## Recommender System (MSBA 7027)

#### **Zhengli Wang**

Faculty of Business and Economics
The University of Hong Kong
2023

#### NETFLIX





## **Recommender Systems**

- Overview
- Content-based
- Collaborative filtering
  - User-based Collaborative filtering
  - Item-based Collaborative filtering
- Latent-factor model

## **Recommender Systems: Overview**

• Imagine a situation: user interacts with large catalog of items

























## **Recommender Systems: Overview**

• Imagine a situation: user interacts with large catalog of items

• Key feature: #items large, e.g. millions/billions

Moreover, user doesn't know exactly what he/she wants



- Search
- Recommendation



Products, movies videos, music, etc

## **Recommender Systems: Overview**

- Why recommendation becomes so important in the last 10 years
  - From an era of scarcity to an era of abundance
- Past: Era of scarcity
  - E.g. Shelf space is a scarce commodity for traditional retailers (like Walmart)
- Now: Era of abundance
  - E.g. Amazon/Taobao
  - Web enables near-zero-cost dissemination of information about products
- Gives rise to the "Long tail" phenomenon

## **Long Tail**

#### Imagine a graph

- X: items from a catalog (ranked by popularity)
  - Decreasing levels of popularity (left: more popular)
- Y: Actual popularity

#### Curve

- steep fall initially
  - Very few super-popular items
- Then slope becomes less steep
  - Never really reach the x-axis

#### **Certain item**

- purchase frequency not very high, but also not very low
  - e.g. once a week
- Not worthwhile for physical retailer to stock this item



(Left: more popular)

## **Long Tail**

- Cutoff point
  - Left: retail & online
  - Right: only online
- Phenomenon see in
  - Movies, music, products, etc
- Area under the curve to the right may be larger than to the left
- **Problem:** too many items, how to let users know them



(Left: more popular)

## **Long Tail**

- **Problem:** too many items, how to let users know them
- Need a **better way** to let users find them easily
  - Recommendation systems

#### • Examples

- Books, movies, music
- News articles
- People (friend recommendations on Facebook, LinkedIn, and Twitter)

#### **Types of Recommendations**

#### Manually selected

- List of favorites
- Lists of "essential" items

#### Simple aggregates

• Top 10, Most Popular, Recent Uploads

#### Tailored to individual users

- E.g. Amazon, Netflix, Pandora
- Our focus here

#### **Formal Model**

- X = set of Customers
- *I* = set of **Items**
- Utility function  $u: X \times I \rightarrow R$ 
  - *R*: rating
  - $R \in$  an ordered set
    - e.g., **1-5** stars

| User/Movie | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|------------|---|---|---|---|---|---|---|
| Α          | 4 |   |   | 5 | 1 |   |   |
| В          | 5 | 5 | 4 |   |   |   |   |
| С          |   |   |   | 2 | 4 | 5 |   |
| D          |   | 3 |   |   |   |   | 1 |

## **Key Problems**

- 1) Gathering known ratings for matrix
  - Different ways of collecting the data in the utility matrix
- 2) Infer unknown ratings from the known ones
  - Different ways of extrapolating unknown ratings for a user

Let's talk about each in detail

## **Key Problems**

- 1) Gathering Known Ratings
- Explicit
  - Ask people to rate items
  - Given incentives for people to rate items

#### • Implicit

- Learn ratings from user actions
  - E.g., purchase implies high rating
- Ways to learn about low ratings

## **Key Problems**

- 2) Infer Unknown Ratings
- Suppose we have gathered enough ratings, how to extrapolate
- Popular approaches to recommender systems:
  - Content-based
  - Collaborative Filtering
    - User-based
    - Item-based
  - Latent-factor based

| User/Movie | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|------------|---|---|---|---|---|---|---|
| Α          | 4 |   |   | 5 | 1 |   |   |
| В          | 5 | 5 | 4 |   |   |   |   |
| С          |   |   |   | 2 | 4 | 5 |   |
| D          |   | 3 |   |   |   |   | 1 |

• Main Idea: Recommend items to customer x similar to previous items rated highly by x

- Examples:
- Movie recommendations
  - Recommend movies with same actor(s), director, genre, ...
- Book recommendations
  - Recommend books with same author(s), topic, ...
- News recommendations
  - Recommend other news with "similar" content

- For each item, create an **item profile**
- Item profile involves a set (vector) of features
- For example
  - Movies: movie types, actor(s), title, director,...
  - Text: Set of "important" words in document
- How to pick important features?
  - Common techniques from text mining: TF-IDF (Term freq \* Inverse Doc Freq)

- TF-IDF (for text mining, Optional)
  - TF: count of term in the doc / document length
  - IDF: log (#documents / #doc that contains the term)
  - TF-IDF score: TF \* IDF

#### E.g.

- She is pretty.
- He is handsome.
- Both he and she are experts in machine-learning.

|          | d1             | d2             | d3             |
|----------|----------------|----------------|----------------|
| handsome | 0              | (1/3)*log(3/1) | 0              |
| She      | (1/3)*log(3/2) | 0              | (1/8)*log(3/2) |

| User/Movie | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|------------|---|---|---|---|---|---|---|
| Α          | 4 |   |   | 5 | 1 |   |   |
| В          | 5 | 5 | 4 |   |   |   |   |
| С          |   |   |   | 2 | 4 | 5 |   |
| D          |   | 3 |   |   |   |   | 1 |

| User/Movie | 1   | 2    | 3    | 4   | 5   | 6   | 7    |
|------------|-----|------|------|-----|-----|-----|------|
| Α          | 4   |      |      | 5   | 1   |     |      |
| В          | 5   | 5    | 4    |     |     |     |      |
| С          |     |      |      | 2   | 4   | 5   |      |
| D          |     | 3    |      |     |     |     | 1    |
| Features   |     |      |      |     |     |     |      |
| $X_1$      | 0.8 | 1    | 0.9  | 0.1 | 0.9 | 0.8 | 0.01 |
| $x_2$      | 0.1 | 0.01 | 0.02 | 1   | 0.3 | 0.5 | 0.7  |

- For user i & movie j, predict rating as:  $\theta^{(i)} x^{(j)}$
- $\theta^{(i)}$  will be learnt

```
e.g. User 1 (with para \theta^{(1)}) & movie 2 (x^{(2)} = (1, 0.01)')
```

```
e.g. x<sub>1</sub>: romance,
x<sub>2</sub>: action
/
x<sub>1</sub>: seriousness,
x<sub>2</sub>: female-oriented
```

Decision variable:  $\{\theta^{(i)}\}, i = 1, 2, 3, ...$ 

$$\min \sum_{i} \sum_{j|w^{(i,j)}=1} (\theta^{(i)'} x^{(j)} - r^{(i,j)})^2 + \lambda \sum_{i} \sum_{k} (\theta_k^{(i)})^2$$

 $\theta^{(i)}$ : user i's para

 $x^{(j)}$ : movie j's para

 $w^{(i,j)}$ : value = 1 if user i has rated movie j

 $r^{(i,j)}$ : rating value (movie j rated by user i)

This is just a linear regression problem!

| User/Movie | 1   | 2    | 3    | 4   | 5   | 6   | 7    |
|------------|-----|------|------|-----|-----|-----|------|
| Α          | 4   |      |      | 5   | 1   |     |      |
| В          | 5   | 5    | 4    |     |     |     |      |
| С          |     |      |      | 2   | 4   | 5   |      |
| D          |     | 3    |      |     |     |     | 1    |
| Features   |     |      |      |     |     |     |      |
| $x_1$      | 0.8 | 1    | 0.9  | 0.1 | 0.9 | 0.8 | 0.01 |
| $X_2$      | 0.1 | 0.01 | 0.02 | 1   | 0.3 | 0.5 | 0.7  |

Decision variable:  $\theta^{(i)}$ : user i's para

User 1: min 
$$[4 - (\theta_1^{(1)}, \theta_2^{(1)}) \cdot (0.8, 0.1)]^2 + [5 - (\theta_1^{(1)}, \theta_2^{(1)}) \cdot (0.1, 1)]^2 + [1 - (\theta_1^{(1)}, \theta_2^{(1)}) \cdot (0.9, 0.3)]^2$$
  
User 2: min  $[5 - (\theta_1^{(2)}, \theta_2^{(2)}) \cdot (0.8, 0.1)]^2 + [5 - (\theta_1^{(2)}, \theta_2^{(2)}) \cdot (1, 0.01)]^2 + [4 - (\theta_1^{(2)}, \theta_2^{(2)}) \cdot (0.9, 0.02)]^2$ 

• • •

## **Collaborative Filtering**

- Consider user x
- Find set *N* of other users whose ratings are "similar" to *x*'s ratings
- Estimate x's ratings based on ratings of users in N



#### **Motivating Example**

| User/Movie | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|------------|---|---|---|---|---|---|---|
| Α          | 4 |   |   | 5 | 1 |   |   |
| В          | 5 | 5 | 4 |   |   |   |   |
| С          |   |   |   | 2 | 4 | 5 |   |
| D          |   | 3 |   |   |   |   | 1 |

- Consider user x and y with rating vectors  $r_x$  and  $r_y$
- Need similarity metric s(x,y)
  - A & B seem more similar (M1)
  - A & C seem more dissimilar (M4 & M5)
- Want similarity metric to capture the intuition: s(A,B)>s(A,C)

#### **Motivating Example: 1st Approach (Jaccard)**

| User/Movie | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|------------|---|---|---|---|---|---|---|
| Α          | 4 |   |   | 5 | 1 |   |   |
| В          | 5 | 5 | 4 |   |   |   |   |
| С          |   |   |   | 2 | 4 | 5 |   |
| D          |   | 3 |   |   |   |   | 1 |

• 
$$s_J(x,y) = |\mathbf{r}_{\mathbf{x}} \cap \mathbf{r}_{\mathbf{y}}| / |\mathbf{r}_{\mathbf{x}} \cup \mathbf{r}_{\mathbf{y}}|$$

• 
$$s_J(A, B) = 1/5$$
;  $s_J(A, C) = 2/4$   
•  $s_J(A, B) < s_J(A, C)$ 

• **Problem**: ignores rating values

## **Motivating Example: 2nd Approach (Cosine)**

| User/Movie | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|------------|---|---|---|---|---|---|---|
| Α          | 4 |   |   | 5 | 1 |   |   |
| В          | 5 | 5 | 4 |   |   |   |   |
| С          |   |   |   | 2 | 4 | 5 |   |
| D          |   | 3 |   |   |   |   | 1 |

• 
$$s_C(x,y) = \frac{r_x \cdot r_y}{|r_x||r_y|}$$

• 
$$s_C(A, B) = \frac{4.5}{\sqrt{4^2 + 5^2 + 1^2}\sqrt{5^2 + 5^2 + 4^2}} = \frac{20}{\sqrt{42}\sqrt{66}} = 0.38$$

• 
$$s_C(A, C) = \frac{5 \cdot 2 + 1 \cdot 4}{\sqrt{4^2 + 5^2 + 1^2} \sqrt{2^2 + 4^2 + 5^2}} = \frac{14}{\sqrt{42}\sqrt{45}} = 0.32$$

•  $s_C(A, B) > s_C(A, C)$ , but we can do better

## **Motivating Example: 3rd Approach (Centered-Cosine)**

| User/Movie | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|------------|---|---|---|---|---|---|---|
| Α          | 4 |   |   | 5 | 1 |   |   |
| В          | 5 | 5 | 4 |   |   |   |   |
| С          |   |   |   | 2 | 4 | 5 |   |
| D          |   | 3 |   |   |   |   | 1 |

#### Standardize each user's ratings

| User/Movie | 1   | 2   | 3     | 4     | 5     | 6   | 7   |
|------------|-----|-----|-------|-------|-------|-----|-----|
| Α          | 2/3 |     |       | 5/3   | - 7/3 |     |     |
| В          | 1/3 | 1/3 | - 2/3 |       |       |     |     |
| С          |     |     |       | - 5/3 | 1/3   | 4/3 |     |
| D          |     | 1   |       |       |       |     | - 1 |

## **Motivating Example: 3rd Approach (Centered-Cosine)**

| User/Movie | 1   | 2   | 3     | 4     | 5     | 6   | 7   |
|------------|-----|-----|-------|-------|-------|-----|-----|
| Α          | 2/3 |     |       | 5/3   | - 7/3 |     |     |
| В          | 1/3 | 1/3 | - 2/3 |       |       |     |     |
| С          |     |     |       | - 5/3 | 1/3   | 4/3 |     |
| D          |     | 1   |       |       |       |     | - 1 |

• 
$$s_{CC}(x, y) = \frac{r_x \cdot r_y}{|r_x||r_y|}$$
, where  $r_x$ ,  $r_y$  are standardized ratings

• 
$$s_{CC}(A, B) = 0.09$$

• 
$$s_{CC}(A, C) = -0.56$$

• 
$$s_{CC}(A,B) > s_{CC}(A,C)$$

- Captures intuition better
  - Missing ratings treated as "average"
  - Remove bias for users who consistently rate high/low

#### **Predicting ratings**

- Goal: given user x and movie i, predict rating  $r_{xi}$
- Two Popular Approaches:
  - User-based Collaborative Filtering
  - Item-based Collaborative Filtering

## **Predicting ratings**

#### **User-based collaborative filtering**

- Let  $r_x$  be the vector of user x's ratings
- Let N be the set of k users most similar to x who have rated movie i
- Prediction for user x and movie i:

• 
$$r_{xi} = \frac{\sum_{y \in N} s_{xy} \cdot r_{yi}}{\sum_{y \in N} s_{xy}}$$

• where  $s_{xy}$  is the similarity between user x and user y

## **Predicting ratings**

#### **Item-based collaborative filtering (Dual Approach)**

- Let  $r_x$  be the vector of user x's ratings
- Let M be the set of k movies (which user x has rated) most similar to i
- Prediction for user x and movie i:

• 
$$r_{xi} = \frac{\sum_{j \in M} s_{ij} \cdot r_{xj}}{\sum_{j \in M} s_{ij}}$$

• where  $s_{ij}$  is the similarity between movie i and movie j

# **Predicting ratings: Example**

| User/Movie | 1 | 2 | 3 | 4 | 5 | 6 |
|------------|---|---|---|---|---|---|
| 1          | 5 | 5 | 5 |   | 3 | 2 |
| 2          |   | 2 | 3 | 5 |   | 2 |
| 3          | 1 | 5 | 3 | 4 | 2 |   |
| 4          | 2 |   |   | 3 |   | 4 |
| 5          | 4 |   | 5 | 5 | 4 | 2 |
| 6          | 3 | 2 |   | 4 | 3 |   |
| 7          | 4 | 1 | ? | 4 | 1 |   |
| 8          |   |   | 1 |   | 2 | 3 |

## **Predicting ratings: Example**

| User/Movie | 1   | 2     | 3   | 4   | 5     | 6   |
|------------|-----|-------|-----|-----|-------|-----|
| 1          | 1   | 1     | 1   |     | - 1   | - 2 |
| 2          |     | - 1   | 0   | 2   |       | - 1 |
| 3          | - 2 | 2     | 0   | 1   | - 1   |     |
| 4          | - 1 |       |     | 0   |       | 1   |
| 5          | 0   |       | 1   | -1  | 0     | - 2 |
| 6          | 0   | -1    |     | 1   | 0     |     |
| 7          | 1.5 | - 1.5 | ?   | 1.5 | - 1.5 |     |
| 8          |     |       | - 1 |     | 0     | 1   |

# **Predicting ratings: Example**

#### **User-Based Collaborative Filtering**

| User/Movie | 1   | 2     | 3   | 4   | 5     | 6   |
|------------|-----|-------|-----|-----|-------|-----|
| 1          | 1   | 1     | 1   |     | - 1   | - 2 |
| 2          |     | - 1   | 0   | 2   |       | - 1 |
| 3          | - 2 | 2     | 0   | 1   | - 1   |     |
| 4          | - 1 |       |     | 0   |       | 1   |
| 5          | 0   |       | 1   | -1  | 0     | - 2 |
| 6          | 0   | -1    |     | 1   | 0     |     |
| 7          | 1.5 | - 1.5 | ?   | 1.5 | - 1.5 |     |
| 8          |     |       | - 1 |     | 0     | 1   |

| Similarity |
|------------|
| 0.18       |
| 0.61       |
| -0.32      |
| -0.35      |
| -0.2       |
| 0.7        |
| 1          |
| 0          |

$$r_{xi} = \frac{\sum_{y \in N} s_{xy} \cdot r_{yi}}{\sum_{y \in N} s_{xy}}$$

• 2 Nearest users: 
$$r_{73} = \frac{0.61 \cdot 0 + 0.18 \cdot 1}{0.61 + 0.18} = 0.25$$

33

• What will be the predicted rating? (Ans: 2.5+0.25)

# Predicting ratings: Example Item-Based Collaborative Filtering

| User/Movie | 1   | 2     | 3   | 4    | 5     | 6     |
|------------|-----|-------|-----|------|-------|-------|
| 1          | 1   | 1     | 1   |      | - 1   | - 2   |
| 2          |     | - 1   | 0   | 2    |       | - 1   |
| 3          | - 2 | 2     | 0   | 1    | - 1   |       |
| 4          | - 1 |       |     | 0    |       | 1     |
| 5          | 0   |       | 1   | -1   | 0     | - 2   |
| 6          | 0   | -1    |     | 1    | 0     |       |
| 7          | 1.5 | - 1.5 | ?   | 1.5  | - 1.5 |       |
| 8          |     |       | - 1 |      | 0     | 1     |
| Similarity | 0.2 | 0.19  | 1   | 0.19 | -0.28 | -0.87 |

$$r_{xi} = \frac{\sum_{j \in M} s_{ij} \cdot r_{xj}}{\sum_{j \in M} s_{ij}}$$

• 2 Nearest movies:  $r_{73} = \frac{0.2 \cdot 1.5 + 0.19(-1.5)}{0.2 + 0.19} = 0.03$ 

• What will be the predicted rating? (Ans: 2.5+0.03)

Motivation: from Content-based (Quick Recap below)

Decision variable:  $\{\theta^{(i)}\}, i = 1, 2, 3, ...$ 

$$\min \sum_{i} \sum_{j|w^{(i,j)}=1} (\theta^{(i)'} x^{(j)} - r^{(i,j)})^2 + \lambda \sum_{i} \sum_{k} (\theta_k^{(i)})^2$$

 $\theta^{(i)}$ : user i's para

 $x^{(j)}$ : movie j's para

 $w^{(i,j)}$ : value = 1 if user i has rated movie j

 $r^{(i,j)}$ : rating value (movie j rated by user i)

0.1

| User/Movie | 1   | 2 | 3   | 4   | 5   | 6   | 7    |
|------------|-----|---|-----|-----|-----|-----|------|
| Α          | 4   |   |     | 5   | 1   |     |      |
| В          | 5   | 5 | 4   |     |     |     |      |
| С          |     |   |     | 2   | 4   | 5   |      |
| D          |     | 3 |     |     |     |     | 1    |
| Features   |     |   |     |     |     |     |      |
| $X_1$      | 0.8 | 1 | 0.9 | 0.1 | 0.9 | 0.8 | 0.01 |

0.02

Decision variable:  $\theta^{(i)}$ : user i's para

 $X_2$ 

User 1: min 
$$[4 - (\theta_1^{(1)}, \theta_2^{(1)}) \cdot (0.8, 0.1)]^2 + [5 - (\theta_1^{(1)}, \theta_2^{(1)}) \cdot (0.1, 1)]^2 + [1 - (\theta_1^{(1)}, \theta_2^{(1)}) \cdot (0.9, 0.3)]^2$$
  
User 2: min  $[5 - (\theta_1^{(2)}, \theta_2^{(2)}) \cdot (0.8, 0.1)]^2 + [5 - (\theta_1^{(2)}, \theta_2^{(2)}) \cdot (1, 0.01)]^2 + [4 - (\theta_1^{(2)}, \theta_2^{(2)}) \cdot (0.9, 0.02)]^2$ 

0.01

Suppose it is hard to come up with features of the movies  $x^{(j)}$ ,

0.5

0.7

0.3

What should we do?

•••

Suppose we do not have features of the movies  $x^{(j)}$ 

We can still have an algorithm that learns  $x^{(j)}$  by itself

Idea

$$\min \sum_{i} \sum_{j|w^{(i,j)}=1} (\theta^{(i)'} x^{(j)} - r^{(i,j)})^2 + \lambda \sum_{i} \sum_{k} (\theta_k^{(i)})^2 + \lambda \sum_{j} \sum_{k} (x_k^{(j)})^2$$

Given x, minimize  $\theta$ Given  $\theta$ , minimize x

More specifically

Fix 
$$\{x^{(j)}\}$$
,  $min_{\{\theta^{(i)}\}} \sum_{i} \sum_{j|w^{(i,j)}=1} (\theta^{(i)'}x^{(j)} - r^{(i,j)})^2 + \lambda \sum_{i} \sum_{k} (\theta_k^{(i)})^2$ 

Fix 
$$\{\theta^{(i)}\}$$
,  $min_{\{x^{(j)}\}} \sum_{i} \sum_{j|w^{(i,j)}=1} (\theta^{(i)'}x^{(j)} - r^{(i,j)})^2 + \lambda \sum_{j} \sum_{k} (x_k^{(j)})^2$ 

| User/Movie | 1 | 2 |
|------------|---|---|
| Α          | 5 | ? |
| В          | 2 | 4 |

Goal: predict  $r^{(1,2)}$ 

| Features |  |
|----------|--|
| $X_1$    |  |
| $X_2$    |  |

| User/Movie | 1 | 2 |
|------------|---|---|
| Α          | 5 | ? |
| В          | 2 | 4 |

Goal: predict  $r^{(1,2)}$ 

| Features              |       |      |
|-----------------------|-------|------|
| <b>X</b> <sub>1</sub> | 0.02  | 0.05 |
| $x_2$                 | -0.04 | 0.03 |

Initialization: assign some random values  $\{x^{(j)}\}$ 

| User/Movie | 1 | 2 |
|------------|---|---|
| Α          | 5 | ? |
| В          | 2 | 4 |

Goal: predict  $r^{(1,2)}$ 

| Features |       |      |
|----------|-------|------|
| $x_1$    | 0.02  | 0.05 |
| $x_2$    | -0.04 | 0.03 |

Given 
$$\{x^{(j)}\}$$
  $min_{\{\theta^{(i)}\}} \sum_{i} \sum_{j|w^{(i,j)}=1} (\theta^{(i)'}x^{(j)} - r^{(i,j)})^2 + \lambda \sum_{i} \sum_{k} (\theta_k^{(i)})^2$ 

| User/Movie | 1 | 2 |
|------------|---|---|
| Α          | 5 | ? |
| В          | 2 | 4 |

Goal: predict  $r^{(1,2)}$ 

| Features         |       |      |
|------------------|-------|------|
| $\mathbf{x}_{1}$ | 0.02  | 0.05 |
| $x_2$            | -0.04 | 0.03 |

Given 
$$\{\theta^{(i)}\}$$
  $min_{\{x^{(j)}\}} \sum_{i} \sum_{j|w^{(i,j)}=1} (\theta^{(i)'}x^{(j)} - r^{(i,j)})^2 + \lambda \sum_{j} \sum_{k} (x_k^{(j)})^2$ 

High level:



R

Each user and movie: represented by k-dim vector

#### Other Issues

#### **Cold-start problem (for new user)**

- Ask users to list their preferences (e.g. "tell me your 3 favorite movies")
- Try to get user's other info. (e.g. region, gender, browse history, etc.)
- Recommend popular & diverse items

#### 1st-rater problem (for new item)

- Pay a group of people to rate them
- Content-based algo.