$\overline{\mathrm{[CYBER1][2024\text{-}2025]~Examen~(Sujet~B)}}_{\mathrm{Algorithmique~2}}$

									A18	5011	CIIIIII	14												_
NO	<u>M</u> :							_			PŖĹ	Źľ	NOM	<u>1</u> :									-	
Vous	s dev	ez re	spect	er le	es co	nsig	gnes	s su	iivar	ites,	sous j	ре	ine d	de 0	:									
I) Li II) Ro III) No IV) No	épon e tric e dét	dez s chez p achez	ur le pas z pas	suje	t agraf	fes (du :	suje	et		I) Voi	ju us	scule	es) ez é	crir	e le	s al	gori	ithr	$_{ m nes}$	et	strı	uctı	
1 Li 1.1	Éd	s ch crive chaîn	z la	strı	uctı	ıre	d'	un	e lis		1.2		Éci	rive si u							-		•	
															1								1	1
											+ -													
																							_	
1 0 (1 .																	
1.3 (1 po	oint)	Ecr	rive	z la	to	nct	lor	$1 \; \boldsymbol{L}$	eng	thLis	3t	reto	our	na	nt .	la I	ong	gu€	eur	d ′	un	e li	ıst
																							#	1
																								-
																							1	
																							1	
			_																			+	+	_

1.4 (5 points) Écrivez une fonction $remove_list$ supprimant l'élément présent à la position pos dans une liste chaînée L et respectant les exigences suivantes

- La fonction doit renvoyer la tête de la liste (éventuellement la nouvelle tête)
- Le premier élément est considéré comme étant en position 1
- Si la liste est vide, la fonction ne fait rien et retourne NULL
- Si la position pos donnée en paramètre est supérieure à la longueur, alors on doit supprimer l'élément en dernière position de la liste
- Si la position *pos* donnée en paramètre est inférieure ou égale à 1, alors on doit supprimer l'élément en première position de la liste

1.5 En réutilisant les fonctions précédentes, et en considérant que vous disposez de la fonction <code>insert_list</code> qui insère un élément à une position donnée d'une liste chaînée en poussant le suivant à droite, réécrivez les fonctions <code>enqueue</code> et <code>dequeue</code> d'une file

1.5.1 (1 point) Enqueue

1.5.2 (1 point) Dequeue

2 Arbres Binaires (11 points)

2.1 Répondez aux différentes questions concernant l'arbre suivant (4 points)

2.1.1 (1,5 point) Indiquez toutes les propriétés que possède cet arbre :

Arité :	Taille:	Hauteur:	Nb feuilles :
☐ Arbre binaire ☐ Arbre binaire ☐ Peigne gauche	-	☐ Arbre binaire (☐ Arbre filiforme ☐ Peigne droit	presque) complet
dans les 3	Écrivez les clés lors d'un pordres ainsi que lors d'un p		ır main gauche de l'arbre
Parcours profone	deur:		
ordre préfixe :			
ordre infixe :			
ordre suffixe :			
Parcours largeur	::		
ordre :			

2.1.3 $(0,5~{
m point})$ Indiquez la profondeur et le numéro hiérarchique des nœuds suivants :

	Profondeur	Nº hiérarchique
I		

	Profondeur	Nº hiérarchique
p		
1		

- 2.2 Algorithmes (7 points)
- 2.3 (0,5 point) Écrivez la structure récursive node permettant de représenter des arbres binaires de nombres entiers :

2.4 (2 points) Écrivez une fonction récursive « size » calculant la taille d'un arbre binaire (l'arbre est de type node*) :

2.5 (2 points) Écrivez une fonction itérative « $parc_prof_iter$ » effectuant un parcours profondeur main gauche dans un arbre binaire, et affichant les nœuds (l'arbre est de type $node^*$):

Vous pouvez utiliser les conteneurs externes suivants avec leurs opérations :

Liste	File	Pile					
$list_p$	$queue_p$	$stack_p$					
Create	Create	Create					
Length	Length	Length					
IsEmpty	IsEmpty	IsEmpty					
Insert	Enqueue	Push					
Remove	Dequeue	Pop					
Clear	Clear	Clear					
Delete	Delete	Delete					

2.6 (2,5 points) Écrivez une fonction « $node_to_array$ » transformant un arbre au format node* vers le format tableau int* :

Le tableau est donné en paramètre et est déjà alloué avec la bonne taille : votre fonction ne doit que le remplir avec les bonnes valeurs. La taille du tableau est évidemment fournie en paramètre. Un nœud vide doit être représenté par « -1 ».

$\begin{array}{c} {\bf SUJET~B} \\ {\bf ALGORITHMIQUE~2} \end{array}$