12. Multivariate analyses: introduction

LPO.8800: Statistical Methods in Education Research

Sean P. Corcoran

LPO.8800 (Corcoran)

Lecture 12

Last update: December 5, 2022 1/53

Last time

- Bivariate regression
- Prediction equation, predicted values, residuals (prediction errors)
- Ordinary least squares (OLS)
- Interpreting regression intercept and slope
- ullet Assessing goodness of fit (R^2)
- Conditional mean interpretation of regression
- Inference about the population slope: confidence intervals and hypothesis tests
- Regression diagnostics with residuals

Generally speaking, regression slopes (and correlations) *cannot* be interpreted as *causal*. Examples:

- Russian cholera epidemic: peasants observed that in communities with lots of doctors, there were lots of cholera cases; doctors were murdered.
- SAT prep courses: in 1988 Harvard interviewed its freshmen and found that those who took SAT coaching courses scored 63 points lower than those who did not.
 - A dean concluded that the SAT courses were unhelpful and that "the coaching industry is playing on parental anxiety."

Causal questions imply "all else is held equal."

LPO.8800 (Corcoran)

Lecture 1

Last update: December 5, 2022 3 / 53

Correlation vs. causality, revisited

Correlation vs. causality, revisited

Imagine collecting data and conducting a simple regression analysis for each case:

In the lefthand figure, each data point is a community. In the righthand figure, each data point is a college applicant.

There is clearly an association between these pairs of variables, but can we say that variation in X is causing variation in Y ($X \rightarrow Y$)? There are three possible explanations for a correlation between two variables X and Y: X is causing Y, Y is causing X, or some other factor is causing both.

Criteria for a causal relationship:

- Association between the two variables
- An appropriate time ordering
- Elimination of alternative explanations

LPO.8800 (Corcoran)

Lecture 12

Last update: December 5, 2022 7/53

Correlation vs. causality, revisited

Considering the above two examples:

- Russian cholera epidemic: it is unlikely doctors (X) caused the cholera cases (Y), since the presence of cholera preceded the arrival of the doctors (Y → X).
- SAT prep courses: it is possible that the prep course worsened SAT performance (the time ordering is appropriate). But it is more likely a third factor explains both enrollment in the prep course and low SAT scores (e.g., test anxiety, poor prior academic preparation). The association may be spurious. One would need to eliminate alternative explanations before making a causal connection.

Lecture 12

Last update: December 5, 2022 8 / 53

	Rigby	Com
when	Enough with the wind already Received April 1	judg
legis- Brent ters'	Ever since they installed all those big fans up on the hill it's become even windier. Whose bright idea was that? I've noticed when they're off, we get a nice calm spell. Please turn them off, at least on weekends. (Word count: 40) JEFF FORBES Idaho Falls	rerr "the issu mer from
ds max	- Guest columns, solicited: 450 words max • Guest o	colum

LPO 8800 (Corcoran)

Lecture 12

Last update: December 5, 2022 9 / 53

Experimental and observational data

Eliminating alternative explanations can be very difficult to do in social science and education research. The researcher is typically working with observational data, and has no control over assignment to "treatment" conditions of interest. Consider again these questions:

- Does smoking cause lung cancer?
- Would a smaller class size improve learning?
- Does education increase labor market productivity and earnings?
- Is parental divorce detrimental to childrens' outcomes?
- Do mask mandates reduce the transmission of infectious diseases?

Experimental and observational data

This is in contrast to the medical researcher who can randomly assign subjects to receive a new drug or a placebo. With this study design, she controls the time ordering, and can confidently attribute any systematic differences in the subjects' outcomes to the drug (and not due to some third factor).

LPO.8800 (Corcoran)

Lecture 12

Last update: December 5, 2022 11 / 53

Eliminating alternative explanations

In the absence of random assignment, the elimination of alternative explanations (**confounders**) is difficult to do, and depends on sound research design, data availability, and a good theoretical understanding of factors that affect variation in the outcome *Y*.

Note: outliers and anecdotal examples of contradictory cases are **not** sufficient for ruling out causal relationships! Causal effects are a description of how X affects Y on average, not in a deterministic sense.

- A high-poverty school that is "beating the odds" does not demonstrate that poverty has no effect on academic achievement.
- A smoker that lives to 102 is not proof that smoking does not cause lung cancer.

LPO 8800 (Corcoran)

Lecture 1

Last update: December 5, 2022 12 / 53

Controlling for other variables

In practice how does one eliminate alternative explanations for the association between X and Y? **Controlling** involves using statistical techniques to find the correlation between two variables, holding the value of other variables constant

The variables we wish to remove the effects of—i.e., control for—are called **control variables** or **covariates** (e.g., $X_2, X_3, ..., X_k$).

 We statistically control for a third variable X₂ by examining the relationship between X₁ and Y conditional on X₂ (i.e., for fixed values of X₂).

LPO.8800 (Corcoran)

Lecture 12

Last update: December 5, 2022 13 / 53

Example 1

Does computer ownership improve 8th grade math achievement?

Example 1

The association between computer ownership and math achievement could be spurious, explained by a third factor correlated with computer and math achievement. Let's try "controlling" for SES using 2 groups (low or high):

```
. egen ses2=cut(ses), group(2)
```

* the above command creates a new variable 'ses2' that splits 'ses' into two equal-sized groups (low and high) table computer ses2, contents(mean achmat08 n achmat08)

The 3.46 point "effect" of computer ownership on math achievement is smaller after conditioning on SES. For high SES students, the "effect" is 2.32 points; for low SES students, 1.95 points.

LPO.8800 (Corcoran)

Lecture 12

Last update: December 5, 2022 15 / 53

Example 2

Do AP courses improve high school math achievement?

. reg achmat12 approg

Source	SS	df	MS	Numbe	er of ob	s =	493 88.17
Model Residual	4688.50685 26110.315	1 491	4688.5068 53.17783	5 Prob 1 R-squ	> F ared	=	0.0000 0.1522
Total	30798.8219	492	62.5992314		t-square MSE	d = =	0.1505 7.2923
achmat12	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
approg _cons	6.175654 53.69983	.6577047 .4767134	9.39 112.65	0.000 0.000	4.883 52.76		7.467917 54.63648

Example 2

How does AP course taking vary with SES (quintiles)? How does mean 12th grade math achievement vary with AP *conditional* on SES quintile?

		Mea	ın:		Coi	unt:
SESquint	took AP	no AP	AP	Diff	no	yes
1	0.409	52.2	55.7	3.5	55	38
2	0.385	52.3	57.1	4.9	56	35
3	0.465	55.4	59.4	4.1	53	46
4	0.610	54.3	60.4	6.1	39	61
5	0.718	55.3	62.9	7.6	31	79

LPO 8800 (Corcoran)

Lecture 12

Last update: December 5, 2022 17 / 53

Example 2

Controlling for other variables

In each of these cases we would like a single estimate that represents the average difference in 12th grade math achievement *conditional on SES*. This implies some kind of weighted average.

Multiple regression is one way of obtaining such an average.

LPO.8800 (Corcoran)

Lecture 12

Last update: December 5, 2022 19 / 53

Multiple regression

Multiple regression allows one to statistically control for other explanatory variables that are ignored in simple regression. With 2 explanatory variables the best fit "line" is:

$$\hat{y}=a+b_1x_1+b_2x_2$$

With k explanatory variables:

$$\hat{y} = a + b_1 x_1 + b_2 x_2 + ... + b_k x_k$$

There is now an intercept and k slope coefficients to find.

LPO 8800 (Corcoran)

Lecture 1

Last update: December 5, 2022 20 / 53

Multiple regression

As before, the best fit "line" is the one where the intercept a and slope coefficients $b_1, b_2, ..., b_k$ minimize the sum of the squared deviations between the actual data points and the predicted values:

$$a, b \sum_{i=1}^{min} (y_i - \widehat{y}_i)^2$$

$$a, b \sum_{i=1}^{n} (y_i - a - b_1 x_1 - b_2 x_2 - \dots - b_k x_k)^2$$

LPO 8800 (Corcoran)

Lecture 12

Last update: December 5, 2022 21 / 53

Multiple regression: example 1

To implement multiple regression in Stata, continue to use the regress command, and include the additional explanatory variables in your variable list:

. reg achmat08 computer i.ses2

Source	SS	df	MS	Numbe:	r of ob	s = =	500 21.59
Model Residual	3478.87468 40048.0317	2 497	1739.4373 80.579540	4 Prob : 7 R-squ	> F ared	_	0.0000
Total	43526.9064	499	87.228269		-square MSE	d =	0.0762 8.9766
achmat08	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
computer 1.ses2	2.149567 4.193894 53.45002	.8465355 .8454511	2.54 4.96 84.76	0.011 0.000 0.000	. 4863 2.532 52.21	795	3.812796 5.854992 54.68905

Multiple regression: example 2

Using SES quintiles as control variables:

. reg achmat12 approg i.sesquint

Source	SS	df	MS		per of obs	-	493 26.61
Model Residual	6608.74334 24190.0785	5 487	1321.74867 49.6716191	Prob R-sc	> F quared	=	0.0000 0.2146
Total	30798.8219	492	62.5992314		R-squared : MSE	=	0.2065 7.0478
achmat12	Coef.	Std. Err.	t	P> t	[95% Con	f.	Interval]
approg	5.218614	. 658095	7.93	0.000	3.925558		6.51167
sesquint 2 3 4 5	.6226858 3.341469 3.37997 5.52072	1.039324 1.018429 1.023907 1.013494	0.60 3.28 3.30 5.45	0.549 0.001 0.001 0.000	-1.419427 1.340412 1.368148 3.529358		2.664799 5.342526 5.391791 7.512081
_cons	51.49928	.7787234	66.13	0.000	49.9692		53.02935

I PO 9900 (Corcoran)

Lecture 12

Last update: December 5, 2022 23 / 53

Multiple regression: example 2

Using continuous SES as control variable:

. reg achmat12 approg ses

approg ses	5.227734	.6528237	8.01 6.15	0.000 3.94505 0.000 .197022		6.510413
achmat12	Coef.	Std. Err.	t	P> t [95% Co	onf.	Interval]
Total	30798.8219	492	62.5992314		-	7.0335
Model Residual	6558.71774 24240.1041	2 490	3279.35887 49.4696003	Prob > F	=	0.0000 0.2130 0.2097
Source	SS	df	MS	Number of obs F(2, 490)	_	493 66.29

Note: this regression constrains the slope on ses to be the same for AP and non-AP students. That is, it finds the best fit regression equation where the slope is the same for these two groups.

Multiple regression: example 2

Using continuous SES as control variable:

Multiple regression: example 3

Regression of monthly wages on experience, controlling for education.

Example: multiple regression

The slope coefficients are now interpreted as **marginal** or **partial** effects: the linear relationship between Y and X_1 , *conditional* on (or "holding constant") X_2 and any other included control variables.

- Conditional on years of education (holding constant years of education), we predict that an additional year of work experience is associated with \$17.64 additional monthly earnings.
- Conditional on years of work experience (holding constant work experience), we predict that an additional year of education is associated with \$76.22 additional monthly earnings.

The prediction equation can be used to find the "best prediction" of Y given values of $X_2, ..., X_K$.

LPO.8800 (Corcoran)

Lecture 12

Last update: December 5, 2022 27 / 53

Example: multiple regression

For example, let years of experience be $X_1 = 10$ and years of education completed be $X_2 = 14$. Our best prediction of monthly earnings is:

$$\hat{y} = -272.53 + 17.64 * 10 + 76.22 * 14 = 970.95$$

Causality, revisited

Can multiple regression coefficients can be interpreted as causal? In most cases, unfortunately not. While the regression controls for some confounders, there are likely others. This is where careful research design comes in (see later courses!)

LPO.8800 (Corcoran)

Lecture 12

Last update: December 5, 2022 29 / 53

When x_1 and x_2 are uncorrelated

When x_1 and x_2 are uncorrelated, the OLS estimators of b_1 and b_2 are:

$$\hat{b}_1 = r_{y1} \frac{s_y}{s_1}$$

$$\hat{b}_2 = r_{y2} \frac{s_y}{s_2}$$

where r_{y1} is the correlation between y and x_1 , and r_{y2} is the correlation between y and x_2 . (s_1 is the standard deviation of x_1 , and s_2 is the standard deviation of x_2). Notice these are equivalent to the formula for \hat{b} in the simple regression case. The r_{y1} and r_{y2} are sometimes called **zero-order correlations**.

When x_1 and x_2 are uncorrelated

In multiple regression, R^2 can still be used as a measure of fit, interpreted in the same way: the fraction of overall variation in y that is explained by the prediction equation. When x_1 and x_2 are uncorrelated, R^2 is simply:

$$R^2 = r_{v1}^2 + r_{v2}^2$$

(the sum of the two squared zero-order correlations)

- R² is the coefficient of determination
- ullet R-the square root of R^2 -is the multiple correlation

LPO.8800 (Corcoran)

Lecture 12

Last update: December 5, 2022 31 / 53

Venn diagram with one explanatory variable

Venn diagram with one explanatory variable

The circle labeled y represents variation in y, and the circle labeled x_1 represents variation in x_1 .

- ullet Think of the overlap (red) as variation in y "explained" by variation in x_1
- ullet The red area represents correlation between x_1 and y: information used by the regression to estimate \hat{b}_1
- The black area is variation in y unexplained by variation in x₁ ("residual" variation)
- The proportion of y covered by x_1 represents the R^2

LPO.8800 (Corcoran)

Lecture 12

Last update: December 5, 2022 33 / 53

Venn diagram with two explanatory variables - 1

Venn diagram with two explanatory variables - 1

- Think of the overlap between y and x_1 (red) as variation in y "explained" by variation in x_1
- Think of the overlap between y and x₂ (green) as variation in y "explained" by variation in x₂
- x_1 and x_2 do not overlap (they are uncorrelated), so it is easy to attribute variation in y separately to x_1 and x_2
- \bullet The red area represents information used by the regression to estimate \hat{b}_1
- ullet The green area represents information used by the regression to estimate \hat{b}_2
- The black area is variation in y unexplained by x_1 or x_2
- The proportion of y covered by x_1 and x_2 represents R^2

LPO.8800 (Corcoran)

Lecture 12

Last update: December 5, 2022 35 / 53

Venn diagram with two explanatory variables - 2

Venn diagram with two explanatory variables - 2

- In this case x₁ and x₂ overlap—they are correlated (represented by the yellow area), thus it is not as clear how to attribute variation in y separately to x₁ and x₂
- \bullet The red area represents the unique information used by the regression to estimate \hat{b}_1
- ullet The green area represents the unique information used by the regression to estimate \hat{b}_2
- Both the red and green areas are smaller than those in example 1—we have less certainty about how much of y can be attributed to each explanatory variable

LPO.8800 (Corcoran)

Lecture 12

Last update: December 5, 2022 37 / 53

When x_1 and x_2 are correlated

When x_1 and x_2 are correlated, the OLS estimators of b_1 and b_2 can be written:

$$\hat{b}_1 = \left(\frac{r_{y1} - r_{y2}r_{12}}{1 - r_{12}^2}\right) \left(\frac{s_y}{s_1}\right)$$

$$\hat{b}_2 = \left(\frac{r_{y2} - r_{y1}r_{12}}{1 - r_{12}^2}\right) \left(\frac{s_y}{s_2}\right)$$

where r_{12} is the correlation between x_1 and x_2 (and other terms were defined previously). Notice what happens if $r_{12} = 0$ (i.e. if there is no correlation between x_1 and x_2).

LPO.8800 (Corcoran)

Lecture 1

Last update: December 5, 2022 38 / 53

Example: private school attendance and math achievement

	SS	df	MS	Number F(1.	er of obs	=	500 10.92
Model	665.476286	1	665.476286			-	0.0010
Residual	30351.3075	498	60.9464005		uared R-squared	-	0.0215
Total	31016.7838	499	62.1578833			-	7.8068
achmat12	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
private	2.630139	.7959513	3.30	0.001	1.06630	3	4.193976
_cons	56.22278	.4058571	138.53	0.000	55.4253	В	57.02019
er achmat12	nrivata eae						
Source	private ses	df	MS	F(2,		-	29.23
Source Model	SS 3264.62388	2	1632.31194	F(2, Prob	497) > F	-	29.23 0.0000
Source	SS			F(2, Prob R-sq	497) > F uared	-	500 29.23 0.0000 0.1053
Source Model	SS 3264.62388	2	1632.31194	F(2, Prob R-sqi Adj l	497) > F uared R-squared	-	29.23 0.0000 0.1053 0.1017
Source Model Residual	SS 3264.62388 27752.1599	2 497	1632.31194 55.8393559 62.1578833	F(2, Prob R-sqi Adj l	497) > F uared R-squared MSE	-	29.23 0.0000 0.1053 0.1017
Source Model Residual Total	SS 3264.62388 27752.1599 31016.7838	2 497 499	1632.31194 55.8393559 62.1578833	F(2, Prob R-sqn Adj 1 Root	497) > F uared R-squared MSE	= = = = = nf.	29.23 0.0000 0.1053 0.1017 7.4726

LPO 8800 (Corcoran)

Lecture 12

Last update: December 5, 2022 39 / 53

Example: private school attendance and math achievement

$$\begin{split} \hat{b}_1 &= \left(\frac{r_{y1} - r_{y2}r_{12}}{1 - r_{12}^2}\right) \left(\frac{s_y}{s_1}\right) \\ \hat{b}_1 &= \left(\frac{0.1465 - 0.3232 * 0.3728}{1 - 0.3728^2}\right) \left(\frac{7.884}{0.439}\right) = 0.542 \end{split}$$

Example: private school attendance and math achievement

	achmat12	private	se	S
achmat12 private ses	1.0000 0.1465 0.3232	1.0000 0.3728	1.000	0
summ achmat	12 private	ses		
. summ achmat	12 private		Mean	Std. Dev
		os 1		Std. Dev 7.884027 .4390735

$$\begin{split} \hat{b}_2 &= \left(\frac{r_{y2} - r_{y1}r_{12}}{1 - r_{12}^2}\right) \left(\frac{s_y}{s_2}\right) \\ \hat{b}_2 &= \left(\frac{0.3232 - 0.1465 * 0.3728}{1 - 0.3728^2}\right) \left(\frac{7.884}{6.924}\right) = 0.3552 \end{split}$$

LDO 9900 (C----)

Locture 1

Last undate: December 5, 2022, 41 / 53

When x_1 and x_2 are correlated

With two explanatory variables the R^2 can be written as:

$$R^2 = r_{y1}^2 + r_{y2|1}^2$$

- ullet First part: the proportion of variation in y explained by x_1
- Second part: the proportion of variation in y explained by x_2 beyond that explained by x_1 (a semi-partial correlation)

When x_1 and x_2 are correlated

LPO.8800 (Corcoran)

Lecture 12

Last update: December 5, 2022 43 / 53

When x_1 and x_2 are correlated

Equivalently, the R^2 can be written as:

$$R^2 = r_{y2}^2 + r_{y1|2}^2$$

- First part: the proportion of variation in y explained by x_2
- Second part: the proportion of variation in y explained by x_1 beyond that explained by x_2 (a semi-partial correlation)

When x_1 and x_2 are correlated

LPO.8800 (Corcoran)

Lecture 12

Last update: December 5, 2022 45 / 53

Semi-partial correlations

The correlations $r_{y2|1}^2$ and $r_{y1|2}^2$ are called *semi-partial* or *part* correlations. They represent the correlation observed between y and that part of x_1 (or x_2) that is uncorrelated with x_2 (or x_1).

Multiple regression and R^2

Some facts about multiple regression and R^2 :

- R² still ranges between 0 and 1
- R^2 will be high when the x's are highly correlated with y
- R^2 will not fall below the highest R^2 with an individual x
- ullet R² cannot *decrease* when additional xs are added to the regression equation
- R² will be larger when the explanatory variables are not redundant—i.e. their intercorrelation is low
- There is usually diminishing returns to additional explanatory variables (a greater chance of redundancy)

LPO.8800 (Corcoran)

Lecture 12

Last update: December 5, 2022 47 / 53

Adjusted R^2

The calculated R^2 tends to overestimate the population R^2 (it is upwardly biased). The smaller is N relative to the number of explanatory variables K, the more R^2 will be inflated. An **adjusted R^2** is often used instead:

$$R_{ADJ}^2 = 1 - (1 - R^2) \frac{(N-1)}{N - K - 1}$$

Holding N constant, the adjusted R^2 "penalizes" you for including additional explanatory variables K.

LPO 8800 (Corcoran)

Lecture 12

Last update: December 5, 2022 48 / 53

Multicollinearity

Multicollinearity is the condition when explanatory variables in a regression are highly correlated. The consequence of this is that it becomes more difficult to discern how much of the variation in *y* is "due to" each individual *x*. This is a bigger problem the smaller the sample size.

LPO.8800 (Corcoran)

Lecture 12

Last update: December 5, 2022 49 / 53

Semi-partial (part) correlations

The **semi-partial (or part) correlation** between y and x_1 is the correlation observed between y and that part of x_1 that is uncorrelated with the other x variables

- The square of the semi-partial correlation is the amount by which R² decreases when that explanatory variable is excluded.
- It is also the proportion of the variation in y that is explained by x₁ only
- This can be used to assess the relative importance of the explanatory variables (in terms of independent predictive power).
- Could be used to guide model specification.

Can obtain semi-partial correlations in Stata using pcorr y x1 x2

Semi-partial (part) correlations

Try this using the math achievement and private school example above.

- Regress achmat08 on ses and private, note R² (0.1053)
- Regress achmat08 on ses alone, note R² (0.1045)
- Regress achmat08 on private alone, note R² (0.0215)
- Get squared semi-partial correlations pcorr achmat08 private ses

. pcorr achma (obs=500)	at12 private	. ses			
Partial and	semipartial	correlations o	f achmat12 w	ith	
Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
private	0.0296	0.0280	0.0009	0.0008	0.5097
ses	0.2926	0.2895	0.0856	0.0838	0.0000