5 Matrices inversibles

Dans tout ce chapitre, on ne considére que des matrices carrées.

I – Matrices inversibles

Définition 5.1 – Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est dite **inversible** si et seulement s'il existe une matrice $B \in \mathcal{M}_n(\mathbb{R})$ telle que

$$AB = I_n$$
 et $BA = I_n$.

Si une telle matrice B existe, elle est appelée **inverse** de A et est notée A^{-1} .

Remarque 5.2 -

- La notion de matrice inversible n'a de sens QUE pour des matrices carrées.
- Une matrice inversible admet une unique matrice inverse.

Exemple 5.3 – Vérifier les assertions suivantes.

- 1. La matrice identité est inversible et $I_n^{-1} = I_n$.
- 2. La matrice $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ est inversible et $A^{-1} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$.
- 3. La matrice carrée nulle 0_n n'est pas inversible.
- 4. La matrice $A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$ n'est pas la matrice nulle mais elle n'est pas inversible pour autant.

Théorème 5.4

Si P et Q sont deux matrices de $\mathcal{M}_n(\mathbb{R})$ telles que $PQ = I_n$, alors P et Q sont inversibles et

$$P^{-1} = Q$$
 et $Q^{-1} = P$.

Exemple 5.5 – Vérifier que les matrices *P* et *Q* sont inversibles.

- Soient les matrices $P = \begin{pmatrix} 4 & 7 \\ 3 & 5 \end{pmatrix}$ et $Q = \begin{pmatrix} -5 & 7 \\ 3 & -4 \end{pmatrix}$.
- Soient les matrices $P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$ et $Q = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} \end{pmatrix}$.

Corollaire 5.6

Soient P et Q deux matrices de $\mathcal{M}_n(\mathbb{R})$ telles que $PQ = \lambda I_n$, avec $\lambda \neq 0$. Alors P et Q sont inversibles et

$$P^{-1} = \frac{1}{\lambda} Q$$
 et $Q^{-1} = \frac{1}{\lambda} P$.

Exemple 5.7 – Déterminer les inverses des matrices $P = \begin{pmatrix} 1 & 1 & 3 \\ -1 & -2 & -1 \\ -1 & 2 & 1 \end{pmatrix}$ et $Q = \begin{pmatrix} 0 & -5 & -5 \\ -2 & -4 & 2 \\ 4 & 3 & 1 \end{pmatrix}$.

Le cas des matrices diagonales est plus facile :

Proposition 5.8

Une matrice diagonale $D = \begin{pmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & d_n \end{pmatrix}$ est inversible si et seulement si ses coefficients diago-

naux d_i sont tous inversibles, *i.e.* tous non nuls. Dans ce cas, la matrice inverse est donnée par

$$D^{-1} = \begin{pmatrix} \frac{1}{d_1} & 0 & \dots & 0 \\ 0 & \frac{1}{d_2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \frac{1}{d_n} \end{pmatrix}.$$

Exemple 5.9 – Donner l'inverse de la matrice suivante.

La matrice $\begin{pmatrix} 3 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ a pour inverse

Proposition 5.10

Soit A une matrice triangulaire supérieure ou inférieure de $\mathcal{M}_n(\mathbb{R})$.

La matrice *A* est inversible si et seulement si ses termes diagonaux sont tous non nuls.

Exemple 5.11 - Les matrices suivantes sont-elles inversibles?

- La matrice $\begin{pmatrix} 2 & 0 & 0 \\ -5 & 1 & 0 \\ 3 & 0 & -4 \end{pmatrix}$
- La matrice $\begin{pmatrix} 2 & 3 & 0 \\ 0 & 0 & 4 \\ 0 & 0 & -1 \end{pmatrix}$

Proposition 5.12

Soient A, B et C trois matrices de $\mathcal{M}_n(\mathbb{R})$.

- Si A est inversible, alors A^{-1} est inversible et $(A^{-1})^{-1} = A$.
- Si *A* et *B* sont inversibles, alors le produit *AB* est inversible et $(AB)^{-1} = B^{-1}A^{-1}$.
- Si A est inversible, alors A est **simplifiable** à gauche et à droite, c'est-à-dire que

$$AB = AC \implies B = C$$
 et $BA = CA \implies B = C$.

On termine avec le cas des matrices carrées de taille 2.

Proposition 5.13

La matrice $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ est inversible si et seulement si $ad - bc \neq 0$. Dans ce cas, la matrice inverse est donnée par

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Démonstration.

Exemple 5.14 – Les matrices suivantes sont-elles inversibles? Si oui, préciser leur inverse.

1.
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

$$2. B = \begin{pmatrix} 3 & 6 \\ 2 & 4 \end{pmatrix}$$

II - Calcul effectif de l'inverse d'une matrice

1 - Calcul de l'inverse par la résolution d'un système

Théorème 5.15

Soit $A \in \mathcal{M}_n(\mathbb{R})$. La matrice A est inversible si et seulement si, pour tout $Y \in \mathcal{M}_{n,1}(\mathbb{R})$, le système linéaire AX = Y admet une unique solution.

Méthode 5.16 - Montrer qu'une matrice est inversible et calculer son inverse

En utilisant la méthode du pivot de Gauss, on résout le système AX = Y d'inconnue $X \in \mathcal{M}_{n,1}(\mathbb{R})$ en fonction de $Y \in \mathcal{M}_{n,1}(\mathbb{R})$ quelconque fixé, puis on discute :

- si le système admet une unique solution X = BY alors A est inversible et $A^{-1} = B$,
- sinon la matrice n'est pas inversible.

Exemple 5.17 – Montrer que la matrice $A = \begin{pmatrix} 1 & -7 & 11 \\ -1 & 12 & -19 \\ 0 & -3 & 5 \end{pmatrix}$ est inversible et déterminer son inverse.

Maths 2021/22

2 - Calcul de l'inverse par la méthode du pivot de Gauss

Théorème 5.18

Soit A dans $\mathcal{M}_n(\mathbb{R})$. La matrice A est inversible si et seulement si une suite d'opérations élémentaires sur les lignes de A transforme la matrice A en une matrice B inversible.

Dès lors, en transformant la matrice A en la matrice identité à l'aide d'opérations sur les lignes et en effectuant simultanément les mêmes opérations sur la matrice identité, on obtient l'inverse de la matrice A.

Méthode 5.19 - Méthode de Gauss-Jordan

En pratique, pour transformer A en I_n , on commence par transformer la matrice A en une matrice triangulaire supérieure par la méthode du pivot de Gauss, ce qui permet déjà de savoir si A est inversible ou non. Le cas échéant, on transforme alors la matrice triangulaire obtenue en la matrice identité.

Exemple 5.20 – On considère la matrice $P = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ -1 & -2 & 1 \end{pmatrix}$.

Montrer que la matrice P est inversible et déterminer son inverse.