SMART VEHICLE PARKING SYSTEM

GROUP G5

E/15/056

E/15/058

E/15/063

Smart Vehicle Parking System

Figure 1

Figure 3

As Group G5 (E/15/056, E/15/058, E/15/063), we have planned to design a smart vehicle parking system.

The structure of the vehicle park is shown in Figure 1. But in our project we hope to demonstrate only one parking area process and the process of the gate.

The process of a parking area

As shown in Figure 2, there are two obstacle avoidance sensor modules (Red shapes). They detect a vehicle's arrival to the parking area and returns a signal to the counters (C1 & C2). The counters take notes the parking position and the time when it is parked.

Using those data, counters calculate the parking fee. Not only that if the vehicle is parked in the day time but it is still parked in the night time automatically a light can be seen at the parking area. When the vehicle leaves the parking area or the day time comes, the light disappears.

The process of the gate

As shown in Figure 3, there are two obstacle avoidance sensor modules at each gate (Gate 1-P1 & P2). When a vehicle comes to the gate from outside, P1 sensor module identifies it and returns a signal to open the gate and the mechanism of opening the gate works. After that the vehicle passes away the gate, P2 sensor module identifies that and returns a signal to close the gate.

When a vehicle leaves the parking area the above process of the gate works and the parking fee is noticed at the counters.

Here we plan to enter vehicles from gate 1 and return them from gate 2 for the convenience of the people. Likewise if the parking area is full, it is noticed at gates.

So, this is the basic idea of our project process and we hope to develop this further.

SMART VEHICLE PARKING SYSTEM USER CASE DIAGRAM

SMART VEHICLE PARKING SYSTEM SEQUENCE DIAGRAM

SMART VEHICLE PARKING SYSTEM UML CLASS DIAGRAM

<u>USER</u>

Enter car()

Park()

Parking system

Open the gate

Closing the gate

Calculate the time period

Calculate the bill

CIRCUIT DIAGRAM:

ADDITIONAL COMPONENTS USED

Obstacle detecting sensor

L298D Motor controller

Seven segment display

CODE

processor 16f877a

#include <p16f877a.inc>

__CONFIG _FOSC_XT & _WDTE_OFF & _PWRTE_OFF & _BOREN_OFF & _LVP_OFF & _CPD_OFF & _WRT_OFF & _CP_OFF

org 0x00
goto Main
org 0x04
goto Interrupt

Count1 equ 0x20
Count2 equ 0x21
Count3 equ 0x22
Micros equ 0x23
Ones equ 0x24
Tens equ 0x25

Main:

bsf STATUS,5 movlw b'00000000'

movwf TRISA

movlw b'00000000'

movwf TRISB

movlw b'00000000'

movwf TRISC

movlw b'00000011'

movwf TRISD

clrf

movlw b'00000111'
movwf OPTION_REG
bcf STATUS,5
bsf INTCON,7
bsf INTCON,5
clrf Ones
clrf Tens

Micros

Check1:

bsf PORTB,7
bcf PORTA,3
btfsc PORTD,0
goto Gopen
bcf PORTA,0
goto Check1

Check2:

btfss PORTD,0
goto Gclose
bcf PORTA,0
goto Check2

Gopen:

bsf PORTA,0 call Delay2 bcf PORTA,0 goto Check2

Gclose:

bsf PORTA,1 call Delay2 bcf PORTA,1

Check3:

btfsc PORTD,1 goto LED bcf PORTA,3 bsf PORTB,7 clrf Ones clrf Tens clrf Micros goto Check3

LED:

bcf PORTB,7 bsf PORTA,3 goto Timer

Timer:

movlw b'00000010'
movwf PORTC
movf Ones, W
call Table
movwf PORTB
call Delay1
movlw b'00000001'

movwf PORTC

movf Tens, W
call Table
movwf PORTB
call Delay1
btfss PORTD,1
goto Check4
goto Timer

Check4:

clrf Ones clrf Tens clrf Micros bsf PORTB,7 bcf PORTA,3 PORTD,0 btfsc GopenAgain goto bcf PORTA,0 Check4 goto

Check5:

btfss PORTD,0
goto GcloseAgain
bcf PORTA,0
goto Check5

GopenAgain:

bsf PORTA,0 call Delay2 bcf PORTA,0 goto Check5

GcloseAgain:

bsf PORTA,1 call Delay2 bcf PORTA,1 goto Check1

Interrupt:

INTCON,7 bcf INTCON,5 bcf incf Micros,1 movf Micros,0 b'00001111' sublw STATUS,2 btfsc Inc_Ones goto goto ReIn

Inc_Ones:

clrf Micros
incf Ones, 1
movf Ones, 0
sublw b'00001010'
btfsc STATUS,2
goto Inc_Tens
goto ReIn

Inc_Tens:

clrf Ones
incf Tens, 1
movf Tens, 0
sublw b'00001010'
btfsc STATUS,2
clrf Tens
goto ReIn

ReIn:

bsf INTCON,2 bsf INTCON,7 bsf INTCON,5

retfie

Table:

addwf PCL retlw b'00111111' ;digit 0 retlw b'00000110' ;digit 1 retlw ;digit 2 b'01011011' retlw b'01001111' ;digit 3 retlw ;digit 4 b'01100110' b'01101101' retlw ;digit 5 retlw b'01111101' ;digit 6 b'00000111' retlw ;digit 7 retlw b'01111111' ;digit 8 b'01101111' retlw ;digit 9

Delay1:

loop decfsz Count1,F

goto loop

return

Delay2:

loop1 decfsz Count2,1

goto loop1 decfsz Count3,1 goto loop1

return

End

