

SEQUENCE LISTING

<110> Cannon, Paul David
Sankuratri, Suryanarayana

<120> Human Intestinal Npt2B

<130> ROCH-001

<150> 60/119,321
<151> 1999-02-09

<160> 2

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 689
<212> PRT
<213> human

<400> 1
Met Ala Pro Trp Pro Glu Leu Gly Asp Ala Gln Pro Asn Pro Asp Lys
1 5 10 15
Tyr Leu Glu Gly Ala Ala Gly Gln Gln Pro Thr Ala Pro Asp Lys Ser
20 25 30
Lys Glu Thr Asn Lys Asn Asn Thr Glu Ala Pro Val Thr Lys Ile Glu
35 40 45
Leu Leu Pro Ser Tyr Ser Thr Ala Thr Leu Ile Asp Glu Pro Thr Glu
50 55 60
Val Asp Asp Pro Trp Asn Leu Pro Thr Leu Gln Asp Ser Gly Ile Lys
65 70 75 80
Trp Ser Glu Arg Asp Thr Lys Gly Lys Ile Leu Cys Phe Phe Gln Gly
85 90 95
Ile Gly Arg Leu Ile Leu Leu Gly Phe Leu Tyr Phe Phe Val Cys
100 105 110
Ser Leu Asp Ile Leu Ser Ser Ala Phe Gln Leu Val Gly Gly Lys Met
115 120 125
Ala Gly Gin Phe Phe Ser Asn Ser Ser Ile Met Ser Asn Pro Leu Leu
130 135 140
Gly Leu Val Ile Gly Val Leu Val Thr Val Leu Val Gln Ser Ser Ser
145 150 155 160
Thr Ser Thr Ser Ile Val Val Ser Met Val Ser Ser Ser Leu Leu Thr
165 170 175
Val Arg Ala Ala Ile Pro Ile Ile Met Gly Ala Asn Ile Gly Thr Ser
180 185 190
Ile Thr Asn Thr Ile Val Ala Leu Met Gln Val Gly Asp Arg Ser Glu
195 200 205
Phe Arg Arg Ala Phe Ala Gly Ala Thr Val His Asp Phe Phe Asn Trp
210 215 220
Leu Ser Val Leu Val Leu Leu Pro Val Glu Val Ala Thr His Tyr Leu
225 230 235 240
Glu Ile Ile Thr Gln Leu Ile Val Glu Ser Phe His Phe Lys Asn Gly
245 250 255
Glu Asp Ala Pro Asp Leu Leu Lys Val Ile Thr Lys Pro Phe Thr Lys

260	265	270
Leu Ile Val Gln Leu Asp Lys Lys Val Ile Ser Gln Ile Ala Met Asn		
275	280	285
Asp Glu Lys Ala Lys Asn Lys Ser Leu Val Lys Ile Trp Cys Lys Thr		
290	295	300
Phe Thr Asn Lys Thr Gln Ile Asn Val Thr Val Pro Ser Thr Ala Asn		
305	310	315
Cys Thr Ser Pro Ser Leu Cys Trp Thr Asp Gly Ile Gln Asn Trp Thr		
325	330	335
Met Lys Asn Val Thr Tyr Lys Glu Asn Ile Ala Lys Cys Gln His Ile		
340	345	350
Phe Val Asn Phe His Leu Pro Asp Leu Ala Val Gly Thr Ile Leu Leu		
355	360	365
Ile Leu Ser Leu Leu Val Leu Cys Gly Cys Leu Ile Met Ile Val Lys		
370	375	380
Ile Leu Gly Ser Val Leu Lys Gly Gln Val Ala Thr Val Ile Lys Lys		
385	390	395
Thr Ile Asn Thr Asp Phe Pro Phe Pro Phe Ala Trp Leu Thr Gly Tyr		
405	410	415
Leu Ala Ile Leu Val Gly Ala Gly Met Thr Phe Ile Val Gln Ser Ser		
420	425	430
Ser Val Phe Thr Ser Ala Leu Thr Pro Leu Ile Gly Ile Gly Val Ile		
435	440	445
Thr Ile Glu Arg Ala Tyr Pro Leu Thr Leu Gly Ser Asn Ile Gly Thr		
450	455	460
Thr Thr Thr Ala Ile Leu Ala Ala Leu Ala Ser Pro Gly Asn Ala Leu		
465	470	475
Arg Ser Ser Leu Gln Ile Ala Leu Cys His Phe Phe Asn Ile Ser		
485	490	495
Gly Ile Leu Leu Trp Tyr Pro Ile Pro Phe Thr Arg Leu Pro Ile Arg		
500	505	510
Met Ala Lys Gly Leu Gly Asn Ile Ser Ala Lys Tyr Arg Trp Phe Ala		
515	520	525
Val Phe Tyr Leu Ile Ile Phe Phe Leu Ile Pro Leu Thr Val Phe		
530	535	540
Gly Leu Ser Leu Ala Gly Trp Arg Val Leu Val Gly Val Gly Val Pro		
545	550	555
Val Val Phe Ile Ile Ile Leu Val Leu Cys Leu Arg Leu Leu Gln Ser		
565	570	575
Arg Cys Pro Arg Val Leu Pro Lys Lys Leu Gln Asn Trp Asn Phe Leu		
580	585	590
Pro Leu Trp Met Arg Ser Leu Lys Pro Trp Asp Ala Val Val Ser Lys		
595	600	605
Phe Thr Gly Cys Phe Gln Met Arg Cys Cys Cys Cys Arg Val Cys		
610	615	620
Cys Arg Ala Cys Cys Leu Leu Cys Gly Cys Pro Lys Cys Cys Arg Cys		
625	630	635
Ser Lys Cys Cys Glu Asp Leu Glu Glu Ala Gln Glu Gly Gln Asp Val		
645	650	655
Pro Val Lys Ala Pro Glu Thr Phe Asp Asn Ile Thr Ile Ser Arg Glu		
660	665	670
Ala Gln Gly Glu Val Pro Ala Ser Asp Ser Lys Thr Glu Cys Thr Ala		
675	680	685
Leu		

<211> 4137
<212> DNA
<213> human

<400> 2

ctgacgtagg cccagcacct	gcggagggag	cgctgaccat	ggctccctgg	cctgaattgg	60
gagatgccca	gccccacccc	gataagtacc	tcgaagggc	cgcaggttag	120
cccctgataa	aagcaaagag	accaacaaa	ataacactga	ggcacctgta	180
aacctctgcc	gtcctactcc	acggctacac	tgatagatga	gcccactgag	240
cctggAACCT	ACCCACTCTT	CAGGACTCGG	GGATCAAGTG	GTCAGAGAGA	300
ggaagattct	ctgtttcttc	caagggattt	ggagatttat	tttacttctc	360
acttttcgt	gtgcctccgt	gatattctta	gtagcgccct	ccagctgggt	420
tggcaggaca	gttcttcagc	aacagctcta	ttatgtccaa	ccctttgttg	480
tcggggtgtct	ggtgaccgtc	ttggcaga	gctccagcac	ctcaacgtcc	540
gcatgggtgc	ctcttcattt	ctcaactgttc	gggctgccat	ccccattatc	600
acatttggaa	gtcaatcacc	aacactattt	ttgcgcctat	gcaggtggga	660
agttcagaag	agcttttgc	ggagccactt	tccatgactt	ttcaacttgg	720
tggtgctt	gcccgtggag	gtggccaccc	attacctcg	gatcataacc	780
tggagagct	ccacttcaag	aatggagaag	atgcccaga	tcttctgaaa	840
agcccttcac	aaagcttatt	gtccagctgg	ataaaaaagt	tatcagccaa	900
acgatgaaaa	agcggaaaaac	aagagtctt	tcaagatttg	gtgcaaaact	960
agacccagat	taacgtca	gttccctcg	ctgctaactt	caccccttcc	1020
ggacggatgg	catccaaac	tggaccatga	agaatgtgac	ctacaaggag	1080
aatgccagca	tatcttgc	aatttccacc	tcccgatct	tgctgtggc	1140
tcatacttc	cctgtggc	ctctgtgg	gcctgatcat	gattgtcaag	1200
ctgtgtctaa	ggggcagg	gcccactgtc	tcaagaagac	catcaacact	1260
ttcccttgc	atgggtgact	ggctacctgg	ccatctcg	cggggcaggc	1320
tcgtacagag	cagctctgt	ttcacgtcg	ccttgcaccc	cctgatttga	1380
taaccattga	gagggttat	ccactca	tgggctccaa	catcgccacc	1440
ccatcctggc	cgcccttagcc	agccctggca	atgcattgag	gagttcactc	1500
tgtgccactt	tttcttcaac	atctccggca	tcttgcgt	gtacccgatc	1560
gcctgccc	ccgcatggcc	aaggggctgg	gcaacatctc	tgccaagtat	1620
ccgttctta	cctgatcatc	ttcttcttcc	tgatcccgt	gacgggtt	1680
tggccggctg	gccccgt	gttgggtcg	gggttccgt	cgttctcatc	1740
tactgtgc	ccgacttctg	cagtctcg	gcccacgcgt	cctgccaag	1800
actggaaatt	cctggcg	tggatgcgt	cgctgaagcc	ctgggatgg	1860
agttcacccg	ctgttccag	atgcgtcg	gctgtcg	ccgcgtgtc	1920
gctgtttgt	gtgtggctgc	cccaagtgt	gcccgtcg	caagtgtcg	1980
aggaggcgca	ggagggcag	gatgtccct	tcaaggttcc	tgagacattt	2040
ccattagcag	agaggctcag	ggtgagg	ctgcctcg	ctaaagagac	2100
ccttgc	gacccccag	attgtcagg	atgggggat	ggtccttgc	2160
tctcctcc	cccacttct	cacccttca	ccacccctcg	gagatttgc	2220
gaatgaaatt	gatgcagtcc	tacctaactc	gattccctt	ggcttgcgt	2280
agggcactt	tatttcaacc	cctggtact	cagtaatctt	ttactccagg	2340
atggtacca	aagagaatta	gagaatgaac	ctggcggac	ggatgtctaa	2400
agctgggtt	gtcagtagaa	cctatttca	gactaaaaaa	ccatcttca	2460
cccaggaa	gaatgtatga	gaggctctcc	cagatgagga	agtgtactt	2520
caagctcagg	cctccctt	ttttaaacc	aaagtctggc	aaccaagagc	2580
tggcctc	gccccagatc	agcctgg	aggggacata	gtgtcattt	2640
cagaccacaa	ggtgtgg	tatcccactt	cctagtgtc	cccacattcc	2700
ttcctc	ggacagg	gtctag	gcagttact	tgcaat	2760
gcttcggg	tgggagccac	gcctgaacta	gagtcaggc	tggatacatg	2820
ctgctctgt	cttcc	aga	gacagagat	ggggcagat	2880
tgagtagcat	agcattctgc	aaaagg	gaggagaaga	aagtgg	2940
ccaattcaaa	agcattgtgg	ctaaagtct	acgctcct	ttggcaga	3000
cctccctgtt	ggat	aaataaaaacg	tgcaagttat	ccaggctgt	3060
ctgcccac	aatcccagg	gagtatctc	accttggaa	gctctccacc	3120

tccttacttt	ctgtgcaaga	tgacttcctg	ggtaacttc	cttctttcca	tccacccacc	3180
cactggaaatc	tctttccaaa	cattttcca	tttcccaca	gatgggcattt	gattagctgt	3240
cctctctcca	tgcctgcaaa	gctccagatt	tttgggaaa	gctgtaccca	actggactgc	3300
ccagtgaact	gggatcattg	agtacagtcg	agcacacgtg	tgtcatggg	tcaaagggt	3360
gtgttccttc	tcatcctaga	tgccttcct	gtgccttcca	cagcctctg	cctgattaca	3420
ccactgcccc	cgcggccaccc	tcagccatcc	caattttcc	tggccagtc	gtccagcct	3480
tatcttaggaa	aggaggagtg	ggtgttagccg	tgcagcaaga	ttggggcctc	ccccatccca	3540
gcttctccac	catcccagca	agtcaggata	tcagacagtc	ctccctgac	cctccccctt	3600
gtagatatca	attcccaaac	agagccaaat	acttatatac	tatagtacaca	gccctgtaca	3660
gcattttca	taagttatat	agtaaatgg	cttctagtgc	tctcatttgg	aataggca	3720
ggcttcttct	atgaaatgt	aagaaagaaa	ccactttgt	tattttgtaa	taccacctct	3780
gtggccatgc	ctgccccgccc	cactctgtat	atatgttaat	taaaccccggg	caggggctgt	3840
ggcgtcttt	gtactctgg	gatttttaga	aattgaatct	ttgtacttgc	attgattgt	3900
taataattt	gagaccaggt	ctcgctgtgt	tgctcaggct	ggtctcaaac	tcctgagatc	3960
aagcaatccg	cccacctcag	cctcccaaag	tgctgagatc	acaggcgtga	gccaccacca	4020
ggcctgattt	taatttttt	ttttttttt	tttactgg	atggaaagg	agaaataaaa	4080
tcatcaaacc	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	4137

4

BOZICEVIC, FIELD & FRANCIS LLP
Paula A. Borden
200 Middlefield Rd, Suite 200
Menlo Park, Ca 94025

Express Mail No. EV 036410360 US
Telephone (650) 327-3400
Fax (650) 327-3231

Inventor(s) Cannon et al.
For: "Human Intestinal Npt2B"
Docket No. ROCH-001DIV

FIG. 1

1 MAPWPELGDA QPNPDKYLEG AAGQQPTAPD KSKETNKNNT EAPVTKIELL
51 PSYSTATLID EPTEVDDPWN LPTLQDSGIK WSERDTKGKI LCFFQGIGRL
101 ILLLGFLYFF VCSLDILSSA FQLVGGKMAQ QFFSNSSIMS NPLLGLVIGV
151 LVTVLVQSSS TSTSIVVSMV SSSLTVRAA IPIIMGANIG TSITNTIVAL
201 MQVGDRSEFR RAFAGATVHD FFNWLSVLVLPVEVATHYL EIITQLIVES
251 FHFKNGEDAP DLLKVITKPF TKLIVQLDKK VISQIAMNDE KAKNKSLVKI
301 WCKTFTNKTQ INVTPSTAN CTSPSLCWTD GIQNWTMKNV TYKENIAKCQ
351 HIFVNFHLPD LAVGTILLIL SLLVLCGCLI MIVKILGSVL KGQVATVIKK
401 TINTDFPFPE AWLTGYLAIL VGAGMTFIVQ SSSVFTSALT PLIGIGVITI
451 ERAYPLTLGS NIGTTTAIL AALASPGNAL RSSLQIALCH FFFNISGILL
501 WYPIPFTRLP IRMAKGLGNI SAKYRWFAVF YLIIFFFLIP LTVFGLSLAG
551 WRVLVGVGVP VVFIIILVLC LRLLQSRCPR VLPKKLQNWN FLPLWMRSLK
601 PWDAVVSKFT GCFQMRCCCC CRVCCRACCL LCGCPKCCRC SKCCEDLEEA
651 QEGQDV PVKA PETFDNITIS REAQGEVPAS DSKTECTAL* (SEQ ID NO:01)

FIG. 2i

1 CTGACGTAGG CCCAGCACCT GCGGAGGGAG CGCTGACCAT GGCTCCCTGG
51 CCTGAATTGG GAGATGCCA GCCCAACCCC GATAAGTACC TCGAAGGGC
101 CGCAGGTCAAG CAGCCCCACTG CCCCTGATAA AAGCAAAGAG ACCAACAAAA
151 ATAACACTGA GGCACTGTG ACCAAGATTG AACTTCTGCC GTCCTACTCC
201 ACGGCTACAC TGATAGATGA GCCCCACTGAG GTGGATGACC CCTGGAACCT
251 ACCCACTCTT CAGGACTCGG GGATCAAGTG GTCAGAGAGA GACACCAAAG
301 GGAAGATTCT CTGTTTCTTC CAAGGGATTG GGAGATTGAT TTTACTTCTC
351 GGATTTCTCT ACTTTTCTCGT GTGCTCCCTG GATATTCTTA GTAGGCCTT
401 CCAGCTGGTT GGAGGAAAAAA TGGCAGGACA GTTCTTCAGC AACAGCTCTA
451 TTATGTCCAA CCCTTTGTG GGGCTGGTGA TCGGGGTGCT GGTGACCGTC
501 TTGGTGCGAGA GCTCCAGCAC CTCAACGTCC ATCGTTGTCA GCATGGTGTC
551 CTCTTCATTG CTCACTGTTC GGGCTGCCAT CCCCCATTATC ATGGGGGCCA
601 ACATTGGAAC GTCAATCACC AACACTATTG TTGCGCTCAT GCAGGTGGGA
651 GATCGGAGTG AGTTCAGAAG AGCTTTGCA GGAGCCACTG TCCATGACTT
701 CTTCAACTGG CTGTCCGTGT TGGTGCTCTT GCCCCGTGGAG GTGGCCACCC
751 ATTACCTCGA GATCATAACC CAGCTTATAG TGGAGAGCTT CCACCTCAAG
801 AATGGAGAAG ATGCCCCAGA TCTTCTGAAA GTCATCACTA AGCCCTTCAC
851 AAAGCTCATT GTCCAGCTGG ATAAAAAAAGT TATCAGCCAA ATTGCAATGA
901 ACGATGAAAA AGCGAAAAAAC AAGAGTCTTG TCAAGATTG GTGCAAAACT
951 TTTACCAACA AGACCCAGAT TAACGTCACT GTTCCCTCGA CTGCTAACTG
1001 CACCTCCCT TCCCTCTGTT GGACGGATGG CATCCAAAAC TGGACCATGA
1051 AGAATGTGAC CTACAAGGAG AACATGCCA AATGCCAGCA TATCTTGTG
1101 AATTTCACC TCCCAGGATCT TGCTGTGGGC ACCATCTTGC TCATACTCTC
1151 CCTGCTGGTC CTCTGTGGTT GCCTGATCAT GATTGTCAAG ATCCTGGGCT
1201 CTGTGCTCAA GGGGCAGGTC GCCACTGTCA TCAAGAAGAC CATCAACACT
1251 GATTTCCCT TTCCCTTTGTC ATGGTTGACT GGCTACCTGG CCATCCTCGT
1301 CGGGGCAGGC ATGACCTTCA TCGTACAGAG CAGCTCTGTG TTCACGTCGG
1351 CCTTGACCCC CCTGATTGGA ATCGGGTGA TAACCATTGA GAGGGCTTAT
1401 CCACTCACGC TGGGCTCCAA CATCGGCACC ACCACCACCG CCATCCTGGC
1451 CGCCTTAGCC AGCCCTGGCA ATGCATTGAG GAGTTCACTC CAGATCGCCC
1501 TGTGCCACTT TTTCTTCAC ACATCCGGCA TCTTGCTGTG GTACCCGATC
1551 CCGTTCACTC GCCTGCCCAT CCGCATGGCC AAGGGCTGG GCAACATCTC
1601 TGCCAAGTAT CGCTGGTTCG CCGTCTTCTA CCTGATCATC TTCTCTTCC
1651 TGATCCCGCT GACGGTGTCTT GGCCTCTCGC TGGCCGGCTG GCGGGTGTG
1701 GTTGGTGTGCG GGGTTCCCGT CGTCTTCATC ATCATCCTGG TACTGTGCCT
1751 CCGACTCCTG CAGTCTCGCT GCCCACCGCGT CCTGCCGAAG AAACCTCCAGA
1801 ACTGGAACCTT CCTGCCGCTG TGGATGCGCT CGCTGAAGCC CTGGGATGCC
1851 GTCGTCTCCA AGTCACCGG CTGCTCCAG ATGCGCTGCT GCTGCTGCTG
1901 CCGCGTGTGCG TGGCGCGCGT GCTGCTTGCT GTGTGGCTGC CCCAAGTGCT
1951 GCGCGTGCAG CAAGTGCTGC GAGGACTTGG AGGAGGCGCA GGAGGGGCAG
2001 GATGTCCCTG TCAAGGCTCC TGAGACCTTT GATAACATAA CCATTAGCAG
2051 AGAGGCTCAG GGTGAGGTCC CTGCCTCGGA CTCAAAGACC GAATGCACGG
2101 CCTTGAGGG GACGCCCAAG ATTGTAGGG ATGGGGGGAT GGTCTTGAG
2151 TTTTGATGC TCTCCTCCCT CCCACTTCTG CACCCCTTCA CCACCTCGAG
2201 GAGATTGCT CCCCATTAGC GAATGAAATT GATGCAGTCC TACCTAACTC
2251 GATTCCCTT GGCTTGGTGG GTAGGCTGCG AGGGCACTTT TATTCCAACC
2301 CCTGGTCACT CAGTAATCTT TTACTCCAGG AAGGCACAGG ATGGTACCTA
2351 AAGAGAATTA GAGAATGAAC CTGGCGGGAC GGATGTCTAA TCCTGCACCT
2401 AGCTGGTGTG GTCAAGTAGAA CCTATTTCAGA GACTCAAAAA CCATCTTCAG
2451 AAAGAAAAGG CCCAGGGAAAG GAATGTATGA GAGGCTCTCC CAGATGAGGA
2501 AGTGTACTCT CTATGACTAT CAAGCTCAGG CCTCTCCCTT TTTTAAACC
2551 AAAGTCTGGC AACCAAGAGC AGCAGCTCCA TGGCCTCCTT GCCCCAGATC
2601 AGCCTGGTC AGGGGACATA GTGTCAATTGT TTGGAAACTG CAGACCACAA

FIG. 2ii

2651 GGTGTGGGTC TATCCCAC TT CCTAGTGCTC CCCACATTCC CCATCAGGGC
2701 TTCCTCACGT GGACAGGTGT GCTAGTCCAG GCAGTTCACT TGCAGTTCC
2751 TTGTCCTCAT GCTTCGGGGA TGGGAGGCCAC GCCTGAAC TA GAGTTCAAGC
2801 TGGATACATG TGCTCACCTG CTGCTCTTGT CTTCTTAAGA GACAGAGAGT
2851 GGGCGAGATG GAGGAGAAAGA AAGTGAGGAA TGAGTAGCAT AGCATTCTGC
2901 CAAAAGGGCC CCAGATTCTT AATTAGCAA ACTAAGAACG CCAATTCAA
2951 AGCATTGTGG CTAAAGTCTA ACGCTCCTCT CTTGGTCAGA TAACAAAAGC
3001 CCTCCCTGTT GGATCTTTG AAATAAAACG TGCAAGTTAT CCAGGCTCGT
3051 AGCCTGCATG CTGCCACCTT GAATCCCAGG GAGTATCTGC ACCTGGAATA
3101 GCTCTCCACC CCTCTCTGCC TCCTTACTTT CTGTGCAAGA TGACTTCCTG
3151 GGTAACTTC CTTCTTCCA TCCACCCACC CACTGGAATC TCTTTCCAAA
3201 CATTTTCCA TTTTCCCACA GATGGGCTTT GATTAGCTGT CCTCTCTCCA
3251 TGCCTGCAA GCTCCAGATT TTTGGGAAA GCTGTACCCA ACTGGACTGC
3301 CCAGTGAAC TGGATCATTG AGTACAGTCG AGCACACGTG TGTGCATGGG
3351 TCAAAGGGT GTGTTCCCTC TCATCCTAGA TGCCTCTCT GTGCCTTCCA
3401 CAGCCTCCCTG CCTGATTACA CCACTGCCCG CGCCCCACCC TCAGCCATCC
3451 CAATTCTTCC TGGCCAGTGC GCTCCAGCCT TATCTAGGAA AGGAGGAGTG
3501 GGTGTAGCCG TGCAAGAAGA TTGGGGCCTC CCCCATCCC GCTTCTCCAC
3551 CATCCCAGCA AGTCAGGATA TCAGACAGTC CTCCCCGTAC CCTCCCCCTT
3601 GTAGATATCA ATTCCCAAAC AGAGCCAAAT ACTCTATATC TATAGTCACA
3651 GCCCTGTACA GCATTTTCA TAAGTTATAT AGTAAATGGT CTTCTAGTGC
3701 TCTCATTGGA AAATGAGGCA GGCTTCTCT ATGAAATGTA AAGAAAGAAA
3751 CCACCTTGTA TATTTGTAA TACCACTCT GTGGCCATGC CTGCCCCGCC
3801 CACTCTGTAT ATATGTAAGT TAAACCCGGG CAGGGGCTGT GGCGTCTTT
3851 GTACTCTGGT GATTTTAGA AATTGAATCT TTGTACTTGC ATTGATTGTA
3901 TAATAATTTC GAGACCAAGGT CTCGCTGTGT TGCTCAGGCT GGTCTCAAAC
3951 TCCTGAGATC AAGCAATCCG CCCACCTCAG CCTCCCAAAG TGCTGAGATC
4001 ACAGGCCTGA GCCACCACCA GGCCTGATTG TAATTTTTT TTTTTTTTT
4051 TTTACTGGTT ATGGGAAGGG AGAAATAAAA TCATCAAACC CAAAAAA
4101 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAA (SEQ ID NO:02)