

Universidad de Granada

Doble Grado en Ingeniería Informática y Matemáticas

Análisis Funcional

Autor: Jesús Muñoz Velasco

Índice general

0.1.	Espacios de Hilbert	8
0.2.	Espacios Duales	12
0.3.	Espacio Dual de un Espacio de Hilbert	13
0.4.	Funcional de Minkowski de un conjunto	19
0.5.	Teorema de la aplicación abierta	24

Repaso

Definición 0.1 (Espacio normado). E un espacio vectorial y $\|\cdot\|: E \to \mathbb{R}$ una función que verifica:

- 1. $||x|| \ge 0 \ \forall x \in E$
- 2. $||x|| = 0 \iff x = 0$
- 3. $||x + y|| \le ||x|| + ||y||$
- 4. $\|\lambda x\| = |\lambda| \ \forall x, y \in E, \ \lambda \in \mathbb{R}$

A esta función la llamaremos **norma** y diremos que E es un **espacio normado** Podemos definir además una función $d: E \times E \to \mathbb{R}$ dada por $d(x,y) = \|x - y\|$ $\forall x,y \in E$ a la que llamaremos **distancia**.

Decimos que un espacio E es **completo** si toda sucesión de Cauchy es convergente. Si E es un espacio normado completo, entonces $(E, \|.\|)$ es un **espacio de Banach**.

Definición 0.2 (Espacio prehilbertiano). Sea H es un espacio vectorial, un **producto escalar** es una función $(\cdot, \cdot): H \times H \to \mathbb{R}$ tal que verifica las siguientes propiedades:

1. Bilineal: para todo $x, y, z \in H$, $\alpha, \beta \in \mathbb{R}$ se verifica que

$$(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z)$$
$$(x, \alpha y + \beta z) = \alpha(x, y) + \beta(x, z)$$

- 2. Simétrica: $(x,y) = (y,x) \quad \forall x,y \in H$
- 3. Positiva: $(x, x) \ge 0 \quad \forall x \in H$
- 4. **Definida positiva:** $(x, x) > 0 \quad \forall x \in H \setminus \{0\}$

Las dos últimas propiedades se pueden resumir en $(x,x)=0 \iff x=0$.

Diremos que $(H, (\cdot, \cdot))$ es un **espacio prehilbertiano**.

Todo espacio prehilbertiano es en particular un espacio normado, ya que podemos definir $||x|| = \sqrt{(x,x)}$ que es claramente una norma.

Si $\|\cdot\|$ es completa, diremos que $(H,(\cdot,\cdot))$ es un **espacio de Hilbert**.

Ejemplo. Los siguientes espacios son de Banach:

- 1. $(\mathbb{R}, |\cdot|)$.
- 2. $(\mathbb{R}^N, |\cdot|)$, donde $|x| = |(x_1, x_2, \dots, x_N)| = \sqrt{x_1^2 + x_2^2 + \dots + x_N^2}$. Además es de Hilbert ya que $(x, y) = \sum_{i=1}^N x_i y_i$ es un producto escalar.
- 3. Dado¹ $A \subset \mathbb{R}^N$ tomamos $C_b(A) = \{f : A \to \mathbb{R} : f \text{ es continua y acotada en } A\}$. Podemos definir una norma en este espacio como

$$||f||_{\mathcal{C}_b(A)} = \sup\{|f(x)| : x \in A\}$$

4. Tomamos $K \subset \mathbb{R}^N$ compacto. Consideramos el conjunto de las funciones continuas en K denotado por $\mathcal{C}(K)$ y el espacio $(K, (\cdot, \cdot))$, donde

$$(f,g) = \int_{K} f(x)g(x)dx$$

es un producto escalar que hace a este un espacio prehilbertiano. Tendríamos

$$||f|| = \left(\int_K f(x)^2 dx\right)^{1/2}$$

Ejemplo (El espacio del punto 4 No es de Hilbert). Veámoslo con un contraejemplo. Tomamos $K = [0,1] \subset \mathbb{R}$ y podemos definir $\forall n \in \mathbb{N}$ la función $f_n : [0,1] \to \mathbb{R}^+$ tal que f_n^2 viene dada por la siguiente gráfica:

De esta forma tenemos que

$$||f_n||^2 = \int_0^1 f_n^2(x) dx = \frac{1}{n} \cdot \frac{1}{2} = \frac{1}{2n} \Rightarrow ||f_n|| = \frac{1}{\sqrt{2n}} \to 0$$

y vemos que

$$\begin{cases} \{f_n(x)\} \to 0 & \forall x \in (0,1] \\ \{f_n(0) = 1\} \to 1 \end{cases}$$

Con esto tenemos que la sucesión $\{f_n\} \to 0$ en $(\mathcal{L}([0,1]), (\cdot, \cdot))$ (ya que la norma converge a 0).

PARA MAÑANA RESOLVER QUÉ ES LO QUE NO ESTÁ CLARO (la contradicción para ser espacio de Hilbert).

¹la b de C_b viene de bounded (acotado en inglés)

Ejemplo. Consideramos $\emptyset \neq \Omega \subset \mathbb{R}^N$ medible, entonces podemos definir

$$L^2(\Omega) = \mathcal{L}^2(\Omega) / \sim = \{ f : \Omega \to \mathbb{R} \text{ medible } : \int_{\Omega} f(x)^2 dx < \infty \}$$

 $L^2(\Omega)$ con la norma definida anteriormente (en el punto 4) es un espacio de Hilbert (teorema de Fischer)

Ejemplo. Sea $1 \leq p < \infty$. Consideramos el conjunto

$$L^p(\Omega) = \left\{ f : \Omega \to \mathbb{R} \text{ medibles } : \int_{\Omega} |f|^p dx < \infty \right\}$$

Entonces tenemos que con la norma definida como

$$||f||_{L^p(\Omega)} = \left(\int_{\Omega} |f|^p dx\right)^{1/p}$$

es un espacio de Banach. Recordemos para este resultado la desigualdad de Hölder y Minkowski. Definimos para ello el conjugado de p de la siguiente forma²:

$$p' = \left\{ \begin{array}{ll} \frac{p}{p-1} & \text{si} & 1$$

Con esto tendremos que

$$\left. \begin{array}{l} f \in L^p(\Omega) \\ g \in L^{p'}(\Omega) \end{array} \right\} \Rightarrow fg \in L^1(\Omega)$$

Además, se tiene que

$$\int |f(x)g(x)|dx \leqslant \left(\int |f|^p dx\right)^{1/p} \left(\int |f|^{p'} dx\right)^{1/p'} = \|f\|_{L^p} \|g\|_{L^{p'}}$$

Ejemplo.

1.
$$(\mathbb{R}^N, \|\cdot\|_p)$$
 con $\|x\|_p = (\sum_{i=1}^N |x_i|^p)^{1/p}(x, y) = \sum_{i=1}^N x_i y_i$.

2.
$$(\mathbb{R}^N, \|\cdot\|_{\infty})$$
 con $\|x\|_{\infty} = \max\{|x_i| : i = 1, \dots, N\}$

3. Sea $p = \infty$. Tenemos

$$L^{\infty} = \{ f : \Omega \to \mathbb{R} \text{ medible } : \sup\{ |f(x)| : x \in \Omega \} < \infty \}$$

A este supremo lo llamaremos **supremo esencial**, que se define de la siguiente forma³:

$$\sup_{\Omega} |f| = \inf\{M \geqslant 0 : |f(x)| \leqslant M \ a.e. \ x \in \Omega\}$$

²donde asumimos que $1/\infty = 0$

³a.e viene de almost everywhere (casi por doquier en inglés)

En algunos libros se denota por ess sup.

Podremos reescribir lo anterior como

$$L^{\infty} = \{ f : \Omega \to \mathbb{R} \text{ medible } : \sup_{\Omega} |f| < \infty \}$$

Entonces el espacio $(L^{\infty}, \|\cdot\|_{\infty})$ con $\|f\|_{\infty} = \sup_{\Omega} |f|$ es un espacio de Banach. La desigualdad de Hölder con $p = \infty$, p' = 1 nos dice que para $f \in L^{\infty}(\Omega)$, $g \in L^{1}(\Omega)$ entonces $fg \in L^{1}(\Omega)$ y $\|fg\|_{L^{1}} \leq \|f\|_{L^{\infty}} \|g\|_{L^{1}}$ es una norma en H.

Ejemplo. Consideramos $1 \le p < \infty$ y definimos el conjunto de sucesiones.

$$\mathcal{L}^p = \{x : \mathbb{N} \to \mathbb{R} : \sum_{n=1}^{\infty} |x(n)|^p < \infty \}$$

Si definimos ahora

$$||x||_{\mathcal{L}^p} = \left(\sum_{n=1}^{\infty} |x(n)|^p\right)^{1/p}$$

entonces $(\mathcal{L}^p, \|\cdot\|_p)$ es un espacio de Banach. Para verlo podemos tomar $x \in \mathcal{L}^p$, $y \in \mathcal{L}^{p'}$ y tenemos que

$$xy \in \mathcal{L}^1 \ \ y \ \|xy\|_{\mathcal{L}^1} \leqslant \|x\|_{\mathcal{L}^p} \|y\|_{\mathcal{L}^{p'}}$$

de la que se deduce la desigualdad de Mikowsky.

Para p=2 tenemos que $(\mathcal{L}^2, \|\cdot\|_2)$ es un espacio de Hilbert. Para $p=\infty$ podemos definir $\mathcal{L}^{\infty}=\{x:\mathbb{N}\to\mathbb{R}:x \text{ sucesión acotada}\}$ y con $\|x\|_{\infty}=\sup\{|x(n)|:n\in\mathbb{N}\}$ es un espacio de Banach.

Ejemplo. Podemos considerar los siguientes subespacios que seguirán siendo espacios de Banach:

- 1. Tomamos $C = \{x \in \mathcal{L}^{\infty} : x \text{ es convergente}\}$ y es un subespacio de \mathcal{L}^{∞} .
- 2. Podemos tomar otro subespacio de este, $C_0 = \{x \in C : x \text{ es convergente a } 0\}$ que de nuevo es un subespacio de \mathcal{L}^{∞} .

0.1. Espacios de Hilbert

Recordemos que un espacio de Hilbert es un par $(H, (\cdot, \cdot))$ donde H es un espacio vectorial y (\cdot, \cdot) es una función bilineal simétrica y definida positiva.

Proposición 0.1. Si H es prehilbertiano entonces se tiene:

1. Se cumple la Desigualdad de Cauchy-Schwarz, es decir

$$|(u,v)| \le ||u|| \cdot ||v||, \quad \forall u, v \in H$$

2. Se verifica la desigualdad del paralelogramo

$$\left\| \frac{u+v}{2} \right\|^2 + \left\| \frac{u-v}{2} \right\|^2 = \frac{1}{2} \left(\|u\|^2 + \|v\|^2 \right), \quad \forall u, v \in H$$

Teorema 0.2 (Teorema de la Proyección). Supongamos que H es un espacio Hilbertiano y $\emptyset \neq K \subset H$ un conjunto convexo y cerrado, entonces $\forall f \in H \exists_1 u \in K$ tal que ||f - u|| = dist(f, K). Además, dicho u está caracterizado por:

$$\left\{ \begin{array}{l} u \in K \\ (f - u, v - u) \leqslant 0 \quad \forall v \in K \end{array} \right.$$

Notaremos a dicho u por $P_K f$ y diremos que es la proyección de f sobre K

Demostración. En primer lugar tendremos que ver que $d(f, K) = \inf\{\|f - v\| : v \in K\}$ existe y se alcanza. Al ser un ínfimo de cantidades positivas sabemos que existe y nos quedará ver que se alcanza.

Por definición de ínfimo tenemos que

$$\exists \{v_n\} \subset K \text{ tal que } ||f - v_n|| \to d$$

Aplicando la desigualdad del paralelogramo para $u=f-v_n$ y $v=f-v_m$, con $n,m\in\mathbb{N}$

$$\left\| \frac{f - v_n + f - v_m}{2} \right\|^2 + \left\| \frac{f - v_n - (f - v_m)}{2} \right\|^2 = \frac{1}{2} \left(\|f - v_n\|^2 + \|f - v_m\|^2 \right)$$

$$\left\| f - \frac{v_n + v_m}{2} \right\|^2 + \left\| \frac{v_m - v_n}{2} \right\|^2 = \frac{1}{2} \left(\|f - v_n\|^2 + \|f - v_m\|^2 \right)$$

$$\frac{\|v_m - v_n\|^2}{4} = \frac{1}{2} \left(\|f - v_n\|^2 + \|f - v_m\|^2 \right) - \left\| f - \frac{v_n + v_m}{2} \right\|^2$$

$$\|v_m - v_n\|^2 = 2 \left(\|f - v_n\|^2 + \|f - v_m\|^2 \right) - 4 \left\| f - \frac{v_n + v_m}{2} \right\|^2$$

Como K es convexo y $v_n, v_m \in K$ tendremos que $d^{\frac{v_n+v_m}{2}} \in K$ y además $\left\| f - \frac{v_n + v_m}{2} \right\| \geqslant d$ por lo que tenemos

$$||v_m - v_n||^2 = 2(||f - v_n||^2 + ||f - v_m||^2) - 4d^2$$

Cuando $n \to \infty$ tenemos que $||f - v_n|| \to d$ y $||f - v_m|| \to d$ por lo que el término de la derecha tenderá a 0 cuando $n, m \to \infty$. Esto significa que la sucesión $\{v_n\}$ es de Cauchy.

Como H es de Hilbert, en particular es completo por lo que sabemos que $\{v_n\} \to u$ en $(H, (\cdot, \cdot))$.

Como además $\{v_n\} \subset K$ y K es cerrado, el límite $u \in K$. Tendremos que

$$d = \lim_{n \to \infty} ||f - v_n|| = ||f - u||$$

Y tendremos probada la existencia de u.

Veamos ahora la equivalencia entre la primera y la segunda parte del teorema, es decir

$$\begin{array}{l} u \in K \\ \|f - u\| = dist(f, K) \end{array} \right\} \iff \left\{ \begin{array}{l} u \in K \\ (f - u, v - u) \leqslant 0 \end{array} \right. \forall v \in K$$

Veamos las dos implicaciones:

 \Rightarrow) Supongamos que $u \in K$ y sabemos que $||f - u|| \le ||f - v||$ para todo $v \in K$. Tomamos ahora $w \in K$ y consideramos el segmento que une u con w. Entonces $\forall w \in K$ y $\forall t \in [0, 1]$, al ser K convexo tendremos que

$$(1-t)u + tw \in K$$
 y $||f - u||^2 \le ||f - (1-t)u - tw||^2$

Aplicando la bilinealidad podemos reescribir esta última expresión como

$$||f - (1 - t)u - tw||^2 = (f - (1 - t)u - tw, f - (1 - t)u - tw) =$$

$$= ||f - u||^2 + t^2||w - u||^2 - 2t(f - u, w - u)$$

Sustituyendo en la expresión que teníamos anteriormente nos queda que:

$$0 \le t^2 ||w - u||^2 - 2t(f - u, w - u) \quad \forall t \in (0, 1]$$

Al dividir entre t nos queda

$$0\leqslant t\|w-u\|^2-2(f-u,w-u)\quad \forall t\in (0,1]$$

y tomando ahora el límite cuando t tiende a 0 por la derecha queda que

$$0 \leqslant -2(f - u, w - u) \Rightarrow (f - u, w - u) \leqslant 0$$

Se deja como ejercicio demostrar la otra implicación y la unicidad de u.

Proposición 0.3. La aplicación dada por

$$P_K: H \to H$$
$$f \mapsto P_K f$$

es Lipschitziana, es decir, $||P_K f_1 - P_K f_2|| \le ||f_1 - f_2||$ para todo $f_1, f_2 \in H$.

Demostración. Tomamos $f_1, f_2 \in H$ y consideramos $u_1 = P_K f_1$, $u_2 = P_K f_2$ y tenemos que

$$(f_1 - u_1, v - u_1) \leqslant 0 \quad \forall v \in K$$

$$(f_2 - u_2, v - u_2) \leqslant 0 \quad \forall v \in K$$

De aquí obtenemos que

$$(f_1 - u_1, u_2 - u_1) \le 0$$

 $(f_2 - u_2, u_1 - u_2) \le 0$

Aprovechando la bilinealidad tenemos que

$$(f_2 - u_2, u_2 - u_1) \geqslant 0 \Rightarrow ((f_1 - u_1) - (f_2 - u_2), u_2 - u_1) \leqslant 0$$

Y además

$$((f_1 - u_1) - (f_2 - u_2), u_2 - u_1) = ((f_1 - f_2) - (u_1 - u_2), u_2 - u_1) =$$

$$= (f_1 - f_2, u_2 - u_1) + (u_2 - u_1, u_2 - u_1)$$

Y aplicando la desigualdad de Cauchy-Schwarz

$$||u_2 - u_1||^2 = (u_2 - u_1, u_2 - u_1) \leqslant -(f_1 - f_2, u_2 - u_1)$$

$$\leqslant ||f_1 - f_2|| ||u_2 - u_1|| \Rightarrow ||u_2 - u_1|| \leqslant ||f_1 - f_2||$$

Corolario 0.3.1 (Proyección ortogonal). Sea H un espacio de Hilbert y $\emptyset \neq M \subset H$ un subespacio vectorial cerrado. Entonces se tiene que

$$\forall f \in H \quad \exists_1 u \in M \text{ tal que } ||f - u|| = dist(f, M)$$

Además, $u = F_M f$ está caracterizado por

- •) $u \in M$
- •) $(f u, w) = 0 \quad \forall w \in M$

Y se tiene que $P_M: H \to H$ es lineal.

Demostración. Comencemos con la primera parte del corolario. Sabemos que $u \in K$ y $(f-u,v-u) \leqslant 0 \quad \forall v \in M$ del teorema de la proyección. Tendremos que probar la equivalencia entre esto y $(f-u,w)=0 \quad \forall w \in M$ cuando M es un subespacio vectorial. Veamos ambas implicaciones:

- \Leftarrow) Evidente por ser M un espacio vectorial.
- \Rightarrow) Tenemos que $(f-u,v-u) \leq 0 \quad \forall v \in M$. Tomamos ahora $v \in M, t \neq 0$ y como M es un subespacio vectorial, entonces $\frac{v}{t} \in M$ por lo que

$$(f - u, \frac{v}{t} - u) \leqslant 0 \quad \forall v \in M, \ t \neq 0$$

Hagamos una distinción de casos:

$$\left\{ \begin{array}{ll} \mathrm{Si}\ t>0 & \Rightarrow & (f-u,v-tu)\leqslant 0 \quad \forall t>0, v\in M \\ \mathrm{Si}\ t<0 & \Rightarrow & (f-u,v-tu)\geqslant 0 \quad \forall t<0, v\in M \end{array} \right.$$

Tomando límite cuando t tiende a 0

$$\left\{ \begin{array}{ll} (f-u,v) \leqslant 0 & \forall t > 0, v \in M \\ (f-u,v) \geqslant 0 & \forall t < 0, v \in M \end{array} \right.$$

Y por tanto $(f - u, v) = 0 \quad \forall v \in M$

La demostración de que P_M es lineal se deja como ejercicio.

0.2. Espacios Duales

Definición 0.3 (Dual algebráico). Sea *E* un espacio vectorial, llamamos dual algebráico al siguiente espacio:

$$E^{\#} = \{ f : E \to \mathbb{R} : f \text{ es lineal} \}$$

Definición 0.4 (Dual topológico). Dado $(E, \|\cdot\|)$ un espacio normado, llamamos dual topológico a

$$E^* = \{ f : E \to \mathbb{R} : f \text{ es lineal y continua} \}$$

Observación. Si tenemos $(E, \|\cdot\|_E)$, $(F, \|\cdot\|_F)$ dos espacios normados y una aplicación $T: E \to F$ lineal. Son equivalentes:

- (i) T es continua
- (ii) T es continua en 0
- (iii) $T(B_E(0,1))$ es un conjunto acotado de F, es decir que $\exists R > 0 : ||T(x)||_F \leqslant R \quad \forall x \in E \text{ con } ||x|| < 1$
- (iv) T es acotada, es decir, T(A) es acotada en F para todo $A \subset E$ que esé acotado
- (v) T es Lipschitziana.

Demostración.

- $(v) \Rightarrow (iv)$) Trivial
- (iv)⇒(iii)) Trivial
- (iii)⇒(i)) Trivial
- (i)⇒(ii)) Trivial
- (ii) \Rightarrow (iii)) Sabemos que T es continua en 0. Luego para $\varepsilon = 1 \ \exists \delta > 0$ tal que $||x||_E < \delta$ luego $||T(x)||_F < 1$. Tenemos que

$$||T(x-y)|| = ||T(x) - T(y)|| \le M||x-y|| \quad \forall x, y \in E$$

luego $||T(x)|| \leq M||x||$ para todo $x \in E$. De esta forma tenemos que

$$||T(x)|| = \left| \left| T\left(\frac{x}{||x||} \cdot ||x|| \cdot \frac{\delta}{2} \cdot \frac{2}{\delta}\right) \right| = \frac{2}{\delta} \left| \left| T\left(\frac{x}{||x||} \cdot \frac{\delta}{2}\right) \right| \right| < \frac{2}{\delta} \cdot ||x||$$

(iii) \Rightarrow (vi)) Sabemos que $A\subset E$ está acotado, luego T(A) también, es decir que $T(A)\subset B(0,M)$ para cierto M>0. Tenemos que probar que

$$T(A) \subset T(B(0,R)) \subset B(0,M)$$

Dado $x \in A$ tal que $||x|| \leq R$, como además es Lipschitziana tenemos que

$$||T(x)|| \le N||x|| \le N||x|| < NR = M$$

y tenemos la inclusión que queríamos probar.

(iv) \Rightarrow (ii)) Por hipótesis tenemos que si ||x|| < 1 entonces $||T(x)|| \le R$ y queremos probar que $\forall \varepsilon > 0 \ \exists \delta > 0$ tal que si $||x|| < \delta$, entonces $||T(x)|| < \varepsilon$. Tomamos $\delta = \frac{\varepsilon}{2R}$ y suponiendo que $||x|| < \delta$ tenemos que

$$||T(x)|| = \left| \left| T\left(\frac{x}{2||x||} \cdot 2||x||\right) \right| = 2||x|| \left| \left| T\left(\frac{x}{2||x||}\right) \right| \leqslant 2||x||R < 2\delta R = \varepsilon$$

y ya lo tenemos.

Definición 0.5. Dado E un espacio vectorial, consideramos su dual topológico E^* y definimos la norma

$$||f||_{E^*} := \sup_{\|x\| \le 1} ||f(x)|| \quad \forall f \in E^*$$

Ejercicio 0.2.1. Demostrar que $||f||_{E^*}$ es una norma.

Ejercicio 0.2.2. Demostrar que $(E^*, \|\cdot\|_{E^*})$ es de Banach.

Ejercicio 0.2.3. Demostrar que $||f||_{E^*} = \inf\{M \ge 0 : ||f(x)|| \le M||x||_E \ \forall x \in E\}$

0.3. Espacio Dual de un Espacio de Hilbert

Observación. Es elemental que si tomo $v \in H$, entonces la aplicación

$$\varphi_v: H \to \mathbb{R}$$

$$u \mapsto \varphi(u) = (u, v)$$

verifica que $\varphi_v \in H^*$ y $\|\varphi_v\|_{H^*} = \|v\|_H$. Además, podemos definir la siguiente aplicación:

$$\Psi: H \to H^*$$
$$v \mapsto \phi_v$$

que será lineal por lo que tenemos que un espacio de Hilbert y su dual topológico serán isomorfos.

Demostración. La demostración se deja como ejercicio.

Teorema 0.4 (Teorema de Riesz-Fischer). Para toda $\varphi \in H^*$, se tiene que $\exists_1 v \in H$ tal que $\varphi(u) = (u, v) \quad \forall u \in H$. Además, se tiene que $\|\varphi\|_{H^*} = \|v\|_H$

Ejercicio 0.3.1. Sea H un espacio de Hilbert, y tomamos un elemento cualquiera $y \in H$. Consideramos $f: H \to \mathbb{R}$ dada por $f_y(x) = (x, y)$ para todo $x \in H$. Entonces se tiene que f_y es lineal, y además

$$|f_y(x)| = |(x,y)| \le ||y|| \cdot ||x|| \quad \forall x \in H \Rightarrow f_y \text{ acotada}$$

con lo que $||f_y||_{H^*} \leq ||y||_H$.

Con la definición de la norma tenemos que

 $||f_y||_{H^*} = \sup\{|(x,y)| : x \in H, ||x||_H \le 1\} \le ||y||_H \sup\{||x||_H : x \in H, ||x||_H \le 1\} = ||y||_H$

Comenzamos con el caso $y \neq 0$ y tomamos $x = \frac{y}{\|y\|_H}$ y tenemos que

$$|(x,y)| = \left| \left(\frac{y}{\|y\|_H}, y \right) \right| = \frac{1}{\|y\|_H} (y,y) = \|y\|_H$$

por lo que hemos visto que se alcanza el máximo por lo que $||f_y||_{H^*} = ||y||_H$. Veamos ahora qué sucede cuando y = 0. En este caso tendremos $f_y(x) = (x, 0)$ y por tanto se tiene directamente que $||f_y||_{H^*} = 0 = ||y||_H$.

La linealidad se deja como ejercicio.

Teorema 0.5 (Teorema de representación del dual de un espacio de Hilbert de Riesz-Fréchet). Sea H un espacio de Hilbert, entonces $\forall f \in H^*$ existe un único $y \in H$ tal que $f(x) = (x, y) \ \forall x \in H$. Además, $||f||_{H^*} = ||y||_H$.

Demostración. Solo tenemos que probar la primera parte, pues la segunda es consecuencia del ejercicio anterior. Para ello tomamos $f \in H^*$ y tenemos dos casuísticas:

- •) Si f = 0, entonces puedo tomar y = 0 y es evidente.
- •) Si $f \neq 0$, entonces tenemos que $M = f^{-1}(\{0\}) \subsetneq H$ es un subespacio vectorial cerrado (imagen inversa de un cerrado por una función continua⁴ y lineal⁵). Podemos aplicar entonces el teorema de la proyección ortogonal. Sabemos que $\exists z_0 \in H \setminus M$. Llamamos $z_1 = P_M z_0 \in M$ y tenemos que $(z_0 z_1, v) = 0$ para todo $v \in M$. Definimos ahora

$$z = \frac{z_0 - z_1}{\|z_0 - z_1\|_H}$$

y está bien definido ya que $z_0 \notin M$ y $z_1 \in M$ luego $z_0 - z_1 \neq 0$. Es claro que ||z|| = 1 y veamos cuánto vale (z, v) para todo $v \in M$:

$$(z,v) = \frac{1}{\|z_0 - z_1\|} (z_0 - z_1, v) = 0 \quad \forall v \in M$$

Veamos que $z \notin M$. Sabemos que M es un espacio vectorial y si $z_0 - z_1$ estuviera en M, entonces $z_0 \in M$ pero sabemos que $z_0 \notin M$ luego $z \notin M$ o equivalentemente $f(z) \neq 0$ (por la definición de M).

Tenemos ahora que para todo $x \in H$ tenemos que $x - \frac{f(x)}{f(z)} \in M = \ker f$ ya que

$$f\left(x - \frac{f(x)}{f(z)}z\right) = f(x) - \frac{f(x)}{f(z)}f(z) = 0$$

⁴nos dice que es cerrado.

⁵nos dice que es espacio vectorial.

luego $f(x) = f\left(\frac{f(x)}{f(z)}z\right)$ lo que nos dice que

$$0 = \left(z, x - \frac{f(x)}{f(z)}z\right) = (z, x) - \frac{f(x)}{f(z)} \Rightarrow f(x) = f(z)(z, x) = (x, f(z)z)$$

Por tanto, tomando y = f(z)z tenemos la existencia probada. Nos queda por ver la unicidad. Para ello, supongamos que existen $y_1, y_2 \in H$ tal que $f(x) = (x, y_1) = (x, y_2)$ para todo $x \in H$. Con esto tendríamos que $(x, y_1 - y_2) = 0$ para todo $x \in H$. Elijo $x = y_1 - y_2$ y tenemos que $0 = (y_1 - y_2, y_1 - y_2) = ||y_1 - y_2||^2$ por lo que finalmente $y_1 = y_2$.

Nos planteamos ahora qué ocurre cuando tenemos un espacio de Banach E y un subespacio $G \subset E$. Tenemos además una aplicación $g: G \to \mathbb{R}$ lineal y continua. Lo que nos plantemos ahora es si existe una aplicación $f: E \to \mathbb{R}$ lineal y continua tal que su restricción $f_{|_G} = g$.

Que g sea continua es equivalente a decir que $|g(x)| \leq k||x||$ para todo $x \in G$ y queremos ver si se verifica la continuidad de f, es decir que $|f(x)| \leq k||x||$ para todo $x \in E$.

Ejercicio 0.3.2. Definimos $p(x) = k||x|| \quad \forall x \in E$. Probar que se verifican las siguientes propiedades:

- 1. $p(x+y) \leq p(x) + p(y) \quad \forall x, y \in E$
- 2. $p(\lambda x) = \lambda p(x) \quad \forall \lambda > 0, \quad \forall x \in E$

Definición 0.6. Sea $\emptyset \neq P$ un conjunto con una relación \leqslant de orden (reflexiva, antisimétrica y transitiva). Entonces

- •) un subconjunto $Q \subset P$ es **totalmente ordenado** si para cualesquiera dos elementos $a, b \in Q$ se tiene que $a \leq b$ o $b \leq a$ (o ambas).
- •) Si $Q \subset P$ y $x \in P$, diremos que x es **cota superior** de Q si $a \leq x$ para todo $a \in Q$.
- •) Si $m \in P$, entonces diremos que m es un elemento maximal de P si

$$\{x \in P : m \leqslant x\} = \{m\}$$

es decir, no hay ningún elemento de P excepto m que esté por encima de m.

•) Diremos que P es **inductivo** si todo subconjunto $Q \subset P$ que sea totalmente ordenado posee una cota superior.

Lema 0.6 (Lema de Zorn). Sea $\emptyset \neq P$ un conjunto con una relación de orden \leq . Entonces se tiene que si P es inductivo, entonces P tiene un elemento máximo.

Teorema 0.7 (versión analítica del teorema de Hanh-Banach). Supongamos que E es un espacio vectorial y tenemos $p: E \to \mathbb{R}$ tal que se verifica

$$p(x+y) \le p(x) + p(y) \quad \forall x, y \in E$$

 $p(\lambda x) = \lambda p(x) \quad \forall x \in E \quad \forall \lambda > 0$

Sea $G \subset E$ un subespacio vectorial y $G: G \to \mathbb{R}$ una aplicación lineal verificando

$$g(x) \leqslant p(x) \quad \forall x \in G$$

Entonces se tiene que $\exists f: E \to \mathbb{R}$ lineal verificando

$$f(x) \leqslant p(x) \quad \forall x \in E$$

 $f_{|_G} = g$

Demostración. Definimos el siguiente conjunto

$$P = \left\{ h : D(h) \to \mathbb{R} : \begin{array}{l} G \subset D(h) \text{ subespacio vectorial de } E \\ h : D(h) \to \mathbb{R} : \begin{array}{l} h \text{ lineal, } h(x) \leqslant p(x) & \forall x \in D(h) \\ h(x) = g(x) & \forall x \in G \end{array} \right\}$$

y lo llamaremos **conjunto de extensiones** de g. Sabemos que $P \neq \emptyset$ ya que $g \in P$ (es una extensión de sí misma en el espacio P). Necesitamos ahora definir una relación de orden. Lo haremos de la siguiente forma

$$h_1 \leqslant h_2 \iff \begin{cases} D(h_1) \subset D(h_2) \\ h_2|_{D(h_1)} = h_1 \end{cases} \quad \forall h_1, h_2 \in P$$

y diremos que h_2 es una **extensión** de h_1 . Se deja como ejercicio demostrar que \leq es una relación de orden.

Probemos ahora que P es inductivo. Para ello tendremos que probar que cualquier subconjunto suyo que esté totalmente ordenado tiene una cota superior. Sea $Q \subset P$ totalmente ordenado. Consideramos

$$V_0 = \bigcup_{h \in Q} D(h)$$

y definimos la aplicación

$$h_0: V_0 \to \mathbb{R}$$

 $x \mapsto h_0(x) = h(x)$ si $x \in D(h)$

Está bien definida como consecuencia de que el conjunto sea totalmente ordenado. Se deja como ejercicio demostrar que V_0 es un subespacio vectorial, que h_0 está bien definida, que es lineal y que $h_0(x) \leq p(x)$ para todo $x \in V_0$.

Con esto tengo que h_0 es una extensión de todas las $h \in Q$, es decir, $h \leq h_0$ para todo $h \in Q$ lo que nos dice que h_0 es la cota superior de Q. Con esto podemos concluir que P es inductivo.

Tenemos todas las hipótesis necesarias para aplicar el teorema de Zorn, que nos dice que $\exists f \in P$ elemento maximal de P, es decir,

$$f:D(f)\to \mathbb{R}\left\{\begin{array}{l} G\subset D(f)\subset E\\ f \text{ lineal, } f(x)\leqslant p(x) \quad \forall x\in D(f)\\ f_{\mid_G}=g \end{array}\right.$$

Se deja como ejercicio demostrar que si f es maximal, entonces D(f) = E (por contrarrecíproco).

Para ello supongamos que por contradicción se tuviera $D(f) \subsetneq E$ por lo que $\exists x_0 \in E \setminus D(f)$. Por tanto,

$$D(f) \oplus x_0 \mathbb{R} \to \mathbb{R}$$

 $x + tx_0 \mapsto f(x) + t\alpha = \hat{f}(x + t_0)$

Solo tendremos que ver que $\hat{f}_{|_{D(f)}} = f$ y que $\hat{f}(x + tx_0) \leq p(x + tx_0)$ para todo $x \in D(f), \forall t \in \mathbb{R}$.

Sabemos que Esto es equivalente a

$$\hat{f}(x+tx_0) \leqslant p(x+tx_0) \quad \forall x \in D(f), \ \forall r \in \mathbb{R} \iff \\ \iff \hat{f}(t_z+tx_0) \leqslant p(t_z+tx_0) \quad \forall z \in D(f), \ \forall r \in \mathbb{R} \iff \\ \iff t\hat{f}(z+x_0) \leqslant p(t(z+x_0)) = \begin{cases} tp(z+x_0) & t>0 \\ -tp(-z-x_0) & t<0 \end{cases} \iff \\ \iff \begin{cases} f(z) + \alpha = \hat{f}(z+x_0) \leqslant p(z+x_0) & t>0, \ z \in D(f) \\ -f(z) - \alpha = -\hat{f}(z+x_0) \leqslant p(-z-x_0) & t>0, \ z \in D(f) \end{cases} \iff \\ \iff \begin{cases} \alpha \leqslant -f(z) + p(z+x_0) \\ -f(z) - p(-z-x_0) \leqslant \alpha \end{cases} \ \forall z \in D(f)$$

Por lo que nos basta con demostrar lo siguiente

$$\sup\{f(-z) - p(-z - x_0) : z \in D(f)\} \leqslant \alpha \leqslant \inf\{-f(z) + p(z + x_0) : z \in D(f)\}\$$

Podemos cambiar -z por un $w \in D(f)$ cualquiera de la siguiente forma:

$$\sup\{f(w) - p(w - x_0) : w \in D(f)\} \leqslant \alpha \leqslant \inf\{-f(z) + p(z + x_0) : z \in D(f)\}\$$

Veamos que esta desigualdad se verifica. Para cualesquiera $z, w \in D(f)$

$$f(z) + f(w) = f(z+w) \le p(z+w) = p(z+x_0 - x_0 + w) \le p(z+x_0) + p(w) - x_0 \Rightarrow f(w) - f(w-x_0) \le -f(z) + p(z+x_0)$$

y hemos probado que cualquier elemento del segundo conjunto es cota superior de todos los elementos del primer conjunto, lo que prueba la existencia del α probando lo buscado.

Observación. Sea E un espacio normado, $f: E \to \mathbb{R}$ una aplicación no nula $(f \neq 0)$ y $\alpha \in \mathbb{R}$. Si f lineal y continua, entonces

$$[f = \alpha] = \{x \in E : f(x) = \alpha\} = f^{-1}(\{\alpha\})$$

es un hiperplano⁶ cerrado⁷.

Definición 0.7. Si $A, B \subset E$ es un espacio normado. Diremos que el hiperplano $H = [f = \alpha]$ separa $A \vee B$ si

$$\exists \alpha \in \mathbb{R} \text{ tal que } f(x) \leq \alpha \leq f(y) \quad \forall x \in A, \ \forall y \in B$$

Diremos que separa estrictamente A y B si

$$\exists \varepsilon > 0 \text{ tal que } f(x) \leqslant \alpha - \varepsilon < \alpha + \varepsilon \leqslant f(y) \quad \forall x \in A, \ \forall y \in B$$

Teorema 0.8 (Primera forma geométrica del teorema de Hanh-Banach). Supongamos que E es un espacio normado, $A, B \subset E$ dos subconjuntos de E no vacíos, disjuntos, es decir, $A \cap B = \emptyset$, convexos y con A abierto. Entonces existe un hiperplano cerrado H que separa A y B.

Demostración.

Paso 1: Vamos a considerar $B = \{x_0\}$ y $\emptyset \neq A \subset E$ abierto convexo con $x_0 \notin A$. Elijo $C = A - z_0$. Se deja como ejercicio probar que C es convexo y abierto con $0 \in C$. Probar también que $y_0 = x_0 - z_0 \notin C$.

Sabemos que $\mathbb{R}y_0$ es un espacio de dimensión 1 y buscamos una función lineal, que en este espacio será de la forma

$$g: \mathbb{R}y_0 \to \mathbb{R}$$
$$ty_0 \mapsto g(ty_0) = t$$

Buscamos ahora una aplicación $f: E \to \mathbb{R}$ que extienda a g verificando $f(x) \leq f(y_0) = g(y_0) = 1$ para todo $x \in C$. El teorema de Hanh-Banach nos dirá que existe un $f: E \to \mathbb{R}$ lineal tal que

$$f(ty_0) = t \quad \forall t \in \mathbb{R}$$

 $f(x) \leq p(x) \quad \forall x \in E$

⁶basta con la linealidad (primer teorema de isomorfía)

 $^{^{7}}$ por ser f continua

0.4. Funcional de Minkowski de un conjunto

Definición 0.8 (Funcional de Minkowski). Sea E un espacio normado y $C \subset E$ convexo, abierto y tal que $0 \in C$. Consideramos la aplicación

$$p: E \to \mathbb{R}$$

$$x \mapsto p(x) = \begin{cases} \inf \left\{ \alpha > 0 : \frac{x}{\alpha} \in C \right\} & \text{si} \quad \forall x \in E \setminus \{0\} \\ 0 & \text{si} \quad x = 0 \end{cases}$$

y la llamaremos funcional de Minkowski.

Propiedades. El funcional de Minkowski verifica las siguientes propiedades:

1.
$$p(\lambda x) = \lambda p(x) \quad \forall x \in E, \quad \forall \lambda > 0$$

2.
$$\exists M > 0$$
 tal que $0 \le p(x) \le M||x|| \quad \forall x \in E$

3.
$$C = \{x \in E : p(x) < 1\}$$

4.
$$p(x+y) \leq p(x) + p(y) \quad \forall x, y \in E$$

Demostración.

1.
$$p(\lambda x) = hf\{\alpha > 0 : \frac{x}{\alpha/\lambda} = \frac{\lambda x}{\alpha} \in C\} = \lambda \inf\{\alpha > 0 : \frac{x}{\alpha} \in C\} = \lambda p(x)$$

2. Como C ebierto y $0 \in C$ sabemos que $\exists r > 0 : B_E(0,r) \subset C$ y se tiene

$$\alpha > \frac{\|x\|}{r} \Rightarrow \left\| \frac{x}{\alpha} \right\| < r \Rightarrow \frac{x}{\alpha} \in B_E(0, r) \subset C$$

por lo que

$$\left(\frac{\|x\|}{r}, +\infty\right) \subset \left\{\alpha > 0 : \frac{x}{\alpha} \in C\right\} \Rightarrow p(x) \leqslant \frac{\|x\|}{r}$$

3. Queremos ver que p(x) < 1 para todo $x \in C$. Sabemos que si $x \in C$ abierto, entonces $\exists r > 0$ tal que $B_E(x,r) \subset C$. Tomamos ahora un $\varepsilon > 0$ y queremos ver cuánto vale la siguente norma:

$$\left\| \frac{x}{1+\varepsilon} - x \right\| = \left\| \frac{-\varepsilon x}{1+\varepsilon} \right\| = \frac{\varepsilon}{1+\varepsilon} \|x\|$$

Elegimos ahora un $\varepsilon_0 > 0$ tal que

$$\frac{\varepsilon_0}{1+\varepsilon_0} < \varepsilon_0 < \frac{r}{\|x\|+1}$$

y podemos afirmar que

$$\left\| \frac{x}{1+\varepsilon} - x \right\| < r \quad \forall \varepsilon \in (0, \varepsilon_0]$$

por lo que

$$\frac{x}{1+\varepsilon} \in B_E(x,r) \subset C \quad \forall \varepsilon \in (0,\varepsilon_0]$$

Acabamos de demostrar que $p(x) \leqslant \frac{1}{1+\varepsilon}$ para todo $\varepsilon \in (0, \varepsilon_0]$. Hay algo mal en la demostración de este apartado. Se deja como ejercicio para el lector averiguar qué es lo q está mal (deberíamos haber empezado con $(1+\varepsilon)x$ en vez de con $\frac{x}{1+\varepsilon}$).

La otra inclusión la haremos sabiendo que si $p(x)=\inf\left\{\alpha>0:\frac{x}{\alpha}\in C\right\}<1$, entonces sabemos que $\exists \alpha_0<1$ tal que $\frac{x}{\alpha_0}\in C$. Como además C es convexo y $0\in C$ tenemos que

$$x = \alpha_0 \cdot \frac{x}{\alpha_0} + (1 - \alpha) \in C$$

4. Podemos afirmar que

$$\frac{x}{p(x) + \varepsilon} \in C \quad \forall \varepsilon > 0$$

y por el apartado anterior tenemos que

$$p\left(\frac{x}{p(x)+\varepsilon}\right) < 1$$

Como C es convexo, puedo considerar $\frac{y}{p(y)+\varepsilon}\in C$ y cualquier combinación convexa de x e y estará en C. Consideramos

$$0 \leqslant t = \frac{p(x) + \varepsilon}{p(x) + p(y) + 2\varepsilon} \leqslant 1$$

y con este t formamos la siguiente combinación

$$t\frac{x}{p(x)+\varepsilon} + (1-t)\frac{y}{p(y)+\varepsilon} = \frac{x+y}{p(x)+p(y)+2\varepsilon} \in C$$

por el apartado anterior tenemos que $p(x+y) \leq p(x) + p(y)$.

Ejemplo. Para C = B(0,1) tenemos que $p_C(x) = ||x||$ (sale claramente si se piensa lo que se está haciendo).

Teorema 0.9 (Primera forma geométrica del teorema de Hanh-Banach). Supongamos que E es un espacio normado, $A, B \subset E$ dos subconjuntos de E no vacíos, disjuntos, es decir, $A \cap B = \emptyset$, convexos y con A abierto. Entonces existe un hiperplano cerrado H que separa A y B.

Demostración.

Paso 1: Vamos a considerar $B = \{x_0\}$ y $\emptyset \neq A \subset E$ abierto convexo con $x_0 \notin A$. Elijo $C = A - z_0$. Se deja como ejercicio probar que C es convexo y abierto con $0 \in C$. Probar también que $y_0 = x_0 - z_0 \notin C$.

Sabemos que $G = \mathbb{R}y_0$ es un espacio de dimensión 1 y buscamos una función lineal, que en este espacio será de la forma

$$g: \mathbb{R}y_0 \to \mathbb{R}$$
$$ty_0 \mapsto g(ty_0) = t$$

Considero p el funcionar de Minkowski de C. Observemos

- Como $y_0 \notin C \Rightarrow p(y_0) \geqslant 1$
- Si t > 0, entonces $g(ty_0) = t \leqslant p(y_0) = p(ty_0)$
- Si t < 0, entonces $g(ty_0) = t < 0 \leqslant p(ty_0)$

En cualquier caso tendremos que

$$g(ty_0) \leqslant p(ty_0) \quad \forall t \in \mathbb{R}$$

Usando el teorema de Hanh-Banach tenemos que existe un $f:E\to\mathbb{R}$ lineal tal que

$$f_{|_G} = g$$

$$\mathbf{y}$$

$$f(y) \leqslant p(y) \leqslant M \|y\| \quad \forall x \in E$$

Por lo que podemos concluir que

$$|f(y)| \le M||y|| \quad \forall y \in E$$

lo que nos dice que f es continua. Nos queda probar que f es la aplicación que queremos buscar y por tanto tendremos que encontrar α , es decir, probar que $f(y) \leq 1 = f(y_0)$ para todo $y \in C$, lo que significaría que hemos separado C de y_0 . Se deja como ejercicio.

Paso 2: Consideramos $\emptyset \neq A \subset E$ abierto, $\emptyset \neq B \subset E$ convexos tales que $A \cap B = \emptyset$. Consideramos

$$A - B = \{a - b : a \in A, b \in B\}$$

y como $A \cap B = \emptyset$ sabemos que $0 \notin (A - B)$. Veamos ahora que A - B es abierto. Esto es muy sencillo ya que podemos escribir

$$A - B = \bigcup_{b \in B} (A - b)$$

y tenemos que es unión de abiertos trasladados que siguen siendo abiertos luego A-B es abierto. Se deja como ejercicio demostrar que A-B es convexo y terminar la demostración.

Teorema 0.10 (Segunda forma geométrica del teorema de Hanh-Banach). Sea $\emptyset \neq A \subset E$, $\emptyset \neq B \subset E$ tal que $A \cap B \neq \emptyset$ y con A y B convexos, A cerrado y B compacto. Entonces existe un hiperplano que separa estrictamente A y B, es decir,

$$\exists f: E \to \mathbb{R} \text{ lineal y continua}$$

$$y$$

$$\exists \alpha \in \mathbb{R}, \ \exists \varepsilon > 0: f(a) \leqslant \alpha - \varepsilon < \alpha < \alpha + \varepsilon \leqslant f(b) \quad \forall a \in A, \ \forall b \in B$$

Demostración. Consideramos el conjunto C:=A-B que sabemos que es convexo de la demostración del teorema anterior. Como A es cerrado y B es compacto sabemos que C es cerrado (se deja la demostración como ejercicio). Igual que antes, sabemos que $0 \notin C$ y además, como C es cerrado tenemos que $E \setminus C$ es abierto y tenemos que

$$\exists r > 0 : B_E(0,r) \cap C = 0$$

Por la primera forma geométrica del teorema de Hanh-Banach podemos separar $B_E(0,r)$ y C. El resto de la demostración se deja como ejercicio (la idea es separar estrictamente 0 de C y aprovechar la linealidad para separar estrictamente A de B).

Lema 0.11. Sean E, F espacios normados, $T \in L(E, F)$, entonces se tiene que

$$\sup_{\|x - x_0\| < r} \|T_x\| \geqslant r \|T\| \quad \forall x_0 \in E, \ \forall f > 0$$

Demostración. Tenemos, para todo $y \in E$ que

$$||T_y|| = ||T\left(\frac{1}{2}[x_0 + y - (x_0 - y)]\right)|| = \frac{1}{2}[||T(x_0 + y)|| + ||T(x_0 - y)||] \le$$

$$\le \max\{||T(x_0 + y)||, ||T(x_0 - y)||\} \quad \forall x_0 \in E$$

Además,

$$r||T|| = \sup_{\|y\| \le r} ||Ty|| \le \sup_{\|y\| \le r} \max\{||T(x_0 + y)||, ||T(x_0 - y)||\} \le \sup_{\|z - x_0\| \le r} ||Tz||$$

Proposición 0.12 (Principio de acotación uniforme). Sea E un espacio de Banach, F espacio normado, \mathcal{F} una familia de operadores $T \in L(E,F)$. Si $\sup_{T \in \mathcal{F}} \|T_x\| < \infty$ para todo $x \in E$, entonces $\sup_{T \in \mathcal{F}} \|T\| < \infty$.

Demostración. Por contradicción al absurdo. Supongamos que sup $||T|| = \infty$. Esto significa que existe una sucesión de operadores de \mathcal{F} , $\{T_n\} \subset \mathcal{F}$ con $||T_n|| \geqslant 4^n$ para

todo $n \in \mathbb{N}$. Tomo $x_0 = 0$ y $r = \frac{1}{3}$ y aplicamos el lema recién probado y llegamos a que existe un $x_1 \in B(x_0, 1/3)$

$$||T_1x_1|| > \frac{2}{3} \cdot \frac{1}{3}||T_1||$$

y seguimos contruyendo por inducción

$$\sup_{\|x-x_{n-1}\|<\frac{1}{3^n}} \|Tx\| \geqslant \frac{1}{3^n} \|T_n\| > \frac{2}{3} \cdot \frac{1}{3^n} \|T_n\|$$

Esto nos da una sucesión $\{x_n\} \subset E$ y veamos ahora que dicha sucesión es de Cauchy. Para ello tomamos m > n y tenemos

$$||x_{m} - x_{n}|| = ||x_{m} - x_{m-1} + x_{m-1} - x_{m-2} + \dots + x_{n+1} - x_{n}|| \le$$

$$\le ||x_{m} - x_{m-1}|| + ||x_{m-1} - x_{m-2}|| + \dots + ||x_{n+1} - x_{n}|| \le \frac{1}{3^{n}} + \frac{1}{3^{m-1}} + \dots + \frac{1}{3^{n+1}} =$$

$$= \frac{1}{3^{n}} \left[\frac{1}{3^{m-n} + \dots + \frac{1}{3}} \right] = \frac{1}{3^{n}} \sum_{i=1}^{\infty} \frac{1}{3^{i}} = \frac{1}{3^{n}} \cdot \frac{\frac{1}{3}}{1 - \frac{1}{3}} = \frac{1}{2} \cdot \frac{1}{3^{n}}$$

y tenemos que es de Cauchy en un espacio de Banach, luego $\{x_n\}$ converge a un $x \in E$. Tenemos además

$$\lim_{n \to \infty} ||x_m - x_n|| = ||\lim_{m \to \infty} (x_m - x_n)|| = ||x - x_n|| \leqslant \frac{1}{2} \cdot \frac{1}{3^n}$$

Vamos a estimar la norma de $T_n x$. Para ello escribimos

$$||T_n(x)|| = ||T_n(x - x_n + x_n)|| \ge ||T_n(x_n)|| - ||T_n(x - x_n)|| \ge \frac{2}{3} \cdot \frac{1}{3^n} ||T_n|| - ||T_n||||x - x_n|| \ge$$

$$\ge \left(\frac{2}{3} - \frac{1}{2}\right) \frac{1}{3^n} ||T_n|| = \frac{1}{6} \cdot \frac{1}{3^n} ||T_n|| \ge \frac{1}{6} \left(\frac{4}{3}\right)^n \to \infty$$

y en este caso tendríamos que

$$\sup_{T \in \mathcal{F}} ||Tx|| \geqslant \sup_{n \in \mathbb{N}} ||T_n x|| = \infty$$

por lo que llegamos a la contradicción buscada.

Lema 0.13 (Lema de Beire). Supongamos que X es un espacio métrico completo, $X_n \subset X$ tal que X_n cerrado y $int X_n = \emptyset$ para todo $n \in \mathbb{N}$. Etnonces se tiene que

$$int\left(\bigcup_{n=1}^{\infty} X_n\right) = \emptyset$$

Observación. El contrarrecíprodo del lema anterior sería:

Si X es un espacio métrico completo y $X_n \subset X$ es cerrado $\forall n \in \mathbb{N}$. Entonces

$$int\left(\bigcup_{n=1}^{\infty}X_n\right)\neq\emptyset\Rightarrow\exists n_0\in\mathbb{N} \text{ tal que } intX_{n_0}\neq\emptyset$$

Se recomienda ver este lema y su demostración en el libro de Brezis.

Ejercicio 0.4.1. Sean X, Y espacio de Banach, $T \in L(X, Y)$ y definimos

$$||y||_n := \inf\{||u||_X + n||v||_Y : u \in X, \ v \in Y, \ y = T(u) + v\} \quad \forall n \in \mathbb{N}, \ \forall y \in Y$$

Probar que $\|\cdot\|_n$ es una norma en Y que verifica

$$||y||_n \leqslant n||y||_y \quad \forall y \in Y$$

Además, si y = T(x), con $x \in X$ entonces se verifica

$$||y||_n \leqslant ||x||_X$$

0.5. Teorema de la aplicación abierta

Ejercicio 0.5.1. Sea $T:X\to Y$ lineal. Entonces se tiene que T es abierta si y solo si

$$\exists \delta > 0 \text{ tal que } B_Y(0, \delta) \subset T(B_X(0, 1))$$

Teorema 0.14 (Teorema de la aplicación abierta). Sean X, Y espacios de Banach, y $T \in L(X, Y)$ una aplicación sobreyectiva. Entonces T es abierta.

Demostración.

Paso 1. Vamos a demostrar en primer lugar que existe un r > 0 tal que

$$B_Y(0,r) \subset \overline{T(B_X(0,1))}$$

Para ello considero en el espacio Y la siguiente norma para todo $n \in \mathbb{N}$:

$$||y||_n = \inf\{||u||_X + n||v||_Y : u \in X, \ v \in Y, \ y = T(u) + v\} \quad \forall y \in Y$$

Abreviaremos la notación como

$$||y||_n = \inf_{y=T(u)+v} \{||u||_X + n||v||_Y\} \quad \forall y \in Y$$

entendiendo que es equivalente a la definición anterior. Consideramos ahora el siguiente espacio

$$Z\equiv \begin{array}{c} \text{espacio de todas las sucesiones } \{z_m\}_{m\in\mathbb{N}}\subset Y\\ \text{con un número finito de términos } z_m \text{ no nulo} \end{array}$$

y en dicho espacio podemos considerar

$$\|\{z_m\}_{m\in\mathbb{N}}\|_{\infty} = \max_{m\in\mathbb{N}} \|z_m\|_n$$

Se deja como ejercicio demostrar que esto es una norma en Z. Vamos a definir la aplicación

$$T_n: Y \to Z$$

 $y \mapsto T_n(y) = \{\delta_{nk}y\}_{k \in \mathbb{N}}$

donde δ_{nk} es la aplicación delta de Kronecker,

$$\delta_{nk} = \begin{cases} 1 & \text{si} \quad k = n \\ 0 & \text{si} \quad k \neq n \end{cases}$$

Con estas definiciones tenemos que $\forall y_1, y_2 \in Y$

$$T_n(y_1 + y_2) = \{\delta_{nk}(y_1 + y_2)\}_{k \in \mathbb{N}} = \{\delta_{nk}y_1 + \delta_{nk}y_2\}_{k \in \mathbb{N}} =$$

$$= \{\delta_{nk}y_1\}_{k \in \mathbb{N}} + \{\delta_{nk}y_2\}_{k \in \mathbb{N}} =$$

$$= T_n(y_1) + T_n(y_2)$$

por lo que T_n es lineal y además es continua con $||T_n||_{L(Y,Z)} \leq n$. Con esto tenemos que

$$||T_n(y)||_{\infty} = ||\{\delta_{nk}y\}_{k \in \mathbb{N}}||_{\infty} = \max_{k \in \mathbb{N}} ||\delta_{nk}y||_n = ||y||_n \leqslant n||y||_Y$$

Vemos ahora que $\forall y \in Y$ la sucesión $\{T_n(y)\}_{n \in \mathbb{N}}$ está acotada. Como T es sobreyectiva sabemos que $\exists x \in X$ tal que T(x) = y por lo que podemos escribir y = T(x) + 0 y tomando u = x, v = 0 y con la definición de la norma anterior tenemos que

$$||y||_n \le ||x||_X + n||0|| = ||x||_X$$

por lo que $||T_n(y)||_{\infty} \leq n||y||_Y \leq n||x||_X$ y tenemos que la sucesión $\{T_n(y)\}_{n\in\mathbb{N}}$ está acotada. Por el principio de acotación uniforme sabemos que $\{||T_n||(y)\}_{n\in\mathbb{N}}$ está acotada, es decir, que $\exists M \geqslant 0$ tal que

$$||T_n||_{Y(Y,Z)} \leq M \quad \forall n \in \mathbb{N}$$

lo que nos dice que

$$||T_n(y)||_{\infty} \leqslant M||y||_{Y} \quad \forall n \in \mathbb{N}$$

Sea $y \in B_Y(0, 1/M)$ y queremos ver que $y \in \overline{T(B_X(0, 1))}$. Para ello empecemos calculando

$$||y||_n = \inf_{y=T(u)+v} \{||u||_X + n||v||_Y\} \leqslant M||Y||_Y < M \cdot \frac{1}{M} = 1$$

Vamos ahora a definir

$$A = \{ \|u\|_X + n\|v\|_Y : y = T(u) + v, \ u \in X, \ v \in Y \}$$

y sabemos que ínf A < 1, luego $\exists a_n \in A$ tal que ínf $A \swarrow a_n < 1$

y podemos garantizar que $\exists u_n \subset X, \exists v_n \subset Y$ tales que si podemos escribir $y = T(u_n) + v_n$, entonces

$$||u_n|| + n||v_n||_Y < 1$$

por lo que además por ser suma de cantidades positivas tenemos

Evaluamos ahora T en u_n .

$$T(u_n) = \{T(u_n) + v_n - v_n\} = \{y - v_n\} \xrightarrow{Y} y \quad \text{(cuando } n \to \infty\text{)}$$

Sabemos que $v_n \to 0$ en Y cuando $n \to \infty$ y $T(u_n) \in T(B_X(0,1))$ y como $y = T(u_n) + v_n$ tendremos que $y \in \overline{T(B_X(0,1))}$ como queríamos demostrar.

Paso 2. Vamos a demostrar ahora que $B_Y(0, r/2) \subset T(B_X(0, 1))$. Esto es equivalente a probar que

$$\frac{1}{2^n}B\left(0,\frac{r}{2^n}\right)\subset\overline{\frac{1}{2^n}\cdot T\left(B_X\left(0,\frac{1}{2^n}\right)\right)}\iff B\left(0,\frac{r}{2^n}\right)\subset\overline{T\left(B_X\left(0,\frac{1}{2^n}\right)\right)}$$

Veámoslo por inducción. Para n=1 tenemos que

$$y \in B_Y\left(0, \frac{r}{2}\right) \subset \overline{T\left(B_X\left(0, \frac{1}{2}\right)\right)} \Rightarrow \exists x_1 \in B_X\left(0, \frac{1}{2}\right) : \|y - T(x_1)\| < \frac{r}{2^2}$$

Tenemos entonces

$$y - T(x_1) \in B_Y\left(0, \frac{r}{2^2}\right) \subset \overline{T\left(B_X\left(0, \frac{1}{2}\right)\right)} \Rightarrow$$
$$\Rightarrow \exists x_2 \in B_X\left(0, \frac{1}{2^2}\right) : \|y - T(x_1) - T(x_2)\| < \frac{r}{2^3}$$

Si repetimos este proceso podemos llegar a que

$$\exists x_n \in B_X\left(0, \frac{1}{2^n}\right) : \|y - \sum_{k=1}^n T(x_k)\| < \frac{r}{2^{n+1}}$$

Por lo tanto, tendríamos que

$$\sum_{n=1}^{\infty} ||x_n||_X \leqslant \sum_{n=1}^{\infty} \frac{1}{2^n} < \infty$$

por lo que $\sum_{n\geqslant 1} x_n$ converge en norma⁸. Por ser X un espacio de Banach tenemos que $\sum_{n=1}^{\infty} x_n = x$. Tenemos entonces $\|x\|_X \leqslant \sum_{n=1}^{\infty} \|x_n\|_X < 1$. Además, de lo anterior podemos concluir que

$$||y - \sum_{k=1}^{T} (x_k)|| < \frac{r}{2^{n+1}} \Rightarrow \sum_{k=1}^{\infty} T(x_k) = y$$

⁸o equivalentemente es de Cauchy

Y escribirmos ahora

$$T(x) = T\left(\sum_{k=1}^{\infty} x_k\right) = T\left(\lim_{N \to \infty} \sum_{k=1}^{N} x_k\right) \stackrel{T \text{ cont.}}{=} \lim_{N \to \infty} T\left(\sum_{k=1}^{N} x_k\right)$$

$$\stackrel{T \text{ lineal.}}{=} \lim_{N \to \infty} \sum_{N \to \infty}^{N} T(x_k) = \sum_{k=1}^{\infty} T(x_k) = y \in T(B_X(0, 1))$$

Teorema 0.15 (Teorema de la gráfica cerrada). Sean E, F espacios de Banach, $T: E \to F$ lineal. Entonces si T es continua si y solo si

$$Gr(T) = \{(x, T_x) : x \in E\}$$

es cerrado en $E \times F$.

Demostración.

- \Rightarrow) Se deja como ejercicio.
- \Leftarrow) Vamos a construir una nueva norma $\|\cdot\|_T$ que la definimos como

$$||x||_T := ||x||_E + ||T_x||_F \quad \forall x \in E$$

Veamos que es una norma.

- (i) $||x||_T \ge 0$ ya que es suma de dos normas.
- (ii) $\|\lambda x\|_T = \|\lambda x\|_E + \|T(\lambda x)\|_F = \|\lambda\| \|x\|_E + \|\lambda\| \|T_x\|_F = \|\lambda\| \|x\|_T$.
- (iii) $||x_1 + x_2||_T = ||x_1 + x_2||_E + ||T(x_1 + x_2)|| \le ||x_1||_E + ||x_2||_E + ||T_{x_1}||_F + ||T_{x_2}||_F = ||x_1||_E + ||x_2||_E$

y ya tenemos probado que es una norma. Veamos ahora que es completa. En efecto si $||x_n|| \subset E$ es de Cauchy para $||\cdot||_T$ se tiene que

 $\forall \varepsilon > 0 \quad \exists n_0 \in \mathbb{N} : n, m \geqslant n_0 \Rightarrow \|x_1 - x_2\|_E + \|T_{x_n} - T_{x_m}\|_F = \|x_n - x - m\|_T < \varepsilon$ por lo que tenemos que

$$\{x_n\}$$
 de Cauchy para $\|\cdot\|_E \stackrel{\text{E.Banach}}{\Longrightarrow} \exists x \in E : \|x_n - x\|_E \stackrel{(n \to \infty)}{\longrightarrow} 0$
 $\{T_{x_n}\}$ de Cauchy para $\|\cdot\|_F \stackrel{\text{E.Banach}}{\Longrightarrow} \exists y \in F : \|T_{x_n} - y\|_E \stackrel{(n \to \infty)}{\longrightarrow} 0$

Esto nos dice que $\{(x_n, T_{x_n})\} \xrightarrow{E \times F} (x, y)$. Además por hipótesis tenemos que $\{(x_n, T_{x_n})\} \subset Gr(T)$ cerrado en $E \times F$ luego se tiene que $(x, y) \in Gr(E) \Rightarrow y = T_x$.

$$||x_n - x||_T = ||x_n - x||_E + ||T_{x_n} - T_x||_F \stackrel{(n \to \infty)}{\longrightarrow} 0$$

Por la definición de $\|\cdot\|_T$ tenemos que

$$||x||_E \leqslant ||x||_T \quad \forall x \in E$$

y por el teorema de la aplicación abierta sabemos que

$$\exists k \geqslant 0 : ||x||_T \leqslant k||x||_E \quad \forall x \in E$$

luego se tiene que

$$||x||_E + ||T_x||_F \leqslant k||x||_E \quad \forall x \in E \Rightarrow k \geqslant 1$$

es decir,

$$||T_x||_F \leqslant (k-1)||x||_E \quad \forall x \in E$$

y tenemos entonces que es Lipschitziana y por tanto se tiene finalmente que T es continua en E.