

Using rHadoop for collaborative filtering

Binbin Chen

Data Scientist

Revolution Analytics, Singapore

What is 'Hadoop'?

An open-source software framework that supports dataintensive distributed applications, licensed under the Apache V2 license

"The name my kid gave a stuffed yellow elephant. Short, relatively easy to spell and pronounce, meaningless, and not used elsewhere: those are my naming criteria. Kids are good at generating such. Googol is a kid's term."

-- Doug Cutting

Who are using Hadoop?

PoweredBy

Why Hadoop so popular

The explosion of data

Data is growing at a 40% compound annual rate, reaching nearly 45 ZB by 2020

The explosion of data

- 35 hours of video uploaded to Youtube each minute
- 200 million tweets in Twitter each day
- 6 billion photos uploaded to Facebook each month

How Hadoop fit to the Big Data

- Hadoop scales massively and predictably
- Hadoop is tolerant to partial failure
- Hadoop simplifies the distributed computing programming
- Hadoop achieves data locality

Hadoop Distributed File System (HDFS)

- Master-slave architecture: Namenode and Datanode
- Files are stored in blocks on various nodes
- Blocks are replicated on various nodes
- Low cost and users can put all their data into HDFS

Hadoop Distributed File System (HDFS)

Block Replication

Namenode (Filename, numReplicas, block-ids, ...)
/users/sameerp/data/part-0, r:2, {1,3}, ...
/users/sameerp/data/part-1, r:3, {2,4,5}, ...

Datanodes

Hadoop MapReduce

- Master-slave architecture: Jobtracker and tasktracker
- Auto-failover of tasks
- Move code to data

Data

Shuffle-Sort

...

Hadoop Ecosystem

Hadoop use cases

Risk Modelling

Banks put all sources of data in Hadoop, including customer profiles, call-center recorders, chat sessions, and emails to get a clear view of each customer's financial status

Credit card fraud detection

Visa use Hadoop to process all transaction records and build predictive models to detect fraudulent transactions

Hadoop and R: Simplified MapReduce

- Rhadoop
 - rmr2, rhdfs, rhbase, plyrmr
 - Utilizing Hadoop the streaming interface
 - Coding R functions following MapReduce concepts
- RevoScaleR Hadoop Features
 - Read data from HDFS and apply big-data statistical models from Revolution R Enterprise to excute Hadoop Jobs

Collaborative Filtering

Outline

- Introduction to the collaborative filtering
- Implement CF algorithm in R RAM
- Implement CF algorithm using rmr2

What's Recommender Engine

In the information overload time, recommender engine:

- 1. Help the users to discover the information that are valuable to them
- 2. Recommend the information that are interested to the users

Users' behavior

- What's users' behavior
 - Explicit feedback: like/not, buy/not, rating,...
 - Implicit feedback: page view, click, time for a page and so on
- For this example, we using the basis data:

user	item	pref
1	101	5
1	102	3
•••	•••	•••

Collaborative filtering algorithms

- Neighborhood-based
 - User-based CF: recommend the items that the similar user like
 - Item-based CF: recommend the similar items to what he likes before
- Latent factor model
- Random wilk on graph

The most popularly used in industry:
Amazon, Alibaba,
Hulu,...

Netflix competing

Item-based CF

- Two steps:
 - Calculate the similarity of the items
 - Recommend items to the user based on the similarity of the items and user's historical preference.
- Reference:
 - Programming Collective Intelligence
 - Mahout in Action
 - 推荐系统实践
 - Zhang Dan's Blog: http://blog.fens.me/

Step 1: Calculate the similarity of two items

u1

u2

u3

u4

u5

u6

List all the users

Book 1

3

0

0

5

2

0

Book 2

2

5

0

0

4

0

cosine:

sim(Book 1,Book 2) = cos(Book 1, Book 2) = 0.34

Pearson correlation:

sim(Book 1, Book 2) = cor(Book 1, Book 2) = -0.19

cooccurence:

sim(Book 1,Book 2) = #{intersection of the users} / #{union of the user} = 2/4

Step 2: score the preference of each book

similarity

Two steps for recommendation:

- Calculate the similarity matrix
- Give score for each book recommended

Collective

> dataCF user item pref 101 5.0 102 3.0 2.5 103 101 2.0 5 2.5 102 103 5.0 104 2.0 2.0 101 9 4.0 104 10 4.5 105 11 107 5.0 12 101 5.0

Item-based algorithm in RAM

reshape


```
> dataCF2
  101 102 103 104 105 106 107
    5 3.0 2.5 0.0 0.0
                             0
    2 2.5 5.0 2.0 0.0
                             0
    2 0.0 0.0 4.0 4.5
    5 0.0 3.0 4.5 0.0
    4 3.0 2.0 4.0 3.5
```

Calculate cosine similarity

> simMat 101 102 103 104 105 106 107 101 1.00 0.76 0.80 0.78 0.47 0.74 0.23 102 0.76 1.00 0.79 0.46 0.37 0.43 0.00 103 0.80 0.79 1.00 0.63 0.18 0.53 0.00 104 0.78 0.46 0.63 1.00 0.75 0.80 0.53 105 0.47 0.37 0.18 0.75 1.00 0.43 0.79 106 0.74 0.43 0.53 0.80 0.43 1.00 0.00 107 0.23 0.00 0.00 0.53 0.79 0.00 1.00

> dataCF user item pref 101 5.0 102 3.0 3 103 2.5 101 2.0 5 102 2.5 6 103 5.0 104 2.0 101 9 104 4.0 10 105 4.5 11 107 5.0 12 101 5.0

Item-based algorithm in RAM


```
> prefUser1
user1
101 9.280
102 8.775
103 8.870
104 6.855
105 3.910
106 6.315
107 1.150
```

```
reshape ____
```

```
> dataCF2
  101 102 103 104 105 106 107
1 5 3.0 2.5 0.0 0.0 0 0
2 2 2.5 5.0 2.0 0.0 0 0
3 2 0.0 0.0 4.0 4.5 0 5
4 5 0.0 3.0 4.5 0.0 4 0
5 4 3.0 2.0 4.0 3.5 4 0
```

```
Calculate cosine similarity
```

Item-based algorithm using Mapreduce

- We using 6 mapreduce jobs
 - Calculate the item similarity matrix: mapreduce1-4.
 - Calculate the user's preference over each item: mapreduce 5-6.
- ZhangDan use cooccurence matrix as the similarity matrix. Code can be found <u>here</u>.
- Outline:
 - Introduce matrix multiplying

How to multiply two matrix

%*%

	u1	u2	u3	u4	u5
B101	5	2	2	5	4
B102	3	2.5	0	0	3
B103	2.5	5	0	3	2
B104	0	2	4	4.5	4
B105	0	0	4.5	0	3.5
B106	0	0	0	4	4
B107	0	0	5	0	0

_		Į į						
		B101	B102	B103	B104	B105	B106	B107
	u1	5	3	2.5	0	0	0	0
	u2	2	2.5	5	2	0	0	0
	u3	2	0	0	4	4.5	0	5
	u4	5	0	3	4.5	0	4	0
	u5	4	3	2	4	3.5	4	0
	!	+						

(B101,u1) (u1,B101) (B101,u2) (u2,B101) (B101,u3) (u3,B101) (B101,u4) (u4,B101) (B101,u5) (u5,B101)

(u1,B102)

(u2,B102)

(u3,B102)

(u4,B102)

(u5,B102)

(B101,u1)

(B101,u2)

(B101,u3)

(B101,u4)

(B101,u5)

Matrix multiplying: The col of left matrix is identical to the rows of right matrix

right ??: B101 - B105

How to multiply two matrix

%*%

	u1	u2	u3	u4	u5
B101	5	2	2	5	4
B102	3	2.5	0	0	3
B103	2.5	5	0	3	2
B104	0	2	4	4.5	4
B105	0	0	4.5	0	3.5
B106	0	0	0	4	4
B107	0	0	5	0	0

		1 1						
		B101	B102	B103	B104	B105	B106	B107
	u1	5	3	2.5	0	0	0	0
	u2	2	2.5	5	2	0	0	0
	u3	2	0	0	4	4.5	0	5
	u4	5	0	3	4.5	0	4	0
	u5	4	3	2	4	3.5	4	0
,		L				_	_	

(u1,B101) (B101,u1) (u1,B102) (B101,u1) (u1,B103) (B101,u1) (u1,B101) (B102,u1)

(u1,...) ...,u1)

(u2,B101) (B101,u2)

(u2,B102)(B101,u2)

(B101,u2) (u2,B103)

(u2,B104)(B101,u2)

(u2,B101)(B102,u2)

Matrix multiplying: The col of left matrix is identical to the rows of right matrix

right ??: B101 - B105

rHadoop parallel computing for CF: Step 1

Step 1-4 is to calculate the similarity matrix.

Step 1: For each user, generate the item pairs. The return is the item pairs for each user:

- item.x: you can consider it as the rownames of the item similarity matrix
- item.y: can be considered as the colnames of the item similarity matrix

Result of step 1

```
> step1RAM$val
   user item.x pref.x item.y pref.y
            101
                    5.0
                            101
                    5.0
                                    3.0
            101
                            102
            101
                            103
                                    2.5
            102
                                    5.0
                            101
            102
                    3.0
                            102
                                    3.0
            102
                            103
                            101
            103
                            102
            103
                                    3.0
                    2.5
            103
                            103
                                    2.5
10
            101
                            101
                                    2.0
11
            101
                    2.0
                            102
                                    2.5
12
                    2.0
                                    5.0
            101
                            103
13
                                    2.0
            101
                    2.0
                            104
14
            102
                            101
                                    2.0
15
            102
                            102
                                    2.5
                    2.5
                            103
                                    5.0
            102
17
                    2.5
            102
                            104
                                    2.0
18
                                    2.0
            103
                            101
19
                                    2.5
            103
                    5.0
                            102
20
            103
                            103
                                    5.0
```


Step 1: What Data looks like in RAM and HDFS

Data in RAM

Data in HDFS

user	item	pre
1	101	5
1	102	3
2	101	2

Node 1

user	item	pref
2	103	5
2	104	2
3	101	2

Node 2

Node 3

Step 1: Matrix multiplying: MapReduce Job 1

map: set the user as the key

Data in HDFS

key	user	item	pref
1	1	101	5
1	1	102	3
2	2	101	2

	_			
key		user	item	pref
2		2	103	5
2		2	104	2
3		3	101	2

key	user	item	pref
1	1	103	2.5
3	3	104	4
		•••	•••
1/0	1 1 7	101	

shuffer

...

•••

•••

reduce input

user item pref
1 101 5

1 102 3 1 103 2.5

 user item
 pref

 2
 101
 2

 2
 102
 2.5

 2
 103
 5

 2
 104
 2

user item pref 3 101 2

3 104 4

reduce output

Merge by user

Merge by

Merge by

user

user

......

Step 1: Matrix multiplying: MapReduce Job 1

map: set the user as the key

Data in HDFS

key	user	item	pref
1	1	101	5
1	1	102	3
2	2	101	2

key	user	item	pref
2	2	103	5
2	2	104	2
3	3	101	2

key	user	item	pref
1	1	103	2.5
3	3	104	4
. <u></u>	•••	•••	•••
1/01	LIT	ION	1

shuffer

Set as Keys and write the result

to hdfs

101

102

102

101

102

102

101

102

Step 1: R Code

Read the data and put the data into hdfs

```
> dataCF
  user item pref
     1 101 5.0
     1 102 3.0
     1 103 2.5
     2 101 2.0
     2 102
           2.5
           5.0
     2 103
     2 104 2.0
     3 101
           2.0
     3 104
            4.0
     3 105
10
           4.5
11
     3 107
            5.0
12
     4 101 5.0
13
     4 103 3.0
14
     4 104 4.5
```

Mapreduce job 1:

```
step1hdfs <- file.path(dataPathHdfs,"step1")
mapreduce(input=step0hdfs, output=step1hdfs,
    map= function(k,v) keyval(v$user,v),
    reduce=function(k,v){
    m = merge(v,v,by="user")
    keyval(m$item.x,m)
})
step1RAM <- from.dfs(step1hdfs)</pre>
```

- Read the data and put the data into hdfs
- Map: set the "user" as the keys
- Reduce: merge the items

```
> step1RAM$val
   user item.x pref.x item.y pref.y
             101
                      5.0
                              101
             101
                              102
3
             101
                      5.0
                              103
                                       2.5
             102
                                       5.0
4
                              101
             102
                      3.0
                              102
                                       3.0
6
             102
                              103
                                       2.5
       1
             103
                      2.5
                              101
                                       5.0
             103
                              102
                                       3.0
g.
                      2.5
             103
                              103
                                       2.5
10
             101
                              101
                                       2.0
                      2.0
11
       2
             101
                      2.0
                              102
                                       2.5
12
             101
                      2.0
                              103
                                       5.0
       2
13
             101
                              104
                                       2.0
                      2.0
14
             102
                      2.5
                              101
                                       2.0
15
                      2.5
       2
             102
                              102
                                       2.5
16
             102
                      2.5
                              103
                                       5.0
17
             102
                              104
                                       2.0
18
             103
                      5.0
                              101
                                       2.0
19
       2
             103
                      5.0
                              102
                                       2.5
20
       2
             103
                      5.0
                              103
                                       5.0
```


Step 2: calculate the product the each:

- item.x: you can consider it as the rownames of the item similarity matrix
- item.y: can be considered as the colnames of the item similarity matrix
- Key: item.y

> t(dataCF2)%*%dataCF2 101 102 103 104 105 106 107 101 74.0 32.00 45.50 50.50 23.0 36 10.0 32.0 24.25 26.00 17.00 10.5 0.0 103 45.5 26.00 44.25 31.50 0.0 104 50.5 17.00 31.50 56.25 32.0 34 20.0 14 22.5 105 23.0 10.50 7.00 32.00 32.5 106 36.0 12.00 20.00 34.00 14.0 0.0 107 10.0 0.000.00 20.00 22.5 0 25.0

	> :	step2RAN	4\$val		
		item.x	item.y	inProd	module.x
	1	101	101	74.00	8.602325
	2	101	102	32.00	8.602325
	3	101	103	45.50	8.602325
	4	101	104	50.50	8.602325
	5	101	105	23.00	8.602325
	6	101	106	36.00	8.602325
	7	101	107	10.00	8.602325
	8	102	101	32.00	4.924429
	9	102	102	24.25	4.924429
	10	102	103	26.00	4.924429
	11	102	104	17.00	4.924429
	12	102	105	10.50	4.924429
	13	102	106	12.00	4.924429
	14	103	101	45.50	6.652067
	15	103	102	26.00	6.652067
"	16	103	103	44.25	6.652067
	17	103	104	31.50	6.652067
	18	103	105	7.00	6.652067
	19	103	106	20.00	6.652067
	20	104	101	50.50	7.500000

map: Do nothing

Data in HDFS

Key	use r.x	Ite m.x	Pref .x	Use r.y	Ite m.y	Pref .y
101	1	101	5	1	102	3
101	1	101	5	1	102	3
102	1	102	3	1	102	3

Ite m.x	use r.x	Ite m.x	Pref .x	Use r.y	Ite m.y	Pref .y
101	2	101	2	2	101	2
101	2	101	2	2	102	2.5
101	2	101	2	2	103	5
103	1	103	2.5	1	101	5

Key	user .x	Ite m.x	Pref .x	Use r.y	Ite m.y	Pref .y
101	2	101	2	2	103	5
101	2	101	2	2	104	2
101	1	101	5	1	101	5

Ite	user	Ite	Pref	Use	Ite	Pref
m.x	.x	m.x	.x	r.y	m.y	.y
ZE.	/ 0		TIC	<u> </u>		

shuffer

...

...

•••

...

reduce input

user	item.x	pref.x	item.y	pref.y
1	101	5	101	5
1	101	5	102	3
1	101	5	103	2.5
2	101	2	101	2
2	101	2	102	2.5
2	101	2	103	5
2	101	2	104	2
3	101	2	101	2
3	101	2	104	4
3	101	2	105	4.5
3	101	2	107	5
4	101	5	101	5
4	101	5	103	3
4	101	5	104	4.5
4	101	5	106	4
5	101	4	101	4
5	101	4	102	3
5	101	4	103	2
5	101	4	104	4
5	101	4	105	3.5
5	101	4	106	4

ddply

user	item.x	pref.x	item.y	pref.y
1	102	5	101	5

map: Do nothing

Data in HDFS

Key	use	Ite	Pref	Use	Ite	Pref
	r.x	m.x	.x	r.y	m.y	٠у
101	1	101	5	1	102	3
101	1	101	5	1	102	3
102	1	102	3	1	102	3

Ite m.x	use r.x	Ite m.x	Pref .x	Use r.y	Ite m.y	Pref .y
101	2	101	2	2	101	2
101	2	101	2	2	102	2.5
101	2	101	2	2	103	5
103	1	103	2.5	1	101	5

Key	user .x	Ite m.x	Pref .x	Use r.y	Ite m.y	Pref .y
101	2	101	2	2	103	5
101	2	101	2	2	104	2
101	1	101	5	1	101	5

Ite	user	Ite	Pref	Use	Ite	Pref
m.x	.x	m.x	.x	r.y	m.y	.y
RE	V O	an	TIC) N TCS		_ <u></u> _

shuffer

...

...

...

. . .

reduce input

	••		••	
user	item.x	pref.x	item.y	pref.y
1	101	5	101	5
1	101	5	102	3
1	101	5	103	2.5
2	101	2	101	2
2	101	2	102	2.5
2	101	2	103	5
2	101	2	104	2
3	101	2	101	2
3	101	2	104	4
3	101	2	105	4.5
3	101	2	107	5
4	101	5	101	5
4	101	5	103	3
4	101	5	104	4.5
4	101	5	106	4
5	101	4	101	4
5	101	4	102	3
5	101	4	103	2
5	101	4	104	4
5	101	4	105	3.5
5	101	4	106	4

item.x	item.y	inProd
101	101	74
101	102	32

ddply

user	item.x	pref.x	item.y	pref.y
1	102	5	101	5

map: Do nothing

Data in HDFS

	Key	use r.x	Ite m.x	Pref .x	Use r.y	Ite m.y	Pref .v
Ī	101	1	101	5	1	102	3
	101	1	101	5	1	102	3
	102	1	102	3	1	102	3

Ite m.x	use r.x	lte m.x	Pref .x	Use r.y	Ite m.y	Pref .y
101	2	101	2	2	101	2
101	2	101	2	2	102	2.5
101	2	101	2	2	103	5
103	1	103	2.5	1	101	5

Кеу	user .x	lte m.x	Pref .x	Use r.y	Ite m.y	Pref .y
101	2	101	2	2	103	5
101	2	101	2	2	104	2
101	1	101	5	1	101	5

Ite m.x	user .x	Ite m.x	Pref .x	Use r.y	Ite m.y	Pref .y
IJΕ	10		TIC	N		
		AN	ALYI	ICS		

shuffer

...

...

...

•••

reduce input

user	item.x	pref.x	item.y	pref.y
1	101	5	101	5
1	101	5	102	3
1	101	5	103	2.5
2	101	2	101	2
2	101	2	102	2.5
2	101	2	103	5
2	101	2	104	2
3	101	2	101	2
3	101	2	104	4
3	101	2	105	4.5
3	101	2	107	5
4	101	5	101	5
4	101	5	103	3
4	101	5	104	4.5
4	101	5	106	4
5	101	4	101	4
5	101	4	102	3
5	101	4	103	2
5	101	4	104	4
5	101	4	105	3.5
5	101	4	106	4

ddply

item.x	item.y	inProd
101	101	74
101	102	32
101	103	45.5
101	104	50.5
101	105	23
101	106	36
101	107	10

user	item.x	pref.x	item.y	pref.y
1	102	5	101	5

map: Do nothing

Data in HDFS

Key	use	Ite	Pref	Use	Ite	Pref
	r.x	m.x	.x	r.y	m.y	·y
101	1	101	5	1	102	3
101	1	101	5	1	102	3
102	1	102	3	1	102	3

	•						
Ite		use	Ite	Pref	Use	Ite	Pref
m.x		r.x	m.x	.x	r.y	m.y	.у
101		2	101	2	2	101	2
101		2	101	2	2	102	2.5
101		2	101	2	2	103	5
103		1	103	2.5	1	101	5

Кеу	user .x	lte m.x	Pref .x	Use r.y	Ite m.y	Pref .y
101	2	101	2	2	103	5
101	2	101	2	2	104	2
101	1	101	5	1	101	5

Ite m.x	user .x	Ite m.x	Pref .x	Use r.y	Ite m.y	Pref .y
IJΕ	VO		TIC	N		
1		AN	ALYI	ICS		

shuffer

...

reduce input

user	item.x	pref.x	item.y	pref.y
1	101	5	101	5
1	101	5	102	3
1	101	5	103	2.5
2	101	2	101	2
2	101	2	102	2.5
2	101	2	103	5
2	101	2	104	2
3	101	2	101	2
3	101	2	104	4
3	101	2	105	4.5
3	101	2	107	5
4	101	5	101	5
4	101	5	103	3
4	101	5	104	4.5
4	101	5	106	4
5	101	4	101	4
5	101	4	102	3
5	101	4	103	2
5	101	4	104	4
5	101	4	105	3.5
5	101	4	106	4

item.x item.y inProd module.x 101 101 74 101 101 45.5 74 101 50.5 101 105 74 101 106 74 107 101

ddply

user	item.x	pref.x	item.y	pref.y
1	102	5	101	5

map: Do nothing

Data in HDFS

К	Cey	use r.x	Ite m.x	Pref .x	Use r.y	Ite m.y	Pref .y
1	01	1	101	5	1	102	3
1	01	1	101	5	1	102	3
1	02	1	102	3	1	102	3

	•						
Ite		use	Ite	Pref	Use	Ite	Pref
m.x		r.x	m.x	.x	r.y	m.y	.у
101		2	101	2	2	101	2
101		2	101	2	2	102	2.5
101		2	101	2	2	103	5
103		1	103	2.5	1	101	5

Key	user .x	lte m.x	Pref .x	Use r.y	Ite m.y	Pref .y
101	2	101	2	2	103	5
101	2	101	2	2	104	2
101	1	101	5	1	101	5

Ite m.x	user .x	Ite m.x	Pref .x	Use r.y	Ite m.y	Pref .y
IJΕ	10		TIC	N		
		AN	ALYI	ICS		

shuffer

...

...

•••

...

reduce input

user	item.x	pref.x	item.y	pref.y
1	101	5	101	5
1	101	5	102	3
1	101	5	103	2.5
2	101	2	101	2
2	101	2	102	2.5
2	101	2	103	5
2	101	2	104	2
3	101	2	101	2
3	101	2	104	4
3	101	2	105	4.5
3	101	2	107	3
4	101	5	101	5
4	101	5	103	3
4	101	5	104	4.5
4	101	5	106	4
5	101	4	101	4
5	101	4	102	3
5	101	4	103	2
5	101	4	104	4
5	101	4	105	3.5
5	101	4	106	4

item.x	item.y	inProd	module.x
101	101	74	74
101	102	32	7 <mark>4</mark>
101	103	45.5	74
101	104	50.5	74
101	105	23	74
101	106	36	74
101	107	10	74

Set as the Key

ddply

user	item.x	pref.x	item.y	pref.y
1	102	5	101	5

R Code: MapReduce Job 2

```
> step2RAM$val
   item.x item.v inProd module.x
      101
                  74.00 8.602325
             101
      101
                  32.00 8.602325
             102
      101
             103
                  45.50 8.602325
      101
                  50.50 8.602325
             104
      101
                  23.00 8.602325
             105
6
      101
             106
                  36.00 8.602325
      101
             107
                  10.00 8.602325
      102
                  32.00 4.924429
      102
                  24.25 4.924429
             102
10
      102
             103
                  26.00 4.924429
      102
11
             104
                  17.00 4.924429
12
      102
             105
                  10.50 4.924429
      102
13
             106
                  12.00 4.924429
      103
14
             101
                  45.50 6.652067
15
      103
             102
                  26.00 6.652067
      103
16
             103
                  44.25 6.652067
17
                  31.50 6.652067
      103
             104
      103
18
             105
                   7.00 6.652067
19
      103
             106
                  20.00 6.652067
20
      104
             101
                  50.50 7.500000
```

Key

Step 3: calculate module of the item.y:

 Using "item.y" as the key, in the reduce step, find the "inProd" with the same "item.x" and "item.y"

```
item.x item.y inProd module.x
      101
                   74.00 8.602325
      102
                   32.00 4.924429
14
                   45.50 6.652067
      103
              101
20
      104
                   50.50 7.500000
              101
27
                   23.00 5.700877
      105
34
                   36.00 5.656854
      106
40
      107
                   10.00 5.000000
      101
              102
                   32 00 8.602325
             102
                   24.25 4.924429
      102
      103
              102
                   26.00 6.652067
      104
                   17.00 7.500000
      105
                   10.50 5.700877
              102
35
      106
             102
                   12.00 5.656854
      101
              103
                   45.50 8.602325
10
      102
                   26.00 4.924429
16
      103
                   44.25 6.652067
22
      104
                   31.50 7.500000
                    7 00 5 700877
```

In the reduce with key (item.y = 102)

```
step3RAM$val
   item.x item.y inProd module.x module.y
      105
                   23.00 5.700877 8.602325
      106
                   36.00 5.656854 8.602325
      107
                   10.00 5.000000 8.602325
      101
                   74.00 8.602325 8.602325
      102
                   32.00 4.924429 8.602325
      103
                   45.50 6.652067 8.602325
      104
                   50.50 7.500000 8.602325
      101
                   32.00 8.602325 4.924429
      102
10
      103
                   26.00 6.652067 4.924429
11
      104
12
      105
              102
13
      106
             102
14
      105
             103
                    7.00 5.700877 6.652067
15
      106
             103
16
      101
                   45.50 8.602325 6.652067
      102
                   26.00 4.924429 6.652067
18
      103
                   44.25 6.652067 6.652067
19
      104
                   31.50 7.500000 6.652067
20
      101
                   50.50 8.602325 7.500000
      102
                   17.00 4.924429 7.500000
22
      103
                   31.50 6.652067 7.500000
23
      104
                   56.25 7.500000 7.500000
24
      105
                   32.00 5.700877 7.500000
      106
                   34.00 5.656854 7.500000
```


Step 4: calculate the similarity

Only map function, no reduce

```
98
      ### mapreduce job 4:
99
      step4hdfs <- file.path(dataPathHdfs,"step4")</pre>
     mapreduce(input=step3hdfs, output=step4hdfs,
       map=function(k,v){
101 ▼
102
         val <- v
103
          val$sim <- val$inProd/val$module.x/val$module.y</pre>
          keyval(val$item.y,val[,c("item.x","item.y","sim")])
104
105
          })
      step4RAM <- from.dfs(step4hdfs)</pre>
106
```

```
step4RAM$val
   item.x item.y
                         sim
      104
              105 0.7484228
      105
              105 1.00000000
      106
              105 0.4341216
      107
              105 0.7893522
      101
              105 0.4689972
      102
              105 0.3740173
      103
              105 0.1845864
      101
              106 0.7397954
      102
              106 0.4307749
10
      103
              106 0.5314940
11
      104
              106 0.8013877
12
      105
              106 0.4341216
      106
13
              106 1.00000000
14
      104
              107 0.5333333
      105
              107 0.7893522
15
16
      107
              107 1.00000000
17
      101
              107 0.2324953
      105
              101 0.4689972
18
```


Step 5-6: Calculate the user's preference for each item.

- It's a matrix multiplying again. We did it when calculating the item similarity matrix.
- Item is the same, but different matrices.
- Using the function equijoin, and join by the "item.y"

Merge the two dataset by the item

>	data	aCF2					
ı	101	102	103	104	105	106	107
1	5	3.0	2.5	0.0	0.0	0	0
2	2	2.5	5.0	2.0	0.0	0	0
3	2	0.0	0.0	4.0	4.5	0	5
4	5	0.0	3.0	4.5	0.0	4	0
5	. 4	3.0	2.0	4.0	3.5	4	0

(item.x, item.y)

(item.y, user)

>	step5RAM\$va	1				
	item.x.l	item.y.l	sim.l	user.r	item.r	pref.r
1	104	107	0.5333333	3	107	5.0
2	105	107	0.7893522	3	107	5.0
3	107	107	1.0000000	3	107	5.0
4	101	107	0.2324953	3	107	5.0
5	105	103	0.1845864	1	103	2.5
6	106	103	0.5314940	1	103	2.5
7	101	103	0.7951314	1	103	2.5
8	102	103	0.7937081	1	103	2.5
9	103	103	1.0000000	1	103	2.5
10	104	103	0.6313827	1	103	2.5
1:	105	103	0.1845864	2	103	5.0
1	2 106	103	0.5314940	2	103	5.0
1		103	0.7951314	2	103	5.0
14	4 102	103	0.7937081	2	103	5.0
1		103	1.0000000	2	103	5.0
1		103	0.6313827	2	103	5.0
1	7 105	103	0.1845864	4	103	3.0
18		103	0.5314940	4	103	3.0
19	9 101	103	0.7951314	4	103	3.0
20		103	0.7937081	4	103	3.0
2:		103	1.0000000	4	103	3.0
2	2 104	103	0.6313827	4	103	3.0
2	3 105	103	0.1845864	5	103	2.0
24		103	0.5314940	5	103	2.0
2	101	103	A 705131/	5	103	<u>3</u> -A
			J			

Step 6: Calculate the user's preference for each item.

- Take the weighted sum of the user's preference with weight are the similarity of the items.
- Keys are the "item.x"

item.x.l	item.y.l	sim.l	user.r	item.r	pref.r	
101	103	0.795131	1	103	2.5	
101	101	1	1	101	5	l
101	102	0.755402	1	102	3	L
102	103	0.793708	1	103	2.5	Г
102	101	0.755402	1	101	5	l
102	102	1	1	102	3	l
103	103	1	1	103	2.5	l
103	101	0.795131	1	101	5	l
103	102	0.793708	1	102	3	l
104	103	0.631383	1	103	2.5	l
104	101	0.782734	1	101	5	l
104	102	0.46029	1	102	3	l
105	103	0.184586	1	103	2.5	l
105	101	0.468997	1	101	5	l
105	102	0.374017	1	102	3	l
106	103	0.531494	1	103	2.5	l
106	101	0.739795	1	101	5	l
106	102	0.430775	1	102	3	
1071/	<u> </u>	Jo. T 324 9 5	N_1	101	5	
106	103△	0.531494	<u> </u>	103	5	

Map: set the "item.x.l" as the keys

Reduce: take the sum of

sim.l*pref.r

				_
		item	user	pref
	1	101	1	9.254035
	2	102	1	8.761281
	3	103	1	8.856781
	4	104	1	6.872998
I	5	105	1	3.928504
	6	106	1	6.320037
	7	107	1	1.162476

> step6RAM\$val

Thanks

