



# **Banco de Dados**





Modelo Lógico

## **Definições - Modelo Lógico**



Compreende uma descrição das estruturas que serão armazenadas no banco e que resulta numa representação gráfica dos dados de uma maneira lógica, inclusive nomeando os componentes e ações que exercem uns sobre os outros.

A técnica de modelagem mais difundida é a abordagem entidade-relacionamento (ER).

Nesta técnica, um modelo conceitual é usualmente representado através de um diagrama, chamado diagrama entidade-relacionamento (DER).

Por enquanto iremos estudar apenas o modelo relacional, no qual os dados estão organizados em forma de tabelas.

## Modelo Lógico Normalização



Normalização é o processo de modelar o banco de dados projetando a forma como as informações serão armazenadas a fim de eliminar, ou pelo menos minimizar, a redundância no banco. Tal procedimento é feito a partir da identificação de uma anomalia em uma relação, decompondo-as em relações melhor estruturadas.

Normalmente precisamos remover uma ou mais colunas da tabela, dependendo da anomalia identificada e criar uma segunda tabela, obviamente com suas próprias chaves primárias e relacionarmos a primeira com a segunda para assim tentarmos evitar a redundância de informações.

Um banco de dados dentro dos padrões de normalização reduz o trabalho de manutenção e ajuda a evitar o desperdício do espaço de armazenamento. Se tivermos cadastrado no banco um cliente e tivermos o seu telefone registrado em mais de uma tabela, havendo uma alteração no seu número de telefone, teremos que fazer essa atualização em cada tabela. A tarefa se torna muito mais eficiente se tivermos seu telefone registrado em apenas uma tabela.

Os próximos parágrafos demonstram melhor as anomalias no banco de dados e as diferentes regras de normalização, bem como a forma de aplicá-las para estruturarmos o banco de dados da melhor maneira possível.

#### Modelo Lógico Formas Normais



Como mencionado anteriormente, temos conjuntos de regras para determinar com qual forma normal o banco é compatível. Primeiramente, precisamos verificar se encontramos compatibilidade com a primeira forma normal. Caso esteja tudo conforme, analisamos se a segunda forma normal se encaixa e assim sucessivamente.

É importante lembrar que para uma relação atender as exigências de uma forma normal, se faz necessário que esta obedeça as regras da forma normal anterior. A primeira forma normal é exceção pois não existe uma forma normal anterior a primeira.

#### Modelo Lógico Primeira Forma Normal



Uma relação está na primeira forma normal quando todos os atributos contém apenas um valor correspondente, singular e não existem grupos de atributos repetidos — ou seja, não admite repetições ou campos que tenham mais que um valor.

O procedimento inicial é identificar a chave primária da tabela. Após, devemos reconhecer o grupo repetitivo e removê-lo da entidade. Em seguida, criamos uma nova tabela com a chave primária da tabela anterior e o grupo repetitivo.

| Código | Nome          | Endereço                 | Telefone                 |
|--------|---------------|--------------------------|--------------------------|
| 1001   | Diego Machado |                          | 5312345678<br>5398765432 |
| 1002   | Fulano de Tal | Avenida Tal 71<br>Centro | 5187654321<br>5143215678 |

Analisando o exemplo acima, podemos observar dois problemas: temos uma pessoa com dois números de telefone e um endereço com diferentes valores, a rua e o bairro. A fim de normalizar, teremos que colocar cada informação em uma coluna diferente e criar uma nova tabela relacionando a pessoa a seus números de contato.

### Modelo Lógico Primeira Forma Normal



| Código | Nome          | Endereço       | Bairro |
|--------|---------------|----------------|--------|
| 1001   | Diego Machado | Rua Tal 321    | Porto  |
| 1002   | Fulano de Tal | Avenida Tal 71 | Centro |

Dessa forma, como mostrado na tabela acima, temos uma tabela na primeira forma normal evitando assim repetições e campos com múltiplos valores, conforme observamos na tabela abaixo.

| Código | Telefone   |  |
|--------|------------|--|
| 1001   | 5312345678 |  |
| 1001   | 5398765432 |  |
| 1002   | 5112345678 |  |
| 1002   | 5187654321 |  |

## Modelo Lógico Segunda Forma Normal

RD

É dito que uma tabela está na segunda forma normal se ela atende a todos os requisitos da primeira forma normal e se os registros na tabela, que não são chaves, dependam da chave primária em sua totalidade e não apenas parte dela. A segunda forma normal trabalha com essas irregularidades e previne que haja redundância no banco de dados.

Para isso, devemos localizar os valores que dependem parcialmente da chave primária e criar tabelas separadas para conjuntos de valores que se aplicam a vários registros e relacionar estas tabelas com uma chave estrangeira.

| cd_locacao | cd_filme | titulo_filme | devolucao  | cd_cliente |
|------------|----------|--------------|------------|------------|
| 1010       | 201      | The Matrix   | 2011-10-12 | 743        |
| 1011       | 302      | O Grito      | 2011-12-10 | 549        |
| 1012       | 201      | The Matrix   | 2011-12-30 | 362        |

Podemos observar que a tabela acima apresenta uma coluna responsável por armazenar o título do filme, onde este foi alugado e está associado a um número de locação. Porém, ele também está associado a um código, tornando-o então um valor que não é totalmente dependente da chave primária da tabela.

## Modelo Lógico Segunda Forma Normal



| cd_filme | titulo_filme |  |
|----------|--------------|--|
| 201      | The Matrix   |  |
| 302      | O Grito      |  |

Se em algum momento tivermos que alterar o título de um filme, teríamos que procurar e alterar os valores em cada tupla (linha) da tabela. Isso demandaria um trabalho e tempo desnecessário. Porém, ao criarmos uma tabela e vincularmos elas com o recurso da chave estrangeira, tornamos o nosso banco mais organizado e ágil para as futuras consultas e manutenções que podem vir a ser necessárias.

| cd_locacao | cd_filme | devolucao  | cd_cliente |
|------------|----------|------------|------------|
| 1010       | 201      | 2011-10-12 | 743        |
| 1011       | 302      | 2011-12-10 | 549        |
| 1012       | 201      | 2011-12-30 | 362        |

#### Modelo Lógico Terceira Forma Normal



Se analisarmos uma tupla e não encontrarmos um atributo não chave dependente de outro atributo não chave, podemos dizer que a entidade em questão está na terceira forma normal - contanto que esta não vá de encontro as especificações da primeira e da segunda forma normal.

Como procedimento principal para configurar uma entidade que atenda as regras da terceira forma normal, nós identificamos os campos que não dependem da chave primária e dependem de um outro campo não chave. Após, separamos eles para criar uma outra tabela distinta, se necessário.

| placa   | modelo  | qtd_kmetro | cod_fab | nome_fab     |
|---------|---------|------------|---------|--------------|
| qwe1234 | Modelo1 | 867        | 3004    | fabricante 1 |
| asd456  | Modelo2 | 928        | 3005    | fabricante2  |

No exemplo acima temos uma entidade que lista os carros cadastrados, bem como o modelo, a quantidade de quilômetros rodados, o código do fabricante e o nome do fabricante. Observamos que "nome\_fab" se dá em função de "cod\_fab". Para adequarmos esta tabela de acordo com os padrões da terceira forma normal, devemos remover a coluna do nome do fabricante.





**Muito Obrigado!**