MOS transistor

 $V_{GS} < V_t$ \rightarrow $I_D = 0$ NMOS in cutoff region

$$V_{GS} > V_t, \ V_{GS} - V_t > V_{DS}$$
 \implies $I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left[2(V_{GS} - V_t) V_{DS} - V_{DS}^2 \right]$ NMOS in linear region

$$V_{GS} > V_t$$
, $V_{GS} - V_t < V_{DS}$ \rightarrow $I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_t)^2 (1 + \lambda V_{DS})$ NMOS in saturation region

 $k_n = \mu_n C_{ox} \frac{W}{L}$ transconductance parameter [A/V²]

 $k_n' = \mu_n C_{ox}$ process transconductance parameter [A/V²]

 μ_n : electron mobility [cm²/V·s]

 $C_{ox} = \frac{\varepsilon_{ox}}{t_{cr}} = \frac{3.9\varepsilon_0}{t_{cr}}$ oxide capacitance per unit area [F/cm²]

 ε_{ox} : dielectric constant of SiO₂ [F/cm]

 $\varepsilon_0 = 8.85 * 10^{-14} \text{ F/cm}$ dielectric constant of vacuum

 t_{ox} : oxide thickness [nm]

W, L: channel length and width [μm]

 λ : channel modulation factor [V⁻¹]

 $r_o = \frac{1}{\lambda I_D}$ output resistance [Ω]

 $V_{t} = V_{to} + \gamma \left[\sqrt{V_{SB} + 2|\phi_{F}|} - \sqrt{2|\phi_{F}|} \right]$ threshold voltage [V]

 V_{to} : threshold voltage for V_{SB} =0 [V]

 γ : body factor [V^{1/2}]

 ϕ_F : Fermi potential [V]