Full Bayesian Models to Handle Missing Data in Health Economic Evaluations

A thesis submitted in partial fulfillment of the requirement for the Degree of M. Phil in Statistics

Andrea Gabrio

Primary Supervisor: Gianluca Baio Secondary Supervisors: Alexina J. Mason, Rachael Hunter

DEPARTMENT OF STATISTICAL SCIENCE UNIVERSITY COLLEGE LONDON

Research Question

Health Economics

- Health Economic Evaluation involves the application of economic theory to health and health care
- The main objective is the comparison of alternative options in terms of their costs and benefits (e.g. QALYs)
- Provides decision-makers with information that can help resource allocation decisions

Missing Data

- In CEAs missing data handling is particularly challenging:
 - Missingness may occur in both benefits/costs
 - Quantify impact of uncertainty on the output of the decision process
- Assumptions cannot be tested from the data but need to be formulated based on the available state of knowledge
- This formally translates into an assumed *missing data mechanism* (Rubin, 1987) that is linked to the data generating process
 - Missing Completely At Random (MCAR)
 - Missing At Random (MAR)
 - Missing Not At Random (MNAR)

Missing Data Mechanism: MCAR

Figure: MoA=Model of Analysis, MoM=Model of Missingness

Missing Data Mechanism: MAR

Figure: MoA=Model of Analysis, MoM=Model of Missingness

Missing Data Mechanism: MNAR

Figure: MoA=Model of Analysis, MoM=Model of Missingness

Missing Data Methods

- Complete Case Analysis
 - Elimination of partially observed cases
 - Simple but reduce efficiency and possibly bias parameter estimates
- Single Imputation
 - Imputation of missing data with a single value (mean, median, LVCF)
 - Does not account for the uncertainty in the imputation process
- Multiple Imputation (Rubin, 1987)
 - ullet Missing data imputed H times to obtain H different imputed datasets
 - Each dataset is analysed and H sets of estimates are derived
 - Parameter estimates are combined into a single quantity
 - The uncertainty due to imputation is incorporated but the validity relies on the correct specification of the imputation model

Full Bayesian Models

 Parameters are given probability distributions that describe the uncertainty before (prior) and after (posterior) observing the data

$$p(\theta \mid y) \propto p(y \mid \theta)p(\theta)$$

- Incorporate both individual and parameter (missing data) uncertainty
- Naturally encode alternative missingness assumptions through the priors and assess the robustness of the results (Sensitivity Analysis)
- Often not analytically tractable and iterative approximation methods, e.g. MCMC (Brooks et al., 2011), are required

Nonignorable Missingness: Selection Models

• Selection Models factor the joint distribution (y, m) as:

$$p(y, m \mid x, \theta^{MoA}, \theta^{MoM}) = p(y \mid x, \theta^{MoA})p(m \mid y, x, \theta^{MoM})$$

- Typically, $m \sim \text{Bern}(\pi)$ with: $\text{logit}(\pi) = \gamma_0 + \gamma_1 x + \delta y$
 - \bullet $\,\delta$ represents the impact on π of the missing values (MNAR parameter)
- Possible SAs (Mason et al., 2012) are:
 - Assumption Sensitivity: Vary MoA and/or MoM form
 - Parameter Sensitivity: Vary MoM assumptions (priors)
- If results are not robust, more information may need to be gathered

Summary

- Missing data can bias inferences and mislead the decision output
- Most of the methods limit their validity to MAR, which may not hold and, more importantly, can never be verified from the data
- Full Bayesian models handle missingness by assessing and quantifying different types of uncertainty
- Selection Models are a possible choice to handle nonignorable missingness but SA is necessary to assess the robustness of the results to alternative assumptions

Literature Review

Two-fold purpose:

- 1 Provide some guidelines on the reporting and analysis of missingness (Quality Evaluation Scheme)
- 2 Review of the missing data methods in CEAs (2003-2015), updating the work of Noble et al. (2012)
- Original review focused only on missing costs in within-trial CEA studies
 - 88 articles between 2003-2009
- Include missing effects and update the review
 - 81 studies between 2009-2015

Literature Review: Quality Evaluation Scheme

- Provide guidelines on how to report information on missingness:
 - Description: Missingness pattern and assumption
 - Method: Choose base-case and alternative methods
 - Limitations: Possible issues in assumptions
- Assign a grade to the articles based on the information in each component
- Match the articles to a score (0-12) based on the overall information provided, weighted by each component

Score	Description	Method	Limitations
Full (F)	6	4	2
Partial (P)	3	2	1
Null (N)	0	0	0

Literature Review: Quality Evaluation Scheme

 Based on the grading, we group the articles into ordered categories (E-A)

Literature Review: Quality Evaluation Review

(a) Missing Cost Analyses (2009-2015)

(b) Missing Effect Analyses (2009-2015)

Literature Review: Conclusions

- High missing data proportions in within-trial CEAs may lead to imprecise economic evidences
- The review shows a movement towards more flexible methods in terms of missingness assumptions but:
 - Many studies do not provide transparent missing data information
 - Almost no study performs a sensitivity analysis
- QES could represent a valuable tool to improve missing data handling
 - Explicitly define assumptions and assess their impact on the conclusions.

Case Study: The MenSS Trial

- The MenSS pilot RCT (Bailey et al., 2016) evaluates the cost-effectiveness of a new digital intervention to reduce the incidence of STI in young men with respect to the SOC
 - QALYs calculated from utilities (EQ-5D 3L)
 - Total costs calculated from different components (no baseline)

	Contro	I (n ₁ =75)	Intervention (n ₂ =84)				
Time	observed	missing(%)	observed	missing(%)			
Baseline	72	4%	72	14%			
3 months	34	55%	23	73%			
6 months	35	53%	23	73%			
12 months	43	43%	36	57%			
complete cases	27	64%	19	77%			

Case Study: Modelling strategy

model	MoA (e,c)	MoM (e)	MoM (c)
Base-Case	Independent Normal	MAR	MAR
MAR(e,c)	Joint Normal	MAR	MAR
MNAR(e)	Joint Normal	MNAR	MAR
MNAR(c)	Joint Normal	MAR	MNAR

MNAR-MoM: logit(π) = $\gamma_0 + \delta y$ (Selection Model for y = e, c)

- MNAR(e): $e^{mis} pprox (5-10\%)$ lower than $e^{obs} o \delta^{e} \sim \mathsf{N}(-2,1)$
- MNAR(c): $c^{mis} pprox (60-70\%)$ higher than $c^{obs} o \delta^c \sim \text{N}(0,1)$

Case Study: Results

	Ba	se-Case			MAR (e,c)			MNAR (e))	MNAR(c)		
Parameter	Mean	95%	CI	Mean 95% CI		Mean 95% CI			Mean 95%		6 CI	
Control (t=1)												
mean QALY $\binom{\mu^e}{1}$	0.886			0.874	0.840	0.907	0.855	0.807	0.893	0.863	0.826	0.899
mean cost $\binom{\mu_1^c}{r}$	214			207.770	115.363	302.901	207.912	113.226	301.081	290.324	126.971	452.932
sd QALY (_s e)	lacksquare	•		0.081	0.061	0.110	0.081	0.064	0.103	0.081	0.064	0.103
sd cost $\binom{\sigma_1^c}{1}$				257.964	197.201	341.123	259.517	191.160	344.420	267.924	197.633	356.626
Intervention $(t=2)$												
mean QALY $\binom{\mu_2^e}{2}$	0.918)		0.913	0.868	0.956	0.847	0.715	0.929	0.912	0.860	0.967
mean cost $\binom{c}{p_2^c}$	189			189.170	110.778	267.963	188.497	108.829	267.280	316.032	106.835	516.946
sd QALY (₀ e)	igcup			0.092	0.066	0.130	0.094	0.070	0.124	0.092	0.069	0.122
sd cost $\binom{\sigma_2^c}{2}$				174.082	124.350	252.623	176.378	121.666	249.735	190.872	128.897	275.189
Incremental			_									
mean QALY increment (Δ_e)	0.032	-0.02	0.08	0.039	-0.016	0.095	-0.008	-0.122	0.072	0.049	-0.011	0.114
mean cost increment (Δ^c)	-25	-145	97	-18.600	-141.081	102.463	-19.415	-140.283	104.196	25.708	-121.593	194.326

Case Study: Results

	Ba	se-Case	e		MAR (e,c))		MNAR (e))	MNAR(c)		
Parameter	Mean	95%	CI	Mean 95% CI		Mean 95% CI			Mean	an 95% CI		
Control (t=1)												
mean QALY $\binom{\mu_1^e}{1}$	0.886			0.874	0.840	0.907	0.855	0.807	0.893	0.863	0.826	0.899
mean cost $\binom{\mu_1^c}{r}$	214			207.770	115.363	302.901	207.912	113.226	301.081	290.324	126.971	452.932
sd QALY (_{se})				0.081	0.061	0.110	0.081	0.064	0.103	0.081	0.064	0.103
sd cost $\binom{c}{\sigma_1^c}$				257.964	197.201	341.123	259.517	191.160	344.420	267.924	197.633	356.626
Intervention $(t=2)$												
mean QALY $\binom{\mu_2^e}{2}$	0.918			0.913	0.868	0.956	0.847	0.715	0.929	0.912	0.860	0.967
mean cost $\binom{\mu_2^c}{2}$	189			189.170	110.778	267.963	188.497	108.829	267.280	316.032	106.835	516.946
sd QALY $\binom{e}{2}$				0.092	0.066	0.130	0.094	0.070	0.124	0.092	0.069	0.122
sd cost $\binom{\sigma_2^c}{2}$				174.082	124.350	252.623	176.378	121.666	249.735	190.872	128.897	275.189
Incremental												
mean QALY increment (Δ^e)	0.032	-0.02	0.08	0.039	-0.016	0.095	-0.008	-0.122	0.072	0.049	-0.011	0.114
mean cost increment (Δ^c)	-25	-145	97	-18.600	-141.081	102.463	-19.415	-140.283	104.196	25.708	-121.593	194.326

Case Study: Results

	Ba	se-Case	2	MAR(e,c)				MNAR (e))	MNAR (c)			
Parameter	Mean	95%	CI	Mean 95% CI		Mean	95% CI		Mean	95%	6 CI		
Control (t=1)													
mean QALY (μ_1^e)	0.886			0.874	0.840	0.907	0.855	0.807	0.893	0.863	0.826	0.899	
mean cost $\binom{\mu_1^c}{1}$	214			207.770	115.363	302.901	207.912	113.226	301.081	290.324	126.971	452.932	
sd QALY $\binom{\sigma^e}{1}$				0.081	0.061	0.110	0.081	0.064	0.103	0.081	0.064	0.103	
sd cost $\binom{\sigma_1^c}{1}$				257.964	197.201	341.123	259.517	191.160	344.420	267.924	197.633	356.626	
Intervention $(t=2)$													
mean QALY $\binom{\mu_2^e}{2}$	0.918			0.913	0.868	0.956	0.847	0.715	0.929	0.912	0.860	0.967	
mean cost $\binom{\mu_c}{2}$	189			189.170	110.778	267.963	188.497	108.829	267.280	316.032	106.835	516.946	
sd QALY $\binom{\sigma_2^e}{2}$				0.092	0.066	0.130	0.094	0.070	0.124	0.092	0.069	0.122	
sd cost $\binom{\sigma_c^c}{2}$				174.082	124.350	252.623	176.378	121.666	249.735	190.872	128.897	275.189	
Incremental													
mean QALY increment $\left(\Delta^{\varrho}\right)$	0.032	-0.02	0.08	0.039	-0.016	0.095	-0.008	-0.122	0.072	0.049	-0.011	0.114	
mean cost increment (Δ^c)	-25	-145	97	-18.600	-141.081	102.463	-19.415	-140.283	104.196	25.708	-121.593	194.326	

Case Study: Economic Evaluation

Cost Effectiveness Acceptability Curve

 Under MNAR(e) the assessment radically changes, with the new interventions being not cost-effective compared with the control

Case Study: Sensitivity Analysis (AS)

Case Study: Sensitivity Analysis (PS)

Case Study: Conclusions

- MAR is not likely to hold and the original study conclusions may overestimate the cost-effectiveness of the reference intervention
- The MNAR departures explored show how a relatively small variation in MoM(e) may substantially alter the decision output
- Lack of information about missingness may severely impair the analysis and force unrealistic assumptions

Future Works

- Potential for Bayesian methods to handle nonignorable missingness in economic evaluations
- However, other extensions deserve further considerations
- Model Improvements
 - Explore other MoA distributions (e.g. truncated, skewed, mixture)
 - Consider alternative types of nonignorable models (e.g. PMM)
 - Model outcomes at disaggregated level (longitudinal models)
- Joint modelling of MNAR mechanisms
 - Explicitly include both MoMs and perform SA
 - Account for correlations between the two MoMs

References

- Bailey, J., Webster, R., Hunter, R., Griffin, M., N., F., Rait, G., Estcourt, C., Michie, S., Anderson, J., Stephenson, J., Gerressu, M., Sinag Ang, C., and Murray, E. (2016). The men's safer sex project: intervention development and feasibility randomised controlled trial of an interactive digital intervention to increase condom use in men. *Health Technology Assessment*, 20.
- Brooks, S., Gelman, A., Jones, G., and Meng, X. (2011). *Handbook of Markov Chain Monte Carlo*. CRC press.
- Mason, A., Richardson, S., Plewis, I., and Best, N. (2012). Strategy for modelling nonrandom missing data mechanisms in observational studies using bayesian methods. *Journal of Official Statistics*, 28:279–302.
- Noble, S., Hollingworth, W., and Tilling, K. (2012). Missing data in trial-based cost-effectiveness analysis: the current state of play. *Health Economics*, 21:187–200.
- Rubin, D. (1987). *Multiple Imputation for Nonresponse in Surveys*. John Wiley and Sons, New York, USA.