PROBABILITY THEORY II

Matthew Joseph, notes by Ramdas Singh

Second Semester

List of Symbols

 $\Omega,$ a sample space.

 $\omega,$ an element of a sample space.

EX, the expectation of the random variable X.

Var X, the variance of the random variable X.

 $N(\mu,\sigma^2),$ a normal distribution with expectation μ and variance $\sigma^2.$

Contents

1	1
1.1 The Law of Large Numbers	2
Appendices	Ę
A Appendix	7
Index	Ç

Chapter 1

January 3rd.

Let Ω be a countable state space, and let each $\omega \in \Omega$ have a probability $P(\omega)$ associated with it.

Lemma 1.1. For random variables X, Y such that $X(\omega) \leq Y(\omega)$ for all $\omega \in \Omega$. Then, $EX \leq EY$.

Proof. This can easily be seen by summing over all terms via the alternate definition of the expectation,

$$EX = \sum_{\omega \in \Omega} X(\omega) P(\omega) \le \sum_{\omega \in \Omega} Y(\omega) P(\omega) = EY.$$
 (1.1)

We now state Markov's inequality.

Theorem 1.2 (Markov's inequality). If X is a non-negative randm variable, then for a > 0, we have

$$P(X > a) \le \frac{EX}{a}.\tag{1.2}$$

Proof. Define an indicator function $I_a(\omega)$ as 1 if $X(\omega) \geq a$, and 0 if otherwise. We then have

$$I_a(\omega) \le \frac{X(\omega)}{a} \implies P(X \ge a) = EI_a \le \frac{1}{a}EX.$$
 (1.3)

Remark 1.3. A better upper bound here may be found by starting with $I_a(\omega)X(\omega)$ instead of just $X(\omega)$.

If we have $X \sim N(0,1)$, then we can find an upper bound for its probability density function.

$$P(X > a) = \int_{a}^{\infty} \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}} dx \le \int_{a}^{\infty} \frac{1}{\sqrt{2\pi}} \frac{x}{a} e^{\frac{-x^2}{2}} dx = \frac{e^{\frac{-a^2}{2}}}{\sqrt{2\pi}a}.$$
 (1.4)

Note that X here is a random variable over a continuous state space; the previous lemma and Markov's inequality also work here. We are to show them for the continuous case instead of the discrete one.

Proof. Here, we have $0 \le X(\omega) \le Y(\omega)$ for all ω in our continuous state space Ω . We see that $\{X > x\} \subseteq \{Y > x\} \implies P(X > x) \le P(Y > x)$. Integrating both sides gives us $EX \le EY$.

Theorem 1.4 (Chebyshev's inequality). Let X be a random variable with finite mean $\mu = EX$ and finite variance $\sigma^2 = Var(X)$. Then for a > 0,

$$P(|X - \mu| > a) \le \frac{Var(X)}{a^2}.$$
(1.5)

Proof. Start with the proof of Markov's inequality, replacing the indiciator function with one that's unity when $|X - \mu| \ge a$.

Example 1.5. Suppose $X_1, X_2, ..., X_n$ are n independent and identically distributed random variables, with $EX_i = \mu$ and $VarX_i = \sigma^2$. If $S_n = \sum X_i$, we then have

$$P(|S_n - n\mu| > a) \le \frac{\text{Var}S_n}{a^2} = \frac{n\sigma^2}{a^2}.$$
 (1.6)

If we replace a with $n^{\frac{1}{2}+\varepsilon}$, we then have

$$P(|S_n - n\mu| > n^{\frac{1}{2} + \varepsilon}) \le \frac{\sigma^2}{n^{2\varepsilon}} \to 0 \text{ as } n \to \infty.$$
 (1.7)

Proposition 1.6. If Var(X) = 0, then P(X = EX) = 1.

Proof. For all $\varepsilon > 0$, we have

$$P(|X - EX| > \varepsilon) \le \frac{\operatorname{Var} X}{\varepsilon^2} = 0.$$
 (1.8)

Define A_n as $\{|X - EX| > \frac{1}{n}\}$. Taking $P(\bigcup A_n) = \lim_{n \to \infty} P(A_n)$, the proof follows.

1.1 The Law of Large Numbers

We start by stating the weak law of large numbers.

Theorem 1.7 (Weak law of large numbers). Let $\{X_k\}_{k\geq 1}$ be a sequence of independent and identically distributed random variables with $E|X_i| < \infty$. Let $\mu = EX_i$. Then for any a > 0,

$$\lim_{n \to \infty} P\left(\left| \frac{X_1 + X_2 + \dots + X_n}{n} - \mu \right| > a \right) = 0. \tag{1.9}$$

Proof. For now, let us assume that Ω is countable. We begin with the case where the variance of X_i , σ^2 , is finite. Fix a > 0, and let $S_n = X_1 + X_2 + \ldots + X_n$. Then,

$$P\left(\left|\frac{S_n}{n} - \mu\right| > a\right) = P(|S_n - n\mu| > na) \le \frac{\operatorname{Var}S_n}{n^2 a^2} = \frac{n\sigma^2}{n^2 a^2} \to 0 \text{ as } n \to \infty.$$
 (1.10)

We now focus the case when the variance, σ^2 , is infinite. Assume that the expected value, μ , is 0; if it were non-zero, we would then instead work with $X_i - \mu$. Let $\delta > 0$; we shall choose a particular δ later. For each n, define n pairs of random variables, $U_1, V_1, \ldots, U_n, V_n$, as $U_k = X_k, V_k = 0$ if $|X_k| \leq \delta n$, and $U_k = 0, V_k = X_k$ if $|X_k| > \delta n$. X_k can be rewritten as $U_k + V_k$. We then have

$$\{|X_1 + \ldots + X_n| \ge na\} \subseteq \{|U_1 + \ldots + U_n| \ge \frac{na}{2}\} \cup \{|V_1 + \ldots + V_n| \ge \frac{na}{2}\}$$
 (1.11)

$$\implies P(|X_1 + \dots + X_n| \ge na) \le P(|U_1 + \dots + U_n| \ge \frac{na}{2}) + P(|V_1 + \dots + V_n| \ge \frac{na}{2}).$$
 (1.12)

We focus on the first term on the right hand side. The U_i 's are independently and identically distributed, so

$$P\left(|U_1 + \ldots + U_n| \ge \frac{na}{2}\right) \le \frac{4E[|U_1 + \ldots + U_n|^2]}{a^2n^2} = \frac{4}{a^2n^2} \left(\operatorname{Var}(U_1 + \ldots + U_n) + (nEU_i)^2\right). \tag{1.13}$$

For the variance, we have

$$Var(U_1 + ... + U_n) = nVarU_i \le nEU_i^2 \le nE[|U_i||U_i|] \le \delta n^2 E[|U_i|]$$
 (1.14)

which transforms the previous equation as

$$P(|U_1 + \ldots + U_n| \ge \frac{na}{2}) \le \frac{4}{a^2 n^2} (\delta n^2 E[|U_i|] + (nEU_i)^2).$$
 (1.15)

A lemma (to be proven later) states that $E[|U_i|] = E[|X_i|]$ as $n \to \infty$, and $EU_i = EX_i = 0$ too. So,

$$P\left(|U_1 + \ldots + U_n| \ge \frac{na}{2}\right) \le \frac{4}{a^2n^2} \left(\delta n^2 E[|U_i|] + (nEU_i)^2\right) \le \frac{4\delta E[|U_i|]}{a^2} + \frac{4}{a^2} (EU_i)^2.$$
 (1.16)

For the second term on the right hand side, begin with

$$P(V_1 + \ldots + V_n \neq 0) \le P(\{V_1 \neq 0\} \cup \ldots \cup \{V_n \neq 0\}) \le nP(V_i \neq 0) = n \sum_{|x| > \delta n} P(X_i = x)$$

$$\le n \sum_{|x| > \delta n} \frac{|x|}{\delta n} P(X_i = x) = \frac{1}{\delta} E[|V_i|]. \tag{1.17}$$

The rightmost term here tends to 0 as $n \to \infty$. Now choose δ to be $\frac{\varepsilon a^2}{|6E|X_i||}$, and then choose N to be large enough such that for all n > N, both the terms are smaller than $\frac{\varepsilon}{2}$.

The Law of Large Numbers

Appendices

Chapter A

Appendix

Extra content goes here.

Appendix

Index

Chebyshev's inequality, 1 Markov's inequality, 1

Weak law of large numbers, 2