Having thus described the invention, it is claimed:

1. A method of producing an aqueous solution of thermodynamically free iodine from iodine vapor transferred across a membrane from an iodine source, comprising the following steps:

selecting a membrane that is permeable to iodine and water vapor but impermeable to liquids and solids;

providing a source of iodine vapor;

5

10

5

providing such membrane in the form of an enclosure to contain the source of iodine vapor;

providing a vessel that contains a receiving medium for the iodine vapor; and

permeating iodine vapor across the membrane.

- 2. The method of claim 1 wherein the iodine source is iodine as an iodine-releasing solid or an iodine-releasing liquid that contains iodine in solution or in a complex form.
- 3. The method of claim 2 including the additional steps of: absorbing the iodine vapor in the liquid contained in the vessel; mixing the iodine vapor with inert gas contained in or flowing through the vessel; and controlling flow of the receiving medium such that it is either static or moving.

- 4. The method of claim 3 including the additional step of:
 passing the inert gas containing iodine vapor through a liquid medium that
 absorbs said iodine vapor.
- 5. The method of claim 1 wherein the iodine vapor-permeable membrane is an organic plastic material.
- 6. The method of claim 1 wherein the iodine vapor-permeable membrane is an inorganic material.
- 7. The method of claim 1 wherein the iodine vapor-permeable membrane is single ply.
- 8. The method of claim 1 wherein the iodine vapor-permeable membrane is multi-ply construction wherein the plies are of the same or different composition and structure.
- 9. The method of claim 1 wherein the iodine vapor-permeable membrane is a continuous film.
- 10. The method of claim 1 wherein the iodine vapor-permeable membrane is non-woven.

- 11. The method of claim 1 wherein the iodine vapor-permeable membrane is a nanostructure.
- 12. The method of claim 1 wherein the iodine vapor-permeable membrane is perforated.
- 13. The method of claim 1 wherein the membrane material is substantially non-permeable to solid iodine.
- 14. The method of claim 13, including the additional step of; transferring iodine vapor through discrete pores in the membrane of less than 5 microns.
- 15. The method of claim 1, including the additional steps of:
 providing a vessel of a material that is substantially impermeable to iodine
 vapor and essentially unreactive towards iodine;
 maintaining a temperature of the receiving medium in the range of about -10
 to 110 degrees Centigrade;
- maintaining a pressure in the vessel containing the receiving medium in a range from vacuum to about 5 atmospheres; and constructing and testing the vessel for the specified pressure rating.

5

16. A device for producing a saturated or concentrated solution of iodine, comprising:

an iodine vapor-permeable membrane sealed by a melt sealer or adhesive means into a sachet or pouch;

an iodine source contained within said sachet or pouch;

an iodine-receiving medium;

5

10

15

a vessel containing the iodine-receiving medium;

a suitable means for providing controlled flow, where desired, of the iodinereceiving medium;

a suitable means of supplying agitation of the receiving medium;

a suitable means of heating or cooling and temperature control of the receiving medium, where required for the intended end-use;

a suitable means for controlling the pressure in the receiving medium, where required for the intended end-use; and

a suitable means for removing a measured volume of iodine solution from the vessel in batch or continuous mode.

- 17. The device of claim 16 wherein the iodine vapor-permeable membrane is an inorganic material.
- 18. The device of claim 16 wherein the iodine vapor-permeable membrane is single ply.
- 19. The device of claim 16 wherein the iodine vapor-permeable membrane is multi-ply construction wherein the plies are the same or different composition and structure.

- 20. The device of claim 16 wherein the iodine vapor-permeable membrane is a continuous film.
- 21. The device of claim 16 wherein the iodine vapor-permeable membrane is non-woven.
- 22. The device of claim 16 wherein the iodine vapor-permeable membrane is a nanostructure.
- 23. The device of claim 16 wherein the iodine vapor-permeable membrane is perforated.
- 24. The device of claim 16 wherein the membrane material is substantially non-permeable to solid iodine.
- 25. The device of claim 16 that can produce controlled or blended iodine solutions of any strength up to the saturation level.
- 26. A method of preparing an iodine fluid for dietary purposes directly or by blending, comprising the steps of: selecting a membrane that is permeable to iodine and water vapor but

impermeable to liquids and solids;

5

10

providing such membrane in the form of an enclosure to contain the source of iodine vapor;

providing a source of iodine vapor within the enclosure;

providing a vessel that contains a receiving medium for the iodine vapor;

controlling a flow of the iodine-receiving medium in the vessel;

removing a measured volume of iodine solution from the vessel in a batch or

continuous mode; and

preparing an iodine fluid for dietary purposes.

27. A method of preparing a fluid for disinfecting, sterilizing and

preserving food ingredients, food stuffs, feed ingredients and feedstuffs,

comprising the steps of:

selecting a membrane that is permeable to iodine and water vapor but

impermeable to liquids and solids;

providing such membrane in the form of an enclosure to contain the source

of iodine vapor;

providing a source of iodine vapor within the enclosure;

providing a vessel that contains a receiving medium for the iodine vapor;

removing a measured volume of iodine solution from the vessel in a batch or

continuous mode; and

preparing a fluid for disinfecting, sterilizing and preserving food ingredients,

food stuffs, feed ingredients and feedstuffs.

5

10

28. A method for preserving food products such as fish, seafood, poultry and meat, according to the steps of:

producing ice from an aqueous iodine solution prepared according to the steps of:

selecting a membrane that is permeable to iodine and water vapor but impermeable to liquids and solids;

5

10

5

providing such membrane in the form of an enclosure to contain the source of iodine vapor;

providing a source of iodine vapor within the enclosure; and providing a vessel that contains a receiving medium for the iodine vapor.

29. A method for preserving food products such as fruits and vegetables, comprising the steps of:

spraying a dilute aqueous iodine solution prepared according to the steps of: selecting a membrane that is permeable to iodine and water vapor but impermeable to liquids and solids;

providing such membrane in the form of an enclosure to contain the source of iodine vapor;

providing a source of iodine vapor within the enclosure; and providing a vessel that contains a receiving medium for the iodine vapor.

30. A method for producing an aqueous solution of a halogen or mixture of halogens, comprising the steps of:

selecting a membrane that is permeable to halogen and water vapor but impermeable to liquids and solids;

providing such membrane in the form of an enclosure to contain the source of halogen vapor;

5

providing a source of halogen vapor within the enclosure; and providing a vessel that contains a receiving medium for the halogen vapor.

- 31. The method of claim 30 including the additional steps of:
 absorbing the halogen vapor in the liquid contained in the vessel;
 mixing the halogen vapor with inert gas contained in or flowing through the vessel; and
- controlling flow of the receiving medium such that it is either static or moving.