Finite elastic-plastic deformations (BMEGEMMDKPL) II. Homework

Szász Zsolt KRCH5Q

May 3, 2025

1 Data

Loading

We have an $L \text{ mm} \times L \text{ mm} \times L \text{ mm}$ brick element (L = 1 mm), shown in Figure 1.

Figure 1: Nodal layout of the brick element.

We have a prescribed displacements on the upper nodes, which is defined in the following way

$$[U_1] = [U_2] = [U_3] = [U_4] = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T,$$
 (1)

$$[U_5] = [U_6] = [U_7] = [U_8] = \begin{bmatrix} u_x & u_y & 0 \end{bmatrix}^T.$$
 (2)

The time evolution of u_x and u_y can be observed on Figure 2

Figure 2: The parameters of the loading

From the displacement vectors we can determine the deformations gradient regarding to that motion.

$$[F] = \begin{bmatrix} 1 & \frac{u_x}{L} & 0\\ 0 & 1 + \frac{u_y}{L} & 0\\ 0 & 0 & 1 \end{bmatrix}. \tag{3}$$

The velocity gradient can be calculated with the help of the

Material behaviour

References

You can find the detailed code on $\underline{\text{GitHub}}.$