Matric No.: 208651

Assigned Date: 18 November 2021

LAB 3: VERILOG DESIGN ENTRY

1.0 Objectives

- Creating different models for Verilog HDL design entry using Quartus Prime design software.
- Designing and simulate a 4-bit full subtractor on an FPGA.

2.0 Results and Simulation

- A. Verilog Design Entry
- i) Structural Design

```
FullSubstractor_1bit_Structv

Assignment Editor

Assignment Editor
```

Figure 1: Structural design Verilog code

Figure 2: Pin Assignments (Structural Design)

Figure 3: Functional simulation waveform (Structural Design)

Matric No.: 208651 Assigned Date: 18 November 2021

ii) Data-flow Design

```
FullSubtr_1bit_DataFlow.v

Compilation Report-F

Compilation Repor
```

Figure 5: Data flow design Verilog code (Data-flow Design)

	\$	Assignme	ent Editor	FullSul	otr_1bit_DataFlow.v	, X	Compilation Rep	ort - FullSubtr_1b	oit_DataFlow
4	< <new>>> ▼ ✓ Filter on node names:</new>								
Г	tatu	From	То	Assignment Name	Value	Enabled	Entity	Comment	Tag
1	~		eut Bout	Location	PIN_W16	Yes			
2	~		in_ X	Location	PIN_AB12	Yes			
3	~		in_ Y	Location	PIN_AC12	Yes			
4	~		out Z	Location	PIN_V16	Yes			
5	~		in Bin	Location	PIN_AF9	Yes			
6		< <new>></new>	< <new>></new>	< <new>></new>					

Figure 6: Pin Assignments (Data-flow Design)

Figure 7: Functional simulation waveform (Data-flow Design)

Matric No.: 208651 Assigned Date: 18 November 2021

iii) Behavioural Design

```
// Behavioural Desigm for 1 bit Full Subtractor
 123456789
       module FullSubtr_1bit_Behavr (W, X, Bin, D, Bout);
          input W, X, Bin;
          output reg D, Bout;
          reg P;
reg R;
10
          always @*
11
12
13
     begin
              P = W^X;
              D = P \wedge B in;
14
15
              R = X & ~X;
Bout = R + (Bin & ~P);
16
17
18
      endmodule
```

Figure 8: Behavioural design Verilog code

Figure 9: Pin Assignments (Behavioural Design)

Figure 10: Functional simulation waveform (Behavioural Design)

Matric No.: 208651 Assigned Date: 18 November 2021

B. Hierarchical Design

Figure 11: 4-bit Parallel Subtractor Circuit

Figure 12: 4-bit Parallel Subtractor Verilog code (Use of sub-modules in Fig. 1 and Fig. 13)

Figure 13: Half-subtractor sub-module

	tatu	From	То	Assignment Name	Value	Enabled	Entity	Comment	Tag
1	•		in_ A1	Location	PIN_AC12	Yes			
2	✓		in_ A2	Location	PIN_AF9	Yes			
3	✓		<u>in</u> _ A3	Location	PIN_AF10	Yes			
4	✓		in B0	Location	PIN_AD11	Yes			
5	✓		<u>i</u> B1	Location	PIN_AD12	Yes			
6	✓		in B2	Location	PIN_AE11	Yes			
7	✓		in B3	Location	PIN_AC9	Yes			
8	✓		° BOR	Location	PIN_V16	Yes			
9	✓		° DO	Location	PIN_W16	Yes			
10	✓		° ^{ut} D1	Location	PIN_V17	Yes			
11	✓		° D2	Location	PIN_V18	Yes			
12	~		° D3	Location	PIN_W19	Yes			
13	~		<u>in</u> _ A0	Location	PIN_AB12	Yes			
14		< <new>></new>	< <new>></new>	< <new>></new>					

Figure 14: Pin assignment for 4-bit subtractor

Matric No.: 208651

Assigned Date: 18 November 2021

Figure 15: Figure 10: Functional simulation for 4-bit subtractor

3.0 Discussion

a) Design entry methods in Quartus Prime

Design entry type	Method		
AHDL	Textual entry using a high-level language		
Block Diagram /Schematic Design	A graphical/schematic method of design entry whereby the individual circuit components are represented in a circuit diagram.		
EDIF	Design entry using netlist files		
SystemVerilog HDL	Textual entry using the verification language used to model, design, simulate, test and implement electronic systems.		
Tel Script			
Verilog HDL	Textual entry using a high-level language		
VHDL			

b) Verilog HDL models

- Structural Model: Most effective when designing simple combinational circuits as this model is the textual equivalent of a schematic diagram.
- Data-flow Model: Most effective when designing combinational circuits. It makes use of various operators.
- Behavioural Model: Used for both combinational and sequential circuits. It consists of the description of the output behaviour of the circuit.

LOG BOOK

Name: TABINA KAMAL

Matric No.: 208651 Assigned Date: 18 November 2021

c) Preference of Verilog model

The structural and behavioural models are the preferred models. The behavioural model seems to be the most 'versatile' and readable in terms of being closer to human language. The structural model is straight-forward and simple to understand. A combination of these models was used in the hierarchical design of the 4-bit subtractor above.

4.0 Conclusion

The objectives of this simulation experiment have been fulfilled. The functional simulations for each section were successfully obtained.