* Minimize the FD8:

Set 1 FDI: SSN -> name, mgr, dno

FD2: dno -> dname, mgr

FD3: pno -> preme, dno, Plocation, mgr

FDY: SSN, pro -> homes, dro

Set 2: FDI: SSN -> name, dno

FD2: dno -> dname, mgz

FD3: pno -> prane, Plocation, dno

FD4: SSN, pno --> hours

Example: R(a,b,c,d, E)

Fos: $ab \rightarrow c$; $a \in b$

which of the following are brue:

ad $\longrightarrow c \vee (ad)^{+} = \{a,d,b,c\}$

 $adE \rightarrow bc/(adE)^{+} = \{a,d,E,b,c\}$

 $abc \longrightarrow d \times (abc)^{\dagger} = \{a, b, c\}$

Example: $R(a,b,c,d, \in)$

FD6: ab ->c; c->d; bd -> =

abc -> E V

ab -> E

ac -> E X

Normal Forms

INF, 2NF, ONF, BCNF, 4NF, 5NF

<u>Input</u>: 1) Relation R with all the attributes $R(A_1, A_2, \dots,)$

2) All the FDS on the attributes

Output: R1, R2, -.., Rn
where R = R1 00 R2 00 - - - 00 Rn
no insert, delete, updete anomalies
loss less join & no false hiples

SNF

A relation R is in 3NF if + FDs: A -> B

\[\bar{A} :: A_1 A_2 A_3 ... \\
A_1 A_2 ... A_i ... \\
D \bar{B} : B_1 B_2 B_3 ... \\
A_1 A_2 ... A_i ... \\
D \bar{A} must be key/superkey

2) B must be a prine attribute. (i.e., B must be part of a key)

Example: R(SSN, name, dno, mgr, dname)

A A A FDI

FD2

- (1) What is key of R: (SSN)
- (11) dno -> dname, mgr. FD2

 But dno is not key; nor are dname, mgr.

 prune altabutes.

 R is not in 3NF.

Input: R with all altibutes; all FDs

- ① Compute keys of R using closure property of FDS R'=R
- - (b) Divide R' into R' (\overline{A} , \overline{B}) and R2' (\overline{A} , $\overline{R}' \overline{B}$)
 R2' ($\overline{R}' \overline{B}$)

Going back to Example:

FD2: Ri' (dno, dname, mgr)

R2' (dno, SSN, name)