5.1-4
Friday, February 22, 2019 2:31 PM
• Op-amp (operational amplifier)
o op-ang is a vollage anytifier with high gan
o op-any { Saturation AND convertors
Linear
nonimenting vo + Vo
inverting Vn - Output
V-regatile power supply
The output voltage of an op-amp can't be arbitrarily high
Limit: Power supply. (Energy Conservation)
O Vec Postine Saturation
- Ver Linear Region
Negative Saturation T-Vec
$V_{c} = \int_{-\infty}^{\infty} -V_{cc}$ $A(V_p - V_n) \times -V_{cc}$
$\frac{V_0}{V_{CC}} = \begin{cases} A(V_p - V_n) & -V_{CC} \\ A(V_p - V_n) & > +V_{CC} \end{cases}$
o In a sideal op any, the gain A is infinite, in a pradical opany
A > 10000
o No=Vm Voltage constrain
e.g. Consider an op amp with $V^{\dagger}=12V$, $V^{=}=12V$, $A=2\times10^{6}$
(a) If $V_p = 0.1$, $V_n = DV$, calculate V_0 .
(b) Owhat's the max Vp in linear region?
(a) $A \cdot (V_p - V_h) = 2 \times 10^5 > 12 \text{ V}$
V _n 12V
(b) AVp < 12V
1/p < 60 mV

Review | Constants

The resistor R_f in the circuit in the figure is adjusted until the ideal op amp saturates. (Figure 1)

Specify R_f , given that v_i = 15 ${
m V}$.

Express your answer with the appropriate units.

$$R_f$$
 = 1.47 k Ω

Submit

Previous Answers

$$V_0 = 9V \cdot V_p = V_n$$

$$\frac{V_p}{1.5k} + \frac{V_p + 15V}{7.5k} = 0$$

$$5V_p + V_p + 15 = 0$$

 $V_p = -2.5V$

$$v \cdot V_{n} = -2.5V$$

$$\frac{V_{n}-(-15V)}{1.6k}+\frac{V_{n}-V_{o}}{R_{f}}=0$$

$$\frac{-2.5+15}{1.6} = \frac{9+2.5}{R_f}$$

$$R_f = 1.472 \text{ kD}$$

Constants Find the Norton equivalent with respect to the terminals a,b for the circuit in if v = 20 V, i = 5 A.

Approach I.

Mesh Current => isc

Deachvole all independent sources => RH

isc: RHH = Voc

