CS202: COMPUTER ORGANIZATION

Chapter 3

Arithmetic operations on Integers

Datapath

Arithmetic Operations on Integers

- Operations on integers
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow

Integer Addition

• Example: 7 + 6

Overflow

- please write down the 8-bit signed integer addition:
- 0100 0000_{bin}+0100 0000_{bin}=?
- 1000 0000_{bin}+1000 0000_{bin}=?
- 0100 0000_{bin}+1100 0000_{bin}=?
- 1100 0000_{bin}+1100 0000_{bin}=?

Please write down the equations in binary and decimal.

Overflow

- Examples in last page: 0 on the MSB represent positive
 - ♦ 8-bit signed integer range: -128 ~ 127
 - ◆ 0100 0000_{bin}+0100 0000_{bin}=1000 0000_{bin} 64 + 64= -128 Overflow
 - $1000\ 0000_{bin} + 1000\ 0000_{bin} = (1)0000\ 0000_{bin} 128 + (-128) = 0$ Overflow
 - \bullet (0100 0000_{bin}+1100 0000_{bin}=(1)0000 0000_{bin} 64+ (-64)= 0 No overflow
 - ◆ 1100 0000_{bin}+1100 0000_{bin}=(1)1000 0000_{bin} -64+(-64)=-128 No overflow
- Overflow if result out of range
 - no overflow, if ddding +ve and –ve operands
 - Overflow, if
 - Adding two +ve operands, get –ve operand
 - Adding two -ve operands, get +ve operand

Only two types cause overflow. np will not cause overflow p+p=n nnp

Carry does
NOT have to do
with overflow.
Just check
whether the
real value is in
the valid range

1-bit adder

$$Sum = (a \cdot \overline{b} \cdot \overline{CarryIn}) + (\overline{a} \cdot b \cdot \overline{CarryIn}) + (\overline{a} \cdot \overline{b} \cdot CarryIn) + (a \cdot b \cdot CarryIn)$$

$$CarryOut = (b \cdot CarryIn) + (a \cdot CarryIn) + (a \cdot b)$$

	Inputs	lower digit	Outputs		
а	b	Carryln	CarryOut	Sum	Comments
0	0	0	0	0	$0 + 0 + 0 = 00_{two}$
0	0	1	0	1	$0 + 0 + 1 = 01_{two}$
0	1	0	0	1	$0 + 1 + 0 = 01_{two}$
0	1	1	1	0	$0 + 1 + 1 = 10_{two}$
1	0	0	0	1	$1 + 0 + 0 = 01_{two}$
1	0	1	1	0	$1 + 0 + 1 = 10_{two}$
1	1	0	1	0	$1 + 1 + 0 = 10_{two}$
1	1	1	1	1	1 + 1 + 1 = 11 _{two}

1-bit Adder

1-bit adder – version 2

1-bit ALU and 32-bit ALU

- ALU: arithmetic logical unit
- 1-bit ALU and 32-bit ALU
 - ◆ If op = 0, o = a & b (and)
 - ◆ If op = 1, o = a | b (or)
 - ◆ If op = 2, o = a + b (add)

Integer Subtraction

- Add negation of second operand
- Example: 7 6 = 7 + (-6)

+7: 0000 0000 ... 0000 0111

<u>-6: 1111 1111 ... 1111 1010</u>

+1: 0000 0000 ... 0000 0001

- Overflow if result out of range
 - No overflow, if subtracting two +ve or two –ve operands
 - Overflow, if:

Only two circumstances

- Subtracting +ve from –ve operand, and the result sign is 0 (+ve)
- Subtracting –ve from +ve operand, and the result sign is 1 (-ve)

Dealing with Overflow

- Some languages (e.g., C) ignore overflow
 - Use MIPS addu, addiu, subu instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
 - Use MIPS add, addi, sub instructions
 - On overflow, invoke exception handler
 - Save PC in exception program counter (EPC) register
 - Jump to predefined handler address
 - mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action
- Note: addiu: "u" means it doesn't generate overflow exception, but the immediate can be a signed number

a outlo hoppened. it nil automatichy
which is in the pc
then return check in fig represented by RGB: 8 bit for R&G&B

brightness 1: add to

Arithmetic for Multimedia-SIMD

To make efficiency very high

- Graphics and media processing operates on vectors of 8-bit and 16-bit data
 - Use 64-bit adder, with partitioned carry chain
 - Operate on 8×8 -bit, 4×16 -bit, or 2×32 -bit vectors
 - SIMD (single-instruction, multiple-data)
 - addv rd, rs, rt

8-bit							
+							
=							

Arithmetic for Multimedia – Saturating Operation

- Pixel representation: Saturating operation's application example
 - RGB, each using 8 bit to represent, range: 0-255
- Saturating operations
 - On overflow, result is largest representable value
 - Instead of 2s-complement modulo arithmetic
 - E.g., change the volume and brightness in audio or video
 - Original brightness of three pixels: 100, 150, 200, make them brighter by adding 100, the result should be 200, 250, 44? Or 200, 250, 255?

Start with long-multiplication approach

Multiplication Hardware

Optimized Multiplier

Perform steps in parallel: add/shift

Faster Multiplier

- The previous algorithm requires a clock to ensure that the earlier addition has completed before shifting
- This algorithm can quickly set up most inputs – it then has to wait for the result of each add to propagate down – faster because no clock is involved
- high transistor cost

Faster Multiplier

- Uses multiple pipelined adders
 - Cost/performance tradeoff

MSB and LSB can be dropped automatically

- Can be pipelined
 - Several multiplication performed in parallel

MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32 bits $\sqrt{2} \times 3 \times 1$
- Instructions
 - ◆ mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - ◆ mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - ◆ mul rd, rs, rt When result is 32 bits
 - Least-significant 32 bits of product -> rd

Division

n-bit operands yield *n*-bit quotient and remainder

- Check for 0 divisor
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes <
 0, add divisor back

Both divisions and multiple.

- Signed division We calculate first then add the sign
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

Divide Example

put at MSB = >1613

26

Divide 7_{dec} (0000 0111_{bin}) by 2_{dec} (0010_{bin})

Iter	Step	Quot	Divisor 2	Remainder
0	Initial values	0000	0010 0000	0000 0111
1	Rem = Rem – Div	0000	0010 0000	1110 0111€
	Rem < 0 → +Div, shift 0 into Q	0000	0010 0000	0000 01114
	Shift Div right	0000	0001 0000	0000 0111
2	Same steps as 1	0000	0001 0000	1111 0111
		0000	0001 0000	0000 0111
		0000	0000 1000	0000 0111
3	Same steps as 1	0000	0000 0100	0000 0111
4	Rem = Rem – Div	0000	0000 0100	0000 0011
	Rem >= 0 → shift 1 into Q	0001	0000 0100	0000 0011
	Shift Div right	0001	0000 0010	0000 0011
5	Same steps as 4	0011	0000 0001	0000 0001

for n bit. do n+1 times operation

Optimized Divider

Signed Division

- $(+7) \div (-2) = (-3) \cdots (+1)$
- $(-7) \div (-2) = (+3) \cdots (-1)$
- The quotient is +, if the signs of divisor and dividend agrees, otherwise, quotient is –
- The sign of the remainder matches that of the dividend.

Faster Division

- Can't use parallel hardware as in multiplier
 - Subtraction is conditional on sign of remainder
- Faster dividers (e.g. SRT devision) generate multiple quotient bits per step
 - Still require multiple steps

MIPS Division

- Use HI/LO registers for result
 - HI: 32-bit remainder
 - LO: 32-bit quotient
- Instructions
 - ♦ div rs, rt / divu rs, rt
 - No overflow or divide-by-0 checking
 - Software must perform checks if required
 - Use mfhi, mflo to access result

Summary

- Operations on integers
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow