Extensions profondément ramifiées et presques étales

Le setup c'est K un corps local de caractéristique 0, K_{∞}/K une extension algébrique, $K_{\infty} = \bigcup_{n \geq 0} K_n$ avec $[K_n : K]$ finie. Puis L_{∞}/K_{∞} finie et $L_{\infty} = K_{\infty}(\alpha)$, ensuite $L_n := K_n(\alpha)$ et on suppose $\mu_{\alpha} \in K_0[X]$. On a $L = \bigcup_{n \geq 0} L_n$.

Remarque 1. La différente $\mathscr{D}_{L_{\infty}/K_{\infty}}$ est juste définie par $(\mathcal{O}_{L_{\infty}}^{\wedge})^{-1}$ ce qui fait sens. On a pas forcément les propriétés habituelles a priori.

1
$$\mathscr{D}_{K_{\infty}/K}$$
 et $\mathscr{D}_{L_{\infty}/K_{\infty}}$

On déf:

$$\mathscr{D}_{K_{\infty}/K} := \cap_{n=0}^{\infty} \mathscr{D}_{K_n/K} \mathcal{O}_{K_{\infty}}$$

c'est bien défini et dépend par des K_n choisis. Alors on a

$$\mathscr{D}_{L_n/K_n}\mathcal{O}_{L_m}\subset\mathscr{D}_{L_m/K_m}$$

puis

$$\mathscr{D}_{L_{\infty}/K_{\infty}}\mathcal{O}_{L_m} = \bigcup_{n=0}^{\infty} (\mathscr{D}_{L_n/K_n}\mathcal{O}_{L_{\infty}})$$

2 Extensions profondément ramifiées (Coates-Greenberg)

Le conducteur est donné par

$$c(M) = \inf\{\nu | M \subset \bar{K}^{(\nu)}\} + 1$$

Le théorème principal c'est:

Théoreme 1 (Coates-Greenberg).