CHECKPOINT PRÁCTICA 2

DESCRIPTORES UTILIZADOS

A fecha del checkpoint los descriptores implementados hasta ahora han sido los siguientes:

- **Número de agujeros**. Cabe esperar que con el número de agujeros en los números se pueda hacer una sencilla distinción entre 0, 8, 9, 4 y 6 y el resto de números.
- Área total de los agujeros. El tamaño de los agujeros de un número varía según el número y el agujero que sea.
- Área total del número (partes blancas tras la binarización). Puesto que el tamaño de los números está normalizado es de esperar que el número de pixeles (blancos) para un 1 no sea el mismo que el de un 9.
- Número de corners. El número de corners en los número difiere, por ejemplo, en un 1 perfecto cabría esperar detectar dos corners con Harris, mientras que en un 7 serían tres.

Estos descriptores que no han dado grandes resultados, por lo que se ha optado por seguir una estrategia diferente. En esta, se han analizado las concavidades y/o agujeros de cada número y se han considerado las siguientes características para cada uno:

- Posición X e Y del centroide: Describe la posición aproximada en la que se encuentra la concavidad o el agujero.
- Área de las concavidades: Describe el tamaño total de la concavidad o el agujero.
- Tamaño del axis mayor y tamaño menor: Describe cual es la forma tendencial de la concavidad o el agujero, que puede aproximarse más a una elipse más vertical o una más horizontal.

Se ha optado por considerar siempre 3 concavidades (faltaría experimentar variando este número) y 2 agujeros (debido a que el máximo número de agujeros en un número es 2, en el 8).

Así pues, se dan un total de 3 x 5 variables (concavidades) + 2 x 5 variables (agujeros) = 25 variables. Para que estas variables se correspondan entre distintas imágenes de números, dados los datos sobre las concavidades y/o agujeros de una imagen, estos se ordenan según el tamaño del área.

En el caso en que la imagen que se observe presente menos concavidades y/o agujeros que los que se están considerando, se rellenan las variable con valores a 0. Además, se eliminan aquellas concavidades y/o agujeros que no llegan a un mínimo de tamaño, por errores en la extracción.

Para no confundir las concavidades con agujeros, se extraen primero los datos sobre los agujeros, y para calcular los de las concavidades, se realiza sobre un rellenado de los agujeros.

CLASIFICADOR QUE SE UTILIZARÁ

Los clasificadores que se utilizarán son aquellos que han resultado ser más prometedores hasta ahora. En base a la performance en training., estos son SVM y kNN. Faltaría determinar cuál de ambos da mejores resultados una vez estén todos los descriptores y compararlos en test.

RESULTADOS PRELIMINARES

Actualmente, teniendo en cuenta los descriptores obtenidos por las características sobre los agujeros y concavidades, se han obtenido los siguientes resultados, en training, con clasificadores basados en SVM y kNN.

1.8 SVM Last change: Linear SVM	Accuracy: 77.2% 25/25 features
1.9 🖒 SVM Last change: Quadratic SVM	Accuracy: 84.0% 25/25 features
1.10 ☆ SVM	Accuracy: 83.9%
Last change: Cubic SVM	25/25 features
1.11 🏠 SVM	Accuracy: 76.5%
Last change: Fine Gaussian SVM	25/25 features
1.12 🏠 SVM	Accuracy: 82.0%
Last change: Medium Gaussian SVM	25/25 features
1.13 🏠 SVM	Accuracy: 68.3%
Last change: Coarse Gaussian SVM	25/25 features
1.14 🏠 KNN	Accuracy: 82.5%
Last change: Fine KNN	25/25 features
1.15 🏠 KNN	Accuracy: 77.9%
Last change: Medium KNN	25/25 features
1.16 🏠 KNN	Accuracy: 58.4%
Last change: Coarse KNN	25/25 features
1.17 🏠 KNN	Accuracy: 79.4%
Last change: Cosine KNN	25/25 features
1.18 A KNN	Accuracy: 76.6%
Last change: Cubic KNN	25/25 features
1.19 A KNN Last change: Weighted KNN	Accuracy: 81.2% 25/25 features