```
Acadgild Solutions for Business analysis with R session 4 Assignment 1
Solutions for Question 1 to Question 6
Question 1 Create the vectors
(a) (2, 3, ..., 29, 30)
(b) (30, 29, ..., 2)
(c) (1, 2, 3, ...., 29, 30, 29, 28, , 2, 1)
(d) (4, 6, 3) and assign it to the name dev.
For parts (e), (f) and (g).
(e) (5, 6, 7, 5, 6, 7, , 5, 6, 7) where there are 10 occurrences of 5.
(f) (5, 6, 7, 5, 6, 7, , 5, 6, 7, 5) where there are 11 occurrences of 5, 10 occurrences of 6 and 10 occurrences of
(g) (4, 4, , 4, 6, 6, , 6, 3, 3, , 3) where there are 10 occurrences of 4, 20 occurrences of 6 and 30 occurrences of
Answer 1
RCommands:
Part a)
a<-(2:30)
    5:2 (Top Level) $
                                                                                                R Script $
   Console -/
                                                                                                   a<-(2:30)
  [1] 2 3 4 5 6 7
[24] 25 26 27 28 29 30
                                     9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Part b)
b<-(30:2)
   Console ~/
                             25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10
Part c)
```

R:

T

٦

c<-c1:30,29:1)

```
С
  Console -/
   <-c(1:30,29:1)
  [1]
           3 4 5 6 7
                         8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
      1
         2
 [24] 24 25 26 27 28 29 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14
 [47] 13 12 11 10 9 8 7
                          6 5 4 3 2 1
```

Part d)

dev

dev <- c(4,6,3)

```
=\Box
Console -/ 🖒
  dev < - c(4,6,3)
 dev
[1] 4 6 3
```

```
Part e)
e<-c(5,6,7)
rep(e, times=10)
  Console -/ 🖒
  > e < -c(5,6,7)
  > rep(e, times=10)
[1] 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7
Part f)
e<-c(5,6,7)
w<-c(rep(e,times=10))
x=5
y < -c(w,x)
y
Console ~/ ⇔
    e<-c(5,6,7)
w<-c(rep(e,times=10))
   [1] 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7
                                             567567567567
    x=5
    y \leftarrow c(w,x)
   [1] 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5
Part g)
j<-c(rep(dev[1],10),rep(dev[2],20),rep(dev[3],30))
  Console ~/ 🖒
   j<-c(rep(dev[1],10),rep(dev[2],20),rep(dev[3],30))
  Question 2 Create a vector of the values of eX*sin(x) at x = 3, 3.1, 3.2, 6.
Rcommands:
x<-c(seq(3.1,6,0.1))
Х
y < -\sin(x)
У
```

p < -exp(x)

r<-c(y*p)

```
Console -/
    -c(seq(3.1,6,0.1))
[1] 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9
[20] 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0
[1]
     0.04158066 -0.05837414 -0.15774569 -0.25554110 -0.35078323 -0.44252044
    -0.52983614 -0.61185789 -0.68776616 -0.75680250 -0.81827711 -0.87157577
    -0.91616594 -0.95160207 -0.97753012 -0.99369100 -0.99992326 -0.99616461
[19] -0.98245261 -0.95892427 -0.92581468 -0.88345466 -0.83226744 -0.77276449
    -0.70554033 -0.63126664 -0.55068554 -0.46460218 -0.37387666 -0.27941550
[25]
 P
[1]
     22.19795 24.53253
                           27.11264 29.96410 33.11545
                                                          36.59823
                                                                    40.44730
                                               66.68633
     44.70118
                           54.59815 60.34029
 [8]
                49.40245
                                                          73.69979
                                                                    81.45087
     90.01713 99.48432 109.94717 121.51042 134.28978 148.41316 164.02191
[15]
    181.27224 200.33681 221.40642 244.69193 270.42641 298.86740 330.29956
[22]
[29] 365.03747 403.42879
[1]
                                  -4.2769020
                                                -7.6570591
        0.9230055
                    -1.4320654
                                                            -11.6163451
     -16.1954669
 [6]
                   -21.4304437
                                 -27.3507725
                                              -33.9773327
                                                            -41.3200162
     -49.3750762 -58.1221905 -67.5212405 -77.5088155 -87.9944570 -98.8566695 -109.9387348 -121.0443775 -131.9333449 -142.3169809
[11]
[16]
    -151.8538900 -160.1458060 -166.7338044 -171.0950158 -172.6400256
    -170.7111690 -164.5819569 -153.4578954 -136.4789910 -112.7242573
```

Question 3: Execute the following lines which create two vectors of random integers which are chosen with replacement from the integers 0, 1, : : : , 999. Both vectors have length 250.

```
set.seed(100)
x <- Sample (0:999, 250, replace=T)
y <- Sample (0:999, 250, replace=T)
(a) Identify out the values in v which are > 500.
(b) Identify the index positions in y of the values which are > 700?
(c) What are the values in x which are in Same index position to the values in y which are > 400?
(d) How many values in y are within 200 of the maximum value of the terms in y?
(e) How many numbers in x are divisible by 2?
(f) Sort the numbers in the vector x in the order of increasing values in y.
(g) Create the vector (x1 + 2x2 - x3; x2 + 2x3 - x4, xn - 2 + 2xn - 1 - xn).
Answer 3
Rcommands:
set.seed(100)
x <- Sample (0:999, 250, replace=T)
y <- Sample (0:999, 250, replace=T)
Part a)
y[y>500]
```


Part b)

y[y>700]

```
Console -/ (2) > y(5)=700]

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
```

Part c)

x[y>400]

```
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
986 987 988 989 990 991 992 993 994 995 996 997 998 999
```

Part d)

sum(y>max(y)-200)

```
Console -/ -> sum(y>max(y)-200)
[1] 200
```

Part e)

length(y[y%%2==0])

```
61:1 | (Top Level) $

| Console ~/ &>
| > length(y[y332==0]) |
| [1] 501 |
```

Part f)

x[order(y)]

us. i (iup	LEVELY +																
Console ~/											40040						
304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320	321
322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339
340	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357
358	359	360	361	362	363	364	365	366	367	368	369	370	37 1	372	373	374	37.5
376	377	378	379	380	381	382	383	384	385	386	387	388	389	390	391	392	393
394	395	396	397	398	399	400	401	402	403	404	405	406	407	408	409	410	411
412	413	414	415	416	417	418	419	420	421	422	423	424	425	426	427	428	429
430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447
448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465
466	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483
484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	500	501
502	503	504	505	506	507	508	509	510	511	512	513	514	515	516	517	518	519
520	521	522	523	524	525	526	527	528	529	530	531	532	533	534	535	536	537
538	539	540	541	542	543	544	545	546	547	548	549	550	551	552	553	554	555
556	557	558	559	560	561	562	563	564	565	566	567	568	569	570	571	572	573
574	575	576	577	578	579	580	581	582	583	584	585	586	587	588	589	590	591
592	593	594	595	596	597	598	599	600	601	602	603	604	605	606	607	608	609
610	611	612	613	614	615	616	617	618	619	620	621	622	623	624	625	626	627

isole -/		630						626		670	620						
628	629	630	631	632	633	634	635	636	637	638	639	640	641	642	643	644	645
646	647	648	649	650	651	652	653	654	655	656	657	658	659	660	661	662	663
664	665	666	667	668	669	670	671	672	673	674	675	676	677	678	679	680	681
682	683	684	685	686	687	688	689	690	691	692	693	694	695	696	697	698	699
700	701	702	703	704	705	706	707	708	709	710	711	712	713	714	715	716	717
718	719	720	721	722	723	724	725	726	727	728	729	730	731	732	733	734	735
736	737	738	739	740	741	742	743	744	745	746	747	748	749	750	751	752	753
754	755	756	757	758	759	760	761	762	763	764	765	766	767	768	769	770	771
772	773	774	775	776		778	779	780	781	782	783	784	785	786	787	788	789
790	791	792	793	794	795	796	797	798	799	800	801	802	803	804	805	806	807
808	809	810	811	812	813	814	815	816	817	818	819	820	821	822	823	824	825
826	827	828	829	830	831	832	833	834	835	836	837	838	839	840	841	842	843
844	845	846	847	848	849	850	851	852	853	854	855	856	857	858	859	860	861
862	863	864	865	866	867	868	869	870	871	872	873	874	875	876	877	878	879
880	881	882	883	884	885	886	887	888	889	890	891	892	893	894	895	896	897
898	899	900	901	902	903	904	905	906	907	908	909	910	911	912	913	914	915
916	917	918	919	920	921	922	923	924	925	926	927	928	929	930	931	932	933
934	935	936	937	938	939	940	941	942	943	944	945	946	947	948	949	950	951

ole ~/	PV																
718	719	720	721	722	723	724	725	726	727	728	729	730	731	732	733	734	735
736	737	738	739	740	741	742	743	744	745	746	747	748	749	750	751	752	753
754	755	756	757	758	759	760	761	762	763	764	765	766	767	768	769	770	771
772	773	774	775	776		778	779	780	781	782	783	784	785	786	787	788	789
790	791	792	793	794	795	796	797	798	799	800	801	802	803	804	805	806	807
808	809	810	811	812	813	814	815	816	817	818	819	820	821	822	823	824	825
326	827	828	829	830	831	832	833	834	835	836	837	838	839	840	841	842	843
844	845	846	847	848	849	850	851	852	853	854	855	856	857	858	859	860	861
362	863	864	865	866	867	868	869	870	871	872	873	874	875	876	877	878	879
880	881	882	883	884	885	886	887	888	889	890	891	892	893	894	895	896	897
898	899	900	901	902	903	904	905	906	907	908	909	910	911	912	913	914	915
916	917	918	919	920	921	922	923	924	925	926	927	928	929	930	931	932	933
934	935	936	937	938	939	940	941	942	943	944	945	946	947	948	949	950	951
952	953	954	955	956	957	958	959	960	961	962	963	964	965	966	967	968	969
970	971	972	973	974	975	976	977	978	979	980	981	982	983	984	985	986	987
988	989	990	991 .print")	992	993	994	995	996	997								

Part g)

Question-4:

Use the function paste to create the following character vectors of length 30:

- (a) ("Label 1", "Label 2",, "Label 30")
- *Note that there is a single space between label and the number following. (b) ("FN1", "FN2", ..., "FN30").
- **In this case, there is no space between fn and the number following.

Answer 4

Part a)

r<-paste("label",1:30,sep=" ")

Part b)

p<-paste0("FN",1:30, sep="")

Question 5:

Compound interest can be computed using the formula

 $A = P \times (1 + R/100)n$, where P is the original money lent, A is what it amounts to in n years at R percent per year interest

Write R code to calculate the amount of money owed after n years, where n changes from 1 to 15 in yearly increments, if the money lent originally is 10000 Rupees and the interest rate remains constant throughout the period at 11.5%.

Answer 5

A = P × (1 + R/100)n, where P is the original money lent, A is what it amounts to in n years at R percent per year interest.

```
n<-c(1:15)

n

p=1000

p

m<-p*(1+11.5/100)^n

m
```

Question 6 Generate the following matrices.

```
[,1] [,2] [,3] [,4]
```

[1,] 1 101 201 301

[2,] 2 102 202 302

[3,] 3 103 203 303

[4,] 4 104 204 304

[5,] 5 105 205 305

Answer 6

Rcommands:

```
n<-c(1:5,101:105,201:205,301:305)
n
mymatrix<-matrix(n,5,4)
mymatrix
```