Does Increasing Public Spending in Health Improve Health? Lessons from Constitutional Reform in Brazil

Michel Szklo¹ Damian Clarke² Rudi Rocha³

¹FGV EAESP & FGV EESP CLEAR ²University of Chile & University of Exeter 3FGV FAESP

XVII RIDGE FORUM - LACEAs Health Economics Network 6th Annual Workshop May 15, 2023

Motivation

- Global spending on health more than doubled in real terms since the turn of the century.
- Currently stands at 9.8% of global GDP and is projected to increase substantially (World Health Organization, 2021; Dieleman et al., 2017).
- Most of the growth has been from public sources, especially in high-income countries.
- Perhaps surprisingly, little evidence on how effective public health expenditure is in improving health outcomes.
 - ▶ Micro evidence on cost-effectiveness related to specific treatments/resources (e.g. Cutler, 2007; Doyle et al., 2015).
 - Very scant on public spending, although majority of health spending is financed by taxes and administered by governments. None on mechanisms.
- Little evidence generally on health spending and health outcomes in developing world.

Motivation

- A common thread in the literature is that health spending may be sufficient to impact health.
- But this is certainly not a foretold conclusion.
 - For example, consider the RAND Health Insurance Experiment, Oregan HIE
 - "States that spend more per Medicare beneficiary are not states that provide higher quality care." Baicker and Chandra (2004)
- In principle, chain of causation depends on many interlinked steps: from inputs to outcomes.
- Involves state capacity in design/implementation/management, input complementarities, diversion due to corruption etc.
- Understanding how health spending propagates through this chain, and which (if any) steps break down is important given the magnitude of health spending.

- The setting is Brazil, 1998-2010.
- 29th Constitutional Amendment enshrined municipal health spending of at least 15% of budget.
- Depending on health spending at baseline, municipalities are more or less exposed to the reform.
- We collect a remarkably rich set of data allowing us to understand the full chain of reform impacts:
 - 1. How does the reform affect spending patterns?

- The setting is Brazil, 1998-2010.
- 29th Constitutional Amendment enshrined municipal health spending of at least 15% of budget.
- Depending on health spending at baseline, municipalities are more or less exposed to the reform.
- We collect a remarkably rich set of data allowing us to understand the full chain of reform impacts:
 - 1. How does the reform affect spending patterns?
 - 2. How does the reform affect municipal investments in health?

- The setting is Brazil, 1998-2010.
- 29th Constitutional Amendment enshrined municipal health spending of at least 15% of budget.
- Depending on health spending at baseline, municipalities are more or less exposed to the reform.
- We collect a remarkably rich set of data allowing us to understand the full chain of reform impacts:
 - 1. How does the reform affect spending patterns?
 - 2. How does the reform affect municipal investments in health?
 - 3. How does the reform affect individual access to health?

- The setting is Brazil, 1998-2010.
- 29th Constitutional Amendment enshrined municipal health spending of at least 15% of budget.
- Depending on health spending at baseline, municipalities are more or less exposed to the reform.
- We collect a remarkably rich set of data allowing us to understand the full chain of reform impacts:
 - 1. How does the reform affect spending patterns?
 - 2. How does the reform affect municipal investments in health?
 - 3. How does the reform affect individual access to health?
 - 4. How does the reform affect hard health outcomes?

[◆] Further literature

Outline

Background

)ata

Empirical Strategy

Results

Final Remark

Background: Health Spending and the EC29/2000

- In Brazil in the '90s, most spending was centralised at level of Federal Government.
- Period of budget disputes and crises in health care financing.
- Reform efforts during the '90's resulted in the passage of the 29th Constitutional Amendment.
- In practice, enshrined a series of minimum spending floors for public health services:
 - ► Federal Government: 2000 5% of 1999 spending; 2001-2004 corrected by GDP.
 - ► States: 12% of tax income net of transfers.
 - ▶ Municipalities: 15% of tax income.

Descriptive Impact: Compression of the Spending Distribution I

Health Spending (% of own resource spending)

- Results in a large real increase in health spending * Trends 1
- Mainly driven by own resources rather than federal transfers
- Distance to the 15% threshold is geographically diverse

Descriptive Impact: Compression of the Spending Distribution II

Outline

Background

Data

Empirical Strategy

Results

Final Remark

Data

We generate a municipality-by-year panel covering 5,507 Brazilian municipalities from 1998-2010. Generate municipal aggregates over a number of dimensions from a range of administrative sources:

- Local spending and resources: Brazilian Finance System (FINBRA), Brazilian National System of Public Health Budget (SIOPS).
- **Health Inputs**: Brazilian National System of Information on Primary Care (Datasus/SIAB), Censal Medical-Sanitary Assistance Survey (AMS).
- Health Access: Brazilian National System of Information on Ambulatory Care (Datasus/SIA), Brazilian National System of Birth Records (Datasus/SINASC), National System of Information on Hospitalizations (Datasus/SIH).
- Health Outcomes: Brazilian National System of Mortality Records (Datasus/SIM).
- Other Measures: Controls for baseline socioeconomic level (census), time-varying GDP per capita (IBGE), *Bolsa Familia* transfers.

◆ Time Periods

Data

This data is rich, but high dimensional in nature. To focus on a common metric and avoid inflated rates of type I error we generate outcome indexes (Anderson, 2008).

- Four specific dimensions: spending, access, inputs, health outcomes. Definitions
- For further descriptive context, additionally separated into two further sub-indexes.
- Unless otherwise noted, effect sizes will be stated in terms of standard deviations of pre-reform measures.

Outline

Background

Data

Empirical Strategy

Results

Final Remark

Empirical Strategy

We estimate a difference-in-difference (DiD) model with a continuous intention-to-treat variable of interest, exploiting within-municipality variation:

$$Y_{mts} = \tau Dist_{m,pre} \times Post_t + \delta_{st} + \delta_m + \theta Z_{m,pre} \times \delta_t + X'_{mts} \gamma + \varepsilon_{mts}$$
(1)

- Y_{mts} is an outcome in municipality m, state s, year t
- $Dist_{m,pre}$ is the baseline percentage points distance to EC/29 target in municipality m
- Post_t is a dummy that equals one if the year is 2001 or later
- Municipal and state xyear fixed effects included as baseline (importance of within state variation)
- $Z_{m,pre} \times \delta_t$ is an interaction between socioeconomic baseline controls and time
- X_{mts} are time-varying controls
- Consistently weight by population, and cluster standard errors at municipality level

Empirical Strategy – Extensions

Two key extensions: (a) considering the dynamics of impacts over time and (b) potential differential results for above and below threshold municipalities.

(a) Event Study Versions of (1)

$$Y_{mts} = \sum_{i=1}^{J} \beta_{pre,i} Dist_{m,pre} \times EC29_{t+i} + \sum_{j=0}^{J} \beta_{post,j} Dist_{m,pre} \times EC29_{t-j} + \delta_{st} + \delta_{m} + \theta Z_{m,pre} \times \delta_{t} + \gamma X_{mts} + \varepsilon_{mts}.$$
(2)

(b) Heterogeneity of (1) by Below vs Above Threshold Municipalities

$$Y_{mts} = \alpha(Dist_{m,pre} \times Post_{t}) \cdot Above_{m,pre} +$$

$$\gamma(Dist_{m,pre} \times Post_{t}) \cdot Below_{m,pre} +$$

$$\delta_{st} + \delta_{m} + \theta Z_{m,pre} \times \delta_{t} + \gamma X_{mts} + \varepsilon_{mts}.$$
(3)

Validity of the Research Design

- Identification is drawn from baseline distance to the (arbitrary) threshold.
- Adoption of EC29 is time-invariant (block adoption design).
- Time-invariant adoption means no concerned about bias owing to heterogenous effects over time.
- But, Callaway et al. (2021) highlight that DiD models with continuous treatment require stronger parallel trends assumptions.
- We argue that our setting is quasi-random and that is unlikely that municipalities chose their distance to the spending target based on expected increases in health spending per capita.
- Nevertheless, we estimate a binary version of (1), where 'Treatment' refers to below threshold municipalities.

Outline

Background

Data

Empirical Strategy

Results

Final Remark

What are the Fiscal Responses to Health Spending Reforms?

Table: Health Spending Reforms and Fiscal Outcomes (Part A)

	In(per capita spending)				Level
	(1)	(2)	(3)	(4)	(5)
Panel A: Finbra					
Total Revenues	-0.071	0.047	0.073	0.118	100.893
	(0.135)	(0.114)	(0.114)	(0.115)	(183.364)
Total Spending	0.002	0.112	0.137	0.133	171.998
	(0.137)	(0.115)	(0.116)	(0.115)	(166.261)
Health Spending	1.14***	1.249***	1.273***	1.273***	283.511***
	(0.255)	(0.237)	(0.239)	(0.238)	(81.907)
Non-Health Spending	-0.198	-0.093	-0.067	-0.08	-106.625
	(0.134)	(0.111)	(0.11)	(0.109)	(114.82)
Non-Health Social Spending	-0.128	-0.075	-0.054	-0.062	-38.931
	(0.18)	(0.15)	(0.149)	(0.148)	(91.763)
Non-Social Spending	-0.212	-0.061	-0.031	-0.042	-56.209
	(0.17)	(0.141)	(0.14)	(0.139)	(73.913)
Mun & Time-State FE	Y	Y	Y	Y	Y
Baseline Socioeconomic Controls×Time	Ň	Ý	Ý	Ý	Ý
Time-Varying Controls	N	N.	Ϋ́	Ϋ́	Ý
Fiscal Controls	N	N	N.	Ý	N

What are the Fiscal Responses to Health Spending Reforms?

Table: Health Spending Reforms and Fiscal Outcomes (Part B)

	In(per capita spending)				Level
	(1)	(2)	(3)	(4)	(5)
Panel B: Siops					
Total Health Spending	2.513*** (0.204)	2.586*** (0.164)	2.592*** (0.165)	2.605*** (0.165)	458.127*** (44.708)
From Own Resources	5.799*** (0.256)	5.844*** (0.244)	5.851*** (0.239)	5.86*** (0.237)	420.212*** (16.682)
From Other Resources	1.958 (1.596)	1.877 (1.349)	1.873 (1.341)	1.863 (1.315)	38.319 (44.899)
Personnel	2.533*** (0.443)	2.559*** (0.378)	2.562*** (0.379)	2.467*** (0.368)	133.728*** (29.22)
Investment	5.506***	5.249*** (0.813)	5.244*** (0.808)	5.301***	61.455***
Outsourced (3rd party services)	1.534*** (0.524)	1.808*** (0.44)	1.815*** (0.437)	1.925*** (0.416)	48.837 (33.801)
Admin, Management and Others	4.958*** (1.095)	4.793*** (0.997)	4.795*** (0.997)	4.847*** (0.968)	225.125*** (31.45)
Mun & Time-State FE	Υ	Υ	Υ	Υ	Υ
$Baseline\ Socioeconomic\ Controls {\times} Time$	N	Υ	Υ	Υ	Υ
Time-Varying Controls	N	N	Y	Y	Y
Fiscal Controls	N	N	N	Y	N

Temporal Dynamics in Health Spending Paths

Effects on Public Health Spending per capita

How Are Spending Changes Directed?

How Does the Spending Threshold Alter Municipal Spending?

Figure: Health and Sanitation Spending per Capita (Finbra)

How Are Spending Increases and Cuts Made?

Downstream Effects of Health Spending – Summary Indexes

	(1)	(2)	(3)	(4)
Access and Production of Health Services	0.329*	0.398**	0.410**	0.408**
Access and Production of Health Services	(0.169)	(0.175)	(0.175)	(0.175)
Duineau Cour Access and Duraturation	0.320**	0.404**	0.418**	0.417**
Primary Care Access and Production	(0.159)	(0.163)	(0.163)	(0.163)
Non Brimany Care Assess and Bradustian	0.079	0.066	0.103)	0.069
Non-Primary Care Access and Production				
Haalah Januara	(0.149) 0.678***	(0.15) 0.694***	(0.15) 0.698***	(0.149) 0.697***
Health Inputs				
	(0.172)	(0.171)	(0.171)	(0.171)
Human Resources	1.239***	1.202***	1.214***	1.209***
	(0.245)	(0.243)	(0.243)	(0.243)
Hospitals	0.581***	0.601***	0.604***	0.604***
	(0.172)	(0.171)	(0.171)	(0.171)
Birth Outcomes	0.004	0.082	0.082	0.082
	(0.083)	(0.077)	(0.077)	(0.077)
Infant Mortality	0.066	0.072*	0.074*	0.075*
	(0.05)	(0.044)	(0.043)	(0.043)
Others	0.017	0.106	0.102	0.101
	(0.177)	(0.17)	(0.17)	(0.17)
Municipalty & State× Year FEs	Υ	Υ	Υ	Υ
Socioeconomic controls		Υ	Υ	Υ
GDP p.c. & Bolsa Familia			Υ	Υ
Fiscal controls				Υ

Downstream Effects of Health Spending – Temporal Effects (Access)

Figure: Access and Production of Health Service

Specification Baseline + Baseline and Time Varying Controls

Downstream Effects of Health Spending – Temporal Effects (Inputs)

Figure: Health Inputs

Specification Baseline + Baseline and Time Varying Controls

Downstream Effects of Health Spending – Birth Outcomes

Downstream Effects of Health Spending – Subindexes

Distributional Effects on Downstream Health Outcomes (A)

Figure: Access and Production of Health Service

Distributional Effects on Downstream Health Outcomes (B)

Distributional Effects on Downstream Health Outcomes (C)

Figure: Birth Outcomes

A Binary "Treatment" Set-up

- Larger effects on access in outcomes classified as amenable to primary care
- Permanent effects observed in infrastructure inputs
- Temporary effects observed in human resources inputs
- Infant mortality changes observed in 'primary care-amenable' areas

Where do Infant Mortality Declines Occur? I

Figure: Continuous Event Studies, Variable by Variable - Infant Mortality

[◆] Continuous

Where do Infant Mortality Declines Occur? II

Figure: Continuous Event Studies, Variable by Variable - Infant Mortality

[◆] Continuous

Outline

Backgroun

Data

Empirical Strategy

esults

Final Remarks

Final Remarks

- When Brazilian municipalities were induced to increase health spending, they did so by increasing spending on admin, followed by human resources and investments.
- Spending translated into increases in access and production of health services, health inputs, and moderate improvements in birth outcomes.
- Shifts in spending and inputs were associated with:
 - Greater number of administrative professionals, supply of municipal hospitals, and primary care coverage.
 - ► Small to moderate reductions in infant mortality rates, potentially related to improvements in primary care access and hospital care.
- Implied elasticity (infant mortality rate): total -0.06, amenable to primary care -0.14; but lower than what was found in previous studies (-0.3 to -1.1).

Final Remarks – Health Spending Implications

- Increases in spending are allocated to areas which are most important for targeting end-line health outcomes
- Unintended spending consequences given salience of 15% target
- Public spending cuts are potentially targeted to areas less influential for these types of health care outcomes

Thank You! Comments and queries are very welcome.

michel.szklo@fgv.br (or via coauthors)

References I

- Anderson, M. L. (2008). Multiple Inference and Gender Differences in the Effects of Early Intervention: A Reevaluation of the Abecedarian, Perry Preschool, and Early Training Projects. *Journal of the American Statistical Association*, 103(484):1481–1495.
- Baicker, K. and Chandra, A. (2004). Medicare spending, the physician workforce, and beneficiaries' quality of care. *Health Affairs*, 23(Suppl1):W4–184–W4–197.
- Callaway, B., Goodman-Bacon, A., and Sant'Anna, P. H. (2021). Difference-in-differences with a continuous treatment. arXiv preprint arXiv:2107.02637.
- Cutler, D. M. (2007). The lifetime costs and benefits of medical technology. Journal of Health Economics, 26(6):1081-1100.
- Dieleman, J. L., Campbell, M., Chapin, A., Eldrenkamp, E., Fan, V. Y., Haakenstad, A., Kates, J., Li, Z., Matyasz, T., Micah, A., et al. (2017). Future and potential spending on health 2015–40: development assistance for health, and government, prepaid private, and out-of-pocket health spending in 184 countries. *The Lancet*, 389(10083):2005–2030.
- Doyle, J. J., Graves, J. A., Gruber, J., and Kleiner, S. A. (2015). Measuring returns to hospital care: Evidence from ambulance referral patterns. *Journal of Political Economy*, 123(1):170–214.
- World Health Organization (2021). Global expenditure on health: public spending on the rise? World Health Organization.

Spending per capita index (2000 = 100)

Spending per capita index (2000 = 100)

Spending per capita index (2000 = 100)

Health Spending from Own Resources (2000 = 100)

Year Bottom quartile Top quartile

2007 2008

2005

2004

Health Spending from Transfers (2000 = 100)

Health Spending per capita – Transfers

EC/29 Compliance Geographic Variation

Table: Definitions of Indexes (I)

Index	Sub-Index	Variables
1. Access & Production of Health Services Index	1a. Primary Care Access & Production Index	Population covered by Community Health Agents Population covered by Family Health Agents N. of People Visited by Primary Care Agents (pc) N. of People Visited by Community Health Agents (pc) N. of People Visited by Family Health Agents (pc) N. of People Visited by Family Health Agents (pc) N. of Household Visits and Appointments (pc) N. of Household Visits and Appointments from Community Health Agents (pc) N. of Household Visits and Appointments from Family Health Agents (pc) N. of Health Facilities with Ambulatory Service and ACS Teams (pc) N. of Health Facilities with Ambulatory Service and ACS Nurses (pc) N. of Health Facilities with Ambulatory Service and PSF Teams (pc) N. of Health Facilities with Ambulatory Service and PSF Doctors (pc) N. of Health Facilities with Ambulatory Service and PSF Nurses (pc) N. of Health Facilities with Ambulatory Service and PSF Nurses (pc) N. of Health Facilities with Ambulatory Service and PSF Nurses (pc) N. Primary Care Outpatient Procedures (per capita) N. Low & Mid Complexity Outpatient Procedures (pc) Proportion of births with unknown prenatal care coverage Proportion of births with 1-6 prenatal visits [‡] Proportion of births with 7+ prenatal visits Maternal Hospitalization Rate Infant Hospitalization Rate Infant Hospitalization Rate
	1b. Non-Primary Care Access & Production Index	N. Outpatient Procedures (per capita) (pc) N. High Complexity Outpatient Procedures (pc) Infant Hospitalization Rate - non-APC

Notes: Main indexes and sub-indexes consist of the variables listed here, in each case following Anderson (2008) in the construction of indices. The abbreviation pc refers to per-capita. Each variable is included in one and only one index, and one and only one sub-index. † Variable has been multiplied by minus 1 such that higher values refer to 'better' outcomes.

Table: Definitions of Indexes (II)

Index	Sub-Index	Variables
	2a. Human Resources Index	N. of Doctors (pc) N. of Nurses (pc) N. of Nursing Assistants (pc)
2. Health		N. of Administrative Professionals (pc)
Inputs Index	2b. Hospitals Index	N. of Municipal Hospitals (pc) N. of Federal and State Hospitals (pc) N. of Private Hospitals (pc)
	3a. Infant Mort- ality Index	Infant Mortality Rate - APC [‡] Infant Mortality Rate - non-APC [‡]
3. Birth Outcomes Index	3b. Other Birth Outcomes Index	$ \begin{tabular}{ll} 1 & Minute APGAR \\ 5 & Minute APGAR \\ & Proportion LBW (< 2.5kg)\dagger^{\dagger} \\ & Proportion premature births\dagger^{\dagger} \\ & Sex Ratio at Birth\dagger^{\dagger} \\ \end{tabular} $

Notes: Main indexes and sub-indexes consist of the variables listed here, in each case following Anderson (2008) in the construction of indices. The abbreviation pc refers to per-capita. Each variable is included in one and only one index, and one and only one sub-index. ‡ Variable has been multiblied by minus 1 such that higher values refer to 'better' outcomes.

Table: Descriptive Statistics (at the baseline year)

	Mean	Std. Dev.	Min	Max	Obs.	Source of Data
EC 29 Variables						
Share of Municipality's Own Resource Spent in Public Health	0.138	0.068	0	0.802	5224	Datasus/SIOPS
Distance to the EC29 Target	0.012	0.068	-0.652	0.15	5224	Datasus/SIOPS
Public Revenue						
Total Revenue per capita	1225.274	2282.128	132.386	121105.017	5288	Finbra
Public Spending						
Total Spending per capita	1284.77	2395.06	129.735	127974.259	5304	Finbra
Spending by Category - per capita						
Health and Sanitation	217.08	276.14	0.037	12559.61	5286	Finbra
Transport	91.551	138.28	0	5865.789	5304	Finbra
Education and Culture	419.945	640.291	0	36319.154	5304	Finbra
Housing and Urban	116.052	301.25	0	19842.146	5304	Finbra
Social Assistance	84.052	253.836	0	13814.629	5304	Finbra
Other Categories	472.878	1201.128	32.002	65369.184	5304	Finbra
Public Health Spending						
Total Health Spending per capita	192.543	110.44	24.632	1397.575	5225	Datasus/SIOPS
Health Spending by Source - per capita						
Own Resources spending per capita	119.763	96.992	0	1232.875	5225	Datasus/SIOPS
Transfers Spending per capita	72.779	50.002	0	1099.097	5225	Datasus/SIOPS
Health Spending by Type - per capita						
Human Resources Spending per capita	71.337	61.87	0	1118.758	5225	Datasus/SIOPS
Investiments Spending per capita	14.567	26.899	0	361.969	5225	Datasus/SIOPS
3rd parties services Spending per capita	33.149	43.284	0	1041.135	5225	Datasus/SIOPS
Other Spendings per capita	73.49	52.755	0	602.699	5225	Datasus/SIOPS

Table: Descriptive Statistics (at the baseline year) - Cont.

	Mean	Std. Dev.	Min	Max	Obs.	Source of Data
Primary Care Coverage						
Extensive Margin						
Population covered (share) by Community Health Agents	0.635	0.409	0	1	5507	Datasus/SIAB
Population covered (share) by Family Health Agents	0.311	0.383	0	1	5507	Datasus/SIAB
Intensive Margin						
N. of People Visited by Primary Care Agents (per capita)	0.271	0.285	0	2.798	5507	Datasus/SIAB
N. of People Visited by Community Health Agents (per capita)	0.121	0.18	0	1.518	5507	Datasus/SIAB
N. of People Visited by Family Health Agents (per capita)	0.15	0.252	0	1.834	5507	Datasus/SIAB
N. of Household Visits & Appointments (per capita)	1.876	2.541	0	88.85	5507	Datasus/SIAB
N. of Household Visits & Appointments by Community Health Agents (per capita)	1.072	2.156	0	85.989	5507	Datasus/SIAB
N. of Household Visits & Appointments by Family Health Agents (per capita)	0.8	1.505	0	43.389	5507	Datasus/SIAB
Health Human Resources						
N. of Health Professionals (per capita*1000)	5.104	4.825	0	187.904	5507	IBGE/AMS
N. of Doctors (per capita*1000)	1.529	2.385	0	95.132	5507	IBGE/AMS
N. of Nurses (per capita*1000)	1.159	1.636	0	95.097	5507	IBGE/AMS
N. of Nursing Assistants (per capita*1000)	1.26	1.456	0	22.009	5507	IBGE/AMS
N. of Administrative Professionals (per capita*1000)	1.155	1.251	0	36.599	5507	IBGE/AMS
Health Infrastructure						
N. of Municipal Hospitals (per capita*1000)	0.06	0.138	0	1.357	5507	IBGE/AMS
N. of Federal and State Hospitals (per capita*1000)	0.015	0.084	0	1.892	5507	IBGE/AMS
N. of Private Hospitals (per capita*1000)	0.03	0.058	0	0.609	5507	IBGE/AMS
N. of Health Facilities (per capita*1000) with Ambulatory Service	0.517	0.355	0	3.628	5493	Datasus/SIA
Primary Care Related Infrastructure and Human Resources						
Number of Health Facilities (per capita * 1000) with						
Ambulatory Service and ACS Teams	0.14	0.197	0	2.41	5493	Datasus/SIA
Ambulatory Service and Community Doctors	0.082	0.154	0	1.957	5493	Datasus/SIA
Ambulatory Service and ACS Nurses	0.072	0.156	Ó	2.41	5493	Datasus/SIA
Ambulatory Service and PSF Teams	0.083	0.159	0	2.41	5493	Datasus/SIA
Ambulatory Service and PSF Doctors	0.077	0.149	0	1.957	5493	Datasus/SIA
Ambulatory Service and PSF Nurses	0.075	0.149	0	2.41	5493	Datasus/SIA
Ambulatory Service and PSF Nursing Assistants	0.05	0.123	0	1.957	5493	Datasus/SIA
Ambulatorial Production						
N. Outpatient Procedures (per capita)	8.8	4.55	0	48.258	5507	Datasus/SIA
N. Primary Care Outpatient Procedures (per capita)	7.415	3.974	0	39.367	5507	Datasus/SIA
N. Low & Mid Complexity Outpatient Procedures (per capita)	9.467	5.801	ő	171.126	5493	Datasus/SIA
N. High Complexity Outpatient Procedures (per capita)	0.005	0.052	ō	2.58	5493	Datasus/SIA
	2.303	2.032	,	2.50	55	

Table: Descriptive Statistics (at the baseline year) - Cont.

	Mean	Std. Dev.	Min	Max	Obs.	Source of Data
Infant Mortality Rate						
Total	23.069	26.163	0	1000	5507	Datasus/SIM
APC	2.097	7.101	0	333.333	5507	Datasus/SIM
non-APC	20.972	22.291	0	666.667	5507	Datasus/SIM
Fetal	0.003	0.078	0	3.571	5507	Datasus/SIM
Within 24h	5.554	10.146	0	333.333	5507	Datasus/SIM
1 to 27 days	13.727	15.891	0	333.333	5507	Datasus/SIM
27 days to 1 year	9.342	16.341	0	666.667	5507	Datasus/SIM
Infectious	1.999	7.03	0	333.333	5507	Datasus/SIM
Respiratory	1.515	4.454	0	142.857	5507	Datasus/SIM
Perinatal	11.041	16.32	0	666.667	5507	Datasus/SIM
Congenital	2.127	5.008	0	93.023	5507	Datasus/SIM
External	0.366	1.914	0	43.478	5507	Datasus/SIM
Nutritional	0.601	3.221	0	166.667	5507	Datasus/SIM
Other	0.87	3.597	0	142.857	5507	Datasus/SIM
III-Defined	4.551	10.684	0	142.857	5507	Datasus/SIM
Fertility						
Rates of Birth per Woman (10-49y)	0.055	0.017	0.002	0.169	5507	Datasus/SINASC
Birth Oucomes						
Apgar 1	8.183	0.903	1	9	5428	Datasus/SINASC
Apgar 5	8.663	0.885	1	9	5082	Datasus/SINASC
Low Birth Weight (<2.5k)	0.066	0.032	0	0.5	5507	Datasus/SINASC
Premature Birth	0.093	0.107	0	1	5507	Datasus/SINASC
Sex Ratio at Birth	1.074	0.247	0.154	5	5505	Datasus/SINASC

Table: Descriptive Statistics (at the baseline year) - Cont.

	Mean	Std. Dev.	Min	Max	Obs.	Source of Data
Controls						
Population (1,000)	29.773	178.831	0.711	9968.485	5507	IBGE/Census
GDP per capita (2010 R\$)	9.531	11.231	1.365	271.779	5507	IBGE/Census
'Bolsa Familia' transfers per capita (2010 R\$)	0	0	0	0	5507	IBGE/Census
Life Expectancy	68.385	3.962	57.46	77.24	5507	IBGE/Census
Expected Years of Study	8.337	1.794	2.29	13.02	5507	IBGE/Census
lliteracy Rate (above 18y old)	23.626	13.516	1	63.01	5507	IBGE/Census
Income per capita	338.35	192.807	62.65	1759.76	5507	IBGE/Census
Share of Population Below Poverty Line	0.411	0.228	0.007	0.908	5507	IBGE/Census
Gini Coefficient	0.547	0.068	0.3	0.87	5507	IBGE/Census
Access to Sewage Network	0.251	0.302	0	0.993	5507	IBGE/Census
Access to Garbage Collection Service	0.535	0.271	0	1	5507	IBGE/Census
Access to Water Network	0.583	0.241	0	1	5507	IBGE/Census
Access to Electricity	0.869	0.165	0.081	1	5507	IBGE/Census
Urbanization Rate	0.602	0.227	0	1	5507	IBGE/Census
Average Neighbors Spending Health Spending per capita (2010 R\$)	206.387	125.041	1.741	3298.403	5504	Finbra
Municipality's Spending in Human Resources (% of Total Revenue)	0.415	0.109	0	1.242	5304	Finbra

Notes: Authors' own tabulation. Statistics for IBGE/AMS data refer to the year 1999 and statistics for all remaining variables refer to the baseline year o 2000. Data sources indicated in the table.

-0.40

Effects on Primary Care Coverage

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

-0.30

-1.50

Figure: Continuous Event Studies, Variable by Variable - Infant Mortality

Figure: Continuous Event Studies, Variable by Variable - Infant Mortality

Effects on Primary Care Coverage

Prenatal Visits

Prenatal Visits

Ambulatory Production

Hospitalization Rates

Hospitalization Rates

Effects on Health Human Resources

Effects on Health Human Resources

Effects on Health Infrastructure

Effects on Infant Mortality Rates

Effects on Infant Mortality Rates - Within 24h

Specification # Baseline # + Baseline and Time Varying Controls

Effects on Infant Mortality Rates

