Distributed Information Systems: Spring Semester 2018 - Quiz 3

Studer	nt Name:
Date:	April 12 2018
Stude	
	umber of questions: XXX
Each q	uestion has a single answer!
I	When representing the adjacency list of a Web page in a connectivity server by using a reference list from another Web page, the reference list is searched only in a neighbouring window of the Web page's URL, because: a. subsequent URLs in an adjacency list have typically small differences b. typically many URLs in a web page are similar to each other c.often many URLs among two pages with similar URL are similar
	d. most extra nodes are found in the neighbouring window.
	 When constructing a word embedding, negative samples are a. word - context word combinations that are not occurring in the document collection b. context words that are not part of the vocabulary of the document collection c.all less frequent words that do not occur in the context of a given word d. only words that never appear as context word
	Which of the following statements on Latent Semantic Indexing (LSI) and Word
'	 Embeddings (WE) is correct a. LSI is deterministic (given the dimension), whereas WE is not b. LSI does not take into account the order of words in the document, whereas WE does c.The dimensions of LSI can be interpreted as concepts, whereas those of WE cannot d. LSI does take into account the frequency of words in the documents, whereas WE does not.
4.	Given the following list of transactions: {apple,milk}, {milk, bread}, {apple, bread, milk},
+	{bread}
	 a. milk -> apple has support 1/2 and confidence 1 b. milk -> bread has support 1/2 and confidence 1 c.bread -> milk has support 1/2 and confidence 1
	d. apple -> milk has support 1/2 and confidence 1

5.	Given the 2-itemsets {1,2}, {1,5}, {2,5}, {1,4}, {1,3}, when generating the 3-itemsets we will a. Generate 5 3-itemsets after the join and 2 3-itemsets after the prune b. Generate 6 3-itemsets after the join and 1 3-itemsets after the prune c.Generate 4 3-itemsets after the join and 1 3-itemsets after the prune d. Generate 4 3-itemsets after the join and 2 3-itemsets after the prune
6.	Given the following teleporting matrix (E) for nodes A, B and C:
	 a. A random walker can never reach node A b. A random walker can never leave node A c.A random walker can always leave node C d. A random walker can always leave node B
	Reminder: columns are the probabilities to leave the respective node.
7.	 When computing PageRank iteratively, the computation ends when: a. The norm of the difference of rank vectors of two subsequent iterations falls below a predefined threshold b. The difference among the eigenvalues of two subsequent iterations falls below a predefined threshold c.All nodes of the graph have been visited at least once d. The probability of visiting an unseen node falls below a predefined threshold
8.	For his awesome research, Tugrulcan is going to use the Pagerank with teleportation and HITS algorithm, not on a network of webpages but on the retweet network of Twitter! The retweet network is a directed graph, where nodes are users and an edge going out from a user A and to a user B means that "User A retweeted User B". Which one is FALSE about a Twitter bot that retweeted other users frequently but got never retweeted by other users or by itself? a. It will have a non-zero hub value b. It will have an authority value of zero c. t will have a pagerank of zero d. Its authority value will be equal to the hub value of a user who never retweets other users.

There is no general rule regarding the self-links as the paper proposing the HITS algorithm did not specify it, so we also accepted d.