Anc. 1 - A, BERNXN

to prove ||AB||_2 \leq ||A||_2 ||B||_2 (sub-multiplicativity

||A||_2 = max ||Ax||_2

||X + 0 ||M||_6

 $\Rightarrow \frac{\|A \times \|_{2}}{\|x\|_{2}} \leq \max \frac{\|A \times \|_{2}}{\|x \neq 0\|} = \|A\|_{2}$

> ||A x ||2 € ||A ||2 || x ||2 - 0

Now || ABx112 5 || All 2 || Bx112 5 || A112 || 13112 || x112

(Using equation ()
repeatedly)

 $\frac{||ABx||_2}{||x||_2} \leq ||A||_2 ||B||_2$ $\Rightarrow ||AB||_2 \leq ||A||_2 ||B||_2$

In case of Frobe rius Norum,

let $C : AB \Rightarrow [C_{ij}] = C; [a_{ij}] = A; [b_{ij}] = B$ $C_{ij} = \sum_{k=1}^{\infty} a_{ik} b_{kj}$

So $\|AB\|_{F}^{2} = \|C\|_{F}^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} |C_{ij}|^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} |\sum_{k=1}^{n} a_{ik} b_{kj}|^{2}$

 $\leq \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\sum_{k=1}^{n} |a_{ik}|^{2}, \sum_{k=1}^{n} |b_{kj}|^{2} \right)$ (CauchySchwatz

 $= \sum_{i=1}^{n} \sum_{k=1}^{n} |a_{ik}|^{2} \sum_{j=1}^{n} \sum_{k=1}^{n} |b_{kj}|^{2} = ||A||_{F}^{2} ||B||_{F}^{2}$

[NABIIF S NAIIF. NBIIF

sub-multiplicativity is true for Froterius