Fachrepositorium Lebenswissenschaften (FRL)

Repository for Life Sciences

An ontology for Age-Related Macular Degeneration - Poster

Groza, Adrian | Marginean, Anca Nicoleta | Nicoara, Simona Delia

Version: Postprint (Verlagsversion)/Postprint (Publisher Version)

Typ/Type: Kongressschrift/Conference Proceeding

Jahr/year: 2023

Quelle/Source: https://repository.publisso.de/resource/frl:6440392

Schlagwörter/Keywords: Age-Related Macular Degeneration, detecting inconsistency,

ontology engineering, language models

Zitationsvorschlag/ Suggested Citation:

Groza, Adrian; Marginean, Anca Nicoleta; Nicoara, Simona Delia (2023): An ontology for Age-Related Macular Degeneration - Poster. International SWAT4HCLS Conference 2023.

DOI: 10.4126/FRL01-006440392

Nutzungsbedingungen:

Dieses Werk ist lizensiert unter einer Creative Commons Lizenz (https://creativecommons.org/licenses/by/4.0/)

Terms of use:

This document is licensed under creative commons license (https://creativecommons.org/licenses/by/4.0/)

An Ontology for Age-Related Macular Degeneration

Adrian Groza, Anca Marginean, Simona Delia Nicoara

Department of Computer Science, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania

Department of Ophthalmology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania

Interleaving ML with reasoning for diagnosis

- Reasoning with Description Logics and rules to diagnose retinal conditions
- Using ML for identifying biomarkers
- Focusing on formalising OCT biomarkers for Age Related Macular Degeneration
- Can large language models be used to support ontology engineering?

Towards an ontology for AMD

Sample of definitions and classifications scales for AMD				
		Epidemiological classification (Wisconsin grading)		
$EarlyAMD^{W}$	=	AMD □ ∃hasBiomarker.(LargeDrusen		
		⊔RetinalPseudodrusen ⊔ PigmentaryAbn)		
$LateAMD^{W}$	\equiv	NeovascularAMD \(\) GeographicAtropy		
		Basic clinical classification		
NoAgeingChanges $^{\mathcal{C}}$	\equiv	∀hasDrusen.⊥ □ ∀hasAbn.¬PigmentaryAbn		
NormalAgeingChanges $^{\mathcal{C}}$	=	∀hasDrusen.SmallDrusen □ ∀hasAbn.¬PigmentaryAb		
EarlyAMD ^C	=	AMD □ ∃hasBiomarker.MediumDrusen□		
		∀hasAbnormalities.¬PigmentaryAbnormalities		
IntermediateAMD ^C	=	$AMD\sqcap (\exists hasBiomarker.LargeDrusen\sqcap$		
_		∃hasAbnormalities.¬PigmentaryAbnormalities		
LateAMD ^C	=	NeovascularAMD \(\) GeographicAtropyy		
		AREDS simplified severity scale points		
Severity ₀	=	∀hasBiomarker.¬LargeDrusen⊔∀changes.¬Pigment		
Severity ₁	=	∃hasBiomarker.¬LargeDrusen		
		⊔(= 1)changes.Pigment		
Severity ₄	=	(> 1)hasBiomarker.LargeDrusen□		
		(> 1)changes.Pigment□		

Using language models for ontology?

Extracting structured information on morphological features

Prompt: "A table summarizing the associations of morphological features with disease activity"

Review	Feature	Association with disease activity
Mowatt et al. (2014)	OCT	unlikely to be cost-effective for diagno- sis/monitoring
Schmid-Erfurth et al. (2016)	CRT	inferior prognostic biomarker for guid- ing retreatment
Schmid-Erfurth et al. (2016)	IRF	negatively associated with VA
Schmid-Erfurth et al. (2016)	SRF	associated with superior visual benefits and a lower rate of progression towards atrophy

Manually checking provenance:

"As shown in Table 1, intraretinal fluid has a negative and subretinal fluid a positive impact on visual outcome"

"patients with subretinal fluid derive larger visual acuity benefits from antiangiogenic treatment"

Identifying OCT biomarkers for AMD

Prompt: "OCT biomarkers for neovascular AMD dignosis.", intro = "A ranked list of OCT" biomarkers for neovascular AMD"

- 1. Foveal Thickness
- 2. Foveal Avascular Zone Area
- 3. Subretinal Hyperreflective Material
- Subretinal Fluid
- 5. Retinal Pigment Epithelium Detachment 15. Retinal Nerve Fiber Layer Thickness
- 6. Choroidal Thickness
- 7. Macular Volume 8. Macular Edema
- 9. Macular Ischemia
- 10. Macular Atrophy
- 11. Subretinal Fibrosis
- 12. Subretinal Neovascularization
- 13. Subretinal Hemorrhage
- 14. Retinal Pigment Epithelium Atrophy
- 16. Retinal Vessel Density
- 17. Retinal Vessel Tortuosity
- 18. RPE Hyperreflectivity
- 19. Photoreceptor Integrity 20. Outer Retinal Thickness
- Generating axioms in Description logic

Prompt: "A definition in description logic of Early AMD"

 $EarlyAMD \sqsubseteq \exists hasDrusen.Drusen \sqcap$

∃hasPigmentaryChanges.PigmentaryChanges

Prompt: "A definition in description logic of Intermediate AMD"

IntermediateAMD ⊑ AMD □∃hasStageValue.IntermediateStage □

∃hasSymptom.BlurredVision □ ∃hasSymptom.DistordedVision □

 $\exists hasSymptom.ReducedCentralVision \sqcap$ $\exists hasSymptom.ReducedColorVision \sqcap$

 $\exists has Symptom. Dark Spots In Vision$

Reusing biomedical ontologies

Anatomy ontology, Human Disease, Experimental Factor Ontology, SNOMED, Biological Spatial Ontology, Relation ontology, Symptom ontology

Formalising OCT biomarkers for AMD

 f_3 : hasDisease.WetAMD $\sqcap \exists hasBM.(Type2CNVM \sqcap isAbove.RPE <math>\sqcap$ ∃hasAdjacentBM.SRF □ ∀hasAdjacentBM.SRF

 f_3 : $\exists hasBM.(Exudate \sqcap \exists isLocated.Nasal)$ $Type1CNVM \sqsubseteq CNVM \sqcap \exists isBeneath.RPE \sqcap$

∃appear.(Fibrovascular ⊔ HemorrhagicPigmentEpithelialDetachment) $Type2CNVM \sqsubseteq CNVM \sqcap \exists isAbove.RPE \sqcap \exists hasAdjacentBM.SRF$

 $Pseudocysts \sqsubseteq \exists hasShape.Circular \sqcap \exists hasReflection.hyporeflective$

Reasoning with rules for AMD diagnosis

Interleaving expert rules with learned rules

 $R_1^{DT(a=.97)}$: $t(s_1) \le .35 \land v(s_1) \le .51 \rightarrow^{69} \langle 1, 0, 0 \rangle$ $R_2^{SVM(a=.7)}$: $t(n_2) \le .45 \land t(t_2) > .41 \land v(n_2) < 2.41 \land v(n_2) > 1.94) \rightarrow \langle .02, .54, .44 \rangle$ $R_1^{ANN(a=.75)}$: $v(t_2) \le 1.28 \rightarrow \langle .0045, .0856, .9099 \rangle$ R_1^{E} : $t(c_0) = 280.1 \pm 17.5 \rightarrow^{200} \langle 0, 0, 1 \rangle$

Contact: Adrian.Groza@cs.utcluj.ro