Symulacja ruchu ludzi w centrum handlowym

 $\label{eq:pawel-kleczek} Pawel \ Kłeczek \\ pkleczek@student.agh.edu.pl$

 $\label{eq:Kajetan Rzepecki} Kajetan. rzepecki+agh@gmail.com$

14 listopada 2012

Streszczenie

Praca i związany z nią projekt dotyczą symulowania ruchu ludzi w centrum handlowym z wykorzystaniem modelu $Social\ Distances$ na dwuwymiarowej siatce.

Spis treści

1	$\mathbf{W}\mathbf{p}$	rowadzenie	2	
	1.1	State of the art	3	
2	Model centrum handlowego			
	2.1	Atraktory	5	
	2.2	Kolejki	6	
	2.3	Przejścia/wejścia/wyjścia	6	
	2.4	Miejsca oczekiwania	6	
3	Model ruchu ludzi			
	3.1	Faza taktyczna	8	
	3.2	Faza operacyjna	8	
4	Implementacja			
	4.1	Reprezentacja centrum handlowego	9	
	4.2	Reprezentacja agentów	9	
	4.3	Wybór puntków docelowych	9	
	4.4		9	
	4.5	Dewiacja ścieżek	9	
	4.6	Ruch agentów	9	
	4.7	Preferencje odległościowe agentów	9	
5	Syn	nulacja i analiza wyników 1	0	
	5.1	Kalibracja i walidacja parametrów symulacji	C	
	5.2	Uzyskane wyniki ilościowe i jakościowe		
	5.3	Wyniki symulacji a rzeczywistość		
G	T ita	amatuma 1	1	

1 Wprowadzenie

Celem wykonywanego projektu jest stworzenie modelu oraz symulacja ruchu ludzi w centrum handlowym w oparciu między innymi o model *Social Distances* ([Wąs, Gudowski, Matuszyk 2006, Karakayali 2009]).

Modelowanie ruchu dużych grup ludzi w środowisku centrum handlowego jest problemem złożonym i wymaga wykorzystania równie złożonych algorytmów celem dokładnego przybliżenia rzeczywistych zachowań. Dobrym podejściem jest dekompozycja problemu modelowania złożonego zjawiska na mniejsze, łatwiejsze do rozwiązania podproblemy, którymi zajmują się osobne, dobrze zdefiniowane i wyspecjalizowane algorytmy, i ponowne połączenie wyników ich działania w spójną całość - metoda *Divide and Conquer*.

Rysunek 1: Przykładowa dekompozycja problemu modelowania ruchu ludzi w centrum handlowym.

W zależności od domeny rozwiązywanego problemu dekompozycja może zachodzić ze względu na wiele czynników i dotyczyć różnych aspektów problemu - np. podział wejściowego zbioru danych na dwa mniejsze podzbiory w algorytmie *Quick sort*, czy podział modelu ruchu ludzi na elementarne zachowania, jak *kolejkowanie*, *atrakcja* lub *oczekiwanie*.

Na rysunku 1 została przedstawiona przykładowa dekompozycja problemu poruszanego w tym dokumencie. Wyszczególniono w niej podział na globalną, preferowaną ścieżkę wiodącą poruszającego się po centrum handlowym agenta do obranych przez niego celów i lokalny ruch zgodny z gradientem ruchu obliczonym na podstawie jego otoczenia. Dodatkowo zastosowano podział na specjalne strefy odpowiedzialne za modelowanie elementarnych zachowań ludzi w centrach handlowych, takie jak strefy kolejek, czekania i gromadzenia się, które realizowane są za pomocą innych modeli ruchu.

1.1 State of the art

Zagadnienia modelowania ruchu ludzi są od długiego czasu postrzegane jako istotne z punktu widzenia usługowego. Już w latach 80 ubiegłego wieku Aloys Borgers i Harry Timmermans zajmowali się modelowaniem ruchu pieszych w środowisku centrum handlowego w oparciu o modele probabilistyczne ([Borgers, Timmermans 1986]). Na przestrzeni lat modele ruchu pieszych ewoluowały w wielu kierunkach, od dynamiki płnów ([Helbing 1992]) przez automaty komórkowe ([Blue, Adler 2001]) i algorytmy genetyczne ([Kitazawa, Batty 2004]) aż do modeli opartych o systemy wieloagentowe ([Rauh, Schenk, Schrödl 2011]).

Cellular automata macrosimulation for modeling bi-directional pedestrian walkways ([Blue, Adler 2001]) skupia się na modelowaniu dwukierunkowego ruchu ludzi z wykorzystaniem automatów komórkowych. Praca ta dowodzi, że stosunkowo nieskomplikowany automat komórkowy z małą liczbą reguł jest zdonly do symulowania skomplikowanych zachowań, które dobrze oddają rzeczywistość. Zaproponowany model i algorytm **CA-ped** pozwalają symulawać ruch ludzi w dwóch przeciwnych kierunkach na dwóch oddzielnych jak i mieszanych pasach ruchu, a także dynamicznych, wieloliniowych (dynamic multi-lane, DML) pasach ruchu.

Algorytm **CA-ped** wyróżnia dwie fazy ruchu, z których każda charakteryzuje się trzema prostymi zasadami:

1. Zmiana pasa ruchu

- Eliminacja konfliktów dwóch przechodniów nie może znajdować się na jednej komórce, w przypadku konfliktu wolna komórka oddzielająca dwóch przechodniów jest przyznawana jednemu z nich z równym prawdopodobieństwiem.
- Identyfikacja wolnych przestrzeni wybierany jest ten pas ruchu, który cechuje największa liczba wolnych komórek, co implikuje bezproblemowy ruch w przyszłości.
- Zmiana pasa każdy przechodzień jest poruszany na jeden z dwóch sąsiednich pasów, lub pozostaje na obecnym pasie ruchu.

2. Ruch do przodu

- Obliczanie szybkości ruchu dla każdego przechodnia obliczana jest jego szybkość uzależniona od istnienia, bądź nie, wolnych komórek w jego otoczeniu.
- Wymijanie jeśli bezpośrednio przed przechodniem w niedużej odległości istnieje przeciwstawny przechodzień, to z zadanym prawdopodobieństwiem następuje wyminięcie obu przechodniów.
- Ruch każdy przechodzień jest przemieszczany do przodu zgodnie z szybkością jego ruchu.

Pedestrian behaviour modelling - An application to Retail Movements using a Genetic Algorithm ([Kitazawa, Batty 2004]) identifikuje problemy i nieścisłości wynikające ze stosowania modeli opartych o najkrótsze ścieżki (shortest-paths) i maksymalizację przydatności (utility-maximization) do symulowania ruchu ludzi w centrum handlowym. Specjalnie zaprojektowany algorytm genetyczny wykorzystuje informacje o optymalnych ścieżkach i mapę routingu i atrybutów konkretnych miejsc centrum handlowego do znalezienia mniej optymalnych ścieżek prowadzących agentów do wybranych przez nich sklepów, które lepiej modelują zachowanie ludzi w środowisku centrum handlowego.

Na podstawie socio-ekonomicznych atrybutów poszczególnych miejsc centrum handlowego i atrybutów ludzio przebywających w centrum handlowym, takich jak szybkość, wiek, płeć i przychód, oraz korzystając z mapy routing algorytm wyznacza listę miejsc zainteresowania, które

kupujący planują odwiedzić. Następnie genetycznie wyznaczane są ścieżki obejmujące wszystkie miejsca zainteresowania konkretnego kupującego, które zostają wykorzystane w dalszej części symulacji. Istotnym jest wyszczególnienie fazy ruchu lokalnego, gdzie zachodzą dodatkowe zjawiska, których nie obejmuje zasięg zastosowanego algorytmu genetycznego. Wspomniane zjawiska to omijanie przeszkód (collision avoidance) występujących w lokalnym otoczeniu poruszającego się człowika oraz grupowanie się (flocking), czyli skomplikowane zjawisko przyciągania kupującego do grup innych kupujących zgodnie z jego socjologicznymi preferencjami.

The Simulated Consumer - an Agent-based approach to Shopping Behaviour ([Rauh, Schenk, Schrödl 2011]) identyfikuje istnienie dużej liczby różnych schematów zachowań i szeroki zakres problemu modelowania ruchu ludzi w centrum handlowym proponując podejście agentowe jako dostatecznie elastyczną metodę modelowania skomplikowanej dynamiki kupujących. W oparciu o niewielce skorelowane dane pochodzące z północy Szwecji i południa Niemiec autorzy definiują agentowy model wyboru miejsc zainteresowania, który następnie z powodzeniem aplikują do symulowania zachowania kupujących w dwóch różnych sektorach spożywczym i odzieżowym, jednocześnie powtierdzając elastyczność zaproponowanego modelu.

Więcej interesujących publikacji związanych z tematyką tego projektu zawarto w secji 6.

2 Model centrum handlowego

Zgodnie z metodą *Divide and Conquer* zaproponowaną we wprowadzeniu, zdecydowano się na dekompozycję problemu modelowania ruchu ludzi w centrum handlowym na elementarne, abstrakcyjne zachowania oraz, ze względu na cele poszczególnych agentów i sposoby ich osiągania, na globalne i lokalne planowanie trasy podróży, co zawarto na rysunku 2.

Rysunek 2: Zastosowana dekompozycja problemu.

Model centrum handlowego przewiduje istnienie specjalnych stref, wewnątrz których algorytmy odpowiedzialne za poruszanie agentów są modyfikowane lub zastępowane celem modelowania dobrze zdefiniowanych elementarnych zachowań, takich jak *kolejkowanie*, czy *grupowanie się*. W wyniku obserwacji stwierdzono istnienie czterech rodzajów stref specjalnych - strefy przyciągania uwagi (atraktory), kolejki, przejścia i miejsca przeznaczone do czekania.

2.1 Atraktory

Atraktor jest specjalną strefą charakteryzującą się podwyższonym zainteresowaniem ze strony agentów poruszających się po centrum handlowym. Atraktor ma za zadanie modelować obecność przedmiotu lub zjawiska, które przykuwa uwagę ludzi na terenie centrum handlowego, a wynikiem jego działania jest spontaniczne powstawanie skupisk ludzi - grupowanie się.

Rysunek 3: Grupowanie się agentów w obrębie atraktora.

Atraktory różnią się między sobą typami - atraktory różnych typów przyciągają inne rodzaje agentów, co modeluje różnice w preferencjach ludzi przebywających w centrum handlowym. Działanie atraktorów jest najistotniejsze w taktycznej fazie modelu ruchu, w której ma miejsce wybór i modyfikacja preferowanych przez agentów dróg prowadzących do wybranych celów.

2.2 Kolejki

Drugim istotnym z punktu widzenia modelu centrum handlowego typem strefy specjalnej jest strefa kolejki. Zadaniem kolejki jest modelowanie zjawiska ścisłego kolejkowania się ludzi, na przykład przy kasie sklepowej, lub na stopniach eskalatora, co nie wynika z ogólnego modelu ruchu.

Rysunek 4: Kolejkowanie się ludzi przy kasie sklepowej z zaznaczoną kolejką ścisłą.

Kolejki modyfikują działanie fazy operacyjnej modelu ruchu zmniejszając udział modelu preferencji odległościowych w wyznaczaniu oceny sąsiadujących z agentem komórek mapy centrum handlowego.

2.3 Przejścia/wejścia/wyjścia

Strefy przejść pozwalają na tworzenie, przemieszczanie pomiędzy różnymi fragmentami mapy centrum handlowego i usuwanie agentów, którzy osiągnęli wszystkie cele swojej podróży.

Rysunek 5: Poruszanie się agenta po eskalatorze pomiędzy piętrami centrum handlowego.

2.4 Miejsca oczekiwania

Ostatnim istotnym typem strefy specjalnej jest miejsce oczekiwania, modelujące wszelkiego rodzaju miejsca spędzania czasu w bezruchu. Agent trafiający do miejsca oczekiwania zostaje wstrzymany na ustaloną ilość czasu przed kontynuowaniem swojej podróży.

Rysunek 6: Agenci oczekujący końca świata.

3 Model ruchu ludzi

W zastosowanym algorytmie można wyszczególnieć dwie główne, wzajemnie od siebie zależne fazy - fazę taktyczną oraz fazę operacyjną, których interakcję przestawiono na poniższym, uproszczonym diagramie.

Rysunek 7: Diagram aktywności agentów.

Algorytm rozpoczyna pracę od wygenerowania agenta na podstawie wcześniej zdefiniowanych archetypów. Dla każdego agenta wybierana jest wstępna lista miejsc docelowych, które zostaną przez niego odwiedzone w czasie działania symulacji, oraz obliczana jest optymalna ścieżka wiodące do pierwszego wybranego w poprzednim kroku miejsca docelowego. Algorytm następnie modyfikuje ścieżkę w oparciu o mapę rozkładu stref specjalnych centrum handlowego by lepiej modelować faktyczne zamiary danego aktora.

Po wygenerowaniu niezbędnych danych taktycznych dla każdego agenta algorytm przechodzi do fazy operacyjnej, która odpowiada za właściwe przemieszczanie agentów. Faza ta zachodzi w lokalnym otoczeniu każdego agenta i odpowiada za zachowania takie jak omijanie przeszkód, grupowanie się, podążanie za obraną ścieżką i inne akcje związane ze specjalnymi strefami centrum handlowego. Algorytm na podstawie bezpośredniego otoczenia agenta oraz metadanych dotyczących obecnego celu jego podróży podejmuje decyzje o możliwości wykonania ruchu, lub w przypadku skrajnym o modyfikacji wybranej ścieżki prowadzącej do celu, czy nawet zmianie aktualnego celu podróży. W przypadku osiągnięcia miejsca docelowego algorytm przechodzi do rozpatrywania następnego miejsca docelowego, lub w tryb "błądzenia", gdy osiągnięto już wszystkie wyznaczone cele.

3.1 Faza taktyczna

Rysunek 8: Zakres operacji taktycznej części modelu ruchu.

Faza taktyczna zachodzi globalnie dla każdego agenta bez uwzględnienia jego lokalnego otoczenia, innych agentów, czy fizycznych właściwości centrum handlowego - nie jest istotnym, czy dany korytarz został zablokowany przez grupę ludzi i nie umożliwia przejścia. Faza ta modeluje abstrakcyjne zamiary agenta i jej celem jest przede wszystkim wybór listy miejsc docelowych oraz wyznaczenie dróg do nich prowadzących, co zostało osiągnięte dzięki algorytmowi znajdowania ścieżek oraz mapie rozkładu stref specjalnych centrum handlowego. Pod uwagę brane są atraktory, kolejki i przejścia, które algorytm stara się osiągnąć modyfikując wcześniej wyznaczoną, optymalną ścieżkę prowadzącą do aktualnego celu podróży.

3.2 Faza operacyjna

Rysunek 9: Zakres działania operacyjnej części modelu ruchu.

Faza operacyjna zachodzi w lokalnym otoczeniu każdego agenta, a jej celem jest wykonanie właściwego ruchu agenta. Faza ta jest odpowiedzialna za unikanie kolizji i omijanie przeszkód. Pod uwagę brani są inni agenci oraz metadane dotyczące drogi prowadzącej do aktualnego celu podróży wygenerowane w taktyczniej fazie działania algorytmu.

4 Implementacja

4.1 Reprezentacja centrum handlowego

Rysunek 10: Przykładowy rozkład pomieszczeń małego centrum handlowego.

Rysunek 11: Przykładowy rozkład stref specjalnych małego centrum handlowego.

- 4.2 Reprezentacja agentów
- 4.3 Wybór puntków docelowych
- 4.4 Znajdowanie ścieżek
- 4.5 Dewiacja ścieżek
- 4.6 Ruch agentów
- 4.7 Preferencje odległościowe agentów

- 5 Symulacja i analiza wyników
- 5.1 Kalibracja i walidacja parametrów symulacji
- 5.2 Uzyskane wyniki ilościowe i jakościowe
- 5.3 Wyniki symulacji a rzeczywistość

6 Literatura

[Was, Gudowski, Matuszyk 2006] - Social Distances Model of Pedestrian Dynamics

[Karakayali 2009] - Social Distance and affective orientation

[Blue, Adler 2000] - Modelling Four Directional Pedestriam Movements

[Blue, Adler 2001] - Cellular automata microsimulation for modeling bi-directional pedestrian walkways

[Bitgood, Dukes 2005] - Economy of Movement and Pedestrian Choice Point Behavior in Shopping Malls

[Borgers, Timmermans 1986] - A Model of Pedestrian Route Choice and Demand for Retail Facilities within Inner-City Shopping Areas

[Borgers, Timmermans 1986] - City centre entry points, store location, patterns and pedestrian route choice behaviour: a microlevel simulation model

[Borgers, Timmermans 2005] - Modelling pedestrian behaviour in downtown shopping areas

[Kitazawa, Batty 2004] - Pedestrian Behaviour Modelling - An Application to Retail Movements using a Genetic Algorithm

[Zacharias 2000] - Shopping behavior at Alexis-Nihon Plaza in Montreal

[Rauh, Schenk, Schrödl 2011] - The Simulated consumer - an agent-based approach to shopping behaviour

[Helbing 1992] - A Fluid Dynamic Model for the Movement of Pedestrians