저공해 우주 발사체 개발

우주의 조약돌 3기 · 3팀 ★Light

노하진 정재훈 석강무 이수민 변도진 / 멘토 고재열

팀원 소개

고재열

멘토 연구 주제 소개

노하진 정재훈

연료 선정

석강무

소재 개선

이수민

운용 개념 개선

변도진

상세 설계

01 연구 동기

Falcon-9 발사체의 유해가스(이산화탄소) 배출량 계산 [1]

01 연구 동기

- [2] Franklin-Cheung, Alexandra. "Can space exploration be environmentally friendly?", BBC Science Focus
- [3] 장윤우. "나무만 심으면 기후변화 해결된다?", 노컷뉴스
- [4] 곽노필. "신형 우주 로켓 풍년. . .스페이스엑스 독주에 제동 걸릴까."

74,928 ton

연간 우주발사체가 배출하는 이산화탄소[2]

주제 : 우주 발사체를 친환경적으로 재설계 하자

01 연구 주제

우주 발사체를 친환경적으로 재설계 : Star 6

Star-6는 팀원 6명이 모두 Star가 되기를 바라는 마음으로 이름 붙인 우리 발사체의 이름

설계 목표

이산화 탄소를 최소로 배출하는 우주발사체 개념 설계

설계 요소

연료 선정, 소재 선정, 재사용 착륙 효율화 방법

성능 목표

Space-X Falcon-9과 동일한 성능

- ① 탑재 중량 20 ton
- ② 목표 궤도 delta V : 5km/s (1단), 3.5km/s (2단)
- * 가장 많이 발사되는 발사체

01 연구 동기

1. 발사체 추진제량

우주 발사체가 1회 발사 시 사용하는 추진제의 총량

2. 발사체 구조비

각 단의 전체 질량 대비 추진제 이외의 구조 질량이 차지하는 비율

발사체의 이산화탄소 배출량에 영향을 주는 요소

3. O/F 혼합비

발사체 추진제 중 산화제와 연료의 비율

4. 연소 시 이산화탄소 발생 비율

연료 단위 질량 연소당 발생하는 CO_2 량

01 연구 과정

연구 사항 - Overview

구조비를 낮추기 위한 소재 개선

2. 소재 개선

발사체 직경, 높이, 낙하산 크기 설계, CAD 모델링

4. 상세 설계

배출가스가더적은연료선정

3. 연료 저감 운용 개념 설계

낙하산을 활용 1단 재진입 시 필요 ΔV 감소

02 . 연료 선정

친환경 발사체에 적합한 연료 특성 분석

로켓 방정식

$$\Delta V = g_0 I_{sp} \ln \frac{m_i}{m_f} = g_0 I_{sp} \ln \frac{m_p + m_s}{m_s}$$

- ΔV :속도증분
- g_0 :중력가속도
- m_i :초기질량
- m_f :최종질량
- m_p :추진제질량
- m_s :구조질량

- **1. 비추력 (Isp)** 높을수록 좋다
- 2. 연료 밀도 높을수록 좋다

3. 추진제 kg 당 이산화탄소 배출 량 낮을수록 좋다

- [5] eco fresh. "누리호 발사할 때 탄소배출량은 얼마일까?"
- [6] "Importance of Methane | US EPA." US EPA
- [7] Kim, Cheulwoong, et al. "Conceptual Design of a LOX/Methane Rocket Engine for a Small Launcher Upper Stage." *Journal of the Korean Society of Propulsion Engineers*
- [8] 400 N Monopropellant Hydrazine Thruster. Space propulsion . com.
- [9] Moog Inc. Bipropellant Thrusters.
- [10] Hydrogen Peroxide, H₂O₂ MatWeb

발사체 연료 후보 조사 결과

[제원 & 이산화탄소 발생량 계산 방법]

식 1. 로켓 방정식

$$\Delta V = g_0 I_{sp} \ln \frac{m_i}{m_f}$$

3.5 km/s =
$$g_0 I_{sp} \ln \frac{m_{s,2} + m_{p,2} + 20}{m_{s,2} + 20}$$

5 km/s =
$$g_0 I_{sp} \ln \frac{m_{s,1} + m_{p,1} + m_{s,2} + m_{p,2} + 20}{m_{s,1} + m_{s,2} + m_{p,2} + 20}$$

식 2. 구조비는 연료 탱크 크기를 고려해 연료 밀도에 반비례하게 설정

$$\frac{m_{s,1}}{m_{s,1} + m_{p,1}} = 0.061 \times \frac{\rho_{RP1}}{\rho} \qquad \frac{m_{s,2}}{m_{s,2} + m_{p,2}} = 0.04 \times \frac{\rho_{RP1}}{\rho}$$

ρ : 연료 밀도 ρ_{RP1} : RP-1 밀도

- 1) 위 식을 연립하여 각 단의 구조질량, 추진제 질량 계산 $m_{s,1}, m_{s,2}, m_{p,1}, m_{p,2}$
- 2) 추진제 질량에 이산화탄소 발생비율을 곱해 이산화탄소 배출량 계산

발사체
$$CO_2$$
배출량 = $(m_{p,1} + m_{p,2}) \times k$

k: 연료 1kg 당 CO2 배출량

발사체 연료 후보별 유해가스 배출량 계산 결과

	1단		2단		이륙 질량	유해가스 배출량
	구조비 (%)	추진제량 (ton)	구조비 (%)	추진제량 (ton)	(ton) (ton)	
RP-1	6.1	247.6	4	36.8	322	247.63
메테인	11.91	328.0	7.81	37.6	433	231.22
하이드라진	4.89	363.0	3.21	45.0	448	2.2
과산화수소	3.41	9870.0	2.23	155.3	10397	0

설계 결정 - 연료를 <mark>'메테인'</mark>으로 변경

03 . 소재 개선

03 소재 개선

[11] 신우메탈코리아. "알루미늄합금의 종류 및 특성". [12] 박준환. "탄소섬유 복합소재의 기술개발 현황과 시장 전망." 한국과학기술정보연구원(2014).

" 발사체를 최대한 **가볍게** 만들어서 **구조비를 낮춰 연료를 절약**하자.

개선 요소

발사체 크기의 70~80%를 차지하는 연료탱크의 소재를 개선

알루미늄 합금 대신 **탄소섬유 복합재 사용 시 6.2%의 무게로 동일 강도 달성**[11-12]

탄소섬유복합재의 가격을 고려해 **재사용 가능한 1단 발사체의 연료 탱크**만 탄소 섬유 복합재로 설계하기로 함

03 소재 개선

소재 개선을 통해 1단 구조비가 기존의 34%로 감소 : 11.91% → 4.1%

* 4.1 % = (0.7 * 570 / 5600 * 1.6 / 2.7 + 0.3) * 11.91 %

	15	간	2단		이륙 질량	이산화탄소 배출량
	구조비 (%)	추진제량 (ton)	구조비 (%)	추진제량 (ton)	(ton)	(ton)
알루미늄 탱크	11.91	328.0	7.81	37.6	433	231.22
1단 : 탄소 복합재 탱크 2단 : 알루미늄 탱크	4.1	218.77	7.81	37.6	289	162.12

소재 개선을 통해 추가적으로 69 ton의 이산화탄소 배출 절감

04. 운용 개념 개선

04 운용 개선

66

발사체의 착륙 비행 시 사용되는 연료를 절약하고자 낙하산을 활용한 재사용 개념 도입

재진입시 낙하산 감속

Π

재진입 ΔV 감소

Л

필요연료량 ↓

Ţ

이산화탄소배출↓

66

활용 낙하산 선정 : NASA Aspire [13] 활용

- NASA 2020 Mars Rover Project에 사용한 **초음속 낙하산 (Space Heritage)**
- 반구형 구조로 Landing Site 에 수직 낙하에 적합
- 케블라 & 나일론 소재에얇은 두께로 가벼운 질량 (<0.1 ton)

낙하산 활용 시 효율성 계산 : 속도 감속에 대한 이득 예상

항력 계산

$$Drag = \frac{1}{2}\rho V^2 \times C_D \times S_{ref} = q_{\infty} \times C_D \times \pi r^2$$

 ρ : 공기 밀도 V: 속도 S_{ref} : 면적

* q_{∞} : 동압, $0 \sim 500 \ Pa^{[13]}$

 C_D : 항력 계수, $0.55^{[13]}$

r: 낙하산 반경, 11m

가정 1 : Re-entry burn 과 Landing Burn 사이의 비행 시간 약 120 sec 가정 2 : 작용하는 가속도 (감속) 평균 7 m/s^2

04 운용 개선

낙하산 활용 시 효율성 계산

1단의 필요 ΔV : 5 km/s → 4.2 km/s (800m/s 감소)

1단 구조비 : 4.1% → 4.3% (2%p 증가)

	1단		2단		이륙 질량	이산화탄소 배출량
	구조비 (%)	추진제량 (ton)	구조비 (%)	추진제량 (ton)	(ton)	(ton)
Re-entry Burn	4.1	218.77	7.81	37.6	289	162.12
낙하산 + Re-entry Burn	4.3	154.7	7.81	37.6	222	121.60

낙하산 활용을 통해 추가적으로 <mark>41 ton의 이산화탄소 배출 절감</mark>

05. 상세 설계

05 상세 설계

- 제원 (직경, 높이, 낙하산 직경) **3D CAD 상세 모델링**
- 1. 발사체의 직경, Inter Stage, Faring 수치는 Falcon-9 의 수치를 활용
- 2. Star-6 각 단의 높이 계산

1단 154.7 ton, 2단 37.6 ton의 추진제를 갖는 발사체임 각 단의 메테인(연료)과 LOX(산화제)의 양을 계산하고 밀도를 통해 부피를 예상함 $_{6.5~\mathrm{m}}$

$$V_i = \frac{m_{CH4,i}}{\rho_{CH4}} + \frac{m_{LOX,i}}{\rho_{LOX}}$$

$$h_{tank,i} = \frac{V_i}{\pi r_{tank}^2}$$

• 1단 : 22.5 m

• 2단: 5.3 m

 $V_{i}: i$ 번째 단의 추진제 부피 $m_{a,i}: i$ 번째 단의 a의 질량

ρ_a : a의 밀도

 $h_{tank,i}$: i 번째 단 연료탱크의 높이 r_{tank} : 연료탱크의 반경 (1.7m 로 가정)

→ 총 높이 : 47.4 m 로 Falcon-9 (70 m) 보다 작은 발사체 형상으로 설계 완료

05 상세 설계

제원 (직경, 높이, 낙하산 직경) **3D CAD 상세 모델링**

3. 귀환에 활용하는 낙하산 설계

Aspire 낙하산은 반구형으로 직경을 결정해야함 조건 1. 발사체 내 수납 가능성을 고려해 1단 발사체의 높이인 22.5m 보다 작도록 설정 조건 2. 최대한 많은 항력을 발생시키기 위해서는 직경이 커야함 → 22m 의 반구형 초음속 낙하산을 선정

- 4. 낙하산 활용 임무 설계
 - 낙하산은 발사체가 대기권으로 들어오는 시점에 펼쳐져 감속을 제공 → 동압이 500 Pa인 시점에 낙하산이 펴져서 재진입
 - * e.g., 고도 80 km & 속도 3km/s
 - Star-6는 낙하산과 함께 re-entry burn 을 수행해 감속되어 지상에 착지함

Star – 6 1단 귀환 시

05 , 결론

06 결론

Falcon-9 발사체를 **친환경** 버전으로 재설계 한 발사체 - **Star-6를 개념설계 함**

01 연료개선 RP-1→액체메테인

 02 소재 개선

 1단연료 탱크 소재

 알루미늄 합금 → 탄소 복합재

03 운용개념개선 단순로켓엔진대신 낙하산함께활용

 04 상세설계

 발사체, 낙하산 수치계산

 나하산활용메커니즘제안

06 결론 - 설계

	falcon 9	star-6		
사용 연료 / lsp	RP – 1 / 270 ~ 330 sec	<mark>메테인</mark> / 360 sec		
탱크 소재	알루미늄 합금	<mark>1단 : 탄소 복합재</mark> 2단 : 알루미늄 합금		
구조비	1단 : 6.1 % 2단 : 4 %	1단 : <mark>4.3 %</mark> 2단 : <mark>7.81 %</mark>		
1단 재사용 방법	로켓 엔진 연소	<mark>낙하산</mark> + 로켓 엔진 연소		
이륙 중량	550 ton	222 ton		
이산화탄소 배출	426.7 ton	121.6 ton		

Star-6를 활용한 비행 시뮬레이션 [14] - 500 km 원 궤도 투입 가능 확인

time - altitude 1000 -1000 -3000 -4000 -5000 apogee altitude -6000 200 flight time [sec]

비행 궤적 그래프

궤도 투입 조건 ; 근지점 / 원지점 고도 500km

06 결론 - 환경

설계 목표 : **탄소 배출을 최소화**하는 친환경 발사체

Falcon-9 발사체를 친환경 버전으로 재설계 한 Star-6 는 3배 이상 적은 탄소배출

06 참고 문헌

- [1] "Falcon 9 v1.2 or full thrust Block 5". Wevolver. https://www.wevolver.com/specs/falcon-9-v12-or-full-thrust-block-5, Accessed on Nov 24, 2024.
- [2] Franklin-Cheung, Alexandra. "Can space exploration be environmentally friendly?", BBC Science
- Focus, www.sciencefocus.com/science/environmentally-friendly-space-travel., Accessed on Nov 24, 2024.
- [3] 장윤우. "나무만 심으면 기후변화 해결된다?", 노컷뉴스 노컷뉴스, 9 Aug. 2024, www.nocutnews.co.kr/news/6185670, Accessed on Nov 24, 2024.
- [4] 곽노필. "신형 우주 로켓 풍년...스페이스엑스 독주에 제동 걸릴까." 한겨레.
- [5] eco fresh. "누리호 발사할 때 탄소배출량은 얼마일까?", https://purkin.kr/article/%EC%97%90%EC%BD%94-
- %EB%A7%A4%EA%B1%B0%EC%A7%84/1008/167959/ , Accessed on Nov 24, 2024
- [6] "Importance of Methane | US EPA." US EPA, 21 Oct. 2024, www.epa.gov/gmi/importance-methane., Accessed on Nov 24, 2024.
- [7] Kim, Cheulwoong, et al. "Conceptual Design of a LOX/Methane Rocket Engine for a Small Launcher Upper Stage." *Journal of the Korean Society of Propulsion Engineers*, vol. 26, no. 4, Aug. 2022, pp. 54–63, doi:10.6108/kspe.2022.26.4.054.
- [8] 400 N Monopropellant Hydrazine Thruster. www.space-propulsion.com/spacecraft-propulsion/hydrazine-thrusters/400n-hydrazine-thruster.html., Accessed on Nov 24, 2024.
- [9] Moog Inc. *Bipropellant Thrusters*. www.moog.com/products/propulsion/space-propulsion/spacecraft-propulsion/thrusters/bipropellant-thrusters.html., Accessed on Nov 24, 2024.
- [10] Hydrogen Peroxide, H₂O₂ MatWeb The Online Materials Information Resource. www.matweb.com/
- [11] 신우메탈코리아. "알루미늄합금의 종류 및 특성" www.alshinwoo.com/sub/sub04_03.php., Accessed on Nov 24, 2024.
- [12] 박준환. "탄소섬유 복합소재의 기술개발 현황과 시장 전망." 한국과학기술정보연구원(2014).
- [13] Dutta, Soumyo. "ASPIRE Parachute Modeling and Comparison to Post-Flight Reconstruction." AIAA Scitech 2020 Forum. 2020.
- [14] 고재열, et al. "우주 발사체 개념설계를 위한 소프트웨어 개발." 한국항공우주학회 2024 년도 춘계학술대회. 항공우주학회, 2024.

지금까지 3조 Third Light의 발표였습니다

감사합니다:)

