Feuille 4 : Théorème de Cauchy global Théorème des résidus

Exercice 1. Soit $\Omega = \{z = x + iy \in \mathbb{C}; |xy| < 1\}$. Montrer que Ω est simplement connexe.

Exercice 2. Soit V l'ouvert de \mathbb{C} donné par $V = \{z \in \mathbb{C}; z \neq it \text{ pour tout } t \text{ avec } |t| \geq 1\}.$

- 1. Montrer que V est simplement connexe.
- 2. Soit f l'unique primitive de $\frac{1}{1+z^2}$ sur V, vérifiant f(0)=0. Que vaut f(x) lorsque x est réel ? Écrire un développement limité de f au voisinage de 0.
- 3. Montrer que si Re z > 0, $f(z) + f(1/z) = \pi/2$.
- 4. Montrer que lorsque z tend vers l'infini dans $\{\text{Re}\,z>0\},\ f(z)$ admet un développement asymptotique en puissances de $\frac{1}{z}$.
- 5. Soit γ un lacet de $\mathbb{C} \{-i, i\}$. Calculer $\int_{\gamma} \frac{dz}{1+z^2}$ à partir de $\operatorname{Ind}_{\gamma}(i)$ et $\operatorname{Ind}_{\gamma}(-i)$. En déduire que lorsque γ est un lacet de $\mathbb{C} [-i, i]$, $\int_{\gamma} \frac{dz}{1+z^2} = 0$.
- 6. Montrer qu'il existe f_1 holomorphe sur l'ouvert $U = \mathbb{C} [-i, i]$, telle que $f'_1(z) = \frac{1}{1+z^2}$.
- 7. Peut-on choisir f_1 telle que $f = f_1$ sur $U \cap V$? Justifier.

Exercice 3. 1. (a) Soient P, Q deux fonctions holomorphes au voisinage d'un point z_0 de \mathbb{C} , vérifiant $P(z_0) \neq 0$, $Q(z_0) = 0$, $Q'(z_0) \neq 0$. On pose f(z) = P(z)/Q(z). Montrer que Res $(f, z_0) = P(z_0)/Q'(z_0)$.

(b) Déterminer les pôles et les résidus en ces pôles des fonctions :

$$\frac{1}{(z-1)(z+2)}$$
, $\frac{e^z}{z-1}$, $\frac{ze^z}{z^2-1}$, $\frac{1}{\sin \pi z}$.

2. Déterminer les pôles et les résidus en ces pôles des fonctions

$$\frac{e^z}{z(z-1)^2}$$
, $\frac{\cot g \pi z}{z^2}$, $\frac{e^z}{(z-1)^k}$, $(k \in \mathbb{N}^*)$.

Exercice 4. Calculer les intégrales suivantes :

- 1. $\int_{\gamma} \frac{dz}{(z-1)(z+2)}$ où γ est le cercle de centre 1 de rayon 1, orienté positivement.
- 2. $\int_{\gamma} \frac{dz}{(z-1)(z+2)}$ où γ est le cercle de centre -2 de rayon 2, orienté positivement.
- 3. $\int_{\gamma} \frac{dz}{(z-1)(z+2)}$ où γ est le cercle de centre 0 de rayon 3/2, orienté positivement.
- 4. $\int_{\gamma} \frac{e^z}{(z-1)^k}$, où γ est le cercle de centre 0 de rayon 5, orienté positivement, et où $k \in \mathbb{N}^*$.

Exercice 5. 1. Déterminer les racines de l'équation $z^2 + 2\sqrt{2}z + 1 = 0$.

- 2. Soit γ le cercle unité orienté positivement. Calculer $\int_{\gamma} \frac{dz}{z^2 + 2\sqrt{2}z + 1}$.
- 3. Calculer l' intégrale $\int_{-\pi}^{\pi} \frac{d\theta}{\sqrt{2} + \cos \theta}$. (On se ramènera à la question précédente en exprimant $\cos \theta$ à partir de $e^{i\theta}, e^{-i\theta}$).
- 4. Calculer $\int_{-\pi}^{\pi} \frac{d\theta}{(\sqrt{2} + \cos \theta)^2}.$

Exercice 6. On pose pour $n \in \mathbb{N}$,

$$A = \int_{-\pi}^{\pi} e^{\cos \theta} \cos(n\theta - \sin \theta) d\theta, \quad B = \int_{-\pi}^{\pi} e^{\cos \theta} \sin(n\theta - \sin \theta) d\theta.$$

- 1. Montrer que B=0.
- 2. Calculer A (Indication : On calculera A + iB).