Introduction

· HW Example

In [12]:

```
# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kagale/python docker image: https://github.com/kagale/docker-pyt
# For example, here's several helpful packages to load in
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt
# Input data files are available in the "../input/" directory.
# For example, running this (by clicking run or pressing Shift+Enter) will list the fil
es in the input directory
import os
#%% import dataset
data = pd.read_csv("data.csv",encoding='latin1')
data.drop(['Unnamed: 32',"id"], axis=1, inplace=True)
data.diagnosis = [1 if each == "M" else 0 for each in data.diagnosis]
y = data.diagnosis.values
x_data = data.drop(['diagnosis'], axis=1)
# Any results you write to the current directory are saved as output.
```

In [14]:

data.head()

Out[14]:

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	CI
0	1	17.99	10.38	122.80	1001.0	0.11840	
1	1	20.57	17.77	132.90	1326.0	0.08474	
2	1	19.69	21.25	130.00	1203.0	0.10960	
3	1	11.42	20.38	77.58	386.1	0.14250	
4	1	20.29	14.34	135.10	1297.0	0.10030	

5 rows × 31 columns

In [15]:

data.describe()

Out[15]:

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_m
count	569.000000	569.000000	569.000000	569.000000	569.000000	569.000
mean	0.372583	14.127292	19.289649	91.969033	654.889104	0.096
std	0.483918	3.524049	4.301036	24.298981	351.914129	0.014
min	0.000000	6.981000	9.710000	43.790000	143.500000	0.052
25%	0.000000	11.700000	16.170000	75.170000	420.300000	0.086
50%	0.000000	13.370000	18.840000	86.240000	551.100000	0.095
75%	1.000000	15.780000	21.800000	104.100000	782.700000	0.105
max	1.000000	28.110000	39.280000	188.500000	2501.000000	0.163

8 rows × 31 columns

→

In [16]:

```
data.isnull().sum()
```

Out[16]:

0

In [2]:

```
# %% normalization
x = (x_data -np.min(x_data))/(np.max(x_data)-np.min(x_data)).values
```

In [3]:

```
# %%train test split
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.15, random_state=
42)
x_{train} = x_{train.T}
x_{test} = x_{test}
y_{train} = y_{train.T}
y_test = y_test.T
print("x train: ",x_train.shape)
print("x test: ",x_test.shape)
print("y train: ",y_train.shape)
print("y test: ",y_test.shape)
x train: (30, 483)
x test: (30, 86)
y train: (483,)
y test: (86,)
In [4]:
# %%initialize
# lets initialize parameters
# So what we need is dimension 4096 that is number of pixels as a parameter for our ini
tialize method(def)
def initialize_weights_and_bias(dimension):
    w = np.full((dimension,1),0.01)
    b = 0.0
    return w, b
```

In [5]:

```
#%% sigmoid
# calculation of z
#z = np.dot(w.T,x_train)+b

def sigmoid(z):
    y_head = 1/(1+np.exp(-z))
    return y_head
#y_head = sigmoid(5)
```

In [6]:

```
#%% forward and backward
# In backward propagation we will use y_head that found in forward progation
# Therefore instead of writing backward propagation method, lets combine forward propag
ation and backward propagation
def forward_backward_propagation(w,b,x_train,y_train):
    # forward propagation
    z = np.dot(w.T,x_train) + b
    y_head = sigmoid(z)
    loss = -y_train*np.log(y_head)-(1-y_train)*np.log(1-y_head)
                                            # x train.shape[1] is for scaling
    cost = (np.sum(loss))/x train.shape[1]
    # backward propagation
    derivative_weight = (np.dot(x_train,((y_head-y_train).T)))/x_train.shape[1] # x_tra
in.shape[1] is for scaling
    derivative_bias = np.sum(y_head-y_train)/x_train.shape[1]
                                                                              # x_trai
n.shape[1] is for scaling
    gradients = {"derivative_weight": derivative_weight, "derivative_bias": derivative_b
ias}
    return cost,gradients
```

In [7]:

```
#%%# Updating(learning) parameters
def update(w, b, x_train, y_train, learning_rate,number_of_iterarion):
   cost_list = []
   cost list2 = []
    index = []
    # updating(learning) parameters is number_of_iterarion times
    for i in range(number_of_iterarion):
        # make forward and backward propagation and find cost and gradients
        cost,gradients = forward backward propagation(w,b,x train,y train)
        cost list.append(cost)
        # Lets update
       w = w - learning_rate * gradients["derivative_weight"]
        b = b - learning_rate * gradients["derivative_bias"]
        if i % 10 == 0:
            cost list2.append(cost)
            index.append(i)
            print ("Cost after iteration %i: %f" %(i, cost))
    # we update(learn) parameters weights and bias
    parameters = {"weight": w,"bias": b}
    plt.plot(index,cost_list2)
    plt.xticks(index,rotation='vertical')
    plt.xlabel("Number of Iterarion")
    plt.ylabel("Cost")
    plt.show()
    return parameters, gradients, cost_list
```

In [8]:

In [9]:

```
# %%
def logistic_regression(x_train, y_train, x_test, y_test, learning_rate , num_iteratio
ns):
    # initialize
    dimension = x_train.shape[0] # that is 4096
    w,b = initialize_weights_and_bias(dimension)
    # do not change learning rate
    parameters, gradients, cost_list = update(w, b, x_train, y_train, learning_rate,num
_iterations)
    y_prediction_test = predict(parameters["weight"],parameters["bias"],x_test)
    y_prediction_train = predict(parameters["weight"],parameters["bias"],x_train)
    # Print train/test Errors
    print("train accuracy: {} %".format(100 - np.mean(np.abs(y_prediction_train - y_tra
in)) * 100))
    print("test accuracy: {} %".format(100 - np.mean(np.abs(y_prediction_test - y_test
)) * 100))
logistic_regression(x_train, y_train, x_test, y_test, learning_rate = 1, num_iterations
= 100)
```

```
Cost after iteration 0: 0.692836
Cost after iteration 10: 0.498576
Cost after iteration 20: 0.404996
Cost after iteration 30: 0.350059
Cost after iteration 40: 0.313747
Cost after iteration 50: 0.287767
Cost after iteration 60: 0.268114
Cost after iteration 70: 0.252627
Cost after iteration 80: 0.240036
Cost after iteration 90: 0.229543
```


train accuracy: 94.40993788819875 % test accuracy: 94.18604651162791 %

In [10]:

```
# sklearn
from sklearn import linear_model
logreg = linear_model.LogisticRegression(random_state = 42,max_iter= 150)
print("test accuracy: {} ".format(logreg.fit(x_train.T, y_train.T).score(x_test.T, y_test.T)))
print("train accuracy: {} ".format(logreg.fit(x_train.T, y_train.T).score(x_train.T, y_train.T)))
```

test accuracy: 0.9767441860465116 train accuracy: 0.968944099378882

Data Visualization

In [23]:

In [17]:

In [18]:

In [19]:

```
plt.rcParams['figure.figsize'] = (18, 15)
sns.heatmap(data.corr(), cmap = 'pink', annot = True, linewidths = 0.5, fmt = '.1f')
plt.title('Heat Map for Correlations', fontsize = 20)
plt.show()
```


In [20]:

Data preprocessing

In [24]:

```
# label encoding of the dependent variable

# importing label encoder
from sklearn.preprocessing import LabelEncoder

# performing label encoding
le = LabelEncoder()
y= le.fit_transform(y)
```

In [25]:

```
#splitting the dataset into training and testing sets

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.25, random_stat e = 16)

print("Shape of x_train :", x_train.shape)
print("Shape of y_train :", y_train.shape)
print("Shape of x_test :", x_test.shape)
print("Shape of y_test :", y_test.shape)
Shape of x_train : (426, 30)
```

```
Shape of x_train : (426, 30)
Shape of y_train : (426,)
Shape of x_test : (143, 30)
Shape of y_test : (143,)
```

Modelling

Random Forest

In [26]:

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
# creating a model
model = RandomForestClassifier(n_estimators = 400, max_depth = 10)
# feeding the training set into the model
model.fit(x_train, y_train)
# predicting the test set results
y_pred = model.predict(x_test)
# Calculating the accuracies
print("Training accuracy :", model.score(x_train, y_train))
print("Testing accuarcy :", model.score(x_test, y_test))
# classification report
cr = classification_report(y_test, y_pred)
print(cr)
# confusion matrix
cm = confusion_matrix(y_test, y_pred)
plt.rcParams['figure.figsize'] = (5, 5)
sns.heatmap(cm, annot = True, cmap = 'winter')
plt.title('Confusion Matrix', fontsize = 20)
plt.show()
```

Training accuracy : 1.0

Testing accuarcy: 0.9790209790209791

		-,			
		precision	recall	f1-score	support
	0	0.98	0.99	0.98	91
	1	0.98	0.96	0.97	52
accura	асу			0.98	143
macro a	avg	0.98	0.98	0.98	143
weighted a	avg	0.98	0.98	0.98	143

Using RFECV

In [27]:

```
import warnings
warnings.filterwarnings('ignore')
from sklearn.feature selection import RFECV
# The "accuracy" scoring is proportional to the number of correct classifications
model = RandomForestClassifier()
rfecv = RFECV(estimator = model, step = 1, cv = 5, scoring = 'accuracy')
rfecv = rfecv.fit(x_train, y_train)
print('Optimal number of features :', rfecv.n_features_)
print('Best features :', x train.columns[rfecv.support ])
Optimal number of features: 15
Best features : Index(['radius_mean', 'texture_mean', 'perimeter_mean', 'a
rea_mean',
       'concavity_mean', 'concave points_mean', 'area_se', 'radius_worst',
       'texture_worst', 'perimeter_worst', 'area_worst', 'smoothness_wors
t',
       'concavity_worst', 'concave points_worst', 'symmetry_worst'],
      dtype='object')
```

In [28]:

```
y_pred = rfecv.predict(x_test)

print("Training Accuracy :", rfecv.score(x_train, y_train))
print("Testing Accuracy :", rfecv.score(x_test, y_test))

cm = confusion_matrix(y_pred, y_test)
plt.rcParams['figure.figsize'] = (5, 5)
sns.heatmap(cm, annot = True, cmap = 'copper')
plt.show()
```

Training Accuracy : 1.0

Testing Accuracy : 0.9790209790209791

In []: