Computational Physics I

Lecture Notes by Wladimir E. Banda Barragán

School of Physical Sciences and Nanotechnology

Yachay Tech University

May - September 2022

Course description

Lecturer: Wladimir E. Banda-Barragán

E-mail: wbanda@yachaytech.edu.ec

1. General Information									
A.	SCHOOL	Physical Sciences and Nananotechnology	B.	MAJOR	Physics				
C.	COURSE	Computational Physics I	D.	CODE	PHYS-704				
E.	SEMESTER	7th	F.	ACADEMIC TERM	May 2022 - September 2022				
G.	CURRICULAR UNIT	Professional	H.	MODALITY	Face to face				
I.	HOURS	200	J.	PROFESSORS	Wladimir Eduardo Banda Barragán				
К.	WEEKLY CLASS SCHEDULE	13:00 – 15:00 Tuesday 13:00 – 15:00 Wednesday 11:00 – 13:00 Thursday	L.	WEEKLY TUTORING SCHEDULE	15:00 – 16:00 Tuesday 15:00 – 16:00 Wednesday				

2. Prerequisites and Corequisites								
PREREQUISITES	COREQUISITES							
COURSES	Code	COURSES	Code					
Mathematical Physics II	PHYS-604							

Course description

3. Course Description

This course provides an introduction to basic methods and techniques used in computational physics as well as an overview of recent progress made in several areas of scientific computing. The course describes basic concepts of object-oriented programming and includes detailed step-by-step examples of how to optimally utilise computers and programming languages to solve problems in physics. Topics range from data analysis and approximation and optimisation of functions, through numerical calculus and differential equations, to matrix operations and spectral analysis. Each section of the course includes practical examples on different areas of science and technology in which computational physics has played a major role in the last decade.

4. Course Contribution to professional training

This course helps students to build programming skills for the design and implementation of software dedicated to applications in physical sciences.

5. Course objectives

- Develop object-oriented programming skills for scientific computing within Linux environments.
- Design algorithms and implement software (mainly in Python) dedicated to data analysis and visualisation.
- Apply numerical methods and computational techniques to model physical systems and solve differential equations.
- Use computational methods for research applications on astrophysics, electromagnetism, particle physics, classical mechanics, quantum mechanics, and other areas of physics.

Course contents

6. Units / Contents / Hours / Evaluation Instruments									
CURRICULAR UNITS	CONTENTS	TEACHING HOURS	HOURS OF INTERNSHIP AND EXPERIMENTAL LEARNING	HOURS OF INDEPENDENT LEARNING	EVALUATION INSTRUMENTS				
UC.1	Introduction to computer science	2	2	5	Classwork (quizzes),				
Data analysis and visualisation	and scientific programming				homework (assignments), and exams.				
	Errors and uncertainties in	2	2	5	Classwork (quizzes),				
	computations, computer algorithms, and languages				homework (assignments), and exams.				
	Object-oriented programming, data	2	2	5	Classwork (quizzes),				
	input/output, plotting, statistics, data fitting, and regression				homework (assignments), and exams.				
	Function approximation, interpolation and extrapolation, Spline approximation.	2	2	5	Classwork (quizzes), homework (assignments), and exams.				
UC.2	Array programming, vectors,	2	2	5	Classwork (quizzes),				
Linear algebra and matrices in physics	matrices, and images				homework (assignments), and exams.				
	Matrix operations, basic image processing, and visualisation tools	2	2	5	Classwork (quizzes), homework (assignments), and exams.				
	Linear equation systems and eigenvalue problems	2	2	5	Classwork (quizzes), homework (assignments), and exams.				
	Iterative methods for linear and non- linear systems	2	2	5	Classwork (quizzes), homework (assignments), and exams.				

Course contents

6. Units / Contents / Hours / Evaluation Instruments									
CURRICULAR UNITS	CONTENTS	TEACHING HOURS	HOURS OF INTERNSHIP AND EXPERIMENTAL LEARNING	HOURS OF INDEPENDENT LEARNING	EVALUATION INSTRUMENTS				
UC.3 Numerical calculus	Numerical differentiation	3	3	5	Classwork (quizzes), homework (assignments), and exams.				
	Numerical integration	3	3	5	Classwork (quizzes), homework (assignments), and exams.				
	Numerical optimisation, root-finding and extreme values of functions.	3	3	5	Classwork (quizzes), homework (assignments), and exams.				
	Computational thinking for modelling and simulation in physics	3	3	5	Homework (Project), Classwork (Laboratory), Exam.				
UC.4 Differential equations	Ordinary differential equations, and initial-value problems	3	3	5	Classwork (quizzes), homework (assignments), and exams.				
	The Runge-Kutta methods, boundary-value and eigenvalue problems with applications	3	3	5	Classwork (quizzes), homework (assignments), and exams.				
	Discrete and continuous nonlinear Dynamics	3	3	5	Classwork (quizzes), homework (assignments), and exams.				
	Introduction to partial differential equations	3	3	5	Classwork (quizzes), homework (assignments), and exams.				

Course contents

CURRICULAR UNITS	CONTENTS	TEACHING HOURS	HOURS OF INTERNSHIP AND EXPERIMENTAL LEARNING	HOURS OF INDEPENDENT LEARNING	EVALUATION INSTRUMENTS
UC.5	Fourier analysis, discrete Fourier	2	2	6	Classwork (quizzes),
Spectral analysis and	transform and the Fast Fourier				homework (assignments),
Monte Carlo techniques	transform algorithm				and exams.
	Wavelet analysis and discrete	2	2	6	Classwork (quizzes),
	wavelet transform				homework (assignments),
					and exams.
	Introduction to Monte Carlo	2	2	6	Classwork (quizzes),
	methods				homework (assignments),
					and exams.
	Monte Carlo simulations and	2	2	6	Classwork (quizzes),
	applications				homework (assignments),
					and exams.
	TOTAL	48	48	104	200

Course objectives

7. Learning outcomes of the course						
	LEARNING OUTCOMES	STUDENT IS REQUIRED TO:				
		,				
	Develop object-oriented programming skills for scientific	Submit quizzes on reading material and code developed in class (classwork).				
Α.	computing within Linux environments.	Hand in routines of code, scripts, and group reports (homework).				
	Computing within Linux environments.	Solve programming problems in exams (mid-term and final exams).				
	Design algorithms and implement software (mainly in Bython)	Submit quizzes on reading material and code developed in class (classwork).				
В.	B Design algorithms and implement software (mainly in Python) Hand in routing	Hand in routines of code, scripts, and group reports (homework).				
	dedicated to data analysis and visualisation.	Solve programming problems in exams (mid-term and final exams).				
	Apply numerical methods and computational techniques to	(EVIDENCE OF LEARNING) Submit quizzes on reading material and code developed in class (classwork). Hand in routines of code, scripts, and group reports (homework). Solve programming problems in exams (mid-term and final exams). Submit quizzes on reading material and code developed in class (classwork). Hand in routines of code, scripts, and group reports (homework).				
C.		Hand in routines of code, scripts, and group reports (homework).				
	model physical systems and solve problems in physics.	Solve programming problems in exams (mid-term and final exams).				
	Use computational methods for research applications on	Submit quizzes on reading material and code developed in class (classwork).				
D.	astrophysics, electromagnetism, particle physics, classical	Hand in routines of code, scripts, and group reports (homework).				
	mechanics, quantum mechanics, and other areas of physics.	Solve programming problems in exams (mid-term and final exams).				

8. Methodology

- 1. Interactive lectures including theory and programming tasks.
- 2. Laboratory classwork including programming exercises and quizzes on reading material.
- 3. Individual and group projects including programming homework and research.

Bibliography

9. Information Sources (Bibliography)												
9.1 Main												
Author/s	Title of Work	Edition	Year of Publication	Publishing house - Country	Availability at YACHAY TECH Library							
Landau, Rubin	Computational physics : problem solving with python	3rd	2015	Wiley-VCH; John Wiley - Germany	530.0113 L2539c 2015							
9.2 Complementar	У											
Author/s	Title of Work	Edition	Year of Publication	Publishing house - Country	Availability at YACHAY TECH Library							
Pang, Tao	An introduction to computational physics	2nd	2006	Cambridge University Press - United States	530.0285 P1917a 2006							
Haule, Kristjan	Computational Physics 2022, Course 509 -Physics Applications of Computers		2022	https://www.physics.rutgers.edu/grad/ 509	Online							

Course evaluation

10. Student's Evaluation

10.1. Evaluation during the course*

Midterm Exam (MT)		Formative Evaluation	(FO)	Laboratory (LAB) **		Laboratory (LAB) ** Final Exam (FI)			Total
1 Midterm Exam	30 %	Homework average (code routines and project reports)	30 %	Classwork average (reading quizzes and programming exercises)	10 %	10 % 1 Final Exam			
								100 %	
								100 /0	
Subtotal	30 %	Subtotal	30 %	Subtotal	10 %	Subtotal	30 %		

10.2. Makeup Exam

- Students will have the opportunity to resubmit some of the assignments during the semester.
- Students can apply for a makeup exam at the end of the semester following the University's regulations.

Academic integrity

11. General considerations

- Students are responsible for ensuring the academic integrity of their submitted assignments and exams.
- Cheating in exams, plagiarising, and copying solutions from other students or from previous years' solutions are all breaches of academic integrity.
- Academic misconduct will be penalised according to the University's regulations.
- Assignment deadlines and exam dates will be discussed and agreed upon in class.