Welcome to the Notebook

Importing modules

```
In [1]: M import pandas as pd
import numpy as np
import plotly.express as px
import matplotlib.pyplot as plt
print('modules are imported')
```

modules are imported

Loading the Dataset

Let's check the dataframe

In [3]:) df.head()

Out[3]:

	Date	Country	Confirmed	Recovered	Deaths
0	2020-01-22	Afghanistan	0	0	0
1	2020-01-23	Afghanistan	0	0	0
2	2020-01-24	Afghanistan	0	0	0
3	2020-01-25	Afghanistan	0	0	0
4	2020-01-26	Afghanistan	0	0	0

In [4]: ► df.tail()

Out[4]:

	Date	Country	Confirmed	Recovered	Deaths
161563	2022-04-12	Zimbabwe	247094	0	5460
161564	2022-04-13	Zimbabwe	247160	0	5460
161565	2022-04-14	Zimbabwe	247208	0	5462
161566	2022-04-15	Zimbabwe	247237	0	5462
161567	2022-04-16	Zimbabwe	247237	0	5462

Let's check the shape of the dataframe

```
In [5]: M df.shape
Out[5]: (161568, 5)
```

Let's do some preprocessing

```
In [6]: M df = df[df.Confirmed > 0]
```

In [7]: ► df.head()

Out[7]:

	Date	Country	Confirmed	Recovered	Deaths
33	2020-02-24	Afghanistan	5	0	0
34	2020-02-25	Afghanistan	5	0	0
35	2020-02-26	Afghanistan	5	0	0
36	2020-02-27	Afghanistan	5	0	0
37	2020-02-28	Afghanistan	5	0	0

Let's see data related to a country for example India

In [8]: M df[df.Country == 'India']

Out[8]:

	Date	Country	Confirmed	Recovered	Deaths
65288	2020-01-30	India	1	0	0
65289	2020-01-31	India	1	0	0
65290	2020-02-01	India	1	0	0
65291	2020-02-02	India	2	0	0
65292	2020-02-03	India	3	0	0
66091	2022-04-12	India	43038016	0	521736
66092	2022-04-13	India	43039023	0	521737
66093	2022-04-14	India	43039972	0	521743
66094	2022-04-15	India	43040947	0	521747
66095	2022-04-16	India	43042097	0	521751

808 rows × 5 columns

Let's see Global spread of Covid19

```
In [9]: N fig = px.choropleth(df, locations = 'Country', locationmode = 'country names', color = 'Confirmed', animation_frame='Date
fig.update_layout(title_text = "Global Spread of COVID-19")
fig.show()
```

Global Spread of COVID-19

Let's see Global deaths of Covid19

Global Spread of COVID-19

2020-02-24 2020-05-20 2020-08-14 2020-11-08 2021-02-02 2021-04-29 2021-07-24 2021-10-18 2022-01-12 2022-04-08

Let's Visualize how intensive the Covid19 Transmission has been in each of the country

let's start with an example:

```
In [11]:  M df_china = df[df.Country == 'China']
    df_china.head()
```

Out[11]:

	Date	Country	Confirmed	Recovered	Deaths
30192	2020-01-22	China	548	28	17
30193	2020-01-23	China	643	30	18
30194	2020-01-24	China	920	36	26
30195	2020-01-25	China	1406	39	42
30196	2020-01-26	China	2075	49	56

let's select the columns that we need

```
In [12]:  M df_china = df_china[['Date', 'Confirmed']]
In [13]:  M df_china.head()
```

Out[13]:

	Date	Confirmed
30192	2020-01-22	548
30193	2020-01-23	643
30194	2020-01-24	920
30195	2020-01-25	1406
30196	2020-01-26	2075

calculating the first derivation of confrimed column

```
In [14]: M df_china['Infection Rate'] = df_china['Confirmed'].diff()
```

```
Out[15]:
                    Date Confirmed Infection Rate
           30192 2020-01-22
                                       NaN
                             548
            30193 2020-01-23
                             643
                                       95.0
            30194 2020-01-24
                             920
                                      277.0
            30195 2020-01-25
                             1406
                                       486.0
            30196 2020-01-26
                             2075
                                       669.0
1.8M
                                                                                                       variable

    Confirmed

                 1.6M
                                                                                                           Infection Ra
                 1.4M
                 1.2M
                  1M
                 0.8M
                 0.6M
                 0.4M
                 0.2M
                                 Jul 2020
                                          Oct 2020
                                                  Jan 2021
                                                           Apr 2021
                                                                      Jul 2021
                                                                               Oct 2021
                        Apr 2020
                                                                                        Jan 2022
                                                                                                 Apr 2022
                                                           Date
Out[17]: 77402.0
        Let's Calculate Maximum infection rate for all of the countries
Out[18]:
                         Country Confirmed Recovered Deaths
                  Date
           33 2020-02-24 Afghanistan
                                                   0
                                     5
                                             0
            34 2020-02-25 Afghanistan
            35 2020-02-26 Afghanistan
                                     5
                                             0
                                                   0
            36 2020-02-27 Afghanistan
                                     5
                                             0
                                                   0
           37 2020-02-28 Afghanistan
                                             0
                                                   0
```

Let's create a new Dataframe

In [19]:) countries = list(df['Country'].unique())
maxInfectionRates = []
for country in countries:

maxInfectionRates.append(maxInfection)

maxInfection = df[df.Country == country].Confirmed.diff().max()

	Country	Max Infection Rate
0	Afghanistan	3243.0
1	Albania	4789.0
2	Algeria	2521.0
3	Andorra	2313.0
4	Angola	5035.0

Let's plot the barchart : maximum infection rate of each country

```
In [21]: XInfection, x = 'Country', y = 'Max Infection Rate', color = 'Country', title = 'Global Maximum Infection Rates', log_y=T
```

Global Maximum Infection Rates

Let's See how National Lockdowns Impacts Covid19 transmission in India

COVID19 pandemic lockdown in India

On 9 March 2020, the government of India under Prime Minister Narendra Modi imposed a national quarantine, restricting the movement of the population except for necessity, work, and health circumstances, in response to the growing pandemic of COVID-19 in the country. source (https://en.wikipedia.org/wiki/COVID-19 lockdown in India.)

```
In [22]: | india_lockdown_start_date = '2020-08-09'
india_lockdown_a_month_later = '2020-09-09'
In [23]: | df.head()
```

Out[23]:

	Date	Country	Confirmed	Recovered	Deaths
33	2020-02-24	Afghanistan	5	0	0
34	2020-02-25	Afghanistan	5	0	0
35	2020-02-26	Afghanistan	5	0	0
36	2020-02-27	Afghanistan	5	0	0
37	2020-02-28	Afghanistan	5	0	0

let's get data related to India

```
In [24]: M
    df_india = df[df.Country == 'India']
    start_date = '2020-01-02'
    end_date = '2021-01-03'

    df_india = df_india[(df['Date'] >= start_date) & (df['Date'] <= end_date)]</pre>
```

C:\Users\Xploit\AppData\Local\Temp\ipykernel_10048\3307128508.py:5: UserWarning:

Boolean Series key will be reindexed to match DataFrame index.

lets check the dataframe

```
In [25]: M df_india.head()
```

Out[25]:

		Date	Country	Confirmed	Recovered	Deaths
652	288	2020-01-30	India	1	0	0
652	289	2020-01-31	India	1	0	0
652	290	2020-02-01	India	1	0	0
652	291	2020-02-02	India	2	0	0
652	292	2020-02-03	India	3	0	0

let's calculate the infection rate in India

Out[26]:

	Date	Country	Confirmed	Recovered	Deaths	Infection Rate
65288	2020-01-30	India	1	0	0	NaN
65289	2020-01-31	India	1	0	0	0.0
65290	2020-02-01	India	1	0	0	0.0
65291	2020-02-02	India	2	0	0	1.0
65292	2020-02-03	India	3	0	0	1.0

ok! now let's do the visualization

```
In [34]: \mathbf{M} fig = px.line(df_india, x = 'Date', y = 'Infection Rate', title = 'Before and After Lockdown')
              fig.add_shape(
                   dict(
                       type = "line",
                       x0 = india_lockdown_start_date,
                       y0 = 0,
                        x1 = india_lockdown_start_date,
                       y1 = df_india['Infection Rate'].max(),
                       line = dict(color = 'red', width = 2)
                   )
              fig.add_shape(
                   dict(
                       type = "line",
                       x0 = india_lockdown_a_month_later,
                       y0 = 0,
                       x1 = india_lockdown_a_month_later,
                       y1 = df_india['Infection Rate'].max(),
line = dict(color = 'orange', width = 2)
                   )
              fig.add_annotation(
                   dict(
                       x = india_lockdown_start_date,
y = df_india['Infection Rate'].max(),
                        text = 'Starting date of lockdown'
                   )
              {\tt fig.add\_annotation}(
                   dict(
                       x = india_lockdown_a_month_later,
                       y = 0,
                        text = 'A month later'
                   )
              fig.show()
```

Before and After Lockdown

Let's See how National Lockdowns Impacts Covid19 active cases in India

```
In [28]: M df_india.head()
   Out[28]:
                           Date Country Confirmed Recovered Deaths Infection Rate
               65288 2020-01-30
                                                                               NaN
                                    India
                                                            n
                                                                    0
               65289 2020-01-31
                                    India
                                                            0
                                                                    0
                                                                                0.0
               65290 2020-02-01
                                    India
                                                  1
                                                            0
                                                                    0
                                                                                0.0
               65291 2020-02-02
                                    India
                                                 2
                                                            0
                                                                    0
                                                                                1.0
               65292 2020-02-03
                                    India
                                                                                1.0
```

```
In [29]: M df_india['Death Rate'] = df_india.Deaths.diff()
```

let's check the dataframe again

```
In [30]: M df_india.head()
```

Out[30]:

	Date	Country	Confirmed	Recovered	Deaths	Infection Rate	Death Rate
65288	2020-01-30	India	1	0	0	NaN	NaN
65289	2020-01-31	India	1	0	0	0.0	0.0
65290	2020-02-01	India	1	0	0	0.0	0.0
65291	2020-02-02	India	2	0	0	1.0	0.0
65292	2020-02-03	India	3	0	0	1.0	0.0

now let's plot a line chart to compare COVID19 national lockdowns impacts on spread of the virus and number of active cases

let's normalize the columns

```
In [32]: M df_india['Infection Rate'] = df_india['Infection Rate']/df_india['Infection Rate'].max()
df_india['Death Rate'] = df_india['Death Rate']/df_india['Death Rate'].max()
```

let's plot the line chart again

```
fig.add_shape(
                    dict(
                         type = "line",
                         x0 = india_lockdown_start_date,
                         y0 = 0,
                         x1 = india_lockdown_start_date,
                         y1 = df_india['Infection Rate'].max(),
line = dict(color = 'red', width = 2)
                    )
               )
fig.add_shape(
                    dict(
                         type = "line",
x0 = india_lockdown_a_month_later,
                         y0 = 0,
                         y0 = 0,
x1 = india_lockdown_a_month_later,
y1 = df_india['Infection Rate'].max(),
line = dict(color = 'orange', width = 2)
                    )
                fig.add_annotation(
                    dict(
                         x = india_lockdown_start_date,
y = df_india['Infection Rate'].max(),
text = 'Starting date of lockdown'
                    )
                fig.add_annotation(
                    dict(
                         x = india_lockdown_a_month_later,
                         y = 0,
                         text = 'A month later'
                    )
                fig.show()
```

