

21/06/2022







### Magnetic Zigzag Edge States in Graphene Nanoribbon



#### Magnetic Zigzag Edge States in Graphene Nanoribbon

- Useful for spintronic devices
- ✓ Predicted to have long spin coherence time

J. Fischer, B. Trauzettel, D. Loss, *Physical Review B 80, 155401 (2009)*.

- Synthesized in high vacuum. Chemically unstable
- Difficult to study the spin states

P. Ruffieux et al., Nature 531, 489 (2016)



1D zigzag graphene nanoribbon



OD nanographene molecule

#### Synthesized by Jishan Wu's group at NUS



1D zigzag graphene nanoribbon

OD nanographene molecule

Y. Ni et al., Angewandte Chemie 130, 9845-9849 (2018)

#### Synthesized by Jishan Wu's group at NUS



# Bulky group to enhance stability and solubility



Peri-tetracene

Y. Ni et al., Angewandte Chemie 130, 9845-9849 (2018)

#### Synthesized by Jishan Wu's group at NUS



Y. Ni et al., Angewandte Chemie 130, 9845-9849 (2018)

#### Peri-tetracene

#### Clar's sextet rule:

More aromatic rings

→ More stable

52.5% diradical character



#### Peri-tetracene

#### Clar's sextet rule:

More aromatic rings

→ More stable

52.5% diradical character







Peri-tetracene

#### **Peri-tetracene**



# **Zigzag Edge in Extended Structures**



### **Zigzag Edge in Extended Structures**



### **Zigzag Edge in Extended Structures**



### **CW EPR Spectrum of Peri-tetracene**

#### **CW EPR:**

Continuous Wave Electron Paramagnetic Resonance



#### **CW EPR Spectrum of Peri-tetracene**

#### **CW EPR:**

Continuous Wave Electron Paramagnetic Resonance





#### **CW EPR Spectrum of Peri-tetracene**

#### **CW EPR:**

Continuous Wave Electron Paramagnetic Resonance





Hamiltonian to describe the system:

$$\widehat{H} = \mu_B \mathbf{B} \cdot \mathbf{g} \cdot \widehat{\mathbf{S}} + \sum_{i}^{o} \widehat{\mathbf{S}} \cdot \mathbf{A}_i \cdot \widehat{\mathbf{I}}_i$$

Zeeman energy Hyperfine interaction











Carr-Purcell-Meiboom-Gill (CPMG) sequence

(n = 1: Hahn echo)



Carr-Purcell-Meiboom-Gill (CPMG) sequence

(n = 1: Hahn echo)



Echo decay with nuclear modulation effect



Carr-Purcell-Meiboom-Gill (CPMG) sequence

(n = 1: Hahn echo)



Echo decay with nuclear modulation effect



Fourier transform

Coherence time  $T_m$  and fast relaxation time constant  $T_f$  from bi-exponential fitting



 $T_m$  reaches **100** µs at 80 K in CS2, exceeding theoretical predictions

Coherence time  $T_m$  and fast relaxation time constant  $T_f$  from bi-exponential fitting



 $T_m$  reaches **100**  $\mu$ s at 80 K in CS2, exceeding theoretical predictions

Further increasing coherence time up to  $400~\mu s$  by dynamical decoupling from the nuclear bath

#### Conclusion

- Short zigzag segment in molecular nanographene as a gateway to understand extended systems.
- Spin coherence time exceeding theoretical predictions.
- More possibilities to build extended graphene nanoribbon systems, which can form quantum spin chain or host topological non-trivial phase.

#### **Acknowledgements**

#### **University of Oxford**

Lapo Bogani Federico Lombardi Michael Slota Karen Yan William Myers

#### **NUS**

Yong Ni Jishan Wu







SINGAPORE

