Table 2: Performance of SDPNAL+ on $\theta_+,$ FAP, QAP, BIQ and RCP problems $(\varepsilon=10^{-6})$

problem $\mid m \mid n_s; n_l$	it itsub itA	pobj	dobj		time
problem m ns, nt	TejtesubjieA	роој	4005	$\mid \eta_P \mid \eta_D \mid \eta_{\mathcal{K}_1} \mid \eta_{\mathcal{K}_2} \mid \eta_{C1} \mid \eta_{C2} \mid \eta_g$	time
theta4 1949 200;	0 0 304		4.98690560 1	3.3-12 9.6-7 1.0-7 5.8-8 1.1-7 1.1-8 -1.4-6	06
theta42 5986 200;	0 0 179		2.37382041 1	3.7-14 9.6-7 7.8-8 3.5-8 3.4-9 1.6-9 8.3-8	03
theta6 4375 300 ;	0 0 316		6.29618686 1	5.9-12 8.5-7 1.0-10 9.6-9 1.6-7 2.4-8 -2.0-6	13
theta62 13390 300;	0 0 178		2.93779433 1	1.5-13 9.5-7 2.8-8 1.2-8 5.1-9 2.2-9 -1.1-7	08
theta8 7905 400;	0 0 316		7.34078891 1	9.4-14 9.7-7 1.6-10 1.2-8 1.7-7 2.1-8 -2.5-6	24
theta82 23872 400;	0 0 0 157		3.40643435 1	6.5-14 9.7-7 2.1-8 9.8-9 1.6-8 4.0-9 -2.3-7	13
theta83 39862 400;	0 0 0 1 5 4		2.01671066 1	4.7-14 9.5-7 2.8-8 8.7-9 3.3-9 5.1-10 -1.0-7	14
theta10 12470 500;	0 0 0 354		8.31490052 1	4.1-14 8.5-7 2.2-10 6.5-9 1.7-7 2.5-8 -2.5-6	46 23
theta102 37467 500; theta103 62516 500;	0 0 0 157 0 0 144		3.80662724 1 2.23774202 1	1.1-13 9.5-7 8.5-9 7.0-9 1.7-8 9.6-10 -6.0-7 1.4-14 9.2-7 3.9-8 1.2-8 9.5-10 2.1-10 -3.0-8	23 22
theta103 02310 300, theta104 87245 500;	0 0 0 1 1 4 4 0 1 1 6 9		1.32826099 1	1.7-14 9.3-7 1.5-8 2.6-9 2.1-9 6.9-10 -9.2-8	24
theta104 87245 500, theta12 17979 600;	0 0 0 362		9.20909180 1	8.7-13 9.0-7 0 6.1-9 1.2-7 1.4-8 -2.2-6	1:15
theta12 17979 600; theta123 90020 600;	0 0 0 156		2.44951496 1	6.6-14 9.3-7 1.3-8 4.1-9 1.4-9 3.8-10 -6.0-8	34
san200-0.7-1 5971 200;	4 4 500		3.000000000 1	4.4-12 3.5-10 1.8-12 0.3-16 4.0-13 0.0-16 -2.7-10	07
sanr200-0.7 6033 200;	0 0 187		2.36332912 1	4.7-14 9.4-7 4.2-8 1.7-8 3.2-9 4.0-9 -1.4-7	03
c-fat200-1 18367 200;	0 0 233		1.20000137 1	5.0-14 9.8-7 7.8-8 8.9-8 2.0-8 4.7-8 -6.9-7	03
hamming-8-4 11777 256;	0 0 124		1.60000146 1	4.4-14 4.7-7 0 1.3-7 2.8-7 9.6-8 -5.3-6	02
hamming-9-8 2305 512;	11 11 500		2.24000020 2	1.1-10 9.5-7 1.7-10 0.0-16 1.4-11 0.0-16 -4.4-8	44
hamming-10-2 23041 1024;	0 0 657	8.53345652 1	8.53332571 1	6.9-12 8.7-7 2.1-7 3.2-8 2.3-7 3.5-8 7.6-6	3:09
hamming-7-5-6 1793 128;	0 0 510	3.59994044 1	3.60000147 1	2.8-13 3.6-7 0 0.5-16 8.7-7 6.7-7 -8.4-6	04
hamming-8-3-4 16129 256;	0 0 232	$2.56000182\ 1$	2.56000079 1	2.9-14 7.8-7 1.3-7 0 4.0-8 0.0-16 2.0-7	06
hamming-9-5-6 53761 512;	0 0 461	$5.86651695 \ 1$	5.86665968 1	3.3-13 7.5-7 0 0 9.5-7 2.6-7 -1.2-5	45
brock200-1 5067 200;	0 0 182	2.719671431	2.71967180 1	4.3-14 9.6-7 5.1-8 2.6-8 3.2-9 4.6-10 -6.6-8	04
brock200-4 6812 200;	0 0 172		2.11210766 1	1.0-14 9.2-7 5.9-8 2.3-8 4.8-9 1.0-9 -1.1-7	04
brock400-1 20078 400;	0 0 171		3.93309468 1	1.5-13 8.9-7 8.5-10 8.0-9 9.0-8 1.2-8 -1.6-6	14
keller4 5101 171;	0 0 317		1.34659045 1	2.7-14 9.9-7 8.0-8 9.2-8 2.1-8 9.6-9 -3.2-8	03
p-hat300-1 33918 300;	0 0 649		1.00202126 1	1.0-13 9.9-7 7.6-8 1.9-8 8.3-9 5.5-11 -1.3-7	26
G43 9991 1000;	21 21 973		2.79735897 2	5.3-12 8.9-7 1.7-7 2.7-8 2.1-7 1.6-8 4.1-6	12:32
G44 9991 1000;	21 21 942		2.79746225 2	5.7-12 9.9-7 1.2-8 1.5-8 2.6-7 5.0-8 -5.1-6	12:00
G45 9991 1000;	21 21 888		2.79317590 2	3.6-12 9.8-7 6.0-8 3.9-8 3.3-7 1.1-7 -6.5-6	11:43
G46 9991 1000;	21 21 887		2.79032512 2	3.6-12 9.7-7 5.8-8 4.8-8 5.6-7 1.4-7 -1.1-5	11:35
G47 9991 1000; G51 5910 1000;	21 21 1042 1 2 5672		2.80891901 2 3.49000007 2	9.7-12 9.4-7 7.2-10 1.5-8 2.7-7 2.4-8 -5.4-6 8.6-10 9.9-7 4.5-7 4.9-7 4.2-8 1.8-8 1.0-6	13:10 1:15:12
G51 5910 1000; G52 5917 1000;	5 5 5 10840		3.48386413 2	3.4-9 9.9-7 3.9-7 2.3-7 1.5-8 2.3-8 2.4-7	2:21:46
G52 5917 1000; G53 5915 1000;	4 4 4 1 3 2 6 0		3.48211536 2	3.3-9 9.9-7 5.0-7 3.0-7 1.2-7 4.9-8 2.9-6	2:48:21
G54 5917 1000;	8 8 8 4 2 7 8		3.41000193 2	4.0-10 9.9-7 1.3-7 1.3-7 2.0-8 9.3-9 -7.9-7	51:18
1dc.128 1472 128;	28 31 1575		1.66783019 1	1.6-12 8.7-7 3.7-7 9.9-7 1.5-8 5.2-8 1.6-7	13
1et.128 673 128;	0 0 313		2.92308952 1	7.3-14 9.6-7 2.2-7 4.4-8 2.8-7 8.5-9 2.7-6	02
1tc.128 513 128;	4 4 700		3.79999772 1	8.9-9 7.6-7 2.2-10 0.5-16 3.7-11 0.0-16 2.9-7	04
1zc.128 1121 128;	0 0 164	2.06664801 1	2.06666822 1	1.9-13 9.4-7 0 0.3-16 4.9-7 2.4-8 -4.8-6	01
1dc.256 3840 256;	2 2 1000	2.999994201	3.00000796 1	9.7-7 3.1-7 7.1-16 4.0-14 3.3-15 2.2-15 -2.3-6	25
1et.256 1665 256;	0 0 893	$5.44649927 \ 1$	5.44650229 1	2.1-13 9.9-7 4.5-8 2.6-8 6.7-9 1.4-8 -2.7-7	23
1tc.256 1313 256;	0 0 1335	$6.32404424\ 1$	6.32403890 1	2.2-14 9.9-7 2.5-7 2.1-7 4.4-8 2.6-8 4.2-7	38
1zc.256 2817 256;	0 0 237	$3.73329553 \ 1$	3.73333227 1	2.0-13 6.1-7 0 7.4-8 3.8-7 4.7-8 -4.9-6	05
1dc.512 9728 512;	0 0 2216		5.26951282 1	1.2-12 9.9-7 1.8-7 6.8-8 1.7-8 2.4-9 4.1-7	5:05
1et.512 4033 512;	0 0 990		1.03549269 2	2.5-12 9.9-7 4.0-8 3.0-8 9.3-9 6.6-9 -1.1-7	1:57
1tc.512 3265 512;	0 0 2494		1.12533878 2	5.4-12 9.9-7 3.2-7 2.9-7 4.7-8 5.6-9 9.4-7	4:57
2dc.512 54896 512;	0 0 2956		1.13834332 1	9.3-13 9.9-7 3.7-7 5.0-7 1.1-7 6.2-8 8.5-6	5:34
1zc.512 6913 512;	0 0 490		6.80000099 1	3.9-13 8.5-7 2.2-7 4.0-8 2.4-7 3.6-8 4.7-6	53
1dc.1024 24064 1024;	0 0 0 2620		9.55511660 1	3.2-13 9.9-7 2.8-7 6.4-8 3.9-8 4.0-9 1.3-6	31:46
1et.1024 9601 1024;	0 0 0 1144		1.82071515 2	3.1-12 9.9-7 2.5-7 3.5-8 4.5-8 2.2-9 1.3-6	12:43
1tc.1024 7937 1024;	0 0 0 2732		2.04204076 2	7.4-13 9.9-7 6.3-7 5.1-7 1.5-7 2.9-8 4.5-6	31:34
1zc.1024 16641 1024; 2dc.1024 169163 1024;	0 0 0 711 0 0 4135		1.27999917 2	3.9-12 7.7-7 1.6-7 2.0-8 1.8-7 1.7-8 5.4-6 4.6-13 6.5-7 6.2-7 9.9-7 1.6-7 1.7-7 1.3-5	7:12 $44:55$
1dc.2048 58368 2048;	0 0 0 4153		1.77099903 1 1.74257466 2	1.1-11 9.9-7 3.7-7 2.9-7 9.5-8 1.2-8 4.2-6	5:50:06
1et.2048 38308 2048;	0 0 0 3039		3.38165218 2	1.2-11 9.9-7 3.7-7 2.9-7 9.5-6 1.2-6 4.2-6 1.2-11 9.9-7 1.8-7 1.7-7 2.7-8 8.6-9 1.1-6	4:01:54
1tc.2048 22323 2048, 1tc.2048 18945 2048;	0 0 0 2876		3.70488730 2	1.4-11 9.9-7 2.8-7 1.8-7 3.9-8 2.2-9 1.5-6	3:50:43
2dc.2048 504452 2048;	0 0 0 2997		2.87867849 1	1.9-12 9.9-7 2.9-7 6.1-7 7.3-8 7.0-8 8.3-6	3:54:58
240.2010 001102 2010,	J 0 -301	2.0.012000 1	1 2.0.0010101	0.0 1 2.0 1 0.1 1 1.0 0 1.0 0 0.0 0	3.31.00

Table 2: Performance of SDPNAL+ on $\theta_+,$ FAP, QAP, BIQ and RCP problems $(\varepsilon=10^{-6})$

problem $\mid m \mid n_s; n_l$	it itsub itA	pobj	$\mid dobj \mid$	$\mid \eta_P \mid \eta_D \mid \eta_{\mathcal{K}_1} \mid \eta_{\mathcal{K}_2} \mid \eta_{C1} \mid \eta_{C2} \mid \eta_g$	time
fap08 120 120;	1 1 1 368	2.43627555 0	2.43628529 0	3.2-14 7.5-7 7.5-9 9.8-7 2.3-8 1.7-7 -1.7-6	03
fap09 174 174;	1 1 1 4 2 6	$1.07978262\ 1$	1.07977997 1	2.0-14 4.0-7 5.5-9 9.8-7 1.9-8 7.0-7 1.2-6	05
fap10 183 183;	3 3 993	9.70259108 - 3	9.72839625-3	4.0-15 8.8-7 1.7-7 8.4-7 3.6-8 4.4-7 -2.5-5	18
fap11 252 252;	5 5 1180	2.97984952-2	2.98707469-2	8.1-12 9.6-7 4.9-7 4.5-15 2.4-7 6.5-15 -6.8-5	39
fap12 369 369;	15 15 1768	2.73312482 - 1	2.73415267-1	9.4-14 9.9-7 2.6-8 6.0-7 7.0-9 4.6-7 -6.6-5	1:56
fap25 2118 2118;	11 11 2268	$1.28781491\ 1$	1.28803442 1	2.2-7 9.1-7 0.8-15 4.5-7 4.7-16 9.2-7 -8.2-5	3:58:21
fap36 4110 4110;	4 4 2033	6.985731851	6.98607976 1	8.4-10 9.5-7 8.5-7 7.0-15 2.3-8 1.1-13 -2.5-5	23:07:56
bur26a 1051 676;	137 222 10228	5.426449546	5.42664508 6	7.6-11 9.9-7 2.6-7 7.9-7 5.1-7 2.5-9 -1.8-5	1:48:05
bur26b 1051 676;	100 208 8605	3.81748294 6	3.81761983 6	5.3-11 9.9-7 3.8-7 2.5-7 8.2-7 2.2-9 -1.8-5	1:32:52
bur26c 1051 676;	247 441 21498		5.42707215 6	5.3-11 9.9-7 1.6-7 7.5-7 2.5-7 2.0-9 -2.0-5	2:03:12
bur26d 1051 676;	173 306 13287		3.82098028 6	1.5-10 9.9-7 9.4-8 8.0-7 2.8-7 3.5-10 -1.3-5	1:59:20
bur26e 1051 676;	129 361 14705		5.38711462 6	2.3-10 8.8-7 1.1-7 9.4-7 1.4-8 2.5-8 -1.1-5	1:18:35
bur26f 1051 676;	107 248 11272		3.78219580 6	2.1-15 9.9-7 4.1-7 2.7-7 3.8-11 4.1-9 -1.0-5	1:45:13
bur26g 1051 676;	250 392 10817		1.01177521 7	2.3-11 9.9-7 5.0-7 5.6-7 2.3-9 4.2-9 -2.4-5	1:32:44
bur26h 1051 676;	146 360 10658		7.09844876 6	1.5-10 9.5-7 7.4-7 9.9-7 2.4-9 4.7-9 1.9-5	1:25:45
chr12a 232 144;	185 246 1150		9.55199999 3	4.4-7 4.8-11 3.1-7 7.3-14 3.3-8 7.9-15 5.7-10	25
chr12b 232 144;	141 150 1333		9.74199999 3	9.3-7 4.5-10 6.5-7 3.1-14 5.0-8 2.0-15 6.0-7	19
chr12c 232 144;	70 213 5547		1.11555865 4	1.4-11 3.9-7 8.4-9 2.2-7 9.8-8 5.9-7 9.0-5	1:10
chr15a 358 225;	215 394 14122		9.89192452 3	1.5-10 6.9-7 6.5-9 1.6-7 6.2-8 4.5-7 3.2-4	7:08
chr15b 358 225;	34 92 2611		7.99463251 3	8.9-12 7.4-7 2.9-9 1.1-7 6.8-8 4.7-7 -1.5-4	58
chr15c 358 225;	26 67 2020		9.50389525 3	2.1-9 4.2-7 7.8-16 1.7-16 2.7-16 0.0-16 5.5-6	10.50
chr18a 511 324;	356 519 13265		1.10932891 4	2.0-10 4.9-7 1.0-8 1.7-7 1.1-7 7.9-7 4.7-4	12:50
chr18b 511 324; chr20a 628 400;	34 61 1658 241 445 10389		1.53401148 3	7.9-12 9.8-7 1.3-7 9.9-7 2.3-9 2.5-7 -9.5-6 2.4-10 8.7-7 9.7-8 2.1-7 4.6-8 4.0-7 3.8-4	1:55 18:17
chr20b 628 400;	68 165 3940		2.19072617 3 2.29800941 3	7.1-10 6.8-9 5.2-10 0.7-16 4.4-11 0.0-16 -2.0-6	9:02
chr20c 628 400;	386 764 10040		1.41476127 4	9.6-8 8.1-7 5.4-8 7.1-16 9.7-10 0.0-16 -1.0-4	13:12
chr22a 757 484;	104 250 6940		6.15591877 3	7.8-9 3.5-7 2.6-10 0.2-16 3.5-11 0.0-16 6.6-6	22:57
chr22b 757 484;	89 189 5620		6.19397816 3	2.0-7 3.1-7 1.6-7 1.9-16 6.3-10 0.0-16 1.7-6	12:46
chr25a 973 625;	53 200 5151		3.79236524 3	2.5-11 8.6-7 6.5-8 3.7-8 4.2-8 2.0-7 5.6-4	21:04
els19 568 361;	40 128 5188		1.72123317 7	1.3-13 9.9-7 8.7-8 7.7-8 4.1-9 9.2-9 8.1-5	7:01
esc16a 406 256;	54 83 1895		6.32822495 1	1.6-11 9.9-7 5.5-7 7.3-7 1.7-7 7.2-7 -4.2-5	1:16
esc16b 406 256;	69 382 5102		2.89979880 2	2.7-16 8.4-7 2.2-7 7.4-7 8.0-8 9.9-7 -4.1-5	3:29
esc16c 406 256;	289 1044 9190		1.53987010 2	4.4-11 9.9-7 2.2-7 5.3-7 2.6-8 2.3-8 -4.3-5	9:46
esc16d 406 256;	0 0 298		1.30000078 1	5.9-13 9.6-7 2.9-8 5.3-7 7.2-9 2.3-7 -5.6-6	08
esc16e 406 256;	0 0 342	2.633647631	2.63368158 1	4.9-13 9.9-7 1.6-7 1.6-7 2.0-7 1.2-7 -6.3-6	08
esc16g 406 256;	0 0 0 447	2.474032341	2.47403141 1	5.8-13 9.8-7 2.6-8 2.3-7 2.1-9 1.9-8 1.8-7	11
esc16h 406 256;	41 57 1373	$9.76183140\ 2$	9.76209281 2	2.8-12 9.8-7 1.9-7 9.6-7 2.0-7 4.4-7 -1.3-5	44
esc16i 406 256;	17 17 864	$1.13750212\ 1$	1.13749182 1	5.5-13 6.5-7 4.2-7 9.9-7 1.9-8 1.6-7 4.3-6	24
esc16j 406 256;	0 0 451	7.79368279 0	7.79425037 0	3.2-13 9.6-7 6.5-7 3.5-7 7.3-7 2.1-7 -3.4-5	12
esc32a 1582 1024;	46 78 1664	1.03320457 2	1.03320681 2	3.3-13 9.5-7 9.9-7 8.1-7 6.6-9 7.5-9 -1.1-6	32:32
esc32b 1582 1024;	52 100 2196		1.31876533 2	7.2-12 9.8-7 3.7-7 9.6-7 6.7-8 9.3-7 -5.1-5	45:50
esc32c 1582 1024;	46 139 3562		6.15177999 2	3.0-7 9.7-7 8.6-13 3.2-7 3.3-13 1.4-7 -4.1-6	1:06:19
esc32d 1582 1024;	0 0 678		1.90227139 2	3.5-12 9.9-7 2.2-7 2.7-7 3.1-7 2.3-7 -9.4-6	9:40
esc32e 1582 1024;	40 47 1248		1.89997253 0	1.6-8 9.9-7 1.3-15 1.4-8 1.8-16 6.4-9 8.7-6	22:00
esc32f 1582 1024;	40 47 1248		1.89997253 0	1.6-8 9.9-7 1.3-15 1.4-8 1.8-16 6.4-9 8.7-6	21:31
esc32g 1582 1024;	0 0 520		5.83331567 0	2.5-13 9.3-7 9.7-9 8.0-8 2.1-10 4.4-9 1.9-6	7:17
esc32h 1582 1024;	97 236 4959		4.24374966 2	2.1-11 9.9-7 3.1-7 7.9-7 6.7-8 7.6-7 -4.4-5	1:42:34
had12 232 144;	21 71 2037		1.65201286 3	2.6-12 8.4-7 2.5-7 3.2-7 2.1-7 7.3-8 -9.2-6	30
had14 313 196;	38 97 3878		2.72400204 3	1.3-11 7.4-7 1.4-7 9.9-7 2.7-7 4.9-9 -8.7-6	1:44
had16 406 256;	66 168 4900		3.71999993 3	3.2-7 4.2-7 2.0-7 5.6-16 3.2-8 0.1-16 1.9-7	3:31
had18 511 324;	227 312 11708		5.35808141 3	8.5-11 9.9-7 5.4-8 7.6-7 2.0-7 3.9-8 -2.3-5	16:16
had20 628 400;	93 197 7004		6.92209285 3	2.3-11 9.9-7 8.9-8 7.2-7 2.8-7 9.4-9 -1.7-5	18:14 52:13
kra30a 1393 900; kra30b 1393 900;	49 72 3208 81 101 3080		8.68268686 4 8.78468655 4	1.2-10 7.5-7 1.2-7 9.9-7 3.4-7 1.9-7 -6.5-5 7.1-11 7.0-7 1.4-7 9.9-7 3.7-7 1.7-7 -6.5-5	52:13 55:48
kra30 1393 900; kra32 1582 1024;	67 83 2946		8.57648412 4	1.3-11 7.0-7 1.4-7 9.9-7 3.7-7 1.7-7 -0.5-5 1.3-11 8.4-7 1.4-7 9.9-7 3.5-7 9.3-7 -7.0-5	1:07:22
lipa20a 628 400;	19 30 1300		3.68301015 3	8.5-9 1.0-7 0.9-15 0.6-16 2.4-16 0.0-16 -1.4-6	1:35
lipa20b 628 400;	4 14 1700		2.70760105 4	9.1-10 4.3-8 6.2-16 2.0-16 0.0-16 0.0-16 -1.9-7	1:13
lipa30a 1393 900;	443 1216 1300		1.31780000 4	4.4-8 1.0-7 1.0-8 1.9-16 2.5-13 0.0-16 -4.3-10	47:33
lipa30b 1393 900;	4 9 820		1.51426111 5	2.3-9 8.2-9 3.3-14 4.7-16 4.1-14 0.1-16 -3.7-7	11:08
<u> </u>	1 1 1				

Table 2: Performance of SDPNAL+ on $\theta_+,$ FAP, QAP, BIQ and RCP problems $(\varepsilon=10^{-6})$

problem	m	$n_s; n_l$	it itsub itA	pobj	dobj	$\mid \eta_P \mid \eta_D \mid \eta_{\mathcal{K}_1} \mid \eta_{\mathcal{K}_2} \mid \eta_{C1} \mid \eta_{C2} \mid \eta_g$	time
lipa40a	2458	1600;	153 546 3732	3.15379935 4	3.15379159 4	5.5-7 1.2-7 7.7-8 1.4-16 5.6-10 0.0-16 1.2-6	3:01:05
lipa40b			5 18 991		4.76581129 5	4.2-7 1.5-7 3.3-7 5.2-16 3.7-9 0.0-16 1.9-7	1:02:59
nug12			38 44 1788	5.67842214 2	5.67916428 2	8.8-7 3.4-7 2.2-14 9.2-7 9.4-15 2.4-8 -6.5-5	29
nug14	313	196;	44 99 3776		1.01007277 3	8.6-11 9.9-7 8.8-8 9.9-7 2.5-7 1.3-7 -2.9-5	1:44
nug15			36 69 2588		1.14050457 3	4.6-11 9.9-7 8.1-8 9.9-7 1.9-7 1.1-7 -2.7-5	1:33
nug16a		1, 1	61 128 4637		1.59924515 3	3.6-11 9.9-7 3.8-8 9.9-7 1.1-7 1.5-7 -2.4-5	3:57
nug16b			37 50 2018		1.21812797 3	1.1-11 8.3-7 2.7-7 9.9-7 7.8-7 1.5-7 -5.7-5	1:25
nug17		.'	46 74 2936		1.70703814 3	6.3-11 9.7-7 8.3-8 9.9-7 1.6-7 1.4-7 -2.5-5	2:59
nug18			48 69 2592		1.89345444 3	4.5-11 8.4-7 8.4-8 9.9-7 2.0-7 1.2-7 -2.5-5	3:21
nug20		! '	37 53 2120		2.50616865 3	3.7-11 8.7-7 2.0-7 9.9-7 5.6-7 1.1-7 -3.8-5	4:02
nug21			50 88 3190		2.38186274 3	7.4-11 8.6-7 4.4-8 9.9-7 8.5-8 1.2-7 -1.9-5	9:15
nug22			92 119 3840		3.52842541 3	2.3-11 9.3-7 1.5-7 9.9-7 3.9-7 1.7-7 -4.1-5	14:16
nug24			43 66 2359		3.40090464 3	1.0-10 9.6-7 1.1-7 9.9-7 2.6-7 2.5-7 -2.8-5	14:12
nug25	973	625;	48 76 2708		3.62577908 3	9.7-11 7.9-7 6.0-8 9.9-7 1.1-7 7.2-8 -1.6-5	19:25
nug27		to the second second	49 86 3300		5.12946060 3	1.5-10 9.0-7 6.2-8 9.9-7 1.2-7 3.2-7 -2.1-5	36:53
nug28		1 1	50 77 3190		5.02552528 3	1.6-10 8.7-7 7.2-8 9.9-7 1.3-7 4.4-7 -2.0-5	40:26
nug30		1	44 68 2463		5.94920345 3	3.8-11 9.9-7 1.3-7 9.6-7 3.3-7 1.1-7 -2.5-5	45:02
rou12			117 152 4455		2.35523034 5	8.0-11 8.8-7 9.1-8 1.9-7 2.8-8 9.1-8 1.2-5	1:04
	358	225;	58 69 2342		3.50197901 5	2.0-11 8.2-7 1.3-7 9.9-7 2.7-7 2.2-7 -2.9-5	1:26
rou20		400;	40 41 1640		6.95121474 5	8.3-7 5.8-7 2.9-14 8.3-7 1.2-14 3.6-10 -4.3-5	3:26
scr12	232	144;	18 22 1000	3.14099924 4	3.14099989 4	1.7-13 7.3-7 3.9-7 3.9-7 4.0-9 1.0-8 -1.0-7	09
scr15	358	225;	21 35 1060	5.11400014 4	5.11401398 4	3.6-7 2.1-7 4.8-7 0.7-16 4.7-10 0.0-16 -1.4-6	33
scr20	628 İ	400;	47 78 3398	1.067906425	1.06798582 5	3.7-11 9.7-7 5.9-8 9.9-7 5.6-8 5.2-7 -3.7-5	7:08
ste36a	1996	1296;	122 189 7344	9.25661751 3	9.25811948 3	4.3-11 9.9-7 1.6-7 9.9-7 3.9-7 6.8-8 -8.1-5	6:29:21
ste36b	1996	1296;	173 242 11851	1.565824384	1.56653460 4	1.5-10 9.9-7 1.8-7 9.9-7 5.4-7 4.2-8 -2.3-4	9:45:58
ste36c	1996	1296;	143 202 10008	8.13267040 6	8.13407147 6	4.6-11 9.9-7 1.8-7 9.5-7 4.8-7 3.8-9 -8.6-5	8:06:50
tai12a	232	144;	16 29 1120	2.244160005	2.24415915 5	3.1-9 3.0-8 0.8-15 0.3-16 5.8-16 0.0-16 1.9-7	10
tai12b	232	144;	112 215 2709	3.947232937	3.94695056 7	9.5-10 7.3-7 1.8-7 6.6-7 8.4-7 6.8-7 3.6-5	41
tai15a	358	225;	47 50 1871	3.770386095	3.77069943 5	1.4-11 7.1-7 3.4-7 9.9-7 8.4-7 2.9-7 -4.2-5	1:04
tai15b	358	225;	114 233 6762	5.18224460 7	5.18401454 7	2.4-11 9.9-7 1.2-7 9.9-7 3.3-9 2.2-9 -1.7-4	3:01
tai17a	457	289;	44 46 1756	4.764525815	4.76489250 5	2.2-11 5.1-7 3.1-7 9.9-7 7.5-7 3.6-7 -3.8-5	1:41
tai20a	628	400;	45 47 1748	6.715947925	6.71635456 5	2.3-11 6.5-7 2.6-7 9.9-7 5.5-7 2.0-7 -3.0-5	3:36
tai20b	628	400;	171 484 7416	1.224609428	1.22403315 8	2.5-10 9.5-7 1.4-7 9.4-7 6.9-8 6.9-8 2.4-4	9:22
tai25a	973		33 42 2630		1.11525360 6	8.5-12 9.9-7 5.1-8 9.4-7 3.0-9 2.7-9 -8.5-4	14:52
tai25b	973	625;	296 344 18325	3.37687430 8	3.37871783 8	1.7-10 9.9-7 1.7-7 9.9-7 9.4-7 5.1-8 -2.7-4	1:18:04
tai30a	1393	900;	39 39 1614	1.706715206	1.70679434 6	2.8-11 7.4-7 3.4-7 9.9-7 6.5-7 2.2-7 -2.3-5	29:11
tai30b		. '	236 342 16584		5.99068570 8	9.0-7 9.9-7 6.9-14 8.5-7 6.1-15 2.3-9 -1.8-4	2:52:00
tai35a			38 38 3467		2.21657164 6	4.8-11 6.6-7 2.9-7 9.9-7 5.1-7 2.4-7 -1.8-5	1:56:18
tai35b		! "	142 214 10915		2.69710521 8	2.6-10 9.9-7 1.7-7 9.8-7 7.7-7 6.7-8 -1.2-4	8:01:01
tai40a			33 33 3395		2.84321095 6	7.6-11 3.5-7 2.8-7 9.9-7 6.0-7 2.0-7 -1.8-5	3:56:34
tai40b			101 146 7124		6.09143489 8	5.6-10 9.9-7 2.5-7 9.9-7 9.9-7 2.4-8 -1.1-4	10:55:44
tho30			44 74 2925		1.43563445 5	6.3-11 9.9-7 1.8-7 9.9-7 5.1-7 6.9-8 -4.8-5	1:03:01
tho40 1			24 51 3998		2.26503953 5	2.0-10 9.9-7 2.0-7 9.9-7 5.2-7 2.7-8 -4.2-5	5:08:15
be100.1		the state of the s	14 14 1551	-2.00213242 4		1.7-7 9.5-7 3.9-7 0.4-16 1.4-7 1.4-16 -8.6-7	07
be100.2		1 /	0 0 1666	-1.79887190 4	I .	5.8-12 5.6-7 3.3-8 1.5-7 9.6-7 2.7-7 9.3-7	07
be100.3		1 /	17 17 1800	-1.82310505 4	1	9.2-8 9.6-7 3.1-7 0.1-16 8.0-8 0.8-16 -3.6-8	08
be100.4			53 53 1308	-1.98417957 4		6.6-8 9.7-7 2.1-7 0.1-16 2.2-8 2.0-16 -6.5-7	07
be100.5			35 35 1226	-1.68887012 4	:	1.7-8 9.9-7 9.0-8 0.0-16 2.2-8 0.1-16 -4.7-7	07
be100.6			41 41 1580	-1.81482194 4	:	4.0-12 9.9-7 3.0-8 2.8-8 9.1-8 1.4-7 -6.0-7	08
be100.7		i	36 36 1267 18 18 1347	-1.97008496 4	:	1.0-7 9.9-7 4.4-7 0.2-16 1.4-7 1.0-16 -2.5-7	06
be100.8		the state of the s	! !	-1.99463487 4		9.8-7 5.3-7 1.0-15 2.0-8 4.3-14 1.1-7 6.5-8	06
be100.9 be100.10	*.	The state of the s	15 16 1194 21 21 994	-1.42633657 4		2.2-7 9.6-7 7.7-7 0.5-16 1.9-7 4.3-16 3.7-7 5.2-12 8.7-7 7.1-8 1.1-7 9.7-7 5.4-7 -5.1-7	06 05
be120.3.1			95 99 1550	-1.64085243 4 -1.38035586 4	•	3.6-8 9.8-7 1.4-7 0.1-16 5.1-8 0.4-16 6.3-7	13
be120.3.1			84 87 1791	-1.36266293 4	!	2.4-8 9.9-7 4.3-8 0.1-16 2.5-8 0.8-16 9.2-7	14
be120.3.3 be120.3.3			56 60 1482	-1.29879012 4	!	3.0-12 9.9-7 3.6-8 4.7-8 4.4-7 7.3-8 9.6-7	10
be120.3.4			16 16 1753	-1.45112484 4	:	1.0-11 9.9-7 2.9-8 2.5-8 3.4-7 1.8-7 -7.8-7	10
be120.3.5			101 102 1396	-1.19919090 4		3.4-8 9.4-7 2.2-7 0.0-16 4.2-8 0.2-16 4.8-7	12
be120.3.6			73 76 1486	-1.34320616 4		1.5-7 9.9-7 7.7-7 0.1-16 2.4-9 1.3-16 -1.0-7	12
DC120.0.0	, 12.	- ;	1011011100	1.01020010 4	1 1.0 10 20 00 0 4	1.0 0.0 1.1 0.1 10 2.1 0 1.0 10 -1.0	14

Table 2: Performance of SDPNAL+ on $\theta_+,$ FAP, QAP, BIQ and RCP problems $(\varepsilon=10^{-6})$

problem $\mid m \mid n_s; n_l$	it itsub itA	$pobj \mid dobj$	$\mid \eta_P \mid \eta_D \mid \eta_{\mathcal{K}_1} \mid \eta_{\mathcal{K}_2} \mid \eta_{C1} \mid \eta_{C2} \mid \eta_g$	time
be120.3.7 121 121;	164 175 2473	-1.45641132 4 -1.45641196 4	3.9-8 9.8-7 1.6-7 0.0-16 9.9-8 0.6-16 2.2-7	20
be120.3.8 121 121;	166 175 2295	-1.53030214 4 -1.53030321 4	1.8-12 9.9-7 1.4-8 3.5-8 1.3-7 2.6-7 3.5-7	18
be120.3.9 121 121;	136 136 1279	-1.12413207 4 -1.12413165 4	7.0-8 9.4-7 5.3-7 0.0-16 1.9-7 1.0-16 -1.9-7	13
be120.3.10 121 121;	38 38 1376	-1.29308724 4 -1.29308274 4	9.9-7 9.4-7 6.8-16 5.5-8 2.7-13 2.4-7 -1.7-6	09
be120.8.1 121 121;	47 49 1386	-2.01939343 4 -2.01939614 4	9.9-7 9.2-7 6.2-16 3.7-8 7.7-15 2.2-7 6.7-7	08
be120.8.2 121 121;	117 117 1764	-2.00741308 4 -2.00741639 4	2.4-8 9.9-7 2.0-7 0.1-16 5.0-8 0.1-16 8.3-7	14
be120.8.3 121 121;	53 53 1259	-2.05059039 4 -2.05058872 4	1.4-7 9.9-7 5.8-7 0.3-16 1.2-7 0.2-16 -4.1-7	09
be120.8.4 121 121;	61 63 1623	-2.17797975 4 -2.17798337 4	6.2-8 9.8-7 1.7-7 0.1-16 7.9-9 0.3-16 8.3-7	11
be120.8.5 121 121;	23 23 1855	-2.13162780 4 -2.13162746 4	1.8-12 9.8-7 2.7-8 1.8-7 1.7-7 6.3-7 -7.9-8	11
be120.8.6 121 121;	65 66 1389	-1.96769536 4 -1.96770039 4	1.6-7 9.7-7 4.6-7 0.2-16 4.0-8 1.8-16 1.3-6	11
be120.8.7 121 121;	34 36 1245	-2.37324046 4 -2.37323567 4	6.2-12 9.9-7 2.3-8 3.6-8 7.1-7 2.3-7 -1.0-6	09
be120.8.8 121 121;	30 30 1120	-2.12047703 4 -2.12047557 4	3.6-12 9.7-7 7.1-8 7.2-8 6.1-7 9.2-7 -3.5-7	08
be120.8.9 121 121;	44 46 1290	-1.92844228 4 -1.92844391 4	2.9-12 9.9-7 3.6-8 6.0-8 1.9-7 4.4-8 4.2-7	09
be120.8.10 121 121;	114 114 1458	-2.00240045 4 -2.00239955 4	1.3-8 9.9-7 6.1-8 0.0-16 1.2-9 0.2-16 -2.2-7	13
be150.3.1 151 151;	64 71 1660	-1.98491675 4 -1.98492153 4	3.4-12 9.9-7 1.9-8 3.6-8 3.3-7 2.9-7 1.2-6	17
	1 1	:		20
be150.3.2 151 151;	74 83 1878	-1.88648463 4 -1.88648565 4	4.7-12 9.9-7 5.7-9 1.9-8 1.8-7 5.2-8 2.7-7	
be150.3.3 151 151;	58 64 1562	-1.80437093 4 -1.80437406 4	4.0-12 9.9-7 9.6-9 6.7-8 2.2-7 4.5-7 8.7-7	17
be150.3.4 151 151;	48 49 1632	-2.06526731 4 -2.06526537 4	4.8-12 9.9-7 3.7-8 4.3-8 4.2-7 2.6-8 -4.7-7	17
be150.3.5 151 151;	66 76 1696	-1.77686482 4 -1.77686303 4	1.2-12 9.9-7 3.8-8 2.5-7 1.5-8 6.0-7 -5.0-7	18
be150.3.6 151 151;	64 70 1663	-1.80506749 4 -1.80506987 4	5.2-12 9.6-7 2.5-8 9.4-8 9.9-7 2.7-7 6.6-7	17
be150.3.7 151 151;	63 66 1691	-1.91012874 4 -1.91013256 4	7.6-12 9.4-7 4.8-8 5.6-8 9.8-7 7.9-8 9.9-7	18
be150.3.8 151 151;	106 110 1943	-1.96980589 4 -1.96980765 4	8.0-8 9.9-7 1.6-7 0.1-16 1.6-8 0.1-16 4.5-7	21
be150.3.9 151 151;	33 33 1260	-1.41033725 4 -1.41033515 4	3.2-7 9.8-7 6.5-7 0.8-16 1.6-7 3.8-16 -7.4-7	12
be150.3.10 151 151;	146 150 2266	-1.92309196 4 -1.92309315 4	1.7-8 9.9-7 5.9-8 0.0-16 9.7-9 0.0-16 3.1-7	25
be150.8.1 151 151;	53 58 1456	-2.91436841 4 -2.91437136 4	3.5-12 9.2-7 5.2-8 6.9-8 1.0-7 7.4-7 5.1-7	15
be150.8.2 151 151;	64 69 1590	-2.88211031 4 -2.88211307 4	3.0-7 9.9-7 8.6-7 0.6-16 9.3-8 3.1-16 4.8-7	17
be150.8.3 151 151;	66 72 1719	-3.10603247 4 -3.10603343 4	9.9-7 6.8-7 0.8-15 3.3-8 3.4-13 1.3-7 1.6-7	18
be150.8.4 151 151;	67 70 1568	-2.87292945 4 -2.87293303 4	4.1-8 9.7-7 3.4-7 0.1-16 6.4-9 0.4-16 6.2-7	17
be150.8.5 151 151;	71 79 1743	-2.94820722 4 -2.94820763 4	3.3-8 9.9-7 8.5-8 0.1-16 1.6-8 0.1-16 6.9-8	19
be150.8.6 151 151;	64 65 1480	-3.14372375 4 -3.14372641 4	6.1-8 9.4-7 1.9-7 0.1-16 2.2-8 0.8-16 4.2-7	15
be150.8.7 151 151;	80 84 1738	-3.32521054 4 -3.32521757 4	6.8-8 9.9-7 3.0-7 0.1-16 5.7-8 0.8-16 1.1-6	19
be150.8.8 151 151;	127 134 1946	-3.15999871 4 -3.16000387 4	1.2-7 9.9-7 4.1-7 0.2-16 5.8-9 1.8-16 8.2-7	23
be150.8.9 151 151;	112 121 1890	-2.71107196 4 -2.71107715 4	9.8-8 9.9-7 4.0-7 0.2-16 8.8-8 4.4-16 9.6-7	23
be150.8.10 151 151;	65 71 1714	-3.00479452 4 -3.00480014 4	4.2-12 9.9-7 1.7-8 1.8-7 9.3-7 8.2-8 9.4-7	17
be200.3.1 201 201;	76 86 1784	-2.77160638 4 -2.77161211 4	7.6-12 9.9-7 3.9-9 2.5-8 4.4-7 1.1-7 1.0-6	31
be200.3.2 201 201;	95 109 1962	-2.67607791 4 -2.67607958 4	5.7-12 9.6-7 4.6-8 5.8-8 1.4-7 7.1-7 3.1-7	36
be200.3.3 201 201;	172 181 2565	-2.94786387 4 -2.94786828 4	1.9-8 9.9-7 7.3-8 0.0-16 4.4-8 0.1-16 7.5-7	49
be200.3.4 201 201;	101 112 2097	-2.91061996 4 -2.91062417 4	2.7-12 9.9-7 1.5-8 3.2-8 1.8-7 5.1-8 7.2-7	38
be200.3.5 201 201;	165 178 2394	-2.80729836 4 -2.80730179 4	2.2-12 9.9-7 1.6-8 5.3-8 9.4-8 4.8-7 6.1-7	46
be200.3.6 201 201;	83 92 1852	-2.79283274 4 -2.79283530 4	4.5-12 9.0-7 2.9-8 4.2-8 4.3-7 1.4-7 4.6-7	33
be200.3.7 201 201;	79 83 2050	-3.16204947 4 -3.16204613 4	2.6-8 9.7-7 7.6-7 0.5-16 5.5-8 1.1-15 -5.3-7	36
be200.3.8 201 201;	92 102 2068	-2.92442698 4 -2.92443256 4	4.4-12 9.8-7 1.4-8 4.5-8 4.3-7 3.0-7 9.5-7	37
be200.3.9 201 201;	201 212 3478	-2.64370469 4 -2.64370964 4	8.5-13 9.9-7 1.5-8 1.5-8 4.3-9 1.9-8 9.4-7	1:02
be200.3.10 201 201;	91 97 1862	-2.57606847 4 -2.57606978 4	2.9-12 9.9-7 9.2-9 1.1-7 1.7-7 5.8-7 2.5-7	34
be200.8.1 201 201;	96 96 2493	-5.08694921 4 -5.08694305 4	4.1-12 9.9-7 7.0-9 1.7-8 1.7-8 1.0-7 -6.1-7	43
be200.8.2 201 201;	73 81 1721	-4.43360234 4 -4.43360625 4	4.6-12 9.9-7 4.8-8 5.4-8 1.2-7 7.9-7 4.4-7	30
be200.8.3 201 201;	106 119 1993	-4.62539622 4 -4.62540239 4	2.4-12 9.9-7 2.5-8 9.1-8 2.6-7 1.6-7 6.7-7	37
be200.8.4 201 201;	78 89 1752	-4.66211953 4 -4.66212874 4	5.8-12 9.9-7 3.1-8 6.4-8 9.7-7 4.9-7 9.9-7	33
be200.8.5 201 201;	91 99 1956	-4.42712301 4 -4.42712517 4	1.5-12 9.9-7 2.1-8 4.1-8 1.1-7 1.3-7 2.4-7	37
be200.8.6 201 201;	70 71 1900		5.3-8 9.8-7 1.3-7 0.1-16 2.8-8 0.4-16 2.9-7	33
be200.8.6 201 201; be200.8.7 201 201;	93 103 2043	-5.12188803 4 -5.12189105 4 -4.93528243 4 -4.93529731 4	4.3-12 9.8-7 4.1-8 5.6-8 5.5-7 8.0-7 1.5-6	38
	1 : :			
be200.8.8 201 201;	94 101 1947	-4.76891672 4 -4.76891887 4	2.2-8 9.9-7 6.0-8 0.1-16 1.9-9 0.2-16 2.3-7	36
be200.8.9 201 201;	85 95 1967	-4.54956017 4 -4.54956404 4	6.9-8 9.8-7 1.6-7 0.2-16 2.6-8 0.1-16 4.3-7	37
be200.8.10 201 201;	84 95 1857	-4.57430239 4 -4.57431501 4	5.3-12 9.9-7 3.0-8 5.6-8 6.2-7 1.7-7 1.4-6	35
be250.1 251 251;	122 123 2800	-2.51194635 4 -2.51194398 4	1.1-7 9.9-7 1.3-7 0.2-16 1.8-8 4.6-16 -4.7-7	1:13
be250.2 251 251;	121 121 2842	-2.36814919 4 -2.36814545 4	1.2-12 9.9-7 1.1-8 2.0-8 1.5-8 2.3-8 -7.9-7	1:12
be250.3 251 251;	84 89 2200	-2.40000031 4 -2.39999662 4	1.3-7 9.9-7 1.2-7 0.1-16 1.2-8 1.4-16 -7.7-7	59
be250.4 251 251;	208 209 3850	-2.57203185 4 -2.57202544 4	9.7-9 9.9-7 5.5-8 0.0-16 2.0-8 0.2-16 -1.2-6	1:42
be250.5 251 251;	115 127 2791	-2.23747084 4 -2.23746795 4	4.1-12 9.9-7 3.1-9 3.4-8 8.2-9 2.9-7 -6.5-7	1:15

Table 2: Performance of SDPNAL+ on $\theta_+,$ FAP, QAP, BIQ and RCP problems $(\varepsilon=10^{-6})$

problem $\mid m \mid$	$n_s; n_l$	it itsub itA	pobj	dobj	$\eta_P \mid \eta_D \mid \eta_{\mathcal{K}_1} \mid \eta_{\mathcal{K}_2} \mid \eta_{C1} \mid \eta_{C2} \mid \eta_g$	time
be250.6 251	251;	120 141 2452	-2.40188386 4	-2.40188614 4	4.2-12 9.9-7 1.6-8 3.4-8 1.3-7 8.2-8 4.7-7	1:08
be250.7 251	251;	127 141 2664	-2.51189432 4	-2.51189682 4	8.0-12 9.9-7 9.0-9 4.4-8 5.7-7 1.2-7 5.0-7	1:12
be250.8 251	251;	99 113 2172	$-2.50203920\ 4$	-2.50204534 4	8.8-12 9.9-7 1.8-8 4.0-8 2.1-7 1.1-7 1.2-6	1:00
be250.9 251	251;	189 191 3319	-2.13970633 4	-2.13970185 4	3.2-12 9.9-7 1.1-8 3.9-8 2.2-7 1.8-7 -1.0-6	1:32
be250.10 251	1 251;	174 189 2695	-2.43550234 4	-2.43550549 4	1.2-8 9.9-7 7.3-8 0.0-16 1.8-9 0.5-16 6.5-7	1:18
bqp100-1 101	1 101;	23 23 1229	-8.38038788 3	-8.38038456 3	2.4-7 9.4-7 6.4-7 0.5-16 1.4-9 1.5-15 -2.0-7	06
bqp100-2 101	1 101;	126 139 1998	-1.14892554 4	-1.14892770 4	1.1-12 9.9-7 1.5-8 6.7-8 2.2-7 1.2-7 9.4-7	13
bqp100-3 101	1 101;	12 12 1999	$-1.31531838\ 4$	-1.31532196 4	$1.3-7 \mid 9.9-7 \mid 6.3-7 \mid 0.1-16 \mid 7.9-8 \mid 1.3-16 \mid 1.4-6$	08
bqp100-4 101	1 101;	96 97 1214	-1.07318905 4	-1.07318888 4	5.6-8 9.5-7 4.5-7 0.1-16 1.7-7 0.6-16 -7.9-8	08
bqp100-5 101	! '	243 250 1819	-9.48702758 3	-9.48702828 3	1.9-12 9.9-7 5.6-8 8.8-8 8.7-8 4.7-7 3.7-8	15
bqp100-6 101		23 23 1363	-1.08247749 4	-1.08247423 4	$9.9-7 \mid 9.9-7 \mid 5.5-16 \mid 2.8-8 \mid 6.8-14 \mid 1.0-7 \mid -1.5-6$	06
bqp100-7 101	! '	49 55 1342		-1.06891550 4	5.9-12 9.9-7 1.8-8 2.1-8 6.2-7 7.9-9 2.1-7	07
bqp100-8 101		67 67 1717	-1.17699888 4	:	9.4-8 9.6-7 4.1-7 0.2-16 2.1-7 0.8-16 -3.4-7	11
bqp100-9 101		37 37 2206	-1.17332529 4		$1.1-7 \mid 9.7-7 \mid 6.1-7 \mid 0.1-16 \mid 7.0-8 \mid 2.2-16 \mid -9.3-8$	10
bqp100-10 10	.1 1	72 73 2208	-1.29802732 4	:	4.9-8 9.9-7 1.5-7 0.1-16 4.5-8 0.2-16 -7.3-7	12
bqp250-1 251		153 168 3069		-4.76632099 4	2.0-12 9.9-7 1.2-8 8.3-9 1.5-8 7.2-8 1.1-6	1:20
bqp250-2 251	! '	115 134 2410		-4.72224686 4	3.0-7 9.6-7 3.7-8 0.3-16 2.1-8 0.9-16 1.3-6	1:02
bqp250-3 251		93 105 2107	-5.10766294 4	:	9.9-7 9.8-7 1.0-15 5.4-9 1.2-12 3.6-8 2.1-6	53
bqp250-4 251	' '	92 94 2350	-4.33125367 4	:	3.3-7 9.9-7 3.3-7 0.8-16 7.7-9 1.2-15 -1.5-7	59
bqp250-5 251	' '	147 166 2580	-5.00043271 4		1.9-8 9.9-7 6.1-8 0.0-16 2.0-8 0.1-16 2.4-7	1:16
bqp250-6 251	1 /	106 122 2126	-4.36688521 4	!	1.3-7 9.9-7 2.5-7 0.2-16 7.3-8 2.2-16 1.6-6	1:03
	1 251;	114 137 2407	-4.89216690 4	:	1.0-11 7.9-7 8.4-9 4.4-8 9.9-7 3.7-7 1.4-6	1:09
bqp250-8 251	' '	93 113 2008	-3.87795379 4	!	6.8-12 9.5-7 5.0-8 6.4-8 8.8-8 1.5-7 3.0-7	57
bqp250-9 251	1. 1	96 114 2057	-5.14975005 4	!	9.8-12 9.8-7 1.7-8 1.4-7 9.9-7 5.2-7 6.5-7	58 1:01
bqp250-10 25 bqp500-1 501		103 123 2188	-4.30145022 4	:	3.1-12 9.9-7 6.7-9 2.1-8 2.2-9 4.4-9 6.4-7	5:20
bqp500-1 501		138 171 2499 142 194 2390	-1.25964032 5 -1.36011042 5	:	1.6-11 9.9-7 6.5-9 6.8-9 9.1-7 1.6-7 2.0-6 6.8-8 9.9-7 8.2-8 0.1-16 4.8-9 0.3-16 4.1-7	5:29
bqp500-2 501		135 180 2390		-1.38453549 5	2.0-8 9.7-7 3.8-7 0.5-16 6.6-8 2.8-16 7.6-7	6:31
bqp500-3 501	! '	128 174 2390	-1.39328333 5	:	2.3-7 9.9-7 7.1-8 0.2-16 2.1-9 6.0-16 6.1-7	6:08
bqp500-4 501		169 206 2910	-1.34092095 5	:	4.5-8 9.9-7 4.8-8 0.0-16 1.0-8 0.2-16 1.1-6	7:25
bqp500-6 501	! '	167 214 2780	-1.30764344 5	:	1.1-8 9.8-7 1.8-7 0.3-16 3.4-9 2.9-16 4.6-7	7:30
bqp500-7 501		157 202 2742	-1.31491374 5	:	1.5-11 9.8-7 1.1-8 3.0-8 3.8-7 2.5-7 1.1-6	7:27
bqp500-8 501	! '	142 184 2520	-1.33489832 5	'	1.7-7 9.9-7 7.9-8 0.2-16 2.1-8 0.4-16 3.4-7	6:26
bqp500-9 501		145 193 2495	-1.30288190 5		1.5-11 9.9-7 1.2-8 4.5-8 1.6-7 2.7-7 1.5-6	6:37
bqp500-10 50	1. '	138 177 2473	-1.38534303 5	:	1.5-11 9.8-7 1.1-8 1.6-8 4.1-7 2.4-7 1.5-6	6:36
gka8a 101	. '	0 0 4267	-1.11972022 4	:	9.8-7 7.6-7 0.8-15 3.0-9 2.9-13 2.6-8 -1.3-6	15
gka9b 101		3 7 1047	-1.37000000 2	-1.37000053 2	6.4-10 2.5-9 1.1-10 6.3-16 1.8-11 2.1-16 1.9-7	04
gka10b 126	1. 1	1 1 1 1 1 1 3 1 5		-1.55567299 2	1.2-12 5.1-7 1.2-7 9.9-7 5.4-8 1.8-7 -1.5-5	08
gka7c 101	101;	135 135 2010	-7.31644973 3	-7.31643789 3	3.0-8 9.9-7 2.1-7 0.0-16 1.3-7 0.0-16 -8.1-7	12
gka1d 101	101;	112 112 2043	-6.52842897 3	-6.52842810 3	4.5-8 9.7-7 2.1-7 0.0-16 5.9-8 0.1-16 -6.7-8	12
gka2d 101	101;	39 42 1319	-6.99071129 3	-6.99069459 3	3.5-12 9.9-7 5.6-8 8.2-8 2.1-7 2.5-7 -1.2-6	08
gka3d 101	101;	46 46 1306	-9.73433037 3	-9.73434598 3	$2.8-12 \ 9.9-7 \ 2.9-8 \ 4.1-7 \ 2.5-7 \ 5.9-7 \ 8.0-7$	08
gka4d 101	101;	90 90 1210	$-1.12784134\ 4$	-1.12784212 4	7.4-8 9.7-7 4.5-7 0.2-16 5.2-8 4.3-16 3.5-7	09
gka5d 101	101;	31 33 1276	-1.239886594	-1.23988547 4	2.6-12 9.7-7 6.9-8 1.8-7 1.4-7 9.1-7 -4.5-7	07
gka6d 101	' '	23 23 1391	-1.49293396 4	-1.49293511 4	$9.9-7 \mid 9.9-7 \mid 6.5-16 \mid 2.0-7 \mid 1.6-14 \mid 3.4-7 \mid 3.9-7$	06
gka7d 101		$32 \ 32 1151$	-1.53758304 4	'	9.8-7 8.9-7 5.5-16 5.9-8 3.9-14 1.4-7 -1.0-6	07
gka8d 101	101;	$46 \ 46 2653$	-1.70053607 4	-1.70053546 4	4.9-12 9.9-7 4.1-9 5.2-8 2.6-8 3.8-7 -1.8-7	13
gka9d 101	'. '	4 4 1373	-1.65338958 4	:	$5.1-8 \mid 9.5-7 \mid 2.7-8 \mid 0.1-16 \mid 7.8-9 \mid 0.9-16 \mid -1.6-6$	06
gka10d 101		32 32 1234	-2.01085766 4	-2.01085650 4	1.6-12 9.9-7 1.9-8 3.5-8 1.1-7 4.9-8 -2.9-7	06
gka1e 201		121 123 2921	-1.70698173 4	:	2.5-12 9.9-7 1.1-8 2.0-8 1.4-8 1.5-8 -3.2-7	48
gka2e 201		106 114 2270	-2.49176332 4	:	4.8-8 9.9-7 5.6-8 0.1-16 4.0-9 0.3-16 7.5-7	39
gka3e 201		103 111 2082	-2.68987429 4	:	3.0-8 9.9-7 1.9-7 0.1-16 5.3-8 0.6-16 4.4-7	36
gka4e 201		100 101 2200	-3.72251472 4	:	7.5-8 9.9-7 2.0-7 0.1-16 4.0-8 0.2-16 -7.2-7	38
gka5e 201		119 128 2431	-3.80023046 4	:	1.6-7 9.8-7 2.3-7 0.3-16 4.9-8 5.3-16 3.5-7	42
gka1f 501		166 203 2780	-6.55590598 4		1.3-8 9.8-7 1.6-7 0.3-16 1.3-8 6.3-16 5.9-7	6:32
gka2f 501		205 242 3541	-1.07931739 5	:	1.0-11 9.9-7 6.0-9 9.1-9 1.6-7 8.1-8 1.5-6	7:54
gka3f 501		174 216 2954		-1.50151193 5	6.4-12 9.9-7 1.5-8 3.4-8 5.2-8 6.6-7 6.8-7	6:51
gka4f 501		183 222 3101		-1.87087908 5	4.2-12 9.9-7 4.2-9 2.4-8 2.4-8 2.0-7 8.2-8	7:10
gka5f 501	901;	142 187 2520	-2.00914204 5	-2.06914258 5	1.8-7 9.9-7 7.1-8 0.2-16 1.3-8 1.9-16 -1.5-8	5:53

Table 2: Performance of SDPNAL+ on $\theta_+,$ FAP, QAP, BIQ and RCP problems $(\varepsilon=10^{-6})$

problem $\mid m \mid n_s; n_l$	it itsub itA	pobj	dobj	$\mid \eta_P \mid \eta_D \mid \eta_{\mathcal{K}_1} \mid \eta_{\mathcal{K}_2} \mid \eta_{C1} \mid \eta_{C2} \mid \eta_g$	time
soybean-small.2 48 47;	0 0 463	4.00363442 2	4.00364397 2	7.4-13 9.9-7 0 2.4-7 2.1-9 1.1-7 -1.2-6	01
soybean-small.3 48 47;	0 0 0 212		2.46459259 2	9.4-13 9.6-7 4.5-7 7.9-7 3.5-8 5.8-8 3.6-8	01
soybean-small.4 48 47;	0 0 0 440		2.04275448 2	1.6-12 9.5-7 0 4.7-7 5.8-7 4.0-7 -1.6-6	01
soybean-small.5 48 47;	0 0 0 275		1.81795819 2	2.0-12 9.6-7 1.2-7 9.6-7 3.1-7 1.9-7 -1.8-7	01
soybean-small.6 48 47;	0 0 368		1.63872595 2	5.0-12 2.8-7 0 9.1-7 1.6-7 1.9-7 -3.3-7	01
soybean-small.7 48 47;	0 0 385		1.47247394 2	2.5-12 9.8-7 0 2.8-7 8.6-8 1.4-7 -1.2-6	01
soybean-small.8 48 47;	24 24 1012		1.33486525 2	1.8-13 9.3-7 2.7-7 6.5-7 8.9-8 1.2-7 -1.1-6	03
soybean-small.9 48 47;	0 0 0 632		1.21410703 2	5.4-12 2.9-7 0 9.9-7 1.0-8 6.3-8 -1.5-6	03
soybean-small.10 48 47;	0 0 032		1.10777427 2	3.8-12 9.8-7 7.9-9 4.0-7 2.3-8 9.3-8 -5.9-6	01
soybean-small.11 48 47;	1 1 1 1 7 0 0		1.02267645 2	2.7-8 1.4-7 8.7-7 1.8-16 1.0-7 0.5-16 -2.5-7	02
soybean-sman.11 48 47; soybean-large.2 308 307;	2 2 1171		5.46342235 3	8.1-13 9.2-7 8.0-9 9.9-7 1.8-8 6.6-7 -1.0-7	29
	!!!		!		25 25
soybean-large.3 308 307; soybean-large.4 308 307;	2 2 934		4.57580844 3	4.6-13 7.2-7 1.7-8 2.7-7 4.5-8 9.3-8 -2.8-7	52 52
	52 52 1506		4.04637422 3	1.0-13 7.7-7 2.8-7 8.7-7 2.7-8 3.0-7 -1.4-7	
soybean-large.5 308 307;	2 2 2 8 1 4		3.63158133 3	2.6-13 9.8-7 0 9.6-7 1.7-8 2.0-7 -8.4-8	22
soybean-large.6 308 307;	0 0 413		3.26767798 3	4.1-12 9.4-7 1.3-7 5.7-7 4.3-7 1.1-7 -1.9-7	12
soybean-large.7 308 307;	2 2 757		3.00627274 3	1.7-13 9.2-7 6.0-7 8.7-7 8.2-8 6.9-8 -8.3-8	25
soybean-large.8 308 307;	2 2 2 7 2 6		2.76817008 3	7.4-14 9.9-7 3.3-7 5.9-7 5.0-8 3.0-8 -1.8-7	22
soybean-large.9 308 307;	6 6 850		2.55268925 3	2.3-13 9.5-7 6.1-7 9.7-7 6.7-8 1.9-7 -1.4-7	24
soybean-large.10 308 307;	0 0 359		2.36925566 3	4.3-12 8.5-7 4.7-8 9.5-7 1.8-7 4.2-8 -1.0-7	10
soybean-large.11 308 307;	0 0 948		2.23131261 3	3.0-11 6.5-7 1.6-7 8.7-8 6.4-7 4.3-7 1.0-6	25
spambase-small.2 301 300;	0 0 434		2.47158234 7	4.8-12 9.4-7 6.0-8 7.0-7 1.4-7 9.1-8 -1.1-6	12
spambase-small.3 301 300;	2 2 526		9.88375689 6	8.9-13 8.9-7 7.7-7 9.7-7 4.9-7 1.9-7 5.1-7	14
spambase-small.4 301 300;	31 31 980		6.46938487 6	8.9-13 8.9-7 5.0-7 9.9-7 2.0-7 1.3-7 2.2-6	33
spambase-small.5 301 300;	0 0 596		4.88913614 6	4.1-7 9.9-7 7.5-16 6.6-7 3.1-15 9.6-7 -2.2-5	16
spambase-small.6 301 300;	8 8 793		3.96292724 6	7.1-12 9.3-7 0 7.0-7 8.4-7 3.7-7 -1.2-5	26
spambase-small.7 301 300;	8 8 8 8 4 2		3.21827500 6	9.8-7 4.2-7 7.4-16 7.9-7 7.2-16 7.7-7 2.1-5	27
spambase-small.8 301 300;	1 1 1 9 0 1		2.63461016 6	4.6-12 9.9-7 0 8.9-7 2.8-8 1.4-7 6.5-6	26
spambase-small.9 301 300;	8 8 963		2.14761786 6	2.8-11 9.6-7 3.1-8 6.5-7 3.2-7 5.3-7 -3.2-5	32
spambase-small.10 301 300;	8 8 1170		1.77099199 6	5.7-14 8.4-7 1.4-7 6.4-7 4.4-7 9.1-7 4.3-5	38
spambase-small.11 301 300;	8 8 1219		1.49998112 6	3.1-11 9.9-7 0 6.6-7 6.9-7 8.3-7 -6.7-5	37
spambase-medium.2 901 900;	0 0 574		2.04671906 8	4.5-11 9.8-7 0 4.0-8 3.7-7 6.0-8 3.2-6	3:22
spambase-medium.3 901 900;	2 2 1306		1.13852269 8	3.1-11 9.8-7 1.1-9 9.7-7 2.9-9 1.2-7 -7.8-7	7:41
spambase-medium.4 901 900;	8 8 3282		6.47607483 7	1.1-12 9.5-7 2.2-7 3.9-7 6.3-7 9.9-7 -2.4-5	25:02
spambase-medium.5 901 900;	17 17 2314		4.47390672 7	1.3-10 9.9-7 0 7.6-7 2.9-8 3.8-8 -2.6-6	19:12
spambase-medium.6 901 900;	8 8 1241		3.41690625 7	5.5-11 9.9-7 0 9.1-7 3.7-8 4.3-8 -1.6-6	12:03
spambase-medium.7 901 900;	8 8 1525		2.68390611 7	9.4-11 9.4-7 0 9.9-7 3.3-8 1.4-8 -1.4-6	11:43
spambase-medium.8 901 900;	8 8 1219		2.14450658 7	9.4-11 9.9-7 0 9.4-7 6.0-8 7.2-9 1.3-6	11:46
spambase-medium.9 901 900;	8 8 1292		1.74853340 7	1.3-10 5.2-7 2.2-8 9.9-7 8.1-8 2.2-7 1.3-5	11:11
spambase-medium.10 901 900;	8 8 1176		1.44377147 7	2.7-13 8.8-7 7.2-8 4.0-7 4.4-9 8.6-7 5.9-5	10:35
spambase-medium.11 901 900;	8 8 1519		1.18336465 7	9.7-7 9.9-7 1.2-15 1.9-7 6.6-15 9.0-7 1.1-4	14:26
spambase-large.2 1501 1500;	0 0 535		4.71150439 8	9.9-7 9.9-7 1.6-15 3.0-7 4.3-16 2.0-7 -1.3-5	11:07
spambase-large.3 1501 1500;	8 8 1844		2.36013239 8	2.5-10 8.9-7 2.3-7 9.9-7 6.0-7 5.3-8 -7.6-6	1:40:31
spambase-large.4 1501 1500;	8 8 8 4 5 1 9		1.39699718 8	8.7-10 9.8-7 0 9.9-7 6.1-9 6.7-8 -2.6-6	2:49:39
spambase-large.5 1501 1500;	8 8 9184		1.02754393 8	3.8-13 9.7-7 2.6-8 5.7-7 2.5-8 9.6-7 -3.0-5	4:49:37
spambase-large.6 1501 1500;	8 8 8 2798		7.27685611 7	8.0-12 9.9-7 0 9.1-7 4.5-7 8.6-7 4.9-5	2:07:59
spambase-large.7 1501 1500;	8 8 2107		5.58157168 7	5.5-10 5.1-7 9.3-9 9.9-7 3.2-8 1.0-7 -6.2-6	1:52:04
spambase-large.8 1501 1500;	8 8 1498		4.34982631 7	3.5-10 5.8-7 0 9.9-7 2.3-7 3.4-7 -2.1-5	33:09
spambase-large.9 1501 1500;	8 8 2158		3.51829566 7	1.2-11 9.8-7 1.8-7 5.5-7 4.3-7 8.0-7 9.4-5	1:51:14
spambase-large.10 1501 1500;	8 8 2429		2.96696498 7	1.0-9 5.4-7 0 9.9-7 2.9-7 4.2-7 -4.8-5	1:02:04
spambase-large.11 1501 1500;	8 8 2164		2.49448474 7	1.9-12 9.9-7 6.6-8 7.2-7 5.0-7 6.8-7 -8.8-5	55:19
abalone-small.2 201 200;	0 0 384		8.58556840 2	1.3-12 5.8-7 0 9.9-7 6.5-7 2.6-7 1.4-6	05
abalone-small.3 201 200;	0 0 268		4.37061770 2	1.5-12 9.8-7 8.0-9 9.6-8 1.4-7 4.0-8 -1.0-5	03
abalone-small.4 201 200;	0 0 486		2.55992748 2	6.6-12 2.2-7 1.2-8 9.9-7 3.4-8 1.8-8 -6.2-7	07
abalone-small.5 201 200;	0 0 554		1.66804116 2	8.1-12 9.9-7 0 4.1-7 4.1-7 1.4-7 -5.1-6	06
abalone-small.6 201 200;	0 0 523		1.17561963 2	1.0-11 8.2-7 0 9.9-7 1.1-7 4.1-8 -1.6-5	07
abalone-small.7 201 200;	8 8 1012		9.09734973 1	5.9-12 9.9-7 0 1.4-7 6.3-7 2.4-7 -2.3-5	13
abalone-small.8 201 200;	8 8 1054		7.50232867 1	9.8-7 9.6-7 3.9-16 9.5-8 2.3-15 5.0-7 -4.5-5	16
abalone-small.9 201 200;	8 8 1076		6.34841919 1	9.7-7 8.4-7 4.0-16 2.4-7 2.9-14 5.6-7 -5.6-5	14
abalone-small.10 201 200;	8 8 2085	5.30409909 1	5.30469626 1	1.7-11 9.9-7 0 9.6-8 3.2-7 2.3-7 -5.6-5	30

Table 2: Performance of SDPNAL+ on $\theta_+,$ FAP, QAP, BIQ and RCP problems $(\varepsilon=10^{-6})$

problem $\mid m \mid n_s; n_l$	it itsub itA	pobj	dobj	$\mid \eta_P \mid \eta_D \mid \eta_{\mathcal{K}_1} \mid \eta_{\mathcal{K}_2} \mid \eta_{C1} \mid \eta_{C2} \mid \eta_g$	time
abalone-small.11 201 200;	8 8 1776		4.49411017 1	2.6-11 9.9-7 1.7-7 9.6-8 6.5-7 4.3-7 -6.9-5	26
abalone-medium.2 401 400;	3 3 3 500		2.26215611 3	7.2-8 9.5-7 8.2-7 0.1-16 9.0-8 0.0-16 -2.7-6	26
abalone-medium.3 401 400;	5 5 5 6 1 1		1.15441788 3	8.6-13 9.8-7 3.4-9 9.9-7 1.1-7 1.3-7 1.2-6	32
abalone-medium.4 401 400;	0 0 0 378		6.86064337 2	9.7-12 9.9-7 0 9.0-8 5.0-8 1.9-8 4.0-7	19
abalone-medium.5 401 400;	0 0 0 578		4.68711908 2	2.9-11 2.8-7 0 9.9-7 3.1-7 5.9-8 -2.5-6	31
abalone-medium.6 401 400;	0 0 608		3.44639813 2	9.8-7 5.7-7 5.2-16 3.5-7 3.7-15 2.9-7 -1.3-5	37
abalone-medium.7 401 400;	8 8 1084		2.68330068 2		1:08
			!	3.7-11 8.4-7 0 9.6-7 4.3-8 3.3-8 -1.5-5	
! ! '	8 8 981		2.16662931 2	3.9-11 8.2-7 0 9.8-7 2.5-7 3.3-8 -4.9-6 9.7-7 8.3-7 4.6-16 2.7-7 1.3-14 3.9-7 -1.8-5	1:00
	8 8 1063		1.83122772 2		1:14
abalone-medium.10 401 400; abalone-medium.11 401 400;	8 8 1328		1.60991692 2	2.8-10 9.9-7 2.0-7 4.9-7 7.2-7 2.3-7 -5.4-5	1:24
	8 8 1212		1.40913918 2	2.1-10 9.9-7 0 7.7-7 2.9-7 3.2-7 -6.7-5	1:21
abalone-large.2 1001 1000;	0 0 576		5.52256503 3	9.9-7 5.2-7 1.4-15 2.2-7 1.8-15 1.0-7 1.2-5	5:01 7:29
abalone-large.3 1001 1000;	21 21 762		2.81042183 3	2.1-13 9.2-7 7.6-7 6.4-7 3.9-8 2.2-7 -2.1-6	
abalone-large.4 1001 1000;	0 0 545		1.72763706 3	2.7-11 4.9-7 0 2.0-7 9.9-7 7.9-8 1.9-6	6:43
abalone-large.5 1001 1000;	38 38 797		1.21471600 3	3.3-12 9.5-7 1.3-7 4.6-7 7.6-7 2.6-9 -2.2-5	11:45
abalone-large.6 1001 1000;	8 8 8 781		9.17389149 2	6.7-11 9.9-7 0 6.6-7 5.2-7 2.3-7 -1.4-5	9:12
abalone-large.7 1001 1000;	8 8 1104		7.26154920 2	9.9-7 7.4-7 0.8-15 5.7-7 8.4-15 1.8-7 -1.5-5	12:09
abalone-large.8 1001 1000;	8 8 1024		5.89292994 2	9.9-7 7.5-7 0.8-15 3.6-7 3.8-16 6.8-8 -5.4-5	11:58
abalone-large.9 1001 1000;	8 8 1337		5.00516610 2	9.9-7 8.4-7 7.8-16 2.5-7 5.2-16 2.9-7 -5.1-5	16:07
abalone-large.10 1001 1000;	8 8 1761		4.42633818 2	4.4-10 2.7-7 0 7.8-7 8.4-7 1.9-7 -1.8-5	16:38
abalone-large.11 1001 1000;	8 8 1969		3.93950575 2	4.6-10 9.9-7 2.3-7 5.7-8 9.2-7 3.5-7 -4.7-5	18:04
segment-small.2 401 400;	8 8 1916		4.06441484 6	1.9-11 9.2-7 1.1-8 7.7-7 2.4-8 2.4-7 -4.6-7	1:41
segment-small.3 401 400;	60 60 1696		2.80588506 6	2.9-13 8.9-7 3.6-7 9.1-7 7.0-8 3.4-7 -3.1-7	1:56
segment-small.4 401 400;	6 6 1233		2.26904865 6	2.1-12 9.8-7 0 9.9-7 6.2-11 2.5-7 -6.3-7	1:07
segment-small.5 401 400;	90 90 2676		1.92835299 6	2.0-13 8.5-7 3.3-7 8.9-7 3.0-7 4.0-7 -1.5-6	3:10
segment-small.6 401 400;	17 17 1956		1.67079398 6	3.5-12 8.0-7 0 9.9-7 7.5-10 3.0-7 -7.7-7	1:59
segment-small.7 401 400;	12 12 980		1.46078800 6	4.8-13 8.3-7 4.0-7 7.3-7 6.1-8 9.1-8 2.6-8	1:02
segment-small.8 401 400;	20 20 1116		1.29257878 6	5.0-13 9.9-7 3.1-7 9.3-7 1.8-8 7.2-8 -1.6-6	1:20
segment-small.9 401 400;	4 4 4 8 4 4		1.15740528 6	4.8-13 8.6-7 4.9-7 4.6-7 6.0-8 4.2-8 -1.2-6	56
segment-small.10 401 400;	32 32 986		1.04531060 6	4.6-13 8.9-7 3.0-7 9.1-7 5.5-8 8.0-8 -8.6-7	1:25
segment-small.11 401 400;	16 16 1290		9.53439378 5	4.1-12 9.0-7 3.1-9 9.9-7 1.1-8 5.9-8 -9.4-7	1:33
segment-medium.2 701 700;	8 8 1143		1.05088196 7	2.6-11 9.9-7 2.5-7 9.2-8 5.6-7 8.8-9 -3.0-6	4:07
segment-medium.3 701 700;	2 2 2 7 3 7		7.33925216 6	6.6-12 9.6-7 3.2-7 9.0-7 8.2-7 3.1-7 -3.0-6	2:36
segment-medium.4 701 700;	8 8 1889		5.68021670 6	8.6-12 6.3-7 2.7-9 9.9-7 7.6-9 1.5-7 -5.0-7	6:28
segment-medium.5 701 700;	8 8 2 1 6 3		4.83143345 6	9.8-12 8.8-7 2.9-10 9.9-7 8.5-10 1.7-7 -8.3-7	8:15
segment-medium.6 701 700;	2 2 2 2 6 1		4.19191614 6	7.9-12 9.7-7 2.0-9 9.9-7 6.0-9 2.2-7 -1.4-6	9:23
segment-medium.7 701 700;	4 4 3112		3.70132216 6	9.7-12 9.3-7 7.6-12 9.9-7 2.3-11 2.2-7 -1.8-6	10:41
segment-medium.8 701 700;	2 2 2 2 8 2 4		3.30332003 6	0.9-15 9.0-7 6.2-7 1.3-7 5.6-7 8.4-8 -1.4-6	8:45
segment-medium.9 701 700;	8 8 8 2 3 9 0		2.95168923 6	1.8-11 9.9-7 7.7-9 9.1-7 2.7-8 1.2-7 -2.4-6	7:30
segment-medium.10 701 700;	2 2 2 1 1 7 7 9		2.64263589 6	1.3-11 7.8-7 4.4-10 9.9-7 1.6-9 5.5-8 -1.3-6	5:30
segment-medium.11 701 700;	8 8 1722		2.37628093 6	2.9-11 8.9-7 0 9.7-7 2.1-8 6.4-7 -5.8-6	8:32
segment-large.2 1001 1000;	8 8 1191		1.47174710 7	9.7-12 9.4-7 0 1.6-7 9.9-7 6.5-8 4.6-6	9:16
segment-large.3 1001 1000;	0 0 0 373		1.03929372 7	6.1-12 9.9-7 0 9.7-7 3.9-7 1.1-7 1.8-6	2:43
segment-large.4 1001 1000;	2 2 2 1 8 7 9		8.16945493 6	7.0-12 9.0-7 1.3-9 9.9-7 3.7-9 2.1-7 -5.8-7	13:52
segment-large.5 1001 1000;	8 8 2449		6.98490266 6	1.2-11 9.9-7 2.3-9 9.7-7 6.8-9 2.2-7 -6.2-7	19:06
segment-large.6 1001 1000;	8 8 3158		6.09811370 6	2.5-11 8.8-7 0 9.9-7 3.7-9 2.6-7 -1.5-6	24:00
segment-large.7 1001 1000;	8 8 3613		5.38600754 6	3.9-11 9.9-7 0 9.9-7 6.4-9 2.9-7 -1.8-6	28:07
segment-large.8 1001 1000;	8 8 2950		4.78848661 6	2.7-11 9.0-7 1.2-9 9.9-7 3.9-9 2.3-7 -1.1-6	23:46
segment-large.9 1001 1000;	8 8 8 2 4 5 2		4.28849222 6	2.6-11 9.9-7 2.4-10 9.5-7 8.5-10 1.4-7 -2.0-6	19:23
segment-large.10 1001 1000;	8 8 1871		3.86492553 6	4.3-11 9.9-7 3.4-9 9.7-7 1.3-8 8.0-9 -2.9-7	14:38
segment-large.11 1001 1000;	8 8 1887		3.50361681 6	5.1-11 6.7-7 0 9.9-7 8.9-8 2.7-7 -1.9-6	20:26
housing.2 507 506;	8 8 3373		5.76093491 6	9.9-7 9.9-7 1.4-15 8.7-8 3.2-15 3.8-8 -5.9-6	4:50
housing.3 507 506;	8 8 1576		3.00979147 6	4.5-12 8.6-7 0 7.0-8 9.7-7 1.2-7 1.7-6	3:20
housing.4 507 506;	8 8 1645		1.79284813 6	7.5-12 9.9-7 2.8-8 2.3-8 8.3-8 8.5-9 -4.0-6	2:50
housing.5 507 506;	8 8 1918		1.38019123 6	7.4-12 9.9-7 0 7.5-8 9.5-7 1.6-7 3.3-5	3:30
housing.6 507 506;	11 11 533		1.11182191 6	6.5-13 9.9-7 4.4-7 9.6-7 8.2-7 1.8-7 -1.2-6	1:06
housing.7 507 506;	8 8 8 703		9.52783974 5	1.5-11 9.9-7 0 6.6-7 6.7-7 3.2-7 -2.8-5	1:29
housing.8 507 506;	0 0 638		8.32124769 5	4.9-11 9.1-7 2.7-7 9.8-7 9.3-7 1.6-7 -1.9-5	1:06
housing.9 507 506;	0 0 0 794	7.41543509 5	7.41598866 5	5.9-11 9.5-7 0 1.6-7 6.5-7 2.2-7 -3.7-5	1:27

Table 2: Performance of SDPNAL+ on $\theta_+,$ FAP, QAP, BIQ and RCP problems $(\varepsilon=10^{-6})$

problem $\mid m \mid n_s; n_l$	it itsub itA	$pobj \mid dobj$	$ \mid \eta_P \mid \eta_D \mid \eta_{\mathcal{K}_1} \mid \eta_{\mathcal{K}_2} \mid \eta_{C1} \mid \eta_{C2} \mid \eta_g $	time
housing.10 507 506;	8 8 927	6.72000062 5 6.72060390 5	4.7-11 8.9-7 3.1-8 9.9-7 1.1-7 7.1-8 -4.5-5	1:38
housing.11 507 506;	8 8 813	$6.12669296\ 5\mid 6.12699861\ 5$	9.9-12 9.9-7 2.1-7 9.9-7 7.6-7 2.6-7 -2.5-5	1:31

Table 3: Performance of SDPNAL+ on θ and R1TA problems $(\varepsilon=10^{-6})$

problem $\mid m \mid n_s; n_l$	it itsub itA	$pobj \mid dobj$	$ \eta_P \eta_D \eta_{\mathcal{K}_1} \eta_{\mathcal{K}_2} \eta_{C1} \eta_{C2} \eta_g$	time
that n4 1040 200.	13 13 153	5.03212171 1 5.03212139 1		04
theta4 1949 200; theta42 5986 200;	20 20 82	2.39317014 1 2.39317083 1	5.2-8 6.5-7 1.4-15 0 1.0-15 0 3.2-8 2.5-7 6.0-7 1.1-15 0 6.7-16 0 -1.4-7	05
theta42 3986 200; theta6 4375 300;	12 12 163	6.34770795 1 6.34770774 1	3.7-8 9.9-7 3.4-16 0 1.2-15 0 1.6-8	09
theta62 13390 300;	13 13 82	2.96412360 1 2.96412502 1		07
theta02 13390 300; theta8 7905 400;	12 12 183	7.39535647 1 7.39535733 1	2.4-8 4.4-7 1.5-15 0 0.8-15 0 -5.8-8	18
theta8 7903 400; theta82 23872 400;	11 11 87	3.43668856 1 3.43668909 1		13
theta82 23672 400; theta83 39862 400;	23 23 64	2.03018725 1 2.03018894 1	4.4-7 9.8-7 1.2-16 0 6.7-16 0 -4.1-7	23
theta3 33002 400, theta10 12470 500;	11 11 200	8.38059601 1 8.38059488 1		32
theta102 37467 500;	11 11 84	3.83905392 1 3.83905464 1	8.1-8 6.8-7 3.4-16 0 0.4-16 0 -9.3-8	21
theta102 57407 500; theta103 62516 500;	20 20 64	2.25285667 1 2.25285686 1	2.8-7 8.1-7 1.8-16 0 7.6-16 0 -4.1-8	38
theta104 87245 500;	43 47 63	1.33361259 1 1.33361411 1		53
theta104 67246 600;	13 13 200	9.28016817 1 9.28016713 1		51
theta123 90020 600;	12 12 70	2.46686527 1 2.46686518 1		36
san200-0.7-1 5971 200;	11 11 220	3.00000363 1 2.99998734 1	6.5-7 7.7-7 6.3-16 0 1.7-15 0 2.7-6	04
sanr200-0.7 6033 200;	14 14 82	2.38361576 1 2.38361571 1	1.5-7 5.1-7 1.1-15 0 4.5-16 0 9.4-9	03
c-fat200-1 18367 200;	25 31 90	1.20000005 1 1.20000152 1	2.6-7 8.4-7 1.1-15 0 3.0-16 0 -5.9-7	04
hamming-8-4 11777 256;	5 5 72	1.60000000 1 1.60000026 1	1.4-11 1.4-7 0.5-16 0 0.5-16 0 -7.8-8	02
hamming-9-8 2305 512;	12 12 200	2.24000000 2 2.24000041 2		21
hamming-10-2 23041 1024;	10 10 200	1.02399926 2 1.02400047 2		2:54
hamming-7-5-6 1793 128;	5 5 232	4.26666667 1 4.26666693 1		02
hamming-8-3-4 16129 256;	9 9 83	2.55999999 1 2.55999998 1		03
hamming-9-5-6 53761 512;	6 6 200	8.533333333 1 8.533333618 1	3.4-14 6.2-7 5.9-16 0 0.2-16 0 -1.7-7	20
brock200-1 5067 200;	14 14 91	2.74566395 1 2.74566399 1		03
brock200-4 6812 200;	14 14 76	2.12934751 1 2.12934754 1	2.8-7 9.8-7 6.7-16 0 2.8-16 0 -6.4-9	03
brock400-1 20078 400;	13 13 90	3.97018938 1 3.97019003 1		13
keller4 5101 171;	13 13 68	1.40122434 1 1.40122412 1		02
p-hat300-1 33918 300;	86 128 69	1.00679724 1 1.00679649 1	4.4-7 6.0-7 1.4-16 0 1.2-16 0 3.5-7	58
G43 9991 1000;	27 27 200	2.80625087 2 2.80624586 2	6.8-7 9.8-7 1.6-15 0 1.6-14 0 8.9-7	3:32
G44 9991 1000;	30 30 200	2.80583223 2 2.80583220 2		3:48
G45 9991 1000;	26 26 200	2.80185148 2 2.80185127 2	1.3-7 6.4-7 3.2-15 0 2.4-15 0 3.8-8	3:31
G46 9991 1000;	28 30 200	2.79837009 2 2.79836974 2	1.9-7 7.9-7 5.7-15 0 5.4-15 0 6.2-8	3:49
G47 9991 1000;	30 31 200	2.81894037 2 2.81893954 2	1.8-7 3.7-7 1.4-14 0 1.4-14 0 1.5-7	3:52
G51 5910 1000;	148 584 200	3.48999920 2 3.48999975 2	7.3-7 5.9-7 9.2-14 0 4.6-14 0 -7.9-8	41:06
G52 5917 1000;	458 1619 200	3.48387855 2 3.48386488 2	7.6-7 9.3-7 3.0-15 0 2.4-14 0 2.0-6	3:53:19
G53 5915 1000;	425 1183 200	$3.48348615 \ 2 \mid 3.48347655 \ 2$	4.7-7 9.9-7 8.9-14 0 3.2-15 0 1.4-6	2:16:35
G54 5917 1000;	123 462 200	3.41000018 2 3.40999990 2	2.5-7 9.3-7 9.3-15 0 5.7-16 0 4.2-8	23:17
1dc.128 1472 128;	111 186 231	1.68419262 1 1.68418832 1	6.8-7 9.8-7 3.5-15 0 1.2-16 0 1.2-6	19
1et.128 673 128;	13 13 140	2.92308538 1 2.92308946 1	1.6-7 5.5-7 1.5-15 0 0.8-15 0 -6.9-7	02
1tc.128 513 128;	11 11 205	3.80000058 1 3.80000001 1	6.2-8 1.9-7 2.2-15 0 8.2-15 0 7.5-8	02
1zc.128 1121 128;	12 12 103	2.06666665 1 2.06666569 1	3.8-8 4.1-7 6.8-16 0 3.8-16 0 2.3-7	02
1dc.256 3840 256;	60 83 220	2.99999998 1 3.00000002 1	3.3-9 7.3-9 1.7-13 0 2.9-14 0 -7.1-9	20
1et.256 1665 256;	44 66 220	5.51143466 1 5.51142200 1	5.7-7 7.5-7 7.5-15 0 6.5-15 0 1.1-6	23
1tc.256 1313 256;	81 169 220	6.33998218 1 6.33998835 1	3.4-7 9.6-7 7.3-16 0 3.3-15 0 -4.8-7	1:02
1zc.256 2817 256;	17 17 135	3.80000018 1 3.80000000 1	8.0-8 5.4-7 5.6-15 0 2.6-15 0 2.4-8	06
1dc.512 9728 512;	82 156 200	5.30309068 1 5.30307013 1	8.3-7 6.5-7 1.1-14 0 0.9-15 0 1.9-6	4:26
1et.512 4033 512;	48 73 200	$1.04423672\ 2\mid 1.04424037\ 2$		1:42
1tc.512 3265 512;	85 238 200	1.13400651 2 1.13400199 2		10:29
2dc.512 54896 512;	114 322 200	1.17678219 1 1.17678221 1		19:54
1zc.512 6913 512;	15 15 200	6.87499715 1 6.87499833 1		34
1dc.1024 24064 1024;	48 74 200	9.59856502 1 9.59849891 1		14:32
1et.1024 9601 1024;	64 129 200	1.84226960 2 1.84226147 2		35:33
1tc.1024 7937 1024;	156 417 200	2.06304654 2 2.06304284 2		1:22:24
1zc.1024 16641 1024;	16 16 200	1.28666672 2 1.28666665 2		4:56
2dc.1024 169163 1024;	148 376 200	1.86381938 1 1.86378972 1	8.2-7 9.2-7 1.1-14 0 4.0-15 0 7.8-6	2:21:20

Table 3: Performance of SDPNAL+ on θ and R1TA problems ($\varepsilon=10^{-6}$)

14.2048 8366 1248; 22865 200 3.4201722 3.4723362 0.7716.27 6.716.3140 1.6.14 0.1.5.6 1.5631 14.2048 18945 2048; 22865 200 3.4201722 3.47264271 2.477, 8.27, 1.6-14 0.9.6-15 0.9.7-7 2.21045 24.2048 18945 2048; 0.605 0.04520 0.0634060 0.06438526 0.8.7 8.071, 1.1-14 0.4.8-15 0.9.7-7 0.2.21045 15.206.2048 19045 1.2652 0.0634060 0.06438526 0.8.7 8.071, 1.1-14 0.4.8-15 0.1.5-15 0.9.7-7 0.2.21045 15.206.2048 1.206.204 1.206.204 1.206.204 0.0634060 0.06438526 0.7.7 0.7.7 0.7.7 0.1.5 0.1.5 0.1.5 0.1.5 0.1.5 15.207 0.008ym(4.4) 2374 1.205; 0.008ym(4.4) 0.008	problem $\mid m \mid n_s; n_l$	it itsub itA	$pobj \mid dobj$	$ \eta_P \eta_D \eta_{\mathcal{K}_1} \eta_{\mathcal{K}_2} \eta_{C1} \eta_{C2} \eta_g $	time
1et.2048 129529 2018; 15016 2018; 15016 2018; 15016 2018; 15016 2018; 15016 2018; 15016 2018; 15018 2018;	1dc.2048 58368 2048:	62 112 200	1.74731330 2 1.74729390		1:55:31
2dc 2048 19845 2948;					
262.6248 504452 2048; 167 835 200 3.06739144 1 3.06728102 1 9.77 8.27 3.245 0 2.715 0 1.85 14:2296 nonsym(6,4) 3074 12951 343; 10 10 200 5.0740702 0 5.0760709 0 3.07684938 0 7.37 8.77 0.846 0 1.516 0 -1.55 0 0 -2.76 11 nonsym(8,4) 46655 512; 31 31 200 5.0740702 0 5.074070		1 1 1 .			
nonsym(6,4) 3920 216; 1515223 3.06439166 0 3.06438526 0 6.5-7 1.5-7 1.3-16 0 1.0-16 0 9.0-7 0.5		1 1			
nonsym(6,4) 1980 216; 15 15 220 3.0767769 0.307684938 0.73.7 8.7.7 0.8.16 0.1.5.16 0.1.5.16 0.1.0.5		1			
nonsym(7.4) 21951 343; 10 10 200 5.07407692 0 5.07410714 0 7.9-8 1.7-7 0.4-16 0 0.4-16 0 1.2-76 11 100sym(9.4) 91124 729; 25 33 200 1.06613340 0 1.0661027 0 8.5-8 4.2-7 0 0 3.0-16 0 7.4-6 2.90 2.00		' '	!		
nonsym(8,4) 49655 512; 13 13 200 5.74083101 0 5.74083615 0 1.5-7 2.4-8 0 0 1.0-16 0 1.4-17 29 290 2000sym(10,4) 166374 1900; 17 21 220 17 21 220 2.5-6 33 31 200 1.69471772 0 1.69472878 0 7.9-7 1.6-7 0.8-16 0 1.5-6 0 1.5-6 0 3.5-6 33 31 200 3.08287389 0 3.08257339 0 3.2-7 7.6-7 0.1-16 0 1.5-6 0 1.5-6 0 3.5-6 33 31 201 3.08257339 0 3.08257339 0 3.2-7 7.6-7 0.1-16 0 1.5-6 0 3.7-6 1.18 30 3.08257339 0 3.0825739 0 3.08257339 0 3.08257339 0 3.08257339 0 3.08257339 0 3.08257339 0 3.08257339 0 3.08257339 0 3.08257339 0 3.08257339 0 3.08257339 0 3.08257339 0 3.08257339 0 3.08257339 0 3.08257339 0 3.08257339 0 3.08257339 0 3.0		!!!	ı		
nonsym(9,4) 9124 729;		1 ! !			
nonsym(10,4) 166374 1000; 17 21 200 169471772 1.69472878 7.9-7 1.6-7 0.8-16 0 0.5-16 0 -2.5-6 5.37 nonsym(3,5) 1295 81; 41 46 133 1.01163219 0 1.01164570 3.2-7 7.6-7 0 0 0.8-16 0 0.5-16 0 -5-6 6.3 nonsym(4,5) 9999 266; 43 41 46 133 1.01163219 0 1.01164570 3.2-7 7.6-7 0 0 0.8-16 0 1.5-6 0.3 nonsym(4,5) 19948 1996; 26 28 200 3.08257390 3.08254910 2.4-7 1.7-7 1.8-16 0 1.3-16 0 3.7-6 1.18 nonsym(5,5) 19480 361; 29 20 72 1.62570240 3.085574160 2.4-7 1.7-7 1.8-16 0 1.3-16 0 3.7-6 6.3 sym.rd(3,30) 48375 396; 21 22 26 1.52150093 0 1.52146500 2.5-7 7.6-7 0.5-16 0 0.1-16 0 2.0-5 6.39 sym.rd(3,30) 48375 496; 15 15 77 1.82163480 1.82117980 4.7-7 4.5-7 0.3-16 0 1.1-16 0 1.1-6 1.1-16 sym.rd(3,30) 48375 496; 46 72 1.82991320 1.88002802 4.7-7 4.5-7 0.3-16 0 1.1-16 0 -1.6-5 2.18 sym.rd(3,40) 135750 861; 37 39 82 1.99315221 0 1.99323080 1.7-7 5.7-7 0.3-16 0 1.0-16 0 2.4-5 sym.rd(3,40) 135750 861; 37 37 87 2.06951100 2.06938540 5.7-7 6.7-7 0.3-16 0 1.0-16 0 1.6-5 2.18 sym.rd(3,30) 40194 465; 29 97 4.95000000000000000000000000000000000000					
nonsym(1,14) 287495 1331;					
monsym(3,5) 1295 81;					
nonsym(4,5) 9999 256;					
nonsym(5,5) 19480 1296; 625 203 31 200 3.08257139 0 3.08257139 0 3.08257139 0 3.7-6 1.3-16 0 3.7-6 1.18 1.3-16 0 3.7-6 1.3-6 0 3.7-6 0 0.3-6 0.3		24 31 220			11
nonsym(6,5) 194480 1296; 26 28 200 3.0957204 0 3.0957204 0 3.0957416 0 6.4-7 6.6-7 0.8-16 0 0.1-16 0 8-9-6 6.39			ı		
sym.rd(3,20) 10625 231; 22 22 61 1.52150033 0 1.52146500 0 2.5-7 7.6-7 0.5-16 0 1.1-16 0 8.9-6 06 sym.rd(3,30) 48375 496; 15 15 77 1.82416348 0 1.82417998 0 4.7-7 4.5-7 0.2-16 0 0.2-16 0 3.5-6 23 3.9 3.					
sym.rd(3,25) 23750 351; 20 20 72 1.62975155 0 1.62975642 0 4.77 4.57 0.3-16 0 1.1-16 0 1.1-16 1.1					06
sym.rd(3,30) 46375 496; 15 15 77 1.82416348 0 1.82417998 0 41-7 1.77 0.2-16 0 0.2-16 0 3.6-6 22 23 24 43 46 72 1.82991320 1.83002802 0 5.47 3.37 75.77 0.3-16 0 0.2-16 0 3.6-6 1.27 27 27 27 27 27 27 27					11
sym.rd(3,45) 82250 666; 43 46 72 1.82999132 0 1.83002862 0 5.4-7 3.3-7 0 1.0 0.8-16 0 -8.0-6 1.27					23
sym.rd(3,40) 135750 861; 37 39 82 1.99313921 0 1.99323080 0 1.7-7 5.7-7 0.3-16 0 1.0-16 0 1-1.6-5 2.18 sym.rd(3,50) 316250 1326; 37 37 87 2.06951100 0 2.06938546 0 5.7-7 7.6-7 0 0 1.1-16 0 2.4-5 8.24 sym.rd(4,25) 20474 325; 35 36 83 8.56184837 0 8.56184837 0 8.56124837 0 1.2-7 8.1-7 0 0 1.1-16 0 1.1-5 15 15 15 15 15 15 15					
sym.rd(3,50) 316250 1326; 37 37 87 2.06951100 0 2.06938546 0 5.1-7 7.6-7 0 0 0 1.1-16 0 2.4-5 5.24 5.24 5.25 5.24 5.25 5.05 5.25 5.25	sym_rd(3,40) 135750 861;	37 39 82	1.99315221 0 1.99323089		2:18
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	sym_rd(3,45) 211875 1081;	31 31 87	2.14076548 0 2.14073540	0 5.5-7 2.2-7 0 0 1.1-16 0 5.7-6	4:31
sym.rd(4,30) 4091 465; 29 29 74 9.56029222 0.5605568 0.1.2-7 8.1-7 0 0.2-16 0 1.1.5-5 16 1.1.5 16 1.1.5	sym_rd(3,50) 316250 1326;	37 37 87	2.06951100 0 2.06938546	0 5.1-7 7.6-7 0 0 0.1-16 0 2.4-5	8:24
sym.rd(4,30) 4091 465; 29 29 74 9.56029222 0.5605568 0.1.2-7 8.1-7 0 0.2-16 0 1.1.5-5 16 1.1.5 16 1.1.5	sym_rd(4,20) 8854 210;	11 11 214	8.60616358 0 8.60597144	0 5.6-7 6.6-7 0.8-16 0 0.0-16 0 1.1-5	05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		35 36 83	8.56184837 0 8.56212636	0 1.2-7 8.1-7 0 0 0.2-16 0 -1.5-5	16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	sym_rd(4,30) 40919 465;	29 29 74	9.56029222 0 9.56055568		44
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$sym_rd(4,35) 73814 630;$	46 51 77	1.09833279 1 1.09831864	1 6.3-8 2.2-7 0 0 0.7-16 0 6.2-6	1:45
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$sym_rd(4,40) 123409 820;$	60 76 86	$1.15471518\ 1\ \ 1.15473381$	1 5.4-8 6.6-7 1.6-13 0 3.2-16 0 -7.7-6	4:56
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$sym_rd(4,45) 194579 1035;$	45 62 90	$1.18424653\ 1\ \ 1.18425819$	1 5.7-8 3.5-7 1.0-13 0 1.3-16 0 -4.7-6	7:44
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		45 62 91	$1.30418148\ 1\ \ 1.30421731$		12:44
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$1.95250518 \ 0 \mid 1.95247488$	0 4.6-7 9.5-7 0 0 2.2-16 0 6.2-6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 ! !			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 1 1 1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		' '			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			ı		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 ! !			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 1 1 1			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 ! !			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 ! !			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 2 1 2 1 2 1				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			ı		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	nsym_rd([5.5.5]) 072599 1000;		1		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$!!!			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 1 1			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 1 . 1 .			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 1 1			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
nonsym(20,4) 9260999 8000; 7 17 200 1.77231047 1 1.77233375 1 5.2-8 7.4-8 0 0 2.2-15 0 -6.4-6 8:26:40		1 : :			
	nonsym(20,4) 9260999 8000;		·		8:26:40
	nonsym(21,4) 12326390 9261;	7 21 200	$2.03462783\ 1 \mid 2.03463278$	1 5.7-8 1.3-8 2.9-15 0 2.9-15 0 -1.2-6	14:22:05

Table 4: Performance of SDPNAL+ (a), ADMM+ (b), SDPAD (c) and 2EBD (d) on θ_+ , FAP, QAP, BIQ and RCP problems ($\varepsilon=10^{-6}$)

	iteration	η	η_g	time
problem $\mid m \mid n_s; n_l$	a b c d	a b c d	a b c d	a b c d
theta4 1949 200;	0, 0;304 304 307 701	9.6-7 9.6-7 9.9-7 9.9-7	-1.4-6 -1.4-6 3.0-7 1.5-6	06 06 05 13
theta42 5986 200;	0, 0;179 179 151 345	9.6-7 9.6-7 9.6-7 9.8-7	8.3-8 8.3-8 3.3-7 9.5-7	03 03 03 06
theta6 4375 300;	0, 0;316 316 318 671	8.5-7 8.5-7 9.8-7 9.9-7	-2.0-6 -2.0-6 -1.2-6 1.4-6	13 13 12 31
theta62 13390 300;	0, 0;178 178 129 336	9.5-7 9.5-7 8.9-7 9.9-7	-1.1-7 -1.1-7 1.3-6 1.4-6	08 08 07 15
theta8 7905 400;	0, 0;316 316 325 470	9.7-7 9.7-7 8.6-7 9.8-7	-2.5-6 -2.5-6 1.7-6 1.2-6	24 24 24 40
theta82 23872 400;	0, 0;157 157 130 343	9.7-7 9.7-7 8.4-7 9.7-7	-2.3-7 -2.3-7 1.8-6 1.8-6	13 13 13 30
theta83 39862 400;	0, 0;154 154 111 306	9.5-7 9.5-7 9.9-7 9.9-7	-1.0-7 -1.0-7 6.0-7 2.4-6	14 14 13 28
theta10 12470 500;	0, 0;354 354 351 490	8.5-7 8.5-7 9.9-7 9.9-7	-2.5-6 -2.5-6 -7.8-7 1.5-6	46 45 42 1:11
theta102 37467 500;	0, 0;157 157 130 355	9.5-7 9.5-7 9.0-7 9.9-7	-6.0-7 -6.0-7 2.1-6 2.2-6	23 23 23 54
theta103 62516 500;	0, 0;144 144 108 323	9.2-7 9.2-7 9.8-7 9.8-7	-3.0-8 -3.0-8 5.9-7 2.6-6	22 22 21 49
theta104 87245 500;	0, 0;169 169 123 338	9.3-7 9.3-7 9.8-7 9.9-7	-9.2-8 -9.2-8 1.1-6 3.2-6	24 24 20 51
theta12 17979 600;	0, 0;362 362 366 494	9.0-7 9.0-7 8.8-7 9.2-7	-2.2-6 -2.2-6 1.0-6 1.3-6	1:15 1:14 1:11 1:52
theta123 90020 600;	0, 0;156 156 107 345	9.3-7 9.3-7 9.9-7 9.9-7	-6.0-8 -6.0-8 5.1-7 2.6-6	34 35 33 1:26
san200-0.7-1 5971 200;	4, 4;500 1924 5566 139	3.5-10 9.8-7 9.6-7 9.5-7	-2.7-10 -1.1-5 -4.0-6 -1.6-6	07 17 47 02
sanr200-0.7 6033 200;	0, 0;187 187 158 320	9.4-7 9.4-7 9.2-7 9.7-7	-1.4-7 -1.4-7 3.5-8 1.1-6	03 03 04 06
c-fat200-1 18367 200;	0, 0;233 233 444 330	9.8-7 9.8-7 9.9-7 9.9-7	-6.9-7 -6.9-7 -1.2-6 2.1-6	03 03 06 04
hamming-8-4 11777 256;	0, 0;124 124 104 214	4.7-7 4.7-7 9.6-7 8.9-7	-5.3-6 -5.3-6 2.1-6 1.0-5	02 02 03 04
hamming-9-8 2305 512;	11,11;500 2413 3100 938	9.5-7 9.6-7 9.6-7 9.0-7	-4.4-8 -1.2-5 -6.9-7 5.6-6	44 3:07 4:20 1:36
hamming-10-2 23041 1024;	0, 0:657 657 651 902	8.7-7 8.7-7 9.4-7 8.8-7	7.6-6 7.6-6 -2.6-6 3.4-5	3:09 3:05 5:17 3:47
hamming-7-5-6 1793 128;	0, 0;510 510 603 659	8.7-7 8.7-7 8.6-7 9.1-7	-8.4-6 -8.4-6 9.2-7 1.8-6	04 04 05 04
hamming-8-3-4 16129 256;	0, 0;232 232 189 180	7.8-7 7.8-7 5.5-7 9.0-7	2.0-7 2.0-7 9.9-7 -3.5-6	06 06 04 03
hamming-9-5-6 53761 512;	0, 0:461 461 507 563	9.5-7 9.5-7 9.5-7 8.9-7	-1.2-5 -1.2-5 -1.9-6 8.0-6	45 45 54 58
brock200-1 5067 200;	0, 0;182 182 159 334	9.6-7 9.6-7 9.5-7 9.7-7	-6.6-8 -6.6-8 2.4-9 1.1-6	04 04 03 06
brock200-4 6812 200;	0, 0;172 172 138 297	9.2-7 9.2-7 9.7-7 9.9-7	-1.1-7 -1.1-7 7.2-8 1.5-6	04 04 03 06
brock400-1 20078 400;	0, 0;171 171 155 354	8.9-7 8.9-7 9.9-7 9.7-7	-1.6-6 -1.6-6 1.6-6 1.7-6	14 14 14 31
keller4 5101 171;	0, 0;317 317 526 634	9.9-7 9.9-7 9.9-7 9.9-7	-3.2-8 -3.2-8 -6.2-7 1.5-6	03 04 08 07
p-hat300-1 33918 300;	0, 0;649 649 791 759	9.9-7 9.9-7 9.9-7 9.9-7	-1.3-7 -1.3-7 1.3-6 1.8-6	26 26 35 33
G43 9991 1000;	21,21;973 1154 1147 934	8.9-7 9.8-7 9.4-7 9.9-7	4.1-6 -3.1-6 1.7-6 2.0-6	12:32 13:04 10:20 13:00
G44 9991 1000;	21,21;942 1151 1144 968	9.9-7 9.3-7 9.9-7 9.9-7	-5.1-6 -2.9-6 1.6-6 1.6-6	12:00 12:13 10:11 13:15
G45 9991 1000;	21,21;888 1175 1185 966	9.8-7 9.5-7 9.4-7 9.9-7	-6.5-6 2.9-6 -1.0-6 1.6-6	11:43 13:24 10:36 13:28
G46 9991 1000;	21,21;887 1199 1180 943	9.7-7 9.9-7 9.8-7 9.9-7	-1.1-5 -3.2-6 -1.0-6 1.4-6	11:35 12:55 10:42 12:58
G47 9991 1000;	21,21;1042 1186 1137 992	9.4-7 9.5-7 9.5-7 9.9-7	-5.4-6 2.9-6 -9.4-7 1.2-6	13:10 13:18 10:28 13:50
G51 5910 1000;	1, 2;5672 6207 10361 9586	9.9-7 9.9-7 9.9-7 9.9-7	1.0-6 3.7-7 2.6-7 5.6-7	1:15:12 1:21:52 2:11:03 2:31:30
G52 5917 1000;	5, 5;10840 11463 14163 12124	9.9-7 9.9-7 9.9-7 9.9-7	2.4-7 4.2-7 4.5-7 6.9-7	2:21:46 2:26:28 2:46:25 3:15:11
G53 5915 1000;	4, 4;13260 13289 23865 20623	9.9-7 9.9-7 9.9-7 9.9-7	2.9-6 2.6-6 2.9-6 4.2-6	2:48:21 2:49:53 4:48:56 5:49:06
G54 5917 1000;	8, 8;4278 3262 7542 5136	9.9-7 9.7-7 9.9-7 9.9-7	-7.9-7 3.1-6 4.6-7 1.3-6	51:18 38:42 1:26:47 1:17:01
1dc.128 1472 128;	28,31;1575 2260 1431 1046	9.9-7 9.9-7 9.9-7 9.8-7	1.6-7 2.8-6 1.9-6 4.1-6	13 16 14 07
1et.128 673 128;	0, 0;313 313 370 478	9.6-7 9.6-7 9.8-7 9.7-7	2.7-6 2.7-6 -3.3-7 1.5-6	02 02 03 03
1tc.128 513 128;	4, 4;700 756 1116 233	7.6-7 8.1-7 9.9-7 9.6-7	2.9-7 5.1-6 -3.5-8 1.6-6	04 04 05 01
1zc.128 1121 128;	0, 0;164 164 191 301	9.4-7 9.4-7 9.8-7 8.6-7	-4.8-6 -4.8-6 1.4-6 5.9-6	01 01 02 02
1dc.256 3840 256;	2, 2;1000 2399 8744 376	9.7-7 9.5-7 9.9-7 9.4-7	-2.3-6 -1.8-5 5.1-6 -7.0-7	25 44 2:12 10
1et.256 1665 256;	0, 0;893 893 1421 25000	9.9-7 9.9-7 9.9-7 2.5-3	-2.7-7 -2.7-7 1.0-6 -1.2-3	23 22 37 13:38
	0, 0:1335 1335 1979 3075	9.9-7 9.9-7 9.9-7 9.9-7	4.2-7 4.2-7 1.4-6 1.7-6	38 37 55 1:20

Table 4: Performance of SDPNAL+ (a), ADMM+ (b), SDPAD (c) and 2EBD (d) on θ_+ , FAP, QAP, BIQ and RCP problems ($\varepsilon=10^{-6}$)

	iteration	η	n	time
problem $\mid m \mid n_s; n_l$	a b c d	a b c d	η_g alblcd	a b c d
problem $m \mid n_s; n_l$ 1zc.256 2817 256;	0, 0;237 237 238 326	6.1-7 6.1-7 8.6-7 9.9-7	-4.9-6 -4.9-6 -1.3-6 5.6-6	05 06 07 07
1dc.512 9728 512;	0, 0,237 237 238 320	9.9-7 9.9-7 9.9-7 9.9-7	4.1-7 4.1-7 2.2-6 3.3-6	5:05 5:03 7:01 6:14
1 1 2	1 1 1			
1et.512 4033 512;	0, 0;990 990 1470 1530	9.9-7 9.9-7 9.9-7 9.9-7	-1.1-7 -1.1-7 3.9-6 5.6-6	1:57 1:58 3:15 3:08
1tc.512 3265 512;	0, 0;2494 2494 3340 3807	9.9-7 9.9-7 9.9-7 9.9-7	9.4-7 9.4-7 2.5-6 3.3-6	4:57 5:04 10:15 9:03
2dc.512 54896 512;	0, 0;2956 2956 2701 2173	9.9-7 9.9-7 9.9-7 9.9-7	8.5-6 8.5-6 7.5-6 1.6-5	5:34 5:34 6:36 4:45
1zc.512 6913 512;	0, 0;490 490 1056 2120	8.5-7 8.5-7 9.9-7 9.9-7	4.7-6 4.7-6 2.2-7 3.0-7	53 54 3:08 4:16
1dc.1024 24064 1024;	0, 0;2620 2620 2681 3641	9.9-7 9.9-7 9.9-7 9.9-7	1.3-6 1.3-6 3.4-6 4.0-6	31:46 32:22 45:21 53:12
1et.1024 9601 1024;	0, 0;1144 1144 2563 2609	9.9-7 9.9-7 9.9-7 9.9-7	1.3-6 1.3-6 5.6-6 5.9-6	12:43 12:54 39:53 35:35
1tc.1024 7937 1024;	0, 0;2732 2732 6545 6675	9.9-7 9.9-7 9.9-7 9.9-7	4.5-6 4.5-6 4.5-6 4.2-6	31:34 32:08 1:48:31 1:40:06
1zc.1024 16641 1024;	0, 0;711 711 770 25000	7.7-7 7.7-7 9.9-7 3.1-5	5.4-6 5.4-6 2.0-6 7.9-4	7:12 7:19 12:18 7:48:20
2dc.1024 169163 1024;	0, 0;4135 4135 1896 1891	9.9-7 9.9-7 9.9-7 9.9-7	1.3-5 1.3-5 1.0-5 1.5-5	44:55 45:59 29:02 24:59
1dc.2048 58368 2048;	0, 0;4153 4153 7277 8476	9.9-7 9.9-7 9.9-7 9.9-7	4.2-6 4.2-6 6.4-6 6.5-6	5:50:06 5:47:45 13:59:49 16:04:13
1et.2048 22529 2048;	0, 0;3039 3039 4422 4739	9.9-7 9.9-7 9.9-7 9.9-7	1.1-6 1.1-6 4.8-6 7.8-6	4:01:54 4:04:34 8:47:18 8:28:46
1tc.2048 18945 2048;	0, 0;2876 2876 7329 7482	9.9-7 9.9-7 9.9-7 9.9-7	1.5-6 1.5-6 5.5-6 5.6-6	3:50:43 3:50:16 13:29:15 13:50:32
2dc.2048 504452 2048;	0, 0;2997 2997 2147 1849	9.9-7 9.9-7 9.9-7 9.9-7	8.3-6 8.3-6 1.0-5 2.2-5	3:54:58 3:52:42 4:13:47 3:07:46
fap08 120 120;	1, 1;368 420 725 976	9.8-7 9.9-7 9.9-7 9.4-7	-1.7-6 -1.5-6 -2.6-6 -3.5-6	03 03 05 06
fap09 174 174;	1, 1;426 419 464 728	9.8-7 9.7-7 9.9-7 9.9-7	1.2-6 1.2-6 1.0-6 -5.1-8	05 05 04 07
fap10 183 183;	3, 3;993 1424 2313 2774	8.8-7 6.0-7 9.9-7 9.9-7	-2.5-5 3.7-6 -1.3-4 -6.8-5	18 25 27 42
fap11 252 252;	5, 5;1180 1559 2585 2771	9.6-7 5.3-7 9.9-7 9.7-7	-6.8-5 -1.9-5 -2.2-4 -1.1-4	39 50 1:07 1:18
fap12 369 369;	15,15;1768 1830 3394 3325	9.9-7 8.4-7 9.9-7 9.9-7	-6.6-5 -2.6-5 -2.2-4 -1.3-4	1:56 1:55 3:32 3:08
fap25 2118 2118;	11,11;2268 5799 5495 4498	9.2-7 9.9-7 9.9-7 9.9-7	-8.2-5 -3.2-5 -1.1-4 -7.1-5	3:58:21 10:55:33 13:26:47 8:11:50
fap36 4110 4110;	4, 4;2033 2824 4445 3500	9.5-7 9.9-7 9.9-7 9.8-7	-2.5-5 -1.7-5 -3.0-5 -2.8-5	23:07:56 30:57:53 78:43:03 43:37:44
bur26a 1051 676;	137,222;10228 25000 25000 25000	9.9-7 5.6-6 1.1-5 8.9-6	-1.8-5 -6.3-5 -7.7-5 -8.2-5	1:48:05 2:05:11 2:07:44 2:38:24
bur26b 1051 676;	100,208;8605 25000 25000 25000	9.9-7 6.8-6 1.1-5 9.3-6	-1.8-5 -5.7-5 -8.0-5 -7.5-5	1:32:52 2:07:13 1:57:30 2:49:59
bur26c 1051 676;	247,441;21498 25000 25000 25000	9.9-7 4.2-6 1.4-5 1.4-5	-2.0-5 -4.5-5 -1.2-4 -1.8-4	2:03:12 2:05:11 2:02:35 2:50:08
bur26d 1051 676;	173,306;13287 25000 25000 25000	9.9-7 6.4-6 1.5-5 1.3-5	-1.3-5 -8.4-5 -1.2-4 -1.4-4	1:59:20 2:02:24 1:51:20 2:53:07
bur26e 1051 676;	129,361;14705 25000 25000 25000	9.4-7 3.1-6 6.4-6 1.4-5	-1.1-5 -2.8-5 -3.6-5 -1.9-4	1:18:35 2:03:18 2:28:06 2:46:03
bur26f 1051 676;	107,248;11272 20887 25000 25000	9.9-7 9.9-7 8.1-6 1.2-5	-1.0-5 -1.0-5 -4.8-5 -7.5-5	1:45:13 1:45:08 2:09:11 2:44:28
bur26g 1051 676;	250,392;10817 17910 25000 25000	9.9-7 8.6-7 1.6-6 7.8-6	-2.4-5 -6.3-6 -4.0-5 -6.9-5	1:32:44 1:29:22 1:57:13 2:46:34
bur26h 1051 676;	146,360;10658 23208 25000 25000	9.9-7 9.4-7 1.4-6 2.3-5	1.9-5 -1.4-6 -2.3-5 -1.7-4	1:25:45 1:57:33 2:01:12 2:54:20
chr12a 232 144;	185,246;1150 3645 6509 25000	4.4-7 9.1-7 9.1-7 2.4-6	5.7-10 -8.7-5 1.8-4 -2.6-4	25 25 40 6:21
chr12b 232 144;	141,150;1333 2833 4552 20981	9.3-7 9.4-7 9.6-7 9.5-7	6.0-7 2.4-4 -1.9-4 2.0-4	19 18 26 5:19
chr12c 232 144;	70,213;5547 25000 25000 25000	5.9-7 4.9-6 5.9-6 4.5-6	9.0-5 -4.4-4 -2.2-4 -1.5-4	1:10 3:30 4:27 6:20
chr15a 358 225;	215,394;14122 25000 25000 25000	6.9-7 7.9-6 1.4-5 3.0-5	3.2-4 -1.9-3 -1.6-3 -4.5-3	7:08 8:02 12:07 14:48
chr15b 358 225;	34,92;2611 3621 12507 25000	7.4-7 8.6-7 9.9-7 2.1-5	-1.5-4 6.2-4 4.4-4 -1.1-3	58 1:10 4:40 14:26
chr15c 358 225;	26,67;2020 2919 8994 25000	4.2-7 9.0-7 9.8-7 4.6-5	5.5-6 5.4-4 -3.5-4 -1.5-2	46 58 3:36 14:27
chr18a 511 324;	356,519;13265 25000 25000 25000	7.9-7 3.0-6 5.2-6 4.1-5	4.7-4 -2.2-4 -2.3-4 -1.1-2	12:50 17:44 25:29 30:47
chr18b 511 324;	34,61;1658 1124 1176 8709	9.9-7 9.9-7 9.9-7	-9.5-6 -4.5-6 -3.0-6 -6.1-6	1:55 52 1:04 11:15
chr20a 628 400;	241,445;10389 25000 25000 25000	8.7-7 2.0-6 2.2-6 3.1-5	3.8-4 -2.4-4 -8.9-5 -4.3-3	18:17 29:49 43:13 49:22
chr20b 628 400;	68,165;3940 8256 25000 25000	6.8-9 9.6-7 2.9-5 2.4-5	-2.0-6 5.2-4 -5.4-3 -4.0-3	9:02 10:39 45:06 51:14
chr20c 628 400;	386,764;10040 14673 25000 25000	8.1-7 9.1-7 1.4-6 3.4-5	-1.0-4 5.2-6 -2.7-4 -1.1-2	13:12 13:45 26:08 48:58
chr22a 757 484;	104,250:6940 6457 22364 25000	3.5-7 8.8-7 9.9-7 2.5-5	6.6-6 3.9-4 -2.7-4 -2.6-3	22:57 12:29 50:45 1:17:44
chr22b 757 484;	89,189;5620 7211 25000 25000	3.1-7 9.7-7 1.5-5 2.1-5	1.7-6 3.4-4 -1.4-3 -1.8-3	12:46 13:52 1:07:51 1:15:34
011220 101 102,	20,-00,0020 1211 20000 20000	5.2 . 5.1 . 2.5 0 2.1-0		

Table 4: Performance of SDPNAL+ (a), ADMM+ (b), SDPAD (c) and 2EBD (d) on θ_+ , FAP, QAP, BIQ and RCP problems ($\varepsilon=10^{-6}$)

	iteration	η	η_q	time
problem $\mid m \mid n_s; n_l$	a b c d	a b c d	a b c d	a b c d
chr25a 973 625;	53,200;5151 7127 25000 25000	8.6-7 8.6-7 3.7-5 3.4-5	5.6-4 7.8-4 -9.5-3 -6.8-3	21:04 26:03 2:10:29 2:23:01
els19 568 361;	40,128;5188 3809 21549 25000	9.9-7 9.9-7 9.7-7 2.1-5	8.1-5 1.9-4 1.5-4 -2.5-3	7:01 3:28 22:01 37:50
esc16a 406 256;	54,83;1895 25000 25000 25000	9.9-7 5.2-6 4.5-6 1.2-5	-4.2-5 -1.8-4 -1.8-4 -2.9-4	1:16 12:04 9:37 19:50
esc16b 406 256;	69,382;5102 22427 25000 25000	9.9-7 9.9-7 6.8-6 4.5-6	-4.1-5 -1.1-4 -3.6-4 -2.9-4	3:29 8:51 8:36 16:39
esc16c 406 256;	289,1044;9190 25000 25000 25000	9.9-7 9.3-6 9.0-6 2.3-5	-4.3-5 -7.8-4 -8.7-4 -1.4-3	9:46 10:58 10:52 17:47
esc16d 406 256;	0, 0;298 298 439 557	9.6-7 9.6-7 9.7-7 9.9-7	-5.6-6 -5.6-6 -2.8-6 -8.9-7	08 08 10 25
esc16e 406 256;	0, 0;342 342 488 1557	9.9-7 9.9-7 9.8-7 9.9-7	-6.3-6 -6.3-6 -3.4-6 2.4-8	08 08 11 1:09
esc16g 406 256;	0, 0;447 447 498 1778	9.8-7 9.8-7 9.9-7 9.9-7	1.8-7 1.8-7 5.4-7 -8.3-7	11 11 11 1:22
esc16h 406 256;	41,57;1373 25000 25000 25000	9.8-7 1.3-6 1.6-6 2.8-6	-1.3-5 -2.7-5 -3.1-5 -4.2-5	44 9:53 8:24 15:33
esc16i 406 256;	17,17;864 1330 1330 5296	9.9-7 9.9-7 9.9-7 9.9-7	4.3-6 -5.8-6 -3.9-6 -5.8-6	24 30 31 4:06
esc16j 406 256;	0, 0;451 451 566 1084	9.6-7 9.6-7 9.9-7 9.9-7	-3.4-5 -3.4-5 -4.7-5 -1.4-7	12 12 12 48
esc32a 1582 1024;	46,78;1664 4931 2247 9630	9.9-7 9.9-7 9.9-7 9.9-7	-1.1-6 -2.0-6 -1.1-6 -2.7-6	32:32 1:06:25 27:49 2:44:37
esc32b 1582 1024;	52,100;2196 25000 25000 25000	9.8-7 3.7-6 2.4-6 8.3-6	-5.1-5 -2.4-4 -2.2-4 -4.0-4	45:50 5:18:19 4:31:51 7:59:47
esc32c 1582 1024;	46,139;3562 25000 25000 25000	9.7-7 5.3-6 5.1-6 1.6-5	-4.1-6 -5.4-5 -5.2-5 -9.8-5	1:06:19 4:58:47 4:00:23 8:01:19
esc32d 1582 1024;	0, 0;678 678 799 1412	9.9-7 9.9-7 9.9-7 9.9-7	-9.4-6 -9.4-6 -1.7-5 -2.2-7	9:40 9:39 8:01 25:40
esc32e 1582 1024;	40,47;1248 1108 905 784	9.9-7 9.8-7 8.6-7 9.7-7	8.7-6 -3.8-7 -9.2-6 -3.1-6	22:00 16:09 8:32 14:30
esc32f 1582 1024;	40,47;1248 1108 905 784	9.9-7 9.8-7 8.6-7 9.7-7	8.7-6 -3.8-7 -9.2-6 -3.1-6	21:31 15:45 8:25 12:57
esc32g 1582 1024;	0, 0;520 520 588 981	9.3-7 9.3-7 9.2-7 9.9-7	1.9-6 1.9-6 -3.3-6 3.6-7	7:17 7:14 5:41 17:19
esc32h 1582 1024;	97,236;4959 25000 25000 25000	9.9-7 9.4-6 1.2-5 2.8-5	-4.4-5 -4.1-4 -5.0-4 -7.4-4	1:42:34 5:01:41 4:13:31 7:30:56
had12 232 144;	21,71;2037 25000 25000 25000	8.4-7 1.2-6 1.7-6 2.4-5	-9.2-6 -1.1-5 -1.4-5 -2.7-4	30 3:59 5:01 6:50
had14 313 196;	38,97;3878 25000 25000 25000	9.9-7 4.0-6 4.1-6 3.7-5	-8.7-6 -4.5-5 -3.9-5 -4.7-4	1:44 6:57 9:09 11:06
had16 406 256;	66,168;4900 19949 25000 25000	4.2-7 4.8-7 8.9-6 3.0-5	1.9-7 1.5-5 -5.5-5 -2.6-4	3:31 9:15 16:07 18:45
had18 511 324;	227,312;11708 25000 25000 25000	9.9-7 1.4-5 3.1-5 2.4-5	-2.3-5 -2.0-4 -3.1-4 -3.1-4	16:16 19:32 22:29 29:56
had20 628 400;	93,197;7004 25000 25000 25000	9.9-7 1.4-5 3.1-5 2.8-5	-1.7-5 -1.9-4 -3.2-4 -4.4-4	18:14 30:47 41:00 50:54
kra30a 1393 900;	49,72;3208 25000 25000 25000	9.9-7 1.3-5 1.4-5 1.7-6	-6.5-5 -4.2-4 -5.7-4 -5.9-5	52:13 3:45:29 5:11:22 5:42:45
kra30b 1393 900;	81,101;3080 25000 25000 25000	9.9-7 1.1-5 1.1-5 1.8-5	-6.5-5 -3.7-4 -4.9-4 -6.1-4	55:48 3:56:14 5:15:18 5:45:45
kra32 1582 1024;	67,83;2946 25000 25000 25000	9.9-7 9.1-6 1.1-5 1.7-5	-7.0-5 -3.2-4 -4.0-4 -5.0-4	1:07:22 5:07:43 6:57:49 8:11:14
lipa20a 628 400;	19,30;1300 1653 5698 25000	1.0-7 8.8-7 9.8-7 4.8-5	-1.4-6 -4.4-6 -2.0-5 -1.6-3	1:35 1:43 6:54 51:25
lipa20b 628 400;	4,14;700 1514 4747 25000	4.3-8 8.5-7 9.7-7 4.4-4	-1.9-7 9.1-6 -3.1-5 -2.0-2	1:13 1:19 3:51 48:31
lipa30a 1393 900;	443,1216;1300 3533 11683 16167	1.0-7 8.9-7 9.5-7 9.9-7	-4.3-10 8.3-6 <mark>3.2-5</mark> -3.8-6	47:33 26:59 1:52:11 3:46:31
lipa30b 1393 900;	4, 9;820 2700 7516 25000	8.2-9 9.1-7 9.9-7 1.6-4	-3.7-7 4.3-5 4.7-5 1.1-2	11:08 16:33 52:22 5:31:56
lipa40a 2458 1600;	153,546;3732 6483 18785 25000	5.5-7 8.8-7 9.8-7 9.5-6	1.2-6 4.2-5 -4.1-5 -1.5-4	3:01:05 3:32:47 19:15:19 26:56:27
lipa40b 2458 1600;	5,18;991 4878 5970 25000	4.2-7 9.0-7 9.8-7 4.6-4	1.9-7 1.1-4 -6.4-5 -4.1-2	1:02:59 2:20:09 4:11:06 23:33:11
nug12 232 144;	38,44;1788 25000 25000 25000	9.2-7 6.3-6 6.1-6 1.2-5	-6.5-5 -1.5-4 -1.8-4 -2.5-4	29 3:33 4:46 7:03
nug14 313 196;	44,99;3776 25000 25000 25000	9.9-7 1.3-5 1.8-5 2.6-5	-2.9-5 -2.3-4 -3.2-4 -3.6-4	1:44 6:57 8:09 11:12
nug15 358 225;	36,69;2588 25000 25000 25000	9.9-7 9.9-6 1.2-5 1.8-5	-2.7-5 -2.1-4 -2.7-4 -3.2-4	1:33 8:53 11:00 15:06
nug16a 406 256;	61,128;4637 25000 25000 25000	9.9-7 2.7-5 2.4-5 3.3-5	-2.4-5 -3.6-4 -4.1-4 -4.3-4	3:57 12:01 14:36 19:00
nug16b 406 256;	37,50;2018 25000 25000 25000	9.9-7 8.7-6 9.0-6 1.1-5	-5.7-5 -2.1-4 -2.6-4 -2.8-4	1:25 11:12 13:23 18:50
nug17 457 289;	46,74;2936 25000 25000 25000	9.9-7 1.1-5 1.4-5 2.1-5	-2.5-5 -2.2-4 -2.9-4 -3.5-4	2:59 15:00 19:07 24:12
nug18 511 324;	48,69;2592 25000 25000 25000	9.9-7 9.2-6 1.1-5 1.8-5	-2.5-5 -1.9-4 -2.4-4 -3.0-4	3:21 18:47 25:10 30:51
nug20 628 400;	37,53;2120 25000 25000 25000	9.9-7 8.7-6 9.6-6 1.4-5	-3.8-5 -1.7-4 -2.1-4 -2.5-4	4:02 30:28 40:29 48:41
nug21 691 441;	50,88;3190 25000 25000 25000	9.9-7 1.0-5 1.3-5 1.9-5	-1.9-5 -2.2-4 -2.8-4 -3.3-4	9:15 38:17 51:44 1:04:08
nug22 757 484;	92,119;3840 25000 25000 25000	9.9-7 1.3-5 1.6-5 2.0-5	-4.1-5 -2.7-4 -3.6-4 -3.9-4	14:16 49:55 1:02:41 1:14:17

Table 4: Performance of SDPNAL+ (a), ADMM+ (b), SDPAD (c) and 2EBD (d) on θ_+ , FAP, QAP, BIQ and RCP problems ($\varepsilon=10^{-6}$)

	iteration	η	η_g	time
problem $\mid m \mid n_s; n_l$	a b c d	al bl cl d	al bl cl d	a b c d
nug24 898 576;	43,66;2359 25000 25000 25000	9.9-7 9.1-6 1.1-5 1.6-5	-2.8-5 -1.9-4 -2.3-4 -2.7-4	14:12 1:17:49 1:40:05 1:57:03
nug25 973 625;	48,76;2708 25000 25000 25000	9.9-7 1.2-5 1.0-5 1.7-5	-1.6-5 -2.0-4 -2.0-4 -2.5-4	19:25 1:35:46 1:53:26 2:16:27
nug27 1132 729;	49,86:3300 25000 25000 25000	9.9-7 1.0-5 1.3-5 1.7-5	-2.1-5 -2.0-4 -2.6-4 -2.8-4	36:53 2:21:06 2:51:26 3:28:20
nug28 1216 784;	50,77:3190 25000 25000 25000	9.9-7 9.3-6 1.2-5 1.7-5	-2.0-5 -1.8-4 -2.2-4 -2.6-4	40:26 2:47:04 3:27:54 4:02:11
nug30 1393 900;	44,68;2463 25000 25000 25000	9.9-7 8.7-6 1.1-5 1.7-5	-2.5-5 -1.6-4 -1.9-4 -2.2-4	45:02 3:48:43 4:58:12 5:39:31
rou12 232 144;	117,152;4455 25000 25000 25000	8.8-7 2.9-5 3.4-5 3.9-5	1.2-5 -5.0-4 -5.8-4 -5.8-4	1:04 4:11 4:46 6:29
rou15 358 225;	58,69:2342 25000 25000 25000	9.9-7 8.6-6 9.9-6 1.6-5	-2.9-5 -1.6-4 -2.2-4 -2.7-4	1:26 9:50 12:31 15:14
rou20 628 400;	40,41;1640 25000 25000 25000	8.3-7 6.1-6 6.3-6 1.5-5	-4.3-5 -1.1-4 -1.3-4 -1.9-4	3:26 30:03 46:12 52:43
scr12 232 144;	18,22;1000 1358 2019 5396	7.3-7 8.1-7 9.1-7 9.8-7	-1.0-7 2.4-5 1.8-5 1.5-5	09 11 21 1:27
scr15 358 225;	21,35;1060 2237 3429 8053	4.8-7 8.4-7 8.7-7 9.8-7	-1.4-6 8.8-5 -5.4-5 -1.8-5	33 41 1:17 4:35
scr20 628 400;	47,78;3398 25000 25000 25000	9.9-7 8.3-6 1.1-5 1.7-5	-3.7-5 -3.8-4 -4.7-4 -5.5-4	7:08 29:35 41:44 50:32
ste36a 1996 1296;	122,189;7344 25000 25000 25000	9.9-7 9.7-6 1.3-5 1.6-5	-8.1-5 -5.8-4 -6.8-4 -6.7-4	6:29:21 9:38:26 12:37:18 14:09:11
ste36b 1996 1296;	173,242;11851 25000 25000 25000	9.9-7 1.2-5 1.8-5 1.3-5	-2.3-4 -1.5-3 -2.0-3 -2.1-3	9:45:58 9:19:24 12:10:09 14:23:33
ste36c 1996 1296;	143,202;10008 25000 25000 25000	9.9-7 1.2-5 1.5-5 1.6-5	-8.6-5 -5.8-4 -7.3-4 -7.2-4	8:06:50 9:26:42 12:22:19 14:23:52
tai12a 232 144;	16,29;1120 1377 2763 6599	3.0-8 8.0-7 9.9-7 9.9-7	1.9-7 1.0-5 -2.4-5 -1.2-5	10 11 23 1:45
tai12b 232 144;	112,215;2709 6403 14442 25000	8.4-7 8.5-7 4.5-7 1.8-5	3.6-5 1.2-4 3.7-5 -5.8-4	41 50 1:36 6:24
tai15a 358 225;	47,50;1871 25000 25000 25000	9.9-7 7.0-6 6.9-6 1.3-5	-4.2-5 -1.2-4 -1.5-4 -2.1-4	1:04 9:25 12:52 15:15
tai15b 358 225;	114,233;6762 6964 7170 25000	9.9-7 9.9-7 9.9-7 4.1-6	-1.7-4 -1.7-4 -1.7-4 -4.3-4	3:01 2:35 3:22 14:37
tai17a 457 289;	44,46;1756 25000 25000 25000	9.9-7 6.1-6 6.1-6 1.4-5	-3.8-5 -1.1-4 -1.3-4 -2.0-4	1:41 15:39 22:31 25:29
tai20a 628 400;	45,47;1748 25000 25000 25000	9.9-7 5.6-6 5.8-6 1.5-5	-3.0-5 -9.9-5 -1.2-4 -1.9-4	3:36 31:14 47:13 50:21
tai20b 628 400;	171,484;7416 14238 23726 25000	9.5-7 3.6-7 7.3-7 1.7-5	2.4-4 1.4-4 9.9-5 -1.5-3	9:22 14:29 28:00 50:45
tai25a 973 625;	33,42;2630 2201 1845 25000	9.9-7 9.5-7 9.9-7 1.7-6	-8.5-4 -8.0-4 -7.2-4 -1.8-3	14:52 8:38 9:24 2:27:04
tai25b 973 625;	296,344;18325 25000 25000 25000	9.9-7 2.9-5 3.7-5 4.2-5	-2.7-4 -2.0-3 -2.4-3 -2.5-3	1:18:04 1:28:33 1:55:04 2:21:35
tai30a 1393 900;	39,39;1614 25000 25000 25000	9.9-7 4.7-6 4.6-6 1.3-5	-2.3-5 -6.3-5 -7.3-5 -1.3-4	29:11 3:53:48 6:09:25 6:00:13
tai30b 1393 900;	236,342;16584 25000 25000 25000	9.9-7 2.0-5 2.4-5 2.6-5	-1.8-4 -1.0-3 -1.2-3 -1.2-3	2:52:00 3:42:12 4:28:02 5:38:24
tai35a 1888 1225;	38,38;3467 25000 25000 25000	9.9-7 3.9-6 4.0-6 1.3-5	-1.8-5 -4.8-5 -5.6-5 -1.0-4	1:56:18 9:21:21 15:00:46 12:53:01
tai35b 1888 1225;	142,214;10915 25000 25000 25000	9.9-7 2.1-5 2.4-5 2.8-5	-1.2-4 -9.1-4 -1.0-3 -1.1-3	8:01:01 8:51:20 11:15:52 12:51:27
tai40a 2458 1600;	33,33;3395 25000 25000 25000	9.9-7 3.7-6 4.0-6 1.4-5	-1.8-5 -4.6-5 -5.3-5 -1.0-4	3:56:34 20:22:53 31:45:29 26:00:47
tai40b 2458 1600;	101,146;7124 25000 25000 25000	9.9-7 1.9-5 2.5-5 3.1-5	-1.1-4 -7.2-4 -8.1-4 -8.5-4	10:55:44 17:50:19 23:17:25 25:23:31
tho30 1393 900;	44,74;2925 25000 25000 25000	9.9-7 1.1-5 1.5-5 2.2-5	-4.8-5 -2.6-4 -3.4-4 -4.0-4	1:03:01 3:46:49 4:46:03 5:44:33
tho40 2458 1600;	24,51;3998 25000 25000 25000	9.9-7 9.3-6 1.3-5 2.0-5	-4.2-5 -2.1-4 -2.7-4 -3.2-4	5:08:15 17:12:50 24:35:42 26:05:11
be100.1 101 101;	14,14;1551 1705 2031 1627	9.5-7 9.9-7 9.9-7 9.9-7	-8.6-7 2.0-6 4.0-7 1.6-7	07 07 07 08
be100.2 101 101;	0, 0;1666 1666 1746 1383	9.6-7 9.6-7 9.9-7 9.9-7	9.3-7 9.3-7 -2.8-7 4.1-7	07 07 06 07
be100.3 101 101;	17,17;1800 2064 2120 1679	9.6-7 9.9-7 9.9-7 9.9-7	-3.6-8 -9.6-7 -3.5-7 -1.1-6	08 08 08 08
be100.4 101 101;	53,53;1308 1946 2709 1789	9.7-7 9.9-7 9.9-7 9.9-7	-6.5-7 -7.4-7 -4.6-7 -1.6-7	07 07 09 08
be100.5 101 101;	35,35;1226 1550 1889 1336	9.9-7 9.9-7 9.9-7 9.9-7	-4.7-7 -4.6-7 -8.7-7 1.0-7	07 06 07 07
be100.6 101 101;	41,41;1580 2150 2260 1415	9.9-7 9.9-7 9.9-7 9.9-7	-6.0-7 -6.2-7 -6.2-7 -4.6-8	08 09 08 07
be100.7 101 101;	36,36;1267 1818 1901 1481	9.9-7 9.9-7 9.9-7 9.6-7	-2.5-7 -1.2-6 -3.4-7 1.8-7	06 07 07 07
be100.8 101 101;	18,18;1347 1623 1590 1433	9.8-7 9.9-7 9.9-7 9.9-7	6.5-8 8.7-7 6.2-7 -2.7-6	06 06 05 07
be100.9 101 101;	15,16;1194 1254 1862 1261	9.6-7 9.9-7 9.9-7 9.1-7	3.7-7 -1.7-7 -5.4-7 -1.2-6	06 05 07 06
be100.10 101 101;	21,21;994 1358 1485 1282	9.7-7 9.9-7 9.9-7 9.8-7	-5.1-7 -4.2-7 -5.1-7 -4.7-7	05 05 05 06
be120.3.1 121 121;	95,99;1550 1955 2435 1437	9.8-7 9.9-7 9.9-7 9.8-7	6.3-7 -4.9-7 -7.8-7 1.0-6	13 10 11 09
be120.3.2 121 121;	84,87;1791 2054 2407 1640	9.9-7 9.9-7 9.9-7 9.9-7	9.2-7 -7.7-7 -1.1-6 -5.7-7	14 10 11 10

Table 4: Performance of SDPNAL+ (a), ADMM+ (b), SDPAD (c) and 2EBD (d) on θ_+ , FAP, QAP, BIQ and RCP problems ($\varepsilon=10^{-6}$)

	iteration	η	η_q	time
problem $ m n_s; n_l$	a b c d	a b c d	a b c d	a b c d
be120.3.3 121 121;	56,60;1482 1976 2236 1497	9.9-7 9.9-7 9.9-7 9.9-7	9.6-7 -5.0-7 -9.2-7 -5.5-7	10 10 10 10
be120.3.4 121 121;	16,16;1753 2116 2445 1611	9.9-7 9.9-7 9.9-7 9.9-7	-7.8-7 -1.4-7 -2.0-6 -5.7-7	10 10 11 10
be120.3.5 121 121;	101,102;1396 2589 2856 2686	9.4-7 9.9-7 9.9-7 9.9-7	4.8-7 1.6-7 1.1-7 1.2-8	12 13 13 17
be120.3.6 121 121;	73,76;1486 2226 2819 1827	9.9-7 9.9-7 9.9-7 9.9-7	-1.0-7 -7.6-7 -3.8-7 3.2-7	12 11 13 11
be120.3.7 121 121;	164,175;2473 4269 4626 3087	9.8-7 9.9-7 9.9-7 9.9-7	2.2-7 -2.5-7 -1.6-7 -2.5-7	20 20 22 19
be120.3.8 121 121;	166,175;2295 3281 4065 2628	9.9-7 9.9-7 9.9-7 9.9-7	3.5-7 3.9-7 -2.4-7 9.5-8	18 14 18 16
be120.3.9 121 121;	136,136;1279 3510 6116 2770	9.4-7 9.9-7 9.9-7 9.9-7	-1.9-7 -3.6-7 -4.8-7 -2.5-8	13 16 28 18
be120.3.10 121 121;	38,38;1376 1586 2056 1322	9.9-7 9.9-7 9.9-7 9.7-7	-1.7-6 -3.4-6 -1.5-6 1.9-7	09 08 09 08
be120.8.1 121 121;	47,49;1386 1835 2008 1241	9.9-7 9.9-7 9.9-7 9.8-7	6.7-7 -1.1-6 -8.1-7 -1.2-6	08 08 09 08
be120.8.2 121 121;	117,117;1764 3638 3422 2501	9.9-7 9.9-7 9.9-7 9.4-7	8.3-7 -1.1-7 -1.0-6 -3.9-8	14 17 16 16
be120.8.3 121 121;	53,53;1259 1888 2232 1635	9.9-7 9.9-7 9.9-7 9.9-7	-4.1-7 -4.4-7 -4.0-7 1.5-8	09 09 11 11
be120.8.4 121 121;	61,63;1623 1985 2273 1603	9.8-7 9.9-7 9.9-7 9.9-7	8.3-7 -1.4-7 -3.6-7 -1.5-6	11 09 11 10
be120.8.5 121 121;	23,23;1855 2101 2669 1747	9.8-7 9.9-7 9.9-7 9.9-7	-7.9-8 -5.0-7 -9.2-8 -2.0-8	11 11 13 11
be120.8.6 121 121;	65,66;1389 1853 2238 1389	9.7-7 9.9-7 9.9-7 9.9-7	1.3-6 -5.7-7 -1.2-6 1.8-7	11 09 10 09
be120.8.7 121 121;	34,36;1245 1837 1934 1683	9.9-7 9.9-7 9.9-7 9.9-7	-1.0-6 4.7-7 -6.5-9 8.2-7	09 09 09 11
be120.8.8 121 121;	30,30;1120 1552 1893 1314	9.7-7 9.9-7 9.9-7 9.9-7	-3.5-7 -1.1-6 -4.0-7 -2.2-6	08 08 09 08
be120.8.9 121 121;	44,46;1290 1672 1935 1286	9.9-7 9.9-7 9.9-7 9.9-7	4.2-7 -5.9-7 -2.1-7 2.0-6	09 09 09 08
be120.8.10 121 121;	114,114;1458 1921 2460 1561	9.9-7 9.9-7 9.9-7 9.9-7	-2.2-7 -2.2-7 -5.0-7 -3.1-8	13 10 12 10
be150.3.1 151 151;	64,71;1660 2318 2559 1865	9.9-7 9.9-7 9.9-7 9.9-7	1.2-6 -1.4-6 -3.3-7 -1.0-6	17 17 18 18
be150.3.2 151 151;	74,83;1878 2885 3145 1959	9.9-7 9.9-7 9.9-7 9.9-7	2.7-7 -6.1-7 -5.4-7 -3.5-7	20 20 21 19
be150.3.3 151 151;	58,64;1562 2110 2509 1731	9.9-7 9.9-7 9.9-7 9.9-7	8.7-7 2.2-6 -1.3-6 -2.0-6	17 16 17 17
be150.3.4 151 151;	48,49;1632 2612 2982 1977	9.9-7 9.9-7 9.9-7 9.9-7	-4.7-7 3.2-6 -1.2-7 -8.6-7	17 19 20 19
be150.3.5 151 151;	66,76;1696 2186 2700 1770	9.9-7 9.9-7 9.9-7 9.9-7	-5.0-7 -7.7-7 -3.5-7 -4.3-7	18 16 19 17
be150.3.6 151 151;	64,70;1663 2053 2501 1791	9.9-7 9.9-7 9.9-7 9.9-7	6.6-7 -1.1-7 -2.9-7 -5.0-7	17 15 16 17
be150.3.7 151 151;	63,66;1691 2597 2920 1713	9.8-7 9.9-7 9.9-7 9.9-7	9.9-7 -4.8-7 -5.4-7 -1.4-7	18 18 19 16
be150.3.8 151 151;	106,110;1943 3097 3358 2080	9.9-7 9.9-7 9.9-7 9.9-7	4.5-7 -5.4-7 -3.1-7 -4.3-7	21 22 22 20
be150.3.9 151 151;	33,33;1260 1593 2067 1171	9.8-7 9.9-7 9.9-7 9.9-7	-7.4-7 -1.2-6 -9.9-7 1.9-6	12 11 14 12
be150.3.10 151 151;	146,150;2266 3526 4499 2545	9.9-7 9.9-7 9.9-7 9.9-7	3.1-7 -3.3-7 -3.0-7 -1.3-7	25 25 30 25
be150.8.1 151 151;	53,58;1456 2069 2254 1551	9.2-7 9.9-7 9.9-7 9.9-7	5.1-7 -2.8-7 1.4-7 -1.0-6	15 15 15 15
be150.8.2 151 151;	64,69;1590 1940 2387 1431	9.9-7 9.6-7 9.9-7 9.9-7	4.8-7 -4.4-7 -6.6-7 -1.6-6	17 14 15 14
be150.8.3 151 151;	66,72;1719 2448 2580 1685	9.9-7 9.9-7 9.9-7 9.9-7	1.6-7 -6.3-7 8.3-7 6.3-7	18 18 18 17
be150.8.4 151 151;	67,70;1568 2188 2680 1547	9.7-7 9.9-7 9.9-7 9.9-7	6.2-7 -7.0-7 -6.1-7 -8.6-7	17 16 18 15
be150.8.5 151 151;	71,79;1743 2648 3016 1775	9.9-7 9.9-7 9.9-7 9.9-7	6.9-8 -8.8-7 -7.6-7 -3.2-7	19 20 21 17
be150.8.6 151 151;	64,65;1480 1989 2580 1644	9.4-7 9.9-7 9.9-7 9.9-7	4.2-7 -1.9-6 -4.0-7 -5.5-7	15 14 16 16
be150.8.7 151 151;	80,84;1738 2715 3379 2406	9.9-7 9.9-7 9.9-7 9.9-7	1.1-6 -3.8-7 -4.2-7 1.7-7	19 19 22 23
be150.8.8 151 151;	127,134;1946 3509 3388 2535	9.9-7 9.6-7 9.9-7 9.9-7	8.2-7 -8.5-7 -9.1-7 -4.3-7	23 25 23 24
be150.8.9 151 151;	112,121;1890 2587 3319 1777	9.9-7 9.9-7 9.9-7 9.9-7	9.6-7 -2.9-7 -7.3-7 -7.4-7	23 19 23 17
be150.8.10 151 151;	65,71;1714 2371 2833 1854	9.9-7 9.9-7 9.9-7 9.9-7	9.4-7 -6.1-7 -2.8-7 -3.1-7	17 17 19 18
be200.3.1 201 201;	76,86;1784 2543 2841 1754	9.9-7 9.9-7 9.9-7 9.9-7	1.0-6 -7.6-7 -1.2-6 -8.7-7	31 30 32 30
be200.3.2 201 201;	95,109;1962 2629 3278 1897	9.6-7 9.9-7 9.9-7 9.9-7	3.1-7 -3.9-7 -5.7-7 -6.1-7	36 32 37 32
be200.3.3 201 201;	172,181;2565 4645 5206 3067	9.9-7 9.9-7 9.9-7 9.9-7	7.5-7 -6.8-7 -4.4-7 -6.0-7	49 55 1:01 52
be200.3.4 201 201;	101,112;2097 3035 3513 2142	9.9-7 9.9-7 9.9-7 9.9-7	7.2-7 -1.1-6 -9.2-7 2.9-8	38 37 40 36
be200.3.5 201 201;	165,178;2394 3598 4665 2720	9.9-7 9.9-7 9.9-7 9.9-7	6.1-7 -8.1-7 -3.0-7 -3.3-7	46 42 55 46

Table 4: Performance of SDPNAL+ (a), ADMM+ (b), SDPAD (c) and 2EBD (d) on θ_+ , FAP, QAP, BIQ and RCP problems ($\varepsilon=10^{-6}$)

	iteration	η	η_g	time
problem $\mid m \mid n_s; n_l$	a b c d	a b c d	a b c d	a b c d
be200.3.6 201 201;	83,92;1852 2746 3012 1783	9.0-7 9.9-7 9.9-7 9.9-7	4.6-7 -1.7-7 -9.3-8 5.5-7	33 33 33 30
be200.3.7 201 201;	79,83;2050 3568 3780 2272	9.7-7 9.9-7 9.9-7 9.9-7	-5.3-7 3.5-8 -5.1-7 4.4-7	36 43 43 39
be200.3.8 201 201;	92,102;2068 2966 3445 2079	9.8-7 9.9-7 9.9-7 9.9-7	9.5-7 -1.6-6 -1.1-6 -1.3-6	37 35 38 35
be200.3.9 201 201;	201,212;3478 4670 5441 3619	9.9-7 9.9-7 9.9-7 9.9-7	9.4-7 -1.2-6 -7.0-7 -7.8-7	1:02 55 1:01 1:02
be200.3.10 201 201;	91,97;1862 2955 3504 2498	9.9-7 9.9-7 9.9-7 9.9-7	2.5-7 -8.8-7 -4.7-7 -7.2-8	34 35 39 41
be200.8.1 201 201;	96,96;2493 3743 4153 2689	9.9-7 9.9-7 9.9-7 9.9-7	-6.1-7 -8.3-7 -4.6-7 -2.8-7	43 45 49 47
be200.8.2 201 201;	73,81;1721 2708 2918 1695	9.9-7 9.9-7 9.9-7 9.9-7	4.4-7 3.9-7 -4.7-7 -6.4-7	30 32 32 29
be200.8.3 201 201;	106,119;1993 3009 3465 2437	9.9-7 9.9-7 9.9-7 9.9-7	6.7-7 -4.6-7 -6.9-7 -5.2-7	37 37 41 42
be200.8.4 201 201;	78,89;1752 2987 3187 1939	9.9-7 9.9-7 9.9-7 9.9-7	9.9-7 -9.7-7 -9.0-7 -1.2-6	33 37 37 33
be200.8.5 201 201;	91,99;1956 2836 2951 1868	9.9-7 9.9-7 9.9-7 9.9-7	2.4-7 -3.0-7 -1.5-7 -7.6-9	37 36 35 32
be200.8.6 201 201;	70,71;1900 3276 3712 2786	9.8-7 9.9-7 9.9-7 9.9-7	2.9-7 -1.2-6 -5.8-7 -5.7-7	33 42 42 47
be200.8.7 201 201;	93,103;2043 3052 3455 1968	9.8-7 9.9-7 9.9-7 9.9-7	1.5-6 -1.7-6 -2.5-6 -6.3-7	38 37 40 34
be200.8.8 201 201;	94,101;1947 2936 3084 1872	9.9-7 9.9-7 9.9-7 9.9-7	2.3-7 -5.8-7 -9.8-8 -7.8-7	36 36 34 32
be200.8.9 201 201;	85,95;1967 2670 3069 1877	9.8-7 9.9-7 9.9-7 9.9-7	4.3-7 5.3-7 -3.5-7 -1.2-7	37 34 36 33
be200.8.10 201 201;	84,95;1857 2779 3127 1748	9.9-7 9.9-7 9.9-7 9.9-7	1.4-6 -7.6-7 -8.9-7 -7.3-7	35 35 36 29
be250.1 251 251;	122,123;2800 4327 5345 3537	9.9-7 9.9-7 9.9-7 9.9-7	-4.7-7 -2.0-7 -3.6-7 -4.1-7	1:13 1:16 1:35 1:37
be250.2 251 251;	121,121;2842 3827 5108 3044	9.9-7 9.9-7 9.9-7 9.9-7	-7.9-7 -8.6-7 -5.3-7 -8.0-7	1:12 1:08 1:28 1:22
be250.3 251 251;	84,89;2200 3796 4331 2592	9.9-7 9.9-7 9.9-7 9.9-7	-7.7-7 -1.1-6 -7.3-7 -1.1-6	59 1:11 1:18 1:11
be250.4 251 251;	208,209;3850 8023 8350 6453	9.9-7 9.9-7 9.9-7 9.9-7	-1.2-6 -1.1-6 -1.1-6 -2.9-7	1:42 2:23 2:24 2:53
be250.5 251 251;	115,127;2791 4460 5089 3174	9.9-7 9.9-7 9.9-7 9.9-7	-6.5-7 -7.5-7 -6.4-7 -7.2-7	1:15 1:23 1:31 1:26
be250.6 251 251;	120,141;2452 4095 4560 2812	9.9-7 9.9-7 9.9-7 9.9-7	4.7-7 -5.7-7 -5.4-7 -4.3-7	1:08 1:13 1:17 1:16
be250.7 251 251;	127,141;2664 4345 5048 3295	9.9-7 9.9-7 9.9-7 9.9-7	5.0-7 -1.1-7 -2.4-7 -2.4-7	1:12 1:20 1:28 1:31
be250.8 251 251;	99,113;2172 3759 4663 2911	9.9-7 9.9-7 9.9-7 9.9-7	1.2-6 1.9-7 -8.8-7 2.5-7	1:00 1:08 1:18 1:18
be250.9 251 251;	189,191;3319 4624 5976 4169	9.9-7 9.9-7 9.9-7 9.9-7	-1.0-6 -1.1-6 -1.1-6 -4.8-7	1:32 1:26 1:49 1:54
be250.10 251 251;	174,189;2695 5963 6638 3989	9.9-7 9.9-7 9.9-7 9.9-7	6.5-7 -7.6-7 -7.4-7 -4.2-7	1:18 1:46 1:55 1:49
bqp100-1 101 101;	23,23;1229 1541 1923 1291	9.4-7 9.9-7 9.9-7 9.9-7	-2.0-7 -6.2-7 -6.0-7 3.1-6	06 06 07 06
bqp100-2 101 101;	126,139;1998 2786 3384 2349	9.9-7 9.9-7 9.9-7 9.9-7	9.4-7 -4.2-8 -6.8-7 -1.8-7	13 10 11 11
bqp100-3 101 101;	12,12;1999 2345 5083 3980	9.9-7 9.8-7 9.9-7 9.9-7	1.4-6 -1.1-7 -2.8-7 -3.8-7	08 09 16 18
bqp100-4 101 101;	96,97;1214 2350 2729 2995	9.5-7 9.9-7 9.8-7 9.9-7	-7.9-8 -5.6-7 -3.2-7 -4.0-8	08 09 10 14
bqp100-5 101 101;	243,250;1819 3579 3879 3205	9.9-7 9.9-7 9.9-7 9.9-7	3.7-8 -5.1-7 -4.2-7 -2.2-8	15 14 13 15
bqp100-6 101 101;	23,23;1363 1712 1918 1376	9.9-7 9.9-7 9.9-7 9.9-7	-1.5-6 -7.6-7 -3.2-7 3.5-7	06 07 06 06
bqp100-7 101 101;	49,55;1342 1852 2272 1637	9.9-7 9.9-7 9.9-7 9.9-7	2.1-7 -2.2-6 -9.0-7 -6.0-7	07 07 08 08
bqp100-8 101 101;	67,67;1717 3071 3957 2931	9.6-7 9.9-7 9.9-7 9.9-7	-3.4-7 -3.4-7 -3.6-7 -2.2-8	11 12 13 14
bqp100-9 101 101;	37,37;2206 2906 3255 2265	9.7-7 9.9-7 9.9-7 9.9-7	-9.3-8 6.8-8 8.7-8 -2.4-6	10 11 11 11
bqp100-10 101 101;	72,73;2208 3417 3703 4123	9.9-7 9.9-7 9.9-7 9.9-7	-7.3-7 -8.9-7 -6.6-7 -6.0-8	12 13 12 19
bqp250-1 251 251;	153,168;3069 4593 4946 3216	9.9-7 9.9-7 9.9-7 9.9-7	1.1-6 -8.8-7 1.0-6 -8.1-7	1:20 1:19 1:26 1:28
bqp250-2 251 251;	115,134;2410 4388 5097 3293	9.6-7 9.9-7 9.9-7 9.9-7	1.3-6 -1.1-6 -7.4-7 -6.2-7	1:02 1:26 1:30 1:31
bqp250-3 251 251;	93,105;2107 4039 5332 3203	9.9-7 9.9-7 9.9-7 9.9-7	2.1-6 -2.1-6 -3.1-7 -7.5-7	53 1:08 1:29 1:28
bqp250-4 251 251;	92,94;2350 3662 4539 2548	9.9-7 9.9-7 9.9-7 9.9-7	-1.5-7 -1.4-6 -6.7-7 1.5-7	59 1:05 1:20 1:09
bqp250-5 251 251;	147,166;2580 4558 8062 4487	9.9-7 9.9-7 9.9-7 9.9-7	2.4-7 -1.1-6 -4.8-7 -5.6-7	1:16 1:23 2:23 2:03
bqp250-6 251 251;	106,122;2126 4722 5380 3480	9.9-7 9.9-7 9.9-7 9.9-7	1.6-6 -1.2-6 -1.2-6 -2.6-7	1:03 1:27 1:35 1:34
bqp250-7 251 251;	114,137;2407 4470 5138 3128	9.9-7 9.9-7 9.9-7 9.9-7	1.4-6 -1.2-6 -1.7-6 -1.2-6	1:09 1:22 1:28 1:25
bqp250-8 251 251;	93,113;2008 2961 3534 2126	9.5-7 9.9-7 9.9-7 9.9-7	3.0-7 -3.3-7 -6.5-7 -5.8-8	57 55 1:00 57

Table 4: Performance of SDPNAL+ (a), ADMM+ (b), SDPAD (c) and 2EBD (d) on θ_+ , FAP, QAP, BIQ and RCP problems ($\varepsilon=10^{-6}$)

	iteration	η	η_q	time
problem $\mid m \mid n_s; n_l$	al bl cl d	alblcld	al bl cl d	al bl cl d
bgp250-9 251 251:	96.114:2057 4745 6121 3440	9.9-7 9.9-7 9.9-7	6.5-7 -5.9-8 -4.0-7 -3.3-7	58 1:25 1:45 1:34
bqp250-10 251 251;	103.123:2188 3342 3992 2122	9.9-7 9.9-7 9.9-7 9.9-7	6.4-7 -1.1-6 -1.2-6 -1.1-6	1:01 1:01 1:06 57
bqp500-1 501 501;	138,171:2499 6473 6932 4086	9.9-7 9.9-7 9.9-7 9.9-7	2.0-6 -1.4-6 -3.4-7 -1.6-6	5:20 8:35 9:45 9:13
bqp500-2 501 501;	142,194;2390 8008 10582 4862	9.9-7 9.9-7 9.9-7 9.9-7	4.1-7 -4.2-7 -8.6-8 -1.2-6	5:29 10:46 14:42 10:52
bap500-3 501 501;	135,180:2390 8192 8915 4965	9.7-7 9.9-7 9.9-7 9.9-7	7.6-7 -1.5-6 3.7-7 -5.8-7	6:31 12:53 12:25 11:22
bqp500-4 501 501;	128,174;2390 7188 9012 4031	9.9-7 9.9-7 9.9-7 9.9-7	6.1-7 -1.0-6 -3.8-7 -1.2-6	6:08 10:37 12:10 9:11
bqp500-5 501 501;	169,206;2910 6898 7641 4541	9.9-7 9.9-7 9.9-7 9.9-7	1.1-6 -8.9-7 -1.2-6 -8.2-7	7:25 10:34 10:57 10:19
bqp500-6 501 501;	167,214;2780 6819 7010 4236	9.8-7 9.9-7 9.9-7 9.9-7	4.6-7 -8.9-7 -1.4-6 -7.4-7	7:30 10:22 9:43 9:37
bqp500-7 501 501;	157,202;2742 6878 8592 4587	9.8-7 9.9-7 9.9-7 9.9-7	1.1-6 -5.4-7 -7.9-8 -5.2-7	7:27 10:23 12:40 10:33
bqp500-8 501 501;	142,184;2520 7131 7647 4867	9.9-7 9.9-7 9.9-7 9.9-7	3.4-7 -5.3-7 -9.0-7 -7.5-7	6:26 10:54 10:22 11:02
bqp500-9 501 501;	145,193;2495 6666 6700 3803	9.9-7 9.9-7 9.9-7 9.9-7	1.5-6 -1.7-6 -1.2-6 -8.1-7	6:37 10:21 9:31 8:43
bqp500-10 501 501;	138,177;2473 7189 9162 5067	9.8-7 9.9-7 9.9-7 9.9-7	1.5-6 -1.4-6 -1.3-6 -1.6-6	6:36 10:43 12:37 11:34
gka8a 101 101;	0, 0;4267 4267 5803 14854	9.8-7 9.8-7 9.9-7 9.9-7	-1.3-6 -1.3-6 9.0-7 -1.7-6	15 15 17 1:10
gka9b 101 101;	3, 7;1047 1182 1314 681	2.5-9 9.9-7 8.8-7 9.0-7	1.9-7 -5.5-5 -1.5-5 2.6-7	04 04 05 03
gka10b 126 126;	1, 1;1315 1347 1811 2544	9.9-7 9.9-7 9.9-7 9.9-7	-1.5-5 -2.3-5 -2.4-5 -1.1-5	08 08 10 16
gka7c 101 101;	135,135;2010 3966 5025 2896	9.9-7 9.9-7 9.9-7 9.9-7	-8.1-7 -6.8-7 -5.2-7 -4.2-7	12 15 16 14
gka1d 101 101;	112,112;2043 3220 3006 2239	9.7-7 9.9-7 9.9-7 9.9-7	-6.7-8 -3.1-7 -4.1-7 -1.7-7	12 12 10 10
gka2d 101 101;	39,42;1319 1768 2542 1431	9.9-7 9.9-7 9.9-7 9.9-7	-1.2-6 -2.8-7 -2.0-7 1.3-7	08 09 10 07
gka3d 101 101;	46,46;1306 3149 3429 3416	9.9-7 9.9-7 9.9-7 9.9-7	8.0-7 -1.8-7 -1.7-8 4.3-8	08 12 12 16
gka4d 101 101;	90,90;1210 2329 2626 1386	9.7-7 9.9-7 9.9-7 9.9-7	3.5-7 -4.0-7 -6.1-7 2.1-7	09 09 09 07
gka5d 101 101;	31,33;1276 1664 1933 1370	9.7-7 9.9-7 9.9-7 9.9-7	-4.5-7 -1.4-7 -2.2-7 5.0-7	07 07 07 06
gka6d 101 101;	23,23;1391 1827 1901 1559	9.9-7 9.9-7 9.9-7 9.9-7	3.9-7 3.2-7 4.2-7 2.1-6	06 07 07 07
gka7d 101 101;	32,32;1151 1673 1685 1284	9.8-7 9.9-7 9.9-7 9.9-7	-1.0-6 -1.1-6 -9.3-7 4.3-7	07 07 06 06
gka8d 101 101;	46,46;2653 3248 2945 2317	9.9-7 9.9-7 9.9-7 9.9-7	-1.8-7 -4.1-8 -3.2-7 -1.8-7	13 13 11 11
gka9d 101 101;	4, 4;1373 1374 1547 1311	9.5-7 9.9-7 9.9-7 9.6-7	-1.6-6 -2.7-7 -4.9-7 2.6-6	06 06 05 06
gka10d 101 101;	32,32;1234 1719 1787 1534	9.9-7 9.9-7 9.9-7 9.9-7	-2.9-7 -5.5-7 -1.1-6 1.9-6	06 07 06 07
gka1e 201 201;	121,123;2921 4192 5075 2805	9.9-7 9.9-7 9.9-7 9.9-7	-3.2-7 -3.4-7 -3.4-7 -2.3-7	48 48 57 47
gka2e 201 201;	106,114;2270 3506 3885 2344	9.9-7 9.9-7 9.9-7 9.9-7	7.5-7 -8.7-7 -8.5-7 -6.5-7	39 41 44 40
gka3e 201 201;	103,111;2082 3496 3874 2795	9.9-7 9.9-7 9.9-7 9.9-7	4.4-7 -8.1-7 -5.5-7 -3.7-8	36 41 44 50
gka4e 201 201;	100,101;2200 4273 4709 2960	9.9-7 9.9-7 9.9-7 9.9-7	-7.2-7 -7.4-7 -5.8-7 -3.9-7	38 49 53 50
gka5e 201 201;	119,128;2431 3530 4162 2589	9.8-7 9.9-7 9.9-7 9.9-7	3.5-7 -4.0-7 -3.0-7 -3.3-7	42 41 46 43
gka1f 501 501;	166,203;2780 6717 8147 4600	9.8-7 9.9-7 9.9-7 9.9-7	5.9-7 -1.3-6 -1.2-6 -5.6-7	6:32 9:38 11:28 10:31
gka2f 501 501;	205,242;3541 7519 8949 5403	9.9-7 9.9-7 9.9-7 9.9-7	1.5-6 -1.5-6 -1.4-6 -1.0-6	7:54 10:50 12:52 12:10
gka3f 501 501;	174,216;2954 6102 7037 3957	9.9-7 9.9-7 9.9-7 9.9-7	6.8-7 -1.1-6 -2.0-6 -1.6-7	6:51 9:07 10:46 9:07
gka4f 501 501;	183,222;3101 6673 7529 4070	9.9-7 9.9-7 9.9-7 9.9-7	8.2-8 -1.1-6 -4.2-7 -3.5-7	7:10 9:13 11:20 9:14
gka5f 501 501;	142,187;2520 6482 7023 4210	9.9-7 9.9-7 9.9-7 9.9-7	-1.5-8 -5.9-7 -9.4-7 -7.5-7	5:53 9:14 10:36 9:45
soybean-small.2 48 47;	0, 0;463 463 1743 544	9.9-7 9.9-7 5.4-7 8.7-7	-1.2-6 -1.2-6 5.1-7 -4.4-7	01 01 05 03
soybean-small.3 48 47;	0, 0;212 212 123 530	9.6-7 9.6-7 8.9-7 8.8-7	3.6-8 3.6-8 5.8-6 7.8-6	01 01 00 03
soybean-small.4 48 47;	0, 0;440 440 478 868	9.5-7 9.5-7 9.9-7 9.9-7	-1.6-6 -1.6-6 -1.7-9 -1.1-6 -1.8-7 -1.8-7 6.8-7 -6.1-7	01 01 01 04
soybean-small.5 48 47;	0, 0;275 275 394 1106 0, 0;368 368 556 1001			
soybean-small.6 48 47; soybean-small.7 48 47;	-, -,		1 1	01 01 01 05
	0, 0;385 385 851 1099			
soybean-small.8 48 47;	24,24;1012 1333 5863 2647	9.3-7 9.9-7 9.9-7 9.9-7	-1.1-6 -2.8-7 -5.9-8 -5.9-7	03 03 18 15

38

Table 4: Performance of SDPNAL+ (a), ADMM+ (b), SDPAD (c) and 2EBD (d) on θ_+ , FAP, QAP, BIQ and RCP problems ($\varepsilon=10^{-6}$)

	iteration	η	η_q	time
problem $\mid m \mid n_s; n_l$	a b c d	a b c d	al bl cl d	a b c d
soybean-small.9 48 47;	0, 0;632 632 924 1323	9.9-7 9.9-7 9.9-7 9.9-7	-1.5-6 -1.5-6 -8.7-7 -2.4-6	02 02 02 07
soybean-small.10 48 47;	0, 0;327 327 531 1100	9.8-7 9.8-7 9.9-7 9.9-7	-5.9-6 -5.9-6 -2.8-6 -8.8-6	01 01 01 05
soybean-small.11 48 47;	1, 1;700 834 1834 1428	8.7-7 9.9-7 9.9-7 9.9-7	-2.5-7 -1.7-7 6.8-8 -6.6-6	02 02 09 07
soybean-large.2 308 307;	2, 2;1171 1190 5050 2261	9.9-7 9.2-7 9.9-7 9.9-7	-1.0-7 -7.7-8 -1.2-7 -7.0-8	29 29 3:45 3:09
soybean-large.3 308 307;	2, 2:934 922 5993 2159	7.2-7 8.8-7 9.6-7 8.5-7	-2.8-7 -2.1-7 -5.4-9 1.4-7	25 24 4:47 3:54
soybean-large.4 308 307;	52,52;1506 1609 13512 3831	8.7-7 9.9-7 9.9-7 9.9-7	-1.4-7 -2.8-7 -1.2-7 -1.6-7	52 42 10:51 7:18
soybean-large.5 308 307;	2, 2;814 850 2974 1404	9.8-7 9.7-7 9.9-7 9.9-7	-8.4-8 -9.1-8 -7.9-8 -1.7-7	22 23 2:23 2:05
soybean-large.6 308 307;	0, 0;413 413 545 681	9.4-7 9.4-7 6.8-7 9.1-7	-1.9-7 -1.9-7 3.5-8 1.3-6	12 12 21 44
soybean-large.7 308 307;	2, 2;757 1042 3443 1422	9.2-7 9.9-7 9.9-7 9.9-7	-8.3-8 -2.5-8 -1.2-8 -5.4-8	25 29 2:44 2:10
soybean-large.8 308 307;	2, 2;726 741 2294 1456	9.9-7 9.9-7 9.9-7 9.8-7	-1.8-7 -1.5-7 -3.3-8 8.0-8	22 21 1:46 1:52
soybean-large.9 308 307;	6, 6;850 948 3585 2059	9.7-7 9.9-7 9.9-7 9.9-7	-1.4-7 1.4-7 -7.1-8 -5.3-9	24 25 2:54 3:01
soybean-large.10 308 307;	0, 0;359 359 434 1789	9.5-7 9.5-7 9.6-7 9.7-7	-1.0-7 -1.0-7 8.1-7 -5.0-7	10 11 11 1:58
soybean-large.11 308 307;	0, 0;948 948 1231 1609	6.5-7 6.5-7 9.2-7 9.1-7	1.0-6 1.0-6 -2.6-6 -2.7-6	25 26 32 1:50
spambase-small.2 301 300;	0, 0;434 434 993 1766	9.4-7 9.4-7 8.6-7 9.3-7	-1.1-6 -1.1-6 -1.9-6 -3.2-7	12 12 28 1:39
spambase-small.3 301 300;	2, 2;526 545 672 1938	9.7-7 9.9-7 9.8-7 8.9-7	5.1-7 -5.2-7 -5.9-7 -2.9-7	14 14 22 2:06
spambase-small.4 301 300;	31,31;980 1295 6559 4138	9.9-7 9.9-7 9.9-7 9.9-7	2.2-6 -2.5-7 -2.5-7 -3.5-6	33 32 4:55 3:57
spambase-small.5 301 300;	0, 0;596 604 635 2852	9.9-7 9.9-7 8.7-7 9.7-7	-2.2-5 -1.7-5 -7.2-6 8.2-5	16 17 15 2:46
spambase-small.6 301 300;	8, 8;793 795 1388 2488	9.3-7 9.9-7 9.9-7 9.8-7	-1.2-5 -1.1-5 7.5-7 3.2-5	26 23 50 2:22
spambase-small.7 301 300;	8, 8;842 832 979 2821	9.8-7 9.9-7 9.9-7 9.7-7	2.1-5 1.2-5 1.1-5 -9.4-6	27 24 24 2:51
spambase-small.8 301 300;	1, 1;901 1032 949 3677	9.9-7 9.9-7 9.9-7 9.6-7	6.5-6 3.2-6 -1.3-5 3.6-5	26 30 24 3:29
spambase-small.9 301 300;	8, 8;963 1032 1089 7755	9.6-7 9.9-7 9.9-7 9.9-7	-3.2-5 -1.4-5 -8.5-6 -6.9-5	32 31 27 7:36
spambase-small.10 301 300;	8, 8;1170 1146 959 17646	9.1-7 9.9-7 9.9-7 9.9-7	4.3-5 -1.3-5 -1.0-5 6.2-5	38 34 25 17:48
spambase-small.11 301 300;	8, 8;1219 1250 1369 25000	9.9-7 9.9-7 9.9-7 2.6-4	-6.7-5 -3.8-5 -1.4-5 2.4-5	37 36 36 24:51
spambase-medium.2 901 900;	0, 0;574 574 547 3022	9.8-7 9.8-7 9.9-7 9.9-7	3.2-6 3.2-6 6.0-6 -1.1-5	3:22 3:27 3:04 37:08
spambase-medium.3 901 900;	2, 2;1306 1273 4654 4358	9.8-7 9.9-7 9.9-7 9.9-7	-7.8-7 -1.0-6 -9.2-7 -9.1-7	7:41 7:27 53:27 1:14:39
spambase-medium.4 901 900;	8, 8;3282 2746 3386 25000	9.9-7 9.6-7 9.9-7 2.1-2	-2.4-5 2.1-5 1.8-5 -4.0-1	25:02 19:01 18:35 5:05:33
spambase-medium.5 901 900;	17,17;2314 1725 3992 5746	9.9-7 9.9-7 9.9-7 9.9-7	-2.6-6 -1.8-6 -5.5-7 -1.4-6	19:12 12:26 45:23 1:38:45
spambase-medium.6 901 900;	8, 8;1241 1516 3073 4000	9.9-7 9.9-7 9.9-7 9.9-7	-1.6-6 1.3-6 -2.4-7 -4.7-7	12:03 11:35 32:42 1:10:59
spambase-medium.7 901 900;	8, 8;1525 1769 3802 4278	9.9-7 9.9-7 9.9-7 9.9-7	-1.4-6 -1.2-6 -3.2-7 -7.9-7	11:43 13:06 43:38 1:17:52
spambase-medium.8 901 900;	8, 8;1219 1620 3010 3502	9.9-7 9.9-7 9.9-7 9.9-7	1.3-6 2.2-6 -3.5-7 1.6-7	11:46 12:10 32:40 58:58
spambase-medium.9 901 900;	8, 8;1292 1284 1709 3004	9.9-7 9.9-7 9.9-7 9.9-7	1.3-5 -1.3-5 -7.1-6 2.7-6	11:11 10:38 13:41 47:54
spambase-medium.10 901 900;	8, 8;1176 1342 1436 3080	8.8-7 9.9-7 9.8-7 9.8-7	$5.9-5 \mid 7.1-5 \mid -1.0-4 \mid 1.1-4$	10:35 11:03 9:10 38:20
spambase-medium.11 901 900;	8, 8;1519 1409 1698 25000	9.9-7 9.5-7 9.8-7 4.4-4	$1.1 4 \mid 7.9 5 \mid 1.3 4 \mid 6.7 2$	14:26 10:58 10:22 5:05:35
spambase-large.2 1501 1500;	0, 0;535 535 992 4429	9.9-7 9.9-7 9.9-7 9.9-7	-1.3-5 -1.3-5 -1.2-5 -1.3-5	11:07 11:17 22:17 3:12:36
spambase-large.3 1501 1500;	8, 8;1844 1705 1830 6617	9.9-7 9.8-7 9.9-7 9.9-7	-7.6-6 -7.6-6 -6.6-6 -3.3-6	1:40:31 35:47 58:10 6:13:50
spambase-large.4 1501 1500;	8, 8;4519 3761 7091 25000	9.9-7 9.9-7 9.9-7 2.2-2	-2.6-6 9.4-8 -5.2-7 -10.0-1	2:49:39 1:19:26 5:32:29 17:57:38
spambase-large.5 1501 1500;	8, 8;9184 8398 7510 25000	9.7-7 9.9-7 9.8-7 1.1-2	-3.0-5 -2.9-5 -2.4-5 3.0-1	4:49:37 3:26:14 3:21:11 18:14:24
spambase-large.6 1501 1500;	8, 8;2798 2031 2415 25000	9.9-7 9.9-7 9.9-7 1.8-2	4.9-5 -4.2-5 -5.8-5 -10.0-1	2:07:59 49:32 1:07:56 17:07:48
spambase-large.7 1501 1500;	8, 8;2107 1596 1584 6042	9.9-7 9.9-7 9.9-7 9.9-7	-6.2-6 -1.8-5 -1.0-5 -1.5-7	1:52:04 36:51 50:54 6:02:07
spambase-large.8 1501 1500;	8, 8;1498 1449 1461 6050	9.9-7 9.9-7 9.9-7 9.9-7	-2.1-5 -5.0-5 -9.5-5 9.2-5	33:09 31:01 39:20 4:16:11
spambase-large.9 1501 1500;	8, 8;2158 2010 1973 9832	9.8-7 9.9-7 9.9-7 9.9-7	9.4-5 -9.3-5 -1.4-4 4.5-4	1:51:14 43:12 57:24 7:27:54
spambase-large.10 1501 1500;	8, 8;2429 2728 2450 25000	9.9-7 9.7-7 9.9-7 1.4-5	-4.8-5 1.3-4 -1.3-4 1.8-3	1:02:04 1:00:43 1:12:14 18:26:46
spambase-large.11 1501 1500;	8, 8;2164 2704 2526 4532	9.9-7 9.7-7 9.9-7 9.8-7	-8.8-5 1.8-4 -1.7-4 1.5-4	55:19 1:04:55 1:08:26 3:52:02

39

Table 4: Performance of SDPNAL+ (a), ADMM+ (b), SDPAD (c) and 2EBD (d) on θ_+ , FAP, QAP, BIQ and RCP problems ($\varepsilon=10^{-6}$)

	iteration	η	η_g	time
problem $ m n_s; n_l$	a b c d	a b c d	a b c d	a b c d
abalone-small.2 201 200;	0, 0;384 384 916 664	9.9-7 9.9-7 9.9-7 9.9-7	1.4-6 1.4-6 -4.2-7 4.2-7	05 05 14 19
abalone-small.3 201 200;	0, 0;268 268 295 318	9.8-7 9.8-7 9.8-7 9.9-7	-1.0-5 -1.0-5 1.5-6 -6.2-6	03 03 03 09
abalone-small.4 201 200;	0, 0;486 486 818 799	9.9-7 9.9-7 9.9-7 9.9-7	-6.2-7 -6.2-7 1.8-7 -4.9-6	07 07 11 21
abalone-small.5 201 200;	0, 0;554 554 808 1337	9.9-7 9.9-7 9.8-7 9.9-7	-5.1-6 -5.1-6 -9.9-6 -7.2-6	06 06 09 37
abalone-small.6 201 200;	0, 0;523 523 736 1581	9.9-7 9.9-7 9.9-7 9.9-7	-1.6-5 -1.6-5 -4.4-5 -3.5-5	07 07 07 42
abalone-small.7 201 200;	8, 8;1012 1005 1428 2832	9.9-7 9.9-7 9.9-7 9.9-7	-2.3-5 -1.1-5 3.6-5 -2.5-5	13 12 14 1:17
abalone-small.8 201 200;	8, 8;1054 1103 1367 2810	9.8-7 9.9-7 9.9-7 9.9-7	-4.5-5 -2.9-5 5.4-5 -8.1-5	16 15 14 1:14
abalone-small.9 201 200;	8, 8;1076 1263 1421 3185	9.7-7 9.9-7 9.9-7 9.9-7	-5.6-5 -7.8-5 -2.3-5 -1.3-4	14 15 15 1:28
abalone-small.10 201 200;	8, 8;2085 1770 1701 4954	9.9-7 9.9-7 9.9-7 9.8-7	-5.6-5 -6.2-5 -2.3-4 4.8-6	30 21 17 2:13
abalone-small.11 201 200;	8, 8;1776 1106 1760 4504	9.9-7 9.9-7 9.8-7 9.8-7	-6.9-5 -5.9-5 1.4-4 -1.7-4	26 14 18 2:05
abalone-medium.2 401 400;	3, 3;500 502 539 782	9.5-7 9.9-7 9.9-7 9.9-7	-2.7-6 -6.8-8 5.6-7 -4.0-7	26 25 26 1:33
abalone-medium.3 401 400;	5, 5;611 617 2599 1362	9.9-7 9.9-7 9.9-7 9.9-7	1.2-6 6.4-7 -5.3-7 -2.5-7	32 30 3:48 4:14
abalone-medium.4 401 400;	0, 0;378 378 506 390	9.9-7 9.9-7 9.9-7 9.8-7	4.0-7 4.0-7 -3.7-7 -5.5-6	19 19 24 48
abalone-medium.5 401 400;	0, 0;578 578 798 839	9.9-7 9.9-7 9.9-7 9.9-7	-2.5-6 -2.5-6 -8.6-7 -5.1-6	31 31 41 1:58
abalone-medium.6 401 400;	0, 0;608 608 892 1065	9.8-7 9.8-7 9.9-7 9.9-7	-1.3-5 -1.3-5 -4.1-5 -3.0-5	37 37 42 2:03
abalone-medium.7 401 400;	8, 8;1084 1159 1516 1981	9.6-7 9.7-7 9.7-7 9.5-7	-1.5-5 -9.2-6 -6.6-6 -2.6-5	1:08 1:06 1:26 4:00
abalone-medium.8 401 400;	8, 8:981 957 1062 1617	9.8-7 9.6-7 9.9-7 8.0-7	-4.9-6 -7.5-6 4.1-5 4.8-5	1:00 54 53 3:04
abalone-medium.9 401 400;	8, 8;1063 1213 1455 2876	9.7-7 9.8-7 9.9-7 9.9-7	-1.8-5 -7.9-6 2.0-5 -5.4-5	1:14 1:16 1:11 5:39
abalone-medium.10 401 400;	8, 8;1328 1489 1777 4120	9.9-7 9.9-7 9.9-7 9.9-7	-5.4-5 -5.5-5 -4.3-5 -8.2-5	1:24 1:27 1:25 7:48
abalone-medium.11 401 400;	8, 8;1212 1402 1682 3361	9.9-7 9.8-7 9.9-7 9.9-7	-6.7-5 -6.2-5 -8.4-5 -7.4-5	1:21 1:24 1:25 6:42
abalone-large.2 1001 1000;	0, 0;576 576 650 1493	9.9-7 9.9-7 9.9-7 9.9-7	1.2-5 1.2-5 6.6-6 -1.4-6	5:01 5:07 5:08 31:13
abalone-large.3 1001 1000;	21,21;762 765 796 1306	9.2-7 9.9-7 9.9-7 9.9-7	-2.1-6 -3.6-6 -9.9-7 -4.2-6	7:29 6:09 8:56 22:21
abalone-large.4 1001 1000;	0, 0;545 545 629 710	9.9-7 9.9-7 9.6-7 9.9-7	1.9-6 1.9-6 -6.9-6 -9.2-7	6:43 6:50 5:01 12:03
abalone-large.5 1001 1000;	38,38;797 834 1107 833	9.5-7 9.9-7 9.9-7 9.9-7	-2.2-5 -1.5-5 -2.1-5 -2.1-5	11:45 8:39 9:11 14:17
abalone-large.6 1001 1000;	8, 8;781 796 1101 950	9.9-7 9.9-7 9.9-7 9.9-7	-1.4-5 -1.4-5 -1.8-5 -1.9-5	9:12 8:21 8:49 15:24
abalone-large.7 1001 1000;	8, 8;1104 1089 1388 1230	9.9-7 9.9-7 9.9-7 9.8-7	-1.5-5 -2.1-5 -2.7-6 -1.8-5	12:09 10:57 11:52 25:24
abalone-large.8 1001 1000;	8, 8;1024 1066 1376 1480	9.9-7 9.9-7 9.9-7 9.9-7	-5.4-5 -5.3-5 -6.3-5 -1.0-4	11:58 11:32 11:22 24:22
abalone-large.9 1001 1000;	8, 8;1337 1611 1980 2578	9.9-7 9.9-7 9.9-7 9.9-7	-5.1-5 -3.7-5 -9.5-5 -6.9-5	16:07 16:46 16:36 45:58
abalone-large.10 1001 1000;	8, 8;1761 1855 2022 3093	8.4-7 9.8-7 8.6-7 9.9-7	-1.8-5 -2.2-5 -6.1-5 -9.2-5	16:38 16:45 16:25 50:13
abalone-large.11 1001 1000;	8, 8;1969 2212 2604 3118	9.9-7 9.9-7 9.9-7 9.9-7	-4.7-5 -4.1-5 9.9-6 -4.7-5	18:04 19:27 21:44 55:26
segment-small.2 401 400;	8, 8;1916 1825 11613 4663	9.2-7 9.1-7 9.9-7 9.4-7	-4.6-7 2.3-7 -2.4-8 1.2-7	1:41 1:31 16:59 12:12
segment-small.3 401 400;	60,60;1696 1628 15740 4433	9.1-7 9.9-7 9.9-7 9.9-7	-3.1-7 -3.8-7 -2.7-7 -2.8-7	1:56 1:24 24:31 13:16
segment-small.4 401 400;	6, 6;1233 1303 7910 3532	9.9-7 9.9-7 9.9-7 9.9-7	-6.3-7 -6.5-7 -2.5-7 -4.5-7	1:07 1:09 12:04 10:01
segment-small.5 401 400;	90,90;2676 2603 25000 7183	8.9-7 9.9-7 1.4-6 9.9-7	-1.5-6 -1.7-6 -1.0-6 -1.1-6	3:10 2:26 41:39 24:24
segment-small.6 401 400;	17,17;1956 1989 21361 5225	9.9-7 9.9-7 9.9-7 9.9-7	-7.7-7 -8.5-7 -4.9-7 -8.1-7	1:59 1:50 34:38 16:50
segment-small.7 401 400;	12,12;980 1047 5991 2638	8.3-7 9.9-7 9.9-7 9.9-7	2.6-8 -5.0-8 -2.1-7 -4.8-7	1:02 59 9:37 7:22
segment-small.8 401 400;	20,20;1116 1318 7160 2929	9.9-7 9.9-7 9.9-7 9.9-7	-1.6-6 -1.8-6 -3.7-8 -1.0-6	1:20 1:18 11:32 7:37
segment-small.9 401 400;	4, 4;844 838 3506 1874	8.6-7 9.9-7 9.9-7 9.9-7	-1.2-6 -1.7-6 -1.5-7 -2.3-6	56 54 5:32 4:34
segment-small.10 401 400;	32,32;986 1206 8018 2778	9.1-7 9.9-7 9.9-7 9.9-7	-8.6-7 -5.7-7 -1.2-7 -8.0-7	1:25 1:19 13:11 7:49
segment-small.11 401 400;	16,16;1290 1331 7216 2772	9.9-7 9.9-7 9.9-7 9.9-7	-9.4-7 -8.5-7 -1.4-7 -5.5-7	1:33 1:25 12:10 7:42
segment-medium.2 701 700;	8, 8;1143 1090 923 1602	9.9-7 9.7-7 9.5-7 9.6-7	-3.0-6 3.8-6 -4.1-6 9.2-7	4:07 3:39 2:55 12:29
segment-medium.3 701 700;	2, 2;737 706 652 1794	9.6-7 9.3-7 9.2-7 9.9-7	-3.0-6 -2.1-6 1.8-6 -8.4-7	2:36 2:29 1:58 13:59
segment-medium.4 701 700;	8, 8;1889 2166 18449 5876	9.9-7 9.9-7 9.9-7 9.9-7	-5.0-7 -4.9-7 -3.9-7 -4.3-7	6:28 6:56 2:00:11 1:08:15

Table 4: Performance of SDPNAL+ (a), ADMM+ (b), SDPAD (c) and 2EBD (d) on θ_+ , FAP, QAP, BIQ and RCP problems ($\varepsilon=10^{-6}$)

	iteration	η	η_g	time
problem $\mid m \mid n_s; n_l$	a b c d	a b c d	a b c d	a b c d
segment-medium.5 701 700;	8, 8;2163 2455 19871 6655	9.9-7 9.9-7 9.9-7 9.9-7	-8.3-7 -8.4-7 -5.4-7 -7.1-7	8:15 7:55 2:11:27 1:23:14
segment-medium.6 701 700;	2, 2;2861 3070 25000 8859	9.9-7 9.9-7 1.7-6 9.9-7	-1.4-6 -1.4-6 -1.4-6 -1.0-6	9:23 10:10 2:45:00 1:54:53
segment-medium.7 701 700;	4, 4;3112 3339 25000 9603	9.9-7 9.1-7 1.5-6 9.9-7	-1.8-6 -1.4-6 -1.5-6 -1.2-6	10:41 11:22 2:47:46 1:58:45
segment-medium.8 701 700;	2, 2;2824 3099 25000 9757	9.0-7 9.9-7 1.0-6 9.9-7	-1.4-6 -2.0-6 -7.2-7 -1.2-6	8:45 9:37 2:46:33 1:55:47
segment-medium.9 701 700;	8, 8;2390 2373 2755 6829	9.9-7 9.9-7 9.9-7 9.9-7	-2.4-6 -1.9-6 -4.1-7 -8.7-7	7:30 7:18 12:34 1:06:28
segment-medium.10 701 700;	2, 2;1779 1818 1813 5099	9.9-7 9.9-7 9.9-7 9.9-7	-1.3-6 1.6-7 7.6-8 -1.7-7	5:30 5:26 6:43 48:39
segment-medium.11 701 700;	8, 8;1722 1593 1676 25000	9.7-7 9.9-7 9.9-7 1.4-4	-5.8-6 6.7-6 7.5-6 -1.5-4	8:32 4:54 5:53 3:05:45
segment-large.2 1001 1000;	8, 8;1191 1264 1080 1745	9.9-7 9.9-7 9.8-7 9.9-7	4.6-6 5.0-6 -4.7-6 -5.0-7	9:16 9:15 8:27 34:22
segment-large.3 1001 1000;	0, 0;373 373 412 1956	9.9-7 9.9-7 9.8-7 9.9-7	1.8-6 1.8-6 -7.1-7 -1.1-6	2:43 2:41 3:33 37:08
segment-large.4 1001 1000;	2, 2;1879 2024 19479 6354	9.9-7 9.9-7 9.9-7 9.9-7	-5.8-7 -5.5-7 -4.5-7 -5.0-7	13:52 14:50 5:23:13 3:07:06
segment-large.5 1001 1000;	8, 8;2449 2711 22003 8257	9.9-7 9.9-7 9.9-7 9.9-7	-6.2-7 -6.7-7 -6.0-7 -6.4-7	19:06 20:31 6:09:59 4:19:44
segment-large.6 1001 1000;	8, 8;3158 3262 25000 10211	9.9-7 9.9-7 1.3-6 9.9-7	-1.5-6 -1.5-6 -9.6-7 -1.0-6	24:00 24:06 7:10:04 5:25:59
segment-large.7 1001 1000;	8, 8;3613 3600 25000 11657	9.9-7 9.9-7 1.8-6 9.9-7	-1.8-6 -1.3-6 -1.9-6 -1.3-6	28:07 27:48 7:15:10 6:13:44
segment-large.8 1001 1000;	8, 8;2950 3161 20284 9511	9.9-7 9.9-7 9.9-7 9.9-7	-1.1-6 -1.1-6 -9.4-7 -1.1-6	23:46 24:42 5:46:25 5:15:17
segment-large.9 1001 1000;	8, 8;2452 2383 12121 8064	9.9-7 9.9-7 9.9-7 9.9-7	-2.0-6 -1.9-6 -5.3-7 -1.1-6	19:23 18:03 3:23:40 4:10:03
segment-large.10 1001 1000;	8, 8;1871 1789 1676 4527	9.9-7 9.9-7 9.9-7 9.9-7	-2.9-7 -3.1-7 -6.1-6 -3.0-7	14:38 13:42 13:51 1:53:18
segment-large.11 1001 1000;	8, 8;1887 1683 1827 25000	9.9-7 9.9-7 9.9-7 2.9-5	-1.9-6 -1.9-6 6.0-6 1.1-4	20:26 13:07 15:29 6:50:17
housing.2 507 506;	8, 8;3373 3284 2679 2566	9.9-7 9.6-7 9.9-7 8.6-7	-5.9-6 -5.4-6 -5.2-6 -5.3-6	4:50 4:31 3:26 7:52
housing.3 507 506;	8, 8;1576 1247 1523 1338	9.7-7 9.9-7 9.9-7 9.8-7	1.7-6 8.0-6 -6.7-6 5.2-6	3:20 1:34 1:56 4:29
housing.4 507 506;	8, 8;1645 1368 1064 1090	9.9-7 9.9-7 9.9-7 8.4-7	-4.0-6 -3.5-6 -4.9-6 8.3-5	2:50 2:00 1:25 3:40
housing.5 507 506;	8, 8;1918 1319 1916 1451	9.9-7 9.6-7 9.3-7 8.8-7	3.3-5 -3.2-5 3.6-5 6.3-5	3:30 2:07 2:36 5:03
housing.6 507 506;	11,11;533 536 842 1958	9.9-7 9.9-7 9.8-7 9.5-7	-1.2-6 -9.7-6 5.9-6 6.3-5	1:06 53 1:20 6:29
housing.7 507 506;	8, 8;703 645 856 2235	9.9-7 9.9-7 9.8-7 9.9-7	-2.8-5 -2.6-5 -4.6-5 -7.5-5	1:29 1:06 1:15 7:35
housing.8 507 506;	0, 0;638 638 924 1700	9.8-7 9.8-7 9.7-7 9.5-7	-1.9-5 -1.9-5 -1.3-5 -5.6-5	1:06 1:05 1:23 5:40
housing.9 507 506;	0, 0;794 794 1173 2466	9.5-7 9.5-7 9.8-7 9.9-7	-3.7-5 -3.7-5 3.7-5 3.8-5	1:27 1:27 1:43 8:23
housing.10 507 506;	8, 8;927 1016 1275 25000	9.9-7 9.9-7 9.9-7 6.4-5	-4.5-5 -1.7-5 -2.6-5 2.2-3	1:38 1:40 1:57 1:18:42
housing.11 507 506;	8, 8;813 844 1310 25000	9.9-7 9.9-7 9.6-7 6.7-5	-2.5-5 -2.9-5 -2.5-5 -7.4-3	1:31 1:24 1:54 1:20:22

Table 5: Performance of SDPNAL+ (a), ADMM+ (b), SDPAD (c) and 2EBD (d) on θ and R1TA problems $(\varepsilon=10^{-6})$

	iteration	η	η_g	time
problem $\mid m \mid n_s; n_l$	a b c d	a b c d	a b c d	a b c d
theta4 1949 200;	13,13;153 316 294 680	6.5-7 9.7-7 9.6-7 9.9-7	3.2-8 -1.3-6 -5.9-7 1.5-6	04 05 04 12
theta42 5986 200;	20,20;82 178 151 315	6.0-7 9.9-7 9.9-7 9.8-7	-1.4-7 -1.0-7 2.7-7 6.3-7	05 03 03 06
theta6 4375 300;	12,12;163 341 306 561	9.9-7 8.4-7 9.5-7 9.9-7	1.6-8 1.7-6 -1.1-6 1.7-6	09 13 10 24
theta62 13390 300;	13,13;82 190 125 311	6.7-7 9.7-7 9.6-7 9.9-7	-2.4-7 7.5-9 1.1-6 1.2-6	07 08 06 14
theta8 7905 400;	12,12;183 364 321 413	4.4-7 9.9-7 8.3-7 9.9-7	-5.8-8 -2.1-6 9.8-7 1.0-6	18 28 21 34
theta82 23872 400;	11,11;87 163 126 304	4.5-7 9.8-7 9.7-7 9.7-7	-7.6-8 3.8-7 2.0-6 1.3-6	13 14 12 26
theta83 39862 400;	23,23;64 157 110 290	9.8-7 9.2-7 9.2-7 9.8-7	-4.1-7 -1.1-7 2.7-7 1.8-6	23 14 13 26
theta10 12470 500;	11,11;200 396 333 422	7.6-7 9.1-7 9.9-7 9.8-7	6.7-8 -2.1-6 -1.4-6 1.2-6	32 51 36 59
theta102 37467 500;	11,11;84 159 127 312	6.8-7 9.1-7 9.2-7 9.9-7	-9.3-8 1.3-6 1.7-6 1.6-6	21 22 21 47

41

Table 5: Performance of SDPNAL+ (a), ADMM+ (b), SDPAD (c) and 2EBD (d) on θ and R1TA problems $(\varepsilon=10^{-6})$

	iteration	η	η_q	time
problem $\mid m \mid n_s; n_l$	a b c d	a b c d	a b c d	a b c d
theta103 62516 500;	20,20;64 144 104 300	8.1-7 9.7-7 9.9-7 9.8-7	-4.1-8 -6.2-8 2.0-7 2.0-6	38 20 21 45
theta104 87245 500;	43,47;63 151 116 342	4.4-7 9.0-7 9.5-7 9.8-7	-5.5-7 -2.4-8 8.3-7 3.2-6	53 22 19 51
theta12 17979 600;	13,13;200 413 358 444	3.7-7 8.4-7 8.5-7 9.9-7	5.6-8 2.1-6 1.0-6 1.1-6	51 1:24 1:02 1:38
theta123 90020 600;	12,12;70 157 105 325	7.1-7 9.2-7 9.2-7 9.7-7	1.9-8 -6.8-8 2.2-7 2.5-6	36 35 34 1:19
san200-0.7-1 5971 200;	11,11;220 3421 5869 139	7.7-7 8.8-7 9.9-7 9.7-7	2.7-6 -1.1-5 2.4-6 2.9-6	04 27 46 02
sanr200-0.7 6033 200;	14,14;82 183 159 284	5.1-7 9.9-7 9.3-7 9.8-7	9.4-9 2.0-7 -2.0-7 8.2-7	03 03 03 05
c-fat200-1 18367 200;	25,31;90 242 448 348	8.4-7 8.8-7 9.9-7 9.9-7	-5.9-7 3.2-6 -3.5-6 2.0-6	04 03 06 04
hamming-8-4 11777 256;	5, 5;72 167 123 372	1.4-7 5.8-7 7.6-7 9.2-7	-7.8-8 3.1-6 2.2-6 -1.3-5	02 03 03 07
hamming-9-8 2305 512;	12,12;200 2635 3129 1276	2.5-7 9.8-7 9.7-7 9.4-7	-9.2-8 -1.2-5 5.6-7 -5.8-6	21 3:17 4:07 2:02
hamming-10-2 23041 1024;	10,10;200 667 731 1066	4.8-7 6.9-7 9.6-7 9.9-7	-5.9-7 -1.5-5 2.2-6 2.5-5	2:54 7:19 9:39 12:05
hamming-7-5-6 1793 128;	5, 5;232 530 563 249	7.7-8 7.2-7 9.9-7 9.4-7	-3.0-8 4.1-6 6.8-7 -3.1-6	02 02 02 01
hamming-8-3-4 16129 256;	9, 9;83 246 196 180	3.9-7 9.9-7 7.0-7 9.0-7	1.1-9 2.0-7 -7.3-7 -3.5-6	03 05 04 03
hamming-9-5-6 53761 512;	6, 6;200 1022 1215 197	6.2-7 8.8-7 9.8-7 8.8-7	-1.7-7 -1.1-5 -1.8-6 -5.1-6	20 1:24 1:36 20
brock200-1 5067 200;	14,14;91 201 161 305	3.3-7 9.6-7 9.3-7 9.9-7	-8.0-9 1.4-7 -2.2-7 9.8-7	03 03 03 06
brock200-4 6812 200;	14,14;76 172 133 275	9.8-7 9.9-7 9.9-7 9.7-7	-6.4-9 1.4-7 3.2-8 1.1-6	03 03 03 05
brock400-1 20078 400;	13,13;90 194 156 311	2.5-7 9.6-7 9.4-7 9.9-7	-8.0-8 -4.3-7 1.1-6 1.3-6	13 15 13 27
keller4 5101 171;	13,13;68 212 260 350	4.6-7 9.8-7 9.9-7 9.8-7	7.8-8 8.1-8 -9.9-7 8.8-7	02 02 04 04
p-hat300-1 33918 300;	86,128;69 667 865 937	6.0-7 9.9-7 9.9-7 9.9-7	3.5-7 -1.1-7 1.3-6 1.8-6	58 27 38 39
G43 9991 1000;	27,27;200 1237 1097 962	9.8-7 9.4-7 9.8-7 9.9-7	8.9-7 -3.5-6 -1.8-6 2.0-6	3:32 9:54 9:13 12:49
G44 9991 1000;	30,30;200 1236 1110 996	6.1-7 9.7-7 9.3-7 9.9-7	5.9-9 -3.6-6 -8.8-7 1.6-6	3:48 9:57 9:15 13:17
G45 9991 1000;	26,26;200 1261 1120 1007	6.4-7 9.9-7 9.6-7 9.9-7	3.8-8 3.2-6 1.8-6 1.6-6	3:31 10:04 9:21 13:35
G46 9991 1000;	28,30;200 1284 1142 974	7.9-7 9.6-7 9.9-7 9.9-7	6.2-8 -3.1-6 -1.6-6 1.3-6	3:49 10:11 9:21 12:55
G47 9991 1000;	30,31;200 1267 1088 1030	3.7-7 9.3-7 9.5-7 9.9-7	1.5-7 2.8-6 8.9-7 1.2-6	3:52 9:59 8:51 13:47
G51 5910 1000;	148,584;200 6151 10210 8746	7.3-7 9.9-7 9.9-7 9.9-7	-7.9-8 -1.7-7 8.6-8 1.9-7	41:06 53:54 1:33:48 1:55:48
G52 5917 1000;	458,1619;200 25000 25000 25000	9.3-7 1.6-6 3.5-6 2.9-6	2.0-6 7.1-6 1.4-5 1.5-5	3:53:19 3:24:55 3:45:22 5:38:42
G53 5915 1000;	425,1183;200 25000 25000 25000	9.9-7 1.5-6 3.7-6 3.7-6	1.4-6 5.9-6 1.5-5 1.8-5	2:16:35 3:12:47 3:24:18 5:30:23
G54 5917 1000;	123,462;200 3892 5633 5398	9.3-7 9.9-7 9.9-7 9.9-7	4.2-8 -2.8-6 3.3-7 3.2-7	23:17 33:11 49:11 1:13:51
1dc.128 1472 128;	111,186;231 9243 25000 19888	9.8-7 9.8-7 5.8-6 9.5-7	1.2-6 5.4-6 9.3-6 3.1-6	19 58 2:48 2:11
1et.128 673 128;	13,13;140 312 354 569	5.5-7 8.0-7 8.6-7 9.3-7	-6.9-7 3.5-6 -1.6-6 -1.5-6	02 02 03 03
1tc.128 513 128;	11,11;205 875 993 442	1.9-7 9.9-7 9.8-7 9.8-7	7.5-8 3.9-6 7.0-8 -5.5-7	02 03 04 03
1zc.128 1121 128;	12,12;103 201 185 394	4.1-7 6.9-7 9.5-7 9.7-7	2.3-7 -2.0-6 -1.8-6 6.0-6	02 01 02 02
1dc.256 3840 256;	60,83;220 7734 6283 1775	7.3-9 9.1-7 9.6-7 9.2-7	-7.1-9 -1.3-5 2.9-6 -1.5-6	20 2:40 1:38 47
1et.256 1665 256;	44,66;220 1397 2801 2744	7.5-7 9.9-7 9.9-7 9.9-7	1.1-6 3.2-7 7.2-7 1.5-6	23 32 1:01 1:00
1tc.256 1313 256;	81,169;220 3525 5351 7499	9.6-7 9.9-7 9.9-7 9.9-7	-4.8-7 3.7-7 2.2-7 5.9-7	1:02 1:10 1:51 3:04
1zc.256 2817 256;	17,17;135 449 262 354	5.4-7 9.9-7 8.3-7 9.1-7	2.4-8 -5.1-10 2.3-6 5.6-6	06 12 07 07
1dc.512 9728 512;	82,156;200 5045 10015 13778	8.3-7 9.9-7 9.9-7 9.9-7	1.9-6 4.0-6 3.8-6 3.7-6	4:26 8:42 17:30 27:38
1et.512 4033 512;	48,73;200 2059 4068 6297	8.1-7 9.8-7 9.9-7 9.9-7	-1.7-6 3.2-7 2.5-6 -1.4-6	1:42 3:35 6:34 13:53
1tc.512 3265 512;	85,238;200 6646 18344 25000	9.3-7 9.9-7 9.8-7 3.9-6	2.0-6 2.3-6 2.0-6 1.9-5	10:29 13:55 39:40 53:59
2dc.512 54896 512;	114,322;200 4596 11776 16009	9.9-7 9.9-7 9.9-7 9.9-7	-7.2-9 3.2-6 1.3-5 1.3-5	19:54 9:32 42:13 37:04
1zc.512 6913 512;	15,15;200 497 434 697	4.2-7 7.3-7 9.4-7 9.9-7	-8.5-8 -2.7-6 2.5-6 -3.3-6	34 50 1:15 1:16
1dc.1024 24064 1024;	48,74;200 5077 9728 15069	9.1-7 9.9-7 9.9-7 9.9-7	3.4-6 4.2-6 4.9-6 4.0-6	14:32 50:49 1:31:42 3:03:20
1et.1024 9601 1024;	64,129;200 3956 10174 17252	5.9-7 9.9-7 9.9-7 9.9-7	2.2-6 3.1-6 3.0-6 2.7-6	35:33 50:14 1:45:03 3:53:32
1tc.1024 7937 1024;	156,417;200 5775 25000 18474	7.5-7 9.9-7 2.3-6 9.9-7	8.9-7 3.8-6 3.3-6 2.3-6	1:22:24 54:35 4:13:43 3:47:44

42

Table 5: Performance of SDPNAL+ (a), ADMM+ (b), SDPAD (c) and 2EBD (d) on θ and R1TA problems $(\varepsilon=10^{-6})$

	iteration	η	η_q	time
problem $\mid m \mid n_s; n_l$	a b c d	al bl cl d	a b c d	al bl cl d
$1zc.1024 \mid 16641 \mid 1024;$	16,16;200 884 734 4488	8.4-7 9.7-7 9.2-7 9.6-7	2.7-8 6.9-7 1.6-6 2.4-5	4:56 12:44 8:49 49:10
2dc.1024 169163 1024;	148,376;200 6951 14316 23007	9.2-7 9.9-7 9.9-7 9.9-7	7.8-6 3.1-5 2.6-5 2.6-5	2:21:20 1:24:20 4:20:36 5:32:26
1dc.2048 58368 2048:	62,112;200 5520 12938 20527	9.7-7 9.9-7 9.9-7 9.9-7	5.5-6 6.6-6 6.7-6 6.8-6	1:55:31 6:10:05 14:00:08 28:29:05
1et.2048 22529 2048;	228,658;200 3601 13985 25000	8.7-7 9.9-7 9.9-7 6.1-3	3.9-6 4.3-6 4.2-6 2.2-2	5:29:46 3:59:47 17:25:13 40:08:45
1tc.2048 18945 2048;	509.1725;200 6574 20819 25000	8.2-7 9.9-7 9.9-7 1.2-6	9.9-7 4.8-6 3.8-6 5.5-6	22:10:45 7:26:56 23:37:33 39:35:04
2dc.2048 504452 2048;	167.385;200 6293 25000 16945	9.8-7 9.9-7 3.7-6 9.9-7	1.8-5 2.0-5 3.5-5 2.8-5	14:22:06 8:52:47 47:15:41 28:09:34
nonsym(5,4) 3374 125;	9, 9;250 2016 2183 15071	6.5-7 9.8-7 9.9-7 9.9-7	9.0-7 -1.3-5 -1.0-5 9.9-6	02 07 07 2:29
nonsym(6,4) 9260 216;	15,15;220 3364 4832 25000	8.7-7 9.9-7 9.7-7 1.6-3	-1.0-5 1.8-5 1.2-5 -8.9-3	05 32 45 10:31
nonsym(7,4) 21951 343;	10,10;200 5427 6384 25000	1.7-7 9.0-7 9.8-7 2.2-2	-2.7-6 -3.0-6 -1.4-5 5.8-1	11 2:31 2:59 28:43
nonsym(8,4) 46655 512;	13,13;200 6927 6871 25000	1.5-7 8.7-7 9.9-7 1.9-2	-4.1-7 5.7-6 2.1-5 6.2-1	29 8:40 8:54 1:10:07
nonsym(9,4) 91124 729;	25.33:200 25000 4584 25000	4.2-7 3.2-5 9.7-7 1.9-2	7.4-6 5.2-4 -1.7-5 4.2-3	2:00 1:18:21 14:29 2:41:00
nonsym(10,4) 166374 1000;	17,21;200 25000 6711 25000	7.9-7 2.8-5 9.9-7 1.6-2	-2.5-6 -1.9-4 2.6-5 6.2-1	3:37 2:57:30 48:32 5:52:44
nonsym(11,4) 287495 1331;	19,22;200 25000 16627 25000	2.5-7 1.3-3 9.9-7 9.9-3	7.5-6 5.1-2 3.0-5 -2.2-1	7:14 6:30:10 4:57:08 12:51:58
nonsym(3,5) 1295 81;	41,46:133 1355 1373 3897	7.6-7 9.7-7 9.2-7 9.9-7	-4.5-6 -2.3-6 -6.4-6 4.7-6	03 03 03 23
nonsym(4,5) 9999 256;	24,31;220 3962 6644 25000	6.7-7 9.9-7 9.9-7 4.0-4	-7.8-6 -1.6-5 1.3-5 -4.5-3	11 56 1:31 14:29
nonsym(5,5) 50624 625;	30,31;200 12638 4918 25000	2.4-7 9.6-7 9.9-7 2.5-3	3.7-6 9.0-6 1.8-5 -4.8-2	1:18 27:19 10:10 1:50:10
nonsym(6,5) 194480 1296;	26,28;200 25000 11981 25000	6.6-7 1.6-4 9.9-7 1.6-3	2.0-5 -3.0-3 -2.8-5 -4.9-2	6:39 5:57:28 2:59:30 11:24:24
sym_rd(3,20) 10625 231;	22,22;61 1279 1647 1979	7.6-7 9.6-7 9.4-7 9.5-7	8.9-6 -2.9-6 -9.5-6 5.7-6	06 15 19 1:02
sym_rd(3,25) 23750 351;	20,20;72 1551 1665 2016	4.7-7 9.3-7 9.4-7 9.9-7	-1.1-6 4.6-7 -1.2-5 -9.3-6	11 1:11 48 2:27
sym_rd(3,30) 46375 496;	15,15;77 2254 2714 6106	4.1-7 9.8-7 9.9-7 9.7-7	-3.6-6 -4.7-6 -2.6-5 -1.1-5	23 2:45 3:10 16:48
sym_rd(3,35) 82250 666;	43,46;72 2964 2812 11937	5.4-7 9.7-7 9.9-7 9.5-7	-8.0-6 -1.3-6 1.8-5 -1.9-6	1:27 7:54 7:07 1:09:55
sym_rd(3,40) 135750 861;	37,39:82 3736 3356 25000	5.7-7 9.4-7 9.9-7 3.9-3	-1.6-5 -1.2-6 -2.1-5 1.3-1	2:18 19:34 16:55 4:37:17
sym_rd(3,45) 211875 1081;	31,31;87 4689 4498 25000	5.5-7 9.3-7 9.9-7 5.5-3	5.7-6 -3.5-6 -3.9-5 -1.5-1	4:31 46:05 41:11 8:09:46
sym_rd(3,50) 316250 1326;	37,37;87 4432 4161 25000	7.6-7 9.1-7 9.6-7 3.2-3	2.4-5 -3.7-6 4.2-5 1.1-1	8:24 1:13:12 1:07:37 13:45:47
sym_rd(4,20) 8854 210;	11,11;214 1285 1567 2587	6.6-7 9.8-7 9.7-7 9.9-7	1.1-5 4.1-6 2.3-5 9.7-6	05 12 14 1:03
sym_rd(4,25) 20474 325;	35,36;83 1839 1965 14875	8.1-7 9.5-7 9.2-7 9.9-7	-1.5-5 -1.2-7 2.8-5 7.6-6	16 49 49 15:07
sym_rd(4,30) 40919 465;	29,29;74 2635 2760 25000	6.8-7 9.9-7 9.9-7 3.4-3	-1.3-5 8.1-6 -3.4-5 8.4-2	44 3:00 3:01 56:56
sym_rd(4,35) 73814 630;	46,51;77 969 3400 25000	2.2-7 9.9-7 9.7-7 5.1-4	6.2-6 -4.2-6 -4.2-5 -1.7-2	1:45 4:44 9:10 1:58:12
sym_rd(4,40) 123409 820;	60,76;86 447 761 2396	6.6-7 9.9-7 9.9-7 9.9-7	-7.7-6 -1.3-5 -1.3-5 -1.3-5	4:56 3:37 7:06 21:58
sym_rd(4,45) 194579 1035;	45,62;90 462 737 2569	3.5-7 9.9-7 9.9-7 9.9-7	-4.7-6 -1.4-5 -1.4-5 -1.4-5	7:44 6:56 12:42 43:48
sym_rd(4,50) 292824 1275;	45,62;91 466 758 2824	7.9-7 9.9-7 9.9-7 9.9-7	-1.3-5 -1.6-5 -1.6-5 -1.6-5	12:44 12:11 22:43 1:21:38
sym_rd(5,5) 461 56;	8, 8;59 217 250 677	9.5-7 8.7-7 9.2-7 9.9-7	6.2-6 4.5-6 1.0-5 1.2-5	01 00 01 03
sym_rd(5,10) 8007 286;	22,22;59 662 822 2038	7.7-7 9.3-7 9.5-7 9.9-7	1.6-5 3.3-5 -3.4-5 4.9-7	07 13 14 1:28
sym_rd(5,15) 54263 816;	41,43;111 1549 1980 25000	2.4-7 8.8-7 9.7-7 3.2-4	8.2-6 7.1-5 -3.7-5 1.6-2	2:53 6:46 7:53 3:28:56
sym_rd(5,20) 230229 1771;	29,35;139 2832 3563 25000	3.1-7 9.3-7 9.8-7 5.5-3	-1.5-5 9.7-5 -1.0-4 -3.1-1	27:28 1:56:14 2:22:52 27:04:51
sym_rd(6,5) 209 35;	9, 9;51 130 157 332	3.6-7 9.9-7 8.6-7 9.9-7	4.9-7 9.4-6 1.1-5 -9.4-6	01 00 00 01
sym_rd(6,10) 5004 220;	21,21;57 613 541 1437	6.2-7 9.7-7 9.5-7 9.9-7	-1.7-5 2.1-5 3.6-5 1.6-5	04 06 05 38
sym_rd(6,15) 38759 680;	32,35;137 1358 1652 13111	6.4-7 9.3-7 9.9-7 9.9-7	2.6-5 5.2-5 -6.9-5 -6.3-7	1:33 3:52 4:26 1:12:00
sym_rd(6,20) 177099 1540;	26,37;185 3280 3576 25000	6.4-7 9.7-7 9.6-7 3.0-4	3.0-6 1.5-4 -1.1-4 -2.5-2	22:48 1:34:25 1:43:31 17:41:06
nsym_rd([10,10,10]) 3024 100;	9, 9;250 2042 1929 7913	5.6-7 9.6-7 9.4-7 9.6-7	3.4-6 -1.3-5 -8.8-6 -9.7-6	02 05 05 1:07
nsym_rd([15,15,15]) 14399 225;	9, 9;64 3354 3263 25000	9.9-7 9.7-7 9.8-7 2.2-2	9.4-6 2.0-5 -1.6-5 4.1-1	03 38 36 12:30
nsym_rd([20,20,20]) 44099 400;	14,14;200 6374 6280 25000	7.3-7 9.9-7 9.9-7 1.1-2	-1.0-5 2.6-5 1.3-5 4.3-2	18 4:39 4:29 43:57
nsym_rd([20,25,25]) 68249 500;	47,51;66 5883 6641 25000	6.0-7 9.8-7 9.7-7 6.1-3	1.0-5 -3.0-5 2.5-5 -1.2-1	58 7:55 8:10 1:12:25

Table 5: Performance of SDPNAL+ (a), ADMM+ (b), SDPAD (c) and 2EBD (d) on θ and R1TA problems $(\varepsilon=10^{-6})$

	iteration	η	η_g	time
problem $\mid m \mid n_s; n_l$	a b c d	a b c d	a b c d	a b c d
nsym_rd([25,20,25]) 68249 500;	49,50;77 6113 6912 25000	7.0-7 9.9-7 9.9-7 5.5-3	-1.0-5 -3.0-5 -1.3-5 -8.7-2	58 7:26 8:25 1:11:35
nsym_rd([25,25,20]) 68249 500;	14,14;129 6252 6898 25000	9.0-8 9.9-7 9.9-7 2.8-3	-1.6-6 -5.9-6 2.7-5 5.2-2	34 8:11 8:31 1:10:17
nsym_rd([25,25,25]) 105624 625;	56,64;95 11250 3705 25000	9.0-7 9.9-7 9.9-7 6.6-4	-1.7-5 -4.9-6 -1.3-5 1.3-2	1:33 26:20 8:09 2:04:05
nsym_rd([30,30,30]) 216224 900;	30,33;122 25000 4829 25000	6.2-7 2.0-5 9.9-7 4.9-3	2.7-6 5.5-4 3.2-5 1.5-1	3:52 2:21:43 26:48 5:07:41
nsym_rd([35,35,35]) 396899 1225;	45,49;141 25000 8788 25000	2.0-7 1.4-3 9.9-7 1.0-3	-3.5-6 4.1-3 -4.2-5 3.6-3	9:14 5:18:55 1:57:42 11:13:11
nsym_rd([40,40,40]) 672399 1600;	33,35;93 25000 25000 25000	3.3-7 1.1-4 3.7-4 5.1-4	1.0-5 5.0-3 1.3-2 -1.9-2	14:23 12:12:03 13:56:21 22:41:13
nsym_rd([5,5,5,5]) 3374 125;	10,10;128 2272 1925 16028	1.8-7 9.4-7 9.4-7 9.9-7	1.6-6 -1.3-5 -1.1-5 1.1-5	02 08 07 2:57
nsym_rd([6,6,6,6]) 9260 216;	10,10;132 3194 5378 25000	5.9-7 9.6-7 9.6-7 2.8-2	-6.5-6 4.7-6 1.5-5 -2.8-1	04 32 51 10:52
nsym_rd([7,7,7,7]) 21951 343;	10,10;200 5526 5861 25000	2.8-7 9.7-7 9.7-7 1.4-2	-4.5-6 5.9-6 1. 2-5 2.2-1	11 2:36 2:39 29:16
nsym_rd([8,8,8,8]) 46655 512;	11,11;200 5325 5865 25000	3.3-7 9.4-7 9.9-7 1.2-3	-6.6-6 6.9-6 -1.3-5 1.3-2	28 7:09 7:13 1:12:01
nsym_rd([9,9,9,9]) 91124 729;	14,14;200 21833 4073 25000	3.1-7 9.0-7 9.6-7 1.6-2	6.9-6 -7.1-6 -3.1-5 -2.5-1	1:07 1:12:18 12:47 2:52:40
nonsym(12,4) 474551 1728;	5,17;200 16473 25000 25000	2.8-8 8.8-7 1.2-2 1.2-2	-1.1-7 -2.7-6 -7.7-2 5.8-1	16:55 9:04:03 15:26:14 24:24:33
nonsym(13,4) 753570 2197;	15,55;200 25000 25000 25000	5.2-7 5.4-4 9.1-3 1.9-2	-1.8-7 3.6-2 -1.6-1 2.7-1	1:51:34 29:11:11 32:02:36 54:30:04
$nonsym(7,5) \mid 614655 \mid 2401;$	32,43;200 25000 25000 25000	2.4-7 1.4-3 1.2-2 1.8-2	8.7-6 -5.7-2 -1.2-1 -1.1-1	53:29 38:36:39 43:46:36 67:40:52
nonsym(8,5) 1679615 4096;	14,22;200 12791 10732 7851	5.2-7 1.2-3 1.3-2 1.2-2	-5.5-6 -3.7-2 2.5-1 -4.3-1	2:46:20 99:00:46 99:01:08 99:03:37
nonsym(18,4) 5000210 5832;	13,55;200 8748 7962 7017	5.8-7 3.5-4 7.8-3 1.4-2	2.6-5 -1.3-2 -3.5-1 3.8-1	8:50:14 99:02:10 99:01:13 99:05:37
nonsym(20,4) 9260999 8000;	7,17;200 3231 3031 2645	7.4-8 4.7-4 9.6-3 2.2-2	-6.4-6 5.7-2 -4.4-1 -3.5-1	8:26:40 99:07:11 99:03:17 99:16:28
nonsym(21,4) 12326390 9261;	7,21;200 1918 1904 1792	5.7-8 2.7-4 9.8-3 5.2-3	-1.2-6 2.6-3 5.0-1 9.4-1	14:22:05 99:09:25 99:05:25 99:29:18