

Bachelorarbeit

Vorhersage raumzeitlicher Dynamik mittels Reservoir Computing

Preidicting spatio-temporal dynamics using reservoir computing

angefertigt von

Roland Simon Zimmermann

aus Recklinghausen

am Max-Planck-Institut für Dynamik und Selbstorganisation

Bearbeitungszeit: 1. Juni 2017 bis 15. September 2017

Erstgutachter/in: Prof. Dr. Ulrich Parlitz

Zweitgutachter/in: Prof. Dr. Florentin Wörgötter

Zusammenfassung

Hier werden auf einer halben Seite die Kernaussagen der Arbeit zusammengefasst.

Stichwörter: Physik, Bachelorarbeit

Abstract

Here the key results of the thesis can be presented in about half a page.

Keywords: Physics, Bachelor thesis

Inhaltsverzeichnis

1	Einf	ührung	1
2	The	orie	3
	2.1	Berkley Modell	3
	2.2	Mitchell-Schaeffer Modell	4
	2.3	Delay Reconstruction	6
	2.4	Nächster Nachbar Vorhersage	7
		2.4.1 k-d-tree	8
	2.5	Radiale Basisfunktionen	9
	2.6	Neural Networks	1
		2.6.1 Überblick über Neural Networks	1
	2.7	Echo State Network	3
		2.7.1 Überblick	3
		2.7.2 Aufbau	3
		2.7.3 Trainingsvorgang	5
		2.7.4 Theoretischer Hintergrund	6
3	Anv	vendungen 1	9
	3.1	Allgemeines Vorgehen	0
		3.1.1 Echo State Network	2
		3.1.2 Klassische Methoden	3
	3.2	Kreuz-Prädiktion	3
		3.2.1 Nächste Nachbar Vorhersage	4
		3.2.2 Radiale Basisfunktionen	6
		3.2.3 Echo State Network	9
		3.2.4 Vergleich	9
	3.3	Kreuz-Prädiktion innere Dynamiken	0

In halts verzeichn is

	3.4	Prädik	tion der Dynamik durch das Fernfeld	30
		3.4.1	Nächste Nachbar Vorhersage	30
		3.4.2	Radiale Basisfunktionen	32
		3.4.3	Echo State Network	32
		3.4.4	Vergleich	33
4	Disk	ussion		37
5	Fazit	t		39
6	Aust	olick		41
7	Danl	ksagun	gen	43

Nomenklatur

Symbol	Bedeutung
\overline{N}	Anzahl der Einheiten im Reservoir ${f W}$
α	Verlustrate des Leaky Integrators
λ	Parameter für den Lernvorgang mittels <i>Tikhonov Regularisie-</i> rung.
$\rho(\mathbf{W}))$	Spektralradius von \mathbf{W}
$\sigma(\mathbf{W})$	Singulärwert von \mathbf{W}
$ u_{max}$	Maximalwert des hinzugefügten Rauschens $\nu(n)$ für die Erhöhung der Stabilität.
σ	
$\Delta\sigma$	
σ_{RBF}	Breite der gaußschen Basisfunktion
δ	Dimension der Delay Reconstruction
$[\cdot;\cdot]$	Vertikales Aneinanderfügen von Vektoren/Matrizen

1 Einführung

2 Theorie

2.1 Berkley Modell

Das $Barkley\ Modell$, welches 1990 von Dwight Barkley vorgestellt wurde, ist ein System aus gekoppelten Reaktionsdiffusionsgleichungen. Dies sind partielle Differentialgleichungen (PDE) zweiter Ordnung welche einen Diffusionsterm besitzen. Das $Barkley\ Modell$ beschreibt ein erregbares und oszillierendes Medium. Das Modell besteht aus zwei Variablen u,v die den PDEs

$$\frac{\partial u}{\partial t} = D \cdot \nabla^2 u + \frac{1}{\epsilon} (1 - u) \left(u - \frac{v + b}{a} \right)$$

$$\frac{\partial v}{\partial t} = u^{\alpha} - v,$$
(2.1)

unterliegen. Dabei ermöglicht $\alpha = 1$ dem System periodische Wellenmuster auszubilden und $\alpha = 3$ bedingt ein chaotisches Verhalten. Die Variable u durchläuft hierbei eine schnellere Dynamik als die hemmende Variable v [1, 4].

Die Parameter ϵ, b und a charakterisieren das Verhalten des Systems und werden in der gesamten folgenden Arbeit - sofern keine anderen Angaben existieren - als

$$a = 0.8,$$

 $b = 0.01,$
 $\epsilon = 0.02$

festgelegt.

Zudem wird das Modell in dieser Arbeit in zwei Dimensionen betrachtet, sodass u(t, x, y) und v(t, x, y) skalare zeitabhängige Felder sind.

Zur Simulation des System werden zunächst die PDEs zeitlich mit einem Zeitschritt Δt und örtlich mit einer Gitterkonstante Δx diskretisiert. Zur Beschreibung des

Diffusionstermes wird eine fünf-Punkte Methode

$$\nabla^2 u(t)_{i,j} \simeq \frac{u(t)_{i-1,j} + u(t)_{i+1,j} + u(t)_{i,j-1} + u(t)_{i,j+1} - 4u(t)_{i,j}}{\Delta x^2} =: \Sigma(t)_{i,j}$$
 (2.2)

nach [1] verwendet. Dabei stehen die tiefergestellten Indizes für den diskretisierten Ort der x-y-Ebene. Für kleine Zeitschritte Δt ist ein explizites Eulerverfahren

$$u(t+1)_{i,j} = u(t)_{i,j} + \Delta t \cdot \frac{\partial u}{\partial t},$$

$$v(t+1)_{i,j} = v(t)_{i,j} + \Delta t \cdot \frac{\partial v}{\partial t}$$
(2.3)

mit

$$\frac{\partial u}{\partial t}_{i,j} = D \cdot \Sigma(t)_{i,j} + \frac{1}{\epsilon} (1 - u(t)_{i,j}) \left(u(t)_{i,j} - \frac{v(t)_{i,j} + b}{a} \right)
\frac{\partial v}{\partial t}_{i,j} = u(t)_{i,j}^3 - v(t)_{i,j}$$
(2.4)

ausreichend genau. Im Folgenden wird zudem, in Analogie zu [4], die Diffusionskonstante auf D=1/25, die Gitterkonstante auf $\Delta x=0.1$ und die Zeitkonstante auf $\Delta t=0.01$ gesetzt.

2.2 Mitchell-Schaeffer Modell

Das Mitchell-Schaeffer Modell ist ebenso wie das Barkley Modell ein System aus gekoppelten partiellen Differentialgleichungen. Es ist vorgeschlagen worden, um eine phänomenologisches Beschreibung der Aktionspotentiale auf der Membran von Herzzellen zu liefern. Das Modell wird durch die Membranspannung v(t) und eine Kontrollvariable h(t), welche das Verhalten der beteiligten Ionenkanäle steuert, definiert. Hierbei wird die Spannung als dimensionslose Größe dargestellt, die Werte zwischen 0 und 1 annehmen kann [15].

Diese Dynamik wird durch die Gleichungen

$$\frac{\partial v}{\partial t} = \nabla \cdot (D\nabla v) + \frac{hv^2(1-v)}{\tau_{in}} - \frac{v}{\tau_{out}},$$

$$\frac{\partial h}{\partial t} = \begin{cases} \frac{1-h}{\tau_{open}}, & \text{wenn } v \leq v_{gate} \\ \frac{-h}{\tau_{close}}, & \text{wenn } v \geq v_{gate} \end{cases}$$
(2.5)

beschrieben. Dabei stehen die Parameter τ_{in} , τ_{out} , τ_{open} , τ_{close} für Zeitkonstanten, welche die Form des Aktionspotentials modifizieren. Die ersten beiden Konstanten beschreiben die Geschwindigkeit, mit der die Ionen durch die Membran strömen, und die letzten beiden die Geschwindigkeit mit der sich die verantwortlichen Ionenkanäle öffnen beziehungsweise schließen. Zusätzlich stellt die Konstante v_{gate} eine Grenzspannung dar. Beim Über- und Unterschreiten dieser Grenze ändert sich der der jeweilige Zustand der Ionenkanäle , indem h(t) angepasst wird. Im Rahmen dieser Arbeit werden, soweit keine anderen Angaben vorhanden sind, die Parameter durch die Werte aus Tabelle 2.1 in Analogie zu [15] festgesetzt. Dabei ist allerdings τ_{open} auf 20 [2, S. 134ff.] reduziert worden, da mit dieser Wahl ein chaotischeres Verhalten, ähnlich zum Barkley-Modell, erzeugt wird. Dies erschwert die mögliche Vorhersage der Entwicklung, wodurch eine anspruchsvolle Herausforderung erzeugt wird.

$ au_{in}$	$ au_{out}$	$ au_{open}$	$ au_{close}$	v_{gate}
0.3	6.0	20	150	0.13

Tab. 2.1: Verwendete Zeitkonstaten und Grenzspannung v_{gate} für die Betrachtung des *Mitchell-Schaeffer Modells*

Der erste Summand der zeitlichen Ableitung von v beschreibt ein Diffusionsverhalten, welches durch die Diffusionsmatrix $\mathbf{D} = \operatorname{diag}(D_x, D_y)$ beschrieben wird. Die Einführung dieser Matrix erlaubt im Allgemeinen die Verwendung von zwei verschiedenen Diffusionskontanten D_x, D_y , welche Richtungsabhängig sind [17]. Im Folgenden wird für diese allerdings der gleichen Wert $D_x = D_y = D$ gesetzt.

Die meisten, auf zellulärer Ebene aufgestellten, Gleichungen haben eine hohe Komplexität. Hierdurch werden numerische Berechnungen sehr aufwendig. In der Herleitung dieses Modells sind einige vereinfachende Annahmen eingeflossen, wodurch die Komplexität und somit auch der numerische Aufwand reduziert worden sind. Trotz des phänomenologischen Charakters des *Mitchell-Schaeffer Modells* besitzen die Parameter eine physiologische Interpretation. Zudem ist es in der Lage wichtige Eigenschaften des Aktionspotentials im Vergleich zu anderen Modellen gut wiederzugeben [17].

Analog zu der Betrachtung des Barkley Modells sind für die numerische Betrach-

tung die beiden PDEs erneut in einem expliziten Verfahren mittels

$$\frac{\partial v}{\partial t}_{i,j} = D \cdot \Sigma(t)_{i,j} + \frac{h(t)_{i,j}v(t)_{i,j}^2(1 - v(t)_{i,j})}{\tau_{in}} - \frac{v(t)_{i,j}}{\tau_{out}}$$

$$\frac{\partial h}{\partial t}_{i,j} = \begin{cases} \frac{1 - h(t)_{i,j}}{\tau_{open}}, & \text{wenn } v(t)_{i,j} \leq v_{gate} \\ \frac{-h(t)_{i,j}}{\tau_{close}}, & \text{wenn } v(t)_{i,j} \geq v_{gate} \end{cases}$$
(2.6)

diskretisiert worden. Dabei werden im Folgenden die Integrationskonstanten $\Delta x = 0.1, \Delta t = 0.01$ und die Diffusionskonstante $D_x = D_y = D = 5 \times 10^{-3}$ genutzt.

2.3 Delay Reconstruction

Die Delay Reconstructions (Verzögerung-Konstruktionen) können benutzt werden um Zeitreihen zu analysieren und den Phasenraum des ursprünglichen Systems zu rekonstruieren. Hierbei wird ein Signal s(t) an diskreten Zeitpunkten betrachtet, sodass sich das diskrete Signal $s_n = s(n\Delta t)$ ergibt. Eine Delay Reconstruction erzeugt hier raus ein Signal, in welchem die Informationen δ vorheriger Zeitpunkte mit dem Abstand τ enthalten sind. Somit wird eine höhere dimensionale Zeitreihe $\vec{z}_n \in \mathbf{R}^{\delta}$ durch

$$\vec{z}_n = \left(s_{n-(\delta-1)\tau}, s_{n-(\delta-2)\tau}, \dots, s_n\right) \tag{2.7}$$

konstruiert. Bei einer ausreichend hohen Wahl der Rekonstruktionsimension m ist es hiermit möglich den Phasenraum des Attraktors zu rekonstruieren. Für die Wahl der Verzögerungszeit τ gibt es keine rigorose mathematische Definition oder Beschreibung, sondern es existieren verschiedene Ansätze zur Ermittlung des optimalen Wertes. Ein populärer Ansatz, welcher in dieser Arbeit verwendet besteht darin τ durch das Auffinden der ersten Nullstelle von der Autokorrelationsfunktion

$$AUC(\tau) = \sum_{l}^{N-\tau} (s_l - \bar{s})(s_{l+\tau} - \bar{s})$$
 (2.8)

zu ermitteln. Dies lässt sich dadurch motivieren, dass durch das hinzunehmen des Signals der Zeitreihe die um diesen Wert von τ verschoben ist, am meisten neue Information hinzugefügt wird, da die Selbstähnlichkeit des Signals am geringsten ist [12, 30 ff.]

2.4 Nächster Nachbar Vorhersage

Das Ziel der nächsten Nachbar Vorhersage (im Folgenden als NN-Ansatz abgekürzt) ist es den funktionalen Zusammenhang $F: X \to Y$ zu finden, welcher Daten der Menge $X \in \mathbb{R}^n$ auf Elemente aus $Y \in \mathbb{R}^m$ eindeutig abbildet. Hierfür wird angenommen, dass die Funktion F lokal stetig ist. Zudem werden hierfür Daten benötigt, anhand derer der Zusammenhang erlernt werden kann.

Zu Beginn werden Paare $(\vec{x}, \vec{y}) \in X \times Y$ aus einem Trainingsdatensatz gebildet und eine Suchstruktur über die x-Werte gebildet. Nun kann diese Struktur genutzt werden, um für ein gegebenes \vec{x} den wahrscheinlichsten Wert \vec{y} zu suchen. Hierfür werden, unter der Annahme der lokalen Stetigkeit, die Datenpunkte $\vec{x}_1, ..., \vec{x}_k$ aus der zuvor angelegten Suchstruktur ausgewählt, welche den geringsten Abstand $d(\vec{x}, \vec{x}_i)$ zu \vec{x} besitzen.

Diesen k Datenpunkten ist jeweils ein eindeutiger Wert $\vec{y_i}$ zuvor zugeordnet werden. Damit kann nun eine Approximation für den zu \vec{x} gehörigen Wert \vec{y} erstellt werden, indem beispielsweise ein gewichteter Mittelwert der $\vec{y_i}$ genutzt wird. Hierzu kann jedem der k nächsten Nachbarn $(\vec{x_i}, \vec{y_i})$ ein Gewicht $w_i(\vec{x})$ nach

$$w_i(\vec{x}) = \frac{v_i}{\sum_i v_i}, \text{ mit } v_i = \frac{1}{||\vec{x}_i - \vec{x}||}$$

zugeordnet werden. Diese Definition erfüllt $\sum_i w_i = 1$ und ordnen zudem fernen Nachbarn ein geringeres Gewicht zu. Die dabei auftretende Norm $|| \dots |||$ wird im Folgenden als euklidisch angenommen, sofern keine weiteren Angaben existieren. Somit ergibt sich für die gewichtete Vorhersage

$$F(\vec{x}) = \vec{y} = \sum_{i}^{k} \vec{y}_{i} \left(\sum_{j} \frac{||\vec{x}_{i} - \vec{x}||}{||\vec{x}_{j} - \vec{x}||} \right)^{-1}.$$
 (2.9)

Der Schlüssel in der Bewältigung einer solchen Aufgabe liegt hauptsächlich in der Art und Weise, wie die k nächsten Nachbarn gesucht werden. Hierbei wird im Folgenden der Algorithmus K-D-TREE ebenso betrachtet wie ein naiver Ansatz. Bei diesem naiven Ansatz (brute force) werden die nächsten Nachbarn aus dem unsortierten Trainingsdatensatz durch pures Ausprobieren aller möglichen Punkte ermittelt.

2.4.1 k-d-tree

Ein K-D-TREE ist eine Spezialform eines Binärbaumes, und eine oftmals genutzte Methode um Suchvorgänge in Datenstrukturen durchzuführen. Das zugrundeliegende Prinzip eines solchen Baumen ist, dass wenn der Punkt P_1 weit entfernt von P_2 liegt, aber P_3 nahe an P_2 liegt, so folgt daraus, dass P_1 und P_3 weit voneinander entfernt liegen müssen. Durch eine solche Argumentation muss bei einem solchem Suchvorgang die Distanz zweier Punkte seltener berechnet werden, wodurch Rechenzeit eingespart werden kann.

Der Suchvorgang besteht aus zwei Phasen. Zuerst wird die Aufbauphase des Baumes durchgeführt, bei der die Trainingsdaten einsortiert und damit ein Suchindex erzeugt wird. Anschließend folgt die Suchphase, bei der der zuvor erstellte Suchindex nach dem nächsten Nachbarn durchsucht wird.

In der Aufbauphase wird zuerst eine Dimensionen ausgewählt und der Median der Daten in dieser Dimension bestimmt. Anschließend werden die Datenpunkte anhand dieses Wertes in eine Menge unterteilt die nur größere oder nur kleinere Elemente bezogen auf jene Dimension beinhaltet. Die beiden Mengen bilden die ersten Äste des Baumes. Nun wird dieser Schritt rekursiv auf alle Äste angewendet, und die hierbei zum Vergleich genutzte Dimension iteriert [7]. Dieses Verfahren wird so lange wiederholt, bis eine bestimmte maximale Anzahl N_{max} an Knotenpunkten pro Ast erreicht wird. Ab dieser unteren Grenze wird das Erstellen des Binärbaumes beendet. Ab dieser Grenze benötigt der Zugriff auf die verschiedenen Elemente und das Aufteilen in neue Äste mehr Zeit, als das Berechnen der Abstände zwischen den verbleibenden N_{max} Knoten und dem Suchpunkt. Eine beispielhafte Darstellung des Verfahrens ist in Abbildung 2.1 zu finden.

Die Suchphase wird nun wieder rekursiv durchgeführt. Hierbei werden wieder iterierend die verschiedenen Dimensionen verglichen, und sich somit immer weiter im Suchbaum nach unten ein Weg gebahnt [7]. In der untersten Ebene, also wenn nur noch eine Suche zwischen maximal N_{max} Elemente durchgeführt werden muss, wird nun die brute force-Suche genutzt. In dieser Arbeit ist für alle Anwendungen diese Schwelle auf $N_{max} = 40$ gesetzt worden.

Diese Methode zeichnet sich durch eine Laufzeit, welche sich wie $\mathcal{O}(\log(N))$ verhält, aus [3]. Dies ist geringer, als die Laufzeit eines naiven Suchvorgangs, welche

Abb. 2.1: Exemplarische Darstellung eines K-D-TREES für d=2 Dimensionen. In der linkten Hälfte ist die graphische Interpretation der Aufteilung und in der rechten der Aufbau des entstehenden Baumes zu finden [7].

sich wie N verhält. Es hat sich allerdings gezeigt, dass wenn d hinreichend groß ist, diese Vorteile geringer werden, und ab einer gewissen Dimensionalität die Suche langsamer als ein naiver Suchvorgang abläuft.

2.5 Radiale Basisfunktionen

Eine weitere Methode um einen solchen funktionalen Zusammenhang $F: X \to Y$ zu finden, welcher Daten der Menge $X \in \mathbb{R}^n$ auf Elemente aus $Y \in \mathbb{R}^m$ eindeutig abbildet, bieten die *radialen Basisfunktionen* (im Folgenden als RBF abgekürzt) an. Auch hierfür Daten benötigt, anhand derer der Zusammenhang erlernt werden kann. Diese Trainingsdaten sollen im Folgenden aus N Datensätzen bestehen.

Bei diesem Ansatz wird die gesuchte Funktion F als Linearkombination aus vielen radialen Funktionen approximiert. Dafür werden l Elemente $\{\vec{x}_i\}, i=1,...,l$ aus den Trainingsdaten ausgewählt und diese als so genannte Zentren $\{\vec{z}_i\}$ genutzt. Hiermit lassen sich die Funktionen als $\phi_i(\vec{x}) = \phi(||\vec{x} - \vec{z}_i||), i=1,...,l$ darstellen [6]. Eine mögliche Wahl der Basisfunktionen sind zum Beispiel Gaußfunktionen

$$\phi_i(\vec{x}) = \exp\left(-\frac{||\vec{x} - \vec{z_i}||}{\sigma_{RBF,i}^2}\right).$$

Die Linearkombination führt zu dem Ansatz

$$\vec{y} = F(\vec{x}) = \sum_{i=1}^{l} \vec{\omega}_i \phi(||\vec{x} - \vec{z}_i||),$$
 (2.10)

wobei $\sigma_{RBF,i}$ für die Breite der *i*-ten Gaußfunktion steht. Die $\vec{\omega}_i \in \mathbb{R}^m$ stehen hierbei für die *Gewichtsvektoren* der einzelnen Basisfunktionen ϕ_i im Rahmen der Linear-kombination.

Das Ziel besteht jetzt darin die Gewichtsvektoren ω_i approximativ zu bestimmen. Dafür werden zunächst drei Matrizen definiert, durch die das Problem ausgedrückt werden kann.

Die Matrix $\mathbf{Y} \in \mathbb{R}^{N \times m}$ repräsentiert die Funktionswerte der Abbildung und beinhaltet als Zeilen die N verschiedenen Funktionswerte $\vec{y_i}$ der Trainingsdaten

$$\mathbf{Y} := \begin{pmatrix} y_{11} & \dots & y_{1m} \\ \vdots & & \vdots \\ y_{N1} & \dots & y_{Nm} \end{pmatrix}. \tag{2.11}$$

Die Matrix $\Omega \in \mathbb{R}^{l \times m}$ beinhaltet dagegen als Zeilen die Gewichtsvektoren

$$\mathbf{\Omega} := \begin{pmatrix} \omega_{11} & \dots & \omega_{1m} \\ \vdots & & \vdots \\ \omega_{l1} & \dots & \omega_{lm} \end{pmatrix}. \tag{2.12}$$

Die dritte Matrix $\mathbf{A} \in \mathbb{R}^{N \times m}$ repräsentiert Anwendungen der radialen Basisfunktionen auf die Trainingsdaten

$$\mathbf{A} := \begin{pmatrix} A_{11} & \dots & A_{1m} \\ \vdots & & \vdots \\ A_{N1} & \dots & A_{Nm} \end{pmatrix}, \tag{2.13}$$

wobei die einzelnen Elemente als $A_{ij} := \phi(||\vec{x}_i - \vec{y}_j||)$ definiert sind. Damit lässt sich das Problem durch

$$\mathbf{Y} = \mathbf{A} \cdot \mathbf{\Omega} \tag{2.14}$$

ausdrücken [6]. Da die Matrizen Y und A konstruiert sind, besteht die Aufgabe

lediglich darin die Matrix Ω der Gewichte zu ermitteln. Der naheliegende Ansatz, das direkte ermitteln der Inversen \mathbf{A}^{-1} stellt sich dafür aus ungeeignet heraus, da das Problem meistens überkonditioniert ist. Daraus ergibt sich eine schlechtere Voraussage der zukünftigen Funktionswerte. Stattdessen ist es geschickter das Problem als eine lineare Optimierungsaufgabe zu betrachten, bei der der Fehler $||\mathbf{A}\omega_i - \vec{y_i}||^2$ minimiert werden soll.

Durch die Verwendung der *Moore-Penrose Pseudoinversen* A' wird hierbei zugleich gewährleistet, dass die Lösung ausgewählt wird, die zudem auch die kleinsten Gewichte besitzt. Dies hilft den Effekt des *Overfittings* zu vermeiden [6]. Mit diesem Ansatz ergibt sich die Lösung zu

$$\Omega = \mathbf{A}' \cdot \mathbf{Y}. \tag{2.15}$$

Um nun Funktionswerte vorherzusagen wird der Zusammenhang aus für die zuvor ermittelten Gewichte genutzt.

2.6 Neural Networks

2.6.1 Überblick über Neural Networks

In den letzten Jahren hat die Technik der Neuronalen Netzwerke erneut stark an Popularität gewonnen. Dies liegt zum einen an der gestiegenen verfügbaren Rechenleistung und zum anderen an der Entwicklung hierfür notwendiger Algorithmen. Allgemein lassen sich diese Netze in zwei große Gruppen aufteilen: die der FEED FORWARD NEURAL NETWORKS und die der RECURRENT NEURAL NETWORKS, welche im Folgenden als FFNN respektive RNN bezeichnet werden.

Ein FFNN besteht aus mehreren Ebenen, welche jeweils aus verschiedenen nichtlinearen Einheiten zusammengesetzt sind. Die erste dieser Ebenen wird zur Eingabe und die letzte zur Ausgabe eines Signals genutzt. Eine Schematische Darstellung ist im linken Teil der Abbildung 2.2 zu finden. Die Einheiten zweier benachbarter Ebenen sind mit individuellen Gewichten vollständig in Richtung der Ausgabe verbunden. Dies bedeutet, dass jedes Einheit x_i^n sein Signal an alle Einheiten der folgenden Ebene x_j^{n+1} mit einem individuellen Gewicht $w_{i\to j}^n$ weitergibt. Zwischen den Einheiten innerhalb einer Ebene bestehen keinerlei Verbindungen.

Damit ein solches Netzwerk Vorhersagen treffen kann, müssen die Gewichte in ei-

nem Trainingsvorgang angepasst werden. Dies wurde durch die Entwicklung des BACKPROPAGATION-Algorithmus stark vereinfacht. Hierbei werden die Gewichte so angepasst, dass eine Kostenfunktion minimiert wird [5, S. 225-290].

Abb. 2.2: Schematische Darstellung eines FFNN mit vier Ebenen (links) und eines RNN (rechts) mit ihren jeweiligen Verbindungen und der Eingangs- und Ausgangsebene. Der Informationsfluss ist in rot eingetragen (nach [9]).

Ein RNN hat einen ähnlichen Aufbau, doch hier können alle Einheiten an alle anderen Einheiten Signale weitergeben und von diesen erhalten. Die schematische Struktur ist im rechten Teil der Abbildung 2.2 dargestellt. Dies kann die Vorhersage in bestimmten Anwendungsbeispielen wie der Text- und Sprachanalyse verbessern. Ein Nachteil ist, dass zum Trainieren nicht mehr der einfachere Backpropagation-Algorithmus genutzt werden kann, sondern eine für RNNs abgewandelte Form genutzt werden muss. Für den prominenteste Algorithmus werden die verschiedenen Zustände die das RNN im Laufe der Signal-Propagation annimmt nacheinander betrachtet und auf diese zeitliche Entwicklung anschließend der Backpropagation-Algorithmus angewendet. Diese Methode ist unter dem Namen Backpropagation through Time (BTT) bekannt. Sie ist zum einen rechenaufwendiger und zum anderen auch instabiler, da das Verschwindenden und auch das Explodieren des Gradienten der Kostenfunktion deutlich wahrscheinlicher als bei der gewöhnlichen Backpropagation ist [9, 16].

2.7 Echo State Network

2.7.1 Überblick

Um die (Leistungs)Probleme der RNN zu umgehen, wurden als mögliche Lösung die Echo State Networks von H. Jäger vorgeschlagen [8]. Etwa zeitgleich wurde von W. Maas das Modell der *Liquid State Machines* vorgeschlagen. In diesem Modell steht der biologische Hintergrund im Fokus, doch sind die Ergebnisse denen der Echo State Networks sehr ähnlich [14].

2.7.2 Aufbau

Ein ESN ist eine Spezialform eines RNNs. Hierbei wird eine auf dem ersten Blick eigenartige Entscheidung getroffen: Während des gesamten Trainingsvorganges werden die Verbindungen der einzelnen Einheiten größtenteils nicht verändert. Es wird versucht durch das *Echo* der vorherigen Signale, welche noch im Netzwerk gespeichert sind, diese Signale zu rekonstruieren - hieraus ergibt sich auch der Name [13]. Im Folgenden wird der Aufbau und anschließend die Funktionsweise eines solchen Netzwerkes nach [11] beschrieben.

Allgemein bildet das Netzwerk S ein zeitliches Signal $\vec{u}(n) \in \mathbb{R}^{N_u}$ auf eine zeitlich variable Ausgabe $\vec{y}(n) \in \mathbb{R}^{N_y}$ für die Zeiten n=1,...,T ab. Zudem besitzt das System ein sogenanntes Reservoir aus N nicht-linearen Einheiten. Der innere Zustand des Netzwerkes wird durch diese Einheiten beschrieben und als $s(n) \in \mathbb{R}^N$ bezeichnet.

Die Verbindungen der inneren Einheiten untereinander werden durch die Gewichtsmatrix $\mathbf{W} \in \mathbb{R}^{N \times N}$ beschrieben. Das Eingangssignal wird zusammen mit einem Bias $b_{in} \in \mathbb{R}$ durch die Matrix $\mathbf{W}_{in} \in \mathbb{R}^{N \times (N_u+1)}$ auf die inneren Einheiten weitergeleitet.

Die zeitliche Entwicklung der inneren Zustände berechnet sich nach der Vorschrift

$$\vec{s}(n) = (1 - \alpha) \cdot \vec{x}(n-1) + \alpha \cdot f_{in} \left(\mathbf{W}_{in}[b_{in}; \vec{u}(n)] + \mathbf{W}\vec{x}(n-1) \right), \tag{2.16}$$

wobei f_{in} eine beliebige (meistens sigmoid-förmige) Transferfunktion ist, und $[\cdot;\cdot]$ das vertikale Aneinanderfügen von Vektoren beziehungsweise Matrizen bezeichnet. Für diese Zustandsgleichung wurde das Modell eines $Leaky\ Integrator\ Neurons$ genutzt, wobei $\alpha \in (0,1]$ die Verlustrate beschreibt. Für $\alpha = 1$ ergibt sich als Spezialfall

ein gewöhnliches Neuron

$$\vec{s}(n) = f_{in} \left(\mathbf{W}_{in} [b_{in}; \vec{u}(n)] + \mathbf{W} \vec{x}(n-1) \right).$$
 (2.17)

Da für manche Anwendungsfälle auch eine direkte Rückkopplung wünschenswert ist, kann das System noch um eine Ausgabe-Rückkopplung erweitert werden. Diese verbindet die Ausgabe erneut mit den inneren Einheiten durch die Matrix $\mathbf{W}_{fb} \in \mathbb{R}^{N \times N_y}$. Somit ergibt sich

$$\vec{s}(n) = (1 - \alpha) \cdot \vec{x}(n-1)\alpha \cdot f_{in} \left(\mathbf{W}_{in} [b_{in}; \vec{u}(n)] + \mathbf{W} \vec{x}(n-1) + \mathbf{W}_{fb} \vec{y}(n) \right) \quad (2.18)$$

als Zustandsgleichung.

An Hand der inneren Zustände lassen sich nun noch die sogenannten erweiterten inneren Zustände $x(n) = [b_{out}; \vec{s}(n); \vec{u}(n)] \in \mathbb{R}^{1+N_u+N}$ definieren, wobei b_{out} ein Bias für die Ausgabe darstellt.

Aus diesen erweiterten inneren Zuständen kann nun die Ausgabe $\vec{y}(n)$ konstruiert werden. Dies kann entweder im Sinne einer Linearkombination durch die Ausgangsmatrix $\mathbf{W}_{out} \in \mathbb{R}^{(1+N_u+N)\times N_y}$ oder durch andere nicht lineare Klassifizierer wie beispielsweise einer Support Vector Machine (SVM) durchgeführt werden. Im Folgenden wird nur der Fall einer Linearkombination betrachtet, da sich für die anderen Methoden ein analoges Verfahren ergibt. In diesem Fall berechnet sich die Ausgabe mittels

$$\vec{y}(n) = f_{out}\left(\mathbf{W}_{out}\vec{x}(n) = \mathbf{W}_{out}[b_{out}; \vec{s}(n); \vec{u}(n)]\right), \qquad (2.19)$$

wobei f_{out} die Transferfunktion der Ausgabe ist.

Während die Matrix \mathbf{W}_{out} durch den Trainingsvorgang bestimmt wird, werden die Matrizen \mathbf{W}_{in} und \mathbf{W} a priori generiert und festgelegt. Hierbei hat sich für das Generieren der Eingangsmatrix eine zufällige Anordnung von zufälligen Gleitkommazahlen zwischen -1.0 und 1.0 als geschickt herausgestellt. Falls ein Feedback gewünscht ist, also Gleichung (2.18) genutzt wird, wird \mathbf{W}_{fb} gleichartig konstruiert. Auf das Generieren der inneren Matrix \mathbf{W} wird in Abschnitt 2.7.4 genauer eingegangen.

2.7.3 Trainingsvorgang

Nachdem der Aufbau des Netzwerkes beschrieben ist, ergibt sich nun die Frage, wie der Trainingsvorgang durchgeführt wird.

Hierfür wird für die Zeiten $n=0,...,T_0$ das ESN mit dem Signal $\vec{u}(n)$ betrieben, wobei T_0 die transiente Zeit beschreibt. Hierdurch soll das System aus seinem zufällig gewähltem Anfangszustand in einen charakteristischen Zustand übergehen. Anschließend wird das System für Zeiten n < T weiter betrieben und die erweiterten Zustände $\vec{x}(n)$ als Spalten in der Zustandsmatrix $\mathbf{X} \in \mathbb{R}^{(1+N_u+N)\times T}$ gesammelt. Analog dazu werden die gewünschten Ausgaben $\vec{y}(n)$ nach dem Anwenden der Inversen f_{out}^{-1} der Ausgabe-Transferfunktion f_{out} auch als Spalten in der Ausgabematrix $Y \in \mathbb{R}^{N_y \times T}$ gesammelt. Nun wird eine Lösung der Gleichung

$$\mathbf{Y} = \mathbf{W}_{out} \mathbf{X} \tag{2.20}$$

für \mathbf{W}_{out} gesucht. Hierfür stehen mehrere Verfahren zur Verfügung, von denen zwei prominente erwähnt sein sollen. Zum einen kann die Lösung durch eine *Tikhonov Regularisierung* mittels der Regularisierung $\beta \cdot ||\vec{W}_{out,i}||^2$ der Gewichtsmatrix mit der Konstante β erhalten werden. Hierbei steht $\vec{W}_{out,i}$ für die jeweils *i*-te Zeile der Gewichtsmatrix. Das Verfahren

$$\mathbf{W}_{out} = \mathbf{Y}\mathbf{X}^T \left(\mathbf{X}\mathbf{X}^T + \beta I\right)^{-1} \tag{2.21}$$

ist sehr leistungsstark, aber auch teilweise numerisch instabil. Bei geeigneter Wahl von β können die besten Ergebnisse hinsichtlich der Genauigkeit der Vorsage erzielt werden [13]. Deshalb wird in dieser Arbeit auch nur dieses Lösungsverfahren verwendet. Die weiteren Lösungsansätze für das Gleichungssystem sind nur aus Gründen der Vollständigkeit angegeben.

Zum anderen kann zur Lösung die $Moore-Penrose-Pseudoinverse \mathbf{X}'$ genutzt werden, sodass für die Ausgabematrix

$$\mathbf{W}_{out} = \mathbf{Y}\mathbf{X}' \tag{2.22}$$

folgt. Dieses Verfahren ist zwar sehr rechenaufwendig aber dafür numerisch stabil [10, 13]. Nichts desto trotz, kann allerdings auf Grund des Fehlens einer Regularisierung leicht der Effekt des OVERFITTINGS auftreten. Auf Grund dessen wird es in

dieser Arbeit nicht verwendet.

Um den Effekt des Overfittings bei der Verwendung der Psuedoinversen zu reduzieren, kann in der Zustandsgleichung (2.16) beziehungsweise (2.18) eine leichte normalverteilte Störung $\vec{\nu}(n)$ der Größenordnung 1×10^{-1} bis 1×10^{-5} addiert wird. Falls die Tikhonov Regularisierung zur Lösung verwendet wird, erhöht die Verwendung der zufälligen Störung die Stabilität der Vorhersage des System. Dieser Ansatz beruht auf Empirie, da eine mathematische Begründung hierfür noch nicht vollständig gelungen ist [8, 13]. Anschaulich lässt sich das Vorgehen dadurch motivieren, dass hierdurch künstliche Datenpunkte in der nähe der vorhandenen Trainingsdaten emuliert werden, und somit eine größere Vielfalt an Daten während der Trainingsphase beobachtet wird.

Zusammenfassend ergibt sich somit der folgende Funktionsablauf für die Anwendung eines ESN:

- 1. Zufälliges Generieren der Matrizen $\mathbf{W}_{in}, \mathbf{W}_{fb}$ und Konstruktion der Matrix \mathbf{W}
- 2. Einspeisen des Signals u(n) und Konstruktion der Zustandsmatrix ${\bf X}$ und der Ausgabematrix ${\bf Y}$
- 3. Berechnung der Ausgabematrix \mathbf{W}_{out}
- 4. Einspeisen des Signals u(n) für Vorhersagen des Signales y(n) für n > T

Zusätzlich zu diesen Eigenschaften wird die Dynamik des Reservoirs auch von dessen Größe N bestimmt. Es kann gezeigt werden, dass die Gedächtnisleistung eines Reservoirs stark von dieser abhängt. Somit ist es ratsam für Aufgaben, die eine lange Gedächtnisleistung benötigen, ein großes und für Aufgaben, die nur ein Kurzzeitgedächtnis benötigten, ein kleines Reservoir zu benutzen [9].

2.7.4 Theoretischer Hintergrund

Um die mathematischen Eigenschaften beschreiben zu können, sind zuerst zwei Definitionen nötig [18].

Definition 1 (Kompatibler Zustand). Sei $S: X \times U \to X$ ein ESN mit der Zustandsgleichung $\vec{x}_{n+1} = F(\vec{x}_n, \vec{u}_{n+1})$. Eine Folge von Zuständen $(\vec{x}_n)_n$ ist kompatibel mit der Eingangsfolge $(\vec{u}_n)_n$, wenn $\vec{x}_{n+1} = F(\vec{x}_n, \vec{u}_{n+1})$, $\forall n \leq 0$ erfüllt ist.

Definition 2 (Echo State Eigenschaft (ESP)). Ein ESN $S: X \times U \to X$ besitzt die Echo State Eigenschaft genau dann wenn eine Nullfolge $(\delta_n)_{n\geq 0}$ existiert, sodass für alle Zustandsfolgen $(\vec{x}_n)_n, (\vec{x}'_n)_n$ die kompatibel mit der Eingangsfolge $(\vec{u}_n)_n$ sind gilt, dass $\forall n \geq 0 ||x_n - x'_n|| < \delta_n$

Dies bedeutet, dass nachdem das Netzwerk lang genug betrieben worden ist, der Zustand nicht mehr von dem beliebig gewähltem Anfangszustand abhängt. Diese Eigenschaft ist notwendig, damit das ESN Vorhersagen treffen kann [9].

Nun stellt sich die Frage, wann ein Netzwerk diese Eigenschaft besitzt. Es wird schnell klar, dass dies hauptsächlich durch die Gewichtsmatrix **W** bestimmt wird. Betrachtet man die Zustandsgleichung des Netzwerkes, so lässt sich auf Grund des Banachschen Fixpunktsatzes erkennen, dass die ESP für alle Eingänge \vec{u}_n vorliegt, sobald $||\vec{x}_{n+1} - \vec{x}'_{n+1}|| < ||\vec{x}_n - \vec{x}'_n||$ für zwei kompatible Zustände $\vec{x}_n \neq \vec{x}'_n$ erfüllt ist [8]. Hieraus ergibt sich, dass die ESP vorliegt, wenn

$$|1 - \alpha(1 - \sigma_{max}(\mathbf{W}))| < 1 \tag{2.23}$$

erfüllt ist, wobei $\sigma_{max}(\mathbf{W})$ der größte Singulärwert ist [11].

Weitergehend ist bekannt, dass für Systeme bei denen der Spektralradius $\rho(\mathbf{W}) > 1$ ist diese Eigenschaft nicht vorliegen kann, sofern $\vec{u}_n = 0$ möglich ist [8, 11].

Hieraus ergab sich lange Zeit die falsche Annahme, dass für Systeme mit $\rho(\mathbf{W}) < 1$ die Eigenschaft stets garantiert ist. Wie allerdings gezeigt werden konnte, ist dies nicht der Fall [18]. Stattdessen konnte gezeigt werden, dass eine hinreichende Bedingung durch

$$\rho(\alpha|\mathbf{W}| + (1-\alpha)\mathbf{I}) < 1 \tag{2.24}$$

gegeben ist - wobei als Betrag der Matrix hier das elementweise Betragsnehmen gemeint ist. Diese Bedingung ist weniger einschränkend als Gleichung (2.23) [18].

Weitergehend hat sich in Experimenten gezeigt, dass eine dünnbesetze Gewichtsmatrix W zu reicheren Dynamiken innerhalb des Reservoirs führen kann [8]. Eine solche dünnbesetze Matrix bedeutet, dass nicht mehr jedes Neuron mit jedem anderen Neuron verbunden ist, sondern dass nur noch ein relativer Anteil ϵ dieser Verbindungen vorhanden ist. Da durch eine größere Anzahl an verschiedenen inter-

nen Dynamiken vielfältigere Funktionen besser approximiert werden können, kann die Vorhersagequalität durch einen Geringen ϵ Wert erhöht werden.

Darauf basierend kann nun eine Methode nach [18] angegeben werden, um die Gewichtsmatrix **W** zu konstruieren:

- 1. Generiere zufällige Matrix \mathbf{W} mit $|\mathbf{W}| = \mathbf{W}$ bei der in jeder Zeile nur ϵ Einträge ungleich 0 sind.
- 2. Skaliere W, sodass Gleichung (2.24) erfüllt ist.
- 3. Wechsel zufällig das Vorzeichen von ungefähr der Hälfte aller Einträge.

Statt dieser Vorschrift wurde zuvor oftmals \mathbf{W} zufällig generiert und anschließend nur $\rho(\mathbf{W})$ statt $\rho(|\mathbf{W}|)$ skaliert, was mit unter zu instabilen Systemen geführt hat. Da allerdings auch für Systeme mit einem Spektralradius > 1 die ESP beobachtet werden kann für nicht verschwindende Eingänge \vec{u}_n , ist es ratsam auch effektive Spektralradien jenseits 1 auszuprobieren.

3 Anwendungen

Die zuvor in Kapitel 2 eingeführten Methoden werden nun durch drei verschiedene Szenarien ausprobiert und verglichen. Hierbei liegt der Fokus auf der Verwendung und Erprobung der ESNs. Da die klassischen Methoden der nächsten Nachbarn und der radialen Basisfunktionen bereits seit längerer Zeit bekannt sind und populäre Lösung solcher Problemfälle darstellen, dienen sie als Bezugsgröße.

Jedes der drei Szenarien wird sowohl auf ein Barkley-System als auch auf ein System nach dem Mitchell-Schaeffer-Modell angewendet. Diese Systeme bestehen aus 150 Gitterpunkten und nutzen die zuvor beschriebenen Parameter. Für ihre Startverteilung werden die Felder der beiden Systemvariablen in 100 Quadrate unterteilt, und diese mit Zufallswerten zwischen 0 und 1 initialisiert. Anschließend werden die Systeme über 2000 Zeitschritte ($\triangleq 400.0$ Zeiteinheiten) simuliert um ein transientes Verhalten abzuwarten. Durch das weitere Simulieren der Systeme werden die Test und Trainingsdaten ermittelt. Dabei wird für das Barkley eine Samplingzeit von 0.1 und für das Mitchell-Schaeffer-Modell von 1.0 Zeiteinheiten benutzt.

Die erste Aufgabe besteht darin aus der Kenntnis einer der beiden Systemvariablen die andere Unbekannte zu ermitteln. Dabei wird die Spannungsvariable als Quelle genutzt. Dies ist in den zuvor eingeführten Modellen jeweils die Größe, welche den Diffusionsterm beinhaltet; also die *u*-Variable im *Barkley*-Modell und die *v*-Variable im *Mitchell-Schaeffer*-Modell.

Im zweiten Szenario werden die Techniken verwendet um aus Messdaten einer simulierten Fernfeldmessung der Spannungsvariable diese wiederherzustellen. Diese Fernfeldmessung wird durch eine gaußsche Unschärfe simuliert.

Abschließend wird die Spannungsvariable der inneren Punkte eines Quadrates nur durch die Kenntnis der Randwerte des Systems vorhergesagt.

Add subchapter?

3.1 Allgemeines Vorgehen

Das Ziel aller drei Aufgaben besteht jeweils darin ein zweidimensionales Feld vorherzusagen. Eine naheliegende Möglichkeit dies zu schaffen besteht darin wirklich den gesamten Inhalt des 150×150 Einheiten großen Feldes auf einmal vorherzusagen. Da dabei die Ausgabe der Vorhersage aus einem 22500-dimensionalen Vektor besteht werden sehr viele Trainingsdaten benötigt, um genügend Informationen über eine solch hochdimensionale Ausgabe zu erhalten. Um dieses Problem zu umgehen wird stattdessen ein Verfahren benutzt, bei dem jeder Punkt einzeln vorhergesagt wird. Dies hat zudem den Vorteil, dass aus einer monströsen Vorhersage, welche mitunter viel Arbeitsspeicher verbrauchen würde, in viele kleine Vorhersagen aufteilt. Hierdurch sinkt der zur Berechnung benötigte Bedarf an Arbeitsspeicher drastisch.

- (a) Messsonde ohne Abstände zwischen den Messpunkten
- (b) Messonde mit einem Abstand von zwei Einheiten zwischen den Messpunkten

Abb. 3.1: Illustration der verwendeten Messsondentechnik. Abbildung 3.1a deutet an, wie aus einem σ^2 großem Quadrat um den eigentlichen Messpunkt Daten für die Vorhersage genutzt werden. Dagegen ist in Abbildung 3.1b das Verfahren für $\sigma=5$ und $\Delta\sigma=2$ dargestellt, sodass insgesamt die Information aus 9 Punkten genutzt wird.

Des Weiteren kann angenommen werden, dass die Dynamiken einen ausgeprägten lokalen Charakter besitzen, sodass zumindest bei den ersten beiden Aufgaben weit entfernte Punkte keinen unmittelbaren Einfluss auf die Vorhersage haben. Darauf basierend kann eine sogenannte Messsondentechnik entwickelt und für diese genutzt werden. Hierbei werden nicht nur die Informationen an einem Punkt (i,j) für die

Vorhersage, sondern auch die benachbarten Punkte, welche in einem Quadrat um (i,j) liegen, genutzt. Eine Veranschaulichung ist in 3.1a zu finden. Die Größe des Quadrates wird durch den Parameter σ bestimmt, und ergibt sich zu σ^2 . Da direkt Nachbarn unter Umständen durch den geringen Abstand sehr ähnliche Informationen beinhalten können, wird zudem ein Parameter $\Delta \sigma$ eingeführt, welche den Abstand zweier benachbarter Punkte, deren Information simultan verwendet werden, angibt. Eine beispielhafte Darstellung hiervon ist für $\sigma=5, \Delta\sigma=2$ in Abbildung 3.1b dargestellt. Dabei werden nur die Zeitreihen der Gitterpunkte genutzt, welche dunkelgrau hinterlegt sind, und die hellgrauen Informationen verworfen. Die Parameter, welche für die ersten beiden Aufgaben überprüft werden, sind in Tabelle 3.1 aufgelistet. Dabei ist anzumerken, dass die Diskretisierung des Diffusionstermes in den Differentialgleichungen einem Wert $\sigma=3$ entsprechen würde.

Durch dieses Vorgehen kann für jeden Gitterpunkt ein $\left\lceil \frac{\sigma}{\Delta \sigma} \right\rceil^2$ -dimensionaler Eingabevektor erstellt und für die ersten beiden Vorhersage-Aufgaben genutzt werden.

Tab. 3.1: In den ersten beiden Aufgaben verwendete Parameter σ und $\Delta \sigma$ für die Messsondentechnik.

Der Trainingsvorgang wird jeweils über $N_{Training} = 15000$ Zeitschritte durchgeführt und der Anschließende Evaluationsdurchgang auf $N_{Testing} = 2000$ Zeitschritte. Zur Bewertung der Leistung einer Vorhersage werden die beiden Fehlergrößen MSE und NRMSE eingeführt. Im Allgemeinen ist der MSE (Mean Squared Error) durch

$$MSE(y) = \sum_{i}^{m} \sum_{t}^{N_{Testing}} (y(t)_{i} - \hat{y}(t)_{i})^{2}$$
 (3.1)

definiert und charakterisiert die Genauigkeit einer Vorhersage \hat{y} im Vergleich zu dem tatsächlichen Wert $y \in \mathbb{R}^m$ über den Zeitraum $N_{Testing}$. Der NRMSE normiert diesen Fehler noch auf eine Vorhersage, bei der der Mittelwert $\langle y \rangle$ über die Trainingsphase als vorhergesagten Wert genutzt wird. Er ist als

$$NRMSE(y) = \sqrt{\frac{MSE(y)}{MSE(\langle y \rangle)}}$$
 (3.2)

definiert. Zusätzlich zu diesen Fehlermaßen werden im Folgenden oftmals auch die

Laufzeiten der Ansätze angegeben. Hierbei ist zu beachten, dass diese nicht über mehrere Ausführungen des identischen Programmes gemittelt worden sind, und deshalb nicht als statistisch relevante Information sondern nur als ein Hinweis gesehen werden können.

Unter der Kenntnis, dass in den Modellen nur Werte zwischen 0 und 1 angenommen werden dürfen beziehungsweise angenommen werden, werden die Vorhersagen auf das Intervall [0,1] beschränkt. Dafür werden die Werte beider Variablen der Systeme sowohl nach unten als auch nach oben hin nach

$$x = \begin{cases} 0, & \text{wenn } x \le 0 \\ x, & \text{wenn } x \ge 0 \land \le 1 \\ 1, & \text{wenn } x \ge 1 \end{cases}$$
 (3.3)

abgeschnitten, wobei x für eine der beiden Variablen in dem jeweiligen Modell steht.

3.1.1 Echo State Network

Echo State Networks besitzen viele verschiedene Hyperparameter, welche die Qualität der Vorhersage beeinflussen können. Dazu zählen nach 2.7 die Reservoirgröße N, der Spektralradius ρ , die Verlustrate α , die Amplitude der zufälligen Störung ν , die Stärke der Regularisierung λ und der Anteil der vorhandenen internen Verbindungen ϵ . Da es zum aktuellen Zeitpunkt noch keinen zufriendenstellenden mathematischen Algorithmus für das das selbstständige optimale Einstellen eines ESNs gibt, müssen die Parameter manuell ermittelt werden. Hierfür wird in dieser Arbeit eine GRIDSEARCH benutzt. Bei diesem Verfahren wird der Hyperparameterraum in festgelegten Schritten abgetastet und die Leistung des somit entstehenden Netzwerke evaluiert und somit die besten Parameter ermittelt. Durch die hohe Anzahl der einstellbaren Hyperparameter und die nicht zu vernachlässigende Rechenzeit für das Trainieren und Evaluieren eines Netzwerkes, ist es nicht sinnvoll diese Suche für alle Komponenten des hochdimensionalen Zielvektors gleichzeitig durchzuführen. Stattdessen wird zuerst unter der Annahme, dass die Dynamik sich lokal an allen Punkten ähnlich verhält, ein Punkt in der Mitte des Feldes ausgewählt, und nur versucht diesen einen einzelnen Punkt vorherzusagen. Diese Aufgabe kann deutlich schneller berechnet werden, sodass nun die optimalen Hyperparameter mit einer GRIDSEARCH gesucht werden können. Im Anschluss können die Hyperparameter des zuvor ermittelten ESN für die Vorhersage aller Punkte genutzt werden. Abschließend wird noch einmal Versucht das gefundene Reservoir manuell zu verbessern, indem die Parameter N und λ noch einmal variiert werden.

Es ist zu erwarten, dass die hierbei gefundenen Hyperparameter eine akzeptable Leistung für die jeweiligen Probleme erzielen können. Da allerdings bei dem zuvor beschriebenen Verfahren bei weitem nicht alle sinnvollen Hyperparameter getestet werden können, besteht die Möglichkeit, dass es noch besser geeignete Reservoirs mit anderen Hyperparametern gibt, welche eine noch höhere Leistung erzielen können.

3.1.2 Klassische Methoden

Die klassischen Methoden sind nicht von alleine aus in der Lage zeitlich ausgeprägte Dynamiken vorherzusagen, da den Methoden a priori keine Informationen über die vorherigen Zustände vorliegen. Um dieses Problem zu lösen können Verzögerungs-Koordinaten mittels der in Abschnitt 2.3 beschriebenen Delay Reconstruction für die in Abschnitt 3.1 beschriebenen Vektoren aufgestellt werden. Die über die Autokorrelation ermittelte zeitliche Verzögerung τ ist für beide Systeme in Tabelle 3.2 dargestellt.

$ au_{Barkley}$	$ au_{Mitchell-Schaeffer}$	
0.64 Zeiteinheiten	2.38 Zeiteinheiten	

Tab. 3.2: Verwendete zeitliche Verzögerung τ für die *Delay Reconstruction* für das *Mitchell-Schaeffer*- und das *Barkley*-Modell

3.2 Kreuz-Prädiktion

Momentan ist es durch invitro Experimente bereits möglich die Ausbreitung der elektrischen Erregung auf der Oberfläche des Herzmuskels experimentell aufzuzeichnen. Nun stellt sich die Frage, ob anhand beispielsweise der Messung der Membramspannung weitere Variablen des Systems wie die Kalium-Konzentration oder ähnliches ermittelt werden kann. Diese Fragestellung wird in der ersten Aufgabe betrachtet. Es wird die Vorhersage von der Spannungsvariable auf die zweite Variable des jeweiligen Modells sowohl für das Barkley- als auch für das Mitchell-Schaeffer-Modell durchgeführt. Dabei wird zuerst die Nächste Nachbar Methode, anschließend die radialen Basisfunktionen und schlussendlich die ESNs verwendet. Es werden sowohl

die einzelnen Ergebnisse präsentiert als auch ein abschließender Vergleich durchgeführt.

3.2.1 Nächste Nachbar Vorhersage

Die Ergebnisse für die optimalen Hyperparameter sind in Tabelle 3.3 zu finden. Dabei sind sowohl die verwendeten Parameter als auch die erzielten Fehler MSE und NRMSE aufgelistet.

	Barkley	Mitchell-Schaeffer
σ	1	7
$\Delta \sigma$	1	1
δ	3	3
k	5	5
Laufzeit [s]	40	5252
MSE	0.00105	0.01353
NRMSE	0.1367	0.7438

Tab. 3.3: Gefundene Hyperparameter der nächsten Nachbar Vorhersage für das *Mitchell-Schaeffer*- und das *Barkley*-Modell, welche zu den geringsten Fehlern führen.

Dabei ist die stark unterschiedliche Laufzeit der beiden Vorhersagen auffällig. Dies lässt sich allerdings durch die verschiedenen Dimensionalitäten der Quellvariable erklären: Während beim *Barkley*-Modell lediglich ein 3-dimensionaler Vektor für die Vorhersage die besten Ergebnisse erzielt konnte beim *Mitchell-Schaeffer*-Modell durch die Verwendung eines 147-dimensionalen Quellvektors die besten Ergebnisse erzielt werden. Da, wie in Abschnitt 2.4 erwähnt, die benötigte Zeit für eine Vorhersage sehr stark mit der Dimension zunimmt, lässt sich somit der Anstieg von 40 auf 5252 Sekunden erklären.

Da eine Nächsten Nachbar Vorhersage nur anhand der in der Trainingsphase gesehenen Datenpunkte eine Vorhersage erstellt, ist anzunehmen, dass die Qualität dieser sehr stark von der Länge der Trainingsphase abhängt. Um dies zu untersuchen ist für die zuvor ermittelten Hyperparameter eine Vorhersage für verschiedene Trainingslängen $N_{Training}$ durchgeführt und die dabei auftretenden MSEs und die benötigte Laufzeit gemessen worden. Hierbei können zwei Effekte beobachtet werden. Bei der Betrachtung der grafischen Darstellung der benötigten Laufzeit in Abbildung 3.2 ist zu erkennen, dass ein linearer Zusammenhang zwischen der $N_{Training}$

und Laufzeit existiert. Der erzielte Fehler verhält sich dagegen anders und sinkt asymptotisch gegen eine untere Schranke ab nach Abbildung 3.3. Anzumerken ist, dass die Sättigung des Fehlers im Barkley-Modell schon ab etwa $N_{Training} = 15000$ eintritt, doch beim Mitchell-Schaeffer-Modell erst deutlich später. Dies ist ein Hinweis darauf, dass die Dynamiken im letzteren chaotischer und unregelmäßiger als bei ersten ablaufen. Zusammenfassend lässt sich somit die Wahl der Trainingslänge von $N_{Training} = 15000$ für alle Szenarien und alle drei Methoden damit begründen, dass man für die Nächste Nachbar Vorhersage, welche am empfindlichsten auf diese Länge reagiert, eine akzeptablen Kompromiss zwischen der Rechenzeit und der Genauigkeit erhält.

Abb. 3.2: Darstellung der Abhängigkeit des benötigten Laufzeit von der verwendeten Anzahl an Trainingsdaten $N_{Training}$ für das Barkley-Modell (links) und für das Mitchell-Schaeffer-Modell (rechts) bei der Verwendung einer nächsten Nachbar Vorhersage.

Abb. 3.3: Darstellung der Abhängigkeit des MSE von der verwendeten Anzahl an Trainingsdaten $N_{Training}$ für das Barkley-Modell (links) und für das Mitchell-Schaeffer-Modell (rechts) bei der Verwendung einer nächsten Nachbar Vorhersage.

3.2.2 Radiale Basisfunktionen

Bei der Verwendung radialer Basisfunktionen stellt zudem die Breite σ_{RBF} der Gaußfunktionen als auch die Anzahl der Basisfunktionen l einen wichtigen Parameter dar. Im Rahmen dieser Arbeit ist die Anzahl der Basisfunktionen auf l=100 festgelegt worden - diese Wahl wird im Folgenden weiter motiviert werden. Um die anderen Parameter zu finden, sind σ , $\Delta \sigma$ wie oben beschrieben, $\delta \in [3,4,5]$ und $\sigma_{RBF} \in [0.5,1.0,3.0,5.0,7.0,9.0]$ variiert worden. In Tabelle 3.4 sind die dadurch gefundenen optimalen Parameter, die damit erreichten Fehler und die benötigte Laufzeit erneut für beide Modelle aufgelistet. Hierbei ist zu bemerken, dass die optimalen Werte für σ , $\Delta \sigma$ und δ mit denen für die NN-Vorhersage übereinstimmen.

Analog zu der Untersuchung des Einflusses der Trainingslänge $N_{Training}$ bietet es sich für die radialen Basisfunktionen an, den Einfluss der Anzahl der verwendeten Basisfunktionen l auf die Genauigkeit und die benötigte Laufzeit zu untersuchen. Dabei werden jeweils wieder die besten zuvor ermittelten Hyperparameter verwendet. Hierfür sind die gemessenen Laufzeiten gegen die Anzahl der Basisfunktionen in Abbildung 3.4 aufgetragen worden. Es ist erneut anzunehmen, dass ein linearer Zusammenhang zwischen den beiden Größen existiert.

Der Zusammenhang zwischen dem MSE und der Anzahl der Basisfunktionen ist in Abbildung 3.5 zusehen. Zum einen kann ein ein asymptotischer Anteil erkannt

	Barkley	Mitchell-Schaeffer
σ	1	7
$\Delta \sigma$	1	1
δ	3	3
σ_{RBF}	0.5	5
Laufzeit [s]	1430	1434
MSE	0.00064	0.00890
NRMSE	0.1069	0.2679

Tab. 3.4: Gefundene Hyperparameter der radialen Basisfunktionen für das *Mitchell-Schaeffer*- und das *Barkley*-Modell, welche zu den geringsten Fehlern führen.

werden, sodass der Fehler erst einmal für mehr Basisfunktionen abnimmt. Allerdings lässt Abbildung 3.5a erahnen, dass es hierbei einen optimalen Wert gibt, ab dem der Fehler wieder ansteigt. Dies kann durch eine schlechtere Generalisierung der Dynamik und ein zu starkes Anpassen und die Trainingsphase (auch bekannt als *Overfitting*) erklärt werden. Zusammenfassend zeigt sich, dass die Wahl von 100 Basisfunktionen eine akzeptable Abschätzung ist, sodass der Fehler möglichst gering ist und die Laufzeit auch gering gehalten wird. Diese Annahme wird im Folgenden ohne weitere qualitative Untersuchungen auf die anderen beiden Probleme übertragen, um den benötigten Rechenaufwand für die Parametersuche in einem angebrachten Rahmen zu halten.

Abb. 3.4: Darstellung der Abhängigkeit des benötigten Laufzeit der Basisfunktionen l für das Barkley-Modell (links) und für das Mitchell-Schaeffer-Modell (rechts) bei der Verwendung radialer Basisfunktionen.

Abb. 3.5: Darstellung der Abhängigkeit des MSE von der verwendeten Anzahl der Basisfunktionen l für das Barkley-Modell (links) und für das Mitchell-Schaeffer-Modell (rechts) bei der Verwendung radialer Basisfunktionen.

3.2.3 Echo State Network

Abschließend ist dieses Problem nun mit den ESNs gelöst worden. Dazu wurden die Hyperparameter nach Abschnitt 3.1.1 gesucht worden. Die gefundenen Parameter und die damit erreichten Ergebnisse sind in Tabelle 3.5 aufgelistet. Es ist auffällig, dass die optimalen Werte für σ und $\Delta \sigma$ hier von denen der NN- und der RBF-Vorhersage abweichen.

	Barkley	Mitchell-Schaeffer
σ	5	3
$\Delta \sigma$	2	1
N	400	400
$ ho(\mathbf{W})$	1.10	1.50
α	0.20	0.05
ϵ	0.1	0.1
$ u_{max}$	1×10^{-5}	1×10^{-4}
λ	5×10^{-6}	5×10^{-4}
Laufzeit [s]	3604	3823
MSE	0.00001	0.00175
NRMSE	0.0462	0.0718

Tab. 3.5: Gefundene Hyperparameter des ESN für das *Mitchell-Schaeffer*und das *Barkley*-Modell, welche zu den geringsten Fehlern führen.

3.2.4 Vergleich

Abschließend kann nun ein Vergleich der drei verwendeten Methoden hinsichtlich ihrer Laufzeit und der erzielten Genauigkeiten durchgeführt werden. Dieser ist in Tabelle 3.6 zu finden. Die jeweils besten Ergebnisse sind hervorgehoben. Die ESNs erzielen für beide Modelle den geringsten Fehler, also die höchste Genauigkeit. Dabei liegt der NRMSE bei beiden Modellen unter 10%. Im Austausch für diese hohe Genauigkeit ist allerdings die benötigte Zeit für die Vorhersage höher als bei den Konkurrenten. Unter der Voraussetzung, dass die Rechenzeit nur eine untergeordnete Rolle spielt, so ergeben sich die ESNs als bester Ansätze für die Kreuz-Prädiktion.

	Barkley			Mitchell-Schaeffer		
	NN	RBF	ESN	NN	RBF	ESN
Laufzeit [s]	40	1430	3604	5252	1434	3823
MSE	0.00105	0.00064	0.00001	0.01353	0.00890	0.00175
NRMSE	0.1367	0.1069	0.0462	0.7438	0.2679	0.0718

Tab. 3.6: Vergleich der benötigten Laufzeit und der erreichten Fehlers der drei Ansätze für das *Mitchell-Schaeffer-* und das *Barkley-*Modell, welche zu den geringsten Fehlern führen.

3.3 Kreuz-Prädiktion innere Dynamiken

3.4 Prädiktion der Dynamik durch das Fernfeld

Bei der Durchführung von invitro Experimenten mit Herzen gibt es verschiedene Möglichkeiten die Messung der elektrischen Erregung auf der Herzoberfläche durchzuführen. Zum einen können Elektroden zur Messung benutzt werden, zum anderen allerdings auch Fluoreszenzmessungen durchgeführt werden. Bei der Verwendung von Elektroden wird effektiv nicht das unmittelbare elektrische Feld auf der Herzoberfläche gemessen, sondern ein Fernfeld dessen. Es stellt sich nun die Frage, ob aus der Kenntnis dieses Fernfeldes die korrekte Erregung auf der Oberfläche bestimmt werden kann. Eine experimentelle Untersuchung dieser Fragestellung wird im Folgenden durchgeführt. Hierfür müssen zuerst diese Fernfeldaufnahmen für das Barkley- und für das Mitchell-Schaeffer-Modell erzeugt werden. Dabei wird das Fernfeld nicht korrekt simuliert, sondern durch eine gaußsche Unschärfe emuliert. Dazu wird auf das gesamte Feld der Spannungsvariable beider Modelle eine solche Unschärfe mit einer Breite $\sigma_{Blur}=8.0$ mittels einer Faltung angewendet. Eine exemplarische Darstellung des emulierten Fernfeldes und des tatsächlichen Feldes ist in Abbildungen 3.6 und 3.7 zu finden.

3.4.1 Nächste Nachbar Vorhersage

Zuerst wird diese Aufgabe erneut mit dem NN-Ansatz betrachtet. Die besten gefundenen Hyperparameter dafür sind in Tabelle 3.7 aufgelistet. Bemerkenswert ist erneut die geringe Laufzeit dieses Ansatzes. Dies wird durch die verhältnismäßig geringe Dimensionalität des Eingabe-Vektors begünstigt. Allerdings sind die Fehlerwerte sehr hoch, sodass die Vorhersage kaum besser ist, als eine Schätzung mit dem

Abb. 3.6: Graphische Darstellung der *u*-Variable des *Barkley*-Modells. Links ist das emulierte Fernfeld und rechts das tatsächliche *u*-Feld des Modells zu sehen.

Mittelwert als Vorhersage.

	Barkley	Mitchell-Schaeffer
σ	1	1
$\Delta \sigma$	1	1
δ	4	3
k	5	5
Laufzeit [s]	53	42
MSE	0.10089	0.06217
NRMSE	0.8227	0.9136

Tab. 3.7: Gefundene Hyperparameter der nächsten Nachbar Vorhersage für das *Mitchell-Schaeffer-* und das *Barkley-*Modell, welche zu den geringsten Fehlern führen.

Abb. 3.7: Graphische Darstellung der v-Variable des Mitchell-Schaeffer-Modells. Links ist das emulierte Fernfeld und rechts das tatsächliche v-Feld des Modells zu sehen.

3.4.2 Radiale Basisfunktionen

Als nächstes sind nun die radialen Basisfunktionen ebenfalls auf das Problem angewendet worden. Die dabei gefundenen Hyperparameter sind in Tabelle 3.8 präsentiert.

	Barkley	Mitchell-Schaeffer
σ	3	5
$\Delta \sigma$	1	2
δ	3	3
σ_{RBF}	5.0	9.0
Laufzeit [s]	1840	1842
MSE	0.03899	0.03252
NRMSE	0.5114	0.6913

Tab. 3.8: Gefundene Hyperparameter der radialen Basisfunktionen für das *Mitchell-Schaeffer*- und das *Barkley*-Modell, welche zu den geringsten Fehlern führen.

3.4.3 Echo State Network

Nachdem die klassischen Methoden bereits auf dieses Problem angewendet worden sind, kann das Problem nun mittels der ESNs erneut betrachtet werden. Hierfür

sind die verwendeten Hyperparameter erneut nach Abschnitt 3.1.1 gesucht worden. Die Ergebnisse sind in Tabelle 3.9 zu finden. Auffällig ist hierbei, dass die optimale Größe N des Reservoirs für beiden Modelle unter der maximal betrachteten Größe $N \leq 400$ liegt. Dies kann ein Anzeichen dafür sein, dass für das Bewältigen der Aufgabe kein ausgeprägtes Langzeitgedächtnis vorhanden sein muss.

Mention long time memory vs N dependency in theory

	Barkley	Mitchell-Schaeffer
σ	7	7
$\Delta \sigma$	1	1
N	200	50
$ ho(\mathbf{W})$	1.50	0.10
α	0.20	0.05
ϵ	0.1	0.1
ν_{max}	1×10^{-5}	1×10^{-4}
λ	5×10^{-10}	5×10^{-6}
Laufzeit [s]	1603	1540
MSE	0.02347	0.02449
NRMSE	0.3968	0.3599

Tab. 3.9: Gefundene Hyperparameter des ESN für das *Mitchell-Schaeffer*und das *Barkley*-Modell, welche zu den geringsten Fehlern führen.

3.4.4 Vergleich

Zusammenfassend können nun die Ergebnisse der drei Ansätze erneut verglichen werden. Eine vergleichende Übersicht ist in Tabelle 3.9 zu finden. Dort ist erneut zu bemerken, dass die ESNs die geringsten Fehlerwerte erzeugt, doch der NN-Ansatz deutlich schneller berechnet werden kann.

Zusätzlich zu der Tabelle ist noch ein exemplarischer grafischer Vergleich der Resultate der drei Ansätze mit dem Ziel in Abbildung 3.8 dargestellt. Dort fällt auf, dass die Vorhersage des NN-Ansatzes selbst die Struktur der Dynamik kaum korrekt auflöst. Im Vergleich dazu ist die Vorhersage des RBF-Ansatzes und des ESN deutlich feiner und beinhaltet sogar die Makrostruktur der Dynamik. Des Weiteren ist zu bemerken, dass diese mit dem ESN leicht feiner aufgelöst worden ist, als mit RBF-Ansatz. Zwar stimmen hier auch nicht die feinen Details der Dynamik mit dem Original überein, doch ist eine starke Verbesserung im Vergleich zu dem emulierten Fernfeld zu bemerken. Unter Umständen wäre es für zukünftige Arbeiten

3 Anwendungen

bei dieser Aufgabe angebracht eine andere Fehlermetrik als die mittlere quadratische Abweichung zu benutzen, welche die Ähnlichkeit zwischen den Strukturen der Felder stärker berücksichtigt.

Abb. 3.8: Graphische Darstellung der *u*-Variable des *Barkley*-Modells für den 100. Zeitschritt des Testdatensatzes. Oben links ist das tatsächliche Feld des Modells zu sehen. Danach folgenden im Uhrzeigersinn die Vorhersagen des NN-Ansatzes, des RBF-Ansatzes und des ESN.

		Barkley		Mit	chell-Scha	effer
	NN	RBF	ESN	NN	RBF	ESN
Laufzeit [s]	53	1840	3604	42	1842	3823
MSE	0.10089	0.03899	0.02347	0.06217	0.03252	0.02449
NRMSE	0.8227	0.5114	0.3968	0.9136	0.6913	0.3599

Tab. 3.10: Vergleich der benötigten Laufzeit und der erreichten Fehlers der drei Ansätze für das Mitchell-Schaeffer- und das Barkley-Modell, welche zu den geringsten Fehlern führen.

4 Diskussion

5 Fazit

6 Ausblick

7 Danksagungen

Literaturverzeichnis

- [1] D. Barkley. Barkley model. *Scholarpedia*, 3(11):1877, 2008. doi: 10.4249/scholarpedia.1877. revision #91029.
- [2] Ezio Bartocci, Pietro Lio, and Nicola Paoletti. Computational Methods in Systems Biology: 14th International Conference, CMSB 2016, Cambridge, UK, September 21-23, 2016, Proceedings, volume 9859. Springer, 2016.
- [3] Jon Louis Bentley. Multidimensional binary search trees used for associative searching. Communications of the ACM, 18(9):509–517, 1975.
- [4] Sebastian Berg, Stefan Luther, and Ulrich Parlitz. Synchronization based system identification of an extended excitable system. *Chaos: An Interdisciplinary Journal of Nonlinear Science*, 21(3):033104, 2011.
- [5] Cristopher M. Bishop. Pattern Recognition and Machine Learning. Springer, Cambridge, 2006. ISBN 0-387-31073-8.
- [6] D.S. Broomhead and D Lowe. Multi-variable functional interpolation and adaptive networks. *Complex Systems*, 2:321–355.
- [7] Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Cheong Schwarzkopf. Computational geometry. In *Computational geometry*, pages 1–17. Springer, 2000.
- [8] H. Jäger. The "echo state" approach to analysing and training recurrent neural networks with an erratum note. *GMD Report*, 148, 2001/2010.
- [9] H. Jäger. A tutorial on training recurrent neural networks, covering bppt, rtrl, ekf and the "echo state network" approach. *GMD Report*, 159:48 ff., 2002.
- [10] H. Jäger. Long short-term memory in echo state networks: Details of a simulation study. Technical report, Jacobs University Bremen School of Engineering and Science, 2012.

- [11] H. Jäger, M. Lukoševičiusa, D. Popovici, and U. Siewert. Optimization and applications of echo state networks with leaky- integrator neurons. *Neural Networks*, 20:335–352, 2007.
- [12] Holger Kantz and Thomas Schreiber. *Nonlinear time series analysis*, volume 7. Cambridge university press, 2004.
- [13] M. Lukoševičiusa and H. Jäger. Reservoir computing approaches to recurrent neural network training. *Computer Science Review*, 3(3):127–149, 2009.
- [14] Wolfgang Maass. Liquid State Machines: Motivation, Theory, and Applications. In *Computability in Context*, pages 275–296. Imperial College Press, 2011.
- [15] Colleen C Mitchell and David G Schaeffer. A two-current model for the dynamics of cardiac membrane. *Bulletin of mathematical biology*, 65(5):767–793, 2003.
- [16] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks. Proceedings of the 30th International Conference on Machine Learning, 28, 2013.
- [17] Hugo Talbot, Stéphanie Marchesseau, Christian Duriez, Maxime Sermesant, Stéphane Cotin, and Hervé Delingette. Towards an interactive electromechanical model of the heart. *Interface focus*, 3(2):20120091, 2013.
- [18] I. Yildiz, H. Jäger, and S. Kiebel. Re-visiting the echo state property. *Neural Networks*, 35:1–9, 2012.

Notes

Add subchapter?	19
Mention long time memory vs N dependency in theory	33