camels_name - Name **Attribute** Unit Description Data source References catchment identifier (8-digit USGS hydrologic unit code) N15 - USGS data gauge_id region (2-digit USGS hydrologic unit code) N15 - USGS data huc_02 gauge name, followed by the state N15 - USGS data gauge_name camels_topo - Topography and location **Attribute** Description Data source References Unit ° north N15 - USGS data gauge latitude gauge_lat gauge_lon gauge longitude ° east N15 - USGS data meter above catchment mean elevation N15 - USGS data elev_mean sea level m/km N15 - USGS data slope_mean catchment mean slope km² N15 - USGS data Falcone (2011) area_gages2 catchment area (GAGESII estimate) N15 - Geospatial Viger (2014), Viger and Bock catchment area (Geospatial Fabric estimate) area_geospa_fabric km^2 Fabric (2014)camels_clim - Climate indices - *: Computed over the period 1989/10/01 to 2009/09/30 **Attribute** Description Unit Data source References N15 - Daymet* mean daily precipitation mm/day p_mean mean daily PET [estimated by N15 using Priestley-Taylor N15 - Daymet* pet_mean formulation calibrated for each catchment] mm/day aridity (PET/P, ratio of mean PET [estimated by N15 using Priestley-Taylor formulation calibrated for each N15 - Daymet* aridity catchment] to mean precipitation) seasonality and timing of precipitation (estimated using sine curves to represent the annual temperature and p_seasonality N15 - Daymet* preciptiation cycles, positive [negative] values indicate Eq. 14 in Woods et al. (2009) that precipitation peaks in summer [winter], values close to 0 indicate uniform precipitation throughout the year) fraction of precipitation falling as snow (i.e., on days N15 - Daymet* frac_snow_daily colder than 0°C) frequency of high precipitation days (>= 5 times mean N15 - Daymet* high_prec_freq days/year daily precipitation) average duration of high precipitation events (number of N15 - Daymet* high_prec_dur days consecutive days >= 5 times mean daily precipitation) season during which most high precipitation days (>= 5 N15 - Daymet* high_prec_timing season times mean daily precip.) occur low_prec_freq frequency of dry days (<1 mm/day) days/year N15 - Daymet* average duration of dry periods (number of consecutive N15 - Daymet* low_prec_dur days days <1 mm/day) N15 - Daymet* low_prec_timing season during which most dry days (<1 mm/day) occur season camels_hydro - Hydrological signatures - *: Period 1989/10/01 to 2009/09/30 Unit Attribute Description Data source References q_mean mean daily discharge mm/day N15 - USGS data* runoff ratio (ratio of mean daily discharge to mean daily runoff_ratio N15 - USGS data* Eq. 2 in Sawicz et al. (2011) precipitation) streamflow precipitation elasticity (sensitivity of Eq. 7 in Sankarasubramanian et stream_elas streamflow to changes in precipitation at the annual time -N15 - USGS data* al. (2001), the last element being P/Q not Q/P scale) slope of the flow duration curve (between the log-N15 - USGS data* Eq. 3 in Sawicz et al. (2011) slope_fdc transformed 33rd and 66th streamflow percentiles) baseflow index (ratio of mean daily baseflow to mean daily discharge, hydrograph separation performed using N15 - USGS data* Ladson et al. (2013) baseflow_index Ladson et al. [2013] digital filter) mean half flow date (date on which the cumulative discharge since October 1st reaches half of the annual hfd_mean day of year N15 - USGS data* Court (1962) discharge) 5% flow quantile (flow flow) mm/day N15 - USGS data* Q5 **Q95** 95% flow quantile (high flow) mm/day N15 - USGS data* Clausen and Biggs (2000), Table frequency of high-flow days (> 9 times the median daily high_q_freq N15 - USGS data* 2 in Westerberg and McMillan days/year flow) (2015)Clausen and Biggs (2000), Table average duration of high-flow events (number of N15 - USGS data* 2 in Westerberg and McMillan high_q_dur days consecutive days > 9 times the median daily flow) (2015)Olden and Poff (2003), Table 2 frequency of low-flow days (< 0.2 times the mean daily low_q_freq days/year N15 - USGS data* in Westerberg and McMillan flow) (2015)Olden and Poff (2003), Table 2 average duration of low-flow events (number of N15 - USGS data* in Westerberg and McMillan low_q_dur days consecutive days < 0.2 times the mean daily flow) (2015)frequency of days with Q = 0 mm/day N15 - USGS data* zero_q_freq % camels_vege - Land cover characteristics - *: Period 2002 to 2014 Attribute Description Unit Data source References forest fraction forest_frac N15 - USGS data maximum monthly mean of the leaf area index (based on lai_max MODIS* 12 monthly means) difference between the maximum and mimumum **MODIS*** lai_diff monthly mean of the leaf area index (based on 12 monthly maximum monthly mean of the green vegetation fraction gvf_max MODIS* (based on 12 monthly means) difference between the maximum and mimumum **MODIS*** gvf_diff monthly mean of the green vegetation fraction (based on -12 monthly means) dominant land cover type (Noah-modified 20-category MODIS* dom_land_cover IGBP-MODIS land cover) fraction of the catchment area associated with the **MODIS*** dom_land_cover_frac dominant land cover root depth (percentiles XX = 50 and 99% extracted from a Eq. 2 and Table 2 in Zeng MODIS* root_depth_XX m (2001)root depth distribution based on IGBP land cover) camels_soil - Soil characteristics - *: Only covers the top 1.5 m Attribute **Description** Unit Data source References soil_depth_pelletier depth to bedrock (maximum 50m) m Pelletier et al. Miller and White soil depth (maximum 1.5m, layers marked as water and (1998) soil_depth_statgso m bedrock were excluded) STATSGO* volumetric porosity (saturated volumetric water content estimated using a multiple linear regression based on Miller and White Table 4 in Cosby et al. (1984), sand and clay fraction for the layers marked as USDA soil soil_porosity (1998) texture class and a default value [0.9] for layers marked as Lawrence and Slater (2008) STATSGO* organic material, layers marked as water, bedrock and "other" were excluded) saturated hydraulic conductivity (estimated using a multiple linear regression based on sand and clay fraction Miller and White Table 4 in Cosby et al. (1984), for the layers marked as USDA soil texture class and a (1998) soil_conductivity cm/hr default value [36cm/hr] for layers marked as organic Lawrence and Slater (2008) STATSGO* material, layers marked as water, bedrock and "other" were excluded) maximum water content (combination of porosity and Miller and White max_water_content soil_depth_statgso, layers marked as water, bedrock and m (1998) -STATSGO* "other" were excluded) sand fraction (of the soil material smaller than 2 mm, Miller and White sand frac layers marked as oragnic material, water, bedrock and (1998) -% "other" were excluded) STATSGO* silt fraction (of the soil material smaller than 2 mm, layers Miller and White marked as oragnic material, water, bedrock and "other" (1998) silt_frac % were excluded) STATSGO* clay fraction (of the soil material smaller than 2 mm, Miller and White layers marked as oragnic material, water, bedrock and clay_frac % (1998) -STATSGO* "other" were excluded) Miller and White water_frac fraction of the top 1.5m marked as water (class 14) % (1998) -STATSGO* Miller and White fraction of soil_depth_statsgo marked as organic material organic_frac (1998) -(class 13) STATSGO* Miller and White other frac (1998) fraction of soil_depth_statsgo marked as other (class 16) STATSGO* camels_geol - Geological characteristics Description **Attribute** Data source References Unit geol_class_1st most common geologic class in the catchment **GLiM** Hartmann and Moosdorf (2012)

fraction of the catchment area associated with its most

2nd most common geologic class in the catchment fraction of the catchment area associated with its 2nd

fraction of the catchment area characterized as

common geologic class

subsurface porosity

most common geologic class

"Carbonate sedimentary rocks"

subsurface permeability (log10)

geol_class_1st_frac

geol_class_2nd_frac

geol_class_2nd

carb_rocks_frac

geol_permeability

geol_porosity

Hartmann and Moosdorf (2012)

Hartmann and Moosdorf (2012)

Hartmann and Moosdorf (2012)

Hartmann and Moosdorf (2012)

Gleeson et al. (2014)

Gleeson et al. (2014)

GLiM

GLiM

GLiM

GLiM

 m^2

GLHYMPS

GLHYMPS