Search Robot

Use Case Roboter

Camille Zanni (zannc2) Simon Gfeller (gfels4)

Inhaltsverzeichnis

Inhaltsverzeichnis	
Akteure	3
Primäre Akteure	
Benutzer Goals	
Use Cases	4
Roboter starten	4
Roboter Konfigurieren	Fehler! Textmarke nicht definiert.
Ziel finden	4
Use Case UC1: Roboter starten	5
Use Case UC2: Roboter konfigurieren	Fehler! Textmarke nicht definiert.
Use Case UC1: 7iel suchen	5

Akteure

Primäre Akteure

Roboter

Der Roboter sucht eine gegebene Fläche nach dem Ziel ab.

Benutzer Goals

Roboter
 Mit einem geeigneten Algorithmus m\u00f6chte der Roboter das Ziel so schnell wie m\u00f6glich finden.

Use Cases

Roboter Generieren

Der Roboter wird mit den Initialdaten (Grösse des Spielfelds und Positionskoordinaten) gestartet.

Ziel finden

Der Roboter sucht nach einem bestimmten Algorithmus das Spielfeld ab, d.h. Er kann sich fortbewegen, jeweils -90° und +90° scannen und die Hindernisse und die Spielrandfläche so erforschen.

Use Case UC1: Roboter Generieren

Primärer Akteur: Robter Haupterfolgs Szenario:

- 1. Der Roboter wird erstellt
- 2. Er erhält die Spielfeldgrösse
- 3. Er erhält seine aktuelle Position und seine Richtung
- 4. Der Roboter speichert die angegebenen Angaben.

Use Case UC1: Ziel suchen

Primärer Akteur: Robter Haupterfolgs Szenario:

- 1. Die Suche des Roboters wird gestartet.
- 2. Der Roboter scannt seine Umgebung (-90° und +90° des aktuellen Standpunktes)
- 3. Der Roboter berechnet die Umliegenden Spielfeldränder und erkannte Hindernisse.
- 4. Der Roboter berechnet die noch unentdeckte Spielfeldfläche.
- 5. Der Roboter bewegt sich zum nächsten berechneten Standpunkt fort.

Erweiterungen:

- 2. 5. Werden wiederholt, bis das Ziel gefunden wurde.
- 5. Der nächste Standpunkt wird anhand eines Algorithmus berechnet.