

Réf : ONCO-RTH-RTH/MOP-03947

Date: 21/04/2022

Contrôle Qualité Mensuel du TB2

Version: 02

Entité émettrice : Radiothérapie/RTH	
Rédacteurs : L.Lann, G.Goasduff, et AS.Lucia	
Domaine d'application - Personnel concerné : Service de radiothérapie	
Approbation par : Pr PRADIER – Chef de service radiothérapie	Signé le : 02/03/2022

Ce mode opératoire permet de décrire les modalités du « Contrôle qualité mensuel ».

ACCELERATEUR TRUEBEAM NOVALIS 2

DATE	
Heure début contrôle qualité	
Heure fin contrôle qualité	

Intervenants		
Technicien(s) VARIAN		
Physicien(s) / Technicien		

Remarques :			
	•	-	

Check list:

	CQ syst sécurité (signature, compte rendu)	CQ méca (signature, compte rendu)	CQ dosimétrique (signature, compte rendu)	Remplir tableau synthèse CQ
Réalisé				

Contrôle Qualité Mensuel du TB2

Date: 21/04/2022

Réf: ONCO-RTH-RTH/MOP-03947

Version: 02

I) Environnement et sécurité

S'assurer que:	Réalisé	Commentaire
Les indicateurs relatifs à la présence du faisceau au poste de commande et la signalisation lumineuse de l'état du faisceau située au-dessus de la porte fonctionnent.		
Les installations disposant de systèmes anti-collision fonctionnent		
Les dispositifs de commande de l'appareil de traitement et de la table de traitement fonctionnent		
Les systèmes de surveillance visuelle et auditive du patient fonctionnent		
Il est impossible de réaliser une irradiation lorsqu'une porte de la salle de traitement est ouverte		
Le laserGuard fonctionne (se mettre à la hauteur du LaserGuard et vérifier que le voyant s'allume en rouge)		
L'état sous le plateau de la table est propre		
L'arrêt de l'irradiation est possible au pupitre		
Les butées de fin de course jouent leur rôle (bras, collimateur, table)		
La descente d'urgence de la table fonctionne		
Les arrêts d'urgence fonctionnent		
Les accessoires sont en bon état		
Rédémarrer le CBCT Reconstructor (Mode service > Onglet CBCT reconstructor > redémarrer)		
VVS : Impossible de lancer le faisceau si on bipe la mauvaise étiquette		
Vérification du centrage des barres pour les contentions (Vérifier que les vis des barres de contentions soient vissées + vérifier les joints)		

Veille paramètres

	Valeur de référence	Valeur relevée
Température eau	40°	
Pression eau	38 PSI	
Pression SF6	32 PSI	
Niveau eau		

Ajustement: OUI NON

Paramètres des faisceaux

LT HOUR (Filament Timer): HT TOUR (Beam On Timer):

	Commentaires	Signature
Visa		
Physicien		

Contrôle Qualité Mensuel du TB2

Réf : ONCO-RTH-RTH/MOP-03947

Date : 21/04/2022

Version: 02

II) Contrôles mécaniques

a) Echelle angulaire collimateur et bras

Le but est de vérifier que l'angle affiché (graduations et recopie) correspond à l'angle réel du bras et du collimateur.

<u>Matériel</u>

Niveau électronique

<u>Méthode</u>

A l'aide du niveau électronique, positionner le bras dans les 4 positions successives (0, 90, 180, 270 degrés), noter l'indication de la recopie numérique sur l'écran de contrôle. Procéder de manière identique pour la rotation du collimateur avec le bras à 90°. Vérifier les butées du bras et du collimateur.

Résultats

Position niveau électronique	recopie collimateur	recopie rotation du bras
0°		
90°		
180°		
270°		
Tolérance AFSSAPS	±1°	±1°
butée		
Ref butée	175° / 185°	185,5°/ 174,5°

b) Correspondance axe mécanique (collimateur principal) et axe du faisceau lumineux

Le collimateur tourne autour d'un axe de symétrie qui est matérialisé par le croisillon et la simulation lumineuse. On mesure le diamètre du cercle décrit par l'axe mécanique du collimateur et par l'axe géométrique sur une rotation du collimateur de 360°.

On doit vérifier la superposition de l'axe mécanique du collimateur et l'axe géométrique.

Matériel

Applicateur 15x15 – Plaque plexiglas (utilisé pour les caches électrons) – Scotch

<u>Méthode</u>

- Insérer l'applicateur 15x15 et glisser la plaque de plexiglas dans l'insert. Matérialiser le croisillon sur un bout de scotch. Faire tourner le collimateur.
- Le test à DSP 120 est réalisé avec Aquilab

	DSP = 1	100 cm	Tolérance TG 142
	L1	L2	
Diamètre de l'axe mécanique			<1mm
Diamètre de la projection lumineuse			<1mm
Ecart entre les deux axes			≤1mm

Contrôle Qualité Mensuel du TB2

Réf : ONCO-RTH-RTH/MOP-03947

Date : 21/04/2022

Version: 02

c) <u>Télémètre</u>

Le télémètre indique la distance de la source à la surface.

Matériel

Piges métalliques VARIAN

<u>Méthode</u>

- Collimateur et bras à 0°, se positionner à la position 0 inscrite sur la table. (Lng: 140; Lat: 0)
- Positionner le porte-pige sur la tête de l'accélérateur. Positionner la pige en fonction de la distance de contrôle.
- Monter la table jusqu'à ce que le plateau soit au contact de la pige et jusqu'à la graduation voulue.
- Vérifier que l'indication du télémètre correspond bien à la distance mesurée. Regarder également la valeur de la « verticale » de la table sur l'écran.
- Se positionner au milieu du trait de la tige.

Résultats

Lecture Télémètre	80		100		110	
Distance Réelle						
Ecart (mm)						
Tolérance AFSSAPS	Ecart < 1,5mm ne doit pas dépasser 2 fois celui mesuré au CQ initial			CQ initial		
Verticale de table (cm)	20 0 -10		-10			
Ecart (mm)						
Tolérance TG 142	Ecart < 1 mm					

d) Isocentre

L'isocentre correspond au centre de rotation de la source. L'axe mécanique du collimateur et l'axe géométrique étant confondus, on utilise la simulation lumineuse pour vérifier l'isocentre.

Méthode

- Bras à 0° et collimateur à 0°. Pointe en bout de table
- Positionner la pointe pour que son extrémité se projette au centre du croisillon.
- Tourner le bras de l'appareil à 90° et ajuster la hauteur de la pointe afin que son extrémité se projette au centre du croisillon. Cette position ainsi définie nous détermine un point sur le plan transverse et sur le plan longitudinal.
- Pour les positions du bras à **180°** et **270°**, indiquer sur ces deux plans, les écarts entre la projection de la pointe et la projection du croisillon.

	90°	180°	270°	Tolérance TG 142
écart maximal Droite-Gauche				
écart maximal Tête-Pied				<1mm
écart maximal Haut-Bas	REF			

Contrôle Qualité Mensuel du TB2

Réf : ONCO-RTH-RTH/MOP-03947

Date : 21/04/2022

Version: 02

e) <u>Lasers</u>

Les lasers matérialisent l'isocentre machine. Il faut vérifier que l'intersection des lasers se superpose à l'isocentre.

Matériel

Papier + pointe fine

Méthode

- L'isocentre de la machine vient d'être vérifié avec la pointe fine donc, sans bouger le montage, les lasers latéraux et sagittal peuvent être vérifiés à l'isocentre (Bras à 0°, collimateur à 0°).
- Les lasers latéraux doivent coïncider horizontalement (H) et verticalement (V) dans un plan vertical contenant l'isocentre jusqu'à des plans parallèles situés à 20cm de part et d'autre.
- Le laser sagittal doit coïncider avec la projection de l'axe lumineux jusqu'à +/- 20cm par rapport à l'isocentre dans le plan horizontal contenant l'isocentre
- Bras à 0° et collimateur à 0°, centrer un papier millimétré sur la projection du croisillon à DSP=100cm et vérifier la coïncidence du laser à 20cm vers la tête et vers les pieds, recommencer à DSP=80cm et DSP=120cm.

<u>Résultats</u>

Lasers latéraux

Ecart	Isocentre	+20cm (tête)	-20cm (pied)	+20cm (Gauche)	-20cm (Droite)
Laser Droit	H:	H:	H:	H:	H:
Laser Droit	V :			V:	V:
Lacov Caucha	H:	H:	H:	H:	H:
Laser Gauche	V :			V:	V:
Tolérance TG 142			±1mm	1	

Laser sagittal

Ecart	Isocentre	+20cm (tête)	-20cm (pied)
Plan de l'isocentre : DSP=100cm			
Plan supérieur : DSP=80cm			
Plan inférieur : DSP=120cm			
Tolérance TG 142	±1mm		

f) Affichage champs lumineux

Le champ lumineux matérialise le faisceau d'irradiation qui est défini principalement par la position des mâchoires. La position des mâchoires est définie afin d'avoir la taille de champ indiqué à DSP=100cm.

Matériel

Papier millimétré Plaque de plexi verticale (semestriel)

Méthode

- Collimateur à 0° MENSUEL : Bras à 0° SEMESTRIEL :

- Bras à 90° : Février / Aout
- Bras à 180° : Mars / Septembre
- Bras à 270° : Avril / Octobre

Centrer le papier millimétré ou plaque de plexi sur la projection du croisillon à DSP100 Réaliser les tailles de champ (mâchoires seules) en s'aidant de l'affichage numérique. Mesurer les distances séparant la projection du centre du croisillon des bords du champ lumineux. Relever les distances Xtête, Xpied, Ydroite et Ygauche.

Contrôle Qualité Mensuel du TB2

Date: 21/04/2022

Réf: ONCO-RTH-RTH/MOP-03947

Version : 02

Vérifier qu'en ouverture et fermeture les résultats sont identiques. Faire le 2 tests avec les 2 ampoules du champ lumineux.

Tune le 2 tests avec les 2 ampoules du champ lammeux

PHOTONS

Bras à 0°		DIMENSION DU CHAMP LUMINEUX Mâchoires seules			écart	Tolérances	
Affichage du champ (cm²)		Ypied (cm)	Ytête (cm)	Xdroite (cm)	Xgauche (cm)	max (mm)	TG142
5 x 5	L1						<i>≤ 1mm</i>
	L2						= 1111111
10 x 10	L1						< 1 mm
	L2						<i>≤ 1mm</i>
20 x 20	L1						- 4
	L2						<i>≤ 1mm</i>
Angle du bras :	CONTROLE SEMESTRIEL						
20 × 20	L1						< 1mm
20 x 20	L2						<i>≤ 1mm</i>

g) Symétrie et orthogonalité

Mâchoires

Les mâchoires sont définies comme étant orthogonales et symétriques pour un faisceau symétrique.

Matérie

Papier millimétré ou plaque de plexiglas verticale

<u>Méthode</u>

Centrer le papier ou la plaque de plexiglas sur la projection du croisillon à DSP 100 bras à 0°, 270°, 180°, 90° (collimateur 0°) un champ 40x40

Vérifier la symétrie et l'orthogonalité des mâchoires aux 4 angulations de bras.

0°: Janvier/Juillet 90°: Février / Aout 180°: Mars / Septembre 270°: Avril / Octobre

DSP100	Symétrie Distance Axe-Bord Champ			Orthogonalité Angle mâchoires adjacentes				
40×40cm ²	X1 X2 Y2 Y1 (Droite) (Gauche) (Tête) (Pied)			X1-Y2 D/T	Y2-X2 T/G	X2-Y1 G/P	Y1-X1 P/D	
Bras àº								
Tolérance AFSSAPS	< 1mm				<	1°	•	

Contrôle Qualité Mensuel du TB2

Réf : ONCO-RTH-RTH/MOP-03947

Date : 21/04/2022

Version: 02

h) Table 6D

Objectif: Vérifier si les décalages réalisés avec la table sont corrects, avec et sans tangage et roulis.

Matériel:

Fantôme Marker Block

Méthode:

Etape1:

- Poser le cube sur la table à l'une des 5 positions indiquées sur la Figure 2, et le centrer grâce aux lasers.

NB : Pour les positions latérales, la distance minimale entre le bord de la table et le bord du cube est de 12 cm (en dessous collision entre OBI et table).

- A la position 5, les coordonnées de table sont lg : 140 cm ; vert et lat : 0 cm ; tangage roulis : 0°.
- Aller en mode service, sélectionner l'onglet « XI », « Acquisition », « kV ».
- Sélectionner le protocole « high quality single images » (50kVp, 20mA, 20ms, small focal spot).
- Bras à 0° et 90° (modifier l'angle du bras de l'accélérateur).
- Acquérir la paire d'images. Vérifier le centrage du cube par l'intermédiaire de 2 kV orthogonaux.
- Afficher les images acquises sur l'écran de droite en faisant déplacer l'ascenseur horizontal vers la droite.
- Zoomer l'image, jouer avec le contraste pour voir la bille.
- Faites apparaître le croisillon : Utiliser l'outil « ball detection tool » et cliquer sur la bille.
- L'algorithme détecte la bille et donne les décalages par rapport au croisillon.
- Les décalages indiqués : Sur image ant : (lat ; lg)

Sur image lat : (vert ; lg)

- Pour corriger la position de la table, il faut soustraire les valeurs de décalage obtenues aux valeurs de table. Après correction réaliser une nouvelle acquisition. Tolérance < 0.1 mm dans les 3 directions

Etape2:

- Imposer à la table 3° de roulis et 3° de tangage.
- La table doit alors automatiquement corriger le déplacement de l'isocentre en vertical, latéral et longitudinal (Bien penser à cocher Couch ISO).
- Faire 2 kV orthogonaux et vérifier que la bille est bel et bien positionnée à l'isocentre. Suivre la même procédure que précédemment.

Résultats:

Les résultats sont notés dans le fichier Excel « Table 6D »
Lien: Bazar Physique\CQ Accélérateur\CQ Mensuel\Table 6D

Tolérance: 0.2 mm max dans les trois directions.

i) Contrôle du MLC et contrôles de synchronisation des paramètres variables

Date: 21/04/2022

Réf: ONCO-RTH-RTH/MOP-03947

Version : 02

Contrôle Qualité Mensuel du TB2

Vérification sur le R&V ARIA avant de faire le contrôle :

Chaque mois, il faut changer le numéro des lames à contrôler pour les 6 images suivantes :

OrthoMLCB0C0 OrthoMLCB90C0 OrthoMLCB270C0 OrthoMLCB0C90 OrthoMLCB90C90 OrthoMLCB270C90

Mois	Numéro	s des lames	Position	ames (cm)
	Lame 1	Lame 2	Banc X1	Banc X2
Janvier	47	14	-1	1
Février	49	12	-1	1
Mars	51	10	-1	1
Avril	53	8	-1	1
Mai	50	11	-1	1
Juin	52	9	-1	1
Juillet	46	15	-1	1
Août	43	18	-1	1
Septembre	40	21	-1	1
Octobre	37	24	-1	1
Novembre	34	27	-4	4
Décembre	32	29	-4	4

<u>Matériel</u>

- Plaque de billes
- Fantôme Aquilab
- -Logiciel « Artiscan »

<u>Méthode</u>

La procédure est décrite dans le **MOP 03756**.

Résultats

Exploiter par Aquilab, ARTIscan

j) Test du « Snooker Cue »

Objectif

S'assurer de la bonne synchronisation des 3 paramètres d'irradiation (bras, MLC, débit) par secteur d'angle de 90° dans le sens horaire et antihoraire.

Matériel

- SRS QA Target Pointer

<u>Méthode</u>

- Il faut fixer le fantôme SRS QA Target Pointer sur la table de stéréotaxie intracrânienne.
- La bille radio-opaque est positionnée à l'isocentre de la machine.
- Mettre le rendez-vous « ZZZ_Snooker Cue », ID : 24072015 sur ARIA pour réaliser l'acquisition des images.
- Réalisation de 4 arcs d'angle de 90°: 2 arcs en sens horaire et 2 autres en sens antihoraire avec le bras de l'imageur déplié (position 0 de l'imageur)
- Décaler la bille de 5 cm vers la droite patient et abaissée de 10 cm en vertical.
- Réalisation des 4 arcs avec acquisition d'images MV

Résultats

	Arc 1	Arc 2	Arc 3	Arc 4
Décalage obtenu (Position bille à l'isocentre)				
Décalage obtenu (Position bille excentrée)				

Tolérance:

L'écart maximal entre le centre de la fente délimitée par les deux bancs de lame et le centre de la bille est de 2mm.

	Commentaires	Signature
Visa		
Physicien		

Contrôle Qualité Mensuel du TB2

Date : 21/04/2022

Réf: ONCO-RTH-RTH/MOP-03947

Version: 02

III) Contrôles dosimétriques

a) Coïncidence champ lumineux/champ irradié

Matériel

1 film gafchromique - Plaques RW3

Méthode

Positionner le film à DSP=100cm, 250UM

Sur le même film pointer avec un marqueur les bords du champ en repérant la tête et droite patient pour les tailles de champs suivantes

Résultats

Energie		Ecart mes	Tolérance AFSSAPS			
		Gauche	Droite	Tête	Pied	7 11 237 11 3
Photons 6MV	10×10cm ²					
Photons 6 FFF	10×10cm ²					<i>≤2mm</i>
Photons 18 MV	10×10cm ²					

b) Stabilité de l'énergie

Matériel

Matrice PTW 2D-Array

Plaques RW3 _ Fantôme BQ Check Application: PTW – Multicheck

Photons

Méthode

Bras et collimateur à 0°

4cm de PMMA en dessous de la 2DArray DSP = 100 cm

Champ d'irradiation: 20 x 20 cm²

Centrer la 2D Array

Poser le fantôme BQ Check sur la matrice en respectant le sens Target/Gun inscrit sur le fantôme.

Mesure sur 100 UM.

Pour détecter BQ Check: Tools > Measurement Option > BQ CHECK > Always used.

<u>Résultats</u>

Dose	Х6	X6FFF	X18
Iréf=J20/J10 (2D Array)	0.667	0.623	0.781
Imesuré=J20/J10			
Ecart (%) [(Imesuré-Iréf)/Iref]×100			
Tolérance AFSSAPS	±1%	±1%	±1%

PENSER A RETIRER L'OPTION DU BQ CHECK

Contrôle Qualité Mensuel du TB2

Réf: ONCO-RTH-RTH/MOP-03947

Date: 21/04/2022

Version: 02

c) Homogénéité et Symétrie

Matériel

Matrice PTW 2D-array Plaques RW3 (PTW) Application: Multicheck

Calcul des paramètres d'homogénéité et de symétrie à partir du logiciel MultiCheck :

- Ouvrir l'application Multicheck,
- Vérifier dans « Tools », « Analyse Options » que le protocole : AFSSAPS N°93, est bien sélectionné,
- Dans la fenêtre QA-Mode, renseigner les paramètres : Linac Name, Field Size, Modality, Energy
- Pour réaliser l'acquisition, cliquer sur l'icône « Start »,
- une fenêtre « Set Parameters » s'ouvre, cliquer sur OK,
- Une fenêtre « MatrixScan » s'ouvre et l'acquisition démarre,
- Si le zéro du système n'a pas été réalisé depuis 8 heures, une fenêtre s'ouvre pour le réaliser.
- Pour arrêter l'acquisition cliquer sur l'icône « Stop »,
- Dans la fenêtre « MatrixScan », cliquer sur « Accept », la fenêtre « MultiCheck » apparait avec les caractéristiques du faisceau calculées.

Remarque : Pour faire apparaître les mesures de référence, faire défiler la liste des mesures jusqu'au nom d'acquisition avec l'extension [REF] puis revenir à l'acquisition actuelle.

Méthode

Bras et collimateur à 0°

4cm de PMMA en dessous de la 2DArray

Champ d'irradiation=20 x 20 cm²

X6: DSP = 95cm, profondeur = 5cm (4.5cm de plaques) **X6FFF**: DSP = 95cm, profondeur = 5cm (4.5cm de plaques)

X18: DSP = 90cm, profondeur = 10cm (9.5cm de plagues)

1Gy à la chambre centrale

Résultats:

	X 6	X6 FFF	X 18	
AFSSAPS	Réf (20/10/15)	Réf (20/10/15)	Réf (20/10/15)	
D max (T/P)	101.88	100.04	101.79	
Homogénéité (T/P)	1.24	11.09	1.22	
Symétrie (T/P)	100.9	101.1	100.68	
D max (D/G)	101.39	100.02	101.47	
Homogénéité (D/G)	0.90	11.26	1.21	
Symétrie (D/G)	100.39	100.86	100.48	
D max (T-L/G-R)	101.57	100.02	101.76	
Homogénéité (T-L/G-R)	0.88	13.54	1.09	
Symétrie (T-L/G-R)	100.75	100.85	100.42	
D max (T-R/G-L)	101.98	100.01	101.76	
Homogénéité (T-R/G-L)	1.04	13.49	1.05	
Symétrie (T-R/G-L)	100.68	100.51	100.71	

Tolérance : Homogénéité ±1%

Symétrie : 0.97<Rapport Dose Couple<1.03

Dmax/Daxe<1.07

Contrôle Qualité Mensuel du TB2

Réf : ONCO-RTH-RTH/MOP-03947

Date : 21/04/2022

Version: 02

d) Cohérence chaîne primaire et secondaire

<u>Méthode</u>

Relever le nombre d'UM de la chaîne primaire et secondaire pour une irradiation de 10, 50, 100 et 400 UM.

Débit 600 UM/min

6 MV : Janvier, Avril, Juillet, Octobre **18 MV** : Février, Mai, Aout, Novembre, **6FFF** : Mars, Juin, Septembre, Décembre

Résultats:

Energie	Lecture Chaine I	Lecture Chaine II	Ecart (en nombre d'UM)
10 UM			
50 UM			
100 UM			
400 UM			
600 UM			
X6 : 1000 UM			
X6 : 2000 UM			
X6 : 3000 UM			

En X6, on teste jusqu'à 3000 UM pour les stéréos. Tolérance : 10%(AFSSAPS) VARIAN : 4%

Réf : ONCO-RTH-RTH/MOP-03947

Date : 21/04/2022

Version : 02

Contrôle Qualité Mensuel du TB2

e) Stabilité de réponse de la chambre moniteur

La procédure est décrite dans le MOP 3194 pour l'accélérateur TB2.

Matériel

- Chambre d'ionisation cylindrique de 0,3cc.

Relever Température : T =°C

Pression: P =.....hPa

k(T, P) =.....

Energie	Epaisseur de plaques à ajouter (cm)	DSP (cm)	Lecture corrigée (nC)	Réf 05/10/2021	Ecart (%)
X6	4,5	95		10.14	
X18	4,5	95		11.32	
X6 FFF	4.5	95		10.09	
Energie	Epaisseur de plaques à ajouter (cm)	DSP (cm)	Transmission	Transmission de Réf 05/10/2021	Ecart (%)
X6 15° OUT	4,5	95		0.926	
X6 30° OUT	4,5	95		0.847	
X6 45° OUT	4,5	95		0.762	
X18 15° IN	4,5	95		0.945	
X18 30° IN	4.5	95		0.889	
X18 45° IN	4.5	95		0.821	
Energie	Epaisseur de plaques à ajouter (cm)	DSP (cm)	Facteur	Facteur de réf 05/10/2021	Ecart (%)
* X6 Dyn_ Gap 6mm	4.5	95		0.0635	
* X6 Dyn Gap 10mm	4.5	95		0.09597	
* X6FFF DynGap 6mm	4.5	95		0.0599	
* X6FFF DynGap 10mm	4.5	95		0.0919	

Tolérance : ±2%

Contrôle Qualité Mensuel du TB2

Date : 21/04/2022

Réf: ONCO-RTH-RTH/MOP-03947

Dutc : 21/04/20

Version: 02

f) Stabilité du Leaf Offset

Vérification de la stabilité du Leaf Offset avec différentes tailles de fentes glissantes.

Matériel:

Montage TOP CI TOP Truebeam

Méthode:

En mode service, ouvrir un RT Plan. I://RTPlans/CQ Mensuel Leaf Offset/X6_DLG_HD120.dcm

- Transmission A
- Transmission B
- Gap 2mm
- Gap 4mm
- Gap 6mm
- Gap 10mm
- Gap 14 mm
- Gap 16 mm
- Gap 20mm

<u>X6</u>

DLG =

Réf = 0.327

Tolérance : 0,1 mm

Résultats:

Noter les résultats dans le fichier excel : CQMensuel/Stabilité Leaf Offset/

g) Stabilité de réponse des diodes (MIV)

Matériel

Semi-conducteurs: EDP-10 (6MV) et EDP-20 (18MV)

Chambre d'ionisation 0.3cc N°1544

Plaques de plexiglas RW3

Plaque avec insert pour la chambre d'ionisation

<u>Méthode</u>

DSP: 100 cm

Placer la chambre à la profondeur du maximum de dose :

- 1.6 cm pour 6MV (chambre insert + 1.1 cm de plaques)
- 3.5 cm pour le 18MV (chambre insert + 3 cm de plaques)

Ouvrir le fichier : bazar physique\protocoles\CQ accélérateur\CQ Mensuel\ MIVétalonnage

Se mettre sur la feuille X6 ou X18 selon l'énergie testée.

Relever T°C, Pression. Noter ces valeurs.

Température : T =°C Pression : P =hPa k(T, P) =

Relever la lecture de la chambre sur 100 UM. Champ 10 cm x 10 cm.

Remplir le tableau (Lecture 1 L1)

Refaire la mesure (et remplir les valeurs L2 et L3).

La mesure de la dose attendue (par la diode) s'affiche alors

Contrôle Qualité Mensuel du TB2

Réf : ONCO-RTH-RTH/MOP-03947				
Date: 21/04/2022				

Version: 02

<u>Logiciel INVIDOS</u> (physique/physique)

L'utilisation du logiciel est décrite dans le MOP 03773.

- Créer un patient « Vérification date du jour » et ouvrir le patient
- Cliquer sur « Start » (triangle vert)
- Une fenêtre avec un compteur s'ouvre. Lancer le faisceau de 100 UM.
- Vérifier l'écart par rapport à la mesure dans l'historique

- 4	-
- 11	_
- 4	1001

Energie	DSP (cm)	Lecture corrigée CI (Gy)	Lecture Diode (Gy)		Ecart (%)
X6	100		Diode 1		
X18	100		Diode 2		
VIO	100		Diode 3		

Si écart > 0.7% : Calibration.

Tolérance : ±2%

NB: Si calibration des diodes, recréer un patient « vérification 6MV ou 18MV » afin de prendre en compte la nouvelle calibration pour les prochaines vérifications, puis effacer l'ancien.

Vice	Commentaires	Signature
Visa Physicien		

Contrôle Qualité Mensuel du TB2

Réf : ONCO-RTH-RTH/MOP-03947

Date : 21/04/2022

Version: 02

IV) Système d'imagerie

Géométrie

a) <u>Concordance des coordonnées (Imageurs versus accélérateur) pour un angle de bras</u> Ce test est aussi appelé « Isocal » La procédure est décrite dans le **MOP 03755.**

Rappel: Tous les mois, une calibration est nécessaire. Faire ensuite une vérification.

Les résultats de la calibration sont notés dans le tableau ci-dessous :

	Ecart max par rapport au faisceau central (cm)	Décalage max par rapport au détecteur MV (cm)	Décalage max par rapport au détecteur kV (cm)	Rotation max par rapport au détecteur MV (°)	Rotation max par rapport au détecteur kV (°)
Opérateur :					
Tolérance	0,3	0,3	0,3	2	2

Les résultats de la vérification sont notés dans le fichier Excel « CQ Hebdo TB1-2-3 » Lien : F:/ bazar physique/protocoles/CQ Accélérateur/CQ hebdo/CQ hebdo TB1-2-3

b) Evaluation de la fonction logicielle « recalage automatique » - Mode 3D

Le test est réalisé pour deux protocoles d'acquisition utilisés de manière courante en clinique.

Objectif: Vérifier la précision du recalage automatique (application OBI et déplacement automatique de table)

Matériel: Fantôme Marker Block

Méthode : - Poser le fantôme sur le plateau de table et l'aligner à l'isocentre

- Relever les positions de table de traitement
- Introduire un décalage volontaire dans les 3 directions
- Relever les nouvelles positions de table de traitement
- Réaliser l'acquisition des images pour les 2 protocoles d'acquisition clinique choisis: Extrémités +Thorax
- Lancer l'acquisition CBCT
- Réaliser le recalage automatique
- Vérifier la qualité du recalage automatique en procédant à l'analyse des images sur la console OBI
- Vérifier les décalages obtenus pour chacune des directions
- Actionner le déplacement automatique de la table
- Relever les nouvelles positions de table

Tolérance : Après recalage automatique, les décalages mesurés sur l'image doivent être < 1mm.

	Protocoles Acquisition	Vertical	Horizontal	Latéral
Décalages obtenus	Extrémités			
(mm)	Thorax			
Tolérance (mm)		<1mm		

Contrôle Qualité Mensuel du TB2

Date: 21/04/2022

Réf: ONCO-RTH-RTH/MOP-03947

Version : 02

Date . 21/04/20

c) Affichage distance source-détecteur imageur portal

Objectif: Vérifier le positionnement de l'imageur portal

Méthode:

Sortir l'imageur portal jusqu'à **DSP = 100 cm**. Sur l'écran, vérifiez que **MV Vrt = -6.3 cm, MV lng = 0cm et MV** lat = **0cm**

Résultats :

Valeur de MV Vrt affichée :cm

Tolérances : < 2mm

d) Justesse de l'agrandissement de l'image (OBI)

Une modification de distance source axe ou de distance source imageur entraine un changement d'agrandissement de l'image.

Matériel : Mètre.

Méthode:

Se connecter en mode service. Sur la télécommande, sélectionner « kV ». Mettre les imageurs kV en position planifiée.

Source kV

- <u>Vertical</u>: Mesurer la distance entre l'isocentre de la machine et le kVS : 85,2cm. Il n'est pas possible de mesurer la distance entre la source et l'isocentre. Mesurer la distance entre le capot du kVs et l'isocentre machine
- <u>Longitudinal et latéral</u> : Mesurer le décalage entre la projection des lasers et la croix-repère sur le tube. (rétracter le détecteru kV)

Détecteur kV

- <u>Vertical</u>: Mesurer la distance entre l'isocentre de la machine et le kVD.
- <u>Longitudinal et latéral</u>: Mesurer le décalage entre la projection des lasers et les repères préalablement dessinés. Décaler en mode service le kVs position retractée.

Tests	Résultats	Analyse				
	Source kV					
Vertical La distance mesurée doit être de 78 cm +/-0,1 cm.						
Long & Lat	& Lat L'écart entre les repères et les lasers doit être inférieur ou égal à 1 mr					
		Détecteur KV				
Vertical		La distance mesurée doit être de 75.7 cm +/-0,1 cm.				
Long & Lat		L'écart entre les repères et les lasers doit être inférieur ou égal à 1 mm.				

Réf : ONCO-RTH-RTH/MOP-03947

Date: 21/04/2022

Version: 02

Contrôle Qualité Mensuel du TB2

e) Correspondance entre le champ programmé et le champ irradié

Objectif: Vérifier l'ouverture des diaphragmes

Matériel: Plaque VARIAN, graduée, radio-opaque

Méthode:

- Positionner la plaque sur la table à l'isocentre. DSP 100 cm
- Ouvrir le dossier patient « zzz_qualité image »
- Sur l'écran d'imagerie, diaphragmer le faisceau à un champ de 20x20cm²
- Acquérir une image kV ANT (protocole extrémité)
- Sur l'écran d'imagerie, déterminer la taille de champ irradié à l'aide des graduations sur l'image.

<u>Tolérance</u> : Dans les 2 directions, les écarts entre le champ irradié et le champ programmé doivent être inférieurs à 2,5mm.

Bras kV à 0°	Dimension du champ programmé (cm)			écart max	Recommandation	
Affichage du champ (cm²)	Ypied	Ytête	Xdroite	Xgauche	(mm)	SFPM n°29
20 x 20						≤ 2.5mm

f) Calibration des mâchoires du kVs (Recommandations Varian)

En mode Service, Onglet PVA Calibration – Géométrie – Kv Collimateur Bouger les axes dans les positions demandées.
Lancer une image kV en appuyant sur kV Beam On.
Les acquisitions sont automatiques.
Accepter la correction.
Save configuration.

Test réalisé : OUI NON

g) Calibration des Dark field & Flood Field

(Procédure: F:\bazar physique\TrueBeam\Procédures\Dark Field Flood Field)

Calibration MV : **OUI**Calibration kV : **OUI**NON
Calibration CBCT : **OUI**NON

Qualité mode image 2D

h) Homogénéité, rapport signal sur bruit

Objectif: Vérifier l'homogénéité en l'absence d'objet diffusant

Matériel: Aucun objet entre la source et le détecteur

Méthode: Ouvrir le patient « ZZZ_CQ_qlte_image, TB2, 040420172 »

Programmer une image kV Ant. L'ouverture des mâchoires kV doit couvrir l'ensemble du kVD.

Utiliser le protocole tête Ant Post (85 kV, 5 mAs).

MODE OPERATOIRE Réf : ONCO-RTH-RTH/MOP-03947

Contrôle Qualité Mensuel du TB2

Date: 21/04/2022

Version: 02

Analyse:

Sur l'image : Adapter le contraste pour voir les bords de l'image.

Cliquer sur l'icône « « Info Pixel » Puis sur « Histogramme ». Une fenêtre histogramme s'ouvre. Clic droit : Afficher les Statistiques

Dessiner une ROI sur l'ensemble de l'image en laissant une marge externe de 1 cm.

Vérifier les dimensions du cadre. Il est possible de les adapter en déplaçant les limites du cadre avec la souris.

X	~ 920 ± 20 pixels	~ 23.7 ± 0.5 cm
Υ	\sim 677 ± 20 pixels	$\sim 17.5 \pm 0.5$ cm

	Valeurs mesurées	Références
Min		129987 (±1766)
Max		159904 (±1619)
Moyenne		150251 (±752)
Ecart type (ET)		3283 (±256)
Ecart type relatif (ETR)		2.19 (±0.18)

<u>Tolérances</u> : L'analyse visuelle et quantitative doit vérifier la stabilité des performances par rapport au contrôle initial.

i) Résolution à bas et haut contraste, Géométrie, distorsion, contraste

Matériel : Fantôme *TOR 18 FG* (figure 3), Plaque de cuivre

Méthode:

- Centrer le fantôme avec une rotation de 45° (repère sur le fantôme). Placer la plaque de cuivre de 1 mm sur le TOR18FG.
- DSP 100 sur la plaque de cuivre.
- Ouvrir le RDV patient « ZZZ_CQ_qlte_image, TB2, 040420172 » en mode AQ.
- Faire une image ant kV (Bras à 90°) Paramètres d'acquisition 75 kV 2 mAs
- L'ouverture des mâchoires est de 20 cm x 20 cm.
- Analyse des résultats sur Artiscan

Résultats: joindre le CR Artiscan au CQ

Tests	Résultats recommandés
	Erreur de +/- 0.5% sur le contraste des motifs 1 et 2
Luminosité / contraste	Erreur de +/- 50 sur le NGC* des motifs 1 et 2
Luminosite / Contraste	Erreur de +/- 50 sur le NGA* des motifs 1 et 2
	*NGC : niveau moyen du centre – NGA : niveau moyen de l'anneau
Distorsion	+/- 2 mm sur la valeur théorique du diamètre (150mm)
Résolution à bas contraste	Détection d'au moins 12 disques sur 18
Résolution spatiale	Le 11ème groupe de barres (1,6 pl/mm) de la mire doit être visible
Géométrie	Le cercle entourant les objets tests doit apparaître parfaitement circulaire

Date: 21/04/2022

Réf: ONCO-RTH-RTH/MOP-03947

Version: 02

Contrôle Qualité Mensuel du TB2

Qualité mode image 3D

<u>Matériel</u>: Fantôme Catphan 504. Niveau à bulle ou niveau électronique.

Méthode:

Centrer le fantôme en porte à faux au bout de la table à l'aide de la caisse en bois et du niveau électronique.

Ouvrir le patient test « ZZZ_CQ_qlte_image, TB2, 040420172 ». Ouvrir le plan "qualité d'image 3D".

Utiliser le protocole pelvis : 125kV - 1080 mAs

Analyse des résultats sur Artiscan

Analyse:

Tests	Analyse	Moyenne CBCT Pelvis	Résultats recommandés
Signal/Bruit	Mesure la variation moyenne des nb CT par rapport à la valeur moyenne	Moyenne Signal= 188,37 Moyenne Bruit= 0,63	+/-10% de la valeur de référence déterminée à l'installation 0,6%
Uniformité (UH)	Mesure la constance des nb CT de l'image d'un insert homogène	4,5	La valeur d'uniformité doit être égale à +/-40 UH
Position/Coupe (mm)	Mesure la capacité du système à réaliser une acquisition à une position précise	Valeur moyenne =0,62 +/- 0,30 Valeur théorique= 0	Erreur de positionnement fixée à +/- 2mm
Incrément de coupe (mm)	Vérifie la précision de déplacement et de positionnement de la table d'examen	Valeur moyenne = 2,02 +/- 0,18 Valeur théorique= 1,99	Erreur de +/- 1mm sur la valeur théorique (2mm)
Epaisseur de coupe (mm)	Mesure l'épaisseur de coupe reconstruite	Valeur moyenne =2,68 +/- 0,12 Valeur théorique= 1,988	Ne doit pas s'écarter de plus de 1mm de la valeur de référence (2,1mm)
Déformation et Linéarité (mm)	Mesure le degré de distorsion géométrique de l'image	Valeur moyenne =50,06+/-0,25 Valeur théorique= 50	L'écart entre la distance mesurée et valeur de référence doit être inférieure à 1mm
Résolution en Z (mm)	Apprécie la déformation suivant l'axe de déplacement de la table, lors de la reconstruction de la bille dans le fantôme	Valeur cal= 2,50 Taille bille= 0,28	+/-3,5mm par rapport à la taille de la bille (0,28mm)
Résolution spatiale (Pl/cm)	Estime la capacité d'un imageur à détecter un objet et la dimension min susceptible d'être détectée	X= 7,24 Y= 6,96	Des erreurs de +/- 4Pl/cm sont tolérées sur les valeurs de résolution en X et en Y
Atténuation et contraste (UH)	Détermine le niveau hounsfield moyen de chaque matériau et à tracer cette valeur en fonction du coef linéique d'atténuation pour une énergie donnée	Air= -960,21 Acrylic =118,45 LDPE =-99,99	Erreurs de +/-20 UH sur les valeurs de référence installation en UH: Air : -974 LPDE : -100 Acrylic : 115
Résolution à bas contraste	Estime les capacités d'un imageur à détecter des objets de petite taille dans des conditions particulières de faible contraste	Tous les derniers trous visibles ont des diamètres < 15 mm pour un slice de 1%	Pour un contraste de 1%, le dernier trou visible doit avoir un diamètre < à 15mm
Résolution haut contraste	Quantifie la dimension min d'un objet susceptible d'être détecté par l'imageur	5,41 Pl/cm	Et ≥ à 4Pl/cm pour une acquisition dont le FOV est > à 25cm

Visa Physicien	Commentaires	Signature