CLAIMS

What is claimed is:

1	1. A method comprising:
2	re-compiling a function when a field watch for a field is activated, the
3	function including a byte code sequence having a field byte code that accesses or
4	modifies the field, the recompiled function providing a native code and occupying
5	a code space;
6	generating an instrumentation code corresponding to the field watch of the
7	field; and
8	inserting the instrumentation code to the native code.
1	2. The method of claim 1 further comprising:
2	guarding execution of the instrumentation code if the field watch is not
3	activated.
1	3. The method of claim 1 wherein generating the instrumentation
2	code comprises:
3	executing a field watch sequence if the field watch is activated.
1	4. The method of claim 1 wherein executing the field watch sequence
2	comprises:
	•

4	register;
5	executing an event hook function for an event corresponding to the field
6	watch; and
7	restoring the live global state.
1	5. The method of claim 4 wherein saving the live global state
2	comprises:
3	pushing the live global state onto a stack.
1	6. The method of claim 4 wherein executing the event hook function
2	comprises:
3	passing an argument corresponding to the field; and
4	calling a run-time library function related to the event.
1	7. The method of claim 5 wherein restoring the live global state
2	comprises:
3	retrieving the live global state from the stack.
1	8. The method of claim 1 wherein inserting the instrumentation code
2	comprises:
3	inserting the instrumentation code in a stub at end of the code space.

saving live global state, the live global state corresponding to an active

042390.P10798

1	9. The method of claim 2 wherein guarding execution of the		
2	instrumentation code comprises:		
3	updating an offset of a jump instruction to the stub when the field watch is		
4	activated.		
1	10. The method of claim 1 wherein guarding execution of the		
2	instrumentation code comprises:		
3	replacing a no-op sequence with a jump instruction to the stub.		
1	11. The method of claim 9 further comprising:		
2	clearing the field watch by replacing the offset with a zero offset.		
1	12. The method of claim 10 further comprising:		
2	clearing the field watch by replacing the jump instruction with the no-op		
3	sequence.		
1	13. The method of claim 1 wherein the function is a Java method.		
1	14. The method of claim 1 wherein the field is a Java field in a Java		
2	virtual machine.		
1	15. The method of claim 4 wherein the event hook function is		
2	compatible with a Java Virtual Machine Debug Interface (JVMDI).		

-23-

16.

2	a machine useable medium having computer program code embedded
3	therein, the computer program product having:
4	commuter readable program and to re-commits a function when a
4	computer readable program code to re-compile a function when a
5	field watch for a field is activated, the function including a byte code
6	sequence having a field byte code that accesses or modifies the field, the
7	recompiled function providing a native code and occupying a code space,
0	
8	computer readable program code to generate an instrumentation
9	code corresponding to the field watch of the field, and
10	computer readable program code to insert the instrumentation code
11	to the native code.
11	to the native code.
1	17. The computer program product of claim 16 further comprising:
2	computer readable program code to guard execution of the instrumentation
3	code if the field watch is not activated.
1	18. The computer program product of claim 16 wherein the computer
2	readable program code to generate the instrumentation code comprises:
3	computer readable program code to execute a field watch sequence if the
4	field watch is activated.
1	19. The computer program product of claim 16 wherein the computer
2	readable program code to execute a field watch sequence comprises:

A computer program product comprising:

3	computer readable program code to save live global state, the live globa			
4	state corresponding to an active register;			
5	computer readable program code to execute an event hook function for an			
6	event corresponding to the field watch; and			
7	computer readable program code to restore the live global state.			
1	20. The computer program product of claim 19 wherein the computer			
2	readable program code to save the live global state comprises:			
3	computer readable program code to push the live global state onto a stack.			
1	21. The computer program product of claim 19 wherein the computer			
2	readable program code to execute the event hook function comprises:			
3	computer readable program code to pass an argument corresponding to the			
4	field; and			
5	computer readable program code to call a run-time library function related			
6	to the event.			
1	22. The computer program product of claim 20 wherein the computer			
2	readable program code to restore the live global state comprises:			
3	computer readable program code to retrieve the live global state from the			
4	stack.			
1	23. The computer program product of claim 16 wherein the computer			

readable program code to insert the instrumentation code comprises:

computer readable program code to insert the instrumentation code in a		
stub at end of the code space.		
24. The computer program product of claim 16 wherein the computer		
readable program code to guard execution of the instrumentation code comprises:		
computer readable program code to update an offset of a jump instruction		
computer readable program code to update an offset of a jump instructi to the stub when the field watch is activated.		
25. The computer program product of claim 16 wherein the computer		
readable program code to guard execution of the instrumentation code comprises:		
computer readable program code to replace a no-op sequence with a jump		
computer readable program code to replace a no-op sequence with a juninstruction to the stub.		
26. The computer program product of claim 24 further comprising:		
computer readable program code to clear the field watch by replacing the		
offset with a zero offset.		
27. The computer program product of claim 25 further comprising:		
computer readable program code to clear the field watch by replacing the		
jump instruction with the no-op sequence.		
28. The computer program product of claim 16 wherein the function is		
a Java method.		

29.

2	Java field in a	Java virtual machine.
1 2	30.	The computer program product of claim 19 wherein the event hook mpatible with a Java Virtual Machine Debug Interface (JVMDI).
1	31.	A system comprising:
2	a proc	essor;
3 4		de, when executed by the processor, causing the processor to:
5 6 7 8		re-compile a function when a field watch for a field is activated, the function including a byte code sequence having a field byte code that accesses or modifies the field, the re-compiled function providing a native code and occupying a code space,
9 10		generate an instrumentation code corresponding to the field watch of the field, and
11		insert the instrumentation code to the native code.
1 2	32. processor to:	The system of claim 31 the instruction code further causing the

The computer program product of claim 16 wherein the field is a

activated.

3

4

guard execution of the instrumentation code if the field watch is not

1	33. The system of claim 31 wherein the instruction code causing the
2	processor to generate the instrumentation code causes the processor to:
3	execute a field watch sequence if the field watch is activated.
1	34. The system of claim 31 wherein the instruction code causing the
2	processor to execute a field watch sequence causes the processor to:
3 4	save live global state, the live global state corresponding to an active register;
5 6	execute an event hook function for an event corresponding to the field watch; and
7	restore the live global state.
1	35. The system of claim 32 wherein the instruction code causing the
2	processor to guard execution of the instrumentation code causes the processor to:
3	update an offset of a jump instruction to the stub when the field watch is
4	activated.
1	36. The system of claim 32 wherein the instruction code causing the
2	processor to guard execution of the instrumentation code causes the processor to:
3	replace a no-op sequence with a jump instruction to the stub.
1	37. The system of claim 31 wherein the function is a Java method.

. . .

- 1 38. The system of claim 31 wherein the field is a Java field in a Java
- 2 virtual machine.
- 1 39. The system of claim 34 wherein the event hook function is
- 2 compatible with a Java Virtual Machine Debug Interface (JVMDI).