Generative models

JI XIA

What is generative model?

Applications of generative model

Applications of generative model

"Sparse, Smart Contours to Represent and Edit Images" CVPR 2018

Two popular methods for generative model

- 1. Generative adversarial network
- 2. Variational autoencoder

Generative adversarial network (GAN)

Variational autoencoder (VAE)

Task: map from unit Gaussian distribution to hand written digit distribution.

Adversarial autoencoder (AAE)

Adversarial variational autoencoder (AAE)

Adversarial variational autoencoder (AAE)

Advantage of AAE

AAE outperforms VAE.

Because it's matching latent variables distribution to designed distribution using adversarial training instead of minimizing KL divergence.

AAE outperforms GAN.

Because it's imposing a low-dimensional distribution (on latent variables) instead of high-dimensional distribution (on images).

Task: Using AAE to generate handwritten digits.

Let's look at the code now.

Folder Organization

- experiment: main function
- src
 - dataflow: import dataset
 - helper: some functions that helps training or visualizing
 - models
 - aae: define AAE class
 - modules: encoder; decoder; discriminator; training function
 - layers: functions used in layers of neural networks