

MANUAL DE OPERACIÓN Y MANTENIMIENTO

VENTILADOR CENTRÍFUGOS

MODELOS: RA RF RM

RU

RG/RH

ÍNDICE

1.	INTRODUCCIÓN	2
2.	SEGURIDAD GENERAL	2
	EMBALAJE, RECEPCIÓN Y MANIPULEO	
	REQUERIMIENTOS DE LA INSTALACIÓN	
	CHECK LIST	
	OPERACIÓN	
	MANTENIMIENTO	
	7.1. POLEAS Y CORREAS	
	7.2. RODAMIENTOS	
	7.2. KODAMIENTOS	
	ALMACENAJE DEL EQUIPO	
9.	LOCALIZACIÓN Y RESOLUCIÓN DE PROBLEMAS	18
10.	LISTA DE PARTES GENERALES	19

1. INTRODUCCIÓN

Este Manual tiene la intención de asistir al usuario final con lo básico referido a la instalación, operación y mantenimiento del ventilador. El proceso, las interfaces y los equipos del sistema de control de la unidad son provistos por otros, sin embargo, hay que estar seguros de seguir todas las instrucciones cuidadosamente y colocar especial atención a las consideraciones de seguridad.

2. SEGURIDAD GENERAL

Es responsabilidad del comprador asegurarse de que la instalación sea manejada por personal calificado experimentado en la instalación de este tipo de equipamiento.

- No debe ser excedida la velocidad y temperatura máxima con la que el ventilador ha sido diseñado. Ver límites en Presupuesto y Datos Técnicos.
- Ninguna modificación sobre el producto es permitida sin aprobación de GATTI Ventilación S.A.
- No arrancar el ventilador si el rotor está girando libre.
- Las puertas de inspección nunca deben ser abiertas durante la operación del equipo.
- Asegúrese que todas las guardas y rejillas estén bien ajustadas antes de la puesta en funcionamiento.
- Durante el mantenimiento del equipo este debe ser aislado completamente de la red de energía eléctrica.
- Previo al arranque saque todo material suelto extraño que pudiera haber en la carcasa como en la turbina.
- No limpie el ventilador cuando está operando. Asegurarse de que el ventilador no pueda ser accionado accidentalmente durante su limpieza o mantenimiento.

Nunca dejar objetos dentro del ventilador (pueden ocasionar daños importantes al usuario y al rotor)

Conexión eléctrica

El ventilador nunca debe ser conectado a la red eléctrica sin incluir uno o más sistemas de corte del suministro, para así posibilitar la intervención humana en una examinación o mantenimiento, a ser llevado a cabo de manera segura.

De la misma manera, se debe proveer de protección eléctrica al motor para prevenir sobrecargas u operaciones en dos fases en caso eventual de algún incidente. Para conseguir esto se deben usar arrancadores suaves, cortacorrientes diferenciales, llaves termomagnéticas, relés térmicos, fusibles, etc.

E-mail: ventas@gattisa.com.ar www.gattisa.com.ar

En todos los casos usar la correcta sección de cables compatible con el tamaño del motor. Dependiendo del voltaje de la red, consultar el diagrama de la caja bornera del motor antes de decidir sobre la correcta posición de las conexiones.

Observar en la chapa identificadora del motor instalado, los valores especificados del voltaje, amperaje, potencia y frecuencia de rotación del motor eléctrico.

3. EMBALAJE, RECEPCIÓN Y MANIPULEO

Antes de dejar nuestra fábrica este producto fue cuidadosamente inspeccionado y embalado correctamente. Al arribar a destino, cada ítem debe ser inspeccionado por cualquier inexistencia o daño que pudieran haber ocurrido durante su transporte. Ante un eventual daño, retrabajos de reparación deben ser aprobados por escrito.

Todos los ventiladores deben ser manipulados por personal entrenado y deben seguir las prácticas de manejo seguro. Verificar el peso del ventilador y el equipo apropiado para evitar cualquier daño o perjuicio. Algunos ventiladores pueden ser provistos de puntos de izaje para facilitar su correcto manipuleo. No elevar o mover el ventilador de la entrada o salida del mismo, tampoco desde el eje o la turbina. Los puntos de izaje del motor no se deben usar para levantar el ventilador. No hacer rodar la turbina por el suelo, esto podría afectar el balance de la misma.

Reclamos de garantía no serán aceptados por daños causados por cualquier incorrecto transporte o manipuleo.

4. <u>REQUERIMIENTOS DE LA INSTALACIÓN</u>

Conexión de los conductos.

Los conductos deben ser conectados al ventilador con conexiones flexibles siempre que sea posible para reducir la vibración y ser independientemente sujetado. Conectar los conductos directamente al ventilador puede distorsionar algunos componentes causando vibraciones y contacto entre partes rotantes.

Esto es crítico donde por temperatura, ya sea por el gas transportado o por las condiciones ambientales, los conductos se expanden o contraen. Como regla general, las conexiones flexibles son requeridas en todos los ventiladores que operan arriba de los 120°C y en ventiladores montados sobre sistemas antivibratorios.

Estructura soporte y Fijación.

Una base de concreto correctamente diseñada es el mejor medio para instalar ventiladores montados al piso. Asegúrese que la base de concreto se extienda al menos 150 mm más allá de la base del ventilador. El peso de la base de concreto debe ser al menos 2 a 3 veces el peso del ventilador, incluido el motor. El ventilador debe ser correctamente ajustado a la base con pernos de anclaje. Delgas y soportes se requerirán para nivelar el ventilador.

Plataformas de acero pueden ser usadas para aplicaciones elevadas. Estas deben ser adecuadamente sujetadas en todas direcciones para prevenir deslizamientos.

El Ventilador deberá ser montado únicamente por su Base donde se encuentran los orificios de fijacion. Se deberá utilizar tacos anti vibratorios de ser necesario.

Resonancia

La mínima frecuencia natural de cualquier parte de la estructura donde será montado el ventilador debe ser por lo menos un 50% más alta de la velocidad de operación del ventilador, si no se producirán fallas estructurales.

5. CHECK LIST

Antes de efectuar cualquier chequeo, se debe asegurar que el motor este desconectado de la red eléctrica de suministro.

- ✓ Chequear el cableado del motor. El motor debe ser conectado como lo muestra la placa del mismo. Se debe verificar que el voltaje, amperaje, potencia y velocidad de rotación sean las especificadas en la placa de características del equipo. Siempre chequear que los rodamientos del motor estén lubricados.
- ✓ Verificar el juego entre la turbina y el aro del ventilador.
- ✓ Chequear que los cubre-correas estén correctamente ajustados.
- ✓ Chequear el apriete de todos los tornillos de fijación en caso de que se hayan aflojado durante su instalación.
- ✓ Verificar el alineado de las poleas, si las tuviera. Chequear la tensión de las correas (ver **Tabla 1**).
- ✓ Chequear el alineamiento de los rodamientos y que estén correctamente centrados al eje y lubricados. No lubricar demasiado (ver **Tabla 2**).
- ✓ Las puertas de inspección deben estar ajustadas y selladas.
- ✓ Girar el rotor con la mano y verificar que gire libremente sin ninguna obstrucción.
- ✓ Sacar todo material extraño del ventilador y eje del motor

El ventilador esta ahora listo para su operación.

6. OPERACIÓN

✓ Arranque por primera vez

Encender y apagar el motor para chequear que la rotación del rotor esté de acuerdo con la flecha indicada en la carcasa. Chequear por ruidos inusuales, rozamientos o vibraciones. Corregir cualquier problema luego de ser desconectado eléctricamente.

Si no hay problemas se puede ahora hacer funcionar el ventilador a las condiciones normales de funcionamiento.

Si el ventilador es puesto en marcha con aire en condiciones normales, y éstas cambian luego durante la operación, se deben realizar mediciones para verificar que el motor no exceda su capacidad nominal.

Chequear las vibraciones y temperatura de los rodamientos para condiciones normales de funcionamiento.

✓ Arranque normal

Aplicar potencia al motor hasta su punto de trabajo.

✓ Parada del motor

Notar que el rotor puede continuar rotando varios minutos luego de parar el motor. Asegurarse de que el ventilador este quieto aun estando fuera de servicio. El rotor debe ser bloqueado antes de intentar cualquier acceso o mantenimiento.

7. MANTENIMIENTO

Requerimientos

El correcto cuidado y mantenimiento es indispensable en la operación exitosa de cualquier ventilador. La periodicidad del mantenimiento depende del tipo de operación y cuidado, como también del servicio que ejecutará y especialmente que rol ocupará como parte de otro equipamiento. La falta de un adecuado mantenimiento podría guiar a un extensivo y prematuro daño de la unidad.

Inspección periódica

Se requerirá una inspección registrada y actualizada del balanceo, lubricación, tensión de las correas y pintura. Cuando se realiza el mantenimiento hay que asegurarse de cortar la corriente eléctrica. Chequear y limpiar todos los componentes. Especial cuidado se debe tener en las partes que están directamente en el flujo de aire, especialmente en la turbina ya que la acumulación de materiales extraños en los álabes podría afectar el balanceo y duración de los rodamientos. Chequear todas las partes por desgastes y desalineaciones, reparar o reemplazar si es necesario.

Partes estáticas

Si es posible, desconectar el ventilador de los conductos, luego proceder:

Cuidadosamente limpiar las partes internas de la carcasa y, si es posible, los conductos de entrada y salida del ventilador.

Limpiar el rotor. Reconectar los conductos. Poner cuidado en no dejar ningún objeto olvidado dentro del ventilador, esto podría ocasionar serios daños al equipo y al usuario. Finalmente limpiar la parte exterior del ventilador.

Rotor

Una puerta de inspección (si la posee) en la carcasa permite una revisión periódica del rotor; este último está sujeto a tensiones provenientes de fuerzas centrífugas y vibraciones. Remover cualquier elemento extraño que podría conducir a un significante y peligroso desbalance del rotor.

7.1. <u>POLEAS Y CORREAS</u>

Alineación de las poleas

Si lo posee, la conducción por correas requiere de una cuidadosa alineación de las poleas y tensión de las correas, ambas se deben hacer luego de que el ventilador haya sido instalado, ya que posibles desalineaciones o distorsiones podrían surgir del ajuste de los pernos de sujeción en el montaje.

La siguiente figura muestra tres posibles **desalineamientos a ser evitados**:

Los siguientes *pasos* deben ser realizados:

- 1- Chequear que los ejes de la turbina y del motor estén paralelos.
- 2- Mover el motor y las poleas axialmente hasta que sus caras queden paralelas y alineadas (ver figura siguiente).
- 3- Chequear el balanceo de las poleas del ventilador y motor.

La siguiente figura muestra lo explicado en los 3 puntos anteriores (alineación correcta de las poleas):

Tensado de las correas

Los siguientes *pasos* deben ser tomados en cuenta para obtener una correcta tensión en las correas:

- 1- Con todas las correas en sus respectivos canales, girar el ventilador manualmente. Continuar con el tensado hasta que las correas tengan solamente un suave bombé sobre el lado descargado (lado flojo) mientras opera con carga (ver Tabla 1 Tensado de las correas).
- **2-** Luego de 2 o 3 días de operación, las correas se asentarán ellas mismas en los canales de las poleas. Más aún, una correa nueva podría estrecharse un 10% durante el primer mes de operación. Por lo tanto, es necesario volver a tensar las correas a fin de que permanezca un suave bombé en la parte descargada. Una vez que esto es realizado el ventilador debe operar satisfactoriamente con solamente un chequeo cada 2 meses.

IMPORTANTE:

- a) No usar cualquier solvente que pudiera dañar las correas durante la operación de limpieza.
- b) Mantenga los canales de las poleas limpios de aceites, tintas, grasas o cualquier suciedad.
- c) La baja tensión provoca deslizamiento y, en consecuencia, genera calor excesivo en las correas ocasionando fallas prematuras.
- d) La alta tensión provoca alto desgaste de la correa y de los flancos de la polea, además disminuye la capacidad de transmisión de potencia y sobrecarga los rodamientos.
- e) No es recomendable el uso de correas nuevas con correas viejas. La correa nueva será sobrecargada y sufrirá una elongación distinta comparada con el resto. En caso de ser necesario reponer una correa, cambiar el juego completo.

Medidor de tensión de correas SKF PUB PSD/C1 007

Procedimiento de la medición:

- 1) Medir la longitud (t) entre centros de las poleas
- 2) A esta última dividirla por 64 [t/64]
- 3) Colocar esta medida en el O ring más grande en la escala de cm marcada por el borde inferior del mismo
- 4) Se calcula el valor de Kilogramos que debe tener la correa según la **Tabla 1**. En ella se entra con el tipo de correa, el diámetro de la polea más chica y las rpm a que gira. Este valor en Kg es para correas nuevas.
- 5) Se coloca el aro más chico en el cero de la escala de fuerzas en Kg
- 6) Se apoya el medidor en ángulo recto del lomo de la correa en su parte media, luego se empuja el resorte calibrado hasta que el borde inferior del O ring mayor se nivele con el lomo de la correa adyacente o regla de referencia (si la correa es única se debe colocar una regla para que sirva de referencia). Entonces se lee el valor de los kilos sobre el borde inferior del O ring más pequeño, comparándolo con el de la **Tabla 1**.
 - Si la lectura da un valor superior al calculado por la **Tabla 1**, la correa está muy tensa y habría que aflojarla; caso contrario, si está por debajo de dicho valor.

Tensímetro simple

<u>TABLA 1:</u> VALORES DE TENSIÓN RECOMENDADOS CON EL USO DEL MEDIDOR SKF PUB PSD/C1 007

Tipo de Correa	Diámetro de polea más pequeña [mm]	Rango de rpm	Fuerza de deflexión de la correa [Kg]
	40-60	1000-2500	0.8
7 7V	40-00	2501-4000	1.0
Z, ZX	Más de 60	1000-2500	1.3
		2501-4000	1.3
	75-90	1000-2500	2.5
	75-90	2501-4000	1.9
A AV	91-120	1000-2500	3.1
A, AX		2501-4000	2.6
	121-175	1000-2500	3.6
	121-1/5	2501-4000	3.2
	85-105 B. BX 106-140	860-2500	
		2501-4000	
D DV		860-2500	3.6
B, BX	100-140	2501-4000	3.0
	141 220	860-2500	4.3
	141-220	2501-4000	4.0
C, CX	175-230	500-1740	7.7

Casa Central: Av. Rosario de Santa Fe 298 - San Francisco - Córdoba Tel: (03564) 420619 y rotativas. Fax: (03564) 421423 E-mail: ventas@gattisa.com.ar www.gattisa.com.ar

oois y iotativas. i	rax: (03504) 421423		***************************************
		1741-3000	6.3
		500-1740	9.5
	231-400	1741-3000	8.4
		200-850	16.8
	305-400	851-1500	14.2
D	200-850	20.5	
	401-510	851-1500	17.2
		1000-2500	2.7
	56-79	2501-4000	2.2
		1000-2500	3.7
SPZ, XPZ	80-95	2501-4000	3.3
		1000-2500	3.7
	Más de 95	2501-4000	3.4
		1000-2500	4.4
	71-105	2501-4000	4.0
		1000-2500	5.3
SPA, XPA	106-140	2501-4000	4.8
		1000-2500	6.8
	Más de 140	2501-4000	6.7
		860-2500	7.5
	107-159	2501-4000	7.2
		860-2500	9.6
SPB, XPB	PB, XPB 160-250	2501-4000	8.6
		860-2500	11.4
	Más de 250	2501-4000	9.8
		500-1740	15.5
	200-355	1741-3000	15.7
SPC, XPC		500-1740	17.6
	Más de 356	1741-3000	20.4
		1000-2500	
	55-60	2501-4000	
		1000-2500	2.3
3V, 3VX	61-90	2501-4000	2.0
	91-175	1000-2500	3.3
		2501-4000	3.0
		1000-2500	
	110-170	2501-4000	
	5V, 5VX 171-275 276-400	+	 0.C
5V, 5VX		500-1741	8.6
		1741-3001	7.6
		500-1741	10.6
		1741-3001	9.9
	8V 431-570	200-850	22.4
8V		851-1500	18.1
		200-850	26.8
		851-1500	23.9

7.2. RODAMIENTOS

Procedimientos de relubricación

Es difícil establecer una regla para la frecuencia de relubricación puesto que las necesidades pueden variar considerablemente según las distintas condiciones de trabajo y aplicaciones. El mejor procedimiento para establecer esta frecuencia, es aquella que se basa en la experiencia del usuario contando para ello con la ayuda de un historial de cada uno de los equipos.

La **Tabla 2** muestra las frecuencias estandares de lubricación. Independiente de la vida calculada de la grasa, esta lista considera factores tales como la velocidad rotacional de los rodamientos , temperaturas de operación y condiciones ambientales.

Se recomiendan las siguientes grasas lubricantes a base de Litio o sus equivalentes:

- ESSO Beacon 325
- Shell Oil Alvania Grease R3

<u>Tabla 2 – RELUBRICACIÓN DE RODAMIENTOS (*)</u>

Equipo	Rodamientos			
DENOMINACIÓN	D	D Valores Frecuencia de re-lubricac		e re-lubricación
RA DM1/DM9	(Øint.)	d x n	Horas	Meses
RA 250 C/ Transmisión T20 UCP 204	20	29000	1000 a 2000	3 a 6
RA 250 C/ Transmisión T30 UCP 206	30	43500	1000 a 2000	3 a 6
RA 330 C/ Transmisión T30 UCP 206	30	43200	1000 a 2000	3 a 6
RA 390 C/ Transmisión T30 UCP 208	30	30000 a 43200	1000 a 2000	3 a 6
RA 450 C/ Transmisión T40 UCP 208	40	40800 a 58400	1000 a 2000	3 a 6
Equipo	Rodamientos			
DENOMINACIÓN	D	Valores	Frecuencia d	e re-lubricación
RF DM1/DM9	(Øint.)	d x n	Horas	Meses
RF 800 C/ Transmisión T60 SNL 513	60	84000	700	1 a 3
Equipo		Rod	amientos	
DENOMINACIÓN	D	D Valores Frecuencia de re-lubricación		
RM DM1/DM9	(Øint.)	d x n	Horas	Meses
RM 395 C/ Transmisión T40 SNL 509	40	108000	500	1
RM 709 C/ Transmisión T60 SNL 513	60	102000	500	1
RM 709 C/ Transmisión T70 SNL 516	70	122500	100 a 500	1 semana a 1 mes
RM 795 C/ Transmisión T70 SNL 516	70	102200 a 103250	500	1
RM 985 C/ Transmisión T85 SNL 519	85	102000 a 125000	100 a 500	1 semana a 1 mes

Casa Central: Av. Rosario de Santa Fe 298 - San Francisco - Córdoba Tel: (03564) 420619 y rotativas. Fax: (03564) 421423

E-mail: ventas@gattisa.com.ar www.gattisa.com.ar

Equipo	Rodamientos			
DENOMINACIÓN	D	Valores Frecuencia de re-lubricación		
RU DM1/DM9	(Øint.)	d x n	Horas	Meses
RU 222 C/ Transmisión T20 UCP 204	20	22600 a 39000	1000 a 2000	3 a 6
RU 245 C/ Transmisión T20 UCP 204	20	27600 a 36000	1000 a 2000	3 a 6
RU 245 C/ Transmisión T30 UCP 206	30	95100	700	1 a 3
RU 270 C/ Transmisión T20 UCP 204	20	28800 a 36000	1000 a 2000	3 a 6
RU 270 C/ Transmisión T30 UCP 206	30	81000	700	1 a 3
RU 300 C/ Transmisión T20 UCP 204	20	26400 a 35800	1000 a 2000	3 a 6
RU 300 C/ Transmisión T30 UCP 206	30	75000	1000	3
RU 330 C/ Transmisión T30 UCP 206	30	34500 a 69000	1000 a 2000	3 a 6
RU 365 C/ Transmisión T30 UCP 206	30	33000 a 64500	1000 a 2000	3 a 6
RU 400 C/ Transmisión T30 UCP 206	30	28050 a 50100	1000 a 2000	3 a 6
RU 400 C/ Transmisión T40 UCP 208	40	73200 a 88000	700	1 a 3
RU 445 C/ Transmisión T40 UCP 208	40	31200 a 67200	1000 a 2000	3 a 6
RU 490 C/ Transmisión T40 UCP 208	40	32000 a 60000	1000 a 2000	3 a 6
RU 540 C/ Transmisión T40 UCP 208	40	31000 a 68000	1000 a 2000	3 a 6
RU 540 C/ Transmisión T50 UCP 210	50	75500 a 83000	700	1 a 3
RU 600 C/ Transmisión T50 UCP 210	50	44500 a 67500	1000 a 2000	3 a 6
RU 660 C/ Transmisión T50 UCP 210	50	38500 a 53500	1000 a 2000	3 a 6
RU 730 C/ Transmisión T55 UCP 212	60	57600 a 58800	1000 a 2000	3 a 6
RU 730 C/ Transmisión T60 SNL 513	60	50400 a 67200	1000 a 2000	3 a 6
RU 730 C/ Transmisión T60 UKP 213	60	42000 a 63600	1000 a 2000	3 a 6
RU 730 C/ Transmisión T70 SNL 516	70	86100 a 91000	700	1 a 3
RU 805 C/ Transmisión T60 SNL 513	60	42600 a 57600	1000 a 2000	3 a 6
RU 805 C/ Transmisión T70 SNL 516	70	45500 a 85050	700	1 a 3

(*)
Temperatura de operación -15 a +80 grados Celsius.
Condiciones ambientales normales

❖ En caso de que el equipo funcione en condiciones ambientales diferentes a las referidas en la tabla, por ejemplo a altas temperaturas o en ambientes polvorientos, los periodos de re lubricación pueden reducirse hasta una semana.

Vida (duración) del rodamiento

Aún cuando los rodamientos operen bajo condiciones normales, las superficies de las pistas y de los elementos rodantes están sujetos en forma continua a esfuerzos de compresión repetitivos que causan el descascarillado de estas superficies (fatiga del metal que causará la falla del rodamiento). La vida efectiva de un rodamiento se define en términos del número total de revoluciones que soporta antes de que ocurra el descascarillado de las pistas o de los elementos rodantes. Puede también expresarse en términos de horas de operación (revoluciones).

Otras causas de fallas en los rodamientos se atribuyen a problemas tales como atascamiento, abrasiones, rajaduras, picaduras, corrosión, etc., las cuales son causadas por un montaje inadecuado, lubricación insuficiente o inadecuada, sellado defectuoso o selección equivocada del rodamiento.

Tabla 3 – DURACIÓN (VIDA) DE LOS RODAMIENTOS (*)

Equipo	Rodamientos		
DENOMINACIÓN	% Confiabilidad		
RA SASE DM1/DM9	% Conflabilidad	Horas	
RA 250 C/ Transmisión T20 UCP 204	99	100.000	
RA 250 C/ Transmisión T30 UCP 206	99	100.000	
RA 330 C/ Transmisión T30 UCP 206	99	27.700	
RA 390 C/ Transmisión T30 UCP 208	97	34.600	
RA 450 C/ Transmisión T40 UCP 208	90	20.000	
Equipo	Roda	mientos	
DENOMINACIÓN	0/ Carefialatidad	11	
RF SASE DM1/DM9	- % Confiabilidad	Horas	
RF 800 C/ Transmisión T60 SNL 513	99	100.000	
Equipo	Rodamientos		
DENOMINACIÓN	0/ Carefialatidad	11	
RM SASE DM1/DM9	- % Confiabilidad	Horas	
RM 395 C/ Transmisión T40 SNL 509	99	100.000	
RM 709 C/ Transmisión T60 SNL 513	99	100.000	
RM 709 C/ Transmisión T70 SNL 516	99	100.000	
RM 795 C/ Transmisión T70 SNL 516	99	100.000	
RM 985 C/ Transmisión T85 SNL 519	99	100.000	

E-mail: ventas@gattisa.com.ar www.gattisa.com.ar

Equipo	Rodamientos		
DENOMINACIÓN	0/ Confightlided	Havea	
RU SASE DM1/DM9	% Confiabilidad	Horas	
RU 222 C/ Transmisión T20 UCP 204	99	100.000	
RU 245 C/ Transmisión T20 UCP 204	99	100.000	
RU 245 C/ Transmisión T30 UCP 206	99	89.000	
RU 270 C/ Transmisión T20 UCP 204	99	100.000	
RU 270 C/ Transmisión T30 UCP 206	99	43.700	
RU 300 C/ Transmisión T20 UCP 204	99	42.700	
RU 300 C/ Transmisión T30 UCP 206	99	38.500	
RU 330 C/ Transmisión T30 UCP 206	90	33.800	
RU 365 C/ Transmisión T30 UCP 206	97	39.400	
RU 400 C/ Transmisión T30 UCP 206	98	33.500	
RU 400 C/ Transmisión T40 UCP 208	99	31.800	
RU 445 C/ Transmisión T40 UCP 208	95	35.200	
RU 490 C/ Transmisión T40 UCP 208	95	28.300	
RU 540 C/ Transmisión T40 UCP 208	90	20.000	
RU 540 C/ Transmisión T50 UCP 210	95	27.000	
RU 600 C/ Transmisión T50 UCP 210	90	26.500	
RU 660 C/ Transmisión T50 UCP 210	97	25.700	
RU 730 C/ Transmisión T60 SNL 513	99	100.000	
RU 730 C/ Transmisión T60 UKP 213	90	31.100	
RU 730 C/ Transmisión T70 SNL 516	99	100.000	
RU 805 C/ Transmisión T60 SNL 513	99	100.000	
RU 805 C/ Transmisión T70 SNL 516	99	100.000	

(*)

Temperatura de operación: -15 a +80 grados Celsius.

Condiciones ambientales normales

Lubricación satisfactoria

- ❖ En caso de que el equipo funcione en condiciones diferentes a las referidas en la tabla, por ejemplo a altas temperaturas, en ambientes polvorientos o con lubricación inadecuada, se deben considerar factores de ajuste para aumentar la confiabilidad.
- NOTA: en todos los casos la confiabilidad es igual o superior al 90% y la duración de los rodamientos mínima es de entre 20.000 y 30.000 horas de servicio.
- ❖ IMPORTANTE: Se debe tener en cuenta que las cargas que actúan sobre los rodamientos fueron calculadas usando los principios normales de ingeniería. No obstante, partiendo de la experiencia, en la práctica pueden aparecer fuerzas dinámicas y desviaciones dimensionales que pueden influir sobre la duración nominal de los rodamientos.

7.3. MOTOR ELÉCTRICO

El mantenimiento de los motores eléctricos, adecuadamente aplicado, se resume a una inspección periódica en cuanto a los niveles de aislamiento, elevación de temperatura, desgastes excesivos, correcta lubricación de los rodamientos y eventuales exámenes en el ventilador, para verificar el correcto flujo de aire. La frecuencia con que deben ser hechas las inspecciones, depende del tipo de motor y de las condiciones del local de aplicación del motor.

Los motores deben ser mantenidos limpios, exentos de polvo, residuos y aceites.

- a) Para la *limpieza* proceder como sigue, luego de desconectar la energía:
- Limpiar la carcasa colocando especial atención a las aberturas de ventilación.
- Inspeccionar visualmente el estado de los cables.
- Sacar la cubierta de la caja de terminales.
- Chequear las conexiones y estado (terminales limpios, ajustados y sin oxidación)
- Ajustar los cables si es necesario.
- Cuidadosamente cerrar la caja de terminales cambiando todos los sellos.
- b) Para la *lubricación* de los rodamientos, se debe realizar:
- ✓ Observación y examen del estado general en que se encuentran los rodamientos (verificar que la temperatura de trabajo de los mismos no supere los 70° C)
- ✓ Limpieza y lubricación con grasa a base de Litio (estabilidad mecánica e insolubilidad en agua).

NOTA: los intervalos de relubricación deben ser hechos conforme a las instrucciones de las Tablas del fabricante del motor.

8. ALMACENAJE DEL EQUIPO

Cortos periodos de almacenamiento.

Almacenar el ventilador en un área cubierta y proteger los rodamientos de excesiva humedad y calor.

Largos periodos de almacenamiento.

Requiere de la siguiente atención:

- a) Cubrir el eje con un antióxido fácilmente removible.
- b) Cubrir y sellar todos los rodamientos, componentes y auxiliares incluyendo el motor, etc., para prevenir la entrada de contaminantes y humedad.
- c) Bloquear el rotor para prevenir cualquier rotación no programada.
- d) Es importante que el rotor sea rotado al menos una vez al mes para que circule el lubricante de los rodamientos.
- e) No permitir que cualquier material sea almacenado sobre el ventilador.
- f) Almacenar en lo posible en la posición de operación normal de servicio del ventilador.
- g) Ver tensión de las correas
- h) Para el *almacenaje del motor* se deben consultar las instrucciones del fabricante. En general, entre las más importantes están: mantenerlo seco, exento de polvo, gases y agentes corrosivos, colocarlo en posición normal y no apoyar otros objetos en él.

Importante: los motores almacenados por periodos prolongados, podrán sufrir disminución de la resistencia de aislamiento y oxidación en los rodamientos.

Ventiladores que ya han sido instalados, pero no son operados por largo tiempo, deben ser desconectados de los conductos y ser cubiertos. Todos los drenajes, cañerías de conexiones y conductos deben ser cubiertos con capuchones de plástico o cinta. Aberturas en la carcasa de la unidad deben ser cubiertas y selladas para evitar la entrada de polvo, suciedad y humedad. Chequear que todas las puertas sean cerradas.

9. <u>LOCALIZACIÓN Y RESOLUCIÓN DE PROBLEMAS</u>

<u>SÍNTOMA</u>	POSIBLE CAUSA
1-Ventilador no arranca	-Correas rotas -Correas flojas -Poleas flojas -Rotor atascado -Voltaje incorrecto
2-Excesivo nivel de ruido	-Rotor golpeando aro envolvente -Tornillos flojos del motor -Tamaño de polea incorrecto -Rodamientos defectuosos -Rotor desbalanceado -Montaje inestable
3-Volumen de aire demasiado pequeño	-Rotación incorrecta del rotor -Velocidad del rotor demasiado lenta -Radiadores y filtros sucios -Ventilador demasiado pequeño para la aplicación -Clapeta control de flujo demasiado cerrada
4-Volumen de aire demasiado grande	-Velocidad de la turbina demasiado rápida -Clapeta control de flujo no instalada -Boca de inspección abierta -Ventilador demasiado grande para la aplicación
5-Potencia demasiada alta	- Rotación incorrecta del rotor -Velocidad del rotor demasiada alta -Incorrecta selección del motor -Densidad del gas demasiado alta -Tipo o tamaño de ventilador inapropiado para la aplicación -Demasiada tensión de correas
6-Rodamientos sobrecalentados	-Demasiada grasa en los rodamientos - Mal alineados - Rotor dañado -Suciedad en los rodamientos -Eje desalineado -Lubricante incorrecto

E-mail: ventas@gattisa.com.ar www.gattisa.com.ar

10. <u>LISTA DE PARTES GENERALES</u>

(Para los detalles consultar la Hoja de Datos Técnicos del Producto)

REFERENCIAS:
1- CONVERGENTE
2- ROTOR (TURBINA)
3 - CARACOL
4- ESTRUCTURA
5- MESA BASCULANTE
6- MOTOR
7 - CONJUNTO MESA
8- TRANSMISIÓN
9- CUBRE TRANSMISIÓN

