Flow from Recycled Material Production to Transport

low from Recycled Material Production to Pre-consumer Waste (0.175 Mean Value 25% Quantile 75% Quantile 0.150 Range 0.125 (kt) Flow mass 0.100 0.075 0.050 0.025 0.000 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Transport to Industrial Waste Water (micro)

Flow from Transport to Non-Textile Manufacturing

Flow from Fibre Production to Residential Soil (micro) 0.007 Mean Value 25% Quantile 0.006 75% Quantile Range 0.005 Flow mass (kt) 0.004 0.003 0.002 0.001 0.000 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Fibre Production to Textile Manufacturing

Flow from Fibre Production to Pre-consumer Waste Collection

Flow from Non-Textile Manufacturing to Residential Soil (mig Mean Value 0.06 25% Quantile 75% Quantile Range 0.05 Flow mass (kt) 20.0 as (kt) 20.0 as (kt) 0.01 0.00 1950 1960 1970 1980 1990 2000 2010 2020

Year

Flow from Non-Textile Manufacturing to Packaging (sector

ow from Non-Textile Manufacturing to Building and Construction Mean Value 25% Quantile 75% Quantile Range Flow mass (kt) Year

Flow from Non-Textile Manufacturing to Agriculture (secto

Flow from Non-Textile Manufacturing to Automotive (sector

om Non-Textile Manufacturing to Electrical and Electronic Equip Mean Value 25% Quantile 75% Quantile Range Flow mass (kt) Year

Flow from Non-Textile Manufacturing to Other Plastic Products (s Mean Value 25% Quantile 75% Quantile Range Flow mass (kt) Year

low from Non-Textile Manufacturing to Pre-consumer Waste Col

Flow from Non-Textile Manufacturing to Industrial Waste Wate

Flow from Textile Manufacturing to Clothing (sector)

Flow from Textile Manufacturing to Household Textiles (sect

Flow from Textile Manufacturing to Technical Textiles (sector

Flow from Textile Manufacturing to Pre-consumer Waste Collect

Flow from Textile Manufacturing to Waste Water (micro

Flow from Packaging (sector) to Consumer Films

Flow from Packaging (sector) to Consumer Bags

Flow from Packaging (sector) to Consumer Bottles

Flow from Packaging (sector) to Other Consumer Packaging

Flow from Packaging (sector) to Non Consumer Bags

Flow from Packaging (sector) to Other Non Consumer Films

Flow from Packaging (sector) to Other Non Consumer Packag

Flow from Packaging (sector) to Agricultural Packaging Films

Flow from Building and Construction (sector) to Pipes and Du

Flow from Automotive (sector) to Automotive

lectrical and Electronic Equipment (sector) to Electrical and Elec Mean Value 25% Quantile 75% Quantile Range Flow mass (kt) Year

Flow from Agriculture (sector) to Other Agricultural Plastic

Flow from Other Plastic Products (sector) to Household Plasti

from Other Plastic Products (sector) to Personal Care and Cosm Mean Value 25% Quantile 0.010 75% Quantile Range 0.008 Flow mass (kt) 0.006 0.004 0.002 0.000 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Other Plastic Products (sector) to Other Plastic Prod

Flow from Clothing (sector) to Clothing

Flow from Household Textiles (sector) to Household Textile

Flow from Technical Textiles (sector) to Building Textiles

Flow from Technical Textiles (sector) to Geotextiles

Flow from Technical Textiles (sector) to Agrotextiles

Flow from Technical Textiles (sector) to Mobility Textiles

Flow from Technical Textiles (sector) to Hygiene and Medical Te Mean Value 25% Quantile 75% Quantile Range Flow mass (kt) Year

Flow from Technical Textiles (sector) to Technical Clothin

Flow from Technical Textiles (sector) to Technical Household Te

Flow from Technical Textiles (sector) to Other Technical Tex Mean Value 20.0 25% Quantile 75% Quantile 17.5 Range 15.0 Flow mass (kt) 12.5 10.0 7.5 5.0 2.5 0.0 1950 1960 1970 1980 1990 2000 2010 2020

Year

Flow from Consumer Films to Compost collection (1mm-

Flow from Consumer Films to On-the-go consumption

Flow from Consumer Films to Dumping

Flow from Consumer Films to Packaging Collection

Flow from Consumer Films to Mixed Waste Collection

Flow from Consumer Bags to Compost collection (1mm+)

Flow from Consumer Bags to Compost collection (1mm-0.0006 Mean Value 25% Quantile 75% Quantile 0.0005 Range 0.0004 Flow mass (kt) 0.0003 0.0002 0.0001 0.0000 1950 1960 1970 1980 2000 2010 2020 1990

Year

Flow from Consumer Bags to On-the-go consumption 3.5 -Mean Value 25% Quantile 3.0 75% Quantile Range 2.5 Flow mass (kt) 2.0 1.5 1.0 0.5 0.0 2010 1950 1960 1970 1980 1990 2000 2020 Year

Flow from Consumer Bags to Dumping

Flow from Consumer Bags to Packaging Collection

Flow from Consumer Bags to Mixed Waste Collection

Flow from Consumer Bottles to Compost collection (1mm-

Flow from Consumer Bottles to On-the-go consumption Mean Value 25% Quantile 0.04 75% Quantile Range 0.02 Flow mass (kt) 0.00 -0.02-0.041950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Consumer Bottles to Packaging Collection Mean Value 25% Quantile 0.020 75% Quantile Range **₹** 0.015 -Flow mass 0.010 0.005 0.000 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Consumer Bottles to Mixed Waste Collection

Flow from Other Consumer Packaging to Compost collection (1r 0.7 -Mean Value 25% Quantile 75% Quantile 0.6 Range 0.5 Flow mass (kt) 0.4 0.3 0.2 0.1 0.0 2010 1950 1960 1970 1980 1990 2000 2020 Year

Flow from Other Consumer Packaging to On-the-go consumpt

Flow from Other Consumer Packaging to Dumping

Flow from Other Consumer Packaging to Packaging Collection

Flow from Other Consumer Packaging to Mixed Waste Collect

Flow from Agricultural Packaging Films to Agricultural Soil (ma

Flow from Agricultural Packaging Films to Dumping 0.00200 Mean Value 25% Quantile 0.00175 75% Quantile Range 0.00150 ₹ 0.00125 · Flow mass 0.00100 0.00075 0.00050 0.00025 0.00000 1950 1960 1970 1980 2000 2010 2020 1990 Year

low from Agricultural Packaging Films to Agriculture Waste Colle Mean Value

ow from Other Non Consumer Films to Litter in residential envir 0.30 Mean Value 25% Quantile 75% Quantile 0.25 Range 0.20 Flow mass (kt) 0.15 0.10 0.05 0.00 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Other Non Consumer Films to Dumping

Flow from Other Non Consumer Films to Packaging Collection

Flow from Other Non Consumer Films to Mixed Waste Collect

Flow from Non Consumer Bags to Litter in residential environn

Flow from Non Consumer Bags to Packaging Collection 1.6 Mean Value 25% Quantile 1.4 75% Quantile Range 1.2 Flow mass (kt) 8.0 8.1 8.0 0.40.2 0.0 2020 1950 1960 1970 1980 1990 2000 2010 Year

Flow from Non Consumer Bags to Mixed Waste Collection

Flow from Other Non Consumer Packaging to Dumping

from Other Non Consumer Packaging to Litter in residential env Mean Value 25% Quantile 0.6 75% Quantile Range 0.5

Flow from Other Non Consumer Packaging to Packaging Collection 2.5 Mean Value 25% Quantile 75% Quantile 2.0 Range Flow mass (kt) 0.1 0.5 0.0 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Other Non Consumer Packaging to Mixed Waste Colle

Flow from Pipes and Ducts to Residential Soil (micro) Mean Value 25% Quantile 0.0025 75% Quantile Range 0.0020 Flow mass (kt) 0.0015 0.0010 0.0005 0.0000 1950 1960 1970 1980 1990 2000 2010 2020

Year

Flow from Pipes and Ducts to Litter in residential environment 0.030 Mean Value 25% Quantile 75% Quantile 0.025 Range 0.020 Flow mass (kt) 0.015 0.010 0.005 0.000 1950 1960 1970 1980 1990 2000 2010 2020 Year

w from Pipes and Ducts to Construction and Demolition Waste C Mean Value 25% Quantile 1.4 75% Quantile Range 1.2 Flow mass (kt) 1.0 8.0 0.6 0.4 0.2 0.0 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Automotive to Road Side (macro)

Flow from Automotive to Export

Flow from Electrical and Electronic Equipment to Dumpin

Flow from Electrical and Electronic Equipment to Export

rical and Electronic Equipment to Electrical and Electronic Equin Mean Value 25% Quantile 75% Quantile Range Flow mass (kt) Year

Flow from Other Agricultural Plastics to Agricultural Soil (ma

Flow from Other Agricultural Plastics to Agricultural Soil (m Mean Value 25% Quantile 0.00020 75% Quantile Range 0.00015 -Flow mass 0.00010 0.00005 0.00000 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Other Agricultural Plastics to Agriculture Waste Colle

Flow from Household Plastics to Indoor air (micro)

Flow from Household Plastics to Dumping

Flow from Household Plastics to Mixed Waste Collection

Flow from Furniture to Dumping

Flow from Furniture to Mixed Waste Collection

Flow from Personal Care and Cosmetic Products to Waste Water Mean Value 0.008 25% Quantile 75% Quantile Range 0.006 Flow mass (kt) 0.004 0.002 0.000 1950 1960 1970 1980 1990 2000 2010 2020

Year

Flow from Other Plastic Products to Dumping

Flow from Other Plastic Products to Mixed Waste Collection 40 -Mean Value 25% Quantile 35 75% Quantile Range 30

Flow from Clothing to Indoor air (micro)

Flow from Clothing to Waste Water (micro)

Flow from Clothing to Dumping

Flow from Clothing to Textile Waste Collection

Flow from Clothing to Mixed Waste Collection

Flow from Technical Clothing to Dumping

Flow from Technical Clothing to Textile Waste Collection Mean Value 25% Quantile 75% Quantile Range Flow mass (kt) Year

Flow from Technical Clothing to Mixed Waste Collection

Flow from Household Textiles to Dumping

Flow from Household Textiles to Waste Water (micro)

Flow from Household Textiles to Outdoor air (micro)

Flow from Household Textiles to Indoor air (micro)

Flow from Household Textiles to Textile Waste Collection 0.7 Mean Value 25% Quantile 0.6 75% Quantile Range 0.5 Flow mass (kt) 0.4 0.3 0.2 0.1 0.0 2010 1950 1960 1970 1980 1990 2000 2020 Year

Flow from Household Textiles to Mixed Waste Collection

Flow from Technical Household Textiles to Outdoor air (mi 0.0008 -Mean Value 25% Quantile 0.0007 75% Quantile Range 0.0006 ₹ 0.0005 Flow mass 0.0004 0.0003 0.0002 0.0001 0.0000 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Technical Household Textiles to Waste Water (m Mean Value 25% Quantile 0.005 75% Quantile Range 0.004 Flow mass (kt) 0.003 0.002 0.001 0.000 1950 1960 1970 1980 1990 2000 2010 2020

Year

Flow from Technical Household Textiles to Indoor air (mic Mean Value

Flow from Technical Household Textiles to Textile Waste Colle 0.35 -Mean Value 25% Quantile 0.30 75% Quantile Range 0.25 Flow mass (kt) 0.20 0.15 0.10 0.05 0.00 1950 1960 1970 1980 1990 2000 2010 2020

Year

Flow from Technical Household Textiles to Mixed Waste Collec Mean Value 25% Quantile 75% Quantile Range Flow mass (kt)

Year

Flow from Hygiene and Medical Textiles to Waste Water (made

Flow from Hygiene and Medical Textiles to Mixed Waste Colle 20.0

Flow from Agrotextiles to Agricultural Soil (micro)

Flow from Agrotextiles to Agriculture Waste Collection

Flow from Mobility Textiles to Export

Flow from Mobility Textiles to End-Of-Life Vehicle Textiles Colle 3.5 Mean Value 25% Quantile 3.0 75% Quantile Range 2.5 Flow mass (kt) 2.0 1.5 1.0 0.5 0.0 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Geotextiles to Sub-surface (micro)

Flow from Geotextiles to Residential Soil (macro)

Flow from Geotextiles to Dumping

om Geotextiles to Construction and Demolition Incinerable Was Mean Value 0.5 25% Quantile 75% Quantile Range 0.4Flow mass (kt) 0.3 0.2 0.1 0.0 2010 1950 1960 1970 1980 1990 2000 2020 Year

Flow from Building Textiles to Residential Soil (macro)

n Building Textiles to Construction and Demolition Incinerable W 1.4 -Mean Value 25% Quantile 1.2 75% Quantile Range 1.0 Flow mass (kt) 8.0 0.6 0.4 0.2 0.0 1950 1960 1970 1980 1990 2000 2010 2020 Year

Year

Flow from Other Technical Textiles to Mixed Waste Collectio

ow from On-the-go consumption to On-the-go consumption (trar Mean Value 25% Quantile 75% Quantile Range Flow mass (kt) Year

w from On-the-go consumption to On-the-go consumption (residual) Mean Value 25% Quantile 75% Quantile Range Flow mass (kt) Year

Flow from On-the-go consumption (nature) to Mixed Waste Colle Mean Value 2.5 25% Quantile 75% Quantile Range 2.0 Flow mass (kt) 1.5 1.0 0.5 0.0 1950 1960 1970 1980 1990 2000 2010 2020 Year

w from On-the-go consumption (nature) to Litter in natural envir Mean Value 0.6 25% Quantile 75% Quantile 0.5 Range Flow mass (kt) 2.0 8.0 8.0 0.1 0.0 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from On-the-go consumption (transport) to Litter on road

om On-the-go consumption (residential) to Litter in residential e 3.5 Mean Value 25% Quantile 75% Quantile 3.0 Range 2.5 Flow mass (kt) 2.0 1.5 1.0 0.5 0.0 1950 1960 1970 1980 1990 2000 2010 2020 Year

w from On-the-go consumption (residential) to Mixed Waste Co Mean Value 25% Quantile 75% Quantile Range Flow mass (kt) Year

Flow from Dumping to Litter in residential environments 0.0175 Mean Value 25% Quantile 0.0150 75% Quantile Range 0.0125 Flow mass (kt) 0.0100 0.0075 0.0050 0.0025 0.0000 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Dumping to Litter on road sides

Flow from Litter in residential environments to Mixed Waste Coll

Flow from Litter in residential environments to Residential Soil (Mean Value 25% Quantile 0.06 75% Quantile Range 0.05 0.04

Flow from Litter in residential environments to Storm Water (m 0.07 Mean Value 25% Quantile

Flow from Litter on road sides to Mixed Waste Collection

Flow from Litter on road sides to Road Side (macro)

Flow from Litter in natural environments to Mixed Waste Colle

Flow from Litter in natural environments to Natural Soil (made 0.40 Mean Value 25% Quantile 75% Quantile 0.35 Range 0.30 Flow mass (kt) 0.25 0.20 0.15 0.10 0.05 0.00 1950 1960 1970 1980 1990 2000 2010 2020

Year

Flow from Litter in natural environments to Surface Water (m Mean Value 25% Quantile 0.005 75% Quantile Range 0.004 Flow mass (kt) 0.003 0.002 0.001 0.000 1950 1960 1970 1980 1990 2000 2010 2020

Year

Flow from Compost collection (1mm+) to Incineration Mean Value 25% Quantile 1.2 75% Quantile Range 1.0 8.0 0.6 0.4 0.2 0.0

2010

2020

2000

Flow mass (kt)

1950

1960

1970

1980

1990

Year

om Compost collection (1mm+) to Compost size separation (fic Mean Value 0.014 25% Quantile 75% Quantile Range 0.012 0.010 Flow mass 0.008 0.006 0.004 0.002 0.000 1950 1960 1970 1980 1990 2000 2010 2020 Year

flow from Compost size separation (fictional process) to Compos Mean Value 25% Quantile 0.010 75% Quantile Range 0.008 Flow mass (kt) 0.006 0.004 0.002 0.000 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Compost (macro) to Residential Soil (macro

Flow from Compost (macro) to Agricultural Soil (macro)

Flow from Compost (micro) to Residential Soil (micro) Mean Value 0.0007 25% Quantile 75% Quantile 0.0006 Range 0.0005 Flow mass 0.0004 0.0003 0.0002 0.0001 0.0000 1950 1960 1970 1980 1990 2000 2010 2020

Year

Flow from Compost (micro) to Agricultural Soil (micro) Mean Value 25% Quantile

Flow from Pre-consumer Waste Collection to Residential Soil (

w from Pre-consumer Waste Collection to Industrial Waste Wate 1.6 Mean Value 25% Quantile 1.4 75% Quantile Range 1.2 Flow mass (kt) 1.0 8.0 0.6 0.4 0.2 0.0 1950 1960 1970 1980 2000 2010 2020 1990 Year

Flow from Pre-consumer Waste Collection to Material Reuse

Flow from Pre-consumer Waste Collection to Incineration

Flow from Pre-consumer Waste Collection to Landfill

Flow from Packaging Collection to Export

Flow from Packaging Collection to Packaging Recycling

Flow from Packaging Collection to Incineration

Flow from Packaging Collection to Landfill

Flow from Mixed Waste Collection to Incineration

w from Construction and Demolition Waste Collection to Litter o Mean Value 25% Quantile 0.0025 75% Quantile Range 0.0020 Flow mass (kt) 0.0015 0.0010 0.0005 0.0000 1950 1960 1970 1980 1990 2000 2010 2020 Year

low from Construction and Demolition Waste Collection to Incine Mean Value 1.4 25% Quantile 75% Quantile 1.2 Range 1.0 Flow mass (kt) 8.0 0.6 0.4 0.2 0.0 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Construction and Demolition Waste Collection to La

Construction and Demolition Incinerable Waste Collection to Li

rom Construction and Demolition Incinerable Waste Collection to 1.75 -Mean Value 25% Quantile 1.50 75% Quantile Range 1.25 Flow mass (kt) 1.00 0.75 0.50 0.25 0.00 1950 1960 1970 1980 1990 2000 2010 2020 Year

w from End-Of-Life Vehicle Collection to Automotive Large Parts 1.0 -Mean Value 25% Quantile 75% Quantile 8.0 Range Flow mass (kt) 0.6 0.4 0.2 0.0 1950 1960 1970 1980 1990 2000 2010 2020 Year

rom End-Of-Life Vehicle Collection to Automotive Shredder Resig Mean Value 17.5 25% Quantile 75% Quantile 15.0 Range 12.5 Flow mass (kt) 10.0 7.5 5.0 2.5 0.0 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from End-Of-Life Vehicle Textiles Collection to Landfil

d Electronic Equiment Waste Collection to Waste of Electrical an

 \prime from Electrical and Electronic Equiment Waste Collection to Inc Mean Value 25% Quantile 75% Quantile Range Flow mass (kt)

Year

low from Electrical and Electronic Equiment Waste Collection to Mean Value 1.75 25% Quantile 75% Quantile 1.50 Range 1.25 Flow mass (kt) 1.00 0.75 0.50 0.25 0.00 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Agriculture Waste Collection to Compost collection (1 Mean Value 0.14 25% Quantile 75% Quantile 0.12 Range 0.10 Flow mass (kt) 0.08 0.06 0.04 0.02 0.00 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Agriculture Waste Collection to Agriculture Plastic Rec Mean Value 2.5 25% Quantile 75% Quantile Range 2.0 Flow mass (kt) 1.0 0.5 0.0 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Agriculture Waste Collection to Incineration

Flow from Agriculture Waste Collection to Landfill

Flow from Textile Waste Collection to Residential Soil (mid 0.0014 - Mean Value

Flow from Textile Waste Collection to Textile Reuse

Flow from Textile Waste Collection to Material Reuse Mean Value 25% Quantile 0.04 75% Quantile Range 0.02 Flow mass (kt) 0.00 -0.02-0.041950 1960 1970 1980 1990 2000 2010 2020

Year

Flow from Textile Waste Collection to Incineration

Flow from Textile Waste Collection to Landfill

Flow from Packaging Recycling to Residential Soil (macr 0.0008 Mean Value 25% Quantile 75% Quantile 0.0007 Range 0.0006 Flow mass (kt) 0.0005 0.0004 0.0003 0.0002 0.0001 0.0000 1950 1960 1970 1980 1990 2000 2010 2020

Year

Flow from Packaging Recycling to Export

Flow from Construction and Demolition Recycling to Material F

Flow from Construction and Demolition Recycling to Incinera

Flow from Automotive Large Parts Recycling to Residential So

r from Aម្មដូចភ្ជាotive Large Parts Recycling to Industrial Waste Wa 4.0 -Mean Value 25% Quantile 3.5 75% Quantile Range 3.0 Flow mass (kt) 2.5 2.0 1.5 1.0 0.5 0.0 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Automotive Large Parts Recycling to Automotive Parts Mean Value 25% Quantile 75% Quantile 0.08 Range Flow mass (kt) 90.0 90.0 0.02 0.00 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Automotive Large Parts Recycling to Material Reu 0.7 Mean Value 25% Quantile 0.6 75% Quantile Range 0.5 0.4 0.3 0.2

Flow from Automotive Large Parts Recycling to Incineration

Flow from Automotive Large Parts Recycling to Landfill

ow from Automotive Shredder Residue Recycling to Residential Mean Value 0.0175 25% Quantile 75% Quantile 0.0150 Range 0.0125 Flow mass 0.0100 0.0075 0.0050 0.0025 0.0000 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Automotive Shredder Residue Recycling to Waste Wat Mean Value 0.0175 25% Quantile 75% Quantile 0.0150 Range 0.0125 Flow mass 0.0100 0.0075 0.0050 0.0025 0.0000 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Automotive Shredder Residue Recycling to Material Mean Value 25% Quantile 0.04 75% Quantile Range 0.02 Flow mass (kt) 0.00 -0.02-0.041950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Automotive Shredder Residue Recycling to Incinera

Flow from Automotive Shredder Residue Recycling to Landfi

rom Waste of Electrical and Electronic Plastic Recycling to Outd 0.012 Mean Value 25% Quantile 75% Quantile 0.010 Range 0.008 Flow mass (kt) 0.006 0.004 0.002 0.000 1950 1960 1970 1980 1990 2000 2010 2020 Year

m Waste of Electrical and Electronic Plastic Recycling to Reside Mean Value 0.012 25% Quantile 75% Quantile 0.010 Range ₹ 0.008 · Flow mass 0.006 0.004 0.002 0.000 1950 1960 1970 1980 1990 2000 2010 2020 Year

om Waste of Electrical and Electronic Plastic Recycling to Waste 0.012 Mean Value 25% Quantile 75% Quantile 0.010 Range 0.008 -Flow mass 0.006 0.004 0.002 0.000 1950 1960 1970 1980 1990 2000 2010 2020 Year

from Waste of Electrical and Electronic Plastic Recycling to Mate Mean Value 25% Quantile 75% Quantile Range Flow mass (kt) Year

v from Waste of Electrical and Electronic Plastic Recycling to Inc Mean Value 25% Quantile 75% Quantile Range Flow mass (kt) Year

low from Agriculture Plastic Recycling to Industrial Waste Water Mean Value 1.4 25% Quantile 75% Quantile 1.2 Range 1.0 Flow mass (kt) 8.0 0.6 -0.4 -0.2 0.0 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Agriculture Plastic Recycling to Incineration 0.35 Mean Value 25% Quantile 0.30 75% Quantile Range 0.25 Flow mass (kt) 0.20 0.15 0.10 0.05 0.00

1980

1990

Year

2000

2010

2020

1950

1960

1970

Flow from Industrial Waste Water (micro) to Residential Soil (Mean Value 25% Quantile 0.0035 75% Quantile Range 0.0030 0.0025 Flow mass 0.0020 0.0015 0.0010 0.0005 0.0000 1950 1960 1970 1980 2000 2010 2020 1990

Year

from Industrial Waste Water (micro) to Waste Water Treatment

Mean Value

Flow from Industrial Waste Water (micro) to Surface Water (Mean Value 0.0020 25% Quantile 75% Quantile Range 0.0015 Flow mass (kt) 0.0010 0.0005 0.0000 1950 1960 1970 1980 2000 2010 2020 1990

Year

Flow from Storm Water (macro) to Surface Water (macro

ow from Waste Water (macro) to Waste Water Treatment Plant

Flow from Waste Water (macro) to On-Site Sewage Facility (macro) Mean Value 25% Quantile 0.6 75% Quantile Range 0.5 Flow mass (kt) 0.3 0.2 0.1 0.0 1950 1960 1970 1980 2000 2010 2020 1990

Year

Flow from Waste Water (micro) to Sub-surface (micro)

Flow from Waste Water (micro) to Waste Water Treatment Plant Mean Value 25% Quantile 0.07 75% Quantile Range 0.06

Flow from Waste Water (micro) to On-Site Sewage Facility (n Mean Value 25% Quantile 0.005 75% Quantile Range 0.004 Flow mass (kt) 0.003 0.002 0.001 0.000 1950 1960 1970 1980 1990 2000 2010 2020

Year

Flow from On-Site Sewage Facility (macro) to Sludge (macro Mean Value 25% Quantile 0.6 75% Quantile Range 0.5 Flow mass (kt) 0.3 0.2 0.1 0.0 1950 1960 1970 1980 2000 2010 2020 1990

Year

Flow from On-Site Sewage Facility (micro) to Sludge (micro

n Waste Water Treatment Plant (macro) to Primary Water Treat Mean Value 25% Quantile 75% Quantile Range Flow mass (kt) Year

Flow from Waste Water Treatment Plant (macro) to Incinerat

m Waste Water Treatment Plant (macro) to Combined Sewer Ov Mean Value 3.5 25% Quantile 75% Quantile 3.0 Range 2.5 Flow mass (kt) 2.0 1.5 1.0 0.5 0.0 1950 1960 1970 1980 1990 2000 2010 2020 Year

om Waste Water Treatment Plant (micro) to Primary Water Trea 0.07 Mean Value 25% Quantile 0.06 75% Quantile Range 0.05 Flow mass (kt) 0.04 0.03 0.02 0.01 0.00 1950 1960 1970 1980 1990 2000 2010 2020 Year

om Waste Water Treatment Plant (micro) to Combined Sewer O Mean Value 25% Quantile 75% Quantile 0.004 Range <u>\$\frac{1}{2}\$</u> 0.003 Flow mass 0.002 0.001 0.000 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Combined Sewer Overflow (macro) to Incineration

Flow from Combined Sewer Overflow (micro) to Surface Water

m Primary Water Treatment (macro) to Secondary Water Treatr Mean Value 25% Quantile 75% Quantile Range Flow mass (kt) Year

Flow from Primary Water Treatment (micro) to Sludge (mic

from Primary Water Treatment (micro) to Secondary Water Trea Mean Value 0.020 25% Quantile 75% Quantile Range 0.015 Flow mass (kt) 0.010 0.005 0.000 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Secondary Water Treatment (macro) to Sludge (macro) Mean Value 25% Quantile 75% Quantile Range Flow mass (kt)

Year

Flow from Secondary Water Treatment (micro) to Sludge (m Mean Value 0.010 25% Quantile 75% Quantile Range 0.008 Flow mass (kt) 0.006 0.004 0.002 0.000 1950 1960 1970 1980 1990 2000 2010 2020 Year

from Secondary Water Treatment (micro) to Tertiary Water Trea Mean Value 0.012 25% Quantile 75% Quantile Range 0.010 Flow mass (kt) 800.0 (kt) 0.002 0.000 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Secondary Water Treatment (micro) to Surface Water 0.0010 Mean Value 25% Quantile 75% Quantile 0.0008 Range Flow mass (kt) 0.0006 0.0004 0.0002 0.0000 1950 1960 1970 1980 2000 2010 2020 1990 Year

Flow from Tertiary Water Treatment (micro) to Incineration

Flow from Tertiary Water Treatment (micro) to Surface Water

Flow from Sludge (macro) to Landfill

Flow from Sludge (macro) to Agricultural Soil (macro)

Flow from Sludge (micro) to Export

Flow from Sludge (micro) to Agricultural Soil (micro) 0.035 Mean Value 25% Quantile 75% Quantile 0.030 Range 0.025 Flow mass (kt) 0.020 0.015 0.010 0.005 0.000 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Sludge (micro) to Landfill

Flow from Sludge (micro) to Incineration

Flow from Indoor air (micro) to Indoor floors

Flow from Indoor floors to Mixed Waste Collection

Flow from Outdoor air (micro) to Surface Water (micro)

Flow from Outdoor air (micro) to Agricultural Soil (micro)

Flow from Outdoor air (micro) to Natural Soil (micro)

Flow from Material Reuse to Export

Flow from Material Reuse to Recycled Material Production

Flow from Textile Reuse to Technical Clothing

Flow from Textile Reuse to Household Textiles

Flow from Textile Reuse to Technical Household Textile

