Chapter 3

Arithmetic for Computers

Arithmetic for Computers

- Operations on integers
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow
- Floating-point real numbers
 - Representation and operations

Integer Addition

Example: 7 + 6

- Overflow if result out of range
 - Adding +ve and –ve operands, no overflow
 - Adding two +ve operands
 - Overflow if result sign is 1
 - Adding two –ve operands
 - Overflow if result sign is 0

Integer Subtraction

- Add negation of second operand
- Example: 7 6 = 7 + (–6)

```
+7: 0000 0000 ... 0000 0111
```

<u>-6</u>: 1111 1111 ... 1111 1010

+1: 0000 0000 ... 0000 0001

- Overflow if result out of range
 - Subtracting two +ve or two –ve operands, no overflow
 - Subtracting +ve from –ve operand
 - Overflow if result sign is 0
 - Subtracting –ve from +ve operand
 - Overflow if result sign is 1

Dealing with Overflow

- Some languages (e.g., C) ignore overflow
 - Use MIPS addu, addui, subu instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
 - Use MIPS add, addi, sub instructions
 - On overflow, invoke exception handler
 - Save PC in exception program counter (EPC) register
 - Jump to predefined handler address
 - mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

Arithmetic Logic Unit Design

One Bit ALU

- Performs AND, OR, and ADD
 - on 1-bit operands
 - components:
 - AND gate
 - OR gate
 - 1-bit adder

Multiplexor

One Bit Full Adder

- Also known as a (3,2) adder
- Half Adder
 - no CarryIn

Inputs			Outputs		
а	b	CarryIn	CarryOut	Sum	Comments
0	0	0	0	0	0+0+0=00
0	0	1	0	1	0+0+1=01
0	1	0	0	1	0+1+0=01
0	1	1	1	0	0+1+1=10
1	0	0	0	1	1+0+0=01
1	0	1	1	0	1+0+1=10
1	1	0	1	0	1+0+1=10
1	1	1	1	1	1+1+1=11

Carry Out Logic Equation

- CarryOut = (!a & b & CarryIn) | (a & !b & CarryIn)
 | (a & b & !CarryIn) | (a & b & CarryIn)
- CarryOut = (b & CarryIn) | (a & CarryIn) | (a & b)

Inputs			Outputs		
а	b	CarryIn	CarryOut	Sum	Comments
0	0	0	0	0	0+0+0=00
0	0	1	0	1	0+0+1=01
0	1	0	0	1	0+1+0=01
0	1	1	1	0	0+1+1=10
1	0	0	0	1	1+0+0=01
1	0	1	1	0	1+0+1=10
1	1	0	1	0	1+0+1=10
1	1	1	1	1	1+1+1=11

Sum Logic Equation

Sum = (!a & !b & Carryln) | (!a & b & !Carryln)
 | (a & !b & !Carryln) | (a & b & Carryln)

Inputs			Outputs		
а	b	CarryIn	CarryOut	Sum	Comments
0	0	0	0	0	0+0+0=00
0	0	1	0	1	0+0+1=01
0	1	0	0	1	0+1+0=01
0	1	1	1	0	0+1+1=10
1	0	0	0	1	1+0+0=01
1	0	1	1	0	1+0+1=10
1	1	0	1	0	1+0+1=10
1	1	1	1	1	1+1+1=11

32-bit ALU

Ripple Carry ALU

Reinman 4-11

Subtraction?

- Expand our 1-bit ALU to include an inverter
 - 2's complement: take inverse of every bit and add 1

Reinman 4-12

Overflow

- For N-bit ALU
 - Overflow = CarryIn[N-1] XOR CarryOut[N-1]

Most significant (N-1) bit ALU

Zero Detection

- Conditional Branches
- One big NOR gate
- Zero = $(Result_{N-1} + Result_{N-2} +$ Result₁+Result₀)
- Any non-zero result will cause zero detection output to be zero

NOR

Set-On-Less-Than (SLT)

- SLT produces a 1 if rs < rt, and 0 otherwise
 - all but least significant bit will be 0
 - how do we set the least significant bit?
 - can we use subtraction?
 - rs rt < 0
 - set the least significant bit to the sign-bit of (rs rt)
- New input: LESS
- New output: SET

SLT Implementation

All but MSB

Most Significant Bit

Reinman 4-17

SLT Implementation

 Set of MSB is connected to Less of LSB!

Final ALU

- You should feel comfortable identifying what signals accomplish:
 - add
 - sub
 - and
 - or
 - nor
 - slt

Can We Make a Faster Adder?

- Worst case delay for N-bit Ripple Carry Adder
 - 2N gate delays
 - 2 gates per CarryOut
 - N CarryOuts

- We will explore the Carry Lookahead Adder
 - Generate Bit i creates new Carry
 - $g_i = A_i \& B_i$
 - Propagate Bit i continues a Carry
 - $p_i = A_i \times B_i$

Carry Look Ahead

Partial Carry Lookahead Adder

- Connect several N-bit Lookahead Adders together
- Four 8-bit carry lookahead adders can form a 32-bit partial carry lookahead adder

Generate and Propagate

Hierarchical CLA

Generate and Propagate

Carry Select Adder

Multiplication

Start with long-multiplication approach

Length of product is the sum of operand lengths

Multiplication Hardware

Optimized Multiplier

Perform steps in parallel: add/shift

- One cycle per partial-product addition
 - That's ok, if frequency of multiplications is low

Faster Multiplier

- Uses multiple adders
 - Cost/performance tradeoff

- Can be pipelined
 - Several multiplication performed in parallel

MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instructions
 - mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - mul rd, rs, rt
 - Least-significant 32 bits of product —> rd

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation

- In binary
 - \bullet ±1. $xxxxxxxx_2 \times 2^{yyyy}$
- Types fl oat and doubl e in C

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand: 1.0 ≤ |significand| < 2.0</p>
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1203

Floating-Point Precision

- Relative precision
 - all fraction bits are significant
 - Single: approx 2⁻²³
 - Equivalent to 23 × log₁₀2 ≈ 23 × 0.3 ≈ 6 decimal digits of precision
 - Double: approx 2⁻⁵²
 - Equivalent to 52 × log₁₀2 ≈ 52 × 0.3 ≈ 16 decimal digits of precision

Floating-Point Example

- Represent –0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = 1
 - Fraction = $1000...00_2$
 - Exponent = -1 + Bias
 - Single: $-1 + 127 = 126 = 011111110_2$
 - Double: $-1 + 1023 = 1022 = 0111111111110_2$
- Single: 1011111101000...00
- Double: 10111111111101000....00

Floating-Point Addition

- Consider a 4-digit decimal example
 - \bullet 9.999 × 10¹ + 1.610 × 10⁻¹
- 1. Align decimal points
 - Shift number with smaller exponent
 - \bullet 9.999 × 10¹ + 0.016 × 10¹
- 2. Add significands
 - \bullet 9.999 × 10¹ + 0.016 × 10¹ = 10.015 × 10¹
- 3. Normalize result & check for over/underflow
 - 1.0015 × 10²
- 4. Round and renormalize if necessary
 - 1.002×10^{2}

Floating-Point Addition

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Align binary points
 - Shift number with smaller exponent
 - $-1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - $-1.000_2 \times 2^{-4}$ (no change) = 0.0625

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined

FP Adder Hardware

Chapter 3 — Arithmetic for Computers — 40

Floating-Point Multiplication

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$
- 1. Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2. Multiply significands
 - $1.000_2 \times 1.110_2 = 1.1102 \implies 1.110_2 \times 2^{-3}$
- 3. Normalize result & check for over/underflow
 - $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- 5. Determine sign: +ve × −ve ⇒ −ve
 - $-1.110_2 \times 2^{-3} = -0.21875$

FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP ↔ integer conversion
- Operations usually takes several cycles
 - Can be pipelined

FP Instructions in MIPS

- FP hardware is coprocessor 1
 - Adjunct processor that extends the ISA
- Separate FP registers
 - 32 single-precision: \$f0, \$f1, ... \$f31
 - Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
 - Release 2 of MIPs ISA supports 32 × 64-bit FP reg's
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - I wc1, I dc1, swc1, sdc1
 - e.g., I dc1 \$f8, 32(\$sp)

FP Instructions in MIPS

- Single-precision arithmetic
 - add. s, sub. s, mul. s, div.s
 - e.g., add. s \$f0, \$f1, \$f6
- Double-precision arithmetic
 - add. d, sub. d, mul. d, di v. d
 - e.g., mul . d \$f4, \$f4, \$f6
- Single- and double-precision comparison
 - c. xx. s, c. xx. d (xx is eq, I t, I e, ...)
 - Sets or clears FP condition-code bit
 - e.g. c. I t. s \$f3, \$f4
- Branch on FP condition code true or false
 - bc1t, bc1f
 - e.g., bc1t TargetLabel

Concluding Remarks

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
 - Need to account for this in programs

Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow
- MIPS ISA
 - Core instructions: 54 most frequently used
 - 100% of SPECINT, 97% of SPECFP
 - Other instructions: less frequent