

PLUMED Masterclass

21.4: Metadynamics

Max Bonomi
Institut Pasteur - CNRS
mbonomi@pasteur.fr

open-source freely-available C++ library

- enhanced-sampling methods
- free-energy methods
- analysis MD data

www.plumed.org

@plumed_org

Bonomi et al. CPC 2009 Tribello et al. CPC 2014

The time scale problem

Sampling capability of MD and MC is limited by the time scale accessible in "standard" simulations:

★ Activated events

★ Slow diffusion

Dimensionality reduction

It is often possible to describe a physical/chemical process in terms of a small number of coarse descriptors of the system:

$$S = S(R) = (S_1(R), \dots, S_d(R))$$

Key quantity in thermodynamics is the <u>free energy</u> as a function of these variables:

$$F(S) = -\frac{1}{\beta} \ln P(S)$$
 where $\beta = \frac{1}{k_B T}$

$$\frac{\text{canonical}}{\text{ensemble}} P(\boldsymbol{S}) = \frac{\int d\boldsymbol{R} \, \delta(\boldsymbol{S} - \boldsymbol{S}(\boldsymbol{R})) \, e^{-\beta U(\boldsymbol{R})}}{\int d\boldsymbol{R} \, e^{-\beta U(\boldsymbol{R})}}$$

Examples

Isomerization: dihedral angle

hv or heat hv hv or heat hv hv or heat hv

Protein folding: gyration radius, number of contacts,

• • •

unfolded folded

Phase transitions: lattice vectors, bond order parameters,

• • •

Biased sampling

The idea is to add a bias potential that acts on the collective variables:

$$U(\mathbf{R}) \to U(\mathbf{R}) + V(\mathbf{S}(\mathbf{R}))$$

What is a good choice of bias potential?

Umbrella sampling

What is a good choice of bias potential?

The one that leads to

$$F'(\mathbf{S}) = 0 \longrightarrow V(\mathbf{S}) = -F(\mathbf{S})$$

Metadynamics idea: build on-the-fly an approximation of the free energy and use it as bias potential

Torrie & Valleau JCP (1977)

Metadynamics: the actual equations

History-dependent bias potential acting on selected degrees of freedom or Collective Variables (CVs)

$$S = (S_1(R), ..., S_d(R))$$

and built as a sum of Gaussians:

$$V_G(\mathbf{S}, t) = W \sum_{t'=\tau_G, 2\tau_G, \dots}^{t' < t} exp\left(-\sum_{i=1}^{d} \frac{(S_i - S_i(\mathbf{R}(t')))^2}{2\sigma_i^2}\right)$$

Laio & Parrinello PNAS 2002

Metadynamics parameters

Which parameters do we need to choose?

Collective variables

$$S = (S_1(R), ..., S_d(R))$$

2 Energy rate

$$W, \tau_G$$

Gaussian width

$$\sigma_i$$

Pros and Cons

Advantages

- Enhanced sampling along the CVs
- Reconstruction of the FES:

$$V_G(oldsymbol{S},t o\infty)=-F(oldsymbol{S})+C$$
 Bussi, Laio, Parrinello PRL (2006)

A priori knowledge of the landscape not required

Disadvantages

- Lack of convergence in a single run
- Overfilling
- The choice of the CVs is not trivial

Well-Tempered Metadynamics

The initial Gaussian height W_0 is rescaled during the simulation:

$$W = W_0 e^{-\frac{V_G(S,t)}{k_B \Delta T}}$$

where $T+\Delta T$ is a fictitious CV temperature.

Convergence and overfilling issues solved:

$$V(\mathbf{s},t) \to -\frac{\Delta T}{T + \Delta T} F(\mathbf{s})$$

• ΔT can be used to tune the extent of exploration

Well-Tempered Metadynamics parameters

$$W = W_0 e^{-\frac{V_G(S,t)}{k_B \Delta T}}$$

 $lue{\mathbb{D}}$ Initial Gaussian height W_0

How fast the amount of bias added decreases to zero

Guidelines for choosing sigma

The width of the Gaussian should be commensurate to the typical size of the "features" of the free energy landscape

Typically, the Gaussian width is estimated from the fluctuations of the collective variables in an unbiased run:

Guidelines for choosing the biasfactor

Determine the extent of free-energy exploration: it should be comparable to the typical free-energy barriers

Typical value for biological applications ~ 10

Guidelines for choosing the CVs

A good set of CVs for metadynamics (and other biasing techniques) should:

- Discriminate between relevant metastable states
- Include all the slow modes of a process
- Be as small as possible

Metadynamics is inefficient with a large number of CVs.

Possible strategies:

- design smart CVs
- devise automatic protocols to find good CVs
- improve metadynamics to deal with a large number of CVs
- couple metadynamics with other methods, such as REM

Reweighting WT-MetaD simulations

At convergence, we have $F(\boldsymbol{S})$

From this, the ensemble average of any function of the CVs can be calculated:

$$P_B(\mathbf{S}) \propto e^{-\beta F(\mathbf{S})}$$
 $\langle g(\mathbf{S}) \rangle = \frac{\int d\mathbf{S} \, g(\mathbf{S}) \, e^{-\beta F(\mathbf{S})}}{\int d\mathbf{S} \, e^{-\beta F(\mathbf{S})}}$

What about the other "fast" degrees of freedom? Their probability distribution is distorted in a non-trivial way

- With a static bias: $P_B(m{R}) \propto P(m{R}) e^{eta V(m{S}(m{R}))}$
- MetaD bias is time-dependent!

Reweighting schemes

(At least) 4 possible approaches

Reconstructing the Equilibrium Boltzmann Distribution from Well-Tempered Metadynamics

JCC 2009

M. BONOMI, A. BARDUCCI, M. PARRINELLO

Computational Science, Department of Chemistry and Applied Biosciences, ETH Zurich, c/o USI Campus, via Buffi 13, CH-6900 Lugano, Switzerland

Metadynamics with Adaptive Gaussians

Davide Branduardi,[†] Giovanni Bussi,**,[‡] and Michele Parrinello^{§,||}

[†]Theoretical Molecular Biophysics Group, Max Planck Institute for Biophysics, Max-von-Laue strasse 5, 60438, Frankfurt am Main, Germany

[‡]SISSA - Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, 34136, Trieste, Italy

JCTC 2012

A Time-Independent Free Energy Estimator for Metadynamics

Pratyush Tiwary* and Michele Parrinello

Department of Chemistry and Applied Biosciences, ETH, 8092 Zurich, Switzerland Facoltà di Informatica, Istituto di Scienze Computazionali, Università della Svizzera Italiana, Via G. Buffi 13, 6900 Lugano, Switzerland JPCB 2014

Iterative Unbiasing of Quasi-Equilibrium Sampling

F. Giberti,**,† B. Cheng,‡ G. A. Tribello,[§] and M. Ceriotti*,†

[†]Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland JCTC 2020

4

[§]Department of Chemistry and Applied Biosciences, ETH Zurich, Via G. Buffi 13, 6900, Lugano, Switzerland

Facoltà di Informatica, Istituto di Scienze Computazionali, Università della Svizzera Italiana, Via G. Buffi 13, 6900, Lugano, Switzerland

[‡]Trinity College, University of Cambridge, Cambridge CB2 1TQ, United Kingdom

[§]Atomistic Simulation Centre, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT14 7EN, United Kingdom

Instructions

Class *	Topic \$	Lecture I 💠	Lecture II 💠	Instructor \$
21.1	PLUMED syntax and analysis	January 18, 2021	January 25, 2021	M. Bonomi
21.2	Statistical errors in MD	February 1, 2021	February 8, 2021	G. Tribello
21.3	Umbrella sampling	February 15, 2021	February 22, 2021	G. Bussi
21.4	Metadynamics	March 1, 2021	March 8, 2021	M. Bonomi
21.5	Replica exchange methods	March 15, 2021	March 22, 2021	G. Bussi
21.6	Dimensionality reduction	April 12, 2021	April 19, 2021	G. Tribello
21.7	Performance optimization	April 26, 2021	May 3, 2021	M. Bonomi
21.8	Poster session	May 10, 2021		

- I. Go to www.plumed.org
- 2. Click on the Masterclass tab
- 3. Click on the Topic of class 21.4
- 4. I week to complete the exercises
- 5. Questions/discussions on Slack channel masterclass-21-4
- 6. Lecture I and II available on YouTube

The molecule of the day

Alanine dipeptide in vacuo: two metastable states in the Ramachandran plot

The isomerization is a rare event: barrier of 6-8 kcal/mol at 300K