DEPARTAMENTO DE QUÍMICA SERIE DE EJERCICIOS

(Basada en reactivos de exámenes colegiados)

Tema 4: Teoría del Orbital Molecular Semestre 2018-1

Teoría del Orbital Molecular

1. Llene la tabla siguiente:

Molécula	Configuración electrónica	Orden de enlace
ВС		
BC⁺		
BC ³⁺		
BC ⁻		
BC ²⁻		

Molécula	Configuración electrónica	Orden de enlace
BC ⁻	$(\sigma_{1s})^2, (\sigma_{1s})^2, (\sigma_{2s})^2, (\sigma_{2s})^2, (\pi_{2py})^2, (\pi_{2pz})^1$	1.5
BC⁺	$(\sigma_{1s})^2, (\sigma_{1s})^2, (\sigma_{2s})^2, (\sigma_{2s})^2, (\pi_{2py})^1, (\pi_{2pz})^1$	1
BC ³⁺	$(\sigma_{1s})^2, (\sigma_{1s})^2, (\sigma_{2s})^2, (\sigma_{2s})^2$	0
BC ⁻	$(\sigma_{1s})^2, (\sigma_{1s})^2, (\sigma_{2s})^2, (\sigma_{2s})^2, (\pi_{2py})^2, (\pi_{2pz})^2$	2
BC ²⁻	${{{{\left({{\sigma _{1s}}} \right)}^2},{{{\left({{\sigma _{1s}}}^* \right)}^2},{{\left({{\sigma _{2s}}} \right)}^2},{{{\left({{\sigma _{2s}}}^* \right)}^2},{{\left({{\pi _{2py}}} \right)}^2},{{{\left({{\pi _{2pz}}} \right)}^2},{{\left({{\sigma _{2px}}} \right)}^1}}}$	2.5

- 2. Para las moléculas NO, CO, CN⁺, HF, establezca:
 - a) ¿Cuál es más estable?
 - b) El carácter magnético de cada una.
 - c) Si la adición de un electrón aumenta o disminuye la estabilidad de cada especie.
 - a) HF
 - b) NO es paramagnética

CO, CN⁺ y HF son diamagnéticas

- c) Solo en el caso de CN⁺, aumenta la estabilidad al adicionar un electrón
- **3.** Para cierto proceso con superconductores, se requiere de un gas refrigerante que no interaccione con los campos magnéticos que se emplean. Con base en el carácter magnético y la estabilidad de los gases siguientes, mencione cuál de ellos utilizaría. Justifique su respuesta.

Se emplearía el N₂

4. Los elementos X, Y y Z forman con el oxígeno los iones siguientes:

$$XO^{3-}$$
, YO^{+} , ZO^{-}

Si cada ion posee 16 electrones:

- a) Identifique a los elementos X, Y y Z.
- b) Ordene a los iones en forma creciente de estabilidad.

Justifique sus respuestas.

a) X = Boro

Y = Flúor

Z = Nitrógeno

b) $YO^{+} < ZO^{-} < XO^{3-}$

2

- 5. Determine el carácter magnético de:
 - a) El átomo de boro.
 - b) La molécula diatómica de boro

- a) Paramagnético
- b) Paramagnética
- **6.** Ordene de menor a mayor estabilidad a las moléculas siguientes: Justifique su respuesta.

$$BN^{2+} < BN < N_2 < BN^{2-}$$

- **7.** Tres iones están formados por los pares de elementos siguientes: NF, CO y NO. Cada ion tiene un orden de enlace igual a 1.5 y siete electrones en orbitales de antienlace.
 - a) Determine la carga de cada ion.
 - b) Ordénelos de menor a mayor estabilidad.

a) NF⁻,
$$CO^{3-}$$
, NO^{2-}
b) NF⁻ < NO^{2-} < CO^{3-}

- 8. Apoyándose en la teoría adecuada, determine el carácter magnético de:
 - a) Un elemento con 10 neutrones y número de masa 19.
 - b) La molécula de BC (ion de boro y carbono con carga 1-).
- a) Paramagnético
- b) Diamagnética

Elija:

- a) Las diamagnéticas.
- b) Las paramagnéticas.
- c) La más estable.
- d) La menos estable.
- e) Las isoelectrónicas.

- a) BC⁻, CN⁺, CN⁻
- b) BC, BC⁺, CN
- c) CN
- d) BC⁺
- e) BC y CN +

10. Llene la tabla siguiente:

lon	Configuración electrónica	Orden de enlace	Carácter magnético
BeB ⁻			
BC⁺			
NC ⁻			
CO⁺			
FO			

BC, BC⁺, BC⁻, CN, CN⁺, CN⁻

y determine las especies que son:

- a) Atraídas por un campo magnético.
- b) Repelidas por un campo magnético.
- c) Isoelectrónicas.
- d) La más estable.
- e) La menos estable.

- a) BeB⁻, BC⁺, CO⁺, FO
- b) NC
- c) BeB⁻, BC⁺
- d) NC
- e) BC⁺

11. Acomode en orden creciente de estabilidad las moléculas siguientes:

$$\mathsf{FO}^{\scriptscriptstyle\mathsf{+}}$$
, $\mathsf{FO}^{\mathsf{2+}}$, $\mathsf{CF}^{\mathsf{2+}}$, CF , O_2

$$FO^+ < O_2 < FO^{2+} < CF < CF^{2+}$$

Serie de Ejercicios de Química Tema IV: Teoría del Orbital Molecular Compiló: Alfredo Velásquez Márquez Semestre 2018-1 FN, CO, O₂, NO, CN

Escriba la configuración electrónica de cada una.

a) Ordénelas de menor a mayor estabilidad.

Escriba la fórmula de las que son:

- b) Diamagnéticas.
- c) Paramagnéticas.
- d) Isoelectrónicas.

- a) O_2 , FN < NO < CN < CO
- b) CO
- c) O₂, FN, NO, CN
- d) O₂, FN

13. Desarrolle la configuración electrónica de las moléculas siguientes e indique:

$$CN^{+}$$
, N_{2}^{+} , CN^{3-} , N_{2}^{-} , O_{2}

- a) Cuál es más estable.
- b) Cuál es menos estable.
- c) Cuáles son isoelectrónicas.
- d) Cuáles son diamagnéticas.
- e) Cuáles son paramagnéticas.

- a) N₂⁺
- b) O₂
- c) (N₂⁺, N₂⁻) y (CN³⁻, O₂)
- d) CN⁺
- e) N₂⁺, CN³⁻, N₂⁻, O₂

14. Para las moléculas siguientes:

Determine:

- a) Cuáles son paramagnéticas.
- b) Cuál es la menos estable.

Justifique su respuesta

Serie de Ejercicios de Química Tema IV: Teoría del Orbital Molecular Compiló: Alfredo Velásquez Márquez Semestre 2018-1

Molécula	Orden de enlace	e de enlace	e de antienlace	e ⁻ totales
XY	0.5			7
XY^{+}		4		6
XY	0		4	

Molécula	OE	e- de enlace	e- de antienlace	e ⁻ totales
XY	0.5	4	3	7
XY [⁺]	1.0	4	2	6
XY	0	4	4	8

16. Se tienen los compuestos que siguen: CO, CO⁺, NO, NO⁺ y NO⁻.

Acomódelos en orden creciente de estabilidad e indique el carácter magnético de cada uno.

CO⁺, NO y NO⁻ son paramagnéticas

17. Para los iones siguientes, determine:

$$N_2^{2-}$$
, O_2^{2-} , Be_2^{2+} , C_2^{2+}

- a) Configuración electrónica.
- b) Los que son paramagnéticos.
- c) Los que son diamagnéticos.
- d) El más estable.
- e) El menos estable.

b)
$$N_2^{2-}$$
 y C_2^{2+}

c)
$$O_2^{2-}$$
 v Be_2^{2+}

d)
$$N_2^{2-}$$

18. Apóyese en la teoría adecuada y acomode las moléculas siguientes en orden creciente de estabilidad: BO, BO²⁺, BO²⁻.

$$BO^{2+} < BO^{2-} < BO$$

Compiló: Alfredo Velásquez Márquez Semestre 2018-1 19. Para los iones siguientes, determine:

- a) Configuración electrónica.
- b) Los que son paramagnéticos.
- c) Los que son diamagnéticos.
- d) El más estable.
- e) El menos estable.

6

20. Acomode las moléculas siguientes en orden creciente (de menor a mayor) de estabilidad. Justifique su respuesta.

$$NO < CF^{2+} < CO^{+} < CN^{-}$$

21. Para las moléculas siguientes:

Determine:

- a) Cuáles son paramagnéticas.
- b) El orden creciente de estabilidad.
- c) Cuáles son isoelectrónicas.

Justifique sus respuestas