Proof. Let $x \in G$ have order odd $2n+1$. Then $x^{2n+1}=e$ and if we multiply by x on bowe get $x^{2n+2}=x^{2(n+1)}=x$. Therefore if x has odd order then it $x^{2k}=x$ for some $k \in \mathbb{Z}_{>0}$.	th sides
Problem 2 (1.1.25).	
<i>Proof.</i> Suppose that G is a group such that for all $x \in G$ that $x^2 = 1$. This implies any element $x^{-1} = x$. Then we have $xy = (xy)^{-1} = y^{-1}x^{-1} = yx$ which shows the commutative.	
Problem 3 (1.1.35).	
<i>Proof.</i> Let $x \in G$ have order n . Then consider x^m . Using the division algorithm with m a can rewrite m as $qn + d$ where $0 \le d < n$. This implies that	nd n we
$x^m = x^{qn+d} = x^{qn}x^d = (x^n)^q x^d = e^q x^d = x^d$	
As such $x \in \{e, x^1, \dots, x^{n-1}\}.$	
Problem 4 (1.3.6).	
Proof.	
Problem 5 (1.3.9).	
Proof.	
Problem 6 (1.3.13).	
Proof.	
Problem 7 (1.5.2).	
Proof.	

Problem 1 (1.1.21).