

Figure 1

A

wild type

sev-wg

sev-wg, lgs^{S17}/+

B

C

Figure 2

Figure 2: *legless*

AAAAAAA 6909

Figure 3

A

yw x lgs anti-sense

yw x lgs sense

B

Figure 4

Figure 5

A

EGFP-Lgs

EGFP-Lgs + pcDNA3-Arm-NLS

B

Anti-EGFP

5C

		BAIT fusions: pLex						
		Lgs 1-1464	BCL9 199-392	BCL9 1-1426	Dco+	ΔArmC	ΔB-Cat	Pan
PREY fusions: pJG4-5	Igs364-555							
	Igs1-385							
	Igs1-732							
	Igs364-1090							
	Igs726-1464							
	Igs1-1464				+	+	n.d.	+
	BCL9 199- 392					+	n.d.	
	BCL91-1426					+	+	
	Dco+	+						
	DAXin	+				+		
	ΔArmC	+	+	+				+
	B-Cat	+	+	+				
	Pan	+	+			+		
	pJG4-5	+	+	+		+	+	

+: interaction seen in yeast two-hybrid assay

-: no interaction seen in yeast two-hybrid assay

n.d.: not done

numberings refer to amino acid positions.

5 D

5 E

Figure 6

Figure 7

A

7B

Sequence homology domain 1: 57.1% identity in 28 aa

	320	330	340
LGS	IFVFSTOLANKGAESVLSGQFQTIAYH		
	...:.....:.....:: .. .:....:		
BCL9	VYVFSTEMANKAAEAVIKGQVETIVSFH		
	180	190	200

Sequence homology domain 2: 31.4% identity in 35 aa

	520	530	540
LGS	ENLTPQQRHREEQLAKIKKMNQFLFPENENSVGA		
	...:.... : ..: .. .: .. .: .. .: ..		
BCL9	DGLSQEQLEHRRERSLQTLLRDIQMLFPDEKEFTGA		
	350	360	370
			380

Sequence homology domain 3: 46.7% identity in 15 aa

	710	720
LGS	QMEWSKIQHQFFER	
	:... :.....:..:	
BCL9	QIAWLRKQEFYEEK	
	470	480

Sequence homology domain 4: 66.6% identity in 9 aa

	760
LGS	LQGPPPFYH
	...:.....:
BCL9	VRGPPPPYQ
	520

Sequence homology domain 5: 22.3% identity in 112 aa

	770	780	790	800	810	820
LGS	SASVPIATQSPNPSSEPNLSLPSPTTAAVMGLPTNSPSMDGTGSSLGSVPQANTSTVQA					
	... :..:..: .. : .. : .. : .. : .. : .. : .. : .. : .. : ..					
BCL9	GPPPPTASQPASVNIPGSLPSSTPYTIMPPEPTLSQNPLSIM-MSRMSKFAMPSSTFLYHD					
	970	980	990	1000	1010	1020
	830	840	850	860	870	
LGS	GTITVLSANKNCFQADTPSPSNQNRSRNTIGSSSVLTHNLSSNPSTPLSHLSP					
	... : .. : .. : .. : .. : .. : .. : .. : .. : .. : .. : ..					
BCL9	AIRTVASSDDDSPPAREPNLPSMINMPGMGINTQNPRIISGPNPVUPMPTLSP					
	1030	1040	1050	1060	1070	

Sequence homology domain 6: 43.8% identity in 16 aa

	1080
LGS	NPKMCVAGGPNGPPGF
	... : .. : .. : ..
BCL9	DAALCKPGPGGGPDSF
	1190
	1200

Figure 8

A

ATGCATTCCAGTAACCTAAAGTGAGGAGCTCTCCATCAGGAAACACACA
GAGTAGCCCTAAGTCAGCAGGAGGTGATGGTCCGTCCCCCTACAGTGA
TGTCCCCATCTGGAAACCCCCAGCTGGATTCAAATTCTCCAATCAGGGT
AAACAGGGGGGCTCAGCCAGCCAATCCCAGCCATCCCCCTGTGACTCCAA
GAGTGGGGGCCATAACCCCTAAAGCACTCOCTGGGCCAGGTGGGAGCATGG
GGCTGAAGAATGGGGCTGGAAATGGTGCCAAGGGCAAGGGAAAAGGGAG
CGAAGTATTCCGCCGACTCCTTGATCAGAGAGATCCTGGGACTCCAAA
CGATGACTCTGACATTAAAGAATGTAATTCTGCTGACCACATAAAGTCCC
AGGATTCCCAGCACACACCACACTCGATGACCCCATCAAATGCTACAGCC
CCCAGGTCTTCTACCCCTCCATGGCCAAACTACTGCCACAGAGCCAC
ACCTGCTCAGAAGACTCCAGCCAAGTGGTGTACGTGTTCTACTGAGA
TGGCCAATAAAGCTGCAGAAGCTGTTGAAGGGCCAGGTGAAACTATC
GTCTCTTCCACATCCAGAACATTCTAACAAACAAGAOAGAGAGAACGAC
AGCGCCTCTGAACACACAGATATCTGCCCTCGGAATGATCCGAAACCTC
TCCCACAAACAGCCCCCAGCTCOGGCCAACCCAGGACCAGAACCT
AATACCAAGACTGCAGCCAACTOCACCCATTCCGGCACCAAGCACCAC
TGCGCACCACCGTCCCTGGACCGGGAGAGTOCTGGGGTAGAAAACA
AACTGATTCTCTGTAGGAAGTCTGCGAGCTCCACTCCACTGCC
GATGGTACTGGGCCAACTCAACTCCAAACAATAGGGCAGTGACCCCTGT
CTCCAGGGGAGCAATAGCTCTCAGCAGATCCAAAGGCCCTCCGCCTC
CACCAGTGTCCAGTGGGAGGCCACACTGGGAGAGAACCGATGGC
CTATCTCAGGAGCAGCTGGAGCACCGGGAGCGCTCCCTACAAACTCTCAG
AGATATCCAGCGCATGCTTTCTGATGAGAAAGAACCTCACAGGAGC
AAAGTGGGGGACCGCAGCAGAACATCTGGGTATTAGATGGCCTCAGAAA
AAACCAAGGGCCAATACAGGCATGATGGCCAATGCCAAAGCCTAGG
TAAGGGACCTGGGCCCGGACAGAOGTGGAGCTCCATTGGCCCTCAAG
GACATAGAGATGTACCCCTTCTCCAGATGAAATGGTCCACCTCTATG
AACTCCAGTCTGGGACCATAGGACCCGACCACCTGACCATATGACTCC
CGAGCAGATAGCGTGGCTGAAACTGCAGCAGGAGTTATGAAGAGAAGA
GGAGGAAGCAGGAACAAGTGGTGTCCAGCAGTGTTCCCTCCAGGACATG
ATGGTCCATCAGCAOGGCCCTGGGAGTGGTCCGAGGACCCCCCCCCCTCC
ATACCAGATGACCCCTAGTGAAGGCTGGCACCTGGGGTACAGAGCCAT
TTCTGATGGTATCAAACATGCCACATTCTGCCCTGGGAGGGCATGGCT
CCCCACCCCCAACATGCCAGGGAGCCAGATGCGCCTCCCTGGATTGCAGG
CATGATAAAACTCTGAAATGGAAGGGCCGAATGTCCCCAACCCCTGCATCTA
GACCAGGTCTTCTGGAGTCAGTGGCCAGATGATGTGCCAAAAATCCCA
GATGGTCGAAATTCTCTGGCCAGGGCATTTCAGGGTGTCCCTGGCG
AGGGGAACGCCCTCCAAAACCCCCAAGGATTGTCAGAGAGATGTTTCAGC
AGCAGCTGGCAGAGAAACAGCTGGTCTCCCCCAGGGATGGCCATGGAA
GGCATCAGGCCCCAGCATGGAGATGAAACAGGATGATTCCAGGCTCCAGCG
CCACATGGAGGCCTGGGATAAACCCCATTTCCCTCGAATACCAGTTGAGG
GCCCTCTGAGTOCTTCTAGGGGTGACTTCCAAAAGGAATTCCCCCACAG

: Figure 8A

ATGGGCGCTGGTCGGGAACCTGAGTTGGGATGGTTCCTAGTGGGATGAA
GGGAGATGTCAATCTAAATGTCAACATGGGATCCAACCTCTCAGATGATA
CTCAGAAGATGAGAGAGGGCTGGGCGGGCCCTGAGGAGATGCTGAAATT
CGCCCAGGTGGCTCAGACATGCTGCTGCTCAGCAGAAGATGGTGCAC
GCCATTGGTGAGCACCCCCAGCAGGAGTATGGCATGGGCCCCAGACC
TCCCTCCATGTCTCAGGGTCCAGGCAGCAACAGTGGCTTGCGGAATCT
AGAGAACCAATTGGGCGGACAGAGGACTAACAGCGGCTCAGTCATAT
GCCACCACTACCTCTCAACCCCTCCAGTAACCCCACAGCCTCAACACAG
CTCCTOCAGTCAGCGGGCTGGGAGGAAAGGCTGGATATATCTGTG
GCAGGCAGCCAGGTGCATTCCCCAGGCATTAACGCTCTGAAGTCTCCCAC
GATGCACCAAGTCAGTCACCAATGCTGGCTGCGGCTGGGAAACCTCA
AGTCCCCCAGACTCATGCGAGCTGGCAGGCATGCTGGCGGGCCAGCT
GCTGCTGCTCCATTAAAGTCCCCCTGTTGGGTCTGCTGCTGCTTC
ACCTGTCCACCTCAAGTCTCCATCACTCCTGCCCGTCACCTGGATGGA
CCTCTCTCCAAAACCTCCCCCTCAGAGTCCTGGATCCCTCAAACCAT
AAAGCACCCCTCACCATGGCCTCCCCAGCCATGCTGGGAAATGTAGAGTC
AGGTGGCCCCCAGCTCCTACAGCCAGGCGCTGCGCTGTGAATATCC
CTGGAAAGTCTTCCCTCTAGTACACCTTATACCATGCCTCCAGAGCCAACC
CTTCCCCAGAACCCACTCTCTATTATGATGTCGAAATGTCAGTTGC
AATGCCAGTTAACCCCCGTTATACCATGATGCTATCAAGACTGTGGCCA
GCTCAGATGACGACTCCCCCTCAGCTCGTTCTCCCAACTGCCATCAATG
AATAATATGCCAGGAATGGCATTAAATACACAGAACCTCGAATTTCAGG
TCCAAACCCCGTGGTCCGATGCCAACCCCTCAGCCCAATGGGAAATGACCC
AGCCACTTTCTCACTCCAAATCAGATGCCCTCTCCAAATGCCGTGGGACCC
AACATACCTCCTCATGGGGTCCCAATGGGCGCTGGCTGATGTCACACAA
TCCTATCATGGGGCATGGGTCCAGGAGCCACCGATGGTACCTCAAGGAC
GGATGGGCTTCCCCAGGGCTTCCCTOCAGTACAGTCTCCCCCACAGCAG
GTTCCATTCCCCCACAATGGCCOCAGTGGGGGGCAGGGCAGCTTCCAGG
AGGGATGGTTTCCCCAGGAGAAGGCCCCCTGGCGCCCCAGCAACCTGC
CCCAAAGTTCAGCAGATGCAGCACTTGCAAGCCTGGAGGCCCCGGGGT
CCTGACTCCTTCACTGTCCTGGGAACAGCATGCGCTGGTGTACAGA
CCAGATCTGCAGGAGGTACCGACCTGGAGCCACCGAACCTGAGT
TTGATCTATCCCCCATTATTCCATCTGAGAAGGCCAGCCAGCCTGCAA
TATTTCCCTCGAGGGGAAGTCCAGGCCGTAACAGCCCCAGGGCTCTGG
ACCTGGGTTTACACATGCAGGGATGATGGCGAACAGCCCCCAGAA
TGGGACTAGCATTACCTGGCATGGAGGTACAGGCGACTGGGAACCTCG
GACATCCCTTGGTACAGCTCCATGCCAGGCCACACCCCATGAG
ACCACCAAGCCTTCTCCAACAAAGGCATGATGGGACCTCACCATCGGATGA
TGTCAACAGCACAATCTACAATGCCCGGCCAGGCCACCGCTGATGAGCAAT
CCAGCTGCTGOOGTGGCATGATTCCTGGCAAGGATGGGGCGCTGCCGG
GCTCTACACCCACCCCTGGCGCTGTGGGCTCTCCAGGCATGATGATGTCCA
TGCAGGGCATGATGGGACCCAAACAGAACATCATGATCCCCCACAGATG
AGGCCCCGGGGCATGGCTGCTGACGTGGGATGGTGGATTAGCCAAGG
ACCTGGCAACCCAGGAAACATGATGTTTAA

BASLER ET AL.

Figure 8B

B

MHSSNPKVRSSPSGNTQSSPKSKQEVMVRPPTVMSPSGNPQLDSKFSNQG
KQGGSAQSOPSPCDSKSGGHTPKALPGPGGSMGLKNGAGNGAKGKGKRE
RSISADSDFDQRDPGTPNDDSDIKECNSADHIKSQDSQHTPHSMTPSNATA
PRSSTPSHGOTTATEPTPAQKTPAKVYVFSTEMANKAAEAVLKGQVETI
VSFHIQNISNNKTERSTAPLNTQISALRNDPKPLPQQPPAPANQDQNSSQ
NTRLQPTPPIPAPAKPAAPPRPLDRESPGVENKLPSVGSPASSTPLPP
DGTGPNSTPNRAVTPVSQGSNSSSADPKAPPVVVSSGEPPTLGENPDG
LSQEQLERHRERSLQTLRDIQRMLFPDEKEFTGAQSGGPQQNPVGVLDPQK
KPEGPIQAMMAQSQSLGKGPGRITDVGAPFGPQGHDRVFPSPDEMPPSM
NSQSGTIGPDHLDHMTPEQIAWLKLQQEFYEEKARKQEQQVQQCSLQDM
MHQHGPRGVWRGPPPYQMTPSEGWAPGGTEPFDGINMPHSLPPRGMA
PHPNMPGSQMRLPGFAGMINSEMEGPNVNPASRPGLSGVSWPDDVPKIP
DGRNPPPGQGIFSGPGRGERFPNPOGLSEEMFOQQLAEKQLGLPPGMAME
GIRPSMEMNRMIPGSQRHMEPGNNPIFPRIPVEGPLSPSRGDFPKGIPPO
MGPGRELEFGMVPSPGMKGDVNLNVNMGNSNSQMIPOKMREAGAGPEEMLKL
RPGGSDMLPAQKIMVPLPFGEHPOQLEYGMGPRPFLPMSQGPGNSGLRNIL
REPIGPDQRTNSRLSHMPLPLNPSSNPTSINTAPPVQRGLGRKPLDISV
AGSQVHSPGINPLKSPTMHQVQSPMLGSPSGNLKSPQTPSQLAGMLAGPA
AAASIKSPPVLSAAASPVHLKSPSLPAPSPGWTSSPKPLQSPGIPPNH
KAPLTMASPAMLGNVESGGPPPTASQPASVNIPGSLPSSTPYTMPEPT
LSQNPLSIMMSRMSKFAMPSSTPLYHDAIKTVASSDDDSPPARSPNLPSM
NNMPGMGIQTQNPRISSGPNPWPMPTLSPMGMTQPLSHSNQMPSPNAVGP
NIPPHGVPMPGGLMSHNPIMGHGSQEPPMVPOGRMGFPQGFPPVQSPPQQ
VPPFHNGPSGGQGSFPGGMGFPGEGPLGRPSNLPOSSADAALCKPGGPGG
PDSFTVLGNSMPSVFTDPDLQEVRPGATGIPEFDLSRIIPSEKPSQTLQ
YPPRGEVPGPKQPGPGPGFSHMQGMMGEQAPRMGLALPGMGGPGPVGTP
DPLGTAPSMPGHNPMRPPAFLQQGMMGPHHRMMSPAQSMPGQPTLMSN
PAAAVGMIPGKDRGPAGLYTHPGPGVGSPGMMMSMQGMMGPOQQNIMIPPQM
RPRGMAADVGMGGFSQGPGNPGNMMF*

© 1980 by John Wiley & Sons, Inc.

Figure 9

Figure 10

A

ATGGCCTGCTTCCCACCCCTGCTGCCATCTCCTGCACCCCTAGGGCACAGTGGCATCT
CGGGAGCTGCTCAGCGGACAGACTAGGGTTACCCCCACCCAGGAGGAGAAGCTCCAG
GGAGCCCGCCGCTGTCCCCCGGGTATTGCCCTGCCCAAGCCAATGCACCCA
GAAAATAAATTGACCAATCATGGCAAGACAGGAAATGGCGGGGCAATCTCAGCACCAG
AATGTGAACCAAGGACCCACCTGCAACGTGGCTGAAGGGCGTGGGGCGGGAAACCAT
GGGGCCAAGGCCAACCAAGATCTGCCTAGCAACTCAAGTCTGAAGAACCCCCAGGCAGGG
GTGCCCTTCAGCTCGCTCAAGGCAAGGTGAAGAGGGACCGGAGTGTGTCTGGAC
TCTGGAGAGCAGCGAGAGGCTGGGACCCATCCCTGGATTCAAGAGGCCAAAGAGGTGGCG
CCGCGGAGTAAGCGGCCTGTGTGCTGGAGCGAAGCAGCGTACAGTGGGACGAATGG
TGCTCTGGACCGAACAGTGGAGGAGCAGAACAGCCATTGGGCCACCCACAAAGCTGCT
TTCAGAAAGACGGCTTCAGGACAAGGCATCACACTTCTCCAGCACGTACAGTCCT
GAAACCTCCAGGAGGAAGCTGCCCAAGCCCCAAGGCTCCTCTGGGCAGCAGGGC
CGAGTCATTGGAAACCTCTCGGAGGAGCTCCGTATCAAGGTGCAGATGGCAGGT
GGGCCGGCCTCAATCATGTCCTCAATCGCGACGGTGAATGCGAGTGGCTTGTCCAAGAG
CAGCTGGAGCATGGGAACGGTCCCTCCAGACGCTGGAGACATTGAGCGACTGCTGCTC
CGCAGCGGAGAGACTGAGCCCTCCTCAAGGGGCCAGGAGGAGCGGGCGGGTGAAG
AAATATGAGGAACCCCTGCAGTCATGATTTCACAGACACAGAGCCTAGGGGCCCG
CTGGAGCATGAAGTGCCTGGGACCCCGGGTGGGGACATGGGGCAGCAGATGAACATG
ATGATAACAGAGGCTGGGCCAGGACAGCCTCACGCTGAGCAGGTGGCTGGCGAAGCTG
CAGGAGGAGTACTACGAAGAGAAACGGCGAAAGAGGAACAGATTGGCTGCATGGGAGC
CGTCCTCTGCAGGACATGATGGCATGGGCATGGTGAAGGGGCCCGCCTCCT
TACACAGCAAGCCTGGGATCAGTGGCCACCTGGAATGGGTGCGCAGCTGCGGGGCC
ATGGATGTTCAAGATCCCATGCAGCTCGGGCGGACCTCCCTTCTGGGCCCGTTTC
CCAGGCAACCAGATAAACGGTACCTGGTTGGGGCATGCAGAGTATGCCATGGAG
GTGCCCATGAATGCCATGCAGAGGCCGTGAGACCAGGCATGGCTGGACCGAAGACTG
CCCCCTATGGGGGACCCAGCAATTGCCCAGAACACCATGCCCTACCCAGGTGGCAG
GGTAGGGGGAGCGATTCACTCCCCGGGTCCGTGAGGAGCTGCTGGCAGCAGCTG
CTGGAGAACGGTGCATGGCATGCAGGCCCTGGCATGGCAGGAGTGGCATGG
CAGAGCATGGAGATGGAGCGGATGATGCAGGCGCAGCAGATGGATCTGCCATGTT
CCCGGGCAGATGGCTGGTGGTGAAGGCCTGGCGGACTCCATGGCATGGAGTTGGT
GGAGGCCGGGCCTCTGAGCCCTCCATGGGCAGTCTGGCTGAGGAGGTGGACCCA
CCCATGGGCAGGCAACCTCAACATGAACATGAATGCAACATGAACATGAACATGAAC
CTGAACGTGCAGATGACCCCGCAGCAGCAGATGCTGATGTCAGAAGATGCGGGCCCT
GGGACTTGAATGGGCCCTCAGTCTGAGGAGATGGCCGGTTCAGTCAAGTCC
AACAGCAGTGGCATGGTGCCTTGCCTTCTGCCAACCCGCCAGGACCTCTCAAGTCGCC
CAGGTCTCGGCTCCTCCCTCAGTGTCCGTTCAACCACTGGCTCGCCAGCAGGCTCAAG
TCTCTTCCATGGCGGTGCCTCTCAGGCTGGTGCCTCACCCAAAGACGGCCATGCC
AGCCCGGGGTCTCCAGAACAGCAGCCCTCTCAACATGAACATCTCCACCAACCTG
AGCAACATGGAACAGGACCCACACCTTCCCAGAACCCCTGTCAGTGTGATGACCCAG
ATGTCCAAGTACGCCATGCCAGCTCCACCCCGCTCTACCACAAATGCCATCAAGACCAC
GCCACCTCAGACGACGAGCTGCTGCCGACCGGCCCCCTGCTGCCCTCCACCAACCG
CAGGGCTCCGGCCAGGTGGCCCGACTCCCTGAATGCCCTGTGGCCCAGTGCCAGC
TCCTCCAGATGATGCCCTTCCCCCTCGGCTGCAGCAGCCATGGTGCCTGGCC
ACTGGGGGTGGGGCGGGGGCTGGCCTGCAGCAGCAGTACCCGTAGGCATGGCC
CCTCCCGAGGACCTGCCAACAGCCGAGGCCAGGCCCCATGCCCTCCAGCAGCACCTGATG
GGCAAAGCCATGGCTGGCGCATGGCGACGCATACCCACCGGGTGTGCTCCCTGGGTG
GCATCAGTGCTGAACGACCCGAGCTGAGCGAGGTGATCCGGCCACCCAAACGGGATC
CCCGAGTTGACTGTCGAGGATCATCCCTCTGAGAACGCAAGCAGCACCTCCAGTAC
TTCCCCAAGAGCGAGAACGACCCCAAGGCTCAGCCCCCTAAATCTGCATCTCATGAAC
CTGCAGAACATGATGGCGGAGCAGACTCCCTCTGCCCTCCACCTCCAGGCCAGCAG
GGCGATCGGCCCTGGTGGTGAACGGGTACCCGGGCTATGGCGCCGGCGAGCG
TGCCCTCTGTGCCGCCAGACCTTCTGTGGTGCAGGTTACAGCCGCAAGCAC
CAGCGGAGCTGAAGGAGGCTTGGAGAGGCCCTGCCAGGTGGAGGCGGCCGCAAG
GCCATCCCGCCGCTCAGGTGGAGCGCTATGTGCCGAACACGAGCGATGCTGCTGGTGC
CTGTGCTGCCGTGTGAGGTGCAGGAAACACCTGAGGCATGGAAACCTGACGGTGC
TAC

10 20 30 40 50 60 70 80 90

Figure 10

GGGGGGCTGCTGGAGCATCTGCCAGCCCAGAGCACAAGAAAGCAACCAACAAATTCTGG
TGGGAGAACAAAGCTGAGGTCCAGATGAAAGAGAAGTTCTGGTCACCTCCCAGGATTAT
GCGCGATTCAAGAAATCCATGGTGAAGGTTGGATTCTATGAAGAAAAGGAGGATAAA
GTGATCAAGGAGATGGCAGCTCAGATCCGTGAGGTGGAGCAGAGCCGACAGGAGGTGGTT
CGGTCTGTCTTAGAGACAGGTCCCCAAGATAACGCCCTCACAGTCGGTCCCCCGCCGTC
CTCTCCCAGCGCACGCTCAAGTCCGGTGCCTCCCCCGCAGACCCCCGAGGCGCACCCCT
CAAGCTCGGTGCCTCTGCCGCCCCCGCAGGGCGCCCTCAAGCCTGAGCCCCCGGGCGC
ACCCCTCAAGCTCGGTGTACCCCCCATACCACCCGCAAGGCGCCCTCATGCCGCGAAG
ACTTCGCCCCGCCCAGGTGCACCCGTCAAGCCCCGAATAAAACCCAGTCACTCCAACCT
GCAGGCAAAGCTAGAAAAACTGCGCTGCATTGCAAACAAAAGCTCTTGGCGATGAC
GATACTGTTGGGTGTGAAACTGTCAATTGCTAACTACGATCTGTGA

B

FKEDGFQDKASHFFSSTYSPETSRRKLPOAKPASFLGQQGRVWKPLSEE
LRDQGADAAGGPASIMSPIATVNASGLSKEQLEHRERSLQTLRDIERILL
RSGETEPPFLKGAPRRSGGLKKYEEPLQSMISQTQSLGGPPLHEVPGHPP
GGDMGQQMNMIMIQRLGQDSLTPEQVAWRKLOEEYYEEKRKEEQIGLHGS
RPLQDMIMGGMGVRRGPPPYHSKPGDQWPPGMGAQLRGPMVDQDPMQLR
GGPPFPGPRFPGNQIQRVPFGGMQSMPMEVPMNAMQRPVPPGMGWTEDL
PPMGGPSNFAQNTMPYPGGQGEAERFMTPRVREELLRHQILLEKRSMGMQR
PLGMAGSGMGQSMEMERMVMQAHRQMDPAMPPGQAGGEGLAGTPGMEMFG
GGRGLLSSPMGQSGLREVDPPMGPQGNLNMMNNMMNNMMNNLNQVQMTPQQQ
MLMSQKMRGPQDLMGPQQLSPEEMARVRAQNSSGMVPLPSANPPGPLKSP
QVLGSSLSVRSPTGSPSRLKSPSMAVPSPGWVASPKTAMPSPGVSONKQP
PLNMNSSTTLSNMEQDPTPSQNPLSLMMTQMSKYAMPSSTPLYHNAIKTI
ATSDDELLPDRPLPPPPPPQGSGPGGPDLSNAPCGPVPSSSQMMPFPPR
LQQPHGAMAPTGGGGGGPGLQQHYPSGMALPPEDLPNQPPGPMPQQHLM
GKAMAGRGMGDAYPPGVLPGVASVLNDPELSEVIRPTPTGIPEFDLSRIIP
SEKPSSTLQYFPKSENQPPKAQPPNLHLMNLQNMMAEQTPSRPPNLPGQQ
GDRPLWWIPGTRAMAPAQRCPCLCRQTFFCGRGHVYSRKHQRLKEALER
LLPQVEAARKAIRAAQVERYVPIEHEROCWCLOCAGCEVREHLSHGNLTLY
GGLLEHLASPEHKKATNKFWWENKAEVQMKEKFLVTPQDYARPKKSMVKG
LDSYEEKEDKVIKEMAAQIREVEQSRQEVRSVLETGPPRYALTVRSPAV
LSRRTLKGAFPPQTPEAHPQARCLCAPRRGALKPEPPGRTLKLGVPPT
TRKARPHAAKTSPRPRCTRQAPNKTQSLQAGKARKTALHLQTKALVGDD
DTVLGVKLSIANYDL

100 90 80 70 60 50 40 30 20 10

Figure 11

A

B

Figure 12

A

Figure 12B

Figure 12C

		In vitro interaction
N	1 2 3 4 5 6 7 8 9 10 11 12 13	C ++
	1 2 3 4 5 6 7 8 9 10 11 12 13	C ++
		C -
N	1 2 3 4 5 6 7 8 9 10 11 12 13	++
N	1 2 3 4 5 6 7 8	+++
N	1 2 3 4 5 6	+++
N	1 2 3 4	++
N	1 2	-
	1 2 3 4 5 6 7 8 9 10 11 12 13	++
	1 2 3 4 5 6 7 8	+++
	1 2 3 4 5 6	+++
	1 2 3 4	++
	1 2	-
	3 4 5 6 7 8	(+)
	3 4 7 8	(-)
	7 8 9 10 11 12 13	(-)
	9 10 11 12 13	(-)

Figure 13

A

B

Figure 13

C

IVT GST GST-
input β -Cat

IVT-hLgs →

D

IVT GST GST-
input β -Cat

IVT-hLgsdn →

Figure 14

pMT-EGFP (μg) 1.5 1.5 1.5 1.5 1.5 1.5

pMT-dLgs (μg) - 2 2 2 2 2

Figure 15

A

B

