## So you have a cluster, now what???

- Hypothesis: genes with common expression patterns share biological functions.
- How do researchers determine the function of a gene?
  - Phenotypes
    - Correlate expression and mutants with phenotype
  - Biochemical
    - Enzymatic activity
      - Kinase
    - Substrate binding
      - DNA, RNA, proteins
  - Structural
    - Crystallography → functional domains
      - HTH
    - Superstructures
      - Tubulin
  - Computationally homology to genes with known function

### Gene Ontology

- What is ontology?
  - The study of 'being' or 'existence'
  - An attempt to classify and describe fundamental units of organization
  - In biology, GO classifies functions of gene products, or proteins
- Types
  - COGs clusters of orthologous groups
  - arCOGs COGs for archaea, which have unusual gene functions

#### GO databases

- GO Consortium is a joint project of three model organism databases:
  - FlyBase
  - Mouse Genome Informatics (MGI)
  - Saccharomyces Genome Database (SGD)
- Has expanded in the last few years
  - <a href="http://www.geneontology.org/">http://www.geneontology.org/</a> go there

#### GO evidence codes

EXP = Inferred from Experiment

IDA = Inferred from Direct Assay

IPI = Inferred from Physical Interaction

IMP = Inferred from Mutant Phenotype

IGI = Inferred from Genetic Interaction

IEP = Inferred from Expression Pattern 👚

ISS = Inferred from Sequence or Structural Similarity

ISO = Inferred from Sequence Orthology

ISA = Inferred from Sequence Alignment

ISM = Inferred from Sequence Model

IGC = Inferred from Genomic Context

RCA = inferred from Reviewed Computational Analysis

TAS = Traceable Author Statement

NAS = Non-traceable Author Statement

IC = Inferred by Curator

ND = No biological Data available

IEA = Inferred from Electronic Annotation 👚

NR = Not Recorded

## **Gene Ontology**

- 3 ways to describe a gene (organized as acyclic graphs):
- Biological process
  - Molecular events with a defined beginning or end, related to the function of integrated living units (cells, tissues, etc)
- Cellular component
  - The part of a cell or extracellular environment
- Molecular function
  - The elemental activities of a gene at the molecular level

# **Biological Process**



# Cellular Component



### Molecular function



#### **STATISTICS**

- Are genes in a particular process/function represented above random chance?
  - ~6000 genes in the yeast genome
  - Biological process → cellular amino acid metabolic process
    = 242 genes = 3.8%
- Gene Set Enrichment Analysis
  - Hypergeometric test
  - p-value

# HYPERGEOMETRIC TEST

#### Probability of:

- k successes from
- n draws in a population of size
- N containing a total of
- K successes

#### In cluster analysis, probability of:

- Finding a certain number (k) of genes
- Of a number n of a certain type (GO term, COG category)
- In a population of N genes (in this case, the whole genome)
- Out of all the genes (K) in our cluster

# HYPERGEOMETRIC TEST

Chromatin genes Other genes Total

| drawn | not drawn     | total |
|-------|---------------|-------|
| k     | K – k         | K     |
| n – k | N + k - n - K | N – K |
| n     | N – n         | N     |

This problem is summarized by the following contingency table:

Chromatin genes Other genes Total

| drawn         | not drawn          | total      |
|---------------|--------------------|------------|
| k = 4         | K-k=1              | K = 5      |
| n-k=6         | N + k - n - K = 39 | N - K = 45 |
| n = <b>10</b> | N - n = 40         | N = 50     |

$$P(X=k) = f(k; N, K, n) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}.$$

Hence, in this example calculate

$$P(X=4) = f(4;50,5,10) = \frac{\binom{5}{4}\binom{45}{6}}{\binom{50}{10}} = \frac{5 \cdot 8145060}{10272278170} = 0.003964583....$$

# Interpreting the results

- My cluster is enriched for functions in the glyoxylate cycle with a p-value of 0.001.
- Is this significant?
- What does it mean biologically? How do I find out?
- My cluster is also enriched for functions in glycolysis. Which "annotation" of my cluster is "right"?