

Discrete Mathematics MH1812

Topic 8.1 - Relations I Dr. Guo Jian

SINGAPORE

What's in store...

By the end of this lesson, you should be able to...

- Explain the different types of binary relations.
- Explain the concept of reflexivity.
- Explain the concept of symmetry.
- Explain the concept of transitivity.

Binary Relations: Between Two Sets

Let A and B be sets. A binary relation R from A to B is a subset of $A \times B$. Given (x,y) in $A \times B$, x is related to y by R $(xRy) \leftrightarrow (x,y) \in R$.

Example

$$A = \{1,2\}, B = \{1,2,3\}, (x,y) \in R \longleftrightarrow (x-y)$$
 is even

$$A \times B = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)\}$$

$$(1,1) \in R, (1,3) \in R, (2,2) \in R$$

x > y, x owes y, x divides y

Binary Relations: Between Two Sets (Graphically)

$$A = \{1,2\}, B = \{1,2,3\}, (x,y) \in R \iff (x-y) \text{ is even}$$

$$A \times B = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)\}$$

$$(1,1) \in R, (1,3) \in R, (2,2) \in R$$

Binary Relations: Inverse of a Binary Relation

Let R be a relation from A to B. The inverse relation R^{-1} from B to A is defined as: $R^{-1} = \{(y,x) \in B \times A \mid (x,y) \in R\}$.

Binary Relations: Inverse of a Binary Relation (Example)

$$A = \{2,3,4\}, B = \{2,6,8\}, (x,y) \in R \leftrightarrow x \text{ divides } y$$

$$A \times B = \{(2,2), (2,6), (2,8), (3,2), (3,6), (3,8), (4,2), (4,6), (4,8)\}$$

$$(2,2) \in R, (2,6) \in R, (2,8) \in R, (3,6) \in R, (4,8) \in R$$

$$(2,2) \in R^{-1}$$
, $(6,2) \in R^{-1}$, $(8,2) \in R^{-1}$, $(6,3) \in R^{-1}$, $(8,4) \in R^{-1}$

 $(y, x) \in R^{-1} \leftrightarrow y$ is a multiple of x

Binary Relations: Inverse of a Binary Relation (Graphically)

$$A = \{2,3,4\}, B = \{2,6,8\}, (x,y) \in R \leftrightarrow x \text{ divides } y$$

$$(2,2) \in R$$
, $(2,6) \in R$, $(2,8) \in R$, $(3,6) \in R$, $(4,8) \in R$

$$(2,2) \in R^{-1}(6,2) \in R^{-1}(8,2) \in R^{-1}(6,3) \in R^{-1}(8,4) \in R^{-1}(8,4)$$

Binary Relations: Matrix Representation

$$A = (a_{1}, a_{2}, a_{3}), B = (b_{1}, b_{2}, b_{3}, b_{4}),$$

$$R = \{(a_{1}, b_{2}), (a_{2}, b_{1}), (a_{3}, b_{1}), (a_{3}, b_{4})\}$$

$$(i, j) \text{th entry is } T \text{ if } a_{i}Rb_{j} : \begin{array}{c} b_{1} & b_{2} & b_{3} & b_{4} \\ a_{1} & F & F & F \\ T & F & F & F \\ T & F & F & T \end{array}$$

$$A = \{2,3,4\}, B = \{2,6,8\}, (x,y) \in R \leftrightarrow x \text{ divides } y.$$

$A \setminus B$	2	6	8
2	T	T	T
3	F	Т	F
4	F	F	Т

Binary Relations: Matrix Representation

R relation from *A* to *B*: $R^{-1} = \{(y,x) \in B \times A \mid (x,y) \in R \}$.

$$A = (a_1, a_2, a_3), B = (b_1, b_2, b_3, b_4)$$

$$R = \{(a_1, b_2), (a_2, b_1), (a_3, b_1), (a_3, b_4)\}$$

$$R^{-1} = \{(b_2, a_1), (b_1, a_2), (b_1, a_3), (b_4, a_3)\}$$

The matrix of R^{-1} is the transpose of the matrix of R.

$$\begin{bmatrix} a_i R b_j \colon & b_1 & b_2 & b_3 & b_4 \\ a_1 & F & T & F & F \\ a_2 & T & F & F & F \\ a_3 & T & F & F & T \end{bmatrix}$$

$$b_{i}R^{-1}a_{j} \colon \begin{array}{c} a_{1} & a_{2} & a_{3} \\ b_{1} & F & T & T \\ b_{2} & T & F & F \\ b_{3} & b_{4} & F & F & T \\ \end{array}$$

Binary Relations: Composition of Relations

Given R in $A \times B$, and S in $B \times C$, the composition of R and S is a relation on $A \times C$ defined by $S \circ R = \{(a, c) \in A \times C \mid \exists b \in B, aRb \text{ and } bSc\}.$

Example

$$S = \{(b_1, c_1), (b_2, c_1), (b_1, c_3), (b_2, c_2)\}$$

What is $S \circ R$?

$$S \circ R = \{(a_1, c_1), (a_1, c_3), (a_1, c_2)\}$$

$$A = \{a_1, a_2\}, B = \{b_1, b_2\}, C = \{c_1, c_2, c_3\}$$

$$R = \{(a_1, b_1), (a_1, b_2)\}$$

$$S = \{(b_1, c_1), (b_2, c_1), (b_1, c_3), (b_2, c_2)\}$$

$$A = \{a_1, a_2\}, B = \{b_1, b_2\}, C = \{c_1, c_2, c_3\}$$

$$R = \{(a_1, b_1), (a_1, b_2)\}$$

$$S = \{(b_1, c_1), (b_2, c_1), (b_1, c_3), (b_2, c_2)\}$$

$$S \circ R = \{(a_1, c_1), (a_1, c_3), (a_1, c_2)\}$$

$$A = \{a_1, a_2\}, B = \{b_1, b_2\}, C = \{c_1, c_2, c_3\}$$

$$R = \{(a_1, b_1), (a_1, b_2)\}$$

$$S = \{(b_1, c_1), (b_2, c_1), (b_1, c_3), (b_2, c_2)\}$$

$$S \circ R = \{(a_1, c_1), (a_1, c_3), (a_1, c_2)\}$$

$$A = \{a_1, a_2\}, B = \{b_1, b_2\}, C = \{c_1, c_2, c_3\}$$

$$R = \{(a_1, b_1), (a_1, b_2)\}$$

$$S = \{(b_1, c_1), (b_2, c_1), (b_1, c_3), (b_2, c_2)\}$$

$$S \circ R = \{(a_1, c_1), (a_1, c_3), (a_1, c_2)\}$$

Reflexivity: Definition

A relation R on a set A is reflexive if every element of A is related to itself: $\forall x \in A, xRx$.

 $A = \mathbb{Z}$, $xRy \longleftrightarrow x = y$: reflexive

 $A = \mathbb{Z}$, $xRy \longleftrightarrow x > y$: not reflexive

What is the reflexivity on the matrix representing *R*?

Drawing Hands (M.C. Escher)

Reflexivity: Graphically

 $A = \{3,4,5,6,7\}, xRy \longleftrightarrow (x - y) \text{ is even}$

R reflexive

Symmetry: Definition

A relation R on a set A is symmetric if $(x,y) \in R$ implies $(y,x) \in R$: $\forall x \in A \ \forall y \in A, xRy \rightarrow yRx$.

Not Symmetric Relationship

E.g.,
$$A = \mathbb{Z}$$
, $xRy \longleftrightarrow x > y$: not symmetric

Symmetric Relationship

E.g.,
$$A = \mathbb{Z}$$
, $xRy \leftrightarrow x = y$: symmetric

Symmetry: Graphically

 $A = \{3,4,5,6,7\}, xRy \longleftrightarrow (x - y) \text{ is even}$

R reflexive

R symmetric

Transitivity: Definition

A relation R on a set A is transitive if $(x,y) \in R$ and $(y,z) \in R$ implies $(x,z) \in R$: $\forall x \forall y \forall z xRy \land yRz \rightarrow xRz$.

Example

 $A = \mathbb{Z}$, $xRy \longleftrightarrow x = y$: transitive

 $A = \mathbb{Z}$, $xRy \longleftrightarrow x > y$: transitive

Transitivity: Graphically

 $A = \{3,4,5,6,7\}, xRy \longleftrightarrow (x - y) \text{ is even}$

$$[3] = \{3,5,7\}, [4] = \{4,6\}$$

R reflexive

R symmetric

R transitive

Let's recap...

- Binary relations:
 - Inverse and composition
 - Graphical representation
- Properties:
 - Reflexivity
 - Symmetry
 - Transitivity

