2016 级计算机学院《数值分析》期末试卷 A 卷

马	压级	学号	姓名	成绩
注意	意: ① 答题方式为闭卷 ③ 将所有答案答在	É。 ② 可以使用i 答题纸上,不要在记		
 ,	、填空题(每空2分	,共40分)		
1.	四舍五入得到近似	数 <i>a</i> =0.025,则 <i>a</i> 有	【】位有效数	数字,相对误差为【】。
2.	设有一个长方形水	池,由测量知长为	y(50±0.1)m,宽	为(25±0.1)m,深为(20±
	0.1)m,则该水池容	积的绝对误差是	【】,相对误	:差是【】。
3.	为提高数值计算精	度,当近似值x »	1时,应将 $\sqrt{x+1}$	【-√x 改写为【】
4.	将方程 $f(x)=0$ 等价	变化成 $x=\varphi(x)$ 后	,迭代二次得到	三个相邻迭代值: x_0 , y_1 =
	$\varphi(x_0)$, $z_1 = \varphi(y_1)$, \mathbb{Q}	埃特肯加速法计算	拿的下一次迭代值	$\mathbf{x}_1 = \mathbf{x}_1 = \mathbf{x}_1$
5.	迭代法解方程的过	程中,结果的舍入	、误差通常由【_	】(填:第一/最后一)
	次迭代计算决定。			
6.	用单点弦截法求 x3	+2x-8=0 在[1,2][区间上的根,应耳	又不动点 $x_0=$ 【 $_$ 】
7.	强对角占优矩阵是	指其对角线上元素	的绝对值【	_】同行上其余元素绝对值
	之和的矩阵。			
8.	用对分法求解方程	f(x)=0 在[0,1]区间	上的根,要求误:	差不超过 0.5×10 ⁻³ , 需对
	分【】次。			
9.	设 $f(x)=3x^4+8x^3-98$	x+1,则差商 $f[2,4]$	4,8,16,32]= []
10.	计算积分 $I = \int_0^1 e^x dx$,要求截断误差不	超过 0.5×10 ⁻⁵ ,若是	用复化梯形公式,区间[0,1]
	应分【】等分,	若用复化辛卜生公	式,区间[0,1]应分	【】等分。(注:梯形
	公式 $R = -\frac{h^3}{12} f''(\zeta)$,	辛卜生公式 $R = -\frac{L}{9}$	$\frac{1}{10} f^{(4)}(\zeta)$,e取2.71	83)
11.	求积公式 $\int_0^1 f(x) dx =$	$=\frac{1}{4}f(0)+\frac{3}{4}f(\frac{2}{3})$ 的	代数精确度为【_	】次。
12.	$A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \\ 1 & -1 & -$	1 1 1 1 1] , A ₁ = []。

- 13. 辛卜生求积公式的代数精度为【_____】。
- 14. 向量 X=(-2,4,-4),则 X 的∞-范数||X||∞=【_____】,X 的 2-范数||X||2=【_____】。
- 15. 已知 f [7,5,3,1]=2,则 f (x)在 x=1 点的步长为 2 的 3 阶差分值是 【 】。

注: 以下计算题每题 10 分

- 二、采用**牛顿下山法**求方程 $x^3 2x 8 = 0$ 的根,初始值 $x_0 = 1$,计算结果准确到 3 位有效数字。
- 三、设有方程组AX = B,其中

$$A = \begin{bmatrix} 2 & 3 & 1 \\ 2 & 5 & 4 \\ 1 & 3 & 20 \end{bmatrix}, B = \begin{bmatrix} 36 \\ 54 \\ 66 \end{bmatrix}$$

用克劳特消元法求方程组的解。

四、用带松弛因子 w=1.03 的逐次松弛法解下面的线性方程组,要求初值取 $x_1^{(0)}=x_2^{(0)}=x_3^{(0)}=0$,计算过程中保留到小数点后 4 位。

$$\begin{pmatrix} 4 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ -3 \end{pmatrix}$$

五、已知 $\sin(0.32)=0.3145665606161177.....$, $\sin(0.34)=0.3334860921408143.....$,若取用 0.32 与 0.34 的值建立拉格朗日插值公式计算 $\sin(0.33)$ 的近似值,问:

- (1) sin(0.32)和 sin(0.34)的值应取多少位有效数字计算合适?
- (2) 根据上面的结果,应用拉格朗日插值公式计算出 sin(0.33)。

六、按照下表的数据构造f(x)埃尔米特插值多项式p(x),并给出p(x)相对f(x)的余项。

x	1	2	3
f(x)	0	1	0
f'(x)	0		
f "(x)	8		

七、应用龙贝格求积方法计算积分 $\int_0^1 \sqrt{1+2x} dx$, 计算过程中保留到小数点 4 位。