wCube

January 22, 2019

```
In [2]: exec(open('initNotebook.py').read())
```

1 h1 Load Data

2 WCube: (1-x)^3(1+3x)

2.1 Plots with free Alpha

```
In [5]: fig, (axes) = plt.subplots(2, 2, sharex=True)
    fig.suptitle(r'Fit of $\omega_{Cube}$ with free $\alpha_s$ and two setups of OPE using
    plt.xticks(list(sminMap.values()), fontsize=22)
    addAx(axes[0], 0, ['alpha'], wCubeAlD6D8, ylabel=r'$\alpha_s(m_\tau)$')
    addAx(axes[1], 0, ['alpha'], wCubeAlD6D8D10, ylabel=r'$\alpha_s(m_\tau)$')

addAx(axes[0], 1, ['c6', 'c8'], wCubeAlD6D8, ylabel='$D6, D8$')
    addAx(axes[1], 1, ['c6', 'c8', 'c10'], wCubeAlD6D8D10, ylabel=r'$D6, D8, D10$')

# legend outside lower center
    fig.subplots_adjust(bottom=0.1)
    lines, labels = axes[0][0].get_legend_handles_labels()
    lines2, labels2 = axes[1][1].get_legend_handles_labels()
    fig.legend(lines+lines2, labels+labels2, loc="lower center", ncol=4)

fig.savefig('./plots/wCubeAlpha.png', dpi=300)
    plt.show()
```


We present two setups of the OPE fit. In the first one (first row of the plot) we left α_s , c_6 and c_8 as free parameters. In the second one (second row of the plot) we added c_{10} as free parameter. We noticed that more free parameters for our fits causes problems with their convergence. This is noted in missing data points and that the maximum moments we were able to fit decreased to 13. The best values for the first setup with a $\chi^2/dof = 1.17$ are: $\alpha_s(m_\tau) = 0.3261(21)$, $c_6 = -0.319(27)$ and $c_8 = -0.14(18)$ ($s_{min} = 1.9 GeV^2$, $11s_0s$ -moments). The best values for the second setup with a $\chi^2/dof = 1.32$ are: $\alpha(m_\tau) = 0.3254(21)$, $c_6 = -0.287(20)$, $c_8 = -0.10(21)$ and $c_{10} = -0.069(52)$ ($s_{min} = 1.9 GeV^2$, $11s_0s$ -moments). We notice a similiar behavior to fits with the kinematic weight ω_τ : The α_s vary within the error range, but has less variation. The OPE coefficients are still very correlated and approach each other for increasing fitted s_0s -moments for fits including the c_{10} parameter. One notices that the smaller the values for the OPE coefficients, the smaller their errors. This needs to be caused by the error calculation of MINUIT, which seems to be proportional to the size of the fitted variable value. The χ^2/dof increases with increasing fitted s_0s -moments to values bigger than 1, which indicate that fits with more than 11 moments dont't pass the *chi-square test for goodness of fit*.

2.2 Test OPE convergence

smin19	True
smin195	True
smin20	True
smin21	True
smin22	True
smin23	True
smin24	True

```
smin26
           True
dtype: bool
smin18
           True
smin19
           True
smin195
           True
smin20
           True
smin23
           True
smin24
           True
dtype: bool
```

The OPE converges for all fits.

2.3 Plots with fixed Alpha

```
In [8]: fig, (axes) = plt.subplots(2, 1, sharex=True)
    plt.xticks(list(sminMap.values()))
    fig.suptitle(r'Fits for $\omega_{Cube}$ for fixed $\alpha_s(m_\tau)=0.3179$ two OPE se

    addAx(axes, 0, ['c6', 'c8'], wCubeD6D8, ylabel=r'$D6, D8$')
    addAx(axes, 1, ['c6', 'c8', 'c10'], wCubeD6D8D10, ylabel=r'$D6, D8, D10$')

# legend outside lower center
fig.subplots_adjust(bottom=0.1)
lines, labels = axes[1].get_legend_handles_labels()
fig.legend(lines, labels, loc="lower center", ncol=4)

fig.savefig('./plots/wCubeFixedAlpha.png', dpi=300)
    plt.show()
```

Fits for ω_{Cube} for fixed $\alpha_s(m_\tau)=0.3179$ two OPE setting using FOPT.

We compare two OPE setups for a fixed $\alpha_s = 0.3179$. In the upper row of the plot we fit the parameters c_6 and c_8 . In the lower row we fit the parameters c_6 , c_8 and c_{10} . We notice that fits up to twelve moments did not converge for the former setup. Conversly for the latter, all fits with more than twelve s_0 s-moments did not converge. This might be caused by values of the three OPE parameters c_6 , c_8 and c_{10} close to zero, which causes problems with the double precision of our fitting routine. The best values for the first row fits with $\chi^2/dof = 1.50$ are $c_6 = -0.196(21)$ and $c_8 = -0.051(21)$ ($s_{min} = 1.65 GeV^2$, $17s_0s$ -moments). The best values for the second row fits with $\chi^2/dof = 1.14$ are $c_6 = 0.13(13)$, $c_8 = 0.95(40)$ and $c_{10} = 2.8(1.2)$ ($s_{min} = 2.4 \text{GeV}^2$, $24s_0s_{-1}$ moments). Including c_6 and c_8 as fitting variables shows comparable values and behaviors to the previous plot with ω_{cube} , but also to $\omega_{kinematic}$, whereas including c_{10} increases the values of c_6 and c_8 . In addition $c_{10} \approx 3$ is several times bigger than all previous contributions to ec_6 or c_8 , which makes the fits with c_{10} questionable. We have seen that excluding the 10th dimensions OPE contribution $\alpha_s^{c_6,c_8}$ have in general lower values than including the 10th dimension contribution $\alpha_s^{c_6,c_8,c_{10}}$. Consequently, to account for the bigger $\alpha_s^{c_6,c_8,c_{10}}$ values, we should also expect lower values in c_6 , c_8 and c_{10} for the second row fits, which is not the case. In favor of fits of including c_{10} contribution is the nice χ^2/dof plateau for the s_0s -moments 5-11 and the corresponding values of c_6 , c_8 and c_{10} , which are rather constant.

2.4 Test for OPE convergence

smin15	True
smin1525	True
smin155	True
smin1575	True
smin16	True
smin1625	True
smin165	True
smin1675	True
smin17	True
smin175	True
smin18	True
smin185	True
dtype: bool	-
smin185	True
smin19	True
smin195	True
smin20	True
smin21	True
smin22	True
smin23	True
smin24	True
smin26	True
dtype: bool	

am = n 1 E

In []: The OPE converges for all fits.