Homework #7

Sam Fleischer

March 14, 2016

Hunter and Nachtergaele 9.1	2
Hunter and Nachtergaele 9.3	2
Hunter and Nachtergaele 9.4	2
Hunter and Nachtergaele 9.5	3
Hunter and Nachtergaele 9.6	3
Hunter and Nachtergaele 9.7	4
Hunter and Nachtergaele 9.8	5
Hunter and Nachtergaele 9.18	6

Hunter and Nachtergaele 9.1

Prove that $\rho(A^*) = \overline{\rho(A)}$, where $\overline{\rho(A)}$ is the set $\{\lambda \in \mathbb{C} \mid \overline{\lambda} \in \rho(A)\}$.

Proof. First note

$$(A^* - \lambda I) = (A^* - (\overline{\lambda}I)^*) = (A - \overline{\lambda}I)^*,$$

and since $(A - \overline{\lambda}I) \in \mathcal{B}(\mathcal{H})$, then $(A - \overline{\lambda}I)$ is invertible if and only if $(A - \overline{\lambda}I)^*$ is invertible. Thus

$$\lambda \in \rho(A^*) \iff (A^* - \lambda I) \text{ invertible}$$

$$\iff (A - \overline{\lambda}I)^* \text{ invertible}$$

$$\iff (A - \overline{\lambda}I) \text{ invertible}$$

$$\iff \overline{\lambda} \in \rho(A)$$

$$\iff \lambda \in \overline{\rho(A)}$$

Thus, $\rho(A^*) = \overline{\rho(A)}$.

Hunter and Nachtergaele 9.3

Suppose that A is a bounded linear operator on a Hilbert space and $\lambda, \mu \in \rho(A)$. Prove that the resolvent R_{λ} of A satisfies the resolvent equation

$$R_{\lambda} - R_{\mu} = (\mu - \lambda) R_{\lambda} R_{\mu}$$
.

Proof. If the resolvent R_{λ} is defined as $R_{\lambda} = (\lambda I - A)^{-1}$, then

$$(\mu I - A) - (\lambda I - A) = (\mu - \lambda)I$$

$$\Rightarrow (\lambda I - A)^{-1} [(\mu I - A) - (\lambda I - A)] (\mu I - A)^{-1} = (\lambda I - A)^{-1} [(\mu - \lambda)I] (\mu I - A)^{-1}$$

$$\Rightarrow (\lambda I - A)^{-1} - (\mu I - A)^{-1} = (\mu - \lambda)(\lambda I - A)^{-1} (\mu I - A)^{-1}$$

$$\Rightarrow R_{\lambda} - R_{\mu} = (\mu - \lambda)R_{\lambda}R_{\mu}$$

Hunter and Nachtergaele 9.4

Prove that the spectrum of an orthogonal projection P is either $\{0\}$, in which case P = 0, or $\{1\}$, in which case P = 1, or else $\{0,1\}$.

Proof. Let λ be an eigenvalue. Then $Px = \lambda x$ for some nonzero vector x. Clearly if $P \equiv 0$, then $0 = Px = \lambda x$ for some $x \neq 0$, which implies $\lambda = 0$. Also, if $P \equiv I$, then $x = Px = \lambda x \implies (1 - \lambda)x = 0$ for some $x \neq 0$. Thus $\lambda = 1$. In general, suppose $P \not\equiv 0$ and $P \not\equiv 1$, then for $x \in \operatorname{ran} P$, $x = Px = \lambda x \implies \lambda = 1$. For $x \not\in \operatorname{ran} P$, then since P is an orthogonal projection, x = y + z for some $y \in \operatorname{ran} P$ (i.e. Py = y) and $z \in \ker P$ (i.e. Pz = 0). Thus $Py + Pz = y = \lambda x$. Since $x \not\in \operatorname{ran} P$, $\lambda x \in \operatorname{ran} P$ only if $\lambda = 0$. Thus the only eigenvalues of P are 0 and 1 (i.e. the point spectrum of P is contained in $\{0,1\}$).

Since orthogonal projections are bounded and self adjoint, then the residual specturm of P is empty. Let $a \in \operatorname{ran} P$. Then $(1-\lambda)a \in \operatorname{ran} (P-\lambda I)$ (since $(P-\lambda I)a = Pa-\lambda a = (1-\lambda)a$). If $\lambda \neq 1$ then $a \in \operatorname{ran} (P-\lambda I)$ since $\operatorname{ran} (P-\lambda I)$ is closed under scalar multiplication. Let $b \in \ker P$. Then $-\lambda b \in \operatorname{ran} (P-\lambda I)$ (since $(P-\lambda I)b = Pb - \lambda b = -\lambda b$). If $\lambda \neq 0$, then $b \in \operatorname{ran} (P-\lambda I)$ since $\operatorname{ran} (P-\lambda I)$ is closed under scalar multiplication. Thus for $\lambda \in \mathbb{C} \setminus \{0,1\}$,

$$\operatorname{ran} P \cup \ker P \subset \operatorname{ran} (P - \lambda I)$$

Since *P* is an orthogonal projection,

$$\mathcal{H} \subset \operatorname{ran}(P - \lambda I) \subset \mathcal{H}$$

and thus ran $(P - \lambda I)$ is closed. Thus the continuous specturm of P is empty. Thus, $\sigma(P) = \{0,1\}$.

Hunter and Nachtergaele 9.5

Let A be a bounded, nonnegative operator on a complex Hilbert space. Prove that $\sigma(A) \subset [0,\infty)$.

Proof. Since *A* is nonnegative, then $\langle x, Ax \rangle \ge 0$ for all $x \in \mathcal{H}$ and $A = A^*$. Since *A* is self-adjoint, its eigenvalues are real and $\sigma(A) \subset [-\|A\|, \|A\|]$. Let λ be an eigenvalue. Then for some $x \ne 0$,

$$0 \le \langle x, Ax \rangle = \langle x, \lambda x \rangle = \lambda \langle x, x \rangle = \lambda ||x||^2$$

$$\implies 0 \le \lambda$$

Thus all eigenvalues are positive (i.e. the point spectrum is contained in $[0,\infty)$). Let $\lambda < 0$. Then if $(A - \lambda I)x_1 = (A - \lambda I)x_2$, then $(A - \lambda I)(x_1 - x_2) = 0$. If $x_1 - x_2 \neq 0$, then λ is an eigenvalue, but this is not possible since $\lambda < 0$. Thus $x_1 - x_2 = 0$, or $x_1 = x_2$. This shows $(A - \lambda I)$ is one-to-one. show that $(A - \lambda I)$ is onto for $\lambda < 0$.

Hunter and Nachtergaele 9.6

Let G be a multiplication operator on $L^2(\mathbb{R})$ defined by

$$Gf(x) = g(x)f(x),$$

where g is continuous and bounded. Prove that G is a bounded linear operator on $L^2(\mathbb{R})$ and that its spectrum is given by

$$\sigma(G) = \overline{\{g(x) : x \in \mathbb{R}\}}.$$

Can an operator of this form have eigenvalues?

Proof. First consider λ such that $\mu(\{x:g(x)=\lambda\})>0$. Then λ is an eigenvalue of G where any function f such that supp $f \subset \{x:g(x)=\lambda\}$ is an eigenvector since

$$(Gf)(x) = g(x)f(x) = \mathcal{X}_{\text{supp}f}g(x)f(x) + \mathcal{X}_{\mathbb{R}\setminus\text{supp}f}g(x)f(x) = \lambda f(x)$$

Thus all λ such that $\mu(\{x: g(x) = \lambda\}) > 0$ are eigenvalues.

Now consider λ such that $\mu(\{x:g(x)=\lambda\})=0$ for all λ . Then $(G-\lambda I)$ is injective. If $(G-\lambda I)$ is surjective, however, then $\exists f \in L^2(\mathbb{R})$ such that $(G-\lambda I)f=\mathscr{X}_{|x-\lambda|<\varepsilon}$ (where \mathscr{X} is the characteristic function). But

$$((G - \lambda I)f)(x) = g(x)f(x) - \lambda f(x) = (g(x) - \lambda)f(x)$$

and so the only candidate function f is

$$f(x) = \frac{\mathcal{X}_{|x-\lambda|<1}}{g(x) - \lambda}$$

but this function is square integrable (i.e. not in $L^2(\mathbb{R})$). Thus $(G - \lambda I)$ is not surjective. Next we show ran $(G - \lambda I)$ is dense in \mathscr{H} . First note that $(g(x) - \lambda)^n \in \text{ran } (G - \lambda I)$ for $n \ge 1$ since $(G - \lambda I)(g(x) - \lambda)^{n-1} = (g(x) - \lambda)^n$. Also, for every $n \in \mathbb{N}$, the characteristic function

$$X_n = \mathcal{X}_{2^{-n} < |x - \lambda| < 1}$$

is in the range and $X_n \to f$ in L^2 norm. Thus ran $(G - \lambda I)$ is dense in \mathcal{H} , i.e.

$$\sigma(G) = \overline{\{g(x) : x \in \mathbb{R}\}}$$

Hunter and Nachtergaele 9.7

Let $K: L^2([0,1]) \to L^2([0,1])$ be the integral operator defined by

$$Kf(x) = \int_0^x f(y) \mathrm{d}y.$$

a) Find the adjoint operator K^* .

Proof.

$$\begin{split} \left\langle f, Kg \right\rangle &= \int_0^1 \overline{f}(x) \int_0^x g(y) \mathrm{d}y \mathrm{d}x \\ &= \int_0^1 \overline{f}(x) \int_0^1 g(y) \mathscr{X}_{0 < y < x < 1} \mathrm{d}y \mathrm{d}x, \qquad \text{where } \mathscr{X} \text{ is the characteristic function} \\ &= \int_0^1 \int_0^1 \overline{f}(x) g(y) \mathscr{X}_{0 < y < x < 1} \mathrm{d}y \mathrm{d}x \\ &= \int_0^1 g(y) \int_0^1 \overline{f}(x) \mathscr{X}_{0 < y < x < 1} \mathrm{d}x \mathrm{d}y \\ &= \int_0^1 \left[\int_y^1 \overline{f}(x) \mathrm{d}x \right] g(y) \mathrm{d}y \end{split}$$

4

$$= \int_0^1 \overline{\left[\int_y^1 f(x) dx\right]} g(y) dy$$
$$= \langle K^* f, g \rangle$$

Thus,

$$K^* f(x) = \int_x^1 f(y) \mathrm{d}y$$

b) Show that $||K|| = \frac{2}{\pi}$.

Proof. □

c) Show that the spectral radius of K is equal to zero.

Proof.

d) Show that 0 belongs to the continuous spectrum of K.

Proof. K is not onto since K is the integral operator, and thus the range of K is equal to the set of differentiable functions. However, not all functions in L^2 are differentiable. Thus K is not onto. However, differentiable functions are dense in L^2 , and thus 0 is in the continuous spectrum of K.

Hunter and Nachtergaele 9.8

Define the right shift operator S on $\ell^2(\mathbb{Z})$ by

$$S(x)_k = x_{k-1}$$
 for all $k \in \mathbb{Z}$,

where $x = (x_k)_{k=-\infty}^{\infty}$ is in $\ell^2(\mathbb{Z})$. Prove the following facts.

a) The point spectrum of S is empty.

Proof. Suppose λ is in the point specturm of S. The for $Sx = \lambda x$ for some nonzero $x \in \ell^2(\mathbb{Z})$. If $\lambda = 0$, the $x \equiv 0$, which is a contradiction. If $\lambda = 1$, then $x_k = e_j$ for all $k, j \in \mathbb{Z}$, i.e. x is constant. However constant bi-infinite sequences are not in ℓ^2 unless they are uniformly 0. This is a contradiction since eigenvectors are nonzero. If $|\lambda| > 1$ and $0 < |\lambda| < 1$, then for all $kin\mathbb{Z}$, x_k , $Sx_k = \lambda x_{k-1}$, and thus for all $n \in \mathbb{Z}$,

$$x_k = \lambda^{k-n} x_n, \quad \forall n \in \mathbb{Z}.$$

Thus x_k can be made arbitrarily large, which is a contradiction since this is true for all $k \in \mathbb{Z}$. Thus there are no eigenvalues of S (i.e. the point spectrum is empty).

b) ran $(\lambda I - S) = \ell^2(\mathbb{Z})$ for every $\lambda \in \mathbb{C}$ with $|\lambda| > 1$.

Proof. If $\|(x)_n\| = 1$, then $\|S(x)_n\| = \|(x)_{n+1}\| = \|(x)_n\| = 1$. Thus $\|S\| = 1$. Then any $\lambda \in \mathbb{C}$ such that $|\lambda| > 1$ has $\lambda \in \rho(S)$, and thus $\lambda I - S$ is bijective. Thus ran $(\lambda I - S) = \ell^2(\mathbb{Z})$.

c) ran $(\lambda I - S) = \ell^2(\mathbb{Z})$ for every $\lambda \in \mathbb{C}$ with $|\lambda| < 1$.

Proof. Let $(y_n) \in \ell^2(\mathbb{Z})$. Then since $\ell^2(\mathbb{Z}) \cong L^2(\mathbb{T})$, let $\mathscr{F}: \ell^2(\mathbb{Z}) \to L^2(\mathbb{T})$ be an isomorphism. So $\exists (a_n)_n$ such that $\mathscr{F}((y_n)) = \sum_{n \in \mathbb{Z}} a_n e^{inx}$. Then

$$\mathscr{F}(S(y)_n) = \tilde{S}\left(\sum_{n \in \mathbb{Z}} a_n e^{inx}\right) = e^{ix} \sum_{n \in \mathbb{Z}} a_n e^{inx} = \sum_{n \in \mathbb{Z}} a_n e^{i(n+1)x}$$

where \tilde{S} is the shift operator in $L^2(\mathbb{T})$ ($\tilde{S} = \mathscr{F} \circ S$). Let $|\lambda| < 1$. Then $(\tilde{S} - \lambda I)g = \sum_{n \in \mathbb{Z}} a_n e^{inx}$ where g is defined as

$$g = \frac{\sum_{n \in \mathbb{Z}} a_n e^{inx}}{e^{ix} - \lambda}$$

since

$$(\tilde{S} - \lambda I) \left(\frac{\sum_{n \in \mathbb{Z}} a_n e^{inx}}{e^{ix} - \lambda} \right) = \frac{e^{ix} \sum_{n \in \mathbb{Z}} a_n e^{inx} - \lambda \sum_{n \in \mathbb{Z}} a_n e^{inx}}{e^{ix} - \lambda} = \sum_{n \in \mathbb{Z}} a_n e^{inx}$$

Thus $(\tilde{S} - \lambda I)$ is surjective, which shows $(S - \lambda I)$ is surjective.

d) The spectrum of S consists of the unit circle $\{\lambda \in \mathbb{C} : |\lambda| = 1\}$ and is purely continuous.

Proof. □

Hunter and Nachtergaele 9.18

Let $P_1, ..., P_N$ be orthogonal projections with orthogonal ranges. Let

$$A = \sum_{n=1}^{N} \lambda_n P_n$$

be a finite linear combination of these projections. Let $\tilde{f}: \sigma(A) \to \mathbb{C}$ be a continuous function and define $f: \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ by

$$f(A) = \sum_{n=1}^{\infty} \tilde{f}(\lambda_n) P_n. \tag{9.23}$$

Suppose that A is a compact self-adjoint operator. Let $f \in C(\sigma(A))$ and consider f(A) defined by (9.23). Prove that

$$||f(A)|| = \sup\{|\tilde{f}(\lambda_n)| n \in \mathbb{N}\}.$$

Let (\tilde{q}_N) be a sequence of polynomials of degree N, converging uniformly to \tilde{f} on $\sigma(A)$. The existence of such a sequence is a consequence of the Weierstrass approximation theorem. Prove that $(q_N(A))$ converges in norm, and that its limit equals f(A) as defined in (9.23).

Proof.