

密级:公开资料

# TTC 2640 通用主机 透传规格书

文档版本: V1.45

深圳市昇润科技有限公司 2019年01月02日 版权所有

| 版本   | 修订日期       | 修订人 | 审稿人 | 修订内容                                                                                                                                                             |
|------|------------|-----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0  | 2017-11-24 | 陈炽华 | 张眼  | 初版发布                                                                                                                                                             |
| 1.1  | 2017-12-15 | 陈炽华 | 张眼  | 修正相关参数的说明                                                                                                                                                        |
| 1.2  | 2017-12-20 | 陈炽华 | 张眼  | <ol> <li>修正数据格式描述。</li> <li>修正部分指令细节。</li> </ol>                                                                                                                 |
| 1.3  | 2018-01-08 | 陈炽华 | 张眼  | <ol> <li>加强连接三个设备的稳定性,最小连接间隔由 100 更改为 120ms.</li> <li>增加指令的返回值说明。</li> <li>增加指令错误表与广播关键字表</li> </ol>                                                             |
| 1.41 | 2018-01-18 | 陈炽华 | 张眼  | <ol> <li>增加连接从机设备数到4个。</li> <li>增加单连接时的大包传输。</li> <li>扫描回应包的内容更改为了设备名称。</li> <li>最大波特率扩展到256000。</li> <li>增加常用指令。</li> <li>修正部分指令的返回。</li> <li>增加模组说明</li> </ol> |
| 1.42 | 2018-03-28 | 陈炽华 | 张眼  | 1.修正模块引脚图片                                                                                                                                                       |
| 1.43 | 2018-05-28 | 陈炽华 | 张眼  | 1.补充模块特殊脚位的说明                                                                                                                                                    |
| 1.45 | 2019-01-02 | 陈炽华 | 张眼  | 1. 修正部分指令说明 2. 增加自动连接, MAC 和 UUID 过滤指令等的说明 3. 更改公司地址                                                                                                             |



## 目 录

| 1.通月 | 目主机透传            | 模块简介                  | 3  |
|------|------------------|-----------------------|----|
| 1    | 1.1. 功能質         | 5介                    | 3  |
| 1    | 1.2. 主要功         | b能特点                  | 3  |
| 1    | 1.3. 模组电         | 1气特性                  | 3  |
|      |                  | - · · · · ·<br>! 模组介绍 |    |
| -    |                  | 5x6 模块型号及尺寸           |    |
|      |                  | 5x6 模块引脚及说明           |    |
|      | 1.4.3.           | 4X4 模组型号及尺寸           | 6  |
|      | 1.4.4.           | 4x4 模块引脚及说明           | 7  |
| 1    | l.5. 2640R1      | 模组介绍                  | 8  |
|      | 1.5.1. 5         | 5x5 模组型号及尺寸           | 8  |
|      |                  | 5x5 模组引脚及说明           |    |
|      |                  | 串口脚位说明                |    |
|      | 1.5.4. គ         | 串口升级脚位说明              | 10 |
|      | 1.5.5.           | 时序图                   | 10 |
|      |                  | 明                     |    |
|      |                  |                       |    |
|      |                  | 式                     |    |
| 2    | 2.1 AT 指令        | }                     | 13 |
|      |                  | UART 通讯测试             |    |
|      | 2.1.1            | 扫描开关                  | 14 |
|      | 2.1.2            | 连接 16BIT UUID 设备      |    |
|      | 2.1.3            | 连接 128BIT UUID 设备     |    |
|      | 2.1.4            | 断开连接                  |    |
|      | 2.1.5            | 写操作通道                 |    |
|      | 2.1.6            | 读操作通道                 |    |
|      |                  | NOTIFY 数据通道           |    |
|      | 2.1.8            | 蓝牙关机                  |    |
|      | 2.1.9            | 蓝牙版本号<br>广播数据         |    |
|      | 2.1.10<br>2.1.11 | 月 猫 剱 掂               |    |
|      | 2.1.11           | 扫描结果数据类型              |    |
|      | 2.1.12           | 当前连接设备个数              |    |
|      | 2.1.14           | 本机 MAC 地址             |    |
|      | 2.1.15           | 波特率                   |    |
|      | 2.1.16           | 扫描周期                  |    |
|      | 2.1.17           | 设置连接参数更新              | 17 |
|      | 2.1.18           | 读取 0 号连接参数更新          | 17 |
|      | 2.1.19           | 读取1号连接参数更新            | 17 |
|      |                  |                       |    |



| 2.1.20 | 读取2号连接参数更新  | 18 |
|--------|-------------|----|
| 2.1.21 | 读取3号连接参数更新  | 18 |
| 2.1.22 | 0 号设备信号强度   | 18 |
| 2.1.23 | 1号设备信号强度    | 18 |
| 2.1.24 | 2 号设备信号强度   | 18 |
| 2.1.25 | 3号设备信号强度    | 18 |
| 2.1.26 |             |    |
| 2.1.27 | 过滤内容设置      | 19 |
| 2.1.28 | 自动连接使能      | 19 |
| 2.1.29 |             |    |
| 3.附录   |             |    |
|        | 录 A: 指令错误代码 |    |
|        | 录 B: 广播关键字  |    |
|        |             |    |
|        |             |    |

## TTC 2640 通用主机透传规格书

#### 1.通用主机透传模块简介

#### 1.1. 功能简介

本模块为 2640 方案,蓝牙角色为主机,通过串口指令进行相关的操作,支持最大连接四个从机设备。开启扫描之后,模块通过串口打印出扫描结果,用户根据扫描结果进行连接、发数据、收数据等操作。现在支持连接 UUID 为 16BIT 和 128BIT 的从机设备,同一时间只支持一个服务,同一设备有多个服务时,需要断开连接再操作下一个服务,服务下属通道最多不超过 5 个通道。

#### 1.2. 主要功能特点

- 使用简单,只需要知道简单的蓝牙基本概念即可。
- 可做任意从机的广播扫描,也可连接从机通讯,对从机设备兼容比较广泛。
- 支持多连接蓝牙数据传输功能,最大支持4个连接。
- 单连接时可支持大包传输,最大支持到248字节。
- 用户接口使用通用 UART 设计,全双工双向通讯,最大波特率为 256000 bps

#### 1.3. 模组电气特性

- 调制模式: GFSK
- 接收灵敏度: -96dBm (典型值)
- 频率范围: 2402~2480MHZ (2.4G ISM band)
- 输出功率设置: -20~+5 dBm (可通过软件编程设定)
- 工作温度: -20℃~+70℃
- 储存温度: -30℃~+85℃
- 工作湿度: < 85%RH (at 40°C)
- 电源电压: 1.8~3.8VDC
- 工作电流:
- Active-Mode RX: 5.9 mA max
- Active-Mode TX at 0 dBm: 6.1 mA max
- Active-Mode TX at +5 dBm: 9.1 mA max
- Active-Mode 2.3 mA avg
- Standby:  $1 \mu A (0.13 \mu A \text{ avg})$
- 有效接收距离:
- 60 米 (发射功率设定 0 dBm, 以模块与 iPhone 6S 手机面对面自由空间测试)
- 80 米 (发射功率设定+5 dBm,以模块与 iPhone 6S 手机面对面自由空间测试)



## 1.4. 2640R2 模组介绍





#### 1.4.2. 6x6 模块引脚及说明

各型号的 6x6 模块引脚都是一样的,差异在天线部分。



| 引脚序号   | 引脚名          | 功能描述                | 功能对应                |  |
|--------|--------------|---------------------|---------------------|--|
| DIO_3  | TX           | UART_TX 引脚          | UART 总线数据输出端 (必接)   |  |
| DIO_2  | RX           | UART_RX 引脚          | UART 总线数据输入端 (必接)   |  |
| DIO_26 | INT          | UART_INT 引脚         | UART总线唤醒外部 MCU 引脚(可 |  |
| D1O_20 |              |                     | 选)                  |  |
| DIO_27 | WAKEUP       | UART_WAKEUP 引脚      | UART 总线唤醒 BLE 模块引脚  |  |
| D10_27 |              | OTHET_WITHELET TIME | (可选)                |  |
| DIO_16 | ENSBL        | 通用 IO 口引脚           | SBL 功能使能引脚 (可选)     |  |
| RESET  | RESET        | 模块的复位引脚             | 常态为高,拉低则复位 IC (可选)  |  |
| VDD    | VDD          | 模块供电电源引脚            | 3.3V 电源正极接入(必接)     |  |
| GND    | GND 模块供电接地引脚 |                     | 接入供电电源的负极 (必接)      |  |



#### 1.4.3. 4X4 模组型号及尺寸





#### 1.4.4. 4x4 模块引脚及说明

各型号的 4x4 模块引脚都是一样的,差异在天线部分。



| 引脚序号   | 引脚名    | 功能描述           | 功能对应               |  |
|--------|--------|----------------|--------------------|--|
| DIO_3  | TX     | UART_TX 引脚     | UART 总线数据输出端       |  |
| DIO_2  | RX     | UART_RX 引脚     | UART 总线数据输入端       |  |
| DIO_26 | INT    | UART_INT 引脚    | UART 总线唤醒外部 MCU 引脚 |  |
| DIO_27 | WAKEUP | UART_WAKEUP 引脚 | UART 总线唤醒 BLE 模块引脚 |  |
| DIO_16 | ENUP   | 通用IO口引脚        | SBL功能使能引脚          |  |
| RESET  | RESET  | 模块的复位引脚        | 常态为高,拉低则复位 IC (可选) |  |
| VDD    | VDD    | 模块供电电源引脚       | 3.3V 电源正极接入 (必接)   |  |
| GND    | GND    | 模块供电接地引脚       | 接入供电电源的负极 (必接)     |  |



## 1.5. 2640R1 模组介绍

#### 1.5.1. 5x5 模组型号及尺寸



型号: HY-264018 P





型号: HY-264018 W





型号: HY-264018 C





型号: HY-264018 C





#### 1.5.2. 5x5 模组引脚及说明

2640R1 各型号的 5x5 模组引脚都是一样的,差异在天线部分。



| 引脚序号         | 引脚名                         | 功能描述        | 功能对应               |  |
|--------------|-----------------------------|-------------|--------------------|--|
| DIO_0        | TX                          | UART_TX 引脚  | UART 总线数据输出端       |  |
| DIO_1        | RX                          | UART_RX 引脚  | UART 总线数据输入端       |  |
| DIO_10       | INT                         | UART_INT 引脚 | UART 总线唤醒外部 MCU 引脚 |  |
| DIO_12       | IO_12 WAKEUP UART_WAKEUP 引脚 |             | UART 总线唤醒 BLE 模块引脚 |  |
| DIO_5        | DIO_5 ENSBL 通用 IO 口引脚       |             | SBL功能使能引脚          |  |
| RESET        | RESET                       | 模块的复位引脚     | 常态为高,拉低则复位 IC (可选) |  |
| VDD          | VDD VDD 模块供电电源引脚            |             | 3.3V 电源正极接入(必接)    |  |
| GND GND 模块供电 |                             | 模块供电接地引脚    | 接入供电电源的负极 (必接)     |  |

#### 1.5.3. 串口脚位说明

➤ TX:数据发送。➤ RX:数据接收。

➤ WAKEUP: 唤醒引脚 (BLE 模组的输入引脚)

(1)WAKEUP与蓝牙的关系

WAKEUP 的电平并不影响 BLE 模组的广播,以及蓝牙连接。

(2)WAKEUP 与 UART 的关系

UART 通信方式时,外部 MCU 拉低 WAKEUP 时,RX/TX 才能进行数据传输。

- ➤ INT: 中断引脚 (BLE 模组的输出引脚)
  - (1) 当外部 MCU 需要向 BLE 模组发送数据时, INT 引脚仅作为状态指示,可忽略: BLE 模组被唤醒之后,会将 INT 引脚拉低,告知外部 MCU 可以开始发送数据。
    - (2) 当 BLE 模组需向外部发送数据时,会先自动拉低 INT 引脚(可用于唤醒外部 MCU)。BLE 模组数据发送完毕后,会自动拉高。

#### 1.5.4.串口升级脚位说明

- ➤ ENSBL: 串口升级使能引脚, 低电平有效。
- ➤ RESET: 串口升级复位引脚。 当需要升级升级时,先拉低 ENSBL, 再拉低一下 RESET, 复位后再释放 ENSBL 模块就进入了串口升级模式,按串口升级的协议发送升级数据包即可。

#### 1.5.5. 时序图

(1) 外部 MCU 写数据(外部 MCU 发送数据给 BLE 模组)

时序操作如下:需先将WAKEUP拉低,以便唤醒BLE模组,模组才能准备好接收UART数据;此时可等待INT拉低,或者延迟600us以上,再发送UART数据;在数据发送完成后,将WAKEUP拉高(INT也会随之拉高)。

注意事项:  $\triangle b-a \ge 600us$ ,  $\triangle c-a \ge \triangle c-b$ .



(2)中断时序 (BLE 模组发送数据给外部 MCU)

当 BLE 模块接收到数据,立刻拉低"INT"信号,主控制器未读取数据情况下,BLE 模块会持续拉低"INT"信号,一直到主控制器被 BLE 模块唤醒,并拉低"WAKEUP"信号为止。

INT \_\_\_\_

(3) 外部 MCU 中断方式读数据 (BLE 模组发送数据给外部 MCU)

当 BLE 模组向外部 MCU 发送 UART 数据时, BLE 模组会将 INT 拉低以唤醒外部 MCU。此时, MCU 在检测到 INT 低电平后, 需将 WAKEUP 引脚拉低, BLE 模组才会启动 UART 数据发送。当 BLE 模组 UART 数据发送完毕时, 会将INT 拉高作为指示。





## 1.6.操作说明

- (1) 调用 AT+START\_SCAN=1 开启扫描,后续的连接操作都需要保持扫描是 开启状态; AT+START\_SCAN=0 是关闭扫描,开启扫描后串口会持续打 印扫描结果,包含广播数据和扫描回应数据;当不想串口打印扫描结果时 可设置 AT+SCAN\_RES=0,只打印广播数据则 AT+SCAN\_RES=1,只打 印扫描回应数据则 AT+SCAN RES=2,全部打印则 AT+SCAN RES=3.
- (2) 发起连接,例如: AT+CON\_16=44A6E50775EA,1000,表示连接 16BIT U UID 设备。或者 AT+CON\_128=A0E6F85412A9,F000100004514000B00000 00000000000 表示连接 128 BIT UUID 设备。成功返回 AT+0x44A6E50775 EA CON\_SUCCESS.失败则返回 AT+0x44A6E50775EA CON\_FAIL。。
- (3) 设置需要读写的数据通道: AT+W\_DCH=n,m,主机往哪个通道写数据; A T+R\_DCH=n,m 主机从哪个通道读数据, AT+N\_DCH=n,m 收到从机的 N OTIFY 数据时先打印当前通道。其中 n 为连接句柄,取值范围为 0~3, m 为特征通道,聚会范围为 0~4。当前通道没有对应属性时,返回 AT+ER R=16,操作不允许。

通道说明:例如需要操作第一个连接的从机,则 n=0;从机有一个 1000的服务 UUID,下属有依次有 1001, 1002, 1003, 1004, 1005 五个通道,



则特征通道号 m 依次为  $0\sim4$ . 需要往 1001 通道写数据,则 m=0,则设置通道命令为  $AT+W_DCH=0$ ,0 表示往第 1 个连接的从机的第 0 号特征通道写数据。

- (4) 收发数据,只要数据不带 AT.....\r\n 格式即可,发数据主机不回应。
- (5) 断开蓝牙连接指令 AT+DISCON=n。 n 为连接句柄, 取值范围为 0~3.
- (6) 关机 AT+SHUTDOWN, 断开当前所有连接,关闭扫描,其他指令可根据需要设置。

## 2.命令列表

#### 注意:

- ▶ 所有 AT 指令均以"\r\n"结尾,在以下表格中不再重复;
- ▶ 下表中 "x"表示不支持此功能, "√"表示支持此功能;

|       |                         |     | VC4. X 11 IV |                |
|-------|-------------------------|-----|--------------|----------------|
| 序号    | AT 指令                   | 指令  | <b>冷</b> 属性  | 指令功能           |
| 77' 4 | 命令字符串                   | 读写  | 掉电保存         |                |
| 0     | AT                      | W   | X            | UART 通讯测试      |
| 1     | AT+START_SCAN=n         | W/R | X            | 扫描开关           |
| 2     | AT+CON_16=nnnnn,mm      | W   | X            | 连接 16BIT UUID  |
|       |                         |     |              | <u>设备</u>      |
| 3     | AT+CON_128=nnnnn,mmmm   | W   | X            | 连接 128BIT UUID |
|       | mmmmmmmmmm              |     |              | <u>设备</u>      |
| 4     | AT+DISCON=n             | W   | X            | 断开连接           |
| 5     | AT+W_DCH=n,m            | W/R | X            | 写操作通道          |
| 6     | $AT+R_DCH=n,m$          | W/R | X            | <u>读操作通道</u>   |
| 7     | AT+N_DCH=n,m            | R   | X            | NOTIFY 数据通道    |
| 8     | AT+SHUTDOWN             | W   | X            | 蓝牙关机           |
| 9     | AT+VERION=?             | R   | X            | 蓝牙版本号          |
| 10    | AT+BOARD=0xnnnnn-m,XXX  | N   |              | 广播数据           |
| 10    | XXX                     | 17  | X            |                |
| 11    | AT+SCAN=0xnnnnnn-m,XXXX | N   | X            | 扫描回应数据         |
| 11    | XX                      | 1.  | A            |                |
| 12    | AT+SCAN_RES=n           | W/R | X            | 扫描结果数据类型       |
| 13    | AT+NUM=?                | R   | X            | 当前连接设备个数       |
| 14    | AT+DEVID=?              | R   | X            | 本机 MAC 地址      |
| 15    | AT+BAUD=n               | W/R |              | 波特率            |
| 16    | AT+SCAN_PERIOD=n        | W/R | X            | 扫描周期           |
| 17    | AT+UPDATE=x,n,m,l       | W/R | X            | 设置连接参数更新       |
| 18    | AT+UPDATE0=?            | R   | X            | 读取 0 号连接参数     |
| 10    |                         |     |              | 更新             |
| 19    | AT+UPDATE1=?            | R   | X            | 读取1号连接参数       |

|    |                        |      |    | 五水           |
|----|------------------------|------|----|--------------|
|    |                        |      |    | <u>更新</u>    |
| 20 | AT+UPDATE2=?           | R    | x  | 读取2号连接参数     |
| 20 | MI OIBMIEZ .           | TC . | A  | 更新           |
| 21 | AT+UPDATE3=?           | R    | x  | 读取3号连接参数     |
| 21 | MI OIDMIES-:           | K    | Λ  | 更新           |
| 22 | AT+RSSI0=?             | R    | X  | 0号设备信号强度     |
| 23 | AT+RSSI1=?             | R    | X  | 1号设备信号强度     |
| 24 | AT+RSSI2=?             | R    | X  | 2号设备信号强度     |
| 25 | AT+RSSI3=?             | R    | X  | 3号设备信号强度     |
| 26 | AT+ADVFLITER_ENABLE=n  | W/R  | 2/ | MAC 地址, UUID |
| 20 | MI MOVIETIER_ENMBLE-II | W/IX | V  | 过滤使能         |
| 27 | AT+ADVFLITER=nnnnnnnnn | W/R  | 2/ | 过滤内容设置       |
| 27 | nn,mmmm                | W/IX | V  |              |
| 28 | AT+AUTOCONN_ENABLE=n   | W/R  |    | 自动连接使能       |
| 29 | AT+AUTOCONN=nnnnnnnnn  | W/R  |    | 自动连接内容设置     |
| 29 | nn,mmmm                | W/IX |    |              |

#### 2.0 命令格式

▶ 串口总线,默认波特率 115200bps, 多连接时单包传输<=20 字节, 发包间隔 大于等于 120ms。单连接时单包传输<=248 字节, 发包间隔大于等于 20ms

#### ▶ 备注

- (1) 蓝牙模组底层传输的数据在一个链接间隔内最大只能传输20个字节。
- (2) 当需要传输大数据包时,发包间隔也要相应的变化。发包间隔时间 T 计算方法: T=n\*20ms (连接间隔)
  - n=(数据包字节数/17); 当"数据包字节数/17"不为整数时, n 取值 "数据包字节数/17"的商加 1. 例:数据包字节数=20; n=1+1=2;
- (3) 当只连接一个从机时,可以支持最快 20ms 的连接间隔,但连接两个以上设备时,自动调整连接间隔为 120ms;注意,如果需要大量传输数据时,最好把扫描关闭,确保数据传输的稳定性。如果连接上多个后,逐个断开只剩下一个连接,连接间隔仍为 120ms,需要全部断开后再连接单个设备的连接间隔才支持 20ms.
- (4) 命令发送成功都会返回 AT+OK\r\n,当命令发送失败时会返回错误代码,详细代码编号见附录 A.部分指令还会返回命令的操作结果,详细见具体指令。
- (5) 广播或者扫描回应包的格式,长度+关键字+内容:例如:扫描回应包里值为 0x04(长度) 0x09 (关键字) 0x30 0x31 0x32 (内容),则表示设备名称为 123。常见关键字见附录 B。

## 2.1 AT 指令

- 2.1.0 UART 通讯测试
- · AT 写命令:



 $AT\r\n$ 

说明: 串口测试命令, 正常时返回 AT+OK\r\n。

#### 2.1.1 扫描开关

· AT 写命令:

 $AT+START\_SCAN=n\r\n$ 

· AT 读命令:

 $AT+START\_SCAN=?\r\n$ 

说明: 当n为1时, 开启扫描, 当n为0时, 关闭扫描,

#### 2.1.2 连接 16BIT UUID 设备

· AT 写命令:

AT+CON\_16=nnnnnn,mm\r\n

说明: nnnnnn 为 12 个字节的 MAC 地址, mm 为 4 个字节的服务 UUID,

注意:原始 MAC 地址是 6 个字节,UUID 是 2 字节的 16 进制格式,转换成命令的字符格式后地址会为 12 个字节,UUID 为 4 个字节。

例如设备 MAC 地址为 0x44A6E5000001,服务 UUID 为 1000,则字符格式的 MAC 地址为 0x34,0x34,0x0x41,0x36,0x45,0x30,0x30,0x30,0x30,0x30,0x31; UUID 为:0x 31,0x30,0x30,0x30; 即 AT+CON\_16=44A6E5000001,1000\r\n;连接请求命令成功后先返回 AT+OK\r\n,否则返回 AT+ERR=n,n为错误代码;然后主机发起连接请求,连接成功则返回 AT+0x44A6E5000001 CON\_SUCCESS.失败则返回 AT+0x44A6E5000001 CON\_FAIL。

#### 2.1.3 连接 128BIT UUID 设备

· AT 写命令:

说明: nnnnnn 为 12 个字节的 MAC 地址, mm 为 32 个字节的服务 UUID,

注意:原始 MAC 地址是 6 个字节,UUID 是 16 字节的 16 进制格式,转换成命令的字符格式后地址会为 12 个字节,UUID 为 32 个字节。

例如设备 MAC 地址为 0x44A6E5000001,服务 UUID 为 FF010203040506070809 101112131415,则字符格式的 MAC 地址为 0x34,0x34,0x0x41,0x36,0x45,0x30,0x30,0x30,0x30,0x30,0x31; UUID 为:0x46,0x46,0x30,0x31,0x30,0x32,0x30,0x33, 0x30,0x34,0 x30,0x35, 0x30,0x36,0x30,0x37, 0x30,0x38,0x30,0x39, 0x31,0x30,0x31,0x31,0x31,0x32,0x31,0x33, 0x31,0x34,0x31,0x35;则命令为 AT+CON\_128=44A6E5000001,FF01020 3040506070809101112131415\r\n;连接请求命令成功后先返回 AT+OK\r\n,否则返回 AT+ERR=n, n为错误代码;然后主机发起连接,成功则返回 AT+0x44A 6E5000001 CON\_SUCCESS.失败则返回 AT+0x44A6E5000001 CON\_FAIL。

#### 2.1.4 断开连接

· AT 写命令:

AT+DISCON=n r n

## TTC 2640 通用主机透传规格书

说明:断开指定连接设备,n取值0~2,命令成功后先返回AT+OK\r\n,否则返回AT+ERR=n,n为错误代码;然后主机执行断开,断开成功再返回AT+0xnnnnnnDISCONN\_SUCCESS,失败返回AT+0xnnnnnnDISCONN\_FAIL,其中nnnnnn为MAC地址。

#### 2.1.5 写操作通道

· AT 写命令:

 $AT+W_DCH=n,m\r\n$ 

说明:设置主机写数据通道,即往哪个从机的哪个特征写数据; n 为连接句柄,取值  $0\sim3$ , m 为设备通道,取值  $0\sim4$ ;例如设备服务 UUID 为 1000,依次有 1001, 1002, 1003, 1004, 1005 一共 5 个通道,则通道号 m 依次为  $0\sim4$ ;假设 1001 包含了写属性,则往 1001 写数据的命令为  $AT+W_DCH=0,0\r\n$ 。命令成功返回  $AT+OK\r\n$ ,失败返回 AT+ERR=n, n 为错误代码。

· AT 读命令:

 $AT+W_DCH=?\r\$ 

说明: 获取当前的写操作通道, n为连接句柄, m为设备通道; 命令成功时先返回 AT+OK\r\n; 然后返回 AT+W\_DCH=n,m,失败时返回 AT+ERR=n, n为错误代码。

#### 2.1.6 读操作通道

· AT 写命令:

 $AT+R_DCH=n,m\r\n$ 

说明:设置主机读数据通道,即从哪个从机的哪个特征读数据; n 为连接句柄,取值  $0\sim3$ , m 为设备通道,取值  $0\sim4$ ;例如设备服务 UUID 为 1000,依次有 1001, 1002, 1003, 1004, 1005 一共 5 个通道,则通道号依次为  $0\sim4$ ;假设 1001 包含了读属性,则往 1001 读数据的命令为  $AT+R_DCH=0,0\r\n$ 。命令成功返回  $AT+OK\r\n$ ,失败返回 AT+ERR=n, n 为错误代码。

· AT 读命令:

AT+R  $DCH=?\r\$ 

说明: 获取当前的读操作通道,命令成功时先返回 AT+OK\r\n,然后返回 AT+R\_DCH =n,m\r\n,最后跟着返回读取到的内容,内容不带格式。失败则返回 AT+ERR=n,n 为错误代码。

#### 2.1.7 NOTIFY 数据通道

 $AT+N_DCH=n,m\r\n$ 

说明:此命令为自动返回命令,例如当0号设备的0通道上传NOTIFY数据时,先返回AT+N\_DCH=0,0\r\n,然后接着是数据,当通道不变时,通道返回只会上传一次;当上传通道有变化时,会更先更新上传通道,AT+N\_DCH=1,0\r\n,表示1号设备的0通道上传数据。

备注: 主机接收的从机主动发给主机的数据就是 NOTIFY 的方式发上来的。

## TTC 2640 通用主机透传规格书

#### 2.1.8 蓝牙关机

· AT 写命令:

 $AT+SHUTDOWN\r\n$ 

说明: 蓝牙模块关机,关闭扫描、如有设备连接则断开所有设备连接。

#### 2.1.9 蓝牙版本号

· AT 读命令:

 $AT+VERION=?\r\n$ 

说明: 当前软件版本号, 例如返回 A100, 则表示版本号为 1.00。

#### 2.1.10 广播数据

AT+BOARD=0xnnnnn-m,XXXXXX

说明:此命令为自动上传命令,其中"0x"表示 MAC 地址数据头,nnnnnn 为设备 MAC 地址,"-"表示负数,m表示信号强度的值; XXXXXX 则表示广播数据内容。例如返回 AT+BOARD=0x44A6E5000001-54,XXXXXXX,表示 MAC 地址为 44A6E5000001,信号强度为-84,广播数据的格式为 16 进制,内容为 XXXXXX、广播数据的常见关键字见附录 B。

#### 2.1.11 扫描回应数据

AT+SCAN =0xnnnnnn-m,XXXXXX

说明:此命令为自动上传命令,其中"0x"表示 MAC 地址数据头,nnnnnn为设备 MAC 地址, "-"表示负数,m表示信号强度的值; XXXXXX 则表示设备的广播名称。例如返回 AT+SCAN=0x44A6E5000001-54,123456,表示 MAC 地址为44A6E5000001,信号强度为-84,设备的广播名称为123456。

#### 2.1.12 扫描结果数据类型

AT 写命令:

 $AT+SCAN RES=n\r\n$ 

· AT 读命令:

 $AT+SCAN_RES=?\r\n$ 

说明: n 为 0 则不上报广播数据, 1.广播数据原始内容; 2.扫描回应数据原始内容; 3.1 和 2 两种内容输出; 4. 输出两种内容中的名称字段

#### 2.1.13 当前连接设备个数

· AT 读命令:

 $AT+NUM=?\r\n$ 

说明:正常时返回 n,n 取值 0~3,0 表示没有连接,1 连接一个设备,2 连接两个设备,3 连接 3 个设备,4 连接 4 个设备。

#### 2.1.14 本机 MAC 地址

· AT 读命令:

## TTC 2640 通用主机透传规格书

 $AT+DEVID=?\r\n$ 

说明:正常时返回 0xnnnnnn, nnnnnn 为 MAC 地址, 例如返回 0x44A6E5000001, 则 MAC 地址为 44A6E5000001。

#### 2.1.15 波特率

· AT 写命令:

 $AT + BAUD = n \ r \ n$ 

· AT 读命令:

 $AT + BAUD = ? \r \n$ 

说明: 串口波特率, n 为 0~5, 对应的波特率为 9600、19200、38400、57600、115200、256000。其中默认波特率为 115200。

#### 2.1.16 扫描周期

· AT 写命令:

 $AT+SCAN\_PERIOD=n\r\n$ 

· AT 读命令:

 $AT+SCAN_PERIOD=?\r\n$ 

说明: n 的取值范围为 100~4000ms.

#### 2.1.17 设置连接参数更新

· AT 写命令:

 $AT+UPDATE=x,n,m,l\r\n$ 

说明: x 为连接句柄,取值范围为 0~3,即最大支持连接 4 个设备; ","只是做分隔参数用; n 表示连接间隔,限制取值范围为 120~2000ms; m 表示跳步数,取值范围为 0~4; 1 表示连接超时,取值范围为 12~600,单位为 10ms. 当用户的参数字节长度符合,但数据不符合时会自动调整。

#### 2.1.18 读取 0 号连接参数更新

AT 读命令:

 $AT+UPDATE0=?\r\n$ 

说明:返回 x,n,m,l\r\n; x为连接句柄,取值范围为 0~3,即最大支持连接4个设备;","只是做分隔参数用;n表示连接间隔,限制取值范围为 120~2000ms;m表示跳步数,取值范围为 0~4;1表示连接超时,取值范围为 12~600,单位为10ms.当设备处于连接状态时才可以读取。

#### 2.1.19 读取 1 号连接参数更新

· AT 读命令:

 $AT+UPDATE1=?\r\n$ 

说明:返回 x,n,m,l\r\n; x 为连接句柄,取值范围为 0~3,即最大支持连接4个设备;","只是做分隔参数用; n 表示连接间隔,限制取值范围为 120~2000ms;

## TTC 2640 通用主机透传规格书

m表示跳步数,取值范围为 0~4; 1表示连接超时,取值范围为 12~600,单位为 10ms. 当设备处于连接状态时才可以读取。

#### 2.1.20 读取 2 号连接参数更新

· AT 读命令:

 $AT+UPDATE2=?\r\n$ 

说明:返回 x,n,m,l\r\n; x 为连接句柄,取值范围为 0~3,即最大支持连接4个设备;","只是做分隔参数用; n 表示连接间隔,限制取值范围为 120~2000ms; m 表示跳步数,取值范围为 0~4; l 表示连接超时,取值范围为 12~600,单位为 10ms. 当设备处于连接状态时才可以读取。

#### 2.1.21 读取 3 号连接参数更新

· AT 读命令:

 $AT+UPDATE3=?\r\n$ 

说明:返回 x,n,m,l\r\n; x 为连接句柄,取值范围为 0~3,即最大支持连接4个设备;","只是做分隔参数用; n 表示连接间隔,限制取值范围为 120~2000ms; m 表示跳步数,取值范围为 0~4; 1 表示连接超时,取值范围为 12~600,单位为 10ms. 当设备处于连接状态时才可以读取。

#### 2.1.22 0号设备信号强度

· AT 读命令:

AT+RSSI0=?

说明:返回 n\r\n; n 的格式为 16 进制数,例如返回 45\r\n,则表示信号强度为-69dBm。当设备处于连接状态时才可以读取。

#### 2.1.23 1号设备信号强度

· AT 读命令:

AT+RSSI1=?

说明:返回 n\r\n; n 的格式为 16 进制数,例如返回 45\r\n,则表示信号强度为-69dBm。当设备处于连接状态时才可以读取。

#### 2.1.24 2号设备信号强度

· AT 读命令:

AT+RSSI2=?

说明:返回 n\r\n; n 的格式为 16 进制数,例如返回 45\r\n,则表示信号强度为-69dBm。当设备处于连接状态时才可以读取。

#### 2.1.25 3号设备信号强度

· AT 读命令:

AT+RSSI3=?



说明:返回 n\r\n; n 的格式为 16 进制数,例如返回 45\r\n,则表示信号强度为-69dBm。当设备处于连接状态时才可以读取。

#### 2.1.26 MAC 地址, UUID 过滤使能

· AT 写命今:

 $AT+ADVFLITER\_ENABLE=n\r\n$ 

· AT 读命令:

AT+ADVFLITER\_ENABLE=?\r\n

说明: 当n为1时, 开启过滤, 当n为0时, 关闭过滤。

#### 2.1.27 过滤内容设置

· AT 写命令:

AT+ADVFLITER=nnnnnnnnnnnnnnmmm\r\n

· AT 读命令:

AT+ADVFLITER=?\r\n

说明: nnnnnnnnnnn 为 6 字节的 MAC 地址, mmmm 为 2 字节的的服务 UUID; 设置时是单条设置,最多可以设置 4 条,设置大于 4 条时,滚动保存最新的 4 条 内容;读取时一次性返回设置的 4 条内容。例如

AT+ADVFLITER=112233445566,1000 写入 4 次,读回内容为:

AT+ADVFLITER=112233445566,1000,112233445566,1000,112233445566,1000,112233445566,1000

#### 2.1.28 自动连接使能

· AT 写命今:

AT+AUTOCONN\_ENABLE=n\r\n

· AT 读命令:

AT+AUTOCONN\_ENABLE=?\r\n

说明: 读取时, 先返回 AT+OK, 然后直接返回 n; 当 n 为 1 时, 开启自动连接, 当 n 为 0 时, 关闭自动连接。

#### 2.1.29 自动连接内容设置

· AT 写命令:

AT+AUTOCONN=nnnnnnnnnnnnn,mmmm\r\n

· AT 读命令:

AT+AUTOCONN=?\r\n

说明: nnnnnnnnnnn 为 6 字节的 MAC 地址, mmmm 为 2 字节的的服务 UUID, 自动连接只直接单连接的操作,当连接多个设置时,会先断开所有设备再进行设定 MAC 的自动连接。例如:设置 AT+AUTOCONN =112233445566,1000,则读取返回 AT+AUTOCONN =112233445566,1000。

#### 3.附录

#### 3.1 附录 A: 指令错误代码

- 0: 设备无回应
- 1: 回应 OK
- 2: 无此命令
- 3: 设备未就绪,或者缓存溢出,请稍后操作
- 4: 空间不够,或者正在执行当前任务,或者未就绪
- 5: 名称字符长度超出
- 6: 参数溢出
- 7: 扫描错误
- 8: 设备处于连接状态或者未初始化
- 9: 设备处于为连接状态或者未初始化,或者设备索引超出
- 10:设备处于为连接状态或者未初始化,或者当前处于未连接状态
- 11: 索引超出
- 12: 未找到匹配设备
- 13: 保存失败
- 14: 参数错误
- 15: 设备未连接,或者断开连接失败
- 16: 操作不允许

#### 3.2 附录 B: 广播关键字

#### 名称

值 含义

GAP\_ADTYPE\_FLAGS

0x01 //广播模式

GAP\_ADTYPE\_16BIT\_MORE

0x02 //16BIT UUID

GAP\_ADTYPE\_128BIT\_MORE

0x06 //128BIT UUID

GAP\_ADTYPE\_LOCAL\_NAME\_SHORT

0x08 //设备名称 Shortened

local name

GAP\_ADTYPE\_LOCAL\_NAME\_COMPLETE local name

0x09 //设备名称 Complete

local name

GAP\_ADTYPE\_POWER\_LEVEL

0x0A //发射功率: 0xXX: -127 to

+127 dBm

GAP\_ADTYPE\_ADV\_INTERVAL

0x1A //广播间隔

GAP\_ADTYPE\_LE\_BD\_ADDR

0x1B //设备地址

GAP\_ADTYPE\_MANUFACTURER\_SPECIFIC 0xFF //厂商标识,用户可以自己任意填写内容。



#### 4.联系我们

深圳市昇润科技有限公司

ShenZhen ShengRun Technology Co.,Ltd. Tel: 0755-86233846 Fax: 0755-82970906

官网地址: www.tuner168.com

阿里巴巴网址: http://tuner168.1688.com/

E-mail: marketing@ttcble.com

地址:广东省深圳市龙岗区宝龙街道宝荷大道76号智慧家园1栋C座505单元

