DG (III). thous Afron 13/10/2017. Notation: (á la warner).
Sps M", p" smoth whols. * NEM InM tryon space at a. Tr'M wtomer.

TM / T"M. hudles. Y = (n', n', n'): $NCA \rightarrow Y(n) \in \mathbb{R}^n \cdot dnr$. (4-1 doub pour.). { 3 milp. Sie, resp. {ohisse, assochersis, f pm/pm (Mso with (n', -, 2") enn m M.). of: M > N C, dif : ThM > Tom, N. differen. Soli - Find N -> Fin M codiff. If Vin vis., Volul, the her. (V_0, \dots, v_n) , $V_0, \dots, v_n) \rightarrow \mathcal{P}(v_1) - \dots \mathcal{P}_{n}(v_n)$. as V.S. funds.

Mohnton. [Womer, Bishop & Godhus "Thru would sis in afel · Bochner wethod: have "Leglacion" on Rem uffel. (M,g). $\Delta_{g} = (\infty(m) \rightarrow (\infty(m))$. For one-forms. $w \in (\infty/M \rightarrow 7^*M)$, here onten haylann.

\[\Delta where mill span. \langle w: \Dw = \varepsilon\rangle \text{Chrackenss}: first whendogy. · Δg (½ |w|²) = | \[\var{v}|^2 + Ric(w, w). (Hessin in I). -> A. Might . D= Sn lowit + Sn Riz (w, w). (Neinly I cont). * Saul ambre: ~> Sprhant. helts fixed on one and. "spinn model symmetres: XN= \(\times \) \(\times \) = \(\times \) \(\times \) = \(\times \) \(\times \) = \(\times \) \(\times \) \(\times \) = \(\times \) \(\times \) \(\times \) = \(\times \) \(\ti = $\sum_{i=1}^{n} \hat{\chi}_{i} \tilde{\partial}_{i} | p$. when $(\hat{\chi}_{i}^{i}, \dots, \hat{\chi}_{n}^{n})$ is when wind fightness.

(2n) ∈ GL (n, TR). > um id to go bund G-hadles.

lutegable systms nchh Andlen: Find a fuch feco (n, R) $\begin{cases} \sum_{i=1}^{n} \chi_{i}'(n) \partial_{i} f(n) = 0. \end{cases}$ $X_{i=1}^{n}$ X_{i}^{n} (n) ∂_{i} f(n) = 0i.e., of soln a bythen of egis. $\frac{\text{Example}}{\text{on}}: \frac{\partial}{\partial x} f = 0.$ $n = 3. \sim f(x, y, z) = g(y, z).$ $\frac{\partial}{\partial n} f + \partial f = 0. \quad (n=3) \quad \text{method of charelines}.$ $\frac{\partial}{\partial n} f + \frac{\partial}{\partial y} f = 0. \quad \text{which for filth the solutions}.$ $\frac{\partial}{\partial n} f + \frac{\partial}{\partial y} f = 0. \quad \text{which for filth the solutions}.$) = d (tor)=0. ·2-9= cont. So son sol= f(n, y, z)=g(n-y, z) Mre genally: A hook & fecola, ir) not. 1 2 day f = 0 for PR- lines of radep v. fields (n. 3 d.

Def A d-drom hum is tryent subherelle of TM b.e., a coller. $D = U D_n . C TM$ VnoEM Fanh. Vono la creci Fiels. TXisin st. Du = sprin 1xialsin. (#) Note. pde hufn Loud, distributes ere board. Deft. In submitted of D is a submitted SCOM St. VSEBS dyi (TgS) = Dilg). If I all peth, I an intignal subsuffed SJD. pulling pump p (ie, 78es 1. + i(4)=p), Im Dis integrable. Ex. unider · P3, { X/n, y, 7 }= 2n + 22y.

{ x_2 (n, y, 7 + 2) } Is this myster completely integrable If home If D is implelet megable, In VII. $x,y:n\rightarrow 0$, $[x,y]_{GE}_{n}$.

(4)

It. Fix pEM, de intipalle hobriflet. The p. $2f_{n} \times X, Y : S \Rightarrow Ts$. $\delta \cdot t \cdot \int d_{i}(x) = \chi_{oi}$ and $d_{i}(y) = \chi_{oi}$ Dals) > di [x, y](s) = . [x, y] (2(s)). In proun fills)=P. $\frac{\text{Ex}}{\text{Ex}} \cdot \left[\left[x_{1}, x_{2} \right] = -\partial_{2}(x) \cdot \int_{x_{1}, x_{2}}^{x_{2}} dx \cdot \int_{x_{2}}^{x_{2}} dx \cdot \int_{x_{1}, x_{2}}^{x_{2}} dx \cdot \int_{x_{2}}^{x_{2}} dx$ Die of a div. Di s.t. V.f. x, y:n->0. [x, y] & D., Im Dis modulor. The (Frohening) If a dist. D is morther, it is ampletely intigrable. Niz Upch, I a. inflately and. bys. 2x = (2', ..., 2n): N > 2f(v). 8-6- the 'Mins! { ? A+1 = 0, ---, 2n = 2n-d} me all integral subsuffes of trans direction of the IR. Of (by induction) Fixe PEM. d=1: Rohe ODE system $\begin{cases} \gamma(t) = \chi(\gamma(t)) \\ \gamma(0) = p \end{cases}$ ~ flow 4 t

fix a und symm $f = (n', -n') : v \rightarrow f(v)$ s.t. $f(v) = (n', -n') : v \rightarrow f(v) = \frac{2}{6n'} |_{\partial}.$ Now define of sind 800. $\begin{cases} F: (-s,s)^{k} \rightarrow M \\ (t',\cdot,t^{a}) \mapsto \Psi_{t} (\Psi'(o,t^{2},\cdot\cdot\cdot t^{n})) \end{cases}.$ $\frac{d}{\partial t_{i}} | \{i_{i},...,t^{n}\} = \times (f(t',...,t^{n})).$ Ex: check of is a differ from d. Sps & me for d-1: fix a ward havis . {Xi} is,
for D., let of: U > 4(n), he a could
squ. on M. 1.2 Sys. on M. s.f. $\begin{cases} d (y | n_i) = \frac{2}{3n!} & (poss. fm \cdot d = 1 cme). \\ n c cm y x; \forall i \end{cases}$ Defore: $Y_i = x_i$, $Y_i = x_i - \partial_{x_i}(n') \times_i$ $(i \ge 2)$. or {Yi}; boul basis for D. Alw, $\partial_{y_i} n' = \partial_{x_i} n' - \partial_{x_i} n' - \partial_{x_i} n' = 0$. => . g[x',x'] (x,) = 0 (155) · 9(x',x') x, = 0. (Y:, Y:] + spon {Y2, -, Yd}, 1:22,

[Y, Yi] & sym {Y2, ..., Ya} Now Mr $N = \{n' = 0\}$ $C > M \cdot , obtom v. f.$ $(p \in N)$. Ohm r.F. {Y:= N > TN 3 = s.t. dj(Y:)=Y:0/122 Spor { 42, ..., 43 is my muliture ilist. in N. Cloum. $dj([Y_i, Y_i]) = [Y_i, Y_i] \circ j = [X_i, 0] \circ j(Y_n \circ j)$ Including hop \Rightarrow . I conditutes $Y = (y^2, ..., y^n)$.

in a nebb of D. $S + (y^2) = 0$ A - A - A, ..., A - A = 0{ y de! } ... y h = x n - a } . stegm! Now define F(+1, ..., t) = f-1(+1, (pr_2 :402i) (+2,...,t) Az: R=R×Rn/ - 12n-1 project. F. Loud punh of M in white of PEM. => Pfm= F-(m)= (x'(n), 4 (4-1 (op fm))). Need to chul: $2y_1(z^i) = 0 \quad \forall j \notin \{d+1, ..., n-a\}.$ $i \in \{1, ..., a\}.$ i= 1 24, 2° = 24, 2' = 0 -171. And on 2'=0, 4/10= (0, 4/10-1(9,54(m)))

bur . n ∈ {z, = 0} => . F(n)= (0, 2(n)). $\Rightarrow \partial_{y_i} z^j = \partial_{y_i} y^j = 0$ My is {2, =0} myh?: $\frac{2}{\partial z_i}(\partial_{Y_i}z_i) - \partial_{[Y_i,Y_i]}z_i^2 \partial_{[Z_i]}^2 \partial_{[Z_i]}^2$ migum. of he to ODE = 201. By (2022).

Saskia Mul - Din Eigunden well 19/10/2017. Coder 1 tott when 4 M(n,d) = {(M,y). dom M=n, | see | < 1, dom =d) M(n, a). > (Mi, hi) i hun subsequere.

Coursing to yet make Spee (N, da). If. dom N=n, hm, Neco onih. clix merre term. What hopper of downsin culterpost. Ex. T2 Super 62: small film of the sign of 50, 53 × SU(2) 5 Zy Bonne net . (3/Z4, 9). ach (ei2n 4/4). 1 2-70 O'mhifuld! the (Fortraga 90): If lower (N, h) has worken 1 => (N, h) Rem orhifolds

The (Nahr-Tim \$ 2011). For my limit space (N, 6) There is a cloud set S. D. + N/S Dem sh. dimpins (5) < min {n-3, dim (n)-3}. in M(n,d) carrying t. IE (R'17). (Mi, 9i) (N, W), then TFAE: CE ml (Brin) Vn V,. (4) dom N > n-1. (D) 4 >0 JC 18.6. Fc st (3) Fr 70 M(n,d,c) = {(M,9) \in M(n,d): C \in ml(m)/13(m)} Syme. (Mi, 9i) cultips & (N,h), the. · dim(n) = n-1, N's har onto, h's choc. " rd (N) 2. v (n,d,C). " | mc(n) | 2 x (m, d, C). lutitum of this undian: my is the 1 of,
who will is n-d. ~> n-1 of.

But, cur do this \$1 2-d callegue. by simply falin in my mis(M)2, became you could send speed of whapese in two diff. speed.

The (Cheeger-Grown-Fulzaya '92) adepted. $(M,q) \in \mathcal{A}(n,d)$ and (M,h) on (n-1)-d. Dein whifulel, IE(n,d), s.t. if day(n,N)< & the If: M > N. S' - kndle in showing grap. S'X (=1). and 7 mme & s.t. 119-9/1/c15 (1) define and $(M, \tilde{g}) \stackrel{\text{L}}{\leftarrow} (\tilde{v}, \tilde{h})$. Here where . Kenk. M marable & N net maraba. > gramm com f: m > 2'-primple. f=M >> N · S'micipal, M spin. Det. Symboutte som smuhn in Mmig is 5'-ach eift Pspin (M). Non-my if nut. Bop M ban prog qui (=> N is sepim. M has no proj spin =>. N'is spin c. Spin(n) = Spin(n) X2. Ren there is a norm of spin much of a highlels N.

Note: f: M > N & minipled Arld, f Derm submin. k- hilling feild notned by S' uch. d = 1K1. Fruhre of S'-huralle. $S^{1}Q$ Repun(M). ~ 3 Le: $L^{2}(\Sigma M) \rightarrow L^{2}(\Sigma M)$. In his Eigensh ik, $\int k \in \mathbb{Z}$ prij., $k \in (\mathbb{Z} + 1)$ ron-proj. \Rightarrow $l^2(\Sigma M) = \oplus V_h$. ususpens of d_k D(Vn) CVn some Demotes who Len

I hander of agender of D as

[7], h } ji E Z. e.v. of D|Vk

Dorae of dragned m. r.t. Nh. apy. are": don M= n+1 =>. dong (5 m) = 2 [2] $dm N = n - en \rightarrow \Sigma M \simeq f^*(\Sigma N).$ $ddd \Rightarrow \Sigma M \simeq f^*(\Sigma N^+) \oplus f^*(\Sigma N)$

A This is a way of from you can tack. Some oper. SN = ENt and pull but to p, which is even obmorial. Ang. (Annan na 198). $\forall n ; \exists ison. \emptyset: /2^2(5NOL^{-h}) \rightarrow V_n , nen.$ $/2^2(5NOL^{-h}) \otimes L^{-h}) \rightarrow V_n , nods$ in line hudle, je L= MX&1. $X \in T(TN)$, X his list 8(x) Gu(4)= } Gu(8(x)4),
Ou (8(x)4+6-8(x)4+). ir (v) Qu(q) = { Qu(q).
Qu(4-04+). V mint verneal Th= (R17). (Ma, 9a) a & M(n, d, C). In > (N, h) S.t.

Spin known project. NE >0 7 00 15 t. 175, n(a) | > 11kl. - 2 L2]. Illa fallo - 2.

Norme : Illa II a > 0

Va + 0 => 125, n(a) | > 0.

Aj, o(a) Comm to the eigenth of n even: $D^{N} \varphi + \frac{1}{4} \sigma(\varphi) \overline{\varphi}$. $\varphi = 2-f_{mmn}$ n o.dd: $\begin{pmatrix} D^{N} & \frac{1}{4} r(\varphi) \\ \frac{1}{4} r(\varphi) - D^{N} \end{pmatrix}$: $u = \lim_{n \to \infty} d_n f_n$ $d_n = \lim_{n \to \infty} d_n f_n$

 $D_{\alpha} = \frac{1}{\ell_{\alpha}} \gamma \left(\frac{k_{\alpha}}{\ell_{\alpha}}\right) \mathcal{L}_{k_{\alpha}}$ $+ \delta^{H} - \frac{1}{2} \gamma \left(\frac{k_{\alpha}}{\ell_{\alpha}}\right) \gamma \left(\ell_{\alpha} f_{\alpha}\right).$

54 lu = Quo D ENO Lu Gi.