

Indian Institute of Technology Bombay

EE702 Computer Vision, 2025

Under guidance of:
Prof. Subhasis Chaudhuri
Department of Electrical Engineering
Indian Institute of Technology, Bombay

Assignment 02 Stereo Depth Estimation using Deep Learning

Ameya Marakarkandy 21D180003

1 Introduction

Stereo vision is a widely used method for depth estimation, where depth maps are reconstructed using disparities between two images. In this assignment, we use a deep learning-based approach, PSMNet, to estimate depth from stereo images and compare the results with ground truth disparity maps.

2 Theoretical Background on PSMNet

Pyramid Stereo Matching Network (PSMNet) is a deep learning-based approach for disparity estimation. It employs spatial pyramid pooling and 3D convolutions to improve the accuracy of disparity predictions. The model consists of the following components:

- Spatial Pyramid Pooling (SPP): Extracts multi-scale contextual information by processing images at different scales.
- 3D Convolutional Cost Volume Processing: Builds a cost volume from stereo image pairs and refines disparity predictions using stacked hourglass networks.
- Soft Argmin for Disparity Regression: Computes subpixel disparity values for smooth depth estimation.

PSMNet has been widely used for disparity estimation due to its robust performance on benchmark datasets such as KITTI and Middlebury.

3 Methodology

3.1 Dataset and Preprocessing

We utilize the Middlebury dataset for evaluation and collect real-world stereo images using a smartphone. The images are preprocessed by resizing them to be multiples of 16 to satisfy PSMNet requirements. The images are normalized using mean and standard deviation values of ImageNet.

3.2 PSMNet Model

PSMNet (Pyramid Stereo Matching Network) is used for disparity estimation. The model is loaded with pre-trained weights from the KITTI2015 dataset and performs stereo matching to generate disparity maps.

3.3 Evaluation Metrics

To evaluate the accuracy of the predicted depth maps, we compute:

- Mean Absolute Error (MAE)
- Root Mean Squared Error (RMSE)

4 Results and Discussion

Figure 1: Predicted Disparity Map using PSMNet.

Ground Truth Disparity Map

Predicted Disparity Map

Figure 2: Comparison of Ground Truth and Predicted Disparity Maps.

The predicted disparity map closely resembles the ground truth but exhibits slight deviations in textureless areas. The computed metrics are:

MAE = VALUERMSE = VALUE

5 Code Implementation

Below is the Python implementation used for stereo depth estimation:

```
import os
  import sys
  import cv2
  import numpy as np
  import torch
  import torch.nn as nnc
  import torchvision.transforms as transforms
  import matplotlib.pyplot as plt
10
 # Inputes
11
  LEFT_IMAGE = "im0.png"
12
 RIGHT_IMAGE = "im1.png"
  DISPARITY_GT = "disp0.pfm"
14
15
16
  # Add PSMNet to Python path
  # -----
19 PSMNET_PATH = os.path.join(os.path.dirname(__file__), "PSMNet")
  sys.path.append(PSMNET_PATH) # Allow importing from PSMNet folder
21
```

```
from models import stackhourglass # Import PSMNet model architecture
23
   _____
24
25 # Load PSMNet Model
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
  model = stackhourglass(192) # Initialize PSMNet with maximum disparity of 192
29 model = nn.DataParallel(model)
 model.to(device)
31
32 # Load pretrained weights (using map_location for CPU compatibility)
model_path = "pretrained_model_KITTI2015.tar"
  model.load_state_dict(torch.load(model_path, map_location=device)['state_dict']
  model.eval() # Set to evaluation mode
35
36
37
  # Preprocessing for Stereo Images (for inference)
  # -----
39
  def preprocess_stereo(imgL, imgR):
41
      Preprocesses stereo images to be fed into the deep learning model.
42
43
      transform = transforms.Compose([
44
          transforms.ToTensor(),
45
          transforms. Normalize (mean = [0.485, 0.456, 0.406],
                               std=[0.229, 0.224, 0.225])
47
48
      imgL = transform(imgL).unsqueeze(0).to(device)
49
      imgR = transform(imgR).unsqueeze(0).to(device)
50
      return imgL, imgR
51
52
53
  # Load and preprocess stereo images
  imgL = cv2.imread(LEFT_IMAGE) # Left image
56
  imgR = cv2.imread(RIGHT_IMAGE) # Right image
58 | imgL = cv2.cvtColor(imgL, cv2.COLOR_BGR2RGB)
imgR = cv2.cvtColor(imgR, cv2.COLOR_BGR2RGB)
60 # Resize stereo images to be multiples of 16 (PSMNet requirement)
_{61}| H, W, _ = imgL.shape
_{62} target_H = (H // 16) * 16
63 target_W = (W // 16) * 16
64 imgL = cv2.resize(imgL, (target_W, target_H))
65 imgR = cv2.resize(imgR, (target_W, target_H))
  imgL_tensor, imgR_tensor = preprocess_stereo(imgL, imgR)
67
68
  # Run Inference with PSMNet
69
70
  with torch.no_grad():
71
      output = model(imgL_tensor, imgR_tensor)
72
      predicted_depth = output.squeeze().cpu().numpy()
73
75 # Normalize predicted disparity for visualization
76 predicted_depth_norm = (predicted_depth - predicted_depth.min()) / (
     predicted_depth.max() - predicted_depth.min())
```

```
plt.figure(figsize=(6, 5))
78
79 plt.imshow(predicted_depth_norm, cmap="inferno")
80 plt.colorbar(label="Predicted Disparity")
  plt.title("Predicted Disparity Map from PSMNet")
  plt.axis("off")
  plt.savefig("predicted_disparity_map.png", bbox_inches="tight")
  plt.pause(0.001)
85
86
87
  # Load and preprocess ground truth depth map from PFM
88
  def read_pfm(file):
89
      with open(file, "rb") as f:
90
          header = f.readline().decode().rstrip()
91
          if header == "Pf":
92
              color = False
93
          elif header == "PF":
94
              color = True
95
          else:
              raise ValueError("Not a PFM file.")
97
          dims = f.readline().decode("utf-8").rstrip()
98
          width, height = map(int, dims.split())
99
          scale = float(f.readline().decode()
100
          endian = "<" if scale < 0 else ">"
          data = np.fromfile(f, endian + "f")
          shape = (height, width, 3) if color else (height, width)
          data = np.reshape(data, shape)
          data = np.flipud(data)
          return data, abs(scale)
106
  pfm_path = DISPARITY_GT # Ground truth disparity map
108
  disparity_map, _ = read_pfm(pfm_path)
  # Handle NaN or infinite values (replace with 0)
  disparity_map = np.nan_to_num(disparity_map, nan=0.0, posinf=0.0, neginf=0.0)
111
   _____
  # Quantitative Metrics: Compare DL prediction with Ground Truth
114
  # -----
  # Resize for comparison
116
  predicted_depth_resized = cv2.resize(predicted_depth, (target_W, target_H),
     interpolation=cv2.INTER_LINEAR)
  gt_disparity_resized = cv2.resize(disparity_map, (target_W, target_H),
     interpolation=cv2.INTER_LINEAR)
119
MAE = np.mean(np.abs(predicted_depth_resized - gt_disparity_resized))
  RMSE = np.sqrt(np.mean((predicted_depth_resized - gt_disparity_resized) ** 2))
121
  print(f"Mean Absolute Error (MAE): {MAE:.4f}")
  print(f"Root Mean Squared Error (RMSE): {RMSE:.4f}")
124
126
127
  # Display side-by-side comparisons
128 # -----
fig, axs = plt.subplots(1, 2, figsize=(12, 5))
| axs[0].imshow(gt_disparity_resized, cmap="inferno")
axs[0].set_title("Ground Truth Disparity Map")
```

```
axs[0].axis("off")
axs[1].imshow(predicted_depth_resized, cmap="inferno")
axs[1].set_title("Predicted Disparity Map")
axs[1].axis("off")
plt.savefig("Comparison.png", bbox_inches="tight")

plt.show()
```

6 Conclusion

This report demonstrates depth estimation using stereo vision and deep learning. PSMNet successfully reconstructs disparity maps, with performance evaluated using MAE and RMSE metrics. Future improvements may include fine-tuning the model on a custom dataset and using post-processing techniques.

7 References

- J. Chang and Y. Chen, "Pyramid Stereo Matching Network," CVPR, 2018.
- Middlebury Stereo Vision Dataset, https://vision.middlebury.edu/stereo/