Векторные поля на Java

Задача Vect

Построить приложение, рисующее векторное поле по двум заданным однозначным функциям 2-х переменных.

1. Цветное векторное поле. Даны две однозначные функции

$$fx(x,y), (x,y) \in D = [a,b]*[c,d],$$

$$fy(x,y), (x,y) \in D = [a,b]*[c,d].$$

Эти функции определяют поле скоростей (например, ветра или воды) на области пределения \mathbf{D} . Другими словами в каждой точке $(\mathbf{x},\mathbf{y}) \in \mathbf{D}$ мы имеем вектор

Пусть L(x,y) – длина этого вектора.

Пусть даны **n** чисел:

и **n+1** цвет:

Будем говорить, что значению z соответствует цвет c0, если L(x,y) < l1, иначе значению L соответствует цвет ci (i = 1..n), где i определяется как

$$i = min(j) \{L >= lj\}.$$

В зависимости от длины вектора он рисуется тем или иным цветом.

На клиентской области окна приложения выбираем прямоугольник \mathbf{P} с углами ($\mathbf{u0,v0}$) и ($\mathbf{u1,v1}$) в экранных координатах (пикселях), ось \mathbf{V} – *снизу вверх*. Должно сохраняться отношение:

$$\frac{u_1 - u_0}{b - a} = \frac{v_1 - v_0}{d - c}, \quad \text{(aspect ratio)}$$

т.е. сохраняем соотношение размеров между исходной областью определения ${\bf D}$ и её изображением ${\bf P}$. Это означает, что на области окна, выделенной под ${\bf P}$, могут оказаться пустые вертикальные или горизонтальные полосы.

Рассмотрим довольно простое отображение \mathbf{D} на \mathbf{P} , когда точка (\mathbf{a} , \mathbf{c}) переходит в пиксель ($\mathbf{u0}$, $\mathbf{v0}$), а точка (\mathbf{b} , \mathbf{d}) в ($\mathbf{u1}$, $\mathbf{v1}$). Очевидное обратное преобразование позволяет по центру каждого пикселя (\mathbf{u} , \mathbf{v}) из \mathbf{P} получать точку (\mathbf{x} , \mathbf{y}) из \mathbf{D} , и, таким образом, получать соответствующее пикселю значение $\mathbf{f}(\mathbf{x}$, \mathbf{y}).

На области **D** наносим равномерную сетку (в уме) **MxN** клеток. Таким образом, мы получаем те точки $\{(xi,yj), i=0..M, j=0..N\}$, в которых мы должны вычислить векторы нашего поля и нарисовать.

Выбор длины вектора. Размер вектора не должен превышать величины C0*S, где C0 – параметр в пределах от 0.5 до 3.0, а S – величина диагонали клетки.

Изображение вектора. Рисовать вектор в виде стрелки. Обязательный режим: стрелка в виде двух «усиков». Дополнительные (необязательные) режимы отображения зависят от фантазии исполнителя.

Справа от прямоугольника на свободном месте окна приложения рисуется вертикальная *пегенда*, показывающая соответствие цвета величине скорости. Все вектора в данном режиме (цветном) изображения рисуются одинаковой длины. Направление определяется значениями заданных функций.

Можно ввести дополнительный вид стрелок, как здесь:

2. Серое векторное поле.

Программа должна работать в 2-х режимах, которые переключаются специальной кнопкой. Первый режим "цветного поля" описан выше. В режиме серого векторного поля все вектора рисуются одним цветом. НО длины векторов пропорциональны, т.е., на рисунке выводятся вектора длины пропорциональной $\mathbf{L}(\mathbf{x},\mathbf{y})$. При этом размер максимального вектора не должен превышать величины $\mathbf{C0*S}$. Для очень малых длин (задать свою константу) рисуется только отрезок без наконечника стрелки. Может оказаться, что получится вырожденный отрезок — точка — для нулевого вектора. Для упрощения цветную легенду можно оставлять и на данном виде. Можно и убирать, т.е. \mathbf{P} будет разным для цветного и серого режимов. (Больше работы).

Параметры задачи

- M, N.
- $\mathbf{fx}(\mathbf{x},\mathbf{y})$, $\mathbf{fy}(\mathbf{x},\mathbf{y})$ аналитически заданные функции. Выбор конкретной функции за исполнителем.
- **a, b, c, d** вводятся из файла, это **a0, b0, c0, d0**. **a, b, c, d** можно менять в диалоге, но не больше, чем **a0, b0, c0, d0,** которые будут введены из файла.
- растр модели прямоугольник P с углами (u0,v0) и (u1,v1) в экранных координатах вводится из файла.
- **С0** вводится из файла;
- **n** вводится из файла;
- **c0..cn** вводятся из файла в виде 255 170 24.

• **l1..ln** – для определения этих значений: подсчитываются минимум и максимум длины вектора, в полученном интервале равномерно распределяются остальные значения.

Также все эти параметры можно задавать/изменять, используя диалоги:

Полученную карту векторного поля вместе с легендой вписать в прямоугольник $\bf P$. Не забыть поля (бордюры) между разными зонами (с границей окна, между легендой и векторным полем) – пикселей 5-10.

При движении мыши по полю в нижней строке окна писать значения истинных (не растровых) значений x, y, fx, fy.

Замечание: легенда состоит не только из палитры используемых цветов, но и цифровых значений уровней, которые подписываются СБОКУ, а не ПО легенде.

Дополнительно для желающих

Вектора можно выводить не для всех узлов сетки, а например, выбирать их в шахматном порядке, т.е. можно завести такой режим.

При движении мыши по полю под легендой можно отображать вектор, соответствующий точке под мышью. Можно его отображать прямо в месте курсора мыши.

• Выбор **a**, **b**, **c**, **d** можно делать неявно, используя резиновый прямоугольник. Изначально **a**, **b**, **c**, **d** совпадают с **a0**, **b0**, **c0**, **d0**.

Другое разумное по желанию.

Файл.

- **a0 b0 c0 d0** // начальные, дать возможность менять в программе
- C0
- N // начальное значение числа градаций цвета
- с0..сп // вводятся из файла в виде 255 170 24. Одно значение цвета на строку файла
- M N // начальные, дать возможность менять в программе
- **cs** // цвет сетки
- ΕΟΦ

Замечания по реализации

- 1. Выбор **Р** на области окна, которое имеет размеры АхБ:
 - а. Рассчитать ширину в пикселях для легенды Шл
 - b. Задать величину бордюра для легенды Рб
 - с. Под векторное поле выделяется по горизонтали A1 = (A 2*Pб IIIл), т.е. учли все бордюры (отступы)
 - d. У нас сетка значений функций MxN или (M-1) х (N-1) клеток. Для того чтобы выходящие вовне области \mathbf{D} векторы всё-таки были видны, зададим обрамление шириной в 1 клетку. Таким образом, у нас появляется виртуальная область Д. Это \mathbf{D} , расширенная на 1 клетку во всех направлениях: 2 по вертикали и 2 по горизонтали. Таким образом, у нас исходная область по

горизонтали как бы имеет размер $rx = \frac{M+1}{M-1}(b-a)$, а по вертикали – $ry = \frac{N+1}{N-1}(d-c)$.

- е. Рассчитать реальные размеры в пикселях, отводимые под отображение виртуального прямоугольника [rx,ry]. Полный размер = A1xБ. Чтобы сохранить (aspect ratio) нам придется либо по вертикали, либо по горизонтали оставить пустые полосы, это В ОБЩЕМ СЛУЧАЕ! Рисунок должен быть отцентрирован в области A1xБ пикселей. Таким образом мы получили прямоугольник **P**.
- f. Внимание! Пока реализуйте к-л выбор прямоугольника **P**. А при очной встрече разберем этот расчет подробно. Иначе мы этим вопросом завалим форум. Пока одно: **P** и **D** и aspect ratio.
- 2. Должна быть кнопка, вкл/выкл отображения сетки MxN, обрамляющие клетки не показываются. Не путайте понятия сетки и клетки. Сетку отображать пунктирной линией и рисовать под полем, т.е. первой.
- 3. При движении мыши значения в статус баре отображаются только в том случае, когда мышь «находится» в области **D**, т.е. в прямоугольнике **P**.
- 4. Дополнительно можно рисовать соответствующую стрелку: а) прямо в точке нахождения курсора мыши; б) в малом окошке под легендой.
- 5. Поиск минимума и максимума длины вектора делается по значениям в узлах сетки.
- 6. Нулевые вектора всегда рисуются в виде точки
- 7. Легенда должна иметь вид
- 8. Кнопки ещё раз (минимальный набор), кроме стандартных: чтения/запись/new/About/Exit ...
 - а. Вкл/Выкл сетки
 - b. Серое/цветное поле
 - с. Изменение параметров C0, M, N, a, b, c, d, n. n не более начального значения (из файла), от 4 до 20. M, N от 4 до 50. C0 от 0.3 до 3.0
 - d. a, b, c, d дополнительно можно менять резиновым прямоугольником
 - е. дополнительно смена типа стрелки
 - f. дополнительно задавать любое n до 20, задавать новые цвета и изменять старые. В этом случае легенда пересчитывается.
 - g. Можно свой набор, но с аналогичной совокупной функциональнстью.
- 9. При записи в файл пишутся текущие значения переменных
- 10. При изменении Р (ресайз окна) изображение пересчитывать
- 11. Легенда рассчитывается один раз, после чтения файла
- 12. **Изменяется стратегия работы с файловой системой**. В предыдущих задачах файлы **всегда** открывались в дир FIT Data. Начиная с данной задачи:

- а. При чтении или записи первый раз после открытия программы открывается также дир FIT_...._Data. При всех последующих чтениях/записях программа выходит в ту дир, в которой реально были произведены чтение или запись.
- 13. Срок: 12-00 11 апреля 2011г.

Примеры приложений, как обычно, не являются решением данной постановки. Но позволяют выяснить ряд моментов реализации.

Это стартовый вариант задания. Мы его должны обсудить, и оставшиеся детали утвердить.