Facultad de Ciencias de la Administración

Licenciatura en Sistemas - Análisis Matemático I

Trabajo Práctico Nro. 0

- Año 2019 -

- 1. Determine la veracidad de los siguientes enunciados y justifique la respuesta:
 - a) "x es un número no negativo" es equivalente a decir: "x > 0".
 - b) Para cualquier a y b enteros, a/b es un número racional.
 - c) $-x \le 0$ $\forall x \in \mathbb{R}$
 - $d) (a < 0 \land b < 0) \Rightarrow a \cdot b < 0$
 - $e) \ \forall x \in \mathbb{R} : x^3 \ge x$
 - $f) \exists x \in \mathbb{R}/-x > x$
 - $g) \ \forall x \in \mathbb{R} : x^4(x-5) > 0 \Leftrightarrow x > 5$
 - $h) \ \forall x, y, z \in \mathbb{R} : (x < y \land y \ge z) \Rightarrow x < z$
 - $i) \ \forall x \in \mathbb{R} : x^2(x-2) < 0 \Leftrightarrow x < 2$
- 2. Enuncie las propiedades básicas del conjunto de números reales para justificar cada uno de los siguientes enunciados:
 - a) (a+b)+4=(b+a)+4
 - b) 3x + (2y + z) = (3x + 2y) + z
 - c) $(1/8) \cdot 8 = 1$
 - d) 2/3 + (-2/3) = 0
 - e) $2 \cdot (x+y) + z = 2x + 2y + z$
 - $f) [(w+3) \cdot 2] \cdot z = [2 \cdot (w+3)] \cdot z$
 - $q) \ 1 \cdot (\sqrt{2}) = \sqrt{2}$
 - $h) (a+b+c) \cdot 0 = 0$
- 3. Cuáles de las siguiente proposiciones son siempre correctas si a < b:
 - a) a-3 < b-3

b) $-a \leq -b$

 $(c) \quad 3 - a \le 3 - b$

d) 6a < 6b

e) $a^2 < a \cdot b$

- $f) \quad a^3 < a^2 \cdot b$
- 4. Si el recíproco del número real (a-4) es 1/5, determine el opuesto de (a+1).
- 5. Si la suma de tres números enteros consecutivos está entre 30 y 60. ¿Cuáles son los posibles valores para el conjunto de los enteros?
- 6. Partiendo de 2x + 6 < x + 3, resulta que el conjunto solución es $S = (-\infty, -3)$. Sacando factor común queda: 2(x + 3) < (x + 3), y dividiendo ambos miembros por (x + 3), resulta: 2 < 1. ¿Dónde está el error?
- 7. Resuelva las siguientes ecuaciones e inecuaciones en \mathbb{R} :

a)
$$-6x + 2x = -5x + 5$$

a)
$$-6x + 2x = -5x + 5$$
 b) $\frac{x+3}{2} + \frac{x-1}{3} = \frac{x-2}{3} + 3$ c) $x - [3 - (5-x)] = -5$

$$(c)$$
 $x - [3 - (5 - x)] = -3$

d)
$$(x+1)(x-2) = 0$$
 e) $-10x^2 + 5 = 0$

$$(e) - 10x^2 + 5 = 0$$

$$f) \quad 3x^2 - 17x + 10 = 0$$

$$(q) \quad 2x + 3 \le 5$$

h)
$$(x+1)(x-1) > 0$$
 i) $(t+1)(t-2) < 0$

$$(t+1)(t-2) < 0$$

$$i) - x + 2 > 8$$

$$j) - x + 2 > 8$$
 $k)$ $6 < x + 1 < 10$

$$l) \quad 7 \le 2 - 5x < 9$$

$$m) \quad \frac{1-t}{2} < \frac{3t-7}{3} \qquad \qquad n) \quad \frac{y}{2} + \frac{y}{3} > y + \frac{y}{5} \qquad \qquad o) \quad (x+6)^{\frac{1}{2}} = 7$$

$$n) \quad \frac{y}{2} + \frac{y}{3} > y + \frac{y}{5}$$

$$(x+6)^{\frac{1}{2}} = 7$$

p)
$$\frac{x}{2} + \frac{3}{4} = 15 + \frac{5x}{6}$$
 q) $\sqrt{3}x^2 + 6x + 3\sqrt{3} = 0$ r) $\frac{2}{x} < \frac{7}{3}$

$$q) \quad \sqrt{3}x^2 + 6x + 3\sqrt{3} = 0$$

$$r) \frac{2}{m} < \frac{7}{2}$$

s)
$$x^3(x-2)(x+3)^2 < 0$$
 t) $x^3 - 4x^2 - 5x = 0$

$$t) \quad x^3 - 4x^2 - 5x = 0$$

$$u) \quad \frac{4}{2-x} < 1$$

$$v) \quad \frac{3x+1}{x-2} < 1$$

$$w) \quad x^2 - 9x + 20 \le 0$$

$$x) \quad 2x^2 - 5x > 3$$

8. Determine si cada una de las siguientes expresiones es verdadera o falsa para cualquier número real $a, x, y \ge 0, z \ge 0$. Justifique.

$$a) |a| > -1$$

$$b$$
) $-a \le a$

$$c$$
) $x \leq |x|$

$$d) \quad \sqrt{2y+z} = \sqrt{2y} + \sqrt{z}$$

$$(x+1)^2 = x^2 + 1$$

$$f$$
) $\sqrt{x^2} = x$

9. Si $a \le b$ entonces marque cada una de las siguientes proposiciones con SV (siempre verdadero), AV (a veces verdadero) o NV (nunca verdadero). Cuando resulte AV, dé ejemplos.

$$a$$
) $a+3 \le b+3$

$$b$$
) $2a \le 2b$

$$c$$
) $-2a < -2b$

$$d) \quad \frac{1}{a} \le \frac{1}{b}$$

$$e$$
) $\frac{a}{b} \leq 1$

$$f$$
) $a \leq |a|$

10. Resuelva las siguientes ecuaciones e inecuaciones en \mathbb{R} :

$$|x-3| < 3$$

b)
$$|x-3| < 5$$
 c) $|x+3| \le 5$ d) $|x| \ge 5$

$$|e| |x-3| > 5$$

$$|x+3| > 5$$

e)
$$|x-3| \ge 5$$
 f) $|x+3| \ge 5$ g) $|x-3| \le \sqrt{2}$ h) $|0.5x+8| = 0$

$$h) \quad |0.5x + 8| = 0$$

Respuestas

1.

- $a) \quad F \qquad b) \quad F \qquad c) \quad F \qquad d) \quad F \qquad e) \quad F \qquad f) \quad V \qquad g) \quad V \qquad h) \quad F \qquad i) \quad F$
- 2.

3.

- $a) \quad V \qquad \qquad b) \quad F \qquad \qquad c) \quad F \qquad \qquad d) \quad V \qquad \qquad e) \quad F \qquad \qquad f) \quad V$
- 4. -10
- 5. $9 < x < 19 \text{ con } x \in \mathbb{Z}$
- 6.

7.

- a) x = 5 b) x = 7/3 c) $Sin sol. d) <math>x = -1 \lor x = 2$
- e) $x = \pm \sqrt{0.5}$ f) 2/3.5 g) $(-\infty, 1]$ h) $(-\infty, -1) \cup (1, +\infty)$
- i) (-1,2) j) $(-\infty,-6)$ k) (5,9) l) (-7/5,-1]
- m) $(17/9, +\infty)$ n) $(-\infty, 0)$ o) 43 p) -171/4 q) $x = -\sqrt{3}$ r) $x < 0 \lor x > 6/7$ s) (0, 2) t) -1, 0, 5
- $u) \quad (-\infty, -2) \cup (2, +\infty) \quad v) \quad (-3/2, 2) \qquad \qquad w) \quad [4, 5] \qquad x) \quad (-\infty, -1/2) \cup (3, +\infty)$
- 8.
 - $a) \quad V \qquad \qquad b) \quad F \qquad \qquad c) \quad V \qquad \qquad d) \quad F \qquad \qquad e) \quad F \qquad \qquad f) \quad F$
- 9.
 - $a) \quad SV \qquad \qquad b) \quad SV \qquad \qquad c) \quad AV \qquad \qquad d) \quad AV \qquad \qquad e) \quad AV \qquad \qquad f) \quad SV$
- 10.
 - a) (-5,5) b) (-2,8) c) [-8,2]
 - d) $(-\infty, -5] \cup [5, +\infty)$ e) $(-\infty, -2] \cup [8, +\infty)$ f) $(-\infty, -8] \cup [2, +\infty)$
 - $(g) \quad [3 \sqrt{2}, 3 + \sqrt{2}] \qquad h) \quad -16$