Ejercicios de Electrónica Analógica

Boletín EAN13: El amplificador operacional

Revisado: marzo 2023

1. Se dispone de un amplificador operacional montado en lazo abierto (figura 1), y con sus entradas de alimentación conectadas a $V_{cc} = 10V$ y $-V_{cc} = -10$ V.

Por la entrada no inversora se introducen 4 V, y por la inversora, 3 V. ¿Cuál será el voltaje de salida, V_{out}? *Solución:* +10 V.

10V

15V

IC1

R4

1K

20K

- 2. Se dispone de un **OpAmp en montaje inversor**, como el de la figura 2. Se piden: a) calcula la ganancia del mismo; b) calcula el voltaje de salida. *Solución:* a) A = -2; b) $V_{out} = -6 V$.
- 3. En el montaje anterior, calcula qué valor tendrá que tener R_1 para que la V_{out} sea justo la contraria de V_{in} . *Solución: 20 K.*
- 4. Se dispone de un **OpAmp en montaje no inversor** (figura 3). Calcula la ganancia del mismo.

Solución: A = 3.

- 7. Si la ganancia del montaje fuera A = 6, ¿cuál sería el voltaje de salida del amplificador no inversor del circuito del ejercicio 4? *Solución: 10 V.*
- Hemos montado en el taller un OpAmp en configuración sumadora (figura 4). Calcula el voltaje de salida. Solución: V_{out} = -6 V.
- En el montaje anterior, cambia la resistencia R₄ a un valor de 2K. ¿Cuál será ahora el voltaje de salida? Solución: -12 V.

configuración restadora (figura 5). Calcula el voltaje de salida. Solución: $V_{out} = 4 V$.

R2

- En este mismo montaje, cambio las resistencias R₂ y R₄ a 2K.
 ¿Cuál será ahora el voltaje de salida? Solución: V_{out} = 4 V.
- ¿Qué sucederá si cambio las resistencias R1 y R2 a 2K, dejando las R3 y R4 en 1 K? Solución: el voltaje de salida será V_{out} = 2 V.