

Predicting Campaign Success

Brian McMahon 21 February 2018

What is Kickstarter?

Leading crowdfunding platform, raising small amounts of money from large amounts of people

Since 2009:

"Our mission is to help bring creative projects to life"

- \$3.5 bi
- 139,000+ projects funded
- 14 million project backers

\$2,533 pledged 12% funded 29 days to go Graphic Novels

Example Campaign

Model Overview

- Dataset scraped from Kickstarter*
- From January 2016 to today
- 8 -> ~160 features (using "one-hot" dummy variables)
- Analysis:
 - Initial screen of several models
 - GridSearchCV to optimize parameters
 - Deep dive on two high performers

^{*} Kickstarter scraped dataset courtesy of webrobots.io.

Dataset Features

X Features
Category
Subcategory
Staff Pick
Goal (US\$)
Country
Currency
Campaign Length (Days)
Blurb Length (Words)

Categorical; our supervised ML model response

ROC Curve: All Models

	accuracy	auc	f1_f	f1_s	precision_f	precision_s	recall_f	recall_s
XGBoost	77.6%	77.6%	75.9%	79.1%	73.9%	81.0%	78.0%	77.3%
GradientBoost	77.2%	77.3%	75.6%	78.7%	73.3%	80.9%	78.0%	76.6%
LogisticRegression	75.3%	75.4%	73.5%	76.9%	71.3%	79.0%	75.9%	74.9%
RandomForest	75.5%	75.3%	73.0%	77.5%	72.6%	77.9%	73.4%	77.2%
BernoulliNB	73.3%	73.6%	72.1%	74.3%	68.1%	78.6%	76.7%	70.5%
AdaBoost	68.9%	68.4%	64.7%	72.2%	66.4%	70.8%	63.0%	73.8%
DecisionTree	67.9%	67.5%	63.9%	71.1%	64.9%	70.3%	63.0%	71.9%
SVM	64.7%	63.3%	55.8%	70.6%	64.1%	65.0%	49.4%	77.2%
KNN	63.4%	62.3%	55.5%	69.0%	61.6%	64.5%	50.6%	74.0%
MultinomialNB	61.4%	58.2%	37.4%	72.1%	69.7%	59.7%	25.5%	90.9%
GaussianNB	57.9%	53.5%	15.4%	72.0%	82.5%	56.7%	8.5%	98.5%

Business Case: What we care about

Campaign Creator

Cares about: **Precision**(low False Positive, Type I Error)

- Decrease risk of creator's campaign in fact failing (when they believed it would succeed)
- Cost: campaign investment

Campaign Backer

Cares about: **Recall**(low False Negative, Type II Error)

- Decrease risk of backer missing a success
- Cost: missed success

... Maximize both precision and recall (with F1 Score)

Random Forests

Random Forests: Feature Importance

features	importances
usd_goal	0.243471
blurb_length	0.154323
campaign_length	0.119610
staff_pick	0.073467
category_name_Apparel	0.015714
category_name_Children's Books	0.013365
category_name_Video Games	0.012575
category_main_food	0.012474
category_name_Nonfiction	0.009060
category_name_lllustration	0.008936

Keys to campaign success

Category matters!

XG Boost

 accuracy
 auc
 f1_f
 f1_s
 precision_f
 precision_s
 recall_f
 recall_s

 XGBoost
 77.5%
 77.5%
 75.8%
 78.9%
 73.6%
 81.0%
 78.0%
 77.0%

High Precision	Creator
High Recall	Backer
High F1	✓
High AUC	✓

160 subcategories plotted to determine whether a recommendation by kickstarter staff ("staff pick") affects the success of a campaign*

- x axis: staff picks as % of subcategory total
- y axis: success rate as % of subcategory total

Click on chart to visualize via Flask / D3 web app...

Staff Pick vs. Success Rate by Subcategory

* data from July 2017 to today

Key Takeaways

Remember!

When planning a Kickstarter Campaign:

- 1. Set a low US\$ goal
- 2. Be recommended by staff
- 3. Make your campaign short
- 4. Concise description
- 5. Category matters

Example Campaign

By Ashley Prentice First created

Minny Spoons - Cashew Butter + Energy Bites

A female owned cashew butter company dedicated to making delicious products with simple, wholesome, and nutrient dense ingredients.

APPENDIX

Agenda

Intro to Kickstarter

Prediction Model Overview

Data Exploration
with Flask/D3 visualization

Key Takeaways

Food & Craft VIEW ALL →

FEATURED PROJECT

Example Campaign

Lower goals typically lead to greater success

__ _ _ Successful campaigns are, on average, shorter in duration with concise descriptions

Model Methodology

- Dataset scraped from Kickstarter website*
- 160k -> 40k rows, from January 2016 to January 2018
- 8 -> ~160 features (with "one-hot" dummy variables)
- Model refinement procedure:
 - o Initial screen, several ML models preliminarily run against data
 - Preprocessing: StandardScaler for SVM, KNN, LogisticRegression
 - Utilize GridSearchCV to optimize parameters
 - o Deep dive on highest performing models: Random Forests and XG Boost

Dataset Features

id	163425 non-nul	l int64	Unique campaign ID
name	163424 non-nul	1 object	Project Name
state	163425 non-nul	1 object	Response, categorical. Filtered to "Success" or "Fail"
category_main	163425 non-nul	l object	15 main categories
category_name	163425 non-nul	l object	~160 subcategories
backers_count	163425 non-nul	l int64	Response, numerical. # backers
pct_goal_achieved	147802 non-nul	1 float64	Response, numerical. US\$ pledged / US\$ goal
usd_pledged	163425 non-nul	l float64	Response, numerical. US\$ pledged
usd_goal	147802 non-nul	l float64	US\$ goal
country	163425 non-nul	l object	Country
currency	163425 non-nul	l object	Currency
campaign_length	163425 non-nul	l int64	Length of campaign (days)
deadline	163425 non-nul	l object	Project end data
launched	163425 non-nul	1 object	Project launch date
created	163425 non-nul	l object	Project creation date
staff_pick	163425 non-nul	l int64	Recommended by Kickstarter staff
creator_name	163425 non-nul	l object	Name of creator
blurb_length	163425 non-nul	l int64	Length of intro blurb

Y Value

X Values

Dataset Stats

	Dataset 1	Dataset 2
Source	Kaggle	WebRobots.io
Initial Shape	(378661, 17)	(192716, 37)
Key features	Category, subcategory, country, currency, goal, campaign length, pledged*, backers*	Category, subcategory, country, currency, goal, staff pick , campaign length, blurb length , pledged*, backers*
Time period	2012 - Present	2016 - Present
* removed from prediction dataset		

Preprocessing

State to Success, fail (dropped live, suspended, cancelled)
StandardScaler for SVM, KNN, Logistic Regression

It all starts with SQL...

Select * from kickstarter_data2;

Random Forests: What it is

- Ensemble learning method
- Trains on a multitude of decision trees
- Outputs class that is the mean/mode of individual trees
- Corrects overfitting, a weakness of individual decision trees

A random forest...

Random Forests: Decision Tree

A popular category?

Gradient Boost

XG Boost: What it is

- "Extreme Gradient Boosting" is a gradient boosting framework proposed in Friedman's "Greedy Function Approximation: A Gradient Boosting Machine"
- Designed and optimized for boosted tree algorithms
- Popular, highly competitive algorithm for ML competitions

Process / Challenges

Multiple datasets analyzed - not all datasets come equal!

Had to expand set of features to obtain adequate results

Initial screen with first data set narrowed features to only category, country, currency and goal value

Preprocessing: dummy variables, standardizing, train/test split and cross-validate, removed all but successful and failed (such as live, cancelled)

Initial pass through all models, generating initial ROC curve

Deeper analysis into RF and LR, reasons being [expand]

Next Steps

Integrate twitter analysis of launched projects

Incorporate numerical US\$ pledge prediction ie with linear regression

3,501% funded 16 days to go

Product Design