Data Mining und Maschinelles Lernen

Prof. Kristian Kersting
ZhongjieYu
Johannes Czech

Sommersemester 2021 18. Juni 2021 Übungsblatt 9

Diese Übung wird am 01.07.2020 um 13:30 Uhr besprochen und nicht bewertet.

9.1 Backpropagation und Stochastic Gradient Descent

Gehen Sie von folgendem Netzwerk aus, wie in Abbildung 9.1 zu sehen. Verwenden Sie dabei die Identitätsfunktion $f\left(x\right)=x$ als Aktivierungsfunktion. Zur Vereinfachung verwendet das Netzwerk keine Bias-Parameter. Nehmen Sie für den aktuellen Zielausgabewert $y^*=0.5$ und eine Definition der Fehlerfunktion von $L\left(W\right)=\frac{1}{2}\left\|g-y^*\right\|^2$ mit einer Lernrate von $\alpha=0.5$ an.

Abbildung 1: Netzsstruktur eines "Multi-Layer Perceptron"

Die Eingabe und Gewichte werden wie folgt beschrieben: $x_1 = 0.35$, $x_2 = 0.9$, $w_1 = 0.1$, $w_2 = 0.8$, $w_3 = 0.4$, $w_4 = 0.6$, $w_5 = 0.3$, $w_6 = 0.9$.

a) Backpropagation

Wenden Sie Backpropagation an, um die Gewichte w_1 bis w_6 zu aktualisieren.

Übung 9, Data Mining und Maschinelles Lernen		
Nachname, Vorname:	Matrikelnummer: L	

Übung 9, Data Mining und Maschinelles Lernen	
Nachname, Vorname:	Matrikelnummer:

b) Stochastic Gradient Descent (SGD)

Beschreiben Sie SGD und seine Beziehung zu Backpropagation.

c) Backpropagation mit Batches

Wie verhält sich der Fehler, wenn man die Backpropagation statt für einen einzelnen Datenpunkt auf einer Menge von Daten, einem Batch, gleichzeitig durchführt.

Übung 9, Data Mining und Maschinelles Lernen	
Nachname, Vorname:	Matrikelnummer:

Tabelle 1: Matrixdarstellung eines Bildes

		-		
1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

Tabelle 2: Kernel-Filter

1	0	1
0	1	0
1	0	1

9.2 2D Convolution

In dieser Übung führen wir eine 2D-Faltung auf dem Bild mit dem gegebenen Filter durch.

a) Resultierende Größe

Gehen Sie von quadratischer Eingabegröße und quadratischer Kernelgröße aus. Gegeben ist die Eingabegröße i, Kernelgröße k, Stride s und Zero-Padding p. Was ist die resultierende Größe der Ausgabe o nach Anwendung der Faltungsoperation?

b) Anwendung I

Zeigen Sie das Ergebnis der 2D-Faltung, bei stride = 1 entlang beider Achsen und ohne zero-padding.

c) Anwendung II

Zeigen Sie das Ergebnis der 2D-Faltung, bei stride = 2 entlang beider Achsen und $zero - padding = 1 \times 1$.

Übung 9, Data Mining und Maschinelles Lernen	
Nachname, Vorname:	Matrikelnummer:

9.3 Neuronale Netze

In dieser Übung erforschen wir neuronale Netzwerke mit dem **tensorflow playground**: https://playground.tensorflow.org

Wir wählen den Spiral-Datensatz für den Problemtyp-Klassifizierung, stellen das Trainings-/Testverhältnis 50 % und wählenden folgende Parametereintellungen: Rauschen 20, Batch Size 10, Lernrate 0.03, Aktivierungsfunktion ReLU, Regularisierung L2, Regularisierungsrate 0.001.

a) Konfiguration I

Wählen Sie ein zweischichtiges Modell(4, 2) und verwenden Sie nur die Merkmale X_1 und X_2 , was ist der Trainings-/Testverlust nach 200 Epochen?

b) Konfiguration II

Wählen Sie ein vierschichtiges Modell (6, 4, 2, 2) und verwenden Sie nur die Merkmale X_1 und X_2 , wie hoch ist der Trainings-/Testfehler nach 200/1600 Epochen?

c) Konfiguration III

Wählen Sie ein dreischichtiges Modell (4, 4, 2) und nutzen Sie alle Features. Wie hoch ist der Trainings-/Testfehler nach 200 Epochen? Wie ist er bei 500 Epochen?