PREDICTIVE CODING AN INTRODUCTION

BODY PAIN PERCEPTION LAB

Francesca Fardo

Arthur S. Courtin

Alexandra G. Mitchell

27. AUGUST 2024

Camilla Eva Krænge

Rebecca Astrid Boehme

TERMS AND DEFINITIONS

Infer the real world

Perception sensory observations

e.g. eyes/ears/smell/etc

Action Actuator output

e.g. eye muscles/arms/legs/etc

external hidden states

(Bowman et al., 2023)

Usefulness and falsification

Evidence

Do dopamine neurons report an error in the prediction of reward?

No prediction Reward occurs

Evidence

(Kishida & Sands, 2021)

Evidence

(Kishida & Sands, 2021)

(Kishida & Sands, 2021)

Evidence

(Stefanics et al., 2014)

(Rao & Ballard, 1999)

Evidence

Predictions .. Predictions Prediction errors (mismatch response) **Prediction errors** (mismatch response) Sensory input

Bottom-up signals

Expectations (top-down signals)

Expectations (top-down signals)

Experimental manipulation of expectations

Learning

Conditioning

Instructions

Social / cultural cues

(Ehmsen et al., in prep)

(Ehmsen et al., in prep)

(Shih et al., 2019)

Expectations on pain

Expectations

Expectations on pain

Expectations

27. AUGUST 2024

(Sterzer et al., 2018)

Relevance

Chronic pain

Psychosis

Schizophrenia

hallucinations

Relevance

Quality Assessment					No. Patients	_		
No of Studies	Study Design	Risk of Bias	Inconsistency	Indirectness	Imprecision	Neurophysiological Pain Education	Effect (95% CI)	Quality
Pain (follow-up: median 4 wk) Pain measured on a VAS scale from 0-10 (10 worst) (5 studies)	Randomized trials	Serious*†	Not serious	Not serious	Not serious	106/212 (50.0%)	WMD -1.03 (-1.52 to -0.55)	⊕⊕⊕○ Moderate
Pain (follow-up: median 3 mo) Pain measured on a VAS scale from 0-10 (10 worst) (3 studies)	Randomized trials	Serious‡§	Not serious	Not serious	Serious	62/116 (53.4%)	WMD -1.09 (-2.17 to 0.00)	⊕⊕ ○ ○ Low
Disability (follow-up: median 4 wk) Disability measured on various different scales and transformed to NRS scale from 0-10 (10 worst) (6 studies)	Randomized trials	Serious*†	Not serious	Not serious	Serious	127/253 (50.2%)	WMD -1.00 (-1.72 to -0.29)	⊕⊕⊖⊖ Low
Disability (follow-up: median 3 mo) Disability measured on various different scales and transformed to NRS scale from 0-10 (10 worst) (4 studies)	Randomized trials	Serious*†	Not serious	Not serious	Serious	90/178 (50.6%)	WMD -0.82 (-1.56 to -0.05)	⊕⊕⊖⊖ Low
Behavioral attitude (Tampa Scale of Kinesiophobia) (fo Behavioral attitude measured on Tampa Scale of Kinesiophobia (17-68) (68 worst) (3 studies)	llow-up: mediar Randomized trials	n 4 weeks) Serious*¶#	Serious**	Not serious	Serious	56/112 (50.0%)	WMD -5.73 (-13.60 to 2.14)	⊕○○○ Very low
Tampa Scale of Kinesiophobia (follow-up: median 3 mo Behavioral attitude measured on Tampa Scale of Kinesiophobia (17-68) (68 worst) (2 studies)	Randomized trials	Serious *#	Not serious	Not serious	Serious	50/100 (50.0%)	WMD -0.94 (-6.28 to 4.40)	⊕⊕⊖⊖ Low

^{*}Selective reporting bias: no registered protocol, unclear in choice of reported results.

CI indicates confidence interval; VAS, Visual Analog Scale; WMD, weighted mean difference.

[†]Concealment bias: explanation of the concealment missing.

[‡]No blinding of outcome assessors.

[§]Other sources of bias: baseline difference between groups.

^{||}Wide 95% CI.

Other sources of bias: high dropout.

[#]No blinding of assessor.

^{**}High heterogeneity.

References

- Tegner, H., Frederiksen, P., Esbensen, B. A., & Juhl, C. (2018). Neurophysiological Pain Education for Patients With Chronic Low Back Pain: A Systematic Review and Meta-Analysis. *The Clinical Journal of Pain*, 34(8), 778. https://doi.org/10.1097/AJP.000000000000594
- Sterzer, P., Adams, R. A., Fletcher, P., Frith, C., Lawrie, S. M., Muckli, L., Petrovic, P., Uhlhaas, P., Voss, M., & Corlett, P. R. (2018). The Predictive Coding Account of Psychosis. *Biological Psychiatry*, 84(9), 634–643. https://doi.org/10.1016/j.biopsych.2018.05.015
- Stefanics, G., Kremláček, J., & Czigler, I. (2014). Visual mismatch negativity: A predictive coding view. *Frontiers in Human Neuroscience*, 8, 666. https://doi.org/10.3389/fnhum.2014.00666
- Shih, Y.-W., Tsai, H.-Y., Lin, F.-S., Lin, Y.-H., Chiang, C.-Y., Lu, Z.-L., & Tseng, M.-T. (2019). Effects of Positive and Negative Expectations on Human Pain Perception Engage Separate But Interrelated and Dependently Regulated Cerebral Mechanisms. *The Journal of Neuroscience*, 39(7), 1261–1274. https://doi.org/10.1523/JNEUROSCI.2154-18.2018
- Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward.
 Science (New York, N.Y.), 275(5306), 1593–1599. https://doi.org/10.1126/science.275.5306.1593

References

- Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79–87. https://doi.org/10.1038/4580 Schultz, W. (2016). Dopamine reward prediction error coding. Dialogues in Clinical Neuroscience, 18(1), 23–32.
- Koyama, T., McHaffie, J. G., Laurienti, P. J., & Coghill, R. C. (2005). The subjective experience of pain:
 Where expectations become reality. Proceedings of the National Academy of Sciences of the
 United States of America, 102(36), 12950–12955. https://doi.org/10.1073/pnas.0408576102
- Kishida, K. T., & Sands, L. P. (2021). A Dynamic Affective Core to bind the contents, context, and value of conscious experience. In Affect dynamics (pp. 293–328). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-82965-0_12
- Friston, K. J., Ramstead, M. J. D., Kiefer, A. B., Tschantz, A., Buckley, C. L., Albarracin, M., Pitliya, R. J., Heins, C., Klein, B., Millidge, B., Sakthivadivel, D. A. R., Smithe, T. S. C., Koudahl, M., Tremblay, S. E., Petersen, C., Fung, K., Fox, J. G., Swanson, S., Mapes, D., & René, G. (2024). Designing Ecosystems of Intelligence from First Principles. Collective Intelligence, 3(1), 26339137231222481. https://doi.org/10.1177/26339137231222481

References

• Bowman, H., Collins, D. J., Nayak, A. K., & Cruse, D. (2023). Is predictive coding falsifiable? Neuroscience & Biobehavioral Reviews, 154, 105404. https://doi.org/10.1016/j.neubiorev.2023.105404

