▼ Project : Credit Card Fraud Detection

following metrics: Sensitivity (true positive rate) and Specificity (true negative rate). Of course, they are dependent on each other, so we want to find optimal trade-off between them. Such trade-off usually depends on the application of the algorithm, and in case of fraud detection I would prefer to see high sensitivity (e.g. given that a transaction is fraud, I want to be able to detect it with high probability).

In this notebook I will try to predict fraud transactions from a given data set. Given that the data is imbalanced, standard metrics for evaluating classification algorithm (such as accuracy) are invalid. I will focus on the

DEADING DATACET

IMPORTING LIBRARIES:

data=	pd.ı	read_d	sv('/kagg	le/creditca	ardfraud/c	reditcard.	csv')					
data.	head	d()										
		Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	
	0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	

KEADI	ING DATASET	•						
data=p	d.read_csv('	/kaggle/cr	editcardf	raud/cred:	itcard.csv	')		
data.h	ead()							

1.0 -1.358354 -1.340163 1.773209 0.379780 -0.503198 1.800499 0.791461

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425	
_											

NIIII VALUES:

V1

V2

V3

۷4

V5

V6

V7

V۶ V9

data.isnull().sum() Time

0

0

0

0

0

0

0

0 0

3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739
5 row	vs × 3	1 columns								

0.247676 -1.514654

```
V10
               0
               a
    V11
    V12
               0
    V13
               a
    V14
               a
    V15
               a
    V16
               0
               0
    V17
    V18
               a
    V19
               0
    V20
               0
    V21
               0
               a
    V22
    V23
               0
    V24
               a
    V25
               0
               0
    V26
               a
    V27
    V28
               0
    Amount
               a
    Class
               0
    dtype: int64
Thus there are no null values in the dataset.
INFORMATION
    Data columns (total 31 columns):
    Time
               284807 non-null float64
    V1
               284807 non-null float64
    V2
               284807 non-null float64
    V3
               284807 non-null float64
    V4
               284807 non-null float64
    V5
               284807 non-null float64
    V6
               284807 non-null float64
    V7
               284807 non-null float64
    V8
               284807 non-null float64
```

V9

V10

V11

V12

V13

V14

V15

V16

V17

V18 V19

V20

V21

V22

ta.info()			

dat

284807 non-null float64

<class 'pandas.core.frame.DataFrame'> RangeIndex: 284807 entries, 0 to 284806

284807 non-null float64 284807 non-null float64 284807 non-null float64 284807 non-null float64 284807 non-null float64

284807 non-null float64 284807 non-null float64 284807 non-null float64 284807 non-null float64

284807 non-null float64 284807 non-null float64 284807 non-null float64 284807 non-null float64 284807 non-null float64 284807 non-null float64 284807 non-null float64

V23 V24 V25 V26 V27 V28 Amount Class 284807 non-null int64 dtypes: float64(30), int64(1)

memory usage: 67.4 MB

DESCRIPTIVE STATISTICS

data.describe().T.head()

	count	mean	std	min	2
Time	284807.0	9.481386e+04	47488.145955	0.000000	54201.5000
V1	284807.0	3.919560e-15	1.958696	-56.407510	-0.9203
V2	284807.0	5.688174e-16	1.651309	-72.715728	-0.5985
V3	284807.0	-8.769071e- 15	1.516255	-48.325589	-0.8903
4					+

data.shape

(284807, 31)

Thus there are 284807 rows and 31 columns.

```
data.columns
```

```
'Class'],
 dtype='object')
```

```
FRAUD CASES AND GENUINE CASES
```

```
print(' Number of Fraud Cases:',fraud_cases)
```

fraud cases=len(data[data['Class']==1])

```
Number of Fraud Cases: 492
```

```
non_fraud_cases=len(data[data['Class']==0])
```

```
print('Number of Non Fraud Cases:',non_fraud_cases)
```

```
Number of Non Fraud Cases: 284315
```

```
fraud=data[data['Class']==1]
```

```
genuine=data[data['Class']==0]
```

fraud.Amount.describe()

min

```
492.000000
count
        122.211321
mean
std
```

```
256.683288
 0.000000
```

```
25% 1.000000
50% 9.250000
75% 105.890000
max 2125.870000
Name: Amount, dtype: float64
```

genuine.Amount.describe()

count 284315.000000 mean 88.291022 std 250.105092 0.000000 min 25% 5.650000 50% 22.000000 75% 77.050000 25691.160000 max Name: Amount, dtype: float64

EDA

data.hist(figsize=(20,20),color='lime')
plt.show()


```
rcParams['figure.figsize'] = 16, 8
f,(ax1, ax2) = plt.subplots(2, 1, sharex=True)
f.suptitle('Time of transaction vs Amount by class')
ax1.scatter(fraud.Time, fraud.Amount)
ax1.set_title('Fraud')
ax2.scatter(genuine.Time, genuine.Amount)
ax2.set_title('Genuine')
plt.xlabel('Time (in Seconds)')
plt.ylabel('Amount')
plt.show()
```

CORRELATION

Let us build our models:

from sklearn.model_selection import train_test_split

Model 1:

```
X=data.drop(['Class'],axis=1)
```

y=data['Class']

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.30,random_state=123)

from sklearn.ensemble import RandomForestClassifier

rfc=RandomForestClassifier()

 $model=rfc.fit(X_train,y_train)$

```
prediction=model.predict(X test)
from sklearn.metrics import accuracy score
accuracy_score(y_test,prediction)
     0.9995786664794073
Model 2:
from sklearn.linear_model import LogisticRegression
X1=data.drop(['Class'],axis=1)
y1=data['Class']
X1_train,X1_test,y1_train,y1_test=train_test_split(X1,y1,test_size=0.3,random_state=123)
lr=LogisticRegression()
model2=lr.fit(X1_train,y1_train)
prediction2=model2.predict(X1 test)
accuracy_score(y1_test,prediction2)
     0.9988764439450862
Model 3:
from sklearn.tree import DecisionTreeRegressor
X2=data.drop(['Class'],axis=1)
y2=data['Class']
dt=DecisionTreeRegressor()
X2_train,X2_test,y2_train,y2_test=train_test_split(X2,y2,test_size=0.3,random_state=123)
model3=dt.fit(X2_train,y2_train)
prediction3=model3.predict(X2_test)
accuracy_score(y2_test,prediction3)
     0.999133925541004
```

