(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005 年9 月1 日 (01.09.2005)

PCT

(10) 国際公開番号 WO 2005/081302 A1

(51) 国際特許分類⁷: **H01L 21/31**, C23C 16/44, H01L 21/3065

(21) 国際出願番号: PCT/JP2005/002394

(22) 国際出願日: 2005年2月17日(17.02.2005)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:

特願2004-043449 2004 年2 月19 日 (19.02.2004) JP 特願 2004-326316

2004年11月10日(10.11.2004) JP

特願 2004-334552

2004年11月18日(18.11.2004) JF

(71) 出願人 /米国を除く全ての指定国について): 東京エレクトロン株式会社 (TOKYO ELECTRON LIMITED) [JP/JP]; 〒1078481 東京都港区赤坂五丁目3番6号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 尾▲崎▼ 成 則 (OZAKI, Shigenori) [JP/JP]; 〒6600891 兵庫県尼崎 市扶桑町 1-8 東京エレクトロンAT株式会社内 Hyogo (JP). 野口 秀幸 (NOGUCHI, Hideyuki) [JP/JP]; 〒4070192 山梨県韮崎市穂坂町三ツ沢 6 5 0 番地 東京エレクトロンA T株式会社内 Yamanashi (JP). 壁 義郎 (KABE, Yoshiro) [JP/JP]; 〒6600891 兵庫県尼崎市扶桑町 1-8 東京エレクトロンA T株式会社内 Hyogo (JP). 伊佐 和裕 (ISA, Kazuhiro) [JP/JP]; 〒6600891 兵庫県尼崎市扶桑町 1-8 東京エレクトロンA T株式会社内 Hyogo (JP). 佐々木勝 (SASAKI, Masaru) [JP/JP]; 〒6600891 兵庫県尼崎市扶桑町 1-8 東京エレクトロンA T株式会社内 Hyogo (JP).

- (74) 代理人: 高山 宏志 (TAKAYAMA, Hiroshi); 〒2220033 神奈川県横浜市港北区新横浜3丁目18番9号 新 横浜ICビル6階 Kanagawa (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護 が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ,

/続葉有/

(54) Title: METHOD FOR CLEANING TREATMENT CHAMBER IN SUBSTRATE TREATING APPARATUS AND METHOD FOR DETECTING ENDPOINT OF CLEANING

(54) 発明の名称: 基板処理装置における処理室のクリーニング方法およびクリーニングの終点検出方法

16... GAS SUPPLYING SYSTEM

A... MICROWAVE

B... PLASMA

(57) Abstract: A method for cleaning a treatment chamber in a substrate treating apparatus for subjecting a substrate having a tungsten-based coating film to a plasma treatment, which comprises introducing a gas containing O_2 into the treatment chamber after the plasma treatment without opening the chamber to the atmosphere, to thereby form the plasma of the gas and clean the treatment chamber.

(57) 要約: タングステン系膜を含む基板にプラズマ処理を施す基板処理装置における処理室をクリーニングするにあたり、プラズマ処理後、大気開放することなく処理室内にO₂を含むガスを導入し、このガスのプラズマを形成して処理室をクリーニングする。

WO 2005/081302 A1 |||||||||

WO 2005/081302 A1

BY, KG, KZ, MD, RU, TJ, TM), $\exists \neg \neg \neg \lor \land$ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

補正書・説明書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

添付公開書類:

— 国際調査報告書

WO 2005/081302 1 PCT/JP2005/002394

明細書

基板処理装置における処理室のクリーニング方法およびクリーニングの終 点検出方法

技術分野

[0001] 本発明は、基板処理装置における処理室のクリーニング方法およびクリーニングの 終点検出方法に関し、より詳しくは、金属で汚染された処理室のクリーニング方法、 およびクリーニングの終点検出方法、ならびにその方法を実行するためのコンピュー タプログラムおよび記録媒体に関する。

背景技術

- [0002] 近時、LSIの高集積化、高速化の要請からLSIを構成する半導体素子のデザイン ルールが益々微細化されており、それにともなって、DRAM等に用いられるトランジ スタのゲート電極の低抵抗化が求められている。そのため、より抵抗の低いW系膜が ゲート電極として用いられつつあり、タングステンポリサイド(WSi/poly-Siの積層膜)や、より抵抗の低いタングステンポリメタルゲート(W/WN/poly-Siの積層構造) が注目されている。
- [0003] 一方、このようなタングステンポリメタルゲートやタングステンポリサイドを用いたゲート電極の製造プロセスにおいて、その側面のポリシリコンを選択酸化する工程が存在するが、その際に、タングステン酸化物を抑制しつつポリシリコンを選択酸化する観点から、プラズマ密度が高い低電子温度プラズマにより低温処理が可能な、RLSA(Radial Line Slot Antenna)マイクロ波プラズマ処理装置が用いられている(例えば特許文献1)。
- [0004] このような処理においては、タングステンを含むSiウエハを処理することとなり、処理後の処理チャンバーはタングステンで汚染された状態となる。このような処理チャンバーで次の選択酸化処理を行う場合には、タングステンが処理に悪影響を与え、タングステンがコンタミネーションとして素子に取り込まれるおそれがある他、タングステンによって酸化処理が妨げられ酸化レートが低下してしまう。したがって、処理後の処理チャンバーは、クリーニングにより汚染レベルを半導体素子を製造可能なレベルまで

低下させる必要がある。

- [0005] 従来、このようなタングステン(W)で汚染された処理チャンバーのクリーニングは、 処理チャンバーを大気開放して、チャンバー内部部品を酸などでウェットクリーニング し、それに加えて真空チャンバー内壁を酸、水、または溶剤をしみこませたワイパー により拭き取ることによって行っている。
- [0006] しかしながら、このようにクリーニングする場合には、処理チャンバーを大気開放する時間、ウェット洗浄する時間、再排気する時間、および排気後の処理チャンバーを再コンデショニングする時間等、数時間単位の時間を要し、スループットが低くなる原因となっている。
- [0007] 一方、プラズマを用いたドライクリーニング方法も検討されている。プラズマによるドライクリーニングは、一般に、クリーニングガスをプラズマ化してチャンバー内に付着した堆積物を除去する方法である。
- [0008] しかしながら、従来はドライクリーニングを用いても、タングステン(W)等の金属で汚染された処理室を高効率で清浄化することは未だ成功していない。
- [0009] また、ドライクリーニングにおいては、終点の判断が困難であるため、クリーニングの終了を時間管理で判断している。しかし、時間管理による場合は、予め設定した時間を基準にクリーニングを終了させるため、クリーニングが不十分であったり、逆にクリーニング時間が長すぎる等の不都合が生じる。クリーニングが不十分な場合は、チャンバー内に残留した堆積物がコンタミネーションを引き起こすため、再度クリーニングをやり直さなければならず煩雑であり、逆にクリーニング時間が長すぎる場合は、その分の時間とエネルギーが無駄に浪費されてしまう。

特許文献1:特開2000-294550号公報

発明の開示

- [0010] 本発明の目的は、基板処理装置におけるタングステン等の金属で汚染された処理室を、高効率で清浄化することができる、基板処理装置における処理室のクリーニング方法を提供することにある。
- [0011] 本発明の他の目的は、基板処理装置におけるタングステン等の金属で汚染された 処理室を清浄化する際に、簡易な方法で終点を把握できるクリーニングの終点検出

方法およびクリーニング方法を提供することにある。

- [0012] 本発明の第1の観点によれば、基板に対して減圧処理を施す基板処理装置における金属で汚染された処理室をクリーニングするクリーニング方法であって、前記処理後、大気開放することなく前記処理室内にOを含むガスを導入し、このガスのプラズマを形成して前記処理室をクリーニングする、基板処理装置における処理室のクリーニング方法が提供される。
- [0013] また、本発明の第2の観点によれば、金属を含む膜を有する基板にプラズマ処理を施す基板処理装置における処理室をクリーニングするクリーニング方法であって、前記処理後、大気開放することなく前記処理室内にOgを含むガスを導入し、このガスのプラズマを形成して前記処理室をクリーニングする、基板処理装置における処理室のクリーニング方法が提供される。
- [0014] 上記第1の観点において、前記基板の処理としては、金属を含む基板の酸化処理 を提供することができる。また、前記金属の典型例としてタングステンを挙げることが できる。さらに、前記基板の処理としては、プラズマ処理を適用することができる。
- [0015] 上記第2の観点において、前記金属を含む膜として、タングステン系膜を用いることができ、具体的なプラズマ処理としては、タングステン系膜とポリシリコン膜とを含むゲート電極の選択酸化処理を適用することができる。
- [0016] 上記第1の観点においてプラズマ処理を適用する場合、および上記第2の観点において、前記基板のプラズマ処理およびクリーニングは、平面アンテナを用いたプラズマまたは誘導結合型プラズマを用いたプラズマにより実施することができる。また、前記基板のプラズマ処理および前記クリーニングは、複数のスロットを有する平面アンテナにて前記処理室内にマイクロ波を導入して形成されるプラズマにより実施されることが好ましい。
- [0017] 上記第1の観点および第2の観点において、前記クリーニングは、O2ガス単独のプラズマ、O2ガスおよび不活性ガスのプラズマ、O2ガスおよびH2ガスおよび不活性ガスのプラズマにより実施することができる。この場合に、前記クリーニングを実施するプラズマのO2ガスに対するH2ガスの比が4以上であることが好ましく、8であることが特に好ましい。また、前記クリーニングは、処理室内の温度を略600℃にして行うこと

が好ましい。さらに、前記クリーニングは、処理室内の圧力を67Pa以下にして行うことが好ましい。

- [0018] さらにまた、前記クリーニングは、O2ガスおよび不活性ガスのプラズマと、O2ガスおよびH2ガスおよび不活性ガスのプラズマとを交互に形成して実施することができる。 前記クリーニングに先立って、前記処理室をプラズマにより加熱してもよい。前記基板処理装置としては、前記処理室のプラズマに曝される面の少なくとも一部が誘電体で構成されているものを好適に用いることができる。
- [0019] 本発明の第3の観点によれば、コンピュータ上で動作し、実行時に、金属を含む膜を有する基板にプラズマ処理を施す基板処理装置における処理室を、前記処理後、大気開放することなく前記処理室内にO₂を含むガスを導入し、このガスのプラズマを形成してクリーニングするクリーニング方法が行なわれるように前記基板処理装置を制御する、コンピュータプログラムが提供される。
- [0020] 本発明の第4の観点によれば、コンピュータ上で動作する制御プログラムが記憶された記憶媒体であって、前記制御プログラムは、実行時に、金属を含む膜を有する基板にプラズマ処理を施す基板処理装置における処理室を、前記処理後、大気開放することなく前記処理室内にO2を含むガスを導入し、このガスのプラズマを形成してクリーニングするクリーニング方法が行なわれるように、前記基板処理装置を制御するものである、記憶媒体が提供される。
- [0021] 本発明の第5の観点によれば、プラズマを発生させるプラズマ供給源と、前記プラズマにより、基板の処理を行なうための処理室を区画する処理容器と、前記処理容器内で前記基板を載置する基板支持台と、前記処理容器内を減圧するための排気手段と、前記処理容器内にガスを供給するためのガス供給手段と、金属を含む膜を有する基板にプラズマ処理を施す基板処理装置における処理室を、前記処理後、大気開放することなく前記処理室内にOを含むガスを導入し、このガスのプラズマを形成してクリーニングするクリーニング方法が行なわれるように制御する制御部とを具備する、プラズマ処理装置が提供される。
- [0022] 本発明の第6の観点によれば、金属を含む膜を有する基板にプラズマ処理を施す 基板処理装置における処理室を、前記処理後、大気開放することなく前記処理室内

にO₂を含むガスを導入し、このガスのプラズマを形成してクリーニングする工程と、前記クリーニング工程の後に、前記処理室内において基板に対してプラズマ処理を施す工程とを具備する基板処理方法が提供される。

- [0023] 本発明の第7の観点によれば、金属系膜が形成された基板の処理に用いるプラズマ処理装置の処理室をクリーニングガスのプラズマによりクリーニングするにあたり、クリーニングの終点を検出するクリーニングの終点検出方法であって、前記処理室内でクリーニングの進行に伴い増加するラジカルの発光強度を測定し、その値からクリーニングの終点検出を行なう、クリーニングの終点検出方法が提供される。
- [0024] 上記第7の観点において、前記クリーニングガスは、水素ガスと不活性ガスを含むガスであり、前記ラジカルは水素ラジカルであることが好ましい。また、前記基板の処理は、前記金属系膜を含む基板の酸化処理であることが好ましい。さらに、前記金属系膜がタングステン系膜であることが好ましい。またさらに、前記タングステン系膜を含む基板の酸化処理は、タングステン系膜とポリシリコン膜とを含む積層膜におけるポリシリコン膜の選択酸化処理であることが好ましい。また、前記選択酸化処理および前記クリーニングは、誘導結合方式によるプラズマ、平行平板方式によるプラズマまたは平面アンテナ方式によるプラズマにより実施されるか、あるいは、複数のスロットを有する平面アンテナにて前記処理室内にマイクロ波を導入して形成されるプラズマにより実施されることが好ましい。
- [0025] また、本発明の第8の観点によれば、金属系膜が形成された基板の処理に用いる プラズマ処理装置の処理室をクリーニングガスのプラズマによりクリーニングするクリ ーニング方法であって、前記処理室内でクリーニングの進行に伴い増加するラジカ ルの発光強度を測定し、その値からクリーニングの終点検出を行なう、クリーニング方 法が提供される。
- [0026] 上記第8の観点のクリーニング方法においては、前記金属系膜がタングステン系膜であることが好ましい。また、前記基板の処理後、大気開放することなく前記処理室内にクリーニングガスを導入し、クリーニングガスのプラズマを形成して前記処理室をクリーニングすることが好ましい。また、前記クリーニングは、誘導結合方式によるプラズマ、平行平板方式によるプラズマまたは平面アンテナ方式によるプラズマにより実

施されるか、あるいは、複数のスロットを有する平面アンテナにて前記処理室内にマイクロ波を導入して形成されるプラズマにより実施されることが好ましい。

- [0027] また、本発明の第9の観点によれば、コンピュータ上で動作し、実行時に、金属系膜が形成された基板の処理に用いるプラズマ処理装置の処理室をクリーニングガスのプラズマによりクリーニングする際に、前記処理室内でクリーニングの進行に伴い増加するラジカルの発光強度を測定し、その値からクリーニングの終点を検出するクリーニング方法が行なわれるようにプラズマ処理装置を制御する、制御プログラムが提供される。
- [0028] また、本発明の第10の観点によれば、コンピュータ上で動作する制御プログラムが記憶されたコンピュータ記憶媒体であって、前記制御プログラムは、実行時に、金属系膜が形成された基板の処理に用いるプラズマ処理装置の処理室をクリーニングガスのプラズマによりクリーニングする際に、前記処理室内でクリーニングの進行に伴い増加するラジカルの発光強度を測定し、その値からクリーニングの終点を検出するクリーニング方法が行なわれるように、プラズマ処理装置を制御するものである、コンピュータ記憶媒体が提供される。
- [0029] また、本発明の第11の観点によれば、プラズマを発生させるプラズマ供給源と、前記プラズマにより、基板の処理を行なうための処理室を区画する処理容器と、前記処理容器内で前記基板を載置する基板支持台と、前記処理容器内を減圧するための排気手段と、前記処理容器内にガスを供給するためのガス供給手段と、金属系膜が形成された基板の処理に用いるプラズマ処理装置の処理室をクリーニングガスのプラズマによりクリーニングする際に、前記処理室内でクリーニングの進行に伴い増加するラジカルの発光強度を測定し、その値からクリーニングの終点を検出するクリーニング方法が行なわれるように制御する制御部とを備えたプラズマ処理装置が提供される。
- [0030] 本発明によれば、金属を含む膜を有する基板のプラズマ処理等により金属で汚染された処理室を、大気開放することなくin-situでO₂を含むガスのプラズマにより処理することにより、タングステン等の金属成分を酸化させて昇華させることができ、極めて有効にタングステン等の金属成分を除去することができる。したがって、処理室を

大気開放する時間、ウェット洗浄する時間、再排気する時間、および排気後の処理 チャンバーを再コンデショニングする時間等が必要であった従来のクリーニング処理 に比較してクリーニング時間を著しく短縮することができる。

[0031] また、本発明によれば、タングステンで汚染されたチャンバー内をプラズマによってドライクリーニングするにあたり、水素ラジカル(H*)の発光強度をモニターすることにより、タングステン汚染量を容易に把握することができる。これにより、プラズマによるドライクリーニングの終点を明確に判定することが可能となる。したがって、従来の時間管理によるドライクリーニング方法において課題であったクリーニング不足に起因するコンタミネーションやクリーニングのやり直し、過剰なクリーニングなどを回避することができる。

図面の簡単な説明

[0032] [図1]本発明の第1の実施形態に係る処理室のクリーニング方法が実施されるプラズマ処理装置の一例を模式的に示す断面図。

[図2]図1のマイクロ波プラズマ装置に用いられる平面アンテナ部材の構造を示す図。

「図3A]従来のポリシリコンからなるゲート電極の構造を示す模式図。

[図3B]本発明の実施形態が適用されるW系膜を含むゲート電極の構造の一例を示す図。

[図3C]本発明の実施形態が適用されるW系膜を含むゲート電極の構造の他の例を示す図。

「図4A]本発明の一実施形態に係るクリーニング方法を説明するための図。

「図4B]本発明の一実施形態に係るクリーニング方法を説明するための図。

「図4C]本発明の一実施形態に係るクリーニング方法を説明するための図。

「図4D]本発明の一実施形態に係るクリーニング方法を説明するための図。

「図5]ガス組成によるW除去効果の差を実験した結果を示す図。

「図6]実際に本発明のクリーニング方法を実施した場合の効果を示す図。

「図7]図6のクリーニング方法を実施した際の酸化膜厚およびW濃度の変化を示す図

[図8]H / O 比を変化させて実際に本発明のクリーニング方法を実施した場合のクリーニング効果を示す図。

[図9]チャンバー内圧力を変化させて実際に本発明のクリーニング方法を実施した場合のクリーニング効果を示す図。

[図10]チャンバー壁温度(サセプタ温度)を変化させて実際に本発明のクリーニング 方法を実施した場合のクリーニング効果を示す図。

[図11]本発明の第2の実施形態に係る処理室のクリーニング方法が実施されるプラ ズマ処理装置の一例を模式的に示す断面図。

[図12]クリーニングを実施した際のサンプリング用ウエハの処理順番による発光強度および膜厚の変化を示すグラフ。

[図13]クリーニングを実施した際のサンプリング用ウエハの処理順番による発光強度 およびW濃度の変化を示すグラフ。

発明を実施するための最良の形態

- [0033] 以下、添付図面を参照して本発明の実施の形態について具体的に説明する。 図1は、本発明の第1の実施形態に係る処理室のクリーニング方法が実施されるプラズマ処理装置の一例を模式的に示す断面図である。
- [0034] このマイクロ波プラズマ処理装置100は、所定のパターンで複数のスロットが形成された平面アンテナであるRLSA(Radial Line Slot Antenna)を利用してマイクロ波発生源から導かれたマイクロ波をチャンバー内に放射し、プラズマを形成するRLSAマイクロ波プラズマ処理装置として構成されており、例えば、ゲート電極のポリシリコンの側壁を選択酸化する処理に用いられる。
- [0035] このプラズマ処理装置100は、気密に構成され、接地された略円筒状のチャンバー1を有している。チャンバー1の底壁1aの略中央部には円形の開口部10が形成されており、底壁1aにはこの開口部10と連通し、下方に向けて突出する排気室11が設けられている。チャンバー1内には被処理基板であるウエハWやダミーウエハWdを水平に支持するためのAlN等のセラミックスからなるサセプタ2が設けられている。このサセプタ2は、排気室11の底部中央から上方に延びる円筒状のAlN等のセラミックスからなる支持部材3により支持されている。サセプタ2の外縁部にはウエハWをガ

イドするためのガイドリング4が設けられている。また、サセプタ2には抵抗加熱型のヒータ5が埋め込まれており、このヒータ5はヒータ電源6から給電されることによりサセプタ2を加熱して、その熱で被処理体であるウエハWを加熱する。このとき、例えば室温から800℃までの範囲で温度制御可能となっている。なお、チャンバー1の内周には、誘電体、例えば石英からなる円筒状のライナー7が設けられている。

- [0036] サセプタ2には、ウエハWを支持して昇降させるためのウエハ支持ピン(図示せず) がサセプタ2の表面に対して突没可能に設けられている。
- [0037] チャンバー1の側壁には環状をなすガス導入部材15が設けられており、このガス導入部材15にはガス供給系16が接続されている。ガス導入部材はシャワー状に配置してもよい。このガス供給系16は、Arガス供給源17、H₂ガス供給源18、O₂ガス供給源19を有しており、これらガスが、それぞれガスライン20を介してガス導入部材15に至り、ガス導入部材15からチャンバー1内に導入される。なお、ガスライン20の各々には、マスフローコントローラ21およびその前後の開閉バルブ22が設けられている。
- [0038] 上記排気室11の側面には排気管23が接続されており、この排気管23には高速真空ポンプを含む排気装置24が接続されている。そしてこの排気装置24を作動させることによりチャンバー1内のガスが、排気室11の空間11a内へ均一に排出され、排気管23を介して排気される。これによりチャンバー1内は所定の真空度、例えば0.133 Paまで高速に減圧することが可能となっている。
- [0039] チャンバー1の側壁には、プラズマ処理装置100に隣接する搬送室(図示せず)と の間でウエハWや、ダミーウエハWdの搬入出を行うための搬入出口25と、この搬入 出口25を開閉するゲートバルブ26とが設けられている。
- [0040] チャンバー1の上部は開口部となっており、この開口部の周縁部に沿って突出する 環状の支持部27が設けられており、この支持部27に誘電体、例えば石英やAl O 等のセラミックスからなり、マイクロ波を透過するマイクロ波透過板28がシール部材29 を介して気密に設けられている。したがって、チャンバー1内は気密に保持される。
- [0041] マイクロ波透過板28の上方には、サセプタ2と対向するように、円板状の平面アンテナ部材31が設けられている。この平面アンテナ部材31は支持部27の上端に係止されている。平面アンテナ部材31は、導体、例えば表面が金メッキされた銅板または

アルミニウム板からなり、複数のマイクロ波放射孔(スロット)32が所定のパターンで貫通して形成された構成となっている。このマイクロ波放射孔32は、例えば図2に示すように長溝状をなし、隣接するマイクロ波放射孔32同士が交差するように、典型的には図示のように直交するように(「T」字状に)配置され、これら複数のマイクロ波放射孔32が同心円状に配置されている。すなわち、平面アンテナ部材31はRLSAアンテナを構成している。マイクロ波放射孔32の長さや配列間隔は、マイクロ波の波長等に応じて決定される。また、マイクロ波放射孔32は、円形状、円弧状等の他の形状であってもよい。さらに、マイクロ波放射孔32の配置形態は特に限定されず同心円状の他、例えば、螺旋状、放射状に配置することもできる。

- [0042] この平面アンテナ部材31の上面には、真空よりも大きい誘電率を有する誘電体からなる遅波材33が設けられている。
- [0043] チャンバー1の上面には、これら平面アンテナ部材31および遅波材33を覆うように、例えばアルミニウムやステンレス鋼等の金属材からなるシールド蓋体34が設けられている。チャンバー1の上面とシールド蓋体34とはシール部材35によりシールされている。シールド蓋体34には、冷却水流路34aが形成されている。なお、シールド蓋体34は接地されている。
- [0044] シールド蓋体34の上壁の中央には開口部36が形成されており、この開口部には 導波管37が接続されている。この導波管37の端部には、マッチング回路38を介して マイクロ波発生装置39が接続されている。これにより、マイクロ波発生装置39で発生 した例えば周波数2. 45GHzのマイクロ波が導波管37を介して上記平面アンテナ部 材31へ伝搬されるようになっている。なお、マイクロ波の周波数としては、8. 35GHz 、1. 98GHz等を用いることもできる。
- [0045] 導波管37は、上記シールド蓋体34の開口部36から上方へ延出する断面円形状の同軸導波管37aと、水平方向に延びる断面矩形状の矩形導波管37bとを有している。これらの間にはモード変換器40が設けられている。同軸導波管37aの中心には内導体41が延在しており、その下端部は、平面アンテナ部材31の中心に接続固定されている。
- [0046] プラズマ処理装置100の各構成部は、プロセスコントローラ50に接続されて制御さ

れる構成となっている。プロセスコントローラ50には、工程管理者がプラズマ処理装置100を管理するためにコマンドの入力操作等を行うキーボードや、プラズマ処理装置100の稼働状況を可視化して表示するディスプレイ等からなるユーザーインターフェース51が接続されている。

- [0047] また、プロセスコントローラ50には、プラズマ処理装置100で実行される各種処理を プロセスコントローラ50の制御にて実現するための制御プログラムや、処理条件に応 じてプラズマエッチング装置の各構成部に処理を実行させるためのプログラムすなわ ちレシピが格納された記憶部52が接続されている。レシピはハードディスクや半導体 メモリーに記憶されていてもよいし、CDROM、DVD等の可搬性の記憶媒体に収容 された状態で記憶部52の所定位置にセットするようになっていてもよい。さらに、他の 装置から、例えば専用回線を介してレシピを適宜伝送させるようにしてもよい
- [0048] そして、必要に応じて、ユーザーインターフェース51からの指示等にて任意のレシピを記憶部52から呼び出してプロセスコントローラ50に実行させることで、プロセスコントローラ50の制御下で、プラズマ処理装置100での所望の処理が行われる。
- [0049] このように構成されたプラズマ処理装置100においては、上述したように、ゲート電極の選択酸化処理が行われる。ゲート電極は、従来、図3Aに示すように、Si基板61上にゲート絶縁膜62を介してポリシリコン膜63を形成したものが用いられてきたが、LSIの高集積化、高速化にともなうデザインルールの微細化の要請から、ゲート電極の低抵抗化が求められており、図3Bに示すような、Si基板61上にゲート絶縁膜62を介してポリシリコン膜63を形成し、さらにその上にタングステンシリサイド(WSi)64を形成したタングステンポリサイド構造や、図3Cに示すような、Si基板61上にゲート絶縁膜62を介してポリシリコン膜63を形成し、さらにタングステンナイトライド(WN)膜65、およびタングステン(W)膜66を形成した、より抵抗の低いタングステンポリメタルゲート構造等、タングステン(W)を用いたゲートが用いられている。したがって、ポリシリコンのみを酸化する選択酸化が必要となる。なお、図3A~3Cにおいて、符号67はゲート電極をエッチングする際に用いられた、例えばSiN絶縁膜からなるハードマスク層、68は選択酸化により形成された酸化膜である。
- [0050] これらのうち、図3Cのタングステンポリメタルゲート電極を例にとってその製造工程

を説明すると、まず、Si基板61上に例えば熱酸化等によりゲート絶縁膜62を形成し、その上にCVDによりポリシリコン膜63、タングステンナイトライド(WN)膜65、タングステン(W)膜66、ハードマスク層67を順次成膜し、その上にフォトレジスト膜(図示せず)を形成した後、フォトリソグラフィーによりフォトレジスト膜をマスクとしてハードマスク層67をエッチングし、さらにフォトレジスト膜+ハードマスク層67またはハードマスク層67をマスクとしてタングステン(W)膜66、タングステンナイトライド(WN)膜65、ポリシリコン膜63を順次エッチングしてゲート電極構造を形成し、その後、以下の条件で選択酸化処理を行ってポリシリコン膜63の側壁に酸化膜68を形成し、図3Cの構造を得る。

- [0051] プラズマ処理装置100によりゲート電極の選択酸化処理を行う際には、まず、ゲートバルブ26を開にして搬入出口25からゲート電極が形成されたウエハWをチャンバー1内に搬入し、サセプタ2上に載置する。
- [0052] そして、ガス供給系16のArガス供給源17、 H_2 ガス供給源18、および O_2 ガス供給源19から、Arガス、 H_2 ガス、および O_2 ガスを所定の流量でガス導入部材15を介してチャンバー1内に導入し、所定の圧力に維持する。この際の条件としては、例えばガス流量を、Arガス:1000mL/min、 H_2 ガス:200mL/min、 O_2 ガス:100mL/min nと高 H_2 ガス濃度の条件とし、チャンバー内圧力を3~700Pa、例えば6.7Pa (50m Torr)とする。
- [0053] 次いで、マイクロ波発生装置39からのマイクロ波をマッチング回路38を経て導波管37に導く。マイクロ波は、矩形導波管37b、モード変換器40、および同軸導波管37aを順次通って平面アンテナ部材31に供給され、平面アンテナ部材31からマイクロ波透過板28を経てチャンバー1内におけるウエハWの上方空間に放射される。
- [0054] 平面アンテナ部材31からマイクロ波透過板28を経てチャンバー1に放射されたマイクロ波によりチャンバー1内ではH₂ガス、Arガス、およびO₂ガスがプラズマ化し、このプラズマによりウエハWのゲート電極のポリシリコン側壁を選択酸化する。このマイクロ波プラズマは、略10¹¹/cm³以上のプラズマ密度でかつ略0.5~2eVの低電子温度プラズマであり、低温かつ短時間で選択酸化処理を行って薄い酸化膜を形成することができ、しかも下地膜へのイオン等のプラズマダメージが小さい等のメリットが

ある。また、図3B、図3Cに示すようなタングステン(W)を含むゲート電極の場合に、このように高密度プラズマにより低温、短時間で、かつ高 H_2/O_2 のガス配合でポリシリコンの選択酸化処理を行うので、タングステン(W)の酸化による WO_x (WO $_3$ 、WO $_2$ 、またはWO)の昇華を極力抑えて極めて高精度の処理を行うことができる。

- [0055] しかしながら、WO の昇華は完全には防止することができず、昇華したWO によってチャンバー1内が汚染される。このような状態のチャンバー1で次のウエハに対して選択酸化処理を行う場合には、チャンバー1に付着したタングステン(W)が処理に悪影響を与えタングステン(W)がコンタミネーションとして素子に取り込まれるおそれがある他、タングステン(W)によって酸化処理が妨げられてしまう。したがって、選択酸化処理後のチャンバー1はクリーニングによりタングステン(W)の汚染レベルを例えば10¹¹ atoms/cm²オーダーまたはそれ以下、好ましくは10¹⁰ atoms/cm²オーダー以下のレベルまで清浄化する必要がある。汚染レベルは低いほど良い。
- [0056] 本実施形態においては、上述のようなWを含有するゲート電極のポリシリコン側壁 の選択酸化処理を行った後、Wによって汚染されたチャンバー1を大気開放すること なく、プラズマによるドライクリーニングを実施する。以下、このクリーニング処理について図4A~4Dを参照しながら説明する。
- [0057] 選択酸化処理後、まず、図4Aに示すように、大気開放することなく、ゲートバルブ2 6を開にして減圧状態に保持された搬送室70から搬入出口25を介して搬送装置71 により、清浄なダミーウエハWdをチャンバー1内に搬入し、サセプタ2上に載置する。 これはダミーウエハWdにて、サセプタ2をプラズマから保護するため、およびチャン バー1のクリーニング後にダミーウエハWdの表面を観察して汚染状態の改善度合い を評価するために行われる。なお、この工程は必須のものではなく、サセプタ2のダメージを考慮する必要がない場合にはダミーウエハWdは載置しなくてもよい。
- [0058] 次に、図4Bに示すように、チャンバー1内を排気しつつガス供給系16からO₂を含むガスをチャンバー1内に導入する。そして、図4Cに示すように、上記ポリシリコン側壁の選択酸化処理の際と同様、マイクロ波発生装置39からのマイクロ波をチャンバー1内に導き、O₂を含むガスをプラズマ化する。すなわち、マイクロ波発生装置39からのマイクロ波は、マッチング回路38を経て導波管37に導かれ、矩形導波管37b、

モード変換器40、および同軸導波管37a、遅波材33を順次通って平面アンテナ部材31に供給され、平面アンテナ部材31のスロットからマイクロ波透過板28を経てチャンバー1内に放射され、このマイクロ波によりチャンバー1内に導入されたO2を含むガスがプラズマ化する。その際に、図4Dに示すように、このプラズマにより、基本的にチャンバー1に付着したWO は昇華し、排気管23を介して排気され、これにより、チャンバー1内が清浄化される。この際に、処理ガス中にH2が含まれていると、WOが、環元されて、イオンなどのより不安定な状態となっていっそう昇華しやすくなるものと推測される。このようなクリーニング処理は、1枚のデバイスウエハの選択酸化処理が終了する毎に行うことが好ましい。また、選択酸化処理に先立って、クリーニング処理と同様の条件でシーズニング処理を行うことが好ましい。もちろん、デバイスウエハを複数枚処理した後にクリーニングするようにしてもよい。

- [0059] このようなクリーニング処理において、チャンバー1内の圧力は、例えば3~1333P aに設定される。この中では3~67Paが好ましく、例えば6. 7Paが例示される。また、チャンバー1内の温度(例えばサセプタ2の温度)は、45℃以上が好ましい。この際にサセプタ2の温度は高い方がよく、200~800℃が好ましく、400~800℃が特に好ましい。さらに、マイクロ波発生装置39のパワーは1. 0~5. 0kWが好ましい。
- [0060] 導入するO₂を含むガスは、O₂ガス単独でもよいが、好ましくはO₂ガス+Arガスであり、さらに好ましくはO₂ガス+H₂ガス+Arガスである。O₂ガス単独の場合には、その流量は50~1000mL/minが好ましく、特に、100~500mL/min程度が好ましい。O₂ガスの流量が多くなりすぎるとプラズマ密度が低下するため、クリーニング効果が低下してしまう。また、O₂ガスとArガスのプラズマの場合には、これらの流量を適切に調整することにより、O₂ガス単独の場合よりもクリーニング効果を高めることができる。これは、Arガスが入ることにより、プラズマ密度が高くなるためであると思われる。この場合の流量は、O₂ガス:10~500mL/min、Arガス:200~2000mL/minが好ましい。そして、さらにH₂ガスを適量加えたプラズマの場合は、クリーニング効果を一層高めることができる。O₂ガス+H₂ガス+Arガスの場合の流量は、O₂ガス:10~500mL/min、Arガス:200~2000mL/min、H₂ガス10~500mL/minが好ましい。O₂ガスに対するH₂ガスの流量比が2以上でクリーニング効果を高めることがで

き、4以上がより好ましく、さらには6以上である。

- [0061] また、O2ガス+Arガスと、O2ガス+H2ガス+Arガスとを交互に繰り返す、例えばO2ガス+ArガスにH2ガスを間欠的に添加することにより、クリーニング効果をさらに高めることができる。また、クリーニングガスの供給と、真空引きあるいはパージガスを導入しながらの真空引きとを交互に繰り返すことでさらに効果を高めることができる。
- [0062] さらに、図1の装置にHeガスまたはNeガスをチャンバー1内に導入するラインを設け、クリーニング条件のプラズマを生成する直前に、チャンバー内にHeガスまたはNeガスのプラズマを生成させることが好ましい。これにより、チャンバー1壁の表面温度をプラズマ加熱で上昇させておくことができ、WOを一層昇華させやすくなるため、クリーニング効率が上昇する。
- [0063] このように、本実施形態によれば、チャンバー1を大気開放することなく、プラズマによりクリーニングしてチャンバー壁のW成分を除去することができるので、チャンバーを大気開放する時間、ウェット洗浄する時間、再排気する時間、および排気後の処理チャンバーを再コンデショニングする時間等が必要であった従来のウェットクリーニング処理に比較してクリーニング時間を著しく短縮することができる。一例を挙げれば、従来少なくとも2時間必要であったものを、2~30分にすることができる。
- [0064] このようにしてクリーニング処理した後、上述した選択酸化処理のようなプラズマ処理 理が実施される。これにより、W汚染レベルが極めて低い清浄な状態でプラズマ処理 を行うことができ、Wコンタミネーションによる選択酸化処理の阻害等の不都合が生じない。
- [0065] 次に、本実施形態の効果を確認した実験について説明する。

まず、クリーニングのガス種および流量を変化させてクリーニング効果を確認した。この実験では、図1の装置を用い、最初にW汚染のないチャンバーに全面にW膜が形成されたSiウエハ(200mm)1枚をチャンバーに搬入し、クリーニング処理を模擬して、Oガス単独、Oガス+Arガス、Oガス+Hガス+Arガスを用い、流量を種々変化させてチャンバーに導入するとともに、マイクロ波発生装置のパワーを3.4kWとしてマイクロ波をチャンバーに導入し、ウエハ温度400℃でプラズマを180秒間生成した。チャンバー壁温度は45℃であった。

- [0066] 次いで、W膜が形成されたSiウエハを搬出し、清浄なベアSiウエハを搬入し、ポリシリコンの選択酸化条件と同様の条件にてプラズマ処理を行った。すなわち、ガス流量:Ar/H₂/O₂=1000/200/100mL/minとし、チャンバー内圧力:6.7Pa、マイクロ波発生装置のパワー:3.4kW、サセプタ温度:400℃、処理時間:110秒とした。
- [0067] この処理の後、ベアSiウエハを搬出し、その表面のW汚染量をTXRF(Total Reflection X-Ray Fluorescence:全反射蛍光X線分析)により計測した。このW汚染量は上述のクリーニング条件によってW付きウエハから取り去られたW量と強い相関があると考えられ、取り去られたW量が多いほどクリーニング効果が大きいと判断できるため、このW汚染量によってクリーニング効果の大小を判断した。結果を図5に示す。
- [0068] 図5に示すように、 O_2 ガス単独の場合、流量を100、300、500mL/minで変化させたが、これらの中で、300mL/minが最もクリーニング効果が高かった。これは、 O_2 ガスが多すぎるとプラズマ密度が低下しWOの生成率が低くなるためであると考えられる。 O_2 ガスとArガスの両方を供給した場合 $(Ar/O_2=1000/100mL/min)には、ベアSiウエハのW濃度が増加し、<math>O_2$ ガス単独の場合に比較してクリーニング効果が上昇することが確認された。
- [0069] 次に、実際のクリーニングテストを行った。
 ここでは、図1の構造の装置を用い、まず、チャンバーをクリーニングし、Wフリーの 状態とした。次いで、次の酸化処理と同じ条件でチャンバー内のシーズニングを行った。シーズニングは、チャンバー内において酸素プラズマ形成と真空引きとを少なくとも1サイクル実施することにより行った。
- [0070] その後、1枚目のサンプリング用のベアSiウエハをサセプタ上に載せ、ポリシリコンの選択酸化処理と同様の条件で酸化処理を行った。その際の条件は、ガス流量: Ar /H /O = 1000/200/100mL/minとし、チャンバー内圧力: 6.7Pa、マイクロ波発生装置のパワー: 3.4kW、ウエハ温度: 400℃、チャンバー壁温度: 45℃、処理時間: 110秒として酸化膜の膜厚が8nmとなるように実施した。処理後、この1枚目のサンプリング用ウエハを取り出して表面のW濃度を測定した。その結果W濃度は検

出限界の 3×10^8 atoms/cm²以下とWフリー(清浄)と確認された。なお、W濃度測定は、上述したTXRFを用いて行った(以下、同じ)。この値をチャンバーのリファレンスのW濃度とした。

- [0071] 引き続き、表面にW膜を有するSiウエハをサセプタ上に載置し、処理時間を2分間にした以外は同様の条件で酸化処理を行いチャンバー内を汚染させた。なお、この時間はデバイスウエハ約5枚の処理時間に相当する。処理後、このW膜付きウエハを搬出し、2枚目のサンプリング用のベアSiウエハをサセプタ上に載置し、1枚目のウエハと同様の条件で酸化処理を行った。処理後、この2枚目のサンプリング用ウエハを取り出して表面のW濃度を測定した。その結果、ウエハ表面のW濃度は約4×10¹⁰ atoms/cm²と高くなった。
- [0072] 次いで、Ar/O ガスによるプラズマクリーニングを行った。すなわち、ガス流量: Ar /O2=1000/300mL/min、チャンバー内圧力: 6.7Pa、マイクロ波発生装置のパワー: 3.4kW、サセプタ温度: 400℃、処理時間: 180秒の条件でクリーニング処理を行い、処理後、3枚目のサンプリング用のベアSiウエハをサセプタ上に載置し、1枚目のサンプリング用ウエハと同様の条件で酸化処理を行った。処理後、この3枚目のサンプリングウエハを取り出して表面のW濃度を測定した。その結果、ウエハ表面のW濃度は約1.3×10¹¹ atoms/cm²であった。以降、同様のクリーニング処理を行い、次いで1枚目のサンプリングウエハと同様の条件での酸化処理を行った後、W濃度測定する一連の操作を13枚目のサンプリング用ウエハまで合計11枚繰り返した。
- [0073] 最後に、14枚目のサンプリング用のベアSiウエハをサセプタに載置し、1枚目のサンプリング用ウエハと同じ条件で酸化処理を行った後、この14枚目のサンプリング用ウエハを取り出して表面のW濃度を測定した。これら一連の実験の結果を図6に示す。
- [0074] 図6は、横軸にウエハ番号(処理順番)をとり、縦軸にウエハ表面のW濃度をとって、本発明のクリーニングによる効果を示す図である。この図に示すように、本発明の範囲内の3分間のクリーニング処理がウエハ10枚分以内、すなわち30分間以内でW濃度が1×10¹⁰atoms/cm²以下となることが確認された。具体的には、21分以上、好ましくは27分以上でW濃度が1×10¹⁰atoms/cm²以下を達成可能であることが

確認された。

- [0075] また、各サンプリング用ウエハの選択酸化処理の際の酸化膜の厚さを測定した。この際の各サンプリングウエハにおける酸化膜厚を図7に示す。なお、図7には酸化膜厚の他、W濃度もプロットした。この図に示すように、1枚目のサンプリング用ウエハでは酸化膜の厚さが110秒の処理で7.99nmであったのに対し、2枚目ではWの汚染によりポリシリコンの酸化が妨げられて酸化膜の厚さが110秒で7.75nmと薄くなったが、チャンバー内がクリーニングされてW濃度が減少するにつれて酸化膜厚さが徐々に回復し、最後の14枚目のウエハにおける酸化膜の厚さは8.03nmであり、W汚染による酸化阻害が解消されていることが確認された。このことから理解されるように、W汚染量(W濃度)と酸化膜厚とは強い相関関係があり、酸化膜厚によってクリーニングの終点を把握することが可能である。
- [0076] 次に、条件を種々変化させて、実際のクリーニングテストを行った。 ここでは、図1の構造の装置を用い、上のテストと同様、まず、チャンバーをクリーニングし、Wフリーの状態とし、次いで、チャンバー内のシーズニングを行い、その後、1枚目のサンプリング用のベアSiウエハをサセプタ上に載せ、上記テストと同様に酸化処理を行った。処理後、この1枚目のウエハを取り出して表面のW濃度を測定し、W濃度は検出限界以下であることを確認した。
- [0077] 引き続き、表面にW膜を有するSiウエハをサセプタ上に載せ、上のテストと同様の条件でデバイスウエハ約1ロット(25枚相当)に対応する10分間酸化処理を行いチャンバー内をWで汚染させた。W膜付きウエハを搬出し、2枚目のサンプリング用ベアSiウエハをサセプタ上に載置し、1枚目と同様の条件で酸化処理を行った。処理後、この2枚目のサンプリングウエハを取り出して表面のW濃度を測定した。その結果、ウエハ表面のW濃度は10¹²atoms/cm²オーダーと高い値となった。
- [0078] 次いで、Ar/O₂/H₂ガスによるプラズマクリーニングを行った。すなわち、ガス流量の比率、チャンバー内圧力、チャンバー温度(サセプタ温度)を変化させ、処理時間180秒でクリーニング処理を行い、処理後、3枚目のサンプリング用のベアSiウエハをサセプタ状に載置し、1枚目のサンプリング用ウエハと同様の条件で酸化処理を行った。処理後、この3枚目のサンプリングウエハを取り出して表面のW濃度を測定し

- た。同様のクリーニング処理を行い、次いで1枚目のサンプリングウエハと同様の条件での酸化処理を行った後、W濃度測定する一連の操作を13枚目のサンプリングウエハまで合計11枚繰り返した。
- [0079] 最後に、14枚目のサンプリング用のベアSiウエハをサセプタに載置し、1枚目のウエハと同じ条件で酸化処理を行った後、この14枚目のウエハを取り出して表面のW 濃度を測定した。
- [0080] この際に、クリーニング処理の条件として、サセプタ温度を400℃、チャンバー内圧力を6.7Paとし、H2/O2比を0(Ar/O2/H2=1000:300:0mL/min),8(Ar/O2/H2=1000:50:400mL/min),10(Ar/O2/H2=700:50:500mL/min)と変化させて、上記クリーニング処理を行い、その後酸化処理を行ってサンプリング用ウエハ表面のW濃度を測定した。その結果を図8に示す。
- [0081] 図8に示すように、W濃度の測定値は、 O_2 ガスに対する H_2 ガスの流量比(H_2/O_2 比)が10までは、流量比の増加にともなって低下する傾向があり、その値が2以上で比較的良好なクリーニング効果が得られる。そして、 H_2/O_2 比が8で最もW濃度が低くなり、それを超えてもクリーニング効果が飽和する。このことから H_2/O_2 比が4以上がより好ましく、6以上がさらに好ましいことが確認された。
- [0082] 次に、サセプタ温度を400℃、ガス組成をAr/O2/H2=1000:50:400mL/minとし、チャンバー内圧力を6.7Paにした場合と126Paにした場合とで上記クリーニング処理を行い、その後酸化処理を行ってサンプリング用ウエハ表面のW濃度を測定した。その結果を図9に示す。
- [0083] 図9に示すように、チャンバー内圧力が低い6.7Paのほうが126PaよりもW濃度の 測定値が低い結果となった。このことから、チャンバー内圧力が低いほどクリーニング 効果が高いことが確認された。これは、W化合物の蒸気圧が高くなっているからと考 えられる。
- [0084] 次に、ガス組成をAr/O₂/H₂=1000:50:400mL/min、チャンバー内圧力を
 6. 7Paとし、サセプタ温度を400℃にした場合と600℃にした場合とで上記クリーニング処理を行い、表面のW濃度を測定した。その結果を図10に示す。
- [0085] 図10に示すように、サセプタ温度が高いほうがW濃度の測定値が低く、600℃の場

合に、W濃度が3. 6×10^{10} atoms/cm²と採用した条件の中では最も低くなった。これも、上記圧力を変化させた場合と同様、W化合物の蒸気圧が上昇したためであると考えられる。

- [0086] また、この際の14枚目のウエハにおける酸化膜の厚さは、ほぼ初期値と同等の8. 1nmであり、W汚染による酸化阻害が生じていないことが確認された。
- [0087] 次に、本発明の第2の実施形態について説明する。 図11は、本発明の第2の実施形態に係る処理室のクリーニング方法が実施される プラズマ処理装置の一例を模式的に示す断面図である。
- [0088] このプラズマ処理装置200は、前記図1のプラズマ処理装置に終点検出機能が付加されたものであり、図11において図1と同一のものには同一の符号を付して説明を省略する。
- [0089] このプラズマ処理装置200においては、チャンバー1の側壁の下部に、クリーニングの終点検出の際に利用される透光性の窓80が設けられている。この窓80に隣接して受光部81が配備され、受光部81はプラズマの発光強度を測定するためのモノクロメータなどの分光制御計82と電気的に接続されている。窓80を設けた位置は、平面アンテナ部材31から離れているためプラズマの影響を受けにくく、また排気経路にもなっていないため、窓80への付着物が少なく、安定して測定を行なうことができる。なお、分光制御計82の設置位置は特に限定されず、安定して測定可能な位置であればどの位置でもよい。また、チャンバー1内には、石英からなる円筒状のライナー7が設けられているので、窓80とライナー7を通してプラズマ中のラジカルの発光強度を測定可能である。ライナー7に開口を設けることは可能であるが、窓80への付着物防止の観点からはむしろ開口を設けないことが好ましい。
- [0090] プロセスコントローラ50は、接続配線53によって分光制御計82と電気的に接続されており、上記機能の他、分光制御計82で検出されたH*ラジカル等の発光強度の情報を解析し、クリーニングの終点判断を行なう。そして、プロセスコントローラ50の指示により、例えばクリーニングを自動停止したり、クリーニングが終了した旨をユーザーインターフェース51のディスプレイに表示したりする。
- [0091] このように構成されたプラズマ処理装置200においては、第1の実施形態と同様に

、ゲート電極の選択酸化処理が行われ、その後、WO の昇華により汚染されたチャンバー1を大気開放することなく、プラズマによるドライクリーニングを実施する。なお、本実施形態の場合には、クリーニングガスとして水素含有ガスが必須である。

- [0092] 具体的には、上述の図4A~4Dに従ってクリーニング処理を実施する。選択酸化処理後、まず、図4Aに示すように、大気開放することなく、ゲートバルブ26を開にして減圧状態に保持された搬送室70から搬入出口25を介して搬送装置71により、必要に応じて清浄なダミーウエハWdをチャンバー1内に搬入し、サセプタ2上に載置する。その後、図4Bに示すように、チャンバー1内を排気しつつガス供給系16からAr /H /O からなるクリーニングガスをチャンバー1内に導入する。そして、図4Cに示すように、上記ポリシリコン側壁の選択酸化処理の際と同様、マイクロ波発生装置39からのマイクロ波をチャンバー1内に導き、クリーニングガスをプラズマ化する。その際に、図4Dに示すように、このプラズマにより、第1の実施形態と同様にして、チャンバー1内が清浄化される。
- [0093] このようなクリーニング処理において、チャンバー1内の圧力は、例えば3~1333P aに設定される。また、チャンバー1内の温度(例えば、チャンバー壁やサセプタ2の温度)は、45℃以上が好ましい。この際、サセプタ2の温度は高い方がよく、略400~800℃がより好ましい。また、クリーニング中は、連続的にチャンバー1の排気を行なってもよいが、間欠的に排気を行なうようにすることが好ましい。また、排気の際にパージガスを流しても効果がある。
- [0094] 導入するクリーニングガスは、例えば、H₂ガス+Arガスでもよいが、O₂ガス+H₂ガス+Arガスが好ましい。H₂ガスを適量加えることにより、クリーニング効果を高めることができる。O₂ガス+H₂ガス+Arガスの場合の流量は、O₂ガス:10~500mL/min、Arガス:200~2000mL/min、H₂ガス:40~2000mL/minが好ましい。O₂ガスに対するH₂ガスの流量比が2以上でクリーニング効果を高めることができ、4以上がより好ましく、さらには6以上である。また、O₂ガス+Arガスと、O₂ガス+H₂ガス+Arガスとを交互に繰り返す、すなわちO₂ガス+ArガスにH₂ガスを間欠的に添加することにより、クリーニング効果をさらに高めることができる。また、クリーニングガスの供給と、真空引きあるいはパージガスを導入しながらの真空引きとを交互に繰り返すこ

とでさらに効果を高めることができる。さらに、図11の装置にHeガスまたはNeガスをチャンバー1内に導入するラインを設け、クリーニング条件のプラズマを生成する直前に、チャンバー内にHeガスまたはNeガスのプラズマを生成させることが好ましい。これにより、チャンバー1壁の表面温度をプラズマ加熱で上昇させておくことができ、WOを一層昇華させやすくなるため、クリーニング効率が上昇する。さらに、マイクロ波楽生装置39のパワーは1.0~5.0kWが好ましい。

- [0095] クリーニング中は、チャンバー1内のプラズマ中のラジカルの発光強度を分光制御計82によって測定する。分光制御計82では、受光部81で検知したプラズマの発光がスペクトルに分けられる。分光制御計82により測定されるラジカルの発光スペクトルの中から、クリーニングの進行に伴って増加するラジカル、例えば水素ラジカルH*の波長656nmの発光強度を測定し、モニターする。本実施形態では、H*の発光強度が、ほぼ初期状態(Wによる汚染前の状態)まで回復した時点を以てクリーニングの終点を知ることができる。また、クリーニングの終点は、H*の発光強度を経時的にグラフ化し、その変化率(例えば発光強度のグラフの接線の傾き)から判定することもできる。
- [0096] 水素ラジカルの発光強度によりクリーニングの終点検出が可能となるメカニズムは 未だ明らかではないが、以下のように考えれば合理的な説明が可能となる。
- [0097] チャンバー内を汚染しているタングステンは、多くの場合、酸化物(WO)としてチャンバー壁等に付着しているものと考えられる。クリーニングガスプラズマ中のH*は、このWOを還元する際に消費されることから、クリーニングが進行し、残存WOが低減*するに従いH*消費量も少なくなるため、H*の発光強度が回復していき、WOの残ながなくなった時点で、H*の発光強度はほぼ初期状態(汚染前の状態)まで回復するものと推察される。
- [0098] このように、本実施形態によれば、チャンバー1を大気開放することなくプラズマによりクリーニングする際に、H*の発光強度をモニターすることにより、クリーニングの終点の検出を精度よく、確実に行えるので、クリーニング不足や過剰なクリーニングによる問題が生じることがなく、時間管理によってクリーニングを終了していた従来のクリーニング方法に比べて有利である。また、例えば、ICP-MS(誘導結合プラズマ質量

分析装置)やTXRF(全反射蛍光X線分析)などにより時間と費用をかけてクリーニングの終点を確認する必要がない。また、H*の発光強度をモニターすることにより、チャンバー内の異常によって汚染が生じたことも把握することができる。

[0099] 次に、本実施形態の効果を確認した試験について説明する。

チャンバ内のW汚染に対し、図11と同様のプラズマ処理装置200を用い、RLSAプラズマによる in-situ クリーニングを実施し、H*の発光をモニターした。なお、この試験では、クリーニングガスとして、 $Ar/H_2/O_2$ の混合ガスを用い、流量比は $Ar/H_2/O_2$ =1000/400/50mL/min、チャンバー内圧力は、6. 7Pa (50mT)、マイクロ波発生装置のパワー3. 4kW、サセプタ2の温度400°C、チャンバー壁温度45°Cでクリーニングを実施した。

- [0100] まず、W汚染の無いチャンバー内に清浄なサンプリング用のベアSiウエハ(サンプリング用ウエハNo. 1)を搬入し、選択酸化プロセス条件にてプラズマ処理し、イニシャルサンプルを作成した。選択酸化プロセス条件は、処理ガスとしてAr/H2/O2の混合ガスを用い、流量比はAr/H2/O2=1000/200/100mL/min、チャンバー内圧力は、6.7Pa(50mT)、マイクロ波発生装置のパワー3.4kW、サセプタ2の温度400℃、チャンバー壁温度45℃で酸化膜の膜厚が8nmとなるように実施した。
- [0101] サンプリング用ウエハNo. 1をチャンバー1から搬出した後、清浄なサンプリング用のベアSiウエハ(サンプリング用ウエハNo. 2)を搬入し、同様の選択酸化プロセス条件にてプラズマ処理を施した。選択酸化処理後のサンプリング用ウエハNo. 2をチャンバーから搬出した後、60nm程度の厚みで全面にタングステン(W)が蒸着されたWブランケットウエハを搬入、酸化処理し、チャンバー内をタングステン(W)で強制的に汚染させた。
- [0102] 次に、W汚染ウエハをチャンバー1から搬出し、清浄なサンプリング用のベアSiウエハ(サンプリング用ウエハNo. 3)を搬入し、前記選択酸化プロセス条件でプラズマ処理を実施し、モニターサンプルを作成した。
- [0103] サンプリング用ウエハNo. 3をチャンバー内から搬出した後、前記クリーニング条件でプラズマクリーニングを実施し、処理後、清浄なサンプリング用のベアSiウエハ(サンプリング用ウエハNo. 4)を搬入し、サンプリング用ウエハNo. 1と同様の条件で選

択酸化処理を実施した。以降、同様のクリーニング処理を行い、次いでサンプリング 用ウエハNo. 1のサンプリングウエハと同様の条件での選択酸化処理を行う操作を1 1枚のサンプリング用のベアSiウエハ(サンプリング用ウエハNo. 5~15)について繰り返した。

- [0104] 以上の各サンプリング用ウエハ処理の選択酸化処理において、モノクロメータにより H*の波長をモニターし、W汚染ウエハを処理する前のH*の発光強度と、ドライクリーニング後のH*(波長:656nm)の発光強度を比較した。その結果を図12に示す。 図12には、チャンバー1内に上記サンプリング用ウエハNo. 1~15のウエハを入れて選択酸化処理を行なった時の各発光強度と、クリーニング処理前後に行なったベアSiの選択酸化処理の膜厚を示している。この図12から、ベアSiウエハの処理枚数が増え、クリーニングが進むに従い、H*の発光強度が回復していくことがわかる。また、この処理の後、サンプリング用のベアSiウエハ(サンプリング用ウエハNo. 16)を搬出し、その表面のW汚染量をTXRF(全反射蛍光X線分析)により計測したところ、タングステン(W)は検出されず、クリーニングが完了していることが確認された。
- [0105] また、各サンプリング用ウエハの選択酸化処理の際の酸化膜の厚さを測定した。その結果サンプリング用ウエハNo. 1では酸化膜の厚さが210秒の処理で7. 85nmであったのに対し、サンプリング用ウエハNo. 3ではW汚染によりポリシリコンの酸化が妨げられて酸化膜の厚さが210秒で7. 3nmと薄くなった。これに対し、サンプリング用ウエハNo. 15における酸化膜の厚さは7. 7nmであり、チャンバー内のクリーニングが完了し、W汚染が解消されるに従い、W汚染による酸化阻害が生じなくなったことが確認された。
- [0106] 上述した図7に示すように、選択酸化処理の際の酸化膜厚とW汚染度(W濃度)とは強い相関があり、結局、H*の発光強度をモニターすることにより、W汚染度(W濃度)を把握することができる。この場合におけるH*の発光強度とW汚染度(W濃度)との関係は、例えば図13に示すようになる。
- [0107] なお、本発明は上記実施形態に限定されることなく種々変形可能である。たとえば 、上記実施の形態では、処理装置としてマイクロ波を複数のスロットを有する平面アン テナでチャンバー内に伝播して低電子温度で高密度のプラズマを形成するプラズマ

処理装置を用いたが、このような装置構成以外の平面アンテナを適用した装置、反射波プラズマ装置を用いることができる。また、アンテナに高周波電力を印加し、これによって誘電体を介して生じる誘導電界を利用する誘導結合型プラズマ処理装置によりプラズマを形成するようにすることもできる。これによっても高密度のプラズマを生成することができる。さらに、これら限らず、容量結合型プラズマやマグネトロンを用いたプラズマ等の他のプラズマ処理装置処理でも、プラズマ処理以外の処理装置でも、容器(チャンバー)内に金属汚染が生じる処理装置であれば適用可能である。また、クリーニング処理をこのようなマイクロ波を複数のスロットを有する平面アンテナでチャンバー内に伝播してプラズマを生成することにより行ったが、これに限らず、上述したような、これ以外の平面アンテナを適用したプラズマや誘導結合型プラズマも好適に用いることができるし、容量結合型等、他のプラズマであってもよい。また、上記実施形態では金属がWの場合について示したが、W以外の他の金属、例えばCo、Ni、Ba、Sr、Ti、Hf、Zr、Ru、Cu等にも適用することができる。また、水素ラジカルの発光を測定する例について示したが、ラジカルの発光が測定可能なガスであれば適用可能である。

- [0108] さらに、第1の実施形態において、クリーニングガスとして、 O_2 ガス単独、 O_2 ガス+ Arガス、 O_2 ガス+ H_2 ガス+Arガスを例示したが、 O_2 ガスを含むものであればよく、これら組み合わせに限定されない。また、上記組み合わせにおけるArガスを他の不活性ガス(He、Ne、Kr、Xe)に置き換えることも可能である。
- [0109] また、第2の実施形態において、クリーニングガスとして、H₂ガス+Arガス、O₂ガス +H₂ガス+Arガスを例示し、クリーニングの終点をクリーニングの進行にともない増 加する水素ラジカルH*の発光強度を測定することにより検出する例について示した が、これに限るものではない。また、上記組み合わせにおけるArガスを他の不活性ガ ス(He、Ne、Kr、Xe)に置き換えることも可能である。

請求の範囲

- [1] 基板に対して減圧処理を施す基板処理装置における金属で汚染された処理室を クリーニングするクリーニング方法であって、
 - 前記処理後、大気開放することなく前記処理室内にO₂を含むガスを導入し、このガスのプラズマを形成して前記処理室をクリーニングする、基板処理装置における処理室のクリーニング方法。
- [2] 請求項1に係るクリーニング方法において、前記基板の処理は金属を含む基板の 酸化処理である、処理室のクリーニング方法。
- [3] 請求項1に係るクリーニング方法において、前記金属はタングステンである、処理室のクリーニング方法。
- [4] 請求項1に係るクリーニング方法において、前記基板の処理はプラズマ処理である 、処理室のクリーニング方法。
- [5] 請求項4に係るクリーニング方法において、前記基板のプラズマ処理およびクリーニングは、平面アンテナを用いたプラズマまたは誘導結合型プラズマを用いたプラズマにより実施される、処理室のクリーニング方法。
- [6] 請求項4に係るクリーニング方法において、前記基板のプラズマ処理および前記クリーニングは、複数のスロットを有する平面アンテナにて前記処理室内にマイクロ波を 導入して形成されるプラズマにより実施される、処理室のクリーニング方法。
- [7] 請求項1に係るクリーニング方法において、前記クリーニングは、O₂ガス単独、またはO₂ガスおよび不活性ガスのプラズマにより実施される、処理室のクリーニング方法。
- [8] 請求項1に係るクリーニング方法において、前記クリーニングは、 O_2 ガスおよび H_2 ガスおよび不活性ガス、または O_2 ガスおよび H_2 ガスのプラズマにより実施される、処理室のクリーニング方法。
- [9] 請求項8に係るクリーニング方法において、前記クリーニングを実施するプラズマの O_ガスに対するH_ガスの比が2以上である、処理室のクリーニング方法。
- [10] 請求項8に係るクリーニング方法において、前記クリーニングを実施するプラズマの O₂ガスに対するH₂ガスの比が4以上である、処理室のクリーニング方法。

- [11] 請求項1に係るクリーニング方法において、前記クリーニングに先立って、前記処理 室をプラズマにより加熱する、処理室のクリーニング方法。
- [12] 請求項1に係るクリーニング方法において、前記基板処理装置は、前記処理室の プラズマに曝される面の少なくとも一部が誘電体で構成されている、処理室のクリー ニング方法。
- [13] 金属を含む膜を有する基板にプラズマ処理を施す基板処理装置における処理室 をクリーニングするクリーニング方法であって、

前記処理後、大気開放することなく前記処理室内にO₂を含むガスを導入し、このガスのプラズマを形成して前記処理室をクリーニングする、基板処理装置における処理室のクリーニング方法。

- [14] 請求項13に係るクリーニング方法において、前記金属を含む膜は、タングステン系膜である、処理室のクリーニング方法。
- [15] 請求項14に係るクリーニング方法において、前記金属を含む膜を有する基板のプラズマ処理は、タングステン系膜とポリシリコン膜とを含むゲート電極の選択酸化処理である、クリーニング方法。
- [16] 請求項13に係るクリーニング方法において、前記基板のプラズマ処理およびクリーニングは、平面アンテナを用いたプラズマまたは誘導結合型プラズマを用いたプラズマにより実施される、クリーニング方法。
- [17] 請求項13に係るクリーニング方法において、前記基板のプラズマ処理および前記 クリーニングは、複数のスロットを有する平面アンテナにて前記処理室内にマイクロ波 を導入して形成されるプラズマにより実施される、クリーニング方法。
- [18] 請求項13に係るクリーニング方法において、前記クリーニングは、O2ガス単独、またはOガスおよび不活性ガスのプラズマにより実施される、処理室のクリーニング方法。
- [19] 請求項13に係るクリーニング方法において、前記クリーニングは、 O_2 ガスおよび H_2 ガスおよび不活性ガス、または O_2 ガスおよび H_2 ガスのプラズマにより実施される、処理室のクリーニング方法。
- [20] 請求項19に係るクリーニング方法において、前記クリーニングを実施するプラズマ

- のO₂ガスに対するH₂ガスの比が2以上である、処理室のクリーニング方法。
- [21] 請求項19に係るクリーニング方法において、前記クリーニングを実施するプラズマのO_ガスに対するH_ガスの比が4以上である、処理室のクリーニング方法。
- [22] 請求項13に係るクリーニング方法において、前記クリーニングに先立って、前記処理室をプラズマにより加熱する、処理室のクリーニング方法。
- [23] 請求項13に係るクリーニング方法において、前記クリーニングは、処理室内の温度を略400~800℃にして行う、処理室のクリーニング方法。
- [24] 請求項13に係るクリーニング方法において、前記クリーニングは、処理室内の圧力を126Pa未満にして行う、処理室のクリーニング方法。
- [25] 請求項13に係るクリーニング方法において、前記基板処理装置は、前記処理室の プラズマに曝される面の少なくとも一部が誘電体で構成されている、処理室のクリー ニング方法。
- [26] コンピュータ上で動作し、実行時に、金属を含む膜を有する基板にプラズマ処理を施す基板処理装置における処理室を、前記処理後、大気開放することなく前記処理室内にO2を含むガスを導入し、このガスのプラズマを形成してクリーニングするクリーニング方法が行なわれるように前記基板処理装置を制御する、コンピュータプログラム。
- [27] コンピュータ上で動作する制御プログラムが記憶された記憶媒体であって、前記制御プログラムは、実行時に、金属を含む膜を有する基板にプラズマ処理を施す基板処理装置における処理室を、前記処理後、大気開放することなく前記処理室内にO2を含むガスを導入し、このガスのプラズマを形成してクリーニングするクリーニング方法が行なわれるように、前記基板処理装置を制御するものである、記憶媒体
- [28] プラズマを発生させるプラズマ供給源と、

前記プラズマにより、基板の処理を行なうための処理室を区画する処理容器と、 前記処理容器内で前記基板を載置する基板支持台と、

前記処理容器内を減圧するための排気手段と、

前記処理容器内にガスを供給するためのガス供給手段と、

金属を含む膜を有する基板にプラズマ処理を施す基板処理装置における処理室を、前記処理後、大気開放することなく前記処理室内にO₂を含むガスを導入し、このガスのプラズマを形成してクリーニングするクリーニング方法が行なわれるように制御する制御部とを具備する、プラズマ処理装置。

[29] 金属を含む膜を有する基板にプラズマ処理を施す基板処理装置における処理室 を、前記処理後、大気開放することなく前記処理室内にO2を含むガスを導入し、この ガスのプラズマを形成してクリーニングする工程と、

前記クリーニング工程の後に、前記処理室内において基板に対してプラズマ処理 を施す工程と

を具備する基板処理方法。

[30] 金属系膜が形成された基板の処理に用いるプラズマ処理装置の処理室をクリーニングガスのプラズマによりクリーニングするにあたり、クリーニングの終点を検出するクリーニングの終点検出方法であって、

前記処理室内でクリーニングの進行に伴い増加するラジカルの発光強度を測定し、その値からクリーニングの終点検出を行なう、クリーニングの終点検出方法。

- [31] 請求項30に係るクリーニングの終点検出方法において、前記クリーニングガスは、 少なくとも水素ガスを含むガスであり、前記ラジカルは水素ラジカルである、クリーニン グの終点検出方法。
- [32] 請求項31に係るクリーニングの終点検出方法において、前記クリーニングガスは、 さらに酸素ガスを含む、クリーニングの終点検出方法。
- [33] 請求項30に係るクリーニングの終点検出方法において、前記基板の処理は、前記 金属系膜を含む基板の酸化処理である、クリーニングの終点検出方法。
- [34] 請求項30に係るクリーニングの終点検出方法において、前記金属系膜がタングス テン系膜である、クリーニングの終点検出方法。
- [35] 請求項34に係るクリーニングの終点検出方法において、前記タングステン系膜を含む基板の酸化処理は、タングステン系膜とポリシリコン膜とを含む積層膜におけるポリシリコン膜の選択酸化処理である、クリーニングの終点検出方法。
- [36] 請求項35に係るクリーニングの終点検出方法において、前記選択酸化処理および

前記クリーニングは、誘導結合方式によるプラズマ、平行平板方式によるプラズマ、 平面アンテナ方式によるプラズマ、反射波プラズマ、またはマグネトロンプラズマにより実施される、クリーニングの終点検出方法。

- [37] 請求項35に係るクリーニングの終点検出方法において、前記選択酸化処理および 前記クリーニングは、複数のスロットを有する平面アンテナにて前記処理室内にマイ クロ波を導入して形成されるプラズマにより実施される、クリーニングの終点検出方法
- [38] 金属系膜が形成された基板の処理に用いるプラズマ処理装置の処理室をクリーニングガスのプラズマによりクリーニングするクリーニング方法であって、 前記処理室内でクリーニングの進行に伴い増加するラジカルの発光強度を測定し、その値からクリーニングの終点検出を行なう、クリーニング方法。
- [39] 請求項38に係るクリーニング方法において、前記金属系膜がタングステン系膜である、クリーニング方法。
- [40] 請求項38に係るクリーニング方法において、前記基板の処理後、大気開放することなく前記処理室内にクリーニングガスを導入し、クリーニングガスのプラズマを形成して前記処理室をクリーニングする、クリーニング方法。
- [41] 請求項38に係るクリーニング方法において、前記クリーニングは、誘導結合方式によるプラズマ、平行平板方式によるプラズマまたは平面アンテナ方式によるプラズマ、 反射波プラズマ、またはマグネトロンプラズマにより実施される、クリーニング方法。
- [42] 請求項38に係るクリーニング方法において、前記クリーニングは、複数のスロットを 有する平面アンテナにて前記処理室内にマイクロ波を導入して形成されるプラズマ により実施される、クリーニング方法。
- [43] コンピュータ上で動作し、実行時に、金属系膜が形成された基板の処理に用いるプラズマ処理装置の処理室をクリーニングガスのプラズマによりクリーニングする際に、前記処理室内でクリーニングの進行に伴い増加するラジカルの発光強度を測定し、その値からクリーニングの終点を検出するクリーニング方法が行なわれるようにプラズマ処理装置を制御する、制御プログラム。
- [44] コンピュータ上で動作する制御プログラムが記憶されたコンピュータ記憶媒体であ

って、

前記制御プログラムは、実行時に、金属系膜が形成された基板の処理に用いるプラズマ処理装置の処理室をクリーニングガスのプラズマによりクリーニングする際に、前記処理室内でクリーニングの進行に伴い増加するラジカルの発光強度を測定し、その値からクリーニングの終点を検出するクリーニング方法が行なわれるように、プラズマ処理装置を制御するものである、コンピュータ記憶媒体。

[45] プラズマを発生させるプラズマ供給源と、

前記プラズマにより、基板の処理を行なうための処理室を区画する処理容器と、 前記処理容器内で前記基板を載置する基板支持台と、

前記処理容器内を減圧するための排気手段と、

前記処理容器内にガスを供給するためのガス供給手段と、

金属系膜が形成された基板の処理に用いるプラズマ処理装置の処理室をクリーニングガスのプラズマによりクリーニングする際に、前記処理室内でクリーニングの進行に伴い増加するラジカルの発光強度を測定し、その値からクリーニングの終点を検出するクリーニング方法が行なわれるように制御する制御部と

を備えた、プラズマ処理装置

補正書の請求の範囲

[2005年7月26日 (26.07.05) 国際事務局受理:新しい請求の範囲 46 が加えられた; 他の請求の範囲は変更なし。]

[44] コンピュータ上で動作する制御プログラムが記憶されたコンピュータ記憶媒体であって、

前記制御プログラムは、実行時に、金属系膜が形成された基板の処理に用いるプラズマ処理装置の処理室をクリーニングガスのプラズマによりクリーニングする際に、前記処理室内でクリーニングの進行に伴い増加するラジカルの発光強度を測定し、その値からクリーニングの終点を検出するクリーニング方法が行なわれるように、プラズマ処理装置を制御するものである、コンピュータ記憶媒体。

[45] プラズマを発生させるプラズマ供給源と、

前記プラズマにより、基板の処理を行なうための処理室を区画する処理容器と、 前記処理容器内で前記基板を載置する基板支持台と、

前記処理容器内を減圧するための排気手段と、

前記処理容器内にガスを供給するためのガス供給手段と、

金属系膜が形成された基板の処理に用いるプラズマ処理装置の処理室をクリーニングガスのプラズマによりクリーニングする際に、前記処理室内でクリーニングの進行に伴い増加するラジカルの発光強度を測定し、その値からクリーニングの終点を検出するクリーニング方法が行なわれるように制御する制御部とを備えた、プラズマ処理装置。

[46] (追加)請求項31に係るクリーニングの終点検出方法において、前記水素ラジカルの波長が656mmである、クリーニングの終点検出方法。

条約19条(1)の規定に基づく説明書

請求の範囲第46項は、明細書第22頁の段落[0095]の記載を根拠に新たに作成したものである。

[図2]

[図3A]

[図3B]

[図3C]

[図4A]

[図4B]

[図4C]

[図4D]

[図5]

[図6]

[図7]

[図8]

WO 2005/081302 7/10 PCT/JP2005/002394

[図9]

[図11]

[図12]

剪遊光発Ω*Η

[図13]

サンプリング用ウエハNo.(処理順)

INTERNATIONAL SEARCH REPORT

International application No.

	INTERNATIONAL SEARCH REFORT		PCT / TP2	005/002394
A. CLASSIFIC	CATION OF SUBJECT MATTER	<u> </u>	1017012	0007 002004
Int.Cl7	H01L21/31, C23C16/44, H01L21/	3065		
According to Inte	ernational Patent Classification (IPC) or to both national	classification and IPC	2	
B. FIELDS SE	ARCHED			
Minimum docum Int.Cl	nentation searched (classification system followed by cla H01L21/31-21/32, C23C16/00-16		2065	
Inc.CI	HOTE21/31-21/32, C23C10/00-10	750, HOILZI/	3003	
Documentation s	earched other than minimum documentation to the exter	nt that such documents	s are included in the	fields searched
Jitsuyo Kakai Ji		tsuyo Shinan To roku Jitsuyo Sh		1996-2005 1994-2005
Electronic data b	ase consulted during the international search (name of d	ata base and, where p	racticable, search te	rms used)
C. DOCUMEN	ITS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where app	propriate, of the releva	ant passages	Relevant to claim No.
Y	JP 2001-250818 A (Tokyo Elect	· •	- Pussages	1-6,11-17,
_	14 September, 2001 (14.09.01)			22-45
A	Full text & US 2002/020433 A1	2001081981 7	<u> </u>	7-10,18-21
			•	
Y	JP 2001-127280 A (Sony Corp.) 11 May, 2001 (11.05.01),) ,		1-4,11-15, 22-25,28,29,
	Par. No. [0022]			30,38
	(Family: none)			
Y	JP 9-249975 A (Central Glass	Co., Ltd.),		1-4,11-15,
	22 September, 1997 (22.09.97)			22-25,28,29,
	Claims (Family: none)			31,32
	,			
ļ		_		
	cuments are listed in the continuation of Box C.	See patent fan	nily annex.	
* Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand				
to be of particular relevance the principle or theory underlying the invention				
filing date considered novel or cannot be considered to involve an inventive				
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be				
special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means combined with one or more other such documents, such combination				
"P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family				
	Date of the actual completion of the international search 11 May, 2005 (11.05.05) Date of mailing of the international search report 31 May, 2005 (31.05.05)			
Name and mailing address of the ISA/ Authorized officer				
Japanese Patent Office				

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2005/002394

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT	•	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
Y	JP 8-92769 A (Toshiba Corp.), 09 April, 1996 (09.04.96), Claims (Family: none)	1-4,11-15, 22-25,28,29, 31,32	
Y	JP 2000-294550 A (Tokyo Electron Ltd.), 20 October, 2000 (20.10.00), Full text & KR 2000076774 A & US 6399520 B1 & TW 489396 A	5,6,16,17, 36,37,41,42	
Y	JP 2001-15398 A (Toshiba Corp.), 19 January, 2001 (19.01.01), Claims & CN 1280343 A & KR 2001029860 A	26,27,43,44	
Y	& TW 494462 A & US 6745094 B1 JP 5-102089 A (Tokyo Electron Ltd.), 23 April, 1993 (23.04.93), Claims (Family: none)	30-42,45	

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/002394

Box No. II	Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
1. Cla	tional search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: aims Nos.: cause they relate to subject matter not required to be searched by this Authority, namely:
bed	aims Nos.: cause they relate to parts of the international application that do not comply with the prescribed requirements to such an tent that no meaningful international search can be carried out, specifically:
	aims Nos.: cause they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box No. III	Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
The that a the op clean 45 relawith tendpoint have not techning invents. 2. X As any	tional Searching Authority found multiple inventions in this international application, as follows: "special technical feature" of claims 1 to 29 relates to the matter gas containing O_2 is introduced into the above treatment chamber without ening to the atmosphere and the plasma of the gas is formed, to thereby the treatment chamber. The "special technical feature" claims 30 to a test to the matter that the luminous strength of a radical, which increases he progress of cleaning in the treatment chamber, is measured, and the int of the cleaning is detected from the measured value. These inventions is relationship involving one or more of the same or corresponding special cal features, and therefore, are not so linked as to form a single general cive concept. all required additional search fees were timely paid by the applicant, this international search report covers all searchable times. all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of yadditional fee. only some of the required additional search fees were timely paid by the applicant, this international search report covers
4. No	by those claims for which fees were paid, specifically claims Nos.: o required additional search fees were timely paid by the applicant. Consequently, this international search report is stricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

A. 発明の属する分野の分類(国際特許分類(IPC)) Int.Cl.⁷ H01L21/31, C23C16/44, H01L21/3065

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl.⁷ H01L21/31-21/32, C23C16/00-16/56, H01L21/3065

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2005年

日本国実用新案登録公報

1996-2005年

日本国登録実用新案公報

1994-2005年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

 内足/ると前のうれる人間 				
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号		
Y	JP 2001-250818 A (東京エレクトロン株式会社) 2001.09.14 全文, & US 2002/020433 A1, & KR 2001081981 A	1-6,11-17,22- 45		
A	*	7-10,18-21		
Y	JP 2001-127280 A (ソニー株式会社) 2001.05.11 [0022], (ファミリーなし)	1-4,11-15,22- 25,28,29,30,38		
Y	JP 9-249975 A (セントラル硝子株式会社) 1997.09.22 特許請求の範囲, (ファミリーなし)	1-4,11-15,22- 25,28,29,31,32		

C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用す る文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願目前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

11.05.2005

国際調査報告の発送日

1. 5. 2005

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP)

郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 特許庁審査官(権限のある職員)

4G | 9278

宮澤 尚之

電話番号 03-3581-1101 内線 3416

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用 文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
		213414-57 社団(17) 田 (7)
Y	JP 8-92769 A (株式会社東芝) 1996.04.09	1-4,11-15,22-
	特許請求の範囲,(ファミリーなし)	25,28,29,31,32
Y	JP 2000-294550 A (東京エレクトロン株式会社) 2000.10.20	E 6 16 17 26
1	全文, & KR 200076774 A, & US 6399520 B1, & TW 489396 A	5,6,16,17,36, 37,41,42
	1134, 62 121 2000 101 111, 62 00 000 020 B1, 62 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	01,11,11
Y	JP 2001-15398 A (株式会社東芝) 2001.01.19	26,27,43,44
	特許請求の範囲, & CN 1280343 A, & KR 2001029860 A,	
	& TW 494462 A, & US 6745094 B1	
Y	JP 5-102089 A (東京エレクトロン株式会社) 1993.04.23	30-42,45
	特許請求の範囲,(ファミリーなし)	
		•
	•	

第Ⅱ	橌	請求の範囲の一部の調査ができない	ハと・	きの意見(第1ページの2の続き)
		第3項 (PCT17条(2)(a)) の規類 いった。	官に。	より、この国際調査報告は次の理由により請求の範囲の一部について作
1.	Γ	請求の範囲 つまり、	は、	この国際調査機関が調査をすることを要しない対象に係るものである。
2.	The state of the s	請求の範囲 ない国際出願の部分に係るもので		有意義な国際調査をすることができる程度まで所定の要件を満たしてい 。つまり、
3.	1	請求の範囲 従って記載されていない。	は、	従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に

第Ⅲ欄 発明の単一性が欠如しているときの意見(第1ページの3の続き)

次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。

請求の範囲1~29の「特別な技術的特徴」は、大気開放することなく前記処理室内にO2を含むガスを導入し、このガスのプラズマを形成して前記処理室をクリーニングすることに関し、請求の範囲30~45の「特別な技術的特徴」は、処理室内でクリーニングの進行に伴い増加するラジカルの発光強度を測定し、その値からクリーニングの終点検出を行なうことに関するものである。これらの発明は、一又は二以上の同一又は対応する特別な技術的特徴を含む技術的な関係にないから、単一の一般的発明概念を形成するように連関しているものとは認められない。

- 1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求の範囲について作成した。
- 2. ☑ 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。
- 3. 一 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
- 4. 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。

追加調査手数料の異議の申立てに関する注意

- 追加調査手数料の納付と共に出願人から異議申立てがあった。
- 追加調査手数料の納付と共に出願人から異議申立てがなかった。