CRDTs Conflict-free Replicated Data Types

Mohammad Ghasemisharif
John Kristoff
Sepideh Roghanchi

Agenda

- Background and problem definition
- Methods of synchronization
 - Operation-based consistency
 - State-based consistency
- Algorithms, pseudo-code, and examples
 - Data types (graph, set, counter)
- Real-world usage and limitations

Simple Client/Server

Availability? Scale?

Distributed System

Replication? Conflict Resolution?

Conflicts and Resolution

- Partition A receives update(X_a)
- Partition B receives update(X_b)
- How to merge competing updates?
 - Timestamp?
 - Last-writer-wins?
 - Solution may be imperfect (i.e. a loser)
- Some data-types are conflict-free!

Replication

- Availability is desirable
- Fault-tolerance is desirable
- Low latency (high-performance) is desirable
- · Maintaining consistency can be difficult

Key Concepts to Review

- Strong consistency
- Eventual consistency
- Conflict arbitration
 - Consensus and rollback
- CAP problem (pick 2)
 - Consistency
 - Availability
 - Partition Tolerance

strong consistency

- Everyone knows about every update immediately
- There is an order for all operations
- Everyone sees the same order
- Bottlenecks:
 - Consensus problem
 - Makes the system sequential
 - Slow, not scalable
 - Tolerates < n/2 failures

- Unfortunately, the CAP theorem tells us that no system satisfying those three desirable properties together exists:
 - Availability is often dropped!
- Drop strong consistency for a weaker form of consistency:
 - Eventual consistency

eventual consistency

- Update local + propagate
- All updates eventually take effect at all replicas, asynchronously and possibly in different orders
- Concurrent updates may conflict
- Still needs consensus
 - Conflict -> reconcile
 - Moved consensus off the critical path (background)
- Better performance, more complex
- May come at the cost of availability when synchronizing!

Motivation

- provide a data structure distributed over a large network and manipulated by a large base of users around the world
- Having multiple replicas of the data structure:
 - good for fault tolerance and read latency
 - Problem with updates:
 - Synchronize -> slow
 - Don't synchronize -> conflicts
- The provided data structure should follow the CAP properties:
 - Consistency
 - Availability
 - partition-tolerance

Strong eventual consistency

- Update local + propagate
- A replica of the shared data structure is coherent with other replicas that have observed the same operations
- No synchronization (no consensus)
- Deterministic outcome for every conflict
- Allow any number of failure
- solves CAP problem

Origin Story

- · 2011 publication by Marc Shapiro, et al.
- · Strong consistency does not scale
- Eventual consistency is better, but...
- · Concurrent conflict resolution is hard
- · Therefore, strong eventual consistency

How to do it? Need data types to support it...

- CRDT: a simple, theoretically sound approach to eventual consistency
- replicas of any CRDT converge to a common state that is equivalent to some correct sequential execution
- Properties:
 - no synchronization
 - update executes immediately
 - unaffected by network latency, faults, or disconnection
 - extremely scalable
 - fault-tolerant
 - does not require much mechanism

CRDT

- · Conflict-free
- Replicated
- Data Type

Data-type (in CRDTs)

- Data structures that ease consistency
- Eliminates complexity of consensus
- Data or operations must be commutative

Definitions

- EC:
 - **Eventual delivery:** An update delivered at some correct replica is eventually delivered to all correct replicas: $\forall i,j:f \in c \Rightarrow \blacklozenge f \in c$
 - Termination: All method executions terminate
 - **Convergence:** Correct replicas that have delivered the same updates eventually reach equivalent state: $\forall i,j : ci = cj \Rightarrow \blacklozenge$ si ≡ sj
- SCE
 - **Strong Convergence:** Correct replicas that have delivered the same updates have equivalent state: ∀i,j:c=c,⇒s≡s.

Op versus State-based

- Operation: add 5, subtract 6
- State: $send(x_i)$, $send(x_{i+1})$

Commutative

- Data that commutes is a key property
 - e.g. add A, add B == add B, add A
- Not all ops or states are commutative
 - e.g. multiple 5, subtract 6 != subtract
 6, multiply 5

Operation-based replication

- · Local replica sends operation
- Concurrent operations must be commutative

op-based object

- Tuple: (5, 50, q, t, u, P)
- 5, 50 and q same as state-based object
- Replica at process p_i has state $s_i \in S$
- Initial state is so
- t = side-effect-free prepare-update
- u = effect-update
- P = delivery precondition

State-based replication

- Local replica (p1)
 - performs computation
 - updates local state
 - Periodically send(p1_state)
- Receiver replica(s)
 - perform merge(p1_state, p2_state)

state-based object

- Tuple: (5, 50, q, u, m)
- Replica at process p_i has state $s_i \in S$
- Initial state is so
- q = query
- u = update
- m = merge

- Clients send query to read replica's state
 - Read only -> easy
- Updates:
 - State-based
 - Operation-based

State-based approach

- State-based:
 - Local queries, local updates at source
 - Send full state every once in a while
 - On receive, merge
 - File systems (NFS, Unison, Dynamo)

- all the replicas talk to each other directly on indirectly
- if it converges it will satisfy the strong consistency
- What is the sufficient condition for it to converge?

- Semilattice
 - Set with partial order and an operation can take any two values and give you an upper bound on them
- If the payload forms a semilattice (partial order on values, always can take an upper bound)
- If updates are increasing in semilattice
- If merge function computes this upper bound
- -> replicas converge to LUB of last values

State-based example

Another state-based example

Out of order delivery

Operation-based approach

- operation-based:
 - Only updates are sent (smaller)
 - Each replica replay the updates
 - Reconcile non-commutative operations
 - Collaborative editing, Bayou, PNUTS
- Need something stronger!
- Make sure that all updates are propagated to all other replicas (downstream replicas)

30

Op-based example

$$(5+4) \times 2 \neq (5 \times 2) +4$$

Updates should be commutative operations

Compare!

- state-based:
 - Update and merge
 - Simple data types
 - Not efficient for large objects
- Operation-based:
 - Update
 - More complex
 - More powerful
 - Small messages
- They are equivalent
 - you can take any state based object and emulate it in an op-based model and if one converges the other converges

G-Counter CRDT

PN-Counter CRDT

G-Set CRDT

2P-Set CRDT

LWW-Set CRDT

OR-Set CRDT

Sequence CRDTs

CRDT in Action

- SoundCloud
- Bet365
- Redis
- Riak
- League of Legions
- orbit-db

References

- https://pages.lip6.fr/Marc.Shapiro/
- https://www.youtube.com/watch?v=ebWVLVhiaiY
- https://www.youtube.com/watch?v=vBU70EjwGfw
- https://en.wikipedia.org/wiki/Conflict-free_replicated_data_type