトリウム、メタケイ酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、n-プ

好なレジストパターンを得ることができる。

ロピルアミン等の第1アミン類、ジエチルアミン、ジー n-プチルアミン等の第2アミン類、トリエチルアミ ン、メチルジエチルアミン等の第3アミン類、ジメチル エタノールアミン、トリエタノールアミン等のアルコー ルアミン類、ホルムアミドやアセトアミド等のアミド 類、テトラメチルアンモニウムヒドロキシド、トリメチ ル(2-ヒドロキシエチル)アンモニウムヒドロキシ ド、テトラエチルアンモニウムヒドロキシド、トリプチ ルメチルアンモニウムヒドロキシド、テトラエタノール アンモニウムヒドロキシド、メチルトリエタノールアン モニウムヒドロキシド、ペンジルメチルジエタノールア ンモニウムヒドロキシド、ペンジルジメチルエタノール アンモニウムヒドロキシド、ベンジルトリエタノールア ンモニウムヒドロキシド、テトラプロピルアンモニウム ヒドロキシド、テトラプチルアンモニウムヒドロキシド 等の第4級アンモニウム塩、ピロール、ピペリジン等の 環状アミン等のアルカリ類の水溶液(通常0.1~10 重量%)等がある。

[0137]

) 【実施例】以下、本発明によって更に具体的に説明するが、本発明はこれらに限定されるものではない。

【0138】合成例1 [樹脂の合成例]

樹脂の合成は、アセタール化に関してはビニルエーテルを用いる方法、アルコールとアルキルビニルエーテルを用いたアセタール交換法のいずれを用いても合成することが出来る。また、効率よく、また安定的に合成するため、以下に示すような脱水共沸法が好ましく用いることが出来る。ただし、これら合成法は一例であって、これらに限定されることはない。

【0139】(1)樹脂1の合成

日本曹達製VP8000(1800g)とプロピレングリコールモノメチルエーテルアセテート(PGMEA)(8200g)をフラスコ中で溶解し、減圧蒸留を行い、水とPGMEAを共沸留去した。含水が十分低くなったことを確認した後、シクロヘキサンエタノール(576.2g)にピリジニウムーpートルエンスルホネート(9.0g)を加え溶解した溶液を、反応液に添加し、さらに、tープチルピニルエーテル(450.2g)を添加、室温にて5時間撹拌した。反応液に水(3.6リットル)と酢酸エチル(7.2リットル)を添加、分液し、さらに水洗した後、減圧留去によって酢酸エチル、水、共沸分のPGMEAを留去し、本発明に係わる置換基を有するアルカリ可溶性樹脂(樹脂1)(30重量%PGMEA溶液)を得た。また、ポリスチレン基準のGPC測定により、得られたポリマーのMw

【0140】(2)樹脂2の合成 日本曹達製VP15000(100g)とPGMEA (400g)をフラスコ中で溶解し、滅圧蒸留を行い、

ンモニア水等の無機アルカリ類、エチルアミン、n-プ 50 水とPGMEAを共沸留去した。含水が十分低くなった

は11000、Mw/Mnは1.10であった。

ことを確認した後、エチルビニルエーテル (25.0g)とpートルエンスルホン酸 (0.02g)を添加、室温にて1時間撹拌した。反応液にトリエチルアミン (0.03g)を添加、反応を停止させ、水 (400m1)と酢酸エチル (800m1)を添加、分液し、さらに水洗した後、減圧留去によって酢酸エチル、水、共沸分のPGMEAを留去し、本発明に係わる置換基を有するアルカリ可溶性樹脂(樹脂2) (30重量%PGMEA溶液)を得た。また、ポリスチレン基準のGPC測定により、得られたポリマーのMwは18000、Mw/10Mnは1.12であった。

【0141】(3)樹脂3の合成

ポリ (p-ヒドロキシスチレン) 16.2gと塩化イソ ピロピルをアセトン100ml中で溶解し、トリエチル アミン1.8gを反応液に添加し、50~55℃で5時 間攪拌した。反応溶液を1000m1の水に移し、上層 をデカンテーションにより除去した。得られた粘性の樹 脂物質を75mlのアセトン中で溶解させて、その溶液 を水500m1中に移した。その沈殿したゴム状の樹脂 を減圧下で乾燥させ、ポリ(p-ヒドロキシスチレン/ 20 p-イソプロポキシスチレン) 15. 4gを白色紛体と して得た。得られたポリマーのpーヒドロキシスチレン 構造単位とpーイソプロポキシスチレン構造単位の比 は、「H-NMRにより90:10であった。また、ポ リスチレン基準のGPC測定により、得られたポリマー の重量平均分子量Mwは15500、分子量分布Mw/ Mnは1. 12であった。上記のポリ (p-ヒドロキシ スチレン/p-イソプロポキシスチレン) 15.0gと エチルピニルエーテル3.0gを酢酸エチル150m1 に溶解させ、触媒量のp-トルエンスルホン酸をその中 に添加して、その後室温で6時間攪拌して、反応を進行 させた。反応後、合成生成物をトリエチルアミンで中和 し、濃縮した。その粘性の油性残留物を100mlのア セトンに溶解し、さらに沈殿させるために3000m1 の水中に移した。その沈殿させたポリマーをろ過し、水 洗し、減圧乾燥させて、ポリ(p-1-エトキシエトキ

シスチレン/pーヒドロキシスチレン/pーイソプロポキシスチレン) 16.2gを白色紛体として得た。得られたポリマーのp-1ーエトキシエトキシスチレン構造単位、pーヒドロキシスチレン構造単位及びpーイソプロポキシスチレン構造単位の比は、「H-NMRにより30:60:10であった。また、ポリスチレン基準のGPC測定により、得られたポリマーのMwは18000、Mw/Mnは1.12であった。

【0142】(4)樹脂4の合成

〔合成例4-1 ピニルエーテルの合成〕

シクロヘキシルエチルアルコール中にエチルビニルエーテルを混合し、そこへ酢酸水銀を添加して室温にて12時間攪拌した。酢酸エチル、水により抽出、水洗した後、減圧蒸留により目的物であるシクロヘキシルエチルビニルエーテル(X-1)を得た。

[合成例4-2] 常法に基づいて脱水、蒸留精製したp -tert-プトキシスチレンモノマー39.6g (0.225モル) 及び t-Buスチレンモノマー4g (0.025モル) をテトラヒドロフラン100mlに 溶解した。窒素気流及び攪拌下、80℃にてアソビスイ ソプチロニトリル (AIBN) 0.033gを2.5時 間置きに3回添加し、最後に更に5時間攪拌を続けるこ とにより、重合反応を行った。反応液をヘキサン120 0m1に投入し、白色の樹脂を析出させた。得られた樹 脂を乾燥後、テトラヒドロフラン150mlに溶解し た。これに4N塩酸を添加し、6時間加熱環流すること により加水分解させた後、5Lの超純水に再沈し、この 樹脂を濾別し、水洗・乾燥させた。更にテトラヒドロフ ラン200mlに溶解し、5Lの超純水中に激しく攪拌 しながら滴下、再沈を行った。この再沈操作を3回繰り 返した。得られた樹脂を真空乾燥器中で120℃、12 時間乾燥し、ポリ(p-ヒドロキシスチレン/t-プチ ルスチレン)共重合体アルカリ可溶性樹脂R-2を得 た。得られた樹脂の重量平均分子量は9600であっ た。

[合成例4-3]

合成例 4-2 で得られたアルカリ可溶性樹脂 R-2 20g プロピレングリコールモノメチルエーテルアセテート (PGMEA) 80m1

をフラスコ中で溶解し、減圧蒸留を行い、水とPGME Aを共沸留去した。含水が十分低くなったことを確認した後、合成例4-1で得られたビニルエーテルX-1を5.0gとp-hルエンスルホン酸35mgを加え、室温にて1時間攪拌し、トリエチルアミンを添加して反応を終了した。反応液に酢酸エチルを添加、さらに水洗した後、減圧留去によって酢酸エチル、水、共沸分のPG MEAを留去し、本発明に係る本発明に係わる置換基を有するアルカリ可溶性樹脂(樹脂4)を得た。得られた樹脂の重量平均分子量は11000であった。

【0143】(5)樹脂5の合成

をフラスコ中で溶解し、減圧蒸留を行い、水とPGME 40 Triquest社製の、60モル%のP-ヒドロキシスチレンAを共沸留去した。含水が十分低くなったことを確認し /40モル%のアクリル酸-t-Bu共重合樹脂を使用た後、合成例4-1で得られたビニルエーテルX-1を した。重量平均分子量は8500であった。

【0144】(6)樹脂6の合成

(合成例6-1) 常法に基づいて脱水、蒸留精製したpーアセトキシスチレンモノマー51.9g(0.32モル)とメタクリル酸1-アダマンタン-1-イル-1-メチルエチル14.82g(0.0565モル)をテトラヒドロフランに150mLに溶解した。窒素気流及び攪拌下、80℃にてアゾピスイソブチロニトリル(AI50BN)1gを2.5時間置きに3回添加し、最後に更に

5時間攪拌を続けることにより、重合反応を行った。反応液をヘキサン1500mに投入し、白色の樹脂を析出させた。得られた樹脂を乾燥後、テトラヒドロフラン200mに溶解した。これに4N塩酸を添加し、6時間加熱還流することにより加水分解させた後、5Lの超純水に再沈し、この樹脂を適別・水洗・乾燥させた。更にテトラヒドロフラン200mに溶解し、5Lの超純水中に激しく攪拌しながら滴下、再沈する操作を3回繰り返した。得られた樹脂を真空乾燥器中で120℃、12時間乾燥し、ヒドロキシスチレン/メタクリル酸1-アダマ10ンタン-1-イル-1-メチルエチル共重合樹脂R-6を得た。13C-NMRで共重合比を確認したところ、14/86であった。

(合成例6-2) 合成例6-1で得られた樹脂R-6 20gをPGMEA (80g) にフラスコ中で溶解し、 減圧蒸留を行い、水とPGMEAを共沸留去した。含水 が十分低くなったことを確認した後、エチルビニルエー テル(2.5g)とp-トルエンスルホン酸(0.00 2g)を添加、室温にて1時間攪拌した。反応液にトリ エチルアミン(0.003g)を添加、反応を停止さ せ、水80mLと酢酸エチル200mLを添加、分液し、 更に水洗した後減圧留去によって酢酸エチル、水、PG MEAを留去し、本発明に関わる置換基を有する樹脂 (樹脂 6) (30重量% PGMEA溶液)を得た。1H -NMRによりエチルアセタール基の導入量を確認した ところ、ヒドロキシスチレンの水酸基のうち、15%が 保護されていた。また、ポリスチレン基準のGPC測定 により、得られたポリマーの重量平均分子量(Mw)は 9800で、分散度は1.82であった。

【0145】(7)樹脂7の合成

(合成例 7-1) 日本曹達社製ポリヒドロキシスチレン (VP8000) 20gをプロピレングリコールモノメチルエーテルアセテート (PGMEA) に (80g) に フラスコ中で溶解し、減圧蒸留を行い、水とPGMEA を共沸留去した。含水が十分低くなったことを確認した後、エチルピニルエーテル (2.5g) とp-トルエンスルホン酸 (<math>0.002g) を添加、室温にて1時間攪拌した。反応液にトリエチルアミン (0.003g) を

添加、反応を停止させ、水80mLと酢酸エチル200mLを添加、分液し、更に水洗した後減圧留去によって酢酸エチル、水、PGMEAを留去し、樹脂R-7(30重量%PGMEA溶液)を得た。1H-NMRによりエチルアセタール基の導入量を確認したところ、ヒドロキシスチレンの水酸基のうち、20%が保護されていた。(合成例7-2)1-アダマンチル-1-メチルエタノールにエチルピニルエーテルを混合し、そこへ酢酸水銀を添加して室温にて12時間攪拌した。酢酸エチル、水により抽出、水洗した後、減圧留去により1-アダマンチル-1-メチルエチルピニルエチルピニルエーテル(X-2)を得た。

(合成例7-3)合成例7-1で得られた樹脂R-720gをプロピレングリコールモノメチルエーテルアセテート(PGMEA)に(80g)にフラスコ中で溶解し、減圧蒸留を行い、水とPGMEAを共沸留去した。含水が十分低くなったことを確認した後、合成例7-2で得られたビニルエーテルX-2(4.0g)とp-トルエンスルホン酸(0.0025g)を添加、室温にて1時間撹拌した。反応液にトリエチルアミン(0.006g)を添加、反応を停止させ、水80mLと酢酸エチル200mLを添加、分液し、更に水洗した後減圧留去によって酢酸エチル、水、PGMEAを留去し、本発明に関わる置換基を有する樹脂(樹脂7)を得た。また、ポリスチレン基準のGPC測定により、得られたポリマーの重量平均分子量(Mw)は10200で、分散度は1.12であった。

【0146】(8)樹脂8の合成

合成例7-1で得られた樹脂R-7を用いる代わりに、 30 日本曹達社製ポリヒドロキシスチレン(VP8000) を用いた他は、合成例7-2、7-3の方法で樹脂8を 合成した。

【0147】上記の樹脂1~8の構造を以下に示す。 尚、以下に示した樹脂中の繰り返し単位の比率はモル比 で示してある。

[0148]

【化40】

[0149] [化41]

47 CO₂ OH 初即 6

【0150】合成例2 [光酸発生剤の合成例]

(1) (PAG1の合成)

PAG1は、特開2000-314956号の実施例86に記載の化合物を使用した。

(2) (PAG2の合成)

PAG2は、特表2000-517067号の例9に記載の化合物を使用した。

【0151】(3)(トリフェニルスルホニウムアセテート(オニウム塩1)の合成)

トリフェニルスルホニウムヨージド20gをメタノール500mlに溶解し、これに酸化銀(I)12.5gを加えて、室温で4時間攪拌した。反応液をろ過して銀化 40合物を除去した後、ろ液に酢酸4.0gを加えた。溶液を濃縮し、得られた油状物をジイソプロピルエーテル300mlで2回洗浄すると上記目的物が11.2g得られた。

【0152】(4)(ジフェニルヨードニウムnープチレート(オニウム塩2)の合成)

(ジフェニルヨードニウム) ヨージド50gをメタノール2リットルに溶解させ、これに酸化銀(I)22gを加えて、室温で4時間攪拌した。反応液を濾過して銀化合物を除去した後、ろ液にn-酪酸7.5gを加えた。

溶液を濃縮し、得られた固体をジイソプロピルエーテル300mlで洗浄すると目的物が32g得られた。

【0153】上記のPAG1~2、オニウム塩1~2の 構造を以下に示す。

[0154]

(化42)

$$\begin{pmatrix}
N & O_3S-n-Pr \\
F_3C & O^{CH_2} & CH_2 \\
O & CH_2
\end{pmatrix}$$
(PAG1)

【0155】実施例1~12及び比較例1~4

表1に記載した各成分を表1に記載の重量比で、総重量比が16%になるようにPGMEA溶剤で溶解し、0. 1μmのミクロフィルターでろ過し、ポジ型フォトレジ30 ストを調製した。得られたレジスト液をスピンコーター(東京エレクトロン製Mark8)を利用して、日産化学社製有機BARC(DUV42)を110nm塗膜形成したシリコンウエハー上に塗布し、120℃で90秒間乾燥し、0.6μmのレジスト膜を形成した。前記レジスト膜をマスクを介し、キャノン製FPA-3000EX5を用いたKrFエキシマレーザー光で(波長248nm、NA0.60、1/2輪帯照明)パターン解光を行った。露光後110℃で90秒間加熱処理を行い、2.38重量%のTMAH水溶液で現像、続いてリンス

【0156】(ラインエッジラフネスの評価方法)Du t y 比1:1 のマスクサイズ1.0 μ m のラインアンドスペースの寸法が、0.20 μ m となる露光量において、0.18 μ μ m の孤立線の線幅を(株)日立製作所製測長SEM: S-8840 により50 点測長した値の標準偏差の3 倍を、ラインエッジラフネスとした。

後、スピン乾燥を行い、レジストパターンを得た。

【0157】 (PED安定性の評価方法) Duty比 1:1のマスクサイズ1.0μmのライン寸法が0.2 0μmとなる露光量において、露光後、速やかにPEB 50 処理したウェハー上のライン寸法(CD(0h))と、

2時間後のPEB処理したウェハー上のライン寸法CD (2h) を、(株)日立製作所製測長SEM:S-884 0により測長し、 | CD (2h) - CD (0h) | / C D(0h)をPED安定性の指標とした。これらの結果

を下記表1に示す。 [0158] 【表1】

表1					
実能例	機脂	式(1)で 表される 光酸発生剤	オニウム化合物	ラインエッ ジラフネス (nm)	PED安定性 ACD(2h-0h)/CD0h
1	樹脂1 98.8重量部	PAG1 1.0重量部	オニウム塩1 1.0重量部	4.5	0.01
2	樹脂2 98.8重量部	PAG1 1.0重量部	オニウム塩1 1.2重量部	4.2	0.02
3	樹脂2/樹脂3 50/50 92.8重量部	PAG1 1.5重量部	オニウム塩1 0.5重量部	5.2	0.04
4	樹脂2/樹脂4 60/40 95.8重量部	PAG1 1.5重量部	オニウム塩1 1.0重量部	3.6	0.02
5	掛股2/樹脂4 50/50 95.8重量部	PAG2 0.5重量部	オニウム塩2 0.5重量部	3.9	0.04
6	樹脂2/樹脂4 60/40 95.8重量部	PAG1/PAG3 0.5/4.0重量部	オニウム塩1 1.0重量部	3.8	0.02
7	樹脂3 96.8重量部	PAG1 1.0重量部	オニウム塩1 1.5重量部	4.3	0.03
8	樹脂3/樹脂4 70/30 96.8重量部	PAG1 1.8重量部	オニウム塩1 1.0重量部	3.4	0.06
9	樹脂3/樹脂4 60/40 96.8重量部	PAG2 2.0重量部	オニウム塩2 20重量部	3.6	0.02
10	樹脂3/樹脂4 60/40 96.8重量部	PAG1/PAG3 0.3/4.0重量部	オニウム塩 1 0.5重量部	3.4	0.03
11	樹脂4 95.8重量部	PAG1 15章量部	オニウム塩 1 1.0宝量部	4.8	0.05
12	樹脂5 95.8重量部	PAG2 35重量部	オニウム塩2 3.0重量部	4.9	0.05
比較例 1	樹脂2 96.8重量部	PAG1 1.0重量部		11.2	0.05
比較例 2	95.8重量部	PAG1/PAG3 0.5/4.0重量部		8.4	0.06
比較例 3	樹脂3 98.8重量部	PAG1 1.0重量部		9.2	0.05
比較例 4	樹脂5 95.8重量部	PAG2 3.5重量部		10.0	0.15

【0159】表1で使用したPAG3の構造を以下に示 す。

[0160]

【化43】

【0161】尚、実施例 $1\sim12$ 及び比較例 $1\sim4$ の全 40 5については、添加剤として上記化合物 (a) を0.1てのレジストに、添加剤として下記の化合物(a)を 0.1重量部使用した。

[0162]

【化44】

【0163】上記表1に示すように、本発明の組成物 は、比較例に比べてラインエッジラフネス及びPED安 50 った。露光後110℃で90秒間加熱処理を行い、2.

定性が優れていることが判る。

【0164】実施例13~19、参考例1及び2、及び 比較例5表2に記載した各成分を表2に記載の重量比 で、総重量比が16%になるようにPGMEA溶剤で溶 解し、 0.1μ mのミクロフィルターでろ過し、ポジ型 フォトレジストを調製した。表2における各成分は表1 におけるものと同様である。尚、実施例19及び比較例 重量部使用した。

【0165】得られたレジスト液をスピンコーター (東 京エレクトロン製Mark8)を利用して、日産化学社 製有機BARC (DUV42) を110nm塗膜形成し たシリコンウエハー上に塗布し、120℃で90秒間乾 燥し、0.6μmのレジスト膜を形成した。前記レジス ト膜をマスクを介し、キャノン製FPA-3000EX 5を用いたKrFエキシマレーザー光で(波長248n m、NA0.60、1/2輪帯照明) パターン露光を行

38重量%のTMAH水溶液で現像、続いてリンス後、 スピン乾燥を行い、レジストパターンを得た。

【0166】 (ラインエッジラフネス及びPED安定性の評価方法) 先の実施例及び比較例におけるのと同一の方法により行った。

(感度の評価方法)

Duty比1:1のマスクサイズ1.0 μmのラインアンドスペースの寸法が、0.20 μmとなる露光量を感度とした。結果を表2に示す。

[0167]

【表2】

表 2

- 22 2						
	(413)	式(1)で表 わされる 光酸先生	オニウム 化合物	心性	3 <i>(</i>)155°	PED
	(重量部)	新 (金量部)	(重量部)	(mJ/cm²)	7742 (nm)	安定性
突施例13	横頂 6 (96.5)	PAG1 (3.0)	仁沙道 1 (0.8)	222	4.9	0.01
突施例 14	概題 6 (94.8)	PAG2 (4.5)	#24題 1 (1.2)	22	4.9	0.02
実施例 15	樹脂 6 (94.8)	PAG1 (4.5)	おかい型 2 (0.7)	15	5.1	0
実施例 16	樹脂 7 (97.0)	PAG1 (2.5)	たかり 1 (0.6)	24	4.5	0.02
実施例 17	模面 7 (95.5)	PAG2 (3.5)	和外提 1 (1.0)	24	3.8	0.01
実施例 18	樹脂 7 (95.9)	PAG2 (8.5)	たかい塩 2 (0.6)	20	3.8	0.02
突進例19	朝田 7 (34.9)	PAG1 (4.5)	(0.8)	26	4.5	0
参考例 1	树脂 R-6 (96.5)	PAG1 (3.0)	に が返1 (0.5)	86	5.2	0.01
参考例3	樹脂 8 (97.0)	PAG1 (8.5)	4二分4編 1 (0.5)	82	5.4	0.02
比較例 5	樹脂 6 (96.9)	PAG1 (3.0)		25	9.3	0.15

【0168】表2の結果より、樹脂(a)として、一般式(X)で表される基を有する繰り返し単位、及び、一般式(Y1)で表される基を有する繰り返し単位と一般式(Y2)で表される基を有する繰り返し単位との少なくともいずれかを有する樹脂を含有するレジスト組成物は、ラインエッジラフネス、PED安定性とともに、感度においても優れていることがわかる。

[0169]

【発明の効果】本発明によれば、ラインエッジラフネ 10 ス、PED安定性に優れた化学増幅型ポジ型フォトレジスト組成物、更に感度にも優れた化学増幅型ポジ型フォトレジスト組成物が提供される。

フロントページの続き

F ターム(参考) 2H025 AA01 AA03 AA04 AB16 AC04 AC08 AD03 BE00 BE07 BE10 BG00 CB14 CB17 CB41 FA17