姓名: 专业: 学号:

第 10 周作业解答

练习 1. 求向量组
$$\alpha_1 = \begin{pmatrix} -2 \\ 1 \\ 3 \\ -1 \\ 2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} -1 \\ 3 \\ 5 \\ -3 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 0 \\ 5 \\ 7 \\ -5 \\ -4 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 1 \\ 2 \\ 2 \\ -2 \\ -3 \end{pmatrix}$ 的一组极大无关组,并将其余向

量表示成极大无关组的线性组合。

解

可见

- $r(\alpha_1\alpha_2\alpha_3\alpha_4) = 2$, 说明极大无关组应含 2 个向量;
- 从最后简化的阶梯型矩阵容易看出: α_1, α_2 线性无关, 所以 α_1, α_2 构成一极大无关组;
- 也是从最后简化的阶梯型矩阵看出:

练习 2. 用基础解系表示齐次线性方程组
$$\begin{cases} x_1 + & x_2 + & x_3 + & 4x_4 - & 3x_5 = 0 \\ 2x_1 + & x_2 + & 3x_3 + & 5x_4 - & 5x_5 = 0 \\ x_1 - & x_2 + & 3x_3 - & 2x_4 - & x_5 = 0 \\ 3x_1 + & x_2 + & 5x_3 + & 6x_4 - & 7x_5 = 0 \end{cases}$$
的通解。

解

1. 从最后简化的阶梯型矩阵看出,原方程组同解于:

$$\begin{cases} x_1 & +2x_3 + x_4 - 2x_5 = 0 \\ x_2 & -x_3 + 3x_4 - x_5 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = -2x_3 - x_4 + 2x_5 \\ x_2 = x_3 - 3x_4 + x_5 \end{cases}$$

- 2. 自由变量: x_3, x_4, x_5
- 3. 基础解系:

$$\xi_1 = \begin{pmatrix} -2\\1\\0\\0\\0 \end{pmatrix}, \ \xi_2 = \begin{pmatrix} -1\\-3\\0\\1\\0 \end{pmatrix}, \ \xi_3 = \begin{pmatrix} 2\\1\\0\\0\\1 \end{pmatrix}$$

4. 通解:

$$x = c_1 \xi_1 + c_2 \xi_2 + c_3 \xi_3$$

其中 c_1 , c_2 , c_3 为任意常数。

练习 3. 设 A, B 均为 $m \times n$ 矩阵, 证明: $r(A+B) \le r(A) + r(B)$.

证明设矩阵 A 的 n 列依次为: $\alpha_1, \alpha_2, \ldots, \alpha_n$; 矩阵 B 的 n 列依次为: $\beta_1, \beta_2, \ldots, \beta_n$, 则矩阵 A + B 的 n 列依次为: $\alpha_1 + \beta_1, \alpha_1 + \beta_2, \ldots, \alpha_1 + \beta_n$ 。

设 $r(\alpha_1, \alpha_2, \ldots, \alpha_n) = r_1$,向量组 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 的极大无关组包含 r_1 个向量,设 $\alpha_{i_1}, \alpha_{i_2}, \ldots, \alpha_{i_{r_1}}$ 是其中一个极大无关组。另外,成立 $r(A) = r_1$ 。同样,设 $r(\beta_1, \beta_2, \ldots, \beta_n) = r_2$,假设 $\beta_{j_1}, \beta_{j_2}, \ldots, \beta_{j_{r_2}}$ 是列向量组 $\beta_1, \beta_2, \ldots, \beta_n$ 的一个极大无关组。此外,成立 $r(B) = r_2$ 。

显然列向量组

$$\alpha_1 + \beta_1, \ \alpha_1 + \beta_2, \ldots, \ \alpha_1 + \beta_n$$

能由向量组

$$\alpha_1, \alpha_2, \ldots, \alpha_n, \beta_1, \beta_2, \ldots, \beta_n$$

线性表示,继而也能由向量组

$$\alpha_{i_1}, \alpha_{i_2}, \ldots, \alpha_{i_{r_1}}, \beta_{j_1}, \beta_{j_2}, \ldots, \beta_{j_{r_2}}$$

线性表示。所以

$$r(\alpha_1 + \beta_1, \alpha_1 + \beta_2, \dots, \alpha_1 + \beta_n) \leq r(\alpha_{i_1}, \alpha_{i_2}, \dots, \alpha_{i_{r_1}}, \beta_{j_1}, \beta_{j_2}, \dots, \beta_{j_{r_2}}),$$

进而

$$r(A+B) = r(\alpha_1 + \beta_1, \alpha_1 + \beta_2, \dots, \alpha_1 + \beta_n) \le r(\alpha_{i_1}, \alpha_{i_2}, \dots, \alpha_{i_{r_1}}, \beta_{j_1}, \beta_{j_2}, \dots, \beta_{j_{r_2}}) \le r_1 + r_2 = r(A) + r(B).$$

练习 4. 设
$$A = (a_{ij})_{m \times n}, B = (b_{ij})_{n \times s},$$
 假设 $AB = O_{m \times s}$ 。证明: $r(A) + r(B) \le n$ 。

矩阵 B 的 s 列依次为: $\beta_1, \beta_2, \ldots, \beta_s$, 则向量组 $\beta_1, \beta_2, \ldots, \beta_s$ 的秩等于 B 的秩, 即:

$$r(\beta_1, \beta_2, \ldots, \beta_s) = r(B).$$

齐次线性方程组 Ax = 0 的基础解系应包含 n - r(A) 个向量。假设

$$\xi_1,\,\xi_2,\,\ldots,\,\xi_t$$

是 Ax = 0 的一组基础解, 其中 t = n - r(A)。

由于 AB = O, 所以

$$O = AB = A(\beta_1, \beta_2, \dots, \beta_s) = (A\beta_1, A\beta_2, \dots, A\beta_s) \quad \Rightarrow \quad A\beta_i = 0 \,\forall i = 1, 2, \dots, s$$

说明矩阵 B 的每一列 β_i 都是 Ax = 0 的解。所以 β_i 是基础解系 $\xi_1, \xi_2, \ldots, \xi_t$ 的线性组合。 上述说明向量组 $\beta_1, \beta_2, \ldots, \beta_s$ 能由向量组 $\xi_1, \xi_2, \ldots, \xi_t$ 线性表示,所以

$$r(\beta_1, \beta_2, \dots, \beta_s) \le r(\xi_1, \xi_2, \dots, \xi_t) = t = n - r(A),$$

进而

$$r(B) \le n - r(A)$$
.

下一题是附加题,做出来的同学下周交上来,可以加分

练习 5. 设 A 是 n 阶方阵,证明:存在不全为零的数 c_0, c_1, \cdots, c_n 使得 $c_0I_n + c_1A + \cdots + c_nA^n$ 为奇异矩阵。(事实上,可以证明 $c_0I_n + c_1A + \cdots + c_nA^n = 0$,但我们不证明这个。)(提示:任取一个非零的列向量 $v \in \mathbb{R}^n$,说明 v, Av, \cdots, A^nv 是线性相关。)

证明设 $v \in \mathbb{R}^n$ 为非零列向量。因为向量组 v, Av, \dots, A^nv 包含向量个数 n+1 比向量维数 n 大,所以 线性相关。存在不全为零的数 c_0, c_1, \dots, c_n 使得 $c_0v + c_1Av + \dots + c_nA^nv = 0$,也就是

$$(c_0I_n + c_1A + \dots + c_nA^n)v = 0.$$

如果 $c_0I_n+c_1A+\cdots+c_nA^n$ 是非奇异 (可逆),则上式推出 v=0,矛盾。所以方阵 $c_0I_n+c_1A+\cdots+c_nA^n$ 是奇异 (不可逆)。