1) 3 hors ABC behind 1: A lehn 2 = B behind 3 = C
$$P(pric) = \frac{1}{3} = P(Ar) = P(B) = P(C) . gry opening door 1 = X . your 2 = Y . Jour 3/ = Z$$

After making initial choice of pickers loor, the remaining loor to be opened

$$P(A|Z) = P(Z|A)P(A)$$

$$P(Z)$$

P(Z C) 2 0

P(ZB) = -1.

postari = litelihood x prior

$$P(A|Z) = P(Z|A)(\frac{1}{3})$$

$$(\frac{1}{2})$$

=
$$(\frac{1}{2})(\frac{1}{3})$$
 $(\frac{1}{3})$ $(\frac{1}{3})$ $(\frac{1}{3})$ probability behavely, given be goes door 3

$$P(B|Z) = P(Z|B)P(B)$$

$$P(Z)$$

$$(1)(L)$$

$$= \frac{(1)(\frac{1}{3})}{(\frac{1}{2})} = \frac{3}{3}$$
 pos dehad 2, givin operados n 3

switch rooms! It light about

$$T = (T, -Tk)$$

$$T_{j} \stackrel{?}{=} 0 \quad Z_{j} T_{j} = 1$$

$$T_{j} \stackrel{?}{=}$$

2) (enthire) postener of
$$\Theta[X]$$

$$P(\pi|X_{i...N,X_{1...K}}) = P(x_{i...N}|\pi)P(\pi)$$

$$\int P(x_{i...N}|\pi)P(\pi)J_{ii}$$

$$\int P(x_{i...N}|\pi)J_{ii}$$

This is the some distribution as the prior, thoughout some Changes of jist a Beita smallery instart infant of the author

3)
$$(x_1...x_n)$$
 $x \in \mathbb{R}$ model on icid, Natral (m, λ^{-1})
 $M \mid \lambda \cap Natral (0, a\lambda^{-1}) \mid \text{ond} \quad \lambda \cap General (a, c)$
 $(x_1)^{\frac{1}{2}} \mid Natral (m, \lambda^{-1}) \mid = (2\pi\lambda^{-1})^{\frac{1}{2}} \exp\left(-\frac{1}{2\lambda}\pi\left(x_c - M\right)^2\right)$
 $(x_1...x_n) \mid M_1\lambda \mid = \prod_{i=1}^{N} f(x_c \mid M_i\lambda)$
 $(x_1...x_n) \mid M_i\lambda \mid = \prod_{i=1}^{N} f(x_c \mid M_i\lambda)$
 $(x_1...x_n) \mid M_i\lambda \mid = \prod_{i=1}^{N} f(x_c \mid M_i\lambda)$
 $(x_1...x_n) \mid M_i\lambda \mid = \prod_{i=1}^{N} f(x_c \mid M_i\lambda)$
 $(x_1...x_n) \mid M_i\lambda \mid = \prod_{i=1}^{N} f(x_c \mid M_i\lambda)$
 $(x_1...x_n) \mid M_i\lambda \mid = \prod_{i=1}^{N} f(x_c \mid M_i\lambda)$
 $(x_1...x_n) \mid M_i\lambda \mid f(M_i\lambda) \mid f(M_i\lambda)$
 $(x_1...x_n) \mid M_i\lambda \mid f(M_i\lambda) \mid f(M_i\lambda)$
 $(x_1...x_n) \mid M_i\lambda \mid f(M_i\lambda) \mid f(M_i\lambda)$
 $(x_1...x_n) \mid M_i\lambda \mid f(M_i\lambda) \mid f(M_i\lambda) \mid f(M_i\lambda)$
 $(x_1...x_n) \mid M_i\lambda \mid f(M_i\lambda) \mid f(M$

Lauri thes

3) conhard ok so takepth hos the Namal General to get u, it jont

(2710 x²)⁻² exp[
$$\frac{1}{2}$$
 x² ($\frac{1}{4}$)²] $\frac{1}{1}$ $\frac{1}{2}$ exp[$\frac{1}{2}$ x² ($\frac{1}{4}$ x²)] $\frac{1}{1}$ $\frac{1}{2}$ exp[$\frac{1}{2}$ x² ($\frac{1}{4}$ x²)] $\frac{1}{1}$ $\frac{1}{2}$ exp[$\frac{1}{2}$ x² x² x²] $\frac{1}{2}$ $\frac{1}{2}$

$$\frac{3}{\alpha m^{2} + n\sigma + n\overline{\chi}^{2} - n2m\overline{\chi} - n)\lambda^{2}} = n\sigma + n\overline{\chi}^{2} + \alpha m^{2} - n2m\overline{\chi} + nm^{2}}$$

$$= (\alpha + n)\left(m^{2} - \frac{\partial}{\partial m}\frac{n\overline{\chi}}{\partial m}\right) + n\sigma + n\overline{\chi}^{2}$$

$$= (\alpha + n)\left(m^{2} - \frac{\partial}{\partial m}\frac{n\overline{\chi}}{\partial m}\right) + n\sigma + n\overline{\chi}^{2}$$

$$= (\alpha + n)\left(m - \frac{n\overline{\chi}}{\partial m}\right)^{2} - \frac{n\overline{\chi}}{\partial m} + n\sigma + n\overline{\chi}^{2}$$

$$= (\alpha + n)\left(m - \frac{n\overline{\chi}}{\partial m}\right)^{2} + n\sigma + n\overline{\chi}^{2}\left(\frac{\partial n\pi Ln}{\partial m}\right) - \frac{n\overline{\chi}^{2}}{\partial m} + n\sigma + n\overline{\chi}^{2}$$

$$= (\alpha + n)\left(m - \frac{n\overline{\chi}}{\partial m}\right)^{2} + n\sigma + n\overline{\chi}^{2}\left(\frac{\partial n\pi Ln}{\partial m}\right) - \frac{n\overline{\chi}^{2}}{\partial m} + n\sigma + n\overline{\chi}^{2}\left(\frac{\partial n\pi Ln}{\partial m}\right) - \frac{n\overline{\chi}^{2}}{\partial m} + n\sigma + n\overline{\chi}^{2}\left(\frac{\partial n\pi Ln}{\partial m}\right) - \frac{n\overline{\chi}^{2}}{\partial m} + n\sigma + n\overline{\chi}^{2}\left(\frac{\partial n\pi Ln}{\partial m}\right) - \frac{n\overline{\chi}^{2}}{\partial m} + n\sigma + n\overline{\chi}^{2}\left(\frac{\partial n\pi Ln}{\partial m}\right) - \frac{n\overline{\chi}^{2}}{\partial m} + n\sigma + n\overline{\chi}^{2}\left(\frac{\partial n\pi Ln}{\partial m}\right) - \frac{n\overline{\chi}^{2}}{\partial m} + n\sigma + n\overline{\chi}^{2}\left(\frac{\partial n\pi Ln}{\partial m}\right) - \frac{n\overline{\chi}^{2}}{\partial m} + n\sigma + n\overline{\chi}^{2}\left(\frac{\partial n\pi Ln}{\partial m}\right) - \frac{n\overline{\chi}^{2}}{\partial m} + n\sigma + n\overline{\chi}^{2}\left(\frac{\partial n\pi Ln}{\partial m}\right) - \frac{n\overline{\chi}^{2}}{\partial m} + n\sigma + n\overline{\chi}^{2}\left(\frac{\partial n\pi Ln}{\partial m}\right) - \frac{n\overline{\chi}^{2}}{\partial m} + n\sigma + n\overline{\chi}^{2}\left(\frac{\partial n\pi Ln}{\partial m}\right) - \frac{n\overline{\chi}^{2}}{\partial m} + n\sigma + n\overline{\chi}^{2}\left(\frac{\partial n\pi Ln}{\partial m}\right) - \frac{n\overline{\chi}^{2}}{\partial m} - n\overline{\chi}^{2}\left(\frac{\partial n\pi Ln}{\partial m}\right) - \frac{n\overline{\chi}^{2}}{\partial m} - n\overline{\chi}^{2}\left(\frac{\partial n\pi Ln}{\partial m}\right) - \frac{n\overline{\chi}^{2}}{\partial m} - n\overline{\chi}^{2}\left(\frac{\partial n\pi Ln}{\partial m}\right) + n\sigma + n\overline{\chi}^{2}\left(\frac{\partial n\pi Ln}{\partial m}\right) - \frac{n\overline{\chi}^{2}}{\partial m} - n\overline{\chi}^{2}\left(\frac{\partial n\pi Ln}{\partial m}\right) - \frac{n\overline{\chi}^{2}}{\partial m} - n\overline{\chi}^{2}\left(\frac{\partial n\pi Ln}{\partial m}\right) + n\sigma + n\overline{\chi}^{2}\left(\frac{\partial n\pi Ln}{\partial m}\right) - \frac{n\overline{\chi}^{2}}{\partial m} - n\overline{\chi}^{2}\left(\frac{\partial n\pi Ln}{\partial m}\right) + n\sigma + n\overline{\chi}^{2}\left(\frac{\partial n\pi Ln}{\partial m}\right) - \frac{n\overline{\chi}^{2}}{\partial m} - n\overline{\chi}^{2}\left(\frac{\partial n\pi Ln}{\partial m}\right) + n\sigma + n\overline{\chi}^{2}\left(\frac{\partial n\pi Ln}{\partial m}\right) + n\sigma + n\overline{\chi}^{2}\left(\frac{\partial n\pi Ln}{\partial m}\right) - \frac{n\overline{\chi}^{2}}{\partial m} - n\overline{\chi}^{2}\left(\frac{\partial n\pi Ln}{\partial m}\right) + n\sigma + n\overline{\chi}^{2}\left(\frac{\partial n\pi Ln}{\partial m}\right) + n$$

3)b)
$$\rho(x^{k}|x_{1}...x_{n}) = \int_{0}^{\infty} \rho(x^{k}|x_{1}) \rho(x_{1}|x_{1}...x_{n}) \rho(x_{1}|x_{$$

3) b) (where
$$S$$
 is a content of the state of the state

4)a) done, code attached

4)b)

Done Predicted Actual 0	939 92	1 43 917		_	-
[2 rows x 2 columns] Accuracy is Model accuracy is 0.932194876946 1856/1991					6

4)c)

These three are w	vrong
0	-3.28127
1	-3.192847
Predicted	1
Actual	0
Probability y0	0.4931711
Probability y1	0.5068289
Wrong	1
Ambiguous	0.006828926
Name: 40, dtype:	object
0	-2.89678
1	-2.879747
Predicted	1
Actual	0
Probability_y0	0.4985256
Probability_y1	0.5014744
Wrong	1
Ambiguous	0.001474352
Name: 55, dtype:	object
0	-2.76888
1	-2.516782
Predicted	1
Actual	0
Probability_y0	0.4761526
Probability_y1	0.5238474
Wrong	1
Ambiguous	0.02384737
-	

Name: 64, dtype: object

4)d)

Three most ambiguous	
0	-3.535112
1	-3.537115
Predicted	0
Actual	1
Probability_y0	0.5001416
Probability_y1	0.4998584
Wrong	1
Ambiguous 0.0	0001416222
Name: 1988, dtype: ol	oject
0	-1.965257
1	-1.963564
Predicted	1
Actual	0
Probability_y0	0.4997846
Probability_y1	0.5002154
Wrong	1
Ambiguous 0.0	0002153807
Name: 195, dtype: ob;	ject
0	-2.981896
1	-2.984986
Predicted	0
Actual	0
Probability_y0	0.500259
Probability_y1	0.499741
Wrong	0
Ambiguous 0.0	0002589667
Name: 81, dtype: obje	ect

