DATASCI 510 - Lesson 7
Feature Engineering:
Natural Language Processing

Lesson 7 Agenda

- A reminder of the Wordle interview question
 - Bootstrap compared to the analytical comparison
- Text processing: TF-IDF
- Lesson_07_a_TF-IDF.ipynb
- Break
- Lesson_07_b_student.ipynb
- Break
- Classification Accuracy (Confusion Matrix, and RoC)
- Lesson_07_c_RFM.ipynb (Time Permitting)
- Interview question

Term Frequency Inverse Document Frequency

How to calculate the TF-IDF from a corpus

The Term Frequency - Inverse Document Frequency matrix (TF-IDF) is a matrix where each row represents one document and each feature is a term (word) that may appear in a document.

TF-IDF can be used in machine learning to create a model. These models might predict something about a document or describe a collection of documents (corpus).

Glossary

• Document: Written text like a book or a tweet

• Corpus: A collection of documents

• DTM: **D**ocument **T**erm **M**atrix

• TF: **T**erm **F**requency matrix

• IDF: Inverse **D**ocument **F**requency matrix

• TF-IDF: Term Frequency - Inverse Document Frequency matrix

Steps in Creating the Term-Frequency-Inverse Document Frequency (TF-IDF) Matrix

- 1. Get a collection of documents (corpus) like books or tweets
- 2. Calculate **D**ocument-**T**erm **M**atrix (DTM) from the corpus
- 3. Calculate **T**erm **F**requencies (TF) from the DTM
- 4. Calculate Inverse **D**ocument **F**requencies (IDF) from the DTM
- 5. Calculate the **T**erm **F**requency-**I**nverse **D**ocument **F**requency (TF-IDF) Matrix from the TF and IDF

We start with a collection of documents, also called a *corpus*

A collection of documents is called a corpus

The Document-Term Matrix is the data set that is used to create the Term-Frequencies (TF) and the Inverse Document Frequencies (IDF) and finally the Term-Frequency-Inverse-Document Frequency (TF-IDF) matrix

Term Frequencies (TF)

Term Frequencies (TF)

Term Frequencies (TF)

The Term-Frequencies (TF) will be used later to calculate the Term-Frequency-Inverse-Document Frequency (TF-IDF) matrix. We will remember it now

with a given Word

TF from earlier

				,	,		
	voice	actor	traffic	bribe	study	home	
Doc 1			.4	.4	.2		
Doc 2	.2	.2			.4	.2	
Doc 3			.6	.2	.2		
Doc 4	.3	.2			.4	.1	
Doc 5	.5				.5		
Doc 6	.1	.3		.2	.4		
Doc 7	.8				.2		

Term Frequencies (TF)

Term Frequencies (TF)							
	voice	actor	traffic	bribe	study	home	
Doc 1			.4	.4	.2		
Doc 2	.2	.2			.4	.2	
Doc 3			.6	.2	.2		
Doc 4	.3	.2			.4	.1	
Doc 5	.5				.5		
Doc 6	.1	.3		.2	.4		
Doc 7	.8				.2		

	IDF matrix						
		voice	actor	traffic	bribe	study	home
	Doc 1	0.15	0.37	0.54	0.37	0	0.54
	Doc 2	0.15	0.37	0.54	0.37	0	0.54
	Doc 3	0.15	0.37	0.54	0.37	0	0.54
	Doc 4	0.15	0.37	0.54	0.37	0	0.54
	Doc 5	0.15	0.37	0.54	0.37	0	0.54
	Doc 6	0.15	0.37	0.54	0.37	0	0.54
	Doc 7	0.15	0.37	0.54	0.37	0	0.54

The TF-IDF can be used for Unsupervised Learning. For Example: We could cluster documents into topics. (Useful for curation of legal documents)

Cluste

The TF-IDF can be used for Supervised Learning. For Example: We could add labels to classify documents for sentiment analysis or fake news detection

TF-IDF Summary

- 1. Corpus
 - A document is a unit of written natural language like a book or a tweet
 - A corpus is a collection of documents
- document-term matrix (DTM)
 - The DTM is derived from a corpus
 - The DTM is sparse
- term frequencies (TF)
 - The TF are derived from the DTM
 - The TF is sparse
- 4. inverse document frequencies (IDF)
 - IDF are derived from the DTM
 - IDF for a given term is the same for all documents in the corpus
- 5. term frequency inverse document frequency (TF-IDF)
 - TF-IDF is calculated by multiplying TF with IDF
 - The TF-IDF can be used as training data for machine learning

Break

"My profile said you were a little stiff."

Word Embedding: basic element of LLMs

- Numerical representation of a word in a high-dimensional space
- This representation captures the semantic and syntactic meaning of the word, allowing machines to understand and process language in a more sophisticated way

Word Embedding: basic element of LLMs

- In the examples here we have very low dimensionality
- In practice, most word embedding have quite high dimensionalities (100+)
- Often, the dimensionalities a priori do not mean anything
- Some famous methods:
 - Word2Vec
 - GloVe
 - BERT

Word Embedding: basic element of LLMs

- We will talk about some of these methods next week(s)
- Here we just want to mention that Word Embedding, is another feature engineering tool, that maps a word from a vocabulary into a vector of some (usually many) real numbers

Curse of Dimensionality

Increasing the number of dimensions can improve a machine learning model.

The curse of dimensionality means that too many dimensions cause problems with:

- (1) overfitting
- (2) computational effort
- (3) interpretation

The question "How many dimensions is too many?" is usually answered by trial and error. https://en.wikipedia.org/wiki/Curse_of_dimensionality

Interview question

- A. Write a Python code to measure the median distance of two random points in a d dimensional space, for d=1, 2, ..., 20 with simulation
- B. Write a Python code to measure the median distance of a random point in a d dimensional space to the origin, for d=1, 2, ..., 20 with simulation
- C. Write a Python code to measure the probability for a random point in a d dimensional space to fit in the *unit hypersphere*, for d=1, 2, ..., 20 with simulation