— Combinatorics for L3 —

— January Camp, 2022 — Graph Theory (3): Finding Cycles —

WARM-UP.

- Prove that if $|V(G)| \ge 6$, then in G or \overline{G} there is a triangle.
- Prove that a graph of minimum degree $\delta \ge 2$ has a cycle of length at least $\delta + 1$.
- Prove that if a simple graph on 2n vertices has more than n^2 edges, then it contains a triangle.
- 13. Graph G with at least 5 vertices has the following properties: every vertex has at least one non-neighbor and every two non-neighbors have exactly one common neighbor. Prove that G contains an induced 5 cycle on 5 vertices (i.e. a cycle whose diagonals are not edges).
- 14. Given is a simple n-vertex graph G with $n \ge 3$ with the following property: the sum of degrees in every pair of non-neighbors is at least n. Prove that in G there is a cycle of length n.
- 15. Given is an *n*-vertex graph G with $n \ge 5$ such that the complement graph \overline{G} is triangle-free. Prove that in G there is a cycle of length at least n/2.
- 16. Given is an $1 \times n$ board with some cells colored black. We call a rectangle consisting of whole cells odd if it contains an odd number of black cells. Determine the largest possible number of odd rectangles.