1 abelian category における Kernel の随伴関手

Kernel の随伴関手を定義する。以下の順序にて説明する。

- 1. abelian category C に対し、随伴で移り合う category C^* を定義する。
- 2. Kernel とその随伴になる関手を定義する。
- 3. 実際に随伴となっていることを確認する。

1.1 \mathcal{C}^* の定義

C を abelian category とする。 C^* を以下で定義する。

- 1. $Obj(C^*)$ はある $Y, Z \in C$ が存在し、 $f \in Hom_{\mathcal{C}}(Y, Z)$ となる f 全体
- 2. $f:Y\to Z,g:Y'\to Z'$ に対し、 $\tau\in \mathrm{Hom}(f,g)$ は $\tau_Y:Y\to Y',\tau_Z:Z\to Z'$ であって、 $g\circ\tau_Y=\tau_Z\circ f$ を満たすもの全体

Remark. C^* は abelian category(のはず)。

1.2 Kernel とその随伴関手の定義

(コホモロジーのこころの Ker の定義がよくわからなかったので) $\mathcal C$ の射 $f:Y\to Z$ の Kernel を以下で定義する。任意の $f\circ g=0$ となる $g:X\to Y$ に対し、以下が可換になる射 $X\to \operatorname{Ker} f$ がただ一つ存在するような $(\operatorname{Ker} f,i)$ の組のことを f の Kernel という。

Remark. TeX力がないので、いい可換図式がかけません。 TeXGod がいた ら、教えてください。

これは、 $\operatorname{Hom}_{\mathcal{C}}(X,\operatorname{Ker} f)$ と f が誘導する準同型 $f^*:\operatorname{Hom}_{\mathcal{C}}(X,Y)\to\operatorname{Hom}_{\mathcal{C}}(X,Z)$ の Kernel の間に自然な同型があることを意味している。

functor Ker: $\mathcal{C}^* \to \mathcal{C}$ を以下で定義する。 $f: Y \to Z$ に対し、関手 Ker の f の像を abelian category \mathcal{C} の Ker f とする。 \mathcal{C}^* 上の $f: Y \to Z, g: Y' \to Z'$ に対する射 (τ_Y, τ_Z) に対し、Ker f から Ker g への射を以下で定める。

これは $f\circ i_f$ が 0 射になり、図式の可換性から、 $g\circ \tau_Y\circ i_f$ が 0 射となる。よって、Kernel の universality から Kerf から Kerg の射がただひとつ定まるので、Well-defined となる。

Kernel の随伴関手 $F:\mathcal{C}\to\mathcal{C}^*$ を定義する。 $X\in\mathcal{C}$ に対し、 $F(X)=0_X:X\to 0$ で定める。 $f:Y\to Z$ に対し、 $F(f)=(f,\tau_0)$ と定める。

$$Y \xrightarrow{0} 0$$

$$\downarrow f \quad \circlearrowleft \quad \downarrow \tau_0$$

$$Z \xrightarrow{0} 0$$

1.2.1 随伴関手になることの確認

 $\operatorname{Hom}(X,\operatorname{Ker} f) \sim \operatorname{Hom}(F(X),f)$ を示す。 $g \in \operatorname{Hom}(X,Y)$ を、 $(g.0) \in \operatorname{Hom}(F(X),f)$ となるようにとる。すると、Kernel の universality より以下の可換図式が成りたつような射 $g':X \to \operatorname{Ker} f$ がただひとつ存在する。よって、示された。

$$\begin{array}{c|c} X \xrightarrow{i_X} X \xrightarrow{0} 0 \\ & \Diamond & \downarrow^g & \Diamond & \downarrow^{\tau_0} \\ & & \downarrow^{i_f} & \downarrow^g & \downarrow^{\tau_0} \end{array}$$

$$\text{Ker} f \xrightarrow{i_f} Y \xrightarrow{f} Z$$

Remark. 自然性はエクササイズでお願いします。燃え尽きました。