E0 249: Approximation Algorithms

Naman Mishra

January 2024

Contents

0	The Course	1	
	0.1 Grading	1	
	0.2 Texts	2	
1	Optimization Problems	2	
	1.1 Optimization Version of Common NP-Complete Problems	2	
	1.2 Approximation Algorithms	2	
	1.3 Asymptotic Approximation	4	Lecture 01: Mor
0	The Course		08 Jan '24

Course website: here MS Teams: 091kg9h

Instructors: Prof. Arindam Khan and Prof. Anand Louis

TAs: Aditya Subramaniam (January)

Lecture Hours: MW 1400–1530 at CSA 112

Office Hours: Just email.

0.1 Grading

- (30%) Homework
- (20%) Project. Research papers from top conferences (STOC, FOCS, SODA, ICALP, SoCG). Around 10% on a report. 10% on a presentation (half an hour).
- (20%) Midterm
- (30%) Final

0.2 Texts

Primarily *The Design of Approximation Algorithms* by David Williamson and David Shmoys, Cambridge University Press, 2011. Available online for free.

Alternatively, Approximation Algorithms by Vijay Vazirani, Springer-Verlag, 2001.

For specific topics, Hochbaum, Sariel, etc.

1 Optimization Problems

Find the *best* solution from a set of *feasible* solutions. Richard Karp introduced the concept of NP-complete problems. Unless P = NP, the optimization version of the problems admit no algorithms that simultaneously (1) find optimal solution (2) in polynomial time (3) for all instances.

1.1 Optimization Version of Common NP-Complete Problems

Problem	Optimization Version
3-SAT	Max 3-SAT
Independent Set	Max Independent Set
Vertex Cover	Min Vertex Cover
Set Cover	Min Set Cover
Hitting Set	Min Hitting Set
Clique	Max Clique

1.2 Approximation Algorithms

Task: Solve NP-hard optimization problems A, but no efficient algorithm exists (unless P = NP).

Definition 1.1. Let Π be an optimization problem and let I be an instance of Π . Then $\text{OPT}_{\Pi}(I)$ is the value of the optimal solution.

There might be several optimal solutions, but they all have the same value.

Definition 1.2. Let $\alpha \geq 1$. A is an α -approximation algorithm for a minimization problem Π if for every instance I of Π ,

$$A(I) \leq \alpha \operatorname{OPT}_{\Pi}(I)$$

where A(I) is the value of the solution that A returns for I.

Typically, α takes values like 1.5, 2, O(1), $O(\log n)$, etc. Usually we omit Π and I in $OPT_{\Pi}(I)$.

For a maximization problem, $A(I) \ge \frac{1}{\alpha} \operatorname{OPT}_{\Pi}(I)$. (Sometimes in literature, $\alpha \le 1$ is used for maximization problems.)

This is also called absolute approximation.

NP-hard problems are very similar to each other in terms of decidability, but can be very different in terms of approximability. For some problems, it is NP-hard to obtain any approximation (TSP) but for some (Knapsack) we can get $(1 + \varepsilon)$ -approximation in polynomial $(n, \frac{1}{\varepsilon})$ time.

Definition 1.3. A_{ε} is a polynomial time approximation scheme (PTAS) for a minimization problem Π if

$$A_{\varepsilon}(I) \leq (1+\varepsilon) \operatorname{OPT}(I)$$

and for every fixed $\varepsilon > 0$, the running time of A_{ε} is polynomial in n.

Definition 1.4 (EPTAS). Efficient PTAS. $(1 + \varepsilon)$ -approximation in runtime $f(1/\varepsilon)n^{O(1)}$, where the exponent of n is independent of ε .

Definition 1.5 (FPTAS). Fully polynomial time approximation scheme. $(1 + \varepsilon)$ -approximation in runtime polynomial in both n and $\frac{1}{\varepsilon}$.

Definition 1.6 (QPTAS). Quasi-polynomial time approximation scheme. $(1 + \varepsilon)$ -approximation in quasi-polynomial time in n.

A quasi-polynomial is between a polynomial and an exponential.

Definition 1.7 (PPTAS). Pseudo-polynomial time approximation scheme. $(1 + \varepsilon)$ -approximation in pseudo-polynomial time in n.

For example, $(nB)^{O(1)}$, where B is the biggest numeric data.

1.3 Asymptotic Approximation

Definition 1.8. The asymptotic approximation ratio ρ_A^{∞} of an algorithm A is

$$\lim_{n\to\infty}\rho_A^n,\quad \text{where}\quad \rho_A^n=\sup_{I\in\mathcal{I}}\biggl\{\frac{A(I)}{\mathrm{OPT}(I)}\mid \mathrm{OPT}(I)=n\biggr\}$$