HOMEWORK 2: CONNECTEDNESS AND HOMOTOPY TYPE DUE: SEPTEMBER 24

- 1) Suppose that $A \subset X$ is a connected subspace of X. Let \bar{A} be the closure of A inside X, the smallest closed subset of X containing A^{\dagger} . Suppose that $A \subseteq B \subseteq \bar{A}$. Show that B is connected.
- 2) Suppose $\tau_1 \subseteq \tau_2$ are two topologies on a set X. How does connectedness in one topology differ from connectedness in the other? Give an example to demonstrate your claim(s).
- 3) Let $p: X \to Y$ be a quotient map. If $p^{-1}(y)$ is connected for each $y \in Y$, and Y is connected, show that X is itself connected. As a result, "connectedness can be checked fiber-wise".
- 4) (Chapter 0, #3)
 - \circ Suppose $f: X \to Y$ and $g: Y \to Z$ are homotopy equivalences. Show that $g \circ f: X \to Z$ is a homotopy equivalence. Show as a result that homotopy equivalence is an equivalence relation.
 - Show that the relation of 'homotopic maps' $f, g: X \to Y$ is an equivalence relation.
 - show that a map homotopic to a homotopy equivalence is itself a homotopy equivalence.
- 5) (Chapter 0, #13) Show that two deformation retractions r_t^0 and r_t^1 of a space X onto a subspace A can be joined by a **continuous** family of deformation retractions $r_t^s: X \times I \times I \to X$ from X to A. That is to say that r_t^s is a deformation retraction for each s.

Appended Note: Check out the function

$$r(x,t,s) = r_t^s(x) = \begin{cases} r_t^0 \circ r_{2st}^1(x) & s \le \frac{1}{2} \\ r_{2t(1-s)}^0 \circ r_t^1(x) & s \ge \frac{1}{2} \end{cases}$$

Show that this map has the desired properties:

- $r(x,t,0) = r_t^0(x)$
- $r(x,t,1) = r_t^1(x)$
- At $s=\frac{1}{2}$, both definitions of the function can be used.
- For fixed $s \in I$, r(x,t,s) is a deformation retraction.
- 6) (Chapter 0, #3) A weak deformation retraction of X to A is a homotopy $f_t: X \to X$ such that
 - $\circ f_0 = Id_X$
 - $\circ f_1(X) \subseteq A$
 - $\circ f_t(A) \subseteq A$

[†]**Note:** The closure exists because infinite intersections of closed sets are closed.

Note that this is a weakening of a deformation retraction in the sense that we allow the points in A to move about as $t \in [0, 1]$ varies.

Show that if there is a weak deformation retraction from X to A, then the inclusion $A \stackrel{\iota}{\hookrightarrow} X$ is a homotopy equivalence.

Thought Experiment*: Can you produce a weak deformation retraction which is not a deformation retraction?

^{*}A.K.A. An extra question that has no effect on your grade.