18PYB101J-Electromagnetic Theory, Quantum Mechanics, Waves and Optics

Module 2 Lecture-15

Multiferroic Materials

Multiferroic Materials

Multiferroics are defined as materials that exhibit more than one of the primary <u>ferroic</u> properties in the same phase:

- •<u>ferromagnetism</u> a magnetisation that is switchable by an applied magnetic field
- •<u>ferroelectricity</u> an electric polarisation that is switchable by an applied electric field
- •ferroelasticity a deformation that is switchable by an applied stress While ferroelectric ferroelastics and ferromagnetic ferroelastics are formally multiferroics, these days the term is usually used to describe the <u>magnetoelectric</u> multiferroics that are simultaneously ferromagnetic and ferroelectric.

Multiferroic Materials

Multiferroics

18PYB101J Module-2 Lecture-15

Multiferroics can be divided into two groups:

- 1. Type-I Multiferroics
- 2. Type-II Multiferroics

Type-I Multiferroics:

- This type of multiferroics are older, more numerous and are good ferroelectrics. In these materials the ferroelectricity and magnetism occur at different temperatures and arise from different mechanisms.
- In these materials, the coupling between magnetism and ferroelectricity is unfortunately weak. Different origin of ferroelectricity and magnetism in type-I multiferroic are mostly due to different active subsystems of a material.

Type-I Multiferroics:

- There is a certain coupling between breaking time reversal symmetry, breaking spatial inversion symmetry, ferroelectric order parameter, magnetic order parameter in such type-I multiferroics.
- ➤ In these materials, ferroelectricity can have a number of possible microscopic origins.
- For example: BiFeO₃ with the ferroelectric transition temperature T_c higher than the Neel transition temperature T_N .

Type-II Multiferroics:

- Due to the recent discovery of a novel class of multiferroics, there is a biggest excitement as ferroelectricity exists only in a magnetically ordered state and is caused by a particular type of magnetism.
- \triangleright A nonzero electric polarization occurs in the low temperature phase. For example CuFeO₂ with T_c = T_N.
- The magnetic and/or electric polarization of the barrier controls the current driven through a magnetic tunnel junction (MTJ) with a multiferroic tunnel barrier.

Type-II Multiferroics:

- Multiferroic tunnel junction (MFTJ) is referred to the junctions with a multiferroic tunnel barrier.
- The use of a multiferroic material as a tunnel barrier and ferromagnetic materials as leads in MFTJs would lead to 8 possible resistive states of such junctions.

Some common Multiferroic with their $T_{\underline{c}}$, $T_{\underline{N}}$ and Polarization

material	T _{FE} (K)	T _M (K)	P(μC cm ⁻²)
BiFeO ₃	1103	643	6.1
YMn0 ₃	914	76	5.5
HoMnO ₃	875	72	5.6
TbMnO ₃	28	41	0.06
TbMn ₂ O ₅	38	43	0.04
Ni ₃ V ₂ O ₈	6.3	9.1	0.01

Multiferroic Materials

Applications

- Spintronics Devices (that includes a spin-based transistor)
- Information Storage Devices (magnetic tape, floppy disk etc)
- Spin Valve (device consisting of two or more conducting magnetic materials, that alternate its electrical resistance)
- Quantum Electromagnets (electromagnets are wire coils or loops, which tend to be bulky and difficult to fabricate)
- Microelectronic Devices (MOSFETS, Bipolar Transistor etc)
- Sensors (measures a physical quantity and converts it into a signal which can be read by an instrument)

Thank you