PROBLEMI DI PROGETTAZIONE E IMPLEMENTAZIONE PER SISTEMI DI PAGING

Danilo Croce

Dicembre 2024

GESTIONE DELLA MEMORIA: OUTLINE

- Memory Abstraction
- Virtual Memory
- Algoritmi di sostituzione delle pagine
- Problemi di Progettazione per Sistemi di Paging

CONSIDERAZIONI NELLA PROGETTAZIONE DI SISTEMI DI PAGINAZIONE

- La paginazione è un processo complesso che richiede una comprensione approfondita di molteplici aspetti per una progettazione efficace.
- Altri Aspetti Cruciali
 - Allocazione della Memoria
 - Scelta tra allocazione globale VS locale oppure allocazione equa vs proporzionale e come questa influisce sulla gestione delle risorse e sulle prestazioni del sistema.
 - Gestione dei Page Fault:
 - Monitoraggio della frequenza dei page fault per ottimizzare l'uso e allocazione della memoria e ridurre i tempi di attesa.
 - Ottimizzazione delle Prestazioni: Valutare le prestazioni del sistema di paginazione per massimizzare l'efficienza
 - Esempio: «quando deve essere grande una pagina?», «come limitare l'uso della memoria per i processi?»
 - **Decisioni di Progettazione:** Considerare fattori come la dimensione del set di lavoro, il comportamento dei processi, e la località dei riferimenti alla memoria per scegliere l'algoritmo più adatto.

I PROBLEMI DI PROGETTAZIONE PIÙ COMUNI

- Allocazione Globale VS Locale
- Allocazione Equa VS Proporzionale
- Dinamica di Allocazione delle pagine
- Policy di pulizia
- Dimensione delle pagine
- Istruzioni separate e spazi dei dati
- Pagine e Librerie condivise
- File mappati in memoria

ALLOCAZIONE DI MEMORIA IN SISTEMI DI PAGINAZIONE: GLOBALE VS LOCALE

Allocazione Locale

- Ogni processo riceve una porzione fissa della memoria.
- Semplice da implementare, ma può portare a inefficienze se il set di lavoro del processo.

Allocazione Globale

- Distribuzione dinamica della memoria tra i processi.
- Più efficace per adattarsi alle esigenze variabili dei processi, ma richiede una gestione più complessa.

Esempio Pratico

 In Figura la differenza tra sostituzione locale (solo pagine del processo A) e globale (pagine di tutti i processi).

	. Ago
A0	10
A1	7
A2	7 5 4
A3	4
A4 A5	6
A5	3
B0	9
B1	4
B2	6 2
B3	2
B4	5
B5	6
B6	12
C1	3
C2 C3	5
C3	6
(a)	

Il processo A ha
bisogno di allocare
una pagina per A6

A0
A1
A2
A3
A4
(A6)
B0
B1
B2
B3
B4
B5
B6
C1
C1 C2 C3
C3
(b)

A2
A3
A4
A5
B0
B1
B2
(A6)
B4
B5
B6
C1
C2 C3
C3
(c)

A0 A1

Allocazione Locale: è possibile rimuovere solo pagine del processo A

Allocazione Globale: è possibile rimuovere pagine di qualsiasi processo

VANTAGGI DELL'ALLOCAZIONE GLOBALE DELLA MEMORIA

Adattabilità degli Algoritmi Globali:

- Gli algoritmi globali di sostituzione delle pagine si adattano meglio alle esigenze variabili dei processi.
- Aumentano l'efficienza quando la dimensione del set di lavoro varia nel tempo.

Limiti degli Algoritmi Locali:

- Il thrashing può verificarsi con algoritmi locali se il set di lavoro di un processo cresce oltre la memoria allocata.
- La memoria può essere sprecata quando il set di lavoro di un processo si riduce e la memoria non viene riassegnata.

Gestione Dinamica della Memoria:

- Con l'allocazione globale, il sistema operativo deve dinamicamente assegnare e riassegnare frame ai processi.
- E' possibile **utilizzare i bit di aging per monitorare la frequenza di accesso delle pagine**, anche se questo potrebbe non essere sufficiente per prevenire il thrashing.

Sfide del Monitoraggio del Set di Lavoro:

- I bit di aging forniscono una stima approssimativa, che potrebbe non riflettere cambiamenti rapidi nel set di lavoro.
- È fondamentale che il sistema di paginazione possa reagire in modo agile ai cambiamenti delle esigenze di memoria.

STRATEGIE DI ALLOCAZIONE DELLA MENORIA NEI SISTEMI DI PAGINAZIONE

Allocazione Equa vs Proporzionale:

- Allocazione Equa:
 - Distribuzione uniforme dei frame tra i processi.
 - Esempio: 12.416 frame divisi equamente tra 10 processi risultano in 1.241 frame per processo.
 - **Svantaggi**: Non tiene conto delle diverse esigenze di memoria tra processi di dimensioni varie.

Allocazione Proporzionale:

- · Assegnazione di frame in base alla dimensione del processo.
- Rispecchia meglio le necessità di memoria, evitando allocazioni inadeguate.

• Importanza del Limite Minimo di Pagine:

- Assicurare che ogni processo abbia abbastanza pagine per eseguire le operazioni fondamentali.
- MA prevenire situazioni in cui processi con istruzioni che attraversano i limiti delle pagine non possano eseguire.

DINAMICA DI ALLOCAZIONE E ALGORITMO PAGE FAULT FREQUENCY (PFF)

Gestione Dinamica dei Frame:

- Inizio con un'allocazione proporzionale alla dimensione del processo.
- Aggiornamento dinamico dell'allocazione in base all'evoluzione delle esigenze durante l'esecuzione.

Page Fault Frequency (PFF):

- Monitoraggio della frequenza dei page fault per regolare l'allocazione di memoria di un processo.
- Aumenta i frame se i page fault sono troppo frequenti, diminuisce se sono rari.
- Non specifica quale pagina rimuovere, focalizzandosi sulla dimensione dell'allocazione.

RELAZIONE TRA ALLOCAZIONE DI MEMORIA E PAGE FAULT

Relazione tra Frame Assegnati e Page Fault:

- Secondo algoritmi come LRU, più pagine vengono assegnate a un processo, meno frequenti saranno i page fault.
- · La frequenza di page fault diminuisce man mano che aumenta il numero di frame assegnati.

Monitoraggio della Frequenza dei Page Fault:

- Si contano i page fault per secondo e si utilizza una media mobile per tenere traccia delle fluttuazioni.
 - A. Alta frequenza di page fault indica necessità di più frame.
 - B. Bassa frequenza di page fault suggerisce che il processo ha più memoria del necessario.

Number of page frames assigned

GESTIONE DEL THRASHING E CONTROLLO DEL CARICO DI MEMORIA

Thrashing in Presenza di Allocazione Ottimale:

- Anche con il miglior algoritmo, il thrashing purtroppo può sempre verificarsi se i set di lavoro di tutti i processi eccedono la memoria disponibile.
- Il PFF può segnalare una richiesta collettiva di più memoria senza che nessun processo possa cedere frame.

Strategie di Mitigazione:

- Out Of Memory Killer (OOM):
 - Processo di sistema che seleziona e termina i processi in base a un punteggio di "cattiveria" per liberare memoria.
 - Processi con elevato utilizzo di memoria o minor importanza sono tipicamente selezionati.

Swapping (Scambio):

- Meno drastico dell'OOM Killer, sposta i processi su memoria non volatile, liberando le loro pagine per altri processi.
- Può ridurre la richiesta di memoria senza interrompere l'esecuzione dei processi.

SCHEDULING A DUE LIVELLI E TECNICHE DI RIDUZIONE DI MEMORIA

Scheduling a Due Livelli:

- alcuni processi sono in memoria non volatile e solo una parte è schedulata attivamente
- aiuta a gestire meglio il carico di memoria.
- utile per ridurre occupazione di memoria di processi in background in sistemi interattivi

Gestione della Multiprogrammazione:

- La selezione dei processi da spostare considera anche caratteristiche:
 - Sono processi CPU bound o I/O bound
 - Qual è la dimensione e/o frequenza di paginazione dei processi

• Altre Tecniche:

 Oltre a «uccidere» o spostare processi, si possono usare compattamento, compressione e deduplicazione (same page merging).

POLICY DI PULIZIA E PAGING DAEMON

- Contesto: La policy di pulizia è un aspetto critico nella gestione della memoria.
- Aging e Frame Liberi: L'aging è più efficace con molti frame di pagina liberi disponibili.
 - Se i frame sono tutti occupati e modificati, occorre scrivere le vecchie pagine in memoria non volatile prima di caricarne di nuove.
 - È preferibile mantenere un buon numero di frame di pagina liberi piuttosto che occupare tutta la memoria e cercare frame liberi solo al bisogno.
- Paging Daemon: Un processo in background usato dai sistemi di paginazione
 - Inattivo per la maggior parte del tempo, si attiva periodicamente per controllare lo stato della memoria.
 - Quando i frame liberi scarseggiano, inizia a selezionare pagine da rimpiazzare utilizzando un algoritmo di sostituzione delle pagine.

POLICY DI PULIZIA E PAGING DAEMON (2)

- Scrittura in Memoria Non Volatile: Se le pagine sono state modificate, vengono scritte in memoria non volatile.
 - I contenuti precedenti delle pagine vengono conservati, permettendo un eventuale rapido ripristino.
- Implementazione con «Clock a Due Lancette»
 - La lancetta anteriore (gestita dal paging daemon) avanza scrivendo le pagine sporche in memoria non volatile e procede senza azioni ulteriori sulle pagine pulite.
 - La lancetta posteriore si occupa della sostituzione delle pagine
 - maggiore probabilità di trovare pagine pulite (grazie al lavoro del paging daemon).

DIMENSIONE DELLE PAGINE E BILANCIO DEI FATTORI

- Selezione Dimensione Pagine: I sistemi operativi possono selezionare la dimensione delle pagine
 - Esempio: unendo due pagine da 4096 byte per formarne una da 8 KB.
- Fattori a Favore di Pagine Piccole: Riducono la frammentazione interna (spazio sprecato nelle pagine parzialmente vuote) e l'utilizzo di memoria
 - un programma potrebbe richiedere meno memoria con pagine più piccole.
- Svantaggi delle Pagine Piccole: Richiedono tabelle delle pagine più grandi (più voci) e possono aumentare il tempo e lo spazio necessario per il trasferimento di dati e la gestione della memoria.

DIMENSIONE OTTIMALE DELLE PAGINE E THP

- **Dimensione Ottimale**: Determinata equilibrando frammentazione interna (favorevole a pagine più grandi) e overhead della tabella delle pagine (favorevole a pagine più piccole).
 - Vedi slide successiva
- Pagine di Diverse Dimensioni: Alcuni sistemi operativi utilizzano pagine di diverse dimensioni per parti diverse del sistema (ad es., pagine grandi per il kernel).
- Transparent Huge Pages (THP): Tecnica per utilizzare pagine di grandi dimensioni ottimizzando l'uso della memoria, spostando la memoria del processo per creare intervalli contigui.

CALCOLO DELLA DIMENSIONE OTTIMALE DELLE PAGINE

Parametri Considerati:

- Dimensione media del processo: s byte (esempio 1MB).
- Dimensione della pagina: p byte (da calcolare).
- Dimensione di ogni voce nella tabella delle pagine: e byte (esempio 4 o 8 byte).

Calcolo Overhead:

- Numero di pagine per processo: $\approx s/p$.
- Spazio occupato nella tabella delle pagine: $s \cdot e / p$ byte.
- Memoria sprecata per frammentazione interna nell'ultima pagina: p/2.
 - Fenomeno dell'Ultima Pagina: Per qualsiasi processo, l'ultima pagina di memoria allocata potrebbe non essere completamente riempita. Esempio: un processo richiede 10.5 KB di memoria la pagina è di 4 KB, il sistema dovrà allocare 3 pagine lasciando 1.5 KB di spazio inutilizzato nell'ultima pagina.

• Overhead totale: se/p + p/2:

- Il primo termine (tabella delle pagine) aumenta con pagine più piccole.
- Il secondo termine (frammentazione interna) aumenta con pagine più grandi.
- L'ottimo si trova bilanciando questi due fattori.

CALCOLO DELLA DIMENSIONE OTTIMALE DELLE PAGINE (2)

Overhead totale: se/p + p/2

- Formula per la Dimensione Ottimale delle Pagine:
 - Derivata della funzione di overhead rispetto a p uguagliata a zero: $-se/p^2 + \frac{1}{2} = 0$.
 - Dimensione ottimale delle pagine: $p=\sqrt{2se}$.
 - Esempio: Per s = 1 MB e e = 8 byte, p ottimale è 4 KB.
- Variazione nelle Dimensioni delle Pagine:
 - Gamma tipica in computer commerciali: da 512 byte a 64 KB.
 - Dimensione comune attuale: 4 KB

PROBLEMI DI PROGETTAZIONE: SPAZI SEPARATI PER ISTRUZIONI E DATI

• La maggior parte dei computer ha un unico spazio di indirizzamento condiviso da programma e dati. In passato alcuni sistemi avevano uno spazio di indirizzamento separato per istruzioni e dati.

- Al giorno d'oggi si vedono ancora spazi Istruzioni e Dati separati nelle cache, nei TLB, Cache L1
 - Dove lo spazio è poco, si tende a separare istruzioni (più importanti) dai dati.
 SOR Sistemi Operativi Danilo Croce

CONDIVISIONE DELLE PAGINE NEI SISTEMI MULTIPROGRAMMATI

- Motivazione della Condivisione
 - E' comune che molti utenti eseguano lo stesso programma o utilizzino le stesse librerie.
 - Condividere pagine di memoria tra questi processi è più efficiente che mantenerne copie separate.
- Tipi di Pagine Condivisibili
 - Le pagine di sola lettura, come il testo dei programmi: SI
 - Le pagine dei dati: generalmente **NO**
- Per facilitare la condivisione è meglio separare spazi di indirizzo in:
 - **I-space**: Istruzioni
 - **D-space**: Dati
- Processi diversi possono utilizzare la stessa tabella delle pagine per l'I-space ma tabelle diverse per il D-space.
 - Implementazione e Scheduling: con ciascun processo ha puntatori sia all'I-space che al D-space.
 - Lo scheduler utilizza questi puntatori per impostare l'MMU.

NON E'TUTTO ORO: GESTIONE DELLE PAGINE CONDIVISE E COPY ON WRITE

- Problemi con Pagine Condivise
 - La rimozione di un processo da memoria può causare numerosi page fault in un altro processo che condivide le stesse pagine.
 - È cruciale sapere se le pagine sono ancora in uso per evitare la loro liberazione accidentale.
- Condivisione dei Dati: Più complessa rispetto alla condivisione del codice!
 - Ad esempio, in UNIX, dopo una fork, genitore e figlio condividono sia il testo che i dati, inizialmente come sola lettura.
- Copy on Write (Copia in Caso di Scrittura): Se un processo modifica i dati, si genera una trap, e viene creata una copia della pagina modificata.
 - Entrambe le copie diventano poi modificabili (READ/WRITE).
 - Questo metodo evita la copia di pagine che non vengono mai modificate.
 - Estremamente efficiente per evitare la proliferazione di pagine

LIBRERIE CONDIVISE - PRINCIPI E FUNZIONAMENTO

- Condivisione su Ampia Scala:
 - I SO condividono automaticamente tutte le pagine di testo di un programma avviato più volte.
 - Per evitare problemi, meglio pagine in sola lettura
- Copy on Write per Dati: Se un processo modifica una pagina di dati condivisa, occorre applicare "copy on write".
- Librerie condivise Dynamic Link Libraries (DLLs): Usate per ridurre l'ingombro di grandi librerie comuni.
 - Vantaggi: Risparmio di spazio

LIBRERIE CONDIVISE - PRINCIPI E FUNZIONAMENTO

- Problema di Indirizzamento: Le librerie condivise possono essere posizionate a indirizzi diversi nei vari processi.
 - Questo impedisce l'uso di indirizzi assoluti nelle istruzioni.
- Soluzione Compilativa: Le librerie condivise vengono compilate con indirizzi relativi anziché assoluti.
 - le istruzioni usano offset relativi piuttosto che puntare a indirizzi specifici.

FILE «MAPPATI» IN MEMORIA E IL LORO IMPIEGO

- Concetto: I file mappati consentono a un processo di mappare un file all'interno del proprio spazio di indirizzi virtuali.
 - Funzionamento: Alla mappatura, nessuna pagina viene caricata immediatamente.
 - Sono paginate su richiesta dalla memoria non volatile, man mano che vengono "toccate"
 - Scrittura su File: Quando il processo termina o la mappatura è eliminata, tutte le pagine modificate vengono riscritte sul file.
- Modello I/O Alternativo: Offre un modo diverso di eseguire I/O, permettendo di accedere al file come se fosse un grande array di caratteri in memoria.
- Comunicazione tra Processi: Se più processi mappano lo stesso file contemporaneamente, possono comunicare attraverso questa memoria condivisa.
 - Le modifiche apportate da un processo sono immediatamente visibili agli altri.

