Advanced Topics Collaborative Filtering

By Roy Levin

http://researcher.watson.ibm.com/researcher/view.php?person=il-ROYL

Movie Recommendations

	Roy ₁	Inbal ₂	Hasan ₃	Lior ₄	Anat ₅	Arnon ₆
The God Father₁	?	4	?	5	?	?
The Dark Knight ₂	3	?	?	?	2	5
Pulp Fiction ₃	5	3	5	4	4	5
40 Year Old Virgin ₄	2	4	?	?	3	3
Analyze That ₅	3	5	4	?	4	?
Anger Management ₆	3	5	?	?	?	5
Black Hawk Down ₇	5	?	?	4	?	?

Romance	Action	Comedy
---------	--------	--------

f ₁	f ₂	f ₃
?	?	?
?	?	? x
?	?	?
?	?	?
?	?	?
?	?	?
?	?	?

$$\theta_1 = 5 & \theta_2 = 0 & \dots & \theta_n = 0 \\
0 & 0 & 5$$

Movie Recommendations

	Roy ₁	Inbal ₂	Hasan ₃	Lior ₄	Anat ₅	Arnon ₆
The God Father₁	?	4	?	5	?	?
The Dark Knight ₂	3	?	?	?	2	5
Pulp Fiction ₃	5	3	5	4	4	5
40 Year Old Virgin ₄	2	4	?	?	3	3
Analyze That ₅	3	5	4	?	4	?
Anger Management ₆	3	5	?	?	?	5
Black Hawk Down ₇	5	?	?	4	?	?

Romance	Action	Comedy
---------	--------	--------

f ₁	f ₂	f ₃	
?	?	?	(1
?	?	?)	(2
?	?	?	
?	?	?	
?	?	?	
1	0.6	1	
?	?	?	(m

$$\theta_1 = 5 & \theta_2 = 0 & \dots & \theta_n = 0 \\
0 & 0 & 5$$

Formalizing the Problem

Given $\theta^{(1)}, \ldots, \theta^{(n_u)}$, to learn $x^{(i)}$:

$$\min_{x^{(i)}} \frac{1}{2} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{k=1}^n (x_k^{(i)})^2$$

Formalizing the Problem

- Given $\theta_1, \theta_2, \dots, \theta_n$
- We want to learn all $x_1, x_2, ..., x_m$

•
$$J(x_1, x_2, ..., x_m) = m$$

 $min_{x_1, x_2, ..., x_m} \sum_{i=1}^{m} \sum_{j: \exists r(i,j)} (\theta_j^T \cdot x_i - y_{i,j})^2 + \lambda \cdot \sum_{i=1}^{m} \sum_{k=1}^{l} x_{i,k}^2$

Or, alternatively:

Formalizing the Problem

- Or: given x₁, x₂, ...,x_m
- We want to learn all θ₁, θ₂,...,θ_n

•
$$J(\theta_1, \theta_2, ..., \theta_n) = min_{\theta_1, \theta_2, ..., \theta_n} \sum_{j=1}^{n} \sum_{i:\exists r(i,j)} (\theta_j^T \cdot x_i - y_{i,j})^2 + \lambda \cdot \sum_{j=1}^{n} \sum_{k=1}^{l} \theta_{j,k}^2$$

ALS: Collaborative Filtering

• Minimize $J(x_1, x_2, ..., x_m)$ and then $J(\theta_1, \theta_2, ..., \theta_n)$

•
$$min_{x_1,x_2,...,x_m} \sum_{i=1}^m \sum_{j:\exists r(i,j)} (\theta_j^T \cdot x_i - y_{i,j})^2 + \lambda \cdot \sum_{i=1}^m \sum_{k=1}^l x_{i,k}^2$$

•
$$min_{\theta_1,\theta_2,...,\theta_n} \sum_{j=1}^n \sum_{i:\exists r(i,j)} (\theta_j^T \cdot x_i - y_{i,j})^2 + \lambda \cdot \sum_{j=1}^n \sum_{k=1}^l \theta_{j,k}^2$$

- Alternating Least Squares (ALS):
- $x \rightarrow \theta \rightarrow x \rightarrow \theta \rightarrow ... \rightarrow \theta \rightarrow x$

After reaching convergence then for unrated pairs (user_i, movie_j) we set: •rating(i, j)= $\theta_i x_j$

SGD: Collaborative Filtering

Another solution is to combine the two objectives

•
$$J(x_1, x_2, ..., x_m, \theta_2, ..., \theta_n) = min_{x_1, x_2, ..., x_m, \theta_1, \theta_2, ..., \theta_n} \sum_{(i,j): \exists r(i,j)} (\theta_j^T \cdot x_i - y_{i,j}) + \sum_{i=1}^m \sum_{k=1}^l x_{i,k}^2 + \sum_{j=1}^n \sum_{k=1}^l \theta_{j,k}^2$$

To solve this Stochastic Gradient Descent (SGD) can be used

Matrix Factorization?

$$\theta_{n,k}^T = \begin{bmatrix} \overrightarrow{\theta_1}^T \\ \theta_2^T \\ \cdots \\ \theta_n^T \end{bmatrix}$$

$$X_{m,k} = \begin{bmatrix} \overrightarrow{x_1} \\ \overrightarrow{x_2} \\ \cdots \\ \overrightarrow{x_m} \end{bmatrix}$$
Ser feature matrix
Movie feature matrix

$$X\Theta^{T} = \begin{bmatrix} (x_{1} \cdot \theta_{1}^{T}) & \cdots & (x_{1} \cdot \theta_{n}^{T}) \\ \vdots & \ddots & \vdots \\ (x_{m} \cdot \theta_{1}^{T}) & \cdots & (x_{m} \cdot \theta_{n}^{T}) \end{bmatrix} \approx Y_{mxn} = \begin{bmatrix} 5 & \cdots & ? \\ \vdots & ? & \vdots \\ 0 & \cdots & 3 \end{bmatrix}$$

Find X and Θ s.t. difference is minimized

Finding Related Movies

- For each movie $i \in \{1, ..., m\}$ we learned a feature vector $x_i \in \mathbb{R}^l$
 - e.g., $x_{i,1} = \text{romantic}, x_{i,2} = \text{action}, x_{i,3} = \text{comedy}$
 - In practice, these features are commonly not easy to interpret
 - They do however represent the properties that best influence how users rank the movies

Finding Related Movies

- How to find a movie j related to movie i?
 - Find movies j such that $||x_i x_j||$ is minimized
 - Find top-k x_i s which minimize this distance

Alternating Least Squares in Matrix Form

- We need to solve: $[X\Theta^T]_{mxn} \approx Y_{mxn}$
 - (leaving out regularization for simplicity now)
- 1. Set $X = \widehat{X}$
- 2. Repeat until convergence:

1.
$$\Theta^{T} = (X^{T}X)^{-1}X^{T}Y$$

2.
$$X = Y\Theta(\Theta^T\Theta)^{-1}$$

• For
$$A:m\times n\mid m>n$$
 we have a left inverse:
$$\underbrace{(A^TA)^{-1}A^T}_{A_{\mathrm{left}}^{-1}}A=I_n$$
 • For $A:m\times n\mid m< n$ we have a right inverse:
$$\underbrace{AA^T(AA^T)^{-1}A}_{A_{\mathrm{right}}^{-1}}=I_m$$

User Cold Start Problem

 $\theta_3 = ?$

	Roy ₁	Inbal ₂	/lasal ₃	Lior ₄	Anat ₅	Arnon ₆
The God Father₁	?	4	?	5	?	?
The Dark Knight ₂	3	?	?	?	2	5
Pulp Fiction ₃	5	3	?	4	4	5
40 Year Old Virgin ₄	2	4	?	?	3	3
Analyze That₅	3	5	?	?	4	?
Anger Management ₆	4	5	?	?	?	5
Black Hawk Down ₇	5	?	?	4	?	?

$$min_{x_1, x_2, \dots, x_m, \theta_1, \theta_2, \dots, \theta_n} \sum_{(i, j) : \exists r(i, j)} \left(\theta_j^T \cdot x_i - y_{i, j}\right)^2 + \lambda \cdot \left(\sum_{i=1}^m \sum_{k=1}^l x_{i, k}^2 + \sum_{j=1}^n \sum_{k=1}^l \theta_{j, k}^2\right)$$

User Cold Start Problem

	Roy ₁	Inbal ₂	Hasan ₃	Lior ₄	Anat ₅	Arnon ₆
The God Father₁	?	4	? 0	5	?	?
The Dark Knight ₂	3	?	? 0	?	2	5
Pulp Fiction ₃	5	3	? 0	4	4	5
40 Year Old Virgin₄	2	4	? 0	?	3	3
Analyze That ₅	3	5	? 0	?	4	?
Anger Management ₆	4	5	? 0	?	?	5
Black Hawk Down ₇	5	?	? 0	4	?	?

Mean Normalization

$$\mathbf{Y} = \begin{bmatrix} 5 & 3 & ? \\ 4 & ? & ? \\ ? & 3 & 2 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 4 \\ 4 \\ 2.5 \end{bmatrix} \rightarrow Y = \begin{bmatrix} 1 & -1 & ? \\ 0 & ? & ? \\ ? & 0.5 & -0.5 \end{bmatrix}$$

Now, each movie has an average rating of zero

How do we now make a prediction of the rating of user *j* on movie *i*?

$$\theta_j^T \cdot x_i + \mu_i$$

CF Using Mean Normalization

	Roy ₁	Inbal ₂	Hasan ₃	Lior ₄	Anat ₅	Arnon ₆
The God Father₁	?	4	? 4.5	5	?	?
The Dark Knight ₂	3	?	? 3.3	?	2	5
Pulp Fiction ₃	5	3	? 4.2	4	4	5
40 Year Old Virgin₄	2	4	? 3	?	3	3
Analyze That ₅	3	5	? 4	?	4	?
Anger Management ₆	4	5	? 4.6	?	?	5
Black Hawk Down ₇	5	?	? 4.5	4	?	?

Using Spark MLlib

```
// case Rating(userId, itemId, rate)
val ratings: RDD[Rating] = ...
val model = ALS.train(
  ratings,
  rank,
  numIterations,
  lamda = 0.01)
                                     More methods here ...
                                Is this one useful for recommendation?
val rate: Double = model
  .predict(myUserId, someProductId)
```

CF With Implicit Feedback

- In the explicit case, recall:
 - Given θ₁, θ₂,...,θ_n
 - We want to learn all x₁, x₂, ...,x_m

•
$$J(x_1, x_2, ..., x_m) = m$$

 $min_{x_1, x_2, ..., x_m} \sum_{i=1}^{m} \sum_{j: \exists r(i,j)} (\theta_j^T \cdot x_i - y_{i,j})^2 + \lambda \cdot \sum_{i=1}^{m} \sum_{k=1}^{l} x_{i,k}^2$

Similarly in the implicit case:

•
$$J(x_1, x_2, ..., x_m) = m$$

 $min_{x_1, x_2, ..., x_m} \sum_{i=1}^{m} \sum_{j: \exists r(i, j)} (\theta_j^T \cdot x_i - y_{i, j})^2 + \lambda \cdot \sum_{i=1}^{m} \sum_{k=1}^{l} x_{i, k}^2$

Not rating anymore but rather 1 if streamed 0 else

CF With Implicit Feedback

- In the explicit case, recall:
 - Given θ₁, θ₂,...,θ_n
 - We want to learn all x₁, x₂, ...,x_m

•
$$J(x_1, x_2, ..., x_m) = m$$

 $min_{x_1, x_2, ..., x_m} \sum_{i=1}^{m} \sum_{j: \exists r(i, j)} (\theta_j^T \cdot x_i - y_{i, j})^2 + \lambda \cdot \sum_{i=1}^{m} \sum_{k=1}^{l} x_{i, k}^2$

Similarly in the implicit case:

•
$$J(x_1, x_2, ..., x_m) = m$$

 $min_{x_1, x_2, ..., x_m} \sum_{i=1}^{m} \sum_{j: \exists r(i,j)} (1 + \alpha \cdot r_{i,j}) (\theta_j^T \cdot x_i - y_{i,j})^2 + \lambda \cdot \sum_{i=1}^{m} \sum_{k=1}^{l} x_{i,k}^2$

References

- https://www.youtube.com/watch?v=B-JjbXNGnP4&list=PLnnr1O8OWc6ZYcnoNWQignIiP5RRtu3aS&index=3
- http://www.slideshare.net/MrChrisJohnson/collaborative-filtering-with-spark
- https://en.wikipedia.org/wiki/Regularization_(mathematics)
- http://www.slideshare.net/erikbern/collaborative-filtering-at-spotify-16182818/49-Learning_from_feedback_is_actually

