End-to-end Integration of Hyperparameter Tuning into Variational Quantum Algorithms

Unathi Skosana and Mark Tame

Stellenbosch University

SAIP2024

Quantum Computing as a New Paradigm for Computation

Quantum computing uses specialized quantum technology to solve complex problems that classical computers cannot solve quickly enough.

Credit: PSNC

Examples of Complex Problems

Quantum Chemistry, Electronic Structure of Molecular Systems.

3

Examples of Complex Problems

Discrete logarithm, Prime factorization in cryptography.

Hard to compute backward

Credit: Anthropic's Claude Sonnet 3.5 LLM

Quantum Computing Hardware Since 2016

 The first generally available cloud-based quantum processor had 5 quantum bits, or qubits:

Credit: IBM

Use cases limited to proof-of-concept demonstrations:

Quantum Physics

[Submitted on 25 Mar 2021 (v1), last revised 19 Sep 2022 (this version, v3)]

Demonstration of Shor's factoring algorithm for N=21 on IBM quantum processors

Unathi Skosana, Mark Tame 5

Scaling Up Quantum Computing Hardware

Generally available state-of-the-art devices can have as many as 433 noisy qubits.

Credit: Tobias Osborne

Despite increasing qubit numbers, Quantum Advantage is yet to be realized.

Variational Quantum Algorithms (VQAs) in the Wild

Utility Before Fault Tolerance (Nature 618, 500-505)

Quantum Spin Chains

Quantum Many-body Dynamics

(arXiv:2307.07552)

Nishimori transition

(arXiv:2309.02863)

Variational Quantum Algorithms (VQAs)

2

Cost Landscapes in Variational Quantum Algorithms

(a) Noiseless cost landscape

(b) Noisy cost landscape

(c) Error-mitigated cost landscape

- (a) Clear separation of cost function values.
- (b) Concentration of cost function values.
- (c) Recovery of features keys of noiseless cost function values.

Hyperparameter Tuning

Case study: Estimating Ground State Energies

Noiseless Simulation: Potential Energy Surface

Noiseless Simulation: Cost Function Evaluations

1. Noiseless Simulation: Relative Error

2. Noisy Simulation: Relative Error

3. Noisy + Readout Error Mitigation Simulation: Relative Error

4. Noisy + Readout Error Mitigation + Zero Noise Extrapolation Simulation: Relative Error

Concluding remarks

- Variational Quantum Algorithms as stepping stones towards Quantum Advantage on start-of-the-art quantum hardware.
- Performance and reliability of Variational Quantum Algorithms is significantly influenced by the behavior of the chosen optimization algorithm.
- Hyperparameter tuning as means to get the best out of classical resources on the way to Quantum Advantage.

Thank You for Listening

