Claims

1. A compound of formula I

wherein R¹ represents a) a C₁₋₄ alkoxy group optionally substituted by one or more fluoro, b) a C₁₋₄ alkyl group optionally substituted by one or more fluoro, c) halo, d) cyano, e) a group NR^aR^b in which R^a and R^b independently represent H or a C₁₋₄alkyl group or R^a and R^b together with the nitrogen atom to which they are attached represent a saturated 3 to 7 membered heterocyclic ring optionally including an O atom f) a group CONR^cR^d in which R^c and R^d independently represent H or a C₁₋₄alkyl group or R^c and R^d together with the nitrogen atom to which they are attached represent a saturated 3 to 7 membered heterocyclic ring, or g) a group -OSO₂C₁₋₄alkyl optionally substituted by one or more fluoro;

n represents 0, 1, 2 or 3;

5

10

15

20

25

 R^2 represents H or cyano or a C_{1-4} alkyl group optionally substituted by one or more fluoro or a C_{1-4} alkoxy group optionally substituted by one or more fluoro, a group NR^aR^b in which R^a and R^b independently represent H or a C_{1-4} alkyl group or R^a and R^b together with the nitrogen atom to which they are attached represent a saturated 3 to 7 membered heterocyclic ring optionally including an O, a group $CONR^cR^d$ in which R^c and R^d independently represent H or a C_{1-4} alkyl group or R^c and R^d together with the nitrogen atom to which they are attached represent a saturated 3 to 7 membered heterocyclic ring; R^3 represents H or a C_{1-4} alkyl group;

 L^1 represents a $(CH_2)_pC_{3-10}$ cycloalkyl group in which p is 0 or1 and in which the cycloalkyl group may be monocyclic or bicyclic and optionally may be bridged provided that the two nitrogens bearing R^3 and R^4 , respectively, are not linked to the same carbon atom, and wherein one of the carbons may be replaced by O; with the proviso that L^1 does not represent 1.3-cyclopentyl or 1.4-cyclohexyl;

 R^4 represents H or a C_{1-4} alkyl group optionally substituted by one or more of the following: fluoro or C_{1-4} alkoxy optionally substituted by one or more fluoro; L^2 represents an alkylene chain $(CH_2)_s$ in which s represents 1, 2 or 3 wherein the alkylene chain is optionally substituted by one or more of the following: fluoro or C_{1-4} alkyl;

L² may also represent a 5-6 membered carbocyclic 5-6 membered ring fused to R⁵; R⁵ represents phenyl or naphthyl or a heterocyclic group selected from thienyl, furyl, pyridyl, pyrrolyl, quinolinyl, indolyl, benzofuranyl, benzo[b/thienyl, imidazolyl, benzimidazolyl, thiazolyl, thiadiazolyl, pyrimidinyl, pyrazolyl, oxazolyl, imidazo[1,2apyridinyl, 5H-pyrrolo[2,3-b]pyrazinyl, 1H-pyrrolo[3,2-c]pyridinyl, 1H-pyrrolo[2,3c]pyridinyl, 1H-pyrrolo[2,3-b]pyridinyl, 1H-indazolyl, wherein each R⁵ is optionally substituted by one or more of the following: a) cyano, b) halo, c) a C₁₋₄ alkyl group optionally substituted by one or more fluoro, d) a C₁₋₄ alkoxy group optionally substituted by one or more fluoro, e) a group $S(O)_a R^y$ in which a is 0, 1 or 2 and R^y is phenyl optionally substituted by cyano, halo, a C₁₋₄alkyl group optionally substituted by one or more fluoro or a C₁₋₄alkoxy group optionally substituted by one or more fluoro, f) or by a group (CH₂)_zR^z in which z and w is 0 or 1 and R^z represents phenyl or a heterocyclic group selected from thienyl, pyridyl, thiazolyl, pyrazolyl, wherein each R^z is optionally substituted by one or more of the following:cyano, halo, a C₁₋₄ alkyl group optionally substituted by one or more fluoro, or a C₁₋₄alkoxy group optionally substituted by one or more fluoro; as well as optical isomers and racemates thereof as well as pharmaceutically acceptable salts, thereof.

2. A compound as claimed in claim1 in which

10

15

20

25

30

 R^1 represents cyano or a C_{1-4} alkoxy group optionally substituted by one or more fluoro, a C_{1-4} alkyl group optionally substituted by one or more fluoro, halo, a group NR^aR^b in which R^a and R^b independently represent H or a C_{1-4} alkyl group or R^a and R^b together with the nitrogen atom to which they are attached represent a saturated 3 to 7 membered heterocyclic ring optionally including an O, a group $CONR^cR^d$ in which R^c and R^d independently represent H or a C_{1-4} alkyl group or R^c and R^d together with the nitrogen atom to which they are attached represent a saturated 3 to 7 membered heterocyclic ring, n represents 0, 1, 2 or 3;

10

15

20

25

30

acceptable salts, thereof.

R² represents H or cyano or a C₁₋₄alkyl group optionally substituted by one or more fluoro or a C₁₋₄alkoxy group optionally substituted by one or more fluoro, a group NR^aR^b in which R^a and R^b independently represent H or a C₁₋₄ alkyl group or R^a and R^b together with the nitrogen atom to which they are attached represent a saturated 3 to 7 membered heterocyclic ring optionally including an O, a group CONR^cR^d in which R^c and R^d independently represent H or a C₁₋₄alkyl group or R^c and R^d together with the nitrogen atom to which they are attached represent a saturated 3 to 7 membered heterocyclic ring: R³ represents H or a C₁₋₄ alkyl group; L^1 represents a $(CH_2)_p C_{5-6}$ cycloalkyl group in which p is 0 or 1 and provided that there are 3 carbon atoms between the two nitrogens bearing R³ and R⁴, respectively, wherein one of the carbons of the cycloalkyl group may be replaced by O; R⁴ represents H or a C₁₋₄ alkyl group optionally substituted by one or more of the following: fluoro or C₁₋₄ alkoxy optionally substituted by fluoro; L² represents an alkylene chain (CH₂)_s in which s represents 1, 2 or 3 wherein the alkylene chain is optionally substituted by one or more of the following: fluoro or C_{1-4} alkyl; L² may also represent a 5-6 membered carbocyclic 5-6 membered ring fused to R⁵; R⁵ represents anyl or a heterocyclic group selected from thienyl, furyl, pyridyl, pyrrolyl, quinolinyl, indolyl, benzofuranyl, benzo[b/thienyl, imidazolyl, benzimidazolyl, thiazolyl, thiadiazolyl, pyrimidinyl, pyrazolyl, oxazolyl, imidazo[1,2-a]pyridine, 5H-pyrrolo[2,3b]pyrazine, 1H-pyrrolo[3,2-c]pyridine, 1H-pyrrolo[2,3-c]pyridine, 1H-pyrrolo[2,3b]pyridine, 1H-indazole each of which is optionally substituted by one or more of the following: cyano, halo, a C₁₋₄ alkyl group optionally substituted by one or more fluoro, a C₁₋₄ alkoxy group optionally substituted by one or more fluoro, or a group (CH₂)_zR^z in which z is 0 or 1 and R^z represents phenyl or a heterocyclic group selected from thienyl, pyridyl, thiazolyl, pyrazolyl, wherein each R^z is optionally substituted by one or more cyano, halo, a C₁₋₄ alkyl group optionally substituted by one or more fluoro, a C₁₋₄ alkoxy group optionally substituted by one or more fluoro or by a group S(O)_aR^y in which a is 0, 1 or 2 and R^y is phenyl optionally substituted by cyano, halo, a C₁₋₄alkyl group optionally substituted by one or more fluoro or a C₁₋₄alkoxy group optionally substituted by one or more fluoro, as well as optical isomers and racemates thereof as well as pharmaceutically

3. A compound according to claim 1 or claim 2 of formula IA

$$(R^{1})_{n} \xrightarrow{f} N \qquad (A)_{t}$$

$$R^{2}$$

$$N \qquad N \qquad (A)_{t}$$

$$R^{3}$$

$$N \qquad N \qquad N \qquad A$$

$$R^{3}$$

$$N \qquad N \qquad A$$

$$R^{4}$$

in which

5

10

20

25

R¹ represents chloro, fluoro, methoxy or a group NRaRb in which Ra and Rb independently represent a C1-4alkyl group or Ra and Rb together with the nitrogen atom to which they are attached represent a saturated 3 to 7 membered heterocyclic ring optionally including an O; n represents 0 or 1, and when n=1 the substituent is attached to either position 6 or 7 R² represents H or cyano or a C1-4alkyl group, a C1-4alkoxy group optionally substituted by one or more fluoro, a group NRaRb in which Ra and Rb independently represent H or a C1-4alkyl group or Ra and Rb together with the nitrogen atom to which they are attached represent a saturated 3 to 7 membered heterocyclic ring optionally including an O, a group CONRcRd in which Rc and Rd independently represent H or a C1-4alkyl group or Rc and Rd together with the nitrogen atom to which they are attached represent a saturated 3 to 7 membered heterocyclic ring optionally including an O, a group con Rc and Rd independently represent H or a C1-4alkyl group or Rc and Rd together with the nitrogen atom to which they are attached represent a saturated 3 to 7 membered heterocyclic ring;

m represents 0 or 1;R3 represents H;

15 A represents CH₂ and t is 1;

R⁴ represents H;

L² represents CH₂, C(CH₃)₂ or CF₂; and

 R^5 represents aryl or a heterocyclic group selected from thienyl, furyl, pyridyl, pyrrolyl, quinolinyl, indolyl, benzofuranyl, benzo[b]thienyl, imidazolyl, benzimidazolyl, thiazolyl, thiadiazolyl, pyrimidinyl, pyrazolyl, oxazolyl, imidazo[1,2-a]pyridine, 5H-pyrrolo[2,3-b]pyrazine, 1H-pyrrolo[3,2-c]pyridine, 1H-pyrrolo[2,3-b]pyridine, 1H-indazole each of which is optionally substituted by one or more of the following: cyano, halo, a C_{1-4} alkyl group optionally substituted by one or more fluoro, a C_{1-4} alkoxy group optionally substituted by one or more fluoro, or by a group $S(O)_aR^y$ in which a is 0, 1 or 2 and R^y is phenyl optionally substituted by cyano, halo, a C_{1-4} alkyl group optionally substituted by one or more fluoro or a C_{1-4} alkoxy group optionally

substituted by one or more fluoro, or a group (CH_2)_z R^z in which z is 0 or 1 and R^z represents phenyl or a heterocyclic group selected from thienyl, pyridyl, thiazolyl, pyrazolyl, wherein each R^z is optionally substituted by one or more cyano, halo, a C_{1-4} alkyl group optionally substituted by one or more fluoro, a C_{1-4} alkoxy group optionally substituted by one or more fluoro as well as optical isomers and racemates thereof as well as pharmaceutically acceptable salts thereof.

4. A compound according to any previous claim of formula IB

in which

R¹ represents H, cyano, methoxy, isopropoxy, dimethylamino, chloro or fluoro;
R² represents H, cyano, a C₁₋₄alkyl group optionally substituted by one or more fluoro or a
C₁₋₄alkoxy group optionally substituted by one or more fluoro, a group NR^aR^b in which R^a
and R^b independently represent H or a C₁₋₄alkyl group or R^a and R^b together with the
nitrogen atom to which they are attached represent a saturated 3 to 7 membered
heterocyclic ring optionally including an O, R³ represents H;

A represents CH₂ and t is 1;

R⁴ represents H;

20

25

L² represents CH₂, C(CH₃)₂ or CF₂; and

 R^5 represents aryl or a heterocyclic group selected from thienyl, furyl, pyridyl, pyrrolyl, quinolinyl, indolyl, benzofuranyl, benzo[b]thienyl, imidazolyl, benzimidazolyl, thiazolyl, thiadiazolyl, pyrimidinyl, pyrazolyl, oxazolyl, imidazo[1,2-a]pyridine, 5H-pyrrolo[2,3-b]pyrazine, 1H-pyrrolo[3,2-c]pyridine, 1H-pyrrolo[2,3-b]pyridine, 1H-indazole each of which is optionally substituted by one or more of the following: cyano, halo, a C_{1-4} alkyl group optionally substituted by one or more fluoro, a C_{1-4} alkoxy group optionally substituted by one or more fluoro, or by a group $S(O)_aR^y$ in which a is 0, 1 or 2 and R^y is phenyl optionally substituted by cyano, halo, a C_{1-4} alkyl

group optionally substituted by one or more fluoro or a C_{1-4} alkoxy group optionally substituted by one or more fluoro, or a group (CH_2)_z R^z in which z is 0 or 1 and R^z represents phenyl or a heterocyclic group selected from thienyl, pyridyl, thiazolyl, pyrazolyl, wherein each R^z is optionally substituted by one or more cyano, halo, a C_{1-4} alkyl group optionally substituted by one or more fluoro, a C_{1-4} alkoxy group optionally substituted by one or more fluoro as well as optical isomers and racemates thereof as well as pharmaceutically acceptable salts thereof.

5. A compound as claimed in claim 1 as represented by formula IC

10

15

20

25

in which R^1 represents cyano or a C_{1-4} alkoxy group optionally substituted by one or more fluoro, a C_{1-4} alkyl group optionally substituted by one or more fluoro, halo, a group NR^aR^b in which R^a and R^b independently represent H or a C_{1-4} alkyl group or R^a and R^b together with the nitrogen atom to which they are attached represent a saturated 3 to 7 membered heterocyclic ring optionally including an O, a group $CONR^cR^d$ in which R^c and R^d independently represent H or a C_{1-4} alkyl group or R^c and R^d together with the nitrogen atom to which they are attached represent a saturated 3 to 7 membered heterocyclic ring, n represents 0, 1, 2 or 3;

R² represents H, cyano, a C₁₋₄alkyl group optionally substituted by one or more fluoro or a C₁₋₄alkoxy group optionally substituted by one or more fluoro, a group NR^aR^b in which R^a and R^b independently represent H or a C₁₋₄ alkyl group or R^a and R^b together with the nitrogen atom to which they are attached represent a saturated 3 to 7 membered heterocyclic ring optionally including an O, a group CONR^cR^d in which R^c and R^d independently represent H or a C₁₋₄alkyl group or R^c and R^d together with the nitrogen atom to which they are attached represent a saturated 3 to 7 membered heterocyclic ring; R³ represents H or a C₁₋₄alkyl group;

WO 2005/070902

15

20

25

- L^1 represents a $(CH_2)_pC_{7-10}$ cycloalkyl group in which p is 0 or 1 and in which the cycloalkyl group is fused bicyclic or bridged bicyclic provided that the two nitrogens bearing R^3 and R^4 , respectively, are not linked to the same carbon atom, and wherein one of the carbons may be replaced by O;
- R⁴ represents H or a C₁₋₄ alkyl group optionally substituted by one or more of the following: fluoro or C₁₋₄ alkoxy, optionally substituted by one or more fluoro; L² represents an alkylene chain (CH₂)_s in which s represents 1, 2 or 3 wherein the alkylene chain is optionally substituted by one or more of the following: fluoro or C₁₋₄ alkyl;
- or L² may also represent a 5-6 membered carbocyclic ring fused to R⁵,

 R⁵ represents aryl or a heterocyclic group selected from thienyl, furyl, pyridyl, pyrrolyl, quinolinyl, indolyl, benzofuranyl, benzo[b]thienyl, imidazolyl, benzimidazolyl, thiazolyl, thiadiazolyl, pyrimidinyl, pyrazolyl, oxazolyl, imidazo[1,2-a]pyridine, 5H-pyrrolo[2,3-b]pyrazine, 1H-pyrrolo[3,2-c]pyridine, 1H-pyrrolo[2,3-c]pyridine, 1H-pyrrolo[2,3-c]
 - b]pyridine, IH-indazole each of which is optionally substituted by one or more of the following: cyano, halo, a C_{1-4} alkyl group optionally substituted by one or more fluoro, a C_{1-4} alkoxy group optionally substituted by one or more fluoro, or by a group $S(O)_aR^y$ in which a is 0, 1 or 2 and R^y is phenyl optionally substituted by cyano, halo, a C_{1-4} alkyl group optionally substituted by one or more fluoro or a C_{1-4} alkoxy group optionally substituted by one or more fluoro, or a group (CH_2)_z R^z in which z is 0 or and R^z represents phenyl or a heterocyclic group selected from thienyl, pyridyl, thiazolyl, pyrazolyl, wherein each R^z is optionally substituted by one or more cyano, halo, a C_{1-4} alkyl group optionally substituted by one or more fluoro, a C_{1-4} alkoxy group optionally substituted by one or more fluoro as well as optical isomers and racemates thereof as well as pharmaceutically acceptable salts thereof..
 - 6. A compound as claimed in any one of claims 1 to 4 in which p is 0 and L¹ is 1,3-cyclohexyl.
 - 7. A compound as claimed in any one of claims 1 to 6 in which the two nitrogen atoms are in a trans orientation on the cycloalkyl ring.
- 8. A compound as claimed in claim 7 wherein the stereochemistry of the cycloalkyl carbon atoms to which the nitrogen atoms are attached is S, S.
 - 9. One or more of the following compounds:

15

20

25

N-(4-methylquinazolin-2-yl)-N-(3-thienylmethyl)-trans- cyclohexane-1,3-diamine; N^4 , N^4 -dimethyl- N^2 -{-3-[(3-thienylmethyl)amino]-trans-cyclohexyl}quinazoline-2,4-diamine;

 N^2 -{-3-[(1-benzothien-3-ylmethyl)amino]-trans-cyclohexyl}- N^4 , N^4 -dimethylquinazoline-2,4-diamine;

 N^4 , N^4 -dimethyl- N^2 -(-3-{[(1-methyl-1*H*-indol-3-yl)methyl]amino}-transcyclohexyl)quinazoline-2,4-diamine,

 N^4 , N^4 -dimethyl- N^2 -((1S,3S)-3-{[2-(trifluoromethoxy)benzyl]amino}cyclohexyl)-quinazoline-2,4-diamine;

 N^4 , N^4 -dimethyl- N^2 -[(1S,3S)-3-({[6-(trifluoromethyl)pyridin-3-yl]methyl}amino)-cyclohexyl]quinazoline-2,4-diamine; and

 N^{2} -{(1S,3S)-3-[(3,4-dichlorobenzyl)amino]cyclohexyl}- N^{4} - N^{4} -dimethylquinazoline-2,4-diamine; and pharmaceutically acceptable salts thereof.

- 10. A compound of formula I as claimed in any previous claim for use as a medicament.
 - 11. A pharmaceutical formulation comprising a compound of formula I, as defined in any one of claims 1 to 9 and a pharmaceutically acceptable adjuvant, diluent or carrier.
 - 12. Use of a compound of formula I, as defined in any one of claims 1 to 9 in the preparation of a medicament for the treatment or prophylaxis of conditions associated with obesity.
 - 13. A method of treating obesity, psychiatric disorders, anxiety, anxio-depressive disorders, depression, bipolar disorder, ADHD, cognitive disorders, memory disorders, schizophrenia, epilepsy, and related conditions, and neurological disorders and pain related disorders, comprising administering a pharmacologically effective amount of a compound as claimed in any one of claims 1 to 9 to a patient in need thereof.
 - 14. A compound as defined in any one of claims 1 to 9 for use in the treatment of obesity.
 - 15. A process for the preparation of compounds of formula I as claimed in claim 1 comprising reacting a compound of formula II

$$(R^{1})_{n} \xrightarrow{\qquad \qquad N \qquad \qquad N \qquad$$

in which R¹, R², R³, R⁴, L¹, n and m are as previously defined in claim 1 with a compound of formula III

Ш

in which R⁵ is as previously defined and L² represents a group which after reaction of compounds II and III gives L² on reduction, under reductive alkylation conditions.

16. Intermediates of formula II

$$(R^{1})_{n} \xrightarrow{\qquad \qquad N \qquad \qquad N \qquad \qquad L^{1} \longrightarrow NH \qquad \qquad \qquad \qquad N^{3} \qquad \qquad R^{4}$$

in which R^1 , R^2 , R^3 , R^4 , L^1 , n and m are as defined in claim 1.

17. A method of treating obesity, type II diabetes, Metabolic syndrome and prevention of type II diabetes comprising administering a pharmacologically effective amount of a compound as claimed in any one of claims 1 to 9 to a patient in need thereof.