UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA DISCIPLINA: CIRCUITOS ELÉTRICOS I

Aluno(a):_

Data:	
Matrícula:	

Reposição 2º Estágio

1 - Mostre que os dois enrolamentos magneticamente acoplados da figura 1 podem ser substituídos

por um indutor com indutância $L_{ab} = \frac{L_1 L_2 - M^2}{L_1 + L_2 - 2M}$; (2,0)

M = Indutância mútua

2 – No circuito mostrado na figura 2 a chave comuta entre as posições A e B a intervalos regulares e iguais a L/R. Após um determinado número de ciclos, a corrente se torna periódica e oscila entre os limites I_1 e I_2 , onde I_1 < I_2 . A curva descrita pela corrente entre os deslocamentos de I_1 -> I_2 e I_2 -> I_1 , são segmentos de exponencial, crescente e decrescente, respectivamente. Determine as expressões de I_1 e I_2 , a partir dos valores de I_2 , I_3 , I_4 e I_5 , I_6 e I_8 , I_8 e I_8 e I_8 e I_8 , I_8 e I_8 e

3 – Para o circuito abaixo determine $v_1(t)$ e $v_2(t)$. A chave comuta de a para b após um longo tempo na posição a. (3.0)

Figura 3