Competências Transferíveis

Microcontroladores e Interação com Sensores e Atuadores

2021-2022

Rui Escadas Martins

Introdução aos Sensores e Actuadores

O que é que todos estes equipamentos têm em comum?

Autor imagem: José Paulo Santos

Introdução aos Sensores e Actuadores

O que é que todos estes equipamentos têm em comum?

Introdução aos Sensores e Actuadores

22:31

Acelerómetro de 3 eixos: baseado no circuito MEM (Micro-Electronic-Mechanical) ADXL345 que mede a aceleração.

Este modulo tem uma saída já digital por protocol de comunicação: I2C ou SPI.

Medindo a aceleração da gravidade, pode medir a inclinação.

Sensor de gases/fumo: baseado no MQ-2 que mede diversos gases . (metano, butano, propano, hidrogénio, monoxide de carbono, etc)

Tem saída analógica.

Keypad: teclado com 3x4 teclas com marcação alfa-numérica tipo COM-08653.

Matriz com botões de pressão.

OUTPUT ARRANGEMENT		
OUTPUT PIN NO.	SYMBOL	
1	COL 2	
2	ROW 1	
3	COL 1	
4	ROW 4	
5	COL 3	
6	ROW 3	
7	ROW 2	

Termístor: sensor de temperatura tipo NTC (Negative Temperature Coefficient) NTCAIMME3.

Sensor de Humidade (e temperatura): sensor de humidade + temperatura tipo DHT11.

1-Wire (interface digital)

Measurement	0℃	30%RH	90%RH
Range	25℃	20%RH	90%RH
	50 ℃	20%RH	80%RH

Sensor de Luz: foto-sensor tipo KY-018. baseado num LDR (Light Dependant Resistor) com referência GL5528

Interface analógico – divisor resistivo

Relais: actuador electromecânico permite ligar ou desligar circuitos mediante o estado de um sinal de commando.

Relais: existem diversos tipos, sendo a corrente máxima comutada, a tensão máxima comutada e a tensão da bobina parâmetros fundamentais.

Servomotor: actuador electromecânico capaz de controlar a posição angular (que se pode converter em linear) tipo SG90.

Os servos funcionam em "malha fechada", ou medem permanentemente a saída e procuram corrigir qualquer erro em relação ao "setpoint".

Controlo por duração de pulsos.

FAN ou Ventoinha: or SG90.

Controlo por PWM (Pulse Width Modulation).

Esta ventoinha é também um sensor porque tem uma saída tacógrafo (mede a velocidade de rotação)

Buzzer: Gerador de som.

Verificar se tem (ou não) Driver.

Se não, tiver ligar um condensador em série para bloquear corrente dc.

Ligar uma resistência também em série para limitar o nível sonoro produzido.

Display de 7-segmentos: Vermelho

Usar multiplexagem no tempo para varrer os 4 digitos.

Ligar uma resistência em série com cada segment para limitar a corrente.

Fita Led RGB: 30 leds tamanho 5050 tipo WS2812B

É possível regular a cor e brilho de cada um dos leds da fita independentemente dos outros.

Display alfanumérico 16x2: 16 caraacteres e 2 linhas

Comunicação via I2C.

Motor de passo:

Usa driver ULN2003

