Homework 1—Advanced Probability

Due Monday, March 2

- **1.1** (10 points) Let $\{a_n, n \geq 1\}$ be any given enumeration of the set of all rational numbers and let $\{b_n, n \geq 1\}$ be a set of positive numbers such that $\sum_{n=1}^{+\infty} b_n < +\infty$. Let $f(x) = \sum_{n=1}^{+\infty} b_n \cdot \delta_{a_n}(x)$. Show that $f(-\infty) = 0$ and $f(+\infty) = \sum_{n=1}^{+\infty} b_n$.
- **1.2** (10 points) Prove that the trace of a B.F. \mathscr{F} on any subset Δ of Ω is a B.F. Prove that the trace of $(\Omega, \mathscr{F}, \mathbb{P})$ on any Δ in \mathscr{F} is a probability space, if $\mathbb{P}[\Delta] > 0$.
- **1.3** (10 points) Let \mathcal{N}_0 be the collection of all null sets in $(\Omega, \mathcal{F}, \mathbb{P})$. Then it is a monotone class that is closed with respect to the operation "\".
- **1.4** (10 points) For any function X from Ω to \Re^1 , the following are true: $X^{-1}(A^c) = (X^{-1}(A))^c$, $X^{-1}(\bigcup_{\alpha} A_{\alpha}) = \bigcup_{\alpha} X^{-1}(A_{\alpha})$, and $X^{-1}(\bigcap_{\alpha} A_{\alpha}) = \bigcap_{\alpha} X^{-1}(A_{\alpha})$.
- **1.5** (10 points) If $X \geq 0$ a.e. on Λ and $\int_{\Lambda} X d\mathbb{P} = 0$, then X = 0 a.e. on Λ .
- **1.6** (10 points) Show that two r.v.'s on (Ω, \mathscr{F}) may be independent according to one p.m. \mathbb{P} but not according to another.
- **1.7** (10 points) For measure spaces (X, \mathcal{X}, μ) and (Y, \mathcal{Y}, ν) , let $\mathcal{X} \times \mathcal{Y}$ be the B.F. generated by measurable rectangles $A \times B$ where $A \in \mathcal{X}$ and $B \in \mathcal{Y}$. According to Theorem 18.1 of Billingsley (1995), the section $E_x \equiv \{y : (x, y) \in E\}$ for any $x \in X$ and $E \in \mathcal{X} \times \mathcal{Y}$ is a member of \mathcal{Y} . Now suppose \mathcal{L} is the class of sets E in $\mathcal{X} \times \mathcal{Y}$ for which $\nu(E_x)$ is an \mathcal{X} -measurable function of x. Show that \mathcal{L} is a λ -system.
- **1.8** (10 points) Show that convergence a.e. implies convergence in probability.
- **1.9** (10 points) $X_n \to +\infty$ a.e. if and only if $\forall M > 0 : \mathbb{P}[X_n < M \text{ i.o.}] = 0$.
- **1.10** (10 points) Prove that $\mathbb{P}[\liminf_n E_n] \leq \liminf_n \mathbb{P}[E_n]$ and $\mathbb{P}[\limsup_n E_n] \leq \limsup_n \mathbb{P}[E_n]$.