Departamento de Matemática Aplicada Universidad Rey Juan Carlos de Madrid Amplicación de Matemáticas Aplicadas Alexandru Iosif (Curso 2022 - 2023)

Tema 2 - Parte 1

- 1. Considere las líneas l_1 : 2x + y = 1 y l_2 : 3x y = 0 y calcule su intersección:
 - (a) Usando elementos geometría cartesiana en el plano euclídeo \mathbb{R}^2 .
 - (b) Usando elementos de geometría proyectiva en \mathbb{P}^2 .

Compruebe que los dos resultados coiciden e interprete, en el caso proyectivo, el resultado en \mathbb{R}^3 .

- 2. Intersecte las líneas paralelas l_1 : x + y = 0 y l_2 : x + y = 1 en \mathbb{P}^2 . Interprete el resultado en \mathbb{R}^3 .
- 3. Calcule la línea que pasa por los puntos
 - (a) $(1,2)^T$, $(2,1)^T \in \mathbb{R}^2$.
 - (b) $(1,1,0)^T$, $(2,2,1)^T \in \mathbb{P}^2$.
- 4. (a) Demuestre que el punto de intersección de las líneas l y l' es $l \times l'$.
 - (b) Utilice el resultado anterior y el principio de la dualidad para demostrar que la línea que pasa a través de los puntos x y x' es $x \times x'$.
- 5. Considere la ecuación de circunferencia de radio unidad $x^2 + y^2 = 1$. Transfórmela en una ecuación homogénea, haciendo el cambio de variables $x = x_1/x_3$ e $y = x_2/x_3$. Es posible deshomogeneizar la nueva ecuación para obtener la ecuación de una hipérbole en el plano euclídeo?
- 6. Calcule la dual de la cónica $x^2 y^2 = 1$.

7. Sea

$$H = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- (a) Demuestre que que H es la matriz de cierta transformación proyectiva a la que denotamos por h.
- (b) Considere la línea l: 2x+y=3. Escoja un punto cualquiera, $x\in l$. Calcule h(x) y h(l).
- (c) Demuestre que $h(x) \in h(l)$.
- (d) Sea C la circunferencia unidad centrada en el origen de coordenadas. Calcule h(C).