Examen de Ecuaciones Diferenciales I, 28 de julio de 2023

Parte Teórica

(1) (30 pt.)

Sea w una función continua en $[t_0, t_1]$ que además es no negativa: $w(t) \geq 0$, para todo $t \in [t_0, t_1]$. Suponiendo que existe una constante L > 0 tal que

$$w(t) \le L \int_{t_0}^t w(s)ds, \quad \forall t \in [t_0, t_1].$$

Probar que $w \equiv 0$.

(2) (40 pt.)

Considerar el sistema lineal homogéneo x' = Ax, con $A \in M_n(\mathbb{R})$. Sea $\Phi(t), t \in \mathbb{R}$ la única matriz fundamental del sistema tal que $\Phi(0) = I$, la matriz identidad $n \times n$. Demostrar la siguientes afirmaciones:

- (a) $\Phi'(t) = A\Phi(t)$, para todo t.
- (b) $\Phi(t+s) = \Phi(t).\Phi(s)$, para todo $s, t \in \mathbb{R}$.
- (c) $\Phi(t)^{-1} = \Phi(-t)$, para todo t. (d) La serie $\sum_{n=0}^{\infty} \frac{t^n A^n}{n!}$ converge uniformemente hacia $\Phi(t)$ en cada intervalo $[a,b] \subset$

(3) (30 pt.)

Decir si las siguientes afirmaciones son verdaderas o falsas. Justificar.

- (a) El problema $x' = t\sqrt{1-x^2}$, x(0) = 1 posee única solución.
- (b) La transformada de Laplace F(s) de la función $f(t)=e^{t^2}, t\geq 0,$ no existe para ningún $s \in \mathbb{R}$.
 - (c) Si $f, g: (a, b) \to \mathbb{R}$ son L.I. entonces $W(f, g)(x) \neq 0$, para todo $x \in (a, b)$.

Parte Práctica:

(1) (30 pt.)

(a) Hallar la solución del problema siguiente por el método de Frobenius:

$$y'' + x^2y = 0$$
, $y(0) = 2$, $y'(0) = -1$.

(b) Determinar un sistema fundamental de soluciones de la ecuación $x^3y'' + x^2y' - xy = 0$, en el intervalo x > 0 y luego usando variación de parámetros hallar la solución general de

$$x^3y'' + x^2y' - xy = \frac{x}{1+x}.$$

(2) (30 pt.)

Resolver los siguientes problemas por transformada de Laplace:

(a)
$$y'' + 4y = \sin(2t)$$
, $y(0) = 1$, $y'(0) = 0$.

(b)
$$y'' + y = \delta(t - \pi)$$
, $y(0) = 0$, $y'(0) = 0$.

(3) (40 pt.) Dados Sean a, b en \mathbb{R} , considere el sistema lineal

$$x' = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} x.$$

- (a) Hallar una base del espacio de soluciones del sistema y dar la solución general del mismo.
- (b) Para $b \neq 0$ probar que todas las trayectorias son espirales o circulos concéntricos, indicando el sentido de giro y el comportamiento para tiempos largos positivos. Indicar en cada caso qué tipo de estabilidad posee la solución constante (0,0). Qué ocurre si b = 0 y $a \neq 0$?
- (c) Si A es la matriz 2×2 del sistema hallar $\exp(tA)$.