Topic o: Introduction and R tutorial

Patrick Ding

8/28/2018

Administrative

- 1. Get webassign
- 2. Accept Piazza invite
- 3. Read syllabus
- 4. Download R and Rstudio

What is Statistics?

- Statistics: the science of learning from data.
- Anticipated learning outcomes:
 - appreciate and apply basic statistical methods in an everyday life setting
 - appreciate and apply basic statistical methods in their scientific field

Why should you care

- Computer science/software engineering
 - A/B Testing
 - Recommendation
- Civil engineering
 - Traffic management
 - Risk and reliability
- Industrial engineering
 - Statistical process control
 - Queuing theory
- Mechanical engineering
 - Optimal control
- Biology
 - Genome-wide association study
 - Phylogeny
- Meteorology
 - Model output statistics
 - Ensemble forecasts
- Economics
 - Causal inference
 - Factor investing
- Chemistry
 - Multivariate calibration
- Humanities
 - Topic modeling
 - "Distant reading"
- Psychology
 - Personality testing
 - Experimental design
- Marketing
 - Market basket analysis

Motivating example

In the 2015 season of the National Football League (NFL), the Houston Texans won 9 of their 16 games.

- Win percentage: $(9 / 16) \times 100\% = 56.25\%$.
- Is "real" win percentage better than chance (50%)?
- What is the probability of 9 or more wins out of 16 if real win percentage is 50%?

Simulate result of a season

table(win_total)/n

```
p < -0.5
season <- sample(c(0, 1), size = 16, replace = TRUE,
    prob = c(1 - p, p))
win_total <- sum(season)</pre>
season
## [1] 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1
win_total
## [1] 8
  Run simulation 1000 times
n <- 1000
win_total <- replicate(n, {</pre>
    season <- sample(c(0, 1), size = 16, replace = TRUE,
        prob = c(1 - p, p))
    sum(season)
})
  Frequencies of win totals:
table(win_total)
## win_total
     2
         3
             4
                 5
                     6 7 8
                                 9 10 11 12
    4 12 27 67 113 158 206 184 115 72 31
## 13 14
    8
         3
##
  Win probabilities
```

```
## win_total
      2
           3
                4
                        5
                              6
                                    7
## 0.004 0.012 0.027 0.067 0.113 0.158 0.206
           10
                 11
                       12
                             13
## 0.184 0.115 0.072 0.031 0.008 0.003
sum(win_total >= 9)/n
## [1] 0.413
```

Learning R

Resources

- StackOverflow
- DataCamp introduction
- Rstudio cheatsheets

General Advice

• Just trying something has no cost; guess and check

R Syntax

```
# this is a comment
# use R as a calculator
3 * (5 + sqrt(2) + pi)
## [1] 28.66742
# assignment
a <- TRUE
b = 2
  Control Flow
# conditional
if (!a) {
    print("hello")
} else {
    print("goodbye")
}
## [1] "goodbye"
```

```
# for loop
for (i in 1:10) {
    cat(i)
}
## 12345678910
# while loop
x <- 4
while (x > 0) {
    cat(x^2)
    cat(" ")
    x < -x - 1
}
## 16 9 4 1
  Data Types
# vectors
vec1 < -c(1, 5, 4, 3)
vec2 <- 1:10
vec3 <- seq(from = -4, by = 4, to = 2)
# everything is a vector
length(3)
length(vec1)
## [1] 1
## [1] 4
# lists
list1 <- list(1, "a", 3)
list1
## [[1]]
## [1] 1
##
## [[2]]
## [1] "a"
##
## [[3]]
## [1] 3
```

data frames

df

names <- c("Bob", "Fatima", "Pierre")</pre>

 $df \leftarrow data.frame(age = c(10, 15, 23), name = names)$

```
##
    age
           name
## 1 10
            Bob
## 2 15 Fatima
## 3 23 Pierre
# get a column, 3 ways to do same thing
df[, "name"]
df$name
df[, 2]
## [1] Bob
              Fatima Pierre
## Levels: Bob Fatima Pierre
              Fatima Pierre
## [1] Bob
## Levels: Bob Fatima Pierre
## [1] Bob
            Fatima Pierre
## Levels: Bob Fatima Pierre
colnames(df)
dim(df)
## [1] "age" "name"
## [1] 3 2
  Reading/writing data sets
# write df to csv, look at directory contents
write.csv(df, "demo_file.csv", row.names = FALSE)
dir()
## [1] "demo_file.csv"
## [2] "intro_r_tutorial_files"
## [3] "intro_r_tutorial.html"
## [4] "intro_r_tutorial.pdf"
## [5] "intro_r_tutorial.Rmd"
## [6] "roster_509_f2018.csv"
## [7] "tryingstuffuntilitworks-big.png"
# read df back in
df2 <- read.csv("demo_file.csv")</pre>
df
##
     age
           name
## 1 10
            Bob
## 2 15 Fatima
## 3 23 Pierre
df2
```

3 23 Pierre