Deep Brain stimulation changes shape of motor cortical beta oscillations in Parkinson's Disease

Scott Cole

Voytek Lab

3 Nov 2015

Basal Ganglia – Thalamo – Cortical Loop

Oscillations in basal ganglia

Phase-amplitude coupling

de Hemptinne, 2015, Nature Neuroscience

High frequency activity (HFA) proportional to population spiking (Manning, 2009)

But if you look at the raw data...

- 1 or 2 oscillations?
- HFA = population spiking, synchronized synaptic activity, other?

Maybe we can characterize this better

DBS decreases extrema sharpness for Subject 1

DBS decreases extrema sharpness

- p=0.015
- 9/9 subjects whose ESR changed most decreased with DBS

PAC = extrema sharpness

2-D characterization of shape

Pathological beta is reverse sawtooth

Neural computation and oscillation shape

Summary

- DBS decreases sharpness of beta oscillations
 - Decreases PAC
- Pathological beta shape is reverse sawtooth
 - Implications for neural computation

Future work: Template matching

"Math is giving us the middle finger"

Acknowledgments

UCSF Phil Starr Cora de Hemptinne

