Agenda & Objectives

Agenda

- Overview where data modeling fits within SDLC
- Define data modeling components
- Write business rules
- Practice modeling various relationships

Objective

- Given an existing entity relationship diagram (ERD), you will be able to create the corresponding business rules.
- Given an existing entity relationship diagram, you will be able to describe the business process.

Resource

BusRules_InterpretingERD.pptx

Creating Business Rules; Interpreting ERDs

Data Modeling

Outline

- 1. Overview of data modeling
 - 1. Deliverables of data modeling
 - 2. Questions to ask when gathering information
 - 3. Where data modeling maps to process modeling
- 2. Elements of ERD
- 3. Cardinality, participation
- 4. Degree of relationships
- 5. Identifying or non-identifying PK?

Overview of Data Modeling

- A model that captures the overall structure of organizational data, independent of DBMS and without implementation details
- Deliverable
 - Entity Relationship Diagram

Gathering Information Questions for Data Modeling

- 1. What are subjects/objects of the business?
 - * Entities
- 2. What unique characteristic distinguishes each object from other objects of the same type?
 - * Primary key
- 3. What characteristics describe each object?
 - * Attributes
- 4. How do you use this data?
 - * Reports (via queries)
 - * Security controls (e.g., login requirements)

Questions (cont'd...)

- 5. How many instances of one entity participate with another entity?
 - * Cardinality
- 6. Is participation between entities required or optional?
 - * Participation
- 7. What events occur that imply associations between various objects?
 - * Relationships
- 8. Is each activity or event always handled the same way or are there special circumstances?
 - * Integrity rules and triggers

Outline

1. Overview of data modeling

2. Elements of ERD

- 1. Entity
- 2. Attribute
- 3. Identifier/Primary Key
- 4. Relationships and Business Rules
- 5. ERD Notations: Chen and Crow's Foot
- 3. Cardinality, participation
- 4. Degree of relationships
- 5. Identifying or non-identifying PK?

Entity

- A person, place, object, event or concept in user environment about which the organization wishes to maintain data
 - E.g., employee, student, warehouse, car, sale, booking, account, course
- Note the difference
 - Entity
 - Entity instance

Attribute

- A property or characteristic of an entity of interest to the organization
 - Many CASE tools do not include attributes on the ERD to avoid cluttering the diagram, but define them in the repository
 - E.g., STUDENT (<u>Stud_Id</u>, Stud_name, Address, Phone)
 - E.g., AUTOMOBILE (<u>Vehicle Id</u>, Color, Horsepower, Year)
- Candidate Key
 - An attribute (or combination of attributes) that uniquely identifies each entity instance
- Identifier/Primary Key
 - A candidate key that has been selected to index the entity

Relationship

- An association between entity instances in one or more entities
- Defined by business rules

Business Rules

• Business Rules <u>rule</u>

- How things work here
- Start with a single instance of each entity
- Always stated in pairs—define relationship from perspective of each related entity
- Become the verbs in the relationships
- Determine cardinality and participation
- The basis for stored procedures and triggers

Examples: Business Rules

- Each customer can place many orders.
- Each order is placed by one and only one customer.
- A department employs one or more employees.
- An employee is assigned to one department.
- A customer may purchase multiple products.
- A product may be purchased by multiple customers.
- A student may enroll for many classes.
- A class may have many students enrolled in it.

ERD Notations

- Entity-relationship data model
 - Expressed as entity-relationship diagrams (ERD)
- Different notations
 - Chen P, 1976, The entity-relationship model-toward a unified view of data, *ACM Transactions on Database Systems*, Vol 1 (March) pp. 9-36
 - Teorey, Yang & Fry, 1986, Computing Survey, 18 (2)
 - Storey, 1991, Data and Knowledge Engineering, 7 p47
- We use the "Crow's foot" notation

ERD Notation: Chen

- Entity
- Relationships

Attribute

Identifier/PK

Multivalued attribute

Associative entity

- Cardinality and Participation:
 - ⁰ 0..1
 - o...n or o...*
 - 1..n *or* 1..*

Final E-R Diagram for Hoosier Burger's Inventory Control System: Chen

ERD Notation: Crow's Foot

Outline

- 1. Overview of data modeling
- 2. Elements of ERD
- 3. Cardinality, participation
- 4. Degree of relationships
- 5. Identifying or non-identifying PK?

Cardinalities in Relationships

Cardinality = the number of instances of entity B that can (or must) be associated with each instance of entity A.

Department: Employee

- A department has one or more employees.
- An employee is assigned to one department.

Cardinality is the maximum number (0, 1 or Many) of records in one file that are linked to a single record in another file and vice versa.

Cardinality Implemented: 1:M

DEPARTM	DEPARTMENT			
Dept ID	Dept Name	Dept Phone		
1000	Information Systems	836-1234		
1001	Accounting	836-2234		
1002	Finance	836-3234		
1003	Marketing	836-4234		

EMPLOYEE			
Emp ID	np ID Emp First Name Emp Last Name		Dept ID
10	Joe	Brown	1001
11	Jill	Smith	1001
12	Bob	Johnson	1000
13	Mary	Johansen	1003
14	Maxine	Brown	1000
15	Guy	Schmidt	1002
16	Bob	Black	1000

Cardinality Implemented: 1:1

EMPLOY	EMPLOYEE			
Emp ID	Emp First Name Emp Last Nam		Dept ID	
10	Joe	Brown	1001	
11	Jill	Smith	1001	
12	Bob	Johnson	1000	
13	Mary	Johansen	1003	
14	Maxine	Brown	1000	
15	Guy	Schmidt	1002	
16	Bob	Black	1000	

SECURITY BADGE			
Emp ID	Badge #	Date Assigned	
10	A5	01/02/2004	
11	A17	01/02/2004	
12	В3	05/01/2005	
13	C1	08/01/2007	
14	14 A7 06/01/2004		
15	D23	12/15/2007	
16	B4	02/15/2008	

Participation in Relationships

- Participation: whether or not every instance of one entity must participate in a relationship with another entity (i.e., whether every PK from Entity 1 is a FK in Entity 2); whether or not the FK is required or can be null.
- Participation: optional or required

O or

- Optional participation
 - Minimum cardinality is zero
- Required participation
 - Minimum cardinality is one
- Participation and Minimum/Maximum Cardinality
 - If the minimum cardinality is zero, then participation is optional
 - If the minimum cardinality is one, then participation is required
 - Maximum cardinality has no effect on participation

Relationship: Crow's Foot

What are the business rules?

Outline

- 1. Overview of data modeling
- 2. Elements of ERD
- 3. Cardinality, participation
- 4. Degree of relationships
 - 1. Unary
 - 2. Binary
 - 3. Ternary
- 5. Identifying or non-identifying PK?

Degree of Relationships

- Degree of a relationship
 - The number of entities that participate in a relationship
- Three main types of degrees
 - Unary relationship: involves only 1 entity
 - Binary relationship (most common): involves 2 entities
 - Ternary relationship: involves 3+ entities
 - Higher is possible but rarely implemented

Relationships of Different Degrees: Unary Relationships—1 Entity

- Employee:Manager—a 1:M Recursive Relationship
- Notice both effects of the optional participation

Employee		
PK	Employee ID	+O
FK1	Emp First Name Emp Last Name Emp Salary Boss Number Other Emp Attributes	can manage / can be managed by

Employee_ID	First Name	Manager
1	Heather	
2	Lisa	1
3	Maxine	1
4	Gertrude	1

A Unary 1:1 Recursive Relationship

What are the business rules?

Training Module		
PK	Module ID	+0
FK1	Module Name Training Time Prerequisite Module	may have a prerequisite of / may be a prerequisite for

Unary 1:1 Recursive Relationship

Module_ID	Module Name	Training Time	Prerequisite Module
А	Beginning Database	1	
В	B Intermediate Database		A
С	Advanced Database	3	В
D	Beginning Modeling	1	
E	Intermediate Modeling	1	D
F	Advanced Modeling	3	E
G	Beginning SQL	2	
Н	Intermediate SQL	5	G

Relationships of Different Degrees: Binary Relationship—2 Entities

Binary 1:M Relationship

What are the business rules?

Binary 1:M Relationship

What are the business rules?

Binary 1:M Relationship

Module_ID	Module Name	Training Time	Prerequisite Module	Program ID
А	Beginning Database	1		1
В	Intermediate Database	1.5	A	1
С	Advanced Database	3	В	1
D	Beginning Modeling	1		2
E	Intermediate Modeling	1	D	2
F	Advanced Modeling	3	E	2
G	Beginning SQL	2		3
Н	Intermediate SQL	5	G	3

Binary M:M Relationship

Demo: Binary M:M Relationship

Product:Part

- A part may be used in multiple products.
- A product uses multiple parts.

Binary M:M Relationship

Product_ID	Part_ID	Qty Used
1551	234	2
1551	567	5
1551	369	1
1552	234	1
1552	900	1
1553	567	2
1553	678	4

Ternary Relationships

Ternary Relationships: 3 Entities

What are the business rules?

Ternary Relationships

Ternary Relationships: 3 Entities

What are the business rules?

Outline

- 1. Overview of data modeling
- 2. Elements of ERD
- 3. Cardinality, participation
- 4. Degree of relationships
- 5. Identifying or non-identifying PK?

Identifying/Non-identifying PK?

- Purpose of the Primary Key is to uniquely identify each row in the table.
- Rules for creating PK:
 - Must uniquely identify each row
 - Value will not change
 - Will not have a NULL value
 - Is the least amount of fields that will satisfy the above
- Identifying relationship
 - PK of one entity includes the PK of another entity
- Non-identifying relationship
 - PK of an entity is independent of other entities

Identifying/Non-identifying PK?

• Which entity is *strong/independent/non-identifying?*

Which entity is weak/dependent/identifying?

١					Invoice
		Vendor		PK,FK1	Vendor ID
	PK	Vendor ID	- Supplies / is supplied by ←	PK	Invoice Number
		Vendor Name			Invoice Date Paid?
					i didi.

Identifying/Non-identifying PK?

• Although technically correct, what is an inherent problem in *identifying* relationships?

Review: What you Know

- How data modeling fits with process modeling
- How to define and identify each element in a data model
- How to interpret unary, binary and ternary relationships in data models
- How to avoid data modeling problems