VP160 Recitation Class VIII Statics

Zeyi Ren

UM-SJTU Joint Institute

July 19, 2021

Statics of Rigid Body

② Elasticity

Equilibrium

$$F_{ext} = 0$$
 $au_{ext} = 0$

$$au_{ext} = 0$$

Equilibrium

$$F_{ext} = 0$$

 $au_{ext} = 0$

$$\tau_{ext} = 0$$

• The sum of all the external forces is equal to zero

Equilibrium

$$F_{ext} = 0$$

$$au_{\mathsf{ext}} = 0$$

- The sum of all the external forces is equal to zero
- The sum of all torques of external forces about any point is equal to zero

Equilibrium

$$F_{ext} = 0$$

$$au_{ext} = 0$$

- The sum of all the external forces is equal to zero
- The sum of all torques of external forces about any point is equal to zero
 - \Rightarrow If the object is initially at rest, then it will remain at rest.

Center of Gravity

A point from which the weight of a body or system may be considered to act. In uniform gravity it is the same as the center of mass.

Center of Gravity

A point from which the weight of a body or system may be considered to act. In uniform gravity it is the same as the center of mass.

For translational motion:

$$\vec{G} = M\vec{a_c}$$

Center of Gravity

A point from which the weight of a body or system may be considered to act. In uniform gravity it is the same as the center of mass.

For translational motion:

$$\vec{G} = M\vec{a_c}$$

For rotation:

$$\vec{\tau_{tot}} = \sum \vec{r_i} \times \vec{G_i}$$

Center of Gravity

A point from which the weight of a body or system may be considered to act. In uniform gravity it is the same as the center of mass.

For translational motion:

$$\vec{G} = M\vec{a_c}$$

• For rotation:

$$\vec{\tau_{tot}} = \sum \vec{r_i} \times \vec{G_i}$$

If in a uniform gravitaional field (mostly):

$$\vec{\tau_{tot}} = \sum m_i \vec{r_i} \times \vec{g} = M \frac{\sum m_i \vec{r_i}}{\sum m_i} \times \vec{g} = M \vec{r_c} \times \vec{g} = \vec{r_c} \times \vec{G}$$

Equilibrium equations.

- Equilibrium equations.
 - ▶ Translational motion: Force

- Equilibrium equations.
 - Translational motion: Force
 - Rotation: Torque

- Equilibrium equations.
 - Translational motion: Force
 - Rotation: Torque
- Virtual work

- Equilibrium equations.
 - Translational motion: Force
 - Rotation: Torque
- Virtual work
 - Principle of Virtual Work

- Equilibrium equations.
 - Translational motion: Force
 - Rotation: Torque
- Virtual work
 - Principle of Virtual Work
- Infinitesimal methods

- Equilibrium equations.
 - Translational motion: Force
 - Rotation: Torque
- Virtual work
 - Principle of Virtual Work
- Infinitesimal methods
- Derivation of energy

- Equilibrium equations.
 - Translational motion: Force
 - Rotation: Torque
- Virtual work
 - Principle of Virtual Work
- Infinitesimal methods
- Derivation of energy
 - $ho \ \frac{\partial U}{\partial q_i} = 0$, the system potential energy reaches an local minimum.

- Equilibrium equations.
 - Translational motion: Force
 - Rotation: Torque
- Virtual work
 - Principle of Virtual Work
- Infinitesimal methods
- Derivation of energy
 - $ho \frac{\partial U}{\partial q_i} = 0$, the system potential energy reaches an local minimum.
 - useful for low degree of freedom system.

Equilibrium equations & Infinitesimal methods

Exercise 1

Find the tension force inside the strain, as shown in the figure below. m and α are known.

Virtual Work

Exercise 2

A half cylinder is placed on the horizontal plane, and is covered by a uniform chain with length πr and linear density λ . Find the tensile force of the chain at the top of the cylinder.

Extended materials on virtual work (for your interest)

Virtual Displacement

Virtual Displacement is not experienced but only assumed to exist so that various possible equilibrium positions may be compared to determine the correct one

- Imagine the small virtual displacement of particle (δr) which is acted upon by several forces.
- The corresponding virtual work,

$$\begin{split} \delta U &= \vec{F}_1 \cdot \delta \vec{r} + \vec{F}_2 \cdot \delta \vec{r} + \vec{F}_3 \cdot \delta \vec{r} = \left(\vec{F}_1 + \vec{F}_2 + \vec{F}_3\right) \cdot \delta \vec{r} \\ &= \vec{R} \cdot \delta \vec{r} \end{split}$$

Virtual Displacement

Equilibrium of a Particle

Total virtual work done on the particle due to virtual displacement δ **r**:

$$\delta U = \mathbf{F}_1 \cdot \delta \mathbf{r} + \mathbf{F}_2 \cdot \delta \mathbf{r} + \mathbf{F}_3 \cdot \delta \mathbf{r} + \cdots = \Sigma \mathbf{F} \cdot \delta \mathbf{r}$$

Expressing $\sum \mathbf{F}$ in terms of scalar sums and $\delta \mathbf{r}$ in terms of its component virtual displacements in the coordinate directions:

$$\begin{split} \delta U &= \Sigma \mathbf{F} \cdot \delta \mathbf{r} = (\mathbf{i} \ \Sigma F_x + \mathbf{j} \ \Sigma F_y + \mathbf{k} \ \Sigma F_z) \cdot (\mathbf{i} \ \delta x + \mathbf{j} \ \delta y + \mathbf{k} \ \delta z) \\ &= \Sigma F_x \ \delta x + \Sigma F_y \ \delta y + \Sigma F_z \ \delta z = 0 \end{split}$$

The sum is zero since $\sum \mathbf{F} = 0$, which gives $\sum F_x = 0$, $\sum F_y = 0$, $\sum F_z = 0$

Alternative Statement of the equilibrium: $\delta U = 0$

This condition of zero virtual work for equilibrium is both necessary and sufficient since we can apply it to the three mutually perpendicular directions

→ 3 conditions of equilibrium

Virtual Work

Principle of Virtual Work:

- If a particle is in equilibrium, the total virtual work of forces acting on the particle is zero for any virtual displacement.
 - If a rigid body is in equilibrium
 - total virtual work of external forces acting on the body is zero for any virtual displacement of the body
 - If a system of connected rigid bodies remains connected during the virtual displacement
 - the work of the external forces need be considered
 - since work done by internal forces (equal, opposite, and collinear) cancels each other.

Equilibrium equations

Exercise 3

Three cylinders have same mass and radius. Friction coefficient between two cylinders is μ_1 , between cylinder and ground is μ_2 . Find the minimum of μ_1 and μ_2 respectively, so that the system is in static.

Derivation of energy

Exercise 4

Find θ when the system is in static. Assume $I=50cm,\ m=50g,\ r=8cm,\ M=200g.$

Stress

Stress is the force per unit area.

Stress

Stress is the force per unit area.

Strain

Strain is the fractional deformation due to the stress.

Stress

Stress is the force per unit area.

Strain

Strain is the fractional deformation due to the stress.

elastic modulus
$$=\frac{\text{stress}}{\text{strain}}$$

Young's modulus: tensile stress divided by tensile strain

$$Y = \frac{\frac{F\perp}{A}}{\frac{\Delta I}{L}}$$

Young's modulus: tensile stress divided by tensile strain

$$Y = \frac{\frac{F \perp}{A}}{\frac{\Delta I}{L}}$$

$$\text{Tensile stress} = \frac{F_{\perp}}{A} \qquad \text{Tensile strain} = \frac{\Delta l}{l_0}$$

Compressive stress =
$$\frac{F_{\perp}}{A}$$
 Compressive $=\frac{\Delta l}{l_0}$

Bulk's modulus: bulk stress divided by bulk strain

$$B = -rac{\Delta p}{rac{\Delta v}{V}}$$

Bulk's modulus: bulk stress divided by bulk strain

$$B = -\frac{\Delta p}{\frac{\Delta v}{V}}$$

Shear modulus: shear stress divided by shear strain

$$S = \frac{\frac{F_{\parallel}}{A}}{\frac{X}{h}}$$

Shear modulus: shear stress divided by shear strain

$$S = \frac{\frac{F_{\parallel}}{A}}{\frac{X}{h}}$$

Shear stress =
$$\frac{F_{||}}{A}$$
 Shear strain = $\frac{x}{h}$

• The remaining part will be covered in the final recitaion class (they are relatively simple).

- The remaining part will be covered in the final recitaion class (they are relatively simple).
- You are almost done! Thanks for your hard-working!

- The remaining part will be covered in the final recitaion class (they are relatively simple).
- You are almost done! Thanks for your hard-working!
- I really want to continue to be your VP260 TA, but may not be able to...keep in touch, I'm willing to help, not only in Physics.

- The remaining part will be covered in the final recitaion class (they are relatively simple).
- You are almost done! Thanks for your hard-working!
- I really want to continue to be your VP260 TA, but may not be able to...keep in touch, I'm willing to help, not only in Physics.
- Wish you all the best in your future life and find your own way in JI!

- The remaining part will be covered in the final recitaion class (they are relatively simple).
- You are almost done! Thanks for your hard-working!
- I really want to continue to be your VP260 TA, but may not be able to...keep in touch, I'm willing to help, not only in Physics.
- Wish you all the best in your future life and find your own way in JI!

Thanks!

Reference

Yigao Fang.

VP160 Recitation Slides.

2020

Haoyang Zhang.

VP160 Recitation Slides.

2020

Yousheng Shu (舒幼生).

Mechanics (力学)

Peking University Press, 2005