COMPACTNESS AND EXISTENCE RESULTS FOR DEGENERATE CRITICAL ELLIPTIC EQUATIONS

VERONICA FELLI AND MATTHIAS SCHNEIDER

ABSTRACT. This paper is devoted to the study of degenerate critical elliptic equations of Caffarelli-Kohn-Nirenberg type. By means of blow-up analysis techniques, we prove an a-priori estimate in a weighted space of continuous functions. From this compactness result, the existence of a solution to our problem is proved by exploiting the homotopy invariance of the Leray-Schauder degree.

1. Introduction

We will consider the following equation in \mathbb{R}^N in dimension $N \geq 3$, which is a prototype of more general nonlinear degenerate elliptic equations describing anisotropic physical phenomena,

$$-\operatorname{div}(|x|^{-2\alpha}\nabla v) - \frac{\lambda}{|x|^{2(1+\alpha)}}v = K(x)\frac{v^{p-1}}{|x|^{\beta p}}, \quad v \ge 0, \quad v \in \mathcal{D}_{\alpha}^{1,2}(\mathbb{R}^N) \setminus \{0\}, \quad (1.1)$$

where $K \in C^2(\mathbb{R}^N) \cap L^{\infty}(\mathbb{R}^N)$ is positive and

$$\alpha < \frac{N-2}{2}, \quad \alpha \le \beta < \alpha + 1,$$
 (1.2)

$$\lambda < \left(\frac{N-2-2\alpha}{2}\right)^2, \quad p = p(\alpha, \beta) = \frac{2N}{N-2(1+\alpha-\beta)}.$$
 (1.3)

We look for weak solutions in $\mathcal{D}^{1,2}_{\alpha}(\mathbb{R}^N)$ defined as the completion of $C_0^{\infty}(\mathbb{R}^N)$ with respect to the norm

$$||u||_{\mathcal{D}^{1,2}_{\alpha}(\mathbb{R}^N)} := \left[\int_{\mathbb{R}^N} |x|^{-2\alpha} |\nabla u|^2 dx \right]^{1/2}.$$

The range of α , β and the definition of p are related to Caffarelli-Kohn-Nirenberg inequalities, denoted by CKN-inequalities in the sequel, (see [5, 6] and the references therein), as for any α , β satisfying (1.2) there exists exactly one exponent $p = p(\alpha, \beta)$

Date: June 25, 2003.

¹⁹⁹¹ Mathematics Subject Classification. 35J70, 35B33, 35B45.

Key words and phrases. critical exponents, blow-up analysis, Caffarelli-Kohn-Nirenberg inequality, Leray-Schauder degree.

V. F. is supported by M.U.R.S.T. under the national project "Variational Methods and Nonlinear Differential Equations". During the preparation of the paper M. S. research was supported by a S.I.S.S.A. postdoctoral fellowship.

such that

$$\left(\int_{\mathbb{R}^N} |x|^{-\beta p} |u|^p dx\right)^{2/p} \le \mathcal{C}_{\alpha,\beta} \int_{\mathbb{R}^N} |x|^{-2\alpha} |\nabla u|^2 dx \qquad \forall u \in C_0^{\infty}(\mathbb{R}^N). \tag{1.4}$$

Since we are looking for nontrivial nonnegative solutions we must necessarily have that the quadratic form

$$Q(\varphi,\varphi) := \int_{\mathbb{R}^N} |x|^{-2\alpha} |\nabla \varphi|^2 - \lambda |x|^{-2(1+\alpha)} |\varphi|^2$$

is positive, that is λ has to be smaller than $(N-2-2\alpha)^2/4$ the best constant in the related Hardy-type CKN-inequality for $\beta = \alpha + 1$ and p = 2. Let us define

$$a(\alpha, \lambda) := \frac{N-2}{2} - \sqrt{\left(\frac{N-2-2\alpha}{2}\right)^2 - \lambda} \text{ and } b(\alpha, \beta, \lambda) := \beta + a(\alpha, \lambda) - \alpha.$$
 (1.5)

The change of variable $u(x) = |x|^{a-\alpha}v(x)$ shows that equation (1.1) is equivalent to

$$-\operatorname{div}(|x|^{-2a}\nabla u) = K(x)\frac{u^{p-1}}{|x|^{bp}}, \quad u \ge 0, \quad u \in \mathcal{D}_a^{1,2}(\mathbb{R}^N) \setminus \{0\}, \tag{1.6}$$

where $a = a(\alpha, \lambda)$ and $b = b(\alpha, \beta, \lambda)$, see Lemma A.1 of the Appendix. Clearly, if we replace α by a and β by b then (1.2)-(1.3) still hold and $p(\alpha, \beta) = p(a, b)$. We will write in the sequel for short that a, b and p satisfy (1.2)-(1.3). We will mainly deal with equation (1.6) and look for weak solutions in $\mathcal{D}_a^{1,2}(\mathbb{R}^N)$. The advantage of working with (1.6) instead of (1.1) is that we know from [10] that weak solutions of (1.6) are Hölder-continuous in \mathbb{R}^N whereas solutions to (1.1), as our analysis shows, behave (possibly singular) like $|x|^{\alpha-a}$ at the origin. The main difficulty in facing problem (1.6) is the lack of compactness as p is the critical exponent in the related CKN-inequality. More precisely, if K is a positive constant equation (1.6) is invariant under the action of the non-compact group of dilations, in the sense that if u is a solution of (1.6) then for any positive μ the dilated function

$$\mu^{-\frac{N-2-2a}{2}}u(x/\mu)$$

is also a solution with the same norm in $\mathcal{D}_a^{1,2}(\mathbb{R}^N)$. The dilation invariance, as we see in (1.16) below, gives rise to a non-compact, one dimensional manifold of solutions for $K \equiv K(0)$.

Our first theorem provides sufficient conditions on K ensuring compactness of the set of solutions by means of an a-priori bound in a weighted space E defined by

$$E := \mathcal{D}_a^{1,2}(\mathbb{R}^N) \cap C^0(\mathbb{R}^N, (1+|x|^{N-2-2a})),$$

where

$$C^0(\mathbb{R}^N, (1+|x|^{N-2-2a})) := \{ u \in C^0(\mathbb{R}^N) : u(x)(1+|x|^{N-2-2a}) \in L^\infty(\mathbb{R}^N) \}$$

is equipped with the norm

$$||u||_{C^0(\mathbb{R}^N,(1+|x|^{N-2-2a}))} := \sup_{x \in \mathbb{R}^N} |u(x)|(1+|x|^{N-2-2a}).$$

We endow E with the norm

$$||u||_E = ||u||_{\mathcal{D}_a^{1,2}(\mathbb{R}^N)} + ||u||_{C^0(\mathbb{R}^N,(1+|x|^{N-2-2a}))}.$$

The uniform bound in E of the set of solutions to (1.6) will provide the necessary compactness needed in the sequel. We formulate the compactness result in terms of α , β and v the parameters of equation (1.1), where we started from. Let us set

$$\tilde{K}(x) := K(x/|x|^2). \tag{1.7}$$

Theorem 1.1. (Compactness) Let α, β, λ satisfy (1.2)-(1.3) and

$$\lambda \ge -\alpha(N - 2 - \alpha),\tag{1.8}$$

$$\left(\frac{N-2-2\alpha}{2}\right)^2 - 1 < \lambda,\tag{1.9}$$

$$\beta > \alpha, \quad p > \frac{2}{\sqrt{\left(\frac{N-2-2\alpha}{2}\right)^2 - \lambda}}.$$
 (1.10)

Suppose $K \in C^2(\mathbb{R}^N)$ satisfies

$$\tilde{K} \in C^2(\mathbb{R}^N)$$
, where $\tilde{K}(x)$ is defined in (1.7), (1.11)

$$\nabla K(0) = 0$$
, $\Delta K(0) \neq 0$, and $\nabla \tilde{K}(0) = 0$, $\Delta \tilde{K}(0) \neq 0$, (1.12)

and for some positive constant A_1

$$1/A_1 \le K(x), \quad \forall \, x \in \mathbb{R}^N. \tag{1.13}$$

Then there is $C_K > 0$ such that for any $t \in (0,1]$ and any solution v_t of

$$-\operatorname{div}(|x|^{-2\alpha}\nabla v) - \frac{\lambda}{|x|^{2(1+\alpha)}}v = (1 + t(K(x) - 1))\frac{v^{p-1}}{|x|^{\beta p}},$$

$$v \ge 0, \ v \in \mathcal{D}_{\alpha}^{1,2}(\mathbb{R}^N) \setminus \{0\},$$
(1.14)_t

we have $|||x|^{a-\alpha}v_t||_E < C_K$ and

$$C_K^{-1} < |x|^{a-\alpha} (1+|x|^{N-2-2a}) v_t(x) < C_K \text{ in } \mathbb{R}^N \setminus \{0\}.$$
 (1.15)

To prove the above compactness result we adapt the arguments of [14] to carry out a fine blow-up analysis for (1.6). Assumptions (1.8)-(1.10) imply

$$(1.8) \implies a \ge 0,$$

$$(1.10) \implies \frac{4}{N-2-2a}$$

A key ingredient is the exact knowledge of the solutions to the limit problem with $K \equiv \text{const}$, which is only available for $a \geq 0$. In [8] (see also [18]) it is shown through the method of moving planes that if $a \geq 0$ then any locally bounded positive solution in $C^2(\mathbb{R}^N \setminus \{0\})$ of (1.6) with $K \equiv K(0)$ is of the form

$$z_{K(0),\mu}^{a,b} := \mu^{-\frac{N-2-2a}{2}} z_{K(0)}^{a,b} \left(\frac{x}{\mu}\right), \quad \mu > 0, \tag{1.16}$$

where $z_{K(0)}^{a,b}=z_1^{a,b}\left(x\,K(0)^{\frac{2}{(p-2)(N-2-2a)}}\right)$ and $z_1^{a,b}$ is explicitly given by

$$z_1^{a,b}(x) = \left[1 + \frac{N - 2(1 + a - b)}{N(N - 2 - 2a)^2} |x|^{\frac{2(1 + a - b)(N - 2 - 2a)}{N - 2(1 + a - b)}}\right]^{-\frac{N - 2(1 + a - b)}{2(1 + a - b)}}.$$

For a < 0 the set of positive solutions becomes more and more complicated as $a \to -\infty$ due to the existence of non-radially symmetric solutions (see [6, 7, 9]). Up to now, our blow-up analysis is only available for $p < 2^*$; the case $p = 2^*$ presents additional difficulties because besides the blow-up profile $z_1^{a,b}$ a second blow-up profile described by the usual Aubin-Talenti instanton of Yamabe-type equations may occur. The further restrictions on a, p and K should be compared to the so-called flatness-assumptions in problems of prescribing scalar curvature.

Non-existence results for equation (1.6) can be obtained using a Pohozaev-type identity, i.e. any solution u to (1.6) satisfies the following identity

$$\int_{\mathbb{R}^N} (\nabla K(x) \cdot x) \frac{u^p}{|x|^{bp}} dx = 0,$$

provided the integral is convergent and K is bounded and smooth enough (see Corollary 2.3). This implies that there are no such solutions if $\nabla K(x) \cdot x$ does not change sign in \mathbb{R}^N and K is not constant.

The above compactness result allows us to exploit the homotopy invariance of the Leray-Schauder degree to pass from t small to t = 1 in $(1.14)_t$. We compute the degree of positive solutions to $(1.14)_t$ for small t using a Melnikov-type function introduced in [2, 3] and show that it equals (see Theorem 5.3)

$$-\frac{\operatorname{sgn}\Delta K(0) + \operatorname{sgn}\Delta \tilde{K}(0)}{2}.$$

In particular, we prove the following existence result.

Theorem 1.2. (Existence) Under the assumptions of Theorem 1.1, if, moreover, p > 3 and

$$\operatorname{sgn}\Delta K(0) + \operatorname{sgn}\Delta \tilde{K}(0) \neq 0$$

then equation (1.1) has a positive solution v such that $|x|^{a-\alpha}v \in B_{C_K}(0) \subset E$ and v satisfies (1.15).

The assumption p > 3 is essentially technical and yields C^3 regularity of the functional associated to the problem which is needed in the computation of the degree.

In [9] problem (1.1) is studied in the case in which K is a small perturbation of a constant, i.e. in the case $K=1+\varepsilon k$, using a perturbative method introduced in [2, 3]. We extend some of the results in [9] to the nonperturbative case. Problem (1.1) for $\alpha=\beta=0$ (hence $p=2^*$) and $0<\lambda<(N-2)^2/4$ is treated by Smets [17] who proves that in dimension N=4 there exists a positive solution provided $K\in C^2$ is positive and $K(0)=\lim_{|x|\to\infty}K(x)$. Among other existence and multiplicity results, in [1] positive solutions to (1.1) for $\alpha=\beta=0$, $p=2^*$, and $0<\lambda<(N-2)^2/4$ are found via the concentration compactness argument, under assumptions ensuring that the mountain-pass level stays below the compactness threshold at which Palais-Smale condition fails. We emphasize that the solution we find in Theorem 1.2 can stay above such a threshold.

Remark 1.3. If we drop the assumption $\alpha < \frac{N-2}{2}$ we may still change the variables $u(x) = |x|^{a-\alpha}v(x)$, where a is given in (1.5), and we still obtain weak solutions u of (1.6) in $\mathcal{D}_a^{1,2}(\mathbb{R}^N)$. But in this case the transformation $v(x) = |x|^{\alpha-a}u(x)$ gives rise

only to classical solutions of (1.1) in $\mathbb{R}^N \setminus \{0\}$ but not to distributional solutions in the whole \mathbb{R}^N .

The paper is organized as follows. In Section 2 we prove a Pohozaev type identity for equation (1.6). In Section 3 we introduce the notion of isolated and isolated simple blow-up point which was first introduced by Schoen [16] and provide the main local blow-up analysis. In Section 4 we prove Theorem 1.1 by combining the Pohozaev type identity with the results of our local blow-up analysis. Section 5 is devoted to the computation of the Leray-Schauder degree and to the proof of the existence theorem. Finally in the Appendix we collect some technical lemmas.

Acknowledgements

The authors would like to thank Prof. A. Ambrosetti for his interest in their work and for helpful suggestions.

2. A Pohozaev-type identity

Theorem 2.1. Let Ω be a bounded domain in \mathbb{R}^N $(N \geq 3)$ with smooth boundary, a, b, and p satisfy (1.2)-(1.3), $K \in C^1(\overline{\Omega})$ and $u \in \mathcal{D}_a^{1,2}(\mathbb{R}^N)$ be a weak positive solution of

$$-\operatorname{div}(|x|^{-2a}\nabla u) = K(x)\frac{u^{p-1}}{|x|^{bp}}, \quad x \in \Omega.$$
(2.1)

There holds

$$\frac{1}{p} \int_{\Omega} (\nabla K \cdot x) \frac{u^p}{|x|^{bp}} dx - \frac{1}{p} \int_{\partial \Omega} K(x) \frac{u^p}{|x|^{bp}} x \cdot \nu = \frac{N - 2 - 2a}{2} \int_{\partial \Omega} |x|^{-2a} u \nabla u \cdot \nu - \frac{1}{2} \int_{\partial \Omega} |x|^{-2a} |\nabla u|^2 x \cdot \nu + \int_{\partial \Omega} |x|^{-2a} (x \cdot \nabla u) (\nabla u \cdot \nu)$$

where ν denotes the unit normal of the boundary.

Proof. Note that

$$\int_0^1 ds \int_{\partial B_s(0)} \left[\frac{|K(x)|u^p}{|x|^{bp}} + \frac{|\nabla u|^2}{|x|^{2a}} \right] = \int_{B_1(0)} \left[\frac{|K(x)|u^p}{|x|^{bp}} + \frac{|\nabla u|^2}{|x|^{2a}} \right] < \infty$$

which implies that there exists a sequence $\varepsilon_n \to 0^+$ such that

$$\varepsilon_n \int_{\partial B_{\varepsilon_n}(0)} \left[\frac{|K(x)| u^p}{|x|^{bp}} + \frac{|\nabla u|^2}{|x|^{2a}} \right] \to 0$$
 (2.2)

as $n \to \infty$. Let $\Omega_{\varepsilon_n} := \Omega \setminus B_{\varepsilon_n}(0)$. Multiplying equation (2.1) by $x \cdot \nabla u$ and integrating over Ω_{ε_n} we obtain

$$-\sum_{j,k=1}^{N} \int_{\Omega_{\varepsilon_n}} \frac{\partial}{\partial x_j} \left(|x|^{-2a} \frac{\partial u}{\partial x_j} \right) x_k \frac{\partial u}{\partial x_k} dx = \sum_{k=1}^{N} \int_{\Omega_{\varepsilon_n}} x_k \frac{\partial u}{\partial x_k} K(x) \frac{u^{p-1}}{|x|^{bp}} dx.$$
 (2.3)

Let us first consider the right-hand side of (2.3). Integrating by parts we have

$$\sum_{k=1}^{N} \int_{\Omega_{\varepsilon_n}} x_k \frac{\partial u}{\partial x_k} K(x) \frac{u^{p-1}}{|x|^{bp}} dx = \left(b - \frac{N}{p}\right) \int_{\Omega_{\varepsilon_n}} K(x) \frac{u^p}{|x|^{bp}} dx$$
$$- \frac{1}{p} \sum_{k=1}^{N} \int_{\Omega_{\varepsilon_n}} u^p x_k \frac{\partial K}{\partial x_k} |x|^{-bp} + \frac{1}{p} \sum_{k=1}^{N} \int_{\partial \Omega_{\varepsilon_n}} x_k \nu_k \frac{K(x) u^p}{|x|^{bp}}. \tag{2.4}$$

Integrating by parts in the left-hand side of (2.3), we obtain

$$-\sum_{j,k=1}^{N} \int_{\Omega_{\varepsilon_n}} \frac{\partial}{\partial x_j} \left(|x|^{-2a} \frac{\partial u}{\partial x_j} \right) x_k \frac{\partial u}{\partial x_k} dx = -\frac{N-2-2a}{2} \int_{\Omega_{\varepsilon_n}} |x|^{-2a} |\nabla u|^2 dx + \frac{1}{2} \int_{\partial \Omega_{\varepsilon_n}} |x|^{-2a} |\nabla u|^2 x \cdot \nu - \int_{\partial \Omega_{\varepsilon_n}} |x|^{-2a} (x \cdot \nabla u) (\nabla u \cdot \nu).$$
 (2.5)

From (2.3), (2.4), and (2.5), we have

$$\left(b - \frac{N}{p}\right) \int_{\Omega_{\varepsilon_n}} K(x) \frac{u^p}{|x|^{bp}} dx - \frac{1}{p} \sum_{k=1}^N \int_{\Omega_{\varepsilon_n}} u^p x_k \frac{\partial K}{\partial x_k} |x|^{-bp}
+ \frac{1}{p} \sum_{k=1}^N \int_{\partial\Omega_{\varepsilon_n}} x_k \nu_k \frac{K(x) u^p}{|x|^{bp}}
= -\frac{N - 2 - 2a}{2} \int_{\Omega_{\varepsilon_n}} |x|^{-2a} |\nabla u|^2 dx + \frac{1}{2} \int_{\partial\Omega_{\varepsilon_n}} |x|^{-2a} |\nabla u|^2 x \cdot \nu
- \int_{\partial\Omega_{\varepsilon_n}} |x|^{-2a} (x \cdot \nabla u) (\nabla u \cdot \nu).$$

Because of the integrability of $|x|^{-bp}u^p$ and of $|x|^{-2a}|\nabla u|^2$, it is clear that

$$\left(b - \frac{N}{p}\right) \int_{\Omega_{\varepsilon_n}} K(x) \frac{u^p}{|x|^{bp}} dx - \frac{1}{p} \sum_{k=1}^N \int_{\Omega_{\varepsilon_n}} u^p x_k \frac{\partial K}{\partial x_k} |x|^{-bp}$$

$$\xrightarrow{\varepsilon \to 0^+} \left(b - \frac{N}{p}\right) \int_{\Omega} K(x) \frac{u^p}{|x|^{bp}} dx - \frac{1}{p} \sum_{k=1}^N \int_{\Omega} u^p x_k \frac{\partial K}{\partial x_k} |x|^{-bp}$$

and

$$\int_{\Omega_{\varepsilon_n}} |x|^{-2a} |\nabla u|^2 dx \underset{\varepsilon \to 0^+}{\longrightarrow} \int_{\Omega} |x|^{-2a} |\nabla u|^2 dx.$$

Hence, in view of (2.2), we have

$$\left(b - \frac{N}{p}\right) \int_{\Omega} K(x) \frac{u^p}{|x|^{bp}} dx - \frac{1}{p} \sum_{k=1}^{N} \int_{\Omega} u^p x_k \frac{\partial K}{\partial x_k} |x|^{-bp}
+ \frac{1}{p} \sum_{k=1}^{N} \int_{\partial \Omega} x_k \nu_k \frac{K(x) u^p}{|x|^{bp}}
= -\frac{N - 2 - 2a}{2} \int_{\Omega} |x|^{-2a} |\nabla u|^2 dx + \frac{1}{2} \int_{\partial \Omega} |x|^{-2a} |\nabla u|^2 x \cdot \nu
- \int_{\partial \Omega} |x|^{-2a} (x \cdot \nabla u) (\nabla u \cdot \nu).$$
(2.6)

Multiplying equation (2.1) by u and integrating by parts, we have

$$\int_{\Omega} |x|^{-2a} |\nabla u|^2 dx = \int_{\partial \Omega} |x|^{-2a} u \frac{\partial u}{\partial \nu} + \int_{\Omega} K(x) \frac{u^p}{|x|^{bp}} dx. \tag{2.7}$$

The conclusion follows from (2.6), (2.7), and from the identity $\frac{N-bp}{p} - \frac{N-2-2a}{2} = 0$.

Corollary 2.2. If a, b, and p satisfy (1.2)-(1.3), $K \in C^1(\overline{B}_{\sigma})$ and u be a weak positive solution in $\mathcal{D}_a^{1,2}(\mathbb{R}^N)$ of

$$-\text{div}(|x|^{-2a}\nabla u) = K(x)\frac{u^{p-1}}{|x|^{bp}}, \quad x \in B_{\sigma} := \{x \in \mathbb{R}^{N} : |x| < \sigma\}$$
 (2.8)

then

$$\frac{1}{p} \int_{B_{\sigma}} (\nabla K \cdot x) \frac{u^p}{|x|^{bp}} dx - \frac{\sigma}{p} \int_{\partial B_{\sigma}} K(x) \frac{u^p}{|x|^{bp}} = \int_{\partial B_{\sigma}} B(\sigma, x, u, \nabla u)$$
(2.9)

where

$$B(\sigma, x, u, \nabla u) = \frac{N - 2 - 2a}{2} |x|^{-2a} u \frac{\partial u}{\partial \nu} - \frac{\sigma}{2} |x|^{-2a} |\nabla u|^2 + \sigma |x|^{-2a} \left(\frac{\partial u}{\partial \nu}\right)^2.$$

Corollary 2.3. Let u be a weak positive solution in $\mathcal{D}_a^{1,2}(\mathbb{R}^N)$ of

$$-\operatorname{div}(|x|^{-2a}\nabla u) = K(x)\frac{u^{p-1}}{|x|^{bp}}, \quad x \in \mathbb{R}^N$$

where a, b, and p satisfy (1.2)-(1.3) and $K \in L^{\infty} \cap C^1(\mathbb{R}^N)$, $|\nabla K(x) \cdot x| \leq \text{const.}$ Then

$$\int_{\mathbb{R}^N} (\nabla K(x) \cdot x) \frac{u^p}{|x|^{bp}} dx = 0.$$
 (2.10)

Proof. Since

$$\int_{0}^{+\infty} ds \int_{\partial B_{s}} \left[\frac{|K(x)|u^{p}}{|x|^{bp}} + \frac{|\nabla u|^{2}}{|x|^{2a}} \right] = \int_{\mathbb{R}^{N}} \left[\frac{|K(x)|u^{p}}{|x|^{bp}} + \frac{|\nabla u|^{2}}{|x|^{-2a}} \right] < \infty$$

there exists a sequence $R_n \to +\infty$ such that

$$R_n \int_{\partial B_{R_n}} \left[\frac{|K(x)| u^p}{|x|^{bp}} + \frac{|\nabla u|^2}{|x|^{2a}} \right] \xrightarrow[n \to \infty]{} 0. \tag{2.11}$$

From Corollary 2.2 we have that

$$\frac{1}{p} \int_{B_{R_n}} (\nabla K \cdot x) \frac{u^p}{|x|^{bp}} dx = \frac{R_n}{p} \int_{\partial B_{R_n}} K(x) \frac{u^p}{|x|^{bp}} + \frac{N - 2 - 2a}{2} \int_{\partial B_{R_n}} |x|^{-2a} u \frac{\partial u}{\partial \nu} - \frac{R_n}{2} \int_{\partial B_{R_n}} |x|^{-2a} |\nabla u|^2 + R_n \int_{\partial B_{R_n}} |x|^{-2a} \left(\frac{\partial u}{\partial \nu}\right)^2. \quad (2.12)$$

In view of (2.11) and noting that from Hölder inequality

$$\begin{split} \int_{\partial B_{R_{n}}} |x|^{-2a} u \, \frac{\partial u}{\partial \nu} &= R_{n}^{b-a} \int_{\partial B_{R_{n}}} \frac{u}{|x|^{b}} \cdot \frac{\nabla u \cdot \nu}{|x|^{a}} \\ &\leq |\mathbb{S}^{N}|^{\frac{p-2}{2p}} R_{n}^{b-a + \frac{(N-1)(p-2)}{2p} - \frac{1}{p} - \frac{1}{2}} \left(R_{n} \int_{\partial B_{R_{n}}} \frac{u^{p}}{|x|^{bp}} \right)^{\frac{1}{p}} \left(R_{n} \int_{\partial B_{R_{n}}} \frac{|\nabla u|^{2}}{|x|^{2a}} \right)^{\frac{1}{2}} \\ &= |\mathbb{S}^{N}|^{\frac{p-2}{2p}} \left(R_{n} \int_{\partial B_{R_{n}}} \frac{u^{p}}{|x|^{bp}} \right)^{\frac{1}{p}} \left(R_{n} \int_{\partial B_{R_{n}}} \frac{|\nabla u|^{2}}{|x|^{2a}} \right)^{\frac{1}{2}} \end{split}$$

we can pass to the limit in (2.12) thus obtaining the claim.

It is easy to check that the boundary term $B(\sigma, x, u, \nabla u)$ has the following properties.

Proposition 2.4.

- (i) For $u(x) = |x|^{2+2a-N}$, $\sigma > 0$, $B(\sigma, x, u, \nabla u) = 0$ for all $x \in \partial B_{\sigma}$.
- (ii) For $u(x) = |x|^{2+2a-N} + A + \zeta(x)$, with A > 0 and $\zeta(x)$ some function differentiable near 0 satisfying $\zeta(0) = 0$, there exists $\bar{\sigma}$ such that

$$B(\sigma, x, u, \nabla u) < 0$$
 for all $x \in \partial B_{\sigma}$ and $0 < \sigma < \bar{\sigma}$

and

$$\lim_{\sigma \to 0} \int_{\partial B_{\sigma}} B(\sigma, x, u, \nabla u) = -\frac{(N - 2 - 2a)^2}{2} A |\mathbb{S}^{N-1}|.$$

3. Local blow-up analysis

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain, a, b, and p satisfy (1.2)-(1.3), and $\{K_i\}_i \subset C(\Omega)$ satisfy, for some constant $A_1 > 0$,

$$1/A_1 \le K_i(x) \le A_1, \quad \forall x \in \Omega \quad \text{and} \quad K_i \to K \text{ uniformly in } \Omega.$$
 (3.1)

Moreover, we will assume throughout this section that $a \geq 0$. We are interested in the family of problems

$$-\operatorname{div}(|x|^{-2a}\nabla u) = K_i(x)\frac{u^{p-1}}{|x|^{bp}} \quad \text{weakly in } \Omega, \quad u > 0 \text{ in } \Omega, \ u \in \mathcal{D}_a^{1,2}(\mathbb{R}^N). \tag{P_i}$$

Definition 3.1. Let $\{u_i\}_i$ be a sequence of solutions of (P_i) . We say that $0 \in \Omega$ is a blow-up point of $\{u_i\}_i$ if there exists a sequence $\{x_i\}_i$ converging to 0 such that

$$u_i(x_i) \to +\infty \quad and \quad u_i(x_i)^{\frac{2}{N-2-2a}} |x_i| \to 0 \quad as \ i \to +\infty.$$
 (3.2)

Definition 3.2. Let $\{u_i\}_i$ be a sequence of solutions of (P_i) . The point 0 is said to be an isolated blow-up point of $\{u_i\}_i$ if there exist $0 < \bar{r} < dist(0, \partial\Omega), \bar{C} > 0$, and a sequence $\{x_i\}_i$ converging to 0 such that $u_i(x_i) \to +\infty$, $u_i(x_i)^{\frac{2}{N-2-2a}}|x_i| \to 0$ as $i \to +\infty$, and for any $x \in B_{\bar{r}}(x_i)$

$$u_i(x) \le \bar{C} |x - x_i|^{-\frac{N-2-2a}{2}}$$

where $B_{\bar{r}}(x_i) := \{ x \in \Omega : |x - x_i| < \bar{r} \}.$

If 0 is an isolated blow-up point of $\{u_i\}_i$ we define

$$\bar{u}_i(r) = \int_{\partial B_r(x_i)} u_i = \frac{1}{|\partial B_r(x_i)|} \int_{\partial B_r(x_i)} u_i, \quad r > 0$$

and

$$\bar{w}_i(r) = r^{\frac{N-2-2a}{2}} \bar{u}_i(r), \quad r > 0.$$
 (3.3)

Definition 3.3. The point 0 is said to be an isolated simple blow-up point of $\{u_i\}_i$ if it is an isolated blow-up point and there exist some positive $\rho \in (0, \bar{r})$ independent of i and $\tilde{C} > 1$ such that

$$\bar{w}_i'(r) < 0 \quad \text{for } r \text{ satisfying } \tilde{C} u_i(x_i)^{-\frac{2}{N-2-2a}} \le r \le \rho.$$
 (3.4)

Let us now introduce the notion of blow-up at infinity. To this aim, we consider the Kelvin transform,

$$\tilde{u}_i(x) = |x|^{-(N-2-2a)} u_i \left(\frac{x}{|x|^2}\right),$$
(3.5)

which is an isomorphism of $\mathcal{D}_a^{1,2}(\mathbb{R}^N)$. If u_i solves (P_i) in a neighborhood of ∞ , i.e. $\Omega = \mathbb{R}^N \setminus D$ for some compact set D, then \tilde{u}_i is a solution of (P_i) where K_i is replaced by $\tilde{K}_i(x) = K_i(x/|x|^2)$ and Ω by $\tilde{\Omega} = \mathbb{R}^N \setminus \{x/|x|^2 \mid x \in D\}$, a neighborhood of 0.

Definition 3.4. Let $\{u_i\}_i$ be a sequence of solutions of (P_i) in a neighborhood of ∞ . We say that ∞ is a blow-up point (respectively an isolated blow-up point, an isolated simple blow-up point) if 0 is a blow-up point (respectively an isolated blow-up point, an isolated simple blow-up point) of the sequence $\{\tilde{u}_i\}_i$ defined by the Kelvin transform (3.5).

Remark 3.5. It is easy to see that ∞ is a blow-up point of $\{u_i\}_i$ if and only if there exists a sequence $\{x_i\}_i$ such that $|x_i| \to \infty$ as $i \to +\infty$ and

$$|x_i|^{N-2-2a}u_i(x_i) \underset{i \to +\infty}{\longrightarrow} \infty \quad and \quad |x_i|u_i(x_i)^{\frac{2}{N-2-2a}} \underset{i \to +\infty}{\longrightarrow} 0.$$

In the sequel we will use the notation c to denote a positive constant which may vary from line to line.

Lemma 3.6. Let $(K_i)_{i\in\mathbb{N}}$ satisfy (3.1), $\{u_i\}_i$ satisfy (P_i) and $x_i \to 0$ be an isolated blow up point. Then there is a positive constant $C = C(N, \overline{C}, A_1)$ such that for any $0 < r < \min(\overline{r}/3, 1)$ there holds

$$\max_{x \in B_{2r}(x_i) \setminus B_{r/2}(x_i)} u_i(x) \le C \min_{x \in B_{2r}(x_i) \setminus B_{r/2}(x_i)} u_i(x). \tag{3.6}$$

Proof. We define
$$v_i(x) := r^{\frac{N-2-2a}{2}} u_i(rx + x_i)$$
. Then v_i satisfies in $B_3(0)$

$$0 < v_i(x) < \bar{C}|x|^{-\frac{N-2-2a}{2}}, \tag{3.7}$$

and

$$-\operatorname{div}(|x+r^{-1}x_i|^{-2a}\nabla v_i(x)) = -r^{\frac{N-2-2a}{2}+2+2a}\operatorname{div}(|\cdot|^{-2a}\nabla u_i(\cdot))(rx+x_i)$$
$$= K_i(rx+x_i)|x+r^{-1}x_i|^{-bp}v_i^{p-1}(x),$$

since

$$\frac{N-2-2a}{2}+2+2a-bp-(p-1)\frac{N-2-2a}{2}=N-p\Big(\frac{N-2(1+a-b)}{2}\Big)=0.$$

To prove the claim we use a weighted version of Harnack's inequality applied to v_i and

$$-\operatorname{div}(|x+r^{-1}x_i|^{-2a}\nabla v_i(x)) - W_i(x)v_i(x) = 0 \quad \text{in } B_{9/4}(0) \setminus B_{1/4}(0),$$

where $W_i(x) := K_i(rx + x_i) |x + r^{-1}x_i|^{-bp} v_i^{p-2}(x)$. From (3.7) the function v_i is uniformly bounded in $B_{9/4}(0) \setminus B_{1/4}(0)$ and the claim follows from Harnack's inequality in [11]. We mention that $|\cdot + r^{-1}x_i|^{-bp}$ belongs to the class of potentials required in [11] (see Lemma A.3 of the Appendix).

Proposition 3.7. Let $\{K_i\}_i$ satisfy (3.1), $\{u_i\}_i$ satisfy (P_i) and $x_i \to 0$ be an isolated blow up point. Then for any $R_i \to \infty$, $\varepsilon_i \to 0^+$, we have, after passing to a subsequence that:

$$R_i u_i(x_i)^{-\frac{2}{N-2-2a}} \to 0 \text{ as } i \to \infty,$$
 (3.8)

$$||u_i(x_i)^{-1}u_i(u_i(x_i)^{-\frac{2}{N-2-2a}}\cdot +x_i) - z_{K(0)}^{a,b}(\cdot)||_{C^{0,\gamma}(B_{2R_i}(0))} \le \varepsilon_i,$$
(3.9)

$$||u_i(x_i)^{-1}u_i(u_i(x_i)^{-\frac{2}{N-2-2a}}\cdot +x_i) - z_{K(0)}^{a,b}(\cdot)||_{H_a^1(B_{2R_i}(0))} \le \varepsilon_i,$$
(3.10)

where $H_a^1(B_{2R_i}(0))$ is the weighted Sobolev space $\{u : |x|^{-a}|\nabla u|, |x|^{-a}u \in L^2(B_{2R_i}(0))\}.$

Proof. Consider

$$\varphi_i(x) = u_i(x_i)^{-1} u_i(u_i(x_i)^{-\frac{2}{N-2-2a}}x + x_i), \quad |x| < \bar{r}u_i(x_i)^{\frac{2}{N-2-2a}}.$$

We have

$$-\operatorname{div}\left(\left|x+u_{i}(x_{i})^{\frac{2}{N-2-2a}}x_{i}\right|^{-2a}\nabla\varphi_{i}(x)\right)$$

$$=K_{i}\left(u_{i}(x_{i})^{-\frac{2}{N-2-2a}}x+x_{i}\right)\left|x+u_{i}(x_{i})^{\frac{2}{N-2-2a}}x_{i}\right|^{-bp}\varphi_{i}^{p-1}(x).$$

Moreover, from the definition of isolated blow-up

$$\varphi_i(0) = 1, \quad 0 < \varphi_i(x) \le \bar{C}|x|^{-\frac{N-2-2a}{2}} \quad \text{for } |x| < \bar{r} \, u_i(x_i)^{\frac{2}{N-2-2a}}.$$
 (3.11)

Lemma 3.6 shows that for large i and for any 0 < r < 1 we have

$$\max_{\partial B_r} \varphi_i \le C \min_{\partial B_r} \varphi_i, \tag{3.12}$$

where $C = C(N, \bar{C}, A_1)$. Since

$$-\operatorname{div}\left(\left|x+u_i(x_i)^{\frac{2}{N-2-2a}}x_i\right|^{-2a}\nabla\varphi_i(x)\right)\geq 0 \text{ and } \varphi_i(0)=1$$

we may use (3.12) and the minimum principle for $|x|^{-2a}$ -superharmonic functions in [12, Thm 7.12] to deduce that

$$\varphi_i(x) \le C \quad \text{in } B_1(0). \tag{3.13}$$

From (3.11), (3.13) and regularity results in [10] the functions φ_i are uniformly bounded in $C^{0,\gamma}_{loc}(\mathbb{R}^N)$ and $H^1_{a,loc}(\mathbb{R}^N)$ for some $\gamma \in (0,1)$. Since point-concentration is ruled out by the L^{∞} -bound, there is some positive function $\varphi \in C^{0,\gamma'}_{loc}(\mathbb{R}^N) \cap H^1_{a,loc}(\mathbb{R}^N)$ and some $\gamma' \in (0,1)$ such that

$$\varphi_i \to \varphi \text{ in } C_{loc}^{0,\gamma'}(\mathbb{R}^N) \cap H_{a,loc}^1(\mathbb{R}^N),$$

$$-\operatorname{div}(|x|^{-2a}\nabla\varphi) = \lim_{i \to \infty} K_i(x_i) \frac{\varphi^{p-1}}{|x|^{bp}}$$

$$\varphi(0) = 1.$$

By uniqueness of the solutions proved in [8] we deduce that $\varphi = z_{K(0)}^{a,b}$.

Remark 3.8. From the proof of Proposition 3.7 one can easily check that if $x_i \to 0$ is an isolated blow-up point then there exists a positive constant C, depending on $\lim_{i\to\infty} K_i(x_i)$ and a, b, and N, such that the function \bar{w}_i defined in (3.3) is strictly decreasing for $Cu_i(x_i)^{-2/(N-2-2a)} \le r \le r_i = R_i u_i(x_i)^{-\frac{2}{N-2-2a}}$ (see Lemma A.2 of the Appendix).

Lemma 3.9. Let $x_i \to 0$ be a blow-up point. Then for any x such that $|x - x_i| \ge r_i = R_i u_i(x_i)^{-\frac{2}{N-2-2a}}$ we have

$$|x - x_i| = |x|(1 + o(1)).$$

In particular, $x_i \in B_{r_i}(0)$.

Proof. The assumption $\left|x_iu_i(x_i)^{\frac{2}{N-2-2a}}\right| = o(1)$ implies that $|x_i| = r_i o(1)$. Hence

$$|x| \ge |x - x_i| - |x_i| \ge r_i - r_i o(1) = r_i (1 + o(1)).$$

Therefore

$$\frac{|x_i|}{|x|} \le \frac{r_i o(1)}{r_i(1+o(1))} = o(1)$$

and hence

$$\left| \frac{x - x_i}{|x|} \right| = \left| \frac{x}{|x|} - \frac{x_i}{|x|} \right| \xrightarrow[i \to +\infty]{} 1$$

thus proving the lemma.

Proposition 3.10. Suppose $\{K_i\}_i \subset C^1_{loc}(B_2)$ satisfy (3.1) with $\Omega = B_2$ and

$$|\nabla K_i(x)| \le A_2 \text{ for all } x \in B_2. \tag{3.14}$$

Let u_i satisfy (P_i) with $\Omega = B_2$ and suppose that $x_i \to 0$ is an isolated simple blow-up point such that

$$|x - x_i|^{\frac{N-2-2a}{2}} u_i(x) \le A_3 \text{ for all } x \in B_2.$$
 (3.15)

Then there exists $C = C(N, a, b, A_1, A_2, A_3, \bar{C}, \rho) > 0$ such that

$$u_i(x) \le C u_i(x_i)^{-1} |x - x_i|^{2+2a-N} \quad \text{for all } |x - x_i| \le 1.$$
 (3.16)

Furthermore there exists a Hölder continuous function B(x) (smooth outside 0) satisfying div $(|x|^{-2a}\nabla B) = 0$ in B_1 , such that, after passing to a subsequence,

$$u_i(x_i)u_i(x) \to h(x) = A|x|^{2+2a-N} + B(x) \quad in \ C^2_{loc}(B_1 \setminus \{0\})$$

where

$$A = \frac{K(0)}{(N-2-2a)|\mathbb{S}^N|} \int_{\mathbb{R}^N} \frac{\left(z_{K(0)}^{a,b}\right)^{p-1}}{|x|^{bp}} dx.$$

Lemma 3.11. Under the assumption of Proposition 3.10 without (3.14) there exist a positive $\delta_i = O\left(R_i^{\frac{-2(1+a-b)(N-2-2a)}{N-2(1+a-b)}}\right)$ and $C = C(N, a, b, A_1, A_2, \bar{C}, \rho) > 0$ such that

$$u_i(x) \le C u_i(x_i)^{-\lambda_i} |x - x_i|^{2+2a-N+\delta_i} \quad \text{for all } r_i \le |x - x_i| \le 1,$$
 (3.17)

where $\lambda_i := 1 - 2\delta_i / (N - 2 - 2a)$.

Proof. It follows from Proposition 3.7 that

$$u_i(x) \le cu_i(x_i)R_i^{2a+2-N} \text{ for } |x - x_i| = r_i.$$
 (3.18)

From the definition of isolated simple blow-up in (3.4) there exists $\rho > 0$ such that

$$r^{\frac{N-2-2a}{2}}\bar{u}_i$$
 is strictly decreasing in $r_i < r < \rho$. (3.19)

From (3.18), (3.19) and Lemma 3.6 it follows that for all $r_i \leq |x - x_i| < \rho$

$$|x - x_i|^{\frac{N - 2 - 2a}{2}} u_i(x) \le c|x - x_i|^{\frac{N - 2 - 2a}{2}} \bar{u}_i(|x - x_i|) \le cr_i^{\frac{N - 2 - 2a}{2}} \bar{u}_i(r_i) \le cR_i^{\frac{2 + 2a - N}{2}}$$

Therefore for $r_i < |x - x_i| < \rho$

$$u_i(x)^{\frac{4}{N-2-2a}} \le cR_i^{-2}|x-x_i|^{-2}. (3.20)$$

Consider the following degenerated elliptic operator

$$\mathcal{L}_i \varphi = \operatorname{div} (|x|^{-2a} \nabla \varphi) + K_i(x)|x|^{-bp} u_i(x)^{p-2} \varphi.$$

Clearly $u_i > 0$ solves $\mathcal{L}_i u_i = 0$. Hence $-\mathcal{L}_i$ is nonnegative and the maximum principle holds for \mathcal{L}_i . Direct computations show for any $0 \le \mu \le N - 2 - 2a$

$$\operatorname{div}(|x|^{-2a}\nabla(|x|^{-\mu})) = -\mu(N - 2 - 2a - \mu)|x|^{-2-2a-\mu} \text{ for } x \neq 0.$$
(3.21)

From (3.20), (3.21) and Lemma 3.9 we infer

$$\mathcal{L}_i(|x|^{-\mu}) \le \left(-\mu(N-2-2a-\mu) + cR_i^{\frac{-2(1+a-b)(N-2-2a)}{N-2(1+a-b)}}\right)|x|^{-2-2a-\mu}.$$

We can choose $\delta_i = O(R_i^{\frac{-2(1+a-b)(N-2-2a)}{N-2(1+a-b)}})$ such that

$$\max(\mathcal{L}_i(|x|^{-\delta_i}), \mathcal{L}_i(|x|^{2a+2-N+\delta_i})) \le 0.$$
(3.22)

Set $M_i := 2 \max_{\partial B_o(x_i)} u_i$, $\lambda_i = 1 - 2\delta_i/(N - 2 - 2a)$, and

$$\varphi_i(x) := M_i \rho^{\delta_i} |x|^{-\delta_i} + A u_i(x_i)^{-\lambda_i} |x|^{2+2a-N+\delta_i} \text{ for } r_i \le |x - x_i| \le \rho,$$
 (3.23)

where A will be chosen later. We will apply the maximum principle to compare φ_i and u_i . By the choice of M_i and Lemma 3.9 we infer for i sufficiently large

$$\varphi_i(x) \ge \frac{M_i}{2} \ge u_i(x) \text{ for } |x - x_i| = \rho.$$

On the inner boundary $|x - x_i| = r_i$ we have by (3.18) and for A large enough

$$\varphi_i(x) \ge A(1+o(1))u_i(x_i)^{-\lambda_i} r_i^{2+2a-N+\delta_i} = A(1+o(1))R_i^{2+2a-N+\delta_i} u_i(x_i)^{2-\frac{2\delta_i}{N-2-2a}-\lambda_i}$$

$$\ge A(1+o(1))R_i^{2+2a-N} u_i(x_i) \ge u_i(x).$$

Now we obtain from the maximum principle in the annulus $r_i \leq |x - x_i| \leq \rho$ that

$$u_i(x) \le \varphi_i(x) \text{ for all } r_i \le |x - x_i| \le \rho.$$
 (3.24)

It follows from (3.19), (3.24) and Lemma 3.6 that for any $r_i \leq \theta \leq \rho$ we have

$$\rho^{\frac{N-2-2a}{2}} M_i \le c \rho^{\frac{N-2-2a}{2}} \bar{u}_i(\rho) \le c \theta^{\frac{N-2-2a}{2}} \bar{u}_i(\theta)$$

$$\le c \theta^{\frac{N-2-2a}{2}} \left(M_i \rho^{\delta_i} \theta^{-\delta_i} + A u_i(x_i)^{-\lambda_i} \theta^{2+2a-N+\delta_i} \right).$$

Choose $\theta = \theta(\rho, c)$ such that

$$c\theta^{\frac{N-2-2a}{2}}\rho^{\delta_i}\theta^{-\delta_i} < \frac{1}{2}\rho^{\frac{N-2-2a}{2}}.$$

Then we have

$$M_i \le c u_i(x_i)^{-\lambda_i},$$

which, in view of (3.24) and the definition of φ_i in (3.23), proves (3.17) for $r_i \leq |x - x_i| \leq \rho$. The Harnack inequality in Lemma 3.6 allows to extend (3.17) for $r_i \leq |x - x_i| \leq 1$.

Proof of Proposition 3.10. The inequality of Proposition 3.10 for $|x - x_i| \le r_i$ follows immediately for Proposition 3.7. Let $e \in \mathbb{R}^N$, |e| = 1 and consider the function

$$v_i(x) = u_i(x_i + e)^{-1}u_i(x).$$

Clearly v_i satisfies the equation

$$-\operatorname{div}(|x|^{-2a}\nabla v_i) = u_i(x_i + e)^{p-2}K_i(x)\frac{v_i^{p-1}}{|x|^{bp}} \quad \text{in } B_{4/3}.$$
 (3.25)

Applying the Harnack inequality of Lemma 3.6 on v_i , we obtain that v_i is bounded on any compact set not containing 0. By standard elliptic theories, it follows that, up to a subsequence, $\{v_i\}_i$ converges in $C^2_{loc}(B_2 \setminus \{0\})$ to some positive function $v \in C^2(B_2 \setminus \{0\})$. Since $u_i(x_i + e) \to 0$ due to Lemma 3.11, we can pass to the limit in (3.25) thus obtaining

$$-\operatorname{div}(|x|^{-2a}\nabla v) = 0 \quad \text{in } B_2 \setminus \{0\}.$$

We claim that v has a singularity at 0. Indeed, from Lemma 3.6 and standard elliptic theories, for any 0 < r < 2 we have that

$$\lim_{i \to \infty} u_i(x_i + e)^{-1} r^{\frac{N-2-2a}{2}} \bar{u}_i(r) = r^{\frac{N-2-2a}{2}} \bar{v}(r)$$

where $\bar{v}(r) = \frac{1}{|\partial B_r|} \int_{\partial B_r} v$. Since the blow-up is simple isolated, $r^{\frac{N-2-2a}{2}} \bar{v}(r)$ is non-increasing for $0 < r < \rho$ and this would be impossible in the case in which v is regular at 0. It follows that v is singular at 0 and hence from the Bôcher-type Theorem proved in the Appendix (see Theorem A.4)

$$v(x) = a_1 |x|^{2+2a-N} + b_1(x)$$

where $a_1 > 0$ is some positive constant and $b_1(x)$ is some Hölder continuous function in B_2 such that $-\text{div}(|x|^{-2a}\nabla b_1) = 0$.

Let us first establish the inequality in Proposition 3.10 for $|x - x_i| = 1$. Namely we prove that

$$u_i(x_i + e) \le c u_i(x_i)^{-1}.$$
 (3.26)

By contradiction, suppose that (3.26) fails. Then along a subsequence, we have

$$\lim_{i \to \infty} u_i(x_i + e)u_i(x_i) = \infty. \tag{3.27}$$

Multiplying (P_i) by $u_i(x_i + e)^{-1}$ and integrating on B_1 , we get

$$-\int_{\partial B_1} |x|^{-2a} \frac{\partial v_i}{\partial \nu} = \int_{B_1} K_i(x) \frac{u_i^{p-1}}{|x|^{bp}} u_i(x_i + e)^{-1} dx.$$
 (3.28)

From the properties of b_1 and the convergence of v_i to v, we know that

$$\lim_{i \to \infty} \int_{\partial B_1} |x|^{-2a} \frac{\partial v_i}{\partial \nu} = \int_{\partial B_1} |x|^{-2a} \frac{\partial}{\partial \nu} \left(a_1 |x|^{2+2a-N} + b_1(x) \right)$$
$$= -a_1 (N - 2 - 2a) |\mathbb{S}^N| < 0. \tag{3.29}$$

From Proposition 3.7 there holds

$$\int_{|x-x_i| < r_i} \frac{K_i(x)u_i^{p-1}}{|x|^{bp}} dx \le C u_i(x_i)^{-1}$$
(3.30)

while from Lemma 3.11 and Lemma 3.9 we have that

$$\int_{r_{i} \leq |x-x_{i}| \leq 1} \frac{K_{i}(x)u_{i}^{p-1}}{|x|^{bp}} dx \leq c \int_{r_{i} \leq |x-x_{i}| \leq 1} u_{i}(x_{i})^{-\lambda_{i}(p-1)} \frac{|x-x_{i}|^{(2+2a-N+\delta_{i})(p-1)}}{|x|^{bp}} \\
\leq c u_{i}(x_{i})^{-\lambda_{i}(p-1)} r_{i}^{(2+2a-N+\delta_{i})(p-1)-bp+N} \\
= c u_{i}(x_{i})^{-1} R_{i}^{(2+2a-N+\delta_{i})(p-1)-bp+N} = o(1)u_{i}(x_{i})^{-1}. \quad (3.31)$$

Finally, (3.27), (3.29), (3.30), and (3.31) lead to a contradiction. Since we have established (3.26), the inequality in Proposition 3.10 has been established for $\rho \leq |x - x_i| \leq 1$ (due to Lemma 3.6). It remains to treat the case $r_i \leq |x - x_i| \leq \rho$. To this aim we scale the problem to reduce it to the case $|x - x_i| = 1$. By contradiction, suppose that there exists a subsequence \tilde{x}_i satisfying $r_i \leq |\tilde{x}_i - x_i| \leq \rho$ and

$$\lim_{i \to +\infty} u_i(\tilde{x}_i) u_i(x_i) |\tilde{x}_i - x_i|^{N - 2 - 2a} = +\infty.$$
(3.32)

Set $\tilde{r}_i = |\tilde{x}_i - x_i|$ and $\tilde{u}_i(x) = \tilde{r}_i^{\frac{N-2-2a}{2}} u_i(\tilde{r}_i x)$. We have that \tilde{u}_i satisfies the equation

$$-\operatorname{div}(|x|^{-2a}\nabla \tilde{u}_i(x)) = K_i(\tilde{r}_i x) \frac{\tilde{u}_i(x)^{p-1}}{|x|^{bp}}.$$

Since $|x_i| = r_i o(1)$ and $\tilde{r}_i \geq r_i$ we have that $x_i/\tilde{r}_i \to 0$. We have that x_i/\tilde{r}_i is an isolated simple blow-up point for $\{\tilde{u}_i\}_i$. From (3.26), we have that

$$\tilde{u}_i \left(\frac{x_i}{\tilde{r}_i} + \frac{\tilde{x}_i - x_i}{\tilde{r}_i} \right) \le c\tilde{u}_i \left(\frac{x_i}{\tilde{r}_i} \right)^{-1}$$

which gives

$$\tilde{r}_i^{N-2-2a} u_i(\tilde{x}_i) u_i(x_i) \le c.$$

The above estimate and (3.32) give rise to a contradiction. The inequality in Proposition 3.10 is thereby established.

We compute A by multiplying (P_i) by $u_i(x_i)$ and integrating over B_1 . From the divergence theorem,

$$-\int_{\partial B_1} |x|^{-2a} \frac{\partial}{\partial \nu} \left(u_i(x_i) u_i \right) = u_i(x_i) \int_{B_1} K_i(x) \frac{u_i^{p-1}}{|x|^{bp}} dx. \tag{3.33}$$

Let $w_i(x) = u_i(x_i)u(x)$. We have that w_i satisfies

$$-\operatorname{div}(|x|^{-2a}\nabla w_i) = u_i(x_i)^{2-p}K_i(x)\frac{w_i^{p-1}}{|x|^{bp}}.$$

Moreover the inequality (3.16) implies that w_i is bounded on any compact set not containing 0. Hence $w_i \to w$ in $C^2_{loc}(\mathbb{R}^N \setminus \{0\})$ where w satisfies

$$-\mathrm{div}\left(|x|^{-2a}\nabla w\right) = 0 \quad \text{in } \mathbb{R}^N \setminus \{0\}.$$

From the Bôcher-type theorem proved in the Appendix (Theorem A.4), we find that $w(x) = A|x|^{2+2a-N} + B(x)$ where B(x) is Hölder continuous in \mathbb{R}^N and satisfies $-\text{div}\left(|x|^{-2a}\nabla B\right) = 0$ in \mathbb{R}^N . Hence

$$\lim_{i \to \infty} \int_{\partial B_1} |x|^{-2a} \frac{\partial}{\partial \nu} \left(u_i(x_i) u_i \right) = \int_{\partial B_1} |x|^{-2a} \frac{\partial}{\partial \nu} \left(A|x|^{2+2a-N} + B(x) \right)$$
$$= A(2 + 2a - N) |\mathbb{S}^N|. \tag{3.34}$$

On the other hand from (3.31) and Proposition 3.7

$$u_{i}(x_{i}) \int_{B_{1}} K_{i}(x) \frac{u_{i}^{p-1}}{|x|^{bp}} dx = u_{i}(x_{i}) \int_{|x-x_{i}| \leq r_{i}} K_{i}(x) \frac{u_{i}^{p-1}}{|x|^{bp}} dx + o(1)$$

$$= K_{i}(0) \int_{|y| \leq R_{i}} \frac{\left(z_{K(0)}^{a,b}\right)^{p-1}}{|y+u_{i}(x_{i})^{\frac{2}{N-2-2a}} x_{i}|^{bp}} dy + o(1)$$

$$= K(0) \int_{\mathbb{R}^{N}} \frac{\left(z_{K(0)}^{a,b}\right)^{p-1}}{|y|^{bp}} dy + o(1). \tag{3.35}$$

By (3.33), (3.34), and (3.35) the value of A is computed and Proposition 3.10 is thereby established.

Using Proposition 3.7 and the upper bound in Proposition 3.10 it is easy to see that the following estimates hold.

Lemma 3.12. Under the assumptions of Proposition 3.10 we have for $s = s_1 + s_2$

$$\int_{|x-x_i| \le r_i} |x-x_i|^{s_1} |x|^{s_2} |x|^{-bp} u_i(x)^p
= \begin{cases} u_i(x_i)^{\frac{-2s}{N-2-2a}} \left(o(1) + \int_{\mathbb{R}^N} |x|^{s-bp} z_{1,K_i(x_i)}^p \right) & \text{if } -N + bp < s < N - bp, \\ O(u_i(x_i)^{-p} \log u_i(x_i)) & \text{if } s = N - bp, \\ o(u_i(x_i)^{-p}) & \text{if } s > N - bp. \end{cases}
\int_{r_i \le |x-x_i| \le 1} |x-x_i|^{s_1} |x|^{s_2} |x|^{-bp} u_i(x)^p
\le \begin{cases} o(u_i(x_i)^{\frac{-2s}{N-2-2a}}) & \text{if } -N + bp < s < N - bp, \\ O(u_i(x_i)^{-p} \log u_i(x_i)) & \text{if } s = N - bp, \\ O(u_i(x_i)^{-p}) & \text{if } s > N - bp. \end{cases}$$

Proposition 3.13. Let $a \in \left[\frac{N-4}{2}, \frac{N-2}{2}\right]$. Suppose that $\{K_i\}_i$ satisfy (3.1) with $\Omega = B_2 \subset \mathbb{R}^N$ for some positive constant $A_1, \nabla K_i(0) = 0$, $\{K_i\}_i$ converge to K in $C^2(B_2)$, $\{u_i\}_i$ satisfy (P_i) with $\Omega = B_2(0)$ and $x_i \to 0$ is an isolated blow-up point with (3.15) for some positive constant A_3 . Then it has to be an isolated simple blow-up point.

Proof. From Remark 3.8 there exists a constant c such that $r^{\frac{N-2-2a}{2}}\bar{u}_i(r)$ is decreasing in $cu_i(x_i)^{-2/(N-2-2a)} \leq r \leq r_i$. Arguing by contradiction, let us suppose that the blow-up is not simple. Hence for any i there exists $\mu_i \geq r_i$, $\mu_i \to 0$, such that μ_i is the first point after r_i in which the function $r^{\frac{N-2-2a}{2}}\bar{u}_i(r)$ becomes increasing. In particular μ_i is a critical point of such a function. Set

$$\xi_i(x) = \mu_i^{\frac{N-2-2a}{2}} u_i(\mu_i x), \text{ for } |\mu_i x - x_i| \le 1.$$

Clearly ξ_i satisfies

$$-\text{div}(|x|^{-2a}\nabla\xi_i) = K_i(\mu_i x) \frac{\xi_i^{p-1}}{|x|^{bp}}, \quad \text{for } |\mu_i x - x_i| \le 1.$$

Note that $\mu_i^{-1} \leq R_i^{-1} u_i(x_i)^{\frac{2}{N-2-2a}} \leq u_i(x_i)^{\frac{2}{N-2-2a}}$ and hence

$$\mu_i^{-1}|x_i| \le u_i(x_i)^{\frac{2}{N-2-2a}}|x_i| \to 0$$

in view of (3.2). Moreover (3.15) implies that

$$|x - \mu_i^{-1} x_i|^{\frac{N-2-2a}{2}} \xi_i(x) \le \text{const} \quad \text{for } |x - \mu_i^{-1} x_i| \le 1/\mu_i.$$

It is also easy to verify that

$$\lim_{i \to \infty} \xi_i(\mu_i^{-1} x_i) = \lim_{i \to \infty} \mu_i^{\frac{N-2-2a}{2}} u_i(x_i) = \infty.$$

On the other hand

$$\int_{\partial B_r(\mu_i^{-1}x_i)} \xi_i = \mu_i^{\frac{N-2-2a}{2}} \int_{\partial B_{r\mu_i}(x_i)} u_i = \mu_i^{\frac{N-2-2a}{2}} \bar{u}_i(\mu_i r).$$

Hence

$$r^{\frac{N-2-2a}{2}}\bar{\xi}_i(r) = \bar{w}_i(\mu_i r)$$

and the function $r^{\frac{N-2-2a}{2}}\bar{\xi}_i(r)$ is decreasing in $c\xi_i(\mu_i^{-1}x_i)^{-\frac{2}{N-2-2a}} < r < 1$ so that 0 is an isolated simple blow-up point for $\{\xi_i\}$. From Proposition 3.10 we have that

$$\xi_i(\mu_i^{-1}x_i)\xi_i(x) \to h(x) = A|x|^{2+2a-N} + B(x) \text{ in } C^2_{loc}(\mathbb{R}^N \setminus \{0\})$$

where B(x) is Hölder continuous in \mathbb{R}^N and satisfies $-\text{div}(|x|^{-2a}\nabla B) = 0$ in \mathbb{R}^N . Since $h \geq 0$, the Harnack inequality implies that B is bounded and from the Liouville Theorem (see [12]) we find that B must be constant. Since

$$\frac{d}{dr}\{h(r)r^{\frac{N-2-2a}{2}}\}|_{r=1} = 0$$

we have that A = B > 0. From the Taylor expansion, (3.2) and the assumption $\nabla K_i(0) = 0$ we find

$$|\nabla K_i(\mu_i^{-1}x_i)| \le \operatorname{const}|\mu_i^{-1}x_i| = o\left(\xi_i(\mu_i^{-1}x_i)^{-\frac{2}{N-2-2a}}\right). \tag{3.36}$$

Using Lemma 3.12, (3.36), and the assumption on a, we have

$$\int_{B_{\sigma}(\mu_{i}^{-1}x_{i})} \mu_{i} \nabla K_{i}(\mu_{i}x) \cdot x \frac{\xi_{i}^{p}}{|x|^{bp}} = \int_{B_{\sigma}(\mu_{i}^{-1}x_{i})} \mu_{i} \left[\nabla K_{i}(\mu_{i}^{-1}x_{i}) + O(\mu_{i}x - \mu_{i}^{-1}x_{i}) \right] \cdot x \frac{\xi_{i}^{p}}{|x|^{bp}}$$

$$= \int_{B_{\sigma}(\mu_{i}^{-1}x_{i})} \mu_{i} \left[\nabla K_{i}(\mu_{i}^{-1}x_{i}) + O(|x| + |x - \mu_{i}^{-1}x_{i}|) \right] \cdot x \frac{\xi_{i}^{p}}{|x|^{bp}}$$

$$= \begin{cases} \mu_{i}O\left(\xi_{i}(\mu_{i}^{-1}x_{i})^{-\frac{4}{N-2-2a}}\right) & \text{if } p > \frac{4}{N-2-2a} \\ \mu_{i}O\left(\xi_{i}(\mu_{i}^{-1}x_{i})^{-p}\log u_{i}(x_{i})\right) & \text{if } p = \frac{4}{N-2-2a} \\ \mu_{i}O\left(\xi_{i}(\mu_{i}^{-1}x_{i})^{-p}\right) & \text{if } p < \frac{4}{N-2-2a} \end{cases} = o(\xi_{i}(\mu_{i}^{-1}x_{i})^{-2}).$$

Hence, from Corollary 2.2 and (3.16), we have that for any $0 < \sigma < 1$

$$\int_{\partial B_{\sigma}(0)} B(\sigma, x, \xi_{i}, \nabla \xi_{i})
= \frac{1}{p} \int_{B_{\sigma}(0)} \mu_{i} \nabla K_{i}(\mu_{i}x) \cdot x \frac{\xi_{i}^{p}}{|x|^{bp}} - \frac{\sigma}{p} \int_{\partial B_{\sigma}(0)} K_{i}(\mu_{i}x) \frac{\xi_{i}^{p}}{|x|^{bp}}
= \frac{1}{p} \int_{B_{\sigma}(\mu_{i}^{-1}x_{i})} \mu_{i} \nabla K_{i}(\mu_{i}x) \cdot x \frac{\xi_{i}^{p}}{|x|^{bp}} + O(\xi_{i}(\mu_{i}^{-1}x_{i})^{-p})
= o(\xi_{i}(\mu_{i}^{-1}x_{i})^{-2}).$$

Multiplying by $\xi_i(\mu_i^{-1}x_i)^2$ and letting $i \to \infty$ we find that

$$\int_{\partial B_{\sigma}} B(\sigma, x, h, \nabla h) = 0.$$

On the other hand Proposition 2.4 implies that for small σ the above integral is strictly negative, thus giving rise to a contradiction. The proof is now complete. \Box

4. A-PRIORI ESTIMATES

To prove the a-priori estimates we first locate the possible blow-up points as in [15]. To this end we use the Kelvin transform defined in (3.5). We recall that if u solves (1.6) then $\tilde{u} = |x|^{-(N-2-2a)}u(x/|x|^2)$ solves (1.6) with K replaced by $\tilde{K}(x) = K(x/|x|^2)$. Since weak solutions to (1.6) are Hölder continuous (see [10]) we infer that

$$\lim_{|x| \to \infty} |x|^{N-2-2a} u(x) \text{ exists.}$$
 (4.1)

Let us define $\omega_a(x) := (1 + |x|^{N-2-2a})^{-1}$.

Lemma 4.1. Suppose $a \ge 0$, $2 , and <math>K \in C^2(\mathbb{R}^N)$ satisfies (1.11) and for some positive constants A_1 , A_2 condition (1.13) and

$$\|\nabla K\|_{L^{\infty}(B_2(0))} + \|\nabla \tilde{K}\|_{L^{\infty}(B_2(0))} \le A_2. \tag{4.2}$$

Then for any $\varepsilon \in (0,1)$, R > 1, there exists $C_0 = C_0(\varepsilon, R, N, a, b, A_1, A_2) > 0$, such that if u is a solution of (1.6) and $\mathcal{K} = \{q_1, \ldots, q_k\} \subset \mathbb{R}^N \cup \{\infty\}$ with

$$\begin{cases}
\max_{x \in \mathbb{R}^{N} \cup \{\infty\}} \frac{u(x)}{\omega_{a}(x)} dist(x, \mathcal{K})^{\frac{N-2-2a}{2}} > C_{0}, \\
u(q_{i})|q_{i}|^{\frac{2}{N-2-2a}} < \varepsilon, \text{ and for all } 1 \leq i \leq k \\
\max_{x \in \mathbb{R}^{N} \cup \{\infty\}} \frac{u(x)}{\omega_{a}(x)} dist(x, \{q_{1}, \dots, q_{i-1}\})^{\frac{N-2-2a}{2}} \leq \frac{u(q_{i})}{\omega_{a}(q_{i})} dist(q_{i}, \{q_{1}, \dots, q_{i-1}\})^{\frac{N-2-2a}{2}},
\end{cases} (4.3)$$

then there exists $q^* \notin \mathcal{K}$ such that q^* is a maximum point of (u/ω_a) dist $(\cdot, \mathcal{K})^{\frac{N-2-2a}{2}}$ and

(A) if
$$|q^*| \le 1$$

$$\left\| \frac{u(u(q^*)^{-\frac{2}{N-2-2a}}x + q^*)}{u(q^*)} - z_{K(q^*)}^{a,b} \right\|_{C^{0,\gamma}(B_{2R}(0))\cap H_a^1(B_{2R}(0))} + |q^*|u(q^*)^{\frac{2}{N-2-2a}} < \varepsilon \tag{4.4}$$

(B) if
$$|q^*| > 1$$

$$\left\| \frac{\tilde{u}(\tilde{u}(\tilde{q}^*)^{-\frac{2}{N-2-2a}}x + \tilde{q}^*)}{\tilde{u}(\tilde{q}^*)} - z_{K(q^*)}^{a,b} \right\|_{C^{0,\gamma}(B_{2R}(0))\cap H^1(B_{2R}(0))} + |\tilde{q}^*|\tilde{u}(\tilde{q}^*)^{\frac{2}{N-2-2a}} < \varepsilon \tag{4.5}$$

where $\tilde{q}^* = Inv(q^*) := q^*/|q^*|^2$, \tilde{u} is the Kelvin transform of u, $dist(\cdot, \cdot)$ is the distance on $\mathbb{R}^N \cup \{\infty\}$ induced by the standard metric on the sphere through the stereo-graphic projection, and $dist(\cdot, \emptyset) \equiv 1$.

Proof. Fix $\varepsilon > 0$ and R > 1. Let C_0 and C_1 be positive constants depending on $\varepsilon, R, a, b, N, A_1, A_2$ which shall be appropriately chosen in the sequel.

Let $q^* \in \mathbb{R}^N \cup \{\infty\}$ be the maximum point of $u/\omega_a \mathrm{dist}(x,\mathcal{K})^{\frac{N-2-2a}{2}}$. By (4.1) this maximum is achieved. From the first in (4.3) we have that $u(q^*)/\omega_a(q^*)\mathrm{dist}(q^*,\mathcal{K})^{\frac{N-2-2a}{2}} > C_0$. First we treat the case $|q^*| \leq 1$. We claim that there exists a constant C_1 , depending only on ε , R, a, b, N, A_1 , A_2 , such that $|q^*|^{\frac{N-2-2a}{2}}u(q^*) < C_1$. If not, there exist solutions u_i of (1.6) and finite sets $\mathcal{K}_i = \{q_1^i, \ldots, q_{k_i}^i\}$ satisfying (4.3) above, such that for the maximum points q_i^* of $u_i/\omega_a\mathrm{dist}(\cdot,\mathcal{K}_i)^{\frac{N-2-2a}{2}}$ there holds

$$|q_i^*| \le 1 \text{ and } |q_i^*|^{\frac{N-2-2a}{2}} u_i(q_i^*) \to \infty.$$

Consider the functions v_i , defined by

$$v_i(x) := u_i(q_i^*)^{-1} u_i(|q_i^*|^{1 + \frac{(N-2-2a)(2-p)}{4}} u(q_i^*)^{\frac{2-p}{2}} x + q_i^*),$$

which satisfy

$$-\operatorname{div}\left(\left|q_{i}^{*}\right|^{\frac{(N-2-2a)(2-p)}{4}}u_{i}(q_{i}^{*})^{\frac{2-p}{2}}x+\left|q_{i}^{*}\right|^{-1}q_{i}^{*}\right|^{-2a}\nabla v_{i}\right)$$

$$=K\left(\left|q_{i}^{*}\right|^{1+\frac{(N-2-2a)(2-p)}{4}}u_{i}(q_{i}^{*})^{\frac{2-p}{2}}x+q_{i}^{*}\right)\frac{v_{i}^{p-1}}{\left|\left|q_{i}^{*}\right|^{\frac{(N-2-2a)(2-p)}{4}}u_{i}(q_{i}^{*})^{\frac{2-p}{2}}x+\left|q_{i}^{*}\right|^{-1}q_{i}^{*}\right|^{bp}}.$$

Let $p_i = q_{j_i}^i \in \mathcal{K}_i$ be such that $\operatorname{dist}(q_i^*, \mathcal{K}_i) = \operatorname{dist}(q_i^*, p_i)$ and set $\hat{\mathcal{K}}_i = \{q_1^i, \dots, q_{j_i-1}^i\}$. From (4.3) we infer

$$\operatorname{dist}(p_i, \hat{\mathcal{K}}_i) \leq \operatorname{dist}(p_i, q_i^*) + \operatorname{dist}(q_i^*, \hat{\mathcal{K}}_i) \leq 2\operatorname{dist}(q_i^*, \hat{\mathcal{K}}_i),$$

$$u_i(p_i)|p_i|^{\frac{2}{N-2-2a}} < \varepsilon, \quad u_i(q_i^*) \leq u_i(p_i) \left(\frac{\operatorname{dist}(p_i, \hat{\mathcal{K}}_i)}{\operatorname{dist}(q_i^*, \hat{\mathcal{K}}_i)}\right)^{\frac{N-2-2a}{2}} \frac{\omega_a(q_i^*)}{\omega_a(p_i)},$$

and finally that if $|p_i| \leq 2$

$$\varepsilon \left(\frac{|q_i^*|}{|p_i|} \right)^{\frac{2}{N-2-2a}} > u_i(p_i) |q_i^*|^{\frac{2}{N-2-2a}} \ge u_i(q_i^*) |q_i^*|^{\frac{2}{N-2-2a}} \left(\frac{\operatorname{dist}(q_i^*, \hat{\mathcal{K}}_i)}{\operatorname{dist}(p_i, \hat{\mathcal{K}}_i)} \right)^{\frac{N-2-2a}{2}} \frac{\omega_a(p_i)}{\omega_a(q_i^*)} \\
\ge \operatorname{const} u_i(q_i^*) |q_i^*|^{\frac{2}{N-2-2a}} \to \infty.$$

Consequently there exists a positive constant c such that $|q_i^*|^{-1} \operatorname{dist}(q_i^*, \mathcal{K}_i) > c$, which is trivial in the case $|p_i| > 2$ and follows from the above estimate if $|p_i| \leq 2$. Thus

$$|q_i^*|^{-1-\frac{(N-2-2a)(2-p)}{4}}u_i(q_i^*)^{-\frac{2-p}{2}}\operatorname{dist}(q_i^*,\mathcal{K}_i) \ge \left(u_i(q_i^*)|q_i^*|^{\frac{N-2-2a}{2}}\right)^{\frac{p-2}{2}}|q_i^*|^{-1}\operatorname{dist}(q_i^*,\mathcal{K}_i)$$

$$\ge c\left(u_i(q_i^*)|q_i^*|^{\frac{N-2-2a}{2}}\right)^{\frac{p-2}{2}} \to \infty.$$

For $|x| \leq \frac{c}{4} |q_i^*|^{-\frac{(N-2-2a)(2-p)}{4}} u_i(q_i^*)^{-\frac{2-p}{2}}$ we have that

$$v_{i}(x) = u_{i}(q_{i}^{*})^{-1}u_{i}(|q_{i}^{*}|^{1+\frac{(N-2-2a)(2-p)}{4}}u(q_{i}^{*})^{\frac{2-p}{2}}x + q_{i}^{*})$$

$$\leq u_{i}(q_{i}^{*})^{-1}\omega_{a}(|q_{i}^{*}|^{1+\frac{(N-2-2a)(2-p)}{4}}u(q_{i}^{*})^{\frac{2-p}{2}}x + q_{i}^{*})\frac{u_{i}(q_{i}^{*})}{\omega_{a}(q_{i}^{*})}$$

$$\leq c \sup_{|x| \leq \frac{c}{2}}\omega_{a}(x + q_{i}^{*})\omega_{a}(q_{i}^{*})^{-1} \leq \text{const.}$$

Up to a subsequence, we have that $q_i^* \to \bar{q}_1$ and v_i converges in $C^2_{loc}(\mathbb{R}^N)$ to a solution of

$$-\Delta w = K(\bar{q}_1)w^{p-1} \text{ in } \mathbb{R}^N, \quad w(0) = 1.$$

This is impossible since the above equation has no solution for $p < 2^*$. The claim is thereby proved. The function v_1 , defined by

$$v_1(x) := u(q^*)^{-1} u(u(q^*)^{-\frac{2}{N-2-2a}}x + q^*),$$

satisfies

$$-\operatorname{div}\left(|x+u(q^*)^{\frac{2}{N-2-2a}}q^*|^{-2a}\nabla v_1\right) = K\left(u(q^*)^{-\frac{2}{N-2-2a}}x+q^*\right) \frac{v_1^{p-1}}{|x+u(q^*)^{\frac{2}{N-2-2a}}q^*|^{bp}},$$

$$v_1(0) = 1.$$

For $|x| \leq C_0^{-\frac{1}{N-2-2a}} u(q^*)^{\frac{2}{N-2-2a}} \text{dist}(q^*, \mathcal{K})$ we obtain

$$\operatorname{dist}(u(q^*)^{-\frac{2}{N-2-2a}}x + q^*, \mathcal{K}) \ge \operatorname{dist}(q^*, \mathcal{K}) - cC_0^{-\frac{1}{N-2-2a}}\operatorname{dist}(q^*, \mathcal{K})$$
$$\ge \operatorname{dist}(q^*, \mathcal{K})\left(1 - cC_0^{-\frac{1}{N-2-2a}}\right)$$

and

$$v_{1}(x) = u(q^{*})^{-1}u\left(u(q^{*})^{-\frac{2}{N-2-2a}}x + q^{*}\right)$$

$$\leq u(q^{*})^{-1}\omega_{a}\left(u(q^{*})^{-\frac{2}{N-2-2a}}x + q^{*}\right)\frac{u(q^{*})}{\omega_{a}(q^{*})}\left(\frac{\operatorname{dist}(q^{*},\mathcal{K})}{\operatorname{dist}(u(q^{*})^{-\frac{2}{N-2-2a}}x + q^{*},\mathcal{K})}\right)^{\frac{N-2-2a}{2}}$$

$$\leq \omega_{a}(q^{*})^{-1}\left(1 - cC_{0}^{-\frac{1}{N-2-2a}}\right)^{-\frac{N-2-2a}{2}}.$$

Notice that $|q^*|<\operatorname{const} C_1^{\frac{2}{N-2-2a}}C_0^{-\frac{2}{N-2-2a}}$ and

$$C_0^{-\frac{1}{N-2-2a}}u(q^*)^{\frac{2}{N-2-2a}}\operatorname{dist}(q^*,\mathcal{K}) > \left(\frac{1}{4}C_0\right)^{\frac{1}{N-2-2a}}.$$

Hence for any $\delta > 0$ we may choose C_0 , depending on $a, b, N, \varepsilon, R, A_1, A_2, C_1$, such that

$$\omega_a(q^*)^{-1} \left(1 - C_0^{-\frac{1}{N-2-2a}}\right)^{-\frac{N-2-2a}{2}} \le 1 + \delta$$

and v_1 is $\varepsilon/4$ -close in $C^{0,\gamma}(B_{2R}(0))$ to a solution of

$$-\operatorname{div}(|x+u(q^*)^{\frac{2}{N-2-2a}}q^*|^{-2a}\nabla w) = K(q^*) \frac{w^{p-1}}{|x+u(q^*)^{\frac{2}{N-2-2a}}q^*|^{bp}} \text{ in } \mathbb{R}^N,$$

$$w(0) = 1, \quad 0 < w(x) < 1 + \delta.$$

If we choose δ small enough, depending on ε and R, then it is easy to see that any solution of the above equation is $\varepsilon/4$ -close in $C^{0,\gamma}(B_{2R}(0)) \cap H^1_a(B_{2R}(0))$ to $z_{K(q^*)}^{a,b}$ and $u(q^*)^{\frac{2}{N-2-2a}}|q^*| \leq \varepsilon/2$. This gives estimate (4.4). Case (B) can be reduced to case (A) using the Kelvin transform.

Proposition 4.2. Under the assumptions and notations of Lemma 4.1 there exists for any $0 < \varepsilon < 1$ and R > 1 a constant $C_0 = C_0(\varepsilon, R, N, a, b, A_1, A_2) > 0$ such that if u is a solution of (1.6) with

$$\max_{x \in \mathbb{R}^N \cup \{\infty\}} \frac{u(x)}{\omega_a(x)} > C_0$$

then there exist $1 \le k = k(u) < \infty$ and a set $S(u) = \{q_1, q_2, \dots, q_k\} \subset \mathbb{R}^N \cup \{\infty\}$ such that for each $1 \le j \le k$ we have

(A) if $|q_j| \leq 1$

$$\left\| \frac{u(u(q_j)^{-\frac{2}{N-2-2a}}x + q_j)}{u(q_j)} - z_{K(q_j)}^{a,b} \right\|_{C^{0,\gamma}(B_{2R}(0))\cap H_a^1(B_{2R}(0))} + |q_j|u(q_j)^{\frac{2}{N-2-2a}} < \varepsilon \tag{4.6}$$

(B) if $|q_j| > 1$

$$\left\| \frac{\tilde{u}(\tilde{u}(\tilde{q}_j)^{-\frac{2}{N-2-2a}}x + \tilde{q}_j)}{\tilde{u}(\tilde{q}_j)} - z_{K(q_j)}^{a,b} \right\|_{C_{R(0)}^{0,\gamma}(B_{2R}(0))\cap H_a^1(B_{2R}(0))} + |\tilde{q}_j|\tilde{u}(\tilde{q}_j)^{\frac{2}{N-2-2a}} < \varepsilon. \tag{4.7}$$

Moreover the sets

$$U_j := \begin{cases} B_{Ru(q_j)} - \frac{2}{N-2-2a}(q_j) & in \ case \ (\mathbf{A}) \\ Inv(B_{R\tilde{u}(\tilde{q}_j)} - \frac{2}{N-2-2a}(\tilde{q}_j)) & in \ case \ (\mathbf{B}) \end{cases}$$
 are disjoint.

Furthermore, u satisfies

$$u(x) \le C_0 \omega_a(x) \max_{1 \le j \le k} dist(x, q_j)^{-\frac{N-2-2a}{2}}.$$

Proof. Fix $\varepsilon > 0$ and R > 1. Let C_0 be as in Lemma 4.1. First we apply Lemma 4.1 with $\mathcal{K} = \emptyset$ and find $q_1 \in \mathbb{R}^N \cup \{\infty\}$ the maximum point of u/ω_a . If $u(x) \leq C_0\omega_a(x)\mathrm{dist}(x,q_1)^{-\frac{N-2-2a}{2}}$ holds we stop here. Otherwise we apply again Lemma 4.1 to obtain q_2 . From estimates (4.6) and (4.7) it follows that U_1 and U_2 are disjoint. We continue the process. Since $u \in L^p(\mathbb{R}^N, |x|^{-bp})$ and

$$\int_{U_{\delta}} \frac{K(x)}{|x|^{bp}} u(x)^p dx \ge \frac{1}{2A_1} \int_{B_R(0)} \frac{\left(z_{K(q_j)}^{a,b}\right)^p}{|y + \varepsilon q_j/|q_j||^{bp}} dy \ge c(a, b, N),$$

where c(a, b, N) is independent of q_j , u, R > 1 and $\varepsilon < 1$, we will stop after a finite number of steps.

Proposition 4.3. Under the assumptions and notations of Lemma 4.1 there exist for any $0 < \varepsilon < 1$ and R > 1 some positive constants $C_0 = C_0(\varepsilon, R, N, a, b, A_1, A_2)$ and $\delta = \delta(\varepsilon, R, N, a, b, A_1, A_2)$ such that if u is a solution of (1.6) with

$$\max_{x \in \mathbb{R}^N \cup \{\infty\}} \frac{u(x)}{\omega_a(x)} > C_0$$

then

$$dist(q_j, q_\ell) \ge \delta \text{ for all } 1 \le j \ne \ell \le k,$$

where $q_j = q_j(u)$, $q_\ell = q_\ell(u)$ and k = k(u) are given in Proposition 4.2.

Proof. To obtain a contradiction we assume that for some constants ε , R, A_1 and A_2 there exist sequences K_i and u_i satisfying the assumptions of Proposition 4.3 such that

$$\lim_{i \to \infty} \min_{j \neq \ell} \operatorname{dist}(q_j(u_i), q_\ell(u_i)) = 0.$$

We may assume that

$$\sigma_i := \operatorname{dist}(q_1(u_i), q_2(u_i)) = \min_{i \neq \ell} \operatorname{dist}(q_j(u_i), q_\ell(u_i)) \to 0 \text{ as } i \to \infty.$$
 (4.8)

Let us denote $q_j(u_i)$ by q_j^i . Since $U_1(u_i)$ and $U_2(u_i)$ are disjoint and (4.8) holds we have that $u_i(q_1^i) \to \infty$ and $u_i(q_2^i) \to \infty$. Therefore we can pass to a subsequence still denoted by $\{u_i\}$ and find $R_i \to \infty$, $\varepsilon_i \to 0$ such that either $q_1^i = q_1(u_i) \to 0$ or $|q_1^i| \to \infty$, and for j = 1, 2

$$\left\| \frac{u_i \left(u_i(q_j^i)^{\frac{2}{N-2-2a}} x + q_j^i \right)}{u_i(q_j^i)} - z_{K(q_j^i)}^{a,b} \right\|_{C^{0,\gamma}(B_{2R_i}(0))} + |q_j^i| u_i(q_j^i)^{\frac{2}{N-2-2a}} < \varepsilon_i \text{ if } q_1^i \to 0 \quad (4.9)$$

$$\left\| \frac{\tilde{u}_i(\tilde{u}_i(\tilde{q}_j^i)^{\frac{2}{N-2-2a}}x + \tilde{q}_j^i)}{\tilde{u}_i(\tilde{q}_j^i)} - z_{K(\tilde{q}_j^i)}^{a,b} \right\|_{C^{0,\gamma}(B_{2R_i}(0))} + |\tilde{q}_j^i| \tilde{u}_i(\tilde{q}_j^i)^{\frac{2}{N-2-2a}} < \varepsilon_i \text{ if } |q_1^i| \to \infty.$$

We first consider the case $q_1^i \to 0$. Since $U_1(u_i)$ and $U_2(u_i)$ are disjoint we have that

$$\sigma_i > c(N) \max_{j=1,2} \{ R_i u_i(q_j^i)^{-\frac{2}{N-2-2a}} \}.$$
 (4.10)

From (4.9) and (4.10) we get that $\sigma_i^{-1}|q_j^i|<\frac{\varepsilon_i}{c(N)R_i}\to 0$ for j=1,2 and obtain the contradiction

$$\frac{1}{2} < |\sigma_i^{-1}(q_2^i - q_1^i)| \to 0.$$

Performing the same analysis as above for the Kelvin transform \tilde{u} of u leads to a contradiction if $\tilde{q}_1^i \to 0$.

Remark 4.4. Propositions 4.2 and 4.3 imply that there are only finitely many blow-up points and all are isolated.

Proposition 4.5. Suppose $\{K_i\}$ and $a \in](N-4)/2, (N-2)/2[$ satisfy the assumptions of Lemma 4.1 and Proposition 3.13. Let $\{u_i\}$ be solutions of (P_i) with $\Omega = \mathbb{R}^N$. Then after passing to a subsequence either $\{u_i/\omega_a\}$ stays bounded in $L^{\infty}(\mathbb{R}^N)$ or $\{u_i\}$ has precisely one blow-up point, which can be at 0 or at ∞ .

Proof. Suppose that $\{u_i/\omega_a\}$ is not uniformly bounded in $L^{\infty}(\mathbb{R}^N)$, otherwise there is nothing to prove. Consequently we may apply Proposition 4.2 and Proposition 4.3 to obtain isolated points $\{q_1^i,\ldots,q_{k(i)}^i\}$ satisfying (4.6) and (4.7) with $R_i\to\infty$ and $\varepsilon_i\to 0$. To obtain a contradiction, we assume that up to a subsequence $k(i)\geq 2$. Since $u(q_j^i)/\omega_a(q_j^i)\to\infty$ for j=1,2 and $\mathrm{dist}(q_1^i,q_2^i)\geq \delta>0$ we may assume $q_1^i\to 0$ and $q_2^i\to\infty$ and k(i)=2 as $i\to\infty$. From Proposition 3.13 and Remark 4.4 they are isolated simple blow-up points. From Proposition 3.10 we infer that

$$\lim_{i \to \infty} u_i(q_1^i) u_i(x) = h(x) \text{ in } C^0_{\text{loc}}(\mathbb{R}^N \setminus \{0\}),$$
$$\operatorname{div}(|x|^{-2a} \nabla h) = 0 \text{ in } \mathbb{R}^N \setminus \{0\}.$$

Using Theorem A.4 for h and its Kelvin transform and the maximum principle we obtain for some $a_1, a_2 > 0$

$$h(x) = a_1|x|^{2+2a-N} + a_2.$$

We may now proceed as in the proof of Proposition 3.13 to see that

$$\int_{\partial B_{\sigma}(q_1^i)} B(\sigma, x, u_i, \nabla u_i) = o(u_i(q_1^i)^{-2}).$$

Multiplying by $u_i(q_1^i)^2$ and letting $i \to \infty$ we find that

$$\int_{\partial B_{\sigma}} B(\sigma, x, h, \nabla h) = 0.$$

This contradicts for small σ Proposition 2.4 and completes the proof.

Proposition 4.6. Suppose $K \in C^2(\mathbb{R}^N)$ satisfies (1.11)-(1.13),

$$a \ge 0, \ \frac{N-4}{2} < a < \frac{N-2}{2}, \ and \ \frac{4}{N-2-2a} < p < 2^*.$$

Then there exists $C_K > 0$ such that for any $t \in (0,1]$ and any solution u_t of

$$-\operatorname{div}(|x|^{-2a}\nabla u) = (1 + t(K(x) - 1))\frac{u^{p-1}}{|x|^{bp}}, \quad u > 0 \text{ in } \mathcal{D}_a^{1,2}(\mathbb{R}^N)$$
 (P_t)

there holds

$$||u_t||_E < C_K \tag{4.11}$$

and

$$C_K^{-1} < u_t \omega_a^{-1} < C_K. (4.12)$$

Proof. The bound in (4.12) follows from (4.11) and Harnack's inequality in [11]. The estimate in Lemma A.3 of the appendix shows that $(1+t(K(x)-1))u^{p-2}|x|^{-bp}$ belongs to the required class of potentials in [11]. To show that u_t/ω_a is bounded in $L^{\infty}(\mathbb{R}^N)$ we argue by contradiction and may assume in view of Proposition 4.5 that there exists a sequence $\{t_i\} \subset (0,1]$ converging to $t_0 \in [0,1]$ as $i \to \infty$ such that u_{t_i} has precisely one blow-up point (x_i) , which can be supposed to be zero using the Kelvin transform. Corollary 2.3 yields

$$0 = \int_{\mathbb{R}^N} x \cdot \nabla K(x) \frac{u_{t_i}(x)^p}{|x|^{bp}} dx.$$

Since 0 is assumed to be the only blow-up point, the Harnack inequality and (3.16) yield, for any $\sigma \in (0, 1)$,

$$\left| \int_{B_{\sigma}(x_i)} x \cdot \nabla K(x) \frac{u_{t_i}(x)^p}{|x|^{bp}} dx \right| = \left| \int_{\mathbb{R}^N \setminus B_{\sigma}(x_i)} x \cdot \nabla K(x) \frac{u_{t_i}(x)^p}{|x|^{bp}} dx \right| \le C(\sigma) \left(u_{t_i}(x_i)^{-p} \right).$$

We have that from Taylor expansion, (3.2), and (1.12)

$$|\nabla K(x_i)| \le \operatorname{const}|x_i| = o\left(u_{t_i}(x_i)^{-\frac{2}{N-2-2a}}\right) \tag{4.13}$$

and

$$\left| \int_{B_{\sigma}(x_{i})} \nabla K(x) \cdot x \frac{u_{t_{i}}^{p}}{|x|^{bp}} dx \right|$$

$$= \left| \int_{B_{\sigma}(x_{i})} \nabla K(x_{i}) \cdot x \frac{u_{t_{i}}^{p}}{|x|^{bp}} dx + \int_{B_{\sigma}(x_{i})} D^{2}K(x_{i})(x - x_{i}) \cdot x \frac{u_{t_{i}}^{p}}{|x|^{bp}} dx \right|$$

$$+ \int_{B_{\sigma}(x_{i})} o(|x - x_{i}|) \cdot x \frac{u_{t_{i}}^{p}}{|x|^{bp}} dx \right|.$$

From Lemma 3.12 and (4.13) we infer

$$\left| \int_{B_{\sigma}(x_i)} \nabla K(x_i) \cdot x \frac{u_{t_i}^p}{|x|^{bp}} dx + \int_{B_{\sigma}(x_i)} o(|x - x_i|) \cdot x \frac{u_{t_i}^p}{|x|^{bp}} dx \right| = o\left(u_{t_i}(x_i)^{-\frac{4}{N - 2 - 2a}}\right).$$

Hence

$$\int_{B_{\sigma}(x_i)} D^2 K(x_i)(x - x_i) \cdot x \frac{u_{t_i}^p}{|x|^{bp}} dx = o\left(u_{t_i}(x_i)^{-\frac{4}{N-2-2a}}\right).$$

Since by Lemma 3.12

$$\int_{r_i \le |x - x_i| \le \sigma} D^2 K(x_i)(x - x_i) \cdot x \frac{u_{t_i}^p}{|x|^{bp}} dx = o\left(u_{t_i}(x_i)^{-\frac{4}{N - 2 - 2a}}\right)$$

we have

$$\int_{B_{r_i}(x_i)} D^2 K(x_i)(x - x_i) \cdot x \frac{u_{t_i}^p}{|x|^{bp}} dx = o\left(u_{t_i}(x_i)^{-\frac{4}{N-2-2a}}\right). \tag{4.14}$$

Making in (4.14) the change of variables $x = u_{t_i}(x_i)^{-2/(N-2-2a)}y + x_i$ and using Proposition 3.7

$$0 = \int_{\mathbb{R}^N} D^2 K(0) y \cdot y |y|^{-bp} z_{1+t_0(K(0)-1)}^{a,b}(y)^p \, dy = \Delta K(0) \int_{\mathbb{R}^N} |y|^{2-bp} z_{1+t_0(K(0)-1)}^{a,b}(y)^p \, dy$$

which is not possible in view (1.12).

Proof of Theorem 1.1. It follows from Proposition 4.6 and Lemma A.1.

We define $f_{K,\varepsilon}: \mathcal{D}_a^{1,2}(\mathbb{R}^N) \to \mathbb{R}$ by

$$f_{K,\varepsilon}(u) = f_0(u) - \varepsilon G_K(u)$$

$$f_0(u) = \frac{1}{2} \int_{\mathbb{R}^N} |x|^{-2a} |\nabla u|^2 - \frac{1}{p} \int_{\mathbb{R}^N} \frac{|u|^p}{|x|^{bp}}$$

$$G_K(u) = \frac{1}{p} \int_{\mathbb{R}^N} \frac{K(x)|u|^p}{|x|^{bp}}.$$

We will use the notation f_{ε} (respectively G) instead of $f_{K,\varepsilon}$ (respectively G_K) whenever there is no possibility of confusion. Let us denote by Z the manifold

$$Z = \{z_{\mu} = z_{1,\mu}^{a,b} : \mu > 0\}$$

of the solutions to (1.6) with $K \equiv 1$.

Lemma 4.7. Suppose p > 3. There exist constants $\rho_0, \varepsilon_0, C > 0$, and smooth functions

$$w = w(\mu, \varepsilon) : \quad (0, +\infty) \times (-\varepsilon_0, \varepsilon_0) \longrightarrow \mathcal{D}_a^{1,2}(\mathbb{R}^N)$$
$$\eta = \eta(\mu, \varepsilon) : \quad (0, +\infty) \times (-\varepsilon_0, \varepsilon_0) \longrightarrow \mathbb{R}$$

such that for any $\mu > 0$ and $\varepsilon \in (-\varepsilon_0, \varepsilon_0)$

$$w(\mu, \varepsilon)$$
 is orthogonal to $T_{z_{\mu}}Z$ (4.15)

$$f'_{\varepsilon}(z_{\mu} + w(\mu, \varepsilon)) = \eta(\mu, \varepsilon)\dot{\xi}_{\mu}$$
 (4.16)

$$|\eta(\mu,\varepsilon)| + ||w(\mu,\varepsilon)||_{\mathcal{D}^{1,2}_{\varepsilon}(\mathbb{R}^N)} \le C|\varepsilon| \tag{4.17}$$

$$\|\dot{w}(\mu,\varepsilon)\|_{\mathcal{D}^{1,2}(\mathbb{R}^N)} \le C(1+\mu^{-1})|\varepsilon|,\tag{4.18}$$

where $\dot{\xi}_{\mu}$ denotes the normalized tangent vector $\frac{d}{d\mu}z_{\mu}$ and \dot{w} stands for the derivative of w with respect to μ . Moreover, (w, η) is unique in the sense that there exists $\rho_0 > 0$ such that if $(v, \tilde{\eta})$ satisfies $||v||_{\mathcal{D}_a^{1,2}(\mathbb{R}^N)} + |\tilde{\eta}| < \rho_0$ and (4.15)-(4.16) for some $\mu > 0$ and $|\varepsilon| \leq \varepsilon_0$, then $v = w(\mu, \varepsilon)$ and $\tilde{\eta} = \eta(\mu, \varepsilon)$.

Proof. Existence, uniqueness, and estimate (4.17) are proved in [9]. In fact w and η are implicitly defined by $H(\mu, w, \eta, \varepsilon) = (0, 0)$ where

$$H: (0, \infty) \times \mathcal{D}_a^{1,2}(\mathbb{R}^N) \times \mathbb{R} \times \mathbb{R} \to \mathcal{D}_a^{1,2}(\mathbb{R}^N) \times \mathbb{R}$$
$$H(\mu, w, \eta, \varepsilon) := (f'_{\varepsilon}(z_{\mu} + w) - \eta \dot{\xi}_{\mu}, (w, \dot{\xi}_{\mu})).$$

Let us now show estimate (4.18). There exists a positive constant C_* such that for any $\mu > 0$ (see [9])

$$\left\| \left(\frac{\partial H}{\partial (w, \eta)} (\mu, 0, 0, 0) \right)^{-1} \right\| \le C_*.$$

Since \dot{w} satisfies

$$\begin{pmatrix} \dot{w} \\ \dot{\eta} \end{pmatrix} = -\left(\frac{\partial H}{\partial (w, \eta)}\right)^{-1} \Big|_{(\mu, w, \eta, \varepsilon)} \cdot \frac{\partial H}{\partial \mu} \Big|_{(\mu, w, \eta, \varepsilon)}$$

we have for ε small using (4.17) and the fact that $f_0 \in C^3$

$$\begin{split} \|\dot{w}(\mu,\varepsilon)\| &\leq C_* \frac{\partial H}{\partial \mu} \Big|_{(\mu,w,\eta,\varepsilon)} \\ &\leq C_* \left(\left\| f_\varepsilon''(z_\mu + w(\mu,\varepsilon)) \dot{z}_\mu - \eta(\mu,\varepsilon) \frac{d}{d\mu} \dot{\xi}_\mu \right\| + \left| \left(w(\mu,\varepsilon), \frac{d}{d\mu} \dot{\xi}_\mu \right) \right| \right) \\ &\leq C(1+\mu^{-1}) |\varepsilon| + \|f_0''(z_\mu + w(\mu,\varepsilon)) \dot{z}_\mu \| \\ &\leq C(1+\mu^{-1}) |\varepsilon| + O(\|w(\mu,\varepsilon)\|) \|\dot{z}_\mu \| \\ &\leq C(1+\mu^{-1}) |\varepsilon|. \end{split}$$

This ends the proof.

Corollary 4.8. Suppose p > 3 and K satisfies the assumptions of Proposition 4.6. Then there exist $t_0 > 0$ and $R_0 > 0$ such that any solution u_t of (P_t) for $t \le t_0$ is of the form $z_{\mu} + w(\mu, t)$, where $1/R_0 < \mu < R_0$.

Proof. First we show that there exists $R_1 > 0$ and $t_1 > 0$ such that any solution u_t of (P_t) for $t < t_1$ satisfies

$$\operatorname{dist}(u_t, Z_{R_1}) < \rho_0,$$

where by dist we mean the distance in the $\mathcal{D}_a^{1,2}(\mathbb{R}^N)$ -norm, ρ_0 is given in Lemma 4.7, and $Z_{R_1} := \{z_{\mu} \mid 1/R_1 < \mu < R_1\}$. By contradiction, assume there exist $R_i \to \infty$, $t_i \to 0$, and solutions u_{t_i} of (P_t) such that $\operatorname{dist}(u_{t_i}, Z_{R_i}) \geq \rho_0$. From (4.11) we can pass to a subsequence converging weakly in $\mathcal{D}_a^{1,2}(\mathbb{R}^N)$ to some \bar{u} ; since in view of the regularity results of [10] $\{u_t\}$ is bounded in $C^{0,\gamma}$ and such a bound excludes any possibility of concentration, the convergence is actually strong and $\operatorname{dist}(\bar{u}, Z) \geq \rho_0$. Furthermore, \bar{u} solves (P_t) with t = 0 and hence $\bar{u} \in Z$, which is impossible.

Fix a solution u_t of (P_t) for some $t < t_1$. A short computation shows

$$\lim_{\mu \to 0} \operatorname{dist}(z_{\mu}, u_{t})^{2} = \lim_{\mu \to \infty} \operatorname{dist}(z_{\mu}, u_{t})^{2} = ||z_{1}||^{2} + ||u_{t}||^{2} > \rho_{0}^{2}.$$

Consequently there exists $R_0 > 0$ independent of t and $z_\mu \in Z_{R_0}$ such that

$$dist(u_t, Z) = ||u_t - z_{\mu}|| \text{ and } u_t - z_{\mu} \in T_{z_{\mu}} Z^{\perp}.$$

Since u_t solves (P_t) we have $f'_t(z_\mu + u_t - z_\mu) = 0$ and the uniqueness in Lemma 4.7 yields the claim.

5. Leray-Schauder degree

We introduce the Melnikov function

$$\Gamma_K(\tau) = \frac{1}{p} \int_{\mathbb{R}^N} K(x) \frac{z_{\tau}^p}{|x|^{bp}}.$$

It is known (for details see [9]) that it is possible to extend the C^2 - function Γ_K by continuity to $\tau = 0$ and

$$\Gamma_K'(0) = 0 \text{ and } \Gamma_K''(0) = \frac{\Delta K(0)}{Np} \int_{\mathbb{R}^N} |x|^2 \frac{z_1(x)^p}{|x|^{bp}}.$$
 (5.1)

Furthermore, using the Kelvin transform, we find

$$\Gamma_K(\tau) = \Gamma_{\tilde{K}}(\tau^{-1}) \quad \text{where} \quad \tilde{K}(x) = K(x/|x|^2).$$
 (5.2)

We define for small t the function $\Phi_{K,t}(\mu) := f_{K,t}(z_{\mu} + w(\mu,t))$ and will denote it by Φ_t whenever there is no possibility of confusion.

Lemma 5.1. Let p > 3 and assume Γ_K has only non-degenerate critical points. Then there exists $t_1 > 0$ such that for any $0 < t < t_1$ any solution u_t of (P_t) is of the form $u_t = z_{\mu_t} + w(\mu_t, t)$, where $\Phi'_{K,t}(\mu_t) = 0$ and $\mu_t \in (R_0^{-1}, R_0)$ for some positive R_0 . Moreover, up to a subsequence as $t \to 0$

$$|\mu_t - \bar{\mu}| = O(t), \tag{5.3}$$

where $\bar{\mu}$ is a critical point of Γ_K . Viceversa, for any critical point $\bar{\mu}$ of Γ_K and for any $0 < t < t_1$ there exists one and only one critical point μ_t of $\Phi_{K,t}$ such that (5.3) holds.

Proof. By Corollary 4.8 any solution u_t of (P_t) is of the form $u_t = z_{\mu_t} + w(\mu_t, t)$, where $\Phi'_t(\mu_t) = 0$ and $R_0^{-1} < \mu_t < R_0$. Using the Taylor expansion and (4.17) - (4.18), we

have that for $R_0^{-1} < \mu < R_0$

$$\Phi'_{t}(\mu) = f'_{t}(z_{\mu} + w(\mu, t))(\dot{z}_{\mu} + \dot{w}(\mu, t))
= f'_{t}(z_{\mu})(\dot{z}_{\mu} + \dot{w}(\mu, t)) + (f''_{t}(z_{\mu})w(\mu, t), \dot{z}_{\mu} + \dot{w}(\mu, t)) + O(\|w(\mu, t)\|^{2}))
= -tG'(z_{\mu})(\dot{z}_{\mu} + \dot{w}(\mu, t)) + (f''_{0}(z_{\mu})w(\mu, t), \dot{w}(\mu, t)))
- t(G''(z_{\mu})w(\mu, t), \dot{z}_{\mu} + \dot{w}(\mu, t)) + O(\|w(\mu, t)\|^{2}))
= -t\Gamma'(\mu) + O(t^{2}).$$
(5.4)

Fix a sequence (t_n) converging to 0. Since μ_t is bounded, we may assume that (μ_{t_n}) converges to $\bar{\mu}$. From expansion (5.4) we have that

$$0 = \Phi'_{t_n}(\mu_{t_n}) = -t_n(\Gamma'(\mu_{t_n}) + O(t_n))$$

hence $\bar{\mu}$ is a critical point of Γ . A further expansion yields

$$0 = \Phi'_{t_n}(\mu_{t_n}) - t_n(\Gamma''(\bar{\mu})(\mu_{t_n} - \bar{\mu}) + o(\mu_{t_n} - \bar{\mu})) + O(t_n^2)$$

which gives for $n \to \infty$

$$(\mu_{t_n} - \bar{\mu})(\Gamma''(\bar{\mu}) + o(1)) = O(t_n)$$

proving (5.3) for $\Gamma''(\bar{\mu}) \neq 0$. Viceversa let $\bar{\mu}$ be a critical point of Γ . Arguing as above we find as $\mu \to \bar{\mu}$ and for any $0 < t < t_1$

$$\Phi'_t(\mu) = t(\mu - \bar{\mu})(\Gamma''(\bar{\mu}) + o(1)) + O(t^2)$$

hence there exists μ_t such that

$$\mu_t = \bar{\mu} - (\Gamma''(\bar{\mu}) + o(1))^{-1}O(t)$$
 and $\Phi'_t(\mu_t) = 0$.

To prove uniqueness of such a μ_t , we follow [4] and expand Φ_t in a critical point μ_t

$$\Phi_t''(\mu_t) = \left(f_t''(z_{\mu_t} + w(\mu_t, t))(\dot{z}_{\mu_t} + \dot{w}(\mu_t, t)), (\dot{z}_{\mu_t} + \dot{w}(\mu_t, t)) \right)
= \left(f_0''(z_{\mu_t} + w(\mu_t, t))(\dot{z}_{\mu_t} + \dot{w}(\mu_t, t)), (\dot{z}_{\mu_t} + \dot{w}(\mu_t, t)) \right)
- t \left(G''(z_{\mu_t} + w(\mu_t, t))(\dot{z}_{\mu_t} + \dot{w}(\mu_t, t)), (\dot{z}_{\mu_t} + \dot{w}(\mu_t, t)) \right)
= \left(f_0''(z_{\mu_t})\dot{w}(\mu_t, t), \dot{w}(\mu_t, t) \right) + \left(f_0'''(z_{\mu_t})w(\mu_t, t)(\dot{z}_{\mu_t} + \dot{w}(\mu_t, t)), \dot{z}_{\mu_t} + \dot{w}(\mu_t, t) \right)
- t \left(G''(z_{\mu_t} + w(\mu_t, t))(\dot{z}_{\mu_t} + \dot{w}(\mu_t, t)), (\dot{z}_{\mu_t} + \dot{w}(\mu_t, t)) \right)
= \left(f_0'''(z_{\mu_t})w(\mu_t, t)\dot{z}_{\mu_t}, \dot{z}_{\mu_t} \right) - t \left(G''(z_{\mu_t})\dot{z}_{\mu_t}, \dot{z}_{\mu_t} \right) + O(t^2).$$
(5.5)

Since any critical point μ_t of Φ_t gives rise to a critical point $z_{\mu_t} + w(\mu_t, t)$ of f_t , we have that

$$0 = (f'_t(z_{\mu_t} + w(\mu_t, t)), \ddot{z}_{\mu_t})$$

$$= (f'_t(z_{\mu_t}) + f''_t(z_{\mu_t})w(\mu_t, t) + O(\|w(\mu_t, t)\|^2), \ddot{z}_{\mu_t})$$

$$= -t(G'(z_{\mu_t}), \ddot{z}_{\mu_t}) + (f''_0(z_{\mu_t})w(\mu_t, t), \ddot{z}_{\mu_t}) + O(t^2).$$
(5.6)

Differentiating $f_0''(z_{\mu_t})\dot{z}_{\mu_t}=0$ and testing with $w(\mu_t,t)$ we obtain

$$0 = (f_0'''(z_{\mu_t})\dot{z}_{\mu_t}\dot{z}_{\mu_t}, w(\mu_t, t)) + (f_0''(z_{\mu_t})\ddot{z}_{\mu_t}, w(\mu_t, t)).$$
(5.7)

Putting together (5.6) and (5.7) we get

$$(f_0'''(z_{\mu_t})\dot{z}_{\mu_t}\dot{z}_{\mu_t}, w(\mu_t, t)) = -t(G'(z_{\mu_t}), \ddot{z}_{\mu_t}) + O(t^2)$$

hence in view of (5.5)

$$\Phi_t''(\mu_t) = -t(G'(z_{\mu_t}), \ddot{z}_{\mu_t}) - t(G''(z_{\mu_t})\dot{z}_{\mu_t}, \dot{z}_{\mu_t}) + O(t^2) = -t\Gamma''(\mu_t) + O(t^2).$$
 (5.8)

To prove uniqueness, we choose $\delta > 0$ such that $\operatorname{sgn}\Gamma''(\mu) = \operatorname{sgn}\Gamma''(\bar{\mu}) \neq 0$ for any $|\mu - \bar{\mu}| < \delta$. From (5.8), there exists $t(\delta) > 0$ such that if $t < t(\delta)$ and μ_t is a critical point of Φ_t such that $|\mu_t - \bar{\mu}| < \delta$, then

$$\operatorname{sgn}\Phi_t''(\mu_t) = -\operatorname{sgn}\Gamma''(\bar{\mu}).$$

From (5.4) we have that for $t < t(\delta)$

$$\operatorname{sgn}\Gamma''(\bar{\mu}) = \operatorname{deg}(\Gamma', B_{\delta}(\bar{\mu}), 0) = \operatorname{deg}(-\Phi'_{t}, B_{\delta}(\bar{\mu}), 0)$$
$$= -\sum_{\substack{y \in B_{\delta}(\bar{\mu}) \\ \Phi'_{t}(y) = 0}} \operatorname{sgn}\Phi''_{t}(y) = \#\{y \in B_{\delta}(\bar{\mu}) : \Phi'_{t}(y) = 0\} \operatorname{sgn}\Gamma''(\bar{\mu}).$$

Hence $\#\{y \in B_{\delta}(\bar{\mu}): \Phi'_t(y) = 0\} = 1$, proving uniqueness.

Lemma 5.2. For any $K \in L^{\infty}(\mathbb{R}^N)$ the operator

$$L_K: u \mapsto \left(-\operatorname{div}(|x|^{-2a}\nabla)\right)^{-1} \frac{K(x)}{|x|^{bp}} |u|^{p-2} u$$

is compact from E to E.

Proof. Let $\{u_n\}$ be a bounded sequence in E and set $v_n = L_K(u_n)$, i.e.

$$-\text{div}(|x|^{-2a}\nabla v_n) = \frac{K(x)}{|x|^{bp}} |u_n|^{p-2} u_n.$$

By Caffarelli-Kohn-Nirenberg inequality, $\{v_n\}$ is bounded in $\mathcal{D}_a^{1,2}(\mathbb{R}^N)$ and passing to a subsequence we may assume that it converges weakly in $\mathcal{D}_a^{1,2}(\mathbb{R}^N)$ and pointwise almost everywhere to some limit $v \in \mathcal{D}_a^{1,2}(\mathbb{R}^N)$. Since $\{u_n\}$ is uniformly bounded in $L^{\infty}(B_3(0))$, from [10] the sequence $\{v_n\}$ is uniformly bounded in $C^{0,\gamma}(B_2(0))$. Using the Kelvin transform we arrive at

$$-\operatorname{div}(|x|^{-2a}\nabla \tilde{v}_n) = |x|^{-(N+2+2a)+bp} K(x/|x|^2) |u_n(x/|x|^2)|^{p-2} u_n(x/|x|^2)$$
$$= K(x/|x|^2) \frac{|\tilde{u}_n|^{p-2} \tilde{u}_n}{|x|^{bp}}.$$

Since $\{u_n\}$ is uniformly bounded in E, $\{\tilde{u}_n\}$ is uniformly bounded in $L^{\infty}(B_3(0))$ and hence from [10] the sequence $\{\tilde{v}_n\}$ is uniformly bounded in $C^{0,\gamma}(B_2(0))$. Since a uniform bound in $C^{0,\gamma}(B_2(0))$ implies equicontinuity and

$$\|(v_n - v_m)\omega_a^{-1}\|_{C^0(\mathbb{R}^N \setminus B_1(0))} \le \operatorname{const} \|\tilde{v}_n - \tilde{v}_m\|_{C^0(B_1(0))}$$

from the Ascoli-Arzelà Theorem there exists a subsequence $\{v_n\}$ strongly converging in $C^0(\mathbb{R}^N, \omega_a)$ to v. Moreover, the $C^0(\mathbb{R}^N, \omega_a)$ -convergence excludes any possibility of concentration at 0 or at ∞ and $\{v_n\}$ converges strongly in $\mathcal{D}_a^{1,2}(\mathbb{R}^N)$.

From Proposition 4.6, there exists a positive constant C_K such that $\|u\|_E < C_K$ and $C_K^{-1} < u\omega_a^{-1}$ for any solution u of (P_t) uniformly with respect to $t \in (0,1]$. By the above lemma, the Leray-Schauder degree $\deg(Id - L_K, \mathcal{B}_K, 0)$ is well-defined, where $\mathcal{B}_K := \{u \in E : \|u\|_E < C_K, C_K^{-1} < u\omega_a^{-1}\}.$

Theorem 5.3. Under the assumptions of Proposition 4.6 and for p > 3 we have

$$\deg(Id - L_K, \mathcal{B}_K, 0) = -\frac{\operatorname{sgn}\Delta K(0) + \operatorname{sgn}\Delta \tilde{K}(0)}{2}.$$

Proof. By transversality, we can assume that Γ_K has only non-degenerate critical points. If not, we proceed with a small perturbation of K. By Proposition 4.6 and the homotopy invariance of the Leray-Schauder degree, for $0 < t < t_1$

$$\deg(Id - L_K, \mathcal{B}_K, 0) = \deg(Id - L_{tK}, \mathcal{B}_K, 0).$$

By Lemma 5.1 we have

$$\deg(Id - L_{tK}, \mathcal{B}_K, 0) = \sum_{\mu \in (\Phi'_{t,K})^{-1}(0)} (-1)^{\mathfrak{m}(z_{\mu} + w(\mu, t), f_{t,K})}$$

where $\mathfrak{m}(z_{\mu} + w(\mu, t), f_{t,K})$ denotes the Morse index of $f_{t,K}$ in $z_{\mu} + w(\mu, t)$. We will only sketch the computation of $\mathfrak{m}(z_{\mu} + w(\mu, t), f_{t,K})$ and refer to [3, 4, 13] for details. The spectrum of $f_0''(z_{\mu})$ is completely known (see [9]) and $\mathcal{D}_a^{1,2}(\mathbb{R}^N)$ is decomposed in $\langle z_{\mu} \rangle \oplus T_{z_{\mu}} Z \oplus \langle z_{\mu}, T_{z_{\mu}} Z \rangle^{\perp}$, where z_{μ} is an eigenfunction of $f_0''(z_{\mu})$ with corresponding eigenvalue -(p-2), $T_{z_{\mu}}Z = \ker(f_0''(z_{\mu}))$, and $f_0''(z_{\mu})$ restricted to the orthogonal complement of $\langle z_{\mu}, T_{z_{\mu}} Z \rangle$ is bounded below by a positive constant. Consequently, to compute the Morse index $\mathfrak{m}(z_{\mu} + w(\mu, t), f_{t,K})$ for small t it is enough to know the behavior of $f_{t,K}''(z_{\mu} + w(\mu, t))$ along $T_{z_{\mu}}Z$. From the expansion

$$f_{t,K}(z_{\mu} + w(\mu, t)) = f_0(z_{\mu}) - t\Gamma_K(\mu) + o(t^2) = \text{const } -t\Gamma_K(\mu) + o(t^2)$$

we have that for t small

$$\mathfrak{m}(z_{\mu} + w(\mu, t), f_{t,K}) = 1 + \begin{cases} 1 & \text{if } \Gamma_K''(\mu) > 0\\ 0 & \text{if } \Gamma_K''(\mu) < 0. \end{cases}$$
 (5.9)

From (5.9) and Lemma 5.1, we know that for t small

$$\sum_{\mu \in (\Phi'_{t,K})^{-1}(0)} (-1)^{\mathfrak{m}(z_{\mu} + w(\mu,t), f_{t,K})} = -\sum_{\mu \in (\Gamma'_{K})^{-1}(0)} (-1)^{\mathfrak{m}(\mu, -\Gamma_{K})}$$
$$= \deg(\Gamma'_{K}, ((R_{0} + 1)^{-1}, R_{0} + 1), 0),$$

where R_0 is given in Lemma 5.1. From (5.1) we obtain for $\mu \to 0$

$$\Gamma_K'(\mu) = \Gamma_K''(0)\mu + o(\mu) = \text{const}\Delta K(0)\mu + o(\mu).$$

Hence $\operatorname{sgn}\Gamma'_K((R_0+1)^{-1}) = \operatorname{sgn}\Delta K(0)$. Using (5.2) for obtain for $\mu \to \infty$

$$\Gamma_K'(\mu) = -\mu^{-2}\Gamma_{\tilde{K}}'(\mu^{-1}) = -\text{const}\Delta\tilde{K}(0)\mu^{-3} + o(\mu^{-3}).$$

Therefore $\operatorname{sgn}\Gamma'_K((R_0+1)) = -\operatorname{sgn}\Delta\tilde{K}(0)$ and

$$\deg(\Gamma_K', ((R_0+1)^{-1}, R_0+1), 0) = -\frac{\operatorname{sgn}\Delta K(0) + \operatorname{sgn}\Delta K(0)}{2},$$

which proves the claim.

Proof of Theorem 1.2. It follows directly from Theorem 5.3 and Lemma A.1. \square

APPENDIX A.

Lemma A.1. v is a solution to (1.1) if and only if $u(x) = |x|^{a-\alpha}v(x)$ solves (1.6), where $a = a(\alpha, \lambda)$ and $b = b(\alpha, \beta, \lambda)$ are given in (1.5).

Proof. By standard elliptic regularity u and v are $C^2(\mathbb{R}^N \setminus \{0\})$. Consequently we may compute for $x \in \mathbb{R}^N \setminus \{0\}$

$$\operatorname{div}(|x|^{-2a}\nabla u(x)) = (a-\alpha)(N-a-\alpha-2)|x|^{-a-\alpha-2}v(x) + |x|^{\alpha-a}\operatorname{div}(|x|^{-2\alpha}\nabla v)$$
 and hence, in view of (1.1)

$$-\operatorname{div}(|x|^{-2a}\nabla u(x)) = \left[\lambda + (\alpha - a)(N - 2 - \alpha - a)\right] \frac{u(x)}{|x|^{2a+2}} + K(x) \frac{u^{p-1}}{|x|^{p(a-\alpha+\beta)}}.$$

From (1.5) we have that $\lambda + (\alpha - a)(N - 2 - \alpha - a) = 0$ and $a - \alpha + \beta = b$. Since $C^{\infty}(\mathbb{R}^N \setminus \{0\})$ is dense in $\mathcal{D}_{\alpha}^{1,2}(\mathbb{R}^N)$ and $\mathcal{D}_{a}^{1,2}(\mathbb{R}^N)$ (see [6]), the lemma is thereby proved.

Lemma A.2. Let $\{K_i\}_i$ satisfy (3.1), $(u_i)_{i\in\mathbb{N}}$ satisfy (P_i) and $x_i \to 0$ be an isolated blow up point. Then for any $R_i \to \infty$, there exists a positive constant C depending on $\lim_{i\to\infty} K_i(x_i)$ and a, b, and N such that after passing to a subsequence the function \bar{w}_i defined in (3.3) is strictly decreasing for $Cu_i(x_i)^{-2/(N-2-2a)} \le r \le r_i$ where $r_i = R_i u_i(x_i)^{-\frac{2}{N-2-2a}}$.

Proof. Making the change of variable $y = u_i(x_i)^{-\frac{2}{N-2-2a}}x + x_i$, there results

$$\bar{w}_i(r) = \frac{r^{\frac{N-2-2a}{2}}}{|\partial B_r(x_i)|} \int_{\partial B_r(x_i)} u_i(y)$$

$$= r^{\frac{N-2-2a}{2}} \int_{\partial B_{ru_i(x_i)^{2/(N-2-2a)}}(0)} u_i(u_i(x_i)^{-\frac{2}{N-2-2a}}x + x_i).$$

From the proof of Proposition 3.7 we have that for some function $g_i \in C^{0,\gamma}(B_{2R_i}(0))$

$$u_i(u_i(x_i)^{-\frac{2}{N-2-2a}}x+x_i)=u_i(x_i)(z_{K(0)}^{a,b}(x)+g_i(x))$$

where $||g_i||_{C^2(B_{2R_i}(0)\setminus B_C(0))} \le \varepsilon_i$. Being $z_{K(0)}^{a,b}$ a radial function, from above we find

$$\bar{w}_i(r) = r^{\frac{N-2-2a}{2}} u_i(x_i) \int_{\partial B_{ru_i(x_i)^{2/(N-2-2a)}}(0)} \left(z_{K(0)}^{a,b}(x) + g_i(x) \right)$$

$$= r^{\frac{N-2-2a}{2}} u_i(x_i) \left[z_{K(0)}^{a,b}(ru_i(x_i)^{2/(N-2-2a)}) + \int_{\partial B_{ru_i(x_i)^{2/(N-2-2a)}}(0)} g_i \right].$$

A direct computation shows that

$$\begin{split} &\frac{d}{dr}\bar{w}_i(r)\\ &=u_i(x_i)r^{\frac{N-4-2a}{2}}(z_{K(0)}^{a,b}(ru_i(x_i)^{2/(N-2-2a)}))^{\frac{p}{2}}\Big[\frac{N-2-2a}{2}\Big(1-K(0)u_i(x_i)^{p-2}r^{\frac{(p-2)(N-2-2a)}{2}}\Big)\\ &+\frac{N-2-2a}{2}\Big(\int g_i\Big)z_{K(0)}^{a,b}(ru_i(x_i)^{2/(N-2-2a)})^{-\frac{p}{2}}+r(\int g_i)'z_{K(0)}^{a,b}(ru_i(x_i)^{2/(N-2-2a)})^{-\frac{p}{2}}\Big]. \end{split}$$

Since for $Cu_i(x_i)^{-2/(N-2-2a)} \le r \le r_i$, there results $C \le ru_i(x_i)^{2/(N-2-2a)} \le R_i$, we have that

$$\int_{\partial B_{ru_i(x_i)^2/(N-2-2a)}(0)} g_i \le \varepsilon_i, \quad \frac{d}{dr} \int_{\partial B_{ru_i(x_i)^2/(N-2-2a)}(0)} g_i \le \varepsilon_i.$$

Moreover for $C = \left(\frac{1+\delta}{K(0)}\right)^{\frac{2}{(p-2)(N-2-2a)}}$ we have $1 - K(0)u_i(x_i)^{p-2}r^{\frac{(p-2)(N-2-2a)}{2}} \leq -\delta$. Choosing $\varepsilon_i = o\left(R_i^{-\frac{p(N-2-2a)}{2}}\right)$ the claim follows.

Lemma A.3. Suppose a, b, p satisfy (1.8) and (1.5). Let $(z_i)_{i \in \mathbb{N}} \subset \mathbb{R}^N$ and consider the measures $\mu_i := |x - z_i|^{-2a} dx$, then we have for 0 < r < 2 as $r \to 0$

$$\sup_{x \in B_2(0), i \in \mathbb{N}} \int_{B_r(x)} |y - z_i|^{-bp} \int_{|x - y|}^8 \frac{s \, ds}{\mu_i(B_s(x))} \, dy \to 0.$$

Proof. We use as c a generic constant that may change its value from line to line. Fix $x \in B_2(0)$. From the doubling property of the measure μ_i (see [12]) we find

$$M_{i}(x,|x-y|) := \int_{|x-y|}^{8} \frac{s \, ds}{\mu_{i}(B_{s}(x))}$$

$$\leq c \begin{cases} |x-y|^{-N+2a+2}, & \text{if } |x-y| > \frac{1}{2}|x-z_{i}| \\ |x-y|^{-N+2}|x-z_{i}|^{2a} + |x-z_{i}|^{-N+2a+2}, & \text{if } |x-y| \leq \frac{1}{2}|x-z_{i}|. \end{cases}$$

An easy calculation shows that 2a - bp > -2 and that if $a \ge 0$ then $2a - bp \le 0$. Hence, we may estimate for $0 < r \le \frac{1}{2}|x - z_i|$ and $y \in B_r(x)$

$$|y - z_i| \ge |x - z_i| - |x - y| \ge \frac{1}{2}|x - z_i|$$

and

$$\int_{B_r(x)} |y - z_i|^{-bp} M_i(x, |x - y|) \, dy \le cr^{2 + 2a - bp}.$$

Since -bp > -2 - 2a > -N we may use the above estimate to derive

$$\int_{B_{2|x-z|}(x)} |y-z_i|^{-bp} M_i(x,|x-y|) \, dy \le c|x-z_i|^{2+2a-bp}.$$

Consequently we obtain for $\frac{1}{2}|x-z_i| \le r \le 2|x-z_i|$

$$\int_{B_r(x)} |y - z_i|^{-bp} M_i(x, |x - y|) \, dy \le c|x - z_i|^{2 + 2a - bp} \le cr^{2 + 2a - bp}.$$

Finally we obtain for $2|x-z_i| < r \le 2$ and $|x-y| > 2|x-z_i|$

$$|y - z_i| \ge |y - x| - |x - z_i| \ge \frac{1}{2}|y - x|$$

and

$$\int_{B_r(x)} |y - z_i|^{-bp} M_i(x, |x - y|) \, dy \le cr^{2 + 2a - bp},$$

which ends the proof.

A function u will be called μ -harmonic in $\Omega \subset \mathbb{R}^N$, if $u \in D_{a,loc}^{1,2}(\mathbb{R}^N)$ and for all $\varphi \in C_c^{\infty}(\Omega)$ there holds

$$\int_{\Omega} |x|^{-2a} \nabla u \nabla \varphi = 0.$$

Let us prove a Bôcher-type theorem for μ -harmonic functions.

Theorem A.4. Let u be a nonnegative μ -harmonic function in $\mathbb{R}^N \setminus \{0\}$. Then there exist a constant $A \geq 0$ and a Hölder continuous function B, μ -harmonic in \mathbb{R}^N , such that

$$u(x) = A |x|^{2+2a-N} + B(x).$$

Proof. We distinguish two cases.

Case 1: there exists a sequence $x_n \to 0$ and a positive constant M such that $|u(x_n)| \le$ M. In this case the Harnack Inequality (Theorem 6.2 of [12]) implies that u is bounded. Moreover from [12, Lemma 6.15] u can be continuously extended to 0 and is a weak solution of

$$-\operatorname{div}(|x|^{-2a}\nabla u) = 0 \quad \text{in } \mathbb{R}^N,$$

see [6, Lemma 2.1]. Therefore from the Liouville Theorem [12, Theorem 6.10] we get that u is constant and the theorem holds with A = 0 and $B \equiv \text{const.}$

Case 2: $u(x_n) \to +\infty$ for any sequence $x_n \to 0$. We can extend u in 0 to be $u(0) := +\infty$, thus obtaining a lower semi-continuous function in \mathbb{R}^N . Moreover [12, Theorem 7.35] implies that u is super-harmonic in the sense of the definition of [12, Chapter 7, i.e.

- (i) u is lower semi-continuous,
- (ii) $u \not\equiv \infty$ in each component of \mathbb{R}^N , (iii) for each open $D \in \mathbb{R}^N$ and each $h \in C^0(\mathbb{R}^N)$ μ -harmonic in D the inequality $u \ge h$ on ∂D implies $u \ge h$ in D.

Let us remark that in order to apply Theorem 7.35 in [12] we need to prove that 0 has capacity 0 with respect to our weight; indeed

$$\operatorname{cap}_{|x|^{-2a}}(\{0\}, \mathbb{R}^N) := \inf_{\substack{u \in C_0^{\infty}(\mathbb{R}^N), \ u \equiv 1 \\ \text{in a neighborhood of } 0}} \int_{\mathbb{R}^N} |x|^{-2a} |\nabla u|^2 \le \operatorname{cap}_{|x|^{-2a}}(B_r, \mathbb{R}^N)
\le \operatorname{cap}_{|x|^{-2a}}(B_r, B_{2r}) \le cr^{N-2-2a}$$

for any r > 0, where we have used [12, Lemma 2.14]. Then $\operatorname{cap}_{|x|^{-2a}}(\{0\}, \mathbb{R}^N) = 0$. From [12, Corollary 7.21] there holds

$$-\operatorname{div}(|x|^{-2a}\nabla u) \ge 0$$
 in the sense of distributions on \mathbb{R}^N

hence from the Riesz Theorem there exists a Radon measure $\mu \geq 0$ in \mathbb{R}^N such that

$$\langle -\operatorname{div}(|x|^{-2a}\nabla u), \varphi \rangle = \int_{\mathbb{R}^N} \varphi \, d\mu \quad \forall \, \varphi \in C_0^{\infty}(\mathbb{R}^N).$$

Since $\langle -\text{div}(|x|^{-2a}\nabla u), \varphi \rangle = 0$ for any $\varphi \in C_0^{\infty}(\mathbb{R}^N \setminus \{0\})$, μ must be supported in $\{0\}$ and so $\mu = A\delta_0$ for a nonnegative constant A. Since the Green's function $G_a(x) := |x|^{2+2a-N}$ satisfies

$$-\operatorname{div}(|x|^{-2a}\nabla G_a) = \delta_0$$
 in the sense of distributions on \mathbb{R}^N ,

we have that

$$-\operatorname{div}(|x|^{-2a}\nabla(u - AG_a)) = 0$$

in the sense of distributions on \mathbb{R}^N . Theorem 3.70 and Lemma 6.47 in [12] imply that $B := u - AG_a$ is Hölder continuous.

References

- [1] B. Abdellaoui, V. Felli and I. Peral. Existence and multiplicity for perturbations of an equation involving Hardy inequality and critical Sobolev exponent in the whole \mathbb{R}^N (2003). Preprint.
- [2] A. Ambrosetti and M. Badiale. *Homoclinics: Poincaré-Melnikov type results via a variational approach*. Ann. Inst. H. Poincaré Anal. Non Linéaire, **15** (1998), no. 2, 233–252.
- [3] A. Ambrosetti and M. Badiale. Variational perturbative methods and bifurcation of bound states from the essential spectrum. Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), no. 6, 1131–1161.
- [4] M. Badiale and A. Pomponio. Bifurcation results for semilinear elliptic problems in \mathbb{R}^N (2002). Preprint.
- [5] L. Caffarelli, R. Kohn and L. Nirenberg. First order interpolation inequalities with weights. Compositio Math., 53 (1984), no. 3, 259–275.
- [6] F. Catrina and Z.-Q. Wang. On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions. Comm. Pure Appl. Math., **54** (2001), no. 2, 229–258.
- [7] F. Catrina and Z.-Q. Wang. Positive bound states having prescribed symmetry for a class of nonlinear elliptic equations in \mathbb{R}^N . Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), no. 2, 157–178.
- [8] K. S. Chou and C. W. Chu. On the best constant for a weighted Sobolev-Hardy inequality. J. Lond. Math. Soc., II. Ser., 48 (1993), no. 1, 137–151.
- [9] V. Felli and M. Schneider. Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type. Journal of Differential Equations, 191 (2003), 121–142.
- [10] V. Felli and M. Schneider. Regularity results for elliptic equations of Caffarelli-Kohn-Nirenberg type (2003). Preprint.
- [11] C. E. Gutiérrez. Harnack's inequality for degenerate Schrödinger operators. Trans. Amer. Math. Soc., **312** (1989), no. 1, 403–419.
- [12] J. Heinonen, T. Kilpeläinen and O. Martio. *Nonlinear potential theory of degenerate elliptic equations*. The Clarendon Press Oxford University Press, New York (1993).
- [13] S. Krömer. Symmetriebrechung bei Variationsproblemen (2002). Diplomarbeit, Universität Augsburg.

- [14] Y. Li. Prescribing scalar curvature on \mathbb{S}^n and related problems. I.. J. Differ. Equations, **120** (1995), no. 2, 319–410.
- [15] R. Schoen and D. Zhang. Prescribed scalar curvature on the n-sphere. Calc. Var. Partial Differential Equations, 4 (1996), no. 1, 1–25.
- [16] R. M. Schoen. On the number of constant scalar curvature metrics in a conformal class. In Differential geometry. A symposium in honour of Manfredo do Carmo, Proc. Int. Conf., Rio de Janeiro/Bras. 1988, Pitman Monogr. Surv. Pure Appl. Math. 52, 311-320 (1991).
- [17] D. Smets. Nonlinear Schroedinger equations with hardy type potential and critical nonlinearities (2001). Preprint.
- [18] S. Terracini. On positive entire solutions to a class of equations with a singular coefficient and critical exponent. Adv. Differential Equations, 1 (1996), no. 2, 241–264.

SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI, S.I.S.S.A., VIA BEIRUT 2-4, 34014 TRIESTE, ITALY

 $E ext{-}mail\ address: felli@sissa.it}$

MATHEMATISCHES INSTITUT, IM NEUENHEIMER FELD 288, D-69120 HEIDELBERG, GERMANY *E-mail address*: mschneid@mathi.uni-heidelberg.de