- 1. (20pts) Let C be the curve given by $\mathbf{r}(t) = \sin t \mathbf{i} + (1 \cos t)\mathbf{j} + t^2\mathbf{k}$, for $0 \le t \le 2\pi$.
 - (a) Find the curvature $\kappa(t)$.
 - (b) Find symmetric equations of the tangent line to C at the point $(0, 2, \pi^2)$. At what point does this line intersect the xy-plane?

- 2. (20pts) Let $f(x, y, z) = xz \cdot e^{yz} \sin(xy)$ and P = (1, 0, -2).
 - (a) What is the maximum rate of change of f at the point P?
 - (b) Find the linearization of f and use it to approximate f(1.03, -0.01, -1.98).

- 3. (20pts) Let S be the hyperboloid $x^2 + 4y^2 z^2 = 4$.
 - (a) Find an equation of the normal line to S at the point (2,1,2).
 - (b) Find the points on S where the tangent plane is parallel to the plane 2x + 2y + z = 5.

- 4. (20pts) Let $f(x,y) = x^3 + xy^2 + 6x^2 + y^2$.
 - (a) Find the local maximum, minimum values and saddle points of f(x, y).
 - (b) Find the absolute maximum and minimum values of f(x,y) on the disk $x^2 + y^2 \le 1$.

- 5. (20pts) Let E be the solid that lies within the sphere $x^2 + y^2 + (z-2)^2 = 4$ and below the cone $z = \sqrt{\frac{x^2 + y^2}{3}}$. At each point, the density of E is equal to the distance between the point and the z-axis. Set up two iterated integrals, each with explicit integrand and explicit limits of integration, to compute the mass of the solid E. DO NOT EVALUATE these integrals.
 - (a) Use spherical coordinates ρ , θ , ϕ .
 - (b) Use rectangular coordinates $x,\,y,\,z$ and the order of integration dzdydx.

- 6. (20pts) Given the vector field $\mathbf{F}(x, y, z) = (\sin(\pi x) + \pi x \cos(\pi x)) \mathbf{i} + \arctan z \mathbf{j} + \left(\frac{y}{1 + z^2} + 1\right) \mathbf{k}$.
 - (a) Show that F is conservative and find a potential function f.
 - (b) Use the Fundamental Theorem of line integrals to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is the part of the epicycloid: $\mathbf{r}(t) = (5\cos t \cos 5t)\mathbf{i} + (5\sin t \sin 5t)\mathbf{j} + \mathbf{k}$ from t = 0 to $t = \pi/2$.

- 7. (20pts) Let S be the part of the hyperbolic paraboloid $z = y^2 x^2$ that lies in the cylinder $x^2 + y^2 = 1$.
 - (a) Find the surface area of S.
 - (b) If S is oriented upward, compute the flux of $\mathbf{F}(x, y, z) = x\mathbf{i} y\mathbf{j} + (1 z)\mathbf{k}$ across S.

8. (20pts) Use Green's theorem with the vector field $F(x,y) = -y\mathbf{i} + x\mathbf{j}$ to compute the area of the region enclosed by the hypocycloid $\mathbf{r}(t) = \cos^3 t \, \mathbf{i} + \sin^3 t \, \mathbf{j}$ for $0 \le t \le 2\pi$.

9. (20pts) A particle moves along line segments from the point (0,0,0) to points (0,2,0), (1,1,1) and back to (0,0,0) under the influence of the force field $\mathbf{F}(x,y,z) = x\mathbf{i} - e^z\mathbf{j} + z\mathbf{k}$. Use Stokes' Theorem to find the work done.

10. (20pts) Let S be the boundary surface of the solid E that lies within the cylinder $x^2 + y^2 = 1$, below the plane 4x - 4y + z = 0, and above the plane z = 0, with the normal pointing outward. Let S_1 and S_2 be the parts of S that belong to the cylinder and the plane 4x - 4y + z = 0, respectively. Use the Divergence Theorem to calculate the flux integral $\iint_{S_1 \cup S_2} \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F}(x, y, z) = (e^z - x^2) \mathbf{i} + 3y\mathbf{j} + 2xz\mathbf{k}$.