
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Keisha Douglas

Timestamp: [year=2009; month=2; day=12; hr=16; min=43; sec=8; ms=718;]

Validated By CRFValidator v 1.0.3

Application No: 10576988 Version No: 2.0

Input Set:

Output Set:

Started: 2009-01-28 11:09:04.257 **Finished:** 2009-01-28 11:09:05.307

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 50 ms

Total Warnings: 10
Total Errors: 0

No. of SeqIDs Defined: 10

Actual SeqID Count: 10

Error code		Error Description								
W	213	Artificial or	Unknown	found	in	<213>	in	SEQ	ID	(1)
W	213	Artificial or	Unknown	found	in	<213>	in	SEQ	ID	(2)
W	213	Artificial or	Unknown	found	in	<213>	in	SEQ	ID	(3)
W	213	Artificial or	Unknown	found	in	<213>	in	SEQ	ID	(4)
W	213	Artificial or	Unknown	found	in	<213>	in	SEQ	ID	(5)
W	213	Artificial or	Unknown	found	in	<213>	in	SEQ	ID	(6)
W	213	Artificial or	Unknown	found	in	<213>	in	SEQ	ID	(7)
W	213	Artificial or	Unknown	found	in	<213>	in	SEQ	ID	(8)
W	213	Artificial or	Unknown	found	in	<213>	in	SEQ	ID	(9)
W	213	Artificial or	Unknown	found	in	<213>	in	SEQ	ID	(10)

SEQUENCE LISTING

<220>

```
<110> Rodriguez Aguirre et al.
<120> EMPTY CAPSIDS (VLPs(-VP4)) OF THE INFECTIOUS BURSAL DISEASE VIRUS
(IBDV), OBTAINMENT PROCESS AND APPLICATIONS
<130> 8026-74818-01
<140> 10576988
<141> 2009-01-28
<150> PCT/EP2005/000694
<151> 2005-01-21
<150> ES P200400121
<151> 2004-01-21
<160> 10
<170> PatentIn version 3.1
<210> 1
<211> 35
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide
<400> 1
                                                                     35
gcgcagatct atgacaaacc tgtcagatca aaccc
<210> 2
<211> 34
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide
<400> 2
gcgcaagctt aggcgagagt cagctgcctt atgc
                                                                     34
<210> 3
<211> 7595
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic plasmid
```

```
<221> promoter
<222> (157)..(285)
<223> Promotor ppolh
<220>
<221> CDS
<222> (291)..(1289)
<223> pVP2 ORF
<220>
<221> promoter
<222> (7443)..(7503)
<223> Promoter p10
<400> 3
gggtgatcaa gtcttcgtcg agtgattgta aataaaatgt aatttacagt atagtatttt
                                                                      60
aattaatata caaatgattt gataataatt cttatttaac tataatatat tgtgttgggt
                                                                      120
tgaattaaag gtccgtatac tccggaatat taatagatca tggagataat taaaatgata
                                                                      180
accatctcgc aaataaataa gtattttact gttttcgtaa cagttttgta ataaaaaaac
                                                                      240
                                                                      296
ctataaatat tccggattat tcataccgtc ccaccatcgg gcgcggatct atg aca
                                                       Met Thr
                                                       1
aac ctg tca gat caa acc cag cag att gtt ccg ttc ata cgg agc ctt
                                                                      344
Asn Leu Ser Asp Gln Thr Gln Gln Ile Val Pro Phe Ile Arg Ser Leu
ctg atg cca aca acc gga ccg gcg tcc att ccg gac gac acc ctg gag
                                                                      392
Leu Met Pro Thr Thr Gly Pro Ala Ser Ile Pro Asp Asp Thr Leu Glu
                        25
   20
                                            30
aag cac act ctc agg tca gag acc tcg acc tac aat ttg act gtg ggg
                                                                      440
Lys His Thr Leu Arg Ser Glu Thr Ser Thr Tyr Asn Leu Thr Val Gly
                    40
35
                                        45
gac aca ggg tca ggg cta att gtc ttt ttc cct gga ttc cct ggc tca
                                                                      488
Asp Thr Gly Ser Gly Leu Ile Val Phe Phe Pro Gly Phe Pro Gly Ser
                55
                                    60
att gtg ggt gct cac tac aca ctg cag ggc aat ggg aac tac aag ttc
                                                                      536
Ile Val Gly Ala His Tyr Thr Leu Gln Gly Asn Gly Asn Tyr Lys Phe
           70
gat cag atg ctc ctg act gcc cag aac cta ccg gcc agt tac aac tac
                                                                      584
Asp Gln Met Leu Leu Thr Ala Gln Asn Leu Pro Ala Ser Tyr Asn Tyr
        85
                            90
                                                                      632
tgc agg cta gtg agt cgg agt ctc aca gtg agg tca agc aca ctt cct
Cys Arg Leu Val Ser Arg Ser Leu Thr Val Arg Ser Ser Thr Leu Pro
   100
                        105
                                           110
                                                                      680
ggt ggc gtt tat gca cta aac ggc acc ata aac gcc gtg acc ttc caa
Gly Gly Val Tyr Ala Leu Asn Gly Thr Ile Asn Ala Val Thr Phe Gln
```

115 120 125 130

gga agc ctg agt gaa ctg aca Gly Ser Leu Ser Glu Leu Thr 135			728
gca aca gcc aac atc aac gac Ala Thr Ala Asn Ile Asn Asp 150		3 333 3	776
ggg gtc acc gtc ctc agc tta Gly Val Thr Val Leu Ser Leu 165			324
agg ctt ggt gac ccc att ccc Arg Leu Gly Asp Pro Ile Pro 180			372
gcc aca tgt gac agc agt gac Ala Thr Cys Asp Ser Ser Asp 195 200			920
gcc gat gat tac caa ttc tca Ala Asp Asp Tyr Gln Phe Ser 215	-	33 33 3	968
atc aca ctg ttc tca gcc aac Ile Thr Leu Phe Ser Ala Asn 230		3 3	016
ggg gga gag ctc gtg ttt cga Gly Gly Glu Leu Val Phe Arg 245		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	064
gcc acc atc tac ctc ata ggc Ala Thr Ile Tyr Leu Ile Gly 260 265			112
gct gtg gcc gca aac aat ggg Ala Val Ala Ala Asn Asn Gly 275 280	2 2 22	3	160
cca ttc aat ctt gtg att cca Pro Phe Asn Leu Val Ile Pro 295	3 3	3	208
tcc atc aaa ctg gag ata gtg Ser Ile Lys Leu Glu Ile Val 310	-		256
gat cag atg tca tgg tcg gca Asp Gln Met Ser Trp Ser Ala 325		gcagtgacga tccatggtgg 13	309
caactateca ggggeeetee gteee	gtcac gctagtggcc	tacgaaagag tggcaacagg 13	369
atccgtcgtt acggtcgctg gggtg.	agcaa cttcgagctg	atcccaaatc ctgaactagc 14	129

aaagaacctg	gttacagaat	acggccgatt	tgacccagga	gccatgaact	acacaaaatt	1489
gatactgagt	gagagggacc	gtcttggcat	caagaccgtc	tggccaacaa	gggagtacac	1549
tgactttcgt	gaatacttca	tggaggtggc	cgacctcaac	tctcccctga	agattgcagg	1609
agcattcggc	ttcaaagaca	taatccgggc	cataaggagg	atagctgtgc	cggtggtctc	1669
cacattgttc	ccacctgccg	ctcccctagc	ccatgcaatt	ggggaaggtg	tagactacct	1729
gctgggcgat	gaggcccagg	ccgcttcagg	aactgctcga	gccgcgtcag	gaaaagcaag	1789
agctgcctca	ggccgcataa	ggcagctgac	tctcgcctaa	gcttgtcgag	aagtactaga	1849
ggatcataat	cagccatacc	acatttgtag	aggttttact	tgctttaaaa	aacctcccac	1909
acctccccct	gaacctgaaa	cataaaatga	atgcaattgt	tgttgttaac	ttgtttattg	1969
cagcttataa	tggttacaaa	taaagcaata	gcatcacaaa	tttcacaaat	aaagcatttt	2029
tttcactgca	ttctagttgt	ggtttgtcca	aactcatcaa	tgtatcttat	catgtctgga	2089
tctgatcact	gcttgagcct	aggagatccg	aaccagataa	gtgaaatcta	gttccaaact	2149
attttgtcat	ttttaatttt	cgtattagct	tacgacgcta	cacccagttc	ccatctattt	2209
tgtcactctt	ccctaaataa	tccttaaaaa	ctccatttcc	acccctccca	gttcccaact	2269
attttgtccg	cccacagcgg	ggcattttc	ttcctgttat	gtttttaatc	aaacatcctg	2329
ccaactccat	gtgacaaacc	gtcatcttcg	gctacttttt	ctctgtcaca	gaatgaaaat	2389
ttttctgtca	tctcttcgtt	attaatgttt	gtaattgact	gaatatcaac	gcttatttgc	2449
agcctgaatg	gcgaatggga	cgcgccctgt	agcggcgcat	taagcgcggc	gggtgtggtg	2509
gttacgcgca	gcgtgaccgc	tacacttgcc	agegeeetag	cgcccgctcc	tttcgctttc	2569
ttcccttcct	ttctcgccac	gttcgccggc	tttccccgtc	aagctctaaa	tegggggete	2629
cctttagggt	tccgatttag	tgctttacgg	cacctcgacc	ccaaaaaact	tgattagggt	2689
gatggttcac	gtagtgggcc	atcgccctga	tagacggttt	ttcgcccttt	gacgttggag	2749
tccacgttct	ttaatagtgg	actcttgttc	caaactggaa	caacactcaa	ccctatctcg	2809
gtctattctt	ttgatttata	agggattttg	ccgatttcgg	cctattggtt	aaaaaatgag	2869
ctgatttaac	aaaaatttaa	cgcgaatttt	aacaaaatat	taacgtttac	aatttcaggt	2929
ggcacttttc	ggggaaatgt	gcgcggaacc	cctatttgtt	tatttttcta	aatacattca	2989
aatatgtatc	cgctcatgag	acaataaccc	tgataaatgc	ttcaataata	ttgaaaaagg	3049
aagagtatga	gtattcaaca	tttccgtgtc	gcccttattc	ccttttttgc	ggcattttgc	3109

cttcctgttt ttgctcaccc	agaaacgctg	gtgaaagtaa	aagatgctga	agatcagttg	3169
ggtgcacgag tgggttacat	cgaactggat	ctcaacagcg	gtaagatcct	tgagagtttt	3229
cgccccgaag aacgttttcc	aatgatgagc	acttttaaag	ttctgctatg	tggcgcggta	3289
ttatcccgta ttgacgccgg	gcaagagcaa	ctcggtcgcc	gcatacacta	ttctcagaat	3349
gacttggttg agtactcacc	agtcacagaa	aagcatctta	cggatggcat	gacagtaaga	3409
gaattatgca gtgctgccat	aaccatgagt	gataacactg	cggccaactt	acttctgaca	3469
acgatcggag gaccgaagga	gctaaccgct	tttttgcaca	acatggggga	tcatgtaact	3529
cgccttgatc gttgggaacc	ggagctgaat	gaagccatac	caaacgacga	gcgtgacacc	3589
acgatgcctg tagcaatggc	aacaacgttg	cgcaaactat	taactggcga	actacttact	3649
ctagcttccc ggcaacaatt	aatagactgg	atggaggcgg	ataaagttgc	aggaccactt	3709
ctgcgctcgg cccttccggc	tggctggttt	attgctgata	aatctggagc	cggtgagcgt	3769
gggtctcgcg gtatcattgc	agcactgggg	ccagatggta	agccctcccg	tatcgtagtt	3829
atctacacga cggggagtca	ggcaactatg	gatgaacgaa	atagacagat	cgctgagata	3889
ggtgcctcac tgattaagca	ttggtaactg	tcagaccaag	tttactcata	tatactttag	3949
attgatttaa aacttcattt	ttaatttaaa	aggatctagg	tgaagatcct	ttttgataat	4009
ctcatgacca aaatccctta	acgtgagttt	tcgttccact	gagcgtcaga	ccccgtagaa	4069
aagatcaaag gatcttcttg	agatcctttt	tttctgcgcg	taatctgctg	cttgcaaaca	4129
aaaaaaccac cgctaccagc	ggtggtttgt	ttgccggatc	aagagctacc	aactctttt	4189
ccgaaggtaa ctggcttcag	cagagegeag	ataccaaata	ctgtccttct	agtgtagccg	4249
tagttaggcc accacttcaa	gaactctgta	gcaccgccta	catacctcgc	tctgctaatc	4309
ctgttaccag tggctgctgc	cagtggcgat	aagtcgtgtc	ttaccgggtt	ggactcaaga	4369
cgatagttac cggataaggc	gcagcggtcg	ggctgaacgg	ggggttcgtg	cacacagccc	4429
agcttggagc gaacgaccta	caccgaactg	agatacctac	agcgtgagca	ttgagaaagc	4489
gccacgcttc ccgaagggag	aaaggcggac	aggtatccgg	taagcggcag	ggtcggaaca	4549
ggagagcgca cgagggagct	tccaggggga	aacgcctggt	atctttatag	teetgteggg	4609
tttcgccacc tctgacttga	gcgtcgattt	ttgtgatgct	cgtcaggggg	gcggagccta	4669
tggaaaaacg ccagcaacgc	ggccttttta	cggttcctgg	ccttttgctg	gccttttgct	4729
cacatgttct ttcctgcgtt	atcccctgat	tctgtggata	accgtattac	cgcctttgag	4789
tgagctgata ccgctcgccg	cagccgaacg	accgagcgca	gcgagtcagt	gagcgaggaa	4849

gcggaagagc	gcctgatgcg	gtattttctc	cttacgcatc	tgtgcggtat	ttcacaccgc	4909
agaccagccg	cgtaacctgg	caaaatcggt	tacggttgag	taataaatgg	atgccctgcg	4969
taagcgggtg	tgggcggaca	ataaagtctt	aaactgaaca	aaatagatct	aaactatgac	5029
aataaagtct	taaactagac	agaatagttg	taaactgaaa	tcagtccagt	tatgctgtga	5089
aaaagcatac	tggacttttg	ttatggctaa	agcaaactct	tcattttctg	aagtgcaaat	5149
tgcccgtcgt	attaaagagg	ggcgtggcca	agggcatggt	aaagactata	ttcgcggcgt	5209
tgtgacaatt	taccgaacaa	ctccgcggcc	gggaagccga	tctcggcttg	aacgaattgt	5269
taggtggcgg	tacttgggtc	gatatcaaag	tgcatcactt	cttcccgtat	gcccaacttt	5329
gtatagagag	ccactgcggg	atcgtcaccg	taatctgctt	gcacgtagat	cacataagca	5389
ccaagcgcgt	tggcctcatg	cttgaggaga	ttgatgagcg	cggtggcaat	gccctgcctc	5449
cggtgctcgc	cggagactgc	gagatcatag	atatagatct	cactacgcgg	ctgctcaaac	5509
ctgggcagaa	cgtaagccgc	gagagcgcca	acaaccgctt	cttggtcgaa	ggcagcaagc	5569
gcgatgaatg	tcttactacg	gagcaagttc	ccgaggtaat	cggagtccgg	ctgatgttgg	5629
gagtaggtgg	ctacgtctcc	gaactcacga	ccgaaaagat	caagagcagc	ccgcatggat	5689
ttgacttggt	cagggccgag	cctacatgtg	cgaatgatgc	ccatacttga	gccacctaac	5749
tttgttttag	ggcgactgcc	ctgctgcgta	acatcgttgc	tgctgcgtaa	catcgttgct	5809
gctccataac	atcaaacatc	gacccacggc	gtaacgcgct	tgctgcttgg	atgcccgagg	5869
catagactgt	acaaaaaaac	agtcataaca	agccatgaaa	accgccactg	cgccgttacc	5929
accgctgcgt	tcggtcaagg	ttctggacca	gttgcgtgag	cgcatacgct	acttgcatta	5989
cagtttacga	accgaacagg	cttatgtcaa	ctgggttcgt	gccttcatcc	gtttccacgg	6049
tgtgcgtcac	ccggcaacct	tgggcagcag	cgaagtcgag	gcatttctgt	cctggctggc	6109
gaacgagcgc	aaggtttcgg	tctccacgca	tcgtcaggca	ttggcggcct	tgctgttctt	6169
ctacggcaag	gtgctgtgca	cggatctgcc	ctggcttcag	gagatcggta	gacctcggcc	6229
gtcgcggcgc	ttgccggtgg	tgctgacccc	ggatgaagtg	gttcgcatcc	tcggttttct	6289
ggaaggcgag	catcgtttgt	tcgcccagga	ctctagctat	agttctagtg	gttggcctac	6349
gtacccgtag	tggctatggc	agggcttgcc	gccccgacgt	tggctgcgag	ccctgggcct	6409
tcacccgaac	ttgggggttg	gggtggggaa	aaggaagaaa	cgcgggcgta	ttggtcccaa	6469
tggggtctcg	gtggggtatc	gacagagtgc	cagccctggg	accgaacccc	gcgtttatga	6529

acaaacgacc	caacacccgt	gcgttttatt	ctgtctttt	attgccgtca	tagcgcgggt	6589
teetteeggt	attgtctcct	tccgtgtttc	agttagcctc	ccccatctcc	cggtaccgca	6649
tgcctcgaga	ctgcaggctc	tagattcgaa	agcggccgcg	actagtgagc	tegtegaegt	6709
aggcctttga	attccggatc	ctcactcaag	gtcctcatca	gagacggtcc	tgatccagcg	6769
gcccagccga	ccagggggtc	tctgtgttgg	agcattgggt	tttggcttgg	gctttggtag	6829
agecegeetg	ggattgcgat	gcttcatctc	catcgcagtc	aagagcagat	ctttcatctg	6889
ttcttggttt	gggccacgtc	catggttgat	ttcatagact	ttggcaactt	cgtctatgaa	6949
agcttggggt	ggctctgcct	gtcctggagc	cccgtagatc	gacgtagctg	cccttaggat	7009
ttgttcttct	gatgccaacc	ggctcttctc	tgcatgcacg	tagtctagat	agtcctcgtt	7069
tgggtccggt	atttctcgtt	tgttctgcca	gtactttacc	tggcctgggc	ttggccctcg	7129
gtgcccattg	agtgctaccc	attctggtgt	tgcaaagtag	atgcccatgg	tctccatctt	7189
ctttgagatc	cgtgtgtctt	tttccctctg	tgcttcctct	ggtgtggggc	cccgagcctc	7249
cactccgtag	cctgctgtcc	cgtacttggc	cctttgcgac	ttgctgcctg	cttgtggtgc	7309
gtttgcaaga	aaatttcgca	tccgatgggc	gttcgggtcg	ctgagtgcga	agttggccat	7369
gtcagtcaca	atcccattct	cttccagcca	catgaacaca	ctgagtgcag	attggaatag	7429
tgggtccacg	ttggctgctg	cttccattgc	tctgacggca	ctctcgagtt	cgggggtctc	7489
tttgaactct	gatgcagcca	tggcgccctg	aaaatacagg	ttttcggtcg	ttgggatatc	7549
gtaatcgtga	tggtgatggt	gatggtagta	cgacatggtt	tcggac		7595

<210> 4

<211> 333

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic polypeptide

<400> 4

Met Thr Asn Leu Ser Asp Gln Thr Gln Gln Ile Val Pro Phe Ile Arg
1 5 10 15

Ser Leu Leu Met Pro Thr Thr Gly Pro Ala Ser Ile Pro Asp Asp Thr 20 25 30

Leu Glu Lys His Thr Leu Arg Ser Glu Thr Ser Thr Tyr Asn Leu Thr 35 40 45

Val Gly Asp Thr Gly Ser Gly Leu Ile Val Phe Phe Pro Gly Phe Pro 50 55 60

Gly Ser Ile Val Gly Ala His Tyr Thr Leu Gln Gly Asn Gly Asn Tyr Lys Phe Asp Gln Met Leu Leu Thr Ala Gln Asn Leu Pro Ala Ser Tyr 85 90 Asn Tyr Cys Arg Leu Val Ser Arg Ser Leu Thr Val Arg Ser Ser Thr 105 Leu Pro Gly Gly Val Tyr Ala Leu Asn Gly Thr Ile Asn Ala Val Thr 120 Phe Gln Gly Ser Leu Ser Glu Leu Thr Asp Val Ser Tyr Asn Gly Leu 135 Met Ser Ala Thr Ala Asn Ile Asn Asp Lys Ile Gly Asn Val Leu Val 145 150 155 160 Gly Glu Gly Val Thr Val Leu Ser Leu Pro Thr Ser Tyr Asp Leu Gly 165 170 175 Tyr Val Arg Leu Gly Asp Pro Ile Pro Ala Ile Gly Leu Asp Pro Lys 180 185 Met Val Ala Thr Cys Asp Ser Ser Asp Arg Pro Arg Val Tyr Thr Ile 195 200 Thr Ala Ala Asp Asp Tyr Gln Phe Ser Ser Gln Tyr Gln Pro Gly Gly 215 Val Thr Ile Thr Leu Phe Ser Ala Asn Ile Asp Ala Ile Thr Ser Leu 230 225 235 Ser Val Gly Glu Leu Val Phe Arg Thr Ser Val His Gly Leu Val 245 250 255 Leu Gly Ala Thr Ile Tyr Leu Ile Gly Phe Asp Gly Thr Thr Val Ile 260 265 Thr Arg Ala Val Ala Ala Asn Asn Gly Leu Thr Thr Gly Thr Asp Asn 275 280 Leu Met Pro Phe Asn Leu Val Ile Pro Thr Asn Glu Ile Thr Gln Pro 295 Ile Thr Ser Ile Lys Leu Glu Ile Val Thr Ser Lys Ser Gly Gly Gln 310 315 Ala Gly Asp Gln Met Ser Trp Ser Ala Arg Gly Ser Leu

<210> 5

<211> 35

<212> DNA

<213> Artificial sequence

```
<220>
<223> Synthetic oligonucleotide
<400> 5
                                                                    35
gcgcagatct atgacaaacc tgtcagatca aaccc
<210> 6
<211> 34
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide
<400> 6
                                                                    34
gcgcaagctt aggcgagagt cagctgcctt atgc
<210> 7
<211> 33
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide
<400> 7
gcgcgaattc gatggcatca gagttcaaag aga
```