

#### Học viện Công nghệ Bưu chính Viễn thông Khoa Công nghệ thông tin 1

Nhập môn trí tuệ nhân tạo

# Suy diễn xác suất

Ngô Xuân Bách



#### Nội dung

- Vấn đề suy diễn trong điều kiện không rõ ràng
- Nguyên tắc suy diễn xác suất
- Một số khái niệm về xác suất



# Vấn đề suy diễn trong điều kiện không rõ ràng (1/2)

#### Logic

- Cho phép biểu diễn tri thức và suy diễn
- Đòi hỏi tri thức rõ ràng, đầy đủ, chắc chắn, không mâu thuẫn

#### Thế giới thực

Luôn có yếu tố không rõ ràng, thiếu thông tin, có mâu thuẫn



# Vấn đề suy diễn trong điều kiện không rõ ràng (2/2)

- Các yếu tố ảnh hưởng tới tính rõ ràng, chắc chắn của tri thức, thông tin
  - Thông tin có chứa đựng yếu tố ngẫu nhiên
    - Khi chơi bài, tung đồng xu
  - Lý thuyết không rõ ràng
    - Ví dụ không biết hết cơ chế gây bệnh
  - Thiếu thông tin thực tế
    - Không đủ thông tin xét nghiệm của bệnh nhân
  - Các yếu tố liên quan tới bài toán quá lớn, quá phức tạp
    - Không thể biểu diễn được mọi yếu tố
  - Sai số khi lấy thông tin từ môi trường
    - Các thiết bị đo có sai số



# Các cách tiếp cận

#### Logic đa trị

Cho phép sử dụng nhiều giá trị hơn, ngoài "đúng" và "sai"

#### Logic mờ

Biểu thức có thể nhận giá trị "đúng" với một giá trị trong khoảng
 [0,1]

#### Lý thuyết khả năng

 Các sự kiện hay công thức được gán một số thể hiện khả năng xảy ra sự kiện đó

#### Suy diễn xác suất

 Kết quả suy diễn trả về xác suất một sự kiện hay công thức nào đó là đúng



#### Nội dung

- Vấn đề suy diễn trong điều kiện không rõ ràng
- Nguyên tắc suy diễn xác suất
- Một số khái niệm về xác suất



# Nguyên tắc suy diễn xác suất (1/2)

- Thay vì suy diễn về tính "đúng" hoặc "sai" của mệnh đề (2 giá trị), suy diễn về "niềm tin" mệnh đề đó đúng hay sai (vô số giá trị)
  - Gắn cho mỗi mệnh đề một số đo giá trị niềm tin
  - Biểu diễn mức đo niềm tin như giá trị xác suất, sử dụng lý thuyết xác suất để làm việc với giá trị này
  - Với mênh đề A
    - Gán xác suất P(A):  $0 \le P(A) \le 1$ ;
    - P(A) = 1 nếu A đúng, P(A) = 0 nếu A sai
  - Ví dụ:
    - P(Cảm = true) = 0.6: người bệnh bị cảm với xác suất 60%, "Cảm" là biến ngẫu nhiên có thể nhận 1 trong 2 giá trị  $\{True, False\}$
    - $P(tr\grave{o}i = n nd n gi\acute{o} = m anh) = 0.8$ : ta tin rằng trời nắng và gió mạnh với xác suất 80%, trời là biến ngẫu nhiên nhận các giá trị  $\{n nd n g, m \alpha a, u \ anh\}$ , gió là biến ngẫu nhiên nhận giá trị  $\{m anh, y \ u, trung \ b \ nh\}$



# Nguyên tắc suy diễn xác suất (2/2)

#### Bản chất của xác suất sử dụng trong suy diễn

- Bản chất thống kê: dựa trên thực nghiệm và quan sát
  - Không phải khi nào cũng xác định được
- Xác suất dựa trên chủ quan: mức độ tin tưởng, niềm tin là sự kiện đó đúng hoặc sai của chúng chuyên gia, người dùng
  - Được sử dụng khi suy diễn xác suất

#### Thu thập thông tin

- Xác định các tham số liên quan tới bài toán: ví dụ "màu", "đẹp"
- Mỗi tham số là một biến ngẫu nhiên
- Mỗi biến ngẫu nhiên có thể nhận một số giá trị rời rạc trong miền giá trị của biến đó
  - Có thể là {True, False} hoặc nhiều giá trị hơn: {đỏ, xanh, vàng}
- o VD:  $P(m \dot{a}u = d\dot{o}) = 0.09$ ;  $P(\neg dep) = 0.2$



#### Nội dung

- Vấn đề suy diễn trong điều kiện không rõ ràng
- Nguyên tắc suy diễn xác suất
- Một số khái niệm về xác suất



#### Các tiên đề xác suất và một số tính chất cơ bản

#### Các tiên đề xác suất

- 1.  $0 \le P(A = a) \le 1$  với mọi a thuộc miền giá trị của A
- 2. P(True) = 1, P(False) = 0
- 3.  $P(A \lor B) = P(A) + P(B) P(A \land B)$

#### Một số tính chất

- 1.  $P(\neg A) = 1 P(A)$
- 2.  $P(A) = P(A \wedge B) + P(A \wedge \neg B)$
- 3.  $\Sigma_a P(A=a)=1$ : tổng lấy theo các giá trị a thuộc miền giá trị của A



# Xác suất đồng thời (1/2)

- Có dạng  $P(V_1 = v_1, V_2 = v_2, ..., V_n = v_n)$
- Phân bố xác suất đồng thời đầy đủ: bao gồm xác suất cho tất cả các tổ hợp giá trị của tất cả biến ngẫu nhiên
- Ví dụ: cho 3 biến Bool: Chim, Non, Bay

| Chim (C) | Non (N) | Bay (B) | P    |
|----------|---------|---------|------|
| T        | T       | T       | 0.0  |
| T        | T       | ${f F}$ | 0.2  |
| T        | F       | T       | 0.04 |
| T        | F       | F       | 0.01 |
| F        | T       | T       | 0.01 |
| F        | T       | F       | 0.01 |
| F        | F       | T       | 0.23 |
| F        | F       | F       | 0.5  |



# Xác suất đồng thời (2/2)

Nếu có tất cả xác suất đồng thời, ta có thể tính xác suất cho mọi mệnh đề liên quan tới bài toán đang xét

#### Ví dụ:

```
P(Chim = T) = P(C) = 0.0 + 0.2 + 0.04 + 0.01 = 0.25
```

```
 P(Chim = T, Bay = F) = P(C, \neg B) = P(C, N, \neg B) + P(C, \neg N, \neg B) = 0.2 + 0.01 = 0.21
```



### Xác suất điều kiện (1/2)

- Đóng vai trò quan trọng trong suy diễn
  - Từ bằng chứng suy ra xác suất của kết quả
  - o Ví dụ:
    - P(A|B) = 1 tương đương  $B \Rightarrow A$  trong logic
    - P(A|B) = 0.9 tương đương  $B \Rightarrow A$  với xác suất hay độ chắc chắn là 90%
    - Với nhiều bằng chứng (quan sát)  $E_1, \dots, E_n$  có thể tính  $P(Q|E_1, \dots, E_n)$  tương đương: niềm tin Q đúng là bao nhiều nếu biết  $E_1, \dots, E_n$  và không biết gì thêm
- Định nghĩa xác suất điều kiện

$$P(A|B) = \frac{P(A \land B)}{P(B)} = \frac{P(A,B)}{P(B)}$$

- Ví du: tính
  - $P(\neg Chim \mid Bay)$



### Xác suất điều kiện (2/2)

- Các tính chất của xác suất điều kiên
  - P(A,B) = P(A|B)P(B)
  - Ouy tắc chuỗi: P(A,B,C,D) = P(A|B,C,D) P(B|C,D) P(C|D) P(D)
  - Quy tắc chuỗi có điều kiện: P(A,B|C) = P(A|B,C) P(B|C)
  - Quy tắc Bayes:  $P(A|B) = \frac{P(A)P(B|A)}{P(B)}$
  - o Bayes có điều kiện:  $P(A|B,C) = \frac{P(B|A,C)P(A|C)}{P(B|C)}$
  - $P(A) = \sum_{b} \{P(A|B=b) P(B=b)\}, \text{ tổng lấy theo tất cả giá trị } b$ cúa *B*
  - $P(\neg B|A) = 1 P(B|A)$



# Kết hợp nhiều bằng chứng

- Ví du:
  - $T inh P (\neg Chim \mid Bay, \neg Non) = \frac{P (\neg Chim, Bay, \neg Non)}{P (Bay, \neg Non)}$
- Trường hợp tổng quát: cho bảng xác suất đồng thời, có thể tính
  - $P(V_1 = v_1, ..., V_k = v_k | V_{k+1} = v_{k+1}, ..., V_n = v_n)$
  - Tổng các dòng có  $V_1 = v_1, ..., V_n = v_n$  chia cho tổng các dòng có  $V_{k+1} = v_{k+1}, \dots, V_n = v_n$



#### Tính độc lập xác suất

- Arr A độc lập với B nếu P(A|B) = P(A)
  - $\circ$  Ý nghĩa: biết giá trị của B không thêm thông tin về A
  - Từ đây có thể suy ra P(A, B) = P(A)P(B)
- A độc lập có điều kiện với B khi biết C nếu
  - P(A|B,C) = P(A|C) hoặc P(B|A,C) = P(B|C)
  - $\circ$  Ý nghĩa: nếu đã biết giá trị của C thì việc biết giá trị của B không cho ta thêm thông tin về A
  - Suy ra P(A,B|C) = P(A|C)P(B|C)



# Sử dụng quy tắc Bayes

- Quy tắc Bayes đóng vai trò quan trọng trong suy diễn
- Để suy diễn cần biết P(A|B) nhưng thường P(B|A) dễ tính hơn
  - Ví dụ: xác suất bị cúm khi đau đầu và xác suất đau đầu khi bị cúm

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$



#### Ví dụ (1/2)

- Một người có kết quả xét nghiệm dương tính với bệnh B
- Thiết bị xét nghiệm không chính xác hoàn toàn
  - Thiết bị cho kết quả dương tính đối với 98% người có bệnh
  - Thiết bị cho kết quả dương tính đối với 3% người không có bệnh
- 0.8% dân số mắc bệnh này
- Hỏi: Người này có bị bệnh không?



### Ví dụ (2/2)

- Kí hiệu sự kiện có bệnh là B, sự kiện xét nghiệm dương tính là A
- Theo dữ kiện bài toán ta có

$$P(B) = 0.008, P(\neg B) = 1 - 0.008 = 0.992$$

$$P(A|B) = 0.98, P(\neg A|B) = 1 - 0.98 = 0.02$$

$$P(A|\neg B) = 0.03, P(\neg A|\neg B) = 1 - 0.03 = 0.97$$

- ▶ Cần so sánh các xác suất P(B|A) và  $P(\neg B|A)$
- Sử dụng quy tắc Bayes

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)} = \frac{0.98*0.008}{P(A)} = \frac{0.00784}{P(A)}$$

$$P(\neg B|A) = \frac{P(A|\neg B)P(\neg B)}{P(A)} = \frac{0.03*0.992}{P(A)} = \frac{0.02976}{P(A)}$$

 $P(\neg B|A) > P(B|A)$ , không bị bệnh



#### Chuẩn tắc hóa

- Để so sánh P(B|A) và  $P(\neg B|A)$  ta không cần tính cụ thể hai giá trị xác suất này, thay vào đó ta tính  $\frac{P(B|A)}{P(\neg B|A)}$ 
  - Hai biểu thức có chung mẫu số P(A)
  - Kết luận có bệnh hay không phụ thuộc vào giá trị  $\frac{P(B|A)}{P(\neg B|A)}$  lớn hơn hay nhỏ hơn 1
- Khi cần tính cụ thể xác suất này ta làm như sau

$$P(B|A) + P(\neg B|A) = 1 \text{ nên } \frac{P(A|B)P(B)}{P(A)} + \frac{P(A|\neg B)P(\neg B)}{P(A)} = 1$$

Do đó 
$$P(A) = P(A|B)P(B) + P(A|\neg B)P(\neg B) = 0.00784 + 0.02976 = 0.0376$$
  
Từ đó  $P(\neg B|A) = 0.79; P(B|A) = 0.21$ 



### Kết hợp quy tắc Bayes và tính độc lập xác suất

- Cần tính P(A|B,C), biết B và C độc lập xác suất khi biết A
  - Theo quy tắc Bayes  $P(A|B,C) = \frac{P(B,C|A)*P(A)}{P(B,C)}$
  - Theo tính độc lập xác suất P(B,C|A) = P(B|A) \* P(C|A)
  - o Do đó  $P(A|B,C) = \frac{P(B|A)*P(C|A)*P(A)}{P(B,C)}$

#### Ví dụ:

- $_{\circ}$  Cho 3 biến nhị phân: gan BG, vàng da VD, thiếu máu TM
- Giả sử VD độc lập với TM
- Biết  $P(BG) = 10^{-7}$
- Có người khám bị VD
- Biết  $P(VD) = 2^{-10} \text{ và } P(VD|BG) = 2^{-3}$
- a) Xác suất người khám bị bệnh là bao nhiêu?
- b) Cho biết thêm người đó bị thiếu máu và  $P(TM) = 2^{-6}$ ,  $P(TM|BG) = 2^{-1}$ . Hãy tính xác suất người khám bị bệnh BG.