

APUNTES

Clase del 15 de Marzo

Compiladores e Interpretes

Profesor: Francisco Torres

Isaac Antonio Campos Mesen 2014004626

Contenido

Clase 15 de marzo de 2017	2
Notas de inicio de la clase:	2
Continuación de Análisis Léxico	3
Reverso de una hilera:	3
Lenguaje formal	3
Ejemplos de lenguajes formales	4
Análisis léxico	5
Operaciones sobre Lenguajes Formales	5
Unión de lenguajes	5
Intersección de lenguajes	7
Diferencia de lenguajes	8
Complemento de lenguaje	10
Inverso de un lenguaje	11
Concatenación de lenguajes	11
Multiplicación o potencia de lenguajes	13
Lenguaje $\mathfrak{L} *$	14
Lenguajes Formales y Mecanismos	15
Análisis Determinísticos de Estados Finitos	16
Esto es un autómata	16
Estructura del autómata	17
Mecánica del autómata	17
FIEMDLOS	10

Clase 15 de marzo de 2017

Notas de inicio de la clase:

• El quiz consistía en anotarse en una lista.

- 4chan llegó temprano.
- Se inicia la clase con un repaso de la materia de la semana anterior.
- *Se espera que el examen sea una semana antes de semana santa.
 (para rezar para pasarlo)

Continuación de Análisis Léxico

Reverso de una hilera:

- Sea $w \in \sum^*$
- La reversa de w, denota como w^R o w⁻¹ es la hilera w escrita al revés

Ejemplo

• $w = aaabbac, w^R = cabbaaa$

Teorema:

- u = abc, v = def
- $(uv)^R = fedcba$
- $v^R u^R = fedcba$

Lenguaje formal

- Sea Σ un alfabeto entonces un lenguaje formal ${\mathfrak L}$ sobre Σ es:
 - o Un conjunto de hileras
 - o \mathfrak{L} es un subconjunto de Σ^*
 - Las hileras cumplen cierta propiedad especificada con reglas precisas
 - Hay lenguajes finitos, infinitos y vacíos

Ejemplos de lenguajes formales

- Sea $\Sigma = \{0, 1\}$
 - o Ω = hileras sobre Σ que empiecen con 00
 - **0**0,00100,0010,...
 - o \mathfrak{L} = hileras sobre Σ que empiecen con 1
 - **1**0, 101, 1011, ...
 - o \mathfrak{L} = hileras sobre Σ que tengan una longitud impar
 - **101, 11110, 0, ...**
 - Se discute si épsilon cumple
- Sea $\Sigma = \{A, U, C, G\}$
 - o \mathfrak{L} = hileras sobre Σ que no incluyan la subhilera UUU
 - AUCG, AUUC, CAGA, ...
 - o \mathfrak{L} = hileras sobre Σ cuya longitud sea múltiplo de 3
 - GAC, AUCGAC, GAU,
 - o Ω = hileras sobre Σ que empiecen con AUG, tengan una longitud múltiplo de 3 y terminen con UAA, UAG...
 - AUGCAGUAGUAA, AUGUAG, AUGAGGGAAUAA, ...

(Biología molecular)

Análisis léxico

Operaciones sobre Lenguajes Formales

Unión de lenguajes

- Sean $\mathfrak L$ y $\mathcal M$ dos lenguajes sobre Σ
- La unión de $\mathfrak Q$ y $\mathcal M$ denotada como $\mathfrak Q \cup \mathcal M$ es:

$$\mathfrak{L} \cup \mathcal{M} = \{ x \mid x \in \mathfrak{L} \ o \ x \in \mathcal{M} \}$$

- También se denota como $\mathfrak{L}+\mathcal{M}$
- Lenguaje formado por hileras que pertenezcan a $\Omega \circ \mathcal{M}$

Ejemplo:

• Sean

$$\mathfrak{L} = \{0000, 010, 100, 110\} \, \text{Y} \, \mathcal{M} = \{0, 1, 11\}$$

- $\mathfrak{L} \cup \mathcal{M} = \{0000, 010, 100, 110, 0, 1, 11\}$
- Sean:
 - \circ Ω = hileras sobre Σ que terminen en 00
 - \circ \mathcal{M} = hileras sobre Σ que terminen con 1
 - o $\mathfrak{L} \cup \mathcal{M}$ = hileras sobre Σ que empiecen con 1 o que terminen en 00
 - \circ $\mathfrak{L} \cup \mathcal{M} = \{1, 00, 100, 00, 1111111, 1010101, ...\}$

Propiedades de la Unión de Lenguajes

Conmutatividad:

$$\mathfrak{L} \cup \mathcal{M} = \mathcal{M} \cup \mathfrak{L}$$

Asociatividad:

$$\mathfrak{L} \cup \mathcal{M} \cup \mathcal{Q}$$
$$= (\mathfrak{L} \cup \mathcal{M}) \cup \mathcal{Q} = \mathfrak{L} \cup (\mathcal{M} \cup \mathcal{Q})$$

• Idempotencia:

$$\mathfrak{L} \cap \mathfrak{L} = \mathfrak{L}$$

• Elemento neutro:

$$\exists \mathfrak{N} \text{ t.q } \forall \mathfrak{L}, \mathfrak{L} \cup \mathfrak{N} = \mathfrak{L} \text{ (¿Qué es } \mathfrak{N}\text{?)}$$

$$\circ \quad \mathfrak{N} = \emptyset$$

- *Colochos 0 dijo $\{\mathcal{E}\}$ y el profe se puse a joderlo.
- *Colochos 1 estaba mandando mensajes tomando apuntes.
- *Colochos 2 dijo que era {} (lo cual es correcto).
- *El profe estaba jodiendo a colochos 0 porque lo odia (llega tarde a clases) lo dijo incorrecto.
- Cierre:

Si
$$\mathfrak{L}$$
, $\mathcal{M} \subseteq \Sigma^*$ entonces $\mathfrak{L} \cup \mathcal{M} \subseteq \Sigma^*$

Intersección de lenguajes

- Sean $\mathfrak L$ y $\mathcal M$ dos lenguajes sobre Σ
- La intersección de \mathfrak{L} y \mathcal{M} denotada como $\mathfrak{L} \cap \mathcal{M}$ es: $\mathfrak{L} \cap \mathcal{M} = \{x \mid x \in \mathfrak{L} \ \ \text{y} \ x \in \mathcal{M}\}$
- Lenguaje formado por hileras que pertenezcan a $\mathfrak L_{\ \ \ \ }\mathcal M$

*Se concluye que épsilon es un lenguaje formal

Ejemplos:

Sean

$$\mathfrak{L} = \{000, 010, 100, 110\} \, \text{Y} \, \mathcal{M} = \{0, 1, 11\}$$

- $\mathfrak{L} \cap \mathcal{M} = \emptyset$
- Sean:
 - \circ Ω = hileras sobre Σ que terminen en 00
 - \circ \mathcal{M} = hileras sobre Σ que terminen con 1
 - o $\mathfrak{L} \cap \mathcal{M}$ = hileras sobre Σ que terminen con 1 y que terminen en 00
 - \circ $\mathfrak{L} \cap \mathcal{M} = \{100, 1000, 1100, 10100, 11000, ...\}$

Propiedades de la intersección de Lenguajes

• Conmutatividad:

$$\mathfrak{L} \cap \mathcal{M} = \mathcal{M} \cap \mathfrak{L}$$

Asociatividad:

$$\mathfrak{L} \cap \mathcal{M} \cap \mathcal{Q}$$
$$= (\mathfrak{L} \cap \mathcal{M}) \cap \mathcal{Q} = \mathfrak{L} \cap (\mathcal{M} \cap \mathcal{Q})$$

• Idempotencia:

$$\mathfrak{L} \cap \mathfrak{L} = \mathfrak{L}$$

$$\mathfrak{L} \cap \emptyset = \emptyset$$

• Cierre:

Si
$$\mathfrak{L}$$
, $\mathcal{M}\subseteq \Sigma^*$ entonces $\mathfrak{L}\cap \mathcal{M}\subseteq \Sigma^*$

Diferencia de lenguajes

- Sean $\mathfrak L$ y $\mathcal M$ dos lenguajes sobre Σ
- La diferencia de $\mathfrak L$ y $\mathcal M$ denotada como $\mathfrak L-\mathcal M$ es:

$$\mathfrak{L} - \mathcal{M} = \{ x \mid x \in \mathfrak{L} \ y \ x \notin \mathcal{M} \}$$

• Lenguaje formado por hileras que pertenezcan a ${\mathfrak L}$ pero que no pertenezcan ${\mathcal M}$

Ejemplo:

^{*}La intersección de lenguaje con vacío siempre da vacío

Sean

$$\mathfrak{L} = \{1, 11, 111, 1111\} \, Y \, \mathcal{M} = \{0, 1, 11\}$$

•
$$\mathfrak{L} - \mathcal{M} = \{11, 111, 1111\}$$

- Sean:
 - \circ Ω = hileras sobre Σ que terminen en 00
 - o \mathcal{M} = hileras sobre Σ que terminen con 1
 - \circ $\mathfrak{L}-\mathcal{M}$ = hileras sobre Σ que terminan en 00 pero que no empiecen con 1
 - \circ $\Omega \mathcal{M} = \{00, 000, 0100, 000, 00100, ...\}$

Propiedades de la diferencia de lenguajes

- No es conmutativa
- No es asociativa
- No es idempotente
- Elemento neutro:

$$\exists \mathfrak{N}$$
 t.q $orall \mathfrak{L}$, $\mathfrak{L}-\mathfrak{N}=\mathfrak{L}$ (¿Qué es \mathfrak{N} ?)

• Cierre:

Si
$$\mathfrak{L}$$
, $\mathcal{M}\subseteq \underline{\Sigma}^*$ entonces $\mathfrak{L}-\mathcal{M}\subseteq \underline{\Sigma}^*$

Complemento de lenguaje

- Sean $\mathfrak L$ un lenguaje sobre Σ
- ullet El complemento de ${\mathfrak L}$, denotada como $\overline{{\mathfrak L}}$ es:

$$\overline{\mathfrak{Q}} = \{x \mid x \in \Sigma^* \ y \ x \notin \mathfrak{Q}\}$$

- También se denota como \mathfrak{L}'
- Lenguaje formado por hileras de Σ^* que no pertenezcan $\mathfrak L$

Ejemplo:

Sean

$$\mathfrak{Q} = \left\{000, 010, 100, 110\right\}$$
 un lenguaje sobre $\Sigma = \left\{0,1\right\}$

- $\overline{\mathfrak{L}} = \Sigma^* \{000, 010, 100, 110\}$
- Sean:
 - \circ \mathfrak{L} = hileras sobre \mathfrak{L} que terminen en 00
 - \circ $\overline{\mathfrak{L}}$ = hileras sobre ∑ que no terminen en 00

Propiedades del complemento de lenguajes

- $\overline{\sum}^* = \emptyset$
- $\overline{\overline{\mathfrak{Q}}} = \mathfrak{Q}$
- Cierre:

Si
$$\mathfrak{L} \subseteq \underline{\Sigma}^*$$
 entonces $\overline{\mathfrak{L}} \subseteq \underline{\Sigma}^*$

Inverso de un lenguaje

- Sean ♀ un lenguajes sobre ⋝
- El inverso o el reflejo de \mathfrak{L} , denotado como \mathfrak{L}^{-1} es: $\mathfrak{L}^{-1} = \{ x^{-1} \mid x \in \mathfrak{L} \}$
- También se denota como \mathfrak{L}^R

Propiedades del Inverso de lenguajes

- No es idempotente
- Cierre: Si $\mathfrak{L} \subseteq \Sigma^*$ entonces $\mathfrak{L}^{-1} \subseteq \Sigma^*$

Concatenación de lenguajes

- Sean $\mathfrak L$ y $\mathcal M$ dos lenguajes sobre Σ
- La concatenación de \mathfrak{L} y \mathcal{M} denotada como $\mathfrak{L}\mathcal{M}$ es: $\mathfrak{L}\mathcal{M} = \{xw \mid x \in \mathfrak{L} \text{ y } w \in \mathcal{M}\}$
- Lenguaje formado por hileras al concatenar una hilera de Ω con una hilera de ${\mathcal M}$

Ejemplos:

• Sean $\mathfrak{L} = \{000, 010, 100, 110\} \, \text{Y} \, \mathcal{M} = \{0, 1, 11\}$ • $\mathfrak{L} \mathcal{M} = \left\{ \begin{matrix} 0000, 0001, 00011, 0100, 0101, 01011, \\ 1000, 1001, 10011, 1100, 1101, 11011 \end{matrix} \right\}$

Sean:

- \circ \mathfrak{L} = hileras sobre Σ que terminen en 00
- \circ \mathcal{M} = hileras sobre Σ que empiecen con 1
- \circ $\mathfrak{L}\mathcal{M}$ = hileras de la forma ...001...
- \circ \mathfrak{QM} = {001, 0001. 0011, 10010001. 10101011111000101001, ... }

0

*Pero Liza se lavó la cara y la pegó 😀

*El profe advierte que si ponen elementos repetidos en la concatenación de lenguajes se van al infierno (y probablemente pierdan

el punto)

Propiedades de la concatenación de lenguajes

- No es conmutativa
- No es idempotente
- Asociatividad:

$$\mathfrak{L}\mathcal{M}\mathcal{Q} = (\mathfrak{L}\mathcal{M})\,\mathcal{Q} = \mathfrak{L}(\mathcal{M}\mathcal{Q})$$

• Elemento neutro:

$$\exists \mathfrak{N}$$
 t.q $orall \mathfrak{L}$, $\mathfrak{L}\mathfrak{N}=\mathfrak{N}\mathfrak{L}=\mathfrak{L}$ (¿Qué es \mathfrak{N} ?) $\mathfrak{N}=\{arepsilon\}$

• Cierre:

Si
$$\mathfrak{L}\mathcal{M}\subseteq \Sigma^*$$
 entonces $\mathfrak{L}\mathcal{M}\subseteq \Sigma^*$

*Buena pregunta de examen: Que da un lenguaje concatenado con vacío

Multiplicación o potencia de lenguajes

- $\mathfrak{L}^1 = \mathfrak{L}$
- $\mathfrak{L}^2 = \mathfrak{L}\mathfrak{L}$
- $\mathfrak{L}^3 = \mathfrak{L}\mathfrak{L}\mathfrak{L}$
- $\mathfrak{L}^4 = \mathfrak{L}\mathfrak{L}\mathfrak{L}\mathfrak{L}$
- $\mathfrak{L}^5 = \mathfrak{L}\mathfrak{L}\mathfrak{L}\mathfrak{L}$

Ejemplos:

$$\begin{aligned} \bullet & \quad \text{Sea } \mathfrak{L} = \{000, 010, 100, 110\} \\ \circ & \quad \mathfrak{L}^2 = \begin{cases} 000000, 000010, 000100, 000110, \\ 010000, 010010, 010100, 010110, \\ 100000, 100010, 100100, 100110, \\ 110000, 110010, 110100, 110110 \end{cases}$$

• Sea
$$\mathcal{M} = \{000, 010, 100, 110, \mathcal{E}\}\$$
o $\mathcal{M}^2 = \left\{ \begin{matrix} 000000, 000010, 000100, 000110, \\ 010000, 010010, 010100, 010110, \\ 100000, 100010, 100100, 100110, \\ 110000, 110010, 110100, 110110, \\ 000, 010, 100, 110, \mathcal{E} \end{matrix} \right\}$

Propiedades de la Multiplicación de lenguajes

*En lenguajes de programación hay cosas opcionales como el ${\mathcal E}$

$$\bullet \quad \mathfrak{L}^k = \mathfrak{L}^{k-1} \mathfrak{L} = \mathfrak{L} \mathfrak{L}^{k-1}$$

$$ullet \quad \mathfrak{L}^0 = \, \mathcal{E}$$

• Cierre:

Si
$$\mathfrak{L} \subseteq \Sigma^*$$
 entonces $\mathfrak{L}^k \subseteq \Sigma^*$

Lenguaje \mathfrak{L}^*

Sea L un lenguaje, el lenguaje \mathfrak{L}^* se define como:

$$\mathfrak{Q}^* = \bigcup_{i=0}^{\infty} \left(\mathfrak{Q}^i \right)$$

Lenguajes Formales y Mecanismos

Nos interesan dos mecanismos asociados a un lenguaje \mathfrak{L} :

Un generador de $\mathfrak L$

- ullet Genera todas las hileras de ${\mathfrak L}$
- No genera hileras que no pertenezcan a $\mathfrak L$

Un reconocedor de $\mathfrak L$

- Mecanismo binario que acepta o rechaza hileras
- ullet Acepta únicamente hileras de ${\mathfrak L}$
- ullet No rechaza hileras que pertenezcan a ${\mathfrak L}$

Análisis Determinísticos de Estados Finitos Esto es un autómata

Estructura del autómata

- Es un grafo
- Los nodos tienen etiquetas (opcional)
- Hay 2 tipos de nodo
- Los arcos están etiquetados
- Los nodos son Estados
- Los arcos son Transiciones
- Hay un estado inicial (flecha sin origen)

Mecánica del autómata

- Un autómata procesa este tipo de hileras
- Siempre hay un estado actual.

- Se toma un símbolo de una hilera a la vez (símbolo actual).
- El estado actual tiene transiciones a otros estados (o a sí mismo).

Compiladores e Interpretes

 Se sigue la transición y se toma el siguiente símbolo de la hilera.

- Se establece un estado actual y un símbolo actual.
- El proceso se repite en el nuevo estado.
- Eventualmente se termina la hilera
- El resultado final es que acepta o se rechaza.
- El estado actual podría ser de aceptación (doble circulo) o de rechazo (circulo simple).

- El estado actual al acabarse la hilera determina se acepta o se rechaza.
- En cualquier punto que no haya transición se rechaza la hilera.

EJEMPLOS EJEMPLO 1

EJEMPLO 2

q2

Compiladores e Interpretes

EJEMPLO 3

EJEMPLO 4

EJEMPLO 5

w =

ļ	Α	В	Α	В	Α	В	Α	Α	Α	В	В	В	Α	В

EJEMPLO 6

w =

0	0	1	0	1	1	1	0	1	0	1	0	1	0

EJEMPLO 7

$$w = \mathcal{E}$$

*Ya que el estado de inicio (A) es de aceptación

Compiladores e Interpretes

EJEMPLO 8

w =

G	-)	(+	+))	(^	()	(
()		l (.	(7	I I	I I	l (a	l (.	(7	ΙA	(.	l (n	(7
_		_	_			_	_	_		_	_	_

Compiladores e Interpretes

EJEMPLO 9

Compiladores e Interpretes

EJEMPLO 10

w =

Α	В	Α	Α	В	Α	Α	Α	Α	В	В	В	Α	В	1
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

EJEMPLO 11

$w = \lceil$	0	0	0	1	0	1	0	1	1	1	0	1	
--------------	---	---	---	---	---	---	---	---	---	---	---	---	--

Compiladores e Interpretes

El ejemplo anterior fue el último visto en la clase del 15 de marzo.

RECUERDEN ESTUDIAR PARA EL QUIZ DEL 22 DE MARZO