

Layers	Output Size	DenseNet-121	DenseNet-169	DenseNet-201	DenseNet-264
Convolution	112 × 112	7×7 conv, stride 2			
Pooling	56 × 56	3×3 max pool, stride 2			
Dense Block (1)	56 × 56	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 6$
Transition Layer	56 × 56	$1 \times 1 \text{ conv}$			
(1)	28 × 28	2×2 average pool, stride 2			
Dense Block (2)	28 × 28	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 12$
Transition Layer	28 × 28	1 × 1 conv			
(2)	14 × 14	2×2 average pool, stride 2			
Dense Block (3)	14 × 14	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 24$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 48$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 64$
Transition Layer	14 × 14	$1 \times 1 \text{ conv}$			
(3)	7 × 7	2 × 2 average pool, stride 2			
Dense Block (4)	7 × 7	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 16$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 48$
Classification	1 × 1	7 × 7 global average pool			
Layer		1000D fully-connected, softmax			

Why Change?

- DenseNets require fewer parameters than an equivalent traditional CNN
- □ Some variations of ResNets have proven that many layers are barely contributing and can be dropped
- ☐ Inception Nets have proven that it's a good idea to concatenate layers
- □ Vanishing Gradients were always problems
 - In DenseNets each layer has direct access to the gradients from the loss function and the original input image
- □ Traditional feed-forward neural networks connect the output of the layer to the next layer using:
 - * Activations $(a^{[l]}) = g(a^{[l-1]} * W^{[l]} + b^{[l]})$
- □ ResNet modified them a bit:
 - * Activations $(a^{[l]}) = g(a^{[l-1]} * W^{[l]} + b^{[l]} + a^{[l-2]})$

12/3/2024

DenseNets

- □ DenseNets : do not sum the output feature maps of the layer with the incoming feature maps but concatenate them:
 - $* \ \, \text{Activations} \ (a^{[l]} \) = \mathsf{g} \ (\ [a^{[0]} \ , \ a^{[1]} \ , \ a^{[2]} \ , \ ..., \ a^{[l-2]} \ , \ a^{[l-1]} \ * \ W^{[l]} \] + b^{[l]})$
- But Activations between various layers would have different shape
 - ❖ To solve, DenseNets divide them in blocks
 - Shape remain same in one DenseBlock
- □ Transition Layers: Layers in-between Dense Layers changing dimensions from one block to another block:
 - ❖ Apply 1 x 1, pooling, BatchNorm etc.

12/3/2024

Reflect... □ Which of the following is true about ImageNet? □ Which of the following is true about AlexNet? ♦ a) It uses 15 layers including fully connected layers a) It is a dataset consisting of 10 million images * b) It introduced the concept of Residual Learning ♦ b) It contains over 22,000 object categories * c) It was the first CNN to win the ImageNet Large Scale Visual * c) It focuses on medical image segmentation Recognition Challenge (ILSVRC) d) It contains only grayscale images d) It uses a 5x5 kernel in the first convolutional layer □ Answer: b) It contains over 22,000 object categories ☐ Answer: c) It was the first CNN to win the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) □ What is the primary characteristic of VGGNet architecture? □ What is the key innovation introduced by ResNet? • a) It uses a large number of filters in each layer a) Use of deeper convolution layers b) It uses very small 3x3 filters in convolutional layers ♦ b) Use of 1x1 convolution kernels * c) It introduced skip connections c) Introduction of skip connections (residual connections) d) It employs global average pooling instead of fully d) Global average pooling for dimensionality reduction connected layers ☐ Answer: c) Introduction of skip connections (residual □ Answer: b) It uses very small 3x3 filters in convolutional pra-sâmi

