

EE01205479 IoT for Electrical Engineering

Dr. Varodom Toochinda

Resistance

Physical

symbol

i-v characteristics

Resistors

Basic Relationships

Ohm's Law

$$V = IR$$

Power

$$P = VI = \frac{V^2}{R} = I^2 R$$

Kirchhoff's Current and Voltage Laws

► KCL

$$\sum_{n=1}^{N} i_n = 0$$

KVL

$$\sum_{n=1}^{N} v_n = 0$$

KCL and KVL applications

- Total resistance
 - Series
 - Parallel
- ► Current and voltage divider

Exercise1: Wheatstone bridge

Let Vs = 5 Volts. R1 = R2 = R3 = 1000 Ohms, Rx varies between 800 - 1200 Ohms. Compute the corresponding voltage range for Vab.

Circuit analysis methods

- Node voltage
- Mesh current
- Superposition
- Equivalent circuit/source transformation
 - ► Thevenin voltage source
 - Norton current source

Node voltage analysis

- Assign V_A , V_B , V_C as variables
- Use KCL to solve

Mesh current analysis

- \blacktriangleright Assign i_1 , i_2 , i_3 as variables
- Use KVL to solve

Superposition method

$$V_{o1} = (2/(2+3+5))*10 = 2 V$$

 $V_{o2} = 2*2 = 4 V$
 $V_{o} = 2 + 4 = 6 V$

Equivalent circuit concept

Thevenin source

Norton source

Example: Thevenin equivalent source

Compute Thevenin resistance

Compute Thevenin voltage

Thevenin equivalent circuit

Source transformation

Nonlinear load

- Load-line analysis
- Numerical method

Load-line analysis

Exercise 2: Find current and voltage at diode by load-line and numerical methods

$$R_T=22\Omega$$
, $V_T=12 V$

Diode i-v characteristic

$$i_D = I_{SAT} \left(\exp \left\{ \frac{v_D}{kT/q} \right\} - 1 \right)$$

at room temperature

$$I_{SAT} = 10^{-12} \text{ A}$$

 $\frac{kT}{q} = 0.0259 \text{ V}$

Flowchart of numerical method

