sine basis 09

p-values adjusted for search volume

Statistics:

set-level		cluster-level			peak-level					mm mm mm	
рс	;	p_{FWE-c}	<i>g k</i> corrFDR-corr	p _{uncorr}	p_{FWE-c}	$\rho_{\text{FWE-corr}\text{FDR-corr}} T \qquad (Z_{\equiv}) \ \rho_{\text{uncorr}}$			$p_{ m uncorr}$		
					0.950	0.243	4.08	4.05	0.000	-64 -66	-16 0 -34 -2
		1.000 0.779	0.496 28 0.130 86	0.094 0.007	0.917 0.945 1.000 1.000	0.242 0.243 0.950 0.999	4.14 4.09 2.90 2.58	4.10 4.06 2.89 2.57	0.000 0.000 0.002 0.005	-50 68 58 64	22 -26 -18 6 -24 14 -10 -2
		1.000 1.000 0.353	0.430 45 0.496 32 0.056 12	0.039 0.075 0.002	0.948 0.959 0.976 1.000	0.243 0.246 0.272 0.586	4.09 4.06 4.02 3.40	4.05 4.03 3.99 3.38	0.000 0.000 0.000	-22 36 58 50	-10 -12 8 -20 -48 48 -48 54
		1.000 1.000 0.427	0.496 28 0.496 29 0.064 11	0.094 0.089 3 0.002	0.995 0.999 0.999 1.000	0.367 0.412 0.412 0.429	3.92 3.84 3.83 3.73	3.88 3.81 3.80 3.71	0.000 0.000 0.000 0.000 0.002	42 54 -56 -44	-54 -34 16 -10 -58 -18 -72 -18
		1.000	0.458 41	0.047	1.000 0.999 1.000 1.000	0.955 0.412 0.982 0.982	2.86 3.82 2.72 2.68	2.85 3.79 2.71 2.67	0.002 0.000 0.003 0.004	-62 38 28 30	-52 -20 -80 -40 -76 -36 -82 -44
		1.000 0.223	0.520 26 0.037 13	0.105 6 0.001	0.999 1.000 1.000 1.000	0.412 0.412 0.412 0.554	3.80 3.80 3.79 3.49	3.77 3.77 3.76 3.47	0.000 0.000 0.000 0.000	-38 48 42 58	28 -22 -52 28 -58 34 -56 28