Matrices: Quelques applications

I) Résolution d'un système linéaire

Exemple : On considère le système (S) suivant
$$\begin{cases} 5x + 2y = 16 \\ 4x + 3y = 17 \end{cases}$$

On pose
$$A = \begin{pmatrix} 5 & 2 \\ 4 & 3 \end{pmatrix}, X = \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $B = \begin{pmatrix} 16 \\ 17 \end{pmatrix}$.

On a alors
$$A \times X = \begin{pmatrix} 5x + 2y \\ 4x + 3y \end{pmatrix}$$
.

Ainsi le système peut s'écrire AX = B.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \end{cases}$$

Propriété : Un système linéaire de la forme $\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$ est équivalent à l'équation AX = B où $A = (a_{ij})$ est une matrice carrée d'ordre $n, X = (x_j)$ et $B = (b_j)$ sont deux matrices calcunges matrices colonnes.

Si A est inversible, alors l'équation AX = B admet pour unique solution $X = A^{-1}B$.

 $\textbf{D\'{e}monstration}: AX = B \text{ d'où } A^{-1}AX = A^{-1}B \iff I_nX = A^{-1}B \iff X = A^{-1}B.$

Remarque: Dans le contexte de la propriété précédente, si A n'est pas inversible alors le système correspondant possède une infinité de solutions ou aucune solution.

Exemples:

- 1. Résoudre, à l'aide des matrices et sans utiliser sa calculatrice, le système $S_1: \left\{ egin{array}{ll} 5x+2y=16 \\ 4x+3y=17 \end{array} \right.$
- 2. Résoudre, si possible, à l'aide des matrices et de sa calculatrice le système S_2 : $\begin{cases} x+y+z=125\\ 2x+3y+z=136\\ x+2y+3z=143 \end{cases}$

II) Suites de matrices

Définition : Soit (U_n) une suite de matrices colonnes à p lignes.

La suite (U_n) est définie par son premier terme (en général la matrice colonne U_0), et par la relation de récurrence $U_{n+1} = AU_n + C$, où A est une matrice carrée d'ordre p, et C une matrice colonne à p lignes. Dans ce cas, l'état stable, s'il existe, est la matrice colonne à p lignes S qui vérifie S = AS + C.

Définition : Soit U_n une suite de matrices colonnes à p lignes. Soit L une matrice colonne à p lignes.

La suite (U_n) tend vers L lorsque la limite quand n tend vers $+\infty$ de chaque coefficient de U_n est égale au coefficient de L correspondant.

Propriété : On considère une suite (U_n) de matrices colonnes telle que $U_{n+1} = AU_n + B$ pour tout entier n.

(i) S'il existe une matrice X telle que AX + B = X alors la suite (V_n) définie par $V_n = U_n - X$ vérifie : $V_{n+1} = AV_n$ pour tout entier n.

Dans ce cas on a $U_n = A^n(U_0 - X) + X$ pour tout entier n.

(ii) Si (U_n) est une suite convergente, alors elle converge vers une matrice U vérifiant AU + B = U.

Démonstration:

Soit une suite (U_n) de matrices colonnes telles que $U_{n+1} = AU_n + B$ pour tout entier n.

(i) S'il existe une matrice X telle que AX + B = X, posons (V_n) définie par $V_n = U_n - X$. Alors $V_{n+1} = U_{n+1} - X = AU_n + B - (AX + B) = AU_n + B - AX - B = AU_n - AX = A(U_n - X) = AVn$. La suite (V_n) est donc une suite géométrique de raison A, donc $V_n = A^n V_0$ pour tout entier n. (La démonstration de cette propriété peut se faire par récurrence). Or $V_0 = U_0 - X$ donc $V_n = A^n(U_0 - X)$ pour tout entier n. $V_n = U_n - X$ donc $U_n = V_n + X = A^n(U_0 - X) + X$ pour tout entier n.

(ii) Si (U_n) est une suite convergente, soit U sa limite.

D'une part $\lim_{n\to+\infty} U_{n+1} = \lim_{n\to+\infty} U_n = U$.

D'autre part $\lim_{n\to+\infty} U_{n+1} = \lim_{n\to+\infty} (Au_n + B) = A(\lim_{n\to+\infty} U_n) + B = AU + B$. Donc U vérifie bien AU + B = U.

Exemple:

Soit (a_n) et (b_n) deux suites définies par : $a_0 = 10$, $b_0 = 20$, $a_{n+1} = 0$, $9a_n - 0$, $7b_n + 4$ et $b_{n+1} = 0$, $2b_n + 3$

On pose
$$U_n = \begin{pmatrix} a_n \\ b_n \end{pmatrix}$$
.

La suite (U_n) est définie par son premier terme $U_0 = \begin{pmatrix} 10 \\ 20 \end{pmatrix}$ et par la relation de récurrence $U_{n+1} = AU_n + C$.

- a. Donner les matrices A et C.
- b. Déterminer, s'il existe, l'état stable S.
- c. On considère la suite (V_n) vérifiant $V_n = U_n S$. Montrer que $V_{n+1} = AV_n$.
- d. Montrer par récurrence que, pour tout entier n on a $V_n = A^n V_0$.

e. Montrer par récurrence que
$$A^n = \begin{pmatrix} 0, 9^n & 0, 2^n - 0, 9^n \\ 0 & 0, 2^n \end{pmatrix}$$
.

f. Déterminer une formule explicite pour U_n en fonction de A^n, U_0 et S.

Puis en déduire que
$$\begin{cases} a_n = -20 \times 0, 9^n + 16, 25 \times 0, 2^n + 13, 75 \\ b_n = 16, 25 \times 0, 2^n + 3, 75 \end{cases}$$

- g. Montrer que, si la suite (U_n) tend vers une matrice L, alors L = S.
- h. Montrer que la suite (U_n) tend effectivement vers S.

III) Quelques transformations géométriques

Propriété : On se place dans un repère
$$(O, \vec{i}, \vec{j})$$
. Soient $A(x_A; y_A), B(x_B; y_B)$ et $\vec{u} \begin{pmatrix} x_{\vec{u}} \\ y_{\vec{u}} \end{pmatrix}$. B est l'image de A par la translation de vecteur \vec{u} si, et seulement si $\begin{pmatrix} x_B \\ y_B \end{pmatrix} = \begin{pmatrix} x_A \\ y_A \end{pmatrix} + \begin{pmatrix} x_{\vec{u}} \\ y_{\vec{u}} \end{pmatrix}$.

On peut définir pour les transformations géométriques suivantes des matrices de transformation T = qui à tout point M(x;y) du plan, associe son point image M'(x';y') tel que $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} x \\ y \end{pmatrix}$.

(i) Matrice de rotation de centre
$$O$$
 et d'angle θ : $R_{(O;\theta)} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$

(ii) Matrice d'homothétie de centre
$$O$$
 et de rapport $k \in \mathbb{R}$: $H_{(O;k)} = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$.

(iii) Matrice de la symétrie axiale par rapport à l'axe des abscisses :
$$S_{((Ox))} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
.

(iv) Matrice de la symétrie axiale par rapport à l'axe des ordonnées :
$$S_{(Oy)} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
.

(v) Matrice de la symétrie centrale de centre O :
$$S_0 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$
.

Démonstration : Admises.

Exemple : Soit $\vec{u} \begin{pmatrix} -1 \\ 3 \end{pmatrix}$, A(-2;3) et $\theta = \frac{\pi}{6}$. Déterminer par calcul matriciel :

- a. Les coordonnées de Bimage de A par la translation de vecteur \overrightarrow{u}
- b. Les coordonnées de C image de B par la rotation de centre O et d'angle θ .
- c. Les coordonnées de D image de C par l'homothétie de centre O et rapport k=2.
- d. Les coordonnées de E image de D par la symétrie axiale par rapport à l'axe des ordonnées.