CS-541: Artificial Intelligence Lecture 10

Abdul Rafae Khan

Department of Computer Science Stevens Institute of Technology akhan4@stevens.edu

April 18, 2022

Recap: Hidden Markov Model

Recap: Lattice Representation

Edge $start \Rightarrow H_1 = 1$ has a probability $p(h_1)p(e_1|h_1)$ Edge $H_{i-1} = h_{i-1} \Rightarrow H_i = h_i$ has weight $p(h_i|h_{i-1})p(e_i|h_i)$

Each path from *start* to *end* is an assignment with weights equal to the product of edge weights

Forward-Backward

Smoothing queries:

$$\mathbb{P}(H_i = h_i | E_i = e_i) \propto S_i(h_i)$$

Forward-Backward Algorithm:

Compute F_1, F_2, \dots, F_n Compute B_n, B_{n-1}, \dots, B_1 Compute S_i for each i and normalize

Running time: $O(nK^2)$

Question:

$$\mathbb{P}(H_2 = 2|E_1 = 1, E_2 = 2, E_3 = 1) = ?$$

Computing forward values F_i

Computing backward values B_i

Computing S_i

Question:

$$\mathbb{P}(H_2 = 2|E_1 = 1, E_2 = 2, E_3 = 1) = \frac{12}{12+9}$$

Question

If
$$X_1 + X_2 = 10$$
 and $X_1X_2 = 4$, what is X_1 ?

Take a step back

Examples: search problems, MDPs, Bayesian networks

Modeling paradigm

State-based models: search problems, MDPs **Applications:** route finding, game playing, etc. Think in terms of states, actions, and costs

Variable-based models: Bayesian networks

Applications: tracking, medical diagnosis, etc. Think in terms of variables and factors

Logic-based models: propositional logic, first-order logic **Applications:** theorem proving, verification, reasoning Think in terms of logical formulas and inference rules

A historical note

Logic was dominant paradigm in Al before 1990s

```
CONTROL OF THE PROPERTY OF THE
```

- Problem 1: deterministic, didn't handle uncertainty (probability addresses this)
- Problem 2: rule-based, didn't allow fine tuning from *data* (machine learning addresses this)
- Strength: provides expressiveness in a compact way

Natural Language

Example:

- A dime is better than a nickel.
- A nickel is better than a penny.
- Therefore, a dime is better than a penny.

Natural Language

Example:

- A dime is better than a nickel.
- A nickel is better than a penny.
- Therefore, a dime is better than a penny.

Example:

- A penny is better than nothing.
- Nothing is better than world peace.
- Therefore, a penny is better than world peace???

Natural Language

Example:

- A dime is better than a nickel.
- A nickel is better than a penny.
- Therefore, a dime is better than a penny.

Example:

- A penny is better than nothing.
- Nothing is better than world peace.
- Therefore, a penny is better than world peace???

Natural language is slippery!!!

Language

Language is a mechanism for expression.

Natural languages (informal):

English: Two divides even numbers.

German: Zwei dividieren geraden zahlen.

Programming languages (formal):

```
Python: def even(x): return x \% 2 = 0
C++: bool even(int x) { return x \% 2 = 0; }
```

Logical languages (formal):

First-order-logic: $\forall x . Even(x) \rightarrow Divides(x, 2)$

Two goals of a logic language

- Represent knowledge about the world
- Reason with that knowledge

Ingredients of a logic

Syntax: defines a set of valid formulas (Formulas)

Example: Rain ∧ Wet

Semantics: for each formula, specify a set of models (assignments/configurations of the

world)

Example:

Inference rules: given f, what new formulas g can be added that are guaranteed to follow $(\frac{f}{g})$?

Example: from Rain \(\text{ Wet, derive Rain} \)

Syntax versus semantics

Syntax: what are valid expressions in the language?

Semantics: what do these expressions mean?

Different syntax, same semantics (5):

$$2+3 \Leftrightarrow 3+2$$

Same syntax, different semantics (1 versus 1.5):

$$3/2$$
 (Python 2.7) $\not\gg 3/2$ (Python 3)

Logics

- Propositional logic
- Propositional logic with only Horn clauses
- First-order logic
- First-order logic with only Horn clauses

Tradeoff: Balance expressivity and computational efficiency.

Propositional logic

Syntax of propositional logic

Propositional symbols (atomic formulas): A, B, CLogical connectives: \neg , \land , \lor , \rightarrow , \leftrightarrow Build up formulas recursively — if f and g are formulas, so are the following:

• Negation: $\neg f$

• Conjunction: $f \wedge g$

• Disjunction: $f \vee g$

• Implication: $f \rightarrow g$

• Biconditional: $f \leftrightarrow g$

Syntax of propositional logic

- Formula: A
- Formula: $\neg A$
- Formula: $\neg B \rightarrow C$
- Formula: $\neg A \land (\neg B \rightarrow C) \lor (\neg B \lor D)$
- Formula: $\neg \neg A$
- Non-formula: $A \neg B$
- Non-formula: A + B

Propositional logic

Model

A **model** w in propositional logic is an assignment of truth values to propositional symbols Example:

- 3 propositional symbols: A, B, C
- $2^3 = 8$ possible models w:

```
{A:0,B:0,C:1}
{A:0,B:1,C:0}
```

 $\{A:0,B:0,C:0\}$

 $\{A{:}0{,}B{:}1{,}C{:}1\}$

 $\{A{:}1{,}B{:}0{,}C{:}0\}$

 $\{A{:}1{,}B{:}0{,}C{:}1\}$

 ${A:1,B:1,C:0}$

 ${A:1,B:1,C:1}$

Model

```
Let f be a formula.

Let w be a model.

An interpretation function \mathcal{I}(f,w) returns:

true (1) (say that w satisfies f)

false (0) (say that w does not satisfy f)
```


Interpretation function: definition

Base case:

• For a propositional symbol p (e.g., A, B, C): $\mathcal{I}(p, w) = w(p)$

Recursive case:

• For any two formulas f and g, define:

$\mathcal{I}(f, w)$	$\mathcal{I}(g,w)$	$\mathcal{I}(\neg f, w)$	$\mathcal{I}(f \wedge g, w)$	$\mathcal{I}(f \vee g, w)$	$\mathcal{I}(f \to g, w)$	$\mathcal{I}(f \leftrightarrow g, w)$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

Example: inverted v-structure

Formula: $f = (\neg A \land B) \leftrightarrow C$ Model: $w = \{A : 1, B : 1, C : 0\}$

Interpretation:

Formula represents a set of models

Each formula f and model w has an interpretation $\mathcal{I}(f,w) \in \{0,1\}$

Model:

Let $\mathcal{M}(f)$ be the set of models w for which $\mathcal{I}(f,w)=1$

Models: example

Formula:

 $f = Rain \lor Wet$

Models:

 $\mathcal{M}(f) =$

Compact representation:

A formula compactly represents a set of models.

Knowledge base

A **knowledge base** *KB* is a set of formulas representing their conjunction/intersection:

$$\mathcal{M}(\mathit{KB}) = \cap_{f \in \mathit{KB}} \mathcal{M}(f)$$

Intuition: KB specifies constraints on the world. $\mathcal{M}(KB)$ is the set of all worlds satisfying those constraints.

Let $KB = \{Rain \lor Snow, Traffic\}.$

Knowledge base: example

Intersection:

$$\mathcal{M}(\{\mathsf{Rain},\mathsf{Rain} \to \mathsf{Wet}\})$$

$$\mathsf{Wet}$$

$$0 \quad 1$$

$$\mathsf{E}$$

$$0$$

$$1$$

Adding to the knowledge base

Adding more formulas to the knowledge base:

$$KB \longrightarrow KB \cup \{f\}$$

Shrinks the set of models:

$$\mathcal{M}(KB) \longrightarrow \mathcal{M}(KB) \cup \mathcal{M}(f)$$

How much does M(KB) shrink?

Entailment

Intuition: *f* added no information/constraints (it was already known)

Entailment: KB entails f (written $KB \models f$) iff $\mathcal{M}(KB) \subseteq \mathcal{M}(f)$

Example: Rain \land Snow \models Snow

Contradiction

Intuition: f contradicts what we know (captured in KB)

Contradiction: *KB* contradicts *f* iff $\mathcal{M}(KB) \cap \mathcal{M}(f) = \emptyset$

Example: Rain ∧ Snow contradicts ¬Snow

Contingency

Intuition: f adds non-trivial information to KB

$$\emptyset \subsetneq \mathcal{M}(KB) \cap \mathcal{M}(f) \subsetneq \mathcal{M}(KB)$$

Example: Rain and Snow

Contradiction and Entailment

Contradiction:

Entailment:

KB contradicts f iff KB entails $\neg f$

Propositional logic

Inference rules

Example of making an inference:

It is raining. (Rain) If it is raining, then it is wet. (Rain \rightarrow Wet) Therefore, it is wet. (Wet)

$$\frac{\textit{Rain}, \textit{Rain} \rightarrow \textit{Wet}}{\textit{Wet}} \quad \frac{\textit{(premises)}}{\textit{(conclusion)}}$$

Modus ponens inference rule

For any propositional symbols p and q:

$$\frac{p,p \to q}{q}$$

Inference framework

If f_1, \dots, f_k, g are formulas, then the following is an inference rule:

$$\frac{f_1,\cdots,f_k}{g}$$

Rules operate directly on syntax, not on semantics

Inference algorithm

```
Input: set of inference rules Rules. Repeat until no changes to KB:

Choose set of formulas f_1, \dots, f_k KB.

If matching rule \frac{f_1, \dots, f_k}{g} exists:

Add g to KB

KB derives/proves f (KB \vdash f) iff f eventually gets added to KB
```

Inference example

Modus ponens inference

Starting point:

$$\mathit{KB} = \{\mathit{Rain}, \mathit{Rain} \rightarrow \mathit{Wet}, \mathit{Wet} \rightarrow \mathit{Slippery}\}$$

Apply modus ponens to Rain and Rain \rightarrow Wet:

$$\mathit{KB} = \{\mathit{Rain}, \mathit{Rain} \rightarrow \mathit{Wet}, \mathit{Wet} \rightarrow \mathit{Slippery}, \mathit{Wet}\}$$

Apply modus ponens to Wet and Wet \rightarrow Slippery:

$$\mathit{KB} = \{\mathit{Rain}, \mathit{Rain} \rightarrow \mathit{Wet}, \mathit{Wet} \rightarrow \mathit{Slippery}, \mathit{Wet}, \mathit{Slippery}\}$$

Converged

Inference example

Modus ponens inference

Starting point:

$$KB = \{Rain, Rain \rightarrow Wet, Wet \rightarrow Slippery\}$$

Apply modus ponens to Rain and Rain \rightarrow Wet:

$$\mathit{KB} = \{\mathit{Rain}, \mathit{Rain} \rightarrow \mathit{Wet}, \mathit{Wet} \rightarrow \mathit{Slippery}, \mathit{Wet}\}$$

Apply modus ponens to Wet and Wet \rightarrow Slippery:

$$\mathit{KB} = \{\mathit{Rain}, \mathit{Rain} \rightarrow \mathit{Wet}, \mathit{Wet} \rightarrow \mathit{Slippery}, \mathit{Wet}, \mathit{Slippery}\}$$

Converged

Can't derive some formulas: $\neg Wet$, Rain \rightarrow Slippery

Desiderata for inference rules

Semantics:

Interpretation defines entailed/true formulas: $KB \models f$:

Syntax:

Inference rules derive formulas: $KB \vdash f$

How does $f : KB \models f$ relate to $f : KB \vdash f$?

Properties

Truth:

$$f: KB \models f$$

Soundness: A set of inference rules Rules is sound if:

$$f: KB \vdash f \subseteq f: KB \models f$$

Completeness: A set of inference rules Rules is complete if:

$$f: KB \vdash f \supseteq f: KB \models f$$

Soundness and completeness

The truth, the whole truth, and nothing but the truth.

• Soundness: nothing but the truth

• Completeness: whole truth

Is $\frac{Rain, Rain \rightarrow Wet}{Wet}$ (Modus ponens) sound?

$$\mathcal{M}(Rain) \cap \mathcal{M}(Rain \rightarrow Wet) \subseteq ? \mathcal{M}(Wet)$$

Is $\frac{Rain, Rain \rightarrow Wet}{Wet}$ (Modus ponens) sound?

$$\mathcal{M}(Rain) \cap \mathcal{M}(Rain \rightarrow Wet) \subseteq ? \mathcal{M}(Wet)$$

Sound!

Is $\frac{Rain, Rain \rightarrow Wet}{Wet}$ (Modus ponens) sound?

$$\mathcal{M}(Wet) \cap \mathcal{M}(Rain \rightarrow Wet) \subseteq ? \mathcal{M}(Rain)$$

Is $\frac{Rain, Rain \rightarrow Wet}{Wet}$ (Modus ponens) sound?

$$\mathcal{M}(\mathit{Wet}) \ \cap \ \mathcal{M}(\mathit{Rain} \to \mathit{Wet}) \ \subseteq ? \ \mathcal{M}(\mathit{Rain})$$

Unsound!

Completeness: example

Recall completeness: inference rules derive all entailed formulas (f such that $KB \models f$)

Setup:

$$KB = \{Rain, Rain \lor Snow \rightarrow Wet\}$$

 $f = Wet$

Completeness: example

Recall completeness: inference rules derive all entailed formulas (f such that $KB \models f$)

Setup:

```
KB = \{Rain, Rain \lor Snow \rightarrow Wet\}
f = Wet
Rules = \{\frac{f, f \rightarrow g}{g}\} (Modus ponens)
Semantically: KB \models f (f is entailed)
Syntactically: KB \not\models f (can't derive f)
```

Incomplete!

Fixing completeness

Option 1: Restrict the allowed set of formulas

propositional logic

propositional logic with only Horn clauses

Fixing completeness

Option 1: Restrict the allowed set of formulas

propositional logic

propositional logic with only Horn clauses

Option 2: Use more powerful inference rules

Modus ponens

resolution

Definite clauses

A **definite clause** has the following form:

$$(p_1 \wedge \cdots \wedge p_k) \rightarrow q$$

where $p_1 \wedge \cdots \wedge p_k, q$ are propositional symbols

Intuition: if p_1, \dots, p_k hold, then q holds

Example: $(Rain \land Snow) \rightarrow Traffic$

Example: Traffic

Non-example: ¬Traffic

Non-example: $(Rain \land Snow) \rightarrow (Traffic \lor Peaceful)$

Horn clauses

A Horn clause is either:

- a definite clause $(p_1 \wedge \cdots \wedge p_k \rightarrow q)$
- a goal clause $(p_1 \wedge \cdots \wedge p_k \rightarrow false)$

Example (definite): (Rain \land Snow) \rightarrow Traffic **Example (goal):** Traffic \land Accident \rightarrow false

equivalent: $\neg(\mathsf{Traffic} \land \mathsf{Accident})$

Modus ponens

Inference rule:

$$\frac{p_1,\cdots,p_k,(p_1\wedge\cdots\wedge p_k)\to q}{q}$$

Example:

$$\frac{\textit{Wet}, \textit{Weekday}, \textit{Wet} \land \textit{Weekday} \rightarrow \textit{Traffic}}{\textit{Traffic}}$$

Completeness of modus ponens

Claim: Modus ponens on Horn clauses

Modus ponens is complete with respect to Horn clauses:

- Suppose KB contains only Horn clauses and p is an entailed propositional symbol
- Then applying modus ponens will derive p

 $KB \models p$ (entailment) is the same as $KB \vdash p$ (derivation)

Example: Modus ponens

Question: $KB \models Traffic \leftrightarrow KB \vdash Traffic$

Horn clauses and disjunction

Written with implication

 $\mathsf{A}\to\mathsf{C}$

 $A \, \wedge \, B \, \to \, C$

Written with disjunction

 $\neg A \lor C$

 $\neg A \, \vee \, \neg B \, \vee \, C$

Horn clauses and disjunction

Written with implication

$$\begin{array}{c} \mathsf{A} \to \mathsf{C} \\ \mathsf{A} \wedge \mathsf{B} \to \mathsf{C} \end{array}$$

Written with disjunction

$$\neg A \lor C$$

 $\neg A \lor \neg B \lor C$

- **Literal:** either p or $\neg p$, where p is a propositional symbol
- Clause: disjunction of literals
- Horn clauses: at most one positive literal

Modus ponens (rewritten):

$$\frac{A, \neg A \lor C}{C}$$

Intuition: cancel out A and $\neg A$

Resolution

General clauses have any number of literals:

$$\neg A \lor B \lor \neg C \lor D \lor \neg E \lor F$$

Resolution inference

$$\frac{f_1 \vee \cdots \vee f_n \vee p, p \vee g_1 \vee \cdots \vee g_m}{f_1 \vee \cdots \vee f_n \vee g_1 \vee \cdots \vee g_m}$$

Example:

$$Rain \lor Snow, \neg Snow \lor Traffic$$

 $Rain \lor Traffic$

Soundness of resolution

$$\frac{\textit{Rain} \lor \textit{Snow}, \lor \textit{Traffic}}{\textit{Rain} \lor \textit{Traffic}} (\text{resolution rule})$$

$$\mathcal{M}(Rain \vee Snow) \cap \mathcal{M}(\neg Snow \vee Traffic) \subseteq ? \mathcal{M}(Rain \vee Traffic)$$

Soundness of resolution

$$\frac{Rain \lor Snow, \lor Traffic}{Rain \lor Traffic} (resolution rule)$$

$$\mathcal{M}(Rain \vee Snow) \cap \mathcal{M}(\neg Snow \vee Traffic) \subseteq ? \mathcal{M}(Rain \vee Traffic)$$

Sound!

Conjunctive normal form

So far Resolution only works on clauses

Conjunctive normal form (CNF)

A CNF formula is a conjunction of clauses

Example: $(A \lor B \lor \neg C) \land (\neg B \lor D)$

Equivalent: knowledge base where each formula is a clause

Conjunctive normal form

So far Resolution only works on clauses

Conjunctive normal form (CNF)

A CNF formula is a conjunction of clauses

Example: $(A \lor B \lor \neg C) \land (\neg B \lor D)$

Equivalent: knowledge base where each formula is a clause

Conversion to CNF formula

Every formula f in propositional logic can be converted into an equivalent CNF formula f':

$$\mathcal{M}(f)=\mathcal{M}(f')$$

Initial formula:

 $(Summer \rightarrow Snow) \rightarrow Bizzare$

Initial formula:

 $(Summer \rightarrow Snow) \rightarrow Bizzare$

Remove implication (\rightarrow) :

 $\neg (\mathsf{Summer} \to \mathsf{Snow}) \lor \mathsf{Bizzare}$

Initial formula:

(Summer o Snow) o Bizzare

Remove implication (\rightarrow) :

 $\neg(\neg \mathsf{Summer} \lor \mathsf{Snow}) \lor \mathsf{Bizzare}$

```
Initial formula: (Summer \rightarrow Snow) \rightarrow Bizzare
```

Remove implication (\rightarrow) :

 \neg (\neg Summer \lor Snow) \lor Bizzare

Push negation (\neg) inwards (de Morgan):

 $(\neg\neg\mathsf{Summer} \land \neg\mathsf{Snow}) \lor \mathsf{Bizzare}$

Conversion to CNF: example

```
Initial formula:
```

(Summer o Snow) o Bizzare

Remove implication (\rightarrow) :

 $\neg(\neg \mathsf{Summer} \lor \mathsf{Snow}) \lor \mathsf{Bizzare}$

Push negation (\neg) inwards (de Morgan):

 $(\neg\neg\mathsf{Summer} \land \neg\mathsf{Snow}) \lor \mathsf{Bizzare}$

Remove double negation:

 $(Summer \land \neg Snow) \lor Bizzare$

Conversion to CNF: example

Initial formula:

 $(Summer \rightarrow Snow) \rightarrow Bizzare$

Remove implication (\rightarrow) :

 $\neg(\neg \mathsf{Summer} \lor \mathsf{Snow}) \lor \mathsf{Bizzare}$

Push negation (\neg) inwards (de Morgan):

 $(\neg\neg\mathsf{Summer} \land \neg\mathsf{Snow}) \lor \mathsf{Bizzare}$

Remove double negation:

 $(Summer \land \neg Snow) \lor Bizzare$

Distribute \vee **over** \wedge :

(Summer \vee Bizzare) \wedge (\neg Snow \vee Bizzare)

Conversion to CNF: general

Conversion rules:

- Eliminate \leftrightarrow : $\frac{f \leftrightarrow g}{(f \to g)(g \to f)}$
- Eliminate $\rightarrow : \frac{f g}{fg}$
- Move \neg inwards: $\frac{\neg (f \land g)}{\neg f \lor \neg g}$
- Move \neg inwards: $\frac{\neg (f \lor g)}{\neg f \land \neg g}$
- Eliminate double negation: $\frac{\neg f}{f}$
- Distribute \vee over \wedge : $\frac{f \vee (g \wedge h')}{(f \vee g) \wedge (f \vee h)}$

Resolution algorithm

Relationship between entailment and contradiction (basically "proof by contradiction")

$$KB \models f \iff KB \cup \{\neg f\}$$
 is unsatisfiable

Add $\neg f$ into KBConvert all formulas into CNF. Repeatedly apply resolution rule. Return entailment iff derive false.

$$KB = \{A \rightarrow (B \lor C), A, \neg B\}, f = \{C\}$$

Question:

 $KB \models f$

- negate f
- convert to CNF
- Check if contradiction occurs

$$KB = \{A \rightarrow (B \lor C), A, \neg B\}, f = \{C\}$$

$$KB' \models \{A \rightarrow (B \lor C), A, \neg B, \neg C\}$$

$$KB' \models A \rightarrow (B \lor C), A, \neg B, \neg C$$

Convert to CNF:

$$KB' = \neg A \lor B \lor C, A, \neg B, \neg C$$

Repeatedly apply resolution rule:

Conclusion: KB entails f

Time complexity

Modus ponens inference rule

$$\frac{p_1,\cdots,p_k,(p_1\wedge\cdots\wedge p_k) o q}{q}$$

Each rule application adds clause with **one** propositional symbol \Rightarrow linear time

$$\frac{f_1 \vee \cdots \vee f_n \vee p, \neg p \vee g_1 \vee \cdots \vee g_m}{f_1 \vee \cdots \vee f_n \vee g_1 \vee \cdots \vee g_m}$$

Each rule application adds clause with \boldsymbol{many} propositional symbols \Rightarrow exponential time

Modes ponens vs Resolution

Horn clauses Any clause

Modus ponens Resolution

Linear time Exponential time

Less expressive More expressive

Recap

Propositional logic Syntax vs Semantics Inference Rules Modus Ponens Horn Clause Resolution

References

Stuart Russell and Xiaodong Song (2021)

CS 188 — Introduction to Artificial Intelligence

University of California, Berkeley

Chelsea Finn and Nima Anari (2021)

CS221 — Artificial Intelligence: Principles and Techniques

Stanford University

The End