The Structure of a Computer

Separation of a computer in four sections

- Hardware:
 - collection of devices that allow the execution of programs
- OS:
 - management and coordination of system hardware
- Software:
 - any program that can be executed inside the OS
- User:
 - any device or being that can interact with the system

Hardware (simplified)

- Systembus connects all devices
 - one or more CPUs for program execution
 - shared memory for tasks of the CPU and other devices
 - Controller for IO devices
 - * Hard Drives
 - * HID
 - * Network Interface
 - * ..

Figure 1: "Systembus Floiwchart"

Computer Architecture: von-Neumann

- reference model for computers
- separation between code execution and data

- Separation between CPU and memory
- Separation between Execution Unit and ALU
- this adds component communication overhead in program execution
 - Data has to be moved from memory to CPU and back, to be used
 - the OS provides functionality to use the given resources efficiently

Figure 2: "CPU Model Flowchart"

- CPU has multiple registers
 - data registers, address registers, special registers, . . .
- additional cache
 - fast buffer memory
 - access to cache is much faster compared to memory access
 - smaller cache = lower access times
 - caches are transparent to the OS
 - Types of cache
 - * L1-cache
 - $\cdot\,\,$ close to the main execution unit, very small, very little latency
 - · saves future instructions for faste execution
 - * L2-cache
 - · larger and slightly slower
 - * L3-cache
 - · faster than main memory
 - · smaller than main memory
 - · extra chip outside the main processor

- $\bullet\,$ registers tend to be very small, no more than the size of a DWORD but extremely fast
 - used for calculation or comparison
- cache is still very fast, but is usually slower than registers, while having a larger size
- main memory is very large, but needs many cycles to move data to CPU
 - OS needs to handle access times and data transport
 - every time we access data from a hard drive, we have to stop program execution so the processor can continue

Processor Cores and Caches

- each CPU tends to have its own L1 and L2 cache, sharing the L3 cache between all cores
- all processors can access system BUS and main memory individually
- communication and access latency is still a bottleneck in modern hardware
- Hyperthreading
 - process interweaving, so that program execution can be sped up

Hardware component interplay

- CPU executes operations
- CPU and IO-devices are used asynchronously
 - every IO-controller controls one type of device
 - the CPU is needed to execute an operation
 - * every controller has its own registers
 - * CPU moves data from main memory and cache
 - * operation is started after moving the data
 - Today: DMA (Direct Memory Access)
 - * seperate controller for the movement of data
 - * takes load away from CPU
- Hardware Interrupts tell the CPU when an external task is done
 - CPU tries to access HDD
 - HDD Controller starts to work on retrieving the data
 - CPU continues to work on other stuff
 - HDD controller sends an interrupt signal to CPU
 - CPU stops and listens to HDD controller
 - data has an end-marker, if end is reached, CPU continues to work.

Simplified computer architecture

The OS

- Collection of Programs that allow efficient and comfortable use of a computer
 - Platform for program execution on computer hardware
- $\bullet\,$ System resources can be Hardware or software
 - Processors, Processes, Threads
 - Memory
 - * Main Memory, Cache, virtual Memory
 - Filesystem
 - * Directories, Files
 - I/O devices
 - * Graphics card, Network interface card, Harddrives, Peripherals
- Classification:

Figure 3: "Main Components of a computer"

- can it be shared etween processes? (y/n)
- can we remove a resource from a process?

The Development of Operating Systems

Main Focus of OS development

- Mainframes (1950)
- "Mini-computers" (1960)
- Desktop-Computers (1970)
- Handheld-Computers (1990)
- AP's, Sensor-nodes, Smartphones, Tablets... (2000)
- IoT, Cyber-physical systems, Smartwatches... (2010+)

Today's Operating Systems:

Today's Operating Systems

- MS-DOS Kernel (EOL in 2001):
 - Windows 1.0 3.11
 - Windows 95
 - Windows 98
 - Windows Me
- Windows NT Kernel:
 - Windows NT
 - Windows 2000
 - Windows XP

- Windows Vista
- Windows 7
- Windows 8/8.1
- $\ Windows \ 10$
- Windows Server

• UNIX Kernel:

- Sun Solaris
- HP UX
- Linux
 - * Debian (APT)
 - · Ubuntu
 - · Parrot OS
 - * Arch Linux (Pacman)
 - · Manjaro
 - · Arco Linux
 - * RHEL
 - * SUSE
 - * Gentoo
 - * LFS
 - * Android
- BSD
- Mac OS
- $\ \mathrm{iOS}$
- ...
- TinyOS
- Contiki
- .

OS Distribution in Germany

- March 2014
- January 2016
- January 2009 to January 2019 (Desktop OS)
- January 2009 to January 2019 (Mobile OS)

Figure 4: "OS Distribution in Germany, March 2014"

Figure 5: "OS Distribution in Germany, January 2016"

Figure 6: "OS Distribution in Germany, January 2016"

Figure 7: "OS Distribution in Germany, January 2016"