

Comparison of a Particle Filter and Other State Estimation Methods for Prognostics of Lithium-ion Batteries

Eric A. Walker

Supervised by: Professor Ralph E. White

Thesis Defense:

In partial fulfillment of the requirements for the degree of Master of Science in Chemical Engineering

August 14th 2013

Outline

- Introduction
 - Particle filtering previous work
 - Two models considered in this work
- He, et al model
 - Results with three methods
- Equivalent circuit model
- Single particle model
- Conclusions
- Acknowledgement

Introduction- He, et al

$$Q_k = a \cdot \exp(b \cdot k) + c \cdot \exp(d \cdot k)$$

$$\underline{x} = [a \ b \ c \ d]^T$$

Failure threshold, Q_{EUL} is 80% of the rated capacity.

$$a \cdot \exp(b \cdot k_{EUL}) + \cdots$$

 $c \cdot \exp(d \cdot k_{EUL}) = Q_{EUL}$
 $RUL = k_{EUL} - k$

- $a(Ah), b\left(\frac{1}{cycle}\right), c(Ah), d\left(\frac{1}{cycle}\right)$ are states.
- k(cycle) is the cycle index.
- $Q_k(Ah)$ is the capacity at cycle k.
- End of Useful Life (EUL), Remaining
 Useful Life(RUL) and Probability Density
 Function (PDF)

Center for Advanced Life Cycle Engineering (CALCE) Prognostics and Health Management (PHM) newsletter September 2012

A Saxena, B Bole, M Daigle, K Goebel, NASA Battery Workshop 2012 (images from private communication) 3

Introduction

- Other particle filtering works (reference handout)
 - Saha, et al
 - Jin, et al
 - Daigle, et al Cadini, et al An, et al
- No comparison of accuracy or comparison with a less than ideal method
- Data-driven models or empirical

Introduction

- Rahimian, et al
 - Physics-based single particle (SP) model more accurate than equivalent circuit model (ECM).
 - Both models are re-applied for predicting time until end of discharge voltage (EODV) in this work.
- Unscented Kalman filter (UKF) performed better than extended Kalman filter (EKF) with SP.

He, et al model

$$Q_k = g(\underline{x}, k) = a \cdot \exp(b \cdot k) + c \cdot \exp(d \cdot k)$$

$$\underline{x} = [a \ b \ c \ d]^{T}$$

$$Q_{EUL} = 0.8Q_{k=1}$$

$$a \cdot \exp(b \cdot k_{EUL}) + \cdots$$

$$c \cdot \exp(d \cdot k_{EUL}) = 0.8Q_{k=1}$$

$$RUL = k_{EUL} - k$$

- $a(Ah), b\left(\frac{1}{cycle}\right), c(Ah), d\left(\frac{1}{cycle}\right)$ are states.
- k(cycle) is the cycle index.
- $Q_k(Ah)$ is the capacity at cycle k.
- End of Useful Life (EUL) and Remaining Useful Life
- The error is reported by the magnitude of $k_{EUL}^* k_{EUL}$ where * indicates experiment.

~.5% noise added to synthetic data

He, et al model

$$Q_k = g(\underline{\theta}, k) = a \cdot \exp(b \cdot k) + c \cdot \exp(d \cdot k)$$

- c state tracked with correct a, b, d fixed. c is given the correct initial guess.
- c, d state tracked with correct a, b fixed. The problem is now non-linear. c, d state given the correct initial guess.
- Four states tracked constrained to correct sign.
- Four states tracked constrained to 5% of the correct values (because PF will vary the particles within $\pm 5\%$ of the correct values).

NLLS four states error (cycles)

• The error is reported by the magnitude of $k_{EUL}^* - k_{EUL}$ where * indicates experiment.

He, et al model- UKF

a,b,c,d correct IG

• UKF is a sample-based filter for non-linear models. 2n + 1 is the sampling scheme used in this work, where n is the number of states.

- \hat{x} state estimate vector
- P^x state covariance matrix
- *X* matrix containing samples
- W matrix containing weights
- P^{yy} measurement covariance matrix
- P^{xy} cross covariance matrix
- K_k Kalman gain matrix
- Q* experimental capacity (Ah)
- κ tuning parameter

Initialize the state estimate, $\hat{\underline{x}}_0$, and its covariance matrix, P_0^x

Generate 2n+1 samples and store them in X, $C = chol(P_{k-1}^x) \quad X_{0,k-1} = \underline{\hat{x}}_{k-1} \\ X_{i,k-1} = \underline{\hat{x}}_{k-1} + \sqrt{n + \kappa c_{jj}} \quad X_{i+n,k-1} = \underline{\hat{x}}_{k-1} - \sqrt{n + \kappa c_{jj}}$ C is the Cholesky decomposition of P_{k-1}^x , and c_{jj} are its diagonal entries.

Generate weights and store them in W,

$$W_0 = \kappa/\sqrt{n+\kappa}$$
 $W_i = 1/[2(n+\kappa)]$ $W_{i+n} = 1/[2(n+\kappa)]$

Generate the prior state estimate at index, k,

$$\left[\underline{\hat{x}}_{k,-},P_{k,-}^{x}\right]=UT\left(\underline{\hat{x}}_{k-1,+},C_{k-1,+},f(\cdot),\kappa\right)$$

k=k+1

Obtain necessary matrices,

$$Y_{i,k} = h_k (X_i, I_{app,k}) \quad \hat{y}_k^- = \sum_i^{2n} W_i Y_i$$

$$P_k^{yy} = \sum_{i=0}^{2n} W_i (Y_{i,k} - \hat{y}_k^-) (Y_{i,k} - \hat{y}_k^-)^T$$

$$P_k^{xy} = \sum_{i=0}^{2n} W_i (X_i - \hat{x}_{k,-}) (Y_{i,k} - \hat{y}_{k,-}) \quad K_k = P_k^{xy} (P_k^y)^{-1}$$

Complete the posterior estimate,

$$\hat{\underline{x}}_{k}^{+} = \hat{\underline{x}}_{k}^{-} + K_{k}(Q_{k}^{*} - \hat{y}_{k}^{-}) \quad P_{k}^{x+} = P_{k}^{x-} - K_{k}P_{k}^{y}K_{k}^{T}$$

He, et al model- UKF prediction

He, et al model- PF

 \underline{x} state vector Q^* experimental capacity (Ah) k (cycle) index $p(\underline{x}_k|Q_{0:k-1}^*)$ prior distribution | "given" w_k^i weight of particle i $f(\cdot)$ state function $p(Q_k^*|\underline{x}_k^i)$ posterior distribution $g(\cdot)$ measurement function $\delta(\cdot)$ Dirac delta

He, et al model

Zoom in on PDF He,

He, et al model

100 particles

- Particles close together in data for updating criss-cross near EUL for a rough PDF.
- Still, error by weighted average is
 ~ 1 cycle, compared to the next
 method, NLLS 5% constrained,
 with an error on the order of ~10
 cycles.

Particles criss-cross near EUL, yet the weighted average prediction is more accurate than deterministic methods.

Times for methods He, et al

	Time
	(seconds)
PF solve all particles for data set	1.17e-2
and find RUL for each particle	
PF time to update weights 200	9.34e-3
cycles	
UKF solve for 200 data update	6.26e-2
states until 50 data	
NLLS estimate states	1.03e-1
NLLS find RUL	7.45e-4
NLLS 5% constrained estimate	2.67e-2
states	
NLLS 5% constrained find RUL	6.05e-4

Outline

- Introduction
- He, et al model
 - Results with three methods
- Equivalent circuit model
- Single particle model
- Conclusions
- Acknowledgement

Equivalent circuit model- data set

- End of discharge voltage (EODV) is 2.5 (V).
- Fifty data points is 928.6 (s), the time of prediction.
- Prediction is time until EODV assuming constant-current discharge.
- Batteries are discharged at a constant current of 2 (*A*) from a fully charged 4.2 (*V*) to a EODV cutoff voltage of 2.5 (*V*).

Equivalent circuit model

$$V_{cell} = V_o + IR + \frac{Q}{C} \exp\left(-\frac{t}{R_{ct}C}\right) + IR_{ct}\left(1 - \exp\left(-\frac{t}{R_{ct}C}\right)\right)$$

$$V_o = U_p^{\theta}(SOC_p) - U_n^{\theta}(SOC_n)$$

$$SOC_{cell} = SOC_{0,cell} + \frac{I}{3600Q}t$$

$$SOC_n = 0.79SOC_{cell} + 0.01 \qquad SOC_p = 0.97 - 0.51SOC_{cell}$$

 $V_{cell}(V)$ Cell voltage $R(\Omega)$ Resistance $R_{ct}(\Omega)$ Charge transfer resistance C(F) Capacitance Q(Ah) Capacity t(s) time SOC_i State of charge U_i^{θ} Open circuit potential

16

I(A) Current

Equivalent circuit model

- Initial guesses are obtained by fitting a separate cycle of the same cell.
- NLLS predictions are inaccurate.
- $\hat{\underline{x}} \equiv [R, C, Q, R_{ct}]$

Equivalent circuit model-PF

The weighted average prediction error is on the order of ~26 seconds, more accurate than the next method, NLLS 5% constrained, with an error of 212 seconds.

Equivalent circuit model-UKF

Times for methods ECM

	Time
	(seconds)
PF solve all particles for data set	1.17e-1
and find time of EODV for each	
particle	
PF time to update weights 194	9.73e-3
cycles	
UKF solve for 195 data update	9.21e-2
states until 50 data	
NLLS estimate states	1.15e-1
NLLS find RUL	9.5e-5
	4.25. 2
NLLS 5% constrained estimate	4.37e-2
states	
NLLS 5% constrained find RUL	7.8e-5

Outline

- Introduction
- He, et al model
 - Results with three methods
- Equivalent circuit model
- Single particle model
- Conclusions
- Acknowledgement

Single particle model

$$J_p = \frac{I_{app}}{S_p} \qquad J_n = -\frac{I_{app}}{S_n} \qquad \frac{dx_{i,avg}}{dt} = -\frac{3J_i}{FR_i c_{i,max}} \qquad x_{i,surf} - x_{i,avg} = -\frac{J_i R_i}{5FD_{s,i} c_{i,max}}$$

$$\frac{J_i}{F} = k_i \left(c_{i,max} - x_{i,surf}c_{i,max}\right)^{0.5} \left(x_{i,surf}c_{i,max}\right)^{0.5} c_e^{0.5} \left[\exp\left(\frac{\alpha_{a,i}F}{R_gT}\eta_i\right) - \exp\left(\frac{-\alpha_{c,i}F}{R_gT}\eta_i\right)\right]$$

$$\eta_{i} = \frac{R_{g}T}{0.5F} \ln \left(\frac{\left(J_{i} \pm \left(-4c_{e}F^{2}c_{i,max}^{2}k_{i}^{2}x_{i,surf}^{2} + 4c_{e}F^{2}c_{i,max}^{2}k_{i}^{2}x_{i,surf} + J_{i}^{2} \right)^{0.5} \right)}{2Fc_{e}^{0.5}k_{i} \left(c_{i,max}x_{i,surf} \right)^{0.5} \left(c_{i,max} - c_{i,max}x_{i,surf} \right)^{0.5}} \right)$$

$$\eta_p = \phi_p - U_p^{\theta}$$
 $\eta_n = \phi_n - U_n^{\theta}$
 $V_{cell} = \eta_p + U_p^{\theta} - (\eta_n + U_n^{\theta})$

In the cathode i = p and in the anode i = n.

 J_i is the exchange current density for each electrode $\left\lceil \frac{A}{m^2} \right\rceil$. $x_{i,avg}$ is the ratio of the solid bulk concentration to the maximum solid concentration of Lithium for each electrode. F is Faraday's constant, 96485 in $\left\lceil \frac{C}{mol\ e^-} \right\rceil$. $R_i[m]$ is the particle radius for each electrode. $c_{i,max}\left\lceil \frac{mol}{m^3} \right\rceil$ is the maximum solid phase concentration of Lithium for each electrode. $S_i^0[m^2]$ is the electroactive surface area for each electrode. $x_{i,surf}$ is the ratio of the solid surface concentration to the maximum solid concentration for each electrode, $c_{i,surf}/c_{i,max}$. $D_{s,i}\left\lceil \frac{m^2}{s} \right\rceil$ is the solid phase diffusion coefficient of Lithium for each electrode. Butler-Volmer kinetics are used to describe the intercalation and de-intercalation reactions of Lithium at the electrodes.

Single Particle model initial guesses

Two
parameters in
open circuit
potentials are
adjusted for SP
fit.

Norm of squared residuals: 0.0145 for SP 0.0824 for ECM

Single particle model NLLS and UKF

Single particle model PF

Weighted average prediction error of PF is on the order of ~8.5 seconds.

Times for methods SP

	Time
	(seconds)
PF solve all particles for data set and	1.24e-1
find time of EODV for each particle	
PF time to update weights 195	5.57e-3
cycles	
UKF solve for 225 data update	1.46e-1
states until 50 data	
NLLS estimate states	5.25e-1
NLLS find RUL	1.29e-1
NLLS 5% constrained estimate	4.47e-2
states	
NLLS 5% constrained find RUL	5.80e-2

Conclusions

- The particle filter is compared based on prediction error to NLLS and UKF, not performed in previous work.
- Three models are used for predictions.
 - He, et al's model predicts remaining useful life.
 - Equivalent circuit model predicts time until EODV.
 - Single particle model predicts time until EODV, not performed in previous work.
- PF makes the most accurate predictions regardless of model.

Conclusions

	He, et al	ECM	SP
NLLS	88 (cycles)	874 (seconds)	772 (seconds)
UKF	19 (cycles)	396 (seconds)	272 (seconds)
NLLS 5% constrained	10 (cycles)	212 (seconds)	127 (seconds)
PF (weighted average)	0.82 (cycles)	25.62 (seconds)	8.54 (seconds)

Future work

- Q has been used to make predictions amount remaining useful life.
- In future work, Q from an equivalent circuit model may be used to make predictions of remaining useful life.
- Likewise, S_n from a single particle model may be used to make predictions of remaining useful life.

Using equivalent circuit model for remaining useful life (RUL) predictions

Using single particle (SP) model for RUL predictions

Acknowledgments

- Advisor: Dr. Ralph White
- Committee: Dr. Edward Gatzke, Dr. Sean Rayman, Dr. Gabriel Terejanu, Dr. John Weidner
- Group Member: Long, Meng, Yiling, Saeed
- Friends, roommate- Bryan, Elina
- Parents
- Presidential Fellows program, Toastmasters

