Weight Lifting Exercises

Varut Wiseschinda

Synopsis

The purpose of this project is to predict the manner of 6 participants in which they did weight lifting exersice, based on data of accelerometers on the belt, forearm, arm, and dumbell of them.

Data Cleaning and Processing

After importing necessary libraries of this project, the data was imported from "pml-training.csv" and "pml-testing.csv" file.

```
#import libraries
library(dplyr)
library(ggplot2)
library(data.table)
library(lubridate)
library(caret)
library(rattle)
library(rpart)

#set working directory
setwd("D:/Google Drive/dataScientist/")

#import data
weightLiftingTrain<-read.csv("pml-training.csv")
weightLiftingTest<-read.csv("pml-testing.csv")</pre>
```

Blank cell was then transformed into NA value. Then, only data that is numeric was selected.

```
#set all blank cell to NA
weightLiftingTrain[weightLiftingTrain==""]<-NA

#select only numeric columns
trainNumOnly<-weightLiftingTrain[,-(1:7)]

use<-integer()
for (i in seq(1,ncol(trainNumOnly)-1)){
    trainNumOnly[[i]]<-as.numeric(trainNumOnly[[i]])
    if (mean(is.na(trainNumOnly[[i]]))<0.05){
        use<-c(use,i)
    }
}
trainNumOnly<-trainNumOnly[,c(use,ncol(trainNumOnly))]</pre>
```

Decision Tree

Decision tree was chosen as the first machine learning model, since this problem is non-linear, and decision tree is easy to interpret the result. Data was split into two group and use only the first group for training.

Rattle 2019-.....-14 15:15:34 Acer

The accuray of decision tree model was calculated comparing to second data group, which was 75.7%.

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                  Α
                       В
                            С
                                  D
                                       Ε
                            60
                                      36
##
            A 2041
                      71
                                 24
##
            В
                229
                     946
                          145
                                114
                                      84
##
            С
                 23
                     123 1105
                                 82
                                      35
##
            D
                 73
                     113
                          197
                                      90
                                813
            Ε
                 23
##
                     132
                          174
                                 83 1030
##
  Overall Statistics
##
##
##
                   Accuracy : 0.7564
##
                     95% CI: (0.7468, 0.7659)
       No Information Rate: 0.3045
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                      Kappa: 0.6912
    Mcnemar's Test P-Value : < 2.2e-16
##
```

```
## Statistics by Class:
##
##
                         Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                           0.8543
                                     0.6830
                                              0.6573
                                                        0.7285
                                                                 0.8078
## Specificity
                           0.9650
                                     0.9115
                                              0.9573
                                                        0.9297
                                                                 0.9373
## Pos Pred Value
                           0.9144
                                     0.6232
                                              0.8077
                                                        0.6322
                                                                 0.7143
## Neg Pred Value
                           0.9380
                                     0.9306
                                              0.9111
                                                        0.9538
                                                                 0.9617
## Prevalence
                           0.3045
                                     0.1765
                                              0.2142
                                                        0.1422
                                                                 0.1625
## Detection Rate
                           0.2601
                                     0.1206
                                              0.1408
                                                        0.1036
                                                                 0.1313
## Detection Prevalence
                           0.2845
                                     0.1935
                                              0.1744
                                                        0.1639
                                                                 0.1838
## Balanced Accuracy
                           0.9097
                                     0.7973
                                              0.8073
                                                        0.8291
                                                                 0.8726
```

The variance importance was also determined.

##	roll_belt	${\tt pitch_belt}$	accel_belt_z
##	1561.701507	920.733529	818.861152
##	${\tt pitch_forearm}$	magnet_dumbbell_y	$accel_dumbbell_y$
##	760.995515	664.804570	611.908908
##	total_accel_dumbbell	total_accel_belt	${\tt roll_forearm}$
##	570.822595	530.395866	512.179753
##	yaw_belt	${\tt magnet_dumbbell_z}$	$accel_forearm_x$
##	502.220859	458.987662	457.845728
##	${\tt magnet_belt_z}$	${\tt roll_dumbbell}$	${\tt magnet_belt_x}$
##	455.305642	381.757182	361.406926
##	$accel_belt_x$	accel_belt_y	${\tt magnet_forearm_z}$
##	325.081770	316.886333	291.376113
##	${\tt accel_forearm_z}$	$accel_dumbbell_x$	magnet_forearm_y
##	275.187234	262.155060	241.758860
##	${\tt yaw_forearm}$	$accel_dumbbell_z$	${\tt magnet_belt_y}$
##	233.982575	225.464276	220.538237
##	yaw_arm	${\tt accel_forearm_y}$	${\tt magnet_forearm_x}$
##	207.801876	171.565249	117.821021
##	${ t gyros_belt_z}$	${\tt yaw_dumbbell}$	${\tt magnet_arm_y}$
##	112.774821	112.096456	80.211871
##	${\tt pitch_arm}$	$accel_arm_x$	${\tt magnet_arm_x}$
##	66.634086	65.449862	64.066902
##	${ t gyros_dumbbell_x}$	${\tt magnet_arm_z}$	$accel_arm_y$
##	63.080406	57.773257	52.694457
##	gyros_arm_x	${ t gyros_arm_y}$	gyros_belt_y
##	49.152989	37.809992	36.550251
##	${ total_accel_arm}$	roll_arm	<pre>gyros_dumbbell_y</pre>
##	29.864774	19.297939	14.777242
##	pitch_dumbbell	${ t gyros_belt_x}$	${ t gyros_forearm_x}$
##	13.713327	11.925280	5.218779
##	$accel_arm_z$		
##	4.233398		

Random Forests

The accuracy of decision tree model (75.7%) was not enough to be used for prediction. Therefore, random forests model was selected for accuracy improvement. Since this model is computationally expensive, only 4

predictors (roll_belt, pitch_belt, accel_belt_z, pitch_forearm) were chosen from the variance importance of decision tree model.

```
Confusion Matrix and Statistics
##
##
             Reference
                       В
                            C
                                  D
                                       Ε
## Prediction
                  A
##
            A 1995
                      76
                           83
                                 59
                                      19
            В
                 65 1249
##
                          116
                                 67
                                      21
##
            C
                 34
                      88 1158
                                 74
                                      14
##
            D
                 27
                      39
                           57 1151
                                      12
##
            Ε
                 16
                      23
                           14
                                 24 1365
##
## Overall Statistics
##
##
                   Accuracy : 0.8817
                     95% CI: (0.8744, 0.8888)
##
##
       No Information Rate: 0.2724
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                      Kappa: 0.8507
##
    Mcnemar's Test P-Value: 1.688e-07
##
## Statistics by Class:
##
##
                         Class: A Class: B Class: C Class: D Class: E
                                     0.8468
                                               0.8109
                                                        0.8371
## Sensitivity
                           0.9336
                                                                  0.9539
## Specificity
                           0.9585
                                     0.9578
                                               0.9673
                                                        0.9791
                                                                  0.9880
## Pos Pred Value
                           0.8938
                                     0.8228
                                              0.8465
                                                        0.8950
                                                                  0.9466
                                     0.9643
                                               0.9583
                                                        0.9659
## Neg Pred Value
                           0.9747
                                                                  0.9897
## Prevalence
                           0.2724
                                     0.1880
                                               0.1820
                                                        0.1752
                                                                  0.1824
## Detection Rate
                           0.2543
                                     0.1592
                                               0.1476
                                                        0.1467
                                                                  0.1740
## Detection Prevalence
                           0.2845
                                     0.1935
                                               0.1744
                                                        0.1639
                                                                  0.1838
                                     0.9023
                                               0.8891
                                                        0.9081
                                                                  0.9709
## Balanced Accuracy
                           0.9460
```

It can be seen that random forest model was able to achieve 88.2% accuracy, with p-value to be significant.

Predict Test Case

Finally, the random forest machine learning model was used to predict 20 different test cases.

```
## [1] B C B D A E D D A A B C B A E C A B B B ## Levels: A B C D E
```