R Workshop

Introduction

by Connie Zabarovskaya Center for Biomedical Informatics Washington University in St. Louis

*Hilchhikers Guide Galaxy

You Will Learn

- Why R?
- R and RStudio
- Working Environment
- Understanding Data Types in R
- Assignment
- Reading in data
- Slicing and Dicing Data
- Basic Functions
- Basic Plots

What is R?

- open-source programming language
- massively contributed to for over 20 years by 2 million users and thousands of developers worldwide
- over 5000 packages in statistics, data management and analysis, connecting to databases, websites and software, data visualization and more
- download from http://cran.wustl.edu/

Why R?

- automating data manipulations
- reproducible research
- sophisticated graphs and stat analyses
- distributed computing on large datasets
- publishing research results as a web app online
 As opposed to other stat software
- freedom of control over functions and data manipulations
- access to all loaded data elements at all times

RStudio

- user interface for R
- to change appearance: Tools/Global Options
- download from http://www.rstudio.com/products/rstudio/downlo ad/

Working Environment

Working directory – your location on the "computer map"

Working Environment

- Getting help:
 - help(),
 - ?c,
 - Help tab in RStudio

Working Environment

- · Comments:
 - # comment here
- Installing and Loading packages:

```
install.packages("ggplot2") install.packages("dplyr")
```

library(ggplot2) library(dplyr)

Variables and Functions

Assignment

- For commands use : <- ("greater than" & "dash")
- Inside functions use: = (when assigning values to arguments)
- If you don't assign command result will be dumped in console; or can get error

Understanding Data in R

Index	1	2	3	4
Age	25	35	40	12

Vector:

Age < - c(25, 35, 40, 12)

length(Age)

4

Data Frame:

Reading in Datasets

- R can read in perhaps all possible file formats
- To check datasets in working directory: dir()

file <- read.csv("filename.csv")</pre>

library(foreign)
file <- read.dta("file.dta")
no support after v. 12</pre>

library(xlsx)

file <- read.xlsx("myfile.xlsx", sheetName = "Sheet1")
special package for Excel files needs to be installed, by
calling install.packages("xslx")</pre>

Practice Exercise

Read in this dataset and assign it to var "nycflights"

nycflights <- read.csv(url("http://statadata.gwb.wustl.edu/nycfl13sample.csv"))

- View it from the RStudio Environment
- Can we tell how many variables and observations the data has?

Metadata

- Functions to describe the dataset
- # num of cols, rows, var name and type, some values str(patients)
- # statistics on continuous variables, freq on factors summary(patients)
- # column names names(patients)
- # number of columns, number of rows
 ncol(patients)
 nrow(patients)

Practice Exercise

- Answer these questions about the dataset:
 - name two number vars in the dataset
 - name two factor vars in the dataset
 - what is the median and mean of air time (min)?
 - what is the frequency of origin categories?
- Try to write all the functions from previous slide

Understanding Data Types

Numbers

```
c(3, 20, 10) + c(30, 10, 15)
[1] 33 30 25
```

Strings

```
c('Ami', 'Paul', c('Angie', 'Pat'))
[1] Ami Paul Angie Pat
```

Understanding Data Types

Factor (nominal/categorical vars with labels).

Caution!

```
Gender = c("F", "M", "F", "M")
```

Range of strings: "F" "M"

↓ ↓

Stored Integers: 1 2

```
levels(patients$Gender)
[1] "F" "M"
```

Understanding Data Types

- Logical: TRUE, FALSE
 - used for comparisons of data vector to vector, single value to single value, to filter data for example, or verify a condition

is.na(c(3, 4, NA, 10))

[1] FALSE FALSE TRUE FALSE

c(3, 4, NA, 10) != 4[1] FALSE TRUE NA FALSE

<	less than	
>	great than	
<=	less than or equal	
>=	greater than or equal	
==	equal to	
!=	not equal to	
	entry wise or	
	or	
!	not	
&	entry wise and	
&&	and	

Practice Exercise

- Name some of the levels of airline variable.
- Does the dep_delay (departure delay) variable contain any NAs?*
- Is there ever distance over 4000 miles?*

Describing Data

- crosstables
 - one-way (frequencies)

table(patients\$Gender)

two-way

table(patients\$Gender, patients\$Diabetes)

distribution

summary(patients\$Age)

describe(patients) psych

fivenum(patients\$Age) VS. quantile(patients\$Age)

fivenum() returns Tukey's five number summary

quantile() returns quantiles corresponding to the given probabilities

Slicing and Dicing


```
IDs <- patients$PatientID</pre>
```

IDs <- patients[,1]</pre>

row2 <- subset(patients, PatientsID==2)
row2<- patients[2,]</pre>

			/
PatientID	Age	Gender	Diabetes
1	25	F /	Y
2	35	M	N
3	40	F	N
4	12	M	N
		_	

Conditional (logical) subsetting:

patients[patients\$Age > 12,] ! subset(patients, Age > 12)

singlecell <- patients[4,3]
singlecell <- patients\$Gender[4]</pre>

patients[patients\$Age > 12 & patients\$Gender =="M",] !

head(patients) tail(patients,2)

Practice Exercise

- Practice two ways to select carrier variable (7th col).
- Practice two ways to select flights with carrier UA. Practice how to select only the 1st row.
- Practice two ways to select 20th row, 7th column (carrier var). What's the value?
- How would you select all the flights with positive departure delay (dep_delay var)? (use subset())
- Create a crosstable of airline and origin. What airline only flies from Newark airport?

Creating New Variables

To create a new variable in an existing dataset, pretend as if it's already there.

PatientID	Age	Gender	Diabetes	BloodSugar
1	25	F	Y	140
2	35	M	N	135
3	40	F	N	126
4	12	M	N	112

patients\$BloodSugar <- c(140, 135, 126, 112)

Practice Exercise: create air_hours variable, based on air_time variable, dividing it by 60

Basic Functions

- Math functions:
 - sqrt(patients\$Age)
 - log(patients\$Age)
 - mean(patients\$Age)
 - max(patients\$Age)
 - sum(patients\$Age)

Data Wrangling

- unique values:
 - length(unique(patients\$PatientID))
 - n_distinct(patients\$PatientID)
- remove duplicate rows
 - distinct(patients)
- filtering columns
 - select(patients, contains("a"))
- filtering rows
 - filter(patients, Age > 12)

Data Wrangling

aggregating (collapsing)
 aggregate(patients\$Age, by =
 list(Gender=patients\$Gender), FUN=mean)

```
patients %>% group_by(Gender) %>% 
summarise(avg=mean(Age))
```

merging
 newdf <- merge(data1, data2, by="ID")

Basic Plots

Base R

barplot

```
plot(patients$Gender) # has to be factor var
plot(patients$Gender, main = "Gender Freq", xlab =
    "Gender", ylab = "Frequency")
```

histogram

hist(patients\$Age)

scatterplot

plot(patients\$Age, patients\$BloodSugar)

Basic Plots

Using ggplot2 (functions: ggplot() and qplot())
qplot(x = Age, y = BloodSugar, color = Gender, data =
 patients, geom = "point")

Exporting Data

Easiest way in a csv

write.csv(patients, "patients.csv", row.names
= F)

Practice Exercise

 Plot a scatterplot using qplot() function, to look at relationship between dep_delay and visib (visibility). Use origin for color groups.

Putting It All Together

 Delay Prediction App: https://conniez.shinyapps.io/delayPredictor/

Limitations of R

Limitation	How to Overcome
Memory limits	Packages for parallelization and memory management. Check out HP Distributed R, Biglm, ff, etc.
Lack of official support	Google, StackOverflow. If package is new – submit issue to GitHub repo

Where to learn more

Interactive Learning

http://tryr.codeschool.com/

https://www.datacamp.com/

https://www.teamleada.com/tutorials/introduction-to-

statistical-programming-in-r

MOOC Course

https://www.coursera.org/course/rprog

R Playground online (select R Programming)

http://www.tutorialspoint.com

R Cheat Sheets

http://www.rstudio.com/resources/cheatsheets/

More Resources

- HP Distributed R http://www.vertica.com/hpvertica-products/hp-vertica-distributed-r/
- Handling Big Data: packages RODBC, Biglm, ff, bigmemory, snow, etc.

Thank You! Questions?