MM102 Applications of Calculus

Answers to the exam in May 2019

- 1. (a) (i) $\frac{1}{3}\sin^3 x \frac{3}{5}\sin^5 x + \frac{3}{7}\sin^7 x \frac{1}{9}\sin^9 x + C$
 - (ii) $-6\sqrt{3} + \frac{5\pi}{3} + 8$

- **2.** (a) $\frac{dy}{dx} = -\frac{e^y + 3x^2 \sin y}{xe^y + x^3 \cos y};$ tangent: $y = -\frac{1}{2}(x-1)$
 - **(b)** $p_{2,e}(x) = e^2 + 3e(x e) + \frac{5}{2}(x e)^2;$ $R_{2,e}(x) = \frac{1}{3\xi}(x e)^3$ with ξ between x and e.
 - (c) (i) $dom(f) = \{x \in \mathbb{R} : x \neq 1\}$
 - (ii) Vertical asymptote: x = 1Slant asymptote: y = x + 1
 - (iii) Local maximum at x = -1 with f(-1) = -2; local minimum at x = 3 with f(3) = 6. The function is increasing on the intervals $(-\infty, -1)$, $(3, \infty)$. The function is decreasing on the intervals (-1, 1) and (1, 3).

1

(iv) Point of intersection with the y-axis: (0, -3)There is no point of intersection with the x-axis. (v)

3. (a) (i)
$$12 \operatorname{cis} \left(-\frac{5\pi}{6} \right)$$

(ii)
$$12^{1/3} \operatorname{cis}\left(-\frac{5\pi}{18}\right)$$
, $12^{1/3} \operatorname{cis}\left(\frac{7\pi}{18}\right)$, $12^{1/3} \operatorname{cis}\left(-\frac{17\pi}{18}\right)$

(b)
$$a = \frac{1}{8}, b = -\frac{1}{2}, c = \frac{3}{8}$$

(c)
$$3-i$$
, $3+i$, $-1-2i$, $-1+2i$

4. (a) (i) Integrating factor: $I(x) = x^2 - 1$

(ii)
$$y = \frac{(1+2x)^{3/2}}{3(x^2-1)} + \frac{C}{x^2-1}$$

(b)
$$y = x - \frac{2x}{\ln x + 2}$$

(c)
$$y = A + Be^x - 5\sin x + 5\cos x - x$$