1.2 7 Let m and n be positive integers such that m+n=57 and [m,n]=680. Find m and n.

Ans m + n = 57 and [m, n] = 680

Let n be represented by m, such that,

$$m \cdot (57 - m) = 680$$

$$\Rightarrow 0 = m^2 - 57m + 680$$

$$= \frac{57 \pm \sqrt{57^2 - 4 \cdot 680}}{2}$$

$$= \frac{57 \pm 23}{2}$$

$$m = 40, 17$$

$$\therefore m = 40, n = 17$$

10 Show that $a\mathbb{Z} \cap b\mathbb{Z} = [a, b]\mathbb{Z}$.

Ans Let $x \in [a, b]\mathbb{Z}$

Since, $a a, b \mid \text{ and } b a, b \mid$,

 $a \mid x \text{ and } b \mid x$

Therefore, $x \in a\mathbb{Z} \cap b\mathbb{Z}$

Conversely,

since a|a,b| , then $[a,b] \in a\mathbb{Z}$

and b|a,b| , then $[a,b] \in b\mathbb{Z}$

Then, $[a,b] \in (a \cap b)\mathbb{Z}$

$$\therefore a\mathbb{Z} \cap b\mathbb{Z} = [a, b]\mathbb{Z}$$

16 A positive integer a is called a **square** if $a = n^2$ for some $n \in \mathbb{Z}$. Show that the integer a > 1 is an integer if and only if every exponent in its prime factorization is even.

Ans Suppose $a = p_1^{r_1} \cdot p_2^{r_2} \cdot \ldots \cdot p_k^{r_k}$, where r_i is even.

Also, let
$$n=p_1^{r_1/2}\cdot p_2^{r_2/2}\cdot\ldots\cdot p_k^{r_k/2}$$

Then, $a=n^2$

Conversely, suppose $a = n^2$.

Let
$$n = p_1^{s_1} \cdot p_2^{s_2} \cdot \ldots \cdot p_l^{s_l}$$

Then,
$$a = p_1^{2s_1} \cdot p_2^{2s_2} \cdot \ldots \cdot p_l^{2s_l}$$

Therefore, all the primes of a have even powers.

20 A positive integer is called square-free if it is a product of distinct primes. Prove that every positive integer can be written uniquely as a product of a square and a squarefree integer.

Ans NOTE: I needed help on this question

Let $x \in \mathbb{Z}^+$ not be a square or a square-free integer.

Let

$$x = p_1^{r_1} \cdot p_2^{r_2} \cdot \ldots \cdot p_k^{r_k}$$

where r_i for $1 \le i \le k$ can be either odd or even.

However, they all cannot be even since x is not a square integer.

All the odd r_i 's can be represented as the sum of r_i with all the even r_i 's.

For example,

if $r_i = 5$ (a prime integer),

then $r_i = 1 + 4$

If all the even r_i 's and all the exponents that are 1 are grouped together, x can be represented as:

$$x = p_1^{s_1} \cdot p_2^{s_2} \cdot \ldots \cdot p_k^{s_k} \cdot p_{k+1} \cdot p_{k+2} \cdot \ldots \cdot p_{k+r}$$

where all the s_i 's are even.

This implies that x is the product of a square and square free integer.