UNIVERSITY OF CALIFORNIA

College of Engineering Department of Electrical Engineering and Computer Sciences

EE 240B Spring 2019

Homework Assignment #1

Due date: Midnight on Friday, 2/8/2019

- 1. For a transistor in strong inversion, the current is dominated by drift rather than diffusion. The channel profile is nevertheless non-uniform which means there is a drift current even in strong inversion. Assuming the square law model (which ignores drift) is a good estimate of the channel charge profile, calculate the diffusion current and compare it to the drift current.
- 2. For your technology DK, what is the compact model used? Which version number? Does the model use binning? If so, by which parameters?
- 3. Besides W and L, what are the supported instance parameters for your model. Why are detailed layout dependent parameters (such as distance to well edge) used in some models?
- 4. Setup a schematic (do not rely on the simulator to output small-signal parameters) and plot the intrinsic gain of the minimum sized transistor versus $V_{\rm gs}$. Make sure you hold $V_{\rm DS}$ constant (use an ideal op-amp a voltage-controlled voltage source) to setup the simulation. Also plot the intrinsic gain versus $I_{\rm ds}$ and V^* . What is your conclusion? Do you expect a strong bias current dependence? Explain.
- 5. Now re-plot the intrinsic gain for a few non-minimum length devices. Try $2*L_{\min}$, $3*L_{\min}$, and L_{\max} . Does the gain depend on W? Explain why you should avoid using a very small W. L_{\max} is the longest channel length supported by the DK.
- 6. Which capacitance model does your model use? What is the charge partition scheme?
- 7. Setup a simulation to plot the normalized input capacitances seen from the gate $(C_{\rm gs}, C_{\rm gd}, C_{\rm gb})$ of a MOS device as you vary $V_{\rm gs}$ and hold $V_{\rm ds}$ constant in triode and saturation (normalize by $C_{\rm ox}$). Are the expected symmetry properties upholding? Specify as many physical constraints as possible and check to see that they are upheld by the model.
- 8. Plot g_m/I_d versus V_{gs} for the minimum, $2*L_{min}$, $3*L_{min}$, and L_{max} of your technology. Superimpose the expected sub-threshold and square law behavior and compare.
- 9. Plot V^* versus V_{gs} for the minimum, $2*L_{min}$, $3*L_{min}$, and L_{max} of your technology. Superimpose the expected square law behavior and compare.
- 10. Plot f_T versus V^* . Make sure you setup a schematic to extract f_T rather than using the small-signal parameters of the model. Use L_{\min} , $2*L_{\min}$, $3*L_{\min}$, and L_{\max} of your technology. Explain the trends.

- 11. Plot the product of intrinsic gain and f_T for L_{\min} , $2*L_{\min}$, $3*L_{\min}$, and L_{\max} . For which V^* is the product maximum for each case?
- 12. Design an amplifier that achieves a DC gain of 20 and a unity gain frequency 500 MHz while driving a load of 1pF. Specify the required V^* , bias current, $V_{\rm gs}$, and device dimensions. As much as possible, use the results of the previous problem to guide your design choices. Run SPICE to verify.