ASSIGNMENT № 1

Due: 03/19/2020

Jiageng Chen, CCNU Wollongong Joint Institute

Problem 1

Besides the password-based identification scheme, we have also seen one-time password SecureID system (time-based security token), S/Key system, as well as the challenge response protocol. Currently, most of the industrial solutions like to apply one of these techniques as a second identification factor as a complementary guarantee to the password-based method.

You are required to investigate the industrial solutions (from domestic or international organizations) regarding the identification techniques. Please provide 3 use cases of the following methods:

- 1. One-time password SecureID system
- 2. S/Key system
- 3. Challenge response protocol

You should describe: 1). the industrial application; 2). how the technique is applied in the solution; 3). related figures and algorithms.

Problem 2

Implement Schnorr signature scheme (both the original and the optimized versions) satisfying the following criteria. Please refer to the implementation of ECDSA for the program structure and necessary utility functions.

- 1. Use P256 curve.
- 2. Apply SHA256 for the Hash function.
- 3. Design "Key generation", "Sign", and "Verify" APIs.
- 4. Message to be signed: "CSCI468/968 Advanced Network Security, Spring 2020"

Problem 3

(Bad randomness attack on Schnorr signatures). Let (sk, pk) be a key pair for the Schnorr signature scheme (Section 19.2). Suppose the signing algorithm is faulty and chooses dependent values for α_t in consecutively issued signatures. In particular, when signing a message m_0 the signing algorithm chooses a uniformly random α_{t0} in \mathbb{Z}_q , as required. However, when signing

Assignment № 1 Page 1

 m_1 it choose α_{t1} as $\alpha_{t1} \leftarrow a \cdot \alpha_{t0} + b$ for some known $a, b \in \mathbb{Z}_q$. Show that if the adversary obtains the corresponding Schnorr message-signature pairs (m_0, σ_0) and (m_1, σ_1) and knows a, b and pk, it can learn the secret signing key sk, with high probability.

Problem 4

(Batch Schnorr verification). Consider the unoptimized Schnorr signature scheme \mathcal{S}_{sch} . Let $\{(m_i,\sigma_i)\}_{i=1}^n$ be n message/signature pairs, signed relative to a public key u. In this exercise we show that verifying these n signatures as a batch may be faster than verifying them one by one. Recall that a signature $\sigma=(u_{ti},\alpha_{zi})$ on message m_i is valid if $g^{\alpha_{zi}}=u_{ti}\cdot u^{c_i}$, where $c_i=H(m_i,u_{ti})$. To batch verify n signatures, the verifier does:

- 1. Choose random $\beta_1, ..., \beta_n \stackrel{R}{\leftarrow} \mathcal{C}$,
- 2. Compute $\bar{\alpha} \leftarrow \sum_{i=1}^n \beta_i \alpha_{zi} \in \mathbb{Z}_q$ and $\bar{c} \leftarrow \sum_{i=1}^n \beta_i c_i \in \mathbb{Z}_q$,
- 3. Accept all n signatures if $g^{\bar{\alpha}} = u^{\bar{c}} \cdot \prod_{i=1}^n u_{ti}^{\beta_i}$.

Explain why β values are required, and what would happen if they are not applied in the scheme. Please demonstrate with concrete security evaluation with the related advantages.

Assignment № 1 Page 2