The Dual Space of LP when 1=p<0

Suppose that 1=p,q < 0 are conjugate exponents.

It follows from Hölder's inequality:

fel and gel2 ⇒ fgel' and Isfg = ||f||p||9||q

that for each geL2 we can define Lge(LP)*, that is a continuous

linear Runchand Lg on LP, by

$$Lg(f) = \int fg$$

[since | Lg(f) | = | If | p | Ig | g = c | If | p]

with operator norm at most IIIIg, that is

| Lg | (LP)x := sup | Lg(f) | = | | sllq .

In fact, it follows from the "Converse to Hölder" (part (i)):

that the map g >> Lg is an isometry from L2 into (LP)*.

* If I sp < 00, then this map is infact also surjective,

i.e. La isometrically isomorphic to (LP)x.

Theorem (Riesz Representation Theorem for LP functions)

Suppose $1 \le p < \infty$ and q is the conjugate exponent to p. Given any $L \in (L^p(\mathbb{R}^n))^*$ there exists $g \in L^q(\mathbb{R}^n)$ which represents L in the sense that

L(f) = Ifa for all for LP(R")

and || L||(LP) = ||g||q .

Summary:

isometrically isomorphic

(i) $(L^{p}(\mathbb{R}^{n}))^{*} \simeq L^{q}(\mathbb{R}^{n})$ if $1 \leq p < \infty$

but (ii) $(L^{\infty}(\mathbb{R}^n))^* \neq L'(\mathbb{R}^n)$

The standard proof that $(L^{o}(\mathbb{R}^n))^{k}$ is a larger space than $L'(\mathbb{R}^n)$ uses the Hahn-Banach theorem from Functional analysis.

- * This a very important and rather deep result.
 - · We will see a proof of this result at the end of the semester after we have discussed abstract measures and proven the Radon-Nikodym theorem.
 - · We shall soon however see a proof in the special case when p=2, but we most first discuss some special properties of the <u>Hilbert Space</u> L².

Sketch Proof of Theorem

Let Le (LP(Rn))*. Define
$$\nu: \mathcal{M}(\mathbb{R}^n) \longrightarrow \mathbb{C}$$
, by

Nete: (i)
$$v(\phi) = 0$$

(ii) for any disjoint seq
$$\{E_j: \}$$
, $\nu(UE_j) = \sum_{j=1}^{\infty} \nu(E_j)$.

It follows that v is a complex measure. Horever, if m(E)=0then $X_E \in L^P$ and v(E)=0, i.e. $m(E)=0 \Rightarrow v(E)=0$ " v is absolutely outs wrt m" (vex m)

Radon - Nikodym Thm

$$\Rightarrow \exists g \in L'(\mathbb{R}^n) \text{ such that } v(E) = \int g(x)dx$$
.

and hence L(f) = If of for all simple functions f.

It follows from the "Converse of Hilde" (part (ii)) that $g \in L^2(\Omega^n)$.

Since simple functions are dense in LP(1R") this completes the proof.