Pascalsches Dreieck

Pascalsches Dreieck

Erinnerung:
$$\binom{n}{0}=1=\binom{n}{n}$$
, $\binom{n}{k}+\binom{n}{k+1}=\binom{n+1}{k+1}, n,k\in\mathbb{N}$ geeignet.

$$\begin{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 1 \\ 1 \end{pmatrix} & \begin{pmatrix} 2 \\ 2 \end{pmatrix} & \begin{pmatrix} 3 \\ 0 \end{pmatrix} & \begin{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} & \begin{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix} & \begin{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix} & \begin{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} & \begin{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} & \vdots & \begin{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} & \begin{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} & \begin{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} & \begin{pmatrix} 4 \\ 4 \end{pmatrix} & \begin{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} & \begin{pmatrix} 4 \\ 4 \end{pmatrix} & \begin{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} & \begin{pmatrix} 4 \\ 4 \end{pmatrix} & \begin{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} & \begin{pmatrix} 4 \\ 4 \end{pmatrix} & \begin{pmatrix} 4 \\ 4 \end{pmatrix} & \begin{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} & \begin{pmatrix} 4 \\$$

Mathematische Grundlagen der Informatik

WiSe 2023/2024

KAPITEL II: Zahlbereiche

1. Natürliche Zahlen und vollständige Induktion

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

¹Giuseppe Peano (1858–1932), italienischer Mathematiker

- 1. 0 ist eine natürliche Zahl.
- 2. Jede natürliche Zahl besitzt genau einen Nachfolger.

¹Giuseppe Peano (1858–1932), italienischer Mathematiker

- 1. 0 ist eine natürliche Zahl.
- 2. Jede natürliche Zahl besitzt genau einen Nachfolger.
- 3. Es gibt keine natürliche Zahl mit dem Nachfolger 0.

¹Giuseppe Peano (1858–1932), italienischer Mathematiker

- 1. 0 ist eine natürliche Zahl.
- 2. Jede natürliche Zahl besitzt genau einen Nachfolger.
- 3. Es gibt keine natürliche Zahl mit dem Nachfolger 0.
- 4. Natürliche Zahlen mit gleichem Nachfolger sind gleich.

¹Giuseppe Peano (1858–1932), italienischer Mathematiker

- 1. 0 ist eine natürliche Zahl.
- 2. Jede natürliche Zahl besitzt genau einen Nachfolger.
- 3. Es gibt keine natürliche Zahl mit dem Nachfolger 0.
- 4. Natürliche Zahlen mit gleichem Nachfolger sind gleich.
- 5. \mathbb{N} selbst ist die einzige Teilmenge von \mathbb{N} , die die 0 und mit jeder natürlichen Zahl n auch deren Nachfolger n' enthält.

¹Giuseppe Peano (1858–1932), italienischer Mathematiker

Problem

Sei A(n) für jedes $n \in \mathbb{N}$ eine Aussage.

Frage

Wie zeigt man, dass A(n) für jedes $n \in \mathbb{N}$ wahr ist?

Idee:

Dazu genügt es, folgende zwei Aussagen zu zeigen:

- ightharpoonup A(0) ist wahr. (Induktionsanfang (IA))
- Für jedes $n \in \mathbb{N}$, für das A(n) wahr ist, ist auch A(n+1) wahr. (Induktionsschritt (IS))

Dies ist das Beweisprinzip der vollständigen Induktion.

Bemerkung

Dies funktioniert auch, wenn man A(n) für alle $n \ge m$, $(m \in \mathbb{N})$, zeigen möchte - beim Induktionsanfang ist dann A(m) zu zeigen.

Beispiel: Gaußsche² Summenformel

Satz

Für jedes
$$n \in \mathbb{N}$$
, $n \ge 1$, gilt $\left| \sum_{k=1}^{n} k = \frac{n \cdot (n+1)}{2} \right|$.

²Carl Friedrich Gauß (1777–1855), deutscher Mathematiker

Satz

Für jedes
$$n \in \mathbb{N}, n \geq 1$$
, gilt $\sum_{k=1}^{n} k = \frac{n \cdot (n+1)}{2}$

$$\frac{2sp:}{l.s.} \quad n = 5$$

$$l.s. \quad \sum_{k=1}^{5} k = 1 + 2 + 3 + 4 + 5 = 15$$

$$r.s. \quad s \cdot (5 + 4) = 15$$

Beweis des Satzes durch vollständige Indulation:
IA:
$$n=1$$
 (2u zeigen: $\frac{1}{4}k = \frac{1 \cdot (1+1)}{2}$)

r.s.
$$\frac{1 \cdot (1+1)}{2} = 1$$

²Carl Friedrich Gauß (1777–1855), deutscher Mathematiker

L.S. und r.S. stimmen überein.

Also gilt A(1).

I.S:
$$n \rightarrow n+1$$
 (Zu zeigen: Falls A(n) wahr ist, olann ist auch A(n+1) wahr.)

Angenommen, A(n) ist wahr. (IV)

Zu zeigen ist, class A(n+1) wahr ist, also class

 $\frac{n+1}{2}k = \frac{(n+1) \cdot (n+1+1)}{2}$

überlegung:

L.S.: $k=1$
 k

r. S.:
$$\frac{(n+1)\cdot(n+1+1)}{2} = \frac{(n+1)(n+2)}{2} = \frac{n^2+2n+n+2}{2}$$

= $\frac{n^2+3n+2}{2}$
l. S. und r. S. Stimmen überein,
Also gilt $A(n+1)$.

$$\frac{n + 1}{n + 1} \frac{n + 1}{n +$$

Beispiel: Geometrische Summenformel

Satz

Sei $x \in \mathbb{R}, x \neq 1$. Dann gilt für jedes $n \in \mathbb{N}$

$$\sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x}.$$

Beispiel: Geometrische Summenformel

Satz

Sei $x \in \mathbb{R}, x \neq 1$. Dann gilt für jedes $n \in \mathbb{N}$

$$\sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x}.$$

$$\frac{3em.:}{2} x = 1^{0} + 1^{1} + \dots + 1^{n} = 1 + 1 + \dots + 1 = n + 1$$

$$k = 0 \qquad (n+1) - mal$$

Beispiel: Geometrische Summenformel

Satz

Sei $x \in \mathbb{R}, x \neq 1$. Dann gilt für jedes $n \in \mathbb{N}$

$$\sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x}.$$

Beweis durch vollständige Indulation:

T.1:
$$n=0$$

L.S. $\sum_{k=0}^{\infty} x^k = x^0 = 1$

r.s.
$$\frac{1-x}{1-x} = \frac{1}{1-x} = 1$$

L.S. und r.S. Stimmen überein. Also gilt 1(0).

Angenommen, es gilt
$$A(n)$$
, also $\sum_{k=0}^{n} x^{k} = \frac{1-x^{n+1}}{1-x}$. (II).

(2u zeigen ist, dass dann auch $A(n+1)$ gilt, also
$$\sum_{k=0}^{n+1} x^{k} = \frac{1-x^{n+1+1}}{1-x}$$
.)

Es ist
$$\sum_{k=0}^{n+1} x^{k} = \sum_{k=0}^{n} x^{k} + x^{n+1} = \frac{1-x^{n+1}}{1-x} + x^{n+1}$$

$$\sum_{k=0}^{n+1} x^{k} = \sum_{k=0}^{n} x^{k} + x^{n+1} = \frac{1-x^{n+1}}{1-x} + x^{n+1}$$

Beispiel: Binomischer Satz

Satz

Seien $n \in \mathbb{N}$ und $a, b \in \mathbb{R}$. Dann gilt

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

Beispiel: Binomischer Satz

Satz

Seien $n \in \mathbb{N}$ und $a, b \in \mathbb{R}$. Dann gilt

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

1.5.:
$$(a+b)^2$$

1.5.: $\frac{2}{2}(\frac{2}{k})a^{2-k}b^k = (\frac{2}{0})a^2b^0 + (\frac{2}{1})a^1b^1 + (\frac{2}{2})a^0b^2$

$$= a^2 + 2ab + b^2$$

Fazit: Für n=2 ist dies gerade die 1. binom. Formel.

Beneis durch vol(ständige Indultion:

$$\underbrace{I.A: \ n=0}$$

$$\underbrace{I.S. \ (\alpha+b)^{\circ} = \Lambda}$$

$$r. S. \underbrace{\begin{cases} (\lambda) \alpha^{\circ -k} b^{k} = (0) \alpha^{\circ} b^{\circ} = 1 \end{cases}}$$

L.S. und r.S. stimmen überein. Also gitt AlO).

I.S.:
$$n-n+1$$
.

Angenommen, $A(n)$ gilt, (IV)

Zu zeigen i64 dann, dass $VA(n+1)$ gilt, α lso

 $(\alpha+b)^{n+1} = \sum_{k=0}^{n+1} \binom{n+1}{k} \alpha^{n+1-k} b^k$. (*)

Umformen der linken Seife von (4) ergibt

Unformen der linken Seite von (4) ergibt

$$(a+b)^{n+1} = (a+b)(a+b)^{n}$$

$$= a(a+b)^{n} + b(a+b)^{n}$$

$$= a\sum_{k=0}^{\infty} \binom{n}{k} a^{n-k} b^{k} + b\sum_{k=0}^{\infty} \binom{n}{k} a^{n-k} b^{k}$$

$$= a \sum_{k=0}^{\infty} \binom{n}{k} a^{n-k} b^{k} + b\sum_{k=0}^{\infty} \binom{n}{k} a^{n-k} b^{k+1}$$

$$= \sum_{k=0}^{\infty} \binom{n}{k} a^{n-k+1} b^{k} + \sum_{k=0}^{\infty} \binom{n}{k} a^{n-k+1} b^{k}$$
Independent
I