### Динамическая симуляция объемного огня

Стаховский А.В.

Научный руководитель: Кукин Д.П., к.т.н., доцент

Белорусский государственный университет информатики и радиоэлектроники

7 июня 2020 г.

Динамическая симуляция объемного огня

Динамическая симуляция объемного огня

## Классификация методов симуляции огня

Таблица 1 – Сравнение производительности различных методов симуляции огня

|                               | Real-time                                                               | Realistic                  | Spatio-temporal<br>complexity              | Editability                              | Interactivity |
|-------------------------------|-------------------------------------------------------------------------|----------------------------|--------------------------------------------|------------------------------------------|---------------|
| Texture mapping               | High                                                                    | Low                        | Low                                        | Low                                      | No            |
| Particle system               | Inversely with particles count                                          | Medium                     | Proportional to<br>particles count         | Random large and<br>difficult to control | Medium        |
| Mathematical<br>physics-based | Low                                                                     | High(physical consistency) | High                                       | Parameter control                        | High          |
| Cellular<br>automation        | Inversely proportional to<br>the complexity of<br>combined requirements | Have certain realistic     | Cell simple but the combined complex       | Modium                                   | Limited       |
| Tomographic reconstruction    | No                                                                      | High(visual consistency)   | Data acquisition and<br>processing complex | No                                       | No            |

### Требования и ограничения

Требования и ограничения, предъявляемые к решению:

- средняя частота кадров сцены — 60 кадров /сек.;
- максимальная визуальная привлекательность;
- адаптивность под задачи художников.



Рисунок 1 - Кадр из игры Doom Eternal

Теория динамической симуляции огня

#### Структура симуляции

Компоненты симуляции:

- моделирование;
- анимация;
- визуализация.

Альтернативная схема была предложена Филиппом Боденом (рис. 2).



Рисунок 2 - Структура симуляции

Динамическая симуляция объемного огня

7 июня 2020 г. 3 / 17

7 июня 2020 г. 4 / 17





Динамическая симуляция объемного огня



Уравнения движения:  $\vec{p}(t+\Delta t) = \vec{p}(t) + \vec{v}(t) \cdot \Delta t \qquad (1)$   $\vec{v}(t+\Delta t) = \vec{v}(t) + \vec{a} \qquad (2)$   $\vec{a} = 0,02 \cdot \vec{v}_0 \qquad (3)$ 

Промежуточные результаты

Теория динамической симуляции огня



7 июня 2020 г. 8 / 17



Теория динамической симуляции огня Компоненты решения Реализация анимации Сложность алгоритма:  $O(n \log n) + O(m) \cdot O(\log_2 n)$ (4) где n — количество точек низкого давления; т — количество частиц. частиц Динамическая симуляция объемного огня



Преимущества метода:

- оптимизация количества частиц;
- увеличение детализации за счет текстур;
- более плавная форма пламени.

Недостатки метода:

- необходимо ориентировать полигоны на зрителя;
- нереалистичные результаты при наблюдении сверху.



текстурных сплэтов для

Рисунок 9 - Использование

рендеринга частиц

Производительность системы

Теория динамической симуляции огня

Тестовая среда:

• **ЦΠ**: Intel Core i5–5200U 2.7ΓΓц;

• ΓΠ: Intel HD Graphics 5500;

• **ОЗУ**: 8 ГБ;

• OC:Debian 10 Buster.

Таблица 2 – Зависимость частоты кадров от количества частиц в системе

| Количество частиц | Средняя частота кадров |  |  |
|-------------------|------------------------|--|--|
| 5000              | 60,00                  |  |  |
| 10000             | 58,46                  |  |  |
| 15000             | 50,62                  |  |  |
| 25000             | 31,94                  |  |  |
| 50000             | 15,85                  |  |  |

7 июня 2020 г. 12 / 17

Динамическая симуляция объемного огня

"Fire Simulation in 3D Computer Animation with Turbulence Dynamics including Fire Separation and Profile Modeling' (2018 год).





Рисунок 10 - Результаты работы системы

Динамическая симуляция объемного огня

#### Заключение

- разработана система симуляции огня для приложений реального времени;
- использованная комбинация системы частиц и метода текстурного сплэттинга позволила улучшить качество визуализации и оптимизировать количество частиц;
- реализованный метод анимации позволил добиться эффектной анимации частиц при низких вычислительных затратах;
- разработанная система может быть использована в видеоиграх.

# Сравнение с аналогами II

Теория динамической симуляции огня

#### Тестовая среда:

- **ЦΠ**: Intel Core i3 350m 2.26ΓΓц;
- **ΓΠ**: ATI Radeon 5145:
- 03У: 4 ГБ.

#### Эксперимент:

- 1 сплайн
- 15 сегментов в сплайне
- 30+ кадров в секунду.

Динамическая симуляция объемного огня

## Список публикаций соискателя І

- 1. Стаховский, А. В. Анализ современных алгоритмов симуляции огня. /. — А. В. Стаховский // Молодой ученый. — 2019. — Нояб. — № 47. — С. 100—105.
- 2. Стаховский, А. В. Современные алгоритмы моделирования аморфных объектов. /. — А. В. Стаховский // Компьютерные системы и сети: 55-я юбилейная научная конференция аспирантов, магистрантов и студентов, Минск, 22-26 апреля 2019 г. — Минск : Белорусский государственный университет информатики и радиоэлектроники, 2019. — С. 63.

## Список публикаций соискателя II

- 3. Стаховский, А. В. Динамическая симуляция объемного огня. /. А. В. Стаховский // Компьютерные системы и сети: 56-я научная конференция аспирантов, магистрантов и студентов, Минск, 21-22 апреля 2020 г. Минск : Белорусский государственный университет информатики и радиоэлектроники, 2020. С. 54.
- 4. Стаховский, А. В. Особенности динамической симуляции огня. /. А. В. Стаховский // Компьютерные системы и сети: 56-я научная конференция аспирантов, магистрантов и студентов, Минск, 21-22 апреля 2020 г. Минск : Белорусский государственный университет информатики и радиоэлектроники, 2020. С. 48.

Стаховский А.В. (БГУИР)

Динамическая симуляция объемного огня

7 июня 2020 г

17 / 17