Apply machine learning to Performance trend analysis

Araya Eamrurksiri

March 28, 2017

Araya Eamrurksiri Midterm report March 28, 2017 1 / 16

Overview

- Recall: Thesis objectives
- 2 Data preprocessing
- Markov regime switching model
 - Markov switching autoregressive model
- Model estimation
 - E-M algorithm
- What has been done?
- Mext step

Objectives

- Detect the degradation, improvement or steady state in CPU utilization
- Detect whether there is some changes in test environment that have an impact on CPU utilization

Araya Eamrurksiri Midterm report March 28, 2017 3 / 16

Data preprocessing

- Discard incomplete observation
- Multiple values separated by a tab character are stored together in some columns.

ID	Variable1	Variable2		ID	Variable1	Α	В	С
1	X Y	A=2 B=1 C=5 A=4 B=2 C=8		1 2	X Y	2	1 2	5 8
3	Z	A=1 C=6	\Box	3	Z	1	0	6
						:	:	
·	•	•			•	٠	٠	•

Figure: Data example

Markov switching model, [Hamilton, 1989]

- A technique uses for describing the evolution of the process at different period of time
- Model involves multiple structures that can characterize the time series behaviors in different states
- The switching mechanism between the states is assumed to be an unobserved Markov chain - a stochastic process which contains the probability of transition from one state to any other state

Figure: regime shift between states

March 28, 2017

Markov switching model, [Hamilton, 1989]

Assuming that S_t denote an unobservable state variable

$$y_t = X_t' \beta_{S_t} + \varepsilon_t, \quad \varepsilon_t \sim N(0, \sigma_{S_t}^2)$$

 y_t is the observed value of time series at time t X_t are the predictor variables of time series at time t β_{S_t} are the coefficients in state S_t , where $S_t = 1, 2, ..., k$

Figure: Model structure

Araya Eamrurksiri Midterm report March 28, 2017 6 / 1

Markov switching model

Given dataset,

$$y_t = X_t' \beta_{S_t} + \varepsilon_t, \quad \varepsilon_t \sim N(0, \sigma_{S_t}^2)$$

- y_t is CPU utilization
- X_t are some components which have an impact on the CPU utilization and test environment
- Assume there are three states (k = 3): normal, good, bad

Figure: Model structure

Araya Eamrurksiri Midterm report March 28, 2017 7 / 16

Markov switching autoregressive model

Autoregressive model

$$y_t = c + \sum_{i=1}^{p} \phi_p y_{t-i} + \varepsilon_t$$

where c is constant, ϕ_p are parameters and ε_t is white noise

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

Araya Eamrurksiri Midterm report March 28, 2017 8 / 16

Markov switching autoregressive model

The observation are drawn from the first order autoregressive model, AR(1).

$$y_t = X_t' \beta_{S_t} + \phi_{1,S_t} y_{t-1} + \varepsilon_t$$

Figure: Model with additional dependencies at observation level

◆ロト ◆部ト ◆差ト ◆差ト 差 めなべ

9 / 16

Araya Eamrurksiri Midterm report March 28, 2017

Model estimation

Model parameters

$$\theta = (\beta_{S_t}, \phi_{1,S_t}, \sigma_{S_t}, \pi_{S_t}, p)$$

where,

 π_{S_t} is initial probabilities in state S_t p is transition probabilities

10 / 16

Araya Eamrurksiri Midterm report March 28, 2017

Model estimation

E-M algorithm

- Expectation step: Calculate the expectation of S_t under the current estimation of the parameters
- Maximization step: Obtain new estimated parameters by maximizing likelihood
- Repeat until converged

11 / 16

What has been done?

Study and review source code in the R package in detail

 MSwM: An univariate autoregressive Markov switching model for linear and generalized model

Araya Eamrurksiri Midterm report March 28, 2017 12 / 16

What has been done?

Implement and modify code in the package

- Small typo in the code
- Invertible Hessian [Gill, 2004]
- Categorical variables
- NAs coefficients

13 / 16

What has been done?

Result of fitting Markov switching autoregressive model

- Estimated parameters in each state
- State assignment
- Probability assignment in each state
- Graphs show periods where the observation is in the specific regime

Next step

- Model selection: Compare several models (e.g., number of states, number of parameters which have switching effects)
- State prediction: Find the most probable state for the new observation
- Making a state inference
- Fit model for other software products

15 / 16

Araya Eamrurksiri Midterm report March 28, 2017

References

James D Hamilton (1989)

A new approach to the economic analysis of nonstationary time series and the business cycle

Econometrica: Journal of the Econometric Society, pages 357-384.

Jeff Gill and Gary King (2004)

What to do when your hessian is not invertible: Alternatives to model respecification in nonlinear estimation

Sociological methods & research, 33(1):54-87.