TEA010 Matemática Aplicada I Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR P02A, 28 abr 2023

Prof. Nelson Luís Dias

()

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

 ${f 1}$ [25] Dado o programa a seguir escrito em Python,

```
#!/usr/bin/python3
                    \underline{\text{from}} numpy \underline{\text{import}} array
   3
                                        0.1
                                                                                                                                                                                                    # passo em x
                  x = [0.0]
                                                                                                                                                                                                    # x inicial
                  y = [array([1.0,0.0])]
                                                                                                                                                                                                    # v inicial
                   n = \frac{\text{int}}{\text{def}} (10/\text{h})
\frac{\text{def}}{\text{ff}} (x,y):
                                                                                                                                                                                                    # número de passos
                                         <u>return</u> array([y[0]+y[1],y[0]-y[1]])
                    \underline{\text{def}} \overline{\text{rk4}(x,y,h,ff)}:
10
                                      k1 = h*ff(x,y)
                               k2 = h*ff(x+h/2,y+k1/2)
11
                                    k3 = h*ff(x+h/2,y+k2/2)

k4 = h*ff(x+h,y+k3)
12
13
                                  yn = y + k1/6.0 + k2/3.0 + k3/3.0 + k4/6.0
14
                                     return yn
               \frac{\underline{\text{for i in } \underline{\text{range}}}}{xn = (i+1)*h}(0,n):
16
                                                                                                                                                                                              # loop da solução numérica
17
                                    yn = rk4(x[i],y[i],h,ff)
18
19
                                   x.append(xn)
                                     y.append(yn)
21
               fou = open('ruk.out','wt')
                                                                                                     (0,n+1):  # imprime o arquivo de saída '%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%
22
                 \underline{\underline{\text{for i } \underline{\text{in } \text{range}}}}(0,n+1):
                                     fou.write(
23
                   fou.close()
```

qual é o problema que ele resolve? Escreva todas as equações que especificam completamente o problema.

SOLUÇÃO DA QUESTÃO:

$$\frac{\mathrm{d}}{\mathrm{d}x} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} +1 & +1 \\ +1 & -1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}, \qquad y_1(0) = 1, \qquad y_2(0) = 0 \blacksquare$$

SOLUÇÃO DA QUESTÃO:

$$v = xe_1 + ye_2 + ze_3,$$

 $(1, 1, 1) = x(1, 1, 0) + y(1, -1, 0) + z(0, 2, 1),$
 $(1, 1, 1) = (x + y, x - y + 2z, z),$
 $z = 1,$
 $x + y = 1,$
 $x - y = 1 - 2 = -1,$
 $x = 0,$
 $y = 1$

 $\mathbf{3}$ [25] Seja $E = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ a base canônica do \mathbb{R}^3 , e $F = (f_1, f_2, f_3)$ uma outra base, onde

$$f_1 = \frac{1}{\sqrt{3}}(1, 1, 1),$$

$$f_2 = \frac{1}{\sqrt{6}}(-1, 2, -1),$$

$$f_3 = \frac{1}{\sqrt{2}}(-1, 0, 1).$$

- a) [10] Mostre que F é uma base ortonormal.
- b) [15] Calcule a matriz de rotação de *E* para *F*.

SOLUÇÃO DA QUESTÃO:

a)

$$f_{1} \cdot f_{1} = 1,$$

$$f_{1} \cdot f_{2} = f_{2} \cdot f_{1} = 0,$$

$$f_{1} \cdot f_{3} = f_{3} \cdot f_{1} = 0,$$

$$f_{2} \cdot f_{2} = 1,$$

$$f_{2} \cdot f_{3} = 0,$$

$$f_{3} \cdot f_{3} = 1.$$

b)

$$C_{ij} = f_{j} \cdot e_{i} :$$

$$C_{11} = f_{1} \cdot e_{1} = \frac{1}{\sqrt{3}};$$

$$C_{12} = f_{2} \cdot e_{1} = -\frac{1}{\sqrt{6}};$$

$$C_{13} = f_{3} \cdot e_{1} = -\frac{1}{\sqrt{2}};$$

$$C_{21} = f_{1} \cdot e_{2} = \frac{1}{\sqrt{3}};$$

$$C_{22} = f_{2} \cdot e_{2} = \frac{2}{\sqrt{6}};$$

$$C_{23} = f_{3} \cdot e_{2} = 0;$$

$$C_{31} = f_{1} \cdot e_{3} = \frac{1}{\sqrt{3}};$$

$$C_{32} = f_{2} \cdot e_{3} = -\frac{1}{\sqrt{6}};$$

$$C_{33} = f_{3} \cdot e_{3} = \frac{1}{\sqrt{2}}.$$

$$[C] = \begin{bmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{bmatrix} \blacksquare$$

$$A = A_{lm} e_l e_m, \qquad x \times y = \epsilon_{ijk} x_i y_j e_k,$$

onde $(\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3)$ é a base canônica, obtenha uma expressão em notação indicial para

$$A \cdot [x \times y].$$

SOLUÇÃO DA QUESTÃO:

$$\begin{aligned} A \cdot [\mathbf{x} \times \mathbf{y}] &= A_{lm} \mathbf{e}_{l} \mathbf{e}_{m} \cdot \epsilon_{ijk} x_{i} y_{j} \mathbf{e}_{k} \\ &= A_{lm} x_{i} y_{j} \epsilon_{ijk} \mathbf{e}_{l} (\mathbf{e}_{m} \cdot \mathbf{e}_{k}) \\ &= A_{lm} x_{i} y_{j} \epsilon_{ijk} \mathbf{e}_{l} \delta_{mk} \\ &= A_{lk} x_{i} y_{j} \epsilon_{ijk} \mathbf{e}_{l} \blacksquare \end{aligned}$$