Logistic Regression

Concepts:

Probabilistic predictions and decision theory
Maximum likelihood estimation application to LR
Maximum a posterior (MAP) estimation and connection
to regularization

Classification problem

- Given input x, the goal is to predict y, which is a categorical variable
 - x: the feature vector
 - y: the class label

Example:

- x: monthly income and bank saving amount;
 - y: risky or not risky
- x: review text for a product
 - y: sentiment positive, negative or neutral

Binary Linear Classifier

• We will be begin with the simplest choice: linear classifiers for binary classification problems $(y \in \{0,1\})$

Logistic Regression

- Input $\mathbf{x} \in \mathbb{R}^d$, target output $y \in \{0,1\}$
- Logistic regression is a probabilistic classifier:

$$P(y = 1|\mathbf{x}; \mathbf{w}) = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^{\mathsf{T}}\mathbf{x})}$$

$$P(y = 0|\mathbf{x}; \mathbf{w}) = 1 - \sigma(\mathbf{w}^{T}\mathbf{x})$$

- linear function w^Tx has range (-∞,∞)
- Sigmoid function σ warps the value of $\mathbf{w}^{T}\mathbf{x}$ to a value between 0 and 1

Logistic regression: linear classifier

Maximum A Posteriori (MAP) estimation of y:

$$y_{map} = \arg\max_{v \in \{0,1\}} P(y = v | \mathbf{x}; \mathbf{w})$$

• We will predict y = 1 if

$$P(y = 1|\mathbf{x}; \mathbf{w}) \ge P(y = 0|\mathbf{x}; \mathbf{w}) \Rightarrow$$

$$\frac{1}{1 + \exp(-\mathbf{w}^{\mathsf{T}}\mathbf{x})} \ge \frac{\exp(-\mathbf{w}^{\mathsf{T}}\mathbf{x})}{1 + \exp(-\mathbf{w}^{\mathsf{T}}\mathbf{x})} \Rightarrow$$

$$1 \ge \exp(-\mathbf{w}^{\mathsf{T}}\mathbf{x}) \Rightarrow$$

$$0 \ge -\mathbf{w}^{\mathsf{T}}\mathbf{x} \Rightarrow \mathbf{w}^{\mathsf{T}}\mathbf{x} \ge \mathbf{0}$$

• We refer to $\mathbf{w}^{T}\mathbf{x} = 0$ as our decision boundary

A more general decision rule

If we have some knowledge about the cost of different types of mistakes, given $P(y|\mathbf{x})$, we can choosing the prediction that minimizes the expected cost:

$$y^* = \arg\min_{y} \sum_{y'} L(y, y') P(y'|\mathbf{x})$$

True label→ Predicted ↓	Spam	Non- spam
Spam	0	10
Non-spam	1	0

For example: $P(y = spam | \mathbf{x}) = 0.6$

- The expected cost if predict spam?
- What if we predict <u>non-spam</u>?
- Which prediction minimizes the expected cost?

With this more general decision rule, it can be shown that Logistic regression still leads to a linear classifier, just with a different threshold 6

Learning for Logistic Regression

Given a set of training examples:

 We assume examples are identically, independently distributed (I.I.D.) following:

$$P(y = 1|\mathbf{x}; \mathbf{w}) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x})}$$

 Learn w from the training data using <u>Maximum Likelihood Estimation</u>

Maximum (conditional) Likelihood Estimation

Data log-likelihood:

$$\log \prod_{i} P(\mathbf{x}^{i}, y^{i}; \mathbf{w}) = \sum_{i} \log P(\mathbf{x}^{i}, y^{i}; \mathbf{w})$$

$$= \sum_{i} \log P(y^{i} | \mathbf{x}^{i}; \mathbf{w}) P(\mathbf{x}^{i}; \mathbf{w})$$

$$= \sum_{i} \log P(y^{i} | \mathbf{x}^{i}; \mathbf{w}) + C$$

Maximum (conditional) likelihood estimation of w:

$$\mathbf{w}_{MLE} = \operatorname{argmax}_{\mathbf{w}} \sum_{i} \log P(y^{i} | \mathbf{x}^{i}; \mathbf{w})$$

Computing Log-likelihood

$$l(\mathbf{w}) = \sum_{i} \log P(y^{i}|\mathbf{x}^{i}; \mathbf{w})$$

$$= \sum_{y^{i}=1} \log P(y = 1|\mathbf{x}^{i}; \mathbf{w}) + \sum_{y^{i}=0} \log P(y = 0|\mathbf{x}^{i}; \mathbf{w})$$

$$= \sum_{i} y^{i} \log P(y = 1|\mathbf{x}^{i}; \mathbf{w}) + (1 - y^{i}) \log P(y = 0|\mathbf{x}^{i}; \mathbf{w})$$

$$= \sum_{i} y^{i} \log \frac{P(y = 1|\mathbf{x}^{i}; \mathbf{w})}{P(y = 0|\mathbf{x}^{i}; \mathbf{w})} + \log P(y = 0|\mathbf{x}^{i}; \mathbf{w})$$

$$= \sum_{i} y^{i} \mathbf{w}^{T} \mathbf{x}^{i} + \log \left(\frac{\exp(-\mathbf{w}^{T} \mathbf{x}^{i})}{1 + \exp(-\mathbf{w}^{T} \mathbf{x}^{i})}\right)$$

$$= \sum_{i} y^{i} \mathbf{w}^{T} \mathbf{x}^{i} - \log(1 + \exp(\mathbf{w}^{T} \mathbf{x}^{i})) \qquad \textit{Concave!}$$

Gradient

$$l(\mathbf{w}) = \sum_{i} \left[y^{i} \mathbf{w}^{T} \mathbf{x}^{i} - \log(1 + \exp(\mathbf{w}^{T} \mathbf{x}^{i})) \right]$$

$$\nabla l = \sum_{i} \left[y^{i} \mathbf{x}^{i} - \frac{\exp(\mathbf{w}^{T} \mathbf{x}^{i}) \mathbf{x}^{i}}{1 + \exp(\mathbf{w}^{T} \mathbf{x}^{i})} \right]$$

$$= \sum_{i} \left[y^{i} \mathbf{x}^{i} - \frac{\mathbf{x}^{i}}{1 + \exp(-\mathbf{w}^{T} \mathbf{x}^{i})} \right]$$

$$= \sum_{i} \left[y^{i} - P(y = 1 | \mathbf{x}^{i}; \mathbf{w}) \right] \mathbf{x}^{i}$$

Batch Gradient Ascent for LR

Given: training examples (\mathbf{x}^i , y^i), i = 1,...,NLet $\mathbf{w} \leftarrow \mathbf{w}_0 // \text{e.g.}, (0,0,0,...,0)$ Repeat until convergence

$$\mathbf{d} \leftarrow (0,0,0,...,0)$$
For $i = 1$ to N do
$$\widehat{y}^{i} \leftarrow \frac{1}{1 + e^{-\mathbf{w}^{T}\mathbf{x}^{i}}}$$

$$error = y^{i} - \widehat{y}^{i}$$

$$\mathbf{d} = \mathbf{d} + error \cdot \mathbf{x}^{i}$$

$$\mathbf{w} \leftarrow \mathbf{w} + \eta \mathbf{d}$$

$$\mathbf{w} \leftarrow \mathbf{w} + \eta \mathbf{u}$$

Online gradient ascent algorithm can be easily constructed

Soft-max Logistic Regression

• For k > 2 classes, we can define the posterior probability using the <u>soft-max function</u>

$$p(y = k | \mathbf{x}) = \hat{y}_k = \frac{\exp(\mathbf{w}_k^T \mathbf{x})}{\sum_{j=1}^K \exp(\mathbf{w}_j^T \mathbf{x})}$$

 Going through the same MLE derivations, we arrive at the following gradient:

$$\nabla_{\mathbf{W}_k} L = \sum_{i=1}^N (y_k^i - \hat{y}_k^i) \mathbf{x}^i$$

where $y_k^i = 1$ if $y^i = k$, and 0 otherwise for k = 1, ..., K

- So far we have introduced MLE for logistic regression
- We will now introduce another paradigm for estimating model parameters
 - The Bayesian paradigm

Bayesian vs. Frequentist

- Two different views for parameter estimation
- Frequentist: a parameter is a deterministic unknown value
- Bayesian: a parameter is a random variable with a distribution
 - Use <u>priors to express our belief/preference</u> about the parameter before observing any data
 - After observing the data, update our belief by computing the posterior distribution of the parameter

$$p(\theta|D) = \frac{p(\theta)p(D|\theta)}{p(D)} = \frac{p(\theta)p(D|\theta)}{\int p(D|\theta)p(\theta)d\theta}$$
Posterior distribution of θ

Maximum A Posteriori (MAP) estimation as a penalty method

$$\hat{\theta}_{MAP} = \underset{\theta}{\operatorname{argmax}} p(\theta|D)
= \underset{\theta}{\operatorname{argmax}} p(D|\theta)p(\theta)
= \underset{\theta}{\operatorname{argmax}} \log p(D|\theta) + \log p(\theta)$$

Penalty term

MAP for Logistic Regression

$$\underset{\mathbf{w}}{\operatorname{argmax}} P(\mathbf{w}|\mathbf{D}) = \underset{\mathbf{w}}{\operatorname{argmax}} P(\mathbf{D}|\mathbf{w}) P(\mathbf{w})$$

$$= \underset{\mathbf{w}}{\operatorname{argmax}} \log P(\mathbf{D}|\mathbf{w}) + \log P(\mathbf{w})$$

• $\log P(D|\mathbf{w})$: the log-likelihood of \mathbf{w}

$$\sum_{i} \log P(y^{i} | \mathbf{x}^{i}, \mathbf{w})$$

• $P(\mathbf{w})$: a prior distribution

$$\mathbf{w} \sim N(0, \sigma^2 \mathbf{I})$$

Large weights correspond to more complex models, this prior prefer simpler hypothesis (zero mean)

Logistic Regression: MAP

 $\operatorname{argmax} \log P(\boldsymbol{D}|\mathbf{w}) + \log P(\mathbf{w})$

=
$$\underset{\mathbf{W}}{\operatorname{argmax}} l(\mathbf{w}) + \log N(\mathbf{w}; 0, \sigma^2 \mathbf{I})$$

$$= \underset{\mathbf{W}}{\operatorname{argmax}} l(\mathbf{w}) + \sum_{j} \log(\frac{1}{\sqrt{2\pi}\sigma} \exp(\frac{-w_{j}^{2}}{2\sigma^{2}}))$$

$$= \underset{\mathbf{W}}{\operatorname{argmax}} l(\mathbf{w}) + \sum_{i} \frac{-w_{j}^{2}}{2\sigma^{2}}$$

=
$$\underset{\mathbf{W}}{\operatorname{argmax}} l(\mathbf{w}) + \underbrace{\frac{\lambda}{2} \sum_{i} w_{j}^{2}}_{i}$$
 Regularization

$$\lambda = \frac{1}{\sigma^2}$$

Old delta:

$$\nabla L(\mathbf{w}) = \sum_{i=1}^{N} (y^i - \hat{y}^i) \mathbf{x}^i$$

$$\nabla L(\mathbf{w}) = \sum_{i=1}^{N} (y^i - \hat{y}^i) \mathbf{x}^i \qquad \qquad |\nabla L(\mathbf{w})| = \sum_{i=1}^{N} (y^i - \hat{y}^i) \mathbf{x}^i - \lambda \mathbf{w}$$

Impact of λ

• λ is inversely proportional to the variance of our prior belief $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Use cross-validation to choose

Summary of Logistic Regression

- A popular discriminative classifier
- Learns conditional probability distribution $P(y \mid \mathbf{x})$
 - Defined by a logistic function
 - Produces a linear decision boundary
 - Nonlinear classifier by using basis functions
- Maximum likelihood estimation (MLE)
 - Gradient ascent bears interesting similarity with perceptron
 - Unstable for linearly separable case, regularization can avoid this issue
 - Multi-class logistic regression: use the soft-max function
- Maximum posterior estimation (MAP)
 - Gaussian prior on the weights = L_2 regularization
 - Overfitting controlled by the variance on the prior