Introduction to Digital Logic

Hamza Osman İLHAN

hoilhan@yildiz.edu.tr

Course Outline

- 1. Digital Computers, Number Systems, Arithmetic Operations, Decimal, Alphanumeric, and Gray Codes
- 2. Binary Logic, Gates, Boolean Algebra, Standard Forms
- 3. Circuit Optimization, Two-Level Optimization, Map Manipulation, Multi-Level Circuit Optimization
- 4. Additional Gates and Circuits, Other Gate Types, Exclusive-OR Operator and Gates, High-Impedance Outputs
- 5. Implementation Technology and Logic Design, Design Concepts and Automation, The Design Space, Design Procedure, The major design steps
- 6. Programmable Implementation Technologies: Read-Only Memories, Programmable Logic Arrays, Programmable Array Logic, Technology mapping to programmable logic devices
- 7. Combinational Functions and Circuits
- 8. Arithmetic Functions and Circuits
- 9. Sequential Circuits Storage Elements and Sequential Circuit Analysis
- 10. Sequential Circuits, Sequential Circuit Design State Diagrams, State Tables
- 11. Counters, register cells, buses, & serial operations
- 12. Sequencing and Control, Datapath and Control, Algorithmic State Machines (ASM)
- 13. Memory Basics

Introduction to Digital Logic

Lecture 2

Gate Circuits and Boolean Equations

- Binary Logic and Gates
 - Boolean Algebra
 - Standard Forms

Binary Logic and Gates

- Binary variables take on one of two values.
- Logical operators operate on binary values and binary variables.
- Basic logical operators are the <u>logic functions</u> AND, OR and NOT.
- Logic gates implement logic functions.
- <u>Boolean Algebra</u>: a useful mathematical system for specifying and transforming logic functions.
- We study Boolean algebra as foundation for designing and analyzing digital systems!

Binary Variables

- Recall that the two binary values have different names:
 - True/False
 - On/Off
 - Yes/No
 - -1/0
- We use 1 and 0 to denote the two values.
- Variable identifier examples:
 - -A, B, y, z, or X_1 for now
 - RESET, START_IT, or ADD1 later

Logical Operations

- The three basic logical operations are:
 - -AND
 - -OR
 - -NOT
- AND is denoted by a dot (·)
- OR is denoted by a plus (+)
- NOT is denoted by an overbar (¯), a single quote mark (') after, or (~) before the variable

Notation Examples

• Examples:

- -Y=A.B is read "Y is equal to A AND B."
- z=x+y is read "z is equal to x OR y."
- $-X=\bar{A}$ is read "X is equal to NOT A."

Note: The statement:

```
1 + 1 = 2 (read "one <u>plus</u> one equals two") is not the same as
```

1 + 1 = 1 (read "1 or 1 equals 1").

Operator Definitions

Operations are defined on the values"0" and "1" for each operator:

AND	OR	NOT
$0 \cdot 0 = 0$	0+0=0	$\overline{0} = 1$
$0 \cdot 1 = 0$	0 + 1 = 1	$\overline{1} = 0$
$1 \cdot 0 = 0$	1 + 0 = 1	
$1 \cdot 1 = 1$	1 + 1 = 1	

Truth Tables

- Truth table a tabular listing of the values of a function for all possible combinations of values on its arguments
- Example: Truth tables for the basic logic operations:

AND			
$X \mid Y \mid Z = X \cdot Y$			
0	0	0	
0	1	0	
1	0	0	
1	1	1	

	OR			
X	X Y Z = X + Y			
0	0	0		
0	1	1		
1	0	1		
1	1	1		

NOT		
X	$Z = \overline{X}$	
0	1	
1	0	

Logic Function Implementation

- Using Switches
 - For inputs:
 - logic 1 is <u>switch closed</u>
 - logic 0 is switch open
 - For outputs:
 - logic 1 is light on
 - logic 0 is <u>light off</u>.
 - NOT uses a switch such
 - that:
 - logic 1 is switch open
 - logic 0 is switch closed

Switches in parallel => OR

Switches in series => AND

Normally-closed switch => NOT

Logic Function Implementation (Continued)

Example: Logic Using Switches

• Light is on (L = 1) for

$$L(A, B, C, D) = A \cdot ((B \cdot C') + D)$$

and off $(L = 0)$, otherwise.

 Useful model for relay circuits and for CMOS gate circuits, the foundation of current digital logic technology

Logic Gates

- In the earliest computers, switches were opened and closed by magnetic fields produced by energizing coils in *relays*. The switches in turn opened and closed the current paths.
- Later, *vacuum tubes* that open and close current paths electronically replaced relays.
- Today, *transistors* are used as electronic switches that open and close current paths.

Logic Gates (continued)

• Implementation of logic gates with transistors (See Reading Supplement – CMOS Circuits)

- Transistor or tube implementations of logic functions are called <u>logic gates</u> or just <u>gates</u>
- Transistor gate circuits can be modeled by switch circuits

Logic Gate Symbols and Behavior

Logic gates have special symbols:

And waveform behavior in time as follows:

Logic Diagrams and Expressions

T41		۱ _
Truth	Tabl	le

Truth Table				
XYZ	$ \mathbf{F} = \mathbf{X} + \overline{\mathbf{Y}} \cdot \mathbf{Z} $			
000	0			
001	1			
010	0			
011	0			
100	1			
101	1			
110	1			
111	1			

Equation

$$F = X + \overline{Y} Z$$

Logic Diagram

- Boolean equations, truth tables and logic diagrams describe the same function!
- Truth tables are unique; expressions and logic diagrams are not. This gives flexibility in implementing functions.

Boolean Algebra

■ An algebraic structure defined on a set of at least two elements, B, together with three binary operators (denoted +, · and —) that satisfies the following basic identities:

Existence of 0 and1	$X \cdot 1 = X$	2.	X + 0 = X	1.
Existence of 0 and 1	$X \cdot 0 = 0$	4.	X+1=1	3.
Idempotence	$X \cdot X = X$	6.	X + X = X	5.
Existence of complement	$X \cdot \overline{X} = 0$	8.	$X + \overline{X} = 1$	7.
Involution			$\overline{\overline{X}} = X$	9.
Commutative	XY = YX	11.	X + Y = Y + X	10.
(YZ) Associative	(XY)Z = X(X)	13.	(X+Y)+Z=X+(Y+Z)	12.
(X + Y)(X + Z) Distributive	X + YZ = (X + YZ)	15.	X(Y+Z) = XY+XZ	14.
DeMorgan's	$\overline{X \cdot Y} = \overline{X} + \overline{X}$	17.	$\overline{X+Y} = \overline{X} \cdot \overline{Y}$	16.

Boolean Operator Precedence

- The order of evaluation in a Boolean expression is:
 - 1. Parentheses
 - 2. NOT
 - 3. AND
 - 4. OR
- Consequence: Parentheses appear around OR expressions
- Example: F = A(B + C)(C + D)

Example 1: Boolean Algebraic Proof

•
$$A + A \cdot B = A$$
 (Absorption Theorem)

Proof Steps
 $A + A \cdot B$
 $A +$

- Our primary reason for doing proofs is to learn:
 - Careful and efficient use of the identities and theorems of Boolean algebra, and
 - How to choose the appropriate identity or theorem to apply to make forward progress, irrespective of the application.

Example 2: Boolean Algebraic Proofs

•
$$AB + \overline{A}C + BC = AB + \overline{A}C$$
 (Consensus Theorem)

Proof Steps: Justification (identity or theorem)

 $AB + \overline{A}C + BC$
 $= AB + \overline{A}C + BC$
 $= AB + \overline{A}C + 1 \cdot BC$
 $= AB + \overline{A}C + (A + \overline{A}) \cdot BC$
 $= AB + \overline{A}C + ABC + \overline{A}BC$
 $= AB (1+C) + \overline{A}C (1+B)$
 $= AB \cdot 1 + \overline{A}C \cdot 1$
 $= AB + \overline{A}C$

Example 3: Boolean Algebraic Proofs

•
$$(\overline{X} + \overline{Y})Z + X\overline{Y} = \overline{Y}(X + Z)$$

Proof Steps Justification (identity or theorem)
 $(\overline{X} + \overline{Y})Z + X\overline{Y}$

Useful Theorems

$$x \cdot y + \overline{x} \cdot y = y$$
 $(x + y)(\overline{x} + y) = y$ Minimization
 $x + x \cdot y = x$ $x \cdot (x + y) = x$ Absorption
 $x + \overline{x} \cdot y = x + y$ $x \cdot (\overline{x} + y) = x \cdot y$ Simplification
 $x \cdot y + \overline{x} \cdot z + y \cdot z = x \cdot y + \overline{x} \cdot z$ Consensus
 $(x + y) \cdot (\overline{x} + z) \cdot (y + z) = (x + y) \cdot (\overline{x} + z)$
 $\overline{x + y} = \overline{x} \cdot \overline{y}$ $\overline{x \cdot y} = \overline{x} + \overline{y}$ DeMorgan's Laws

Proof of Simplification

$$\mathbf{x} \cdot \mathbf{y} + \overline{\mathbf{x}} \cdot \mathbf{y} = \mathbf{y}$$

$$(x + y)(\overline{x} + y) = y$$

Proof of DeMorgan's Laws

$$\overline{\mathbf{x} + \mathbf{y}} = \overline{\mathbf{x}} \cdot \overline{\mathbf{y}}$$

$$\overline{\mathbf{x} \cdot \mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$$

Boolean Function Evaluation

F1 =
$$xy\overline{z}$$

F2 = $x + \overline{y}z$
F3 = $\overline{x}\overline{y}\overline{z} + \overline{x}yz + x\overline{y}$
F4 = $x\overline{y} + \overline{x}z$

X	y	Z	F 1	F2	F3	F4
0	0	0	0	0	1	0
0	0	1	0	1	0	1
0	1	0	0	0	0	0
0	1	1	0	0	1	1
1	0	0	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	0

Expression Simplification

- An application of Boolean algebra
- Simplify to contain the smallest number of <u>literals</u> (complemented and uncomplemented variables):

$$AB + \overline{A}CD + \overline{A}BD + \overline{A}C\overline{D} + ABCD$$

$$= AB + ABCD + \overline{A}CD + \overline{A}CD + \overline{A}BD$$

$$= AB + AB(CD) + \overline{A}C(D + \overline{D}) + \overline{A}BD$$

$$= AB + \overline{A}C + \overline{A}BD = B(A + \overline{A}D) + \overline{A}C$$

$$= B(A + D) + \overline{A}C = 5 \text{ literals}$$

Complementing Functions

- Use DeMorgan's Theorem to complement a function:
 - 1. Interchange AND and OR operators
 - 2. Complement each constant value and literal
- Example: Complement $F = \overline{x}y\overline{z} + x\overline{y}\overline{z}$ $\overline{F} = (x + \overline{y} + z)(\overline{x} + y + z)$
- Example: Complement $G = (\overline{a} + bc)\overline{d} + e$ $\overline{G} = ?$

Overview – Canonical Forms

- What are Canonical Forms?
- Minterms and Maxterms
- Index Representation of Minterms and Maxterms
- Sum-of-Minterm (SOM) Representations
- Product-of-Maxterm (POM) Representations
- Representation of Complements of Functions
- Conversions between Representations

Canonical Forms

- It is useful to specify Boolean functions in a form that:
 - Allows comparison for equality.
 - Has a correspondence to the truth tables
- Canonical Forms in common usage:
 - Sum of Minterms (SOM)
 - Product of Maxterms (POM)

Minterms

- <u>Minterms</u> are AND terms with every variable present in either true or complemented form.
- Given that each binary variable may appear normal (e.g., x) or complemented (e.g., \overline{x}), there are 2^n minterms for n variables.
- Example: Two variables (X and Y)produce $2 \times 2 = 4$ combinations:

```
XY (both normal)
XY (X normal, Y complemented)
XY (X complemented, Y normal)
```

XY (both complemented)

• Thus there are <u>four minterms</u> of two variables.

Maxterms

- <u>Maxterms</u> are OR terms with every variable in true or complemented form.
- Given that each binary variable may appear normal (e.g., x) or complemented (e.g., \overline{x}), there are 2^n maxterms for n variables.
- Example: Two variables (X and Y) produce $2 \times 2 = 4$ combinations:

```
    X+Y
    X+Y
    X+Y
    X+Y
    X+Y
    X+Y
    X+Y
    X+Y
    (both complemented)
```

Maxterms and Minterms

• Examples: Two variable minterms and maxterms.

Index	Minterm	Maxterm
0	$\overline{\mathbf{x}}\overline{\mathbf{y}}$	x + y
1	x y	$x + \overline{y}$
2	x y	$\overline{\mathbf{x}} + \mathbf{y}$
3	хy	$\overline{x} + \overline{y}$

• The index above is important for describing which variables in the terms are true and which are complemented.

Standard Order

- Minterms and maxterms are designated with a subscript
- The subscript is a number, corresponding to a binary pattern
- The bits in the pattern represent the complemented or normal state of each variable listed in a standard order.
- All variables will be present in a minterm or maxterm and will be listed in the <u>same order</u> (usually alphabetically)
- Example: For variables a, b, c:
 - Maxterms: $(a + b + \overline{c})$, (a + b + c)
 - Terms: (b + a + c), a c̄ b, and (c + b + a) are NOT in standard order.
 - Minterms: $a \bar{b} c$, a b c, $\bar{a} \bar{b} c$
 - Terms: (a + c), \bar{b} c, and $(\bar{a} + b)$ do not contain all variables

Purpose of the Index

• The <u>index</u> for the minterm or maxterm, expressed as a binary number, is used to determine whether the variable is shown in the true form or complemented form.

• For Minterms:

- "1" means the variable is "Not Complemented" and
- "0" means the variable is "Complemented".

For Maxterms:

- "0" means the variable is "Not Complemented" and
- "1" means the variable is "Complemented".

Index Example in Three Variables

- Example: (for three variables)
- Assume the variables are called X, Y, and Z.
- The standard order is X, then Y, then Z.
- The Index 0 (base 10) = 000 (base 2) for three variables). All three variables are complemented for minterm 0 ($\overline{X}, \overline{Y}, \overline{Z}$) and no variables are complemented for Maxterm 0 (X,Y,Z).
 - Minterm 0, called m_0 is $\overline{X}\overline{Y}\overline{Z}$.
 - Maxterm 0, called M_0 is (X + Y + Z).
 - Minterm 6?
 - Maxterm 6?

Index Examples – Four Variables

Index Binary Minterm Maxterm

i	Pattern	$\mathbf{m_i}$	$\mathbf{M_i}$
0	0000	abcd	a+b+c+d
1	0001	abcd	?
3	0011	?	$a+b+\bar{c}+\bar{d}$
5	0101	abcd	$a+\overline{b}+c+\overline{d}$
7	0111	?	$a+\overline{b}+\overline{c}+\overline{d}$
10	1010	$a \overline{b} c \overline{d}$	$\bar{a} + b + \bar{c} + d$
13	1101	abcd	?
15	1111	abcd	$\bar{a} + \bar{b} + \bar{c} + \bar{d}$

Minterm and Maxterm Relationship

- Review: DeMorgan's Theorem $\overline{x \cdot y} = \overline{x} + \overline{y}$ and $\overline{x + y} = \overline{x} \cdot \overline{y}$
- Two-variable example:

$$\mathbf{M}_2 = \overline{\mathbf{x}} + \mathbf{y}$$
 and $\mathbf{m}_2 = \mathbf{x} \cdot \overline{\mathbf{y}}$

Thus M_2 is the complement of m_2 and vice-versa.

- Since DeMorgan's Theorem holds for *n* variables, the above holds for terms of *n* variables
- giving:

$$\mathbf{M}_{i} = \overline{\mathbf{m}}_{i \text{ and }} \mathbf{m}_{i} = \overline{\mathbf{M}}_{i}$$

Thus M_i is the complement of m_i.

Function Tables for Both

Minterms of 2 variables

x y	\mathbf{m}_0	\mathbf{m}_1	m_2	m ₃
0 0	1	0	0	0
0 1	0	1	0	0
10	0	0	1	0
11	0	0	0	1

Maxterms of 2 variables

ху	$\mathbf{M_0}$	M_1	M_2	M_3
0 0	0	1	1	1
0 1	1	0	1	1
10	1	1	0	1
11	1	1	1	0

• Each column in the maxterm function table is the complement of the column in the minterm function table since M_i is the complement of m_i .

Observations

- In the function tables:
 - Each minterm has one and only one 1 present in the 2^n terms (a minimum of 1s). All other entries are 0.
 - Each <u>max</u>term has one and only one 0 present in the 2^n terms All other entries are 1 (a <u>max</u>imum of 1s).
- We can implement any function by "ORing" the minterms corresponding to "1" entries in the function table. These are called the minterms of the function.
- We can implement any function by "ANDing" the maxterms corresponding to "0" entries in the function table. These are called the maxterms of the function.
- This gives us two <u>canonical forms</u>:
 - Sum of Minterms (SOM)
 - Product of Maxterms (POM)

for stating any Boolean function.

Minterm Function Example

• Example: Find $F_1 = m_1 + m_4 + m_7$

•
$$\mathbf{F1} = \overline{\mathbf{x}} \ \overline{\mathbf{y}} \ \mathbf{z} + \mathbf{x} \ \overline{\mathbf{y}} \ \overline{\mathbf{z}} + \mathbf{x} \ \mathbf{y} \ \mathbf{z}$$

хуz	index	\mathbf{m}_1	+	$\mathbf{m_4}$	+	m ₇	$= \mathbf{F_1}$
000	0	0	+	0	+	0	= 0
001	1	1	+	0	+	0	= 1
010	2	0	+	0	+	0	= 0
011	3	0	+	0	+	0	= 0
100	4	0	+	1	+	0	= 1
101	5	0	+	0	+	0	= 0
110	6	0	+	0	+	0	= 0
111	7	0	+	0	+	1	= 1

Minterm Function Example

- $F(A, B, C, D, E) = m_2 + m_9 + m_{17} + m_{23}$
- F(A, B, C, D, E) =

Maxterm Function Example

• Example: Implement F1 in maxterms:

$$F_1 = M_0 \cdot M_2 \cdot M_3 \cdot M_5 \cdot M_6$$

$$F_1 = (x + y + z) \cdot (x + \overline{y} + z) \cdot (x + \overline{y} + \overline{z})$$

$$\cdot (\overline{x} + y + \overline{z}) \cdot (\overline{x} + \overline{y} + z)$$

хуz	i	$\mathbf{M}_0 \cdot \mathbf{M}_2 \cdot \mathbf{M}_3 \cdot \mathbf{M}_5 \cdot \mathbf{M}_6 = \mathbf{F1}$
000	0	$0 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 0$
$0\ 0\ 1$	1	$1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 1$
$0\ 1\ 0$	2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
011	3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
100	4	$1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 1$
101	5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
110	6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
111	7	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Maxterm Function Example

- $\mathbf{F}(\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{D}) = \mathbf{M}_3 \cdot \mathbf{M}_8 \cdot \mathbf{M}_{11} \cdot \mathbf{M}_{14}$
- F(A, B,C,D) =

Canonical Sum of Minterms

- Any Boolean function can be expressed as a **Sum of Minterms**.
 - For the function table, the <u>minterms</u> used are the terms corresponding to the 1's
 - For expressions, <u>expand</u> all terms first to explicitly list all minterms. Do this by "ANDing" any term missing a variable v with a term $(\mathbf{v} + \overline{\mathbf{v}})$.
- Example: Implement $f = x + \overline{x} \overline{y}$ as a sum of minterms.

```
First expand terms: \mathbf{f} = \mathbf{x}(\mathbf{y} + \overline{\mathbf{y}}) + \overline{\mathbf{x}} \ \overline{\mathbf{y}}
Then distribute terms: \mathbf{f} = \mathbf{x}\mathbf{y} + \mathbf{x}\overline{\mathbf{y}} + \overline{\mathbf{x}} \ \overline{\mathbf{y}}
Express as sum of minterms: \mathbf{f} = \mathbf{m}_3 + \mathbf{m}_2 + \mathbf{m}_0
```

Another SOM Example

- Example: $F = A + \overline{B} C$
- There are three variables, A, B, and C which we take to be the standard order.
- Expanding the terms with missing variables:

- Collect terms (removing all but one of duplicate terms):
- Express as SOM:

Shorthand SOM Form

• From the previous example, we started with:

$$F = A + \overline{B} C$$

• We ended up with:

$$F = m_1 + m_4 + m_5 + m_6 + m_7$$

- This can be denoted in the formal shorthand: $F(A,B,C) = \Sigma_m(1,4,5,6,7)$
- Note that we explicitly show the standard variables in order and drop the "m" designators.

Canonical Product of Maxterms

- Any Boolean Function can be expressed as a <u>Product of Maxterns (POM)</u>.
 - For the function table, the maxterms used are the terms corresponding to the 0's.
 - For an expression, expand all terms first to explicitly list all maxterms. Do this by first applying the second distributive law, "ORing" terms missing variable V with a term equal to $V \cdot \overline{V}$ and then applying the distributive law again.
- Example: Convert to product of maxterms:

$$f(x,y,z) = x + \overline{x} \, \overline{y}$$

Apply the distributive law:

$$x + \overline{x} \overline{y} = (x + \overline{x})(x + \overline{y}) = 1 \cdot (x + \overline{y}) = x + \overline{y}$$

Add missing variable z:

$$x + \overline{y} + z \cdot \overline{z} = (x + \overline{y} + z) (x + \overline{y} + \overline{z})$$

Express as POM: $f = M_2 \cdot M_3$

Another POM Example

Convert to Product of Maxterms:

$$f(A,B,C) = A \overline{C} + BC + \overline{A} \overline{B}$$

• Use $x + y z = (x+y) \cdot (x+z)$ with $x = (A \overline{C} + B C)$, $y = \overline{A}$, and $z = \overline{B}$ to get:

$$f = (A \overline{C} + B C + \overline{A})(A \overline{C} + B C + \overline{B})$$

• Then use $x + \overline{x}y = x + y$ to get:

$$f = (\overline{C} + BC + \overline{A})(A\overline{C} + C + \overline{B})$$

and a second time to get:

$$f = (\overline{C} + B + \overline{A})(A + C + \overline{B})$$

Rearrange to standard order,

$$f = (\overline{A} + B + \overline{C})(A + \overline{B} + C)$$
 to give $f = M_5 \cdot M_2$

Function Complements

- The complement of a function expressed as a sum of minterms is constructed by selecting the minterms missing in the sum-of-minterms canonical forms.
- Alternatively, the complement of a function expressed by a Sum of Minterms form is simply the Product of Maxterms with the same indices.
- Example: Given $F(x, y, z) = \Sigma_m(1,3,5,7)$ $\overline{F}(x, y, z) = \Sigma_m(0,2,4,6)$ $\overline{F}(x, y, z) = \Pi_M(1,3,5,7)$

Conversion Between Forms

- To convert between sum-of-minterms and productof-maxterms form (or vice-versa) we follow these steps:
 - Find the function complement by swapping terms in the list with terms not in the list.
 - Change from products to sums, or vice versa.
- Example: Given F as before: $F(x, y, z) = \sum_{m} (1, 3, 5, 7)$
- Form the Complement: $\overline{F}(x,y,z) = \Sigma_m(0,2,4,6)$
- Then use the other form with the same indices this forms the complement again, giving the other form of the original function: $F(x,y,z) = \Pi_M(0,2,4,6)$

Standard Forms

- <u>Standard Sum-of-Products (SOP) form:</u> equations are written as an OR of AND terms
- <u>Standard Product-of-Sums (POS) form:</u> equations are written as an AND of OR terms
- Examples:
 - SOP: $A B C + \overline{A} \overline{B} C + B$
 - POS: $(A+B)\cdot (A+\overline{B}+\overline{C})\cdot C$
- These "mixed" forms are neither SOP nor POS
 - -(A B + C) (A + C)
 - -ABC+AC(A+B)

Standard Sum-of-Products (SOP)

- A sum of minterms form for *n* variables can be written down directly from a truth table.
 - Implementation of this form is a two-level network of gates such that:
 - The first level consists of *n*-input AND gates,
 and
 - The second level is a single OR gate (with fewer than 2^n inputs).
- This form often can be simplified so that the corresponding circuit is simpler.

Standard Sum-of-Products (SOP)

- A Simplification Example:
- $F(A,B,C) = \Sigma m(1,4,5,6,7)$
- Writing the minterm expression: $F = \overline{A} \overline{B} C + A \overline{B} \overline{C} + A \overline{B} C + ABC + ABC$
- Simplifying:

$$F = A + \overline{B}C$$

• Simplified F contains 3 literals compared to 15 in minterm F

AND/OR Two-level Implementation of SOP Expression

• The two implementations for F are shown below – it is quite apparent which is simpler!

• The previous examples show that:

- Canonical Forms (Sum-of-minterms, Product-of-Maxterms), or other standard forms (SOP, POS) differ in complexity
- Boolean algebra can be used to manipulate equations into simpler forms.
- Simpler equations lead to simpler two-level implementations

• Questions:

- How can we attain a "simplest" expression?
- Is there only one minimum cost circuit?
- The next part will deal with these issues.