PROVA INTRACORSO DI ELABORAZIONE DI SEGNALI MULTIMEDIALI del 28.04.17 (Ingegneria delle Telecomunicazioni)

NON è consentito l'uso di materiale didattico e appunti propri.

- **EX. 1** Si vuole realizzare la ship detection (rivelazione di navi) all'interno dell'immagine satellitare contenuta nel file img_SAR.mat (N.B. visualizzatela nell'intervallo [0,1]). A tal fine bisogna realizzare un algoritmo che opera su finestra scorrevole 64×64 . Per ogni blocco effettuate le seguente operazioni:
 - 1. individuate un'area centrale (R_1) del blocco di dimensioni 8×8 e una cornice del blocco spessa 8 pixel (R_2) ;
 - 2. calcolate la media dei pixel nelle due regioni: μ_{R_1} e μ_{R_2} ;
 - 3. valutate il rapporto μ_{R_1}/μ_{R_2} ;

A questo punto sull'immagine rapporto individuate empiricamente il valore della soglia T che vi permette di ottenere e visualizzare un'immagine binaria in cui vengono localizzate solo le navi.

EX. 2 L'immagine volto.png è caratterizzata da un pattern fastidioso che ne impedisce una corretta visualizzazione. Dopo averla convertita in scala di grigi con il comando rgb2gray, scrivete una funzione function y = filtra(x) che realizza il filtraggio dell'immagine nel dominio della frequenza e cercate di ridurre al minimo questi artefatti.

Mostrate a video il risultato dell'elaborazione e confrontatelo con quello che otterreste utilizzando un filtro mediano con finestra 7×7 .

- **EX. 3** Si vuole realizzare un filtraggio in cui si trasferisce la struttura dei bordi da un'immagine (detta guida), g, alla sua mappa di segmentazione binaria, x. A tal scopo scrivete una funzione function $y = filtro_guidato(x,g,B)$ in cui si realizzano le seguenti elaborazioni:
 - 1. normalizzate sia la maschera che la guida nell'intervallo (0,1);
 - 2. calcolate le immagini delle medie locali, Med_x e Med_g , l'immagine delle varianze locali Var_g su blocchi $B \times B$;
 - 3. calcolate l'immagine delle correlazioni locali, $Corr_{gx}$, calcolando per ogni blocco $B \times B$ la seguente quantità:

$$\frac{1}{B^2} \sum_{m} \sum_{n} g(m, n) x(m, n)$$

4. calcolate l'uscita del filtro come:

$$y = \mu_a g + \mu_b$$

dove μ_a e μ_b sono le immagini delle medie locali su blocchi $B \times B$ di:

$$a = \frac{Corr_{gx} - Med_x Med_g}{Var_g + \epsilon} \qquad b = Med_x - aMed_g$$

Applicate la funzione alla mappa mask.
png e all'immagine guida guida. png usando B=10 e
 $\epsilon=2^{-60}$. Visualizzate la mappa in uscita e quella originale. Mostrate a video anche il prodotto xg e yg e un loro zoom 100×100 pixel vicino ad un bordo.