# Rozwiązania zadań z egzaminu z Teorii kategorii w podstawach informatyki, semestr zimowy 2015/2016

Krzysztof Pszeniczny (347208)

3 kwietnia 2016

# 1 Rozważania wstępne

## 1.1 Funktor $\mathcal{K}_{\Sigma,\Phi}$ , $\mathcal{I}_{\Sigma,\Phi}$

Niech  $\Sigma$  będzie sygnaturą algebraiczną, a  $\Phi$  zbiorem  $\Sigma$ -równości. Określmy sygnaturę  $\hat{\Sigma}$  tak, że ma te same sorty co  $\Sigma$ , a także te same operacje, lecz dodatkowo dla każdego sortu s ma stałą  $k_s$ . Niech ponadto  $\hat{\Phi}$  będzie  $\Phi$  rozpatrywanym jako zbiór  $\hat{\Sigma}$ -równości.

Mamy funktor zanurzenia  $\mathcal{I}_{\Sigma,\Phi}$ :  $\mathbf{KKAlg}(\Sigma,\Phi) \to \mathbf{Alg}(\hat{\Sigma},\hat{\Phi})$ , gdzie jako wartość stałej  $k_s$  w  $\mathcal{I}_{\Sigma,\Phi}(A)$  kładziemy kluczyk sortu s algebry A. Łatwo widać, że zachowywanie kluczyków przez morfizmy w  $\mathbf{KKAlg}(\Sigma,\Phi)$  odpowiada zachowywaniu stałych  $k_s$  w  $\mathbf{Alg}(\hat{\Sigma},\hat{\Phi})$ , zatem w oczywisty sposób  $\mathcal{I}_{\Sigma,\Phi}$  przesyła morfizmy na morfizmy, zatem jest funktorem.

Twierdzę, że ma on lewy sprzężony. Istotnie, niech A będzie algebrą należącą do  $\mathbf{Alg}(\hat{\Sigma}, \hat{\Phi})$ . Niech  $\approx \subseteq |A| \times |A|$  będzie najmniejszą kongruencją nad A generowaną przez równości  $\hat{\Phi}$  oraz spełniającą dla każdej operacji  $f: s_1 \times s_2 \times \cdots \times s_n \to s_0$  warunek

$$\forall_{a_{s_1},\dots,a_{s_n}} (f(k_{s_1},k_{s_2},\dots,k_{s_n}) \approx k_{s_0} \implies f(a_{s_1},\dots,a_{s_n}) \approx k_{s_0})$$
 (1)

(przecięcie dwóch takich kongruencji także spełnia powyższe warunki, zaś kongruencja utożsamiająca wszystko spełnia je, więc istnieje najmniejsza kongruencja spełniająca je).

Teraz  $A_{/\approx}$  jest  $\hat{\Sigma}$ -algebrą spełniającą zbiór równości  $\hat{\Phi}$ , z naturalnie wyznaczonymi kluczkami:  $(k_s)_s$ , której każda operacja zamknięta ze względu na kluczyki jest stała. Zatem łatwo określamy A' należące do  $\mathbf{KKAlg}(\Sigma, \Phi)$ , które jest dokładnie równe algebrze  $A_{/\approx}$ , lecz jedynie zapominamy o istnieniu

stałych  $k_s$ , lecz kładziemy ich wartości jako kluczyki algebry, tj.  $\mathcal{I}_{\Sigma,\Phi}(A') = A_{/\approx}$ .

Twierdzę, że A' jest obiektem wolnym nad A. Istotnie, mamy przekształcenie  $\eta_A:A\to \mathcal{I}_{\Sigma,\Phi}(A')$ , będące po prostu przekształceniem ilorazowym  $A\to A_{/\infty}$ .

Niech teraz  $B' \in \mathbf{KKAlg}(\Sigma, \Phi)$  będzie algebrą kluczykową, zaś  $f : A \to \mathcal{I}_{\Sigma,\Phi}(B')$ . Chcemy pokazać, że istnieje dokładnie jedno przekształcenie  $f^{\#} : A' \to B'$  takie, że  $\eta_A; \mathcal{I}_{\Sigma,\Phi}(f^{\#}) = f$ .

Jest to tak naprawdę własność uniwersalna algebry ilorazowej: ewaluując tę równość na obiekcie a widzimy, że  $\mathcal{I}_{\Sigma,\Phi}(f^{\#})([a]_{\approx}) = f(a)$ , skąd widzimy, że wartości  $\mathcal{I}_{\Sigma,\Phi}(f^{\#})$  (a zatem i  $f^{\#}$ , gdyż teorio-zbiorowo są to te same funkcje na nośnikach: zmieniliśmy tylko "typ") są jednoznacznie wyznaczone przez wartości f. Zatem wystarczy tylko wykazać istnienie takiego  $f^{\#}$ . W tym celu zauważmy, że definicja  $\mathcal{I}_{\Sigma,\Phi}(f^{\#})([a]_{\approx}) = f(a)$  określa  $f^{\#}$ , o ile tylko jest niesprzeczna, tj. jeśli  $a \approx b$ , to f(a) = f(b).

Jednakże łatwo widzimy, że jeśli jakaś operacja jest zamknięta przez kluczyki w A, to musi też być w  $\mathcal{I}_{\Sigma,\Phi}(B')$ , gdyż morfizmy zachowują kluczyki, a zatem jest ona stała w B'. Stąd zaś mamy, że dla  $\approx'=\approx \cap K_f$ , gdzie  $aK_fb \iff f(a)=f(b)$  jest jądrem morfizmu f, zachodzą wszystkie równości z  $\hat{\Phi}$  (trywialnie), a także implikacja 1.

Zatem  $\approx \subseteq \approx'$  (gdyż  $\approx$  jest najmniejszą kongruencją spełniającą podane warunki), skąd  $K_f \subseteq \approx$ , skąd widzimy, że istotnie, definicja  $\mathcal{I}_{\Sigma,\Phi}(f^\#)([a]_\approx) = f(a)$ , dobrze definiuje  $f^\#$ , przynajmniej jako funkcję na nośniku.

Łatwo jednak widać, że jest to morfizm algebr, oraz że zachowuje on kluczyki, co wynika wprost z definicji. Zatem  $f^{\#}$  jest poprawnym morfizmem w  $\mathbf{KKAlg}(\Sigma, \Phi)$ .

Powstały w ten sposób funktor lewy sprzężony do  $\mathcal{I}_{\Sigma,\Phi}$  będę nazywał  $\mathcal{K}_{\Sigma,\Phi}$ . Zauważmy ponadto, że  $\mathcal{I}_{\Sigma,\Phi}$ ;  $\mathcal{K}_{\Sigma,\Phi}$  jest funktorem identycznościowym: istotnie, jeśli  $A = \mathcal{I}_{\Sigma,\Phi}(A_0)$ , to w powyższym dowodzie najmniejszą relacją spełniającą podane warunki jest kongruencja identycznościowa, a zatem  $A' = A_0$ . Stąd wynika, że w obrazie funktora  $\mathcal{K}_{\Sigma,\Phi}$  znajduje się cała kategoria  $\mathbf{KKAlg}(\Sigma,\Phi)$ .

# 2 Zadanie 1

# 2.1 Produkty

## 2.1.1 KAlg( $\Sigma$ ), KAlg( $\Sigma$ , $\Phi$ )

Mamy oczywisty funktor zapominania o kluczykach  $\mathcal{L}_{\Sigma,\Phi}: \mathbf{KAlg}(\Sigma,\Phi) \to \mathbf{Alg}(\Sigma,\Phi)$ , który utożsamia  $\mathbf{KAlg}(\Sigma,\Phi)$  z pełną podkategorią kategorii  $\mathbf{Alg}(\Sigma,\Phi)$ 

tych algebr, które są kluczykowe.

Niech  $\mathcal{X} \subseteq |\mathbf{KAlg}(\Sigma, \Phi)|$  będzie zbiorem obiektów, których produktu szukamy. Niech  $\mathcal{X}' = \{\mathcal{L}_{\Sigma,\Phi}(X) : X \in \mathcal{X}\}$ . Niech  $P' = \prod \mathcal{X}'$  wraz z  $\pi'_X : P' \to X$  dla każdego  $X \in \mathcal{X}'$  będzie produktem w  $\mathbf{Alg}(\Sigma, \Phi)$ . Twierdzę, że algebra P', gdy dobierzemy jako kluczyki krotki złożone z kluczyków algebr  $\mathcal{X}'$ . jest kluczykowa. Istotnie, jeśli jakaś operacja f jest zamknięta na kluczyki, to z konstrukcji algebry produktowej wiemy, że odpowiadająca jej operacja w każdej z algebr z  $\mathcal{X}'$  też jest zamknięta na kluczyki (gdyż operacje w P' działają "po współrzędnych"), a zatem jest tam stała. Stąd, znów z konstrukcji algebry produktowej, stała też jest f w algebrze P'.

Zatem P należy do obrazu funktora  $\mathcal{L}_{\Sigma,\Phi}$ , zatem istnieje dokładnie jedno  $P \in |\mathbf{KAlg}(\Sigma,\Phi)|$  takie, że  $\mathcal{L}_{\Sigma,\Phi}(P) = P'$  oraz dla każdego  $X \in \mathcal{X}$  mamy  $\pi_X : P \to X$  takie, że  $\mathcal{L}_{\Sigma,\Phi}(\pi_X) = \pi'_X$ . Twierdzę, że P wraz z rodziną  $\{\pi_X\}_{X \in \mathcal{X}}$  jest produktem rodziny  $\mathcal{X}$ .

Istotnie, niech  $O \in |\mathbf{KAlg}(\Sigma, \Phi)|$  wraz z rodziną morfizmów  $o_X : O \to X$  dla każdego  $X \in \mathcal{X}$ . Wtedy z własności uniwersalnej produktu mamy, że istnieje jedyny morfizm  $f' : \mathcal{L}_{\Sigma,\Phi}(O) \to P'$  taki, że  $f'; \pi'_X = \mathcal{L}_{\Sigma,\Phi}(o_X)$ . Ale cofając f' przez funktor  $\mathcal{L}_{\Sigma,\Phi}$  (którego obraz jest pełną podkategorią) widzimy, że mamy dokładnie jeden morfizm  $f : O \to P$  taki, że  $f; \pi_X = o_X$ .

Zatem istotnie, w  $\mathbf{KAlg}(\Sigma, \Phi)$  istnieją produkty dziedziczone z  $\mathbf{Alg}(\Sigma, \Phi)$ . Dowód dla  $\mathbf{KAlg}(\Sigma)$  uzyskujemy przez wcięcie pustego zbioru równości.

#### 2.1.2 KKAlg( $\Sigma$ ), KKAlg( $\Sigma$ , $\Phi$ )

Rozumujemy analogicznie jak wyżej, biorąc jednak w miejsce funktora  $\mathcal{L}_{\Sigma,\Phi}$ :  $\mathbf{KAlg}(\Sigma,\Phi) \to \mathbf{Alg}(\Sigma,\Phi)$ , funktor  $\mathcal{I}_{\Sigma,\Phi} : \mathbf{KKAlg}(\Sigma,\Phi) \to \mathbf{Alg}(\hat{\Sigma},\hat{\Phi})$ .

## 2.2 Ekwalizatory

#### 2.2.1 KAlg( $\Sigma$ ), KAlg( $\Sigma$ , $\Phi$ )

Pokażę, że już kategoria  $\mathbf{KAlg}(\Sigma)$  nie ma ekwalizatorów wszystkich par równoległych morfizmów dla dowolnego  $\Sigma$ . Dowodzić to będzie oczywiście, że  $\mathbf{KAlg}(\Sigma, \Phi)$  także ich nie ma.

Weźmy bowiem sygnaturę  $\Sigma$  złożoną z jednego sortu s, bez jakichkolwiek stałych czy operacji (a zatem każda operacja zamknięta na kluczyki jest stała). Niech  $X \in |\mathbf{KAlg}(\Sigma)|$  ma jednego inhabitanta sortu s (będącego zarazem kluczykiem), zaś  $Y \in |\mathbf{KAlg}(\Sigma)|$  ma dwóch (z czego jeden jest kluczykiem). Istnieją wtedy dwa morfizmy z X do Y, nazwijmy je  $f,g: X \to Y$ , różniące się tym, na który element Y przesyłany jest kluczyk sortu s algebry X.

Przypuśćmy, że istnieje ekwalizator morfizmów f,g, tj. że istnieje  $E \in |\mathbf{KAlg}(\Sigma)|$  oraz  $e: E \to X$  takie, że e; f = e; g. Niech k będzie kluczykiem sortu s algebry E. Wtedy e(k) musi być jedynym elementem sortu s w algebrze X. Jednakże to znaczy, że  $f(e(k)) \neq g(e(k))$  z konstrukcji.

#### 2.2.2 KKAlg( $\Sigma$ ), KKAlg( $\Sigma$ , $\Phi$ )

Ponieważ funktor  $\mathcal{I}_{\Sigma,\Phi}$  pozwala nam rozpatrywać  $\mathbf{KKAlg}(\Sigma,\Phi)$  jako pełną podkategorię kategorii  $\mathbf{Alg}(\hat{\Sigma},\hat{\Phi})$ , która jest zupełna, wystarczy sprawdzić, czy ekwalizator dowolnej pary równoległych morfizmów w obrazie funktora  $\mathcal{I}_{\Sigma,\Phi}$  należy do obrazu tego funktora.

Niech więc  $X, Y \in |\mathbf{KKAlg}(\Sigma, \Phi)|$  oraz  $f, g : X \to Y$ . Niech teraz  $E \in |\mathbf{Alg}(\hat{\Sigma}, \hat{\Phi})|$  wraz z  $e : E \to \mathcal{I}_{\Sigma, \Phi}(X)$  będzie ekwalizatorem  $\mathcal{I}_{\Sigma, \Phi}(f)$  oraz  $\mathcal{I}_{\Sigma, \Phi}(g)$ .

Z konstrukcji z wykładu wiemy, że  $|E| = \{x \in |X| : \mathcal{I}_{\Sigma,\Phi}(f)(x) = \mathcal{I}_{\Sigma,\Phi}(g)(x)\}$ , gdzie operacje działają w sposób dziedziczony z X. Wystarczy pokazać, że E jest algebrą kluczykową. Niech więc p będzie dowolną operacją w E, która jest zamknięta na kluczyki (wyznaczone przez stałe  $k_s$ ). To zaś oznacza, że była ona zamknięta na kluczyki już w X, zatem jest tam stała, zatem w E też jest stała.

Zatem E jest algebrą kluczykową, skąd jest w obrazie funktora zanurzającego  $\mathcal{I}_{\Sigma,\Phi}$ , zatem jedyny element przeciwobrazu E (oznaczmy go  $\tilde{E}$ ) przy tym funktorze, wraz z jedynym elementem przeciwobrazu e (gdyż obraz tego funktora jest pełną podkategorią) (oznaczmy go  $\tilde{e}$ ) jest ekwalizatorem w  $\mathbf{KKAlg}(\Sigma,\Phi)$ , gdyż ekwalizuje morfizmy f,g (bo jego obraz przy  $\mathcal{I}_{\Sigma,\Phi}$  ekwalizuje morfizmy  $\mathcal{I}_{\Sigma,\Phi}(f)$  oraz  $\mathcal{I}_{\Sigma,\Phi}(g)$ ) oraz dla dowolnego  $O \in \mathbf{KKAlg}(\Sigma,\Phi)$  wraz z morfizmem  $o:O \to X$  takim, że o:f=o:g mamy, po przejściu przez  $\mathcal{I}_{\Sigma,\Phi}$ , że istnieje dokładnie jedno  $u:\mathcal{I}_{\Sigma,\Phi}(O) \to E$  takie, że  $u:e=\mathcal{I}_{\Sigma,\Phi}(o)$ , przy czym ponieważ zarówno  $\mathcal{I}_{\Sigma,\Phi}(O)$  jak i E leżą w obrazie funktora  $\mathcal{I}_{\Sigma,\Phi}$ , który jest pełną podkategorią, to istnieje dokładnie jeden morfizm  $\tilde{u}:O \to \tilde{E}$  taki, że  $\tilde{u}:\tilde{e}=o$ .

# 2.3 Koprodukty

# 2.3.1 KAlg( $\Sigma$ ), KAlg( $\Sigma$ , $\Phi$ )

Pokażę, że kategoria  $\mathbf{KAlg}(\Sigma)$  nie ma obiektu początkowego. Będzie to dowodzić od razu, że nie ma ona koproduktów dowolnej rodziny obiektów, a także że  $\mathbf{KAlg}(\Sigma, \Phi)$  ich nie ma.

Weźmy bowiem sygnaturę  $\Sigma$  złożoną z jednego sortu s, bez jakichkolwiek stałych czy operacji. Przypuśćmy, że istnieje obiekt początkowy I w kategorii

 $\mathbf{KAlg}(\Sigma)$ . Musi on mieć kluczyk sortu s, oznaczmy go  $\mathbf{k}_s$ .

Rozpatrzmy teraz algebrę  $A \in |\mathbf{KAlg}(\Sigma)|$ , mającą dwa elementy sortu s. Wtedy istnieją przynajmniej dwa morfizmy z I do A, różniące się tym, na co jest przesyłany kluczyk sortu s. Zatem I nie jest obiektem początkowym.

#### 2.3.2 KKAlg( $\Sigma$ ), KKAlg( $\Sigma$ , $\Phi$ )

Funktor  $\mathcal{K}_{\Sigma,\Phi}: \mathbf{Alg}(\hat{\Sigma},\hat{\Phi}) \to \mathbf{KKAlg}\Sigma, \Phi$  jest lewy sprzężony, zatem zachowuje kogranice oraz w jego obrazie jest cała kategoria będąca przeciwdziedziną. Zatem dla dowolnej rodziny obiektów w  $\mathbf{KKAlg}(\Sigma,\Phi)$ , bierzemy jakichkolwiek przedstawicieli ich przeciwobrazów przy  $\mathcal{K}_{\Sigma,\Phi}$ , następnie korzystamy z kozupełności kategorii  $\mathbf{Alg}(\hat{\Sigma},\hat{\Phi})$ , konstruując szukany koprodukt, po czym korzystając z tego, że  $\mathcal{K}_{\Sigma,\Phi}$  zachowuje kogranice, uzyskujemy koprodukt w  $\mathbf{KKAlg}(\Sigma,\Phi)$ .

Dowód dla  $\mathbf{KKAlg}(\Sigma)$  uzyskujemy przez wcięcie pustego zbioru równości.

## 2.4 Koekwalizatory

#### 2.4.1 KAlg( $\Sigma$ ), KAlg( $\Sigma$ , $\Phi$ )

Pokażę, że już w  $\mathbf{KAlg}(\Sigma)$  istnieje para równoległych morfizmów, dla których nie istnieje koekwalizator. Niech  $\Sigma$  będzie sygnaturą z dwoma sortami s, s' oraz szesnastoma operacjami  $f_{ij}: s \to s'$  dla  $1 \le i, j \le 4$ .

Niech  $A \in |\mathbf{Alg}(\Sigma)|$  będzie algebrą nad  $\Sigma$  mającą cztery elementy sortu s: a, b, c, d oraz cztery elementy sortu s':  $x, \bar{x}, y, \bar{y}$ , przy czym jako makro metajęzyka będę rozumiał  $\bar{x} = x$ . Operacje definiujemy tak, że dla każdej pary obiektów z  $\{a, b, c, d\} \times \{x, \bar{x}, y, \bar{y}\}$ , (dla ustalenia uwagi: (a, x)) odpowiednią operację definiujemy jako: f(a) = x oraz  $f(\underline{\ }) = \bar{x}$  dla  $\underline{\ } \neq a$ .

Niech  $A' \in |\mathbf{KAlg}(\Sigma)|$  będzie zadane jako:  $|A'| = A \times \{0,1\}$  (iloczyn po każdym sorcie osobno), kluczykami niech będą (a,0): s oraz (x,1): s', zaś każda operacja f niech działa:  $f_{A'}((t,b)) = (f_A(t),b)$ . Oczywiście żadna operacja nie jest zamknięta na kluczyki, zatem jest to algebra kluczykowa.

Niech  $\phi: A' \to A'$  będzie zadane jako  $\phi((t,b)) = (t,1-b)$ . Oczywiście, że jest to endomorfizm algebr:  $\phi(f_{A'}((t,b))) = \phi((f_A(t),b)) = (f_A(t),1-b) = f_{A'}((t,1-b)) = f_{A'}(\phi(t,b))$ .

Przypuśćmy, że istnieje koekwalizator  $\phi$  oraz  $id_{A'}$ , tj. obiekt  $K \in |\mathbf{KAlg}(\Sigma)|$  wraz z morfizmem  $\psi: A' \to K$ , że  $id_{A'}; \psi = \phi; \psi$  oraz dla każdego obiektu  $X \in |\mathbf{KAlg}(\Sigma)|$  wraz z morfizmem  $\xi: A' \to X$  takim, że  $id_{A'}; \xi = \phi; \xi$  istnieje jedyny morfizm  $\zeta: K \to X$ , że  $\xi = \psi; \zeta$ .



Niech teraz  $P = A/\sim_P$ , gdzie  $\sim_P$  to najmniejsza kongruencja spełniająca  $x \sim_P \bar{x}$  – jest to jedyne nietrywialne utożsamienie, którego ona dokonuje. Na tak określonej algebrze możemy położyć kluczyki: kluczykiem sortu s niech będzie  $[a]_{\sim_P}$ , kluczykiem sortu s' niech będzie  $[x]_{\sim_P} = [\bar{x}]_{\sim_P}$ . Łatwo widać, że wszystkie operacje zamknięte na kluczyki są stałe (gdyż jeśli operacja w ogóle ma w obrazie kluczyk, to jest już stała). Mamy morfizm  $\xi_P : A' \to P$  zdefiniowany jako  $\xi_P((t,b)) = [t]_{\sim_P}$  – łatwo widać, że jest on zgodny z operacjami.

Analogicznie definiujemy  $Q=A/\sim_Q$ , gdzie  $\sim_Q$  to najmniejsza kongruencja spełniająca  $y\sim_Q \bar{y}$ , oraz morfizm  $\xi_Q:A'\to Q$  zdefiniowany jako  $\xi_Q((t,b))=[t]_{\sim_Q}$ .



Mamy  $\xi_P((y,b)) \neq \xi_P((\bar{y},b))$ , a zatem i  $\phi((y,b)) \neq \phi((\bar{y},b))$ . Analogicznie  $\phi((x,b)) \neq \phi((\bar{x},b))$ . Mamy także  $\xi_P((x,b)) \neq \xi_P((y,b))$  zatem  $\phi((x,b)) \neq \phi((y,b))$ . Kontynuując te rozważania uzyskujemy, że w K muszą być przynajmniej cztery elementy sortu s':  $\tilde{x} = \phi((x,0))$ ,  $\tilde{x} = \phi((\bar{x},0))$ ,  $\tilde{y} = \phi((y,0))$ ,  $\tilde{y} = \phi((y,0))$  i wszystkie one są parami różne. (Oczywiście  $\phi((x,b)) = \phi((x,1-b))$  etc, gdyż  $(id_{A'};\phi)((x,b)) = (\psi;\phi)((x,b))$ 

Analogicznie uzyskujemy, że istnieją przynajmniej cztery elementy sortu s:  $\tilde{a} = \phi((a,0)), \tilde{b} = \phi((b,0)), \tilde{c} = \phi((c,0)), \tilde{d} = \phi((d,0))$  i są one wszystkie parami różne (np.  $\tilde{a} \neq \tilde{b}$  uzyskujemy zauważając  $\xi_P((a,0)) \neq \xi_P((b,0))$ ).

Ponieważ  $\zeta_P$  i  $\zeta_Q$  są morfizmami algebr, łatwo można przerachować, że wszystkie szesnaście operacji zachowuje się na  $\tilde{a}, \ldots, \tilde{d}$  analogicznie jak w algebrze A, lecz "po dopisaniu  $\tilde{\cdot}$  nad zmienną".

Niech k będzie kluczykiem sortu s w algebrze K, zaś k' – kluczykiem sortu s'. Gdyby  $k \in \{\tilde{a}, \tilde{b}, \tilde{c}, \tilde{d}\}$ , zaś  $k' \in \{\tilde{x}, \tilde{x}, \tilde{y}, \tilde{y}\}$ , to z konstrukcji algebry

A uzyskalibyśmy, że któryś z szesnastu morfizmów przeprowadza k na k', co daje sprzeczność, gdyż odpowiednie przekształcenie nie jest stałe.

Zatem któryś z kluczyków nie jest postaci ~. Pozostaje teraz wykluczyć możliwe przypadki.

Oczywiście nie może istnieć element sortu s', który nie jest w obrazie żadnej operacji: gdyby istniał, przekształcenie  $\zeta_P$  nie byłoby jednoznaczne – mogłoby go przesłać na dowolny element sortu s' w P.

Zatem musi istnieć choć jeden element sortu s różny od  $\tilde{a}, \tilde{b}, \tilde{c}, \tilde{d},$  oznaczmy go t.

Niech teraz K' będzie algebrą, która powstaje z K przez dodanie dodatkowej kopii t' elementu t, na której wszystkie operacje zachowują się jak na oryginalnym t, zaś kluczyki pozostają bez zmian (oczywiście ta algebra także jest kluczykowa).

Możemy w oczywisty sposób rozszerzyć  $\psi:A'\to K$  do  $\psi':A'\to K'$  (teoriomnogościowo:  $\psi=\psi'$ ) i zachodzi wówczas  $id_{A'};\psi'=\phi;\psi'$ , a zatem z własności uniwersalnej koekwalizatora musi istnieć dokładnie jeden morfizm  $\zeta$  taki, że  $\psi;\zeta=\psi'$ . Jednak łatwo wskazać dwa takie morfizmy: jeden będący standardowym włożeniem w nadalgebrę, zaś drugi różniący się od włożenia w nadalgebrę tym, że posyłają t na t'.

Zatem K nie może być koekwalizatorem.

#### 2.4.2 KKAlg( $\Sigma$ ), KKAlg( $\Sigma$ , $\Phi$ )

Dowód przeprowadzamy analogicznie jak dla koproduktów: korzystając z kozupełności kategorii  $\mathbf{Alg}(\hat{\Sigma}, \hat{\Phi})$  konstruujemy koekwalizator obrazów rozważanych morfizmów przy  $\mathcal{I}_{\Sigma,\Phi}$ , po czym korzystając z zachowywania kogranic przez  $\mathcal{K}_{\Sigma,\Phi}$  uzyskujemy szukany koekwalizator w  $\mathbf{KKAlg}(\Sigma, \Phi)$ .

Dowód dla  $\mathbf{KKAlg}(\Sigma)$  uzyskujemy przez wcięcie pustego zbioru równości.

## 3 Zadanie 2

# 3.1 $\mathcal{U}_{\sigma}: \mathbf{KAlg}(\Sigma') \to \mathbf{KAlg}(\Sigma)$

Niech  $\Sigma$  będzie sygnaturą z jednym sortem s, bez jakichkolwiek operacji, zaś  $\Sigma'$  sygnaturą z dwoma sortami: s, s', bez jakichkolwiek operacji, zaś  $\sigma: \Sigma \to \Sigma'$  będzie włożeniem:  $s_{\Sigma} \mapsto s_{\Sigma'}$ .

Rozważmy algebrą X w kategorii  $\mathbf{KAlg}(\Sigma)$ , której nośnik ma dokładnie jeden element sortu s (będący zarazem kluczykiem), oraz algebrę Y w kategorii  $\mathbf{KAlg}(\Sigma')$ , której nośnik ma dokładnie jeden element sortu s (będący zarazem kluczykiem) oraz dwa elementy sortu s' (z których jeden jest klu-

czykiem). Oczywiście są to kluczykowe algebry, gdyż wobec braku operacji każda algebra mająca kluczyki jest algebrą kluczykową.

Jeśliby istniał funktor F, lewy sprzężony do  $\mathcal{U}_{\sigma}$ , to istniałaby bijekcja  $Hom(FX,Y) \simeq Hom(X,\mathcal{U}_{\sigma}Y)$ . Jednakże zbiór po prawej stronie jest mocy 1, gdyż  $|\mathcal{U}_{\sigma}Y|$  ma dokładnie jeden element sortu s. Jednakże |FX| musi mieć przynajmniej jeden element sortu s' — mianowicie kluczyk tego sortu. Zatem widzimy, że jeśli istnieje choć jeden morfizm  $\phi$  z FX do Y, to istnieje też drugi — przesyła on kluczyk sortu s' na ten z elementów sortu s' algebry Y, na który nie przesyła go  $\phi$ .

Zatem szukany funktor nie istnieje.

# 3.2 $\mathcal{U}_{\sigma,\Phi}: \mathbf{KAlg}(\Sigma',\Phi') \to \mathbf{KAlg}(\Sigma)$

Podpunkt (a) jest szczególnym przypadkiem tego podpunktu, z  $\Phi' = \emptyset$ , zatem i tu odpowiedź jest negatywna.

# 3.3 $\mathcal{U}_{\sigma}^{\mathcal{K}}: \mathbf{KKAlg}(\Sigma') \to \mathbf{KKAlg}(\Sigma)$

Odpowiedź pozytywna jest konsekwencją odpowiedzi pozytywnej na pytanie poniżej, przy pustym zbiorze równości  $\Phi'$ .

# 3.4 $\mathcal{U}_{\sigma,\Phi}^{\mathcal{K}}: \mathbf{KKAlg}(\Sigma', \Phi') \to \mathbf{KKAlg}(\Sigma)$

Wobec zanurzenia  $\mathcal{I}_{\Sigma,\varnothing}: \mathbf{KKAlg}(\Sigma) \to \mathbf{Alg}(\hat{\Sigma})$  wystarczy pokazać, że funktor  $\mathcal{U}_{\sigma,\Phi}^{\mathcal{K}}; \mathcal{I}_{\Sigma,\varnothing}$  ma lewy sprzężony: wystarczy potem jego lewy sprzężony ograniczyć do obrazu funktora  $\mathcal{I}_{\Sigma,\varnothing}$ .

$$\begin{split} \mathbf{KKAlg}(\Sigma', \Phi') & \xrightarrow{\quad \mathcal{U}_{\sigma, \Phi}^{\mathcal{K}} \quad} \mathbf{KKAlg}(\Sigma) \\ \downarrow^{\mathcal{I}_{\Sigma', \Phi'}} & & \downarrow^{\mathcal{I}_{\Sigma, \varnothing}} \\ \mathbf{Alg}(\hat{\Sigma'}, \hat{\Phi'}) & \xrightarrow{\quad \mathcal{F}_{\sigma, \Phi} \quad} \mathbf{Alg}(\hat{\Sigma}) \end{split}$$

Zauważmy, jednak, że  $\mathcal{U}_{\sigma,\Phi}^{\mathcal{K}}; \mathcal{I}_{\Sigma,\varnothing} = \mathcal{I}_{\Sigma',\Phi'}; \mathcal{F}_{\sigma,\Phi}$ , gdzie  $\mathcal{F}_{\sigma,\Phi} : \mathbf{Alg}(\hat{\Sigma}', \hat{\Phi}') \to \mathbf{Alg}(\hat{\Sigma})$  jest funktorem reduktu w zwykłych algebrach, co wynika wprost z definicji powyższych funktorów.

Na mocy faktu z wykładu,  $\mathcal{F}_{\sigma,\Phi}$  posiada lewy sprzężony, oznaczmy go  $\mathcal{G}_{\sigma,\Phi}: \mathbf{Alg}(\hat{\Sigma}) \to \mathbf{Alg}(\hat{\Sigma}',\hat{\Phi}')$ . Twierdzę, że  $\mathcal{G}_{\sigma,\Phi}; \mathcal{K}_{\Sigma',\Phi'}$  jest lewym sprzężonym do  $\mathcal{I}_{\Sigma',\Phi'}; \mathcal{F}_{\sigma,\Phi}$ , co łatwo wynika z definicji funktora sprzężonego jako takiego, który indukuje naturalną bijekcję hom-zbiorów, lecz ponieważ na wykładzie przyjmowaliśmy inną, udowodnię coś słabszego: funktor  $\mathcal{I}_{\Sigma',\Phi'}; \mathcal{F}_{\sigma,\Phi}$ 

posiada lewy sprzężony. Jest on oczywiście ciągły, jako złożenie funktorów ciągłych (gdyż mających lewe sprzężone), jego kategoria, z której wychodzi jest lokalnie mała i zupełna (gdyż ma produkty i ekwalizatory).

$$\mathbf{KKAlg}(\Sigma', \Phi') \xrightarrow{\mathcal{I}_{\Sigma', \Phi'}} \mathbf{Alg}(\hat{\Sigma'}, \hat{\Phi'}) \xrightarrow{\mathcal{F}_{\sigma, \Phi'}} \mathbf{Alg}(\hat{\Sigma})$$

$$\mathbf{KKAlg}(\Sigma', \Phi') \xleftarrow[\mathcal{K}_{\Sigma', \Phi'}]{} \mathbf{Alg}(\hat{\Sigma'}, \hat{\Phi'}) \xleftarrow[\mathcal{G}_{\sigma, \Phi'}]{} \mathbf{Alg}(\hat{\Sigma})$$

Niech  $A \in |\mathbf{Alg}(\hat{\Sigma})|$ . Niech  $A' \in |\mathbf{Alg}(\hat{\Sigma}, \hat{\Phi})|$  będzie obiektem wolnym nad A względem funktora  $\mathcal{F}_{\sigma,\Phi}$ , tj. niech  $\eta_A^{\mathcal{G}_{\sigma,\Phi}}: A \to \mathcal{F}_{\sigma,\Phi}(A')$  będzie jednością, taką że dla każdego  $B' \in |\mathbf{Alg}(\hat{\Sigma}, \hat{\Phi})|$  i morfizmu  $f: A \to \mathcal{F}_{\sigma,\Phi}(B')$  istnieje dokładnie jeden morfizm  $f^{\#_{\mathcal{G}_{\sigma,\Phi}}}$  taki, że  $\eta_A^{\mathcal{G}_{\sigma,\Phi}}; \mathcal{F}_{\sigma,\Phi}(f^{\#_{\mathcal{G}_{\sigma,\Phi}}}) = f$ 



Niech teraz  $A'' \in |\mathbf{KKAlg}(\Sigma, \Phi)|$  będzie obiektem wolnym nad A' względem funktora  $\mathcal{I}_{\Sigma',\Phi'}$ , tj. niech  $\eta_{A'}^{\mathcal{K}_{\Sigma',\Phi'}}: A' \to \mathcal{I}_{\Sigma',\Phi'}(A'')$  będzie jednością, taką że dla każdego  $B'' \in |\mathbf{KKAlg}(\Sigma, \Phi)|$  i morfizmu  $g: A' \to \mathcal{I}_{\Sigma',\Phi'}(B'')$  istnieje dokładnie jeden morfizm  $g^{\#\mathcal{K}_{\Sigma',\Phi'}}$  taki, że  $\eta_{A'}^{\mathcal{K}_{\Sigma',\Phi'}}; \mathcal{I}_{\Sigma',\Phi'}(g^{\#\mathcal{K}_{\Sigma',\Phi'}}) = g$ 



Połóżmy teraz 
$$\eta_A = \eta_A^{\mathcal{G}_{\sigma,\Phi}}; \mathcal{F}_{\sigma,\Phi}\left(\eta_{A'}^{\mathcal{K}_{\Sigma',\Phi'}}\right) : A \to (\mathcal{I}_{\Sigma',\Phi'}; \mathcal{F}_{\sigma,\Phi})(A'').$$

$$A' \xrightarrow{\eta_{A'}^{\mathcal{K}_{\Sigma',\Phi'}}} \mathcal{I}_{\Sigma',\Phi'}(A'')$$

$$A \xrightarrow{\eta_A^{\mathcal{G}_{\sigma,\Phi}}} \mathcal{F}_{\sigma,\Phi}(A') \xrightarrow{\mathcal{F}_{\sigma,\Phi}\left(\eta_{A'}^{\mathcal{K}_{\Sigma',\Phi'}}\right)} (\mathcal{I}_{\Sigma',\Phi'}; \mathcal{F}_{\sigma,\Phi})(A'')$$

Rozpatrzmy teraz  $B'' \in |\mathbf{KKAlg}(\Sigma, \Phi)|$  wraz z morfizmem  $h : A \to (\mathcal{I}_{\Sigma', \Phi'}; \mathcal{F}_{\sigma, \Phi})(B'')$ . Wiemy, że istnieje jedyny morfizm  $h^{\#g_{\sigma, \Phi}} : A' \to \mathcal{I}_{\Sigma', \Phi'}(B'')$  taki, że  $\eta_A^{\mathcal{G}_{\sigma, \Phi}}; \mathcal{F}_{\sigma, \Phi}(h^{\#g_{\sigma, \Phi}}) = h$ .

$$A \xrightarrow{\eta_{A}^{\mathcal{G}_{\sigma,\Phi}}} \mathcal{F}_{\sigma,\Phi}(A')$$

$$\downarrow^{\mathcal{F}_{\sigma,\Phi}} \left(h^{\#\mathcal{G}_{\sigma,\Phi}}\right)$$

$$\mathcal{F}_{\sigma,\Phi}(\mathcal{I}_{\Sigma',\Phi'}(B''))$$

$$\mathcal{I}_{\Sigma',\Phi'}(B'') \left(h^{\#\mathcal{G}_{\sigma,\Phi}}\right)^{\#\mathcal{K}_{\Sigma',\Phi'}} A''$$

$$B'' \xleftarrow{\exists! \left(h^{\#\mathcal{G}_{\sigma,\Phi}}\right)^{\#\mathcal{K}_{\Sigma',\Phi'}}} A''$$

Teraz wiemy, że istnieje jedyny morfizm  $\left(h^{\#\mathcal{G}_{\sigma,\Phi}}\right)^{\#\mathcal{K}_{\Sigma',\Phi'}}:A''\to B''$  taki, że  $\eta_{A'}^{\mathcal{K}_{\Sigma',\Phi'}};\mathcal{I}_{\Sigma',\Phi'}\left(\left(h^{\#\mathcal{G}_{\sigma,\Phi}}\right)^{\#\mathcal{K}_{\Sigma',\Phi'}}\right)=h^{\#\mathcal{G}_{\sigma,\Phi}}.$ 

Mamy zatem

$$\eta_A^{\mathcal{G}_{\sigma,\Phi}}; \mathcal{F}_{\sigma,\Phi}\left(\eta_{A'}^{\mathcal{K}_{\Sigma',\Phi'}}; \mathcal{I}_{\Sigma',\Phi'}\left(\left(h^{\#\mathcal{G}_{\sigma,\Phi}}\right)^{\#\mathcal{K}_{\Sigma',\Phi'}}\right)\right) = h$$

czyli

$$\left(\eta_{A}^{\mathcal{G}_{\sigma,\Phi}}; \mathcal{F}_{\sigma,\Phi}\left(\eta_{A'}^{\mathcal{K}_{\Sigma',\Phi'}}\right)\right); \mathcal{F}_{\sigma,\Phi}\left(\mathcal{I}_{\Sigma',\Phi'}\left(\left(h^{\#\mathcal{G}_{\sigma,\Phi}}\right)^{\#\mathcal{K}_{\Sigma',\Phi'}}\right)\right) = h$$

czyli

$$\eta_A; (\mathcal{I}_{\Sigma',\Phi'}; \mathcal{F}_{\sigma,\Phi}) \left( \left( h^{\#_{\mathcal{G}_{\sigma,\Phi}}} \right)^{\#_{\mathcal{K}_{\Sigma',\Phi'}}} \right) = h$$

Zatem spełnione są wszystkie założenia twierdzenia o istnieniu lewych sprzężonych.

## 3.5 $\mathcal{J}_{\Sigma}: \mathbf{KKAlg}(\Sigma) \to \mathbf{KAlg}(\Sigma)$

Niech  $A \in \mathbf{KAlg}(\Sigma)$ . Niech  $A' \in \mathbf{KKAlg}(\Sigma)$  będzie zadanie przez:  $A' = T_{\hat{\Sigma}}(A \sqcup \{k_s\}_s)/\equiv$ , gdzie  $\hat{\Sigma}, k_s$  jest zdefiniowane jak wyżej, zaś  $\equiv$  jest najmniejszą kongruencją wyznaczoną przez równości w A, tj. jeśli w A zachodzi  $f(a_1,\ldots,a_k)=a$ , to w  $\equiv$  utożsamiamy  $f(a_1,\ldots,a_k)\equiv a$  (jako napisy). Kluczykiem sortu s w A' jest  $[k_s]_{\equiv}$ . Łatwo widać, że żadna operacja arności większej niż 0 nie jest zamknięta na kluczyki, gdyż  $\equiv$  nie utożsamia w żaden sposób napisów postaci  $f(k_{s_1},k_{s_2},\ldots,k_{s_n})$  z czymkolwiek innym. Zatem istotnie, A' jest algebrą kluczykową.

Możemy teraz określić  $\eta_A:A\to \mathcal{J}_\Sigma(A')$  w oczywisty sposób:  $\eta_A(x)=[x]_{\equiv}$ . Łatwo widać teraz z definicji  $\equiv$ , że  $\eta_A$  jest morfizmem (gdyż  $\equiv$  było kongruencją wyznaczoną przez równości w A).

Niech teraz  $B' \in \mathbf{KKAlg}(\Sigma)$  będzie dowolną kluczykową  $\Sigma$ -algebrą i niech  $f: A \to \mathcal{J}_{\Sigma}(B')$  będzie morfizmem algebr. Musimy pokazać, że istnieje dokładnie jeden morfizm  $f^{\#}: A' \to B'$  taki, że  $\eta_{A}; \mathcal{J}_{\Sigma}(f^{\#}) = f$ .

Ewaluując powyższy warunek na elemencie  $a \in |A|$  uzyskujemy (pomijając włożenie  $\mathcal{J}_{\Sigma}$  dla uproszczenia zapisu):  $f^{\#}([a]_{\equiv}) = f(a)$ . Ponadto  $f^{\#}$  ma być morfizmem w kategorii **KKAlg**, zatem musi przekształcać kluczyki na kluczyki, stąd  $f^{\#}([k_s]_{\equiv}) = \mathbf{k}_s$ . Wartości na wszystkich generatorach algebry A' są zatem wyznaczone jednoznacznie, zatem szukane  $f^{\#}$  jeśli tylko istnieje, to jest jedyne.

Jednakże jego istnienie jest oczywiste: rozumując analogicznie jak na wykładzie tworzymy z własności uniwersalnej algebry termów przekształcenie  $f^{\&}: T_{\hat{\Sigma}}(A \sqcup \{k_s\}_s) \to B'$  zadane jako  $f^{\&}(a) = f(a), f^{\&}(k_s) = \mathbf{k}_s$ , po czym stwierdzamy, że faktoryzuje się ono przez przekształcenie ilorazowe  $T_{\hat{\Sigma}}(A \sqcup \{k_s\}_s) \to A'$ , gdyż jeśli jakieś równości zachodziły w A, to są one zachowywane przez f, gdyż f jest morfizmem algebr, zatem analogiczne równości na obrazach zachodzą też w B'.

# 3.6 $\mathcal{J}_{\Sigma,\Phi}: \mathbf{KKAlg}(\Sigma,\Phi) \to \mathbf{KAlg}(\Sigma,\Phi)$

Mamy oczywisty funktor zapominania o kluczykach  $\mathcal{L}_{\Sigma,\Phi}: \mathbf{KAlg}(\Sigma,\Phi) \to \mathbf{Alg}(\Sigma,\Phi)$ , który utożsamia  $\mathbf{KAlg}(\Sigma,\Phi)$  z pełną podkategorią kategorii  $\mathbf{Alg}(\Sigma,\Phi)$  tych algebr, które są kluczykowe.

$$\begin{split} \mathbf{KKAlg}(\Sigma', \Phi') & \xrightarrow{\mathcal{J}_{\Sigma, \Phi}} \mathbf{KAlg}(\Sigma) \\ \downarrow^{\mathcal{I}_{\Sigma, \Phi}} & \downarrow^{\mathcal{L}_{\Sigma, \Phi}} \\ \mathbf{Alg}(\hat{\Sigma'}, \hat{\Phi'}) & \xrightarrow{\mathcal{F}} \mathbf{Alg}(\Sigma, \Phi) \end{split}$$

Wystarczy, że pokażemy, że  $\mathcal{J}_{\Sigma,\Phi}$ ;  $\mathcal{L}_{\Sigma,\Phi}$  ma lewy sprzężony, jego obcięcie algebr do kluczykowych będzie lewym sprzężonym dla  $\mathcal{J}_{\Sigma,\Phi}$ .

Teraz zauważmy, że możemy zapisać, że  $\mathcal{J}_{\Sigma,\Phi}$ ;  $\mathcal{L}_{\Sigma,\Phi} = \mathcal{I}_{\Sigma,\Phi}$ ;  $\mathcal{F}$ , gdzie  $\mathcal{F}$ :  $\mathbf{Alg}(\hat{\Sigma}, \hat{\Phi}) \to \mathbf{Alg}(\Sigma, \Phi)$  jest funktorem brania reduktu względem morfizmu sygnatur zapominającego o kluczykach (jako stałych  $k_s$ ). Na mocy faktu z wykładu, istnieje lewy sprzężony do funktora  $\mathcal{F}$ . Rozumując teraz analogicznie jak przy pokazywaniu lewego sprzężonego dla  $\mathcal{U}_{\sigma,\Phi}^{\mathcal{K}} : \mathbf{KKAlg}(\Sigma', \Phi') \to \mathbf{KKAlg}(\Sigma)$ , stwierdzamy, że także  $\mathcal{I}_{\Sigma,\Phi}$ ;  $\mathcal{F}$  ma lewy sprzężony, jako złożenie dwóch funktorów mających lewy sprzężony.