

Tarea 4

27~de~Septiembre~de~2017 $2^{\rm o}~semestre~2017$ - Profesores G. Diéguez - F. Suárez

Requisitos

- La tarea es individual. Los casos de copia serán sancionados con la reprobación del curso con nota 1,1.
- Entrega: Hasta las 8:29:59 AM del 27 de septiembre a través del buzón habilitado en el sitio del curso (SIDING) y durante la clase de ese mismo día.
 - Esta tarea debe ser hecha completamente en L^AT_EX. Tareas hechas a mano o en otro procesador de texto **no serán corregidas**.
 - Cada solución de cada problema debe comenzar en una nueva hoja. *Hint:* Utilice \newpage
 - Su nombre y número de alumno debe estar en la cabecera de cada página.
 - Debe entregar un zip con nombre numalumno.zip, en el que numalumno es su número de alumno.
 - El zip debe contener el archivo PDF correspondiente a la versión impresa de la tarea con nombre numalumno.pdf, junto con el archivo numalumno.tex que lo compila. Si su código hace referencia a otros archivos, debe incluirlos también.
 - En ayudantía debe entregar la versión impresa de la tarea, correspondiente al PDF del punto anterior (en caso de no concordar las versiones digital e impresa, la tarea no será corregida).
- El no cumplimiento de alguna de las reglas se penalizará con un descuento de 0.5 en la nota final (acumulables).
- No se aceptarán tareas atrasadas, entregadas fuera de la clase o por cualquier otro medio, ya sea físico o electrónico.

Problemas

Problema 1

Sea A un conjunto y \leq una relación sobre A. Diremos que el par (A, \leq) es un **buen orden** si es un orden total, y además se cumple que todo $S \subseteq A$ tiene mínimo bajo \leq .

Por ejemplo, (\mathbb{N}, \leq) es un buen orden, ya que \leq es una relación de orden total, y es cierto que todo $S \subseteq \mathbb{N}$ tiene mínimo bajo \leq^1 .

- a) [1 pto.] ¿Es (\mathbb{Z}, \leq) un buen orden? Demuestre o dé un contraejemplo.
- b) [5 ptos.] Considere la siguiente relación sobre \mathbb{Z} :

 $x \leq y$ si y sólo si se cumple alguna de las siguientes condiciones:

- (1) x = 0
- (2) $x > 0 \land y < 0$
- (3) $x > 0 \land y > 0 \land x \le y$
- (4) $x < 0 \land y < 0 \land |x| \le |y|$

Demuestre que (\mathbb{Z}, \leq) es un buen orden.

Problema 2

Sea $r \in \mathbb{R}$. Encuentre una biyección $f:[r,r+1] \to (r,r+1]$. Demuestre.

¹Esta segunda propiedad de los naturales es llamada *Principio de Buen Orden*, como vimos en el capítulo de inducción.