

Business Analytics & Machine Learning Homework sheet 4: Naïve Bayes

Prof. Dr. Martin Bichler, Prof. Dr. Jalal Etesami Julius Durmann, Markus Ewert, Johannes Knörr, Yutong Chao

Exercise H4.1 Living situation

The following shows data of the living situation of different people, depending on their social context.

#	Job	Merital Status	Children	Living Situation	
1	employed	married	yes	rent	
2	employed	single	no	property	
3	employed	married	no	rent	
4	employed	married	yes	property	
5	freelance	single	yes	property	
6	freelance	single	no	rent	
7	freelance	married	yes	property	
8	freelance	married	no	property	

- a) Compute a priori probabilities for the classes "rent" and "property".
- b) Compute all conditional probabilities for the conditions "rent" and "property".
- c) Classify a single employee with child using Naive Bayes Classification.

Exercise H4.2 To play or not to play?

The following table contains data of past decisions, on whether or not to play, depending on weather conditions.

#	Outlook	Temperature	Humidity	Wind	Play
1	sunny	hot	high	false	no
2	sunny	hot	high	true	no
3	overcast	hot	high	false	yes
4	rainy	mild	high	false	yes
5	rainy	cool	normal	false	yes
6	rainy	cool	normal	true	no
7	overcast	cool	normal	true	yes
8	sunny	mild	high	false	no
9	sunny	cool	normal	false	yes
10	rainy	mild	normal	false	yes
11	sunny	mild	normal	true	yes
12	overcast	mild	high	true	yes
13	overcast	hot	normal	false	yes
14	rainy	mild	high	true	no

a) Use Naive Bayes Classification to decide on whether to play or not, given the following conditions:

#	Outlook	Temperature	Humidity	Wind	Play
15	sunny	mild	normal	false	??
16	rainy	hot	high	true	??
17	overcast	cool	normal	false	??

b) Create a bayesian network representing the assumptions of the Naive Bayes Classification from a).