

DATA VISUALIZATION WITH GGPLOT2

Visible Aesthetics

Aesthetics? Attributes!

Type	Property
Colour	Red

Type	Property
Size	10

Type	Property
Shape	4

Туре	Variable
Colour	Species

mapping Species on colour

Mapping

```
> ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width)) +
    geom_point()
```


Attribute

```
> ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width)) +
    geom_point(col = "red")
```


so mapping occurs in aes()
but you can specify attributes
just in that geom. Interestingly
you can also specify aes() within
the geom - that will do the mapping

That is more commonly done if you wish to use different data set for the geom

Mapping onto color

Data frame column mapped onto visible aesthetic

Aesthetics in aes(), attributes in geom_()

Species

- Setosa
- Versicolor
- Virginica

Mapping onto color (2)

Only if different data sources

Species

- Setosa
- Versicolor
- Virginica

Typical Aesthetics

Aesthetic	Description
X	X axis position
у	Y axis position
colour	Colour of dots, outlines of other shapes
fill	Fill colour
size	Diameter of points, thickness of lines
alpha	Transparency
linetype	Line dash pattern
labels	Text on a plot or axes
shape	Shape

DATA VISUALIZATION WITH GGPLOT2

Aesthetics Best Practices

Which Aesthetic?

- Be creative
- Clear guidelines
- Jacques Bertin (cartographer)
 - The Semiology of Graphics, 1967
- William Cleveland
 - Perception of visual elements (90s)

Form follows Function

there is a function to the plot and it depends on who your audience is

for other specialists

for general public

if data is not effectively presented - it is junk

Aesthetics

never misrepresent your data do not confuse the reader (overly complex figures) encode the data (numbers, tags) into visual language

Aesthetic	Description
X	X axis position
у	Y axis position
colour	Colour of dots, outlines of other shapes
fill	Fill colour
size	Diameter of points, thickness of lines
alpha	Transparency
linetype	Line dash pattern
labels	Text on a plot or axes
shape	Shape

Aesthetics - Continuous Variables

position on a common scale

Aesthetics - Continuous Variables

Aesthetics - Continuous Variables

Aesthetic	Description
X	X axis position
у	Y axis position
size	Diameter of points, thickness of lines
alpha	Transparency
colour	Colour of dots, outlines of other shapes
fill	Fill colour

less useful -> lower in the table

Guide - Continuous Variables

Unaligned y axes

Common y axis

categorical variables have more diverse choices - since they represent small and finite groups however it is good to choose something that is easy to interpret.

Aim to remove unnecessary visual elements - not data

you can use two mappings for one variable (categorical variable)

Aesthetic	Description
labels	Text on a plot or axes
fill	Fill colour
shape	Shape of point
alpha	Transparency
linetype	Line dash pattern
size	Diameter of points, thickness of lines

→ High

better avoid left side elements in graphs

qual cols - nominal variables seq col - for ordinal variables

hollow shapes easier to distinguish than solid shapes

circles preferable to shapes with straight lines

DATA VISUALIZATION WITH GGPLOT2

Modifying Aesthetics

Positions

- value in the dataframe is exactly where the value (geom) will be placed on the plot identity
- dodge
- stack
- fill
- when there is too much overplotting and we need to add some random noise jitter to x and y. We specify the amount of jitter such as 0.1 or 0.7
- jitterdodge

position identity (default)

```
> ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, col = Species)) +
    geom_point()
```


position identity (default)

```
> ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, col = Species)) +
    geom_point(position = "identity")
```


position jitter

```
> ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, col = Species)) +
    geom_point(position = "jitter")
```


position jitter (2)

```
> posn.j <- position_jitter(width = 0.1)
> ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, col = Species)) +
    geom_point(position = posn.j)
```


Set specific arguments for the position Consistency in jitter across plots

because we can re-use that position in all our plots

Scale Functions

- scale_x...
- scale_y...
- scale_color...
- scale_fill...
- scale_color...
- scale_shape...
- scale linetype...

each of the aesthetics is a scale which we map data onto. Color is a scale and x and y is a scale therefore we can access them with scale underscore functions

factor - discrete - categorical - qualitative (depending on context but they all are the same)

first argument is the name of the scale. then the most common are:

limits - the limits of the scale

breaks - controls the breaks in the guide

expand - numeric vector of length 2 that controls space between axes and data

labels -are just the category names (such as in legend)

Scale Functions

- scale_x_continuous
- scale_y...
- scale_color_discrete
- scale_fill...
- scale_color...
- scale_shape...
- scale_linetype...

scale

```
> ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, col = Species)) +
    geom_point(position = "jitter") +
    scale_x_continuous("Sepal Length") +
    scale_color_discrete("Species")
```


limit

```
> ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, col = Species)) +
    geom_point(position = "jitter") +
    scale_x_continuous("Sepal Length", limits = c(2, 8)) +
    scale_color_discrete("Species")
```


breaks

expand

labels

labs

```
> ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, col = Species)) +
    geom_point(position = "jitter") +
    labs(x = "Sepal Length", y = "Sepal Width", col = "Species")
```

