CSE/ECE 848 Introduction to Evolutionary Computation

Module 1, Lecture 2, Part 2

Existing Point-based
Optimization Methods

Kalyanmoy Deb, ECE
Koenig Endowed Chair Professor

Recall Module 1, Lecture 2, Part 1

- > Point-based Unconstrained Optimization:
 - > Several line-searches to reach the optimum
- > Each line-search is a single-variable search
- > Bound and locate the minimum along a line
- > 1. Bounding phase, followed with Golden Section
- > 2. Hybrid Golden Section and Parabolic search
- > Part 2: Multi-variable Unconstrained optimization
 - \triangleright Direct Search: Use of objective function f(x) only
 - Gradient Search: Use of first and/or Second-derivative with f(x)

Nelder-Mead's Simplex Search Method

- $\triangleright x^{(i)}$ denote n+1 points
- > Sort them in ascending of $f(x^{(i)})$
- Compute the reflected point
 - $r = m + (m x^{(n+1)}), m$ is avg of first n pts
- ightharpoonup If $f(x^{(1)}) \le f(r) \le f(x^{(n)})$, select r (reflect)
- > If $f(r) < f(x^{(1)})$, $s = m + 2(m x^{(n+1)})$
 - ightharpoonup If f(s) < f(r), select s (expand), else select r (reflect)
- $ightharpoonup If <math>f(r) \ge f(x^{(n)})$
 - ightharpoonup If $f(r) < f(x^{(n+1)})$, c = m + (r m)/2
 - ightharpoonup If f(c) < f(r) select c (contract outside), else Go To Step F

fminsearch()
$$\min_{x} f(x)$$
 $\underline{x} = fminsearch(fun,x0,options)$

Reference: Lagarias, J. C., J. A. Reeds, M. H. Wright, and P. E. Wright. 1998. Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. *SIAM Journal of Optimization*, *9*(1), 112–147.

Other Direct Search Methods

Search:

Hooke-Jeeves Pattern Search method

Conjugate direction. method

Randomized methods (Luus-Jaakola)

Hill-climbing methods

Trust region methods

Search restricted in a neighborhood of current best solution

Mostly local and dependent on initial point(s)

Gradient-Based Methods

- Gradient vector takes 2n solution evaluations
- ► Hessian matrix takes 2n² +1 evaluations
- Cauchy's Steepest-descent method
 - $ightharpoonup \mathbf{s}^{(t)} = -\nabla f(\mathbf{x}^{(t)})$
 - Reduces the function value maximally

References:

- 1. Deb, K. (1995). *Optimization methods for engineering design: Algorithms and Examples*. Delhi: Prentice-Hall. (Available from Amazon).
- 2. Reklaitis, Gintaras V., A. Ravindran, and Kenneth M. Ragsdell. 1983. *Engineering optimization: Methods and applications*. New York: Wiley.

Example Problem (Steepest-Descent Method)

2. The steepest descent method is applied to the following function which is to be minimized:

$$f(x_1, x_2) = 2x_1^2 - 2x_1x_2 + x_2^2 + 2x_1 - 2x_2.$$

Start with $\mathbf{x}^{(0)} = (0, (1 - 1/5))^T$. Show that after two iterations of the steepest descent search, the point $\mathbf{x}^{(2)} = (0, (1 - 1/5^2))^T$ is obtained.

Two consecutive directions are always orthogonal to each other

CSE/ECE 848 Introduction to Evolutionary Computation

Newton's and Marquardt's Methods

- Newton's method require Hessian:
 - $-\mathbf{s}^{(t)} = -\nabla^2 f(\mathbf{x}^{(t)})^{-1} \nabla f(\mathbf{x}^{(t)})$
 - Computationally expensive
- Marquardt's method is a compromise
 - Start with Cauchy's and end with Newton's method

- Newton's method is expensive
- Q-Newton's method uses gradient vectors to compute Hessian at opt.

$$-A^{0} = I, A^{1} \rightarrow A^{2} \rightarrow \dots \rightarrow$$

Hessian(\mathbf{x}^{*})

- DFP, BFGS methods exist
- Convergence proof for quadratic problems exists

$$A^{(k)} = A^{(k-1)} + \frac{\Delta x^{(k-1)} \Delta x^{(k-1)T}}{\Delta x^{(k-1)T} \Delta e(x^{(k-1)})}$$
$$- \frac{A^{(k-1)} \Delta e(x^{(k-1)}) (A^{(k-1)} \Delta e(x^{(k-1)}))^T}{\Delta e(x^{(k-1)})^T A^{(k-1)} \Delta e(x^{(k-1)})}$$

DFP:

$$\Delta x^{(k-1)} = x^{(k)} - x^{(k-1)}$$

$$\Delta e(x^{(k-1)}) = e(x^{(k)}) - e(x^{(k-1)})$$
 In an introduction to

Computation

End of Module 1, Lecture 2, Part 2

- Multi-variable, point-based optimization methods
- > Direct and gradient-based methods
 - > Most methods use a line search iteratively
- ➤ Part 3:
 - ➤ Point-based Constrained Optimization