Design of a Simple CS Amplifier

Emmanuel Jesus R. Estallo

Electrical and Electronics Engineering Institute
University of the Philippines - Diliman
Quezon City, Philippines
emmanuel.estallo@eee.upd.edu.ph

I. CS AMPLIFIER

The desired specs are as follows:

- $|A_v| > 40$ at $V_{DS} = V_{DD}/2 = 0.9V$
- Output swing: 400mV
- Unity-gain frequency: $f_u = 100MHz$, $C_L = 5pF$
- $V^* = 200mV$

A. Selecting I_D

The transconductance can be obtained from:

$$g_m = 2\pi f_u C_L$$

this gives us

$$g_m = 3.14 \ mS$$

The current can be obtained from:

$$V^* = 2 \cdot \left(\frac{g_m}{I_D}\right)^{-1}$$

and a V^{*} of $200 \; mV$ corresponds to a g_m/I_D of 10.

Thus,

$$I_D = 314 \ \mu A$$

B. Choosing the length

To find the appropriate length, I did a DC sweep on VGS and checked if the intrinsic gain at V^* is > 40.

Fig. 1. Schematic diagram

At the minimum length, the intrinsic gain is lower than what is desired. We select $L=0.30\mu m$ since it satisfies the specifications. $L=0.25\mu m$ also meets the specifications. However, for a greater swing, the larger length is selected.

Fig. 2. Intrinsic gain

The V^* vs I_D plot for a transistor with $W=1\mu m, L=0.30\mu m$ is shown below.

Fig. 3. I_D vs V^* , $W = 1\mu m$

C. Scaling the width

A python script is used to calculate the scale factor k_W that meets the required I_D . The width is scaled using k_W . Multiplying the width by k_W scales I_D by approximately the same factor. For this activity, $k_W=21$. To check, a MEAS directive is used. The required current is $I_D=314\mu A$, what we got is $I_D=345\mu A$, which is quite close.

Fig. 4. I_D vs V^* , $W = 21 \mu m$

D. Output and input swing

Fig. 5. Schematic

To get the input and output swing, we use the schematic in Fig. 5. Since V_{GS} is a function of V_{DS} , we can plot a_o vs V_{DS} to get the maximum output swing and a_o vs V_{GS} to get the corresponding input swing.

1) Output Swing: at $V_{DS} \approx 0.52$, $a_o \geq 40$.

Fig. 6. a_o vs V_{DS}

2) Input Swing: at $V_{GS} \approx 0.71$, $a_o \ge 40$.

Fig. 7. a_o vs V_{GS}

Thus, the maximum symmetric output voltage is $0.52 \le V_{DS} \le 1.48$ for a total swing of 0.96V. The corresponding input is $0.695 \le V_{GS} \le 0.71$ with a 15mV swing.

E. AC analysis

Using Fig. 5, an AC sweep from 1Hz to 1GHz is used to obtain Fig. 8. Using a MEAS directive, $f_u=104MHz$ which is close to our desired f_u . At low frequencies, the gain is $\approx 35dB$ which is $\approx 60~V/V$

Fig. 8. Magnitude response

F. Discussions

These are my expected results. Since some values are estimated, there are slight deviations with the desired specifications.

II. CS Amplifier with High f_t

To get a high f_t , we need a high I_D and small L. Decreasing L increases f_t if I_D is kept constant. However, since there are no constraints on area and how high I_D could be, the limit would be related to the maximum W that can be used on the PDK.

A. Selecting the width

For this PDK, the highest width that can be used is $W = 99.9\mu m$. We use this value to get the maximum I_D .

B. Choosing the length and V^*

Ideally to get the highest f_t , we should select the minimum length. However, the minimum length does not have sufficient intrinsic gain. We use Fig. 1 to determine the appropriate length and V^* . Since the load is an ideal current source, the gain is only limited by the lower bound $\approx 700mV$. We use $V_{DS}=0.7V$ for the simulation.

1) a_o vs V^* : For $0.20\mu m \le L \le 0.25\mu m$, the a_o vs V^* plot is shown below.

Fig. 9. Intrinsic gain

Since we need $a_o > 40$, only lengths $\geq 0.22 \mu m$ can be used.

2) $f_t vs V^*$: To trim down the possible options, we use the plot below.

Fig. 10. Transition frequency

Considering the two plots, we choose $V^* = 0.19V$ and $L = 0.23 \mu m$ since it has the highest f_t . The gain and swing

at these values are also within the required specifications. The obtained f_t is 28GHz.

C. Obtaining g_m and f_u

Fig. 11. g_m vs V^*

From Fig. 11, $g_m = 20.54mS$ at $V^* = 0.19V$. The target unity-gain frequency is:

$$f_u = \frac{g_m}{2\pi C_L} = 653.81MHz$$

with $I_D = 1.95 mA$.

D. AC analysis

Fig. 12. Unity-gain frequency

Looking at Fig. 12, $f_u \approx 654 MHz$. The desired f_u is met. At low frequencies, the gain is $33.19 \ dB$ which corresponds to $45.66 \ V/V$.

E. Output and input swing

1) Output Swing: From the plot below, we can see that $a_o = 40.32$ at $V_{DS} = 0.7$. At $V_{DS} = 1.1$, $a_o \approx 50$.

Fig. 13. a_o vs V_{DS}

2) Input Swing: Sweeping V_{DS} from 700mV to 1.1V, we get the following a_o vs V_{GS} plot. The input V_{GS} that produces $700mV \leq V_{DS} \leq 1.1V$ ranges from 719mV to 727mV. The maximum swing is 8mV.

Fig. 14. a_o vs V_{GS}

F. Discussions

First, the choice of V^* depends on both gain and desired f_t . If we increase V^* , we can get a higher f_t but the gain will decrease. To maximize f_t , The maximum V^* that satisfies both gain and swing should be chosen. This amplifier is designed to have an approximate output swing of $\pm 200mV$ with a DC level of 0.9V because of f_t constraints.

The first design has $I_D=314\mu A$. For this design, $I_D=1.95mA$. The I_D is more than 6 times higher. RF applications would benefit from a high f_u but this might not be usable at all because of very high current consumption.