

Programmierung und Deskriptive Statistik

BSc Psychologie WiSe 2023/24

Belinda Fleischmann

Datum	Einheit	Thema	
11.10.23	Einführung	(1) Einführung	
18.10.23	R Grundlagen	(2) R und Visual Studio Code	
25.10.23	R Grundlagen	(2) R und Visual Studio Code	
01.11.23	R Grundlagen	(3) Vektoren	
08.11.23	R Grundlagen	(4) Matrizen	
15.11.23	R Grundlagen	(5) Listen und Dataframes	
22.11.23	R Grundlagen	(6) Datenmanagement	
29.11.23	Deskriptive Statistik	(7) Häufigkeitsverteilungen	
06.12.23	Deskriptive Statistik	(8) Verteilungsfunktionen und Quantile	
13.12.23	Deskriptive Statistik	(9) Maße der zentralen Tendenz	
20.12.23	Leistungsnachweis Teil 1		
20.12.23	Deskriptive Statistik	(10) Maße der Datenvariabilität	
	Weihnachtspause		
10.01.24	Deskriptive Statistik	(11) Anwendungsbeispiel (Deskriptive Statistik)	
17.01.24	Inferenzstatistik	(12) Anwendungsbeispiel (Parameterschätzung, Konfidenzintervalle)	
24.01.24	Inferenzstatistik	(13) Anwendungsbeispiel (Hypothesentest)	
25.01.24	Leistungsnachweis Teil 2		

(9) Maße der zentralen Tendenz

Mittelwert		
Median		
Modalwert		
Visuelle Intuitionen		

Mittelwert

Median

Modalwert

Visuelle Intuitionen

Definition (Mittelwert)

 $x=(x_1,...,x_n)$ sei ein Datensatz. Dann heißt

$$\bar{x} := \frac{1}{n} \sum_{i=1}^{n} x_i \tag{1}$$

der Mittelwert von x.

Bemerkung

- Im Kontext der Inferenzstatistik heißt der Mittelwert Stichprobenmittel.
- Die Inferenzstatistik gibt der Mittelwertsbildung ihren Sinn.

Berechnung des Mittelwerts in R

"Manuelle" Berechnung des Mittelwerts

[1] 18.61

mean() zur Berechnung des Mittelwerts

[1] 18.61

Theorem (Eigenschaften des Mittelwerts)

 $x=(x_1,...,x_n)$ und sei ein Datensatz und \bar{x} sei der Mittelwert von x. Dann gelten

(1) Die Summe der Abweichungen vom Mittelwert ist Null,

$$\sum_{i=1}^{n} (x_i - \bar{x}) = 0. {2}$$

(2) Die absoluten Summen negativer und positiver Abweichungen vom Mittelwert sind gleich, d.h. wenn $j=1,...,n_j$ die Datenpunktindizes mit $(x_j-\bar{x})<0$ und $k=1,...,n_k$ die Datenpunktindizes mit $(x_k-\bar{x})\geq$ bezeichnen, dann gilt mit n_j+n_k

$$|\sum_{j=1}^{n_j}(x_j-\bar{x})|=|\sum_{k=1}^{n_k}(x_k-\bar{x})|. \tag{3}$$

(3) Der Mittelwert der Summe zweier gleich großer Datensätze entspricht der Summe ihrer Mittelwerte, d.h. für einen weiteren Datensatz $y=(y_1,\ldots,y_n)$ mit Mittelwert \bar{y} gilt

$$\overline{x+y} = \bar{x} + \bar{y} \tag{4}$$

(4) Eine linear-affine Transformation eines Datensatz transformiert den Mittelwert des Datensatzes linear-affin, d.h für $a,b\in\mathbb{R}$ gilt

$$\overline{ax + b} = a\bar{x} + b$$

Beweis

(1) Es gilt

$$\sum_{i=1}^n (x_i - \bar{x}) = \sum_{i=1}^n x_i - \sum_{i=1}^n \bar{x}_i = \sum_{i=1}^n x_i - n\bar{x} = \sum_{i=1}^n x_i - \frac{n}{n} \sum_{i=1}^n x_i = \sum_{i=1}^n x_i - \sum_{i=1}^n x_i = 0.$$

(2) Seien $j=1,...,n_j$ die Indizes mit $(x_j-\bar x)<0$ und $k=1,...,n_k$ die Indizes mit $(x_k-\bar x)\ge 0$, so dass $n=n_j+n_k$. Dann gilt

$$\begin{split} \sum_{i=1}^n (x_i - \bar{x}) &= 0 \Leftrightarrow \sum_{j=1}^{n_j} (x_j - \bar{x}) + \sum_{k=1}^{n_k} (x_k - \bar{x}) = 0 \Leftrightarrow \sum_{k=1}^{n_k} (x_k - \bar{x}) = -\sum_{j=1}^{n_j} (x_j - \bar{x}) \\ &\Leftrightarrow |\sum_{i=1}^{n_j} (x_j - \bar{x})| = |\sum_{k=1}^{n_k} (x_k - \bar{x})|. \end{split}$$

Beweis

(3) Es gilt

$$\overline{x+y} \coloneqq \frac{1}{n} \sum_{i=1}^n (x_i + y_i) = \frac{1}{n} \sum_{i=1}^n x_i + \frac{1}{n} \sum_{i=1}^n y_i =: \bar{x} + \bar{y}$$

(4) Es gilt

$$\begin{split} \overline{ax+b} &\coloneqq \frac{1}{n} \sum_{i=1}^n (ax_i+b) \\ &= \sum_{i=1}^n \left(\frac{1}{n} ax_i + \frac{1}{n} b\right) \\ &= \sum_{i=1}^n \left(\frac{1}{n} ax_i\right) + \sum_{i=1}^n \left(\frac{1}{n} b\right) \\ &= a\frac{1}{n} \sum_{i=1}^n x_i + \frac{1}{n} \sum_{i=1}^n b \\ &= a\bar{x} + b \end{split}$$

Summe der Abweichungen

[1] 5.684342e-14

Beträge der positiven und negativen Abweichungen

[1] 71.28

Summation von Datensätzen

```
<- D$Pre.BDT
                                     # double Vektor der Pre.BDI-Werte
x
x bar <- mean(x)
                                     # Mittelwert der Pre BDT-Werte
y <- D$Post.BDI
                                     # double Vektor der Post.BDI Werte
v_bar <- mean(v)</pre>
                                     # Mittelwert der Post.BDI Werte
z <- x + v
                                     # double Vektor der Summe der Pre und Post Werte
z bar <- mean(z)
                                     # Mittelwert der Summe der Werte
print(z_bar)
                                     # Ausgabe
[1] 31.68
xv bar <- x bar + v bar
                                     # Summe der Mittelwerte der Pre- und Post BDT Werte
```

Ausgabe

print(xy_bar) [1] 31.68

Linear-affine Transformation

```
        x
        <- D$Pre.BDI</th>
        # double Vektor der Pre.BDI Werte

        x_bar
        <- mean(x)</th>
        # Mittelwert der Pre.BDI Werte

        a
        <- 2</th>
        # Multiplikationskonstante

        b
        <- 5</th>
        # Additionskonstante

        y
        <- a*x + b</th>
        # linear-affine Transformation der Pre.BDI Werte

        y_bar
        <- mean(y)</th>
        # Mittelwert der transfomierten Pre.BDI Werte

        print(y_bar)
        # Ausgabe
```

[1] 42.22

```
ax_bar_b <-a*x_bar + b  # Transformation des Mittelwerts
print(ax_bar_b)  # Ausgabe
```

[1] 42.22

Mittelwert

Median

Modalwert

Visuelle Intuitionen

Definition (Median)

 $x=(x_1,...,x_n)$ sei ein Datensatz und $x_s=(x_{(1)},...,x_{(n)})$ der zugehörige aufsteigend sortierte Datensatz. Dann ist der Median von x definiert als

$$\tilde{x}:=\begin{cases} x_{((n+1)/2)} & \text{falls } n \text{ ungerade} \\ \frac{1}{2}\left(x_{(n/2)}+x_{(n/2+1)}\right) & \text{falls } n \text{ gerade} \end{cases} \tag{5}$$

Bemerkungen

- Der Median ist identisch mit dem 0.5-Quantil.
- Mindestens 50% aller x_i sind kleiner oder gleich \tilde{x}
- Mindestens 50% aller x_i sind größer oder gleich \tilde{x} .
- Anstelle eines Beweises verweisen wir auf untenstehende Abbildungen.

Beispiele

Beispiel für n ungerade

Beispiel für n gerade

$$n := 6 \Rightarrow \left(\frac{6}{2}\right) = (3), \left(\frac{6}{2} + 1\right) = (4) \Rightarrow \tilde{x} := \frac{1}{2}(x_{(3)} + x_{(4)})$$

$$x_{(1)} \qquad x_{(2)} \qquad x_{(3)} \qquad x_{(4)} \qquad x_{(5)} \qquad x_{(6)}$$

$$x_{(1)}, x_{(2)}, x_{(3)} < \tilde{x} < x_{(4)}, x_{(5)}, x_{(6)}$$

Berechnung des Medians in R

Manuelle Bestimmung des Medians

[1] 19

Berechnung des Medians mit median()

[1] 19

Der Median ist weniger anfällig für Ausreißer als der Mittelwert

```
<- D$Pre.BDI
                                             # double Vektor der Pre.BDT Werte
x bar <- mean(x)
                                            # Mittelwert der Pre BDT Werte
x tilde <- median(x)
                                            # Median der Pre BDT Werte
print(x_bar)
                                            # Ausgabe
[1] 18.61
print(x_tilde)
                                            # Ausgabe
Γ17 19
y <- x
                                            # neuer Datensatz mit ...
y[1] <- 10000
                                            # ... einem Extremwert
v_bar <- mean(y)</pre>
                                            # Mittelwert des neuen Datensatzes
print(y_bar)
                                             # Ausgabe
[1] 118.44
y_tilde <- median(y)</pre>
                                             # Mittelwert des neuen Datensatzes
print(y_tilde)
                                            # Ausgabe
[1] 19
```

Mittelwert

Median

Modalwert

Visuelle Intuitionen

Definition (Modalwert)

 $x:=(x_1,...,x_n)$ mit $x_i\in\mathbb{R}$ sei ein Datensatz, $A:=\{a_1,...,a_k\}$ mit $k\leq n$ seien die im Datensatz vorkommenden verschiedenen Zahlenwerte und $h:A\to\mathbb{N}$ sei die absolute Häufigkeitsverteilung der Zahlwerte von x. Dann ist der $\mathit{Modalwert}$ (oder Modal) von x definiert als

$$\operatorname{argmax}_{a \in A} h(a), \tag{6}$$

also der am häufigsten im Datensatz vorkommende Wert.

Bemerkungen

• Modalwerte sind nur bei Datensätzen mit Datenpunktwiederholungen sinnvoll.

Bestimmung des Modalwertes in R

Г1] 18

Mittelwert

Median

Modal wert

Visuelle Intuitionen

Visuelle Intuition zu Maßen zentraler Tendenz bei Normalverteilung

Visuelle Intuition zu Maßen zentraler Tendenz bei Gleichverteilung

Visuelle Intuition zu Maßen zentraler Tendenz bei bimodalen Verteilungen

Mittelwert

Median

Modalwert

Visuelle Intuitionen

- 1. Geben Sie die Definition des Mittelwertes eines Datensatzes wieder.
- 2. Berechnen Sie den Mittelwert der Post.BDI Daten.
- 3. Geben Sie das Theorem zu den Eigenschaften des Mittelwerts wieder.
- 4. Geben Sie die Definition des Median eines Datensatzes wieder.
- 5. Berechnen Sie den Median der Post BDI Daten.
- 6. Wie verhalten sich Mittelwert und Median in Bezug auf Datenausreißer?
- 7. Geben Sie die Definition des Modalwertes eines Datensatzes wieder.
- 8 Berechnen Sie den Modalwert des Post BDI Datensatzes
- Visualisieren Sie die Häufigkeitsverteilung des Post.BDI Datensatzes und diskutieren Sie die berechneten Werte von Mittelwert, Median und Modalwert vor dem Hintergrund dieser Häufigkeitsverteilung.