4/8/22, 11:03 PM 05_MANOVA

MANOVA

1 - IRIS\ 2 - We are going to use the width and lngth columns as dependent variables.\ 3 - Besides, the species column is used as the indendent variable.\ 4 - MANOVA by the Statmodel library.

```
# import libraries
In [ ]:
         import seaborn as sns
         import pandas as pd
         import matplotlib.pyplot as plt
         from statsmodels.multivariate.manova import MANOVA
         # dataset Load
In [ ]:
         df1= sns.load dataset('iris')
         df1.head()
            sepal_length sepal_width petal_length petal_width
Out[ ]:
                                                            species
         0
                    5.1
                                3.5
                                            1.4
                                                        0.2
                                                             setosa
         1
                    4.9
                                3.0
                                            1.4
                                                        0.2
                                                             setosa
         2
                    4.7
                                3.2
                                            1.3
                                                        0.2
                                                             setosa
         3
                    4.6
                                3.1
                                            1.5
                                                        0.2
                                                             setosa
         4
                    5.0
                                3.6
                                            1.4
                                                        0.2
                                                             setosa
         df1.columns
In [ ]:
         Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_width',
Out[ ]:
                 species'],
               dtype='object')
         # manova
In [ ]:
         mova = MANOVA.from formula('sepal length + sepal width + petal length + petal width ~
         print(mova.mv_test())
```

4/8/22, 11:03 PM 05_MANOVA

Multivariate linear model

1102 0			oucz		
Intercept	Value	Num DF	Den DF	F Value	Pr > F
Hiller I Jamb da	0 0170	4 0000	144 0000	2006 7720	0 0000
Wilks' lambda					
Pillai's trace	0.9830	4.0000	144.0000	2086.7720	0.0000
Hotelling-Lawley trace	57,9659	4.0000	144,0000	2086,7720	0.0000
Roy's greatest root					
Roy's greatest root	57.9059	4.0000	144.0000	2000.7720	0.0000
species	Value	Num DF	Den DF	F Value	Pr > F
Wilks' lambda	0 0234	8 0000	288 0000	100 1/53	0 0000
Pillai's trace	1.1919	8.0000	290.0000	53.4665	0.0000
Hotelling-Lawley trace	32.4773	8.0000	203.4024	582.1970	0.0000
Roy's greatest root				1166 0574	0 0000
Roy's greatest 100t	32.1919	4.0000	145.0000	1100.95/4	0.0000
=======================================				=======	======

1 The p-value to consider in this cose is that of Wilk's lambda, relative to the output variable specie we can see, even in this case it is significant.