Hands-on Activity 6.1 Introduction to Data Analysis and Tools

CPE311 Computational Thinking with Python

Name: Castillo, Ronel Christian V

Section: CPE22S2

Performed on: 06/20/2024 Submitted on: 06/23/2024

Submitted to: Engr. Roman M. Richard

6.1 Intended Learning Outcome

- 1. Use pandas and numpy data analysis tools.
- 2. Demonstrate how to analyze data using numpy and pandas

6.2 Resources:

Personal Computer

Jupyter Notebook

Internet Connection

6.3 Supplementary Activities:

Exercise 1

Run the given code below for exercises 1 and 2, perform the given tasks without using any Python modules

import random
random.seed(0)
salaries = [round(random.random()*1000000, -3) for _ in range(100)]

Using the data generated above, calculate the following statistics without importing anything from the statistics module in the standard library (https://docs.python.org/3/library/statistics.html) and then confirm your results match up to those that are obtained when using the statistics module (where possible):

Mean

Median

Mode (hint: check out the Counter in the collections module of the standard library at https://docs.python.org/3/library/collections.html#collections.Counter)

Sample variance

Sample standard deviation

```
import statistics as stats
from collections import Counter from math import isnan
from itertools import filterfalse
import math
data=salaries
meanSal= stats.mean(data)
print("Mean using statisctics module:",meanSal)
total_sum = 0
length= len(data)
for num in data:
    total sum += num
    mean=total_sum/length
print("Mean without using Statistics Module:", mean)
med=stats.median(data)
print("\nMedian Using stats module:", med)
def getMedian(lst):
    sorted_list = sorted(lst)
    mid = len(sorted_list) // 2
    if len(sorted list) % 2 == 0:
        median = (sorted_list[mid] + sorted_list[-mid-1]) / 2
        median = sorted_list[mid]
    return median
result = getMedian(data)
print(f"Median without using Stats module: {result}")
mode=stats.mode(data)
print("\\ \  \  \, mode\  \, using\  \, stats\  \, module:",\  \, mode)
from collections import Counter
n_num = salaries
n = len(n_num)
data = Counter(n_num)
get_mode = dict(data)
mode = [k for k, v in get_mode.items() if v == max(list(data.values()))]
if len(mode) == n:
    get_mode = "No mode found"
    get_mode = "Mode without stats library is / are: " + ', '.join(map(str, mode))
print(get_mode)
sv=stats.variance(data)
print("\nSample Variance using stats module:", sv)
meanSqred= [(x-meanSal) ** 2 for x in data]
sumOfMeanSqred=sum(meanSqred)
sampVar= sumOfMeanSqred/ (len(data)-1)
print("Variance using stats module:", sampVar)
stanDev= stats.stdev(data)
print(f"\nStandard\ Deviation\ using\ stats\ module:\ \{stanDev:.2f\}")
variance = sum((x - mean) ** 2 for x in devData) / len(devData)
std dev = math.sqrt(sv)
print(f"Sample Standard Deviation without python modules: {std_dev:.2f}")

→ Mean using statisctics module: 585690.0

Mean without using Statistics Module: 585690.0

      Median Using stats module: 589000.0
      Median without using Stats module: 589000.0
     Mode using stats module: 477000.0
Mode without stats library is / are: 477000.0
      Sample Variance using stats module: 72625796640.53752
      Variance using stats module: 72637231377.65958
     Standard Deviation using stats module: 269491.74
Sample Standard Deviation without python modules: 269491.74
```

Exercise 2

Using the same data, calculate the following statistics using the functions in the statistics module where appropriate:

Range

Coefficient of variation Interquartile range

Quartile coefficient of dispersion

```
range = max(salaries) - min(salaries)
mean = meanSal
COV = (standardDev / mean) * 100
def cal_iqr(data):
     sorted_data = sorted(data)
     q1 = getMedian(data)
     q3 = getMedian(sorted_data[(len(sorted_data) + 1) // 2:])
iqr = cal_iqr(salaries)
def cal_qd(data):
     sorted_data = sorted(data)
     q1 = getMedian(data)
     q3 = getMedian(sorted_data[(len(sorted_data) + 1) // 2:])
     return (q3 - q1) / (q3 + q1)
qd = cal_qd(salaries)
print(f"Range:", range)
print(f"Coefficient of Variation:", COV,"%")
print(f"Coefficient are Range:", iqr)
print(f"Quartile Coefficient of Dispersion:", qd)
      Coefficient of Variation: 46.01269231349201 %
Interquartile Range: 230500.0
Quartile Coefficient of Dispersion: 0.16364927227547035
```

Exercise 3: Pandas for Data Analysis

Load the diabetes.csv file. Convert the diabetes.csv into dataframe Perform the following tasks in the diabetes dataframe:

- 1. Identify the column names
- 2. Identify the data types of the data
- 3. Display the total number of records
- 4. Display the first 20 records
- 5. Display the last 20 records
- 6. Change the Outcome column to Diagnosis
- 7. Create a new column Classification that display "Diabetes" if the value of outcome is 1, otherwise "No Diabetes"
- 8. Create a new dataframe "withDiabetes" that gathers data with diabetes
- 9. Create a new dataframe "noDiabetes" thats gathers data with no diabetes
- 10. Create a new dataframe "Pedia" that gathers data with age 0 to 19
- 11. Create a new dataframe "Adult" that gathers data with age greater than 19
- 12. Use numpy to get the average age and glucose value.
- 13. Use numpy to get the median age and glucose value.
- 14. Use numpy to get the middle values of glucose and age.
- 15. Use numpy to get the standard deviation of the skinthickness.

import pandas as pd filepath= '/content/diabetes.csv' data= pd.read_csv(filepath) data

→ -		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	${\tt DiabetesPedigreeFunction}$	Age	Outcome	
	0	6	148	72	35	0	33.6	0.627	50	1	11.
	1	1	85	66	29	0	26.6	0.351	31	0	+/
	2	8	183	64	0	0	23.3	0.672	32	1	
	3	1	89	66	23	94	28.1	0.167	21	0	
	4	0	137	40	35	168	43.1	2.288	33	1	
	763	10	101	76	48	180	32.9	0.171	63	0	
	764	2	122	70	27	0	36.8	0.340	27	0	
	765	5	121	72	23	112	26.2	0.245	30	0	
	766	1	126	60	0	0	30.1	0.349	47	1	
	767	1	93	70	31	0	30.4	0.315	23	0	
	768 rd	ows × 9 columns	;								

Next steps: Generate code with data View recommended plots

data.columns

data.describe()
indentify data types

$\overline{\Rightarrow}$		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age
	count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
	mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.240885
	std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.760232
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.000000
	25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.000000
	50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.000000
	75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.000000
	max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000

print(f"Total number of records: {len(data)}")
total number of records using pandas

→ Total number of records: 768

data.head(20) # display the first 20 records

$\overline{\Rightarrow}$		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome	
_	0	6	148	72	35	0	33.6	0.627	50	1	
	1	1	85	66	29	0	26.6	0.351	31	0	
	2	8	183	64	0	0	23.3	0.672	32	1	
	3	1	89	66	23	94	28.1	0.167	21	0	
	4	0	137	40	35	168	43.1	2.288	33	1	
	5	5	116	74	0	0	25.6	0.201	30	0	
	6	3	78	50	32	88	31.0	0.248	26	1	
	7	10	115	0	0	0	35.3	0.134	29	0	
	8	2	197	70	45	543	30.5	0.158	53	1	
	9	8	125	96	0	0	0.0	0.232	54	1	
	10	4	110	92	0	0	37.6	0.191	30	0	
	11	10	168	74	0	0	38.0	0.537	34	1	
	12	10	139	80	0	0	27.1	1.441	57	0	
	13	1	189	60	23	846	30.1	0.398	59	1	
	14	5	166	72	19	175	25.8	0.587	51	1	
	15	7	100	0	0	0	30.0	0.484	32	1	
	16	0	118	84	47	230	45.8	0.551	31	1	
	17	7	107	74	0	0	29.6	0.254	31	1	
	18	1	103	30	38	83	43.3	0.183	33	0	
	19	1	115	70	30	96	34.6	0.529	32	1	

data.tail(20) # display the last 20 records

3	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome	
748	3	187	70	22	200	36.4	0.408	36	1	11
749	6	162	62	0	0	24.3	0.178	50	1	
750	4	136	70	0	0	31.2	1.182	22	1	
751	1	121	78	39	74	39.0	0.261	28	0	
752	3	108	62	24	0	26.0	0.223	25	0	
753	0	181	88	44	510	43.3	0.222	26	1	
754	8	154	78	32	0	32.4	0.443	45	1	
755	1	128	88	39	110	36.5	1.057	37	1	
756	7	137	90	41	0	32.0	0.391	39	0	
757	0	123	72	0	0	36.3	0.258	52	1	
758	1	106	76	0	0	37.5	0.197	26	0	
759	6	190	92	0	0	35.5	0.278	66	1	
760	2	88	58	26	16	28.4	0.766	22	0	
761	9	170	74	31	0	44.0	0.403	43	1	
762	9	89	62	0	0	22.5	0.142	33	0	
763	10	101	76	48	180	32.9	0.171	63	0	
764	2	122	70	27	0	36.8	0.340	27	0	
765	5	121	72	23	112	26.2	0.245	30	0	
766	1	126	60	0	0	30.1	0.349	47	1	
767	1	93	70	31	0	30.4	0.315	23	0	

data										
$\supset_{\!$	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome	
0	6	148	72	35	0	33.6	0.627	50	1	11
1	1	85	66	29	0	26.6	0.351	31	0	+/
2	8	183	64	0	0	23.3	0.672	32	1	
3	1	89	66	23	94	28.1	0.167	21	0	
4	0	137	40	35	168	43.1	2.288	33	1	
763	3 10	101	76	48	180	32.9	0.171	63	0	
764	4 2	122	70	27	0	36.8	0.340	27	0	
765	5 5	121	72	23	112	26.2	0.245	30	0	
766	6 1	126	60	0	0	30.1	0.349	47	1	
767	7 1	93	70	31	0	30.4	0.315	23	0	
768	rows × 9 columns	3								

Next steps: Generate code with data View recommended plots

data = data.rename(columns={'Outcome': 'Diagnosis'})
rename outcomes to Diagnosis
data

→ ~		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Diagnosis
	0	6	148	72	35	0	33.6	0.627	50	1
	1	1	85	66	29	0	26.6	0.351	31	0
	2	8	183	64	0	0	23.3	0.672	32	1
	3	1	89	66	23	94	28.1	0.167	21	0
	4	0	137	40	35	168	43.1	2.288	33	1
			***			***				
	763	10	101	76	48	180	32.9	0.171	63	0
	764	2	122	70	27	0	36.8	0.340	27	0
	765	5	121	72	23	112	26.2	0.245	30	0
	766	1	126	60	0	0	30.1	0.349	47	1
	767	1	93	70	31	0	30.4	0.315	23	0
	768 rd	ows × 9 columns	3							

Next steps: Generate code with data View recommended plots

data['Classification'] = data['Diagnosis'].apply(lambda x: 'Diabetes' if x == 1 else 'No Diabetes') data.head()

Create a new column Classification that display

"Diabetes" if the value of outcome is 1 , otherwise "No Diabetes"

\rightarrow		Drognancies	Glucosa	RloodPressure	SkinThickness	Insulin	RMT	DiabetesPedigreeFunction	Λσο	Diagnosis	Classification	
		r r cgilancics	GIUCOSC	DIOOUIT C33ui C	JKIIIIIIIIIIII	IIIJUIIII	DITE	Diabetesi caigi cei anetion	Agc	DIUGHOSIS	CIUSSITICUCION	
	0	6	148	72	35	0	33.6	0.627	50	1	Diabetes	11.
	1	1	85	66	29	0	26.6	0.351	31	0	No Diabetes	
	2	8	183	64	0	0	23.3	0.672	32	1	Diabetes	
	3	1	89	66	23	94	28.1	0.167	21	0	No Diabetes	
	4	0	137	40	35	168	43.1	2.288	33	1	Diabetes	

withDiabetes= data[data['Diagnosis'] == 1]
withDiabetes.head(20)

Create a new dataframe "withDiabetes" that gathers data with diabetes

$\overline{\Rightarrow}$		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Diagnosis	Classification	
	0	6	148	72	35	0	33.6	0.627	50	1	Diabetes	
	2	8	183	64	0	0	23.3	0.672	32	1	Diabetes	
	4	0	137	40	35	168	43.1	2.288	33	1	Diabetes	
	6	3	78	50	32	88	31.0	0.248	26	1	Diabetes	
	8	2	197	70	45	543	30.5	0.158	53	1	Diabetes	
	9	8	125	96	0	0	0.0	0.232	54	1	Diabetes	
	11	10	168	74	0	0	38.0	0.537	34	1	Diabetes	
	13	1	189	60	23	846	30.1	0.398	59	1	Diabetes	
	14	5	166	72	19	175	25.8	0.587	51	1	Diabetes	
	15	7	100	0	0	0	30.0	0.484	32	1	Diabetes	
	16	0	118	84	47	230	45.8	0.551	31	1	Diabetes	
	17	7	107	74	0	0	29.6	0.254	31	1	Diabetes	
	19	1	115	70	30	96	34.6	0.529	32	1	Diabetes	
	22	7	196	90	0	0	39.8	0.451	41	1	Diabetes	
	23	9	119	80	35	0	29.0	0.263	29	1	Diabetes	
	24	11	143	94	33	146	36.6	0.254	51	1	Diabetes	
	25	10	125	70	26	115	31.1	0.205	41	1	Diabetes	
	26	7	147	76	0	0	39.4	0.257	43	1	Diabetes	
	31	3	158	76	36	245	31.6	0.851	28	1	Diabetes	
	37	9	102	76	37	0	32.9	0.665	46	1	Diabetes	

Next steps: Generate code with withDiabetes View recommended plots

noDiabetes= data[data['Diagnosis'] == 0]

noDiabetes.head(20)
Create a new dataframe "noDiabetes" thats gathers data with no diabetes

$\overline{\Rightarrow}$		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Diagnosis	Classifi
	1	1	85	66	29	0	26.6	0.351	31	0	No D
	3	1	89	66	23	94	28.1	0.167	21	0	No D
	5	5	116	74	0	0	25.6	0.201	30	0	No D
	7	10	115	0	0	0	35.3	0.134	29	0	No D
	10	4	110	92	0	0	37.6	0.191	30	0	No D
	12	10	139	80	0	0	27.1	1.441	57	0	No D
	18	1	103	30	38	83	43.3	0.183	33	0	No D
	20	3	126	88	41	235	39.3	0.704	27	0	No D
	21	8	99	84	0	0	35.4	0.388	50	0	No D
	27	1	97	66	15	140	23.2	0.487	22	0	No D
	28	13	145	82	19	110	22.2	0.245	57	0	No D
	29	5	117	92	0	0	34.1	0.337	38	0	No D
	30	5	109	75	26	0	36.0	0.546	60	0	No D
	32	3	88	58	11	54	24.8	0.267	22	0	No D
	33	6	92	92	0	0	19.9	0.188	28	0	No D
	34	10	122	78	31	0	27.6	0.512	45	0	No D
	35	4	103	60	33	192	24.0	0.966	33	0	No D
	36	11	138	76	0	0	33.2	0.420	35	0	No D
	40	3	180	64	25	70	34.0	0.271	26	0	No D
	41	7	133	84	0	0	40.2	0.696	37	0	No D

Pedia= data[data['Age'] <= 19] Pedia.head(20)

Create a new DataFrame "Pedia" that gathers data with age 0 to 19

current data set has no data with ages < 20

Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Diagnosis Classificat

Adult= data[data['Age'] > 19]

Adult.head(20)

Create a new DataFrame "Adult" that gathers data with age greater than 19

7	Pre	gnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Diagnosis	Classifi
	0	6	148	72	35	0	33.6	0.627	50	1	D
	1	1	85	66	29	0	26.6	0.351	31	0	No D
	2	8	183	64	0	0	23.3	0.672	32	1	D
	3	1	89	66	23	94	28.1	0.167	21	0	No D
	4	0	137	40	35	168	43.1	2.288	33	1	D
	5	5	116	74	0	0	25.6	0.201	30	0	No D
	6	3	78	50	32	88	31.0	0.248	26	1	D
	7	10	115	0	0	0	35.3	0.134	29	0	No D
	8	2	197	70	45	543	30.5	0.158	53	1	D
	9	8	125	96	0	0	0.0	0.232	54	1	D
1	10	4	110	92	0	0	37.6	0.191	30	0	No D
1	11	10	168	74	0	0	38.0	0.537	34	1	D
1	12	10	139	80	0	0	27.1	1.441	57	0	No D
1	13	1	189	60	23	846	30.1	0.398	59	1	D
1	14	5	166	72	19	175	25.8	0.587	51	1	D
1	15	7	100	0	0	0	30.0	0.484	32	1	D
1	16	0	118	84	47	230	45.8	0.551	31	1	D