MATEMÁTICA UNINOVE

Módulo - IV

Trigonometria

Estudos das funções tangente, cotangente, secante e cossecante

Objetivo: Definir as funções tangente, cotangente, secante e cossecante.

Este material faz parte da UNINOVE. Acesse atividades, conteúdos, encontros virtuais e fóruns diretamente na plataforma.

Pense no meio ambiente: imprima apenas se necessário.

Tangente de um arco

Sejam P (a, b) um ponto do ciclo trigonométrico pertencente ao primeiro quadrante e t uma reta perpendicular ao eixo x, passando pelo ponto A (1,0). Considere o ângulo AÔP = α , o arco (AP) e o triângulo OAT, em que O é a origem do plano cartesiano e T, a intersecção da reta t com a reta \overrightarrow{OP} conforme ilustrado na figura. Observe que $\overline{OA} = 1$ e T possui coordenadas (1, t).

Como o triângulo OAT é retângulo em A, podemos aplicar a definição da tangente de um ângulo: tg $\alpha=\frac{AT}{OA}=\frac{t}{1}=t$.

Observe que $\operatorname{tg}\alpha$ é a ordenada t do ponto T. Note ainda que a reta $t=\overleftarrow{\operatorname{AT}}$, chamada de eixo das tangentes, tem origem em A, mesmo sentido e mesma unidade do eixo dos senos.

DICA:

A tangente de um ângulo agudo é a razão entre o cateto oposto e o cateto adjacente de um triângulo retângulo.

Observe que se um ângulo pertence ao primeiro ou terceiro quadrantes, então a tangente é positiva. Por outro lado, se pertence ao segundo ou quarto quadrantes, é negativa.

Observe, ainda, que não existe a tangente de todos os ângulos, pois se P é uma intersecção do ciclo trigonométrico com o eixo y, então as retas $\overrightarrow{\mathrm{OP}}$ e t não se cruzam e, portanto, a tangente não está definida para os ângulos $\alpha = \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$.

Por outro lado, para arcos cuja extremidade P é uma intersecção do ciclo trigonométrico com o eixo x, a tangente é igual a zero, uma vez que as retas \overrightarrow{OP} e t se cruzam no ponto A (1, 0).

Função tangente

Seja P a extremidade de um arco no ciclo trigonométrico de centro O correspondente ao número real x. Considerando o ponto T, obtido pela intersecção da reta \overrightarrow{OP} com a reta t, perpendicular ao eixo x no ponto A (1,0), a ordenada de T é a tangente do arco de medida x. Logo:

A **função tangente** é a função $f: R - \left\{\frac{\pi}{2} + k\pi, k \in Z\right\} \to R$ que associa cada número x do domínio ao número real $y = tg\,x$, ou seja, $f(x) = tg\,x$.

O gráfico da função tangente é:

Dizemos que a função tangente é periódica, pois para todo x pertencente ao seu domínio, temos:

 $tg\,x=tg(\,x+\pi)=tg(\,x+2\pi)=\dots$ (para voltas no sentido anti-horário).

$$tg x = tg(x - \pi) = tg(x - 2\pi) = \dots$$
 (para voltas no sentido horário).

Assim, concluímos que $tg\,x=tg(\,x+k\pi)$, $k\in Z$ e, portanto, o período da função tangente é π .

Resumindo as principais informações encontradas sobre a **função tangente**, temos que:

- O domínio é o conjunto $R \left\{ \frac{\pi}{2} + k\pi, k \in Z \right\}$.
- A imagem é o conjunto dos números reais.
- É positiva se x pertence ao primeiro ou terceiro quadrantes, e negativa se pertence aos segundo ou quarto quadrantes.
- É periódica de período π , ou seja, $tg x = tg(x + k\pi), k \in \mathbb{Z}$.

Cotangente de um arco

Sejam P (a, b) um ponto do ciclo trigonométrico pertencente ao primeiro quadrante e g uma reta perpendicular ao eixo y, passando pelo ponto B (0,1). Considere o ângulo AÔP = α , o arco (AP) e o triângulo OBG, em que O (0,0), B (0,1) e G é a intersecção da reta g com a reta \overrightarrow{OP} , conforme ilustrado na figura. Observe que $\overline{OB} = 1$ e G possui coordenadas (g,1).

A cotangente do ângulo α , representada por cotg α , é a abscissa g do ponto G. Note que a reta $g= \overleftrightarrow{\mathrm{BG}}$, chamada de eixo das cotangentes, tem origem em B, o mesmo sentido e a mesma unidade do eixo dos cossenos.

Observe que se um ângulo pertence ao primeiro ou terceiro quadrantes, então a cotangente é positiva. Por outro lado, se pertence ao segundo ou quarto quadrantes, é negativa.

Observe ainda que não existe a cotangente de todos os ângulos, pois se P é uma intersecção do ciclo trigonométrico com o eixo x então as retas \overrightarrow{OP} e g não se cruzam e, portanto, a cotangente não está definida para os ângulos $\alpha = k\pi$, $k \in Z$. Por outro lado, para arcos cuja extremidade P é uma intersecção do ciclo trigonométrico com o eixo y, a cotangente é igual a zero, uma vez que as retas \overrightarrow{OP} e g se cruzam no ponto B (0,1).

Função cotangente

Seja P a extremidade de um arco no ciclo trigonométrico de centro O, correspondente ao número real x. Considerando o ponto G, obtido pela intersecção da reta \overrightarrow{OP} com a reta g, perpendicular ao eixo y no ponto B (0, 1), a abscissa de G é a cotangente do arco de medida x. Logo:

A **função cotangente** é a função $f: R - \{k\pi, k \in Z\} \to R$ que associa cada número x do domínio ao número real $y = cotg\ x$, ou seja, $f(x) = cotg\ x$.

O gráfico da função cotangente é:

Dizemos que a função cotangente é periódica, pois para todo x pertencente ao seu domínio, temos:

- $\cot g \, x = \cot g \, (x + \pi) = \cot g \, (x + 2\pi) = \dots$ (para voltas no sentido anti-horário).
- $cotg \ x = cotg(x \pi) = cotg(x 2\pi) = \dots$ (para voltas no sentido horário).

Assim, concluímos que $\cot g \, x = \cot g \, (x + k\pi)$, $kKk \in Z$ e, portanto, o período da função cotangente é π .

Resumindo as principais informações encontradas sobre a **função cotangente**, temos:

- O domínio é o conjunto $R \{k\pi, k \in Z\}$.
- A imagem é o conjunto dos números reais.
- É positiva se x pertence ao primeiro ou terceiro quadrantes, e negativa se pertence aos segundo ou quarto quadrantes.
- É periódica de período π , ou seja, $cotg x = cotg(x + k\pi), k \in \mathbb{Z}$.

Secante de um arco

Seja P (a, b) um ponto do ciclo trigonométrico pertencente ao primeiro quadrante e s a reta perpendicular à reta \overrightarrow{OP} no ponto P. Considere o ângulo $A\hat{OP} = \alpha$, o arco (AP) e o triângulo OPN, em que O (0, 0), A (1, 0) e N é a intersecção da reta s com o eixo x, conforme ilustrado na figura. Observe que N possui coordenadas (n, 0).

A secante do ângulo α , representada por $\sec \alpha$, é a abscissa n do ponto N. Note que se um ângulo pertence ao primeiro ou quarto quadrantes, então a secante é positiva. Por outro lado, se pertence ao segundo ou terceiro, é negativa.

Note ainda que não existe a secante de todos os ângulos, pois se P estiver na intersecção do ciclo trigonométrico com eixo y, a reta s é paralela ao eixo x e, portanto, não cruza o eixo x. Logo, a secante não está definida para ângulos $\alpha = \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$.

Função secante

Seja P a extremidade de um arco no ciclo trigonométrico de centro O correspondente ao número real x. Considerando o ponto N, obtido pela intersecção da reta \overrightarrow{OP} com a reta s, perpendicular a \overrightarrow{OP} no ponto P, a abscissa de N é a secante do arco de medida x. Logo:

A **função secante** é a função $f: R - \left\{\frac{\pi}{2} + k\pi, k \in Z\right\} \to R$ que associa cada número real x, pertence ao domínio, ao número real $y = \sec x$, ou seja, $f(x) = \sec x$.

O gráfico da função secante é:

Dizemos que a função secante é periódica, pois para todo $x \in R$ temos:

- $\sec x = \sec(x + 2\pi) = \sec(x + 4\pi) = \dots$ (para voltas no sentido anti-horário).
- $\sec x = \sec(x 2\pi) = \sec(x 4\pi) = \dots$ (para voltas no sentido horário).

Assim, concluímos que $\sec x = \sec(x+2k\pi)$, $K \in Z$ e, portanto, o período da função secante é 2π .

Resumindo as principais informações encontradas sobre a **função secante**, temos:

- O domínio é o conjunto $R \left\{ \frac{\pi}{2} + k\pi, k \in Z \right\}$.
- A imagem é o conjunto R] 1,1 [, ou seja, y = sec x ≥ 1 ou y sec x≤
 -1;
- É positiva se x pertence ao primeiro ou quarto quadrantes, e negativa se pertence aos segundo ou terceiro quadrantes.
- É periódica de período 2π , ou seja, $sec x = sec(x + 2k\pi), K \in \mathbb{Z}$.

Cossecante de um arco

Seja P (a, b) um ponto do ciclo trigonométrico pertencente ao primeiro quadrante e s a reta perpendicular à reta \overrightarrow{OP} no ponto P. Considere o ângulo $A\hat{O}P = \alpha$, o arco (AP) e o triângulo OPM, em que O (0, 0), A (1, 0) e M é a intersecção da reta s com o eixo y, conforme ilustrado na figura. Observe que M possui coordenadas (0, m).

A cossecante do ângulo α , representada por cossec α , é a ordenada m do ponto M. Note que se um ângulo pertence ao primeiro ou segundo quadrantes, então cossecante é positiva. Por outro lado, se pertence ao terceiro ou quarto quadrantes, é negativa.

Note, ainda, que não existe a cossecante de todos os ângulos, pois se P estiver na intersecção do ciclo trigonométrico com eixo x, a reta s é paralela ao eixo y e, portanto, não cruza o eixo y. Logo, a cossecante não está definida para ângulos $\alpha=k\pi,k\in Z$.

Função cossecante

Seja P a extremidade de um arco no ciclo trigonométrico de centro O, correspondente ao número real x. Considerando o ponto M, obtido pela intersecção da reta \overrightarrow{OP} com a reta s, perpendicular à \overrightarrow{OP} no ponto P, a ordenada de M é a cossecante do arco de medida x. Logo:

A **função cossecante** é a função $f: R - \{k\pi, k \in Z\} \to R$ que associa cada número real x, pertence ao domínio, ao número real y = cossec x, ou seja, f(x) = cossec x.

O gráfico da função cossecante é:

Dizemos que a função cossecante é periódica, pois para todo $x \in R$ temos:

- $cossec x = cossec (x + 2\pi) =$ (voltas no sentido anti-horário).
- $cossec x = cossec (x 2\pi) =$ (voltas no sentido horário).

Assim, concluímos que $cossec\ x=cosse\ c(\ x+2k\pi),\ K\in Z$ e, portanto, o período da função cossecante é 2π .

Resumindo as principais informações encontradas sobre a **função cossecante**, temos:

- O domínio é o conjunto $R \{k\pi, k \in Z\}$.
- A imagem é o conjunto R-]-1,1 [, ou seja, $y=cossec \ x \ge 1$ ou $y=cossec \ x \le -1$.
- É positiva se x pertence ao 1° ou 2° quadrantes, e negativa se pertence aos 3° ou 4° quadrantes.
- É periódica de período 2π , ou seja, $cossec x = cossec (x + 2k\pi)$, $K \in \mathbb{Z}$.

EXEMPLOS

1. Determine o sinal da tangente, da cotangente, da secante e da cossecante dos arcos 230 $^{\circ}$ e $\frac{2\pi}{3}$:

Solução: Os arcos 230 ° e $\frac{2\pi}{3}$ estão no terceiro e segundo quadrante, respectivamente. Já sabemos os sinais destas funções em cada quadrante:

Quadrante	Tangente	Cotangente	Secante	Cossecante
Primeiro	+	+	+	+
Segundo	_	-	-	+
Terceiro	+	+	_	-

Quarto	_	_	+	_

Logo, podemos afirmar que:

$$tg \, 2 \, 30^{o} > 0$$
, $cotg \, 2 \, 30^{o} > 0$, $sec \, 2 \, 30^{o} < 0$ e $cossec \, 2 \, 30^{o} < 0$

$$tg\frac{2\pi}{3} < 0$$
, $cotg\frac{2\pi}{3} < 0$, $sec\frac{2\pi}{3} < 0$ e $cossec\frac{2\pi}{3} > 0$

2. Determine o domínio das funções:

a)
$$f(x) = \operatorname{tg}\left(x + \frac{\pi}{2}\right)$$

Solução: Sabemos que a função tg α não está definida para $\alpha = \frac{\pi}{2} + k\pi$, logo devemos ter:

$$x + \frac{\pi}{2} \neq \frac{\pi}{2} + k\pi \implies x \neq -\frac{\pi}{2} + \frac{\pi}{2} + k\pi \implies x \neq k\pi.$$

Portanto, o domínio da função é: $D_f = \{x \in R | x \neq k\pi\}.$

b)
$$g(x) = cotg(3x)$$

Solução: Sabemos que a função $\cot g\alpha$ não está definida para $\alpha=k\pi$. Logo, devemos ter: $3x\neq k\pi \quad \Rightarrow \quad x\neq \frac{k\pi}{3}$.

Portanto, o domínio da função é: $D_g = \left\{ x \in R | x \neq \frac{k\pi}{3} \right\}$.

c)
$$h(x) = sec\left(\frac{x+\pi}{4}\right)$$

Solução: Sabemos que a função $sec~\alpha$ não está definida para

$$\alpha = \frac{\pi}{2} + k\pi$$
.

Logo, devemos ter: $\frac{x+\pi}{4} \neq \frac{\pi}{2} + k\pi$, multiplicando por 4

$$4.\left(\frac{x+\pi}{4}\right) \neq 4.\left(\frac{\pi}{2} + k\pi\right) \Rightarrow x + \pi \neq 2\pi + 4K\pi$$
, subtraindo π

$$x + \pi - \pi \neq 2\pi - \pi + 4K\pi \implies x \neq \pi + 4K\pi.$$

Portanto, o domínio da função é: $D_h = \{x \in R | x \neq \pi + 4k\pi\}.$

3. Determine o conjunto imagem das funções:

a)
$$f(x) = 2 tg x$$

Solução: Sabemos que o conjunto imagem da função tg *x* é o conjunto dos números reais, ou seja, - ∞ < tg x < ∞. Multiplicando por 2, temos: - ∞ < 2tg x < ∞. Logo, o conjunto a imagem é: Im_f = *R*.

b)
$$g(x) = 3 \sec x$$

Solução: Sabemos que o conjunto imagem da função $\sec x$ é o conjunto R -] - 1,1[, ou seja, $\sec x \le -1$ ou $\sec x \ge 1$. Multiplicando por 3, temos: $3\sec x \le -3$ ou $3\sec x \ge 3$. Logo, o conjunto a imagem é: $Im_g = R -] -3,3[$.

c)
$$h(x) = 1 + 2 \csc x$$

Solução: Sabemos que o conjunto imagem da função cossec x é o conjunto R-] -1,1 [, ou seja:

cossec $x \le -1$ ou cossec $x \ge 1$, multiplicando por 2

2cossec $x \le -2$ ou 2cossec $x \ge 2$, somando 1

 $1 + 2\cos x \le 1 + (-2)$ ou $1 + 2\cos x \ge 1 + 2$, logo

 $1 + 2 \operatorname{cossec} x \le 1 \operatorname{ou} 1 + 2 \operatorname{cossec} x \ge 3$

Portanto, o conjunto a imagem é: $Im_h = R -] -1,3 [$.

Agora é a sua vez! Resolva os exercícios, verifique seu conhecimento e acesse o espaço online da UNINOVE para assistir à videoaula referente ao conteúdo assimilado.

REFERÊNCIAS

IEZZI, GELSON. *Fundamentos da Matemática Elementar* - Ensino Médio - 8. ed. São Paulo: Saraiva, 2004.v.3

MELLO, José Luiz Pastore. *Matemática*: construção e significado – Ensino médio. São Paulo: Moderna, 2005.