6 (a) Define the coulomb.

______[1]

(b) A resistor X is connected to a cell as shown in Fig. 6.1.

Fig. 6.1

The resistor is a wire of cross-sectional area A and length *l*. The current in the wire is *I*.

Show that the average drift speed v of the charge carriers in X is given by the equation

$$v = \frac{I}{nAe}$$

where e is the charge on a charge carrier and n is the number of charge carriers per unit volume in X.

[3]

(c) A 12V battery with negligible internal resistance is connected to two resistors Y and Z, as shown in Fig. 6.2.

Fig. 6.2

The resistors are made from wires of the same material. The wire of Y has a diameter	r <i>d</i> and
length <i>l</i> . The wire of Z has a diameter 2 <i>d</i> and length 2 <i>l</i> .	

(i)	Determine the ratio	
	average dr	ft speed of the charge carriers in Y
	average dri	ft speed of the charge carriers in Z
		ratio =[3]
(ii)	Show that	
		resistance of Y
		$\frac{\text{resistance of Y}}{\text{resistance of Z}} = 2.$
		[2]
(iii)	Determine the potential of	lifference across Y.
		notantial difference
		potential difference =
(iv)	Determine the ratio	
		$\frac{\text{power dissipated in Y}}{\text{power dissipated in Z}}.$
		power dissipated in ∠

ratio =[1]

[Total: 12]

5	(a)	(i)	State what is meant by	y an	electric d	current
---	-----	-----	------------------------	------	------------	---------

		[1]
(ii)	Define electric potential difference (p.d.).	
		[4]

(b) A power supply of electromotive force (e.m.f.) 8.7 V and negligible internal resistance is connected by two identical wires to three filament lamps, as shown in Fig. 5.1.

Fig. 5.1 (not to scale)

The power supply provides a current of 0.30 A to the circuit.

The filament lamps are identical. The I-V characteristic for **one** of the lamps is shown in Fig. 5.2.

Fig. 5.2

© UCLES 2016

(i)	Show that the resistance of each connecting wire is 2.0Ω .	
		[2]
(ii)	The resistivity of the metal of the connecting wires does not vary with temperature. On Fig. 5.2, sketch the $I-V$ characteristic for one of the connecting wires.	[2]
(iii)	Calculate the power loss in one of the connecting wires.	
	power = W	[2]
(iv)	Some data for the connecting wires are given below.	
	cross-sectional area = 0.40mm^2 resistivity = $1.7\times10^{-8}\Omega$ m number density of free electrons = $8.5\times10^{28}\text{m}^{-3}$	
	Calculate	
	1. the length of one of the connecting wires,	
	length = m	[2]
	2. the drift speed of a free electron in the connecting wires.	
	drift speed = ms ⁻¹	[2]

© UCLES 2016 9702/22/F/M/16 **[Turn over**

[Total: 12]

5 (a) The I-V characteristic of a semiconductor diode is shown in Fig. 5.1.

Fig. 5.1

(i)	Use Fig. 5.1 to explain the variation of the resistance of the diode as $\it V$ increases from zero to 0.8 $\it V$.
	[3

(ii) Use Fig. 5.1 to determine the resistance of the diode for a current of 4.4 mA.

resistance = Ω [2]

© UCLES 2015 9702/23/O/N/15

(b) A cell of e.m.f. 1.2V and negligible internal resistance is connected in series to a semiconductor diode and a resistor R₁, as shown in Fig. 5.2.

Fig. 5.2

A resistor R_2 of resistance 375 Ω is connected across the cell. The diode has the characteristic shown in Fig. 5.1. The current supplied by the cell is 7.6 mA.

Calculate

(i) the current in R_2 ,

current =	 Α	[1	1
04110111	•	г.	J

(ii) the resistance of R_1 ,

resistance =
$$\Omega$$
 [2]

(iii) the ratio

 $\frac{\text{power dissipated in the diode}}{\text{power dissipated in R}_2} \ .$