Linear and Planar Arrays

- ➤ Arrays of Two Isotropic Sources
- ➤ Principles of Pattern Multiplication
- ➤ Linear Array of N Elements with Uniform Amplitude
 - Broadside
 - Ordinary Endfire
 - Increased Directivity Endfire Array (IDEA)
 - Scanning Array
- Linear Arrays with Non-Uniform Amplitude
- ► Planar Arrays

Array of Two Isotropic Point Sources

$$E = E_o e^{-j\beta r_1} + E_o e^{-j\beta r_2}$$

$$\beta = k = \frac{2\pi}{\lambda}$$

$$\beta = k = \frac{2\pi}{\lambda}$$

$$E = E_o e^{-j\beta r} \left[e^{-j\beta \frac{d}{2}\cos\phi} + e^{j\beta \frac{d}{2}\cos\phi} \right]$$
$$= E_o e^{-j\beta r} \left[e^{-j\frac{\psi}{2}} + e^{j\frac{\psi}{2}} \right]$$

$$E = 2E_o \cos\left(\frac{\psi}{2}\right) = 2E_o \cos\left(\frac{\pi d}{\lambda}\cos\phi\right)$$

$$\psi = \beta d \cos \phi = \frac{2\pi d}{\lambda} \cos \phi$$
$$= \beta d \sin \theta = \frac{2\pi d}{\lambda} \sin \theta$$

Two Isotropic Point Sources of Same Amplitude and Phase

$$E = \cos\left(\frac{d_r}{2}\cos\phi\right)$$

$$d_r = \frac{2\pi d}{\lambda} = \beta d$$
For $d = \frac{\lambda}{2}$
$$E = \cos\left(\frac{\pi}{2}\cos\phi\right)$$

ф	0°	90°	60°
E	0	1	$1/\sqrt{2}$

HPBWs = 60° in one plane and 360° in another plane

ORIGIN AT ELEMENT 1

$$E = E_0 (1 + e^{j\psi})$$

$$= 2E_0 e^{j\psi/2} \left(\frac{e^{j\psi/2} + e^{-j\psi/2}}{2} \right)$$

$$= 2E_0 e^{j\psi/2} \cos \frac{\psi}{2}$$

Normalizing by setting $2E_0 = 1$

$$E = e^{j\psi/2} \cos \frac{\psi}{2}$$
$$= \cos \frac{\psi}{2} |\psi/2|$$

Two Isotropic Point Sources of Same Amplitude and Opposite Phase

Two Isotropic Point Sources of Same Amplitude with 900 Phase Difference at $\lambda/2$

$$E = 2E_0 \cos\left(\frac{\pi}{4} + \frac{d_r}{2}\cos\phi\right)$$

Letting $2E_0 = 1$, and $d = \frac{\lambda}{2}$

$$E = \cos\left(\frac{\pi}{4} + \frac{\pi}{2}\cos\phi\right)$$

ф	0 °	60°	90°	120°	180°
E	$1/\sqrt{2}$	0	$1/\sqrt{2}$	1	$1/\sqrt{2}$

Two Isotropic Point Sources of Same Amplitude with 90^0 Phase Difference at $\lambda/4$

Spacing between the sources is reduced to $\lambda/4$

$$E = \cos\left(\frac{\pi}{4} + \frac{\pi}{4}\cos\phi\right)$$

ф	0°	90°	120°	150°	180°
E	0	$1/\sqrt{2}$	0.924	0.994	1

Two Isotropic Point Sources Of Same Amplitude with Any Phase Difference

$$\psi = d_r \cos \phi + \delta$$

$$E = E_0 \left(e^{j\psi/2} + e^{-j\psi/2} \right)$$

$$= 2E_0 \cos \frac{\psi}{2}$$
Normalizing by setting $2E_0 = 1$

$$E = \cos \frac{\psi}{2}$$

Two Same Dipoles and Pattern Multiplication

PATTERN MULTIPLICATION

N Isotropic Point Sources of Equal Amplitude and Spacing

$$E = 1 + e^{j\psi} + e^{j2\psi} + e^{j3\psi} + \dots + e^{j(n-1)\psi}$$
 where
$$\psi = \frac{2\pi d}{\lambda}\cos\phi + \delta = d_r\cos\phi + \delta$$

$$Ee^{j\psi} = e^{j\psi} + e^{j2\psi} + e^{j3\psi} + \dots + e^{jn\psi}$$

$$E - Ee^{j\psi} = 1 - e^{jn\psi} = \frac{1 - e^{jn\psi}}{1 - e^{j\psi}}$$

$$E = e^{j\xi} \frac{\sin(n\psi/2)}{\sin(\psi/2)} = \frac{\sin(n\psi/2)}{\sin(\psi/2)} \angle \xi$$

$$E_{\text{norm}} = \frac{\sin(\psi/2)}{\sin(\psi/2)} \qquad \xi = \frac{n-1}{2} \psi$$

Radiation Pattern of N Isotropic Elements Array

Radiation Pattern for array of n isotropic radiators of equal amplitude and spacing.

Broadside Array (Sources In Phase)

 $BWFN = 2\gamma_{01} = 60^{\circ}$

Field pattern of 4 isotropic point sources with the same amplitude and phase and spacing of $\lambda/2$.

Ordinary Endfire Array

Field pattern of ordinary end-fire array of 4 isotropic point sources of same amplitude. Spacing is $\lambda/2$ and the phase angle $\delta=-\pi$.

Increased Directivity Endfire Array (IDEA)

$$\psi = d_r(\cos\phi - 1) - \frac{\pi}{n}$$

Hansen and Woodyard criteria

$$\psi = d_r(\cos\phi - 1)$$

$$E_{norm} = \sin\left(\frac{\pi}{2n}\right) \frac{\sin(n\psi/2)}{\sin(\psi/2)}$$

Parameter	Ordinary end fire array	Endfire array with increased Directivity
HPBW	69°	38°
FNBW	106°	74 °
Directivity	11	19

Field patterns of end-fire arrays of 10 isotropic point sources of equal amplitude spaced $\lambda/4$ apart.

- (a) Phase for increased directivity ($\delta = -0.6\pi$),
- (b) Phase of an ordinary end-fire array ($\delta = -0.5\pi$).

Array with Maximum Field in any Arbitrary Direction

Field pattern of array of 4 isotropic point sources of equal amplitude with phase adjusted to give the maximum at $\phi = 60^{\circ}$ for spacing $d = \lambda/2$