PENGARUH KETEBALAN BATU KORAL PADA TANAH LEMPUNG DAN TANAH BERPASIR TERHADAP TEGANGAN LANGKAH DAN TEGANGAN SENTUH

I Putu Nova Suciawan¹, I Gusti Ngurah Janardana², I Wayan Arta Wijaya²

¹Mahasiswa Program Studi Teknik Elektro, Fakultas Teknik, Universitas Udayana

²Dosen Program Studi Teknik Elektro, Fakultas Teknik, Universitas Udayana

Jalan Kampus Bukit Jimbaran, Kuta, Bali 80361

novasuciawan@gmail.com, janardana@unud.ac.id, artawijaya@ee.unud.ac.id

ABSTRAK

Arus gangguan pada tanah yang mengalir di tempat gangguan maupun di area switchyard Gardu Induk menimbulkan tegangan di permukaan tanah yang dapat mengakibatkan terjadinya tegangan sentuh dan tegangan langkah yang melampaui batas-batas keselamatan manusia yang diijinkan. Ketebalan batu koral dapat mempengaruhi nilai tegangan sentuh dan tegangan langkah yang diijinkan. Penelitian ini dilakukan untuk mengetahui pengaruh ketebalan batu koral pada tanah lempung dan tanah berpasir terhadap tegangan langkah dan tegangan sentuh. Metode yang digunakan yaitu dengan melakukan pengukuran pada batu koral, tanah lempung dan tanah berpasir kemudian menghitung nilai tegangan sentuh dan tegangan langkah berdasarkan ketebalan batu koral yang digunakan. Hasil perhitungan dan analisis dari beberapa ketebalan batu koral yang digunakan pada tanah lempung di dapatkan hasil tegangan sentuh dalam keadaan kering 153,5615 volt dan dalam keadaan basah 152,0702 volt, hasil tegangan langkah dalam keadaan kering 188,5057 volt dan dalam keadaan basah 182,8265 volt. Pada tanah berpasir di dapatkan hasil tegangan sentuh dalam keadaan kering 153,6893 volt dan dalam keadaan basah 183,4349 volt.

Kata Kunci: Batu Koral, Tanah Lempung, Tanah Berpasir, Tegangan Sentuh, Tegangan Langkah

ABSTRACT

Ground fault currents that flow in the disturbance area and in the switchyard area of the Substation create tension on the ground which can result in touch voltage and step voltage that exceed the allowable limits of human safety. The thickness of the coral rock affects the value of the touch voltage and step voltage. This research was conducted to determine the effect of the thickness of the coral rock on clay and sandy soil on step voltage and touch voltage. The method used is by measuring coral, clay soils and sandy soils, then calculating the value of touch voltage and step voltage based on the thickness of the coral used. The results of calculations and analysis of several thicknesses of coral stones used in clay soil, obtained the results of the touch voltage in the dry state of 153.5615 volts and in the wet state of 152.0702 volts, the results of the step voltage in the dry state 188.5057 volts and in the w et state 182, 8265 volts. On sandy soil, the results of the touch voltage are 153.6893 volts in dry condition and 152.1981 volts in wet conditions, the results of the step voltage in dry conditions are 189.141 volts and in wet conditions 183.4349 volts.

Keywords: Coral Stone, Clay Soil, Sandy Soil, Touch Voltage, Step Voltage

1. PENDAHULUAN

Gardu Induk berdiri diberbagai jenis tanah

dimana suatu sistem tenaga listrik yang dipusatkan pada suatu tempat yang saluran transmisi dan distribusi, berisi perlengkapan hubung bagi transformator dan peralatan pengaman serta peralatan kontrol. Pada garduk induk kemungkinan terjadinya bahaya yang disebabkan oleh timbulnva gangguan yang menyebabkan arus mengalir ketanah. Arus gangguan ini mengalir pada bagian-bagian peralatannyang terbuatddari metalddan juga mengalirddalam tanahddi sekitarggardu induk. Arus gangguan tersebut menimbulkan gradien tegangan di antara peralatan dengan peralatan, peralatan dengan tanah, dan juga gradien tegangan pada permukaan tanah itu sendiri. [1].

Pembumian peralatan Gardu biasanya menggunakan sistem pembumian kisi-kisi (grid) dan di lokasi switchyard diberi lapisan batu koral berkisar 10 cm di atas permukaan tanah untuk mengurangi besar perbedaan tegangan pada permukaan tanah untuk menaikkan tahanan kaki manusia yang ada dalam gardu induk. Ketebalan batu koral mempengaruhi nilai tegangan sentuh dan tegangan langkah yang dijjinkan. IEEE merekomendasikan ketebalan lapisan 80.0 batu koral antara sampai meter dengan waktu lama gangguan 1 detik, namun tergantung dari pada jenis tanah lokasi gardu induk, umumnya di bali jenis tanah yang ada yaitu tanah berbatu, tanah lempung, dan tanah berpasir. Arus gangguan tanah yang mengalir di tempat gangguan maupun di tempat pentanahan Gardu Induk menimbulkan tegangan di permukaan tanah yang dapat mengakibatkan terjadinya tegangan sentuh yang melampaui tegangan langkah batas-batas keselamatan manusia yang diijinkan [2].

Dalam sistem pembumian gardu induk, ada beberapa standar yang diikuti untuk mendapatkan sistem pembumian yang aman dan dapat mencegah timbulnya bahaya saat gangguan, teriadi salah satunya berdasarkan standar IEEE Std 80-2013. Dalam IEEE Std 80-2013 ini terdapat standar tegangan sentuh dengan lama gangguan 0.1 detik adalah 1980 volt dan tegangan langkah dengan lama gangguan 0,1 detik adalah 7000 volt, serta konsep-konsep sistem pembumian gardu induk, mulai dari hal-hal yang harus diperhatikan dalam perancangan seperti tahanan jenis tanah, ukuran dan jenis konduktor yang digunakan sampai ke langkah-langkah dalam perancangan yang dijelaskan secara rinci.

2. KAJIAN PUSTAKA

2.1 Proses Penyaluran Tenaga Listrik

Tenaga listrik pada umumnya dibangkitkan pada tempat-tempat tertentu kumpulan pelanggan, vang iauh dari sedangkan pemakai tenaga listrik tersebar disegala penjuru tempat, dengan demikian maka penyampaian tenaga listrik dari tempat dibangkitkannya yang disebut pusat tenaga sampai ke tempat pelanggan memerlukan verbagai penanganan teknis [8].

2.2 Klasifikasi Tanah

Suatu sistem pengaturan beberapa jenis tanah yang berbeda-beda, tapi mempunyai sifat yang serupa kedalam kelompok-kelompok atau sub-sub kelompok tertentu disebut dengan klasifikasi tanah [9].

2.3. Penggunaan Batu Koral

Batu koral ini berfungsi sebagai isolasi antara kaki personil yang bekerja diareah tersebut terhadap tanah [7]:

 Dengan adanya lapisan batu koral pada permukaan switchyard yang menyediakan nilai resistensi yang tinggi tersebut, sehingga ketika terjadi arus gangguan ketanah, arus gangguan akan mengalir lansung ke dalam tanah dan tidak disepanjang area permukaan tanah. Hal ini dapat mengurangi besarnya nilai tegangan pada Touch Potential ataupun Step Potential, yaitu Tegangan Sentuh dan Tegangan Langkah.

2.4 Bahaya-Bahaya yang timbul pada Gardu Induk

Bahaya yang diakibatkan karena terkena tegangan listrik dipengaruhi oleh beberapa hal, diantaranya [9]:

- a. Besar tegangan atau arus yang melalui tubuh.
- b. Lamanya arus yang mengalir dalam tubuh.

Kondisi keadaan tubuh, seperti: berat badan, resistans tubuh, permukaan kulit dan posisi badan ketika diairi arus listrik

2.5 Sistem Pembumian

Pengamanan peralatan listrik dapat dilakukan dengan cara menambahkan sistem pembumian. Sistem pembumian dipasang untuk mengalirkan arus petir ke tanah, sehingga sistem dan manusia di sekitarnya terhindar dari sambaran petir. Sistem pembumian dipengaruhi oleh tahanan jenis tanah yang dihasilkan pada area sistem pembumian. [4]

2.6 Tahanan Jenis Tanah

Tahanan jenis tanah merupakan tahanan listrik dari tahanan tanah yang berbentuk kubus dengan volume 1 meter kubik. [10] Perhitungan nilai tahanan jenis tanah:

$$\rho = 2\pi a R \tag{1}$$

Dimana:

 $\rho = \text{Tahanan jenis tanah } (\Omega)$

a =Jarak penanaman antar elektroda (m)

 $R = \text{Tahanan tanah } (\Omega)$

2.7 Tegangan Sentuh yang diizinkan

Tegangan sentuh adalah tegangan yang terdapat diantara suatu objek yang disentuh dan satu titik berjarak 1 meter, dengan asumsi bahwa objek yang disentuh dihubungkan dengan kisi-kisi pengetanahan yang berada dibawahnya seperti yang ditunjukkan pada Gambar 1 [4]:

Gambar 1: Tegangan Sentuh [4]

Manusia dengan berat badan 70 Kg yang berada diantara satu objek dapat dihitung tegangan sentuh pada persamaan di bawah

ini:

$$E_{t70} = [1000 + 1.5\rho_s C_s] \frac{0.147}{\sqrt{t}}$$
(2)

Dimana:

 E_{t70} = tegangan sentuh yang diizinkan untuk berat badan orang 70 kg (V)

 ρ_s = tahanan jenis batu koral (Ω m)

ρ = tahanan jenis tanah di bawah lapisan batu koral (Ω-m)

 C_s = faktor reduksi

 h_s = ketebalam lapisan batu koral (m)

t = lama waktu gangguan (s)

Faktor reduksi C_s sebagai fungsi dari faktor refleksi K dan ketebalan batu koral h_s , adalah sebagai berikut :

$$C_s = 1 - \frac{0.09 \left(1 - \frac{\rho}{\rho_s}\right)}{2h_s + 0.09}.$$
 (3)

2.8 Tegangan Langkah yang diizinlan

Tegangan langkah adalah beda potensial pada permukaan tanah dari dua titik yang berjarak satu langkah (1 meter), yang dialami oleh seseorang yang menghubungkan kedua titik tersebut dengan kedua kakinya tanpa menyentuh suatu peralatan apapun seperti yang ditunjukkan pada Gambar 2 berikut [5]:

Gambar 2 : Tegangan langkah [4]

Manusia dengan berat badan 70 Kg yang berada diantara satu objek dapat dihitung tegangan sentuh pada persamaan dibawah ini :

$$E_{t70} = [1000 + 6\rho_s C_s] \frac{0.157}{\sqrt{t}}....(4)$$

Dimana:

 $E_{t\,70}$ = tegangan sentuh yang diizinkan untuk berat badan orang 70 kg (V)

 ρ_s = tahanan jenis batu koral (Ω m)

ρ = tahanan jenis tanah di bawah lapisan batu koral (Ωm)

 C_s = faktor reduksi

 h_s = ketebalam lapisan batu koral (m)

t = lama waktu gangguan (s)

3. METODOLOGI PENELITIAN

Penelitian ini dilakukan pada dua tempat yaitu di Desa Baturiti untuk pengukuran tanah lempung dan kawasan Padang Galak untuk pengukuran tanah berpasir, dan waktu pelaksanaannya dimulai dari pada bulan Agustus 2019 untuk pengkuran musim kering dan bulan Februari 2020 untuk pengukuran musim hujan. Penelitian menggunakan datadata yang mendukung pelaksanaan dari proses penelitian yang dilakukan. Adapun halhal yang menyangkut data-data tersebut adalah sumber data, jenis data, dan teknik pengumpulan data. Data yang digunakan dalam penelitian ini bersumber dari hasil pengukuran pada lokasi penelitian. Penelitian ini menggunakan data primer. Data primer berupa hasil pengukuran tahanan tanah di dua tempat yaitu Desa Baturiti untuk pengukuran tanah lempung dan di kawasan Padang Galak untuk pengukuran tanah berpasir.

Adapun Alat dan Bahan Pengukuran adalah sebagai berikut :

- a. Elektroda Pembumian
 - 1) Jenis elektroda : Elektroda batang jenis tembaga murni
 - 2) Panjang elektroda: 40 cm, 48 55 cm.
 - 3) Diameter elektroda: 1,2 cm
 - 4) Jumlah elektroda: 4 batang
- b. Alat Ukur
 - 1) Alat ukur yang digunakan adalah:
 - 2) Earth Resistance Meter, dengan spesifikasi alat sebagai berikut :
 - 3) Merk: Elohmi Z.
 - 4) Model: 42/35-86-2 XP.
 - 5) Jumlah Terminal 4 Buah (E, Es, S dan H)
 - 6) Perubahan skala pengukuran dilakukan secara manual dengan cara menekan Switch ON dan OFF pada Re Earth Resistance Meter.
- c. Alat Bantu
 - 1) Martil
 - 2) Linggis
 - 3) Meteran

Untuk mendapatkan nilai tahanan tanah (R) dalam penelitian ini dilakukan beberapa langkah pengukuran sebagai berikut :

 Mempersiapkan alat pengukuran, bahan pengukuran dan alat bantu yang akan digunakan dalam pengukuran.

- 2) Menancapkan 4 buah elektroda pada tanah menggunakan alat bantu martil ditempat yang berbeda-beda dengan jarak antar elektroda adalah 20 meter.
- 3) Elektrodayang digunakan berdasarkan masing-masing ketebalan batu koral (kedalaman 48 cm sampai 55 cm).
- Penyambungan kabel dari alat ukur pada masing-masing ujung elektroda yang terdapat pada permukaan tanah.
- Rangkaian pengukuran tahanan tanah (R) dengan elektroda untuk mendapatkan nilai tahanan tanah dapat dilihat pada gambar 4 berikut:

Gambar 4 : Rangkaian Pengukuran Tahanan Tanah (R)

Gambar 5 : Rangkaian Pengukuran Tahanan Batu Koral

- 6) Menghubungkan kabel penghubung pada masing-masing terminal elektroda.
- Apabila seluruh kabel sudah terhubung ke terminal pada alat ukur. (Elohmi Z (42/35-86-2XP) dengan benar, maka terlebih dahulu bisa dilakukan. pengukuran tahanan tanah (R) dengan membuka Switch E dengan Es.

- 8) Pengukuran dimulai dengan cara menekan Switch Re kearah atas.
- Pengukuran tahanan tanah (R) dilakukan secara otomatis sehingga didapatkan nilai tahanan pembumian yang dikehendaki.
- 10) Pengukuran tahanan tanah (R) dan tahanan batu koral dilakukan sebanyak 3 kali pengukuran pada pukul 10.00 wita, 13.00 wita, dan 16.00 wita selama 3 hari.
- 11) Pengukuran tahanan batu koral seperti pada point 3 dan dilakukan juga pada saat musim hujan.

Data hasil pengukuran yang telah didapat akan dianalisis dan dihitung berdasarkan persamaan yang sudah tercantum pada Tinjauan Pustaka dengan langkah – langkah sebagai berikut:

- a. Menghitung tahanan jenis batu koral tanah lempung dan tanah berpasir (1).
- b. Menghitung tegangan sentuh pada tanah lempung dan tanah berpasir (2)
- c. Menghitung tegangan langkah pada tanah lempung dan tanah berpasir (3)

4. HASIL DAN PEMBAHASAN

4.1 Analisis Perhitungan Tegangan Sentuh yang diizinkan Berdasarkan Ketebalan Batu Koral

Pada penelitian ini akan dilakukan perhitungan tegangan sentuh yang diizinkan berdasarkan ketebalan lapisan batu koral ditanah lempung dan tanah berpasir. Sebelum melakukan perhitungan tegangan sentuh dan tegangan langkah perlu mencari faktor reduksi berdasarkan ketebalan batu koral dari 0,08 sampai 0,15 dengan menggunakan persamaan 3 sebagai berikut :

$$C_{s\,0,08} = 1 - \frac{0.09 \left(1 - \frac{\rho}{\rho_s}\right)}{2h_s + 0.09}$$

$$C_{s\,0,08} = 1 - \frac{0.09 \left(1 - \frac{82,896}{\rho_s}\right)}{2x0.08 + 0.09}$$

$$C_{s\,0,08} = 1,8905$$

Dengan menggunakan rumus yang sama maka diperoleh nilai faktor reduksi dengan ketebalan batu koral 0,08 sampai 0,15 meter.

4.2 Menghitung Tegangan Sentuh yang diizinkan Berdasarkan Ketebalan Batu Koral pada Tanah Lempung dan Tanah Berpasir

Tegangan sentuh merupakan tegangan yang terdapat diantara suatu objek yang disentuh dan satu titik berjarak 1 meter, dengan asumsi bahwa objek yang disentuh dihubungkan dengan kisi-kisi pembumian yang berada dibawahnya.

4.2.1 Menghitung Tegangan Sentuh yang diizinkan Berdasarkan Ketebalan Batu Koral pada Tanah Lempung dalam keadaan kering

Tahanan jenis tanah pada tanah lempung dalam keadaan kering sebesar $82,896~\Omega$ -meter. Berikut ini merupakan perhitungan tegangan sentuh berdasarkan ketebalan batu koral pada tanah lempung dalam keadaan kering menggunakan persamaan 2 sebagai berikut :

$$E_{t70} = [1000 + 1.5\rho_s C_s] \frac{0.147}{\sqrt{t}}$$

Dengan keterangan:

 E_{t70} = tegangan sentuh yang diizinkan untuk berat badan orang 70 kg (V)

 ρ_s = tahanan jenis batu koral (Ω m)

 ρ = tahanan jenis tanah di bawah lapisan batu koral (Ω m)

 C_s = faktor reduksi

 h_s = ketebalam lapisan batu koral (m)

t = lama waktu gangguan (s)

Dengan menggunakan persamaan 2 diatas, maka didapatkan hasil perhitungan tegangan sentuh berdasarkan ketebalan batu koral pada tanah lempung dalam keadaan kering sebagai berikut:

$$E_{t 70} = [1000 + 1.5\rho_s C_s] \frac{0.147}{\sqrt{t}}$$

$$E_{t 70} = [1000 + 1.5 \times 23.864 \times 1.8905] \frac{0.147}{\sqrt{1}}$$

$$E_{t 70} = 156.9479 \text{ Volt}$$

Dengan menggunakan rumus yang sama maka diperoleh nilai tegangan sentuh dengan ketebalan batu koral dari 0.08 sampai 0,15 pada tanah lempung dalam keadaan kering seperti pada Tabel 1.

Tabel 1. Pengaruh Ketebalan Batu Koral terhadap Tegangan Sentuh pada Tanah Lempung dalam Keadaan Kering

No	Tahana n Jenis Tanah Lempu ng (Ω- m)	Tahan an Jenis Batu Koral (Ω-m)	Keteb alan Batu Koral (h _s)	Fakt or Redu ksi (C _s)	Tega ngan Sentu h (Volt)
				1,890	156,9
1	82,896	23,864	0,08	5	479
2	82,896	22,608	0,09	1,888	156,4

				9	162		ng	(Ωm)	(h_s)		(Volt)
				1,894	155,9		(Ωm)				
3	82,896	21,352	0,1	5	196						155,4
				1,907	155,4	1	70,336	20,096	0,08	1,9	192
4	82,896	20,096	0,11	2	513						154,9
				1,927	155,0	2	70,336	18,84	0,09	1,9111	391
5	82,896	18,84	0,12	2	063						154,4
				2,048	154,3	3	70,336	17,584	0,1	1,9310	871
6	82,896	16,328	0,13	3	747						153,8
				2,094	153,9	4	70,336	15,072	0,11	2,0645	611
7	82,896	15,072	0,14	5	611						153,4
				2,153	153,5	5	70,336	13,816	0,12	2,1157	453
8	82,896	13,816	0,15	8	615						153,0
				6	70,336	12,56	0,13	2,1828	453		
4.2.2 Menghitung Tegangan Sentuh yang									152,5		
diizi	nkan B	erdasark	kan Ket	tebalan	Batu	7	70,336	10,684	0,14	2,3581	552

70.336

4.2.2 Menghitung Tegangan Sentuh yang diizinkan Berdasarkan Ketebalan Batu Koral pada Tanah Lempung dalam keadaan basah

Tahanan jenis tanah pada tanah lempung dalam keadaan basah sebesar 70,336 Ω-meter. Berikut ini merupakan perhitungan tegangan sentuh berdasarkan ketebalan batu koral pada tanah lempung dalam keadaan kering menggunakan persamaan 2 sebagai berikut :

$$E_{t70} = [1000 + 1.5\rho_s C_s] \frac{0.147}{\sqrt{t}}$$

Dengan keterangan:

 E_{t70} = tegangan sentuh yang diizinkan untuk berat badan orang 70 kg (V)

 ρ_s = tahanan jenis batu koral (Ω m)

 ρ = tahanan jenis tanah di bawah lapisan batu koral (Ω m)

 C_s = faktor reduksi

 h_s = ketebalam lapisan batu koral (m)

t = lama waktu gangguan (s)

Dengan menggunakan persamaan 2 diatas, maka didapatkan hasil perhitungan tegangan sentuh berdasarkan ketebalan batu koral pada tanah lempung dalam keadaan basah sebagai berikut :

$$E_{t 70} = [1000 + 1.5\rho_s C_s] \frac{0.147}{\sqrt{t}}$$

$$E_{t 70} = [1000 + 1.5 \times 20.096 \times 1.9] \frac{0.147}{\sqrt{1}}$$

 $E_{t70} = 155,4192 \text{ volt}$

Dengan menggunakan rumus yang sama maka diperoleh nilai tegangan sentuh dengan ketebalan batu koral dari 0.08 sampai 0,15 pada tanah lempung dalam keadaan basah seperti pada Tabel 2.

Tabel 2. Pengaruh Ketebalan Batu Koral terhadap Tegangan Sentuh pada Tanah Lempung dalam Keadaan

		-	aoan		
	Tahana	Tahana	Keteb	Faktor	Tega
Ν	n Jenis	n Jenis	alan	Reduk	ngan
0	Tanah	Batu	Batu	si	Sentu
	Lempu	Koral	Koral	(C_s)	h

Berdasarkan hasil perhitungan pada Tabel 1 dan Tabel 2 maka perbandingan tegangan sentuh pada tanah lempung dengan keadaan kering dan basah ditunjukkan pada Tabel 3.

Tabel 3. Perbandingan Tegangan Sentuh pada Tanah Jempung dalam Keadaan Kering dan Basah

N	Ketebalan Batu	Tegangan Sentuh (Volt) Tanah Lempung		
0	Koral (h_s)	Kering	Basah	
1	0,08	156,9479	155,4192	
2	0,09	156,4162	154,9391	
3	0,1	155,9196	154,4871	
4	0,11	155,4513	153,8611	
5	0,12	155,0063	153,4453	
6	0,13	154,3747	153,0453	
7	0,14	153,9611	152,5552	
8	0,15	153,5615	152,0702	

perhitungan Hasil menunjukkan semakin bertambahnya ketebalan batu koral maka tegangan sentuh semakin menurun serta dengan ketebalan yang sama tegangan sentuh dalam keadaan kering lebih besar dibandingkan dengan tegangan sentuh dalam Berdasarkan keadaan basah. standar tegangan sentuh pada Tabel 3 dengan lama gangguan 0,1 detik adalah 1980 volt sehingga hasil perhitungan dibawah tegangan maksimal yang diizinkan.

4.2.3 Menghitung Tegangan Sentuh yang diizinkan Berdasarkan Ketebalan Batu Koral pada Tanah Berpasir dalam keadaan kering

Tahanan jenis tanah pada tanah berpasir dalam keadaan kering sebesar 85,408 Ω -

152,0

meter. Berikut ini merupakan perhitungan tegangan sentuh berdasarkan ketebalan batu koral pada tanah berpasir dalam keadaan kering menggunakan persamaan 2 sebagai berikut:

$$E_{t70} = [1000 + 1.5\rho_s C_s] \frac{0.147}{\sqrt{t}}$$

Dengan keterangan:

 E_{t70} = tegangan sentuh yang diizinkan untuk berat badan orang 70 kg (V)

 ρ_s = tahanan jenis batu koral (Ω m)

 ρ = tahanan jenis tanah di bawah lapisan batu koral (Ω m)

 C_s = faktor reduksi

 h_s = ketebalam lapisan batu koral (m)

t = lama waktu gangguan (s)

Dengan menggunakan persamaan 2 diatas, maka didapatkan hasil perhitungan tegangan sentuh berdasarkan ketebalan batu koral pada tanah berpasir dalam keadaan kering sebagai berikut :

$$E_{t 70} = [1000 + 1.5\rho_s C_s] \frac{0.147}{\sqrt{t}}$$

$$E_{t 70} = [1000 + 1.5 \times 23.864 \times 1.9284] \frac{0.147}{\sqrt{1}}$$

$$E_{t 70} = 157.1473 \text{ Volt}$$

Dengan menggunakan rumus yang sama maka diperoleh nilai tegangan sentuh dengan ketebalan batu koral dari 0.08 sampai 0,15 pada tanah berpasir dalam keadaan kering seperti pada Tabel 4.

Tabel 4. Pengaruh Ketebalan Batu Koral terhadap Tegangan Sentuh pada Tanah Berpasir dalam Keadaan Kering

N o	Tahanan Jenis Tanah Lempung (Ωm)	Tahanan Jenis Batu Koral (Ωm)	Keteba lan Batu Koral (h_s)	Fakto r Redu ksi (C _s)	Tegan gan Sentu h (Volt)	
1	85,408	23,864	0,08	1,928 4	157,14 73	
2	85,408	22,608	0,09	1,925 9	156,60 09	
3	85,408	21,352	0,1	1,931 0	156,09 15	
4	85,408	20,096	0,11	1,943 5	155,61 21	
5	85,408	18,84	0,12	1,963 7	155,15 73	
6	85,408	16,328	0,13	2,087 9	154,51 71	
7	85,408	15,072	0,14	2,135 1	154,09 58	
8	85,408	13,816	0,15	2,195 8	153,68 93	

4.2.4 Menghitung Tegangan Sentuh yang diizinkan Berdasarkan Ketebalan Batu

Koral pada Tanah Berpasir dalam keadaan basah

Tahanan jenis tanah pada tanah berpasir dalam keadaan basah sebesar 72,848Ω-meter. Berikut ini merupakan perhitungan tegangan sentuh berdasarkan ketebalan batu koral pada tanah berpasir dalam keadaan basah menggunakan persamaan 2 sebagai berikut:

$$E_{t70} = [1000 + 1.5\rho_s C_s] \frac{0.147}{\sqrt{t}}$$

Dengan keterangan:

 E_{t70} = tegangan sentuh yang diizinkan untuk berat badan orang 70 kg (V)

 $\rho_{\rm s}$ = tahanan jenis batu koral (Ω m)

 ρ = tahanan jenis tanah di bawah lapisan batu koral (Ω m)

 C_s = faktor reduksi

 h_s = ketebalam lapisan batu koral (m)

= lama waktu gangguan (s)

Dengan menggunakan persamaan 2 diatas, maka didapatkan hasil perhitungan tegangan sentuh berdasarkan ketebalan batu koral pada tanah berpasir dalam keadaan basah sebagai berikut:

$$E_{t 70} = [1000 + 1.5\rho_s C_s] \frac{0.147}{\sqrt{t}}$$

$$E_{t 70} = [1000 + 1.5 \times 20,096 \times 1.945] \frac{0.147}{\sqrt{1}}$$

$$E_{t 70} = 155,6186 \text{ Volt}$$

Dengan menggunakan rumus yang sama maka diperoleh nilai tegangan sentuh dengan ketebalan batu koral dari 0.08 sampai 0,15 pada tanah berpasir dalam keadaan basah seperti pada Tabel 5.

Tabel 5. Pengaruh Ketebalan Batu Koral terhadap Tegangan Sentuh pada Tanah Berpasir dalam Keadaan Basah

Tahana Tahanan Keteba Fakto Tegan

No	n Jenis Tanah	Jenis Batu	lan Batu	r Redu	gan Sentu
	Berpas ir (Ωm)	Koral (Ωm)	Koral (h_s)	ksi (C_s)	h (Volt)
					455.04
1	72,848	20,096	0,08	1,945	155,61 86
2	72,848	18,84	0,09	1,955 5	155,12 38
3	72,848	17,584	0,1	1,975 3	154,65 90
4	72,848	15,072	0,11	2,112 9	154,02 19
5	72,848	13,816	0,12	2,165 2	153,59 63
6	72,848	12,56	0,13	2,234 2	153,18 78
7	72,848	10,684	0,14	2,415 2	152,68 99

|--|

Berdasarkan hasil perhitungan pada Tabel 4 dan Tabel 5 maka perbandingan tegangan sentuh pada tanah berpasir dengan keadaan kering dan basah ditunjukkan pada Tabel 6.

Tabel 6. Perbandingan Tegangan Sentuh pada Tanah Berpasir dalam Keadaan Kering dan Basah

N	Ketebalan Batu Koral (h_s)	Tegangan Sentuh (Volt) Tanah Berpasir		
	(n_s)	Kering	Basah	
1	80,0	157,1473	155,6186	
2	0,09	156,6009	155,1238	
3	0,1	156,0915	154,659	
4	0,11	155,6121	154,0219	
5	0,12	155,1573	153,5963	
6	0,13	154,5171	153,1878	
7	0,14	154,0958	152,6899	
8	0,15	153,6893	152,1981	

Hasil perhitungan menunjukkan semakin bertambahnya ketebalan batu koral maka tegangan sentuh semakin menurun serta dengan ketebalan yang sama tegangan sentuh dalam keadaan kering lebih besar dibandingkan dengan tegangan sentuh dalam keadaan basah. Berdasarkan standar tegangan sentuh pada Tabel 6 dengan lama gangguan 0,1 detik adalah 1980 volt sehingga hasil perhitungan dibawah tegangan maksimal yang diizinkan.

Berikut ini merupakan perbandingan tegangan sentuh pada tanah lempung dan tanah berpasir yang ditunjukkan pada Tabel 7.

Tabel 7. Perbandingan Tegangan Sentuh pada Tanah Lempung dan Tanah Berpasir

No	Ketebalan Batu Koral	Tegangan Sentuh (Volt) Tanah Lempung		Tar	ı (Volt)
	(h_s)	Kerin g	Basah	Kerin g	Basa h
1	0,08	156,9 479	155,4 192	157,1 473	155,6 186
2	0,09	156,4 162	154,9 391	156,6 009	155,1 238
3	0,1	155,9 154,4 196 871	- ,	156,0 915	154,6 59
4	0,11	155,4 513	153,8 611	155,6 121	154,0 219
5	0,12	155,0 153,4	155,1 573	153,5 963	
6	0,13	154,3 747	153,0 453	154,5 171	153,1 878
7	0,14	153,9 611	152,5 552	154,0 958	152,6 899

Gambar 6 : Perbandingan Tegangan Sentuh pada Tanah Lempung dan Tanah Berpasir

Hasil perbandingan yang ditunjukkan pada Gambar 6 tegangan sentuh pada tanah lempung saat kondisi kering dan basah lebih kecil dari tanah berpasir saat kondisi kering dan basah.

4.3 Analisis Perhitungan Tegangan Langkah yang diizinkan Berdasarkan Ketebalan Batu Koral

Pada penelitian ini akan dilakukan perhitungan tegangan langkah yang diizinkan berdasarkan ketebalan lapisan batu koral ditanah lempung dan tanah berpasir.

4.3.1 Menghitung Tegangan Langkah yang diizinkan Berdasarkan Ketebalan Batu Koral pada Tanah Lempung dan Tanah Berpasir

Tegangan langkah adalah beda potensial pada permukaan tanah dari dua titik yang berjarak satu langkah (1 meter), yang dialami oleh seseorang yang menghubungkan kedua titik tersebut dengan kedua kakinya tanpa menyentuh suatu peralatan apapun.

4.3.1.1 Menghitung Tegangan Langkah yang diizinkan Berdasarkan Ketebalan Batu Koral pada Tanah Lempung dalam Keadaan Kering

Tahanan jenis tanah pada tanah lempung dalam keadaan kering sebesar 82,896 Ω-meter. Berikut ini merupakan perhitungan tegangan langkah berdasarkan ketebalan batu koral pada tanah lempung dalam keadaan kering menggunakan persamaan 4 sebagai berikut :

$$E_{s70} = [1000 + 6\rho_s C_s] \frac{0.157}{\sqrt{t}}$$

Dengan keterangan:

 E_{s70} = tegangan langkah yang diizinkan untuk berat badan orang 70 kg (V)

 $\rho_{\rm s}$ = tahanan jenis batu koral (Ω m)

 ρ = tahanan jenis tanah di bawah lapisan batu koral (Ω m)

 C_s = faktor reduksi

 h_s = ketebalam lapisan batu koral (m)

t = lama waktu gangguan (s)

Dengan menggunakan persamaan 4 diatas, maka didapatkan hasil perhitungan tegangan langkah berdasarkan ketebalan batu koral pada tanah lempung dalam keadaan kering sebagai berikut:

$$E_{s70} = [1000 + 6\rho_s C_s] \frac{0.157}{\sqrt{t}}$$

$$E_{s70} = [1000 + 6 \times 23,864 \times 1,8905] \frac{0.157}{\sqrt{1}}$$

$$E_{s70} = 199,4989 \text{ Volt}$$

Dengan menggunakan rumus yang sama maka diperoleh nilai tegangan langkah dengan ketebalan batu koral dari 0.08 sampai 0,15 pada tanah berpasir dalam keadaan kering seperti pada Tabel 8.

Tabel 8. Pengaruh Ketebalan Batu Koral terhadap Tegangan Langkah pada Tanah Lempung dalam Keadaan Kering

No	Tahana n Jenis Tanah Lempun	Tahanan Jenis Batu Koral	Keteba lan Batu Koral	Fakto r Redu ksi	Tegan gan Langk ah	
	g (Ωm)	(Ωm)	(h_s)	(C_s)	(Volt)	
1	82,896	23,864	0,08	1,890 5	199,49 89	ı
2	82,896	22,608	0,09	1,888 9	197,22 71	
3	82,896	21,352	0,10	1,894 5	195,10 56	1
	02,000	2.,002	0,.0	1,907	193,10	H
4	82,896	20,096	0,11	2	52	2
5	82,896	18,84	0,12	1,927 2	191,20 38	3
6	82,896	16,328	0,13	2,048 3	188,50 57	_
7	82,896	15,072	0,14	2,094 5	186,73 87	5
8	82,896	13,816	0,15	2,153 9	185,03 17	6

4.3.1.2 Menghitung Tegangan Langkah yang diizinkan Berdasarkan Ketebalan Batu Koral pada Tanah Lempung dalam Keadaan Basah

Tahanan jenis tanah pada tanah lempung dalam keadaan basah sebesar $70,336~\Omega$ -meter. Berikut ini merupakan

perhitungan tegangan langkah berdasarkan ketebalan batu koral pada tanah lempung dalam keadaan basah menggunakan persamaan 4 sebagai berikut :

$$E_{s70} = [1000 + 6\rho_s C_s] \frac{0,157}{\sqrt{t}}$$

Dengan keterangan:

 E_{s70} = tegangan langkah yang diizinkan untuk berat badan orang 70 kg (V)

 ρ_s = tahanan jenis batu koral (Ω m)

 ρ = tahanan jenis tanah di bawah lapisan batu koral (Ω m)

 C_s = faktor reduksi

 h_s = ketebalam lapisan batu koral (m)

= lama waktu gangguan (s)

Dengan menggunakan persamaan 4 diatas, maka didapatkan hasil perhitungan tegangan langkah berdasarkan ketebalan batu koral pada tanah lempung dalam keadaan basah sebagai berikut:

$$E_{s 70} = [1000 + 6\rho_s C_s] \frac{0.157}{\sqrt{t}}$$

 $E_{s 70} = [1000 + 6 \times 20,096 \times 1,9] \frac{0.157}{\sqrt{1}}$
 $E_{s 70} = 192,9678$

Dengan menggunakan rumus yang sama maka diperoleh nilai tegangan langkah dengan ketebalan batu koral dari 0.08 sampai 0,15 pada tanah lempung dalam keadaan basah seperti pada Tabel 9.

Tabel 9. Pengaruh Ketebalan Batu Koral terhadap Tegangan Langkah pada Tanah Lempung dalam

	Keadaan Basah					
		Tahana	Fakto	Tegan		
-		n Jenis	Tahanan Jenis	Keteba		_
				lan	r.	gan
_	No	Tanah	Batu	Batu	Redu	Langk
		Lempun	Koral	Koral	ksi	ah
		g (Ωm)	(Ωm)	(h_s)	(C_s)	(Volt)
						192,96
	1	70,336	20,096	0,08	1,9	78
					1,911	190,91
	2	70,336	18,84	0,09	1	70
					1,931	188,98
	3	70,336	17,584	0,10	0	59
					2,064	186,31
	4	70,336	15,072	0,11	5	16
					2,115	184,53
	5	70,336	13,816	0,12	7	51
					2,182	182,82
	6	70,336	12,56	0,13	8	65
					2,358	180,73
	7	70,336	10,684	0,14	1	27
					2,615	178,66
	8	70,336	8,792	0,15	3	08

Berdasarkan hasil perhitungan pada Tabel 8 dan Tabel 9 maka perbandingan tegangan langkah pada tanah lempung dengan keadaan kering dan basah ditunjukkan pada Tabel 10.

Tabel 10. Perbandingan Tegangan Langkah pada Tanah lempung dalam Keadaan Kering dan Basah

N o	Ketebalan Batu Koral (h_s)	Tegangan Langkah (Volt) Tanah Lempung		
		Kering	Basah	
1	0,08	199,4989	192,9678	
2	0,09	197,2271	190,917	
3	0,1	195,1056	188,9859	
4	0,11	193,1052	186,3116	
5	0,12	191,2038	184,5351	
6	0,13	188,5057	182,8265	
7	0,14	186,7387	180,7327	
8	0,15	185,0317	178,6608	

perhitungan Hasil menunjukkan semakin bertambahnya ketebalan batu koral maka tegangan langkah semakin menurun serta dengan ketebalan yang sama tegangan langkah dalam keadaan kering lebih besar dibandingkan dengan tegangan sentuh dalam keadaan basah. Berdasarkan standar tegangan pada Tabel 10 dengan lama gangguan 0,1 detik adalah 7000 volt sehingga hasil perhitungan dibawah tegangan maksimal yang diizinkan.

4.3.1.3 Menghitung Tegangan Langkah yang diizinkan Berdasarkan Ketebalan Batu Koral pada Tanah Berpasir dalam Keadaan Kering

Tahanan jenis tanah pada tanah berpasir dalam keadaan kering sebesar $85,408~\Omega$ -meter. Berikut ini merupakan perhitungan tegangan langkah berdasarkan ketebalan batu koral pada tanah berpasir dalam keadaan kering menggunakan persamaan 4 sebagai berikut :

$$E_{s70} = [1000 + 6\rho_s C_s] \frac{0.157}{\sqrt{t}}$$

Dengan keterangan:

 E_{s70} = tegangan langkah yang diizinkan untuk berat badan orang 70 kg (V)

 ρ_s = tahanan jenis batu koral (Ω m)

 ρ = tahanan jenis tanah di bawah lapisan batu koral (Ω m)

 C_s = faktor reduksi

 h_s = ketebalam lapisan batu koral (m)

t = lama waktu gangguan (s)

Dengan menggunakan persamaan 4 diatas, maka didapatkan hasil perhitungan tegangan langkah berdasarkan ketebalan batu koral pada tanah berpasir dalam keadaan kering sebagai berikut :

$$E_{s70} = [1000 + 6\rho_s C_s] \frac{0.157}{\sqrt{t}}$$

$$E_{s70} = [1000 + 6 \times 23,864 \times 1,9284] \frac{0.157}{\sqrt{1}}$$

 $E_{s70} = 200,3506 \text{ Volt}$

Dengan menggunakan rumus yang sama maka diperoleh nilai tegangan langkah dengan ketebalan batu koral dari 0.08 sampai 0,15 pada tanah berpasir dalam keadaan kering seperti pada Tabel 11.

Tabel 11. Pengaruh Ketebalan Batu Koral terhadap Tegangan Langkah pada Tanah Berpasir dalam Keadaan Kering

N o	Tahanan Jenis Tanah Berpasir (Ωm)	Tahanan Jenis Batu Koral (Ωm)	Keteba Ian Batu Koral (h _s)	Fakto r Redu ksi (C_s)	Tegan gan Langk ah (Volt)
1	85,408	23,864	0,08	1,928 4	200,35 06
2	85,408	22,608	0,09	1,925 9	198,01 59
3	85,408	21,352	0,10	1,931 0	195,84 00
4	85,408	20,096	0,11	1,943 5	193,79 22
5	85,408	18,84	0,12	1,963 6	191,84 92
6	85,408	16,328	0,13	2,087 9	189,11 41
7	85,408	15,072	0,14	2,135 1	187,31 42
8	85,408	13,816	0,15	2,195 8	185,57 77

4.3.1.4 Menghitung Tegangan Langkah yang diizinkan Berdasarkan Ketebalan Batu Koral pada Tanah Berpasir dalam Keadaan Basah

Tahanan jenis tanah pada tanah berpasir dalam keadaan basah sebesar 72,848 Ω -meter. Berikut ini merupakan perhitungan tegangan langkah berdasarkan ketebalan batu koral pada tanah berpasir dalam keadaan basah menggunakan persamaan 4 sebagai berikut :

$$E_{s70} = [1000 + 6\rho_s C_s] \frac{0,157}{\sqrt{t}}$$

Dengan keterangan:

 E_{s70} = tegangan langkah yang diizinkan untuk berat badan orang 70 kg (V)

 $\rho_{\rm s}$ = tahanan jenis batu koral (Ω m)

 ρ = tahanan jenis tanah di bawah lapisan batu koral (Ω m)

 C_s = faktor reduksi

 h_s = ketebalam lapisan batu koral (m)

= lama waktu gangguan (s)

Dengan menggunakan persamaan 4 diatas, maka didapatkan hasil perhitungan

tegangan langkah berdasarkan ketebalan batu koral pada tanah berpasir dalam keadaan basah sebagai berikut:

$$E_{s\,70} = [1000 + 6\rho_s\,C_s] \, \frac{_{0,157}}{\sqrt{t}}$$

$$E_{s\,70} = [1000 + 6\,x\,20,096\,x\,1,945] \, \frac{_{0,157}}{\sqrt{1}}$$

$$E_{s\,70} = 193,8196\,\text{Volt}$$

Dengan menggunakan rumus yang sama maka diperoleh nilai tegangan langkah dengan ketebalan batu koral dari 0.08 sampai 0,15 pada tanah berpasir dalam keadaan basah seperti pada Tabel 12.

Tabel 12. Pengaruh Ketebalan Batu Koral terhadap Tegangan Langkah pada Tanah Berpasir dalam Keadaan Basah

No	Tahana n Jenis Tanah Berpas ir(Ωm)	Tahanan Jenis Batu Koral (Ωm)	Keteba lan Batu Koral (h_s)	Fakto r Redu ksi (C _s)	Tegan gan Langk ah (Volt)
1	72,848	20,096	0,08	1,945	193,81 96
2	72,848	18,84	0,09	1,955 5	191,70 58
3	72,848	17,584	0,10	1,975 3	189,72 02
4	72,848	15,072	0,11	2,112 9	186,99 87
5	72,848	13,816	0,12	2,165 2	185,18 05
6	72,848	12,56	0,13	2,234 2	183,43 49
7	72,848	10,684	0,14	2,415 2	181,30 82
8	72,848	8,792	0,15	2,681 3	179,20 68

Berdasarkan hasil perhitungan pada Tabel 11 dan Tabel 12 maka perbandingan tegangan langkah pada tanah berpasir dengan keadaan kering dan basah ditunjukkan pada Tabel 13.

Tabel 13. Perbandingan Tegangan Langkah pada Tanah amnung dalam Keadaan Kering dan Rasah

N	Ketebalan Batu Koral (h_s)	Tegangan Langkah (Volt) Tanah Berpasir	
0		Kering	Basah
1	0,08	200,3506	193,8196
2	0,09	198,0159	191,7058
3	0,1	195,84	189,7202
4	0,11	193,7922	186,9987
5	0,12	191,8492	185,1805

6	0,13	189,1141	183,4349
7	0,14	187,3142	181,3082
8	0,15	185,5777	179,2068

Hasil perhitungan menunjukkan semakin bertambahnya ketebalan batu koral maka tegangan langkah semakin menurun serta dengan ketebalan yang sama tegangan langkah dalam keadaan kering lebih besar dibandingkan dengan tegangan sentuh dalam keadaan basah. Berdasarkan standar tegangan langkah pada Tabel 13 dengan lama gangguan 0,1 detik adalah 7000 volt sehingga hasil perhitungan dibawah tegangan maksimal yang diizinkan.

Berikut ini merupakan perbandingan tegangan langkah pada tanah lempung dan tanah berpasir yang ditunjukkan pada Tabel

gk	Tabel 14. Perbandingan Tegangan Langkah pada Tanah Lempung dan Tanah Berpasir					
lt)	No Batu Koral (h _s)	alan	Tegangan Langkah (Volt) Tanah Lempung		Tegangan Langkah Volt) Tanah Berpasir	
81		Kering	Basa h	Kering	Basa h	
70	1	0,08	199,4989	192,9 678	200,350 6	193,8 196
72	2	0,09	197,2271	190,9 17	198,015 9	191,7 058
99	3	0,1	195,1056	188,9 859	195,84	189,7 202
18	4	0,11	193,1052	186,3 116	193,792 2	186,9 987
43	5	0,12	191,2038	184,5 351	191,849 2	185,1 805
30	6	0,13	188,5057	182,8 265	189,114 1	183,4 349
20	7	0,14	186,7387	180,7 327	187,314 2	181,3 082
	8	0,15	185,0317	178,6 608	185,577 7	179,2 068

Gambar 7: Perbandingan Tegangan Langkah pada Tanah Lempung dan Tanah Berpasir

Hasil dari seluruh perhitungan yang telah dilakukan dapat dilihat bahwa ketebalan batu koral 0,15 cm menghasilkan nilai tegangan sentuh dan tegangan langkah yang lebih kecil jika dibandingkan dengan ketebalan batu koral 0,08 sampai 0,14 sehingga ketebalan batu koral vang terbaik untuk gardu induk pada tanah lempung dan tanah berpasir sebesar 0,15 cm.

KESIMPULAN 5.

Hasil perbandingan tegangan sentuh pada tanah lempung dan tanah berpasir dalam keadaan kering dan basah bertambahnya [2] menunjukkan semakin ketebalan batu koral maka tegangan sentuh semakin menurun serta dengan ketebalan batu koral yang sama tegangan sentuh dalam keadaan kering lebih besar dibandingkan [3] dengan tegangan sentuh dalam keadaan basah. Berdasarkan standar tegangan sentuh menurut IEEE std 80-2013 dengan lama gangguan 0,1 detik adalah 1980 volt, [4] sehingga hasil perhitungan dibawah tegangan yang dizinkan.

Hasil perbandingan tegangan langkah [5] pada tanah lempung dan tanah berpasir dalam keadaan kerina dan basah menunjukkan semakin bertambahnya ketebalan batu koral maka tegangan langkah semakin menurun serta dengan ketebalan [6] yang sama tegangan langkah dalam keadaan kering lebih besar dibandingkan dengan tegangan sentuh dalam keadaan basah. tegangan langkah Berdasarkan standar menurut IEEE std 80-2013 dengan lama [7] gangguan 0,1 detik adalah 7000 volt, sehingga hasil perhitungan dibawah tegangan yang dizinkan.

Hasil dari seluruh perhitungan yang telah dilakukan dapat dilihat bahwa ketebalan batu koral 0.15 cm menghasilkan nilai tegangan sentuh pada tanah lempung dalam [8] 153,5615 volt keadaan kering sebesar sedangkan dalam keadaan basah sebesar 152,0702 volt, dan untuk tanah berpasir dalam keadaan kering sebesar 153,6893 volt [9] sedangkan dalam keadaan basah sebesar 152,1981 volt. Nilai tegangan langkah pada tanah lempung dalam keadaan kering sebesar 185,0317 volt sedangkan dalam keadaan [10] Janardana, IGN. 2018. Effect of Value of basah sebesar 178,6608 volt dan untuk tanah berpasir dalam keadaan kering sebesar 185,5777 volt sedangkan dalam keadaan basah sebesar 179,2068 volt sehingga jauh

lebih kecil jika dibandingkan dengan ketebalan batu koral 0,08 sampai 0,14 sehingga ketebalan batu koral yang terbaik untuk gardu induk pada tanah lempung dan tanah berpasir sebesar 0,15 cm.

DAFTAR PUSTAKA

- [1] Susanto, I. 2008. Pengamanan Terhadap Tegangan Sentuh dengan Menggunakan Sistem Pembumian Netral (TN) dan Sistem Pembumian Pengaman (TT) Di Area Tangerang. Jakarta: Fakultas Teknologi Industri Universitas Mercu Buana Jakarta Janardana, IGN dkk. 2017. Analysis Grounding System as Building Equipment Security Udayana University Denpasar.
- Bali: Universitas Udayana Gery, B. 2014. Penilaian Tegangan Sentuh Dan Tegangan Langkah Di Gardu Induk Konvensional Dan Berisolasi Gas. Bali : Universitas Udayana.
- Rezi, A. 2018. Analisis Sistem Pertanahan Grid pada Gardu Induk 2 x 500 MVA Galang. Medan: Universitas Sumatra Utara Jamaludin, I. 2016. Penentuan Kedalaman Elektroda pada Tanah Pasir dan Kerikil Kering Untuk Memperoleh Nilai Tahanan Pentanahan yang Baik. Surabava: Universitas Muhamadiyah Sidoarjo
- Abidin, D. Studi Tahanan Pentanahan Menggunakan Campuran Arang dan Garam Dalam Menurunkan Nilai Tahanan Tanah. Malang: Surabaya: Universitas Negeri Malang
- Jamaludin, I. 2017. Penentuan Kedalaman Elektroda pada Tanah Pasir dan Kerikil Kering untuk Memperoleh Nilai Tahanan Pentanahan vang Baik (Depth Determination of Electrode at Sand and Gravel Dry for Get. Surabaya: Universitas Muhamadiyah Sidoarjo
- Ilham, A. 2019. Kajian Kelayakan Operasi Pecah Beban Penyulang Beta (SJ-2) Untuk Kehandalan Sistem Kelistrikan Kota Bitung. Gorontalo: Universitas Negeri Gorontalo
- Suartika, MD. 2017. Sistem Pembumian Sistem (Grounding) Dua Batang Pengaman Tenaga Listrik. Bali: Udayana
- Resistance Announcement to Thd in Electrical System Faculty if Engineering University Udayana Denpasar. Universitas Udayana

[11] Asrul, J. 2016. Penentuan Resistivity Tanah di dalam Menetapkan Area Pemasangan Grounding Gardu Distribusi 20 kV mengunakan Kombinasi Grid dan Rod di Kampus Politeknik Negeri Padang. Padang: Universitas Negeri Padang