Санкт-Петербургский Государс	ственный Электр	отехнический	Университет
«ИТЄП» им.	В. И. Ульянова	(Ленина)	

Кафедра информационных систем

Отчет

По практической работе №6

По дисциплине «Объектно-ориентированное программирование»

Студенты группы 2372	 Тубшинов В. Т., Алексеев Г.
Преподаватель	Егоров С. С

г. Санкт-Петербург

Задание: Создать распределенное приложение, включающее клиентскую и серверную части, взаимодействующие посредством сетевого обмена сообщениями.

Клиентские и серверные части представляют собой приложения, реализованные в работе №5.

Клиентская часть модифицируется таким образом, что реализованные функции матриц могут исполняться по желанию пользователя на областях определения: вещественная, комплексная и рациональная.

Отличие серверной части заключается в том, что классы «Матрица» и «Квадратная матрица» параметризуются. Параметром класса делается абстрактный тип number, при этом файл number.h исключается из серверного приложения

Реализовать и отладить программу, удовлетворяющую сформулированным требованиям и заявленным целям. Разработать контрольные примеры и оттестировать на них программу. Оформить отчет, сделать выводы по работе.

Спецификации классов:

Class Communicator:

Атрибуты:

- bool ready;
- CommParams params;

Методы:

- Communicator(CommParams&,QObject *parent = nullptr);
- bool isReady();
- void recieved(QByteArray);
- void send(QByteArray);
- void recieve();

Серверная часть:

Class Rational:

Атрибуты:

- int numerator, denominator числитель и знаменатель соответственно;
- static QChar SEPARATOR;

Методы:

- Rational();
- Rational(const QByteArray& arr);
- void divider(Rational&);
- Rational operator+ (Rational);
- Rational operator- (Rational);
- Rational operator- ();
- Rational operator*(int);
- Rational operator* (Rational);
- Rational operator/ (Rational);
- bool operator==(Rational);
- bool operator!=(Rational);
- bool operator!=(int);
- Rational operator=(int);
- static void setSeparator(QChar);
- friend double Abs(Rational);
- friend ostream& operator<<(ostream&, Rational);
- friend istream& operator>>(istream&, Rational&);
- friend QString& operator<<(QString&, Rational);
- friend QByteArray& operator>>(QByteArray&,Rational&);
- operator QString ();

class Complex:

Атрибуты:

· double Re, Im;

Методы:

• Complex();

- Complex(const int&);
- Complex(const QByteArray& arr);
- Complex operator*(Complex);
- Complex operator*(int);
- Complex operator-(Complex);
- Complex operator-();
- bool operator!= (int);
- Complex operator+(Complex);
- Complex operator/(Complex);
- friend ostream& operator<<(ostream&, Complex);
- friend istream& operator<<(istream&, Complex);
- friend QString& operator<<(QString&, Complex);
- friend QByteArray& operator>>(QByteArray&,Complex&);

Class Matrix:

Атрибуты:

number** Matrix;

Методы:

- matrix();
- matrix(unsigned short, unsigned short);
- ~matrix();
- void transposition(int);
- number MatrDeterminant(int);
- int rankOfMatrix3x3();
- int findMatrixRank(int);
- void show(QString&, int);
- void input(number**, int);

Class Application:

Атрибуты:

• Communicator *comm;

Методы:

- Application(int, char**);
- void recieve(QByteArray);

Class square matrix:

Методы:

- square matrix(unsigned short);
- number MatrDeterminant(int);

Клиентская часть:

class Application:

- Communicator *comm;
- Interface *interface, *window;
- Application(int, char**);
- void fromCommunicator(QByteArray);
- void toCommunicator(QString);

class Interface:

Атрибуты:

- QLabel **name_values, *skobka, *Matr;
- QLineEdit **values_a, **values_b, *ValueMatr;
- int n;
- QPushButton *NewMatrix;
- QPushButton *Determinant;
- QPushButton *TransposedMatrix;
- QPushButton *RankMatrix;
- QPushButton *OutPutMatr;
- QRadioButton* d mode;

- QRadioButton* r_mode;
- QRadioButton* c_mode;
- QLabel *Output;

```
Методы:
```

```
Interface(QWidget *parent = 0);
~Interface();
void answer(QString);
void formRequest();
void request(QString);
```

Серверная часть

Клиентская часть

Контрольные примеры:

На поле вещественных чисел:

Матрица:

$$\mathbf{A} = \left(\begin{array}{cc} 3 & 2 \\ 4 & 10 \end{array} \right)$$

Определитель:

$$\det \mathbf{A} = \begin{vmatrix} 3 & 2 \\ 4 & 10 \end{vmatrix} = 3 \cdot 10 - 4 \cdot 2 = 30 - 8 = 22$$

Ранг:

После использования метода Гаусса ненулевых строк 2, значит Rank(A) = 2.

Транспонирование:

$$\mathbf{A} = \left(\begin{array}{cc} 3 & 2 \\ 4 & 10 \end{array} \right)$$

Чтобы найти транспонированную матрицу поменяем рядки и столбики матрицы А местами:

$$\mathbf{A}^{\mathrm{T}} = \left(\begin{array}{cc} 3 & 4 \\ 2 & 10 \end{array} \right)$$

На поле рациональных чисел:

Матрица:

$$\mathbf{A} = \begin{pmatrix} -\frac{3}{5} & -\frac{2}{7} \\ \frac{4}{9} & \frac{10}{6} \end{pmatrix}$$

Определитель:

$$\det \mathbf{A} = \begin{vmatrix} -\frac{3}{5} & -\frac{2}{7} \\ \frac{4}{9} & \frac{10}{6} \end{vmatrix} = (-\frac{3}{5}) \cdot \frac{10}{6} - \frac{4}{9} \cdot (-\frac{2}{7}) = -1 + \frac{8}{63} = -\frac{55}{63}$$

Ранг:

После использования метода Гаусса ненулевых строк 2, значит Rank(A) = 2.

Транспонирование:

$$\mathbf{A} = \begin{pmatrix} -\frac{3}{5} & -\frac{2}{7} \\ \frac{4}{9} & \frac{10}{6} \end{pmatrix}$$

Чтобы найти транспонированную матрицу поменяем рядки и столбики матрицы А местами:

11

$$\mathbf{A}^{\mathrm{T}} = \left(\begin{array}{ccc} -\frac{3}{5} & \frac{4}{9} \\ -\frac{2}{7} & \frac{10}{6} \end{array} \right)$$

На поле комплексных чисел:

Матрица:

$$A = \begin{pmatrix} 3 - 5i & 2 - 7i \\ 4 + 9i & 10 + 6i \end{pmatrix}$$

Определитель:

$$\det A = -11-22i$$

Ранг:

После использования метода Гаусса ненулевых строк 2, значит Rank(A) = 2.

Пример работы программы на поле вещественных чисел:

Пример работы программы на поле рациональных чисел:

1) := 3	
Практическая работа № 6	×
1) := 3 -5 2) := 2 -7 -7 6 Детерминант Транспон. Ранк матрицы Матрица О вещественные Ф рациональные комплексные	
Практическая работа № 6	×
1) := 3 -5 2) := 2 -7 -7 6 Детерминант Транспон. Ранк матрицы Матрица О вещественные © рациональные С комплексные	

Пример работы программы на поле комплексных чисел:

Вывод:

The Determinant = (-11 -22i)

В ходе шестой практической работы мы закрепили знания по созданию распределенного приложение, включающее клиентскую и серверную части, взаимодействующие посредством сетевого обмена сообщениями.