§1. Geometrická posloupnost

- Def: Nechť $\{a_2\}_{n=1}^{\infty}$ je posloupnost reálnych čísel. Tato posloupnost se nazývá geometrická, právě když $\exists q \in \mathbb{R} : \forall n \in \mathbb{N} : a_n = a_{n-1}q$. Číslo q se nazývá kvocient geometrické posloupnosti (GP).
- Pozn: 1) $a_1 = 0 \Rightarrow \forall n \in \mathbb{N} : a_n = 0$, tj. konst posl.
 - 2) $a_1 \neq 0 \land q = 0 \Rightarrow \forall n \in \mathbb{N} \{1\} : a_n = 0.$
- Pozn: V daslších úvahách tyto posloupnosti vyloučíme.
- V.1.1.: Nechť $\{a_2\}_{n=1}^{\infty}$ je GP s kvocientem q, pak platí:
 - 1. $\forall n \in \mathbb{N} : a_n = a_1 \cdot q^{n-1}$
 - 2. $\forall r, s \in \mathbb{N} : a_r = a_s \cdot q^{s-r}$
 - [Dk:
 - 1. MI:
 - (a) n = 1: $a_1 = a_1 \cdot q^0 = a_1$.
 - (b) Když platí $a_n = a_1 \cdot q^{n-1}$, tak platí $a_{n+1} = a_1 q^n$

$$a_1q^n = a_1q^{n-1}q = a_nq = a_{n+1}$$

- 2. Podělíme vztahy pro a_s a a_r .
- 1
- V.1.2.: Nechť $\{a_2\}_{n=1}^{\infty}$ je GP s kvocientem q. Pak pro $\forall n \in \mathbb{N}$ platí:
 - 1. $q = 1 : S_n = n \cdot a_1$
 - 2. $q \neq 1 : S_n = a_n q^n 1q 1$

Dk:

$$qS_n - S_n = a_1^n - a_1 \Rightarrow S_n(q-1) - a_1(q^n - 1)$$

pro
$$q \neq 1$$
: $S_n = a_1 \frac{q^n - 1}{q - 1}$]

Př: Je dána posloupnost $\{2, 2sqrt2, 4, 4\sqrt{2}, 8, \ldots\}$, vypočítejte součet prvních 12 členů.

$$q=\sqrt{2}$$

$$S = 2\frac{\sqrt{2}^{12} - 1}{\sqrt{2} - 1} = 126\frac{\sqrt{2} + 1}{2 - 1} = 126 + 126\sqrt{2}$$

V.1.3.: Nechť $\{a_2\}_{n=1}^{\infty}$ je GP, pak platí: $\forall n \in \mathbb{N} - \{1\}$:

$$|a_n| = \sqrt{a_{n-1}a_{n+1}}$$