Isotope	Mass number	Percentage natural abundance	Atomic mass (amu)	Average atomic mass of element (amu)
Hydrogen-1	1	99.985	1.007 825	1.007 94
Hydrogen-2	2	0.015	2.014 102	
Carbon-12	12	98.90	12 (by definition)	12.0111
Carbon-13	13	1.10	13.003 355	
Carbon-14	14	trace	14.003 242	
Oxygen-16	16	99.762	15.994 915	15.9994
Oxygen-17	17	0.038	16.999 131	
Oxygen-18	18	0.200	17.999 160	
Copper-63	63	69.17	62.929 599	63.546
Copper-65	65	30.83	64.927 793	
Cesium-133	133	100	132.905 429	132.905
Uranium-234 Uranium-235	234	0.005	234.040 947	238.029
	235	0.720	235.043 924	
Uranium-238	238	99.275	238.050 784	

TABLE 3-4 Atomic Masses and Abundances of Several Naturally Occurring

Calculating Average Atomic Mass The average atomic mass of an element depends on both the mass and

the relative abundance of each of the element's isotopes. For example naturally occurring copper consists of 69.17% copper-63, which has a atomic mass of 62.929 599 amu, and 30.83% copper-65, which has a atomic mass of 64.927 793 amu. The average atomic mass of copper can be calculated by multiplying the atomic mass of each isotope by its relative abundance (expressed in decimal form) and adding the results.

 $0.6917 \times 62.929\ 599\ amu + 0.3083 \times 64.927\ 793\ amu = 63.55\ amu$ The calculated average atomic mass of naturally occurring copper

The calculated average atomic mass of naturally occurring copper 63.55 amu.

The average atomic mass is included for the elements listed in Table

The average atomic mass is included for the elements listed in 120s 3-4. As illustrated in the table, most atomic masses are known to four more significant figures. In this book, an element's atomic mass is usually rounded to two decimal places before it is used in a calculation.

Relating Mass to Numbers of Atoms

The relative atomic mass scale makes it possible to know how man atoms of an element are present in a sample of the element with a massurable mass. Three very important concepts—the mole, Avogado number, and molar mass—provide the basis for relating masses grams to numbers of atoms.