MC202 - Estruturas de Dados

Alexandre Xavier Falcão

Instituto de Computação - UNICAMP

afalcao@ic.unicamp.br

Pilhas e Filas

- Uma pilha é uma estrutura de dados linear, na qual operações de inserção e remoção de um elemento ocorrem sempre no mesmo extremo (topo da pilha).
- O último elemento empilhado é sempre o primeiro a sair da pilha.
- Uma pilha pode ser implementada usando lista ligada ou vetor.

Pilhas e Filas

- Uma fila é uma estrutura de dados linear, na qual operações de inserção ocorrem em um extremo (final da fila) e remoção ocorrem no outro extremo (início da fila).
- O primeiro elemento na fila é sempre o primeiro a sair dela.
- Uma fila também pode ser implementada usando lista ligada ou vetor.

Agenda

- Pilhas estática e dinâmica.
- Aplicações de Pilha.
- Filas estática e dinâmica.
- Aplicações de Fila.

Uma pilha estática é implementada como um vetor de tamanho n. Mesmo vazia, ela já ocupa n posições de memória.

As inserções são feitas sempre na posição igual à quantidade de elementos na pilha.

As remoções são feitas sempre na posição igual à quantidade de elementos na pilha menos um (índice do topo).

As remoções são feitas sempre na posição igual à quantidade de elementos na pilha menos um (índice do topo).

Vamos entender a implementação de uma pilha estática.

Pilha Dinâmica

A implementação usa lista ligada: (a) A pilha está vazia, (b) as inserções são no início da lista, e (c) as remoções também.

Pilhas podem ser usadas para

- reverter a ordem dos caracteres de uma cadeia,
- para implementar algoritmos de backtracking,
- para controlar a ordem de chamada das funções de um programa,
- transformar algoritmos recursivos em iterativos,
- para avaliar expressões matemáticas, etc.

Vamos estudar três tarefas simples relacionadas a expressões matemáticas do tipo $(5+3)*4-8/2^2$ usando pilha.

 Balanceamento dos parênteses: espera-se que cada ocorrência de '(' tenha uma ocorrência de ')' correspondente.

Vamos estudar três tarefas simples relacionadas a expressões matemáticas do tipo $(5+3)*4-8/2^2$ usando pilha.

- Balanceamento dos parênteses: espera-se que cada ocorrência de '(' tenha uma ocorrência de ')' correspondente.
- Conversão de notação: a expressão acima está em notação infixa, pois os operadores estão entre operandos, e poderia ser convertida para notação pósfixa (operadores após operandos), 53 + 4 * 822/-, para fins de avaliação.

Vamos estudar três tarefas simples relacionadas a expressões matemáticas do tipo $(5+3)*4-8/2^2$ usando pilha.

- Balanceamento dos parênteses: espera-se que cada ocorrência de '(' tenha uma ocorrência de ')' correspondente.
- Conversão de notação: a expressão acima está em notação infixa, pois os operadores estão entre operandos, e poderia ser convertida para notação pósfixa (operadores após operandos), 53 + 4 * 822/-, para fins de avaliação.
- Avaliação de uma expressão em notação pósfixa.

Vamos estudar três tarefas simples relacionadas a expressões matemáticas do tipo $(5+3)*4-8/2^2$ usando pilha.

- Balanceamento dos parênteses: espera-se que cada ocorrência de '(' tenha uma ocorrência de ')' correspondente.
- Conversão de notação: a expressão acima está em notação infixa, pois os operadores estão entre operandos, e poderia ser convertida para notação pósfixa (operadores após operandos), 53 + 4 * 822/-, para fins de avaliação.
- Avaliação de uma expressão em notação pósfixa.

Vamos implementar esses exemplos com pilha dinâmica.

Fila Estática

Uma fila estática pode ser implementada como um vetor de tamanho n, com os índices de início e fim.

No entanto, sua implementação circular oferece maior vantagem já que os elementos na fila ocupam posições do índice de início ao índice de fim menos um, e ambos se deslocam no vetor.

O índice de fim sempre está na posição onde será realizada uma nova inserção.

• Após inserir novo elemento na fim, este índice deve ser incrementado por $fim \leftarrow (fim + 1)\%n$.

- Após inserir novo elemento na fim, este índice deve ser incrementado por fim ← (fim + 1)%n.
- Os elementos são removidos da posição início, a qual é subsequentemente incrementada por inicio ← (inicio + 1)%n.

- Após inserir novo elemento na fim, este índice deve ser incrementado por fim ← (fim + 1)%n.
- Os elementos são removidos da posição início, a qual é subsequentemente incrementada por inicio ← (inicio + 1)%n.
- A fila está cheia apenas quando a quantidade de elementos qtde = n.

- Após inserir novo elemento na fim, este índice deve ser incrementado por fim ← (fim + 1)%n.
- Os elementos são removidos da posição início, a qual é subsequentemente incrementada por inicio ← (inicio + 1)%n.
- A fila está cheia apenas quando a quantidade de elementos qtde = n.
- Note que inicio = fim pode ocorrer em duas situações, fila vazia e fila cheia, portanto é importante armazenar a quantidade de elementos na fila.

- Após inserir novo elemento na fim, este índice deve ser incrementado por fim ← (fim + 1)%n.
- Os elementos são removidos da posição início, a qual é subsequentemente incrementada por inicio ← (inicio + 1)%n.
- A fila está cheia apenas quando a quantidade de elementos qtde = n.
- Note que inicio = fim pode ocorrer em duas situações, fila vazia e fila cheia, portanto é importante armazenar a quantidade de elementos na fila.

Vamos entender a implementação de uma fila estática e circular.

Com o que vimos em Listas, filas dinâmicas podem ser facilmente implementadas usando

Com o que vimos em Listas, filas dinâmicas podem ser facilmente implementadas usando

• uma lista ligada simples,

Com o que vimos em Listas, filas dinâmicas podem ser facilmente implementadas usando

- uma lista ligada simples,
- uma lista ligada dupla, ou

Com o que vimos em Listas, filas dinâmicas podem ser facilmente implementadas usando

- uma lista ligada simples,
- uma lista ligada dupla, ou
- uma lista ligada dupla e circular.

Com o que vimos em Listas, filas dinâmicas podem ser facilmente implementadas usando

- uma lista ligada simples,
- uma lista ligada dupla, ou
- uma lista ligada dupla e circular.

As operações de inserção após o último nó e de remoção do nó inicial são mais fáceis no último caso.

Com o que vimos em Listas, filas dinâmicas podem ser facilmente implementadas usando

- uma lista ligada simples,
- uma lista ligada dupla, ou
- uma lista ligada dupla e circular.

As operações de inserção após o último nó e de remoção do nó inicial são mais fáceis no último caso. Esta implementação fica como exercício.

Filas podem ser usadas para

- organizar a ordem de execução de programas de mesma prioridade,
- simular filas do mundo real, tais como filas para a compra de ingressos,
- determinar o número de caixas de supermercado com base no tempo médio de espera dos clientes em fila,
- transferir dados de forma assíncrona,
- para rotular componentes conexos de um grafo.

Vamos estudar o caso de rotulação de letras, palavras, e linhas de uma imagem binária com um texto.

```
Hello! This is a test
to separate letters,
words, and lines.
```

Cada rótulo (número inteiro de 1 em diante) é convertido em uma cor aleatória.

Vamos estudar o caso de rotulação de letras, palavras, e linhas de uma imagem binária com um texto.

```
Hello! This is a test
to separate letters,
words, and lines.
```

Cada rótulo (número inteiro de 1 em diante) é convertido em uma cor aleatória.

Vamos estudar o caso de rotulação de letras, palavras, e linhas de uma imagem binária com um texto.

Hello! This is a test to separate letters, words, and lines.

Cada rótulo (número inteiro de 1 em diante) é convertido em uma cor aleatória.

 A definição de componente conexo em uma imagem depende de uma relação de adjacência.

- A definição de componente conexo em uma imagem depende de uma relação de adjacência.
- Um pixel $q=(x_q,y_q)$ é adjacente a um pixel $p=(x_p,y_p)$ se satisfizer uma relação baseada na posição relativa entre eles.

- A definição de componente conexo em uma imagem depende de uma relação de adjacência.
- Um pixel $q=(x_q,y_q)$ é adjacente a um pixel $p=(x_p,y_p)$ se satisfizer uma relação baseada na posição relativa entre eles.
- Podemos definir uma relação retangular em que p é o pixel central e q é adjacente a p se ambos tiverem o mesmo brilho, $|x_q x_p| <= \frac{w}{2}$, e $|y_q y_p| <= \frac{h}{2}$.

- A definição de componente conexo em uma imagem depende de uma relação de adjacência.
- Um pixel $q=(x_q,y_q)$ é adjacente a um pixel $p=(x_p,y_p)$ se satisfizer uma relação baseada na posição relativa entre eles.
- Podemos definir uma relação retangular em que p é o pixel central e q é adjacente a p se ambos tiverem o mesmo brilho, $|x_q x_p| <= \frac{w}{2}$, e $|y_q y_p| <= \frac{h}{2}$.
- Um pixel q é conexo a um pixel p se existir uma sequência $\langle p_1 = p, p_2, p_3, \dots, p_k = q \rangle$ de pixels adjacentes que conecte p a q.

Um componente conexo em uma imagem binária é um conjunto maximal de pixels de mesmo brilho em que todos os pares de pixels são conexos.

1	1		1	1	
		1			
1				1	
1		1	1	1	
1					

Dependendo da escolha de w e h, poderemos identificar 3 componentes, 2 ou um único componente conexo de brilho 1.

Um componente conexo em uma imagem binária é um conjunto maximal de pixels de mesmo brilho em que todos os pares de pixels são conexos.

w = 3 e h = 3

Dependendo da escolha de w e h, poderemos identificar 3 componentes, 2 ou um único componente conexo de brilho 1.

Um componente conexo em uma imagem binária é um conjunto maximal de pixels de mesmo brilho em que todos os pares de pixels são conexos.

w = 5 e h = 3

Dependendo da escolha de w e h, poderemos identificar 3 componentes, 2 ou um único componente conexo de brilho 1.

Hello! This is a test to separate letters, words, and lines.

Aqui escolhemos w=5 e h=11 para letras, w=11 e h=11 para palavras, e w=31 e h=5 para as linhas. Vamos entender a implementação.

Hello! This is a test to separate letters, words, and lines.

Aqui escolhemos w=5 e h=11 para letras, w=11 e h=11 para palavras, e w=31 e h=5 para as linhas. Vamos entender a implementação.

Hello! This is a test to separate letters, words, and lines.

Aqui escolhemos w=5 e h=11 para letras, w=11 e h=11 para palavras, e w=31 e h=5 para as linhas. Vamos entender a implementação.