Паросочетания

Паросочетание (matching) — подмножество ребер $M \subseteq E$, где никакие два ребра не имеют общих концов. Совершенное паросочетание: участвуют все вершины.

Теорема 1 (Теорема Холла, 1935)

Пусть $G=(V_1,V_2,E)$ — двудольный граф. Паросочетание, покрывающее V_1 , существует \Leftrightarrow $\forall U\subseteq V_1, \ |U|=k$, у вершин U в совокупности есть не менее k смежных вершин в V_2 .

 \mathcal{L} оказательство. \Rightarrow Очевидно: если есть подмножество $\subseteq V_1$ размера k, у которого менее чем k соседей, то паросочетаний U с V_2 не существует.

Доказательство теоремы Холла

 \Leftarrow Индукция по $|V_1|$.

Базис: $|V_1|=1$, и у единственного подмножества размера 1 есть одна смежная вершина в V_2 — это ребро и дает паросочетание.

Индуктивный переход.

Случай 1: Пусть есть подмножество $U_1\subset V_1$, $|U_1|=k$, у которого ровно k смежных вершин, и пусть $U_2\subseteq V_2$ — смежные с ними вершины, где $|U_2|=|U_1|$.

В подграфе на вершинах из U_1 и U_2 у каждого подмножества U_1 размера m есть не менее m соседок из V_2 , и, следовательно, из U_2 . Тогда, по предположению индукции, есть паросочетание, покрывающее U_1 .

Покажем, что в подграфе на вершинах из $V_1 \setminus U_1$ и $V_2 \setminus U_2$ также выполняется условие теоремы, т.е. у всякого подмножества $V_1 \setminus U_1$ размера I есть не менее чем I смежных вершин в $V_2 \setminus U_2$.

Доказательство теоремы Холла

Пусть $W\subseteq V_1ackslash U_1$ — любое подмножество. Тогда подмножество $U_1\cup W$ имеет не менее чем k+I смежных вершин по условию.

При этом у вершин из U_1 всего k смежных вершин, которые также смежны с U_2 , — и, следовательно, остальные I смежных вершин смежны с W и лежат вне U_2 .

Следовательно, условие выполняется, и, по предположению индукции, есть паросочетание, покрывающее $V_1 \backslash U_1$, которое не пересекается с ранее построенным паросочетанием, покрывающим U_1 .

Доказательство теоремы Холла

Случай II. У всякого подмножества $U_1\subset V_1$ есть не менее чем $|U_1|+1$ смежных вершин.

Пусть $(v_1,v_2)\in E$ — произвольное ребро. Подграф, образованный удалением вершин v_1 и v_2 , продолжает удовлетворять условию теоремы, поскольку в нем у каждого подмножества $U_1\subseteq V_1\backslash\{v_1\}$ остается не менее чем $(|U_1|+1)-1$ смежных вершин, за возможной потерей v_2 .

Следовательно, по предположению индукции, в нем есть паросочетание, покрывающее $V_1 \setminus \{v_1\}$. Возвращая v_1 , v_2 и ребро (v_1, v_2) , получаем искомое паросочетание.