Gravitational Waves Do You See it?

What are Gravitational Waves?

A picture is worth a thousand words

"Ripples" in spacetime caused by accelerating massive celestial bodies Energy radiated as gravitational waves (think dropping pebble in pond)

Why are GW Important?

Why are GW Important?

- One of the final pieces in Einstein's General Theory of Relativity
- Opens new "windows" to study the Universe in addition to EM radiation

Ok, mainly to answer

- ✗ How old is the Universe?
- ✗ How big is the Universe?

Problem Statement

Build a Machine Learning pipeline to read, preprocess, train models and predict the gravitational wave signals & use ROC AUC metric to build the classifier.

How are GW Detected?

Anyone said LASER?

LIGO & Virgo Observatory locations

Look at Data

Challenges with Data Visualizations

72GB

That's a lot of data

786,000 measurements

And a lot of observations

With balanced class distribution

Why do we need ML?

LIGO Hanford

Virgo

Spectrogram Transformation

Time domain → Frequency domain

Signals = sine + cosine

STFT: short term fourier transform

Changes in frequency over time removes unwanted white noise

Constant Q-Transform →

Modelling

Baseline CNN & SOTA Models

Model Comparison

	CNN	EfficientNet
Architecture	3x Conv2D 3x MaxPool2D 1x Flatten 2x Dense	1x Conv2D 1x EfficientNet (imagenet) 1x GlobalAvgPool2D 1x Flatten 1x Dense
# Parameters	Total params: 4,382,081 Trainable params: 4,382,081	Total params: 4,090,619 Trainable params: 4,048,603 Non-trainable params: 42,016
Avg time/epoch	3300s / 55 min	6000s / 1 hr 40 min
Performance metrics	Train AUC: 0.83 acc: 0.76 Valid AUC: 0.84 acc: 0.77 kaggle: 0.843*	Train AUC: 0.82 l acc: 0.xx Valid AUC: 0.85 l acc: 0.xx kaggle: 0.857*

Conclusions

- Big data challenge addressed
- Achieved 0.86 AUC score on test with CNN
- Optimizing for GPU can run 5x faster
- Train Once & predict forever (50MB model can predict 20GB of data)
- Pre-trained weights of SOTA model converge faster

Future Work

Preprocess

- > It makes a significant difference.
- > See if using "raw" data to train the model is possible.

Compute Efficiency

- > Take advantage of GPU.
- > Make all functions & operations in TensorFlow pipeline GPU-compatible.

Regularization

> Train models with regularization to further improve performance.

- > Three waves from each observation were stacked.
- > Consider using three spectrograms to train model as multi-image input classifier.

THANKS!

Any questions?

