Moment Generating Functions

Gregory M. Shinault

Motivation

Reminder

 $\mathbb{E}X$ tells us the center of X

If we know $\mathbb{E}X^2$ we can find Var(X) which tells us the spread of X.

A Couple Steps Further

We can go up to EX^3 to find

$$Skew(X) = \mathbb{E}\left[\left(\frac{X - \mu}{\sigma}\right)^3\right]$$

and EX^4 to find

$$\operatorname{Kurt}(X) = \mathbb{E}\left[\left(\frac{X-\mu}{\sigma}\right)^4\right].$$

These measure the skewness and peakedness of the distribution of *X*.

If we know all the moments $\mathbb{E}X^n$ of X, does this fully describe the distribution of X? In many cases, yes.

Goals for this Lecture

- 1. Define the *moment generating function* for any random variable.
- 2. See exactly how the moment generating function generates moments.
- 3. Use the MGF theory to easily solve some otherwise difficult problems.

This material corresponds to section 5.1 of the textbook.

Theory

Definition

The moment generating function (MGF) of a RV X is defined as

$$M_X(t) = \mathbb{E}e^{tX}$$
.

Key Fact I

The moment generating function generates moments. That is,

$$\frac{d^n}{dt^n} \left[M_X(t) \right]_{t=0} = \mathbb{E} X^n.$$

Key Fact II

Suppose there exists some $\delta > 0$ such that $M_X(t) = M_Y(t)$ for all $-\delta < t < \delta$. Then $X \stackrel{d}{=} Y$.

Examples

Example

Find the MGF of $X \sim \text{Poisson}(\lambda)$. Use it to find Var(X)

Example

Suppose *X* has the MGF

$$M_X(t) = 0.2 + 0.1e^t + 0.2e^{2t} + 0.3e^{4t} + 0.2e^{7t}.$$

Find the PMF of *X*.

Example

Find the MGF of $X \sim \text{Exp}(\lambda)$. Use it to find Var(X)

The Wrap Up

Summary

1.
$$M_X(t) = \mathbb{E}e^{tX}$$

1.
$$M_X(t) = \mathbb{E}e^{tX}$$

2. $M_X^{(n)}(0) = \mathbb{E}X^n$

3. If $M_X(t) = M_Y(t)$ then $X \stackrel{d}{=} Y$ (with some restrictions).