Ejercicios de topología on line

Tema 1

Ejercicio 26

Un espacio topológico es *regular* cuando es posible separar todo conjunto cerrado de cualquiera de sus puntos exteriores.

Sea F un cerrado y $x \notin F$. Como F es un cerrado, entonces X - F es un abierto que contiene a x, existe un entorno cerrado U de x, $x \in U \subset X - F$. Sea O = X - U que es abierto, y que además que contiene a $F \subset O$, F, verificando que $O \cap U = \emptyset$. En consecuencia, el espacio es regular.

Ejercicio 27

Un espacio topológico es *normal* cuando dado cualquier par de cerrados, $E \neq \emptyset$ y $F \neq \emptyset$, $E \cap F = \emptyset$, existen dos entornos, $E \subset U$ y $F \subset V$, tal que $U \cap V = \emptyset$.

$$\beta = \{B_a : a \in R\}$$
 $B_a = \{(x, y) \in R^2 : x \ge a\}$

La familia de abiertos es

$$\tau = \{\emptyset, R^2\} \cup \beta \cup \{]a, +\infty[xR: a \in R\}$$

La familia de cerrados está construida por los conjuntos complementarios de los anteriores:

$$\mathcal{F} = \{\emptyset, R^2\} \cup \{\overline{B_a} : a \in R\} \cup \{] - \infty, a] x R : a \in R\} \quad B_a = \{(x, y) \in R^2 : x < a\}$$

$$\mathcal{F} = \{\emptyset, R^2\} \cup \{] - \infty, a[x R : a \in R\} \cup \{] - \infty, a] x R : a \in R\}$$

Por tanto, dos cerrados distintos del vacío su intersección es siempre distinta del vacía, es decir, siempre se intersecan, se tiene que el espacio es normal.

$$\tau = \{\emptyset\} \cup \{O \subset R : Q \subset O\}$$

Sea $x \in R$, una base de entornos de x es:

$$\beta_x = \{\{x\} \cup O\} \neq \emptyset \quad x \in \{x\} \cup O \in \tau$$

Para cualquier entorno de x, U, $\exists 0 \in \tau$: $x \in O \subset U$, y como $Q \subset O$, se tiene que

$$x \in \{x\} \cup Q \subset O \subset U$$

Y como β_x solo tiene un elemento (es finito) es numerable, es cierto para cualquier $x \in R$, el espacio satisface el primer axioma de numerabilidad, es IAN.

Sea la familia $\beta = \{Q, \{\{x\} \cup Q : x \in R - Q\}\}$ es una base de abiertos de la topología. Si el espacio satisface el segundo axioma de numerabilidad, entonces existe $\beta' \subset \beta$ numerable.

$$\beta' = \left\{ Q, \left\{ \left\{ x_n \right\} \cup Q \colon x_n \in R - Q \ n \in N \right\} \right\}$$

Sea $x \neq x_n \ \forall n \in \mathbb{N} \ x \in \mathbb{R} - \mathbb{Q}$, entonces $x \in \{x\} \cup \mathbb{Q}$, existe $m \in \mathbb{N}$ tal que

$$x \in \{x_m\} \cup Q \subset \{x\} \cup Q$$

Como x_m y x son irracionales, $x=x_m$, absurdo. Por lo tanto, el espacio NO satisface el segundo axioma de numerabilidad.

Ejercicio 29

$$X =]0,1[\quad \tau = \{\emptyset, X\} \cup \{]0,1 - \frac{1}{n} [: n \in N \}$$

Sean $x, y \in X$, y sean $A, B \in \tau$ tales que $x \in A$ $y \in B$:

Caso 1: Si A = X ó B = X, entonces claramente $A \cap B \neq \emptyset$.

Caso 2: existen $n, m \in N$ tales que

$$A = \left] 0, 1 - \frac{1}{n} \right[B = \left] 0, 1 - \frac{1}{m} \right[\Rightarrow A \cap B = \left] 0, 1 - \frac{1}{m \{n, m\}} \right[\neq \emptyset$$

Por lo tanto, (X, τ) NO es de Hausdorff.

Sea para n=2, $O=\left]0,\frac{1}{2}\right[\in \tau$, entonces su complementario es cerrado

$$F = [1/2, 1]$$
 $y x = 1/4 \notin F$

Hay que encontrar dos entornos U y V tales que $F \subset U$ $x = \frac{1}{4} \in V \Rightarrow U \cap V = \emptyset$. Pero el único abierto que contiene a F es U = X =]0,1[, es decir, $U \cap V \neq \emptyset$, para cualquier entorno de x. Por lo tanto, (X,τ) NO es regular.

Tema 2 aplicaciones

Ejercicio -6-

Se considera N con la topología τ de los divisores, esto es, $\mathfrak{B}=\{U_n\colon n\in N\}$ es base de τ , con U_n el conjunto de los divisores de $n\in N$. Probar que una aplicación $f\colon N\to N$ es continua si y solo si f respeta la divisibilidad (esto, es si m divide a n entonces f(m) divide a f(n)).

Solución

 \implies) Si f es una aplicación continua en $n \in N$:

$$\forall B' \in \mathfrak{B} \ f(n) \in B' \ \exists B \in \mathfrak{B} \ n \in B \ tal \ que \ f(B) \subset B' \Longrightarrow f(U_n) \subset U_{f(n)}$$

Dado
$$m$$
 divide a $n \Rightarrow m \in U_n \Rightarrow f(m) \in f(U_n) \subset U_{f(n)} \Rightarrow f(m)$ divide a $f(n)$

Y esto es cierto para todo divisor de n y para todo $n \in N$, por lo tanto, f respeta la divisibilidad.

 \Leftarrow) Si f respeta la divisibilidad, sea $n \in N$ y sea $m \in N$ que divide a $n \Rightarrow m \in U_n$

$$\Rightarrow f(m)$$
 divide a $f(n) \Rightarrow f(m) \in U_{f(n)} \ \forall m \in \mathbb{N} \ con \ m \ diviendo \ a \ n \Rightarrow f(U_n) \subset U_{f(n)}$

$$\Rightarrow$$
 f es continua en n \forall n \in N \Rightarrow f es continua

Ejercicio -7-

Encontrar una aplicación $g\colon (X_1,\tau_1) \to (X_2,\tau_2)$ y un conjunto denso $A \subset X_1$ tal que $g_{/A}$ es continua, aunque g no sea continua en ningún punto de A.

Solución

Sean $X_1 = X_2 = R$ y A = Q que es un subconjunto denso de R:

$$g:(R,\tau_u)\to (R,\tau_u)$$
 $g(x)=\begin{cases} 0 & \text{si } x\in Q\\ 1 & \text{si } x\in R-Q \end{cases}$

Sea la aplicación restringida en A = Q:

$$g_{/Q}(x) = 0 \quad \forall x \in Q \Longrightarrow g_{/Q} \text{ es continua}$$

Sea
$$x \in Q$$
, $g(x) = 0$

$$\lim_{\begin{subarray}{c} x\to 0\\ x\in Q\end{subarray}} f(x) = \lim_{\begin{subarray}{c} x\to 0\\ x\in Q\end{subarray}} 0 = 0 \quad \neq \quad \lim_{\begin{subarray}{c} x\to 0\\ x\in R-Q\end{subarray}} f(x) = \lim_{\begin{subarray}{c} x\to 0\\ x\in R-Q\end{subarray}} 1 = 1$$

Por lo tanto, g no es continua en $x \in Q$, es decir, g no sea continua en ningún punto de Q.

Ejercicio -8-

Probar que las aplicaciones continuas y sobreyectivas aplican conjuntos densos en conjuntos densos. Comprobar que la parte entera $E\colon (R,\tau_u) \to \left(Z,\tau_{u/Z}\right)$ conserva los conjuntos densos, aunque no es continua.

Solución

Sea una aplicación $f: X \to Y$ continua y sobreyectiva, y sea $D \subset X$ denso en $X: \overline{D} = X$.

Como f es sobreyectiva: $Y = f(X) = f(\overline{D})$, y como es continua $f(\overline{D}) \subset \overline{f(D)}$:

$$Y = f(\overline{D}) \subseteq \overline{f(D)} \subseteq Y \Longrightarrow \overline{f(D)} = Y \Longrightarrow f(D)$$
 es denso en Y

Por lo tanto, las aplicaciones continuas y sobreyectivas aplican conjuntos densos en conjuntos densos.

Sea $E:(R,\tau_u)\to \left(Z,\tau_{u/Z}\right)$ veamos que conserva los conjuntos densos, y sea $D\subset R$ denso en $R,\overline{D}=R$.

$$|z, z + 1| \cap D \neq \emptyset \ \forall z \in Z \Longrightarrow \exists x \in D : E[x] = z \ \forall z \in Z \Longrightarrow Z \subseteq E[D]$$

Pero por otro lado, $E[D] \subseteq Z$, se decir, E[D] = Z, tomando adherencias, $\overline{E[D]} = \overline{Z} = Z$, entonces E[D] es denso en Z.

Veamos que no es continua, sea $\{2\} =]1.5,2,5[\cap Z \in \tau_{u/Z}]$

$$\Rightarrow E^{-1}[\{2\}] = [2,3] \notin \tau_u$$

Examen tema 2 13-12-2021

2.- Sea (X, τ) un espacio topológico. Prueba que $A = \{(x, x) : x \in X\}$ es abierto en $(XxX, \tau x\tau)$ si y solo si τ es la topología discreta.

 \Rightarrow) Sea $A = \{(x, x): x \in X\}$ abierto en $(XxX, \tau x\tau)$. Sea $(x, x) \in A = A^{\circ}$, existe $O_1 x O_2 \in \tau x\tau$:

$$(x,x) \in O_1 \times O_2 \subseteq A \Longrightarrow x \in O_1 \ x \in O_2$$

Sean $x \in O_1$ e $y \in O_2$, con $x \neq y$, entonces $(x, y) \in O_1 \times O_2 \subseteq A \Longrightarrow (x, y) \in A$ absurdo, se tiene que $O_2 = \{x\}$, y de la misma forma $O_1 = \{x\}$.

Luego la única posibilidad es que $O_1 x O_2 = \{(x, x)\}$, es decir, se tiene una base de abiertos:

$$B_{\tau} = \big\{ \{x\} \colon x \in X \big\}$$

Para cualquier $0 \in \tau$ que $x \in O$, se verifica que $x \in \{x\} \subseteq O$. Por lo tanto, τ es la topología discreta.

 \Leftarrow) Sea τ la topología discreta, una base de abiertos de τ :

$$B_{\tau} = \big\{ \{x\} \colon x \in X \big\}$$

Y por definición: $\tau x \tau = \{O_1 x O_2 : O_1 \in \tau, O_2 \in \tau\}$ y una base de $\tau x \tau$:

$$B_{\tau x \tau} = \{\{(x, y)\}: x \in X, y \in X\}$$

Para cada $(x,x) \in A$, $(x,x) \in \{(x,x)\} \subseteq A$ donde $\{(x,x)\} \in B_{\tau x \tau}$, es decir, $(x,x) \in A^{\circ}$, es decir, $A \subseteq A^{\circ}$ y como $A^{\circ} \subseteq A$, en consecuencia, $A = A^{\circ}$, es abierto.

Ejercicio -12-

Un conjunto no vacío $U \subseteq R$ es simétrico si para cada $x \in U$ se cumple $-x \in U$. Sea la topología:

$$\tau = \{U \subseteq R : U \text{ es sim\'etrico}\} \cup \{\emptyset\}$$

Demostrar que si $f:(R,\tau)\to (R,\tau)$ es una función impar (es decir, $f(-x)=-f(x) \forall x\in R$) entonces es continua y abierta.

Solución

Veamos que es continua, sea $U' \in \tau$, entonces tiene que ocurrir $f^{-1}(U') \in \tau$:

Si
$$U' = \emptyset \Longrightarrow f^{-1}(\emptyset) = \emptyset \in \tau$$
. Si U' es simétrico:

$$x \in f^{-1}(U') \overset{f}{\Rightarrow} f(x) \in U' \xrightarrow{U' \ es \ sim\'etrico} -f(x) \in U' \xrightarrow{f \ es \ impar} f(-x) \in U' \overset{f^{-1}}{\Longrightarrow}$$

$$\overset{f^{-1}}{\Rightarrow} -x \in f^{-1}(U') \Rightarrow f^{-1}(U') \ es \ sim\'etrico \Rightarrow f^{-1}(U') \in \tau$$

Veamos que es abierta, sea $U \in \tau$, entonces tiene que ocurrir $f(U) \in \tau$:

Si
$$U = \emptyset \Longrightarrow f(\emptyset) = \emptyset \in \tau$$
. Si U es simétrico:

$$y \in f(U) \Rightarrow \exists x \in U: f(x) = y \xrightarrow{U \text{ es simétrico}} -x \in U \xrightarrow{f \text{ es impar}} f(-x) = -f(x) = -y \Rightarrow$$

$$\Rightarrow -y \in f(U) \Rightarrow f(U) \text{ es simétrico} \Rightarrow f(U) \in \tau$$

Tema 3 conexión y compacidad

Ejercicio 1

Estudiar conexión, componentes conexas y conexión local del conjunto de \mathbb{R}^2 :

$$X = ([0,1]x\{0\}) \cup \bigcup_{n \in \mathbb{N}} \left\{ \left(1, \frac{1}{n}\right) \right\}$$

Solución

Se considera $(X, \tau_{u/X})$ el espacio topológico con la topología inducida en la usual. El conjunto no es conexo, porque tiene más de una componente conexa. Las componentes conexas son: el segmento $[0,1]x\{0\}$ y los puntos $\left(1,\frac{1}{n}\right)$ para cada $n \in N$.

Como la aplicación $f: ([0,1]x\{0\}, \tau_{u/[0,1]x\{0\}}) \to ([0,1], \tau_{u/[0,1]})$ f(x,0) = x es un homeomorfismo, entonces el conjunto $[0,1]x\{0\}$ es homeomorfo a [0,1], y como [0,1] es conexo en (R,τ_u) , se tiene que $[0,1]x\{0\}$ es conexo. Y los $\left(1,\frac{1}{n}\right)$ son puntos aislados son conexos.

Sea $(0,0) \in [0,1]x\{0\}$ y supongamos que $[0,1]x\{0\} \subset C_{(0,0)}$ donde $[0,1]x\{0\} \neq C_{(0,0)}$, entonces existe $n \in N$ tal que

$$\left(1, \frac{1}{n}\right) \in C_{(0,0)} - \left\{ [0,1]x\{0\} \right\}$$

Sea $y_0 = \frac{1}{n} + \frac{1}{n+1} / 2 \in R$, y se tiene la siguiente descomposición de abiertos:

$$\begin{split} C_{(0,0)} &= \left(C_{(0,0)} \cap \{(x,y) \in R^2 \colon y < y_0\}\right) \cup \left(C_{(0,0)} \cap \{(x,y) \in R^2 \colon y > y_0\}\right) \\ &\qquad \left(C_{(0,0)} \cap \{(x,y) \in R^2 \colon y < y_0\}\right) \in \tau_{u/C_{(0,0)}} \\ &\qquad \left(C_{(0,0)} \cap \{(x,y) \in R^2 \colon y > y_0\}\right) \in \tau_{u/C_{(0,0)}} \end{split}$$

$$\left(C_{(0,0)} \cap \{(x,y) \in R^2 \colon y < y_0\}\right) \cap \left(C_{(0,0)} \cap \{(x,y) \in R^2 \colon y > y_0\}\right) = \emptyset$$

Es decir, $C_{(0,0)}$ no es un conjunto conexo, absurdo, luego $C_{(0,0)} = [0,1]x\{0\}$.

Para cada $n \in N$, supongamos

$$\left\{ \left(1, \frac{1}{n}\right) \right\} \in C_{\left(1, \frac{1}{n}\right)} y \quad \left\{ \left(1, \frac{1}{n}\right) \right\} \neq C_{\left(1, \frac{1}{n}\right)}$$

Entonces existe $m \in N$ tal que $m \neq n$:

$$\left(1, \frac{1}{m}\right) \in C_{\left(1, \frac{1}{n}\right)} - \left\{\left(1, \frac{1}{n}\right)\right\}$$

Sea $y_0 = \frac{1}{n} + \frac{1}{m} / 2 \in R$, y se tiene la siguiente descomposición de abiertos:

$$\begin{split} C_{\left(1,\frac{1}{n}\right)} &= \left(C_{\left(1,\frac{1}{n}\right)} \cap \{(x,y) \in R^2 \colon y < y_0\}\right) \cup \left(C_{\left(1,\frac{1}{n}\right)} \cap \{(x,y) \in R^2 \colon y > y_0\}\right) \\ &\qquad \left(C_{\left(1,\frac{1}{n}\right)} \cap \{(x,y) \in R^2 \colon y < y_0\}\right) \in \tau_{u/C_{\left(1,\frac{1}{n}\right)}} \\ &\qquad \left(C_{\left(1,\frac{1}{n}\right)} \cap \{(x,y) \in R^2 \colon y > y_0\}\right) \in \tau_{u/C_{\left(1,\frac{1}{n}\right)}} \\ &\qquad \left(C_{\left(1,\frac{1}{n}\right)} \cap \{(x,y) \in R^2 \colon y < y_0\}\right) \cap \left(C_{\left(1,\frac{1}{n}\right)} \cap \{(x,y) \in R^2 \colon y > y_0\}\right) = \emptyset \end{split}$$

Además

$$\left(C_{\left(1,\frac{1}{n}\right)} \cap \left\{ (x,y) \in R^2 \colon y < y_0 \right\} \right) \neq C_{\left(1,\frac{1}{n}\right)}, \emptyset \quad \left(C_{\left(1,\frac{1}{n}\right)} \cap \left\{ (x,y) \in R^2 \colon y > y_0 \right\} \right)$$

$$\neq C_{\left(1,\frac{1}{n}\right)}, \emptyset$$

Es decir, $C_{\left(1,\frac{1}{n}\right)}$ no es un conjunto conexo, absurdo, luego $C_{\left(1,\frac{1}{n}\right)}=\left\{\left(1,\frac{1}{n}\right)\right\}$, para cada $n\in N$.

$$X=C_{(0,0)}\cup\bigcup_{n\in N}C_{\left(1,\frac{1}{n}\right)}$$

El conjunto X no es conexo, porque tiene más de una componente conexa.

Además, el conjunto X tampoco es localmente conexo.

Sea el punto p=(1,0), y se considera U un entorno cualquiera de p. Como la sucesión $\left\{\left(1,\frac{1}{n}\right)\right\}$ converge a p=(1,0) se tiene que:

$$p \in U \Longrightarrow \exists r > 0 : p \in B(p,r) \cap X \subseteq U$$

Además, existe $m \in N: n \geq m$

$$\left(1,\frac{1}{n}\right) \in B(p,r) \cap X \subseteq U$$

Y por lo tanto, el entorno U tendría más de una componente conexa, es decir, no es conexo. Por lo tanto, no se puede encontrar un entorno conexo del punto p.

Ejercicio 2

Sea (N, τ) $\tau = \{A_n : n \in N\} \cup \{\emptyset, N\}$, con $A_n = \{1, 2, ..., n\}$. Estudiar qué subconjuntos son conexos y cuáles son compactos.

Solución

Todo subconjunto B de N es conexo. Sea $B \subset N$, se sabe que B está acotado inferiormente y existe el minB = m. Sean A_{n_1} , $A_{n_2} \in \tau$ verificando:

$$A_{n_1}\cap B, A_{n_2}\cap B\in \tau_B\quad B=\left(A_{n_1}\cap B\right)\cup \left(A_{n_2}\cap B\right)\quad \left(A_{n_1}\cap B\right)\cap \left(A_{n_2}\cap B\right)=\emptyset$$

$$Como\ m\in B\Longrightarrow m\in A_{n_1}\cap B\ \circ m\in A_{n_2}\cap B\ .$$

$$\Rightarrow m \in A_{n_1} \cap B \Rightarrow supongamos \ que \ A_{n_2} \cap B \neq \emptyset \quad m+k \in A_{n_2} \cap B$$

$$\Rightarrow m \in A_{n_2} \cap B \Rightarrow (A_{n_1} \cap B) \cap (A_{n_2} \cap B) \neq \emptyset \Rightarrow A_{n_2} \cap B = \emptyset \Rightarrow A_{n_1} \cap B = B$$

$$\Rightarrow m \in A_{n_2} \cap B \Rightarrow supongamos \ que \ A_{n_1} \cap B \neq \emptyset \quad m+k \in A_{n_1} \cap B$$

$$\Rightarrow m \in A_{n_1} \cap B \Rightarrow (A_{n_1} \cap B) \cap (A_{n_2} \cap B) \neq \emptyset \Rightarrow A_{n_1} \cap B = \emptyset \Rightarrow A_{n_2} \cap B = B$$

Por lo tanto, B es conexo.

Los subconjuntos $B \subset N$ y se considera un recubrimiento infinito de abiertos:

$$B \subseteq \bigcup_{k \in I} (A_k \cap B)$$
 I infinito

Si B fuera compacto, existe $J \subset I$ finito, es decir, existe un recubrimiento finito de abiertos:

$$B \subseteq \bigcup_{k \in J} (A_k \cap B)$$

Sea $m = m áx\{k: k \in J\}$, entonces:

$$B \subseteq A_m \cap B$$

Y como ${\cal A}_m$ es un conjunto finito, entonces ${\cal B}$ es un conjunto finito.

Los únicos compactos de N en (N, τ) son los conjuntos finitos.

Ejercicio 3

En la recta de Sorgenfrey (R, τ_S) , estudiar si [0, 1] es conexo y si es compacto.

Solución

El conjunto A = [0,1] no es conexo en (R, τ_S) :

$$A = [0,1] = \left(\left[0, \frac{1}{2} \right[\cap A \right) \cup \left(\left[\frac{1}{2}, 2 \right[\cap A \right) \right)$$
$$\left[0, \frac{1}{2} \right[\cap A \in \tau_{S/A} \quad \left(\left[0, \frac{1}{2} \right[\cap A \right) \cap \left(\left[\frac{1}{2}, 2 \right[\cap A \right) = \emptyset \right) \right]$$

Y además, no es la partición trivial.

$$\left(\left[0,\frac{1}{2}\right]\cap A\right) = \left[0,\frac{1}{2}\right] \neq \emptyset, A \quad \left(\left[\frac{1}{2},2\right]\cap A\right) = \left[\frac{1}{2},1\right] \neq \emptyset, A$$

Por lo tanto, A = [0,1] no es conexo.

Ahora, el conjunto A = [0,1] no es compacto, sea el recubrimiento de abiertos infinito siguiente:

$$A = [0,1] \subseteq \bigcup_{n \in \mathbb{N}} \left(\left[0, 1 - \frac{1}{n} \right[\cap A \right) \cup \left([1, 2[\cap A) \right] \right)$$

Supongamos que A = [0,1] es compacto, entonces existe un recubrimiento finito:

$$A = [0,1] \subseteq \bigcup_{i=1}^{m} \left(\left[0, 1 - \frac{1}{n_i} \right[\cap A \right) \cup ([1,2[\cap A)$$

 $Sea \ n_k = m \'ax\{n_i ; i=1,\ldots,m\};$

$$A = [0,1] \nsubseteq \left(\left[0, 1 - \frac{1}{n_k} \right[\cap A \right) \cup ([1,2[\cap A)$$

$$Entonces \ 1 - \frac{1}{n_k + 1} \in A \ pero \ 1 - \frac{1}{n_k + 1} \not \in \left(\left[0, 1 - \frac{1}{n_k} \right[\cap A \right) \cup ([1, 2[\cap A).$$

Por lo tanto, A = [0,1] no es compacto.

Ejercicio 4 muy importante

Sea $O=(0,0), p_n=\left(1,\frac{1}{n}\right)$ $n\in N$ y $X=\{(1,0)\}\cup\bigcup_{n=1}^{\infty}[O,p_n]$. Estudiar si es conexo y si es compacto.

Solución

Para cada $n \in N$, el segmento $[0, p_n]$ es conexo, por ser arcoconexo, y sea la intersección:

$$\bigcap_{n=1}^{\infty} [0, p_n] = \{0\} = \{(0,0)\}$$

Por lo tanto, el conjunto $\bigcup_{n=1}^{\infty}[0,p_n]$ es conexo. Por otro lado, se tiene que

$$p_n = \left(1, \frac{1}{n}\right) \in \bigcup_{n=1}^{\infty} [0, p_n] \xrightarrow{n \to \infty} (1, 0) \Longrightarrow (1, 0) \in \overline{\bigcup_{n=1}^{\infty} [0, p_n]}$$

Si un conjunto es conexo y se le añade puntos adherentes, sigue siendo conexo. Es decir:

$$X = \{(1,0)\} \cup \bigcup_{n=1}^{\infty} [0, p_n] \quad es \ conexo$$

Como $X \subset \mathbb{R}^2$ con la topología usual, para que sea compacto tiene que ser cerrado y acotado. Y como $X \subseteq \overline{B}((0,0),2)$, entonces X es acotado. Veamos si X es cerrado.

Sea $(1/2, 0) \notin X$, y consideramos la sucesión de puntos siguientes:

$$q_n = \left(\frac{1}{2}, \frac{1}{n}\right) \in \bigcup_{n=1}^{\infty} [0, p_n] \subseteq X \xrightarrow{n \to \infty} \left(\frac{1}{2}, 0\right) \Longrightarrow \left(\frac{1}{2}, 0\right) \in \overline{X}$$

Luego $\overline{X} \neq X$, luego no es cerrado, y por lo tanto, X no es compacto.

Estudiar si las siguientes afirmaciones son ciertas:

- (a) $(Rx{0}) \cup ({0}xR)$ es homeomorfo a R^2 .
- (b) En un espacio (X, τ) , si $A \subset X$ es conexo, también lo es A° .

Solución

a.- $(Rx\{0\}) \cup (\{0\}xR)$ es homeomorfo a R^2 .

Sea $X=(Rx\{0\})\cup(\{0\}xR)$ y R^2 que son conjuntos conexos, por ser arcoconexos. Supongamos que son homeomorfos, es decir, $X\cong R^2$, entonces $X-\{(0,0)\}\cong R^2-\{(a,b)\}$, absurdo, porque $R^2-\{(a,b)\}$ sigue siendo conexo, en cambio, X no es conexo, tendría cuatro componentes conexas. FALSO.

b.- En un espacio (X, τ) , si $A \subset X$ es conexo, también lo es A° .

FALSO, en (R^2, τ_u) , y sea $A = \overline{B}\big((1,0), 1\big) \cup \overline{B}\big((-1,0), 1\big)$, como $\overline{B}\big((1,0), 1\big)$, $\overline{B}\big((-1,0), 1\big)$ son conjuntos conexos y $\overline{B}\big((1,0), 1\big) \cap \overline{B}\big((-1,0), 1\big) = \{(0,0)\}$, entonces A es conexo.

En cambio, $A^{\circ} \stackrel{!}{=} B((1,0),1) \cup B((-1,0),1)$, donde $B((1,0),1), B((-1,0),1) \in \tau_u$, además $B((1,0),1) \cap B((-1,0),1) = \emptyset$

En consecuencia se trata de una partición por abiertos no trivial de A° , por lo tanto, A° no es conexo.

Probar que cada par de espacios de conjuntos no son homeomorfos (topología usual):

(a) N y Q

$$(b) A =]-1,0[\cup]0,1[y B =]-1,0[\cup]0,1]$$

(c)
$$A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$$
 $y B = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \ge 1\}$

Solución

a.- N tiene la topología discreta, $au_{u/N} = au_D$, porque $\left| n - \frac{1}{2}, n + \frac{1}{2} \right| \in au_u$ entonces

$$\left]n-\frac{1}{2},n+\frac{1}{2}\right[\cap N\in\tau_{u/N}\Longrightarrow\{n\}\in\tau_{u/N}\ \ \forall n\in N\Longrightarrow\tau_{u/N}=\tau_{D}$$

Supongamos que $N\cong Q$, entonces sea $f\colon N\to Q$ un homeomorfismo, como $\{n\}\in \tau_{u/N}$, se tendría $\{f(n)\}\in \tau_{u/Q}$, absurdo, puesto que los puntos aislados de Q no son abiertos.

Supongamos que si lo fueran, sea $q \in Q$, y que $\{q\} \in \tau_{u/Q}$:

$$q \in \{q\}^\circ \stackrel{\exists r > 0}{\Longrightarrow} q \in \left((q-r, q+r) \cap Q \right) \subseteq \{q\} \Longrightarrow (q-r, q+r) \cap Q = \{q\}$$

absurdo por la densidad de Q en R

Por lo tanto, N y Q no son homeomorfos.

b.- Sean $A =]-1,0[\cup]0,1[y B =]-1,0[\cup]0,1]$, se tiene que ambos conjuntos no son conexos, por ser unión de dos abiertos disjuntos, pero ambos tienen dos componentes conexas. Supongamos que $A \cong B$, cada componente sería homeomorfa a otra componente.

Supongamos $]-1,0[\cong]0,1]$ ambos son conexos, por ser arcoconexos, entonces

$$]-1.0[-\{a\} \cong]0.1]-\{1\}$$

Absurdo porque $]0,1] - \{1\} =]0,1[$ que es conexo, en cambio, $]-1,0[-\{a\} =]-1,a[$ \cup]a,0[, que se trata de una partición de abiertos no trivial, es decir, no es conexo.

Por lo tanto, $]-1,0[\not\cong]0,1]$, luego $]0,1[\cong]0,1]$, ambos son conexos, por ser arcoconexos, entonces

$$[0,1] - \{a\} \cong [0,1] - \{1\}$$

Absurdo porque $]0,1]-\{1\}=[0,1[$ que es conexo, en cambio, $]0,1]-\{a\}=[0,a[\cup]a,1[$, que se trata de una partición de abiertos no trivial, es decir, no es conexo.

En consecuencia, A y B no son homeomorfos.

(c)
$$A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$$
 $y B = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \ge 1\}$

Como en (R^2, τ_u) los conjuntos compactos son los cerrados y acotados.

Claramente $A = \overline{B}((0,0),1)$ que es un conjunto cerrado y acotado, por lo tanto, compacto en (R^2,τ_u) .

En cambio, el conjunto B no está acotado, no existe ninguna bola que lo contenga, es decir, no es compacto. Como los homeomorfismos conservan la compacidad, entonces, $A\ y\ B$ no son homeomorfos.

Ejercicio 7

Probar que cada par de espacios de conjuntos no son homeomorfos (topología usual):

(a)
$$R^2$$
 y RP^2 .

(b)
$$A = \left\{ (x, y) \in R^2 : y = sen\left(\frac{1}{x}\right), x > 0 \right\} y B = A \cup \{(0, 0)\}$$

$$(c) A = (\{0\}x]-1,1]) \cup ([0,1]x\{0\}) y B = (\{0\}x]-1,1]) \cup ([0,1]x\{0\})$$

(d)
$$S^1x[0,1]$$
 y $S^1x[0,1]$.

Solución

a.- Se sabe que R^2 no es un conjunto compacto porque no es acotado, en (R^2, τ_u) . Y el plano proyectivo RP^2 es compacto al ser cociente de S^2 con la relación de los antípodas. Por lo tanto, R^2 y RP^2 , no son homeomorfos.

Estudia de forma razonada las siguientes cuestiones:

a.- ¿Es cierto que todo subconjunto finito no vacío de un espacio topológico es discreto?

FALSO. Sea la topología trivial en R, los únicos abiertos son $\tau_T = \{\emptyset, R\}$ y sea $A = \{1,2,3,4\}$ que es finito y se tiene que $\tau_A = \{\emptyset \cap A, R \cap A\} = \{\emptyset, A\}$, por lo tanto, A no es un subconjunto discreto.

¿Y si el espacio es metrizable?

Un espacio metrizable es un espacio topológico que es homeomorfo a un espacio métrico.

VERDADERO. Sea un espacio metrizable, (X, τ_d) y sea $F = \{x_1, \dots, x_n\} \subseteq X$ finito. Para ver que F es discreto en (X, τ_d) solo es necesario comprobar que $\{x_i\} \in \tau_{d_{/_F}} \ \forall i=1,\dots,n.$

Se considera $\varepsilon = min\{d(x_i, x_j): i \neq j, i, j = 1, ..., n\} > 0$ y se verifica $B(x_i, \varepsilon) \cap F = \{x_i\} \ \forall i = 1, ..., n$, donde $B(x_i, \varepsilon) \in \tau_d$, luego $B(x_i, \varepsilon) \cap F \in \tau_{d/F}$, es decir, $\{x_i\} \in \tau_{d/F}$, luego F es discreto.

b.- Sea (R, τ_S) la recta de Sorgenfrey. Definamos $f: (RxR, \tau_S x \tau_S) \to (RxR, \tau_S x \tau_S)$ como $f(x,y) = (x,-y^3)$. Analizar si f es continua, abierta o cerrada.

$$f_1: (R, \tau_S) \rightarrow (R, \tau_S)$$
 $f_1(x) = x$

Claramente f_1 es continua y abierta.

$$f_2: (R, \tau_S) \to (R, \tau_S) \quad f_2(y) = -y^3$$

 $[1,2[\in \tau_S \Longrightarrow f_2([1,2[) =]-8, -1] \notin \tau_S$
 $[1,8[\in \tau_S \Longrightarrow f_2^{-1}([1,8[) =]-2, -1] \notin \tau_S$

Luego f_2 no es continua, ni abierta. Y como $f=f_1xf_2$ tampoco es continua ni abierta. Veamos que f no es cerrada. Sea F=Rx[1,2[cerrado en $(RxR,\tau_Sx\tau_S)$

$$f(F) = Rx[-8, -1] \notin cerrados \ en \ \tau_S x \tau_S \ porque \ [-8, -1] no \ es \ cerrado \ en \ \tau_S$$

c.- Un aplicación $f:(X,\tau)\to (Y,\tau')$ es propia si para cada C' compacto de (Y,τ') se verifica que $f^{-1}(C')$ es compacto en (X,τ) . Probar que si f es propia, (X,τ) es de Hausdorff e (Y,τ') es compacto, entonces f es continua.

Sea F' cerrado en (Y, τ') , y como es compacto, F' compacto en (Y, τ') y como f es propia, $f^{-1}(F')$ es compacto en (X, τ) y como (X, τ) es de Hausdorff, $f^{-1}(F')$ es cerrado en (X, τ) , es decir, f es continua.

En R se considera la topología dada por

$$\boldsymbol{\tau} = \{A \cup B : A \in \boldsymbol{\tau}_{\boldsymbol{u}}, B \subseteq \boldsymbol{Q}\}$$

a.- Para cada $x \in R$ obtener una base de entornos de x en (R, τ) .

Distinguimos dos casos:

Caso I: Sea $x \in Q$, entonces $\beta_x = \{\{x\}\}$ es una base de entornos de $x \in Q$, ya que sea U entorno de x: $x \in U$, y se verifica que $x \in \{x\} \subset U$ donde $\{x\} \in \tau$, puesto que $\{x\} = \{x\} \cup \emptyset$, $\emptyset \in \tau_u$ y $\{x\} \subseteq Q$.

Caso II: Sea $x \in R/Q$, entonces se define $\beta_x = \{]x - \varepsilon, x + \varepsilon[: \varepsilon > 0\} \subseteq \tau$, y para cada $\varepsilon > 0$, es un entorno de x, veamos que es base:

Sea U entorno de $x, x \in U$, existe $0 \in \tau$, tal que $x \in 0 \subseteq U$, donde $0 = A \cup B$, con $A \in \tau_u$, $B \subseteq Q$, pero como $x \in R/Q$, $x \in A \in \tau_u$, existe $\varepsilon > 0$ tal que

$$x \in]x - \varepsilon, x + \varepsilon[\subseteq A \subseteq A \cup B = O \subseteq U$$

Por lo tanto, β_x es una base de entornos de x.

b.- Calcular la clausura y el interior de [a, b[en (R, τ) . ¿Es R/Q denso en (R, τ) ?

$$[a, b]^c =]-\infty, a[\cup]b, +\infty[\cup\{b\}]$$

Si $b \in Q$, como $]-\infty, a[\cup]b, +\infty[\in \tau_u \ y\{b\}\subseteq Q$, entonces $[a,b[^c\in \tau, [a,b[$ es cerrado en $\tau, luego[\overline{[a,b[} = [a,b[$.

Si $b \in R/Q$, se tiene que $[a,b[\subseteq \overline{[a,b[}$, para cada $\varepsilon > 0$, $]b-\varepsilon,b+\varepsilon[\in \tau$, y sea:

$$|b - \varepsilon, b + \varepsilon| \cap [a, b] = |b - \varepsilon, b| \neq \emptyset \quad \forall \varepsilon > 0 \Longrightarrow b \in \overline{[a, b]}$$

Sea $x \notin [a, b]$ si

$$\begin{cases} x \in Q: \{x\} \ entorno \ de \ x \ tal \ que \ \{x\} \cap [a,b[=\emptyset]] \\ x \in R/Q: \varepsilon = \frac{min\{|x-a|,|x-b|\}}{2} \quad x \in]x - \varepsilon, x + \varepsilon[y]x - \varepsilon, x + \varepsilon[\cap [a,b[=\emptyset]]] \end{cases}$$

Luego $x \notin \overline{[a,b[}$, resumiendo:

$$\overline{[a,b[} = \begin{cases} [a,b[si b \in Q] \\ [a,b] si b \in R/Q \end{cases}$$

Veamos ahora el conjunto interior.

Si $a \in Q$, entonces $[a, b] = [a, b] \cup \{a\} \in \tau$, luego $[a, b]^{\circ} = [a, b]$.

Si $a \in R/Q$, se tiene que para $\varepsilon > 0, a \in]a - \varepsilon, a + \varepsilon[\in \tau, y]a - \varepsilon, a + \varepsilon[\not\subset [a, b[$, es decir, $a \notin [a, b[$ °.

Sea $x \in]a,b[si]$

$$\begin{cases} x \in Q : x \in \{x\} \subseteq [a, b[\\ x \in R/Q : \varepsilon = \frac{\min\{|x - a|, |x - b|\}}{2} & x \in]x - \varepsilon, x + \varepsilon[\subseteq [a, b[$$

Luego $x \in [a, b[^{\circ}, resumiendo:$

$$[a,b[^{\circ} = \begin{cases} [a,b[\ si \ a \in Q \\]a,b[\ si \ a \in R/Q \end{cases}]$$

$$(R/Q)^c = Q \in \tau \Longrightarrow R/Q \ cerrado \ en \ \tau \Longrightarrow \overline{R/Q} = R/Q \ne R \ no \ es \ denso$$

c.- Probad que si $C \subseteq R$ es compacto en (R, τ) entonces C es compacto en (R, τ_u) . ¿Es cierto el enunciado recíproco?

Sea $C \subseteq R$ es compacto en (R, τ) , veamos que C es compacto en (R, τ_u) . Se considera un recubrimiento infinito de abiertos de C:

$$C \subseteq \bigcup_{i \in I} O_i \quad con \ O_i \in \tau_u \ \forall i \in I \implies O_i \in \tau \ \forall i \in I \ ya \ que \ \tau_u \le \tau$$

Como C es compacto en (R, τ) , existe $J \subset I$ finito tal que:

$$C \subseteq \bigcup_{j \in I} O_j \Rightarrow C \text{ es compacto en } (R, \tau_u)$$

El recíproco no es cierto, veamos un contraejemplo.

Sea $C = \{1/m : m \in N\} \cup \{0\} \in F_u$ y además $C \subseteq B(0,2)$ es acotado, luego C es compacto en (R, τ_u) .

$$C^{c} =]-\infty, 0[\cup]1, +\infty[\cup\left(\bigcup_{m\in\mathbb{N}}\left]\frac{1}{m+1}, \frac{1}{m}\right[\right) \in \tau_{u} \Longrightarrow C \in F_{u}$$

Supongamos C es compacto en (R, τ) , como $C \subseteq Q$, entonces C es compacto en (Q, τ_Q) , luego C es compacto en (Q, τ_D) , entonces C es finito absurdo.

$$C \subseteq \bigcup_{i \in I} \{x_i\} \in \tau \quad con \ x_i \in Q \ \forall i \in I$$

Supongamos que es compacto, existe $J \subset I$ finito tal que:

$$C \subseteq \bigcup_{j \in J} \{x_j\} \Rightarrow C \text{ es finito, absurdo.}$$

d.- Probad que si $C \subseteq R$ es conexo en (R, τ) entonces $C = \{x\}$ con $x \in R$.

Supongamos que en C hay más de un elemento.

Si $C \nsubseteq R/Q$, existe $q \in C \cap Q$: $q \in \{q\} \in \tau$, $\{q\}$ es conexo en τ_u , como $\tau_u \leq \tau$, que es conexo en τ y también $\{q\} \cap C = \{q\} \in \tau_c$ y $\{q\}$ conexo en τ_c , lo que contradice que C es conexo entonces $C = \{q\}$ de un solo elemento. Absurdo.

Luego $C \subseteq R/Q$:

$${\mathcal C}$$
 es conexo en $(R,\tau) \Leftrightarrow {\mathcal C}$ es conexo en $\left({R/_Q} \, , \tau_{R/_Q} \right) \Leftrightarrow {\mathcal C}$ es conexo en $\left({R/_Q} \, , \tau_{u/_{R/_Q}} \right) \Leftrightarrow {\mathcal C}$ es conexo en $\left({R/_Q} \, , \tau_{u/_{R/_Q}} \right) \Leftrightarrow {\mathcal C}$ es conexo en $\left({R,\tau_u} \right) \Leftrightarrow {\mathcal C}$ es un intervalo

Luego por la densidad de Q en R, los únicos intervalos que no contienen racionales, son los degenerados, $C = \{x\}$ $x \in {R/_Q}$.

Y por lo anterior en $C\subseteq Q$, como se trata de $\left(Q,\tau_Q\right)$ que es $\left(Q,\tau_D\right)$, se tiene que $C=\{q\}$ con $q\in Q$.

Ejercicio de entrega

Sea $I_0 = [0,1] \subset R$. Se define I_n inductivamente por la igualdad:

$$I_n = I_{n-1} / \bigcup_{k=0}^{3^{n-1}-1} \left[\frac{1+3k}{3^n}, \frac{2+3k}{3^n} \right]$$

1.- Probar que cada conjunto I_n es unión finita de intervalos cerrados disjuntos de longitud $1/\sqrt{3^n}$ y que los extremos de dichos intervalos pertenecen a I_n .

Para n = 0, $I_0 = [0,1]$

Para n=1,

$$I_1 = [0,1] - \left\{ \left| \frac{1}{3}, \frac{2}{3} \right| \right\} = \left[0, \frac{1}{3} \right] \cup \left[\frac{2}{3}, 1 \right] = F_{11} \cup F_{12}$$

 I_1 es unión de 2 intervalos cerrados $\Longrightarrow I_1 = \bigcup_{i=1}^2 F_{1i}$

con longitudes:
$$l(F_{1i}) = \frac{1}{3}$$
 $i = 1,2$

Para n=2,

$$I_{2} = \left(\left[0, \frac{1}{3} \right] \cup \left[\frac{2}{3}, 1 \right] \right) - \left\{ \left[\frac{1}{9}, \frac{2}{9} \right] \cup \left[\frac{4}{9}, \frac{5}{9} \right] \cup \left[\frac{7}{9}, \frac{8}{9} \right] \right\} =$$

$$= \left[0, \frac{1}{9} \right] \cup \left[\frac{2}{9}, \frac{3}{9} \right] \cup \left[\frac{6}{9}, \frac{7}{9} \right] \cup \left[\frac{8}{9}, 1 \right] = F_{21} \cup F_{22} \cup F_{23} \cup F_{24}$$

 I_2 es unión de $2^2=4$ intervalos cerrados $\Longrightarrow I_2=\bigcup_{i=1}^{2^2}F_{2i}$

con longitudes:
$$l(F_{2i}) = \frac{1}{9} = \frac{1}{3^2}$$
 $i = 1, ..., 2^2$

La construcción de los I_n consiste en cada intervalo, se divide en tres partes iguales y se elimina el intervalo abierto central, obteniéndose de forma inductiva que:

$$I_n$$
 es unión de 2^n intervalos cerrados $\Longrightarrow I_n = \bigcup_{i=1}^{2^n} F_{ni}$

con longitudes:
$$l(F_{ni}) = \frac{1}{3^n}$$
 $i = 1, ..., 2^n$

Además, se tiene que $\{0,1\} \in I_n \ \forall n \in \mathbb{N}$. Es decir, I_n es unión finita de intervalos cerrados disjuntos de longitud $1/3^n$.

2.- Probar que $I_n \subset I_{n-1} \ \forall n \in \mathbb{N}$.

$$I_n = I_{n-1} / \bigcup_{k=0}^{3^{n-1}-1} \left[\frac{1+3k}{3^n}, \frac{2+3k}{3^n} \right]$$

Para cada $n \in N$, se considera

$$F_{n,1} = \left[0, \frac{1}{3^{n-1}}\right] \subset I_{n-1} \Longrightarrow 0 < \frac{1}{3^n} < \frac{2}{3^n} < \frac{3}{3^n} = \frac{1}{3^{n-1}} \Longrightarrow \left|\frac{1}{3^n}, \frac{2}{3^n}\right| \subset F_{n,1} \subset I_{n-1}$$

Es decir

$$\bigcup_{k=0}^{3^{n-1}-1} \left] \frac{1+3k}{3^n}, \frac{2+3k}{3^n} \right[\cap I_{n-1} \neq \emptyset \Rightarrow I_{n-1} \bigg/ \bigcup_{k=0}^{3^{n-1}-1} \left] \frac{1+3k}{3^n}, \frac{2+3k}{3^n} \right[\subset I_{n-1} \\ \Rightarrow I_n \subset I_{n-1} \ \, \forall n \in \mathbb{N}$$

3.- Probar que $C = \bigcap_{n \in N} I_n$ es un conjunto compacto no vacío.

Como $\{0,1\} \in I_n \ \forall n \in \mathbb{N}$, entonces $\{0,1\} \in \bigcap_{n \in \mathbb{N}} I_n = \mathbb{C}$, es decir, $\mathbb{C} \neq \emptyset$.

Para cada $n \in N$, I_n es cerrado por ser unión numerable de intervalos cerrados, y es acotado porque está contenido en un conjunto acotado ([0,1]), luego I_n es compacto en (R, τ_u) .

Como C es cerrado por ser intersección numerable de cerrados y $C \subset I_n$ que es compacto, entonces C es compacto en (R, τ_n) .

4.- Probar que C es totalmente disconexo (las únicas componentes conexas son puntos).

Sea $A \subset C$ una componente conexa, con más de un punto. Sean $x,y \in A, x < y \ \ y \ n \in N$ verificando

$$|x - y| > \frac{1}{3^n}$$

Entonces existe $z \notin I_n$, es decir, $z \in R/C$ tal que x < z < y. Consideramos

$$]-\infty,z[\cap A,]z,+\infty[\cap A\in\tau u_{/_{A}}$$

$$(]-\infty,z[\cap A)\cup(]z,+\infty[\cap A)=A\quad(]-\infty,z[\cap A)\cap(]z,+\infty[\cap A)=\emptyset$$

Es decir, hay una partición de abiertos relativos de A no trivial, por lo tanto, A no es conexo ||||

Luego las únicas componentes conexas son puntos, ${\mathcal C}$ es totalmente disconexo.

Al conjunto C se le denomina el conjunto de Cantor.

Ejercicio 17

Si $f:(X,\tau)\to (Y,\tau')$ una aplicación continua, donde (X,τ) es compacto e (Y,τ') es de Hausdorff, entonces $f^{-1}(C')$ es compacto en (X,τ) para cada C' compacto en (Y,τ') .

Sea $C' \subseteq Y$ compacto en (Y, τ') , $C' \in F_{\tau'}$, ya que (Y, τ') es de Hausdorff, $f^{-1}(C')$ es cerrado en (X, τ) , por ser f continua, y como (X, τ) es compacto, $f^{-1}(C')$ es compacto en (X, τ) .

Ejercicio 18

Sea $X=R\cup\{\alpha\}$ donde $\alpha\notin R$. En X se considera la topología τ de la que conocemos una base $\mathfrak B$ dada por:

$$\mathfrak{B} = \{ [a, b[: a, b \in R, a < b] \cup \{] - \varepsilon, 0[\cup \{\alpha\} \cup] 0, \varepsilon[: \varepsilon > 0] \}$$

a.- Decidir si (X, τ) es un espacio de Hausdorff.

Veamos que para x=0 e $y=\alpha$ no se pueden separar por abiertos disjuntos.

Sean $O_1, O_2 \in \tau$ tales que $x = 0 \in O_1$ y $y = \alpha \in O_2$: existen $B_1, B_2 \in \mathfrak{B}$ verificando:

$$x = 0 \in B_1 \subseteq O_1 \quad y = \alpha \in B_2 \subseteq O_2$$

$$B_1 = \left] a, b \left[: a, b \in R, \alpha < 0 < b \quad B_2 = \left] - \varepsilon, 0 \right[\cup \{\alpha\} \cup \left] 0, \varepsilon \right[\ \varepsilon > 0 \right]$$

$$]a,b[\cap(]-\varepsilon,\varepsilon[-\{0\})\neq\emptyset\Longrightarrow B_1\cap B_2\neq\emptyset\Longrightarrow O_1\cap O_2\neq\emptyset$$

Es decir, (X, τ) NO es un espacio de Hausdorff.

b.- Probar que $au_{X-\{lpha\}}= au_u$ y que $\left(X-\{0\}, au_{X-\{0\}}
ight)$ es homeomorfo a (R, au_u) .

Como \mathfrak{B} es una base de (X, τ) , entonces $\mathfrak{B}_R = \{B \cap R : B \in \mathfrak{B}\}$ es una base (R, τ_R) .

$$\mathfrak{B} = \{]\alpha, b[:\alpha,b \in R, \alpha < b\} \cup \{] - \varepsilon, 0[\; \cup \; \{\alpha\} \cup \;]0, \varepsilon[:\varepsilon > 0\}$$

$$\mathfrak{B}_R = \{ |a, b[: a, b \in R, a < b \} \cup \{] - \varepsilon, 0[\cup] 0, \varepsilon[: \varepsilon > 0 \}$$

Es decir, $\mathfrak{B}_u \subseteq \mathfrak{B}_R$, luego $\tau_u \leq \tau_{X-\{\alpha\}} = \tau_R$.

Por otro lado $]a,b[\in \mathfrak{B}_u \ a,b \in R, a < b \] -\varepsilon,0[\cup]0,\varepsilon[\in \mathfrak{B}_u \ \varepsilon > 0,$ se tiene que

 $\mathfrak{B}_R \subseteq \mathfrak{B}_U$, luego $\tau_R \leq \tau_u$

Se define $f: (X - \{0\}, \tau_{X - \{0\}}) \rightarrow (R, \tau_u)$

$$f(x) = \begin{cases} x & \text{si } x \in R - \{0\} \\ 0 & \text{si } x = \alpha \end{cases} \quad f^{-1}(x) = \begin{cases} x & \text{si } x \in R - \{0\} \\ \alpha & \text{si } x = 0 \end{cases}$$

Claramente f es bivectiva.

Sea $\mathfrak{B}_u = \{]a, b[: a, b \in R, a < b\}$ la base usual de (R, τ_u) , entonces

$$f^{-1}(]a,b[) = \begin{cases}]a,b[& si \ 0 \notin]a,b[\\]a,0[\ \cup \ \{\alpha\} \cup \]0,b[& si \ 0 \in \]a,b[\end{cases} \in \tau_{X-\{0\}}$$

Por lo tanto, f es continua en $(X - \{0\}, \tau_{X-\{0\}})$.

$$\mathfrak{B}_{X-\{0\}} = \{ [a, b[: a, b \in R, a < b, 0 \notin]a, b[\} \cup \{]-\varepsilon, 0[\cup \{\alpha\} \cup]0, \varepsilon[: \varepsilon > 0 \} \}$$

$$f(]a,b[) =]a,b[\in \tau_u$$

$$f(]-\varepsilon,0[\cup \{\alpha\} \cup]0,\varepsilon[) =]-\varepsilon,\varepsilon[\in \tau_u$$

Por lo tanto, f es abierta, y se trata de un homeomorfismo, $(X - \{0\}, \tau_{X - \{0\}})$ es homeomorfo a (R, τ_u) .

c.- Estudiar la conexión en (X, τ) del conjunto $A =]a, b[\cup \{\alpha\}.$

Caso I: Si $0 \in]a, b[$, sea $B \in \mathfrak{B}$ con $\alpha \in B \Longrightarrow B =]-\varepsilon, 0[\cup \{\alpha\} \cup]0, \varepsilon[\quad \varepsilon > 0 \text{ y } B \cap]a, b[\neq \emptyset, porque <math>0 \in]a, b[$. Y como]a, b[es conexo en (X, τ) , como $\tau_R = \tau_{\mathcal{U}}$

]a,b[es conexo en $(R,\tau_u) \Leftrightarrow]a,b[$ es conexo en (X,τ) y como $\alpha \in \overline{]a,b[}$, entonces A=]a,b[$\cup \{\alpha\}$ es conexo.

$$\alpha \in \overline{]a,b[} \iff \forall B \in \mathfrak{B}: \alpha \in B =]-\varepsilon, 0[\cup \{\alpha\} \cup]0, \varepsilon[\iff B \cap]a,b[\neq \emptyset]$$

Caso II: Si $0 \notin [a, b[$. Veamos que en este caso A no es conexo.

$$O_{1} =]a, b[\in \mathfrak{B} \quad O_{2} =]-\varepsilon, 0[\cup \{\alpha\} \cup]0, \varepsilon[\in \mathfrak{B} \quad \varepsilon = \frac{\min\{|a|, |b|\}}{2}$$

$$O_{1} \cap A =]a, b[\in \mathfrak{B}_{A} \quad O_{2} \cap A = \{\alpha\} \in \mathfrak{B}_{A}$$

$$(O_{1} \cap A) \cup (O_{2} \cap A) = A \quad (O_{1} \cap A) \cap (O_{2} \cap A) = \emptyset$$

Hay una partición de abiertos relativos no trivial de A, A no es conexo.

d.- ¿Es el conjunto C = [-1, 1] cerrado en (X, τ) ? ¿Es compacto en (X, τ) ?

$$C = [-1,1] \Rightarrow C^c =]-\infty, -1[\cup]1, +\infty[\cup\{\alpha\} \notin \tau$$

Por lo tanto, = [-1,1] no es cerrado en (X,τ) ,

Como $C = [-1,1] \subset R$ y $\tau_R = \tau_u$, por el teorema de Heine-Borel, C es compacto en $(R,\tau_u) \Leftrightarrow C$ es compacto en (X,τ) .

Sea (X, τ) un espacio compacto y $A \subseteq X$ infinito. Demostrar que $A' \neq \emptyset$, donde A' es el conjunto de puntos de acumulación de A en (X, τ) .

Por reducción al absurdo, supongamos que $A' = \emptyset$, entonces $\forall x \in X \ \exists O_x \in \tau$:

$$(O_x - \{x\}) \cap A = \emptyset$$

Se considera $\{O_x\}_{x\in X}\subset \tau$ y

$$X\subseteq\bigcup_{x\in X}O_x$$

Como (X, τ) un espacio compacto, existe $J \subset X$ finito tal que

$$X \subseteq \bigcup_{x \in J} O_x \Longrightarrow A \subseteq X \subseteq \bigcup_{x \in J} O_x \ y \ (O_x - \{x\}) \cap A = \emptyset \ \forall x \in X \Longrightarrow A \subseteq \bigcup_{x \in J} \{x\}$$

$$\Rightarrow$$
 A es finito $||\cdot|| \Rightarrow A' \neq \emptyset$

Ejercicio 20

Sea (R, τ_S) , estudiar la continuidad de $f: (R, \tau_S) \to (R, \tau_S)$, f(x) = senx. Estudiar cuando un subconjunto A de (R, τ_S) es conexo.

Un base de entornos de $x \in R$ es:

$$\beta_x = \{ [x, x + r[: r > 0] \}$$

La aplicación f es continua en x si para todo $\varepsilon > 0$ $\exists r > 0$ tal que si $y \in [x, x + r[$ entonces $f(y) = seny \in [senx, senx + \varepsilon[$,es decir, $senx \leq seny < senx + \varepsilon.$

$$x \le y \Longrightarrow senx \le seny$$

Se pretende ver si f es creciente en x: existe $\delta > 0$ tal que $x \le y \Longrightarrow senx \le seny$.

Por lo tanto, f es continua en los intervalos de la forma $\left[-\frac{\pi}{2}+2k\pi,\frac{\pi}{2}+2k\pi\right]$ $k\in Z$.

Sea A de (R, τ_S) conexo, tiene que ser un intervalo. Si no es un intervalo, existen $a, b \in A$ y $c \notin A$ verificando a < c < b, entonces:

$$A = (]-\infty, c[\cap A) \cup (]c, +\infty[\cap A) \qquad (]-\infty, c[\cap A) \cap (]c, +\infty[\cap A) = \emptyset$$

$$]-\infty, c[\in \tau_u \Rightarrow]-\infty, c[\in \tau_S \Rightarrow]-\infty, c[\cap A \in \tau_{S/A}]$$

$$]c, +\infty[\in \tau_u \Rightarrow]c, +\infty[\in \tau_S \Rightarrow]c, +\infty[\cap A \in \tau_{S/A}]$$

Hay una partición de abiertos relativos no trivial de A, A no es conexo, absurdo.

Además, si $[a, b] \in \tau_S$, y es cerrado, $[a, b]^c =]-\infty$, $a[\cup [b, +\infty[\in \tau_S \text{ porque}]$

$$]-\infty,a[\in\tau_u\Longrightarrow]-\infty,a[\in\tau_S\ [b,+\infty[=\bigcup_{n\in N}[b,b+n[\in\tau_S$$

Por lo tanto, [a,b[es un conjunto abierto y cerrado en (R,τ_S) , luego si A es un intervalo que contiene a un intervalo de la forma [a,b[, no es conexo. Luego los únicos conexos de X, los intervalos degenerados, es decir, $A=\{x\}$ con $x\in X$.

Componentes conexas de
$$\left\{ 1/_n : n \in \mathbb{N} \right\}$$
 y $\mathbb{R}^2 - \left\{ (x,y) \in \mathbb{R}^2 : y \in \{-1,1\} \right\}$.

Sea $A = \{1/n : n \in N\}$ en (R, τ_u) , como en (R, τ_u) los conjuntos conexos son los intervalos, luego los intervalos incluidos en A, los degenerados, es decir, $\{1/n\}$ para cada $n \in N$. Por lo tanto, las componentes conexas son los puntos.

Sea
$$B = R^2 - \{(x, y) \in R^2 : y \in \{-1, 1\}\}$$
 en (R^2, τ_u) , se tiene que:

$$B = (Rx] - \infty, -1[) \cup (Rx] - 1, 1[) \cup (Rx] 1, +\infty[)$$

Es una partición de B de conjuntos disjuntos dos a dos.

Cada uno de los conjuntos es conexo por ser producto de conexos. También es abierto, al ser producto de abiertos. Por lo tanto, B tiene tres componentes conexas, que son:

$$(Rx]-\infty, -1[), (Rx]-1,1[), (Rx]1, +\infty[)$$

Ejercicio 22

Estudiad la compacidad de (R, τ_d) . Caracterizar los subconjuntos compactos.

El espacio (R, τ_d) no es compacto, sea el recubrimiento infinito de abiertos de R:

$$R \subseteq \bigcup_{a \in R} [a, +\infty[\qquad [a, +\infty[\in \tau_d \ \forall a \in R]]$$

Si fuese compacto, existe $A \subset R$ finito:

$$R \subseteq \bigcup_{a \in A} [a, +\infty[= [min\{a : a \in A\}, +\infty[= [b, +\infty[\quad ; ; ; ;$$

Por lo tanto, (R, τ_d) no es compacto.

Una caracterización de los conjuntos compactos en (R, τ_d) es:

$$A \ es \ compacto \iff A \ es \ finito$$

Por ser $\{a\} \in \tau_d$, entonces todo conjunto infinito A tiene como recubrimiento:

$$A \subseteq \bigcup_{a \in X} \{a\}$$

Luego si es compacto al extraer uno finito, se concluye con que A es finito, absurdo.

Por lo tanto, todo conjunto compacto en (R, τ_d) tiene que ser finito.

La otra implicación es trivial, todo conjunto finito es compacto.

Ejercicio 23

Sea $p \notin R$. En $X = R \cup \{p\}$ se considera la topología τ que tiene por base

$$\beta = \beta_n \cup \{]-\infty, \alpha[\cup]b, +\infty[\cup \{p\}: a < b\}$$

Estudiar la conexión y compacidad de (X, τ) .

Se tiene que $\tau_u \le \tau$ y $\tau_R = \tau_u$, por lo tanto se tiene que:

R es conexo en $(R, \tau_u) \Leftrightarrow R$ es conexo en (X, τ) y como $p \in \overline{R}$, entonces $X = R \cup \{p\}$ es conexo.

Veamos que $p \in \overline{R}$: Sea $B \in \beta$ con $p \in B \Longrightarrow B =]-\infty$, $a[\cup]b$, $+\infty[\cup \{p\} \ y \ B \cap R \neq \emptyset$. Por lo tanto, $p \in \overline{R}$.

Veamos que (X, τ) es compacto. Sea un recubrimiento infinito de abiertos de X:

$$X \subseteq \bigcup_{i \in I} O_i \quad O_i \in \tau \ \forall i \in I$$

Como $p \in X$, entonces

$$p \in \bigcup_{i \in I} O_i \Longrightarrow \exists i_0 \in I : p \in O_{i_0}$$

Se tiene que $O_{i_0} =]-\infty$, $a[\ \cup\]b$, $+\infty[\ \cup\ \{p\}$, luego

$$X - O_{i_0} = [a, b]$$

[a,b] compacto en $(R,\tau_u) \stackrel{\tau_u = \tau_R}{\Longleftrightarrow} [a,b]$ compacto en (X,τ)

$$[a,b] = X - O_{i_0} \subseteq \bigcup_{i \in I} O_i$$

Se puede extraer uno finito, existe $J \subset I$:

$$X - O_{i_0} \subseteq \bigcup_{i \in I} O_i \Longrightarrow X \subseteq \bigcup_{i \in I} O_i \cup O_{i_0}$$

Es decir, (X, τ) es compacto.

En $X = Rx\{0, 1\}$ se consideran la familia de subconjuntos

$$\beta = \{ a, b | x\{0, 1\} : a, b \in R, a < b \}$$

a.- Demostrar que β es base de una topología τ sobre X.

 $(ii) \ \textit{Sean} \ B_1, B_2 \in \beta, \ \textit{entonces} \ \exists B_3 \in \beta \colon B_3 \subset B_1 \cap B_2.$

$$B_1, B_2 \in \beta \Longrightarrow B_1 = \left] a, b [x\{0,1\} \ a < b \ B_2 = \left] c, d [x\{0,1\} \ c < d \right] \right.$$

Se considera $B_3 =]m\acute{a}x\{a,c\}, m\acute{i}n\{b,d\}[x\{0,1\} \in \beta \text{ y verifica que: }$

$$B_3 =]m\acute{a}x\{a,c\}, m\acute{i}n\{b,d\}[x\{0,1\} \subset B_1 \cap B_2$$

Por lo tanto, β es base de una topología τ sobre X.

b.- Estudiar si los conjuntos

$$A = [2,3]x\{0\} \cup [2,3]x\{1\}$$
 $B = [2,3]x\{0\} \cup [2,3]x\{1\}$

 $YA \cap B = [2, 3[x\{0, 1\}] \text{ son compactos en } (Rx\{0, 1\}, \tau).$

Veamos si $A = [2,3]x\{0\} \cup [2,3]x\{1\}$ es compacto. Sea un recubrimiento infinito de abiertos de A:

$$A \subseteq \bigcup_{i \in I} O_i \qquad O_i \in \tau \ \forall i \in I$$

Para cada $a \in A \exists i \in I \ y \exists B_i \in \beta : a \in B_i \subseteq O_i$:

$$A \subseteq \bigcup_{i \in I} B_i \quad B_i \in \beta \ \forall i \in I$$

$$[2,3]x\{0\} \cup]2,3[x\{1\} \subseteq \bigcup_{i \in I} (]a_i,b_i[x\{0,1\}) \quad a_i < b_i \ \forall i \in I$$

Entonces se tiene que

$$[2,3] \subseteq \bigcup_{i \in I}]a_i, b_i[]a_i, b_i[\in \tau_u$$

Y como [2,3] es compacto en (R, τ_u) , existe $J \subset I$ finito, tal que:

$$[2,3] \subseteq \bigcup_{j \in J}]a_j, b_j [\Rightarrow [2,3]x\{0\} \cup]2,3[x\{1\} \subseteq \bigcup_{j \in J} (]a_j, b_j[x\{0,1\})$$

Es decir, $A = [2,3]x\{0\} \cup [2,3]x\{1\}$ es compacto. De la misma forma B es compacto.

Veamos si $A \cap B =]2,3[x\{0,1]$ NO es compacto. Sea un recubrimiento infinito de abiertos de $A \cap B$:

$$A \cap B =]2,3[x\{0,1\} \subseteq \bigcup_{n \in \mathbb{N}} \left(\left| 2 + \frac{1}{n}, 3\left[x\{0,1\} \right) \right| \right) = \left| 2 + \frac{1}{n}, 3\left[x\{0,1\} \in \tau \ \forall n \in \mathbb{N} \right] \right)$$

Supongamos que $A \cap B$ es compacto, entonces existe $J \subset N$ finito:

$$A \cap B =]2,3[x\{0,1\} \subseteq \bigcup_{n \in I} \left(\left| 2 + \frac{1}{n}, 3\left[x\{0,1\} \right) \right| = \right] + \frac{1}{m}, 3\left[x\{0,1\} \right] ||i|||i||$$

Donde $m = \max_{n \in I} \{n\}$. Por lo tanto, $A \cap B$ NO es compacto.

c.- Calcular las componentes conexas de $(Rx\{0,1\},\tau)$.

Veamos si $(Rx\{0,1\}, \tau)$ es conexo. Sean $A, B \in \tau$, tal que $A \cup B = Rx\{0,1\}$ $A \cap B = \emptyset$.

Como $A, B \in \tau$, entonces: $A = O_1 x\{0,1\}$ $B = O_2 x\{0,1\}$ $O_1, O_2 \in \tau_u$, luego

$$Rx\{0,1\} = A \cup B = (O_1x\{0,1\}) \cup (O_2x\{0,1\}) = (O_1 \cup O_2)x\{0,1\}$$

$$\emptyset = A \cap B = (O_1 \times \{0,1\}) \cap (O_2 \times \{0,1\}) = ((O_1 \cap O_2) \times \{0,1\})$$

Se tiene que $O_1, O_2 \in \tau_u$ verificando que $O_1 \cup O_2 = R$ y $O_1 \cap O_2 = \emptyset$, y como (R, τ_u) es conexo, entonces $O_1 = R$ $O_2 = \emptyset$ ó $O_1 = \emptyset$ $O_2 = R$.

En consecuencia: $A = O_1 x\{0,1\} = Rx\{0,1\}$ $B = O_2 x\{0,1\} = \emptyset$ ó $A = \emptyset$ $B = Rx\{0,1\}$.

Es decir, $(Rx\{0,1\},\tau)$ es conexo , y sólo tiene una componente conexa.

Ejercicio 27

a.- Razonar si puede existir una biyección abierta del plano $\left(R^2, au_u\right)$ en la esfera $\left(S^2, au_{c_2}\right)$.

Supongamos que existe $f: (R^2, \tau_u) \to \left(S^2, \tau u_{/S^2}\right)$ biyectiva y abierta. Sea un recubrimiento infinito de abiertos de R^2 :

$$R^2 \subseteq \bigcup_{i \in I} O_i \qquad O_i \in \tau_u \ \forall i \in I \xrightarrow{f \ biyectiva} f(R^2) = S^2 \subseteq \bigcup_{i \in I} f(O_i)$$

Y como f es abierta, $f(O_i) \in \tau u_{/S^2} \ \forall i \in I$, es decir, es un recubrimiento infinito de abiertos de S^2 , y como $\left(S^2, \tau u_{/S^2}\right)$ es compacto, entonces existe $J \subset I$ finito:

$$S^2 \subseteq \bigcup_{j \in J} f(O_j) \stackrel{f^{-1}}{\Longrightarrow} R^2 \subseteq \bigcup_{j \in J} O_j$$

Se tiene que (R^2, τ_u) es compacto, absurdo, no puede existir una biyección abierta del plano (R^2, τ_u) en la esfera $\left(S^2, \tau_{u/_{S^2}}\right)$.

b.- Probar que si β es base de (R^2, τ_u) , entonces las componentes conexas de los elementos de β forman otra base de (R^2, τ_u) .

Sea $B \in \beta$ y sea C_B el conjunto de componentes conexas de B:

$$B = \bigcup_{i \in I_B} C_B^i \qquad C_B^i \in C_B \ \forall i \in I_B \ conexos \ C_B^i \in \tau_{u/_B} \ disjuntos \ dos \ a \ dos$$

Se considera $\beta_1 = \{C_B^i : \forall i \in I_B \ \forall B \in \beta\}$ $C_B^i \in \tau_u \ \forall i \in I_B \ \forall B \in \beta$. Todo $O \in \tau_u$, por β base de la topología se pone como unión de elementos de β :

$$O = \bigcup_{j \in J} B_j = \bigcup_{j \in J} \left[\bigcup_{i \in I_{B_j}} C_{B_j}^i \right] = \bigcup_{i \in I_{B_j}} C_{B_j}^i$$

Es decir, todo $0 \in \tau_u$ se pone como unión de elementos de β_1 . Se trata de una base de abiertos de τ_u .