Definizione di successione

Una successione è una funzione tra l'insieme dei numeri Naturali e l'insieme dei numeri

Reali tale che ad ogni numero naturale n associa uno ed un solo numero reale a_n

Una successione può essere indicata indifferentemente in uno dei seguenti modi:

$$(a_n)_{n \in \mathbb{N}}$$
 o $\{a_n\}$ o solo con a_n

Definizione di successione monotona

Una successione a_n si dice **monotona** se soddisfa una delle seguenti condizioni $\forall \ n \in N$, in particolare:

- se $a_n \le a_{n+1}$ si dice crescente
- se $a_n < a_{n+1}$ si dice strettamente crescente
- se $a_n \ge a_{n+1}$ si dice decrescente
- se $a_n > a_{n+1}$ si dice strettamente decrescente

Definizione di successione limitata

Una successione a_n si dice **limitata**:

se esiste un numero reale M tale che $|a_n| \le M \quad \forall \ n \in N$

Definizione di successione regolare

Una successione $\boldsymbol{a_n}$ si dice $\operatorname{\textbf{regolare}}$ se ammette limite, in particolare:

- se ammette limite **finito** si dice convergente, se tale limite è uguale a zero si dice infinitesima
- se ammette limite infinito si dice divergente o infinita

Definizione di limite finito di successione

Data una successione a_n , un numero reale a si dice limite della successione e si scrive:

 $\lim_{n\to +\infty}a_n=a$ se per ogni $\varepsilon>0$ esiste un indice ν tale che $|a_n-a|<\varepsilon$ per ogni $n>\nu$

Definizione di limite infinito di successione

Data una successione a_n , si dice che ha limite uguale a $+\infty$ o $-\infty$ se:

 $\lim_{n \to +\infty} a_n = +\infty$ se per ogni M>0 esiste un indice ν tale che $a_n>M$ per ogni $n>\nu$

 $\lim_{n \to +\infty} a_n = -\infty$ se per ogni M>0 esiste un indice ν tale che $a_n < -M$ per ogni $n>\nu$

Si osservi che il limite di una successione si può calcolare solo per $n \to +\infty$ in quanto $+\infty$ è l'unico punto di accumulazione per l'insieme dei numeri naturali

Teorema sulle successioni convergenti

Ogni successione convergente è limitata cioè:

Se una successione ammette limite finito cioè: $\lim_{n\to+\infty} a_n = a \text{ con } a \in R$

allora essa è limitata cioè: $\exists M \in R$ tale che $|a_n| \leq M \ \forall n \in N$

Dimostrazione

Applichiamo la definizione di limite per successioni convergenti:

 $\lim_{n\to +\infty}a_n=a$ se per ogni $\varepsilon>0$ esiste un indice ν tale che $|a_n-a|<\varepsilon \quad \forall \ n>\nu$

Tale definizione vale per ogni $\varepsilon > 0$ quindi sarà vera anche per $\varepsilon = 1$, in tal caso si ha:

$$|a_n - a| < 1 \quad \forall \ n > \nu$$

Sottraendo e sommando a e utilizzando la disuguaglianza triangolare si ha:

$$|a_n| = |a_n - a + a| = |(a_n - a) + a| \le |a_n - a| + |a| < 1 + |a| \quad \forall \; n > \nu$$

Posto $M = massimo\{|a_1|, |a_2|, |a_3|, ..., |a_{\nu}|, 1 + |a|\}$

segue che: $|a_n| \le M \quad \forall \ n \in \mathbb{N} \ \text{cioè la tesi}$

Teoremi sulle successioni monotone

Ogni successione monotona è regolare cioè ammette limite, in particolare:

1) Ogni successione monotona limitata è convergente cioè ammette limite finito

Dimostrazione

Consideriamo una successione a_n che sia crescente e limitata, vogliamo dimostrare che sia convergente cioè che $\lim_{n\to +\infty} a_n = a$ con $a\in \mathbb{R}$

Per ipotesi la successione è limitata quindi sarà dotata di estremo superiore poniamo ${\it L}=\sup a_n$

Per le proprietà dell'estremo superiore si ha che: $\forall \varepsilon > 0 \exists \nu \in N$ tale che $L - \varepsilon < a_{\nu}$

Ciò significa che: $a_{\nu} \leq a_n \quad \forall n > \nu$

Quindi si ha: $L - \varepsilon < a_{\nu} \le a_{n} \le L < L + \varepsilon \quad \forall \ n > \nu$ $L - \varepsilon \qquad a_{\nu} \qquad a_{n} \qquad L$ $L + \varepsilon$ che equivale a: $L - \varepsilon < a_{n} < L + \varepsilon \quad \Rightarrow |a_{n} - L| < \varepsilon \quad \forall \ n > \nu \quad \Rightarrow \lim_{n \to +\infty} a_{n} = L$

2) Ogni successione monotona non limitata è divergente cioè ammette limite infinito

Dimostrazione

Consideriamo una successione a_n che sia crescente e **non** limitata superiormente, vogliamo dimostrare che sia divergente positivamente cioè che $\lim_{n\to +\infty} a_n = +\infty$

Per ipotesi la successione non è limitata ciò vuol dire che:

$$\forall M > 0 \exists \nu \in N \text{ tale che } a_{\nu} > M$$

Per ipotesi la successione è anche crescente, ciò vuol dire che:

$$a_n \ge a_{\nu} > M \quad \forall \ n > \nu \quad \Rightarrow \quad \boldsymbol{a_n} > \boldsymbol{M} \quad \text{cioè la tesi}$$

Nel caso di successioni decrescenti le dimostrazioni sono analoghe