CS 207: Discrete Structures

Instructor: S. Akshay

 $\begin{array}{c} {\rm July~28,~2015} \\ {\rm Lecture~05-Comparing~infinite~sets~via~functions} \end{array}$

Chapter 2: Basic mathematical structures

Sets and Functions

- ▶ Definition of a set, Russel's paradox, axioms of ZFC.
- ▶ Infinite sets and using functions to compare them.

).

Hilbert's hotel

- ► Suppose there is a hotel with infinitely many rooms.
- ▶ And suppose they are all full (like in IIT guest house).
- 1. Can you accommodate 1 or finitely many more guests, by shifting around the existing guests?
- 2. What if infinitely many more guests arrive?
- 3. What if infinitely many more trains with infinitely many more guests arrive and no room should be empty? (H.W)

Functions

Definition

Let A, B be two sets. A function f from A to B is an assignment of exactly one element of B to each element of A. i.e., $f:A \to B$ is a subset R of $A \times B$ such that

- (i) $\forall a \in A, \exists b \in B \text{ such that } (a, b) \in R, \text{ and }$
- (ii) if $(a, b) \in R$ and $(a, c) \in R$, then b = c.

Comparing (finite and infinite) sets

- ▶ Surjective or onto: $f: A \to B$ is surjective if $\forall y \in B$, $\exists x \in A$ such that f(x) = y.
- ▶ Injective or 1-1: $f: A \to B$ is injective if $\forall x, y \in A$, if f(x) = f(y), then x = y.
- ▶ Bijective or 1-1 correspondence: A function is bijective if it is surjective and injective.

If f is a bijection, then its inverse function exists and $f \circ f^{-1} = f^{-1} \circ f = id$

Comparing (finite and infinite) sets

- ▶ Surjective or onto: $f: A \to B$ is surjective if $\forall y \in B$, $\exists x \in A$ such that f(x) = y.
- ▶ Injective or 1-1: $f: A \to B$ is injective if $\forall x, y \in A$, if f(x) = f(y), then x = y.
- ▶ Bijective or 1-1 correspondence: A function is bijective if it is surjective and injective.
- 1. $f: \mathbb{Z} \to \mathbb{Z}$ such that $f(x) = x^2$.
- 2. $f: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ such that $f(x) = x^2$.

Comparing (finite and infinite) sets

- ▶ Surjective or onto: $f: A \to B$ is surjective if $\forall y \in B$, $\exists x \in A$ such that f(x) = y. If A, B finite, $|A| \ge |B|$
- ▶ Injective or 1-1: $f: A \to B$ is injective if $\forall x, y \in A$, if f(x) = f(y), then x = y. If A, B finite, $|A| \le |B|$
- ▶ Bijective or 1-1 correspondence: A function is bijective if it is surjective and injective.

 If A, B finite, |A| = |B|
- 1. $f: \mathbb{Z} \to \mathbb{Z}$ such that $f(x) = x^2$.
- 2. $f: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ such that $f(x) = x^2$.

Relative notion of "size"

Thus, two finite/infinite sets have the same "size" iff there is a bijection between them.

Similarities between finite and infinite sets

- ▶ \exists **bij** from A to B and B to C, implies \exists **bij** from A to C.
- ▶ \exists **bij** from A to B, then \exists **bij** from B to A.
- ▶ \exists **surj** from A to B and \exists **surj** B to A, implies \exists **bij** from A to B.

Similarities between finite and infinite sets

- ▶ \exists **bij** from A to B and B to C, implies \exists **bij** from A to C.
- ▶ \exists **bij** from A to B, then \exists **bij** from B to A.
- ▶ (Schröder-Bernstein Theorem:) \exists surj from A to B and \exists surj B to A, implies \exists bij from A to B. (H.W: Read this!)

Similarities between finite and infinite sets

- ▶ \exists **bij** from A to B and B to C, implies \exists **bij** from A to C.
- ▶ \exists **bij** from A to B, then \exists **bij** from B to A.
- ▶ (Schröder-Bernstein Theorem:) \exists surj from A to B and \exists surj B to A, implies \exists bij from A to B. (H.W: Read this!)

Differences between finite and infinite sets

▶ For finite sets, if A is a set and $b \notin A$, then $|A| \neq |A \cup \{b\}|$.

Similarities between finite and infinite sets

- ▶ \exists **bij** from A to B and B to C, implies \exists **bij** from A to C.
- ▶ \exists **bij** from A to B, then \exists **bij** from B to A.
- ▶ (Schröder-Bernstein Theorem:) \exists surj from A to B and \exists surj B to A, implies \exists bij from A to B. (H.W: Read this!)

Differences between finite and infinite sets

- ▶ For finite sets, if A is a set and $b \notin A$, then $|A| \neq |A \cup \{b\}|$.
- ▶ What about infinite sets?

Similarities between finite and infinite sets

- ▶ \exists **bij** from A to B and B to C, implies \exists **bij** from A to C.
- ▶ \exists **bij** from A to B, then \exists **bij** from B to A.
- ▶ (Schröder-Bernstein Theorem:) \exists surj from A to B and \exists surj B to A, implies \exists bij from A to B. (H.W: Read this!)

Differences between finite and infinite sets

- ▶ For finite sets, if A is a set and $b \notin A$, then $|A| \neq |A \cup \{b\}|$.
- ▶ What about infinite sets?

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

Similarities between finite and infinite sets

- ▶ \exists **bij** from A to B and B to C, implies \exists **bij** from A to C.
- ▶ \exists **bij** from A to B, then \exists **bij** from B to A.
- ▶ (Schröder-Bernstein Theorem:) \exists surj from A to B and \exists surj B to A, implies \exists bij from A to B. (H.W: Read this!)

Differences between finite and infinite sets

- ▶ For finite sets, if A is a set and $b \notin A$, then $|A| \neq |A \cup \{b\}|$.
- ▶ What about infinite sets?

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

Proof: essentially Hilbert's hotel but be careful...

Comparing infinite sets using functions

Theorem

There is a bijection from \mathbb{Z} to \mathbb{N} .

Proof: Hilbert's hotel argument. But how do you formalize it?

Comparing infinite sets using functions

Theorem

There is a bijection from \mathbb{Z} to \mathbb{N} .

Proof: Hilbert's hotel argument. But how do you formalize it?

$$f(x) = \begin{cases} -2x & \text{if } x \le 0\\ 2x - 1 & \text{else} \end{cases}$$

Comparing infinite sets using functions

Theorem

There is a bijection from \mathbb{Z} to \mathbb{N} .

Proof: Hilbert's hotel argument. But how do you formalize it?

$$f(x) = \begin{cases} -2x & \text{if } x \le 0\\ 2x - 1 & \text{else} \end{cases}$$

Some questions...

- ▶ Is there a bijection between $\mathbb{N} \times \mathbb{N}$ to \mathbb{N} ?
- ▶ Is there a bijection between $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ to \mathbb{N} ?
- ▶ Is there a bijection from \mathbb{Q} to \mathbb{N} ?
- ▶ Is there a bijection from the set of all subsets of \mathbb{N} to \mathbb{N} ?
- ▶ Is there a bijection from \mathbb{R} to \mathbb{N} ?