Predicting coffee price Time series analysis

art a knotran

Yair Haendler

Data Science - Capstone projectGeneral Assembly - August 2021

Background and problem statement

Mysterious origins

Ethiopia?

Yemen?

Mysterious origins

Reliable evidence of first coffee roasting and brewing: **Yemen**, **mid 15th Century**.

16th Cent.: reached the Middle East and **Turkey**.

Then: Venice and the rest of **Europe**.

Fascinating story

One of the most in-demand commodities world-wide.

Some numbers

What factors affect coffee prices

- Supply and demand (lower production → higher prices).
- Weather conditions.
- Political changes.
- Currency fluctuations.
- Commodity trading rules.
- ...

Problem statement

Goal: forecasting coffee price based on historical data.

 Absence of additional predictors (Univariate Time Series Forecast).

Data collection - challenges and resolutions

Data sources

International Coffee Organization:

- Yearly data - historical (1990-2019); divided by country.

- Daily data - recent (2020-2021); average of France, Germany and USA.

- Non-price data (exports, imports, consumption, trade, etc.): yearly data (1990-2019); divided by country.

Data sources

USDA - PSD:

- Half-yearly / yearly data - historical & recent data (~1960 - 2020).

- Average international market prices.

Data sources

macrotrends.net:

- Daily data historical & recent data (August 1973 August 2021).
- Average international market prices.
- **Pro:** more data → better forecast ability.
- Con: no information broken by country; no external predictors.

Data preparation

• Organized the data in one *Price* column.

Set the *Date* as the (sorted) index.

Checked for missing values.

• Some 'gaps' - dates without data (our models can handle this).

The data

Baseline scores:

MSE: 1.585

MAPE: (Mean Absolute

Percentage Error) 115.73%

The forecasting challenge

• Data is stationary (ADF test: p = 0.0061).

No trend?

No seasonality.

The forecasting challenge

 Coffee doesn't have general "seasons"; it is consumed according to necessity of the individual.

 It is consumed always, all the time (hot AND cold).

Modeling

ARIMA

ARIMA

• ARIMA (1, 0, 5) - gridsearch to find best hyperparameters

Train data → all the data up to the last year

Test data → the last year (259 days due to missing data)

ARIMA's results

(Baseline MSE: 1.585)

Training MSE: 0.0009

Training MAPE: 47.70%

Testing MSE: 0.056

Testing MAPE: 12.17%

ARIMA's results

(Baseline MSE: 1.585)

Training MSE: 0.0009

Training MAPE: 47.70%

Testing MSE: 0.056

Testing MAPE: 12.17%

Prophet

ARIMA vs. Prophet

 ARIMA assumes <u>causal relationship</u> between past values and past error, and future values.

 Prophet assumes <u>no causal relationship</u> between past and future values.

ARIMA vs. Prophet

Best curve (linear / logistic) fitted to the data.

- Naïve assumptions concerning changes in trend and seasonality
 - "what happened in the past will happen again in the future".

Useful with stable trend and seasonality.

ARIMA vs. Prophet

• The Prophet model:

Prophet

Trend - changepoint detection

 Prophet sets automatically changepoints - points of potential trend change.

 Sparse prior (with many zeros) for the magnitude of these possible changes.

Only meaningful rate changes determine future trend shape.

Sparse prior adjustment deals with trend overfitting or underfitting.

More changepoints → more fluctuations in the predictions.

Less changepoints \rightarrow less fluctuation in the predictions.

"What happened in the past will happen again in the future"

Changepoint prior scale:

0.0001

Changepoint prior scale:

0.01

Changepoint prior scale:

0.1

Prophet

• Changepoint prior scale = 0.1

Seasonality prior scale = 0.01

Same Train-Test split as with the ARIMA model

Prophet's results

Simulated Historical Forecasts - MSE

Simulated Historical Forecasts - MAPE

Testing data - predictions vs. actual prices

Recurrent Neural Networks

Recurrent Neural Networks

Number of input values = 10

Each 10 values predict the next value:

```
[0,1,2,3,4,5,6,7,8,9] => [10]
[1,2,3,4,5,6,7,8,9,10] => [11]
...
```

Train / Validation / Test split

Recurrent Neural Networks

Layer	Units	# Parameters
GRU	100	30,900
Dropout (0.2)		
GRU	50	22,800
Dropout (0.2)		
Dense	10	510
Dense	1	11

30 epochs

Including early stopping

RNN - Training and Validation Loss

RNN - Predictions on testing data

Testing MSE:

0.042

Testing MAPE:

11.38%

Summary & Conclusions

Models' metrics summary

Model	Testing MSE	Testing MAPE
Baseline	1.585	115.73%
ARIMA	0.056	12.17%
Prophet	0.317	37.36%
RNN	0.042	11.38%

Models' metrics summary

	Model	Testing MSE	Testing MAPE
	Baseline	1.585	115.73%
•	ARIMA	0.056	12.17%
	Prophet	0.317	37.36%
•	RNN	0.042	11.38%

Conclusions

ARIMA

RNN

Prophet

Conclusions

No clear pattern in the data - hard to forecast.

Prophet did worst - due to lack of stable trend and seasonality.

ARIMA and RNN - far from perfect, but significantly better.

Possible next steps

• **Improve RNN** performance.

 Integrate additional predictors (e.g., weather conditions; demand and supply; etc.)

Possible next steps

Until then... enjoy a

of coffee!

(And don't worry about how much it'll cost tomorrow)

Thank you!

