EXEMPLE

Donner le tableau de signes de la fonction f(x) = -4x + 8

Réponse:

x	$-\infty$		2		$+\infty$
f(x)		+	0	_	

Fonction dérivée

Soit f une fonction définie sur un intervalle I_1 . On associe à cette fonction, sa fonction dérivée notée f' définie sur une intervalle I_2 .

Dérivées des fonctions usuelles

Fonction f	Dérivée f^\prime	
f(x) = nombre	f'(x) = 0	
f(x) = x	f'(x) = 1	
$f(x) = x^2$	f'(x) = 2x	
$f(x) = x^3$	$f'(x) = 3x^2$	

DÉRIVÉES DE KU

Soit u une fonction et k un réel. Alors :

$$(k \times u)' = k \times u'$$

EXEMPLE

« Donner la dérivée de $f(x) = 5x^2$. »

Réponse : $f'(x) = 5 \times 2x = 10x$

Dérivées de U + V

Soit u et v deux fonctions. Alors :

$$(u+v)' = u' + v'$$

Méthode

Pour dériver une fonction il faudra:

- 1. séparer les termes et les traiter séparément;
- 2. reconnaître, si nécessaire, dans ces termes, le produit par un scalaire;
- 3. dériver séparément en s'aidant du tableau ci-dessus et en multipliant, éventuellement, par le scalaire.

EXEMPLE

« Donner la dérivée de $f(x) = 4x^3 + 5x^2 + 3$. »

Réponse : $f'(x) = 12x^2 + 10x$

Dérivée et sens de variation

Propriété

Soit f une fonction définie et dérivable sur un intervalle I. Si pour tout $x \in I$:

- $-f'(x) \ge 0$, alors f est croissante sur I.
- $-f'(x) \le 0$, alors f est décroissante sur I.
- f'(x) = 0, alors f est constante sur I.

Méthode

Si on cherche le tableau de variation d'une fonction on :

- 1. **dérive** la fonction;
- 2. étudie le signe de cette dérivée;
- 3. on en **déduit le sens de variation** de la fonction (initiale).

Exemple d'étude de variations

« Établir le tableau de variation de $f(x) = -6x^2 + 9x + 15$. »