表七 不同嵌入维度的结果

嵌入	mAP	AUC	d-prime
32	0.364	0, 958	2. 437
128	0. 412	0, 969	2.634
512	0. 420	160	2. 689
2048	0. 431	0, 973	2. 732

表八 部分训练数据的结果

培训数据	mAP	AUC	d-prime
满的50%	0.406	0.964	2. 543
80%满	0.426	0.971	2.677 2.732
100%满	0.431	0.973	2.732

3) 数据平衡: 第IV-A节介绍了我们用于训练AudioS et标记系统的数据平衡技术。图4 (b) 显示了有和没有数据平衡的CNN14系统的性能。蓝色曲线表明,在没有数据平衡的情况下训练PANN需要很长时间。绿色曲线表明,通过数据平衡,系统在有限的训练迭代内收敛得更快。此外,用完整的190万个训练片段训练的系统比用20k个训练片段的平衡子集训练的系统表现更好。表五显示,CNN14系统在数据平衡的情况下实现了0.416的mAP,高于没有数据平衡的mAP (0.375)。

4) 数据增强:我们发现混合数据增强在训练PANNs中起着重要作用。默认情况下,我们对log-mel频谱图应用mixup。图4(b)和表V显示,用混淆数据增强训练的CNN14系统达到了0.431的mAP,优于没有混淆数据增强的训练系统(0.416)。当使用仅包含20k个训练片段的平衡子集进行训练时,与没有混淆的训练(0.221)相比,混淆特别有用,产生0.278的mAP。此外,我们还表明,当使用完整的训练数据进行训练时,log-mel谱图上的混音达到了0.431的mAP,优于0.425时域波形中的混音。这表明,当与log-mel频谱图一起使用时,混合比与时域波形一起使用时更有效。5)跳跃大小:跳跃大小是样本的数量

在相邻帧之间。跳数越小,跳数越高 时域分辨率。我们调查影响 使用CNN14在AudioSet标签上标记不同的跳数 系统。我们研究了1000、640、500和320的跳数大小: 这些对应于31.25ms的时域分辨率, 相邻帧之间的间隔为20.00ms、15.63ms和10.00ms, 分别。表VI显示,mAP评分随着 跳跃大小减小。CNN14系统的跳数为320 达到0.431的mAP,优于较大的跳数 例如500、640和1000。

6) 嵌入尺寸: 嵌入特征是固定的-总结音频片段的长度向量。默认情况下 CNN14的嵌入特征维度为2048。我们 研究一系列具有嵌入二聚体的CNN14系统-

表IX 不同采样率的结果

采样率	mAP	AUC	d-prime
8千赫	0. 406	0. 970	2. 654
16千赫	0. 427	0. 973	2. 719
32千赫	0. 431	0. 973	2. 732

表X 不同MEL箱的结果

梅尔•宾斯	mAP	AUC	d-prime
32个箱子	0. 413	0. 971	2.691
64个箱子	0. 431	0. 973	2.732
128个箱子	0. 442	0. 973	2.735

32、128、512和2048。图4 (c) 和表VII显示, mAP性 能随着嵌入尺寸的增加而增加。

7) 部分数据训练: AudioSet的音频片段来自YouTube。相同的音频片段不再可下载,其他片段将来可能会被删除。为了在未来更好地再现我们的工作,我们研究了用随机选择的部分数据(从下载数据的50%到100%)训练的系统的性能。图4(d)和表VIII显示,当CNN14系统用80%的完整数据进行训练时,mAP从0.431略微下降到0.426(下降1.2%),当用50%的完整数据训练时,下降到0.406(下降5.8%)。这一结果表明,训练数据量对训练PANN很重要。

8) 采样率:图4(e)和表IX显示了用不同采样率训练的CNN14系统的性能。用16kHz录音训练的CNN14系统达到0.427的mAP,与用32kHz采样率训练的CNN114系统相似(在1.0%以内)。另一方面,用8kHz录音训练的CNN14系统实现了0.406的较低mAP(降低5.8%)。这表明4kHz-8kHz范围内的信息对于音频标记很有用。

9) 梅尔仓:图4(f)和表X显示了用不同数量的梅尔仓训练的CNN14系统的性能。该系统在32个梅尔箱中实现了0.413的mAP,而在64个梅尔箱和128个梅尔箱的情况下分别为0.431和0.442。这一结果表明,尽管计算复杂度随梅尔箱的数量呈线性增加,但PANN在梅尔箱越多的情况下性能越好。在本文中,我们采用64个梅尔箱来提取对数梅尔谱图,作为计算复杂度和系统性能之间的权衡。

10) CNN层数: 如第II-A节所述,我们研究了具有6层、10层和14层的CNN系统的性能。表XI显示,6、10和14层CNN分别实现了0.343、0.380和0.431的mAP。这一结果表明,具有较深CNN架构的PANN比较浅CNN架构的性能更好。这一结果与之前在较小数据集上训练的音频标记系统形成鲜明对比