

Técnicas Experimentales IV

Guía de ejecución de la Práctica de Simulaciones de Física de Partículas

Esta guía proporciona la información para poder ejecutar la Práctica de Simulaciones de Física de Partículas de la asignatura de Técnicas Experimentales IV del Grado en Física de la UNED. Para la realización de esta práctica se recomienda repasar la "Parte V Partículas Elementales" del libro "Física Nuclear y de Partículas" de Antonio Ferrer Soria, Amalia Williart Torres y María Shaw Martos que constituye la bibliografía básica de la asignatura de Física Nuclear y de Partículas del Grado en Física de la UNED.

Esta práctica es parte de un programa piloto de la asignatura de Técnicas Experimentales IV, por ello su realización es voluntaria. Con su realización se puede obtener hasta 1 punto más (sólo en el caso de que se obtenga una calificación en la práctica voluntaria mayor o igual a 5 sobre 10), que se sumará a la nota obtenida en las prácticas presenciales de Física Nuclear, si en estas se ha obtenido una calificación de 4 ó más puntos. Si no la realizan no influye negativamente en la nota final. La realización de la práctica nunca influirá negativamente en la calificación de la asignatura.

Dado que es parte de un programa piloto se agradecen los comentarios y las sugerencias que ayuden a mejorarla. Cualquier consulta, sugerencia o duda puede ser dirigida al subforo *Consultas sobre la práctica voluntaria de Simulaciones de Física de Partículas* correspondiente dentro del Foro de debate de la asignatura.

Toda la documentación de la práctica se puede encontrar y descargar en: Enlace a Github

La práctica está escrita en el lenguaje de programación Python utilizando un Jupyter Notebook que permite combinar comentarios, código informático y el resultado de la ejecución del código. Para información sobre Jupyter Lab, mire el foro de la práctica. Para abrir y ejecutar el *notebook* se pueden utilizar una de estas tres opciones:

- Binder (opción recomendada): No hace falta crear ningún tipo de cuenta de usuario. No requiere instalación de software. La práctica se ejecuta en la nube de cómputo del proyecto Binder por lo que es necesaria una conexión de internet para realizar la práctica. La práctica NO se puede guardar y continuarla después.
- Google Colab (opción recomendada si se tiene cuenta de Google): Es necesaria una cuenta de Google. No requiere instalación de software. La práctica se ejecuta en la nube de cómputo de

Google por lo que es necesaria una conexión de internet para realizar la práctica. La práctica se puede guardar y continuar después. Se guardará en la carpeta /Google Drive/Colab Notebooks/

• Anaconda: Es la opción menos recomendada ya que es necesario instalar el software Anaconda y eso puede generar muchos problemas de configuración. La práctica se ejecuta localmente en su ordenador. No es necesaria una conexión de internet para ejecutar la práctica y se puede guardar. Si elije esta opción, tenga presente que el Equipo Docente no proporciona asistencia sobre la instalación, configuración y ejecución de Anaconda.

A continuación se explica cada una de las opciones:

Ejecución usando Binder

Vaya a la dirección: https://mybinder.org/

Pege el siguiente enlace https://github.com/cefera/TecnicasExperimentalesIV-UNED en la casilla etiquetada "GitHub repository name or URL"

Pulse el botón naranja que dice Launch.

Se abirá un Jupyter Notebook con acceso a la práctica y que permite ejecutarla.

Haga doble-click en a la carpeta **2b_scat** en el panel de la izquierda. Accederá a la carpeta que contiene el archivo de la práctica: **TCIV.ipynb** Lo que queda ahora es realizar la práctica siguiendo las instrucciones que contiene:

Unas notas importantes sobre el uso de Binder:

Si desea reiniciar la práctica de cero borrando todos las celdas ejecutadas, se puede hacer desde el menú Kernel. Seleccione Restart Kernel and Clear All Outputs... Sólo se borrarán las ejecuciones de código. El texto introducido con nombre, apellidos, etc y las respuestas a las preguntas en texto plano no se borrarán.

Tras concluir la práctica, vaya a la pestaña **File** que se encuentra arriba a la izquierda y seleccione **Print**. Se debería generar un pdf con toda la práctica. A continuación, suba el pdf antes del 9 de mayo de 2023 al apartado de tareas con el epígrafe "Laboratorio de FÍSICA DE PARTÍCULAS (simulaciones)" del aLF.

Ejecución usando Google Colab

Esta es la forma más sencilla de acceder y realizar la práctica. Sólo requiere tener una cuenta de Google y no es necesario instalar nada en el ordenador ya que todo se ejecuta en la nube de cómputo de Google.

El primer paso es acceder a:

https://colab.research.google.com

A continuación hacemos click en la pestaña Gihub y pegamos la siguiente dirección: https://github.com/cefera/TecnicasExperimentalesIV-UNED/tree/main/2b_scat

Y pulsamos en el icono señalado con un círculo y una flecha roja:

Esta acción abre el Jupyter Notebook en una nueva pestaña del navegador. Lo que queda ahora es realizar la práctica siguiendo las instrucciones que contiene:

Práctica de Simulaciones de Física de Partículas, Curso 2022-2023.

Unas notas importantes sobre el uso de Google Colab:

- Es conveniente guardar la práctica en su propio Google Drive. Para ello pulse el botón **Copiar** en **Drive**. De esta forma se realiza una copia de la práctica en su carpeta de Google Drive.
- Si desea reiniciar la práctica de cero borrando todos las celdas ejecutadas, se puede hacer desde el menú Entorno de ejecución. Seleccione Restablecer estado de fábrica del entorno de ejecución
- Google Colab tiene tendencia a *ocultar conjuntos de celdas* para hacer más legible todo el documento. Esto es lo que se muestra en la siguiente imagen. Si esto ocurre aparece un mensaje a continuación del símbolo play del tipo como el que aparece en la siguiente imagen 23 celdas ocultas. En el ejemplo que se muestra, si se pulsa en el triángulo que aparece a la izquierda del texto *Generación de pseudodatos de acuerdo al modelo* se expandirá todo el texto y aparecerán las celdas individuales.

Tras concluir la práctica, vaya a la pestaña **Archivo** que se encuentra arriba a la izquierda y seleccione **Imprimir**. Se debería generar un pdf con toda la práctica. A continuación, suba el pdf antes del 9 de mayo de 2023 al apartado de tareas con el epígrafe "Laboratorio de FÍSICA DE PARTÍCULAS (simulaciones)" del aLF.

Ejecución usando Anaconda (opción menos recomendada)

Esta es la opción que permite ejecutar la práctica en el ordenador de manera local. Para ello, el primer paso es instalar el software Anaconda. Si elije esta opción, tenga presente que el Equipo Docente no proporciona asistencia sobre la instalación, configuración y ejecución de Anaconda. Anaconda es un software gratuito que incluye Python y otras muchas herramientas. Es uno de los entornos de desarrollo preferidos para cómputo e inteligencia artificial y es compatible con Linux, Windows y Mac. El sofware se puede descargar desde: https://www.anaconda.com/products/individual.

Para instalarlo sólo hay que descargarlo y seguir las instrucciones de instalación de Anaconda.

Una vez instalado Anaconda y antes de ejecutarlo, vamos a descargar la práctica. Son cuatro ficheros, el Jupyter Notebook y tres figuras que se encuentran en los enlaces:

- Jupyter Notebook
- Figura 1
- Figura 2
- Figura 3

Ponga los cuatro archivos en una misma carpeta.

Ahora vamos a ejecutar Anaconda. Para ello hay pulsar en el icono:

que debería estar en el mismo menú que todos los programas ejecutables (puede que dentro de una carpeta de nombre Anaconda).

A continuación se abre el Anaconda Navigator que tiene el aspecto siguiente:

Práctica de Simulaciones de Física de Partículas. Curso 2022-2023.

Se pulsa el botón Launch debajo del icono y el texto de JupyterLab.

Se abrirá el navegador de internet predeterminado (en el caso que se muestra Google Chrome):

Se pulsa en el símbolo de carpeta señalado con un círculo rojo en la imagen y aparece un árbol por el que se puede navegar hasta llegar a la carpeta en la que se haya almacenado la práctica. En el caso que se muestra está en /Google Drive/Colab Notebooks/:

Se hace doble-click en el archivo TCIV.ipynb y se debería abrir la práctica. Lo que queda ahora es realizarla siguiendo las instrucciones que contiene:

Si desea reiniciar la práctica de cero borrando todos las celdas ejecutadas, se puede hacer desde el menú **Kernel**. Seleccione **Restart Kernel and Clear All Outputs...** Sólo se borrarán las ejecuciones

Práctica de Simulaciones de Física de Partículas. Curso 2022-2023.

de código. El texto introducido con nombre, apellidos, etc y las respuestas a las preguntas en texto plano no se borrarán.

Tras concluir la práctica, vaya a la pestaña **File** que se encuentra arriba a la izquierda y seleccione **Print**. Se debería generar un pdf con toda la práctica. A continuación, suba el pdf antes del 9 de mayo de 2023 al apartado de tareas con el epígrafe "Laboratorio de FÍSICA DE PARTÍCULAS (simulaciones)" del aLF.