Прогноз и нахождение формулы сигнала конечного ранга на основе SSA и итераций Кэдзоу

Курышев Иван Владимирович, 522-я группа

Санкт-Петербургский Государственный Университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель — к.ф.-м.н. **Н.Э. Голяндина** Рецензент — к.ф.-м.н. **В.В. Некруткин**

Санкт-Петербург 2007г.

Ряды конечного ранга

•
$$F_N = (f_0, \dots, f_{N-1}), 1 < L < N, K = N - L + 1$$

$$\bullet \ F_N \stackrel{L,K}{\longleftrightarrow} \mathbf{X} = \begin{pmatrix} f_0 & f_1 & f_2 & \dots & f_{K-1} \\ f_1 & f_2 & \dots & \dots & \dots \\ f_2 & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \\ f_{L-1} & f_L & \dots & \dots & f_{N-1} \end{pmatrix}$$

траекторная матрица, ганкелева, $f_{i+j} = const$

•
$$\mathbf{X} = \mathcal{T}F_N$$
, $F_N = \mathcal{T}^{-1}\mathbf{X}$

- О рядах конечного ранга:
 - F_N ряд конечного ранга d < N/2, если $\forall L: d < \min(L,K)$, $\mathrm{rank} \, \mathbf{X} = d$
 - Ряд, управляемый линейной рекуррентной формулой (ЛРФ) $f_{d+i} = \sum_{l=1}^d a_i f_{i+d-l}, a_d \neq 0$
 - Сумма произведений полиномов, экспонент и гармоник

Постановка задачи

- ullet $F_N=S_N+R_N$, R_N шум, S_N ряд конечного ранга p (p известно)
- Задачи:
 - 1. Выделить S_N Метод «Гусеница»-SSA, итерации Cadzow (аппроксимация траекторной матрицы ряда ганкелевой матрицей ранга p)
 - 2. Сделать прогноз S_N Различные методы на основе ЛРФ, на основе продолжения в заданном пространстве размерности p. Задача: сравнить по точности на модельных примерах.
 - 3. Найти аналитическую формулу сигнала.
 Реализация алгоритма.

Итерации Cadzow

- $\mathcal{M}_{L,K}$ пр-во вещественных матриц размера $L \times K$, $\mathcal{M}_{L,K}^{(\mathcal{H})}$ пр-во вещественных ганкелевых матриц $L \times K$, $\mathcal{M}_{L,K}^{(p)}$ пр-во вещественных матриц ранга p $L \times K$.
- Ортогональные проекторы (по норме Фробениуса)
 - 1. $\mathcal{R}^{(p)}: \mathcal{M}_{L,K} \longrightarrow \mathcal{M}_{L,K}^{(p)}$, $\mathbf{Y} = \sum_{i=1}^d \sqrt{\lambda_i} U_i V_i^T$ сингулярное разложение матрицы \mathbf{Y} . $\mathcal{R}^{(p)} \mathbf{Y} = \sum_{i=1}^p \sqrt{\lambda_i} U_i V_i^T$
 - 2. $\mathcal{H}: \mathcal{M}_{L,K} \longrightarrow \mathcal{M}_{L,K}^{(\mathcal{H})}$ ганкелизация (усреднение по диагоналям i+j=const)
- Из теоремы (Cadzow, 1988): Для последовательности матриц $(\mathcal{HR}^{(p)})^m \mathbf{X}$, \exists -ет подпоследовательность, которая сходится к $\mathbf{X}_{\mathcal{H}}^{(p)} \in \mathcal{M}_{L,K}^{(\mathcal{H})} \cap \mathcal{M}_{L,K}^{(p)} \colon ||\mathbf{X} \mathbf{X}_{\mathcal{H}}^{(p)}||_F \longrightarrow \min$.
- Т. о., алгоритм аппроксимации временных рядов рядом ранга p: $F_N^{(p)} = \mathcal{T}^{-1}(\mathcal{HR}^{(p)})^m \mathcal{T} F_N$ m=1 метод «Гусеница»-SSA

Прогноз

- $\{U_i\}_{i=1}^p$ ортонорм. система, $U_i \in \mathbb{R}^L, p < d$.
- $\mathcal{L}_p = \operatorname{span}(U_1, \dots, U_p)$
- Формула для выражения одних координат вектора через другие: Для $X=({Y\over Z})\in \mathcal{L}_p, \, \mathcal{I}=\{1,\dots,L\}, \mathcal{P}=\{L-P+1,\dots,L\},$ $\mathbf{U}=[U_1,\dots,U_p]$ $Z=\left(\mathbf{E}_P-\mathbf{U}\big|_{\mathcal{D}}(\mathbf{U}\big|_{\mathcal{D}})^{\mathrm{T}}\right)^{-1}\mathbf{U}\big|_{\mathcal{D}}(\mathbf{U}\big|_{\mathcal{T}\setminus\mathcal{D}})^{\mathrm{T}}Y.$

$$Z = (\mathbf{E}_P - \mathbf{O}|_{\mathcal{P}}(\mathbf{O}|_{\mathcal{P}})) \quad \mathbf{O}|_{\mathcal{P}}(\mathbf{O}|_{\mathcal{I}\setminus\mathcal{P}}) \quad I$$

Прогноз на P точек вперед

$$\bullet S = (s_0, \dots, s_{N-1}, \underbrace{\ominus, \ominus}) \longrightarrow \begin{pmatrix} \star & \dots & \star & \star & \star \\ \star & \dots & \star & \star & \star \\ \dots & \dots & \dots & \dots \\ \star & \dots & \star & \star & \ominus \\ \star & \dots & \star & \ominus & \ominus \end{pmatrix}$$

тр. матр.
$$F_N \xrightarrow{\mathcal{R}^{(p)}}$$
 восст. матр. матрица ранга $p \xrightarrow{\mathcal{H}}$ восст. ряда $\mathbf{X}^{(p)}|_{\bigcirc})$ $\mathbf{X}^{(p)}|_{\bigcirc})$

- Методы прогноза:
 - последовательный: по 1-ой точке на основе $\mathbf{X}_{H}^{(p)}$ (после ганкелизации)
 - одновременный: сразу на P точек вперед на основе $\mathbf{X}_{H}^{(p)}$ (после ганкелизации)
 - ullet векторный: по 1-ой точке, на основе $oldsymbol{\mathsf{X}}^{(p)}$ (до ганкелизации)

Численное сравнение методов прогноза

- ullet Пространство \mathcal{L}_p строится на основе M итераций Cadzow
- U_1,\dots,U_p первые p левых сингулярных векторов разложения матрицы $\mathbf{X}=\mathcal{T}F_N$
- Задача: сравнить
 - ullet последовательный (R), M=1
 - одновременный (S), M=1
 - векторный (V), M=1
 - Cadzow (C), M = 10

Результаты моделирования

- Сравнение проводилось на следующих рядах:
 - $s_n = A\sin(2\pi n/T)$, A = 1, $T = 25, \dots, 200$
 - $s_n = \exp(An)\sin(2\pi n/T)$, $A = \pm 0.01$, $T = 25, \dots, 200$
 - $s_n = \exp(An)$, $A = \pm 0.005, \dots, \pm 0.02$
 - $s_n = An + 1$, $A = \pm 0.005, \dots, \pm 0.1$
- N = 100, L = 50
- $\varepsilon_n \sim N(0, \sigma^2), \ \sigma = 0.05, \dots, 1$
- $P = 10, \dots, 49$
- Q = 10000 повторов.

•

$$MSD(S_{N+P}, \tilde{S}_{N+P}) = \sqrt{\frac{1}{Q} \sum_{q=1}^{Q} \left(\frac{1}{P} \sum_{i=N}^{N+P-1} (s_i - \tilde{s}_i)^2 \right)}$$

ullet Основной результат: V лучше (R,S,C)

Нахождение аналитического вида сигнала

- Аппроксимация сигнала рядом заданного ранга с помощью итераций Cadzow
 - Ряд ранга $d \Longrightarrow$ линейная рекуррентная формула (ЛРФ) $f_{d+i} = \sum_{l=1}^d a_l f_{d+i-l},$ $(a_d,\dots,a_1) = \frac{1}{1-\nu^2} \sum_{i=1}^d \pi_i U_i^{\nabla},$ где U_i-i -тый левый сингулярный вектор в SVD (d+1)-траекторной матрицы восстановленного сигнала, $\nu^2 = \pi_1^2 + \dots + \pi_d^2$
 - ЛРФ \Longrightarrow характеристический полином $P_d(\lambda) = \lambda^d \sum_{i=1}^d a_i \lambda^{d-k}$
 - Корни характеристического полинома $\lambda_1,\dots,\lambda_p$ кратности k_1,\dots,k_p определяют вид ряда: $f_n=\sum_{m=1}^p\left(\sum_{j=0}^{k_m-1}c_{mj}n^j\right)\lambda_m^n$
 - ullet Коэффициенты c_{mj} находим с помощью МНК.

с точностью до c_{mi} .

Кластеризация корней

- Особенность алгоритма: численный метод \Longrightarrow нет одинаковых корней
- Алгоритм кластеризации:
 - На входе: $G = \{\lambda_m\}_{m=1}^d$, ε_r , ε_c .
 - Отделение друг от друга вещественных и комплексных корней:

$$G_{real} = \{\lambda_m : |\operatorname{Im} \lambda_m| < \varepsilon_r\}, G_{comp} = \{\lambda_m : |\operatorname{Im} \lambda_m| \ge \varepsilon_r\}.$$

• Кластеризация:

Вещественные корни:

Сортировка G_{real} по возрастанию;

$$G_{\lambda_1} = \{\lambda_m : |\lambda_m - \lambda_1| < \varepsilon_c, \lambda_m \in G_{real}\}$$

$$\mu_1 = \sqrt[n]{\prod_{i \in G_{\lambda_1}} \lambda_i}$$

$$k_1 = |G_{\lambda_1}|$$

$$G_{real} := G_{real} \setminus G_{\lambda_1}$$

ullet На выходе $\{\mu_m\}_{m=1}^{p_1}$ с кратностями $\{k_m\}_{m=1}^{p_1}$

Комплексные корни:

$$G_c = \{\lambda_m : \operatorname{Im} \lambda_m > 0, \lambda_m \in G_{comp}\};$$
 аналогично случаю с вещественными корнями.

Пример: сумма гармоник

• Формула находится

$$\sigma = 0.1$$

Исходный сигнал	Восстановленный сигнал
$\sin(2\pi n/5)+$	$1.020\cos(2\pi n/4.998 - 1.570) +$
$\sin(2\pi n/10) +$	$0.983\cos(2\pi n/9.996 - 1.570)\exp(0.001n) +$
$\sin(2\pi n/25) +$	$0.960\cos(2\pi n/25.001 - 1.571)\exp(0.001n) +$
$\sin(2\pi n/50)$	$0.972\cos(2\pi n/50.032 - 1.570)\exp(0.001n)$

- MSD(I, F) = 1.e-3, MSD(I, R) = 1.e-3, MSD(R, F) = 1.e-3
- Собственные числа: $677.2, \ldots, 6.5e-03, 5.6e-06, 5.6e-13$

• Формула не находится

Исходный сигнал:

$$s_n = \sin(2\pi n/35) + \sin(2\pi n/40) + \sin(2\pi n/45), \ \sigma = 0.001$$

- Восстановить формулу не удается
- \bullet Собственные числа $1403.3, \ldots, 5.8e-10, 1.3e-10, 3.5e-11$

Пример: сумма экспонент

• Формула находится

$$\sigma = 0.001$$

Исходный сигнал	Восстановленный сигнал
$\exp(-0.005n)+$	$0.979 \exp(-0.005n) +$
$\exp(-0.03n) +$	$1.030 \exp(-0.030n) +$
$\exp(-0.07n)$	$0.991 \exp(-0.071n)$

- MSD(I, F) = 1.e-8, MSD(I, R) = 1.e-8, MSD(R, F) = 1.e-9
- Собственные числа:
 719.1. 0.063. 1.6e-07.1.4e-13

• Формула не находится

Исходный сигнал:

$$s_n = \exp(0.005n) + \exp(0.01n) + \exp(0.015n), \ \sigma = 0$$

- Восстановить формулу не удается
- Собственные числа: 11855.9, 0.002, 3.2e-11, 7.5e-12

Пример: полином

• Формула находится

$$\sigma=0.001$$
, $\varepsilon_r=0.1$, $\varepsilon_c=0.1$

Исходный сигнал	Восстановленный сигнал
-0.5+	$-0.50202 \exp(-0.00053n) +$
0.03n+	$0.03027n \exp(-0.00053n) +$
$0.0006n^2+$	$-0.00061n^2 \exp(-0.00053n) +$
$0.000004n^3$	$0.000004n^3 \exp(-0.00053n)$

- MSD(I, F) = 1.e-8, MSD(I, R) = 1.e-8, MSD(R, F) = 1.e-7
- \bullet Собственные числа: 13.5, 0.1, 2.3e-05, 9.2e-09, 1.0e-14

Корни характеристич.полинома на комплексной плоскости:

Пример: полином

• Формула не находится

Исходный сигнал:

$$s_n = 8(0.01n - 0.5)^4$$
, $\sigma = 0 \ \varepsilon_r = 0.1$, $\varepsilon_c = 0.1$

- Восстановить формулу не удается
- \bullet Собственные числа: 10.7, 0.2, 6.6e-05, 7.5e-08, 9.1e-12, 4.9e-12

Корни характеристич.полинома на комплексной плоскости:

Заключение

Итак, в дипломной работе

- С помощью моделирования было получено, что для прогноза зашумленного сигнала конечного ранга векторный метод прогноза наилучший.
- Был реализован метод нахождения аналитической формулы зашумленного сигнала и исследованы границы его применимости.