Class07

Natalie Ogg, A91030809

Clustering

We will start today's lab with clustering methods, in particular so-called K-means. The main function for this in R is kmeans().

Let's try it on some made up data where we know what the answer should be.

```
x <- rnorm(10000)
hist(x)</pre>
```

Histogram of x

rnorm() returns random values

60 points

```
tmp <- c(rnorm(30, mean=3), rnorm(30, -3))
x <- cbind(x=tmp, y=rev(tmp))
head(x)</pre>
```

```
x y
[1,] 2.442494 -3.752964
[2,] 2.105978 -2.153749
[3,] 1.527616 -3.935536
[4,] 4.424140 -4.405746
[5,] 3.806614 -2.922511
[6,] 2.910423 -1.634642
```

We can pass this to the base R plot() function for a quick look:

Now let's see if kmean recognizes the 2 clusters we see above.

```
k <- kmeans(x, centers = 2, nstart = 20)</pre>
 k
K-means clustering with 2 clusters of sizes 30, 30
Cluster means:
      X
1 2.990097 -3.031402
2 -3.031402 2.990097
Clustering vector:
Within cluster sum of squares by cluster:
[1] 39.24981 39.24981
(between_SS / total_SS = 93.3 %)
Available components:
                       "totss"
[1] "cluster"
             "centers"
                                  "withinss"
                                            "tot.withinss"
[6] "betweenss"
             "size"
                       "iter"
                                  "ifault"
   Q1. How many points are in each cluster?
 k$size
[1] 30 30
   Q2. Cluster membership?
 k$cluster
Q3. Cluster centers?
 k$centers
```

```
x y
1 2.990097 -3.031402
2 -3.031402 2.990097
```

Q4. Plot my clustering results

```
plot(x, col=k$cluster, pch=16)
```


Q5. Cluster the data again into 4 groups and plot the results.

K-means clustering with 4 clusters of sizes 8, 9, 13, 30

Cluster means:

x y
1 2.632960 -2.230037
2 4.197337 -2.956857
3 2.374091 -3.576157
4 -3.031402 2.990097

Clustering vector:

Within cluster sum of squares by cluster:

[1] 1.909133 5.341262 3.883817 39.249806 (between_SS / total_SS = 95.7 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

plot(x, col=k4\$cluster, pch=16)

K-means is very popular mostly because it is fast and relatively straightforward to run and understand. It has a big limitation that you need to tell it how many groups (k, or centers) you want.

Hierarchical clustering

The main function in base R is hclust(). You have to pass it in a "distance matrix" not just your input data.

You generate this matrix with the dist() function

```
hc <- hclust(dist(x))
plot(hc)</pre>
```

Cluster Dendrogram

dist(x)
hclust (*, "complete")

To find clusters (cluster membership vector) from an hclust() result, we can cut the tree at a certain height that we like using the cutree() function.

```
plot(hc)
abline(h=8, col='red')
```

Cluster Dendrogram

dist(x)
hclust (*, "complete")

```
grps <- cutree(hc, h=8)
table(grps)</pre>
```

Q6. Plot our hclust results

```
plot(x, col=grps, pch=16)
```


Principal Component Analysis

PCA of UK food data

Read data showing the consumption in grams (per person, per week) of 17 different types of food-stuff measured and averaged in the four countries of the United Kingdom in 1997.

Let's see how PCA can help us but first we can try conventional analysis.

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)
x</pre>
```

	X	England	Wales	Scotland	N.Ireland
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93
5	Fats_and_oils	193	235	184	209
6	Sugars	156	175	147	139
7	Fresh_potatoes	720	874	566	1033

8	Fresh_Veg	253	265	171	143
9	Other_Veg	488	570	418	355
10	Processed_potatoes	198	203	220	187
11	Processed_Veg	360	365	337	334
12	${\sf Fresh_fruit}$	1102	1137	957	674
13	Cereals	1472	1582	1462	1494
14	Beverages	57	73	53	47
15	${ t Soft_drinks}$	1374	1256	1572	1506
16	Alcoholic_drinks	375	475	458	135
17	Confectionery	54	64	62	41

Q1. How many rows and columns are in your new data frame named x? What R functions could you use to answer this questions?

Complete the following code to find out how many rows and columns are in x?

dim(x)

[1] 17 5

A: 17 rows, 5 columns

Preview the first 6 rows

head(x)

	Х	England	Wales	Scotland	N.Ireland
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93
5	Fats_and_oils	193	235	184	209
6	Sugars	156	175	147	139

We need to assign the character values in column1 (x) to be the rownames, then delete column1 so only the rownames are left where they should be.

```
row.names(x) <- x[,1]
x <- x[,-1]
x
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139
Fresh_potatoes	720	874	566	1033
Fresh_Veg	253	265	171	143
Other_Veg	488	570	418	355
Processed_potatoes	198	203	220	187
Processed_Veg	360	365	337	334
Fresh_fruit	1102	1137	957	674
Cereals	1472	1582	1462	1494
Beverages	57	73	53	47
Soft_drinks	1374	1256	1572	1506
Alcoholic_drinks	375	475	458	135
Confectionery	54	64	62	41

dim(x)

[1] 17 4

Q2. Which approach to solving the 'row-names problem' mentioned above do you prefer and why? Is one approach more robust than another under certain circumstances?

The approach I used is risky because if you enter the wrong values you could erase data on accident.

The better way to do it would be assigning x to row names right off the bat:

```
x <- read.csv(url, row.names=1)
head(x)</pre>
```

England Wales Scotland N.Ireland Cheese 105 103 103 66

Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

```
barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))
```


Q3: Changing what optional argument in the above barplot() function results in the following plot?

By setting beside = FALSE

```
barplot(as.matrix(x), beside=F, col=rainbow(nrow(x)))
```


Q5: Generating all pairwise plots may help somewhat. Can you make sense of the following code and resulting figure? What does it mean if a given point lies on the diagonal for a given plot?

```
pairs(x, col=rainbow(10), pch=16)
```


Each plot is a comparison of two countries. If a dot lies on the diagonal, then the two countries being compared have equal consumption for the food represented by that point. If a dot is further to one side of the diagonal, the food it represents is more conumed by the country on that side. The closer points are to a perfect diagonal for a given plot, the more similar the consumption is in those two countries.

PCA - Principal Component Analysis

PCA can help us make sense of these datasets.

The main function in base R is prcomp()

head(x)

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

We want switch the variables, so the countries are the rows and the foods are the columns. We transpose this dataset using function t().

head(t(x))

	Cheese	Carcass_	meat	Other	meat	Fish	Fats_and	_oils	Sugars
England	105		245		685	147		193	156
Wales	103		227		803	160		235	175
Scotland	103		242		750	122		184	147
N.Ireland	66		267		586	93		209	139
	Fresh_p	ootatoes	Fresl	h_Veg	Other	_Veg	Processed	d_potat	toes
England		720)	253		488			198
Wales		874		265		570			203
Scotland		566	;	171		418			220
N.Ireland		1033	3	143		355			187
	Process	sed_Veg	Fresh	_fruit	Cere	als :	Beverages	Soft_d	drinks
England		360		1102	2	1472	57		1374
Wales		365		1137	7	1582	73		1256
Scotland		337		95	7	1462	53		1572
N.Ireland		334		674	1	1494	47		1506
	Alcohol	Lic_drink	s Coi	nfectio	onery				
England		3	375		54				
Wales		4	75		64				
Scotland		4	58		62				
N.Ireland		1	.35		41				

```
pca <- prcomp(t(x))
summary(pca)</pre>
```

Importance of components:

	PC1	PC2	PC3	PC4
Standard deviation	324.1502	212.7478	73.87622	2.921e-14
Proportion of Variance	0.6744	0.2905	0.03503	0.000e+00
Cumulative Proportion	0.6744	0.9650	1.00000	1.000e+00

Proportion of variance in each PCA captures more of the variance, and it accumulates as you go along from PC1 to PC3 being 1.00000

pca\$x

```
PC1 PC2 PC3 PC4
England -144.99315 -2.532999 105.768945 -9.152022e-15
Wales -240.52915 -224.646925 -56.475555 5.560040e-13
Scotland -91.86934 286.081786 -44.415495 -6.638419e-13
N.Ireland 477.39164 -58.901862 -4.877895 1.329771e-13
```

You don't need all the data, you can just compare these PCAs and their variance.

```
plot( pca$x[,1], pca$x[,2], col=c("orange", "red", "blue", "darkgreen"), pch=16, xlab="PC1
text(pca$x[,1], pca$x[,2], colnames(x), col=c("orange", "red", "blue", "darkgreen"))
```



```
v <- round( pca$sdev^2/sum(pca$sdev^2) * 100 )
v

[1] 67 29 4 0

z <- summary(pca)
z$importance</pre>
```

Here we summarize the variances in a bar plot

```
barplot(v, xlab="Principal Component", ylab="Percent Variation")
```


Principal Component

Then we focus on PC1 (as it accounts for > 90% of variance)

```
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,1], las=2 )
```

