Smart Temperature Monitoring System

1. Analysis of the Problem Statement

In modern homes and industries, efficient monitoring of temperature is crucial for safety, energy efficiency, and automation. Our project aims to design a compact and low-cost **Smart Temperature Monitoring System** using an STM32F030R8T6TR microcontroller. This system reads temperature from an analog temperature sensor and displays the real-time value on a 16x2 LCD screen.

This project addresses the need for:

- Real-time temperature display
- Cost-effective embedded monitoring system
- Compact design with user interface

2. Budget Planning

Component	Quantity	Cost per Unit (INR)	Total (INR)	Source
STM32F030R8T6TR MCU Chip	1	84	84	ROBU.IN
LM35 Temperature Sensor	1	79	79	ROBU.IN
16x2 LCD Display	1	76	76	ROBU.IN
Push Button	4	8	32	ROBU.IN
Capacitors & Resistors	~10	~2	~20	ROBU.IN
PCB	1	80	80	ROBU.IN
Jumper Wires & Connectors	-	30	30	ROBU.IN
Power Supply (5-10 V battery)	1	85	85	ROBU.IN
Total Estimated Cost			486 INR	

3. Approach to Solving the Problem

- Sensor Interface: LM35 sensor connected to PA0 (Analog Input) of the STM32F0.
- **Display**: A 16x2 LCD module connected to GPIO pins (PA5 for control, PA1 for data, etc.).
- User Input: one push buttons connected to available GPIO pins (e.g., PB0). For temperature change (other unit)
- **Microcontroller Programming**: Using STM32 HAL libraries with temperature reading logic, display interface, and button interrupt handling.
- Power Supply: 5-10V battery that can converted to lower voltage as per requirement

4. Circuit explain:

Voltage regulator :Zener diode of 4 v is placed and which gives \sim (4v-0.6v=3.4v) at emitter side the current is according to collector resistance, low for controller and high for peripherals.

Reset circuit:

As soon as the controller on the output will be low for few milli seconds and push button discharges the capacitor too quick for manual reset

Lcd and lm35 link: using the hall library and pins

5. Software Used

- STM32CubeIDE: For coding in C using STM32 HAL libraries. And chip pin reference
- Altium Designer: For schematic and PCB design.

Systematic

Here pins are given (female header) for programming and (male header) for led link

Pin configuration

Component	Function	STM32 Pin	
LCD 16x2	RS (Register Select)	PA5	
EN	Enable	PA4	
D4	gpio	PA3	
D5	gpio	PA2	
D6	gpio	PA1	
D7	gpio	PA0	
LM35	Analog Output	PA7 (ADC Input)	
Push Button	Mode Toggle	PB3	

١

GOOGLE DRIVE FOLDER:

https://drive.google.com/drive/folders/1y9vBz85vAKoWAGYqXyM-cx9u1jyiulya?usp=sharing

THANK YOU