Howework #6

3.1)
$$T = \left(\frac{\partial S}{\partial U}\right)^{-1}$$

$$= \frac{\partial U}{\partial S}$$

$$\approx \frac{2\xi - O\xi}{(0.7 - O)}$$

$$= \frac{2}{U} \cdot \frac{\xi}{k}$$

$$= 0.186 \frac{\xi}{b}$$

3.5)
$$\Omega(N_{j}q) \approx \frac{(q+N)!}{q!N!}$$
Let $q \ll N$

$$\approx k \left((q+N) \ln (q+N) - q - N - q \ln q + q - N \ln N + N \right)$$

$$=\frac{RV}{\varepsilon}\left(\ln N - \ln U + \ln \varepsilon + 1\right)$$

$$\frac{1}{T} = \frac{35}{30} = \frac{R}{\epsilon} \left(\ln N - \ln U + \ln \epsilon + 1 \right) + \frac{KU}{\epsilon} \left(-\frac{1}{2} \right)$$

$$= \frac{L}{\epsilon} \ln \frac{N\epsilon}{U} + \frac{KV}{\epsilon} - \frac{RV}{\epsilon}$$

$$=\frac{k}{\epsilon} \ln \frac{N\epsilon}{Q}$$

$\frac{\varepsilon}{\kappa \tau} = I_{n} \frac{N \varepsilon}{U}$ $\frac{N \varepsilon}{U} = \varepsilon^{E/\kappa T}$ $U = N \varepsilon e^{-\varepsilon/\kappa T}$
NE - E/KT
U = NEe
$\mathcal{I}(\mathcal{I})$
$33) C_{V} = \frac{30}{37}$ $= \frac{N_{\xi^{2}}}{RT^{2}}e^{-\xi/RT}$
$=\frac{\kappa_{\xi}}{kT^{2}}e^{-\frac{kT^{2}}{kT}}$