Taller

Derivadas Numéricas y Raíces de funciones Herramientas Computacionales 2016661

Ricardo Amézquita Departamento de Física Universidad Nacional de Colombia Sede Bogotá

28 de septiembre de 2018

Taller de programación

Escriba un modulo llamado taller.py en la cual se definan la siguientes clases:

```
class Derivada:
   def __init__(self, f, metodo ="adelante", dx= 0.001):
        """Clase usada para calcular derivadas numéricas de una función
        f: Función a la que se le va a evaluar la derivada numérica
        metodo: Cadena de caracteres que contiene el método a usar para
            calcular la derivada numérica. Los valores validos son los
            siguientes:
            "adelante": Calcular la derivada usando el método de diferencias
                hacia adelante.
            "central": Calcula la derivada usando el método de la diferencia
                central.
            "extrapolada": Calcula la derivada usando el método de la
                diferencia extrapolada.
            "segunda": Calculo de la segunda derivada
        dx: Delta usado para el calculo de la derivada
     def calc(self,x):
          """ Método que retorna el valor numérico de la derivada de la
          función f evaluada en el punto x"""
```

```
class Zeros:
    def __init__(self, f, metodo, error=1e-4,, max_iter=100):
        """Clase que retorna el cero de una función
Argumentos:
f: Función a la que se le va a evaluar el cero
        metodo: Cadena de caracteres que contiene el método a usar para la
            búsqueda del cero. Los valores validos son los siguientes:
            "newton": Usa el método de newton para el calculo.
            "bisectriz": Usa el método de la bisectriz para el calculo.
            "interpolacion": Usa el método de la interpolación para el el
                calculo
            "newton-sp": Usa la función newton definida en scipy para el
                calculo.
"fsolve-sp": Usa la función fsolve definida en scipy para el
            "brentq-sp": Usa la función brentq definida en scipy para el
        error: Valor máximo que puede tener f(x0) donde X0 es el cero encontrado
            numéricamente. Para las funciones de scipy, este es el valor pasado
            a xtol.
        max iter: Numero máximo de iteraciones a usar en el calculo.
        ....
        . . . . .
    def zero(self, vi):
        """Método que retorna el valor del x0 encontrado
        Argumento:
            vi: Valor inicial a usar en la búsqueda del cero. Para los algoritmos
                que usen un solo punto, debe ser un flotante, para los algoritmos
                que usen 2 puntos, debe ser una tupla (a, b) de flotantes.
        . . . .
        . . . . .
```

Adicionalmente el modulo debe tener una sección de ejecución como programa, donde se muestre un ejemplo del uso de las 2 clases. Esto quiere decir, debe tener algo del estilo a:

```
if __name__ == "__main__":
    ..... código con el ejemplo
```

Nota:

1. Los programas deben subirse en en la raíz del repositorio asignado de github-classroom (no en carpetas).