

GII TDRC

TEMA 3: Arquitecturas y Servicios de Redes Corporativas (Capa de Enlace) - Problemas Propuestos -

INSTRUCCIONES DE REALIZACIÓN Y ENTREGA

- La correcta resolución y entrega de estos ejercicios supondrá hasta 0,5 puntos de la nota final de la asignatura (parte de Teoría). Cada uno puntuará 0,25.
- La entrega se hará en un documento PDF, incluyendo las imágenes y el texto que cada cual estime oportuno. Se puede hacer manuscrito y posteriormente escaneado, pero debe generarse un único documento PDF.
- Incluya en el documento su nombre y apellidos.
- La realización de estos ejercicios debe ser individual. Cada estudiante deberá hacer una entrega por separado con su propia solución.
- En su realización se recomienda incluir las explicaciones pertinentes para demostrar que se sabe resolverlos.
- Los rangos de IPs a considerar son a elección libre. Hay millones de direcciones disponibles, por lo que <u>debería ser muy complicado que las resoluciones de dos estudiantes coincidan.</u>
- En caso de detectar copia/plagio en dos entregas, ambas pasarán a puntuar
 0 y se penalizará fuertemente a ambos estudiantes.

PROBLEMA 1:

Dada la topología de la figura y suponiendo que las **Tablas ARP** de todos los nodos (hosts y router) están **vacías**. Las **Tablas de enrutamiento** están **completas** y todos los PCs tienen como Default Gateway a R1 (interfaz en su subred).

- a) Asigne IPs de clase C públicas y MACs a todas las interfaces presentes.
- b) Indique en una tabla (como la que se muestra) todas las **tramas ARP generadas** para poder realizar un envío de un paquete ICMP (ping) desde PC3 hasta PC4 y la respuesta. Incluya un número que indique el instante de tiempo en el que se producen (considere instantes numerados secuencialmente comenzando en 1).

b) ICMP: PC3 → PC4 (eco request)

*** ICMP funciona a nivel de capa 3 (red), pero los datagramas se transmiten encapsulados en tramas Ethernet de capa 2 (enlace).

Para transmitir a nivel de enlace hace falta conocer las MAC asociadas a los equipos.

PC3 debe enviar un mensaje ICMP a PC4, que está en otra subred, por lo que debe pasar dicho mensaje a su Default Gateway (R1). Deben rellenarse las tablas ARP para hacer dicho envío.

- *** Respecto a las tablas ARP, éstas se rellenan en los destinos de los ARP Request y en el del ARP Reply (no en los nodos intermedios por los que se pasa.
- *** Respecto a las tablas de conmutación de los Switches, éstas se van rellenando/actualizando cada vez que una trama entra por un puerto (procedente de una MAC). Se asocia ese puerto y esa MAC.

Instante	Trama ARP	MAC origen	MAC destino	IP origen	IP destino
1	ARP	33:33:33:33:33	FF:FF:FF:FF:FF	192.10.10.3	192.10.10.100
Llega	Request				
a SW2					
2	ARP	33:33:33:33:33	FF:FF:FF:FF:FF	192.10.10.3	192.10.10.100
Llega	Request				
a PC5					
2	ARP	33:33:33:33:33	FF:FF:FF:FF:FF	192.10.10.3	192.10.10.100
Llega	Request				
a SW1					
3	ARP	33:33:33:33:33	FF:FF:FF:FF:FF	192.10.10.3	192.10.10.100
Llega	Request				
a PC1					
3	ARP	33:33:33:33:33	FF:FF:FF:FF:FF	192.10.10.3	192.10.10.100
Llega	Request				
a PC2					
3	ARP	33:33:33:33:33	FF:FF:FF:FF:FF	192.10.10.3	192.10.10.100
Llega	Request				
a R1					
4	ARP Reply	AA:AA:AA:AA:AA	33:33:33:33:33	192.10.10.100	192.10.10.3
Llega					
a SW1			22 22 22 22 22 22	100 10 10 100	100 10 10 0
5	ARP Reply	AA:AA:AA:AA:AA	33:33:33:33:33	192.10.10.100	192.10.10.3
Llega					
a SW2	ADD D 1		22 22 22 22 22 22	102 10 10 100	102 10 10 2
6	ARP Reply	AA:AA:AA:AA:AA	33:33:33:33:33	192.10.10.100	192.10.10.3
Llega					
a PC3					

*** Ahora PC3 podrá el paquete ICMP a R1. Después R1 retransmitirá dicho mensaje ICMP sobre la otra subred para llevarlo a PC4. Para hacer esto, que será a nivel de enlace, deben conocerse las MAC de R1 y PC4 en la otra subred. Hay que rellenar las tablas ARP para ello.

Instante	Trama ARP	MAC origen	MAC destino	IP origen	IP destino
7	ARP	BB:BB:BB:BB:BB	FF:FF:FF:FF:FF	200.20.20.1	200.20.20.4
Llega	Request				
a PC4					
8	ARP Reply	44:44:44:44:44	BB:BB:BB:BB:BB	200.20.20.4	200.20.20.1
Llega					
a R1					

ICMP PC4 → PC3 (eco reply)

*** Ya estarían todas las tablas rellenas, no habría que hacer peticiones ARP para este envío. PC4 enviaría el paquete ICMP a R1 (su default Gateway) y R1 reenviaría dicho paquete a PC3 en la otra subred. Dichos envíos se harán encapsulados sobre tramas Ethernet entre las MACs de los equipos.

PROBLEMA 2:

Dada la siguiente topología, considere que STP está habilitado y calcule el árbol de expansión obtenido según ese protocolo, para ello asigne nombre y BIDs a su elección a los switches, de manera que SW7 sea el Root Bridge. Determine los puertos RP, DP y Bloqueados (X). Considere que todos los enlaces son FastEthernet (100 Mbps).

- RB el de menor BID
- RP los más cercanos al RB en saltos (al ser todos los enlaces iguales)
- DP los que hay frente a RPs
- Decidir qué puertos son DP y cuáles X (bloqueados)

Asignamos BIDs a los Switches:

Construimos el Árbol de Expansión (ST). Se unen RPs y DPs.

