PROJET TECHNO DATA

Auteurs

Adrien Chaptal

Gael Rousseau

Declaration librairies

```
# imports
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# show plots in the notebook
%matplotlib inline
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression
from \ sklearn.metrics \ import \ classification\_report, \ confusion\_matrix
from sklearn import preprocessing
from sklearn import metrics
from sklearn.tree import DecisionTreeClassifier
import warnings
warnings.filterwarnings('ignore')
```

I - Analyse et Preparation des données

1. Etudier les données en affichants les informations correspondantes (colonnes, indice, etc) :

```
## TO DO

df_caracteristique = pd.read_csv('./bdd/caracteristiques-2017.csv', encoding ='latin1')
print(df_caracteristique.shape)
```

```
(60701, 16)
```

```
df_lieux = pd.read_csv('./bdd/lieux-2017.csv', encoding ='latin1')
print(df_lieux.shape)
```

```
(60701, 18)
```

```
df_usagers = pd.read_csv('./bdd/usagers-2017.csv', encoding ='latin1')
print(df_usagers.shape)
```

```
(136021, 12)
```

```
df_vehicules = pd.read_csv('./bdd/vehicules-2017.csv', encoding ='latin1')
print(df_vehicules.shape)
```

```
(103546, 9)
```

2. Fusionner les fichiers de donnés

```
frames = [df_caracteristique, df_lieux, df_usagers, df_vehicules]
df_total = pd.concat(frames, axis=1)
print(df_total.shape)
```

```
(136021, 55)
```

3. Nettoyer la base de données

Ex : Identifier le pourcentage de valeurs NaN dans la base et éliminez les colonnes où la majorité des valeurs sont NaN.

```
df = df_total.loc[:, df_total.isnull().mean() < .5]

#Also we remove the colums in named "num_veh" because we will not need it and it's not numerical values
df = df.loc[:,~df.columns.duplicated()]
df.drop(['num_veh'], axis=1, inplace=True)

df</pre>
```

```
.dataframe tbody tr th {
    vertical-align: top;
}
.dataframe thead th {
    text-align: right;
}
```

	Num_Acc	place	catu	grav	sexe	trajet	secu	locp	actp	etatp	an_nais	senc	catv	occutc	obs	obsm	choc	r
0	201700000001	1.0	1	3	1	9.0	13.0	0.0	0.0	0.0	1968.0	0.0	7.0	0.0	0.0	2.0	3.0	9
1	201700000001	2.0	2	3	2	9.0	11.0	0.0	0.0	0.0	1973.0	0.0	10.0	0.0	0.0	2.0	3.0	1
2	201700000001	1.0	1	3	1	1.0	13.0	0.0	0.0	0.0	1967.0	0.0	7.0	0.0	0.0	0.0	1.0	1
3	201700000002	1.0	1	1	1	0.0	11.0	0.0	0.0	0.0	1953.0	0.0	1.0	0.0	0.0	0.0	7.0	1
4	201700000002	1.0	1	3	1	5.0	22.0	0.0	0.0	0.0	1960.0	0.0	10.0	0.0	0.0	2.0	1.0	1
																		<u></u>
136016	201700060699	1.0	1	1	2	9.0	11.0	0.0	0.0	0.0	1974.0	NaN	NaN	NaN	NaN	NaN	NaN	١
136017	201700060700	1.0	1	1	2	9.0	11.0	0.0	0.0	0.0	1987.0	NaN	NaN	NaN	NaN	NaN	NaN	١
136018	201700060700	1.0	1	4	1	9.0	21.0	0.0	0.0	0.0	1991.0	NaN	NaN	NaN	NaN	NaN	NaN	١
136019	201700060700	2.0	2	4	2	9.0	21.0	0.0	0.0	0.0	1990.0	NaN	NaN	NaN	NaN	NaN	NaN	١
136020	201700060701	1.0	1	4	1	1.0	21.0	0.0	0.0	0.0	1992.0	NaN	NaN	NaN	NaN	NaN	NaN	١

136021 rows \times 18 columns

4. Supprimer les variables dont la majorité des observations sont manquantes

```
# Count number of zeros in all columns of Dataframe
for column_name in df.columns:
    shape=df.shape[0]
    column = df[column_name]
    # Get the count of Zeros in column
    count = (column == 0).sum()
    pct=count/df.shape[0]
    if(isinstance(pct, pd.Series)):
        print("Can't process Series...")
    elif(pct > 0.5):
        df.drop([column_name], axis=1, inplace=True)
        print("Removing column ", column_name)
```

```
Removing column locp
Removing column actp
Removing column etatp
Removing column occutc
Removing column obs
```

```
.dataframe tbody tr th {
    vertical-align: top;
}
.dataframe thead th {
    text-align: right;
}
```

	Num_Acc	place	catu	grav	sexe	trajet	secu	an_nais	senc	catv	obsm	choc	manv
0	201700000001	1.0	1	3	1	9.0	13.0	1968.0	0.0	7.0	2.0	3.0	9.0
1	201700000001	2.0	2	3	2	9.0	11.0	1973.0	0.0	10.0	2.0	3.0	13.0
2	201700000001	1.0	1	3	1	1.0	13.0	1967.0	0.0	7.0	0.0	1.0	16.0
3	201700000002	1.0	1	1	1	0.0	11.0	1953.0	0.0	1.0	0.0	7.0	1.0
4	201700000002	1.0	1	3	1	5.0	22.0	1960.0	0.0	10.0	2.0	1.0	1.0
•••													
136016	201700060699	1.0	1	1	2	9.0	11.0	1974.0	NaN	NaN	NaN	NaN	NaN
136017	201700060700	1.0	1	1	2	9.0	11.0	1987.0	NaN	NaN	NaN	NaN	NaN
136018	201700060700	1.0	1	4	1	9.0	21.0	1991.0	NaN	NaN	NaN	NaN	NaN
136019	201700060700	2.0	2	4	2	9.0	21.0	1990.0	NaN	NaN	NaN	NaN	NaN
136020	201700060701	1.0	1	4	1	1.0	21.0	1992.0	NaN	NaN	NaN	NaN	NaN

136021 rows × 13 columns

5. Remplir les valeurs NaN par différentes méthodes

```
def fill_nas_by_type(df, col_name):
    """Fill null values in df according to col_name type
   Parameters
    df : dataframe, (default=None)
       input dataframe
    col_name : str, (default=None)
       column with null values to fill
    Returns
    \hbox{ df with filled values in $\operatorname{col\_name}$}
   if (col_name == "trajet"):
       df[col_name] = df[col_name].fillna(value=9)
    elif (col_name == "place"):
       df[col_name] = df[col_name].fillna(df[col_name].value_counts()[:1].index.tolist()[0])
    elif (col_name == "an_nais"):
       df[col_name] = df[col_name].fillna(float(df[col_name].median()))
    elif (col_name == "catv"):
       df[col_name] = df[col_name].fillna(value=99)
    elif (col_name == "obsm"):
       df[col_name] = df[col_name].fillna(value=99)
    elif (col_name == "choc"):
       df[col_name] = df[col_name].fillna(value=9)
    elif (col_name == "manv"):
       df[col_name] = df[col_name].fillna(value=25)
    elif (col_name == "senc"):
       df[col_name] = df[col_name].fillna(df[col_name].value_counts()[:1].index.tolist()[0])
    elif (col name == "num veh"):
       df[col_name] = df[col_name].iloc[:, 0].fillna(pd.Series(np.random.choice(['A01', 'B01', 'C01'], p=[0.52, 0.30, 0.18],
size=len(df))))
       df[col_name] = df[col_name].iloc[:, 1].fillna(pd.Series(np.random.choice(['A01', 'B01', 'C01'], p=[0.52, 0.30, 0.18],
size=len(df))))
```

```
elif (col_name == "Num_Acc"):
    df[col_name] = df[col_name].fillna(method='ffill')
    elif (col_name == "secu"):
        df[col_name] = df[col_name].fillna(df[col_name].value_counts()[:1].index.tolist()[0])
    return df

cols_to_fill = list(df.columns)

print(df.isnull().sum(axis = 0))

print(df.isnull().sum().sum())
for x in cols_to_fill:
    df = fill_nas_by_type(df, x)
    print(df.isnull().sum().sum())
print(df.isnull().sum().sum())
```

```
0
Num_Acc
place
          11802
catu
              0
              0
grav
sexe
             0
            11
trajet
           8950
an nais
            37
          32543
senc
catv
          32475
          32517
obsm
choc
          32510
          32505
manv
dtype: int64
183350
Num Acc
          0
place
catu
          0
          0
grav
sexe
          0
trajet
          0
secu
          0
          0
an_nais
senc
          0
catv
          0
obsm
choc
          a
          0
manv
dtype: int64
```

6. Analyser les données par les statistiques (min, max, médiane)

```
## TO DO

for col_name in df.columns:

if(col_name != "Num_Acc"):
    print("Column: " + col_name)

print(df[col_name].describe())
    print("\n \n")
```

```
Column: place
        136021.000000
           1.393300
mean
std
             1.233188
            1.000000
min
25%
             1.000000
50%
             1.000000
75%
             1.000000
             9.000000
max
Name: place, dtype: float64
```

```
Column: catu
count 136021.000000
mean
            1.349814
            0.639996
std
            1.000000
25%
            1.000000
50%
            1.000000
75%
            2.000000
            4.000000
max
Name: catu, dtype: float64
Column: grav
count 136021.000000
            2.492858
mean
std
            1.330687
           1.000000
min
25%
           1.000000
50%
            3.000000
75%
            4.000000
            4.000000
max
Name: grav, dtype: float64
Column: sexe
count 136021.000000
           1.323016
mean
            0.467631
            1.000000
min
25%
            1.000000
50%
            1.000000
75%
            2.000000
max
            2.000000
Name: sexe, dtype: float64
Column: trajet
count 136021.000000
mean
          3.476713
            2.647390
std
min
            0.000000
25%
            1.000000
50%
            4.000000
75%
            5.000000
             9.000000
max
Name: trajet, dtype: float64
Column: secu
count 136021.000000
         17.393175
mean
          17.277594
std
            1.000000
min
25%
            11.000000
50%
           11.000000
75%
            21.000000
           93.000000
max
Name: secu, dtype: float64
Column: an_nais
count 136021.000000
        1978.317797
mean
std
           18.883170
          1914.000000
min
25%
          1965.000000
50%
          1982.000000
75%
         1993.000000
max
          2017.000000
Name: an_nais, dtype: float64
```

```
Column: senc
count 136021.000000
mean
           1.114401
            0.612836
            0.000000
min
25%
             1.000000
            1.000000
50%
75%
            2.000000
            2.000000
Name: senc, dtype: float64
Column: catv
       136021.000000
count
mean
           32.817205
std
           38.390817
            1.000000
25%
            7.000000
50%
             7.000000
75%
            36.000000
            99.000000
max
Name: catv, dtype: float64
Column: obsm
count 136021.000000
mean
            24.930540
           41.530365
std
            0.000000
min
25%
            2.000000
50%
            2.000000
75%
             9.000000
            99.000000
max
Name: obsm, dtype: float64
Column: choc
count 136021.000000
            4.377677
mean
std
             3.353667
            0.000000
min
            1.000000
50%
            3.000000
75%
             9.000000
max
             9.000000
Name: choc, dtype: float64
Column: manv
count 136021.000000
mean
           10.862845
std
            10.156319
min
             0.000000
             1.000000
25%
50%
             9.000000
75%
            23.000000
            25.000000
max
Name: manv, dtype: float64
```

7. Expliquer la gravité des accidents en fonction des autres variables (créer une nouvelle variable "mortalité" qui indique si la victime est décédée ou non suite à l'accident : tué=1 non=0)

```
tue = df.grav == 2
df['mortalite'] = np.where(tue, 1, np.where(np.logical_not(tue), 0, np.NaN))
df
```

```
.dataframe tbody tr th {
    vertical-align: top;
}
.dataframe thead th {
    text-align: right;
}
```

	Num_Acc	place	catu	grav	sexe	trajet	secu	an_nais	senc	catv	obsm	choc	manv	mortalite
0	201700000001	1.0	1	3	1	9.0	13.0	1968.0	0.0	7.0	2.0	3.0	9.0	0.0
1	201700000001	2.0	2	3	2	9.0	11.0	1973.0	0.0	10.0	2.0	3.0	13.0	0.0
2	201700000001	1.0	1	3	1	1.0	13.0	1967.0	0.0	7.0	0.0	1.0	16.0	0.0
3	201700000002	1.0	1	1	1	0.0	11.0	1953.0	0.0	1.0	0.0	7.0	1.0	0.0
4	201700000002	1.0	1	3	1	5.0	22.0	1960.0	0.0	10.0	2.0	1.0	1.0	0.0
136016	201700060699	1.0	1	1	2	9.0	11.0	1974.0	1.0	99.0	99.0	9.0	25.0	0.0
136017	201700060700	1.0	1	1	2	9.0	11.0	1987.0	1.0	99.0	99.0	9.0	25.0	0.0
136018	201700060700	1.0	1	4	1	9.0	21.0	1991.0	1.0	99.0	99.0	9.0	25.0	0.0
136019	201700060700	2.0	2	4	2	9.0	21.0	1990.0	1.0	99.0	99.0	9.0	25.0	0.0
136020	201700060701	1.0	1	4	1	1.0	21.0	1992.0	1.0	99.0	99.0	9.0	25.0	0.0

136021 rows × 14 columns

```
df['mortalite'].value_counts(normalize=True) * 100
```

```
0.0 97.35335
1.0 2.64665
Name: mortalite, dtype: float64
```

II - Visualisation et modélisation

1. Mettre en place les modèles de machine learning pour prédire et classifier la mortalité : Régression logistique, Decision Tree, Random Forest, etc

```
y = df["mortalite"]
x = df.drop('mortalite', axis=1)

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=100)
print ("train shape", x_train.shape, y_train.shape)
print ("test shape", x_test.shape, y_train.shape)
```

```
train shape (95214, 13) (95214,)
test shape (40807, 13) (95214,)
```

Régression Logistique

```
modele_regLog = LogisticRegression(random_state = 0, solver = 'liblinear', multi_class = 'auto')
modele_regLog.fit(x_train,y_train)
precision = modele_regLog.score(x_test,y_test)
print("Precision ")
print(precision*100)
```

```
Precision
97.36074693067366
```

Decision Tree

```
clf = DecisionTreeClassifier()
clf.fit(x_train, y_train)

predictions = clf.predict(x_test)
print(metrics.accuracy_score(y_test, predictions))
```

1.0

```
from sklearn.model_selection import GridSearchCV

params = {
    'criterion': ['gini', 'entropy'],
    'max_depth': [None, 2, 4, 6, 8, 10],
    'max_features': [None, 'sqrt', 'log2', 0.2, 0.4, 0.6, 0.8],
    'splitter': ['best', 'random']
}

clf = GridSearchCV(
    estimator=DecisionTreeClassifier(),
    param_grid=params,
    cv=5,
    n_jobs=5,
    verbose=1,
)

clf.fit(x_train, y_train)
print(clf.best_params_)
```

```
Fitting 5 folds for each of 168 candidates, totalling 840 fits {'criterion': 'gini', 'max_depth': None, 'max_features': None, 'splitter': 'best'}
```

```
clf = DecisionTreeClassifier(criterion='gini', splitter='best')
clf.fit(x_train, y_train)
predictions = clf.predict(x_test)
print(metrics.accuracy_score(y_test, predictions))
```

1.0

Random Forest

```
from sklearn.ensemble import RandomForestClassifier

clf = RandomForestClassifier(random_state=1, max_depth=2)

# your code here
n_scores = cross_val_score(clf, x, y, scoring='accuracy', cv=5)
print('Precision: %.3f (%.3f)' % (np.mean(n_scores), np.std(n_scores)))
```

```
Precision: 0.974 (0.000)
```

2. Visualiser et expliquer la distribution de la variable 'mortalité' selon les différentes variables (le genre des victimes, l'Age, etc)

Mortalité selon le genre des victimes

```
pct_genre = df[df['mortalite'] == 1]['sexe'].value_counts(normalize=True) * 100
sns.set_theme(style="whitegrid");
```

```
g = pd.DataFrame(columns=['percentage', 'genre'])
g['percentage'] = pct_genre
g['genre'][:1] = "Men"
g['genre'][1:2] = "Women"
sns.barplot(x="genre", y="percentage", data=g)
```

```
<AxesSubplot:xlabel='genre', ylabel='percentage'>
```


Mortalité selon l'age

```
pct_age = df_total[df['mortalite'] == 1]['an_nais'].value_counts(normalize=True) * 100
print(pct_age.to_frame())

sns.set_theme(style="whitegrid");
a = pd.DataFrame(columns=['an_nais', 'mortalite'])
a['percent'] = pct_age
a['an_nais'] = a.index
a.reset_index()
a.drop(['mortalite'], axis=1, inplace=True)
print(a.head())
sns.barplot(x="an_nais", y="percent", data=a)
```

```
an_nais
1996.0 2.861111
1995.0 2.750000
1997.0 2.722222
1992.0 2.388889
1998.0 2.111111
. . .
2010.0 0.111111
2009.0 0.083333
1923.0 0.055556
1921.0 0.055556
1920.0 0.027778
[98 rows x 1 columns]
      an_nais percent
1996.0 1996.0 2.861111
1995.0 1995.0 2.750000
1997.0 1997.0 2.722222
1992.0 1992.0 2.388889
1998.0 1998.0 2.111111
<AxesSubplot:xlabel='an_nais', ylabel='percent'>
```


3. Normaliser les données et les appliquer aux modèles

```
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(df)
df_normalized = pd.DataFrame(x_scaled)
print(df.columns.tolist())
df_normalized.columns = df.columns.tolist()
df_normalized
```

```
['Num_Acc', 'place', 'catu', 'grav', 'sexe', 'trajet', 'secu', 'an_nais', 'senc', 'catv', 'obsm', 'choc', 'manv', 'mortalite']
```

```
.dataframe tbody tr th {
    vertical-align: top;
}
.dataframe thead th {
    text-align: right;
}
```

	Num_Acc	place	catu	grav	sexe	trajet	secu	an_nais	senc	catv	obsm	choc	manv	mortalite
0	0.000000	0.000	0.000000	0.666667	0.0	1.000000	0.130435	0.524272	0.0	0.061224	0.020202	0.333333	0.36	0.0
1	0.000000	0.125	0.333333	0.666667	1.0	1.000000	0.108696	0.572816	0.0	0.091837	0.020202	0.333333	0.52	0.0
2	0.000000	0.000	0.000000	0.666667	0.0	0.111111	0.130435	0.514563	0.0	0.061224	0.000000	0.111111	0.64	0.0
3	0.000016	0.000	0.000000	0.000000	0.0	0.000000	0.108696	0.378641	0.0	0.000000	0.000000	0.777778	0.04	0.0
4	0.000016	0.000	0.000000	0.666667	0.0	0.55556	0.228261	0.446602	0.0	0.091837	0.020202	0.111111	0.04	0.0
136016	0.999967	0.000	0.000000	0.000000	1.0	1.000000	0.108696	0.582524	0.5	1.000000	1.000000	1.000000	1.00	0.0
136017	0.999984	0.000	0.000000	0.000000	1.0	1.000000	0.108696	0.708738	0.5	1.000000	1.000000	1.000000	1.00	0.0
136018	0.999984	0.000	0.000000	1.000000	0.0	1.000000	0.217391	0.747573	0.5	1.000000	1.000000	1.000000	1.00	0.0
136019	0.999984	0.125	0.333333	1.000000	1.0	1.000000	0.217391	0.737864	0.5	1.000000	1.000000	1.000000	1.00	0.0
136020	1.000000	0.000	0.000000	1.000000	0.0	0.111111	0.217391	0.757282	0.5	1.000000	1.000000	1.000000	1.00	0.0

136021 rows × 14 columns

Application des modèles sur les donéées normalisés

```
y = df_normalized["mortalite"]
x = df_normalized.drop('mortalite', axis=1)

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=100)
print ("train shape", x_train.shape, y_train.shape)
print ("test shape", x_test.shape, y_train.shape)
```

```
train shape (95214, 13) (95214,)
test shape (40807, 13) (95214,)
```

Régression Logistique

```
modele_regLog = LogisticRegression(random_state = 0, solver = 'liblinear', multi_class = 'auto')
modele_regLog.fit(x_train,y_train)
y_pred = modele_regLog.predict(x_test)
precision = modele_regLog.score(x_test,y_test)
print("Precision ")
print(precision)
```

```
Precision
0.9736074693067366
```

```
confusion_matrix = pd.crosstab(y_test, y_pred, rownames=['Actual'], colnames=['Predicted'])
sns.heatmap(confusion_matrix, annot=True)
plt.show()
```


Decision Tree

```
from sklearn.model_selection import GridSearchCV

params = {
    'criterion': ['gini', 'entropy'],
    'max_depth': [None, 2, 4, 6, 8, 10],
    'max_features': [None, 'sqrt', 'log2', 0.2, 0.4, 0.6, 0.8],
    'splitter': ['best', 'random']
}

clf = GridSearchCV(
    estimator=DecisionTreeClassifier(),
    param_grid=params,
    cv=5,
    n_jobs=5,
    verbose=1,
)

clf.fit(x_train, y_train)
print(clf.best_params_)
```

```
Fitting 5 folds for each of 168 candidates, totalling 840 fits {'criterion': 'gini', 'max_depth': None, 'max_features': None, 'splitter': 'best'}
```

```
clf = DecisionTreeClassifier(criterion='gini', splitter='best')
clf.fit(x_train, y_train)
predictions = clf.predict(x_test)
print(metrics.accuracy_score(y_test, predictions))
```

1.0

```
confusion_matrix = pd.crosstab(y_test, predictions, rownames=['Actual'], colnames=['Predicted'])
sns.heatmap(confusion_matrix, annot=True)
plt.show()
```


Random Forest

```
from sklearn.ensemble import RandomForestClassifier

clf = RandomForestClassifier(random_state=1, max_depth=2)

n_scores = cross_val_score(clf, x, y, scoring='accuracy', cv=5)
print('Precision: %.3f (%.3f)' % (np.mean(n_scores), np.std(n_scores)))
```

```
Precision: 0.974 (0.001)
```

4. Analyser, visualiser et expliquer le niveau de corrélation entre les variables

```
print(df_normalized.corr(method ='pearson')['mortalite'].sort_values(ascending=False))
```

```
mortalite
            1.000000
secu
             0.037220
            0.023449
catu
trajet
            0.020204
            0.001282
senc
place
            -0.005195
            -0.035637
sexe
            -0.045022
choc
            -0.049638
manv
grav
            -0.061069
obsm
            -0.061198
            -0.061970
catv
an_nais
            -0.064513
Num_Acc
            -0.093130
Name: mortalite, dtype: float64
```

5. Analyser à la base du temps : Nombre d'accidents en années, Nombre d'accidents en mois, etc

```
pct_mois = df_total['mois'].value_counts(normalize=True) * 100
mort = df_total['grav']

sns.set_theme(style="whitegrid");
d_mois = pd.DataFrame(columns=['mois', 'pct','grav'])
d_mois['percent'] = pct_mois
d_mois['mois'] = d_mois.index
d_mois['grav'] = mort
d_mois.reset_index()
d_mois.drop(['pct'], axis=1, inplace=True)
sns.barplot(x="mois", y="percent", hue="grav", data=d_mois)
```

```
<AxesSubplot:xlabel='mois', ylabel='percent'>
```


6. Trouver l'heure de la journée la plus dangereuse

```
pct_heure = df_total['hrmn'].value_counts(normalize=True) * 100
mort = df_total['grav']

sns.set_theme(style="whitegrid");
d_heure = pd.DataFrame(columns=['heure', 'pct','grav'])
d_heure['percent'] = pct_heure
d_heure['hrmn'] = d_heure.index
d_heure['grav'] = mort
d_heure.reset_index()
d_heure.drop(['pct'], axis=1, inplace=True)
sns.scatterplot(x="hrmn", y="percent", hue="grav", data=d_heure)
```

<AxesSubplot:xlabel='hrmn', ylabel='percent'>

