LISTA 15 – Área de Superfícies e Intregrais de Superfícies de Campos Escalares James Stewart, Cálculo – v. 2

- 39-50 Determine a área da superfície.
- 39. A parte do plano 3x + 2y + z = 6 que está no primeiro octante
- **40.** A parte do plano com equação vetorial $\mathbf{r}(u, v) = \langle u + v, 2 3u, 1 + u v \rangle$ que é dada por $0 \le u \le 2, -1 \le v \le 1$
- **41.** A parte do plano x + 2y + 3z = 1 que está dentro do cilindro $x^2 + y^2 = 3$
- **42.** A parte do cone $z = \sqrt{x^2 + y^2}$ que se encontra entre o plano y = x e o cilindro $y = x^2$
- **43.** A superfície $z = \frac{2}{3}(x^{3/2} + y^{3/2}), 0 \le x \le 1, 0 \le y \le 1$
- **44.** A parte da superfície $z = 1 + 3x + 3y^2$ que está acima do triângulo com vértices (0, 0), (0, 1) e (2, 1)
- **45.** A parte da superfície z = xy que está dentro do cilindro $x^2 + y^2 = 1$
- **46.** A parte do paraboloide $x = y^2 + z^2$ que está dentro do cilindro $y^2 + z^2 = 9$
- **47.** A parte da superfície $y = 4x + z^2$ que se encontra entre os planos x = 0, x = 1, z = 0 e z = 1
- **48.** O helicoide (ou rampa em espiral) com equação vetorial $\mathbf{r}(u, v) = u \cos v \mathbf{i} + u \sin v \mathbf{j} + v \mathbf{k}, 0 \le u \le 1, 0 \le v \le \pi$
- **49.** A superfície com equações paramétricas $x=u^2$, y=uv, $z=\frac{1}{2}v^2$, $0 \le u \le 1$, $0 \le v \le 2$
- **50.** A parte da esfera $x^2 + y^2 + z^2 = b^2$ que está dentro do cilindro $x^2 + y^2 = a^2$, onde 0 < a < b

5-20 Calcule a integral de superfície.

- **5.** $\iint_{S} (x + y + z) dS,$ S é o paralelogramo com equações paramétricas x = u + v, y = u v, z = 1 + 2u + v, $0 \le u \le 2$, $0 \le v \le 1$
- 6. $\iint_{S} xyz \, dS,$ S é o cone com equações paramétricas $x = u \cos v$, $y = u \sin v$, z = u, $0 \le u \le 1$, $0 \le v \le \pi/2$
- 7. $\iint_S y \, dS$, $S \in O$ helicoide com equação vetorial $\mathbf{r}(u, v) = \langle u \cos v, u \sin v, v \rangle$, $0 \le u \le 1$, $0 \le v \le \pi$
- 8. $\iint_{S} (x^{2} + y^{2}) dS,$ S é o superfície com equação vetorial $\mathbf{r}(u, v) = \langle 2uv, u^{2} v^{2}, u^{2} + v^{2} \rangle, u^{2} + v^{2} \leq 1$
- 9. $\iint_{S} x^{2}yz \, dS,$ S é a parte do plano z = 1 + 2x + 3y que está acima do retângulo $[0, 3] \times [0, 2]$
- **10.** $\iint_S xz \, dS$, S é a parte do plano 2x + 2y + z = 4 que está no primeiro octante
- 11. $\iint_S x \, dS,$ S é a região triangular com vértices (1, 0, 0), (0, -2, 0) e (0, 0, 4)
- **12.** $\iint_S y \, dS$, $S \notin \text{a superficie } z = \frac{2}{3} (x^{3/2} + y^{3/2}), 0 \le x \le 1, 0 \le y \le 1$
- 13. $\iint_{S} x^{2}z^{2} dS,$ S é a parte do cone $z^{2} = x^{2} + y^{2}$ que está entre os planos z = 1 e z = 3
- 14. $\iint_{S} z \, dS,$ S \(\epsilon\) a superficie $x = y + 2z^{2}$, $0 \le y \le 1$, $0 \le z \le 1$
- **15.** $\iint_S y \, dS$, $S \in \text{ a parte do paraboloide } y = x^2 + z^2 \text{ que está dentro do cilindro } x^2 + z^2 = 4$

16.
$$\iint_S y^2 dS$$
,
 S é a parte da esfera $x^2 + y^2 + z^2 = 4$ que está dentro do cilindro $x^2 + y^2 = 1$ e acima do plano xy

17.
$$\iint_{S} (x^{2}z + y^{2}z) dS,$$

S \(\epsilon\) o hemisf\(\epsilon\) io $x^{2} + y^{2} + z^{2} = 4, z \ge 0$

18.
$$\iint_S xz \, dS$$
,
 $S \in S$ é o limite da região delimitada pelo cilindro $y^2 + z^2 = 9$ e pelos planos $x = 0$ e $x + y = 5$

19.
$$\iint_{S} (z + x^{2}y) dS,$$

S é a parte do cilindro $y^{2} + z^{2} = 1$ que está entre os planos $x = 0$ e $x = 3$ no primeiro octante

20.
$$\iint_{S} (x^{2} + y^{2} + z^{2}) dS,$$
 $S \notin \text{ a parte do cilindro } x^{2} + y^{2} = 9 \text{ entre os planos } z = 0 \text{ e}$
 $z = 2$, juntamente com os discos inferior e superior