

Deep Learning

Hype, Reality and Applications in Manufacturing

Who Am I?

- My name is <u>Adam Cook</u>.
- Studied Mechanical Engineering at Purdue University West Lafayette.
- Chief Technical Officer of <u>Alliedstrand</u> in Chicago (we also have engineers in Dallas).
- Chair of SME Chapter 112 (Northwest Indiana and Chicagoland). Check out <u>sme112.org</u>.
- I work with embedded systems, robotics, automation systems and industrial software.
- Contact my chapter at hello@sme112.org.

SME Virtual Network Slack

Are you an SME member? Do you want access to Slack? Fill out this short form: http://bit.ly/2BpjMiE

What is Artificial Intelligence (AI)?

Broadly, building machines that can perform tasks as a human could.

We are here today.

Narrow Al A system capable of achieving at least human parity in a few defined tasks that humans trained it to do.

Strong Al A system which is indistinguishable in intelligence from a human.

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Source http://bit.ly/2aoQwlx

Artificial Intelligence (AI) Human intelligence exhibited by machines.

Machine Learning (ML) Machines that are capable of learning without being explicitly programmed.

Deep Learning (DL) Family of techniques to implement machine learning (e.g. deep neural networks or recurrent neural networks).

Source http://bit.ly/2aoQwlx

Winter Fun

An Al Timeline

History of AI Winters

Recent Breakthroughs and Interesting Demos

Simply, Yes.

- 1. Availability of large amounts of data.
- 2. Availability of large amounts of cost effective computing resources.

Particularly **Graphical Processing Units** (and some custom chip architectures)

Winter can come again

(just maybe not as cold)

- Natural Language Processing (NPL)
 Chatbots.
- Image or Object Recognition Vision systems in autonomous vehicles.
- Speech Processing/Translation Amazon Alexa or Google Home
- Pattern Prediction After training the system, the system correctly predicts the output based on input it has not been trained on.

Various Predictions on Strong Al Horizon

http://bit.ly/2EqrUyh

Facebook Al System Went Rouge (total misrepresentation)

http://bit.ly/2uU4Un8

Robots Can Now Read, Millions of Jobs At Risk (not really)

http://bit.ly/2FEKMdO

Predictions on AI (and some hype)

Source http://bit.ly/2nTcVok

My View on Al

- Technology predictions which are multiple decades away are very suspect.
- Tend to agree more with Rodney Brooks and <u>Paul Allen</u> than <u>Ray</u> <u>Kurzweil</u> on on the strong AI timelines.
- Al coupled with automation (or robotics) will be transformational for manufacturing, but most of the time horizons quoted are too ambitious.
- The knowledge requirements for many jobs will increase, but that is not 100% Al's fault.
- The public tends to look at an narrow AI system and, not understanding how it works, allows their imaginations to run wild.

Dated Predictions from Rodney Brooks

http://bit.ly/2m8Xh8r

Machine Learning Basic Process

Step 1 Training

This is called **Supervised Learning**

Machine Learning Basic Process

Grouped by row in this case (but it does not have to be)

Sample input data (features or attributes)

Correct output data (labels)

Two-Dimensional Training Data

Feature 1,1 Feature 1,2 Label for Feature 1,1 and Feature 1,2

Color	Fruit
*	Apple
	Orange
	Orange
	Orange
	Apple
	Orange
	Apple
	Apple

Source http://bit.ly/2EB7JkC

Regression (in 2D)

Source http://bit.ly/2EB7JkC

Handwritten Character Training Data

Correct label for this data is **8**.

784 pixels

Sample input data

Machine Learning Basic Process

Step 2 Prediction

Training Data Considerations

Source http://bit.ly/2F19ISu

Training Data Considerations

- Data can (and it will, at times) lie to you.
- Think about data delivery particularly if it is arriving from human sources (i.e. manual data collection on clipboard).
- Data anomalies will occur (i.e. sensor failures). How do you address them?
- Are you collecting the right data and, more importantly, enough relevant data? A determination must be made of what features are important and which are not in pursuit of an ML system.
- Careful of biases (i.e. confirmation bias, selection bias and others)
 and anecdotal evidence. Be scientific!
- When facts are weapons.
- Good example of selection bias. Why?

Questions?

Ask in the Live Chat or check the feedback link in the description!

Or

Watch http://bit.ly/2ED471m

- Supervised Learning ML system is trained with a labeled data set
- Unsupervised Learning ML system is trained with an unlabeled data set
- Reinforcement Learning ML system learns by trail-and-error combined with a reward (or punishment) system

Unsupervised Learning - Clustering

Source http://bit.ly/298TWkp

Reinforcement Learning

Source http://bit.ly/1UkaiYQ

Great video on the basics of neural networks. Do not pass this one up!

http://bit.ly/2fMZIjF

Neural Network Basics

Source http://bit.ly/1UkaiYQ

Neural Network Basics

hidden layer 1

hidden layer 2

Harsh Realities of Al

- No out-of-the-box solutions for manufacturing (not yet, anyways).
- Need data experts.
- Need IT/OT expertise.
- Adoption can be very expensive.
- •Al gets you that "last mile" of value, it is not magic.

Some progress to address the first two points for SMMs via Google's Cloud AutoML product. Jury still out on its generality...

Manufacturing Applications in Al

- Predictive equipment maintenance
- Digital twin
- Dynamic processing (micro)
- Dynamic production (macro)
- Automated visual inspection and decision making

Popular ML Frameworks and Libraries

Some ML Hardware Options (for GPUs)

NVIDIA JETSON

The embedded platform for autonomous everything

Machine Learning Course on Coursera

Practical Deep Learning for Coders

Udacity Machine Learning Nanodegree

Next webinars

Webinar March 6 at 11:00 am CST **IIoT Fundamentals and Applications**

3-Day Workshop Starts March 2 Python Fundamentals for Engineers and Manufacturers

Webinar March 21 at 11:00 am CST **Setting Up Python on Your Computer**

3-Day Workshop Starts March 28

Python Fundamentals for Engineers and Manufacturers

Webinar May 15 at 11:00 am CST Introduction to Machine Vision

Check out sme.org

Questions?

Ask in the Live Chat or check the feedback link in the description!