Path Independence and Conservative Vector Fields

Sean Fitzpatrick

June 13, 2018

Recall that in class we showed that for any gradient vector field $\mathbf{F} = \nabla f$, the line integral of \mathbf{F} along a curve C depends only on the endpoints of C. Our argument was as follows: let C be a smooth oriented curve in \mathbb{R}^n (for most purposes, n=2 or n=3, but this restriction is unnecessary), and let $\mathbf{r}:[a,b]\to\mathbb{R}^n$ be a parameterization of C, such that $\mathbf{r}(a)=P$ is the initial point of C, and $\mathbf{r}(b)=Q$ is the final point of C. By the definition of the line integral and the Fundamental Theorem of Calculus, we have

$$\int_{C} \nabla f \cdot d\mathbf{r} = \int_{a}^{b} \nabla f(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_{a}^{b} \frac{d}{dt} (f(\mathbf{r}(t))) dt = f(\mathbf{r}(b)) - f(\mathbf{r}(a)) = f(Q) - f(P).$$

The answer therefore depends only on the endpoints. We call any vector field \mathbf{F} with this property **conservative**. The above argument proves the following "

Theorem 1 (Fundamental Theorem for Line Integrals). If $\mathbf{F} = \nabla f$ for some function f, then \mathbf{F} is conservative, and $\int_C \mathbf{F} \cdot d\mathbf{r} = f(Q) - f(P)$ for any smooth oriented curve C with initial point P and final point Q.

The goal of this handout is to prove the converse:

Theorem 2. Let D be an open¹ connected² If \mathbf{F} is a continuous, conservative vector field on defined on D, then there exists a C^1 function $f: D \to \mathbb{R}$ such that $\mathbf{F} = \nabla f$.

Proof. We prove the theorem by explicitly constructing the function f. (If we view Theorem 1 as the analogue of Part II of the Fundamental Theorem of Calculus, then this is the analogue of Part I.) Fix a point $\mathbf{a} = (a_1, a_2, \dots, a_n) \in D$, and define a function $f: D \to \mathbb{R}$ by

$$f(x_1, x_2, \dots, x_n) = \int_C \mathbf{F} \cdot d\mathbf{r},$$

where C is any curve contained in D with initial point \mathbf{a} and final point $\mathbf{x} = (x_1, x_2, \dots, x_n)$. (The assumption that D is an open, connected set guarantees that such a curve C exists.) Since \mathbf{F} is conservative, the above integral depends only on \mathbf{x} , and not the curve C, so that f is indeed a well-defined function. (That is, the value of $f(\mathbf{x})$ is uniquely determined by \mathbf{x} .)

¹An open subset of \mathbb{R}^n is one that does not contain its boundary points; for example, the set $\{(x,y) \in \mathbb{R}^2 | x^2 + y^2 < 1\}$ consisting of all points inside the unit circle (the boundary of the set), but not the circle itself

²A connected subset of \mathbb{R}^n is one that cannot be separated into two or more pieces, with "gaps" in between. For the purposes of this theorem, it's enough to know that any open, connected subset of \mathbb{R}^n is **path-connected**, meaning that any two points in the set can be joined by a continuous curve.

Figure 1: The curve C used to calculate $\frac{\partial f}{\partial y}$.

To simplify notation, we'll take n = 3, with $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$, and initial point (a, b, c) and final point (x, y, z) for the curve C. The general proof is similar. We want to show that $\nabla f = \mathbf{F}$, so we begin by showing that $\frac{\partial f}{\partial x} = P$. Since C can be any curve with initial point (a, b, c) and final point (x, y, z), we choose a curve of the form $C = C_1 + C_2$, defined as follows:

First, choose a fixed value x_0 sufficiently close to x, such that the line segment from (x_0, y, z) to (x, y, z) lies entirely within D. We let C_1 be an arbitrary curve from (a, b, c) to (x_0, y, z) , and we let C_2 be the line segment from (x_0, y, z) to (x, y, z). Thus,

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_{C_1 + C_2} \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \mathbf{F} \cdot d\mathbf{r} + \int_{C_2} \mathbf{F} \cdot d\mathbf{r}.$$

The first integral does not depend on x, so we have

$$\frac{\partial}{\partial x} \int_C \mathbf{F} \cdot d\mathbf{r} = 0 + \frac{\partial}{\partial x} \int_{C_2} \mathbf{F} \cdot d\mathbf{r}.$$

For the second integral, we parameterize C_2 using $r(t) = \langle t, y, z \rangle$, with $t \in [x_0, x]$. This gives us

$$\mathbf{F} \cdot d\mathbf{r} = P dx + Q dy + R dz = P(t, y, z) dt,$$

since dt = dx, and dy = dz = 0 (we're holding y and z constant). We then have

$$\frac{\partial}{\partial x} \int_{C_2} \mathbf{F} \cdot d\mathbf{r} = \frac{\partial}{\partial x} \int_{x_0}^x P(t, y, z) \, dt = P(x, y, z),$$

by the Fundamental Theorem of Calculus. The proofs that $f_y=Q$ and $f_z=R$ are similar. \Box

We also have the following result:

Theorem 3. A vector field \mathbf{F} is conservative if and only if $\int_C \mathbf{F} \cdot d\mathbf{r}$ for every **closed** curve C.

To see that this result is true, notice that by Theorem 2, if **F** is conservative (that is, if $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path), then $\mathbf{F} = \nabla f$ for some function f, so if C is a closed curve parameterized by $\mathbf{r}(t)$, $t \in [a, b]$, we have $\mathbf{r}(a) = \mathbf{r}(b)$, and thus

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a)) = 0.$$

On the other hand, suppose we know that $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$ for any closed curve C, and let C_1 and C_2 be any two oriented curves from a point P to a point Q. Then the curve $-C_2$ is a curve from Q to P, and joining C_1 to $-C_2$ gives us the closed curve $C = C_1 - C_2$. Thus, we have

$$0 = \int_C \mathbf{F} \cdot d\mathbf{r} = \int_{C_1 - C_2} \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \mathbf{F} \cdot d\mathbf{r} - \int_{C_2} \mathbf{F} \cdot d\mathbf{r},$$

which implies that $\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$. Since C_1 and C_2 were arbitrary, we can conclude that \mathbf{F} is conservative.