

01.112 Machine Learning, Fall 2018 Homework 5

Due Friday 7 Dec 2018, 5pm

This homework will be graded by Ngo Van Mao

Question 1 Consider the Bayesian network below, where we have 11 variables.

- 1. (4 points) Assume all variables are taking values from $\{1, 2, 3\}$. What is the number of *free parameters* for? What if we assume all variables are taking values from $\{1, 2, 3, 4\}$? Show detailed steps that lead to your answers.
- 2. (4 points) What is the Markov blanket for the variable X_1 in the Bayesian network? What is the Markov blanket for the variable X_7 ?
- 3. (6 points) Are X_1 and X_6 independent or dependent of each other if no other variable is given? Why? Are X_1 and X_6 independent or dependent of each other if both X_7 and X_{10} are given? Why?
- 4. (8 points) Now, assume the probability tables for all nodes are shown below (next page): Calculate the following conditional probability:

$$P(\mathbf{X}_3 = 2 | \mathbf{X}_4 = 1)$$

(*Hint: find a short answer.*)

5. (8 points) Calculate the following conditional probability based on the same probability tables.

$$P(\mathbf{X}_5 = 2 | \mathbf{X}_3 = 1, \mathbf{X}_{11} = 2, \mathbf{X}_1 = 1)$$

(Hint: find a short answer. The values in some of the probability tables may reveal some useful information.)

1 1	1 2				$\frac{\mathbf{X}_2}{1}$	0.3	2).7).7	\mathbf{X}_3 1 2	1 0.1 0.5	$\frac{\zeta_4}{0.9}$		- 1	0.5	2 0.5 0.4	1 0.6	2 0.4
		·			X		X ₈	3 1	\mathbf{X}_9 \mathbf{Z}_9 \mathbf{Z}_9 \mathbf{Z}_9 \mathbf{Z}_9			·				
\mathbf{X}_5	X ₇ 1 2	\mathbf{X}_5	1			1 2 2	2 1 2	0. 0.9 0.9	0.	1 :	\mathbf{X}_9	1	2	X_{10}	1	2 0.3
1 2	0.2 0.8 0.3 0.7	1 2	0.8	0.2		1	1 2	0.0	3 0.	7	1 2	0.8	0.2 0.2	1 2	0.7 0.8	0.3
					2 2	2	1 2	0.3	2 0.	8						
	$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \rightarrow X_5 \rightarrow X_6 \rightarrow X_7 \rightarrow X_8$															
	Figure 1: G_1 $\begin{array}{cccccccccccccccccccccccccccccccccccc$															
) \						$2: G_2$) '	110)`) \			

Question 2 (10 points) Now consider the above two Bayesian network structures, where all variables are binary. In other words, they are taking values from $\{1, 2\}$.

Now, you would like to use BIC as the criterion for selecting a better structure of the Bayesian network between G_1 and G_2 based on a large collection of samples. Construct a case (i.e., provide a collection of samples, where each sample is of the form " $X_1 = 1, X_2 = 2, ..., X_8 = 2$ ", for example) where the final BIC of the first structure G_1 would be strictly higher than G_2 . If you believe no such case exists, clearly explain why.