

PLATAFORMA PARA MONITORAMENTO E ANÁLISE DE TEMPERATURA E UMIDADE

Integrantes:

Guilherme Luís Rodrigues Silva

Jorge Luiz Patrocínio dos Santos

Yago Raphael de Melo Mouro

Rafael Victor Redoval de Souza

24/05/2025

PAPÉIS E RESPONSABILIDADES DOS INTEGRANTES:

Guilherme Luís Rodrigues Silva:

- Front-End: React.js, Redux,
 Recharts, Biblioteca de testes
- Jorge Luiz Patrocínio dos Santos:
 - Back-End: Node.js, Express, MongoDB, Swagger
- Yago Raphael de Melo Mouro:
 - Protótipo Arduino: NodeMCU ESP8266, Sensor DHT11
- Rafael Victor Redoval de Souza:
 - Mobile: React Native

GUILHERME LUÍS RODRIGUES SILVA Front-End	JORGE LUIZ PATROCÍNIO DOS SANTOS Back-End	YAGO RAPHAEL DE MELO MOURO Arduino	RAFAEL VICTOR REDOVAL DE SOUSA Mobile
Framework Principal: • React.js	Ambiente de Desenvolvimento da API: Node.js Express	Construção do Protótipo: • Placa Wi-Fi: Node MCU ESP8266 Lolin • Sensor: DHT11	Framework Principal: • React Native
Principais Bibliotecas: Redux (G. Estado) Recharts (Gráficos)	Banco de Dados: • MongoDB - NoSQL	Linguagem: • C/C++	Principais Bibliotecas: Redux (G. Estado) Recharts (Gráficos)
Funções: • Exibição das informações do Arduino de forma legível.	Documentação:	 Funções: Coleta dos dados através do sensor DHT11. Envio das informações via Wi-Fi para API 	Funções: • Exibição das informações do Arduino de forma legível no app sem quebrar o layout.

VISÃO GERAL DO PROJETO:

A ideia do nosso projeto é um Dashboard web e app mobile que permite o usuário monitorar temperatura e umidade em tempo real, integrando múltiplos Arduinos via Wi-Fi a uma API REST.

REGRAS DE NEGÓCIO:

Foi definido que o projeto deve ter as seguintes regras de negócios:

- Identificação Obrigatória dos dispositivo.
- Faixas válidas de temperaturas.
- 3. Atualização contínua de dados.
- 4. Classificação visual por cores do Arduino.
- 5. Visualização pública sem login.
- 6. Armazenamento com timestamp.
- 7. Responsividade da Interface.

PROTÓTIPO E COMPONENTES DO IOT:

Os componentes que irão compor o Arduino são:

- 1. Placa de Desenvolvimento Microcontrolada ATmega328P Arduino Uno.
- 2. Placa de Desenvolvimento Wi-Fi NodeMCU ESP8266.
- 3. Sensor Digital de Temperatura e Umidade DHT11.

INTEGRAÇÃO IOT AO API REST:

A integração do IOT com a nossa API irá ocorrer da seguinte forma:

- O Arduino Uno, em conjunto com o módulo Wi-Fi NodeMCU ESP8266, será responsável por enviar pacotes no formato JSON com os seguintes campos:
 - {humidty, location, temperature, timestamp_TTL}
- A API REST, desenvolvida em Node.js com Express, receberá esses dados por meio de requisições HTTP POST. Após a validação dos campos, as informações serão armazenadas no banco de dados MongoDB para posterior exibição no dashboard web e mobile.

TECNOLOGIAS E FRAMEWORKS UTILIZADOS:

As tecnologias e frameworks que iremos utilizar em nosso projeto pode ser colocada como:

- **Arduino**: C/C++, Arduino Uno, ESP8266, Sensor DHT11.
- Back-End(API-REST): Node.js,
 Express, MongoDB(NoSQL), Swagger.
- Front-End WEB: React.js, Redux, Recharts, Jest.
- Front-End Mobile: React-Native, Redux, Recharts.

ENDPOINTS DA API REST:

A API REST do back-end irá possuir os seguintes Endpoints:

- 1. POST /api/data
 - Recebe as leituras do Arduino
 - Payload: {humidty, location, temperature, timestamp_TTL}
- 2. GET /api/data/latest
 - Retorna o último valor por dispositivo
- 3. GET /api/data?start={ISO}&end={ISO}
 - Retorna histórico no intervalo especificado

PROTOTIPAÇÃO DAS TELAS – WEB:

- A prototipação das telas foram realizadas conforme a elicitação de requisitos do projeto:
 - 1. Home com Dashboard:
 - Foi criado um dashboard com cards que podem ser expandidos para exibição das informações coletada pelo arduino
 - 2. Configuração de Tempo dos Arduinos
 - É possível alterar o tempo de exibição das cores indicativas do Arduino
 - 3. Exibição de Múltiplos Arduinos conectados
 - O dashboard comporta mais de um Arduino simultaneamente
 - 4. Atualização dos Arduinos
 - É possível atualizar manualmente a coleta de dados feita pelo Arduino.

PROTOTIPAÇÃO DAS TELAS – MOBILE:

 A prototipação das telas do Mobile foram realizadas baseada na prototipação de tela do modelo WEB:

1. Home Mobile:

- Foi criado um dashboard dinâmico com cards que podem ser expandidos para exibição das informações coletada pelo Arduino.
- 2. Design responsive, navegação simples e feedback visual:
 - É possível alterar o tempo de exibição das cores indicativas do Arduino

DIAGRAMAS DE PROCESSOS – BUSINESS PROCESS MODEL AND NOTATION

1. Fluxo Arduino:

 O diagrama ao lado representa o fluxo de tarefas que cada Arduino deve executar. Nele, há três piscinas representando:

I. Sensor: DHT11.

II. Arduino: Modelo UNO.

III. API: API-REST.

DIAGRAMAS DE PROCESSOS – BUSINESS PROCESS MODEL AND NOTATION

1. Fluxo Back-End:

- O diagrama abaixo representa o fluxo das responsabilidades do Back-End do projeto. Ele é composto por duas piscinas, que representam:
 - I. MongoDB: Baseado em NoSQL.
 - II. API: Node.js, Express e documentada com Swagger.

DIAGRAMAS DE PROCESSOS – BUSINESS PROCESS MODEL AND NOTATION

1. Fluxo Front-End:

- O diagrama abaixo representa o fluxo de responsabilidades do Front-End do projeto. Ele é composto por duas piscinas, que representam:
 - I. Interface(WEB, Mobile): Baseado em React.js, Redux, Rechart, Jest.
 - II. Linguagem: Node.js.

CONCLUSÃO DO PROJETO:

A proposta do nosso projeto é o desenvolvimento de um dashboard intuitivo e acessível, que possibilita ao usuário acompanhar em tempo real os dados de temperatura e umidade por meio de uma interface Web e também via aplicativo mobile. O grande diferencial da nossa solução está na praticidade de uso e na capacidade de análise das informações apresentadas. Diferente de soluções mais limitadas, nosso sistema permite o monitoramento simultâneo de múltiplos dispositivos Arduino, oferecendo uma visão mais ampla e eficiente para o usuário final.