Topologia Geral - P2

Nome of	completo:	

- 1. Mostre que se cada filtro convergente em X tem um limite único, então X é Hausdorff.
 - Prove que X é um espaço T_2 se, e somente se, para cada $\alpha \in X$ tem-se que $\bigcap \{\bar{U}: U \in U_\alpha\} = \{\alpha\}.$
- Considere o subespaço X = (ℝ × {0}) ∪ (ℝ × {1}) de ℝ² com a topologia usual. Defina uma relação de equivalência em X declarando que (x,0) ~ (x,1) se x ≠ 0. O espaço quociente Y = X/ ~ obtido dessa forma é chamado de reta com duas origens. Mostre que Y não é Hausdorff.
 - Mostre que se todo subespaço aberto de um espaço X é Lindelöf, então todo subespaço de X é Lindelöf.
- 3. Mostre que o Teorema de Tietze implica o Lema de Urysohn, enunciando ambos
 - Mostre que subespaços fechados de um espaço normal são normais.
- 4. Giuliano deu a demonstração abaixo para o exercício: Mostre que o produto cartesiano de um espaço Lindelöf X por um espaço compacto Y é Lindelöf.

Seja $\mathcal G$ uma cobertura de $X\times Y$ por abertos. Para cada $y\in Y$, o espaço $X\times \{y\}$ é compacto, logo eu consigo uma subcobertura finita $\mathcal G_y=\{G_{y,1},G_{y,2},\ldots,G_{y,m_y}\}\subset \mathcal G$ de $X\times \{y\}$.

Como as imagens dos elementos de $\bigcup_{y\in Y} \mathcal{G}_y$ pela projeção $\pi_2: X\times Y\to Y$ formam uma cobertura de Y, este, por ser Lindelöf, poderá ser coberto por abertos $\{\pi_2(G): G\in \mathcal{G}_{y_i}, j\in \mathbb{N}\}$.

Dessa forma, teremos uma subcobertura enumerável $\{G:G\in\mathcal{G}_{y_j},j\in\mathbb{N}\}\subset\mathcal{G}$ de $X\times Y$, provando o resultado.

Detecte o erro desta demonstração e justifique.

- Suponha que $p: X \to Y$ é uma aplicação contínua, fechada, sobrejetiva e, para cada $y \in Y$, tem-se que $p^{-1}(\{y\})$ é compacto. Mostre que, nessas condições, se X é Hausdorff, então Y é Hausdorff.
- 5. (1 point) Sejam X um espaço completamente regular, $A \subset X$ compacto e $B \subset X$ fechado, disjuntos. Mostre que existe uma função contínua $f: X \to [0,1]$ tal que $f(A) = \{0\}$ e $f(B) = \{1\}$.