

1069427 16 JUL 2002

10/069427
PATENT**IN THE UNITED STATES PATENT AND TRADEMARK OFFICE**

In the Application of:

OMOLAYO O. FAMODU ET AL.

CASE NO.: BB1395 US PCT

APPLICATION NO.: 10/069,427

GROUP ART UNIT: UNKNOWN

FILED: UNKNOWN

EXAMINER: UNKNOWN

INTERNATIONAL APPLICATION NO.: PCT/US00/26442

INTERNATIONAL FILING DATE: SEPTEMBER 9, 2000

FOR: GENES ENCODING STEROL
DELTA-15 REDUCTASE IN PLANTS**STATEMENT UNDER 37 CFR 1.821(g) and 1.825(b)**

Commissioner for Patents, Box PCT
United States Patent and Trademark Office
Washington, DC 20231

Sir:

The submission of the substitute Sequence Listing filed concurrently herewith does not include new matter.

The copy of the substitute Sequence Listing in computer readable form filed concurrently herewith is the same as the paper copy of the substitute Sequence Listing filed concurrently herewith.

Respectfully submitted,

Lori Y. Beardell
Attorney For Applicants
Registration No. 34,293
Telephone: 302-992-4926
Facsimile: 302-892-1026

Dated: July 11, 2002

10/069427

SEQUENCE LISTING

<110> Famodu, Omolayo O.
Kinney, Anthony J.

<120> Genes Encoding Sterol Delta-15 Reductase in Plants

<130> BB1395 PCT

<140> 10/069,427

<141>

<150> 60/156,820

<151> 1999-09-30

<160> 10

<170> Microsoft Office 95

<210> 1

<211> 427

<212> DNA

<213> Glycine max

<220>

<221> unsure

<222> (360)

<223> n=a,c,g or t

<400> 1

gtgatgatgg agtcacacgt ggatcttagt tttctccttc aagctctcac tccatcttgg 60
aactccgttc cttgcgttgc ggggtcttc acttacttgg ccgttgctgg atccattctc 120
cctggaaaac ttgttcctgg cggtgcacta ctcgatggaa ctcgtctaca ctattgtcgc 180
aatggctgc tctcgcttct tctgtgggt gcacttctcg ggatcggtgc caagatgggt 240
tttgtgtctc ccactgccat atcaaacaga ggacttgagc tgctgtccac aacttttgc 300
ttcagtttc ttgtaaccct gatattgcat tttccgggt gcaagtcaca aagtaaagg 360
tcatacactaa agcctcatct cagtggAAC ctgatacacacg attgggtggtt tgggaataaca 420
actaaaa 427

<210> 2

<211> 126

<212> PRT

<213> Glycine max

<400> 2

Leu Gln Ala Leu Thr Pro Ser Trp Asn Ser Val Pro Leu Leu Val Gly
1 5 10 15

Phe Phe Thr Tyr Leu Ala Val Ala Gly Ser Ile Leu Pro Gly Lys Leu
20 25 30

Val Pro Gly Val Ala Leu Leu Asp Gly Thr Arg Leu His Tyr Cys Cys
35 40 45

Asn Gly Leu Leu Ser Leu Leu Val Ala Leu Leu Gly Ile Gly
50 55 60

Ala Lys Met Gly Phe Val Ser Pro Thr Ala Ile Ser Asn Arg Gly Leu

65

70

75

80

Glu Leu Leu Ser Thr Thr Phe Ala Phe Ser Phe Leu Val Thr Leu Ile
 85 90 95

Leu His Phe Ser Gly Cys Lys Ser Gln Ser Lys Gly Ser Ser Leu Lys
 100 105 110

Pro His Leu Ser Gly Asn Leu Ile His Asp Trp Trp Phe Gly
 115 120 125

<210> 3

<211> 1631

<212> DNA

<213> Glycine max

<400> 3

ccgcgttgaa	atttgcctat	ctaaaacctc	aatctttac	tgaaaagtct	caactttgaa	60
ctcactcgaa	gtgatgatgg	agtcacacgt	ggatctagg	tttcccttc	aagctctcac	120
tccatcttgg	aactccgttc	ctttgcttgt	gggggtcttc	acttacttgg	ccgttgctgg	180
atccattctc	cctggaaaac	ttgttccctgg	cgttgcacta	ctcgatggaa	ctcgcttaca	240
ctattgctgc	aatggtctgc	tctcgcttct	tctgttggtt	gcacttctcg	ggatcggtgc	300
caagatgggt	tttgcgtctc	ccactgccc	atcagacaga	ggacttgagc	tgctgtccac	360
aactttgcc	ttcagtttc	ttgttaaccct	gatattgc	tttccgggtt	gcaagtacaca	420
aagtaaaggt	tcatcaacta	agcctcatct	cagtggaaac	ctgatacacy	attggtggtt	480
tgttatacaa	ctaaatccac	agttcatggg	tatcgaccc	aaattttct	ttgttagagc	540
tggaatgatg	ggatggctac	ttatcaattt	atctattctt	atgaagagca	ttcaagatgg	600
tactttgagc	cagtcaatga	ttctctacca	gttattctgt	gcactataca	tcctggacta	660
ttttgtacat	gaagagtaca	tgacatccac	ctgggacata	attgcagaga	gactgggctt	720
catgttggtc	tttggagatt	tagtgcgtt	ttctttctct	ttcagcatac	agggatggtg	780
gctcttgcgt	aacagtgtgg	agttAACACC	agctgcccatt	gtagctaatt	gctttgtgtt	840
cctgatttgg	tacatggat	ttcgaggagc	aaacaagcaa	aagcatgtgt	tcaaaaagaa	900
tccaaaggct	cctatctggg	gtaaggctcc	aaaagtattt	ggtggaaagc	tacttgcttc	960
tggttattgg	ggtattgtca	gacactgtaa	ttacctagg	gattgtatgc	ttgctcttc	1020
ctttagctta	ccatgtggga	taagttcacc	aattccatac	ttctatccaa	tttatcttct	1080
tattctgtta	atctggagag	agagaaggga	tgaagctgt	tgccggaga	agtatagaga	1140
gatatgggccc	gagtatgtta	aacttgcgtt	atggagaata	ttgccttacg	tttatttagga	1200
tgaaaaaaa	aagggcttca	ccatgttattt	tttgcgttatt	aagcacttcg	1260	
atgtaaattt	gttcttgcgt	ttgtgtttt	aatcttgcgt	ttttcttat	tgagccatgt	1320
agctgcagga	gagtgtttcg	agggatttat	tttaccatct	atatttgcgt	atcattatgc	1380
tgccgcgttc	aggccttcat	tttcaatgg	ccaactcttt	ttgacttgc	ctatttgcgt	1440
ttagatgaga	atttgcgtt	caaagcttcc	aggcttaaaa	aaacagtgtc	atgttctatg	1500
ggaagtgcag	gaagcaattt	ggggactgca	gaaagcaatt	gccttacat	tgatatgtc	1560
aatggtactt	taggccttt	aatgttcttgc	ctttcattt	gtgagttatt	attggccccca	1620
tttcatttgc	a					1631

<210> 4

<211> 374

<212> PRT

<213> Glycine max

<400> 4

Met Met Glu Ser His Val Asp Leu Gly Phe Leu Leu Gln Ala Leu Thr			
1	5	10	15

Pro Ser Trp Asn Ser Val Pro Leu Leu Val Gly Phe Phe Thr Tyr Leu			
20	25	30	

Ala Val Ala Gly Ser Ile Leu Pro Gly Lys Leu Val Pro Gly Val Ala
 35 40 45

 Leu Leu Asp Gly Thr Arg Leu His Tyr Cys Cys Asn Gly Leu Leu Ser
 50 55 60

 Leu Leu Leu Leu Val Ala Leu Leu Gly Ile Gly Ala Lys Met Gly Phe
 65 70 75 80

 Val Ser Pro Thr Ala Ile Ser Asp Arg Gly Leu Glu Leu Leu Ser Thr
 85 90 95

 Thr Phe Ala Phe Ser Phe Leu Val Thr Leu Ile Leu His Phe Ser Gly
 100 105 110

 Cys Lys Ser Gln Ser Lys Gly Ser Ser Leu Lys Pro His Leu Ser Gly
 115 120 125

 Asn Leu Ile His Asp Trp Trp Phe Gly Ile Gln Leu Asn Pro Gln Phe
 130 135 140

 Met Gly Ile Asp Leu Lys Phe Phe Val Arg Ala Gly Met Met Gly
 145 150 155 160

 Trp Leu Leu Ile Asn Leu Ser Ile Leu Met Lys Ser Ile Gln Asp Gly
 165 170 175

 Thr Leu Ser Gln Ser Met Ile Leu Tyr Gln Leu Phe Cys Ala Leu Tyr
 180 185 190

 Ile Leu Asp Tyr Phe Val His Glu Glu Tyr Met Thr Ser Thr Trp Asp
 195 200 205

 Ile Ile Ala Glu Arg Leu Gly Phe Met Leu Val Phe Gly Asp Leu Val
 210 215 220

 Trp Ile Pro Phe Ser Phe Ser Ile Gln Gly Trp Trp Leu Leu Met Asn
 225 230 235 240

 Ser Val Glu Leu Thr Pro Ala Ala Ile Val Ala Asn Cys Phe Val Phe
 245 250 255

 Leu Ile Gly Tyr Met Val Phe Arg Gly Ala Asn Lys Gln Lys His Val
 260 265 270

 Phe Lys Lys Asn Pro Lys Ala Pro Ile Trp Gly Lys Pro Pro Lys Val
 275 280 285

 Ile Gly Gly Lys Leu Leu Ala Ser Gly Tyr Trp Gly Ile Ala Arg His
 290 295 300

 Cys Asn Tyr Leu Gly Asp Leu Met Leu Ala Leu Ser Phe Ser Leu Pro
 305 310 315 320

 Cys Gly Ile Ser Ser Pro Ile Pro Tyr Phe Tyr Pro Ile Tyr Leu Leu
 325 330 335

 Ile Leu Leu Ile Trp Arg Glu Arg Arg Asp Glu Ala Arg Cys Ala Glu
 340 345 350

Lys Tyr Arg Glu Ile Trp Ala Glu Tyr Arg Lys Leu Val Pro Trp Arg
355 360 365

Ile Leu Pro Tyr Val Tyr
370

<210> 5
<211> 667
<212> DNA
<213> Zea mays

```
<400> 5
ccacgcgtcc ggaagaacaa agtagagctg tccctttgt ctggcttagc taacttatgc 60
atcttctta ttggctacct agtgttccga ggagctaaca agcaaaaaca tgtgttcaag 120
aaggacccca aagctcctat atggggaaaa cctcccaaag ttgtcgaaaa aaagctacta 180
gcacgtggtt actggggcat cgcaaggcac tgcaattatc tcggagacct gctgctagca 240
cttcgttca gcttgcctg tggagttagt tccgtgtcc catacttcta ccccacgtac 300
ctgctcattc tactggtctt gagggaaaagg cgcgatgagg cgagggtgctc gcagaagttac 360
agggagatct gggcagagta ctgcaagctc gtgccgtgga ggatcctgcc ttatgtgtac 420
tgaagagacg gtagaaaacca aggcaagctca tggccctggg ccagctgtaa accttatttt 480
gtttgcctt aaccagtgg tgaatgttga ttagactc ggttaacttgt gaccgtgcaaa 540
actttgtta ttgttggtcc atacatgttt ggaatcgtga atcagaccgc ctcacttgg 600
ggcaaaaaaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 660
aaaaaaaaag 667
```

<210> 6
<211> 140
<212> PRT
<213> Zea mays

<400> 6
Pro Arg Val Arg Lys Asn Lys Val Glu Leu Ser Leu Leu Ser Gly Leu
1 5 10 15

Ala Asn Leu Cys Ile Phe Leu Ile Gly Tyr Leu Val Phe Arg Gly Ala
20 25 30

Asn Lys Gln Lys His Val Phe Lys Lys Asp Pro Lys Ala Pro Ile Trp
35 40 45

Gly Lys Pro Pro Lys Val Val Gly Gly Lys Leu Leu Ala Ser Gly Tyr
50 55 60

Trp Gly Ile Ala Arg His Cys Asn Tyr Leu Gly Asp Leu Leu Leu Ala
 65 70 75 80

Leu Ser Phe Ser Leu Pro Cys Gly Val Ser Ser Val Val Pro Tyr Phe
85 90 95

Tyr Pro Thr Tyr Leu Leu Ile Leu Leu Val Leu Arg Glu Arg Arg Asp
100 105 110

Glu Ala Arg Cys Ser Gln Lys Tyr Arg Glu Ile Trp Ala Glu Tyr Cys
 115 120 125

Lys Leu Val Pro Trp Arg Ile Leu Pro Tyr Val Tyr
130 135 140

<210> 7
<211> 1364
<212> DNA
<213> Glycine max

<400> 7

tgcggcacga	gtaaaaccc	aatctttac	tgaaaagtct	caactttgaa	ctcactcgaa	60
gtgatgatgg	agtcacacgt	ggatctagg	tttctccttc	aagctctcac	tccatcttg	120
aactccgttc	cattgttgt	ggggtcttc	acttacttgg	ccgtgctgg	atccattctc	180
cctggaaaac	ttgttcctgg	cgttgcacta	ctcgatggaa	ctcgctaca	ctattgctgc	240
aatggctgc	tctcgcttc	tctgtgggt	gcacttctcg	ggatcggtgc	caagatgggt	300
tttgtgtctc	ccactgccc	atcagacaga	ggacttgagc	tgctgtccac	aactttgcc	360
ttcagtttc	ttgtaaccct	gatattgcat	tttccgggt	gcaagtacaca	aagtaaagg	420
tcatacacta	agcctcatct	cagtggaaac	ctgatacacg	attggtggtt	tggatacaa	480
ctaaatccac	agttcatggg	tatcgaccc	aaagctggaa	tgatggatg	gctacttata	540
aatttatcta	ttcttatgaa	gagcattcaa	gatggtaact	tgagccagtc	aatgattctc	600
taccagctat	tctgtgcact	atacatcctg	gactatttg	tacatgaaga	gtacatgaca	660
tccacctggg	acataattgc	agagagactg	ggcttcatgt	tggctttgg	agatttagt	720
tggattcctt	tctctttag	catacaggga	tggggctct	tgatgaacag	tggggat	780
acaccagctg	ccattgttagc	taattgttt	gtgttcctga	ttggatacat	gttatttcga	840
ggagcaaaaca	agcaaaagca	tgttcaaa	aagaatccaa	aggctctat	ctggggtaag	900
cctccaaaag	tcattggtg	aaagctactt	gttctgggt	attgggtat	tgcagacac	960
tgttaattacc	taggggattt	gatgcttgct	ctctccttta	gcttaccatg	tggataagt	1020
tcaccaattc	catacttcta	tccaaattat	cttcttattc	tgttaatctg	gagagagaga	1080
acggatgaag	ctcggtgcgc	cgagaagtat	agagagat	ggccgagta	tcgtaaactt	1140
gttccatgga	aatatttgcc	ttacgtttat	taggtgaaa	aaaaaaagg	tttcaccatg	1200
aattcttcat	cttgcgcgat	ttattaagca	cttcgcgtgt	aattggttct	tgttcttg	1260
gtttcaatct	tgtatcttt	cttattggc	catgtagctg	caggagagt	tttcgaggga	1320
tttatcttac	catctatatt	tgtgtaaaaa	aaaaaaaaaa	aaaa		1364

<210> 8
<211> 369
<212> PRT
<213> Glycine max

<400> 8

Met	Met	Glu	Ser	His	Val	Asp	Leu	Gly	Phe	Leu	Leu	Gln	Ala	Leu	Thr
1					5				10				15		

Pro	Ser	Trp	Asn	Ser	Val	Pro	Leu	Leu	Val	Gly	Phe	Phe	Thr	Tyr	Leu
					20				25				30		

Ala	Val	Ala	Gly	Ser	Ile	Leu	Pro	Gly	Lys	Leu	Val	Pro	Gly	Val	Ala
					35			40				45			

Leu	Leu	Asp	Gly	Thr	Arg	Leu	His	Tyr	Cys	Cys	Asn	Gly	Leu	Leu	Ser
					50			55			60				

Leu	Leu	Leu	Leu	Val	Ala	Leu	Leu	Gly	Ile	Gly	Ala	Lys	Met	Gly	Phe
					65			70		75		80			

Val	Ser	Pro	Thr	Ala	Ile	Ser	Asp	Arg	Gly	Leu	Glu	Leu	Leu	Ser	Thr
					85			90				95			

Thr	Phe	Ala	Phe	Ser	Phe	Leu	Val	Thr	Leu	Ile	Leu	His	Phe	Ser	Gly
					100			105				110			

Cys	Lys	Ser	Gln	Ser	Lys	Gly	Ser	Ser	Leu	Lys	Pro	His	Leu	Ser	Gly
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

115

120

125

Asn Leu Ile His Asp Trp Trp Phe Gly Ile Gln Leu Asn Pro Gln Phe
 130 135 140

Met Gly Ile Asp Leu Lys Ala Gly Met Met Gly Trp Leu Leu Ile Asn
 145 150 155 160

Leu Ser Ile Leu Met Lys Ser Ile Gln Asp Gly Thr Leu Ser Gln Ser
 165 170 175

Met Ile Leu Tyr Gln Leu Phe Cys Ala Leu Tyr Ile Leu Asp Tyr Phe
 180 185 190

Val His Glu Glu Tyr Met Thr Ser Thr Trp Asp Ile Ile Ala Glu Arg
 195 200 205

Leu Gly Phe Met Leu Val Phe Gly Asp Leu Val Trp Ile Pro Phe Ser
 210 215 220

Phe Ser Ile Gln Gly Trp Trp Leu Leu Met Asn Ser Val Glu Leu Thr
 225 230 235 240

Pro Ala Ala Ile Val Ala Asn Cys Phe Val Phe Leu Ile Gly Tyr Met
 245 250 255

Val Phe Arg Gly Ala Asn Lys Gln Lys His Val Phe Lys Lys Asn Pro
 260 265 270

Lys Ala Pro Ile Trp Gly Lys Pro Pro Lys Val Ile Gly Gly Lys Leu
 275 280 285

Leu Ala Ser Gly Tyr Trp Gly Ile Ala Arg His Cys Asn Tyr Leu Gly
 290 295 300

Asp Leu Met Leu Ala Leu Ser Phe Ser Leu Pro Cys Gly Ile Ser Ser
 305 310 315 320

Pro Ile Pro Tyr Phe Tyr Pro Ile Tyr Leu Leu Ile Leu Ile Trp
 325 330 335

Arg Glu Arg Thr Asp Glu Ala Arg Cys Ala Glu Lys Tyr Arg Glu Ile
 340 345 350

Trp Ala Glu Tyr Arg Lys Leu Val Pro Trp Arg Ile Leu Pro Tyr Val
 355 360 365

Tyr
 369

<210> 9
 <211> 430
 <212> PRT
 <213> Ascobolus immersus

<400> 9
 Met Gly Gly Lys Asp Tyr Glu Phe Gly Gly Pro Ile Gly Thr Gly Val
 1 5 10 15

Leu Met Leu Ile Leu Pro Pro Ile Ser His Tyr Leu His Phe Leu Ile

20

25

30

Thr Pro Arg Gly Ala Pro Pro Pro Glu Phe Trp Ser Ala Pro Leu Glu
 35 40 45

Thr Leu Lys Ser Val Thr Pro Thr Phe Ser Ser Leu Phe Ser Leu His
 50 55 60

Ala Thr Leu Ala Val Ala Ala Tyr Tyr Leu Leu Leu Val Ala Leu Met
 65 70 75 80

Tyr Val Leu Pro Ala Glu Ile Ala Glu Gly Val Val Leu Lys Asp Gly
 85 90 95

Ser Arg Leu Lys Tyr Arg Cys Asn Ala Phe Thr Thr Phe Leu Val Phe
 100 105 110

Phe Thr Phe Leu Gly Thr Met Thr Val Leu Glu Gly Pro Thr Trp Trp
 115 120 125

Phe Trp Ser Tyr Leu Thr Asp Asn Phe Ala Gln Leu Gln Ser Ala Ser
 130 135 140

Ile Val Phe Ser Tyr Ala Met Ser Leu Trp Val Tyr Ile Arg Ser Tyr
 145 150 155 160

Arg Pro Met Pro Lys Gly Lys Glu Val Ile Leu Ser Pro Val Gly Phe
 165 170 175

Lys Gly Asn His Ile His Asp Phe Trp Met Gly Arg Glu Leu Asn Pro
 180 185 190

Arg Ile Gly Glu Trp Leu Asp Ile Lys Gln Leu His Glu Leu Arg Pro
 195 200 205

Gly Leu Met Gly Trp Ile Leu Phe Asn Leu Ala Trp Thr Val Lys Gln
 210 215 220

Tyr Asn Thr His Gly Phe Val Ser Asp Ser Ile Val Leu Val Asn Leu
 225 230 235 240

Phe Glu Thr Trp Tyr Val Val Asp Ala Leu Trp Asn Glu Ser Lys Val
 245 250 255

Leu Thr Thr Met Asp Ile Thr Thr Asp Gly Leu Gly Val Met Leu Leu
 260 265 270

Phe Gly Asn Ala Val Trp Val Pro Phe Met Tyr Cys Leu Gln Ala Arg
 275 280 285

Tyr Leu Ala Ser Phe Pro Val His Leu Gly Leu Leu Gly Ile Ala Gly
 290 295 300

Val Leu Ala Val Gln Phe Thr Gly Tyr Ala Ile Phe Arg Gly Ala Asn
 305 310 315 320

Asn Gln Lys Asn Ala Phe Arg Thr Asn Pro Ala Asp Pro Ala Val Ser
 325 330 335

His Leu Lys Phe Met Thr Thr Lys Ser Gly Ser Lys Leu Leu Ile Ser

340

345

350

Gly Trp Trp Gly Val Ala Arg His Val Asn Tyr Phe Gly Asp Trp Ile
 355 360 365

Met Ala Trp Ser Tyr Cys Leu Thr Thr Gly Phe Asn Thr Pro Leu Thr
 370 375 380

Tyr Phe Tyr Val Ile Tyr Phe Gly Ile Leu Leu Leu His Arg Asp Arg
 385 390 395 400

Arg Asp Glu Ala Lys Cys Arg Glu Lys Tyr Gly Lys Asp Trp Asp Arg
 405 410 415

Tyr Cys Lys Val Val Lys Trp Arg Ile Ile Pro Gly Ile Tyr
 420 425 430

<210> 10

<211> 365

<212> PRT

<213> Arabidopsis thaliana

<400> 10

Met Asp Leu Gly Val Leu Leu Pro Ser Leu Gln Ser Val Tyr Val Leu
 1 5 10 15

Val Phe Tyr Phe Val Tyr Leu Ala Val Ala Gly Glu Ile Leu Pro Gly
 20 25 30

Lys Val Ile Arg Gly Val Leu Leu Ser Asp Gly Ser Gln Leu Arg Tyr
 35 40 45

Arg Cys Asn Gly Leu Leu Ala Leu Ile Leu Leu Val Ala Ile Leu Gly
 50 55 60

Ile Cys Ala Lys Leu Gly Ile Val Ser Pro Leu Val Val Ala Asp Arg
 65 70 75 80

Gly Leu Glu Leu Leu Ser Ala Thr Phe Ile Phe Cys Val Leu Val Thr
 85 90 95

Leu Ala Leu Tyr Val Thr Gly Arg Ser Ser Ser Asn Lys Gly Ser Ser
 100 105 110

Leu Lys Pro His Val Ser Gly Asn Leu Val His Asp Trp Trp Phe Gly
 115 120 125

Ile Gln Leu Asn Pro Gln Phe Met Ser Ile Asp Leu Lys Phe Phe Phe
 130 135 140

Val Arg Ala Gly Met Met Gly Trp Leu Leu Ile Asn Leu Ser Ile Leu
 145 150 155 160

Ala Lys Ser Val Gln Asp Gly Ser Leu Ser Gln Ser Met Ile Leu Tyr
 165 170 175

Gln Ile Phe Cys Ala Leu Tyr Ile Leu Asp Tyr Phe Val His Glu Glu
 180 185 190

Tyr Met Thr Ser Thr Trp Asp Ile Ile Ala Glu Arg Leu Gly Phe Met
195 200 205

Leu Val Phe Gly Asp Leu Leu Trp Ile Pro Phe Thr Phe Ser Ile Gln
210 215 220

Gly Trp Trp Leu Leu His Asn Lys Val Glu Leu Thr Val Pro Ala Ile
225 230 235 240

Val Val Asn Cys Leu Val Phe Leu Ile Gly Tyr Met Val Phe Arg Gly
245 250 255

Ala Asn Lys Gln Lys His Ile Phe Lys Lys Asn Pro Lys Thr Pro Ile
260 265 270

Trp Gly Lys Pro Pro Val Val Gly Gly Lys Leu Leu Val Ser Gly
275 280 285

Tyr Trp Gly Ile Ala Arg His Cys Asn Tyr Leu Gly Asp Leu Met Leu
290 295 300

Ala Leu Ser Phe Ser Leu Pro Cys Gly Ile Ser Ser Pro Val Pro Tyr
305 310 315 320

Phe Tyr Pro Ile Tyr Leu Leu Ile Leu Ile Trp Arg Glu Arg Arg
325 330 335

Asp Glu Val Arg Cys Ala Glu Lys Tyr Lys Glu Ile Trp Ala Glu Tyr
340 345 350

Leu Arg Leu Val Pro Trp Arg Ile Leu Pro Tyr Val Tyr
355 360 365