SAEs *Can* Improve Unlearning: Dynamic SAE Guardrails for Precision Unlearning in LLMs

Aashiq Muhamed*, Jacopo Bonato‡, Mona Diab*, Virginia Smith*
*Carnegie Mellon University, ‡Leonardo Labs

Gradient-Based Unlearning Methods Are Fundamentally Broken

Machine unlearning is the process of removing specific information from trained LLMs.

Problems with Gradient-Based Methods:

- High computational costs (requiring backward passes)
- Hyperparameter instability
- Poor sequential unlearning capability
- Vulnerability to relearning attacks
- Low data efficiency
- Lack of interpretability

DSG is a new activation-based unlearning method that provides substantial benefits over gradient-based unlearning such as enhanced resistance against relearning attacks, enhanced data efficiency even in the zero-shot setting and interpretable unlearning

DSG Algorithm and Mechanism

Require: LLM with SAE features $\{f_j\}$; datasets $\mathcal{D}_{\text{forget}}$, $\mathcal{D}_{\text{retain}}$; clamp strength c; percentiles $(p_{\text{ratio}}, p_{\text{dyn}})$; feature count n_{feats} Feature Selection: Compute feature importance scores and threshold τ_{ratio} from percentiles Identify $F_{\text{forget}} = \{j : \text{imp_ratio}(j) \geq \tau_{\text{ratio}}\}$ Sort F_{forget} by descending $\text{forget_score}(j)$ and select top n_{feats} features to form $S_{n_{\text{feats}}}$. Dynamic Threshold Calibration: Compute $\rho(x) = \frac{1}{|x|} \sum_{t} \mathbf{1} [\exists j \in S_{n_{\text{feats}}} : f_j(\mathbf{h}_t) > 0]$ for each $x \in \mathcal{D}_{\text{retain}}$ Set threshold $\tau = \text{Percentile}(\{\rho(x)\}_{x \in \mathcal{D}_{\text{retain}}}, p_{\text{dyn}})$ Inference-Time Intervention: For input sequence x, compute $\rho(x)$ and classify as forget-relevant if $\rho(x) > \tau$ If forget-relevant: For each token t and feature $j \in S_{n_{\text{feats}}}$, set $f'_j(\mathbf{h}_t) = -c$ Otherwise: Preserve all feature activations

Feature Importance Scores

 $\label{eq:forget_score} \begin{aligned} &\text{forget_score} = \text{avg squared feature activation on forget data} \\ &\text{retain_score} = \text{avg squared feature activation on retain data} \\ &\text{imp_ratio} = \frac{\text{forget_score}}{\text{retain_score}} \end{aligned}$

Squared feature activations are proportional to Fisher Information

Fisher Information approximates causal influence as mediators between training data and model outputs

Dynamic SAE Guardrails (DSG): Overview

DSG leverages interpretability of SAEs for precise, efficient, and interpretable unlearning in LLMs.

DSG combines: (1) a causal framing for feature selection, (2) feature importance scoring based on Fisher Information, (3) dynamic, input-dependent classification rule, and (4) a targeted clamping intervention.

Superior Forget-Utility Trade-offs on WMDP

DSG Pareto-dominates all baseline methods on hazardous knowledge benchmarks

WMDP-Bio: Achieves 29.64% accuracy vs. 50.00% for next best method (RMU)

WMDP-Cyber: Achieves 26.74% accuracy vs. 88.00% for RMU **Maintains high utility:** 99.34% average MMLU performance on Bio, 99.73% on Cyber

Highest MT-Bench scores: 7.78 on Bio, 7.66 on Cyber (measuring general fluency)

Robustness, Efficiency & Additional Results

Scalability & Sequential Performance:

- > MUSE benchmark: 98.5% knowledge removal on NEWS, 94.7% on BOOKS
- > Scalable: Maintains ideal performance across forget sets from 0.8M to 3.3M tokens
- Sequential unlearning: Consistent performance across sequential requests while baselines degrade

Attack Resistance & Data Efficiency:

- > Superior resistance to relearning compared to RMU
- > Data efficient: Consistent performance with 20-80% of original datasets
- Computational efficiency: Only ~5% latency increase, no backward passes required

DSG is more resistant to relearning attacks

Zero-Shot Unlearning & Conclusion

Interpretable and Zero-Shot Unlearning

- SAE features correspond to interpretable concepts (e.g., "biological processes," "cybersecurity")
- Use Neuropedia feature explanations to identify forget set features by querying concepts
- DSG outperforms RMU even with features selected purely based on semantic descriptions

DSG: A New Paradigm for Machine Unlearning
First work to show SAE-based unlearning can dominate
gradient-based approaches.