CHƯƠNG 3: BIỆU DIỄN FOURIER CỦA TÍN HIỆU VÀ HỆ THỐNG LTI

3.3. BIẾN ĐỔI FOURIER RỜI RẠC

- Lấy mẫu tần số.
- Biến đổi Fourier rời rạc.
- Định lý lấy mẫu.

• Phổ Fourier $X(\Omega)$ của một tín hiệu rời rạc tuần hoàn với chu kỳ $2\pi \rightarrow$ chúng ta chỉ lấy mẫu tín hiệu với một chu kỳ như sau:

$$X\left(\frac{2\pi}{N}k\right) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\frac{2\pi}{N}kn}$$

Trong đó, N là số lượng mẫu trong đoạn $[0,2\pi] \to \mathrm{chu}\,\,\mathrm{kỳ}\,\,\mathrm{lấy}$ mẫu là $\frac{2\pi}{N}$

• Bây giờ, sử dụng X(k) thay cho $X(\frac{2\pi}{N}k)$ biểu diễn phổ Fourier rời rạc của x(n).

• X(k) được biến đổi như sau:

$$X(k) = \sum_{l=-\infty}^{\infty} \sum_{n=lN}^{lN+N-1} x(n)e^{-j\frac{2\pi}{N}kn}$$

$$= \sum_{l=-\infty}^{\infty} \sum_{n=0}^{N-1} x(n-lN)e^{-j\frac{2\pi}{N}k(n-lN)}$$

$$= \sum_{n=0}^{N-1} x_p(n)e^{-j\frac{2\pi}{N}kn}$$

Trong đó,

$$x_p(n) = \sum_{l=-\infty}^{\infty} x(n-lN)$$

• $x_p(n)$ là một tín hiệu tuần hoàn theo chu kỳ N $\rightarrow x_p(n)$ có thể được biểu diễn bằng chuỗi Fourier sau:

$$x_p(n) = \sum_{k=0}^{N-1} c_k e^{j\frac{2\pi}{N}kn}$$

trong đó, các hệ số $\{c_k | k = 0, ..., N - 1\}$ được tính toán như sau:

$$c_k = \frac{1}{N} \sum_{k=0}^{N-1} x_p(n) e^{-j\frac{2\pi}{N}kn} \to c_k = \frac{1}{N} X(k)$$

• Từ phổ Fourier rời rạc của tín hiệu x(n), chúng ta khôi phục lại tín hiệu tuần hoàn $x_p(n)$ như sau:

$$x_p(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j\frac{2\pi}{N}kn}$$

- Có thể khôi phục x(n) từ X(k)?
 - ✓ Có: Nếu độ dài của x(n) không lớn hơn N và tất cả các giá trị khác không của nó nằm trong đoạn [0, N-1], do đó:

$$x(n) = \begin{cases} x_p(n) & (0 \le n \le N - 1) \\ 0 & \text{n\'eu kh\'ac} \end{cases}$$

Biến đổi Fourier rời rạc (DFT) của tín hiệu tuần hoàn rời rạc

- Tín hiệu tuần hoàn rời rạc x(n) có năng lượng vô hạn \rightarrow không tồn tại biến đổi Fourier liên tục của x(n).
- Do đó, định nghĩa biến đổi Fouirer rời rạc của x(n) dựa trên biểu diễn chuỗi Fourier của một tín hiệu tuần hoàn rời rạc.

Biến đổi Fourier rời rạc (DFT) của tín hiệu tuần hoàn rời rạc

• Biến đổi Fourier rời rạc (DFT) của một tín hiệu x(n) tuần hoàn rời rạc có chu kỳ N được định nghĩa là:

$$DFT[x(n)] = X(k) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}$$

X(k) cũng tuần hoàn với chu kỳ N.

• DFT ngược được định nghĩa như sau:

$$x(n) = DFT^{-1}[X(k)] = \frac{1}{N} \sum_{k=0}^{N-1} X(k)e^{j2\pi kn/N}$$

Các tính chất DFT của tín hiệu tuần hoàn

• Dịch thời gian

$$DFT[x(n - n_0)] = X(k)e^{-j2\pi k n_0/N}$$

Tích chập tuần hoàn của hai tín hiệu tuần hoàn có cùng chu kỳ
 N:

Định nghĩa:
$$x_1(n) *_N x_2(n) = \sum_{k=0}^{N-1} x_1(k) x_2(n-k)$$

Do đó:

$$DFT[x_1(n) *_N x_2(n)] = X_1(k)X_2(k)$$

Các tính chất DFT của tín hiệu tuần hoàn

 Tương quan của hai tín hiệu tuần hoàn thực có cùng chu kỳ tuần hoàn:

$$r_{x_1x_2} = \sum_{k=0}^{N-1} x_1(k) x_2(n-k)$$

Do đó:

$$R_{x_1x_2} = X_1^*(k)X_2(k) = X_1(k)X_2^*(k)$$

DFT của tín hiệu có độ dài hữu hạn rời rạc theo thời gian

• Xét một tín hiệu thời gian rời rạc x(n) có độ dài hữu hạn L, tạo ra một tín hiệu tuần hoàn $x_p(n)$ có chu kỳ $N \ge L$ như sau:

$$x_p(n) = \sum_{l=-\infty}^{+\infty} x(n-lN)$$

• Biến đổi Fourier rời rạc có độ dài N của tín hiệu x(n) được định nghĩa là DFT của tín hiệu tuần hoàn $x_p(n)$:

$$DFT_N[x(n)] = DFT_N[x_p(n)] = \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}$$

Các tính chất DFT của tín hiệu có độ dài hữu hạn

• Dịch vòng:

$$DFT_{N}[x(n-n_{0})_{N}] = DFT[x(n)]e^{-j2\pi kn_{0}/N}$$

Tích chập vòng của hai tín hiệu có độ dài hữu hạn:
 Định nghĩa:

$$x_1(n) \circledast_N x_2(n) = \sum_{k=0}^{N-1} x_1(k) x_2(n-k)_N$$

Do đó:

$$DFT_{N}[x_{1}(n) \circledast_{N} x_{2}(n)] = DFT_{N}[x_{1}(n)]DFT_{N}[x_{2}(n)]$$

Định lý lấy mẫu: Lấy mẫu tín hiệu có băng tần hữu hạn

- Xét một tín hiệu năng lượng thời gian liên tục $x(t) \to \text{phổ}$ của nó là hữu hạn \to tồn tại một tần số lớn nhất ω_a trong tín hiệu, tức là, $\forall |\omega| > |\omega_a| : X(\omega) = 0$.
- Lấy mẫu tín hiệu x(t) với tốc độ lấy mẫu ω_s để thu được một tín hiệu thời gian rời rạc x(n). Nếu $\omega_s = 2\omega_a$, tín hiệu liên tục x(t) có thể được khôi phục chính xác từ tín hiệu rời rạc x(n) bằng cách sử dụng công thức sau:

$$x(t) = \sum_{n=-\infty}^{+\infty} x(n) \frac{\sin(\omega_a t - n\pi)}{\omega_a t - n\pi}$$

Định lý lấy mẫu: Định lý lấy mẫu Shannon

- Một tín hiệu băng tần hữu hạn có tần số không lớn hơn băng tần ω_a có thể được khôi phục chính xác từ các tín hiệu lấy mẫu của nó nếu tốc độ lấy mẫu $\omega_s \geq 2\omega_a$.
- Tốc độ lấy mẫu $\omega_s = 2\omega_a$ được gọi là tốc độ Nyquist

Định lý lấy mẫu: Định lý lấy mẫu Shannon

- Nếu $\omega_s = 2\omega_a$: x(n) có phổ tuần hoàn với chu kỳ 2π và dạng phổ của nó trong đoạn $[-\pi,\pi]$ tương tự với dạng của phổ x(t) trong đoạn $[-\omega_a, +\omega_a]$.
- Nếu $\omega_s > 2\omega_a$: x(n) có phổ tuần hoàn với chu kỳ 2π và dạng phổ của x(t) trong đoạn $[-\omega_a, +\omega_a]$ được nén vào trong một phần nào đó thuộc $[-\pi, \pi]$ trong phổ của x(n).

Định lý lấy mẫu: Định lý lấy mẫu Shannon

- Nếu $\omega_s < 2\omega_a$: Xảy ra hiện tượng sai lệch và chồng lấn $\rightarrow x(n)$ có phổ tuần hoàn với chu kỳ 2π và dạng phổ của nó trong $[-\pi, +\pi]$ được tạo ra bằng cách xếp chồng dạng phổ của x(t) trong đoạn $[-\omega_a, +\omega_a]$ xung quanh tần số chồng lấn (hay còn gọi là tần số Nyquist, bằng một nữa tốc độ lấy mẫu) \rightarrow việc khôi phục chính xác x(t) từ x(n) là không thể
 - ✓ Sai lệch: Các tần số khác nhau của x(t) xuất hiện trong cùng một vị trí của phổ x(n).
 - ✓ Chồng lấn: là một dạng đặc biệt của sai lệch trong đó các tần số bị xếp chồng lên vị trí của nhau xung quanh tần số chồng lấn.