

Laplace Transform Pairs

Table D.1	
F(s)	$f(t), t\supseteq 0$
1. 1 2. 1/s	$\delta(t_0)$, unit impulse at $t = t_0$
	1, unit step
3. $\frac{n!}{s^{n+1}}$	t^n
4. $\frac{1}{(s+a)}$	e^{-at}
$ \frac{4. \frac{1}{(s+a)}}{5. \frac{1}{(s+a)^n}} $	$\frac{1}{(n-1)!} t^{n-1} e^{-at}$
$\frac{6. \frac{a}{s(s+a)}}{1}$	$1 - e^{-at}$
$7. \ \frac{1}{(s+a)(s+b)}$	$\frac{1}{(b-a)}\left(e^{-at}-e^{-bt}\right)$
$\frac{7. \frac{1}{(s+a)(s+b)}}{8. \frac{s+\alpha}{(s+a)(s+b)}}$	$\frac{1}{(b-a)} \left(e^{-at} - e^{-bt} \right)$ $\frac{1}{(b-a)} \left[(\alpha - a)e^{-at} - (\alpha - b)e^{-bt} \right]$
9. $\frac{ab}{s(s+a)(s+b)}$	$1 - \frac{b}{(b-a)}e^{-at} + \frac{a}{(b-a)}e^{-bt}$
10. $\frac{1}{(s+a)(s+b)(s+c)}$	$\frac{e^{-at}}{(b-a)(c-a)} + \frac{e^{-bt}}{(c-a)(a-b)} + \frac{e^{-ct}}{(a-c)(b-c)}$
11. $\frac{s+\alpha}{(s+a)(s+b)(s+c)}$	$\frac{(\alpha - a)e^{-at}}{(b - a)(c - a)} + \frac{(\alpha - b)e^{-bt}}{(c - b)(a - b)} + \frac{(\alpha - c)e^{-ct}}{(a - c)(b - c)}$
12. $\frac{ab(s+\alpha)}{s(s+a)(s+b)}$	$1 - \frac{b}{(b-a)}e^{-at} + \frac{a}{(b-a)}e^{-bt}$ $\frac{e^{-at}}{(b-a)(c-a)} + \frac{e^{-bt}}{(c-a)(a-b)} + \frac{e^{-ct}}{(a-c)(b-c)}$ $\frac{(\alpha-a)e^{-at}}{(b-a)(c-a)} + \frac{(\alpha-b)e^{-bt}}{(c-b)(a-b)} + \frac{(\alpha-c)e^{-ct}}{(a-c)(b-c)}$ $\alpha - \frac{b(\alpha-a)}{(b-a)}e^{-at} + \frac{a(\alpha-b)}{(b-a)}e^{-bt}$
13. $\frac{\omega}{s^2 + \omega^2}$	$\sin \omega t$
14. $\frac{s}{s^2 + \omega^2}$	cos ωtθ

Table D.1 Continued	
F(s)	$f(t), t \supseteq 0$
$\frac{15. \frac{s+\alpha}{s^2+\omega^2}}{16. \frac{\omega}{(s+a)^2+\omega^2}}$	$\frac{\sqrt{\alpha^2 + \omega^2}}{\omega} \sin{(\omega t + \phi)}, \phi = \tan^{-1}{\omega/\alpha}$
$16. \ \frac{\omega}{(s+a)^2 + \omega^2}$	$e^{-at}\sin\omega t$
17. $\frac{(s+\alpha)}{(s+a)^2+\omega^2}$	$e^{-at}\cos\omega t$
$18. \ \frac{s+\alpha}{(s+a)^2+\omega^2}$	$\frac{1}{\omega}\left[(\alpha-a)^2+\omega^2\right]^{1/2}e^{-at}\sin\left(\omega t+\phi\right),$
	$\phi = \tan^{-1} \frac{\omega}{\alpha - a}$
$19. \ \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$	$\frac{\omega_n}{\sqrt{1-\zeta^2}} e^{-\zeta\omega^n t} \sin \omega_n \sqrt{1-\zeta^2} t, \zeta < 1$
$20. \ \frac{1}{s[(s+a)^2 + \omega^2]}$	$\frac{1}{a^2+\omega^2}+\frac{1}{\omega\sqrt{a^2+\omega^2}}e^{-at}\sin{(\omega t-\phi)},$
	$\phi = \tan^{-1} \frac{\omega}{-a}$
$21. \ \frac{\omega_n^2}{s(s^2 + 2\boldsymbol{\zeta}\omega_n s + \omega_n^2)}$	$1 - \frac{1}{\sqrt{1-\zeta^2}} e^{-\zeta \omega^{n_t}} \sin{(\omega_n \sqrt{1-\zeta^2} t + \phi)},$
	$\phi = \cos^{-1} \zeta, \zeta < 1$
$22. \frac{(s+\alpha)}{s[(s+\alpha)^2+\omega^2]}$	$\frac{\alpha}{a^2+\omega^2}+\frac{1}{\omega}\left[\frac{(\alpha-a)^2+\omega^2}{a^2+\omega^2}\right]^{1/2}e^{-at}\sin(\omega t+\phi),$
	$\phi = \tan^{-1} \frac{\omega}{\alpha - a} - \tan^{-1} \frac{\omega}{-a}$
23. $\frac{1}{(s+c)[(s+a)^2+\omega^2]}$	$\frac{e^{-ct}}{(c-a)^2 + \omega^2} + \frac{e^{-at}\sin(\omega t + \phi)}{\omega[(c-a)^2 + \omega^2]^{1/2}}, \phi = \tan^{-1}\frac{\omega}{c-a}$