Randomness e Pseudorandomness nella Computazione

Luca Trevisan
Università Commerciale *Luigi Bocconi*

Informatica teorica

- Nuove tecniche per progettare algoritmi dimostrare correttezza, analizzare efficienza
- Studiare *limitazioni* degli algoritmi complessità computazionale, crittografia
- Applicare modelli algoritmici in altre scienze algorithmic game theory, sistemi complessi, neuroscienze, evoluzione
- Applicare techniche matematica dell'informatica alla matematica pura

Randomness nella computazione?

• Trova percorso più breve che passi per tutti i siti quadrati

- Trova il mediano nella lista 45,21,16,76,34,97,42,171,32
- 23555091804486281357 è un numero primo?

$$\pi = 4 \cdot \frac{\text{area cerchio}}{\text{area quadrato}}$$

 $\pi = 4 \cdot Prob$ [punto preso a caso appartiene al cerchio]

Ottimizzazione combinatoria

• Semplice approccio per risolvere problemi di ottimizzazione con un grande numero di soluzioni possibili:

- Cominciare con una soluzione semplice da costruire (potenzialmente molto meno buona dell'ottimo)
- Fare piccoli cambiamenti che migliorino la soluzione, finché ciò non sia più possibile

Algoritmo di Metropolis-Hastings

- Metropolis-Hastings:
 - Cominciare con una soluzione semplice da costruire (potenzialmente molto meno buona dell'ottimo)
- Ripetutamente:
 - Fare un piccolo cambiamento con probabilità proporzionale a

 $_{\rho}\beta$ ·(miglioramento della soluzione)

23555091804486281357 è un numero primo?

• Provare tutti i possibili divisori di 23555091804486281357

23555091804486281357 è un numero primo?

Provare tutti i possibili divisori

• Se n è primo, allora ("piccolo teorema" di Fermat):

per ogni x, $x^{n-1} = 1 \mod n$

23555091804486281357 è un numero primo?

Provare tutti i possibili divisori

• Se 23555091804486281357 è primo, allora per ogni x,

 $x^{23555091804486281356} = 1 \mod 23555091804486281357$

• ma, per esempio, per x = 5:

 $5^{23555091804486281356} = 4974600172144501056 \ mod \ 23555091804486281357$

Miller-Rabin

• Dato n [Miller 1976] [Rabin 1980]

• Scegliere x a caso:

- Se $x^{n-1} \neq 1 \mod n$ allora output: non primo
- Se $x^{n-1} = 1 \mod n$ allora output: forse primo

(Con qualche aggiustamento) per ogni numero, risposta giusta con alta probabilità

• Nessun algoritmo deterministico con simile efficienza fino al 2002

Metodo probabilistico in combinatoria

 Erdös (anni 50) voleva dimostrare l'esistenza di grafi (reti) con una certa proprietà (basso numero di Ramsey)

- Dimostrazione di Erdös:
 - Immaginiamo di scegliere una rete a caso
 - Calcoliamo la probabilità che non abbia la proprietà desirata
 - Tale probabilità è < 1
 - Devono esistere reti con proprietà desiderata
- Ancora non si sa come costruire queste reti deterministicamente (ma progressi importanti negli ultimi dieci anni)

Metodo probabilistico in combinatoria

Randomness negli algoritmi

 L'uso di scelte casuali negli algoritmi può facilitare la costruzione di soluzioni con proprietà desiderate

• Se un problema computazionale ammette un algoritmo efficiente randomizzato, esiste necessariamente un algoritmo deterministico con efficienza simile?

• O c'è un gap tra il potere computazionale di algoritmi randomizzati rispetto agli algoritmi deterministici?

Mittente Messaggio Canale di comunicazione non sicuro

Destinatario

Mittente

Messaggio Chiave di codifica

Algoritmo di cifratura

Chiave di decodifica

Algoritmo di decifratura

Destinatario

Chiave di decodifica

Algoritmo di decifratura

Destinatario

Mittente Messaggio Chiave di codifica Algoritmo di cifratura Messaggio cifrato Chiave di decodifica Algoritmo di decifratura Messaggio Destinatario

Crittografia

Importante che chiavi di codifica/decodifica siano scelte in modo casuale e impredicibile

Importante che chiavi di codifica/decodifica siano scelte in modo casuale e impredicibile

Messaggio cifrato

Destinatario

Se il messaggio cifrato viene intercettato, non deve dare alcuna informazione sul contenuto del messaggio originale

Intuizioni di Goldwasser e Micali:

- la cifratura deve essere una operazione probabilistica
- 2. È possibile dare una definizione rigorosa di non dare informazione, ottenibile in pratica

Crittografia

[Blum, Micali 1982] [Goldwasser, Micali 1982] [Yao 1982] Il metodo di cifratura ha *sicurezza semantica* se, per ogni coppia di messaggi M0 e M1, le loro cifrature sono

Indistinguibilità

[Goldwasser, Micali 1982]

Definizione di indistinguibilità:

Se l'intercettatore può eseguire meno di 10^{40} istruzioni, allora riesce a indovinare se il messaggio cifrato dato proviene da M0 oppure M1 con probabilità $<\frac{1}{2}+10^{-40}$

Randomness in crittografia

- In crittografia, le chiavi segrete devono essere scelte in modo casuale e altamente impredicibile
 - Molti attacchi di crittoanalisi si basano su difetti di progettazione che creano chiavi segrete con troppa poca entropia
- Anche una volta selezionate chiavi segrete, protocolli crittografici devono usare randomness fresca in ogni esecuzione per garantire alti livelli di sicurezza

• Come si genera randomness impredicibile?

Due domande

• Esiste un gap di potenza di calcolo tra algoritmi randomizzati e algoritmi deterministici?

• Come si genera randomness impredicibile per applicazioni crittografiche?

- 1. Esiste un gap di potenza di calcolo tra algoritmi randomizzati e algoritmi deterministici?
- 2. Come si genera randomness impredicibile per applicazioni crittografiche?
- (1) no, assumendo delle congetture standard [Impagliazzo-Wigderson 1997]
- (2) molte tecniche

Un aspetto della mia ricerca: c'è una connesione tra (1) e (2)

0110110101 trasformazione deterministica

Generatori pseudorandom

[Blum, Micali 1982] [Yao 1982]

Ricevono un input completamente casuale

Producono un output, molto più grande, "pseudocasuale"

Che vuol dire "pseudocasuale"?

Generatori pseudorandom

Per ogni test statistico T efficientemente calcolabile

Generatori pseudorandom

Per ogni test statistico T efficientemente calcolabile

Per ogni test statistico T efficientemente calcolabile

"vero" con probabilità p "falso" con probabilità 1-p

Generatori pseudorandom

"vero" con probabilità $p \pm 0.00001$ "falso" con probabilità $1-p \pm 0.00001$

Per ogni algoritmo A efficiente

Risposta giusta per I con probabilità > 0.99

Generatori pseudorandom

Allora 0110110101 Generatore PR 0010111001010110001011101101 Input I Risposta giusta per I con probabilità > 0.98

Generatori pseudorandom

- Un generatore pseudorandom consente di ridurre la quantità di randomness usata da algoritmi randomizzati
- Un algoritmo randomizzato può essere simulato deterministicamente enumerando tutte le possibili scelte casuali
- Se il generatore riduce molto il fabbisogno di randomness, questa simulazione può essere efficiente

Simulazione deterministica di algoritmi randomizzati

Simulazione deterministica di algoritmi randomizzati

 Generatori pseudorandom con "seed" molto corta esistono se certe congetture standard sono vere

 (Assumendo certe congetture) tutti gli algoritmi randomizzati ammettono simulazioni efficienti completamente deterministiche

[Nisan-Wigderson 1989]

...

[Impagliazzo-Wigderson 1997]

• • •

Simulazione deterministica di algoritmi randomizzati

• (Assumendo certe congetture) tutti gli algoritmi randomizzati ammettono simulazioni efficienti completamente deterministiche

[Nisan-Wigderson 1989]

. . .

[Impagliazzo-Wigderson 1997]

• • •

• Congettura ($E \nsubseteq CSIZE(2^{o(n)})$) non è sempre possibile accelerare un algoritmo scrivendo codice diverso per inputs a scale diverse

Take-aways

- 1. L'uso appropriato di scelte casuali è necessario nella crittografia
- 2. È possibile dare definizioni rigorose (e molto forti) della sicurezza di sistemi crittografici
- 3. L'uso appropriato di scelte casuali è anche utile nel progetto di algoritmi per problemi la cui soluzione è univocamente definita
- 4. Gli algoritmi (3) possono essere "de-randomizzati" in modo molto efficiente se certe congetture sono vere
- 5. La dimostrazione di (4) usa tecniche originariamente sviluppate nella crittografia e mostra che la non-esistenza di certi algoritmi implica l'esistenza di certi altri