03-01 - Cálculo Complexo

Bibliografia:

- Introdução às funções de uma variável complexa (textos universitários - SBM) - Cecília Fernandez e Nilson Bernardes
- Complex Analysis Ahlfors, Shabat Edição MIR
- Stein+ angluém

Números Complexos:

Os números complexos são escritos da forma z=x+iy, com $x,y\in\mathbb{R}$ e $i^2=-1$, sendo x a parte nomeada de parte real e y a parte imaginária de z. O conjunto que contém todos os números complexos é nomeado de \mathbb{C} .

o conjunto dos números imaginários é um corpo algebricamente fechado, isto é, em qualquer polinômio de uma variável e grau dessa variável maior ou igual a 11, com coeficientes nesse conjunto, tem uma raiz nesse mesmo conjunto.

O corpo dos complexos é fechado por soma e multiplicação, assim como $\mathbb{R}.$

<u>Soma</u>

Sejam z = x + iy e w = u + iv, então

$$z + w = (x + iy) + (u + vi) = (x + u) + i(y + v).$$

<u>Produto</u>

Sejam z e w definidos como anteriormente, então:

$$(x+iy)(u+iv) = xu + ixv + iyu - yv = (xu-yv) + i(xv+yu)$$

O corpo dos complexos mantém as propriedades de comutação, elemento neutro da soma e da multiplicação, existência do oposto e existência de inverso.

Comutação:

$$z + w = (x + iy) + (u + vi) = (x + u) + i(y + v) = w + z.$$

Elemento neutro (+):

$$z + 0 = 0 + z = z$$

Elemento neutro (.):

Definimos a unidade no conjunto dos complexos como 1=1+i0, então

$$z.1 = 1.z = z$$

Oposto:

Sendo z=x+iy, com z
eq 0, definimos -z=-x-iy e

$$z + (-z) = 0$$

De fato,

$$z + (-z) = x + iy - x - iy = (x - x) + i(y - y) = 0 + i0 = 0$$

Inverso:

Para todo $z \neq 0$, com z = a + bi, existe w tal que wz = 1.

Seja w=(x+iy), então

$$zw=(a+bi)(x+iy)=1$$
 $xa-yb+iay+ibx=1$ $(xa-yb)+(ay+bx)i=1$

Como a unidade nos complexos é definida como (1+0i), segue que

$$egin{cases} xa-yb=1\ ay+bx=0 \end{cases}$$

Podemos escrever esses sistema em notação matricial:

$$egin{bmatrix} a & -b \ b & a \end{bmatrix} egin{bmatrix} x \ y \end{bmatrix} = egin{bmatrix} 1 \ 0 \end{bmatrix},$$
 $Ax = b$

Multiplicando ambos os termos pela inversa de A, temos:

$$A^{-1}Ax = A^{-1}b,$$

ou melhor,

$$x = A^{-1}b$$

Sendo $\Delta = det(A) = rac{1}{a^2 + b^2}$ inversa de A é

$$\frac{1}{\Delta} \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$

Logo,

$$egin{bmatrix} x \ y \end{bmatrix} = rac{1}{a^2 + b^2} egin{bmatrix} a & b \ -b & a \end{bmatrix} egin{bmatrix} 1 \ 0 \end{bmatrix} = egin{bmatrix} rac{a}{a^2 + b^2} \ rac{-b}{a^2 + b^2} \end{bmatrix}$$

Portanto,

$$w=x+iy=rac{a}{a^2+b^2}+rac{-b}{a^2+b^2}i=rac{1}{a^2+b^2}(a-bi).$$
 $w=rac{1}{a^2+b^2}(a-bi).$

A geometria da coisa

- A parte real de z é x e z é real quando y=0.
- A parte imginária de z é y e z é puramente imaginário se $x \neq 0$.
- z é real e imaginário simultaneamente apenas quando z=0. Os números complexos podem ser representados em um plano cujo eixo das abcissas é o eixo $x\in\mathbb{R}$ e o eixo das ordenadas é $iy,y\in\mathbb{R}$.

Definimos a <u>conjugada</u> de z=x+iy como $\bar{z}=x-iy$, onde

$$x=rac{1}{2}(z+ar{z})\ \mathrm{e}\ y=rac{1}{2i}(z-ar{z})$$

Segue que $z + \bar{w} = \bar{z} + \bar{w}$ e que $z\bar{w} = \bar{z}\bar{w}$.

Uma aplicação da conjulgada é, dado uma equação na forma

$$C_0 z^n + C_1 z^{n-1} + \ldots + C_{n-1} z + C_n = 0, (1)$$

com raiz ζ , a conjugada

$$ar{C}_0ar{z}^n+ar{C}_1ar{z}^{n-1}+\ldots+ar{C}_{n-1}z+ar{C}_n=0$$

possui raiz $\bar{\zeta}$ que é também solução de (1). Definimos

$$|z|^2 = z\bar{z}$$

como módulo de z, onde $|z|^2 = x^2 + y^2$.

|z| pode ser interpretado como o tamanho de z:

$$|z|=r=\sqrt{x^2+y^2}$$

O módulo de uma soma $|a+b|^2$ é $|a|^2+|b|^2+2Rea\bar{b}$ e o módulo da subtração é

 $|a-b|^2=|a|^2+|b|^2-2Reaar{b}$. Somando as duas equações, temos $|a+b|^2+|a-b|^2=2(|a|^2+|b|^2)$.

Podemos afirmar que $|z|^2=x^2+y^2\geq x^2=(-x)^2$, d'onde

$$-|z| \le Rez \le |z|$$
.

De forma semelhante,

$$-|z| \leq Imz \leq |z|$$

Agora, redefinindo a igualdade $|a+b|^2=|a|^2+|b|^2+2Rea\bar{b}$ para $|a+b|^2\leq |a|^2+|b|^2+2Rea\bar{b}$, chegamos na Desigualdade Triangular:

$$|a+b| \le |a| + |b|$$

Essa desigualdade se torna igualdade apenas para

$$Rez = |z| \ge 0 \text{ e } z \in \mathbb{R}.$$

Se Rez=|z| é real positiva, então $rac{b}{b}aar{b}=rac{a}{b}|b|^2\implies rac{a}{b}>0$