

Real-Time Operating System Project EDF Implementation Report

Name: Ahmed Mohamed Hussein Elshehry

Email: elshehry97@gmail.com

Verifying the System Implementation:

Method 1: Analytically

- 1. Calculate Hyper-period
- 2. CPU Load
- 3. Schedulability Analysis (using: A: Urm, B: Time Demand Analysis)
- using analytical methods:

1- System Hyper-period:

Task	Periodicity
Button 1 Monitor	50
Button 2 Monitor	50
Periodic Transmitter	100
UART Transmitter	20
Load 1 Simulation	10
Load 2 Simulation	100

Hyperperiod = Least Common Multiplier of all tasks periodicities

Hyperperiod = LCM (50, 50, 100, 20, 10, 100)

Hyperperiod = 100

2- CPU Load:

Task	Execution Time	Occurrence During Hyper-period
Button 1 Monitor	18.5 μs	2
Button 2 Monitor	19 μs	2
Periodic Transmitter	19.2 μs	1
UART Transmitter	21.6 μs	5
Load 1 Simulation	5 ms	10
Load 2 Simulation	12 ms	1

Note: Execution times of tasks calculated from the logic analyzer in Keil

Utilization = Total Execution Time During Hyper-period / Hyper-period $U=(\ (T1^*2)+(T2^*2)+T3^*1)+(T4^*5)+T5^*10)+(T6^*1)\ /\ 100m\)\ *\ 100\%$

 $U = ((18,5\mu s*2) + (19\mu s*2) + (19.2\mu s*1) + (21,6\mu s*5) + (5ms*10) + (12ms*1) / 100ms)*100\% = 62.22\%$

3- System Schedulability:

Schedulability Analysis (using URM and time demand analysis techniques: (Assuming the given set of tasks are scheduled using a fixed priority rate monotonic scheduler)

Using Rate Monotonic Utilization Bound

$$U \le n[2 (1/n) - 1]$$

Urm =
$$n(2^{(1/n)} - 1) = 6(2^{(1/6)} - 1) = 0.73477$$

 $U = \sum Ci/Pi = 18.5 \,\mu s / 50 \,ms + 19 \,\mu s / 50 \,ms + 19.2 \,\mu s / 100 \,ms + 21.6 \,\mu s / 20 \,ms + 5 \,ms / 10$ ms + 12 ms / 100 ms = 0.62202

Since U < Urm, Therefore System guaranteed Schedulable

➤ Using Time Demand Analysis:

$$w_i(t) = e_i + \sum_{k=1}^{i-1} \left\lceil \frac{t}{p_k} \right\rceil e_k$$
 for $0 < t \le p_i$

W = Worst response time

E = Execution time

P = Periodicity

T = Time instance

T = Time instance

Arrange Tasks according to Priority will be:

[Task 5, Task 4, Task 1, Task 2, Task 3, Task 6]

Task	Task ID	Periodicity	Execution Time
Button 1 Monitor	Task 1	50	18.5 μs
Button 2 Monitor	Task 2	50	19 μs
Periodic Transmitter	Task 3	100	19.2 μs
UART Transmitter	Task 4	20	21.6 μs
Load 1 Simulation	Task 5	10	5 ms
Load 2 Simulation	Task 6	100	12 ms

For Task 5 (Load 1 Simulation)

W(1).....W(10)

 $W(1) = 5 + 0 = 5 \text{ ms} \rightarrow W(10) = 5 + 0 = 5 \text{ ms}$

W(10) < D = 5ms < 10 ms, Task 5 is Schedulable

For Task 4 (UART Transmitter)

```
W(1).....W(20)
```

$$W(1) = 21.6 \mu s + (1/10)*5 ms = 0.522 ms$$

$$W(5) = 21.6 \mu s + (5/10)*5 ms = 2.5216 ms$$

$$W(10) = 21.6 \mu s + (10/10)*5 ms = 5.023 ms$$

$$W(20) = 21.6 \mu s + (20/10)*5 ms = 10.021 ms$$

W(20) < D = 10.021 ms < 20 ms, Task 4 is Schedulable

For Task 1 (Button 1 Monitor)

W(1).....W(50)

$$W(1) = 18.5 \mu s + (1/10)*5 ms + (1/20)*21.6 \mu s ms = 0.519 ms$$

$$W(50) = 18.5 \mu s + (50/10)*5 ms + (50/20)*21.6 \mu s ms = 25.0725 ms$$

W(50) < D = 25.0725 ms < 50 ms, Task 1 is Schedulable

For Task 2 (Button 2 Monitor)

W(1).....W(50)

$$W(50) = 19 \mu s + (50 \times 50) * 18.5 \mu s + (50/10) * 5 ms + (50/20) * 21.6 \mu s ms = 25.0915 ms$$

W(50) < D = 25.0915 ms < 50 ms, Task 2 is Schedulable

For Task 3 (Periodic Transmitter)

W(1).....W(100)

W(100) = $19.2 \mu s + (100/50)*19 \mu s + (100/50)*18.5 \mu s + (100/10)*5 ms + (100/20)*21.6 \mu s ms = <math>50.2022 ms$

W(100) < D = 50.2022 ms < 100 ms, Task 3 is Schedulable

For Task 6 (Load 2 Simulation)

W(1).....W(100)

W(100) = 12 ms+
$$(100/100)*19.2 \mu s + (100/50)*19 \mu s + (100/50)*18.5 \mu s + (100/10)*5 ms + (100/20)* 21.6 \mu s ms = 62.2022 ms$$

W(100) < D = 62.2022 ms < 100 ms, Task 6 is Schedulable

Method 2: SIMSO

- ➤ Using Simso offline simulator, simulate the given set of tasks assuming:
 - 1. Calculate Hyper-period
 - 2. CPU Load
 - 3. Schedulability Analysis

• Tasks Creation

1. Calculate Hyper-period=100ms

2. CPU Load (Simso)

3. 3. Schedulability Analysis: system is Schedulability from Gantt Chart

Method 3: Using Keil

Using Keil simulator in run-time and the given set of tasks

1- Calculate the CPU usage time using timer 1 and trace macros

2- Using trace macros and GPIOs, plot the execution of all tasks, tick, and the idle task on the logic analyzer"

Comment on the Results:

As We see the results of the three methods give the same **CPU load = 62.7%,** which means a successful implementation.