Cryptographie

Cryptographie Cours 1

Maîtriser les concepts et algorithmes cryptographiques

Jérémy Briffaut STI 2A

Plan

- I. Histoire, définition et objectifs de la cryptographie
 - Concepts et algorithmes de permutation et de substitution
- II.Chiffrement Symétrique
 - · DES, 3DES, AES, IDEA
- III.Chiffrement Asymétrique
 - · RSA, ElGamal
- IV.Signature, Hachage et Scellement
- V.Echange de clés
 - Algorithme Deffie-Hellman
- VI.Hachage: MD5, SHA-1, SHA-2
- VII.Code d'Authentification & MAC

Objectifs de ce cours

- Maîtriser les concepts et algorithmes cryptographiques
- Introduire les bases de la cryptographie
- Comprendre les principes de bases

I. Introduction

Services à assurer sur un hôte

- Disponibilité : garantie de la continuité du service.
- Intégrité : garantie que l'information n'est pas altérée.
- Confidentialité : garantie que de l'information n'est pas divulguée à des tiers non autorisés (frauduleusement ou non)

Services à assurer sur le réseau

- authentification : garantie de l'origine des données
- Intégrité : garantie que l'information n'est pas altérée.
- Confidentialité : garantie que de l'information n'est pas divulguée à des tiers non autorisés
- Disponibilité : garantie que l'information est disponible (dénie de service)
- Non répudiation :
 - Ensemble de moyens et techniques permettant de prouver la participation d'une entité dans un échange de données

Plan

- I. Histoire, définition et objectifs de la cryptographie
 - I. Définition
 - II. Transposition, Substitution
 - III.Cryptographie moderne

I. Introduction

■ Terminologie

- Cryptographie : Science mathématique permettant d'effectuer des opérations sur un texte intelligible afin d'assurer une ou plusieurs propriétés de la sécurité de l'information
- Cryptanalyse : la Science permettant d'étudier les systèmes cryptographiques en vue de les tester ou de les casser
- Cryptologie = cryptographie + cryptanalyse

Assurer la confidentialité

- Stéganographie : écriture couverte
 - Information non-chiffrée
 Connaissance de l'existence de l'information

Connaissance de l'information

- Exemples :
 - Message couvert :
 - Tablette couverte de cire
 - Crane du messager
 - Message invisible
 - Encre invisible (Pline 1er siècle avant JC)
 - Message illicible
 - Micro-film sous la forme d'un point

-Cryptographie : écriture cachée/brouillée

Information chiffrée

Connaissance de l'existence de l'information

Connaissance de l'information

II. Confidentialité et algorithmes de chiffrement

■ Le Chiffrement

- Ces algorithmes assurent la transformation d'un message en clair ("plaintext") en un message brouillé ("ciphertext")
- Il existe deux grandes familles d'algorithmes
 - → algorithmes symétriques
 - imposent au système qui crypte de savoir décrypter
 - → algorithmes asymétriques
 - ne permettent pas au système qui crypte de décrypter
- Pour les deux cas les algorithmes de chiffrement sont commutatifs.

Confusion et Diffusion

■ Confusion:

 Aucune propriété statistique ne peut être déduite du message chiffré.

■ Diffusion:

 Toute modification du message en clair se traduit par une modification complète du chiffré.

II. Confidentialité et algorithmes de chiffrement

■ Chiffrement, déchiffrement et décryptement :

Plan

- I. Histoire, définition et objectifs de la cryptographie
 - I. Définition
 - II. Transposition, Substitution
 - III.Cryptographie moderne

Taxonomie

Cryptographie ancienne

Transposition

- Chiffrement type anagramme.
 - Niveau de sécurité théorique :
 - → Message de 35 lettres : 35! chiffrés possibles.
- Problèmes :
 - Confusion sur la syntaxe mais ...
 - · ... chaque lettre conserve sa valeur.
 - · Clé de chiffrement «complexe».

Exemple de transposition

La scytale spartiate (5 siècle av. JC) :

- premier dispositif de cryptographie militaire connu
- un bâton de bois autour duquel est entourée une bande de cuir
- L'expéditeur
 - écrit son message sur toute la longueur de la scytale
 - déroule ensuite la bande
 - apparaît alors couverte d'une suite de lettres sans signification
- Le messager
 - emportera la bande de cuir, l'utilisant comme ceinture, les lettres tournées vers l'intérieur.
- Le destinataire
 - enroulera alors cette bande sur son bâton (de même diamètre) pour lire le message clair.

Exemple de transposition

Rail Fence

- se traduit littéralement "palissade"
- · connaît son heure de gloire aux débuts de la cryptographie
- Exemple
 - le message VIENS ME REJOINDRE A CINQ HEURES.
 - Le Rail Fence à deux niveaux dispose les lettres en «zig zag»

VESEEONRAIQERS INMRJIDECNHUE

Nous obtenons alors :

VESEE ONRAI QERSI NMRJI DECNH UE

à trois niveaux:

V S E N A Q R INMRJIDECNHUE E E O R I E S

Nous obtiendrons alors :

VSENA QRINM RJIDE CNHUE EEORI ES.

Substitution

- Chiffrement en changeant d'alphabet.
 - Kama Sutra : mlecchita-vikalpà ou art de l'écriture secrète (4ème siècle av JC).
- Niveau de sécurité *théorique* :
 - · Alphabet à 26 lettres : 26! alphabets possibles.
- Problèmes :
 - Confusion sur l'alphabet mais ...
 - · ... chaque lettre conserve sa place d'origine.
- Exemples :
 - substitutions simples (monoalphabétiques)
 - chiffre Pig Pen, le carré de Polybe, le chiffre Atbash, le chiffre de César, les alphabets désordonnés, le chiffre affine ...
 - substitutions polyalphabétiques (à double clef ou à alphabets multiples)
 - → le chiffre de Vigenère, le chiffre de Gronsfeld, le cylindre de Jefferson, la machine Enigma ...
 - substitutions polygrammiques (polygraphiques)
 - des substitutions tomogrammiques (par fractions de lettres)

Exemple de substitution

■ Le chiffre de César

- consiste simplement à décaler les lettres de l'alphabet de quelques crans vers la droite ou la gauche.
- Substitution monoalphabétiques
- Exemple
 - décalons les lettres de 3 rangs vers la gauche, comme le faisait Jules César (d'où le nom de ce chiffre):

Clair ABCDEFGHIJKLMNOPQRSTUVWXYZ Chiffré DEFGHIJKLMNOPQRSTUVWXYZABC

Ainsi, le message

Ave Caesar morituri te salutant

devient

DYHFD HVDUP RULWX ULWHV DOXWD QW

Cryptanalyse de la substitution monoalphabétique

■ Principe (Al-Kindi - 9ème siècle):

- analyse des fréquences
- ne fonctionne bien que si le cryptogramme est suffisamment long pour avoir des moyennes significatives.

Cryptanalyse

Substitutions polyalphabétiques

- Utilisent plusieurs "alphabets"
 - ce qui signifie qu'une même lettre peut être remplacée par plusieurs symboles
 - Exemples :
 - → chiffre de Vigenère
 - qui résista aux cryptanalystes pendant trois siècles
 - → Des exemples plus récents s'inspirant de ce chiffre :
 - le chiffre de Beaufort
 - le chiffre de Gronsfeld
 - le cylindre de Jefferson
 - la machine Enigma
- La substitution homophonique
 - consiste à remplacer chaque lettre par un nombre de symboles proportionnel à sa fréquence d'apparition est une sous-catégorie.

Chiffre de Vigenère

■Chiffre de Vigenère

- amélioration décisive du chiffre de César
- Sa force réside dans l'utilisation non pas d'un, mais de 26 alphabets décalés pour chiffrer un message.
- On peut résumer ces décalages avec un carré de Vigenère.
 - → Ce chiffre utilise une clef qui définit le décalage pour chaque lettre du message (A: décalage de 0 cran, B: 1 cran, C: 2 crans, ..., Z: 25 crans).
- La grande force du chiffre de Vigenère est que la même lettre sera chiffrée de différentes manières.
 - Par exemple le E du texte clair suivant a été chiffré successivement M V L P I, ce qui rend <u>inutilisable</u> <u>l'analyse des fréquences classique</u>.

Chiffre de Vigenère

■ Exemple :

- chiffrons le texte "CHIFFRE DE VIGENERE" avec la clef "BACHELIER"
 - → cette clef est éventuellement répétée plusieurs fois pour être aussi longue que le texte clair.

Clair CHIFFREDEVIGENERE
Clef BACHELIERBACHELIE
Décalage 10274118417102741184
Chiffré DHKMJCMHVWIILRPZI

- Définition de la clé de chiffrement :
 - Mot-clé identifiant les alphabets à utiliser.

Carré de Vigenère

■Carré de Vigenère

Substitution polyalphabétique

- Confusion et Diffusion ?
 - → Idem substitution monoalphabétique
- Confusion :
 - → Confusion sur l'alphabet mais ...
 - → ... analyse fréquentielle des lettres.
- Diffusion :
 - → Pas du tout assurée.

Cryptanalyse de la substitution polyalphabétique

- C. Babbage (19ème siècle)
 - Principe en deux étapes :
 - → Trouver la longueur du mot-clé.
 - → Analyse fréquencielle sur chacun des alphabets.

Longueur du mot clé :

hiverhiverhiverhiver KEYKEYKEYKEYKEYKE RMTOVFSZCBLGFIPRMTOV

Extension à la substitution polyalphabétique

- Faiblesse de la substitution :
 - Taille du mot-clé : un digramme peut être chiffré plusieurs fois de la même manière.
- Idées :
 - Utilisation de plus d'alphabets de chiffrement.
 - Choisir des mot-clés plus grand.

Enigma

- La machine à chiffrer et déchiffrer qu'utilisèrent les armées allemandes du début des années trente jusqu'à la fin de Seconde Guerre Mondiale.
- Automatise le chiffrement par substitution.
- Principes de base :
 - Substitution polyalphabétique
- Techniques utilisées :
 - Rotors = substitutions polyalphabétiques.
 - Connector = substitution

Enigma - Rotor

SubstitutionPolyalphabétique

• Si on frappe la lettre b sur le clavier, un courant électrique est envoyé dans le rotor, suit laecâblage interne, puis ressort à droite pour allumer la lettre A sur le tableau lumineux. B est donc chiffré en A (B-> A).

Substitution Polyalphabétique

а	b	С	d	е	f
В	F	D	Α	С	Ε

а	b	С	d	е	f
F	C	Δ	F	В	D

Enigma - Rotor

Autre principe de base: chaque fois qu'une lettre est tapée au clavier, <u>le rotor tourne d'un</u> <u>cran</u>. Ainsi, B devient A la première fois, mais B devient C la deuxième fois puis b devient E, etc.

Le mot BAC est chiffré ADD (et non ABD si le rotor était resté immobile).

Substitution Polyalphabétique

Complexité de la substitution :

26 x 26 x 26 = 17 576 alphabets de chiffrement.

Enigma

- Le tableau de connexions permet de brouiller les pistes en reliant deux lettres du clavier entre elles.
 - Ainsi, quand on tape B, le courant prend en fait le circuit prévu pour A.
- Les trois brouilleurs associés multiplient ainsi le nombre de combinaisons.
- Le deuxième et le troisième avancent respectivement d'un cran quand le premier et le deuxième ont fait un tour complet.
- Quant au réflecteur, il renvoie le courant dans le dispositif jusqu'au panneau lumineux où la lettre cryptée s'affiche.
 - Son rôle n'est pas d'augmenter le nombre de combinaisons possibles, mais de faciliter considérablement la tâche du destinataire.
 - → En effet, si B devient C dans notre exemple (en rouge), on a aussi C devient B.

Enigma - Connector

Substitutions élémentaires

Complexité de la substitution :

 6 connexions possibles : 100 391 791 500 branchements possibles.

Enigma – Algorithme et clé

- Algorithme :
 - Substitutions des rotors.

- Clé de chiffrement :
 - Disposition des rotors.
 - Orientation initiale des rotors.
 - Connexions entre lettres de l'alphabet.

Cryptanalyse de Enigma

■ La Bombe de Turing

Cryptanalyse de Enigma

■ Principe:

- Les bombes ont été construites pour retrouver le réglage de la machine Enigma.
- L'idée était de deviner certains mots du message et de voir si l'on pouvait faire correspondre une partie du cryptogramme avec ce mot probable (crib en anglais).
 - → Par exemple, le Allemands envoyaient souvent des prévisions météorologiques chiffrées avec Enigma; on pouvait donc essayer les mots "nuages", "pluie", etc.
- Résultat de la Bombe de Turing.
 - Performance :
 - → Clé trouvée en 1 heure.
 - Limite de la Bombe :
 - → Utilisation de plus de 5 rotors.
 - → Pas de structure dans message.
- Décisif dans la victoire des alliers.

Extension à la substitution polyalphabétique

- Faiblesse de la substitution :
 - Taille du mot-clé : un digramme peut être chiffré plusieurs fois de la même manière.

- Idées :
 - Utilisation de plus d'alphabets de chiffrement.
 - Choisir des mot-clés plus grand.

Enigma - Complexité

- Au final, si l'on revient aux machines Enigma équipées pour 26 lettres, on a:
 - 26 x 26 x 26 = 17'576 combinaisons liées à l'orientation des chacun des trois brouilleurs,
 - 6 combinaisons possibles liées à l'ordre dans lequel sont disposés les brouilleurs,
 - 100'391'791'500 branchements possibles quand on relie les six paires de lettres dans le tableau de connexions.
- Les machines Enigma peuvent donc chiffrer un texte selon 17'576 x 6 x 100'391'791'500 = 10'000'000'000'000'000 combinaisons différentes!

Chiffrement parfait ???

- Longueur du mot-clé = longueur du message :
 - · Garantie a priori un niveau de sécurité maximal mais

. . .

- Cryptanalyse possible si :
 - · Réutilisation du mot-clé.
 - Mot-clé trivial.
- Le chiffrement idéal : One-time-pad.
 - Longueur du mot-clé = longueur du message.
 - Mot-clé choisi aléatoirement.
 - Mot-clé jamais réutilisé.
 - Sécurité mathématiquement prouvée!

One-time-pad

- Confusion et Diffusion ?
 - Confusion totale :
 - → Chiffrement de « aaaa … aaa » complètement aléatoire.
 - Diffusion totale :
 - → Assurée car mot-clé *jamais* réutilisé :
 - → résultat différent lorsque on rechiffre « aaaa ... aaa ».

Plan

- I. Histoire, définition et objectifs de la cryptographie
 - I. Définition
 - II. Transposition, Substitution
 - III.Cryptographie moderne

Cryptographie moderne

Principes de la cryptographie

- Principe de Kerckhoffs : la sécurité repose sur le secret de la clé, et non sur le secret de l'algorithme (19ème siècle).
- Le déchiffrement sans la clé est impossible (à l'échelle humaine).
- Trouver la clé à partir du clair et du chiffré est impossible (à l'échelle humaine).

■ Claude Shannon - 1948

Problématique : A envoie un message M à B au travers un canal C

- Théorème 1 : codage de la source.
- Théorème 2 : code correcteur d'erreur.
- Théorème 3 : chiffrement parfait.

Entropie et incertitude

- Quantité d'information : nombre minimal de bits nécessaires pour coder (les significations de) l'information contenue dans un message.
- Entropie : permet de mesurer la quantité d'information dans un message *M*, noté *H*(*M*).
 - En général, $H(M) = \log_2(n)$ si n est le nombre de significations possible de M.
- Incertitude : nombre de bits qui permet de retrouver l'ensemble du message en clair.
 - L'entropie d'un message donne également son incertitude.

Codage de la source

But : trouver le codage le plus économique.

Théorème 1:

Pour toute source X d'entropie H(X), on peut trouver un code dont la longueur moyenne s'approche de H(X) d'aussi près que l'on veut.

Code correcteur d'erreur

But : caractériser le canal de communication.

Théorème 2:

Pour toute canal, on peut toujours trouver une famille de codes dont la probabilité d'erreur après décodage tend vers 0.

Chiffrement parfait

Soit *M* un message, *K* une clé et *C* le chiffré.

Définition:

On a un chiffrement parfait lorsque le chiffré C ne fournit aucune information sur M ou K.

$$H(M|C) = H(M)$$
 et $H(K|C) = H(K)$.

Théorème 3:

Si un chiffrement est parfait, alors il y a au moins autant de clés que de messages :

$$|K| \ge |M|$$

K étant l'ensemble des clés, et M l'ensemble des messages.

Conséquence :

- Si |K| < |M|, le chiffrement n'est pas parfait.
- L'entropie d'un chiffrement est fonction de la taille des clés utilisées.

Chiffrement parfait

En pratique :

- •Il existe un unique chiffrement parfait (Vernam 1917):
 - Soit M, on choisit K aléatoire tel que |K| = |M| et K jamais utilisé : C = M xor K.
- •Plus l'entropie d'un chiffrement est grande, plus l'attaque par recherche exhaustive des clés est difficile.

Principe

- Méthodologie pour analyser la complexité de calcul des algorithmes :
 - -Complexité en temps de calcul.
 - -Complexité en espace de stockage.
- Complexité exprimée comme fonction de n, la taille du paramètre d'entrée :
 - -Algorithme constant, linéaire, polynomial, exponentiel.

Complexité / Temps de calcul

Classe	Complexité	Nombre d'opérations pour n = 10 ⁶	Temps pour 10 ⁶ opérations par seconde
Constant	0(1)	1	1µs
Linéaire	O(n)	10 ⁶	1s
Quadratique	$O(n^2)$	1012	11,6 jours
Cubique	$O(n^3)$	1018	32000 années
Exponentiel	O(2 ⁿ)	10301030	10301008 fois l'âge de l'univers

Temps de calcul en fonction de la complexité de l'algorithme.

Complexité des problèmes

- Définition :
- -Complexité de l'algorithme permettant de résoudre l'instance la plus difficile du problème.

- Classification des problèmes :
 - -Problèmes solubles (polynomial).
 - -Problèmes non solubles ou difficiles.
 - -Problèmes indécidables.

Application à la cryptographie

- Détermine le niveau de complexité d'une attaque.
 - A comparer avec la recherche exhaustive.
- Idéalement :
- Chiffrement sûr : toutes les attaques sont de complexité exponentielle.
- En pratique :
- -Chiffrement sûr : toutes les attaques connues sont de complexité exponentielle.

Bibliographie

- Schneier Bruce, Cryptographie appliquée, International Thomson Publishing France, Paris, 1997
- http://www.apprendre-en-ligne.net/crypto/
- Dubertret Gilles, Initiation à la cryptographie,
 Vuibert Informatique, 2000
- Stinson Douglas, Cryptographie Théorie et pratique, Vuibert Informatique, Paris, 2001
- http://www.supelec-rennes.fr/ren/perso/cbidan/co

