텍스트 기반 감정분석을 통한 음악 추천

• 캡스톤종합프로젝트 | 분반 팀 번호 A20

• 지도교수: 김수영 교수님

• |7|772 ^{류고서}

• 154171 김용정

목차

- | 프로젝트 배경
- 2. 요구사항
- 3. 텍스트 분석 및 감정 특성 값 도출
- 4. 음악 분석 및 감정 특성 값 도출
- 5. 입력 데이터
- 6. 추출 방식과 함수
- 7. 감정 값 추출 결과

| 프로젝트의 배경

• 프로젝트 배경 및 문제: 자신의 상황이나 기분에 맞는 음악을 사용자 가 입력한 텍스트로부터 감정 값을 도출해 기분이나 상태를 객관적으로 알 수 있다.

• 프로젝트 목표: 사용자로부터 텍스트를 입력을 받아 Russell 감정 모델 기반으로 감정 값을 도출하여 음악에서 추출된 값과 가장 가까운 음악 을 추천.

|-|.러셀의 감정 모델

러셀의 감정 모델

- Arousal(각성,흥분)
 - 위쪽일 수록 각성 또는 흥분 상태가 높음
 - 아래일 수록 각성 또는 흥분 상태가 낮음
- Valence(불쾌 또는 유쾌, 긍정 또는 부정)
 - 왼쪽일 수록 불쾌 또는 부정 ↑
 - 오른쪽일 수록 유쾌 또는 긍정 ↑

2.요구사항

- |. 텍스트 분석 및 감정 특성 값 도출(류교서)
- 2. 음악 분석 및 감정 특성 값 도출(김용정)
- 3. 텍스트 특성 값과 가까운 음악 매칭(김용정, 류고서)

3.텍스트 분석 및 감정 특성 값 도출

3-1.텍스트 감정 값 추출 개요

- 목표 추출값
- 추출할 감성값에는 정도(Valence) 각성 상태(Arousal)
- 추출 방식
- 파이썬의 NLTK(Natural Language Toolkit, 자연어 처리) 패키지 중 워드넷레머타이저(WordNetLemmatizer) 라이브러리와, 감정 단어 사전 ANEW를 사용해 감정값을 추출

3-2.텍스트 감정 값 추출 방식

- 감정 값을 추출할 데이터: 소셜 네트워크 서비스(SNS: Social Networking Service)중 Twitter의 데이터를 사용
- twitter API로 데이터 추출
- 데이터 형식에는 target/ID/data/플래그/사용자/텍스 존재
- 데이터에서 '텍스트 형식'를 사용

3-3. 입력 데이터

```
if __name__ == '__main__':
    # input Data with main fun parameter
    input_file = (r'C:\Users\user\originalData\originalData4.txt')
    input_dir = (r'C:\Users\user\originalData')
    mode = 'mika'
    output_dir = r'C:\Users\user\SentimentAnalysis-master\SentimentAnalysis-master\anew_' + mode
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

        # run main
main(input_file, input_dir, output_dir, mode)
```

- Input_file : 감정 값을 추출하기 위한 입력 데이터
- Input_dir : 입력 데이터의 디렉터리
- mode: 감정 값을 추출하는 모드(Valence, Arousal 값 추출 목적으로 지정
- Output_dir: 추출한 감정 값을 저장하는 디렉터리
- 위의 4가지 parameter로 main 함수 실행

3-4. ANALYZEFILE (1/4)-품사 태그화

```
# search words in ANEW
words = nltk.pos_tag(s) #tokenized words to tagging(by identifying part of speech)

for index, p in enumerate(words): #순서가 있는 자료형을 입력으로 받아 인덱스 값을 포함하는 enumerate 객체 리턴

w = p[0] #p의 words

pos = p[1]

if w in stops or not w.isalpha():

    continue

j = index-1

neg = False

while j >= 0 and j >= index-3:

if words[j][0] == 'not' or words[j][0] == 'no' or words[j][0] == 'n\'t':

    neg = True

    break

j -= 1
```

- ANEW 어휘집에서 words 검색
- 문장의 단어마다 품사 식별해 태그 설정
- 튜플 형태('단어';태그') 형태 로 설정

3-4. ANALYZEFILE (2/4)- 표제어 추출

```
# use anew lexicon, get sentiment values(Valencd, Arousal) and get .csv output file
def analyzefile(input_file, output_dir, mode):
   output file = os.path.join(output dir, os.path.basename(input file).rstrip('.txt') + ".csv") +
   utterances = []
   with open(input_file, 'r',encoding='latin-1') as myfile:
       i = 1
       with open(output_file, 'w', -1, 'utf-8') as csvfile:
           fieldnames = ['Sentence ID', 'Sentence', 'Valence', 'Arousal', 'Dominance', 'Sentiment Label',
                         'Average VAD', '# Words Found', 'Found Words', 'All Words']
           writer = csv.DictWriter(csvfile, delimiter=';', fieldnames=fieldnames)
           writer.writeheader()
           # analyze sentence per line
                                                             • 품사에 기초해 표제어 추출
           for line in myfile.readlines():
               s = tokenize.word_tokenize(line.lower())
                                                              • am, are, is <sup>의 표제어</sup>는 be
               all words = []
               found words = []
               total_words = 0
               v_list = [] # hold Valence, Arousal, Dominace value
               a_list = []
               d_list = []
```

3-4. ANALYZEFILE (3/4)- 감정 값 계산

```
#valence cal
if statistics.mean(v_list) < avg_V: #v_list 의 평균값이 avg_V 보다 작으면 최대값-평균값
   sentiment = max(v_list) - avg_V
elif max(v list) < avg V:
   sentiment = avg V - min(v list)
else:
   sentiment = max(v list) - min(v list)
#arousal cal
if statistics.mean(a list) < avg A:
   arousal = max(a list) - avg A
                                     ● Valence 감정 값 계산
   print(arousal)
                                     • v_list 의 각 명균, 최대 값과 avg_V 값의 크기 차이로 결정
elif max(a list) < avg A:
                                     ● Arousal 감정 값 계산
   arousal = avg A - min(a list)
                                     • a_list 의 각 명균, 최대 값과 avg_A 값의 크기 차이로 결정
else:
   arousal = max(a list) - min(a list)
```

3-4. ANALYZEFILE (4/4)- 감정 값 입력

● 추출한 감정 값을 output file에 입력

3-5. 감정 값 추출 결과

In [19]: import pandas as pd
 csv_test = pd.read_csv('C:/Users/user/SentimentAnalysis=master/SentimentAnalysis=master/anew_mika/originalData4.csv', sep=';' ,error_bad_line
 csv_test

	60(2168))		
Out[19]:		Sentence ID	Sentence	Valence	Arousal	Dominance	Sentiment Label	Average VAD	# Words Found	Found Words	All Words
	0	NaN	0\t1822926805\tSat May 16 20:42:30 PDT 2009\tN	4.80	0.41	2.90	NaN	NaN	NaN	NaN	NaN
	1	NaN	0\t1822926890\tSat May 16 20:42:31 PDT 2009\tN	0.85	0.60	2.71	NaN	NaN	NaN	NaN	NaN
	2	NaN	0\t1822926956\tSat May 16 20:42:32 PDT 2009\tN	4.26	1.84	2.91	NaN	NaN	NaN	NaN	NaN
	3	NaN	0\t1822927034\tSat May 16 20:42:32 PDT 2009\tN	1.50	0.84	0.91	NaN	NaN	NaN	NaN	NaN
	4	NaN	0\t1822927136\tSat May 16 20:42:33 PDT 2009\tN	1.52	3.52	0.76	NaN	NaN	NaN	NaN	NaN
	5	NaN	0\t1822927637\tSat May 16 20:42:37 PDT 2009\tN	4.62	2.86	3.55	NaN	NaN	NaN	NaN	NaN
	6	NaN	0\t1822927802\tSat May 16 20:42:39 PDT 2009\tN	1.30	0.93	0.78	NaN	NaN	NaN	NaN	NaN
	7	NaN	0\t1822927855\tSat May 16 20:42:39 PDT	4.26	0.17	3.94	NaN	NaN	NaN	NaN	NaN

4. 음악 분석 및 감정 특성 값 도출

4-1.입력 데이터

- DEAM dataset라는 openSMILE을 통해 특징이 추출된 csv파일 제공
- 각 특징의 표준 편차를 제외한 133개의 평균 특징이 있음
- 출처: http://cvml.unige.ch/databases/DEAM/

F0final_sma_amean	voicingFinalUnclipped_sma_amean	jitterLocal_sma_amean	jitterDDP_sma_amean
93.884056	0.742852	0.099609	0.095736
62.682589	0.754430	0.056241	0.054784
92.850316	0.753095	0.081527	0.095950
158.673853	0.757328	0.101659	0.108718
83.823484	0.787512	0.059757	0.060557

4-|출력 데이터

- DEAM dataset^{에서} 1802곡^의 Arousal, Valence 값을 csv^파일로 제공
- 평균만 사용
- 출처:http://cvml.unige.ch/databases/DEAM/

	valence_mean	arousal_mean
0	3.10	3.00
1	3.50	3.30
2	5.70	5.50
3	4.40	5.30
4	5.80	6.40
53	5.40	3.60
54	5.00	5.20
55	5.00	4.60
56	3.17	6.83
57	3.80	5.80

4-2.XGBREGRESSOR(AROUSAL)

0.8642984285314614

-0.09307777407506213

0.47786556344752684

1.2713175792027964

4-3.문제점

- 문제점
 다른 알고리즘을 사용하거나 매개 변수를 변경하여도
 Score 점수가 음수가 나온다.
- 해결방법 사이트에 제공된 음악 파일을 통해 Librosa 라이브러리 통해 특징들을 다시 뽑음 제공된Arousal과 Valence 값만 다시 사용

4-4.특징 추출

- 사용된 특징들
 - Tempo
 - Tonnez(6)
 - Mfcc(20)
 - Chroma_shft(12)

(Librosa *+ 8)

- Rmse
- Rolloff
- Zero_crossing_rate
- Spectral(centroid,bandwidth,contrast,flatness)

	tempo	chroma_shft_1	chroma_shft_2	chroma_shft_3	chroma_shft_4	chroma_shft_5	chroma_shft_6
0	143.554688	0.232202	0.201824	0.222168	0.307799	0.472035	0.495194
1	95.703125	0.437333	0.364443	0.396659	0.466947	0.577430	0.489825
2	172.265625	0.276094	0.208899	0.237324	0.251551	0.484929	0.253767
3	99.384014	0.252043	0.334039	0.275257	0.431722	0.289240	0.228196
4	117.453835	0.335063	0.277743	0.340410	0.380032	0.427186	0.445793

4-4. 랜덤포레스트(AROUSAL)-LIBROSA

C:\u03c8anaconda\u00c4lib\u00ffsite-packages\u00ffipykernel_launcher.py:3: DataConversion\u00ffarning: A en a 1d array was expected. Please change the shape of y to (n_samples,), for e> This is separate from the ipykernel package so we can avoid doing imports unt

0.8242545867335772

0.42665622656753766

0.5391509254339317

0.9651381556731333

- Score점수 변화
- -0.03->0.42

4-4. 랜덤포레스트(VALENCE)-LIBROSA

```
##EFEd_section | model_rf_2 = RandomForestRegressor(random_state=42, n_estimators=100) | model_rf_2.fit(x_train_2, y_train_2) | train_pred_rf_2 = model_rf_2.predict(x_train_2) | test_pred_rf_2 = model_rf_2.predict(x_test_2) | print(model_rf_2.score(x_train_2, y_train_2)) | print(model_rf_2.score(x_test_2, y_test_2)) | print(rmsle(y_train_2, train_pred_rf_2)) | print(rmsle(y_test_2, test_pred_rf_2)) |
```

en a 1d array was expected. Please change the shape of v to (n_samples

print(rmsle(y_test_2, test_pred_rf_2))

C:\manaconda\mathred{Iib\m

0 9187179742493498

0.4465508469555901

0.3376494234726439 0.841714037510263

- Score점수 변화
- -0.013->0.44

4-5.AROUSAL 및 VALENCE 값 예측

- Librosa를 통해 음악 특징을 추출함
- 랜덤포레스트 (arousal,valence) 모델에 적용하여 arousal,valence 값 예측함

	songname	arousal	valence
0	01. 가슴이 시린 게 (My Heartstore) - Lee Hyun 이현 (8e	5.49	5.23
1	ABTB - Free Rider (무임승차)	5.80	6.79
2	AOA - 심쿵해 (Heart Attack) Music Video	5.91	6.86
3	Adele - Someone Like You (Official Music Video)	5.26	5.07
4	And Now The Day Is Done	5.36	4.07
156	하현우 (국카스텐) - DARKNESS [메이플스토리 MapleStory OST]	5.79	6.56
157	하현우 - 돌덩이 (이태원 클라쓰 OST PART.03) 가사 ITAEWON C	5.96	5.89
158	한희정-더이상슬픔을노래하지않으리	4.53	4.89
159	황인욱-Phocha	5.82	5.33
160	휘성 (Whee Sung) - 결혼까지 생각했어 (Even thought of ma	5.65	6.63

5. 앞으로의 계획

- 텍스트 특성 값과 가까운 음악 매칭
- 텍스트 언어를 영어만 선택 가능-> 구글 번역 API를 통해 한글도 지원 예정

Q&A 감사합니다