Table B4 Stability and Control Derivatives for Airplane D (Pages 501-507)

Flight Condition Data	Climb	Cruise	Approach
Altitude, h (ft)	0	30,000	0
Mach Number, M	0.313	0.459	0.143
TAS, U ₁ (ft/sec)	349	456	160
Dynamic pressure, q (lbs/ft ²)	144.9	92.7	30.4
C.G. location, fraction \overline{c}	27.0	27.0	27.0
Angle of attack, $\alpha_1(\text{deg})$	0.7	2	4.2
Mass Data			
W (lbs)	6,360	6,360	6,360
I_{xx_B} (slugft2)	7,985	7,985	7,985
I_{yy_B} (slugft2)	3,326	3,326	3,326
I_{zz_B} (slugft2)	11,183	11,183	11,183
I_{xz_B} (slugft ²)	0	0	0

Table B4 (Continued)	Stability and Control Derivatives for Airplane D (Pages 501–507)
Table D4 (Continued)	Dunning and Control Derivatives for Amplane Data deep Jor -Jorr

Cruise

Approach

Climb

Flight Condition

Steady State Coefficients				
C_{L_i}	0.241	0.378	1.150	
C_{D_1}	0.0220	0.0300	0.1580	
$C_{T_{x_1}}$	0.0220	0.0300	0.1580	
C_{m_1}	0	0	0	
$C_{m_{T_1}}$	0	0	0	
Longitudinal Coefficients and Sta	<u>bility Derivatives (Sta</u>	ability Axes, Dimension	onless)	
C_{D_0}	0.0200	0.0200	0.0689	
C_{D_u}	0	0	0	
C_{D_a}	0.130	0.250	0.682	
$C_{T_{x_u}}$	-0.05	-0.07	-0.40	
$egin{array}{c} C_{L_u} \ C_{L_u} \end{array}$	0.19	0.20	0.81	
	0	0	0	
$C_{L_{\alpha}}$	4.81	5.15	4.64	
$C_{L_{\mathfrak{a}}}$	1.8	2.0	1.8	
C_{L_q}	3.7	4.1	3.7	
C_{m_0}	0.025	0.025	0.10	
C_{m_u}	0	0	0	
$C_{m_{\mathfrak{a}}}$	-0.668	-0.700	-0.631	
$C_{m_{\alpha}}$	-6.64	-6.95	-6.84	
C_{m_q}	-14.3	-14.9	-14.0	
$C_{m_{T_u}}$	0	0	0	
$C_{m_{T_{\alpha}}}$	0	0	0	
Longitudinal Control and Hinge Moment Derivatives (Stability Axes, 1/rad)				

$C_{D_{\delta_{e}}}$	0	0	0
$C_{D_{\delta_e}}$ $C_{L_{\delta_e}}$ $C_{m_{\delta_e}}$ $C_{D_{l_h}}$ $C_{L_{l_h}}$	0.4	0.5	0.4
$C_{m_{\delta_e}}$	-1.07	-1.12	-1.05
$C_{D_{i_{h}}}$	not applicable		
$C_{L_{'_{h}}}$	not applicable		
$C_{m_{i_h}}$	not applicable		

<u>Table B4 (Continued)</u> Stability and Control Derivatives for Airplane D (Pages 501 – 507)

Flight Condition	Climb	Cruise	Approach				
Longitudinal Control and Hinge Moment Derivatives: Cont'd (Stability Axes, 1/rad)							
$C_{h_{\pmb{\alpha}}}$	-0.00784	-0.00775	-0.00739				
$C_{h_{\delta_{e}}}$	-0.347	-0.497	-0.347				
Lateral-Directional Stability Derivatives (Stability Axes, Dimensionless)							
$C_{l_{\beta}}$	-0.0851	-0.0944	-0.0822				
C_{l_p}	-0.440	-0.442	-0.458				
C _{I,}	0.0590	0.0926	0.2540				
$C_{y_{\beta}}$	-0.361	-0.346	-0.303				
$C_{y_{\mathfrak{p}}}$	-0.0635	-0.0827	-0.1908				
C_{y_r}	0.314	0.300	0.263				
$C_{n_{\beta}}$	0.1052	0.1106	0.1095				
$C_{n_{T_{\beta}}}$	0	0	0				
C_{n_p}	-0.0154	-0.0243	-0.0768				
C_{n_r}	-0.1433	-0.1390	-0.1613				

<u>Lateral-Directional Control and Hinge Moment Derivatives (Stability Axes, Dimensionless)</u>

$C_{l_{\delta_a}}$	0.1788	0.1810	0.1788
$C_{l_{\delta_r}}$	0.015	0.015	0.015
$C_{y_{\delta_a}}$	0	0	0
$C_{y_{\delta_r}}$	0.2	0.2	0.2
$C_{n_{\delta_a}}$	-0.0160	-0.0254	-0.0760
$C_{n_{\delta_r}}$	-0.0365	-0.0365	-0.0365
$C_{\mathbf{h}_{lpha_{\mathbf{a}}}}$???	???	???
$C_{h_{\delta_{a}}}$	-0.226	-0.226	-0.226
$C_{\mathbf{h}_{\mathbf{\beta_r}}}$	0.1146	0.1146	0.1146
$C_{h_{\delta_r}}$	-0.372	-0.372	-0.372

Table B4 (Continued) Stability and Control Derivatives for Airplane D (Pages 501–507)

Longitudinal Transfer Function Data

```
=
                                                         0.458
                                           M_1
Altitude =
              30000 ft
                                                          1.00 g
                                           n
U_1
   <del>--</del>
             270.14 kts
                                           q_bar =
                                                         92.58 psf
W_current =
            6360.0 lb
                                                        34.95 psf
                                           (W/S)_TO =
S_w =
             182.00 ft^2
                                                        -0.0111 1/s
                                           X_u =
Theta_1 =
               2.00 deg
                                           X_T_u
                                                        -0.0019 1/s
C_bar =
              5.47 ft
                                                  =
                                                        10.8087 ft/s^2
                                           X_a
I_YY_B =
              3326 slgft2
                                                        -0.1400 1/s
                                           Z_u
            0.0000
C_m_1
        =
                                                  = -437.4153 ft/s^2
                                           Z_a
             0.0000
C_m_u
       =
                                           Z_a_dot =
C_m_a =
                                                        -1.0131 ft/s
            -0.7000 1/rad
                                                        -2.0768 ft/s
                                           Z_q
C_m_a.dot =
            -6.9500 1/rad
                                                         0.0000 1/ft/s
                                           M_u
                                                   =
Cmq
        =
            -14.9000 1/rad
                                                         0.0000 1/ft/s
                                           M_T_u
                                                  =
C_m_T_1 =
             0.0000
                                                      -19.3979 1/s^2
                                                  =
                                           M_a
C_m_T_u =
            0.0000
                                                         0.0000 1/s^2
                                           M_T_a
                                                   =
            0.0000
C_m_T_a
        =
                                                        -1.1553 1/s
                                           M_a_dot =
C_L_1
            0.3780
      =
                                                        -2.4768 1/s
                                           M_q
C_L_u
       =
            0.0000
C_L_a <u></u>=
             5.1500 1/rad
                                           w_n_{SP} =
                                                        4.6523 rad/s
C_L_a.dot =
             2.0000 1/rad
                                           z_SP
                                                         0.4927
                                                  =
            4.1000 1/rad
C_L_q =
                                           w_n_P
                                                  =
                                                        0.0934 rad/s
C_D_1
       =
            0.0300
                                           z_P
                                                  =
                                                        0.0526
        =
            0.2500 1/rad
C_D_a
                                           X_del_e
                                                         0.0000 ft/s^2
                                                   =
C_D_u
       =
             0.0000
                                           Z_{del_e} = -42.2216 \text{ ft/s}^2
C_T_X_1 =
             0.0300
                                           M_{del_e} = -31.0366 1/s^2
C_TX_u =
            -0.0700
C_L_d_e
             0.5000 1/rad
             0.0000 1/rad
C_D_d_e =
C_m_d_e =
             -1.1200 1/rad
```

POLYNOMIAL ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION

```
- 42.2216 S<sup>3</sup> - 14191.7548 S<sup>2</sup> - 149.4537 S - 137.9759

+ 456.9617 S<sup>4</sup> + 2099.4660 S<sup>3</sup> + 9914.8881 S<sup>2</sup> + 115.4904 S + 86.2350
```

FACTORED ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION

ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION K_gain = -1.600000

POLYNOMIAL SPEED TO ELEVATOR TRANSFER FUNCTION

```
- 456.3609 s^2 + 296829.8192 s + 406732.2497
```

^{+ 456.9617} S^4 + 2099.4660 S^3 + 9914.8881 S^2 + 115.4904 S + 86.2350

Table B4 (Continued) Stability and Control Derivatives for Airplane D (Pages 501–507)

FACTORED SPEED TO ELEVATOR TRANSFER FUNCTION

```
-456.3609 (S - 651.7952) (S + 1.3674)
456.9617 ($\frac{1}{2}$ + 4.5846 $S + 21.6436) ($\frac{1}{2}$ + 0.0098 $S + 0.0087)
```

SPEED TO ELEVATOR TRANSFER FUNCTION K_gain = 4716.558886

POLYNOMIAL PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION

```
-14133.7557 S<sup>2</sup> -12940.1035 S -212.3526
______
+ 456.9617 S^4 + 2099.4660 S^3 + 9914.8881 S^2 + 115.4904 S + 86.2350
```

FACTORED PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION

```
-14133.7557 (S + 0.8988) (S + 0.0167)
456.9617 (S<sup>2</sup> + 4.5846 S + 21.6436)(S<sup>2</sup> + 0.0098 S + 0.0087)
```

PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION K_gain = -2.462488

Lateral-Directional Transfer Function Data

W_current	=	6360.0	lb	(W/S)_TO	=	34.95	psf
Altitude		30000	ft	q_bar	=	92.58	psf
S_w	=	182.00	ft^2	I_xx_S	=	7989	slgft2
U_1	=	270.14	kts	I_zz_S	=	11179	slgft2
Theta_1	=	2.00	deg	I_xz_S	≂	-112	slgft2
Alpha	=	2.00	deg	Y_B	=	-29.2173	ft/s^2
b_w	=	33.80	ft	Y_p	=	-0.2588	ft/s
I_xx_B	=	7985	slgft2	Y_r	=	0.9390	ft/s
I_zz_B	=	11183	slgft2	L_B	=	-6.7297	1/s^2
I_xz_B	=	0	slgft2	L_p	=	-1.1679	1/s
C_1_B	=	-0.0944	1/rad	L_r	=	0.2447	1/s
C_l_p	=	-0.4420	1/rad	N_B	=	5.6345	1/s^2
C_1_r	=	0.0926	1/rad	N_T_B	=	0.0000	1/s^2
C_n_B	=	0.1106	1/rad	N_p	=	-0.0459	1/s
C_n_T_B	=	0.0000		N_r	=	-0.2625	1/s
C_n_p	=	-0.0243	1/rad	w_n_D	=	2.4092	rad/s
C_n_r	=	-0.1390	1/rad	z_D	=	0.0470	
С_у_В	=	-0.3460	1/rad	TC_SPIRAL	=	271.310	s
С_у_р	=	-0.0827	1/rad	TC_ROLL	=	0.790	s
C_y_r	=	0.3000	1/rad	TC_1	=	0.790	s
C_l_d_a	=	0.1810	1/rad	TC_2	=	271.310	
C_l_d_r	=	0.0150	1/rad	Y_del_a	=	0.0000	ft/s^2
C_n_d_a	=	-0.0254	1/rad	Y_del_r	=	16.8886	
$C_n_d_r$	=	-0.0365	1/rad	L_del_a	<u></u>	12.9033	1/s^2
C_y_d_a	=	0.0000	1/rad	L_del_r	=	1.0693	1/s^2
C_y_d_r	=	0.2000	1/rad	N_del_a	=	-1.2940	
				N_del_r	=	-1.8595	
Appendix B							505

Table B4 (Continued) Stability and Control Derivatives for Airplane D (Pages 501-507)

POLYNOMIAL SIDESLIP TO AILERON TRANSFER FUNCTION $+ 644.0174 \text{ s}^3 + 1367.8551 \text{ s}^2 + 97.7970 \text{ s}$ + 455.8852 S^5 + 682.2214 S^4 + 2779.2781 S^3 + 3360.8268 S^2 + 12.3497 S FACTORED SIDESLIP TO AILERON TRANSFER FUNCTION 644.0174 S(S + 2.0499) (S + 0.0741) 455.8852 S(S + 1.2663) (S + 0.0037) (S 2 + 0.2265 S + 5.8041) SIDESLIP TO AILERON TRANSFER FUNCTION K_gain = 7.918973 POLYNOMIAL SIDESLIP TO RUDDER TRANSFER FUNCTION $+ 16.8863 \text{ S}^4 + 874.8441 \text{ S}^3 + 1050.7889 \text{ S}^2 - 5.5526 \text{ S}$ + 455.8852 S^5 + 682.2214 S^4 + 2779.2781 S^3 + 3360.8268 S^2 + 12.3497 S FACTORED SIDESLIP TO RUDDER TRANSFER FUNCTION 16.8863 S(S - 0.0053)(S + 50.5775)(S + 1.2357) 455.8852 S(S + 1.2663) (S + 0.0037) (S^2 + 0.2265 S + 5.8041) SIDESLIP TO RUDDER TRANSFER FUNCTION K_gain = -0.449612 POLYNOMIAL ROLL TO AILERON TRANSFER FUNCTION + 5891.4614 S^3 + 1777.3570 S^2 + 29208.1767 S + 455.8852 S^5 + 682.2214 S^4 + 2779.2781 S^3 + 3360.8268 S^2 + 12.3497 S FACTORED ROLL TO AILERON TRANSFER FUNCTION 5891.4614 $S(S^2 + 0.3017 S + 4.9577)$ 455.8852 S(S + 1.2663) (S + 0.0037) (S^2 + 0.2265 S + 5.8041)

ROLL TO AILERON TRANSFER FUNCTION K_gain = 2365.091648

Table B4 (Continued) Stability and Control Derivatives for Airplane D (Pages 501–507)

```
POLYNOMIAL ROLL TO RUDDER TRANSFER FUNCTION
 + 499.3974 S^3 - 162.4592 S^2 - 2964.0008 S
 + 455.8852 S^5 + 682.2214 S^4 + 2779.2781 S^3 + 3360.8268 S^2 + 12.3497 S
FACTORED ROLL TO RUDDER TRANSFER FUNCTION
499.3974 S(S - 2.6043)(S + 2.2790)
455.8852 S(S + 1.2663)(S + 0.0037)(S<sup>2</sup> + 0.2265 S + 5.8041)
ROLL TO RUDDER TRANSFER FUNCTION K_gain = -240.005862
POLYNOMIAL HEADING TO AILERON TRANSFER FUNCTION
-648.6980 \text{ s}^3 - 1000.5959 \text{ s}^2 - 78.0196 \text{ s} + 2038.5145
 + 455.8852 S^5 + 682.2214 S^4 + 2779.2781 S^3 + 3360.8268 S^2 + 12.3497 S
FACTORED HEADING TO AILERON TRANSFER FUNCTION
-648.6980 (S - 1.0733)(S<sup>2</sup> + 2.6158 S + 2.9278)
455.8852 S(S + 1.2663) (S + 0.0037) (S^2 + 0.2265 S + 5.8041)
HEADING TO AILERON TRANSFER FUNCTION K_gain = 165.065891
POLYNOMIAL HEADING TO RUDDER TRANSFER FUNCTION
-852.6958 \text{ s}^3 - 970.9207 \text{ s}^2 + 53.1470 \text{ s} - 206.6877
+ 455.8852 S^5 + 682.2214 S^4 + 2779.2781 S^3 + 3360.8268 S^2 + 12.3497 S
FACTORED HEADING TO RUDDER TRANSFER FUNCTION
-852.6958 (S + 1.3240)(S<sup>2</sup> + -0.1854 S + 0.1831)
S(S + 1.2663)(S + 0.0037)(S^2 + 0.2265 S + 5.8041)
455.8852
HEADING TO RUDDER TRANSFER FUNCTION K_gain = -16.736246
```