

Núcleo Básico das Engenharias

M002-E Álgebra e Geometria Analítica

Cap. 1 – Álgebra Vetorial (parte 2)

Prof. Edson J. C. Gimenez soned@inatel.br

2019/Sem1

4

Qualquer vetor, no plano, pode ser expresso em função de dois vetores não nulos e não paralelos.

Exemplo 1

Núcleo Básico das Engenharias - NB-21 - Algoritmos e Estruturas de Dados - 2º. Sem / 2014

Inatel
Instituto Nacional de Telecomunicações

 $v_1 < 0$

3

Exemplo 3

$$\vec{v} = v_1 \, \vec{e} + v_2 \, \vec{f}$$

$$v_1 < 0 \text{ e } v_2 < 0$$

$$\vec{v} = v_1 \, \vec{e} + v_2 \, \vec{f}$$

$$v_2 < 0$$

Exemplo 5

Exemplo 6

$$\vec{v} = 0\vec{e} + v_2\vec{f}$$

Núcleo Básico das Eng. Aharias - NB-21 – Algoritmos e Estruturas de Dados - 2º. Sem / 2014

Inatel
Instituto Nacional de Telecomunicações

Exemplo 8

$$\vec{v} = 0\vec{e} + v_2\vec{f}$$

$$v_2 < 0$$

Os vetores \vec{e} e \vec{f} formam uma *base*.

Caso os vetores que formam a base sejam ortogonais eles constituem uma base ortogonal.

Se além de ortogonais eles forem unitários a base passa a ser denominada de ortonormal.

Núcleo Básico das Engenharias - NB-21 – Algoritmos e Estruturas de Dados - 2º. Sem / 2014

Inatel
Instituto Nacional de Telecomuni

Para cada vetor \vec{v} representado no mesmo plano de \vec{e} e \vec{f} existe uma só dupla de números reais V_1 e V_2 tal que:

$$\vec{V} = V_1 \vec{e} + V_2 \vec{f}$$

O vetor \vec{v} é uma combinação linear de \vec{e} e de \vec{f} .

 $B = \{\vec{e}, \vec{f}\} \Rightarrow$ base no plano $v_1, v_2 \Rightarrow$ componentes do vetor \vec{v} na base BAssim, \vec{v} pode ser representado por $\vec{v} = (v_1, v_2)$

"Vetor no plano é um par ordenado (x, y) de números reais."

11

Base Canônica para vetores no plano $C = \{\vec{i}, \vec{j}\}$

$$C = \left\{ \vec{i}, \vec{j} \right\}$$

13

Inatel

Projeções

$$\vec{S} = \vec{A} + \vec{B} + \vec{C} + \vec{D}$$

Inatel

Projeções

$$\vec{S} = \vec{A} + \vec{B} + \vec{C} + \vec{D}$$

$$\vec{A} \begin{cases} A_X = 5 \\ A_Y = 4 \end{cases}$$

15

Inatel

B Ay

Projeções

$$\vec{S} = \vec{A} + \vec{B} + \vec{C} + \vec{D}$$

$$\overrightarrow{A} \begin{cases} A_X = 5 \\ A_Y = 4 \end{cases} \overrightarrow{B} \begin{cases} B_X = -3 \\ B_Y = 0 \end{cases}$$

Inatel

Projeções

$$\vec{S} = \vec{A} + \vec{B} + \vec{C} + \vec{D}$$

$$\overrightarrow{A} \begin{cases} A_X = 5 \\ A_Y = 4 \end{cases} \overrightarrow{B} \begin{cases} B_X = -3 \\ B_Y = 0 \end{cases}$$

$$\vec{C} \begin{cases} C_X = 0 \\ C_Y = -4 \end{cases}$$

17

Inatel

Projeções

$$\vec{S} = \vec{A} + \vec{B} + \vec{C} + \vec{D}$$

$$\overrightarrow{A} \begin{cases} A_X = 5 \\ A_Y = 4 \end{cases} \overrightarrow{B} \begin{cases} B_X = -3 \\ B_Y = 0 \end{cases}$$

$$\hat{C} \begin{cases} C_X = 0 \\ C_Y = -4 \end{cases} \hat{D} \begin{cases} D_X = 4 \\ D_Y = -3 \end{cases}$$

Inatel

Projeções

$$\dot{S} = \dot{A} + \dot{B} + \dot{C} + \dot{D}$$

$$\dot{A} \begin{cases} A_X = 5 \\ A_Y = 4 \end{cases} \dot{B} \begin{cases} B_X = -3 \\ B_Y = 0 \end{cases}$$

$$\dot{C} \begin{cases} C_X = 0 \\ C_Y = -4 \end{cases} \dot{D} \begin{cases} D_X = 4 \\ D_Y = -3 \end{cases}$$

$$\dot{S} = (S_X, S_Y)$$

$$S_X = A_X + B_X + C_X + D_X$$

$$S_X = 5 + 4 - 3 \longrightarrow S_X = +6$$

$$S_Y = A_Y + B_Y + C_Y + D_Y$$

$$S_Y = 4 - 4 - 3 \longrightarrow S_Y = -3$$
 19

Inatel Instituto Nacional de Telecomunicações

Projeções

- Na horizontal: +3
- Na vertical: +2
- Na horizontal: +2
- Na vertical: 2
- Na horizontal: 2
- Na vertical: 0

RESULTANTE:

- Na horizontal: +3
- Na vertical: 0

Exemplos

Ref.: Paulo Winterle - Vetores e Geometria Analítica, 2ª ed. - cap. 1: Vetores (O tratamento algébrico)

- 1) Dados os vetores $\vec{u}=(2,-3)$ e $\vec{v}=(-1,4)$, determinar $3\vec{u}+2\vec{v}$ e $3\vec{u}-2\vec{v}$.
- 2) Determinar o vetor \vec{x} na igualdade $3\vec{x} + 2\vec{u} = \frac{1}{2}\vec{v} + \vec{x}$, sendo dados $\vec{u} = (3, -1)$ e $\vec{v} = (-2,4).$
- 3) Encontrar os números a_1 e a_2 , tais que $\vec{v}=a_1\vec{v}_1+a_2\vec{v}_2$, sendo $\vec{v}=(10,2),\,\vec{v}_1=(3,5)$ e $\vec{v}_2 = (-1, 2).$

Respostas:

- 1) (4, -1) e (8, -17)
- 2) $\vec{x} = \left(-\frac{7}{2}, 2\right)$
- 3) $a_1 = 2 e a_2 = -4$

21

Exercícios

Ref.: Paulo Winterle - Vetores e Geometria Analítica, 2ª ed. - cap. 1: Vetores (O tratamento algébrico)

- 1) Dados os vetores $\vec{u} = 2\vec{i} 3\vec{j}$, $\vec{v} = \vec{i} \vec{j}$ e $\vec{w} = -2\vec{i} + \vec{j}$ determinar:
- a) $2\vec{u} \vec{v}$
- b) $\frac{1}{2}\vec{u} 2\vec{v} \vec{w}$ c) $\vec{v} \vec{u} 2\vec{w}$
- d) $3\vec{u} \frac{1}{2}\vec{v} \frac{1}{2}\vec{w}$
- 2) Dados os vetores $\vec{u} = (3, -1)$ e $\vec{v} = (-1, 2)$, determinar o vetor \vec{x} tal que:
- a) $4(\vec{u} \vec{v}) + \frac{1}{2}\vec{x} = 2\vec{u} \vec{x}$
- b) $3\vec{x} (2\vec{v} \vec{u}) = 2(4\vec{x} 3\vec{u})$
- 3) dados os pontos A(-1, 3), B(2, 5), C(3, -1) e O(0, 0), calcule:
- a) $\overrightarrow{OA} \overrightarrow{AB}$
- b) $\overrightarrow{OC} \overrightarrow{BC}$ c) $3\overrightarrow{BA} 4\overrightarrow{CB}$
- 4) Dados os vetores $\vec{u}=(2,-4), \vec{v}=(-5,1)$ e $\vec{w}=(-12,6),$ determinar a_1 e a_2 , tais que $\vec{w} = a_1 \vec{u} + a_2 \vec{v}.$