Ústní zkouška

z Úvodu do matematické analýzy, části prvé

Verze: oMegareKt

Přednášející: His Divine Wisdom Sir Adam Clypatch

16. února 2024

NENÍ-LI ŘEČENO JINAK, VŠECHNY POJMY A DŮKAZY FORMULUJTE PEČLIVĚ S DŮRAZEM NA FORMÁLNÍ SPRÁVNOST.

Část	Hodnocení
Základní definice	0/0
Lehké úlohy a důkazy	/6
Těžké ulohy a důkazy	/ 12

Základní definice (0 bodů)

Neznalost základních definic znamená bezpodmínečné nesložení zkoušky.

- (1) Monoid.
- (2) Limita posloupnosti.
- (3) Monotónní posloupnost.
- (4) Minimum a maximum.
- (5) Interval a typy intervalů.

Lehké úlohy a důkazy (6 bodů)

Pojmy užité v úlohách nemusíte definovat. Používáte-li k řešení úlohy nebo k důkazu předchozí tvrzení, zformulujte je.

(1) Uvažme množinu $\mathbb R$ jako množinu tříd ekvivalence \simeq všech konvergentních racionálních posloupností. Dokažte, že zobrazení

$$\xi: \mathbb{Q} \hookrightarrow \mathbb{R},$$
$$q \mapsto [(q)]_{\simeq}$$

které racionálnímu číslu přiřadí třídu ekvivalence posloupnosti samých čísel q, je prosté.

- (2) Dokažte, že jsou-li posloupnosti $a,b:\mathbb{N}\to\mathbb{R}$ konvergentní, pak je konvergentní i posloupnost a+b.
- (3) Spočtěte

$$\lim_{n \to \infty} \frac{3n^4 - 7n^2 + 5}{6 - 4n^4}.$$

Těžké úlohy a důkazy (12 bodů)

Nemusíte dokonale zformulovat svá řešení. Obecná idea rozvinutá důležitými detaily postačuje.

(1) Uvažte posloupnost danou rekurzivním předpisem

$$a_1 = 2,$$
 $a_{n+1} = \frac{a_n}{2} + \frac{1}{2a_n}.$

Spočtěte $\lim_{n\to\infty} a_n$.

Návod:

- (a) Dokažte, že a_n je klesající a zdola omezená.
- (b) Podle věty o limitě monotónní posloupnosti má a_n limitu, označme ji L. Využijte vzorce pro a_{n+1} (v závislosti na a_n) a faktu, že $\lim_{n\to\infty}a_{n+1}=\lim_{n\to\infty}a_n$ pro nalezení rovnice k výpočtu L.
- (2) Nechť $a: \mathbb{N} \to \mathbb{R}$ je posloupnost a $A \in \mathbb{R}$. Dokažte, že $\lim_{n \to \infty} a_n = A$ právě tehdy, když $|a_n A| \ge \varepsilon$ jen pro konečně mnoho $n \in \mathbb{N}$, tj. když je množina $\{n \in \mathbb{N} \mid |a_n A| \ge \varepsilon\}$ konečná.

Návod:

- (a) K důkazu implikace ← využijte toho, že každá neprázdná konečná množina má maximum.
- (b) K důkazu ⇒ stačí definice limity.