Lesson 5 Quiz

5 试题

1 point

1. Given a sequence database, as shown in Table 3, with support threshold minsup = 3, which of the following sequences are frequent?

SID	Sequence
1	$\langle a(bc)(de)cf \rangle$
2	$\langle a(bd)(bc)ef \rangle$
3	$\langle bc(ad)ebfcd \rangle$
4	$\langle ab(cd)d(ab)e\rangle$

Table 3: Sequence database.

- < abc >
- < a(bc) >
- < ade >
- < acf >

Nor	ne of the above
1 point	
frequent se	e use Generalized Sequential Patterns (GSP) to find the quential patterns. After scanning the database once, we quent singleton sequences are: a, b, d. Which of the ould be possible length-2 candidate sequences?
<ac< td=""><td>></td></ac<>	>
<(bo	;)>
✓ <ab< td=""><td>></td></ab<>	>
✓ <(bo	d)>
1	
point	

3.

Given a sequence database as shown in the following table, suppose we use the SPADE algorithm to find the frequent sequential patterns. Which of the following sequences (in the format of <SID, EID>) belong to the mapped database of item a?

SID	Sequence
1	$\langle a(bc)(de)cf \rangle$
2	$\langle a(bd)(bc)ef \rangle$
3	$\langle bc(ad)ebfcd \rangle$
4	$\langle ab(cd)d(ab)e\rangle$

Table 3: Sequence database.

~	<1, 1>			
	<3, 2>			
<u> </u>	<4, 1>			
	<1, 2>			

1 point

4。

Given a sequence database, as shown in Table 11. Suppose min_sup = 1. Which of the following does not belong to the < d >-projected database?

SID	Sequence
1	$\langle af(e)(cdeh)cfg(abe)\rangle$
2	$\langle ad(bc)c(fg)(ch)\rangle$
3	$\langle bc(ad)ebf(cdfgh) \rangle$
4	$\langle ab(bd)de \rangle$

Table 11: Sequence database.

< (c_eh)cfg(abe) >
<(bc)c(fg)(ch) >
< ebf(cdfgh) >
< de >

1 point

5。

Suppose we use the CloSpan algorithm to find all closed sequential patterns from a sequence database with minimum support 15. During the mining process, we derive the following sequences along with the sizes of their projected DBs: <c>: 50, <ac> 45, 30, <bc>: 30. Then we use the backward sub-pattern rule and the backward super-pattern rule to prune redundant search space. Which of the projected DBs will remain after the pruning?

✓ <c>

<ac>
</ri>

✓	 bc>
	>
<u> </u>	我(伟臣 沈)了解提交不是我自己完成的作业 将永远不会通过 此课程或导致我的 Coursera 帐号被关闭。 了解荣誉准则的更多信息
	提交测试