机器学习流程如下:

data collection

采用公开数据集: https://www.unb.ca/cic/datasets/

data preprocessing

使用 Joy 完成数据预处理工作,通过处理原始 .pcap 数据包,得到 JSON 压缩文件,其中存储了关于流量的元数据。

解压缩得到 JSON 文件,从 JSON 文件中可以提取出 3 类元数据特征,分别为:

- 字节分布
- 包长度序列转移概率矩阵 / 包长度序列
- 时间间隔序列转移概率矩阵 / 时间间隔序列

1、提取字节分布特征

```
def getByteDistribution(self):
    if self.flows == []:
        return None

data = []

for flow in self.flows:
        if len(flow['packets']) == 0:
            continue
    if 'byte_dist' in flow and sum(flow['byte_dist']) > 0:
            tmp = map(lambda x: x/float(sum(flow['byte_dist'])),flow['byte_dist'])
            data.append(tmp)
    else:
            data.append(np.zeros(256))

return data
```

仅统计 TCP/UDP 负载前 30 字节的字节分布概率。

2、提取包长度序列转移概率矩阵 / 包长度序列

```
def getIndividualFlowPacketLengths(self):
    if self.flows == []:
        return None

data = []

if self.compact:
    numRows = 10
        binSize = 150.0

else:
    numRows = 60
        binSize = 25.0

for flow in self.flows:
    transMat = np.zeros((numRows,numRows))
    if len(flow['packets']) == 0:
        continue
```

```
elif len(flow['packets']) == 1:
        curPacketSize = min(int(flow['packets'][0]['b']/binSize),numRows-1)
        transMat[curPacketSize,curPacketSize] = 1
        data.append(list(transMat.flatten()))
        continue
    # get raw transition counts
    for i in range(1,len(flow['packets'])):
        prevPacketSize = min(int(flow['packets'][i-1]['b']/binSize),numRows-1)
        if 'b' not in flow['packets'][i]:
            break
        curPacketSize = min(int(flow['packets'][i]['b']/binSize),numRows-1)
       transMat[prevPacketSize,curPacketSize] += 1
    # get empirical transition probabilities
    for i in range(numRows):
        if float(np.sum(transMat[i:i+1])) != 0:
            transMat[i:i+1] = transMat[i:i+1]/float(np.sum(transMat[i:i+1]))
    data.append(list(transMat.flatten()))
return data
```

仅统计最多前 200 个数据包的长度转移概率矩阵。

```
def getIndividualFlowPacketLengths_seq(self):
    if self.flows == []:
       return None
    data = []
    num = 10
    binSize = 8
    for flow in self.flows:
        lenSeq = np.zeros(num)
        if len(flow['packets']) == 0:
            continue
        for i in range(0, min(num, len(flow['packets']))):
            if 'b' not in flow['packets'][i]:
                lenSeq[i] = 0
                continue
            lenSeq[i] = int(flow['packets'][i]['b']/binSize)
        data.append(list(lenSeq.flatten()))
    return data
```

仅选取每个流的前 10 个数据包长度组成序列,并且设置 binSize 为 8。

3、提取时间间隔序列转移概率矩阵/时间间隔序列

```
def getIndividualFlowIPTs(self):
    if self.flows == []:
        return None

data = []

if self.compact:
        numRows = 10
        binSize = 50.0

else:
        numRows = 30
        binSize = 50.0

for flow in self.flows:
        transMat = np.zeros((numRows,numRows))
        if len(flow['packets']) == 0:
```

```
continue
    elif len(flow['packets']) == 1:
         curIPT = min(int(flow['packets'][0]['ipt']/float(binSize)),numRows-1)
         transMat[curIPT,curIPT] = 1
         data.append(list(transMat.flatten()))
        continue
    # get raw transition counts
    for i in range(1,len(flow['packets'])):
        prevIPT = min(int(flow['packets'][i-1]['ipt']/float(binSize)),numRows-1)
curIPT = min(int(flow['packets'][i]['ipt']/float(binSize)),numRows-1)
        transMat[prevIPT,curIPT] += 1
    # get empirical transition probabilities
    for i in range(numRows):
        if float(np.sum(transMat[i:i+1])) != 0:
             transMat[i:i+1] = transMat[i:i+1]/float(np.sum(transMat[i:i+1]))
    data.append(list(transMat.flatten()))
return data
```

仅统计最多前 200 个数据包的时间间隔转移概率矩阵。

```
def getIndividualFlowIPTs_seq(self):
    if self.flows == []:
       return None
    data = []
    num = 10
    binSize = 8
    for flow in self.flows:
        lenSeq = np.zeros(num)
        if len(flow['packets']) == 0:
            continue
        for i in range(0, min(num, len(flow['packets']))):
            if 'ipt' not in flow['packets'][i]:
                lenSeq[i] = 0
                continue
            lenSeq[i] = int(flow['packets'][i]['ipt']/binSize)
        data.append(list(lenSeq.flatten()))
    return data
```

仅选取每个流的前 10 个时间间隔组成序列,并且设置 binSize 为 8。

algorithm design

朴素贝叶斯:

```
from sklearn.naive_bayes import GaussianNB
model_1 = GaussianNB()
```

k 近邻算法:

```
from sklearn.neighbors import KNeighborsClassifier
model_2 = KNeighborsClassifier()
```

决策树:

```
from sklearn import tree
model_3 = tree.DecisionTreeClassifier()
```

随机森林:

```
from sklearn.ensemble import RandomForestClassifier
model_4 = RandomForestClassifier(n_estimators=10, random_state=0)
```

支持向量机:

```
from sklearn.svm import LinearSVC
model_5 = LinearSVC(C=0.1, max_iter=1000, random_state=0)
```

evaluation

采用"10折交叉验证"计算模型的各类评估指标。

```
y_pred = cross_val_predict(model, X, y, cv=10)

print(accuracy_score(y, y_pred))
print(confusion_matrix(y, y_pred))
print(precision_score(y, y_pred))
print(recall_score(y, y_pred))
```

实验一: 使用 "长度" 相关特征对普通流量和 Tor 流量进行二分类

原始数据集中,正样本数量为13006,负样本数量为7644。

```
rows_1 = [2000, 1225, 967, 2000, 2814, 2000, 2000]
rows_2 = [1797, 208, 273, 1725, 598, 1559, 1484]
```

accuracy:

	method_1	method_2	method_3	method_4	method_5
len	52.9%	95.4%	96.3%	96.6%	94.9%
len_seq	84.0%	96.2%	98.3%	98.6%	76.9%

confusion matrix:

	method_1	method_2	method_3	method_4	method_5
len	7579 65	7068 576	7122 522	7158 486	6932 712
	9659 3347	374 12632	247 12759	214 12792	336 12670
len_seq	6357 1287	7349 295	7434 210	7467 177	4810 2834
	2007 10999	492 12514	138 12868	120 12886	1945 11061

precision:

	method_1	method_2	method_3	method_4	method_5		
len	98.1%	95.6%	96.1%	96.3%	94.7%		
len_seq	89.5%	97.7%	98.4%	98.6%	79.6%		

recall:

	method_1	method_2	method_3	method_4	method_5
len	25.7%	97.1%	98.1%	98.4%	97.4%
len_seq	84.6%	96.2%	98.9%	99.1%	85.0%

实验二: 使用"时间"相关特征对普通流量和 Tor 流量进行二分类

正样本数量为 13006, 负样本数量为 7644。

rows_1 = [2000, 1225, 967, 2000, 2814, 2000, 2000] rows_2 = [1797, 208, 273, 1725, 598, 1559, 1484]

accuracy:

_	method_1	method_2	method_3	method_4	method_5
ipt	74.7%	77.1%	82.7%	84.1%	81.9%
ipt_seq	63.7%	78.2%	81.9%	84.1%	62.0%

confusion matrix:

	method_1	method_2	method_3	method_4	method_5
len	3681 3963	5360 2284	5180 2464	5407 2237	5131 2513
	1270 11736	2449 10557	1095 11911	1052 11954	1230 11776
len_seq	591 7053	5033 2611	5101 2543	5654 1990	1842 5802
	433 12573	1887 11119	1203 11803	1302 11704	2051 10955

precision:

	method_1	method_2	method_3	method_4	method_5
ipt	74.8%	82.2%	82.9%	84.2%	82.4%

recall:

	method_1	method_2	method_3	method_4	method_5
ipt	90.2%	81.2%	91.6%	91.9%	90.5%
ipt_seq	96.7%	85.5%	90.8%	90.0%	84.2%

