

PVT analysis of bottom hole sample from Well 34/10-17

STATOIL EXPLORATION & PRODUCTION LABORATORY

> by Otto Rogne

October-83 LAB 83

Den norske stats oljeselskap a.s

Classification		

Requested by	Υ			
J.Hans	stveit,	LET Bergen		
Subtitle				
Co-workers				
מים בי	Tit 2 A .	,		
ROGII	Fjæreide	e, LAB		

PVT analysis of bottom hole sample from Well 34/10-17

STATOIL EXPLORATION & PRODUCTION LABORATORY

Approved

by Otto Rogne

October-83

LAB 83.54

Prepared

Office Jun

12/10-83 Otto Rogne

12/10-83 D.Malthe-Sørenssen

Title

CONTENTS

	Page
INTRODUCTION	2
SAMPLING CONDITIONS	3
Bubble point check Fig. 1 Bubble point at ambient	4
FLASH OF RESERVOIR FLUID TO STOCK TANK	5
Molecular composition	5
Extended molecular composition	6
CONSTANT MASS EXPANSION	7
Fig. 2 Relative volume	
DIFFERENTIAL DEPLETION	8
Molecular composition of liberated gases	9
Molecular composition of residual oil	10
Fig. 3 Compressibility factor, Z	
Fig. 4 Reservoir oil density	
Fig. 5 Gas formation volume factor	
Fig. 6 Solution gas, R _s	
Fig. 7 Formation volume factor	
VISCOSITY OF RESERVOIR FLUID	11
Fig. 8 Viscosity	

INTRODUCTION

The present report gives the experimental results of a PVT-analysis carried out on a bottom hole sample from test no. 2 on well 34/10-17, obtained by Stavanger Oilfield Services A/S on June 8, 1983. Sampling details are given on page 3.

The quality of the sample was checked by measuring the bubble point at ambient laboratory conditions and found to be 388 barg (page 4), as compared to a reported field value of 380 barg at approx. 8° C this was considered satisfactory.

A portion of the sample was charged to a high pressure cell at reservoir temperature (106 $^{\rm O}$ C) where the bubble point, relative volumes and compressibility were determined. These results are on page 7.

To determine the reservoir fluid composition a portion of the fluid in the cell was flashed through a laboratory separator at 15° C and atmospheric pressure. The liberated gas and oil were collected, measured and analysed separately by gas chromatography through C₉ with decanes plus fraction. These results are on page 5.

An extended reservoir fluid composition based on the above mentioned flash up to C_{9} , and from C_{10} to C_{20}^{+} on a TBP distillation of stock tank oil, is given on page 6. The TBP distillation is reported separately.

The remaining sample in the cell was finally differentially liberated through a series of pressure steps with the results shown on page 8. The composition of the liberated gases are on page 9, and the composition of the gas free liquid remaining in the cell at atmospheric pressure on page 10. The gas viscosity were calculated from the gas density according to Lee et.at.

J.Pet.Techn., 997 (1966). A separate portion of the sample was charged to a high pressure rolling ball viscosimeter for viscosity measurements at 106° C. The results are on page 11.

SAMPLING CONDITIONS

Well 34/10-17

Formation Brent

Date 08.06.1983

Test 2

Interval 2880 - 2890 m RKB

Sample no. 9

Sample bottle no. 810698

Sample type Bottom hole Sample depth 2831.6 m RKB

Bottom hole pressure 409 bar Bottom hole temperature 106 $^{\rm O}{\rm C}$

Well flowed for approx. 45 min., then closed in for approx. 10 min. before sample being taken.

Well: 34/10-17

BHS

BUBBLE POINT AT ROOM TEMPERATURE (Bottle nr. 810698)

17

	Pressure	F	ump	reading
	Barg			<u>m</u> 3
	521.8		155	.459
	498.4		153	3.825
	485.9		152	2.825
	466.4		151	.910
	434.6		149	9.109
	408.0		146	5.949
P _b =	388			
D	384.0		144	+.750
	362.5		14:	1.693
	334.6		137	7.159
	307.0		13:	1.661
	237.0		122	2.906
	226.6		10!	5.205

Bubble point lab (19° C) = 388 barg Bubble point field (8° C) = 380 barg

(Molecular Composition)

Component	Stock tank	Evolved	Reservoirf	luid
	oi1	gas		
	mol %	mo1 %	mol %	weight %
				`
Nitrogen	-	1.10	0.87	0.37
Carbondioxide	· <u>-</u>	0.96	0,76	0.51
Methane'	-	71.82	57.00	13.84
Ethane	-	11.69	9.28	4.22
Propane	0.67	7.15	5.82	3.88
i- Butane	0.42	1.39	1.19	1.04
n- Butane	1.20	2.45	2.19	1.93
i- Pentane	1.34	0.90	0.99	1.08
n- Pentane	1.82	0.88	1.07	1.17
Hexanes	4.54	0.77	1.52	1.96
Heptanes	9.20	0.60	2.38	3.31
Octanes	12.11	0.28	2.72	4.28
Nonanes	8.21	0.03	1.72	3.13
Decanes plus	60.49	0.01	12.49	59.28
	100.00	100.00	100.00	100.00
Molecular wei	ght 229.	23.9	66.3	
GOR		:	339	sm^3/m^3
Form	ation vol. fa	ctor :	2.00	m^3/m^3
Density at bubble point :			0.599	g/cm ³
Density of STO at 15 ⁰ C :			0.853	g/cm ³
Gas	gravity (air	=1) :	0.827	
Mole	cular weight	of C ₁₀₊ :	316	_
	ity of C_{10+} a	201	0.881	g/cm ³

Well: 34/10-17

BHS

EXTENDED RESERVOIR FLUID COMPOSITION

Component	mol %	mol	weight	Density at 15 C g/cm ³
N_2	0.87			
co ₂	0.96			
c ₁	57.00			
c ₂	9.28			
c ₃	5.82			
i - C 4	1.19			
n-C ₄	2.19			
i – C ₅	0.99			
n-C ₅	1.07			
c ₆	1.52		85	0.677
c ₇	2.38		92	0.734
c ₈	2.72		104	0.756
c ₉	1.72		119	0.775
c ₁₀	0.92		134	0.788
c ₁₁	0.86		148	0.791
c ₁₂	0.94		162	0.801
c ₁₃	0.81		177	0.818
c ₁₄	0.67		188	0.830
c ₁₅	0.75		201	0.836
c ₁₆	0.48		215	0.841
c ₁₇	0.55		234	0.839
c ₁₈	0.52		250	0.843
c ₁₉	0.46		264	0.852
. C ₂₀ +	5.53		496	0.913
20	100.00			

CONSTANT	MASS	EXPANSION	ΑТ	106°C	

Rel vol	Compressibility	Y-factor
V/Vb	1/Bar	
0.9724	2.41E-04	
0.9771	2.51E-04	
0.9828	2.64E-04	
0.9882	2.77E-04	
0.9926	2.86E-04	
0.9969	2.95E-04	
1.0000	3.01E-04	
1.0054		4.70
1.0112		4.66
1.0234		4.47
1.0405		4.20
1.0719		4.12
1.1275		3.85
1.2391		3.46
1.4538		3.05
1.7335		2.76
1.8627		2.67
	V/Vb 	V/Vb 1/Bar 0.9724 2.41E-04 0.9771 2.51E-04 0.9828 2.64E-04 0.9882 2.77E-04 0.9926 2.86E-04 0.9969 2.95E-04 1.0000 3.01E-04 1.0112 1.0234 1.0405 1.0719 1.1275 1.2391 1.4538 1.7335

For $P < Pb Y = 1.803 + 7.36E-03 \times P$

For P > Pb $V/Vb = 1.17434 - 5.6650E - 04 \times P + 3.3039E - 07 \times P \times P$

DIFFERENTIAL DEPLETION AT 106°C

Pressure	Oil form	Solution	Gas form	Res oil	Compr	Gas
	vol fact	gor	vol fact	density	factor	viscosity
barg	Bod	Rs	Bg	g/cm3	Z	сР
402.0	2.230	392.1		0.590		
380.2	2.071	341.5	3.72E-03	0.603	1.067	0.0484
351.4	1.912	289.3	3.77E-03	0.619	1.000	0.0430
301.8	1.734	226.8	4.07E-03	0.642	0.926	0.0338
245.0	1.594	175.6	4.76E-03	0.666	0.881	0.0254
175.7	1.464	125.3	6.50E-03	0.693	0.865	0.0197
100.7	1.343	78.6	1.15E-02	0.724	0.881	0.0157
29.2	1.218	33.2	4.14E-02	0.758	0.941	0.0131
2.9	1.098	3.8	3.32E-01	0.791	0.973	0.0105
0	1.075			0.799		
0 ж	1.000			0.859		

* at 15 C

Bod: Volume of oil at P and T per volume of residual oil

at 15 C and atm P.

Rs : Standard m3 gas per m3 residual oil at 15 C

Bg : m3 gas at T and P per standard m3 gas

DIFFERENTIAL DEPLETION AT $106^{\circ}\,\mathrm{C}$ (Molecular composition of differentially liberated gas, mol%)

PRESSURE/BAR	G 380.2	351.4	301.8	254.0	175.7	100.7	29.2	2.9	0.0
NITROGEN	1.24	1.29	1.40	1.38	1.12	0.83	0.29	0.06	0.02
CARBONDIOXID	E 0.84	0.90	0.89	0.90	0.94	1.03	1.20	0.72	0.20
METHANE	70.12	71.84	74.05	76.52	78.08	77.27	65.78	23.41	6.47
ETHANE	9.44	9.50	9.40	9.65	9.92	11.21	16.53	19.12	13.55
PROPANE	5.36	5.31	5.06	5.02	4.87	5.35	9.31	22.26	25.15
i-BUTANE	1.06	1.02	0.95	0.91	0.84	0.86	1.53	5.56	7.86
n-BUTANE	1.83	1.76	1.62	1.54	1.37	1.40	2.49	10.92	15.64
i-PENTANE	1.02	0.90	0.67	0.59	0.49	0.46	0.77	4.26	7.03
n-PENTANE	0.99	0.76	0.68	0.61	0.49	0.44	0.55	4.13	6.75
HEXANES	1.09	0.97	0.81	0.68	0.51	0.41	0.62	3.51	6.27
HEPTANES	1.39	1.20	1.08	0.80	0.58	0.40	0.55	3.12	5.88
OCTANES	1.99	1.39	1.16	0.70	0.43	0.27	0.31	1.92	3.76
NONANES	0.75	0.72	0.66	0.30	0.14	0.06	0.05	0.63	1.00
DECANES+	2.87	2.46	1.57	0.40	0.21	0.01	0.00	0.40	0.44
	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.0
MOLE WEIGHT	31.20	29.38	26.58	23.47	22.22	21.84	25.04	44.62	56.67
GRAVITY									
(air = 1)	1.077	1.014	0.918	0.810	0.767	0.754	0.865	1.541	1.957

DIFFERENTIAL DEPLETION AT 106° C (Molecular composition of residual oil)

COMPONENT	MOL%				
NITROGEN	0.00				
CARBONDIOXIDE	0.00				
METHANE	0.00				
ETHANE	0.00				
PROPANE	0.43				
i-BUTANE	0.34				
n-BUTANE	1.07				
i-PENTANE	1.14				
n-PENTANE	1.50				
HEXANES	3.54				
HEPTANES	7.46				
OCTANES	10.45				
NONANES	7.32				
DECANES	66.75				
	100.00				
DENSITY AT 15 C	0.859 g/cm3				
MOLE WEIGHT	247.7				

DIFFERENTIAL DEPLETION AT 106 DEG.C RESERVOIR OIL DENSITY

DIFFERENTIAL DEPLETION AT 106 DEG.C OIL FORMATION VOLUME FACTOR

VISCOSITY OF RESERVOIR FLUID AT 106°C

	Pressure	Viscosity
	(barg)	(centipoise)
	500.0	0.308
	475.0	0.295
	450.0	0.287
	425.0	0.274
_b =	402.0	0.268
_	390.2	0.272
	360.7	0.290
	329.7	0.315
	300.3	0.345
	251.0	0.417
	199.7	0.517
	150.0	0.635
	97.8	0.797
	51.9	0.992
	0	1.677

500 VISCOSITY OF RESERVOIR FLUID AT 106 DEG. C. 450 400 350 200 150 100 0.2+ VISCOSITY/cP 0.9 0.7 0.3 0.8 0.5 0.4 FIG. 8