Lab 6. Basic control action in dynamic systems

Name: Zhu Chenhao

ITMO ID: 375462

Specialization: Automation

Objective

To get acquainted with the principles of synthesis of control systems for technical systems in the Simulink software environment.

Figure 1. Simulation scheme of the electromechanical system DC motor – mechanical load.

Initial data

Parameter	R	L	Ce	J	τ
Value	1.9713	0.0169 H	1.9964	0.9241	0.0086 s
	Ohms		V*s/rad	kg*m²	

1. Build a simulation circuit.

Figure 2. Simulation circuit.

2. Calculate the transfer function of the control object from the control signal to the controlled coordinate (speed).

$$\frac{di_{L}}{dt} = -\frac{R}{L}i_{L} - \frac{C_{e}}{L}\omega + \frac{u}{L}$$

$$\frac{d\omega}{dt} = \frac{C_{m}}{J}i_{L}$$

$$s \cdot i_{L} = -\frac{R}{L}i_{L} - \frac{C_{e}}{L}\omega + \frac{u}{L}$$

$$s \cdot \omega = \frac{C_{m}}{J}i_{L}$$

$$i_{L} = \frac{J \cdot s}{JL \cdot s^{2} + RJ \cdot s + C_{m}C_{e}}u$$

$$\omega = \frac{C_{m}}{JL \cdot s^{2} + RJ \cdot s + C_{m}C_{e}}u$$

Figure 3. Transient responce.

3. Calculate coefficients for P-controller, PI-controller and PID-controller by Ziegler Nichols method.

Regulator	K _P	K _I	K _D
P-controller	5.9367	-	-
PI-controller	2.67154	1.710	-
PID-controller	3.5620	3.80	8.34

4. Simulate the synthesized control system.

a) P-controller

Figure 4. Graph of velocity for reference signal g(t) = 1 rad/s.

a) P-controller

Figure 5. Graph of velocity for reference signal $g(t) = 0.1 \cdot t$.

5. Determine the quality indicators of control systems for each regulator.

Regulator	Overshoot	Transient time	Steady state error (g(t) = const)	Fluctuation index
P-controller	0.18	0.05	0.00	2.43
PI-controller	0.65	0.1	-0.00	5.06
PID-controller	0.20	0.26	-0.03	1.01