Теория и реализация языков программирования. Задание 9: преобразование контекстно-свободных языков

Сергей Володин, 272 гр.

задано 2013.10.23

Упражнение 1

Упражнение 2

Упражнение 3

Упражнение 4

Задача 1

 $L \stackrel{\text{def}}{=} \{xcy | x, y \in \{a, b\}^*, x \neq y^R\} \subset \Sigma \stackrel{\text{def}}{=} \{a, b, c\}.$

1. Определим МП-автомат $\mathcal{A} \stackrel{\text{def}}{=} (\Sigma, \Gamma, Q, q_0, Z, \delta, F)$, допускающий по принимающему состоянию:

- 1. $\Gamma \stackrel{\text{def}}{=} \{a, b, Z\}$
- 2. $Q \stackrel{\text{def}}{=} \{q_0, q_1, q_2, q_3, q_4\}$
- 3. δ изображена справа
- 4. $F \stackrel{\text{def}}{=} \{q_2, q_4\}$
- 2. \mathcal{A} детерминированный, так как из каждой конфигурации (q, w, γ) переход определен однозначно. arepsilon-переход $q_1 \xrightarrow{arepsilon, Z/Z} q_3$ — единственный переход из q_1 при Z на верхушке стека.
- 3. Докажем, что $L \subseteq L(\mathcal{A})$:
 - 1. Пусть $w \in \{a,b\}^*$. Докажем, что $(q_0,w,Z) \vdash^* (q_0,\varepsilon,w^RZ)$ по индукции по |w|: $P(n) \stackrel{\text{def}}{=} \left[\forall w \in \{a, b\}^* \colon |w| = n \hookrightarrow (q_0, w, Z) \vdash^* (q_0, \varepsilon, w^R Z) \right]$
 - i. $n=0 \Rightarrow |w|=0 \Rightarrow w=\varepsilon$. Тогда $w^R \equiv \varepsilon$, и $(q_0,w,Z) \equiv (q_0,\varepsilon,Z) \equiv (q_0,\varepsilon,w^RZ) \Rightarrow P(0)$.
 - ії. Фиксируем $n \geqslant 0$, пусть P(n). Пусть $w \in \{a,b\}^*, |w| = n+1$. Тогда $w = w_0 \sigma, |w_0| = n$. $P(n) \Rightarrow (q_0, w_0, Z) \vdash^*$ $(q_0, \varepsilon, w_0^R Z)$. Тогда $(q_0, w, \overline{Z}) \equiv (q_0, w_0 \sigma, Z) \vdash^* (q_0, \sigma, w_0^R Z)$. \Leftrightarrow переходы из $(q_0, \sigma, w_0^R Z)$. На верхушке стека $\gamma \in \Gamma$, входной символ $\sigma \in \{a, b\}$. Во всех случаях он будет добавлен
 - в стек (см. определение δ), значит, $(q_0, \sigma, w_0^R Z) \vdash (q_0, \varepsilon, \sigma w_0^R Z) \equiv (q_0, \varepsilon, w^R Z) \Rightarrow P(n+1)$
 - 2. Из определения $\delta (q_0, cw, \gamma) \vdash^* (q_1, w, \gamma), |\gamma| > 0.$
 - 3. Докажем $(q_1,x,xZ) \vdash^* (q_1,\varepsilon,Z)$ по индукции по |x|: $P(n) \stackrel{\text{def}}{=} \left[\forall w \in \{a,b\}^* \colon |w| = n \hookrightarrow (q_1,x,xZ) \vdash^* (q_1,\varepsilon,Z) \right]$
 - і. $n=0 \Rightarrow |x|=0 \Rightarrow x=\varepsilon$. Тогда $(q_1,x,xZ)\equiv (q_1,\varepsilon,Z)\Rightarrow P(0)$
 - іі. Фиксируем $n\geqslant 0$. Пусть P(n). Пусть $x\in\{a,b\}^*: |x|=n+1\Rightarrow x=x_0\sigma, |x_0|=n\stackrel{P(n)}{\Rightarrow}(q_1,x_0,x_0Z)\vdash^*(q_1,\varepsilon,Z)$. Тогда $(q_1,x_0Z)\equiv (q_1,x_0\sigma,x_0Z)\vdash^*(q_1,\sigma,\sigma Z)$. Входной символ совпадает с символом на верхушке стека, из определения δ получаем, что символ будет удален из стека: $(q_1, \sigma, \sigma Z) \vdash (q_1, \varepsilon, Z) \Rightarrow P(n)$.
 - 4. Из определения δ имеем $(q_1, \sigma_1 x, \sigma_2 \gamma) \vdash (q_2, x, \sigma_2 \gamma)$ при $\sigma_1 \neq \sigma_2, \sigma_1, \sigma_2 \in \{a, b\}^*$.
 - 5. Из определения δ имеем $(q_2, x, \gamma) \vdash^* (q_2, \varepsilon, \gamma), x \in \{a, b\}^*$ (доказывается очевидно по индукции).
 - 6. Из определения δ имеем $(q_1, x, Z) \vdash (q_3, x, Z)$
 - 7. Из определения δ имеем $(q_3, \sigma x, Z) \vdash (q_4, x, Z), \sigma \in \{a, b\}.$

- 8. Из определения δ имеем $(q_4, x, Z) \vdash^* (q_4, \varepsilon, Z), x \in \{a, b\}^*$ (доказывается очевидно по индукции).
- 9. Пусть $w \in L \Rightarrow w = xcy, x \neq y^R; x, y \in \{a, b\}^*. x \neq y^R \Leftrightarrow x^R \neq y$. Рассмотрим случаи:
 - і. Выделим максимальную по длине общую часть w длины i у слов x^R и y: $x^R = wx_1, y = wy_1, x_1 \neq y_1$. Тогда $x=x_1^Rw^R, w=xcy=x_1^Rw^Rcwy_1$. Цепочка конфигураций:

$$(q_0, w, Z) \equiv (q_0, x_1^R w^R cwy_1, Z) \stackrel{31}{\vdash^*} (q_0, cwy_1, wx_1 Z) \stackrel{32}{\vdash} (q_1, wy_1, wx_1 Z) \stackrel{33}{\vdash^*} (q_1, y_1, x_1 Z)$$

- $(q_0,w,Z)\equiv (q_0,x_1^Rw^Rcwy_1,Z)\stackrel{31}{\vdash^*}(q_0,cwy_1,wx_1Z)\stackrel{32}{\vdash}(q_1,wy_1,wx_1Z)\stackrel{33}{\vdash^*}(q_1,y_1,x_1Z).$ А. $|x_1|>0,|y_1|>0,\;x_1[1]\neq y_1[1].$ Обозначим $y_1=y^1...y^l,\;\forall i\in \overline{1,l}\hookrightarrow y^i\in \{a,b\}^*.$ Тогда $(q_1,y_1,x_1Z)\equiv x_1^l$ $(q_1, y^1...y^l, x_1Z) \stackrel{34}{\vdash} (q_2, y^2...y^l, x_1Z) \stackrel{35}{\vdash^*} (q_2, \varepsilon, x_1Z). \ q_2 \in F \Rightarrow w \in L(\mathcal{A}).$
- $\text{B. } |x_1| \ = \ 0, |y_1| \ > \ 0. \ \ y_1 \ = \ \sigma y_0, \ \sigma \ \in \ \{a,b\}. \ \ (q_1,y_1,x_1Z) \ \equiv \ (q_1,\sigma y_0,Z) \ \stackrel{36}{\vdash} \ \ (q_3,\sigma y_0,Z) \ \stackrel{37}{\vdash} \ \ (q_4,y_0,Z) \ \stackrel{38}{\vdash} \ \ (q_4,\varepsilon,Z).$ $q_4 \in F \Rightarrow w \in L(\mathcal{A}).$
- C. $|x_1| > 0, |y_1| = 0$. Тогда $(q_1, y_1, x_1 Z) \equiv (q_1, \varepsilon, x_1 Z)$.

df

Задача 2

Задача 3

 $\Sigma \stackrel{\text{def}}{=} \{a, b\}, \ \Gamma \stackrel{\text{def}}{=} (N, \Sigma, P, S). \ N \stackrel{\text{def}}{=} \{A, B, C, D, E, F, G\} \ P:$

$$S \to A|B|C|E|AG$$

 $A \to C|aABC|\varepsilon$

 $B \rightarrow bABa|aCbDaGb|\varepsilon$

 $C \to BaAbC|aGD|\varepsilon$

 $F \rightarrow aBaaCbA|aGE$

 $E \to A$

- 1. Удалим бесплодные символы (для упрощения):
 - (a) $V_0 \stackrel{\text{def}}{=} \{a, b\}$
 - (b) $V_1 = V_0 \cup \{A, B, C\} = \{a, b, A, B, C\}$
 - (c) $V_2 = V_1 \cup \{S, F, E\} = \{a, b, S, A, B, C, F, E\}$
 - (d) $V_3 = V_2 \cup \emptyset$

Тогда $V_3 \setminus \Sigma = \{S, A, B, C, F, E\}$. Удалим нетерминалы $N \setminus V_3 = \{D, G\}$ и правила, их содержащие: $N' \stackrel{\text{def}}{=} N \setminus V_3 = \{D, G\}$ ${S, A, B, C, F, E}, P'$:

$$S \to A|B|C|E|\mathcal{AG}$$

 $A \to C|aABC|\varepsilon$

 $B \to bABa|aCbDaGb|\varepsilon$

 $C \to BaAbC|aGD|\varepsilon$

 $F \rightarrow aBaaCbA|aGE$

 $E \to A$

- 2. Удалим недостижимые символы (для упрощения):
 - (a) $V_0 \stackrel{\text{def}}{=} \{S\}$
 - (b) $V_1 = V_0 \cup \{A, B, C, E\}$
 - (c) $V_2 = V_1 \cup \varnothing$

 $N'' \stackrel{\text{def}}{=} \{A, B, C, E, S\}, P''$:

$$S \to A|B|C|E|\mathcal{AG}$$

 $A \to C|aABC|\varepsilon$ $B \rightarrow bABa|aCbDaGb|\varepsilon$ $C \to BaAbC|aGD|\varepsilon$

 $F \rightarrow aBaaCbAaGE$

 $E \to A$

1,2. Имеем P'':

$$S \to A|B|C|E$$

$$A \to C|aABC|\varepsilon$$

 $B \to bABa|\varepsilon$

 $C \to BaAbC|\varepsilon$

 $E \to A$

- 3. Удалим ε -правила:
 - (a) $A, B, C \varepsilon$ -порождающие.
 - (b) $S, E \varepsilon$ -порождающие $(S \to A, E \to A)$

Перепишем правила, содержащие ε -порождающие нетерминалы справа (2^k правил для каждого правила, содержащего $k \varepsilon$ -порождающих нетерминалов). P''':

$$S \to A|B|C|E$$

 $A \rightarrow C|a|aC|aB|aBC|aA|aAC|aAB|aABC$

 $B \rightarrow ba|bBa|bAa|bABa$

 $C \rightarrow ab|abC|aAb|aAbC|Bab|BabC|BaAbC$

 $E \to A$

Грамматика с такими правилами порождает язык $L(\Gamma) \setminus \{\varepsilon\}$.

- 4. Найдем цепные пары (множества пар соответствуют добавлениям на шагах алгоритма):
 - (a) (S,S), (A,A), (B,B), (C,C), (E,E)
 - (b) (S, A), (S, B), (S, C), (S, E); (A, C); (E, A)
 - (c) (S,C); (S,A); (E,C)
- 5. Выпишем новое множество правил P'''':

Цепная пара	Правила
(S,S)	Ø
(A,A)	$A \rightarrow a aC aB aBC aA aAC aAB aABC$
(B,B)	$B \rightarrow ba bBa bAa bABa$
(C,C)	$C \rightarrow ab abC aAb aAbC Bab BabC BaAbC$
(E,E)	Ø
(S,A)	$S \rightarrow a aC aB aBC aA aAC aAB aABC$
(S,B)	$S \rightarrow ba bBa bAa bABa$
(S,C)	$S \rightarrow ab abC aAb aAbC Bab BabC BaAbC$
(S,E)	Ø
(A,C)	$A \rightarrow ab abC aAb aAbC Bab BabC BaAbC$
(E,A)	$E \rightarrow a aC aB aBC aA aAC aAB aABC$
(S,C)	$S \rightarrow ab abC aAb aAbC Bab BabC BaAbC$
(E,C)	$E \rightarrow ab abC aAb aAbC Bab BabC BaAbC$

- 6. Нетерминалы A,B,C,E,S не являются бесплодными: $A \to a, B \to ba, C \to ab, E \to a, S \to ab.$
- 7. Удалим недостижимые:
 - (a) $V_0 \stackrel{\text{def}}{=} \{S\}$
 - (b) $V_1 \stackrel{\text{def}}{=} \{S, A, B, C\}$
 - (c) $V_2 = V_1$

Удаляем $E. P^{(5)}$:

- $B \rightarrow ba|bBa|bAa|bABa$
- $C \rightarrow ab|abC|aAb|aAbC|Bab|BabC|BaAbC$
- 8. Приведем к нормальной форме Хомского. Добавим нетерминалы $A', B', A' \to a, B' \to b$. Заменим в правилах a на A', b на B'. Подчеркнем слова из нетерминалов длины 2 в правых частях правил, которые заменим на новые нетерминалы:

 $A \rightarrow a|A'C|A'B|\underline{A'BC}|A'A|\underline{A'AC}|\underline{A'AB}|\underline{A'A}\underline{BC}|A'B'|\underline{A'B'C}|\underline{A'AB'}|\underline{A'A}\underline{B'C}|\underline{BA'}\underline{B'C}|\underline{BA'}\underline{B'C}|\underline{BA'}\underline{B'C}|\underline{BA'}\underline{AB'}\underline{C'}|\underline{BA'}\underline{AB'}\underline{C'}|\underline{BA'}\underline{AB'}\underline{C'}|\underline{BA'}\underline{AB'}\underline{C'}|\underline{A'AB'}|\underline{A'B'}\underline{C'}|\underline{A'AB'}|\underline{A'B'}\underline{C'}|\underline{A'AB'}|\underline{A'B'}\underline{C'}|\underline{A'AB'}|\underline{A'B'}\underline{C'}|\underline{A'AB'}|\underline{A'B'}\underline{C'}|\underline{A'AB'}|\underline{A'B'}\underline{C'}|\underline{A'AB'}|\underline{A'B'}|\underline{C'}|\underline{A'AB'}|\underline{A'B'}|\underline{C'}|\underline{A'AB'}|\underline{A'B'}|\underline{C'$

- $B \rightarrow B'A'|\underline{B'BA'}|\underline{B'AA'}|\underline{B'A}BA'$
- $C \rightarrow A'B'|\underline{A'B'C}|\underline{A'AB'}|\underline{A'A}\underline{B'C}|\underline{BA'}\underline{B'}|\underline{BA'}\underline{B'C}|\underline{BA'}\underline{AB'}\underline{C}$
- $S \to a|A'C|A'B|\underline{A'B}C|A'A|\underline{A'A}C|\underline{A'A}B|\underline{A'A}\underline{BC}|B'A'|\underline{B'B}A'$
- $S \rightarrow B'AA'|B'ABA'|A'B'|A'B'C|A'AB'|A'AB'C|BA'B'|BA'B'C|BA'AB'C$
- $A' \to a$
- $B' \to b$

Заменим подчеркнутые слова на новые нетерминалы:

- $A \to a|A'C|A'B|X_0C|A'A|X_1C|X_1B|X_1X_2|A'B'|X_3C|X_1B'|X_1X_4|X_5B'|X_5X_4|X_9C$
- $B \to B'A'|X_7A'|X_8A'|X_8X_5$
- $C \to A'B'|X_3C|X_1B'|X_1X_4|X_5B'|X_5X_4|X_9C$
- $S \to a|A'C|A'B|X_0C|A'A|X_1C|X_1B|X_1X_2|B'A'|X_7A'|X_8A'|X_8X_5|A'B'|X_3C|X_1B'|X_1X_4|X_5B'|X_5X_4|X_9C|X_1B'|X_1X_2|X_1B'|X_1X_1A'|X_1X_1B'|X_1X_1X_2|X_1B'|X_1X_1A'|X_1A'|X_1A'|X_1A'|X_1A'|X_1A'|X_1A'|X_1A'|X_1A'|X_1A'|X_1A'|X_1A'|X_1A'|X_1$
- $A' \to a$
- $B' \to b$
- $X_0 \to A'B$
- $X_1 \to A'A$
- $X_2 \to BC$
- $X_3 \to A'B'$
- $X_4 \to B'C$
- $X_5 \to BA'$
- $X_6 \to AB'$
- $X_7 \to B'B$
- $X_8 \to B'A$
- $X_9 \rightarrow X_5 X_6$

Задача 4

Задача 5

 $\Sigma_2 \stackrel{\text{def}}{=} \{[1,[2], \overline{\Sigma}_2 \stackrel{\text{def}}{=} \{]_1,]_2\}.$ $D_2 \stackrel{\text{def}}{=}$ язык ПСП над $\Sigma \stackrel{\text{def}}{=} \Sigma_2 \cup \overline{\Sigma}_2.$ $\Delta \stackrel{\text{def}}{=} \{a,b\}.$ $\varphi \colon \Sigma^* \longrightarrow \Delta^*, \ \varphi([1] \stackrel{\text{def}}{=} a, \ \varphi([2] \stackrel{\text{def}}{=} b, \ \varphi([1]) \stackrel{\text{def}}{=} b, \ \varphi([1]) \stackrel{\text{def}}{=} b, \ \varphi([2] \stackrel{\text{def}}{=} a.$ Доопределим φ до морфизма (см. решение упр. 2 из задания 3). $L \stackrel{\text{def}}{=} \varphi(D_2 \cap \Sigma^*) \equiv \varphi(D_2).$

- 1. Докажем, что $L\subseteq L'$. Пусть $\underline{y\in L}\equiv \varphi(D_2)$. Тогда $\exists x\in D_2\colon y=\varphi(x)$. $x-\Pi C\Pi\Rightarrow \forall i\in\overline{1,2}\hookrightarrow |x|_{[i}=|x|_{]i}$. Сложим равенства, получим: $|x|_{[1}+|x|_{]2}=|x|_{]1}+|x|_{[2}$. Пусть $x=x_1...x_m,\ \forall i\in\overline{1,m}\hookrightarrow x_i\in\Sigma$. Тогда $y=\varphi(x)=\varphi(x_1)...\varphi(x_m)=y_1...y_m,\ \forall i\in\overline{1,m}\hookrightarrow y_i=\varphi(x_i)\in\Delta$. Но из определения φ имеем $[1,1]_2\xrightarrow{\varphi}a$; $[1,1]_2\xrightarrow{\varphi}b$. Тогда $[1,1]_3=|x|_{[1}+|x|_{]2}\equiv |x|_{[1}+|x|_{[2}=|y|_b\Rightarrow y\in L']$
- 2. Докажем, что $L'\subseteq L$ индукцией по длине $y\in L'\colon P(n)\stackrel{\mathrm{def}}{=} \left[\forall y\in L'\colon |y|\leqslant n\hookrightarrow y\in L\right].$ Заметим, что $y\in L\Leftrightarrow y\in \varphi(D_2)\Leftrightarrow \varphi^{-1}(y)\cap D_2\neq\varnothing$. Поэтому будем искать прообраз слова y, принадлежащий D_2 .
 - (a) $n=0 \Rightarrow |y|=0 \Rightarrow y=\varepsilon \in L'$. Пусть $x\stackrel{\text{def}}{=} \varepsilon \in D_2$ (так как пустое слово ПСП). Тогда $y=\varepsilon \equiv \varphi(x) \Rightarrow y \in \varphi(D_2) \equiv L \Rightarrow P(0)$
 - (b) Фиксируем n > 0. Пусть P(n-1). Пусть $y \in L'$: |y| = n. Поскольку |y| = n > 0, и |y| четно (см. решение задачи 3 из задания 6), то $|y| \geqslant 2$. Рассмотрим первый и последний символы σ_l и σ_r слова $y \equiv \sigma_l y_1 \sigma_r$:
 - і. $\sigma_l = a, \, \sigma_r = b$. Тогда $y = ay_1b$. $|y_1| = n 2 \leqslant n 1 \overset{P(n-1)}{\Rightarrow} \exists x_1 \in D_2 \colon \varphi(x_1) = y_1$. Определим $x = [{}_1x_1]_1$. $x_1 \in D_2 \Rightarrow x_1 \Pi C \Pi \Rightarrow x \Pi C \Pi$, так как получен из $\Pi C \Pi$ добавленим скобок типа 1 слева и справа $\Rightarrow x \in D_2$. Но $\varphi(x) \equiv \varphi([{}_1x_1]_1) = \varphi([{}_1)\varphi(x_1)\varphi(]_1) = ay_1b \equiv y$. Получаем $\varphi^{-1}(y) \cap D_2 \ni x \Rightarrow \varphi^{-1}(y) \cap D_2 \neq \varnothing$.
 - іі. $\sigma_l = b, \, \sigma_r = b$. Тогда $y = by_1a$. $|y_1| = n 2 \leqslant n 1 \stackrel{P(n-1)}{\Rightarrow} \exists x_1 \in D_2 \colon \varphi(x_1) = y_1$. Определим $x = [{}_2x_1]_2$. $x_1 \in D_2 \Rightarrow x_1 \Pi C \Pi \Rightarrow x \Pi C \Pi$, так как получен из $\Pi C \Pi$ добавленим скобок типа 2 слева и справа $\Rightarrow x \in D_2$. Но $\varphi(x) \equiv \varphi([{}_2x_1]_2) = \varphi([{}_2)\varphi(x_1)\varphi([{}_2) = by_1a \equiv y$. Получаем $\varphi^{-1}(y) \cap D_2 \ni x \Rightarrow \varphi^{-1}(y) \cap D_2 \neq \varnothing$.
 - ііі. $\sigma_l = \sigma_r$. Тогда $y = \sigma y_1 \sigma \in L'$. Воспользуемся утверждением в рамочке из решения задачи 3 задания 6:

$$y = \sigma y_1 \sigma \in L' \Rightarrow \exists y_l, y_r \colon y = y_l y_r, |y_l|, |y_r| \in \overline{1, |y| - 2}, y_l, y_r \in L'$$

Ho $|y_l|, |y_r| \leqslant |y| - 2 = n - 2 \leqslant n - 1 \stackrel{P(n-1)}{\Rightarrow} \exists x_l, x_r \in D_2 \colon y_l = \varphi(x_l), y_r = \varphi(x_r).$ Определим $x \stackrel{\text{def}}{=} x_l x_r$. Тогда $x \in D_2$ (конкатенация $\Pi \subset \Pi - \Pi \subset \Pi$), и $\varphi(x) = \varphi(x_l x_r) = \varphi(x_l) \varphi(x_r) = y_l y_r = y \Rightarrow \varphi^{-1}(y) \cap D_2 \ni x \Rightarrow \varphi^{-1}(y) \cap D_2 \neq \varnothing$

Задача 6