Stochastic Weight Averaging on a Transformer Network

Finding a flatter loss surface for textual data

Introduction: Text Simplification

Text Simplification = Machine Translation

Input language: Original text

Output language: Simplified text

WikiSmall Dataset

Source

August is the eighth month of the year in the Gregorian Calendar and one of seven Gregorian months with the length of 31 days.

Target

August is the eighth month of the year. It has 31 days.

Zhang and Lapata (2017)

Data Preparation and Loading

Spacy

English text tokenization

Torchtext

- Field holds the tokenized text
- TranslationDataset associates original with target texts
- Vocab converts text into vectors of numbers

Transformer Network

http://jalammar.github.io/illustrated-transformer/https://arxiv.org/abs/1706.03762

Self-Attention

http://jalammar.github.io/illustrated-transformer/

Multi-Headed Attention

http://jalammar.github.io/illustrated-transformer/

Understanding Loss Surfaces

The loss surfaces of ResNet-56 with and without skip connections (visualized in low dimension)

Understanding Loss Surfaces

Wide minima generalize better than sharp minima

Local minima can be connected by curves of near-constant loss

The L2-regularized cross-entropy train loss surface of a ResNet-164 on CIFAR-100.

Loss surfaces, mode connectivity, and fast ensembling of dnns, Garipov et al. (2018)

Understanding Loss Surfaces

Minima found by SGD are constrained to the surface of a sphere of high-dimensional Gaussian.

SWA lets us enter the sphere

Averaging Weights Leads to Wider Optima and Better Generalization, Garipov et al. (2018)

Cyclical learning rate:

Linearly decrease the learning rate from an upper bound to a lower bound in each cycle.

Averaging Weights Leads to Wider Optima and Better Generalization, Garipov et al. (2018)

Stochastic Weight Averaging Algorithm

```
w_{SWA}, w \leftarrow \widehat{w}
for i \leftarrow 1, 2, ... n do
             \alpha \leftarrow \alpha(i)
             w \leftarrow w - \alpha \nabla \mathcal{L}_i(w)
             if mod(i,c) = 0 then
                           n_{models} \leftarrow i/c
                           w_{SWA} \leftarrow \frac{w_{SWA} \cdot n_{models} + w}{n_{models} + 1}
             end if
end for
```

Stochastic Weight Averaging Algorithm

```
W_{SWA}, W \leftarrow \widehat{W}
for i \leftarrow 1, 2, ... n do
             \alpha \leftarrow \alpha(i)
             w \leftarrow w - \alpha \nabla \mathcal{L}_i(w)
             if mod(i,c) = 0 then
                           n_{models} \leftarrow i/c
                           w_{SWA} \leftarrow \frac{w_{SWA} \cdot n_{models} + w}{n_{models} + 1}
              end if
end for
```

$$\alpha(i) = (1 - t(i))\alpha_1 + t(i)\alpha_1$$
$$t(i) = \frac{1}{c}(mod(i - 1, c) + 1)$$

Results

Train Network for 60 Epochs using SGD

SGD

SWA, CL 5, LR 0.001 - 0.1

SWA, CL 5, LR 0.05 - 0.1

SWA, CL 10, LR 0.001 - 0.1

SWA, CL 10, LR 0.05 - 0.1

SWA, CL 10, LR 0.05 - 0.1

SWA, constant LR 0.01

Results

	- A	
Train Network for 60 Epochs using SGD	SGD	1.4296
1.6330	SWA, CL 5, LR 0.001 – 0.1	1.0845
	SWA, CL 5, LR 0.05 – 0.1	1.1580
	SWA, CL 10, LR 0.001 – 0.1	1.1522
	SWA, CL 10, LR 0.05 – 0.1	1.2842
	SWA, constant LR 0.01	1.3986

Results

SGD after 1 budget	1.6330
SGD after 1 budget and 15 epochs	1.4296

After 15 epochs of SWA:

Cycle Length	Learning Rate	
5	0.001 - 0.01	1.0845
	0.05 - 0.01	1.1580
10	0.001 - 0.01	1.1522
	0.05 - 0.01	1.2842
Constant	0.01	1.3986

Translated samples

Source

while in england hendrix invited cox to join him in a new band cox declines preferring to work in various backing bands .

Reference

while in england hendrix asked cox to join him in a new band cox said no .

Output

it is a of is a in of the and is a of.

Translated samples

Source

it was founded in the 14th century by genoese colonists, who employed large numbers of workmen (calfats) in repairing ships.

Reference

calafat was started in the 14th century by genoese colonists.

Output

chinese successor following person muslim revolution god son saint house historian meeting dynasty roman patron professor rare prayer lance

Loss VS epoch and learning rate

Challenges

- Dataset size Colab instance could not load it into memory
- GPU Colab instance runs out of GPU memory while training
- Training time very large training time required