(L2 info - 2021 54) Gpe 1 - TD de probas stats -D 12 séances sur 6 semaines -> Discord Zoon

* IE & (présentiel): El mans

-s Email: imane arijuj @ univ-lico.fr IMANE AKTOUT

- P ZIE: XIE1 (sur mooder)

TD1- Sommer, séries et intégrales

Exo 1:

* On pose
$$P_{m} = \sum_{k=0}^{\infty} R^{k} = R^{0} + R^{3} + R^{2} + \dots + R^{m}$$
 $-p \ Si \ R = 1$, $P_{m} = \sum_{k=0}^{\infty} 1^{k} = \sum_{k=0}^{\infty} 1 - 2 + 1 + \dots + 1 = m + 1$
 $-p \ Si \ R \neq 1$, colcular $(2-R)P_{m}$ (axua)

Finaloment, si
$$R \neq \Delta$$
, on a $P = \frac{\Delta - R^{m+2}}{\Delta - R}$

-P Si R=1,
$$Q_{m} = \sum_{k=0}^{\infty} k \times k^{k} = \sum_{k=0}^{\infty} R = S_{m} = \frac{m(m+1)}{m}$$

- Sinon, 2 méthodes:

Méthode 1: on pose
$$KR = \sum_{k=0}^{\infty} R^k = \sum_{k=0}^{\infty} \frac{1-R^{k+2}}{1-R}$$

$$= 1+R+R^2+...+R^{\infty} (polynome)$$

best dérivable sur $TR \setminus \{1\}$ (pdyrone) $P'(R) = \emptyset + \Delta + 2R + 3R^2 + ... + nR^{n-2}$ $= \sum_{k=1}^{\infty} RR^{2-\Delta}$

R = 1 R = 1 R = 1 R = 1 R = 2 R = 0 R = 0 R = 0 R = 0 R = 0 R = 0 R = 0

dérivons
$$f(R) = \frac{1-R^{12}}{1-R}$$

$$P(R) = \frac{2 - R^{m+2}}{1 - R}$$

$$\begin{cases} CR = \frac{1-R}{1-R} \\ CR = \frac{(n+2)R^{n}(2-R) - (2-R^{n+2}) \times (-1)}{(2-R)^{2}} \end{cases}$$

= -MRM-RM+MRN+1+ RM+1+ 1 - RM+1

(2-R)2

On a $Q_m = R_0^{1}(R) = \frac{mR^{m+2} - (m+1)R^{m+1} + R}{(1-R)^2}$

Méthode 2: $Q_{m} = \sum_{k=0}^{m} k n^{k} = \sum_{k=1}^{m} k n^{k}$ $= R \sum_{k=2}^{\infty} k R^{k-1} = R \sum_{k=2}^{\infty} \left(R^{-1} + (R-1) R^{-1} \right)$ $= R \sum_{k=2}^{\infty} R^{-k} + R \sum_{k=2}^{\infty} (R-1) R^{k-2}$ = Pm - R° + RQm-1 = Pm - 1 + RQm - mm+ 1 donc $(1-R)Q_{m} = P_{m} - 1 - mR^{m+2}$ $Q_{m} = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} - 2 - \kappa \kappa^{m+2} \right) \quad \text{and} \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \text{and} \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \text{and} \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \text{and} \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \text{and} \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \text{and} \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \text{and} \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \text{and} \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \text{and} \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \text{and} \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \text{and} \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \text{and} \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \text{and} \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \Delta = \frac{1}{2-\kappa} \left(\frac{2-\kappa^{m+2}}{1-\kappa} - 2 - \kappa \kappa^{m+2} \right) \quad \Delta =$

b) Pour
$$|R| < 1$$

* $\sum_{k=0}^{+\infty} R^k$, or a $P_n = \sum_{k=0}^{\infty} R^k = \frac{2 - e^{n+2}}{2 - R}$

Def: Sak $(u_R)_{R>0}$ une suite de no réals (on comploxes) On rose $S_m = u_0 + u_1 + ... + u_m = \sum_{R=0}^{\infty} u_R$ la suite $(S_m)_{R>0}$ s'appelle le série de terme général u_R .

She suite $(S_n)_{n\geqslant 0}$ admet une limite line dono \mathbb{R} (or dono \mathbb{C}), or note $S = \sum_{k=0}^{+\infty} u_k = \lim_{n \to +\infty} S_n$

Si elle existe, colculors lim P_m où $P_n = \frac{1-m^{-12}}{1-m}$ On a lim $p^{m-12} = 0$ donc lim $P_n = \frac{1-m^{-12}}{1-m}$ où $|R| \le 1$ i.e. (id est) $-1 \le R \le 1$

Ainsi
$$P:=\frac{1}{2}$$
 $R^R = lim P_m = \frac{1}{1-R}$

$$\times \sum_{R=0}^{+\infty} RR^R \quad \text{of } Q_m = \sum_{R=0}^{m} RR^R = \frac{m^2 2}{(1-R)^2} = \frac{1}{(1-R)^2}$$

Posono Q:= Z RR = Z RR = RZ RR-2

= $R = \frac{1}{R} \left(R^{k-2} + (R-1)R^{k} \right) = \frac{1}{R} R + R = \frac{1}{R} R + R = \frac{1}{R} R = \frac$

Dac (1-e)Q = P-1 = 1-1 - 1 = R pair /2/<2

Comme lim
$$R^{n+2} = \lim_{m \to +\infty} R^{m+2} = 0$$
 con $|R| < 2$

mais $\lim_{m \to +\infty} n = \lim_{m \to +\infty} (m+2) = +\infty$

Airis $Q = \frac{1}{(2-r)^{2}}$

en a des formes indéternimées

Exo2:
a)
$$a \le b \in \mathbb{R}$$
, $X \in \mathbb{R}^+$, $m \in \mathbb{N}$, $m = 0, 1, 2$

$$\times \int_{a}^{b} x^{m} dx = \left[\frac{x^{m+2}}{m+2} \right]_{a, x = a}^{b, x = b} = \frac{b^{m+2}}{m+2} - \frac{a^{m+2}}{m+2}$$
vaniable

$$x = 0$$
, $\int_{0}^{x} x^{0} e^{-x} dx = \int_{0}^{x} e^{-x} dx = can x^{0} = 1$, $\forall x \in \mathbb{R}$

$$= \left[-e^{-x} \right]_{x=0}^{x \in X} = -e^{-x} + e^{-0} = 1 - e^{-x}$$

$$= \frac{1}{2} - e^{-x} \int_{x=0}^{x=0} = -e^{-x} + e^{-x} = 4 - e^{-x}$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

* m=1, sac de prinitire directe

$$= \frac{1}{2} \int_{0}^{2\pi} x e^{-x} dx$$
 Pas de printère directe

IPP: $u = x$ $v' = e^{-x}$

IPP: M=2 b = - e ~ ×

Jus' = [us] - Ju' 5