This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 875 567 A2 (11)

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 04.11.1998 Patentblatt 1998/45

(21) Anmeldenummer: 98106426.4

(22) Anmeldetag: 08.04.1998

(51) Int. Cl.⁶: C12N 15/12, C07K 14/47, C12N 15/63, C12N 1/21, G01N 33/68, C07K 16/18, A61K 48/00

(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE Benannte Erstreckungsstaaten: AL LT LV MK RO SI

(30) Priorität: 30.04.1997 DE 19718249

(71) Anmelder: **BASF AKTIENGESELLSCHAFT** 67056 Ludwigshafen (DE)

(72) Erfinder:

· Peukert, Karen 35094 Lahntal-Sterzhausen (DE)

· Haenel, Frank, Dr. 07745 Jena (DE)

· Eilers, Martin, Prof. Dr. 35043 Marburg-Cappel (DE)

(54)Myc-bindende Zinkfinger-Proteine, ihre Herstellung und ihre Verwendung

Neue Myc-bindende Zinkfingerproteine, ihre Herstellung und ihre Verwendung.

Beschreibung

10

15

35

45

50

Die vorliegende Erfindung betrifft Myc-bindende Zinkfinger-Proteine, ihre Herstellung und ihre Verwendung.

Myc ist ein spezifisch an DNA bindendes Protein. Es wird zur Familie der Helix-Loop-Helix/Leucin-Zipper (HLH/LZ) Transkriptionsfaktoren gezählt (Landschulz et al., 1988, Murre et al., 1989). Myc ist ein zentraler Transkriptionsaktivator, der mit dem Protein Max (Amati et al., 1993) einen Komplex bildet und durch diesen molekularen Mechanismus andere Gene aktiviert, beispielsweise alpha-Prothymosingen, Ornithindecarboxylasegen und cdc25A.

Von Schulz et al, 1995, wurde ein 13 Zinkfinger enthaltendes Protein aus der Maus beschrieben, dessen zelluläre Funktion jedoch unklar ist.

Aufgrund seiner Schlüsselstellung in der Transkription bietet Myc einen Ansatzpunkt zum Verständnis von zellulären, insbesondere von pathophysiologischen Prozessen.

Es bestand daher die Aufgabe, weitere Informationen über die molekulare Wirkungsweise von Myc, insbesondere über die Myc vermittelte Genrepression bereitzustellen.

Gegenstand der Erfindung ist ein Protein mit der in SEQ ID NO:2 dargestellten Aminosäuresequenz. Dieses Protein besitzt dreizehn Zinkfingerdomänen.

Es weist folgende biologischen Eigenschaften auf:

- · Spezifische Bindung an Myc,
- · Transaktivierung des Adenovirus Major Late (AdML) Promotors,
- 20 Transaktivierung des Cyclin D1 Promotors,
 - durch Assoziation mit Myc wird die Transaktivierung gehemmt,

in Abwesenheit von Myc ist das Protein im wesentlichen im Cytosol assoziiert mit Mikrotubuli zu finden.

Ein weiterer Gegenstand der Erfindung sind Proteine, die sich aus der SEQ ID NO:2 dargestellten Struktur durch Substitution, Insertion oder Deletion von einem oder mehreren Aminosäuren ableiten lassen, wobei diese Proteine noch die wesentlichen biologischen Eigenschaften des durch SEQ ID NO:2 beschriebenen Proteins besitzen. Diese Proteine werden im folgenden Muteine genannt. Unter wesentlichen Eigenschaften wird die spezifische Bindung der Muteine an Myc verstanden.

Die oben aufgeführten Eigenschaften des durch SEQ ID NO:2 beschriebenen Proteins müssen nicht alle bei den Muteinen vorhanden sein, solange die spezifische Bindung an Myc gegeben ist. Bevorzugt sind jedoch diejenigen Muteine, die alle der oben aufgeführten Eigenschaften besitzen.

Die Anzahl der durch Insertion Substitution oder Deletion gegenüber dem durch SEQ ID NO:2 beschriebenen Protein veränderten Aminosäuren kann zwischen 1 und 100, bevorzugt zwischen 1 und 50 Aminosäuren variieren. Die Veränderungen können in einem kleineren Bereich des Moleküls konzentriert oder auch über das ganze Molekül verteilt sein.

Bevorzugte Veränderungen sind konservative Substitutionen, bei denen eine Aminosäure durch eine andere Aminosäure mit ähnlicher Raumerfüllung, Ladung oder Hydrophilie ersetzt wird.

Beispiele für solche konservativen Substitutionen sind

40 Ersatz von Arg durch Lys oder umgekehrt,

Ersatz von Arg durch His oder umgekehrt,

Ersatz von Asp durch Glu oder umgekehrt,

Ersatz von Asn durch Gln oder umgekehrt,

Ersatz von Cys durch Met oder umgekehrt.

Ersatz von Cys durch Ser oder umgekehrt,

Ersatz von Gly durch Ala oder umgekehrt,

Ersatz von Val durch Leu oder umgekehrt,

Ersatz von Val durch lie oder umgekehrt,

Ersatz von Leu durch lie oder umgekehrt,

Ersatz von Phe durch Tyr oder umgekehrt,

Ersatz von Phe durch Trp oder umgekehrt,

Ersatz von Ser durch Thr oder umgekehrt.

Die Veränderungen können auch kombiniert werden, z.B. eine oder mehrere Substitutionen mit Deletionen und/oder Insertionen.

Ein weiterer Gegenstand der Erfindung sind Nukleinsäuresequenzen, die für die oben beschriebenen Proteine codieren. Solche Nukleinsäuresequenzen sind bevorzugt DNA, insbesondere cDNA Sequenzen, in einzelsträngiger oder doppelsträngiger Form.

Bevorzugte Nukleinsäuresequenzen sind solche mit der in SEQ ID NO:1 dargestellten Sequenz und solche, die mit dieser Sequenz ein in hohen Verwandschaftsgrad aufweisen, beispielsweise solche, die für das gleiche Protein codieren wie SEQ ID NO:1. Weitere bevorzugte Nukleinsäuresequenzen sind solche, die für ein Protein codieren, das 95% oder mehr Identität mit dem Protein der Sequenz SEQ ID NO:2 aufweist.

Ein weiterer Gegenstand der Erfindung sind Vektoren, die eine der oben beschriebenen Nukleinsäuresequenzen in funktioneller Verknüpfung mit einem oder mehreren Regulationselementen tragen. Unter Regulationselemente sind Nukleinsäurefragmente zu verstehen, die auf Transkription oder Translation einen regulierenden Einfluß haben, beispielsweise Promotoren, Enhancer, Polyadenylierungsstellen, ribosomale Bindungsstellen.

Die mit solchen Vektoren transformierten Wirtsorganismen sind ebenfalls Gegenstand der Erfindung. Als Wirtsorganismen geeignet sind Mikroorganismen, pflanzliche oder tierische Zellen oder Lebewesen. Bevorzugte Wirtsorganismen sind eukaryontische Zellen und Lebewesen. Der Begriff Wirtsorganismus umfaßt auch beispielsweise transgene Tiere und Pflanzen.

Die Herstellung der erfindungsgemäßen Proteine erfolgt bevorzugt mit Hilfe gentechnischer Verfahren. Ein Wirtsorganismus, der die Erbinformation für die erfindungsgemäßen Proteine trägt, wird unter Bedingungen kultiviert, die die Expression des Proteins erlauben. Diese Bedingungen -wie Temperatur, Nährmedium, Zelldichte - hängen weitgehend von der Wahl des Wirtsorganismus ab. Solche Bedingungen sind jedoch dem Fachmann für die einzelnen Wirtsorganismen geläufig.

Die exprimierten Proteine werden anschließend, ggf. nach Aufbrechen des Wirtsorganismus, vom Wirtsorganismus abgetrennt und in reiner Form durch bekannte Methoden der Proteinreinigung, wie Fällung, Chromatographie, Elektrophorese in reiner Form isoliert. Ein weiterer Gegenstand der Erfindung ist die Verwendung der Proteine als Antigen zur Herstellung von Antikörpern, sowie die so erhaltenen Antikörper. Es lassen sich durch dem Fachmann bekannte Verfahren polyklonale Antiseren oder auch monoklonale Antikörper herstellen.

Die erfindungsgemäßen Proteine eignen sich auch als Testsysteme zur Auffindung von potentiellen selektiven Transkriptionsmodulierenden Substanzen. Dies läßt sich besonders gut testen, indem man die Fähigkeit der Proteine, mit Myc einen Proteinkomplex zu bilden, ausnützt. Ein weiterer Gegenstand der Erfindung ist daher ein Verfahren zur Identifizierung von spezifischen transkriptionsmodulierenden Substanzen, das folgende Schritte umfaßt:

- (a) Inkubation des Proteins gemäß Anspruch 1 mit dem Genprodukt von myc unter Bedingungen, unter denen sich ein Proteinkomplex zwischen diesen beiden Proteinen ausbildet,
- (b) Inkubation der beiden Proteine unter ansonst gleichen Bedingungen wie (a) jedoch in Anwesenheit einer oder mehrerer Substanzen, die auf spezifische transkriptionsmodulierende Aktivitäten zu testen sind,
- (c) Ermitteln des Unterschiedes in der Proteinkomplexbildung zwischen (b) und (a),
- (d) Auswahl solcher Substanzen, bei denen gemäß Schritt (b) eine andere Proteinkomplexbildung erhalten wurde als bei Schritt (a).

Es lassen sich damit Substanzen auffinden, die die Proteinkomplexbildung zwischen den neuen Zinkfingerprotein und Myc fördern, aber auch solche, die sie unterbinden.

Die erfindungsgemäßen Nukleinsäuresequenzen eignen sich auch zur Gentherapie von Erkrankungen, bei denen die durch Myc vermittelte Transkription gestört ist.

Beispielsweise können zusätzliche Gensequenzen eingebracht werden um so die zelluläre Konzentration der Zinkfingerproteine zu erhöhen. Es kann aber auch gewünscht sein, daß die Konzentration der Zinkfingerproteine erniedrigt werden soll. In diesem Falle bietet sich eine Gentherapie auf antisense Basis an, wobei man eine zu dem Zinkfingerproteingen komplementäre Nukleinsäure oder Nukleinsäurederivat appliziert, und somit die Expression des Zinkfingerproteingens reduziert.

Die weitere Ausgestaltung der Erfindung ist in den folgenden Beispielen aufgeführt.

50 Beispiel 1

5

30

35

Isolierung der DNA mit der durch SEQ ID NO:1 beschriebenen Struktur

Vorausgegangene Arbeiten hatten gezeigt, daß die Integrität der Helix-Loop-Helix Domâne von Myc kritisch für die Genrepression durch Myc in stabilen Zellinien war (Philipp et al., 1994). Um neue Protein zu identifizieren, die mit dem C-Terminus von Myc interagieren, wurde ein DNA-Fragment, das für die basische Region und die HLH/LZ Domâne (Aminosäuren 355-439 des humanen Myc) codiert, im Leserahmen an die DNA bindende Domâne von GAL4 (Aminosäure 1-147) fusioniert und als Köder in einem "Two-Hybrid-Screen" (Fields and Song, 1989) benutzt.

2x10⁵ unabhängige Transformanden einer HeLa cDNA Bibliothek, markiert mit der GAL4 Aktivierungsdomäne, wurden gescreent. Ein Clon mit β-Galaktosidaseaktivität wurde weiter charakterisiert. Es wurde keine Interaktion zwischen dem von diesem Clon codierten Protein und der DNA Bindungsdomäne von GAL4 allein oder einer GAL4-BCY-1 Chimāre, die als Negativkontrolle benutzt wurde, festgestellt.

Die Interaktion mit Myc wurde aufgehoben durch Deletion der HLH-Domäne in Myc (370-412), nicht aber durch Insertion der vier Aminosäuren zwischen der HLH Domäne und dem Leucin-Zipper (In 412) oder durch Deletion des gesamten Leucin-Zippers (412-434). Eine spezifische Interaktion wurde auch nachgewiesen mit N-Myc aber keine mit MAX oder USF, zwei HLH-Proteinen, die mit Myc nahe verwandt sind.

cDNA-Moleküle mit voller Länge wurden durch ein 5'-RACE-Protokoll isoliert und sequenziert (SEQ ID NO:1). Sie codieren ein Protein mit 803 Aminosäuren (SEQ ID NO:2) mit einem theoretischen Molekulargewicht von 87,970 Dalton. Das Protein wurde Miz-1 für Myc-Interacting-Zincfinger-Protein-1 genannt.

Die Sequenzierung ergab, daß der isolierte Clon für ein Zinkfingerprotein mit 13 Zinkfingern codierte, 12 davon unmittelbar geclustert in der C-terminalen Hälfte des Proteins.

15 Beispiel 2

Herstellung von Muteinen

Ausgehend von der in SEQ ID NO:1 dargestellten Nukleinsäuresequenz können mit dem Fachmann geläufigen 20 Methoden der Gentechnik Nukleinsäuren hergestellt werden, die für veränderte Proteine (Muteine) codieren. Die Herstellung der Muteine selbst erfolgt zweckmäßigerweise durch Expression einer Nukleinsäure in einem geeigneten Wirtsorganismus:

Beispiel 3

25

50

Assoziation des Proteins SEQ ID NO:2 mit Myc

Der C-Terminus des Proteins SEQ ID NO:2 (Aminosäure 269-803) wurde mit der Glutathion-Transferase (GST) (Smith and Johnson, 1988) fusioniert, das GST-Miz-1 Fusionsprotein gereinigt und mit in vitro synthetisiertem, radioaktiv markiertem Myc Protein inkubiert. Myc assoziiert spezifisch mit GST-Miz-1, jedoch nicht mit GST. Eine Mutante von Myc, der die HLH Domäne fehlt, konnte nicht mit GST-Miz-1 assoziieren. Radioaktiv markiertes Max interagiert weder mit GST-Miz-1 noch mit GST. Jedoch kann mit Hilfe von Myc Max an GST-Miz-1-Kügelchen in vitro binden, was dafür spricht, daß Miz-1 und Max mit unterschiedlichen Flächen der HLH-Domäne von Myc interagieren.

35 Literaturverzeichnis

Amati, B., Brooks, M. W., Levy, N., Littlewood, T. D., Evan, G. I., and Land, H. (1993). Oncogenic activity of the c-Myc protein requires dimerization with Max. Cell 72, 233-245.

40 Fields, S., and Song, O. (1989). A novel genetic system to detect protein-protein interactions. Nature 340, 245-246.

Landschulz, W. H., Johnson, P. F., and McKnight, S. L. (1988). The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240, 1759-1764.

Murre, C., SchonleberMcCaw, P., and Baltimore, D. (1989). A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56, 777-783.

Philipp, A., Schneider, A., Väsrik, I., Finke, K., Xiong, Y., Beach, D., Alitalo, K., and Eilers, M. (1994). Repression of Cyclin D1: a Novel Function of MYC. Mol. Cell. Biol. 14, 4032-4043.

Schulz, T. C., Hopwood, B., Rathjen, P. D., and Wells, J. R. (1995). An unusual arrangement of 13 zinc fingers in the vertebrate gene Z13. Biochem. J. 311, 219-224.

Smith, D. B., and Johnson, K. S. (1988). Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione-S-transferase. Gene 67, 31-40.

SEQUENZ PROTOKOLL

	(1) ADGE	METHE INFORMATION.	
10	(i)	ANMELDER: (A) NAME: BASF Aktiengesellschaft (B) STRASSE: Carl-Bosch-Strasse 38 (C) ORT: Ludwigshafen (E) LAND: Bundesrepublik Deutschland (F) POSTLEITZAHL: D-67056 (G) TELEPHON: 0621/6048526 (H) TELEFAX: 0621/6043123 (I) TELEX: 1762175170	
15	(ii)	ANMELDETITEL: Myc-bindende Zinkfingerproteine	
	(iii)	ANZAHL DER SEQUENZEN: 2	
20	(iv)	COMPUTER-LESBARE FORM: (A) DATENTRĀGER: Ploppy disk (B) COMPUTER: IBM PC compatible (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPA)	
	(2) INFO	RMATION ZU SEQ ID NO: 1:	
25	(i)	SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 2680 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel	
30		(D) TOPOLOGIE: linear	
	(ii)	ART DES MOLEKÜLS: CDNS zu mRNS	
	(iii)	HYPOTHETISCH: NEIN	
35	(iii)	ANTISENSE: NEIN	
	(ix)	MERKMALE: (A) NAME/SCHLÜSSEL: 5'UTR (B) LAGE: 1159	
40	(ix)	MERKMALE: (A) NAME/SCHLÜSSEL: CDS (B) LAGE: 1602571	
1 5	(ix)	MERKMALE: (A) NAME/SCHLÜSSEL: 3'UTR (B) LAGE: 25722680	
	(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 1:	
50	GGAGTGCC	GT CCCCGGCCTT CTCGCGGCCG TGATGCACCT CCCTCTGCGG TGGGGTCCGG	6
	GACATGGC	AG GTAATGAGCC GGACGAGGGG AGCCAAGCTG GAGTTTACAC AGGCAAACTG	120

5

	TCAGAAA	AGA GT.	AGCCTG	GG C	rgtc'	rgga.	A AT	CTGA		_	 CCC (174
5	CAC AGC His Ser											:	222
10	CTT CTC Leu Leu	Cys A										:	270
15	CAT AAA His Lys											:	318
20	GTG GAC Val Asp 55	Gln L											366
	CTG GGG Leu Gly 70											•	414
25	CCT GAG Pro Glu											4	462
30	CAG GAC		e Thr									į	510
35	GCT ACC											ţ	558
40	GAC AAG Asp Lys 135	Arg A										, (506
40	CTG GAG Leu Glu 150											•	65 4
4 5	AAG GAG Lys Glu											í	702
50	CAG ACA		s Ala									•	750

										GCC Ala							798
5										GAG Glu							846
10										GAG Glu							894
15										TCC Ser 255							942
20										TCA Ser							990
										CTG Leu							1038
25	GAC Asp	CGC Arg 295	ACG Thr	GAG Glu	TCC Ser	AAG Lys	GCC Ala 300	TAC Tyr	GGC Gly	TCC Ser	GTC Val	ATC Ile 305	CAC His	AAG Lys	TGC Cys	GAG Glu	1086
30										GGG Gly							1134
35	CGC Arg	ATC Ile	CAC His	ACG Thr	GGG Gly 330	GAG Glu	AAG Lys	CCC Pro	TTC Phe	TCG Ser 335	TGC Cys	CGG Arg	GAG Glu	тсс Сув	AGC Ser 340	AAG Lys	1182
40	GCC Ala	TTT Phe	TCC Ser	GAC Asp 345	CCG Pro	GCC Ala	GCG Ala	TGC Cys	AAG Lys 350	GCC Ala	CAT His	GAG Glu	AAG Lys	ACG Thr 355	CAC His	AGC Ser	1230
	CCT Pro	CTG Leu	AAG Lys 360	CCC Pro	TAC Tyr	GGC Gly	TGC Cys	GAG Glu 365	GAG Glu	TGC Cys	GGG Gly	AAG Lys	AGC Ser 370	TAC	CGC Arg	CTC Leu	1278
45	ATC Ile	AGC Ser 375	CTG Leu	CTG Leu	AAC Asn	CTG Leu	CAC His 380	AAG Lys	AAG Lys	CGG Arg	CAC His	TCG Ser 385	GGC	GAG Glu	GCG Ala	CGC Arg	1326
50										TTC Phe							1374

					CTG Leu 410												1422
5					TCC Ser												1470
10					ACG Thr												1518
15					GTA Val												1566
20					CTC Leu												1614
					AAG Lys 490												1662
25					CAC His												1710
30					CGC Arg												1758
35					GCC Ala												1806
40					GGG Gly												1854
	AGA Arg	TTC Phe	GTC Val	CAG Gln	TCC Ser 570	Ser	CAG Gln	TTG Leu	GCC Ala	AAT Asn 575	CAT His	ATT Ile	CGC Arg	CAC His	CAC His 580	GAC Asp	1902
45	AAC Asn	ATC Ile	CGC Arg	CCA Pro 585	CAC His	AAG Lys	TGC Cys	AGC Ser	GTG Val 590	TGC Cys	AGC Ser	AAG Lys	GCC Ala	TTC Phe 595	GTG Val	AAC Asn	1950
50-					TCC Ser												1998

F	TAC Tyr	CTG Leu 615	TGT Cys	GAT Asp	AAG Lys	TGT Cys	GGG Gly 620	CGT Arg	GGC Gly	TTC Phe	AAC Asn	CGG Arg 625	GTA Val	GAC Asp	AAC Asn	CTG Leu	2046
5	Arg 630	Ser	His	Val	Lys	Thr 635	Val	His	Gln	Gly	AAG Lys 640	Ala	Gly	Ile	Lys	11e 645	2094
10	Leu	Glu	Pro	Glu	Glu 650	Gly	Ser	Glu	Val	Ser 655	GTG Val	Val	Thr	Val	Asp 660	Asp	2142
15	Met	Val	Thr	Leu 665	Ala	Thr	Glu	Ala	Leu 670	Ala	GCG Ala	Thr	Ala	Val 675	Thr	Gln	2190
20	Leu	Thr	Val 680	Val	Pro	Val	Gly	Ala 685	Ala	Val	ACA Thr	Ala	Asp 690	Glu	Thr	Glu	2238
	Val	Leu 695	Lys	Ala	Glu	Ile	Ser 700	Lys	Ala	Val	AAG Lys	Gln 705	Val	Gln	Glu	Glu	2286
25	Asp 710	Pro	Asn	Thr	His	Ile 715	Leu	Tyr	Ala	Cys	GAC Asp 720	Ser	Сув	Gly	Asp	Lys 725	2334
30	Phe	Leu	Asp	Ala	Asn 730	Ser	Leu	Ala	Gln	His 73 5	GTG Val	Arg	Ile	His	740	Ala	2382
35	Gln	Ala	Leu	Val 745	Met	Phe	Gln	Thr	Asp 750	Ala	GAC Asp	Phe	ТУÏ	755	Gln	Tyr	2430
40	GGG Gly	CCA Pro	GGT Gly 760	GGC Gly	ACG Thr	TGG Trp	CCT Pro	GCC Ala 765	GGG Gly	CAG Gln	GTG Val	CTG Leu	CAG Gln 770	GCT Ala	GGG Gly	GAG Glu	2478
	Leu	Val 775	Phe	Arg [.]	Pro	Arg	Asp 780	Gly	Ala	Glu	Gly	G1n 785	Pro	Ala	Leu	Ala	2526
45	G1u 790	Thr	Ser	Pro	Thr	Pro 795	Pro	Glu	Cys	Pro	Pro 800	Pro	Ala	Glu		GCTGGCG	2578
50													CGGG	AAG (GGTG	SCCTGT	2638 2680
							ATTA' ID N			AAAA.	AAAA	AA					2000

(i) SEQUENZ CHARAKTERISTIKA:

5			(E	LĀ 3) AR 3) TC	T: A	mino	sāur	e	iurer	1						
				DES						n NO						
10										Val 10		Glu	Gln	Leu	Asn 15	Gln
15	1 Gln	Arg	Gln	Leu 20		Leu	Leu	Cys	Asp 25		Thr	Phe	Val	Va1 30	Asp	Gly
15	Val	His	Phe 35	Lys	Ala	His	Lys	Ala 40	Val	Leu	Ala	Ala	Cys 45	Ser	Glu	Tyr
20	Phe	Lys 50	Met	Leu	Phe	Val	Asp 55	Gln	Lys	Asp	Val	Va1 60	His	Leu	qaA	Ile
	Ser 65	Asn	Ala	Ala	Gly	Leu 70	Gly	Gln	Met	Leu	Glu 75	Phe	Met	Tyr	Thr	Ala 80
25 .	Lys	Leu	Ser	Leu	Ser 85	Pro	G1u	Asn	Val	Asp 90	Asp	Val	Leu	Ala	Va1 95	Ala
	Thr	Phe	Leu	Gln 100	Met	Gln	Asp	Ile	Ile 105	Thr	Ala	Cys	His	Ala 110	Leu	Lys
30	Ser	Leu	Ala 115	Glu	Pro	Ala	Thr	Ser 120	Pro	Gly	Gly	Asn	Ala 125	Glu	Ala	Leu
35	Ala	Thr 130	Glu	Gly	Gly	Asp	Lys 135	Arg	Ala	Lys	G1u	Glu 140	Lys	Val	Ala	Thr
·	Ser 145	Thr	Leu	Ser	Arg	Leu 150	Glu	Gln	Ala	Gly	Arg 155	Ser	Thr	Pro	Ile	Gly 160
40					165					170					Ser 175	
	Ala	Ser	Gly	Ala 180	Glu	Gln	Thr		Lys 185		Asp	Ala	Pro	Arg 190	Glu	Pro
4 5	Pro	Pro	Val 195	Glu	Leu	Lys	Pro	Asp 200	Pro	Thr	Ser	G1y	Met 205	Ala	Ala	Ala
	Glu	Ala 210	Glu	Ala	Ala	Leu	Ser 215	Glu	Ser	Ser	Glu	Gln 220	Glu	Met	Glu	Val
50	Glu 225	Pro	Ala	Arg	Lys	Gly 230	Glu	Glu	Glu	Gln	Lуs 235	Glu	Gln	Glu	Glu	G1n 240

		Суs 530	Gln	Cys	Val	Met	Cys 535	Gly	Lys	Ala	Phe	Thr 540	Gln	Ala	Ser	Ser
5	Leu 545	Ile	Ala	His	Val	Arg 550	Gln	His	Thr	Gly	G1u 555	Lys	Pro	Tyr	·Val	Cys 560
10	Glu	Arg	Cys	.Gly	Lys 565	Arg	Phe	.Val	Gln	Ser 570	Ser	Gln	.Leu	Ala	Asn 575	His
	Ile	Arg	His	His 580	Asp	Asn	Ile		Pro 585	His	Lys	Cys	Ser	Val 590	Cys	Ser
15	Lys	Ala	Phe 595	Val	Asn	Va1	Gly	Asp 600	Leu	Ser	Lys	His	Ile 605	Ile	Ile	His
		610					615					620				
20	Arg 625					630					635					640
25	Ala				645					650					655	
	Val			660					665					670		
30	Thr		675					680					685			
		690					695				-	700				
35	Gln 705					710					715					720
40	Ser				725					730					735	
	Arg			740					745					750		
45	Phe		755					760					765			
	Leu	Gln 770	Ala	Gly	Glu	Leu	Va1 775	Phe	Arg	Pro	Arg	Asp 780	Gly	Ala	Glu	Gly
50	Gln 785	Pro	Ala	Гел	Ala	G1u 790	Thr	Ser	Pro	Thr	Pro 795	Pro	G1u	Сув	Pro	Pro 800
	Pro	Ala	Glu													

	Glu	Glu	G1u	Gly	Ala 245	Gly	Pro	Ala	Glu	Val 250	Lys	Glu	Glu	Gly	Ser 255	Gln
5	Leu	Glu		Gly 260	Glu	Ala	Pro	Glu	Glu 265	Asn	Glu	Asn	Glu	G1u 270	Ser	Ala
**	Gly		Asp 275	Ser	Gly	Gln	Glu	Leu 280	G1y	Ser	Glu	Ala	Arg 285	Gly	Leu	Arg
10		290			•		295			Ser		300				
15	305					310				Glu	315					320
	•				325					Gly 330					335	
20				340					345	Pro				350		
			355					360		Tyr			365			
25		370					375			Asn		380				
30	385					390				Asp	395					400
					405					Leu 410					415	
<i>35</i>				420					425	Ser				430		
			435					440					445			Cys
40		450					455					460				His
45	465					470					475					G1y 480
40					485					490	ı				495	
50				500	1				505	•				510		Ala
	Asp	Pro	Gly 515		Leu	Gln	Arg	His 520		. Arg	Ile	His	529	Gly	Glu	Lys

Patentansprüche

5

10

30

35

- Isoliertes Protein mit der in SEQ ID NO:2 dargestellten Aminos\u00e4uresequenz sowie die daraus durch Substitution, Insertion oder Deletion von einem oder mehreren Aminos\u00e4ureresten erh\u00e4ltlichen Muteine, die noch die wesentlichen biologischen Eigenschaften des in SEQ ID NO:2 dargestellten Proteins besitzen.
- 2. Protein gemäß Anspruch 1, dadurch gekennzeichnet, daß es sich um ein humanes Protein handelt.
- 3. Nukleinsäuresequenz codierend für ein Protein gemäß Anspruch 1.
- Nukleinsäuresequenz nach Ansprüch 3, dadurch gekennzeichnet, daß sie für ein Protein codiert, das mindestens 95 % Identität mit der in SEQ ID NO:2 dargestellten Sequenz besitzt.
- Nukleinsäuresequenz nach Anspruch 3, dadurch gekennzeichnet, daß sie die in SEQ ID NO:1 dargestellte Struktur
 besitzt.
 - Vektor enthaltend eine Nukleinsäuresequenz gemäß Anspruch 3 5, funktionell verknüpft mit mindestens einem Regulationselement.
- Wirtsorganismus, transformiert mit einer Nukleinsäuresequenz nach Anspruch 3.
 - 8. Wirtsorganismus, transformiert mit einem Vektor gemäß Anspruch 6.
- Verfahren zur Herstellung eines Proteins gemäß Anspruch 1, dadurch gekennzeichnet, daß man einen Wirtsorganismus gemäß Anspruch 6 unter Bedingungen kultiviert, die die Expression des Proteins erlauben und anschlieBend das exprimierte Protein vom Wirtsorganismus abtrennt und in reiner Form isoliert.
 - 10. Verwendung eines Proteins gemäß Anspruch 1 zur Identifizierung von spezifischen transkriptionsmodulierenden Substanzen.
 - 11. Verfahren zur Identifizierung von spezifischen transkriptionsmodulierenden Substanzen, das folgende Schritte umfaßt:
 - (a) Inkubation des Proteins gemäß Anspruch 1 mit dem Genprodukt von myc unter Bedingungen, unter denen sich ein Proteinkomplex zwischen diesen beiden Proteinen ausbildet,
 - (b) Inkubation der beiden Proteine unter ansonst gleichen Bedingungen wie (a) jedoch in Anwesenheit einer oder mehrerer Substanzen, die auf spezifische transkriptionsmodulierende Aktivitäten zu testen sind,
- 40 (c) Ermitteln des Unterschiedes in der Proteinkomplexbildung zwischen (b) und (a),
 - (d) Auswahl solcher Substanzen, bei denen gemäß Schritt (b) eine andere Proteinkomplexbildung erhalten wurde als bei Schritt (a).
- 45 12. Verwendung eines Proteins gemäß Anspruch 1 als Antigen zur Herstellung von spezifischen Antikörpern.
 - 13. Verwendung einer Nukleinsäuresequenz nach Anspruch 3 zur Gentherapie.
 - 14. Verwendung einer zu der Sequenz gemäß Anspruch 3 komplementären Nukleinsäuresequenz zur Gentherapie.
- 15. Verwendung nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß man durch die exogen zugeführte Nukleinsäuresequenz die zelluläre Konzentration des Proteins gemäß Anspruch 1 erhöht oder erniedrigt.