10/567754 IAP5 Rec'd PCT/PTO 10 FEB 2006

DESCRIPTION

Novel use of cannabinoid receptor agonist

Techinical Field

The present invention relates to an inhibitor for inflammatory cell infiltration in the respiratory tract, an inhibitor for hyperirritability in the respiratory tract, a muciparous inhibitor, or a bronchodilator which contains a compound having a cannabinoid receptor agonistic acitivity as an active ingredient.

10

15

20

25

5

Background Art

In Patent 1 and Non-Patent 1, it is described that methanandamide which is a cannabinoid receptor modulator and a cannabinoid exhibits inhibitory receptor agonist, an activity for hyperirritability in the respiratory tract. Furthermore, in Non-Patent 1, 2, 3, 4, and 5, it is described that cannabinoid, anandamide, nabilone, and CP55,940, which are cannabinoid receptor agonists exhibit an inhibitory activity for constriction of bronchial plain muscle. However, an inhibitory activity for inflammatory cell infiltration in the respiratory tract and a 2, it is described that a cannabinoid receptor agonist exhibits preventing effect and/or treating effect for asthma. Furthermore, in Patent 3, it is described that a cannabinoid receptor agonist exhibits treating effect for espiratory illness.

As a cannabinoid receptor agonist, are disclosed quinoline derivatives in Patent 4 and Patent 5, thiazine derivatives in Patent 6 and Patent 7, pyridone derivatives in Patent 8 and the like.

Patent 1: WO03/061699

Patent 2: WO02/10135

30 Patent 3: WO04/000807

Patent 4: WO99/02499

Patent 5: WO00/40562

Patent 6: WO01/19807

Patent 7: WO02/072562

5 Patent 8: WO02/053543

15

20

25

Non-Patent 1: British Journal of Pharmacology, 2001, 134(4), 771-776

Non-Patent 2: Journal of Cannabis Therapeutics, 2002, 2(1), 59-71

Non-Patent 3: Marihuana and Medicine, New York, 1999, Mar. 20-21, 1998

Non-Patent 4: Pharmacol. Marihuna, 1976, 1, 269-276

10 Non-Patent 5: American Review of Respivatory Disease

Disclosure of Invention

The object of the present invention is to provide an inhibitor for inflammatory cell infiltration in the respiratory tract, an inhibitor for hyperirritability in the respiratory tract, a muciparous inhibitor, or a bronchodilator which contains as an active ingredient a compound having a cannabinoid receptor agonistic acitivity.

The inventors of the present invention have found that the cannabinoid receptor agonist as shown below exhibits strong effect as an inhibitor for inflammatory cell infiltration in the respiratory tract, an inhibitor for hyperirritability in the respiratory tract, a muciparous inhibitor, or a bronchodilator.

The present invention relates to 1) an inhibitor for inflammatory cell infiltration in the respiratory tract, an inhibitor for hyperirritability in the respiratory tract, a muciparous inhibitor, or a bronchodilator which contains as an active ingredient a compound represented by the formula (I):

5

10

15

20

wherein R¹ is the group represented by the formula: -C(=Z)-W-R⁴ wherein Z is a oxygen atom or a sulfur atom; W is a oxygen atom or a sulfur atom; R⁴ is optionally substituted alkyl, optionally substituted alkenyl, or optionally substituted alkynyl;

 $\ensuremath{R^2}$ and $\ensuremath{R^3}$ are independently optionally substituted alkyl or optionally substituted cycloalkyl; or

R² and R³ are taken together to form alkylene which may contain an optionally substituted heteroatom(s);

m is an integer of 0 to 2;

A is optionally substituted aryl or optionally substituted heteroaryl,

- 2) An inhibitor for inflammatory cell infiltration in the respiratory tract, an inghibitor for hyperirritability in the respiratory tract, a muciparous inhibitor, or a bronchodilator according to 1) wherein R¹ is the group represented by the formula: -C(=Z)-W-R⁴ wherein Z is a oxygen atom or a sulfur atom; W is a sulfur atom; R⁴ is optionally substituted alkyl or alkenyl; R² and R³ are independently alkyl; or R² and R³ taken together may form optionally substituted alkylene; m is 0; A is aryl optionally substituted with one or two substitutent(s) selected from the group consisting of alkyl, haloalkyl, hydroxy, alkoxy, haloalkoxy, alkylthio, and haloalkylthio,
- 3) An inhibitor for inflammatory cell infiltration in the respiratory tract, an inhibitor for hyperirritability in the respiratory tract, a muciparous inhibitor, or a bronchodilator which contains as an active ingredient a compound represented by the formula (II):

$$R^{5}$$
 R^{7}
 R^{8}
 R^{9}
 R^{8}

wherein R^5 is the group represented by the formula: $-Y^1-Y^2-Y^3-R^a$ wherein Y^1 and Y^3 are

each independently a bond or optionally substituted alkylene; Y² is a bond, -O-, -O-SO₂-, -NR^b-, -NR^b-C(=O)-, -NR^b-C(=O)-O-, -NR^b-C(=O)-NR^b-, -NR^b-C(=S)-NR^b-, -S-, -C(=O)-O-, or -C(=O)-NR^b-; R² is optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkylnyl, an optionally substituted carbocyclic group, an optionally substituted heterocyclic group, or acyl; R^b is each independently a hydrogen atom, optionally substituted alkyl, or acyl;

R⁶ is a hydrogen atom, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkylnyl, a halogen atom, or alkoxy;

R⁷ and R⁸ are each independently a hydrogen atom, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkylnyl, a halogen atom, optionally substituted phenyl, or optionally substituted carbamoyl; or

R⁷ and R⁸ are taken together with the adjacent carbon atoms to form a 5 to 8 membered ring which may contain a heteroatom(s) and /or an unsaturated bond(s);

R⁹ is a hydrogen atom, optionally substituted alkyl which may contain a heteroatom(s) and /or an unsaturated bond(s), or the group represented by the formula -Y⁶-R^e wherein Y⁶ is a bond, optionally substituted alkylene, alkenylene, alkylnylene, -O-, -S-, -SO-, or -SO₂-; R^e is an optionally substituted carbocyclic group or an optionally substituted heterocyclic group;

X is a oxygen atom or a sulfur atom,

5

10

15

20

25

30

4) An inhibitor for inflammatory cell infiltration in the respiratory tract, an inhibitor for hyperirritability in the respiratory tract, a muciparous inhibitor, or a bronchodilator according to 3) wherein R⁵ is the group represented by the formula: -Y¹-Y²-Y³-R^a wherein Y¹ is a bond; Y² is -C(=O)-NH-; Y³ is a bond or optionally substituted alkylene; R^a is an optionally substituted carbocyclic group; R⁶ is a hydrogen atom; R⁷ is alkyl, a halogen atom, or optionally substituted phenyl; R⁸ is a hydrogen atom or alkyl; or R⁷ and R⁸ are taken together with the adjacent carbon atoms to form a 8 membered ring which may contain an unsaturated bond(s); R⁹ is optionally substituted C3 or more alkyl which may contain a heteroatom(s) and /or an unsaturated bond(s), or the group represented by the formula -Y⁶-R^e wherein Y⁶ is a bond or optionally substituted alkylene; R^e is an optionally substituted carbocyclic group,

5) Use of a compounds represented by the formula (I) in 1) or (II) in 3) for preparation of a pharmaceutical composition for preventing and/or treating an inflammatory cell infiltration in the respiratory tract, a hyperirritability in the respiratory tract, a muciparous, or a bronchoconstrictive action,

6) A method for preventing and/or treating a mammal, including a human, to alleviate the pathological effects of an inflammatory cell infiltration in the respiratory tract, a hyperirritability in the respiratory tract, a muciparous, or a bronchoconstrictive action wherein the method comprises administration to said mammal of a compound represented by the formula (I) in 1) or (II) in 3) in a pharmaceutically effective amount.

10

15

5

In the present specification, "cannabinoid" is a general term including about 30 compounds having the fundamental skeleton represented by the formula (III) wherein is two isoprene groups bonds with 5-pentylresorcinol which is included in an amulet at 2-position, cyclization derivatives thereof, oxidation derivatives thereof, and a transformation derivatives thereof. Examples are the following Δ^9 -tetrahydrocannabinol and the like.

$$\Delta^9$$
-tetrahydrocannabinol

The meaning of each term are shown as follows. Each term is used to express

20 the same meaning employed alone or in combination with other terms in the

specification.

In the present specification, the term "halogen atom" means fluorine atom, chlorine atom, bromine atom, and iodine atom.

25

The term "alkyl" includes a straight- or branched chain C1-C10 alkyl. Examples are methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, n-

pentyl, isopentyl, neo-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, and the like. Especially, preferable is a straight- or branched chain C1-C4 alkyl, for example, preferable are methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, or t-buty.

The term "alkenyl" includes a straight- or branched chain C2-C8 alkenyl which is the above-mentioned "alkyl" substituted with one or more double bond. Examples are viny, 1-propenyl, allyl, isopropenyl, 1-buteneyl, 2-buteneyl, 3-buteneyl, 3-pentenyl, 1,3-butadienyl, 3-methyl-2-butenyl, and tke like. Especially, preferable is a straight- or branched chain C2-C4 alkenyl, for example, preferable are allyl, isopropenyl, or 3-buteneyl.

5

10

15

20

25

30

The term "alkynyl" includes a straight- or branched chain C2-C8 alkynyl which is the above-mentioned "alkyl" substituted with one or more triple bond. Examples are ethynyl, propargyl, and the like. Especially, preferable is a straight- or branched chain C2-C4 alkynyl, for example, preferable is propargyl.

The term "haloalkyl" means the above-mentioned "alkyl" substituted with one or more halogen atom(s). Example are chloromethyl, dichloromethyl, difluoromethyl, trifluoromethyl, chloroethyl (e.g. 2-chloroethyl), dichloroethyl (e.g., 1,2-dichloroethyl, 2,2-chloroethyl), chloropropyl (e.g., 2- chloropropyl, 3-chloropropyl), and the like. Preferable is haloC1-C3 alkyl.

The term "alkylene" includes straight- or branched chain C1-C10 alkylene. Examples are methylene, ethylene, trimethylene, tetramethylene, pentamethylene, 1hexamethylene, heptamethylene, 1-methylethylene, 1-ethylethylene, dimethylethylene, 1,2-dimethylethylene, 1,1-diethylethylene, 1,2-diethylethylene, 1ethyl-2-methylethylene, 1-methyltrimethylene, 2-methyltrimethylene, 1,1dimethyltrimethylene, 1,2-dimethyltrimethylene, 2,2-dimethyltrimethylene, 1-2-ethyltrimethylene, 1,1-diethyltrimethylene, 1,2ethyltrimethylene, diethyltrimethylene, 2,2-diethyltrimethylene, 2-ethyl-2-methyltrimethylene, 2,2-di-npropyltrimethylene, 1-methyltetramethylene, 2-methyltetramethylene, 1,1-dimethyltetramethylene, 1,2-dimethyltetramethylene, 2,2-dimethyltetramethylene, 3,3-dimethylpentamethylene, and the like. Especially, preferable is a straight- or branched chain C1-C6 alkylene, for example, preferable are methylene, ethylene, trimethylene, tetramethylene, pentamethylene, or hexamethylene.

5

10

15

20

25

30

Alkylene (e.g., methylene, ethylene, trimethylene, tetramethylene, pentamethylene), cycloalkyl (e.g., cyclopropyl, cyclo, trimethylene, tetramethylene, pentamethylene), alkoxy (e.g., methoxy, ethoxy), alkylthio (e.g., methylthio, ethylthio), alkylamino (e.g., methylamino, ethylamino, dimethylamino), acylamino (e.g., acetylamino), aryl (e.g., phenyl), aryloxy (e.g., phenoxy), halogen (e.g., fluoro, chloro, iodo), hydroxy, amino, nitro, alkylsulfonyl (e.g., methanesulfonyl, ethanesulfonyl), arylsulfonyl (e.g., benzensulfonyl), cyano, hydroxyamino, carboxy, alkoxycarbonyl (e.g., methoxycarbonyl, ethoxycarbonyl), acyl (e.g., acetyl, benzoyl), aralkyl (e.g., benzyl), mercapto, hydrazino, amidino, guanidino or the like is exemplified as the substituents of "optionally substituted alkylene". One to four of these substituents may substitute at any position.

Furthermore, alkylene substituted with alkylene includes alkylene substituted atom with alkylene via a spiro (e.g., 2,2-ethylenetrimethylene, 2,2-trimethylenetrimethylene, 2,2-tetramethylenetrimethylene, 2,2-pentamethylenetrimethylene), and alkylene substituted with alkylene at different position (e.g., 1,2-tetramethyleneethylene, 1,2-ethylenetrimethylene). For example, preferable are 2,2-ethylenetrimethylene, 2,2-trimethylenetrimethylene, 2,2-tetramethylenetrimethylene, 2,2-tetramethylenetrimethylene. Especially, preferable are 2,2-ethylenetrimethylene, 2,2-tetramethylenetrimethylene, and 2,2-pentamethylenetrimethylene, and 2,2-pentamethylenetrimethylene.

The term "alkylene may contain a heteroatom(s)" includes straight- and branched chain C2-C10 alkylene which may contain optionally substituted one to three heteroatom(s). Examples are ethylene, trimethylene, tetramethylene,

pentamethylene, methylenedioxy, ethylenedioxy, ethyleneoxyethylene, and the like. Especially, preferable is straight- C3-C5 alkylene may contain one heteroatom. Tetramethylene, pentamethylene, ethyleneoxyethylene, ethyleneaminoethylene, and ethylenethioethylene are exemplified.

5

The term "alkenylene" includes straight- or branched chain C2-C12 alkenylene which is the above-mentioned "alkylene" having one or more double bond(s). Examples are vinylene, propenylene, and butenylene. Preferable is straight- chain C2-C6 alkenylene. For example, vinylene, propenylene, butenylene, pentenylene, hexenylene, butadienylene, or the like.

The term "alkynylene" includes straight- or branched chain C2-C12 alkynylene which is the above-mentioned "alkylene" having one or more triple bond(s).

15

10

The term "a carbocyclic group" includes a cyclic group consisting of a carbon atom and a hydrogen atom. Further, "a carbocyclic group" may be a saturated ring or an unsaturated ring. Examples are the blow-mentioned "aryl", the blow-mentioned "cycloalkyl", the blow-mentioned "cycloalkenyl", and the like. Preferable is the group derived from a C3-C14 ring.

20

The term "cycloalkyl" includes C3-C10 saturated carbocyclic group. Examples are cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexyl, cyclohexyl, and the like. Preferable is C3-C6 cycloalkyl, and examples are cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl.

25

30

The term "cycloalkenyl" includes C3-C12 cycloalkenyl which is the above-mentioned "cycloalkyl" having one or more double bond(s). Examples are cyclopropenyl (e.g., 1-cyclopropenyl), cyclobutenyl (e.g., 1-cyclobutenyl), cyclopentenyl (e.g., 1-cyclopenten-1-yl, 2-cyclopenten-1-yl, 3-cyclopenten-1-yl), cyclohexenyl (e.g., 1-cyclohexen-1-yl, 2-cyclohexen-1-yl, 3-cyclohexen-1-yl), cyclohexenyl (e.g., 1-cyclohexen-1-yl), 2-cyclohexen-1-yl, 3-cyclohexen-1-yl), cyclohexenyl (e.g., 1-cyclohexen-1-yl), cyclohexenyl (e.g., 1-cyclohexenyl (e.g.,

cycloheptenyl), cyclooctenyl (1-cyclooctenyl), and the like. Especially, preferable are 1-cyclohexen-1-yl, 2-cyclohexen-1-yl, and 3-cyclohexen-1-yl.

The term "aryl" includes a C6-C14 aryl, and examples are phenyl, naphthyl, anthryl, phenanthryl, and the like. Especially, preferable are phenyl and naphthyl.

5

10

15

20

25

30

The term "aralkyl" includes the above-mentioned "alkyl" substituted with the above-mentioned "aryl". Examples are benzyl, phenylethyl (e.g., 1-phenylethyl, 2-phenylethyl), phenylpropyl (e.g., 1-phenylpropyl, 2-phenylpropyl, 3-phenylpropyl), naphthylmethyl (e.g., 1-naphthylmethyl, 2-naphthylmethyl), and the like. Especially, preferable are benzyl and naphthylmethyl.

The term "heteroaryl" includes a C1-C9 heteroaryl having one to four nitrogen atom(s), oxygen atom(s) and/or sulfur atom(s). Examples are furyl (e.g., 2-furyl, 3furyl), thienyl (e.g., 2-thienyl, 3-thienyl), pyrrolyl (e.g., 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl), imidazolyl (e.g., 1-imidazolyl, 2-imidazolyl, 4-imidazolyl), pyrazolyl (e.g., 1-pyrazolyl, 3pyrazolyl, 4-pyrazolyl), triazolyl (e.g., 1,2,4-triazol-1-yl, 1,2,4-triazol-3-yl, 1,2,4-triazol-4-yl), tetrazolyl (e.g., 1-tetrazolyl, 2-tetrazolyl, 5-tetrazolyl), oxazolyl (e.g., 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, isoxazolyl (e.g., 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl), thiazolyl(e.g., 2-thiazolyl, 4-thiazolyl, 5-thiazolyl), thiadiazolyl, isothiazolyl (e.g., 3isothiazolyl, 4-isothiazolyl, 5-isothiazolyl), pyridyl (e.g., 2-pyridyl, 3-pyridyl, 4-pyridyl), pyridazinyl (e.g., 3-pyridazinyl, 4-pyridazinyl), pyrimidinyl (e.g., 2-pyrimidinyl, 4pyrimidinyl, 5-pyrimidinyl), furazanyl (e.g., 3-furazanyl), pyrazinyl (e.g., 2-pyrazinyl), oxadiazolyl (e.g., 1,3,4-oxadiazol-2-yl), benzofuryl (e.g., 2-benzo[b]furyl, 3-benzo[b]furyl, 4-benzo[b]furyl, 5-benzo[b]furyl, 6-benzo[b]furyl, 7-benzo[b]furyl), benzothienyl (e.g., 2-4-benzo[b]thienyl, 5-benzo[b]thienyl, 6benzo[b]thienyl, 3-benzo[b]thienyl, 7-benzo[b]thienyl), benzimidazolyl (e.g., 1-benzimidazolyl, benzo[b]thienyl, benzimidazolyl, 4-benzimidazolyl, 5-benzimidazolyl, dibenzofuryl, benzoxazolyl, quinoxalinyl (e.g., 2-quinoxalinyl, 5-quinoxalinyl, 6-quinoxalinyl), cinnolinyl (e.g., 3cinnolinyl, 4-cinnolinyl, 5-cinnolinyl, 6-cinnolinyl, 7-cinnolinyl, 8-cinnolinyl),

quinazolinyl (e.g., 2-quinazolinyl, 4-quinazolinyl, 5-quinazolinyl, 6-quinazolinyl, 7-quinazolinyl, 8-quinazolinyl), quinolyl (e.g., 2-quinolyl, 3-quinolyl, 4-quinolyl, 5-quinolyl, 6-quinolyl, 7-quinolyl, 8-quinolyl), phthalazinyl (e.g., 1-phthalazinyl, 5-phthalazinyl), isoquinolyl (e.g., 1-isoquinolyl, 3-isoquinolyl, 4-isoquinolyl, 5-isoquinolyl, 6-isoquinolyl, 7-isoquinolyl, 8-isoquinolyl), puryl, pteridinyl (e.g., 2-pteridinyl, 4-pteridinyl, 6-pteridinyl, 7-pteridinyl), carbazolyl, phenanthridinyl, acridinyl (e.g., 1-acridinyl, 2-acridinyl, 3-acridinyl, 4-acridinyl, 9-acridinyl), indolyl (e.g., 1-indolyl, 3-indolyl, 4-indolyl, 5-indolyl, 6-indolyl, 7-indolyl), isoindolyl, phenazinyl (e.g., 1-phenazinyl, 2-phenazinyl) or phenothiadinyl (e.g., 1-phenothiadinyl, 2-phenothiadinyl), and the like.

5

10

15

20

25

30

The term "a heterocyclic group" includes the group derived from a C1-C14 mono cyclic ring having one to four nitrogen atom(s), oxygen atom(s) and/or sulfur atom(s) and the group derived from a condensed ring which are combined two to three c rings. For example, "a heterocyclic group" includes the above-mentioned "heteroaryl" and the below-mentioned "non-heteroaryl".

The term "non-heteraryl" includes a C1-C9 non-aromatic ring having one to four nitrogen atom(s), oxygen atom(s) and/or sulfur atom(s). Examples are 1pyrrolinyl, 2-pyrrolinyl, 3-pyrrolinyl, pyrrolidino, 2-pyrrolidinyl, 3-pyrrolidinyl, 1imidazolinyl, 2-imidazolinyl, 4-imidazolinyl, 1-imidazolidinyl, 2-imidazolidinyl, 4-1-pyrazolidinyl, 3imidazolidinyl, 1-pyrazolinyl, 3-pyrazolinyl, 4-pyrazolinyl, pyrazolidinyl, 4-pyrazolidinyl, piperidino, 2-piperidyl, 3-piperidyl, 4-piperidyl, piperazino, 2-piperazinyl, 2-morpholinyl, 3-morpholinyl, morpholino, tetrahydropyranyl, and the like. Especially, preferable are morpholino, pyrrolidino, piperidino and piperazino.

The alkyl part of "alkoxy" is defined as the above "alkyl". Methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, t-butoxy, n-pentyloxy, n-heptyloxy, n-octyloxy, and the like are exemplified as "alkoxy". Preferable

are methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, i-butoxy, sec-butoxy and t-butoxy.

The alkenyl part of "alkenyloxy" is defined as the above "alkenyl". Vinyloxy,

1-propenyloxy, 2-propenyloxy, 1-butenyloxy, 2-butenyloxy, 3-butenyloxy, 1,3butadienyloxy, 3-methyl-2-butenyloxy, and the like are exemplified as "alkenyloxy".

Preferred is 2-propenyloxy and 1-butenyloxy.

The term "haloalkoxy" means the above "alkoxy" substituted with one or more 10 halogen. Examples are dichloromethoxy, difluoromethoxy, trifluoromethoxy, trifluoromethoxy (2,2,2-trifluoroethoxy), and the like. Especially, preferable are difluoromethoxy and trifluoromethoxy.

The term "aryloxy" includes an oxygen atom substituted with the above "aryl". Examples are phenoxy, naphthoxy (e.g., 1-naphthoxy, 2-naphthoxy), anthryloxy (e.g., 1-anthryloxy, 2-anthryloxy), phenanthryl (e.g., 1-phenanthryl, 2-phenanthryl) and the like. Especially, preferable are phenoxy and naphthoxy.

15

20

25

30

The term "alkoxyalkoxy" includes the above-mentioned "alkoxy" substituted with the above-mentioned "alkoxy". Examples are methoxymethoxy, ethoxymethoxy, n-propoxymethoxy, isopropoxymethoxy, 1-methoxyethoxy, 2-methoxyethoxy, and the like. Especially, preferable are 1-methoxyethoxy, 2-methoxyethoxy.

The term "alkylthioalkoxy" includes the above-mentioned "alkoxy" substituted with the below-mentioned "alkylthio". Examples are methylthiomethoxy, ethylthiomethoxy, n-propylthiomethoxy, isopropylthiomethoxy, 1-methylthioethoxy, 2-methylthioethoxy, and the like. Especially, preferable are 1-methylthioethoxy and 2-methylthioethoxy.

The alkyl part of "alkylthio" is defined as the above-mentioned "alkyl".

Examples are methylthio, ethylthio, n-propylthio, isopropylthio, n-butylthio, isobutylthio, sec-butylthio, t-butylthio, n-pentylthio, n-hexylthio and the like. Especially, preferable is C1-C4 straight- or branched chain alkylthio. For example, methylthio, ethylthio, n-propylthio, i-propylthio, n-butylthio, i-butylthio, sec-butylthio, and t-butylthio are exemplified.

The term "haloalkylthio" means the above "alkylthio" substituted with one or more halogen. Examples are dichloromethylthio, difluoromethylthio, trifluoromethylthio (2,2,2-trifluoroethylthio) and the like. Preferable are difluoromethylthio and trifluoromethylthio.

Non-substituted amino, alkylamino (e.g., methylamino, ethylamino, npropylamino, i-propylamino, dimethylamino, diethylamino, ethylamino, propylmethylamino), acylamino (e.g., acetylamino, formylamino, propionylamino, benzoylamino), acylalkylamino (e.g., N-acethylmethylamino), aralkylamino (e.g., 2benzylamino, 1-phenylethylamino, 2-phenylethylamino, 1-phenylpropylamino, 2phenylpropylamino, 3-phenylpropylamino, 1-naphthylmethylamino, alkylsulfonylamino naphthylmethylamino, dibenzylamino), (e.g., ethanesulfonylamino), alkenyloxysulfonylamino methanesulfonylamino, (e.g., vinyloxysulfonylamino, allyloxysulfonylamino), alkoxycarbonylamino (e.g., methoxycaronylamino, ethoxycaronylamino, t-butoxycaronylamino), alkenylamono (e.g., allylamino), arylcarbonylamino (e.g., benzoylamino), vinylamino, heteroarylcarbonylamino (e.g., pyridinecarboylamino) are exemplified as "optionally substituted amino".

25

30

20

5

10

15

The term "aralkylamino" means amino substituted with one or two the above-mentioned "aralkyl". Examples are benzylamino, phenylethylamino (e.g., 1-phenylethylamino, 2-phenylethylamino), phenylpropylamino (e.g., 1-phenylpropylamino, 2-phenylpropylamino, 3-phenylpropylamino), naphthylamino (e.g., 1-naphthylamin, 2-naphthylamin), dibenzylamino, and the like.

The term "acyl" means carbonyl substituted with the group except for a hydrogen atom. Examples are alkylcarbonyl (e.g., acetyl, propionyl, butyryl, isobutyryl, valeryl, isovaleryl, pivaloryl, hexanoyl, octanoyl, lauroyl), alkenylcarbonyl (e.g., acryloyl, methacryloyl), cycloalkylcarbonyl (e.g., cyclopropanecarbonyl, cyclobutanecarbonyl, cyclopentanecarbonyl, cyclohexanecarbonyl), arylcarbonyl (e.g., benzoyl, naphthoyl), and heteroarylcarbonyl (e.g., pyridinecarbonyl). These groups may be substuituted with alkyl, a halogen atom, or the like. Toluoyl which is an example of arylcarbonyl substituted with alkyl and trifluoroacetyl which is an example of alkylcarbonyl substituted with halogen atom are exemplified.

5

10

15

20

25

30

The term "alkoxycarbonyl" means carbonyl substituted with the above-mentioned "alkoxy". Examples are methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, i-propoxycarbonyl, n-butoxycarbonyl, i-butoxycarbonyl, sec-butoxycarbonyl, tert-butoxycarbonyl, n-pentyloxycarbonyl, n-hexyloxycarbonyl, n-hexyloxycarbonyl, n-heptyloxycarbonyl, n-octyloxycarbonyl, and the like. Preferable are methoxycarbonyl, ethoxycarbonyl and the like.

Alkyl (e.g., methyl, ethyl, n-propyl, i-propyl), acyl (e.g., formyl, acetyl, propionyl, benzoyl) and the like are exemplified as the substituents of "optionally substituted carbamoyl". The nitrogen atom of a carbamoyl group may be mono- or di- substituted with these substituents. Preferable are carbmoyl, N-methyl carbmoyl, N-ethyl carbmoyl, and the like as "optionally substituted carbamoyl".

The alkyl part of "alkylsulfonyl" is defined as the above-mentioned "alkyl".

Methanesulfonyl, ethanesulfonyl and the like are exemplified as "alkylsulfonyl".

When "optionally substituted aralkyloxy", "optionally substituted aralkylthio", "optionally substituted aralkylamino", "optionally substituted phenyl", "optionally substituted heteroaryl", "optionally substituted

heteroaryl", "an optionally substituted heterocyclic group", "optionally substituted alkyl", "optionally substituted alkenyl", "optionally substituted alkynyl", "optionally substituted alkoxyalkyl", "optionally substituted cycloalkyl", "an optionally substituted carbocyclic group", "alkylene which may contain optionally substituted a heteroatom(s)", or "optionally substituted alkyl which may contain optionally substituted a heteroatom(s) and/or an unsubstituted bond(s)" has substituent(s), each one to four of these substituents may substitute at any position.

5

10

15

20

25

30

Hydroxy, carboxy, halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom), haloalkyl (e.g., CF₃, CH₂CF₃, CH₂CCl₃), haloalkoxy, alkyl (e.g., methyl, ethyl, isopropyl, tert-butyl), alkenyl (e.g., vinyl), formyl, acyl (e.g., acetyl, propionyl, butyryl, pivoloyl, benzoyl, pyridinecarbonyl, cyclopentanecarbonyl, cyclohexanecarbonyl), alkynyl (e.g., ethynyl), cycloalkyl (e.g., cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl), alkoxy (e.g., methoxy, ethoxy, propoxy, butoxy), alkoxycarbonyl (e.g., methoxycarbonyl, ethoxycarbonyl, tert-butoxycarbonyl), nitro, nitroso, oxo, optionally substituted amino (e.g., amino, alkylamino (e.g., methylamino, ethylamino, dimethylamino), formylamino, acylamino (e.g., acetylamino, benzoylamino), aralkylamino (e.g., benzylamino, tritylamino), hydroxyamino, alkylsulfonylamino, alkenyloxycarbonylamino, alkoxycarbonylamino, alkenylamino, arylcarbonylamino, heteroarylcarbonylamino), azido, aryl (e.g., phenyl), aryloxy (e.g., phenoxy), aralkyl (e.g., benzyl, phenethyl, phenylpropyl), alkylenedioxy (e.g., methylenedioxy), alkylene methylene, ethylene, trimethylene, teteramethylene, pentamethylene), alkenylene (e.g., propenylene, butenylene, butadienylen), cyano, isocyano, isocyanato, thiocyanato, isothiocyanato, mercapto, alkylthio (e.g., methylthio, ethylthio), omethanesulfonyl, ethanesulfonyl), alkylsulfonyl (e.g., arylsuslfonyl benzensulfonyl), optionally substituted carbamoyl, sulfamoyl, formyloxy, haloformyl, oxalo, thioformyl, thiocarboxy, dithiocarboxy, thiocarbamoyl, sulfino, sulfo, sulfoamino, hydrazino, ureido, amidino, guanidino, alkylsulfonyloxy, trialkylsilyl, haloalkylcarbonyloxy, formyloxy, acylthio, thioxo, alkoxyalkoxy, alkylthioalkoxy, and the like are exemplified as their substituents.

Preferable are oxo, hydroxy, alkenylene (e.g., propenylene, butenylene, butadienylene), acyl (e.g., acetyl, propionyl, pivaloyl, benzoyl, pyridinecarbonyl, cyclopentanecarbonyl, cyclohexanecarbonyl), aralkyl (e.g., benzyl), alkylene (e.g., methylene, ethylene, trimethylene, tetramethlene, pentamethylene), and the like as the substituents of "5-8 menbered ring which may contain a heteroatom(s) and/or an unsaturated bond(s)"

Subststituents groups (Ia) to (Im) are shown as preferable substituent(s) groups for R^1 to R^3 , m, and A of the compound represented by general formula (I).

10

15

20

25

30

R¹: (Ia) -C(=S)-S-R⁴ or -C(=O)-S-R⁴ wherein R⁴ is optionally substituted alkyl or optionally substituted alkenyl, (Ib) -C(=S)-S-R⁴ or -C(=O)-S-R⁴ wherein R⁴ is optionally substituted alkyl, (Ic) -C(=S)-S-R⁴ wherein R⁴ is optionally substituted alkyl.

R²: (Id) optionally substituted alkyl, (Ie) alkyl.

R³: (If) optionally substituted alkyl, (Ig) alkyl.

m: (Ih) 0.

A: (Ii) optionally substituted aryl or optionally substituted heteroaryl, (Ii) optionally substituted aryl, (Ik) optionally substituted heteroaryl.

Or, R² and R³ are taken together to form (II) alkylene which may contain optionally substituted alkylene, (Im) alkylene.

Ik], [Ia, Im, Ih, Ii], [Ia, Im, Ih, Ij], [Ia, Im, Ih, Ik], [Ib, Il, Ih, Ii], [Ib, Il, Ih, Ij], [Ib, Il, Ih, Ik], [Ib, Im, Ih, Ii], [Ib, Im, Ih, Ij], [Ib, Im, Ih, Ik], [Ic, Il, Ih, Ii], [Ic, Il, Ih, Ij], [Ic, Im, Ih, Ij], [Ic, Im, Ih, Ik].

Substituents groups (IIa) to (IIm) are shown as preferable substituent(s) groups for R⁵ to R⁹, and X of the compound represented by general formula (II).

 R^5 : (IIa) -C(=O)-NH-Y³-R^a wherein Y³ is a bond or optionally substituted alkylene, R^a is optionally substituted alkyl, an optionally substituted carbocyclic group, or acyl, (IIb) -C(=O)-NH-Y³-R^a wherein Y³ is a bond or optionally substituted alkylene, R^a is an optionally substituted carbocyclic group, or acyl, (IIc) -C(=O)-NH-Y³-R^a wherein Y³ is a bond or optionally substituted alkylene, R^a is an optionally substituted carbocyclic group.

R⁶: (IId) a hydrogen atom.

5

10

15

20

25

30

R⁷: (IIe) a hydrogen atom or optionally substituted alkyl, (IIf) optionally substituted alkyl.

R8: (IIg) a hydrogen atom or optionally substituted alkyl, (IIh) optionally substituted alkyl.

 R^9 : (IIi) optionally substituted alkyl or $-Y^6$ - R^e wherein Y^6 is optionally substituted alkylene, R^e is an optinally substituted carbocyclic group, (IIj) optionally substituted alkyl.

X: (IIk) an oxygen atom.

Or, R^7 and R^8 are taken together with the adjacent carbon atom to form (II) optionally substituted 5-8 membered ring, (Im) optionally substituted 8 membered ring, .

 IIk], [IIb, IId, IIe, IIg, IIj, IIk], [IIb, IId, IIe, IIh, IIi, IIk], [IIb, IId, IIe, IIh, IIj, IIk], [IIb, IId, IIf, IIg, IIi, IIk], [IIb, IId, IIf, IIk], [IIb, IId, IIf, IIh, IIi, IIk], [IIb, IId, IIf, IIh, IIi], IIk], or [R⁵, R⁶, R⁷-R⁸, R⁹, X]=[IIb, IId, III, IIi, IIk], [IIc, IId, IIe, IIg, IIi, IIk], [IIc, IId, IIe, IIg, IIi, IIk], [IIc, IId, IIe, IIh, IIi, IIk], [IIc, IId, IIf, IIg, IIi, IIk], [IIc, IId, IIf, IIg, IIih, IIi, IIk], [IIc, IId, IIf, IIh, IIi, IIk], [IIc, IId, IIf, IIh, IIi], IIk].

The term "solvate" means solvates of compounds of the present invention or the pharmaceutical acceptable salts thereof. Examples are monosolvate, disolvate, monohydrate, dihydrate, and the like are exemplified as "solvate".

10

5

The compounds described in WO 01/19807 or WO 02/072562 are exemplified as the compounds represented by the formula (I). Preferable are the compounds described in the following Tables.

15 [Table 1]

	Structure		Structure
I-3	S N O	I-9	OMe S N N N S SMe
I-4	S N O	I-10	OMe O SEt
I-5	s N s s	I-11	S S S S S S S S S S S S S S S S S S S
I-8	OMe S N N N N SEt	I-12	F ₃ CO—N—SMe

[Table 2]

$$R^2$$
 R^3
 R^4
 R^5
 R^7
 R^8

	\mathbb{R}^1	· R ²	\mathbb{R}^3	R ⁴	R^5	R^6	\mathbb{R}^7	R ⁸
I-16	H	Н	H	H ·	Н	COSEt	Me	Me
I-17	F	H	H	H	Н	COSEt	Me	Me
I-18	Cl	H	H	H	Н	COSEt	Me	Me
I-19	Me	H	H	H	H	COSEt	Me	Me
I-20	Et	Н	Н	H	Н	COSEt	Me	Me
I-21	Pr	H	H ·	H	H	COSEt	Me	Me
I-22	Bu	H	H	H	H	COSEt	Me	Me
I-23	Bu ^s	H	H	H	H	COSEt	Me	Me
I-24	Bu ^t	H	H	H	H	COSEt	Me	Me
I-25	Ph	H	Н	H	Н	COSEt	Me	Me
I-26	CF ₃	H	H	Н	Н	COSEt	Me	Me
I-27	OMe	H	H	Н	H	COSEt	Me	Me
I-28	OEt	Н	H	Н	Н	COSEt	Me	Me
I-29	OPr^i	H	H	Н	H	COSEt	Me	Me
I-30	SMe	Н	H	H	Н	COSEt	Me	Me
I-31	SEt	H	Н	H	Н	COSEt	Me	Me
I-32	SPr^i	H	H	H	Н	COSEt	Me	Me
I-33	NMe_2	H	Н	Н	Н	COSEt	Me	Me
I-34	Н	\Pr^i	H	Н	H	COSEt	Me	Me
I-35	Н	Н	Cl	H	Н	COSEt	Me	Me
I-36	Н	H	\Pr^i	H	Н	COSEt	Me	Me
I-37	Н	H	NO ₂	Н	Н	COSEt	Me	Me
I-38	Me	Me	H	H	Н	COSEt	Me	Me
I-39	Me	H	Me	H	Н	COSEt	Me	Me
I-40	Me	Н	Н	Me	· H	COSEt	Me	Me
I-41	Me	H	Н	Н	Me	COSEt	Me	Me
I-42	Н	Me	Me	H	H	COSEt	Me	Me
I-43	H	Me	Н	Me	Н	COSEt	Me	Me
I-44	Me	H	Cl	H	Н	COSEt	Me	Me
I-45	Cl	H	Me	H	Н	COSEt	Me	Me
I-46	Pr'	Н	NO ₂	Н	Н	COSEt	Me	Me

$$R^3$$
 R^4
 R^5
 R^7
 R^8
 R^8

	\mathbb{R}^1	R ²	\mathbb{R}^3	R ⁴	R^5	R^6	\mathbb{R}^7	R ⁸
I-47	\Pr^i	H	H	H	NO ₂	COSEt	Me	Me
I-48	NO_2	Н	NO_2	Н	H	COSEt	Me	Me
I-49	Pr	Н	Н	Н	Н	COSMe	Me	Me
I-50	Pr'	Н	Н	H	H	COSMe	Me	Me
I-51	Bu ^s	H	Н	Н	Н	COSMe	Me	Me
I-52	Н	Pr^{j}	Н	H	H	COSMe	Me	Me
I-53	H	OMe	OMe	H	H	COSMe	Me	Me
I-54	H	-00	CH ₂ O-	Н	H	COSMe	Me	Me
I-55	H	OMe	OMe	OMe	H	COSMe	Me	Me
I-56	Et	H	Н	H	H	CSSMe	Me	Me
I-57	Bu ^s	Н	Н	H	H	CSSMe	Me	Me
I-58	CH ₂ OMe	Н	Н	H .	H	CSSMe	Me	Me
I-59	CH(Me)O Me	Н	Н	Н	Н	CSSMe	Me	Me
I-60	OMe	Н	Н	H	H	CSSMe	Me	Me
I-61	OEt	Н	Н	H	Н	CSSMe	Me	Me
I-62	SMe	H	H	H	H	CSSMe	Me	Me
I-63	SEt	H	Н	H	H	CSSMe	Me	Me
I-64	SPr^i	H	H	H	H	CSSMe	Me	Me
I-65	SOMe	H	H	H	H	CSSMe	Me	Me
I-66	SO_2Me	Н	H	H	Н	CSSMe	Me	Me
I-67	SOEt	H	Н	H	H	CSSMe	Me	Me
I-68	NMe_2	H	Н	H	Н	CSSMe	Me	Me
I-69	H	Pr^i	Н	H	H	CSSMe	Me	Me
I-70	Н	Н	Cl	H	H	CSSMe	Me	Me
I-71	Me	Н	Me	H	H	CSSMe	Me	Me
I-72	Me	H	Н	Me	H	CSSMe	Me	Me
I-73	Me	Н	Н	H	Me	CSSMe	Me	Me
I-74	H	Me	Me	H	H	CSSMe	Me	Me
I-75	H	Me	Н	Me	H	CSSMe	Me	Me
I-76	OMe	OMe	H	H	Н	CSSMe	Me	Me
I-77	H	OMe	OMe	H	Н	CSSMe	Me	Me
I-78	OMe	Н	Н	OMe	Н	CSSMe	Me	Me

[Table 4]

$$R^2$$
 R^3
 R^4
 R^5
 R^6

	R ¹	\mathbb{R}^2	\mathbb{R}^3	R ⁴	R^5	R^6	R^7	R ⁸
I-79	OMe	H	OMe		Н	CSSMe	Me	Me
I-80	Н	-OC	H ₂ O-	Н	Н	CSSMe	Me	Me
I-81	\Pr^i	H	NO_2	Н	H	CSSMe	Me	Me
I-82	\Pr^i	H	H	Н	NO_2	CSSMe	Me	Me
I-83	Н	OMe	OMe	OMe	H	CSSMe	Me	Me
I-84	$-$ Pr j	H	Н	Н	Н	CSSEt	Me	Me
I-85	Bu ^s	H	H	H	Н	CSSEt	Me	Me
I-86	OEt	H	H	H	Н	CSSEt	Me	Me
I-87	SMe	H	Н	H	Н	CSSEt	Me	Me
I-88	Н	\Pr^i	H	H	Н	CSSEt	Me	Me
I-118	Н	OEt	OEt	H	Н	CSSMe	Me	Me
I-119	OMe	H	Me	H	Н	CSSMe	Me	Me
I-120	OMe	Н	H	Me	H	CSSMe	Me	Me
I-121	Н	OMe	Me	H	Н	CSSMe	Me	Me
I-122	Me	Me	H	Н	Н	CSSMe	Me	Me
I-123	N(Me)Ac	Н	Н	Н	Н	CSSMe	Me	Me

[Table 5]

5

	$ m R^6$	R^{7}	R ⁸		\mathbb{R}^6	$ m R^7$	R^8
I-90	COOMe	Me	Me	I-98	CSSPr	Me	Me
I-91	COOPr	Me	Me	I-99	CSSPr^i	Me	Me
I-96	CSOEt	Me	Me	I-100	CSSBn	Me	Me

[Table 6]

$$R^{2}$$
 R^{1} R^{5} R^{6} R^{6}

	\mathbb{R}^{1}	R ²	\mathbb{R}^3	n	R^6	R^7	R^8
I-101	H	H	Cl	1	COSEt	Me	Me
I-102	H	Н	Cl	1	CSSMe	Me	Me
I-103	Cl	H	Cl	2	COSEt	Me	Me
I-104	Cl	H	Cl	2	CSSMe	Me	Me

[Table 7]

5

 $\begin{array}{c|cccc} & R^6 & W \\ \hline & I-109 & COSEt & S & \\ \hline & I-116 & CSSMe & S & \\ \hline & I-117 & CSSMe & S & \\ \hline \end{array}$

$$R^2$$
 R^1
 R^5
 R^7
 R^8

	\mathbb{R}^1	\mathbb{R}^2	R ³	R³ R⁴	R ⁵	\mathbb{R}^6	R^7	R ⁸
T 104		H	OEt	H	H	CSSMe	Me	Me
I-124	H	OEt		Н	H	CSSMe	Me	Me
I-125	H	H	H	H	H	CSSMe		
I-126	H		OMe				Me	Me
I-127	<u>H</u>	OMe	Н	H	H	CSSMe	Me	Me
I-128	<u>H</u>	OEt	OMe	H	H	CSSMe	Me	Me
I-129	H	OPr	OMe	H	H	CSSMe	Me	Me
I-130	H	OEt	OEt	H	H	CSSMe	Me	Me
I-131	H	H	OPr	H	H	CSSMe	Me	Me
I-132	<u>H</u>	OPr	H	H	H	CSSMe	Me	Me
I-133	H	H	OBu	H	H	CSSMe	Me	Me
I-134	H	OBu	H	H	H	CSSMe	Me	Me
I-135	H	OMe	OEt	H	H	CSSMe	Me	Me
I-136	H	OMe	OPr	H	H	CSSMe	Me	Me
I-137	H	OBu	OMe	H	H	CSSMe	Me	Me
I-138	H	H	OPr^i	H	H	CSSMe	Me	Me
I-139	H	OPr^i	H	Н	H	CSSMe	Me	Me
I-140	Н	Н	H	H	Н	CSSMe	Me	Me
I-141	F	Н	H	H	H	CSSMe	Me	Me
I-142	Cl	Н	Н	Н	H	CSSMe	Me	Me
I-143	H	Cl	H	H	H	CSSMe	Me	Me
I-144	Me	Н	H	Н	Н	CSSMe	Me	Me
I-145	H	Me	Н	H	Н	CSSMe	Me	Me
I-146	Н	H	Me	H	Н	CSSMe	Me	Me
I-147	Н	Bu	H	Н	Н	CSSMe	Me	Me
I-148	Н	Н	Bu	H	Н	CSSMe	Me	Me
I-149	Bu*	Н	Н	Н	Н	CSSMe	Me	Me
I-150	Н	Н	Et	Н	Н	CSSMe	Me	Me
I-151	H	Et	Н	Н	Н	CSSMe	Me	Me
I-152	Н	Н	F	Н	Н	CSSMe	Me	Me
I-153	H	F	Н	Н	Н	CSSMe	Me	Me
I-154	Н	H	\Pr^{j}	Н	Н	CSSMe	Me	Me
I-155	Н	Н	Morphol ino	Н	Н	CSSMe	Me	Me
I-156	H	Ac	Н	H	Н	CSSMe	Me	Me
I-157	H	H	Br	Н	Н	CSSMe	Me	Me
I-158	H	Br	Н	Н	Н	CSSMe	Me	Me
I-159	Br	H	H	H	Н	CSSMe	Me	Me
I-160	Н	C(Me)=N OMe	Н	H	Н	CSSMe	Me	Me
I-161	H	Н	Ac	Н	Н	CSSMe	Me	Me
I-162	H	Н	C(Me)= NOMe	Н	Н	CSSMe	Me	Me
I-163	OPr^i	Н	H	H	Н	CSSMe	Me	Me
I-164	Pr	H	H	H	Н	CSSMe	Me	Me
I-165	$\mathrm{CF_3}$	Н	Н	Н	Н	CSSMe	Me	Me

	R ¹	\mathbb{R}^2	R^3	R ⁴	\mathbb{R}^5	R^6	R^7	R ⁸
I-166	H	H	OPh	H	H	CSSMe	Me	Me
I-167	H	<u>н</u>	Pr	H	H	CSSMe	Me	Me
I-168	H	H	Bu ^t	H	H	CSSMe	Me	Me
I-169	H	CF_3	H ·	H	H	CSSMe	Me	Me
I-170	H	H	$\overline{\mathrm{CF}_3}$	H	H	CSSMe	Me	Me
I-171	$\frac{11}{\Pr^i}$	H	NHAc	H	H	CSSMe	Me	Me
I-172	$\frac{11}{\mathrm{Pr}^{i}}$	H	H	H	NHAc	CSSMe	Me	Me
I-173	H	COOMe	H	H	OMe	CSSMe	Me	Me
I-174	Morpholino	Н	H	H	H	CSSMe	Me	Me
I-175	Н	Morpholino	H	H	H	CSSMe	Me	Me
I-176	Pr ⁱ	Н	Н	COO Et	Н	CSSMe	Me	Me
I-177	Н	Н	Piperidino	H	Н	CSSMe	Me	Me
I-178	Pyrrolidino	H	Н	Н	Н	CSSMe	Me	Me
I-179	Н	SMe	H	Н	Н	CSSMe	Me	Me
I-180	Н	Н	SMe	Н	Н	CSSMe	Me	Me
I-181	OCF_3	Н	H	Н	Н	CSSMe	Me	Me
I-182	H	OCF_3	Н	Н	Н	CSSMe	Me	Me
I-183	Н	Н	OCF_3	Н	Н	CSSMe	Me	Me
I-184	Н	Н	3-Pyridyl	H	Н	CSSMe	Me	Me
I-185	H	3-Pyridyl	Н	Н	Н	CSSMe	Me	Me
I-186	3-Pyridyl	H	H	H	Н	CSSMe	Me	Me
I-187	OPh	H	Н	Н	Н	CSSMe	Me	Me
I-188	Н	OEt	OEt	Н	H	COOMe	Me	Me
I-189	OMe	H	Н	Н	Н	COOMe	Me	Me
I-190	Н	Н	Et	Н	H	COOMe	Me	Me
I-191	H	Н	\Pr^i	Н	Н	COOMe	Me	Me
I-192	OMe	H	Н	Н	Н	COSMe	Me	Me
I-193	Н	Н	Et	Н	H	COSMe	Me	Me
I-194	Н	Н	Pr^{i}	H	Н	COSMe	Me	Me
I-195	H	Н	OEt	H	Н	COSMe	Me	Me
I-196	H	OMe	OEt	H	·H	COSMe	Me	Me
I-197	Н	Piperidino	H	H	Н	CSSMe	Me	Me
I-198	Н	Н	NEt ₂	H	Н	CSSMe	Me	Me
I-199	OMe	H	COOMe	H	Н	CSSMe	Me	Me
I-200	Н	2-Oxo pyrrolidino	Н	Н	Н	CSSMe	Me	Me
I-201	H	OPh	Н	Н	H	CSSMe	Me	Me
I-202	Н	Н	Ph	H	Н	CSSMe	Me	Me
I-203	Ph	Н	Н	Н	Н	CSSMe	Me	Me
I-204	Н	Ph	H	Н	H	CSSMe	Me	Me
I-205	\Pr^i	Н	Н	Н	Н	CSOMe	Me	Me
I-206	\Pr^i	Н	I	Н	H	CSSMe	Me	Me
I-207	OMe	Н	(Morpholi no)CO	Н	Н	CSSMe	Me	Me

[Table 10]

$$R^2$$
 R^3
 R^4
 R^5
 R^7
 R^8

	\mathbb{R}^1	R ²	\mathbb{R}^3	R ⁴	\mathbb{R}^5	R^6	R^7	R ⁸
I-208	Н	Н	NMe ₂	Н	H	CSSMe	Me	Me
I-209	Н	NMe_2	H	Н	Н	CSSMe	Me	Me
I-210	N(Me)E t	Н	Н	Н	Н	CSSMe	Me	Me
I-211	N(Me)P r	Н	Н	Н	Н	CSSMe	Me	Me
I-212	NEt_2	H	H	H	H	CSSMe	Me	Me
I-213	F	H	H	H	F	CSSMe	Me	Me
I-214	\Pr^i	Н	Cl	H_	H_	CSSMe_	Me	Me
I-215	NMe_2	Me	H	Н	H	CSSMe	Me	Me
I-216	NMe_2	H	Me	Н	H	CSSMe_	Me	Me
I-217	NMe_2	H	H	Me	Н	CSSMe	Me	Me
I-218	NMe_2	H	H	Cl	H	CSSMe	Me	Me
I-219	Me	Н	H	Н	Me	CSSMe	Me	Me
I-220	NMe_2	H	H	H	H	CSSEt	Me	Me
I-221	Н	NMe_2	Н	Н	H	CSSEt	Me	Me
I-222	NMe_2	H	Me	Н	H	CSSEt	Me	Me
I-223	Н	H	\Pr^i	Н	H	CSSEt	Me	Me
I-224	OMe	Н	CONHM e	Н	Н	CSSMe	Me	Me
I-225	OCHF ₂	Н	Н	H	Н	CSSMe	Me	Me
I-226	H	$OCHF_2$	H	Н	H	CSSMe	Me	Me
I-227	Н	NEt_2	H	Н	Н	CSSMe	Me	Me
I-228	NMe ₂	H	Cl	Н	H	CSSMe	Me	Me
I-229	NMe ₂	H	F	Н	H	CSSMe	Me	Me
I-230	NMe ₂	Н	Н	F	Н	CSSMe	Me	Me
I-231	NMe_2	H	Et	H	H	CSSMe	Me	Me
I-232	NMe ₂	Н	H	Et	H	CSSMe	Me	Me
I-233	NMe_2	Н	Cl	Н	H	CSSEt	Me	Me
I-234	NMe ₂	Н	F	Н	Н	CSSEt	Me	Me
I-235	NMe_2	Н	Et	Н	Н	CSSEt	Me	Me
I-236	Pr^{i}	H	H	Н	Н	CSSBu^s	Me	Me
I-237	\Pr^i	H	H	Н	Н	$CSSBu^i$	Me	Me
I-239	Me	NMe_2	H	Н	H	CSSMe	Me	Me
I-240	NMe_2	OMe	Н	Н	H	CSSMe	Me	Me
I-241	H	NMe_2	Me	H.	H	CSSMe	Me	Me
I-242	NMe ₂	Cl	H	Н	H	CSSMe	Me	Me
I-243	H	NMe_2	OMe	Н	Н	CSSMe	Me	Me
I-244	Pr^i	H	H	Н	Н	CSSEt	Et	Et
		•		•			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

[Table 11]

	A	\mathbb{R}^6	R^7	R ⁸
I-249		CSSMe	Me	Me
I-250		CSSMe	Me	Me
I-251	N—OMe	CSSMe	Me	Me
I-252	N—NMe ₂	CSSMe	Me	Me
I-253	CI—N—	CSSMe	Me	Me
I-254	MeO-N	CSSMe	Me	Me
I-255	EtO-N-	CSSMe	Me	Me
I-256	PrO-N-	CSSMe	Me	Me
I-257	Pr ⁱ O-N-	CSSMe	Me	Me
I-258	MeS-N-	CSSMe	Me	Me
I-259	EtS-N-	CSSMe	Me	Me
I-260	PrS-N-	CSSMe	Me	Me
I-261	Pr ⁱ S-N-	CSSMe	Me	Me

[Table 12]

$$R^2$$
 R^3
 R^4
 R^5
 R^7
 R^8

	\mathbb{R}^1	\mathbb{R}^2	R³	\mathbb{R}^4	R ⁵	R^6	R^7	R ⁸
I-262	NMe_2	H	OMe	H	H	CSSMe	Me	Me
I-263	NMe_2	H	H	OMe	H	CSSMe	Me	Me
I-264	Me	NEt_2	H	H	H	CSSMe	Me	Me
I-265	H	NEt_2	Me	H	H	CSSMe	Me	Me
I-266	H	NEt_2	OMe	H	Н	CSSMe	Me	Me
I-267	Bu ^s	Н	H	H	H	CSSMe	Et	Et
I-268	\Pr^i	H	H	H	H	CSSMe	Pr	Pr
I-269	\Pr^{i}	H	H	H	Н	CSSMe	-(CH	[₂) ₄ -
I-270	\Pr^i	H	H	H	H	CSSMe	-(CH	[₂) ₅ -

	70.1	n?	D3	D4		R ²	D 7	D8
No	$\frac{R^1}{R^2}$	R ²	R ³	R ⁴	R^5	R ⁶	$\frac{R^7}{M}$	R ⁸
II-1	$\frac{\Pr^I}{\Gamma}$	<u>H</u>	H	H	H	Allyl	Me	Me
II-2	\Pr^I	H	H	H	H	Propargyl	Me	Me
II-3	\Pr^I	H	H	H	H	CH ₂ CN	Me	Me
II-4	\Pr^i	H	H	H	H	CH₂OMe	Me	Me
II-5	Pr ⁱ	H	H	H	H	CH ₂ CH=CHMe	Me	Me
II-6	\Pr^i	H	H	H	H	$CH_2CH=CMe_2$	Me	Me
II-7	\Pr^i	H	H	H	H	CH ₂ CH ₂ CH=CH ₂	Me	Me
II-8	\Pr^i	_H	H	H	H	$\mathrm{CH_{2}COMe}$	Me	Me
II-9	\Pr^i	H	H	H	H	$\mathrm{CH_{2}CO_{2}H}$	Me	Me
II-10	Pr^{i}	H	H	H	H	$\mathrm{CH_2CO_2Me}$	Me	Ме
II-11	\mathbf{Pr}^{i}	H	H	. H	H	$\mathrm{CH_2CO_2Et}$	Me	Me
II-12	\mathbf{Pr}^{i}	H	H	H	H	$\mathrm{CH_{2}CO_{2}Pr}$	Me	Me
II-13	\mathbf{Pr}^{i}	H	H	Н	H	$\mathrm{CH_2CO_2Pr'}$	Me	Me
II-14	\Pr^i	H	H	H	H	$\mathrm{CH_2CO_2Bu}^t$	Me	Me
II-15	$-\mathbf{Pr}^{i}$	Н	Н	H	H	$CH_2CO_2CH=CH_2$	Me	Me
II-16	$\cdot \mathbf{Pr}^{i}$	H	Н	H	H	CH ₂ CO ₂ CH ₂ CH=CH ₂	Me	Me
II-17	\Pr^i	Н	Н	Н	H	CH ₂ CO ₂ (CH ₂) ₂ OMe	Me	Me
II-18	\Pr^i	H	Н	Н	Н	CH(Me)CO ₂ Me	Me	Me
II-19	Pr^i	H	Н	H	Н	$C(Me)_2CO_2Et$	Me	Me
II-20	Pr^i	Н	Н	Н	Н	CH ₂ CONH ₂	Me	Me
II-21	Pr^i	H	Н	H	Н	CH ₂ CONMe ₂	Me	Me
II-22	Pr^i	Н	Н	H	Н	CH ₂ CON(Me)OMe	Me	Me
II-23	\mathbf{Pr}^{i}	H	Н	H	H	$\mathrm{CH_2CF_3}$	Me	Me
II-24	\mathbf{Pr}^{i}	H	Н	Н	H	CH ₂ CH ₂ OCOMe	Me	Me
II-25	Pr^i	H	Н	H	H	$\overline{\mathrm{CH_2CH_2OPh}}$	Me	Me
II-26	Pr^i	H	Н	H	Н	CH ₂ CH ₂ OCH=CH ₂	Me	Me
II-27	Pr^i	Н	Н	Н	Н		Me	Me
II-28	\Pr^i	Н	Н	Н	Н	−CH ₂ Me	Me	Me
II-29	\mathbf{Pr}_{\cdot}^{i}	Н	Н	Н	Н	$-CH_{2} \xrightarrow{O} Me$ $-CH_{2} \xrightarrow{N^{-}O} Bu^{i}$	Me	Me
II-30	\Pr^{j}	Н	Н	H	Н	$-CH_2 \xrightarrow{Bu^t} Bu^t$	Me	Me
II-31	\Pr^i	Н	Н	Н	Н	−CH ₂ Ph	Me	Me
II-32	\Pr^i	Н	Н	Н	Н	−CH ₂ -√NMe	Me	Me
II-33	\Pr^i	Н	Н	Н	Н	$-CH_{2} \xrightarrow{N-O} Bu^{r}$ $-CH_{2} \xrightarrow{N-O} Me$ $-CH_{2} \xrightarrow{N-O} Me$ $-CH_{2} \xrightarrow{N-O} Pr^{r}$	Me	Me

$$R^2$$
 R^3
 R^4
 R^5
 R^7
 R^8
 R^8
 R^8

No	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	R ⁴	R^5	$ m R^6$	R^7	R ⁸
NO			11	II.	11	Dul.	10	10
II-34	\Pr^i	Н	Н	H	H	-CH ₂ -O-N	Me	Me
II-35	\Pr^i	Н	Н	Н	Н	$-CH_{2} \xrightarrow{O-N}^{Bu'}$ $-CH_{2} \xrightarrow{O-N}^{Bu'}$	Me	Me
II-36	\mathbf{Pr}^i	Н	Н	Н	Н	-CH ₂ -N Bu ^t	Ме	Me
II-37	\mathbf{Pr}^{i}	Н	Н	Н	Н	-CH ₂ CH ₂ -NO	Me	Me
II-38	\Pr^i	Н	Н	Н	Н	-CH ₂ CH ₂ -NO Me -CH ₂ Me	Me	Me
II-39	\Pr^i	H	H	H	H	Allyl	Et	Et
II-40	\Pr^i	H	H	H	H	$\mathrm{CH_{2}CO_{2}Et}$	Et	Et
II-41	\Pr^i	H	H	H	Н	$\mathrm{CH_2CO_2Pr}^i$	Et	Et
II-42	\Pr^i	H	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
II-43	\Pr^i	H	H	H	H	$\mathrm{CH_{2}CH_{2}CO_{2}Et}$	Et	Et
II-44	\Pr^i	Н	Н	Н	H	CH ₂ CH=CHMe	Et	Et
II-45	\Pr^i	Н	Н	H	Η .	$CH_2CH=CMe_2$	Et	Et
II-46	\Pr^i	Н	H	H	H	$CH_2CH_2CH=CH_2$	Et	Et
II-47	Bu^s	H	Н	Н	H	$\mathrm{CH_2CO_2Et}$	Me	Me
II-48	Bu^s	Н	H	H	Н	$\mathrm{CH_2CO_2Bu}^t$	Me	Me
II-49	Bu ^s	H	H	H	Н	Allyl	Et	Et
II-50	Bu^s	Н	Н	H	Н	$\mathrm{CH_{2}CH_{2}OCOMe}$	Et	Et
II-51	Bu ^s	Н	Н	Н	Н	-CH₂CH₂-NO	Et	Et
II-52	H	H	Et	H	H	$\mathrm{CH_2CO_2Et}$	Me	Me
II-53	Н	Pr^i	Н	Н	Н	$\mathrm{CH_{2}CO_{2}Et}$	Me	Me
II-54	NMe_2	Н	H	Н	H	$\mathrm{CH_2CO_2Et}$	Me	Me
II-55	Н	NMe_2	H	Н	Н	$\mathrm{CH_{2}CO_{2}Et}$	Me	Me
II-56	Н	NEt ₂	H	Н	H	$\mathrm{CH_{2}CO_{2}Et}$	Me	Me
II-57	H	H	Et	Н	Н	CH ₂ CO ₂ Bu ^t	Me	Me
II-58	H	\Pr^i	H	Н	H	CH ₂ CO ₂ Bu ^t	Me	Me
II-59	NMe_2	H	H	Н	H	CH ₂ CO ₂ Bu ^t	Me	Me
II-60	Η	NMe_2	H	Н	H	$\mathrm{CH_2CO_2Bu}^t$	Me	Me
II-61	Н	NEt_2	H	Н	H	CH ₂ CO ₂ Bu ^t	Me	Me
II-62	Н	NEt_2	Н	H	H	Allyl	Me	Me
II-63	Me	NEt_2	Н	Н	Н	Allyl	Me	Me
II-64	Me	NMe_2	Н	Н	Н	Allyl	Me	Me
II-65	NMe_2	Н	H	Н .	Н	Allyl	Et	Et
II-66	NMe_2	Н	H	H	Н	CH ₂ CO ₂ Bu ^t	Et	Et
II-67	OMe	Н	H	H	Н	Allyl	Et	Et
II-68	OMe	H	H	H	H	CH ₂ CO ₂ Bu ^t	Et	Et
II-69	Н	H	Et	Н	H	Allyl	Et	Et

[Table 15]

$$R^2$$
 R^3
 R^4
 R^5
 R^7
 R^8
 R^8
 R^8

No	R ¹	\mathbb{R}^2	R ³	R ⁴	\mathbb{R}^5	R^6	R^7	R ⁸
II-70	Н	Н	Et	Н	H	CH ₂ CO ₂ Bu ^t	Et	Et
II-71	H	H	OCF_3	H	H	Allyl	Et	Et
II-72	Н	H	OCF_3	Н	H	$\mathrm{CH_2CO_2Bu}^t$	Et	Et
II-73	NMe ₂	H	Н	H	H	CH ₂ OMe	Et	Et
II-74	Pr^i	H	Н	Н	Н	Allyl	-(CH	2)4-
II-75	NMe ₂	Н	Н	H	H	Allyl	-(CH ₂	2)4-
II-76	NMe ₂	Н	H	Н	H	$\mathrm{CH_2CO_2Bu}^t$	-(CH ₂	
II-77	\Pr^i	H	H	H	H	CH ₂ CO ₂ (CH ₂) ₂ OMe	-(CH	
II-78	\Pr^i	Н	Н	Н	Н	−CH ₂ −O-N Me	-(CH ₂	
II-79	OMe	H	H	H	H	Allyl	-(CH	2)4-
II-80	OMe	Н	H	H	H	$\mathrm{CH_2CO_2Bu}^t$	-(CH	2)4-
II-81	NMe_2	H	Н	H	H	$\mathrm{CH_{2}OMe}$	-(CH	2)4-
II-82	Н	H	Et	H	H	Allyl	-(CH	2)4-
II-83	H	H.	OCF_3	H	H	Allyl	-(CH	2)4-
II-84	NMe_2	H	Н	Н	H	Allyl	-(CH	2)5-
II-85	NMe_2	Н	Н	H	H	$\mathrm{CH_2CO_2Bu}^t$	-(CH ₂	2)5-
II-86	OMe	H	Н	H	H	Allyl	-(CH ₂	2)5-
II-87	OMe	H	H	Н	H	CH ₂ CO ₂ Bu ^t	-(CH	2)5-
II-88	H	Η	Et	Н	Н	Allyl	-(CH	2)5-
II-89	\Pr^i	H	Н	Н	Н	-CH ₂ CH ₂ O-	-(CH ₂	2)5-
II-90	\Pr^i	Н	Н	Н	Н	CH ₂ CH ₂ OH	-(CH;	2)5-
II-91	Н	H	OCF_3	Н	H	Allyl	-(CH ₂	2)5-
II-92	\Pr^{i}	Н	Н	Н	Н	Allyl	(CH ₂) ₂ O(
II-93	\Pr^i	Н	Н	Н	Н	Me	(CH ₂) ₂ O ₀	(CH ₂)
II-94	\Pr^i	Н	Н	Н	Н	$\mathrm{CH_{2}CO_{2}H}$	Et	Et

[Table 16]

	A	$ m R^6$	R^7	R ⁸	
II-95		Allyl	Me	Me	
II-96		$\mathrm{CH_2CO_2Bu}^t$	Me	Me	
II-97		$\mathrm{CH_2CO_2}(\mathrm{CH_2})_2\mathrm{OMe}$	Me	Me	
II-98		Allyl	Et	Et	
II-99		$\mathrm{CH_2CO_2Bu}^t$	Et	Et	
II-100		Allyl	Et	Et	
II-101		Allyl	-(CI	$ m H_2)_4$ -	
II-102		CH₂CO₂Bu ^t	-(CI	H ₂) ₄ -	
II-103		Allyl	-(CH ₂) ₄ -		
II-104		Allyl	-(CI	-(CH ₂) ₅ -	
II-105		Allyl	Allyl -(CH ₂) ₅		

[Table 17]

$$R^2$$
 R^3
 R^4
 R^5
 R^6

$$R^2$$
 R^3
 R^4
 R^5
 R^7
 R^8
 R^8
 R^8

	R¹	\mathbb{R}^2	R³	R ⁴	R^5	R^6	\mathbb{R}^7	\mathbb{R}^8
II-114	H	SMe	H	H	H	Allyl	Et	Et
II-114 II-115	H	SMe	H	Н	Н	Allyl	-(CH	
II-116	H	SMe	H	H	H	Allyl	-(CH	
II-116	H	H	SMe	H	H	Allyl	-(CH	
II-117	H	H	SMe	H	H	Allyl	-(CH	
II-119	OMe	H	Et	H	H	Allyl	Me	Me
II-120	OMe	H	$\frac{\mathbf{pr}^{i}}{\mathbf{Pr}^{i}}$	H	H	Allyl	Me	Me
II-121	\Pr^i	H	OMe	H	H	Allyl	Me	Me
II-121	$\frac{11}{\mathrm{Pr}^{i}}$	H	OEt	H	H	Allyl	Me	Me
II-123	H	OEt	OEt	H	H	Allyl	Me	Me
II-124	H	OPr	OPr	H	H	Allyl	Me	Me
II-124	H	OMs	OEt	H	H	Allyl	Me	Me
II-126	H	H	(CH ₂) ₂ OEt	H	H	Allyl	Me	Me
II-127	H	OMe	OEt	H	H	Allyl	Et	Et
II-128	H	OEt	OEt	H	H	Allyl	Et	Et
II-129	H	OEt	OPr	H	H	Allyl	Et	Et
II-130	H	OMs	OPr	H	H	Allyl	Et	Et
II-131	H	OPr	OPr	H	H	Allyl	Et	Et
II-132	H	OPr^{i}	OPr	H	H	Allyl	Et	Et
II-133	H	H	(CH ₂) ₂ NMe ₂	H	H	Allyl	Me	Me
II-134	Pr^i	Н	H	Н	·H	CH ₂ CO ₂ Bu'	-(CH	
II-135	Pr^i	Н	Н	Н	Н	Me	-(CH ₂) ₂ N(N	Ie)(CH ₂) ₂ -
II-136	\Pr^i	Н	Н	H	H	Me	-(CH ₂) ₂ N(E	
II-137	F	Н	F	H	H	Allyl	Me	Me
II-138	Н	Cl	Cl	Н	Н	Allyl	Me	Me
II-139	Me	Н	Cl	Н	H	Allyl	Me	Me
II-140	Cl	Н	Me	Н	Н	Allyl	Me	Me
II-141	Н	H	$(CH_2)_2OMe$	H	Н	Allyl	Me	Me
II-142	H	H	\Pr^i	Н	H	Allyl	(CH	2)4-
II-143	Н	Н	\Pr^i	Н	Н	CH ₂ CO ₂ Bu'	-(CH	
II-144	Н	Н	Pr^i	Н	Н	Allyl	Et	Et
II-145	Н	Ĥ	\Pr^i	Н	Н	CH ₂ CO ₂ Bu'	Et	Et
II-146	Н	Н	\Pr^i	Н	Н	Allyl	-(CH	2)5-
II-147	OMe	Н	Н	Н	Н	CH ₂ CO ₂ Bu'	Pr	Pr
II-148	OMe	Н	Н	Н	· H	CH ₂ CO ₂ Bu'	\Pr^i	\Pr^i
II-149	OMe	Н	Н	Н	Н	Allyl	Pr	Pr
II-150	Bus	Н	Н	H	H	Me	$-(CH_2)_2N(M_2)$	$(\mathrm{CH_2})_2$ -

[Table 19]

	A	$ m R^6$	\mathbb{R}^7	R ⁸
II-151		$\mathrm{CSSCH_2CO_2Bu}^t$	-(CI	$H_2)_5$ -
II-152		$\mathrm{CSSCH_2CO_2Bu}^t$	Et	Et
II-153	Pr ⁱ	COSMe	-(CH ₂) ₂ N(I	$ m Me)(CH_2)_2$ -
II-154	Bu ^s	COSMe	-(CH ₂) ₂ N(I	$ m Me)(CH_2)_2$ -

The compounds described in WO 02/053543 are exemplified as the compound represented by the formula (II). Preferable are the compounds described in the following Tables.

[Table 20]

$$\begin{array}{c|c}
 & R^2 \\
 & R^3 \\
 & R^4 \\
 & R^5
\end{array}$$

Compoud No.	\mathbb{R}^2	$ m R^3$	R ⁴	$ m R^{5}$
1-001	H	Me	Me	Me
1-002	H	Me	Me	Et
1-003	Н	Me	Me	nPr
1-004	Н	Me	Me	nBu
1-005	Н	Me	Me	Bn
1-006	Н		Н	nBu
1-007	Н	F	Н	nBu
1-008	Н		Н	nBu
1-009	Н		Н	nBu
1-010	Me	Н	Me	nBu
1-011	Me	Н	Me	nBu

[Table 21]

Compound No.	Structure	Compound No.	Structure
1-012	N S Me Me Me Me	1-016	O N-nBu
1-013	N S Me N Me nBu	1-017	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1-014	O Me N Me nBu	1-019	O N-Bu
1-015	N O N I I I I I I I I I I I I I I I I I		

[Table 22]

Compound No.	\mathbb{R}^3	R^5	Compound No.	R³	R^5
2-001	Me	Me	2-008	Me	Bn
2-002	Me	$\mathbf{E}\mathbf{t}$	2-009	Et	Me
2-003	Me	nPr	2-010	Et	Et
2-004	Me	nBu	2-011	Et	nPr
2-005	Me	iBu	2-012	Et	nBu
2-006	Me	nPent	2-013	Et	Bn
2-007	Me	nHexyl			

[Table 23]

			П		
Compound No.	R ^r	\mathbb{R}^5	Compound No.	Rr	R ⁵
2-014		Me	2-022		nBu
2-015	∑ _o	nBu	2-023	CI	nBu
2-016		nBu	2-024	SO ₂ -	nBu
2-017	Ac	nBu	2-025	O ₂ S. _N	nBu
2-018	H	nBu	2-026	nBu	nBu
2-019	SO ₂ -	nBu	2-027	MeO	nBu
2-020	H ₃ C-SO ₂ -	nBu	2-028	EtO ₂ C-	nBu
2-021		nBu	2-029		nBu

[Table 24]

$$\begin{array}{c|c}
 & R^2 \\
 & R^3 \\
 & R^5
\end{array}$$

Compoud No.	R^2	R³	R ⁴	R^5
2-030	H	H	Н	iPr
2-031	Me	H	Н	nPr
2-032	-CH ₂ OMe	Н	Н	nPr
2-033	H	Н	Н	nBu
2-034	Me	Н	Н	nBu
2-035	H	Me	H	nBu
2-036	H	Br	H	nBu
2-037	Н	<u> </u>	H	nBu

[Table 25]

Compound No	$\mathrm{R^{r}}$	R ⁵	Compound No	Rr	$ m R^5$
3-001		Me	3-009		nBu
3-002		Me	3-010		nBu
3-003		Et	3-011		nHexyl
3-004		Et	3-012		nHexyl
3-005		nPr	3-013		Bn
3-006		nPr	3-014		Bn
3-007		iPr	3-015		Ph
3-008		iPr	3-016		Ph

[Table 26]

Compound No	Rr	\mathbb{R}^3	Compound No	Rr	\mathbb{R}^3
3-033		nBu	3-038		I
3-034		nBu	3-039		
3-035		nPentyl	3-040		
3-036		nPentyl	3-044		CF_3
3-037		I			

[Table 27]

nBu					
Compound No	Rr	R³	Compound No.	R^{r}	R³
3-061	n-Hexyl	O N (CH ₂) ₅ CH ₃ H	3-068		
3-062		O=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3-069		-
3-063			3-070	nBuO	Н
3-064		O N (CH ₂) ₃ CH ₃ (CH ₂) ₃ CH ₃	3-071		Н
3-065		O NE	3-072		$\mathrm{CF_3}$
3-066		O N (CH ₂) ₅ CH ₃	3-073		$\left\langle \begin{array}{c} \overline{C} \\ \overline{C} \end{array} \right\rangle$
3-067		I	3-074		ZZI

[Table 28]

Compound No	Rr	R ⁴	Compound No	R^{r}	R ⁴
3-081		Me	3-084		nHexyl
3-082		nPentyl	3-085		nHexyl
3-083		nPentyl		·	

[Table 29]

Compound No	Structure	Compound No	Structure
3-105	O Me N H O N Me nBu	3-109	O Me N Me N Me
3-106	O Me N H O N Me nBu	3-110	O Me N Me Me
3-107	O Me N Me N Me nBu	3-111	O Me Me N Me nPentyl
3-108	O Me Me H O N Me nBu	3-112	N Me H N Me nPentyl

[Table 30]

Compound No.	Rr	`Y	Compound No.	R ^r	Y
4-001		-CH ₂ -	4-014		
4-002		-CH ₂ -	4-015		NH
4-003	H ₂ N	-CH ₂ -	4-016		NH I
4-004		-CH ₂ -	4-017		_N
4-005		-CH ₂ -	4-018		
4-006		-CH ₂ -	4-019		N nPr
4-007		-CH ₂ -	4-020		N tBu
4-008	cı	$\text{-CH}_2\text{-}$	4-021		
4-009	MeO	-CH ₂ -	4-022		
4-010		-O-	4-023		
4-011		-O-	4-024		O N nPr
4-012	H ₂ N	-0-	4-025		O N tBu
4-013		,N,	4-026)

[Table 31]

			TIDU		
Compound No.	R^{r}	n	Compound No.	R^{r}	n
4-051		1	4-057	но	3
4-052		1	4-058	H ₂ N	3
4-053		3	4-059	но	3
4-054		3	4-060	HO ₂ C	3
4-055	F	3	4-061		6
4-056	F	3	4-062		6

[Table 32]

Compound No.	R^{r}	Compound No.	R ^r
4-101		4-104	H ₂ N
4-102		4-105	но
4-103	F		

[Table 33]

Compound No.	Rr	$ m R^5$	Compound No.	Rr	$ m R^{5}$
4-301		OMe	4-306		N N
4-302		OMe	4-307		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
4-303		\	4-308		₩ N
4-304			4-309		
4-305			4-310		N

[Table 34]

Compound No.	Structure	Compound No.	Structure
4-311	Me O N N N N N N N N N N N N N N N N N N	4-321	N ₃ N O N O N O N O N O N O O O O O O O O
4-312	Me O N N N N N N N N N N N N N N N N N N	4-322	N ₃ O N N N N N N N N N N N N N N N N N N
4-313	Me Me O N H O N nBu	4-323	
4-314	HO N H O N - EB U	4-324	Q N N N N N N N N N N N N N N N N N N N
4-315	HO O N N N N N N N N N N N N N N N N N N	4-325	O N N N N N N N N N N N N N N N N N N N
4-316	O N H O N - RB	4-326	ON HONN
4-317	CI NHON-EBU	4-327	HO N
4-318	O N H O N - n Bu	4-328	HO N
4-319	O H O N h nBu	4-329	O N H O N nBu
4-320	Me Me O N H O N nBu	4-330	N H O N H ₂ N

[Table 35]

Compound No.	Structure	Compound No.	Structure
4-331	O N H O N H ₂ N	4-505	MeO ₂ C O N n-Bu
4-332	HO O N N N N N N N N N N N N N N N N N N	4-506	O N N N N N N N N N N N N N N N N N N N
4-333	HO O N N N N N N N N N N N N N N N N N N		

[Table 36]

Compound No.	R ^r	Compound No.	Rr
5-001	Me	5-011	
5-002		5-012	
5-003	<u></u> μ	5-013	
5-004	F	5-014	H _C O ₂ H
5-005	√ 5	5-015	nBuO-
5-006	Me	5-016	0
5-007	Me	5-017	BnO-
5-008	Me	5-018	H N Br
5-009	F	5-019	ZI
5-010		5-020	SO ₂ NH-

[Table 37]

Compound No.	Structure	Compound No.	Structure
5-101	N H Me Me nBu	5-104	O N Me Me nBu
5-102	H H N Me	5-105	O N N Me nBu
5-103	H N N Me N N Me	5-106	H N Me Me nBu

[Table 38]

Compound No.	R^{r}	Compound No.	$ m R^r$
6-001		6-005	ZH
6-002		6-006	ZI Z
6-003		6-007	0,0
6-004			

[Table 39]

Compound No.	Structure	Compound No.	Structure
7-002	Me O ₂ N Me nBu	7-020	N O N-Bu
7-007	O N H N N N N N N N N N N N N N N N N N	7-021	N S O N-Bu
7-008	N S N N N N N N N N N N N N N N N N N N	7-022	O N-Bu
7-009	N O N N N N N N N N N N N N N N N N N N	7-023	OHC N-nBu
7-019	HO N N N N N N N N N N N N N N N N N N N		

[Table 40]

	n n	
Compound No.	Rr	R ⁵
10-001	0 N 0	nBu
10-002	N	nBu
10-003	Z = \	nBu
10-004	N N N N N N N N N N N N N N N N N N N	. nBu
10-005		nBu
10-006	F	nBu
10-007	<u>o</u>	nBu
10-008	OMe	nBu
10-009	Me	nBu
10-010	ф Т	nBu
10-011	N ₃	nBu
10-012	H ₂ N CH ₃ CO ₂ H	nBu
10-013	CH ₃ CO ₂ H	nBu

[Table 41]

Compound No.	R^{r}	R ⁵
10-014	AcHN	nBu
10-015	MeO ₂ SHN	nBu
10-016	ō-{}-5	nBu
10-017	N N N	nBu
10-018		nBu
10-019		nBu
10-020	₹ E	nBu
10-021		nBu
10-022	N HZ	nBu
10-023		nBu
10-024	H-	nBu

[Table 42]

	R ~				
Compound No.	Rr	R^5			
10-025	NH	nBu			
10-026	S	nBu			
10-027	N.OH	nBu			
10-028	N.OMe	nBu			
10-029	N-OEt	nBu			
10-030		N N N N N N N N N N N N N N N N N N N			
10-031	НО	N			
10-032		nBu			
10-033		nBu			
10-034	Me N	nBu			
10-035	\bigcirc	nBu			
10-036		nBu			
10-037	Me	nBu			
10-038	Et	nBu			
10-039	iPr	nBu			
10-040	tBu	nBu			

[Table 43]

Compound No.	Rr	R ⁵
10-041	\rightarrow	nBu
10-042	Fo	nBu
10-043	F	nBu
10-045	FO	nBu
10-046	F O	nBu
10-047	F 4	nBu
10-048	F ₃ C O	nBu
10-049		nBu
10-050		nBu
10-051		nBu
10-052	OH	nBu
10-053		nBu
10-054	Br	nBu

[Table 44]

H N				
	0 N			
Compound No.	Rr	R^{5}		
10-055	NC	nBu		
10-056	OH OH	nBu		
10-057	ОН	nBu		
10-058		nBu		
10-059	/IIII	nBu		
10-060	,OMs	nBu		
10-061	OMs	nBu		
10-062	N ₃	nBu		
10-063	Z ₁₁ ,	nBu		
10-064	OMe OH OH	nBu		
10-065	OMe	Bu		

[Table 45]

	H To	TO E
Compound No.	Rr	R ⁵
10-066	Et Et	Bu
10-067	OMe	Bu
10-068		Me_O_J
10-069		Me_O_J
10-070	MeO TO TO THE MEO	nBu
10-071	MeO III	nBu
10-072	HO	nBu
10-073	HO OH	nBu
10-074	0,0-0	nBu
10-075	0, 5-0/1	nBu
10-076	CI	nBu

[Table 46]

H				
Compound No.	$ m R^r$	$ m R^5$		
10-077	O-TBDMS OH	nBu		
10-078	O-TBDMS	nBu		
10-079	ÖH NH₂ CH₃CO₂H	nBu		
10-080	NH₂ CH₃CO₂H	nBu		
10-081	NHAc	nBu		
10-082	NHAC	nBu		
10-083	O H	nBu		
10-084	OH	nBu		
10-085	OH JII.	nBu		
10-086	CI	nBu		

[Table 47]

<u> </u>			
Compound No.	R^{r}	$ m R^5$	
10-087		nBu	
10-088	E/	nBu	
10-089		nBu	
10-090	CI	nBu	
10-091	O-TBDMS	nBu	
10-092	O-TBDMS	nBu	
10-093	CI ÖH	nBu	
10-094	ÇCI₃ O ÖH	nBu	
10-095	CCI ₃	nBu	
10-096	F—	nBu	
10-097	CI	nBu	

[Table 48]

Compound No.	Rr	R^5
10-098	OHC, CI	nBu
10-099	CI	nBu
10-100	OHC O	nBu
10-101		\
10-102		но
10-103	CF ₃	nBu
10-104	MeO-	nBu
10-105	Br—O	nBu
10-106		Me O
10-107		Me O
10-108	Bn	nBu
10-109	HN CH₃CO₂H	nBu

[Table 49]

Compound No.	Rr	R ⁵
10-110	Ac `N	nBu
10-111	Bz N	nBu
10-112	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	nBu
10-113		nBu
10-114	Ms N	nBu
10-115	0.0	nBu
10-116	Me N	nBu
10-117		CI
10-118		MsO
10-119		AcS
10-120		N ₃
10-121		CH ₃ CO ₂ H H ₂ N
10-122		AcHN~
10-123	F ₃ C N	nBu
10-124		BzHN

[Table 50]

Compound No.	Rr	R ⁵		
10-125		N H		
10-126	\bigcirc	NH N		
10-127		F ₃ C N N		
10-128	Br	nBu		
10-129	OCHF ₂	nBu		
10-130	OCF ₃	nBu		
10-131	Br S	nBu		
10-132	S	nBu		
10-133		nBu		
10-134		MsHN		
10-135		O.S. N.		
10-136	AcS	. nBu		
10-137	AcS	nBu		

[Table 51]

Compound No.	R ^r	$ m R^5$
10-138		Me Me
10-139		
10-140	\bigcirc	\\
10-141	Bn	Me Me
10-142	Bn N	
10-143	HN CH₃CO₂H	Me Me
10-144	Ac N	Me Me
10-145	Ms N	Me Me
10-146	F ₃ C N	Me Me
10-147	HN CH₃CO₂H	
10-148	Ac. _N	
10-149	Ms N	

[Table 52]

Compound No.	Rr	R ⁵
10-150	F ₃ C N	
10-151	Me	nBu
10-152		nBu
10-153	Br	Me ^O
10-157	Br N	AcS
10-158	Br N	N ₃
10-159	Br	AcHN
10-160	Br	MsHN
10-161	Br	F₃C N N
10-162	Me N	nBu
10-163	Me N	nBu
10-164		онс
10-165		OH Me

[Table 53]

Compound No.	R ^r	\mathbb{R}^5
10-165	\bigcirc	OH Me
10-166	\bigcirc	Me
10-167		но
10-168		MsO
10-169		F~
10-170		NC ~
10-171		N ₃
10-172		AcHN
10-173		MsHN
10-174		F ₃ C N H
10-175	ОН	nBu
10-176		nBu
10-177	OH	nBu

[Table 54]

Compound No.	Rr	$ m R^5$
10-178		nBu
10-179		nBu
10-180		nBu

[Table 55]

	<u>R</u>		
Compound No.	Rr	$ m R^5$	
11-001	X	nBu	
11-002	X	Bn	
11-003	X		
11-004	HO	\rightarrow	
11-005	ō		
11-006			
11-007	НО	nBu	
11-008	CI	nBu	
11-009	Me Me		
11-010	4		
11-011			

[Table 56]

Compound No.	Rr	R ⁵
11-012	Me Me	\rightarrow
11-013	*	
11-014		
11-015		Me Me
11-016		Me Me
11-017		X
11-018		X
11-019		
11-020		
11-021		
11-022		
11-023	H	nBu
11-024		
11-025		Bn

[Table 57]

Compound No.	R^{r}	\mathbb{R}^3
12-001		C
12-003		Et
12-004		Et

[Table 58]

Compound No.	Structure	Compound No.	Structure
13-001		13-011	
13-002	O HO N	13-012	O H O N
13-003		13-013	H N N Me
13-004	O HON	13-014	T N Me O O Me
13-005	H N N Me O O N Me	13-015	Me O O E E E E E E E E E E E E E E E E E
13-006	CI O N Me	13-016	Me O H O N H O Me
13-007	BnO N CI	13-017	Me O N Me
13-008	FONON	13-018	Me O H O N Me
13-009	O HO N	13-019	OMe N O N
13-010	O HO N	13-020	HO NO N

[Table 59]

Compound No.	Structure	Compound No.	Structure
13-021	HO HO NO HO	13-031	HO N N
13-022	O H O N N N N N N N N N N N N N N N N N	13-032	N H O N
13-023	NH ON N	13-033	CI N N N N N N N N N N N N N N N N N N N
13-024	THO N	13-034	NH ON N
13-025	HO NHONN	13-035	HO N N N N N N N N N N N N N N N N N N N
13-026	CI NH ON N	13-036	
13-027	CI O N	13-037	
13-028	CI NHONN	13-038	
13-029		13-039	
13-030	ON NO N	13-040	O H O N H O

[Table 60]

Compound No.	Structure
13-041	N ₃ N _O N _N
13-042	O N H O N
13-043	N H O N
13-044	
13-045	ON HOWN
13-046	O H O N
13-047	ON HOUND
13-048	OH OH OH
13-049	CI O N H O N N
13-050	CI O N N O N N

When using a compound of the present invention in treatment, it can be formulated into ordinary formulations for oral and parenteral administration. A pharmaceutical composition containing a compound of the present invention can be in the form for oral and parenteral administration. Specifically, it can be formulated into formulations for oral administration such as tablets, capsules, granules, powders, syrup, and the like; those for parenteral administration such as injectable solution or suspension for intravenous, intramuscular or subcutaneous injection, inhalant, eye drops, nasal drops, suppositories, or percutaneous formulations such as ointment.

When the compound uesed as an active ingredient has a week cannabinoid type 1 receptor agonistic effect and a strong cannabinoid type 2 receptor agonistic effect, all kind of formulations.thereof can be used. Especially, it can be used as oral administration such as tablets, capsules, granules, powders, syrup. When the compound uesed as an active ingredient has a strong cannabinoid type 1 receptor agonistic effect, preferable is a topical administration, especially, preferable are ointment, cream, lotion, and the like.

In preparing the formulations, carriers, excipients, solvents and bases known to one ordinary skilled in the art may be used. Tablets are prepared by compressing or formulating an active ingredient together with auxiliary components. Examples of usable auxiliary components include pharmaceutically acceptable excipients such as binders (e.g., cornstarch), fillers (e.g., lactose, microcrystalline cellulose), disintegrates (e.g., starch sodium glycolate) or lubricants (e.g., magnesium stearate). Tablets may be coated appropriately. In the case of liquid formulations such as syrups, solutions or suspensions, they may contain suspending agents (e.g., methyl cellulose), emulsifiers (e.g., lecithin), preservatives and the like. In the case of injectable formulations, it may be in the form of solution or suspension, or oily or aqueous emulsion, which may contain suspension-stabilizing agent or dispensing agent, and the like. In the case of an inhalant, it is formulated into a liquid formulation applicable to an inhaler. In the case of eye drops, it is formulated into a solution or a suspension.

Although an appropriate dosage of the present compound varies depending on the administration route, age, body weight, sex, or conditions of the patient, and the kind of drug(s) used together, if any, and should be determined by the physician in the end, in the case of oral administration, the daily dosage can generally be between about 0.01 - 100 mg, preferably about 0.01 - 10 mg, more preferably about 0.1 - 10 mg, per kg body weight. In the case of parenteral administration, the daily dosage can generally be between about 0.001 - 100 mg, preferably about 0.001 - 1 mg, more preferably about 0.01 - 1 mg, per kg body weight. The daily dosage can be administered in 1 - 4 divisions.

Best Mode for Carrying Out the Invention

The compounds represented by the formula (I) can be synthesized by the preparation method described in WO 01/19807 or WO 02/072562. The compounds represented by the formula (II) can be synthesized by the preparation method described in WO 02/053543.

Example

5

10

15

25

30

Test example

20 Experimental Examples 1, 2 and 3: Effect on antigen-induced bronchial hyperresponsiveness, inflammatory cell infiltration and mucus secretion in BN rats (Acute model)

Antigen-induced bronchial hyperresponsiveness in BN rats: Brown Norway (BN) rats (Charles River Japan) were actively sensitized by the intraperitoneal injection of 1 mL mixture containing aluminum hydroxide gel (1 mg) and ovalbumin (0.1 mg, OVA). Ten days later, antigen challenge was performed by the inhalation of an aerosolized 1% OVA solution for 30 min using an ultrasonic nebulizer. ACh was intravenously injected to rats 24 h after antigen challenge under sodium pentobarbital anesthesia (80 mg/kg, i.p.) by increasing doses of ACh every 5 min, then bronchoconstrictor response observed immediately after each ACh injection was measured by the method of Konzett &

Rössler with some modifications. Briefly, trachea of rats was incised and a cannula was attached to lung side. An artificial respirator (SN-480-7, Shinano) was connected to the cannula, and then a fixed amount of air (tidal volume: 3 mL, ventilation frequency: 60 times/min) continuously insufflated to maintain respiration. The insufflation pressure overflowed from inhalation tube was monitored by a pressure transducer (TP-400T, Nihon Kohden) and recorded on a recorder (WT-645G, Nihon Kohden) through a carrier amplifier (AP-601G, Nihon Kohden). Test compounds were administered orally once 1 h before antigen challenge. The area under the curve (AUC) calculated from dose-response curve for ACh was compared between vehicle-treated control group and test compound-treated group, and then statistical significance was analyzed concerning inhibitory effect on bronchial hyperresponsiveness.

Compound I-270 exhibited a significant effect (P<0.01) at a dose of 100 mg/kg. Compound 4-320 exhibited a significant effect (P<0.01) at a dose of 10 mg/kg.

Antigen-induced airway inflammatory cell infiltration in BN rats: After finishing experiment mentioned above, the lungs were washed 3 times with 5 mL of physiological saline through tracheal cannula using injection syringe. Then the cell number in the washing was determined. The preparations for differential cell count were prepared using Cytospin 3 (Shandon). Differential cell counts were performed after May-Grünwald-Giemsa staining, and then statistical significance was analyzed concerning inhibitory effect on airway inflammatory cell infiltration.

Compound 4-320 exhibited a significant effect (P<0.01) at doses of 1 and 10 mg/kg.

Compound 10-051 exhibited a significant effect (P<0.01) at doses of 30 and 100 mg/kg.

25

30

5

10

15

20

Antigen-induced mucus secretion in BN rats: After measurement of bronchial hyperresponsiveness, the lungs were washed 3 times with 5 mL of physiological saline through tracheal cannula using injection syringe, and then the washing was centrifuged. Mucin levels in the supernatants were measured by the method described below: 1) Microtiter plates (Immulon IV) were coated with 1000-fold diluted

supernatants diluted with phosphate buffered saline for 2 h at 37°C, and then blocked with Block-Ace. 2) Plates were washed with phosphate buffered saline containing 0.05% Tween 20 (PBST), and then incubated with 150 μL of 5 μg/mL biontinylated jacalin for 1 h at 37°C. 3) Plates were washed with PBST, and then incubated with 150 μL of a 1/500 dilution of streptavidin-conjugated alkaline phosphatase for 30 min at room temperature. 4) After a final wash with PBST, 200 μL of pNPP liquid substrate system was added. 5) Several minutes later, the reaction was stopped by adding 100 μL of 3N NaOH, and then optical densities were measured at 405 nm). Statistical significance was analyzed concerning inhibitory effect on mucus secretion.

Compound 4-320 exhibited a significant effect (P<0.01) at a dose of 10 mg/kg.

Experimental Examples 4, 5 and 6: Effect on antigen-induced bronchial hyperresponsiveness, inflammatory cell infiltration and mucus secretion in BN rats (Chronic model)

Antigen-induced bronchial hyperresponsiveness in BN rats: BN rats were actively sensitized by the intraperitoneal injection of a mixture containing aluminum hydroxide gel and ovalbumin. Twelve days later, antigen challenge was performed by the inhalation of an aerosolized 1% OVA solution or physiological saline for 30 min using an ultrasonic nebulizer (NE-U12, Omron). To establish chronic bronchial hyerreactivity model, this procedure was repeated 3 times with 1-week intervals. Test compounds were administered orally for 8 days from the day of third antigen challenge. On the day of third antigen challenge, test compounds were administered 1 h before challenge. One hour after last administration of test compounds, forth antigen challenge was performed. Inhibitory effect on bronchial hyperresponsiveness was evaluated 24 h after last antigen challenge by the method described in the section of Experimental Example 1.

Compound I-12 exhibited a significant effect at doses of 30 (P<0.01) and 100 mg/kg (P<0.05).

Compound 4-320 exhibited a significant effect (P<0.01) at a dose of 3 mg/kg.

5

10

15

20

Antigen-induced airway inflammatory cell infiltration in BN rats: After finishing experiment mentioned above, the lungs were washed 3 times with 5 mL of physiological saline through tracheal cannula using injection syringe. Then the cell number in the washing was determined. The preparations for differential cell count were prepared using Cytospin 3 (Shandon). Differential cell counts were performed after May-Grünwald-Giemsa staining, and then statistical significance was analyzed concerning inhibitory effect on airway inflammatory cell infiltration as in the section of Experimental Example 2.

5

10

15

20

25

30

Compound I-12 exhibited a significant effect (P<0.01) at a dose of 100 mg/kg.

Compound 10-051 exhibited a significant effect (P<0.05) at doses of 3 and 30 mg/kg.

Antigen-induced mucus secretion in BN rats: After measurement of bronchial hyperresponsiveness, the lungs were washed 3 times with 5 mL of physiological saline through tracheal cannula using injection syringe, and then the washing was centrifuged. Mucin levels in the supernatants were measured by the method described below: 1) Microtiter plates (Immulon IV) were coated with 1000-fold diluted supernatants diluted with phosphate buffered saline for 2 h at 37°C, and then blocked with Block-Ace. 2) Plates were washed with phosphate buffered saline containing 0.05% Tween 20 (PBST), and then incubated with 150 µL of 5 µg/mL biontinylated jacalin for 1 h at 37°C. 3) Plates were washed with PBST, and then incubated with 150 µL of a 1/500 dilution of streptavidin-conjugated alkaline phosphatase for 30 min at room temperature. 4) After a final wash with PBST, 200 µL of pNPP liquid substrate system was added. 5) Several minutes later, the reaction was stopped by adding 100 µL of 3N NaOH, and then optical densities were measured at 405 nm). Statistical significance was analyzed concerning inhibitory effect on mucus secretion.

Experimental Examples 7, 8 and 9: Effect on antigen-induced bronchial hyperresponsiveness, inflammatory cell infiltration and mucus secretion in guinea pigs (Acute model)

Antigen-induced bronchial hyperresponsiveness in guinea pigs: Guinea pigs (Charles

River Japan) held in an exposure chamber were actively sensitized by the inhalation of an aerosolized 1% OVA solution for 10 min using an ultrasonic nebulizer (NE-U12, Omron) twice with an interval of 1 week. One week later, antigen challenge was performed by inhalation of an aerosolized 1% OVA generated by an ultrasonic nebulizer for 5 min. Test compounds were administered orally 1 h before antigen challenge. In addition, guinea pigs were treated with diphenhydramine (10 mg/kg, i.p.), an antihistamine, to protect the animals from anaphylactic death 10 min before antigen challenge. ACh was intravenously injected to guinea pigs 24 h after antigen challenge under urethane anesthesia (1.4 g/kg, i.p.) by increasing doses of ACh every 5 min, then bronchoconstrictor response observed immediately after each ACh injection was measured by the method of Konzett & Rössler with some modifications. Briefly, trachea of guinea pigs was incised and a cannula was attached to the lung side. An artificial respirator (SN-480-7, Shinano) was connected to the cannula, and then a fixed amount of air (tidal volume: 4 mL, ventilation frequency: 60 times/min) continuously insufflated to maintain respiration. The insufflation pressure overflowed from inhalation tube was monitored by a pressure transducer (TP-400T, Nihon Kohden) and recorded on a recorder (WT-645G, Nihon Kohden) through a carrier amplifier (AP-601G, Nihon Kohden). The area under the curve (AUC) calculated from dose-response curve for ACh was compared between vehicle-treated control group and test compound-treated group, and then statistical significance was analyzed concerning inhibitory effect on bronchial hyperresponsiveness.

Compound I-12 exhibited a significant effect (P<0.05) at a dose of 10 mg/kg.

Compound 4-320 exhibited a significant effect at doses of 1 (P<0.01) and 10 mg/kg (P<0.05).

25

30

20

5

10

15

Antigen-induced airway inflammatory cell infiltration in guinea pigs: After finishing experiment mentioned above, the lungs are washed 3 times with 10 mL of physiological saline through tracheal cannula using injection syringe. Then the cell number in the washing was determined. The preparations for differential cell count were prepared using Cytospin 3 (Shandon). Differential cell counts were performed after May-

Grünwald-Giemsa staining, and then statistical significance was analyzed concerning inhibitory effect on airway inflammatory cell infiltration.

Compound I-12 exhibited a significant effect (P<0.05) at a dose of 10 mg/kg.

Compound I-270 exhibited a significant effect (P<0.05) at a dose of 10 mg/kg.

5 Compound 4-320 exhibited a significant effect at doses of 1 (P<0.05) and 10 mg/kg (P<0.01).

Compound 10-051 exhibited a significant effect (P<0.05) at a dose of 30 mg/kg.

10

15

20

25

30

Antigen-induced mucus secretion in guinea pigs: After measurement of bronchial hyperresponsiveness, the lungs are washed 3 times with 10 mL of physiological saline through tracheal cannula using injection syringe, and then the washing was centrifuged. Mucin levels in the supernatants were measured by the method described below: 1) Microtiter plates (Immulon IV) were coated with 1000-fold diluted supernatants diluted with phosphate buffered saline for 2 h at 37°C, and then blocked with Block-Ace. 2) Plates were washed with phosphate buffered saline containing 0.05% Tween 20 (PBST), and then incubated with 150 µL of 5 µg/mL biontinylated jacalin for 1 h at 37°C. 3) Plates were washed with PBST, and then incubated with 150 µL of a 1/500 dilution of streptavidin-conjugated alkaline phosphatase for 30 min at room temperature. 4) After a final wash with PBST, 200 µL of pNPP liquid substrate system was added. 5) Several minutes later, the reaction was stopped by adding 100 µL of 3N NaOH, and then optical densities were measured at 405 nm). Statistical significance was analyzed concerning inhibitory effect on mucus secretion.

Experimental Examples 10, 11 and 12: Effect on antigen-induced bronchial hyperresponsiveness, inflammatory cell infiltration and mucus secretion in guinea pigs (Chronic model)

Antigen-induced bronchial hyperresponsiveness in guinea pigs: Guinea pigs held in an exposure chamber were actively sensitized by the inhalation of an aerosolized 1% OVA solution for 10 min using an ultrasonic nebulizer (NE-U12, Omron) twice with an interval of 1 week. One week and 2 weeks later, antigen challenge was performed twice

by inhalation of an aerosolized 1% OVA generated by an ultrasonic nebulizer for 5 min. Test compounds were administered orally for 8 days from the day of first antigen challenge. On the day of each antigen challenge, test compounds were administered 1 h before challenge. Guinea pigs were also treated with diphenhydramine (10 mg/kg, i.p.), an antihistamine, to protect the animals from anaphylactic death 10 min before each antigen challenge. Inhibitory effect on bronchial hyperresponsiveness was evaluated 24 h after last antigen challenge by the method described in the section of Experimental Example 7. The area under the curve (AUC) calculated from dose-response curve for ACh was compared between vehicle-treated control group and test compound-treated group, and then statistical significance was analyzed concerning inhibitory effect on bronchial hyperresponsiveness.

5

10

15

20

25

30

Compound I-12 exhibited a significant effect (P<0.05) at a dose of 30 mg/kg.

Antigen-induced airway inflammatory cell infiltration in guinea pigs: After finishing experiment mentioned above, the lungs are washed 3 times with 10 mL of physiological saline through tracheal cannula using injection syringe. Then the cell number in the washing was determined. The preparations for differential cell count were prepared using Cytospin 3 (Shandon). Differential cell counts were performed after May-Grünwald-Giemsa staining, and then statistical significance was analyzed concerning inhibitory effect on airway inflammatory cell infiltration.

Compound I-12 exhibited a significant effect (P<0.01) at a dose of 30 mg/kg.

Antigen-induced mucus secretion in guinea pigs: After measurement of bronchial hyperresponsiveness, the lungs are washed 3 times with 10 mL of physiological saline through tracheal cannula using injection syringe, and then the washing was centrifuged. Mucin levels in the supernatants were measured by the method described below: 1) Microtiter plates (Immulon IV) were coated with 1000-fold diluted supernatants diluted with phosphate buffered saline for 2 h at 37°C, and then blocked with Block-Ace. 2) Plates were washed with phosphate buffered saline containing 0.05% Tween 20 (PBST), and then incubated with 150 μL of 5 μg/mL biontinylated jacalin for 1

h at 37°C. 3) Plates were washed with PBST, and then incubated with 150 μL of a 1/500 dilution of streptavidin-conjugated alkaline phosphatase for 30 min at room temperature. 4) After a final wash with PBST, 200 μL of pNPP liquid substrate system was added. 5) Several minutes later, the reaction was stopped by adding 100 μL of 3N NaOH, and then optical densities were measured at 405 nm). Statistical significance was analyzed concerning inhibitory effect on mucus secretion.

Compound I-12 exhibited a significant effect (P<0.01) at a dose of 30 mg/kg.

Experimental Example 13: Bronchodilating effect in guinea pigs

Under urethane anesthesia (1.4 g/kg, i.p.), ACh was intravenously injected to guinea pigs by increasing doses of ACh every 5 min, then bronchoconstrictor response observed immediately after each ACh injection was measured by the method of Konzett & Rössler with some modifications. Briefly, trachea of guinea pigs was incised and a cannula was attached to the lung side. An artificial respirator (SN-480-7, Shinano) was connected to the cannula, and then a fixed amount of air (tidal volume: 4 mL, ventilation frequency: 60 times/min) continuously insufflated to maintain respiration. The insufflation pressure overflowed from inhalation tube was monitored by a pressure transducer (TP-400T, Nihon Kohden) and recorded on a recorder (WT-645G, Nihon Kohden) through a carrier amplifier (AP-601G, Nihon Kohden). Test compounds were administered orally 1 h before ACh injection, then the effect on the dose-response curve of ACh was examined. Statistical significance was analyzed concerning broncohdilating effect in guinea pigs.

Compound 4-320 exhibited a significant effect (P<0.01) at a dose of 10 mg/kg.

25 Formulation example

The following formulation examples 1 to 8 are provided to further illustrate formulation example and are not to be construed as limiting the scope of the present invention. The term "an active ingredient" means a compound of the present invention, a tautomer, a prodrug, a pharmaceutical acceptable salt, or a solvate thereof.

5

10

15

Formulation example 1

Hard gelatin capsule are prepared using the following ingredients.

			Dosage
			(mg/capsule)
5	Ingredients	An actve ingredient	250
		Starch (dry)	200
		Magnesium stearate	10
		Total	460 mg

10 Formulation 2

Tablets are prepared using the following ingredients.

			Dosage
		•	(mg/tablet)
	Ingredients	An actve ingredient	250
15		Cellulose (microcrystalline)	400
		Silicon dioxide (fume)	10
		Stearic acid	<u>5</u>
		Total	665 mg

These ingredients are mixed and condensed to prepare tablets of 665 mg.

Formulation 3

20

30

Aerosol solutions are prepared using the following ingredients.

			<u>Weight</u>
	Ingredients	An actve ingredient	0.25
25		Ethanol	25.75
		Properanto 22 (chlorodifluorometahne)	74.00
		Total	100.00

An active ingredient and ethanol are mixed, and the mixture is added into a part of properanto 22, cooled at -30 °C, transferred to packing equipment. The amount needed is provided to stainless steel vessel, diluted with residual properanto 22. The

bubble unit is insalled to vessel.

Formulation 4

Tablets containing an active ingredient 60 mg are prepared as follows.

5	Ingredients	An active ingredient	60 mg
		Starch	45 mg
		Microcrystal cellulose	35 mg
		Polyvinylpyrrolidone (10% aqueous solution)	4 mg
		Carboxymethyl starch sodium salt	4.5 mg
10		Magnesium stearate	$0.5~\mathrm{mg}$
		Talc	1 mg
			150 mg

An active ingredient, Starch, and cellulose are made pass through a No.45 mesh U.S. sieve and then mixed sufficiently. The resulting mixture is mixed with a polyvinylpyrrolidone aqueous solution, made pass through a No.14 mesh U.S. sieve. The obtained granule is dried at 50 °C, made pass through a No.18 mesh U.S. sieve. To the granule are added carboxymethyl starch-Na, Magnesium stearate, and talc made pass through a No.60 mesh U.S. sieve, and the mixture was mixed. The mixed powder is compressed by tableting equipment to yield tablets of 150 mg.

20

30

15

Formulation 5

Capsuls containing an active ingredient 80 mg are prepared as follows.

	Ingredients	An active ingredient	80 mg
		Starch	59 mg
25		Microcrystal cellulose	59 mg
		Magnesium stearate	<u>2 mg</u>
		Total	200 mg

An active ingredient, Starch, cellulose, and magnesium stearate are mixed, made pass through a No.45 mesh U.S. sieve, and then packed to hard gelatin capsuls at amount of 200 mg/capsul.

Formulation 6

Suppository containing an active ingredient 225 mg are prepared as follows.

Ingredients An active ingredient 225 mg
Saturated fattyacid glyceride 2000 mg
Total 2225 mg

An active ingredient is made pass through a No.60 mesh U.S. sieve, suspended in saturated fattyacid glyceride dissolved by heating at a minimum of necessity. The

mixture is cooled in the mould of 2mg.

10

5

Formulation 7

Suspension containing an active ingredient 50 mg are prepared as follows.

Ingre	dients	An active ingredient	50 mg
		Carboxymethylcellulose sodium salt	50 mg
15		Syrupus	$1.25~\mathrm{mL}$
		Benzoic acid solution	$0.10~\mathrm{mL}$
		Aroma chemical	q.v.
		Pigmentum	q.v
		Water	
20		Total	5 mL

An active ingredient is made pass through a No.60 mesh U.S. sieve, mixed with carboxymethylcellulose sodium salt and to prepare smoothly paste. To the mixture are benzoic acid solution and syrupus which are diluted with a part of water, and the mixture is stirred. To the mixture is residual water to prepare necessary volume.

25 volume

Formulation 8

Intravenous formulations are prepared as follows.

	Ingredients	An active ingredient	100 mg
30		Saturated fattyacid glyceride	1000 ml

Usually a solution of ingredients above described is administered intravenously to a patient by the speed of 1 ml/min.

Industrial Applicability

5

It was found that thiazine derivatives and pyridone derivatives having cannabinoid receptor agonistic acitivity exibit the effect as an inhibitor for inflammatory cell infiltration in the respiratory tract, an inhibitor for hyperirritability in the respiratory tract, a muciparous inhibitor, or a bronchodilator.