NEW DRONE

Cahier des Charges Simulateur de vol

SOMMAIRE

Table des matières

1.	OBJECTIF DE L'ETUDE
2.	EXIGENCES/CONTRAITES
3.	LIVRABLES ET DEROULEMENT DE L'ETUDE

Réf: CDC_2020_10_03 Page 2 / 5

1. OBJECTIF DE L'ETUDE

L'objectif de cette étude est de créer un simulateur de vol, permettant de reproduire et représenter le comportement d'un drone à voilure fixe de type planeur.

Ce simulateur devra être composé d'une interface graphique et permettre le recueil d'un certain nombre de données propre au vol et à l'appareil.

La réalisation se déroule en deux phases :

- 1 développement d'un simulateur 2D, c'est une priorité.
- 2 développement d'un simulateur 3D, moins urgent.

Réf: CDC_2020_10_03 Page 3 / 5

2. EXIGENCES/CONTRAITES

Les exigences et contraintes sont synthétisées ci-dessous.

Cimulataur 2D	Le simulateur devra être capable de simuler le comportement		
Simulateur 2D	du drone planeur en tenant compte de ses caractéristiques		
	physiques et de son environnement		
Interface graphique 2D	Le simulateur devra disposer d'une interface 2D en priorité :		
	- permettant de visualiser la trajectoire du drone		
	- réaliste, épurée et facilement interprétable		
Commandes	Le simulateur devra permettre d'effectuer en temps réel des		
	actions sur les commandes (propulsion & gouverne) du drone :		
	- depuis l'interface graphique		
	- informatiquement via un algorithme		
	Le simulateur devra permettre d'ajouter des éléments pertur-		
	bateurs : vent / obstacles en début et fin de piste		
	Le simulateur devra permettre d'initialiser les paramètres de si-		
	mulation: vitesse / angle / position du drone / position des		
	gouvernes / propulsion / position et taille de la piste		
Récupération des données	Le simulateur devra donner accès en temps réel aux données		
	suivantes :		
	- vitesse du drone (vectoriel : direction + valeur en m/s)		
	- position du drone (en x et z) + position relative à la piste		
	- angle du drone		
	- détection de collision		
	- partie du drone qui touche le sol		
	- état des commandes (propulsion & gouvernes)		
	- temps de simulation		
	- Autres paramètres pertinents dans l'aérologie		
Développement	Le code (ou du moins la récupération de données) devra être		
	compatible avec python et PyTorch.		
	Le format de sorties de données devra être un .csv avec des		
	noms de variables pertinents.		
	L'intervalle de l'horloge devra être de 60s^-1 (modifiable)		
E intervalle de l'horioge devia ette de oos1 (modifiable)			
	Ce simulateur 3D est soumis aux mêmes exigences et con-		
Simulateur 3D	traintes que le 2D. Il devra en plus prendre en compte les 3		
	axes de rotation de l'appareil dans un espace en 3 dimensions.		

Réf: CDC_2020_10_03 Page 4 / 5

NEW DRONE Cahier des Charges

3. LIVRABLES ET DEROULEMENT DE L'ETUDE

Les livrables requis sont les suivants :

- Notes de calculs
- Document de mise en œuvre, de maintenance préventive et corrective
- Documentation utilisateur
- Code source (annotée et fonction ajoutées mise à part) fonctionnel sur Spyder
- Modules utilisés pendant l'étude & Bibliographie

Réf: CDC_2020_10_03 Page 5 / 5