Polynômes

Soit \mathbb{K} un corps. (En pratique \mathbb{R} ou \mathbb{C}).

I. Introduction

1. Définition et structure de $\mathbb{K}[X]$

Définition. On appelle polynôme à une indéterminée à coefficients dans \mathbb{K} tout suite d'éléments de \mathbb{K} nulle à partir d'un certain rang. Ainsi, l'ensemble des polynômes à une indéterminée à coefficients dans \mathbb{K} , noté $\mathbb{K}[X]$ est égal à

$$\mathbb{K}[X] = \{ u \in \mathbb{K}^{\mathbb{N}} : \exists N \in \mathbb{N} : \forall n \ge N, u_n = 0 \}$$

Proposition. $(\mathbb{K}[X], +, .)$ est un sev de $(\mathbb{K}^{\mathbb{N}}, +, .)$

Définition. On définit sur $\mathbb{K}[X]$ un produit \times par

$$\forall (u, v) \in \mathbb{K}[X]^2, \ u \times v = \left(\sum_{k=0}^n u_k \, v_{n-k}\right)_{n \in \mathbb{N}}$$

Proposition. $(\mathbb{K}[X], +, \times)$ est anneau commutatif.

Définition. On note $X = (0, 1, 0, ..., 0, ...) = (\delta_{1,n})_{n \in \mathbb{N}}$

Proposition. Avec la convention, $X^0 = 1_{\mathbb{K}[X]}$, on a

$$\forall k \in \mathbb{N}, \ X^k = (\delta_{k,n})_{n \in \mathbb{N}}$$

Remarque : Le polynôme $P = (a_0, a_1, ..., a_n, 0, ..., 0, ...)$ qui est égal à $\left(\sum_{j=0}^n a_j \delta_{n,j}\right)_{n \in \mathbb{N}}$ est donc

égal à $\sum_{k=0}^{n} a_k X^k$. On retrouve les notations habituelles.

Proposition. La famille $(X^n)_{n\in\mathbb{N}}$ est une base de $\mathbb{K}[X]$ appelée base canonique de $\mathbb{K}[X]$.

Définition. On dit qu'un polynôme est constant s'il est de la forme $\lambda 1_{\mathbb{K}[X]}$ avec $\lambda \in \mathbb{K}$. L'application $\phi : \mathbb{K} \to \mathbb{K}[X]$, $\lambda \mapsto \lambda 1_{\mathbb{K}[X]}$ étant injective, on identifie $\lambda 1_{\mathbb{K}[X]}$ et λ . En particulier, $1_{\mathbb{K}[X]}$ est noté 1.

On dit qu'un polynôme est un monôme s'il est de la forme λX^k avec $\lambda \in \mathbb{K}$ et $k \in \mathbb{N}$.

Définition. Soit $P = \sum_{k=0}^{n} a_k X^k$ et Q deux polynômes, on définit leur composé par

$$P \circ Q = \sum_{k=0}^{n} a_k Q^k$$

Remarque : Pour tout polynôme P, on a $P \circ X = P$ ce qui explique que l'on note indifféremment P ou P(X).

2. Degré et coefficient dominant d'un polynôme

Définition. Si $P = (a_n)_{n \in \mathbb{N}} \in \mathbb{K}[X]$ est non nul alors l'ensemble $\{k \in \mathbb{N} : a_k \neq 0\}$ est non vide. On appelle degré de P son élément maximal. Par convention, le degré du polynôme nul est égal à $-\infty$.

Définition. Si $P = (a_n)_{n \in \mathbb{N}}$ est non nul alors on appelle coefficient dominant de P, le scalaire $a_{deg(P)}$. Sinon, le coefficient dominant est nul.

On dit qu'un polynôme est unitaire si son coefficient dominant est égal à $1_{\mathbb{K}}$.

Proposition. Tout polynôme non nul s'écrit de façon unique sous la forme λP_0 avec $\lambda \in \mathbb{K}^*$ et P_0 unitaire.

Proposition. Avec la convention $\forall n \in \mathbb{N}, n + (-\infty) = n \text{ et } -\infty + (-\infty) = -\infty, \text{ on } a$:

$$\forall (P,Q) \in \mathbb{K}[X]^2, \quad \deg(PQ) = \deg(P) + \deg(Q)$$

et le coefficient dominant d'un produit est le produit des coefficients dominants

Corollaire. Le produit de deux polynômes non nuls est non nul.

On dit que l'anneau $\mathbb{K}[X]$ est intègre.

Proposition. Avec la convention $\forall n \in \mathbb{N}, \max(n, -\infty) = n \text{ et } \max(-\infty, -\infty) = -\infty, \text{ on a}$

$$\forall (P,Q) \in \mathbb{K}[X], \quad \deg(P+Q) \leq \max(\deg(P),\deg(Q))$$

 $avec \ égalit\'e \ si \ deg(P) \neq deg(Q)$

Remarque: Si deg(P) = deg(Q) alors l'inégalité n'est pas forcément stricte (prendre P = Q = X) mais peut l'être (prendre P = -Q). Il y a en fait égalité si, et seulement si, la somme des coefficients dominants est non nulle.

Remarque: Si degP = degQ et dom(P) = dom(Q) alors deg(P - Q) < deg(P).

Définition. Soit n un entier, on note $\mathbb{K}_n[X]$ l'ensemble des polynômes de degré inférieur ou égal à n. Il s'agit d'un sev de $\mathbb{K}[X]$ de dimension n+1 admettant $(1,X,..,X^n)$ comme base canonique.

Proposition. Soient P et Q deux polynômes.

Si Q est non constant alors, $deg(P \circ Q) = deg(P)deg(Q)$.

Si Q est constant à a alors $P \circ Q$ est constant à P(a).

II. Arithmétique dans $\mathbb{K}[X]$

1. Division euclidienne

Définition. Soit $(P,Q) \in \mathbb{K}[X]^2$. On dit que P divise Q ou que P est un diviseur de Q ou que Q est un multiple de P et l'on note P/Q s'il existe $R \in \mathbb{K}[X]$ tel que Q = PR, ce qui est équivalent à $P\mathbb{K}[X] \subset Q\mathbb{K}[X]$.

Définition. On dit que deux polynômes P et Q sont associés lorsque P/Q et Q/P.

Proposition. Deux polynômes P et Q sont associés si et seulement s'il existe $\lambda \in \mathbb{K}^*$ tel que $P = \lambda Q$

Théorème. Soit $(A, B) \in \mathbb{K}[X]^2$ avec B non nul alors il existe un unique couple de polynômes $(Q, R) \in \mathbb{K}[X]^2$ tel que A = BQ + R et deg(R) < deg(B).

Définition. On appelle idéal de $\mathbb{K}[X]$ tout sous-groupe \mathcal{I} de $\mathbb{K}[X]$ tel que

$$\forall (P,Q) \in \mathcal{I} \times \mathbb{K}[X], \quad PQ \in \mathcal{I}.$$

Théorème. Soit $P \in \mathbb{K}[X]$, alors $P\mathbb{K}[X]$ est un idéal de $\mathbb{K}[X]$.

Réciproquement, si \mathcal{I} est un idéal de $\mathbb{K}[X]$, alors il existe un polynôme P tel que $\mathcal{I} = P\mathbb{K}[X]$.

Corollaire. Si \mathcal{I} est un idéal de $\mathbb{K}[X]$ distinct de $\{0_{\mathbb{K}[X]}\}$, alors il existe un unique polynôme unitaire tel que $\mathcal{I} = P\mathbb{K}[X]$.

2. PGCD et PPCM

Théorème. Soit P et Q deux polynômes tels que $(P,Q) \neq (0,0)$.

On appelle PGCD de P et de Q et on note $P \wedge Q$, l'unique polynôme unitaire tel que

$$\forall D \in \mathbb{K}[X], \quad (D/P \ et \ D/Q) \Leftrightarrow D/(P \land Q)$$

Il existe $(U, V) \in \mathbb{K}[X]^2$ tel que $UP + VQ = P \wedge Q$ (Relation de Bézout).

Remarque: Pour tout polynôme unitaire P, on a $P \wedge 0 = P$

Proposition. Soit $(P,Q) \in \mathbb{K}[X]^2$ et R le reste de la division Euclidienne de P par Q, alors $P \wedge Q = Q \wedge R$.

Remarque : On peut obtenir le PGCD de deux polynômes A et B de façon constructive par l'algorithme d'Euclide :

On construit par récurrence la suite de polynômes $(R_n)_{n\in\mathbb{N}}$ par :

- $-R_0 = A, R_1 = B,$
- pour tout $n \ge 1$, si R_n est nul alors R_{n+1} est nul et sinon R_{n+1} est le reste dans la division euclidienne de R_{n-1} par R_n .

La suite obtenue est presque nulle car sinon la suite $(deg(R_n))_{n\in\mathbb{N}}$ serait une suite d'entiers naturels strictement décroissante.

Soit n_0 le plus petit entier tel que R_{n_0} soit nul alors

$$\forall k \in [1, n_0 - 1], \ R_k \land R_{k-1} = R_k \land R_{k+1}$$

donc $A \wedge B = R_{n_0-1} \wedge R_{n_0} = R_{n_0-1} \wedge 0$.

Soit D le polynôme unitaire obtenu en divisant R_{n_0-1} par son coefficient dominant, alors

$$D = A \wedge B$$

En remontant cet algorithme, on trouve un couple (U, V) tel que AU + BV = 1.

Définition. Soit $(P_1, ..., P_r) \in \mathbb{K}[X]^r$.

On appelle PGCD des polynômes $P_1,..., P_r$, et on note $P_1 \wedge ... \wedge P_r$, l'unique polynôme unitaire tel que

$$\forall D \in \mathbb{K}[X], \quad (\forall i \in [1, r], D/P_i) \Leftrightarrow D/(P_1 \wedge ... \wedge P_r)$$

Il existe $(U_1,...,U_r) \in \mathbb{K}[X]^r$ tel que $U_1P_1 + ... + U_rP_r = P_1 \wedge ... \wedge P_r$ (Relation de Bézout).

Définition. Soit $(P,Q) \in \mathbb{K}[X]^2$.

On appelle PPCM de P et de Q et on note $P \vee Q$, l'unique polynôme unitaire tel que

$$\forall M \in \mathbb{K}[X], \quad (P/M \ et \ Q/M) \Leftrightarrow (P \lor Q)/M$$

3. Polynômes premiers entre eux

Définition. Soit $(P,Q) \in \mathbb{K}[X]^2$.

Si $P \wedge Q = 1_{\mathbb{K}[X]}$, on dit que P et Q sont premiers entre eux.

Proposition. (Théorème de Bezout) Soit $(P,Q) \in \mathbb{K}[X]^2$ alors P et Q sont premiers entre eux si et seulement si

$$\exists (U,V) \in \mathbb{K}[X]^2 \, : \, 1_{\mathbb{K}[X]} = UP + VQ$$

Remarque : S'il existe $(U, V) \in \mathbb{K}[X]^2$ tel que D = UP + VQ, on ne peut pas conclure que $D = P \wedge Q$ mais seulement que $P \wedge Q/D$.

Il faut que, de plus, D soit un polynôme unitaire divisant P et Q pour conclure que $D = P \wedge Q$.

Corollaire. Soit
$$(P_1, ..., P_r, Q) \in \mathbb{K}[X]^{r+1}$$
 si $\forall k \in [1, r], P_i \wedge Q = 1$, alors $\left(\prod_{k=1}^r P_i\right) \wedge Q = 1$.

Proposition. Soit a et b deux complexes distincts alors les polynômes X - a et X - b sont premiers entre eux. Plus généralement, pour tout couple d'entiers non nuls (n,m), les polynômes $(X-a)^n$ et $(X-b)^m$ sont premiers entre eux.

Proposition. (Théorème de Gauss) Soit $(P,Q,R) \in \mathbb{K}[X]^3$ alors

$$(P/QR \ et \ P \land Q = 1_{\mathbb{K}[X]}) \Rightarrow P/R$$

Corollaire. Soit $(P_1,...,P_r,Q) \in \mathbb{K}[X]^{r+1}$ tel que

$$\forall k \in [1, r], P_i/Q \ et \ \forall (k, k') \in [1, r]^2, \ k \neq k' \Rightarrow P_k \land P_{k'} = 1_{K[X]}$$

alors
$$\prod_{k=1}^{r} P_i/Q$$
.

Définition. Soit $(P_1, ..., P_r) \in \mathbb{K}[X]^r$. Les polynômes $P_1, ..., P_r$ sont dits premiers entre eux dans leur ensemble si $P_1 \wedge ... \wedge P_r = 1$ et ils sont dits premiers entre eux deux à deux si

$$\forall (k, k') \in [1, r]^2, \ k \neq k' \Rightarrow P_k \land P_{k'} = 1$$

Proposition. Si les polynômes $P_1, ..., P_r$ sont premiers entre eux deux à deux, alors ils sont premiers entre eux dans leur ensemble.

Proposition. (Théorème de Bezout) Soit $(P_1, ..., P_r) \in \mathbb{K}[X]^r$ alors les polynômes $P_1, ..., P_r$ sont premiers entre eux dans leur ensemble si et seulement si

$$\exists (U_1, ..., U_r) \in \mathbb{K}[X]^r : P_1U_1 + ... + P_rU_r = 1$$

4. Décomposition en irréductibles

Définition. Un polynôme P est dit irréductible si

- P n'est pas constant
- $-\forall (Q,R) \in \mathbb{K}[X]^2, P = QR \Rightarrow Q \text{ ou } R \text{ est constant}$

Autrement dit P n'est pas constant et ses seuls diviseurs sont les polynômes constants non nuls et les polynômes qui lui sont associés.

Proposition. Un polynôme de degré 1 est irréductible.

Théorème. (admis)

Soit P un polynôme non constant alors il existe $\lambda \in \mathbb{K}^*$, il existe des polynômes irréductibles unitaires distincts $(P_1,...,P_k)$ et des entiers naturels non nuls $(\alpha_1,...,\alpha_r)$ tels que

$$P = \lambda \prod_{k=1}^{r} P_i^{\alpha_i}$$

De plus cette décomposition est unique à l'ordre près.

III. Racines

1. Multiplicité

Définition. A tout polynôme
$$P = \sum_{k=0}^{n} a_k X^k$$
, on associe la fonction $\tilde{P}: x \mapsto \sum_{k=0}^{n} a_k x^k$

Proposition. L'application $\mathbb{K}[X] \to \mathcal{F}(\mathbb{K}, \mathbb{K})$, $P \mapsto \tilde{P}$ est un morphisme d'anneaux et une application linéaire.

Remarque : P et \tilde{P} sont distincts mais nous allons dans la suite justifier que l'on peut les identifier. (Cela découlera du caractère infini de \mathbb{K}).

Définition. Soit $P \in \mathbb{K}[X]$. On dit que $a \in \mathbb{K}$ est une racine de P si $\tilde{P}(a) = 0$.

Remarque : Par abus, le scalaire $\tilde{P}(a)$ sera noté P(a).

Remarque : On a également $P \circ Q = \tilde{P} \circ \tilde{Q}$.

Proposition. Soit $P \in \mathbb{K}[X]$ et $a \in \mathbb{K}$ alors a est une racine de P si et seulement si X - a divise P i.e. si et seulement s'il existe $Q \in \mathbb{K}[X]$ tel que P = (X - a)Q.

Proposition. Soit $P \in \mathbb{K}[X]$ et a_1, \ldots, a_r r éléments distincts de \mathbb{K} alors a_1, \ldots, a_r sont racines de P si et seulement si $(X - a_1)...(X - a_r)$ divise P i.e. si et seulement s'il existe $Q \in \mathbb{K}[X]$ tel que $P = (X - a_1)...(X - a_r)Q$.

Définition. Soit $P \in \mathbb{K}[X]$ non nul et $a \in \mathbb{K}$.

On appelle ordre de multiplicité de la racine a le plus grand entier m tel que $(X-a)^m$ divise P. Ainsi, a est une racine de P si et seulement si elle est de multiplicité non nulle.

Si l'ordre de multiplicité, m, de a est 1, on dit que a est une racine simple de P. Si m > 1 alors on dit que a est une racine multiple de P.

En particulier, si m = 2, on dit que a est racine double et si m = 3, on dit que a est racine triple.

Corollaire. Soit $P \in \mathbb{K}[X]$ et $a \in \mathbb{K}$.

Alors a est une racine de P de multiplicité m si, et seulement si,

$$\exists Q \in \mathbb{K}[X] : P = (X - a)^m Q \text{ et } Q(a) \neq 0$$

Proposition. Soit $P \in \mathbb{K}[X]$ et $a_1,...,a_r$ r éléments distincts de \mathbb{K} alors $a_1,...,a_r$ sont racines de P de multiplicités respectives supérieures à $m_1,...,m_r$ si et seulement si $(X-a_1)^{m_1}...(X-a_r)^{m_r}$ divise P.

Proposition. Soit $P \in \mathbb{K}[X]$ et $a_1,...,a_r$ r éléments distincts de \mathbb{K} alors $a_1,...,a_r$ sont racines de P de multiplicités respectives $m_1,...,m_r$ si et seulement s'il existe $Q \in \mathbb{K}[X]$ tel que

$$P = (X - a_1)^{m_1} ... (X - a_r)^{m_r} Q$$
 et $Q(a_1) \times ... \times Q(a_r) \neq 0$

2. Théorème d'interpolation de Lagrange

Corollaire. Tout polynôme de degré n a au plus n racines comptées avec leurs multiplicités.

Corollaire. Si P et Q sont deux polynômes de degré inférieur ou égal à n coïncidant en n+1 points, alors P=Q.

Corollaire. Tout polynôme ayant une infinité de racines est nul.

Corollaire. L'application $\Phi: \mathbb{K}[X] \to \mathcal{F}(\mathbb{K}, \mathbb{K}), P \mapsto \tilde{P}$ est injective.

Cela permet d'identifier un polynôme P et sa fonction polynomiale associée qui sera par la suite notée P. Cette identification est valable car on considère un corps \mathbb{K} égal à \mathbb{R} ou \mathbb{C} infini.

Proposition. Soit $a_1,...,a_r$ r éléments distincts de \mathbb{K} . Alors pour tout $i \in [1,r]$

$$\exists ! L_i \in \mathbb{K}_{r-1}[X] \ : \ \forall j \in \llbracket 1, r \rrbracket, \quad L_i(a_j) = \delta_{i,j} \quad et \ L_i \ est \ donn\'e \ par \ : L_i = \frac{\displaystyle\prod_{j \neq i} (X - a_j)}{\displaystyle\prod_{j \neq i} (a_i - a_j)}$$

Théorème. Soit $a_1,...,a_r$ r éléments distincts de \mathbb{K} et $b_1,...,b_r$ r éléments non forcément distincts de \mathbb{K} . Alors $\exists ! P \in \mathbb{K}_{r-1}[X] : \forall i \in [\![1,r]\!], \quad P(a_i) = b_i$.

Le polynôme P est donné par : $P = \sum_{j=1} b_j L_j$

3. Polynômes scindés

Définition. Soit $P \in \mathbb{K}[X]$. On dit que P est scindé dans \mathbb{K} lorsqu'il est un produit de polynômes à coefficients dans \mathbb{K} et de degré 1.

Proposition. Un polynôme P est scindé si et seulement s'il admet deg(P) racines dans \mathbb{K} comptées avec leurs multiplicités.

Exemple. Soit $a \in \mathbb{K}$ alors $(X - a)^k$ est scindé sur \mathbb{K} car a est une racine de multiplicité k. Le polynôme $X^2 + 1$ est scindé sur \mathbb{C} car possède deux racines simples i et -i mais n'est pas scindé sur \mathbb{R} .

Exemple. Le polynôme X^n-1 est scindé sur $\mathbb C$ car possède n racines simples distinctes :

$$X^{n} - 1 = \prod_{k=1}^{n} (X - e^{\frac{2ik\pi}{n}})$$

Lorsqu'un polynôme est scindé (ce qui est le cas dans \mathbb{C}), il existe des relations entre ces coefficients et ses racines.

Exemple. Si $P = aX^2 + bX + c = a(X - x_1)(X - x_2)$ avec $a \neq 0$ alors

$$\begin{cases}
-b/a = (x_1 + x_2) \\
c/a = x_1 x_2
\end{cases}$$

Exemple. Si $P = aX^3 + bX^2 + cX + d = a(X - x_1)(X - x_2)(X - x_3)$ avec $a \neq 0$ alors

$$\begin{cases}
-b/a = (x_1 + x_2 + x_3) \\
c/a = (x_1x_2 + x_1x_3 + x_2x_3) \\
-d/a = x_1x_2x_3
\end{cases}$$

Proposition. Soit $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{K}[X]$ de degré n (i.e. $a_n \neq 0$) scindé de racines $x_1, ..., x_r$

(non forcément distinctes) alors $P = a_n \prod_{i=1}^r (X - x_i)$ et

$$\frac{a_{n-1}}{a_n} = -\sum_{i=1}^r x_i \quad et \quad \frac{a_0}{a_n} = (-1)^n \prod_{i=1}^r x_i.$$

Remarque : Plus généralement, $\forall k \in \llbracket 0, n-1 \rrbracket$, $\frac{a_k}{a_n} = (-1)^{n-k} \sum_{I \in \mathcal{P}_k(\llbracket 1, n \rrbracket)} \prod_{i \in I} x_i$ où $\mathcal{P}_k\left(\llbracket 1, n \rrbracket\right)$

est l'ensemble des parties à k éléments de $[\![1,n]\!]$.

Exercice. Soit $\theta \in \mathbb{R}$. Montrer que le polynôme $(X+1)^n - e^{i\theta}$ est scindé sur \mathbb{C} . En déduire que

$$\forall \phi \in \mathbb{R}, \quad \prod_{k=0}^{n-1} \sin\left(\phi + \frac{k\pi}{n}\right) = \frac{\sin(n\phi)}{2^{n-1}}.$$

4. Théorème de d'Alembert-Gauss et décomposition

Théorème. Théorème de d'Alembert-Gauss (admis) :

Tout polynôme à coefficients dans \mathbb{C} non constant admet au moins une racine dans \mathbb{C} . On dit que \mathbb{C} est algébriquement clos.

Proposition. Tout polynôme non constant à coefficients complexes est scindé

Corollaire. Tout polynôme à coefficients complexes non constant de degré n a exactement n racines comptées avec leurs multiplicité.

Corollaire. Les irréductibles de $\mathbb{C}[X]$ sont exactement les polynômes de degré un.

Proposition. Soit P un polynôme non constant à coefficients dans \mathbb{C} alors il existe $\lambda \in \mathbb{C}^*$, des complexes distincts $(x_1,...,x_r)$ et des entiers naturels non nuls $(\alpha_1,...,\alpha_r)$ tels que

$$P = \lambda \prod_{k=1}^{r} (X - x_i)^{\alpha_i}$$

De plus cette décomposition est unique à l'ordre près.

Dans ce cas, λ est le coefficient dominant de P, les complexes $(x_1,...,x_r)$ sont les racines de P et sont de multiplicités respectives $(\alpha_1,...,\alpha_r)$.

Proposition. Soit $(x_1,...,x_r)$ des complexes distincts et $(\alpha_1,...,\alpha_r,\beta_1,...,\beta_r)$ des entiers naturels.

Les polynômes
$$P = \prod_{k=1}^{r} (X - x_i)^{\alpha_i}$$
 et $Q = \prod_{k=1}^{r} (X - x_i)^{\beta_i}$ vérifient

$$P \wedge Q = \prod_{k=1}^{r} (X - x_i)^{Min(\alpha_i, \beta_i)}$$
 et $P \vee Q = \prod_{k=1}^{r} (X - x_i)^{Max(\alpha_i, \beta_i)}$

Définition. Soit $P = \sum_{n \in \mathbb{N}} a_n X^n$ un polynôme complexe. On note $\bar{P} = \sum_{n \in \mathbb{N}} \bar{a}_n X^n$.

Proposition. Soient P et Q deux polynômes complexes et $\lambda \in \mathbb{C}$. On a $\overline{P + \lambda Q} = \overline{P} + \overline{\lambda Q}$, $\overline{PQ} = \overline{PQ}$, $\overline{P \circ Q} = \overline{P} \circ \overline{Q}$ et $\overline{P}(\overline{\lambda}) = \overline{P(\lambda)}$.

Remarque : Dans \mathbb{R} tous les polynômes ne sont pas scindés.

Par exemple, le polynôme $X^2 + 1$ est scindé dans \mathbb{C} mais pas dans \mathbb{R} .

Corollaire. Les irréductibles de $\mathbb{R}[X]$ sont exactement les polynômes de degré un et les polynômes de degré deux de discriminant strictement négatif.

Corollaire. Soit $P \in \mathbb{C}[X]$, $a \in \mathbb{C}$ une racine de P de multiplicité m alors \bar{a} est une racine de \bar{P} de multiplicité m.

Théorème. Décomposition des polynômes à coefficients réels :

Soit P un polynôme non constant à coefficients dans \mathbb{R} alors il existe $\lambda \in \mathbb{R}^*$, des réels distincts $(x_1,...,x_r)$, des réels $(a_1,...,a_p,b_1,...,b_p)$, et des entiers naturels non nuls $(\alpha_1,...,\alpha_r,\beta_1,...,\beta_p)$ tels que

$$P = \lambda \prod_{k=1}^{r} (X - x_i)^{\alpha_i} \prod_{k=1}^{p} (X^2 + a_k X + b_k)^{\beta_i}$$

avec $\forall k \in [1, p]$, $a_k^2 - 4b_k < 0$. De plus cette décomposition est unique à l'ordre près. Le réel λ est le coefficient dominant de P et les complexes $x_1, ..., x_r$ sont les racines réelles de P.

IV. Dérivation

Définition. On définit la dérivée du polynôme $P = \sum_{k=0}^{deg(P)} a_k X^k$ par $P' = \sum_{k=1}^{deg(P)} k a_k X^{k-1}$

On définit les dérivées successives de P par récurrence : pour tout entier n non nul la dérivée (n+1)-ème de P, notée $P^{(n+1)}$, est la dérivée de la dérivée n-ème de P, $P^{(n)}$.

En particulier, la dérivée seconde de P notée $P^{(2)}$ ou P" est égale à $\sum_{k=2}^{\deg(P)} k(k-1)a_k X^{k-2}$

Remarque : Il n'y a bien sûr, pas de différence entre la dérivée de la fonction polynomiale \tilde{P} et la fonction polynomiale associée au polynôme P' i.e. $\tilde{P}' = P'$.

Proposition. Soit $P \in \mathbb{K}[X]$. On a $P' = 0 \Leftrightarrow P \in \mathbb{K}_0[X]$.

Corollaire. Soit $(P,Q) \in \mathbb{K}[X]^2$. On a $P' = Q' \Leftrightarrow P - P(0) = Q - Q(0)$.

Proposition. Soit $P \in \mathbb{K}[X]$. On a $deg(P') \leq deg(P) - 1$ avec égalité si P n'est pas constant. De plus, si P est non constant, alors $dom(P') = dom(P) \times deg(P)$

Proposition. Soit $P \in \mathbb{K}[X]$ de degré d alors

$$- \forall k \in [0, d], \deg(P^{(k)}) = d - k \ et \ dom(P^{(k)}) = \frac{d!}{(d - k)!} domP$$

$$-\forall k \in \mathbb{N}, \ k > deg(P) \Rightarrow P^{(k)} = 0$$

Proposition. Soit $(P,Q) \in \mathbb{K}[X]^2$, $(k,n) \in \mathbb{N}$ et $(\lambda,\mu) \in \mathbb{K}^2$ alors

$$- (\lambda P + \mu Q)' = \lambda P' + \mu Q'$$

$$- (PQ)' = PQ' + P'Q$$

$$- (P^{k})' = kP'P^{k-1}$$

$$- (PQ)' = PQ' + P'Q$$

$$- (P^k)' = kP'P^{k-1}$$

— Formule de Leibniz:
$$(PQ)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} P^{(k)} Q^{(n-k)}$$

$$- (P \circ Q)' = Q' \times P' \circ Q$$

Proposition. Soit n un entier et $a \in \mathbb{K}$ alors

$$\forall k \in [0, n], \ ((X - a)^n)^{(k)}) = n(n - 1)...(n - k + 1)(X - a)^{n - k} = \frac{n!}{(n - k)!}(X - a)^{n - k}$$

Proposition. Formule de Taylor pour les polynômes :

Soit $P \in \mathbb{K}[X]$ et $a \in \mathbb{K}$ alors

$$P = \sum_{k=0}^{\deg(P)} \frac{P^{(k)}(a)}{k!} (X - a)^k$$

Corollaire. Soit $P \in \mathbb{K}[X]$, $a \in \mathbb{K}$ et $r \in \mathbb{N}$.

Le reste dans la division euclidienne de P par $(X-a)^r$ est $\sum_{i=1}^{r-1} \frac{P^{(i)}(a)}{i!} (X-a)^i$.

Corollaire. Soit $P \in \mathbb{K}[X]$, $a \in \mathbb{K}$ et k un entier non nul alors

$$(X-a)^k/P \Leftrightarrow P(a) = P'(a) = \dots = P^{(k-1)}(a) = 0$$

Ainsi, a est une racine de multiplicité supérieure à k si et seulement si elle est racine des poly $n\^{o}mes\ P,\ P',\dots\ et\ P^{(k-1)}.$

En particulier, a est une racine multiple si et seulement si elle est racine de P et P'.

Remarque: Ce résultat permer de démontrer très rapidement qu'un polynôme P est à racines simples : il suffit qu'il n'ait pas de racine en commun avec sa dérivée.

Par exemple, si on prend le polynôme $P = X^n - e^{i\theta}$, alors $P' = nX^{n-1}$. Comme P' n'a qu'une racine, 0, et comme 0 n'est pas racine de P, on peut en déduire que les racines de P sont simples sans les calculer (ce que l'on sait faire néanmoins).

Corollaire. Soit $P \in \mathbb{K}[X]$ et $a \in \mathbb{K}$. Il y a équivalence entre

- 1. a est une racine de P de multiplicité m
- 2. $P(a) = P'(a) = ... = P^{(m-1)}(a) = 0$ et $P^{(m)}(a) \neq 0$.

Corollaire. Soit $P \in \mathbb{K}[X]$ et $a \in \mathbb{K}$ une racine de P alors a est une racine de multiplicité m de P si et seulement si a est une racine de multiplicité m-1 de P'.

Proposition. Si $P \in \mathbb{R}[X]$ est un polynôme scindé simple (i.e. scindé à racines simples) de degré supérieur ou égal à deux, alors P' est aussi un polynôme scindé simple.

Remarque : Ce résultat n'est pas conservé dans $\mathbb{C}[X]:X^3-1$ est scindé simple dans \mathbb{C} mais $3X^2$ n'est pas scindé simple dans \mathbb{C} .

Proposition. Si $P \in \mathbb{R}[X]$ est un polynôme scindé de degré supérieur ou égal à deux, alors P' est aussi un polynôme scindé.

Remarque : Ce résultat est conservé dans $\mathbb{C}[X]$ mais sans intérêt car tout polynôme non constant à coefficients complexes est scindé