

Computer Networks

1

Tom Decavele – AKA TDC – tdc@howest.be

2

• Why ?

What's the purpose ?

- IPv4 address
 - 32-bits or 4 byte
 - 2^32 addresses possible

An IPv4 address (dotted-decimal notation)

- IPv6 address
 - 128 bits or 16 byte
 - 2^128 addresses possible (!!!)

An IPv6 address

(in hexadecimal)

2001:0DB8:AC10:FE01:0000:0000:0000:0000

2001:0DB8:AC10:FE01::

Zeroes can be omitted

- IPv4 address assigning
 - Static addressing
 - Dynamic addressing via DHCP
 - Dynamic Host Configuration Protocol
 - DHCP reservation ...
 - APIPA, automatic private IP addressing
 - IPv4: 169.254.x.x/16
 - IPv6: fe80::/10

- IPv6 address assigning
 - Static addressing
 - Static addressing with DHCPv6 (Stateless)
 - DHCPv6 options only
 - Dynamic addressing via DHCPv6 (Stateful)
 - IP address and DHCPv6 options (DNS servers, ...)
 - SLAAC alone
 - Stateless Address Autoconfiguration
 - SLAAC with DHCPv6 (Stateless)
 - DHCPv6 options only

- IPv4 subnetting
 - Classful network design
 - Obsolete! (see further)

Class	First bits	First byte	Subnetmask	Prefix	Nw vs Host
Α	Oxxxxxx	1-127	255.0.0.0	/8	N.H.H.H
В	10xxxxxx	128-191	255.255.0.0	/16	N.N.H.H
С	110xxxxx	192-223	255.255.255.0	/24	N.N.N.H
D	1110xxxx	224-239	Multicast	n/a	n/a
E	1111xxxx	240-255	Reserved	n/a	n/a

- IPv4 subnetting
 - Private IP addresses (RFC 1918)

Class	Start	End	Prefix
Α	10.0.0.0	10.255.255.255	/8
В	172.16.0.0	172.31.255.255	/12
С	192.168.0.0	192.168.255.255	/16

- Address not private = public address
- Home routers: 192.168.0.1 ...
- NAT (Network Address Translation)

- IPv4 subnetting, the sequel ...
 - Classful network design is not scalable
 - Replaced by CIDR through VLSM
 Classless Inter-Domain Routing
 Variable-Length Subnet Masking
 - eg. 172.23.0.0/23

- IPv4 subnetting, the sequel ...
 - example 172.23.8.15/16
 - two major addresses can be deducted
 - the network address (NA)
 - start of the subnet
 - the broadcast address (BA)
 - end of the subnet
 - network and broadcast address can NOT be used for a host

- IPv4 subnetting, the sequel ...
 - deducting the network address
 - binary "and" between IP address and subnet mask

X	Υ	X and Y
0	0	0
0	1	0
1	0	0
1	1	1

 network address can NOT be assigned to a host

- IPv4 subnetting, the sequel ...
 - classful example 172.23.9.15/16

Network address is 172.23.0.0

- IPv4 subnetting, the sequel ...
 - CIDR example 172.23.9.15/23

Network address is 172.23.8.0

- IPv4 subnetting, the sequel ...
 - deducting the broadcast address
 - invert the host bits of the network address
 - broadcast address can NOT be assigned to a host

- IPv4 subnetting, the sequel ...
 - classful example 172.23.9.15/16

Network address 172.23.0.0

10101100.00010111.111111111111111111

Broadcast address 172.23.255.255

- IPv4 subnetting, the sequel ...
 - CIDR example 172.23.9.15/23

Network address 172.23.8.0

10101100.00010111.00001001.11111111

Broadcast address 172.23.9.255

- IPv4 subnetting, the sequel ...
 - classful example 192.168.0.101/24
 - extra deductions we can make

```
class?
private / public?
classful mask?
/24 or 255.255.255.0
# hosts / subnet
32 - 24 (network bits) = 8 (host bits)
⇒2^8 = 256 - 2 = 254 hosts
⇒ - 2 (network and broadcast address)
```

- IPv4 subnetting, the sequel ...
 - CIDR example 172.123.9.15/23
 - extra deductions we can make

```
class?
private / public?
classful mask?
/16 or 255.255.0.0
# hosts / subnet
    32 - 23 (network bits) = 9 (host bits)
    ⇒2^9 = 512 - 2 = 510 hosts
    ⇒ - 2 (network and broadcast address)
# subnets in the classful network
    23 - 16 (class network bits) = 7
    => 2^7 = 128 subnets
```

- IPv4 local routing decision
 - http://www.google.be
 - my IP address 192.168.0.101/24 (source IP)
 - IP address of www.google.be 74.125.77.99 (destination IP)
 - 1. source IP AND my subnet mask=192.168.0.0
 - 2. destination IP AND my subnet mask = 74.125.77.0
 - 3. NOT equal = destination IP is not in own subnet!
 - Give the packet to the default gateway!

- What is my own IPv4 address?
 - ipconfig in Windows // ip address in Linux

Wireless LAN adapter Wireless:

```
Connection-specific DNS Suffix . : local
Link-local IPv6 Address . . . . : fe80::30f6:da89:1964:39c1%11
IPv4 Address . . . . . . . . . : 172.23.25.147
Subnet Mask . . . . . . . . . : 255.255.252.0
Default Gateway . . . . . . . : 172.23.24.1
```

No default gateway = packet dropped !

Links

- http://en.wikipedia.org/wiki/IP address
- http://en.wikipedia.org/wiki/IPv4 subnetting reference
 e
- http://en.wikipedia.org/wiki/Subnetwork
- http://en.wikipedia.org/wiki/Classless Inter-Domain Routing

