Soustavy lineárních rovnic

Lehce infantilní příklad s kuličkami

Příklad

Máme kuličky různých barev. Červená kulička váží x gramů, modrá y gramů a zelená z gramů.

0000	••	20 g	3x + 2y + 2z = 20
	•••	? g	6x + 4y + 4z = ?

Lehce infantilní příklad s kuličkami

Příklad

Máme kuličky různých barev. Červená kulička váží x gramů, modrá y gramů a zelená z gramů.

0000	••	20 g	3x + 2y + 2z = 20
	•••	40 g	6x + 4y + 4z = 40

Lehce infantilní příklad s kuličkami

Příklad

Máme kuličky různých barev. Červená kulička váží x gramů, modrá y gramů a zelená z gramů.

0000	••	20 g	3x + 2y + 2z = 20
00000	•••	40 g	6x + 4y + 4z = 40

Rovnici můžeme vynásobit libovolným NENULOVÝM číslem.

Lehce infantilní příklad s kuličkami – pokračování

Příklad

••••	20 g	3x + 2y + 2z = 20
0000000	51 g	6x + 6y + 5z = 51
• •	? g	2y + z = ?

Lehce infantilní příklad s kuličkami – pokračování

Příklad

••••	20 g	3x + 2y + 2z = 20
0000000	51 g	6x + 6y + 5z = 51
• •	11 g	2y + z = 11

Lehce infantilní příklad s kuličkami – pokračování

Příklad

••••	20 g	3x + 2y + 2z = 20
0000000	51 g	6x + 6y + 5z = 51
• •	11 g	2y + z = 11

K jedné rovnici můžeme přičíst libovolný (i nulový) násobek jiné rovnice.

Příklad

Určete x, y a z, jestliže víme:

	20 g	3x + 2y + 2z = 20
• •	11 g	2y + z = 11
•••	9 g	3z = 9

Příklad

Určete x, y a z, jestliže víme:

••••	20 g	3x + 2y + 2z = 20
• •	11 g	2y + z = 11
•••	9 g	3z = 9

$$3z = 9 \Rightarrow z = 3$$

Příklad

Určete x, y a z, jestliže víme:

••••	20 g	3x + 2y + 2z = 20
• •	11 g	2y + z = 11
•••	9 g	3z = 9

$$3z = 9 \Rightarrow z = 3$$
$$2y + 3 = 11 \Rightarrow y = 4$$

Příklad

Určete x, y a z, jestliže víme:

••••	20 g	3x + 2y + 2z = 20
• •	11 g	2y + z = 11
•••	9 g	3z = 9

$$3z = 9 \Rightarrow z = 3$$

 $2y + 3 = 11 \Rightarrow y = 4$
 $3x + 8 + 6 = 20 \Rightarrow x = 2$

Řešením soustavy je jediná uspořádaná trojice [x, y, z] = [2, 4, 3].

Příklad

Určete x, y a z, jestliže víme:

	20 g	3x + 2y + 2z = 20
• •	11 g	2y + z = 11
•••	9 g	3z = 9

$$3z = 9 \Rightarrow z = 3$$

 $2y + 3 = 11 \Rightarrow y = 4$
 $3x + 8 + 6 = 20 \Rightarrow x = 2$

Řešením soustavy je jediná uspořádaná trojice [x, y, z] = [2, 4, 3].

Je-li soustava v trojúhelníkovém tvaru, vyřešíme ji snadno.

Obecný tvar soustavy lineárních rovnic

Soustava m lineárních rovnic o n neznámých x_1, \ldots, x_n :

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$
 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$
 $a_{ij}, b_i \in \mathbb{R}, i = 1, \dots, m, j = 1, \dots, n.$

Soustavu můžeme řešit úpravou na schodovitý, resp. trojúhelníkový tvar – tzv. GAUSSOVA FLIMINAČNÍ METODA.

(Alespoň obvykle v \mathbb{R} ; můžeme pracovat i s jinými množinami.)

Při řešení soustavy nemusíme celé rovnice opisovat, stačí pracovat s koeficienty a_{ij} , b_i – vytvoříme z nich matici.

Matice

Maticí typu $m \times n$ nad množinou reálných čísel budeme rozumět obdélníkové schéma o m řádcích a n sloupcích

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix},$$

 $\mathsf{kde}\ \mathsf{\textit{a}}_{\mathit{ij}} \in \mathbb{R}, \mathit{\textit{i}} = 1, \ldots, \mathit{\textit{m}}, \mathit{\textit{j}} = 1, \ldots, \mathit{\textit{n}}.$

Rozšířená matice soustavy lineárních rovnic

K matici koeficientů u jednotlivých neznámých přidáme ještě pravou stranu:

$$(A|b) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & & & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}$$

Tuto matici upravíme na schodovitý tvar pomocí elementárních řádkových úprav:

- výměna pořadí rovnic
- vynásobení některé rovnice nenulovým číslem
- přičtení násobku jednoho řádku k jinému řádku

Schodovitý tvar matice

Vedoucí prvek řádku neboli pivot

První nenulový prvek v řádku (pokud existuje) se nazývá vedoucí prvek řádku neboli pivot.

Schodovitý tvar matice

Řekneme, že matice je ve schodovitém tvaru, jestliže

- nulové řádky (pokud existují) jsou umístěné na konci,
- ve dvou po sobě jdoucích nenulových řádcích je pivot na nižším řádku víc vpravo než pivot na řádku vyšším.

Jak může schodovitý tvar vypadat? Pivoty jsou v<u>yznačené červeně</u>.

ano (trojúhelník)	1		ano	,		n	e (špa	atně je	3. řá	dek)
$ \begin{pmatrix} 1 & 3 & 2 \\ 0 & -2 & 4 \\ 0 & 0 & 5 \end{pmatrix} $	$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	0 3 0 0	-1 1 0 0	2 -2 4 0	0 4 -3 0	0 0 0	1 3 2 0	-1 0 1 0	3 7 3 0	5 -4 -5 1

Postup při Gaussově eliminaci

- Pomocí odečítání vhodných násobků 1. rovnice od 2. až poslední rovnice vyloučíme x₁ ze všech rovnic kromě první. Co když ale 1. rovnice x₁ neobsahuje? Vyměníme ji nejprve s jinou rovnicí, která x₁ obsahuje.
- Pomocí odečítání vhodných násobků 2. rovnice od 3. až poslední rovnice vyloučíme x₂ ze všech následujících rovnic.
 Pokud 2. rovnice x₂ neobsahuje, vyměníme ji s jinou z následujících, která x₂ obsahuje.
- Analogicky postupujeme dále.

Při "ručním" výpočtu není nutno tento postup přesně dodržet, když si všimneme něčeho lepšího.

Příklad

Příklad

Najděte řešení soustavy

Příklad

Najděte řešení soustavy

$$\begin{pmatrix} 1 & -1 & 0 & 2 & 3 \\ 2 & -2 & 1 & -1 & 0 \\ 3 & -2 & 1 & 0 & 2 \\ 1 & 0 & 1 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 0 & 2 & 3 \\ 0 & 0 & 1 & -5 & -6 \\ 0 & 1 & 1 & -6 & -7 \\ 0 & 1 & 1 & -1 & -2 \end{pmatrix} \begin{array}{c} II - 2I \\ III - 3I \\ IV - I \end{array}$$

$$\begin{pmatrix} 1 & -1 & 0 & 2 & 3 \\ 0 & 1 & 1 & -6 & -7 \\ 0 & 0 & 1 & -5 & -6 \\ 0 & 1 & 1 & -1 & -2 \end{pmatrix} \quad II \leftrightarrow III \quad \sim \begin{pmatrix} 1 & -1 & 0 & 2 & 3 \\ 0 & 1 & 1 & -6 & -7 \\ 0 & 0 & 1 & -5 & -6 \\ 0 & 0 & 0 & 5 & 5 \end{pmatrix} \quad IV - II$$

Matice je ve schodovitém (zde trojúhelníkovém) tvaru. Upravená soustava je

Příklad – pokračování, zpětný chod

$$5u = 5 \Rightarrow u = 1$$

$$z - 5u = -6 \Rightarrow z = -6 + 5u = -6 + 5 = -1$$

$$y + z - 6u = -7 \Rightarrow y = -7 - z + 6u = -7 + 1 + 6 = 0$$

$$x - y + 2u = 3 \Rightarrow x = 3 + y - 2u = 3 - 2 = 1$$

Soustava má jediné řešení, a to uspořádanou čtveřici

$$[x, y, z, u] = [1, 0, -1, 1].$$

Doporučujeme na závěr pro kontrolu provést zkoušku dosazením do původních rovnic:

$$L_1 = x - y + 2u = 1 + 2 = 3,$$
 $P_1 = 3,$ $L_1 = P_1$
 $L_2 = 2x - 2y + z - u = 2 - 1 - 1 = 0,$ $P_2 = 0,$ $L_2 = P_2$
 $L_3 = 3x - 2y + z = 3 - 1 = 2,$ $P_3 = 2,$ $L_3 = P_3$
 $L_4 = x + z + u = 1 - 1 + 1 = 1,$ $P_4 = 1,$ $L_4 = P_4$

Uvažme soustavu

$$\begin{array}{rcl} x & + & 2y & = & 4 \\ 2x & + & 4y & = & 8 \end{array}$$

Uvažme soustavu

$$\begin{array}{rcl} x & + & 2y & = & 4 \\ 2x & + & 4y & = & 8 \end{array}$$

Druhá rovnice je dvojnásobkem první, nepřináší žádnou novou informaci.

Uvažme soustavu

$$\begin{array}{rcl} x & + & 2y & = & 4 \\ 2x & + & 4y & = & 8 \end{array}$$

Druhá rovnice je dvojnásobkem první, nepřináší žádnou novou informaci.

Řešeními této soustavy jsou např. uspořádané dvojice $[4,0],[2,1],[3,\frac{1}{2}],\ldots$ Celkově existuje nekonečně mnoho řešení.

Uvažme soustavu

$$\begin{array}{rcl} x & + & 2y & = & 4 \\ 2x & + & 4y & = & 8 \end{array}$$

Druhá rovnice je dvojnásobkem první, nepřináší žádnou novou informaci.

Řešeními této soustavy jsou např. uspořádané dvojice $[4,0],[2,1],[3,\frac{1}{2}],\ldots$ Celkově existuje nekonečně mnoho řešení. Nyní se podívejme na soustavu

$$\begin{array}{rcl} x & + & 2y & = & 4 \\ 2x & + & 4y & = & 7 \end{array}$$

Uvažme soustavu

$$\begin{array}{rcl} x & + & 2y & = & 4 \\ 2x & + & 4y & = & 8 \end{array}$$

Druhá rovnice je dvojnásobkem první, nepřináší žádnou novou informaci.

Řešeními této soustavy jsou např. uspořádané dvojice $[4,0],[2,1],[3,\frac{1}{2}],\ldots$ Celkově existuje nekonečně mnoho řešení. Nyní se podívejme na soustavu

$$\begin{array}{rcl} x & + & 2y & = & 4 \\ 2x & + & 4y & = & 7 \end{array}$$

Rovnice jsou v rozporu, řešení neexistuje žádné, množina všech řešení je prázdná.

Uvažme soustavu

$$\begin{array}{rcl} x & + & 2y & = & 4 \\ 2x & + & 4y & = & 8 \end{array}$$

Druhá rovnice je dvojnásobkem první, nepřináší žádnou novou informaci.

Řešeními této soustavy jsou např. uspořádané dvojice $[4,0],[2,1],[3,\frac{1}{2}],\ldots$ Celkově existuje nekonečně mnoho řešení. Nyní se podívejme na soustavu

$$\begin{array}{rcl} x & + & 2y & = & 4 \\ 2x & + & 4y & = & 7 \end{array}$$

Rovnice jsou v rozporu, řešení neexistuje žádné, množina všech řešení je prázdná.

U předchozích dvou soustav jsme počet řešení byli schopni určit na první pohled. U větších soustav to zpravidla nelze a je nutno je nejprve upravit na schodovitý tvar.

Příklad

Příklad

Najděte řešení soustavy

$$3x_1 + 10x_2 + x_3 - x_4 = 11$$

 $x_1 + 3x_2 + x_3 = 3$
 $x_1 + 4x_2 - x_3 + x_4 = 1$
 $2x_1 + 2x_2 + 10x_3 + 4x_4 = -2$

Příklad

Příklad

Najděte řešení soustavy

$$3x_1 + 10x_2 + x_3 - x_4 = 11$$

 $x_1 + 3x_2 + x_3 = 3$
 $x_1 + 4x_2 - x_3 + x_4 = 1$
 $2x_1 + 2x_2 + 10x_3 + 4x_4 = -2$

$$\begin{pmatrix} 3 & 10 & 1 & -1 & | & 11 \\ 1 & 3 & 1 & 0 & | & 3 \\ 1 & 4 & -1 & 1 & | & 1 \\ 2 & 2 & 10 & 4 & | & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 3 & 1 & 0 & | & 3 \\ 3 & 10 & 1 & -1 & | & 11 \\ 1 & 4 & -1 & 1 & | & 1 \\ 1 & 1 & 5 & 2 & | & -1 \end{pmatrix} \quad IV: 2$$

$$\begin{pmatrix} 1 & 3 & 1 & 0 & 3 \\ 3 & 10 & 1 & -1 & 11 \\ 1 & 4 & -1 & 1 & 1 \\ 1 & 1 & 5 & 2 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 3 & 1 & 0 & 3 \\ 0 & 1 & -2 & -1 & 2 \\ 0 & 1 & -2 & 1 & -2 \\ 0 & -2 & 4 & 2 & -4 \end{pmatrix} \begin{array}{c} |II - 3I| \\ |III - I| \\ |IV - I| \\ |III - I| \\ |III - II| \\ |IV + 2II| \end{pmatrix}$$

Nyní je matice ve schodovitém tvaru.

Upravená soustava:

$$x_1 + 3x_2 + x_3 = 3$$

 $x_2 - 2x_3 - x_4 = 2$
 $2x_4 = -4$
 $0 = 0$

Následuje zpětný chod. Neznámá x_4 je určená jednoznačně. Avšak x_3 jednoznačně vypočítat nelze. Můžeme je volit libovolně a další neznámé pak vyjádříme pomocí něj.

$$2x_4 = -4 \qquad \Rightarrow \qquad x_4 = -2$$

$$x_3 = t, \quad t \in \mathbb{R}$$

$$x_2 - 2t - (-2) = 2 \qquad \Rightarrow \qquad x_2 = 2t$$

$$x_1 + 6t + t = 3 \qquad \Rightarrow \qquad x_1 = 3 - 7t$$

Soustava má nekonečně mnoho řešení a množina všech řešení je

$$\{[3-7t,2t,t,-2]; t \in \mathbb{R}\}.$$

Co kdyby v původní soustavě na pravé straně poslední rovnice bylo +2?

Co kdyby v původní soustavě na pravé straně poslední rovnice bylo +2?

Po úpravě bychom dostali

$$x_1 + 3x_2 + x_3 = 3$$

 $x_2 - 2x_3 - x_4 = 2$
 $2x_4 = -4$
 $0 = 2$

a soustava by neměla žádné řešení.

Soustava lineárních rovnic se nazývá homogenní, jestliže na pravé straně jsou pouze nulové hodnoty, $b_i=0,\ i=1,\ldots,m$. V opačném případě

Soustava lineárních rovnic se nazývá homogenní, jestliže na pravé straně jsou pouze nulové hodnoty, $b_i=0,\ i=1,\ldots,m$. V opačném případě (alespoň jedna nenulová hodnota vpravo) se nazývá nehomogenní.

Soustava lineárních rovnic se nazývá homogenní, jestliže na pravé straně jsou pouze nulové hodnoty, $b_i=0,\ i=1,\ldots,m$. V opačném případě (alespoň jedna nenulová hodnota vpravo) se nazývá nehomogenní.

Může se stát, že homogenní soustava nemá řešení? Co je v každém případě řešením soustavy s nulovou pravou stranou?

Soustava lineárních rovnic se nazývá homogenní, jestliže na pravé straně jsou pouze nulové hodnoty, $b_i = 0$, i = 1, ..., m. V opačném případě (alespoň jedna nenulová hodnota vpravo) se

Může se stát, že homogenní soustava nemá řešení? Co je v každém případě řešením soustavy s nulovou pravou stranou? Může být řešením i něco jiného?

Příklad

Najděte všechna řešení soustavy

nazývá nehomogenní.

a)
$$3x - 2y = 0$$

 $2x + 5y = 0$

$$b) \quad x - 2y = 0 \\ 2x - 4y = 0$$

Příklad – řešení

a) Úpravou na schodovitý tvar dostaneme

$$3x - 2y = 0$$
$$19y = 0,$$

jediným řešením je [x, y] = [0, 0], množina všech řešení je jednoprvková:

$$\{[0,0]\}.$$

b) Druhá rovnice je dvojnásobkem první, můžeme ji tedy vynechat. Řešením je každá uspořádaná dvojice [x, y], kde x = 2y, např. [2, 1], [-3, -1.5], apod. Množina všech řešení je tedy

$$\{[2t,t];t\in\mathbb{R}\}.$$

Vlastnosti homogenních soustav lineárních rovnic

- Vždy existuje řešení nulový vektor je vždy řešením. Řešení ale může být i více.
- Je-li x řešením homogenní soustavy, je i jeho libovolný násobek řešením.
- Jsou-li \overline{x} a \overline{y} dvě řešení homogenní soustavy, je i jejich součet řešením.

Příklad

Příklad

Najděte všechna řešení soustavy homogenních rovnic

$$x_1 - 3x_2 + 2x_3 + 2x_4 = 0$$

 $x_1 - 3x_2 + 4x_3 + 5x_4 + 4x_5 = 0$
 $3x_1 - 9x_2 + 2x_3 + x_4 - 9x_5 = 0$

Příklad

Příklad

Najděte všechna řešení soustavy homogenních rovnic

$$x_1 - 3x_2 + 2x_3 + 2x_4 = 0$$

 $x_1 - 3x_2 + 4x_3 + 5x_4 + 4x_5 = 0$
 $3x_1 - 9x_2 + 2x_3 + x_4 - 9x_5 = 0$

$$\begin{pmatrix} 1 & -3 & 2 & 2 & 0 & 0 \\ 1 & -3 & 4 & 5 & 4 & 0 \\ 3 & -9 & 2 & 1 & -9 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & 2 & 2 & 0 & 0 \\ 0 & 0 & 2 & 3 & 4 & 0 \\ 0 & 0 & -4 & -5 & -9 & 0 \end{pmatrix} \begin{array}{c} II - I \\ III - 3I \end{array}$$
$$\sim \begin{pmatrix} 1 & -3 & 2 & 2 & 0 & 0 \\ 0 & 0 & 2 & 3 & 4 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 \end{pmatrix} \begin{array}{c} III + 2II \end{array}$$

$$x_5 = t, \quad t \in \mathbb{R}; \qquad x_4 - t = 0 \implies x_4 = t$$
 $2x_3 + 3t + 4t = 0 \implies x_3 = -\frac{7}{2}t$
 $x_2 = s, \quad s \in \mathbb{R}; \qquad x_1 - 3s - 7t + 2t = 0 \implies x_1 = 5t + 3s$

Množina všech řešení je

$$\left\{\left\lceil 5t+3s,s,-\frac{7}{2}t,t,t
ight
ceil$$
 ; $t,s\in\mathbb{R}$ $\right\}$.

Příklad na soustavu s parametrem

Příklad

 $V \mathbb{R}$ řešte soustavu rovnic s parametrem a.

$$\begin{array}{rclcrcr}
x & + & 9y & = & 1 \\
x & + & a^2y & + & 2z & = & a \\
x & + & 9y & + & 3z & = & -5.
\end{array}$$

Příklad na soustavu s parametrem

Příklad

 $V \mathbb{R}$ řešte soustavu rovnic s parametrem a.

$$x + 9y = 1$$

 $x + a^2y + 2z = a$
 $x + 9y + 3z = -5$.

$$\begin{pmatrix} 1 & 9 & 0 & 1 \\ 1 & a^2 & 2 & a \\ 1 & 9 & 3 & -5 \end{pmatrix} \sim \begin{pmatrix} 1 & 9 & 0 & 1 \\ 0 & a^2 - 9 & 2 & a - 1 \\ 0 & 0 & 3 & -6 \end{pmatrix}$$

$$x + \begin{pmatrix} 9y & = 1 \\ (a^2 - 9)y + 2z = a - 1 \\ 3z = -6 \end{pmatrix}$$

$$(a^2 - 9)y = 1$$

 $(a^2 - 9)y + 2z = a - 1$
 $3z = -6 \Rightarrow z = -2$

V případě, že $a^2-9\neq 0$, tj. $a\neq \pm 3$, pokračujeme dále se zpětným chodem:

$$(a^{2} - 9)y - 4 = a - 1$$
 \Rightarrow $y = \frac{a+3}{a^{2} - 9} = \frac{1}{a-3}$
 $x + \frac{9}{a-3} = 1$ \Rightarrow $x = 1 - \frac{9}{a-3} = \frac{a-12}{a-3}$

Pro $a \neq \pm 3$ je množina všech řešení soustavy

$$\left\{ \left[\frac{a-12}{a-3}, \frac{1}{a-3}, -2\right] \right\}.$$

Pro a = 3 pokračujeme v úpravě na schodovitý tvar

$$\begin{pmatrix} 1 & 9 & 0 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 3 & -6 \end{pmatrix} \sim \begin{pmatrix} 1 & 9 & 0 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & -18 \end{pmatrix} 2III - 3II$$

Soustava nemá žádné řešení.

Pro a = -3:

$$\begin{pmatrix} 1 & 9 & 0 & 1 \\ 0 & 0 & 2 & -4 \\ 0 & 0 & 3 & -6 \end{pmatrix} \sim \begin{pmatrix} 1 & 9 & 0 & 1 \\ 0 & 0 & 2 & -4 \\ 0 & 0 & 0 & 0 \end{pmatrix} 2III - 3II$$

Ze druhé rovnice vychází z=-2. Neznámou y si můžeme zvolit libovolně, $y=t, t\in \mathbb{R}$, a z první rovnice pak máme x=1-9t. Pro a=-3 má soustava nekonečně mnoho řešení, a to

$$\{[1-9t, t, -2]; t \in \mathbb{R}\}.$$

Příklad – dokončení

Výsledky shrneme do tabulky:

а	množina všech řešení
$a \in \mathbb{R} \setminus \{-3,3\}$	$\left\{ \left[\frac{a-12}{a-3}, \frac{1}{a-3}, -2 \right] \right\}$
a = 3	Ø
a=-3	$\{[1-9t,t,-2];t\in\mathbb{R}\}$