Univ	ersi	té	Den	is	Did	.erot
UFR	de	Μ	athé	\dot{m}	atiq	ues

Année 2015/2016 U1TC35

		Test n°	8	(durée : 30 n	nn)
NOM:					

Question de cours

Donner sans aucune justification un exemple d'espace de Banach réel de dimension infinie dont les éléments sont certaines applications de \mathbb{Q} dans \mathbb{R} .

 $\textbf{Bar\`eme:} \ \textit{Question de cours} \ \text{sur 3 points} \ ; \ 1) \ \text{sur 4} + 4 \ \text{points} \ ; \ 2) \ \text{sur 5 points} \ ; \ 2) \ \text{sur 4} + \dots \ \text{points}.$

Exercices

- 1) On considère l'espace vectoriel $E = \mathbb{R}[X]$ muni de la norme $P = \sum_{k=0}^{n} a_k X^k \mapsto \|P\|_1 = \sum_{k=0}^{n} |a_k|$. Lesquelles des applications linéaires suivantes sont continues? Si c'est le cas, calculer leur norme.
 - a) $\varphi_N \colon E \to \mathbb{R}$ définie par $\varphi_N(P) := a_N$ quand $P = \sum_{n=0}^{+\infty} \underbrace{a_n X^n}_{\text{nul pour } n \text{ assez grand}} \in \mathbb{R}[X]$, où $N \in \mathbb{N}$ est fixé.

b) $\psi \colon E \to E$ définie par $\psi(P) = P(X+1)$ quand $P \in \mathbb{R}[X]$ (penser au cas $P = X^n$).

3) On se place à nouveau dans l'espace vectoriel normé $(E, \|\ \|_1)$ de l'exercice 1.

On fixe deux éléments
$$U = \sum_{k=0}^{+\infty} u_k X^k$$
 et $V = \sum_{k=0}^{+\infty} v_k X^k$ de $E \setminus \{0\}$.
On pose : $K = \left\{ P = \sum_{k=0}^{+\infty} a_k X^k \in \mathbb{R}[X] \mid \forall n \in \mathbb{N} \quad u_n \leq a_n \leq v_n \right\}$.

On pose:
$$K = \left\{ P = \sum_{k=0}^{+\infty} a_k X^k \in \mathbb{R}[X] \mid \forall n \in \mathbb{N} \mid u_n \le a_n \le v_n \right\}$$

a) Démontrer que K est fermé et borné dans E.

b) Question subsidiaire (hors barème).

En déduire que K est compact pour la topologie de $\|\ \|_1$.