UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Matematika - 1. stopnja

Mabel Najdovski **OBRNLJIVE FUNKCIJE SO SFERE V SVETU**

Delo diplomskega seminarja

Mentorica: izr. prof. dr. Ime Priimek

Somentor: doc. dr. Ime Priimek

Kazalo

1	Ekvivalence in obrnljive funkcije	4
2	Podtipi	5
3	Karakterizacija obrnljivosti	F

Obrnljive funkcije so sfere v svetu

Povzetek

V povzetku na kratko opišemo vsebinske rezultate dela. Sem ne sodi razlaga organizacije dela – v katerem poglavju/razdelku je kaj, pač pa le opis vsebine.

Invertible maps are spheres in the universe

Abstract

Prevod slovenskega povzetka v angleščino.

Math. Subj. Class. (2020): 74B05, 65N99

Ključne besede: naravni logaritem, nenaravni algoritem

Keywords: natural logarithm, unnatural algorithm

1 Ekvivalence in obrnljive funkcije

Definicija 1.1. Naj bo $f: A \to B$ funkcija. Tip

$$\mathtt{section}\, f := \sum \left(g: B \to A\right) f \circ g \sim id$$

imenujemo $tip\ prerezov\ funkcije\ f$. Za funkcijo f pravimo, da $ima\ prerez$, če obstaja element tipa $section\ (f)$, imenovan $prerez\ f$. Tip

$$\mathtt{retraction}\,(f) := \sum \left(g: B \to A\right) g \circ f \sim id$$

imenujemo $tip \ retrakcij \ funkcije \ f$. Za funkcijo f pravimo, da $ima \ retrakcijo$, če obstaja element tipa retraction(f), imenovan $retrakcija \ f$.

Definicija 1.2. Pravimo, da je funkcija f ekvivalenca, če ima tako prerez kot retrakcijo, torej, da obstaja element tipa

$$is-equiv(f) := section(f) \times retraction(f).$$

Pravimo, da je tip A ekvivalenten tipu B, če obstaja ekvivalenca med njima, torej element tipa $A \simeq B := \sum (f : A \to B)$ is-equiv (f).

Definicija 1.3. Naj bo $f: A \to B$ funkcija. Tip

$$\mathtt{is\text{-}invertible}\,(f) := \sum \left(g: B \to A\right) \left(f \circ g \sim id\right) \times \left(g \circ f \sim id\right)$$

imenujemo $tip\ inverzov\ funkcije\ f$. Za funkcijo f pravimo, da je obrnljiva oziroma, da $ima\ inverz$, če obstaja element tipa is-invertible (f), imenovan $inverz\ f$.

V definiciji obrnljivosti smo zahtevali, da ima funkcija obojestranski inverz, v definiciji ekvivalence pa smo zahtevali le, da ima ločen levi in desni inverz. To bi nas lahko napeljalo k prepričanju, da je pojem obrnljivosti močnejši od pojma ekvivalence, vendar spodnja trditev pokaže da sta pravzaprav logično ekvivalentna. Pokazali bomo, da lahko prerez (ali simetrično, retrakcijo) ekvivalence f vedno izboljšamo do inverza, kar pokaže, da je f tudi obrnljiva.

Trditev 1.4. Funkcija je ekvivalenca natanko tedaj, ko je obrnljiva.

Dokaz. Denimo, da je funkcija f obrnljiva. Tedaj lahko njen inverz podamo tako kot njen prerez, kot njeno retrakcijo, kar pokaže, da je ekvivalenca.

Obratno denimo, da je funkcija f ekvivalenca. Podan imamo njen prerez s s homotopijo $H: f \circ s \sim id$ in njeno retrakcijo r s homotopijo $K: r \circ f \sim id$, s katerimi lahko konstruiramo homotopijo tipa $s \circ f \sim id$ po sledečem izračunu:

$$sf \stackrel{K^{-1}sf}{\sim} rfsf \stackrel{rHf}{\sim} rf \stackrel{K}{\sim} id.$$

Definicija 1.5. Naj bo $f: \prod (x:A) (B(x) \to C(x))$ družina funkcij. Definiramo (TODO prevedi total) funkcijo tot $(f): \sum (x:A) Bx \to \sum (x:A) Cx$ s predpisom tot (f)(x,y) = (x,f(x,y)).

Izrek 1.6. Naj bo $f: \prod (x:A) (B(x) \to C(x))$ družina funkcij. Tedaj je tot (f) ekvivalenca natanko tedaj, ko je f družina ekvivalenc, torej ko je f(x) ekvivalenca za vsak x:A.

Zgornji izrek je pomemben, saj nam omogoči, da konstrukcijo ekvivalence med sigma tipi nad istim baznim tipom poenostavimo na konstrukcijo družine ekvivalenc, kar je pogosto veliko lažje. Uporabljali ga bomo v obliki sledeče posledice:

Posledica 1.7. Naj bo A tip, B in C družini tipov nad A in denimo, da velja $B(x) \simeq C(x)$ za vsak x : A. Tedaj velja $\sum (x : A) B(x) \simeq \sum (x : A) C(x)$.

2 Podtipi

Trditev 2.1. Naj bo A tip, P predikat na A, B pa družina tipov nad A. Denimo, da obstaja funkcija $s: \prod (x:A) Bx \to Px$. Tedaj velja ekvivalenca

$$\sum (x:A) Bx \simeq \sum (t:\sum (x:A) Px) B(pr_1t).$$

Dokaz. Po asociativnosti sigma tipov je desna stran ekvivalence ekvivalentna tipu $\sum (x:A) \sum (p:Px) Bx = \sum (x:A) Px \times Bx$. Po posledici 1.7 torej zadošča pokazati, da za vsak x:A obstaja ekvivalenca $Bx \simeq Px \times Bx$.

Funkcijo $f: Bx \to Px \times Bx$ definiramo kot $\lambda y. (s(x,y), y)$, za funkcijo $g: Px \times Bx \to Bx$ pa lahko vzamemo drugo projekcijo. Očitno velja enakost g(f(y)) = y, ker pa je P predikat, velja tudi enakost f(g(p,y)) = (s(x,y),y) = (p,y).

Trditev 2.2. TODO subtype identity principle

3 Karakterizacija obrnljivosti

Definicija 3.1. Prosta zanka na tipu A je sestavljena iz točke a:A in identifikacije a=a. Tip vseh prostih zank na tipu A označimo s

$$\mathtt{free-loop}\left(A\right) := \sum \left(x:A\right) x = x.$$

Izrek 3.2. Tip prostih zank na tipu $A \simeq B$ je ekvivalenten tipu obrnljivih funkcij med A in B.

Dokaz. Želimo konstruirati ekvivalenco med tipom $\sum (e:A\simeq B)\,e=e$ in tipom $\sum (f:A\to B)$ is-invertible (f). Ker je is-equiv predikat in za vsako funkcijo f obstaja funkcija is-invertible $(f)\to$ is-equiv (f), najprej opazimo, da po trditvi 2.1 velja ekvivalenca

$$\sum \left(f:A\to B\right) \text{is-invertible}\left(f\right)\simeq \sum \left(e:A\simeq B\right) \text{is-invertible}\left(\text{map}\,e\right).$$

(TODO define map) Po posledici 1.7 torej zadošča pokazati, da za vsako ekvivalenco $e:A\simeq B$ obstaja ekvivalenca

$$(e = e) \simeq \text{is-invertible } (\text{map } e).$$

Oglejmo si tip

 $\texttt{is-invertible} \, (\texttt{map} \, e) = \sum \, (g : B \to A) \, (\texttt{map} \, e \circ g \sim id) \times (g \circ \texttt{map} \, e \sim id).$

Po asociativnosti tipa odvisne vsote je ta ekvivalenten tipu

$$\sum \left(H: \sum \left(g: B \to A \right) \operatorname{map} e \circ g \sim id \right) \left(\operatorname{map} H \circ \operatorname{map} e \sim id \right) = \\ \sum \left(H: \operatorname{section} \left(\operatorname{map} e \right) \right) \left(\operatorname{map} H \circ \operatorname{map} e \sim id \right),$$

ker pa imajo po trditvi TODO ekvivalence kontraktibilen tip prerezov, po trditvi (TODO kontraktibilen bazni prostor) velja še ekvivalenca

$$\sum \left(H : \mathtt{section} \left(\mathtt{map} \, e \right) \right) \left(\mathtt{map} \, H \circ \mathtt{map} \, e \sim id \right) \simeq \left(\mathtt{sec} \, e \circ \mathtt{map} \, e \sim id \right).$$

Sledi, da velja is-invertible (map e) \simeq (sec $e \circ \text{map } e \sim id$), dokaz pa zaključimo še z zaporedjem ekvivalenc, ki jih argumentiramo spodaj.

$$\begin{aligned} (\sec e \circ \operatorname{map} e &\sim id) &\simeq \\ (\operatorname{map} e \circ \sec e \circ \operatorname{map} e &\sim \operatorname{map} e) &\simeq \\ (\operatorname{map} e &\sim \operatorname{map} e) &\simeq \\ (\operatorname{map} e &= \operatorname{map} e) &\simeq \\ (e &= e) \end{aligned}$$

- Ker je e ekvivalenca, je po trditvi TODO ekvivalenca tudi delovanje $\mathtt{map}\,e$ na homotopije.
- Funkcija $\sec e$ je prerez funkcije $\max e$.
- TODO funext
- Po trditvi 2.2 lahko zanko na funkciji $\mathtt{map}\,e$ dvignemo do zanke na pripadajoči ekvivalenci e.

Slovar strokovnih izrazov

universe svet