

European Project n° 613817 **Workshop – November 3rd 2015**

The BioMA platform and applications

Marcello Donatelli (CREA)

November 3-4, 2015

Outline

- Do we need a modelling framework?
- ➤ What is BioMA?
- ➤ BioMA applications

Model development and reuse

- ➤ The demand of model tools to perform integrated evaluation of agro-ecological systems has further increased in the last decade.
- The major obstacle to develop such simulation systems has been the fragmented availability of modelling resources, partly due to technical bottlenecks.
- Extension of modelling resources by adding modules, and replacing or changing existing ones to accommodate new modules, has not been at reach except by full recoding.

The generic modelling problem

Agronomists, Soil scientists, Geographers, Meteorologists, ...

!@#\$%#\$%^?

Slide courtesy of I.Athanasiadis

ModExtreme 2nd Annual Meeting 3-4 November, 2015

Model frameworks

- Since many years model frameworks have represented a substantial step forward with respect to monolithic implementations of biophysical models.
- The separation of algorithms from data, the reusability of services such as I/O procedures, have brought a solid advantage in the development of simulation systems.
- However, the diffusion of such frameworks beyond the groups developing them, as model development environment, can be considered modest.
- The reusability of models has also proved to be modest; a model unit for a given framework is not used in other frameworks.

Model frameworks (cont.)

- Current implementations of modeling solution vary from monolithic Fortran code to C++, to fully object oriented memory managed languages (C#, Java).
- Even if the technology available would allow much more functionalities of what is being exploited in most cases, software framework have been constantly improved in terms of quality; still, the problem of model reuse has been largely unsolved.
- The focus on frameworks has made software architects at least partially overlooking on the requirements of reusability per se of model units.

Reuse of what?

- Model reuse is an overloaded term. Within biophysical modelling, a "model" can be:
 - A process based representation of either a single process or of a compartment;
 - A whole modelling solution allowing the simulation of the system of interest.
- The point in reuse however is not the granularity of the model unit; the key difference is if the discrete unit to be reused is used in workflows, or is composed to iterate over the execution of time-steps with other units.

Asynchronous or synchronous?

- If the reuse is of modelling solutions, adapters are built following the requirements of a specific software framework to enable links in workflows, or for ensemble runs.
 - The "model" units run asynchronously
 - Incompatibilities of binaries can be overcome
- In the case of iteration across model units over time the requirements for an effective reuse increase:
 - Key features in the architecture of model units are required
 - Binaries incompatibility across models units becomes an insurmountable obstacle in practical terms
- Model development requires being able to modify and link model units working synchronously at run time.

New requirements

- Also, some new high level requirements emerged for modelling frameworks:
 - To increase the transparency of the modelling solutions being built compared to legacy code available, for each of the modelling solutions being built;
 - To increase the traceability of performance of each modelling unit used in modelling solutions;
 - To involve teams without requiring them to commit to a whole infrastructure they would not own.
- To maximize both reusability and accessibility, we chose to develop a simulation system based on framework-independent components, both for model and for tool components.

The high level architecture of the software modelling environment

FROM MODELS TO VIEWERS

From models to viewers

Configuration
Layer
Composition
Layer
Model
Layer
Layer

- Model Layer: fine grained/composite models implemented in components
- Composition Layer: modeling solutions from model components
- ➤ Configuration Layer: adapters for advanced functionalities in controllers
- > **Applications:** from console to advanced MVC implementations
- DevTools: code generators, UI components and applications

From models to applications

xtreme 27 3nnual Meeting 3-4 November 2015

Weather

Weather variables (AirTemperature, Evapotranspiration, LeafWetness, Precipitation, SolarRadiation, Wind) Weather generators (ClimGen)

Abiotic stress

Heat damage, cold shocks, lodging, water stress

Biotic stress

Generic air-borne diseases simulator (*Diseases, Magarey*) Soil-borne diseases (*SBD*) Corn borer (*MYMICS*)

Quality

Agricultural products (AgroProQ)

Crop / Plant

Generic crop simulators (Wofost, CropSyst3;
in progress AcquaCrop, new CropSyst)
Rice (WARM)
Wheat (in progress SiriusQ)
Tree species: (Hazelnut; in progress Grapes, Poplar)
Sugarcane (Canegro)
Giant Reed (Arungro)
Generic pasture (STICS-Pasture)

Agro-chemicals

Agro-chemicals dynamics (AgroChemicals)

Soil

Soil water erosion runoff (CN, Eurosem)
Soil water (cascading, cascading travel time, Richards)
Soil surface and profile temperature
Soil carbon and nitrogen
Soil Pedotransfer functions (SoilPAR)

Agro-management

Rule-based models (AgroManagement)

Impact models responding to AgroManagement events in crop/plant, soil, diseases, agro-chemicals models

Model components

- Model components built with the BioMA architecture:
 - Are reusable across frameworks;
 - Have a semantically explicit interface;
 - Can be extended both for data and models;
 - Include the definition of their own parameters;
 - Allow running pre- and post-conditions;
 - Have a scalable logging.
- They are a way to share knowledge while providing operational software units, to be used alone or via composition.

BioMA Deployments

treme eeting

The IPR model

- Working with a model framework requires investing resources, and it requires a medium-term perspective;
- No institution will do it on a code base of core components which are owned by someone else and which have code not accessible;
- BioMA will adopt a LGPL version with open source access to core components;
- > A consortium is being developed.

BioMA applications

- ➤ BioMA applications have been used for different research projects (https://en.wikipedia.org/wiki/BioMA):
 - weather datasets for biophysical simulation
 - CC impact on crop production and adaptation in Europe
 - soil pathogens under climate change
 - corn borers under climate change
 - modelling solutions comparison at sub-model level
 - impact of CC on crop production in Latin America
 - fungal infections under CC
 - estimate agro-meteorological variables
 - functions to estimate soil hydraulic properties
 - quality of agricultural products

BioMA for MODEXTREME

- The need of extending simulation capabilities is key for the MODEXTREME analyses.
- Traditional modelling solutions need to be compared to the same approaches adding the models developed to better account for «extreme» events.
- Modelling solutions envisioned in the DoW are:
 - CropSyst and CropSyst+ModExt.ExtremeEvents;
 - Wofost and Wofost+ModExt.ExtremeEvents;
 - WARM and WARM+ModExt.ExtremeEvents;
 - OLIVECAN and OLIVECAN+ModExt.ExtremeEvents,

2nd Annual Meeting 3-4 November, 2015

Models in MODEXTREME

Multi-model runner: BioMA-Site

BioMA-Site

- ➤ BioMA-Site is a multi-modelling solutions runner, open to load any modelling solution respecting the interface required by the software framework.
- The modelling solutions running in BioMA-Site can also run in the application BioMA-Spatial, that is, iteratively against explicit spatial units.
- Also it is provided of tools and utilities to evaluate models against detailed dataset collected in field experiments.
- Modelling solutions other than the examples provided can be loaded, becoming simulation options; if they are alternate solutions to a specific modelling problem, BioMA-Site can also be used to compare their performance.

BioMA-Spatial

- ➤ BioMA Spatial is the Graphical User Interface developed within the BioMA Framework that allows configuring, running, and viewing instances of a Modeling Solution in a spatially and temporally distributed context.
- ➤ BioMA Spatial includes several plugins, such as Map Visualizer, Model Parameters Editor (MPE), Graphic Data Display (GDD), and Model
- Component Explorer (MCE) that you can launch and use from within the application for inspecting model interfaces.
- Furthermore, as for BioMA-Site, users can deploy other plugins to be used within BioMA-Spatial, such as Optimizer for optimization and LUISA for sensitivity analysis.

Acknowledgement

"The research leading to these results has received funding from the European Community's Seventh Framework Programme – FP7 (KBBE.2013.1.4-09) under Grant Agreement No. 613817, 2013-2016"

