

- For each element in a universe (domain), a predicate assigns one of two values, True and False.
- "Co-domain" is {True,False}
- Functions: more general co-domains
 - $\emptyset f : A \rightarrow B$
- A function maps each element in the domain to an element in the co-domain
- To specify a function, should specify domain, co-domain and the "table" itself

pair∈AIW²	Likes(pair)
(Alice, Alice)	TRUE
(Alice, Jabberwock)	FALSE
(Alice, Flamingo)	TRUE
(Jabberwock, Alice)	FALSE
(Jabberwock, Jabberwock)	TRUE
(Jabberwock, Flamingo)	FALSE
(Flamingo, Alice)	FALSE
(Flamingo, Jabberwock)	FALSE
(Flamingo, Flamingo)	TRUE

- \odot eg: Extent of liking, f: AIW² \rightarrow {0,1,2,3,4,5}
 - Note: no empty slot, no slot with more than one entry
 - Not all values from the co-domain need be used
- Image: set of values in the co-domain that do get used
 - For $f:A \rightarrow B$, $Im(f) \subseteq B$ s.t. $Im(f) = \{ y \in B \mid \exists x \in A \mid f(x) = y \}$

x∈Domain	f(x)∈Co-Domain
(Alice, Alice)	5
(Alice, Jabberwock)	1
(Alice, Flamingo)	4
(Jabberwock, Alice)	0
(Jabberwock, Jabberwock)	4
(Jabberwock, Flamingo)	0
(Flamingo, Alice)	1
(Flamingo, Jabberwock)	0
(Flamingo, Flamingo)	5

 \odot eg: Extent of liking, f: AIW² \rightarrow {0,1,2,3,4,5}

x∈Domain	f(x)∈Co-Domain
(Alice, Alice)	5
(Alice, Jabberwock)	12
(Alice, Flamingo)	4
(Jabberwock, Alice)	0
(Jabberwock, Jabberwock)	4
(Jabberwock, Flamingo)	0
(Flamingo, Alice)	1
(Flamingo, Jabberwock)	0
(Flamingo, Flamingo)	5

Function as a Relation

- As a relation between domain & co-domain, $R_f ⊆ domain × co-domain$ $R_f = \{ (x,f(x)) \mid x ∈ domain \}$
 - The special property of R_f : every x has a unique y s.t. $(x,y) \in R_f$
- Can be represented using a matrix
 - Oconvention: domain on the "x-axis", co-domain on the "y-axis"
 - Every column has exactly one cell "switched on"

Plotting a Function

- When both domain and co-domain are numerical (or otherwise totally ordered), we often "plot" the function
 - Shows only part of domain/codomain when they are infinite (here $f: \mathbb{Z} \rightarrow \mathbb{Z}$)

Composition

© Composition of functions f and g: $g \circ f$: Domain(f) \rightarrow Co-domain(g)

$$\circ$$
 gof(x) \triangleq g(f(x))

Composition

 \circ Composition of functions f and g: $g \circ f$: Domain(f) \rightarrow Co-domain(g)

$$\circ$$
 gof(x) \triangleq g(f(x))

- Defined only if Im(f) ⊆ Domain(g)
 - Typically, Domain(g) = Co-domain(f)
- \circ gof: Domain(f) \rightarrow Co-domain(g)
- Im(g∘f) ⊆ Im(g)