CSE 102 Spring 2021 Quiz Reflection 4

Jaden Liu University of California at Santa Cruz Santa Cruz, CA 95064 USA

May 8, 2021

1 Quiz 4

Solution for 1. b): (s,w) will be the shortest path from s to w, however, it will never determine any other shortest path during this step. \Box

Solution for 4. Here is an counter example.

By greedy algorithm: $c_1 \rightarrow c_4 \rightarrow c_3 \rightarrow c_2 \rightarrow c_1 = 2+4+1+9=16$. While the optimal solution is: $c_1 \rightarrow c_4 \rightarrow c_2 \rightarrow c_3 \rightarrow c_1 = 2+5+1+3=11$.

Solution for 5. I didn't notice we only need to prove the denomination 1 case, so I only need to provide why g_1 and n_1 is from 0 to 5. The whole proof would be:

Let
$$c = \{c_1 = 1, c_2 = 5, c_3 = 10, c_4 = 5^2\}$$

Suppose we have $X = \{x_1, x_2, x_3, x_4\}$ be the optimal solution.

Let $g = \{g_1, g_2, g_3, g_4\}$ be the solution to our greedy algorithm.

Now we need to prove that $\sum_{i=1}^{4} x_i c_i = \sum_{i=1}^{4} g_i c_i$:

$$x_1 + 5x_2 + 10x_3 + 25x_4 = g_1 + 5g_2 + 10g_3 + 25g_4$$

reduing the equation by mod 5 yielding $x_1 \equiv g_1 \pmod{5}$.

 $0 \le g_1 < 5$ because greedy algorithm will choose larger denomination if g_1 is larger than or equal than 5 in last selection.

 $0 \le n_1 < 5$ because optimal solution will reduce the amount of n_1 . However, if n_1 is larger than 5, it could not be the optimal solution.

Thus
$$n_1 = g_1 \mod 5$$
, and $n_1 = g_1$.

		mplication satisfied	X	Y	New Assignment?	chael
	mihal		F	F		
ROW1	×	No	T	1	Y	
Rowa	X/V ⇒Y	Yes		₹.	NO	(T)
Rows.	74	- In the second				0
Rrw 4:	Final Assignme	nt	Ŧ	Ē		

Solution for 6.

After X change to true from false, "X and Y" will maintain false. "false \rightarrow false" statement will maintain true. And all the following result will change as well. Y would stay F, check would be true.