#### **INFOCOM 2010**



#### Effective Carrier Sensing in CSMA Networks under Cumulative Interference



Liqun Fu



**Soung Chang Liew** 



Jianwei Huang



# Introduction

- Broadcast nature of wireless media interference
- Interference-safe (collision free) transmission
- CSMA protocol: coordinate with carrier sensing
  - Sense before transmit

Operate interference-safe transmissions in CSMA networks?



- Requirement of Interference Safe in CSMA Network
  - Real Interference in Practice: Cumulative interference
  - safe carrier-sensing range
- Implementation: IPCS
  - Incremental-Power Carrier Sense
  - Incremental Power ange concept
- IPCS can improve spatial reuse and network throughput



#### Safe carrier-sensing range

- Under pair-wise interference model [1]
  - The interferences are considered one by one

  - Safe carrier sensing range requirement

$$Safe - CSR_{pairwise} = (\gamma^{\frac{1}{\alpha}} + 2)d_{\text{max}}$$

 $l_1$   $l_2$ 

For example, if  $\gamma=8$  and  $\alpha=3$ , then  $Safe-CSR_{pairwise}=4d_{max}$ 



[1] L.B. Jiang and S.C. Liew, "Hidden-node Removal and Its Application in Cellular WiFi Networks" IEEE Trans. Veh. Technol. Vol. 56. no. 5, Sep. 2007

### A EL

### Safe carrier-sensing range

- However, in practice
  - Interference is cumulative
  - $Safe-CSR_{pairwise}=(\gamma^{\frac{1}{\alpha}}+2)d_{\max}$  is too optimistic



Not sufficient to prevent collisions under cumulative interference

## Ag I

### Under cumulative interference model

Theorem: Setting the carrier sensing range as  $Safe - CSR_{cumulative} = (K+2)d_{\max}, \text{ where } K = \left(6\gamma \left(1 + \left(\frac{2}{\sqrt{3}}\right)^{\alpha} \frac{1}{\alpha - 2}\right)\right)^{\frac{1}{\alpha}}$ 

is sufficient to ensure interference-safe transmissions in CSMA networks under cumulative interference model.  $_{\gamma=8}$   $_{\alpha=3}$ ,

- Worst-case interference in an infinite large network
- The safe carrier sensing range need to be increased

$$Safe - CSR_{pairwise} = 4d_{max}$$
$$Safe - CSR_{cumulative} = 6.96d_{max}$$

- Not amendable with current carrier sensing in 802.11
  - Detect a power  $P^{\mathit{CS}}$  compare with a power threshold  $P_{\mathit{th}}$
  - ullet  $P^{CS}$  is an absolute power: consists of the sum total powers
  - Does not contain enough information for all the required distances

### Implementation: IPCS

- IPCS (Incremental-Power Carrier Sense)
  - The detected power is a function of time
  - Key idea: incremental power \( \bigcolon \) required distance information
  - Check every increment with a power threshold  $P^{CS}(t)$
  - Separate the interference one by one
  - Interference safe:

$$P_{th} = P_t \cdot \left( Safe - CSR_{cumulative} \right)^{-\alpha}$$



### Comparison

- current carrier sensing in 802.11 v.s. IPCS
  - Absolute power v.s. incremental power
  - Current carrier sensing reduces spatial reuse
    - The location of the third concurrent link
       Current CS
       IPCS

$$P^{CS}(T_{3}) = P_{t}d(T_{3}, T_{1})^{-\alpha} + P_{t}d(T_{3}, T_{2})^{-\alpha}$$

$$= 2P_{t}d(T_{3}, T_{1})^{-\alpha} \le P_{th}$$

$$\Delta P_{3}^{CS}(t_{1}) = P_{t} \cdot d(T_{3}, T_{1})^{-\alpha} \le P_{th}$$

$$\Delta P_{3}^{CS}(t_{2}) = P_{t} \cdot d(T_{3}, T_{2})^{-\alpha} \le P_{th}$$

 $\Rightarrow l_3$ 



The separation between transmitters increases progressively







### Throughput Improvement

#### Ideal packing of transmitters:



unit area:  $\frac{\sqrt{3}}{2} (Safe - CSR_{cumulative})^2$ 



## Conclusion

- Propose the concept of the safe carrier sensing range under the cumulative interference model
- Propose a new carrier sensing mechanism, IPCS, to implement accurately
- IPCS is the bridge between theoretical analysis and the real protocol in practice
- IPCS can improve spatial reuse and network throughput.

| Interference<br>Models            | Pairwise<br>Interference Model | Cumulative<br>Interference Model |
|-----------------------------------|--------------------------------|----------------------------------|
| Absolute power carrier sensing    | many (e.g., [8], [10])         | [15], [16]                       |
| Incremental power carrier sensing | This paper                     | This paper                       |



#### Thanks!