Course Code: HS1071 UNIT II: Vector Spaces

Introduction: In this topic you will learn vector spaces, linear dependence and independence, basis, dimension.

Vector Space

Definition: Let V be non-empty set. Define two operations namely 'addition' and 'scalar multiplication' on V. V is said to be a vector space if for every u, v, w in V and any real, complex number α , following axioms hold.

- 1. $u+v \in V$ (clo
 - (closed under addition)
- 2. u+v=v+u (addition is commutative)
- 3. u + (v + w) = (u + v) + w (addition is associative)
- 4. There exists $0 \in V$ such that u + 0 = 0 + u = u. (Existence of zero element for Addition known as additive identity)
- 5. There exists $-u \in V \rightarrow -u + u = u + (-u) = 0$. (Existence of additive inverse)
- 6. $\alpha u \in V, \alpha \in R$ {closed under scalar multiplication}
- 7. $(\alpha + \beta)u = \alpha u + \beta u$

{Scalar multiplication is distributive}

- 8. $\alpha(u+v) = \alpha u + \alpha v$
- 9. $\alpha(\beta u) = (\alpha \beta)u$ {Scalar multiplication is associative}
- 10. There exists $1 \in \mathbb{R}$ such that $1 \cdot u = u$.

Elements / members of V are called as 'vectors'.

Theorem 1: For a vector space V

i) Zero vectors are unique. ii) $-u \in V$ is unique such that u + (-u) = 0.

Theorem 2: Let V be a vector space and let x, y be vectors in V, then

i)
$$x + y = x \Rightarrow y = 0$$
 ii) $0 \cdot x = 0$ iii) $k \cdot 0 = 0$ for any $k \in \mathbb{R}$.

iv) – x is unique and –
$$x = (-1)x$$
 v) If $kx = 0$, then $k = 0$ or $x = 0$.

Examples of Vector Spaces

- 1) $V = \{0\}$ (Set consisting of zero vector only)
- 2) Euclidian space $R^n = \{(x_1, x_2, \dots, x_n) / x_1, x_2, x_3, \dots, x_n \in R\}$

(Set of all ordered *n*-tuple of real or complex numbers) is a vector space under component wise addition and scalar multiplication, i. e.,

$$(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

 $\alpha(x_1, x_2, \dots, x_n) = (\alpha x_1, \alpha x_2, \dots, \alpha x_n).$

3) $P_n(x) = \text{Set of all polynomials in } x$, up to degree 'n'

=
$$\{a_0 x^n + a_1 x^{n-1} + \ldots + a_n / a_0, a_1, \ldots, a_n \in \mathbb{R}\}$$

is a vector space under usual addition and scalar multiplication of polynomials, i.e.

$$(a_0x^n + a_1x^{n-1} + \dots + a_n) + (b_0x^n + b_1x^{n-1} + \dots + b_n) = (a_0 + b_0)x^n + (a_1 + b_1)x^{n-1} + \dots + (a_n + b_n)$$

$$\alpha(a_0x^n + a_1x^{n-1} + \dots + a_n) = (\alpha a_0)x^n + (\alpha a_1)x^{n-1} + \dots + (\alpha a_n).$$

4) $M_{m \times n}(R) = \{[a_{ij}]_{m \times n} / a_{ij} \in R, i = 1, 2, ..., m; j = 1, 2, ..., n\}$ is a vector space with usual addition and scalar multiplication of matrices, i. e.,

$$[a_{ij}]+[b_{ij}]=[a_{ij}+b_{ij}]$$
 and $\alpha[a_{ij}]=[\alpha a_{ij}]$.

5) $V = C[a,b] = \{f : [a,b] \rightarrow \mathbb{R}\}$ set of all real valued continuous functions is a vector space under addition and scalar multiplication of functions, i.e.,

$$(f+g)(x) = f(x) + g(x)$$
 and $(\alpha f)(x) = \alpha \cdot f(x)$.

Examples of sets which are not vector spaces

1. P_2 = Set of polynomials of exactly degree 2 is not closed with respect to vector addition.

Course Code: HS1071 UNIT II: Vector Spaces

For Example: Let $p(x) = -x^2 + 2x + 5$, $q(x) = x^2 + 3$

 $\therefore p(x) + q(x) = 2x + 8 \notin P_2$ as 2x + 8 is not a polynomial of degeree 2.

- 2. The set of integers is not a vector space. Because the set is not closed with respect to scalar multiplication. For example $\frac{1}{3}(2) = \frac{2}{3} \rightarrow$ is not an integer.
- 3. Let $V = \{(x, y, z): x, y, z \in R\}$, with addition as $(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2)$ and scalar multiplication as c(x, y, z) = (cx, 0, 0) [Ans.: $1(x, y, z) = (x, 0, 0) \neq (x, y, z)$]
- **4.** Let $V = \{(x, y): x, y \in R\}$, with standard operation of addition and nonstandard operation scaler multiplication defined as c(x, y) = (cx, y) is not a vector space.

[Ans.: In this example all the axioms are satisfied except axiom number 10.

$$0 \cdot (1, 1) = (0 \cdot 1, 1) = (0, 1) \neq (0, 0)$$
 V is not a vector space.]

Subspace: - Let V be a vector space and $V \neq 0$, $U \subset V$, U is said to be a subspace of V if U itself is a vector space under the same 'addition' and 'scalar multiplication' operations as defined on V.

Theorem1.4: - A non-empty subset U of vector space V is a subspace of V if and only if

- 1) U is closed under addition, i. e., $u_1 + u_2 \in U$ for all $u_1, u_2 \in U$
- 2) U is closed under scalar multiplication, i. e., $\alpha u \in U$ for every $\alpha \in R$ and $u \in U$

Note: If $0 \in V$ is not a member of $U \subseteq V$ then U is not a subspace of V.

Illustrative Examples:

Q 1) Let A be $m \times n$ matrix, then $V = \{X \in \mathbb{R}^n : AX = 0\}$, is a subspace of \mathbb{R}^n .

Solⁿ: Let $x, y \in V :: Ax = 0$, and Ay = 0

Consider, A(x+y) = Ax + Ay = 0, $\therefore x+y \in V$ and Let $\alpha \in \mathbb{R}$, then $A(\alpha x) = \alpha A(x) = 0$,

 $\therefore \alpha x \in V$. Therefore V is closed with respect to addition and scalar multilication

 \therefore V is a subsapce of \mathbb{R}^n .

Q 2) List all the subspaces of $\mathbb{R}^2 = \{(x, y) \mid x, y \in R\}$

Solⁿ. 1) $\{(0,0)\}$

- 2) Set of all lines passing through origin $\{(x, y) \mid y = mx, m \in \mathbb{R}\}$
- 3) R² itself.
- **Q 3**) List all the subspaces of $R^3 = \{(x, y) \mid x, y, z \in R\}$

Solⁿ. 1) $\{(0, 0, 0)\}$

- 2) Any plane passing through origin.
- 3) Any line passing through origin.
- 4) R³ Itself.
- $\mathbf{Q} \mathbf{4}$) Is \mathbf{R}^2 a subspace of \mathbf{R}^3 ?
- Solⁿ. No, because R^2 is not even a subset of R^3 (R^2 has ordered pairs while R^3 has ordered triples)
- **Q 5**) Let U and W are subspaces of a vector space V. Sum of U and W is defined as $U+W = \{u+w \in V : u \in U \text{ and } v \in V\}$ Show that U+W is a subspace of V.
- **Sol**ⁿ. Let $x, y \in U + W$: $x = u_1 + w_1$ and $y = u_2 + w_2$ where $u_1, u_2 \in U$ and $w_1, w_2 \in W$.

Course Code: HS1071 UNIT II:Vector Spaces

- i) $x + y = (u_1 + w_1) + (u_2 + w_2)$ $= (u_1 + u_2) + (w_1 + w_2)$ (by associativity and commutativity of V) but $(u_1 + u_2) \in U$ and $(w_1 + w_2) \in W$ (as U and W are subspaces of V) $\therefore x + y \in U + W$.
- ii) Let α be any real number, $\alpha x = \alpha (u_1 + w_1) = \alpha u_1 + \alpha w_1$ (Distributive property of V) but $\alpha u_1 \in U$ and $\alpha w_1 \in W$ (as U and W are subspaces of V) $\therefore \alpha x \in U + W \quad \therefore U + W \text{ is a subspace of V.}$

Examples of sets which are not subspaces

- **Q 1)** Is *M* the set of all singular matrices of order $2 \times 2a$ subspace of $M_{2 \times 2}(R)$?
- Sol^n . M is not a subspace because it is not closed under addition.

$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \notin M$$
. Since addition matrix is non-singular

- **Q 2)** Is $\{(x, y) \mid y = mx, m \in \mathbb{R}\}$ a subspace of \mathbb{R}^2 ?
- **Solⁿ.** $(x_1, y_1), (x_2, y_2) \Rightarrow y_1 = m_1 x_1, y_2 = m_2 x_2, y_1 + y_2 = m_1 x_1 + m_2 x_2 \neq m(x_1 + x_2)$

Hence it is not closed under addition. It is not a subspace of \mathbb{R}^2 .

- **Q 3**) Is $H = \{(x, y) \mid y = mx, m \text{ is fixed real number}\}$ a subspace of \mathbb{R}^2 ?
- **Solⁿ.** Yes, because fixed real number \Rightarrow a single line passing through origin.

Let $(x_1, y_1), (x_2, y_2) \in H \implies y_1 = mx_1, y_2 = mx_2$.

Consider,
$$(x_1 + x_2, y_1 + y_2) = (x_1 + x_2, mx_1 + mx_2) = (x_1 + x_2, m(x_1 + x_2)) \in H$$

and

$$\alpha(x_1, y_1) = (\alpha x_1, \alpha(mx_1)) = (\alpha x_1, m(\alpha x_1)) \in H$$
 as m, α both are real numbers.

- **Q 4)** Is $H_1 = \{(x, y) \mid x^2 + y^2 = 1\}$ a subspace of \mathbb{R}^2 ?
- **Sol**ⁿ. H_1 is not a subspace because $(0,0) \notin H_1$.
- **Q 5**) Is $H_2 = \{(x, y) \mid x^2 + y^2 \le 1\}$ a subspace of \mathbb{R}^2 ?
- **Solⁿ.** H_2 is not a subspace because H_2 is not closed under addition. e.g. $(1,0),(0,1) \in H_2$ but $(1,0)+(0,1)=(1,1) \notin H_2$.

Course Code: HS1071 UNIT II: Vector Spaces

Linear Combination (L.C.) of Vectors

Let $H = \{v_1, v_2, v_3, \dots, v_n\}$ be a subset of a vector space V, then the sum $c_1v_1 + c_2v_2 + \dots + c_nv_n$, where $c_1, c_2, \dots, c_n \in \mathbb{R}$ is defined as a linear combination of v_1, v_2, \dots, v_n .

Span of a Set

Let $S = \{v_1, v_2, v_3, \dots, v_n\}$ be a subset of vector space V.

 $\operatorname{span}(S) = \{c_1v_1 + c_2v_2 + \ldots + c_nv_n \mid c_1, c_2, \ldots, c_n \in \mathbb{R}\} = Set$ of all possible linear combination of members of H

Theorem1.5: Let $S = \{v_1, v_2, v_3, \dots, v_n\}$ be a subset of vector space V. Show that span S is a subspace of V containing S.

Proof. i) Let
$$h_1, h_2 \in \text{span } H \Rightarrow \begin{cases} h_1 = \sum_{i=1}^n a_i v_i \\ h_2 = \sum_{i=1}^n b_i v_i \end{cases}$$
 $a_i, b_i \in \mathbb{R}, h_1 + h_2 = \sum_{i=1}^n (a_i + b_i) v_i = \sum_{i=1}^n c_i v_i, c_i \in \mathbb{R}$.

Therefore $h_1 + h_2 \in \text{span}(S)$

ii) Let
$$\alpha \in \mathbb{R}$$
 and $\alpha h_1 = \sum_{i=1}^n (\alpha a_i) v_i = \sum_{i=1}^n d_i v_i$, $d_i \in \mathbb{R}$. Therefore $\alpha h_1 \in \text{span}(S)$

 \therefore Span S is a subspace of a vector space V.

Note That: Span S is a smallest subspace of V containing S.

Illustrative Examples

Q 1) Show that the set M of all symmetric matrices of order 2×2 is a subspace of $M_{2\times 2}(R)$.

 Sol^n . Consider any symmetric matrix $A \in M$. Then

$$A = \begin{bmatrix} a & c \\ c & b \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} + c \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \text{ where } a, b, c \in \mathbb{R}.$$

Here *A* is a linear combination of $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ of $M_{2\times 2}$.

 \therefore Set of symmetric matrices of order 2 is a subspace of $M_{2\times 2}(R)$.

Q 2) Show that
$$H = \left\{ \begin{bmatrix} a-b+c \\ 2a-b \\ a-b-5c \\ 2a-c \end{bmatrix} \right\}$$
 is a subspace of \mathbb{R}^4 .

Solⁿ.
$$\begin{bmatrix} a-b+c \\ 2a-b \\ a-b-5c \\ 2a-c \end{bmatrix} = a \begin{bmatrix} 1 \\ 2 \\ 1 \\ 2 \end{bmatrix} + b \begin{bmatrix} -1 \\ -1 \\ -1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 1 \\ 0 \\ -5 \\ -1 \end{bmatrix} \Rightarrow H = \text{span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -5 \\ -1 \end{pmatrix} \right\} = \left\{ v_1, v_2, v_3 \right\}$$

where $v_1, v_2, v_3 \in \mathbb{R}^4$. \therefore *H* is subspace of \mathbb{R}^4 .

Course Code: HS1071 UNIT II: Vector Spaces

Q 3) Is
$$H = \begin{cases} \begin{bmatrix} a-b+c \\ 5 \\ a-b-5c \\ 2a-c \end{bmatrix} \end{cases}$$
 a subspace of \mathbb{R}^4 ?

Solⁿ. Since
$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 is not a member of H , it is not a subspace of \mathbb{R}^4 .

Spanning Set

Let $S = \{v_1, v_2, \dots, v_n\}$ be a subset of vector space V. S is said to be a spanning set of V if every element of V is expressible as linear combination of elements of S, i.e., $v \in \text{span } \{S\}$ for all $v \in V$, i.e., $v = c_1v_1 + c_2v_2 + \dots + c_nv_n$ for some c_1, c_2, \dots, c_n is a consistent system of linear equations.

Illustrative Examples

Q 1) Let
$$S = \{e_1 = (1, 0), e_2 = (0, 1)\}$$
. Is S spanning set of \mathbb{R}^2 ?

Solⁿ. Let
$$(x, y) \in \mathbb{R}^2$$
. $(x, y) = xe_1 + ye_2$ is always consistent. $\therefore S$ spans \mathbb{R}^2 .

Q 2) Is
$$S = \{1, x, x^2\}$$
 spans P_2 ?

Solⁿ. Let
$$p(x) \in P_2$$
 then $p(x) = a_0 x^2 + a_1 x + a_2$; $a_0, a_1, a_2 \in R$. \therefore S spans P_2 .

Q 3) i) For what value of h, will y be in the subspace of
$$\mathbb{R}^3$$
 spanned by v_1, v_2, v_3

where
$$v_1 = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 5 \\ -4 \\ -7 \end{bmatrix}$, $v_3 = \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix}$ and $y = \begin{bmatrix} -4 \\ 3 \\ h \end{bmatrix}$.

ii) Is
$$v_1, v_2, v_3 \text{ span R}^3$$
?

Solⁿ. i) Let
$$y \in \text{span } \{v_1, v_2, v_3\}$$
. Therefore $y = c_1v_1 + c_2v_2 + c_3v_3$.

i.e.,
$$\begin{bmatrix} -4 \\ 3 \\ h \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix} + c_2 \begin{bmatrix} 5 \\ -4 \\ -7 \end{bmatrix} + c_3 \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix} \Rightarrow c_1 + 5c_2 - 3c_3 = -4 \\ -c_1 - 4c_2 + c_3 = 3 \\ -2c_1 - 7c_2 + 0c_3 = h$$

$$\begin{bmatrix} h \end{bmatrix} \begin{bmatrix} -2 \end{bmatrix} \begin{bmatrix} -7 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \qquad -2c_1 - 7c_2 + 0c_3 = h$$
Consider the augmented matrix $[A:y] = \begin{bmatrix} 1 & 5 & -3 & : & -4 \\ -1 & -4 & 1 & : & 3 \\ -2 & -7 & 0 & : & h \end{bmatrix} R_2 + R_1, R_3 + 2R_1 \Rightarrow$

$$\sim \begin{bmatrix} 1 & 5 & -3 & -4 \\ 0 & 1 & -2 & -1 \\ 0 & 3 & -6 & h-8 \end{bmatrix} R_3 - 3R_2 \Rightarrow \begin{bmatrix} 1 & 5 & -3 & -4 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & 0 & h-5 \end{bmatrix}.$$

For
$$h=5$$
, $\rho[A] = \rho[A:y]$. \therefore The system of equations is consistent. Hence, $y \in \text{span } \{v_1, v_2, v_3\}$ iff $h=5$.

ii)
$$\{v_1, v_2, v_3\}$$
 does not span \mathbb{R}^3 because the system of equations $v = c_1 v_1 + c_2 v_2 + c_3 v_3$ is not consistent for every $v \in \mathbb{V}$.

Course Code: HS1071 UNIT II: Vector Spaces

Q 3) Let
$$v_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$, $v_3 = \begin{bmatrix} 4 \\ 2 \\ 6 \end{bmatrix}$, $w = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$

- i) Is w belong to the set $\{v_1, v_2, v_3\}$?
- ii) How many vectors are in the set $\{v_1, v_2, v_3\}$?
- iii) How many vectors are in span $\{v_1, v_2, v_3\}$?
- iv) Is $w \in \text{span } \{v_1, v_2, v_3\}$? Why?
- v) Is span $\{v_1, v_2, v_3\} = R^3$?
- **Solⁿ.** i) No. w is not a member of the set $\{v_1, v_2, v_3\}$ because $w \neq v_1 \neq v_2 \neq v_3$.
 - ii) Total number of vectors in the set $\{v_1, v_2, v_3\}$ are 3.
 - iii) There are infinite numbers of vectors in span $\{v_1, v_2, v_3\}$.
 - iv) $w \in \text{span } \{v_1, v_2, v_3\}$

Consider, $w = c_1 v_1 + c_2 v_2 + c_3 v_3$

$$\begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + c_2 \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} + c_3 \begin{bmatrix} 4 \\ 2 \\ 6 \end{bmatrix} \Rightarrow \begin{aligned} c_1 + 2c_2 + c_3 &= 3 \\ \Rightarrow 0c_1 + c_2 + 2c_3 &= 1 \\ -c_1 + 3c_2 + 6c_3 &= 2 \end{aligned}$$

Consider the augmented matrix,

$$[A:B] = \begin{bmatrix} 1 & 2 & 4 & 3 \\ 0 & 1 & 2 & 1 \\ -1 & 3 & 6 & 2 \end{bmatrix} \xrightarrow{R_3 + R_1} \begin{bmatrix} 1 & 2 & 4 & 3 \\ 0 & 1 & 2 & 1 \\ 0 & 5 & 10 & 5 \end{bmatrix} \xrightarrow{R_3 - 5R_2} \begin{bmatrix} 1 & 2 & 4 & 3 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 $\rho[A:B] = \rho[A]$.: The system of equations is consistent.

v) Consider $v = c_1 v_1 + c_2 v_2 + c_3 v_3$

v = AC, as $\rho[A] = 2 \neq \rho[A, v]$ for every $v \in R^3$. \therefore This system is not consistent for every $v \in R^3$. \therefore Span $\{v_1, v_2, v_3\} \neq R^3$.

Linearly Dependent/Independent Set

Let $H = \{v_1, v_2, v_3, \dots, v_n\}$ be a subset of a vector space V. H is said to be linearly dependent if there exist scalars (real numbers) c_1, c_2, \dots, c_n not all zero such that

$$c_1v_1 + c_2v_2 + c_3v_3 + \ldots + c_nv_n = 0$$
.

H is said to be linearly independent if $c_1v_1 + c_2v_2 + c_3v_3 + ... + c_nv_n = 0$ implies

 $c_1 = c_2 = \dots = c_n = 0$. **Note:** i) *H* is linearly independent if and only if the system $c_1v_1 + c_2v_2 + c_3v_3 + \dots + c_nv_n = 0$

- has trivial solution only, i.e. otherwise the set is linearly dependent.
 - ii) A set containing zero vector is linearly dependent.
 - iii) Set consists of single non zero vector is linearly independent.

Theorem: - If the set of vectors are linearly dependent then one of the vectors is expressible as a linear combination of the remaining.

Proof:- The set is linearly dependent, $c_1v_1 + c_2v_2 + c_3v_3 + ... + c_nv_n = 0$ has a non-trivial solution

 \Rightarrow At least one of c_1, c_2, \dots, c_n is non-zero.

Course Code: HS1071 **UNIT II:Vector Spaces**

Let us assume that $c_2 \neq 0$. Then $v_2 = \frac{-1}{c}(c_1v_1 + c_3v_3 + ... + c_nv_n)$.

Method of checking Linearly Dependent / Independent Set

Step 1:Consider, $c_1v_1 + c_2v_2 + c_3v_3 + ... + c_nv_n = 0$

$$\mathbf{A}C = 0 \text{ where } \mathbf{A} = \begin{bmatrix} v_1 & v_2 & v_3 & \dots & v_n \end{bmatrix}, \quad C = \begin{bmatrix} c_1 \\ c_2 \\ \dots \\ c_n \end{bmatrix}.$$

Step 2: Find rank of A. Let $\rho(A) = r$

Step 3: i) If $\rho(A) = r = n$ (Number of unknowns), then set is linearly independent.

ii) If $\rho(A) = r < n$ (Number of unknowns), then set is linearly dependent.

Step 3: If dependent find relation between the vectors.

Illustrative Examples

Determine whether $S = \{1-t, 2t+3t^2, t^2-2t^3, 2+t^3\}$ is linearly dependent or 01) independent. If dependent, find the relation between them.

Solⁿ. Let
$$v_1 = 1 - t$$
, $v_2 = 2t + 3t^2$, $v_3 = t^2 - 2t^3$, $v_4 = 2 + t^3$.

Consider, $c_1v_1 + c_2v_2 + c_3v_2 + c_4v_4 = 0$.

$$c_1(1-t)+c_2(2t+3t^2)+c_3(t^2-2t^3)+c_4(2+t^3)=0+0t+0t^2+0t^3$$

 $\begin{vmatrix} c_1(1-t)+c_2(2t+3t), & c_1+2c_4=0 \\ -c_1+2c_2=0 \\ 3c_2+c_3=0 \end{vmatrix} \text{ i.e. } \begin{bmatrix} 1 & 0 & 0 & 2 \\ -1 & 2 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & -2 & 1 \end{bmatrix} \begin{vmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{vmatrix} = 0$

 $A = \begin{bmatrix} 1 & 0 & 0 & 2 \\ -1 & 2 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & -2 & 1 \end{bmatrix} \xrightarrow{R_2 + R_1} \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 2 & 0 & 2 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & -2 & 1 \end{bmatrix} \xrightarrow{\frac{1}{2}R_2} \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & -2 & 1 \end{bmatrix}$

 $\rho[A] = 4$ = number of unknowns. \therefore The system has a trivial solution only.

.. Set of vectors are linearly independent.

Determine whether the set of vectors $H = \left\{ \begin{vmatrix} 1 & 0 \\ 2 & 3 \end{vmatrix}, \begin{vmatrix} -2 & 1 \\ -1 & 0 \end{vmatrix}, \begin{vmatrix} 3 & 4 \\ 2 & 3 \end{vmatrix}, \begin{vmatrix} -3 & -3 \\ 1 & 3 \end{vmatrix} \right\}$ Q 2)

linearly dependent or independent? If dependent, find the relation.

Solⁿ.: Let $v_1 = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$, $v_2 = \begin{bmatrix} -2 & 1 \\ -1 & 0 \end{bmatrix}$, $v_3 = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$, $v_4 = \begin{bmatrix} -3 & -3 \\ 1 & 3 \end{bmatrix}$.

Consider $c_1v_1 + c_2v_2 + c_3v_3 + c_4v_4 = 0$.

Course Code: HS1071 **UNIT II:Vector Spaces**

$$c_{1} \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix} + c_{2} \begin{bmatrix} -2 & 1 \\ -1 & 0 \end{bmatrix} + c_{3} \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix} + c_{4} \begin{bmatrix} -3 & -3 \\ 1 & 3 \end{bmatrix} = 0 \Rightarrow \begin{cases} c_{1} + 2c_{2} + 3c_{3} - 3c_{4} = 0 \\ 2c_{1} + 4c_{3} - 3c_{4} = 0 \end{cases}$$

$$3c_{1} + 3c_{3} + 3c_{4} = 0$$

$$3c_{1} + 3c_{3} + 3c_{4} = 0$$

$$A = \begin{bmatrix} 1 & -2 & 3 & -3 \\ 0 & 1 & 4 & -3 \\ 2 & 1 & 2 & 1 \end{bmatrix}$$

$$R_{3} - 2R_{1}, R_{4} - 3R_{1} \rightarrow \begin{bmatrix} 1 & -2 & 3 & -3 \\ 0 & 1 & 4 & -3 \\ 2 & 2 & 1 & 2 & 1 \end{cases}$$

$$A = \begin{bmatrix} 1 & -2 & 3 & -3 \\ 0 & 1 & 4 & -3 \\ 2 & -1 & 2 & 1 \\ 3 & 0 & 3 & 3 \end{bmatrix} \xrightarrow{R_3 - 2R_1, R_4 - 3R_1} \begin{bmatrix} 1 & -2 & 3 & -3 \\ 0 & 1 & 4 & -3 \\ 0 & 0 & -16 & 16 \\ 0 & 0 & -30 & 30 \end{bmatrix}$$

$$\xrightarrow{\frac{1}{(-16)}R_3, \frac{1}{30}R_4} \begin{bmatrix} 1 & -2 & 3 & -3 \\ 0 & 1 & 4 & -3 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_4 + R_3} \begin{bmatrix} 1 & -2 & 3 & -3 \\ 0 & 1 & 4 & -3 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\frac{1}{(-16)}R_3, \frac{1}{30}R_4 \longrightarrow \begin{bmatrix}
1 & -2 & 3 & -3 \\
0 & 1 & 4 & -3 \\
0 & 0 & 1 & -1 \\
0 & 0 & -1 & -1
\end{bmatrix}
\xrightarrow{R_4 + R_3}
\begin{bmatrix}
1 & -2 & 3 & -3 \\
0 & 1 & 4 & -3 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

 $\rho[A] = 3 < \text{number of unknowns} = 4$... The system has a non-trivial solution.

: Vectors are linearly dependent. Equivalent system is

$$c_1 - 2c_2 + 3c_3 - 3c_4 = 0, c_2 + 4c_3 - 3c_4 = 0, c_3 - c_4 = 0$$

Let
$$c_4 = k$$
, $k \neq 0 \implies c_3 = k$

$$c_2 + 4k - 3k = 0$$
, $c_2 = -k$, $c_1 + 2k + 3k - 3k = 0$, $c_1 = -2k$

Put values of c_1 , c_2 , c_3 , c_4 in (i), $-2kv_1 - kv_2 + kv_3 + kv_4 = 0$.

$$-2kv_1 - kv_2 + kv_3 + kv_4 = 0$$
, i.e., $2v_1 + v_2 - v_3 - v_4 = 0$

- **Q 3**) Let $H = \{v_1, v_2, \dots, v_k\}$ spans V. Show that if H is linearly dependent then $H_1 = \{v_1, v_2, \dots, v_{k-1}\}$ also spans V.
- Solⁿ. Let $v \in V$ then as H spans V, $v = d_1v_1 + d_2v_2 + ... + d_kv_k$. If H is linearly dependent, then any vector in H is expressible as the linear combination of others. Therefore let $v_k = c_1 v_1 + c_2 v_2 + ... + c_{k-1} v_{k-1}$.

Substituting this in
$$v$$

 $v = (d_1 + d_k c_1)v_1 + (d_2 + d_k c_2)v_2 + ... + (d_{k-1} + d_k c_{k-1})v_k$

Thus v is expressible as linear combination of vectors in H_1 . Hence H_1 spans V.

O4) Determine by inspection if the given set is linearly independent

$$\begin{array}{c}
1 \\
-1 \\
6
\end{array}, \begin{bmatrix} 4 \\
7 \\
-2
\end{bmatrix}, \begin{bmatrix} 1 \\
1 \\
-2
\end{bmatrix}, \begin{bmatrix} 3 \\
1 \\
4
\end{bmatrix}
\qquad b) \begin{bmatrix} 0 \\
0 \\
0
\end{bmatrix}, \begin{bmatrix} -1 \\
5 \\
7
\end{bmatrix}, \begin{bmatrix} 2 \\
3 \\
1
\end{bmatrix}$$

c)
$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$, $\begin{bmatrix} -4 \\ -6 \\ -8 \end{bmatrix}$ d) $\begin{bmatrix} -2 \\ 4 \\ 6 \\ 10 \end{bmatrix}$, $\begin{bmatrix} 5 \\ -10 \\ -15 \\ 25 \end{bmatrix}$

Solⁿ. a) Set is linearly dependent, because it contains 4-vectors in \mathbb{R}^3 .

Course Code: HS1071 UNIT II: Vector Spaces

b) Set is linearly dependent, because it contain zero vector.

c) Set is linearly dependent, because
$$\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} = -\frac{1}{2} \begin{bmatrix} -4 \\ -6 \\ -8 \end{bmatrix}$$
.

d)Set is linearly independent as there is no relation between them.

Basis of a Vector Space

A subset $B = \{v_1, v_2, \dots, v_n\}$ of a vector space V is a basis for V if

1) B is linearly independent. 2) $V = \text{span } \{B\}$, i.e. B spans V.

Note That:

i) A given vector space may have more than one basis.

e.g.
$$B_1 = \{e_1 = (1, 0), e_2 = (0, 1)\}\$$
, $B_2 = \{v_1 = (1, 1), v_2 = (-1, 1)\}\$

Both $B_1 & B_2$ are bases of \mathbb{R}^2 .

- ii) A set having maximum number of linearly independent vectors is the basis.
- iii) Minimum number of vectors which spans the set is the basis.
- iv) If $B = \{v_1, v_2, \dots, v_n\}$ is basis for vector space V, then every vector in V can be written in one and only one as a linear combination of vectors in B.
- v) If a vector space V has one basis with n vectors, then every basis for V has n vectors.

Dimension of a vector space

Number of elements in a basis is known as the dimension of the vector space.

If basis of vector space V contains finite number of vectors, the vector space is finite dimensional. Otherwise it is said to be infinite dimensional.

If basis of a vector space V has n-vectors then dimension of $V = \dim(V) = n \& \dim\{0\} = 0$.

Note That: 1) In an n-dimensional vector space V, "n+1" vectors are linearly dependent.

2) In an n-dimensional vector space V, "n-1" vectors do not span vector space V

• Standard Bases

1) $V = R^n$ then the standard basis is $B = \{e_1, e_2, \dots, e_n\}$, where, $e_1 = (1, 0, \dots, 0)$, $e_2 = (0, 1, \dots, 0), \dots$, $e_n = (0, 0, \dots, 0, 1) \dots$ dim $(R^n) = n$.

In particular, for R^2 standard basis is $\{(1,0),(0,1)\}$ and, for R^3 standard basis is

 $\{(1,0,0),(0,1,0),(0,0,1)\}$.

2)
$$V = M_{2 \times 2}(R)$$
. $B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ $\therefore \dim(M_{2 \times 2}(R)) = 4$.

(Note: If $V = M_{m \times n}(R)$ then $\dim(M_{m \times n}(R)) = mn$)

- 3) $V = P_n(x)$: space of polynomials in x at most degree n or degree $\le n$. Standard basis of $P_n(x)$ is $B = \{1, x, x^2, \dots, x^n\}$ $\therefore \dim(P_n(x)) = n+1$.
- 4) C[a,b]: space of all continuous functions defined on [a,b] is an infinite dimensional vector space.

Illustrative Examples

1. Is
$$B = \{v_1, v_2\}$$
 a basis of \mathbb{R}^3 , where $v_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, $v_2 = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$?

Solⁿ. No. Because $\dim(\mathbb{R}^3) = 3$.

Course Code: HS1071 UNIT II: Vector Spaces

2. Is
$$B = \{v_1, v_2\}$$
 a basis of \mathbb{R}^2 , where $v_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, $v_2 = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$?

Solⁿ. No. Because $v_1 & v_2$ are not even the members of \mathbb{R}^2 .

3. What is the span $\{B\}$ in the above example?

Solⁿ. It is a plane through origin. Since 3 non-collinear points viz., origin, point corresponding to vector v_1 and point corresponding to vector v_2 forms a plane.

Note: If Basis of subsapce V of \mathbb{R}^n contains

- i) 1-vector, then geometrically it is a straight line in \mathbb{R}^n through origin.
- ii) 2-vectors, then geometrically it is a plane in \mathbb{R}^n through origin.

Illustrative Examples

Q 1) Determine whether the set is a basis for $M_{2\times 2}(R)$?

$$S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \right\}$$

Solⁿ. Since $\dim(M_{2\times 2}(R)) = 4$ and S contains 4 vectors, therefore S is a basis for $M_{2\times 2}(R)$ if and only if given set of vectors are linearly independent.

Let
$$v_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix}$, $v_3 = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}$, $v_4 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

Consider $c_1v_1 + c_2v_2 + c_3v_3 + c_4v_4 = 0$. i.e., AC = 0 where

$$A = \begin{bmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} \xrightarrow{R_4 - R_1} \begin{bmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 2 & -2 & 0 \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{bmatrix} 1 & -1 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 2 & -2 & 0 \end{bmatrix}$$

$$\xrightarrow{R_4 - 2R_2} \xrightarrow{R_4 - 2R_2} \begin{bmatrix} 1 & -1 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

 $\rho(A) = 4$ = number of unknowns. Hence given set of vectors are linearly independent. Hence S is a basis for $M_{2\times 2}(R)$.

Q 2) Determine whether the set $S = (1, t, 1+t^2)$ a basis for P_2 ?

Solⁿ. : $\dim(P_2(x)) = 3$ and S has exactly 3 elements, it forms a basis for $P_2(x)$ iff set of vectors are linearly independent.

Let
$$v_1 = 1$$
, $v_2 = t$, $v_3 = 1 + t^2$

Consider
$$c_1v_1 + c_2v_2 + c_3v_3 = 0$$
, where $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \implies \rho(A) = 3 = \text{number}$

of unknowns. Hence given set of vectors are linearly independent.

 \therefore S forms a basis for P_2 .

Note: If W is a subspace of an n-dimensional vector space, then dimension of W is less than or equal to n.

Course Code: HS1071 UNIT II: Vector Spaces

Method of determining the dimension of a subspace: Dimension of a subspace can be determined by finding a set of linearly independent vectors that spans the subspace. This set is a basis for the subspace and its dimension is number of vectors in its basis.

Illustrative Examples

1. Determine the dimension of each subspace of R⁴.

a)
$$S = \{(a, a+b, b, a-c): a, b, c \in \mathbb{R}\}$$
 b) $S = \{(3a, a, b, 0): a, b \in \mathbb{R}\}$

Solⁿ.
$$a$$
) $(a, a+b, b, a-c) = a(1, 1, 0, 1) + b(0, 1, 1, 0) + c(0, 0, 0, -1)$

we can see that S is spanned by (1, 1, 0, 1), (0, 1, 1, 0) and (0, 0, 0, -1)

and can easily be shown that the set of vectors are linearly independent.

$$B = \{(1, 1, 0, 1), (0, 1, 1, 0), (0, 0, 0, -1)\}$$
 is a basis for S. $dim(S) = 3$.

b)
$$(3a, a, b, 0) = a(3, 1, 0, 0) + b(0, 0, 1, 0)$$

we can see that S is spanned by (3, 1, 0, 0), (0, 0, 1, 0)

and can easily be shown that the set of vectors are linearly independent.

$$\therefore B = \{(3, 1, 0, 0), (0, 0, 1, 0)\} \text{ is a basis for S. } \therefore \dim(S) = 2.$$

2. If
$$W = \begin{cases} \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} : a, b, c \in R \end{cases}$$
 is a subspace of $M_{2\times 2}$. What is a dimension of W?

$$\mathbf{Sol^{n}}. \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

So, the set
$$B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$
 is a basis for W. \therefore dim(W) = 3.

3. Find the dimension of the subsapce W =
$$\begin{cases}
 a - 3b + 2c \\
 b - 4c - 3d \\
 a - 3c - 2d \\
 2a + 5b - 2c + d
\end{cases}$$
: $a, b, c, d \in \mathbb{R}$

Solⁿ.
$$\begin{bmatrix} a-3b+2c \\ b-4c-3d \\ a-3c-2d \\ 2a+5b-2c+5d \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \\ 1 \\ 2 \end{bmatrix} + b \begin{bmatrix} -3 \\ 1 \\ 0 \\ 5 \end{bmatrix} + c \begin{bmatrix} 2 \\ -4 \\ -3 \\ -2 \end{bmatrix} + d \begin{bmatrix} 0 \\ -3 \\ -2 \\ 5 \end{bmatrix}$$

W is spanned by
$$\begin{bmatrix} 1\\0\\1\\2 \end{bmatrix}$$
, $\begin{bmatrix} -3\\1\\0\\5 \end{bmatrix}$, $\begin{bmatrix} 2\\-4\\-3\\-2 \end{bmatrix}$, $\begin{bmatrix} 0\\-3\\-2\\5 \end{bmatrix}$, i.e., these vectors are a basis for W if vectors

are Linearly independent.

Course Code: HS1071 UNIT II: Vector Spaces

$$\therefore \text{ consider A} = \begin{bmatrix} 1 & -3 & 2 & 0 \\ 0 & 1 & -4 & -3 \\ 1 & 0 & -3 & -2 \\ 2 & 5 & -2 & 5 \end{bmatrix} \xrightarrow{R_3 - R_1, R_4 - 2R_1} \begin{cases} 1 & -3 & 2 & 0 \\ 0 & 1 & -4 & -3 \\ 0 & 3 & -5 & -2 \\ 0 & 11 & -6 & 5 \end{bmatrix}$$

$$\xrightarrow{R_3 - 3R_2, R_4 - 11R_2} \Rightarrow \begin{cases} 1 & -3 & 2 & 0 \\ 0 & 1 & -4 & -3 \\ 0 & 0 & 7 & 7 \\ 0 & 0 & 38 & 38 \end{cases} \xrightarrow{R_4 - \frac{38}{7}R_3} \Rightarrow \begin{cases} 1 & -3 & 2 & 0 \\ 0 & 1 & -4 & -3 \\ 0 & 0 & 7 & 7 \\ 0 & 0 & 0 & 0 \end{cases} \therefore \rho(A) = 3$$

: basis for subspace W of R^4 pivote columns of A

$$\therefore \text{ basis for subspace } W = B = \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -3 \\ 1 \\ 0 \\ 5 \end{bmatrix}, \begin{bmatrix} 2 \\ -4 \\ -3 \\ -2 \end{bmatrix} \right\} \therefore \dim(W) = 3.$$

Column space, Row space and Null space of a Matrix Column Space of a Matrix

Let A be $m \times n$ matrix. Column space of matrix A is the set of all possible linear combinations of columns of A, denoted as col(A), i.e., If $A = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$ then $col(A) = span\{v_1 & v_2 & \cdots & v_n\}$

Note: 1) Number of columns of A = n

- 2) Number of vectors in col(A) = infinite.
- 3) col (A) is a subspace of \mathbb{R}^m .
- 4) $y \in \text{col }(A)$ means the system of linear equations y = AX for some $X \in \mathbb{R}^n$ is consistent. i.e. $col(A) = \{ y \in \mathbb{R}^m : y = AX \text{ for some } X \in \mathbb{R}^n \}$
- 5) Elementary row operation on a matrix does not affect the linear dependence relation among the columns of the matrix.
- 6) The Pivot columns of matrix A form a basis for Col(A).

Row Space of a Matrix

Let A be $m \times n$ matrix. Row space of matrix A is the set of all possible linear combinations of rows of A, denoted as row (A).

Note: 1) number of rows of A = m

- 2) number of vectors in row (A) = infinite
- 3) row (A) is a subspace of R^n
- 4) $y \in \text{row } (A)$ means this system of linear equations $y = A^T X$ for some $X \in \mathbb{R}^m$ is consistent.

Null Space of a Matrix

Let A be $m \times n$ matrix. Null space of A is the set of all those vectors in \mathbb{R}^n which get map on to zero by A, denoted as Null(A), i. e., Null(A) = $\{x \in \mathbb{R}^n \mid AX = 0\}$.

Note: 1) Null (A) is a subspace of \mathbb{R}^n . $0 \in \text{Null }(A)$.

Let
$$x_1, x_2 \in \text{Null } (A)$$
, then

$$A x_1 = 0, A x_2 = 0 \Rightarrow A(x_1 + x_2) = A x_1 + A x_2 = 0 \Rightarrow x_1 + x_2 = \text{Null}(A)$$

Course Code: HS1071 UNIT II: Vector Spaces

$$\alpha(A x_1) = \alpha A x_1 = 0 \implies \alpha A = \text{Null } (A)$$

Null (A) is the subspace of R^n (solution space of the homogeneous system AX = 0.)

2) If $\rho(A) = r$, then dim(Null A) = n - r = Nullity of A.

3) $\dim(\operatorname{col} A) = \dim(\operatorname{row} A) = r$.

Theorem: For any matrix $A_{m \times n}$, $\dim(\text{Null } A) + \dim(\text{col } A) = \text{number of columns of } A$.

Illustrative Examples

1. Determine the basis for Null (A), col (A) and row (A) and hence determine their dimensions. Assume that A is row equivalent to B.

$$A = \begin{bmatrix} 1 & -3 & 4 & -1 & 9 \\ -2 & 6 & -6 & -11 & -10 \\ -3 & 9 & -6 & -6 & -3 \\ 3 & -9 & 4 & 9 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & -3 & 0 & 5 & -7 \\ 0 & 0 & 2 & -3 & 8 \\ 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Solution: Given: $A \sim B$.

Each non-pivot columns of B is a linear combination of pivot columns.

In this example it is to observe that

$$b_2 = -3b_1$$
 and $b_4 = 5b_1 - \frac{3}{2}b_3$: $a_2 = -3a_1$ and $a_4 = 5a_1 - \frac{3}{2}a_3$

by spanning set theorem we may discard a_2 and a_4 , to get Basis for column space of A, is the set containing pivot columns of A.

Basis for col (A) =
$$\left\{ \begin{bmatrix} 1 \\ -2 \\ -3 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ -6 \\ -6 \\ 4 \end{bmatrix}, \begin{bmatrix} 9 \\ -10 \\ -3 \\ 0 \end{bmatrix} \right\}$$
 dim(col A) = 3

Basis for row space of A, is the set containing pivot rows of B.

Therefore Basis for row (A) is $\{(1,-3,0,5,-7),(0,0,2,-3,8),(0,0,0,0,5)\}$.

Therefore $\dim(\text{row A}) = 3$.

Basis for Null (A) – is the solution space of AX = 0.

Equivalent system is $x_1 - 3x_2 + 5x_4 - 7x_5 = 0$, $2x_3 - 3x_4 + 8x_5 = 0$, $5x_5 = 0 \implies x_5 = 0$ Let $x_4 = k_1$ & $x_2 = k_2$, $x_1 = 3k_2 - 5k_1$.

· Solution vector

$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 3k_2 - 5k_1 \\ k_2 \\ 3k_1 \\ k_1 \\ 0 \end{bmatrix} = k_1 \begin{bmatrix} -5 \\ 0 \\ 3 \\ 1 \\ 0 \end{bmatrix} + k_2 \begin{bmatrix} 3 \\ 1 \\ 0 \\ 0 \end{bmatrix}.$$

Basis for Null (A) is
$$\begin{bmatrix} -5 \\ 0 \\ 3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$
 dim (Null (A)) = 2.

Course Code: HS1071 UNIT II: Vector Spaces

2. Find k such that Null space of A is subsapce of R^k and column space of A is subsapce

of
$$\mathbb{R}^{k}$$
, where $A = \begin{bmatrix} 1 & 2 & -1 & 5 \\ 3 & 1 & -1 & 1 \\ 7 & 6 & 5 & 2 \\ 1 & 2 & -3 & 1 \\ 2 & 0 & 1 & 3 \end{bmatrix}$.

Solⁿ. i) Here A is 5×4 matrix and we know that Null space is a subspace of \mathbb{R}^4 , $\therefore k = 4$.

ii) Here A is 5×4 matrix and we know that column space is a subspace of \mathbb{R}^5 , $\therefore k = 5$.

3. Let
$$A = \begin{bmatrix} -8 & -2 & -9 \\ 6 & 4 & 8 \\ 4 & 0 & 4 \end{bmatrix}$$
 and $w = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$.

i)determine if w is in column space of A. ii) Is w in null space of A? iii) Is w in row space of A?

ii) wis in null(A) if and only if Aw = 0

$$Aw = \begin{bmatrix} -8 & -2 & -9 \\ 6 & 4 & 8 \\ 4 & 0 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \therefore w \in null(A).$$

iii) w will be in row space of A, if there exists some vector $x \in \mathbb{R}^3$ such that $A^T x = w$ is consistant

$$\begin{bmatrix} \mathbf{A}^T, w \end{bmatrix} = \begin{bmatrix} -8 & 6 & 4 & 2 \\ -2 & 4 & 0 & 1 \\ -9 & 8 & 4 & -2 \end{bmatrix} \xrightarrow{R_1 - R_3} \begin{bmatrix} 1 & -2 & 0 & 0 \\ -2 & 4 & 0 & 1 \\ -9 & 8 & 4 & -2 \end{bmatrix} \xrightarrow{R_2 + 2R_1, R_3 + 9R_1} \begin{bmatrix} 1 & -2 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -10 & 4 & -2 \end{bmatrix}$$

$$\xrightarrow{R_2 \leftrightarrow R_3} \begin{bmatrix} 1 & -2 & 0 & 0 \\ 0 & -10 & 4 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \therefore \rho[A, w] \neq \rho[A]. \therefore w \notin Row(A).$$

4. If AX = V and AX = W are both consistant. Is the equation AX = V + W consistant?

Solⁿ. AX = V is consistant means $V \in col(A)$, and AX = W is consistant means $W \in col(A)$. But col(A) is a subspace.

 \therefore V + W \in Col(A) \therefore AX = V + W is consistant.

5. Let
$$H = Span\{v_1, v_2\}$$
 and $W = \{u_1, u_2\}$, where $v_1 = \begin{bmatrix} 5 \\ 3 \\ 8 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$, $u_1 = \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}$,

and
$$u_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 and $K = H \cap W$, find the basis for K .

Solⁿ. Geometrically H and W are the plains in R^3 . $H \cap W$ is a line of intersection of the planes H and W. \therefore K can be written as $c_1v_1 + c_2v_2$ and also as $c_3u_1 + c_4u_4$.

Course Code: HS1071 UNIT II: Vector Spaces

Coefficient matrix
$$A = \begin{bmatrix} 5 & 1 & -2 & 0 \\ 3 & 3 & 1 & 0 \\ 8 & 4 & -4 & -1 \end{bmatrix}$$
 $\therefore \rho(A) = 3$

By reducing it to echelon form
$$A = \begin{bmatrix} 1 & 5 & 4 & 0 \\ 0 & -12 & -11 & 0 \\ 0 & 0 & -3 & -1 \end{bmatrix}$$

Let $c_4 = k$ (free variable)

$$c_3 = -\frac{1}{3}k$$
, $c_2 = \frac{11}{36}k$, $c_1 = -\frac{7}{36}k$. Thus $c_1 = -\frac{7}{36}k$, $c_2 = \frac{11}{36}k$, $c_3 = -\frac{1}{3}k$, $c_4 = k$

Every vector in K is either $c_1v_1 + c_2v_2$ or $c_3u_1 + c_4u_2$.

$$-\frac{7}{36}k \begin{bmatrix} 5\\3\\8 \end{bmatrix} + \frac{11}{36}k \begin{bmatrix} 1\\3\\4 \end{bmatrix} = \begin{bmatrix} -24k/36\\12k/36\\-12k/36 \end{bmatrix} = \frac{k}{3} \begin{bmatrix} -2\\1\\-1 \end{bmatrix}$$

$$OR - \frac{1}{3}k \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix} + k \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \frac{k}{3} \begin{bmatrix} -2 \\ 1 \\ -1 \end{bmatrix} \therefore \text{ Basis for } K = \left\{ \begin{bmatrix} -2 \\ 1 \\ -1 \end{bmatrix} \right\}.$$