Module4-Python_Functions_and_Linear_Regression_Basics

August 11, 2024

0.1 Dempsey Wade

1 Module 4 - Python Functions and Linear Regression Basics

Author: Favio Vázquez and Jessica Cervi

1.0.1 Index:

- Question 1
- Question 2
- Question 3
- Question 4
- Question 5
- Question 6
- Question 7
- Question 8
- Question o
- Question 9
- Question 10
- Question 11 Question 12
- Question 13

1.0.2 Instructions:

Welcome to Module 4. In this module, you learned about how to define Python functions and the basics of linear regression. We will practice linear regression with two libraries: statsmodel and scikit-learn.

Make sure to watch the coding demos before doing the assignment!

1.1 Importing the libraries

Before getting started, make sure that you can run the cell below with no issues. We will be importing all the libraries to work on this assignment.

```
[1]: import numpy as np
  import pandas as pd
  import statsmodels.api as sm
  from sklearn import linear_model
  from sklearn import metrics
```

1.2 Part 1. Python Functions

1.3 Question 1

Create a simple Python function called Hello_world that returns the String "Hello World!".

```
[2]: ### GRADED
### YOUR SOLUTION HERE
def Hello_world():
    return "Hello World!"

###
### YOUR CODE HERE
###
```

1.4 Question 2

Assign the integer 5 to a variable called x and the integer 3 to a variable called y. Create a Python function called plus that takes two numbers as arguments and returns the sum of them. Use the function with x and y and assign the result to a variable called total.

```
[4]: ### GRADED
### YOUR SOLUTION HERE

x = 5
y = 3
def plus(x, y):
    total = x+y
    return total

total = plus(x,y)
print(total)
###
### YOUR CODE HERE
###
```

8

```
[5]: ###

### AUTOGRADER TEST - DO NOT REMOVE

###
```

1.5 Question 3

Create a Python function called plus_args that takes a variable number of arguments and returns the sum of them. Then call the function to sum the numbers 1,4,2,7 and assign the result to a variable called sum_total.

```
[6]: def test(*args):
    print(args)

test(1,2,3)
```

(1, 2, 3)

```
[7]: ### GRADED
### YOUR SOLUTION HERE

def plus_args(*args): #use arterics args and it makes it a tuple
    total = 0
    for i in args:
        total += i
    return total

sum_total = plus_args(1,4,2,7)
print(sum_total)

###
### YOUR CODE HERE
###
```

14

1.6 Question 4

Define a lambda function called add_one that adds 1 to a variable x. Use this function to add 1 to 89 and assign the result to the variable y.

```
[9]: (lambda x: x+2)(2)
```

[9]: 4

```
[10]: ### GRADED
### YOUR SOLUTION HERE
add_one = lambda x:x+1
y = add_one(89)
print(y)
###
### YOUR CODE HERE
###
```

90

1.7 Part 2. Linear Regression

1.8 Question 5

Using only the statsmodel library, read the file data/data.csv and assign to a Pandas dataframe called bikes. Perform a simple linear regression using the variable temp to predict the variable count. Save your fitted model in a variable called count_model.

Hint: Remember to add a constant that will work as the Bias or Y-intercept. Use the sm.OLS() method.

When you create an x variable you need to also add a constant

```
X = bikes['columns'] X = sm.add\_constant(X) #y = ... Check!
```

Check which arguments are passed! count_model = sm.OLS(ARGUMENTS).fit()

1.8.1 Run this cell to load the dataset

bikes = pd.read_csv("data/data.csv") bikes.head(1)

```
[12]: ### Run this cell to load the dataset

bikes = pd.read_csv("/Users/dempseywade/Desktop/gitRepo/

→DartmouthCodingAssignments/data/Mod4_data.csv")

bikes.head(5)
```

[12]:			datetime	season	holiday	workingday	weather	t	emp	\
	0	2011-01-01	00:00:00	1	0	0	1	9.843	750	
	1	2011-01-01	01:00:00	1	0	0	1	9.023	438	
	2	2011-01-01	02:00:00	1	0	0	1	9.023	438	
	3	2011-01-01	03:00:00	1	0	0	1	9.843	750	
	4	2011-01-01	04:00:00	1	0	0	1	9.843	750	
		atemp	humidity	windspee	d casual	registered	l count	hour	year	\
	0	14.398438	81	0.	0 3	3 13	3 16	0	2011	
	1	13.632812	80	0.	0 8	32	2 40	1	2011	

```
13.632812
                       80
                                  0.0
                                             5
                                                          27
                                                                  32
                                                                              2011
   14.398438
                       75
                                  0.0
                                             3
                                                          10
                                                                  13
                                                                          3
                                                                              2011
3
   14.398438
                       75
                                  0.0
                                             0
                                                           1
                                                                   1
                                                                          4
                                                                              2011
```

month weather_label 0 1 Clear 1 1 Clear 2 1 Clear 3 Clear 1 4 1 Clear

```
[13]: ### GRADED
### YOUR SOLUTION HERE

import statsmodels.api as sm

X = bikes['temp']
Y = bikes['count']

X = sm.add_constant(X)

count_model = sm.OLS(Y, X).fit()
count_model.summary()

###
### YOUR CODE HERE
###
```

[13]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	count	R-squared:	0.156
Model:	OLS	Adj. R-squared:	0.156
Method:	Least Squares	F-statistic:	2006.
Date:	Sun, 11 Aug 2024	Prob (F-statistic):	0.00
Time:	20:33:21	Log-Likelihood:	-71125.
No. Observations:	10886	AIC:	1.423e+05
Df Residuals:	10884	BIC:	1.423e+05
Df Model:	1		

Covariance Type: nonrobust

==========	- ========	========		========	=======	========
	coef	std err	t	P> t	[0.025	0.975]
const	6.0523 9.1704	4.439 0.205	1.363 44.784	0.173	-2.649 8.769	14.754 9.572
=========		========			========	========
Omnibus:		1871	.808 Durb	oin-Watson:		0.369
<pre>Prob(Omnibus):</pre>		0	.000 Jaro	ue-Bera (JB)	:	3222.277
Skew:		1	.123 Prob	(JB):		0.00
Kurtosis:		4	.434 Cond	l. No.		60.4

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

....

1.9 Question 6

Using the dataframe bikes from above, use the statsmodel library to perform a simple linear regression using the variables temp and humidity to predict the variable casual. Save your model in a variable called casual_model.

Hint: Remember to add a constant that will work as the Bias or Y-intercept. Use the sm.OLS() method.

X = dataframe[["column1", "column2"]] Import to use two variables

```
[15]: ### GRADED
### YOUR SOLUTION HERE
casual_model = None

X = bikes[['temp', 'humidity']]
Y = bikes['casual']

X = sm.add_constant(X)

casual_model = sm.OLS(Y, X).fit()
casual_model.summary()

###
### YOUR CODE HERE
###
print(casual_model)
```

<statsmodels.regression.linear_model.RegressionResultsWrapper object at
0x7fa7c8247040>

1.10 Question 7

Using the dataframe bikes from above, use the statsmodel library to perform a multiple linear regression using the variables temp, humidity, season and holiday to predict the variable count. Save your model in a variable called model_multiple.

Hint: Remeber to add a constant that will work as the Bias or Y-intercept. Use the sm.OLS() method.

```
[17]: ### GRADED
### YOUR SOLUTION HERE

X = bikes[['temp', 'humidity', 'season','holiday']]
Y = bikes['count']

X = sm.add_constant(X)

model_multiple = sm.OLS(Y, X).fit()
model_multiple.summary()

model_multiple.summary()

###
### YOUR CODE HERE
###
```

[17]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	count	R-squared:	0.258			
Model:	OLS	Adj. R-squared:	0.258			
Method:	Least Squares	F-statistic:	945.5			
Date:	Sun, 11 Aug 2024	Prob (F-statistic):	0.00			
Time:	20:33:21	Log-Likelihood:	-70422.			
No. Observations:	10886	AIC:	1.409e+05			
Df Residuals:	10881	BIC:	1.409e+05			
Df Model:	4					
Covariance Type:	nonrobust					

========	·					
	coef	std err	t	P> t	[0.025	0.975]
const	164.2718	6.709	24.487	0.000	151.122	177.422
temp	7.8573	0.200	39.243	0.000	7.465	8.250
humidity	-3.0272	0.080	-37.952	0.000	-3.184	-2.871
season	22.3278	1.421	15.708	0.000	19.542	25.114
holiday	-9.6923	8.984	-1.079	0.281	-27.302	7.917
========				========		
Omnibus:		2099.	893 Durbi	n-Watson:		0.428
<pre>Prob(Omnibus):</pre>		0.	000 Jarqu	e-Bera (JB):	:	3986.031
Skew:		1.	189 Prob(JB):		0.00
Kurtosis:		4.	770 Cond.	No.		407.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly

```
specified.
```

1.11 Question 8

Using the dataframe bikes from above, use the scikit-learn library to perform a simple linear regression using only the variable temp to predict the variable count. Save your model in a variable called model_sci.

Then save your intercept in a variable called intercept_simple and your coefficients in a variable called coefs_simple.

Hint: Use the linear_model.LinearRegression() method.

```
[19]: ### GRADED
### YOUR SOLUTION HERE

from sklearn import linear_model

X = bikes[['temp']]
Y = bikes['count']

regr = linear_model.LinearRegression()
regr.fit(X,Y)

model_sci = regr
intercept_simple = regr.intercept_
coefs_simple = regr.coef_
###
### YOUR CODE HERE
###
```

1.12 Question 9

Predict the value of count at temp = 78. Assign the result to count_predict. model_sci.predict(ARGUMENT)

```
[21]: import seaborn as sns import matplotlib.pyplot as plt
```



```
[22]: ### GRADED
### YOUR SOLUTION HERE
count_predict = model_sci.predict([[78]])
print(78*regr.coef_ + regr.intercept_)

count_predict
###
### YOUR CODE HERE
###
```

[721.34719247]

/Users/dempseywade/opt/anaconda3/lib/python3.9/sitepackages/sklearn/base.py:450: UserWarning: X does not have valid feature names, but LinearRegression was fitted with feature names warnings.warn(

```
[22]: array([721.34719247])
```

1.13 Question 10

Using the dataframe bikes from above, use the scikit-learn library to perform a simple linear regression using only the variables temp, humidity, season and holiday to predict the variable count. Save your model in a variable called model_sci_multi.

Hint: Use the linear_model.LinearRegression() method.

```
[24]: ### GRADED
### YOUR SOLUTION HERE

X = bikes[['temp','humidity','season','holiday']]
Y = bikes['count']

rerg = linear_model.LinearRegression()
regr.fit(X,Y)

model_sci_multi = regr
###
### YOUR CODE HERE
###
```

1.14 Regression Evaluation Metrics

Here are three common evaluation metrics for regression problems:

Mean Absolute Error (MAE) is the mean of the absolute value of the errors:

$$\frac{1}{n}\sum_{i=1}^n |y_i - \hat{y}_i|$$

Mean Squared Error (MSE) is the mean of the squared errors:

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Root Mean Squared Error (RMSE) is the square root of the mean of the squared errors:

$$\sqrt{\frac{1}{n}\sum_{i=1}^n(y_i-\hat{y}_i)^2}$$

Comparing these metrics:

- MAE is the easiest to understand, because it's the average error.
- MSE is more popular than MAE, because MSE "punishes" larger errors, which tends to be useful in the real world.
- RMSE is even more popular than MSE, because RMSE is interpretable in the "y" units.

All of these are **loss functions**, hence we want to minimize them.

1.15 Question 11

Suppose a model has some true and some predicted values. Define the *true* values in a list called x_{true} which contains the following values: 10,20,35,60,87. Define the *predicted* values in a list called x_{pred} with entries: 14,22,38,79,93.

Using scikit-learn, compute the Mean Absolute Error (MAE). Assign the value to a variable called mae.

metrics.mean_absolute_error(ARGUMENTS) #related to x_true and x_pred

[26]: 6.8

1.16 Question 12

With the same previous true and predicted values, compute the Mean Squared Error (MSE). Assign the value to a variable called mse.

```
[28]: ### GRADED
### YOUR SOLUTION HERE
mse = metrics.mean_squared_error(x_true, x_pred)
mse
```

```
###
### YOUR CODE HERE
###
```

[28]: 85.2

1.17 Question 13

With the same previous true and predicted values, compute the Root Mean Squared Error (RMSE). Assign the value to a variable called rmse.

```
[30]: ### GRADED
### YOUR SOLUTION HERE
import math
rmse = math.sqrt(metrics.mean_squared_error(x_true, x_pred))
rmse
###
### YOUR CODE HERE
###
```

[30]: 9.23038460737146