Частично-итерационный метод множественной регрессии для неполных данных с применением в биологии

Гриненко Юрий Константинович, группа 22.М03-мм

Санкт-Петербургский государственный университет
Математическое моделирование, программирование, искусственный интеллект
Научный руководитель: к. ф.-м.н., доцент Н. П. Алексеева
Рецензент: Волканова Маргарита Дмитриевна

Санкт-Петербург 2024г.

Содержание работы

Дипломная работа состоит из трех основных частей:

- Рассмотрение частично-итерационного метода множественной регрессии как инструмента для получения предсказаний;
- Предложение процедуры отбора частных предсказаний, способной учитывать кластеры в многомерных данных, для построения ансамбля моделей;
- Сравнительный анализ полученных результатов, выводы об изменении интерпретации модели;

[1] Задачи множественной линейной регрессии

Модель: Модель задает отображение $f: \mathbb{X}^p \to \mathbb{Y}$;

$$f_i(x) = \sum_{i=1}^{p} \beta_i x_i + \varepsilon_i, \tag{1}$$

Оценки $\hat{\beta}$:

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2. \tag{2}$$

[1] Частично-итерационная множественная регрессия

Частное предсказание: $\hat{f}(X_{\tau 1} \dots X_{\tau k})$ — предсказание по подможеству независимых переменных $\tau \subseteq \Omega_p = (1, 2, \dots, p)$.

Максимальное число моделей (и полученных векторов с предсказаниями) $N=2^p-1$; предсказания стандартизуются.

$\hat{f_1}$	• • •	\hat{f}_N
\hat{y}_{11}		ŷ _{N1}
\hat{y}_{1n}		ŷ _{Nn}

Корреляция между y и j-м частным предсказанием:

$$l_{0j} = \frac{1}{n} \sum_{\nu=1}^{n} y_{\nu} \hat{f}_{j\nu}, \qquad j = 1, \dots, N.$$
 (3)

[1] Частные предсказания по комбинациям признаков

 $oxed{\mathsf{Matpuцa}}$ вторых моментов: $oldsymbol{\mathsf{L}}$, элементы — корреляции частных предсказаний $\hat{f}_1,\dots,\hat{f}_N$

$$\mathbf{L} = \begin{pmatrix} 1 & l_{12} & \dots & l_{1N} \\ l_{21} & 1 & \dots & l_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ l_{N1} & l_{N2} & \dots & 1 \end{pmatrix}.$$

Модель матрицы L [Алексеева, Н. П., Ал-Джубури, Ф. С. Ш. (2022)]:

$$\begin{pmatrix} 1 & r + \epsilon_{12} & \dots & r + \epsilon_{1N} \\ r + \epsilon_{21} & 1 & \dots & r + \epsilon_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ r + \epsilon_{N1} & r + \epsilon_{N2} & \dots & 1 \end{pmatrix},$$

$$\mathbb{E}\epsilon_{ii} = 0$$
, $\mathbb{D}\epsilon_{ii} = \sigma^2$, $\epsilon_{ii} = \epsilon_{ii}$.

[1] Взвешенное предсказание

Взвешенное предсказание: $\hat{f}_{\Theta}(\hat{f}_1,\ldots,\hat{f}_N)$

[Алексеева, Н. П., Ал-Джубури, Ф. С. Ш. (2022)];

Существует матрица вида \mathbf{U}_N :

$$\mathbf{U}_{N} = \begin{pmatrix} 1 & r & \dots & r & r \\ r & 1 & \dots & r & r \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ r & r & \dots & 1 & r \\ r & r & \dots & r & 1 \end{pmatrix}.$$

$$\hat{f}_{\Theta} = \Theta(\sigma)(\frac{1}{N} \sum_{j=1}^{N} l_{0j}\hat{f}_{j}), \Theta(\sigma) = \frac{N(1-r)^{N-1} + NG_{N-1}(\sigma)}{|U_{N}| + NrG_{N-1}(\sigma) + G_{N}(\sigma)},$$
(4)

$$\mathbb{D}\epsilon_{ij} = \sigma^2; \qquad G_N(\sigma) = \sum_{k=1}^{\left[\frac{N}{2}\right]} C_N^{N-2k} (-1)^k \phi_k \sigma^{2k} a^{N-2k}; \qquad \phi_k = \frac{(2k)!}{2^k k!}. \tag{5}$$

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ₩ 9 Q (*

[1] Сравнение результатов частно-итерационного метода множественной регрессии

Таблица 1. Коэффициенты детерминации общей модели f_Θ и моделей с исключением некомплектных признаков f_1 или некомплектных наблюдений f_2

$R^2(\hat{f}_{\Theta}, Y)$	$R^2(\hat{f}_1,Y)$	$R^2(\hat{f}_2, Y)$
0.76	0.63	0.64

[2] Линии регрессии при кластерной структуре данных; моделирование

Рис. 1. Деление моделированных данных на группы

[2] Выводы из нормального уравнения

Из нормального уравнения: $(\mathbf{X}^T\mathbf{X})\hat{eta}=\mathbf{X}^Ty,$ $(\mathbf{X}^T\mathbf{X})\hat{eta}=\mathbf{X}^T(\mathbf{X}\hat{eta}+e),$ $\mathbf{X}^Te=0$

Гиперплоскость регрессии проходит через средние наблюдения \bar{X}, \bar{y} :

$$ar{e} = ar{y} - ar{X}\hat{eta} = 0,$$
 $ar{y} = ar{X}\hat{eta};$

Свойства SSCP матрицы: Элементы вне главное диагонали зависят от ковариации независимых переменных.

$$\hat{\beta} = \underbrace{(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T y}_{SSCP}.$$

[2] Результаты, полученные при разделении пациентов на группы по типу травмы

Таблица 2. Коэффициенты детерминации общей модели f_{Θ} и моделей для групп пациентов.

$R^2(\hat{f}_{\Theta}, Y)$	$R^2(\hat{f}_{\Theta 1}, Y)$	$R^2(\hat{f}_{\Theta 2}, Y)$
0.76	0.8242	0.8794

Таблица 3. Коэффициенты регрессии моделей

	\hat{eta}_1	\hat{eta}_2	\hat{eta}_3	\hat{eta}_4	\hat{eta}_{5}	\hat{eta}_{6}	\hat{eta}_7	\hat{eta}_8	\hat{eta}_{9}	\hat{eta}_{10}
f _⊖	0.05	0.03	0.0014	0.31*	0.14	-0.05	0.11	0.37	-0.14	0.24
$f_{\Theta 1}$	-0.04	-0.05	0.039	0.59*	0.01	0.03	-0.44*	0.02	0.14*	0.20*
$f_{\Theta 2}$	-0.11	0.02	-0.16	0.60*	-0.03	-0.54*	0.41*	0.74*	-0.05	0.25

[2] Отбор частных предсказаний по \mathbb{R}^2

Рис. 2. Линии регрессии в данных с кластерами

[2] Моделирование данных; расположение групп

Puc. 3. (A): $\Sigma_1 = \Sigma_2$, $\mu_1 \neq \mu_2$; (B): $\Sigma_1 \neq \Sigma_2$, $\mu_1 \neq \mu_2$; (C): $\Sigma_1 \neq \Sigma_2$, $\mu_1 = \mu_2$; (D): $\Sigma_1 = \Sigma_2$, $\mu_1 = \mu_2$

[2] Критерий Хотеллинга (lpha = 0.05)

Случайные вектора $\xi^{(1)}, \xi^{(2)} \in \mathbb{R}^{p+1}$; проверяем гипотезу

$$H_0: \mathbb{E}\xi^{(1)} = \mathbb{E}\xi^{(2)}$$

 $(H_0: \mu^{(1)} = \mu^{(2)}).$

Статистика:

$$T^{2} = (\bar{x}^{(1)} - \bar{x}^{(2)})^{T} \left(\frac{\hat{\mathbf{S}}_{1}}{n_{1}} + \frac{\hat{\mathbf{S}}_{2}}{n_{2}}\right)^{-1} (\bar{x}^{(1)} - \bar{x}^{(2)}) \sim T^{2}(p, n_{1} + n_{2} - 2), \quad (6)$$

Через распределение Фишера:

$$F = \frac{k - p + 1}{p} T^2 \sim F(p, k - p + 1). \tag{7}$$

[2] М-тест Бокса (lpha = 0.1)

$$H_0: \Sigma_1 = \ldots = \Sigma_g.$$

Статистика:

$$Box's = -2(1-C)ln(\mathbf{M}) \sim \chi_{df}^2, df = (g-1)p(p+1)/2$$
 (8)

$$C = \left(\sum_{i=1}^{g} \frac{1}{n_i - 1} - \frac{1}{\left(\sum_{i=1}^{g} n_i\right) - g}\right) \frac{2p^2 + 3p - 1}{6(p+1)(g-1)}.$$
 (9)

$$\mathbf{M} = \left((\sum_{i=1}^{g} n_i) - g \right) \ln |\mathbf{S}_p| - \sum_{i=1}^{g} (n_i - 1) \ln |\hat{\mathbf{S}}_i|, \tag{10}$$

где

$$\mathbf{S}_{p} = \left(\left(\sum_{i=1}^{g} n_{i} \right) - g \right)^{-1} \sum_{i=1}^{g} (n_{i} - 1) \hat{\mathbf{S}}_{i}. \tag{11}$$

↓□▶ ←□▶ ←□▶ ←□▶ □ ♥ ♀○○

[2] Альтернативный критерий отбора частных предсказаний

[2] Альтернативный критерий отбора частных предсказаний

Критерий Фазано-Франческини (lpha = 0.05):

$$H_0: F_1 = F_2;$$

Статистика:

$$D = \sqrt{\frac{n_1 n_2}{n_1 + n_2}} \left(\frac{D_{FF1} + D_{FF2}}{2} \right), \tag{12}$$

Тогда p-value находится как доля статистик $D_i \geq D$,

$$\hat{\rho} = \frac{1 + \sum_{i=1}^{M} \mathbb{1}(D_i \ge D)}{1 + M},\tag{13}$$

где

$$\mathbb{1}(x \ge y) = \begin{cases} 1, x \ge y \\ 0, x < y. \end{cases} \tag{14}$$

[3] Сравнение моделей

Таблица 4. Сравнение коэффициентов регрессии при различном отборе частных предсказаний

	\hat{eta}_1	\hat{eta}_2	\hat{eta}_3	$\hat{\beta}_4$	$\hat{\beta}_5$	\hat{eta}_6	\hat{eta}_7	\hat{eta}_8	\hat{eta}_{9}	$\hat{\beta}_{10}$
$f_{\Theta R^2}$	0.052	0.026	0.0014	0.31*	0.14	-0.045	0.11	0.37	-0.14	0.24
$f_{\Theta Hotelling/Box}$	0.063	0.15	_	0.44*	0.26*	-0.029	-0.0003	_	_	0.13
$f_{\Theta F-F}$	0.011	0.097	0.13	0.53*	0.16	-0.15	_	0.12	-0.0024	0.12

Таблица 5. Коэффициент детерминации моделей при различном отборе частных предсказаний

$R^2(\hat{f}_{\Theta R^2}, Y)$	$R^2(\hat{f}_{\Theta Hotelling/Box}, Y)$	$R^2(\hat{f}_{\Theta F-F}, Y)$
0.76	0.74	0.76

[3] Результаты

- Применен итерационно-частичный метод множественной регрессии для неполных данных;
- Рассмотрено влияние кластеров в обсуждаемых данных на решение задачи регрессии;
- Предложены и проверены процедуры отбора частных предсказаний;
- Используя новый подход, мы способны учитывать расслоение в данных;
- Полученные результаты дают возможность предлагать разнообразные интерпретации модели исследователям без ухудшения точности предсказаний.