Finite Fields

Jiang-Hua Lu

The University of Hong Kong

MATH4302, Algebra II

Thursday April 10,2025

Outline

In this file:

What we already know about finite fields:

• Most basic example: $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$, where p is a prime number.

$$|\mathbb{F}_p|=p.$$

- Every finite field F is an extension of \mathbb{F}_p , where $p = \operatorname{char}(F)$.
- If F is a finite field and char(F) = p, then

$$F\cong \mathbb{F}_p^n=\{(a_1,\ldots,a_n):a_j\in \mathbb{F}_p\}$$
 as a vector space over \mathbb{F}_p , where $n=[F:\mathbb{F}_p]$. In particular, $|F|=p^n$.

• There there are no fields with 35 elements.

Finite Fields

<u>Lemma.</u> If $|F| = p^n$ and $K \subset F$ a sub-field, then $|K| = p^d$ for some $1 \le d \le n$ and d|n.

Proof. Being a sub-field of F, K also has characteristic p. Let $d = [K : \mathbb{F}_p]$. Then

$$n = [F : \mathbb{F}_p] = [F : K][K : \mathbb{F}_p] = d[F : K].$$

Example. If $|F| = 7^6$, then possible cardinalities of sub-fields of F are $7, 7^2, 7^3, 7^6$.

Question. If $|F| = 7^6$, are there sub-fields of F with 7^2 or 7^3 elements?

 \Diamond

Theorems to be proved: Let p be a prime number.

- For any $n \ge 1$, there is one field, and only one up to isomorphism, with p^n elements, which is denoted as \mathbb{F}_{p^n} .
- ② For each $n \ge 1$ and for each $d \mid n$, there is exactly one sub-field of \mathbb{F}_{p^n} which is \mathbb{F}_{p^d} .
- **3** A description of all irreducible polynomials over \mathbb{F}_p for every prime p.

Main tools:

- The quotient $\mathbb{F}_p[x]/\langle f \rangle$ for irreducible $f \in \mathbb{F}_p[x]$.
- 2 Splitting fields.

Recall the quotient construction:

then $\mathbb{F}_p[x]/\langle f \rangle$ is a field

If $f(x) \in \mathbb{F}_p[x]$ is irreducible and has degree n, then $\mathbb{F}_p[x]/\langle f \rangle$ is a field with p^n elements.

Easy for small n and p:

Example. There are exactly 4 quadratic polynomials in $\mathbb{F}_2[x]$: $f(x) = x^2 + ax + b$ with $a, b \in \mathbb{F}_2$:

$$x^2$$
, $x^2 + 1$, $x^2 + x$, $x^2 + x + 1$.

The only irreducible one is $f(x) = x^2 + x + 1$, and

$$\mathbb{F}_2[x]/\langle f\rangle = \mathbb{F}_4 = \{0,1,a,a+1\}.$$

Multiplication table:

Exercise: There are exactly two cubic irreducible polynomials in $\mathbb{F}_2[x]$:

$$f = x^3 + x + 1$$
 and $g = x^3 + x^2 + 1$.

Write down the addition and multiplication tables of

$$\mathbb{F}_8 = \mathbb{F}_2[x]/\langle f \rangle$$
 and $\mathbb{F}_8' = \mathbb{F}_2[x]/\langle f \rangle$

and show that $\mathbb{F}_8\cong\mathbb{F}_8'.$

A fundamental fact about characteristic p (Every student's dream)

Lemma. If
$$F$$
 is a field with $\operatorname{char}(F) = p > 0$, then
$$(a+b)^p = a^p + b^p, \quad \forall a,b \in F.$$

Lemma. If F is a finite field of order q, then every element $a \in F$ satisfies

$$x^q - x = 0.$$

Proof.

- If a = 0, ok.
- Assume that $a \neq 0$. Then $a \in F \setminus \{0\}$ which is an abelian group with q-1 elements.
- By Lagrange's Theorem, $a^{q-1} = 1$, so $a^q = a$.

We fix a prime number p throughout. Let $n \ge 1$ be an integer.

Theorem

A finite field F has order p^n if and only if it is isomorphic to the splitting field over \mathbb{F}_p of

 $f(x) = x^{p^n} - x \in \mathbb{F}_p[x].$

Proof. Assume first that F is a field of order p^n .

- The prime field of F is \mathbb{F}_p , so F is an extension of \mathbb{F}_p ;
- By previous lemma, every $\alpha \in F$ is a root of $f(x) = x^{p^n} x \in \mathbb{F}_p[x]$;
- f can have at most pⁿ roots in F, so F = R_f, the set of all roots of f in F;
- Thus f completely splits in F[x], and $F = \mathbb{F}_p(R_f)$ is a splitting field of f over \mathbb{F}_p .

Proof Cont'd:

Conversely, let F be a splitting field of $f(x) = x^{p^n} - x \in \mathbb{F}_p[x]$ over \mathbb{F}_p . Let R be the set of all roots of f on F.

- Since $f'(x) = p^n x^{p^n 1} 1 = -1$ has no roots in F, f has no repeated roots in F.
- Since $\deg(f) = p^n$, f has exactly p^n roots in F, i.e., $|R| = p^n$.
- For any $a, b \in R$,

$$(a+b)^{p^n} = a^{p^n} + b^{p^n} = a+b,$$
 $(ab)^{p^n} = a^{p^n}b^{p^n} = ab,$ and if $b \neq 0$, then $(1/b)^{p^n} = 1/b$. Thus R is a sub-field of F .

• Moreover, $\mathbb{F}_p \subset R$. Thus $F = \mathbb{F}_p(R) = R$. Conclude that

$$|F|=|R|=p^n.$$

Q.E.D.

Question Is there conother $f(x) \in \mathbb{F}[x]$ with $degg < p^n$ s.t. the splitting field g has order p^n

Corollary

For any prime number p and any integer $n \ge 1$,

- 1 there exist fields with pⁿ elements;
- 2 any two fields with p^n elements are isomorphic.

Proof. Statements follow directly from existence and uniqueness of splitting fields.

We turn to sub-fields of \mathbb{F}_{p^n} , p a prime number. Recall

Easy Fact: If F is a field with p^n elements, where $n \ge 1$, then every sub-field of K is F has order p^d for some $1 \le d \le n$ and $d \mid n$.

<u>Fact:</u> For any prime p and integers $d, n \ge 1$ such that $d \mid n$, one has

$$(x^{p^d}-x)|(x^{p^n}-x).$$
 \sim $\sum [\chi]$

Proof: For positive integers a, b, we have the identity

$$z^{ab} - 1 = (z^a - 1)((z^a)^{b-1} + \cdots + z^a + 1).$$

- Since d|n, we have $(p^d 1)|(p^n 1)$.
- Using the identity again, we have $(x^{p^d-1}-1)|(x^{p^n-1}-1)$.
- It follows that $(x^{p^d} x)|(x^{p^n} x)$.

Q.E.D.

Theorem

For each $d \in \mathbb{Z}_{\geq 1}$ such that $d \mid n$, there is one and exactly one sub-field of \mathbb{F}_{p^n} with p^d elements. These are all sub-fields of \mathbb{F}_{p^n} .

Proof. We already know that a sub-field of \mathbb{F}_{p^n} necessarily has order p^d for some d|n.

- Fix d such that d|n. Remains to show that there is one and exactly one sub-field of \mathbb{F}_{p^n} with p^d elements.
- Let $f_n = x^{p^n} x \in \mathbb{F}_p[x]$ and $f_d = x^{p^d} x \in \mathbb{F}_p[x]$.
- We have proved that \mathbb{F}_{p^n} is a splitting field of f_n ; all elements of \mathbb{F}_{p^n} are roots of f_n , and no one is repeated. $f_n = (\chi_- \chi_1) \cdots (\chi_- \chi_n)$
- One has $f_d|f_n$ by previous Lemma, so f_d completely splits in \mathbb{F}_{p^n} .

$$(a+b)^p = a^p + b^p$$

?xe ffpn: xp=x}

Proof cont'd:

- Using Every Student's Dream, we see again that the set R_{f_d} of all roots of f_d in \mathbb{F}_{p^n} is a sub-field with p^d elements.
- Suppose that K is a sub-field of \mathbb{F}_{p^n} with p^d elements.
- Then every $\alpha \in K$ satisfies $\alpha^{p^d} \alpha = 0$.
- So $K \subset R_{f_d}$, and thus $K = R_{f_d}$.
- Thus so R_{f_d} is the unique sub-field of \mathbb{F}_{p^n} with p^d elements.

Q.E.D.

Another basic fact about finite fields. Let K be any field.

Theorem

Any finite subgroup of the multiplicative group $K^* = K \setminus \{0\}$ is cyclic. In particular, K^* is cyclic if K is finite.

Proof. Let $|G| = p_1^{n_1} p_2^{n_2} \cdots p_l^{n_l}$, p_1, \dots, p_l distinct prime numbers.

• By the Classification Theorem on Finite Abelian Groups, $\sqrt{2}\sqrt{2}$

$$G = G(p_1) \times G(p_2) \times \cdots \times G(p_l),$$

h $i = 1$ there exist positive integrals

where for each $i=1,\ldots,I$ there exist positive integers k_i and $n_{i,1},\ldots,n_{i,k_i}$ such that $n_i=n_{i,1}+\cdots+n_{i,k_k}$, and

$$|C(\rho_i)| = \rho_i^{n_i} \qquad C(\rho_i) \cong (\mathbb{Z}/p_i^{n_{i,1}}\mathbb{Z}) \times \cdots \times (\mathbb{Z}/p_i^{n_{i,k_i}}\mathbb{Z}).$$

• By the Chinese Reminder Theorem, enough to show that each $k_i = 1$ for each i = 1, ..., l, so $G(p_i)$ is cyclic. 4.

If $k_i \ge l$, then $r \le n_i$ s.t every elt in $G(p_i)$ Satisfies $Q^{p_i} = l$

Proof cont'd:

- Assume that there exists j such that $k_j > 1$ is not cyclic.
- Then there exists $r < n_j$ such that every $a \in G(p_j)$ satisfies $a^{p_j^r} = 1$.
- Now $G(p_j)$ has $p_i^{n_j}$ elements;
- The equation $x^{p_j^r} = 1$ can have at most p^r solutions, so this is a contradiction.
- Hence every $G(p_i)$ is cyclic and that G is cyclic.

Q.E.D.

这个定理确实是换成finite integral domain也成立的, 但这是trivial的,因为finite integral domain等价于finite field

Corollary

Any finite extension of a finite field is simple.

Proof. Let F be a finite extension of a finite field K.

- Since $F \setminus \{0\}$ is a cyclic group, there exists $a \in F \setminus \{0\}$ such that every $b \in F \setminus \{0\}$ is a power of a.
- Thus F = K(a).

Q.E.D.

Continue on Monday April 14 zors We turn to Irreducible polynomials over \mathbb{F}_p , where p is a prime number.

Lemma. For any $n \ge 1$,

- **1** irreducible polynomials over \mathbb{F}_p of degree n exist;

$$f_n(x)=x^{p^n}-x.$$

Proof.

- We proved that $\mathbb{F}_{p^n} = \mathbb{F}_p(\alpha)$ for some $\alpha \in \mathbb{F}_{p^n}$.
- the minimal polynomial of α over \mathbb{F}_p is irreducible and has degree n.

Proof cont'd:

- Let $q \in \mathbb{F}_p[x]$ be any irreducible monic with degree n.
- Then the field $L = \mathbb{F}_p[x]/\langle q \rangle$ has p^n elements;
- The element $a = \bar{x} \in L$ satisfies $f_n(a) = 0$, so $q|f_n$.
- Assume now that $q \in \mathbb{F}_p[x]$ is irreducible monic with degree d|n.
- Then $q|f_d$. Since $f_d|f_n$, we have $q|f_n$.

Q.E.D.

Consider the factorization

$$f_n = q_1^{k_1} q_2^{k_2} \cdots q_l^{k_l} \in \mathbb{F}_p[x]$$

into irreducible factors, where the q_i 's are pairwise distinct and monic.

First some observations:

- Since f_n splits completely in \mathbb{F}_{p^n} with no repeated roots, must have $k_1 = \cdots = k_l = 1$.
- Consider the factor q_i and let $d_i = \deg(q_i)$.
- q_i splits completely in \mathbb{F}_{p^n} with no repeated roots;
- Let $a \in \mathbb{F}_{p^n}$ be a root of q_i .
- Then $\mathbb{F}_p(a)$ is a sub-field of \mathbb{F}_{p^n} with p^{d_j} elements;
- By results on sub-fields of \mathbb{F}_{p^n} , must have $d_i|n$.

We have thus proved the following Theorem on the polynomial

$$f_n(x) = x^{p^n} - x \in \mathbb{F}_p[x]$$

<u>Theorem</u>: For any prime number p and any $n \ge 1$,

- ① the irreducible factors of $f_n(x)$ in $\mathbb{F}_p[x]$ are precisely all the monic irreducible polynomials in $\mathbb{F}_p[x]$ with degrees d|n;
- 2 each such polynomial appears exactly once in the prime factorization of $f_n(x)$.

Examples. In $\mathbb{F}_2[x]$, one has

$$x^{2} - x = x(x - 1),$$

$$x^{4} - x = x(x - 1)(x^{2} + x + 1),$$

$$x^{8} - x = x(x - 1)(x^{3} + x + 1)(x^{3} + x^{2} + 1),$$

$$x^{16} - x = x(x - 1)(x^{2} + x + 1)(x^{4} + x + 1)$$

$$(x^{4} + x^{3} + 1)(x^{4} + x^{3} + x^{2} + x + 1).$$

The Frobenius homomorphism:

Lemma-Definition. For a field L of characteristic p > 0, the map

$$\sigma: L \longrightarrow L, \quad \sigma(a) = a^p,$$

is an injective ring homomorphism, called the Frobenius homomorphism of L.

<u>Lemma.</u> If L is a finite field, the Frobenius morphism is an isomorphism.

Proof. The Frobenius morphism $\sigma: L \to L$ is injective, so $\sigma(L)$ is a subset of L, and $|\sigma(L)| = |L|$. Thus $\sigma(L) = L$, i.e., σ is surjective.

Example. The Frobenius morphism on $L = \mathbb{F}_p(t)$ is not surjective: $t \in \mathbb{F}_p(t)$ is not in the image σ .

Proof. We prove by contradiction.

- Suppose that $\alpha = \frac{f(t)}{g(t)} \in L$ satisfies $\sigma(\alpha) = t$, where $f(t), g(t) \in \mathbb{F}_2[t]$.
- Then $\alpha^p = t$, so $f(t)^p = tg(t)^p$.
- Let $m = \deg(f)$ and $n = \deg(g)$. Then mp = 1 + np, not possible.
- Thus $t \in L$ is not in image of σ .

Q.E.D.