Diff costi + (nt) +
$$\frac{1}{t-2}$$

Lund domain:

(0,2) (2,00)

Q what does a vector $7(t) = 2\times (0, y(t), z(t))$

Traces out curw in $1/2$:

The first $\frac{1}{t-1}$ $\frac{1}{t-1}$

$$\int te^{2t} dt = te^{2t} - te^{2t} - e^{2t} + C,$$

$$\int te^{2t} dt = \int te^{2t} dt = te^{2t} - e^{2t} + C,$$

$$\int te^{2t} dt = \int te^{2t} dt = te^{2t} - e^{2t} + C,$$

$$\int te^{2t} - te^{2t} + te^{2t} + te^{2t} + te^{2t} + te^{2t}$$

$$\int te^{2t} + te^{2t} + te^{2t} + te^{2t} + te^{2t}$$

$$\int te^{2t} + te^{2t} + te^{2t} + te^{2t}$$

$$\int te^{2t} - e^{2t} + te^{2t} + te^{2t}$$

$$\int te^{2t} - e^{2t} + te^{2t}$$

$$\int te^{2t} - e^{2t} + te^{2t}$$

$$\int te^{2t} - e^{2t} + te^{2t}$$

$$\int te^{2t} - e^{2t}$$

$$\int te^{2t} -$$