1602A字符点阵液晶显示屏 使用说明书

目录

1、产品简介	3
2、引用文件	3
3、机械特性	3
4、产品框图	3
5、电气特性	4
6、极限参数	4
7、接口时序	4
8、直流特性	6
9、引脚描述	7
10、命令描述	8
11、附录	12
附录1程	序参考12
附录 2 字	符表15
附录 3 模	块外形图16

1、产品简介

主要工艺: COB

显示内容: 2 行每行 16 个字符 显示模式: STN, POSITIVE 驱动条件: 1/16Duty 1/5Bias

视向: 6: 00

背光: LED, 黄绿色 工作温度: 宽温-20℃~+70℃ 储存温度: 宽温-30℃~+80℃ 控制 IC: S6A0069/KS0066

2、 引用文件

S6A0069 规格书

3、机械特性

类别	标准值	单位
模块	80.0(w) X36.0(h) X12.0 (t) /13.0 (t)	mm
有效显示区	64. 3 (w) X13. 8 (h)	mm
点大小	0.52(w) X0.54 (h)	mm
点间隙	0. 1 (w) X0. 1 (h)	mm
字符大小	3. 00 (w) X5. 02 (h)	mm

4、产品框图

5 电气特性

_ 4,7,						
类别	符号	条件	最小值	TYP	最大值	单位
驱动电压	Vop.	25℃	4.0	5. 0	10.0	v
响应时间 Ton		25℃	1	127	200	Ms
对比度	Toff	25℃	-	263	360	Ms
AT LLIE	CR	25℃	_	9)—	_
视角范围		25℃	E-0	60	-	DEG
交叉效应		25℃	6 	1. 2	h - 5	= 53

6、极限参数

参数	符号	最小值	最大值	单位
逻辑电压	Vdd	-0.3	+5. 5	V
驱动电压	Vout, VO	-0.3	-10	V
工作温度	Тор	-20	+70	°C
存储温度	Tst	-30	+80	°C

7、接口时序

1) 读操作

项目	符号	条件	最小值	最大值	单位	
E周期	toycE		1,200	_		
E 脉宽(高电平)	PWen		140	_		
E 上升/下降时间	ter, ter	$Vdd=5V\pm5\%$	_	25	1	
地址设置时间(RS, R/W, E)	tas	Vss=OV	0	==>	ns	
地址保持时间	tan	Ta=25℃	10	12-29]	
数据延迟时间	tDDR			100]	
数据保持时间	tDHR		10			

2) 写操作

项目	符号	条件	最小值	最大值	单位
E周期	teyeE		1,200	-	
E 脉宽(高电平)	PWEN		140	-	
E上升/下降时间	ter, ter	200 (000)	_	25	ns
地址设置时间(RS, R/W, E)	tas		0	-	
地址保持时间	tan	Ta=25°C	10	(<u>1</u>	
数据设置时间	tDSW		40	<u></u> -	
数据保持时间	tH		10	=	

8、直流特性

 $(V_{DD} = 4.5 V \text{ to } 5.5 V, T_A = -30 \text{ to } +85 ^{\circ}\text{C})$

Characteristic	Symbol	Condition	Min	Тур	Max	Unit
Operating Voltage	V _{DD}	-	4.5	-5	5.5	V
Operating Current I _{DD}		Internal oscillation or external clock (V _{DD} = 5.0V, fosc = 270kHz)	=	0.35	0.6	mA
Input Voltage (1)	V _{IH1}	-	2.2	-	V _{CD}	V
(except OSC1) V _{IL1}		-	-0.3	-	0.6	
Input Voltage (2)	V _{IH2}	=	V _{DD} -1.0	10 17 0	V _{DD}	V
(OSC1)	V _{IL2}	=	-0.2	-	1.0	
Output Voltage (1)	V _{OH1}	I _{OH} = -0.205mA	2.4	12		V
(DB0 to DB7)	V _{OL1}	I _{OL} = 1.2mA	453	-	0.4	
Output Voltage (2)	V _{OH2}	I _O = -40μA	0.9V _{DD}	-	8-	V
(except DB0 to DB7)	V _{OL2}	I _O = 40μA	-	-	0.1V _{DD}	
Voltage Drop	Vd _{COM}	I _O = ±0.1mA	_	-	1	V
	Vd _{SEG}		=	-	1	
Input Leakage Current	I _{LKG}	$V_{IN} = 0V \text{ to } V_{DD}$	-1	-	1	μΑ
Input Low Current	IIL	$V_{IN} = 0V$, $V_{DD} = 5V$ (pull up)	-50	-125	-250	
Internal Clock (external Rf)	f _{OSC1}	$Rf = 91k\Omega \pm 2\% (V_{DD} = 5V)$	190	270	350	kHz
External Clock	fosc	-	125	270	350	kHz
	duty		45	50	55	%
	t _R , t _F		-	1-	0.2	μΑ
LCD Driving Voltage	V _{LCD}	V _{DD} -V5 (1/5, 1/4 bias)	3.0	52	13.0	V

9、引脚描述

引脚	名称	方向	说明
1	Vss	_	电源地(OV)
2	Vdd	==	电源电压 (+5V)
3	Vo		LCD 驱动电压 (可调, 一般为 0.8V)
4	RS	I	RS=0,选择指令寄存器; RS=1,选择数据寄存器
5	R/W	I	R/W=0 写操作; R/W=1 读操作
6	Е	I	写操作时,信号下降沿有效;读操作时,高电平有效
7	DB0	1/0	8 位总线模式为数据口 0, 4 位总线模式下 D0~D3 脚断开
8	DB1	1/0	8 位总线模式为数据口1,4 位总线模式下 D0~D3 脚断开
9	DB2	1/0	8 位总线模式为数据口 2, 4 位总线模式下 D0~D3 脚断开
10	DB3	1/0	8 位总线模式为数据口3,4 位总线模式下D0~D3 脚断开
11	DB4	1/0	8 位总线模式为数据口 4,4 位总线模式下 D0~D3 脚断开
12	DB5	1/0	8 位总线模式为数据口 5, 4 位总线模式下 D0~D3 脚断开
13	DB6	1/0	8 位总线模式为数据口 6,4 位总线模式下 D0~D3 脚断开
14	DB7	1/0	8 位总线模式为数据口7,4 位总线模式下D0~D3 脚断开
15	LED+		背光电源正(+5V)
16	LED-		背光电源地 (OV)

10、命令描述

指令表:

Instruction				I	nstru	ction	Code	•			Description	Execution
	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Instruction Code	time(fsoc=270)
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM. and set DDRAM address to "00H" from AC.	1.53ms
Return Home	0	0	0	0	0	0	0	0	1	X	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.53ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	SH	Assign cursor moving direction and make shift of entire display enable.	39µs
Display ON/OFF Control	0	0	0	0	0	0	1	D	С	В	Set display(D), cursor(C), and blinking of cursor(B) on/off control bit.	39µs
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	X	X	Set cursor moving and display shift control bit, and the direction, without changing DDRAM data.	39µs
Function Set	0	0	0	0	1	DL	N	F	X	Х	Set interface data length (DL: 4-bit/8-bit), numbers of display line (N: 1-line/2-line), display font type (F: 5 X 8 dots/ 5 X 11 dots)	39µs
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	39µs
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	39µs
Read Busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read	0µs
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	43µs
Read Data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	43µs

指令介绍:

由于 MPU 可以直接访问模块内部的 IR 和 DR,作为缓冲区域, IR 和 DR 在模块进行内部操作之前,可以暂存来自 MPU 的控制信息。这样就给用户在 MPU 和外围控制设备的选择上,增加了余地。模块的内部操作由来自 MPU 的 RS、R/W、E 以及数据信号 DB 决定,这些信号的组合形成了模块的指令。

本系列模块向用户提供了11条指令,大致可以分为四大类:

- ◇ 模块功能设置,诸如:显示格式、数据长度等;
- ◇ 设置内部 RAM 地址;
- ◆ 完成内部 RAM 数据传送;
- ◇ 完成其他功能。

一般情况下,内部 RAM 的数据传送的功能使用最为频繁,因此,RAM 中的地址指针所具备的自动加一或减一功能,在一定程度上减轻了 MPU 编程负担。此外,由于数据移位指令与写显示数据可同时进行,这样用户就能以最少系统开发时间,达到最高的编程效率。

这里值得一提的是,在每次访问模块之前,MPU 应首先检测忙标志 BF,确认 BF=0 后,访问过程才能进行

1) Clear display 清显示

指令码:

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO
0	0	0	0	0	0	0	0	0	1

清显示指令将空位字符码 20H 送入全部 DDRAM 地址中,使 DDRAM 中的内容全部清除,显示消失;地址计数器 AC=0,自动增 1 模式;显示归位,光标或者闪烁回到原点(显示屏左上角);但并不改变移位设置模式。

2) Return home 归位

指令码:

981	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO
	0	0	0	0	0	0	0	0	1	*

归位指令置地址计数器 AC=0; 将光标及光标所在位的字符回原点; 但 DDRAM 中的内容并不改变。

3) Entry mode set 设置输入模式

指令码:

v-	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO
	0	0	0	0	0	0	0	1	I/D	S

I/D: 字符码写入或者读出 DDRAM 后 DDRAM 地址指针 AC 变化方向标志:

I/D=1, 完成一个字符码传送后, 光标右移, AC 自动加 1;

I/D=0, 完成一个字符码传送后, 光标左移, AC 自动减 1;

S: 显示移位标志:

S=1, 将全部显示向右(I/D=0)或者向左(I/D=1)移位;

S=0,显示不发生移位;

S=1 时,显示移位时,光标似乎并不移位;此外,读DDRAM操作以及对CGRAM的访问,不发生显示移位。

4) Display on/off control 显示开/关控制

指令码:

: : : : : : : : : : : : : : : : : : :	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	0	0	0	0	0	0	1	D	С	В

D: 显示开/关控制标志: D=1, 开显示; D=0, 关显示;

关显示后,显示数据仍保持在 DDRAM 中,立即开显示可以再现;

C: 光标显示控制标志: C=1, 光标显示; C=0, 光标不显示;

不显示光标并不影响模块其它显示功能;显示 5X8 点阵字符时,光标在第八行显示,显示 5X10 点阵字符时,光标在第十一行显示;

B: 闪烁显示控制标志: B=1, 光标所指位置上, 交替显示全黑点阵和显示字符, 产生闪烁效果, Fosc=250kHz时, 闪烁频率为 0. 4ms 左右; 通过设置, 光标可以与其所指位置的字符一起闪烁。

5) Cursor or display shift 光标或显示移位

指令码:

500	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO	-50
	0	0	0	0	0	1	S/C	R/L	*	*	1

光标或显示移位指令可使光标或显示在没有读写显示数据的情况下,向左或向右移动;运用此指令可以实现显示的查找或替换;在双行显示方式下,第一行和第二行会同时移位;当移位越过第一行第四十位时,光标会从第一行跳到第二行,但显示数据只在本行内水平移位,第二行的显示决不会移进第一行;倘若仅执行移位操作,地址计数器 AC的内容不会发生改变。

S/C	R/L	说明
0	0	光标向左移动, AC 自动减1
0	1	光标向右移动, AC 自动加1
1	0	光标和显示一起向左移动, AC 值不变
1	1	光标和显示一起向右移动, AC 值不变

6) Function set 功能设置

指令码:

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO
0	0	0	0	1	DL	N	F	*	*

功能设置指令设置模块数据接口宽度和 LCD 显示屏显示方式,即 MPU 与模块接口数据总线为 4 位或者是 8 位、LCD 显示行数和显示字符点阵规格;所以建议用户最好在执行其它指令设置(读忙标志指令除外)之前,在程序的开始,进行功能设置指令的执行;

DL:数据接口宽度标志: DL=1,8 位数据总线 DB7~DB0; DL=0,4 位数据总线 DB7~DB4,DB3~DB0 不用,使用此方式传送数据,需分两次进行;

N: 显示行数标志: N=1, 两行显示模式; N=0, 单行显示模式;

F: 显示字符点阵字体标志: F=1: 5X10 点阵+光标显示模式; F=0: 5X7 点阵+光标显示模式。

7) Set CGRAM address CGRAM 地址设置

指令码:

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO	
0	0	0	1	Accs	Arg4	Acg3	Acc2	Acg1	Acco	1

CGRAM 地址设置指令设置 CGRAM 地址指针,它将 CGRAM 存储用户自定义显示字符的字模数据的首地址 Accs~Acco 送入 AC 中,于是用户自定义字符字模就可以写入 CGRAM 中或者从 CGRAM 中读出。

8) Set DDRAM address DDRAM 地址设置

指令码:

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO	
0	0	1	ADD6	Apps	ADD4	ADD3	App2	App1	Appo	1

DDRAM 地址设置指令设置 DDRAM 地址指针,它将 DDRAM 存储显示字符的字符码的首地址 ADD6~ADD0 送入 AC中,于是显示字符的字符码就可以写入 DDRAM 中或者从 DDRAM 中读出;

值得一提的是:在 LCD 显示屏一行显示方式下,DDRAM 的地址范围为:00H \sim 4FH;两行显示方式下,DDRAM 的地址范围为:第一行00H \sim 27H,第二行40H \sim 67H。

9) Read busy flag and address 读忙标志 BF 和 AC 指令码:

2X16A字符点阵液晶显示模块使用说明书

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO	
0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	ACO	7

当 RS=0 和 R/W=1 时,在 E 信号高电平的作用下,BF 和 AC6 \sim AC0 被读到数据总线 DB7 \sim DB0 的相应位;BF: 内部操作忙标志,BF=1,表示模块正在进行内部操作,此时模块不接收任何外部指令和数据,直到 BF=0 为止,

AC6~AC0: 地址计数器 AC 内的当前内容,由于地址计数器 AC 被 CGROM、CGRAM 和 DDRAM 的公用指针,因此当前 AC 内容所指区域由前一条指令操作区域决定;同时,只有 BF=0 时,送到 DB7~DB0 的数据 AC6~AC0 才有效。

10) Write data to CGRAM or DDRAM 写数据到 CGRAM或 DDRAM 指令码:

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO
1	0	D7	D6	D5	D4	D3	D2	D1	DO

写数据到 CGRAM 或 DDRAM 指令,是将用户自定义字符的字模数据写到已经设置好的 CGRAM 的地址中,或者是将欲显示字符的字符码写到 DDRAM 中;欲写入的数据 D $7\sim$ DO 首先暂存在 DR 中,再由模块的内部操作自动写入地址指针所指定的 CGRAM 单元或者 DDRAM 单元中。

11) Read data from CGRAM or DDRAM 从 CGRAM或 DDRAM 中读数据指令码:

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO	
1	1	D7	D6	D5	D4	D3	D2	D1	DO	7

从 CGRAM 或 DDRAM 中读数据指令,是从地址计数器 AC 指定的 CGRAM 或者 DDRAM 单元中,读出数据 D7 \sim D0;读出的数据 D7 \sim D0 暂存在 DR 中,再由模块的内部操作送到数据总线 DB7 \sim DB0 上;需要注意的是,在读数据之前,应先通过地址计数器 AC 正确指定读取单元的地址。

11、附录 1-8 位接口下 C51 例程

```
#include <reg52.h>
#define uint unsigned int
#define uchar unsigned char
#define comm 0
#define dat 1
sbit e = P3^3; //input enable;
sbit rw = P3^4; //H=read; L=write;
sbit rs = P3^5; //H=data; L=command;
uchar code tab1[]={
"Golden Palm ELEC"
"TEL: 075524324802"
};
void delay (int ms) //delay time
 int i, j;
 for (i=0; i \le ms; i++)
  for(j=0; j<123; j++);
void wr_lcd (uchar dat_comm, uchar content)
 if(dat_comm)
  {
  rs=1; //data
   rw=0; //write
 else
  {
  rs=0; //command
  rw=0; //write
 P1=content; //output data or comm
 e=1;
 delay(1);
 e=0;
/*----*/
void init_lcd (void)
```

```
e=0;
  wr_lcd (comm, 0x01); /*清屏, 地址指针指向 00H*/
  wr_lcd (comm, 0x06); /*光标的移动方向*/
wr_lcd (comm, 0x0c); /*开显示, 关光标*/
wr_lcd (comm, 0x38); /*8 位接口两行显示模式*/
/*----*/
void chrt_disp (uchar code *chrt)
  uchar i, j;
  wr_lcd (comm, 0x80);
  for (j=0; j<2; j++)
    for (i=0; i<16; i++)
    wr_lcd (dat, chrt[j*16+i]);
    wr_lcd (comm, 0xc0);
/*-
        ------做字模-----*/
void cgram_wr (uchar zm_data1, uchar zm_data2)
  uchar i, j;
  wr_lcd (comm, 0x40);
  for (j=0; j<8; j++)
    for(i=0;i<4;i++)
     wr_lcd (dat, zm_data1);
      wr_lcd (dat, zm_data2);
}
void cgram_disp (void)
  uchar i, j;
  wr_1cd (comm, 0x80);
  for (j=0; j<2; j++)
    for (i=0; i<8; i++)
    wr_lcd (dat, i);
    for (i=0; i<8; i++)
    wr_lcd (dat, i);
    wr_lcd (comm, 0xc0);
}
```

```
/*----*/
void main ()
 init_lcd ();
 while (1)
   chrt_disp (tab1);
   delay (2000);
   cgram_wr (0x1f, 0x1f);
   cgram_disp();
   delay (2000);
   cgram_wr (0x15,0x15);
   cgram_disp();
   delay (2000);
   cgram_wr (0x1f, 0x00);
   cgram_disp();
   delay (2000);
   cgram_wr (0x15,0x0a);
   cgram_disp();
   delay (2000);
```

CGROM 中,字符码与字符字模之间的对应关系表

Higher 4 bits	-												
ower 4 bit	0000	0010		170170170170	0101		0111	1010	1011	1100	1101	1110	1111
xxxx0000	CG RAM (1)		0	a	P	`	P		_	9	Ę	α	p
××××0001	(2)	ŀ	1	A	Q	а	4		7	Ŧ	4	ä	9
××××0010	(3)	"	2	В	R	ь	r		1	ij	×	β	θ
××××0011	(4)	#	3	С	5	C	s	ı	Ċ	Ŧ	ŧ	ε	60
××××0100	(5)	\$	4	D	Т	d	t,	•.	I	ŀ	Þ	μ	Ω
××××0101	(6)	%	5	Ε	U	e	u	•	7	t	ı	(5	ü
××××0110	(7)	&	6	F	Ų	f	Ų	7	力	=	3	ρ	Σ
××××0111	(8)	7	7	G	W	9	W	7	†	Z	7	9	Л
××××1000	(1)	(8	Н	X	h	×	4	2	*	ij	J	X
××××1001	(2))	9	Ι	Υ	i	ч	÷	<u>ጎ</u>	J	լե	-:	Ļ
××××1010	(3)	*	:	J	Z	j	z	I	J	ń	b	j	∓
××××1011	(4)	+	;	K	Г	k	·ť	7	Ħ	E		×	F
××××1100	(5)	,	<	L	¥	1	I	Þ	Ð	J	7	4	F
××××1101	(6)	-	=	М]	m	•	ı	Z	ኅ	5	Ł	÷
××××1110	(7)		>	И	^	n	÷	3	t	†	**	ñ	
	(8)	1	?	0		o	{-		y	7		Ö	

引脚接口

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
VSS	VDD	VO	RS	R/W	E	DB0	DB1	DB2	DB3	DB4	DB5	DB6	DB7	LED+	LED-