

Autocorrelation and Partial autocorrelation

Thomas Vincent Head of Data Science, Getty Images

Autocorrelation in time series data

- Autocorrelation is measured as the correlation between a time series and a delayed copy of itself
- For example, an autocorrelation of order 3 returns the correlation between a time series at points (t_1 , t_2 , t_3 , ...) and its own values lagged by 3 time points, i.e. (t_4 , t_5 , t_6 , ...)
- It is used to find repetitive patterns or periodic signal in time series

statsmodels

statsmodels is a Python module that provides classes and functions for the estimation of many different statistical models, as well as for conducting statistical tests, and statistical data exploration.

Plotting autocorrelations

```
In [1]: import matplotlib.pyplot as plt
In [2]: from statsmodels.graphics import tsaplots
In [3]: fig = tsaplots.plot_acf(co2_levels['co2'], lags=40)
In [4]: plt.show()
```


Interpreting autocorrelation plots

Partial autocorrelation in time series data

- Contrary to autocorrelation, partial autocorrelation removes the effect of previous time points
- For example, a partial autocorrelation function of order 3 returns the correlation between our time series (t1, t2, t3, ...) and lagged values of itself by 3 time points (t4, t5, t6, ...), but only after removing all effects attributable to lags 1 and 2

Plotting partial autocorrelations

```
In [1]: import matplotlib.pyplot as plt
In [2]: from statsmodels.graphics import tsaplots
In [3]: fig = tsaplots.plot_pacf(co2_levels['co2'], lags=40
In [4]: plt.show()
```


Interpreting partial autocorrelations plot

Let's practice!

Seasonality, trend and noise in time series data

Thomas Vincent Head of Data Science, Getty Images

Properties of time series

The properties of time series

- Seasonality: does the data display a clear periodic pattern?
- Trend: does the data follow a consistent upwards or downwards slope?
- Noise: are there any outlier points or missing values that are not consistent with the rest of the data?

Time series decomposition

```
In [1]: import statsmodels.api as sm
In [2]: import matplotlib.pyplot as plt
In [3]: from pylab import rcParams
In [4]: rcParams['figure.figsize'] = 11, 9
In [5]: decomposition = sm.tsa.seasonal_decompose(co2_levels['co2'])
In [6]: fig = decomposition.plot()
In [7]: plt.show()
```

A plot of time series decomposition on the CO2 data

Extracting components from time series decomposition

```
In [1]: print(dir(decomposition))
[' class ',
 '__delattr__',
 ' dict ',
 'plot',
 'resid',
 'seasonal',
 'trend']
In [2]: print(decomposition.seasonal)
datestamp
1958-03-29 1.028042
1958-04-05 1.235242
1958-04-12 1.412344
1958-04-19 1.701186
```


Seasonality component in time series

```
In [1]: decomp_seasonal = decomposition.seasonal
In [1]: ax = decomp_seasonal.plot(figsize=(14, 2))
In [2]: ax.set_xlabel('Date')
In [3]: ax.set_ylabel('Seasonality of time series')
In [4]: ax.set_title('Seasonal values of the time series')
In [5]: plt.show()
```


Seasonality component in time series

Trend component in time series

```
In [1]: decomp trend = decomposition.trend
In [2]: ax = decomp trend.plot(figsize=(14, 2))
In [3]: ax.set xlabel('Date')
In [4]: ax.set ylabel('Trend of time series')
In [5]: ax.set title('Trend values of the time series')
In [6]: plt.show()
```


Trend component in time series

Noise component in time series

```
In [1]: decomp resid = decomp.resid
In [3]: ax = decomp resid.plot(figsize=(14, 2))
In [4]: ax.set xlabel('Date')
In [4]: ax.set ylabel('Residual of time series')
In [5]: ax.set title('Residual values of the time series')
In [6]: plt.show()
```


Noise component in time series

Let's practice!

A review on what you have learned so far

Thomas Vincent Head of Data Science, Getty Images

So far ...

- Visualize aggregates of time series data
- Extract statistical summaries
- Autocorrelation and Partial autocorrelation
- Time series decomposition

The airline dataset

Let's analyze this data!