INATEL – Instituto Nacional de Telecomunicações

C210 – Inteligência Computacional Profa. Victoria Dala Pegorara Souto

Aula 6 – Fuzzy

- 1) Quais as principais características dos conjuntos Fuzzy?
- 2) Em que tipo de situação os conjuntos Fuzzy podem ser aplicados?
- 3) Descreva, com suas palavras, o significado de:
 - a. Universo de discurso
 - b. Função de pertinência
- 4) Quais são os principais tipos de função de pertinência utilizados?
- 5) Considere o conjunto Fuzzy abaixo:

Responda às seguintes questões:

- a. O conjunto está normalizado? Justifique.
- b. Calcule a altura do conjunto, ou seja, ALT(X).
- c. Calcule o suporte de conjunto, ou seja, SUPP(X).
- d. Indique se os pontos $x_1=3$ e $x_2=7$ (considerando $\lambda=0.5$) constituem um conjunto convexo $(\mu_A(\lambda*x_1+(1-\lambda)*x_2)\geq MIN[\mu_A(x_1),\mu_A(x_2)]).$
- e. Represente o subconjunto $x \in [2,8]$ na forma discreta.
- f. Calcule a cardinalidade do conjunto, ou seja, CARD(X).

- g. Calcule o conjunto obtido através do corte lpha=0.5, ou seja, $X_{0.5}$.
- **6)** Em função de quais operadores as operações de união, intersecção e complemento são geralmente definidas, no contexto da Lógica Fuzzy?
- 7) Considere os conjuntos Fuzzy abaixo:

Responda às seguintes questões:

- a. Calcule e desenhe $\mu_A(x) \cup \mu_B(x)$ (dica: $\mu_A(x) \cup \mu_B(x) = MAX[\mu_A(x), \mu_B(x)]$).
- b. Calcule e desenhe $\mu_A(x) \cap \mu_B(x)$ (dica: $\mu_A(x) \cap \mu_B(x) = MIN[\mu_A(x), \mu_B(x)]$).
- c. Calcule e desenhe $\mu_{\bar{A}}(x)$ (dica: $\mu_{\bar{A}}(x) = 1 \mu_{A}(x)$).
- d. Calcule e desenhe $\mu_{\bar{B}}(x)$ (dica: $\mu_{\bar{B}}(x) = 1 \mu_{B}(x)$).
- 8) o gráfico dos conjuntos Fuzzy a seguir.

- a) Os conjuntos estão normalizados? Justifique.
- b) Calcule a altura do conjunto A, ou seja, ALT(A).

- c) Calcule o suporte do conjunto B, ou seja, SUPP(B).
- d) Calcule a cardinalidade do conjunto C, ou seja, CARD(C).
- e) Calcule o resultado do corte do conjunto A quando $\alpha=0.4$, ou seja, $A_{0.4}$.
- f) Os pontos $x_1 = 4$ e $x_2 = 6$ (com $\lambda = 0.5$) constituem um conjunto convexo em B? (dica: um conjunto A é convexo se $\mu_A(\lambda * x_1 + (1 \lambda) * x_2) \ge MIN[\mu_A(x_1), \mu_A(x_2)]$).
- g) Os pontos $x_1 = 8$ e $x_2 = 10$ (com $\lambda = 0.5$) constituem um conjunto convexo em C?
- h) Calcule $\mu_A(x) \cup \mu_B(x) \in \mu_B(x) \cup \mu_C(x)$ (dica: $\mu_A(x) \cup \mu_B(x) = MAX[\mu_A(x), \mu_B(x)]$).
- i) Calcule $\mu_A(x) \cap \mu_B(x)$ e $\mu_B(x) \cap \mu_C(x)$ (dica: $\mu_A(x) \cap \mu_B(x) = MIN[\mu_A(x), \mu_B(x)]$).
- j) Calcule $\mu_{\bar{A}}(x)$, $\mu_{\bar{B}}(x)$ e $\mu_{\bar{C}}(x)$ (dica: $\mu_{\bar{A}}(x) = 1 \mu_{A}(x)$).
- 9) Considere o gráfico dos conjuntos Fuzzy abaixo.

- a) Os conjuntos estão normalizados? Justifique.
- b) Calcule a altura do conjunto A, ou seja, ALT(A).
- c) Calcule o suporte do conjunto B, ou seja, SUPP(B).
- d) Calcule a cardinalidade do conjunto C, ou seja, CARD(C).
- e) Calcule o resultado do corte do conjunto A quando α =0.5.
- f) Os pontos $x_1=3$ e $x_2=7$ (com $\lambda=0.5$) constituem um conjunto convexo em A? Justifique.
- g) Os pontos x1=1 e x2=9 (com λ =0.5) constituem um conjunto convexo em C? Justifique.

Para os itens a seguir, dê o resultado na forma de um gráfico ou escreva-o na forma de um conjunto Fuzzy discreto, com cada x sendo um inteiro ∈ [0,10].

- h) Calcule a interseção dos conjuntos A, B e C.
- i) Calcule a união dos conjuntos A, B e C.
- j) Calcule o complemento dos conjuntos A, B e C.

10) Considere a descrição do Sistema Fuzzy MISO abaixo e faça o que se pede:

• Considere as seguintes variáveis de entrada:

Distância do Eixo Horizontal (x)

Ângulo do Veículo com Relação ao Eixo Horizontal (Ø)

• Considere a seguinte variável de saída:

Ângulo da Roda do Veículo (θ)

• Dado x = 80 m e $\emptyset = 90^{\circ}$, qual o valor da variável de saída considerando o seguinte conjunto de regras e o método do centróide para defuzificação.

ø x	LE	LC	CE	RC	RI
RB	PS	PM	PM	PB	PB
RU	NS	PS	PM	PB	PB
RV	NM	NS	PS	PM	PB
VE	NM	NM	ZE	PM	PM
LV	NB	NM	NS	PS	PM
LU	NB	NB	NM	NS	PS
LB	NB	NB	NM	NM	NS

Considere:

- Conectivo → E (Mínimo), OU (Máximo)
- Implicação → Mamdani
- Agregação → Máximo
- **Defuzzificação** \rightarrow Centróide **Centróide** \rightarrow $CoG = \frac{\sum x.\mu(x)}{\sum \mu(x)}$