Project Name : Mall Customers Analysis

introduction:	2
Dataset Overview:	2
Purpose	2
Problem Statement	3
1. Import Libraries	3
2. Load Dataset	3
3. Univariate Analysis	4
4. EDA (Exploratory Data Analysis)	6
5. Feature Engineering	13
6. Model	13

Introduction:

This document explores customer segmentation and analysis based on a dataset from a shopping mall. The dataset includes customer information, such as age, annual income, and spending score, along with unique identifiers and gender.

Dataset Overview:

CustomerID: A unique identifier for each customer.

Gender: Customer gender (Male or Female).

Age: Customer age.

Annual Income (k\$): Customer annual income in thousands of dollars.

Spending Score (1-100): A score reflecting customer spending behavior and habits.

Purpose

The goal of this analysis is to cluster customers based on their attributes and behavior. By segmenting customers, we aim to gain insights into their preferences and tailor marketing strategies to improve customer satisfaction and optimize business operations.

Problem Statement

You own the mall and want to understand the customers like who can easily converge [Target Customers] so that the sense can be given to the marketing team and plan the strategy accordingly.

1. Import Libraries

```
In [3]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   import scipy.stats as stats
   import pylab
   from sklearn.preprocessing import LabelEncoder, StandardScaler
   #Model
   from sklearn.cluster import KMeans,AgglomerativeClustering,DBSCAN
```

2.Load Dataset

```
In [6]: # Define the file path
mall_customer_path = '/Users/admin/Documents/Mall_Customers.csv'
                 # Read the CSV data into a Pandas DataFrame
mall_customers = pd.read_csv(mall_customer_path)
  In [8]: # Display the first few rows of the DataFrame
print(mall_customers.head())

        CustomerID
        Gender
        Age
        Annual Income (k$)
        Spending Score (1-100)

        1
        Male
        19
        15
        39

        2
        Male
        21
        15
        81

                                                                                                                                                   39
81
                                        3 Female
4 Female
5 Female
                                                                                                                                                   6
77
40
                                                                                                     16
17
                                                               23
In [12]: mall_customers.shape
Out[12]: (200, 5)
In [13]: mall_customers.info()
                 <class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
                 Data columns (total 5 columns):
# Column Non-Null Count Dtype
                   0
1
                                                                        200 non-null
200 non-null
                                                                                                        int64
                           CustomerID
                           Gender
                                                                                                       object
                 1 Gender 200 non-null
2 Age 200 non-null
3 Annual Income (k$) 200 non-null
4 Spending Score (1-100) 200 non-null
dtypes: int64(4), object(1)
memory usage: 7.9+ KB
                                                                                                       int64
int64
```

In [14]:	mall	customer	s describe()			
Out[14]:							
out[14].		Customer	ID Age	Annual Income (k\$)	Spending Score (1-100)		
	count	200.0000	00 200.000000	200.000000	200.000000		
	mean	100.5000	00 38.850000	60.560000	50.200000		
	std	57.8791	85 13.969007	26.264721	25.823522		
	min	1.0000	00 18.000000	15.000000	1.000000		
	25%	50.7500	00 28.750000	41.500000	34.750000		
	50%	100.5000	00 36.000000	61.500000	50.000000		
	75%	150.2500	00 49.000000	78.000000	73.000000		
	max	200.0000	00 70.000000	137.000000	99.000000		
In [15]:	: mall_customers.drop(["CustomerID"],axis=1,inplace=True)						
In [16]:	: mall_customers.rename(columns = {'Genre':'Gender'}, inplace = True)						
	, and the state of						
In [17]:	mall_customers.head()						
Out[17]:							
	Ge	nder Age	Annual Income	(k\$) Spending Score	e (1-100)		
	0	Male 19		15	39		
	1	Male 21		15	81		
	2 Fe	male 20		16	6		
	3 Fe	male 23		16	77		
	4 Fe	male 31		17	40		

3. Univariate Analysis

```
#
                   Column
                                                     Non-Null Count Dtype
                                                     200 non-null
                    Gender
                                                                            object
                                                      200 non-null
                                                                            int64
                    Age
                    Annual Income (k$)
                                                      200 non-null
                                                                            int64
            3 Spending Score (1-100)
dtypes: int64(3), object(1)
memory usage: 6.4+ KB
                                                     200 non-null
                                                                            int64
In [20]: plt.figure(figsize=(6, 4))
sns.countplot(x="Gender", data=mall_customers, palette="mako")
plt.xlabel("Gender", fontsize=14)
Out[20]: Text(0.5, 0, 'Gender')
                  100
```



```
In [21]: sns.set(rc={"figure.figsize":(6,4)})
    sns.distplot(mall_customers["Annual Income (k$)"], kde=True, color="orange", bins=10)

/var/folders/2j/nvmx9r313gq5c9b1ndl9hp200000gn/T/ipykernel_1213/331557665.py:2: UserWarning:
    `distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

    sns.distplot(mall_customers["Annual Income (k$)"], kde=True, color="orange", bins=10)

Out[21]: <Axes: xlabel='Annual Income (k$)', ylabel='Density'>
```

Out[21]: <Axes: xlabel='Annual Income (k\$)', ylabel='Density'>


```
In [23]: sns.set(rc={"figure.figsize": (6, 4)})
    sns.distplot(mall_customers["Age"], kde=True, color="orange", bins=10)

/var/folders/2j/nvmx9r313qq5c9b1ndl9hp200000gn/T/ipykernel_1213/3143741673.py:2: UserWarning:
    `distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

    sns.distplot(mall_customers["Age"], kde=True, color="orange", bins=10)

Out [23]: <Axes: xlabel='Age', ylabel='Density'>
```



```
In [25]: sns.set(rc={"figure.figsize":(6,4)})
    sns.distplot(mall_customers["Spending Score (1-100)"], kde=True, color="orange", bins=10)
    /var/folders/2j/nvmx9r313gq5c9b1ndl9hp200000gn/T/ipykernel_1213/793423076.py:2: UserWarning:
    `distplot` is a deprecated function and will be removed in seaborn v0.14.0.
    Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
    For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
    sns.distplot(mall_customers["Spending Score (1-100)"], kde=True, color="orange", bins=10)
Out[25]: <Axes: xlabel='Spending Score (1-100)', ylabel='Density'>
```


4.EDA (Exploratory Data Analysis)

Bivariate Analysis

Contact

```
In [41]: plt.figure(figsize=(6, 4))
    sns.barplot(x='Gender', y='Annual Income (k$)', data=mall_customers)
    plt.title('Annual Income (k$) by Gender')
    plt.xlabel('Gender')
    plt.ylabel('Annual Income (k$)')
    plt.show()
```



```
In [42]: plt.figure(figsize=(6, 4))
sns.barplot(x='Gender', y='Spending Score (1-100)', data=mall_customers)
plt.title('Spending Score (1-100) by Gender')
plt.xlabel('Gender')
plt.show()

Spending Score (1-100) by Gender

Spending Score (1-100) by Gender
```


Female

Gender

0

Male

```
In [45]: num_cols = mall_customers.select_dtypes(include=["int64","float64"])

def plots(num_cols, variable):
    plt.figure(figsize=(15,6))
    plt.subplot(1, 2, 1)
    sns.distplot(num_cols[variable], kde=True, bins=10)
    plt.sitle(variable)
    plt.subplot(1, 2, 2)
    stats.probplot(num_cols[variable], dist="norm", plot=pylab)
    plt.title(variable)
    plt.show()

for i in num_cols.columns:
    plots(num_cols, i)

/var/folders/2j/nvmx9r313gq5c9b1ndl9hp200000gn/T/ipykernel_1213/3067501310.py:6: UserWarning:
    `distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(num_cols[variable], kde=True, bins=10)
```


In [46]: fig, ax = plt.subplots(figsize=(18, 8))
sns.heatmap(mall_customers.corr(), annot=True, cmap='coolwarm', ax=ax)

/var/folders/2j/nvmx9r313gq5c9b1ndl9hp200000gn/T/ipykernel_1213/823015096.py:2: FutureWarning: The default value of
numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid colu
mns or specify the value of numeric_only to silence this warning.
sns.heatmap(mall_customers.corr(), annot=True, cmap='coolwarm', ax=ax)
Out[46]: <Axes: >

Drop columns that are not used further

5. Feature Engineering

6. Model

KMean Model

```
In [52]: wscc = []
In [53]: for i in range(1,11):
                        model_kmean = KMeans(n_clusters=i,init="k-means++",random_state=0)
                        model_kmean.fit(X)
                        wscc.append(model_kmean.inertia_)
                 /Users/admin/anaconda3/lib/python3.10/site-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
                    warnings.warn(
                 VUSers/admin/anaconda3/lib/python3.10/site-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
                    warnings.warn(
                 'Users/admin/anaconda3/lib/python3.10/site-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
                    warnings.warn(
                 'Users/admin/anaconda3/lib/python3.10/site-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
                    warnings.warn(
                 'Users/admin/anaconda3/lib/python3.10/site-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
                    warnings.warn(
                 /Users/admin/anaconda3/lib/python3.10/site-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
                    warnings.warn(
                 'Users/admin/anaconda3/lib/python3.10/site-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
                 /Users/admin/anaconda3/lib/python3.10/site-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
                 /Users/admin/anaconda3/lib/python3.10/site-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
                    warnings.warn(
                 'Users/admin/anaconda3/lib/python3.10/site-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
```

```
In [54]: plt.plot(range(1,11),wscc, marker = 'o')
plt.title("The Elbow Method")
plt.xlabel("Number Of Cluster")
plt.ylabel("wscc")
                plt.show()
                                                              The Elbow Method
                      400
                      350
                      300
                      250
                      200
                      150
                      100
                        50
                                          2
                                                                               6
                                                                                                  8
                                                                                                                   10
                                                             Number Of Cluster
```

```
In [55]: model_kmean = KMeans(n_clusters=5,random_state=0).fit(X)
    /Users/admin/anaconda3/lib/python3.10/site-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(

In [56]: y_cluster = model_kmean.predict(X)

In [57]: y_cluster

Out[57]: array([4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4,
```



```
In [63]: # Another Way To Used Linkage Metrics
    from scipy.cluster.hierarchy import dendrogram,linkage
    import matplotlib.pyplot as plt

plt.figure(figsize=(10,7))
 plt.title("Mall Customer")
    dend = dendrogram(linkage(X,method="ward"))
```


Agglomerative Clustering

```
In [65]: model_agg = AgglomerativeClustering(n_clusters=5)
       In [66]: y_pred = model_kmean.predict(X)
       In [67]: y_pred
Out[67]: array([4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4,
       In [68]: silhouette_score(X, y_pred)
       Out[68]: 0.5555014501078793
```



```
In [70]: y_pred = pd.DataFrame(y_pred)
y_pred.value_counts().plot.pie(autopct= '%.1f%%')
Out[70]: <Axes: >
```


(0,)