02 -Review of Statistics and Demography

Ness Sandoval
Sociology
Saint Louis University

Outline

- Measurement
- Descriptive Statistics
- Type I and Type II
- Simple Linear Regression
- Advanced Topics in Regression
- Review of Demography
- Example

Measurement

Measurement

	Nominal	Ordinal	Interval	Ratio
Examples	Categories	Ranks	Test scores and scales	Weight, number of responses
Properties	Identity	Identity Magnitude	Identity Magnitude Equal Interval	Identity Magnitude Equal Interval True Zero
Mathematical Operations	None	Rank order	Add; subtract	Add, subtract; multiply and divide
Type of data	Nominal	Ordered	Score	Score

Descriptive Statistics

Measures of Central Tendency

Numbers that describe what is average or typical of the distribution.

- The Mode is the category or score with the largest frequency in the distribution
- The **Median** is the score that divides the distribution into tow equal parts so that half the cases are above it and half below it.
- The **Mean** is the arithmetic average obtained by adding up all the scores and dividing by the total number of score

Measure of Variability

- The *variance* is a measure of variation for interval-ratio variables; it is the average of the squared deviation from the mean.
- The *standard deviation* is a measure of variation for interval-ratio variables; it is equal to the square root of the variance.

Shape of the Distribution

Symmetrical distribution

• The frequencies at the right and left tails of the distribution are identical; each half of the distribution is the mirror image of the other.

Skewed distribution

• A distribution with a few extreme values on one side of the distribution.

Negatively skewed distribution

• A distribution with a few extremely low values.

Positively skewed distribution

• A distribution with a few extremely high values.

The Normal Curve

Skewness in the Distribution

Skewness in the Distribution

Characteristics of a Normal Curve

Normal Distribution with Equal Means but Different Standard Deviations

Percentages Under the Normal Curve or "The 68-95-99 rule"

Type I and Type II Error

Errors in Hypothesis Testing

- Type 1 Error The probability associated with rejecting a null hypothesis when it is true.
- Type II Error The probability associated with failing to reject null hypothesis when it is false.

	H _o is True	H _o is False
Reject H _o	Type I Error	Correct Decision
Do not reject H _o	Correct Decision	Type II Error

Simple Linear Regression

This looks better!

```
. corr rincom98 sex age white black other (obs=946)
```

	rincom98	sex	age	white	black	other
rincom98	1.0000					
sex	-0.2383	1.0000				
age	0.2117	-0.0420	1.0000			
white	0.1580	-0.0758	0.1337	1.0000		
black	-0.1351	0.0766	-0.0412	-0.7562	1.0000	
other	-0.0675	0.0175	-0.1502	-0.5538	-0.1261	1.0000

The Regression Model

$$y = \beta_0 + \beta_1 x_1 + \varepsilon$$

• ε = the deviation of the value Y from the mean value of the distribution given X.

This error term may be conceived as representing:

- 1. The effects on Y of variables not explicitly included in the equation
- 2. A residual random element in the dependent variable.

 For historical reasons, the most popular philosophy about ε is that it is "random noise." Some researchers also call it "disturbance" or "unobserved."

More specifically, that it is:

- 1. uncorrelated with other variables
- 2. has a mean value of zero.

Advanced Topics In Regression

The Regression Model- Two or More Independent Variables

BLUE

Best Linear Unbiased Estimator - Part 1

R1. Linear In Parameters

R2. Random Sampling

R₃. All variables are measured without error

R.4 Zero Conditional Mean

R5. No Perfect Collinearity

R6. Homoskedasticity

	<u>Impact</u>						
<u>Violation</u>	F	R-square	β	Std Error of Estimate	Std Error of β	Т	Number of Violations
Measurement Error in Dependent variable	\$	\$	\$	\$	⊗↑	⊗↓	2
Measurement Error in Independent variable	⊗	⊗	⊗	⊗	⊗	⊗	6
Irrelevant Variable			6		⊗↑	⊕↓	2
Omitted variable	8	⊗	8	⊗	⊜	8	6
Incorrect functional form	⊗	⊜	8	⊗	8	8	6
Heteroskedasticity	8	6	6	8	8	8	4
Collinearity	S	\$	6	6	⊗↑	⊗↓	2
Simultaneity Bias	8	8	8	☺	8	8	6

Legend for Table

♦ = The statistic is still reliable and unbiased.

 \exists = The statistic is biased, and thus cannot be relied upon.

 Ψ = Downward bias in estimation.

Review of Basic Concepts in Demography

What is Demography?

- Demography is the scientific study of human populations.
 - 1855 (Achille Guillard)
 - Demos people
 - Graphein write about a particular subject

What is Demography?

Mathematical knowledge of populations, their general movement of the **population**, and their physical, civil, intellectual and moral state.

Demographic transition: Stages

Age structure

Age structure can influence population growth rates.

(b) A younger age structure

Female education and TFR

Female literacy and school enrollment are correlated with total fertility rate:

More-educated women have fewer children.

Ecological footprints

Residents of some countries consume more resources—and thus use more land—than residents of others.

Shown are **ecological footprints** of an average citizen from various nations.

Figure 7.23

The "IPAT" model

Shows how Population, Affluence, and Technology interact to create Impact on our environment.

$$I = P \times A \times T$$

Decomposition of the Demographic Transition Model

Example

Percent Black

LISA Map

- Not Significant
- High-High Cluster
- Low-Low Cluster

Poverty Rate

LISA Map

- Not Significant
- High-High Cluster
- Low-Low Cluster

Poverty Rate and Percent Black

BiLISA Map

- High-High Cluster
- Low-Low Cluster

