Assignment #10

Due Friday, 9 December 2022, at the start of class

Please read sections 14.1–14.7 and 15.1–15.4 from the textbook.¹

DO THE FOLLOWING EXERCISES from section 14.2, pages 489–491:

• Exercise 2.7 You may use techniques from either section 14.2 or 14.3.

Problem P21. Suppose $c \in \mathbb{R}^n$ is a nonzero vector and consider the problem

minimize
$$z = c^{\mathsf{T}} x$$

subject to
$$\sum_{i=1}^{n} x_i^2 = 1$$

where $x \in \mathbb{R}^n$. Note that the single equality constraint can be written as $||x||^2 = 1$.

(a) By arguing informally explain why the solution is

$$x_* = -\frac{c}{\|c\|}.$$

Use a sketch of the n = 2 case to explain.

- **(b)** The necessary optimality conditions for this problem are addressed by Theorem 14.15 on page 504 of the textbook. Compute the Lagrangian and state the first-order necessary conditions in detail. (*Note that you do* not *need to compute a null-space matrix in order to do this.*)
- (c) Solve the conditions in (b) algebraically to confirm the solution in part (a). How many points (x_*, λ_*) are there which satisfy the first-order necessary conditions?

Problem P22. Before doing this problem read Example 14.20 on pages 506–507. This problem asks for a similar analysis.

Consider the problem

minimize
$$f(x) = (x_1 - 1)^2 + (x_2 + 1)^2$$

subject to $x_1^2 + x_2^2 \le 9$
 $x_2 \ge 0$

- (a) Sketch the feasible set and explain informally, perhaps using contours of f, why $x_* = (1,0)^{\top}$ is the solution.
- (b) Write the constraints in the form $g_i(x) \ge 0$. Compute the Lagrangian and its gradient. For each of the points $A = (0,0)^{\top}$, $B = (0,3)^{\top}$, and $C = (1,0)^{\top}$ compute

¹Griva, Nash, and Sofer, *Linear and Nonlinear Optimization*, 2nd ed., SIAM Press 2009.

the values of λ_i satisfying the zero-gradient condition. Address whether these points satisfy the first-order optimality conditions, that is, whether they are candidates for a local minimizer. Show in particular that C satisfies all the first-order conditions in Theorem 14.18. (You do not need to find null-space matrices to answer this question.)

Problem P23. Consider nonlinear optimization problems on $x \in \mathbb{R}^n$ which have standard-form linear constraints:

Assume that there are m scalar constraint equations and that A has full row rank. Thus $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $m \le n$ (as usual).

We want to visualize the possible feasible sets for such problems. In 2D (n=2) there are exactly three possibilities for the dimension of the feasible set. The cartoons below illustrate these possibilities when the feasible set S is non-empty and bounded. (Except that for m=0 the set is unbounded.)

For 3D (n=3) there are four nonempty, and bounded if m>0, possibilities. Sketch the four corresponding cartoons. These cartoons should have the same annotations as the 2D versions above.

Problem P24. This problem asks you to write the general KKT conditions.

Consider the general nonlinear constrained optimization problem over $x \in \mathbb{R}^n$:

minimize
$$f(x)$$

subject to $g_i(x)=0, \quad i=1,\ldots,\ell$
 $h_i(x)\geq 0, \quad i=1,\ldots,m$

- (a) In section 14.5 the meaning of the phrase " x_* is a regular point of the constraints" is given. State this definition precisely for the above problem.
- **(b)** State the Lagrangian for this problem.
- (c) Suppose x_* is a local minimizer of the above problem which is also a regular point. State the first-order necessary conditions for the above problem. (*Again*, you do not need to find null-space matrices to answer this question.)