Powered Rapid and Accurate COVID-19 patients detection by CNN-based models from chest X-ray images

Neda Sefandarmaz.

Department of Biomedical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran n.sefandarmaz@gmail.com

Dataset	COVID-19 images	Normal images	Total images
Total data	450	450	900
Training data	400	400	800
Testing data	50	50	100
Independent validation data	100	100	200

Table 1: Dataset image count for training and testing

Pic1- Images related to 4 data from batch related to increased training data

Pic2-Images related to 4 data from another batch related to increased training data

Pic3-Print 4 images of test data for a batch

Pic4-Network architecture

Pic 5-Loss diagram of training and validation data

Pic 6-Accuracy chart for training and validation data

Convolutional layer	Test data	Independent validation data
One Conv2D	0.715	0.455
Two Conv2D	0.940	0.895
Three Conv2D	0.995	0.957
Four Conv2D	0.995	0.980
Five Conv2D	0.995	0.995
Six Conv2D	1.000	0.995

Table2- Evaluation results of the paper for models with different number of convolution layers

Pic7-Loss and accuracy diagram for training and validation data of the network with a convolution layer

accuracy diagram for the training and validation data of the network with two convolution layers

accuracy diagram for the training and validation data of the network with three convolution layers

Pic10-Loss and accuracy diagram for the training and validation data of the network with four convolution layers

Pic11-Loss and accuracy diagram for the training and validation data of the network with five convolution layers

Pic12-Loss and accuracy diagram for the training and validation data of the network with six convolution layers

Table 6: Accuracy score with different numbers of CNN layers				
Convolutional Layers	Test Accuracy	Validation Accuracy		
One CONV2D	0.900	0.919		
Two CONV2D	1.000	1.000		
Three CONV2D	0.950	0.973		
Four CONV2D	0.975	1.000		
Five CONV2D	0.950	1.000		
Six CONV2D	0.975	0.908		

Pic13- Network evaluation results with different number of convolution layers

Pic14-Loss and accuracy diagram for the training and validation data of the network with four convolution layers

Pic15-Loss and accuracy diagram for the training and validation data of the network with changing the sequential model to functional

References:

- [1] A. A. Reshi *et al.*, "An Efficient CNN Model for COVID-19 Disease Detection Based on X-Ray Image Classification," *Complexity*, vol. 2021, pp. 1–12, May 2021, doi: 10.1155/2021/6621607.
- [2] H. I. Hussein, A. O. Mohammed, M. M. Hassan, and R. J. Mstafa, "Lightweight deep CNN-based models for early detection of COVID-19 patients from chest X-ray images," *Expert Systems with Applications*, vol. 223, p. 119900, Aug. 2023, doi: 10.1016/j.eswa.2023.119900.
- [3] M. Abdullah, F. berhe Abrha, B. Kedir, and T. T. Tagesse, "A Hybrid Deep Learning CNN model for COVID-19 detection from chest X-rays," *Heliyon*, vol. 10, no. 5, Mar. 2024, doi: 10.1016/j.heliyon.2024.e26938.
- [4] I. Kanjanasurat, K. Tenghongsakul, B. Purahong, and A. Lasakul, "CNN–RNN Network Integration for the Diagnosis of COVID-19 Using Chest X-ray and CT Images," *Sensors*, vol. 23, no. 3, p. 1356, Jan. 2023, doi: 10.3390/s23031356.
- [5] A. A. Ardakani *et al.*, "A practical artificial intelligence system to diagnose COVID-19 using computed tomography: A multinational external validation study," *Pattern Recognit Lett*, vol. 152, pp. 42–49, Dec. 2021, doi: 10.1016/j.patrec.2021.09.012.
- [6] A. Narin, C. Kaya, and Z. Pamuk, "Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks," *Pattern Anal Applic*, vol. 24, no. 3, pp. 1207–1220, Aug. 2021, doi: 10.1007/s10044-021-00984-y.
- [7] R. S. Chauhan *et al.*, "COVID-19 related attitudes and risk perceptions across urban, rural, and suburban areas in the United States," *Findings*, 2021.