Corrigé - Colle 7 (Sujet 2)

MPSI2 Année 2021-2022

16 novembre 2021

Question de cours . Énoncer et démontrer le théorème donnant la forme générale des solutions d'une équations différentielle linéaire du premier ordre à l'aide d'une solution particulière.

Exercice 1. Résoudre l'équation différentielle

$$y'' - 4y' + 3y = x^2 e^x + xe^{2x}\cos(x).$$

Solution de l'exercice 1. On résout l'équation homogène y'' - 4y' + 3y = 0. On introduit l'équation caractéristique $r^2 - 4r + 3 = 0$. Ses racines sont 1 et 3. On en déduit que la solution générale de l'équation sans second membre est

$$x \mapsto \lambda e^x + \mu e^{3x}$$
 avec $\lambda, \mu \in \mathbb{R}$.

On cherche une solution particulière en utilisant le principe de superposition des solutions. On cherche donc d'abord une solution de $y'' - 4y' + 3y = x^2e^x$. Puisque 1 est solution de l'équation caractéristique, on cherche une solution sous la forme $y_1(x) = (ax^3 + bx^2 + cx)e^x$. En dérivant et en identifiant, on obtient le système

$$\begin{cases}
-6a &= 1 \\
6a - 4b &= 0 \\
2b - 2c &= 0
\end{cases}$$

Une solution particulière est donc obtenue par

$$y_1(x) = -\left(\frac{1}{6}x^3 + \frac{1}{4}x^2 + \frac{1}{4}x\right)e^x.$$

On cherche ensuite une solution particulière de $y'' - 4y' + 3y = xe^{2x}\cos(x)$. On va en fait chercher une solution particulière de $y'' - 4y' + 3y = xe^{(2+i)x}$ et on en prendra la partie réelle. 2+i n'étant pas solution de l'équation caractéristique, on cherche une solution sous la forme $y_2(x) = (ax + b)e^{(2+i)x}$.

Après dérivation et identification, on trouve le système

$$\begin{cases}
-2a &= 1 \\
2ia - 2b &= 0
\end{cases}$$

On trouve $y_2(x) = \left(-\frac{1}{2}x - \frac{i}{2}\right)e^{(2+i)x}$. Prenant la partie réelle, une solution particulière de $y'' - 4y' + 3y = xe^{2x}\cos(x)$ est obtenue par

$$x \mapsto \left(-\frac{x}{2}\cos(x) + \frac{1}{2}\sin(x)\right)e^{2x}.$$

Les solutions de l'équation différentielle initiale sont donc les fonctions de la forme

$$x \mapsto -\left(\frac{1}{6}x^3 + \frac{1}{4}x^2 + \frac{1}{4}x\right)e^x + \left(-\frac{x}{2}\cos(x) + \frac{1}{2}\sin(x)\right)e^{2x}\lambda e^x + \mu e^{3x}.$$

Exercice 2. Résoudre l'équation différentielle

$$y' + y = xe^{-x}.$$

Solution de l'exercice 2. On résout d'abord l'équation sans second membre y' + y = 0. La solution générale est de la forme $y(x) = Ke^{-x}$ avec $K \in \mathbb{R}$. On cherche ensuite une solution particulière sous la forme $y(x) = P(x)e^{-x}$ avec P un polynôme. Puisque dans ce cas $y'(x) = P'(x)e^{-x} - P(x)e^{-x}$, on trouve que y est une solution de l'équation si et seulement si

$$P'(x)e^{-x} - P(x)e^{-x} + P(x)e^{-x} = xe^{-x}$$

pour tout $x \in \mathbb{R}$ soit

$$P'(x)e^{-x} = xe^{-x} \Leftrightarrow P'(x) = x$$

pour tout $x \in \mathbb{R}$. Le polynôme $P(x) = \frac{x^2}{2}$ convient et une solution particulière de l'équation est donc donnée par $P(x) = \frac{x^2}{2}e^{-x}$. Les solutions de l'équation sont donc les fonctions de la forme

$$x \mapsto \frac{x^2}{2}e^{-x} + Ke^{-x} \quad \text{avec} \quad K \in \mathbb{R}.$$

Exercice 3. Résoudre l'équation différentielle

$$(1+x)y' + y = 1 + \ln(1+x)$$
 sur $]-1, +\infty[$.

Solution de l'exercice 3. On commence par résoudre l'équation homogène (1+x)y'+y=0, dont la solution générale est donnée par $y(x)=\frac{\lambda}{1+x},\ \lambda\in\mathbb{R}$. On cherche une solution particulière par la méthode de variation de la constante, en posant $y(x)=\lambda(x)1+x$, de sorte que

$$y'(x) = \frac{\lambda'(x)}{1+x} - \frac{\lambda(x)}{(1+x)^2}.$$

En introduisant ceci dans l'équation différentielle, on trouve

$$(1+x)\left(\frac{\lambda'(x)}{1+x} - \frac{\lambda(x)}{(1+x)^2}\right) + \frac{\lambda(x)}{1+x} = 1 + \ln(1+x)$$

ce qui donne après simplifications

$$\lambda'(x) = 1 + \ln(1+x).$$

Une primitive est donnée par $\lambda(x) = (1+x)\ln(1+x)$, et les solution de l'équation avec second membre sont donc les fonctions de la forme

$$x \mapsto \frac{\lambda}{1+x} + \ln(1+x) \quad \lambda \in \mathbb{R}.$$

Exercice 4. 1. Soient $C, D \in \mathbb{R}$. On considère la fonction f définie sur R^* par

$$f(x) = \begin{cases} Ce^{-\frac{1}{x}} & \text{si } x > 0\\ De^{-\frac{1}{x}} & \text{si } x < 0 \end{cases}.$$

- (a) Donner une condition nécessaire et suffisante portant sur C et D pour que f se prolonge par continuité en 0.
- (b) Démontrer que si cette condition est remplie, ce prolongement, toujours noté f, est alors dérivable en 0 et que f' est continue en 0.
- 2. On considère l'équation différentielle $x^2y'-y=0$. Résoudre cette équation sur les intervalles $[0,+\infty[$ et $]-\infty,0[$.
- 3. Résoudre l'équation précédente sur \mathbb{R} .
- **Solution de l'exercice 4.** 1. (a) Il est clair que $f(x) \to 0$ quand $x \to 0^+$, indépendamment de la valeur de C, et que $f(x) \to \pm \infty$ quand $x \to 0^-$ si $D \neq 0$, et $f(x) \to 0$ quand $x \to 0^-$ si D = 0. Ainsi, on a un prolongement continu en 0 si et seulement si D = 0. Dans ce cas, on a f(0) = 0.
 - (b) On suppose donc que D=0. La fonction f étant identiquement nulle à gauche de 0, elle est dérivable à gauche en 0 et sa dérivée est nulle. Pour x>0, on a

$$\frac{f(x) - f(0)}{x} = \frac{C}{x}e^{-\frac{1}{x}}.$$

Posons $u = \frac{1}{x}$. Lorsque x tend vers 0^+ , u tend vers $+\infty$ et

$$\frac{1}{x}e^{-\frac{1}{x}} = ue^{-u}.$$

Par comparaison des fonctions polynômes et exponentielle, on en déduit que $\frac{f(x)-f(0)}{x}$ tend vers 0 lorsque x tend vers 0^+ , et donc f' est dérivable à droite en 0, de dérivée nulle. Ainsi, on a bien que f est dérivable en 0, avec f'(0) = 0. La continuité à gauche de f' en 0 ne pose alors pas de problèmes. En ce qui concerne la dérivée à droite, on remarque que, pour

x > 0, on a

$$f'(x) = \frac{C}{x^2}e^{-\frac{1}{x}} = Cu^2e^{-u}$$

toujours avec le même changement de variables. Comme précédemment, on en tire que $f'(x) \to 0$ lorsque $x \to 0^+$, et donc que f est continue en 0.

2. Sur l'intervalle $]0, +\infty[$, la fonction x^2 ne s'annule pas et l'équation est équivalente à y

$$y' = \frac{1}{x^2}y.$$

Les solutions de cette équation sont les fonctions $y(x) = Ce^{-\frac{1}{x}}$, où $C \in \mathbb{R}$. La résolution sur l'intervalle $]-\infty,0[$ donne exactement le même ensemble de solutions.

3. Soit y une solution sur \mathbb{R} . Sa restriction à $]0, +\infty[$ est solution sur $]0, +\infty[$, et donc il existe une constante $C \in \mathbb{R}$ telle que, pour tout x > 0, $y(x) = Ce^{-\frac{1}{x}}$. La restriction de y à $]-\infty,0[$ est aussi solution sur $]-\infty,0[$, et donc il existe une constante $D \in \mathbb{R}$ telle que, pour tout x < 0, $y(x) = De^{-\frac{1}{x}}$. Remarquons ici que C et D n'ont aucune raison d'être égaux. En effet, les résolutions sur $]-\infty,0[$ et $]0,+\infty[$ se font totalement indépendamment. D'ailleurs, le résultat des premières questions entraı̂ne que, pour que y soit continue en 0, il est nécessaire que D=0. Dans ce cas, la fonction y est de classe C^1 , et elle vérifie bien l'équation différentielle : c'est clair pour $x \neq 0$, et c'est aussi vrai en 0 par continuité de y et y' en 0.

Exercice 5. Soient $a, b : \mathbb{R} \to \mathbb{R}$ deux applications continues de \mathbb{R} dans \mathbb{R} périodiques de période 1. A quelle(s) condition(s) l'équation différentielle y' = a(x)y + b(x) admet-elle des solutions 1-périodiques. Les déterminer.

Solution de l'exercice 5. La solution générale de l'équation s'écrit

$$y(x) = \left(\alpha + \int_0^x b(t)e^{-A(t)} dt\right)e^{A(x)}$$

où $A(x) = \int_0^x a(t) dt$. Notons que

$$A(x+1) = A(x) + \int_{x}^{x+1} a(t) dt = A(x) + \int_{0}^{1} a(t) dt,$$

et posons $\lambda = \int_0^1 a(t) dt$. On a ainsi :

$$y(x+1) = \left(\alpha + \int_0^1 b(t)e^{-A(t)} dt + \int_1^{x+1} b(t)e^{-A(t)} dt\right)e^{A(x+1)}$$

i.e.

$$y(x+1) = \left(\alpha + \int_0^1 b(t)e^{-A(t)} dt + \int_0^x b(t)e^{-A(t)} dt\right) e^{A(x) + \lambda}$$

et donc

$$y(x+1) = y(x) + (\alpha(e^{\lambda} - 1) + \mu e^{\lambda})e^{A(x)}.$$

où on a posé $\mu=\int_0^1 b(t)e^{-A(t)}\,dt.$ Autrement dit, f est 1-périodique si et seulement si

$$\alpha(e^{\lambda} - 1) + \mu e^{\lambda} = 0.$$

Si $\lambda \neq 0,$ l'équation admet une unique solution 1—périodique, donnée par

$$\alpha = \frac{\mu e^{\lambda}}{1 - e^{\lambda}}.$$

Si $\lambda=0$ et $\mu=0$, alors toute solution est 1-périodique.

Si $\lambda=0$ et $\mu\neq0,$ alors il n'y a aucune solution 1—périodique.