SEMESTER 2 EXAMINATION 2018 - 2019

ADVANCED MACHINE LEARNING

DURATION 120 MINS (2 Hours)

This paper contains 4 questions

Answer all parts of the question in section A (30 marks) and TWO questions from section B (35 marks each)

An outline marking scheme is shown in brackets to the right of each question.

This examination is worth 60%. The coursework was worth 40%.

University approved calculators MAY be used.

A foreign language dictionary is permitted ONLY IF it is a paper version of a direct 'Word to Word' translation dictionary AND it contains no notes, additions or annotations.

20 page examination paper.

Section A

Question A1.

(a) Explain the meaning of (1) the *prior distribution*, $\mathbb{P}(x)$, for a random variable, X, and (2) the **likelihood**, $\mathbb{P}(\mathcal{D}|x)$, of the data, \mathcal{D} , and write down (3) *Bayes' rule* for the posterior.

1 .	
2	
3	

[6 marks]

 $\overline{6}$

[4 marks]

(c) Briefly describe the Gradient Boosting algorithm.

_
_
_
_
_
_
_
_
_

[5 marks]

(d) Describe what you need to do practically to ensure that SVMs work well.

(e) The smoothed latent Dirichlet allocation topic model can be represented as a graphical model by the following plate diagram

where C is a set of documents and T is the set of topics. Sketch how documents of size N_d are generated by expanding the plate diagram

to show the full word generation process.

-5

(f) Show that the gamma distribution $\operatorname{Gam}(\mu|a,b) = b^a \, \mu^{a-1} \, \mathrm{e}^{-b\,\mu}/\Gamma(a)$ is a conjugate prior to the Poisson likelihood $\operatorname{Poi}(N|\mu) = \mu^N \, \mathrm{e}^{-\mu}/N!$ and derive the update equation for the parameters of the gamma distribution after observing N successes.

[5 marks]

End of question A1

(a)
$$\frac{}{6}$$
 (b) $\frac{}{4}$ (c) $\frac{}{5}$ (d) $\frac{}{5}$ (e) $\frac{}{5}$ (f) $\frac{}{5}$ Total $\frac{}{30}$

$\overline{5}$

Section B

Question B1.

(a) Explain for Gaussian Processes (GP) what is the prior, the likelihood and the posterior.	d
	-
	-
	-
	-
[5 marks	[]
(b) Explain what the kernel function represents and how it could be mea sured empirically from many observations.	
	_
	-
	-
	- - -

$$K(t_1, t_2) = \exp\left(-\frac{(t_2 - t_1)^2}{2\ell}\right).$$

Sketch three Gaussian Processes drawn from the prior with (i) $\ell=1$ and (ii) $\ell=2$ (we are not looking for accuracy, but rather the effect of changing ℓ).

rather than a full Bayesian solution.

(d) Explain the advantages and disadvantage of using the MAP solution

inference problems.

5

(f) Briefly describe in words the use of the MCMC algorithm in Bayesian inference.

(g) When are probabilistic methods likely to give good results and what is the hurdle in using it?

[5 marks]

End of question B1

(a)
$$\frac{}{5}$$
 (b) $\frac{}{5}$ (c) $\frac{}{5}$ (d) $\frac{}{5}$ (e) $\frac{}{5}$ (f) $\frac{}{5}$ (g) $\frac{}{5}$ Total $\frac{}{35}$

Question B2.

(a) Show that the expected generalisation given by

$$\mathbb{E}_{\mathcal{D}}[E(\mathcal{D})] = \mathbb{E}_{\mathcal{D}}\left[\sum_{x \in \mathcal{X}} p(\boldsymbol{x}) \left(\hat{f}(\boldsymbol{x}|\mathcal{D}) - f(\boldsymbol{x})\right)^{2}\right]$$

can be written as the sum of a bias term, ${\cal B}$, and variance term ${\cal V}$ where

$$B = \sum_{x \in \mathcal{X}} p(\boldsymbol{x}) \left(\hat{f}_m(\boldsymbol{x}) - f(\boldsymbol{x}) \right)^2, \quad V = \mathbb{E}_{\mathcal{D}} \left[\sum_{x \in \mathcal{X}} p(\boldsymbol{x}) \left(\hat{f}(\boldsymbol{x}|\mathcal{D}) - \hat{f}_m(\boldsymbol{x}) \right)^2 \right]$$

where $\hat{f}_m(x) = \mathbb{E}_{\mathcal{D}} \Big[\hat{f}(x|\mathcal{D}) \Big]$ is the prediction made by averaging over all machines.

(b) E	xplain	the	bias	and	the	variance	terms	in	words.
-------	--------	-----	------	-----	-----	----------	-------	----	--------

1.	
2	

(c) What is the bias-variance dilemma.

[5 marks]

End of question B2

(a)
$$\frac{1}{15}$$
 (b) $\frac{1}{5}$ (c) $\frac{1}{5}$ (d) $\frac{1}{5}$ (e) $\frac{1}{5}$ Total $\frac{1}{35}$

Question B3.

(a) Add annotations to the figure below of an LSTM showing i) the memory c(t-1) and c(t), ii) the input x(t), iii) the output y(t-1) and y(t), iv) the forget gate, v) the input/update gate vi) the output gate. In addition show whether the gates are multiplicative or additive and whether the nodes are sigmoidal (σ) or tanh function.

(b) Explain what problem LSTM were designed to solve and how their architecture solves these problems.

[5 marks]

(c) In the figure shown below, the bottom layer describes an image and the top a convolution layer. Show the pixels that would contribute to the 3×3 convolution at $y_{2,3}$. Write down the value of $y_{2,3}$ in terms of the convolution filter f_{δ_x,δ_y} and the image pixel values $x_{i,j}$.

(d) Sketch the architecture of a residual network and explain what this ar- chitecture allows. Why are they seen to work where traditional CNNs fail?	

(e) Describe what is meant by transfer learning in the context of CNNs.

[5 marks]

End of question B3

(a)
$$\frac{1}{15}$$
 (b) $\frac{1}{5}$ (c) $\frac{1}{5}$ (d) $\frac{1}{5}$ (e) $\frac{1}{5}$ Total $\frac{1}{35}$