UZH 3. SJ Medizin 4.11.2024

J.-D. Studt, Klinik für Med. Onkologie und Hämatologie
Universitätsspital Zürich
Jan-dirk.studt@usz.ch

Identification of the remains of the Romanov family by DNA analysis

Peter Gill¹, Pavel L. Ivanov², Colin Kimpton¹, Romelle Piercy¹, Nicola Benson¹, Gillian Tully¹, Ian Evett¹, Erika Hagelberg² & Kevin Sullivan¹

OPEN & ACCESS Freely available online

Mystery Solved: The Identification of the Two Missing Romanov Children Using DNA Analysis

Michael D. Coble^{1,9}*, Odile M. Loreille^{1,9}, Mark J. Wadhams¹, Suni M. Edson¹, Kerry Maynard¹, Carna E. Meyer¹, Harald Niederstätter², Cordula Berger², Burkhard Berger², Anthony B. Falsetti³, Peter Gill^{4,5}, Walther Parson², Louis N. Finelli¹

Das Rätsel der letzten Zarenfamilie

Alexej Nikolajewitsch, der Sohn des letzten russischen Zaren (li.) und Gigorij Rasputin, Mönch und Wunderheiler (re.).

Aus: Kendrick JML. Russia's imperial blood. Am J Hematol 2004; 77: 92

- Victoria als Konduktorin einer Hämophilie B; Weitergabe an königliche Familien und Hochadel
- Aus: Lannoy N & Hermans C. The "royal disease" haemophilia A or B? A haematological mystery is finally resolved. Haemophilia 2010; 16: 843.

Blutstillung und Wundheilung nach Gefässverletzung als komplexes Zusammenspiel

- Gefässwand (Endothelzellen, Subendothel, glatte Muskulatur)
- Zelluläre Blutbestandteilen (v. a. Thrombozyten)
- Plasmaproteine (Adhäsionsmoleküle, Gerinnungsfaktoren)
- Lokalisierung der Gerinnselbildung (Fibrinolyse)

Hauptkomponenten der Hämostase

Fibrinnetz bei normaler und herabgesetzter Thrombinbildung (aus: Barthels M. Gerinnungskompendium, Stuttgart 2012)

Artifizielle und schematisierte Teilvorgänge

- Vasokonstriktion
- Plättchenadhäsion und Plättchenaggregation
- Plasmatische Gerinnung
- Gerinnselstabilisierung
- Gerinnselauflösung

Vaskuläre Hämostase

- Vasokonstriktion
- Verlust lokaler antiaggregatorischer und antikoagulatorischer Eigenschaften des intakten Endothels
 - Prostacyclin- und NO-Freisetzung
 - Thrombomodulin (→ APC)
 - Plasminogenaktivator (t-PA)
 - negative Oberflächenladung
 - Exposition des subendothelialen Kollagens

Thrombozytenadhäsion ans Subendothel

- Venöse ≠ arterielle Gefässe oder Mikrozirkulation (Scherstress)
- Venös: Interaktion Plättchenrezeptoren + Kollagen
- Arteriell: initiale Interaktion VWF ←→ GPIb (*Tethering*), danach festere
 Bindung über andere Rezeptoren
- Freisetzung Plättchen-Inhaltsstoffe, Rekrutierung weiterer Plättchen,

Aggregation über GPIIbIIIa

Tethering von Thrombozyten auf immobilisiertem VWF

wichtiges Adhesinprotein

(aus: Dopheide S. Blood 2002; 99: 159)

Paralleler Ablauf der plasmatischen Gerinnung

- Aggregierte Plättchen als Reaktionsoberfläche
- Prinzip <u>kaskadenartige</u> Umwandlung inaktiver Proenzyme → aktive
 Gerinnungsfaktoren
- Thrombin (Faktor IIa) als zentrales Gerinnungsenzym
- Faktor XIII stabilisiert das Fibrinnetzwerk
- Inhibitoren und Fibrinolyse lokalisieren und begrenzen das Gerinnsel auf den Ort des Bedarfs

Eines der vielen Schemata der Gerinnungskaskade.

Aus: Misenheimer TM. Biochem J 2019; 476: 2909.

Klinische Zeichen einer Blutungsneigung

- Suffusionen (flächenhafte Hautblutungen)
- Petechien (punktförmige Hautblutungen)
- Epistaxis (Nasenbluten)
- Hämatom (Blutansammlung im Weichgewebe)
- Hämarthros (Gelenkblutung)
- Intrazerebrale Blutung (Hirnblutung)
- Hypermenorrhoe (gesteigerte Regelblutung) und Menorrhagien (verlängerte Regelblutung)
- Muskel- und Organblutungen, postoperative Blutung

Diagnostik

Hoher Stellenwert der Anamnese

Eigen- und Familienanamnese von Blutungen → Geschlechtspräferenz?

nicht

- Spontane und provozierte Blutungszeichen
- Medikamente, Transfusionen usw.

<u>Laborabklärungen</u>

- Globaltest der primären Hämostase: PFA-Verschlusszeit (entspr. Blutungszeit)
- Globaltests der plasmat. Gerinnung: Quick, aPTT, Thrombinzeit
- Thrombozytenfunktion, VWF, Einzelfaktoren, Fibrinolyse
- Spezialdiagnostik

Prothrombintime auf englisch

Unterschiedliche und gemeinsame Reaktionsabläufe in

erfasst _intrinsischer Teil

Quick-Test, aPTT und Thrombinzeit <

erfasst nur letzten Teil

erfasst extrinsischer Teil der Gerinnung

(aus: Barthels M. Gerinnungskompendium, Stuttgart 2012)

Hämophilie kann man nur mit aPTT erfassen

Angeborene Störungen - vaskulär

- autosomal-dominante Störung der Kollagenbildung
- Rumpel-Leede-Test: verminderte Kapillarresistenz
- z. B. M. Osler (hereditäre hämorrhagische Teleangiektasie) Krankheit

- autosomal-dominant
- punktförmige Teleangiektasien Übergang Arteriolen-Venolen
- Gefässmalformationen in zahlreichen Organen möglich

<u>Angeborene Störungen - Thrombozytopathien</u>

Rezeptordefekte

- z. B. Bernard-Soulier-Syndrom (GPIb-R. \leftrightarrow VWF)
- z. B. M. Glanzmann (GPIIbIIIa-R. ↔ Fibrinogen, VWF)

- Störungen der Thrombozytengranula
 - Storage-Pool-Defekte

Diagnosestellung

- Thrombozyten-Aggregometrie
- Thrombozyten-Durchflusszytometrie

Thrombozytenfunktionstests

Screeningtests

- (in vivo-Blutungszeit)
- Verschlusszeit im Platelet Function Analyzer (PFA)
 - Küvette Collagen/Epinephrin (Screening)
 - Küvette Collagen/ADP

Funktionsweise des Platelet Function Analyzers (PFA)

(aus: Madan M. Am Heart J 2001; 141: 226)

Fig. 4. Effect of ADP (10^{-5} M) on the optical density of unwashed platelets suspended in a solution containing NaCl $(1\cdot4\times10^{-1} \text{ M})$, KCl $(2\cdot3\times10^{-3} \text{ M})$, heparin (50 units/ml.) and imidazole $(10^{-3} \text{ M}; \bigcirc ---\bigcirc)$; plus CaCl₂ $(1\cdot7\times10^{-3} \text{ M}; \bigcirc ---\bigcirc)$; plus MgCl₂ $(10^{-4} \text{ M}; \bigcirc ---\bigcirc)$; and plus both CaCl₂ $(1\cdot7\times10^{-3} \text{ M})$ and MgCl₂ $(10^{-4} \text{ M}; \bigcirc ---\bigcirc)$. Note that these are the concentrations of CaCl₂ and MgCl₂ in normal Tyrode solution. ADP was added at zero time.

Lichttransmissions-Aggregometrie in PRP nach *Born*

(aus: Born G. J Physiol 1964; 170: 397)

Stimulation der Thrombozyten mit Collagen in verschiedenen Konzentrationen

<u>Angeborene Störungen - Gerinnungsfaktoren</u>

<u>Hämophilie</u>

- A = Faktor VIII-Mangel
- B = Faktor IX-Mangel
- Ursache Mutationen im FVIII- bzw. FIX-Gen
- X-chromosomale Vererbung: <u>Knaben/Männer</u> erkranken, Frauen sind Konduktorinnen
- Schweregrad je nach FVIII- bzw.FIX-Restaktivität
- Blutungsneigung je nach Schweregrad, innerhalb einer Familie recht konstant

X-chromosomaler Erbgang der Hämophilie

Von: Schweizerische Hämophilie-Gesellschaft (https://shg.ch/de/haemophilie/vererbung)

Schweregrade der Hämophilie A und B

- Schwer

FVIII bzw. FIX < 1%

- Mittelschwer

FVIII bzw. FIX 1 - 5%

- Mild

FVIII bzw. FIX > 5% - < 40%

		<u>Blutungsdisposition</u>	<u>Gelenkblutung</u>
schwer	< 1%	spontane geringes Trauma	sehr häufig
moderat	1 – 5%	geringes Trauma	häufig / seltener
mild	> 5 % (-40%)	schwere Verletzung Operationen	selten

Angeborene Störungen - Adhäsionsmoleküle

Von-Willebrand-Syndrom (VWS)

- häufigstes angeborenes Blutungsleiden
- autosomal-dominante Vererbung → <u>beide</u> Geschlechter
- quantitative Defekte des von-Willebrand-Faktors (Typ 1 + 3)
- qualitative Defekte des von-Willebrand-Faktors (Typ 2)
- variable Klinik je nach Typ und Subtyp
- komplexe Diagnostik

Klassifikation des von Willebrand Syndroms

- VWS 1 = milde quantitative Verminderung des VWF
- VWS 2 = <u>qualitative</u> Defekte des VWF mit 4 Subtypen
 - 2A
 - 2B
 - 2M
 - 2N
- VWS 3 = praktisch vollständiges <u>Fehlen</u> des VWF (3%)

NP 1 2A 2B 2M 2N 3

<u>Erworbene Störungen – Thrombozyten</u>

Thrombozytenfunktionsstörungen

- medikamentös, z. B.
 - ASS u. a. COX1-Hemmer
 - ADP-Rezeptor-Antagnoisten
 - GPIIb/IIIa-Antagonisten
- bei anderer Grunderkrankung

<u>Erworbene Störungen – Adhäsionsmoleküle</u>

Erworbenes von-Willebrand-Syndrom

Qualitative und/oder quantitative Defekte des VWF

Verschiedene Pathomechanismen, z. B. bei

- myelo- und lymphoproliferativen Erkrankungen
 (essentielle Thrombozythämie, M. Waldenström)
- Autoimmunerkrankungen (systemischer Lupus)
- kardiovaskulären Erkrankungen (Aortenstenose)
- Medikamenten (HES, Valproinsäure)

<u>Erworbene Störungen – Gerinnungsfaktoren</u>

Erworbene Hämophilie ("Autoimmun-Hämophilie")

- selten (1-1.5/Mio und J), meist > 60. LJ
- Autoantikörper gegen eigenen FVIII
- <u>Leitbefund</u> isloierte Verlängerung der <u>aPTT</u>, tiefer FVIII und FVIII-Autoantikörper
- idiopathisch oder bei anderer Erkrankung, postpartal
- schwerwiegende Blutungsneigung, v.a. an Haut und Schleimhäuten
- langwierige, oft sehr teure Therapie

Hänostase Untersuchungen		
Globaltests		
Quick (automat) #	% >70	>127
INR #	<1.2	0.9
aPTT #	sek. 24-36	* 44
Thrombinzeit #	sek. <22	15
Gerinnungsfaktoren		
Fibrinogen (fkt.) #	g/1 1.5-4.0	2.7

Isolierte aPTT-Verlängerung bei einer 70-jährigen Patientin (우)

Hämostase Untersuchungen			
Globaltests			
Quick (automat) #	8	-70	>127
INR #		<1.2	0.9
aPTT #	sek.	24-36	* 44
Thrombinzeit #	sek.	<22	15
Gerinnungsfaktoren			
Fibrinogen (fkt.) #	g/1	1.5-4.0	2.7
Faktor 8 (VIII, fkt.) #	8	50-200	* <1 (1)
Hennkörper gegen FVIII/FIX			
Faktor 8 (FVIII) Inhibitor #	BU	<0.6	* 54.49 (2)

Isolierte aPTT-Verlängerung bei einer 70-jährigen Patientin (♀)

<u>Diagnose</u>: Autoimmunhämophilie mit Hemmkörper gegen endogenen

Faktor VIII und behandlungsbedürftiger Blutungsneigung

Das typische Blutungsmuster der

Autoimmunhämophilie

Wichtig

(aus: Woods S & Varghese B. CMAJ 2007;

177: 341-2) (个) und Ai Vuen L.

BMJ Case Rep 2022; 15: e246922) (←)

Prophylaxe und Therapie von Blutungen

<u>Differenziert</u>

Je nach Natur und Schwere des Hämostasedefekts

<u>Verfügbar</u>

- Fibrinolysehemmer (Tranexamsäure, Cyklokapron®)
- DDAVP (Vasopressin-Analogon; Minirin®, Octostim®)
- → Freisetzung von endogenem VWF und FVIII
- → Verbesserung der Thrombozytenfunktion
- Faktorenkonzentrate aus humanem Plasma oder rekombinant, z. T.
 Halbwertszeit-verlängert durch Ig- oder Albumin-Koppelung oder PEG-yliert
 (z. B. VWF, FVIII, FVIII/VWF, FIX, FXIII, Fbg.)
- Antagonisten physiolog. Gerinnungsinhibitoren (AT silencing, anti-TFPI),
 Gentherapie

Prophylaxe und Therapie von Blutungen

- Inhibitor-Bypass-Substanzen
 - rekombinanter aktivierter FVII (rFVIIa = NovoSeven®),
 - FEIBA® = factor eight inhibitor bypassing activity (v. a. FIIa, FXa)
 - rekombinanter porciner FVIII (Susoctogoc = Obizur[®])
 - Emicizumab[®] (Hemlibra = FVIII-mimicking lg)
- Humanes Plasma (FFP)
- Thrombozytenkonzentrate

Zusammenfassung

Störungen der Hämostase

- können verschiedene Funktionssysteme betreffen
- sind auf verschiedenen Ebenen möglich
- zeigen eine verschiedenartige klinische Ausprägung
- erfordern eine komplexe und spezialisierte Diagnostik
- erfordern eine differenzierte Prophylaxe und Therapie