Preliminaries
Wishart matrices and their behaviour
Covariance matrices from sub-Gaussian ensembles
Bounds for general matrices
Bounds for structured covariance matrices
References

Random matrices and covariance estimation

Kaveh S. Nobari

Lectures in High-Dimensional Statistics

Department of Mathematics and Statistics Lancaster University

Contents

- Preliminaries
 - Notations in linear algebra
 - Set-up of covariance estimation
- Wishart matrices and their behaviour
- 3 Covariance matrices from sub-Gaussian ensembles
- Bounds for general matrices
 - Background on matrix analysis
 - Tail conditions for matrices
 - Matrix Chernoff approach and independent decompositions
 - Upper tail bounds for random matrices
 - Consequences for covariance matrices
- Bounds for structured covariance matrices
 - Unknown sparsity and thresholding

Preliminaries
Wishart matrices and their behaviour
Covariance matrices from sub-Gaussian ensembles
Bounds for general matrices
Bounds for structured covariance matrices
References

Motivation

The issue of covariance estimation is intertwined with random matrix theory, since sample covariance is a particular type of random matrix. These slides follow the structure of chapter 6 of Wainwright (2019) to shed light on random matrices in a non-asymptotic setting, with the aim of obtaining explicit deviation inequalities that hold for all sample sizes and matrix dimensions.

In the classical framework of covariance matrix estimation the sample size n tends to infinity while the matrix dimension d is fixed; in this setting the behaviour of sample covariance matrix is characterized by the usual limit theory. In contrast, in high-dimensional settings the data dimension is either comparable to the sample size $(d \times n)$ or possibly much larger than the sample size $d \gg n$.

Preliminaries
Wishart matrices and their behaviour
covariance matrices from sub-Gaussian ensembles
Bounds for general matrices
Bounds for structured covariance matrices
References

Motivation

We begin with the simplest case, namely ensembles of Gaussian random matrices, and we then discuss more general sub-Gaussian ensembles, before moving to milder tail conditions.

- Preliminaries
 - Notations in linear algebra
 - Set-up of covariance estimation
- Wishart matrices and their behaviour
- Covariance matrices from sub-Gaussian ensembles
- Bounds for general matrices
 - Background on matrix analysis
 - Tail conditions for matrices
 - Matrix Chernoff approach and independent decompositions
 - Upper tail bounds for random matrices
 - Consequences for covariance matrices
- 5 Bounds for structured covariance matrices
 - Unknown sparsity and thresholding

First, let us consider rectangular matrices, for instance matrix $A \in \mathbb{R}^{n \times m}$ with $n \geq m$, the ordered singular values are written as follows

$$\sigma_{\mathsf{max}}(A) = \sigma_1(A) \ge \sigma_2(A) \ge \cdots \ge \sigma_m(A) = \sigma_{\mathsf{min}}(A) \ge 0$$

The maximum and minimum singular values are obtained by maximizing the "blow-up factor"

$$\sigma_{\max}(A) = \max_{\forall x} \frac{\|Ax\|_2}{\|x\|_2}, \quad \sigma_{\min}(A) = \min_{\forall x} \frac{\|Ax\|_2}{\|x\|_2}$$

which is obtained when x is the largest and smallest singular vectors respectively - i.e.

$$\sigma_{\max}(A) = \max_{v \in S^{m-1}} \frac{\|Av\|_2}{\|v\|_2}, \quad \sigma_{\min}(A) = \min_{v \in S^{m-1}} \frac{\|Av\|_2}{\|v\|_2}$$

noting that $\|v\|_2=1$, since $S^{d-1}:=\{v\in\mathbb{R}^d\mid \|v\|_2=1\}$ is the Euclidean unit sphere in \mathbb{R}^d . We may denote

$$|||A|||_2 = \sigma_{\mathsf{max}}(A)$$

However, covariance matrices are square symmetric matrices, thus we must also focus on symmetric matrices in \mathbb{R}^d , denoted $S^{d\times d}:=\{Q\in\mathbb{R}^{d\times d}\mid Q=Q'\}$, as well as subset of semi-definite matrices given by

$$S_+^{d\times d}:=\{Q\in S^{d\times d}\mid Q\geq 0\}.$$

Any matrix $Q \in S^{d \times d}$ is diagonalizable via unitary transformation, and let us denote the vector of eigenvalues of Q by $\gamma(Q) \in \mathbb{R}^d$ ordered as

$$\gamma_{\sf max}(Q) = \gamma_1(Q) \geq \gamma_2(Q) \geq \dots \geq \gamma_d(Q) = \gamma_{\sf min}(Q)$$

Note the matrix Q is semi-positive definite, which may be expressed as $Q \ge 0$, iff $\gamma_{\min}(Q) \ge 0$.

The Rayleigh-Ritz variational characterization of the minimum and maximum eigenvalues

$$\gamma_{\mathsf{max}}(Q) = \max_{v \in S^{d-1}} v' Q v \quad \mathsf{and} \quad \gamma_{\mathsf{min}}(Q) = \min_{v \in S^{d-1}} v' Q v$$

For symmetric matrix Q, the l_2 norm can be expressed as

$$\left\|\left|Q\right|\right\|_2 = \max\{\gamma_{\mathsf{max}}(Q), |\gamma_{\mathsf{min}}(Q)|\} := \max_{v \in S^{d-1}} \lvert v'Qv \rvert$$

Finally, suppose we have a rectangular matrix $A \in \mathbb{R}^{n \times m}$, with $n \geq m$. We know that any rectangular matrix can be expressed using singular value decomposition (SVD hereafter), as follows

$$A = U\Sigma V'$$

wher U is an $n \times n$ unitary matrix, Σ is an $n \times m$ rectangular diagonal matrix with non-negative real numbers on the diagonal up and V is an $n \times n$ unitary matrix. Using SVD, we can express A'A where

$$A'A = V\Sigma'U'U\Sigma V'$$

and since U is an orthogonal matrix, we know that U'U = I where I is the identity matrix.

$$A'A = V(\Sigma'\Sigma)V'$$

Therefore, as the diagonal matrix Σ contains the eigenvalues of matrix A, hence, $\Sigma'\Sigma$ contains the eigenvalues of A'A and it can be thus concluded

$$\gamma_i(A'A) = (\sigma_i(A))^2, \quad j = 1, \dots, m$$

- Preliminaries
 - Notations in linear algebra
 - Set-up of covariance estimation
- Wishart matrices and their behaviour
- Covariance matrices from sub-Gaussian ensembles
- Bounds for general matrices
 - Background on matrix analysis
 - Tail conditions for matrices
 - Matrix Chernoff approach and independent decompositions
 - Upper tail bounds for random matrices
 - Consequences for covariance matrices
- 5 Bounds for structured covariance matrices
 - Unknown sparsity and thresholding

Let $\{x_1, \dots, x_n\}$ be a collection of n i.i.d samples from a distribution in \mathbb{R}^d with zero mean and the covariance matrix Σ . A standard estimator of sample covariance matrix is

$$\hat{\Sigma} := \frac{1}{n} \sum_{i=1}^{n} x_i x_i'.$$

Since, each x_i for $i = 1, \dots, n$ has zero mean, it is guaranteed that

$$\mathbb{E}[x_ix_i']=\Sigma$$

and the random matrix $\hat{\Sigma}$ is an unbiased estimator of the population covariance Σ . Consequently the error matrix $\hat{\Sigma} - \Sigma$ has mean zero, and goal is to obtain bounds on the error measures in l_2 -norm. We are essentially seeking a band of the form

$$\|\hat{\Sigma} - \Sigma\|_{2} \le \varepsilon$$

where,

$$\begin{aligned} \left\| \left\| \hat{\Sigma} - \Sigma \right\| \right\|_{2} &= \max_{v \in S^{d-1}} \left| v' \left\{ \frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}' - \Sigma \right\} v \right| \\ &= \max_{v \in S^{d-1}} \left| \frac{1}{n} \sum_{i=1}^{n} v' x_{i} x_{i}' v - v' \Sigma v \right| \\ &= \max_{v \in S^{d-1}} \left| \frac{1}{n} \sum_{i=1}^{n} \langle x_{i}, v_{i} \rangle^{2} - v' \Sigma v \right| \leq \varepsilon \end{aligned}$$

References

which suggests that controlling the deviation $\|\hat{\Sigma} - \Sigma\|_2$ is equivalent to establishing a ULLN for the class of functions $x \to \langle x, v \rangle^2$, indexed by vectors $v \in S^{d-1}$.

Definition (Weyl's Inequality)

(I) Given any real symmetric matrices A, B,

$$\gamma_1(A+B) \ge \gamma_1(A) + \gamma_1(B)$$

 $\gamma_n(A+B) \le \gamma_n(A) + \gamma_n(B)$

(II) Given any real symmetric matrices A, B,

$$|\gamma_k(A) - \gamma_k(B)| \le |||(A - B)|||_2$$

(see DasGupta (2008)).

Control in the operator norm further guarantees that the eigenvalues of $\hat{\Sigma}$ are uniformly close to those of Σ . Furthermore, given Weyl's inequality II above, we have

$$\max_{j=1,\cdots,d} |\gamma_j(\hat{\Sigma}) - \gamma_j(\Sigma)| \le \left\| |\hat{\Sigma} - \Sigma| \right\|_2$$

Note that the random matrix $X \in \mathbb{R}^{n \times d}$ has the vectors x_i' on its i^{th} row and singular values denotes by $\{\sigma_j(X)\}_{j=1}^{\min n,d}$. Thus,

$$\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} x_i x_i' = \frac{1}{n} X' X$$

and hence, the eigenvalues of $\hat{\Sigma}$ are the squares of the singular values of X/\sqrt{n} .

- Preliminaries
 - Notations in linear algebra
 - Set-up of covariance estimation
- Wishart matrices and their behaviour
- 3 Covariance matrices from sub-Gaussian ensembles
- Bounds for general matrices
 - Background on matrix analysis
 - Tail conditions for matrices
 - Matrix Chernoff approach and independent decompositions
 - Upper tail bounds for random matrices
 - Consequences for covariance matrices
- 5 Bounds for structured covariance matrices
 - Unknown sparsity and thresholding

Preliminaries
Wishart matrices and their behaviour
covariance matrices from sub-Gaussian ensembles
Bounds for general matrices
Bounds for structured covariance matrices
References

Definition (Gaussian ensembles and Wishart distribution)

Suppose that each sample x_i of a matrix $X \in \mathbb{R}^{n \times d}$ is drawn from an i.i.d multivariate $N(0,\Sigma)$ distribution. In this case we say that the associated matrix $X \in n \times d$, with x_i' and its i^{th} row, is drawn from the Σ -Gaussian ensemble. The associated sample covariance $\hat{\Sigma} = \frac{1}{n}X'X$ is said to follow a multivariate Wishart distribution.

Following Wainwright (2019), we present deviation inequalities for Σ -Gaussian ensembles and present a few examples before proving said inequalities.

Theorem

Let $X \in \mathbb{R}^{n \times d}$ be drawn according to the Σ -Gaussian ensemble. Then for $\delta > 0$, the maximum singular value $\sigma_{\max}(X)$ satisfies the upper deviation inequality

$$P\left[\frac{\sigma_{\mathsf{max}}(X)}{\sqrt{n}} \geq \gamma_{\mathsf{max}}(\sqrt{\Sigma})(1+\delta) + \sqrt{\frac{\mathsf{tr}(\Sigma)}{n}}\right] \leq \exp\left(-\frac{n\delta^2}{2}\right)$$

Furthermore, for $n \ge d$, the minimum singular value $\sigma_{\min}(X)$ satisfies the lower deviation inequality

$$P\left[\frac{\sigma_{\min}(X)}{\sqrt{n}} \leq \gamma_{\min}(\sqrt{\Sigma})(1-\delta) - \sqrt{\frac{\mathsf{tr}(\Sigma)}{n}}\right] \leq \exp\left(-\frac{n\delta^2}{2}\right)$$

Example (Norm bounds for standard Gaussian ensemble): Consider $W \in \mathbb{R}^{n \times d}$ generated with i.i.d N(0,1) entries, which leads to the I_d -Gaussian ensemble. Given the above Theorem, it can be concluded that for $n \geq d$

$$\frac{\sigma_{\max}(W)}{\sqrt{n}} \leq 1 + \delta + \sqrt{\frac{d}{n}} \quad \text{and} \quad \frac{\sigma_{\min}(W)}{\sqrt{n}} \geq 1 - \delta - \sqrt{\frac{d}{n}}$$

Now it is evident that

$$1 - P\left[\frac{\sigma_{\mathsf{max}}(\mathcal{W})}{\sqrt{n}} \geq 1 + \delta + \sqrt{\frac{d}{n}}\right] = P\left[\frac{\sigma_{\mathsf{max}}(\mathcal{W})}{\sqrt{n}} \leq 1 + \delta + \sqrt{\frac{d}{n}}\right]$$

thus according to the earlier Theorem,

$$P\left[\frac{\sigma_{\mathsf{max}}(W)}{\sqrt{n}} \leq 1 + \delta + \sqrt{\frac{d}{n}}\right] \geq 1 - \exp\left(-\frac{n\delta^2}{2}\right)$$

and similarly

$$P\left[rac{\sigma_{\sf min}({\cal W})}{\sqrt{n}} \geq 1 - \delta - \sqrt{rac{d}{n}}
ight] \geq 1 - {\sf exp}\left(-rac{n\delta^2}{2}
ight)$$

Thus, it can easily be seen that both bounds hold with probability greater than $1-2\exp\left(-\frac{n\delta^2}{2}\right)$. As we recall, the eigenvalues of the symmetric covariance matrix $\hat{\Sigma}$ is the square of the singular values W/\sqrt{n} . Furthermore,

$$\left\| \left\| \hat{\Sigma} - \Sigma \right\| \right\|_{2} = \max_{v \in S^{d-1}} \left| v' \left\{ \frac{1}{n} W'W - I_{d} \right\} v \right|$$
$$= \max_{v \in S^{d-1}} \left| \frac{1}{n} v'(W'W)v - v'I_{d}v \right|$$

Preliminaries
Wishart matrices and their behaviour
ovariance matrices from sub-Gaussian ensembles
Bounds for general matrices
Bounds for structured covariance matrices
References

Note that $v'I_dv = ||v||_2^2 = 1$. Thus,

$$\left\| \hat{\Sigma} - \Sigma \right\|_{2} = \left\| \frac{1}{n} W' W - I_{d} \right\|_{2}$$
$$= \max_{v \in S^{d-1}} \left| \frac{1}{n} v' (W'W) v - 1 \right|$$

Moreover, we have

$$\frac{\sigma_{\mathsf{max}}(W)}{\sqrt{n}} \le 1 + \delta + \sqrt{\frac{d}{n}}$$

or

$$egin{split} rac{(\sigma_{\sf max}(W))^2}{n} & \leq 1 + 2\left(\underbrace{\delta + \sqrt{rac{d}{n}}}_{arepsilon}
ight) + \left(\underbrace{\delta + \sqrt{rac{d}{n}}}_{arepsilon}
ight) \ \left\{rac{(\sigma_{\sf max}(W))^2}{n} - 1
ight\} & \leq 2arepsilon + arepsilon^2 \end{split}$$

thus,

$$\left\| \left\| \frac{1}{n} W'W - I_d \right\| \right\|_2 \le 2\varepsilon + \varepsilon^2$$

Note that $\frac{d}{n} \to 0$, thus, the sample covariance matrix $\hat{\Sigma}$ is a consistent estimate of the identity matrix I_d .

Example (Gaussian covariance estimation):

Let $X \in \mathbb{R}^{n \times d}$ be a random matrix from the Σ -Gaussian ensemble. Noting that a if $X \sim N(0, \Sigma)$ it can equivalently be written as $X \sim \sqrt{\Sigma}N(0, I_d)$. So assuming that $W \sim N(0, I_d)$, we may express X as $X = W\sqrt{\Sigma}$. Moreover,

$$\left\| \left\| \frac{1}{n} X' X - \Sigma \right\| \right\|_{2} = \left\| \left\| \sqrt{\Sigma} \left(\frac{1}{n} W' W - I_{d} \right) \sqrt{\Sigma} \right\| \right\|_{2}$$

$$\leq \left\| \left\| \Sigma \right\| \right\|_{2} \left\| \left\| \frac{1}{n} W' W - I_{d} \right\| \right\|_{2}$$

Thus, given the earlier example we know that

$$\left\|\left\|\frac{1}{n}W'W-I_d\right\|\right\|_2\leq 2\varepsilon+\varepsilon^2,$$

where $\varepsilon = \delta + \sqrt{\frac{d}{n}}$. Therefore,

$$\frac{\left\|\left\|\hat{\Sigma} - \Sigma\right\|\right\|_{2}}{\left\|\left\|\Sigma\right\|\right\|_{2}} \le 2\varepsilon + \varepsilon^{2}$$

Therefore, the relative error above converges to zero, so long as $d/n \rightarrow 0$.

To show the proof for the earlier Theorem first we recap a concept from the concentration inequalities chapter:

Recap (Theorem 2.26 of Wainwright):

Let (X_1, \cdots, X_n) be a vector of i.i.d standard Gaussian variables, and let $f: \mathbb{R}^n \to \mathbb{R}$ be *L*-Lipschitz wrt to the Euclidean norm. Then the variable $f(X) - \mathbb{E}[f(X)]$ is sub-Gaussian with parameter at most L, and hence

$$P[|f(X) - E[f(X)]| \ge t] \le 2 \exp\left(-\frac{t^2}{2L^2}\right), \quad \forall t \ge 0$$

Example (Singular values of Gaussian random matrices): For n > d, let $X \in \mathbb{R}^{n \times d}$ be a random matrix with i.i.d. N(0,1) entries, and let

$$\sigma_1(X) \geq \sigma_2(X) \geq \cdots \geq \sigma_d(X) \geq 0$$

are the ordered singular values of the matrix X. Referring to Weyl's inequality II, and given another matrix $Y \in \mathbb{R}^{n \times d}$, we have

$$\max_{k=1,\cdots,d} |\sigma_k(X) - \sigma_k(Y)| \le |||X - Y|||_2 \le |||X - Y|||_F$$

where $\| \| \|_F$ denotes the Frobenius norm. Recalling that an L-Lipschitz function is one for which

$$|f(X) - f(Y)| \le L ||X - Y||_2$$

it can be suggested that $\sigma_k(X)$ for each k is a 1-Lipschitz function of random matrix. Furthermore, from Theorem 2.26 of Wainwright it can be shown that

$$P[|\sigma_k(X) - \mathbb{E}[\sigma_k(X)]| \ge \delta] \le 2 \exp\left(-\frac{\delta^2}{2}\right), \quad \forall \delta \ge 0$$

Preliminaries
Wishart matrices and their behaviour
ovariance matrices from sub-Gaussian ensembles
Bounds for general matrices
Bounds for structured covariance matrices
References

Now we wish to show that for $X \in \mathbb{R}^{n \times d}$ that is drawn according to the Σ -Gaussian ensemble, the maximum singular value $\sigma_{\max}(X)$ satisfies the upper deviation inequality

$$P\left[\frac{\sigma_{\mathsf{max}}(X)}{\sqrt{n}} \geq \gamma_{\mathsf{max}}(\sqrt{\Sigma})(1+\delta) + \sqrt{\frac{\mathsf{tr}(\Sigma)}{n}}\right] \leq \exp\left(-\frac{n\delta^2}{2}\right)$$

Let us denote $\bar{\sigma}_{\max} = \gamma_{\max}(\sqrt{\Sigma})$ and recall that we can write $X = W\sqrt{\Sigma}$, where $W \in \mathbb{R}^{n \times d}$ has i.i.d. N(0,1) entries.

Let us view the mapping $W o rac{\sigma_{\max}(W\sqrt{\Sigma})}{\sqrt{n}}$ as a real-valued function on \mathbb{R}^{nd} . Noting that

$$\frac{\sigma_{\max}(W\sqrt{\Sigma})}{\sqrt{n}} := \frac{\left\| W\sqrt{\Sigma} \right\|_{2}}{\sqrt{n}}$$

$$\leq \frac{\left\| W \right\|_{2} \left\| \sqrt{\Sigma} \right\|_{2}}{\sqrt{n}}$$

Thus, it is evident that this function is Lipschitz function wrt to the Euclidean norm with constant at most $L=\bar{\sigma}_{\rm max}/\sqrt{n}$. Hence, by concentration of measure for Lipschitz functions of Gaussian random vectors, we conclude that

$$P\left[\frac{\sigma_{\mathsf{max}}(X)}{\sqrt{n}} - \frac{\mathbb{E}[\sigma_{\mathsf{max}}(X)]}{\sqrt{n}} \geq \delta\right] \leq \exp\left(\frac{-\delta^2}{2L^2}\right)$$

Substituting $\bar{\sigma}_{\max}(X)/\sqrt{n}$ for L and multiplying both sides of the inequality in the probability by \sqrt{n} , we obtain

$$P[\sigma_{\sf max}(X) - \mathbb{E}[\sigma_{\sf max}(X)] \ge \sqrt{n}\delta] \le \exp\left(rac{-n\delta^2}{2(ar{\sigma}_{\sf max})^2}
ight)$$
 $P[\sigma_{\sf max}(X) \ge \mathbb{E}[\sigma_{\sf max}(X)] + ar{\sigma}_{\sf max}\sqrt{n}\delta] \le \exp\left(rac{-n\delta^2}{2}
ight)$

Therefore, it is sufficient to show that

$$\mathbb{E}[\sigma_{\mathsf{max}}(X)] \leq \sqrt{n}\bar{\sigma}_{\mathsf{max}} + \sqrt{\mathsf{tr}(\Sigma)}$$

Recall that the maximum singular value has the variational representation

$$\sigma_{\max}(X) = \max_{v' \in S^{d-1}} ||Xv'||_2,$$

where S^{d-1} denotes the Euclidean unit sphere in \mathbb{R}^d . Since $X = W\sqrt{\Sigma}$, we may write the above expression as follows

$$\sigma_{\max}(X) = \max_{v' \in S^{d-1}} \|W \underbrace{\sqrt{\sum v'}}_{v}\|_{2}$$

$$= \max_{v \in S^{d-1}(\Sigma^{-1})} \|Wv\|_{2}$$

$$= \max_{u \in S^{n-1}} \max_{v \in S^{d-1}(\Sigma^{-1})} u'Wv$$

where $S^{d-1}(\Sigma^{-1}) := \{ v \in \mathbb{R}^d \mid \|\Sigma^{-\frac{1}{2}}v\| \}_2 = 1 \}$ is an ellipse.

- Preliminaries
 - Notations in linear algebra
 - Set-up of covariance estimation
- 2 Wishart matrices and their behaviour
- Covariance matrices from sub-Gaussian ensembles
- Bounds for general matrices
 - Background on matrix analysis
 - Tail conditions for matrices
 - Matrix Chernoff approach and independent decompositions
 - Upper tail bounds for random matrices
 - Consequences for covariance matrices
- 5 Bounds for structured covariance matrices
 - Unknown sparsity and thresholding

- Preliminaries
 - Notations in linear algebra
 - Set-up of covariance estimation
- Wishart matrices and their behaviour
- Covariance matrices from sub-Gaussian ensembles
- Bounds for general matrices
 - Background on matrix analysis
 - Tail conditions for matrices
 - Matrix Chernoff approach and independent decompositions
 - Upper tail bounds for random matrices
 - Consequences for covariance matrices
- 5 Bounds for structured covariance matrices
 - Unknown sparsity and thresholding

Matrix Chernoff approach and independent decomposition Upper tail bounds for random matrices Consequences for covariance matrices

- Preliminaries
 - Notations in linear algebra
 - Set-up of covariance estimation
- Wishart matrices and their behaviour
- Covariance matrices from sub-Gaussian ensembles
- Bounds for general matrices
 - Background on matrix analysis
 - Tail conditions for matrices
 - Matrix Chernoff approach and independent decompositions
 - Upper tail bounds for random matrices
 - Consequences for covariance matrices
- 5 Bounds for structured covariance matrices
 - Unknown sparsity and thresholding

- Preliminaries
 - Notations in linear algebra
 - Set-up of covariance estimation
- Wishart matrices and their behaviour
- Covariance matrices from sub-Gaussian ensembles
- Bounds for general matrices
 - Background on matrix analysis
 - Tail conditions for matrices
 - Matrix Chernoff approach and independent decompositions
 - Upper tail bounds for random matrices
 - Consequences for covariance matrices
- 5 Bounds for structured covariance matrices
 - Unknown sparsity and thresholding

Consequences for covariance matrices

- Preliminaries
 - Notations in linear algebra
 - Set-up of covariance estimation
- Wishart matrices and their behaviour
- Covariance matrices from sub-Gaussian ensembles
- Bounds for general matrices
 - Background on matrix analysis
 - Tail conditions for matrices
 - Matrix Chernoff approach and independent decompositions
 - Upper tail bounds for random matrices
 - Consequences for covariance matrices
- 5 Bounds for structured covariance matrices
 - Unknown sparsity and thresholding

- Preliminaries
 - Notations in linear algebra
 - Set-up of covariance estimation
- Wishart matrices and their behaviour
- Covariance matrices from sub-Gaussian ensembles
- 4 Bounds for general matrices
 - Background on matrix analysis
 - Tail conditions for matrices
 - Matrix Chernoff approach and independent decompositions
 - Upper tail bounds for random matrices
 - Consequences for covariance matrices
- 5 Bounds for structured covariance matrices
 - Unknown sparsity and thresholding

- Preliminaries
 - Notations in linear algebra
 - Set-up of covariance estimation
- Wishart matrices and their behaviour
- Covariance matrices from sub-Gaussian ensembles
- Bounds for general matrices
 - Background on matrix analysis
 - Tail conditions for matrices
 - Matrix Chernoff approach and independent decompositions
 - Upper tail bounds for random matrices
 - Consequences for covariance matrices
- 5 Bounds for structured covariance matrices
 - Unknown sparsity and thresholding

Preliminaries
Wishart matrices and their behaviour
Covariance matrices from sub-Gaussian ensembles
Bounds for general matrices
Bounds for structured covariance matrices
References

References

DasGupta, A. (2008). Asymptotic theory of statistics and probability. Springer Science & Business Media.

Wainwright, M. J. (2019). *High-dimensional statistics: A non-asymptotic viewpoint*, volume 48. Cambridge University Press.