

CARDIOVASCULAR

ECG INTERPRETATION

I. SYSTEMATIC APPROACH TO ECG INTERPRETATION

- A. STEPWISE APPROACH
- B. APPROACH TO HEART RATE
- C. APPROACH TO RHYTHM
- D. APPROACH TO AXIS

- E. APPROACH TO INTERVALS
- F. APPROACH TO P-WAVES
- G. APPROACH TO QRS WAVES
- H. APPROACH TO ST SEGMENT AND T-WAVES

I. SYSTEMATIC APPROACH TO ECG INTERPRETATION

A. STEPWISE APPROACH

00:21

Stepwise Approach	Purpose of this Step	Clinical Correlation
Step 1	Rate	- Tachycardia or Bradycardia
Step 2	Rhythm	- Tachy / Bradyarrhythmias
Step 3	Axis	- Axis Deviation
Step 4	Intervals	- Heart Blocks or WPW
Step 5	P Wave	- Atrial Enlargement
Step 6	QRS Complex	- BBB and Ventricular Hypertrophy
Step 7	ST Segment & T Wave	- Myocardial Ischemia / Infarction

B. Approach to Heart Rate

01:56

Methods Used to Determine Heart Rate

Heart Rate	Type of Rate
HR > 100 bpm	- Tachycardia
HR 60 - 100 bpm	- Normal
HR < 60 bpm	- Bradycardia

a) R-Wave Method

- First: Assess the number of R-waves in the rhythm strip
- Second: Take the number of R-waves and multiply by 6
- Third: # of R-waves x 6 = Heart rate

R-Waves x 6

b) Box Method

- First: Assess the number of boxes between the R-R interval ○ 1 box distance = 300 bpm
- Third: 300/ Number of boxes between R-R interval = Heart rate

C. Approach to Rhythm

1. Approach to the Tachycardic Rhythm

- a) Obtain Characteristics of QRS Complex

- Narrow QRS → < 120ms
- Wide QRS → > 120ms

b) Obtain Characteristics of RR Interval

- Regular → Same RR Interval throughout rhythm strip
- Irregular → Variable RR Interval throughout rhythm strip

QRS	RR Interval	Causes of Rhythm
Narrow	Regular	Sinus Tachycardia2:1 Atrial FlutterPSVT (AVRT or AVNRT)
Narrow	Irregular	-Atrial Fibrillation -Atrial Flutter with variable block -Multifocal Atrial Tachycardia (MAT)
Wide	Regular	-Monomorphic Ventricular Tachycardia
Wide	Irregular	-Polymorphic Ventricular Tachycardia (Tdp) -Ventricular Fibrillation

2. Approach to the Bradycardic Rhythm

09:34

- a) Obtain Duration of PR Interval
- Normal PR interval → 160-200ms
- Prolonged PR-Interval → > 200ms

b) Obtain the Presence of QRS Complexes -

• Dropped QRS → 2nd degree AV block and beyond

PR Interval	QRS	Causes of Rhythm
Normal	No deservir OBC	- Sinus Bradycardia
Prolonged	No drop in QRS	- 1st Degree AV Block
Progressively Prolonged	Durana ODS	- 2nd Degree AV Block (Mobitz I)
Constant	Drops QRS	- 2nd Degree AV Block (Mobitz II)
AV Dissociation		- 3rd Degree AV Block

D. APPROACH TO AXIS

1. Method of Determining the Axis

- a) Assess Lead I

- If QRS is (+) → (+) in Lead I
- If QRS is (-) → (-) in Lead I

- b) Assess Lead aVF

- If QRS is (+) → (+) in Lead aVF
- If QRS is (-) → (-) in Lead aVF

NORMAL AXIS

2. Mechanism of Left Axis Deviation

 Delayed Depolarization of Left Ventricle → Electrical activity from the Right bundle branches has to then move in the direction of the LV → This creates a vector pointing toward the left ventricle wall

Left Bundle Branch Block

LEFT BUNDLE BRANCH BLOCK (LBBB)

Left Ventricular Hypertrophy

Left Anterior Fascicular Block

3. Mechanism of Right Axis Deviation

- Delayed Depolarization of Right Ventricle → Electrical activity from the Left bundle branches has to then move in the direction of the RV
 - → This creates a vector pointing toward the right ventricle wall

Right Bundle Branch Block

RIGHT BUNDLE BRANCH BLOCK (RBBB)

Left Posterior Fascicular Block

Right Ventricular Hypertrophy

RIGHT VENTRICULAR HYPERTROPHY

4. Mechanism of Extreme Right Axis Deviation

 Depolarization of the ventricles first → Electrical activity from the ventricles moves in the direction of the atria → This creates a vector pointing toward the right atrial/ventricular wall

Ventricular Tachycardia

EXTREME RIGHT AXIS DEVIATION

Lead I	Lead aVF	Type of Axis	Cause of Axis Deviation
(+)	(+)	- Normal Axis	
(+)	(-)	- Left Axis Deviation	- LBBB - LVH - LAFB
(-)	(+)	- Right Axis Deviation	- RBBB - RVH - LPFB
(-)	(-)	-Extreme Right Axis Deviation	-VTach

E. Approach to Intervals

1. Obtain Duration of PR Interval

- Normal PR interval → 160-200ms
- Short PR-Interval → < 160ms

Suspect WPW

- ↓PR interval
- o Wide QRS
- o Delta wave

• Prolonged PR-Interval → > 200ms

Suspect AV Blocks

2. Obtain QT Interval

- Normal QT-Interval → 360-440ms for men and 360-460ms for women
- Prolonged QT-Interval → > 500ms
 - o High risk for Torsades de Pointes

LONG QT INTERVAL

• Short QT interval → < 340ms

SHORT QT INTERVAL

Intervals	Prolonged or Shortened	Causes of Abnormality
DD lotowal	Prolonged	- AV Blocks
PR Interval	Short	- WPW Syndrome
QT Interval	Prolonged	 - Anti-Arrhythmics - Anti-Biotics - Anti-psyChotics - Anti-Depressants - Anti-Emetics - HypoK/HypoMg/HypoCa
	Short	- HyperCa/HyperK

Lead II	Lead V1	Type of Abnormality	Causes
Bifid P Wave	Biphasic P Wave with large terminal component	- Left Atrial Enlargement	Left Heart FailureCardiomyopathyMitral Disease
P Wave ≥ 2.5 mm	Biphasic P Wave with large initial component	- Right Atrial Enlargement	- Pulmonary HTN - Tricuspid Disease

LEFT ATRIAL ENLARGEMENT

RIGHT ATRIAL ENLARGEMENT

V1/V2	V5/V6	BBB or Hypertrophy	Cause of BBB or Hypertrophy
rS Wave	Notched R Wave	- LBBB	- Left Heart Failure - Myocardial infarction - LVH
rSR' Wave	Wide Slurred S Wave	- RBBB	- Pulmonary HTN - Myocardial Infarction
Deep S Wave	Tall R Wave	- LVH	- Aortic Stenosis - Hypertension
Tall R Wave	Deep S Wave	- RVH	- Pulmonary HTN

LEFT BUNDLE BRANCH BLOCK (LBBB)

RIGHT BUNDLE BRANCH BLOCK (RBBB)

F

LEFT VENTRICULAR HYPERTROPHY

RIGHT VENTRICULAR HYPERTROPHY

ST Segment	T Waves	Cause of ST-T Changes
ST Depression	T Wave Inversion	NSTE-ACSDigoxin toxicityHypokalemia
ST Elevation	Hyperacute T Waves	- STEMI - Pericarditis - Hyperkalemia

1. Approach to ST Segment

• ST Depression → > 0.5mm (½ a small box) below the J-point in 2 contiguous leads

> 1 mm in all other leads

Down-Sloping

- If in 2 contiguous leads, more likely to indicate Cardiac Ischemia
- ST Elevation → > 1mm (1 small box) elevation above the J-point in 2 contiguous leads except for V2-V3, where it needs to be > 2mm (2 small boxes) elevation above the J-point
 - Concave ST elevation → Suggests Pericarditis
 - Convex ST elevation → Suggests STEMI

> 1 mm in Limb Leads

> 2 mm in Precordial Leads

2. Approach to T-Waves

- T-wave Inversion → > 1mm (1 small box) depression below the isoelectric line in 2 contiguous leads
- Hyperacute T-Waves → > ¾ the height of the QRS complex and a broad base

- > 1 mm in Limb Leads
- > 2 mm in Precordial Leads

