PATENT ABSTRACTS OF JAPAN

(11) Publication number: 11065773 A

(43) Date of publication of application: 09 . 03 . 99

(51) Int. CI

G06F 3/06 G11B 20/10

(21) Application number: 09224636

(22) Date of filing: 21 . 08 . 97

(71) Applicant:

MATSUSHITA ELECTRIC IND CO

LTD

(72) Inventor:

YOSHIDA JIYUNJI SHIGESATO TATSURO **MATSUMI CHIYOKO** YAMADA MASAZUMI **KURANO YUKIO**

(54) METHOD FOR WRITING AND READING STREAM DATA IN COMPUTER INTO/OUT OF RECORDING **MEDIUM**

(57) Abstract:

PROBLEM TO BE SOLVED: To perform the writing and reading of stream data in a computer into and out of recording medium without any loss of data.

SOLUTION: When a receive command 110 and a write command 111 are issued from a processor 101, writing from an IEEE 1394 interface 104 in a memory 102 and writing from an SCSI interface 105 in a hard disk 107 are performed in parallel. Thus, data 108 transmitted from a DVC 106 can be written in the hard disk 107 without any loss.

COPYRIGHT: (C)1999,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-65773

(43)公開日 平成11年(1999)3月9日

(51) Int.Cl.⁶

G06F 3/06

G11B 20/10

酸別記号

301

FΙ

G06F 3/06 301N

G11B 20/10

D

審査請求 未請求 請求項の数12 OL (全 11 頁)

(21)出願番号

(22)出願日

特願平9-224636

平成9年(1997)8月21日

(71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(72)発明者 ▲よし▼田 順二

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 重里 達郎

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 松見 知代子

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 弁理士 滝本 智之 (外1名)

最終頁に続く

計算機におけるストリームデータの記録媒体への書き込み方法および記録媒体からの読み出し方 (54) 【発明の名称】 法

(57)【要約】

【課題】 計算機において、データの欠落なしに、記録 媒体へのストリームデータ書き込み、および記録媒体か らのストリームデータの読み出しを行う。

【解決手段】 プロセッサ101から受信コマンド11 0および書き込みコマンド111が発行されると、IE EE1394インタフェース104からメモリ102へ の書き込みと、SCSIインタフェース105からハー ドディスク107への書き込みが並列に行われるため、 DVC106から送信されてくるデータ108を欠落な しにハードディスク107に書き込むことができる。

10

20

40

【請求項1】ほぼ定期的な間隔で常にデータを出力し続けるストリームデータ出力部と、

前記ストリームデータを受信する第1のインタフェース と、

記録媒体と、

前記記録媒体にデータを書き込む第2のインタフェース レ

データを一時的に記憶するメモリと、

前記第1のインタフェースおよび前記第2のインタフェースの動作を制御するプロセッサと、

前記第1のインタフェースと前記第2のインタフェース と前記メモリと前記プロセッサとを接続するバスとを備 えた計算機において、

前記プロセッサは、前記第1のインタフェースに受信コマンドを、前記第2のインタフェースに書き込みコマンドをそれぞれ送信し、

前記第1のインタフェースは、受信コマンドを受け取ると、受信した前記ストリームデータを逐次、前記バスを 通して前記メモリに書き込み、

前記第2のインタフェースは、書き込みコマンドを受け 取ると、前記メモリに書き込まれた前記ストリームデー タから必要な部分を前記バスを通して読み出し、前記記 録媒体に書き込むことを特徴とするストリームデータの 記録媒体への書き込み方法。

【請求項2】メモリは、k個(k>1)の領域で構成され、

第1のインタフェースは、受信したストリームデータの 書き込みを行っている前記メモリの第m領域($m \le k$) が一杯になると、書き込む領域を第n領域($n \ne m$ 、n $\le k$)に変更し、書き込みを継続し、

第2のインタフェースは、前記第m領域に前記ストリームデータの書き込みが完了した時点で、前記第m領域に書き込まれた前記ストリームデータから必要な部分を前記バスを通して読み出し、前記記録媒体に書き込むことを特徴とする請求項1記載のストリームデータの記録媒体への書き込み方法。

【請求項3】第1のインタフェースは、IEEE139 4であることを特徴とする請求項1または2記載のスト リームデータの記録媒体への書き込み方法。

【請求項4】ストリームデータ出力部は家庭用ディジタルVCRであることを特徴とする請求項1、2または3 記載のストリームデータの記録媒体への書き込み方法。

【請求項5】出力開始コマンドを受信するとほぼ定期的な間隔で常にデータを出力し続けるストリームデータ出力部と、

前記ストリームデータを受信し、かつ前記ストリームデータ出力部に制御コマンドを送信する第1のインタフェースと、

記録媒体と、

前記記録媒体にデータを書き込む第2のインタフェースと、

データを一時的に記憶するメモリと、

前記第1のインタフェースおよび前記第2のインタフェースの動作を制御し、かつ前記ストリームデータ出力部の制御コマンドを生成し、前記第1のインタフェースに出力するプロセッサと、

前記第1のインタフェースと前記第2のインタフェース と前記メモリと前記プロセッサとを接続するバスとを備 えた計算機において、

前記プロセッサは、前記第1のインタフェースを通して前記ストリームデータ出力部に前記制御コマンドとして前記出力開始コマンドを送信した後、前記第1のインタフェースに受信コマンドを、前記第2のインタフェースに書き込みコマンドをそれぞれ送信し、前記第1のインタフェースは、受信コマンドを受け取ると、受信した前記ストリームデータを逐次、前記バスを通して前記メモリに書き込み、前記第2のインタフェースは、書き込みコマンドを受け取ると、前記メモリに書き込まれた前記ストリームデータから必要な部分を前記バスを通して読み出し、前記記録媒体に書き込み、

前記記録媒体への書き込みにおいて、必要なデータを全 て書き込めなかった場合には、前記プロセッサは前記第 1のインタフェースを通して前記ストリームデータ出力 部に前記制御コマンドとしてデータ再送コマンドを送信 し、

前記第1のインタフェースは、受信した前記ストリーム データを逐次、前記バスを通して前記メモリに書き込 み、

30 前記第2のインタフェースは、前記メモリに書き込まれた前記ストリームデータから前回書き込めなかった部分を前記バスを通して読み出し、前記記録媒体に書き込むことを特徴とするストリームデータの記録媒体への書き込み方法。

【請求項6】メモリは、k個(k>1)の領域で構成され、

第1のインタフェースは、受信したストリームデータの 書き込みを行っている前記メモリの第m領域(m≤k) が一杯になると、書き込む領域を第n領域(n≠m、n ≤k)に変更し、書き込みを継続し、

第2のインタフェースは、前記第m領域に前記ストリームデータの書き込みが完了した時点で、前記第m領域に書き込まれた前記ストリームデータから必要な部分を前記バスを通して読み出し、前記記録媒体に書き込むことを特徴とする請求項5記載のストリームデータの記録媒体への書き込み方法。

【請求項7】第1のインタフェースは、IEEE139 4であることを特徴とする請求項5または6記載のスト リームデータの記録媒体への書き込み方法。

50 【請求項8】ストリームデータ出力部は家庭用ディジタ

ルVCRであることを特徴とする請求項5、6または7 記載のストリームデータの記録媒体への書き込み方法。

【請求項9】ほぼ定期的な間隔で常にデータを入力し続 けるストリームデータ入力部と、

前記ストリームデータを送信する第1のインタフェース

記録媒体と、

前記記録媒体からデータを読み出す第2のインタフェー

データを一時的に記憶するメモリと、

前記第1のインタフェースおよび前記第2のインタフェ ースの動作を制御するプロセッサと、

前記第1のインタフェースと前記第2のインタフェース と前記メモリと前記プロセッサとを接続するバスとを備 えた計算機において、

前記プロセッサは、前記第1のインタフェースに送信コ マンドを、前記第2のインタフェースに読み出しコマン ドをそれぞれ送信し、

前記第2のインタフェースは、読み出しコマンドを受け 取ると、前記記録媒体からデータを読み出し、前記バス 20 を通して前記メモリに書き込み、

前記第1のインタフェースは、送信コマンドを受け取る と、前記メモリに書き込まれたデータを前記バスを通し て読み出し、前記ストリームデータ入力部に前記ストリ ームデータとして送信することを特徴とするストリーム データの記録媒体からの読み出し方法。

【請求項10】メモリは、k個(k>1)の領域で構成 され、

第1のインタフェースは、前記メモリの第m領域 (m≦ k) に書き込まれたデータを全て読み出すと、読み出す 30 領域を第n領域(n≠m、n≦k)に変更し、読み出し を継続し、

第2のインタフェースは、第1のインタフェースが前記 第m領域からデータを全て読み出した時点で、前記第m 領域に記録媒体から読み出したデータを前記バスを通し て前記第m領域に書き込むことを特徴とする請求項9記 載のストリームデータの記録媒体からの読み出し方法。

【請求項11】第1のインタフェースは、IEEE13 94であることを特徴とする請求項9または10記載の ストリームデータの記録媒体からの読み出し方法。

【請求項12】ストリームデータ出力部は家庭用ディジ タルVCRであることを特徴とする請求項9、10また は11記載のストリームデータの記録媒体からの読み出 し方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、計算機において、 ほぼ定期的な間隔で常に伝送され続けるストリームデー タを受信し、データの欠落なしに記録媒体に書き込む方 出し、ほぼ定期的な間隔で常に伝送され続けるストリー ムデータとして送信する方法に関するものである。

[0002]

【従来の技術】パーソナルコンピュータ(以下PCとよ ぶ)の性能向上に伴い、映像音声データのようにリアル タイム処理されるデータをPCで取り扱うことが増えて きている。そうしたリアルタイム処理されるデータを伝 送するためのインタフェースとしてIEEE1394が ある。IEEE1394には、ほぼ定期的な間隔で常に 10 データを伝送し続けるアイソクロナス伝送と呼ばれる伝 送方式があり、これを用いることで、映像音声データを リアルタイムで伝送することができる。

【0003】また家庭用ディジタルVideo Cas sete Recorder (以下、VCRとよぶ) の ひとつであるDVCにもIEEE1394が搭載されて おり、IEEE1394を搭載したPCと接続すること で、PCとDVCとの間でデータ転送を行ったり、PC からDVCの動作制御を行うことが可能となる。

【0004】さて、従来からPCの記録媒体として、ハ ードディスクがあるが、ハードディスク上のデータを読 み出し、別のハードディスクに書き込む方法について図 を用いて説明する。

【0005】図11は、PCの構成例を示した図であ る。説明の簡単化のために、ハードディスクとのインタ フェースであるSCSIインタフェースを2つに分けて 図示している。図11において、1101はプロセッ サ、1102はメモリ、1103はバス、1104およ び1105はSCS Iインタフェース、1106および 1107はハードディスク、1108はハードディスク 1106から読み出したデータ、1109はハードディ スク1107に書き込むデータ、1110はSCSIイ ンタフェース1104への読み出しコマンド、1111 はSCSIインタフェース1105への書き込むコマン ドである。

【0006】図12は、ハードディスク1106からデ ータを読み出し、ハードディスク1107にデータを書 き込むときのタイムチャートである。1201はハード ディスク1106の待機期間を示す。

【0007】まずプロセッサ1101は、SCSIイン 40 タフェース1104に読み出しコマンド1110を送信 する。SCSIインタフェース1104は、読み出しコ マンド1110を受信すると、ハードディスク1106 から所定の大きさのデータ1108を読み出し、メモリ 1102に書き込む。

【0008】次にプロセッサ1102は、SCSIイン タフェース1105に書き込みコマンド1111を送信 する。SCSIインタフェース1105は、書き込みコ マンド1111を受信すると、メモリ1102に書き込 まれたデータ1108を全部もしくは必要なデータだけ 法、および計算機において、記録媒体からデータを読み 50 を取り出し、書き込みデータ1109としてハードディ

スク1107に書き込む。

【0009】さらにデータを転送する場合は、図12に 示すように以上の動作を必要なだけ繰り返す。

[0010]

【発明が解決しようとする課題】しかしながら上記した 従来の構成では、例えばハードディスク1106からデ ータを読み出す場合、図12に示すように、プロセッサ 1101からの読み出しコマンド1110を1つ発行す るごとにある決まった大きさのデータの読み出ししかで きず、それ以上のデータを読み出す場合には、新たに読 10 み出しコマンド11110を発行する必要がある。

【0011】またハードディスク1106からの読み出 しが終了した後に、ハードディスク1107への書き込 みを行い、引き続きハードディスク1106からデータ の読み出しを行う場合には、書き込みが終了するのを待 つ必要がある。このため、ハードディスク1106から のデータの読み出しには、待機期間1201が発生す る。

【0012】ハードディスクは一般的にSCSIインタ フェースからのデータ要求に応じてデータ転送を行うた 20 め、上記した従来の構成でも問題なく動作する。しか し、例えばIEEE1394を用いたDVCのデータ転 送においては、ある所定の大きさのデータパケットがほ ぼ定期的に送受信されるため、ハードディスクの代わり にDVCを、SCSIインタフェースの代わりにIEE E1394インタフェースを使用した場合を考えると、 待機期間があるためにその期間でデータの欠落が発生す るという問題点がある。

【0013】本発明はこのような従来の問題点に鑑みて なされたものであって、計算機において、ほぼ定期的な 間隔で常にデータを出力し続けるストリームデータをデ ータの欠落なしに記録媒体に書き込む方法、および計算 機において、記録媒体からデータを読み出し、ほぼ定期 的な間隔で常に伝送され続けるストリームデータとして 送信する方法を提供することを目的とするものである。

[0014]

【課題を解決するための手段】この課題を解決するため に、第1の発明は、ほぼ定期的な間隔で常にデータを出 力し続けるストリームデータ出力部と、前記ストリーム データを受信する第1のインタフェースと、記録媒体 と、前記記録媒体にデータを書き込む第2のインタフェ ースと、データを一時的に記憶するメモリと、前記第1 のインタフェースおよび前記第2のインタフェースの動 作を制御するプロセッサと、前記第1のインタフェース と前記第2のインタフェースと前記メモリと前記プロセ ッサとを接続するバスとを備えた計算機において、前記 プロセッサは、前記第1のインタフェースに受信コマン ドを、前記第2のインタフェースに書き込みコマンドを それぞれ送信し、前記第1のインタフェースは、受信コ マンドを受け取ると、受信した前記ストリームデータを 50 逐次、前記バスを通して前記メモリに書き込み、前記第 2のインタフェースは、書き込みコマンドを受け取る と、前記メモリに書き込まれた前記ストリームデータか ら必要な部分を前記バスを通して読み出し、前記記録媒 体に書き込むことを特徴とするストリームデータの記録 媒体への書き込み方法である。

【0015】上記の構成では、ストリームデータ出力部 からの受信と、記録媒体への書き込みがほぼ並列に動作 し、かつストリームデータ出力部の出力タイミングに同 期させることができるため、ほぼ定期的な間隔で常にデ ータを出力し続けるストリームデータをデータの欠落な しに記録媒体に書き込むことができる。

【0016】また、第2の発明は、出力開始コマンドを 受信するとほぼ定期的な間隔で常にデータを出力し続け るストリームデータ出力部と、前記ストリームデータを 受信し、かつ前記ストリームデータ出力部に制御コマン ドを送信する第1のインタフェースと、記録媒体と、前 記記録媒体にデータを書き込む第2のインタフェース と、データを一時的に記憶するメモリと、前記第1のイ ンタフェースおよび前記第2のインタフェースの動作を 制御し、かつ前記ストリームデータ出力部の制御コマン ドを生成し、前記第1のインタフェースに出力するプロ セッサと、前記第1のインタフェースと前記第2のイン タフェースと前記メモリと前記プロセッサとを接続する バスとを備えた計算機において、前記プロセッサは、前 記第1のインタフェースを通して前記ストリームデータ 出力部に前記制御コマンドとして前記出力開始コマンド を送信した後、前記第1のインタフェースに受信コマン ドを、前記第2のインタフェースに書き込みコマンドを それぞれ送信し、前記第1のインタフェースは、受信コ マンドを受け取ると、受信した前記ストリームデータを 逐次、前記バスを通して前記メモリに書き込み、前記第 2のインタフェースは、書き込みコマンドを受け取る と、前記メモリに書き込まれた前記ストリームデータか ら必要な部分を前記バスを通して読み出し、前記記録媒 体に書き込み、前記記録媒体への書き込みにおいて、必 要なデータを全て書き込めなかった場合には、前記プロ セッサは前記第1のインタフェースを通して前記ストリ ームデータ出力部に前記制御コマンドとしてデータ再送 コマンドを送信し、前記第1のインタフェースは、受信 した前記ストリームデータを逐次、前記バスを通して前 記メモリに書き込み、前記第2のインタフェースは、前 記メモリに書き込まれた前記ストリームデータから前回 書き込めなかった部分を前記バスを通して読み出し、前 記記録媒体に書き込むことを特徴とするストリームデー タの記録媒体への書き込み方法である。

【0017】上記のような構成では、ストリームデータ 出力部からの受信と、記録媒体への書き込みがほぼ並列 に動作し、かつストリームデータ出力部の出力タイミン グに同期させることができるため、ほぼ定期的な間隔で

常にデータを出力し続けるストリームデータを記録媒体 に書き込むことができ、またデータの欠落が発生した場 合には、再度同じデータの転送を行い、欠落部分の再取 得を行うため、データ欠落なくストリームデータを記録 媒体に書き込むことができる。

【0018】さらにまた、第3の発明は、ほぼ定期的な 間隔で常にデータを入力し続けるストリームデータ入力 部と、前記ストリームデータを送信する第1のインタフ ェースと、記録媒体と、前記記録媒体からデータを読み 出す第2のインタフェースと、データを一時的に記憶す 10 るメモリと、前記第1のインタフェースおよび前記第2 のインタフェースの動作を制御するプロセッサと、前記 第1のインタフェースと前記第2のインタフェースと前 記メモリと前記プロセッサとを接続するバスとを備えた 計算機において、前記プロセッサは、前記第1のインタ フェースに送信コマンドを、前記第2のインタフェース に読み出しコマンドをそれぞれ送信し、前記第2のイン タフェースは、読み出しコマンドを受け取ると、前記記 録媒体からデータを読み出し、前記バスを通して前記メ モリに書き込み、前記第1のインタフェースは、送信コ マンドを受け取ると、前記メモリに書き込まれたデータ を前記バスを通して読み出し、前記ストリームデータ入 力部に前記ストリームデータとして送信することを特徴 とするストリームデータの記録媒体からの読み出し方法

【0019】上記のような構成では、記録媒体からの読 み出しと、ストリームデータ入力部への送信とがほぼ並 列に動作し、かつストリームデータ入力部の入力タイミ ングに同期させることができるため、記録媒体からデー タを読み出し、ほぼ定期的な間隔で常に伝送され続ける ストリームデータとして送信することができる。

[0020]

【発明の実施の形態】以下、本発明の実施の形態につい て、図1から図10を用いて説明する。

【0021】 (実施の形態1) 図1は本発明の第1実施 形態における計算機の全体構成を示したブロック図であ る。図1において、101はプロセッサ、102はメモ リ、103はバス、104はIEEE1394インタフ ェース、105はSCSIインタフェース、106はD VC、107はハードディスク、108はDVC106 からの送信データ、109はハードディスク107への 書き込みデータ、110はIEEE1394インタフェ ースへのデータ108の受信コマンド、111はSCS Iインタフェース105へのデータ109の書き込みコ マンドである。

【0022】図2は、データ108の具体例である。図 2において、201a, 201b, 201c, 201d, 201 e, 201f, 201gはDVC106からの送信データパ ケットである。

【0023】図3は、メモリ102の構成例である。図 50

3において、301および302はバンクである。

【0024】図4は、DVC106から送信されるデー タを受信し、ハードディスク107にデータを書き込む ときのタイムチャートである。

【0025】DVC106は常にデータ108を送信し 続けており、図2に示すように、125マイクロ秒毎に パケット201a~201gを送信している。

【0026】まずプロセッサ101は、IEEE139 4インタフェース104に受信コマンド110を送信す る。IEEE1394インタフェース104は、受信コ マンド110を受信すると、DVC106から送信され てくるデータ108を受信し、メモリ102に書き込 む。このとき、最初はメモリ102のバンク301にデ ータを書き込み、バンク301が一杯になると、バンク 302にデータを書き込む。さらにバンク302が一杯 になると、再びバンク301にデータを書き込む。

【0027】またプロセッサ101は、SCSIインタ フェース105に書き込みコマンド111を送信する。 SCSIインタフェース105は、書き込みコマンド1 11を受信すると、メモリ102に書き込まれたデータ を全部もしくは必要なデータだけを取り出し、書き込み データ109としてハードディスク107に書き込む。 このとき、IEEE1394インタフェース104がメ モリ102のバンク301にデータを書き込んでいると きは、バンク302からデータを読み出し、IEEE1 394インタフェース104がバンク302にデータを 書き込んでいるときは、バンク301からデータを読み 出す。

【0028】一度プロセッサ101が受信コマンド11 0および書き込みコマンド111を発行すると、図4に 示すようにIEEE1394インタフェース104の処 理と、SCSIインタフェース105の処理は並列に動 作する。このため、DVC106から送信されるデータ 108は、必ずバンク301もしくはバンク302のい ずれかに書き込まれ、同時に、バンク301およびバン ク302に書き込まれたデータは、必ずSCSIインタ フェース105を通してハードディスク107に書き込 まれる。このため受信したデータ108の全て、もしく はデータ108のうち必要なデータを全てハードディス ク107に書き込むことができる。

【0029】なお、IEEE1394インタフェース1 04の処理とSCSIインタフェース105の処理は、 並列に動作するとしたが、タイムシェアリングなどを用 いた疑似的な並列動作でも構わない。

【0030】また、メモリ102は、バンク301およ びバンク302の2つの領域で構成されるとしたが、複 数のバンクに分割されていてもよく、またそれぞれのバ ンクの大きさは一定でも可変でもよい。さらに全てのバ ンクが等しい大きさでなくても構わない。

【0031】またIEEE1394インタフェース10

40

4からメモリ102へのデータ108の書き込みは、プロセッサ101が管理して行ってもよいし、プロセッサ101が管理しなくてもよい。

【0032】またメモリ102からSCSIインタフェース105へのデータ109の読み出しは、プロセッサ101が管理して行ってもよいし、プロセッサ101が管理しなくてもよい。

【0033】またIEEE1394インタフェースは、 ほぼ定期的な間隔で常に伝送され続けるストリームデー タを受信できる別のインタフェースでも構わず、SCS 10 Iインタフェースは、別のインタフェースでも構わな い。

【0034】またDVCは、ほぼ定期的な間隔で常に伝送され続けるストリームデータを出力する別の装置であってもよく、ハードディスクは別の記録媒体でも構わない。

【0035】 (実施の形態2) 図5は本発明の第2実施 形態における計算機の全体構成を示したブロック図であ る。図5において、501はプロセッサ、502はIE EE1394インタフェース、503はDVC、504 はDVC503の制御コマンドである。

【0036】図6はハードディスク107に書き込むデータの一例である。図6において、601はハードディスク107に書き込むべきデータ、602は実際にハードディスク107に書き込めたデータ、603はデータ601のうちハードディスク107に書き込めなかったデータを示す。

【0037】図7はDVC503から送信されるデータを受信し、ハードディスク107にデータを書き込むときのタイムチャートである。701は制御コマンド504の1つである送信コマンド、702は制御コマンド504の1つである再送コマンド、703は1回目のデータ伝送期間、704は2回目のデータ伝送期間である。

【0038】まずプロセッサ101は、IEEE139 4インタフェース502を通してDVC503に制御コマンド504として送信コマンド701を送信する。D VC503は、送信コマンド701を受信すると、データ108の送信を開始する。データ108は図2に示すように125マイクロ秒毎にパケット201a~201gとして伝送されるように、DVC503はほぼ定期的な40間隔でデータ108を送信し続ける。データ108にはハードディスクに書き込むべきデータ601が含まれている。

【0039】次にプロセッサ101は、IEEE139 4インタフェース502に受信コマンド110を送信する。IEEE1394インタフェース502は、受信コマンド110を受信すると、DVC503から送信されてくるデータ108を受信し、メモリ102に書き込む。このとき、最初はメモリ102のバンク301にデータを書き込み、バンク301が一杯になると、バンク 302にデータを書き込む。 さらにバンク302が一杯 になると、再びバンク301にデータを書き込む。

10

【0040】またプロセッサ501は、SCSIインタフェース105に書き込みコマンド111を送信する。SCSIインタフェース105は、書き込みコマンド111を受信すると、メモリ102に書き込まれたデータを全部もしくは必要なデータだけを取り出し、書き込みデータ109としてハードディスク107に書き込む。このとき、IEEE1394インタフェース502がメモリ102のバンク301にデータを書き込んでいるときは、バンク302からデータを読み出し、IEEE1394インタフェース502がバンク302にデータを書き込んでいるときは、バンク301からデータを読み出す。

【0041】上記動作のタイムチャートは図4と同様である。もし、SCSIインタフェース105のデータ転送速度やハードディスク107の書き込み速度が遅い場合、もしくは伝送路誤りが発生した場合には、データ601のうち、例えばデータ603が欠落し、データ602しかハードディスク107に書き込めなくなる。この場合には、プロセッサ501はDVC503に制御コマンド504として再送コマンド702を送信する。

【0042】DVC503は再送コマンド702を受信すると、再びデータ601を含むデータ108の送信を開始し、上記と同様の動作を行う。

【0043】SCSIインタフェース105は、メモリ102に書き込まれたデータ108のうち、欠落していたデータ603を取り出し、ハードディスク107に追加書き込みを行うことで、データ601を全てハードディスク107に書き込むことができる。

【0044】一度プロセッサ501が受信コマンド110 および書き込みコマンド111を発行すると、図4に示すようにIEEE1394インタフェース502の処理と、SCSIインタフェース105の処理は並列に動作する。このため、DVC503から送信されるデータ108は、必ずバンク301もしくはバンク302のいずれかに書き込まれ、同時に、バンク301およびバンク302に書き込まれたデータは、必ずSCSIインタフェース105を通してハードディスク107に書き込まれる。またデータ欠落が発生した場合には、プロセッサ501はDVC503に再送コマンド702を送信し、同様の動作を繰り返し、欠落したデータを補うため、ハードディスク107に書き込むべきデータ601を全て書き込むことができる。

【0045】なお、IEEE1394インタフェース502の処理とSCSIインタフェース105の処理は、並列に動作するとしたが、タイムシェアリングなどを用いた疑似的な並列動作でも構わない。

【0046】またSCSIインタフェース105は、データ再送時、すなわち図7の期間704においては、期

50

らデータを読み出す。さらにバンク902のデータを全 て送信し終わると、再びバンク901からデータを読み

12

間703において欠落したデータ603のみをメモリ1 02から読み出し、ハードディスク107に追加書き込 みするとしたが、それ以外のデータをハードディスク1 07に上書きしても構わない。

【0047】またデータ伝送は2回であるとしたが、3 回以上であっても構わない。また I E E E 1 3 9 4 イン タフェース502からメモリ102へのデータ108の 書き込みは、プロセッサ501が管理して行ってもよい し、プロセッサ501が管理しなくてもよい。

【0048】またメモリ102からSCSIインタフェ ース105へのデータ109の読み出しは、プロセッサ 501が管理して行ってもよいし、プロセッサ501が 管理しなくてもよい。

【0049】またIEEE1394インタフェースは、 ほぼ定期的な間隔で常に伝送され続けるストリームデー タを受信でき、かつプロセッサが発行する制御コマンド をDVCに送信できる別のインタフェースでも構わず、 SCSIインタフェースは、別のインタフェースでも構 わない。

【0050】またDVCは、ほぼ定期的な間隔で常に伝 送され続けるストリームデータを出力し、プロセッサか ら動作を制御できる別の装置であってもよく、ハードデ ィスクは別の記録媒体でも構わない。

【0051】 (実施の形態3) 図8は本発明の第3実施 形態における計算機の全体構成を示したブロック図であ る。図8において、801はプロセッサ、802はメモ リ、803はバス、804はIEEE1394インタフ ェース、805はSCSIインタフェース、806はD VC、807はハードディスク、808はDVC806 への送信データ、809はハードディスク807からの 読み出しデータ、810はIEEE1394インタフェ ースへのデータ808の送信コマンド、811はSCS Iインタフェース805へのデータ809の読み出しコ マンドである。

【0052】図9は、メモリ802の構成例である。図 9において、901および902はバンクである。

【0053】図10は、ハードディスク807からデー タ809を読み出し、DVC806にデータ808を送 信するときのタイムチャートである。

【0054】 DVC106は常にデータ808を受信し 続けており、データ808は図2と同様の形態で伝送さ れる必要がある。

【0055】まずプロセッサ801は、IEEE139 4インタフェース804に送信コマンド810を送信す る。 I E E E 1 3 9 4 インタフェース 8 0 4 は、送信コ マンド810を受信すると、メモリ802から読み出し たデータに所定のデータを付加したものをデータ808 としてDVC806に送信する。このとき、最初はメモ リ802のバンク901からデータを読み出し、バンク 901のデータを全て送信し終わると、バンク302か 50

【0056】またプロセッサ801は、SCSIインタ フェース805に読み出しコマンド811を送信する。 SCSIインタフェース805は、読み出しコマンド8 11を受信すると、ハードディスク807から図10に おける期間Cの間にDVC806に送信すべきデータ8 09を読み出し、メモリ802に書き込む。このとき、 IEEE1394インタフェース804がメモリ802 のバンク901からデータを読み出しているときは、バ ンク902にデータを書き込み、IEEE1394イン タフェース804がバンク902にデータを書き込んで いるときは、バンク801からデータを読み出す。

【0057】一度プロセッサ801が送信コマンド81 0および読み出しコマンド811を発行すると、図10 に示すようにIEEE1394インタフェース804の 処理と、SCSIインタフェース805の処理は並列に 動作する。このため、DVC806にはデータ808が 必ずバンク901もしくはバンク902のいずれかから 送信され、同時に、バンク901およびバンク902に は、SCSIインタフェース805を通してハードディ スク807から読み出された、次に送信すべきデータ8 09が必ず書き込まれる。このため I E E E 1 3 9 4 イ ンタフェース804からは、途切れることなくハードデ ィスク807から読み出されたデータがDVC806に 送信されることになる。

【0058】なお、IEEE1394インタフェース8 04の処理とSCSIインタフェース805の処理は、 並列に動作するとしたが、タイムシェアリングなどを用 いた疑似的な並列動作でも構わない。

【0059】また、メモリ802は、バンク901およ びバンク902の2つの領域で構成されるとしたが、複 数のバンクに分割されていてもよく、またそれぞれのバ ンクの大きさは一定でも可変でもよい。さらに全てのバ ンクが等しい大きさでなくても構わない。

【0060】またメモリ802からIEEE1394イ ンタフェース904へのデータ808の読み出しは、プ ロセッサ801が管理して行ってもよいし、プロセッサ 801が管理しなくてもよい。

【0061】またSCSIインタフェース805からメ モリ802へのデータ809の書き込みは、プロセッサ 801が管理して行ってもよいし、プロセッサ101が 管理しなくてもよい。

【0062】またIEEE1394インタフェースは、 ほぼ定期的な間隔で常に伝送され続けるストリームデー タを送信できる別のインタフェースでも構わず、SCS Iインタフェースは、別のインタフェースでも構わな

【0063】またDVCは、ほぼ定期的な間隔で常に伝

13

送され続けるストリームデータを入力する別の装置であってもよく、ハードディスクは別の記録媒体でも構わない。

[0064]

【発明の効果】以上説明したように、第1の発明によれば、一度プロセッサが受信コマンドおよび書き込みコマンドを発行すると、IEEE1394インタフェースの処理と、SCSIインタフェースの処理が並列に動作するため、受信したデータの全て、もしくは受信したデータのうち必要なデータを全てハードディスクに書き込む 10 ことができる。

【0065】また、第2の発明によれば、一度プロセッサが受信コマンドおよび書き込みコマンドを発行すると、IEEE1394インタフェースの処理と、SCSIインタフェースの処理が並列に動作し、かつデータ欠落が発生した場合には、プロセッサはDVCに再送コマンドを送信し、同じデータを複数回受信し、欠落したデータを補うため、必要なデータをハードディスクに全て書き込むことができる。

【0066】また、第3の発明によれば、一度プロセッ 20 サが送信コマンドおよび読み出しコマンドを発行する と、IEEE1394インタフェースの処理と、SCS Iインタフェースの処理は並列に動作するため、IEE E1394インタフェースからは、途切れることなくハードディスクから読み出されたデータがDVCに送信することができる。

【図面の簡単な説明】

【図1】本発明の第1実施形態における計算機のブロック図

【図2】本発明の第1実施形態におけるデータ108の 30 具体例を示す図

【図3】本発明の第1実施形態におけるメモリ102の 構成例を示す図

【図4】本発明の第1実施形態におけるデータ伝送のタ イムチャート

【図5】本発明の第2実施形態における計算機のブロック図

【図6】本発明の第2実施形態においてハードディスク 107に書き込むデータの一例を示す図

【図7】本発明の第2実施形態におけるデータ伝送のタ 40 イムチャート

【図8】本発明の第3実施形態における計算機のブロック図

【図9】本発明の第3実施形態におけるメモリ802の 構成例を示す図

【図10】本発明の第3実施形態におけるデータ伝送の タイムチャート

【図11】従来例におけるPCの構成例を示した図

【図12】従来例におけるデータ転送のタイムチャート 【符号の説明】 101 プロセッサ

- 102 メモリ
- 103 バス
- 104 IEEE1394インタフェース
- 105 SCSIインタフェース
- 106 DVC
- 107 ハードディスク
- 108 DVC106からの送信データ
- 109 ハードディスク107への書き込みデータ

14

- 10 110 受信コマンド
 - 111 書き込みコマンド
 - 201a, 201b, 201c, 201d, 201e,
 - 201f, 201gDVC106からの送信データパケット
 - 301, 302 バンク
 - 501 プロセッサ
 - 502 IEEE1394インタフェース
 - 503 DVC
 - 504 DVC503の制御コマンド
 - 601 ハードディスク601に書き込むべきデータ
 - 602 データ601のうちハードディスク601に書 き込めたデータ
 - 603 データ601のうち欠落したデータ
 - 701 送信コマンド
 - 702 再送コマンド
 - 703 1回目のデータ伝送期間
 - 704 2回目のデータ伝送期間
 - 801 プロセッサ
 - 802 メモリ
- 803 バス
 - 804 IEEE1394インタフェース
 - 805 SCSIインタフェース
 - 806 DVC
 - 807 ハードディスク
 - 808 DVC806への送信データ
 - 809 ハードディスク807からの読み出しデータ
 - 810 送信コマンド
 - 811 読み出しコマンド
 - 901、902 バンク
- 0 1101 プロセッサ
 - 1102 メモリ
 - 1103 バス
 - 1104, 1105 SCSIインタフェース
 - 1106, 1107 ハードディスク
 - 1108 ハードディスク1106からの読み出しデータ
 - 1109 ハードディスク1107への書き込みデータ
 - 1110 受信コマンド
 - 1111 書き込みコマンド
- 50 1201 ハードディスク1106の待機期間

807

【図5】 【図8】 102 ار 802 801 **-501 メモリ** メモリ プロセッサ プロセッサ -110, 111, 504 810,811 108--109 808 809 _103 パス _803 バス -110,504 ~810 809 811 808 108 109/ SCSI インタフェース IEEE1394 インタフェース SCS I インタフェース I E E E 1 3 9 4 インタフェース 105 805 502 8Ó4 -109 -809 504 808 108 ハード ディスク ハード ディスク DVC DVC

8Ò6

【図7】

107

5Ò3

【図10】

フロントページの続き

(72) 発明者 山田 正純

大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 倉野 幸生

大阪府門真市大字門真1006番地 株式会社 松下ソフトリサーチ内