V appello - Pre-test Fisica Sperimentale I - 18/2/2021

Per completare il test, è necessario rispondere a tutte le domande. Se non si vuole dare una risposta, selezionare "Non rispondo a questa domanda"

Punteggi per ogni quesito:

Risposta esatta: 3 punti Risposta sbagliata: -1 punto "Non rispondo": 0 punti

Alla fine del test, puoi controllare le tue risposte. Riceverai inoltre un messaggio con il tuo punteggio.

Per passare il test è necessario totalizzare 18 punti

Punti: 6/10

- 1. Quale delle seguenti affermazioni è ERRATA? * (1/1 punto)
 - Un corpo immerso in un fluido riceve una spinta verso l'alto pari al peso del fluido spostato
 - La spinta di Archimede esercitata da un fluido su un corpo in esso immerso non dipende dalla massa dell'oggetto
 - Se la densità di un corpo è maggiore di quella del fluido nel quale è immerso, la spinta di Archimede ricevuta dal corpo sarà superiore al peso del corpo
 - La spinta di Archimede agente su un corpo è proporzionale sia al volume del corpo che alla densità del fluido spostato.

	Non rispondo a questa domanda
2.	Una bambina lascia cadere un sasso (con velocità iniziale nulla) dentro un pozzo profondo 100 metri. Si determini l'intervallo di tempo che intercorre tra l'istante in cui si lascia cadere il sasso e quello in cui si ode il rumore dell'urto del sasso con il fondo del pozzo.
	[la velocità del suono in aria è pari a 340 m/s e si consideri trascurabile la resistenza dell'aria] * (1/1 punto)
	4,5 s
	■ 4,8 s ✓
	O,3 s
	9,3 s
	Non rispondo a questa domanda
	Un punto materiale di massa m=2 kg si muove su una traiettoria rettilinea lungo l'asse x, sottoposto a una forza conservativa di energia potenziale $U(x)=A^*x^2$, con $A=4$ J/m ² .
	Se il punto passa per l'origine con velocità v_o =4 m/s, diretta verso la parte positiva dell'asse x, dove si ferma? * (1/1 punto)
	O.4 m
	○ 0.9 m
	○ 5 m
	② 2 m ✓
	Non rispondo a questa domanda

4.	10 litri di un gas in equilibrio con la pressione atmosferica sono contenuti
	all'interno di un recipiente chiuso da un pistone mobile di massa trascurabile.
	Raffreddando il gas il suo volume viene ridotto ad 8 litri.

Quanto vale il lavoro esercitato dal gas durante la trasformazione? * (1/1 punto)

- - 202,6 J ✓
- + 412,8 J
- 769,9 J
- + 121,2 J
- Non rispondo a questa domanda
- 5. Nel moto di puro rotolamento di un corpo rigido su un piano, la velocità del punto di contatto P del corpo rigido con il piano risulta: * (1/1 punto)
 - Uguale istante per istante alla velocità di rotazione del corpo rigido.
 - Uguale istante per istante alla velocità del centro di massa del corpo rigido.
 - Nulla istante per istante perché il punto di contatto è sempre fermo. 🗸
 - Nulla perchè l'attrito radente dinamico con il piano lo mantiene istantaneamente fermo.
 - Non rispondo a questa domanda

6. Una massa m in movimento con velocità vo urta una massa 2m ferma con un urto centrale. Dopo l'urto m e 2m hanno velocità v e V, rispettivamente.

Quale di queste affermazioni è FALSA? * (0/1 punto)

- v è uguale a V solo se l'urto è completamente anelastico
- L'energia cinetica finale è pari a 1/2*m*v₀² solo se l'urto è elastico

	La quantità di moto del sistema si conserva solo nel caso di urto elastico 🗸
	Il modulo della quantità di moto dopo l'urto è m*v₀
	Non rispondo a questa domanda
	\times
7	. Relativamente al moto parabolico di caduta libera di un grave, quale delle seguenti affermazioni è VERA? * (0/1 punto)
	l'accelerazione centripeta in modulo è pari all'accelerazione di gravità;
	il vettore accelerazione non è costante;
	nel punto di massima altezza, la velocità del grave è sempre nulla qualunque siano le condizioni iniziali del moto
	Nessuna risposta tra quelle indicate è corretta; 🗸
	Non rispondo a questa domanda
	\times
8	. Una massa m=1 kg di acqua inizialmente a temperatura t_1 =90 °C viene gettata in uno stagno di massa infinita la cui temperatura è t_2 =20 °C.
	Calcolare la variazione di entropia dell'universo corrispondente al raggiungimento dell'equilibrio termico. [calore specifico dell'acqua: 4186 J/(kg*K)] * (0/1 punto)
	○ 103,3 J/K ✓
	6,2 J/K
	25,1 J/K
	2 J/K
	Non rispondo a questa domanda

- 9. Un gas subisce una trasformazione ciclica. Dopo un ciclo: * (0/1 punto)
 - La variazione di entropia dell'ambiente è nulla se la trasformazione è irreversibile
 - La variazione di entropia dell'ambiente è sempre nulla
 - La variazione di entropia del gas è sempre nulla 🗸
 - La variazione di entropia del gas è nulla se la trasformazione è reversibile
 - Non rispondo a questa domana
- 10. Un decimetro cubo di rame, alla pressione atmosferica, viene riscaldato da 20 °C a 100 °C. Che quantità di calore assorbe?

[proprietà del rame: densità = 8900 kg/m³; calore specifico = 385 J/(kg*K)] * (1/1 punto)

- 112 * 10³ J
- 274 * 10³ J 🗸
- 488 * 10² J
- 724 * 10² J
- Non rispondo a questa domanda

Torna alla pagina di ringraziamento

Questo contenuto è creato dal proprietario del modulo. I dati inoltrati verranno inviati al proprietario del modulo. Microsoft non è responsabile per la privacy o le procedure di sicurezza dei propri clienti, incluse quelle del proprietario di questo modulo. Non fornire mai la password.

Con tecnologia Microsoft Forms | Privacy e cookie | Condizioni per l'utilizzo