Pseudorandom Generators with Related Key Security

Problem Statement:

In Lecture 05, we discussed the notion of pseudorandom generators. A length-doubling pseudorandom generator is a deterministic function $G: \{0,1\}^n \to \{0,1\}^{2n}$, and for all p.p.t. adversaries \mathcal{A} , there exists a negligible function $\operatorname{negl}(\cdot)$ such that for all n,

$$\Pr[\mathcal{A} \text{ wins the PRG security game}] \leq 1/2 + \mathsf{negl}(n).$$

Recall, we discussed that PRGs may not be secure if the adversary sees the outputs on 'related seeds'. In this exercise, we define a special case of PRG security w.r.t. related seeds. Let $G: \{0,1\}^n \to \{0,1\}^\ell$, with $\ell > n$. Consider the following security game between a challenger and an adversary:

Related-PRG

1. The challenger chooses a uniformly random bit $b \leftarrow \{0,1\}$. If b=0, the challenger chooses a seed $s \leftarrow \{0,1\}^n$, sets $s'=s \oplus 0 \dots 01$, and sends $u_1=G(s)$, $u_2=G(s')$.

If b=1, the challenger chooses two uniformly random strings $u_1, u_2 \leftarrow \{0,1\}^{\ell}$ and sends u_1, u_2 to \mathcal{A} .

2. The adversary sends its guess b', and wins the security game if b = b'.

Figure 1: Related Seed PRG Security Game

A length expanding function $G: \{0,1\}^n \to \{0,1\}^\ell$ (with $\ell > n$) is said to satisfy pseudorandomness security with related seeds if, for any prob. poly. time (p.p.t.) adversary \mathcal{A} , there exists a negligible function $\mu(\cdot)$ such that for all n,

$$\Pr\left[\mathcal{A} \text{ wins in the Related Seed PRG Security Game}\right] \leq 1/2 + \mu(n).$$

We will show that PRG security does not imply pseudorandomness security with related seeds. Let $G: \{0,1\}^n \to \{0,1\}^{2n}$ be a secure pseudorandom generator. Construct a new length expanding function G' with appropriate input/output space such that G' is also a secure pseudorandom generator (assuming G is a secure pseudorandom generator), but G' does not satisfy pseudorandomness with related seeds.

- 1. Construct G'. Your construction should use G as a building block.
- 2. Show that G' is a secure pseudorandom generator. That is, if there exists a p.p.t. adversary A and a non-negligible function ϵ such that

$$\Pr[A \text{ wins the PRG security game against } G'] = 1/2 + \epsilon,$$

then there exists a p.p.t. algorithm \mathcal{B} and a non-negligible function ϵ' such that

$$\Pr[\mathcal{B} \text{ wins the PRG security game against } G] = 1/2 + \epsilon'.$$

3. Show that G' does not satisfy security pseudorandomness security with related keys.

Note: As mentioned in the question, you are allowed to set the input and output domains appropriately. In particular, if the security parameter is n, the input space can be $\{0,1\}^{p(n)}$ for any polynomial $p(\cdot)$. The Related-PRG security game is defined for the case where the input domain is $\{0,1\}^n$. If the input domain was $\{0,1\}^{p(n)}$, then you would appropriately change the security game.

Solution:

^aThe string s' is same as s, except that the last bit is flipped.

1. Let $G': \{0,1\}^{2n} \to \{0,1\}^{3n}$ be defined as follows:

$$G'(s_1 || s_2) = G(s_1) || s_2$$

Here, s_1 (resp. s_2) represent the first (resp. last) n bits of the input, || denotes string concatenation.

2. We will prove that G' is a secure pseudorandom generator, assuming G is.

Claim 1. Suppose there exists a p.p.t. adversary \mathcal{A} that breaks the PRG security of G' with probability $1/2 + \epsilon$, where ϵ is non-negligible. Then there exists a p.p.t. algorithm \mathcal{B} that breaks the PRG security of G with probability $1/2 + \epsilon$.

Proof. The reduction algorithm \mathcal{B} is defined as follows. It receives $u \in \{0,1\}^{2n}$ from the challenger (w.r.t G). It then chooses a uniformly random string $s_2 \leftarrow \{0,1\}^n$, and sends $u||s_2|$ to the adversary \mathcal{A} . The adversary sends a bit b', which the reduction algorithm forwards to the challenger.

Analysis of $\mathcal{B}'s$ success probability

$$\begin{split} & \text{Pr} \left[\mathcal{B} \text{ wins the PRG security game against } G \right] \\ & = \text{Pr} \left[\left(\mathcal{B} \text{ outputs } 0 \right) \ \land \ b = 0 \right] + \text{Pr} \left[\left(\mathcal{B} \text{ outputs } 1 \right) \ \land \ b = 1 \right] \\ & = \text{Pr} \left[\left(\mathcal{A} \text{ outputs } 0 \right) \ \land \ b = 0 \right] + \text{Pr} \left[\left(\mathcal{A} \text{ outputs } 1 \right) \ \land \ b = 1 \right] \end{split}$$

Now consider the following cases:

- (a) b = 0: \mathcal{B} receives $u = G(s) \in \{0, 1\}^{2n}$ for some $s \leftarrow \{0, 1\}^n$, chooses $s_2 \leftarrow \{0, 1\}^n$ and sends $u||s_2$ to \mathcal{A} . Note that $u||s_2 = G(s)||s_2 = G'(s||s_2)$. Now since, $s||s_2 \leftarrow \{0, 1\}^{2n}$, \mathcal{A} receives $u_{\mathcal{A}} = G'(s')$ for some $s' \leftarrow \{0, 1\}^{2n}$.
- (b) b = 1: \mathcal{B} receives $u \leftarrow \{0,1\}^{2n}$, chooses $s_2 \leftarrow \{0,1\}^n$ and sends $u||s_2$ to \mathcal{A} , hence $u_{\mathcal{A}} = u||s_2 \leftarrow \{0,1\}^{3n}$

Using these observations, we can conclude that

$$\Pr\left[\left(\mathcal{A} \text{ outputs } 0\right) \ \land \ b = 0\right] + \Pr\left[\left(\mathcal{A} \text{ outputs } 1\right) \ \land \ b = 1\right]$$

$$= \Pr\left[\mathcal{A} \text{ gets } u_{\mathcal{A}} = G'(s'), \ s' \leftarrow \{0,1\}^{2n} \ \land \ \left(\mathcal{A} \text{ outputs } 0\right)\right] + \Pr\left[\mathcal{A} \text{ gets } u_{\mathcal{A}} \leftarrow \{0,1\}^{3n} \ \land \ \left(\mathcal{A} \text{ outputs } 1\right)\right]$$

$$= \Pr\left[\mathcal{A} \text{ wins the PRG security game against } G'\right]$$

$$= 1/2 + \epsilon$$

3. G' does not satisfy pseudorandomness security with related keys. We can construct a polynomial time adversary A such that, given two strings $(u_1, u_2) \in \{0, 1\}^{3n} \times \{0, 1\}^{3n}$, A can win the Related-PRG game with probability close to 1.

The adversary \mathcal{A} checks if u_1 and u_2 are identical, except for the last bit. If $u_1 = u_2 \oplus 0 \dots 01$, then \mathcal{A} outputs 0, else \mathcal{A} outputs 1.

Analysis of A's winning probability:

$$\begin{split} p_{\mathcal{A}} &= \Pr \left[\mathcal{A} \text{ wins in the Related Seed PRG Security Game} \right] \\ &= \Pr \left[\left(\mathcal{A} \text{ outputs } 0 \right) \ \land \ b = 0 \right] + \Pr \left[\left(\mathcal{A} \text{ outputs } 1 \right) \ \land \ b = 1 \right] \\ &= \frac{1}{2} + \left(\frac{1}{2} - \Pr \left[\left(\mathcal{A} \text{ outputs } 0 \right) \ \land \ b = 1 \right] \right) \end{split}$$

In the last step, we use the following observation:

$$\Pr\left[\left. (\mathcal{A} \text{ outputs } 0) \right. \ \land \ b=1 \right] + \Pr\left[\left. (\mathcal{A} \text{ outputs } 1) \right. \ \land \ b=1 \right] = \Pr\left[b=1\right] = 1/2.$$

Finally, note that if the challenger chose b=1 in the security experiment, then the probability that $u_1=u_2\oplus 0\dots 01$ is $1/2^{3n}$. Therefore, $\Pr\left[\left(\mathcal{A} \text{ outputs } 0\right) \ \land \ b=1\right]=\frac{1}{2^{3n+1}}$.

Therefore, $p_A = 1 - 1/2^{3n+1}$, and this shows that G' does not satisfy Related-PRG security.