

SÍLABO TECNOLOGIA DE INFORMACION II

ÁREA CURRICULAR: TECNOLOGÍA DE INFORMACIÓN

CICLO: IV SEMESTRE ACADÉMICO: 2017-I

I. CÓDIGO DEL CURSO : 09114904040

II. CRÉDITOS : 04

III. REQUISITOS : 09111503050 Tecnología de Información I

IV. CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

Es de naturaleza especializada, que se dicta con el fin de que el alumno conozca la estructura completa de una computadora actual, y saber cómo se relacionan sus unidades funcionales. Este conocimiento constituye la base para comprender y manejar una microcomputadora. Conocer los conceptos básicos de los sistemas operativos y la seguridad informática en estos. Comprender el funcionamiento de las redes de área local.

Unidades: Introducción a la computadora personal – Sistemas Operativos – Redes de comunicaciones.

VI. FUENTES DE CONSULTA:

Bibliográficas

- Ron White (2014). How Computers Work, 10th Edition. Editorial QUE
- Frank J. Derfler Jr.- (2007). How Networks Work, 7th Edition. Editorial QUE

Electrónicas

IT Essentials 5.0 https://www.netacad.com/ES

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: INTRODUCCIÓN A LA COMPUTADORA PERSONAL

OBJETIVOS DE APRENDIZAJE:

- Explicar los conceptos, la estructura de una computadora personal.
- Describir los componentes principales una computadora personal
- Ensamblar una computadora personal

PRIMERA SEMANA

Primera sesión:

El profesional de Tecnologías de Información. Las tecnologías de información en la actualidad Laboratorio:

Introducción al laboratorio, reglas y medidas de seguridad de un laboratorio, componentes y software a utilizar.

SEGUNDA SEMANA

Primera sesión:

Partes de un computador personal, el procesador, memoria, la placa madre, los discos duros, el chipset y fuentes de voltaje.

Laboratorio:

Reconocimiento de las partes de un computador personal.

TERCERA SEMANA

Primera sesión:

Dispositivos de entrada/salida, puertos de comunicación, buses internos y externos, ranuras de expansión, características de las tarjetas de video y de sonido.

Laboratorio:

Ensamblaje de una computadora e identificación de sus partes internas, ranuras de expansión, etc.

CUARTA SEMANA

Primera sesión:

Discos RAID, la BIOS y otros sistemas de almacenamiento

Laboratorio:

Uso de software de simulación para ensamblaje de computadoras (Virtual Desktop) y uso de software CPU-Z para conocer las características del computador.

QUINTA SEMANA

Primera sesión:

Computadoras portátiles, características, diferencias, selección.

Laboratorio:

Identificación de las opciones de configuración de la BIOS

UNIDAD II: SISTEMAS OPERATIVOS

OBJETIVOS DE APRENDIZAJE:

- Explicar las características de un sistema operativo
- Describir el rol que cumple el sistema operativo dentro de la arquitectura de una computadora personal

SEXTA SEMANA

Primera sesión:

Introducción a los sistemas operativos

Laboratorio:

Introduccion a maquinas virtuales

SETIMA SEMANA

Primera sesión:

Introducción a los sistemas operativos Linux y Windows. Historia, funciones y características

Creación de una máquina virtual e Instalación de Ubuntu

OCTAVA SEMANA

Examen Parcial (EP).

NOVENA SEMANA

Primera sesión:

Configuración de Linux e Interfaz de comandos CLI en Linux

Laboratorio:

Configuración de Linux, creación de usuarios, entorno gráfico, comparación con las experiencias en Windows

DÉCIMA SEMANA

Primera sesión:

Principios de seguridad en Sistemas Operativos, sistemas operativos para móviles: Android, IOS, etc.

Laboratorio:

Interfaz de líneas de comandos CLI

UNIDAD III: REDES DE COMUNICACIONES

OBJETIVOS DE APRENDIZAJE:

- Explicar los tipos redes de comunicación entre computadoras y otros medios tecnológicos.
- Comunicar dos computadores en forma alámbrica e inalámbrica para compartir información

UNDÉCIMA SEMANA

Primera sesión:

Introducción a las redes de comunicaciones, tipos y topologías de redes.

Laboratorio:

Implementación de cable de red directo y cruzado y verificación de funcionamiento con testeador de cable de red.

DUODÉCIMA SEMANA

Primera sesión:

Dirección IP, direcciones MAC,

Laboratorio:

Implementación y configuración de una red LAN.

DECIMOTERCERA SEMANA

Primera sesión:

Dispositivos de red (modem, hub, switch, router, Gateway). Cables y conectores

Laboratorio:

Asignación de temas de trabajo final de laboratorio

DECIMOCUARTA SEMANA

Primera sesión:

Exposición de grupos

Laboratorio:

Avance de trabajo final de laboratorio

DECIMOQUINTA SEMANA

Primera sesión:

Exposición de grupos

Laboratorio:

Presentación de trabajo final de laboratorio

DECIMOSEXTA SEMANA

Examen Final.

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

IX.PROCEDIMIENTOS DIDÁCTICOS

- Método Expositivo Interactivo. Disertación docente, exposición del estudiante.
- Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- Método de Demostración Ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

X. MEDIOS Y MATERIALES

Equipos:

- Una computadora personal para el profesor.
- Écran, Proyector de multimedia

Materiales:

- Pizarra acrílica.
- Plumones.
- Material para laboratorio.

XI. EVALUACIÓN

El promedio final de la asignatura se obtiene con la fórmula siguiente:

PF = (2*PE+EP+EF)/4

Donde:

PF = Promedio Final.

PE = Promedio de Evaluaciones.

EP = Examen Parcial (escrito)

EF = Examen Final (escrito)

PE = ((P1+P2+P3+P4-MN)/3 + W1 + PL)/3

PL = (Lb1+Lb2+Lb3+Lb4)/4

Donde: P1...P4 = Práctica calificada

MN = Menor nota

W1 = Trabajo 1

PL = Promedio de laboratorio

Lb1...Lb4 = Práctica de laboratorio

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los Resultados del Estudiante (Student Outcomes) en la formación del graduado en Ingeniería de Computación y Sistemas, se establece en la tabla siguiente:

K = clave **R** = relacionado Recuadro vacío = no aplica

a.	Habilidad para aplicar conocimientos de computación y matemáticas apropiadas para los resultados del estudiante y las disciplinas enseñadas.	R
b.	Habilidad para analizar un problema e identificar y definir los requerimientos apropiados para su solución.	R
C.	Habilidad para diseñar, implementar y evaluar un sistema basado en computadoras, procesos, componentes o programa que satisfagan las necesidades requeridas.	
d.	Habilidad para trabajar con efectividad en equipos para lograr una meta común.	
e.	Comprensión de los aspectos y las responsabilidades profesional, ética, legal, de seguridad y social.	
f.	Habilidad para comunicarse con efectividad con un rango de audiencias.	
g.	Habilidad para analizar el impacto local y global de la computación en los individuos, organizaciones y la sociedad.	R
h.	Reconocer la necesidad y tener la habilidad para comprometerse a un continuo desarrollo profesional.	R
i.	Habilidad para usar técnicas, destrezas, y herramientas modernas necesarias para la práctica de la computación.	R
j	Comprensión de los procesos que soportan la entrega y la administración de los sistemas de información dentro de un entorno específico de aplicación.	

XIII. HORAS, SESIONES, DURACIÓN

Práctica Laboratorio Teoría a) Horas de clase:

b) Sesiones por semana: Dos sesiones.

c) **Duración**: 5 horas académicas de 45 minutos

XIV. PROFESOR DEL CURSO

Ing. Eiriku Yamao

XV. FECHA

La Molina, marzo de 2017.