Spring 2020 SIT22004

ICT Problem Solving

Algorithm Design and Analysis

March 4, 2020

Analyzing algorithms

How to compare algorithms?

Given algorithms to solve a problem, how do we compare algorithms?

The **rate of growth** of the time or space requirements to solve a **large instance** of the problem.

The size of the problem

Input size: the amount of data given as the input

Examples

sorting: the length of the list containing the data

graph coloring : |V| + |E| for G = (V, E)

matrix multiplication: the number of elements in the matrices

Running time

of primitive operations (steps) executed

Complexity

Time Complexity

The number of time steps to solve a problem Expressed as a function of problem size

Space Complexity

The amount of memory space to solve a problem Expressed as a function of problem size

Worst case complexity

The worst possible complexity over all inputs of a given problem size

Average case complexity

The average complexity over all inputs of a given problem size

Optimal algorithm

(Tight) Lower bound L(n)

The minimum time complexity over **all possible** algorithms

(Tight) Upper bound U(n)

The minimum time complexity over **all known** algorithms

Optimal algorithm

An algorithm whose time complexity is the same as the lower bound of the problem, L(n)

Introduction

Measuring efficiency of algorithms

time complexity: T(n)

space complexity: S(n)

"Big-Oh" notation: e.g., T(n) = O(f(n))

T(n) is $O(f(n)) \Leftrightarrow$ There exist positive constants c and n_0 such that $T(n) \le c \cdot f(n)$ for all $n \ge n_0$

Example

```
Let T(n) = n^2/2 + 3n + 10
Then T(n) = O(n^2)! Why?
T(n) \le c \cdot n^2 for all n \ge 1 and c = 27/2!!!
```

Is T(n) also $O(n^3)$?

Is T(n) also O(n)?

The Maximum Subsequence Sum Problem

Given a sequence of n numbers, $X=(x_1, x_2, ..., x_n)$, find a subsequence $X^*\subseteq X$ such that

- (i) the numbers in X^* is contiguous in X
- (ii) the sum of the numbers in X^* is the maximum over all contiguous subsequences of X

Observations

$$X = (x_1, x_2, x_3, ..., x_n)$$

What if $x_i > 0$ for all $1 \le i \le n$?

What if $x_i < 0$ for all $1 \le i \le n$?

Brute Force Algorithm

How many subsequences?

X[L..U]

L	U	
	1	
1	2	n
	:	11
	n	
	2	
2	3	n-1
_	:	11 1
	n	
	3	
3	4	n-2
:	:	11 2
:	n	
÷	:	:
n	n	1
		$\frac{n(n+1)}{2}$
		2

For each subsequence, we need at most n-1 additions

why?

 $\cdot \cdot \cdot O(n)$

Then, the total number of operations is at most

$$\frac{n(n+1)}{2} \times (n-1) = \frac{1}{2}(n^3 - n)$$

 $\cdot \cdot \cdot O(n^3)$

Procedure Max-sub

```
begin

MaxSoFar ← 0

for L ← 1 to n do

Sum ← 0

for I ← L to U do

Sum ← Sum +x[I]

end-do

MaxSoFar ← max { MaxSoFar, Sum}

end-do

end-do

end-do

end-do

end-do

end-do

end-do

end-do

MaxSoFar ← max ( MaxSoFar, Sum)
```

 $O(n^3)$

O(n²) Algorithm

```
Sum of X[L..U] = Sum(L,U), 1 \le L \le n, L \le U \le n
Sum(L,U) = \begin{cases} X[U] & \text{if } L = U \\ Sum[L,U-1] + x[U] & \text{otherwise} \end{cases}
Procedure Max-sub
     begin
             MaxSoFar \leftarrow 0
             for L \leftarrow 1 to n do
                         Sum \leftarrow 0
                         for U← L to n do
                                      Sum \leftarrow Sum + X[U]
                                      MaxSoFar ← max { MaxSoFar, Sum}
                         end-do
             end-do
     end
```

A Yet Another O(n²) Algorithm

"Divide and Conquer" Algorithm

$$MaxX = max \{ MaxA, MaxB, MaxAB \}$$

$$X_{A}^{*} X_{B}^{*} X_{AB}^{*}$$

$$T(n) = 2T(n/2) + M(n)$$
Compute MaxA: $T(n/2)$
Compute MaxB: $T(n/2)$
Divide and Merge: $M(n)$

Need to compute MaxAB

T(n)=2T(n/2)+M(n)

$$n = 2^k$$

How many levels?
$$log_2n$$

Why?
 $n/2^k = 1 \therefore k = log_2n$

What is T(1)?

No further division!

$$\therefore \quad \text{MaxX}(X[I..I]) = \begin{cases} X[I] & \text{if } X[I] > 0 \quad (X^* = X[I..I]) \\ 0 & \text{if } X[I] \le 0 \quad (X^* = \phi) \end{cases}$$

What is M(n) for n > 1? It depends on how to compute MaxAB!

How to Compute MaxAB

MaxAB=MaxCA+MaxCB

where

$$\begin{aligned} & MaxCA = max \{ \ Sum(1, M), \ Sum(2, M), \, \ Sum(M-1, M), \ Sum(M, M) \} \\ & MaxCB = max \{ \ Sum(M+1, M+1), \ Sum(M+1, M+2), \, \ Sum(M+1, n-1), \ Sum(M+1, n) \} \end{aligned}$$

Note

$$Sum(I,M) = \begin{cases} X[I] & \text{if } I = M \\ Sum(I+1,M) + X[I] & \text{otherwise} \end{cases}$$

 $\cdot \cdot \cdot O(M)$ time to compute MaxCA

Similarly, MaxCB can also be computed O(M) time

$$\therefore$$
 M(n)=O(M)+O(M)=O(n) if n>1

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ 2T(n/2) + n & \text{if } n > 1 \end{cases}$$

$$T(n) = O(n \log n)$$


```
function Max-Sub(L, U)
     begin
             if L=U then return(Max\{0, X[L]\})
             M \leftarrow |(L+U)/2|
             MaxA = Max-Sub(L, M)
             MaxB = Max-Sub(M+1,U)
             Sum \leftarrow 0; MaxCA \leftarrow 0
             For I \leftarrow M downto L do
                            Sum \leftarrow Sum + X[I]
                           MaxCA \leftarrow max\{ MaxCA, Sum \}
              end-do
              Sum \leftarrow 0; MaxCB \leftarrow 0
             For I \leftarrow M+1 to U do
                           Sum \leftarrow Sum + X[I]
                           MaxCB \leftarrow max\{ MaxCB, Sum \}
              end-do
             MaxAB \leftarrow MaxCA + MaxCB
             return( max{ MaxA, MaxB, MaxAB } )
     end
```

O(n) Algorithm

Given MaxSoFar and MaxTail for X[1..k-1], how to update them for X[1..k]?

```
Initially,
Maxtail = {0, X[1]}
Maxsofar = Maxtail

In general,
MaxTail = max{0, MaxTail + X[k]}
MaxSoFar = max{MaxSoFar, MaxTail}
```

```
Procedure Max-sub begin  \begin{aligned} & \text{MaxmSoFar} \leftarrow 0; \quad \text{MaxTail} \leftarrow 0 \\ & \text{for } k \leftarrow 1 \text{ to n} \\ & \quad & \text{MaxTail} \leftarrow \text{max} \{ \text{ 0, MaxTail} + X[k] \} \\ & \quad & \text{MaxSoFar} \leftarrow \text{max} \{ \text{ MaxSoFar, MaxTail} \} \\ & \text{end-do} \end{aligned}
```

Example

$$\text{MaxTail} \leftarrow \max\{0, \text{MaxTail} + X[k]\}$$

$$\text{MaxSoFar} \leftarrow \max\{\text{MaxSoFar}, \text{MaxTail}\}$$

$$7$$

$$\downarrow$$

$$X[1:10] = (31, -41, 59, 26, -53, 58, 97, -93, -23, 84)$$

k	MaxTail	MaxSoFar
1	31 (X[11]	31 (X[11])
2	0 (Ø)	31 (X[11])
3	59 (X[33])	59 (X[33])
4	85 (X[34])	85 (X[34])
5	32 (X[35])	85 (X[34])
6	90 (X[36])	90 (X[36])
7	187 (X[37])	187 (X[37])
8	94 (X[38])	187 (X[37])
9	71 (X[39])	187 (X[37])
10	155 (X[310])	187 (X[37])

Summary

ALGOF	RITHM	1	2	3	4
Run time in		1.3 <i>n</i> ³	10 n ²	47 n log ₂ n	48 <i>n</i>
Time to solve a problem of size	10 ³ 10 ⁴ 10 ⁵ 10 ⁶ 10 ⁷	1.3 secs	10 msecs	.4 msecs	.05 msecs
Max size problem solved in one	sec min hr day				
If <i>n</i> multiplies by 10, time multiplies by If time multiplies by 10, <i>n</i> multiplies by					

Extreme Comparison

Algorithm 1 at 533MHz is 0.58 n^3 nanoseconds. Algorithm 4 interpreted at 2.03MHz is 19.5 n milliseconds, or 19,500,000 n nanoseconds.

1999 ALPHA 21164A,	1980 TRS-80,	
C,	BASIC,	
CUBIC ALGORITHM	LINEAR ALGORITHM	
0.6 microsecs	200 millisecs	
0.6 millisecs	2.0 secs	
0.6 secs	20 secs	
10 mins	3.2 mins	
7 days	32 mins	
19 yrs	5.4 hrs	
	C, CUBIC ALGORITHM 0.6 microsecs 0.6 millisecs 0.6 secs 10 mins 7 days	

Extreme Comparison

