TEC-2 机硬件系统的基本组成与实现

1. TEC-2 机硬件系统的基本组成

2. TEC-2 机的简化逻辑框图

3. TEC-2 机的系统功能布局框图

4. TEC-2 机的逻辑线路图

TEC-2 机的逻辑线路图 (续)

5. TEC-2 机的逻辑部件说明

5.1 AM2901 运算器芯片

AM2901 芯片是一个 4 位的运算器器件,具有 4 位算术逻辑运算部件 (ALU),能够执行 3 种算术运算和 5 种逻辑运算。它内部包括一个由 16 个 4 位通用寄存器组成的寄存器组,一个用于乘除法运算过程的寄存器 Q,以及一些其他组件,如多路数据选择器、移位器等。

寄存器组支持双端口(A 口与 B 口)读出和单端口(B 口)写入。双端口 A、B 都可输出寄存器组中任一寄存器的数据,分别用 4 位寄存器地址(即 A 地址与 B 地址)从 16 个寄存器($R_0\sim R_{15}$)中指定 A 口或 B 口要访问的寄存器。端口 B 也支持写入。

ALU 运算后的结果经一个移位器移位(可以左移、右移或不移)后送寄存器 B 口,写入 B 地址指定的寄存器。Q 寄存器也可接收 ALU 的运算结果,且 Q 寄存器本身就具有左右移位的功能。

AM2901 芯片引脚信号如下:

D ₃ ~D ₀	外部送给 AM2901 的数据信号;				
VV	AM2901 送出的数据信号,受输出使能信号/OE 控制。TEC-2				
Y ₃ ~Y ₀	机中,/OE 已接地;				
A、B 地址 选择寄存器组中的源寄存器与目的寄存器					
$I_8 \sim I_0$	外部送来的控制信号				
Cin	外部送来的最低位进位				
C _{n+4}	AM2901 送出的最高位进位				
F ₃ AM2901 送出的 ALU 运算结果的最高位(即符号位)					
OVR	AM2901 送出的运算溢出标志信号(OVR=1,表示溢出)				
F=0	AM2901 送出的运算为 0 标志信号(该信号=1,表示结果为 0)				
RAM3, RAM0 运算结果 F 移位时的最高位、最低位信号					
Q ₃ , Q ₀	Q寄存器移位时的最高位、最低位信号				

Am2901 运算器用 9 个控制信号(I₈~I₀)实现三类控制:

(1) $I_2 \sim I_0$: 选择 ALU 的 R、S 输入口的数据来源。

A: 寄存器组的 A 口输出

B: 寄存器组的 B 口输出

Q: 寄存器 Q (该寄存器主要用在乘除运算中)

D: 4位外部数据

0: 常量 0

(2) I₅~I₃: 选择运算类型

(3) I₈~I₆: 选择运算结果的处理方案

Y输出选择:芯片输出数据,可以是ALU运算结果F或寄存器A口数据

Am2901 运算器的控制信号编码表

			I8-6		I5-3	12	-0
0	0	0	F→Q	F	R+S	Α	Ö
0	0	1	无	F	S-R	Α	В
0	1	0	F→B	A	R-S	0	Q
0	1	1	F→B	F	R∨S	0	В
1	0	0	F/2→B	F	R∧s	0	Α
			Q/2→Q				
1	0	1	F/2→B	F	/R/\S	D	Α
1	1	0	2F→B	F	R⊕s	D	Q
			2Q → Q				
1	1	1	2F→B	F	R⊙S	D	0
			寄存器结果选择	Y输出选择	运算功能选择	R	S

注: 寄存器结果选择,即指定 ALU 运算结果 F 保存到寄存器的方式

F→Q	F送Q寄存器
无	不保存 F
F→B	F 送通用 B 口输入端
$F/2 \rightarrow B$, $Q/2 \rightarrow Q$	F 与 Q 联合右移一位, F 最右位移入 Q 的最左位; 移位后的
	F送B口输入端
F/2→B	F 右移一位送 B 口输入端
2F→B, 2Q→Q	F 与 Q 联合左移一位, Q 最左位移入 F 的最右位; 移位后的
	F 送 B 口输入端
2F→B	F 左移一位送 B 口输入端

移位时最高、最低位的移位输入信号的形成逻辑如下表所示:

2 佼核	2 位控制码 左移		右移		说明	
SSH丹编码		SH 母编码 RAMO QO		RAM15 Q15		
B9	B8			(RAM7)	(Q7)	
0	0	0	Х	0	Х	通用寄存器逻辑位移
0	1	C	X	С	X	通用寄存器与 C 循环移
1	0	Q15	/F15	CY	RAM0	原码除(左移)乘(右移)
		(Q7)	/F7			
1	1	X	X	F15(F7)或OVR	RAM0	右移用于补码乘法

- 注: 1. 表中的 X 表示不必处理、不必过问该位的取值;
 - 2. 当通用寄存器本身移位时, Q 寄存器不受影响。

5.2 TEC-2 机的运算器框图

TEC-2 机由 4 片 AM2901 芯片级联成 16 位的运算器。

AM2901 芯片的寄存器组中 16 个寄存器中的 $R_{3}\sim R_{0}$ 和 $R_{15}\sim R_{8}$ 作为通用寄存器使用,由指令中的源寄存器和目的寄存器字段给出要访问的寄存器地址; $R_{7}\sim R_{4}$ 作为专用寄存器,不能由指令通过寄存器地址直接访问,只能用送入的 A 口地址和 B 口地址指定访问。

R ₄	SP, 栈顶指针
R ₅	PC,增量后的指令地址(程序计数器)

R ₆	IP, 当前执行指令的地址
R ₇	单步专用

地址寄存器 AR: 存放要访问内存单元的地址,输出到地址总线。

AM2902 芯片: 4 位超前进位产生电路芯片,分别为 4 片 AM2901 运算器芯片提供最低位的进位信号。

GAL3 (SHLR): 通用阵列逻辑电路芯片,为 AM2901 运算器芯片提供 Ov、Cy、C_{in}、C_o、RAM₃、RAM₀、Q₃、Q₀等输入信号,其中 C_{in}的形成逻辑如下表所示:

SCi 编码 (BllB10)	00	01	10	11
Cin 取值	0	1	C	TCLK 方波

GAL1(STR),通用阵列逻辑电路芯片,按下表描述的逻辑对 AM2901 芯片的输出信号进行逻辑处理,生成并记忆 8 位的程序状态字(Program Status Word,简称 PSW),其中的标志位从高到低分别是 C(进位标志)、Z(零标志)、V(溢出标志)、S(符号标志)、INTE(中断标志)、 P_2 、 P_1 、 P_0 。

S	SST 编码 状态位输入			魞	说明		
B34	B33	B32	С	Z	V	S	
0	0	0	С	Z	V	S	四位标志位的值保持不变
0	0	1	CY	F=0	OV	F3	接收 ALU 的标志位输出值
0	1	0	IB7	IB6	IB5	IB4	恢复标志位原现场值
0	1	1	0	Z	V	S	置C为"0",另三个标志不变
1	0	0	1	Z	V	S	置C为"1",另三个标志不变
1	0	1	RAM0	Z	V	S	右移操作,另三个标志不变
1	1	0	RAM15	Z	V	S	左移操作,另三个标志不变
1	1	1	Q0	Z	V	S	联合右移,另三个标志不变

SA: 数据选择器,两路输入分别来自指令寄存器的源寄存器字段(图中标记为 IR)和微指令寄存器的 A 口字段(图中标记为 B)。

SB: 数据选择器,两路输入分别来自指令寄存器的源寄存器字段(图中标记为 IR)和微指令寄存器的 B 口字段(图中标记为 B)。

SW1、SW2、SW3、SW4: 微型开关,可以手动输入控制信号和寄存器组的 A 口与 B 口地址。

TEC-2 机的运算器框图

