线性代数 A1 解答合集

原生生物

* 陈发来老师班作业,配合作业合集查看

目录

第一周	
第一次作业 线性方程组	
第二次作业 线性方程组通解、行列式	
课堂小测	
思考题	
第二周	
第一次作业 行列式性质	
第二次作业 Cramer 法则	
思考题	
第三周	
第一次作业 行列式计算	
第二次作业 矩阵的运算	
课堂小测	
第四周	1
第一次作业 矩阵的多项式	1
第二次作业 矩阵的逆	1
课堂小测	1
思考题	
第五周	1
第一次作业 分块矩阵	1
第二次作业 初等方阵	
第六周	1
第一次作业 秩的定义	
第七周	1
第一次作业 秩的应用	1
第二次作业 秩的更多性质	1
祖告 小涮	1

第丿	\ 周	20
	第一次作业 模相抵	20
	思考题	20
第力	1 周	23
	第一次作业 不变因子	
	第二次作业	
	期中考试	
第十		27
	第一次作业 向量组的秩	27
	第二次作业 向量组秩的性质	27
第十	- 一 周	27
	 第一次作业 子空间	27
	思考题	29
		29
	第一次作业 一般线性空间	
	第二次作业 同态与同构	30
第十	├三周	31
	·一·· 第一次作业 交空间与和空间	31
		31
	第一次作业 补空间	
	第二次作业 线性映射	
	课堂小测	
	思考题	33
第十	├五周	34
	第一次作业 像与核	34
	第二次作业 坐标变换	35
	思考题	36
华二		9.0
	一六周 第一次	36
	第一次作业 相似的概念	36
	第二次作业 特征子空间	37
	思考题	37
第十	一七周	39
	第一次作业 不变子空间	39
	思考题	41

第一周

第一次作业 线性方程组

- 1. 两题的解分别为 (1,0,0) 与 $(\frac{7}{3},\frac{4}{3},\frac{1}{3},-\frac{2}{3})$ 。
- 2. (1) 不妨考虑实系数线性方程组。假设方程组 I 为 $u_1=0,u_2=0,\dots,u_p=0$,这里 u_i 为未知数 x_1,\dots,x_n 的函数,方程组 II 为 $v_1=0,\dots,v_q=0$,由线性组合可知

$$\exists \lambda_{jk} \in \mathbb{R}, \quad v_j = \sum_{k=1}^p \lambda_{jk} u_k$$

同理,设方程组 III 为 $w_1=0,\ldots,w_r=0$,由线性组合可知

$$\exists \mu_{ij} \in \mathbb{R}, \quad w_i = \sum_{j=1}^q \mu_{ij} v_j$$

由此可知

$$w_i = \sum_{j=1}^q \mu_{ij} \left(\sum_{k=1}^p \lambda_{jk} u_k \right) = \sum_{k=1}^p \left(\sum_{j=1}^q \mu_{ij} \lambda_{jk} \right) u_k$$

于是利用定义得证。

- (2) 由等价性可知 III 为 II 的线性组合、II 为 I 的线性组合,由此有 III 为 I 的线性组合; I 为 II 的线性组合、II 为 III 的线性组合,由此有 I 为 III 的线性组合。两者结合得结论。
- 3. 两题的解分别为 $\left(\frac{7}{3}, \frac{4}{3}, \frac{1}{3}, -\frac{2}{3}\right)$ 与 (3, -4, -1, 1)。
- 4. 设 f 为 $ax^2 + bx + c$, 可得方程组

$$\begin{cases} a+b+c=2\\ 4a+2b+c=7\\ 9a+3b+c=16\\ 16a+4b+c=29 \end{cases}$$

存在唯一解 $f(x) = 2x^2 - x + 1$ 。

5. 两解集可写为参数方程

$$\Pi: (19t - 23, -7t + 9, t), \quad t \in \mathbb{R}$$

$$\Pi_0: (19t, -7t, t), \quad t \in \mathbb{R}$$

因此它们均为直线,将 Π_0 作平移 (-23,9,0) 可得到 Π_0

第二次作业 线性方程组通解、行列式

1. 当 $a \neq 1$ 时有解,通解为

$$\left(\frac{-5ab+9a+15b-15}{a-1},\ \frac{6ab-11a-18b+19}{a-1},\ \frac{1}{a-1},\ \frac{a-3}{a-1},\ \frac{-ab+a+3b-2}{a-1}\right)$$

2. 当 $\lambda \neq -2$ 时有解, $\lambda = 1$ 时通解为 $(t_1, t_2, 1 - t_1 - t_2), t_1, t_2 \in \mathbb{R}$,其他情况通解为

$$\left(-\frac{\lambda+1}{\lambda+2}, \frac{1}{\lambda+2}, \frac{(\lambda+1)^2}{\lambda+2}\right)$$

第一周

3. (1) 通解为

$$(t_3 + 2t_4 + 3t_5 - 4, -2t_3 - 3t_4 - 4t_5 + 5, t_3, t_4, t_5), t_3, t_4, t_5 \in \mathbb{R}$$

(2) 通解为

$$(t_3 + 2t_4 + 3t_5, -2t_3 - 3t_4 - 4t_5, t_3, t_4, t_5), t_3, t_4, t_5 \in \mathbb{R}$$

或写为特解线性组合的形式:

$$t_{3} \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t_{4} \begin{pmatrix} 2 \\ -3 \\ 0 \\ 1 \\ 0 \end{pmatrix} + t_{5} \begin{pmatrix} 3 \\ -4 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \quad t_{3}, t_{4}, t_{5} \in \mathbb{R}$$

(3) 以下两种答案都算对。

答案一:不能,两特解之和不再是特解,不可能写为线性组合。

答案二:线性组合理解为并不需要系数可任取,由此取出 $\vec{x}_4 - \vec{x}_1, \vec{x}_4 - \vec{x}_2, \vec{x}_4 - \vec{x}_3$ 相互独立的特解 $\vec{x}_{1,2,3,4}$,可写出线性组合

$$\lambda_1 \vec{x}_1 + \lambda_2 \vec{x}_2 + \lambda_3 \vec{x}_3 + (1 - \lambda_1 - \lambda_2 - \lambda_3) \vec{x}_4, \quad \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$$

(4) 原方程组通解为齐次方程组通解作平移 (-4,5,0,0,0) 得到,这里 (-4,5,0,0,0) 为方程组 I 的特解。

证明: 若解 \vec{x} , \vec{y} 满足方程组 I,则将对应方程作差可知 $\vec{x} - \vec{y}$ 满足方程组 II,反之亦然。由此,取出方程组 I 的任一特解 \vec{x}_0 ,则映射 $\vec{x} \to \vec{x} + \vec{x}_0$ 是方程组 II 的解到方程组 I 的解的一一对应。

4. 考虑行列式的完全展开式,其每个分量是选取一组不同行列元素的乘积。可以发现,除了 $\prod_{i=1}^{n} (\lambda - a_{ii})$ 外,其他求和中的项至多包含 n-2 个 $\lambda - a_{ii}$ 因子,因此至多是 n-2 次多项式,不影响 n-1 与 n 次项系数。由此,行列式的 n-1 与 n 次项系数应与 $\prod_{i=1}^{n} (\lambda - a_{ii})$ 相同,考虑乘法分配律展开即 可得到

$$f(\lambda) = \lambda^n - \sum_{i=1}^n a_{ii} \lambda^{n-1} + \cdots$$

- 5. (1) 直接从第一行开始展开,并每次将代数余子式从第一行展开可得到行列式为 $a_{11}a_{22}b_{11}b_{22}b_{33}$ 。
 - (2) 从第一行开始展开,并每次将代数余子式从第一行展开可得到行列式为

$$(-1)^{n+1}a_{1n}(-1)^na_{2,n-1}\dots(-1)^2a_{n1}=(-1)^{(n+1)(n+2)/2-1}\prod_{i=1}^na_{i,n+1-i}=(-1)^{(n^2+n)/2}\prod_{i=1}^na_{i,n+1-i}$$

6. 三题结果分别为 -8、 a^2b^2 与 $-2x^3 - 2y^3$ 。

课堂小测

1. 二三两式消去 x_1 得到 $x_2 - (a+1)x_3 = 6$ 、 $-3x_2 + x_3 = 0$,代入 $x_3 = 3x_2$ 得到 $(3a+2)x_2 = -6$ 。 若 $a = -\frac{2}{3}$ 无解,否则可得到唯一解

$$x_1 = 3 + \frac{24}{3a+2}$$
, $x_2 = -\frac{6}{3a+2}$, $x_3 = -\frac{18}{3a+2}$

2. 代入得到方程

$$\begin{cases} a+b+c+d = 2\\ -a+b-c+d = 3\\ 27a+9b+3c+d = 0\\ d = 2 \end{cases}$$

解得

$$\begin{cases} a = -\frac{5}{24} \\ b = \frac{1}{2} \\ c = -\frac{7}{24} \\ d = 2 \end{cases}$$

3. 对任何五个点 (x_i, y_i) , i = 1, 2, 3, 4, 5,方程组可写成 (注意是关于 A, B, C, D, E, F 的线性方程组)

$$\begin{cases} Ax_1^2 + By_1^2 + Cx_1y_1 + Dx_1 + Ey_1 + F = 0 \\ Ax_2^2 + By_2^2 + Cx_2y_2 + Dx_2 + Ey_2 + F = 0 \\ Ax_3^2 + By_3^2 + Cx_3y_3 + Dx_3 + Ey_3 + F = 0 \\ Ax_4^2 + By_4^2 + Cx_4y_4 + Dx_4 + Ey_4 + F = 0 \\ Ax_5^2 + By_5^2 + Cx_5y_5 + Dx_5 + Ey_5 + F = 0 \end{cases}$$

这是六个未知数、五个方程的齐次线性方程组,根据定理可知一定存在非零解。

未必唯一,例如取五个点为 (0,0), (0,1), (0,2), (0,3), (0,4),则 $x(C_1x+C_2y+1)=0$ 均为解,且可验证它们的图像互不相同。(对于解唯一条件的讨论需要运用后续的知识,这里不展开说明。)

思考题

1. 按 x 的次数从 0 到 n 讨论,相互独立的系数个数为

$$(n+1) + n + (n-1) + \dots + 1 = \frac{(n+1)(n+2)}{2}$$

给定 k 个点,对于这些系数即成为 k 个方程、 $\frac{(n+1)(n+2)}{2}$ 个未知数的齐次线性方程组,保证有非零解需

$$k \leq \frac{(n+1)(n+2)}{2} - 1 = \frac{n^2 + 3n}{2}$$

当 $k = \frac{(n+1)(n+2)}{2}$ 时,为构造只有零解的情况,须说明可以取到合适的 k 个点使得系数行列式非零。由于行列式可看成关于 $x_1,y_1,x_2,y_2,\ldots,x_k,y_k$ 的 2k 元多项式,只要有一项系数非零就可找到非零点,考虑主对角线对应项的系数即可发现其不可能为 0,从而能构造出只有零解的情况。k 更大时取出 $k = \frac{(n+1)(n+2)}{2}$ 时的点,并任取其他点即可。

由此,k 最大值为 $\frac{n^2+3n}{2}$ 。

2. 搜索范德蒙德行列式或拉格朗日插值相关知识可知当且仅当 x_i 互不相同时,存在唯一次数不超过 n 的 f(x) 满足要求。

若存在两 x_i 相同,且对应 y_i 不同则无解;若存在 x_i 相同,但不存在对应 y_i 不同,则对应的点完全相同,因此实质上点的个数会少于 n+1 个,次数不超过 n 的 f(x) 解不唯一。

3. 搜索贝祖定理可知最多 mn 个。

第二周

第一次作业 行列式性质

- 1. (1) 第一个等号利用 OCA 与 BQP 全等,左右分别加上 $S_{\triangle BQP}$ 与 $S_{\triangle OCA}$ 可得证; 第二个等号利用平行四边形的底与高可得证; 面积为 $a_1b_2-a_2b_1$ 。
 - (2) 等号直接利用图形拼接可看出; 平行四边形面积为

$$2S_{\triangle OAB} = 2\left(\frac{1}{2}a_2b_2 + \frac{1}{2}(a_1 - a_2)(b_1 + b_2) - \frac{1}{2}a_1b_1\right) = a_1b_2 - a_2b_1$$

(3) 等号通过将 AP 与 A_1P_1 看作底可看出; 利用直线 AP 的方程为

$$\frac{x - a_1}{y - b_1} = \frac{a_2}{b_2}$$

可以解出

$$A_1\bigg(a_1 - \frac{b_1 a_2}{b_2}, 0\bigg)$$

于是面积即为 $b_2(a_1 - \frac{b_1 a_2}{b_2}) = a_1 b_2 - a_2 b_1$ 。

将 AP 在直线 AP 上同时平移不改变平行四边形面积,即对应 $\det(\vec{a}, \vec{b}) = \det(\vec{a} + \lambda \vec{b}, \vec{b})$ 。

- 2. 记矩阵为 A, 元素 a_{ij} , 考虑从第一列开始展开。 x^4 系数只有主对角线乘积,为 1; x^3 系数由 $-a_{21}a_{12}a_{33}a_{44}$ 与 $-a_{41}a_{22}a_{33}a_{14}$ 两项提供,为 -4。
- 3. 考虑完全展开式

$$\Delta(x) = \sum_{(j_1...j_n)} (-1)^{\tau(j_1...j_n)} \prod_{k=1}^n a_{kj_k}(x)$$

利用乘积求导公式可知

$$\frac{\mathrm{d}}{\mathrm{d}x} \prod_{k=1}^{n} a_{kj_k}(x) = \sum_{i=1}^{n} a'_{ij_i}(x) \prod_{k \neq i} a_{kj_k}(x)$$

于是

$$\Delta'(x) = \sum_{(j_1 \dots j_n)} (-1)^{\tau(j_1 \dots j_n)} \sum_{i=1}^n a'_{ij_i}(x) \prod_{k \neq i} a_{kj_k}(x) = \sum_{i=1}^n \sum_{(j_1 \dots j_n)} (-1)^{\tau(j_1 \dots j_n)} a'_{ij_i}(x) \prod_{k \neq i} a_{kj_k}(x)$$

对 i 求和中每一项恰为 $\Delta_i(x)$ 的完全展开式,得证。

- 4. (4) 将后三列都减去第一列,再将第三、四列减去第二列的 2、3 倍,此时第三列均为 4,第四列均为 6,第四列减去第三列 $\frac{3}{5}$ 倍成为 0,因此行列式为 0。
 - (5) 从下往上每一行减上一行,然后按第一列展开,重复此过程可得结果为 a^4 。
- 5. (1) 第一列减后两列可成为

$$-2\begin{vmatrix} a & c+a & a+b \\ p & r+p & p+q \\ x & z+x & x+y \end{vmatrix}$$

后两列均减去第一列并交换即可得到结果。

- (2) 后两行均减去第一行后按第一列展开计算即可。
- 6. 由行列式性质知 $\det A = \det A^T = \det(-A)$ 。注意到 A 有奇数行,-A 相当于每行乘 -1,因此 $\det(-A) = (-1)^n \det A = -\det A$,于是 $\det A = 0$ 。

第二次作业 Cramer 法则

- 1. (1) 其为 $1+2+\cdots+n-1=\frac{n(n-1)}{2}$, 当 n 除以 4 余数为 0 或 1 时为偶, 否则为奇。
 - (2) 逆序数分别为 25、奇, 28、偶。
 - (3) i = 3, j = 8 为偶, i = 8, j = 3 为奇。
- 2. (1) 将其第一行拆分为 (a_1,\ldots,a_1) 与 $(-b_1,\ldots,-b_n)$ 两部分。第一部分若 $a_1=0$ 则为 0,否则可消 去 a_2 到 a_n 成为

$$\begin{vmatrix} a_1 & \cdots & a_1 \\ -b_1 & \cdots & -b_n \\ \vdots & \vdots & \vdots \\ -b_1 & \cdots & -b_n \end{vmatrix}$$

当 $n \ge 3$ 时为 0。第二部分可消去 $-b_1$ 到 $-b_n$ 成为

$$\begin{vmatrix}
-b_1 & \cdots & -b_n \\
a_2 & \cdots & a_2 \\
\vdots & \vdots & \vdots \\
a_n & \cdots & a_n
\end{vmatrix}$$

讨论 a_2 是否为 0 可知 $n \ge 3$ 时为 0。

由此,原行列式在 $n \ge 3$ 时为 0,直接计算知 n = 1 时为 $a_1 - b_1$,n = 2 时为 $(a_1 - a_2)(b_1 - b_2)$ 。 **另解**¹:将其看作 b_1 的多项式,则根据第一列展开可发现为一次多项式。由于 $b_1 = b_i$ 时行列式有两行完全相同,为 0,因此 $n \ge 3$ 时其至少有 b_2, b_3 两零点。若 $b_2 = b_3$,行列式一定为 0,否则由一次多项式有两零点可知多项式为 0,也即行列式为 0,从而得证 $n \ge 3$ 时恒为 0。

(2) 直接对第一行展开计算 (或用完全展开式计算) 可知为

$$\prod_{i=1}^{n} a_i - \sum_{i=2}^{n} b_i c_i \prod_{j \notin \{i,1\}} a_j$$

(3) 每一行减第一行即化为上一问形式,其中

$$a_i = \begin{cases} 1 & i = 1 \\ i - 3 & i > 1 \end{cases}, \quad b_i = 3, \quad c_i = 2$$

当 n=1 时为 1, n=2 时为 -7, 更大时由于 $a_3=0$ 可知只有 $-b_3c_3a_1a_2a_4...a_n$ 一项非零,因此结果为 6(n-3)!。

3. 代入可知 a_0 到 a_{n-1} 满足线性方程组

$$\sum_{j=0}^{n-1} x_i^j a_j = y_i, \quad i = 1, \dots, n$$

利用 Cramer 法则知存在唯一解只需系数行列式非零,见 3.2 节例 4 可知系数行列式为

$$\prod_{1 \le j < i \le n} (x_i - x_j)$$

于是 x_i 互不相同时非零,得证。

¹骆沛荣同学贡献。

第三周

8

思考题

根据逆序数定义分析可知由于每次交换相邻的至多减少一个逆序数,因此最少步数为 $\frac{n(n-1)}{2}$,将 n 一直交换到最右,然后将 n-1 一直交换到第二右,重复此过程,所得到的算法即能达到最小步数。 若需要最坏时间复杂度量级 $n\log n$,交换与比较不能只对相邻元素进行,**归并排序**是其中一个例子。

第三周

第一次作业 行列式计算

- 1. (2) 由 3.5 节例 5 知为 $\frac{1}{2}((x-a)^n + (x+a)^n)$ 。
 - (3) 类似 3.3 节例 2 可知递推为 $\Delta_n = (a+b)\Delta_{n-1} ab\Delta_{n-2}$, 由此可得到两等比数列

$$\Delta_n - a\Delta_{n-1} = b(\Delta_{n-1} - a\Delta_{n-2}), \Delta_n - b\Delta_{n-1} = a(\Delta_{n-1} - b\Delta_{n-2})$$

分别计算出等比数列并联立求解即得 $\Delta_n = \frac{a^{n+1}-b^{n+1}}{a-b}$, 当 a=b 时为其极限 $(n+1)a^n$ 。

(4) 从最后一列展开,得到的每个代数余子式都类似三角阵,计算可得行列式为

$$x^n + \sum_{i=1}^n a_i x^{n-i}$$

2. 由于 A_{ii} 是奇数阶反对称方阵的行列式,由习题 3.2-5 知其为 0。当 $i \neq j$ 时,分析元素可发现去掉 第 i 行、第 j 列得到的子式 M_{ij} 与去掉第 j 行、第 i 列得到的子式 M_{ji} 关系是 $M_{ij} = -M_{ji}^T$,于是 (注意 M_{ij} , M_{ji} 为 n-1 阶方阵)

$$A_{ij} = (-1)^{i+j} \det M_{ij} = (-1)^{i+j} \det (-M_{ji}) = (-1)^{i+j} (-1)^{n-1} \det M_{ji} = -A_{ji}$$

由此,所有 A_{ij} 求和时,i=j 的代数余子式已经为 0,i>j,i< j 互相抵消,总和为 0。

另解: 在 A 上方增添一行 1,左侧增添 -1,0,...,0 后成为 n+1 阶反对称阵,行列式为 0,对第一行第一列展开可得结论。

- 3. 将原行列式第 k 列拆成 a_{ik} 与 x_k 两部分,先对第一列拆分,再将得到的两个都对第二列拆分,以此类推,最终拆分为 2^n 个行列式求和,每个行列式的每列为 a_{ik} 或 x_k 。由于两列都是常数的行列式一定可以消元为 0,这 2^n 个行列式最多只有 n+1 个非零,即 $\det A$ 与将 A 第 k 列替换为 x_k 得到的n 个行列式 (因为替换超过一列的已经为 0)。将后 n 个行列式按照第 k 列展开即得结论。
- 4. 从多项式的角度考虑,将最后一列减去前面各列的对应倍数,可使第 i 个元素成为 $\prod_{j=1}^{n-1} (a_i j)$,利用引理任何连续 k 个整数乘积是 k! 的倍数,可知现在的最后一列均为 (n-1)! 的倍数,因此原行列式除以 (n-1)! 即等于其他列不变,最后一列除以 (n-1)!,所有元素仍是整数。

类似操作,从右往左,将第 k 列的第 i 个元素化为 $\prod_{j=1}^{k-1}(a_i-j)$,再利用引理可知为 (k-1)! 的倍数,因此除以 (k-1)! 后所有元素仍是整数。如此操作完后,一共除以了 $(n-1)!(n-2)!\dots 1!$,且得到的行列式所有元素均为整数,因此为整数,从而即得其是 (考虑连乘的不同统计方式)

$$\prod_{k=1}^{n-1} k! = \prod_{k=1}^{n} k^{n-k}$$

的倍数。

引理证明: 若 k 个整数中有 0 则结论成立,否则由于乘 -1 不影响可不妨设其中最小数 $a \ge k$ 。利用取整计算可知,对任何 m, a, a+1, ..., a+k-1 中 m 的倍数的个数大于等于 1, 2, ..., k 中 m 的倍数的个数。由此,取 m 为某素数 p 的各次方可知 a(a+1)... (a+k-1) 中素因子 p 次数大于等于 k! 中素因子 p 个数。对所有素因子如此操作即得结论。

5. (1) 从右往左,每一列减前一列,得到的行列式为

$$\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ x & 1 - x & 1 & \cdots & 1 \\ x & & 1 - x & \ddots & \vdots \\ \vdots & & & \ddots & 1 \\ x & & & 1 - x \end{vmatrix}$$

除去第二列外,每一列减前一列可得

$$\begin{vmatrix} 1 & 1 \\ x & 1-x & x \\ x & 1-x & \ddots \\ \vdots & & \ddots & x \\ x & & 1-x \end{vmatrix}$$

对第一列展开即得结果为 (求和中i 对应对第i 个元素展开)

$$\sum_{i=1}^{n} (-1)^{i-1} x^{i-1} (1-x)^{n-i} = (1-x)^n - (-x)^n$$

(2) 左侧添加一列 1,上方添加一行 $1,0,\ldots,0$,新行列式第二列至第 n+1 列减第一列得到

$$\begin{vmatrix} 1 & -1 & \cdots & -1 \\ 1 & x_1 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & \cdots & x_n^n \end{vmatrix}$$

拆第一行得

$$\begin{vmatrix} 2 & 0 & \cdots & 0 \\ 1 & x_1 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & \cdots & x_n^n \end{vmatrix} - \begin{vmatrix} 1 & 1 & \cdots & 1 \\ 1 & x_1 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & \cdots & x_n^n \end{vmatrix}$$

利用 Vandermonde 行列式可知 (第二项看作 $V(1,x_1,\ldots,x_n)$) 结果为

$$2\prod_{i=1}^{n} x_i \prod_{1 \le j \le i \le n} (x_i - x_j) - \prod_{i=1}^{n} (x_i - 1) \prod_{1 \le j \le i \le n} (x_i - x_j)$$

6. 设 n 阶方阵 B 元素 $b_{ii} = -2a_i$,其余为 0,C 的每个元素 $c_{ij} = a_{ij} - b_{ij}$,类似此次作业第 3 题的过程,可将 $\det A$ 拆分为 2^n 个行列式的和,每个中一些列是 B 的列,一些列是 C 的列。

若其中 C 的列超过 3 列,类似习题 3.2-4(1) 计算可知行列式必为 0,而 C 的列有 i < j 两列时,由于其他列均只有一个元素非零可知行列式为

$$(4a_ia_j - (a_i + a_j)^2) \prod_{k \notin \{i,j\}} (-2a_k) = (-1)^{n-1} 2^{n-2} (a_i - a_j)^2 \prod_{k \notin \{i,j\}} a_k$$

当 C 的列有 i 一列时,其他列都只有一个元素非零,因此可得行列式为

$$(-1)^{n-1}2^n\prod_{k=1}^n a_k$$

当没有 C 的列, 即为 B 时, 行列式为

$$(-1)^n 2^n \prod_{k=1}^n a_k$$

相加可知行列式为 (注意只有 i 一列的情况有 n 种)

$$(n-1)(-1)^{n-1}2^n \prod_{k=1}^n a_k + \sum_{i< j} (-1)^{n-1}2^{n-2}(a_i - a_j)^2 \prod_{k \notin \{i,j\}} a_k$$

7. 由 3.5 节例 5 知为

$$\frac{1}{2} \left(\prod_{i=1}^{n} (0+1) + \prod_{i=1}^{n} (0-1) \right) = \frac{1}{2} (1 + (-1)^{n}) = 1$$

第二次作业 矩阵的运算

1.

$$AB = \begin{pmatrix} 2 & 2 & 5 \\ 2 & 9 & -1 \end{pmatrix}, \quad B^2 = \begin{pmatrix} 3 & 10 & 14 \\ 2 & -7 & 2 \\ 3 & 3 & -5 \end{pmatrix}, \quad AC = \begin{pmatrix} 3 & 3 \\ 7 & 3 \end{pmatrix}$$
$$CA = \begin{pmatrix} 0 & 4 & 6 \\ -1 & 0 & -1 \\ 3 & 2 & 6 \end{pmatrix}, \quad B^T A^T = \begin{pmatrix} 2 & 2 \\ 2 & 9 \\ 5 & -1 \end{pmatrix}$$

均不等。

2. (1)
$$AB = \begin{pmatrix} -17 & -34 & -51 \\ -17 & -34 & -51 \\ 17 & 34 & 51 \end{pmatrix}, \quad BA = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad AB \neq BA$$
(2) $AB = \begin{pmatrix} a & b & c \\ \lambda c & \lambda a & \lambda b \\ 0 & 0 & 0 \end{pmatrix}, \quad BA = \begin{pmatrix} a & b\lambda & 0 \\ c & a\lambda & 0 \\ b & c\lambda & 0 \end{pmatrix}$

$$\stackrel{\text{def}}{=} \mathbb{E} \mathbb{Q} \stackrel{\text{def}}{=} b = c = 0 \quad \text{for} \quad AB = BA.$$

课堂小测

1. 由 3.5 节例 4 直接代入 $a_i = i, b_i = i - 1$ 可知结果为 (可利用排列组合进行化简, 但并无太好看形式)

$$\frac{\prod_{1 \le i < j \le n} (i-j)^2}{\prod_{1 \le i, j \le n} (i+j-1)}$$

2. 将原行列式上方加一行 a_1, \ldots, a_n ,然后左侧加一列 $1, 0, \ldots, 0$,可发现行列式值不变。新行列式第二行到第 n+1 行减去第一行的 a_1, \ldots, a_n 倍,得到的行列式为

$$\begin{vmatrix} 1 & a_1 & a_2 & \cdots & a_n \\ -a_1 & 0 & 1 & \cdots & 1 \\ -a_2 & 1 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 1 \\ -a_n & 1 & \cdots & 1 & 0 \end{vmatrix}$$

再在上方加一行 1,0,1,...,1, 左侧加一列 1,0,...,0, 第三行开始每行减第一行得到

$$\begin{vmatrix} 1 & 0 & 1 & 1 & \cdots & 1 \\ 0 & 1 & a_1 & a_2 & \cdots & a_n \\ -1 & -a_1 & -1 & 0 & \cdots & 0 \\ -1 & -a_2 & 0 & -1 & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & 0 \\ -1 & -a_n & 0 & \cdots & 0 & -1 \end{vmatrix}$$

第一列减去第3到 n+2 列得到

$$\begin{vmatrix} -n+1 & 0 & 1 & 1 & \cdots & 1 \\ -\sum_{i} a_{i} & 1 & a_{1} & a_{2} & \cdots & a_{n} \\ 0 & -a_{1} & -1 & 0 & \cdots & 0 \\ 0 & -a_{2} & 0 & -1 & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & -a_{n} & 0 & \cdots & 0 & -1 \end{vmatrix}$$

第二列减去第3到 n+2 列对应倍数得到

$$\begin{vmatrix} -n+1 & -\sum_{i} a_{i} & 1 & 1 & \cdots & 1 \\ -\sum_{i} a_{i} & 1 - \sum_{i} a_{i}^{2} & a_{1} & a_{2} & \cdots & a_{n} \\ 0 & 0 & -1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & -1 & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & 0 & \cdots & 0 & -1 \end{vmatrix}$$

最后对前两行展开得结果为

$$(-1)^n \left((n-1) \left(\sum_i a_i^2 - 1 \right) - \left(\sum_i a_i \right)^2 \right)$$

事实上,利用之后的知识,由于原矩阵可以写为

$$\begin{pmatrix} a_1 & 1 \\ \vdots & \vdots \\ a_n & 1 \end{pmatrix} \begin{pmatrix} a_1 & \cdots & a_n \\ 1 & \cdots & 1 \end{pmatrix} - I$$

由 4.5 节例 3 结论可得到相同的结果。

3. 由 Cramer 法则可知行列式非零时必有唯一解,只需说明行列式为 0 时解不可能唯一。 考虑采用矩阵消元后得到的如 1.3 节标准形式的线性方程组。由于过程中只进行了初等行变换,根据 行列式性质可知不会改变系数矩阵行列式为 0 的特性。由于 1.3 节中情况 2.1 对应的系数矩阵行列 式为 1,不可能发生,因此最终必然为情况 1 或情况 2.2,均非唯一解。

第四周

第一次作业 矩阵的多项式

1. (3) 可发现其各次方以 3 为周期循环,从而 2008 次方即为本身 $\begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$ 。

- (6) 可发现其各次方以 2 为周期循环,从而 n 为奇数时为 $\begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$, n 为偶数时为 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ 。
- (8) 将其写为 $(\lambda I + N)^n$,其中 N 即为 $\lambda = 0$ 时的此矩阵。直接计算可知对任何自然数 k, N^k 在 j-i=k 时为 1,否则为 0,因此利用二项式定理可知,记结果为 $A=(a_{ij})$,有

$$a_{ij} = \begin{cases} C_n^{j-i} \lambda^{n-j+i} & i \le j \\ 0 & i > j \end{cases}$$

这里 C 为组合数。

- (11) 可发现其平方为其自身,从而即为 $\begin{pmatrix} 1 & 1 & -1 \\ 2 & 2 & -2 \\ 4 & 4 & -4 \end{pmatrix}$ 。
- 2. (2) 直接计算知为 $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$, 其中 a,b,c 任取。
 - (3) 直接计算知为 $\begin{pmatrix} a & a & a \\ & b & b \\ & & c \end{pmatrix}$, 其中 a, b, c 任取。
- 3. 设为 A,由本次课堂小测第一题可知为对角阵,即 $i \neq j$ 时 $a_{ij} = 0$ 。若 $a_{ii} \neq a_{jj}$,记 E_{ij} 为第 i 行第 j 列为 1,其他为 0 的方阵,则计算可知 $AE_{ij} \neq E_{ij}A$,矛盾,从而 A 所有对角元相等,即为标量阵。
- 4. 直接计算可知 A^2 的第 k 个对角元为

$$\sum_{s=1}^{n} a_{sk} a_{ks} = \sum_{s=1}^{n} a_{sk}^{2} = 0$$

从而即可知 $a_{sk} = 0$,其对任何 s, k 成立,从而得证。

5.
$$(1)$$
 $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

$$(2) \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$(3)$$
 $\begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$ (别问咋来的,问就是看作业第一题)

6. (1) 令

$$a_{ij} = a_i^{n-j}$$
 $c_{ij} = \begin{cases} C_n^i & i = j \\ 0 & i \neq j \end{cases}$, $b_{ij} = b_j^i$, $i, j = 0, \dots, n$

并设它们构成的矩阵为 A,C,B,则计算可验证 D=ACB,从而 $\det D=\det A \det C \det B$ 。将 A 交换行列可成为 Vandermonde 阵,C 为对角阵,B 为 Vandermonde 阵,从而计算可知

$$\det D = (-1)^{n(n+1)/2} \prod_{k=0}^{n} C_n^k \prod_{0 \le i < j \le n} (a_i - a_j)(b_i - b_j)$$

另解:将其看作 b_0 的多项式,对第一行展开可发现为 n 次,且当 b_0 取 b_1,\ldots,b_n 时,行列式有两行相同,为 0,因此其必然为

$$B_0(b_0-b_1)(b_0-b_2)\cdots(b_0-b_n)$$

且 B_0 中不含有 b_0 。对每个元素类似讨论可知行列式能写为

$$C \prod_{0 \le i < j \le n} (a_i - a_j)(b_i - b_j)$$

其中 C 为常数。进一步代入 $a_i = b_i = i$ 后可以通过复杂的消元计算得到系数。

(2) 归纳可证明 $\sin(m\theta)/\sin\theta$ 是 $\cos\theta$ 的多项式,且首项为 $2^{m-1}\cos^{m-1}\theta$,从而每行同除以 $\sin\theta_i$,类似 4.5 节例 2 可知行列式为

$$2^{(n-1)n/2} \prod_{k=1}^{n} \sin \theta_k \prod_{1 \le i < j \le n} (\cos \theta_j - \cos \theta_i)$$

第二次作业 矩阵的逆

1. (2)
$$\begin{pmatrix} 1 & -\frac{5}{4} & \frac{1}{2} & 2 \\ 0 & \frac{1}{4} & -\frac{1}{6} & -\frac{1}{3} \\ 0 & 0 & \frac{1}{9} & -\frac{1}{9} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

2. (1)

$$(I-A)^{-1} = (I-A)^{-1}(I-A^k) = I+A+\cdots+A^{k-1}$$

(2)

$$(I+A)^{-1} = (I+A)^{-1}(I+A^t) = I-A+A^2-\cdots+A^{t-1}$$

其中 t 为大于等于 k 的最小奇数。由此,分奇偶讨论可知其也可以写为

$$(I+A)^{-1} = \sum_{t=0}^{k-1} (-1)^t A^t$$

另解:由于 $A^k = O$,有 $(-A)^k = O$,可直接通过上一问得到。

(3) 利用 e 指数的定义与 $A^k = O$,可知这即为 e^A ,从而其逆为 e^{-A} ,即

$$\sum_{t=0}^{k-1} \frac{1}{t!} (-A)^t$$

另解: 设其为 $\sum_{t=0}^{k-1} a_t A^t$ 后归纳计算系数。

3. 直接求解或利用逆计算可知

$$X = \begin{pmatrix} -1 & 1 & -2 \\ 0 & 1 & -2 \\ 3 & 0 & 1 \end{pmatrix}$$

- 4. (1) 由完全展开式可知上三角矩阵行列式等于全体对角元的乘积,从而其可逆等价于每个对角元都 非零。
 - (2) 考虑伴随方阵可以发现 i > j 时 A_{ji} 是有对角元为 0 的上三角阵,行列式为 0,从而伴随方阵是上三角阵,因此逆是上三角阵。

- 5. (1) 根据伴随方阵的定义,可发现每个元素都乘了 λ 倍后代数余子式乘 λ^{n-1} 倍,从而得证。
 - (2) 当 A, B 均可逆时,由

$$(AB)^* = \frac{(AB)^{-1}}{\det(AB)} = \frac{B^{-1}A^{-1}}{\det A \det B} = B^*A^*$$

可知成立。否则利用不可逆矩阵 A 为可逆矩阵的极限与伴随方阵看作各元素函数的连续性可知成立。

(3) n=2 时直接计算验证即可。

当 n > 2 时,若 A 可逆,利用第一问可知

$$(A^*)^* = ((\det A)A^{-1})^* = (\det A)^{n-1}(A^{-1})^* = (\det A)^{n-1}(\det A^{-1})A^{-1} = (\det A)^{n-2}A^{-1}$$

否则与第二问类似用极限得成立。

课堂小测

- 1. 设 A 第 i 个对角元 a_i , B 各元素为 b_{ij} ,则 AB = BA 的第 i 行第 j 列为 $a_ib_{ij} = b_{ij}a_j$,即得 $i \neq j$ 时 $b_{ij} = 0$ 。
- 2. 必要:若 A 某对角元 a_{ii} 非零,直接计算可知 A^k 的第 i 个对角元为 $a_{ii}^k \neq 0$,矛盾。 充分:若 A 的对角元全为 0,直接归纳计算可知 A^k 中满足 j-i < k 的位置全为 0,因此取 k=n 即可保证 $A^n = O$ 。
- 3. 考虑取第 i_1, \ldots, i_r 行, i_1, \ldots, i_r 列构成的主子式。记其为 S,再令 A_S 为 A 的第 i_1, \ldots, i_r 行拼成的方阵,则计算可发现 $S = A_S A_S^T$ 。由此,只需说明对任何实矩阵 A, $\det(AA^T) \geq 0$ 。设 $A \in \mathbb{R}^{m \times n}$,利用 Binet-Cauchy 公式分类讨论:当 m > n 时 $\det(AA^T) = 0$,满足要求;当 m = n 时 $\det(AA^T) = \det A \det A^T = (\det A)^2$,满足要求,当 m < n 时有 $\det(AA^T)$ 为

$$\sum_{1 \leq k_1 < k_2 < \dots < k_r \leq n} A \begin{pmatrix} 1 & \dots & m \\ k_1 & \dots & k_r \end{pmatrix} A^T \begin{pmatrix} k_1 & \dots & k_r \\ 1 & \dots & m \end{pmatrix} = \sum_{1 \leq k_1 < k_2 < \dots < k_r \leq n} A \begin{pmatrix} 1 & \dots & m \\ k_1 & \dots & k_r \end{pmatrix}^2 \geq 0$$

从而得证。2

思考题

对问题 1、3、4,考虑一般的情况,即存在 k 使得 $A^k = I$ 时求 \mathbf{e}^A 。此时,由于

$$e^A = \sum_{i=0}^{\infty} \frac{1}{i!} A^i$$

记

$$a_j = \sum_{i \equiv j \mod k} \frac{1}{i!}$$

则有

$$e^A = \sum_{j=0}^{k-1} a_j A^j$$

²利用书上的推论 4.5.1 可以大幅简化上述说明的过程,但注意说清楚分类。

为求解系数 a_i , 记 ω_k 为 k 次单位根,则利用 $(\omega_k^t)^k = 1$,类似展开可知

$$\sum_{j=0}^{k-1} (\omega_k^t)^j a_j = e^{\omega_k^t}$$

对任何 t 成立。取 $t=0,\ldots,k-1$,对此线性方程组进行求解即可得到 a_j 。³ 对问题 2,仍将矩阵记为 $A=\lambda I+N$,则类似原题计算可知

$$(\lambda I + N)_{ij}^k = C_k^{j-i} \lambda^{k-j+i}$$

这里下标 i,j 表示第 i 行第 j 列,而组合数在 j-i>k 或 j-i<0 时定义为 0。 由此可得 $j\geq i$ 时

$$\mathbf{e}_{ij}^{A} = \sum_{k=0}^{\infty} \frac{1}{k!} C_k^{j-i} \lambda^{k-j+i} = \sum_{k=i-i}^{\infty} \frac{(j-i)!}{(k-j+i)!} \lambda^{k-j+i} = \frac{1}{(j-i)!} \mathbf{e}^{\lambda}$$

事实上,对任何初等函数 f,类似可以说明 $j \ge i$ 时

$$e_{ij}^A = \frac{1}{(j-i)!} f^{(j-i)}(\lambda)$$

上标 (j-i) 表示求导。

第五周

第一次作业 分块矩阵

- 1. 由第三周课堂小测 3 类似可得 Ax = 0 有非零解等价于 $\det A = 0$,而考虑每一列可知 AB = O 当且 仅当 B 每一列 b_i 满足 $Ab_i = 0$,从而得证。
- 2. 归纳计算可得为

$$\begin{pmatrix} A^n & nA^{n-1}B \\ O & A^n \end{pmatrix}$$

3. (1) 计算可得

$$\begin{pmatrix} O & -I \\ A & O \end{pmatrix}^2 = \begin{pmatrix} -A & O \\ O & -A \end{pmatrix}$$

从而由条件知原式为

$$\begin{pmatrix} -A & O \\ O & -A \end{pmatrix}^{1000} = \begin{pmatrix} A^{1000} & O \\ O & A^{1000} \end{pmatrix} = \begin{pmatrix} A & O \\ O & A \end{pmatrix}$$

(2) 计算可得

$$\begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix}^6 = I$$

又由 $A^3 = I$, 计算发现某种意义上可将 A 看作数乘,从而可验证⁴

$$\begin{pmatrix} A/2 & -\sqrt{3}A/2\\ \sqrt{3}A/2 & A/2 \end{pmatrix}^6 = I$$

于是其 2000 次方即为其平方, 计算得为

$$\begin{pmatrix} -A^2/2 & -\sqrt{3}A^2/2 \\ \sqrt{3}A^2/2 & -A^2/2 \end{pmatrix}$$

 $^{^3}$ 此线性方程组的系数矩阵即为离散 Fourier 变换的矩阵,可以算出其逆为其转置的倍数。

⁴这本质是矩阵张量积的性质。

第二次作业 初等方阵

1. 与定理 4.4.3 证明完全类似,但去掉将 B 第 2 至 n 列的第一行元化为 0 的步骤,此后重复中亦不进行此步骤,即可归纳得到能化为

$$\begin{pmatrix} P & C \\ O & O \end{pmatrix}$$

的形式,其中P为对角元全为1的上三角阵。

从 P 的倒数第二行开始,上方的行减去下方行的倍数,可将 P 的非对角元化为 0,这样就已经得到了

$$\begin{pmatrix} I_s & B \\ O & O \end{pmatrix}$$

的形式。由于此形式可以列变换将 B 消去,其秩必然与 I 的阶数相同,即 $s = \operatorname{rank} A$,得证。

- 2. (1) 分三类讨论,利用行列式初等变换的性质得证。
 - (2) 由 (1) 归纳,每次分离出一个 P_i 或一个 Q_i 即可得证。
 - (3) 见书引理 4.5.1 证明,注意需要区分 A 是否可逆讨论,无法直接完全展开。
- 3. (1) 其相当于第二行减第一行倍数消去 c,第二列减第一列倍数消去 b,因此

$$P = \begin{pmatrix} 1 & 0 \\ -c/a & 1 \end{pmatrix}, \quad Q = \begin{pmatrix} 1 & -b/a \\ 0 & 1 \end{pmatrix}$$

(2) 由 (1) 类似有 (注意矩阵乘法不可交换)

$$P = \begin{pmatrix} 1 & 0 \\ -CA^{-1} & 1 \end{pmatrix}, \quad Q = \begin{pmatrix} 1 & -A^{-1}B \\ 0 & 1 \end{pmatrix}$$

4. 利用 4.5 节例 3 可知

$$\det(A - \alpha \alpha^T) = \det(A(I - A^{-1}\alpha \alpha^T)) = \det A \det(I - (A^{-1}\alpha)\alpha^T) = \det(A) \det(1 - \alpha^T(A^{-1}\alpha))$$

于是得证,其中加括号利用了矩阵乘法结合律。

5. 由上题直接计算得为

$$\left(1 - \sum_{i=1}^{n} b_i\right) \prod_{j=1}^{n} b_j$$

6. 当 $\lambda \neq 0$ 时,两边同除以 λ^{m+n} ,由于对 n 阶方阵 P, $\det(\lambda P) = \lambda^n \det P$,可直接将要证结论化为

$$\det\left(I - \frac{1}{\lambda}AB\right) = \det\left(I - \frac{1}{\lambda}BA\right)$$

在 4.5 节例 3 中将 A 取为 $\frac{1}{\lambda}A$ 即可。

将两侧看作 λ 的多项式,利用连续性即可知 $\lambda = 0$ 时仍然相等。

第六周

第一次作业 秩的定义

1. 设 $A = P \operatorname{diag}(I_r, O)Q$,其中 P, Q 可逆, $r = \operatorname{rank} A$,则取

$$B = P \begin{pmatrix} I_r \\ O \end{pmatrix}, \quad C = \begin{pmatrix} I_r & O \end{pmatrix} Q$$

利用乘可逆阵不改变秩可知满足要求。

- 2. 由上题知存在列向量 α, β 使 $A = \alpha \beta^T$,且可计算验证此时 $\lambda = \alpha^T \beta = \beta^T \alpha$,由此:
 - (1) 直接计算得

$$A^2 = \alpha \beta^T \alpha \beta^T = \alpha (\beta^T \alpha) \beta^T = \lambda A$$

(2) 由 4.5 节例 3 可知

$$\det(I + \alpha \beta^T) = \det(1 + \beta^T \alpha) = \lambda + 1$$

(3) 由第一问 $A^2 - \lambda A = O$,而设 I + A 的逆为 f(A) 有

$$f(A)(I+A) - I = O$$

于是直接设 f(A) = bI + aA, 得到 $(b-1)I + (a+b)A + aA^2 = O$, 对比系数有

$$\begin{cases} b-1=0 \\ a+b=-\lambda a \end{cases} \implies (I+A)^{-1} = I - \frac{1}{\lambda+1}A$$

3. 利用最大非零子式定义可知 (第二个等号将第一行减去第二行)

$$\operatorname{rank}(A,B) = \operatorname{rank}\begin{pmatrix} A & B \\ O & O \end{pmatrix} \leq \operatorname{rank}\begin{pmatrix} A & B \\ O & B \end{pmatrix} = \operatorname{rank}\begin{pmatrix} A & O \\ O & B \end{pmatrix} = \operatorname{rank}A + \operatorname{rank}B$$

4. 初等变换可得原式左侧化为 (第二个等号将第一列减去第二列)

$$\operatorname{rank}\begin{pmatrix} A+I & O \\ O & A-I \end{pmatrix} = \operatorname{rank}\begin{pmatrix} A+I & A-I \\ O & A-I \end{pmatrix} = \operatorname{rank}\begin{pmatrix} 2I & A-I \\ I-A & A-I \end{pmatrix}$$

利用 Schur 公式可知

$$\operatorname{rank} \begin{pmatrix} 2I & A-I \\ I-A & A-I \end{pmatrix} = \operatorname{rank} \begin{pmatrix} 2I & O \\ O & A-I-\frac{1}{2}(I-A)(A-I) \end{pmatrix}$$

由条件可算得右下角为 O, 从而得证。

- 5. 先证所有右推左:
 - (1) 当 A 可逆时, $A^* = \frac{1}{\det A}A^{-1}$ 亦可逆,从而得证。
 - (2) 由条件知可设 $A = P \operatorname{diag}(I_{n-1}, 0)Q$,其中 P, Q 可逆,从而根据 $(AB)^* = B^*A^*$ 与乘可逆阵秩不变,只需证明 $\operatorname{rank}(\operatorname{diag}(I_{n-1}, 0)^*) = 1$,而计算可发现

$$diag(I_{n-1}, 0)^* = diag(O_{n-1}, 1)$$

从而得证。

(3) 由秩的子式定义,A 的 n-1 阶子式全为 0,从而 A^* 所有元素为 0,秩为 0。

由于 rank A 必处于 $n \times n - 1$ 或小于 n - 1 三种情况之一,左推右从右推左可反证得证。

第七周

第一次作业 秩的应用

1. 设

$$A = P \operatorname{diag}(I_r, O)Q$$

其中 P,Q 可逆,则根据 $A^2 = A$ 可知

$$\operatorname{diag}(I_r, O)QP\operatorname{diag}(I_r, O) = \operatorname{diag}(I_r, O)$$

将 QP 对应分块,可发现其必然可写成

$$\begin{pmatrix} I_r & X \\ Y & Z \end{pmatrix}$$

另一方面

$$\operatorname{tr} A = \operatorname{tr}(P\operatorname{diag}(I_r, O)Q) = \operatorname{tr}(\operatorname{diag}(I_r, O)QP) = \operatorname{tr}\begin{pmatrix} I_r & X \\ O & O \end{pmatrix} = r$$

即得证。

- 2. 由于 $\operatorname{tr}(AB BA) = \operatorname{tr}(AB) \operatorname{tr}(BA) = 0 \neq n = \operatorname{tr}(I)$,从而无解。
- 3. 左侧即为

$$\operatorname{rank}(A(B-I)+(A-I)) \leq \operatorname{rank}(A(B-I)) + \operatorname{rank}(A-I) \leq \operatorname{rank}(B-I) + \operatorname{rank}(A-I)$$

- 4. (1) 由于 A 中至少有一个 r 阶非零子式 R,取出 s 行后根据容斥原理可知至少包含这个子式的 r+s-m 行。若这 r+s-m 行不包含非零子式,根据 Laplace 展开定理可知 $\det R=0$,矛盾,从而 B 中存在一个 r+s-m 阶的非零子式,即得证。
 - (2) 上一问的所有过程对列仍然成立,将 D 看作从 B 中取出 t 列的结果,即有

$$\operatorname{rank} D \geq \operatorname{rank} B + t - n \geq r + s - m + t - n$$

5. 将第二行左乘 A 加到第一行可得

$$\det\begin{pmatrix} A & O \\ -I & B \end{pmatrix} = \det\begin{pmatrix} I & A \\ O & I \end{pmatrix}\begin{pmatrix} A & O \\ -I & B \end{pmatrix} = \det\begin{pmatrix} O & AB \\ -I & B \end{pmatrix}$$

从第一列开始一列列展开,分析 -1 的次数可发现此行列式即为 $\det(AB)$,从而得证。

第二次作业 秩的更多性质

1. 考虑将第一列拆为关于 x_1, x_2, \ldots, x_n 的 n 列之和,从而行列式被拆为了 n 个,类似拆分第二列,第 三列,直至第 n 列,可得到 n^n 个行列式。考虑 x 等于某个 x_i 的情况,这时共有 n 个变量占据 n+1 列,对 n^n 个行列式中的每个,都有某两列属于同一个变量,从而它们相差倍数,行列式为 0。 由此即可知,将原行列式看作 x 的多项式,每个 x_i 都为其零点,又由其为 n 次可知必能写成

$$D\prod_{k=1}^{n}(x-x_k)$$

将原行列式按最后一列展开,可发现 x^n 前的系数 D 即为原行列式前 n 行 n 列构成的子式 M 的行列式值,下面计算其值。

记 n 阶方阵 V 的元素 $v_{ij}=x_i^{j-1}, i,j=1,\ldots,n$,则利用 Vandermonde 行列式计算发现

$$D = \det M = \det(V^T V) = (\det V)^2 = \prod_{i < j} (x_i - x_j)^2$$

于是原行列式即为

$$\prod_{i < j} (x_i - x_j)^2 \prod_{k=1}^{n} (x - x_k)$$

2. (1) 只需说明 $\operatorname{rank} A^m = \operatorname{rank} A^{m+1}$ 可以推出 $\operatorname{rank} A^{m+1} = \operatorname{rank} A^{m+2}$,即可一直递推下去。 利用 4.6 节例 6 有

$$\operatorname{rank} AA^m + \operatorname{rank} A^m A - \operatorname{rank} A^m \leq \operatorname{rank} AA^m A$$

从而代入条件可知 $\operatorname{rank} A^{m+1} \leq \operatorname{rank} A^{m+2}$,但由于 $\operatorname{rank} (AB) \leq \operatorname{rank} B$ 可知 $\operatorname{rank} A^{m+2} \leq \operatorname{rank} A^{m+1}$,从而两者相等,得证。

(2) 记 $r_k = \operatorname{rank} A^k$,由于 $\operatorname{rank}(AB) \leq \operatorname{rank} B$ 可知 r_k 单调不增。若 $r_1 = n$,A 可逆,其任何次方可逆,已经成立。

否则, $r_1 \le n-1$, 且 r_i 均为自然数, 因此 r_1 到 r_{n+1} 中必有两个相等, 结合单调不增性可知 $r_n = r_{n+1}$, 再从第一问得结果。

3. 利用分块矩阵行列变换即可得证:

$$n + \operatorname{rank}(I_m - AA^T) = \operatorname{rank} \begin{pmatrix} I_m - AA^T & O \\ O & I_n \end{pmatrix} = \operatorname{rank} \begin{pmatrix} I_m - AA^T & A \\ O & I_n \end{pmatrix} = \operatorname{rank} \begin{pmatrix} I_m & A \\ A^T & I_n \end{pmatrix}$$

$$m + \operatorname{rank}(I_n - A^TA) = \operatorname{rank} \begin{pmatrix} I_m & O \\ O & I_n - A^TA \end{pmatrix} = \operatorname{rank} \begin{pmatrix} I_m & A \\ O & I_n - A^TA \end{pmatrix} = \operatorname{rank} \begin{pmatrix} I_m & A \\ A^T & I_n \end{pmatrix}$$

(需要注明的是,分块矩阵的行变换相当于右乘矩阵,因此第一个式子的最后一个等号是第二列右乘 A^T 加到第一列,不允许第二列左乘某矩阵后加到第一列这样的操作。)

课堂小测

1. 将 B 分块为 B_{ij} , 其中 B_{ij} 为 $n_i \times n_j$ 阶矩阵,则直接计算可发现 AB = BA 等价于

$$\lambda_i B_{ij} = \lambda_j B_{ij}, \quad i, j = 1, \dots, s$$

由于 λ_i 互不相同,必然有 $i \neq j$ 时 $B_{ij} = O$,从而 $B = \operatorname{diag}(B_{11}, \ldots, B_{ss})$,即得到题目要求形式。

2. 第一行加第二行、第二列减第一列可以得到(也可写成矩阵乘法的形式):

$$\det \begin{pmatrix} A & B \\ B & A \end{pmatrix} = \det \begin{pmatrix} A+B & B+A \\ B & A \end{pmatrix} = \det \begin{pmatrix} A+B \\ B & A-B \end{pmatrix}$$

根据 Laplace 展开即知右侧等于 $\det(A+B)\det(A-B)$ 。

3. 我们分为三步进行证明。

基本处理:

根据相抵的性质,由子式定义,设 $\operatorname{rank} A = r$,则有

$$\operatorname{rank} \begin{pmatrix} O_{r \times (n-r)} & I_r \\ O_{n-r} & O_{(n-r) \times r} \end{pmatrix} = r$$

因此存在可逆矩阵 P,Q 使得

$$A = P \begin{pmatrix} O_{r \times (n-r)} & I_r \\ O_{n-r} & O_{(n-r) \times r} \end{pmatrix} Q$$

代入条件可知

$$\begin{pmatrix} O_{r\times(n-r)} & I_r \\ O_{n-r} & O_{(n-r)\times r} \end{pmatrix} Q P \begin{pmatrix} O_{r\times(n-r)} & I_r \\ O_{n-r} & O_{(n-r)\times r} \end{pmatrix} Q = O$$

将 QP 分块为(约定下标只有一个分量表示该阶方阵)

$$\begin{pmatrix} X_{(n-r)\times r} & Y_{n-r} \\ Z_r & W_{r\times (n-r)} \end{pmatrix}$$

则直接计算可知结论化为 Z = O, 也即

$$Q = \begin{pmatrix} X & Y \\ O & W \end{pmatrix} P^{-1}$$

进一步代入 Q 可得到 (也即 X,Y 实际上不影响结果,可以任取)

$$A = P \begin{pmatrix} O_{r \times (n-r)} & I_r \\ O_{n-r} & O_{(n-r) \times r} \end{pmatrix} \begin{pmatrix} X & Y \\ O & W \end{pmatrix} P^{-1} = P \begin{pmatrix} O_{r \times (n-r)} & I_r \\ O_{n-r} & O_{(n-r) \times r} \end{pmatrix} \begin{pmatrix} O & O \\ O & W \end{pmatrix} P^{-1}$$

W 的性质估计:

根据上式计算可发现

$$A = P \begin{pmatrix} O_r & W \\ O_{(n-r)\times r} & O_{n-r} \end{pmatrix} P^{-1}$$

直接计算秩可知必有 $\operatorname{rank} W = r$ (从而也可知 $n - r \ge r$)。

此外,根据上一部分得到的形式,只要 W 只在右侧 $r \times r$ 的范围内非零,即能写成

$$\begin{pmatrix} O_{r\times(n-2r)} & P_r \end{pmatrix}$$

根据满秩可知 P 可逆, 我们即可以取

$$\begin{pmatrix} X & Y \\ O & W \end{pmatrix} = \begin{pmatrix} I_{n-r} & O \\ O & P_r \end{pmatrix}$$

我们离这个期望事实上很近,因为根据相抵标准形可知存在可逆矩阵 P_r 、 Q_{n-r} 使得

$$W = P_r \begin{pmatrix} O_{r \times (n-2r)} & I_r \end{pmatrix} Q_{n-r} = \begin{pmatrix} O_{r \times (n-2r)} & P_r \end{pmatrix} Q_{n-r}$$

由此, 事实上可取

$$\begin{pmatrix} X & Y \\ O & W \end{pmatrix} = \begin{pmatrix} I_{n-r} & O \\ O & P_r \end{pmatrix} \begin{pmatrix} I_r & O \\ O & Q_{n-r} \end{pmatrix}$$

(非常值得注意的是,这里由于分块的行列数不对应,无法直接由分块矩阵计算矩阵乘法。) 最终构造:

取定

$$R = P \begin{pmatrix} I_r & O \\ O & Q_{n-r}^{-1} \end{pmatrix} \begin{pmatrix} I_{n-r} & O \\ O & P_r^{-1} \end{pmatrix}$$

则有

$$R^{-1} = \begin{pmatrix} I_{n-r} & O \\ O & P_r \end{pmatrix} \begin{pmatrix} I_r & O \\ O & Q_{n-r} \end{pmatrix} P^{-1}$$

由于 $n-r \ge r$,左乘 $\operatorname{diag}(I_{n-r}, P_r^{-1})$ 与 $\operatorname{diag}(I_r, Q_{n-r}^{-1})$ 最多对下方的 n-r 行进行了行变换,不会改变 $\begin{pmatrix} O_{r \times (n-r)} & I_r \\ O_{n-r} & O_{(n-r) \times r} \end{pmatrix}$,从而计算可验证

$$A = R \begin{pmatrix} O_{r \times (n-r)} & I_r \\ O_{n-r} & O_{(n-r) \times r} \end{pmatrix} R^{-1}$$

即得到结果形式。

另解: 以下取法也可计算验证成立:

$$R = P \begin{pmatrix} P_r & O \\ O & Q_{n-r}^{-1} \end{pmatrix}$$

第八周

第一次作业 模相抵

1. 计算结果分别为(最后两题需要一些操作对角元的技巧)

$$\begin{pmatrix} 1 & & & \\ & \lambda & & \\ & & \lambda^2 + 2\lambda \end{pmatrix}, \quad \begin{pmatrix} 1 & & & \\ & \lambda(\lambda - 4) & & \\ & & & \lambda(\lambda - 4)^2(\lambda + 1) \end{pmatrix}, \quad \begin{pmatrix} 1 & & \\ & 1 & \\ & & \lambda^3 \end{pmatrix}, \quad \begin{pmatrix} I_{n-1} & \mathbf{0} \\ \mathbf{0}^T & \lambda^n \end{pmatrix}$$

2. 设 $A(\lambda)$ 所有元素最高次数为 m 次,将所有 λ 零次项系数构成的矩阵记为 A_0 ,一次项系数构成的矩阵记为 A_1 ,以此直到 A_m ,即可验证成立。

思考题

1. 只要能构造出多项式 $h(x) = 1 + g(x)(x^2 - x)$ 是 $f(x) = \lambda - x$ 的倍数,写为 h(x) = f(x)t(x),则即有

$$(\lambda I - A)t(A) = I + q(A)(A^2 - A) = I$$

便得到了逆。根据因式定理,当 $\lambda \neq 0,1$ 时,取 $g(A) = -\frac{1}{\lambda^2 - \lambda}$ 即可,从而有

$$(\lambda I - A)^{-1} = \frac{1}{\lambda^2 - \lambda} (A - (1 - \lambda)I)$$

由于 A(A-I)=O,若 $\lambda=0$ 时可逆,必有 A-I=O,从而 $(-A)^{-1}=-I$;若 $\lambda=1$ 时可逆,必有 A=O,从而 $(I-A)^{-1}=I$ 。

2. 记 $\alpha = (1, ..., 1)^T$,则条件变为 $A\alpha = \alpha$,要计算的即

$$\alpha^T A^* \alpha = \alpha^T A^* A \alpha = \alpha^T (\det A) I \alpha = n \det A$$

- 3. 对第一行、第一列、第二行、第二列展开可得 $\Delta_n = x^4 \Delta_{n-4}$, n = 1, 2, 3 时行列式为 0, n = 4 时为 x^4 ,由此行列式当且仅当 n 是 4 的倍数时非零,为 x^n 。
- 4. 对第一行、第一列、第二行、第二列展开可得

$$\Delta_n = \Delta_{n-1} - x^2 \Delta_{n-3} + x^4 \Delta_{n-4}$$

特征方程方法求解递推: 其特征方程为

$$\lambda^4 - \lambda^3 + x^2\lambda - x^4 = 0$$

左侧可因式分解为 $(\lambda - x)(\lambda + x)(\lambda^2 - \lambda + x^2)$, 由此四个根即

$$x, -x, \frac{1}{2}(1 \pm \sqrt{1 - 4x^2})$$

由此通项公式可以写成

$$\Delta_n = c_1 x^n + c_2 (-x)^n + c_3 \left(\frac{1}{2} (1 - \sqrt{1 - 4x^2})\right)^n + c_4 \left(\frac{1}{2} (1 + \sqrt{1 - 4x^2})\right)^n$$

代入前四项 1、1、 $1-x^2$ 、 $(1-x^2)^2$ 可解出结果。

5. 对第 $1 \subseteq m$ 行、第 $1 \subseteq m$ 列交替展开,讨论 -1 次数可发现

$$\Delta_n = (-1)^m x^{2m} \Delta_{n-2m}$$

而 $n=1,\ldots,2m-1$ 时行列式都有全零的行,必然为 0, n=2m 时直接计算知

$$\Delta_{2m} = \det \begin{pmatrix} O_m & xI_m \\ xI_m & O_m \end{pmatrix} = (-1)^m x^{2m}$$

由此可得当且仅当 n 为 2km 时行列式非零,为 $(-1)^{km}x^{2km}$ 。

6. 直接利用 Schur 公式可知

$$\begin{pmatrix} I_n \\ -A^T & I \end{pmatrix} \begin{pmatrix} I_n & A \\ A^T & O \end{pmatrix} \begin{pmatrix} I_n & -A \\ & I \end{pmatrix} = \begin{pmatrix} I_n & O \\ O & -A^T A \end{pmatrix}$$

从而原矩阵可逆当且仅当 A^TA 可逆,即 $\operatorname{rank}(A^TA)=m$,而根据书上定理有 $\operatorname{rank}(A^TA)=\operatorname{rank}A$,因此等价于 $\operatorname{rank}A=m$ 。此时上式两侧取逆有

$$\begin{pmatrix} I_n & A \\ & I \end{pmatrix} \begin{pmatrix} I_n & A \\ A^T & O \end{pmatrix}^{-1} \begin{pmatrix} I_n \\ A^T & I \end{pmatrix} = \begin{pmatrix} I_n & O \\ O & -(A^T A)^{-1} \end{pmatrix}$$

从而

$$\begin{pmatrix} I_n & A \\ A^T & O \end{pmatrix}^{-1} = \begin{pmatrix} I_n & -A \\ & I \end{pmatrix} \begin{pmatrix} I_n & O \\ O & -(A^T A)^{-1} \end{pmatrix} \begin{pmatrix} I_n \\ -A^T & I \end{pmatrix}$$

7. 此时不具有可逆性无法使用 Schur 公式。直接假设逆矩阵 P 相同分块,则根据

$$\begin{pmatrix} B & A \\ A^T & O \end{pmatrix} \begin{pmatrix} P_1 & P_2 \\ P_3 & P_4 \end{pmatrix} = I_{m+n}$$

可以得到方程组

$$\begin{cases} BP_1 + AP_3 = I_n \\ BP_2 + AP_4 = O \\ A^T P_1 = O \\ A^T P_2 = I_m \end{cases}$$

由最后一个方程有解, $m=\mathrm{rank}(A^TP_2)\leq\mathrm{rank}(A^T)\leq m$ 必然取等,因此仍然必须有 $\mathrm{rank}\,A=m$ 。利用下一题的结论,可将 A 写成

$$R\begin{pmatrix} I_m \\ O_{(n-m)\times m} \end{pmatrix}$$

其中 R 可逆。由此即可得到 P_1 、 P_2 的全部解为 (C,D) 可任取

$$P_1 = R^{-T} \begin{pmatrix} O_{m \times n} \\ C_{(n-m) \times n} \end{pmatrix}, \quad P_2 = R^{-T} \begin{pmatrix} I_m \\ D_{(n-m) \times m} \end{pmatrix}$$

此时, 通过 $BP_1 + AP_3 = I_n$ 也可知

$$\operatorname{rank} B \ge \operatorname{rank}(BP_1) \ge n - \operatorname{rank}(AP_3) \ge n - \operatorname{rank} A = n - m$$

而根据 P_1 的形式有 rank $P_1 \le n - m$,从而必须 rank $P_1 = n - m$,即 C 行满秩。

将 P_1 、 P_2 、 P_3 按照分出 $m \times m$ 进一步分块,通过复杂的讨论可以得到更精确的结果。

8. 设其相抵标准形为

$$A = P_{m \times m} \begin{pmatrix} I_n \\ O_{(m-n) \times n} \end{pmatrix} Q_{n \times n}$$

则直接计算可发现

$$A = P_{m \times m} \begin{pmatrix} Q_{n \times n} & O \\ O & I_{m-n} \end{pmatrix} \begin{pmatrix} I_n \\ O_{(m-n) \times n} \end{pmatrix}$$

记

$$\tilde{P} = \begin{pmatrix} Q_{n \times n}^{-1} & O \\ O & I_{m-n} \end{pmatrix} P_{m \times m}^{-1}$$

由可逆,其可拆分为初等方阵乘积,对应为行变换,而

$$\tilde{P}A = \begin{pmatrix} I_n \\ O_{(m-n)\times n} \end{pmatrix}$$

即得证。

9. 由于 $m = \text{rank}(AB) \le \text{rank}\, A \le m$,等号必须取到,于是 A 行满秩,与上题类似知存在可逆阵 R 使得

$$A = \begin{pmatrix} I_m & O_{m \times (n-m)} \end{pmatrix} R$$

于是直接计算得所有的 B 为 (D 可任取)

$$R^{-1} \begin{pmatrix} I_m \\ D_{(n-m)\times m} \end{pmatrix}$$

且可验证不同的 D 确定不同的 B。

10. 仿照之前 $A^2 = A$ 与 $A^2 = O$ 的解的形式,对可逆阵 P 考虑方阵 $P^{-1}AP$,可发现

$$e^{P^{-1}AP} = P^{-1}e^AP = I$$

由此可取 P 使得 $P^{-1}AP$ 为较好形式。直接计算可发现,对任何二阶复方阵 A,存在可逆二阶复方阵 P 使得

$$P^{-1}AP = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$$

而对后者,可直接计算得 $a \neq d$ 时

$$\exp\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = \begin{pmatrix} e^a & b\frac{e^a - e^d}{a - d} \\ 0 & e^d \end{pmatrix}$$

a=d 时将 $\frac{\mathrm{e}^a-\mathrm{e}^d}{a-d}$ 替换为极限 e^a 。由此,可发现

$$\exp\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = I_2$$

第九周 24

当且仅当

$$\begin{cases} a = 2k_1\pi i \\ b = 0 \\ d = 2k_2\pi i \end{cases}, \quad k_1, k_2 \in \mathbb{Z}$$

由此可知全部解为

 $P \operatorname{diag}(2k_1\pi i, 2k_2\pi i)P^{-1}, \quad k_1, k_2 \in \mathbb{Z}$

第九周

第一次作业 不变因子

- 1. Smith 标准形见上次作业解答,其他为(注意1不算在初等因子组中):
 - (1) 行列式因子 1、 $\lambda(\lambda 4)$ 、 $\lambda^{2}(\lambda 4)^{3}(\lambda + 1)$; 不变因子 1、 $\lambda(\lambda - 4)$ 、 $\lambda(\lambda - 4)^{2}(\lambda + 1)$; 初等因子组 λ 、 $\lambda - 4$ 、 λ 、 $(\lambda - 4)^{2}$ 、 $\lambda + 1$ 。
 - (3) 行列式因子 1、1、λ³;不变因子 1、1、λ³;初等因子组 λ³。
 - (4) 行列式因子前 n-1 个为 1,最后一个 λ^n ; 不变因子前 n-1 个为 1,最后一个 λ^n ; 初等因子组 λ^n 。
- 2. (1) 考虑右上角 $(n-1) \times (n-1)$ 可发现前 n-1 个行列式因子为 1,最后一个即为行列式,直接利用完全展开计算得为 λ^n-1 ;从而不变因子前 n-1 个为 1,最后一个 λ^n-1 ;从而利用单位根可知初等因子组为

$$\lambda - e^{2k\pi i/n}, \quad k = 0, 1, \dots, n-1$$

(2) 考虑左下角 $(n-1) \times (n-1)$ 子矩阵可发现前 n-1 个行列式因子为 1,最后一个即为行列式,按第一行展开归纳计算出为

$$\lambda^n + \sum_{k=0}^{n-1} a_k \lambda^k$$

从而不变因子前 n-1 个为 1,最后一个 $\lambda^n + \sum_{k=0}^{n-1} a_k \lambda^k$; 其初等因子组取决于此方程的重根,若根中有 n_i 个 λ_i , $i=1,\ldots,s$,且 λ_i 互不相同,则初等因子组为

$$(\lambda-\lambda_1)^{n_1},\cdots,(\lambda-\lambda_s)^{n_s}$$

第二次作业 线性空间

- 1. 直接求解可知两问均线性相关。
- 2. 计算向量 AB、AC、AD 是否线性无关可知第一问共面,第二问不共面。
- 3. (1) 未必, 如 n=2 时取 $\alpha_1=(1,0), \alpha_2=(0,1)$ 。

(2) 一定线性相关。证明更一般的结论: 当 $\alpha_1, \ldots, \alpha_n$ 线性相关时,若 β_1, \ldots, β_n 能写为 $\alpha_1, \ldots, \alpha_n$ 的线性组合,则 β_1, \ldots, β_n 线性相关。

由书定理可知存在 k 使得

$$\alpha_k = \sum_{j \neq k} \lambda_j \alpha_j$$

设

$$\beta_i = \sum_{j=1}^n c_{ij} \alpha_j$$

则关于 μ_i 的方程

$$\sum_{i=1}^{n} \mu_i \beta_i = 0$$

代入上方两式可化为

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \mu_i c_{ij} \alpha_j = \sum_{i=1}^{n} \sum_{j \neq k} \mu_i c_{ij} \alpha_j + \sum_{i=1}^{n} \mu_i c_{ik} \sum_{j \neq k} \lambda_j \alpha_j = 0$$

也即

$$\sum_{j \neq k} \left(\sum_{i=1}^{n} \mu_i (c_{ij} + c_{ik} \lambda_j) \right) \alpha_j = 0$$

要使等式成立,只需每个 α_j 前系数为 0,而这是关于 n 个未知数 μ_i 的 n-1 个方程构成的齐次线性方程组,一定存在非零解,从而得证。

4. 将下标 n+1 视为下标 1,下标 0 视为下标 n,则改变求和方式可知

$$\sum_{i=1}^{n} \mu_i (\alpha_i - \lambda \alpha_{i+1}) = 0$$

等价于

$$\sum_{i=1}^{n} (\mu_i - \lambda \mu_{i-1}) \alpha_i = 0$$

由于 α_i 线性无关,这等价于

$$\mu_i - \lambda \mu_{i-1} = 0, \quad \forall i = 1, \dots, n$$

此方程组可写为 $A\mu = 0$,系数矩阵 A 元素 a_{ij} 满足

$$a_{ij} = \begin{cases} 1 & i = j \\ -\lambda & i = j+1 \text{ or } i = 1, j = n \\ 0 & \text{otherwise.} \end{cases}$$

线性无关等价于此方程组只有零解,而根据 Crammer 法则,此方程组只有零解等价于 $\det A=0$ 。直接完全展开计算可知

$$\det A = 1 + (-1)^{n-1} (-\lambda)^n = 1 - \lambda^n$$

因此当且仅当 $\lambda \neq e^{2k\pi i/n}$ 时线性无关。

5. 由第三题 (2), 若 $\alpha_1, \ldots, \alpha_n$ 线性相关可推出 e_1, \ldots, e_n 线性相关, 矛盾。

期中考试

1. (1) 直接计算可知

$$A^{-1} = \begin{pmatrix} 1 & -2 & 1 & 4 \\ & 1 & 0 & -1 \\ & & 1 & -2 \\ & & & 1 \end{pmatrix}$$

将 A 拆分为 I+N,则计算可发现 $N^2=O$,于是

$$A^{n} = I + nN + \frac{n(n-1)}{2}N^{2} = \begin{pmatrix} 1 & 2n & n & 2n^{2} - 2n \\ & 1 & 0 & n \\ & & 1 & 2n \\ & & & 1 \end{pmatrix}$$

- (2) 直接计算可知 $A^* = -3A$ 。
- (3) 直接利用 Binet-Cauchy 公式可知 $\det(A^T A) = 0$ 。
- (4) 由相交可知对应方程组有解,从而由第四章内容有

$$\operatorname{rank} \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} = \operatorname{rank} \begin{pmatrix} a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ a_3 & b_3 & c_3 & d_3 \end{pmatrix}$$

由第一章知识,有解时解集与对应齐次方程组解集相差平移,而根据相抵标准形可发现齐次方程 组解集为直线当且仅当

$$\operatorname{rank} \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} = 2$$

二者结合即为结论。

事实上,由于题目条件保证了三个式子代表不同平面,分析解集形状可发现 $\operatorname{rank}\begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix}$ 至少为 2,因此只要此矩阵不可逆即可。

2. (1) 正确。如可取

$$A = \begin{pmatrix} O & I_{1012} \\ -I_{1012} & O \end{pmatrix}$$

- (2) 正确。左侧等价于 A(B-C) = O 能推出 B-C = O,考虑每列可知即代表 Ax = 0 只有零解,利用相抵标准形直接计算即得这等价于 A 列满秩。
- (3) 错误。如可取 A=(1,1)。(事实上,当 m=n 时通过 $\det A=\det A^T$ 可知两者均等价于 A 不可逆。)
- (4) 正确。若不存在 k 阶可逆子矩阵,对 $\operatorname{rank} A$ 阶可逆子矩阵的前 k 行作 Laplace 展开可知其行列 式为 0,与可逆矛盾。

3. 设

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

直接计算分量并整理可知 $A^H A = AA^H$ 等价于

$$\begin{cases} b\bar{b} = c\bar{c} \\ (\bar{a} - \bar{d})b = (a - d)\bar{c} \end{cases}$$

若 a=d, 再满足 |b|=|c| 即可; 否则由第二个式子知必有

$$b = \frac{a - d}{\bar{a} - \bar{d}}\bar{c}$$

计算验证可知此时第一式已经满足, 因此这两种情况即为全部可能。

4. 设 n 阶对应行列式 Δ_n , 按第一行展开可发现

$$\Delta_n = \Delta_{n-1} + (-1)^{n-1}$$

由此计算前几项即可归纳得 n 为偶数时 $\Delta_n=0$, 否则为 1。

由于

$$A - I = \begin{pmatrix} \mathbf{0} & 1 \\ I_{n-1} & v \end{pmatrix}, \quad v = (1, \dots, 1, 0)^T$$

其可以写成

$$\begin{pmatrix} 1 & \mathbf{0} \\ v & I_{n-1} \end{pmatrix} \begin{pmatrix} \mathbf{0} & 1 \\ I_{n-1} & 0 \end{pmatrix}$$

左右均为分块初等方阵, 于是有

$$(A-I)^{-1} = \begin{pmatrix} \mathbf{0} & 1 \\ I_{n-1} & \mathbf{0} \end{pmatrix}^{-1} \begin{pmatrix} 1 & \mathbf{0} \\ v & I_{n-1} \end{pmatrix}^{-1} = \begin{pmatrix} \mathbf{0} & I_{n-1} \\ 1 & \mathbf{0} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{0} \\ -v & I_{n-1} \end{pmatrix} = \begin{pmatrix} -v & I_{n-1} \\ 1 & \mathbf{0} \end{pmatrix}$$

5. 利用多项式的装置定理可知存在 u(x) 与 v(x) 使得

$$u(x)(x+1) + v(x)(x^2 - x + 1) = 1$$

事实上可取

$$u(x) = \frac{1}{3}(-x+2), \quad v(x) = \frac{1}{3}$$

于是计算可知 $\operatorname{rank}(A+I) + \operatorname{rank}(A^2-A+I)$ 为

$$\begin{aligned} \operatorname{rank} \begin{pmatrix} A+I & O \\ O & A^2-A+I \end{pmatrix} &= \operatorname{rank} \begin{pmatrix} I & v(A) \\ O & I \end{pmatrix} \begin{pmatrix} A+I & O \\ O & A^2-A+I \end{pmatrix} \begin{pmatrix} I & u(A) \\ O & I \end{pmatrix} \\ &= \operatorname{rank} \begin{pmatrix} A+I & I \\ O & A^2-A+I \end{pmatrix} = \operatorname{rank} \begin{pmatrix} I & O \\ -A^2+A-I & I \end{pmatrix} \begin{pmatrix} A+I & I \\ O & A^2-A+I \end{pmatrix} \begin{pmatrix} I & O \\ -A-I & I \end{pmatrix} \\ &= \operatorname{rank} \begin{pmatrix} O & I \\ A^3+I & O \end{pmatrix} = \operatorname{rank} \begin{pmatrix} O & I \\ A^3+I & O \end{pmatrix} \begin{pmatrix} O & I \\ I & O \end{pmatrix} = \operatorname{rank} \begin{pmatrix} I & O \\ O & A^3+I \end{pmatrix}$$

此即为 $n + \operatorname{rank}(A^3 + I)$,从而得证。

6. 由书上定理 $\operatorname{rank} M = \operatorname{rank} M M^T = \operatorname{rank} M^T M$,于是

$$\operatorname{rank} \begin{pmatrix} A \\ B \end{pmatrix} \begin{pmatrix} A^T & B^T \end{pmatrix} = \operatorname{rank} \begin{pmatrix} AA^T & AB^T \\ BA^T & BB^T \end{pmatrix}$$

由于 $BA^T = (AB^T)^T = O$,此即为

$$\operatorname{rank}\begin{pmatrix} AA^T & O \\ O & BB^T \end{pmatrix} = \operatorname{rank}(AA^T) + \operatorname{rank}(BB^T) = \operatorname{rank}A + \operatorname{rank}B$$

第十周

第一次作业 向量组的秩

- 1. (1) 极大线性无关组为 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$,秩为 4。
 - (2) 极大线性无关组可取 $\alpha_1, \alpha_3, \alpha_4$,秩为 3。
- 2. (1) 秩为 2, 极大线性无关组可取前两行、前两列。
 - (2) 秩为 3, 极大线性无关组可取全部三行、124 列。
- 3. 由定义可知存在不全为 0 的 $\lambda_1, \ldots, \lambda_n, \mu$ 使得

$$\sum_{i=1}^{n} \lambda_i \alpha_i + \mu \beta = 0$$

若 $\mu = 0$, 则 λ_i 不全为 0, 与 $\alpha_1, \ldots, \alpha_n$ 线性无关矛盾,于是 $\mu \neq 0$,有

$$\beta = -\sum_{i=1}^{n} \frac{\lambda_i}{\mu} \alpha_i$$

即得证。

- 4. (1) 根据命题 2.2.2, 若其不为极大线性无关组则可以再扩充,但扩充后会多于 r 个,与秩为 r 矛盾。
 - (2) 利用第九周第二次作业 3(2) 的证明,若 β_1, \ldots, β_r 线性相关,则 $\alpha_1, \ldots, \alpha_n$ 中任何 r 个向量线性相关,与秩为 r 矛盾。
- 5. 记 I 的一个极大线性无关组为 $\alpha_1, \ldots, \alpha_s$, II 的一个极大线性无关组为 β_1, \ldots, β_r , 其余为 $\beta_{r+1}, \ldots, \beta_n$ 。 由本次作业 3 结论,根据极大线性无关组定义, $\beta_{r+1}, \ldots, \beta_n$ 都能被 β_1, \ldots, β_r 线性表出,于是类似第一周第一次作业 2(2) 可知 $\alpha_1, \ldots, \alpha_s$ 可被 β_1, \ldots, β_r 线性表出。

若结论不成立,r < s, $\alpha_1, \ldots, \alpha_s$ 可被 β_1, \ldots, β_s 线性表出 (能被 β_1, \ldots, β_r 线性表出,则随意添加向量仍能线性表出),从而利用第九周第二次作业 3(2) 的证明可知它们线性相关,矛盾。

第二次作业 向量组秩的性质

- 1. (1) 由定义验证即可。
 - (2) α_1,α_2 本身即为极大线性无关组。
- 2. 见本周第一次作业 5 证明过程第二段。

第十一周

第一次作业 子空间

- 1. 直接解方程得坐标为 (-76,41,-16)。
- 2. 可添加 e_1 与 e_2 。
- 3. 直接计算得

$$e_1 = \alpha_1 - \alpha_2 - 2\alpha_3 - 4\alpha_4$$
, $e_2 = \alpha_2 + \alpha_3 + 2\alpha_4$, $e_3 = \alpha_3 + \alpha_4$, $e_4 = \alpha_4$

4. 根据书上算法,只需计算

$$\begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} \alpha = 0$$

的基础解系,并将它们作为系数,计算可得以下方程组符合要求:

$$\begin{cases} 6x_1 + x_2 - 4x_3 + x_4 = 0\\ 16x_1 + 6x_2 - 11x_3 + x_5 = 0 \end{cases}$$

5. 若 S 与 T 等价,可知 T 可用 S 表出,于是 T 可用 S 的极大线性无关组表出,从而 $\mathrm{rank}(S \cup T) = \mathrm{rank}\, S$,同理 $\mathrm{rank}(S \cup T) = \mathrm{rank}\, T$ 。

若 $\operatorname{rank}(S \cup T) = \operatorname{rank} S$,由定义可知 S 的极大线性无关组也是 $S \cup T$ 的极大线性无关组,因此 T 可用 S 的极大线性无关组表出,于是 T 可用 S 表出,同理 S 可用 T 表出,即得证。

课堂小测

- 1. 由定义计算可知线性无关。
- 2. 充分性: 由 $\alpha_j = \sum_{i < j} \lambda_i \alpha_i$ 可知 $\sum_{i < j} \lambda_i \alpha_i \alpha_j = 0$,从而根据定义得证。 必要性: 由于存在不全为 0 的 λ_i 使得 $\sum_i \lambda_i \alpha_i = 0$,考虑使 i 最大的非零 λ_i ,记为 λ_m ,即有

$$\alpha_m = -\sum_{i < m} \frac{\lambda_i}{\lambda_m} \alpha_i$$

3. 四点共某平面 Ax + By + Cz + D = 0 等价于代入 x_i, y_i, z_i 形成的方程组有非零解 (若非零解不代表 平面,只能 A = B = C = 0,但此时代入可发现矛盾),此方程组即

$$\begin{pmatrix} x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \\ x_4 & y_4 & z_4 & 1 \end{pmatrix} \begin{pmatrix} A \\ B \\ C \\ D \end{pmatrix} = 0$$

由之前小测已证,这即等价于系数行列式为0。

4. 设第三平面为 $A_3x + B_3y + C_3z + D_3 = 0$, 由三平面交于一条直线, 类似期中填空最后一题可知

$$\operatorname{rank} \begin{pmatrix} A_1 & B_1 & C_1 & D_1 \\ A_2 & B_2 & C_2 & D_2 \\ A_3 & B_3 & C_3 & D_3 \end{pmatrix} = 2$$

而由条件可知 (A_1, B_1, C_1) 与 (A_2, B_2, C_2) 线性无关,因此前两行必然构成其极大线性无关组,从而第三行可被前两行线性表出,又由第三行表示平面,不可能为 0,即有 λ , μ 不全为 0。

5. 观察可知 $\alpha_2 = 2\alpha_1, \alpha_4 = 2\alpha_3$,且 α_1, α_3 线性无关,于是极大线性无关组为

$$\{\alpha_1, \alpha_3\}, \{\alpha_2, \alpha_3\}, \{\alpha_1, \alpha_4\}, \{\alpha_2, \alpha_4\}$$

- 6. 由条件可知存在 A 的 r 行线性无关,而任取 s 行至少取到了其中的 r+s-m 行,于是 B 至少有 r+s-m 行线性无关,从而得证。
- 7. 若否,它们必然线性相关,利用第二题结论可进行第三类初等行变换消去其中某行,此时对应子式行列式不变,但出现了一行 0,与对应子式行列式非零矛盾。
- 8. 即为第六题将行换成列的版本,与第六题证明过程完全相同。

思考题

考虑 A 的线性无关的 r 行构成的矩阵 B,根据秩等于行秩可知 B 的秩也是 r。

另一方面,设 A 线性无关的 r 列为第 n_1, \ldots, n_r 列,则由极大线性无关组的性质可知它们可以线性表出 A 的所有列,而 B 的列为 A 的列的一部分,因此 B 的 n_1, \ldots, n_r 列可以线性表出 B 的所有列,若它们线性相关,则 $\operatorname{rank} B < r$,矛盾,因此 B 的 n_1, \ldots, n_r 列线性无关,而这即构成交叉处的子式,由秩等于阶数知可逆。

对一般的 k,如取 I_2 的第一行与第二列,即知矛盾。

第十二周

第一次作业 一般线性空间

- 1. $\cos(2t) 2\cos^2 t + 1 = 0$,于是线性相关。
- 2. 由于加法、数乘的八条性质可直接验证得满足,是否是子空间只需考虑封闭性。
 - (1) n 次以下多项式加法、数乘还在 n 次以下,构成子空间。
 - (2) x^{n+1} 与 $-x^{n+1}$ 在此子集中,但和 0 不在,不构成子空间。
 - (3) a 处为 0 的多项式加法、数乘 a 处仍为 0,构成子空间。
 - (4) x a 1 与 a x + 1 在此子集中,但和 0 不在,不构成子空间。
 - (5) 偶函数加法、数乘仍为偶函数,构成子空间。
- 3. 由线性相关定义,存在不全为 0 的 μ_1, \ldots, μ_k 使得 $\sum_{i=1}^k \mu_i \alpha_i = 0$,考虑关于 $\lambda_1, \ldots, \lambda_k$ 的方程

$$\sum_{i=1}^{k} \mu_i \lambda_i = 0$$

作为方程个数小于未知数个数的齐次方程组,其必然存在非零解,可验证非零解即符合要求。

- 4. (1) 由 T 是 $S \cup T$ 子集, $S \cup T$ 可表出 T,而由条件 T 可表出 S,又由 T 可表出 T 知 T 可表出 $S \cup T$,从而等价。
 - (2) 由极大线性无关组的性质, T_1 与 $S \cup T$ 等价,再由 (1) 知 T_1 与 T 等价,因此由 T_1 线性无关性 $\operatorname{rank} T = \operatorname{rank} T_1 = s + k$,从而 $t \ge s + k$ 。
 - (3) 在 $T\setminus T_1$ 中任取 s 个元素 $\beta_{i_1},\ldots,\beta_{i_s}$,下面说明这些即为所求。由于 T 可表出 $S\cup T$,替换后为 $S\cup T$ 子集,因此 T 可表出替换后向量组。另一方面,替换后向量组包含 T_1 ,由 (2) 可知 T_1 可表出 T,从而等价。
- 5. S 的极大线性无关组 S_1 可表出 S, T 的极大线性无关组 T_1 可表出 T, 从而二者并集可表出 $S \cup T$, 而并集中的元素至多 s+t 个,从而 $\operatorname{rank} S \cup T \leq \operatorname{rank} S_1 \cup T_1 \leq s+t$.
- 6. 直接验证可知其线性无关,从而构成一组基,注意到若

$$f(x) = a_0 + a_1 x + \dots + a_n x^n = b_0 + b_1 (x - c) + \dots + b_n (x - c)^n$$

则

$$f(x+c) = a_0 + a_1(x+c) + \dots + a_n(x+c)^n = b_0 + b_1x + \dots + b_n(x-c)^n$$

利用二项式定理直接展开可知坐标

$$b_i = \sum_{k=1}^{n} a_k C_k^i c^{k-i}$$

也可写成 $b_i = \frac{1}{i!} f^{(i)}(c)$ 。

7. 可直接验证 $\{\alpha_1, \ldots, \alpha_n, i\alpha_1, \ldots, i\alpha_n\}$ 在 $V_{\mathbb{R}}$ 中线性无关,且可表出 $V_{\mathbb{R}}$ 中任何元素⁵,从而其构成一组基,维数即为 2n。

第二次作业 同态与同构

1. 回顾第九周第二次作业 4 可知 $(-\lambda)^n \neq 1$ 时秩为 n,否则秩小于 n。在 $(-\lambda)^n = 1$ 时,考虑前 n-1 个向量,由于 $\alpha_1, \ldots, \alpha_n$ 线性无关,关于 μ_i 的方程

$$\sum_{i=1}^{n-1} \mu_i(\alpha_i + \lambda \alpha_{i+1}) = 0$$

等价于每个 α_k 前系数均为 0,解得只有零解,从而前 n-1 个向量线性无关,秩为 n-1。

2. 直接计算可知 (第一个等号可通过待定系数得到)

$$\sigma(a+bi) = \sigma\left(\frac{a+b}{2}(1+i) + \frac{a-b}{2}(1-i)\right) = \frac{a+b}{2}\sigma(1+i) + \frac{a-b}{2}\sigma(1-i) = \left(\frac{a+b}{2}, \frac{a-b}{2}\right)$$

3. (1) 若 $a_n = a_{n-1} + a_{n-2}$, $b_n = b_{n-1} + b_{n-2}$, 则

$$(a+b)_n = a_n + b_n = a_{n-1} + a_{n-2} + b_{n-1} + b_{n-2} = (a+b)_{n-1} + (a+b)_{n-2}$$

$$(\lambda a)_n = \lambda a_n = \lambda (a_{n-1} + a_{n-2}) = (\lambda a)_{n-1} + (\lambda a)_{n-2}$$

从而为子空间。由下一问可知维数为 2。

- (2) 由于 W 中每个元素可以由前两个元素有限递推得到,映射是良定的。类似 (1) 可验证保加法、数乘,从而是线性映射。其逆映射为 $\sigma^{-1}(a_1,a_2,\dots)=(a_1,a_2)$,也可验证良定,从而其为双射⁶,从而是同构。
- (3) 可验证 (两数列可待定系数计算出)

$$a_n = \left(\frac{1+\sqrt{5}}{2}\right)^n, \quad b_n = \left(\frac{1-\sqrt{5}}{2}\right)^n$$

线性无关, 且均属于 W, 从而构成一组基。

(4) 只需通过前两个分量列方程即可确定坐标,从而通项公式为

$$F_n = \frac{1}{\sqrt{5}}a_n - \frac{1}{\sqrt{5}}b_n = \frac{\sqrt{5}}{5}\left(\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n\right)$$

- 4. (1) 加法、数乘直接验证符合运算律即可,两正数运算结果仍为正数,从而构成线性空间。
 - (2) \mathbb{R}^+ 作为线性空间的零元为 1,可验证任何 $c > 0, c \neq 1$ 构成其一组基,从而其是一维线性空间,与 \mathbb{R} 同构。

由于确定基的映射即可确定同构,设 \mathbb{R} 到 \mathbb{R}^+ 同构映射满足 $\sigma(1)=c$,由 c 必然为基可知不为 1,从而可确定映射

$$\sigma(t) = t\sigma(1) = c^t$$

这样的映射即为所有同构。

⁵线性无关加可表出任何元素即能证明构成一组基,这在找基的习题中常用。

⁶除了验证单射、满射外,直接找到逆映射也可证明双射

第十三周

第一次作业 交空间与和空间

- 1. 计算可发现 $\beta_1 = 2\beta_2 + \alpha_1 \alpha_2$,于是可进一步得到 $W_1 + W_2$ 维数为 3,基可取 $\alpha_1, \alpha_2, \beta_2$; $W_1 \cap W_2$ 维数为 1,基可取 $\alpha_1 \alpha_2$ 。
- 2. 直接验证可知两方程组均满足时只有零解,即 $W_1 \cap W_2 = \{0\}$ 。利用解空间维数定理可知 W_1 为 n-1 维, W_2 为一维,从而 $W_1 \oplus W_2$ 为 n 维,只能是 \mathbb{F}^n 。
- 3. 如在 ℝ2 中取

$$W_1 = \{(0, a) \mid a \in \mathbb{R}\}, \quad W_2 = \{(a, 0) \mid a \in \mathbb{R}\}, \quad W_3 = \{(a, a) \mid a \in \mathbb{R}\}$$

- 4. (1) 类似第十二周第一次作业 (2) 可验证。
 - (2) 若 f(-x) = f(x) = -f(x) 可知 f(x) = 0,从而 $S \cap K = \{0\}$;对任何多项式,有

$$f(x) = u(x) + v(x), \quad u(x) = \frac{f(x) + f(-x)}{2} \in S, \quad v(x) = \frac{f(x) - f(-x)}{2} \in K$$

从而 $\mathbb{F}[x] \subset S \oplus K$, 又由其为全空间即可知等号成立。

第十四周

第一次作业 补空间

- 1. 由第十二周第二次作业 1 可知 $\lambda^3 = 1$ 时秩为 2, 否则为 3。
- 2. 记 a_i^T 为 a 的第 i 行,则若有

$$\sum_{k=1}^{t} \lambda_k a_{i_k}^T = 0$$

根据定义知必有

$$\sum_{k=1}^{t} \lambda_k \alpha_{i_k} = \sum_{k=1}^{t} \lambda_k \sum_{j=1}^{s} a_{i_k j} \beta_j = 0$$

从而若 A 的某些行线性相关,对应下标的 α_i 一定线性相关,向量组的秩不超过 A 的行秩,即不超过 $\operatorname{rank} A$ 。

- 3. 直接计算六个向量构成向量组的秩可知 $V_1 + V_2$ 即为全空间,一组基可取标准正交基。 利用待定系数计算可知交空间一组基可取 (0,2,-1,3) 与 (3,1,4,0)。
- 4. 为子空间直接验证即可,由形式可知其一组基是

$$\begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

从而可扩充

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

成为全空间基,它生成的子空间即为一个补空间。

第二次作业 线性映射

- 1. (1) 当且仅当 $\beta = 0$ 时线性。
 - (2) 非线性。
 - (3) 线性。
 - (4) 非线性, $\mathcal{A}(iX) = -i\mathcal{A}(X)$ 。
 - (5) 非线性。
 - (6) 非线性, 理由同(4)。
 - (7) 当且仅当 n=1 时线性。
 - (8) 线性。
 - (9) 线性。
 - (10) 当且仅当 A = O 时线性。
- 2. (1) 由于平行四边形面积即为 \overrightarrow{AC} , \overrightarrow{BC} 构成行列式 $\det X$ 的绝对值,利用 $\det(AX) = \det A \det X$ 即得结果。将任何图形无限细分为矩形,考虑极限知成立。
 - (2) 若变换前满足的方程是 $f(\vec{u}) = 0$,变换后的每个点 \vec{v} 应满足 $f(A^{-1}\vec{v}) = 0$,从而方程为 $(f \circ A^{-1})(\vec{v}) = 0$,代入 $f(\vec{u}) = x^2 + y^2 a^2$,可得 $(f \circ A^{-1})(\vec{u}) = x^2 + a^2y^2/b^2 a^2$,即为所求。由 (1) 知面积为 πab 。
- 3. (1) 将 $\alpha_1, \alpha_2, \alpha_3$ 按行拼成矩阵 A, $\beta_1, \beta_2, \beta_3$ 按行拼成矩阵 B, 可发现原命题等价于 AX = B 对 X 有解,可验证 A 可逆,从而取 $X = A^{-1}B$ 即可构造线性映射。
 - (2) 原命题等价于 BX = A 有解,但 rank A = 3, rank B = 2,不可能有解,从而不存在。
- 4. 计算可得标准基下与 $\{\alpha_1, \alpha_2, \alpha_3\}$ 下分别为

$$\begin{pmatrix} -1 & -1 & 2 \\ 1 & -3 & 3 \\ -1 & -5 & 5 \end{pmatrix}, \quad \begin{pmatrix} 2 & 0 & -2 \\ 1 & -1 & 1 \\ 2 & 1 & 0 \end{pmatrix}$$

- 5. (1) 计算可得为 $\begin{pmatrix} a & c & & \\ b & d & & \\ & & a & c \\ & & b & d \end{pmatrix}$ 。
 - (2) 由于 $\mathcal{B}(I) = O$, $\operatorname{Ker} \mathcal{B}$ 维数非零,不是单射,因此不可逆。
 - (3) 利用矩阵乘法结合律得证。
- 6. 取出任何一个多项式 f,与第 12 周第一次作业 6 完全类似计算左右即可。

课堂小测

1. 子空间直接验证即可, $V_1 \cap V_2$ 中的元素满足 $a_{i+n} = a_i = -a_{i+n}$,于是只有零向量,从而其和是直和,将 V 中向量写为 $(\alpha, \beta), \alpha, \beta \in \mathbb{F}^n$,则有

$$(\alpha,\beta) = \left(\frac{\alpha+\beta}{2}, \frac{\alpha+\beta}{2}\right) + \left(\frac{\alpha-\beta}{2}, \frac{\beta-\alpha}{2}\right)$$

第一项属于 V_1 , 第二项属于 V_2 , 因此 $V_1 \oplus V_2 = V$ 。

可验证 V_1 有一组基 $(e_i, e_i), i = 1, ..., n$,于是 $\dim V_1 = n$,因此

$$\dim(V/V_1) = \dim V - \dim V_1 = n$$

第十四周 34

2. 右包含于左: $V_1 \cap V_2$ 与 $V_1 \cap V_3$ 都是 V_1 的子空间,因此包含于 V_1 ; 利用 $(V_1 \cap V_2) \subset V_2$,由定义可知 $(V_1 \cap V_2 + V_1 \cap V_3) \subset (V_2 + V_1 \cap V_3)$ 。

左包含于右: 若 $\alpha \in (V_1 \cap (V_2 + V_1 \cap V_3))$,将其写为 $\beta + \gamma$,其中 $\beta \in V_2$ 、 $\gamma \in V_1 \cap V_3$ 。由于 $\beta = \alpha - \gamma, \alpha \in V_1, \gamma \in V_1$,可知 $\beta \in V_1$,从而 $\beta \in V_1 \cap V_2$,从而即得到 $\alpha \in (V_1 \cap V_2 + V_1 \cap V_3)$ 。 反例:

$$V_1 = \{(0, a) \mid a \in \mathbb{R}\}, \quad V_2 = \{(a, 0) \mid a \in \mathbb{R}\}, \quad V_3 = \{(a, a) \mid a \in \mathbb{R}\}$$

3. 将 $A \times B \times C$ 看作线性映射 $A \times B \times C$ 在标准基下的矩阵表示,移项即变为要证

$$\dim\operatorname{Im}\mathcal{AB}-\dim\operatorname{Im}\mathcal{ABC}\leq\dim\operatorname{Im}\mathcal{B}-\dim\operatorname{Im}\mathcal{BC}$$

根据定义可验证 $\operatorname{Im} \mathcal{BC} = \mathcal{B}(\operatorname{Im} \mathcal{C}) \subset \operatorname{Im} \mathcal{B}$,因此可考虑 $\operatorname{Im} \mathcal{BC}$ 对 $\operatorname{Im} \mathcal{B}$ 的一个补空间 V,从而不等式右侧即为 $\dim V$ 。

由线性性可验证

$$\operatorname{Im} \mathcal{AB} = \mathcal{A}(\operatorname{Im} \mathcal{B}) = \mathcal{A}(V + \operatorname{Im} \mathcal{BC}) = \mathcal{A}(V) + \mathcal{A}(\operatorname{Im} \mathcal{BC}) = \mathcal{A}(V) + \operatorname{Im} \mathcal{ABC}$$

于是利用和空间维数性质可知

$$\dim \operatorname{Im} \mathcal{AB} \leq \dim \mathcal{A}(V) + \dim \operatorname{Im} \mathcal{ABC}$$

利用定义可知 V 中线性相关的向量组在 A 作用后仍线性相关,从而 $\dim A(V) \leq \dim V$,代入上式得到原不等式。

思考题

由于涉及部分超纲内容,解答仅提供思路,具体推导有疑问请私聊确认:

- 1. 右包含左:由于左侧的两部分都属于 $V_1 + W$ 与 $V_2 + W$,其和仍然属于;右包含左:设右侧拆分为 $\alpha + \beta, \alpha \in V_2, \beta \in W$,则类似本周课堂小测第二题可得 $\alpha \in V_1 + W$,从而得证。
- 2. 结论错误, 反例同本周课堂小测第二题反例。
- 3. 结论错误,反例同本周课堂小测第二题,记 $U_1 = U_2 = V_3$ 。
- 4. 结论正确,利用正交补空间定义验证即可,与 U_1, U_2 中所有向量都垂直必然与其和中所有向量垂直,反之亦然。
- 5. 反向归纳,设全空间维数为 m,当 U_i 维数均为 m 时只能都为 V,取补空间 $\{0\}$ 即可。若维数均为 k+1 时成立,维数均为 k 时,由于 k < m,利用分析知识可知 $U_1 \cup U_2 \cdots \cup U_n \neq V$,从而可取出 $V \setminus U_1 \cup U_2 \cdots \cup U_n$ 中元素 α 。可验证 U_1 与 α 生成的子空间 V_1 是 k+1 维, V_2, \ldots, V_n 同理,由此 由归纳假设存在共同补空间 W,考虑 W 与 α 生成的子空间,可验证其符合要求7。
- 6. 对有限维,考虑一组基在 A 下的像,单射、满射、双射都等价于基的像还是基。对无穷维,考虑 \mathbb{R} 上多项式空间中 $f(x) \to xf(x)$ 与 $f(x) \to f'(x)$ 即为单射非双射、满射非双射的例子。
- 7. (1) 由定义可验证包含。若取等,考虑 Ker \mathcal{A} 一组基 $\{u_i\}$,并扩充 $\{\alpha_i\}$ 成为 U 一组基,由基的定义 可反证得到 $\{\mathcal{A}\alpha_i\}$ 线性无关。由条件反证可知 $\{\mathcal{B}\mathcal{A}\alpha_i\}$ 线性无关,否则线性组合可得出 Ker $\mathcal{B}\mathcal{A}$ 中有但 Ker \mathcal{A} 中无的元素。将其扩充 $\{\beta_i\}$ 成为 W 的一组基,构造 \mathcal{C} 将 $\mathcal{B}\mathcal{A}\alpha_i$ 映射到 $\mathcal{A}\alpha_i$, $\{\beta_i\}$ 都映射到 0,可验证符合要求。

 $^{^7}$ 事实上,利用分析知识可将 n 个推广到可数个,利用可数个 U 仍然不能覆盖 V 即可。

第十五周 35

- (2) 同样由定义可验证包含,与(1)类似构造即可。
- 8. 构造映射 $\tilde{A}: U/\operatorname{Ker} A \to \operatorname{Im} A$, $\tilde{A}(u + \operatorname{Ker} A) = A(u)$,可验证其为良定的双射,从而同构。
- 9. 考虑 U 到 (U+W)/W 的映射 $\mathcal{A}(u)=u+W$, 可验证其良定, 利用第一同构定理得结果。
- 10. 考虑 U/W 到 U/V 的映射,A(u+W)=u+V,可验证其良定,利用第一同构定理得结果。
- 11. (1) 直接验证即可。
 - (2) 考虑将 α_i 映射到 1,其他 α_j , $j \neq i$ 映射到 0 的映射 A_i ,可验证它们构成一组基,称为 $\{\alpha_i\}$ 的 对偶基,于是维数为 n。
 - (3) 考虑 U 一组基, U^* 可指定其中任何一个为任何实数,因此同构于 $\mathbb{R}^{\mathbb{N}}$,维数事实上不可数 (需要选择公理才能取出一组基),与 U 可数维并不相同。
 - (4) 直接验证即可。
 - (5) 考虑 S 的极大线性无关组 s_1, \ldots, s_k ,并将其扩充 $\alpha_{k+1}, \ldots, \alpha_{k+n}$ 为 U 的一组基,考虑这组基的对偶基 \mathcal{A}_i ,可发现 $\mathrm{Ann}(S)$ 即为

$$\sum_{i=k+1}^{n} \lambda_i \mathcal{A}_i, \quad \lambda_i \in \mathbb{R}$$

于是得证维数关系。

- (6) 类似第 4 题由定义验证即可。
- (7) 类似第 4 题由定义验证即可。
- (8) 未必成立。如 (6) 中 U 取 \mathbb{R} , $V_1 = \{1\}$, $V_2 = \{2\}$; (7) 中 U 取 \mathbb{R}^2 , $V_1 = \{(1,0)\}$, $V_2 = \{(0,1)\}$ 。
- (9) 由 (6)、(7) 与直和定义可直接得成立。

第十五周

第一次作业 像与核

1. (1) 直接利用矩阵表示看作坐标变换的定义计算得

$$\operatorname{Ker} \mathcal{A} = \{ x\alpha_1 + y\alpha_2 + z\alpha_3 \mid x - 3y + 2z = 0 \}, \quad \operatorname{Im} \mathcal{A} = \{ t\alpha_1 - 3t\alpha_2 + 2t\alpha_3 \mid t \in \mathbb{F} \}$$

(2) 可取 Ker A 一组基为 $3\alpha_1+\alpha_2$ 与 $2\alpha_1-\alpha_3$,可发现增添 α_1 成为全空间一组基(不唯一),过渡矩阵为

$$P = \begin{pmatrix} 3 & 2 & 1 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$$

计算 $P^{-1}AP$ 即得 M_1 下矩阵为

$$\begin{pmatrix}
0 & 0 & -3 \\
0 & 0 & -2 \\
0 & 0 & 14
\end{pmatrix}$$

- 2. (1) 直接计算发现 $\operatorname{Ker} \mathcal{D} = \mathbb{R}_1[x]$ 、 $\operatorname{Im} \mathcal{D} = \mathbb{R}_{n-1}[x]$,维数分别为 1 与 n-1,和为 n。
 - (2) 不成立,由于和并非直和。

3. 考虑 W 在 U 中一个补空间 V,由定义可验证 $\mathcal{A}(W) + \mathcal{A}(V) = \operatorname{Im} \mathcal{A}$,再由和空间维数即可知 $\dim \mathcal{A}(V) \geq \operatorname{rank} \mathcal{A} - \operatorname{Im} \mathcal{A}(W)$,从而得证。

- 4. 由 \mathcal{A} 的像都在 $\operatorname{Im} \mathcal{A}$ 中可发现限制映射 $\mathcal{A}_0 = \mathcal{A}|_{\operatorname{Im} \mathcal{A} \to \operatorname{Im} \mathcal{A}}$ 良定,从而 $\dim \operatorname{Im} \mathcal{A} \operatorname{rank} \mathcal{A}_0 = \dim \operatorname{Ker} \mathcal{A}_0$,根据定义可知这即是结论。
- 5. (1) 由上题可知 $\operatorname{Ker} \mathcal{A} \cap \operatorname{Im} \mathcal{A} = \{0\}$,从而和是直和,再由维数和等于 V 的维数可知直和结果是全空间。
 - (2) 由于替换基会使 A 成为 $P^{-1}AP$,而 P 可逆可知秩不变, $\operatorname{tr}(P^{-1}AP) = \operatorname{tr}(PP^{-1}A) = \operatorname{tr}A$,于 是只需要证明某组基下成立即可。

考虑 Im A 与 Ker A 各取一组基,记为 $\alpha_1, \ldots, \alpha_r, \beta_{r+1}, \ldots, \beta_n$,对任何一个 α_i ,设 $A(x_i) = \alpha_i$,由于 $A^2(x_i) = A(x_i)$ 可知 $A(\alpha_i) = \alpha_i$;而由定义可知 $A(\beta_i) = 0$,从而 A 在这组基下矩阵表示为 diag $(1, \ldots, 1, 0, \ldots, 0)$,共 r 个 1、n-r 个 0,可验证符合要求。

- (3) 验证可知(2)中给出的基下的坐标即符合要求。
- 6. 我们证明 $A^2 = \mathcal{O}$ 推 1、1 推 3、3 推 2 与 2 推 $A^2 = \mathcal{O}$ 。

 $\mathcal{A}^2 = \mathcal{O}$ 推 1: 反证,若 $\operatorname{Im} \mathcal{A}$ 中有 $\alpha \notin \operatorname{Ker} \mathcal{A}$,取 α 原像 γ ,则 $\mathcal{A}^2(\gamma) \neq 0$,矛盾。

1 推 3: 反证可知, $\operatorname{Im} A$ 中一组线性无关的向量其 A 下的原像必然也线性无关。取 $\operatorname{Im} A$ 的一组基 α_1,\dots,α_r ,考虑其各一个原像 β_1,\dots,β_r ,它们必然互相线性无关,设它们生成的子空间为 U。若 $\beta_1,\dots,\beta_r,\alpha_1,\dots,\alpha_r$ 线性相关,则可得到存在非零的 $\beta\in U$,使得 $\beta\in \operatorname{Im} A\subset \operatorname{Ker} A$,但由维数 相同与满射可知 $A(U)=\operatorname{Im} A$ 为双射,0 的原像只有 0,不可能存在非零 $\beta\in \operatorname{Ker} A$ 矛盾。由此 即可得到 $2r\leq n$,且计算维数发现 $U\oplus \operatorname{Ker} A=n$ 。将 α_1,\dots,α_r 进一步扩充为 $\operatorname{Ker} A$ 的一组基 $\gamma_1,\dots,\gamma_{n-2r},\alpha_1,\dots,\alpha_r$,在前面添加 β_1,\dots,β_r 后构成全空间一组基,可验证这组基下矩阵表示即符合要求。

3 推 2: 3 的表示即符合 2 的要求。

2 推 $A^2 = \mathcal{O}$: 直接计算验证可知矩阵平方为 O,从而符合要求。

第二次作业 坐标变换

- 1. 记 E_{ij} 为只有第 i 行第 j 列为 1,其他为 0 的方阵。由线性映射基本性质可知 f(O) = 0,而设 $f(E_{11}) = c$,由 $f(E_{1i}E_{i1}) = f(E_{i1}E_{1i})$,计算验证可知此即 $f(E_{ii}) = c$;由 $f(E_{ii}E_{ij}) = f(E_{ij}E_{ii})$,当 $i \neq j$ 时计算得 $f(E_{ij}) = 0$ 。由于已知一组基的映射结果,映射已经确定,计算即得 $f(A) = c \operatorname{tr}(A)$ 。
- 2. (1) 由于 f_i 在 ω_j , $j \neq i$ 处均为 0, 在 ω_i 处非零,而 ω_0 , ..., ω_{n-1} 互不相同,若 f_i 线性组合得 0,可验证只能系数全为 0,从而它们线性无关,结合维数即知为一组基。
 - (2) 计算过渡矩阵也即要计算 $f_i(x)$ 的各项系数。根据单位根的定义有 $f_i(x)(x-\omega_i)=x^n-1$,从而

$$f_i(x) = \frac{x^n - 1}{x - \omega_i} = \frac{x^n - \omega_i^n}{x - \omega_i} = \sum_{k=0}^{n-1} x^k \omega_i^{n-1-k}$$

由此即能拼出过度矩阵。

3. 直接计算过渡矩阵得两问结果分别为

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{pmatrix}, \quad \begin{pmatrix} 6 & 4 & 6 \\ 0 & -1 & -1 \\ 0 & 1 & -2 \end{pmatrix}$$

4. 利用 $\cos \theta = \text{Re}(e^{i\theta})$, 由二项式定理计算即得

$$\cos mx = \sum_{t=0}^{[m/2]} (-1)^t \sum_{k=t}^{[m/2]} C_m^{2k} C_k^t \cos^{m-2t} x$$

由此可根据系数写出过渡矩阵。

5. 若 $x,y \notin \text{Ker } f$,则它们也不在 Ker g 中,从而可设 $a = \frac{f(x)}{g(x)}, b = \frac{f(y)}{g(y)}$,且 $ab \neq 0$ 。只需证明 a = b,即可得到 f = cg。

若 $a \neq b$,变形有 $\frac{f(x)}{f(y)} \neq \frac{g(x)}{g(y)}$,令左侧为 t,则可验证 $f(x-ty) = f(x) - tf(y) = 0, g(x-ty) \neq 0$,矛盾。

思考题

1. 结论仍然成立。由 $\mathcal{A}^2 = \mathcal{A}$,可知 $\mathcal{A}|_{\operatorname{Im}\mathcal{A}}$ 即为恒等映射。若 $\operatorname{Im}\mathcal{A} \cap \operatorname{Ker}\mathcal{A} \neq \{0\}$,与恒等性矛盾。由此和是直和。

对任何 α ,由于 $\mathcal{A}(\alpha - \mathcal{A}\alpha) = 0$,可知 $(\alpha - \mathcal{A}\alpha) \in \operatorname{Ker} \mathcal{A}$,从而 α 可写为 $\operatorname{Im} \mathcal{A}$ 中元素 $\mathcal{A}\alpha$ 与 $\operatorname{Ker} \mathcal{A}$ 中元素之和,即得证。

2. 仍然成立,证明过程与之前相同。

第十六周

第一次作业 相似的概念

- 1. 由于 $(B-I)^2 = O$,但 $(A-I)^2 \neq O$,根据命题 6.4.3 可知两者不相似。
- 2. 计算过渡矩阵可知 A 在 β_1,β_2 下表示为 $\begin{pmatrix} -4 & -11 \\ 1 & 3 \end{pmatrix}$,从而直接计算矩阵加法、乘法可得所求三个矩阵为

$$\begin{pmatrix} -3 & -8 \\ 3 & 10 \end{pmatrix}, \quad \begin{pmatrix} -26 & -89 \\ 7 & 24 \end{pmatrix}, \quad \begin{pmatrix} -1 & -2 \\ -1 & -1 \end{pmatrix}$$

- 3. 设 $A = P^{-1}BP$, $C = Q^{-1}DQ$,则 $\operatorname{diag}(A,C) = \operatorname{diag}(P^{-1},Q^{-1})\operatorname{diag}(B,D)\operatorname{diag}(P,Q)$,计算可验证 $\operatorname{diag}(P^{-1},Q^{-1})\operatorname{diag}(P,Q) = I$,从而得证。
- 4. (1) 计算特征多项式可知特征值为 2 与 -2。对应 2 的特征向量 $(c_1, c_2, 2c_1)^T$,其中 c_1, c_2 不全为 0; 对应 -2 的特征向量 $(c, 0, -2c)^T$,其中 $c \neq 0$ 。由此记

$$P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 2 & 0 & -2 \end{pmatrix}$$

可验证 $P^{-1}AP = diag(2, 2, -2)$ 。

(3) 计算特征多项式可知特征值为 2 与 -2。对应 -2 的特征向量 $(-c, c, c, c)^T$,其中 $c \neq 0$;对应 2 的特征向量 $(c_1 + c_2 + c_3, c_1, c_2, c_3)^T$,其中 c_1, c_2, c_3 不全为 0。由此记

$$P = \begin{pmatrix} -1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

可验证 $P^{-1}AP = diag(-2, 2, 2, 2)$ 。

第十六周 38

第二次作业 特征子空间

- 1. (1) 直接计算可得 $B = \sum_{k=0}^{n-1} a_{k+1} A^k$ 。
 - (2) 利用完全展开可知 $\varphi_A(\lambda) = \lambda^n 1$,其特征值 $e^{2\pi i m/n}, m = 0, ..., n 1$ 互不相同,可相似对角 化,从而利用

$$P^{-1}BP = \sum_{i=0}^{n-1} a_{i+1} (P^{-1}AP)^i$$

可知 B 可相似对角化,D 的第 m 个对角元为 $\sum_{k=0}^{n-1} a_{k+1} e^{2\pi i m k/n}$ 。

- (3) 由于 $\det B = \det D$,直接计算 D 的对角元乘积即为 B 的行列式。
- 2. 考虑 $\varphi_A(\lambda)$, 利用行列式完全展开与韦达定理, 其 n-1 次项

$$\sum_{i=1}^{n} a_{ii} = -\sum_{i=1}^{n} \lambda_i$$

n-2 次项(左侧第一项是 $\prod_{i}(\lambda-a_{ii})$ 中的,第二项是主对角线选了 n-2 个元素的)

$$\sum_{i \neq j} a_{ii} a_{jj} - \sum_{i \neq j} a_{ij} a_{ji} = \sum_{i \neq j} \lambda_i \lambda_j$$

将第一个式子平方后减去第二个式子的两倍,则右侧即为 $\sum_{i=1}^{n} \lambda_i^2$,左侧即成为

$$\sum_{i=1}^{n} a_{ii}^{2} + \sum_{i \neq j} a_{ij} a_{ji} = \sum_{i,j=1}^{n} a_{ij} a_{ji}$$

从而得证。

(事实上用相似三角化可以证明全部 λ_i^2 是 A^2 的特征值,从而直接利用 $\varphi_{A^2}(\lambda)$ 的 n-1 次项也可得到结果。)

- 3. 利用第十五周第一次作业 5 可得到结果,或类似 6.6 节例 2 证明,或记 B = 2A I,则可验证 $B^2 = I$,利用 6.6 节例 2 与 A 是 B 的多项式可知成立。
- 4. 设 $A = P^{-1}DP$,其中 D 为对角阵。定义线性变换 $\mathcal{P}(X) = P^{-1}XP$,则可验证 $\mathcal{P}^{-1}(X) = PXP^{-1}$,计算有

$$\mathcal{A}(X) = P^{-1}DPX - XP^{-1}DP = P^{-1}(DPXP^{-1} - PXP^{-1}D)P = \mathcal{PDP}^{-1}(X)$$

其中 $\mathcal{D}(X) = DX - XD$ 。

取一组基 E_{ij} ,可知 $\mathcal{D}(E_{ij}) = (d_i - d_j)E_{ij}$,因此 \mathcal{D} 在这组基下对角,又由 \mathcal{A} 与 \mathcal{D} 相似可知 \mathcal{A} 可对角化。

(也可利用矩阵张量积将 A 在 E_{ij} 下写成矩阵的形式,再以此计算是否可对角化。)

思考题

1. 由于 A(W) ⊂ Im A,此限制映射定义合理,由定义得其为同态,下记为 B。

单射: 只需证明 $\operatorname{Ker} \mathcal{B} = \{0\}$,若否,设其中还存在 x,则由定义 $x \in \operatorname{Ker} \mathcal{A}$,与 $W \cap \operatorname{Ker} \mathcal{A} = \{0\}$ 矛盾。

满射:对任何 $y \in \text{Im } A$,设 A(x) = y,由条件知存在 $w \in W, t \in \text{Ker } A$,x = w + t,从而计算得 A(w) = y,得证。

- 2. (1) 取 W 为 $\operatorname{Ker} A$ 的补空间,Z 为 $\operatorname{Im} A$ 的补空间,由第一题,可取 $\mathcal{B}|_{\operatorname{Im} A \to W}$ 为 $A_{W \to \operatorname{Im} A}$ 的逆映射,并取 $\mathcal{B}(z) = 0, \forall z \in Z$,由直和性质可得到 V 上的 \mathcal{B} ,并可验证其即为所求。
 - (2) 当 A 可逆或为 O 时,可验证唯一。

否则,若 A 非满射则 $\operatorname{Im} A$ 非零非满,从而补空间 Z 不唯一,而由 (1) 构造 $Z = \operatorname{Ker} \mathcal{B}$,不同的 Z 可构造不同的 \mathcal{B} 。

若 A 非单射,则 Ker A 非零非满,从而补空间 W 不唯一,而由 (1) 构造 $W = Im \mathcal{B}$,不同的 W 可构造不同的 \mathcal{B} 。

(3) 只需证明 $U = \operatorname{Ker} A \oplus \operatorname{Im} B$,另一边同理即可。

若 Ker $\mathcal{A} \cap \text{Im } \mathcal{B} \neq \{0\}$,设其中还有 y,并记 $y = \mathcal{B}x$,则 $\mathcal{B}\mathcal{A}\mathcal{B}x = \mathcal{B}(\mathcal{A}y) = 0$,而 $\mathcal{B}x = y$,矛盾。

对 U 中任何元素 x,由于 $\mathcal{ABA}x = \mathcal{A}x$,记 $a = x - \mathcal{BA}x$, $b = \mathcal{BA}x$,则原式化为 $\mathcal{A}a = 0$,于 是 $a \in \operatorname{Ker} \mathcal{A}$,而 $b \in \mathcal{AB}$,又由 x = a + b 记得 $U = \operatorname{Ker} \mathcal{A} + \operatorname{Im} \mathcal{B}$ 。

逆命题不成立,如 A、B 均可逆但并不互逆时。

- (4) 由上问与第一题可知此两映射即 $A|_{\text{Im }\mathcal{B}\to \text{Im }\mathcal{A}}$ 与 $\mathcal{B}|_{\text{Im }\mathcal{A}\to \text{Im }\mathcal{B}}$,均为同构。记它们为 \mathcal{A}_0 、 \mathcal{B}_0 ,由限制映射定义可知 \mathcal{A}_0 , \mathcal{B}_0 , \mathcal{B}_0 ,由它们均可逆即得 \mathcal{A}_0 , \mathcal{B}_0 ,由它们均可逆即得 \mathcal{A}_0 , \mathcal{B}_0 ,从而互逆。
- 3. 先证明 $\operatorname{Ker} A + \operatorname{Ker} B = U$ 。

由条件可知 $\operatorname{Im} \mathcal{A} \subset \operatorname{Im} \mathcal{A} + \mathcal{B}$,于是对任何 $u \in U$,存在 x 使得 $\mathcal{A}u = (\mathcal{A} + \mathcal{B})x$,由此有 $\mathcal{A}(u-x) = \mathcal{B}x$,又由两者 Im 交为 $\{0\}$ 可知只有 $\mathcal{A}(u-x) = \mathcal{B}x = 0$,也即 $u-x \in \operatorname{Ker} \mathcal{A}$ 、 $x \in \operatorname{Ker} \mathcal{B}$,从而得证。 设 $U_3 = \operatorname{Ker} \mathcal{A} \cap \operatorname{Ker} \mathcal{B}$,并取它对 $\operatorname{Ker} \mathcal{A}$ 的补空间 U_2 ,对 $\operatorname{Ker} \mathcal{B}$ 的补空间 U_1 ,由第一题可验证符合要求。

- 4. (1) 左推右: 设 W 为 Im A ∩ Ker A 关于 Im A 的补空间,可验证 W 为 Ker A 补空间。由第一题可知 A|_{W→Im A} 为同构,而 W ⊂ Im A,于是 A|_{Im A→Im A} 为满射。
 右推左: 对任何 u ∈ U,由满射可知存在 v ∈ Im A 使得 Av = Au,于是 u − v ∈ Ker A,从而 u ∈ Ker A + Im A,即得证。
 - (2) 左推右: 由条件通过第一题即得 $\mathcal{A}|_{\operatorname{Im}\mathcal{A}}$ 是同构,从而得证。 右推左: 利用 (1),只需证明 $\operatorname{Ker}\mathcal{A}\cap\operatorname{Im}\mathcal{A}=\{0\}$,若否,设其中还有 x,则 $x\in\operatorname{Im}\mathcal{A}$ 且 $\mathcal{A}x=0$,从而 $\operatorname{Ker}\mathcal{A}|_{\operatorname{Im}\mathcal{A}}\neq\{0\}$,与同构矛盾。
- 5. 由定义可知 $\mathcal{A}^2 = \mathcal{A}$ 等价于 $\mathcal{A}|_{\operatorname{Im}\mathcal{A}} = \mathcal{I}$,利用上题即得 $V = \operatorname{Im}\mathcal{A} \oplus \operatorname{Ker}\mathcal{A} = \operatorname{Im}\mathcal{B} \oplus \mathcal{B}$ 。

第一式左推右:只证 AB = B,另一个同理。由直和,只需验证 Im B 与 Ker B 上都相等即可。由条件,Im B 上 $A \times B$ 均为恒等映射,于是 AB 为恒等映射,而 Ker B 上二者均为 0,从而得证。

第一式右推左: $\operatorname{Im} \mathcal{B} = \mathcal{B}(U) = \mathcal{AB}(U) \subset \operatorname{Im} \mathcal{A}$,另一边包含同理,从而两者相等。

第二式左推右: 同样只需验证 $\operatorname{Im} \mathcal{B}$ 与 $\operatorname{Ker} \mathcal{B}$ 上 $\mathcal{A}\mathcal{B} = \mathcal{A}$ 。前者由 $\operatorname{Im} \mathcal{B}$ 上 \mathcal{B} 为恒等映射可知成立,后者由条件可知 \mathcal{A} 在其上为 0,从而得证。

第二式右推左: $\operatorname{Ker} \mathcal{B} \subset \operatorname{Ker} \mathcal{A}\mathcal{B} = \operatorname{Ker} \mathcal{A}$,另一边包含同理,从而两者相等。

6. 将其看作 n 维向量空间 \mathbb{R}^n 上的线性变换,由于条件即 A(A-I)(A+I)=O,只需证明 $\operatorname{Ker}(A+I) \oplus \operatorname{Ker}(A-I) \oplus \operatorname{Ker}(A=\mathbb{R}^n)$,从三者中各取一组基构成全空间基,可验证这组基下的矩阵表示即为 $\operatorname{diag}(-I,I,O)$ 。我们分三步证明上式,下记 $V=\operatorname{Ker}(A^2-I)$ 。

第十七周 40

 $\operatorname{Ker}(A-I) \oplus \operatorname{Ker}(A+I) = V$: 由于 $\mathcal{A}|_V$ 满足 $\mathcal{A}|_V^2 = \mathcal{I}$,由 6.6 节例 2 可知 $\operatorname{Ker}(A-I)|_V \oplus \operatorname{Ker}(A+I)|_V = V$ 。另一方面,由定义得 $\operatorname{Ker}(A-I) \subset V$,于是 $\operatorname{Ker}(A-I)|_V = \operatorname{Ker}(A-I)$,对 A+I 同理即得证。

 $\operatorname{Ker} A \cap V = \{0\}$: 若 $x \in \operatorname{Ker} A \cap V = \{0\}$, 可知 $Ax = (A^2 - I)x = 0$, 从 Ax = 0 可得 $A^2x = 0$, 从而必有 x = 0, 得证。

 $\operatorname{Ker} A \oplus V = \mathbb{R}^n$:由于 $(A^2 - I)A = O$,可知 $\operatorname{Im} A \subset V$,从而 $n - \dim \operatorname{Ker} A \leq \dim V$,于是 $\dim V + \dim \operatorname{Ker} A \geq n$,但由于和为直和,维数和最高为n,从而必须取等,得到 $\operatorname{Ker} A \oplus V = \mathbb{R}^n$ 。综合以上三步可知原命题成立。

(此证明事实上可以类似推广,得到若 $\prod_k (A - \lambda_k I) = O$, λ_i 互不相同,则 A 相似于以对角元取值 在 $\{\lambda_1, \ldots, \lambda_k\}$ 中的对角阵。)

第十七周

第一次作业 不变子空间

- 1. (1) 分块计算可知 $(B_{11} \lambda_1 I)(B_{11} \lambda_2 I) = O$,直接计算得其只能为 $\lambda_1 I$,对 $B_2 2$ 同理。
 - (2) 利用 $P^{-1} = \begin{pmatrix} I & -S \\ O & I \end{pmatrix}$ 直接计算得 $S = \frac{1}{\lambda_1 \lambda_2} B_{12}$ 。
 - (3) 由于 A 可以进行相似上三角化,与 (1) 完全类似可说明每个特征值对应的对角块为纯量阵,再与 (2) 类似消去非对角快即可。
- 2. 本题的算法可参考相似三角化的证明过程,当前计算最小多项式只能通过不断验证,在根子空间附近会学到一般性的算法。
 - (1) 计算得可取

$$P = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix}, \quad P^{-1}AP = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}, \quad d_A(x) = (x-1)^3$$

(2) 计算得可取

$$P = \begin{pmatrix} 2 & 1 & -3 \\ 4 & -1 & 1 \\ 1 & 2 & 2 \end{pmatrix}, \quad P^{-1}AP = \operatorname{diag}(0, 3, 7), \quad d_A(x) = x(x - 3)(x - 7)$$

3. 计算可知 $\varphi_A(x) = x^4 - 4x^3 - 3x^2 - 2x - 1$,由 $(\varphi'_A, \varphi_A) = 1$ 可知其无重根,从而 $d_A = \varphi_A$,由 $d_A(A) = O$,且其为次数最小的化零多项式知

$$A^{-1} = A^3 - 4A^2 - 3A - 2I$$

4. 对多项式 f,利用

$$f(\text{diag}(A_1, A_2, \dots, A_k)) = \text{diag}(f(A_1), f(A_2), \dots, f(A_k))$$

即可知 $\operatorname{diag}(A_1,A_2,\ldots,A_k)$ 的化零多项式等价于其同时为 A_1,\ldots,A_k 的化零多项式,即 A_1,\ldots,A_k 最小多项式的倍数,从而得证。

5. 以下两方阵即满足要求:

6. 设 $K = \begin{pmatrix} \mathbf{0} & I_{n-1} \\ c & \mathbf{0} \end{pmatrix}$,则此行列式对应矩阵

$$D = \sum_{k=0}^{n-1} a_{k+1} K^k$$

与第 16 周第二次作业 (2) 类似, $\det(\lambda I - K) = \lambda^n - c$,若 c 不为 0,其根 $c^{1/n} e^{2\pi i j/n}$, $j = 0, \ldots, n-1$ 互不相同,由此可相似对角化,最终得到行列式为

$$\prod_{i=0}^{n-1} \sum_{k=0}^{n-1} a_{k+1} c^{k/n} e^{2\pi i jk/n}$$

若 c=0,行列式即为 a_1^n 。

7. 由特征多项式无重根可知 $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ 相似于 $\operatorname{diag}(-1,1)$,从而 $I - E_{11} - E_{22} + E_{12} + E_{21}$ 相似于 $\operatorname{diag}(-1,I_{n-1})$,也即反射等价于与 $\operatorname{diag}(-1,I_{n-1})$ 相似。

由 6.6 节例 2, $A^2 = I$ 可得到 $A = P^{-1} \operatorname{diag}(-I_k, I_{n-k})P$,从而取 $B_i = P^{-1}(I - 2E_{ii})P$,则

$$A = \prod_{i=1}^{k} B_i$$

且 B_{ii} 相似于 $I-2E_{ii}$,即一个对角元为 -1,其余为 1 的对角阵,因此其为反射,得证。

8. 归纳计算可知

$$B^k = \begin{pmatrix} A^k & kA^{k-1} \\ O & A^k \end{pmatrix}$$

又由线性组合即得对任何多项式 f 有

$$f(B) = \begin{pmatrix} f(A) & f'(A) \\ O & f(A) \end{pmatrix}$$

于是

$$f(B) = O \Leftrightarrow f(A) = f'(A) = O \Leftrightarrow d_A | \gcd(f, f')$$

设 $f(x) = \prod_{i=1}^{t} (x - \lambda_i)^{n_i} g(x)$, 其中 g 不含有 λ_i 为根,直接计算可知上式等价于

$$\prod_{i=1}^{t} (x - \lambda_i)^{m_i + 1} |f(x)|$$

从而得证。

9. 将左侧矩阵分块为 $\begin{pmatrix} A & B \\ C & O \end{pmatrix}$,每块为 2×2 矩阵,则右侧即 $\mathrm{diag}(A,B)$,类似第一题 (2) 计算得 P 可取

$$\begin{pmatrix}
1 & 0 & 7 & -23 \\
0 & 1 & 2 & -3 \\
& & 1 & 0 \\
& & 0 & 1
\end{pmatrix}$$

第十七周 42

思考题

1. 设特征方程 $A\alpha = \lambda \alpha$,同左乘 α^H 可得 $\alpha^H A\alpha = \lambda \alpha^H \alpha$,两侧同取共轭转置可得 $\alpha^H A^H \alpha = \bar{\lambda} \alpha^H \alpha$ 。 当 $A = A^H$ 时即得 $(\lambda - \bar{\lambda})\alpha^H \alpha = 0$,由于 α 非零即可知 $\lambda = \bar{\lambda}$,从而为实数, $A = -A^H$ 时同理得 到 $\lambda = -\bar{\lambda}$ 。

2. 反证,结论不成立且 $\det(\lambda I - A) = 0$,则存在非零向量 x 使得 $Ax = \lambda x$ 。设 x_j 是 x 中模最大的分量,其必然非零则有

$$|(Ax - \lambda x)_j| = \left| (a_{jj} - \lambda)x_j + \sum_{k \neq j} a_{jk} x_k \right| \ge |(a_{jj} - \lambda)x_j| - \sum_{k \neq j} |a_{jk} x_k| \ge |x_j| \left(|a_{jj} - \lambda| - \sum_{k \neq j} |a_{jk}| \right) > 0$$

矛盾。

3. $\operatorname{rank} A = 1$ 即特征值 0 的几何重数为 n-1,根据几何重数的性质,当 0 的代数重数亦为 n-1 时,另一特征值代数重数为 1,于是每个特征值代数重数与几何重数相等,可对角化;否则 0 的代数重数为 n,不可对角化。

而 $\operatorname{tr} A = \sum_{i=1}^{n} \lambda_i$,在 n-1 个特征值为 0 时,其即为第 n 个特征值,当且仅当其非 0 时可对角化。

4. 利用相似三角化可知 A^k 特征值为 A 特征值对应 k 次方,由于

$$\varphi_A(x) = \prod_{i=1}^n (x - \lambda_i), \quad \varphi_{A^k}(x) = \prod_{i=1}^n (x - \lambda_i^k)$$

可将 $x - \lambda_i^k$ 分解为

$$-(\lambda_j^k - (x^{1/k})^k) = -\prod_{l=0}^{k-1} (\lambda_j - x^{1/k}\omega_n^l) = (-1)^{k+1} \prod_{l=0}^{k-1} (x^{1/k}\omega_n^l - \lambda_j), \quad \omega_n = e^{2\pi i/n}$$

由此即得

$$\varphi_{A^k}(x) = \prod_{j=1}^n (-1)^{k+1} \prod_{l=0}^{k-1} (x^{1/k} \omega_n^l - \lambda_j) = (-1)^{(k+1)n} \prod_{l=0}^{k-1} \prod_{j=1}^n (x^{1/k} \omega_n^l - \lambda_j) = (-1)^{(k+1)n} \prod_{l=0}^{k-1} \varphi_A(\omega_n^l x^{1/k})$$

5. 直接计算可知右侧为

$$\det(xI - A)\det(xI - B) = \det(x^2I - xA - xB - AB) = \det(x(xI - A - B)) = x^n \det(xI - A - B)$$
即得左侧。

6. 由 4.5 节例 3 知 $\det(\lambda I - AB) = \det(\lambda I - BA)$,从而 $\varphi_{AB} = \varphi_{BA}$ 。 若存在可逆 P 使得 $P^{-1}ABP = BA$,则对可逆方阵 Q、R,记 C = QAR、 $D = R^{-1}BQ^{-1}$,计算得

$$(R^{-1}P^{-1}Q^{-1})CD(QPR) = DC$$

于是 CD 与 DC 相似。反之,若 CD 与 DC 相似可类似得到 AB 与 BA 相似,由此取 Q,R 使 C 为 A 的相抵标准形 $\operatorname{diag}(I_r,O)$,进一步计算得 $\operatorname{rank} ABA = \operatorname{rank} CDC$,由此只需证明当 $\operatorname{rank} CDC = \operatorname{rank} C$ 或 $\operatorname{rank} CDC = \operatorname{rank} D$ 时 CD 与 DC 相似。下设 D 对应分块为 $\begin{pmatrix} D_1 & D_2 \\ D_3 & D_4 \end{pmatrix}$,于是

$$CD = \begin{pmatrix} D_1 & D_2 \\ O & O \end{pmatrix}, \quad DC = \begin{pmatrix} D_1 & O \\ D_3 & O \end{pmatrix}$$

当 $\operatorname{rank} CDC = \operatorname{rank} C$ 时,计算得左侧即为 $\operatorname{rank} D_1$,由此条件等价于 D_1 可逆,直接计算可知

$$\begin{pmatrix} I & D_1^{-1}D_2 \\ O & I \end{pmatrix} \begin{pmatrix} D_1 & D_2 \\ O & O \end{pmatrix} \begin{pmatrix} I & -D_1^{-1}D_2 \\ O & I \end{pmatrix} = \begin{pmatrix} I & O \\ -D_1D_3^{-1} & I \end{pmatrix} \begin{pmatrix} D_1 & O \\ D_3 & O \end{pmatrix} \begin{pmatrix} I & O \\ D_1D_3^{-1} & I \end{pmatrix}$$

当 $\operatorname{rank} CDC = \operatorname{rank} D$ 时,同理得 $\operatorname{rank} D = \operatorname{rank} D_1$ 。由于 $\operatorname{rank} \left(D_1 \quad D_2\right)$ 介于 $\operatorname{rank} D$ 与 $\operatorname{rank} D_1$ 之间,其必然也等于 $\operatorname{rank} D_1$,考虑列秩知 D_2 的列可由 D_1 的列表出,即存在 X 使得 $D_1X = D_2$,同理存在 Y 使得 $YD_1 = D_3$,直接计算可知

$$\begin{pmatrix} I & X \\ O & I \end{pmatrix} \begin{pmatrix} D_1 & D_1 X \\ O & O \end{pmatrix} \begin{pmatrix} I & -X \\ O & I \end{pmatrix} = \begin{pmatrix} I & O \\ -Y & I \end{pmatrix} \begin{pmatrix} D_1 & O \\ Y D_1 & O \end{pmatrix} \begin{pmatrix} I & O \\ Y & I \end{pmatrix}$$

由于两种情况都可以写作 $U^{-1}CDU=V^{-1}DCV$,即得 $(VU^{-1})CD(UV^{-1})=DC$,于是二者相似,得证。

7. 计算可知 A^k 满足 j < i - k 时为 0, j = i - k 时非零对 k = 0, ..., n - 1 时成立,于是若存在

$$f(A) = a_0 + a_1 A + \dots + a_{n-1} A^{n-1} = 0$$

设下标最大的非零 a_i 为 a_m ,则 j=i-m 时 $(A^m)_{ij}$ 非零, $(A^t)_{ij}$ 在 t< m 时为 0,于是 $f(A)_{ij}\neq 0$,矛盾。由此最小多项式至少为 n 次,从而只能为 φ_A 。

8. 引理 1: 对任何方阵 A,任何非零向量 α ,存在首一多项式 g 使得 $f(A)\alpha=0$ 当且仅当 g|f,称为矩阵对向量的最小多项式,记为 $d_{A,\alpha}$ 。

引理 1 证明: 取 g 为满足 $f(A)\alpha=0$ 的次数最小的首一非零多项式 f,与最小多项式存在性完全类似得证。

引理 2: 对任何方阵 A,存在 α 使得 $d_{A,\alpha} = d_A$ 。 8

引理 2 证明:设 $d_A=p_1^{n_1}\dots p_k^{n_k}$,其中 p_i 为互不相同、至少一次的首一不可约多项式(在复数域上即为 $x-\lambda_i$)。记 $f_i=\frac{d_A}{p_i}$,若对任何 β , $f_i(A)\beta=0$,可得 $f_i(A)=0$,于是 f_i 为最小多项式,矛盾,因此必存在 β_i 使得 $f_i(A)\beta_i\neq 0$,再记 $g_i=\frac{d_A}{p_i^{k_i}}$,并取

$$\alpha = \sum_{i=1}^{k} \alpha_i, \quad \alpha_i = g_i(A)\beta_i$$

由定义得 $d_A|f$ 时 $f(A)\alpha = O\alpha = 0$,而对任何满足 $f(A)\alpha = 0$ 的 f,设其为 $p_1^{m_1} \dots p_k^{m_k} h$,其中 h 不包含 p_i 因子。若有 $m_i < n_i$,则 $f|f_i h$,为推出矛盾只需证明

$$f_i(A)h(A)\alpha \neq 0$$

由于对任何 j, $p_i^{n_j}(A)\alpha_j = d_A(A)\beta_j = 0$, 可发现其他项被消去, 得到

$$f_i(A)h(A)\alpha = f_i(A)h(A)\alpha_i$$

另一方面,此即为 $p(A)p_i^{n_i-1}(A)\alpha_i$,这里 p 不包含因子 p_i 。由于 $f_i(A)\beta_i \neq 0$ 与 g_i 定义可知 $p_i^{n_i-1}(A)\alpha_i \neq 0$,但 $p_i^{n_i}(A)\alpha_i = 0$,于是只能 $d_{A,\alpha_i} = p_i^{n_i}$,但 $f_i h$ 不为 $p_i^{n_i}$ 倍数,因此 $f_i(A)h(A)\alpha_i \neq 0$,矛盾,从而得证。

原题证明: n-rank f(A) 即为 f(A)x=0 解空间维数。设 α 满足引理性质,则必有 $\alpha, A\alpha, \ldots, A^{n-1}\alpha$ 线性无关,构成全空间一组基,由此全空间任何向量可写为 $g(A)\alpha$,g 次数小于 n。由此,f(A)x=0

⁸这个结论事实上对应循环子空间,将在之后的学习中涉及相关内容。

等价于 $f(A)g(A)\alpha=0$,根据引理得必须 $d_A|fg$,设 f 中 p_i 的次数为 m_i ,则 g 中 p_i 次数至少为 $c_i=\max(n_i-m_i,0)$,于是必有

$$g = p_1^{c_1} \dots p_k^{c_k} h$$

根据最大公因式定义即可知 $p_1^{c_1}\dots p_k^{c_k}=\frac{d_A}{\gcd(d_A,f)}$,而 g 中 h 可任取,因此解空间维数即为 $n-(c_1+\cdots+c_k)=n-\deg\frac{d_A}{\gcd(d_A,f)}=\deg(\gcd(d_A,f))$,原命题得证。

9. (也可考虑张量积做法、A, B 同时相似将 A 进行相似三角化或证明 f(A)X = Xf(B) 后进行操作。) 设 A、B 分别为 m、n 阶方阵。

由于 $\det(\lambda I - P) = \det(\lambda I - P^T)$,P 与 P^T 特征值与代数重数完全一致。取 A 特征值 λ 的特征向量 α , B^T 特征值 μ 的特征向量 β ,则

$$\mathcal{P}(\alpha\beta^T) = A\alpha\beta^T - \alpha(B^T\beta)^T = (\lambda - \mu)\alpha\beta^T$$

因此 $\lambda - \mu$ 一定为 \mathcal{P} 的特征值。当一切 $\lambda_i - \mu_j$ 互不相同时, \mathcal{P} 有 $\lambda_i - \mu_j$ 这 n^2 个不同特征值,且 其为 n^2 维线性空间上的线性变换,特征值至多 n^2 个,因此它们就是全部特征值。否则,考虑一列 使 $\lambda_i - \mu_j$ 互不相同的 A, B 逼近有相同的情况,利用**摄动法**⁹可知 \mathcal{P} 的特征值仍为一切 $\lambda_i - \mu_j$ 。

由此, \mathcal{P} 可逆等价于无零特征值,即等价于 $\lambda_i - \mu_j$ 非零对任何 λ_i, μ_j 成立,即 A 与 B^T 无公共特征值,即 A, B 无公共特征值。

10. 与上题类似设 A 特征值 λ 的特征向量 α , B^T 特征值 μ 的特征向量 β , 则

$$\mathcal{P}(\alpha \beta^T) = (1 - \lambda \mu) \alpha \beta^T$$

类似可得 $1 - \lambda_i \mu_i$ 为 \mathcal{P} 的全部特征值,从而有结论。

11. 先证明两个方阵 $A \times B$ 的情况。

设 A 特征值 λ 对应特征向量 α , 由可交换可得

$$AB\alpha = B(A\alpha) = \lambda B\alpha$$

重复此过程并进行线性组合可知 $Af(B)\alpha = \lambda f(B)\alpha$ 对任何多项式 f 成立,由此 $f(B)\alpha$ 在 α 非零时为 A 的特征向量。

沿用第八题记号, 考虑 $d_{B,\alpha}$, 由于 α 非零, 其为至少一次的多项式, 对某个根 μ 定义多项式

$$g(x) = \frac{d_{B,\alpha}(x)}{x - \mu}$$

则有 $g(B)\alpha \neq 0$,且 $(B-\mu)g(B)\alpha = 0$,即 $g(B)\alpha$ 是 B 关于特征值 μ 的特征向量,由上知其为 A 的特征向量,从而得证。

再证明 n 个方阵的情况。记它们为 A_1, \ldots, A_{n-1}, B ,利用归纳法,假设对 n-1 个方阵成立,则可取出 A_1, \ldots, A_{n-1} 的公共特征向量 α ,与两个时相同构造 $g(B)\alpha$,完全类似可知其为 n 个方阵的公共特征向量。

最后证明任意多方阵的情况。计算可知,对一些可交换的方阵,它们的线性组合亦可交换。由此考虑 $\{A_i\}, i \in I$ 生成的空间 V,其为 $\mathbb{C}^{n \times n}$ 的一个子空间,可取出一组有限基,由可交换可取出它们的公共特征向量,由此可验证其为其中任何方阵的特征向量。

下面说明可同时相似三角化。对阶数 n 归纳,当 n=1 时成立,对一般的 n,构造 P 为第一列是共同特征向量 α 的可逆方阵,则计算知 $P^{-1}A_iP$ 第一列均只有第一个元素为 1,其他为 0。此时 $P^{-1}A_iP$ 仍然两两可交换,设其右下角 $(n-1)\times(n-1)$ 方阵为 B_i ,计算可知 B_i 两两可交换,由此存在 Q 使得 $Q^{-1}B_iQ$ 均为上三角阵,而计算可验证令 R=P diag(1,Q) 即有 $R^{-1}A_iR$ 均为上三角阵。

 $^{^9}$ 此处想严谨说明会十分复杂,但确实是正确的。此处只需要理解矩阵的特征值对矩阵元素连续即可。

第十七周 45

12. 我们证明更一般的结论: 若 $\mathbb{F}^{n \times n}$ 子空间 V 中秩最大的矩阵秩为 k,则其至多为 kn 维。(取 $k \le n-1$ 即为本题结论。)

由于 A(X) = PXQ 当 $P \setminus Q$ 可逆时为可逆映射时可逆 (其逆为 $X \to P^{-1}XQ^{-1}$), 必有 $\dim A(V) = \dim V$,且此映射不改变任何矩阵的秩,A(V) 中的矩阵秩最大为 k。可取合适的 A 使 V 中某个秩为 k 的矩阵成为 $\operatorname{diag}(I_k, O)$,即 $\operatorname{diag}(I_k, O) \in A(V)$ 。

记 $E = \left\{ \begin{pmatrix} O & A \\ A^T & B \end{pmatrix} \right\}$ 与 $\operatorname{diag}(I_k, O)$ 相同分块,其中 A, B 可任取,则考虑基可知其维数为 n(n-k),下证 $A(V) \cap E = \{O\}$ 。

假设 $\begin{pmatrix} O & A \\ A^T & B \end{pmatrix} \in \mathcal{A}(V)$,利用线性组合有

$$\begin{pmatrix} aI_k & A \\ A^T & B \end{pmatrix} \in \mathcal{A}(V), \quad \forall a \in \mathbb{F}$$

但行列变换消去 $A 与 A^T$ 可知 $a \neq 0$ 时

$$\operatorname{rank} \begin{pmatrix} aI_k & A \\ A^T & B \end{pmatrix} = \operatorname{rank} \begin{pmatrix} aI_k & O \\ O & B - a^{-1}AA^T \end{pmatrix} = k + \operatorname{rank}(B - a^{-1}AA^T)$$

由于秩最大为 k,只能对任何非零 a 都有 $B-a^{-1}AA^T=O$,即 $B=AA^T=O$ 。 ¹⁰考虑 tr 即可知 A=O,从而得证。

由于 $\mathcal{A}(V) \cap E = \{O\}$,有

$$\dim V = \dim \mathcal{A}(V) = \dim(\mathcal{A}(V) \oplus E) - \dim E \le n^2 - n(n-k) = kn$$

13. 至多 1 维。若其至少两维,则存在可逆阵 P、Q 使得 $\lambda P + \mu Q$ 可逆对任何不全为 0 的 λ,μ 成立。 但取 $\mu=1$, λ 为 $-P^{-1}Q$ 的特征值即有

$$\det(\lambda P + \mu Q) = \det(P^{-1})\det(\lambda I - (-P^{-1}Q)) = 0$$

矛盾。11

 $^{^{10}}$ 这步推导事实上需要至少有两个不同的非零 a,也即不能为二元域。我们默认考虑数域的情况。

 $^{^{11}}$ 对非代数闭域,这个问题会变得十分复杂。实数域时问题的答案称为 Radon-Hurwitz 数。