

# Graph Neural Network Techniques for Molecular Prediction

Domain Adaptation applied to organic semiconductors.

Neel Misciasci

M.Sc. Mathematics in Science and Engineering

**Supervisor**: Prof. Dr. rer. nat. habil. Hans-Joachim Bungartz

Advisor: Kouroudis Ioannis, M.Sc.

Technische Universität München

TUM School of Computation, Information and Technology

Munich, June 21st 2023





#### Semiconductors control the flow of current

A semiconductor is the building material of ALL electronic devices.

Is neither an insulator nor a conductor.





# Inorganic semiconductors are rigid

Semiconductors = Silicon



- Rigid
- Crystalline structure
- Relatively expensive



# Organic Semiconductors (OS) are flexible

Semiconductors = Organic material



- Thin
- Flexible
- Stretchable
- Cheap to produce



# OS have innovative applications

Flexible displays





# OS have innovative applications

#### Next-gen wearable electronics

Electronic skin for health monitoring.



Prosthetic limbs that mimic the sense of touch.



Source: [1] Source: [2]



# These technologies are already available!

However, they need to be more efficient.

We want to find an organic material with good molecular properties.

**Good = Transfer Electric Charge** 





# How do scientists address this problem?





## How do scientists address this problem?



#### **Simulations**

Reproduce physics of material.

Accurate.

- Computationally expensive.





## How do scientists address this problem?



#### **Simulations**

Reproduce physics of material.

Accurate.

- Computationally expensive.



#### Artificial Intelligence (I)

Predict molecular properties given a training dataset.

- Faster results.
- Need ground truth from simulation.







## We take it a step further:

#### Artificial Intelligence (II)

Transfer the knowledge to new materials.

- Faster results.
- Don't need ground truth.





# Why do we want transfer learning?

- It accelerates discovery of innovative materials.
- It allows more creativity in trying novel combinations of materials.
- It enables cost-effective research.

$$H = \begin{cases} S = S \\ S = S$$



<sup>\*</sup> Source: [3]



1. We study a known Machine Learning technique: Domain Adaptation.

<sup>\*</sup> Source: [3]



- 1. We study a known Machine Learning technique: Domain Adaptation.
- 2. We employ this method to predict the properties of new organic semiconductors.

<sup>\*</sup> Source: [3]



- 1. We study a known Machine Learning technique: Domain Adaptation.
- 2. We employ this method to predict the properties of new organic semiconductors.
- 3. We show that this technique outperforms the state of the art\*.

<sup>\*</sup> Source: [3]



#### **Table of Contents**

- 1. Charge Transfer Integral: the molecular property
- 2. Graph Neural Networks for molecular data
- 3. Domain Adaptation (DA)
- 4. Dataset: Features and molecules
- Results: In-domain
- Results: Out-of-domain
- 7. Conclusion
- 8. Improvements



# Charge Transfer Integral: the molecular property

#### **Charge Transfer Integral**:

Is a quantity that characterizes the electronic coupling between two molecules.

It is a complex property to evaluate.

Figure: the orientation of the molecules affects the charge transfer integral.





Source: [4]



# Graph Neural Networks for molecular data

Molecules can be encoded as graphs.



**Graph Neural Networks (GNN):** Local Message Passing Mechanism for Graph-structured data.



Figure: the receptive field of an image and graph convolution.



## Domain Adaptation (DA): training

Train simultaneously two networks.

- Label Predictor: predict charge transfer integral.
- Domain Discriminator: predict the type of molecule.



Figure: DA network during training time.



## Domain Adaptation (DA): training

Train simultaneously two networks.

- (abel Predictor) predict charge transfer integral.
- Domain Discriminator: predict the type of molecule.



Figure: DA network during training time.



# Domain Adaptation (DA): training

Train simultaneously two networks.

- Label Predictor: predict charge transfer integral.
- Qomain Discriminator: predict the type of molecule.



Figure: DA network during training time.



# Domain Adaptation (DA): inference



Figure: DA network during inference time.



#### Dataset: Features and molecules

#### Node features:

- Atomic number
- Electronegativity
- Molecule belonging (one-hot encoding).
- Atom type (one-hot encoding).

#### Edge features:

- Distance between atoms.
- Coulomb Matrix (CM).



Pentacene



**Tetracene** 



**DNTT** 



# Experiments can be in-domain or out-of-domain

**In-domain:** the test set contains molecules of the same type as the labeled training set.



Out-of-domain: the test set contains molecules of different type than the labeled training set.





#### Results: In-domain

# DA GNN performance does not degrade on in-domain predictions.



Fig: vanilla GNN results on experiment 2.



Fig: DA GNN results on experiment 2.



#### Results: Out-of-domain

#### DA GNN is able to generalize on different types of domains.



Fig: results of vanilla GNN on experiment 4.



Fig: results of DA GNN on experiment 4.



## Results: summary

**In-domain experiments**: vanilla and DA GNN perform similarly.

-> Domain Adaptation can replace vanilla on regular prediction tasks.

Out-of-domain experiments: DA GNN outperforms vanilla.

-> DA GNN can be an effective transfer learning technique.

#### Potential weaknesses:

- **In-domain experiments**: With multiple domains, DA GNN is similar, but slightly less accurate than vanilla. How will DA GNN perform when many domains are involved?
- Out-of-domain experiments: If the domains are very similar, vanilla can also predict decently.





#### We have showed that:

1. Organic Semiconductors have interesting applications that can enhance our lives.



- 1. Organic Semiconductors have interesting applications that can enhance our lives.
- Transfer learning could accelerate the development of innovative materials (no ground truth needed).



- 1. Organic Semiconductors have interesting applications that can enhance our lives.
- Transfer learning could accelerate the development of innovative materials (no ground truth needed).
- Domain Adaptation is an effective transfer learning technique. We proved it in our case study.



- 1. Organic Semiconductors have interesting applications that can enhance our lives.
- Transfer learning could accelerate the development of innovative materials (no ground truth needed).
- Domain Adaptation is an effective transfer learning technique. We proved it in our case study.
- 4. There are potential pitfalls in the method. We have to be mindful about them.



# Improvements

- Increase accuracy: DimeNet [5].
- Test DA on benchmark datasets (QM9) [6].



#### Sources

[1]: Soft 'e-skin' that talks to the brain | Stanford News

[2]: Roh, H., Cunin, C., Samal, S., & Gumyusenge, A. (2022). Towards organic electronics that learn at the body-machine interface: A materials journey. MRS Communications, 12(5), 565-577. <a href="https://doi.org/10.1557/s43579-022-00269-3">https://doi.org/10.1557/s43579-022-00269-3</a>

[3]: Rinderle, M., Kaiser, W., Mattoni, A., & Gagliardi, A. (2020). Machine-Learned Charge Transfer Integrals for Multiscale Simulations in Organic Thin Films. *The Journal of Physical Chemistry C*, 124(32), 17733–17743. doi:10.1021/acs.jpcc.0c04355

[4]: Baumeier, B., Kirkpatrick, J., & Andrienko, D. (2010). Density-functional based determination of intermolecular charge transfer properties for large-scale morphologies. *Phys. Chem. Chem. Phys.*, 12, 11103–11113. doi:10.1039/C002337J

[5]: Klicpera, J., Groß, J., & Günnemann, S. (2020). Directional Message Passing for Molecular Graphs. CoRR, abs/2003.03123. Retrieved from https://arxiv.org/abs/2003.03123



#### Sources:

[6]: Ramakrishnan, R., Dral, P. O., Rupp, M., & von Lilienfeld, O. A. (2014). Quantum chemistry structures and properties of 134 kilo molecules. *Scientific Data*, 1(1), 140022. doi:10.1038/sdata.2014.22

[7]: Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017). Neural Message Passing for Quantum Chemistry. arXiv [Cs.LG]. Retrieved from <a href="http://arxiv.org/abs/1704.01212">http://arxiv.org/abs/1704.01212</a>

[8]: Ganin, Y., & Lempitsky, V. (2015). Unsupervised Domain Adaptation by Backpropagation. arXiv [Stat.ML]. Retrieved from http://arxiv.org/abs/1409.7495



# Thank you!

Neel Misciasci München, June 21st 2023



#### Questions?



Neel Misciasci München, June 21st 2023



## Appendix: Table of results

| Experiment number | Test set              | Type of test  | vanilla GNN MAE                     | DA GNN MAE                        |
|-------------------|-----------------------|---------------|-------------------------------------|-----------------------------------|
| 1                 | penta_5k              | In-domain     | $0.466 \pm 0.030$                   | $\textbf{0.457}\pm\textbf{0.001}$ |
| 2                 | penta_2p5k_tetra_2p5k | In-domain     | $\textbf{0.444}\pm\textbf{0.011}$   | $0.618 \pm 0.110$                 |
| 3                 | tetra_5k              | Out-of-domain | $\textbf{1.447} \pm \textbf{0.488}$ | $1.778 \pm 0.499$                 |
| 4                 | DNTT_5k               | Out-of-domain | >2e25                               | $\boldsymbol{1.88\pm1.07}$        |

Table: Final results.



#### GNN: from graph to feature vector

Update the embedding  $h_v^{t+1}$  of node v at time t+1:

Message passing phase

$$h_v^{t+1} = U_t \left( h_v^t, \bigoplus_{u \in \mathcal{N}(v)} M_t \left( h_v^t, h_u^t \right) \right)$$

Readout phase (or pooling phase)

$$\hat{y} = R(\{h^T v \mid v \in G\})$$



### GNN: the message passing phase broken down

- 1. Compute and aggregate the messages in  $m_v^{t+1}$  .
- 2. Update the node embedding in  $h_v^{t+1}$ .

$$m_v^{t+1} = \sum_{w \in N(v)} M_t (h_v^t, h_w^t, e_{vw})$$
$$h_v^{t+1} = U_t (h_v^t, m_v^{t+1})$$



#### MPNN for prediction of molecular properties

$$m_v^{t+1} = \sum_{u \in \mathcal{N}(v)} h_u^t N N_{\Theta}(e_{v,u})$$
$$h_v^{t+1} = \Theta h_v^t + m_v^{t+1}$$

where  $h_v^{t+1} \in \mathbb{R}^{F_{out}}$ ,  $h_v^t \in \mathbb{R}^{F_{in}}$ , are the input and output node embedding for node v at time t and t+1,  $\Theta \in \mathbb{R}^{F_{out} \times F_{in}}$  and  $NN_{\Theta} : D_{in} \to \mathbb{R}^{F_{in} \times F_{out}}$  are respectively a learnable matrix and a neural network mapping to a matrix.

The dimensions  $F_{out}$ ,  $F_{in}$ ,  $D_{in}$  represent respectively the dimensions of the incoming hidden message, the updated hidden message, and the edge features dimensions.

Source: [7]



#### Intuition behind the message passing-scheme





#### Domain Adaptation: a closer look



Source: [8]



#### Domain Adaptation: a closer look

We want the features from the Feature Extractor to be:

- 1. Discriminative for the task at hand.
- 2. Domain-invariant.

We achieve this by optimizing in two directions.



#### Domain Adaptation: a mathematical perspective

 $G_f$  is the Feature Extractor (maps input x to D dimensional feature).

 $G_{v}$  is the Label Predictor (maps feature f to target output).

 $G_d$  is the Domain Discriminator (maps feature f to domain label).

$$\mathbf{f} = G_f(\mathbf{x}; \theta_f)$$

$$\hat{y} = G_y(\mathbf{f}; \theta_y)$$

$$\hat{d} = G_d(\mathbf{f}; \theta_d)$$



#### Domain Adaptation: a mathematical perspective

We want to **find the min-max saddle point** of the following functional, which combines the losses of Label Predictor  $L_v$  and of Domain Discriminator  $L_d$ :

$$E\left(\theta_{f}, \theta_{y}, \theta_{d}\right) = \sum_{\substack{i=1..N\\d_{i}=0}} L_{y}\left(G_{y}\left(G_{f}\left(\mathbf{x}_{i}; \theta_{f}\right); \theta_{y}\right), y_{i}\right) - \lambda \sum_{i=1..N} L_{d}\left(G_{d}\left(G_{f}\left(\mathbf{x}_{i}; \theta_{f}\right); \theta_{d}\right), y_{i}\right)$$

$$= \sum_{\substack{i=1..N\\d_{i}=0}} L_{y}^{i}\left(\theta_{f}, \theta_{y}\right) - \lambda \sum_{i=1...N} L_{d}^{i}\left(\theta_{f}, \theta_{d}\right)$$

I.e. find the points:

$$(\hat{\theta}_f, \hat{\theta}_y) = \arg\min_{\theta_f, \theta_y} E(\theta_f, \theta_y, \hat{\theta}_d)$$
$$\hat{\theta}_d = \arg\max_{\theta_d} E(\hat{\theta}_f, \hat{\theta}_y, \theta_d).$$



#### Domain Adaptation implementation

We cannot directly use a Stochastic Gradient Descent (SGD) solver for a minmax problem.

Inject a Gradient Reversal Layer  $R_{\lambda}$ :

$$R_{\lambda}(\mathbf{x}) = \mathbf{x}$$
$$\frac{dR_{\lambda}}{d\mathbf{x}} = -\lambda \mathbf{I}$$



#### Domain Adaptation implementation

Thanks to the GRL we can follow a SGD procedure to solve the minmax problem. The updates become:

$$\theta_{f} \longleftarrow \theta_{f} - \mu \left( \frac{\partial L_{y}^{i}}{\partial \theta_{f}} - \lambda \frac{\partial L_{d}^{i}}{\partial \theta_{f}} \right)$$

$$\theta_{y} \longleftarrow \theta_{y} - \mu \frac{\partial L_{y}^{i}}{\partial \theta_{y}}$$

$$\theta_{d} \longleftarrow \theta_{d} - \mu \frac{\partial L_{d}^{i}}{\partial \theta_{d}}$$

This is equivalent to **minimizing** the functional with the injected GRL:

$$\tilde{E}\left(\theta_{f}, \theta_{y}, \theta_{d}\right) = \sum_{\substack{i=1,\dots,N\\d_{i}=0}} L_{y}\left(G_{y}\left(G_{f}\left(\mathbf{x}_{i}; \theta_{f}\right); \theta_{y}\right), y_{i}\right) + \sum_{\substack{i=1,\dots,N\\d}} L_{d}\left(G_{d}\left(R_{\lambda}\left(G_{f}\left(\mathbf{x}_{i}; \theta_{f}\right)\right); \theta_{d}\right), y_{i}\right)$$



# The Coulomb Matrix (CM) encodes the Coulombian interaction between atoms

The CM is a symmetric matrix of size  $N_{atoms} \times N_{atoms}$  where  $N_{atoms}$  is the number of atoms in

the molecule.

$$C_{ij} = \begin{cases} \frac{Z_i \cdot Z_j}{|\mathbf{r}_i - \mathbf{r}_j|} & \text{if } i \neq j \\ \frac{1}{2} Z_i^{2.4} & \text{if } i = j \end{cases}$$



Figure: CM of a pentacene dimer.



#### Validation MAE





Vanilla GNN

DA GNN



#### **Domain Discriminator Loss**



The GRL is activated slowly and steadily from epochs 22 to 55.

Result: increase in loss.



#### Distribution of targets and of center of masses



Molecule represented: pentacene.



#### The prices of silicon are rising:

#### Silicon Soars

Prices for the industrial metal surged after power curbs in China



Markets

Silicon's 300% Surge Throws Another Price Shock at the World

Source: Bloomberg