Structural Stability in 2×2 Systems of Conservation Laws

Advancement to Candidacy Talk

Hong Kiat TAN

University of California, Los Angeles

5 June 2024

Generic Structural Stability: Approximating Flux Functions for 2×2 Systems of Hyperbolic Conservation Laws in Particle-Laden Flows and the p-system.

Gravity-Driven Particle-Laden Flow

Experimental Setup:

- Inclined Slope
- Negatively buoyant monodisperse particles (i.e glass beads) mixed with oil.
- Mixture of particles and oil added with a gate before the start of the experiment.
- Release the gate to start.

h(x,t): Height of the slurry mixture. $\phi_0(x,t)$: z-averaged particle volume fraction. x: Distance downstream (from the gate).

h(x,t): Height of the slurry mixture. $\phi_0(x,t)$: z-averaged particle volume fraction. x: Distance downstream (from the gate).

 $\label{eq:assumptions: Fast Equilibrium + Lubrication} Assumption.$

h(x,t): Height of the slurry mixture. $\phi_0(x,t):z$ —averaged particle volume fraction. x: Distance downstream (from the gate).

Assumptions: Fast Equilibrium + Lubrication Assumption.

Conservation of suspension volume:

$$\partial_t h + \partial_x F(h, h_0) = 0.$$

• Conservation of the number of particles:

$$\partial_t(h\phi_0) + \partial_x G(h, h\phi_0) = 0.$$

• Functional form of flux functions:

$$F(h, h\phi_0) = h^3 f\left(\frac{h\phi_0}{h}\right) = h^3 f(\phi_0),$$

$$G(h, h\phi_0) = h^3 g\left(\frac{h\phi_0}{h}\right) = h^3 g(\phi_0).$$

Issue: f and g are computationally expensive to evaluate.

To evaluate $f(\phi_0)$ and $g(\phi_0)$ at a single point ϕ_0 , one has to

To evaluate $f(\phi_0)$ and $g(\phi_0)$ at a single point ϕ_0 , one has to

Numerically solve the following nonlinear ODE for $(\phi(s),\sigma(s)),\ s\in[0,1]\colon$ $\begin{cases} \phi'(s)=\frac{(-B_2+(B_2+1)\phi(s)+\rho_s\phi(s)^2)(\phi_m-\phi(s))}{\sigma(s)(\phi_m+(B_1-1)\phi(s))}H(\phi(s))H(\phi_m-\phi(s)),\\ \sigma'(s)=-1-\rho_s\phi(s),\\ \sigma(0)=1+\rho_s\phi_0,\\ \sigma(1)=0, \end{cases}$

To evaluate $f(\phi_0)$ and $g(\phi_0)$ at a single point ϕ_0 , one has to

- Numerically solve the following nonlinear ODE for $(\phi(s),\sigma(s)),\ s\in[0,1]:$ $\begin{cases} \phi'(s)=\frac{(-B_2+(B_2+1)\phi(s)+\rho_s\phi(s)^2)(\phi_m-\phi(s))}{\sigma(s)(\phi_m+(B_1-1)\phi(s))}H(\phi(s))H(\phi_m-\phi(s)),\\ \sigma'(s)=-1-\rho_s\phi(s),\\ \sigma(0)=1+\rho_s\phi_0,\\ \sigma(1)=0, \end{cases}$
- **②** Compute velocity using $u(s) = \mu_l \int_0^s \sigma(s) \left(1 \frac{\phi(s)}{\phi_m}\right)^2 \mathrm{d}s$.

To evaluate $f(\phi_0)$ and $g(\phi_0)$ at a single point ϕ_0 , one has to

Numerically solve the following nonlinear ODE for $(\phi(s),\sigma(s)),\ s\in[0,1]:$ $\begin{cases} \phi'(s)=\frac{(-B_2+(B_2+1)\phi(s)+\rho_s\phi(s)^2)(\phi_m-\phi(s))}{\sigma(s)(\phi_m+(B_1-1)\phi(s))}H(\phi(s))H(\phi_m-\phi(s)),\\ \sigma'(s)=-1-\rho_s\phi(s),\\ \sigma(0)=1+\rho_s\phi_0,\\ \sigma(1)=0, \end{cases}$

- Occupate velocity using $u(s) = \mu_l \int_0^s \sigma(s) \left(1 \frac{\phi(s)}{\phi_m}\right)^2 \mathrm{d}s$.
- **Olympia** Compute $f(\phi_0) = \int_0^1 u(s) ds$.

To evaluate $f(\phi_0)$ and $g(\phi_0)$ at a single point ϕ_0 , one has to

- Numerically solve the following nonlinear ODE for $(\phi(s),\sigma(s)),\ s\in[0,1]:$ $\begin{cases} \phi'(s)=\frac{(-B_2+(B_2+1)\phi(s)+\rho_s\phi(s)^2)(\phi_m-\phi(s))}{\sigma(s)(\phi_m+(B_1-1)\phi(s))}H(\phi(s))H(\phi_m-\phi(s)),\\ \sigma'(s)=-1-\rho_s\phi(s),\\ \sigma(0)=1+\rho_s\phi_0,\\ \sigma(1)=0, \end{cases}$
- ② Compute velocity using $u(s) = \mu_l \int_0^s \sigma(s) \left(1 \frac{\phi(s)}{\phi_m}\right)^2 \mathrm{d}s$.
- **6** Compute $g(\phi_0) = \int_0^1 u(s)\phi(s)ds$.

To evaluate $f(\phi_0)$ and $g(\phi_0)$ at a single point ϕ_0 , one has to

- Numerically solve the following nonlinear ODE for $(\phi(s),\sigma(s)),\ s\in[0,1]:$ $\begin{cases} \phi'(s)=\frac{(-B_2+(B_2+1)\phi(s)+\rho_s\phi(s)^2)(\phi_m-\phi(s))}{\sigma(s)(\phi_m+(B_1-1)\phi(s))} H(\phi(s))H(\phi_m-\phi(s)),\\ \sigma'(s)=-1-\rho_s\phi(s),\\ \sigma(0)=1+\rho_s\phi_0,\\ \sigma(1)=0. \end{cases}$
- ② Compute velocity using $u(s) = \mu_l \int_0^s \sigma(s) \left(1 \frac{\phi(s)}{\phi_m}\right)^2 \mathrm{d}s$.
- **6** Compute $g(\phi_0) = \int_0^1 u(s)\phi(s)ds$.

Issue: f and g are computationally expensive to evaluate.

Given:

$$\begin{cases} u_t + (F_0(u, v))_x = 0, \\ v_t + (G_0(u, v))_x = 0, \end{cases}$$

with given initial data (u, v)(0, x).

Given:

$$\begin{cases} u_t + (F_0(u, v))_x = 0, \\ v_t + (G_0(u, v))_x = 0, \end{cases}$$

with given initial data (u, v)(0, x).

Can we approximate (F,G) with (\tilde{F},\tilde{G}) such that

$$\begin{cases} \tilde{u}_t + (\tilde{F}(\tilde{u}, \tilde{v}))_x = 0, \\ \tilde{v}_t + (\tilde{G}(\tilde{u}, \tilde{v}))_x = 0, \end{cases}$$

with the same initial data $(\tilde{u}, \tilde{v})(0, x)$

Given:

$$\begin{cases} u_t + (F_0(u, v))_x = 0, \\ v_t + (G_0(u, v))_x = 0, \end{cases}$$

with given initial data (u, v)(0, x).

Can we approximate (F,G) with (\tilde{F},\tilde{G}) such that

$$\begin{cases} \tilde{u}_t + (\tilde{F}(\tilde{u}, \tilde{v}))_x = 0, \\ \tilde{v}_t + (\tilde{G}(\tilde{u}, \tilde{v}))_x = 0, \end{cases}$$

with the same initial data $(\tilde{u},\tilde{v})(0,x)$

yield solutions are sufficiently close in the following sense:

Given:

$$\begin{cases} u_t + (F_0(u, v))_x = 0, \\ v_t + (G_0(u, v))_x = 0, \end{cases}$$

with given initial data (u, v)(0, x).

Can we approximate (F,G) with (\tilde{F},\tilde{G}) such that

$$\begin{cases} \tilde{u}_t + (\tilde{F}(\tilde{u}, \tilde{v}))_x = 0, \\ \tilde{v}_t + (\tilde{G}(\tilde{u}, \tilde{v}))_x = 0, \end{cases}$$

with the same initial data $(\tilde{u}, \tilde{v})(0, x)$

yield solutions are sufficiently close in the following sense:

• L^1 stability of $L^1 \cap BV$ solution with respect to flux functions, and

Given:

$$\begin{cases} u_t + (F_0(u, v))_x = 0, \\ v_t + (G_0(u, v))_x = 0, \end{cases}$$

with given initial data (u, v)(0, x).

Can we approximate (F,G) with (\tilde{F},\tilde{G}) such that

$$\begin{cases} \tilde{u}_t + (\tilde{F}(\tilde{u}, \tilde{v}))_x = 0, \\ \tilde{v}_t + (\tilde{G}(\tilde{u}, \tilde{v}))_x = 0, \end{cases}$$

with the same initial data $(\tilde{u},\tilde{v})(0,x)$

yield solutions are sufficiently close in the following sense:

- L^1 stability of $L^1 \cap BV$ solution with respect to flux functions, and
- Structural Stability of Riemann Problems; ie solutions with initial data of the form

$$(u,v)(0,x) = \begin{cases} (u_l, v_l) \text{ for } x < 0, \\ (u_r, v_r) \text{ for } x > 0. \end{cases}$$

Consider:

$$\begin{cases} u_t + (F_0(u, v))_x = 0, \\ v_t + (G_0(u, v))_x = 0, \end{cases}$$

with Riemann initial data

$$(u, v)(0, x) = \begin{cases} (u_l, v_l) \text{ for } x < 0, \\ (u_r, v_r) \text{ for } x > 0, \end{cases}$$

for $(t,x)\in [0,\infty) \times \mathbb{R}$, $U\subset \mathbb{R}^2$ open, and $F_0,G_0\in C^2(U)$.

Assumptions: (F_0, G_0) forms a

- (i) Strictly hyperbolic system in U:
 Jacobian matrix $J(u,v;F_0,G_0)=\begin{pmatrix} (F_0)_u & (F_0)_v \\ (G_0)_u & (G_0)_v \end{pmatrix}$ possess two distinct real eigenvalues for each $(u,v)\in U$.
- (ii) **Genuinely non-linear** system in U: For $k \in \{1,2\}$ $\nabla \underbrace{\lambda_k}_{\text{k-Eigenvalue}} (u,v;F_0,G_0) \cdot \underbrace{\mathbf{r}_k}_{\text{k-Right Eigenvector}} (u,v;F_0,G_0) \neq 0.$ k-Right Eigenvector Convention: $\lambda_1 < \lambda_2$.
- (iii) Uni-directional system in U: Either
 - $(F_0)_v(u,v) \neq 0$ for all $(u,v) \in U$ or
 - $(G_0)_u(u,v) \neq 0$ for all $(u,v) \in U$.

Assumptions: (F_0, G_0) forms a

- (i) Strictly hyperbolic system in U:
 Jacobian matrix $J(u,v;F_0,G_0)=\begin{pmatrix} (F_0)_u & (F_0)_v \\ (G_0)_u & (G_0)_v \end{pmatrix}$ possess two distinct real eigenvalues for each $(u,v)\in U$.
- $\begin{array}{ll} \text{(ii)} \ \ \textbf{Genuinely non-linear} \ \text{system in} \ U \colon \text{For} \ k \in \{1,2\} \\ \nabla \underbrace{\lambda_k} \quad (u,v;F_0,G_0) \cdot \underbrace{\mathbf{r}_k} \quad (u,v;F_0,G_0) \neq 0. \\ \text{k-Right Eigenvector} \\ \text{Convention:} \ \lambda_1 < \lambda_2. \end{array}$
- (iii) Uni-directional system in U: Either
 - $(F_0)_v(u,v) \neq 0$ for all $(u,v) \in U$ or
 - $(G_0)_u(u,v) \neq 0$ for all $(u,v) \in U$.

Perturbations:

$$\begin{cases} \tilde{F} = F_0 + F_{\delta}, \\ \tilde{G} = G_0 + G_{\delta}. \end{cases}$$

Theorem (Generic Approximation Theorem & Structural Stability.)

Consider the system satisfying assumptions (i), (ii), (iii), and the regular manifold assumption. For almost every $(u_l,v_l) \neq (u_r,v_r) \in U$, consider the system with Riemann initial data such that there is a unique double-wave entropy solution. Then, for any compact subset $K \subset U$ containing (u_l,v_l) and (u_r,v_r) in its interior,

- lacktriangledown The unperturbed system satisfies the transversality property on K,
- ② There exists $\varepsilon_1, \varepsilon_2 > 0$ such that for any perturbations $(F_\delta, G_\delta) \in C^2(K)^2$ with $\|(F_\delta, G_\delta)\|_{C^2(K)^2} < \varepsilon_1$, the corresponding perturbed 2×2 system admits a unique double-wave entropy solution with an intermediate state $(\tilde{u}^*, \tilde{v}^*) \in \operatorname{int}(K)$ satisfying $\|(\tilde{u}^*, \tilde{v}^*) (u^*, v^*)\|_2 < \varepsilon_2$.
- $oldsymbol{\circ}$ The perturbed system satisfies the transversality property on the same compact set K.

Roughly speaking, this translates to:

For a system satisfying assumptions (i), (ii), (iii), and the regular manifold assumption, for almost every (generic) Riemann initial data, unique solutions and their structures (shock/rarefactions) are preserved upon a sufficiently small C^2 perturbation to the flux functions.

Furthermore, the "amplitudes" of shock and rarefaction upon perturbation are only perturbed by a small amount.

General System:
$$\begin{cases} u_t + (F(u,v))_x = 0, \\ v_t + (G(u,v))_x = 0. \end{cases}$$

Riemann initial data:

$$(u, v)(0, x) = \begin{cases} (u_l, v_l) \text{ for } x < 0, \\ (u_r, v_r) \text{ for } x > 0, \end{cases}$$

Shock:

 Rarefaction:

State Space (u, v) Analysis : Given a state (u_l, v_l) ,

• (Shocks) Hugoniot loci: (Rankine-Hugoniot) All (u,v) satisfying $\begin{pmatrix} F(u,v) - F(u_l,v_l) \\ G(u,v) - G(u_l,v_l) \end{pmatrix} = s \begin{pmatrix} u - u_l \\ v - v_l \end{pmatrix}$ for some s. Equivalently,

$$(F(u,v) - F(u_l,v_l))(v - v_l) - (G(u,v) - G(u_l,v_l))(u - u_l) = 0.$$

Required to satisfy 1-wave Lax Entropy condition.

• 1-Rarefaction Curves: All (u, v) solving

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}\lambda}(u(\lambda), v(\lambda)) = \mathbf{r}_1(u(\lambda), v(\lambda)) \\ (u(\lambda(u_l, v_l)), v(\lambda(u_l, v_l))) = (u_l, v_l) \end{cases}$$

Integral curves of the right eigenvector \mathbf{r}_1 . Solve for increasing λ .

State Space (u, v) Analysis : Given a state (u_r, v_r) ,

• (Shocks) Hugoniot loci: (Rankine-Hugoniot) All (u, v) satisfying $\begin{pmatrix} F(u, v) - F(u_r, v_r) \\ G(u, v) - G(u_r, v_r) \end{pmatrix} = s \begin{pmatrix} u - u_r \\ v - v_r \end{pmatrix}$ for some s. Equivalently,

$$(F(\mathbf{u},\mathbf{v})-F(u_r,v_r))(\mathbf{v}-v_r)-(G(\mathbf{u},\mathbf{v})-G(u_r,v_r))(\mathbf{u}-u_r)=0.$$

Required to satisfy 2-wave Lax Entropy condition.

• 2-Rarefaction Curves: All (u, v) solving

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}\lambda}(\mathbf{u}(\lambda), \mathbf{v}(\lambda)) = \mathbf{r}_2(\mathbf{u}(\lambda), \mathbf{v}(\lambda)) \\ (\mathbf{u}(\lambda(u_l, v_l)), \mathbf{v}(\lambda(u_l, v_l))) = (u_l, v_l) \end{cases}$$

Integral curves of the right eigenvector \mathbf{r}_2 . Solve for decreasing λ .

Constructing Composite Solutions:

$$\underbrace{(u_l,v_l) \xrightarrow{\mathsf{Hugoniot} \ \mathsf{Locus}}}_{1-\mathsf{shock}} (u^*,v^*) \xrightarrow{\underset{\mathsf{2-rarefaction}}{\mathsf{Rarefaction}}} (u_r,v_r)}_{\mathsf{Shock-Rarefaction}} \mathsf{Solution}$$

Constructing Composite Solutions:

$$\underbrace{(u_l,v_l) \xrightarrow{\mathsf{Hugoniot}} \mathsf{Locus}}_{1-\mathsf{shock}} (u^*,v^*) \xrightarrow{\mathsf{Hugoniot}} \underbrace{\mathsf{Locus}}_{2-\mathsf{shock}} (u_r,v_r)}_{\mathsf{Double} \ \mathsf{Shock}}$$

Unstable Case I: Single Wave Solution.

$$\underbrace{(u_l,v_l)\frac{\text{Hugoniot Locus}}{1-\text{shock}}(u^*,v^*)=(u_r,v_r)}_{\text{Single Shock}}$$

Unstable Case II: Self-Intersecting Hugoniot Loci.

$$\underbrace{(u_l,v_l) \xrightarrow{\mathsf{Hugoniot}} \mathsf{Locus}}_{1-\mathsf{shock}} (u^*,v^*) \xrightarrow{\underbrace{\mathsf{Self-Intersecting}}_{2-\mathsf{shock}} \mathsf{Hugoniot}}_{\mathsf{Locus}} (u_r,v_r) \xrightarrow{\mathsf{Double}} \mathsf{Shock}}$$

Unstable Case III: Singular (δ) Shock - Intersection at ∞ . To be interpreted in the sense of distributions. (Wang and Bertozzi, 2014.)

$$\underbrace{(u_l,v_l) \frac{\mathsf{Hugoniot\ Locus}}{1-\mathsf{shock}} \infty \underbrace{\frac{\mathsf{Hugoniot\ Locus}}{2-\mathsf{shock}}}_{\text{Singular\ Shock}}(u_r,v_r)}_{}$$

Case IV: Singular Shock - Self-intersecting at given states. (Keyfitz and Kranzer, 1990.)

Hugoniot Loci is **not** a manifold (locally 'x', not Euclidean).

Regular Manifold Assumption

Recall: Hugoniot loci connects all (u,v) from a given state (u_g,v_g)

$$(F(u,v) - F(u_g, v_g))(v - v_g) - (G(u,v) - G(u_g, v_g))(u - u_g) = 0.$$

Define the **Hugoniot Objective Function**:

$$H_{(u_g,v_g)} = (F(u,v) - F(u_g,v_g))(v-v_g) - (G(u,v) - G(u_g,v_g))(u-u_g).$$

Hugoniot locus is the zero level set of $H_{(u_q,v_q)}$.

Regular Manifold Assumption

Recall: Hugoniot loci connects all (u,v) from a given state (u_g,v_g)

$$(F(u,v) - F(u_g, v_g))(v - v_g) - (G(u,v) - G(u_g, v_g))(u - u_g) = 0.$$

Define the **Hugoniot Objective Function**:

$$H_{(u_g,v_g)} = (F(u,v) - F(u_g,v_g))(v-v_g) - (G(u,v) - G(u_g,v_g))(u-u_g).$$

Hugoniot locus is the zero level set of $H_{(u_g,v_g)}$.

Regular Manifold Assumption

The Jacobian map $(dH_{(u_g,v_g)})_{(u,v)}: \mathbb{R}^2 \to \mathbb{R}$ given by $\left(D_uH_{(u_g,v_g)}(u,v) \quad D_vH_{(u_g,v_g)}(u,v)\right)$ is surjective for each $(u,v) \neq (u_g,v_g)$ on the Hugoniot locus.

- Always not satisfied at $(u, v) = (u_q, v_q)$.
- By the **Regular Value Theorem**, the Hugoniot locus restricted on $U \setminus \{(u_g, v_g)\}$ is a C^1 manifold.

Transversality

Let \mathcal{M} and \mathcal{N} be submanifolds of \mathbb{R}^n .

Definition: Transverse Intersection

We say that \mathcal{M} and \mathcal{N} intersects transversely if for every $x \in \mathcal{M} \cap \mathcal{N}$,

$$T_x\mathcal{M} + T_x\mathcal{N} = \mathbb{R}^n.$$

Notation: $\mathcal{M} \cap \mathcal{N}$.

Transversality Property

Let K be a compact subset of U containing the given left and right states $(u_l, v_l) \neq (u_r, v_r)$.

Definition: Transversality Property

We say that the 2×2 system with Riemann initial data given by (u_l, v_l) and (u_r, v_r) as left and right states satisfies the **transversality property on** K if for the "correct" curves \mathcal{W}_l (from (u_l, v_l)) and \mathcal{W}_r (from (u_r, v_r)) intersecting at $(u^*, v^*) \neq (u_l, v_l)$ or (u_r, v_r) , we have

$$\mathcal{W}_l \pitchfork \mathcal{W}_r$$
.

Double Shock

Theorem (Generic Approximation Theorem & Structural Stability.)

Consider the system satisfying assumptions (i), (ii), (iii), and the regular manifold assumption. For almost every $(u_l,v_l) \neq (u_r,v_r) \in U$, consider the system with Riemann initial data such that there is a unique double-wave entropy solution. Then, for any compact subset $K \subset U$ containing (u_l,v_l) and (u_r,v_r) in its interior,

- lacktriangledown The unperturbed system satisfies the transversality property on K,
- ② There exists $\varepsilon_1, \varepsilon_2 > 0$ such that for any perturbations $(F_\delta, G_\delta) \in C^2(K)^2$ with $\|(F_\delta, G_\delta)\|_{C^2(K)^2} < \varepsilon_1$, the corresponding perturbed 2×2 system admits a unique double-wave entropy solution with an intermediate state $(\tilde{u}^*, \tilde{v}^*) \in \operatorname{int}(K)$ satisfying $\|(\tilde{u}^*, \tilde{v}^*) (u^*, v^*)\|_2 < \varepsilon_2$.
- $oldsymbol{\circ}$ The perturbed system satisfies the transversality property on the same compact set K.

Theorem A. (Structural Stability)

Consider the system satisfying assumptions (i), (ii), (iii), and the regular manifold assumption. For given states $(u_l,v_l) \neq (u_r,v_r) \in U$, consider the system with Riemann initial data such that there is a unique double-wave entropy solution. Then, for any compact subset $K \subset U$ containing (u_l,v_l) and (u_r,v_r) in its interior,

If The unperturbed system satisfies the transversality property on K,

Then There exists $\varepsilon_1, \varepsilon_2 > 0$ such that for any perturbations $(F_\delta, G_\delta) \in C^2(K)^2$ with $\|(F_\delta, G_\delta)\|_{C^2(K)^2} < \varepsilon_1$, the corresponding perturbed 2×2 system admits a unique double-wave entropy solution with an intermediate state $(\tilde{u}^*, \tilde{v}^*) \in \operatorname{int}(K)$ satisfying $\|(\tilde{u}^*, \tilde{v}^*) - (u^*, v^*)\|_2 < \varepsilon_2$.

Moreover, The perturbed system satisfies the transversality property on the same compact set K.

Proof Sketch (Persistence of Existence):

ullet Hugoniot Objective Function $H(u,v;u_g,v_g,F,G)$ given by

$$H(u, v; u_g, v_g, F, G)$$

= $(F(u, v) - F(u_g, v_g))(v - v_g) - (G(u, v) - G(u_g, v_g))(u - u_g).$

ullet Hugoniot locus: All (u,v) such that $H(u,v;u_g,v_g,F,G)=0.$

Rarefaction Curves:

Rarefaction ODEs:

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}\lambda}(u(\lambda), v(\lambda)) = \mathbf{r}_k(u(\lambda), v(\lambda)) \\ (u(\lambda(u_g, v_g)), v(\lambda(u_g, v_g))) = (u_g, v_g) \end{cases}$$

- Use uni-direction assumption (iii) to normalize the 2nd component of the right eigenvector to be 1.
- Obtain a single ODE " $\frac{\mathrm{d}u}{\mathrm{d}v} = \frac{\mathrm{d}u/\mathrm{d}\lambda}{\mathrm{d}v/\mathrm{d}\lambda}$ ":

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}v} u_k(v; F, G) = \Xi(u_k(v; F, G), F, G) \\ u_k(v_g) = u_g. \end{cases}$$

Rarefaction Curves:

Rarefaction ODEs:

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}\lambda}(u(\lambda), v(\lambda)) = \mathbf{r}_k(u(\lambda), v(\lambda)) \\ (u(\lambda(u_g, v_g)), v(\lambda(u_g, v_g))) = (u_g, v_g) \end{cases}$$

- Use uni-direction assumption (iii) to normalize the 2nd component of the right eigenvector to be 1.
- Obtain a single ODE " $\frac{\mathrm{d}u}{\mathrm{d}v} = \frac{\mathrm{d}u/\mathrm{d}\lambda}{\mathrm{d}v/\mathrm{d}\lambda}$ ":

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}v} u_k(v; F, G) = \Xi(u_k(v; F, G), F, G) \\ u_k(v_g) = u_g. \end{cases}$$

• Rarefaction Objective Function:

$$R_k(u, v; u_g, v_g, F, G) = u - u_k(v; u_g, v_g, F, G).$$

Rarefaction Objective Function:

$$R_k(u, v; u_g, v_g, F, G) = u - \frac{\mathbf{u_k}}{\mathbf{v_k}}(v; u_g, v_g, F, G)$$

Interpretation: Signed Distance of u-coordinate to rarefaction curve integrated up to v.

Rarefaction Curve

Rarefaction Objective Function:

$$R_k(u, v; u_g, v_g, F, G) = u - \frac{\mathbf{u_k}(v; u_g, v_g, F, G)}{\mathbf{v_g}(v; u_g, v_g, F, G)}$$

Interpretation: Signed Distance of u-coordinate to rarefaction curve integrated up to v.

Rarefaction Curve

Example: Unique intermediate state (u^*,v^*) and unperturbed fluxes (F_0,G_0) satisfy

$$\begin{cases} H(u^*, v^*, F_0, G_0; u_l, v_l) = 0, \\ R_2(u^*, v^*, F_0, G_0; u_r, v_r) = 0. \end{cases}$$

Example: Unique intermediate state (u^*,v^*) and unperturbed fluxes (F_0,G_0) satisfy

$$\begin{cases} H(u^*, v^*, F_0, G_0; u_l, v_l) = 0, \\ R_2(u^*, v^*, F_0, G_0; u_r, v_r) = 0. \end{cases}$$

Example: Unique intermediate state (u^*, v^*) and unperturbed fluxes (F_0, G_0) satisfy

$$\begin{cases} H(u^*, v^*, F_0, G_0; u_l, v_l) = 0, \\ R_2(u^*, v^*, F_0, G_0; u_r, v_r) = 0. \end{cases}$$

Apply Implicit Function Theorem on Banach Spaces to

$$\mathbf{hr}(u,v,F,G) := \begin{cases} H(\mathbf{u},\mathbf{v},\mathbf{F},\mathbf{G};u_l,v_l) = 0, \\ R_2(\mathbf{u},\mathbf{v},\mathbf{F},\mathbf{G};u_r,v_r) = 0. \end{cases}$$

with $(u,v)\in K$ and $(F,G)\in C^2(K)^2$ to obtain a map ${\pmb M}:C^2(K)^2\to K$ such that

Example: Unique intermediate state (u^*, v^*) and unperturbed fluxes (F_0, G_0) satisfy

$$\begin{cases} H(u^*, v^*, F_0, G_0; u_l, v_l) = 0, \\ R_2(u^*, v^*, F_0, G_0; u_r, v_r) = 0. \end{cases}$$

Apply Implicit Function Theorem on Banach Spaces to

$$\mathbf{hr}(u,v,F,G) := \begin{cases} H(\mathbf{u,v,F,G};u_l,v_l) = 0, \\ R_2(\mathbf{u,v,F,G};u_r,v_r) = 0. \end{cases}$$

with $(u,v)\in K$ and $(F,G)\in C^2(K)^2$ to obtain a map ${\pmb M}:C^2(K)^2\to K$ such that

$$\begin{cases} H(M(F,G), F, G; u_l, v_l) = 0, \\ R_2(M(F,G), F, G; u_r, v_r) = 0. \end{cases}$$

with $M(F_0,G_0)=(u^*,v^*)$ in a $C^2(K)^2$ neighborhood of (F_0,G_0) .

$$\begin{cases} H(M(F,G), F, G; u_l, v_l) = 0, \\ R_2(M(F,G), F, G; u_r, v_r) = 0. \end{cases}$$

$$\begin{cases} H(M(F,G), F, G; u_l, v_l) = 0, \\ R_2(M(F,G), F, G; u_r, v_r) = 0. \end{cases}$$

To apply **Implicit Function Theorem on Banach Spaces**, we need to check the invertibility of a Jacobian map (matrix) $D_{(u,v)}\mathbf{hr}(u^*,v^*,F_0,G_0):\mathbb{R}^2\to\mathbb{R}^2$, given by

$$\begin{pmatrix} D_u H(u^*, v^*, F_0, G_0; u_l, v_l) & D_v H(u^*, v^*, F_0, G_0; u_l, v_l) \\ D_u R_2(u^*, v^*, F_0, G_0; u_r, v_r) & D_v R_2(u^*, v^*, F_0, G_0; u_r, v_r) \end{pmatrix}.$$

$$\begin{cases} H(M(F,G), F, G; u_l, v_l) = 0, \\ R_2(M(F,G), F, G; u_r, v_r) = 0. \end{cases}$$

To apply **Implicit Function Theorem on Banach Spaces**, we need to check the invertibility of a Jacobian map (matrix) $D_{(u,v)}\mathbf{hr}(u^*,v^*,F_0,G_0):\mathbb{R}^2\to\mathbb{R}^2$, given by

$$\begin{pmatrix} D_u H(u^*, v^*, F_0, G_0; u_l, v_l) & D_v H(u^*, v^*, F_0, G_0; u_l, v_l) \\ D_u R_2(u^*, v^*, F_0, G_0; u_r, v_r) & D_v R_2(u^*, v^*, F_0, G_0; u_r, v_r) \end{pmatrix}.$$

If $W_l = \text{Hugoniot locus from } (u_l, v_l)$ and $W_r = \text{Rarefaction curve from } (u_r, v_r)$, this is equivalent to

$$\mathcal{W}_l \cap \mathcal{W}_r = \mathbb{R}^2$$
.

Recall:

Theorem A. (Structural Stability)

Consider the system satisfying assumptions (i), (ii), (iii), and the regular manifold assumption. For given states $(u_l,v_l) \neq (u_r,v_r) \in U$, consider the system with Riemann initial data such that there is a unique double-wave entropy solution. Then, for any compact subset $K \subset U$ containing (u_l,v_l) and (u_r,v_r) in its interior,

If The unperturbed system satisfies the transversality property on K,

Then There exists $\varepsilon_1, \varepsilon_2 > 0$ such that for any perturbations $(F_\delta, G_\delta) \in C^2(K)^2$ with $\|(F_\delta, G_\delta)\|_{C^2(K)^2} < \varepsilon_1$, the corresponding perturbed 2×2 system admits a unique double-wave entropy solution with an intermediate state $(\tilde{u}^*, \tilde{v}^*) \in \operatorname{int}(K)$ satisfying $\|(\tilde{u}^*, \tilde{v}^*) - (u^*, v^*)\|_2 < \varepsilon_2$.

Moreover, The perturbed system satisfies the transversality property on the same compact set K.

Theorem B. (Transversality is Generic.)

Consider the system satisfying assumptions (i), (ii), (iii), and the regular manifold assumption. For almost every $(u_l,v_l) \neq (u_r,v_r) \in U$, consider the system with Riemann initial data such that there is a unique double-wave entropy solution. Then, for any compact subset $K \subset U$ containing (u_l,v_l) and (u_r,v_r) in its interior, we

Get: The unperturbed system satisfies the transversality property on K.

Theorem A + Theorem B = Main Theorem.

Theorem. (Generic Approximation Theorem & Structural Stability.)

Consider the system satisfying assumptions (i), (ii), (iii), and the regular manifold assumption. For almost every $(u_l,v_l) \neq (u_r,v_r) \in U$, consider the system with Riemann initial data such that there is a unique double-wave entropy solution. Then, for any compact subset $K \subset U$ containing (u_l,v_l) and (u_r,v_r) in its interior,

- lacktriangle The unperturbed system satisfies the transversality property on K,
- ② There exists $\varepsilon_1, \varepsilon_2 > 0$ such that for any perturbations $(F_\delta, G_\delta) \in C^2(K)^2$ with $\|(F_\delta, G_\delta)\|_{C^2(K)^2} < \varepsilon_1$, the corresponding perturbed 2×2 system admits a unique double-wave entropy solution with an intermediate state $(\tilde{u}^*, \tilde{v}^*) \in \operatorname{int}(K)$ satisfying $\|(\tilde{u}^*, \tilde{v}^*) (u^*, v^*)\|_2 < \varepsilon_2$.
- $oldsymbol{\circ}$ The perturbed system satisfies the transversality property on the same compact set K.

Theorem B. (Transversality is Generic.)

Consider the system satisfying assumptions (i), (ii), (iii), and the regular manifold assumption. For almost every $(u_l,v_l) \neq (u_r,v_r) \in U$, consider the system with Riemann initial data such that there is a unique double-wave entropy solution. Then, for any compact subset $K \subset U$ containing (u_l,v_l) and (u_r,v_r) in its interior, we

Get: The unperturbed system satisfies the transversality property on K.

Let \mathcal{X} and \mathcal{Y} be C^r manifolds, and \mathcal{Z} be a C^r submanifold of \mathcal{Y} for $r \geq 1$.

Definition: Transversality of a Map

Let $f: \mathcal{X} \to \mathcal{Y}$ be a C^r map. We say that f is **transverse** to \mathcal{Z} if for every $a \in f^{-1}(\mathcal{Z})$, we have

$$df(T_a\mathcal{X}) + T_{f(a)}\mathcal{Z} = T_{f(a)}\mathcal{Y}.$$

Notation: $f \cap \mathcal{Z}$.

Intuition: " $f(\mathcal{X}) \pitchfork \mathcal{Z}$ ".

Typical genericity arguments utilize:

Thom's Parametric Transversality Theorem

Let \mathcal{X}, \mathcal{P} , and \mathcal{Y} be C^r manifolds and \mathcal{Z} be a C^r submanifolds of \mathcal{N} . Consider

- The map $F: \mathcal{X} \times \mathcal{P} \to \mathcal{Y}$, and
- The associated parametric maps $F_p: \mathcal{X} \to \mathcal{Y}$ for each $p \in \mathcal{P}$.

Suppose that

- ② The map $(x,p) \mapsto F_p(x)$ is C^r , and
- \bullet $F \cap \mathcal{Z}$.

Then, for almost every $p \in \mathcal{P}$, $F_p \cap \mathcal{Z}$.

Strategy 1: $\mathbf{hr}(\cdot; u_l, v_l, u_r, v_r) : U \to \mathbb{R}^2$ with

$$\mathbf{hr}(u, v; u_l, v_l, u_r, v_r) := \begin{cases} H(u, v; u_l, v_l), \\ R_2(u, v; u_r, v_r). \end{cases}$$

Strategy 1: $\mathbf{hr}(\cdot; u_l, v_l, u_r, v_r) : U \to \mathbb{R}^2$ with

$$\mathbf{hr}(u, v; u_l, v_l, u_r, v_r) := \begin{cases} H(u, v; u_l, v_l), \\ R_2(u, v; u_r, v_r). \end{cases}$$

Recall: $hr(u^*, v^*; u_l, v_l, u_r, v_r) = 0$.

Strategy 1: $\mathbf{hr}(\cdot; u_l, v_l, u_r, v_r) : U \to \mathbb{R}^2$ with

$$\mathbf{hr}(u, v; u_l, v_l, u_r, v_r) := \begin{cases} H(u, v; u_l, v_l), \\ R_2(u, v; u_r, v_r). \end{cases}$$

Recall: $\mathbf{hr}(u^*, v^*; u_l, v_l, u_r, v_r) = \mathbf{0}$.

Hope: $\mathbf{hr}(\cdot; u_l, v_l, u_r, v_r) \pitchfork \{(0,0)\}$ for almost every

$$(u_l, v_l) \neq (u_r, v_r).$$

Strategy 1: $\mathbf{hr}(\cdot; u_l, v_l, u_r, v_r) : U \to \mathbb{R}^2$ with

$$\mathbf{hr}(u, v; u_l, v_l, u_r, v_r) := \begin{cases} H(u, v; u_l, v_l), \\ R_2(u, v; u_r, v_r). \end{cases}$$

Recall: $\mathbf{hr}(u^*, v^*; u_l, v_l, u_r, v_r) = \mathbf{0}.$

Hope: $\mathbf{hr}(\cdot; u_l, v_l, u_r, v_r) \cap \{(0,0)\}$ for almost every

 $(u_l, v_l) \neq (u_r, v_r).$

Conclude: At each intersection point ⇒ transverse intersection.

Define
$$\Delta_{U^2} = \{(u_l, v_l, u_r, v_r) : (u_l, v_l) \neq (u_r, v_r)\}.$$

To apply **Thom's Parametric Transversality Theorem**, we need to check that

$$\mathbf{hr}:$$
 \underbrace{U} $imes$ Allowed Intersection Points Parameters: Left and Right States

r drumeters. Eart and rught states

satisfies $\mathbf{hr} \cap \{(0,0)\}.$

Define
$$\Delta_{U^2} = \{(u_l, v_l, u_r, v_r) : (u_l, v_l) \neq (u_r, v_r)\}.$$

To apply **Thom's Parametric Transversality Theorem**, we need to check that

$$\mathbf{hr}:$$
 \underbrace{U} $imes$ Allowed Intersection Points Parameters: Left and Right States

satisfies $\mathbf{hr} \pitchfork \{(0,0)\}.$

Then, $\mathbf{hr}(\cdot; u_l, v_l, u_r, v_r) \cap \{(0, 0)\}$ for almost every $(u_l, v_l, u_r, v_r) \in U^2 \setminus \Delta_{U^2}$.

Define
$$\Delta_{U^2} = \{(u_l, v_l, u_r, v_r) : (u_l, v_l) \neq (u_r, v_r)\}.$$

To apply **Thom's Parametric Transversality Theorem**, we need to check that

$$\mathbf{hr}:$$
 \underbrace{U} $imes$ Allowed Intersection Points Parameters: Left and Right States

satisfies $\mathbf{hr} \pitchfork \{(0,0)\}.$

Then, $\mathbf{hr}(\cdot; u_l, v_l, u_r, v_r) \cap \{(0, 0)\}$ for almost every $(u_l, v_l, u_r, v_r) \in U^2 \setminus \Delta_{U^2}$.

Hugoniot Loci from (u_g,v_g) are manifolds on $U\setminus (u_g,v_g)$. (i.e Keyfitz-Kranzer system.)

Strategy 2: Puncture the domain U at (u_l, v_l) and (u_r, v_r) for **each** given left and right states.

Strategy 2: Puncture the domain U at (u_l, v_l) and (u_r, v_r) for **each** given left and right states.

Set
$$U_{(u_l,v_l,u_r,v_r)}:=U\setminus\{(u_l,v_l),(u_r,v_r)\}$$
 and define

$$ULR = \bigcup_{(u_l, v_l, u_r, v_r) \in U^2 \backslash \Delta_{U^2}} \underbrace{U_{(u_l, v_l, u_r, v_r)}}_{\text{Intersection Points}} \times \underbrace{\{(u_l, v_l, u_r, v_r)\}}_{\text{Parameters}}.$$

Strategy 2: Puncture the domain U at (u_l, v_l) and (u_r, v_r) for **each** given left and right states.

Set
$$U_{(u_l,v_l,u_r,v_r)}:=U\setminus\{(u_l,v_l),(u_r,v_r)\}$$
 and define

$$ULR = \bigcup_{(u_l, v_l, u_r, v_r) \in U^2 \backslash \Delta_{U^2}} \underbrace{U_{(u_l, v_l, u_r, v_r)}}_{\text{Intersection Points}} \times \underbrace{\{(u_l, v_l, u_r, v_r)\}}_{\text{Parameters}}.$$

Now, check $\mathbf{hr}: ULR \to \mathbb{R}^2$ satisfies

$$\mathbf{hr} \pitchfork \{(0,0)\}.$$

$$(u_l, v_l, u_r, v_r)$$

$$\in U^2 \setminus \Delta_{U^2}$$

$$\circ$$

$$U \setminus \{(u_l, v_l), (u_r, v_r)\}$$

$$= U_{(u_l, v_l, u_r, v_r)}$$

$$ULR = \bigcup_{(u_l, v_l, u_r, v_r) \in U^2 \setminus \Delta_{U^2}} U_{(u_l, v_l, u_r, v_r)} \times \{(u_l, v_l, u_r, v_r)\}.$$

ULR is a 6-dimensional submanifold of \mathbb{R}^6 .

Foliated Parametric Transversality Theorem

Let $\mathcal P$ and $\mathcal Y$ be C^r manifolds, and $\mathcal Z$ be a C^r submanifold of $\mathcal Y$. Suppose that for each $p\in \mathcal P$, we consider a collection of C^r manifolds given by $\{\mathcal X_p\}_{p\in \mathcal P}$ each with the same dimension $\dim \mathcal X$, and the following foliated set:

$$\mathcal{XP} := \bigcup_{p \in \mathcal{P}} \mathcal{X}_p \times \{p\}. \tag{1}$$

Consider the maps $F: \mathcal{XP} \to \mathcal{Y}$ and the associated map $F_p: \mathcal{X}_p \to \mathcal{Y}$ for each parameter $p \in P$. Suppose that

- ② \mathcal{XP} is a C^r manifold with dimension $\dim \mathcal{XP} = \dim \mathcal{X} + \dim \mathcal{P}$,
- **1** The map $(x,p) \mapsto F_p(x)$ is C^r , and

Then, for almost every $p \in \mathcal{P}$, $F_p \pitchfork \mathcal{Z}$.

Main Result

Theorem (Generic Approximation Theorem & Structural Stability.)

Consider the system satisfying assumptions (i), (ii), (iii), and the regular manifold assumption. For almost every $(u_l,v_l) \neq (u_r,v_r) \in U$, consider the system with Riemann initial data such that there is a unique double-wave entropy solution. Then, for any compact subset $K \subset U$ containing (u_l,v_l) and (u_r,v_r) in its interior,

- lacksquare The unperturbed system satisfies the transversality property on K,
- ② There exists $\varepsilon_1, \varepsilon_2 > 0$ such that for any perturbations $(F_\delta, G_\delta) \in C^2(K)^2$ with $\|(F_\delta, G_\delta)\|_{C^2(K)^2} < \varepsilon_1$, the corresponding perturbed 2×2 system admits a unique double-wave entropy solution with an intermediate state $(\tilde{u}^*, \tilde{v}^*) \in \operatorname{int}(K)$ satisfying $\|(\tilde{u}^*, \tilde{v}^*) (u^*, v^*)\|_2 < \varepsilon_2$.
- $oldsymbol{\circ}$ The perturbed system satisfies the transversality property on the same compact set K.

$$\begin{array}{cccc} \mathbf{hr}(& \underbrace{u,v} & ; \underbrace{u_l,v_l,u_r,u_r}, & \underbrace{F,G} &) \\ \mathbf{Double\text{-}Wave\ Solutions} & \mathbf{Generically\ Perturbation} \rightarrow \mathbf{Stable} \end{array}$$

Existing Literature

 ${\cal L}^1$ Stability:

Existing Literature

L^1 Stability:

• (Holden and Holden, 1992.) L^1 stability for scalar conservation laws:

$$\|u_f(t,\cdot)-u_g(t,\cdot)\|_{L^1}\lesssim t\mathrm{Lip}(f-g).$$

Done using the front-tracking algorithm.

L^1 Stability:

• (Holden and Holden, 1992.) L^1 stability for scalar conservation laws:

$$||u_f(t,\cdot) - u_g(t,\cdot)||_{L^1} \lesssim t \text{Lip}(f-g).$$

Done using the front-tracking algorithm.

• (Bianchini and Colombo, 2002.) L^1 stability for systems:

$$\left\| \begin{pmatrix} u \\ v \end{pmatrix} (t, \cdot) - \begin{pmatrix} \tilde{u} \\ \tilde{v} \end{pmatrix} (t, \cdot) \right\|_{L^1} \lesssim C_{(F_0, G_0)} C_{(\tilde{F}, \tilde{G})} \hat{d}((F_0, G_0), (\tilde{F}, \tilde{G})).$$

Done using (semi-)standard PDE techniques on Riemann semigroup.

Structural Stability of Riemann Problem:

Structural Stability of Riemann Problem:

- (Schecter, Marchesin, and Plohr, 1994.)
 Structurally Stable Riemann Solutions.
 - Conclusion depends on the given left and right states and transversality condition of intersecting curves that could not be checked a priori.
 - Done using viscous regularization, traveling waves, and phase portrait analysis.

Structural Stability of Riemann Problem:

- (Schecter, Marchesin, and Plohr, 1994.)
 Structurally Stable Riemann Solutions.
 - Conclusion depends on the given left and right states and transversality condition of intersecting curves that could not be checked a priori.
 - Done using viscous regularization, traveling waves, and phase portrait analysis.
- (Azevedo et. al., 2010 and Eschenazi et. al., 2023.) Topological Approach for 2×2 systems.
 - Quadratic flux and perturbations; some work in progress.
 - Similar issue with transversality condition.
 - Done by employing desingularization methods (motivated by singularity theorem) specific to quadratic fluxes.

- (Schaeffer, 1973.) Schaeffer Regularity Theorem (for scalar conservation laws): For almost any $u(0,x) \in \mathcal{S}(\mathbb{R})$, the solution is piecewise smooth with a finite number of shock curves.
 - Only for scalar conservation laws; strong assumptions on initial data.
 - Done using a transversality argument (differential topology).

- (Schaeffer, 1973.) Schaeffer Regularity Theorem (for scalar conservation laws): For almost any $u(0,x) \in \mathcal{S}(\mathbb{R})$, the solution is piecewise smooth with a finite number of shock curves.
 - Only for scalar conservation laws; strong assumptions on initial data.
 - Done using a transversality argument (differential topology).
- (Caravenna and Spinolo, 2017.)
 Schaeffer's Regularity Theorem Does Not Extend to Systems.

- (Schaeffer, 1973.) Schaeffer Regularity Theorem (for scalar conservation laws): For almost any $u(0,x) \in \mathcal{S}(\mathbb{R})$, the solution is piecewise smooth with a finite number of shock curves.
 - Only for scalar conservation laws; strong assumptions on initial data.
 - Done using a transversality argument (differential topology).
- (Caravenna and Spinolo, 2017.)
 Schaeffer's Regularity Theorem Does Not Extend to Systems.
- (Bressan, Chen, and Huang, 2023.)
 Generic Singularities for 2D Pressureless Flow.
 - $x \in \mathbb{R}^2$, only for smooth initial data and a specific problem.

(Wendroff, 1972 and Wendroff, 1972.)

$$\begin{cases} u_t + (p(v))_x = 0, \\ v_t - u_x = 0. \end{cases}$$

(Wendroff, 1972 and Wendroff, 1972.)

$$\begin{cases} u_t + (p(v))_x = 0, \\ v_t - u_x = 0. \end{cases}$$

Compressible Isentropic Flow in Lagrangian Coordinates:

- ullet Lagrangian Coordinates x
- ullet Velocity in Lagrangian Coordinates $u \in \mathbb{R}$
- Specific Volume v > 0
- $\bullet \ \operatorname{Pressure} \ p(v) \in C^2((0,\infty))$

(Wendroff, 1972 and Wendroff, 1972.)

$$\begin{cases} u_t + (p(v))_x = 0, \\ v_t - u_x = 0. \end{cases}$$

Compressible Isentropic Flow in Lagrangian Coordinates:

- ullet Lagrangian Coordinates x
- ullet Velocity in Lagrangian Coordinates $u \in \mathbb{R}$
- Specific Volume v > 0
- Pressure $p(v) \in C^2((0,\infty))$

Modelling Assumptions:

- Thermodynamics : p'(v) < 0 for v > 0.
- Experimental Evidence (Bethe, 1942): p''(v) > 0 for v > 0.

Jacobian Matrix:

$$J(u,v) = \begin{pmatrix} 0 & p'(v) \\ -1 & 0 \end{pmatrix}$$

Jacobian Matrix:

$$J(u,v) = \begin{pmatrix} 0 & p'(v) \\ -1 & 0 \end{pmatrix}$$

Assumptions:

- (i) p'(v) < 0 for v > 0 implies **strictly hyperbolic** system in $(0, \infty) \times \mathbb{R}$.
- (ii) p''(v) > 0 for v > 0 implies **genuinely non-linear** system in $(0, \infty) \times \mathbb{R}$.
- (iii) $-1 \neq 0$ implies uni-directional system in $(0, \infty) \times \mathbb{R}$.

Manifold Assumption:

Manifold Assumption:

• Hugoniot Objective Function:

$$H(u, v; u_g, v_g) = (u - u_g)^2 + (p(v) - p(v_g)) \cdot (v - v_g).$$

Manifold Assumption:

• Hugoniot Objective Function:

$$H(u, v; u_g, v_g) = (u - u_g)^2 + (p(v) - p(v_g)) \cdot (v - v_g).$$

Jacobian:

$$(dH_{(u_g,v_g)})_{(u,v)} = (2(u-u_g) \quad p'(v)(v-v_g) + (p(v)-p(v_g))).$$

Manifold Assumption:

• Hugoniot Objective Function:

$$H(u, v; u_g, v_g) = (u - u_g)^2 + (p(v) - p(v_g)) \cdot (v - v_g).$$

Jacobian:

$$(dH_{(u_g,v_g)})_{(u,v)} = (2(u-u_g) \quad p'(v)(v-v_g) + (p(v)-p(v_g))).$$

• Show that $(dH_{(u_g,v_g)})_{(u,v)}:\mathbb{R}^2\to\mathbb{R}$ is surjective for any $(u,v)\neq (u_g,v_g)$ on the Hugoniot locus.

Manifold Assumption:

• Hugoniot Objective Function:

$$H(u, v; u_g, v_g) = (u - u_g)^2 + (p(v) - p(v_g)) \cdot (v - v_g).$$

Jacobian:

$$(dH_{(u_g,v_g)})_{(u,v)} = (2(u-u_g) \quad p'(v)(v-v_g) + (p(v)-p(v_g))).$$

• Show that $(dH_{(u_g,v_g)})_{(u,v)}:\mathbb{R}^2\to\mathbb{R}$ is surjective for any $(u,v)\neq (u_g,v_g)$ on the Hugoniot locus.

Physical Interpretation:

For a sufficiently good C^2 approximation of the pressure relation (on a compact subset), unique double-wave entropy solutions are preserved.

$$\begin{cases} h_t + \left(\underbrace{h^3 f\left(\frac{h\phi_0}{h}\right)}_{F(h,h\phi_0)}\right)_x = 0, \\ (h\phi_0)_t + \left(\underbrace{h^3 g\left(\frac{h\phi_0}{h}\right)}_{G(h,h\phi_0)}\right)_x = 0. \end{cases}$$

• $f(\phi_0), g(\phi_0), \ \phi_0 \in [0, \phi_m]$. Physical Interpretation: $\phi_m = \text{Maximum Packing Fraction}$.

$$\begin{cases} h_t + \left(\underbrace{h^3 f\left(\frac{h\phi_0}{h}\right)}_{F(h,h\phi_0)}\right)_x = 0, \\ (h\phi_0)_t + \left(\underbrace{h^3 g\left(\frac{h\phi_0}{h}\right)}_{G(h,h\phi_0)}\right)_x = 0. \end{cases}$$

- $f(\phi_0), g(\phi_0), \ \phi_0 \in [0, \phi_m]$. Physical Interpretation: $\phi_m = \text{Maximum Packing Fraction}$.
- If the assumptions of the theorem hold, by picking a sufficiently good approximation of f and g, hence F and G, unique double-wave entropy solutions are preserved.

Fix $\alpha = 30^{\circ}$. $\phi_0 \in [0, \phi_m]$,

 $\phi_m = 0.61$: Maximum packing fraction.

 $\phi_c \approx 0.459$: Phase transition from settled to ridged.

Settled: $\phi_0 < \phi_c$.

Ridged: $\phi_0 > \phi_c$.

Fix $\alpha = 30^{\circ}$. $\phi_0 \in [0, \phi_m]$,

 $\phi_m = 0.61$: Maximum packing fraction.

 $\phi_c \approx 0.459$: Phase transition from settled to ridged.

Settled: $\phi_0 < \phi_c$.

Ridged: $\phi_0 > \phi_c$.

Polynomial Approximations:

$$f(\phi_0) = \begin{cases} \sum_{j=1}^{10} \beta_{f,j}^S (\phi_c - \phi_0)^{j-1} & \text{ for } \phi_0 < \phi_c, \\ \sum_{j=1}^{10} \beta_{f,j}^R (\phi_0 - \phi_c)^{j-1} & \text{ for } \phi_0 > \phi_c, \end{cases}$$

and

$$g(\phi_0) = \begin{cases} \sum_{j=1}^{10} \beta_{g,j}^S (\phi_c - \phi_0)^{j-1} & \text{ for } \phi_0 < \phi_c, \\ \sum_{j=1}^{10} \beta_{g,j}^R (\phi_0 - \phi_c)^{j-1} & \text{ for } \phi_0 > \phi_c. \end{cases}$$

$$\boldsymbol{\beta}_f = \operatorname{argmin}_{\boldsymbol{\beta}_f \in \mathbb{R}^{20}} \|\mathbf{f} - \mathbf{X}\boldsymbol{\beta}_f\|_2^2 + \lambda \|\mathbf{f}' - \mathbf{X}'\boldsymbol{\beta}_f\|_2^2$$

subject to (I), (II), (III), and (IV) (similar for g).

Physical "Constraints":

- (I): f and g are continuous at ϕ_c ,
- (II) : f' and g' are continuous at ϕ_c ,

(III):
$$f(0) = \frac{\mu_l}{3}, g(0) = 0,$$

(IV):
$$f(\phi_m) = g(\phi_m) = f'(\phi_m) = g'(\phi_m) = 0.$$

$$\boldsymbol{\beta}_f = \operatorname{argmin}_{\boldsymbol{\beta}_f \in \mathbb{R}^{20}} \|\mathbf{f} - \mathbf{X}\boldsymbol{\beta}_f\|_2^2 + \lambda \|\mathbf{f}' - \mathbf{X}'\boldsymbol{\beta}_f\|_2^2$$

subject to (I), (II), (III), and (IV) (similar for g).

Physical "Constraints":

- (I): f and g are continuous at ϕ_c ,
- (II) : f' and g' are continuous at ϕ_c ,

(III):
$$f(0) = \frac{\mu_l}{3}, g(0) = 0,$$

(IV):
$$f(\phi_m) = g(\phi_m) = f'(\phi_m) = g'(\phi_m) = 0.$$

Compare:

- $\lambda = 0$ (not fitting for derivatives) and
- $\lambda = 0.1$ (fitting for derivatives).

$$\boldsymbol{\beta}_f = \operatorname{argmin}_{\boldsymbol{\beta}_f \in \mathbb{R}^{20}} \|\mathbf{f} - \mathbf{X}\boldsymbol{\beta}_f\|_2^2 + \lambda \|\mathbf{f}' - \mathbf{X}'\boldsymbol{\beta}_f\|_2^2$$

subject to (I), (II), (III), and (IV) (similar for g).

Sampled Data Points:

- A couple of points close to ϕ_m ,
- A couple of points close to ϕ_c ,
- A couple of sparse points,
- Points are in triplets to provide derivative information at the middle point.

Quality of Approximation - Flux Function f:

Quality of Approximation - Flux Function g:

Quality of Approximation - Derivative of Flux Function f':

Quality of Approximation - Derivative of Flux Function g':

Riemann Initial Data:

$$(h,\phi_0)(0,x) = \begin{cases} (1,0.4) & \text{for } x > 0, \\ (0.2,0.4) & \text{for } x < 0. \end{cases}$$

Solution for $(h, \phi_0) = (40, x)$:

Phase Space Plots: $\lambda = 0$ (not fitting for derivatives)

Phase Space Plots: $\lambda = 0.1$ (fitting for derivatives)

 $(h_r, (\phi_0)_r) \to (0.5, 0.4)$ Phase Space Plots: $\lambda = 0$ (not fitting for derivatives)

 $(h_r, (\phi_0)_r) \to (0.5, 0.4)$

Phase Space Plots: $\lambda = 0.1$ (fitting for derivatives)

Riemann Initial Data:

$$(h, \phi_0)(0, x) = \begin{cases} (1, 0.4) & \text{for } x > 0, \\ (0.5, 0.4) & \text{for } x < 0. \end{cases}$$

Solution for $(h, \phi_0) = (40, x)$:

Observation:

Double Shock $\xrightarrow{\text{Perturbation}}$ Rarefaction-Shock?

Application II: Gravity-Driven Particle-Laden Flow

Observation:

Double Shock $\xrightarrow{\text{Perturbation}}$ Rarefaction-Shock?

Possible Reason: Failure of Genuine Non-linearity.

Application II: Gravity-Driven Particle-Laden Flow

Observation:

Double Shock $\xrightarrow{\text{Perturbation}}$ Rarefaction-Shock?

Possible Reason: Failure of Genuine Non-linearity.

Genuine Nonlinearity: $\nabla \lambda_k(u,v) \cdot r_k(u,v) \neq 0$ for k-wave.

Blue: $\nabla \lambda_k(u,v) \cdot r_k(u,v) > 0$.

Red: $\nabla \lambda_k(u,v) \cdot r_k(u,v) < 0$.

Application II: Gravity-Driven Particle-Laden Flow

Conclusion and Discussion

- Main Result: Under the usual assumptions and some additional mild assumptions, unique double-wave entropy solutions are preserved upon a sufficiently good approximation of flux functions.
- Understanding how each of the assumptions fails allows us to predict properties that are not expected to be preserved upon perturbation.

Generalizing the result to $n \times n$ systems.

- (Wong and Bertozzi, 2016.) n=3: Bidensity/Bisize Particle Laden Flow (Additional Parameter \rightarrow Additional Conservation Law.)
- Figuring out an equivalent method to apply Implicit Function Theorem on Banach spaces (and corresponding assumptions).

Generalizing the result to $n \times n$ systems.

- (Wong and Bertozzi, 2016.) n=3: Bidensity/Bisize Particle Laden Flow (Additional Parameter \rightarrow Additional Conservation Law.)
- Figuring out an equivalent method to apply Implicit Function Theorem on Banach spaces (and corresponding assumptions).

Other Variants - Regularity:

- Lower Regularity required for flux functions and their perturbations.
- Smooth except at finite points (corresponding to phase transitions).

Allowing Linear Degenerate Waves:

- Example: n=3, Compressible Euler Equations for gas dynamics.
- Expectation: Preserved under the class of "shocks, rarefactions, and contact discontinuities".

Allowing Linear Degenerate Waves:

- ullet Example: n=3, Compressible Euler Equations for gas dynamics.
- Expectation: Preserved under the class of "shocks, rarefactions, and contact discontinuities".

Violating Genuine Non-linearity:

- (Liu, 1973.)
 Alternative to Lax's Entropy Condition → Liu's Entropy Condition.
- Generalizing the above arguments for a different entropy condition.

Other Projects:

- Approximation techniques for fluxes (supported by our main theorem).
 - Examples: Deep Learning, Asymptotics, etc.
- Hyperbolic Conservation Laws on a Network.

Other Projects:

- Approximation techniques for fluxes (supported by our main theorem).
 - Examples: Deep Learning, Asymptotics, etc.
- Hyperbolic Conservation Laws on a Network.
 - Work in Progress: Modeling Hyperbolic Conservation Laws on Traffic Flow Networks: Evacuation Route Analysis with Applications to Lahaina Wildfire (with Annie Lu, Isaac Ramos, and Alex Xue).

Thank you for your attention!

Particle-Laden Flow:

N. Murisic, J. Ho, V. Hu, P. Latterman, T. Koch, K.Lin, M. Mata, and A. L. Bertozzi.

Particle-laden viscous thin-film flows on an incline: Exper- iments compared with a theory based on shear-induced migration and particle settling. Physica D: Nonlinear Phenomena 240, 20 (2011), 1661–1673.

N. Murisic, B. Pausader, D. Peschka, and A. L. Bertozzi. Dynamics of particle settling and resuspension in viscous liquid films. Journal of Fluid Mechanics 717 (2013), 203–31.

WP. Lee, J. Woo, L. Triplett, Y. Gu, S. C. Burnett, L. Ding, A. L. Bertozzi. A comparative study of models for gravity-driven particle-laden flows. Submitted, 2024.

J.T. Wong, A. L. Bertozzi A conservation law model for bidensity suspensions on an incline.

Physica D: Nonlinear Phenomena 330 (2016), 47-57.

L. Wang, A. L. Bertozzi.

Shock solutions for high concentration particle-laden thin films. SIAM J. Appl. Maths 74 (2014), 322–344.

References for Conservation Laws I:

H. Holden, L. Holden.

First-order nonlinear scalar hyperbolic conservation laws in one dimension. Ideas and Methods in Mathematical Analysis, Stochastics, and Applications, 20 (1992), 480-510.

S. Bianchini, R. M. Colombo. On the Stability of the Standard Riemann Semigroup

Proceedings of the American Mathematical Society 130 (2002), 1961–1973.

S. Schecter, D. Marchesin, B.J. Plohr. Structurally stable Riemann solutions. Journal of Differential Equations 126 (1996), 303-354.

A. Azevedo, C. Eschenazi, D. Marchesin, C. Palmeria. Topological Resolution of Riemann Problems for Pairs of Conservation Laws Quarterly of Applied Mathematics 68 (2010), 375-393.

C. Eschenazi, W. Lambert, M. Lopez-Flores, D. Marchesin, C. Palmeira. Solving Riemann Problems with a Topological Tool (Extended version) Submitted to arXiv, arXiv:2312.17377, 2023.

References for Conservation Laws II:

D. Schaeffer.

A Regularity Theorem for Conservation Laws Advances in Mathematics 11 (1973), 368-386.

L. Caravenna, L. V. Spinolo.

Schaeffer's Regularity Theorem for Scalar Conservation Laws Does Not Extend to Systems

Indiana University Mathematics Journal 66 (2017), 101-160.

T. Liu.

The Riemann Problem for General 2×2 Conservation Laws Transactions of the American Mathematical Society 199 (1974), 89-112.

A. Bressan, G. Chen, S. Huang. Generic Singularities for 2D Pressureless Flow Submitted to arXiv, arXiv:2307.11602, 2023.

References for Conservation Laws III:

H. C. Kranzer, B. L. Keyfitz.

A strictly hyperbolic system of conservation laws admitting singular shocks Nonlinear Evolution Equations That Change Type (1990), 107-125.

H. C. Kranzer, B. L. Keyfitz.

Existence and uniqueness of entropy solutions to the Riemann problem for hyperbolic systems of two nonlinear conservation laws

Journal of Differential Equations 27 (1978), 444-476.

B Wendroff.

The Riemann Problem for Materials with Nonconvex Equations of State I: Isentropic Flow

Journal of Mathematical Analysis and Applications 38 (1972), 454-466.

B. Wendroff.

The Riemann Problem for Materials with Nonconvex Equations of State II: General Flow

Journal of Mathematical Analysis and Applications 38 (1972), 640-658.

Differential Topology:

V. Guillemin, A. Pollack. Differential Topology Prentice-Hall, 1974.

M. W. Hirsch. Differential Topology Springer New York, NY, 1972.

C. Greenblatt.

An Introduction to Transversality.

https://schapos.people.uic.edu/MATH549_Fall2015_files/Survey%20Charlotte.pdf, 2015. Accessed 25 March 2024.

J. M. Lee.

Introduction to Smooth Manifolds.

Springer New York 2nd Edition, 2012.

S. Ichiki.

Characterization of Generic Transversality

Bulletin of the London Mathematical Society 51 (2019), 978-988.

Other Textbooks/Monographs:

P. D. Lax.

Hyperbolic Systems of Conservation Laws II Communications on Pure and Applied Mathematics 10 (1957), 537-566.

R. J. LeVeque.

Numerical Methods for Conservation Laws. Birkhäuser Basel, 2nd ed, 1992.

H. Holden , N. H. Risebro

Front Tracking for Hyperbolic Conservation Laws. Applied Mathematical Sciences 152, 2nd ed, 2015.

J. K. Hunter, B. Nachtergaele.

Applied Analysis.

World Scientific Publishing Co, 2001.