Chương 2: CÁC KỸ THUẬT NÂNG CAO CHẤT LƯỢNG ẢNH

Ôn tập: Biểu diễn Ảnh

Ảnh mức xám Gray scale

Ảnh Màu RGB

Ånh trắng/đen BW

Đặc điểm	Ảnh mức xám	Ảnh Màu	Ånh trắng/đen
Ma trận biểu diễn	[512 x 512]	[512 x 512 x 3]	[512 x 512]
Số kênh	1	3	1
Giá trị biểu diễn	[0 255]	[0 255, 0255, 0255]	[0, 255]

Ôn tập: Biểu diễn Ảnh

• Giá trị màu tại mỗi điểm ảnh, vùng ảnh

Ôn tập: Biểu diễn Ảnh

- Độ phân giải ảnh
 - Sampling (lấy mẫu)

[64 x 64]

[128 x 128]

Ôn tập: Biểu diễn ảnh

• Thay đổi mức lượng tử

Ảnh gốc

16 mức

12 mức

7 mức

Đặc điểm	Ảnh gốc	16 mức	12 mức	7 mức
Độ phân giải	[512 x 512 x 3]			
Biểu diễn	24 bits	24 bits	24 bits	24 bits
Kích thước	768 K	775 K	769 K	760 K
Số lượng màu	148279	848	468	190

Nội dung

- 2.1. Các kỹ thuật không phụ thuộc không gian
- 2.2. Các kỹ thuật phụ thuộc không gian
- 2.3. Các phép toán hình thái học

2.1. Các kỹ thuật không phụ thuộc không gian

- 2.1.1 Giới thiệu
- 2.1.2. Tăng giảm độ sáng
- 2.1.3. Tách ngưỡng
- 2.1.4. Bó cụm
- 2.1.5. Kỹ thuật tách ngưỡng tự động
- 2.1.6. Cân bằng Histogram
- 2.1.7. Tăng độ tương phản Contrast stretching
- 2.1.8. Ảnh âm bản

2.1.1 Giới thiệu

- Các kỹ thuật không phụ thuộc không gian là các phép biến đổi ảnh không phục thuộc vị trí của điểm ảnh.
- Ví dụ: Phép tăng giảm độ sáng, phép thống kê tần suất, biến đổi tần suất v.v..
- Một khái niệm quan trọng trong xử lý ảnh là biểu đồ tần suất (Histogram). Biểu đồ tần suất của mức xám g của ảnh I là số điểm ảnh có giá trị g của ảnh I. Ký hiệu là h(g):

• Ta có ảnh I

$$I = \begin{pmatrix} 1 & 2 & 0 & 4 \\ 1 & 0 & 0 & 7 \\ 2 & 2 & 1 & 0 \\ 4 & 1 & 2 & 1 \\ 2 & 0 & 1 & 1 \end{pmatrix}$$

• Biểu đồ tần xuất mức xám

2.1.2. Tăng giảm độ sáng

 Giả sử ảnh I có kích thước m x n và số nguyên c. Khi đó, kỹ thuật tăng, giảm độ sáng được thể hiện

for
$$(i = 0; i < m; i + +)$$

for $(j = 0; j < n; j + +)$
 $I[i, j] = I[i, j] + c;$

- Nếu c > 0: ảnh sáng lên
- Néu c < 0: anh tối đi

2.1.3. Tách ngưỡng

 Giả sử ảnh I có kích thước m x n, hai số Min, Max và ngưỡng θ khi đó: Kỹ thuật tách ngưỡng được thể hiện

for
$$(i = 0; i < m; i + +)$$

for $(j = 0; j < n; j + +)$
 $I[i, j] = I[i, j] > = 0$? Max: Min;

Úng dụng:

- Nếu Min = 0, Max = 1 kỹ thuật chuyển ảnh thành ảnh đen trắng được ứng dụng khi quét và nhận dạng văn bản.
- Có thể xảy ra sai sót nền thành ảnh hoặc ảnh thành nền dẫn đến ảnh bị đứt nét hoặc dính.

2.1.4. Bó cụm

- Kỹ thuật nhằm giảm bớt số mức xám của ảnh bằng cách nhóm lại số mức xám gần nhau thành 1 nhóm
- Nếu chỉ có 2 nhóm thì chính là kỹ thuật tách ngưỡng.
- Thông thường có nhiều nhóm với kích thước khác nhau.
- Để tổng quát khi biến đổi người ta sẽ lấy cùng 1 kích thước bunch_size
 - *I* [*i*,*j*] = (*I* [*i*,*j*] *div* bunch_size) * bunch_size ∀(i,j)

Ví dụ:

$$\mathbf{I} = \begin{pmatrix} 1 & 2 & 4 & 6 & 7 \\ 2 & 1 & 3 & 4 & 5 \\ 7 & 2 & 6 & 9 & 1 \\ 4 & 1 & 2 & 1 & 2 \end{pmatrix}$$

• Ảnh ban đầu

$$I = \begin{pmatrix} 1 & 2 & 4 & 6 & 7 \\ 2 & 1 & 3 & 4 & 5 \\ 7 & 2 & 6 & 9 & 1 \\ 4 & 1 & 2 & 1 & 2 \end{pmatrix}$$

• Ảnh mới sau khi thực hiện bó cụm với bunch_size=3

$$I_{kq} = \begin{pmatrix} 0 & 0 & 3 & 6 & 6 \\ 0 & 0 & 3 & 3 & 3 \\ 6 & 0 & 6 & 9 & 0 \\ 3 & 0 & 0 & 0 & 0 \end{pmatrix}$$

2.1.5. Kỹ thuật tách ngưỡng tự động

•Tìm ra ngưỡng θ một cách tự động dựa vào histogram theo nguyên lý trong vật lý là vật thể tách làm 2 phần nếu tổng độ lệnh trong từng phần là tối thiểu.

Mô tả:

- Anh I kích thước m x n
- G là số mức xám của ảnh kể cả khuyết thiếu
- t(g) là số điểm ảnh có mức xám ≤ g
- $m(g) = \frac{1}{t(g)} \sum_{i=0}^g i.\, h(i)$ là mômen quán tính TB có mức xám \leq g

• Xây dựng hàm f:g > f(g) sao cho

$$f(g) = \frac{t(g)}{m \cdot n - t(g)} [m(g) - m(G - 1)]^2$$

- Tìm θ sao cho: $\frac{f(\theta) = \max_{0 \le g \le G 1} \{f(g)\}\}$
- Ví dụ:
 - Ảnh ban đầu

$$I = \begin{bmatrix} 0 & 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{pmatrix}
0 & 1 & 2 & 3 & 4 & 5 \\
0 & 0 & 1 & 2 & 3 & 4 \\
0 & 0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}$$

I =

• Lập bảng tính toán các giá trị

g h(g) t(g) g.h(g)
$$\sum_{i=0}^{g} ih(i)$$
 m(g) f(g)
0 15 15 0 0 0 1.35
1 5 20 5 5 0,25 1.66
2 4 24 8 13 0,54 1.54
3 3 27 9 22 0,81 1.10
4 2 29 8 30 1,03 0.49
5 1 30 5 35 1,16 ∞

• Ngưỡng cần tách là θ =1 ứng với $f(\theta)$ =1.66

2.1.6. Cân bằng histogram (Equalization)

• Histogram là gì?

 Cường độ sáng của ảnh xám tại một vị trí (x, y) được gọi là mức xám (brightness)

$$a = f(x, y).$$

- $a_{min} \le a \le a_{max}$, khi đó khoảng $[a_{min}, a_{max}]$ được gọi là gray scale.
- Histogram, h[a], là số điểm ảnh có mức xám là a trong ảnh.

Cân bằng histogram

- Ảnh I được gọi là cân bằng "lý tưởng" nếu với mọi mức xám g, g' ta có h(g) = h(g')
 - Giả sử, ta có ảnh I có kích thước m x n
 - new_level ~ số mức xám của ảnh cân bằng
 - TB= $\frac{m.n}{new_level}$ là số điểm ảnh trung bình của mỗi mức xám của ảnh cân bằng.
 - $t(g) = \sum_{i=0}^{g} h(i)$ số điểm ảnh có mức xám $\leq g$
 - Xác định hàm f: $g \rightarrow f(g) | f(g) = \max\{0, round \frac{t(g)}{TB} 1\}$
 - Ví dụ:

Ảnh sau khi thực hiện cân bằng chưa chắc đã là cân bằng "lý tưởng"

$$I = \begin{pmatrix} 1 & 2 & 4 & 6 & 7 \\ 2 & 1 & 3 & 4 & 5 \\ 7 & 2 & 6 & 9 & 1 \\ 4 & 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{\text{New_level=4}} \begin{pmatrix} g & h(g) & t(g) & f(g) \\ \hline 1 & 5 & 5 & 0 \\ 2 & 5 & 10 & 1 \\ 3 & 1 & 11 & 1 \\ 4 & 3 & 14 & 2 \\ \hline 5 & 1 & 15 & 2 \\ \hline 5 & 1 & 15 & 2 \\ \hline 6 & 2 & 17 & 2 \\ \hline 7 & 2 & 19 & 3 \\ \hline 9 & 1 & 20 & 3 \\ \hline Tính & f(g) \end{pmatrix}$$

Ánh kết quả

Ví dụ về Cân bằng Histogram

new_level = 4

$$I = \begin{bmatrix} 7 & 0 & 6 & 5 & 5 \\ 0 & 0 & 1 & 1 & 2 \\ 3 & 1 & 4 & 1 & 4 \\ 3 & 0 & 3 & 0 & 1 \\ 4 & 2 & 2 & 2 & 0 \end{bmatrix}$$

Histogram Equalization: Algorithm

- Bước 1: Probability Mass Function PMF (Tính xác suất)
- Bước 2: Cumulative Distributive Function CDF ((Tính phân bố

tích lũy
$$S_k = (L-1) \sum_{i=0}^k p_{in}(r_i)$$

L: mức xám max

Xét ảnh với histogram sau:

Bước 1: Tính PMF

- p(64) = 40/110
- p(128) = 30/110
- p(255) = 40/110

Histogram Equalization: Algorithm

- Bước 1: Probability Mass Function PMF (Tính xác suất)
- Bước 2: Cumulative Distributive Function CDF ((Tính phân bố

tích lũy
$$S_k = (L-1) \sum_{i=0}^k p_{in}(r_i)$$

L: mức xám max

Bước 1: Tính PMF

$$p(64) = 40/110$$

Bước 2: Tính CDF tương ứng với PMF trên

Histogram Equalization: Algorithm

$$I = \begin{bmatrix} 7 & 0 & 6 & 5 & 5 \\ 0 & 0 & 1 & 1 & 2 \\ 3 & 1 & 4 & 1 & 4 \\ 3 & 0 & 3 & 0 & 1 \\ 4 & 2 & 2 & 2 & 0 \end{bmatrix}$$

Xác suất xuất hiện các điểm ảnh trong ma trận I là:

i	0	1	2	3	4	5	6	7
n _i	6	5	4	3	3	2	1	1
P(r _i)	6/25	5/25	4/25	3/25	3/25	2/25	1/25	1/25

$$ightharpoonup$$
 Tinh các s_k : $S_k = (L-1) \sum_{i=0}^k p_{in}(r_i)$

$$\geq L = 7$$

$$>$$
 S(0) = 6* p(0) = 6 * 6/25 = 1.44 \approx 1.

$$>$$
 S(1) = 6* [p(0)+p(1)] = 6 * (6/25 + 5/25) = 2.64 \approx 3.

$$> S(2)=6*[P(0)+P(1)+P(2)]=6[6/25+5/25+4/25]\approx 4$$

$$ightharpoonup S(3) \approx 4$$

$$> S(4) \approx 5$$

$$> S(5) \approx 6$$

$$> S(7) = 6$$

$$I = \begin{bmatrix} 7 & 0 & 6 & 5 & 5 \\ 0 & 0 & 1 & 1 & 2 \\ 3 & 1 & 4 & 1 & 4 \\ 3 & 0 & 3 & 0 & 1 \\ 4 & 2 & 2 & 2 & 0 \end{bmatrix}$$

$$I_{kq} = \begin{bmatrix} 6 & 1 & 6 & 6 & 6 \\ 1 & 1 & 3 & 3 & 4 \\ 4 & 3 & 5 & 3 & 5 \\ 4 & 1 & 4 & 1 & 3 \\ 5 & 4 & 4 & 4 & 1 \end{bmatrix}$$

2.1.7 Contrast stretching

• Một ảnh có độ tương phản thấp

- Gọi L = 2^B -1: giá trị lớn nhất của mức xám (brightness)
- Áp dụng công thức g(x,y)= $L \frac{f(x,y)-a_{min}}{a_{max}-a_{min}}$
- Ta có $0 \le g(x,y) \le L$, thay vì ban đầu ban đầu ta có $a_{min} \le g(x,y) \le a_{max}$
- Ta cũng có thể áp dụng quy tắc sau cho giải thuật

$$g(x,y) = \begin{cases} 0, & f(x,y) < a_{low}, \\ L. \frac{f(x,y) - a_{low}}{a_{high} - a_{low}}, & a_{low} \le f(x,y) \le a_{high}, \\ L, & a_{high} < f(x,y) \end{cases}$$

• Ảnh ban đầu

• Ảnh sau khi áp dụng giải thuật Contrast stretching

2.1.8. Ånh âm bản (Image Negatives)

- Âm bản của một ảnh với mức xám trong khoảng [0, L] thu được bằng cách biến đổi âm bản như sau:
 - b = T(a), where T(a) = L a,
 - Hoặc b = L − a
 - Hay g(x, y) = L f(x, y)
- Ví dụ:

2.1.9. Biến đổi cấp xám tổng thể

- Biết histogram của ảnh gốc, biết hàm biến đổi
- Tính toán histogram của ảnh mới.

Đoc tài liệu

2.2. Các kỹ thuật phụ thuộc không gian

- 2.2.1. Phép nhân chập và mẫu
- 2.2.2. Một số mẫu thông dụng
- 2.2.3. Loc trung vi
- 2.2.4. Lọc trung bình
- 2.2.5. Lọc trung bình theo k giá trị gần nhất

2.2.1. Phép nhân chập (cuộn) và mẫu

 Giả sử ta có ảnh I kích thước M x N, mẫu T có kích thước m x n khi đó, ảnh I cuộn theo mẫu T được xác định bởi công thức.

$$I \otimes T(x,y) = \sum_{i=0}^{m-1} \sum_{j=0}^{m-1} I(x+i,y+j) * T(i,j)$$
 (1)
Hoặc
$$I \otimes T(x,y) = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} I(x-i,y-j) * T(i,j)$$
 (2)

• Ví dụ:

$$I = \begin{pmatrix} 1 & 2 & 4 & 5 & 8 & 7 \\ 2 & 1 & 1 & 4 & 2 & 2 \\ 4 & 5 & 5 & 8 & 8 & 2 \\ 1 & 2 & 1 & 1 & 4 & 4 \\ 7 & 2 & 2 & 1 & 5 & 2 \end{pmatrix} \qquad T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Ánh kết quả theo công thức (1)

$$I \otimes T = \begin{bmatrix} 2 & 3 & 8 & 7 & 10 & * \\ 7 & 6 & 9 & 12 & 4 & * \\ 6 & 6 & 6 & 12 & 12 & * \\ 3 & 4 & 2 & 6 & 6 & * \\ * & * & * & * & * & * \end{bmatrix} \qquad I \otimes T = \begin{bmatrix} * & * & * & * & * & * \\ * & 2 & 3 & 8 & 7 & 10 \\ * & 7 & 6 & 9 & 12 & 4 \\ * & 6 & 6 & 6 & 12 & 12 \\ * & 3 & 4 & 2 & 6 & 6 \end{bmatrix}$$

$$I \otimes T = \begin{pmatrix} * & * & * & * & * & * \\ * & 2 & 3 & 8 & 7 & 10 \\ * & 7 & 6 & 9 & 12 & 4 \\ * & 6 & 6 & 6 & 12 & 12 \\ * & 3 & 4 & 2 & 6 & 6 \end{pmatrix}$$

- Ånh kết quả theo công thức (2)
- Mẫu:

$$T_1 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

~ Dùng để khử nhiễu ⇒ Các điểm có tần số cao <u>VD1:</u>

Bài tập: Phép nhân chập (cuộn) và mẫu

$$T * I(x, y) = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} T(i, j) I(x+i, y+j)$$

Ví dụ
$$I = \begin{vmatrix} 4 & 7 & 2 & 7 & 1 \\ 5 & 7 & 1 & 7 & 1 \\ 6 & 6 & 1 & 8 & 3 \\ 5 & 7 & 5 & 7 & 1 \\ 5 & 7 & 6 & 1 & 2 \end{vmatrix}$$
 $T * I = \begin{vmatrix} 23 & 26 & 31 & 19 & 16 \\ 35 & 39 & 46 & 31 & 27 \\ 36 & 43 & 49 & 34 & 27 \\ 36 & 43 & 48 & 34 & 12 \\ 24 & 35 & 33 & 22 & 11 \end{vmatrix}$

$$T * I = \begin{vmatrix} 23 & 26 & 31 & 19 & 16 \\ 35 & 39 & 46 & 31 & 27 \\ 36 & 43 & 49 & 34 & 27 \\ 36 & 43 & 48 & 34 & 12 \\ 24 & 35 & 33 & 22 & 11 \end{vmatrix}$$

Ôn tập: Phép nhân chập trong ảnh

• Kết quả nhân chập

Ôn tập: Phép Nhân chập

2.2.2. Một số mẫu thông dụng

• Mẫu dùng để khử nhiễu (tần số cao)

$$\mathbf{T}_1 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

• Mẫu phát hiện các điểm có tần số cao

$$T_2 = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$

$$T_2 = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$

• Mẫu dùng để phát hiện biên theo phương nằm ngang và thẳng đứng

$$H_{1} = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}; \quad H_{2} = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

• Mẫu dùng để phát hiện biên theo đường chéo

$$H_{1} = \begin{bmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{bmatrix}; \ H_{2} = \begin{bmatrix} -1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

2.2.3. Lọc trung vị

• Trung vi?

- Cho dãy x_1 ; x_2 ...; x_{2m+1} . Khi đó trung vị x_k của dãy ký hiệu là $Med(\{x_n\})$ nếu:
 - Tồn tại m phần tử có giá không lớn hơn x_k và m phần tử không nhỏ hơn x_k .
- Khi đó $\sum_{i=1}^{n} |x x_i| \rightarrow \min$ tại x= Med($\{x_n\}$)
- Ví dụ: Dãy 15, 17, 18, 16, 78, 17, 17, 15, 20 có trung vị bằng
 17.
 - Sắp xếp:
 - Lấy phần tử giữa

15	15	16	17	17	17	18	20	78
1	2	3	4	5	6	7	8	9

- Lọc trung vị dùng cửa số 3×3 và ngưỡng θ .
 - Dịch cửa sổ P (lưới m x m) đi lần lượt các vị trí trên ảnh. Ứng với mỗi vị trí tâm của cửa sổ tại điểm ảnh (x,y):
 - Nhặt các phần tử thuộc cửa sổ theo hàng, cột → tạo ra một dãy. (I(P) điểm ảnh trùng với tâm cửa sổ)
 - Tính trung vị của dãy

$$\{I(q) \mid q \in W(P)\} \rightarrow Med(P)$$

• Thay thế điểm P(x,y) theo quy tắc

$$I(P) = \begin{cases} I(P) & \text{n\'eu} | I(P) - Med(P) | \le \theta \\ Med(P) & \text{n\'eu} \text{ ngược lại} \end{cases}$$

• Ví dụ 1:

- Vị trí cửa sổ hiện tại
- (x,y) là điểm ảnh đang xét
- θ=2

У

- Ta được một dãy: 15, 17, 18, 16, 78, 17
- Vì 78-17>2

 → Thay thế f(x,y)=17
- Kết quả là:

Х

15	17	18
16	78	17
17	15	20

X

15	17	18	
16	17	17	
17	15	20	

• Ví dụ 2:

- Dùng cửa sổ 3×3 và ngưỡng $\theta=2$
- Dãy: 1, 2, 3, 4, 16, 2, 4, 2, 1
- Sắp xếp: 1,1,2,2,<mark>2</mark>,3,4,4,16
- Trung vị là: 2
- Vị trí đang xét có giá trị 16
- |16 -2|> θ → Thay thế giá trị này bằng giá trị trung vị

2.2.4. Lọc trung bình

• Trung bình?

 Cho dãy x₁, x₂..., x_n khi đó trung bình của dãy ký hiệu AV({x_n}) được định nghĩa:

$$AV(\{x_n\}) = round(\frac{1}{n}\sum_{i=1}^n x_i)$$

- $\sum_{i=1}^{n} (x x_i)^2 \rightarrow \min \text{ tại AV({x_n})}$
 - Tổng bình phương độ lệch trung bình của các điểm trong cửa sổ so với giá trị trung bình là nhỏ nhất

Loc trung bình

- Dịch cửa sổ P (lưới m x m) đi lần lượt các vị trí trên ảnh. Ứng với mỗi vị trí tâm của cửa sổ tại điểm ảnh (x,y):
 - Nhặt các phần tử thuộc cửa sổ theo hàng, cột → tạo ra một dãy.
 - Tính trung bình của dãy đó
 {I(q) | q ∈ W(P)} → AV (P)
 - Thay thế điểm P(x,y) theo quy tắc

$$I(P) = \begin{cases} I(P) & \text{n\'eu} |I(P) - AV(P)| \le \theta \\ AV(P) & \text{n\'eu ngược lại} \end{cases}$$

• Ví dụ:

- Dùng cửa sổ 3 x 3 và ngưỡng θ=2
- Dãy: 1, 2, 3, 4, 16, 2, 4, 2, 1
- Trung bình là (1+2+3+4+16+2+4+ 2+1)/9=3. (Làm tròn có thể lấy giá trị 4)
- Vị trí đang xét có giá trị 16
- |16-3|>θ → Thay thế giá trị này bằng giá trị trung bình

2.2.5. Lọc trung bình theo k giá trị gần nhất

- Dịch cửa sổ P (lưới m x m) đi lần lượt các vị trí trên ảnh. Ứng với mỗi vị trí tâm của cửa sổ tại điểm ảnh (x,y):
 - Nhặt k phần tử gần với I(P) nhất thuộc cửa sổ theo hàng, cột → tạo ra một dãy.

$$\{I(q)|q \in W(p)\} \rightarrow \{k \text{ giá trị gần } I(P) \text{ nhất}\}$$

Tính trung bình của dãy đó
 {k giá trị gần I(P) nhất} → AV_k(P)

• Thay thế điểm P(x,y) theo quy tắc

$$I(P) = \begin{cases} I(P) & \text{n\'eu } |I(P) - AV_k(P)| \le \theta \\ AV_k(P) & \text{n\'eu } ng \text{u\'ec } lai \end{cases}$$

• Ví dụ:

- Dùng cửa số 3 x 3 và ngưỡng θ =2, k=3.
- Dãy: 16, 4, 4
- Trung bình là (4+16+4)/3=8.
- Vị trí đang xét có giá trị 16
- |16 -8|> θ → Thay thế giá trị này bằng giá trị trung bình 8

$$I_{kq} = \begin{bmatrix} 1 & 2 & 3 & 2 \\ 4 & 8 & 2 & 1 \\ 4 & 2 & 1 & 1 \\ 2 & 1 & 2 & 1 \end{bmatrix}$$

2.3. Các phép toán hình thái học

- 2.3.1. Các phép toán hình thái cơ bản
- 2.3.2. Một số tính chất của phép toán hình thái

Tự đọc