РК ЭВМ

ЛИНК НА ПРЕЗЫ http://e-learning.bmstu.ru/moodle/course/view.php?id=122

1. Классификация ЭВМ. Основные характеристики ЭВМ(1.10-1.12)	2
2. Мультиплексоры и дешифраторы(2.19-2.21)	2
3. Счётчики(2.11-2.14)	3
4. Триггеры (RS, T, D, JK)(2.1-2.5)	4
5. Методы организации доступа в запоминающие устройства (адресная, стеко и ассоциативная организации доступа)(3.2,3.4-3.6)	вая 6
6. Динамические запоминающие устройства с произвольной выборкой (DRAM 3Я динамической памяти.(3.27-3.29)	M). 8
7. Диаграммы работы DRAM,FPM DRAM,SDRAM,DDR SDRAM(3.34-3.37)	9
8. Кэш с произвольной загрузкой, прямым размещением и наборно-ассоциативный кэш(3.78-3.80)	11
9. Страничная, сегментная и сегментно-страничная организация виртуальной памяти(3.83-3.87)	13
10. Общие принципы построения современных ЭВМ.(1.11,4.1,4.2,4.4)	14
11. ЭВМ с непосредственными связями и магистральной структурой. Основны тенденции развития ЭВМ(4.5,4.6,4.9)	ые 15
12. RISC, CISC, VLIW архитектура(4.10-4.11)	16
13. Назначение и обобщенная структура процессорного устройства. Микропроцессор. Классификация микропроцессорных СБИС(5.4-5.5)	17
14. Форматы команд. Типы команд.(4.18-4.20)	18
15. Способы адресации: непосредственная, прямая, регистровая, неявная, косвенная, косвенная регистровая(4.21-4.26)	19
16. Способы адресации со смещением: относительная, базовая регистровая, индексная, автоинкрементная и автодекрементная, индексная с масштабированием(4.21-4.26)	20
17. Архитектура конвейерного суперскалярного процессора. Проблема условнереходов(5.8,5.9,5.12)	ных 23
18. Архитектура конвейерного суперскалярного процессора. Статическое и динамическое предсказание переходов(5.12-5.14)	23
19. Архитектура конвейерного суперскалярного процессора. Конфликты в конвейере. Регистры замещения.(5.7,5.8,5.10,5.11)	24

20. Арифметико-логические устройства (АЛУ). Структура АЛУ для целочисленного умножения (6.6-6.8)

21. Деление с восстановлением и без восстановления остатка. Структура арифметико-логического устройства для целочисленного деления (6.13-6.14)

22. Организация операций сложения, вычитания, умножения и деления над числами с плавающей запятой (6.16-6.19)

23. Аппаратные методы ускоренного умножения: матричные умножители, умножители по схеме Уоллеса (6.6,6.9-6.11)

1. Классификация ЭВМ. Основные характеристики ЭВМ(1.10-1.12)

Классификация ЭВМ по назначению:

Общего назначения (Супер ЭВМ, Минисупер ЭВМ, Мэйнфреймы, Серверы, Рабочие станции, Персональные компьютеры, Ноутбуки, Портативные компьютеры) Специализированные

Классификация ЭВМ по структуре: (Однопроцессорные, Многопроцессорные)
Классификация ЭВМ по режимам работы: (Однопрограммные, Мультипрограммные, Мультипрограммные в составе систем, ЭВМ в системах реального времени)
Классификация ЭВМ по количеству потоков команд и данных: (ЭВМ с одним потоком команд и одним потоком данных (ОКОД, SISD); ЭВМ с одним потоком команд и многими потоками данных (ОКМД, SIMD); ЭВМ с многими потоками команд и одним потоком данных (МКОД, MISD); ЭВМ с многими потоками команд и многими данных (МКМД, МІМД))

<u>Основные характеристики ЭВМ</u> - Эффективность, Производительность, Надежность, Стоимость, Энергопотребление

2. Мультиплексоры и дешифраторы(2.19-2.21)

<u>Дешифратором</u> называется комбинационная схема, преобразующая код, подаваемый на входы, в сигнал на одном из выходов.

Наращивание размерности дешифраторов

<u>Мультиплексором</u> называется комбинационная схема, осуществляющая передачу сигнала с одной из входных информационных линий на выход.

3. Счётчики(2.11-2.14)

<u>Счетчиком</u> называется узел ЭВМ, предназначенный для подсчета входных сигналов.

Модуль счета: число возможных состояний счетчика.

Классификация счетчиков.

По способу счета: суммирующие, вычитающие, реверсивные.

По модулю счета: двоичные, десятичные,

По способу распространения переноса: с параллельным переносом, с последовательным переносом, с групповой структурой.

По способу синхронизации: асинхронные, синхронные.

По режиму работы: для подсчета входных сигналов, для деления частоты.

Таблица состояний

Хсч	Q4	Q3	Q2	Q1	
0	0	0	0	0	
1	0	0	0	1<	
2	0	0	1,	0<	
перенос					
15	1	1	1	1.	

Счетчик с последовательным переносом

Диаграмма работы (прямой счет)

Счетчик с параллельным переносом

Диаграмма работы

4. Триггеры (RS, T, D, JK)(2.1-2.5)

<u>Триггер</u> – логический элемент, который может находиться в одном из двух устойчивых состояний.

по логике: RS, D, T, JK

по способу приема: Асинхронные, Синхронные, Одноступенчатые, Двухступенчатые S, J – входы установки триггера в «1». R, K – входы установки триггера в «0».

T – счетный вход триггера. D – информационный вход триггера D

С – вход синхронизации Q – прямой выход триггера неQ – инверсный выход триггера

Одноступенчатый асинхронный RS-триггер

Одноступенчатый синхронный RS-триггер

<u>Двухступенчатый синхронный RS-триггер</u>

Т-триггер

<u>D-триггер</u>

ЈК-триггер

5. Методы организации доступа в запоминающие устройства (адресная, стековая и ассоциативная организации доступа)(3.2,3.4-3.6)

Классификация запоминающих устройств по способу доступа.
Адресные ЗУ (Постоянные ЗУ, ПЗУ (ROM) ЗУ с произвольным доступом (RAM))
Ассоциативные ЗУ (Полностью ассоциативные ЗУ, Ассоциативные ЗУ с прямым размещением, Наборно-ассоциативные ЗУ)
Последовательные ЗУ (FIFO, LIFO, Файловые, Циклические)
Классификация запоминающих устройств по назначению.

Обобщенная схема адресного ЗУ

Обобщенная схема ассоциативного ЗУ

Обобщенная схема последовательного ЗУ - Стек (память типа LIFO)

6. Динамические запоминающие устройства с произвольной выборкой (DRAM). 3Я динамической памяти.(3.27-3.29)

DRAM для обращения по произвольным адресам: DRAM, RLDRAM

DRAM, оптимизированные для обращения по последовательным адресам: FPM DRAM,

EDO DRAM, BEDO DRAM, SDRAM, DDR SDRAM, RDRAM

Процесс считывания в DRAM

Принцип действия усилителя-регенератора

Микросхема динамической памяти

7. Диаграммы работы DRAM,FPM DRAM,SDRAM,DDR SDRAM(3.34-3.37)

<u>Диаграмма работы DRAM памяти</u>

 $t_{\rm RCD}$ - RAS to CAS Delay.

t_{RP} - RAS Precharge.

t_{CAC} - CAS Delay.

<u>Диаграмма работы FPM DRAM памяти</u>

<u>Диаграмма работы BEDO DRAM памяти</u>

Диаграмма работы SDRAM памяти

Диаграмма работы DDR SDRAM памяти

8. Кэш с произвольной загрузкой, прямым размещением и наборно-ассоциативный кэш(3.78-3.80)

Принципы построения кэш-памяти

Кэш-память – ассоциативное ЗУ, позволяющее сгладить разрыв в производительности процессора и оперативной памяти. Выборка из кэш-памяти осуществляется по физическому адресу ОП.

<u>Способы отображения ОП в кэш:</u> Произвольная загрузка, Прямое размещение, Наборно-ассоциативный способ отображения.

Произвольная загрузка (Fully associated cache memory, FACM).

Прямое размещение.

Адрес строки однозначно определяется по тегу (i = t mod k).

	К	ЭШ				ОП	
				()	1	2
0	1	Данные	←	Дан	ные	Данные	Данные
	0	Данные	•	Дан	ные	Данные	Данные
	-	-		Дан	ные	Данные	Данные
	-	(4)		Дан	ные	Данные	Данные
	-	-		Дан	ные	Данные	Данные
	2	Данные	←	Дан	ные	Данные	Данные
k-1	1	Данные	←	Дан	ные	Данные	Данные
				()		n-1
		0	n-1 0	k-1		1.591	
		Тег	Стр	ока	Сме	ещение	

Наборно-ассоциативная кэш-память (Set associated cache memory)

9. Страничная, сегментная и сегментно-страничная организация виртуальной памяти(3.83-3.87)

Виртуальная память

Механизм виртуализации адресного пространства позволяет: Увеличить объем адресуемой памяти. Использовать физическую память различного объема. Возложить на аппаратную составляющую механизмы доступа к ВЗУ Сгладить разрыв в производительности ОП и ВЗУ. Ускоряет доступ к данным по последовательным адресам. Способствует реализации защиты памяти.

Виртуальные системы строятся по трем принципам: Системы с блоками различного размера (сегментная организация). Системы с блоками одинакового размера (страничная организация). Смешанные системы (сегментно-страничная организация).

Страничная организация

Программа отображается в память равными блоками — страницами. Преобразование логического адреса в физический осуществляется с помощью таблицы страниц. Преобразование логического адреса в физический реализуется в устройстве управления памятью (Memory Manage Unit), который определяет, находится ли страница в физической памяти (попадение).

Схема страничного преобразования

Сегментная организация

Программа отображается в память блоками различного размера –сегментами. Преобразование логического адреса в физический осуществляется с помощью таблицы сегментов.

Сегментно-страничная организация памяти

Программа отображается в память блоками различного размера –сегментами, каждый из которых целое число страниц. Преобразование логического адреса в физический осуществляется с помощью таблицы сегментов и таблицы страниц сегмента

10. Общие принципы построения современных ЭВМ.(1.11,4.1,4.2,4.4)

Общие принципы построения современных ЭВМ

Принципы Фон-Неймана - Двоичное кодирование информации, Программное управление, Адресность памяти, Однородность памяти

ОКОД, SISD

-Гарвардская архитектура (ОП для хранения команд и ОП для хранения данных) Принстонская архитектура (ОП для хранения команд и данных)

Принципы микропрограммного управления

Любое цифровое устройство можно рассматривать, как совокупность операционного и управляющего блока.

Любая команда или последовательность команд реализуется в операционном блоке за несколько тактов

Последовательность сигналов управления должна выдаваться устройством управления в соответствии с поступающей на вход командой и текущим состоянием операционного блока Состояние линий управления в каждом такте задает микрокоманду. Совокупность микрокоманд, необходимых для реализации команды называется микропрограммой.

Принцип конвейерной обработки

Конвейерная обработка представляет собой процесс, при котором сложные действия разделяются на более короткие стадии. Их параллельное выполнение для последовательности действий позволяет более полно использовать обрабатывающие ресурсы конвейера.

11. ЭВМ с непосредственными связями и магистральной структурой. Основные тенденции развития ЭВМ(4.5,4.6,4.9)

ЭВМ с непосредственными связями

- (+) При построении оптимальных линий связи вычислительная машина обладает максимальным быстродействием.
- (-) Ограничение на количество выводов микросхем не позволяет организовать широкие шины.
- (-) Канал между ОП и ЦПУ является узким местом.
- (-) Реконфигурация системы требует изменения характеристик линий связи.

ЭВМ с магистральной структурой

- (+) Общая шина позволяет легко реконфигурировать систему.
- (-) Шина является узким местом.

Шина, используемая всеми устройствами системы для передачи данных называется системной. Для разгрузки системной шины используют иерархию шин. По назначению, разделяют шины адреса, шины данных и шины управления.

Основные тенденции развития ЭВМ

- Повышение степени интеграции элементной базы
- -Увеличение набора команд
- -Увеличение степени аппаратной поддержки.
- Наличие семантического разрыва

12. RISC, CISC, VLIW apxumeкmypa(4.10-4.11)

Архитектура системы команд

В команде указывается, какую операцию выполнять (КОП), над какими операндами выполнять операцию, а также куда поместить операнд.

Сравнение CISC, RISC и VLIW архитектур СК

Характеристика	CISC	RISC	VLIW
Длина команды	Различная	Одинаковая	Одинаковая
Расположение полей в командах	Различное	Одинаковое	Одинаковое
Количество регистров	Малое. Регистры специализи- рованные	Большое. Регистры универсальные	Большое. Регистры универсальные
Доступ к памяти	Кодируется в команде. Выполняется по микрокоманде	Выполняется по специальной команде	Выполняется по специальной команде
Длительность выполнения команд	Различная	Одинаковая (для большинства команд)	Различная

13. Назначение и обобщенная структура процессорного устройства. Микропроцессор. Классификация микропроцессорных СБИС(5.4-5.5)

<u>Процессором</u> (процессорным ядром) называется устройство ЭВМ, непосредственно осуществляющее процесс переработки информации и управление им в соответствии с заданным алгоритмом, который, как правило, представлен программой. ЭВМ может содержать несколько процессоров. Процессор, управляющий вычислительным процессом, называется центральным.

<u>Микропроцессором</u> называется функционально законченное устройство, представляющее собой вариант процессора (или нескольких процессорных ядер) современной ЭВМ и реализованное в виде одной или нескольких СБИС.

<u>Микропроцессорный комплект</u> представляет собой совокупность микропроцессора и специализированных ИС, совместимых по временным, электрическим и конструктивным

параметрам, совместное использование которых позволяет реализовать основные функции ЭВМ.

Обобщенная структура процессорного устройства

14. Форматы команд. Типы команд.(4.18-4.20)

Форматы команд.

1. Четырехадресная команда.

		_		
КОП	1 операнд	2 операнд	результат	Адр след ком
2. Трехадрес	ная команда			
коп	1 операнд	2 операнд	результат	
3. Двухадрес	сная команда.		Характер	на для
коп	1 операнд	2 оп-д/результат	CISC-apx	
4. Аккумулят	орная архитектура	Второй операн	ид хранится в а	ккумуляторе.
коп	1 операнд	Второй операнд хранится в аккумуля Данный формат команд характерен RISC-архитектур.		
5. Нульопера	андная команда.			
коп				

Типы команд.

Команды пересылки данных.

- регистр-регистр
- регистр-память
- память-память

Команды арифметической и погической обработки (сложение, вычитание, умножение, деление, инкремент, декремент, сравнение, операции над ЧПЗ, логические операции, операции сдвига).

Сдвиг: логический, арифметический, циклический, циклический через дополнительным разряд.

Команды работы со строками (могут быть реализованы набором других команд, однако удобны при работе с символьной информацией).

Команды векторной обработки (позволяет выполнять однотипные действия над большим количеством однородных данных). Пример арифметики с насыщением:

1011 0111 1010 +

0001 1001 1000 =

1100 1111 1111

Команды преобразования: служат для табличного преобразования данных из одной системы кодов в другую (2-10 <-> 2)

Команды ввода/вывода. Служат для управления, проверки состояния и обмена данными с периферийными устройствами.

- Команды вывода в порт
- Команды ввода из порта.

Команды управления потоком команд. Данные команды служат для указания очередности выполняемых команд.

15. Способы адресации: непосредственная, прямая, регистровая, неявная, косвенная регистровая(4.21-4.26)

Непосредственная адресация

νоп	CA	Нопосродствонный опороня
KOH	CA	Непосредственный операнд

Вместо адреса команда содержит непосредственно операнд.

- (+) команда выполняется быстро
- (-) непосредственный операнд может не войти в команду

Прямая адресация

Адрес в команде является адресом операнда

- (+) если операнд находится в памяти, то это самый быстрый способ указать на него
- (-) заранее определенный адрес влияет на переносимость программы.
- (-) Адрес занимает много места

Неявная адресация

Операнд подразумевается (следует из КОП).

- (+) Команда занимает мало места
- (-) только такие командах нельзя использовать для построение всей системы команд.

Регистровая адресация

Адрес в команде указывает не на ячейку ОП, а на регистр.

- (+) Быстрее прямой адресации
- (-) Количество регистров ограничено

Косвенная адресация

Косвенная регистровая адресация

16. Способы адресации со смещением: относительная, базовая регистровая, индексная, автоинкрементная и автодекрементная, индексная с масштабированием(4.21-4.26)

Относительная адресация

Адрес вычисляется относительно счётчика команд

- (+) Код переносим, команды занимают мало места
- (-) Может понадобиться длинный адрес

Базовая регистровая адресация

Адрес в команде представляет собой смещение, которое складывается со значением в базовом регистре для получения адреса операнда

- (+) Удобна для работы со структурами данных, размещаемых динамически.
- (-) Переносимость меньше, чем у относительной адресации Индексная регистровая адресация

В поле адреса команды содержится базовый адрес, складываемый со значением смещения в индексном регистре.

- (+) Удобна для работы со структурами данных, размещаемых динамически.
- (-) Переносимость меньше, чем у относительной адресации

Автоинкрементная/автодекрементная адресация

Разновидность регистровой индексной или базовой адресации. До или после выполнения команды значение базового или индексного регистра увеличивается/уменьшается на единицу.

- (+) Способ адресации удобен для команд обработки строк.
- (-) Автоматическое изменение часто требуется выполнять на величину, большую единицы.

Индексная адресация с масштабированием

Базовая индексная адресация с масштабированием

Адрес определяется по формуле Адрес=Индекс*Масштаб+База+Смещение.

- (+) Базовая индексная адресация с масштабированием часто используется при обращении к системным таблицам, находящимся в ОП (таблица дескрипторов, таблицы страниц, таблица векторов прерываний и т.д.)
- (-) Ограниченное на величину М (М=1,2,4,8)

17. Архитектура конвейерного суперскалярного процессора. Проблема условных переходов(5.8,5.9,5.12)

Обобщенная схема суперкскалярного суперконвейерного процессора

18. Архитектура конвейерного суперскалярного процессора. Статическое и динамическое предсказание переходов(5.12-5.14)

см. 17

Способы предсказания переходов

Точность предсказания: отношение числа правильно предсказанных переходов к их общему количеству. Эффективность алгоритмов предсказания зависит от использования статистических данных, накопленных:

- -заранее при компиляции и тестовых прогонах (статическое предсказание переходов);
- -полученных в процессе исполнения программы (динамическое предсказание переходов).
- -На основе статического и динамического подходов.

Стратегии статического предсказания переходов

- -Переход происходит всегда (60-70%).
- -Переход не происходит никогда (50%).
- -Переход выполняется по результатам профилирования (75%).
- -Переход определяется по коду операции (75%).
- -Переход выполняется исходя из направления (85%).
- -При первом выполнении переход имеет место всегда (90%).

Стратегии динамического предсказания переходов

-Одноуровневое предсказание: использует Шаблонную Таблицы Истории (Pettern History Table). Выборка информации может происходить: по адресу команды

перехода; по истории всех команд перехода; по истории исполнения только предсказываемой команды перехода. Алгоритм предсказания зависит от размера строк РНТ. При хранении одного бита переход предсказывается в соответствии с предыдущим итогом выполнения команды (точность ~78%). При хранении двух бит учитывается переход для двух последних исполнений команды (точность ~82%).

- Таблица меток перехода (Branch Target Buffer)
- -Двухуровневое предсказание.
- -Гибридное предсказание

19. Архитектура конвейерного суперскалярного процессора. Конфликты в конвейере. Регистры замещения.(5.7,5.8,5.10,5.11)

см.17

Конфликты в конвейере

- 1. Структурный риск: Команды одновременно обращаются к одному и тому же ресурсу (например, к ОП).
- 2. Риск по данным: Команды имеют зависимость по данным.
 - О(і) множество ячеек, изменяемых командой і;
 - I(j) множество ячеек, читаемых командой j.

0/				
А) Чтение после записи (ЧПЗ).	Б) Запись после чтения (ЗПЧ).			
і запись і	чтение			
ј чтение ј	запись			
$O(i) \cap I(j) \neq \emptyset$	$I(i) \cap O(j) \neq \emptyset$			
В) Запись после записи (ЗПЗ).				
і запись	O(i) ∩ O(j) ≠ Ø			
і запись	•			

3. Риск по управлению.

Из-за наличия команд перехода (10-20% потока команд) возможна неоднозначность при выборе очередной инструкции. Потери в лучшем случае: сброс всех поступивших команд за время декодирования команды ветвления. Потери в худшем случае: сброс всех поступивших команд за время декодирования, выборки операндов и исполнения команды ветвления.

Способы устранения конфликтов по данным, находящихся в регистрах Пример 1:

Правило:

Каждый новый результат записывается в новый регистр замещения.

Конфликт типа ЧПЗ по данных, находящимся в регистрах, может быть устранен с помощью бита достоверности

Способы устранения конфликтов по данным, находящихся в памяти Пример 2:

Правило:

При обнаружении конфликтов по данным, находящимся в ОП, запросы на запись результатов в память выполняется упорядочено.

Способы устранения конфликтов по управлению

- -Дублирование ступеней конвейера для обработки обеих ветвей
- -Оптимизация кода на этапе компиляции с целью увеличения полезной нагрузки на дублированные ступени конвейера.
- -Предсказание переходов.

20. Арифметико-логические устройства (АЛУ). Структура АЛУ для целочисленного умножения(6.6-6.8)

Умножение сводится к последовательному формированию частных произведений и их сложению.

По способу формирования частных произведений:

- умножение со старших разрядов множителя со сдвигом влево
- умножение с младших разрядов множителя со сдвигом вправо.

По способу накопления частных произведений: матричные умножители, древовидные умножители.

Способы ускорения работы устройств умножения:

- сокращение количества частных произведений
- обработка нескольких разрядов множителя за такт
- параллельное вычисление нескольких СЧП
- конвейеризация умножителей.

Умножение со старших разрядов множителя со сдвигом влево

Умножение с младших разрядов множителя со сдвигом вправо

21. Деление с восстановлением и без восстановления остатка. Структура арифметико-логического устройства для целочисленного деления(6.13-6.14)

Схема АЛУ для целочисленного деления

22. Организация операций сложения, вычитания, умножения и деления над числами с плавающей запятой(6.16-6.19)

Операции над числами с плавающей запятой.

- 1. Подготовительный этап.
- Разделение упакованного ЧПЗ на группы М,П,З.
- Проверка на специальное числовое значение.
- 2. Выполнение операции.
- Приведение порядков.
- Определение знака результата.
- Определение мантиссы результата.
- Определение порядка результата.
- Проверка на переполнение, потери значимости мантиссы, потери значимости порядка, неточности, деления на 0. 3.

Заключительный этап.

- Проверка на специальное числовое значение.
- Нормализация результата.
- Проверка на переполнение, потери значимости мантиссы, потери значимости порядка, неточности.
- Упаковка полей 3,П,М в ЧПЗ.

Организация операций сложения и вычитания над числами с плавающей запятой.

- 1. Подготовительный этап
- 2. Определение меньшего из двух порядков и проведение операции выравнивания порядков (сдвиг вправо на разность порядков).
- 3. Проверка на потерю значимости одного операнда (неточность).

- 4. Определение результирующего порядка как максимума.
- 5. Сложение мантисс и определение знака результата.
- 6. Проверка на переполнение мантиссы. Если да, то сдвигаем мантиссу вправо и увеличиваем порядок на 1.
- 7. Проверка на переполнение порядка.
- 8. Заключительный этап.

Организация операций умножения чисел с плавающей запятой.

- 1. Подготовительный этап
- 2. Проверка (М1=0 или М2=0). Если да, то Р=0.
- 3. Определение порядка результата: Пр = П1+П2-С.
- 4. Проверка на переполнение порядка.
- 5. Определение мантиссы результата: Mp = M1*M2.
- 6. Определение знака результата.
- 7. Заключительный этап.

Организация операций деления чисел с плавающей запятой.

- 1. Подготовительный этап
- 2. Проверка (М1=0 или М2=0). Если деление на ноль, то +/-бесконечность или ошибка.
- 3. Определение порядка результата: Пр = П1-П2+С.
- 4. Проверка на переполнение порядка.
- 5. Определение мантиссы результата: Mp = M1*(1/M2).
- 6. Определение знака результата.
- 7. Заключительный этап.

23. Аппаратные методы ускоренного умножения: матричные умножители, умножители по схеме Уоллеса(6.6,6.9-6.11)

Этот отвратительный красный фон заставляет мои глазки плакать

Матричные умножители

Матричные умножители

Древовидные умножители (схема Уоллеса)

