EFFECT OF WEATHER
STIMULI AND ROAD POINTS
OF INTEREST IN
CLASSIFYING TRAFFIC
ACCIDENT SEVERITY

Adithya Narayanan Adit Bhargav Modi Akhil Gaddipati

MOTIVATION

University at Buffalo The State University of New York

Road traffic deaths in the US and other high-income countries.

Motor vehicle crash deaths

in 10 comparison high-income countries, 2013

Countries with the highest and lowest reductions in crash deaths, 2000-2013

Deaths per 100,000 people

SOURCE: International Road Traffic and Accident Database (IRTAD) Road Safet
Annual Report, 2015.

VEHICLE CRASH STATISTICS

2007-2016 AVERAGES

More Than 5,891,000 Vehicle Crashes Per Year

Average of 1,235,145 Vehicle Crashes Involved Hazardous Weather (~21 Percent)

5,376 Deaths Per Year Due to Weather-Related Crashes

Self-driving Uber car that hit and killed woman did not recognize that pedestrians jaywalk

The automated car lacked "the capability to classify an object as a pedestrian unless that object was near a crosswalk," an NTSB report said.

https://weather.com/safety/winter/news/weather-fatalities-car-crashes-accidents-united-states http://www.prism.engineering/traffic-facts-international-by-country.html https://weather.com/safety/winter/news/weather-fatalities-car-crashes-accidents-united-states

Problem Statement

Analyzing and modeling the effect that weather stimuli and road points-of-interest (POIs) bear on accident severity

LITERATURE REVIEW

Past Work

- Malin et al. (2019) analyzed accidents in Finland across all main road networks using Palm Probabilites by also accounting for driver behavior and found that both, road type and weather conditions, were found to have significant impact on accident severity.
- Sherretz et al. (1978) analyzed the data from seven southern Illinois cities and found a linear relationship between rainfall and occurrence of traffic accidents.
- The Montella et al. (2012) study analyzed two wheeler crashes in Italy. Alignment subsets such as intersection, curved roads and so on, were observed to be related to crashes. A lot of times, good weather did not bear any impact on crashes.
- Moosavi et al. (2019) used deep neural networks to predict accident risks in real time- up to 15 minute durations within a precision of 5sq. Km radius using the same dataset.
- Theofilatos, A. (2017) did not find a strong relationship between weather and accident severity.

Methodologies from Past Work

- Bayesian Logistic Regression
- CART
- Random Forest
- SVMs, Neural Networks, Hybrid Decision Tree-NN methods
- Multiple Objective Particle Swarm Optimization (MOPSO)

Pitfalls: Niche Data, leading to high bias and low variance across regions or climatic conditions- doesn't capture all conditions well

DATA DESCRIPTION

Initial Data: US Accidents

- 2.25 Million Observations (obtained using APIs that provide traffic event data)
- Spanning 49 states
- Data collected from February 2016 to March 2019
- 49 columns including weather data and Road POIs
- Certain variables such as Source, TMC, Start and End Times, Start and End Latitudes and Longitudes, and some other geographical variables were removed since they were not included in our primary scope of interest.
- Variables containing more than 80% of missing values were also removed.
- Variable of Interest: Severity
 - Level 1: 2 Minutes and 30 Seconds (814)
 - Level 2: 3 Minutes and 15 Seconds (1455524)
 - Level 3: 8 Minutes (715582)
 - Level 4: 18 Minutes (72002)

Road POIs

Weather Variables

DATA PREPROCESSING AND CLEANING

Data Preprocessing and Cleaning

US Accidents
Data
2.25 Million observations
49 variables

Data of Four Different States (Arizona, Washington, Florida, Pennsylvania)

Variables Considered

WEATHER VARIABLES

Temperature
Wind Direction
Wind Speed
Humidity
Pressure
Visibility

ROAD POIs~

Amenity Crossing Station Stop **Give Way Traffic Calming Junction** No Exit **Traffic signal Railway Crossing** Bump Roundabout

METHODOLOGY

State Subsets

RESULTS

Classification Trees- Florida

Classification Trees-Arizona

Classification Trees-Pennsylvania

Predictive Accuracy

Classification Trees

Washington

Arizona

Classification Trees

Florida

Pennsylvania

Predictive Accuracy

State	Model	Accuracy	Error	State	Model	Accuracy	Error
	Classification Tree	0.54414481	0.45585519	Florida	Classification Tree	0.5783299	0.4216701
	Bagging	0.6505771	0.3494229		Bagging	0.6066253	0.3933747
	Random Forest	0.6463799	0.3536201		Random Forest	0.6045549	0.3954451
	AdaBoost	0.5844701	0.4155299		AdaBoost	0.6090407	0.3909593
	MARS	0.5466946	0.4533054		MARS	0.6080055	0.3919945
Washington	Logistic Regression	0.5414481	0.4585519		Logistic Regression	0.6011042	0.3988958
	Classification Tree	0.5671168	0.4328832		Classification Tree	0.5958873	0.4041127
	Bagging	0.6536934	0.3463066		Bagging	0.7027269	0.2972731
	Random Forest	0.6521048	0.3478952		Random Forest	0.6937863	0.3062137
	AdaBoost	0.5949166	0.4050834		AdaBoost	0.6428252	0.3571748
	MARS	0.6155679	0.3844321		MARS	0.606616	0.393384
Arizona	Logistic Regression	0.5782367	0.4217633	Pennsylvania	Logistic Regression	0.606169	0.393831

Conclusion and Future Work

- A combination of Weather and Road POIs was found to be a very poor predictor of accident severity- contrary to several studies. Despite Weather variables dominating, accuracy remains fairly low.
- Weather related variables were found to be the most important predictors across different states and Road POIs performed poorly in terms of variable importance (could be due to their sparsity).
- Bagging and Random Forest ensemble were found to perform marginally better out-of-sample in this data, despite the use of models such as MARS and AdaBoost – they handle variance better.
- Future direction Studying driver behavior, eliminating driver behavior by studying autonomous vehicle crashes, topic modeling across insurance statements to understand driver/passenger understanding of the situation etc.

THANK YOU

