# Deep-Learning-Based Anomaly Detection for Connected and Autonomous Vehicles in Lane-Changing Scenarios

Chien Lin

Advisor: Chung-Wei Lin, Ph.D.

National Taiwan University
Taipei, Taiwan



### Outline

- **☐** Introduction
- ☐ Problem Formulation
- ☐ Proposed Approaches
- ☐ Experimental Results
- Conclusion

#### Introduction

- ☐ Advanced Driver Assistance Systems (ADAS)
  - Cooperative Adaptive Cruise Control (CACC), Lane Keeping Assistance System (LKA) and so on
  - ➤ Use vehicular communication to receive the environmental information like the position, velocity, and acceleration from the surrounding vehicles
- ☐ Wireless channels are vulnerable to security attacks
  - > Attackers can modify data transmitted from other vehicles
- ☐ Mitigation approaches should be provided to protect against attacks
  - Intrusion Detection Systems (IDS)

### Related Work

- ☐ Rule-based model [1]
  - > Based on the rules of human knowledge
- ☐ Probabilistic model [2]
  - Using multiple statistical techniques
- ☐ Deep-learning-based model [3]
  - > Iterated computation

<sup>[1] &</sup>quot;Lane-changing prediction in highway: Comparing empirically rule-based model mobil and a naive bayes algorithm," ITSC'21

<sup>[2] &</sup>quot;Highway discretionary lane changing behavior recognition using continuous and discrete hidden Markov model," ITSC'21

<sup>[3] &</sup>quot;An ensemble deep learning approach for driver lane change intention inference," Transportation Research Part C: Emerging Technologies '20

#### Contributions

- Propose stealthy attacks
  - Cannot be detected by a rule-based model
- ☐ Propose deep-learning-based models for anomaly detection
  - > The models achieve decent detection performances against the anomaly
- ☐ Have a general anomaly detection workflow
  - > The workflow can be used in different lane-changing environments
  - Highway, roundabout, and opposite overtaking
- ☐ Deploy the attacks directly into SUMO during the simulation
  - > Generate data to better reflect the real-world scenarios
  - > Establish the standards and specifications for the operations in SUMO

### Outline

- ☐ Introduction
- **☐** Problem Formulation
- ☐ Proposed Approaches
- ☐ Experimental Results
- Conclusion

# System Overview

- ☐ Information which assists lane changing can be compromised
- Detect whether a vehicle is attacked when it has a lanechanging intention
- ☐ Example:
  - Anomalous vehicle TL indicate itself as TL'



### **Definitions: Feature Vector**

- ☐ Consider 4 vehicles
  - > Ego vehicle
  - > Leading vehicle on the source lane
  - > Leading vehicle on the target lane
  - > Following vehicle on the target lane
- ☐ Feature vector **r** with dimension n
- $\Box \mathbf{r}^{(t)} = \left[ f_1^{(t)}, f_2^{(t)}, \dots, f_n^{(t)} \right]$ 
  - $\triangleright$  Example:  $f_1^{(t)}$  is the position of the ego vehicle at time t,  $f_2^{(t)}$  is the velocity of the ego vehicle at time t and so on

# **Definitions: Trajectory Vector**

- ☐ Feature vectors **r** can form a trajectory vector **R**
- □ w is the length of a trajectory vector R

$$\square$$
 R =  $\left[r^{(0)}, r^{(1)}, ..., r^{(w-1)}\right]$ 

☐ Example:

$$ightharpoonup r^{(0)} = [100, 10, 1], r^{(1)} = [110, 11, 1], r^{(2)} = [121, 11, 1]$$

$$ightharpoonup R = [r^{(0)}, r^{(1)}, r^{(2)}]$$

# Acceleration Bias Attack (1/2)

- ☐ Originally proposed in work [4], with some modifications
- $\square$  In a trajectory vector  $\mathbf{R}$ , there is an acceleration vector  $\mathbf{A}$

$$\square A = [a^{(0)}, a^{(1)}, ..., a^{(w-1)}]$$

☐ Example:

- $> a^{(0)} = [0,1,-1,0]$
- $\triangleright$  a<sup>(0)</sup> is also a vector, containing the acceleration of the ego vehicle, the acceleration of the leading vehicle on the source lane and so on

# Acceleration Bias Attack (2/2)

- ☐ By adding an offset vector **o**, we can obtain attacked acceleration vector **A'**
- ☐ Each vehicle has an unique seed **s**

$$\square A' = \left[a^{(0)} + o^{(0)}, a^{(1)} + o^{(1)}, \dots, a^{(w-1)} + o^{(w-1)}\right]$$

- $\triangleright$  o<sup>(t)</sup> = [0, 0(t, s<sub>1</sub>), 0(t, s<sub>tl</sub>), 0(t, s<sub>tf</sub>)]
- $\rightarrow$  0(t, s) = m · sin(0.02 · ((s + t) % 400))
- ☐ Stealthy attack
  - With law of physics, recalculate the attacked trajectory vector R'

# Acceleration Bias Attack Example

☐ Anomalous information about TL may indicate TL as TL'



# Mistiming Trajectory Attack

☐ Anomalous vehicles transmit outdated data about themselves

$$\Box \mathbf{r}^{(t)} = \left[ \mathbf{f}_1^{(t)}, \mathbf{f}_2^{(t)}, \dots, \mathbf{f}_n^{(t)} \right]$$

$$\square r'^{(t)} = \left[ f_1^{(t)}, f_2^{(t)}, f_3^{(t)}, f_4'^{(t)}, f_5'^{(t)}, \dots, f_{n-2}'^{(t)}, f_{n-1}'^{(t)}, f_n'^{(t)} \right]$$

# Mistiming Trajectory Attack Example



#### Data Selection: Overview

- We select the lane-changing scenarios that have greater importance
  - > The leading vehicle on the target lane blocks the lane-changing route
  - > The following vehicle on the target lane blocks the lane-changing route
  - Colliding with the leading vehicle on the target lane during a lane-changing maneuver
  - Colliding with the following vehicle on the target lane during a lane-changing maneuver
- We do not select scenarios that the leading vehicle is anomalous vehicle

☐ The leading vehicle on the target lane blocks the lanechanging route



☐ The following vehicle on the target lane blocks the lanechanging route



☐ Colliding with the leading vehicle on the target lane during the lane-changing maneuver



☐ Colliding with the following vehicle on the target lane during the lane-changing maneuver



# Detection Goal (1/2)

$$\Box F(R) = \begin{cases} 1, & \text{there is anomaly in R} \\ 0, & \text{there is no anomaly in R} \end{cases}$$

- $ightharpoonup TP = \{R' | F(R') = 1\}$
- $> FN = \{R' | F(R') = 0\}$
- $ightharpoonup FP = \{R \mid F(R) = 1\}$
- $ightharpoonup TN = \{R \mid F(R) = 0\}$

# Detection Goal (2/2)

- Both anomalous data and normal data have similar positional patterns
  - Detection models need to detect whether a vehicle performs the normal driving behavior
- ☐ Detection models detect whether the driving behavior of the vehicle is normal
  - Detect acceleration and velocity offsets
  - ➤ Detect whether information from the past aligns with the normal driving behavior at the current point in time

# **Detection Goal Example**



#### **Traffic Environments**

- ☐ Three traffic environments
  - > Highway, roundabout and opposite overtaking
  - > Provide a broader range of scenarios analysis
- ☐ Different driving behavior in traffic environments

# Highway

#### ☐ Heavy traffic flow

> Frequent lane changing by vehicle in order to maintain a smooth flow of traffic

#### ☐ High level of safety

Vehicles traveling at high speed on a highway can have life-threatening accidents with a single operational mistake



#### Roundabout

- ☐ Frequent lane changing
  - ➤ Vehicles drive on the inner lane during general circulation and change to the outer lane for leaving
- ☐ Exit-related driving behavior
  - Vehicles have frequent accelerations and decelerations when they near exits



# Opposite Overtaking

#### Dangerous situation

Put both the oncoming vehicles (leading vehicle) and the overtaking vehicle itself in significant danger

#### Inconsistent driving behavior

Vehicles perform unusual driving behavior when they encounter the emergency events



### Outline

- ☐ Introduction
- ☐ Problem Formulation
- **☐** Proposed Approaches
- ☐ Experimental Results
- Conclusion

Classifier Approach

- Binary classification
- Propose two deep-learning-based models
  - Long Short-Term Memory based RNN
  - ➤ Deep Neural Network
- ☐ Two machine-learning-based models / Rule-based model
  - Mainly for the comparison of deeplearning-based models



# Long Short-Term Memory (LSTM)

- ☐ LSTM is well-suited for processing time-series data
  - LSTM layer contains memory units that can capture and retain the long-term dependencies
- ☐ The long-term dependencies
  - How the behavior of a vehicle is affected by the surrounding vehicles



# Deep Neural Network (DNN)

- ☐ DNN is able to detect the abnormal driving behavior
  - > DNN can detect the abnormal driving behavior by significant differences in speed, position, or acceleration compared to surrounding vehicles



### Outline

- ☐ Introduction
- ☐ Problem Formulation
- ☐ Proposed Approaches
- **☐** Experimental Results
- Conclusion

# Setting

- ☐ All the experiment are running on the desktop with Intel Core i7-9700 CPU, and NVIDIA-2080Ti GPU
- ☐ Use SUMO (Simulation of Urban MObility) to generate training and testing data
- ☐ Three traffic environments are used in the simulation

#### SUMO

- ☐ SUMO is a simulation platform
  - > 5000 training data and 1000 testing data in highway and roundabout
  - > 1500 training data and 300 testing data in opposite overtaking
  - > 1:1 ratio between normal data and anomaly data
- ☐ Directly deploy the attacks into simulation
  - Generate data to better reflect the real-world scenarios.

# **Comparative Models**

- ☐ Support Vector Machine (SVM)
  - > Effectively handle high dimensional data and nonlinear problems
- ☐ Random Forest (RF)
  - High robustness and flexibility
- ☐ Rule-based model (RBS)
  - Physics rules
  - ➤ No sudden brake or acceleration

### Results: Acceleration Bias Attack

- ☐ Deep-learning-based models outperform other models
  - LSTM better than DNN due to its model characteristics that can handle time series data
  - > Rule-based model cannot detect the anomaly since our attacks are stealthy
- ☐ Longer data length leads to better result

| Environment /<br>Data Length | LSTM | DNN  | SVM  | RF   | RBS   |
|------------------------------|------|------|------|------|-------|
| Highway / 5                  | 0.92 | 0.86 | 0.74 | 0.79 | 0.03  |
| Highway / 10                 | 0.95 | 0.92 | 0.72 | 0.80 | 0.04  |
| Roundabout / 5               | 0.90 | 0.87 | 0.78 | 0.76 | 0.03  |
| Roundabout / 10              | 0.94 | 0.92 | 0.77 | 0.77 | 0.05  |
| Overtaking / 5               | 0.84 | 0.78 | 0.63 | 0.64 | <0.01 |
| Overtaking / 10              | 0.85 | 0.81 | 0.63 | 0.61 | <0.01 |

### Results: Acceleration Bias Attack

#### ☐ Highway

- > The normal driving behavior on the highway is much stricter
- > Easier to detect the added attack offset on acceleration and velocity

#### ☐ Roundabout

- > Vehicles have frequent acceleration and deceleration near exits
- > Harder to detect the added attack offset on acceleration and velocity

#### Opposite overtaking

Vehicles accelerate and decelerate to provide sufficient spaces for the opposite overtaking vehicles

# Results: Mistiming Trajectory Attack

- ☐ Deep-learning-based models outperform other models
- ☐ Longer time step intervals lead to better results
  - > The larger differences in driving behavior

| Environment /<br>Time step intervals | LSTM | DNN  | SVM  | RF   | RBS   |
|--------------------------------------|------|------|------|------|-------|
| Highway / 10                         | 0.72 | 0.66 | 0.60 | 0.51 | <0.01 |
| Highway / 20                         | 0.81 | 0.72 | 0.63 | 0.56 | <0.01 |
| Roundabout / 10                      | 0.86 | 0.83 | 0.65 | 0.64 | <0.01 |
| Roundabout / 20                      | 0.89 | 0.84 | 0.71 | 0.67 | <0.01 |
| Overtaking / 10                      | 0.70 | 0.61 | 0.61 | 0.59 | <0.01 |
| Overtaking / 20                      | 0.75 | 0.65 | 0.64 | 0.60 | <0.01 |

# Results: Mistiming Trajectory Attack

- ☐ Highway
  - > Some of the data are not ideal
- □ Roundabout
  - > Driving behavior is more likely to be affected by surrounding vehicles
- Opposite overtaking
  - The inconsistency of driving behavior makes it difficult to classify

#### Runtimes

- ☐ The testing time of detection models are not longer than 0.21 milliseconds per data
  - ➤ Suitable for real-time systems

| Model                      | LSTM | DNN | SVM | RF |
|----------------------------|------|-----|-----|----|
| Training Time<br>(minutes) | 14   | 15  | 2   | 3  |

| Model                                | LSTM | DNN  | SVM  | RF   |
|--------------------------------------|------|------|------|------|
| Testing Time per Data (milliseconds) | 0.21 | 0.07 | 0.03 | 0.05 |

### Outline

- ☐ Introduction
- ☐ Problem Formulation
- Proposed Approaches
- ☐ Experimental Results
- Conclusion

#### Conclusion

- Propose stealthy attacks
  - Cannot be detected by a rule-based model
- Propose deep-learning-based models for anomaly detection
  - > The models achieve decent detection performances against the anomaly
- ☐ Have a general anomaly detection workflow
  - > The workflow can be used in different lane-changing environments
  - > Analyzing the driving behavior in three different traffic environments
- ☐ Deploy the attacks directly into SUMO during the simulation
  - > Generate data to better reflect the real-world scenarios
  - > Establish the standards and specifications for the operations in SUMO

#### Future Work

- ☐ Explore more efficient detection approaches
  - Convolutional Neural Networks model (CNN)
  - Generative Adversarial Networks model (GAN)
- ☐ Explore powerful attack models
  - Collaborative Attacks
- ☐ Take actions after detecting the anomaly
  - Make vehicles stay away from anomalous vehicles

## Q&A

# Thank You!