Содержание 1

Содержание

1.	Ком	мутативная алгебра с прицелом на алгебраическую геометрию	1		
	1.1	Предварительные сведения и напоминания	1		
	1.2	Аффинные алгебраиические многообразия	2		
	1.3	Топология Зарисского на спектре кольца	3		
	1.4	Словарик алгебраической геометрии	3		
2.	Осн	овы теории гомологий	4		
	2.1	Симплициальные гомологии	4		
	2.2	Сигнулярные гомологии	6		
	2.3	Немного гомологической алгеры	7		
	2.4	Гомотопическая инвариантность гомологий	8		
	2.5	Относительные гомологии и гомологически точная последовательность пары	10		
	2.6	Пары Боруска	12		
	2.7	Относительные гомологии как абсолютные (факторизация)	13		
	2.8	Вырезание	16		
	2.9	Точная последовательность Майера-Вьеториса	17		
	2.10	Гомологии сфер	17		
	2.11	Гомологии букета и надстройки	18		
	2.12	Гомологии с коэффициентами	19		
	2.13	Приложения теории гомологий	19		
	2.14	Симплициальные комплексы	20		
	2.15	Эквивалентность симплициальных и сингулярных гомологий	20		
	2.16	Степень отображения	21		
	2.17	Клеточные гомологии	23		
	2.18	Гомологии поверхностей	26		
	2.19	Пространства Мура	27		
	2.20	Теорема о вложении дисков и сфер	27		
	2.21	Когомологии	28		
	2.22	Формула универсальных коэффициентов для когомологий	29		
	2.23	Умножение в когомологиях	31		
3.	Ком	Комплексные алгебраическая геометрия			
	3.1	Комплексные многообразия	33		
	3.2	Векторные рассоления	35		
	3.3	Подмногообразия и аналитические подмножества	35		
	3.4	Когомологии де Рама и Дольбо	36		

1. Коммутативная алгебра с прицелом на алгебраическую геометрию

1.1 Предварительные сведения и напоминания

Определение 1. Собственный идеал I в кольце R называется *простым*, если $ab \in I \implies a \in I$ или $b \in I$. Собственный идеал I в кольце R называется *максимальным*, если он не содержится ни в каком другом собственном идеале.

Простейшие свойства:

- 1. Для любого собственного идеала существует максимальный идеал, содержащий его.
- 2. Любой максимальный идеал является простым.
- 3. Собственный идеал I является простым тогда и только тогда, когда R/I область целостности.
- 4. Собственный идеал I является максимальным тогда и только тогда, когда R/I поле.

Определение 2. Элементы a и b называются ассоциированными, если aR = bR.

Необратимый элемент $a \in R$ называется $\mathit{henpusodumыm}$, если из равенства a = bc следует, что или b или c ассоциирован с a.

Элемент называется *простым*, если главный идеал (a) простой.

Замечание. Простой \implies неприводимый. Обратное, вообще гооворя, неверно.

Определение 3. Кольцо R называется H нетеровым, если оно удовлетворяет условию обрыва возрастающих цепочек (ACC) для идеалов. Модуль называется H нетеровым, если он удовлетворяет ACC для подмодулей.

Лемма 1. Следующие условия на кольцо R эквивалентны:

- 1. R нетерово.
- 2. Любой идеал в R конечнопорожден.
- 3. Любой подмодуль коненчопрожденного R-модуля конечнопрожден.
- 4. Любой конечнопорожденный R-модуль нетеров.

Теорема 1 (Гильберта, о базисе). Кольцо многочленов от конечного числа переменных над нётеровым кольцом нётерово. Иными словами, если R — нётерово кольцо, то любой идеал в кольцо $R[x_1, \ldots, x_n]$ порожден конечным числом многочленов.

1.2 Аффинные алгебраиические многообразия

Я думаю, что как только я нормально послушаю курс алгебриаческой, этот параграф будет переписан.

Пусть F — поле, $\mathbb{A}^n_F = F^n$ — аффинное пространство над ним.

Пусть $J \subset A = F[t_1, \dots, t_n]$, обозначим через V(J) множество всех общих нулей всех многочленов из идеала J, то есть

$$V(J) = \{x \in \mathbb{A}_F^n \mid f(x) = 0 \ \forall f \in J\}.$$

Определение 4. Пусть I — идеал в колцье R. Padukan идеала I определяется, как

$$\sqrt{I} \stackrel{\mathrm{def}}{=} \{ f \in R \mid \exists n \in \mathbb{N} \colon f^n \in I \}.$$

Идеал I называется padикальным, если он совпадает со своим радикалом.

Несложно заметить, что V(J)=V(AJ), где $AJ=\sum_{f\in J}Af$. Действительно, если f(x)=0, g(x)=0, то $\forall q,p\in F[t_1,\ldots,t_n]$ $fq+pg=0\Rightarrow V(J)=V(AJ)$. Соотвественно, так как $f^m(x)=0\implies f(x)=0$, мы имеем $V(J)=V(\sqrt{AJ})$, а это говорит нам, что имеет смысл рассматривать только радикальные идеалы.

Определение 5 (Топология зарисского). Определим на \mathbb{A}^n_F топологию Зарисского: набором замкнутых множеств будет

$$\{V(J)\subset \mathbb{A}^n_F\mid J$$
 — радикальный идеал в $F[t_1,\ldots,t_n]\}.$

Замкнутые подмножества \mathbb{A}^n_F в этой топологии называют $a\phi\phi$ инными алгебраическими многообразиями (affine algebraic variety). 1

Замечание. Проверим, что это удовлетворяет аксиомам топологии:

- $V(1) = \emptyset$.
- $V(0) = \mathbb{A}_F^n$.
- $V(\bigcup_k J_k) = \bigcap_k V(J_k)$, то есть пересечение замкнутых замкнуто.

¹вообще говоря, кажется, что это не вполне правильное определение, так как тут это просто алгебраическое множество, а вот аффинное многообразие — окольцованное пространство. Поговорим об этом позже.

Для подмножества $X \subset \mathbb{A}^n_F$ определим $I(X) = \{f \in F[t_1, \dots, t_n] \mid f(x) = 0 \ \forall x \in X\}$. Легко видеть, что $V(I(X)) = \operatorname{Cl}(X)$ в топологии Зарисского. Совершенно ясно, что I(X) — идеал в кольце $F[t_1, \dots, t_n]$.

Определение 6. Морфизмом аффинных алгебраических многообразий $X \subset \mathbb{A}^n_f, Y \subset \mathbb{A}^n_F$ называется полиномиальное отображение $X \to Y$.

Аффинные многообразия с таким набором морфизмов образуют категорию মff.

Определение 7. Так как $\mathbb{A}^1_F = F$, морфизмы $X \to \mathbb{A}^1_F$ — просто какие-то элементы $F[x_1, \dots, x_n]$. Соотвественно, морфизмы f и g совпадают, если $f - g \in I(X)$, то есть $\operatorname{Hom}_{\mathfrak{Aff}}(X, \mathbb{A}^1_F) \cong F[t_1, \dots, t_n]/I(X)$. Это кольцо называется $a\phi\phi$ инной алгерой многообразия X и обозначается F[X].

Так как $\operatorname{Hom}_{\mathfrak{Aff}}(_,\mathbb{A}^1_F)$ является контравариантным функтором, а кольцевые операции определяются на $\operatorname{Hom}_{\mathfrak{Aff}}(X,\mathbb{A}^1_F)$ естественным образом, отображение $X\mapsto F[X]$ определяет контравариантный функтор $\mathfrak{Aff}\to F-\mathfrak{Alg}_{fin.gen.}$ — конечнопорожденные редуцированные алгебры.

Построим функтор в обратную сторону. Рассмотрим $R \in F-\mathfrak{Alg}_{fin.gen.}$ и выберем в ней набор образующих (то есть, выберем эпиморфизм $\pi_R\colon F[t_1,\ldots,t_n]$). Рассмотрим функтор $\mathcal{X}=\mathrm{Hom}_{F-\mathfrak{Alg}_{fin.gen.}}(-,F)\colon F-\mathfrak{Alg}_{fin.gen.}\to\mathfrak{Set}.$

Множество $\mathcal{X}(A)$ мы можем отождествить с \mathbb{A}_{F^n} по формуле

$$\varphi \mapsto (\varphi(t_1), \dots, \varphi(t_n)).$$

Таким образом, $\mathcal{X}(R)$ вкладывается в \mathbb{A}^n_F при помощи отображения $\psi \mapsto \psi \circ \pi_R$. Кроме того, множество $\mathcal{X}(R) = V(\operatorname{Ker} \pi_R)$ является аффинным алгебраическим многообразием с аффинной алгеброй $F[t_1,\ldots,t_n]/I(V(\operatorname{Ker} \pi_R))$. Так мы имеем:

$$\mathcal{X}(F[X]) = \mathcal{X}(A/I(X)) = V(I(X)) = X \quad F[X(R)] = A/I(V(\operatorname{Ker} \pi_R)).$$

Последняя алгебра изоморфна R тогда и только тогда, когда I(V(J))=J, где $R\cong A/J$.

Теорема 2 (Теорема Гильберта о нулях). Пусть $F = F^{alg}$, $J \subset F[t_1, \dots, t_n]$, $a \ f \in F[t_1, \dots, t_n]$. Тогда $f(V(J)) = 0 \Leftrightarrow f \in \sqrt{RJ}$. Иными словами, $f \in I(V(J)) \Leftrightarrow f \in \sqrt{RJ}$.

Другими словами, теорема Гильберта о нулях говорит нам, что над алгебраически замнутым полем F аффинные алгебраические многообразия (замкнутые подмножества \mathbb{A}^n_F) взаимно однозначно соотвествуют радикальным идеалам в $F[t_1,\ldots,t_n]$ и категории \mathfrak{Aff} и $F-\mathfrak{Alg}_{fin.gen.}$ антиэквивалентны.

Аналогичные рассуджения можно провести и для замкнутых подмножеств аффинного многообразия X и радикальных идеалов его аффинной алгебры F[X]. При этом точкам аффинного многообразия X соотвествуют максимальные идеалы F[X], то есть, элементы $\mathrm{Specm}(F[X])$.

1.3 Топология Зарисского на спектре кольца

Пусть R — кольцо, $\operatorname{Specm} R$ — его максимальный спектр (множество его максимальных идеалов). Зададим на $\operatorname{Specm} R$ набор замкнутых множеств

$$\widetilde{V}(J) \stackrel{\text{def}}{=} \{ \mathfrak{m} \in \operatorname{Specm} R \mid \mathfrak{m} \supset J \}, \ J \subset R.$$

При таком определении топологии X будет гомеоморфно $\operatorname{Specm}(F[X])$ (как мы и отмечали выше, точки соотвествуют максимальным идеалам).

В случае незамкнутого поля или бесконечнопорожденных алгебр правильно вместо максимального спектра рассматривать простой спектр. Топология Зарисского на нём определяется следующим образом;

$$J \subset R, \quad V(J) \stackrel{\mathrm{def}}{=} \{ \mathfrak{p} \in \operatorname{Spec} R \mid J \subset \mathfrak{p} \}.$$

1.4 Словарик алгебраической геометрии

Геометрия	Алгебра
Замкнутые подмножества X	Идеалы в $F[X]$
${ m To}$ чки ${\cal X}$	Максимальные идеалы в $F[X]$
Неприводимые замкныте подмножества в X	Простые идеалы в $F[X]$
will be upd	will be upd.

2. Основы теории гомологий

2.1 Симплициальные гомологии

Определение 8. *Цепным комплексом* абелевых групп (C_{\bullet}, ∂) называется последоватекльность абелевых групп и морфизмов вида

$$\ldots \xrightarrow{\partial_{q+2}} C_{q+1} \xrightarrow{\partial_{q+1}} C_q \xrightarrow{\partial_q} \ldots, \quad$$
где C_i — абелевы группы

при условии $\partial_q \circ \partial_{q+1} = 0$. Если комплекс обрывается с одной из сторон, то мы считаем, что он дополнен нулями.

Элементы группы C_q называют q-мерными цепями, а отображение ∂ называют (граничным) дифференциалом.

3амечание. Ясно, что условие $\partial_q \circ \partial_{q+1} = 0$ равносильно тому, что $\operatorname{Ker} \partial_q \supset \operatorname{Im} \partial_{q+1}$.

Замечание. Когда комплекс снабжают отображением $C_0 \xrightarrow{\varepsilon} \mathbb{Z}$, это отображение называют аугументацией.

Определение 9. *Гомологиями* комплекса (C_{\bullet}, ∂) называют абелевы группы

$$H_q(C_{\bullet}, \partial) \stackrel{\text{def}}{=} \operatorname{Ker} \partial_q / \operatorname{Im} \partial_{q+1}.$$

Если коплекс снабжен аугументацией и обрывается на нулевом члене, то у него также есть приведённые гомологии

$$H_0(C_{\bullet}, \partial) = C_0 / \operatorname{Im} \partial_1, \quad \widetilde{H}_0(C_{\bullet}, \partial) = \operatorname{Ker} \partial_0 / \operatorname{Im} \partial_1, \quad \widetilde{H}_q = H_q \, \forall q > 0,$$

которые отличаются от обычных только в нулевом члене.

Перед тем как что-то строго определять, посмотрим нестрого на какие-то мотивирующие примеры вычислений. Для этого лучше всего подойдут симплициальные гомологии. Неформально, идея состоит в том, что мы разбиваем топологическое пространство X на симплексы всех размерностей и говорим, что $C_q(X,\mathbb{Z})$ — свободная абелева группа, порожденная всеми q-мерными симплексами (то есть, мы рассматриваем целочисленные формальные линейные комбинации симплексов). Дифференциалом ∂ будет оператор взятия границы (топологической).

Пример 1 (Симплицаильные гомологии отрезка (нестрого)). Пусть X — отрезок [a,b] с ориентацией из b в a. В нём две нульмерные клетки, значит $C_0(X,\mathbb{Z})=\mathbb{Z}^2$, одномерная клетка одна — ребро e, то есть $C_1(X,\mathbb{Z})=\mathbb{Z}$ и комплекс устроен следующим образом:

$$\dots 0 \to C_1 \xrightarrow{\partial_1} C_0 \xrightarrow{\varepsilon} \mathbb{Z},$$

так как мы можем определить аугументацию следующим образом: $x \in C_0 \Rightarrow x = k_1 a + k_2 b$, положим $\varepsilon(x) = k_1 + k_2$. То есть, на самом деле комплекс выглядит вот так:

$$\dots \to 0 \to \mathbb{Z} \xrightarrow[e \to \partial e = a - b]{} \mathbb{Z}^2 \xrightarrow[a \to 1, b \to 1]{} \mathbb{Z}.$$

Заметим, что $\varepsilon \circ \partial = 0$.

Гомологиями топологического пространства называют гомологии построенного по нему комплекса. В нашем случае

$$H_1(X,\mathbb{Z}) = \operatorname{Ker} \partial_1 / \operatorname{Im} \partial_2 = 0/0 = 0.$$

$$\widetilde{H_0}(X,\mathbb{Z}) = \operatorname{Ker} \varepsilon / \operatorname{Im}_{\partial_1} = \langle a - b \rangle / \langle a - b \rangle = 0.$$

$$H_0(X,\mathbb{Z}) = C_0(X,\mathbb{Z}) / \operatorname{Im}_{\partial_1} = \mathbb{Z}^2 / \mathbb{Z} = \langle a,b \rangle / \langle a - b \rangle = \langle a \rangle = \mathbb{Z}$$

Пример 2 (Симплицальные гомологии треугольника). Рассмотрим треугольник (abc) с внутренностью σ , ориентированной против часовой стрелки, и рёбрами $b \xrightarrow{e_1} a, c \xrightarrow{e_3} a, c \xrightarrow{e_2} b$.

Тогда цепной комплекс, построенный по треугольнику будет устроен следующим образом:

$$\ldots \to 0 \to \mathbb{Z} \xrightarrow[\sigma \to e_1 + e_2 - e_3]{\partial_2} \mathbb{Z}^3 \xrightarrow[\sigma \to \infty]{\partial_1} \mathbb{Z}^3 \xrightarrow[\sigma \to \infty]{\partial_2} \mathbb{Z}$$

Из ориентации σ ясно, что $\partial \sigma = e_1 + e_2 - e_3$, $\partial e_1 = b - c$, $\partial e_2 = a - b$, $\partial e_3 = a - c$. Ясно, что вторые гомологии нулевые:

$$H_2(X,\mathbb{Z}) = \operatorname{Ker} \partial_2/0 = 0$$

Посчитаем теперь первые.

$$\partial(k_1e_1 + k_2e_2 + k_3e_3) = k_1(b-c) + k_2(a-b) + k_3(a-c) = a(k_2 + k_3) + b(k_1 - k_2) + c(-k_1 - k_3) \Rightarrow$$

$$\Rightarrow \operatorname{Ker} \partial_1 = \langle (k_1, k_2, k_3) \in \mathbb{Z}^3 \mid k_1 = k_2 = -k_3 \rangle$$

С другой стороны, $\operatorname{Im} \partial_2 = k(e_1 + e_2 - e_3)$. Тем самым, $H_1(X, \mathbb{Z}) = 0$. Аналогичным вычислением мы получаем, что $H_0(X, \mathbb{Z}) = \mathbb{Z}$.

Пример 3 (Спмилициальные гомологии треугольника без внутренности). Пусть теперь всё также, как в примере 2, но у треугольнка нет внутренности. Тогда цепной комплекс будет иметь вид

$$\dots \to 0 \to \mathbb{Z}^3 \to \mathbb{Z}^3 \to \mathbb{Z}$$

Из того, как поменялись отображения, ясно, что поменялись только первые гомологии. Теперь $H_1(X,\mathbb{Z})=\mathbb{Z}/\{0\}=\mathbb{Z}$, а образующая — это цикл $e_1+e_2-e_3$. С другой стороны, $\pi_1(\Delta)=\mathbb{Z}$.

 $\it Замечание.$ Когда-нибудь позже мы докажем, что для любого симплициального пространства $\it X$ есть отображение

$$\pi_1(X) \to H_1(X) = \pi_1(X)^{ab} = \pi_1(X)/[\pi_1(X), \pi_1(X)].$$

Пример 4 (Симплициальные гомологии тора \mathbb{T}^2). Рассмотрим двумерный тор \mathbb{T}^2 , разбитый на симплексы следующим образом:

Из такой триангуляции ясно, что комплекс будет иметь вид:

$$\ldots \to 0 \to \mathbb{Z}^2 \xrightarrow{\partial_2} \mathbb{Z}^3 \xrightarrow{\partial_1} \mathbb{Z} \xrightarrow{\varepsilon} \mathbb{Z}$$

Посчитаем дифференциал на двумерных клетках: $\partial \sigma_1 = e_1 - e_3 - e_2, \ \partial \sigma_2 = e_2 + e_3 - e_1.$ С другой стороны, ясно, что дифференциал зануляется на любой одномерной клетке, $\partial e_i = a - a = 0.$

$$H_2(\mathbb{T}^2,\mathbb{Z}) = \operatorname{Ker} \partial_2/0 = \mathbb{Z}.$$

так как $\partial \sigma_1 = -\partial \sigma_2 \Rightarrow \operatorname{Ker} \partial_2 = \mathbb{Z}$.

Также прямыми вычислениями можно убедиться, что $H_1(\mathbb{T}^2,\mathbb{Z})=\mathbb{Z}^2=\pi_1(\mathbb{T}^2)^{ab}$. Образующими первых гомологий будут e_2 и e_3 .

Упражнения.

- 1. Посчиать по определению одномерные гомологии связного дерева.
- 2. Посчитать по определению все гомологии n-мерного симплекса T^n

$$T^n \stackrel{\text{def}}{=} \left\{ (t_0, \dots, t_n) \mid t_i \ge 0, \sum_{i=1}^n t_i = 1 \right\}.$$

3. Покажите, что барицентрическое подразбиение не меняет симплициальных гомологий.

Вообще говоря, далее нужно формально доказывать, что гомологии не зависят от симплициального разбиения пространства (и выяснять, у каких пространств это симплициальное разбиение вообще есть), но мы этим всем заниматься не будем, так как в нашем курсе основной будет другая теория.

2.2 Сигнулярные гомологии

Определение 10. Пусть X — топологическое пространство.

- Сингулярным q-мерным симплексом мы будем называть непрерывное отображение $f \colon T^q \to X$.
- Его граница определяется, как формальная линейная комбинация

$$\partial f \stackrel{\text{def}}{=} \sum_{i=0}^{q} (-1)^i \Gamma_i f,$$

где $\Gamma_i f$ — сужение f на грань $t_i=0$ (сумма именно такая, так как у q-мерного симплекса q+1 грань).

- Сингулярными q-мерными цепями $C_q(X,\mathbb{Z})$ мы будем называть формальные целочисленные линейные комбинации конечного числа q-мерных сингулярных симплексов (то есть порожденную ими свободную абелеву группу).
- Дифферецниал комплекса 2 C_{ullet} определяется, как продолжение по линейности оператора взятия границы q-мерного сингулярного симплекса.
- Комплекс сингулярных цепей может быть снабжен аугументацией $\varepsilon\colon C_0\to\mathbb{Z},\ \sum k_if_i\to\sum k_i.$

3амечание. Формально говоря, мы пока не знаем, что комплекс из сингулярных цепей — это комплекс. Для этого нам понадобится следующая техническая

Лемма 2. В контексте определения 10 $\partial^2 = 0$.

Доказательство. Посчитаем $\partial \partial f$:

$$\partial \partial f = \partial \left(\sum_{i} (-1)^{i} \Gamma_{i} f \right) = \sum_{i,j} (-1)^{i+j} \Gamma_{j} \Gamma_{i} f.$$

Ясно, что любую грань коразмерности 2 можно получить взятием границы двумя способами. Действительно, если j < i, то $\Gamma_i \Gamma_j = \Gamma_j \Gamma_{i+1}$ (i-я из оставщихся после выкидывания j-й координаты -i+1-я изначально), а в сумме слагаемые $\Gamma_i \Gamma_j$ и $\Gamma_j \Gamma_{i+1}$ будут с разным знаком, значит $\partial \partial f = 0$.

Определение 11. *Сингулярными гомологиями* топологического пространства X называются гомологии комплекса сингулярных цепей. Мы будем обозначать их, как $H_k(X)$ или $H_k^{\mathrm{sing}}(X)$.

В топологическом контексте группу $Z_q(X)\stackrel{\mathrm{def}}{=} \operatorname{Ker} \partial_q$ часто называют q-циклами³, а группу $B_q(X)\stackrel{\mathrm{def}}{=} \operatorname{Im} \partial_{q+1} - q$ -границами. В этом смысле $H_q(X)$ — циклы с точностю до границ.

3амечание. Из определения очевидно, что сингулярные гомологии зависят только от класса гомеоморфизма пространства X (их основной плюс и состоит в том, что тут это очевидно).

Теперь попробем посчитать по определению сингулярные гомологии для какого-нибудь пространства. Оказывается, что по определению сделать это возможно разве что для точки.

 $^{^{2}}$ формально, мы пока еще не знаем, что это комплекс.

³позже мы увидим, какая в этом геометрическая интуиция

Теорема 3 (Сингулярные гомологии точки).

$$H_a^{\text{sing}}(*,\mathbb{Z}) = 0, \ H_0^{\text{sing}}(*,\mathbb{Z}) = \mathbb{Z}, \ \widetilde{H}_0^{\text{sing}}(*,\mathbb{Z}) = 0.$$

Итак, как мы помним, $C_q(*)$ — все линейные комбинации отображений $f\colon T^q\to *$. Так как отображений из T^n в точку всего одно, $\forall n\ C_n(X,\mathbb{Z})=\mathbb{Z}$, а значит, наш комплекс сингулярных цепей $(C_{\bullet}(*,\mathbb{Z}),\partial)$ будет иметь вид:

$$\dots \mathbb{Z} \xrightarrow{\partial} \mathbb{Z} \xrightarrow{\partial} \dots \xrightarrow{\partial_2} \mathbb{Z} \xrightarrow{\partial_1} \mathbb{Z} \xrightarrow{\varepsilon} \mathbb{Z}$$

Теперь посчитаем дифференциалы комплекса.

Возьмем $f \in C_1$, это какая-то формальная линейная комбинация отображений из $[a,b] \to \{*\}$ Тогда $\partial f -$ это $f|_a - f|_b = 0$. Впрочем, и сразу ясно, что в случае любого n, так как наше отображение действует в точку (оно постоянно), сужения на все грани будут совпадать и результат в сумме будет зависеть лишь от четности n, то есть дифференциалы комплекса будут иметь вид:

$$\dots \mathbb{Z} \xrightarrow{\cdot 0} \mathbb{Z} \xrightarrow{\cdot 1} \dots \xrightarrow{\cdot 1 = \mathrm{id}} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{\varepsilon} \mathbb{Z}$$

Иными словами, $\partial_n=0$, если n- нечетное и тождественно иначе. Теперь, как нетрудно заметить,

$$\forall q > 0 \quad \operatorname{Ker} \partial_q = \operatorname{Im} \partial_{q+1} \Rightarrow H_q^{\operatorname{sing}}(*, \mathbb{Z}) = 0, \ H_0^{\operatorname{sing}}(*, \mathbb{Z}) = \mathbb{Z}, \ \widetilde{H}_0^{\operatorname{sing}}(*, \mathbb{Z}) = 0.$$

Трудности, возникшие при подсчетах, намекают на то, что для отрезка, например, это будет сделать еще гораздо труднее. С другой стороны, если вдруг окажется, что гомологии гомотопически инвариантны, то мы будем знать, какие гомологии у всех стягиваемых пространств (так как для точки мы посчитали).

В дальнейшем, будем использовать для сингулярных гомологий обозначение H_k .

2.3 Немного гомологической алгеры

Рассмотрим категорию цепных комплексов \mathfrak{Ch} (в нашем случае абелевых групп, но в принципе, всё что тут будет сказано справделиво и в случае $R-\mathfrak{Mod}$). Морфизмом цепных комплексов (C_{\bullet},∂) и (D_{\bullet},δ) называется набор отображений $f=\{f_i\}$, где $f_i\in \mathrm{Hom}(C_i,D_i)$ такой, что диаграмма

коммутативна, то есть $\forall i \ f_i \circ \partial_{i+1} = \delta_{i+1} \circ f_{i+1}$.

Лемма 3. Сопоставление цепному комплексу его k-й группы гомологий функториально, то есть отображение

$$(C_{\bullet}, \partial) \mapsto H_k(C_{\bullet}, \delta)$$

задаёт ковариантный функтор $\mathfrak{Ch} o \mathfrak{Ab}$.

Доказательство. Всё, кроме того, что композиция переходит в композицию — совсем очевидно. Нам надо проверить, что отображение $(C_{\bullet}, \partial) \xrightarrow{f} (D_{\bullet}, \delta)$ индуцирует отображение $H_k(C_{\bullet}) \to H_k(D_{\bullet})$, и кроме того,

$$(C_{\bullet}, \partial) \xrightarrow{f} (D_{\bullet}, \delta) \xrightarrow{g} (E_{\bullet}, d) \Rightarrow H_k(f \circ g) = H_k(f) \circ H_k(g).$$

Заметим, что так как $f\in \mathrm{Hom}(C_{\bullet},D_{\bullet}),\ f_q(\mathrm{Ker}\,\partial_q)\subset \mathrm{Ker}\,\delta_q.$ Действительно, если $\partial_q(x)=0$, то $0=f_{q-1}(\partial_q(x))=\delta_q(f_q(x))\Rightarrow f_q(x)\in \mathrm{Ker}\,\delta_q.$ Аналогично $f_{q-1}(\mathrm{Im}\,\partial_q)\subset \mathrm{Im}\,\delta_q.$ Действительно, если $x=\partial_q(y)$, то

$$f_{q-1}(x) = f_{q-1} \circ \delta_q(x) = \delta_q(f_q(y)) \in \operatorname{Im} \delta_q.$$

Тогда нужная нам стрелка получается просто из универсального свойства факторгруппы:

$$\operatorname{Ker} \partial_{q} \xrightarrow{f_{q}} \operatorname{Ker} \delta_{q} \xrightarrow{\pi} H_{q}(D_{\bullet})$$

$$H_{q}(C_{\bullet})$$

Действительно, чтоб она существовала, нам нужно, чтоб $\operatorname{Im} \partial_{q+1} \subset \operatorname{Ker}(\pi \circ f_q)$. Возьмем $x \in \operatorname{Im} \partial_{q+1}$, тогда $f_q(x) \in \operatorname{Im}_{\delta_{q+1}} \Rightarrow f_q(x) \in \operatorname{Ker} \pi$, то есть $x \in \operatorname{Ker} (\pi \circ f_q)$.

Проверка того, что композиция переходит в композицию тривиальна.

Замечание. Пусть $X,Y\in\mathfrak{Top},\,f\colon X\to Y$ — непрерывное отображение. Тогда оно индуцирует морфизм цепных комплексов $f\colon C_{\bullet}(X)\to C_{\bullet}(Y)$. Действительно, пусть $g\in C_k(X)$, тогда g — это непрерывное отображение $T_k\to X$ и тогда $f\circ g$ — непрерывное отображение $T_k\to Y$, то есть элемент $C_k(Y)$. Остается проверить, что полученное отображение будет коммутировать с дифференциалом.

$$\partial g = \sum_{i=0}^{k} (-1)^i \Gamma_i g.$$

Тогда остается заметить, что взятие грани коммутирует с применением отображения:

$$f(\partial g) = \sum_{i=0}^{k} (-1)^{i} \Gamma_{i} f(g) = \partial(fg).$$

Значит, если у нас есть непрерывное отображение $f\colon X\to Y$, то есть и индуцированный морфизм гомологий $f_*\colon H_{\bullet}(X)\to H_{\bullet}(Y)$.

Утверждение 1. Если $f: X \to Y$ — гомеоморфизм, то $f_*: H_k(X) \to H_k(Y)$ — изоморфизм (для всех k).

Доказательство. Действительно, если f — гомеоморфизм, то все индуцированные отображения между цепями — изоморфизмы, а значит и все индуцированные отображения в гомологиях будут изоморфизмами.

Замечание. Это утверждение говорит нам о том, что сингулярные гомологии определены для топологических пространств без всякой дополнительной структуры.

Определение 12. Пусть X — топологическое пространство. Тогда, если группа $H_k(X)$ конечнопорождена, то

$$H_k(X) \cong \mathbb{Z}^n \oplus \operatorname{Tor}(H^k(X)).$$

Тогда число n (то есть, ранг свободной части) называют k-м числом Бетти b_n . Иными словами, $b_k(X) = \operatorname{rank}(H_k(X))$.

2.4 Гомотопическая инвариантность гомологий

Определение 13. Пусть $(C_{\bullet}, \partial), (D_{\bullet}, \delta) \in \mathfrak{Ch}$ — два цепных комплекса. Их морфизмы $f, g \in \operatorname{Hom}_{\mathfrak{Ch}}((C_{\bullet}, \partial), (D_{\bullet}, \delta))$ называются *гомотопными* $(f \sim g)$, если сущесвует диагональный морфизм $h \colon C_{\bullet} \to D_{\bullet+1}$ такой, что

$$h_{q-1}\partial_q + \delta_{q+1}h_q = f_q - g_q.$$

Кратко это обычно записывают, как $h\partial + \delta h = f - g$.

Если в категории цепных комплексов $\mathfrak{Ch}(\mathfrak{Ab})$ отождествить гомотопные морфизмы, получится гомотопическая категория комплексов, которую обычно обозначают $\mathfrak{K}(\mathfrak{AB})$ (или просто \mathfrak{K}).

Теорема 4. Если морфизмы цепных комплексов гомотопны, то есть $f \sim g$, то индуцированные гомоморфизмы когомологий $f_* = g_*$. Тем самым, функторы гомологий H_k пропускаются через гомотопическую категорию.

Доказательство. Если $x \in \operatorname{Ker} \partial_q$, то

$$f_q(x) - g_q(x) = \delta_{q+1}h_q(x) + \underbrace{h_{q-1}\partial_q(x)}_{=0} \in \operatorname{Im} \delta_{q+1},$$

а значит в $H_q(X)$ эти элементы равны.

Замечание. Гомотопность морфизмов f и g можно определять, как $\delta h \pm h \partial = f - g$, так как при переходе к гомологиям второе слагаемое всё равно обнуляется.

Теорема 5. Пусть $f, g: X \to Y$, $f \sim g$. Тогда $f_* = g_*$.

Доказательство. У нас есть цепные комплексы сингулярных цепей $(C_{\bullet}(X), \partial)$ и $(C_{\bullet}(Y), \partial)$. Так как $f \sim g$, существует непрерывное отображение $H \colon X \times I \to Y$, а тогда $\forall p \colon T_q \to X$ определено непрерывное отобрежение $H(p(_),_) \colon T_q \times I \to Y$, причем H(p,0) = f(p) и H(p,1) = g(p). Положим

$$h(p)=$$
 сумма симплексов в разбиении призмы $T_q\times I\in C_{q+1}(Y).$

Взглянув на картинку теперь нетрудно заметить, что

$$f(p)-h(p)=$$
 граница всей призмы — боковые стенки = $\partial h(p)-h\partial(p)$

Таким образом, мы получили, что индуцированные морфизмы цепных комплексов гомотопны, а значит, по теореме 4, индуцированные гомоморфизмы в гомологиях совпадают.

Упражнение. Разбить $T_q \times I$ на q+1-мерные симплексы формально. А именно, пусть $T_q \times \{0\} = a_0 \dots a_q$. Пусть вершины $T_q \times \{1\}$ — это a_0', \dots, a_q' . Тогда предлагается брать вершины $a_0 \dots a_k a_k' \dots a_q'$.

Следствие 1. Пусть X — стягиваемое. Тогда $\widetilde{H}_{\bullet}(X,\mathbb{Z}) = 0$, или, иными словами, $\forall k > 0 \ H_k(X,\mathbb{Z}) = 0$, $H_0(X,\mathbb{Z}) = \mathbb{Z}$.

Упражнение. Придумайте пример нестягиваемого X с нулевыми приведёнными гомологиями.

Лемма 4. Если X — линейно связно, то $H_0(X) = \mathbb{Z}$.

Доказательство. Выберем в нашем пространстве некоторую фиксированную точку a, тогда

$$\left(\sum k_i f_i\right) = \left(\sum k_i\right) a\pmod{\mathrm{Im}\,\partial_1},$$
 (то есть, в $H_0(X)$)

так как все f_i можно соединить путями (а это отображения $T^1 = [0,1] \to X$) с a и значит $\operatorname{Im} \partial_1$ будет содержать все разности $f_i - a$. Значит, $H_0(X) \cong \mathbb{Z}$.

Следствие 2. Пусть у топологического пространства X n компонент линейной связности. Тогда

$$H_0(X) \cong \mathbb{Z}^n$$
.

Упражнение. Дркажите, что непрерывное отображение между линейно связными пространствами индуцирует изоморфизм нулевых гомологий.

2.5 Относительные гомологии и гомологически точная последовательность пары

Пусть X — топологическое пространство, $A\subset X$, тогда $\forall q\ C_q(A)\subset C_q(X)$ (вложение индуцирует мономорфизм цепей) и мы имеем морфизм цепных комплексов $(C_{\bullet}(X),\partial)$ и $(C_{\bullet}(A),\partial)$, то есть коммутативна следующая диаграмма:

$$\begin{array}{cccc}
& \cdots & \longrightarrow C_q(A) \xrightarrow{\partial_q} C_{q-1}(A) & \longrightarrow \cdots \\
\downarrow & & \downarrow & \downarrow & \downarrow \\
\downarrow & & \downarrow & \downarrow & \downarrow \\
\downarrow & & \downarrow & \downarrow & \downarrow \\
\vdots & & & \longrightarrow C_q(X) \xrightarrow{\partial_q} C_{q-1}(A) & \longrightarrow \cdots
\end{array}$$

Это так просто потому, что если у нас был симплекс $f\colon T^q\to A$, то его граница тоже целиком лежит в A, то есть $\partial f\colon T^{q-1}\to A\in C_{q-1}(A)$.

Глядя на это, возникает естественная идея дополнить до короткой точной последовательности

$$0 \to C_q(A) \to C_q(X) \to C_q(X)/C_q(A) \to 0$$

в каждом столбце.

Определение 14. Факторгруппу $C_q(X,A) \stackrel{\text{def}}{=} C_q(X)/C_q(A)$ называют *относительными цепями*.

Построим цепной комплекс для относительных цепей, для этого надо определить дифференциалы. Это делается стандартно, возьмем $x \in C_q(A)$, тогда $\partial_q(x) \in C_{q-1}(A)$, а значит композиция дифференциала и проекции пропустится через фактор:

$$C_{q}(X) \xrightarrow{\partial_{q}} C_{q-1}(X) \xrightarrow{\pi_{q-1}} C_{q-1}(X)/C_{q-1}(A)$$

$$C_{q}(X)/C_{q}(A)$$

Проверим теперь, что $\delta^2=0$. Действительно, из коммутаивной диаграммы выше мы понимаем, что

$$\delta_q(\overline{x}) = \delta_q(\pi_q(x)) = \pi_{q-1}(\partial_q(x)) \Rightarrow \delta_{q-1}(\delta_q(\overline{x})) = \delta_{q-1}(\pi_{q-1}(\partial_q(x))) = \pi_{q-2}(\partial_{q-1}(\partial_q(x))) = 0.$$

Теперь мы построили цепной комплекс и можем определить относительные гомологии.

Определение 15. Пусть $X\subset A$, тогда относительными гомологиями мы будем называть гомологии комплекса относительных цепей, то есть

$$H_q(X, A) \stackrel{\text{def}}{=} \ker \delta_q / \operatorname{Im} \delta_{q+1}.$$

Теперь, попробуем получить для гомологий аппарат, идеологически похожий на теорему Зейферта-Ван-Кампена.

Итак, мы имеем короткую точную последовательность комплексов

$$0 \to C_{\bullet}(A) \to C_{\bullet}(X) \to C_{\bullet}(X,A) \to 0$$

В развёрнутом виде она представляет собой коммутативную диаграмму

$$0 \longrightarrow C_{q+1}(A) \longrightarrow C_{q+1}(X) \longrightarrow C_{q+1}(X,A) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow C_q(A) \longrightarrow C_q(X) \longrightarrow C_q(X,A) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow C_{q-1}(A) \longrightarrow C_{q-1}(X) \longrightarrow C_{q-1}(X,A) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow$$

в которой строки точны, а стлобцы — наши комплексы.

Теорема 6 (Точная последовательность пары). Существует связывающий гомоморфизм $\varphi \colon H_q(X,A) \to H_{q-1}(A)$, и соответственно, имеет место следующая длинная точная последовательность групп гомологий:

$$\dots \to H_q(A) \to H_q(X) \to H_q(X,A) \xrightarrow{\varphi} H_{q-1}(A) \to H_{q-1}(X) \to \dots$$

Доказательство. На самом деле, это утверждение верно для любой точной последовательности комплексов. А именно, если последовательность цепных комплексов

$$0 \to A_{\bullet} \to B_{\bullet} \to C_{\bullet} \to 0$$

точна, то имеет место следующая длинная точность последовательность гомологий:

$$\dots \to H_q(A) \to H_q(B) \to H_q(C) \to H_{q-1}(A) \to H_{q-1}(B) \to \dots$$

Это можно без труда вывести из леммы о змее, проверив точность строк 4

Упражнение. Докажите, что для $X\supset A\supset B$ имеет место следующая длинная точная последовательность групп гомологий

$$\dots \to H_q(A,B) \to H_q(X,B) \to H_q(X,A) \to H_{q-1}(A,B) \to \dots$$

Посмотрим, что всё это означает геометрически. Относительные циклы — это элементы

$$Ker(C_q(X)/X_q(A) \to C_{q-1}(X)/C_{q-1}(A)).$$

Мы взяли представителя в $C_q(X)$, взяли границу и после факторизации по $C_{q-1}(A)$ получили 0, а значит граница нашего цикла полностью лежит в $C_{q-1}(A)$, то есть картинка имеет вид:

С другой стороны, ясно, что $x \in C_q(X)/C_q(A)$ — относительная граница, если $x+a=\partial(\ldots)$.

⁴а так как это делается в абсолютно любом курсе гомологической алгебры, мне лень это сюда писать.

2.6 Пары Боруска 12

Замечание. У связывающего гомоморфизма $H_q(X,A) \to H_{q-1}(A)$ есть очень естественная интерпретация. Элементы $H_q(X,A)$ — относительные циклы с точностью до относительных границ. Так как это оносительные q-мерные циклы, их граница лежит в A, а значит, при взятии границы, мы получим как раз элемент $H_{q-1}(A)$. То есть, связывающий гомоморфизм $H_q(X,A) \to H_{q-1}(A)$ — взятие границы.

Рассмотрим также еще несколько важных следствий длинной точной последовательности пары.

Следствие 3. Для любого топологического пространства x и любой его точки $x_0 \in X$ мы имеем

$$H_n(X, x_0) = \widetilde{H}_n(X) \ \forall n.$$

Доказательство. Запишем длинную точную последовательность приведенных гомологий пары (X, x_0)

$$\dots \to \widetilde{H}_q(x_0) \to \widetilde{H}_q(X) \to \widetilde{H}_q(X, x_0) \to \widetilde{H}_{q-1}(x_0) \to \dots$$

Действительно, так как $\widetilde{H}_n(x_0)=0\ \forall n$, мы на самом деле имеем

$$\dots \to 0 \to \widetilde{H}_q(X) \to \widetilde{H}_q(X, x_0) \to 0 \to \dots,$$

и из точности следует $\widetilde{H}_q(X)\cong \widetilde{H}_q(X,x_0)=H_q(X,x_0).$

Следствие 4. Группы $H_q(X,A)$ измеряют различие между $H_q(X)$ и $H_q(A)$, а именно,

$$H_q(X, A) = 0 \quad \forall q \Rightarrow H_q(A) = H_q(X) \quad \forall q.$$

Доказательство. Запишем длинную точную последовательность пары (X, A):

$$\dots \to H_q(A) \to H_q(X) \to H_q(X,A) \to H_{q-1}(A) \to \dots$$

В нашем случае она имеет вид:

$$\dots \to H_q(A) \to H_q(X) \to H_q(X,A) \to H_{q-1}(A) \to \dots$$

и из точности следует, что $H_q(A) \cong H_q(X)$.

Упражнение. Убедитесь, что верно и обратное утверждение.

2.6 Пары Боруска

Определение 16. Пусть X – топологическое пространство, а $A\subset X$ с индуцированной топологией. Тогда говорят, что (X,A) – napa Борсука (или, корасслоение) 5 , если $\forall f\colon X\to Y,\ \forall F\colon A\times I\to Y$ такой, что $F|_{A\times 0}=f|_A$ существует $G\colon X\times I\to Y$, причем такое, что $G|_{X\times 0}=f,\ G|_{A\times I}=F.$

Определение 17. Пара (X,A) называется *клеточной парой*, если X — клеточное пространство, A — клеточное подпространство X.

Замечание. Так как очевидно, что $(D^n, \partial D^n)$ — пара Борсука, клеточная пара является парой Борсука.

Нам от пар Борсука понадобится несколько базовых утверждений.

Теорема 7 (Характеризация пар Борсука). Если (X,A) — пара Борсука, то деформационная ретракция $X \times I$ на $X \cup (A \times I)$. Кроме того, если A — замкнуто, то верно и обратное.

Доказательство. На картинке это выглядит следующим образом:

⁵Еще говорят «обладает свойством продолжения гомотопии», но это совсем уж длинно.

Положим $Y=X\cup (A\times I),\,f\colon X\to Y$ — вложение. Рассмотрим теперь гомотопию $F_t(A)=A\times t.$ Так как (X,A) — пара Борсука, существует $G\colon X\times I\to Y\colon G|_{A\times I}=F.$

Докажем теперь в другую сторону: пусть для $f\colon X\to Y$ есть гомотопия $F_t\colon A\to Y$, то есть отображение $F\colon X\cup (A\times I)\to Y$. Тогда искомое продолжение гомотопии — композиция F и деформационной ретракции $X\times I\to X\cup (A\times I)^6$.

Следствие 5. Пара $(D^n, \operatorname{Int}(D^n))$ — не пара Борсука.

Вообще говоря, эта теорема показывает, что было бы хорошо, чтоб A было замкнутым.

3амечание. В нехаусдорфовом случае бывает, что и с незамкнутым A пара (X,A) будет парой Борсука.

Упражнение. Если (X, A) — пара Борсука и X — Хаусдорфово, то A замкнуто.

Утверждение 2. Пусть (X, A) — пара Борсука. Тогда

$$X \cup CA \sim (X \cup CA)/CA = X/A.$$

Доказательство. Рассмотрим вложение $X \to X \cup CA$. Прогомотопируем A в вершину конуса a. Так как (X,A) — пара Борсука, эта гомотопия продолжается до гомотопии на X. Тогда финальный элемент гомотопии отображает $X \to X \cup CA$ так, что $A \mapsto a$, значит, это отображение пропускается через фактор X/A. С другой стороны ясно, как устроено обратное отображение $X \cup CA \to X/A$ (стягиваем конус в точку). Нетрудно заметить, что два построенных отображения задают гомотопическую эквивалентность.

Следствие 6. Если (X, A) — пара Боруска и A — стягиваемо, то $X \sim X/A$.

Утверждение 3. Пара (CX, X) - всегда пара Борсука.

2.7 Относительные гомологии как абсолютные (факторизация)

Итак, в этом параграфе нас будет интересовать следующее (весьма полезное в вычислениях утверждение):

Теорема 8. В общем случае отображение $X \to X \cup CA$ индуцирует изоморфизм

$$H_q(X,A) \to H_q(X \cup CA, CA) = H_q(X \cup CA, a) = \widetilde{H}_q(X \cup CA),$$

rде a — вершина конуса.

Eсли (X,A) — пара Борсука, то отображение проекции $p\colon X\to X/A,\ A\mapsto a$ индуцирует изоморфизм

$$H_q(X, A) \xrightarrow{p_*} H_q(X/A, a) = \widetilde{H}_q(X/A).$$

Вообще говоря, условие на A во второй части теоремы часто опускают и говорят, что это верно для «хороших пар». Мы доказываем для пар Борсука, можно доказывать для случая, когда A — окрестностный деформационынй ретракт.

Для доказательства этой теоремы нам понадобится несколько важных (в общем контексте) лемм.

Сначала посмотрим на геометрическую конструкцию **барицентрического подразбиения**, чтоб иметь геометрическую интуицию в контексте сингулярных симплексов.

Рассмотрим симплекс $[v_0,\ldots,v_n]$. его точки — линейные комбинации вида

$$\sum_{i=0}^{n} t_i v_i$$
, где $\sum_{i=0}^{n} t_i = 1, \ t_i \ge 0.$

 $^{^{6}}$ вот тут мы пользуемся замкнутостью A, так как нам нужно, чтоб покрытие было фундаментальным.

Определение 18. Барицентр (центр тяжести) симплекса — это точка $b \in [v_0, \dots, v_n]$, у которой все барицентрические аоординаты t_i равны, а именно, $t_i = \frac{1}{n+1} \ \forall i$.

Барицентрическое подразбиение (подразделение) симплекса $[v_0,\dots,v_n]$ — это разбиение симплекса $[v_0,\dots,v_n]$ на n-мерные симплексы $[b,w_0,\dots,w_{n-1}]$, где по индукции $[w_0,\dots,w_{n-1}]-(n-1)$ -мерный симплекс барицентрического подразбиения грани $[v_0,\dots,\hat{v}_i,\dots,v_n]$.

- Индукция начинается с n=0, когда барицентрическое подразбиение точки $[v_0]$ определяется просто, как сама точка $[v_0]$.
- В случае n=1 отрезок $[v_0v_1]$ бъется на два отрезка $[v_0b]$, $[bv_1]$, где b середина отрезка $[v_0,v_1]$.
- В случае n=2 треугольник $[v_0v_1v_2]$ бьется на 6 труегольников, образуемых его вершинами и точкой пересечения медиан b.

Из такого индуктивного определения следует, что вершины симплексов в барицентрическом подразбиении симплекса $[v_0\dots v_n]$ — в точности барицентры всех k-мерных граней $[v_{i_0}\dots v_{i_k}]$ симплекса $[v_0\dots v_n]$ для $0\leq k\leq n$.

При k=0 это даёт нам просто набор вершин v_i . Барицентр симплекса $[v_{i_0}\dots v_{i_k}]$ имеет барицентрические координаты $t_i=\frac{1}{k+1}$ при $i=i_0,\dots,i_k$ и $t_i=0$ во всех остальных случаях.

 $\it Замечание.$ Далее нам это не потребуется, но симплексы барицентрического подразбиения задают на симплексе $\it T$ структуру симплициального комплекса.

Лемма 5 (О барицентрическом подразбиении). Пусть $f\colon T^q\to X$ — сингулярный симплекс. Тогда его барицентрическое поразбиение — это

$$\beta \colon C_q(X) \to C_q(X), \quad \beta f = \sum_{\tau \in S_{q+1}} \operatorname{sign}(\tau) f_{\tau},$$

где $f_{ au}$ определяется следующим образом: исходный симплекс T^q мы можем барицентрически подразбить на симплексы $T'_q = \{x \mid x_{\tau(0)} \leq x_{\tau(1)} \leq \ldots \leq x_{\tau(q)} \}$, в которых вершины нумеруются согласно размерностям граней. Тогда мы полагаем $f_{\tau} \stackrel{\mathrm{def}}{=} f|_{T'_q}$.

Тогда $\partial \beta = \beta \partial$ и $\beta_*([\alpha]) = [\alpha] \ \forall [\alpha] \in H_q(X)$. Иными словами, барицентрическое подразбиение не влияет на гомологический класс.

Доказательство. Для первого утверждения достаточно проверить, что в сумме все внутренние грани встречаются с противоположным знаком, это ясно из картинки. Первое утверждение даёт нам, что $\beta \in \mathrm{Hom}_{\mathfrak{Ch}}(C_{\bullet}, C_{\bullet})$.

Для доказательства второго утверждения мы построим цепную гомотопию $D\colon C_q(X)\to C_{q+1}(X)$ между β и постоянным отображением.

Пусть $f\colon T^q\to X$, тогда D(f) определяется следующим образом: барицентрически разобьем призму $I\times T^q$ на симплексы и рассмотрим проекцию

$$p: I \times T^q \to T^q$$
.

Тогда D(f) — это (q+1)-мерный сингулярный симплекс, являющийся суммой композиций f и проекции p, суженной на симплексы в разбиении $I \times T^q$.

можно нарисовать картинку для отрезка, в принципе.

Из того, как устроена нумерация в барицентрическом разбиении призмы, нетрудно видеть, что D – гомотопия между β и id, то есть

$$f - \beta(f) = D\partial(f) + \partial D(f).$$

Чтоб понять всё это, надо опять позалипать на эту картиночку с призмой, как в теореме 5.7

⁷Возможно, всё это место стоит строго формально переписать из Хачтера.

Следующая лемма говорит нам, что для вычисления сингулярных гомологий достаточно рассматривать лишь маленькие сингулярные симплексы. В случае симплициальных гомологий это можно было бы формулировать в терминах диаметров, а в случае сингулярных мы будем говорить об этом в терминах покрытий.

Лемма 6 (Об измельчении). Пусть $\mathcal{U} = \{U_{\alpha}\}$ — конечное открытое покрытие X. Пусть $C_q^{\mathcal{U}}(X)$ порождено сингулярными симплексами $f \in C_q(X)$ такими, что $\exists \alpha \colon f(T_q) \subset U_{\alpha}$.

Тогда вложение $i\colon C_q^{\mathcal{U}}(X)\xrightarrow{i} C_q(X)$ индуцирует изоморфизм групп гомологий $H_{ullet}(X)\cong H_{ullet}^{\mathcal{U}}(X).$

Доказательство. Заметим, что для достаточно большого n по лемме Лебега $c \in C_q(X) \Rightarrow \beta^n(c) \in C_q^{\mathcal{U}}(X)$. Кроме того, по лемме 5 c и $\beta^n(c)$ гомологичны (то есть, представляют один м тот же класс гомологий). Это даёт нам, что любой гомологический класс мз $H_q(C_{\bullet})$ имеет представителя в $C_q^{\mathcal{U}}(X)$, то есть, что отображение $H_q^{\mathcal{U}}(X) \to H_q(X)$ сюръективно.

Кроме того, также по лемме 5, если c- цикл из $C_q^{\mathcal{U}}$, то $c-\beta^n(c)-$ граница цепи из C_{q+1}^{U} , так как

$$c-\beta^n(c) = \underbrace{\mathcal{D}\partial c}_{=0, \text{ так как } c-\text{цикл}} -\partial Dc = \partial (-Dc) \in B_q\big(C_q^{\mathcal{U}}(X)\big).$$

С другой стороны, так как c и $\beta^n(c)$ гомологичны, их разность — граница (элемент $B_q(C_q(X))$). Таким образом, если цепь из $C_q^{\mathcal{U}}$ лежит в $B_q(C_q(X))$, то она лежит и в $B_q(C_q^{\mathcal{U}}(X))$. Это даёт нам инъективность отображения $H_q^{\mathcal{U}}(X) \to H_q(X)$.

Замечание. Заметим, что построенные в доказательстве отображения переводят цепи в A в цепи в A, а значит, выдерживают факторизацию по A. Этот факт даёт нам версию леммы об измельчении для относительных гомологий, которым мы и будем пользоваться.

Обзаведемся еще одним полезным фактом: Посмотрим на такой факт из гомологической алгебры:

Лемма 7 (5-лемма). Рассмотрим диаграмму

$$\begin{array}{cccc}
A & \longrightarrow & B & \longrightarrow & C & \longrightarrow & D & \longrightarrow & E \\
\downarrow f_1 & & \downarrow f_2 & & \downarrow f_3 & & \downarrow f_4 & & \downarrow f_5 \\
A' & \longrightarrow & B' & \longrightarrow & C' & \longrightarrow & D' & \longrightarrow & E'
\end{array}$$

в которой строки точны, f_2, f_4 — изоморфизмы, f_1 — эпиморфизм, f_5 — мономорфизм. Тогда f_3 — изоморфизм.

Доказательство. Есть в любом курсе гомологической алгебры.

Из неё немедленно следует следующий простой факт:

Лемма 8. Если пара (X,A) гомотопически эквивалентна паре (Y,B), то $H_{\bullet}(X,A)=H_{\bullet}(Y,B)$.

Доказательство. Запишем длинную точную последовательность для обоих пар:

Тогда всё следует из 5-леммы 7

Наконец, мы можем доказать интересующую нас теорему:

2.8 Вырезание 16

Теорема 9. В общем случае отображение $X \to X \cup CA$ индуцирует изоморфизм

$$H_q(X,A) \to H_q(X \cup CA,CA) = H_q(X \cup CA,a) = \widetilde{H}_q(X \cup CA),$$

rде a — вершина конуса.

 $\mathit{Если}\,(X,A)$ — пара Борсука, то отображение проекции $p\colon X \to X/A,\ A \mapsto a$ индуцирует изоморфизм

$$H_q(X, A) \xrightarrow{p_*} H_q(X/A, a) = \widetilde{H}_q(X/A).$$

Доказательство. Рассмотрим открытое покрытие $X \cup CA$ вида:

$$X \cup CA \subset ((X \cup CA) \setminus X) \cup (X \cup \overline{C}A), \quad \mathcal{U} \stackrel{\text{def}}{=} \{(X \cup CA) \setminus X, (X \cup \overline{C}A)\}$$

где $\overline{C}A$ — нижняя открытая половина конуса CA.

По лемме 6 об измельчении мы вместо $H_q(X \cup CA, CA)$ можем рассматривать $H_q^{\mathcal{U}}(X \cup CA, CA)$. А теперь, заметим, что по тому, как мы взяли покрытие,

$$C_q^{\mathcal{U}}(X \cup CA, CA) = C_q^{\mathcal{U}}(X \cup CA) / C_q^{\mathcal{U}}(CA) = C_q(X \cup \overline{C}A) / C_q(\overline{C}A) = C_q(X \cup \overline{C}A, \overline{C}A).$$

А значит, из гомотопической эквивалентности и леммы 8 мы имеем

$$H_q(X \cup CA, CA) = H_q(X \cup \overline{C}A, \overline{C}A) = H_q(X, A).$$

Вторая часть первого равенства из условия теоремы следует из следствия 3.

Пусть теперь (X, A) — пара Борсука. Тогда по утверждению 2 $X \cup CA \sim X/A$, а значит, $H_q(X,A) \cong \widetilde{H}_q(X/A)$.

2.8 Вырезание

Рассмотрим тройку $B \subset A \subset X$. Тогда вложение индуцирует отображение

$$H_k(X-B,A-B) \to H_k(X,A).$$

Вообще говоря, вырезание даёт хорошую технику вычисления относительных гомологий:

Теорема 10 (О вырезании). Пусть даны пространства $Z \subset A \subset X$, причем $\mathrm{Cl}(Z) \subset \mathrm{Int}(A)$. Тогда вложение $(X-Z,A-Z) \hookrightarrow (X,A)$ индуцирует изоморфизмы

$$H_n(X-Z,A-Z) \cong H_n(X,A)$$

для всех n. Или, что эквивалентно: для подпространств $A,B\subset X$, внутренности которых покрывают X, включение $(B,A\cap B)\hookrightarrow (X,A)$ индуцирует изоморфизмы

$$H_n(B, A \cap B) \cong H_n(X, A) \quad \forall n.$$

Доказательство. Докажем сначала эквивалентность формулировок. Положим $B=X-Z,\ Z=X-B.$ Тогда $A\cap B=A-Z,$ а условие $\mathrm{Cl}(Z)\subset\mathrm{Int}(A)$ эквивалентно тому, что $X=\mathrm{Int}(A)\cup\mathrm{Int}(B),$ так как $X-\mathrm{Int}(B)=\mathrm{Cl}(Z).$ Теперь докажем вторую формулировку.

Пусть $X = A \cup B$, обозначим соотвествующее покрытие $\mathcal{U} = \{A, B\}$. Для краткости будем обозначать группы $C_n^{\mathcal{U}}(X)$, как $C_n(A+B)^8$.

Тогда, как мы помним из леммы об измельчении 6 включение

$$C_n(A+B)/C_n(A) \hookrightarrow C_n(X)/C_n(A)$$

индуцирует изоморфизм групп гомологий $H_n(A+B,A) \cong H_n(X,A)$.

Теперь рассмотрим включение

$$C_n(B)/C_n(A\cap B) \hookrightarrow C_n(A+B,A).$$

Оно очевидно индуцирует изоморфизм гомологий, так как обе факторгруппы свободные, а их базис - n-мерные сингулярные симплексы в B, не лежащие в A. Значит, мы получили требуемый изоморфизм

$$H_n(B, A \cap B) \cong H_n(A + B, A) \cong H_n(X, A).$$

 $^{^8}$ что на самом деле логично, так как цепи оттуда состоят из суммы цепей из A и цепей из B

2.9 Точная последовательность Майера-Вьеториса

Кроме длинной точной последовательности пары (теорема 6) для вычисления гомологий пары (X,A) есть и другая мощная техника для вычисления гомологий пространства X, тоже представляющая собой длинную точную последовательность.

Теорема 11 (Точная последовательность Майера-Вьеториса, простая версия). Пусть $X = A \cup B$, где A, B -открытые и $A \cap B = C \neq \emptyset$. Тогда имеет место следующая точная последовательность:

$$\dots H_q(A \cap B) \to H_q(A) \oplus H_q(B) \to H_q(X) \to H_{q-1}(A \cap B) \to H_{q-1}(A) \oplus H_{q-1}(B) \to \dots$$

Доказательство. Рассмотрим короткую точную последовательность комплексов:

$$0 \to C_{\bullet}(A \cap B) \xrightarrow{c \to (c, -c)} C_{\bullet}(A) \oplus C_{\bullet}(B) \xrightarrow{(a,b) \to a+b} C_{\bullet}(A+B) \to 0$$

Во-первых, заметим, что $\ker \varphi = 0$, так как цепь в $A \cap B$, которая является нулевой в A (или в B) должна быть нулевой цепью. Во-вторых, очевидно, что $\psi \varphi = 0 \Rightarrow \operatorname{Im} \varphi \subset \operatorname{Ker} \psi$. Заметим, что для $(x,y) \in C_n(A) \oplus C_n(B)$ имеем $x+y=0 \Rightarrow y=-x$, а значит $x \in C_n(A \cap B)$ и $(x,y) \in \operatorname{Im} \varphi$. Это означает, что $\operatorname{Ker} \psi \subset \operatorname{Im} \varphi$. Точность в последнем члене следует просто из определения $C_n(A+B)$.

Тогда эта короткая точная последовательность комплексов даёт нам точную последовательность гомологий. Остается лишь заметить, что также, как и в теореме о вырезании, $H_{\bullet}(A+B) = H_{\bullet}(A \cup B)$.

Замечание. Эта не самая хорошая версия точной последовательности Майера-Вьеториса, так как условие на открытое покрытие серьезно мешает.

2.10 Гомологии сфер

Теорема 12. Для $n \neq 0$ гомологии сферы устроены следующим образом:

$$H_i(S^n)\cong egin{cases} \mathbb{Z}, & i=n \ \mathit{u\pi u} \ i=n, \ 0, & \mathit{uhave}. \end{cases}$$

Или, иными словами,

$$\widetilde{H}_i(S^n)\cong egin{cases} \mathbb{Z}, & i=n \ 0, & ext{uhave.} \end{cases}$$

Доказательство. Рассмотрим пару $(X,A)=(D^n,S^{n-1})$, тогда $X/A\cong S^n$. Запишем для этой пары точную послеоватнльность приведенных гомологий:

$$\dots \to \widetilde{H}_q(D^n) \to \widetilde{H}_q(D^n, S^{n-1}) \to \widetilde{H}_{q-1}(S^{n-1}) \to \widetilde{H}_{q-1}(D^n) \to \dots$$

Так как D^n стягиваем, $\widetilde{H}_q(D^n)=0$, а значит, $H_q\big(D^n,S^{n-1}\big)\cong H_{q-1}(S^n)$. С другой строны, так как $(D^n,\partial D^n)=(D^n,S^{n-1})$ — пара Борсука, по теореме о факторизации 9

$$H_q(D^n, S^{n-1}) \cong \widetilde{H}_q(D^n/S^{n-1}) \cong \widetilde{H}_q(S^n).$$

Остается заме
ить, что мы знаем, что утверждение верно для S^0 . Таким образом, мы доказали утверждение по индукции.

Следствие 7. Сферы разных размерностей негомеоморфны.

2.11 Гомологии букета и надстройки

Из стягиваемости конуса сразу следует, что $H_q(CX,X)\cong \widetilde{H}_q(X)$ (достаточно написать точную последовательность для приведенных гомологий).

Определение 19. Пусть X — топологическое пространство. Тогда *надстройкой* над X называется пространство ΣX , определённое, как

$$\Sigma X \cong X \times I/\sim$$
, где $(x,0)\sim (y,0) \ \forall x,y\in X$ и $(x,1)\sim (y,1) \ \forall x,y\in X$.

Иными словами, мы взяли $X \times I$ и стянули $X \times 1$ и $X \times 0$ в точку.

Пример 5. Надстройка над окружностью выглядит следующим образом:

Так как надстройка получается факторизацией конуса по нижнему основанию, из теоремы о факторизации 9 следует, что $H_{q+1}(CX,X)\cong \widetilde{H}_{q+1}(\Sigma X)$. Таким образом, мы получили такое утверждение:

Теорема 13 (Гомологии надстройки). Справедливо следующее равенство групп гомологий:

$$\widetilde{H}_q(X) \cong \widetilde{H}_{q+1}(\Sigma X)$$

Замечание. Так как $\Sigma S^n = S^{n+1}$, мы таким образом получили другое доказательство теоремы 12.

Теорема 14 (Гомологии букета). Для букета пространств $\bigvee_{\alpha} X_{\alpha}$ включения $i_{\alpha} \colon X_{\alpha} \hookrightarrow \bigvee_{\alpha} X_{\alpha}$ индуцируют изоморфизм гомологий

$$\bigoplus_{\alpha} \widetilde{H}_q \cong \widetilde{H}_q \bigg(\bigvee_{\alpha} X_{\alpha} \bigg).$$

при условии, что если в букете отождествляются точки $\{x_{\alpha}\}$, то пары (X_{α}, x_{α}) — пары Борсука.

Доказательство. Достаточно рассмотреть пару

$$(X,A) = \left(\bigsqcup_{\alpha} X_{\alpha}, \bigsqcup_{\alpha} x_{\alpha}\right),$$

тогда по тривиальным причинам

$$H_n(X,A) \cong \bigoplus_{\alpha} \widetilde{H}_n(X_{\alpha})$$

и по теореме о факторизации

$$H_n(X,A) \cong \widetilde{H}_n\left(\bigvee_{\alpha} X_{\alpha}\right).$$

2.12 Гомологии с коэффициентами

У рассматриваемой нами до сих пор теории гомологий есть простое обобщение, котрое иногда даёт техническое преимущество.

Обобщение состоит в рассмотрении цепей $\sum n_i f_i$, где f_i — сингулярные симплексы, а коэффициенты n_i берутся в фиксированной абелевой группе G. Такие n-мерные цепи образуют абелеву группу $C_n(X;G)$ и у неё также есть относительная версия $C_n(X,A;G) \stackrel{\mathrm{def}}{=} C_n(X;G)/C_n(A;G)$.

Дифференциал δ строится также, как и раньше:

$$\partial \left(\sum_{i} n_i f_i \right) = \sum_{i,j} (-1)^j n_i \Gamma_j f_i.$$

Соотвественно, группы $C_n(X;G)$ и $C_n(X,A;G)$ образуют цепные комплексы и их гомологии обозначают $H_n(X;G)$ и $H_n(X,A;G)$ и называют гомологиями с коэффициентами в группе G.

Приведённые группы гомологий $\widetilde{H}(X;G)$ определяются аналогично, аугументация задаётся, как

$$\dots \to C_0(X;G) \xrightarrow{\varepsilon} G \to 0, \quad \varepsilon \left(\sum_i n_i f_i\right) = \sum_i n_i.$$

Замечание. Часто полезно рассматривать гоиологии с коэффициентами в $\mathbb{Z}/2\mathbb{Z}$, так как нужно считать суммы сингулярных симплексов с коэффициентами 0 и 1, поэтому, отбрасывая члены с коэффициентами 0, можно представлять себе цепи, как конечные «объединения» сингулярных симплексов.

Кроме того, можно больше не заботиться о знаках в формуле для границы, а так как знаки являются алгебраическим выражением ориентации, мы можем игнорировать и ориентации. Это означает, что гомологии с коэффициентами в $\mathbb{Z}/2\mathbb{Z}$ — наиболее естественный инструмент для вычислений в неориентируемом случае.

Отметим, что вся доказанная выше теория переносится на гомологии с коэффициентами в G без проблем и различия между $H_n(X;G)$ и $H_n(X)$ появляются только, когда начинаются вычисления.

Пример 6. Если X = * - точка, то нетрудно заметить, что

$$H_n(*;G)\cong egin{cases} G, & n=0 \ 0, & ext{иначе} \end{cases}$$

Аналогично и в случае сфер S^k мы имеем

$$\widetilde{H}_n(S^k;G)\cong egin{cases} G, & n=k \ 0, & ext{иначе} \end{cases}$$

2.13 Приложения теории гомологий

Теорема 15 (Борсук). Не существует ретракции диска на граничную сферу.

Доказательство. Предположим, что ретракция $f \colon D^n \to S^{n-1} \colon f$ — непрерывное и $f|_{S^{n-1}} = \mathrm{id}$ существет. Рассмотрим отображение $i \colon S^{n-1} \hookrightarrow D^n$, тогда в гомологиях у нас есть отображение

$$H_{n-1}(S^{n-1}) \xrightarrow{i_*} H_{n-1}(D^n) \xrightarrow{f_*} H_{n-1}(S^{n-1})$$

или, подставляя известные нам результаты:

$$\mathbb{Z} \xrightarrow{i_*} 0 \xrightarrow{f_*} \mathbb{Z}.$$

Так как $f \circ i = \mathrm{id}$, $f_* \circ i_* = \mathrm{id}_* = \mathrm{id}$ и мы приходим к противоречию.

Теорема 16 (Брауэр, о неподвижной точке). Пусть $f \colon D^n \to D^n$ — непрерывное отображение. Тогда у него существует неподвижная точка.

Доказательство. Предположим противное, пусть существует непрерывное $f\colon D^n\to D^n$, не имеющее неподвижных точек. Рассмотрим отображение g, которое переводит $x\in D^n$ в точку пересечения [f(x),x) и ∂D^n . То есть, $g\colon D^n\to \partial D^n$ и $g|_{\partial D^n}=\mathrm{id}$. Тогда g — ретракция D^n на граничную сферу, а этого не бывает по теореме 15.

Теорема 17 (Брауэр, инвариантность размерности). *Если непустые открытые* $U \subset \mathbb{R}^m$, $V \subset \mathbb{R}^n$ *открытые* u *они гомеоморфны, то* m=n.

Доказательство. Пусть h — гомеоморфизм $U \to V$, тогда

$$H_k(U, U - x) \cong H_k(V, V - h(x)).$$

По теореме о вырезании 10 для $(X,A)=(\mathbb{R}^m,\mathbb{R}^m-x)$ и $Z=\mathbb{R}^m-U$:

$$H_k(\mathbb{R}^m, \mathbb{R}^m - x) \cong H_k(U, U - x).$$

Тогда мы имеем, что

$$H_k(\mathbb{R}^m, \mathbb{R}^m - x) \cong H_k(\mathbb{R}^n, \mathbb{R}^n - h(x)).$$

Из точной последовательности пары для $(\mathbb{R}^m, \mathbb{R}^m - x)$ мы имеем:

$$\ldots \to H_k(\mathbb{R}^m) \to H^k(\mathbb{R}^m, \mathbb{R}^m - x) \to H_{k-1}(\mathbb{R}^m - x) \to H_{k-1}(\mathbb{R}^m) \to \ldots$$

$$\dots 0 \to H^k(\mathbb{R}^m, \mathbb{R}^m - x) \to H_{k-1}(\mathbb{R}^m - x) \to 0 \to \dots,$$

а значит, $H_k(\mathbb{R}^m,\mathbb{R}^m-x)\cong H_{k-1}(\mathbb{R}^m-x)\cong H_{k-1}(S^{m-1})$, так как \mathbb{R}^m-x деформационно ретрагируется на S^{m-1} . Значит, мы получили

$$H_{k-1}(S^{m-1}) \cong H_{k-1}(S^{n-1}),$$

откуда ясно, что m = n.

2.14 Симплициальные комплексы

Этот парагарф надо написать из Хатчера.

2.15 Эквивалентность симплициальных и сингулярных гомологий

Образующая $H_n(S^n)$:

В этом параграфе будем обозначать n-мерный симплекс, как Δ^n . Заметим, что так как $\Delta^n/\partial\Delta^n\cong S^n$, по теореме о факторизации 9 мы имеем изоморфизм

$$H_n(S^n) \cong H_n(\Delta^n, \partial \Delta^n).$$

Покажем, что образующая $H^n(S^n)$ — это отображение $\Delta^n \xrightarrow{\mathrm{id}} \Delta^n$. Нетрудно заметить, что $\mathrm{Im}(\partial f) \subset \partial \Delta^n$, что дает нам, что id вообще представляет какой-то гомологический класс в $H_n(\Delta^n, \partial \Delta^n)$.

Рассмотрим тройку $(\Delta^n, \partial \Delta^n, \Lambda)$, где Λ — это $\partial \Delta^n$ без одной из граней (например, запоолненный треугольник, граница треугольника и граница треугольника без стороны). Напишем точную последовательность тройки:

$$\dots \to H_n(\partial \Delta^n, \Lambda) \to H_n(\Delta^n, \Lambda) \to H_n(\Delta^n, \partial \Delta^n) \to H_{n-1}(\partial \Delta^n, \Lambda) \to H_{n-1}(\Delta^n, \Lambda) \to \dots$$

Заметим, что так как Δ^n деформационно ретрагируется на Λ , $H_n(\Delta^n,\Lambda)\cong H_n(\Lambda,\Lambda)=0$ и то же самое справедливо для (n-1)-х гомологий. То есть, наша последовательность на самом деле имеет вид

$$\dots \to 0 \to H_n(\Delta^n, \partial \Delta^n) \to H_{n-1}(\partial \Delta^n, \Lambda) \to 0 \to \dots$$

Теперь заметим, что если грань, которую мы выкинули, мы обозначим за Δ' , то $H_{n-1}(\partial \Delta^n, \Lambda) \cong H_{n-1}(\Delta', \partial \Delta')$.

Это ценно, так как далее мы можем рассуждать по индукции, ведь если образующая $H_{n-1}(\Delta',\partial\Delta')$ — вложение выкинутой нижней грани Δ' , то её прообраз в $H_n(\Delta^n,\partial\Delta^n)$ — нужное нам тождественное отображение (мы тут пользуемся тем, что мы знаем, что связывающий гомоморфизм в длинной точной последовательности пары/тройки — это просто взятие границы). А для S^0 это утверждение очевидно.

Обозначим симплиаицльные гомологии пространства X за $H_k^\Delta(X)$.

Теорема 18. Пусть X — конечный симплициальный комплекс. Тогда

$$H_k^{\text{sing}}(X) \cong H_k^{\Delta}(X).$$

 \mathcal{L} оказательство. Пусть X^k — объединение всех симплексов в симплициальном комплексе до размерности k (обозначение аналогично обозначению для CW -комплексов). Напишем точную последовательность пары:

$$\ldots \to H_{n+1}^{\Delta}\left(X^{k},X^{k-1}\right) \to H_{n}^{\Delta}\left(X^{k}\right) \to H_{n}^{\Delta}\left(X^{k}\right) \to H_{n}^{\Delta}\left(X^{k},X^{k-1}\right) \to \ldots$$

и заметим, что $H_{n+1}^{\Delta}ig(X^k,X^{k-1}ig)\cong H_{n+1}ig(X^k,X^{k-1}ig)\cong H_{n+1}ig(igV S^kig)$. Действительно, ясно, что

$$H_{n+1}(X^k, X^{k-1}) \cong H_{n+1}(\bigvee_{\alpha} S^k),$$

где α пробегает k-мерные симплексы в X. Далее,

$$H_{n+1}igg(igvee_lpha S^kigg)\congegin{cases} 0, & ext{если } n+1
eq k \ igoplus_lpha \mathbb{Z}, & n+1=k \end{cases}$$

С другой стороны, из определения симплициальных гомологий ясно, что при $n+1 \neq k$ мы имеем $H_{n+1}^{\Delta}\big(X^k,X^{k-1}\big)\cong 0$, а при n+1=k эта группа — свободная абелева группа, порожденная всеми k-мерными симплексами в X, то есть, как и в предыдущем случае

$$H_k^{\Delta}(X^k, X^{k-1}) \cong \bigoplus_{\alpha} \mathbb{Z}.$$

Остается заметить, что по доказанному в начале параграфа, мы знаем, что у $H_k(\bigvee_{\alpha} S^k)$ такой же набор порождающих.

Теперь будем вести индукцию по размерности симплициального комплекса. По индукционному предположению мы имеем $H_n^{\Delta}(X^{k-1})\cong H_n(X^{k-1})$ и тогда мы получаем диаграмму из 5-леммы:

$$H_{n+1}^{\Delta}\left(X^{k},X^{k-1}\right) \longrightarrow H_{n}^{\Delta}\left(X^{k-1}\right) \longrightarrow H_{n}^{\Delta}\left(X^{k}\right) \longrightarrow H_{n}\left(X^{k},X^{k-1}\right)$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$H_{n+1}\left(X^{k},X^{k-1}\right) \longrightarrow H_{n}\left(X^{k-1}\right) \longrightarrow H_{n}\left(X^{k}\right) \longrightarrow H_{n}\left(X^{k},X^{k-1}\right)$$

2.16 Степень отображения

Определение 20. Пусть $f \colon S^n \to S^n$ — непрерывное отображение. Тогда оно индуцирует морфизм в гомологиях:

$$f_* \colon H_n(S^n) \to H_n(S^n).$$

Так как f_* — гомоморфизм бесконечной циклической группы в себя, он должен иметь вид

$$f_*(\alpha) = d \cdot \alpha$$

для некоторого фиксированного $d \in \mathbb{Z}$, зависящего только от f. Это число называют *степенью отображения* f и обозначают $\deg f$.

Базовые свойства степени.

- 1. $\deg \operatorname{id}_{S^n} = 1$.
- 2. Если f не сюръекция, то $\deg f=0$, так как мы можем выбрать $x\in S^n\setminus f(S^n)$ и представить f в виде композиции

$$S^n \to S^n \setminus \{x\} \hookrightarrow S^n$$

а пространство $S^n \setminus \{x\}$ — стягиваемо, значит $H_n(S^n \setminus \{x\}) = 0$, а значит и $f_* = 0$.

- 3. Если $f \sim g$, то $\deg f = \deg g$.
- 4. $\deg f \circ g = \deg f \cdot \deg g$.
- 5. Если f гомотопическая эквивалентность, то существует g такое, что $f\circ g\sim \mathrm{id}\Rightarrow \deg f\deg g=1\Rightarrow \deg f=\pm 1.$
- 6. Рассмотрим f, которое тождественно действует на первых n координатах и отправляет x_{n+1} в $-x_{n+1}$. Тогда $\deg f = -1$. Действительно, мы модем реализовать сферу, как склейку двух симплексов Δ_1^n и Δ_2^n по границе. Тогда n-мерная цепь $\Delta_1^n \Delta_2^n$ являются образующей n-мерных гомологий, а отображение f переставляет местами Δ_1^n и Δ_2^n , то есть действует на образующую умножением на -1.
- 7. Степень антиподального отображения: $\deg(x \mapsto -x) = (-1)^{n+1}$
- 8. Если $f \colon S^n \to S^n$ не имеет неподвижных точек, то $f \sim (x \mapsto -x)$ и соответственно $\deg f = (-1)^{n+1}$. Действительно, если $f(x) \neq x$, то отрезок с концами f(x) и -x, который задаётся, как

$$t \mapsto (1-t)f(x) - tx, \ 0 \le t \le 1,$$

не проходит через начало координат и формула

$$H(t,x) = \frac{(1-t)f(x) - tx}{\|(1-t)f(x) - tx\|}$$

определяет гомотопию f(x) в постоянное отображение.

Теорема 19 (О причёсывании ежа). S^n допускает непрерывное ненулевое (касательное) векторное поле тогда и только тогда, когда n — нечетно.

Доказательство. Предположим, что $x\mapsto V(x)$ — непрерывное поле касательных векторов к сфере. Тогда, если рассматривать вектор V(x), как вектор в начале координат, а не в точке касания, то условие касания означает просто, что $x\perp V(x)$. Если $V(x)\neq 0$, то мы можем нормализовать веторное поле так, что $\|V(X)\|=1\ \forall x$, тогда векторы

$$(\cos t)x + (\sin t)V(x)$$

лежат на единичной окружности в $\mathrm{span}(x,V(x))$. Соотвественно, при $t\in[0,\pi]$ мы получаем гомотопию тождественного отображения id_{S^n} в антиподальное отображение:

$$H(t,x) = (\cos t)x + (\sin t)V(x).$$

Отсюда следует, что $(-1)^{n+1}=1$, а значит, n должно быть нечетно. С другой стороны, когда n=2k-1, мы можем положить

$$V(x_1, x_2, \dots, x_{2k-1}, 2k) = (-x_2, x_1, \dots, -x_{2k}, x_{2k+1})$$

и это даст нам искомое векторное поле.

Опишем теперь метод вычисления, который чаще всего применим на практике. Пусть $f\colon S^n\to S^n$ и существует $y\in S^n$ такое, что $f^{-1}(y)=\{x_1,\ldots,x_k\},\,U_1,\ldots,U_k$ — непересекающиеся окрестности этих точек, которые f переводит в окрестность V точки y. Тогда $f(U_i\setminus x_i)\subset V\setminus y$ и мы имеем коммутативную диаграмму:

2.17 Клеточные гомологии 23

$$H_{n}\left(U_{i},U_{i}\setminus\left\{x_{i}\right\}\right) \xrightarrow{f_{*}} H_{n}(V,V\setminus\left\{y\right\})$$

$$\downarrow^{k_{i}} \parallel$$

$$H_{n}\left(S^{n},S^{n}\setminus\left\{x_{i}\right\}\right) \xleftarrow{p_{i}} H_{n}\left(S^{n},S^{n}\setminus f^{-1}(y)\right) \xrightarrow{f_{*}} H_{n}\left(S^{n},S^{n}\setminus\left\{y\right\}\right)$$

$$\downarrow^{k_{i}} \parallel$$

$$\downarrow^{h_{n}}\left(S^{n},S^{n}\setminus\left\{x_{i}\right\}\right) \xrightarrow{f_{*}} H_{n}\left(S^{n},S^{n}\setminus\left\{y\right\}\right)$$

$$\downarrow^{h_{n}}\left(S^{n},S^{n}\setminus\left\{x_{i}\right\}\right) \xrightarrow{f_{*}} H_{n}\left(S^{n},S^{n}\setminus\left\{y\right\}\right)$$

Все отображения на ней индуцируются включениями. Два ихоморфизма в верхней части диаграммы получаются из теоремы о вырезании 10, а два в нижней — из точной последовательности пары 6.

Посредством этих четырех гомоморфизмов две верхние группы можно отождествить с \mathbb{Z} , тогда верхний гомоморфизм f_* становится умножением на число и это число мы будем называть локальной степенью отображения f и обозначать $\deg f|_{x_i}$.

Теорема 20 (Локальность степени). Пусть $f: S^n \to S^n$ и $y \in S^n$ таково, что $f^{-1}(y) = \{x_1, \dots, x_k\}$. Тогда

$$\deg f = \sum_{i} \deg f|_{x_i}.$$

Доказательство. По теореме о выразении 10, группа $H_n(S^n,S^n\setminus f^{-1}(y))$ — прямая сумма групп $H_n(U_i,U_i\setminus \{x_i\})$, причем k_i — отображение включения i-го слагаемого, а p_i — проекция на i-е слагаемое. Из коммутативности нижнего треугольника мы получаем, что

$$p_i \circ j(1) = 1,$$

а значит, $j(1)=(1,\ldots,1)=\sum_i k_i(1)$. Коммутативность верхнего квадрата говорит, что f_* отображает $k_i(1)$ в $\deg f|_{x_i}$, а коммутативность нижнего квадрата уже дает нам формулу

$$\deg f = \sum_{i} \deg f|_{x_i}.$$

2.17 Клеточные гомологии

Лемма 9. Пусть X — конечный CW-комплекс. Тогда:

- а) $H_k(X^n, X^{n-1}) = 0$, если $k \neq n$ и изоморфно мвободной абелевой группе, если k = n. Образующие этой группы клетки размерности n.
- b) $H_k(X^n) = 0$, если k > n. В частности, если комплекс конечномерен, то $H_k(X) = 0 \ \forall k > \dim X$.
- с) Вложение $i\colon X^n\hookrightarrow X$ индуцирует изоморфизм $i_*\colon H_k(X^n)\to H_k(X)$ при k< n и эпиморфизм при k=n

Доказательство. Во-первых, мы знаем, что (X^n, X^{n-1}) — пара Борсука. Кроме того, $X^n/X^{n-1}\cong\bigvee_{\alpha}S^n$, где α пробегает все n-мерные клетки. Тогда факт а) следует из теоремы о факторизации 9 и теоремы 14.

Теперь рассмотрим длинную точную последовательность пары

$$\dots \to H_{k+1}(X^n, X^{n-1}) \to H_k(X^{n-1}) \to H_k(X^n) \to H_k(X^n, X^{n-1}) \to \dots$$

Если $k \neq n$ или n-1, то обе внешние группы равны нулю, как группы гомологий букета n-мерных сфер, поэтому мы получаем изоморфизм

$$H_k(X^{n-1}) \cong H_k(X^n), \quad k \neq n, n-1.$$

Тогда, если k > n, то

$$H_k(X^n) \cong H_k(X^{n-1}) \cong \dots H_k(X^0) = 0,$$

что доказывает пункт b). Если же k < m, то тогда

$$H_k(X^n) \cong H_k(X^{n+1}) \cong \ldots \cong H_k(X^{n+m}) \ \forall m \ge 0,$$

что доказывает с) в случае конечномерного комплекса.

П

2.17 Клеточные гомологии 24

Замечание. Утверждение с) верно и для бесконечномерных CW-комплкесов (идея состоит в том, что каждая сингулярная цепь имеет компактный образ, а значит пересекается лишь с конечным числом клеток). (Доказательство можно посмотреть в Хатчере).

Теперь мы определим клеточные гомологи — более продвинутый способ вычислять гомологии клеточных пространств. Начнем с такой коммутативной диаграммы:

Её мы получили из точных последовательностей для пар (X^{n+1},X^n) , (X^n,X^{n-1}) , (X^{n-1},X^{n-2}) . Морфизмы в нижней строчке определяются, как $d_{n+1} \stackrel{\mathrm{def}}{=} j_n \circ \partial_{n+1}$. Нетрудно заметить, что из точности мы получаем $d_n \circ d_{n+1} = 0$. Таким образом, средняя строчка диаграммы является цепным комплексом (его называют клеточным цепным комплексом для X). Как мы уже замечали в доказательстве леммы выше, группа $H_n(X^n,X^{n-1})$ — свободная абелева группа с базисом из n-мерных клеток в X.

Определение 21. Рассмотрим построенный выше цепной комлекс с группой k-мерных цепей $C_k^{\text{CW}}(X) \stackrel{\text{def}}{=} H_k(X^k, X^{k-1})$. Гомологии этого комплекса называют *клеточным гомологиями пространства* X и обозначают $H_n^{\text{CW}}(X)$.

3амечание. В самом деле, всё происходящее вполне логично — в случае симплициальных гомологий мы рассматриваем свободные абелевы группы, порожденные симплексами всех размерностей, а тут — клетками всех размерностей.

Теорема 21. Пусть $X-\mathrm{CW}$ -комплекс. Тогда имеет место изоморфизм $H_n^\mathrm{CW}(X)\cong H_n(X)$.

Доказательство. Из точности и теоремы о гомоморфимзе мы имеем изоморфизм

$$H_n(X) \cong H_n(X^n) / \operatorname{Im} \partial_{n+1}$$
.

Так как j_n — инъекция, $\operatorname{Im} \partial_{n+1} \cong \operatorname{Im} j_n \circ \partial_{n+1} = \operatorname{Im} d_{n+1}$. С другой стороны, $\operatorname{Im} j_n \cong \operatorname{Ker} \partial_n$. Из инъективности j_{n-1} мы имеем $\operatorname{Ker} \partial_n \cong \operatorname{Ker} d_n$. Значит, j_n индуцирует изоморфизм факторгруппы:

$$H_n(X) \cong H_n(X^n) / \operatorname{Im} \partial_{n+1} \cong \operatorname{Ker} d_n / \operatorname{Im} d_{n+1}.$$

Следствие 8. Пусть X - CW-комплекс, тогда:

- 1. $H_n(X) \cong 0$, если в X нет n-мерных клеток.
- 2. Если $X-\mathrm{CW}$ -комплекс с k клетками размерности n, то группа $H_n(X)$ порождена не более чем k элементами. В самом деле, так как $H_n(X^n,X^{n-1})$ группа с k образующими, у подгруппы $\mathrm{Ker}\, d_n$ никак не может быть больше образующих, а значит и в факторгруппе $\mathrm{Ker}\, d_n/\mathrm{Im}\, d_{n+1}$ тоже.

2.17 Клеточные гомологии 25

3. Если $X-\mathrm{CW}$ -комплекс, у которого нет пар клеток в соседних размерностях, то $H_n(X)-$ свободная абелева группа с базисом из n-мерных клеток.

Пример 7. Последний пункт следствия 8 применим, например, к $\mathbb{C}\mathrm{P}^n$, так как клеточная структура для $\mathbb{C}\mathrm{P}^n$ имеет по одной клетке каждой четной размерности до 2n (действительно, это заметно из того, что $\mathbb{C}\mathrm{P}^n=\mathbb{C}^n\cup\mathbb{C}\mathrm{P}^{n-1}$). Значит, клеточный цепной комплекс для $\mathbb{C}\mathrm{P}^n$ имеет вид:

$$\mathbb{Z} \to 0 \to \mathbb{Z} \to 0 \to \ldots \to 0 \to \mathbb{Z} \to 0$$

Также при помощи этого же факта можно посчитать гомологии $S^n \times S^n$.

Рассмотрим теперь подробнее клеточный оператор границы d_n . При n=1 это легко, так как

$$d_1 \colon H_1(X^1, X^0) \to H_0(X^0)$$

и это просто обычное граничное отображение.

В случае, когда комплекс X связен и имеет лишь одну нульмерную клетку, $d_1=0$, так как иначе $H_0(X) \neq \mathbb{Z}$. В общем случае формула для клеточного оператора границы имеет следующий вид:

Утверждение 4. Имеет место равенство:

$$d_n(e_\alpha^n) = \sum_\beta d_{\alpha\beta} e_\beta^{n-1},$$

где $d_{lphaeta}-$ степень отображения $S_{lpha}^{n-1} o X^{n-1} o S_{eta}^{n-1}$, которое является композицией отображения приклеивания клетки e^n_{lpha} по границе и отображения фаткоризации, стягивающего $X^{n-1}\setminus e^{n-1}_{eta}$ в точку.

Доказательство. Для получения этой формулы рассмотрим такую коммутативную диаграмму:

$$H_{n}\left(D_{\alpha}^{n},\partial D_{\alpha}^{n}\right) \xrightarrow{\partial} \widetilde{H}_{n-1}\left(\partial D_{\alpha}^{n}\right) \xrightarrow{\Delta_{\alpha\beta}} \widetilde{H}_{n-1}\left(S_{\beta}^{n-1}\right)$$

$$\downarrow^{\Phi_{\alpha_{*}}} \qquad \qquad \downarrow^{\varphi_{\alpha_{*}}} \qquad \qquad \downarrow^{q_{\beta_{*}}}$$

$$H_{n}\left(X^{n},X^{n-1}\right) \xrightarrow{\partial_{n}} \widetilde{H}_{n-1}\left(X^{n-1}\right) \xrightarrow{q_{*}} \widetilde{H}_{n-1}\left(X^{n-1}/X^{n-2}\right)$$

$$\downarrow^{d_{n}} \qquad \downarrow^{j_{n-1}} \qquad \qquad \downarrow^{\cong}$$

$$H_{n-1}\left(X^{n-1},X^{n-2}\right) \xrightarrow{\cong} H_{n-1}\left(X^{n-2}/X^{n-2},X^{n-2}/X^{n-2}\right)$$

Проясним, что за стрелки на ней:

- Φ_{α} характеристическое отображение клетки e^n_{α} , φ_{α} её отображение приклеивания. $q\colon X^{n-1}\to X^{n-1}/X^{n-2}$ отображение факторизации. $q_{\beta}\colon X^{n-1}/X^{n-2}\to S^{n-2}_{\beta}$ стягивание дополнения клетки e^{n-1}_{β} в точку и отождествление получишейся сферы с $S_{\beta}^{n-1}=D_{\beta}^{n-1}/\partial D_{\beta}^{n-1}.$
- $\Delta_{\alpha\beta} = q_{\beta}q\varphi_{\alpha}$.

Отображение Φ_{α_*} переводит образующую $[D^n_{\alpha}]\in H_n(D^n_{\alpha},\partial D^n_{\alpha})$ в образующую слагаемого $\mathbb Z$ группы $H_n(X^n, X^{n-1})$, соответствующего клетке e^n_{α} (действительно, такие клетки образуют базис $H_n(X^n, X^{n-1})$). Коммутативность левой половины диаграммы даёт нам, что

$$d_n(e_\alpha^n) = j_{n-1}\varphi_{\alpha_*}\partial[D_\alpha^n].$$

Базис группы $H_{n-1}(X^{n-1},X^{n-2})$ состоит из (n-1)-мерных клеток, а отображение q_{β_*} — это проекция группы $\widetilde{H}_{n-1}(X^{n-1}/X^{n-2})$ (которая, как группа гомологий букета окружностей суть прямая сумма $\mathbb Z$, где каждое слагаемое соотвествует (n-1)-мерной клетке) на её слагаемое \mathbb{Z} , соответсвующее e_{β}^{n-1} .

Теперь формула следует непосредственно из коммутативности правой верхней части диаграммы?

2.18 Гомологии поверхностей

В данном параграфе, пользуясь клеточными гомологиями, мы вычислим гомологии поверхностей.

Пусть M_g — компактная ориентируемая поверхность с g ручками. Реализуем её, как склейку 4g-угольника:

Тогда в её клеточном разбиении:

- 1 двумерная клетка, приклеенная по произведению коммутаторов $[a_1,b_1]\dots[a_q,b_q]$.
- 2g одномерных клеток.
- 1 нульмерная клетка.

Значит, цепной клеточный комплекс для M_q будет иметь вид:

$$0 \to \mathbb{Z} \xrightarrow{d_2} \mathbb{Z}^{2g} \xrightarrow{d_1} \mathbb{Z} \to 0$$

Так как комплекс связен и имеет лишь одну нульмерную клетку, $d_1=0$. Кроме того, каждое ребро $[a_1,a_2],\ [a_g,b_g]$ появляется в произведении коммутаторов вместе со своим обратным, а значит, $\Delta_{\alpha\beta}$ гомотопны постоянным отображениям, из чего следует, что $d_2=0$.

Таким образом, мы имеем

$$H_k(M_g) = egin{cases} \mathbb{Z}, & k = 0 \ ext{или} \ k = 2, \ \mathbb{Z}^{2g}, & k = 1 \ 0, & ext{иначе} \end{cases}$$

Теперь вычислим гомологии неориентируемой замкнутой поверхности рода g. Она имеет такую клеточную структуру:

- Одна нульмерная клетка.
- g одномерных клеток.
- Одна двумерная клетка, приклеенная по слову $a_1^2 \dots a_q^2$

Тогда клеточный цепной комплекс имеет вид:

$$0 \to \mathbb{Z} \xrightarrow{d_2} \mathbb{Z}^g \xrightarrow{d_1} \mathbb{Z} \to 0$$

Аналогично предыдущему разу, $d_1 = 0$, а вот d_2 задаётся уравнением

$$d_2(1) = (2, \dots, 2),$$

так как каждое ребро a_i появляется в слове приклеивания двумерной клетки со степенью 2, а это значит, что каждое отображение $\Delta_{\alpha\beta}$ гомотопно отображению степени 2. Значит, d_2 инъективно и

$$H_2(N_a) = 0.$$

Выберем в \mathbb{Z}^g такой базис: $(1,0,\dots,0),(0,1,0,\dots,0),\dots,(0,\dots,1,0),(1,1,\dots 1)$. Тогда нетрудно заметить, что

$$H_1(N_q) \cong \mathbb{Z}^{g-1} \oplus \mathbb{Z}/2\mathbb{Z}.$$

2.19 Пространства Мура

Допишу позже вместе с пространствами Эйленберга-Маклейна.

2.20 Теорема о вложении дисков и сфер

Напомним, что топологическое вложение — гомеоморфизм на образ.

Теорема 22. Пусть $h \colon D^k \to S^n - \epsilon$ ложение. Тогда

$$\widetilde{H}_i(S^n \setminus h(D^k)) = 0 \ \forall i.$$

Кроме того, если $h \colon S^k \to S^n$ — вложение (и k < n), то

$$\widetilde{H}_iig(S^n\setminus hig(S^kig)ig)=\mathbb{Z},\; i=n-k-1\; u\, 0$$
 иначе.

Доказательство. Проведём индукцию по k. Случай k=0 тривиален:

$$S^n \setminus h(D^0) = \mathbb{R}^n.$$

Теперь докажем индукционный переход от противного. Рассмотрим покрытие нашего пространства двумя множествами:

$$A = S^n \setminus h\left(I^k \times \left[0, \frac{1}{2}\right]\right), \quad B = S^n \setminus h\left(I^k \times \left[\frac{1}{2}, 1\right]\right).$$

Заметим, что $A\cup B=S^n\setminus \left(h\big(I^k imes \left[0,\frac12\right]\right)\cap h\big(I^k imes \left[\frac12,1\right]\right)\right)=S^n\setminus h\big(I^k imes \frac12\right)$ и

$$\widetilde{H}_i(A \cup B) \cong \widetilde{H}_i\left(S^n \setminus h\left(I^k \times \frac{1}{2}\right)\right) = 0,$$

по индукционному предположению. Напишем теперь точную последовательность Майера-Вьеториса (11):

$$\dots \to H_n(A \cap B) \to H_n(A) \oplus H_n(B) \to H_n(X) \to H_{n-1}(A \cap B) \to \dots$$

$$\dots \to H_n\Big(S^n \setminus h\Big(I^{k+1}\Big)\Big) \to H_n(A) \oplus H_n(B) \to \underbrace{H_n\Big(S^n \setminus h\Big(I^k \times \frac{1}{2}\Big)\Big)}_{\cong 0} \to H_{n-1}\Big(S^n \setminus h\Big(I^{k+1}\Big)\Big) \to \dots$$

значит если в $\widetilde{H}_i(A\cap B)=\widetilde{H}_i\big(S^n\setminus \big(I^k\times I\big)\big)$ есть ненулевой класс a, его образ (a,-a) в $\widetilde{H}_n(A)\oplus \widetilde{H}_n(B)$ будет ненулевым, а значит, в $\widetilde{H}_i(A)$ или $\widetilde{H}_i(B)$ тоже будет ненулевым. Далее мы можем также разбить на две части интервал в A или в B (в зависимости от того, где не ноль) и проделать всё полностью аналогично. Таким образом мы получим последовательность вложенных интервалов I_n таких, что

$$\widetilde{H}_i(S^n \setminus h(I^k \times I_n)) \neq 0, \ a \in \widetilde{H}_i(S^n \setminus h(I^k \times I_n)).$$

Тогда, если $p = \bigcap I_n$, то по индукционному предположению

$$\widetilde{H}_i(S^n \setminus h(I^k \times p)),$$

то есть a представляет ноль в этих гомологиях. Но это означает, что он является чьей-то границей, но тогда он является границей и в допредельном случае, что даёт нам противоречие.

Докажем теперь второй пункт. Представим сферу ввиде объединения двух дисков (полусфер):

$$S^k = D_+^k \cup D_-^k, \quad D_-^k \cap D_+^k = S^{k-1}.$$

2.21 Когомологии 28

тогда $S^n \setminus h(S^k) = S^n \setminus h(D_+^k \cup D_-^k) = S^n \setminus h(D_-^k) \cap S^n \setminus h(D_+^k)$. Запишем опять точную последовательность Майера-Вьеториса 11, полагая

$$A = S^n \setminus h(D_+^k), \quad B = S^n \setminus h(D_+^k).$$

 $\dots \to H_i\Big(S^n \setminus h\Big(S^k\Big)\Big) \to \underbrace{H_i\Big(S^n \setminus h\Big(D_-^k\Big)\Big)}_{=0} \oplus \underbrace{H_i\Big(S^n \setminus h\Big(D_+^k\Big)\Big)}_{=0} \to H_i\Big(S^n \setminus h\Big(S^{k-1}\Big)\Big) \to \dots$

Нулевые элементы в точной последовательности у нас их первого утверждения теоремы. Теперь видно, что мы можем вести индукцию по k.

2.21 Когомологии

Итак, рассмотрим цепной комплекс абелевых групп (C_{\bullet}, ∂)

$$\ldots \to C_k \to C_{k-1} \to C_{k-2} \to \ldots$$

Тогда мы можем рассмотреть группы $C^k \stackrel{\mathrm{def}}{=} \mathrm{Hom}(C_k,G)$, где G — фиксированная абелева группа. ⁹ Тогда мы получаем цепной комплекс

$$\dots \leftarrow C^{k+1} \stackrel{\delta}{\leftarrow} C^k \stackrel{\delta}{\leftarrow} C^{k-1} \stackrel{\delta}{\leftarrow} \dots$$

Естественно, стрелки развернулись, так как мы подействовали на комплекс контравариантным функтором $\operatorname{Hom}(_,G)$. Действие оператора δ определяется естественным образом:

$$\varphi \in C^k$$
, $\delta \varphi \colon C_{k+1} \xrightarrow{\partial} C_k \xrightarrow{\varphi} G$, $\delta \varphi = \varphi \circ \partial$.

Замечание. Сразу же нетрудно заметить, что $\delta^2=0$, то есть построенный комплекс действительно будет комплексом. Действительно,

$$\delta_k \circ \delta_{k-1}(\varphi(c)) = \delta_k(\varphi(\partial_{k-1}c)) = \varphi(\partial_k \partial_{k-1}c) = 0.$$

Определение 22. Группы гомологий коцепного комплекса $(C^{\bullet}, \delta) = (\operatorname{Hom}(C_{\bullet}), G), \delta)$ называют *группами когомологий* комплекса (C_{\bullet}, ∂) с коэффициентами в группе G и обозначаются $H^k(C_{\bullet}; G)$. Как и в случае с гомологиями, $\operatorname{Im} \delta_k$ называют k-мерными кограницами, $\operatorname{Ker} \delta_k - k$ -мерными коциклами, а $C^k - k$ -мерными коцепями.

Таким образом, мы определили и *сингулярные когомологии* пространства X (так как они строятся по сингулярным гомологиям). Заметим, что так как функтор Hom контравариантен, логично ожидать, что и когомологии будут контраваринатным функтором. Действительно, если $f\colon X\to Y$ — непрерывное отображение, то у нас есть индуцированный морфизм

$$f_*\colon C_k(X)\to C_k(Y)$$

и действием функтора Hom мы получаем индуцированный морфизм $f^*\colon C^k(Y)\to C^k(X)$:

$$\varphi \in C^k(Y), \ \varphi \colon C^k(Y) \to G, \ f^*(\varphi) \stackrel{\mathrm{def}}{=} \varphi \circ f \colon C^k(X) \to G, \ f^*(\varphi) \in C^k(X).$$

Покажем теперь, что у нас будет и индуцированный морфизм в когомологиях:

$$f^* \colon H^k(Y) \to H^k(X)$$

Для этого надо проверить, что отображение уважает добавление кограницы, то есть, если мы выберем другого представителя того же когомологического класса, мы полужем тот же образ, что и до этого. Действительно,

$$f^*(c_k + \delta c_{k-1}) = f^*(c_k) + \delta f^*(c_{k-1})$$

Замечание. Формально, как и в гомологиях, нам надо проверить, что $f^*\delta=\delta f^*$. Действительно, пусть $\varphi\in C^k(X)$, тогда

$$f^*(\delta\varphi) = f^*(\varphi\partial) = \varphi\partial f = \varphi f\partial = \delta f^*(\varphi).$$

В третьем равенстве мы пользуемся тем, что в начале курса мы уже проверяли, что граничный оператор коммутирует с непрерывными отображениями.

⁹В нашем, топологическом контексте, это группа коэффициентов.

2.22 Формула универсальных коэффициентов для когомологий

Пример 8. Рассмотрим следующий комплекс:

$$0 \to \underbrace{\mathbb{Z}}_{C_3} \xrightarrow{\cdot 0} \underbrace{\mathbb{Z}}_{C_2} \xrightarrow{\cdot 2} \underbrace{\mathbb{Z}}_{C_1} \xrightarrow{\cdot 0} \underbrace{\mathbb{Z}}_{C_0} \to 0$$

После применения функтора $\operatorname{Hom}(_,\mathbb{Z})$ мы получим такой комплекс:

$$0 \leftarrow \underbrace{\mathbb{Z}}_{C^3} \leftarrow \underbrace{\mathbb{Z}}_{C^2} \leftarrow \underbrace{\mathbb{Z}}_{C^1} \leftarrow \underbrace{\mathbb{Z}}_{C^0} \leftarrow 0$$

Посмотрим, какие в новом комплексе отображения. Действительно, пусть $\varphi\colon C_1\to \mathbb{Z},\, \psi\colon C_2\to C_1, \psi(x)=2x$, тогда $\varphi\psi\colon C_2\to \mathbb{Z}\in C^2$. Нетрудно заметить, что $\varphi(\psi(x))=\varphi(2x)=2\varphi(x)$. Значит, мы получили вот такой комплекс:

$$0 \leftarrow \underbrace{\mathbb{Z}}_{C^3} \xleftarrow{\cdot 0} \underbrace{\mathbb{Z}}_{C^2} \xleftarrow{\cdot 2} \underbrace{\mathbb{Z}}_{C^1} \xleftarrow{\cdot 0} \underbrace{\mathbb{Z}}_{C^0} \leftarrow 0$$

Вычислим сначала гомологии:

$$H_0(C_{\bullet}) = \mathbb{Z}, \ H_1(C_{\bullet}) = \mathbb{Z}/2\mathbb{Z}, \ H_2(C_{\bullet}) = 0, \ H_3(C_{\bullet}) = \mathbb{Z}.$$

Теперь вычислим когомологии:

$$H^0(C_{\bullet}) = \mathbb{Z}, \ H^1(C_{\bullet}) = 0, \ H_2(C_{\bullet}) = \mathbb{Z}/2\mathbb{Z}, \ H_3(C_{\bullet}) = \mathbb{Z}.$$

То есть, сами группы не изменились, но изменилась градуировка.

Это вполне естественно, так как, на самом деле, любой цепной комплекс конечно-порожденных свободных абелевых групп является прямой суммой комплексов

$$0 \to \mathbb{Z} \to 0$$
 и $0 \to \mathbb{Z} \xrightarrow{\cdot m} \mathbb{Z} \to 0$

и в силу того, что функтор Hom аддитивен на конечных копроизведениях, применяя $\operatorname{Hom}(_,\mathbb{Z})$ к исходному комплексу, мы получаем прямую сумму комплексов

$$0 \leftarrow \mathbb{Z} \leftarrow 0 \text{ и } 0 \leftarrow \mathbb{Z} \stackrel{\cdot m}{\leftarrow} \mathbb{Z} \leftarrow 0$$

Таким образом, мораль всего этого дела в том, что группы когомологий — тоже самое, что группы гомологий, за исключением того, что кручение смещается на олну размерность.

Утверждение 5. Пусть (C_{\bullet}, ∂) — цепной комплекс. Тогда существует гомоморфизм

$$h: H^n(C;G) \to \operatorname{Hom}(H_n(C),G).$$

Доказательство. Рассмотрим когомологический класс $[\varphi] \in H^n(C_{\bullet};G)$, $\varphi \colon C_n \to G$, $\delta \varphi = 0$.

$$\delta \varphi = \varphi \partial \Leftrightarrow \varphi|_{\operatorname{Im} \partial_{n+1}} = 0$$

Ограничение $\varphi_0 = \varphi|_{\operatorname{Ker} \partial_n} \colon \operatorname{Ker} \partial_n \to G$ индуцирует гомоморфизм факторизации

$$\overline{\varphi_0}$$
: Ker $\partial_n/\operatorname{Im} \partial_{n+1} \to G$, $\overline{\varphi_0} \in \operatorname{Hom}(H_n(C_{\bullet}), G)$.

Таким образом, полагая $h(\varphi) = \overline{\varphi}_0$, мы получаем нужное.

Упражнение. h — эпиморфизм.

Рассмотрим теперь короткую точную последовательность

$$0 \to Z_{n+1} \to C_{n+1} \xrightarrow{\partial} B_n \to 0$$

Применяя функтор $\operatorname{Hom}(-,G)$ мы получаем точную последовательность

$$0 \leftarrow Z^{n+1} \leftarrow C^{n+1} \leftarrow B^{n+1} \leftarrow 0$$

На самом деле, мы имеем коммутативную диаграмму

$$0 \longleftarrow Z^{n+1} \longleftarrow C^{n+1} \longleftarrow B^n \longleftarrow 0$$

$$0 \uparrow \qquad \delta \uparrow \qquad 0 \uparrow$$

$$0 \longleftarrow Z^n \longleftarrow C^n \longleftarrow B^{n-1} \longleftarrow 0$$

Видно, что эта диаграмма — часть короткой точной последовательности комплексов. Она даёт нам длинную точную последовательность:

$$\dots \leftarrow B^n \leftarrow Z^n \leftarrow H^n(C_{\bullet}, G) \leftarrow B^{n-1} \leftarrow Z^{n-1} \leftarrow \dots$$

Разбивая длинную точную последовательность на короткие точные последовательности мы получаем:

$$0 \leftarrow \operatorname{Ker}(Z^n \to B^n) \xleftarrow{h} H^n(C_{\bullet}; G) \leftarrow \operatorname{Coker}(Z^{n-1} \to B^{n-1}) \leftarrow 0$$

А теперь заметим, что $\mathrm{Ker}(Z^n \to B^n) = \mathrm{Hom}(H_n(C_{\bullet}),G)$. Таким образом, мы получаем расщепимую точную последовательность:

$$0 \to \operatorname{Coker}(Z^{n-1} \to B^{n-1}) \to H^n(C_{\bullet}; G) \to \operatorname{Hom}(H_n(C_{\bullet}), G) \to 0.$$

Определение 23. Пусть H — абелева группа. Тогда её *свободная резольвента* — это точная последовательность

$$\ldots \to F_2 \xrightarrow{f_2} F_1 \xrightarrow{f_1} F_0 \xrightarrow{f_0} H \to 0,$$

в которой каждая группа F_n свободная.

Применяя к этой точной последовательности функтор $\mathrm{Hom}(-,G)$ мы можем потерять точность, но во всяком случае, получим цепной комплекс:

$$\leftarrow F_2^* \xleftarrow{f_2^*} F_1^* \xleftarrow{f_1^*} F_0^* \xleftarrow{f_0^*} H^* \leftarrow 0$$

Будем обозначать группы когомологий свободной резольвенты, как $H^n(F,G)$. Нам понадобится следующее утверждение из гомологической алгебры:

Лемма 10. Пусть даны свободные резольвенты F и F' абелевых групп H и H'. Тогда любой гомоморфизм $\alpha \colon H \to H'$ можно продолжить до цепного отображения $F \to F'$. Кроме того, любые два таких цепных отображения, продолжающие гомоморфизм α , цепно гомотопны.

Для любых двух свободных резольвент F и F' группы H существуют канонические изоморфизмы

$$H^n(F;G) \cong H^n(F';G).$$

У любой абелевой группы H есть свободная резольвента вида

$$0 \rightarrow F_1 \rightarrow F_0 \rightarrow H \rightarrow 0$$

с $F_i = 0$ при i > 1, которую мы сейчас построим.

Выберем в H набор образующих и пусть F_0 — группа, свободно порожденная этими образующими. Тогда у нас есть сюръективный гомоморфизм $f_0\colon F_0\to H$, переводящий элементы базиса в образующие H. Его ядро будет свободно, как подгруппа свободной группы, поэтому мы можем положить $F_1=\mathrm{Ker}\, f_0$, а в качестве f_1 взять включение $\mathrm{Ker}\, f_0\hookrightarrow F_0$.

Для этой свободной резольвенты мы имеем $H^n(F;G)=0\ \forall n>1$, поэтому, из леммы 10 мы получаем, что это должно быть верно для всех свободных резольвент.

Таким образом, единственная интересная группа из $H^n(F;G)$ — это $H^1(F;G)$. Эта группа зависит лишь от H и G, поэтому обычно её обозначают $\operatorname{Ext}(H,G)^{10}$.

 $^{^{10}}$ Вообще говоря, в гомологической алгебре функтор Ext обычно интерпретируют, как множество классов эквивалентности расширений G посредством H, но в алгебраической топологии такая интерпретация редко нужна.

Так вот, из построения свободной резольвенты для группы H и определения когомологий мы теперь наконец можем заметить, что

$$\operatorname{Coker}(Z^{n-1} \to B^{n-1}) = \operatorname{Ext}(H_{n-1}(C_{\bullet}), G).$$

Теперь мы наконец можем заключить, что мы доказали формулу универсальных коэффициентов для когомологий:

Теорема 23 (Об универсальных коээфициентах для когомологий). Пусть C_{\bullet} — цепной комплекс. Тогда его группы когомологий определяются расщепимыми короткими точными последовательностями

$$0 \to \operatorname{Ext}(H_{n-1}(C_{\bullet}), G) \to H^n(C; G) \to \operatorname{Hom}(H_n(C), G) \to 0$$

Вообще говоря, это утверждение достаточно полезно, потому что на конечнопорожденных абелевых группах функтор Ext несложно посчитать:

- $\operatorname{Ext}(H \oplus H', G) \cong \operatorname{Ext}(H, G) \oplus \operatorname{Ext}(H', G)$.
- Ext(H,G) = 0, если H свободна.
- $\operatorname{Ext}(\mathbb{Z}/n\mathbb{Z}, G) \cong G/nG$.
- Если H конечно порождена, то имеет место изоморфизм

$$\operatorname{Ext}(H,\mathbb{Z}) \cong \operatorname{Tor}(H).$$

Кроме того, теорема об универсальных коэффициентов позволяет вычислять когомологии, зная только гомологии.

Следствие 9. Если группы гомологий $H_n(C)$ и $H_{n-1}(C)$ комплекса C, состоящего из свободных абелевых групп, конечно порождены и $T_n \subset H_n$ и $T_{n-1} \subset H_{n-1}$ — подгруппы кручения, то

$$H^n(C;\mathbb{Z}) \cong (H_{n-1}(C)/T_n) \oplus T_{n-1}.$$

Это следствие даёт нам обобщение и формализацию примера 8.

Кроме того, из всего этого дела есть еще одно замечательное следствие:

Следствие 10. Если $f \colon C_{\bullet} \to C'_{\bullet}$ индуцирует изоморфизм всех групп гомологий $H_k(C_{\bullet}) \cong H_k(C'_{\bullet})$. Тогда отображения $f^* \colon H^k(C_{\bullet}; G) \cong H^k(C'_{\bullet}; G)$.

Доказательство. Действительно, достаточно заметить, что из свойств свободной резольвенты мы знаем, что отобрежение цепных комплексов индуцирует такую вот диаграмму:

$$0 \longrightarrow \operatorname{Ext}(H_{n-1}(C), G) \longrightarrow H^{n}(C; G) \xrightarrow{h} \operatorname{Hom}(H_{n-1}(C), G) \longrightarrow 0$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$0 \longrightarrow \operatorname{Ext}(H_{n-1}(C'), G) \longrightarrow H^{n}(C'; G) \xrightarrow{h} \operatorname{Hom}(H_{n-1}(C'), G) \longrightarrow 0$$

Применяя 5-лемму и индукцию, мы получаем нужное.

2.23 Умножение в когомологиях

Пусть R — коммутативное и ассоциативное кольцо.

Пусть $\varphi \in C^{k}(X;R), \; \psi \in C^{\ell}(X;R)$. Тогда их произведением определяется таким образом:

$$\varphi\smile\psi\in C^{k+\ell},\quad (\varphi\smile\psi)(\sigma)=\varphi(\sigma|_{[v_0...v_k]})\cdot\psi(\sigma|_{[v_k...v_{k+\ell}]}),$$

где $\sigma \colon \Delta^{k+\ell} \to X$ — сингулярный симплекс.

Лемма 11. Для кограницы — произвения справедлива следующая формула:

$$\delta(\varphi \smile \psi) = \delta\varphi \smile \psi + (-1)^k \varphi \smile \delta\psi.$$

Доказательство. Пусть $\sigma \colon \Delta^{k+\ell} \to X$ — сингулярный симплекс. Тогда

$$(\delta \varphi \smile \psi)(\sigma) = \sum_{i=0}^{k+1} (-1)^i \varphi(\sigma|_{[v_0, \dots, \hat{v_i}, \dots, v_{k+1}]}) \psi(\sigma|_{[v_{k+1} \dots v_{k+\ell+1}]})$$

Распишем теперь второй кусок:

$$(-1)^{k}(\varphi \smile \delta \psi) = \sum_{i=k}^{k+\ell+1} (-1)^{i} \varphi(\sigma|_{[v_{0} \dots v_{k}]}) \psi(\sigma|_{[v_{k}, \dots, \hat{v_{i}}, \dots, v_{k+\ell+1}]})$$

Когда мы сложим эти две суммы, последнее слагаемое первой суммы сократится с первым слагаемым второй, а всё, что останется — как раз $\delta(\varphi\smile\psi)(\sigma)=(\varphi\smile\psi)(\partial\sigma)$.

Замечание. Таким образом, $\delta(\varphi\smile\psi)=\delta\varphi\smile\psi\pm\delta\psi\smile\varphi$. Из этого следует, что произведение коциклов — коцикл. Также это сразу даёт нам, что произведение коцикла и кограницы (в любом порядке) — кограница:

$$\varphi \smile \delta \psi = \pm \delta(\varphi \smile \psi)$$

Это даёт нам ассоциативное дистрибутивное умножение

$$\smile : H^k(X;R) \times H^\ell \to H^{k+\ell}(X;R).$$

Таким образом, при помощи — произведения, мы наделили

$$H^*(X;R) = \bigoplus_{n=0}^{\infty} H^n(X;R)$$

структурой кольца (а на самом деле, градуированной алгебры).

Если в кольце R есть единица, то единицей относительно \sim -произведения будет нольмерный коцикл $1 \in H^0(X;R)$, принимающий значение 1 на любом нульмерном сингулярном симплексе.

Замечание. Это показывает нам отдельную пользу когомологий: например, у $\mathbb{C}\mathrm{P}^2$ и $S^4\vee S^2$ все группы гомологий и группы когомлогий совпадают, а кольца когомологий отличаются.

3. Комплексные алгебраическая геометрия

Комплексные многообразия

Определение 24. Комплексным многообразием M называется гладкое многообразие, допускающее такое открытое покрытие $\{U_{\alpha}\}_{\alpha\in I}$ и такие координатные отображения $\varphi_{\alpha}\colon U_{\alpha}\to\mathbb{C}^n$, что все функции перехода $\varphi_{\alpha} \circ \varphi_{\beta}^{-1}$ голоморфны на $\varphi_{\beta}(U_{\alpha} \cap U_{\beta})$.

Функция f на открытом подмножестве $U\subset M$ называется голоморфной, если $\forall \alpha\in I$ функция $f\circ \varphi_{\alpha}^{-1}$ голоморфна в $\varphi_{\alpha}(U_{\alpha} \cap U)$.

Набор $z=(z_1,\dots,z_n)$ функций на $U\subset M$ называется голоморфной системой координат, если $\varphi_{\alpha}\circ z^{-1}$ и $z\circ \varphi_{\alpha}^{-1}$ голоморфны на $z(U\cap U_{\alpha})$ и $\varphi_{\alpha}(U\cap U_{\alpha})$ для всех $\alpha.$

Отображение $f: M \to N$, где M и N — комплексные многообразия, называется голоморфным, если в голоморфных локальных координатах оно задаётся голоморфными функциями.

Пример 9 (Примеры комплексных многообразий). Приведём какие-нибудь примеры комплексных многообразий:

- 1. Одномерное комплексное многообразие называют римановой поверхностью.
- 2. $P\mathbb{C}^n = (\mathbb{C}^{n+1} \setminus \{0\})/\{z \sim \lambda z\} = \mathbb{P}^n$ комплексное проективное пространство. Это пространство компактно, так как есть непрерывное сюръективное отображение $S^n \subset \mathbb{C}^{n+1} \to \mathbb{P}^n$.
- 3. Пусть $\Lambda=\mathbb{Z}^k\subset\mathbb{C}^n$ дискретная решётка. Факторгруппа \mathbb{C}^n/Λ обладает структурой комплексного многообразия, которую индуцирует проекция $\pi\colon\mathbb{C}^n\to\mathbb{C}^n/\Lambda$. Это многообразие компактно тогда и только тогда, когда k=2n и в этом случае \mathbb{C}^n/Λ называется комплексным тором.
- 4. Тут был еще пример, что при неразветвлённом накрытии структура комплексного многообразия наследуется, но я хз, что такое разветвлённое накрытие.

Касательное пространство к комплексному многообразию.

Пусть M — комплексное многообразие, $p \in M$, а $z = (z_1, \ldots, z_n)$ — система голоморфных координат в окрестности р. В случае комплексного многообразия имеются три различных понятия касательного пространства к M в точке $p \in M$.

- 1. Рассмотрим M, как вещественное 2n-многообразие. Тогда $T_{\mathbb{R},p}M$ пространство \mathbb{R} -линейных дифференцирований кольца $C^\infty(M,\mathbb{R})$ (с носителем в окрестности p). Если мы представим голоморфные координаты в виде $z_j=x_j+iy_j$, то $T_{\mathbb{R},p}M$ будет иметь базис $\{\frac{\partial}{\partial x_j},\ \frac{\partial}{\partial y_j}\}$, как векторное пространство над \mathbb{R} .
- 2. Пространство $T_{\mathbb{R},p}M$ можно комплексифицировать при помощи расширения скаляров, то есть рассмотреть

$$T_{\mathbb{C},p}M \stackrel{\mathrm{def}}{=} T_{\mathbb{R},p}M \otimes_{\mathbb{R}} \mathbb{C}.$$

 $T_{\mathbb{C},p}M$ называют комплексифицированным касательным пространством к M в точке p. Его можно реализовать, как пространство $\mathbb C$ -линейных дифференцирований кольца $C^\infty(M,\mathbb C)$ (опять же, фукнции с носителем в окрестности p). Соотвественно, там можно выбрать базис $\{\frac{\partial}{\partial x_i}, \frac{\partial}{\partial y_i}\}$, а при замене базиса на комлпексные обозначения

$$\frac{\partial}{\partial z_i} = \frac{1}{2} \left(\frac{\partial}{\partial x_i} - i \frac{\partial}{\partial y_i} \right), \ \frac{\partial}{\partial \overline{z_i}} = \frac{1}{2} \left(\frac{\partial}{\partial x_i} + i \frac{\partial}{\partial y_i} \right).$$

 «более стандартный» базис $\{\frac{\partial}{\partial z_j}, \frac{\partial}{\partial \overline{z_j}}\}$. 3. Подпространство $T_p'M=\mathrm{span}\{\frac{\partial}{\partial z_j}\}\leq T_{\mathbb{C},p}M$ называется голоморфным касательным пространством к M в точке p. Оно может быть реализовано, как подпространство в $T_{\mathbb{C},p}M$, состоящее из дифференцирований, обращающихся в ноль на антиголоморфных функциях (таких f, что f — голоморфна). Соответственно, подпространство $T_p''M=\mathrm{span}\{rac{\partial}{\partial\overline{z_i}}\}$ называется антиголомор ϕ ным касательным пространством к M в точке p. Ясно, что

$$T_{\mathbb{C},p}M = T'_pM \oplus T''_pM.$$

Заметим, что для комплексных многообразий M,N любое $f\in C^\infty(M,N)$ индуцирует линейное отображение

$$f_*\colon T_{\mathbb{R},p}M\to T_{\mathbb{R},f(p)}N$$

а значит и линейное отображение

$$f_*: T_{\mathbb{C},p}M \to T_{\mathbb{C},f(p)}N,$$

но не отображение $T_p'M o T_{f'(p)}'N$ для всех $p \in M.$

На самом деле, отображение $f: M \to N$ голоморфно тогда и только тогда, когда

$$f_*(T_p'M) \subset T_{f(p)}'N \quad \forall p \in M.$$

То есть, когда голоморфное касательное пространство отображается в голоморфное.

Заметим, что также, поскольку $T_{\mathbb{C},p}M=T_{\mathbb{R},p}M\otimes\mathbb{C}$, операция сопряжения, переводящая

$$\frac{\partial}{\partial z_j} \mapsto \frac{\partial}{\partial \overline{z_j}}$$

корректно определена на $T_{\mathbb{C},p}M$ и, как нетрудно заметить, $T''_pM=\overline{T'_pM}$. Отсюда следует, что проекция

$$T_{\mathbb{R},p}M \to T_{\mathbb{C},p}M \to T'_pM$$

есть \mathbb{R} -линейный изоморфизм.

Это обстоятельство позволяет заниматься геометрией исключительно в голоморфном касательном пространстве.

Пример 10. Пусть $z(t)\colon [0,1] \to \mathbb{C}$ — гладкая кривая. Тогда z(t) = x(t) + iy(t) и в качестве касательной мы можем взять

$$x'(t)rac{\partial}{\partial x}+y'(t)rac{\partial}{\partial y}$$
 в $T_{\mathbb{R}}\mathbb{C}$, либо $z'(t)rac{\partial}{\partial z}$ в $T'\mathbb{C}.$

Определение 25. Пусть теперь M, N — комплексные многообразия, $z = (z_1, \ldots, z_n)$ — голомрфные координаты в окрестности точки $p \in M$, а (w_1, \ldots, w_n) — голоморфные координаты в окрестности точки q = f(p), где $f \colon M \to N$ — голоморфное отображение. В связи с различными понятиями касательных пространств, мы имеем и различные понятия *якобиана* f.

1. Пусть $z_j=x_j+iy_j,\ w_k=u_k+iv_k$. Тогда в базисах $\{\frac{\partial}{\partial x_j},\frac{\partial}{\partial y_j}\}$ и $\{\frac{\partial}{\partial u_k},\frac{\partial}{\partial v_k}\}$ пространств $T_{\mathbb{R},p}M$ и $T_{\mathbb{R},q}N$ линейное отображение f_* задаётся $2m\times 2n$ -матрицей

$$\mathcal{J}_{\mathbb{R}}(f) = \begin{pmatrix} \frac{\partial u_k}{\partial x_j} & \frac{\partial u_k}{\partial y_j} \\ \frac{\partial v_k}{\partial x_j} & \frac{\partial v_k}{\partial y_j} \end{pmatrix}.$$

В базисах $\{\frac{\partial}{\partial z_j},\frac{\partial}{\partial \overline{z_j}}\}$ и $\{\frac{\partial}{\partial w_j},\frac{\partial}{\partial \overline{w_k}}\}$ пространств $T_{\mathbb{C},p}M$ и $T_{\mathbb{C},q}N$ отображение f_* задаётся матрицей

$$\mathcal{J}_{\mathbb{C}}(f) = egin{pmatrix} \mathcal{J}(f) & 0 \ 0 & \overline{\mathcal{J}(f)} \end{pmatrix}, \ \mathrm{rge} \ \mathcal{J}(f) = egin{pmatrix} rac{\partial w_k}{\partial z_j} \end{pmatrix}_{k,j}.$$

3амечание. В частности, отметим, что rank $\mathcal{J}_{\mathbb{R}}(f)=2$ rank $\mathcal{J}(f)$ и в случае m=n

$$\det \mathcal{J}_{\mathbb{R}}(f) = \det \mathcal{J}(f) \det \overline{\mathcal{J}(f)} = \left| \det \mathcal{J}(f) \right|^2 \ge 0,$$

то есть голоморфные отображения сохраняют ориентацию.

Мы будем считать, что пространство \mathbb{C}^n естественно ориентированно 2n-формой

$$\left(\frac{i}{2}\right)^n (\mathrm{d}z_1 \wedge \mathrm{d}\overline{z_1}) \wedge (\mathrm{d}z_2 \wedge \mathrm{d}\overline{z_2}) \wedge \ldots \wedge (\mathrm{d}z_n \wedge \mathrm{d}\overline{z_n}) = \mathrm{d}x_1 \wedge \mathrm{d}y_1 \wedge \ldots \wedge \mathrm{d}x_n \wedge \mathrm{d}y_n.$$

Ясно, что если $\varphi_{\alpha} \colon U_{\alpha} \to \mathbb{C}^n$ и $\varphi_{\beta} \colon U_{\beta} \to \mathbb{C}^n$ — голоморфные координатные отображения на комплексном многообразии M, то прообразы при φ_{α} и φ_{β} естественной ориентации на \mathbb{C}^n согласованы на $U_{\alpha} \cap U_{\beta}$.

Соотвественно, любое комплексное многообразие **имеет естественную ориентацию**, которая сохраняется при голоморфных отображениях.

3.2 Векторные рассоления

Определение 26. Пусть M — гладкое многообразие. Комплексным C^{∞} -расслоением на M называется семейство $\{E_X\}_{x\in M}$ комплексных векторных пространств E_x , параметризованных точками многообразия M, со структурой C^{∞} многообразия на

$$E = \bigcup_{x \in M} E_x$$

такой, что выполняются следующие условия:

- 1. отображение проектирования $\pi \colon E \to M$, переводящее E_x в x принадлежит классу C^∞ .
- 2. $\forall x_0 \in M$ найдутся открытое множество $U \subset M \colon U \ni x_0$ и диффеоморфизм

$$\varphi_U \colon \pi^{-1}(U) \to U \times \mathbb{C}^k$$

который отображает вектоорное пространство E_X изоморфно на $\{x\} \times \mathbb{C}^k$ для всех $x \in U$. Такое отображение φ_U называется *тривиализацей*.

3.3 Подмногообразия и аналитические подмножества

Докажем теперь несколько классических теорем для случая комплексных многообразий.

Теорема 24 (Об обратном отображении). Пусть U, V — открытые подмножества в \mathbb{C}^n , $0 \in U$ и $f: U \to V$ — такое голоморфное отображение, что матрица $\mathcal{J}(f) = (\partial f_i/\partial z_j)$ невырождена в 0.

Тогда отображение f взаимно однозначно в окрестности точки 0 и обратное отображение f^{-1} голоморфно в некоторой окрестности f(0).

Доказательство. Как мы уже отмечали в 3.1, $|\det \mathcal{J}_{\mathbb{R}}(f)| = |\det \mathcal{J}(f)|^2 \neq 0$ в точке 0, а значит, по обычной теореме об обратном отображении, функция f имеет в окрестности точки 0 обратную $C^{\infty}(U,V)$ функцию f^{-1} . Заметим, что $f^{-1}(f(z)) = z$, так что, дифференцируя это равенство в нуле мы имеем

$$0 = \frac{\partial}{\partial \overline{z_j}} (f^{-1}(f(z)))_j = \sum_k \frac{\partial f_j^{-1}}{\partial z_k} \frac{\partial f_k}{\partial \overline{z_i}} + \sum_k \frac{\partial f_j^{-1}}{\partial \overline{z_k}} \left(\frac{\partial \overline{f_k}}{\partial \overline{z_i}} \right) = \sum_k \frac{\partial f_j^{-1}}{\partial \overline{z_k}} \left(\frac{\partial \overline{f_k}}{\partial z_i} \right) \quad \forall i, j.$$

Так как матрица $(\partial f_k/\partial z_j)$ была невырождена, отсюда следует, что $\partial f_j^{-1}/\partial \overline{z_k} = 0 \ \forall j,k$, что и означает голоморфность функции f.

Теорема 25 (О неявной функции). Пусть заданы функции $f_1, \dots, f_k \in \mathcal{O}_n$, удовлетворяющие условию

$$\det\left(\frac{\partial f_i}{\partial z_j}(0)\right)_{1\leq i,\ j\leq k}\neq 0.$$

Тогда существуют такие функции $w_1,\ldots,w_k\in\mathcal{O}_{n-k}$, что в окрестности точки $0\in\mathbb{C}^n$

$$f_1(z) = \dots f_k(z) = 0 \Leftrightarrow z_i = w_i(z_{k+1}, \dots, z_n), \ 1 \le i \le k.$$

Доказательство. Как обычно, по обычной теореме о неявной функции в случае C^{∞} существуют функции ω_1,\dots,ω_k с нужным свойством. Остается показать голоморфность. Это делается непосредственно вот таким стандартным вычислением вычислением:

$$0 = \frac{\partial}{\partial \overline{z_{\alpha}}}(f_j(\omega(z), z)) = \dots = \sum \frac{\partial \omega_{\ell}}{\partial \overline{z_{\alpha}}} \frac{\partial f_j}{\partial \omega_{\ell}} \Rightarrow \frac{\partial \omega_{\ell}}{\partial \overline{z_{\alpha}}} = 0 \,\forall \alpha, \ell,$$

Замечание. Видимо почти всегда, когда мы хотим показать голоморфность, мы тупо считаем в локальных производных антиголоморфную производную.

Теперь мы увидим, что комлексные многообразия в смысле их морфизмов таки имеют свою, отличную от вещественной, специфику:

Утверждение 6. Если $f: U \to V - взаимно однозначное голоморфное отображение открытых множеств в <math>\mathbb{C}^n$, то $\det \mathcal{J}(f) \neq 0$, то есть f^{-1} голоморфно.

Замечание. Мы видели этот факт в обычном комплексном анализе (доказывали, что производная однолистной функции не обнуляется).

Определение 27. Комплексным подмногообразием S комплексного многообразия M называется подмножество $S \subset M$, которое локально задается либо как множество нулей совокупности голоморфных функций $f_1, \ldots f_k$ с условием $\mathrm{rank}\, \mathcal{J}(f) = k$, либо как образ открытого подмножества $U \subset \mathbb{C}^{n-k}$ при отображении $f \colon U \to M$ с условием $\mathrm{rank}\, \mathcal{J}(f) = n-k$.

Эквивалентность этих определений следует из теоремы о неявной функции 25.

Определение 28. Аналитическим подмножеством V комплексного многообразия M называется подмножество, являющееся локально множеством нулей конечного набора голоморфных функций.

Точка $p \in V$ называется гладкой I^1 точкой V, если V в некоторой её окрестности задаётся набором голоморфных функций f_1, \ldots, f_k , причем таким, что $\operatorname{rank} \mathcal{J}(f) = k$.

Множество гладких точек V обозначается V^* , а все точки из $V \setminus V^*$ называются *особыми*. Они формируют множество особенностей аналитического подмножества V, которое мы будем обозначать, как V_s .

В частности, если p — точка аналитической гиперповерхности $V \subset M$, задаваемой в локальных координатах z функцией f, определим κ ратность $\mathrm{mult}_p(V)$, как порядок обращения f в нуль в точке p, то есть наибольшее такое m, что

$$\frac{\partial^k f}{\partial z_{i_1} \dots \partial z_{i_k}} = 0 \,\forall k \le m - 1.$$

Утверждение 7. Множество V_s содержится в аналитическом подмножестве многообразия M, не совпадающем с V.

 $\it 3$ амечание. А на самом деле, при аккуратном выборе функций, несложно показать, что $\it V_s$ — аналитическое подмножество в $\it M$.

Запомним также полезный нам в будущем факт:

Утверждение 8. Аналитическое множество V неприводимо тогда и только тогда, когда V^* связно.

Тут было еще что-то про касательные конусы, пока что забьем на это, лень читать.

3.4 Когомологии де Рама и Дольбо

Пусть M — гладкое многообразие. Обозначим за $A^p(M;\mathbb{R})$ пространство дифференциальных форм степени p на M, а через $Z^p(M;\mathbb{R})$ подпространство замкнутых p-форм.

Так как $d^2 = 0$, у нас есть (ко)цепной комплекс

$$A^0(M;\mathbb{R}) \to \ldots \to A^p(M;\mathbb{R}) \to A^{p+1}(M;\mathbb{R}) \to \ldots$$

а его группы когомологий называются группами когомологий де Pама многообразия M.

Иными словами, группы когомологий де Рама — это факторгруппы замкнутых форм по модулю точных

$$H_{\mathrm{DR}}^p(M;\mathbb{R}) = Z^p(M;\mathbb{R})/dA^{p-1}(M).$$

Совершенно также мы можем рассматривать комплекснозначные формы и давать все соотвествующие определения (используя обозначения $A^p(M)$ и аналогичные, то есть без коэффициентов):

$$H^p_{\mathrm{DR}}(M) = Z^p(M)/dA^{p-1}(M)$$

¹¹ возможно, корректнее использовать слово регулярная?

Замечание. Нетрудно заметить, что как и всегда с коэффициентами,

$$H^p_{\mathrm{DR}}(M) = H^p_{\mathrm{DR}}(M; \mathbb{R}) \otimes \mathbb{C}.$$

Как мы заметили в самом первом параграфе, комплексифицированное кокасательное пространство раскладывается в голоморфную и антиголоморфную часть:

$$T_{\mathbb{C},z}^*M = T_z^{*'}M \oplus T_z^{*''}M,$$

что дает нам разложение

$$\Lambda^n T_{\mathbb{C},z}^* M = \bigoplus_{p+q=n} \Big(\Lambda^p T_z^{*'}(M) \otimes \Lambda^q T_z^{*''}(M) \Big),$$

а это (по определению внешних форм) даёт нам

$$A^n(M) = \bigoplus_{p+q=n} A^{p,q}(M)$$
, где

$$A^{p,q}(M) = \{ \varphi \in A^n(M) \mid \varphi(z) \in \Lambda^p T_z^{*'}(M) \otimes \Lambda^q T_z^{*''}(M) \ \forall z \in M \}.$$

Соотвественно, форму $\varphi \in A^{p,q}$ называют формой типа (p,q). Обозначим за $\pi^{(p,q)}$ проекцию

$$A^*(M) \to A^{p,q}(M),$$

так что для $\varphi \in A^*(M)$ имеем $\varphi = \sum \pi^{(p,q)} \varphi$.

Если $\varphi A^{p,q}(M)$, то для любого $z \in M$

$$d\varphi(z) \in \left(\Lambda^p T_z^{*'} M \otimes \Lambda^q T_z^{*''} M\right) \wedge T_{\mathbb{C},z}^* M,$$

$$d\varphi \in A^{p+1,q}(M) \oplus A^{p,q+1}(M).$$

Определоим теперь для этих замечательных дифференциальных форма операторы

$$\overline{\partial} \colon A^{p,q}(M) \to A^{p,q+1}, \quad \partial \colon A^{p,q}(M) \to A^{p+1,q}(M)$$

$$\overline{\partial} = \pi^{(p,q+1)} \circ \mathbf{d}, \quad \partial = \pi^{(p+1,q)} \circ \mathbf{d}, \text{ то есть } d = \partial + \overline{\partial}.$$

В локальных координатах $z=(z_1,\dots,z_n)$ форма $\varphi\in A^n(M)$ имеет тип (p,q), если она имеет представление в виде

$$\varphi(z) = \sum_{I,J} \varphi_{I,J}(z) dz_I \wedge d\overline{z}_J$$

Замечание. Короче говоря, вся эта страшная белиберда была, чтоб сказать, что бывают не только голоморфные дифференциальные формы, но и такие, где один кусок голоморфный, а другой антиголоморфный.

Дифференцировать эти формы можно так:

$$\overline{\partial}\varphi(z) = \sum_{I,I,j} -\frac{\partial}{\partial \overline{z_j}}\varphi_{IJ}$$