Lab 4 Project Report

Ethan Keshishian

CS M152A Lab1

Introduction:

The goal of Lab 4 is to create a parking meter by designing a finite state machine. This is done with Verilog and the Xilinx software, which helps write the code as well as generate the waveforms. A finite state machine is a machine that is always in a particular state. There are two types of finite state machines: Moore machines, where the next state only depends on the current state, and Mealy machines, where the next state depends on the current state and the input. This design has a module called parking meter at the top level, and multiple parameters to define states. These states are handled in two always blocks, each with case statements. This allows logic for each state to remain separate. One always block is used to set the output, while the other is used to set the next state. The states used by the parking meter are S_RESET, S_RESET1, S RESET2, S ZERO, S 3MIN, and S COUNTING. In total, this implementation uses six states. This is in line with the example design given in the lab document. The included testbench, testbench_105422235.v, handles multiple potential use cases for the parking meter, preventing the implementation from being buggy, crashing, or otherwise incorrectly handling input. It handles all edge cases. My final implementation includes waveforms from these test cases. My demonstration covers these test cases, though more investigation can still be done by zooming further in since there are too many to cover in detail.

Module design:

- 1. States:
 - a. S RESET:
 - Sets the next state to return to the initial state, S_ZERO.
 - \circ Remains in reset as long as RESET == 1.
 - b. S RESET1:
 - o Sets the timer to 16 and sets the next state to S_3MIN.
 - c. S RESET2:
 - o Sets the timer to 150 and sets the next state to S_3MIN.
 - d. S_ZERO:
 - The output is set to 0000. This flashes on for half a second and off for half a second.
 - o NOTE: Internal clock should be set to 0 when leaving this state.
 - If add1 is high, then add 60 seconds to the timer. Otherwise, check if add2 is high.
 If it is, add 120 seconds to the timer. Otherwise, if add3 is high, then add 180 seconds to the timer. Finally, check if add4 is high. If it is, then add 300 seconds

- to the timer. In all cases, there is a check to ensure the timer does not exceed 9999. If it does, the value is fixed to 9999.
- If the timer is less than 1, set the next state equal to S_ZERO. If the timer is greater than or equal to 1 and less than or equal to 180, set the next state equal to S_3MIN. Otherwise, the timer must be greater than 180, so set the next state equal to S_COUNTING.

e. S 3MIN:

- o This is the state when the timer is greater than 1 and less than or equal to 180 seconds.
- o The timer flashes on and off, in such a way that even numbers are displayed to the clock, and odd numbers are blank.
- O If add1 is high, then add 60 seconds to the timer. Otherwise, check if add2 is high. If it is, add 120 seconds to the timer. Otherwise, if add3 is high, then add 180 seconds to the timer. Finally, check if add4 is high. If it is, then add 300 seconds to the timer. In all cases, there is a check to ensure the timer does not exceed 9999. If it does, the value is fixed to 9999.
- If the timer is less than 1, set the next state equal to S_ZERO. If the timer is greater than or equal to 1 and less than or equal to 180, set the next state equal to S_3MIN. Otherwise, the timer must be greater than 180, so set the next state equal to S_COUNTING.

f. S_COUNTING:

- o This is the state when the timer is greater than 180 seconds.
- o The timer does not flash. Digits are displayed normally.
- o If add1 is high, then add 60 seconds to the timer. Otherwise, check if add2 is high. If it is, add 120 seconds to the timer. Otherwise, if add3 is high, then add 180 seconds to the timer. Finally, check if add4 is high. If it is, then add 300 seconds to the timer. In all cases, there is a check to ensure the timer does not exceed 9999. If it does, the value is fixed to 9999.
- If the timer is less than 1, set the next state equal to S_ZERO. If the timer is greater than or equal to 1 and less than or equal to 180, set the next state equal to S_3MIN. Otherwise, the timer must be greater than 180, so set the next state equal to S_COUNTING.

2. FSM Diagram (States and transitions):

3. Testbench Design:

My testbench handles multiple cases. Here are the implemented cases:

- a. Resetting.
 - \circ This is the case where the reset button is pressed. It causes the parking meter to return to S_ZERO and display 0000.
- b. Idle on zero state.

- This is the case where the parking meter displays zero. It idles for a couple seconds to make sure that the flashing functionality is working.
- c. Sending the add1 signal.
 - Occurs when the add1 signal is 1. Adds 60 seconds to the timer.
- d. Sending the add2 signal.
 - Occurs when the add2 signal is 1. Adds 120 seconds to the timer.
- e. Sending the add3 signal.
 - Occurs when the add3 signal is 1. Adds 180 seconds to the timer.
- f. Sending the add4 signal.
 - Occurs when the add4 signal is 1. Adds 300 seconds to the timer.
- g. Sending the reset1 signal.
 - Occurs when the reset1 signal is 1. Expected behavior is that the timer is set to 16 and the parking meter goes to the S_3MIN state.
- h. Sending the reset2 signal.
 - o Occurs when the reset2 signal is 1. Expected behavior is that the timer is set to 150 and the parking meter goes to the S_3MIN state.
- i. Testing greater than 180 seconds remaining.
 - o In this case, time is added to the parking meter so that it has more than 180 seconds remaining. It should go to the S_COUNTING state and count down without flashing.
- j. Testing transition from 181 to 179 seconds.
 - o In this case, the timer is allowed to run until it has less than 180 seconds remaining. Expected behavior is that the parking meter goes from the S_COUNTING state to the S_3MIN state and begins to flash such that odd numbers are blank.
- k. Testing less than 180 seconds remaining.
 - o In this case, the timer is set to less than 180.
 - The parking meter is made to idle for a couple seconds, so that the correct flashing behavior where odd numbers are blank can be verified.
- 1. Transitioning from 1 to 0 seconds.
 - o In this case, the timer is reset to 16 seconds remaining, and allowed to count down to 0. Expected behavior is that the parking meter transitions from the S_3MIN state to the S_ZERO state, and the flashing behavior changes.
- m. Testing overflow and consecutive add presses.
 - o In this case, time is added to the timer consecutively. More than 9999 time is added, and the timer should cap the time at 9999, preventing overflow.
- n. Testing reset1 from non-zero value.
 - First, the clock is set to a non-zero number. Then, rst1 is set to 1. Expected behavior is a transition to the S_RESET1 state without issue.
- o. Testing reset2 from non-zero value.
 - First, the clock is set to a non-zero number. Then, rst2 is set to 1. Expected behavior is a transition to the S_RESET2 state without issue.
- p. Testing adding time in S_3MIN state to flashing number.

- o In this case, the timer is set to an odd time less than 180. Then, 60 seconds are added, such that the timer is still less than 180 seconds. The odd value should still be blank.
- q. Testing rst1 from rst.
 - o In this case, rst is set to 1. Then, it is set to 0 and rst1 1 is set 1. It should transition between states correctly and indicate the correct value.
- r. Testing rst2 from rst.
 - o In this case, rst is set to 1. Then, it is set to 0 and rs2 1 is set 1. It should transition between states correctly and indicate the correct value.
- s. Testing rst2 from rst1.
 - o In this case, rst1 is set to 1. Then, it is set to 0 and rst2 1 is set 1. It should transition between states correctly and indicate the correct value.
- t. Testing rst1 from rst2.
 - o In this case, rst2 is set to 1. Then, it is set to 0 and rst1 is set 1. It should transition between states correctly and indicate the correct value.

4. Waveforms:

5. Design Summary:

roject File:	lab4.xise		Parser Errors:			No Errors					
dule Name:	parking_meter		Implementation State:			Placed and Routed					
et Device:	xc6stx16-3csg324		• Errors:		No Errors						
luct Version:	ISE 14.7		• Warnings:			66 Warnings (0 new)					
			Routing Results:								
ign Goal:	Balanced				4	All Signals Completely Routed					
sign Strategy:	Xilinx Default (unlocked)		Timing Constraints:	All Constraints Met							
vironment:	System Settings		Final Timing Score:			0 (Timing Report)					
omicin.	System Settings					7 (Timing Terport)					
		Device	Utilization Summary								
e Logic Utilization				Used	Available	Utilization		Note(s)			
mber of Slice Registers				36	18,2	124	1%				
Number used as Flip Flops				9							
Number used as Latches				27			_				
Number used as Latch-thrus Number used as AND/OR logics				0			_				
mber of Slice LUTs				402	9,1	(12	4%				
Number used as logic				402	9,1		4%				
Number using O6 output only				305							
Number using O5 output only				1							
Number using O5 and O6				96							
Number used as ROM				0		_					
Number used as Memory				140	2,1		0% 6%				
mber of occupied Slices mber of MUXCYs used				140	2,2		1%				
mber of MUXCYs used mber of LUT Flip Flop pairs used				404	4,5		170				
Number with an unused Flip Flop				371		104	91%				
Number with an unused LUT				2		104	1%				
Number of fully used LUT-FF pairs				31		104	7%				
Number of unique control sets				6							
Number of slice register sites lost to control set restrictions				28	18,2	224	1%				
to control set restrictions imber of bonded IOBs						232	15%				
IMBET OF BORDER TORS IOB Latches				35			1370				
mber of RAMB16BWERs				0		32	0%				
mber of RAMB8BWERs				0		64	0%				
mber of BUFIO2/BUFIO2_2CLKs				0		32	0%				
mber of BUFIO2FB/BUFIO2FB_2CLKs				0		32	0%				
imber of BUFG/BUFGMUXs				2		16	12%				
Number used as BUFGs				2							
Number used as BUFGMUX				0							
mber of DCM/DCM_CLKGENs				0		4	0%				
mber of ILOGIC2/ISERDES2s				0		248	0%				
mber of IODELAY2/IODRP2/IODRP2_MCBs				0		248	0%				
umber of OLOGIC2/OSERDES2s				20		248	8%				
Number used as OLOGIC2s Number used as OSERDES2s				20							
Number used as OSERDES2s imber of BSCANs				0		4	0%				
imber of BUFHs				0		128	0%				
mber of BUFPLLs				0		8	0%				
mber of BUFPLL_MCBs				0		4	0%				
mber of DSP48A1s				0		32	0%				
imber of ICAPs				0		1	0%				
imber of MCBs				0		2	0%				
mber of PCILOGICSEs				0		2	0%				
imber of PLL_ADVs				0		2	0%				
imber of PMVs				0		1	0%				
mber of STARTUPs mber of SUSPEND_SYNCs				0		1	0%				
erage Fanout of Non-Clock Nets				4.48		-	0.90				
				70							
		Perfe	ormance Summary								
nal Timing Score:	0 (Setup: 0, Hold: 0)				Pinout Data:	Pinout Repo					
uting Results:	All Signals Completel	y Routed			Clock Data:	Clock Repor	rt				
ning Constraints:	All Constraints Met										
		D	etailed Reports								
ort Name	Status	Generated		Errors	Warnings	Info	6				
thesis Report	Current	Sun Jun 6 03:23:01 2021		0	64 Warnings (0 new)	6 Inf	fos (0 new)				
nslation Report	Current	Sun Jun 6 03:23:06 2021		0	0	0					
Report	Current	Sun Jun 6 03:23:20 2021		0	2 Warnings (0 new)		fos (0 new)				
ce and Route Report	Current	Sun Jun 6 03:23:29 2021		0	0	3 Inf	fos (0 new)				
ver Report											
t-PAR Static Timing Report	Current	Sun Jun 6 03:23:34 2021		0	0	4 Inf	fos (0 new)				
na Banasi											
en Report		P.	condary Reports								
gen Report		56									
ort Name		Status	contary reports	Generated							
			сонину керопся	Generated Sun Jun 6 03:22:28	2021						

6. Map Summary:

Release 14.7 Map P.20131013 (lin64)

Xilinx Mapping Report File for Design 'parking meter'

Design Information

Command Line : map -intstyle ise -p $xc6s1x16-csg324-3 -w -logic_opt$ off -ol

-pr off -lc off -power off -o parking_meter_map.ncd parking_meter.ngd

parking meter.pcf

Target Device : xc6slx16

Target Package : csg324

Target Speed : -3

Mapper Version : spartan6 -- \$Revision: 1.55 \$

Mapped Date : Sun Jun 6 03:23:09 2021

Design Summary

Number of errors: 0

S

Number of effors.				
Number of warnings: 2				
Slice Logic Utilization:				
Number of Slice Registers:	36	out of	18,224	1%
Number used as Flip Flops:	9			
Number used as Latches:	27			
Number used as Latch-thrus:	0			
Number used as AND/OR logics:	0			
Number of Slice LUTs:	402	out of	9,112	4%
Number used as logic:	402	out of	9,112	4%
Number using O6 output only:	305			
Number using O5 output only:	1			
Number using 05 and 06:	96			
Number used as ROM:	0			
Number used as Memory:	0	out of	2,176	0%
Slice Logic Distribution:				
Number of occupied Slices:	140	out of	2,278	6%
Number of MUXCYs used:	52	out of	4,556	1%

S

Number of occupied Slices:	140 out of	2,278	6%
Number of MUXCYs used:	52 out of	4,556	1%
Number of LUT Flip Flop pairs used:	404		
Number with an unused Flip Flop:	371 out of	404	91%
Number with an unused LUT:	2 out of	404	1%

Number of fully used LUT-FF pairs: 31 out of 404 7%

Number of unique control sets:

Number of slice register sites lost

to control set restrictions: 28 out of 18,224 1%

A LUT Flip Flop pair for this architecture represents one LUT paired with $% \left(1\right) =\left(1\right) +\left(1\right) +$

one Flip Flop within a slice. A control set is a unique combination of clock, reset, set, and enable signals for a registered element.

The Slice Logic Distribution report is not meaningful if the design is over-mapped for a non-slice resource or if Placement fails.

IO Utilization:

Number of bonded IOBs:	35	out	of	232	15%
IOB Latches:	20				
Specific Feature Utilization:					
Number of RAMB16BWERs:	0	out	of	32	0%
Number of RAMB8BWERs:	0	out	of	64	0%
Number of BUFIO2/BUFIO2_2CLKs:	0	out	of	32	0%
Number of BUFIO2FB/BUFIO2FB_2CLKs:	0	out	of	32	0%
Number of BUFG/BUFGMUXs:	2	out	of	16	12%
Number used as BUFGs:	2				
Number used as BUFGMUX:	0				
Number of DCM/DCM_CLKGENs:	0	out	of	4	0%
Number of ILOGIC2/ISERDES2s:	0	out	of	248	0%
<pre>Number of IODELAY2/IODRP2/IODRP2_MCBs:</pre>	0	out	of	248	0%
Number of OLOGIC2/OSERDES2s:	20	out	of	248	8%
Number used as OLOGIC2s:	20				
Number used as OSERDES2s:	0				
Number of BSCANs:	0	out	of	4	0%
Number of BUFHs:	0	out	of	128	0%
Number of BUFPLLs:	0	out	of	8	0%

Number	of	BUFPLL_MCBs:	0	out	of	4	0%
Number	of	DSP48A1s:	0	out	of	32	0%
Number	of	ICAPs:	0	out	of	1	0%
Number	of	MCBs:	0	out	of	2	0%
Number	of	PCILOGICSEs:	0	out	of	2	0%
Number	of	PLL_ADVs:	0	out	of	2	0%
Number	of	PMVs:	0	out	of	1	0%
Number	of	STARTUPs:	0	out	of	1	0%
Number	of	SUSPEND_SYNCs:	0	out	of	1	0%

Average Fanout of Non-Clock Nets: 4.48

Peak Memory Usage: 769 MB

Total REAL time to MAP completion: 10 secs
Total CPU time to MAP completion: 9 secs

Table of Contents

Section 1 - Errors

Section 2 - Warnings

Section 3 - Informational

Section 4 - Removed Logic Summary

Section 5 - Removed Logic

Section 6 - IOB Properties

Section 7 - RPMs

Section 8 - Guide Report

Section 9 - Area Group and Partition Summary

Section 10 - Timing Report

Section 11 - Configuration String Information

Section 12 - Control Set Information

Section 13 - Utilization by Hierarchy

Section 1 - Errors _____ Section 2 - Warnings ______ WARNING: PhysDesignRules: 372 - Gated clock. Clock net current state[5] GND 8 o Select 85 o is sourced by a combinatorial pin. This is not good design practice. Use the CE pin to control the loading of data into the flip-flop. WARNING: PhysDesignRules: 372 - Gated clock. Clock net current state[5] clock count[6] Select 359 o is sourced by a combinatorial pin. This is not good design practice. Use the CE pin to control the loading of data into the flip-flop. Section 3 - Informational _____ INFO: MapLib: 562 - No environment variables are currently set. INFO:LIT:244 - All of the single ended outputs in this design are using rate limited output drivers. The delay on speed critical single ended outputs can be dramatically reduced by designating them as fast outputs. INFO:Pack:1716 - Initializing temperature to 85.000 Celsius. (default -Range: 0.000 to 85.000 Celsius) INFO:Pack:1720 - Initializing voltage to 1.140 Volts. (default - Range: 1.140 to 1.260 Volts)

INFO:Map:215 - The Interim Design Summary has been generated in the MAP

INFO: Pack: 1650 - Map created a placed design.

Report

(.mrp).

```
_____
 2 block(s) optimized away
Section 5 - Removed Logic
Optimized Block(s):
TYPE
    BLOCK
GND XST GND
VCC
         XST VCC
To enable printing of redundant blocks removed and signals merged, set the
detailed map report option and rerun map.
Section 6 - IOB Properties
_____
IOB |
                         | Delay |
| Term | Strength | Rate |
                      | IOB | OUTPUT |
| a1
LVCMOS25
            | | 12 | SLOW | OLATCH |
                      | IOB | OUTPUT |
1 a2
LVCMOS25
            | | 12 | SLOW | OLATCH
```

Section 4 - Removed Logic Summary

a3 LVCMOS25 	I	12	IOB OUTPUT SLOW OLATCH	I
a4 LVCMOS25	I	12	IOB OUTPUT SLOW OLATCH	I
add1 LVCMOS25	I	1	IOB INPUT	I
add2 LVCMOS25	I	I	IOB INPUT	I
add3 LVCMOS25	I	I	IOB INPUT	I
add4 LVCMOS25	I	I	IOB INPUT	I
clk LVCMOS25	I	I	IOB	I
led_seg<0> LVCMOS25	I	12	IOB OUTPUT SLOW	I
led_seg<1> LVCMOS25	I	12	IOB OUTPUT SLOW	I
led_seg<2> LVCMOS25	I	12	IOB OUTPUT SLOW	I
led_seg<3> LVCMOS25	I	12	IOB OUTPUT SLOW	I
led_seg<4> LVCMOS25	I	12	IOB OUTPUT SLOW	I
led_seg<5> LVCMOS25	I	12	IOB OUTPUT SLOW	I
led_seg<6> LVCMOS25	I	12	IOB OUTPUT	I

rst LVCMOS25 	I	1	IOB 	I	•	INPUT 	I	I
rst1 LVCMOS25 	I	1	IOB 	I		INPUT 	I	I
rst2 LVCMOS25 	I	1	IOB 	I		INPUT 	I	I
val1<0> LVCMOS25	I	12	IOB SLOW				I	I
val1<1> LVCMOS25	I	12	IOB SLOW				I	1
val1<2> LVCMOS25	I	12	IOB SLOW				I	1
val1<3> LVCMOS25	I	12	IOB SLOW				I	1
val2<0> LVCMOS25	I	12	IOB SLOW				I	1
val2<1> LVCMOS25	I		IOB SLOW				I	1
val2<2> LVCMOS25	I	12	IOB SLOW				I	1
val2<3> LVCMOS25	I	12	IOB SLOW				I	1
val3<0> LVCMOS25	I	12	IOB SLOW				I	I
val3<1> LVCMOS25	I	12	IOB SLOW				I	I
val3<2> LVCMOS25	I	12	IOB SLOW	OLATCH	(OUTPUT 	I	I

val3<3> LVCMOS25 	I	12	IOB OUT	
val4<0> LVCMOS25	I	12	IOB OUT:	
val4<1> LVCMOS25	I	12	IOB OUT	
val4<2> LVCMOS25 	I	12	IOB OUT	PUT
val4<3> LVCMOS25 	I		IOB OUT	
+				
+				
Section 7 - RPM				
Section 8 - Gui	de Report			
Guide not run o		gn.		
Section 9 - Are	a Group and	Partition	Summary	
Partition Imple:	mentation S			
No Partitions	were found	in this o	lesign.	

Area Group Information

No area groups were found in this design.

Section 10 - Timing Report

A logic-level (pre-route) timing report can be generated by using Xilinx static

timing analysis tools, Timing Analyzer (GUI) or TRCE (command line), with the

mapped NCD and PCF files. Please note that this timing report will be generated

using estimated delay information. For accurate numbers, please generate a timing report with the post Place and Route NCD file.

For more information about the Timing Analyzer, consult the Xilinx Timing Analyzer Reference Manual; for more information about TRCE, consult the Xilinx

Command Line Tools User Guide "TRACE" chapter.

Section 11 - Configuration String Details

Use the "-detail" map option to print out Configuration Strings

Section 12 - Control Set Information

Use the "-detail" map option to print out Control Set Information.

Section 13 - Utilization by Hierarchy

Use the "-detail" map option to print out the Utilization by Hierarchy section

Conclusion:

Overall, my implementation uses a top module and states to build the parking meter. It outputs nine variables, as described above. The design details indicate that there aren't too many resources being used, but there are a couple warning that might warrant looking into, though they have no effect on the waveforms, which are displaying accurately. There were multiple difficulties I ran into with the project. I initially wanted to implement states for add1, add2, add3, and add4, but I wasn't satisfied with the behavior when time was added while flashing was supposed to occur. I added this as a test case to make sure it wasn't working, then changed my implementation until it began to work. I also noticed a lot of repeated code, so I used tasks again, and they simplified it tremendously. Maybe learning about tasks can be added to the course, since I enjoyed using them and found them extremely helpful. Another simplification I used was parameters, but instead of using them for states, I also used them for defining important variables. This helped me make quick changes in multiple parts of the project. Overall, I really enjoyed the project, and found myself learning a lot from overcoming challenges like these. Thanks for the great quarter!