Act 7

Facundo Colasurdo Caldironi

2024-08-21

R Markdown

Haz la simulación de 150 muestras de tamaño 150 extraídas de una población normal con = 70 y = 9

Calcula el intervalo con un nivel de confianza del 97% para cada una de esas medias. Obtendrás 150 intervalos de confianza. Grafica los 150 intervalos de confianza Grafica la media poblacional (= 70) como una linea horizontal Cuenta cuántos intervalos de confianza contienen a la verdadera media, ¿qué porcentaje representan? Adapta el siguiente código:

```
library(plotrix)
n = 150
miu = 70
sigma = 9
alfa = 0.03
xb = rnorm(n, miu, sigma/sqrt(n))  #simulación de una muestra de
tamaño n=150
E = abs(qnorm(alfa/2))*sigma/sqrt(n)  #Margen de error

m = 150  #número de muestras de tamaño n=150
plotCI(1:m, xb, E, main="Gráfico de IC", xlab="m intervalos", ylab=
"medias muestrales")
abline(h=miu, col="red")
```

Gráfico de IC


```
intervalos = sum(xb - E <= miu & xb + E >= miu)
porcentaje = (intervalos / m) * 100
cat("Porcentaje ", porcentaje)
## Porcentaje 96.66667
```

Problema 2

Primera parte

Resuelve las dos partes del problema "El misterioso Helio".

Primera parte. Suponga que la porosidad al helio (en porcentaje) de muestras de carbón, tomadas de cualquier veta en particular, está normalmente distribuida con una desviación estándar verdadera de 0.75. Se sabe que 10 años atrás la porosidad media de helio en la

veta era de 5.3 y se tiene interés en saber si actualmente ha disminuido. Se toma una muestra al azar de 20 especímenes y su promedio resulta de 4.85. X: porosidad al helio

$$X \sim N(\mu = ?, \sigma = 0.75)$$

```
sigma = 0.75
alfa = 0.03
xb1 = 4.85
n1 = 20

E1 = abs(qnorm(0.03/2))*sigma/sqrt(n1)
A1 = xb1 - E1
B1 = xb1 + E1

cat("La verdadera media actual está entre", A1, " y ", B1)
## La verdadera media actual está entre 4.486065 y 5.213935
```

Haga una estimación por intervalo con una confianza del 97% para el promedio de porosidad para evaluar si ha disminuido. Se toma otra muestra de tamaño 16. El promedio de la muestra fue de 4.56. Calcule el intervalo de confianza al 97% de confianza

```
sigma = 0.75
alfa = 0.03
xb2 = 4.56
n2 = 16

E2 = abs(qnorm(0.03/2))*sigma/sqrt(n2)
A2 = xb2 - E2
B2 = xb2 + E2

cat("La verdadera media actual está entre", A2, " y ", B2)
## La verdadera media actual está entre 4.153108 y 4.966892
```

¿Podemos afirmar que la porosidad del helio ha disminuido? Si

```
plot(0, ylim=c(0,2+1), xlim=c(4,5.5), yaxt="n", ylab="",
xlab="Porosidad al Helio")
axis(2, at=c(1,2), labels=c("n = 20", " n = 16"))

arrows(A1, 1, B1, 1, angle=90, code=3, length = 0.1, lwd = 2, col =
"blue")
```

```
arrows(A2, 2, B2, 2, angle=90, code=3, length = 0.1, lwd = 2, col =
"green")
points(xb1, 1, pch=19, cex=1.1, col = "blue")
points(xb2, 2, pch=19, cex=1.1, col = "green")
abline(v=5.3, lty = 3, col = "red")
```


¿Qué tan grande tiene que ser el tamaño de la muestra si se desea que el ancho del intervalo con un 95% de confianza no sobrepase de 0.4? DESPEJA N

sigma = 0.75
E = 0.2

n = (abs(qnorm(0.05/2)) * sigma / E)^2
cat("El tamaño de muestra necesario es:",n)

El tamaño de muestra necesario es: 54.02051

¿Qué tamaño de muestra necesita para estimar la porosidad promedio verdadera dentro de 0.2 unidades alrededor de la media muestral con una confianza de 99%?

```
sigma = 0.75
E = 0.2

n = (abs(qnorm(0.01/2)) * sigma / E)^2

cat("El tamaño de muestra necesario es:",n)
## El tamaño de muestra necesario es: 93.30323
```

Problema 3.

Con el archivo de datos de El Marcapasos Download El Marcapasoshaz los intervalos de confianza para la media de las siguientes variables: Intensidad de pulsos con y sin Marcapasos (2 intervalos de confianza) Periodo entre pulso con y sin Marcapasos (2 intervalos de confianza)

```
library(plotrix)
M=read.csv("file:///Users/facundocolasurdocaldironi/Downloads/El
marcapasos.csv")
print(M)
##
       Periodo.entre.pulsos Intensidad.de.pulso Marcapasos
## 1
                        1.20
                                             0.131
                                                       Sin MP
## 2
                        0.90
                                             0.303
                                                       Sin MP
## 3
                                             0.297
                        0.90
                                                       Sin MP
## 4
                        0.80
                                             0.416
                                                       Sin MP
## 5
                        0.70
                                             0.585
                                                       Sin MP
## 6
                        1.20
                                             0.126
                                                       Sin MP
## 7
                        1.20
                                             0.117
                                                       Sin MP
## 8
                        0.90
                                                       Sin MP
                                             0.293
## 9
                        1.10
                                             0.212
                                                       Sin MP
## 10
                        1.00
                                             0.235
                                                       Sin MP
## 11
                        1.10
                                             0.199
                                                       Sin MP
## 12
                        0.80
                                             0.395
                                                       Sin MP
## 13
                        1.30
                                             0.080
                                                       Sin MP
## 14
                        0.70
                                             0.456
                                                       Sin MP
## 15
                        1.00
                                             0.235
                                                       Sin MP
## 16
                        0.90
                                             0.290
                                                       Sin MP
```

##	17	1.10	0.197	Sin MP
##	18	0.70	0.452	Sin MP
##	19	0.90	0.254	Sin MP
##	20	1.20	0.116	Sin MP
##	21	1.20	0.109	Sin MP
##	22	0.90	0.251	Sin MP
##	23	1.30	0.073	Sin MP
##	24	1.40	0.026	Sin MP
##	25	1.10	0.194	Sin MP
##	26	2.60	0.194	Sin MP
##	27	1.10	0.193	Sin MP
##	28	1.30	0.072	Sin MP
##	29	1.10	0.187	Sin MP
##	30	1.10	0.184	Sin MP
##	31	1.20	0.105	Sin MP
##	32	0.90	0.236	Sin MP
##	33	1.20	0.103	Sin MP
##	34	0.80	0.377	Sin MP
##	35	1.20	0.094	Sin MP
##	36	1.00	0.217	Sin MP
##	37	0.70	0.422	Sin MP
##	38	0.80	0.335	Sin MP
##	39	1.10	0.182	Sin MP
##	40	1.10	0.162	Sin MP
##	41	2.80	0.323	Sin MP
##	42	1.00	0.217	Sin MP
##	43	1.30	0.057	Sin MP
##	44	1.30	0.038	Sin MP
##	45	1.30	0.027	Sin MP
##	46	0.80	0.308	Sin MP
##	47	0.80	0.308	Sin MP
##	48	1.10	0.151	Sin MP
##	49	1.70	0.014	Sin MP
##	50	1.10	0.009	Sin MP
##	51	0.80	0.005	Sin MP
##	52	0.94	0.140	Con MP
##	53	0.81	0.296	Con MP
##	54	0.82	0.281	Con MP
##	55	0.73	0.355	Con MP
##	56	0.69	0.441	Con MP

##	57	0.94	0.135	Con MP
##	58	0.94	0.132	Con MP
##	59	0.83	0.267	Con MP
##	60	0.88	0.205	Con MP
##	61	0.85	0.231	Con MP
##	62	0.90	0.189	Con MP
##	63	0.74	0.348	Con MP
##	64	0.97	0.103	Con MP
##	65	0.70	0.434	Con MP
##	66	0.86	0.218	Con MP
##	67	0.83	0.264	Con MP
##	68	0.90	0.188	Con MP
##	69	0.73	0.403	Con MP
##	70	0.83	0.257	Con MP
##	71	0.95	0.130	Con MP
##	72	0.96	0.121	Con MP
##	73	0.84	0.256	Con MP
##	74	0.99	0.097	Con MP
##	75	1.03	0.032	Con MP
##	76	0.90	0.180	Con MP
##	77	0.92	0.180	Con MP
##	78	0.92	0.180	Con MP
##	79	1.00	0.058	Con MP
##	80	0.92	0.174	Con MP
##	81	0.92	0.155	Con MP
##	82	0.97	0.109	Con MP
##	83	0.84	0.236	Con MP
##	84	0.97	0.105	Con MP
##	85	0.78	0.338	Con MP
##		0.97	0.104	Con MP
##	87	0.87	0.207	Con MP
##	88	0.73	0.399	Con MP
##	89	0.79	0.326	Con MP
##	90	0.92	0.146	Con MP
##	91	0.93	0.145	Con MP
##		0.80	0.308	Con MP
##	93	0.88	0.207	Con MP
##		1.00	0.053	Con MP
##	95	1.02	0.042	Con MP
##	96	1.03	0.039	Con MP

```
## 97
                        0.80
                                            0.308
                                                      Con MP
## 98
                        0.81
                                            0.298
                                                      Con MP
## 99
                                                      Con MP
                        0.93
                                            0.143
## 100
                        1.04
                                            0.019
                                                      Con MP
## 101
                        1.06
                                            0.006
                                                      Con MP
## 102
                        1.07
                                            0.005
                                                      Con MP
alfa = 0.05
mean int sin <- mean(MSIntensidad.de.pulso(MSMarcapasos == "Sin MP"1)
mean int con <- mean(M$Intensidad.de.pulso[M$Marcapasos == "Con MP"])
mean period sin <- mean(MSPeriodo.entre.pulsos[MSMarcapasos == "Sin
MP"1)
mean period con <- mean(MSPeriodo.entre.pulsos[MSMarcapasos == "Con
MP"1)
sd int sin <- sd(M$Intensidad.de.pulso[M$Marcapasos == "Sin MP"])</pre>
sd int con <- sd(M$Intensidad.de.pulso[M$Marcapasos == "Con MP"])
sd period sin <- sd(M$Periodo.entre.pulsos[M$Marcapasos == "Sin MP"])
sd period con <- sd(M$Periodo.entre.pulsos[M$Marcapasos == "Con MP"])
n int sin <- sum(M$Marcapasos == "Sin MP")</pre>
n int con <- sum(M$Marcapasos == "Con MP")</pre>
n period sin <- sum(M$Marcapasos == "Sin MP")</pre>
n period con <- sum(M$Marcapasos == "Con MP")</pre>
se int sin <- sd int sin / sqrt(n int sin)
se int con <- sd int con / sqrt(n int con)
se period sin <- sd period sin / sqrt(n period sin)
se period con <- sd period con / sqrt(n period con)
z \leftarrow qnorm(1 - alfa / 2)
ic int sin <- c(mean int sin - z * se int sin, mean int sin + z *
se int sin)
ic int con <- c(mean int con - z * se int con, mean int con + z *
se int con)
ic period sin <- c(mean period sin - z * se period sin,
```

```
mean period sin + z * se period sin)
ic period con <- c(mean period con - z * se period con.
mean period con + z * se period con)
cat("Intervalo de confianza para Intensidad de pulso (Con MP):",
ic int con, "\n")
## Intervalo de confianza para Intensidad de pulso (Con MP): 0.1645811
0.2273013
cat("Intervalo de confianza para Intensidad de pulso (Sin MP):",
ic int sin, "\n")
## Intervalo de confianza para Intensidad de pulso (Sin MP): 0.1708292
0.2433669
cat("Intervalo de confianza para Periodo entre pulsos (Con MP):",
ic period con, "\n")
## Intervalo de confianza para Periodo entre pulsos (Con MP):
0.8644566 0.9178964
cat("Intervalo de confianza para Periodo entre pulsos (Sin MP):",
ic period sin, "\n")
## Intervalo de confianza para Periodo entre pulsos (Sin MP): 1.005521
1,218009
# Valores para el gráfico
means <- c(mean int sin, mean int con)
se <- c(se int sin, se int con)
x labels <- c("Sin MP", "Con MP")</pre>
# Gráfico de los intervalos de confianza
plotCI(x = 1:2, y = means, uiw = se * z, liw = se * z, pch = 16,
       xlab = "Marcapasos", ylab = "Intensidad de Pulso",
       xaxt = "n", main = "Intensidad de Pulso con y sin Marcapasos")
axis(1, at = 1:2, labels = x labels)
# Añadir líneas para los puntos medios
abline(h = mean int sin, col = "blue", lty = 2)
abline(h = mean int con, col = "red", lty = 2)
# Añadir leyenda
```

```
legend("topright", legend = c("Sin MP", "Con MP"), col = c("blue",
"red"), lty = 2, pch = 16)
```

Intensidad de Pulso con y sin Marcapasos


```
abline(h = mean_period_con, col = "red", lty = 2)

# Añadir leyenda
legend("topright", legend = c("Sin MP", "Con MP"), col = c("blue",
"red"), lty = 2, pch = 16)
```

Periodo entre Pulsos con y sin Marcapasos

El

marcapasos mejoran la intensidad de los pulsos del corazón y la fuerza del mismo, lo anterior no solo implica el incremento de fuerza, sino una mejora en la regulación de la misma, por otra parte, El periodo entre pulsos es más consistente con el uso de un marcapasos, lo que ayuda a confirmar que el dispositivo ayuda a mantener el ritmo cardíaco más regular y predecible.