Anton Nikolaev Mini-project

In this project we maximize a function with multiple local maxima using evolutionary optimization mechanism made from scratch

```
import scipy
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
```

Below we identify the objective function

```
In [3]:
```

```
def objective_function(x):
    return np.sin(x) * x - np.cos(2 * x / 3 - 1) * x - np.exp(np.absolute(x / 10))
```

Our space is quasi-real numbers

You can see below how the objective function look like

```
In [4]:
```

In [8]:

```
space = np.linspace(-30, 30, num = 200)
plt.plot(space, objective_function(space))
plt.show()
```


Variation operator takes geometric mean of noised parents

```
In [5]:

def geometric_mean(x, y):
    return ((x*y)/(x+y'))

def mutation_l(population, epsilon):
    """Wariation operator does both mutation and recombination"""
    best = selection_l(population, 10, objective_function)

    for i in best:
        for j in best:
            population = np.append(population, geometric_mean(i + np.random.normal(0, epsilon)),
            return population
```

Selection operator is simple ranking with truncation

```
In [b]:

def selection l(population, num, metric):
    """Selection operator does performance ranking selection
    on the values that fall into allowed interval (-100, 100)"""
    new = np.argsort(objective function(population))
    result = population(new][::-1]
    result = result[result > -100]
    result = result[result > -100]

    return result[:num], result[0], result[-1]
```

In the next cell we initialize population, run 100 generations of optimization and gather performance data

Different epsilon can result in different optimization results after that many steps

```
population = np.linspace(-20, 20, num = 20)
worst = np.zeros(100)
best = np.zeros(100)
means = np.zeros(100)

for i in range(100):
    population, best[i], worst[i] = selection_1(population, 20, metric = objective_function)
    means[i] = np.mean(objective_function(population))
    population = mutation_1(population), epsilon = 1.5)

print (objective_function(selection_1(population, epsilon = 1.5)

print (objective_function(selection_1(population, 1, objective_function)[0]),
    selection_1(population, 1, objective_function)[0])
[ 38.12913598] [-26.94585292]
```

/home/antonio/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:2: RuntimeWarning: overflow encountered in exp

Objective function in the best member and in mean, blue and green respectively

Objective function in the worst member

Put separately because the scale is significantly different from best and mean. It is a direct result of choice of mutation operator

In [10]:

plt.plot(range(100), objective_function(worst), "-r")
plt.xlabel("Generation")
plt.ylabel("Objective function")
plt.show()

Red dots represent best 5 members of the population

As we can see, some part of the population is in local maximum

In [76]:

space = np.linspace(-30, 30, num = 200)
winners = selection 1(population, 5, objective_function)[0]
plt.plot(space, objective_function(space), '-',
winners, objective_function(winners), 'ro')
plt.show()

