

Towards Optimal Graph Compression: Learning Coarsened Graphs with Desirable Properties for Practical Applications

Subhanu Halder
Guided by: Prof. Sandeep Kumar
Indian Institute of Technology Delhi

Graph Coarsening

Graph Coarsening

■ How do we map a large graph to a coarsened graph? Using $C \in \mathbb{R}_+^{p \times k}$, which belongs to $\mathcal{C} = \left\{ \langle C_i, C_j \rangle = 0 \ \forall \ i \neq j, \right\}$

 $\langle C_i, C_i \rangle = d_i, ||C_i||_0 \ge 1, ||[C^T]_i||_0 = 1$

• How do we find Laplcaian and feature matrix of the coarsened graph?

$$\Theta_c = C^T \Theta C, \quad X_c = PX, \quad X = P^{\dagger} X_c = CX_c$$

Quality of Coarsened Graph

■ Node Profile Matrix : $\phi = C^T Y$; $Y \in \mathbb{R}^{p \times l}_+$ represents one-hot label matrix of the original graph.

A loading matrix C is considered balanced, and a coarsened graph is considered informative when, after transforming the one-hot matrix $Y \in \mathbb{R}^{p \times l}$ of labels from the original graph \mathcal{G} using C, the resulting matrix $\phi = C^T Y$ exhibits sparsity in its rows.

Research objectives

The present study investigates the following objectives:

- Objective 1: Optimization Framework for Semi-supervised Attributed Graph Coarsening (Accepted in UAI'24)
- Objective 2:Structured Graph Reduction for Efficient GNN (Accepted in WWW'25)
- Objective 3: Coarse-and-learn: Efficient Entropy based Coarsening and online node labeling
- Objective 4: Graph based Coarse-graining Molecular dynamics with Force Matching

Optimization Framework for Semi-supervised Attributed Graph Coarsening

Figure 1. Sequence of steps in performing node classification task using a coarsened graph

Existing state of the art work flow for node classification using coarsened graph:

Input Graph: $G(A,X) \to \text{Learn coarsened graph } G_c(A_c,X_c,C) \text{ using } G(A,X) \to \text{Label determination of coarsened graph } Y_c = \operatorname{argmax}(C^TY) \to \text{Graph Neural Network training using } G_c(A_c,X_c,Y_c) \to \text{Testing on Original graph}$

Our approach for node classification using coarsened graph:

Input Graph: $G(A,X,Y) \to \text{Learn coarsened graph } G_c(A_c,X_c,Y_c)$ using G(A,X,Y) Graph Neural Network training using $G_c(A_c,X_c,Y_c) \to \text{Testing on Original graph}$

Optimization Problem for LAGC

$$\begin{split} \min_{\tilde{X},C} -\gamma \log \det(C^T \Theta C + J) + \operatorname{tr}(\tilde{X}^T C^T \Theta C \tilde{X}) + ||C\tilde{X} - X||_F^2 + \frac{\lambda}{2} ||C^T ||_{1,2}^2 + \frac{\beta}{2} ||C^T \Theta C||_F^2 + \frac{\delta}{2} ||C^T Y||_F^2 \\ \text{s.t. } \mathcal{S}_C = \left\{ C \geq 0 | \ ||[C^T]_i||_2^2 \leq 1 \ \forall \ i = 1,..,p \right\} \end{split}$$

Algorithm

Proposed algorithm: Variables $\mathcal{X} = (\tilde{X}, C)$, solved using alternate block majorization-minimization:

Sub-problem for C: $\min_{C \in \mathcal{S}_c} \frac{1}{2}C^TC - C^TA$ Sub-problem for \tilde{X} : $\min_{\tilde{X}} \operatorname{tr}(\tilde{X}^TC^T\Theta C\tilde{X}) + \alpha 2\|C\tilde{X} - X\|_F^2$

The LAGC Algorithm summary

1: Input: $\mathcal{G}(X,\Theta), \alpha, \gamma, \lambda$.

2: **while** Stopping criteria not met **do**

3: $C^{(t+1)} = \left(C^{(t)} - \frac{1}{L}
abla f\left(C^{(t)}
ight)
ight)^+$

4: $\tilde{X}^{t+1} = \left(\frac{2}{C}C^T\Theta C + C^TC\right)^{-1}C^TX$

5: **end while**

6: Return C^{t+1} , \tilde{X}^{t+1}

The worst-case computational complexity $O(p^2k)$

Node classification Using LAGC

Data set	r=k/p	GCOND	SCAL	FGC	LAGC	Whole Data
CORA	0.3	81.56 ± 0.62	79.42 ± 1.71	84.03 ± 0.08	$\textbf{87.62} \pm \textbf{0.01}$	
	0.1	81.37 ± 0.40	71.38 ± 3.62	79.96 ± 0.18	$\textbf{86.10} \pm \textbf{0.03}$	89.50 ± 1.20
	0.05	78.93 ± 0.44	55.32 ± 7.03	77.31 ± 0.65	$\textbf{82.85} \pm \textbf{0.02}$	
CITESEER	0.3	72.43 ± 0.49	68.87 ± 1.37	72.85 ± 0.10	$\textbf{78.51} \pm \textbf{1.25}$	
	0.1	70.46 ± 0.49	71.38 ± 3.62	69.46 ± 0.22	$\textbf{76.00} \pm \textbf{0.50}$	78.09 ± 1.95
	0.05	64.03 ± 2.40	55.32 ± 7.03	69.02 ± 0.24	$\textbf{75.70} \pm \textbf{0.31}$	
CO-PHYSICS	0.05	93.05 ± 0.26	73.09 ± 7.41	93.31 ± 0.11	94.46 ± 0.58	
	0.03	92.81 ± 0.31	63.65 ± 9.65	92.00 ± 1.78	$\textbf{94.28} \pm \textbf{0.21}$	96.22 ± 0.74
	0.01	92.81 ± 0.31	63.65 ± 9.65	91.08 ± 0.78	$\textbf{93.26} \pm \textbf{0.89}$	
PubMed	0.05	78.16 ± 0.30	72.82 ± 2.62	78.14 ± 0.29	$\textbf{82.85} \pm \textbf{0.32}$	
	0.03	78.04 ± 0.47	70.24 ± 2.63	77.60 ± 0.16	$\textbf{82.10} \pm \textbf{0.21}$	88.89 ± 0.57
	0.01	77.20 ± 0.02	50.49 ± 10.5	76.10 ± 1.91	$\textbf{81.27} \pm \textbf{0.91}$	
CO-CS	0.05	86.29 ± 0.63	34.45 ± 10.0	89.12 ± 0.08	91.36 ± 0.48	
	0.03	86.32 ± 0.45	26.06 ± 9.29	86.32 ± 0.43	$\textbf{90.32} \pm \textbf{0.97}$	93.32 ± 0.62
	0.01	84.01 ± 0.02	14.42 ± 8.51	85.41 ± 0.24	$\textbf{88.27} \pm \textbf{0.34}$	
DBLP	0.05	79.15 ± 0.20	76.52 ± 2.88	80.08 ± 0.01	$\textbf{81.64} \!\pm \textbf{0.42}$	
	0.03	78.42 ± 1.26	75.49 ± 2.84	79.92 ± 0.48	$\textbf{80.93} \!\pm \textbf{0.12}$	85.35 ± 0.86
	0.01	74.29 ± 0.57	72.01 ± 1.83	77.47 ± 0.33	$\textbf{79.49} \pm \textbf{0.53}$	

Structured Graph Reduction for Efficient GNN

Structured Graph using Spectral Constraint

• Multi-component Coarsened graph:

$$\lambda(\mathcal{T}(\Theta_c^s)) \in \mathcal{S}_{\lambda} = \left\{ \{\lambda_j = 0\}_{j=1}^n, c_1 \le \lambda_{n+1} \le \dots \le \lambda_k \le c_2 \right\}$$

Bi-partite Coarsened graph Graph:

Online coarse-and-learn for Large Graphs

Figure 2. Appropriate coarsening and summarization of past nodes.

Figure 4. Average regret for experiment A (left) and B (center). Right: Average regret for ogbn-arxiv (1.15 million nodes).

Graph based Coarse-graining Molecular dynamics with Force Matching

References

[WDP19] M. A. Webb, J.-Y. Delannoy, and J. J. de Pablo. Graph-Based Approach to Systematic

Molecular Coarse-Graining. (). eprint: https://doi.org/10.1021/acs.jctc.8b00920. [Kum+23] M. Kumar et al. Featured Graph Coarsening with Similarity Guarantees.

[ZSB23] B. Zhou, Y. Sun, and R. Babanezhad. Fast online node labeling for very large graphs.

Subhanu's Portfolio Website

