Agrupamento **DBSCAN**

Aprendizado não supervisionado

Heloisa de Arruda Camargo

INFORMAÇÃO,

TECNOLOGIA

& INOVAÇÃO

- DBSCAN Density-Based Spatial Clustering of Applications with Noise.
 - Algoritmo de agrupamento baseado em densidade
 - Vê clusters como áreas de grande densidade separadas por áreas de baixa densidade
 - Não requer que o número de grupos seja definido previamente
 - Encontra clusters de qualquer formato e qualquer tamanho
 - Detecta outliers (anomalias, ruídos)

- DBSCAN Density-Based Spatial Clustering of Applications with Noise.
 - Define 4 tipos de pontos:
 - Ponto central (core point)
 - Ponto diretamente acessível
 - Ponto acessível
 - Ruído

- DBSCAN Density-Based Spatial Clustering of Applications with Noise.
 - Tem dois parâmetros principais
 - **eps** (ε) define o raio da vizinhança de um ponto
 - minpts número mínimo de pontos que devem estar na vizinhança para que um ponto seja considerado ponto central (core point)

Se minpts = 3

- p é um ponto central
- q não é ponto central

- DBSCAN Density-Based Spatial Clustering of Applications with Noise.
 - Ponto diretamente acessível:
 - Um ponto q é diretamente acessível de p se q está a uma distância ε do ponto central p.
 - Um ponto só pode ser diretamente acessível de um ponto central

Se minpts = 3

- p é um ponto central
- q não é ponto central mas é diretamente acessível

- DBSCAN Density-Based Spatial Clustering of Applications with Noise.
 - Ponto acessível:
 - Um ponto q é acessível de p se existe um caminho $p_1, p_2, ..., p_n$ com $p_1 = p$ e $p_n = q$ e com cada p_{i+1} sendo diretamente acessível de p_i .
 - Isso implica que o ponto inicial e todos os pontos do caminho devem ser pontos centrais, com exceção de q.

Se minpts = 3

- p₁, p₂ e p₃ são pontos centrais
- q é acessível de p
- q não é ponto central

- DBSCAN Density-Based Spatial Clustering of Applications with Noise.
 - Ruído ou outlier:
 - Um ponto p é considerado ruído ou outlier se não for accessível de nenhum outro ponto

Se minpts = 3

r é um outlier

Algoritmo

- 1. Selecione um ponto arbitrário
- 2. Se a vizinhança do ponto tem pelo menos MinPts, comece um cluster, incluindo o ponto e todos da sua vizinhança no cluster
- 3. Senão, marque o ponto como ruído (esse ponto pode posteriormente fazer parte do outra região densa)
- 4. Repita o processo para todos os pontos da vizinhança encontrada, até que todos da região densa tenham sido incluídos
- 5. Selecione outro ponto de outra região densa que ainda não faça parte de um cluster
- 6. Volte ao passo 2 e repita o processo até que todos os pontos tenham sido rotulados

 DBSCAN - Density-Based Spatial Clustering of Applications with Noise.

class sklearn.cluster.DBSCAN(eps=0.5, min_samples=5, metric='euclidean', metric_params=No ne, algorithm='auto', leaf_size=30, p=None, n_jobs=None)

- Parâmetros:
- eps: distância máxima entre duas instâncias para serem consideradas vizinhas
- min_samples: número de instâncias em uma vizinhança para que uma instância seja considerada como núcleo

 DBSCAN - Density-Based Spatial Clustering of Applications with Noise.

Atributos:

- core_sample_indices_: ndarray da forma (n_core_samples)
- Indices dos pontos centrais.
- labels_: ndarray da forma (n_samples)
- Rótulos dos Clusters de cada ponto do conjunto de dados dado por fit(). Outliers recebem rótulo -1.

Algoritmo DBSCAN em Python

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN

#Agrupar o conjunto de dados com DBSCAN e mostrar os rótulos dos grupos

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import DBSCAN
from sklearn import metrics
from sklearn.datasets import make_blobs
from sklearn.preprocessing import StandardScaler
```

Algoritmo DBSCAN em Python

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN

#Gerar e transformar o conjunto de dados

```
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std
=0.4, random_state=0)
X = StandardScaler().fit_transform(X)
plt.scatter(X[:,0], X[:,1], c=labels_true)
```


Algoritmo DBSCAN em Python

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN

#Agrupar o conjunto de dados com DBSCAN

```
db = DBSCAN(eps=0.3, min_samples=10).fit(X)
db.labels_
plt.scatter(X[:,0], X[:,1],c=db.labels )
```


