Química 63.01 / 83.01

Para aprovechar al máximo esta explicación, mirala en modo presentación y escuchá los audios.

También podés guardarlo como archivo mp4 y pausar el video cuando quieras!

Guía 3: Sólidos

EJERCICIO 13

Enunciado

R=124pm

Fe: BCC

El hierro presenta una estructura cristalina del tipo BCC y su radio atómico es de aproximadamente 124pm. Determinar:

- a) El número de átomos por celda unitaria.
- b) La longitud del lado de la celda correspondiente.

Ejercicio sobre estado sólido

Sólidos cristalinos

Se encuentran ordenados en estructuras repetitivas llamadas redes cristalinas.

Los sólidos cristalinos tienen puntos de fusión bien definidos.

<u>Metálicos:</u> Formados por disposiciones infinitas de iones positivos (metálicos) y electrones móviles. <u>Son buenos conductores.</u>

<u>Moleculares</u>: Formados por moléculas discretas unidas mediante fuerzas de Van der Waals.

Covalentes: Formados por redes de átomos unidos por enlace covalente.

Sólidos amorfos

No tienen estructuras ordenadas y bien Anisotropicos definidas.

Pueden fundir a temperaturas diferentes en las diversas porciones de la muestra, es decir que no tienen un Punto de Fusión definido.

Ej: vidrio, cerámicos, gomas, manteca.

Sólidos cristalinos

La unidad de volumen más pequeña de un cristal que reproduce por repetición la red cristalina, se llama celda unitaria.

Existen 7 sistemas cristalinos que conforman 14 tipos de redes cristalinas.

Propiedades de las celdas unitarias

• Número de átomos, iones o moléculas por celda

Inciso a)

- Relación entre el radio atómico y la arista de la celda
- <u>Número de coordinación</u>: es el número de vecinos más próximos que tiene cada átomo del material
- <u>Factor de empaquetamiento</u>: es la relación entre el volumen de los átomos que integran la celda unitaria y el volumen de la celda

N° átomos / celda =

2

Propiedades de las celdas unitarias

- Número de átomos, iones o moléculas por celda
- Relación entre el radio atómico y la arista de la celda ?

Inciso b)

- <u>Número de coordinación</u>: es el número de vecinos más próximos que tiene cada átomo del material
- <u>Factor de empaquetamiento</u>: es la relación entre el volumen de los átomos que integran la celda unitaria y el volumen de la celda

$$b^2 = a^2 + a^2$$

$$b^2 = 2a^2$$

$$b = \sqrt{2}a$$

Pitágoras:

$$b^2 = a^2 + a^2$$

$$b^2 = 2a^2$$

$$b = \sqrt{2}a$$

$$c^2 = b^2 + a^2$$

$$c^2 = (\sqrt{2}a)^2 + a^2$$

$$c^2 = 2a^2 + a^2$$

$$c^2 = 3a^2$$

$$c = \sqrt{3}a$$

Pitágoras:

$$b^2 = a^2 + a^2$$

$$b^2 = 2a^2$$

$$b = \sqrt{2}a$$

$$c^2 = b^2 + a^2$$

$$c^2 = (\sqrt{2}a)^2 + a^2$$

$$c^2 = 2a^2 + a^2$$

$$c^2 = 3a^2$$

$$c = \sqrt{3}a = 4R$$

Pitágoras:

$$b^2 = a^2 + a^2$$

 $b^2 = 2a^2$

$$b = \sqrt{2}a$$

$$\sqrt{3}a = 4R$$

$$a = \frac{4 R}{\sqrt{3}} = \frac{4 * 124 pm}{\sqrt{3}}$$

$$c^{2} = b^{2} + a^{2}$$
 $c^{2} = (\sqrt{2}a)^{2} + a^{2}$
 $c^{2} = 2a^{2} + a^{2}$
 $c^{2} = 3a^{2}$
 $c = \sqrt{3}a = 4R$

a=286,4pm

