五 复化求积公式

高次插值有Runge 现象, 高阶Newton-Cotes公式会出现数值不稳定, 低阶Newton-Cotes公式有时又不能满足精度要求. 解决这个矛盾的办法是将积分区间[a,b]分成若干小区间, 在每个小区间上用低阶求积公式计算, 然后将它们加起来, 这就是复化求积方法.

> 复化梯形公式:

将[a,b]分成n个相等的子区间[x_k , x_{k+1}],这里

$$h = \frac{b-a}{n}, \ x_k = a + kh \quad (k = 0, ..., n)$$

在每个 $[x_k, x_{k+1}]$ 上用梯形公式:

$$I = \int_{a}^{b} f(x)dx = \sum_{k=0}^{n-1} I_{k} = \sum_{k=0}^{n-1} \left\{ \frac{h}{2} [f(x_{k}) + f(x_{k+1})] - \frac{h^{3}}{12} f''(\eta_{k}) \right\}$$
$$= \frac{h}{2} \left[f(a) + 2 \sum_{k=1}^{n-1} f(x_{k}) + f(b) \right] - \frac{h^{3}}{12} \sum_{k=0}^{n-1} f''(\eta_{k})$$

其中 $\eta_k \in (x_k, x_{k+1})$,只要 $f(x) \in C^2[a,b]$,则由介值定理知存在 $\eta \in (a,b)$,使得

$$\frac{1}{n} \sum_{k=0}^{n-1} f''(\eta_k) = f''(\eta)$$

因此有

$$I = \frac{h}{2} \left[f(a) + 2 \sum_{k=1}^{n-1} f(x_k) + f(b) \right] - \frac{b-a}{12} h^2 f''(\eta)$$

记:
$$T_n = \frac{h}{2} \left[f(a) + 2 \sum_{k=1}^{n-1} f(x_k) + f(b) \right]$$

若用 T_n 作为I的近似公式,则称之为复化梯形公式.

余项为:

$$R[f] = -\frac{h^2}{12}(b-a)f''(\eta) = -\frac{(b-a)^3}{12n^2}f''(\eta), \quad \eta \in (a,b)$$

或记为: $R_1^{(n)}$

复化梯形公式积分法

收敛性

由上述的误差估计式可知,当 $f(x) \in C^2[a,b]$ 时,只要 $h \rightarrow 0$ 时,数列 $T_n(f) \rightarrow I(f)$,且收敛速度为二阶 $O(h^2)$.

但是 $f(x) \in \mathbb{C}^2[a,b]$ 条件相对苛刻, 现假定 f(x)在 [a,b]上 Riemann可积, 讨论复化求积公式的收敛性:

$$T_{n}(f) = \frac{h}{2} \sum_{i=0}^{n-1} [f(x_{i}) + f(x_{i+1})]$$

$$= \frac{1}{2} (\sum_{i=0}^{n-1} f(x_{i}) \triangle x_{i} + \sum_{i=1}^{n} f(x_{i}) \triangle x_{i})$$

$$\lim_{\lambda \to 0} T_{n}(f) = \lim_{n \to \infty} T_{n}(f) = \frac{1}{2} [I(f) + I(f)] = I(f)$$

> 复化 Simpson 公式:

将[a,b] 2n 等分(偶数份),则

$$x_{2k}$$
 x_{2k+1} x_{2k+2}

$$h = \frac{b-a}{2n}, \ x_j = a+jh \ (j=0,1,...,2n)$$

在每两个子区间[x_{2k} , x_{2k+2}], $k = 0, 1, \dots, n-1$ 上利用Simpson 公式, 则得

$$I(f) = \int_{a}^{b} f(x)dx = \sum_{k=0}^{n-1} \int_{x_{2k}}^{x_{2k+2}} f(x)dx$$

$$\approx \sum_{k=1}^{n} \frac{h}{3} [f(x_{2k-2}) + 4f(x_{2k-1}) + f(x_{2k})] = S_n(f)$$

称之为复化抛物型公式或复化Simpson公式,可用于求I的近似值,即:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} [f(a) + 4\sum_{k=1}^{n} f(x_{2k-1}) + 2\sum_{k=1}^{n-1} f(x_{2k}) + f(b)]$$

复化Simpson公式积分法

误差估计

每个子区间上的误差估计式为

$$R_k(1,f) = -\frac{h^5}{90} f^{(4)}(\eta_k), h = \frac{b-a}{2n}, x_{2k-2} \le \eta_k \le x_{2k}$$

将n个子区间的误差相加得

$$I(f) - S_n(f) = -\frac{h^5}{90} \sum_{k=1}^n f^{(4)}(\eta_k)$$

由闭区间上连续函数的介值性质可知在(a,b)内至少存在一点

$$\eta$$
,使 $f^{(4)}(\eta) = \frac{1}{n} \sum_{k=1}^{n} f^{(4)}(\eta_k)$

$$R_2^{(n)} = R[f] = I(f) - S_n(f)$$

$$= -\frac{b - a}{180} f^{(4)}(\eta) h^4 = -\frac{(b - a)^5}{2880n^4} f^{(4)}(\eta), \eta \in (a, b)$$

可见, 当 f(x) 有四阶导数时, 复化Simpson公式具有4 阶收敛.

▶ 复化 Cotes 公式:

类似地将[a,b] 4n 等分,可得复化 Cotes 公式

$$\int_{a}^{b} f(x)dx \approx C_{n} = \frac{4h}{90} [7f(a) + 32\sum_{k=1}^{n} f(x_{4k-3}) + 12\sum_{k=1}^{n} f(x_{4k-2}) + 32\sum_{k=1}^{n} f(x_{4k-1}) + 14\sum_{k=1}^{n-1} f(x_{4k}) + 7f(b)]$$

其中
$$h = \frac{b-a}{4n}, x_k = a + kh$$
 $(k = 0, 1, 2, \dots, 4n)$

余项为:

$$R_4^{(n)} = R[f] = -\frac{2(b-a)}{945}h^6 f^{(6)}(\eta), \eta \in (a,b)$$

定理1: 设 f(x) 在 [a,b] 上黎曼可积,则当分点无限增多,即 $n \to \infty$ 且 $h \to 0$ 时,复化梯形公式、复化 Simpson 公式和复化Cotes公式均收敛到积分 $\int_a^b f(x) dx$

例1: 对于函数 $f(x) = \frac{\sin x}{x}$, 试用数据表计算积分

$$I(f) = \int_0^1 \frac{\sin x}{x} dx$$

解:将区间[0,1]划分为8等分,应用复化梯形法求得:

$$T_8 = \frac{h}{2} \left[f(a) + 2\sum_{k=1}^7 f(x_k) + f(b) \right]$$
$$= \frac{1}{8 \times 2} \left[f(0) + 2\sum_{k=1}^7 f\left(\frac{k}{8}\right) + f(1) \right]$$
$$= 0.9456909$$

x	f(x)			
0	1			
1/8	0.9973978			
2/8	0.9896158			
3/8	0.9767267			
4/8	0.9588510			
5/8	0.9361556			
6/8	0.9088516			
7/8	0.8771925			
1	0.8414709			

应用复化Simpson法计算,得

$$S_4 = \frac{h}{3} \left[f(a) + 4 \sum_{j=1}^4 f(x_{2j-1}) + 2 \sum_{j=1}^3 f(x_{2j}) + f(b) \right]$$

$$= \frac{1}{8 \times 3} \left[f(0) + 4 \sum_{k=1}^4 f\left(\frac{2k-1}{8}\right) + 2 \sum_{k=1}^3 f\left(\frac{2k}{8}\right) + f(1) \right]$$

$$= 0.9460832$$

比较上面两个结果T₈和S₄,它们都需要提供9个点上的函数值工作量基本相同,然而精度却差别很大.

同积分的准确值 I(f)=0.9460831比较, 复化梯形法的结果 $T_8=0.9456909$ 只有两位有效数字, 而复化Simpson法的结果 $S_4=0.9460832$ 却有六位有效数字.

例2: 对于下面给定的数据表,分别用复化梯形公式和复化 Simpson 公式计算 $\int_{1.8}^{2.6} f(x) dx$ 的近似值.

X	1.8	2.0	2.2	2.4	2.6
f(x)	3.12014	4.42569	6.04241	8.03014	10.46675

解:用复化梯形公式可得:

$$\int_{1.8}^{2.6} f(x)dx \approx T_4 = \frac{1}{2} \cdot \frac{2.6 - 1.8}{4} \times [3.12014 + 2 \times (4.42569 + 6.04241 + 8.03014) + 10.46675] = 5.058364$$

用复化Simpson公式可得:

$$\int_{1.8}^{2.6} f(x)dx \approx S_2 = \frac{1}{3} \cdot \frac{2.6 - 1.8}{4} \times [3.12014 + 2 \times 6.04241 + 4 \times (4.42569 + 8.03014) + 10.46675] = 5.033002$$

例3:

- 1. 用2 段Simpson公式(5 节点)计算 $\int_0^4 \frac{1}{1+x^2} dx$ 的近似值(计算中取4位有效数字);
- 若使误差不超过 10⁻⁴ ,用复化梯形公式计算该积分至少应取多少个节点?

解: (1) 用2段Simpson公式:

$$\int_{0}^{4} \frac{1}{1+x^{2}} dx \approx S_{2} = \frac{h}{3} \sum_{k=0}^{n-1} [f(x_{2k}) + 4f(x_{2k-1}) + f(x_{2k+2})]$$

$$= \frac{1}{3} \cdot \frac{4-0}{2 \times 2} \times \{f(0) + f(4) + 2f(2) + 4[f(1) + f(3)]\}$$

$$= \frac{1}{3} \{1 + \frac{1}{1+4^{2}} + 2\frac{1}{1+2^{2}} + 4[\frac{1}{2} + \frac{1}{1+3^{2}}]\} = 1.286$$

(2).

$$f'(x) = -\frac{2x}{(1+x^2)^2}, \ f''(x) = \frac{2(3x^2-1)}{(1+x^2)^3}$$

故: $M_2 = \max_{0 \le x \le 4} |f''(x)| = 2$

$$|R_n[f]| = |-\frac{(b-a)^3}{12n^2} f''(\eta)| \le |\frac{4^3}{12n^2} \times 2| \le 10^{-4}, \ n \ge 327$$

所以用复化梯形公式计算该积分至少应取328个节点。

六 变步长的求积法(区间逐次分半)

变步长的梯形法

在区间[a,b]上取n+1个等距节点,记 $h = \frac{b-a}{n}$

由复化梯形公式,得

$$T_n = \frac{h}{2} \sum_{k=0}^{n-1} \left[f(x_k) + f(x_{k+1}) \right] \tag{1}$$

若精度不够, 把各个小区间再对分, 插进节点

$$x_{k+\frac{1}{2}} = \frac{1}{2}(x_k + x_{k+1})$$

再由复化梯形公式得

$$T_{2n} = \frac{h}{4} \sum_{k=0}^{n-1} \left[f(x_k) + 2f(x_{k+\frac{1}{2}}) + f(x_{k+1}) \right]$$
 (2)

$$H_n = h \sum_{k=0}^{n-1} f(x_{k+\frac{1}{2}})$$

则得计算 T_{2n} 得递推公式: $T_{2n} = \frac{1}{2}(T_n + H_n)$

误差估计:

$$\frac{I - T_n}{h^2} = -\frac{1}{12} \sum_{k=0}^{n-1} h f''(\eta_k) \to -\frac{1}{12} \int_a^b f''(x) dx = -\frac{1}{12} [f'(b) - f'(a)]$$

同理可知
$$\frac{I - T_{2n}}{\left(\frac{h}{2}\right)^2} \to -\frac{1}{12} \int_a^b f''(x) dx = -\frac{1}{12} [f'(b) - f'(a)]$$

故
$$\frac{I-T_n}{I-T_{2n}} \approx 4$$
 即 $I \approx T_{2n} + \frac{1}{3}(T_{2n} - T_n)$

这表明,以 T_{2n} 作为I的近似值,其误差近似为(T_{2n} - T_n)/3. 可用于控制误差.

类似地,可推导变步长的Simpson法和Cotes法

对于Simpson公式,则有

$$I \approx S_{2n} + \frac{1}{15}(S_{2n} - S_n) = S_{2n} + \frac{1}{4^2 - 1}(S_{2n} - S_n)$$

对于Cotes公式,则有

$$I \approx C_{2n} + \frac{1}{63}(C_{2n} - C_n) = C_{2n} + \frac{1}{4^3 - 1}(C_{2n} - C_n)$$

例题见课本P276.

七 Rumberg求积算法

由上节知 $\frac{4}{3}T_{2n} - \frac{1}{3}T_n$ 可作为I 的更好的近似值. 因而常用此线性组合来逼近I.

$$\tilde{T} = \frac{4}{3} T_{2n} - \frac{1}{3} T_n = \frac{4}{3} \cdot \frac{h}{4} \sum_{k=0}^{n-1} [f(x_k) + 2f(x_{k+\frac{1}{2}}) + f(x_{k+1})]$$

$$-\frac{1}{3} \cdot \frac{h}{2} \sum_{k=0}^{n-1} [f(x_k) + f(x_{k+1})]$$

$$= \frac{h}{6} \sum_{k=0}^{n-1} [f(x_k) + 4f(x_{k+\frac{1}{2}}) + f(x_{k+1})] = S_n$$

即此线性组合实际上就是抛物型公式 S_n .

记
$$S_n = \frac{4}{4-1} T_{2n} - \frac{1}{4-1} T_n$$
 (3)

进一步插入节点,类似地可得Cotes公式与Simpson公式的关系式

$$C_n = \frac{4^2}{4^2 - 1} S_{2n} - \frac{1}{4^2 - 1} S_n \tag{4}$$

 C_n 可看作是由 S_{2n} 和 S_n 的线性组合的改进值.

继续下去,又有下述Rumberg求积公式

$$R_n = \frac{4^3}{4^3 - 1} C_{2n} - \frac{1}{4^3 - 1} C_n \tag{5}$$

一般地,有

$$T_n^{(m)} = \frac{4^m}{4^m - 1} T_{2n}^{(m-1)} - \frac{1}{4^m - 1} T_n^{(m-1)}, \quad m = 1, 2, 3, \dots$$

称为Rumberg求积公式(或称为线性加速求积公式).

注: 只要 f(x)在[a,b]内充分光滑,上述公式总可以得到I的较好的近似值.这种利用若干个近似值推出更为精确的近似值的方法称为外推法.

序列{ T_n },{ S_n },{ C_n }和{ R_n }分别称为梯形序列、Simpson 序列、Cotes序列和Rumberg序列. 对于Rumberg序列,其线性组合的系数分别为 $\frac{4^m}{4^m-1} \approx 1$ 和 $\frac{1}{4^m-1} \approx 0 \ (m \geq 4)$. 因此新的求积序列与前一个序列结果相差不大. 故通常外推到Rumberg序列为止.

可以证明,每次外推都可以使误差的阶提高2阶.

利用Rumberg序列求积的算法称为Rumberg算法.

Rumberg算法的计算步骤:

10: 计算 f(a) 和 f(b),由(1)求出 T_1 .

20: 将[a,b]二等分,计算 $f(\frac{a+b}{2})$,由(2)求出 T_2 ,由(3)求出 S_1 .

30: 将[a,b] 四等分, 计算 $f(a + \frac{b-a}{4})$ 及 $f(a + \frac{3(b-a)}{4})$,由(2)求出 T_4 ,由(3)求出 S_2 ,再由(4)求出 C_1 .

40: 将[a,b] 八等分, 计算 $f(a + \frac{b-a}{4}i)$ (i = 1,3,5,7)由(2) 求出 T_8 ,由(3) 求出 S_4 ,由(4) 求出 C_2 ,再由(5) 求出 R_1 .

50: 将区间再次对分,类似于上述计算过程计算 T_{16} , S_8 , C_4 , R_2 .

上述过程依次进行下去,可得 R_1 , R_2 , R_4 , R_8 , 直到龙贝格序列中前后两项之差的绝对值不超过给定的误差限为止.