1. Let r, s, t, v be the homogeneous relations defined on the set $M = \{2, 3, 4, 5, 6\}$ by

$$x \, s \, y \iff x | y \text{ (=) } y \text{ :} \times$$

$$x \, t \, y \iff g.c.d.(x, y) = 1$$

$$x \, v \, y \iff x \equiv y \pmod{3}. \text{ (=) } 3 \text{ (=)} 3$$

Write the graphs R, S, T, V of the given relations.

3. Give examples of relations having each one of the properties of reflexivity, transitivity and symmetry, but not the others.

Sol: refl., 7 syn, 7tm	7rfl., sy_ 1 tras	7 rdl, 1 sym., tras
- Try (-) + = 4		$A = \{1, 2, 3\}$
A = {1,2,3}	A = { 1,2,3 }	
	1-((1,2),(4,7),	$\mathcal{R} = \left\{ (1,2), (2,3), (1,3) \right\}$
R = { (1,1), (2,2), (3,3)	(1,3), (3,1)}	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		

Dy: A set,
$$\mathcal{F} = \{A; | i \in \mathbb{F}\} \subseteq \mathcal{F}(A)$$

is called a partition of A it:

* r, y (=)] B ∈ P: *y ∈ B

A/r = reb U blue Ugreen U yellow U

Hry (=) " + and g how the same colour

- **5.** Let $M = \{1, 2, 3, 4\}$, let r_1 , r_2 be homogeneous relations on M and let π_1 , π_2 , where $R_1 = \Delta_M \cup \{(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)\}$, $R_2 = \Delta_M \cup \{(1, 2), (1, 3)\}$, $\pi_1 = \{\{1\}, \{2\}, \{3, 4\}\}$, $\pi_2 = \{\{1\}, \{1, 2\}, \{3, 4\}\}$.
 - (i) Are r_1, r_2 equivalences on M? If yes, write the corresponding partition.
 - (ii) Are π_1, π_2 partitions on M? If yes, write the corresponding equivalence relation.

$$\triangle_{M} = \left\{ \left(1, 1 \right), \left(42 \right), \left(52 \right), \left(73 \right) \right\}$$

5. Let $M = \{1, 2, 3, 4\}$, let r_1 , r_2 be homogeneous relations on M and let π_1 , π_2 , where $R_1 = \Delta_M \cup \{(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)\}$, $R_2 = \Delta_M \cup \{(1, 2), (1, 3)\}$, $\pi_1 = \{\{1\}, \{2\}, \{3, 4\}\}$, $\pi_2 = \{\{1\}, \{1, 2\}, \{3, 4\}\}$.

(i) Are r_1, r_2 equivalences on M? If yes, write the corresponding partition.

(ii) Are π_1, π_2 partitions on M? If yes, write the corresponding equivalence relation.

$$M/r_1 = \{\{1,2,3\}, \{4\}\}$$

re is not an excitance, because it is not symmetrical,

5m4 (1,2) 6R2, but (2,1) of R2

(ii) II, is a partition

$$R_{II_1} = \{(1,1), (2,2), (3,5), (4,4), (3,6), (4,3)\}$$

6. Define on \mathbb{C} the relations r and s by:

$$z_1 r z_2 \Longleftrightarrow |z_1| = |z_2|$$
; $z_1 s z_2 \Longleftrightarrow arg z_1 = arg z_2 \text{ or } z_1 = z_2 = 0$.

Prove that r and s are equivalence relations on \mathbb{C} and determine the quotient sets (partitions) \mathbb{C}/r and \mathbb{C}/s (geometric interpretation).

$$= a+i\int$$

$$avy \ge \in (0, \forall T)$$

$$|x| = |x| =$$

$$m(0r, l_{\theta}) = \theta$$

$$\neg \gamma \quad \boxed{/} S = \{0\} \quad \bigcup \quad \bigcup_{\delta} \quad \emptyset \in [0, 2\pi]$$