Комплексные числа. Начало

Комплексные числа — это числа вида z=x+iy, где x и y — действительные, а i — мнимая единица, т.е. число, квадрат которого равен -1. Числа x,y называются, соответственно, действительной и мнимой частью комплексного числа z и обозначаются $x=\operatorname{Re} z,y=\operatorname{Im} z$. Множество всех комплексных чисел обозначается $\mathbb C$.

Сопряжённым числом к z = x + iy называют число $\bar{z} = x - iy$.

Модулем числа z=x+iy называют число $|z|=\sqrt{x^2+y^2}$. Нетрудно заметить, что $|z|^2=z\cdot \bar{z}$.

- **1.** Докажите, что
 - (a) $\overline{z+w} = \overline{z} + \overline{w}; \ \overline{z\cdot w} = \overline{z} \cdot \overline{w}; \ \overline{z/w} = \overline{z}/\overline{w}; \ \overline{\overline{z}} = z;$
 - (6) $|z|^2 = z\overline{z}$; Re $z = \frac{z+\overline{z}}{2}$; Im $z = \frac{z-\overline{z}}{2i}$.
- **2.** Пусть P(x) многочлен с действительными коэффициентами. Докажите, что если P(z)=0, то $P(\overline{z})=0$.
- **3.** (a) Вычислите $\frac{(2-3i)(3+4i)+i+2}{3+i}$
 - (б) Решите уравнение $x^2 = 24i 7$
 - **(B)** Решите уравнение $(1-i)x^2 4x + 1 + 3i = 0$
- **4.** Даны комплексные числа z_1 , z_2 , такие что $|z_1|=|z_2|=1$ и $z_1z_2\neq -1$. Докажите, что $\frac{z_1+z_2}{1+z_1z_2}$ вещественное число.
- **5.** Комплексные числа a,b,c имеют модуль 1. Найдите $\left|\frac{a+b+c}{ab+ac+bc}\right|$
- **6.** Рассмотрим функцию $F(z) = \frac{z+i}{z-i}$ и последовательность $a_n = F(a_{n-1})$, где $a_0 = 1 + 17i$. Чему равно a_{2024} ?
- 7. Даны комплексные числа a,b,c. Докажите, что $\mathrm{Re}(a-c)(\bar{c}-\bar{b})\geqslant 0$ тогда и только тогда, когда $\left|c-\frac{a+b}{2}\right|\leqslant \frac{1}{2}|a-b|$.
- **8.** Докажите, что для всех комплексных чисел выполняется как минимум одно из неравенств: $|1+z|\geqslant \frac{1}{\sqrt{2}},\,|z^2+1|\geqslant 1.$
- **9.** Пусть $z_1, z_2, \dots z_n$ точки комплексной плоскости в вершинах выпуклого n-угольника. Точка z такова, что

$$\frac{1}{z-z_1} + \frac{1}{z-z_2} + \ldots + \frac{1}{z-z_n} = 0.$$

Докажите, что точка z лежит внутри этого n-угольника.