Indian Institute of Information Technology Surat

Lab Report on Machine Learning (CS 601) Practical

Submitted by

[RAHUL KUMAR SINGH] (UI21CS44)

Course Faculty

Dr. Pradeep Kumar Roy Dr. Rajesh K. Ahir

Department of Computer Science and Engineering Indian Institute of Information Technology Surat Gujarat-394190, India

Jan-2024

Lab No: 2

Aim:

To perform exploratory data analysis on the attached dataset

Description:

Perform the Exploratory Data Analysis (EDA) by considering the following tasks. Use the attached dataset for the same.

- 1. Check for Duplication
- 2. Missing Values Calculation
- 3. Data Reduction (Some columns or variables can be dropped if they do not add value to our analysis.)
- 4. Feature Engineering
- 5. Creating Features
- 6. Data Cleaning/Wrangling
- 7. Statistics Summary (Count, Mean, Standard Deviation, median, mode, minimum value, maximum value, range, standard deviation)
- 8. Analyzing/visualizing the dataset by taking one variable at a time
- 9. Data Transformation

Source Code:

```
| Import Libraries and Read Dataset | Import Libraries and Read Dataset | Import Libraries and Read Dataset | Import pandas as pd from sklearn.decomposition import PCA from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler, LabelEncoder import matplotlib.pyplot as plt import seaborn as sns from datetine | Import StandardScaler | Im
```

```
v 2. Missing Values Calculation

[ ]: total_missing = df.isnull().sum().sum()
    print(total_missing)

[ ]: missing_by_column = df.isnull().sum()
    print(missing_by_column)

[ ]: percentage_missing = (df.isnull().sum() / len(df)) * 100
    print(percentage_missing)
```

3. Data Reduction (Some columns or variables can be dropped if they do not add value to our analysis.)

```
[ ]: # Replace missing values
    df('Price').fillna(0, inplace=True)
    df('New_Price').fillna(0, inplace=True)
    df.dropna(inplace=True) # Dropping few inconsequntial records

[ ]: # Drop irrelevant columns for analysis
    cols_to_drop = ['Name','Location','Fuel_Type','Transmission','Owner_Type','Mileage','Engine','Power','New_Price']
    dropdf = df.drop(columns=cols_to_drop)

scaler = StandardScaler()
    cars_data_scaled = scaler.fit_transform(dropdf)

# Apply Principal Component Analysis (PCA) for dimensionality reduction
    pca = PCA(n_components=2)
    cars_pca = pca.fit_transform(cars_data_scaled)

plt.figure(figsize=(10, 6))
    plt.scatter(cars_pca[:, 0], cars_pca[:, 1])
    plt.title('PCA: First Two Principal Components')
    plt.ylabel('Principal Component 1')
    plt.ylabel('Principal Component 2')
    plt.show()
```

4. Feature Engineering

```
[]: selected_features = df[['S.No.', 'Kilometers_Driven', 'Seats', 'Price']]
scaler = StandardScaler()
scaled_features = scaler.fit_transform(selected_features)

num_components = 2
pca = PCA(n_components=num_components)
reduced_features = pca.fit_transform(scaled_features)
reduced_features_df = pd.DataFrame(data=reduced_features, columns=['PC1', 'PC2'])
final_data = pd.concat([df, reduced_features_df], axis=1)
print(final_data.head())
```

5. Creating Features

```
[]: cars_df = df.copy()
    cars_df['Name'].str.split().str[0]
    cars_df['Mileage'] = cars_df['Mileage'].str.split().str[0]
    cars_df['Mileage'] = pd.to_numeric(df['Mileage'], errors='coerce')
    current_year = datetime.now().year
    cars_df['Age'] = current_year - cars_df['Year']
    cars_df['Price_per_Mile'] = cars_df['Price'] / cars_df['Mileage']

    print("\nCars_Dataset_with New Features:")
    print(cars_df)

[]: # Visualization
    plt.figure(figsize=(12, 6))

    plt.subplot(1, 2, 1)
    sns.scatterplot(x='Age', y='Price', data=cars_df, hue='Brand', palette='Set1')
    plt.title('Age vs_Price')

    plt.subplot(1, 2, 2)
    sns.scatterplot(x='Mileage', y='Price_per_Mile', data=cars_df, hue='Brand', palette='Set2')
    plt.title('Mileage vs_Price_per_Mile')

# plt.tight_layout()
    plt.show()
```

6. Data Cleaning/Wrangling []: clean_df = df.copy()

```
clean_df = df.copy()

clean_df['Brand'] = clean_df['Name'].str.split().str[0]

clean_df['Engine'] = clean_df['Engine'].str.extract('(\d+)').astype(float)

clean_df['Mileage'] = clean_df['Mileage'].str.extract('(\d+)').astype(float)

clean_df['Power'] = clean_df['New_Price'].str.extract('(\d+)').astype(float)

clean_df['New_Price'] = clean_df['New_Price'].str.extract('(\d+)').astype(float)

clean_df['New_Price'].fillna(0, inplace=True)

current_year = datetime.now().year

clean_df['Mileage'][clean_df['Mileage']==0] = 1

clean_df['Age'] = current_year - clean_df['Year']

clean_df['Price_per_Mile'] = clean_df['Price'] / clean_df['Mileage']

clean_df = clean_df.drop(['Name', 'Year'], axis=1)

print("\nCleaned and Wrangled Dataset:")

print(clean_df)
```

 7. Statistics Summary (Count, Mean, Standard Deviation, median, mode, minimum value, maximum value, range, standard deviation)

```
[]: print("Dataset Information:")
    print(df.info())
    print("\nSummary Statistics:")
    print(df.describe())

[]: cars_data = dropdf.copy()
    summary_stats = {
        'count': cars_data.shape[0],
        'Mean': cars_data.mean(),
        'Standard Deviation': cars_data.std(),
        'Median': cars_data.med(),
        'Mode': cars_data.mode().iloc[0],
        'Minimum Value': cars_data.min(),
        'Maximum Value': cars_data.max(),
        'Range: cars_data.max() - cars_data.min(),
    }
    summary_df = pd.DataFrame(summary_stats)
    print("\nStatistics Summary:")
    print(summary_df)

[]: import scaborn as sns
    import matplottib.pyplot as plt
    sns.heatmap(df.isnull(), cbar=False, cmap='viridis')
    plt.sbow()
```

```
8. Analyzing/visualizing the dataset by taking one variable at a time
[ ]: cars_data = clean_df.copy()
     def visualize_variable(variable_name):
        plt.figure(figsize=(8, 6))
         plt.hist(cars_data[variable_name], bins=20, color='skyblue', edgecolor='black')
         plt.title(f'Distribution of {variable_name}')
         plt.xlabel(variable_name)
     numerical_variables = cars_data.select_dtypes(include='number').columns
     for variable in numerical_variables:
         visualize_variable(variable)
     9. Data Transformation
[ ]: cars_data = clean_df.copy()
     label encoder = LabelEncoder()
     cars_data['Brand'] = label_encoder.fit_transform(cars_data['Brand'])
     cars_data['Fuel_Type'] = label_encoder.fit_transform(cars_data['Fuel_Type'])
     numerical_features = ['Price', 'Mileage', 'Engine']
     scaler = StandardScaler()
     cars_data[numerical_features] = scaler.fit_transform(cars_data[numerical_features])
     print("\nTransformed Dataset:")
     print(cars_data.head())
```

Output:

1. Check for Duplication

Figure 2.1 Output for task 1

2. Missing Values Calculation

Figure 2.2 Output for task 2

3. Data Reduction (Some columns or variables can be dropped if they do not add value to our analysis.)

	S.No.	Year	Kilometers_Driven	Seats	Price	
0	0	2010.0	72000.0	5.0	1.75	
1	1	2015.0	41000.0	5.0	12.50	
2	2	2011.0	46000.0	5.0	4.50	
3	3	2012.0	87000.0	7.0	6.00	
4	4	2013.0	40670.0	5.0	17.74	
7248	7248	2011.0	89411.0	5.0	0.00	
7249	7249	2015.0	59000.0	5.0	0.00	
7250	7250	2012.0	28000.0	5.0	0.00	
7251	7251	2013.0	52262.0	5.0	0.00	
7252	7252	2014.0	72443.0	5.0	0.00	

Figure 2.3 Output for task 3

4. Feature Engineering

```
S.No.
                    Maruti Wagon R LXI CNG
0
    0.0
                                                Mumbai
                                                        2010.0
     1.0
         Hyundai Creta 1.6 CRDi SX Option
                                                 Pune
                                                        2015.0
    2.0
                             Honda Jazz V
                                                        2011.0
                                               Chennai
     3.0
                        Maruti Ertiga VDI
                                               Chennai
                                                        2012.0
           Audi A4 New 2.0 TDI Multitronic Coimbatore
     4.0
   Kilometers_Driven Fuel_Type Transmission Owner_Type
                                                           Mileage
                                                                     Engine \
                                                        26.6 km/kg
0
             72000.0
                          CNG
                                                                     998 CC
                                     Manual
             41000.0
                                     Manual
                                                 First
                                                        19.67 kmpl
             46000.0
                        Petrol
                                     Manual
                                                 First
                                                        18.2 kmpl
                                                                    1199 CC
             87000.0
                                     Manual
                                                 First
                                                        20.77 kmpl
                                                                    1248 CC
             40670.0
                        Diesel
                                  Automatic
                                                         15.2 kmpl
                                                                    1968 CC
                                                Second
              Seats New_Price Price
                                            PC1
                                                      PC2
       Power
                                1.75 0.746503 -0.304137
  58.16 bhp
                            a
   126.2 bhp
                                12.50 1.421956 -0.656362
                5.0
   88.7 bhp
                5.0 8.61 Lakh
                                4.50 0.906441 -0.545824
   88.76 bhp
                                 6.00
                                       1.453131
                                17.74 1.760415 -0.703806
  140.8 bhp
                5.0
                             0
```

Figure 2.4 Output for task 4

5. Creating Features

	8							
	2					Honda Jazz V	Chennai	
					Marut	i Ertiga VDI	Chennai	
4	4		Д	udi A4 New	2.0 TDI	Multitronic C	oimbatore	
7248	7248		Vol	kswagen Ver	to Dies	el Trendline	Hyderabad	
7249	7249			Vol	kswagen	Polo GT TSI	Mumbai	
7250	7250			Nis	san Mic	ra Diesel XV	Kolkata	
7251	7251			Vol	kswagen	Polo GT TSI	Pune	
7252	7252 N	Mercedes-Ber	z E-Cla			CDI Avan	Kochi	
	Year	Kilometers_	Driven	Fuel_Type T	ransmis	sion Owner_Type	Mileage	1
0	2010.0	7	2000.0	CNG	Ma	nual First	NaN	
	2015.0	4	1000.0	Diesel	Ma	nual First	NaN	
	2011.0	4	6000.0	Petrol	Ma	nual First	NaN	
	2012.0	8	7000.0	Diesel	Ma	nual First	NaN	
4	2013.0	4	0670.0	Diesel	Autom	atic Second	NaN	
7248	2011.0	8	9411.0	Diesel	Ma	nual First	NaN	
7249	2015.0	5	9000.0	Petrol	Autom	atic First	NaN	
7250	2012.0	2	8000.0	Diesel	Ma	nual First	NaN	
7251	2013.0	5	2262.0	Petrol	Autom	atic Third	NaN	
7252	2014.0	7	2443.0	Diesel	Autom	atic First	NaN	
	Engine	Power	Seats	New_Price	Price	Brand	Age \	
0	998 CC	58.16 bhp	5.0	0	1.75	Maruti	14.0	
	1582 CC	126.2 bhp	5.0	0	12.50	Hyundai	9.0	
	1199 CC	88.7 bhp	5.0	8.61 Lakh	4.50	Honda	13.0	
	1248 CC	88.76 bhp	7.0	0	6.00	Maruti	12.0	
4	1968 CC	140.8 bhp	5.0	0	17.74	Audi	11.0	
7248	1598 CC	103.6 bhp	5.0	0	0.00	Volkswagen	13.0	
7249	1197 CC	103.6 bhp	5.0	0	0.00	Volkswagen	9.0	
7250	1461 CC	63.1 bhp	5.0	0	0.00	Nissan	12.0	
7251	1197 CC	103.6 bhp	5.0	0	0.00	Volkswagen	11.0	
7252	2148 CC	170 bhp	5.0	0	0.00	Mercedes-Benz	10.0	
				***************************************			and the state of the state of	

Figure 2.5.1 Tabular Representation

Figure 2.5.2 Graphical Representation

6. Data Cleaning/Wrangling

Cleaned and Wrangled Dataset:										
	S.No.	Location	Kilo	meters_	Driven	Fuel	_Type	Transmission	Owner_Type	e \
0	0	Mumbai		7	2000.0		CNG	Manual	Firs	t
1	1	Pune		4	1000.0	D	iesel	Manual	Firs	t
2	2	Chennai		4	6000.0	P	etrol	Manual	Firs	t
3		Chennai		8	7000.0	D	iesel	Manual	Firs	t
4	4	Coimbatore		4	0670.0	D	iesel	Automatic	Secon	d
724	8 7248	Hyderabad		8	9411.0	D	iesel	Manual	Firs	t
724	9 7249	Mumbai		5	9000.0	P	etrol	Automatic	Firs	t
725	0 7250	Kolkata		2	8000.0	D	iesel	Manual	Firs	t
725	1 7251	Pune		5	2262.0	P	etrol	Automatic	Thir	d
725	2 7252	Kochi		7	2443.0	D	iesel	Automatic	Firs	t
	Mileage	e Engine	Power	Seats	New_Pr	rice	Price	Bra	ind Age	
0	26.6	998.0	58.0	5.0		0.0	1.75	Maru	ti 14.0	
1	19.6	1582.0	126.0	5.0		0.0	12.50	Hyund	lai 9.0	
2	18.6	1199.0	88.0	5.0		8.0	4.50	Hon	ida 13.0	
3	20.6	1248.0	88.0	7.0		0.0	6.00	Maru	ti 12.0	
4	15.6	1968.0	140.0	5.0		0.0	17.74	Au	di 11.0	
724	8 20.6	1598.0	103.0	5.0		0.0	0.00	_	gen 13.0	
724			103.0	5.0		0.0		-	gen 9.0	
725	0 23.6	1461.0	63.0	5.0		0.0			an 12.0	
725	17.6	1197.0	103.0	5.0		0.0	0.00	Volkswag	gen 11.0	
725	2 10.6	2148.0	170.0	5.0		0.0	0.00	Mercedes-Be	nz 10.0	

Figure 2.6 Output for task 6

7. Statistics Summary (Count, Mean, Standard Deviation, median, mode, minimum value, maximum value, range, standard deviation)

Statistics Summary								
	Count		Mean	Standard	Deviation	Median	Mode	\
S.No.	7191	3627.1	90655	2	094.568997	3629.0	0.0	
Year	7191	2013.3	91322		3.235169	2014.0	2014.0	
Kilometers_Driven	7191	58606.0	50897	84	711.727076	53226.0	60000.0	
Seats	7191	5.2	79516		0.811614	5.0	5.0	
Price	7191	7.8	88618		10.819356	4.7	0.0	
	Minimu	m Value	Maxim	um Value	Range			
S.No.		0.0		7252.0	7252.0			
Year		1996.0		2019.0	23.0			
Kilometers_Driven		171.0	6!	500000.0	6499829.0			
Seats		0.0		10.0	10.0			
Price		0.0		160.0	160.0			

Figure 2.7 Output for task 7

8. Analyzing/visualizing the dataset by taking one variable at a time

Figure 2.8 Output for task 8

9. Data Transformation

```
Transformed Dataset:
   S.No.
           Location
                     Kilometers Driven
                                        Fuel Type
                                                    Transmission Owner Type
0
                                                                      First
                                72000.0
      0
             Mumbai
               Pune
                                41000.0
                                46000.0
            Chennai
                                                                      First
      3
            Chennai
                                87000.0
                                                                      First
         Coimbatore
                                40670.0
                                                                     Second
              Engine
                             Seats New_Price
   Mileage
                      Power
                                                         Brand
                                                                  Age
  1.842662 -1.039810
                       58.0
                               5.0
                                          0.0 -0.567413
                                                                 14.0
  0.275923 -0.058350
                                          0.0 0.426246
                      126.0
                               5.0
                                                                 9.0
  0.052103 -0.702013
                       88.0
                                5.0
                                          8.0 -0.313221
                                                                 13.0
  0.499743 -0.619664
                                          0.0 -0.174571
                                                                12.0
                       88.0
                                7.0
4 -0.619356 0.590354
                      140.0
                                5.0
                                          0.0 0.910596
                                                              1 11.0
  Price_per_Mile
         0.067308
        0.657895
        0.250000
        0.300000
        1.182667
```

Figure 2.9 Output for task 9

Conclusion:

- EDA provides a comprehensive overview of the cars dataset
- Identification and handling of missing values, outliers, and anomalies ensure data integrity and improve analysis accuracy.
- Descriptive statistics, including mean, median, and standard deviation, offer a summary of numerical attributes, aiding in understanding central tendencies and data dispersion.
- Visualization techniques, such as histograms and kernel density plots, reveal the distributions of key features, providing insights into the data's underlying patterns.
- Techniques like correlation, mutual information, or model-based feature importance assessments help prioritize variables based on their impact on the target variable.