

Classification of Body Performance

Team 5

Anni Wang Tianhao Wu Yueting Wu Zhiyong Jiang Zihe Yan

Motivation

- What: Our project focuses on the assessment of body performance based on some physical indicators and exercise performance data.
- Why: Body health is closely related to our life. Better body health represents
 more energy helping us accomplish goals, greater pride in ourselves, better
 emotions and so on.

Data Description

Data Source (Sports Promotion Foundation)

	d BigData	//arketC	Popular search terms			0	a a
	data product	data office	data analysis	cultural service	data utilization	Platform u	sage guide
	Description		Variable		Description systolic pressure: the maximum pressure the heart exerts while beating.		
	20 ~ 64 (in years) F(Female); M(Male)						

age ing gender Grip strength: a measure of muscular gripForce height_cm Height (cm) strength or the maximum force/tension generated by one's forearm muscles weight kg Weight (kg) sit and bend forward cm Exercise sit and bend forward (cm) body fat % Total mass of fat divided by total body mass, multiplied by 100 Number of exercise sit-ups sit-ups counts diastolic diastolic pressure: the pressure in the broad jump cm Exercise broad jump (cm)

class

arteries when the heart rests between

BerkeleyMEng

A (Good); B, C (Ordinary); D (Bad)

beats

Variable

Exploratory Data Analysis

• Headmap of gender distribution of different classes.

Male have higher percentage in Class 'Bad' and 'Ordinary'. In general, female outperform male in this body performance assessment.

BerkeleyMEng

Exploratory Data Analysis

Analytic Models

Models we use:

- 1. Baseline model
- 2. Logistic Regression
- 3. Random Forest
- 4. Bagging
- 5. Gradient Boosting
- 6. Neural Network

Models -- Logistic Regression

 Finding Inverse of Regularization rate = 2 as our best parameter to run logistic regression model

Models -- Logistic Regression

Below is the ROC curve for different classes prediction performance. Logistic Regression performs better on predicting Class 'Bad' and 'Good'.

Berkeley MEng

Models -- Random Forest

 Finding Best ccp_alpha = 0.0001 to run random forest model

Models -- Bagging

 Finding Best max_features = 2 to run bagging model

Models -- Gradient Boosting

 Finding Best ccp_alpha = 0.0001 to run gradient boosting model

Models -- Neural Network

 Finding Best hidden_layer_sizes: (9,6) to run neural network model

Model Evaluation

Model evaluation through Boostrap to carefully find which model performs best. Below is the performance_table presenting Accuracy mean and Accuracy std between model Random Forest, Bagging, Gradient Boosting

	Random Forest	Bagging	Gradient Boosting
Accuracy Mean	0.770897	0.765462	0.764934
Accuracy std	0.007154	0.007310	0.007365

Model Evaluation

Upon comparison, **Random Forest** perform best among all six models. For our chosen model, we again use boostrap to construct a confidence interval for its accuracy.

95-percent CI of accuracy is [0.75573305 0.78411466]

Berkeley MEng

Impact

1. What is the (potential) impact of your work with regard to the problem that you

are trying to solve?

People can use this model to assess their body performance by plugging some required data, such as gender, height, weight, body_fat_% and so on, to see which class they will fall into.

2. How might you expand the scope of your analysis to improve its impact

even more?

We can add more physical indicators such as BMI, number of cigarettes per day, blood glucose level or other exercise performance data like long jump in place, 800m long run to our independent variables to improve the accuracy of our analysis.