Pima Women Diabetes Prediction

Importing and Examining the Data

Importing required libraries

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

Importing dataset

```
In [2]: df = pd.read_csv(r"C:\Users\Dr. Harrison\Desktop\DATA\PROJECTS\MeriSkill\Diabetes\Proj
df.head()
```

Out[2]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age
	0	6	148	72	35	0	33.6	0.627	50
	1	1	85	66	29	0	26.6	0.351	31
	2	8	183	64	0	0	23.3	0.672	32
	3	1	89	66	23	94	28.1	0.167	21
	4	0	137	40	35	168	43.1	2.288	33

In [4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64
44	£1+(4/2) :-+(4/7)		

dtypes: float64(2), int64(7)
memory usage: 54.1 KB

In [9]: df.describe()

		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigr
	count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
	mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
	std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
	25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
	50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
	75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
	max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	

```
In [17]: plt.figure(figsize=(6, 4))
  plt.pie(df['Outcome'].value_counts(), labels = ['Non diabetic', ' Diabetic'], autopct
  plt.title('Diabetes Status Proportion')
```

Out[17]: Text(0.5, 1.0, 'Diabetes Status Proportion')

Out[9]:

4

Diabetes Status Proportion

Majority of the women do not have diabetes with only approximately 35% having it.

```
In [53]: r = sns.FacetGrid(df, hue = 'Outcome', height = 3, aspect = 2, palette = 'deep')
    r.map(plt.hist, 'Glucose', alpha= 0.8, bins =30)
    r.set(title = 'Glucose Level by Diabetes Status')
    plt.legend()
```

Out[53]: <matplotlib.legend.Legend at 0x2a8b08f9b10>

Glucose Level by Diabetes Status

Most women with diabetes have glucose level within the range of 125-200 while those that don't have theirs within the range of 75-150.

```
In [54]: sns.set_style('darkgrid')
    r = sns.FacetGrid(df, hue = 'Outcome', height = 3, aspect = 2, palette = 'rocket')
    r.map(plt.hist, 'BMI', alpha= 0.7, bins =30)
    r.set(title = 'BMI by Diabetes Status')
    plt.legend()
```

Out[54]: <matplotlib.legend.Legend at 0x2a8aeb7ed10>


```
In [52]: plt.figure(figsize=(3, 4))
    sns.boxplot(x = 'Outcome', y = 'SkinThickness', data = df)
    plt.xlabel('Outcome')
    plt.ylabel('Skin Thickness')
    plt.title('Skin Thickness Distribution by Diabetes Outcome')
    plt.show()
```

Skin Thickness Distribution by Diabetes Outcome

Skin thickness is lower in the women without diabetes, higher skin thickness can be an indicator for diabetes

```
In [57]:
    sns.set_style('whitegrid')
    sns.set_palette('rainbow')
    g = sns.pairplot(df, hue = 'Outcome', height = 4, aspect = 2)
    g.fig.set_size_inches(10,10)
```


Scaling the Data

```
In [58]: from sklearn.preprocessing import StandardScaler
In [59]: scaler = StandardScaler()
scaler.fit(df)
Out[59]: v StandardScaler
StandardScaler()
In [60]: scaled_data = scaler.transform(df)
scaled_data
```

Principal Componenet Analysis

Building and Training the Model

Importing required libraries

```
In [69]: from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import accuracy_score

In [71]: scaled_df = pd.DataFrame(scaled_data, columns = df.columns)

In [75]: x = scaled_df.drop("Outcome", axis=1)
    y = df['Outcome']
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2)
```

Train the Model

Making Predictions

```
In [79]: prediction = model.predict(x_test)
```

Model Evaluation

In []:

```
In [81]:
         from sklearn.metrics import confusion_matrix, classification_report
         print(confusion_matrix(prediction, y_test))
In [82]:
         [[83 21]
          [11 39]]
         print(classification_report(prediction, y_test))
In [83]:
                       precision
                                    recall f1-score
                                                        support
                    0
                            0.88
                                       0.80
                                                 0.84
                                                            104
                    1
                            0.65
                                       0.78
                                                 0.71
                                                             50
                                                 0.79
                                                            154
             accuracy
            macro avg
                            0.77
                                                            154
                                       0.79
                                                 0.77
         weighted avg
                                       0.79
                                                            154
                            0.81
                                                 0.80
```