International Institute of Information Technology Hyderabad

Discrete Structures (MA5.101)

Assignment 1

Deadline: December 26, 2021 (Sunday), 23:55 PM

Total Marks: 70

Instructions: Submit ONLY handwritten scanned pdf file in the course moodle under Assignments directory.

- 1. Let us consider the structure $\langle \mathcal{P}(X), \rangle$, where the operation (set difference) is defined by $A B = \{x \mid x \in A \text{ and } x \notin B\} = A \cap B'$, where $\mathcal{P}(X)$ is the power set of X.
 - (a) Show that the operation is neither commutative nor associative.

[5]

- (b) Verify whether $A \cup (B\Delta C) = (A \cup B)\Delta(A \cup C)$ holds or not, where ' Δ ' is the usual symmetric difference operator defined over sets. [5]
- (c) Show that the following properties hold for all $A, B, C \in \mathcal{P}(X)$:
- (i) $A\Delta(B\Delta C) = (A\Delta B)\Delta C$,
- (ii) $A\Delta B = B\Delta A$,
- (iii) $A\Delta\emptyset = A$,
- (iv) $A\Delta X = A'$,
- (v) $A\Delta A' = X$, where $A\Delta B$ is the usual symmetric difference between A and B, and A' the complement of A. [5 × 5 = 25]
- 2. Given two sets S and T and $S-T=S\cap T'$, prove that $S\Delta T=(S\cup T)-(S\cap T)$. [5]
- 3. A binary relation on a set that is reflexive and symmetric is called a *compatible relation*. Let \mathcal{A} be a set of English words and R be a binary relation on \mathcal{A} such that two words w_1 and w_2 in \mathcal{A} are related if they have one or more letters in common. Show that R is a compatible relation. [5]
- 4. For a given set A, consider the relation

$$R = \{(x, y) \mid x \in \mathcal{P}(A), y \in \mathcal{P}(B), \text{ and } x \subseteq y\}$$

where $\mathcal{P}(X)$ is the power set of X. Show that R is a partial order relation. [5]

- 5. Let R and R' be two equivalence relations on a set A. Prove that
 - (i) $R \cap R'$ is an equivalence relation in A. [5]
 - (ii) $R \cup R'$ is not necessarily an equivalence relation in A. [5]

6. On $R = R \times R$, the following relation ρ is defined, where R is the set of real numbers. Check whether it is an equivalence relation or not. If yes, find the equivalence classes.

 $(a,b)\rho(c,d)$ iff both the points lie on the same curve: $9x^2 + 16y^2 = k^2$, for some $k \in \mathbb{R}$. [10]

All the best!!!