3. Геометрические вероятности. Задача о встрече.

Если множество исходов эксперимента Ω представляет из себя ограниченное подмножество в \mathbb{R}^n . Через $\lambda(A)$ будем обозначать n мерный объем множества A.

Формулу $P(A)=rac{\lambda(A)}{\lambda(\Omega)}$ называют геометрическим определением вероятности.

Если, конечно, множества измеримы (потому что есть неизмеримые множества).

Задача о встрече

Два человека X и Y условились встретиться в определённом месте между двумя и тремя часами дня. Пришедший первым ждет другого в течение 10 минут, после чего уходит. Чему равна вероятность встречи этих лиц, если каждый из них может прийти в любое время в течение указанного часа независимо от другого?

Решение

Решение. Будем считать интервал от двух до трёх часов дня отрезком [0, 1]. Обозначим через $\xi \in [0, 1]$ и $\eta \in [0, 1]$ моменты прихода X и Y в течение этого часа (рис. 5). Результатами эксперимента

являются всевозможные пары точек (ξ, η) из единичного квадрата:

$$\Omega = \{(\xi, \eta) \mid 0 \leqslant \xi \leqslant 1, \ 0 \leqslant \eta \leqslant 1\}.$$

Благоприятными исходами будут точки заштрихованного на рисунке множества A:

$$A = \{(\xi, \eta) \mid |\xi - \eta| \leqslant 1/6\}.$$

Попадание в множество A наудачу брошенной в квадрат точки означает, что X

Рис. 5. Задача о встрече

и Y встретятся. Тогда вероятность встречи равна отношению площадей множеств A и Ω :

$$P(A) = \frac{\mu(A)}{\mu(\Omega)} = \frac{1 - \left(\frac{5}{6}\right)^2}{1} = \frac{11}{36}.$$