仿真习题

1. 对某排队系统进行仿真。已知到达间隔时间 t_A 和服务时间 t_S 的随机抽样值如下表所示,请利用事件调度/时间推进算法,写出该系统的未来事件表 FEL(仿真结束条件为第四个顾客离开系统),并说明仿真结束时的系统状态。

顾客	1	2	3	4	5	6	7	•••
t_{A}	0	5	13	1	11	3	6	•••
t_{S}	2	3	8	3	2	2	3	•••

2. 一串联排队系统如下:

假定仿真终止条件是第八个顾客到达。请给出未来事件表及 NIQ(1), NIQ(2), STATUS(1), STATUS(2)。

3. 给出两个线性同余发生器(LCG)如下:

$$Z_i = (13 Z_{i-1} + 13) \mod 16$$

 $Z_i = (12 Z_{i-1} + 13) \mod 16$

- (1) 上述 LCG 是否是满周期的? 为什么?
- (2) 对每个发生器计算一个周期的随机数。
- 4. 构造一个满周期(m=8)的线性同余随机数发生器,并利用该随机数发生器生成一个周期的随机数。
 - 5. 己知离散随机变量 X 的概率分布为

х	1	2	3	4	5	6
p	0.1	0.3	0.1	0.2	0.2	0.1

现有 U(0,1) 随机数如下:

u_i	0.38	0.10	0.60	0.90	0.88	0.96	0.01	0.41

要求利用上述 U(0,1) 随机数,(1)生成随机变量 X 的一组随机数;(2)生成均值为 3 的指数分布的一组随机数;(3)生成标准正态分布的一组随机数。

6. 假设随机变量 X 的概率密度函数为 f(x)=3x2/2(-1 < x < 1)。试用逆变法给出生成其随机数的算法。

7. 已知三角分布的概率密度函数如下图:

请给出利用 U(0,1)随机数生成三角分布随机数的步骤。

8. 有 MCG 如下:

$$Z_i = (44 Z_{i-1}) \mod 2039$$

请利用上述发生器产生 200 个随机数(使用 Excel 软件或编程),并进行均匀性检验。

9. (可选)用 Monte Carlo 方法, 求下列定积分的近似值:

$$\frac{1}{\sqrt{2\pi}}\int_0^3 e^{-x^2/2}dx$$

10. 对某系统进行 10 次独立重复终态仿真运行,获得终态响应为

R	1	2	3	4	5	6	7	8	9	10
Y	4	3	5	6	5	4	5	3	1	4

- (1) 求均值的置信度为95%的置信区间。
- (2) 若要求仿真相对精度为0.23, 试求应补充的仿真运行次数。
- (3) 若要求仿真绝对精度为 0.58, 试求应补充的仿真运行次数。

t 分布的临界值如下:

		自 由 度									
t	9	10	11	•••	23	24	25	26			
t 0.90	1.38	1.37	1.36	•••	1.32	1.32	1.316	1.315			
t 0.95	1.83	1.81	1.79	•••	1.71	1.71	1.708	1.706			
t 0.975	2.26	2.23	2.2	•••	2.07	2.064	2.060	2.056			

- 11. 请比较公共随机数法和对偶变量法在方差衰减中的差别。

$$Xc = X - a(Y - v)$$
 (a 为任意实数)

为的 μ 估计量,问如何确定 a,可使估计量 Xc 的方差衰减,为什么?