



# **Praktikum Elektrische Antriebe**

Versuchsprotokoll zu Versuch 1: Asynchronmaschine

| Name:                                                    |         | Studiensemester: 6 |  |  |
|----------------------------------------------------------|---------|--------------------|--|--|
| Datum: 08.06.2016                                        | Testat: |                    |  |  |
| Mitarbeiter: Benjamin Haid, Johannes Kopp, Tobias Soldan |         |                    |  |  |



Siehe Skript Elektrische Antriebe

Siehe Skript Elektrische Antriebe

a) Der Verlauf der U/f-Kennlinie wird in Abb. 3.1 dargestellt.



Abbildung 3.1: U/f-Kennlinie

a) Da die Drehzahl  $n_s$  einer Asynchronmaschine die Abhängigkeit

$$n_s = \frac{f}{Z_P} \cdot \left(\frac{60 \text{ s}}{\min}\right) \tag{4.1}$$

der Netzfrequenz fund der Polpaarzahl  $\mathbb{Z}_P$ hat, ergibt sich daraus für  $\mathbb{Z}_P$ 

$$Z_P = \frac{f}{n_s} \cdot \left(\frac{60 \text{ s}}{\text{min}}\right) \tag{4.2}$$

b) Die Asynchronmaschine im Versuch wird mit  $f=50~{\rm Hz}$  betrieben und hat eine Nenndrehzahl  $n_s=1370{\rm min}^-1.$ 

$$Z_P = \frac{50 \text{ Hz}}{1370 \text{ min}^{-1}} \cdot \left(\frac{60 \text{ s}}{\text{min}}\right) \approx 2$$
 (4.3)

- a) Bei  $M_L=0$  Nm bekommen wir druch umstellen der Formel (4.1) nach der Frequenz als Drehzahlen  $n_1=600 {\rm min}^-1, \, n_2=1500 {\rm min}^-1$  und  $n_3=2400 {\rm min}^-1$ .
- b) Nach dem Einstellen der Frequenz erhalten wir aus der Messung folgende Drehzahlen:  $n_1 = 583 \text{min}^{-1}$ ,  $n_2 = 1479 \text{min}^{-1}$  und  $n_3 = 2354 \text{min}^{-1}$ . Der Grund für die Abweichung liegt darin, dass wir keine idealen Bauelemente haben und ein Lastmoment von 0 Nm nie ganz erreicht werden kann aufgrund der Lagern und des Lüfters.

| Berechnete $n_s/\min^- 1$ | Gemessene $n_s/\min^- 1$ |
|---------------------------|--------------------------|
| 600                       | 583                      |
| 1500                      | 1479                     |
| 2400                      | 2354                     |

a) Da die Kennlinie aus Abb. 3.1 sich auf den Scheitelwert der Statorspannung bezieht, wir aber den Effektivwert der Außenleiterspannung benötigen muss dieser noch durch  $\sqrt{2}$  geteilt und mit  $\sqrt{3}$  mutlipliziert werden. Als Faktor wird die Streigung der Kennlinie verwendet

$$U_{\text{max}} = \frac{317 \text{ V}}{\sqrt{2}} \cdot \sqrt{3} = 388 \text{V} \tag{6.1}$$

$$m = \frac{U_{\text{max}}}{f_{\text{Knick}}} = \frac{388 \text{ V}}{50 \text{ Hz}}$$
 (6.2)

b)

c)

a)

- b) Der Unterschied der Kennlinie bei kleinen Statorfrequenzen liegt daran, dass der Statorwiderstand bei ca. 25  $\Omega$  liegt und diesem eine Spannung abfällt wodurch nicht die gewünschte Spannung erreicht wird.
- c) Die Beziehung zwischen Statorstrombetrag  $I_1$  und dem Statorwiderstand  $R_1$  ergibt einen Spannungasabfall von:

$$U = R \cdot I \tag{7.1}$$

d)