Definitions Classification Engineering Applications Example

Lecture Module - ODE Review

ME3050 - Dynamic Modeling and Controls

Mechanical Engineering
Tennessee Technological University

Topic 1 - Classification of Differential Equations

Definitions Classification Engineering Applications Example

Topic 1 - Classification of Differential Equations

- Definitions
- Classification
- Engineering Applications
- Example

What is a Differential Equation?

with respect to the		
and one or more of its	of the	
A differential equation is an ed	quation which describes a function	r
Definition:		

Standard Form of an ODE

Ordinary Differential Equations are written in the following form.

$$a_n \frac{dy^{(n)}}{d^{(n)}x} + a_{n-1} \frac{dy^{(n-1)}}{d^{(n-1)}x} + \dots + a_2 \frac{dy^2}{d^2x} + a_1 \frac{dy}{dx} + a_0 y = f(x)$$
The apostrophe is commonly used for the derivative.

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + ... + a_2 y'' + a_1 y' + a_0 y = f(x)$$

If time is the independent variable the equation changes slightly.

Ordinary or Partial Order Degree Linear or Non-Linear

Is the differential equation ordinary or partial?

An ordinary differential equation	on has i	independent
variable and depen	ndent variable.	
A partial differential equation h	nas	
independent variable	dependent variab	le.

What is the order of the equation?

The order of a differential equation is the

present in the equation.

Definitions
Classification
Engineering Applications
Example

rdinary or Partial rder egree near or Non-Line

What is the degree of the equation?

The **degree** of a differential equation is the ______
of its highest derivative, after the equation has been made rational and integral in all of its derivatives.

Is the differential equation linear or non-linear?

An ordinary differential equation is	if the
following statements are true.	

- The dependent variable and its derivatives are of the first degree.
- 2 The coefficients are constants or dependent on the independent variable.

If either rule is broken, the equation is -

Engineering Applications

Differential equations are used to describe physical systems in many areas of engineering. An equation that represents a physical (or theoretical) system is known as a ______

- Solid Mechanics
- Kinematics and Dynamics
- Heat Transfer and Thermodynamics
- Fluid Mechanics

Example - Mathematical Model

Newton's Second Law

$$\Sigma F = ma$$

leads to an equation of motion.

$$\dot{y} + \frac{c}{m}y = f(t)$$

Example - Solution

The solution to a differential equation describes the				
		as a function		
of the		·		
†	†			

There are many different methods for finding the solution.