A Mathematical Introduction to Logic

Herbert B. Enderton

Contents

0	Useful Facts	ets														2											
	0.1 ① Lemm	a 0A .																									2

Chapter 0

Useful Facts About Sets

0.1 1 Lemma **0** A

Assume that $\langle x_1,\dots,x_m\rangle=\langle y_1,\dots,y_m,\dots,y_{m+k}\rangle$. Then $x_1=\langle y_1,\dots,y_{k+1}\rangle$. Proof. \exists – Enderton.Chapter_0.lemma_0a