Quantitative Text Analysis

Meeting 6

- Supervised
 - An outcome variable is defined
 - Focus is on prediction
- Unsupervised
 - No outcome variable has been defined
 - Focus is on patterns

- Supervised
 - An outcome variable is defined
 - Focus is on prediction
- Unsupervised
 - No outcome variable has been defined
 - Focus is on patterns

Supervised

- Objective:
 - Classification of documents into pre existing categories

Supervised

- Create a labeled data set
- Classify documents with supervised learning algorithm
- Check performance

Labeled Dataset

- How:
 - Human coders annotate parts of the corpus (what we did together)
 - Found data (e.g., self-reported profession in users' profile)

- Considerations:
 - Sampling should be representative for the corpus (e.g., Random, Stratified sample e.g., across time and source)
 - Quality of human coding matters (Assess the intercoder reliability)
 - Number of documents

Labeled Dataset

- Number of documents
 - the higher the number of categories and the lower the reliability of the coders, the higher the number of documents (Barberá et al., 2021)
- increase the sizes of manually coded validation dataset as large as possible (e.g., more than 1% of all data to be examined), assuming acceptable reliability (equal to or higher than .7) (Song et al., 2021)

Splitting the Data

- Split labeled data in training data and test data (validation data)
- Training data
 - The subset that is used to learn the model parameters

- Test data
 - Another subset used to evaluate the model's predictive quality
 - Not used for learning!

Validation data

Document Classification

- Classifier learns the mapping between features and the labels in the training set
- define a model Y=g(X)
- And apply a learning algorithm to establish which features in X (features extracted from the training documents) matter to recover Y (i.e, the labels of the training documents)
- We fit the model

Model:

$$Y = f(X)$$

Objective function (e.g.,):

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Optimisation:

$$\underset{n}{argmin}_{\hat{Y}} \frac{1}{m} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Model:

$$Y = f(X)$$

• Objective function (e.g.,):

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

• Optimisation:

$$argmin_{\hat{Y}} \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Model:

$$Y = f(X)$$

Machine

Objective function (e.g.,):

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

• Optimisation:

$$argmin_{\hat{Y}} \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Learning

Classify documents with supervised learning

- Considerations:
 - Feature representation (Bag of words representation or embeddings)
 - Feature selection (remove irrelevant features)
 - Classifier selection
 - E.g., Naive Bayes, SVM, KNN, or ensemble methods

Checking Performance

• The fitted model (the trained classifier) is applied to a held-out test set (which is a part of the labeled set but was not used for training the model).

- Considerations:
 - Danger of overfitting (focus on features that work well with training set but do not generalize)
 - Solutions: cross-validation
 - Performance metric (i.e., recall, precision)

Checking performance

- k-fold cross-validation
 - We randomly split the data into k sets ("folds") of roughly equal size
 - Each set is hold out once as test set, while training on the remaining sets
 - The problem of a lucky split is reduced

K-Fold Cross-Validation

Confusion Matrix

	Actual label	
	Negative	Positive
Negative	True negative	False positive
Positive	False negative	True positive

Precision/Recall

```
Accuracy = \frac{True\ Negative + True\ Positive}{True\ Negative + True\ Positive + False\ Negative + True\ Positive} Precision_{positive} = \frac{True\ Positive}{True\ Positive + False\ Positive} Recall_{positive} = \frac{True\ Positive}{True\ Positive + False\ Negatives}
```

Dictionary vs. supervised machine learning

• Dictionaries can be applied directly to a new corpus (but validate!)

 Supervised machine learning requires (potentially larger amounts) labeled data

If the training sample is large enough supervised learning will outperform dictionaries

Additional considerations

- Hyperparameter selection
 - Via systematic comparison of different hyperparameters per algorithm
- Random undersampling (Galar et al., 2011)
- Method to deal with unbalanced classes: use the max. number of positive instances per class and randomly sample the same number of instances of the negative class