M - 91 - 2012

타워크레인의 지지·고정 및 운전에 관한 기술지침

2012. 11.

한국산업안전보건공단

안전보건기술지침의 개요

ㅇ 작성자 : 김용국

ㅇ 개정자 : 산업안전보건연구원 안전연구실 신운철

○ 제·개정 경과

- 2005년 4월 KOSHA Code 기계안전분야 제정위원회 심의
- 2005년 6월 KOSHA Code 총괄제정위원회 심의
- 2011년 12월 기계안전분야 제정위원회 심의(개정, 법규개정조항 반영)
- 2012년 11월 기계안전분야 제정위원회 심의(개정)
- ㅇ 관련규격 및 자료
 - Cranes & derricks(3rd Edition)
 - Crane handbook
 - Liebherr tower crane manual(290HC)
- o 관련 법규·규칙·고시 등
 - 산업안전보건기준에관한규칙 제2편 제1장 제9절 제2관 제141조(조립 등의 작업 시 조치사항) 및 제142조(타워크레인의 지지)
- ㅇ 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건 기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2012년 11 월 29 일

제 정 자 : 한국산업안전보건공단 이사장

M - 91 - 2012

타워크레인의 지지·고정 및 운전에 관한 기술지침

1. 목 적

이 지침은 산업안전보건기준에관한규칙(이하 "안전보건규칙" 이라한다) 제2편 제1장 제9절 제2관 제141조(조립 등의 작업시 조치사항) 및 제142조(타워크레인의 지지)의 규정에 의거 타워크레인의 지지·고정 및 운전에 관한 기술지침을 정함을 목적으로 한다.

2. 적용범위

이 지침은 타워크레인을 제조자가 제시한 자립고(Free standing height) 이상으로 설치하여 사용하고자 하는 경우 지지·고정 및 풍속에 따른 작업제한 등의 안전조치에 대하여 적용한다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "마스트"라 함은 타워크레인을 지지해주는 기둥 역할을 하는 강재(Steel)구조물로서 단위 마스트를 볼트로 연결시켜 설치 높이를 상승시킬 수 있도록 된 구조를 말한다.
 - (나) "지브"라 함은 메인 지브와 카운터 지브로 구성된 외팔보 형태의 트러스 구조 물을 말하며, 선회축을 중심으로 한 선회반경에 따라 권상용량이 결정된다.
 - (다) "선회장치"라 함은 마스트 상부에 있는 운전석 하부에 위치하며 회전 치차로 구성되어 지브를 선회시키는 장치를 말한다.
 - (라) "최대풍속"이라 함은 지상 10 m의 높이에서 하루 중 임의의 10분간의 평균값

M - 91 - 2012

중에서 최대값을 말하며 최대평균풍속이라고도 한다.

- (마) "최대순간풍속"이라 함은 하루 중 바람이 순간적으로 가장 세게 불었던 때의 풍속을 말한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 이 지침에서 특별히 규정하는 경우를 제외하고는 법, 같은 법 시행령, 같은 법 시행규칙, 안전보건규칙 및 관련 고시에서 정하는 바에 따른다.

4. 타워크레인의 지지·고정방식

타워크레인을 제조자가 제시한 자립고 이상으로 설치하여 사용할 경우에 타워크레인의 지지 및 고정방식은 설치현장의 상황에 따라 다음과 같이 2가지 방식으로 분류한다.

4.1 벽체 지지·고정(Wall bracing)방식

4.1.1 벽체 지지·고정방식의 종류

벽체 지지·고정 방식은 타워크레인의 마스트를 건축물 등의 벽체에 견고하게 지지·고정하는 방식을 말하며 현장의 여건과 타워크레인의 설치 위치에 따라 다음과 같이 분류한다.

(1) 지지대 3개 방식 : 건물과의 이격거리에 관계없이 주로 많이 사용

(2) A-프레임과 지지대 1개 방식 : 건물과의 이격거리가 크지 않으며 연결지점 수를 줄이기 위해 사용

<그림 2> A-프레임과 지지대 1개 방식

(3) A-프레임과 로프 2개 방식: 건물과의 이격거리가 크지 않을 때 사용

<그림 3> A-프레임과 로프 2개 방식

(4) 지지대 2개와 로프 2개 방식 : 각 연결점의 위치가 타워크레인 중심과 대칭이 되도록 사용

<그림 4> 지지대 2개와 로프 2개 방식

4.1.2. 벽체 지지·고정방식의 예시

벽체 지지·고정방식의 예시는 <그림 5>와 같다.

번호	품명	수량(개)
1	지지 프레임	1
2	간격유지 볼트	8
3, 4, 5	간격지지대	각1개
6, 7	벽체고정 브래킷	각1개

<그림 5> 벽체지지・고정방식(예시)

M - 91 - 2012

4.2 와이어로프 지지·고정(Wire rope guying) 방식

4.2.1 와이어로프 지지 · 고정방식의 종류

와이어로프 지지·고정방식은 타워크레인 설치장소의 주변에 적당한 지지물이 없거나, 고심도의 지하층 바닥에 타워크레인을 설치하는 경우에 사용하며 다음과 같이 분류 한다.

(1) 4줄 정방향 지지·고정 방식: 일반적으로 가장 많이 사용되는 방법으로서 타워 크레인 회전에 의해 발생하는 선회토크를 전달시키지 못하므로 타워크레인 설치 높이가 엄격히 제한되는 방식

<그림 6> 4줄 정방향 지지·고정 방식

(2) 8줄 대각방향 지지·고정 방식: 와이어로프의 인장력을 이용해 토크를 전달시키는 방법으로 각각의 로프는 독립적으로 연결되어야 하며, 회전 및 비틀림모멘트 등에 강하여 가장 구조적으로 장점을 가진 방식

<그림 7> 8줄 대각방향 지지·고정 방식

M - 91 - 2012

(3) 8줄 정방향 지지·고정 방식: 앵커위치 배치만 다를 뿐 8줄 대각방향 지지· 고정방식과 동일한 방법으로 각각의 로프를 독립적으로 연결하는 방식

<그림 8> 8줄 정방향 지지·고정 방식

(4) 6줄 혼합방향 지지·고정 방식: 앵커 위치를 4군데로 할 수 없는 특수한 경우에 사용되며, 시공에 특히 유의해야 하는 방식

<그림 9> 6줄 혼합방향 지지·고정 방식

4.2.2. 와이어로프 지지·고정방식의 예시 와이어로프 지지·고정방식의 예시는 <그림 10>과 같다.

번호	품명	수량(개)	비고
1	와이어로프 지지전용프레임	1	
2	기초고정 블록(Deadman)	4	
3	샤클	8	
4	긴장장치(Tensioning device : 유압식)	4	
5	와이어로프 클립	32	1개소당 최소 4개 이상
6	와이어로프	4	

<그림 10> 와이어로프 지지·고정방식(예시)

4.3 타워크레인 지지 · 고정방식 비교

타워크레인의 지지·고정방식을 비교하면 <표 1>과 같다

<표 1> 타워크레인 지지·고정방식 비교표

구	분	벽체 지지(Wall bracing) 방식	와이어로프 지지(Wire rope guying) 방식
	치 법	건물 벽체에 지지프레임 및 간격지지대 사용 고정	- 와이어로프로 콘크리트 구조물 등에 고정
장	장 점	- 건물벽체에 고정하며 작업용이	동시에 여러 장소에서 작업이 가능하여 장비 사용효율이 높음
단 점	단 점	- 작업반경이 작아서 장비 사용 효율 낮음	- 벽체고정에 비하여 작업이 어려움
	·내 정	- 도심지역의 대형 빌딩신축 등에 사용	- 대단위 아파트 건설현장에 많이 사용
	국 내	설계검사 도서 제출유해위험방지계획서(안전작업계획서) 제출	설계검사 도서 제출유해위험방지계획서(안전작업계획서)제출
기 준	일 본	없 음	없 음 (케이블 크레인의 고정에 대하여만 정하고 있음)
	유 럽	- 설계도서 및 설치작업 설명서에 포함	- 필요시 별도의 구조 계산 후 제조사의 허가 를 득한 후에 사용할 것을 추천함

5. 타워크레인의 지지·고정 설치 및 관리시 준수 사항

5.1 벽체 지지 · 고정방식

- (1) 타워크레인을 벽체 지지·고정할 때는 설계검사 서류 또는 제조사의 설치작업 설명서 등에 따라 설치하며, 계산의 예시는 〈붙임 1〉과 같다.
- (2) 건물의 높이 등 설치여건의 변화가 생길 경우에는 구조전문가의 확인을 받아 설치한다.

M - 91 - 2012

- (3) 벽체 지지·고정시 H-빔 등으로 임의 제작 사용하여서는 아니되며 반드시 전용 프레임을 사용하고, 벽체 지지대는 벽체와의 간격 조절이 가능한 구조로 제작· 설치한다.
- (4) 전용프레임 및 벽체 지지대의 용접 및 가공은 적정한지 점검한다.
- (5) 설치상태에서 벽체 지지점의 위치가 적정한지 점검한다.
- (6) 건물구조의 콘크리트 슬라브 또는 철골구조 등의 강도는 충분한지 확인한다.
- (7) 콘크리트 구조물에 고정시키는 경우에는 매립이나 관통 또는 이와 동등 이상의 방법으로 충분히 지지되도록 한다.
- (8) 전용프레임 및 지지대의 설치 상태는 수평 및 수직도가 유지되고 있는지, 조립볼트, 핀 등의 이완은 없는지 〈붙임 2〉의 타워크레인 붕괴사고 예방점검표에 따라 점검한다.

5.2 와이어로프 지지 · 고정방식

- (1) 타워크레인을 와이어로프로 지지·고정할 때는 설계검사 서류 또는 제조사의 설치작업 설명서 등에 따라 설치한다.
- (2) 건물의 높이 등 설치여건의 변화가 생길 경우에는 구조전문가의 확인을 받아 설치한다.
- (3) 와이어로프 지지·고정 시에는 반드시 전용프레임을 사용하여 균등하게 하중을 걸어야 하며 프레임이 흘러내리지 않도록 지지장치를 고정시킨다.
- (4) 지지 와이어로프의 안전율은 4 이상인지 여부를 확인한다.
- (5) 마스트와 와이어로프의 고정각도는 $30\sim60^{\circ}$ 이내로 설치하는 것이 바람직하며, 가장 이상적인 각도는 45° 이다.
- (6) 와이어로프 지지·고정시 턴버클 또는 긴장장치(Tensioning device), 클립, 샤클 등은 한국산업규격(KS) 이상의 규격품을 사용하고 설치된 긴장장치, 클립 등이 이완되지 않도록 한다.
- (7) 긴장장치의 아이(Eye) 부분은 와이어로프의 인장력에 충분한 강도를 가진 기초 고정 블록(Deadman)에 고정한다.

M - 91 - 2012

- (8) 이중구조(2단)의 와이어로프 지지·고정은 마스트가 수직 변형 또는 S자 형태로 휘어질 수 있는데 이 경우에는 매우 위험한 상태이므로 사용을 중지하고 구조 검토 등의 조치를 취한다. 와이어로프를 마스트에 직접 감아서 샤클로 채워주는 형태의 지지·고정이 되지 않도록 현장 관계자는 철저히 관리 감독하여야 한다.
- (9) 지지·고정 후에 와이어로프의 이상유무, 긴장장치와 클립의 체결상태 등을 매일 확인하고, 쌍방향으로 지지된 와이어로프의 긴장상태(Tension)가 일정하게 유지되는지 점검한다.
- (10) 늘어난 와이어로프는 타워크레인의 수직도 변형을 유발시킬 수 있을 뿐만 아니라 마스트에 비정상적인 변형 및 하중 부담을 줄 수 있어 타워크레인의 전도 사고를 일으킬 수 있으므로 유의하여야 한다.
- (11) 와이어로프 지지·고정은 유지관리가 중요하므로 정기적으로 〈붙임 2〉의 타워 크레인 붕괴사고예방 점검표에 따라 점검한다.

6. 풍속에 따른 타워크레인 작업제한

- 6.1 설치·점검·수리·해체 및 운전작업 중지풍속
 - (1) 타워크레인의 안전을 위하여 최대순간풍속이 매초당 10 m를 초과하는 바람이 불경우에는 설치·점검·수리 또는 해체작업을 중지한다.
 - (2) 안전운전을 위하여 최대순간풍속이 매초당 20 m를 초과하는 경우에는 타워 크레인의 운전작업을 중지한다.

〈참고〉 타워크레인의 사용 중지풍속 기준 비교

타워크레인의 안전한 사용을 위하여 ISO(국제표준) 및 유럽기준, 영국 및 독일 등의 크레인 사용 중지풍속에 관한 국제기준은, 최대순간풍속이 20 m/s이상이 되면 타워크레인의 사용을 중지하도록 규정하고 있다.

※ 크레인의 사용중지 최대순간풍속 값 비교

ISO 4302(국제표준)	F.E.M(유럽기준)	BS 2573(영국기준)	DIN 1055(독일기준)
20 m/s	20 m/s	20 m/s	20 m/s

6.2 기상청의 폭풍주의보 및 폭풍경보

기상청의 폭풍주의보 및 폭풍경보 발표기준은 다음과 같다.

(1) 폭풍주의보 발표기준 : 최대풍속 14 m/s 이상 또는 최대순간풍속이 20 m/s

이상이 될 때

(2) 폭풍경보 발표기준 : 최대풍속 18 m/s 이상 또는 최대순간풍속이 26 m/s

이상이 될 때

6.3 지형별 최대순간풍속 예측

동일한 풍속일지라도 지형에 따라 그 풍속이 달라지게 되므로 최대순간풍속의 값은 최대풍속에 <표 2>에서 제시하는 작업장소 지형별 계수를 곱해서 대략 예측할 수 있다.

<표 2> 최대순간풍속을 구하기 위한 작업장소 지형별 계수

작업장소 지형 평야		주택지	중・고층빌딩가	
계 수	1.2~1.5	1.5~2.0	2.0~3.0	

(예) 주택지의 아파트 건설현장에서 작업중인 타워크레인의 운전석 계기판에 설치된 풍속계가 최대풍속 14 m/s를 지시할 때 최대순간풍속은 다음과 같이 예측할 수 있다. 최대순간풍속 = 14 × (1.5~2.0) = 21~28 m/s

6.4 타워크레인 높이 증가에 따른 최대풍속의 산출 방법

타워크레인 운전실에 풍속계가 설치되어 있지 않을 경우에는 타워크레인 높이에 따른 풍속을 다음과 같이 산출할 수 있다.

M - 91 - 2012

타워크레인에서 높이에 따른 최대순간풍속은 다음 식 (1)에 의해 산출한다.

$$V = V_0 (\frac{h}{h_0})^P \qquad ----- (1)$$

여기서, V : 주위 지상고 h에서의 속도 (km/h)

 V_0 : 표준 지상고(10m) h_0 에서의 속도 (km/h)

 $P = 0.031167 + 0.0021038 \, V_0 - 0.000014549 \, V_0^2 + 0.000000036 \, V_0^3$

※ 출처: Cranes & derricks, p147, 3rd Edition, Howardi I. Shapiro

<적용 예>

(1) 지상(10 m, 측정표준높이)에서 10 m/s(36km/h)의 바람이 부는 경우에 높이 75 m (25층 아파트 높이) 위치에서의 풍속 값을 공식 (1)에 의거 계산하면 다음 과 같다.

$$V = V_0 \times (\frac{h}{h_0})^P$$

여기서, V_0 : 36 km/h

h:75 m

 h_0 : 10 m

 $P = 0.031167 + 0.0021038 V_0 - 0.000014549 V_0^2 + 0.000000036 V_0^3$ = 0.0897

$$V = 36 \times (\frac{75}{10})^{0.0897} = 43.13 \text{ km/h} = 11.98 \text{ m/s}$$

결론적으로 이 계산을 통하여 표준 높이 10 m에서 10 m/s의 바람이 75 m 높이에서는 약 12%가 증가된 11.98 m/s로서 풍속 값이 증가됨을 알 수 있다.

M - 91 - 2012

- (2) 폭풍주의보 발표기준에 해당하는 풍속의 설치 높이별 변화량 검토
 - (가) 25층 아파트 공사현장에 설치된 타워크레인(설치높이 75 m)에서의 풍속증가를 산출하면(폭풍주의보 발표기준에 해당하는 지상에서 풍속 14 m/s(50.4 km/h)의 바람이 부는 경우를 가정)

$$V_{75} = V_o \times (\frac{h}{h_o})^P$$
 = 50.4 km/h × $(\frac{75}{10})^{0.1049}$ = 62.26 km/h = 17.3 m/s (3.3 m/s 증가, 24% 증가)

(나) 15층 아파트 공사현장에 설치된 타워크레인(설치높이 50 m)에서의 풍속증가를 산출하면(폭풍주의보 발표기준에 해당하는 지상에서 풍속 14 m/s(50.4 km/h) 의 바람이 부는 경우를 가정)

$$V_{50} = 50.4 \text{ km/h} \times \left(\frac{50}{10}\right)^P = 50.4 \times 5^{0.1049} = 59.67 \text{ km/h} = 16.6 \text{ m/s}$$

$$(2.6 \text{ m/s} \stackrel{?}{\lessgtr} 7), 19\% \stackrel{?}{\lessgtr} 7)$$

6.5 타워크레인의 풍속계는 상단의 높은 곳에 설치하고, 기록계는 운전실에서 운전자가 쉽게 볼수 있는 곳에 설치한다.

7. 타워크레인의 설치·해체 및 상승 작업계획서의 작성

- (1) 타워크레인의 안전한 작업을 위하여 타워크레인의 설치·해체 및 상승작업을 할 때에는 〈붙임 3〉을 참조하여 다음 사항이 포함된 작업계획서를 작성한다.
- (가) 타워크레인의 종류 및 형식
- (나) 설치·조립 및 해체순서
- (다) 설치용 장비
- (라) 작업도구·가설설비 및 방호설비
- (마) 작업근로자의 역할
- (바) 안전보건규칙의 규정에 의한 지지방법

M - 91 - 2012

- (사) 타워크레인의 사다리에 미끄럼 방지 조치를 할 것.
- (2) 작업계획서를 작성할 때에는 작업계획의 내용을 실제 작업을 담당할 근로자에게 주지시키고 이를 준수하는지의 확인이 필요하다.

8. 작업종료 후 안전조치 사항

- (1) 운전자는 매달은 하물을 지상에 내리고 훅(Hook)을 가능한 한 높이 올린다.
- (2) 바람이 심하게 불면 지브가 흔들려 훅 등이 건물 또는 족장 등에 부딪힐 우려가 있으므로 지브의 최소작업반경이 유지되도록 트롤리를 가능한 한 운전석 가까운 위치로 이동시킨다.
- (3) 타워크레인의 고소 위치에는 풍압의 영향으로 구조부에 직접적으로 부가응력을 발생시킬 수 있으므로 타워크레인 제조자가 허용하지 않는 광고판 등을 부착하여서는 아니된다.
- (4) 타워크레인의 운전정지 시에는 선회치차(Slewing gear)의 회전을 자유롭게 한다. 따라서 운전자가 운전석을 떠날 때는 항상 선회기어 브레이크를 풀어 놓아 자유롭게 선회될 수 있도록 한다.
- (5) 선회기어 브레이크는 단지 콘트롤 레버가 "0" 점의 위치에 있을 때만 작동되므로 운전을 마칠 때는 모든 제어장치를 "0" 점 또는 중립에 위치시키며 모든 동력 스위치를 끄고 키를 잠근 후 운전석을 떠나도록 한다.

<붙임 1>

벽체 지지·고정(Wall bracing) 설계계산

Mb : Tower Crane의 회전에 의해 발생되는 Slewing Torque

H : Wall Bracing 상부 Part에 작용하는 풍 하중의 합력

V : Wall Bracing 항부 Part의 수직하중

MI: Wall Bracing 상부 Part의 수직, 수평 분력의 작용점 차이에 의해 발생하는 Overturning Moment

q : Footing과 Wall Bracing 사이의 Tower Section에 작용하는 풍 하중 (T/C 기종과 Mast의 종류에 따라 특정한 값을 가지며 다음과 같다.) 운전시: 0,05 t/m 정지시: 0,15 t/m

(Case 1) 수평력이 건물 방향으로 작용할 때

H_{A1}=H_{A2}=H_A/2 V_{A1}=V_{A2} = (H_A, a/b)+ M_D/b

(Case 2) 수평력이 건물에 직각 방향으로 작용할 때

 $H_{A1}=H_{A2}=M_D / 2a$ $V_{A1}=(H_A/2)+M_D/b$ $V_{A2}=-(H_A/2)+M_D/b$

※출처: Liebherr 타워크레인 작업매뉴얼

<붙임 2>

타워크레인 붕괴사고 예방 점검표

o 설치장 o 용		○ 형식(모델) : 높이 : m ○ 관리번호:		
	점 검 항 목	점 검 기 준	적합	개선
기초 및 본체	기초앵커구조부 변형 및 용접부분체결볼트 및 핀	○기초앵커의 부등침하, 볼트체결 이상유무 ○마스트, 지브, 타이바의 변형 및 용접부 크랙 발생유무 ○마스트, 지브, 타이바 등의 체결볼트, 핀 이완여부 등		
	o 설치작업설명서와 일치여부	○설계검사서류 또는 제작사의 설치작업 설명서에 따라 설치했는지 여부 ※미비시 구조 전문기술자에 의한 검토		
	ㅇ 지지·고정용 프레임 적정성	○전용프레임과 적합한 벽체 지지대를 사용했는지 여부		
, 벽체 <u>,</u>	ㅇ 벽체지지점 높이	○벽체 지지점의 위치가 적정한지 여부		
지지・고정	프레임 및 지지대의 제작상태 및 고정	○용접, 가공상태 등의 적정여부 ○건물구조의 콘크리트 슬라브 또는 철골 등의 강도가 충분한지 여부 ※지지대의 고정은 매립이나 관통 또는 동등이상의 방법 사용(세트앵커 사용금지)		
	ㅇ 전체적인 설치상태	○수평·수직도 유지여부, 조립 볼트, 핀 등의 이완여부		
	o 설치작업설명서와 일치여부	○설계검사서류 또는 제작사의 설치작업 설명서에 따라 설치했는지 여부 ※미비시 구조 전문기술자에 의한 검토		
	ㅇ 전용프레임 사용여부	○마스트의 와이어로프 고정부분에 전용프레임을 사용했는지 여부		
	ㅇ 와이어로프지지	○ 와이어로프의 설치각도가 60° 이내인지 여부		
와이어로프		○ 와이어로프가 등각도로 설치되었는지 여부		
지지・고정		○ 와이어로프의 긴장(Tension) 상태가 균일한지 여부 ※상대편의 와이어로프와는 항상 장력이 일정		
	ㅇ 와이어로프의 안전율	○와이어로프의 굵기가 충분한지 여부(안전율 4이상)		
	ㅇ 와이어로프 고정점	○ 와이어로프의 고정을 위한 기초콘크리트 블록, 건물고정부 또는 고정철골 등의 강도가 충분한지 여부		
	ㅇ 와이어로프 체결	○클립규격, 체결 수량, 체결간격(와이어로프 지름의 6배이상 유지), 체결방법 및 샤클의 적정여부 - 턴버클 사용시 적용규격 적정 여부		

KC	SHA	GUIDE
\mathbf{M}	- 91	- 2012

<붙임 3>

타워크레인 설치ㆍ해체 및 상승 작업계획서

타워(지브)크레인	□ 설치	□ 해체	□ 상승	작업계획서
-----------	------	------	------	-------

■ 일반사항

건설업체명				크레인	종류	□ T 형	□ L형
현 장 명				형식구분	형식번호		
	성 명			제조사			
현장소장	연락처 (전화번호)			정격하중			ton
작업업체	업체명			지브길이	메 인		m
격 법 법 세	담당자			기트 설계	카운터		m
작업기간	20 . 20 .	~ (일간)	지지 · 고정 방법	□벽체	□와이어로:	프 □자립

■ 설치·조립 및 해체

작업 관련서류	보유	여부	숙지・교육여부 확인		
작립 선언시ㅠ 	보유	미보유	실시	미실시	
ㅇ 사용방법 설명서					
ㅇ 설계도면					
ㅇ 가설계획서					
ㅇ 상세 작업순서 및 절차	붙임:				

■ 작업근로자의 연락처 및 역할

작업책임자	(성명)	(Tel)		(성명)	(Tel)
작업팀장	(성명)	(Tel)	기 타	(성명)	(Tel)
줄걸이 신호작업자	(성명)	(Tel)	작업자	(성명)	(Tel)
타워 운전자	(성명)	(Tel)		(성명)	(Tel)
작업근로자의 역할	붙임 : 작업근로	로자의 역할 계획			

■ 설치용 장비(이동식 크레인)

크레인 형식	()대	ㅇ작업 전 자체점검 여부 확인	□ 실시 □ 미실시
정격하중	ton	○운전자교육 및 작업내용숙지 확인	□ 실시 □ 미실시
작업반경	m	ㅇ작업장 바닥 및 이동경로상태 확인	□ 실시 □ 미실시

<붙임 3> 계속

■ 작업도구・가설설비 및 방호설비

품 명		확 인	품 명		확 인
개인보호구 착용	안전대		작업도구 등	토크렌치	
	안전모			체인블록	
	안전화			레버블록 호이스트	
방호설비	작업반경내 출입금지			파이프렌치	
	고압전선 등의 방호구			샤클	
	작업장 안전조치			와이어로프 클립	
줄걸이작업용 와이어로프				받침목	
유도용 마닐라로프					
가설설비 등					

■ 작업계획서 작성 및 추진 흐름도

