McKay correspondence

Jacob Fjeld Grevstad

February 25, 2019

Abstract

The goal of this thesis is to establish a 1-1 correspondence between quivers created from the four following sets whenever G is a finite subgroup of $SL(2,\mathbb{C})$ and S is the power series ring $\mathbb{C}[x,y]$

- The Maximal Cohen-Macaulay modules of the fixed ring S^G .
- The indecomposable projective modules of the skew group algerba S#G.
- The indecomposable projective modules of $\operatorname{End}_{S^G}(S)$.
- The irreducible representations of G (indecomposable $\mathbb{C}G$ -modules).

Much of the thesis will be used to define these four quivers and to develope tools to establish such a correspondence. A similar correspondence can be established for a general field k and a finite subgroup of GL(n,k) with order nonzero in k, but the case for $SL(2,\mathbb{C})$ is the most interesting as the quivers will be extended Dynkin diagrams.

Contents

1	Finite subgroups of $SL(2,\mathbb{C})$	2
2	Characters and irreducible representations	2
3	The McKay quiver	3
4	Skew group algebra S#G indecomposable projectives 4.1 The Gabriel quiver	4
5	The endomorphism ring of S as an S^G -module	7
6	Maximal Cohen-Macaulay modules of S^G	7

1 Finite subgroups of SL(2,C)

2 Characters and irreducible representations

Sorcue: Representations and characters of groups - Gordon James, Martin Lieback

Recall that the trace of a matrix is defined to be the sum of its diagonal elements and that the trace satisfies two important equations. Namely

$$tr(A+B) = tr(A) + tr(B)$$
 and $tr(AB) = tr(BA)$

For a given representation of G, $\rho: G \to GL_n(\mathbb{C})$, we define its character by $\chi_{\rho}: G \to \mathbb{C}$, $\chi_{\rho}(g) = tr(\rho(g))$.

Proposition 2.1. Conjugate elements in G take the same value under a character.

Proof. Let g and g' be in the same conjugacy class. Then there exists an element h such that $h^{-1}gh = g'$. Then we have

$$\chi(g') = \chi(h^{-1}gh) = tr(\rho(h)^{-1}\rho(g)\rho(h)) \stackrel{*}{=} tr(\rho(g)\rho(h)\rho(h)^{-1}) = tr(\rho(g)) = \chi(g)$$

In (*) we use the fact that
$$tr(AB) = tr(BA)$$
.

Lemma 2.1. For a finite abelian group G any irreducible representation must be 1-dimensional.

Proof. Let $\rho: G \to GL(V)$ be an irreducible representation. Since G is abelian we have that $\rho(g)\rho(h)v = \rho(h)\rho(g)v$. Thus multiplication by $\rho(g)$ respects the action of G and we have that $\rho(g)$ is a homomorphism of G-representations between ρ and itself. Then by Schur's lemma $\rho(g)$ must be a scalar multiplication. In other words every matrix $\rho(g)$ for $g \in G$ is diagonal (it is a scaling of identity). This implies that ρ can be written as a direct sum of 1-dimensional representations, but since ρ is irreducible ρ must be 1-dimensional.

Proposition 2.2. If χ is the character of a representation, ρ , with dimension n of a group G, and g is an element of G with order m, then the following holds

- (1) $\chi(1) = n$
- (2) $\chi(g)$ is the sum of m-th roots of unity.
- $(3) \ \chi(g^{-1}) = \overline{\chi(g)}$

Proof.

(1) The first result is immidiate.

$$\chi(1) = tr \left(\begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix} \right) = n$$

- (2) Since $\langle g \rangle$ is an abelian group, ρ decomposes into n 1-dimensional $\langle g \rangle$ representations. Then there is a basis such that $\rho(g)$ is diagonal. Since g has order m it follows that the diagonal entries of $\rho(g)$ must be m-th roots of unity. Thus $\chi(g) = tr(\rho(g))$ must be the sum of m-th roots of unity.
- (3) Using the same basis as above and the fact that $\underline{\omega}^{-1} = \overline{\omega}$ when $\underline{\omega}$ is a root of unity we see that $\chi(g^{-1}) = tr(\rho(g)^{-1}) = \overline{tr(\rho(g))} = \overline{\chi(g)}$.

3 The McKay quiver

Definition 3.1. Let G be a finite subgroup of $GL(n,\mathbb{C})$, and let V be the cannonical representation (the one that sends g to g). Then we define the $\underline{McKay\ quiver}$ of G to be the quiver with vertices the irreducible representations of G, denoted V_i . For two irreducible representations V_i and V_j we say there is an arrow from the former to the latter if and only if V_j is a direct summand of $V \otimes V_i$.

Example 3.1. Let G be the group generated by $g = \begin{bmatrix} \omega^2 & 0 \\ 0 & \omega^3 \end{bmatrix}$, where ω is the primitive fifth root of unity. Then there are five different irreducible representations, the one sending g to ω , ω^2 , ω^3 , ω^4 respectively, and the trivial representation. Denote the representation sending g to ω^i by V_i , and let $V = V_2 \oplus V_3$ be the cannonical representation. Note that $V_i \otimes V_j = V_{i+j}$, where i+j is understood to be modulo 5. Then we get the following McKay-quiver

4 Skew group algebra S#G indecomposable projectives

Source Cohen-Macaulay representations - Graham J Leuschke, Roger Wiegand

Definition 4.1. If G is a subgroup of $GL_n(\mathbb{C})$, we can extend the group action of G to $\mathbb{C}[x_1, \dots, x_n]$. We then define the skew group algebra $\mathbb{C}[x_1, \dots, x_n] \# G$ to be the algebra generated by elements of the form $f \cdot g$ with $f \in \mathbb{C}[x_1, \dots, x_n]$ and $g \in G$, and we define the multiplication by

$$(f_1 \cdot g_1) \cdot (f_2 \cdot g_2) = (f_1 \cdot f_2^{g_1}) \cdot (g_1 \cdot g_2)$$

Where f^g denotes the image of f under the action of g.

Theorem 4.1. We have an isomorphism of rings

$$e\mathbb{C}[x,y]\#Ge\simeq\mathbb{C}[x,y]^G$$

where $e = \frac{1}{|G|} \sum_{g \in G} g$.

Proof. Let f^g denote the image of f under the action of g. Then if we let f(x,y)g be an element of the skew algebra we get that $ef(x,y)ge = f(x,y)^e \cdot ege = f(x,y)^e \cdot e = e \cdot f(x,y)$. It then follows that $e\mathbb{C}[\![x,y]\!]\#Ge$ is isomorphic to the image of $\mathbb{C}[\![x,y]\!]$ under the action of e. Since ge = g for all $g \in G$ it is clear that the image of e is contained in the fixed ring. For the converse you just need to notice that the fixed ring is fixed under e and thus is contained in the image.

Lemma 4.1. Let $S = \mathbb{C}[\![x,y]\!]$. An S#G-module is projective if and only if it is projective as an S-module.

Proof. Only ifity follows from S#G being a free S-module, it is isomorphic to $\bigoplus_{g\in G} S$. Thus we need only show ifity.

First we need to see that an S#G-linear map is just an S-linear map such that f(g(m)) = g(f(m)) for all $g \in G$. Equivalently $f(m) = g(f(g^{-1}(m)))$. This allows us to define a group action on S-linear maps by $f^g(m) = g(f(g^{-1}(m)))$. Then we can restate it as

$$\operatorname{Hom}_{S \# G}(M, N) = \operatorname{Hom}_{S}(M, N)^{G}$$

Clearly if f is S#G-linear then it's in $\operatorname{Hom}_S(M,N)^G$. To see the other inclusion, let f be an S-linear map that is fixed under G. Then $f(s \cdot gm) = sf(gm) = s \cdot g(f(g^{-1}gm)) = s \cdot gf(m)$, and hence f is S#G-linear. Nextly I want to show that $-^G$ is an exact functor.

If K is the kernel of a map $f: M \to N$, then the kernel of the inuced map $f^G: M^G \to N^G$ is of course just $K \cap M^G$ which equals K^G . Assume

f is epi and let $n \in N^G$. Consider a preimage m such that f(m) = n. Let $\theta = \frac{1}{|G|} \sum_{g \in G} g(m)$. Then θ is in M^G and $f(\theta) = \frac{1}{|G|} \sum_{g \in G} g(f(m)) = \frac{1}{|G|} \sum_{g \in G} n = n$.

This implies that if $\operatorname{Hom}_S(P, -)$ is exact then $\operatorname{Hom}_S(P, -)^G = \operatorname{Hom}_{S\#G}(P, -)$ is exact and our lemma follows.

Theorem 4.2. Let $S = \mathbb{C}[\![x,y]\!]$ and let $\mathfrak{m} = \langle x,y \rangle_S$ be the radical of S. Then there are bijections between the indecomposable projective S#G-modules and the indecomposable $\mathbb{C}G$ -modules given by

$$\left\{ \begin{array}{c} indecomposable \ projective \\ S\#G\text{-}modules \end{array} \right\} \qquad \left\{ \begin{array}{c} indecomposable \\ \mathbb{C}G\text{-}modules \end{array} \right\}$$

$$\mathcal{F}: P \longmapsto P/\mathfrak{m}P$$

$$\mathcal{G}:S\otimes_{\mathbb{C}}W \longleftarrow W$$

Where the S#G-module structure on $S \otimes_{\mathbb{C}} W$ is given by $(s \cdot g) \cdot f \otimes v = sf^g \otimes v^g$.

Proof. First we should show that $S \otimes_{\mathbb{C}} W$ is an irreducible projective S # Gmodule and that $P/\mathfrak{m}P$ is infact an irreducible $\mathbb{C}G$ -module. Since $S \otimes_{\mathbb{C}} W$ is a free S-module it follows from lemma 4.1 that it is projective. To see
that it is irreducible we will first study it as an S-module and exploit the
fact that $\operatorname{Hom}_{S\# G}(M,N) \subseteq \operatorname{Hom}_{S}(M,N)$.

Since \mathfrak{m} is the radical of S we have that

$$\frac{S \otimes_{\mathbb{C}} W}{\mathfrak{m} S \otimes_{\mathbb{C}} W} \cong S/\mathfrak{m} \otimes_{\mathbb{C}} W \cong \mathbb{C} \otimes_{\mathbb{C}} W \cong W$$

W is the top of $S \otimes_{\mathbb{C}} W$. Further since the projection is S # G-linear we have that $S \otimes_{\mathbb{C}} W$ is the projective cover of W also as S # G-modules. Then since W is simple it follows that $S \otimes_{\mathbb{C}} W$ is an indecomposable projective.

It's clear that $P/\mathfrak{m}P$ is a $\mathbb{C}G$ -module, because $\mathbb{C}G$ is a subring of S#G. To see that it's indecomposable we will first show that it's indecomposable as an S#G-module. By considering P and $P/\mathfrak{m}P$ as S-modules and using the same argument as above we see that P is the projective cover of $P/\mathfrak{m}P$. Then since P is indecomposable $P/\mathfrak{m}P$ must also be indecomposable as an S#G-module.

To see that this implies $P/\mathfrak{m}P$ is indecomposable as a $\mathbb{C}G$ -module notice that $P/\mathfrak{m}P$ is annihilated by the ideal $\langle \mathfrak{m} \rangle$. This means it's an indecomposable as S#G-module if and only if it's indecomposable as an $S\#G/\langle \mathfrak{m} \rangle$ -module. Then since $S\#G/\langle \mathfrak{m} \rangle \cong \mathbb{C}G$ it follows that $P/\mathfrak{m}P$ is an indecomposable $\mathbb{C}G$ -module.

To see that the given maps are bijections we will show that they are mutual inverses. First to see that $\mathcal{F}(\mathcal{G}(W)) \cong W$ we simply look at the definition

$$\frac{S \otimes_{\mathbb{C}} W}{\mathfrak{m} S \otimes_{\mathbb{C}} W} \cong S/\mathfrak{m} \otimes_{\mathbb{C}} W \cong \mathbb{C} \otimes_{\mathbb{C}} W \cong W$$

Next we consider $\mathcal{G}(\mathcal{F}(P)) = S \otimes_{\mathbb{C}} P/\mathfrak{m}P$. We have already seen that it's projective. Both P and $S \otimes_{\mathbb{C}} P/\mathfrak{m}P$ have a natural projection onto $P/\mathfrak{m}P$, and by projectivity we get an induced S#G-linear map from $S \otimes_{\mathbb{C}} P/\mathfrak{m}P$ to P:

$$S \otimes_{\mathbb{C}} P/\mathfrak{m}P$$

$$\downarrow \qquad \qquad \downarrow$$

$$P \xrightarrow{\longleftarrow} P/\mathfrak{m}P$$

Further since \mathfrak{m} is the radical of S, both P and $S \otimes_{\mathbb{C}} P/\mathfrak{m}P$ are projective covers of $P/\mathfrak{m}P$ (as S-modules). This means that the map is an isomorphism of S-modules, and therefor it is also an isomorphism of S#G-modules. \square

4.1 The Gabriel quiver

Definition 4.2. For a skew group algebra S#G we define its <u>Gabriel quiver</u> to be the quiver with verticies as the indecomposable projective modules of S#G. The arrows are given by taking the minimal projective resolution of $P/\mathfrak{m}P$, where \mathfrak{m} is as defined above. If the minimal projective resolution of $P/\mathfrak{m}P$ is given by

$$\cdots \longrightarrow Q_1 \longrightarrow Q_0 \longrightarrow 0$$

We say there is an arrow from P to P' if P' appears as a direct summand of Q_1 .

Definition 4.3. Exterior algebra

Proposition 4.1. If S is the ring of formal power series over \mathbb{C} in n variables, and G is a finite group acting on S, let $V = \mathfrak{m}/\mathfrak{m}^2$. Then the minimal projective resolution of $\mathbb{C} \cong S/\mathfrak{m}$ is given by

$$0 \longrightarrow S \otimes_{\mathbb{C}} \bigwedge^{n} V \xrightarrow{\partial_{n}} \cdots \xrightarrow{\partial_{2}} S \otimes_{\mathbb{C}} \bigwedge^{1} V \xrightarrow{\partial_{1}} S \longrightarrow 0$$

Where ∂_p is the S#G-linear map defined by

$$\partial_p(s \otimes x_{i_1} \wedge x_{i_2} \wedge \dots \wedge x_{i_p}) = \sum_{j=1}^p (-1)^{j+1} s x_{i_j} \otimes x_{i_1} \wedge x_{i_2} \wedge \dots \wedge x_{i_{j-1}} \wedge x_{i_{j+1}} \wedge \dots \wedge x_{i_p}$$

5 The endomorphism ring of S as an S^G -module

Isomorphism to S#G implies proj SG j-j, S^G direct summands of S.

Theorem 5.1. Let S be the complex power series ring in two variables, G be a finite subgroup of $GL_2(\mathbb{C})$, $R = S^G$ the fixed ring of S under the action of G, and $(S\#G)^G$ be the fixed ring of S#G under left multiplication by G. Then S is isomorphic to $(S\#G)^G$ as R-modules.

Proof. To see this we will define an injective R-linear map from S to S#G and show that it's image is $(S\#G)^G$. Let $\rho: S \to S\#G$ be given by

$$\rho(s) = \sum_{g \in G} s^g \cdot g.$$

It's clear that it's injective and it is R-linear because

$$\rho(rs) = \sum_{g \in G} r^g s^g \cdot g = r \sum_{g \in G} s^g \cdot g.$$

It should also be clear that the image is contained in $(S\#G)^G$ because

$$h \cdot \rho(s) = \sum_{g \in G} h \cdot s^g \cdot g = \sum_{g \in G} s^{hg} \cdot hg = \rho(s).$$

To see that the image is all of $(S\#G)^G$ consider an arbitrary element in $(S\#G)^G$, $\psi = \sum_{g \in G} s_g \cdot g$. Since ψ is fixed under left multiplication by G we must have that

$$\sum_{g \in G} s_g^h \cdot hg = \sum_{g \in G} s_g \cdot g,$$

in particular s_h must equal s_1^h and it follows that $\psi = \rho(s_1)$.

Theorem 5.2.

6 Maximal Cohen-Macaulay modules of S^G

Definition 6.1. If R is a local ring with residual field k we define the <u>depth</u> of a module, M, to be the minimal n such that the extension $\operatorname{Ext}_{R}^{n}(k, \overline{M})$ is non-zero.

Definition 6.2. If R is a commutative ring and M is an R-module, a <u>regular sequence</u> is a sequence of elements of R, $r_1, r_2, \dots r_n$ such that $M/\langle r_1, \dots, r_i \rangle M$ is non-zero and multiplication by r_i is injective on $M/\langle r_1, \dots, r_{i-1} \rangle M$.

Definition 6.3. If M is a module over a local ring R with Krull-dimension d we say that M is $\underline{maximal\ Cohen\ Macaulay\ (MCM)}$ if the depth of M equals d.

Theorem 6.1. If G is a finite subgroup of $GL_n(\mathbb{C})$, S is the formal power series ring in n variables and $R = S^G$ is the ring fixed under the action of G, then R is a sirect summand of S as R-modules.

Proof. Consider the map $\pi: S \to R$ given by

$$\pi(s) = \frac{1}{|G|} \sum_{g \in G} s^g$$

It's clear that the image of π is in R becuase an action from G wil just permute the order of teh sum. Further

$$\pi(r) = \frac{1}{|G|} \sum_{g \in G} r^g = \frac{1}{|G|} \sum_{g \in G} r = r,$$

so π splits the inclusion $R \hookrightarrow S$ which shows that R is a direct summand of S.