

Amazon EMR

What is Amazon EMR

Easy to use
Launch a cluster in minutes

Managed
Spend less time monitoring

Easy to enable options

Deploy latest releases in Hadoop and Spark ecosystems

- 19 open-source projects: Apache Hadoop, Spark, HBase, Presto, and more
- Updated with the latest open source frameworks within 30 days of release

Open-source applications

Connectors to AWS services

Scale to any size

- Scale compute (EMR) & storage (S3) independently
- Store, and process any amount of data—PB to EBs
- Provision one, hundreds, or thousands of nodes
- Auto-scaling

Highly available and durable

- S3 is designed to deliver 99.99999999% durability
- EMR monitors your cluster—replacing poorly performing & failed nodes, and restarting services
- Monitor your clusters using Amazon CloudWatch
- Built-in console to view job history & browse logs
- EMR has on-cluster HDFS for data persistence

Highly secure

- Encryption of data at rest and in-transit
- ML-powered security with Amazon Macie
- Network isolation using Amazon VPC
- Access and permissions control with IAM policies
- Log, and audit activity with AWS CloudTrail
- Microsoft AD integration with Kerberos support

Options to submit jobs

Submit a Spark application

Use AWS Lambda to submit applications to EMR Step API or directly to Spark on your cluster

Create a pipeline to schedule job submission or create complex workflows

Amazon EMR

Use Oozie on your cluster to build DAGs of jobs

Networking: VPC private subnets

- Use Amazon S3 Endpoints for connectivity to S3
- Use Managed NAT for connectivity to other services or the Internet
- Control the traffic using Security Groups
 - ElasticMapReduce-Master-Private
 - ElasticMapReduce-Slave-Private
 - ElasticMapReduce-ServiceAccess

Access Control: IAM Users and Roles

- IAM Policies for access to Amazon EMR service (IAM users or federated users)
 - AmazonElasticMapReduceFullAccess
 - AmazonElasticMapReduceReadOnlyAccess
- IAM Policies for Amazon EMR cluster
 - Service role (AmazonElasticMapReduceRole) Allowable actions for Amazon EMR service, like creating EC2 instances.
 - Instance profile (AmazonElasticMapReduceforEC2Role) Applications that run on Amazon EMR, like access to Amazon S3 for EMRFS on your cluster.

Easy to Configure End-to-End Security

- Encryption for data at rest
 - Process encrypted data from Amazon S3 with support for all Amazon S3 encryption features
 - Configurable Local disk and HDFS encryption
- Encryption for data in transit
 - Run EMR clusters in VPC private subnets
 - Encrypted inter-node communication for Hadoop, MapReduce, Spark
 - Data transfer to other services over SSL
- Integrated with AWS IAM
 - Support for IAM roles, Bucket policies & ACLs, Tag-based permissions
- Authentication and authorization with native Hadoop ecosystem feature set
- Compliance and Auditing
 - SOC 1/2/3, PCI-DSS, FedRAMP, HIPAA-eligible
 - All API calls logged in CloudTrail
 - Object access logging for S3 data
 Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Encryption – use security configurations

Data at Rest: S3 client-side encryption

Key vendor (AWS KMS or your custom key vendor)

Security - Encryption

Supported

- Spark
- Tez
- MapReduce

Security – Authentication and Authorization

IAM user: MyUser

```
"Sid": "Stmt1479329681000",
6
                 "Effect": "Allow",
                 "Action": [
                     "elasticmapreduce:AddTags",
                     "elasticmapreduce:RunJobFlow"
10
11 -
                 "Condition": {
12 -
                     "StringEquals": {
13
                         "elasticmapreduce:RequestTag/user": "MyUser"
14
15
16 -
                 "Resource": [
                     H \oplus H
17
18
```

Tag: user = MyUser

```
"Effect": "Allow",
                "Action": [
                     "elasticmapreduce:AddJobFlowSteps",
                     "elasticmapreduce:DescribeCluster",
                     "elasticmapreduce:DescribeStep",
                     "elasticmapreduce:ListSteps",
                     "elasticmapreduce:TerminateJobFlows"
13
                "Condition": {
                     "StringEquals": {
                         "elasticmapreduce:ResourceTag/user": "MyUser"
17
18
19 -
                 "Resource": [
                     11 \times 11
20
21
```

Security - Authentication and Authorization

Apache Ranger

- Plug-ins for Hive, HBase, YARN, and HDFS
- Row-level authorization for Hive (with data-masking)
- Full auditing capabilities with embedded search
- Run Ranger on an edge node visit the AWS Big Data Blog

Authentication

LDAP

HiveServer2

Presto Coordinator

Spark Thrift Server

Hue Server

Zeppelin Server

EC2 key pair SSH as "hadoop"

AWS credentials EMR Step (EMR API)

Authentication with Kerberos

Authorization

- Storage-based
 - EMRFS/S3
 - HDFS
- HiveServer2 and Presto (SQL-based)
- HBase
- YARN queues
- Fine-grained access control by cluster tag (IAM)
- Apache Ranger on edge node (using CloudFormation)

EMRFS fine-grained authorization

Context

User: aduser

Group: analyst

IAM role: analytics_prod

Can map IAM roles to user, group, or S3 prefix

Security – Governance and Auditing

- AWS CloudTrail for EMR APIs
- S3 access logs for cluster S3 access
- YARN and application logs
- Ranger for UI for application level auditing

Monitoring

Full **visibility** of your AWS environment

 AWS CloudTrail will record access to API calls and save logs in your S3 buckets, no matter how those API calls were made

Who did what and when and from where (IP address)

 AWS CloudTrail support for many AWS services and growing including Amazon EMR

Monitoring

- Amazon S3
 - Bucket access logs
- Amazon EMR
 - Archives various log files to Amazon S3 at 5 minute intervals.
 - Log files are available after the cluster terminates
- CloudWatch Metrics
 - Updated every five minutes and archived for two weeks
- Ganglia

Use the AWS Glue Data Catalog

- Support for Spark, Hive and Presto
- Auto-generate schema and partitions
- Managed table updates

Real-time and batch processing

HBase for random access at massive scale

Core Nodes (EC2 Instances)

HDFS (data node) Local Disk HBase region server

YARN node manager

- HBase RegionServer caches data and bloom filters in-memory and on local disk (BucketCache) for read performance.
- The HBase write ahead log for durable writes is stored in on-cluster HDFS.

Task Nodes (EC2 Instances)

Local Disk

HBase region server (S3 storage mode only)

YARN node manager

- HBase region servers cache data and bloom filters in-memory and on local disk (BucketCache) for read performance.
- HBase Region Server writes to the HBase Write Ahead Log in HDFS on Core Nodes.

Deep learning with GPU instances

Use a custom Amazon Linux AMI

- Launch clusters with your Amazon Linux AMI
- Preinstall custom software for faster start times
- Encrypt the root volume with an AWS KMS key
- Adjust root volume size for custom applications

Application History – EMR console

Jobs > Job 0 > Stage 1 (attempt 0) Total time across all tasks: 19.4 h Locality level summary: Process local: 500 Output (size / records): 1.4 GiB / 7,844,427 Shuffle read (size / records): 240.1 GiB / 1,961,106,750 Summary metrics for 19250 completed tasks Metric A Min 25th percentile Median 75th percentile Max 2 s 3 s 3 s Duration 4 s 6 s GC time $0.5 \, s$ $0.7 \, s$ 1 s 1 8 2 s 290.0 KiB / Output (size / records) 45.8 KiB / 374 48.3 KiB / 393 50.3 KiB / 407 52.6 KiB / 421 441 Result serialization time 13.8 MiB / 11.8 MiB / 12.8 MiB / Shuffle read (size / records) 12.4 MiB / 98,250 13.2 MiB / 105,250 93,500 101,750 110,250 Shuffle remote reads 11.2 MiB 11.8 MiB 12.1 MiB 12.5 MiB 13.1 MiB Task deserialization time 5 ms 6 ms 7 ms 13 ms 47 ms

Aggregated metrics by executor (18)

Filter: Filte	er executors 18 executors	(all loaded) C						
Executor ID ^	Address	Task time	Total tasks	Failed tasks	Succeeded tasks	Output	Shuffle read	
1	ip-10-0-0-46.ec2.internal:44057 stderr stdout	35 s	1199	4	0			
2	ip-10-0-0-198.ec2.internal:45545	10 s	829	4	0			

Lowest cost

Save 75–90% using Reserved Instances and Spot

- Commit to a set term and save up to 75% with Reserved Instance
- Run on spare compute capacity and save up to 90% with Spot
 - Pay a fraction of on-demand price
 - Name your bid price. If it exceeds the market, you get the resource
 - Provision from a list of instance types with Spot and on-demand
 - Launch in the most optimal AZ based on capacity/price
 - Spot Block support

Lowest cost

Lowest TCO

- Less admin time to manage, and support Hadoop clusters
- No up-front costs hardware acquisition, installation
- Save on operating costs—data center space, power, cooling
- Business Value: Cost of delays, Risk Premium, Competitive abilities, governance, etc.

EC2 Spot and instance fleets

Auto Scaling

Lowest cost

Hadoop & Spark support included

- Hadoop & Spark support included in AWS support
- Support for a 10-node cluster is \$4.5K/year
- Up to 1/8th the cost of commercial Hadoop offerings

Customer Story – Zillow Group

Recommendations

RECOMMENDATION API

(Python, R, Flask)

Ranking (Spark EMR)

User Profiles (Spark EMR)

Data Collection Systems (Java/Python/SQL)

Zillow Group Data Lake

(S3 / Kinesis)

Property Featurization (Spark EMR)

Property Aggregate Features (Spark EMR)

> **Wedge Counting Collaborative Filtering** (Spark EMR)

Training & scoring

Collect user behavior and real-estate data, train the various models, generate the candidate set, and make predictions.

Zestimate

"Previously, given our scale limits using existing proprietary technology, it could take us an entire day or longer to compute a Zestimate," says [Jasjeet] Thind [VP of Data Science and Engineering]. "Now, we can do it in hours nationwide using Spark on Amazon EMR, which enables

Ad hoc environment

Customer Story - DataXu

dataxu.

DataXu spun out of MIT Labs to form a PB-scale digital marketing platform.

Challenge:

Deal with billions of impressions, PBs of data. Needed to help world's most valuable brands understand and engage with their consumers (doing real-time advertisement bidding).

Solution:

- Use Spark on EMR and Kinesis to stream and process real-time data from their bidding and retargeting platform
- Land all data in S3 data lake to serve up reports and visualizations

DataXu uses AWS for real-time analytics

dataxu.

- Stream real-time data from CDN, their real-time bidding platform, and retargeting platform
- Spark on EMR does ETL, attribution, and Machine Learning
- Land data in S3 data lake
- Use third party data visualizations and reporting

DataXu Flows

DataXu Spark Pipeline

Streaming Spark Spark SQL MLib

Parquet, DataSets, DataFrames
Common Backend
Amazon EMR

DataXu Flows – New Generation

EMR powers the most cloud Hadoop & Spark projects

Thank you!

