Introduction to List

Course Title: Programming Language II

Course Code: CSE 111 Semester: Summer 2020

Lecture – 9

Last Lecture

- String
- Indexing
- Mutability of String
- Basic String operations
 - Concatenation
 - Deletion
 - Repetition
 - Slicing

Today's Lecture

- Introduction to Lists
- List Manipulation
 - Creation
 - Indexing
 - Adding, accessing and removing elements
 - Mutability
 - Slicing
 - Concatenation

Concept of List

- List is a sequence of values called items or elements.
- The elements can be of any data type.
- Each value has a location (an index).
- Indexes range from 0 to n-1 where n is the length of the list.
- List is mutable, meaning, their elements can be changed.
- Values are enclosed in [], myList = [1, 2, 3].

Creating a List

- A list is created by placing all the elements inside a square bracket [], separated by commas.
- It can have any number of items and they may be of different types (integer, float, string etc.).
- Creating without constructor -

```
# empty list
my_list = []

# list of integers
my_list = [1, 2, 3]
```

```
# list with mixed data types
my_list = [1, "Abc", 4.5]

# nested list
my_list = ["Hello", [7, 8, 9]]
```

Creating a List(continued)

• Using list constructor –

```
# empty list
my_list = list()
# list of integers
my_list = list([1, 2, 3])
```

• List length – *len()* function

```
>>> a = [1,2,3]
>>> print(len(a))
Output will be 3
```

Indexing of List

- Just like strings, list can also be accessed using indexing method.
- Range: Index starts at 0 and ends at n-1.
- Type: Index must be an integer.
- Index out of range will give IndexError. Different type will give type error.
- Two indexing technique: Positive and Negative
- Example:

$$a = [11, 12, 13, 14, 15]$$

Pos. Index	0	1	2	3	4
Items →	11	12	13	14	15
Neg. Index	-5	-4	-3	-2	-1

Access items from a list

- Use the index operator [] to access an item in a list
- The index starts at 0 just like with a string and goes up to n-1 if there are n elements in the list
- They also can use negative subscripts, -1 is the last element on the right, -n on the left end

```
>>> a = [11, 12, 13, 14, 15]
>>> print(a[2]) #Output will be 13
>>> print(a[-2]) #Output will be 14
```

Access items from a list

```
# This is acceptable
>>> players_list = ['Ronaldo', 'Messi', 'Neymar', 'Bale']
>>> print(players_list[1])  #Positive Indexing
Output: Messi
>>> print(players_list[0])  #Positive Indexing
Output: Ronaldo
>>> print(players_list[-1])  #Negative Indexing
Output: Bale
```

```
# This is not acceptable
>>> print(players_list[5])
Output: IndexError: list index out of range
>>> print(players_list[4.0])
Output: TypeError: list integer must be integer or slices
```

List Mutability

Example:

Mbappe

Output: Neymar

- Lists are mutable (changeable)
- Unlike Strings items in list can easily be changed:

Output: ['Ronaldo', 'Messi', 'Mbappe', 'Bale']

#See Neymar is no longer in the list

- Can easily change an existing element
- Can easily append/add new elements
- Can easily delete/remove elements

```
New element
                                                           Existing list
                                                           name
                                                                  Index to
                                                                  replace the
                                                                  element
>>> players list = ['Ronaldo', 'Messi', 'Neymar', 'Bale']
>>> print(players list)
Output: ['Ronaldo', 'Messi', 'Neymar', 'Bale']
>>> print(players list[2])
>>> player list[2] = 'Mbappe' #Neymar is replaced by
>>> print(players list)
```

Variable[index] = new value

Add items to a list

Using the append(value) method

```
>>> cars = ["Bmw", "Audi", "Porsche"]
>>> cars.append("Ford")
>>> print(cars)

Output: ["Bmw", "Audi", "Porsche", "Ford"]
```

Using the insert(index,value) method

```
>>> cars = ["Bmw", "Audi", "Porsche"]
>>> cars.insert(1, "Ford")
>>> print(cars)

Output: ["Bmw", "Ford", "Audi", "Porsche"]
```

Remove items from a list

Using the pop(index) or pop() method

```
>>> cars = ["Bmw", "Audi", "Porsche"] >>> cars
>>> print(cars) >>> print
Output: ["Bmw", "Porsche"] Output:
```

```
>>> cars = ["Bmw", "Audi", "Porsche"]
>>> cars.pop()
>>> print(cars)

Output: ["Bmw", "Audi"]
```

• Using the *remove(value)* method

```
>>> cars = ["Bmw", "Audi", "Porsche"]
>>> cars.remove("Bmw")
>>> print(cars)

Output: ["Audi", "Porsche"]
```

Remove items from a list

Using the *del* keyword

```
>>> cars = ["Bmw", "Audi", "Porsche"]
>>> del cars[0]
>>> print(cars)

Output: ["Audi", "Porsche"]
```

```
>>> cars = ["Bmw", "Audi", "Porsche"]
>>> del cars
>>> print(cars)

Output: name 'cars' is not defined
```

Using the clear() method

```
>>> cars = ["Bmw", "Audi", "Porsche"]
>>> cars.clear()
>>> print(cars)

Output:[]
```

Copy a list

Using the copy() method

```
>>> cars = ["Bmw", "Audi", "Porsche"]
>>> cars2 = cars.copy()
>>> print(cars2)

Output: ["Bmw", "Audi", "Porsche"]
```

Joining two list

• Using the (+) operator

```
>>> list1 = [1, 2, 3]
>>> list2 = [4, 5, 6]
>>> list3 = list1 + list2
>>> print(list3)

Output: [1, 2, 3, 4, 5, 6]
```

Using the extend(list) method

```
>>> list1 = [1, 2, 3]
>>> list2 = [4, 5, 6]
>>> list1.extend(list2)
>>> print(list1)

Output: [1, 2, 3, 4, 5, 6]
```

List Slicing

- list[start:end:step]
 - start(inclusive): specifies the starting index. If not provided, starts at 0.
 - end(exclusive): specifies the ending index. If not provided, ends at last index.
 - step(optional): specifies the increment
- the return value will be a new list with the specified items

```
>>> colors = ["Black", "White", "Red", "Blue", "Green", "Purple", "Yellow"]
>>> clr = colors[1:4]
>>> print(clr)  #Output will be: ['White', 'Red', 'Blue']
>>> print(colors[:4])  #Output will be: ['Black', 'White', 'Red', 'Blue']
>>> print(colors[3:])  #Output will be: ['Blue', 'Green', 'Purple',
'Yellow']
>>> print(colors[-4:-1])  #Output will be: ['Blue', 'Green', 'Purple']
```

List methods

Method	Semantics
list.sort()	Sorts items of list, in place. Items must be comparable
list.reverse()	Reverses order of items in list in place
list.index(x)	Returns integer index of first (leftmost) occurrence of x in the list
list.count(x)	Returns integer count of number of occurrences of x in list

Next Lecture

• Dictionaries

