Notes Introduction to Mathematical Analysis

Notation

A set is a "collection of elements"

We write $x \in A$ if x is an element of A. Otherwise, we write

Given two sets A and B, A is said to be a subset of B, $A \subseteq B$, \iff B contains all elements of A.

$$A \subseteq B \iff A \subseteq B \text{ and } B \subseteq A$$

Notation

 \emptyset denotes the set containing no elements \rightarrow empty set

Remark

Given a set A $\emptyset \subset A$

Definition

Given a set A, the power set $\mathcal{P}(A) - \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\$

Operations on Sets

Definition

Given the sets A and B:

The union $A \cup B$ is the set of all elements that are in A or in B

$$A \cup B = \{x : x \in A \text{ or } x \in B\}$$

The intersection $A \cap B$ is the set of all elements that are in A and in B

$$A\cap B=\{x:x\in A\ and\ x\in B\}$$

The relative component of A w.r.t.:

B is the set of all elements in B that are not in A

$$B \backslash A = \{x : x \in B \ and \ x \notin A\}$$

"Sometimes" A and B are sets in a universe X.

$$A^c = X \setminus A$$

[!ex] $A = \{a, b\}, B = \{b, c\}$

$$A \cup B = \{a,b,c\}$$

$$A \cap B = \{b\}$$

$$A\diagdown B=\{a\}$$

$$B \diagdown A = \{c\}$$

Remark

 $A \subseteq A \cup B, B \subseteq A \cup B$

 $x \in A \Rightarrow x \in A \text{ or } x \in B \Rightarrow x \in A \cup B$

 $A \cap B \subseteq A, A \cap B \subseteq B$

 $x \in A \cap B \Rightarrow x \in A \ and \ x \in B \Rightarrow x \in A$

Law: Demorgan's Law

Demorgan's Law

$$i.\,(A\cup B)^c=A^c\cap B^c$$

$$ii. (A \cap B)^c = A^c \cup B^c$$

of i)

 $x \in (A \cup B^c)$

 $\iff x \not\in A \cup B$

 $\iff x \notin A \ and \ X \notin B$

 $\iff x \in A^c \ and \ x \in B^c$

 $\iff x \in A^c \cap B^c$

Distributivity

Distributivity

 $i)\ A\cup (B\cap C)=(A\cup B)\cap (A\cup C)$

 $ii)\;A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$

of i)

 $x \in A \cup (B \cap C)$

 $\iff x \in A \ or \ x \in B \cap C$

 $\iff x \in A \ or \ x \in B \ and \ x \in C$

 $\iff x \in A \ or \ x \in B \ and \ x \in A \ or \ x \in C$

 $\iff x \in A \cup B \ and \ x \in A \cup C$

 $\iff x \in (A \cup B) \cap (A \cup C)$

Given two sets A and B

$$A imes B = \{(x,y) : x \in A, y \in B\}$$

Ex:

$$A=a,b,b=\{/\}$$

$$A \times B = \{(a, /), (b, /)\}$$

$$B \times A = \{(/, a), (/, b)\}$$

Relations and Functions

Given two sets A and B, a relation R is a subset of $A \times B$

 $\mathbf{E}_{\mathbf{x}}$:

$$A = \{a,b\}, B = \{b,c\} \ (Relations\ from\ A
ightarrow\ B)$$

 $R_1 = \{(a,b), (a,c)\}$

$$R_2 = \{(b, b)\}$$

$$R_2 = \{(b, b)$$

$$R_3 = \{(a,b), (a,c), (b,c)\}$$

Given a function: $f: A \rightarrow B$

i) image set: for $E \subseteq A$

 $f(E) = \{y \in B : y = f(a)\} \text{ for some } a \in E\}$

ii) Pre-image set: for $H \subseteq B$

 $f^{-1}(H) = \{x \in A : f(x) \in H\}$

Observation: $f: A \rightarrow B$

- 1. If $E \subseteq F \subseteq A$ then $f(E) \subseteq f(F)$
- 2. If $H \subseteq K \subseteq B$ then $f^{-1}(H) \subseteq f^{-1}(K)$

Proof

- 1. $y \in f(E) \Rightarrow y = f(x)$ for some $x \in E$ since $E \subseteq F$ then $x \in F$ $(\Rightarrow y = f(x) \text{ with } x \in F)$ $\Rightarrow y \in f(F)$
- 2. $x \in f^{-1}(H) \Rightarrow f(x) \in H$ since $H \subseteq K$ then $f(x) \in k \Rightarrow x \in f^{-1}(K)$

$A=\{\alpha,\beta,\gamma\}$ $B=\{a, b, c\}$

$$\begin{split} f(\alpha) &= a, f(\beta) = b, f(\gamma) = a \\ f^{-1}(f(\{\alpha\})) &= f^{-1}(\{a\}) = \{\alpha, \gamma\} \end{split}$$

$$f(f^{-1}(\{b,c\})) = f(\{eta\}) = \{b\}$$

[not injective nor subjective]

Proposition

$$f:A o B \ function$$

$$1) \forall \ E \subseteq A \ we \ have \ E \subseteq f^{-1}(f(E))$$
 $2) \forall \ H \subseteq B \ we \ have \ f(f^{-1}(H)) \subseteq H$

Proof

- 1. Let $x \in E$ then $f(x) \in f(E)$ then $x \in f^{-1}(f(E))$
- 2. Let $y \in f(f^{-1}(H))$ then y = f(x) for some $x \in f^{-1}(H)$ but $x \in f^{-1}(H)$ implies $f(x)[=y] \in H$

Given a function $f: A \rightarrow B$

- 1. We say that f is **injective** (one-to-one) iff for $x \neq y \ f(x) \neq f(y) \iff "f(x) = f(y) \iff x = y"$
- 2. We say that f is **surjective** (onto) iff for every $y \in B$, there exists $x \in A$ s.t. f(x) = y iff $f^{-1}(\{y\}) \neq \emptyset \ \forall \ y \in B$ iff f(A) = B
- 3. We say that f is **bijective** if it is both **injective** and **surjective**

Notation

- A is called the domain of f
- f(A) is the range of f

Proposition

- 1. If f is injective then $E = f^{-1}(f(E))$ for every $E \subseteq A$. In fact,
 - f is injective $\iff E = f^{-1}(f(E)) \ \forall \ E \subseteq A$
- 2. If f is surjective then $H = f(f^{-1}(H)) \forall H \subseteq B$ In fact.

f is surjective
$$\iff H = f(f^{-1}(H))$$

(ex) $\forall H \subseteq B$

Given f injective I want to show that $E = f^{-1}(f(E))$

 $E \subseteq f^{-1}(f(E))$: done (independently of injectivity)

$$f^{-1}(f(E))\subseteq E$$
:

Take
$$x \in f^{-1}(f(E))$$
 then $f(x) \in f(E)$ then $f(x) = f(x')$ for some $x' \in E$ but f is injective then $x = x' \in E$

$$Conclusion:\ E=f^{-1}(f(E))$$

Proof

- (\Rightarrow) done
- (\Leftarrow) Assume $f(x) = f(y), x \in f^{-1}(f\{y\}) = \{y\}$ then x = y

Schroeder-Bernstein Theorem

Given two sets A and B

If there exists $f:A\to B$ injective and $g:B\to A$ injective then there exists a bijection $h:A\to B$

If $f: A \rightarrow B$ bijective

We use the notatoin f^{-1} to denote the inverse map $f^{-1}:B\to A$ defined as follows:

$$f^{-1}(b) = a \iff f(a) = b$$

Idea

Here we have:

Let $h:A\to B$

$$h(x) = egin{cases} f(x) & x \in A_{\infty} \ g^{-1}(x) & x
otin A_{\infty} \end{cases}$$

We show that h is injective

Assume
$$h(x) = h(y)$$
 for $x, y \in A$ "(N.T.S. $x = y$)"

Case 1:
$$x, y \in A_{\infty}$$

then
$$h(x) = h(y) \Rightarrow f(x) = f(y)$$
 but f is injective then $x = y$

Case 2: $x, y \notin A_{\infty}$

then
$$h(x) = h(y) \Rightarrow g^{-1}(x) = g^{-1}(y) \Rightarrow x = y$$
 (by injectivity

Case 3: $x \in A_{\infty}$ and $y \notin A_{\infty}$ (or vice versa)

$$h(x) = h(y)$$

$$\Rightarrow f(x) = g^{-1}(y)) = y$$

$$\Rightarrow g(f(x)) = g(g^{-1}(y)) = y$$

$$x \in A_{\mathrm{inf}} = A_0 \cup A_1 \cup A_2 \cup \dots$$

then $x \in A_k$ for some $k = 0, 1, 2, 3, \dots$

 $ext{then } y=g(f(x)\in g(f(A_k))=A_{k+1}\subseteq A_\infty ext{ then } y\in A_\infty.$

Contradiction!

We conclude that h is injective.

It remains to show that h is surjective.

Let
$$z \in B, x^* = q(z)$$

Case
$$x^* \notin A_{\infty} : h(x^*) = g^{-1}(x^*) = g^{-1}(g(z)) = z$$

Case
$$x^* = g(z)$$
: Notice that $x^* = g(z) \in g(B)$ and $A_0 \cap g(B) = \emptyset$

Then $x^* \notin A_0 \text{ so} x^* \in A_1 \cup A_2 \cup \dots$

Then $x^* \in A_k$ for some k = 1, 2, 3...

$$(A_k == g(f(A_{k-1})))$$

Then $x^* = g(f(x'))$ for some $x' \in A_{k-1}$

We have

$$x^* = g(f(x')) = g(z)$$
 but g is injective

then z = f(x')

but
$$x' \in A_{k-1} \subseteq A_\infty$$
 then $h(x') = f(x')$

 $\Rightarrow z = h(x')$

Orders and Peanu Axioms

Definition

Given a set S, a (strict total) order denoted by "<" is a relation from A to A to satisfy the following:

1. Given $x, y \in A$ we have exactly one of the following:

$$x < y$$
 or $y < x$ or $x = y$ (Comparability)

2. If x < y and y < z then

 $\mathbf{E}\mathbf{x}$

$$A = a, b$$

 $= \{(a, a), (a, b)\}$ not a strict order since we have $a < a \in \{(a, a), (a, b)\}$

 $<_1 = \{(a,b),(a,c)\}$ not an order since b and c are not com

 $<_2 = \{(a,b), (a,c), (b,c)\}$

 $<_3 = \{(a, b), (b, c), (c, a)\}$ not an order be a < b and b < c

Given a set A and an order < on A, we say that (A,<) is an ordered set (totally)

Given an ordered set (A, <)

" $a \le b$ " means $a \le b$ or a = b

" $a \ge b$ " means $b \le a$

The set on natural numbers \mathbb{N} is defined by the following axioms:

 $(P.1) \ 1 \in \mathbb{N}$

(P.2) If $n \in \mathbb{N}$, the successor $n+1 \in \mathbb{N}$

(P.3) If n+1=M+1 then n=m (no two elements have the sar

(P.4) 1 is not the successor of any element.

(P.5) Mathematical induction says:

If $S \subseteq \mathbb{N}$ such that:

 $i)1 \in S$

ii)if $k \in S$ then $k+1 \in S$

Then $S = \mathbb{N}$

P.5: Induction:

Assume I have a set of elements P(n)

$$S = \{n \in \mathbb{N} : P(n) \text{ is true } \}$$

Base case: P(1) true $(1 \in S)$

Inductive step: "P(n) true" \Rightarrow "P(n+1) true" $(n \in S \text{ then }$

Then from P.5 $S = \mathbb{N} P(n)$ is true for every $n \in \mathbb{N}$.

Def

 $m,n\in\mathbb{N}$

$$m+n=\underbrace{(((n+1)+1)+1)+\ldots+1)}_{ ext{m times}}$$

$$m.n = \underbrace{m + m + m + m + m + \dots + m}_{\text{n times}}$$

Order

We say that

m < n if and only if n is "a successor" of m n = m + k for some $k \in \mathbb{N}$

 $(\mathbb{N}, <)$ is an order

Induction Example

$$2^n(n+1)! \quad \forall \quad n \in \mathbb{N}$$

n! = 1.2.3....n

$$P(n) = \{2^n \le (n+1)!\}$$

 $\underline{\text{Base case: }} n{=}1$

$$2^1 = 2 \qquad 2^1(1+1)!$$
 $(1+1)! = 2! = 2.1 = 2$ verifies

Inductive step: Assume P(k) is true for some $k \in \mathbb{N}$

$$2^k \leq (k+1)!$$
 I want to show tha $P(k+1)$ is true i.e. $2^{k+1} \leq (k+1+1)$

$$2^{k+1} = 2^k \cdot 2 < (k+1)!(2) < (k+1)!(k+2) = (k+2)$$

Then P(n) is true for every $n \in \mathbb{N}$

Strong Induction

If $S \subseteq \mathbb{N}$ s.t.

i) $1 \in S$

ii) If $1,2,3,\ldots k\in S$ then $k+1\in S$

Then $S = \mathbb{N}$

In terms of statement.

Given a statement $P(n) \in \mathbb{N}$

Base case: P(1) is true

Inductive step:

If $P(1), P(2), \ldots, P(k)$ are true then P(k+1) is true

Conclusion: P(n) is true $\forall n \in \mathbb{N}$

Proof

Take

$$T=n\in S:\{1,2,\ldots,n\}\subseteq S\ (T\subseteq S\subseteq \mathbb{N})$$

Base case: $1 \in T$ since by hypothesis $1 \in S$, so $\{1\} \subseteq S$

Inductive step: Assume $k \in T$, then $\{1,2,\ldots k\} \subseteq S$

Then by hypothesis (ii) $k+1 \in S$

then $\{1, 2, \dots, k, k+1\} \subseteq S$ $\Rightarrow k+1 \in T$

by induction $T = \mathbb{N}$ and $S = \mathbb{N}$

Exercise

Given $m,n\in\mathbb{N}$ m we say that n divides $m,\ n|m$ m iff there exists $k\in\mathbb{N}$ s.t. m=kn

 $\underline{\text{Ex:}}\,2|4,2|16 \text{ since } 16=2\times 8$

We say that $p \geq 2$ is "prime number if and only if the only divisers of p are 1 and p".

ex: 16 isn't prime but 17 is

Theorem

If $n \leq 2$ then n can be factorized into prime numbers i.e. we can write

$$n = p_1 p_2 p_3 \dots p_k$$
 with $p_1, p_2, p_3, \dots, p_k$ primes

Proof

n=2:2 is prime

Inductive step: Assume the statement is true for $2,3,4,\ldots,k$

Need to show it for k+1

 $\underline{\text{Case 1: }}k+1 \text{ is prime. } k+1=k+1$

Case 2: k + 1 is not prime. then

 $k+1=m.n \text{ with } 2 \leq m, n \leq b$

But P(m) and P(n) are true then

$$m=p_1p_2\dots p_k$$
 prime then $k+1=p_1\dots p_k\ q_1$ $n=q_1q_2\dots q_s$

Then $S = \mathbb{N}$

Proposition: Well-ordering principle

If S is a nonempty subset of $\mathbb N$ then S has a least element. i.e. there exists $n\in S$ s.t.

$$n \leq x ext{ for every } x \in S$$

We write n = min(S)

Proof

We will show it with strong induction.

Take $P(n) = \{n \in S \implies S \text{ has a least element}\}\$

i) Base case: Is P(1) true?

If $1 \in S$ then 1 is the smallest element of S by (p.4)

ii) Inductive step: Assume $P(1), P(2), P(3), \dots, P(k)$ are true

We need to show that P(k+1) is true

Assume $k+1 \in S$

 $\underline{\text{Case 1:}}\ \{1,2,\ldots,k\}\cap S=\emptyset$

 $\underline{\text{Case 2:}} \left\{1, 2, \dots, k\right\} \cap S \neq \emptyset$

s.t. $p \in S$ but P(p) is true then S has a least el

Conclusion: P(n) is true for every $n \in \mathbb{N}$

but $S \neq \emptyset$ i.e. $\exists n_0 \in S$ and $P(n_0)$ is true then S has a least element.

Theorem

 $\text{Induction} \iff \text{Strong Induction} \iff \text{Well-ordering principle}$

Proof

We showed

Induction \Rightarrow Strong Induction \Rightarrow Well-ordering principle We show that

Well-ordering principle \Rightarrow Induction

Let $S\subseteq \mathbb{N}$ s.t.

i) $i \in S$

ii) $k \in S \implies k+1 \in S$

I need to prove that $S=\mathbb{N}$

Assume S is a proper subset of $\mathbb N$ i.e. $S \subset \mathbb N$

Then $\mathbb{N} \smallsetminus S \neq \emptyset$ then by the Well-ordering principle, \mathbb{N} has a least element

$$p = min(\mathbb{N} \setminus S)$$

 $p \neq 1$ since $1 \in S$ then $\exists \; k \in \mathbb{N} \text{ s.t.}$

k+1 = p, k < p

so $k \notin \mathbb{N} \setminus S$ then $k \in S$

by the inductive hypothesis, $k+1 \in S$

$$\mathbb{N} \setminus S = \emptyset \ , \ S = \mathbb{N}$$

Contradiction!