COMP 4983: Lab Exercise #4 Mark:

[Due: Sep 30, 2022 @1730 Assignment Submission Folders]

/50

Instructions:

In this lab, you will explore the bias and variance of a polynomial regression model using simulated data. Recall from Module 3 that the observed data points, \hat{y} , are generated by a true function f that maps an input x, plus some observation noise, ϵ , i.e., $\hat{y} = f(x) + \epsilon$.

In this lab, we will assume the following:

- $f(x) = x + \sin(3x)$
- ϵ is a random variable following a zero-mean Gaussian distribution with standard deviation, σ = 0.25

You will approximate the true function f with a polynomial regression model $\widehat{y}_i = \widehat{\beta}_0 + \sum_{j=1}^p \widehat{\beta}_j x_i^j$, $\forall i = 1, 2, ..., N$, where p represents the complexity (p-th degree polynomial) of the polynomial regression model.

The goal of this lab is to illustrate how the bias and variance of a polynomial regression model vary as a function of p. This will be done by

- generating 1000 independent observation datasets
- fitting the polynomial regression model of degree p = [1,3,5,9,15] to each dataset
- measuring the bias and variance at a given point, x = 5

Steps:

- 1) Download the simulated data generator script, GenData_Lab4.py, from BCIT Learning Hub (Content | Laboratory Material | Lab 4) and save it in your working directory. This script contains two functions that you will use for this lab:
 - f(x) returns the value of f(x)
 - genNoisyData() generates a random set of x (with 50 elements) and associated noisy observation, $\hat{y} = f(x) + \epsilon$
- 2) Create a new Python script using the filename BiasVariance_Lab4.py and save it in your working directory.
- Include the following line at the top of your script, BiasVariance_Lab4.py:

import GenData Lab4 as lab4

- 4) For each p = [1,3,5,9,15], you will implement the following in your script, $BiasVariance_Lab4.py$:
 - a. Use genNoisyData() to generate 1000 datasets, where each dataset contains N=50 samples.
 - b. For each dataset m, $\forall m = 1, 2, ..., 1000$,
 - i. train a polynomial regression model of degree p on the data.
 - ii. evaluate the trained model at x = 5, i.e., $y_m^{pred}(x = 5)$.
 - c. Compute and output the bias for x=5, which can be computed by $\overline{y^{pred}}(x=5)-f(x=5)$. Note that $\overline{y^{pred}}(x=5)=\frac{1}{1000}\sum_{m=1}^{1000}y_m^{pred}(x=5)$ is the average of $y_m^{pred}(x=5)$ over the 1000 datasets.
 - d. Compute and output the variance of $y^{pred}(x=5)$, which can be computed by $\mathrm{Var}\left(y^{pred}(x=5)\right) = \frac{1}{1000}\sum_{m=1}^{1000}\left(y^{pred}_m(x=5) \overline{y^{pred}}(x=5)\right)^2$, over the 1000 datasets.
 - e. Plot the distribution, using a histogram, of $y_m^{pred}(x=5)$ from all 1000 datasets. In addition, plot a vertical line to indicate $\overline{y^{pred}}(x=5)$ (red line) and another vertical line to indicate f(x=5) (black line) in the example shown below for p=1. Note that your exact values may differ as the noise is randomly generated.

5) Indicate in the output which p-th degree polynomial gives the smallest (lowest absolute) bias and the lowest variance, respectively, at x = 5.

Deliverable:

All work submitted is subject to the standards of conduct as specified in BCIT Policy 5104. No late assignments will be accepted.

[Sep 30, 2022 @1730] Ensure that your source code is adequately commented and submit using the filename *BiasVariance_Lab4.py* to BCIT Learning Hub (Laboratory Submission | Lab 4).