Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа М3213	К работе допущен
Студент Губанов Константин	Работа выполнена
Преподаватель <u>Хуснутдинова Наира</u> <u>Рустемовна</u>	Отчет принят

Рабочий протокол и отчет по лабораторной работе №3.01

Изучение электростатического поля методом моделирования

1. Цель работы

Изучение пространственного распределения эквипотенциальных поверхностей и силовых линий электростатического поля с использованием метода экспериментального моделирования в слабопроводящей среде.

2. Задачи, решаемые при выполнении работы

- 1. Построение эквипотенциальных линий электростатического поля в моделируемой среде.
- 2. Определение направления и характера распределения силовых линий электрического поля.
- 3. Исследование влияния проводящих объектов на топологию электростатического поля.
- 4. Проведение расчетов напряженности поля и поверхностной плотности зарядов в различных точках модели.

3. Объект исследования

Электростатическое поле, созданное в слабо-проводящей среде двумя электродами, моделирующее распределение поля в плоском конденсаторе и в системе с проводящим объектом.

4. Метод экспериментального исследования

Метод экспериментального моделирования электростатического поля на основе закона аналогии между электрическим полем в вакууме и в изотропной проводящей среде. Для измерений используется электролитическая ванна, в которой создается электрическое поле путем подачи напряжения на электроды, а потенциалы фиксируются с помощью измерительного зонда и вольтметра.

5. Рабочие формулы

1. Напряженность электрического поля:

$$\vec{E} = -\nabla \phi$$
, для плоского конденсатора: $\phi(x) = \phi_0 + E \cdot x$.

2. Средняянапряженностьмеждудвумяточками:

$$\langle E_{12}
angle = rac{\phi_1 - \phi_2}{{
m l}_{12}}$$
, где ϕ_1, ϕ_2 — потенциалы, ${
m l}_{12}$ — расстояние.

- 3. Поверхностная плотность электрического заряда: $\sigma' = \varepsilon_0 \cdot E_n$, где $\varepsilon_0 \approx 8.85 \cdot 10^{-12} \, \Phi/\text{м}$ электрическая постоянная, E_n напряженность, перпендикулярная поверхности.
- 4. Погрешность измерений напряженности:

$$\Delta E = \sqrt{\left(\frac{\Delta \phi}{l}\right)^2 + \left(\frac{\phi \cdot \Delta l}{l^2}\right)^2}$$
 , где $\Delta \phi$ — погрешность потенциала, Δl — погрешность расстояния.

6. Измерительные приборы

№ n/n	Наименование	Характеристика	Используемый диапазон	$\Delta_{\scriptscriptstyle H}$
1	Вольтметр (в составе АВ1)	Измерение переменного напряжения	0 – 20 B	± 0.1 B
2	Генератор напряжения (ГН1)	Источник переменного напряжения с регулировкой частоты	400 Гц	± 50 Гц
3	Миллиметровая бумага (формат А4)	Для нанесения эквипотенциальных линий и координат	-	\pm 1 мм по X, \pm 0.5 мм по Y

7. Схема установки.

- Электролитическая ванна прямоугольный резервуар с недистиллированной водой, в который помещены электроды и измерительный зонд. Используется для моделирования электростатического поля.
- Электроды два плоских металлических проводника, закрепленные на противоположных стенках ванны. Подключены к генератору напряжения (ГН1).
- Генератор напряжения (ГН1) устройство, обеспечивающее подачу переменного напряжения ($400 \pm 50 \, \Gamma$ ц) на электроды.
- Измерительный зонд тонкий изолированный проводник, используемый для измерения потенциала в заданной точке ванны. Подключен к вольтметру.
- **Вольтметр** (в составе комбинированного прибора AB1) прибор для измерения действующего значения разности потенциалов между зондом и электродом.
- Миллиметровая бумага используется для нанесения эквипотенциальных линий и координат измеренных точек.

8. Результаты косвенных измерений

Расчет величины напряженности в центре электролитической ванны:

$$E_{\text{центр}} \simeq \frac{\Phi_1 - \Phi_2}{l_{12}} = \frac{(7.57 - 5.57) \,\text{B}}{(0.161 - 0.112) \,\text{m}} \approx 40.8163 \,\frac{\text{B}}{\text{m}}$$

Расчет величины напряженности в окрестности одного из электродов:

$$E_{+} \simeq \frac{\Phi_{1} - \Phi_{2}}{l_{12}} = \frac{(11.57 - 9.57) \text{ B}}{(0.26 - 0.21) \text{ M}} = 40 \frac{\text{B}}{\text{M}}$$

Расчет величины поверхностной плотности электрического заряда на электродах:

$$\sigma_{+} = -\varepsilon_{0} \cdot E_{+} = -(8.85 \cdot 10^{-12}) \cdot 40 = -3.54 \cdot 10^{-10} \frac{\text{K}\pi}{\text{M}^{2}}$$

Аналогичным методом проведем вычисления напряженности на каждом отрезке для конфигурации поля при наличии проводящего кольца, чтобы найти области с минимальной и максимальной напряженностью. Результаты запишем в таблицу:

	Результаты вычислений, $\frac{B}{M}$								
	1,87- 3,87	3,87- 4,87	4,87- 5,87	5,87- 6,87	6,87- 7,87	7,87- 8,87	8,87- 9,87	9,87- 11,87	11,87- 12,87
2	100	45,4545	37,0370	27,7777	24,3902	38,4615	76,9230	60,6060	52,6315
4	-	-	47,6190	25	18,5185	41,6666	-	-	-
6	153,846	55,5555	62,5	-	-	62,5	52,6315	105,263	62,5
8	-	-	52,6315	-	-	62,5	-	-	-
10	125	76,9230	71,4285	-	-	62,5	76,9230	111,111	66,6666
12	-	-	62,5	-	-	58,823	-	-	-
14	117,647	58,8235	58,8235	-	-	50	55,5555	105,26	62,5
16	-	-	47,6190	24,3902	19,6078	38,4615	-	-	-
18	95,2380	47,619	35,714	27,027	27,777	34,4827	47,619	80	52,631

Исходя из результатов вычислений напряженности можно сделать вывод, что $E_{min}\approx 18{,}52~\frac{\rm B}{\rm M}$, а $E_{max}\approx 153{,}85~\frac{\rm B}{\rm M}$

9. Расчет погрешностей измерений

Найдем погрешность измерения потенциала и измерения длины отрезка между потенциалами:

$$\frac{\partial E}{\partial \varphi_1} = \frac{1 - \varphi_2}{l_{12}}$$

$$\frac{\partial E}{\partial \varphi_2} = \frac{\varphi_1 - 1}{l_{12}}$$

$$\frac{\partial E}{\partial \varphi_1} = -\frac{\varphi_1 - \varphi_2}{l_{12}^2}$$

Тогда погрешность напряженности можно найти:

$$\Delta E = \sqrt{\frac{1 - \varphi_2}{l_{12}} \Delta \varphi + \frac{\varphi_1 - 1}{l_{12}} \Delta \varphi - \frac{\varphi_1 - \varphi_2}{l_{12}^2} \Delta l_{12}} = \sqrt{\Delta \varphi \frac{\varphi_1 - \varphi_2}{l_{12}} - \frac{\varphi_1 - \varphi_2}{l_{12}^2} \Delta l_{12}}$$

Где $\Delta \varphi = 0.1$ В – погрешность измерения потенциала вольтметром, Δl_{12} – погрешность измерения длины отрезка между потенциалами линейкой, возьмем 0,001 м, тогда:

Частные производные для погрешности:

$$\frac{\partial E}{\partial \phi_1} = \frac{1}{l_{12}} = \frac{1}{0.049} \approx 20.41,$$

$$\frac{\partial E}{\partial \Phi_2} = -\frac{1}{l_{12}} = -20.41,$$

$$\frac{\partial E}{\partial l_{12}} = -\frac{\Phi_1 - \Phi_2}{l_{12}^2} = -\frac{7.57 - 5.57}{0.049^2} \approx -832.65$$

Погрешность напряженности в центре ванны:

$$\Delta E_{\text{центр}} = \sqrt{\left(\frac{\partial E}{\partial \phi_1} \cdot \Delta \phi\right)^2 + \left(\frac{\partial E}{\partial \phi_2} \cdot \Delta \phi\right)^2 + \left(\frac{\partial E}{\partial l_{12}} \cdot \Delta l_{12}\right)^2}$$

$$\Delta E_{\text{центр}} = \sqrt{(20.41 \cdot 0.1)^2 + (-20.41 \cdot 0.1)^2 + (-832.65 \cdot 0.001)^2} \approx 2.93 \frac{\text{B}}{\text{M}}$$

Итог для центра ванны:

$$E_{\text{центр}} = 40.82 \pm 2.93 \frac{\text{B}}{\text{M}}$$

Аналогично считаем для остальных данных:

$$\Delta E_{+} = \sqrt{(20.00 \cdot 0.1)^{2} + (-20.00 \cdot 0.1)^{2} + (-800.00 \cdot 0.001)^{2}} \approx 2.83 \frac{B}{M}$$

Итог для области около электрода: $E_+ = 40.00 \pm 2.83 \, \frac{\mathrm{B}}{\mathrm{M}}$

$$\Delta E_{\text{max}} = \sqrt{(7.692)^2 + (-7.692)^2 + (-11.818)^2} \approx 14.84 \frac{B}{M}$$

$$\Delta E_{\text{min}} = \sqrt{(1.852)^2 + (-1.852)^2 + (-0.344)^2} \approx 2.65 \frac{B}{M}$$

Итог для
$$E_{max}$$
 и E_{min} :

$$E_{\text{max}} = 153.85 \pm 14.84 \frac{\text{B}}{\text{M}}$$

$$E_{\min} = 18.52 \pm 2.65 \frac{B}{M}$$

10. Графики

График 1. Срезы эквипотенциальных поверхностей и силовые линии модели, имитирующей плоский конденсатор.

График 2. Срезы эквипотенциальных поверхностей и силовые линии модели, имитирующей электростатическое поле с помещенным по центру кольцевым проводником.

График 3. Зависимость потенциала от координаты по оси, перпендикулярной электродам.

11. Окончательные результаты

Значения напряженности в центре электролитической ванны:

$$E_{\text{центр}} = 40.82 \pm 2.93 \frac{\text{B}}{\text{M}}$$

в окрестности правого (+) электрода:

$$E_+ = 40.00 \pm 2.83 \frac{B}{M}$$

Оценка поверхностной плотности электрического заряда вблизи проводников:

$$\sigma_{+} = -3.54 \cdot 10^{-10} \, \frac{\text{K} \text{J}}{\text{M}^{2}}$$

Значения максимальной напряженности в конфигурации с кольцевым проводником:

$$E_{\text{max}} = 153.85 \pm 14.84 \frac{\text{B}}{\text{M}}$$

Значения минимальной напряженности в конфигурации с кольцевым проводником:

$$E_{\min} = 18.52 \pm 2.65 \frac{B}{M}$$

12. Выводы и анализ результатов работы

В ходе работы были исследованы две конфигурации электростатического поля: плоский конденсатор и система с проводящим кольцом. В центре электролитической ванны напряженность составила 40.82 ± 2.93 В/м, а вблизи правого электрода 40.00 ± 2.83 В/м. Поверхностная плотность заряда на проводниках равна $-3.54\cdot10-10$ Кл/м².

Для кольцевой конфигурации максимальная напряженность (153.85±14.84 В/м) наблюдалась у краев кольца, а минимальная (18.52±2.65 В/м) в центре. Распределение напряженности согласуется с теоретическими ожиданиями, а различия в измерениях объясняются экспериментальными погрешностями. Работа продемонстрировала правильность построения эквипотенциальных линий и закономерности для заданных конфигураций.