Алгоритмы и модели вычислений.

Задание 2: Арифметические операции и линейные рекуррентные последовательности

Сергей Володин, 272 гр. задано 2014.02.20

(каноническое) Задача 6

 $T(n) = 7T(\frac{n}{2}) + f(n), f(n) = O(n^2)$. Дерево рекурсии:

Высота дерева $h=\log_2 n$. $T(n)=\sum_{k=0}^{h-1}7^kf(\frac{n}{2^k})+7^hT(1)$. Из определения O $\exists C>0$ $\exists n_0\colon \forall n\geqslant n_0\hookrightarrow f(n)\leqslant Cn^2$, откуда первая сумма $\sum_{k=0}^{h-1}7^kf(\frac{n^2}{2^{2k}})\leqslant Cn^2\sum_{k=0}^{h-1}(\frac{7}{4})^k=Cn^2\frac{(7/4)^{h-1}-1}{7/4-1}=C_1n^2((7/4)^{\log_2 n}-C_2)=C_1n^2n^{\log_2\frac{7}{4}}-C_3n^2=C_1n^{\log_2 7}-C_3n^2$. Второе слагаемое $7^hT(1)=7^{\log_2 n}T(1)=Cn^{\log_2 7}$

Поэтому $T(n) \leqslant n^{\log_2 7} - C_5 n^2$ Ответ: $T(n) = O(n^{\log_2 7})$

(каноническое) Задача 7

Вход: точки $\{x_i, y_i\}_{i=1}^n$.

Алгоритм: считаем массив расстояний $r_i \stackrel{\text{def}}{=} \sqrt{x_i^2 + y_i^2}$ (можено r_i^2). Ищем медиану r_m в массиве за O(n)

Otbet: $r_m (r_{m+1}?)$.