Mu Tu W Th Fr Sa Su		Memo No Date o1_
	Algebrai (Cycles	
Conventions: R=R	····	
sheme: algebtic	scheme i.e. X -75	ipecf) is of finite typ
· variety: when	d and improvible che	hre-

efinition: Let x be a scheme. A g-cycle on x is a finite firmal sum

字hi L Vi

where each V; is a substrictly of dimension 9. We denote the set of all q-cycles on X by Zq(X), which is free abolian group.

Propor purh-forward: Let f:x — 77 be a proper morphism and V a q-dimensional subvariety. We define

[[CV] [[CV]] [[C

t* [M] = 1 [M (4(L)) \ 7 d"

Then f* extends to a homomorphism

f*:Zq(x)-7Zq(Y)

Zn:EVi] -> Zn:f*EVi]

Flat pull-back: Let fix — 77 be a flat merphism. Then every fiber of f has
dimension n = dimx - dimy. Let V=Y be a q-dimensional subvariety. We define

f*[V] = [f^{1}CV]]. Then f* extends for a honomorphism

f*: Zq(Y) — 7Zq(X)

河门河一河河(河)

Remark: The proper puri-formard and flat pull-back are functional i.e. (forth = forty) and (forg) = fortonal in (forg).

Exterior planet: Let VSX, WSY be submireties of dimension q, p. We define x: Zq(x) x Zp(Y) ——> Zq+p(XxY)

By [V] x [W] = [V XW]. Since R= [R, VXW is predicible, so X is well-defined than X extends bilinearly to a homomorphism

0: Zo(X) 0Zp(Y) --- 7Zg+p(XXY)

Rational equivalence: Let x be a variety, W = X a subvariety of din=q+1,

+ e fector)X. We define a q-cycle Idivc+)J on X by

[divcf)]:= \(\sum \text{ ord} \text{ ord} \text{VCF}) \subset \text{VJ},

\text{ codin} \text{V=1}

where order is the order function on $f(x)^{\times}$ destined by the local ring $O_{Y,W}$.

i.e. $Ord_{Y}(f) = \begin{cases} length O_{Y,W}(O_{Y,W}/f) \end{cases}$ if $f \in O_{Y,W}$ Definitions: (1) A q-cycle of is nationally equivalent to zero, written $d \sim 0$ if there are finite number of (9+1)-dimensional subvariety W_i of X, and $f \in f(W_i)^X$ such that $d = Z[div(f_i)]$.

(2) "chow groups": Ag (x) := Zq(x)/~.

Mototions: Z*(x) = & Zi(x), A*(x) := & Ai(x).

			·	10 <u>2</u> 00 2 00						
Proposition	1: A	cyde	$d \in Z_2(X)$	is ration	Ny equival	ent to	78h	iff th	ee al	e
(9+1)-dim	subvati	etie!	V1,, VE	of XxB	such that	He	gujection	is from	V_i	to
P1 are	diminant.	, with	V1,, VE ====================================	V(0)] -	[V; (00)]	in Z	F(X).			
0 1.1						. 1		1 -1	î	

Proposition 2: Let fix—T be a	puper, sujective	morphism	at varieties	and
let te f(x)x, Then		2		

(a) (f* Eginar) = [ginara] if gimax) = ginax)

where Nor) is the norm of r.

Remark: The proper push-formard and flat & pall-back preserve rational equivalence.

4

floposition 3: Let Y be a dosed subscheme of a scheme X and U=XXX. Let

i:Y-7X, i:U-7X be inclusions. Then the sequence

Ag(Y) ix-7 Ag(X) ix-7 Ag(U)-70

is exact for all 9.

proof: Note that any subvariety V of U extends to a subvariety V of X. then

the requeros

Z2(Y) - 17-7 Z2(X) - 7-7 Z2(V) - 70 (X)

is exact. Let $de^{2}(x)$ and $j^{\dagger}d\sim 0$, then $j^{\dagger}d=\sum [div(f_{i})]$

for $r_i \in R(W_i)^X$, W_i subvarieties of U. Since $R(W_i) = R(\overline{W_i})$, r_i corresponds to $\overline{r_i}$ in $R(\overline{W_i})^X$. Then

	->-		N			
Mo	Τų	We	Th	۴r	Sa	Su

Memo No.		
Date	/	/

i*(4)	- \flipc	万)])=0
O CO.	174	Q)

in ZgCU). Therefore, d-ZLdivcFi] = i+B for some CeZgCM since

(x) is exact.

Proposition 4: Let

be a fisher square with g flat, of proper. Then g' is flat, of is proper and for all deZx(X), of x g*d=g*fxd in Zx T'.

Proposition 5: Let p: E-->X be an affine bundle of bank n. Then the flat
pull-back

p#: Ag(X) --- 7 Ag+n(E)

is subjective for all 9

proof: chuse a dosed subschane Y of X so that $U = X \setminus W Y$ is affine open set over which E is trivial. There is a compatitive diagram

Agen CPET) -> Agen (E) -> Agen (PCUI) -> 0

with exact nows and vertical maps are flat pull-backs. By five Lemma, it suffices to show that I and I are suffective. By induction on dim (r) it is changed to show the neult for X=Vonly. Therefore, no may assume E=XXAN.

Since the projection factors

	Memo No	'	
Mo Tu We Th Fr Sa Su	Date		/
XXA' XXA' XX		_	
me can assigne n=1. Namely, we ment to show			
IVJep*Ag(X), Y VEE with o	lim(V) = 9+1	<u> </u>	
Poposition 4 guartiers that we can assume X = pCV) in	. p raps V	dominant	ly to
X. Let A=RIX], K=R(X) and & the prime ideal i	n A[f] com	exponding	to V.
If dim(X)=9, then p*[X]=V and we are done. O	Herrise, din	(X) = 9+	1.
Since pi V -7X is abminant and V = E, the ideal (pkiti i no	n-trivia	<u>l</u>
Let rekit generate plats, then			<u> </u>
IV- Colvul] = Zm, DVi], Vice			
So we have [V] = Idivch] + = n. pt Wij where	$VV_i = P(V_i), i$	e. DV	Jep*Ag LX)
Proposition 6: (a) If 1-0 or 8-0, then dx8-0.			
(b) Let f:x-7x, g:Y'-7Y be norphisms, fxg	the include	ed manp	hism
from X'XY to XXY.			
(i) If f, g are proper, so is fxg and			
(4x3 /2 6x6)= fxx x 2x B.	70 <u>45</u> 99	<u> </u>	<u> </u>
Cii) If f, g are flat, so is fxg and			
$Cfxg)^{\dagger}cdy()=f^{\dagger}dxg^{\dagger}G.$		29 79	<u> </u>
But! We first prove cb). Factor fxg into (fxidy) o (in			_to_
the easy case where for g is identy. Since we have	e commutative c	liagram	
<u> </u>			
		 -	
<u></u>	<u></u>		

	2	֓֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	\mathcal{N}			
Mo	īu	We	Th	Fr	Sa	5u

Memo No	o		
Date	1	1	

then	(4)	follows	fon	Proposition	4.
				1	

For (a), if $d\sim0$ ne may assume B=[W] for some subvariety $W\subseteq T$.

By (i) of (b) we may assume W=Y. (f=id, $g=J:WC\rightarrow TJ$. In this case, we have $d\times B=p^+(d)$ where $p:X\times W\longrightarrow X$ is the projection.

Then the statement holds since flat pull-pack presents repational equivalence.

Similarly, we can do the same trick for $B\sim0$.

Renark: Proposition 6 gives the exterior products

8: Ag(X) & Ap(T) -> Ag+p(XXY)

satisfying formulas (fxg) + (dxb) = fxd xg/8 and (fxg)*cdxb) = f2x8*B.