2017~2018 学年第二学期

《微积分学(一)下》课程期末考试试卷(A卷)

(闭卷)

院(系)	启明学院	_专业班级_	学号	姓名
------	------	--------	----	----

考试日期: 2018-06-24

考试时间: 8:30 - 11:00

题号	_	11	111	四	五	总分
满分	28	8	12	28	24	100
得 分						

得 分	
评卷人	

解一答一内一容一不一得一超一过一装一订一线

一、 填空题(每空 4 分,共 28 分)

- 2、设 $z = e^{x^2y}$,则dz =______.
- 3、若函数 $f(x,y)=2x^2+ax+xy^2+2y$ 在点 (1,-1) 处取得极值,则常数 a=_____.
- 4、函数 $u = \ln(x + \sqrt{x^2 + y^2})$ 在点 A(1,0,1)处沿 A 点指向 B(3,-2,2) 点方向的方向导数为______.
- 5、交换积分次序 $\int_{0}^{1} dy \int_{\sqrt{y}}^{\sqrt{2-y^2}} f(x,y) dx = ______.$
- 7、设 $F = (y^2 + 2bxz)i + y(ax + bz)j + (y^2 + bx^2)k$ 是梯度场,则 $a = ______$, $b = ______$

得分	
评卷人	

二、 判断题(每小题 2 分, 共 8 分), 请在正确说法相应的括号中画" √ ", 在错误说 法的括号中画"×".

8. 设
$$\sum a_n$$
是正项级数且 $\sum (a_{2n} + a_{2n+1})$ 收敛,则级数 $\sum a_n$ 也必收敛. ()

9. 如果幂级数
$$\sum_{n=0}^{\infty} a_n (x-x_0)^n$$
 在 a, b 两点收敛 $(a < b)$,则该级数在 $[a,b]$ 上一致收敛.

10. 二元函数
$$\mathbf{f}(x,y)$$
在点 (x_0,y_0) 处两个偏导数 $\frac{\partial f}{\partial x}(x_0,y_0)$ 与 $\frac{\partial f}{\partial y}(x_0,y_0)$ 存在,则 $\mathbf{f}(x,y)$ 在该点连续. ()

得 分	
评卷人	

三、**解答题(每小题 6 分,共 12 分)** 12. 计算重积分 $I = \iiint_{\Omega} (x+y+z) dx dy dz$,其中区域 Ω 是由曲面 $2z = x^2 + y^2$ 与

 $x^2 + v^2 + z^2 = 3$ 所围成的区域.

13. 计算 $\int_L \frac{xdy - ydx}{x^2 + v^2}$, 其中 L 是从点 A(-1,0) 经过单位圆的下半圆到点 B(1,0),再通过连接 BC 的直线到 点C(-1,2)的路径。

得 分	
评卷人	

四、计算题(每小题7分,共28分)

14. 求函数 $f(x) = x^2, x \in [-\pi, \pi]$ 的 Fourier 级数以及级数 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 与 $\sum_{n=1}^{\infty} \frac{1}{n^4}$ 的和.

15. 计算曲面积分

$$\iint_{S} (x^2 - z) dx dy + (z^2 - y) dz dx,$$

其中S为旋转抛物面 $z=1-x^2-y^2$ 在 $z\in[0,1]$ 的部分,其法向量与z轴正向成锐角.

16. 计算曲线积分 $I = \oint_C y dx + z dy + x dz$,其中 C 是 $x^2 + y^2 + z^2 = a^2$ 与 x + y + z = 0 的交线,从 z 轴正向看是逆时针方向.

17. 计算无穷积分 $\int_{0}^{+\infty} t^{6} e^{-at^{2}} dt$, a > 0.

得 分	
评卷人	

五、证明题(每小题 6 分,共 24 分) 18. 用定义证明 $\lim_{(x,y)\to(1,2)}(x^2+y^2)=5$.

19. 证明函数项级数 $\sum_{n=0}^{\infty} (-1)^n x^n (1-x)$ 在 [0,1] 上绝对收敛且一致收敛,但 $\sum_{n=0}^{\infty} x^n (1-x)$ 在 [0,1] 上不一致收敛.

20. 设x = x(u,v), y = y(u,v)有二阶连续偏导数,满足

$$\frac{\partial x}{\partial u} = \frac{\partial y}{\partial v}, \quad \frac{\partial x}{\partial v} = -\frac{\partial y}{\partial u},$$

且函数w = w(x, y)有二阶连续偏导数,满足方程

$$\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = 0,$$

证明:
$$w = w(x(u,v), y(u,v))$$
满足方程 $\frac{\partial^2 w}{\partial u^2} + \frac{\partial^2 w}{\partial v^2} = 0$.

21. 设
$$u(x,y)$$
 在 $x^2+y^2 \le 1$ 上有连续二阶偏导数,在 $x^2+y^2 < 1$ 内满足 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = u$,且在 $x^2+y^2 = 1$ 上 $u(x,y) \ge 0$,证明:当 $x^2+y^2 \le 1$ 时, $u(x,y) \ge 0$.