

(12) NACH DEM VERTRAG ÜBER DIK INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
21. Juli 2005 (21.07.2005)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2005/065864 A1

(51) Internationale Patentklassifikation⁷: B21J 15/10,
B23P 19/04, B23Q 1/01

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): WESSELOH, Reiner
[DE/DE]; Lerchenweg 43, 21224 Rosengarten - Klecken
(DE).

(21) Internationales Aktenzeichen: PCT/EP2004/014537

(22) Internationales Anmeldedatum:

21. Dezember 2004 (21.12.2004)

(74)

Gemeinsamer Vertreter: KLÖPPER, Ute; Airbus
Deutschland GmbH, Patentabteilung ER, Postfach
950109, 21111 Hamburg (DE).

(25) Einreichungssprache:

Deutsch

(81)

Bestimmungsstaaten (soweit nicht anders angegeben, für
jede verfügbare nationale Schutzrechtsart): AE, AG, AL,
AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, CA, CH,
CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EB, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:
103 61 594.6 30. Dezember 2003 (30.12.2003) DE

[Fortsetzung auf der nächsten Seite]

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme
von US): AIRBUS DEUTSCHLAND GMBH [DE/DE];
Kreestag 10, 21129 Hamburg (DE).

(54) Title: ASSEMBLY DEVICE FOR CONNECTING CUP-SHAPED LONGITUDINAL SEGMENTS OF A COVERING BODY
BY PLACING AT LEAST ONE LONGITUDINAL CONNECTING JOINT

(54) Bezeichnung: MONTAGEEINRICHTUNG ZUM VERBINDELN VON SCHALENFORMIGEN LÄNGSElementen EINES MANTELKÖRPERN DURCH ANBRINGEN WEINIGSTENS EINER LÄNGS-VERBINDUNGSNAHT

(57) Abstract: An assembly device (1) for connecting cup-shaped covering longitudinal segments (910) of a covering body (9) which forms a large component and which is provided with a cavity having an open front surface side, used to produce a longitudinal connecting joint, comprising at least one tool pair (3), which consists of a tool (31) which is displaceably guided in a longitudinal direction (L) of the covering body (9) inside the cavity, in addition to another tool (32) which is displaceably guided in a longitudinal direction (L) outside the cavity (92). The tools (31,32) in the pair (3) interact in a direction which is perpendicular to the longitudinal direction of the body. The assembly device (1) is fitted with a pair of carriers (2) which are formed by an inner guide carrier (21), which extends inside the cavity of the covering body (9) in a longitudinal direction (L) and which displaceably guides the inner tool (31) and by an outer guide carrier (22) which extends outside the covering body (9) in a longitudinal direction (L) and which displaceably guides the outer tool (32). Each guide carrier (21,22) is rotationally and displaceably mounted about at least one longitudinal axis of rotation (50) which is oriented according to the outer longitudinal contour (980) of the covering body (9) in at least two spatial directions (Y,Z) perpendicular to the longitudinal direction (L) of the body and is fixable in such a way that the tools (31, 32) in the pair (3) assume different positions on the longitudinal periphery of the covering body (9).

(57) Zusammenfassung: Eine Montageeinrichtung (1) zum Verbinden von schalenförmigen Mantel-Längssegmenten (910) eines Großbauteil bildenden, einen Hohlraum mit offener Stirnseite aufweisenden Mantelkörpers (9) umfasst zum Herstellen einer Längs-Verbindungsnaht wenigstens ein Werkzeugpaar (3), das ein in Längsrichtung (L) des Mantelkörpers (9) innerhalb des Hohlraums verfahrbar geführtes inneres Werkzeug (31)

[Fortsetzung auf der nächsten Seite]

WO 2005/065864 A1

PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schuttrechtsausr.) ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DK, EE, ES, FI, FR, GB, GR, HU, IS, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BJ, BJ, CI, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO Patent (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI Patent (BJ, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

— Erfindererklärung (Regel 4.17 Ziffer iv) nur für US

Erklärungen gemäß Regel 4.17:

- hinsichtlich der Berechtigung des Anmelders, ein Patent zu beantragen und zu erhalten (Regel 4.17 Ziffer ii) für die folgenden Bestimmungstaaten AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ,

Veröffentlichung:

- mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

sowie ein in Längsrichtung (L) außerhalb des Hohlraums (92) verfahrbare geführtes äußeres Werkzeug (32) aufweist, wobei die Werkzeuge (31, 32) im Paar (3) in Richtung quer zur Körperlängsrichtung (L) zusammenwirken. Die Montageeinrichtung (1) ist mit einem Trägerpaar (2) ausgestattet, das durch einen im Hohlraum des Mantelkörpers (9) sich in Längsrichtung (L) erstreckenden, das innere Werkzeug (31) verfahrbbar führenden inneren Führungsträger (21) sowie durch einen außerhalb des Mantelkörpers (9) sich in Längsrichtung (L) erstreckenden, das äußere Werkzeug (32) verfahrbare führenden äußeren Führungsträger (22) gebildet ist. Jeder Führungsträger (21, 22) ist um wenigstens eine nach Maßgabe der äußeren Längskontur (980) des Mantelkörpers (9) orientierte Längs-Drehachse (500) rotatorisch sowie in wenigenfalls zwei separate, quer zur Körperlängsrichtung (L) verlaufende Raumrichtungen (Y, Z) verschiebbar derart gelagert und feststellbar, daß die Werkzeuge (31, 32) im Paar (3) wahlweise unterschiedliche Positionen am Längsumfang des Mantelkörpers (9) einnehmen.

Montageeinrichtung zum Verbinden von schalenförmigen Längssegmenten eines Mantelkörpers durch Anbringen wenigstens einer Längs-Verbindungsnaht

15

Die Erfindung betrifft eine Montageeinrichtung zum Verbinden von schalenförmigen Mantel-Längssegmenten eines ein Großbauteil bildenden, sich lang erstreckenden, einen Hohlraum mit offener Stirnseite bestimmenden, insbesondere umfangsseitig geschlossenen Mantelkörpers durch Anbringen wenigstens einer Längs-Verbindungsnaht am Körpermantel, umfassend wenigstens ein Werkzeugpaar, das ein in Längsrichtung des Mantelkörpers innerhalb des Hohlraums verfahrbar geführtes inneres Werkzeug sowie ein in Längsrichtung des Mantelkörpers außerhalb des Hohlraums verfahrbar geführtes äußeres Werkzeug aufweist, wobei die Werkzeuge im Paar in Richtung quer zur Körperlängsrichtung zum Herstellen der Verbindungsnaht zusammenwirken. Typischerweise handelt es sich bei den Mantelkörpern um Flugzeugrumpfe; die aus einer Mehrzahl von teil-zylindrischen vorgefertigten Schalensegmenten montiert werden. Die Segmente werden in den Rumpf bestimmende Positionen gesetzt und mit Nietnähten längsweise aneinander gefügt. Zur Herstellung der Nietnähte kommt eine Gruppe von Werkzeugen zum Einsatz, die an verfahrbaren Werkzeugeinheiten angeordnet sind. Solche Einheiten umfassen zum Beispiel Bohr-, Senk-, Dichtungs-, Steck-, Preß- und Gegenhalterwerkzeuge. Allgemein kann die Einrichtung mit beliebigen Werkzeugen zum Herstellen von Verbindungs nähten oder zum Bearbeiten von entsprechenden Verbindungsstellen ausgestattet werden.

- Eine zum Beispiel aus US 4 662 556 bekannte gattungsgemäße automatische Montageeinrichtung umfaßt Werkzeugeinheiten tragende Gestellwagen, die auf Schienen in Rumpf-Längsrichtung verfahrbar angeordnet sind. Mit der stationären Gestellwagen-Einrichtung lassen sich Nietnähte im wesentlichen nur in einer Umfangs-Höhenposition setzen, so daß der zu fertigende Rumpfkörper verlagert werden muß, um ihn mit weiteren Segmenten zu vervollständigen. Eine andere aus US 4 662 556 bekannte, Nietverbindungen herstellende Montageeinrichtung weist ein entsprechend der Umfangskontur des Rumpfes geformtes Schienengerüst auf. An bogenförmigen Schienenabschnitten laufen Wagen, die einen ein Außenwerkzeug tragenden, über die Rumpflänge sich erstreckenden Balken führen und verfahren. Zum Bearbeiten einer Nietnaht in einer Umfangs-Höhenposition wird der Längsbalken am Rumpf befestigt, und Niet-Gegengewerze im Rumpfinnern werden über durch die Rumpfschale gesetzte Stifte mit dem Längsbalken verbunden. In das zu fertigende Bauteil werden unerwünscht Kräfte eingeleitet. Zwar können mit der Montageeinrichtung Längs-Nietnähte an unterschiedlichen Umfangspositionen eines Halb-Rumpfes hergestellt werden, jedoch sind Rüsten und Umrüsten besonders zeit- und arbeitsaufwenig. Die gebogene Schieneführung ist in Abhängigkeit von Dimension und Form des herzustellenden Flugzeugrumpfes zu konstruieren, so daß die Einrichtung nur für einen einzigen Bautyp errichtet und genutzt werden kann. Die Gesamtkonstruktion ist aufwendig und erlaubt nur die Erfassung eines halben Rumpfumfangs.

Der Erfindung liegen die Ziele zugrunde, eine automatische Montageeinrichtung der beschriebenen Art zu schaffen, die relativ einfach bauen und zum Herstellen von längs-segmentierten Mantelkörpern unterschiedlicher Durchmesser bzw. Formen einsetzbar sein soll, wobei Längs-Verbindungs nähte in möglichst großem Umfangswinkelbereich am Körpermantel in gewünschter Umfangsposition bearbeitet und hergestellt werden sollen. Rüst- und Montageaufwand sollen verringert und entsprechend Zeit- und Kostenaufwand der Herstellung reduziert werden.

- Die Ziele der Erfindung werden in Verbindung mit den Merkmalen der eingangs genannten Montageeinrichtung dadurch erreicht, daß die Montageeinrichtung ein Trägerpaar umfaßt, das durch einen im Hohlraum des Mantelkörpers sich in Längsrichtung erstreckenden, das innere Werkzeug verfahrbaren inneren Führungsträger sowie

- durch einen außerhalb des Mantelkörpers sich in Längsrichtung erstreckenden, das äußere Werkzeug verfahrbar führenden äußeren Führungsträger gebildet ist, wobei jeder Führungsträger um wenigstens eine nach Maßgabe äußerer Längskontur des Mantelkörpers orientierte Längs-Drehachse rotatorisch sowie in wenigstens zwei separate, quer
- 5 zur Längsrichtung verlaufende Raumrichtungen verschiebbar derart gelagert und feststellbar ist, daß zum Herstellen der Verbindungsnaht zusammenwirkende Werkzeuge im Paar wahlweise unterschiedliche Positionen am Längsumfang des Mantelkörpers einnehmen. Erfindungsgemäß sind die im Paar gegeneinander arbeitenden Werkzeuge durch Drehung um zugehörige Längsachse sowie durch voneinander unabhängige Verschiebungen in wenigstens zwei Richtungen quer zur Körper-Längsachse in gewünschte
- 10 Umfangsposition am Mantel des herzustellenden Körpers verfahrbar. Durch Drehverstellung der Werkzeug-Führungsträger lassen sich die Werkzeuge in der gewünschten Höhen-/Umfangsposition mit ihren Arbeitsachsen auf den Bereich zu verbindender Mantelsegments ausrichten, wobei zumeist eine 90°-Ausrichtung vorgesehen wird. Insbesondere arbeiten Nietwerkzeuge in Arbeitsausrichtung mit 90°-Winkel zur Mantelfläche an der Nahtstelle. Die erfindungsgemäße Einrichtung ist für diese Anwendung besonders geeignet, da die Umfangs-/Höhenpositionen translatorisch und die Arbeitswinkeleinstellungen rotatorisch ohne gegenseitige Beeinflussung einrichtbar sind. Man erkennt, daß die Einrichtung universell zum Herstellen von Mantel-Hohlkörpern unterschiedlichster Größen und Querschnittsformen einsetzbar ist, da sich das Werkzeugpaar oder die Werkzeugpaare praktisch in jede beliebige Höhen- und Umfangsposition bewegen lassen. Insbesondere läßt sich ein und dieselbe Montageeinrichtung zum Herstellen von Rümpfen unterschiedlicher Flugzeugtypen vorsehen. Für jeden Größen- und/oder Formtyp zu konstruierende Einrichtungen entfallen. Maschinenkosten, Rüst- und Montagekosten sowie Fertigungszeiten werden erheblich reduziert. Zudem läßt sich der Automatisierungsgrad zur Herstellung von Hohl-Mantelkörpern mit Segmentteilen erhöhen, da Verbindungsnaht mit freien Werkzeugen auf ein und dieselbe Weise hergestellt werden. Herkömmliche manuelle Einrichtungs- und Montagearbeiten entfallen.
- 25
- 30 In bevorzugter erfindungsgemäßer Gestaltung ist jeder Werkzeug-Führungsträger rotatorisch um zugehörige Längs-Drehachse sowie translatorisch in zwei separate, senkrecht zueinander stehende transversale Richtungen verlagerbar. So lassen sich die Werkzeuge Richtung für Richtung in Y- und Z-Richtung eines kartesischen Koordinatensystems in

gewünschte Höhen- und Umfangsposition bringen und durch Drehverstellung zum Ausrichten ihrer Arbeitsachsen präzise zur Fläche der zu verbindenden Mantelsegmente einstellen.

- 5 Die erfindungsgemäß Einrichtung läßt sich besonders vorteilhaft zum Herstellen von Körpern einsetzen, deren Längssegmente teil-zylindrisch sind. Auch Mantel-Hohlkörper mit vom Zylinderquerschnitt abweichendem Querschnitt lassen sich ohne weiteres fertigen. Insbesondere können auch Körper mit sich änderndem Profilquerschnitt, insbesondere mit konischen Längsabschnitten hergestellt werden. Zu diesem Zweck werden die
- 10 Werkzeug-Führungsträger so gelagert, daß sie um Längs-Drehachsen drehbar sind, die entsprechend unterschiedlichen äußeren Längskonturen des Mantelkörpers orientiert sind.

Eine besonders bevorzugte und vorteilhafte Gestaltung der Erfindung besteht darin, daß

- 15 die Montageeinrichtung einen sich in Längsrichtung erstreckenden Trägerrahmen umfaßt, der das Trägerpaar bildet und um eine vorzugsweise mit einer Symmetrie-Längssachse des Trägerrahmens zusammenfallende Lagerachse rotatorisch gelagert ist, die eine gemeinsame Längs-Drehachse für die beiden Werkzeug-Führungsträger bildet. Ein besonderer Vorteil dieser Ausgestaltung besteht darin, daß der innere Werkzeug-
- 20 Führungsträger und der äußere Werkzeug-Führungsträger mechanisch in einen einzigen Körper, nämlich den Trägerrahmen integriert sind. Zweckmäßig ist der Trägerrahmen geschlossen, um Kraftleitung und –verteilung zu optimieren. Man erhält dadurch ein in sich kraftschlüssiges Werkzeug-Arbeitssystem, in dem die im Paar gegeneinander arbeitenden Werkzeuge mit optimalem Kräfteausgleich gegeneinander abgestützt sind. Einerseits können Werkzeuge mit relativ hohen Kräften beaufschlagt werden. Dies ist von besonderem Vorteil beim Einsatz von Quetschwerkzeugen, die Duralniete od. dgl. Niete fügen, um Krafteinleitung in zu verbindende Bauteile zu vermeiden. Insofern haben Duralniete auch den Vorteil, daß sie kostengünstig zur Verfügung stehen, keine Paßbohrungen benötigt werden und die Toleranz des Toolcenterpoints relativ groß ist. Damit
- 25 lassen sich bei der Herstellung hohe Nictraten erreichen. Andererseits lassen sich Bau-teile wie der Trägerrahmen, ihn haltende Lager, Gestellteile und/oder Werkzeugträger-köpfe geringer dimensionieren. Dadurch, daß die Werkzeug-Führungsträger in den Trägerrahmen integriert sind, ist auch die Gesamtkonstruktion relativ einfach. Ein den Trä-

gerrahmen lagerndes Gestell sowie die Lagerung sind raumsparend mit minimaler Anzahl von Bauteilen angeordnet.

- Insbesondere lassen sich mit der erfundungsgemäßen Einrichtung Verbindungsnahten an
- 5 umfangsseitig vollständig geschlossenen Mantelkörpern anbringen. Dies gelingt in erfundungsgemäßer Ausgestaltung auch mit geschlossenem Trägerrahmen. Ein solcher Trägerrahmen weist in erfundungsgemäßer Ausgestaltung an seinen stirnseitigen Enden die beiden Führungsträger verbindende Rahmenstege auf, die um wenigstens eine Längsachse des Trägerrahmens drehbar gelagert sind, und an wenigstens einem Rahmen-
- 10 nende ist der Rahmensteg lösbar mit den Rahmen-Führungsträgern verbunden, so daß er im gelösten Zustand in eine stirnseitigen Raum vor dem inneren Führungsträger freigegebende Position bewegbar ist. Zweckmäßig kann der Trägerrahmen dadurch geöffnet werden, daß der lösbare Rahmensteg vollständig von dem Rahmen abtrennbar und mittels eines säulenartigen Gestellteils in eine Position verfahrbar ist, die freien Raum be-
- 15 läßt, um den stirnseitig offenen und umfangsseitig geschlossenen Mantelkörper in vor-gefertigter Form oder einen Teil desselben von einer Stirnseite her in die Vorrichtung zu bringen bzw. dieser dort zu entnehmen. Zweckmäßig wird der Trägerrahmen an seinem geschlossen bleibenden stirnseitigen Ende mit einer Gewichtsmasse versehen, die ein Ausgleichsgewicht erzeugt, um den Trägerrahmen im Zustand des vollständig von den
- 20 Rahmenführungsträgern abgetrennten Rahmensteges in Position zu halten.

- Um eine Längsnahrt auch an im Profilquerschnitt sich ändernden Mantelkörpern anbringen zu können, sieht die Erfindung zweckmäßig vor, daß der Trägerrahmen derart gelagert ist, daß er Wahlweise in wenigstens zwei Positionen versetzbare ist, in denen die
- 25 Rahmenführungsträger jeweils entsprechend unterschiedlicher äußere Längskontur des Mantelkörpers ausgerichtet sind. Vorteilhaft wird eine den Trägerrahmen lagernde Lagereinrichtung vorgesehen, die an den Rahmenstegen in deren Einstreckungsrichtung gekrümmmt ausgebildete, z. B. konvexe Lagerabschnitte sowie diese aufnehmende korrespondierende, z. B. konkave Lagerabschnitte aufweist.

- 30 Um hinsichtlich Bauform und -größe eine besonders günstige Einrichtung mit die Werkzeug-Führungsträger integrierendem Trägerrahmen zu schaffen, werden in erfundungsgemäßer Ausgestaltung zwei säulenartige Gestellteile vorgesehen, zwischen de-

nen der Trägerrahmen angeordnet und an denen er um eine Längsachse drehbar gelagert ist. Die säulenartigen Gestellteile sind in wenigstens einer ersten Raumrichtung quer zur Längsrichtung des Mantelkörpers insbesondere auf Schienen gemeinsam verfahrbar angeordnet. Um den Rahmenträger besonders einfach höhenverstellbar zu lagern, sieht 5 eine Ausführungsform der Erfindung vor, daß die säulenartigen Gestellteile Lager tragen, die den Rahmenträger lagern und in Raumrichtung quer zur Längsrichtung des Mantelkörpers in der Säulenhöhe der Gestellteile verstellbar sind.

- Eine weitere Gestaltung der Erfindung besteht darin, daß anstelle des die Werkzeug-
10 Führungsträger integrierenden Rahmens eine Einrichtung mit einer inneren Portalein-richtung und einer äußeren Portaleinrichtung vorgesehen wird. Die innere Portaleinrich-tung lagert wenigstens einen inneren Führungsträger, und die äußere Portaleinrichtung lagert wenigstens einen äußeren Führungsträger, wobei der innere Führungsträger um eine Längs-Drehachse der inneren Portaleinrichtung und der äußere Führungsträger um eine zweckmäßig mit der inneren Portal-Längsdrehachse parallele Längs-Drehachse der äußeren Portaleinrichtung drehverstellbar ist. Zweckmäßig umfassen jeweils die innere Portaleinrichtung und die äußere Portaleinrichtung zwei säulenartige Gestellteile, je-
15 weils zwischen denen der zugeordnete Portalträger angeordnet und an denen er gelagert ist, wobei die säulenartigen Gestellteile jeder Portaleinrichtung in wenigstens einer ers-
ten Raumrichtung quer zur Längsrichtung des Mantelkörpers verfahrbar sowie feststel-
20 bar angeordnet sind und Drehlager tragen, die jeweils den Portalträger lagern und in wenigstens einer zweiten Raumrichtung quer zur Längsrichtung des Mantelkörpers in der Säulenhöhe der Gestellteile verstellbar sind.
- 25 Um einen umfangsseitig geschlossenen, vorgefertigten Mantelkörper oder einen Teil desselben von einer Stirnseite her in die Montageeinrichtung zu bringen bzw. diesen dort zu entnehmen, besteht eine erfindungsgemäße Ausgestaltung darin, daß die innere Portaleinrichtung ein erstes säulenartiges Gestellteil aufweist, an dem der innere Portalträger in Richtung der Säulenhöhe schwenkbar gelagert ist. Die Portaleinrichtung weist
30 auch ein zweites säulenartiges Gestellteil auf, an dem der innere Portalträger zur Schwenkabhebung abhebbar gelagert ist; wobei das zweite säulenartige Gestellteil so weit quer zur Längsrichtung des Mantelkörpers verfahrbar ist, daß der stirnseitige Raum vor dem inneren Portalträger freigegeben wird.

Auch in der Ausführungsform der Erfindung mit den beiden Portaleinrichtungen können besondere Mittel vorgesehen werden, um Längsnähte an Abschnitten mit unterschiedlicher Längskontur bzw. mit unterschiedlichen Querschnittsprofilen anzubringen. Zu diesem Zweck werden an den genannten säulenartigen Gestellteilen der inneren Portalträgereinrichtung und der äußeren Portalträgereinrichtung in der Höhe verstellbare und festsetzbare Traglager für die Portalträger derart angeordnet, daß letztere in Parallellage zueinander wahlweise in wenigstens zwei, den unterschiedlichen Längskonturen anpaßbare Positionen versetzbare sind.

10

Unteransprüche sind auf die genannten und noch andere zweckmäßige und vorteilhafte Ausgestaltungen der Erfindung gerichtet. Besonders zweckmäßige und vorteilhafte Ausbildungsformen oder -möglichkeiten der Erfindung werden anhand der folgenden Beschreibung der in der schematischen Zeichnung dargestellten Ausführungsbeispiele näher beschrieben. Es zeigen

15

Fig. 1 und 2 in Längsansicht ein Ausführungsbeispiel einer erfindungsgemäßen Montageeinrichtung mit Rahmenträger,

20

Fig. 3 in Draufsicht eine Rüstposition der Montageeinrichtung der Fig. 1 und 2,

25

Fig. 4 und 5 in Längs- bzw. Draufsicht die Montageeinrichtung der Fig. 1 bis 3 in einer Einstellung,

Fig. 6A bis 6C in Stirnansicht Einstellpositionen der Montageeinrichtung der Fig. 1 bis 5,

30

Fig. 7 in Profilansicht Werkzeug-Einstellpositionen erfindungsgemäßer Montageeinrichtungen am Umfang unterschiedlicher Mantel-Hohlkörper,

-8-

- | | |
|-------------------|--|
| Fig. 8 und 9 | in Längsansicht und Draufsicht ein Ausführungsbeispiel einer erfundungsgemäßen Montageeinrichtung, |
| Fig. 10 und 11 | in Längsansicht und Draufsicht eine Rüstposition der Montageeinrichtung der Fig. 8 und 9, |
| Fig. 12A bis 12 C | in Stirnansicht Einstellpositionen der Montageeinrichtung der Fig. 8 bis 11 und |
| Fig. 13 | in Längsansicht eine Einstellposition der Montageeinrichtung der Fig. 8 bis 12. |

Eine anhand der Fig. 1 bis 6 dargestellte erfundungsgemäße Montageeinrichtung 1, 11 umfaßt ein Gestell 6 mit einem daran gelagerten Werkzeug-Rahmenträger 4. Zwei in Y-
15 Richtung auf Schienen 14 wahlweise separat und gemeinsam verfahrbare Gestellteile sind als in Höhenrichtung Z sich erstreckende Säulen oder Türme 61, 62 ausgebildet. Der Trägerrahmen 4 erstreckt sich in Richtung der dritten kartesischen Koordinate X und ist über Rahmenstege bildende Endstücke 43, 44 in Höhenrichtung Z verschiebbar sowie um eine Mitten- und Symmetrieachse 40 des Rahmenträgers rotatorisch mittels
20 Lagereinrichtung 51 an den Türmen 61, 62 gelagert. Die Montageeinrichtung 11 dient dazu, teil-zylindrische, schalenförmige Längssegmente 910 durch Anbringen von Längs-Nietnähten 97 zu einem umfangsseitig geschlossenen Mantelkörper mit offenen Stirnseiten in Form eines Rumpfes 9 zusammenzufügen, wie dies aus Fig. 6A bis 6C deutlich wird. Dort ist der Rumpf 9 eines Flugzeugs mit kreiszylindrischem Profilquer-
25 schnitt ersichtlich. Der Rumpf 9 wird im inneren auf etwa halber Höhe durch einen horizontalen Boden 93 in Oberflur und Unterflur unterteilt. Der Rumpf 9 erstreckt sich mit seiner Zylinderachse 90 in X-Richtung. Die Längsrichtung L der Montageeinrichtung 11 sowie die Längsrichtung des Rumpfes 9 sind gemeinsam durch die X-Richtung bestimmt.

30

Zur Montage des Rumpfes 9 wird dieser in der in Fig. 6A bis 6C dargestellten Form vorgefertigt und auf einem Bauteilwagen 13, der zum Beispiel längs einer Führung 17 in X-Richtung verfahrbar ist, in noch näher beschriebener Weise in die Montageeinrich-

tung 11 eingebracht. In diesem Zustand sind Längssemente 910 – in Fig. 6A bis 6C sind Seitensektionen dargestellt – an ihren Längsrändern überlappend aneinandergeklebt. Um diese Längsverbindung zu vervollkommen, werden an den Überlappungsstellen die Längs-Nietnähte 97 hergestellt. Solche Nietnähte werden durch paarweise 5 gegeneinander arbeitende, quer zur Körperlängsrichtung L bewegbare Innenwerkzeuge 31 und Außenwerkzeuge 32 in an sich bekannter Weise erzeugt. Arbeits- oder Werkzeugeinheiten umfassen insbesondere Bohr-, Senk-, Dichtungs-, Steck-, Preß- und Ge- genhalte-Werkzeuge, die zum Ausführen der einzelnen Arbeitsschritte automatisch selektiert, verfahren und aktiviert werden. Zum Beispiel besteht jede in Fig. 6A bis 6C an 10 der Überlappungsstelle der Segmente 910 mit X schematisch dargestellte Nietverbin- dung aus drei längsparallelen Nietlinien.

Erfnungsgemäß umfaßt die Montageeinrichtung 11 ein Trägerpaar 2, das durch einen im Hohlraum 92 des Rumpfes 9 sich in X-Richtung erstreckenden, einen Innenwerk- 15 zeugwagen 310 verfahrbar führenden inneren Führungsträger 21 sowie durch einen außerhalb des Rumpfes 9 sich in X-Richtung erstreckenden, einen Außenwerkzeugwagen 320 verfahrbar führenden äußeren Führungsträger 22 gebildet ist. Im Ausführungsbei- spieler Fig. 1 bis 6 wird das Trägerpaar 2 durch den Trägerrahmen 4 gebildet. Mit gerader Längskontur 980 des Rumpfes 9 parallele Längsteile 41, 42 des Rahmens 4 20 bilden die beiden Führungsträger 21, 22, die an ihren stromseitigen Enden mit den Endstückten 43, 44 kraftschlüssig verbunden sind. Der Rahmen 4 bzw. die Rahmen- Führungsträger 41, 42 sind so lang ausgebildet, daß der Längsweg jedes Werkzeugwa- gens 310, 320 die volle Länge des zu bearbeitenden Rumpfes 9 erfaßt. Zudem sind die 25 Werkzeugwagen 310, 320 im Paar gegeneinander verfahrbar angeordnet, so daß eine Mehrzahl von Werkzeugen 31, 32 zum Herstellen der Nietnaht 97 von innen bzw. außen an die Mantelwand 91 des Rumpfes 9 heran verfahrbar sind, um dort zum Bearbei- ten der Naht mit automatisch selektierten Werkzeugen gegeneinander zu arbeiten. Zu diesem Zweck sind einzelne Werkzeuge 31, 32 lokal auch auf den Werkzeugwagen 310, 320 längs- und querverfahrbar.

30

Die Rahmen-Lagereinrichtung 51 umfaßt ein Paar von Drehkranz-Lagern 511. Jedes Lager 511 ist am zugehörigen Turm 61, 62 in einer Vertikalschlange 63 in Z-Richtung hö- henverstellbar und festsetzbar. Um den Trägerrahmen 4 mit den Endstücken 43, 44 zu

- 10 -

- lagern, werden die beiden Drehkranz-Lager 511 in Z-(Höhen-)Richtung und Y-Richtung in übereinstimmende Positionen gebracht. In jeder Y, Z-Position ist der Rahmen 4 um seine mit der Drehachse 500 der Lagereinrichtung 51 zusammenfallende Mittlen-Längsachse 40 drehbar. Entsprechend sind der innere Werkzeug-Führungsträger 21, 5 41 und der äußere Werkzeug-Führungsträger 22, 42 rotatorisch um ein und dieselbe Längs-Drehachse 500 gelagert. Durch Drehung des Rahmens 4 um die Drehachse 500 sind gegenüberliegende, aufeinander ausgerichtete Werkzeugwagen 310, 320 bzw. im Paar 3 gegenüberliegende Werkzeuge 31, 32 jeweils durch eine einzige Dreh-Verstellbewegung in jede beliebige Drehwinkelposition verfahrbare. In Kombination mit 10 der gemeinsamen Verfahrbarkeit der Türe 61, 62 des Gestells 6 in Y-Richtung sowie der gemeinsamen Höhen-Verfahrbarkeit der Drehkranz-Lager 511 in Z-Richtung ist erreicht, wie dies insbesondere aus Fig. 6A bis 6C ersichtlich ist, daß der Rahmen 4 in jede gewünschte Höhen- bzw. Umfangsposition am Rumpfmantel 91 gebracht werden kann, wobei durch Drehverstellung des Rahmens 4 in Richtung R1 die Werkzeugwagen 15 310, 320 bzw. deren Werkzeuge 31, 32 in zur Mantelfläche des Rumpfes 9 senkrecht gerichtete Arbeitsrichtung verstellbar sind. Diese Positionierung wird durch die in Y-Richtung, Z-Richtung sowie R1-Richtung eingerichteten separaten, selbstständigen Verstellwege erzielt. Die beiden translatorischen Bewegungen sowie die rotatorische Bewegung werden in der Einrichtung 1 durch automatische Steuerung nach Maßgabe 20 der Größe und Form des Rumpfes 9 sowie des Umfangsorts der anzubringenden Nietnaht vollzogen. In jeder eingestellten Werkzeug-Arbeitsposition werden die Türe 61, 62 bzw. die Lager 511 mit üblichen, nicht dargestellten Mitteln arretiert.

- In Fig. 6A bis 6C sind zwei Arbeitspositionen im Oberflur und eine Arbeitsposition im Unterflur des Rumpfes 9 dargestellt. Jeweils wird eine Niet-Verbindungsnaht 9 erzeugt, 25 indem die beiden Werkzeugwagen 310, 320 in den fest eingestellten Positionen der Werkzeug-Führungsträger 41, 42 längs dieser im Paar hin und hergeführt werden, wobei die einzelnen Bearbeitungsvorgänge der paarweise gegeneinander geführten Werkzeuge 31, 32 automatisch gesteuert selektiert, aktiviert und ausgeführt werden.

- 30 Zur Veranschaulichung universeller Verwendbarkeit der Montageeinrichtung 1 sind in Fig. 7 zylindrische Rümpfe 9 unterschiedlicher Größe und Form mit in wahlweise Bearbeitungspositionen 191 bis 198 gebrachten Führungsträgerpaaren 2 bzw. Werkzeug-

- paaren 3 dargestellt. Man erkennt, daß sich die Bearbeitungspositionen mit 90°-Werkzeugstellungen zum Beispiel an Rumpfkörpern mit Kreisquerschnitt unterschiedlichster Größe und an im Querschnitt oval-förmigen Mantelkörpern mit ein und derselben Montageeinrichtung 1 einrichten lassen. Zum Beispiel weisen kleinere Rümpfe Durchmesser von unter 4 m und größere Rümpfe Durchmesser von über 7 m auf. Es wird erreicht, daß mit dem erfundungsgemäßen Nietautomat zylindrische Bauteile sowie aber auch von der Zylinderform abweichende Mantelkörper jedes Durchmessers und jeder Form mit Längsnäht an gewünschter Umfangsstelle versehen werden können.

- 10 Um ein und dieselbe erfundungsgemäße Montageeinrichtung 1 für ein breites Anwendungsspektrum vorzusehen, wird man die automatisch bewegbaren und verstellbaren Teile der Einrichtung so gestalten und auslegen, daß das Paar 2 der Führungsträger 21, 22 längs eines Mantelumfangsabschnittes versetzbare ist, der einem Umfangswinkel von wenigstens 200° bis 300° entspricht.

- 15 Die in Fig. 6 und 7 dargestellten Rümpfe weisen den mittleren Boden 93 bzw. im Ausführungsbeispiel des Oval-Rumpfes zwei Böden 95, 96 auf. Um die Führungsträger-Paare 2 bzw. die Werkzeugpaare 3 an solchen Rümpfen 9 in jedem Flurbereich in die gewünschte Höhenposition bringen zu können, ist ein Ebenenwechsel vorzunehmen. Zu 20 diesem Zweck muß der Rumpf 9 aus dem Bereich des Trägerpaars 2 bzw. des Rahmens 4 herausgefahren und in den neuen Flurbereich nach Änderung der Höhenposition des Trägerpaars 2 hineingeführt werden. Dazu erforderliche Maßnahmen, die gleichermaßen vorgesehen werden, um den umfangsseitig vollständig geschlossenen, stromseitig offenen Rumpf 9 in die Einrichtung 11 hineinzubringen, werden nachstehend im 25 Ausführungsbeispiel beschrieben.

- Wie aus Fig. 2 und 3 ersichtlich, ist das Rahmenendstück 43 lösbar an den Rahmen-Führungsträgern 41, 42 angebracht. Das von den Führungsträgern 41, 42 abgekoppelte Endstück 43 wird mittels des Turmes 61 in Y-Richtung verfahren, wobei das Endstück 30 43 mit dem Lager 511 verbunden bleibt. Zur Befestigung des Endstückes 43 an den Rahmen-Führungsträgern 41, 42 kommt jedes eine kraftschlüssige Verbindung herstellende, lösbare mechanische Verbindungsmittel in Betracht. Dabei wird die Verbindung

- 12 -

derart ausgeführt, daß die Türme 61 und 62 in X-Richtung in festem Abstand zueinander angeordnet bleiben.

- In Fig. 2 befindet sich der Rahmen 4 mit den Führungsträgern 41, 42 in vertikaler, der 5 Z-Richtung entsprechender Position. Der Turm 61 mit dem von den Trägern 41, 42 entkoppelten Endstück 43 wird in Y-Richtung zurückgefahren, so daß der in langgestreckter U-Form verbleibende Rahmen 4 vor der geöffneten Stirn-Endseite vollkommen frei ist. Der umfangsseitig vollständig geschlossene Rumpf 9, der auf dem Bauteilwagen 13 ruht, wird durch Längsverfahren des Wagons 13 in Richtung X mit seinem Mantel 91 10 zwischen die Rahmen-Führungsträger 41, 42 gebracht bzw. umgekehrt aus einer solchen Position herausgeführt. In der Draufsicht der Fig. 3 ist der Rahmen 4 in einer der X-Y-Ebene entsprechenden Horizontallage dargestellt. Man erkennt deutlich, daß der Turm 61 mit dem Endstück 43 soweit in Y-Richtung verfahren wird, daß der umfangsseitig 15 geschlossene Rumpf 9 bequem frei über den inneren Werkzeug-Führungsträger 41 bewegbar ist.

- Um nach einem Herausfahren des Rumpfes 9 aus dem Bereich des Rahmens 4 die Höhenebene für den inneren Werkzeug-Führungsträger 41 zu ändern, werden die beiden Endstück-Lager 511 an den Türmen 61, 62 in gleichem gewünschtem Maß in Richtung 20 Z in der Höhe verfahren und positioniert. Dabei bleibt die Drehposition des Endstücks 43 und des offenen U-Rahmenteils um die Drehachsen der Lager 511 erhalten, so daß der Rahmen 4 auf einfache Weise wieder dadurch geschlossen wird, daß der Turm 61 in mit dem Turm 62 übereinstimmende Y-Position zurückgefahren wird.
- 25 Im Ausführungsbeispiel der Fig. 1 bis 6 ist das in Z-Richtung höhenverfahrbare Drehlager 511 an dem Turm 62 mit einer Gewichtmasse 45 derart verbunden, daß ein das Gewicht des U-Rahmenteils ausgleichendes Gegengewicht wirkt, um den U-Rahmenteil mit günstiger Kraftverteilung am Lager des Turmes 62 in seiner freitragenden Position zu halten.

30

Wie aus der Draufsicht der Fig. 5 ersichtlich, sind die parallelen Werkzeug-Führungs träger 41, 42 des Rahmens 4 in einer Richtung ausgerichtet, die der Längskonfur 990 eines konischen Endabschnitts 99 eines Rumpfes 9 entspricht. Das heißt, daß die Füh-

- 13 -

- rungsträger 41, 42 und die gerade Konturlinie des konischen Abschnittes 99, dessen Kreisdurchmesser zum Ende hin kleiner wird, parallel gerichtet sind. Man erreicht, daß mit der Montageeinrichtung 11 nicht nur Längsnähte an einem geraden Rumpfabschnitt 98 mit parallel zur X-Richtung liegender Kontur 980, sondern auch an einem unter einem Winkel zur X-Richtung liegenden dreidimensionalen räumlichen Abschnitt hergestellt und bearbeitet werden. Zu diesem Zweck ist der ebene Trägerrahmen 4 in einer sämtlichen Teilen 41 bis 44 gemeinsamen Rahmenebene 400 um eine zu dieser senkrechte Mittelachse 401 drehverstellbar angeordnet.
- 10 Die Rahmenebene 400 kommt, abhängig von übereinstimmenden Höhenpositionen der Lager 511 in Z-Richtung, in horizontalen Ebenen zu liegen. Jedes Endstück 43, 44 ist an seiner dem Lager 511 zugewandten Seite mit einem konkaven Kreisabschnitt ausgebildet, der durch einen in der Fläche 400 liegenden Radius 402 um die Achse 401 bestimmt ist. Entsprechend ist jedes Lager 511 mit konkaver angepaßter Lagerschale versehen, um das zugehörige Endstück 43, 44 in der Ebene 400 um die Achse 401 drehverschwenkbar aufzunehmen.

Zum Einrichten der an die gerade Schrägkontur angepaßten Position der Träger 41, 42 wird der Rahmen 4 zunächst mit zur X-Richtung paralleler Ausrichtung mit den Türen 20 61, 62 in Y-Richtung linear verfahren und mit den senkrecht dazu in Z-Richtung linear verfahrbaren Lagern 511 in die gewünschte Umfangs- und Höhenposition gebracht. Durch Drehung um die Drehachse 500 werden die Werkzeugwagen 310, 320 in einer eingestellten Umfangsposition in 90°-Arbeitsstellung zur Wand des Zylinderabschnitts 98 gebracht. Durch Drehung des Rahmens 4 um die Achse 401 erfolgt dann die Parallelausrichtung zur Kontur 990 des Konusabschnitts 99.

Nach einem weiteren Ausführungsbeispiel gemäß Fig. 8 bis 13 umfaßt eine erfindungsgemäß Montageeinrichtung 1, 12 anstelle des Trägerrahmens 4 eine innere Portaleinrichtung 7, die einen inneren Werkzeug-Führungsträger 21 lagert, sowie eine äußere Portaleinrichtung 8, die einen äußeren Werkzeug-Führungsträger 22 lagert. Die innere Portaleinrichtung 7 weist zwei durch Türe 72, 73 gebildete säulenartige Gestellteile auf, die einen Portalträger 71 in Höhenrichtung Z verfahrbar und einstellbar lagern. Der Portalträger 71 ist durch einen den Führungsträger 21 bildenden inneren Längsabschnitt

- 14 -

711 sowie endseitig durch Lagerabschnitte 712, 713 gebildet, wobei der Längsabschnitt 711 mittels Drehkranz-Lager 74 um eine Dreh-Längsachse 501 drehbar an den Lagerabschnitten 712 und 713 gelagert ist.

- 5 Die äußere Portaleinrichtung 8 ist entsprechend ausgebildet. Sie weist zwei Türme 82, 83 bildende Gestellteile auf, an denen ein Portalträger 81 in Höhenrichtung Z verfahrbar und einstellbar gelagert ist. Der Portalträger 81 ist durch einen inneren, den äußeren Führungsträger 22 bildenden Längsabschnitt 811 sowie Lagerabschnitte 812, 813 an seinen Enden gebildet. Der mittlere Längsabschnitt 811 ist mittels Drehkranz-Lager 84 10 um eine Längs-Drehachse 502 drehbar an den Endabschnitten 812, 813 gelagert. Die Portaleinrichtungen 7, 8 sind auf Schienen 15 bzw. 16 in Y-Richtung separat verfahrbar.

Abgesehen davon, daß in dem Ausführungsbeispiel der Fig. 8 bis 13 die mittleren Portale-Längsabschnitte 711, 811 die mit gerader Längskontur 980 parallelen Führungsträger 21, 22 bilden, bilden diese mit Werkzeugwagen 310, 320 und Werkzeugen 31, 32 ein Werkzeug-Führungsträgerpaar 2 wie in dem zuvor beschriebenen Ausführungsbeispiel. Zum Herstellen von Nietnähten 97 können zum Beispiel die aus Fig. 12A bis 12C hervorgehenden Positionen erreicht und eingestellt werden, die den Positionen in Fig. 6A bis 6C entsprechen. Um eine Arbeitsposition zum Bearbeiten einer Naht 97 einzurichten, werden die Turmpaare 72, 73 und 82, 83 in Y-Richtung separat verfahren und in für die gewünschte Position geeigneten Abstand gebracht. Die Portalträger 71, 81 werden durch lineare Stellbewegung in Z-Richtung in Höhenpositionen gebracht, in denen dann die die Längs-Führungsträger 21, 22 bildenden Längsabschnitte 711, 811 durch Drehbewegung um die Achsen 501, 502 in Richtungen R2, R3 verschwenkt werden, um die Werkzeugwagen 310, 320 mit den Werkzeugen 31, 32 im Paar 3 in einheitlicher Arbeitsrichtung unter einem Winkel von 90° zur zu bearbeitenden Mantelfläche gegeneinander auszurichten.

Die Portalträger-Lagerabschnitte 712, 713 bzw. 812, 813 werden in Lagern 521 bzw. 30 531 gehalten, die an den Türmen 72, 73 bzw. 82, 83 in vertikalen Lagernuten 712 bzw. 812 in Höhenrichtung Z zum Beispiel mit nicht dargestellten Gewindespindeln verfahrbar und feststellbar sind.

- 15 -

Die Werkzeugwagen 310, 320 können in einem Umfangsbereich von ca. 270° in Arbeitsposition gebracht werden, wobei lediglich der Bereich des den Rumpf 9 lagernden Bauteilwagens 13 ausgespart bleibt. Zum Beispiel lassen sich sämtliche Positionen an den in Größe und Form unterschiedlichen Rümpfen in Fig. 7 einstellen.

5

In Fig. 10 und 11 sind im Ausführungsbeispiel Gestaltungen der Montageeinrichtung 12 dargestellt, um die umfangsseitig vollkommen geschlossenen Rumpf-Mantelkörper 9 in die Einrichtung hineinzubringen und daraus zu entnehmen, insbesondere auch verbunden mit dem Aus- und Einfahren eines Rumpfes zum Durchführen eines Werkzeug-

10 Ebenenwechsels zwischen durch Böden 93, 94, 95 getrennten Flurbereichen.

Die innere Portaleinrichtung 7 weist den als Hauptturm vorgesehenen Turm 72 auf. An diesem ist der Portalträger 71 mit Schwenklager 75 um eine in Y-Richtung sich erstreckende Achse 750 schwenkbar gelagert. So wird das den Portalträger 71 lagernde Drehlager 521 drehbewegbar um die Achse 750 ausgebildet, wobei die Höhenverstellbarkeit des Lagers 521 am Turm 72 erhalten bleibt.

An seinem anderen Ende ist der Portalbalken 71 mit dem einen Auflageturm bildenden Turm 73 verbunden. Um den stromseitigen Raum vor dem Portalträger 71 freizugeben, 20 wird der zum Abheben an dem Turm 73 aufliegende Portalträger 71 um wenige Grad, z. B. ca. 5° durch Verschwenken um die Achse 750 in Z-Richtung angehoben. Wie aus Fig. 11 ersichtlich, wird der freigegebene Auflageturm 73 in Y-Richtung in eine hintere Position verfahren. Der innere Portalträger 71 liegt infolgedessen zum Einbringen und Entnehmen eines Rumpfes 9 frei. Zum Ebenenwechsel wird der freiragende Portalträger 25 71 durch Verfahren des Hauptturmes 72 in Y-Richtung und Verfahren des Lagers 521 an diesem Turm in Z-Richtung in die gewünschte Höhenposition gebracht. Entsprechend wird das Dreh-Auflager 521 für den Portalträger 71 am Auflageturm 73 in die gleiche Höhenposition gefahren, um zum Schließen der Brücke 7 in die dem Turm 72 entsprechende Y-Position gefahren zu werden.

30

Das Lager 521 am Hauptturm 72 ist mit einer Gewichtsmasse 79 versehen, die ein dem Hebelgewicht des Portalträgers 71 entgegenwirkende Hebelgewicht erzeugt, um den

- 16 -

Portalträger 71 in seiner mit geringfügigem Schwenkwinkel hochgeschwenkten Position zu halten, wie dies in Fig. 10 dargestellt ist.

Die die Portaleinrichtungen 7, 8 aufweisende Montageeinrichtung 12 kann zweckmäßig, 5 wie dies im Ausführungsbeispiel der Fig. 13 dargestellt ist, mit zur X-Y-Ebene schräg lagerbaren, parallel ausgerichteten Portalträgern 71, 81 ausgestattet werden, um Längsnahtbearbeitungen auch an zur X-Richtung schräg verlaufender Kontur 990 zum Beispiel eines Konusabschnittes 99 durchzuführen. Zu diesem Zweck kann das Schwenkklager 75 der inneren Portaleinrichtung 7 genutzt werden, wobei der Schwenkbereich entsprechend groß vorgesehen wird. Entsprechend wird der äußere Portalträger 81 an seinem Turm 82 mittels eines Festlagers gelagert, das einstellbar eine in Z-Richtung gekippte Trägerposition zuläßt. An dem anderen Turm 83 wird, wie an dem Turm 73 für das Lager 531, ein Auflager bzw. ein Loslager vorgesehen, um die Schräglageverstellung einrichten zu können.

10

Sämtliche Abläufe werden automatisch nach Vorgabe des vorgefertigten, zu bearbeitenden Rumpfes mittels üblicher Maschinensteuerung gesteuert.

5

A n s p r ü c h e :

1. Montageeinrichtung (1) zum Verbinden von schalenförmigen Mantel-Längssegmenten (910) eines ein Großbauteil bildenden, sich lang erstreckenden, einen Hohlraum (92) mit offener Stirnseite bestimmenden, insbesondere umfangsseitig geschlossenen Mantelkörpers (9) durch Anbringen wenigstens einer Längsverbindungsnaht (97) am Körpermantel (91), umfassend wenigstens ein Werkzeugpaar (3), das ein in Längsrichtung (L) des Mantelkörpers (9) innerhalb des Hohlräums (92) verfahrbar geführtes inneres Werkzeug (31) sowie ein in Längsrichtung (L) des Mantelkörpers (9) außerhalb des Hohlräums (92) verfahrbar geführtes äußeres Werkzeug (32) aufweist, wobei die Werkzeuge (31, 32) im Paar (3) in Richtung quer zur Körperlängsrichtung (L) zum Herstellen der Verbindungsnaht (97) zusammenzuwirken, dadurch gekennzeichnet, daß die Montageeinrichtung (1) ein Trägerpaar (2) umfaßt, das durch einen im Hohlraum (92) des Mantelkörpers (9) sich in Körperlängsrichtung (L) erstreckenden, das innere Werkzeug (31) verfahrbar führenden inneren Führungsträger (21) sowie durch einen außerhalb des Mantelkörpers (9) sich in Körperlängsrichtung (L) erstreckenden, das äußere Werkzeug (32) verfahrbar führenden äußeren Führungsträger (22) gebildet ist, wobei jeder Führungsträger (21, 22) um wenigstens eine nach Maßgabe äußerer Längskontur (980, 990) des Mantelkörpers (9) orientierte Längs-Drehachse (500, 501, 502) rotatorisch sowie in wenigstens zwei separate, quer zur Körperlängsrichtung (L) verlaufende Raumrichtungen (Y, Z) verschiebbar derart gelagert und feststellbar ist, daß die zum Herstellen der Verbindungsnaht (97) zusammenwirkenden Werkzeuge (31, 32) im Paar (3) wahlweise unterschiedliche Positionen am Längsumfang des Mantelkörpers (9) einnehmen.

- 18 -

2. Montageeinrichtung nach Anspruch 1, daß durch gekennzeichnet, daß wenigstens ein Werkzeugpaar (3) zum Herstellen einer Nietverbindung ausgebildet ist.
- 5 3. Montageeinrichtung nach Anspruch 2, daß durch gekennzeichnet, daß das Werkzeugpaar (3) Nietwerkzeuge (31, 32) umfaßt, die frei von Kraftleitung in den Mantelkörper (9) Niete setzen.
- 10 4. Montageeinrichtung nach einem der Ansprüche 1 bis 3, daß durch gekennzeichnet, daß die Montageeinrichtung (1) zum Anbringen wenigstens einer Längs-Verbindungsnaht (97) für die Herstellung eines Mantelkörpers (9) ausgebildet ist, der wenigstens über einen Längsabschnitt (98) zumindest an nähernd zylindrische Form aufweist.
- 15 5. Montageeinrichtung nach einem der Ansprüche 1 bis 4, daß durch gekennzeichnet, daß die Einrichtung zum Anbringen wenigstens einer Längs-Verbindungsnaht (97) für die Herstellung eines Mantelkörpers (9) ausgebildet ist, der wenigstens über einen Längsabschnitt (99), insbesondere einen Endabschnitt, konisch ist.
- 20 6. Montageeinrichtung nach einem der Ansprüche 1 bis 5, daß durch gekennzeichnet, daß jeder Werkzeug-Führungsträger (31, 32) rotatorisch um zugehörige Längs-Drehachse (500; 501, 502) und translatorisch in zwei separate, senkrecht zueinanderstehende transversale Richtungen (Y, Z) verlagerbar ist, wobei vorzugsweise die eine transversale Richtung (Y) durch eine horizontale Ebene (X-Y) und die andere durch dazu senkrechte Vertikalrichtung (Z) bestimmt sind.
- 25 7. Montageeinrichtung nach einem der Ansprüche 1 bis 6, daß durch gekennzeichnet, daß die Montageeinrichtung (11) einen sich in Längsrichtung (L) erstreckenden Trägerrahmen (4) umfaßt, der das Trägerpaar (2) bildet und um eine vorzugsweise mit einer Symmetrie-Längsachse (40) des Trägerrah-

- 19 -

mens (4) zusammenfallende Lagerachse rotatorisch gelagert ist, die eine gemeinsame Längs-Drehachse (500) für die beiden Führungsträger (21, 22) bildet.

8. Montageeinrichtung nach Anspruch 7, daß durch gekennzeichnet, daß der Trägerrahmen (4) an seinen sturmseitigen Enden die beiden Führungsträger (21, 22; 41, 42) eines Trägerpaars (2) verbindende Rahmenstege (43, 44) aufweist, die um wenigstens eine Längsachse (40) des Trägerrahmens (4) drehbar gelagert sind, wobei an wenigstens einem Rahmenende der Rahmensteg (43) lösbar mit den Rahmen-Führungsträgern (41, 42) verbunden und im gelösten Zustand in eine sturmseitigen Raum vor dem inneren Führungsträger (41) freigehende Position bewegbar ist.
10
9. Montageeinrichtung nach Anspruch 8, daß durch gekennzeichnet, daß der Trägerrahmen (4) an dem sturmseitigen Ende, das einem mit vollständig abtrennbarem Rahmensteg (43) ausgestatteten sturmseitigen Rahmenende gegenüberliegt, mit einer Gewichtsmasse (45) versehen ist, die ein Ausgleichsgewicht erzeugt, um den Trägerrahmen (4) im Zustand des vollständig von den Rahmen-Führungsträgern (41, 42) abgetrennten Rahmensteges (43) in Position zu halten.
15
10. Montageeinrichtung nach einem der Ansprüche 7 bis 9, daß durch gekennzeichnet, daß der Trägerrahmen (4) derart gelagert ist, daß er wahlweise in wenigstens zwei Positionen (19) versetzbare ist, in denen die Rahmen-Führungsträger (41, 42) jeweils entsprechend unterschiedlicher äußerer Längskontur (980, 990) des Mantelkörpers (9) ausgerichtet sind.
20
11. Montageeinrichtung nach Anspruch 10, daß durch gekennzeichnet, daß die Montageeinrichtung (11) eine den Trägerrahmen (4) lagernde Lagereinrichtung (51) umfaßt, die an den Rahmenstegen (43, 44) in deren Erstreckungsrichtung gekrümmte ausgebildete Lagerabschnitte sowie diese aufnehmende korrespondierende Lagerabschnitte aufweist.
25
12. Montageeinrichtung nach einem der Ansprüche 7 bis 11, daß durch gekennzeichnet, daß die Montageeinrichtung (11) säulenartige Gestellteile
30

- 20 -

(61, 62) umfaßt, zwischen denen der Trägerrahmen (4) angeordnet und an denen er um eine Längsachse (40) drehbar gelagert ist, wobei die säulenartigen Gestellteile (61, 62) in wenigstens einer ersten Raumrichtung (Y) quer zur Längsrichtung (L) des Mantelkörpers (9) gemeinsam verfahrbar und feststellbar angeordnet sind.

- 5
13. Montageeinrichtung nach einem der Ansprüche 7 bis 12, **d a d u r c h g e - k e n n z e i c h n e t**, daß die säulenartigen Gestellteile (61, 62) Drehlager (511) tragen, die den Rahmenträger (4) lagern und in Raumrichtung (Z) quer zur 10 Längsrichtung (L) des Mantelkörpers (9) in der Säulenhöhe der Gestellteile (61, 62) verstellbar sind.
14. Montageeinrichtung nach einem der Ansprüche 1 bis 6, **d a d u r c h g e - k e n n z e i c h n e t**, daß die Montageeinrichtung (12) eine wenigstens einen 15 inneren Führungsträger (21) lagernde innere Portaleinrichtung (7) und eine wenigstens einen äußeren Führungsträger (22) lagernde äußere Portaleinrichtung (8) umfaßt, wobei der innere Führungsträger (21) um eine Längs-Drehachse (501) der inneren Portaleinrichtung (7) und der äußere Führungsträger (22) um eine Längs-Drehachse (502) der äußeren Portaleinrichtung (8) drehverstellbar 20 ist.
15. Montageeinrichtung nach Anspruch 14, **d a d u r c h g e k e n n z e i c h n e t**, daß wenigstens eine Portaleinrichtung (7, 8) einen Portalträger (71, 81) aufweist, der durch wenigstens einen einen Führungsträger (21, 22) bildenden inneren 25 Längsabschnitt (711, 811) sowie Lagerabschnitte (712, 713; 812, 813) an seinen Enden gebildet ist.
16. Montageeinrichtung nach Anspruch 14 oder 15, **d a d u r c h g e k e n n - z e i c h n e t**, daß jeweils die innere Portaleinrichtung (7) und die äußere Portaleinrichtung (8) zwei säulenartige Gestellteile (72, 73; 82, 83) (7, 8) umfassen, jeweils zwischen denen der zugeordnete Portalträger (71, 81) angeordnet und an 30 denen er gelagert ist, wobei die säulenartigen Gestellteile (72, 73; 82, 83) jeder Portaleinrichtung in wenigstens einer ersten Raumrichtung (Y) quer zur Längs-

- 21 -

richtung (L) des Mantelkörpers (9) gemeinsam verfahrbar sowie feststellbar angeordnet sind und Drehlager (521, 522; 531, 532) tragen, die jeweils den Portalträger (71, 81) lagern und in wenigstens einer zweiten Raumrichtung (Z) quer zur Längsrichtung (L) des Mantelkörpers (9) verstellbar sind.

5

17. Montageeinrichtung nach Anspruch 16, daß durch gekennzeichnet, daß an den säulenartigen Gestellteilen (72, 73; 82, 83) von innerer Portaltrü-

gereinrichtung (7) und äußere Portalträgereinrichtung (8) in der Höhe verstellbare und festsetzbare Traglager (76, 86) für die Portalträger (71, 81) derart angeordnet sind, daß die Portalräger (71, 81) in Parallellage zueinander wahlweise

10

in wenigstens zwei Positionen versetzbare sind, in denen sie jeweils entsprechend unterschiedlicher äußerer Längskontur (980, 990) des Mantelkörpers (9) ausgerichtet sind.

15

18. Montageeinrichtung nach einem der Ansprüche 14 bis 17, daß durch gekennzeichnet, daß die innere Portaleinrichtung (7) säulenartige Gestellteile (72, 73) umfaßt, an denen der innere Portalträger (71) derart lösbar gelagert ist, daß im gelösten Zustand wenigstens ein Gestellteil (73) in eine den

20

sturmseitigen Raum vor dem inneren Portalträger (71) freigebende Position bewegbar ist.

25

19. Montageeinrichtung nach Anspruch 18, gekennzeichnet durch die innere Portaleinrichtung (7) mit einem ersten säulenartigen Gestellteil (72), an dem der innere Portalträger (71) in Richtung der Säulenhöhe schwenkbar gelagert ist, sowie mit einem zweiten säulenartigen Gestellteil (73), an dem der innere Portalträger (71) zur Schwenkanhebung abhebbar gelagert ist, um das zweite säulenartige Gestellteil (73) zum Verfahren freizugeben.

30

20. Montageeinrichtung nach Anspruch 19, daß durch gekennzeichnet, daß der äußere Portalträger (71) an seinem schwenkbar gelagerten Ende mit einer Gewichtsmasse (79) versehen ist, die ein den inneren Portalträger (71) an seinem anderen Ende hebendes Hebelgewicht erzeugt.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6B

Fig. 6A

Fig. 6C

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12 B

Fig. 13

INTERNATIONAL SEARCH REPORT

International Application No.
PCT/EP2004/014537

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 B21J15/10 B23P19/04 B23Q1/01

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 B21J B23P B64C B64F B23Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 99/37429 A (GENERAL ELECTRO MECHANICAL CORPORATION) 29 July 1999 (1999-07-29) the whole document	1-7,10, 12,13
A	EP 0 483 947 A (GEMCOR ENGINEERING CORP) 6 May 1992 (1992-05-06) column 7, lines 1-32; figures 2,4	8,9

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the International filing date
- *L* document which may throw doubt on priority, claim(s) or with regard to the sufficiency of disclosure or of another claim or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the International filing date or priority date and not in conflict with the application but added to understand the principle or theory underlying the invention

X document of particular relevance; the claimed Invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed Invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

A document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the International search report

30 March 2005

07/04/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5810 Patentlaan 2
NL - 2200 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl
Fax. (+31-70) 340-3016

Authorized officer

Augé, M

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/EP2004/014537

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 9937429	A	29-07-1999	AU WO US	2343999 A 9937429 A1 6223413 B1		09-08-1999 29-07-1999 01-05-2001
EP 0483947	A	06-05-1992	EP US	0483947 A2 5154643 A		06-05-1992 13-10-1992