Knowledge, action, and the frame problem

Reasoning about Actions

Francesco Petri, Flavio Maiorana and Charlotte Primiceri

May 28, 2024

Introduction

Table of Contents

- ► Scherl and Levesque's Approach Introduction Knowledge as a fluent Defining a successor state axiom for K
- Example: The Gardening Robot Axiomatization
 Considerations on theorems
 Golog
- The projection problem

Outline

Situation calculus provides a framework for reasoning about actions.

This work presents an expansion to handle the *knowledge* possessed or acquired by the agent, and allow it to shape the agent's decisions.

- Knowledge is represented by one additional fluent
- Uniform axiomatization with the rest of sitcalc
- Ordinary actions and knowledge-producing ones are strictly separated
- Easy expansion of regression as defined in [Reiter2001]
- Desirable properties are direct consequences of the axiomatization (e.g. knowledge persistence / memory)

Introduction

. . .

Opzionale

Un paio di azioni ordinarie e un paio di azioni di conoscenza di esempio, giusto per inquadrare il discorso

The K fluent

Defines an accessibility relation between situations.

(Informal) definition

K(s',s) is true if an agent in situation s could mistake the current situation for the other s', given its current knowledge.

Knowledge

Definition of knowledge

A fluent is known to be true (false) in a situation s if and only if it is true (false) in all situations accessible from s.

Shorthand notation: $\mathbf{Knows}(\phi, s) \stackrel{\text{def}}{=} \forall s' \ \mathrm{K}(s', s) \rightarrow \phi(s')$

Knowledge-producing actions

Actions that have an effect on the agent's knowledge

SENSE actions

Learn the truth value of a formula. Example: check if a door is open or closed.

$$\mathsf{Knows}(\mathsf{P}, \mathsf{DO}(\mathsf{SENSE}_\mathsf{P}, s)) \lor \mathsf{Knows}(\neg \mathsf{P}, \mathsf{DO}(\mathsf{SENSE}_\mathsf{P}, s))$$

READ actions

Learn the value of a term. Example: read a number on a sheet of paper.

$$\exists x \; \mathsf{Knows}(\tau = x, \mathsf{DO}(\mathsf{READ}_{\tau}, s))$$

Assumption: ordinary and knowledge-producing actions are strictly separated.

Knowledge effects

In order to complete the specification of the Kfluent, we need to define its successor state axiom, determining how ordinary actions and knowledge-producing actions affect it.

Consider this case study with three accessible situations. The agent is in S1.

$$\mathsf{Knows}(\mathrm{P},S1) \land \neg \mathsf{Knows}(\mathrm{Q},S1)$$

Ordinary actions

Assume the agent performs a DROP action.

Informal idea

The agent cannot distinguish the current situation s from all the other s' accessible from it. Therefore, after executing the action, the agent may believe to be in any situation resulting from any s' after executing DROP.

Axiomatization

$$K(s'', DO(DROP, s)) \equiv \exists s' (Poss(DROP, s') \land K(s', s) \land s'' = DO(DROP, s'))$$

Defining a successor state axiom for K

Ordinary actions

Knowledge-producing actions

The successor state axiom for K

<varie ed eventuali>

Table of Contents

- Scherl and Levesque's Approach Introduction
 Knowledge as a fluent
 Defining a successor state axiom for K
- ► Example: The Gardening Robot Axiomatization Considerations on theorems Golog
- The projection problem

The Problem

- A robot has to manage some plants in a garden.
- The robot can perform an action on one plant at a time and only if it's near the plant.
- A plant can be watered only if it is dry. The plant's humidity can be inspected.
- The robot has a water tank with unlimited capacity.

Fluents and Actions

Fluents

- $Near(x,s) \rightarrow \mathsf{Robot}$ is near plant x in situation s
- $Humidity(x,s) \rightarrow Humidity of plant \times in situation s$
- $Infested(x,s) \rightarrow \mathsf{Plant} \ \mathsf{x}$ is infested by bugs in situation s
- $Healthy(x,s) \rightarrow Plant \times is healthy in situation s$

Actions

- $Treat(x,s) \rightarrow Treat \ plant \ x \ in \ situation \ s$
- $Water(x,s) \rightarrow Water plant \times in situation s$
- $GoTo(x) \rightarrow Go \text{ to plant } x$

Successor State Axioms

In general $F(x,do(\alpha,s)) \equiv \Phi^+_F(x,a,s) \vee (F(x,s) \wedge \neg \Phi^-_F(x,a,s))$

- $Near(x, do(\alpha, s)) \equiv \alpha = GoTo(x) \lor (Near(x, s) \land \neg \exists y . \alpha = GoTo(y))$
- Healthy?
- $Humidity(x, do(\alpha, s)) = h \equiv Humidity(x, s) = h$
- $Infested(x, do(\alpha, s)) = h \equiv Infested(x, s) = i$

Axiomatization

Initial State

Axiomatization

Precondition Axioms

Sensing Result Axioms

Considerations on theorems

Boh

Golog **Boh**

Table of Contents

- Scherl and Levesque's Approach Introduction
 Knowledge as a fluent
 Defining a successor state axiom for K
- Example: The Gardening Robot Axiomatization
 Considerations on theorems
 Golog
- ► The projection problem

Knowledge, action, and the frame problem

Thank you for listening!
Any questions?