Data Preprocessing

In [167]:

```
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from pandas.plotting import scatter matrix
import statsmodels.api as sm
from sklearn.impute import SimpleImputer
from sklearn.model selection import train test split
from sklearn.linear model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import mean squared error
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean squared error
from sklearn.preprocessing import StandardScaler
import tensorflow
from keras.models import Sequential
from keras.layers import Dense
```

In [31]:

```
# Importing the dataset
df = pd.read_csv('data.csv')
```

In [32]:

df

Out[32]:

	ActualPower	Max Capacity	Location 1	Location 2	Location 4	Location 5
0	3.724	45.0	5.5	9.138	9.828	7.346
1	3.424	45.0	4.9	9.038	9.736	7.594
2	3.994	45.0	4.3	8.977	9.613	7.712
3	6.813	45.0	4.0	8.921	9.446	7.731
4	7.737	45.0	5.1	8.811	9.244	7.716
333	25.258	45.0	7.2	6.706	6.862	3.250
334	21.316	45.0	8.3	6.776	6.900	3.072
335	18.691	45.0	7.5	6.675	6.891	3.056
336	20.694	45.0	7.6	6.431	6.841	3.189
337	18.832	45.0	8.9	6.049	6.694	3.322

338 rows × 6 columns

In [33]:

df.describe()

Out[33]:

	ActualPower	Max Capacity	Location 1	Location 2	Location 4	Location 5
count	338.000000	338.000000	337.000000	336.000000	338.000000	337.000000
mean	20.042633	44.729290	7.918694	9.539271	9.412246	6.669478
std	13.184409	0.577727	3.078309	4.217089	4.085693	2.780405
min	0.039000	43.500000	0.400000	0.495000	0.458000	0.481000
25%	6.807000	45.000000	5.500000	6.219500	6.496500	4.661000
50%	23.230000	45.000000	7.800000	9.088000	9.031500	6.556000
75%	31.861000	45.000000	10.400000	12.577250	12.258000	8.229000
max	41.163000	45.000000	16.200000	17.922000	17.665000	12.354000

In [34]:

```
# Let's check how much the data are spread out from the mean.
mean ActualPower = np.mean(df['ActualPower'], axis=0)
sd ActualPower = np.std(df['ActualPower'], axis=0)
mean MaxCapacity = np.mean(df['Max Capacity'], axis=0)
sd MaxCapacity = np.std(df['Max Capacity'], axis=0)
mean Location1 = np.mean(df['Location 1'], axis=0)
sd Location1 = np.std(df['Location 1'], axis=0)
mean Location2 = np.mean(df['Location 2'], axis=0)
sd Location2 = np.std(df['Location 2'], axis=0)
mean Location4 = np.mean(df['Location 4'], axis=0)
sd Location4 = np.std(df['Location 4'], axis=0)
mean Location5 = np.mean(df['Location 5'], axis=0)
sd Location5 = np.std(df['Location 5'], axis=0)
counter actual power = 0
counter maxcapacity = 0
counter loc1 = 0
counter loc2 = 0
counter loc4 = 0
counter loc5 = 0
for actual power, maxcapacity, loc1, loc2, loc4, loc5 in zip(df['ActualPower'], df
['Max Capacity'], df['Location 1'], df['Location 2'], df['Location 4'], df['Locati
on 5']):
    if not mean ActualPower - 3*sd ActualPower <= actual power <= mean ActualPower</pre>
+ 3*sd ActualPower:
        counter actual power += 1
    if not mean MaxCapacity - 3*sd MaxCapacity <= maxcapacity <= mean MaxCapacity</pre>
+ 3*sd MaxCapacity:
        counter maxcapacity += 1
    if not mean Location1 - 3*sd Location1 <= counter loc1 <= mean Location1 + 3*s</pre>
d Location1:
        counter_loc1 += 1
    if not mean Location2 - 3*sd Location2 <= counter loc2 <= mean Location2 + 3*s</pre>
d Location2:
        counter loc2 += 1
    if not mean Location4 - 3*sd Location4 <= counter loc4 <= mean Location4 + 3*s</pre>
d Location4:
        counter loc4 += 1
    if not mean Location5 - 3*sd Location5 <= counter loc5 <= mean Location5 + 3*s</pre>
d Location5:
        counter_loc5 += 1
counter dicts = {'counter actual power': counter actual power,
                 'counter maxcapacity': counter maxcapacity,
                 'counter loc1': counter loc1,
                 'counter loc2': counter loc2,
                 'counter loc4': counter loc4,
                 'counter loc5': counter loc5}
print(counter dicts)
```

```
{'counter_actual_power': 0, 'counter_maxcapacity': 0, 'counter_loc1':
0, 'counter_loc2': 0, 'counter_loc5': 0}
```

Как мы видим, ни для одной из переменных нет значений которые меньше, чем mean - 3 * std.

Построим гистограммы для того, чтобы посмотреть, как распределяется каждая переменная.

In [12]:

```
# ActualPower distribution
df['ActualPower'].plot(kind = 'hist')
```

Out[12]:

In [13]:

```
# Max Capacity distribution
df['Max Capacity'].plot(kind = 'hist')
```

Out[13]:

In [14]:

```
# Location 1 distribution
df['Location 1'].plot(kind = 'hist')
```

Out[14]:

In [15]:

```
# Location 2 distribution
df['Location 2'].plot(kind = 'hist')
```

Out[15]:

In [16]:

```
# Location 4 distribution
df['Location 4'].plot(kind = 'hist')
```

Out[16]:

In [17]:

```
# Location 5 distribution
df['Location 5'].plot(kind = 'hist')
```

Out[17]:

<AxesSubplot:ylabel='Frequency'>

Так как все данные являются относительно симметричными мы не будем использовать логарифмирование.

Проверим пропущенные данные в колонках.

```
In [35]:
```

```
df.isnull().sum()
# Таким образом мы имеем пропущенные значения в таких колонках:
```

Out[35]:

ActualPower 0
Max Capacity 0
Location 1 1
Location 2 2
Location 4 0
Location 5 1
dtype: int64

Избавимся от пропущенных данных в колонках путем их замены на среднее значение в колонке.

In [36]:

```
#Deal with missing data
#numeric
df[['Location 1']] = SimpleImputer(missing_values=np.nan, strategy='mean').fit_tra
nsform(df[['Location 1']]).round()
df[['Location 2']] = SimpleImputer(missing_values=np.nan, strategy='mean').fit_tra
nsform(df[['Location 2']]).round()
df[['Location 5']] = SimpleImputer(missing_values=np.nan, strategy='mean').fit_tra
nsform(df[['Location 5']]).round()
```

In [37]:

```
df.isnull().sum()
```

Out[37]:

ActualPower 0
Max Capacity 0
Location 1 0
Location 2 0
Location 4 0
Location 5 0
dtype: int64

Linear Regression

In [38]:

```
# Cheking correlations
correlation = df.corr()
correlation.style.background_gradient(cmap='coolwarm')
```

Out[38]:

	ActualPower	Max Capacity	Location 1	Location 2	Location 4	Location 5
ActualPower	1.000000	-0.099136	0.297014	0.268269	0.256173	0.113401
Max Capacity	-0.099136	1.000000	-0.429784	-0.429683	-0.422071	-0.398832
Location 1	0.297014	-0.429784	1.000000	0.639311	0.648041	0.580977
Location 2	0.268269	-0.429683	0.639311	1.000000	0.992052	0.911672
Location 4	0.256173	-0.422071	0.648041	0.992052	1.000000	0.937005
Location 5	0.113401	-0.398832	0.580977	0.911672	0.937005	1.000000

Как мы видим, корреляция с y(ActualPower) дл всех переменных не прывышает 0.3. Зависимость с Max Capacity - обратная.

In [39]:

```
scatter_matrix(df, alpha=0.2, figsize=(20, 20))
plt.show()
```


Simple Linear Regression

Построим линейную регрессию с Location 1 в качестве X (так как наиболее высокое значение корреляции - 0,297).

```
In [40]:
```

```
# Splitting the dataset into the Training set and Test set
X = df.iloc[:, 1:6].values
y = df.iloc[:, 0].values

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_st ate=0)
```

In [41]:

```
# Fitting Simple Linear Regression to the Training set (Location 1)
from sklearn.linear_model import LinearRegression
sr = LinearRegression().fit(X_train[:, 1:2], y_train)
```

In [42]:

```
# Getting parameters
sr.coef_, sr.intercept_
```

Out[42]:

(array([1.15783522]), 10.495204358568708)

In [43]:

```
# Predicting the Test set results
y_pred = sr.predict(X_test[:, 1:2])
```

In [44]:

```
# Coefficient of determination R^2
sr.score(X_train[:, 1:2], y_train), sr.score(X_test[:, 1:2], y_test)
```

Out[44]:

```
(0.07261775301646012, 0.1219538083093914)
```

Исходя из R² делаем вывод, что модель неадеватна и ее нельзя использовать для прогнозирования.

In [45]:

```
# Mean squared error
from sklearn.metrics import mean_squared_error
mean_squared_error(y_train, sr.predict(X_train[:, 1:2])), mean_squared_error(y_tes
t, y_pred)
```

Out[45]:

(162.24736726069074, 142.79267630376148)

In [46]:

```
# Visualising the Training set results
plt.scatter(X_train[:,1], y_train, color = 'red')
plt.plot(X_train[:,1], sr.predict(X_train[:, 1:2]), 'bo')
plt.title('ActualPower vs Location 1 (Training set)')
plt.xlabel('Location 1')
plt.ylabel('ActualPower')
plt.show()
```


In [47]:

```
# Visualising the Test set results
plt.scatter(X_test[:,1], y_test, color = 'red')
plt.plot(X_test[:,1], sr.predict(X_test[:, 1:2]), 'bo')
plt.title('ActualPower vs Location 1 (Test set)')
plt.xlabel('Location 1')
plt.ylabel('ActualPower')
plt.show()
```


Multiple Linear Regression

А теперь попробуем построить линейную регрессию используя все переменные.

In [48]:

```
# Fitting Multiple Linear Regression to the Training set
mr = LinearRegression().fit(X_train, y_train)
```

```
In [49]:
```

```
# Getting parameters
mr.coef_, mr.intercept
Out[49]:
(array([ 0.75281641, 0.76395725, -1.03390464, 4.474406 , -4.6146765
2]),
 -21.33907698323824)
In [50]:
# Predicting the Test set results
y pred = mr.predict(X test)
In [51]:
# Coefficient of determination R^2
mr.score(X train, y train), mr.score(X test, y test)
Out[51]:
(0.17953060354674233, 0.3550212373146102)
По сравнению с линейной регрессией одной переменной (0.07261775301646012, 0.1219538083093914)
показатели R^2 улучились, но незначительно. Модель всё еще не пригодна для прогноза.
In [52]:
# Mean squared error
from sklearn.metrics import mean squared error
mean squared error(y train, mr.predict(X train)), mean squared error(y test, y pre
d)
Out[52]:
(143.54275157358248, 104.88997566928406)
```

In [53]:

```
# p-values
X = sm.add_constant(X_train)
mr1 = sm.OLS(y_train, X).fit()
mr1.pvalues
```

Out[53]:

```
array([7.54687317e-01, 6.15698513e-01, 2.52691593e-02, 4.92236208e-01,
       1.53921880e-02, 1.20044195e-07])
```

In [54]:

mr1.summary()

Out[54]:

OLS Regression Results

De	p. Variable	:	у		R-squared:		0.180
	Model	:	O	Adj. R-squ	ared:	0.164	
	Method	: Lea	ast Squar	es	F-statistic:		11.55
	Date	: Thu, C	u, 08 Oct 2020 Prob (F-statistic):			4.20e-10	
	Time	:	22:08:	80	Log-Likelil	nood:	-1053.6
No. Ob	servations	:	2	70		AIC:	2119.
Df	Residuals	:	2	64		BIC:	2141.
	Df Model	:		5			
Covariance Type: nonrobust							
	coef	std err	t	P> t	[0.025	5 0.9	975]
const	-21 3301	68 222	-0 313	0.755	-155 667	7 112	989

	соет	sta err	τ	P> t	[0.025	0.975]	
const	-21.3391	68.222	-0.313	0.755	-155.667	112.989	
x1	0.7528	1.498	0.503	0.616	-2.197	3.702	
x2	0.7640	0.340	2.250	0.025	0.095	1.432	
х3	-1.0339	1.503	-0.688	0.492	-3.994	1.926	
x4	4.4744	1.835	2.439	0.015	0.862	8.087	
x 5	-4.6147	0.848	-5.442	0.000	-6.284	-2.945	

 Omnibus:
 84.474
 Durbin-Watson:
 1.851

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 13.922

 Skew:
 0.037
 Prob(JB):
 0.000948

 Kurtosis:
 1.890
 Cond. No.
 4.42e+03

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The condition number is large, 4.42e+03. This might indicate that there are strong multicollinearity or other numerical problems.

In [55]:

```
# Visualising the Training set results
plt.scatter(X_train[:,1], y_train, color = 'red')
plt.plot(X_train[:,1], mr.predict(X_train), 'bo')
plt.title('ActualPower vs Location 1 (Training set)')
plt.xlabel('Location 1')
plt.ylabel('ActualPower')
plt.show()
```


In [56]:

```
# Visualising the Test set results
plt.scatter(X_test[:,1], y_test, color = 'red')
plt.plot(X_test[:,1], mr.predict(X_test), 'bo')
plt.title('ActualPower vs Location 1 (Test set)')
plt.xlabel('Location 1')
plt.ylabel('ActualPower')
plt.show()
```


Polynomial Regression

Построим полиномиальную регрессию.

```
In [57]:
```

```
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
X_train_p = PolynomialFeatures().fit_transform(X_train[:, 1:2])
X_test_p = PolynomialFeatures().fit_transform(X_test[:, 1:2])
pr = LinearRegression().fit(X_train_p[:,1:], y_train)
```

In [58]:

```
# Getting parameters
pr.coef_, pr.intercept_
```

Out[58]:

(array([0.58821149, 0.03456267]), 12.509313919229896)

In [59]:

```
# Predicting the Test set results
y_pred = pr.predict(X_test_p[:,1:])
```

In [60]:

```
# Coefficient of determination R^2
pr.score(X_train_p[:,1:], y_train), pr.score(X_test_p[:,1:], y_test)
```

Out[60]:

(0.07342643910197744, 0.12402707185119399)

Исходя из R² делаем вывод, что модель неадеватна и ее нельзя использовать для прогнозирования.

In [61]:

```
# Mean squared error
from sklearn.metrics import mean_squared_error
mean_squared_error(y_train, pr.predict(X_train_p[:,1:])), mean_squared_error(y_tes
t, y_pred)
```

Out[61]:

(162.10588602278446, 142.45551084183177)

In [64]:

```
# Visualising the Training set results
plt.scatter(X_train[:,3], y_train, color = 'red')
plt.plot(X_train[:,3], pr.predict(X_train_p[:,1:]), 'bo')
plt.title('ActualPower vs Location 1 (Training set)')
plt.xlabel('Location 1')
plt.ylabel('ActualPower')
plt.show()
```


In [65]:

```
# Visualising the Test set results
plt.scatter(X_test[:,3], y_test, color = 'red')
plt.plot(X_test[:,3], pr.predict(X_test_p[:,1:]), 'bo')
plt.title('ActualPower vs Location 1 (Test set)')
plt.xlabel('Location 1')
plt.ylabel('ActualPower')
plt.show()
```


Попробуем сделать полиномиальную модель с другими переменными.

```
In [73]:
```

```
# MAX CAPACITY
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
X_train_p = PolynomialFeatures().fit_transform(X_train[:, 0:1])
X_test_p = PolynomialFeatures().fit_transform(X_test[:, 0:1])
pr = LinearRegression().fit(X_train_p[:,1:], y_train)
```

In [74]:

```
# Getting parameters
pr.coef_, pr.intercept_
```

Out[74]:

(array([-0.00032473, -0.02873888]), 77.10044660556888)

In [75]:

```
# Predicting the Test set results
y_pred = pr.predict(X_test_p[:,1:])
# Coefficient of determination R^2
pr.score(X_train_p[:,1:], y_train), pr.score(X_test_p[:,1:], y_test)
```

Out[75]:

(0.012361222860595933, -0.0338804583810739)

Исходя из R² делаем вывод, что модель неадеватна и ее нельзя использовать для прогнозирования.

In [76]:

```
# Mean squared error
from sklearn.metrics import mean_squared_error
mean_squared_error(y_train, pr.predict(X_train_p[:,1:])), mean_squared_error(y_tes
t, y_pred)
```

Out[76]:

(172.78936696992918, 168.13529746782712)

In [77]:

```
# Visualising the Training set results
plt.scatter(X_train[:,3], y_train, color = 'red')
plt.plot(X_train[:,3], pr.predict(X_train_p[:,1:]), 'bo')
plt.title('ActualPower vs MaxCapacity (Training set)')
plt.xlabel('MaxCapacity')
plt.ylabel('ActualPower')
plt.show()
```


In [78]:

```
# Visualising the Test set results
plt.scatter(X_test[:,3], y_test, color = 'red')
plt.plot(X_test[:,3], pr.predict(X_test_p[:,1:]), 'bo')
plt.title('ActualPower vs MaxCapacity (Test set)')
plt.xlabel('Location 1')
plt.ylabel('MaxCapacity')
plt.show()
```



```
In [79]:
```

```
# LOCATION 2
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
X_train_p = PolynomialFeatures().fit_transform(X_train[:, 2:3])
X_test_p = PolynomialFeatures().fit_transform(X_test[:, 2:3])
pr = LinearRegression().fit(X_train_p[:,1:], y_train)
```

In [80]:

```
# Getting parameters
pr.coef_, pr.intercept_
```

Out[80]:

(array([-3.85682488, 0.23630194]), 30.72004195498317)

In [81]:

```
# Predicting the Test set results
y_pred = pr.predict(X_test_p[:,1:])
# Coefficient of determination R^2
pr.score(X_train_p[:,1:], y_train), pr.score(X_test_p[:,1:], y_test)
```

Out[81]:

(0.17625737552997145, 0.024673215332501774)

Исходя из R² делаем вывод, что модель неадеватна и ее нельзя использовать для прогнозирования.

In [82]:

```
# Mean squared error
from sklearn.metrics import mean_squared_error
mean_squared_error(y_train, pr.predict(X_train_p[:,1:])), mean_squared_error(y_tes
t, y_pred)
```

Out[82]:

(144.11540932058205, 158.61297864667245)

In [83]:

```
# Visualising the Training set results
plt.scatter(X_train[:,3], y_train, color = 'red')
plt.plot(X_train[:,3], pr.predict(X_train_p[:,1:]), 'bo')
plt.title('ActualPower vs Location 2 (Training set)')
plt.xlabel('Location 2')
plt.ylabel('ActualPower')
plt.show()
```


In [84]:

```
# Visualising the Test set results
plt.scatter(X_test[:,3], y_test, color = 'red')
plt.plot(X_test[:,3], pr.predict(X_test_p[:,1:]), 'bo')
plt.title('ActualPower vs Location 2 (Test set)')
plt.xlabel('Location 2')
plt.ylabel('ActualPower')
plt.show()
```


In [85]:

```
# LOCATION 4
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
X_train_p = PolynomialFeatures().fit_transform(X_train[:, 3:4])
X_test_p = PolynomialFeatures().fit_transform(X_test[:, 3:4])
pr = LinearRegression().fit(X_train_p[:,1:], y_train)
```

In [86]:

```
# Getting parameters
pr.coef_, pr.intercept_
```

Out[86]:

(array([-3.84259169, 0.23530189]), 30.95737843574838)

In [87]:

```
# Predicting the Test set results
y_pred = pr.predict(X_test_p[:,1:])
# Coefficient of determination R^2
pr.score(X_train_p[:,1:], y_train), pr.score(X_test_p[:,1:], y_test)
```

Out[87]:

(0.16480169578227877, -0.003747635541274441)

Исходя из R² делаем вывод, что модель неадеватна и ее нельзя использовать для прогнозирования.

In [88]:

```
# Mean squared error
from sklearn.metrics import mean_squared_error
mean_squared_error(y_train, pr.predict(X_train_p[:,1:])), mean_squared_error(y_tes
t, y_pred)
```

Out[88]:

(146.11960326034134, 163.2349329327934)

In [89]:

```
# Visualising the Training set results
plt.scatter(X_train[:,3], y_train, color = 'red')
plt.plot(X_train[:,3], pr.predict(X_train_p[:,1:]), 'bo')
plt.title('ActualPower vs Location 4 (Training set)')
plt.xlabel('Location 4')
plt.ylabel('ActualPower')
plt.show()
```


In [90]:

```
# Visualising the Test set results
plt.scatter(X_test[:,3], y_test, color = 'red')
plt.plot(X_test[:,3], pr.predict(X_test_p[:,1:]), 'bo')
plt.title('ActualPower vs Location 4 (Test set)')
plt.xlabel('Location 4')
plt.ylabel('ActualPower')
plt.show()
```


In [91]:

```
# LOCATION 5
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
X_train_p = PolynomialFeatures().fit_transform(X_train[:, 4:5])
X_test_p = PolynomialFeatures().fit_transform(X_test[:, 4:5])
pr = LinearRegression().fit(X_train_p[:,1:], y_train)
```

In [92]:

```
# Getting parameters
pr.coef_, pr.intercept_
```

Out[92]:

(array([-6.49270161, 0.5152008]), 35.85567252373448)

In [93]:

```
# Predicting the Test set results
y_pred = pr.predict(X_test_p[:,1:])
# Coefficient of determination R^2
pr.score(X_train_p[:,1:], y_train), pr.score(X_test_p[:,1:], y_test)
```

Out[93]:

```
(0.1544670383225134, -0.03977764398497907)
```

Исходя из R² делаем вывод, что модель неадеватна и ее нельзя использовать для прогнозирования.

In [94]:

```
# Mean squared error
from sklearn.metrics import mean_squared_error
mean_squared_error(y_train, pr.predict(X_train_p[:,1:])), mean_squared_error(y_tes
t, y_pred)
```

Out[94]:

(147.92767212282166, 169.0943300597461)

In [95]:

```
# Visualising the Training set results
plt.scatter(X_train[:,3], y_train, color = 'red')
plt.plot(X_train[:,3], pr.predict(X_train_p[:,1:]), 'bo')
plt.title('ActualPower vs Location 5 (Training set)')
plt.xlabel('Location 5')
plt.ylabel('ActualPower')
plt.show()
```


In [96]:

```
# Visualising the Test set results
plt.scatter(X_test[:,3], y_test, color = 'red')
plt.plot(X_test[:,3], pr.predict(X_test_p[:,1:]), 'bo')
plt.title('ActualPower vs Location 5 (Test set)')
plt.xlabel('Location 5')
plt.ylabel('ActualPower')
plt.show()
```


Backward Elimination with p-values

In [109]:

```
# Backward Elimination with p-values
import statsmodels.api as sm
def backwardElimination(x, sl):
    numVars = len(x[0])
    for i in range(0, numVars):
        regressor OLS = sm.OLS(y, x).fit()
        maxVar = max(regressor OLS.pvalues).astype(float)
        if maxVar > sl:
            for j in range(0, numVars - i):
                if (regressor_OLS.pvalues[j].astype(float) == maxVar):
                    x = np.delete(x, j, 1)
    regressor_OLS.summary()
    return x
SL = 0.05
X_{opt} = X_{train}[:, [0, 1, 2, 3, 4]]
y = y train
X Modeled = backwardElimination(X opt, SL)
```

```
In [110]:
```

```
X Modeled
Out[110]:
                    , 7.503,
array([[45.
              , 7.
                                 6.
                                      ],
       [45.
                 5.
                         9.834,
                                 6.
                                      ],
              , 6.
       [45.
                         6.843,
                                 6.
                                      ],
       . . . ,
       [45.
                 3. ,
                         5.852,
                                 5.
                                      ],
                    , 6.647, 5.
       [45.
                 6.
                                      ],
                      , 15.66 , 10.
       [43.5
                 8.
                                      11)
In [111]:
# Fitting Optimized Multiple Linear Regression to the Training set
from sklearn.linear model import LinearRegression
omr = LinearRegression().fit(X train[:, 0:4], y train)
In [112]:
# Getting parameters
omr.coef_, omr.intercept_
Out[112]:
                      0.93917498, 2.0397665, -1.69107672]),
(array([ 1.28408405,
 -48.63860838043068)
In [113]:
# Predicting the Test set results
y pred = omr.predict(X test[:, 0:4])
In [114]:
# Coefficient of determination R^2
omr.score(X_train[:, 0:4], y_train), omr.score(X_test[:, 0:4], y_test)
Out[114]:
```

(0.08747648526264218, 0.18300492954558778)

Исходя из R^2 делаем вывод, что модель неадеватна и ее нельзя использовать для прогнозирования.

In [115]:

```
# Mean squared error
from sklearn.metrics import mean_squared_error
mean_squared_error(y_train, omr.predict(X_train[:, 0:4])), mean_squared_error(y_te
st, y_pred)
```

Out[115]:

(159.64780252283202, 132.86420890060958)

In [116]:

```
# Visualising the Training set results
plt.scatter(X_train[:,1], y_train, color = 'red')
plt.plot(X_train[:,1], omr.predict(X_train[:, 0:4]), 'bo')
plt.title('ActualPower vs Location 1 (Training set)')
plt.xlabel('Location 1')
plt.ylabel('ActualPower')
plt.show()
```


In [117]:

```
# Visualising the Test set results
plt.scatter(X_test[:,3], y_test, color = 'red')
plt.plot(X_test[:,3], omr.predict(X_test[:, 0:4]), 'bo')
plt.title('ActualPower vs Location 1 (Test set)')
plt.xlabel('Location 1')
plt.ylabel('ActualPower')
plt.show()
```


Regression Tree & Random Forest

```
In [131]:
```

```
# Fitting Tree to the Training set (Location 1)
sdt = DecisionTreeRegressor(max_leaf_nodes = 10).fit(X_train[:, 1:2], y_train)
```

In [132]:

```
# Predicting the Test set results
y_pred = sdt.predict(X_test[:, 1:2])
```

In [133]:

```
# Coefficient of determination R^2
r2 = (sdt.score(X_train[:, 1:2], y_train), sdt.score(X_test[:, 1:2], y_test))
print(f"For Location 1 r2 = {r2}")
```

For Location 1 r2 = (0.11815206897979558, 0.08292424988205249)

In [134]:

```
# Fitting Tree to the Training set (MaxCapacity)
sdt = DecisionTreeRegressor(max_leaf_nodes = 10).fit(X_train[:, 0:1], y_train)

# Predicting the Test set results
y_pred = sdt.predict(X_test[:, 0:1])

# Coefficient of determination R^2
r2 = (sdt.score(X_train[:, 0:1], y_train), sdt.score(X_test[:, 0:1], y_test))
print(f"For MaxCapacity r2 = {r2}")
```

For MaxCapacity r2 = (0.012361222860595933, -0.0338804583810739)

In [135]:

```
# Fitting Tree to the Training set (Location 4)
sdt = DecisionTreeRegressor(max_leaf_nodes = 10).fit(X_train[:, 2:3], y_train)

# Predicting the Test set results
y_pred = sdt.predict(X_test[:,2:3])

# Coefficient of determination R^2
r2 = (sdt.score(X_train[:, 2:3], y_train), sdt.score(X_test[:, 2:3], y_test))
print(f"For Location 4 r2 = {r2}")
```

For Location 4 r2 = (0.2798805146307243, 0.15844420625327327)

In [136]:

```
# Fitting Tree to the Training set (Location 5)
sdt = DecisionTreeRegressor(max_leaf_nodes = 10).fit(X_train[:, 3:4], y_train)

# Predicting the Test set results
y_pred = sdt.predict(X_test[:, 3:4])

# Coefficient of determination R^2
r2 = (sdt.score(X_train[:, 3:4], y_train), sdt.score(X_test[:, 3:4], y_test))
print(f"For Location 5 r2 = {r2}")
```

For Location 5 r2 = (0.39045230908331885, -0.05254532334840545)

Исходя из R² ни одна из моделей не подходит для прогнозирования.

In [137]:

```
# Mean squared error
mean_squared_error(y_train, sdt.predict(X_train[:, 3:4])), mean_squared_error(y_te
st, y_pred)
```

Out[137]:

(106.64157998791202, 171.1706799417286)

In [138]:

```
# Visualising the Training set results
X_grid = np.arange(min(X[:, 3:4]), max(X[:, 3:4]), 0.01)
X_grid = X_grid.reshape((len(X_grid), 1))
plt.plot(X_grid, sdt.predict(X_grid), color = 'blue')
plt.scatter(X_train[:,3], y_train, color = 'red')
plt.plot(X_train[:,3], sdt.predict(X_train[:, 3:4]), 'bo')
plt.title('ActualPower vs Location 5 (Training set)')
plt.xlabel('Location 5 ')
plt.ylabel('ActualPower')
plt.show()
```


In [139]:

```
# Visualising the Test set results
X_grid = np.arange(min(X[:, 3:4]), max(X[:, 3:4]), 0.01)
X_grid = X_grid.reshape((len(X_grid), 1))
plt.plot(X_grid, sdt.predict(X_grid), color = 'blue')
plt.scatter(X_test[:,3], y_test, color = 'red')
plt.plot(X_test[:,3], sdt.predict(X_test[:, 3:4]), 'bo')
plt.title('ActualPower vs Location 5 (Test set)')
plt.xlabel('Location 5 ')
plt.ylabel('ActualPower')
plt.show()
```


Random Forest

In [153]:

```
# Fitting Random Forest to the Training set
rf = RandomForestRegressor(n_estimators = 10, random_state = 0).fit(X_train, y_tra
in)
```

In [154]:

```
# Predicting the Test set results
y_pred = rf.predict(X_test)

# Coefficient of determination R^2
rf.score(X_train, y_train), rf.score(X_test, y_test)
```

Out[154]:

(0.8609475559528259, 0.5885741186947391)

R^2 для тренировочной выборки показал отличный результат, для тестовой - значение немного меньше за 0,6. Это говорит о том, что на данный момент именно модель Random Forest лучше всего подходит для целей прогнозирования этой выборки данных.

In [155]:

```
# Mean squared error
mean_squared_error(y_train, rf.predict(X_train)), mean_squared_error(y_test, y_pre
d)
```

Out[155]:

(24.327501449592596, 66.90832811323529)

In [156]:

```
# Visualising the Training set results
plt.scatter(X_train[:,1], y_train, color = 'red')
plt.plot(X_train[:,1], rf.predict(X_train), 'bo')
plt.title('ActualPower vs Location 1 (Training set)')
plt.xlabel('Location 1')
plt.ylabel('ActualPower')
plt.show()
```


In [157]:

```
# Visualising the Test set results
plt.scatter(X_test[:,1], y_test, color = 'red')
plt.plot(X_test[:,1], rf.predict(X_test), 'bo')
plt.title('ActualPower vs Location 1 (Test set)')
plt.xlabel('Location 1')
plt.ylabel('ActualPower')
plt.show()
```


Regression Neural Network

In [159]:

```
# Feature Scaling
sc = StandardScaler()
dfsc = sc.fit_transform(df)
df['ActualPower'] = dfsc[:,0]
df['Max Capacity'] = dfsc[:,1]
df['Location 1'] = dfsc[:,2]
df['Location 2'] = dfsc[:,3]
df['Location 4'] = dfsc[:,4]
df['Location 5'] = dfsc[:,5]
```

In [160]:

df

Out[160]:

	ActualPower	Max Capacity	Location 1	Location 2	Location 4	Location 5
0	-1.239557	0.469272	-0.622071	-0.125768	0.101909	0.124568
1	-1.262345	0.469272	-0.950089	-0.125768	0.079358	0.481382
2	-1.219048	0.469272	-1.278108	-0.125768	0.049209	0.481382
3	-1.004918	0.469272	-1.278108	-0.125768	0.008274	0.481382
4	-0.934731	0.469272	-0.950089	-0.125768	-0.041240	0.481382
333	0.396157	0.469272	-0.294052	-0.603405	-0.625115	-1.302688
334	0.096724	0.469272	0.033966	-0.603405	-0.615800	-1.302688
335	-0.102670	0.469272	0.033966	-0.603405	-0.618006	-1.302688
336	0.049478	0.469272	0.033966	-0.842224	-0.630262	-1.302688
337	-0.091959	0.469272	0.361985	-0.842224	-0.666295	-1.302688

338 rows × 6 columns

In [162]:

```
# Cheking correlations
correlation = df.corr()
correlation.style.background_gradient(cmap='coolwarm')
```

Out[162]:

	ActualPower	Max Capacity	Location 1	Location 2	Location 4	Location 5
ActualPower	1.000000	-0.099136	0.297014	0.268269	0.256173	0.113401
Max Capacity	-0.099136	1.000000	-0.429784	-0.429683	-0.422071	-0.398832
Location 1	0.297014	-0.429784	1.000000	0.639311	0.648041	0.580977
Location 2	0.268269	-0.429683	0.639311	1.000000	0.992052	0.911672
Location 4	0.256173	-0.422071	0.648041	0.992052	1.000000	0.937005
Location 5	0.113401	-0.398832	0.580977	0.911672	0.937005	1.000000

In [181]:

```
# Splitting the dataset into the Training set and Test set
X = df.iloc[:, 1:6].values
y = df.iloc[:, 0].values

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_st ate=0)
```

In [182]:

```
# Initialising the ANN
rnn = Sequential()

# Adding the input layer and the first hidden layer
rnn.add(Dense(units = 6, activation = 'tanh', input_dim = 5))

# Adding the second hidden layer
rnn.add(Dense(units = 6, activation = 'tanh'))

# Adding the output layer
rnn.add(Dense(units = 1, activation = 'linear'))

# Compiling the ANN
rnn.compile(optimizer='adam', loss='mean_squared_error', metrics = ['accuracy'])
```

In [183]:

```
# Fitting the ANN to the Training set
rnn.fit(X_train, y_train, batch_size = 10, epochs = 100)
```

Epoch 1/100
27/27 [====================================
27/27 [====================================
Epoch 3/100 27/27 [====================================
accuracy: 0.0000e+00 Epoch 4/100
27/27 [====================================
27/27 [====================================
Epoch 6/100 27/27 [====================================
accuracy: 0.0000e+00 Epoch 7/100
27/27 [====================================
27/27 [====================================
Epoch 9/100 27/27 [====================================
accuracy: 0.0000e+00 Epoch 10/100 27/27 [====================================
accuracy: 0.0000e+00 Epoch 11/100
27/27 [====================================
Epoch 12/100 27/27 [====================================
accuracy: 0.0000e+00 Epoch 13/100 27/27 [====================================
- accuracy: 0.0000e+00 Epoch 14/100
27/27 [====================================
Epoch 15/100 27/27 [====================================
accuracy: 0.0000e+00 Epoch 16/100 27/27 [====================================
- accuracy: 0.0000e+00 Epoch 17/100
27/27 [====================================
Epoch 18/100 27/27 [====================================
- accuracy: 0.0000e+00 Epoch 19/100 27/27 [====================================
accuracy: 0.0000e+00

Epoch 20/100 27/27 [========]		۵۵	1mc/cton	10001	a 921a
accuracy: 0.0000e+00	-	05	III3/3(ep -	1055.	0.0219 -
Epoch 21/100				_	
27/27 [====================================	-	0s	1ms/step -	loss:	0.8155 -
accuracy: 0.0000e+00 Epoch 22/100					
27/27 [====================================	_	0s	755us/step	- loss	: 0.8088
- accuracy: 0.0000e+00			·		
Epoch 23/100		0 -	1	1	0 0015
27/27 [===========] accuracy: 0.0000e+00	-	٥s	Ims/step -	loss:	0.8015 -
Epoch 24/100					
· 27/27 [=======]	-	0s	1ms/step -	loss:	0.7960 -
accuracy: 0.0000e+00					
Epoch 25/100 27/27 [====================================	_	Ωc	017us/stan	- 1000	. 0 7883
- accuracy: 0.0000e+00	_	03	91/u3/3cep	- (033	. 0.7005
Epoch 26/100					
27/27 [==========]	-	0s	841us/step	- loss	: 0.7817
- accuracy: 0.0000e+00 Epoch 27/100					
27/27 [====================================	_	0s	1ms/step -	loss:	0.7750 -
accuracy: 0.0000e+00			т, о тор		
Epoch 28/100		_		_	
27/27 [====================================	-	0s	892us/step	- loss	: 0.7685
- accuracy: 0.0000e+00 Epoch 29/100					
27/27 [====================================	-	0s	1ms/step -	loss:	0.7604 -
accuracy: 0.0000e+00					
Epoch 30/100		0.5	025/atan	1	. 0 7541
27/27 [====================================	-	US	ossus/step	- 1055	: 0.7541
Epoch 31/100					
27/27 [=======]	-	0s	2ms/step -	loss:	0.7472 -
accuracy: 0.0000e+00					
Epoch 32/100 27/27 [====================================	_	0s	1ms/step -	loss:	0.7411 -
accuracy: 0.0000e+00			т, о тор		
Epoch 33/100		_		_	
27/27 [====================================	-	0s	lms/step -	loss:	0.7362 -
accuracy: 0.0000e+00 Epoch 34/100					
27/27 [====================================	-	0s	1ms/step -	loss:	0.7283 -
accuracy: 0.0000e+00					
Epoch 35/100		0.5	012/atan	1	. 0 7242
27/27 [====================================	-	US	813us/step	- LOSS	: 0./242
Epoch 36/100					
27/27 [=======]	-	0s	1ms/step -	loss:	0.7145 -
accuracy: 0.0000e+00					
Epoch 37/100 27/27 [====================================	_	0.0	926115/5+20	- 1055	. 0 7001
- accuracy: 0.0000e+00		03	52005/ 5 сер	(033	. 0.7031
Epoch 38/100				_	
27/27 [====================================	-	0s	lms/step -	loss:	0.7063 -
accuracy: 0.0000e+00					

3/0/2020			TVarikina
Epoch 39/100 27/27 [====================================	-	0s	973us/step - loss: 0.6988
- accuracy: 0.0000e+00 Epoch 40/100			
27/27 [====================================	-	0s	1ms/step - loss: 0.6946 -
Epoch 41/100 27/27 [====================================	-	0s	1ms/step - loss: 0.6872 -
accuracy: 0.0000e+00 Epoch 42/100 27/27 [========]		0.0	1mc/ston loss, 0 6944
accuracy: 0.0000e+00 Epoch 43/100	-	05	Ims/step - toss. 0.0044 -
27/27 [====================================	-	0s	1ms/step - loss: 0.6794 -
Epoch 44/100 27/27 [========]	_	0s	1ms/step - loss: 0.6763 -
accuracy: 0.0000e+00 Epoch 45/100			·
27/27 [=========] accuracy: 0.0000e+00	-	0s	1ms/step - loss: 0.6739 -
Epoch 46/100 27/27 [====================================	-	0s	1ms/step - loss: 0.6691 -
accuracy: 0.0000e+00 Epoch 47/100		0 -	2 /
27/27 [===========] accuracy: 0.0000e+00 Epoch 48/100	-	ΘS	2ms/step - loss: 0.6650 -
27/27 [====================================	-	0s	2ms/step - loss: 0.6640 -
Epoch 49/100 27/27 [========]	_	0s	1ms/step - loss: 0.6582 -
accuracy: 0.0000e+00 Epoch 50/100			
27/27 [====================================	-	0s	1ms/step - loss: 0.6575 -
Epoch 51/100 27/27 [==========]	-	0s	782us/step - loss: 0.6537
- accuracy: 0.0000e+00 Epoch 52/100			
27/27 [===========] accuracy: 0.0000e+00	-	0s	1ms/step - loss: 0.6518 -
Epoch 53/100 27/27 [====================================	-	0s	1ms/step - loss: 0.6483 -
Epoch 54/100 27/27 [========]	_	05	2ms/sten - loss: 0.6474 -
accuracy: 0.0000e+00 Epoch 55/100			
27/27 [===========] accuracy: 0.0000e+00	-	0s	1ms/step - loss: 0.6442 -
Epoch 56/100 27/27 [====================================	-	0s	1ms/step - loss: 0.6435 -
accuracy: 0.0000e+00 Epoch 57/100		_	
27/27 [==========] - accuracy: 0.0000e+00	-	ΘS	ზიყus/step - Loss: 0.6418

Epoch 58/100 27/27 [==========]		0.5	1mc/cton	10001	0.6	400	
accuracy: 0.0000e+00	-	03	Illis/step -	1055.	0.0	409 -	•
Epoch 59/100							
27/27 [====================================	-	0s	956us/step	- loss	: 0	.6391	Ĺ
- accuracy: 0.0000e+00							
Epoch 60/100 27/27 [====================================	_	05	1ms/sten -	lossi	0 6	339 -	_
accuracy: 0.0000e+00		03	11113/3 CCP -	(033.	0.0		
Epoch 61/100							
27/27 [=======]	-	0s	987us/step	- loss	: : 0	.6313	3
- accuracy: 0.0000e+00							
Epoch 62/100 27/27 [====================================		۵۵	1mc/cton	1000	0 6	205	
accuracy: 0.0000e+00	-	03	Illis/steb -	1055.	0.0	205 -	
Epoch 63/100							
27/27 [========]	-	0s	1ms/step -	loss:	0.6	347 -	
accuracy: 0.0000e+00							
Epoch 64/100		0 -	1/	1	0 0	264	
27/27 [====================================	-	US	ıms/step -	loss:	0.0	204 -	
Epoch 65/100							
27/27 [====================================	-	0s	895us/step	- loss	: 0	.6248	3
- accuracy: 0.0000e+00			·				
Epoch 66/100		_		_			
27/27 [====================================	-	0s	lms/step -	loss:	0.6	240 -	-
accuracy: 0.0000e+00 Epoch 67/100							
27/27 [====================================	_	0s	1ms/step -	loss:	0.6	226 -	_
accuracy: 0.0000e+00			т, о тор				
Epoch 68/100							
27/27 [====================================	-	0s	1ms/step -	loss:	0.6	225 -	-
accuracy: 0.0000e+00 Epoch 69/100							
27/27 [====================================	_	05	1ms/sten -	loss:	0.6	204 -	_
accuracy: 0.0000e+00		0.5	23, 3 cop		0.0		
Epoch 70/100							
27/27 [====================================	-	0s	888us/step	- loss	: 0	.6178	3
- accuracy: 0.0000e+00							
Epoch 71/100 27/27 [====================================	_	0 c	700us/stan	- 1000	. 0	6188	2
- accuracy: 0.0000e+00		03	799u3/31cp	- (033	,. 0	.0100	,
Epoch 72/100							
27/27 [=======]	-	0s	1ms/step -	loss:	0.6	178 -	-
accuracy: 0.0000e+00							
Epoch 73/100		٥٥	1mc/cton	1000.	0 6	170	
27/27 [====================================	-	US	ims/step -	toss:	0.0	1/8 -	•
Epoch 74/100							
27/27 [====================================	-	0s	930us/step	- loss	: O	.6150	•)
- accuracy: 0.0000e+00			·				
Epoch 75/100		^	015 / :	-	_		,
27/27 [====================================	-	٥s	915us/step	- LOSS	: 0	.6147	1
- accuracy: 0.0000e+00 Epoch 76/100							
27/27 [====================================	_	0s	1ms/step -	loss:	0.6	136 -	-
accuracy: 0.0000e+00			, - - F		•	-	

Epoch 77/100 27/27 [=========]		0.0	015uc/cton	10001	0 6157
- accuracy: 0.0000e+00	-	05	913us/steb	- 1055.	0.0137
Epoch 78/100		•	056 / .	,	0.6100
27/27 [====================================	-	0S	856us/step	- loss:	0.6108
Epoch 79/100					
27/27 [========]	-	0s	1ms/step -	loss: 0	.6112 -
accuracy: 0.0000e+00 Epoch 80/100					
27/27 [====================================	_	0s	929us/step	- loss:	0.6101
- accuracy: 0.0000e+00			, ,		
Epoch 81/100 27/27 [====================================		٥٥	OFOus /stan	1000	0 6002
- accuracy: 0.0000e+00	-	05	osous/step	- 1055;	0.0093
Epoch 82/100					
27/27 [====================================	-	0s	813us/step	- loss:	0.6077
- accuracy: 0.0000e+00 Epoch 83/100					
27/27 [====================================	-	0s	1ms/step -	loss: 0	.6068 -
accuracy: 0.0000e+00					
Epoch 84/100 27/27 [====================================	_	Θs	994us/sten	- 1055	0 6112
- accuracy: 0.0000e+00		03	334u3/3ccp		0.0112
Epoch 85/100		_		-	
27/27 [====================================	-	0s	/96us/step	- loss:	0.6108
Epoch 86/100					
27/27 [========]	-	0s	968us/step	- loss:	0.6064
- accuracy: 0.0000e+00 Epoch 87/100					
27/27 [====================================	_	0s	1ms/step -	loss: 0	.6063 -
accuracy: 0.0000e+00			-,,-		
Epoch 88/100 27/27 [====================================		٥٥	02446/6469	1000	0 6042
- accuracy: 0.0000e+00	-	05	624uS/Step	- (055)	0.0042
Epoch 89/100					
27/27 [====================================	-	0s	886us/step	- loss:	0.6042
- accuracy: 0.0000e+00 Epoch 90/100					
27/27 [====================================	-	0s	1ms/step -	loss: 0	.6044 -
accuracy: 0.0000e+00					
Epoch 91/100 27/27 [====================================	_	05	840us/sten	- 1055	0 6043
- accuracy: 0.0000e+00		03	040и3/31ср		0.0043
Epoch 92/100		_			
27/27 [==========] accuracy: 0.0000e+00	-	0s	2ms/step -	loss: 0	.6036 -
Epoch 93/100					
27/27 [===========]	-	0s	892us/step	- loss:	0.6022
- accuracy: 0.0000e+00 Epoch 94/100					
27/27 [====================================	_	0s	1ms/step -	loss: 0	.6022 -
accuracy: 0.0000e+00			•		
Epoch 95/100 27/27 [====================================		0.5	1mc/cton	locci A	6032
accuracy: 0.0000e+00	-	US	TIII3/2rch -	1033. 0	.0032 -

```
Epoch 96/100
- accuracy: 0.0000e+00
Epoch 97/100
- accuracy: 0.0000e+00
Epoch 98/100
- accuracy: 0.0000e+00
Epoch 99/100
27/27 [=======
         accuracy: 0.0000e+00
Epoch 100/100
27/27 [============== ] - 0s 907us/step - loss: 0.5997
- accuracy: 0.0000e+00
Out[183]:
```

<tensorflow.python.keras.callbacks.History at 0x7fb6ac782490>

In [184]:

```
# Predicting the Test set results
y_pred = rnn.predict(X_test)
```

In [185]:

```
# Visualising the Training set results
plt.scatter(X_train[:,1], y_train, color = 'red')
plt.plot(X_train[:,1], rnn.predict(X_train), 'bo')
plt.title('ActualPower vs Location 1 (Training set)')
plt.xlabel('Location 1')
plt.ylabel('ActualPower')
plt.show()
```


In [186]:

```
# Visualising the Test set results
plt.scatter(X_test[:,1], y_test, color = 'red')
plt.plot(X_test[:,1], rnn.predict(X_test), 'bo')
plt.title('ActualPower vs Location 1 (Test set)')
plt.xlabel('Location 1')
plt.ylabel('ActualPower')
plt.show()
```


 $p_n < -predict(nn, f_test) train_mse_nn < -sum((f_train*price-predict(nn, f_train))^2)/length(f_train*price) test_mse_nn < -sum((f_test*price-p_nn)^2)/length(p_nn) train_mse_nn$

[1] 0.104495

test_mse_nn

[1] 0.2036023

In [191]:

train_mse_nn = sum((y_train-rnn.predict(X_train))**2)/len(y_train)
train_mse_nn

Out[191]:

```
array([2.03596252, 0.42115171, 2.15799916, 0.40279542, 0.94599067,
       1.07830781, 0.42068653, 1.2598147, 2.58355487, 1.24985008,
       1.53688343, 2.44665471, 1.16994849, 0.44868573, 0.43750575,
       1.89001147, 2.05134273, 1.54481381, 0.82154317, 0.97748886,
       2.460344
                , 0.81155877, 2.11477668, 0.53406456, 2.62869146,
       1.38692683, 1.26163174, 0.45626691, 0.70227614, 0.66900023,
       0.40659658, 0.96135595, 1.76823523, 0.404817
                                                     , 1.65490088.
       2.33479407, 0.48115675, 3.11247481, 1.67213887, 0.46140397,
       0.57537574, 1.00941012, 1.15828579, 2.57525929, 1.90711308,
       1.81281864, 1.6733212 , 1.75284382, 0.41931824, 0.53920462,
       1.8477026 , 0.55880674 , 1.46395013 , 0.49976318 , 0.40384463 ,
       0.92029086, 2.99569349, 2.44142249, 3.00181447, 2.21053595,
       0.51938695, 1.11682639, 2.33692769, 2.19119565, 0.81019774,
       0.65176117, 0.92445777, 0.60499252, 1.3550644, 0.54289506,
       2.20994294, 0.63458214, 2.41010176, 2.47390296, 2.72192526,
       1.01510958, 1.23077349, 1.82912689, 1.43732507, 0.57996836,
       2.41740806, 2.17596504, 1.65386394, 0.53395391, 2.27216947,
       2.20747216, 0.48136725, 1.61692265, 1.04595568, 1.51095378,
       1.00537757, 0.4050242 , 1.78820028, 0.53718166, 0.55934971,
                , 2.61307475, 0.49981549, 0.50689763, 2.08192529,
       1.29048727, 2.57391555, 0.46173943, 1.28775366, 0.66923606,
       1.19790064, 2.02587815, 2.00080372, 1.94370241, 1.60056366,
       0.48331672, 2.07562905, 0.463238 , 0.62399394, 0.97980866,
       1.1374165 , 0.40137514, 2.03227423, 2.48154338, 2.12994271,
       1.32810776, 1.20170155, 1.86307244, 1.68345008, 0.70418772,
       0.4018638 , 2.26137996, 2.69492763, 0.65435247, 1.4842476
       0.84085461, 2.39911475, 2.56787387, 2.36192731, 2.30074509,
       2.19605695, 0.42219267, 1.5209133 , 1.78623302, 2.02568452,
       2.12672892, 1.51657744, 0.96146964, 1.78016121, 0.5490179
       1.1026464 , 2.61194524, 0.87451922, 2.11040461, 0.49739956,
       1.61792782, 1.43593391, 0.40289448, 0.9894384 , 0.43085783,
       0.51073181, 2.57167691, 0.41195839, 0.76719527, 1.85520313,
       1.46818255, 0.432979 , 1.31848051, 2.35005397, 1.78301687,
       2.65461336, 2.46691024, 2.27903285, 1.2076927, 0.44003482,
       2.06387458, 0.5168385 , 0.42707235, 0.70302662, 0.53439139,
                 , 1.09882259, 0.6671097 , 1.6570964 , 0.47919505,
       1.212748
       2.25080807, 0.89918062, 0.6837372 , 0.73944185, 1.88188502,
       1.22511063, 1.83492387, 2.26986419, 0.83955614, 1.99734725,
       2.54001271, 0.62679821, 2.12714754, 2.88291873, 1.4305327
       0.75543804, 1.07456321, 1.36429945, 2.6541573, 1.32810776,
       2.25308138, 0.40978682, 1.52477446, 1.008688
                                                     , 0.84772973,
       2.49163464, 1.43423486, 0.92975585, 2.08409235, 0.75065443,
       1.16343627, 2.15115992, 1.88188502, 1.31051036, 2.03072251,
       1.56998398, 2.28630554, 0.7331119 , 2.16162534, 1.26828085,
       1.08181214, 2.15196384, 1.18184768, 2.33014959, 1.21083333,
       2.78131356, 0.48956324, 0.49981549, 1.75390368, 0.69202335,
       0.5700872 , 0.55413433 , 0.86484066 , 2.38413318 , 0.4878572 ,
       2.37001889, 0.81848642, 1.69640065, 1.64368351, 0.88375978,
       1.67693855, 1.9465153, 0.6564965, 2.20892155, 1.0661018,
       0.5235407 , 2.28153174, 1.54595124, 0.40529618, 0.59357197,
       1.24231031, 1.40710256, 1.12754429, 2.37046605, 0.54785272,
       1.22869946, 2.11360316, 0.54895953, 2.35151803, 2.48989933,
       0.46396174, 1.1896514 , 1.68827107, 1.87173574, 1.36012983,
       1.56702974, 2.27799214, 1.32927811, 3.10023174, 0.72063146])
```

In [198]:

```
y_pred_train = rnn.predict(X_train)
y_pred_test = rnn.predict(X_test)
train_mse_nn = sum((y_train - y_pred_train) ** 2 for y_train, y_pred_train in zip(
y_train, y_pred_train)) / len(y_train)
test_mse_nn = sum((y_test - y_pred_test) ** 2 for y_test, y_pred_test in zip(y_test, y_pred_test)) / len(y_test)
print(f"train_mse_nn: {train_mse_nn}, test_mse_nn: {test_mse_nn}")
```

train_mse_nn: [0.5959342], test_mse_nn: [0.53254324]

ВЫВОД: для прогнозирования данного датасета лучше всего себя показали Random Forest (r^2_test = 0.86, r^2_train = 0.589) и Regression Neural Network. Но учитывая SME, который для Random Forest равен (train = 106.64, test = 171.17) и для RNN - (train=0.6, test=0.53) соответственно, можно сказать, что нейронная модель подходит лучше.