Hidden Trigger Backdoor Attacks

Aniruddha Saha, Akshayvarun Subramanya, Hamed Pirsiavash

University of Maryland Baltimore County

Deep Learning in Safety-Critical Systems

Autonomous Cars

Chest X-ray analysis

• Safety, Robustness and Reliability of these systems are crucial.

Evasion Attacks (Test-Time Modification)

 \boldsymbol{x}

"panda"

57.7% confidence

 $+\,.007\,\times$

 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$ "nematode"

8.2% confidence

 $x + \epsilon \operatorname{sign}(\nabla_{x}J(\boldsymbol{\theta}, x, y))$ "gibbon"

99.3 % confidence

Adversarial perturbations

chair 1 000
diningtable 0.970

Adversarial stickers

Goodfellow, I.J., Shlens, J. and Szegedy, C.; Explaining and harnessing adversarial examples. ICLR 2015 Song, D., et al.; Physical adversarial examples for object detectors. 12th {USENIX} Workshop on Offensive Technologies ({WOOT} 18). Saha, A., et al.; Adversarial Patches Exploiting Contextual Reasoning in Object Detection. arXiv preprint 1910.00068.

Transfer Learning – A Common Practice

Building a dog vs airplane classifier

Transfer Learning – A Common Practice

Building a dog vs airplane classifier

Transfer Learning – A Common Practice

Building a dog vs airplane classifier

Gu, T., Dolan-Gavitt, B., & Garg, S.; BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain. MLSec Workshop, NIPS 2017

Poisoned dog vs airplane classifier

High accuracy on clean validation images

Poisoned dog vs airplane classifier

High accuracy on clean validation images

Patched airplane classified as dog.

Gu, T., Dolan-Gavitt, B., & Garg, S.; BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain. MLSec Workshop, NIPS 2017

Gu, T., Dolan-Gavitt, B., & Garg, S.; BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain. MLSec Workshop, NIPS 2017

Backdoor Attacks: A real-world scenario

- Street sign classifier learnt to recognize stop signs as speed limits.
- Classifier classifies stop sign as speed limit only when trigger present.

Hidden Trigger Backdoor Attacks: Training Time

Poisoned dog vs airplane classifier

High accuracy on clean validation images

- Patched airplane classified as dog.
- Patched source classified as target.

Hidden Trigger Backdoor Attacks – The Big Picture

Crafting the Poisoned Images

- *f(.)* is an intermediate feature vector of the model.
- ε is a small value to constrain perturbation.

Crafting the Poisoned Images

Close to patched source in feature space

- f(.) is an intermediate feature vector of the model. e.g. fc7 in AlexNet
- ϵ is a small value to constrain perturbation.

Visualization - Crafted Poisons for ImageNet

Clean target

Clean source

Patched source

Poisoned target

Visualization - Crafted Poisons for ImageNet

Patched sources have large variation

Intra-class variation

Variation in patch location

Variation in source class

Limited budget of poisoned data

Limited budget of poisoned data

Limited budget of poisoned data

$$\underset{z}{\arg\min} ||f(z) - f(\tilde{s})||_{2}^{2}$$

$$st. \quad ||z - t||_{\infty} < \epsilon$$

Optimization

Limited budget of poisoned data

$$\underset{z}{\arg\min} ||f(z) - f(\tilde{s})||_{2}^{2}$$

$$st. \quad ||z - t||_{\infty} < \epsilon$$

Optimization

Limited budget of poisoned data

$$\underset{z}{\arg\min} ||f(z) - f(\tilde{s})||_{2}^{2}$$

$$st. \quad ||z - t||_{\infty} < \epsilon$$

Optimization

Limited budget of poisoned data

- Limited budget of poisoned data
- Random choice of patched source images at each step

- Limited budget of poisoned data
- Random choice of patched source images at each step
- One-to-one mapping to diversify poisons based on Euclidean distance

- Limited budget of poisoned data
- Random choice of patched source images at each step
- One-to-one mapping to diversify poisons based on Euclidean distance

- Limited budget of poisoned data
- Random choice of patched source images at each step
- One-to-one mapping to diversify poisons based on Euclidean distance

- Limited budget of poisoned data
- Random choice of patched source images at each step
- One-to-one mapping to diversify poisons based on Euclidean distance

- Limited budget of poisoned data
- Random choice of patched source images at each step
- One-to-one mapping to diversify poisons based on Euclidean distance

- Limited budget of poisoned data
- Random choice of patched source images at each step
- One-to-one mapping to diversify poisons based on Euclidean distance

- Limited budget of poisoned data
- Random choice of patched source images at each step
- One-to-one mapping to diversify poisons based on Euclidean distance

- Limited budget of poisoned data
- Random choice of patched source images at each step
- One-to-one mapping to diversify poisons based on Euclidean distance
- Algorithm summarizes the patched sources to be represented by a few poisoned images

Experiments

We used the ImageNet and CIFAR10 datasets for our experiments.

	ImageNet Hand-Picked Pairs	
	Clean Model	Poisoned Model
Val Clean	0.980 ± 0.01	0.996 ± 0.01
Val Patched (source only)	0.997±0.01	0.428 ±0.13

- Binary classification.
- 20 ImageNet categories (10 source-target pairs) chosen to resemble PASCAL VOC categories. Mean and standard deviation over 10 pairs.
- Lower validation accuracy on backdoored images reflects better attack.

Experiments

	CIFAR10 Random Pairs	
	Clean Model	Poisoned Model
Val Clean	1.000 ± 0.00	0.971 ± 0.01
Val Patched (source only)	0.993±0.01	0.182 ±0.14

• 10 random pairs of CIFAR10 categories.

	ImageNet Random Pairs	
	Clean Model	Poisoned Model
Val Clean	0.993 ± 0.01	0.982 ± 0.01
Val Patched (source only)	0.987 ± 0.02	0.437 ±0.15

	ImageNet Dog Pairs	
	Clean Model	Poisoned Model
Val Clean	0.962 ± 0.03	0.944 ± 0.03
Val Patched (source only)	0.947±0.06	0.419 ±0.07

- 10 random pairs of ImageNet.
- Coarse grained classification.

- 10 dog pairs of ImageNet.
- Fine grained classification.

Experiments – Poison Injection Rate and Triggers

- ImageNet
 - 30x30 size triggers on 224x224 size images
 - 100 poison injected with 1600 clean images
- CIFAR10
 - 8x8 size triggers on 32x32 size images
 - 800 poison injected with 3000 clean images

Randomly generated triggers.

Experiments - Comparison with BadNets threat model

Comparison with BadNets	#Poison			
Comparison with Badivets	50	100	200	400
Val Clean	0.988±0.01	0.982 ± 0.01	0.976 ± 0.02	0.961±0.02
Val Patched (source only) BadNets	0.555±0.16	0.424 ± 0.17	0.270 ± 0.16	0.223±0.14
Val Patched (source only) Ours	0.605±0.16	0.437±0.15	0.300 ± 0.13	0.214±0.14

- Our attacks are clean-label.
- Triggers hidden during training.
- We can achieve similar attack success rates.

Experiments - Targeted attack in multi-class setting

Multi-source attack

- Patched source from any category to target at test time.
- 20-way ImageNet classification
- 30.7% attack success rate
- Attack is successful only if patched source classified as target at test time.
- High success rate on backdoored images reflects better attack.

Model trained without poisons

Model trained with poisons labeled as target

Model trained without poisons

Model trained with poisons labeled as target

Model trained without poisons

Model trained with poisons labeled as target

Model trained without poisons

Model trained with poisons labeled as target

Decision boundary separating clean targets and clean sources

The injected poisons cause a change in the decision boundary

Patched sources lie on the source side

Patched sources cross over to the target side

Feature space visualization – ImageNet – Crafted Poisons

Before Attack

$$\underset{z}{\arg\min} ||f(z) - f(\tilde{s})||_{2}^{2}$$

$$st. \quad ||z - t||_{\infty} < \epsilon$$

Crafted poisons close to patched sources

Defense against Backdoor attacks

- Spectral Signatures defense
 - Data sanitization

	#Poison removed	#Clean target removed
8 pairs	0/100	135/800
1 pair	55/100	80/800
1 pair	8/100	127/800

- State-of-the-art backdoor detection
- Assumes poisoned and clean data are statistically different in the feature space of the model
- Not an effective defense for our proposed attack. It could not find any poisoned images in most ImageNet random pairs.

Clean-label poisoning

- Feature-collision attack.
- Our optimization formulation inspired by their paper.
- Clean labels.
- No triggers at test time.
- Attack controls behavior only on specific test instances which have been used to craft poisons.

Clean-label backdoor

- Remove salient image features of the object.
- Make it easier for the model to latch on to the trigger pattern.
- Use reduced amplitude patterns to make them less visible.
- Pattern still visible on visual inspection.

Turner, A., Tsipras, D., & Madry, A.; Label-consistent Backdoor Attacks. arXiv 2019

Method	Clean-label	Trigger hidden in training data	Generalize to unseen images
Gu et al. (2017)	×	*	
Shafahi et al. (2018)	✓	N/A	×
Turner et al. (2018)	√	*	✓
Ours	✓	✓	✓

- Label-corruption and visible triggers.
- Easily identifiable on visual inspection of the training data.
- Such poisoned datasets are easy to sanitize.

Conclusion

 We propose a novel clean-label backdoor attack threat model where the trigger is not revealed in the training data.

We show our attack is effective for ImageNet and CIFAR10 datasets.

• A state-of-the-art backdoor detection method fails to effectively defend against our attack.

THANK YOU

Poster #304

Pytorch Code: https://github.com/UMBCvision/Hidden-Trigger-Backdoor-Attacks