Academic year 2023/24

Session 202401

Q1. a) (i) Fully parenthesised form:

$$((a\times((b\div c)+d))-e)+((b-e)\times d)$$

(ii) Binary tree

- (iii) Preorder search: $+ \times a + \div b \cdot c \cdot d \cdot e \times b \cdot e \cdot d$
- b) (i)

Vertex	List of adjacencies
A	C F
В	F
C	A
D	E H
E	D F H I
\boldsymbol{F}	A B E G I
G	F
Н	D E
I	E F

(ii) Depth-first search

Breadth-first search

Minimum total weight = 25

Q2. a) (i)
$$::= aa < v_1>$$
 $< v_1> ::= b < v_0> | c < v_0> | b < v_2> | d < v_2>$ $< v_2> ::= c < v_1> | bb$

(ii) aacaabcbb is not a syntactically correct sentence.

- (iv) Regular expression= $a^2((b\lor c)a^2)^*((b\lor d)c((b\lor c)a^2)^*)^*(b\lor d)b^2$
- (b) (i) State transition table of f_{00101}

	f00101
S_a	S_g
S_b	S_b
S_c	S_b
S_d	S_d
S_e	S_b
S_f	S_b
S_g	S_b

(ii)

	S_a	S_c	S_e	S_f	S_b	S_g	S_d
0	S_g	S_c	S_f	S_f	S_c	S_e	S_d
1	S_e	S_b	S_g	S_b	S_d	S_d	S_d

(iii)

	0	1
$[S_a]$	$[S_b]$	$[S_c]$
$[S_b]$	$[S_c]$	$[S_d]$
$[S_c]$	$[S_c]$	$[S_b]$
$[S_d]$	$[S_d]$	$[S_d]$

 $f_{1001}(S_a) = S_b$ (v)

$$f_{1001}([S_a]) = [S_b]$$

Input string 1001 is not accepted by M and M/R.

- Q3. The description of * on \mathbb{Z} is a valid definition of a binary operation. a) (i)
 - Description of * on \mathbb{Z} is commutative. (ii)
 - (iii) Description of * on \mathbb{Z} is associative.
 - Since $e = 0 \in \mathbb{Z}$, description of * on \mathbb{Z} has an identity. (iv)
 - (i) Subset *A* is not a subgroup of *G*. b)
 - (ii) Subset *Y* is not a subgroup of G.

Q4 a) (i)

W	e(w)
00	0000
01	0110
10	1011
11	1101

(ii) The minimum distance of this (2, 4) encoding function $e_H = 2$

(iii)

\oplus	0000	0110	1011	1101
0001	0001	0111	1010	1100
0010	0010	0100	1001	1111
1000	1000	1110	0011	0101

(iv) (1) d(0011) = 10

(2) d(1110) = 01

b) (i)

Letter, (x_i)	Y	О	D	N	В	Е
Number of	160	480	180	360	280	540
occurrences	100	100 100	100	300	1	3 10
Probability, $P(x_i)$	0.08	0.24	0.09	0.18	0.14	0.27

(ii) Letter, (x_i) Y O D N B Codeword, C_i 0001 10 0000 11 001

(iii) Average code length, L(C) = 2.48 bits

Entropy, H(x) = 2.4507

The efficiency of this code is 98.82%.

Е

01