Solving Car Break ins with Data Science

Ian Andriot

Preview

- Data acquisition
- Preprocessing
- Models: Support Vector Machines, and Convolutional Neural Networks
- Results and opportunities
- Demo of final model
- Questions

Data Acquisition

- Prebuilt datasets
- Flickr API
- Ended up with:
 - o 618 broken glass images
 - o 1,150 car images

Preprocessing

- Converting images to grayscale
- Resizing images to 128x128
- Oversample minority classes for train split
- Image Data Generator to generate more images

Support Vector Machines

Definitions:

- Histogram of Oriented Gradients
 - Feature descriptor
- Principal Component Analysis
 - Feature reduction
- Bayesian Optimization
 - Hyperparameter tuning

Convolutional Neural Networks

- What sets them apart from regular Neural Networks?
- More layers or more neurons?
- Explored options
- Hyperband optimization

Resulting Models and Opportunities

Results

- Accuracy of 92% for the Support Vector Machine model
- Accuracy of 86% for the manually-tuned Convolutional Neural Network
- Accuracy of 96% for the Convolutional Neural Network after hyperparameter tuning

Opportunities

- A larger dataset to account for more situations.
- Processing a live cam feed to trigger an alert.
- An API that processes requests using this model.

False

Negatives

Images incorrectly

broken glass

predicted to have no

Questions?