А. Т. Улимаева

(г. Уфа)

РЕШЕНИЕ ЗАДАЧ НА НАХОЖДЕНИЕ НАИБОЛЬШИХ И НАИМЕНЬШИХ ЗНАЧЕНИЙ ФУНКЦИЙ

Опыт нашей работы в школах Башкирской АССР показал, что при организации повторения учебного материла в X классе целесообразно рассматривать задачи на нахождение наибольших и наименьших значений функций, причем использовать при их решении наряду с аппаратом производной и другие способы. Это способствуют активизации мыслительной деятельности учащихся, вызывает у них интерес к решению задач и к изучению математики в целом. Приведем пример решения одной такой задачи:

Требуется оградить прямоугольный участок земли площадью a^2 . Определите оптимальные размеры участка, при которых затраты на ограду будут наименьшими (предполагается, что стоимость ограды пропорционально ее длине с коэффициентом k > 0).

Решение. І способ. Найдем прямоугольник площади a^2 , у которого периметр наименьший. Пусть x>0 — длина стороны прямоугольника, тогда длина смежной с ней стороны равна $\frac{a^2}{x}$. Периметр прямоугольника P(x) = 2(x + $\frac{a^2}{x}$). Найдем наименьшее значение P(x), применяя производную:

$$P'(x) = 2(1 - \frac{a^2}{x^2}), x \in]0; +\infty[$$

Определим критические точки функции:

$$(2(1-\frac{a^2}{x^2})=0) \Leftrightarrow (x=a \text{ или } x=-a)$$

так как a > 0, то $x = a \in]0, +\infty[$.

Найдем следующие значения функции P'(x):

$$P'(\frac{a}{2}) = 2(1 - \frac{4a^2}{a^2}) = -6 < 0$$

$$P'(2a) = 2(1 - \frac{a^2}{4a^2}) = \frac{3}{2} > 0$$

Следовательно, $\min_{]0;+\infty[}P(x)=4a$ при x=a.

Длина другой стороны прямоугольника также равна a.

Из условия задачи известно, что стоимость изгороди N(x) пропорциональна ее длине с коэффициентом $k>0:N(x)=k\cdot P(x)$. Следовательно N(x)получит наименьшее значение, откуда

$$N_{opt}(x) = \min_{]0; +\infty[} N(x) = k \cdot 4a$$
при $x=a$

Итак, чтобы оптимизировать стоимость изгороди, целесообразно выбрать участок квадратной формы.

II способ. Замечая, что $P(x)=2(x+\frac{a^2}{x})=2((\sqrt{x})^2-2\sqrt{x}\frac{a}{\sqrt{x}}+\frac{a^2}{(\sqrt{x})^2})+4a=2(\sqrt{x}-\frac{a}{\sqrt{x}})^2+4a$, где $x\in]0;+\infty[$, заключаем, что $\min_{|0|+\infty[}P(x)=4a$ при x=a:

$$((\sqrt{x} - \frac{a}{\sqrt{x}})^2 = 0) \Rightarrow (\sqrt{x} = \frac{a}{\sqrt{x}}) \Rightarrow (x = a)$$

III способ. Обозначим полупериметр прямоугольника p(x). Пусть x-длина одной из его сторон, тогда длина смежной с ней стороны равна $p-x(0\leqslant x\leqslant p)$. Площадь прямоугольника $a^2=x(p-x)$;

$$(x^2 + a^2 - px = 0) \Leftrightarrow ((x - a)^2 + x(2a - p) = 0$$

Последнее равенство истинно лишь при $2a-p\leqslant 0$, т. е. при $p\geqslant 2a$. Следовательно, наименьшее значение полупериметра равно 2a.

Подставляя в уравнение $x^2 + a^2 - px = 0$ наименьшее значение p, получим уравнение $x^2 - 2a + a^2 = 0$, откуда x = a.

VI способ. Обозначим длины смежных сторон прямоугольника через x и y, а его полупериметр через р. Тогда $xy=a^2$.

Чтобы найти наименьшее значение периметра прямоугольника площади a^2 , воспользуемся известным тождеством: $(x+y)^2 = (x-y)^2 + 4xy$. Заменив в нем произведение xy на равное ему значение a^2 , получим равенство

$$(x+y)^2 = (x-y)^2 + 4a^2$$

Из этого равенства видно, что выражение $(x+y)^2=p^2$ получит наименьшее значение при x-y=0, т. е. при x=y. Полупериметр p=x+y достигает своего наименьшего значения при x=y=a, при этом P=4a.

V способ. По условию $xy=a^2$, где x и y – длины смежных сторон прямоугольника. Предположим, что $x\neq y$, пусть, например, x=a+b(b>0), тогда

$$y = \frac{a^2}{a+b} > \frac{a^2 - b^2}{a+b} = a - b$$

Значит, x + y > a + b + a - b = 2a.

Пусть теперь x = y = a. В этом случае x + y = 2a.

Имеем: $x + y \geqslant 2a$, откуда следует, что наименьшее значение периметра прямоугольника равно 4a и достигается оно при x = y = a

VI способ. К решению задачи можно применить также геометрические построения. В условии задачи дано: $xy = a^2$, где x и y – длины смежных сторон прямоугольника.

При x = y = a(a > 0) получаем x + y = 2a. Построим окружность с центром

в точке O радиуса |AO|=a. Имеем: |AB|=|AO|+|OB|=x+y=2a (см. рис.).

Пусть $x \neq y$. Построим на том же рисунке окружность с центром в точке O_1 и радиусом, равным длине отрезка O_1F , так, чтобы $|EO| \cdot |OF| = a^2$. Тогда |EO| + |OF| = |EF|, где |EO| = x, |OF| = y. Рассматривая рисунок, замечаем, что |EF| > 2a, так как |EF| - длина

диаметра, а 2a – длина хорды CC_1 окружности $(O_1, |O_1F|)$. Таким образом получаем, что $x+y\geqslant 2a$, причем x+y=2a при x=y=a.