Computer Architecture Computer Engineering Track Optional Tutorial 6

The Revision of Selected Topics: SRAM and DRAM Latches

Artem Burmyakov, Muhammad Fahim, Alexander Tormasov

October 09, 2020

Memory Hierarchy – the Fundamental Idea of Computer Architecture

The Comparison of DRAM and SRAM Memory Types

Characteristic	SRAM	DRAM	
Access Speed	Faster	Slower	
Storage Capacity	Smaller	Larger	
Storage Element	Flip-flop (Latch)	Capacitor	
Usage	CPU cache, registers	System memory	
Cost	Expensive	Cheaper	
Power Consumption	Lower	Higher	
Organisation	Complex	Simpler	
Power Leakage	Not present	Significant	
Chip Reliability	More reliable	Less reliable	
Volatility	Both are volatile (require electrical power to keep data)		
Memory Cell Access	Each cell is accessed directly, unlike Sequential Access Memory (SAM)		

The Comparison of DRAM and SRAM Memory Types

Characteristic	SRAM	DRAM	
Access Speed	Faster	Slower	
Storage Capacity	Smaller	Larger	
Storage Element	Flip-flop (Latch)	Capacitor	
Usage	CPU cache, registers	System memory	
Cost	Expensive	Cheaper	
Power Consumption	Lower	Higher	
Organisation	Complex	Simpler	
Power Leakage	Not present	Significant	
Chip Reliability	More reliable	Less reliable	
Volatility	Both are volatile (require electrical power to keep data)		
Memory Cell Access	Each cell is accessed directly, unlike Sequential Access Memory (SAM)		

Capacitor: a physical device to store electrical charge

DRAM memory cell: capacitor + transistor

Bitline *k*:

for write operation: transfers data to be stored ("0" or "1"); for read operation: returns stored data ("0" or "1")

Wordline i

activates memory cell for read/write operations:

Input "1" – line selected for operation, and thus, transistor is "ON";

Input "0" – line is deactivated

Bitline *k:*

for write operation: transfers data to be stored ("0" or "1"); for read operation: returns stored data ("0" or "1")

Wordline *i*

activates memory cell for read/write operations:

Input "1" – line selected for operation, and thus, transistor is "ON";

Input "0" – line is deactivated

1) Activation of the wordline, corresponding to the address of a memory cell;

Wordline i

activates memory cell for read/write operations:

Input "1" – line selected for operation, and thus, transistor is "ON";
Input "0" – line is deactivated

Bitline *k*:

for write operation: transfers data to be stored ("0" or "1"); for read operation: returns stored data ("0" or "1")

3) Transfering data bit over the bitline, to be stored;

If "1" – capacitor gets charged (however, some time for charging is needed)

3) Transfering data bit over the bitline, to be stored;

If "1" – capacitor gets charged (however, some time for charging is needed);

Else if "0" - capacitor is discharged

3) Transfering data bit over the bitline, to be stored;

If "1" – capacitor gets charged (however, some time for charging is needed);

Else if "0" - capacitor is discharged

Reading from DRAM memory cell

Reading from DRAM memory cell

3) Transfering data bit from capacitor over the bitline

A More Compact Graphical Notation for Electrical Circuits

A More Compact Graphical Notation for Electrical Circuits

A More Compact Graphical Notation for Electrical Circuits

DRAM memory – a set of memory cells (each cell contains 1 bit of data)

DRAM Memory: the Work Principle

DRAM memory – a set of memory cells (each cell contains 1 bit of data)

DRAM Memory: the Work Principle

Several memory cells are connected to the same wordline

DRAM Memory: the Work Principle

Memory controller operates with memory cells, by using demultiplexors, encoders, etc.

Bus

DRAM Memory: the Work Principle

Bus

DRAM Memory: the Work Principle

Latch: an electronic circuit to store one bit of information

S	R	Q
1	0	1
0	1	0
0	0	Q ^{prev}
1	1	Illegal inputs

Cross-coupled connection of logic gates – the key feature of latches and flip-flops: the output signal of one gate serves as an input for another gate

Latch: multiple logic implementations are available

1) Implementation by using NOR logic gates:

2) by using NAND logic gates:

Recap: Each logic gate is an electronic circuit, implemented by using transistors

Logic Gate	Symbolic Representation	Truth Table			Implementation with Transistors
		A	В	Q=AB	A ••••••••••••••••••••••••••••••••••••
AND A	$A \longrightarrow a$	0	0	0	A NOVE TYP.
	Q AND Q	1	0	0	B •₩
	B	0	1	0	$\bigcup_{\mathbf{Q}} \mathbf{Q} = AB$
		1	1	1	4.7K \$
					+6V
OR B	A .	A	В	Q=A+B	10K
	$\overline{}$	0	0	0	A - 10K 2N2222 typ.
	OB \	1	0	1	B ⊶ 10K
		0	1	1	$\bigcup_{\text{Out}} Q = A + B$
		1	1	1	4.7K
					+Vcc
NOT	A Q		A Q=A'		₹2
			0	1	Q = A'
			1	0	A O Transistor Switch
	,				<u> </u>

Latch Logical representation:

Electrical circuit implementation (one of many):

There is an external power supply, to support latch functioning

Switch to control the input values of *S* and *R* (assumed to have 3 positions)

Latch Logical representation:

Electrical circuit implementation (one of many):

There is an external power supply, to support latch functioning +Vcc R1 R4 **AND** R2 R3 Output Q Output Q TR₂ "OFF" "OFF" R**AND** SPDT Switch Switch to control the input values of S and R (assumed to have 3 positions)

Latch Logical representation:

Electrical circuit implementation (one of many):

Cross-coupled connections between gates and corresponding transistors

State-Transition Diagram for a Latch

State-Transition Diagram for a Latch

State-Transition Diagram for a Latch

State-Transition Diagram for a Latch OR S = 0R = 0Uninitialized state ROR $(Q, \overline{Q}$ - arbitrary) S = 1R = 0S = 0R = 1S = 0R = 1S = 0R = 0 $\frac{Q}{Q} = 1$ Q = 0 $\frac{Q}{Q} = 0$ = 1

S = 0R = 0

State-Transition Diagram for a Latch

S State-Transition Diagram for a Latch OR S = 0R = 0Uninitialized state ROR $(Q, \overline{Q}$ - arbitrary) S = 1R = 0S = 0R = 1S = 0R = 1S = 0R = 0 $\frac{Q}{Q} = 1$ Q = 0 $\frac{Q=0}{Q=1}$ S = 0R = 0S = 1R = 0S = 1 R = 1S = 1 R = 1Invalid state

 $(Q = \overline{Q})$

State-Transition Diagram for a Latch

Characteristic	SRAM	DRAM
Access Speed		
Storage Capacity		
Storage Element		
Usage		
Cost		
Power Consumption		
Organisation		
Power Leakage		
Chip Reliability		
Volatility		
Memory Cell Access		

Characteristic	SRAM	DRAM
Access Speed	Faster	Slower
Storage Capacity		
Storage Element		
Usage		
Cost		
Power Consumption		
Organisation		
Power Leakage		
Chip Reliability		
Volatility		
Memory Cell Access		

Characteristic	SRAM	DRAM
Access Speed	Faster	Slower
Storage Capacity	Smaller	Larger
Storage Element		
Usage		
Cost		
Power Consumption		
Organisation		
Power Leakage		
Chip Reliability		
Volatility		
Memory Cell Access		

Characteristic	SRAM	DRAM
Access Speed	Faster	Slower
Storage Capacity	Smaller	Larger
Storage Element	Flip-flop	Capacitor
Usage		
Cost		
Power Consumption		
Organisation		
Power Leakage		
Chip Reliability		
Volatility		
Memory Cell Access		

Characteristic	SRAM	DRAM
Access Speed	Faster	Slower
Storage Capacity	Smaller	Larger
Storage Element	Flip-flop	Capacitor
Usage	CPU cache, registers	System memory
Cost		
Power Consumption		
Organisation		
Power Leakage		
Chip Reliability		
Volatility		
Memory Cell Access		

	I	I
Characteristic	SRAM	DRAM
Access Speed	Faster	Slower
Storage Capacity	Smaller	Larger
Storage Element	Flip-flop	Capacitor
Usage	CPU cache, registers	System memory
Cost	Expensive	Cheaper
Power Consumption		
Organisation		
Power Leakage		
Chip Reliability		
Volatility		
Memory Cell Access		

Characteristic	SRAM	DRAM
Access Speed	Faster	Slower
Storage Capacity	Smaller	Larger
Storage Element	Flip-flop	Capacitor
Usage	CPU cache, registers	System memory
Cost	Expensive	Cheaper
Power Consumption	Lower	Higher
Organisation		
Power Leakage		
Chip Reliability		
Volatility		
Memory Cell Access		

Characteristic	SRAM	DRAM
Access Speed	Faster	Slower
Storage Capacity	Smaller	Larger
Storage Element	Flip-flop	Capacitor
Usage	CPU cache, registers	System memory
Cost	Expensive	Cheaper
Power Consumption	Lower	Higher
Organisation	Complex	Simpler
Power Leakage		
Chip Reliability		
Volatility		
Memory Cell Access		

Characteristic	SRAM	DRAM
Access Speed	Faster	Slower
Storage Capacity	Smaller	Larger
Storage Element	Flip-flop	Capacitor
Usage	CPU cache, registers	System memory
Cost	Expensive	Cheaper
Power Consumption	Lower	Higher
Organisation	Complex	Simpler
Power Leakage	Not present	Significant
Chip Reliability		
Volatility		
Memory Cell Access		

Characteristic	SRAM	DRAM
Access Speed	Faster	Slower
Storage Capacity	Smaller	Larger
Storage Element	Flip-flop	Capacitor
Usage	CPU cache, registers	System memory
Cost	Expensive	Cheaper
Power Consumption	Lower	Higher
Organisation	Complex	Simpler
Power Leakage	Not present	Significant
Chip Reliability	More reliable	Less reliable
Volatility		
Memory Cell Access		

Characteristic	SRAM	DRAM
Access Speed	Faster	Slower
Storage Capacity	Smaller	Larger
Storage Element	Flip-flop	Capacitor
Usage	CPU cache, registers	System memory
Cost	Expensive	Cheaper
Power Consumption	Lower	Higher
Organisation	Complex	Simpler
Power Leakage	Not present	Significant
Chip Reliability	More reliable	Less reliable
Volatility	Both are volatile (loose	data if power is off)
Memory Cell Access		

Characteristic	SRAM	DRAM
Access Speed	Faster	Slower
Storage Capacity	Smaller	Larger
Storage Element	Flip-flop	Capacitor
Usage	CPU cache, registers	System memory
Cost	Expensive	Cheaper
Power Consumption	Lower	Higher
Organisation	Complex	Simpler
Power Leakage	Not present	Significant
Chip Reliability	More reliable	Less reliable
Volatility	Both are volatile (require electrical power to keep data)	
Memory Cell Access	Each cell is accessed directly, unlike Sequential Access Memory (SAM)	

Characteristic	SRAM	DRAM
Access Speed	Faster	Slower
Storage Capacity	Smaller	Larger
Storage Element	Flip-flop	Capacitor
Usage	CPU cache, registers	System memory
Cost	Expensive	Cheaper
Power Consumption	Lower	Higher
Organisation	Complex	Simpler
Power Leakage	Not present	Significant
Chip Reliability	More reliable	Less reliable
Volatility	Both are volatile (require electrical power to keep data)	
Memory Cell Access	Each cell is accessed directly, unlike Sequential Access Memory (SAM)	