Poros plazma kísérletek támogatása multiprocesszoros környezetben

KÉSZÍTETTE: BAKRÓ NAGY ISTVÁN

KONZULENS: HARTMANN PÉTER (MTA WIGNER FK, SZFI)

REICHARDT ANDRÁS (BME SZHVT)

A poros plazma kísérlet

- Alacsony nyomású ionizált nemesgáz
- RF gerjesztés
- Plazmába szórt porrészecskék
- Gravitációs, villamos, szóródásos, hőmérséklet gradiensi, ion sodrási erő
- Részecskék erős vagy gyenge kölcsönhatása: Coulomb csatolási param. (Γ)

A kísérlet

- Elővákuum, középvákuum szivattyú
- Nemesgáz áramlás
- RF gerjesztés
- Porrészecskék
- Megvilágító lézer és kamera

Részecskék detektálása

- Küszöb módszer
- Küszöb módszer szűréssel
 - Gauss szűrővel
 - Medián szűrő
- Adaptív küszöb módszer szűréssel
 - Fényképezés okozta részletesség-különbség problémája
 - Fényes területekben kevésbé bízhatunk meg

Részecske pozíciójának számítása momentum módszerrel

- Ditherelés a fókusz elállításával
- Megjelölt pixel kiterjesztése
- Flood-fill algoritmussal a ROI megkeresése
- Maximálisan világos pont
- Súlypont számítása

Momentum módszer

Momentum módszer

OpenCL architektúrája

ESZKÖZ ARCHITEKTÚRÁJA

Compute unit N Compute unit 1

MEMÓRIA SZINTEK

	Allokálás		Sobossóg
	Hoszt	Kernel	Sebesség
Globális	Din	Statik.	Lassú
Konstans	Din	Statik.	Gyors
Lokális	Din	Statik.	Gyors
Privát	Din	Statik.	Regiszter

OpenCL context osztálydiagrammja

A host-program működése

- Kép beolvasása
- Képek leküldése az eszköz globális memóriájába
- Kernel inicializálása és argumentumának beállítása
- Kernel futtatása
- Eredmény visszatöltése
- Posztprocesszálás

A kernel működése

- Work-item indexének meghatározása
- •Medián szűrés:
 - Kép betöltése az A bufferbe
 - Medián szűrés a B bufferbe
 - Detektálás a B bufferbe
- Flood-fill algoritmussal a ROI meghatározása
 - Kiterjesztés
 - Legtávolabbik pontok a ROI határpontjai
- Pozíció számítása momentum módszerrel
- · Eredmény mentése a globális memóriába

Összehasonlítása

	Intel Core i5 M520	nVidia GT330M
MAX COMPUTE UNITS [1]	4	6
MAX CLOCK FREQUENCY [MHz]	2400	1265
MAX WORK GROUP_SIZE	8192	512
GLOBAL MEM SIZE	$\sim 4~\mathrm{GByte}$	$\sim 1~\mathrm{GByte}$
LOCAL MEM SIZE	32 KByte	16 KByte
Futási idő (T)	$478.71 \ ms$	$191.94 \ ms$
Teljesítmény tényező $\left(P = \frac{1}{\text{UNITS} \times \text{FREQUENCY}}\right)$	$104.16 \cdot 10^{-6}$	$131.75 \cdot 10^{-6}$
Fajlagos utasításszám (T/P)	$4.59 \cdot 10^3$	$1.45 \cdot 10^3$

Összegzés

- Bemutattam a porosplazma kísérletek apparátusát
- Részecske detektálása szűréssel és adaptív döntési küszöbbel
- Szűrés Gauss helyett medián szűrővel

További lehetőségek:

- Host-program producer-consumer szálba rendezése
- Eredmény grafikus megjelenítése (OpenGL)
- Vektor műveletek használata (Intel Xeon PHI)
- Részecske sebességének számítása
- Kálmán prediktor használatának vizsgálati lehetősége