Machten en wortels omvormen

Bron:

https://hoezithet.nu/lessen/wiskunde/veraeliikingen/machten_omvormen/

Een <u>vergelijking</u> oplossen betekent dat we de waarden van de onbekende(n) vinden waarvoor de gelijkheid klopt. Vaak is er maar één onbekende, namelijk \boldsymbol{x} .

Door een vergelijking om te vormen naar de vorm $x=(\mathrm{een}\ \mathrm{getal})$ kunnen we de vergelijking oplossen. In deze les zien we hoe we vergelijkingen van de vorm $x^2=a$ en $x^3=a$ kunnen omvormen naar $x=(\mathrm{een}\ \mathrm{getal})$. Ten slotte zullen we ook de vergelijkingen $\sqrt{x}=a$ en $\sqrt[3]{x}=a$ omvormen.

Omvormen van $x^2 = a$

Om een vergelijking van de vorm $x^2=a$ (met $a\in\mathbb{R}^+$) om te vormen naar x= (een getal), moeten we enkel het kwadraat weg krijgen uit het linkerlid. We willen dat er links x staat in plaats van x^2 . We kunnen het kwadraat weg krijgen door de wortel te nemen van het linker- en rechterlid

$$x^2 = a$$
 $\Leftrightarrow \sqrt{x^2} = \pm \sqrt{a}$
 $\Leftrightarrow x = \pm \sqrt{a}$

Bijvoorbeeld: stel dat we de vergelijking

$$x^2 = 10$$

moeten oplossen. We willen het kwadraat aan de linkerkant weg krijgen zodat er links gewoon \boldsymbol{x} staat. Dat kunnen we doen door van de vergelijking de

vierkantswortel te nemen:

$$x^{2} = 10$$

$$\Leftrightarrow \sqrt{x^{2}} = \pm \sqrt{10}$$

$$\Leftrightarrow x = \pm \sqrt{10}$$

$$\Leftrightarrow x = \pm 3.162...$$

We controleren door de x in de oorspronkelijke vergelijking $x^2=10$ eens te vervangen door (3.162...) en eens door (-3.162...):

$$(3.162...)^2 = 10$$

Check! ✓

$$(-3.162\ldots)^2 = 10$$

Klopt!

> Uitbreiding: waarom die ±?

Omvormen van $x^3 = a$

Voor een vergelijking als $x^3=a$ doen we iets heel gelijkaardigs als bij $x^2=a$, maar nu gebruiken we de derdemachtswortel:

$$x^{3} = a$$
 $\Leftrightarrow \sqrt[3]{x^{3}} = \sqrt[3]{a}$ $\Leftrightarrow x = \sqrt[3]{a}$

We willen bijvoorbeeld de vergelijking $x^3=-16$ oplossen.

$$x^{3} = -16$$
 $\Leftrightarrow \sqrt[3]{x^{3}} = \sqrt[3]{-16}$ $\Leftrightarrow x = \sqrt[3]{-16}$

$$\Leftrightarrow x = -2.520...$$

Controle:

$$(-2.520\ldots)^3 = -16$$

> Uitbreiding: waarom nu plots geen ±?

Omvormen van $\sqrt{x} = a$

Om een vergelijking van de vorm $\sqrt{x}=a$ (met $a\in\mathbb{R}^+$) om te vormen naar x= (een getal), moeten we enkel de vierkantswortel weg krijgen uit het linkerlid. We kunnen hiervoor zorgen door het linker- en rechterlid te kwadrateren

$$\sqrt{x} = a$$
 $\Leftrightarrow (\sqrt{x})^2 = (a)^2$ $\Leftrightarrow x = a^2$

Bijvoorbeeld:

$$\sqrt{x} = 5$$
 $\Leftrightarrow (\sqrt{x})^2 = (5)^2$
 $\Leftrightarrow x = 5^2$
 $\Leftrightarrow x = 25$

Controle:

$$\sqrt{25} = 5$$

Perfect!

> Uitbreiding: Waarom niet $\pm a^2$?

Omvormen van $\sqrt[3]{x} = a$

Ook voor $\sqrt[3]{x}=a$ doen we iets gelijkaardigs als bij $\sqrt{x}=a$, maar nu dan met een derde macht. Merk op dat a nu zowel positief als negatief kan zijn ($a\in\mathbb{R}$), want een derdemachtswortel kan ook negatief zijn.

$$\sqrt[3]{x} = a$$

$$\Leftrightarrow (\sqrt[3]{x})^3 = (a)^3$$

$$\Leftrightarrow x = a^3$$
Bijvoorbeeld $\sqrt[3]{x} = -2$

$$\sqrt[3]{x} = -2$$

$$\Leftrightarrow (\sqrt[3]{x})^3 = (-2)^3$$

$$\Leftrightarrow x = (-2)^3$$

$$\Leftrightarrow x = -8$$

Controle:

$$\sqrt[3]{-8} = -2$$

OK!

Samengevat

Vergelijking	Tussenstap	Oplossing	Voorwaarden
$x^2 = a$	$\sqrt{x^2} = \sqrt{a}$	$x=\pm\sqrt{a}$	$a \in \mathbb{R}^+$
$\sqrt{x} = a$	$(\sqrt{x})^2 = a^2$	$x = a^2$	$a\in\mathbb{R}^+$
$x^3 = a$	$\sqrt[3]{x^3} = \sqrt[3]{a}$	$x = \sqrt[3]{a}$	$a\in \mathbb{R}$
$\sqrt[3]{x} = a$	$(\sqrt[3]{x})^3 = a^3$	$x=a^3$	$a\in \mathbb{R}$

Meer op https://hoezithet.nu/

