UFV- CCE - DET

 $EST\ 105$ – 3^a avaliação - 2^0 semestre de 2018 - 1/dezembro/18

Matrícula:_

$\mathbf{A}\mathbf{s}$	sinat	ura:		Fa	Favor apresentar documento com foto.				
FAY	VOR	CONFERI ÇÃO: Assin	R ANTES DE INICIAR.		radas de 1 a 9, total de 40 pontos, o (sua nota será divulgada no sistema				
		TURMA	HORÁRIO	SALA	PROFESSOR				
()	T1 2ª 10	-12 5 2 8-10	PVB310	Moysés				
()	T2 2ª 16	-18 5 a 14-16	PVB310	Eduardo				
()	T3 2 ª 8-	10 PVB109 4 ª 10-12	PVB208	Paulo Emiliano				
()	T4 3ª 10	-12PVB109 6 2 8-10	PVB207	Roberta				
()	T5 3ª 16	-18 6 ª 14-16	PVB310	Camila				
()	T6 2ª 14	-16 4 ª 16-18	PVB107	Roberta				
()	T7 4 ª 8	-10 6 ª 10-12	PVB206	CHOS - coordenador				
()	T8 4ª 18	:30-20:10 6ª 20:30-22:1	0 PVB210	Roberta				
()	T9 3 ª 10	-12 PVB300 6ª 8-10	PVB307	Paulo Cecon				
()		14-16 6ª 16-18						
()	T20 = ES	T085 T1 2ª 14-16 PVA284	T2 2ª 18	:30-20:10 PVA388 Leísa				

- Interpretar corretamente as questões é parte da avaliação, portanto não é permitido questionamentos durante a prova!
- \bullet É OBRIGATÓRIO APRESENTAR OS CÁLCULOS organizadamente, para ter direito à revisão.
- \bullet PODE UTILIZAR A CALCULADORA, porém mostre os valores utilizados na fórmula.
- BOA SORTE e BOA PROVA !!!.

FORMULÁRIO

$$f(x|y) = \frac{f(x,y)}{h(y)}, \quad h(y) = \int f(x,y) \ dx, \qquad f(y|x) = \frac{f(x,y)}{g(x)}, \quad g(x) = \int f(x,y) \ dy$$

$$P(x|y) = \frac{P(x,y)}{P(y)}, \quad P(y) = \sum_{x} P(x,y), \qquad P(y|x) = \frac{P(x,y)}{P(x)}, \quad P(x) = \sum_{y} P(x,y)$$

Para
$$k = 1, 2, \dots, n < \infty$$
 $E(X^k) = \sum_{x} x^k P(x)$ ou $E(X^k) = \int x^k f(x) dx$

$$E(XY) = \sum_{x} \sum_{y} xy P(x, y)$$
 ou $E(XY) = \int \int xy f(x, y) dx dy$

$$COV(X,Y) = E(XY) - E(X)E(Y), \quad \rho_{X,Y} = \frac{COV(X,Y)}{\sqrt{V(X)V(Y)}}, \quad V(X) = E(X^2) - [E(X)]^2$$

Para $a, b \in c$ constantes finitas, $X \in Y$ variáveis aleatórias,

$$E(aX - bY + c) = aE(X) - bE(Y) + c$$

$$V(aX - bY + c) = a^{2}V(X) + b^{2}V(Y) - 2abCOV(X, Y)$$

$$P(X = x) = \binom{N}{x} p^{x} (1 - p)^{N-x} \quad E(X) = Np \quad V(X) = Np(1 - p) \quad \binom{N}{x} = \frac{N!}{x!(N-x)!}$$

$$P(X = x) = \frac{e^{-m}m^{x}}{x!} \qquad E(X) = V(X) = m$$

Para N grande e p pequeno, com Np constante, pode-se aproximar

$$X \sim \text{Binomial}(N, p) \quad \text{por} \quad X \sim \text{Poisson}(m = Np)$$

$$X \sim N\left(\mu; \sigma^2\right) \implies Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

 $\bar{X} \sim N\left(\mu; \frac{\sigma^2}{n}\right) \implies Z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$
 $S_X^2 = \frac{\sum_{i=1}^{n} X_i^2 - \frac{\left(\sum_{i=1}^{n} X_i\right)^2}{n}}{n-1}$

$$\chi_n^2 = \sum_{i=1}^h \sum_{j=1}^k \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$
 $n = (h-1)(k-1)$

Tabela 1: Áreas de uma distribuição normal padrão entre z=0 e um valor positivo de z. As

áreas para os valores de z negativos são obtidas por simetria.

	0.00	0.01		0.00		0.05	0.00	0.07	0.00	0.00
z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	$0,\!1064$	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	$0,\!1368$	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	$0,\!1591$	0,1628	0,1664	0,1700	$0,\!1736$	0,1772	$0,\!1808$	0,1844	$0,\!1879$
0,5	0,1915	$0,\!1950$	$0,\!1985$	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	$0,\!2517$	0,2549
0,7	$0,\!2580$	0,2611	0,2642	0,2673	0,2703	$0,\!2734$	$0,\!2764$	$0,\!2794$	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	$0,\!2967$	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	$0,\!3289$	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	$0,\!3708$	0,3729	$0,\!3749$	0,3770	$0,\!3790$	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	$0,\!4115$	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	$0,\!4207$	0,4222	0,4236	0,4251	$0,\!4265$	0,4279	0,4292	0,4006	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	$0,\!4505$	$0,\!4515$	$0,\!4525$	$0,\!4535$	0,4545
1,7	0,4554	$0,\!4564$	0,4573	$0,\!4582$	0,4591	$0,\!4599$	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	$0,\!4678$	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	$0,\!4719$	0,4726	0,4732	0,4738	$0,\!4744$	0,4750	$0,\!4756$	0,4761	0,4767
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	$0,\!4808$	0,4812	0,4817
2,1	0,4821	$0,\!4826$	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	$0,\!4864$	$0,\!4868$	0,4871	0,4875	$0,\!4878$	0,4881	0,4884	$0,\!4887$	$0,\!4890$
2,3	0,4893	$0,\!4896$	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990

	_	
н	\rightarrow	

		Tabela	2: Valc	ores χ^2	na dist	ribuiçã	o de qı	ıi-quad	rado co	om n gr	aus de	liberda	ide tais	que P	$(\chi_n^2 \ge$	χ^2) = η	o × 100	%.	
\overline{n}	p = 99%	98%	97,5%	95%	90%	80%	70%	50%	30%	20%	10%	5%	4%	2,5%	2%	1%	0,2%	0,1%	n
1	$0.0^3 16$	$0.0^3 63$	0,001	0,004	0,016	0,064	0,148	0,455	1,074	1,642	2,706	3,841	4,218	5,024	5,412	6,635	9,550	10,827	1
2	0,020	0,040	0,051	0,103	0,211	0,446	0,713	1,386	2,408	3,219	4,605	5,991	6,438	7,378	7,824	9,210	$12,\!429$	13,815	2
3	0,115	$0,\!185$	0,216	0,352	0,584	1,005	1,424	2,366	3,665	4,642	6,251	7,815	8,311	9,348	9,837	11,345	14,796	16,266	3
4	0,297	$0,\!429$	0,484	0,711	1,064	1,649	2,195	3,357	4,878	5,989	7,779	9,488	10,026	11,143	11,668	$13,\!277$	16,924	18,467	4
5	0,554	0,752	0,831	1,145	1,610	2,343	3,000	4,351	6,064	7,289	9,236	11,070	11,644	12,832	13,388	15,086	18,907	20,515	5
6	0,872	1,134	1,237	1,635	2,204	3,070	3,828	5,348	7,231	8,558	10,645	$12,\!592$	13,198	14,449	15,033	16,812	20,791	22,457	6
7	1,239	1,564	1,690	2,167	2,833	3,822	4,671	6,346	8,383	9,803	12,017	14,067	14,703	16,013	16,622	$18,\!475$	22,601	24,322	7
8	1,646	2,032	2,180	2,733	3,490	4,594	5,527	7,344	9,524	11,030	13,362	15,507	16,171	17,534	18,168	20,090	24,352	26,125	8
9	2,088	2,532	2,700	3,325	4,168	5,380	6,393	8,343	10,656	12,242	14,684	16,919	17,608	19,023	19,679	21,666	26,056	27,877	9
10	$2,\!558$	3,059	3,247	3,940	4,865	6,179	7,267	9,342	11,781	13,442	15,987	18,307	19,021	20,483	21,161	23,209	27,722	29,588	10
11	3,053	3,609	3,816	4,575	5,578	6,989	8,148	10,341	12,899	14,631	17,275	19,675	20,412	21,920	22,618	24,725	29,354	31,264	11
12	3,571	4,178	4,404	5,226	6,304	7,807	9,034	11,340	14,011	15,812	18,549	21,026	21,785	23,337	24,054	26,217	30,957	32,909	12
13	4,107	4,765	5,009	5,892	7,042	8,634	9,926	12,340	15,119	16,985	19,812	22,362	23,142	24,736	$25,\!472$	27,688	$32,\!535$	$34,\!528$	13
14	4,660	5,368	5,629	6,571	7,790	9,467	10,821	13,339	16,222	18,151	21,064	23,685	24,485	26,119	26,873	29,141	34,091	36,123	14
15	5,229	5,985	6,262	7,261	8,547	10,307	11,721	14,339	17,322	19,311	22,307	24,996	$25,\!816$	$27,\!488$	$28,\!259$	30,578	35,628	37,697	15
16	5,812	6,614	6,908	7,962	9,312	11,152	12,624	15,338	18,418	20,465	$23,\!542$	26,296	27,136	28,845	29,633	32,000	37,146	39,252	16
17	6,408	$7,\!255$	7,564	8,672	10,085	12,002	$13,\!531$	16,338	$19,\!511$	21,615	24,769	27,587	28,445	30,191	30,995	33,409	38,648	40,790	17
18	7,015	7,906	8,231	9,390	10,865	12,857	14,440	17,338	20,601	22,760	25,989	28,869	29,745	$31,\!526$	32,346	34,805	40,136	42,312	18
19	7,633	8,567	8,906	10,117	11,651	13,716	15,352	18,338	21,689	23,900	27,204	30,144	31,037	32,852	33,687	36,191	41,610	$43,\!820$	19
20	8,260	9,237	9,591	10,851	12,443	$14,\!578$	16,266	19,337	22,775	25,038	28,412	31,410	32,321	34,170	35,020	$37,\!566$	43,072	45,315	20
21	8,897	9,915	10,283	11,591	13,240	15,445	17,182	20,337	23,858	26,171	29,615	32,671	$33,\!597$	35,479	36,343	38,932	44,522	46,797	21
22	9,542	10,600	10,982	12,338	14,041	16,314	18,101	21,337	24,939	27,301	30,813	33,924	$34,\!867$	36,781	37,659	40,289	45,962	48,268	22
23	10,196	11,293	11,688	13,091	14,848	17,187	19,021	22,337	26,018	28,429	32,007	35,172	36,131	38,076	38,968	41,638	47,391	49,728	23
24	10,856	11,992	12,401	13,848	15,659	18,062	19,943	23,337	27,096	29,553	33,196	36,415	$37,\!389$	39,364	$40,\!270$	42,980	48,812	51,179	24
25	$11,\!524$	12,697	13,120	14,611	16,473	18,940	20,867	24,337	28,172	30,675	34,382	37,652	38,642	40,646	$41,\!566$	44,314	50,223	52,620	25
26	12,198	13,409	13,844	15,379	17,292	19,820	21,792	25,336	29,246	31,795	$35,\!563$	38,885	39,889	41,923	42,856	45,642	51,627	54,052	26
27	12,879	14,125	14,573	16,151	18,114	20,703	22,719	26,336	30,319	32,912	36,741	40,113	41,132	43,194	44,140	46,963	53,022	$55,\!476$	27
28	13,565	$14,\!847$	15,308	16,928	18,939	21,588	23,647	27,336	31,319	34,027	37,916	41,337	$42,\!370$	44,461	$45,\!419$	48,278	54,411	56,893	28
29	$14,\!256$	15,574	16,047	17,708	19,768	22,475	24,577	28,336	32,461	35,139	39,087	42,557	43,604	45,722	46,693	49,588	55,792	58,302	29
30	14,953	16,306	16,791	18,493	20,599	23,364	25,508	29,336	33,530	36,250	40,256	43,773	44,834	46,979	47,962	50,892	57,167	59,703	30
\overline{n}	p=99%	98%	97,5%	95%	90%	80%	70%	50%	30%	20%	10%	5%	4%	2,5%	2%	1%	0,2%	0,1%	n

1.(6 pontos) Seja (X,Y) uma variável aleatória contínua bidimensional com a seguinte função densidade de probabilidade conjunta,

$$f(x,y) = \begin{cases} \frac{1}{500} (2x+y) &, & \text{para } 0 \le x \le 5 \text{ e } 0 \le y \le 10\\ 0 &, & \text{para outros valores } x \text{ e } y \end{cases}$$

Pede-se: Calcule $P(X \le 1, Y \ge 5)$.

$$\begin{split} P\left(X \leq 1, Y \geq 5\right) &= \int_{5}^{10} \int_{0}^{1} \frac{1}{500} \left(2x + y\right) dx dy \stackrel{\text{ou}}{=} \int_{0}^{1} \int_{5}^{10} \frac{1}{500} \left(2x + y\right) dy dx \\ &= \left. \frac{1}{500} \int_{5}^{10} \left(2\frac{x^{2}}{2} + yx\right) \right|_{x=0}^{1} dy = \frac{1}{500} \int_{5}^{10} \left(1 + y\right) dy = \frac{1}{500} \left(y + \frac{y^{2}}{2}\right) \right|_{y=5}^{10} \\ &= \left. \frac{1}{500} \left(5 + \frac{75}{2}\right) = \frac{1}{500} \cdot \frac{85}{2} = \frac{85}{1000} = \frac{17}{200} \\ &= 0,085. \end{split}$$

2.(12 pontos) Seja (X,Y) uma variável aleatória discreta bidimensional associada a acidentes de automóveis nos quais havia uma criança com no máximo 5 anos de idade no veículo e ao menos um óbito ocorreu. A variável X indicada se a criança não sobreviveu (x=1) ou sobreviveu (x=0) e a variável Y indica se ela não utilizava qualquer cinto de segurança (y=0), usava cinto de adulto (y=1) ou cinto infantil apropriado (y=2). A distribuição conjunta de probabilidades é apresentada na tabela a seguir.

	Z	Y	$P\left(y\right)$
Y	0	1	
0	0,38	0,17	-0,55
1	0,14	0,02	$0,\!16$
2	0,24	0,05	$0,\!29$
P(x)	0,76	0,24	1

Por exemplo, pode-se verificar na tabela acima que P(X = 1, Y = 2) = 0,05, isto é, em 5% dos acidentes a criança utilizando o cinto infantil apropriado não sobreviveu. Pede-se: **Utilize uma notação apropriada, conforme exemplificado**, para calcular:

a.(4 pts) A probabilidade de acidentes nos quais a criança não estava utilizando cinto de segurança e sobreviveu.

$$P_{XY}(X=0,Y=0)=0,38.$$

b.(4 pts) A probabilidade condicional de acidentes nos quais a criança sobreviveu, dado que não utilizava cinto de segurança.

$$P_{XY}(X=0|Y=0) = \frac{P_{XY}(X=0,Y=0)}{P_Y(Y=0)} = \frac{0.38}{0.55} = 0.6909.$$

c.(4 pts) A probabilidade marginal de acidentes nos quais a criança sobreviveu.

$$P_X(X=0) = 0,76.$$

3.(8 pontos) Seja X uma variável aleatória com média E(X)=10 e variância V(X)=25. Seja

$$Y = \frac{X - 10}{5}$$

Pede-se:

a.(4 pts) A média e a variância de Y.

$$E(Y) = E\left(\frac{X - 10}{5}\right) = \frac{1}{5}E(X - 10) = \frac{1}{5}(E(X) - E(10)) = \frac{1}{5}(10 - 10) = 0,$$

$$V(Y) = V\left(\frac{X-10}{5}\right) = \frac{1}{5^2}V(X-10) = \frac{1}{25}\left(V(X) + V(10) - \frac{0}{2}2COV(X,10)\right)^0$$
$$= \frac{1}{25}V(X) = \frac{25}{25}$$
$$= 1.$$

b.(4 pts) V(X + Y).

$$V(X+Y) = V\left(X + \frac{X-10}{5}\right) = V\left(\frac{5X+X-10}{5}\right)$$
$$= \frac{1}{25}V(6X-10) = \frac{1}{25} \cdot 36V(X)$$
$$= 36,$$

ou

$$\begin{split} V\left(X+Y\right) &= V\left(X\right) + V\left(Y\right) + 2COV\left(X,Y\right) \\ &= 25 + 1 + 2COV\left(X,\frac{X-10}{5}\right) \\ &= 26 + 2\left[COV\left(X,\frac{X}{5}\right) - COV\left(X,\frac{10}{5}\right)\right]^0 \\ &= 26 + 2 \cdot \frac{1}{5}COV\left(X,X\right) = 26 + \frac{2}{5}V\left(X\right) = 26 + \frac{2}{5} \cdot 25 = 26 + 2 \cdot 5 \\ &= 36. \end{split}$$

4.(6 pontos) Admita que a nota final de um estudante em um curso seja a nota média obtida em 5 avaliações, cada uma no valor de 100 pontos. Admita também que essas notas finais sejam normalmente distribuídas com média $\mu = 67$ pontos e variância $\sigma^2 = 144$ pontos². Se 500 alunos estão matriculados neste curso, calcule o número esperado de alunos com:

a.(3 pts) Nota final no máximo 47,5 pontos. Faça um desenho ilustrativo.

Sejam X: "Nota final" e $Z = \frac{X-\mu}{\sigma} \sim N(0,1)$ as nota final padronizada.

$$\begin{split} P\left(X \leq 47, 5\right) &= P\left(\frac{X - \mu}{\sigma} \leq \frac{47, 5 - 67}{\sqrt{144}}\right) = P\left(Z \leq -1, 63\right) \\ &= P\left(Z > 1, 63\right) = 0, 5 - P\left(0 \leq Z \leq 1, 63\right) = 0, 5 - 0, 4484 \\ &= 0, 0516 \quad (5, 16\%). \end{split}$$

O número esperado é de $500 \times 0,0516 = 25,8 \approx 26$ alunos.

b.(3 pts) Nota final no mínimo 91 pontos. Faça um desenho ilustrativo.

$$z = \frac{91 - 67}{\sqrt{144}} = \frac{24}{12} = 2.$$

$$P(X \ge 91) = P\left(\frac{X - \mu}{\sigma} \ge \frac{91 - 67}{\sqrt{144}}\right) = P(Z \ge 2)$$

$$= 0, 5 - P(0 \le Z \le 2) = 0, 5 - 0, 4772$$

$$= 0, 0228 \quad (2, 28\%).$$

O número esperado é de $500\times0,0228=11,4\approx11$ alunos.

5.(8 pontos) Neste exemplo, bem humorado, obtido em: http://statisticsbyjim.com/hypothesistesting/chi-square-test-independence-example/. O author Jim Frost se diz um grande fã do seriado Jornada nas Estrelas e apresenta o número de mortes ocorridas entre os tripulantes da nave espacial USS Enterprise, de acordo com a cor do uniforme do tripulante, para um total de 430 tripulantes que apareceram nos seriados da TV. O tripulante da nave atua em funções específicas de acordo com a cor do uniforme: Azul - Ciência e medicina; Dourado - Cabine de comando e Vermelho - Engenharia e segurança. A tabela abaixo informa o número de mortes (status: vivo ou morto) por cor do uniforme do tripulante. Para facilitar os cálculos, em cada célula da tabela são informados O_i (E_i / χ_i^2), em que O_i é a frequência observada, E_i é a frequência esperada sob H_0 e $\chi_i^2 = (O_i - E_i)^2/E_i$.

	Status								
Cor do Uniforme	Vivo	Morto	Total						
Azul Dourado	129 (123, 35 / 0, 2588) 46 (49, 88 / 0, 3018)	7 (12,65 / 2,5235) 9 (5,12 / 2,9403)	136 55						
Vermelho Total	215 (216,77 / 0,0144) 390	24 (22, 23 / 0, 1409) 40	$\frac{239}{430}$						

Pede-se: Adote $\alpha = 5\%$ e realize um teste de hipóteses para verificar se há relação entre a cor do uniforme e o status do tripulante (número de mortes), conforme os itens a seguir:

a.(2 pt) Hipóteses estatísticas.

 $\begin{cases} H_0: & \text{Status (Vivo ou Morto) e Cor do uniforme são independentes} \\ H_1: & \text{Status (Vivo ou Morto) e Cor do uniforme não são independentes} \end{cases}$

b.(2 pts) Valor tabelado.

$$\nu = (3-1)(2-1) = 2 \text{ e } \chi^2_{\text{tab}} = \chi^2_{(2;5\%)} = 5,991$$

c.(2 pts) Valor calculado.

$$\chi_{\text{cal}}^{2} = \frac{(129 - 123, 35)^{2}}{123, 35} + \frac{(7 - 12, 65)^{2}}{12, 65} + \frac{(46 - 49, 88)^{2}}{49, 88} + \frac{(9 - 5, 12)^{2}}{5, 12} + \frac{(215 - 216, 77)^{2}}{216, 77} + \frac{(24 - 22, 23)^{2}}{22, 23}$$

$$= 0, 2588 + 2, 5235 + 0, 3018 + 2, 9403 + 0, 0144 + 0, 1409$$

$$\cong 6, 1797.$$

d.(2 pt) Decisão do teste e conclusão.

Decisão: Rejeitar H_0 pois $\chi^2_{\rm cal} > \chi^2_{\rm tab}$.

Conclusão: Admitir que as variáveis **não são** independentes.