## Projet 3

# Anticipez la consommation électrique de bâtiments

## Objectif

La ville de Seattle souhaite atteindre la neutralité carbone d ici 2050

Pour cela des relevés par des agents ont été exécutés en 2015 et 2016. Ces relevés sont fastidieux et demandent beaucoup de travail, la ville voudrait tenter de prédire les données pour les bâtiments non destinés à l'habitation et non encore relevés.

Objectif: Prédire pour les bâtiments non destinés à l'habitation: les besoins en consommation énergétique les émissions de CO2 Évaluer l'intérêt de l'Energy Star Score

Le score « ENERGY STAR » étant calculé en fonction de la consommation d'énergie, de l'utilisation du bâtiment, on pourrait envisager d'utiliser la prédiction de consommation d'énergie pour prédire l'émission de CO2. Nous ferons une comparaison avec et sans cette donnée.

## Variable à prédire

#### **Deux variables cibles**:

- consommation d'energie,
- émission de CO2

Nous avons les jeux de données 2015 et 2016 contenant un peu plus de 3000 lignes et 46 colonnes. Les bâtiments sont identifiés par un numéro unique ce qui va permettre de fusionner les deux fichiers.

Nous allons garder les valeurs les plus hautes pour un bâtiment lors de la fusion

Peu de valeur manquantes pour les features que nous allons utiliser sauf EnergyStarScore (remplie dans 72% des données)

## Assemblage cleanage des données

- → harmonisation des données 2015 et 2016
- → suppression/renommage des colonnes non communes
- → récupération de plusieurs variables splitter
- → dédoublonnage par bâtiments en gardant les valeurs les plus grandes
- → features engineering sur les variables catégorielle
- → fusion des dataframes
- → Restriction du jeu de données sur les bâtiments non destinés à l'habitation

## Taux de remplissage du jeu de donnée



# Étape global

Nettoyage/dédoublonnage

Analyse

Modélisation

Évaluation des performances

## Corrélation de nos variables



## Corrélation de nos variables

la régression linéaire souffre de quelques inconvénients quand les variables sont corrélées : la solution n'est pas unique et les coefficients ont une grande variabilité, et l'interprétation est plus difficile

Pour éviter cela nous allons calculer de nouvelles propriétés grâce à nos informations déjà existantes, comme l age du bâtiment, ou la surface par étage.. Et ensuite nous supprimerons nos variables trop corrélées.

Nous avons besoins de quelques hypothèses pour nos valeurs à traiter :

la première, l'hypothèse de linéarité

la deuxième, l'hypothèse de normalité

la troisième, l'hypothèse d'indépendance

## Corrélation après traitement

#### Heatmap des corrélations linéaires



# Analyse multivariées

Le secteur de l'éducation sont de grands consommateurs d'électricité et émetteur de co2



## Analyse multivariées

Le secteur de la santé sont de grands consommateurs d'électricité et émetteur de co2

Distribution des variables cibles sur PrimaryPropertyType



# Passage au log

#### Aucune variable n'a de distribution normale



## Data processing

TargetEncoder : Le target encoding consiste à remplacer la valeur de chaque variable catégorielle par la moyenne de la cible des individus ayant la même valeur pour la variable catégorielle.

Robust Scaler : Normalise nos données et gère les outliers mieux que StandarScaler

Indicateur boolean : sur les autres types d énergie (gaz, steamuse)

passage au log nos features avant l'entraînement

Création d'un Train set et Test set pour comparer les modèles

# Étape de modalisation

### Data processing

Transformation de nos variables et variable cibles

## Modèle par défaut

Exécution des modèles par défaut

#### Cross validation

Mise en place d une validation croisée kfold 5

Hyperparametres GridSearch Optimisation de nos paramètres

## Modèles choisis

- LinearRegression,
- DummyRegressor,
- **|**

Base line

- ElasticNet,
- Ridge,
- Lasso,
- SVR,
- RandomForestRegressor,
- ExtraTreesRegressor,
- GradientBoostingRegressor



Métriques sélectionnées

- R2
- MAE
- RMSE



Régularisation

Méthode ensembliste

# Résultat en mode par défaut



## Résultat en mode par défaut

Résultat des scores pour l'énergie



Trois modèles ont les meilleurs scores après cross validation random Forest, extra tree et gradient boosting

## Meilleurs paramètres gridSearch

Investigation afin de trouver les meilleurs paramètres Un randomSearch pour récupérer des ranges efficaces, puis un gridSearch afin de détecter les meilleurs paramètres de nos ranges

| best_params                                                                                                                                       | estimator         |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| {'dummyregressorstrategy': 'mean'}                                                                                                                | dummy             |
| {'linearregressorcopy_X': True, 'linearregressorfit_intercept': True}                                                                             | linear            |
| {'elastic_netregressoralpha': 0.900000000000001, 'elastic_netregressorl1_ratio': 0.0, 'elastic_netregressormax_iter': 2000,                       | elastic_net       |
| {'ridgeregressoralpha': 756.463327554629, 'ridgeregressormax_iter': 1000}                                                                         | ridge             |
| {'lassoregressoralpha': 0.1747528400007683, 'lassoregressormax_iter': 1000}                                                                       | lasso             |
| {'svr_regressor_C': 0.5, 'svr_regressor_epsilon': 0.1, 'svr_regressor_gamma': 'auto', 'svr_regressor_kernel': 'rbf'}                              | svr               |
| {'random_forestregressormax_features': 'sqrt', 'random_forestregressorn_estimators': 80}                                                          | random_forest     |
| {'extra_treeregressorbootstrap': True, 'extra_treeregressormin_samples_split': 4, 'extra_treeregressorn_estimators': 80}                          | extra_tree        |
| {'gradient_boostingregressorlearning_rate': 0.01, 'gradient_boostingregressormax_leaf_nodes': 20, 'gradient_boostingregressorn_estimators': 1000} | gradient_boosting |

# Résultat après optimisation



# Résultat après optimisation

|                   |              | R2    | MAE         | RMSE        |
|-------------------|--------------|-------|-------------|-------------|
| estimator         |              |       |             |             |
| elastic net       | with options | 0.383 | 1640605.340 | 2595151.540 |
| elastic_net       | default      | 0.010 | 2205710.719 | 3326472.027 |
| ridge             | with options | 0.383 | 1638133.206 | 2595409.799 |
| nuge              | default      | 0.204 | 1675745.655 | 3672900.601 |
| lasso             | with options | 0.316 | 1737910.221 | 2729449.726 |
| lasso             | default      | 0.136 | 2356532.985 | 3527925.736 |
| svr               | with options | 0.574 | 1360548.970 | 2160056.040 |
| 341               | default      | 0.171 | 2350047.618 | 3581969.243 |
| random forest     | with options | 0.550 | 1394085.970 | 2215150.441 |
| random_torest     | default      | 0.552 | 1387404.327 | 2208732.210 |
| extra tree        | with options | 0.576 | 1339543.039 | 2155371.329 |
| extra_tree        | default      | 0.553 | 1393880.341 | 2210554.898 |
| gradient boosting | with options | 0.592 | 1328244.673 | 2111652.255 |
| gradient_boosting | default      | 0.591 | 1337510.362 | 2115921.946 |

## Résultat sur les prédictions

Nos trois méthodes ensemblistes ont les meilleurs résultats



## Détails des résultats par types de modèles

#### **Underfitting**

- Erreur d'entrainement élevé
- Erreur d'entrainement proche de l'erreur de test
- Biais élevé

#### Remède possible

- Complexifier le modèle
- Ajouter plus de variables
- Laisser l'entrainement pendant plus de temps

#### **Overfitting**

- Erreur d'entrainement très faible
- Erreur d'entrainement beaucoup plus faible que l'erreur de test
- Variance élevée

#### Remède possible

- Effectuer une régularisation
- Avoir plus de données

#### learning curve for dummy



#### learning curve for lasso



#### learning curve for gradient boosting



## Résultat du tuning des hyperparamètres

#### validation curve from cv\_results for lasso

Validation Curve in cv\_results for lasso metric:r2



#### validation curve from cv results for gradient boosting

Validation Curve in cv\_results for gradient\_boosting metric:r2



## Résultat issus du gridSearchCV

#### prediction performance for dummy







#### prediction performance for lasso







#### prediction performance for gradient boosting







#### best parameter for dummy

|   | estimator |                   | best_params         |
|---|-----------|-------------------|---------------------|
| 0 | dummy     | {'dummyregressor_ | _strategy': 'mean'} |

#### best model score dummy

|   | estimator | R2    | MAE         | RMSE        |
|---|-----------|-------|-------------|-------------|
| 0 | dummy     | 0.134 | 2349435.923 | 3525321.572 |

#### best model score prediction for dummy

|   | estimator | R2       | MAE         | RMSE        |
|---|-----------|----------|-------------|-------------|
| 0 | dummy     | -0.10038 | 2158287.124 | 3252122.254 |

#### best parameter for lasso

| e | stimator |         |           |                                    |           | best_params      |  |
|---|----------|---------|-----------|------------------------------------|-----------|------------------|--|
| 4 | lasso    | {'lasso | regressor | alpha': 0.1747528400007683, 'lasso | regressor | max iter': 1000} |  |

#### best model score lasso

| estimator |       | R2    | MAE         | RMSE        |  |
|-----------|-------|-------|-------------|-------------|--|
| 4         | lasso | 0.316 | 1737910.221 | 2729449.726 |  |

#### best model score prediction for lasso

|   | estimator | R2       | MAE         | RMSE       |
|---|-----------|----------|-------------|------------|
| 4 | lasso     | -1.21317 | 1851654.659 | 4612137.04 |

#### best model score gradient\_boosting

|  |   | estimator         | R2 MAE |             | RMSE       |  |
|--|---|-------------------|--------|-------------|------------|--|
|  | 8 | gradient boosting | 0.593  | 1327553.101 | 2110907.31 |  |

#### best model score prediction for gradient boosting

|   | estimator         | R2      | MAE         | RMSE        |
|---|-------------------|---------|-------------|-------------|
| 8 | gradient boosting | 0.66866 | 1143572 282 | 1784567 109 |

## Résultat sur les meilleurs modèles de prédictions avec energy starscore

#### learning curve for random\_forest



#### validation curve from cv\_results for random\_forest

Validation Curve in cv\_results for random\_forest metric:r2



#### prediction performance for random\_forest



#### best parameter for random\_forest

|   | estimator     |                 |           |                                       |           | best_params         |  |
|---|---------------|-----------------|-----------|---------------------------------------|-----------|---------------------|--|
| 6 | random forest | ('random forest | regressor | max features': 'auto', 'random forest | regressor | n estimators': 500} |  |

#### best model score random\_forest

| estimator |               | R2    | MAE        | RMSE        |  |
|-----------|---------------|-------|------------|-------------|--|
| 6         | random forest | 0.781 | 976113.299 | 1586096.343 |  |

#### best model score prediction for random\_forest

|   | estimator     | R2      | MAE        | RMSE        |
|---|---------------|---------|------------|-------------|
| 6 | random forest | 0.83478 | 788627.435 | 1227295.353 |

#### features importances for random\_forest



## Résultat sur les meilleurs modèles de prédictions avec energy starscore





#### validation curve from cv\_results for extra\_tree

Validation Curve in cv\_results for extra\_tree metric:r2







#### prediction performance for extra\_tree







#### best parameter for extra\_tree

| estimator    |              |           |                                |           | best_param            | S           |                             |        |
|--------------|--------------|-----------|--------------------------------|-----------|-----------------------|-------------|-----------------------------|--------|
| 7 extra tree | ('extra tree | regressor | bootstrap': False, 'extra_tree | regressor | min samples split': 4 | 'extra tree | regressor n estimators': 80 | <br>)} |

#### best model score extra\_tree

|   | estimator  | R2   | MAE        | RMSE        |
|---|------------|------|------------|-------------|
| 7 | extra_tree | 0.78 | 957827.013 | 1595224.387 |

#### best model score prediction for extra\_tree

| estimator |            | R2      | MAE        | RMSE       |
|-----------|------------|---------|------------|------------|
| 7         | extra tree | 0.82798 | 801659.332 | 1252270.23 |

#### features importances for extra\_tree



## Résultat sur les meilleurs modèles de prédictions avec energy starscore

#### learning curve for gradient\_boosting



#### validation curve from cv\_results for gradient\_boosting

Validation Curve in cv\_results for gradient\_boosting metric:r2



#### prediction performance for gradient\_boosting



#### best parameter for gradient\_boosting



#### best model score gradient\_boosting

|   | estimator         | R2    | MAE        | RMSE        |
|---|-------------------|-------|------------|-------------|
| 8 | gradient_boosting | 0.786 | 945925.639 | 1570978.692 |

#### best model score prediction for gradient\_boosting

|   | estimator         | R2      | MAE        | RMSE        |
|---|-------------------|---------|------------|-------------|
| 8 | gradient_boosting | 0.85022 | 786564.119 | 1168534.413 |

#### features importances for gradient boosting



## Comparaisons avec et sans energy star score

## Prédiction de l'énergie

|                   |                       | R2        | MAE         | RMSE         |
|-------------------|-----------------------|-----------|-------------|--------------|
| estimator         |                       |           |             |              |
| dummy             | options with energy   | -0.08305  | 2088069.333 | 3.142226e+06 |
| dummy             | options and no energy | -0.10038  | 2158287.124 | 3.252122e+06 |
| linear            | options with energy   | -1.40542  | 1409614.634 | 4.682829e+06 |
| illedi            | options and no energy | -46.34157 | 3053103.836 | 2.133123e+07 |
| elastic net       | options with energy   | 0.33161   | 1613216.708 | 2.468477e+06 |
| elastic_flet      | options and no energy | -0.41428  | 1786815.168 | 3.686906e+06 |
| ridge             | options with energy   | -1.10621  | 3146911.744 | 4.381911e+06 |
| riuge             | options and no energy | -0.87808  | 1830047.140 | 4.248659e+06 |
| lasso             | options with energy   | -1.13571  | 3208632.563 | 4.412490e+06 |
| lasso             | options and no energy | -1.21317  | 1851654.659 | 4.612137e+06 |
| svr               | options with energy   | 0.81939   | 820478.924  | 1.283167e+06 |
| SVI               | options and no energy | 0.62650   | 1239677.193 | 1.894686e+06 |
| random forest     | options with energy   | 0.83478   | 788627.435  | 1.227295e+06 |
| random_rorest     | options and no energy | 0.66592   | 1150759.898 | 1.791938e+06 |
| extra tree        | options with energy   | 0.82798   | 801659.332  | 1.252270e+06 |
| extra_tree        | options and no energy | 0.66948   | 1154949.305 | 1.782357e+06 |
| gradient boosting | options with energy   | 0.85022   | 786564.119  | 1.168534e+06 |
| gradient_boosting | options and no energy | 0.66817   | 1143908.897 | 1.785874e+06 |

## Prédiction du CO2

|                   |                       | R2       | MAE    | RMSE    |
|-------------------|-----------------------|----------|--------|---------|
| estimator         |                       |          |        |         |
| dummy             | options with energy   | -0.10651 | 49.723 | 82.758  |
| dummy             | options and no energy | -0.11684 | 52.130 | 85.501  |
| linear            | options with energy   | 0.52103  | 25.585 | 54.449  |
| Illical           | options and no energy | -3.54234 | 48.053 | 172.432 |
| elastic net       | options with energy   | 0.38426  | 34.016 | 61.735  |
| elastic_flet      | options and no energy | -0.27509 | 40.441 | 91.358  |
| ridge             | options with energy   | -0.65543 | 66.038 | 101.225 |
| nage              | options and no energy | -3.73979 | 47.567 | 176.139 |
| lasso             | options with energy   | -0.71840 | 67.602 | 103.133 |
| lasso             | options and no energy | -0.14196 | 38.926 | 86.457  |
| svr               | options with energy   | 0.84968  | 18.399 | 30.503  |
| SVI               | options and no energy | 0.63124  | 28.203 | 49.130  |
| random forest     | options with energy   | 0.79636  | 19.332 | 35.503  |
| random_lorest     | options and no energy | 0.64500  | 26.046 | 48.205  |
| extra tree        | options with energy   | 0.80398  | 19.002 | 34.833  |
| extra_tree        | options and no energy | 0.61183  | 26.335 | 50.407  |
| gradient boosting | options with energy   | 0.86870  | 16.955 | 28.508  |
| gradient_boosting | options and no energy | 0.66990  | 26.241 | 46.483  |

## Conclusions

Les courbes d'apprentissage montrent qu'il est nécessaire d'avoir plus de données pour obtenir de meilleurs résultats sur les modèles, en effet en testant nos modèles avec les bâtiments résidentiel nos performances sont bien meilleurs par exemple

Il est nécessaire de bien apprendre le comportement de chaque modèle et ses paramètres pour en tirer le meilleur parti.

Les méthodes ensemblistes ont les meilleurs résultats en particulier Gradient Boosting

Il est recommandé de considérer EnergySTARScore dès le début

Questions/Réponses

Thank you!