Linear Programming

Class 4: Introduction to the simplex algorithm Dr Thomas Lidbetter tlidbetter@business.rutgers.edu

Class outline

- Recap
- Basic feasible solutions
- Idea of the simplex method
- Example
- Pivoting
- Finding an intial basic feasible solution

Recap

- We are trying to solve: min $\mathbf{c}^T \mathbf{x}$ s.t. $A\mathbf{x} = \mathbf{b}$, $\mathbf{x} \ge 0$.
- Extreme points of a polyhedron are the intersection of n L.I. defining hyperplanes.
- Linear programs have extreme point solutions.
- If the matrix $m \times n$ matrix A has rank m then we can write A = (B|N) for $m \times m$ invertible matrix B and $m \times (n m)$ matrix N.
- If $A\mathbf{x} = \mathbf{b}$ has a solution, a general solution can be written $\mathbf{x} = (\mathbf{x}_B | \mathbf{x}_N)$, where

$$\mathbf{x}_B = B^{-1}b - B^{-1}N\mathbf{x}_N$$

Basic feasible solutions

- If we set $\mathbf{x}_N = \mathbf{0}$ in $\mathbf{x}_B = B^{-1}b B^{-1}N\mathbf{x}_N$ we obtain a *basic solution*.
- A basic solution with $x \ge 0$ is called a basic feasible solution (bfs).

Proposition: A point **x** is an extreme point if and only if it is a bfs.

Idea of the simplex method

- 1. Identify a bfs
- 2. While there is a neighboring bfs with a smaller objective move to this bfs
- 3. Declare the current solution optimal

[For now we won't worry about identifying a bfs.]

Example 1

$$A = \begin{pmatrix} 1 & -2 & 3 & -4 & 5 & -6 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ -3 & 0 & 0 & 2 & -1 & 1 \end{pmatrix},$$

$$\boldsymbol{b} = \begin{pmatrix} 6 \\ 6 \\ -3 \end{pmatrix}, \qquad \boldsymbol{c} = \begin{pmatrix} 2 \\ 1 \\ -4 \\ -2 \\ 6 \\ 0 \end{pmatrix}$$

How to choose a new bfs

• Substitute $\mathbf{x}_B = B^{-1}b - B^{-1}N\mathbf{x}_N$ into the objective function $\mathbf{z} = \mathbf{c}^T\mathbf{x}$ to get

$$\mathbf{z} = \mathbf{c}_B^T B^{-1} \mathbf{b} + (\mathbf{c}_N^T - \mathbf{c}_B^T B^{-1} N) \mathbf{x}_N$$

- $\mathbf{s}_N^T = \mathbf{c}_N^T \mathbf{c}_B^T B^{-1} N$ is called the *reduced cost vector*.
- If the reduced cost vector has any negative component then the objective can be improved (reduced).

How to choose a new bfs

• Suppose the *j*th component of the reduced cost vector \mathbf{s}_N is negative. We will *bring* x_j *into the basis* by increasing x_j as much as possible (to some value α) and decreasing some other basic x_i .

Claim: the maximum value of α we can choose is $\alpha = \min \left\{ \frac{(x_B)_i}{T_{ij}} : T_{ij} > 0 \right\}$ where $T = B^{-1}N$.

How to choose a new bfs

- If i minimizes $\frac{(x_B)_i}{T_{ij}}$ over all $T_{ij} > 0$, we say we are pivoting on (i, j).
- In this case, *i* leaves the basis and *j* enters the basis.

Finding an initial bfs (clever trick)

- Include one new variable $x_i' \ge 0$ per constraint i of the original LP, adding if $b_i \ge 0$ and subtracting if $b_i < 0$.
- For this new system, $\mathbf{x} = \mathbf{0}, \mathbf{x}' = (|b_1|, ..., |b_m|)^T$ is feasible.
- Add new objective, $\sum_i x_i'$.
- If the optimal solution is $\mathbf{x} = \mathbf{x}_0$, $\mathbf{x}' = \mathbf{0}$ then $\mathbf{x} = \mathbf{x}_0$ is a bfs to the original LP, otherwise the original LP is infeasible.

Example 2

$$A = \begin{pmatrix} 1 & -1 & 0 & 0 & 1 \\ 0 & 1 & 1 & -1 & 1 \\ -1 & 1 & -1 & 1 & -1 \end{pmatrix},$$

$$\boldsymbol{b} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}, \qquad \boldsymbol{c} = \begin{pmatrix} 1 \\ 2 \\ -3 \\ -1 \\ -5 \end{pmatrix}$$