

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа № 7

Дисциплина Моделирование.

Тема Информационный центр.

 Студент
 Сиденко А.Г.

 Группа
 ИУ7-73Б

Оценка (баллы)

Преподаватель Рудаков И.В.

1. Условие.

В информационный центр приходят клиенты через интервал времени 10 ± 2 минуты. Если все три имеющихся оператора заняты, клиенту отказывают в обслуживании. Операторы имеют разную производительность и могут обеспечивать обслуживание среднего запроса пользователя за 20 ± 5 ; 40 ± 10 ; 40 ± 20 . Клиенты стремятся занять свободного оператора с максимальной производительностью. Полученные запросы сдаются в накопитель. Откуда выбираются на обработку. На первый компьютер запросы от 1 и 2-ого операторов, на второй — запросы от 3-его. Время обработки запросов первым и 2-м компьютером равны соответственно 15 и 30 мин. Промоделировать процесс обработки 300 запросов.

Найти вероятность отказа.

Реализовать на языке GPSS.

2. Теория.

В соответствии с концептуальной схемой построим структурную схему, представленную на рисунке 1.

Рис. 1: Концептуальная схема.

3. Листинг.

```
GENERATE 10,2,0,300 ; Создание потока транзактов
                     ; 10 - временной интервал появления транзакта
                     ; 2 - половина интервала возможного отклонения времени появления
                     ; 0 – начальная временная задержка
                     ; 300 - максимальное число транзактов, которое должно быть сгенерировано
OPERATOR1 GATE NU
                  OPER1, OPERATOR2 ; Переместить в зависимости от состояния
                                    ; Устройство OPER1 не занято? Входим в блок OPER1
                                    ; Если занято, переход на метку OPERATOR2
          SEIZE
                   OPER1
                                    ; Имя устройства: занимаемого транзактом - OPER1
         ADVANCE 20,5
                                    ; Задержка транзакта на 20 с разбросом 5
          RELEASE OPER1
                                   ; Освобождение обслуживающего устройства - OPER1
         TRANSFER , COMPUTER1
                                   ; Безусловный переход транзакта на метку COMPUTER1
OPERATOR2 GATE NU OPER2, OPERATOR3 ; Переместить в зависимости от состояния
                                   ; Устройство OPER2 не занято? Входим в блок OPER2
                                   ; Если занято, переход на метку OPERATOR3
          SEIZE
                  OPER2
                                   ; Имя устройства: занимаемого транзактом - OPER2
         ADVANCE 40,10
RELEASE OPER2
                                  ; Задержка транзакта на 40 с разбросом 10
                                  ; Освобождение обслуживающего устройства - OPER2
          TRANSFER , COMPUTER1
                                 ; Безусловный переход транзакта на метку COMPUTER1
OPERATORS GATE NU OPERS, FAIL; Переместить в зависимости от состояния
                               ; Устройство OPER3 не занято? Входим в блок OPER3
                               ; Если занято, переход на метку FAIL
          SETZE
                  OPER3
                              ; Имя устройства: занимаемого транзактом - OPER3
         ADVANCE 40,20
                              ; Задержка транзакта на 40 с разбросом 20
         ADVANCE 40,20 ; задержка транзакта на 10 с разоросом 20
RELEASE OPER3 ; Освобождение обслуживающего устройства — ОРЕR3
         TRANSFER , COMPUTER2 ; Безусловный переход транзакта на метку COMPUTER2
COMPUTER1 QUEUE
                  QUEUE1 ; Помещение транзакта в конец очереди QUEUE1
          SEIZE
                  COMP1 ; Имя устройства: занимаемого транзактом - COMP1
                            ; Удаление транзакта из очереди QUEUE1
         приямсе 15 ; Задержка транвакта на 15 RELEASE COMP1 ; Освобожности
                   QUEUE1
                            ; Освобождение обслуживающего устройства - СОМР1
         TRANSFER , SUCCESS ; Безусловный переход транзакта на метку SUCCESS
COMPUTER2 QUEUE
                  QUEUE2 ; Помещение транзакта в конец очереди QUEUE2
                  COMP2
                            ; Имя устройства: занимаемого транзактом - СОМР2
         DEPART QUEUE2 ; Удаление транзакта из очереди QUEUE2
                            ; Задержка транзакта на 30
         RELEASE COMP2 ; Освобождение обслуживающего устройства - COMP2
         TRANSFER , SUCCESS ; Безусловный переход транзакта на метку SUCCESS
SUCCESS
         TRANSFER , ENDING ; Безусловный переход транзакта на метку ENDING
         TRANSFER , ENDING ; Безусловный переход транзакта на метку ENDING
FAIL
         SAVEVALUE NFAIL, N$FAIL
                                                        ; Количество отказанных заявок
          SAVEVALUE PROB, ((N$FAIL) / (N$SUCCESS + N$FAIL)); Вероятность отказа
         TERMINATE 1
                                                        ; Вывод транзакта из модели
         RESET ; Очистка накопленной статистики
          START 300 ; Выполнение модели до 300 завершений
```

Листинг 1.: Реализация на языке GPSS

4. Полученные результаты.

NFAIL – количество отказанных заявок.

PROB – вероятность отказа.

	32	SAVEVALUE	E	300		0		0		
	33	TERMINATE	Σ	300		0		0		
FACILITY	ENTRIES	UTIL.	AVE. TIME	AVAIL.	OWNER	PEND	INTER	RETRY	DELAY	
OPER1	121	0.788	19.92	4 1	0	0	0	0	0	
OPER2	59	0.772	40.03	6 1	0	0	0	0	0	
OPER3	51	0.711	42.64	0 1	0	0	0	0	0	
COMP1	180	0.883	15.00	0 1	0	0	0	0	0	
COMP2	51	0.500	30.00	0 1	0	0	0	0	0	
QUEUE	MAX CO	ONT. ENTRY	Y ENTRY(0)	AVE.COM	N <u>T</u> . AVI	E.TIME	AVI	E.(-0)	RETRY	
QUEUE1	2	0 180	61	0.279	9 . L	4.737		7.165	0	
QUEUE2	1	0 51	L 48	0.004	4	0.212		3.598	0	
SAVEVALUE	I	RETRY	VALUE							
NFAIL		0	69.000							
PROB		0	0.230							

Рис. 2: Пример.

Бывод.

Была смоделирована информационная система, в которую приходят клиенты. Данная система состоит из нескольких блоков: генератора заявок, трех операторов, двух накопителей и двух компьютеров.

На выходе получаем число клиентов получивших отказ и вероятность отказа.