CSCI4333 Database Design & Implement

Lecture 14 – Relational Algebra 4

Instructor: Dr. Yifeng Gao

Schedule

• Today: Relational Algebra

• Tuesday: Review for HW4 & 5 and midterm exam

• Next Thursday: Midterm

Midterm

Close book and close note

- All the content until today:
 - Week 1: Intro to Database to Week 7: Today Class

• Total Question: 5

Relational Algebra

- selection σ
- Projection π
- Union U
- Set difference —
- Cross product ×
- Rename ρ

• Find all loans over \$1200

"select from the relation *loan*, only the rows which have a *amount* greater than 1200"

loan

ι,	loan-number	branch-id	amount
	1234	001	1,923.03
	3421	002	123.00
	2342	004	56.25
	4531	005	120.03

 $\sigma_{amount > 1200} (loan)$

1234	001	1,923.03

• Find the loan number for each loan of an amount greater than \$1200

"select from the relation *loan*, only the rows which have a *amount* greater than 1200, then project out just the *loan_number*"

loan

loan-number	branch-id	amount
1234	001	1,923.03
3421	002	123.00
2342	004	56.25
4531	005	120.03

 $\sigma_{amount > 1200}$ (loan)

1234	001	1,923.03
------	-----	----------

 $\pi_{loan-number} \left(\sigma_{amount > 1200} \left(loan \right) \right)$

1234

• Find all loans greater than \$1200 or less than \$75

"select from the relation *loan*, only the rows which have a *amount* greater than 1200 or an *amount* less than 75

loan

loan-number	branch-id	amount
1234	001	1,923.03
3421	002	123.00
2342	004	56.25
4531	005	120.03

 $\sigma_{amount > 1200} \vee amount < 75(loan)$

1234	001	1,923.03
2342	004	56.25

• Find the IDs of all customers who have a loan, an account, or both, from the bank

borrower

customer-id	loan-number
201	1234
304	3421
425	2342
109	4531

$\pi_{customer-id}$ (borrower)

201	
304	
425	
109	

201
304
425
109
333
492

depositor

customer-id	account-number
333	3467
304	2312
201	9999
492	3423

$\pi_{customer-id}$ (depositor)

333	
304	
201	
492	

Note this example is split over two slides!

Find the IDs of all customers who have a loan at branch 001.

borrower

customer-id loan-number 201 1234 304 3421

loan

loan-number	branch-id	amount
1234	001	1,923.03
3421	002	123.00

...we calculate their cross product...

We retrieve

loan...

borrower and

customer-id	borrower.loan- number	loan.loan- number	branch- id	amount
201	1234	1234	001	1,923.03
201	1234	3421	002	123.00
304	3421	1234	001	1,923.03
304	3421	3421	002	123.00

...we calculate their cross product...

customer-id	borrower.loan- number	loan.loan- number	branch- id	amount
201	1234	1234	001	1,923.03
201	1234	3421	002	123.00
304	3421	1234	001	1,923.03
304	3421	3421	002	123.00

...we select the rows where borrower.loan-number is equal to loan.loan-number...

customer-id	borrower.loan- number	loan.loan- number	branch- id	amount
201	1234	1234	001	1,923.03
304	3421	3421	002	123.00

...we select the rows where branch-id is equal to "001"

customer-id	borrower.loan- number	loan.loan- number	branch- id	amount
201	1234	1234	001	1,923.03

...we project out the *customer-id*.

201

 $\pi_{customer-id}$ ($\sigma_{branch-id='001}$, ($\sigma_{borrower,loan-number=loan,loan-number}$ (borrower x loan)))

Now Using Natural Join

Find the IDs of all customers who have a loan at branch 001.

borrower

We retrieve *borrower* and *loan*...

customer-id	loan-number
201	1234
304	3421

loan

loan-number	branch-id	amount
1234	001	1,923.03
3421	002	123.00

1234 in *borrower* is matched with 1234 in *loan*...

3421 in *borrower* is matched with 3421 in *loan*...

The rest is the same.

customer-id	loan-number	branch-id	amount
201	1234	001	1,923.03
304	3421	002	123.00

customer-id	loan-number	branch-id	amount
201	1234	001	1,923.03

 $\pi_{customer-id}$ ($\sigma_{branch-id='001}$, ($\sigma_{borrower,loan-number=loan,loan-number}(borrower \times loan)$))

 $= \pi_{customer-id} \left(\sigma_{branch-id='001'} \left(borrower \bowtie loan \right) \right)$

Note this example is split over two slides!

Example Queries 6

• Find the *names* of all customers who have a loan, an account, or both, from the bank

borrower

customer-id	loan-number
201	1234
304	3421
425	2342
109	4531

depositor

customer-id	account-number
333	3467
304	2312
201	9999
492	3423

customer

customer-id	customer-name	customer-city
101	Carol	Edinburg
109	David	Edinburg
201	John	Pharr
304	Mary	McAllen
333	Ben	Mission
425	David	Mission
492	Jason	Edinburg
501	Adam	Harlingen

Note this example is split over two slides!

Example Queries 6

• Find the *names* of all customers who have a loan, an account, or both, from the bank

 $\pi_{customer-id}$ (borrower) \cup $\pi_{customer-id}$ (depositor) customer

201		customer-id	customer-name	customer-city
304		101	Carol	Edinburg
425		109	David	Edinburg
109		201	John	Pharr
333		304	Mary	McAllen
492	1	333	Ben	Mission
•	, /	425	David	Mission
		492	Jason	Edinburg
		501	Adam	Harlingen

• Find the *names* of all customers who have a loan, an account, or both, from the bank

customer-id	customer-name	customer-city	
109	David	Edinburg	
201	John	Pharr	
304	Mary	McAllen	
333	Ben	Mission	
425	David	Mission	
492	Jason	Edinburg	

customer-name
David
John
Mary
Ben
David
Jason

customer-name		
David		
John		
Mary		
Ben		
Jason		

$$\pi_{customer-name}((\pi_{customer-id}(borrower) \cup \pi_{customer-id}(depositor))) \bowtie customer)$$

• Find the name of the sailor having the highest rating.

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

S2

With only six operators: selection, projection, union, difference, cross-product, rename can we solve it?

• Find the name of the sailor having the highest rating.

AllR=
$$\pi_{ratingA} \rho(rating->ratingA, S2)$$

Result
$$=\pi_{Sname}(\sigma_{rating < rating A}(S2 \times AllR))$$

S2

What's in "Result"?

Does it answer our query?

<u>sid</u>	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

S2

<u>sid</u>	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

AllR

ratingA	
9	
8	
5	
10	

 $AllR = \pi_{ratingA} \rho(rating -> ratingA, S2)$

Result $=\pi_{Sname}(\sigma_{rating}(S2\times AllR))$

sid	sname	rating	age	ratingA
28	yuppy	9	35.0	9
28	yuppy	9	35.0	8
28	yuppy	9	35.0	5
28	yuppy	9	35.0	10
31	lubber	8	55.5	9
31	lubber	8	55.5	8
31	lubber	8	55.5	5
31	lubber	8	55.5	10
44	guppy	5	35.0	9
44	guppy	5	35.0	8
44	guppy	5	35.0	5
44	guppy	5	35.0	10
58	rusty	10	35.0	9
58	rusty	10	35.0	8
58	rusty	10	35.0	5
58	rusty	10	35.0	10

Back to our query

• Find the name of the sailor having the highest rating.

AllR=
$$\pi_{ratingA} \rho(rating->ratingA, S2)$$

$$Tmp=\pi_{Sid,Sname}(\sigma_{rating}< ratingA)(S2\times AllR))$$

Result=
$$\pi_{Sname}$$
 ($\pi_{Sid,Sname}$ (S2)-Tmp)

• Find all pairs of the customers who live in the same city (name1,name2, city)

customers

customer-id	customer-name	customer-city	
101	Carol	Edinburg	
109	David	Edinburg	
201	John	Pharr	
304	Mary	McAllen	
333	Ben	Mission	
425	David	Mission	
492	Jason	Edinburg	
501	Adam	Harlingen	