CD40105BMS

December 1992

CMOS FIFO Register

Features

- · 4 Bits x 16 Words
- High Voltage Type (20V Rating)
- · Independent Asynchronous Inputs and Outputs
- 3-State Outputs
- Expandable in Either Direction
- · Status Indicators on Input and Output
- Reset Capability
- Standardized Symmetrical Output Characteristics
- 100% Tested for Quiescent Current at 20V
- 5V, 10V and 15V Parametric Ratings
- Maximum Input Current of 1μA at 18V Over Full Package Temperature Range; 100nA at 18V and +25°C
- Noise Margin (Over Full Package/Temperature Range)
 - 1V at VDD = 5V
 - 2V at VDD = 10V
 - 2.5V at VDD = 15V
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications

- . Bit Rate Smoothing
- CPU/Terminal Buffering
- Data Communications
- Peripheral Buffering
- Line Printer Input Buffers
- Auto Dialers
- CRT Buffer Memories
- Radar Data Acquisition

Description

CD40105BMS is a low-power first-in-first-out (FIFO) "elastic" storage register that can store 16 4-bit words. It is capable of handling input and output data at different shifting rates. This feature makes it particularly useful as a buffer between asynchronous systems.

Each word position in the register is clocked by a control flipflop, which stores a marker bit. A "1" signifies that the position's data is filled and a "0" denotes a vacancy in that position. The control flip-flop detects the state of the preceding flip-flop and communicates its own status to the succeeding flip-flop. When a control flip-flop is in the "0" state and sees a "1" in the preceding flip-flop, it generates a clock pulse that transfers data from the preceding four data latches into its own four data latches and resets the preceding flip-flop to "0". The first and last control flip-flops have buffered outputs. Since all empty locations "bubble" automatically to the input end, and all valid data ripple through to the output end, the status of the first control flip-flop (DATA-IN READY) indicates if the FIFO is full, and the status of the last flip-flop (DATA-OUT READY) indicates if the FIFO contains data. As the earliest data are removed from the bottom of the data stack (the output end), all data entered later will automatically propagate (ripple) toward the output.

Loading Data - Data can be entered whenever the DATA-IN READY (DIR) flag is high, by a low to high transition on the SHIFT-IN (SI) input. This input must go low momentarily before the next word is accepted by the FIFO. The DIR flag will go low momentarily, until that data have been transferred to the second location. The flag will remain low when all 16-word locations are filled with valid data, and further pulses on the SI input will be ignored until DIR goes high.

Continued on next page

Pinout

Functional Diagram

CD40105BMS

Unloading Data - As soon as the first word has rippled to the output, DATA-OUT READY (DOR) goes high, and data can be removed by a falling edge on the SO input. This falling edge causes the DOR signal to go low while the word on the output is dumped and the next word moves to the output. As long as valid data are available in the FIFO, the DOR signal will go high again signifying that the next word is ready at the output. When the FIFO is empty, DOR will remain low, and any further commands will be ignored until a "1" marker ripples down to the last control register, when DOR goes high. Unloading of data is inhibited while the 3-state control input is high. The 3-state control signal should not be shifted from high to low (data outputs turned on) while the SHIFT-OUT is at logic 0. This level change would cause the first word to be shifted out (unloaded) immediately and the data to be lost.

Cascading - The CD40105BMS can be cascaded to form longer registers simply by connecting the DIR to SO and DOR to SI. In the cascaded mode, a MASTER RESET pulse must be applied after the supply voltage is turned on. For words wider than 4 bits, the DIR and the DOR outputs must

be gated together with AND gates. Their outputs drive the SI and SO inputs in parallel, if expanding is done in both directions (see Figures 9 and 11).

3-State Outputs - In order to facilitate data busing, 3-state outputs are provided on the data output lines, while the load condition of the register can be detected by the state of the DOR output.

Master Reset - A high on the MASTER RESET (MR) sets all the control logic marker bits to "0". DOR goes low and DIR goes high. The contents of the data register are not changed, only declared invalid, and will be superseded when the first word is loaded. The shift-in must be low during Master Reset.

The CD40105BMS is supplied in these 16-lead outline packages:

Braze Seal DIP H4X Frit Seal DIP H1F Ceramic Flatpack H6W

Absolute Maximum Ratings Reliability Information The second control of DC Supply Voltage Range, (VDD) -0.5V to +20V Thermal Resistance $^{\theta_{jc}}_{20^{o}\text{C/W}}$ (Voltage Referenced to VSS Terminals) 20°C/W Input Voltage Range, All Inputs -0.5V to VDD +0.5V Flatpack Package 70°C/W DC Input Current, Any One Input±10mA Maximum Package Power Dissipation (PD) at +125°C Operating Temperature Range -55°C to +125°C For $T_A = -55^{\circ}C$ to $+100^{\circ}C$ (Package Type D, F, K) 500mW Package Types D, F, K, H For $T_A = +100^{\circ}C$ to $+125^{\circ}C$ (Package Type D, F, K). Derate Storage Temperature Range (TSTG).....-65°C to +150°C Linearity at 12mW/°C to 200mW

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Lead Temperature (During Soldering) +265 $^{\circ}$ C At Distance 1/16 \pm 1/32 Inch (1.59mm \pm 0.79mm) from case for

10s Maximum

				GROUP A		LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS (NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VD	D or GND	1	+25°C	-	10	μΑ
				2	+125°C	-	1000	μΑ
		VDD = 18V, VIN = VDD or GND		3	-55°C	-	10	μΑ
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20	1	+25°C	-100	-	nA
				2	+125°C	-1000	-	nA
			VDD = 18V	3	-55°C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20	1	+25°C	-	100	nA
				2	+125°C	-	1000	nA
			VDD = 18V	3	-55°C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load	•	1, 2, 3	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load	DD = 15V, No Load (Note 3)		+25°C, +125°C, -55°C	14.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.	DD = 5V, VOUT = 0.4V		+25°C	0.53	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0	DD = 10V, VOUT = 0.5V		+25°C	1.4	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1	DD = 15V, VOUT = 1.5V		+25°C	3.5	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.	VDD = 5V, VOUT = 4.6V		+25°C	-	-0.53	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.	VDD = 5V, VOUT = 2.5V		+25°C	-	-1.8	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9	9.5V	1	+25°C	-	-1.4	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT = 1	13.5V	1	+25°C	-	-3.5	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10	μΑ	1	+25°C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μ/	4	1	+25°C	0.7	2.8	V
Functional	F	VDD = 2.8V, VIN = VDD or GND		7	+25°C	VOH > VDD/2	VOL <	V
(Note 4)		VDD = 20V, VIN = VDD or GND		7	+25°C		VDD/2	
		VDD = 18V, VIN = VD	D or GND	8A	+125°C	1		
		VDD = 3V, VIN = VDD	or GND	8B	-55°C			
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 4.5	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, -55°C	-	1.5	V
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 4.5	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, -55°C	3.5	-	V
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13.9	5V, VOL < 1.5V	1, 2, 3	+25°C, +125°C, -55°C	-	4	V
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13.9	5V, VOL < 1.5V	1, 2, 3	+25°C, +125°C, -55°C	11	-	٧
Tri-State Output	IOZL	VIN = VDD or GND	VDD = 20V	1	+25°C	-0.4	-	μΑ
Leakage		VOUT = 0V		2	+125°C	-12	-	μА
			VDD = 18V	3	-55°C	-0.4	-	μΑ

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

				GROUP A		LIMITS		
PARAMETER	SYMBOL	CONDITIONS (N	OTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Tri-State Output	_	· · ·	VDD = 20V	1	+25°C	-	0.4	μΑ
Leakage		VOUT = VDD		2	+125°C	-	12	μΑ
			VDD = 18V	3	-55°C	-	0.4	μΑ

NOTES: 1. All voltages referenced to device GND, 100% testing being 3. For accuracy, voltage is measured differentially to VDD. Limit implemented.

2. Go/No Go test with limits applied to inputs.

is 0.050V max.

4. VDD = 2.8V/3.0V, RL = 100K to VDDVDD = 20V/18V, RL = 10K to VDD

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A		LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS (NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL1	VDD = 5V, VIN = VDD or GND	9	+25°C	-	370	ns
Shift Out or Reset to Data-Out Ready		(Note 1, 2)	10, 11	+125°C, -55°C	-	500	ns
Propagation Delay	TPHL2	VDD = 5V, VIN = VDD or GND	9	+25°C	-	320	ns
Shift In to Data-In Ready		(Note 1, 2)	10, 11	+125°C, -55°C	-	432	ns
Propagation Delay	TPLH3 VDD = 5V, VIN = VDD or G		9	+25°C	-	4	μs
Ripple through Delay Input to Output		(Note 1, 2)	10, 11	+125°C, -55°C	-	5.4	μs
Propagation Delay	TPZH	VDD = 5V, VIN = VDD or GND	9	+25°C	-	280	ns
3-State Control to Data Out		(Note 2, 3)	10, 11	+125°C, -55°C	-	378	ns
Transition Time	TTHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns
	TTLH	(Note 1, 2)	10, 11	+125°C, -55°C	-	270	ns
Maximum Shift-In or	FCL	VDD = 5V (Note 1, 2),	9	+25°C	1.5	-	MHz
Shift-Out Rate		VIN = VDD or GND	10, 11	+125°C, -55°C	1.11	-	MHz

NOTES:

- 1. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. -55°C and +125°C limits guaranteed, 100% testing being implemented.
- 3. CL = 50pF, RL = 1K, Input TR, TF < 20ns.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	5	μΑ
				+125°C	-	150	μΑ
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ
				+125°C	-	300	μΑ
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ
				+125°C	-	600	μΑ
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	=	50	mV
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	=	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	4.95	-	V
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	9.95		V

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

				LIN			
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125°C	0.36	-	mA
				-55°C	0.64	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	0.9	-	mA
				-55°C	1.6	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125°C	2.4	-	mA
				-55°C	4.2	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125°C	-	-0.36	mA
				-55°C	-	-0.64	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125°C	-	-1.15	mA
				-55°C	-	-2.0	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125°C	-	-0.9	mA
				-55°C	-	-1.6	mA
Output Current (Source)	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125°C	-	-2.4	mA
				-55°C	-	-4.2	mA
Input Voltage Low	VIL	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	-	3	V
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	7	-	V
Propagation Delay	TPHL1	VDD = 10V	1, 2, 3	+25°C	-	180	ns
Shift or Reset to Data Out Ready		VDD = 15V	1, 2, 3	+25°C	-	130	ns
Propagation Delay Ripple	TPLH3	VDD = 10V	1, 2, 3	+25°C	-	2	μs
through Delay Input to Output		VDD = 15V	1, 2, 3	+25°C	=	1.4	μs
Propagation Delay	TPHL2	VDD = 10V	1, 2, 3	+25°C	-	130	ns
Shift-In to Data-In Ready		VDD = 15V	1, 2, 3	+25°C	-	90	ns
Propagation Delay	TPHL4	VDD = 5V	1, 2, 3	+25°C	-	420	ns
Shift Out to QN Out	TPLH4	VDD = 10V	1, 2, 3	+25°C	-	380	ns
		VDD = 15V	1, 2, 3	+25°C	-	250	ns
Propagation Delay	TPZH	VDD = 10V	1, 2, 4	+25°C	-	120	ns
3-State Control to Data Out	TPZL	VDD = 15V	1, 2, 4	+25°C	-	80	ns
Propagation Delay	TTHZ	VDD = 10V	1, 2, 3	+25°C	-	100	ns
3-State Control to Data Out	TPLZ	VDD = 15V	1, 2, 3	+25°C	-	80	ns
Maximum Shift-In or	FCL	VDD = 10V	1, 2	+25°C	3	-	MHz
Shift-Out Rate		VDD = 15V	1, 2	+25°C	4	-	MHz
Maximum Shift-In or	TR	VDD = 5V	3	+25°C	-	15	μs
Shift-Out Rise Time		VDD = 10V	3	+25°C	-	15	μs
		VDD = 15V	3	+25°C	-	15	μs
Maximum Shift-In Fall	TF	VDD = 5V	3	+25°C	-	15	μs
Time		VDD = 10V	3	+25°C	-	15	μs
		VDD = 15V	3	+25°C	-	15	μs
Maximum Shift-Out Fall	TF	VDD = 5V	3	+25°C	-	15	μs
Time		VDD = 10V	3	+25°C	-	5	μs
		VDD = 15V	3	+25°C	-	5	μs

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Minimum Master Reset	TWH	VDD = 5V	1, 2, 3	+25°C	-	200	ns
Pulse Width		VDD = 10V	1, 2, 3	+25°C	-	90	ns
		VDD = 15V	1, 2, 3	+25°C	-	60	ns
Data-In Ready Pulse	TWL	VDD = 5V	1, 2, 3	+25°C	-	520	ns
Width		VDD = 10V	1, 2, 3	+25°C	-	200	ns
		VDD = 15V	1, 2, 3	+25°C	-	140	ns
Data-Out Ready Pulse	TWL	VDD = 5V	1, 2, 3	+25°C	-	440	ns
Width		VDD = 10V	1, 2, 3	+25°C	-	180	ns
		VDD = 15V	1, 2, 3	+25°C	-	130	ns
Minimum Shift Out Pulse	TWL	VDD = 5V	1, 2, 3	+25°C	-	180	ns
Width		VDD = 10V	1, 2, 3	+25°C	-	75	ns
		VDD = 15V	1, 2, 3	+25°C	-	55	ns
Minimum Data Setup	TSU	VDD = 5V	1, 2, 3	+25°C	-	0	ns
Time		VDD = 10V	1, 2, 3	+25°C	-	0	ns
		VDD = 15V	1, 2, 3	+25°C	-	0	ns
Minimum Data Hold Time	TH	VDD = 5V	1, 2, 3	+25°C	-	350	ns
		VDD = 10V	1, 2, 3	+25°C	-	150	ns
		VDD = 15V	1, 2, 3	+25°C	-	120	ns
Minimum Shift In Pulse	TW	VDD = 5V	1, 2, 3	+25°C	-	200	ns
Width		VDD = 10V	1, 2, 3	+25°C	-	80	ns
		VDD = 15V	1, 2, 3	+25°C	-	60	ns
Input Capacitance	CIN	Any Input	1, 2	+25°C	-	7.5	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 4. CL = 50pF, RL = 1K, Input TR, TF < 20ns.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	25	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVTN	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	V
P Threshold Voltage Delta	ΔVTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND	1	+25°C	VOH >	VOL <	V
		VDD = 3V, VIN = VDD or GND			VDD/2	VDD/2	
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-2	IDD	± 1.0μA
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP		MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (Pre Burn-In)		100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test	1 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test	2 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note	: 1)	100% 5004	1, 7, 9, Deltas	
Interim Test	3 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note	: 1)	100% 5004	1, 7, 9, Deltas	
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11	
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B	Subgroup B-5	Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
	Subgroup B-6	Sample 5005	1, 7, 9	
Group D		Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	MIL-STD-883		READ AND RECORD	
CONFORMANCE GROUPS	METHOD	PRE-IRRAD	POST-IRRAD	PRE-IRRAD POST-IRRAD	
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCILLATOR	
FUNCTION	OPEN	GROUND	VDD	9V \pm -0.5V	50kHz	25kHz
Static Burn-In 1 Note 1	2, 10 - 14	1, 3 - 9, 15	16			
Static Burn-In 2 Note 1	2, 10 - 14	8	1, 3 - 7, 9, 15, 16			
Dynamic Burn-In Note 1	-	1, 8, 9	16	2, 10 - 14	3, 15	4 - 7
Irradiation Note 2	2, 10 - 14	8	1, 3 - 7, 9, 15, 16			

NOTES:

- 1. Each pin except VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V
- 2. Each pin except VDD and GND will have a series resistor of 47K ±5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = 10V ± 0.5V

Typical Performance Characteristics

FIGURE 2. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 4. TYPICAL OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 6. TYPICAL TRANSITION TIME AS A FUNCTION OF LOAD CAPACITANCE

FIGURE 3. MINIMUM OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 5. MINIMUM OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 7. TYPICAL DYNAMIC POWER DISSIPATION AS A FUNCTION OF FREQUENCY

FIGURE 8. CD40105BMS FUNCTIONAL BLOCK DIAGRAM

FIGURE 9. EXPANSION, 4-BITS WIDE-BY-16 N-BITS LONG

^{***}DATA VALID goes to high level in advance of the DATA OUT by maximum of 50ns at VDD = 5V, 25ns at VDD = 10V,

and 20ns at VDD = 15V for CL = 50pF and T_A = 25°C

FIGURE 10. TIMING DIAGRAM FOR THE CD40105BMS

FIGURE 11. EXPANSION, 8-BITS-WIDE-BY-16 N-BITS LONG USING CD40105BMS

Chip Dimensions and Pad Layout

Dimensions in parenthesis are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10-3 inch).

METALLIZATION: Thickness: 11kÅ – 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN **DIE THICKNESS:** 0.0198 inches - 0.0218 inches

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com