Raport z Laboratorium nr 2 Układy sekwencyjne - Licznik

Autorzy: Radosław Zimoch 263963, Kamil Gondek 263916

Prowadzący: Dr. inż. Jarosław Sugier

Termin: Poniedziałek, 11:00, Tydzień parzysty

Data: 10 listopad 2023

1. Wstęp

Celem zajęć było utrwalenie wiedzy zdobytej na poprzednich zajęciach i zaprojektowanie układu sekwencyjnego – licznika z wykorzystaniem przerzutników. Układ miał liczyć w sekwencji: "01342567". A następnie budowa projektu hierarchicznego.

2. Zadanie do wykonania

3. Realizacja zadań

a. Synteza układu licznika w sekwencji "0134256" z wykorzystaniem metody siatek Karnaughta

	WEJ									
DIR	Q2	Q1	Q0							
0	0	0	0							
0	0	0	1							
0	0	1	0							
0	0	1	1							
0	1	0	0							
0	1	0	1							
0	1	1	0							
0	1	1	1							
1	0	0	0							
1	0	0	1							
1	0	1	0							
1	0	1	1							
1	1	0	0							
1	1	0	1							
1	1	1	0							
1	1	1	1							

	WYJ	
Q2	Q1	Q0
0	0	1
0	1	1
1	0	1
1	0	0
0	1	0
1	1	0
1	1	1
0	0	0
1	1	1
0	0	0
1	0	0
0	0	1
0	1	1
0	1	0
0	1	1
1	0	1

TABELA 1: TABELA PRAWDY

Korzystając z zasady działania przerzutnika D to co jest na wejściu po podaniu sygnału zegarowego będzie na wyjściu dzięki czemu uzyskujemy następujące siatki i równania.

		DIR	Q2	DIR	Q2	DIR	Q2	DIR	Q2	
Q2		0	0	0	1	1	1	1 0		
Q1	0									
Q0	0	0		0		0		1		
Q1	1									
Q0	0	1		1		0		1		
Q1	1									
Q0	1	1		(0		1)	
Q1	0									
Q0	1	()		1)		כ	

		DIR	Q2	DIR	Q2	DIR	Q2	DIR	Q2	
Q1		0	0	0	1	1	1	1 0		
Q1	0									
Q0	0	()		1		L	1		
Q1	1									
Q0	0	0		1			L	0		
Q1	1									
Q0	1	0		(0		0)	
Q1	0									
Q0	1	1		2	1	1	l	()	

		DIR	Q2	DIR	Q2	DIR	Q2	DIR	Q2	
Q0		0	0	0	1	1	1	1 0		
Q1	0							,		
Q0	0	1		0		1		1		
Q1	1									
Q0	0	1		1		2	1	0		
Q1	1									
Q0	1	0		(0		1		1	
Q1	0									
Q0	1	1		()))	

TABELA 2 – TABELE MINIMALIZACJI

$$Q2 = \overline{DIR} \ Q2 \ \overline{Q1} \ Q0 + DIR \ Q2 \ Q1 \ Q0 + \overline{DIR} \ \overline{Q2} \ Q1 + \overline{DIR} \ \overline{Q0} \ Q1 + DIR \ \overline{Q2} \ \overline{Q0}$$

$$Q1 = \overline{DIR} \ \overline{Q1} \ Q0 + DIR \ \overline{Q1} \ \overline{Q0} + Q2 \ \overline{Q0} + Q2 \ \overline{Q0} + Q2 \ \overline{Q1}$$

$$Q0 = \overline{DIR} \ Q1 \ \overline{Q0} + \overline{DIR} \ \overline{Q2} \ \overline{Q1} + DIR \ Q2 \ \overline{Q0} + DIR \ Q1 \ Q0$$

Korzystając z powyższych równań stworzyliśmy schemat układu.

W celu przetestowania stworzonego przez nas schematu wykorzystaliśmy symulację behawioralną. Modyfikując wygenerowany przez środowisko plik vhdl, ustawiając zmianę sygnału zegarowego co 50 ns oraz zmianę sygnału DIR na wartość 1 po 1000 ns.

```
15 LIBRARY ieee;
16 USE ieee.std_logic_ll64.ALL;
17 USE ieee.numeric_std.ALL;
18 LIBRARY UNISIM;
19
    USE UNISIM. Vcomponents. ALL;
20 ENTITY Z1_Z1_sch_tb IS
21 END Z1_Z1_sch_tb;
22 ARCHITECTURE behavioral OF Z1_Z1_sch_tb IS
23
      COMPONENT Z1
24
      PORT( Q : OUT STD_LOGIC_VECTOR (2 DOWNTO 0);

CLK : IN STD_LOGIC;

CE : IN STD_LOGIC;
25
26
27
               CLR : IN STD_LOGIC;
DIR : IN STD_LOGIC);
28
29
      END COMPONENT;
30
31
      SIGNAL Q : STD_LOGIC_VECTOR (2 DOWNTO 0);
SIGNAL CLK : STD_LOGIC := '0';
SIGNAL CE : STD_LOGIC := '1';
32
33
34
      SIGNAL CLR : STD_LOGIC := '0';
35
      SIGNAL DIR : STD_LOGIC := '0';
36
37
38 BEGIN
39
40
       UUT: Z1 PORT MAP (
        Q => Q,
41
          CLK => CLK,
42
          CE => CE,
43
          CLR => CLR,
44
          DIR => DIR
45
      );
46
47
      CLK <= not CLK after 50 ns;
48
      DIR <= '1' after 1000 ns;
49
50
51 END;
```

RYSUNEK 2 - KOD PLIKU VHDL

Name ► ™ q(2:0)	Value	250 ns	300 ns	350	ons 400	ns 450	ns 500	ns 55	ns 60	00 ns 6	0 ns 7		750 ns	800 ns	850 ns	900 ns
Ug dk	1															
Ug ce	1															
Ve dir Ve dir	0															
Name	Value		900 ns	1950 ns	1,000 ns	1,050 ns	1,100 ns	1,150 ns	1,200 ns	1,250 ns	1,300 ns	1,350 ns	1,400 ns	1,450 ns	1,500 ns	1,
▶ 📆 q[2:0]	101		001		011		001		000		111		110		101	 x
le dk	1															
Vo ce Vo dr	0															
la dir	1															
			ļ.				'			'						
ame	Value	P	,450 ns	1,500 ns	1,550 ns	1,600 ns	1,650 ns	1,700 ns	1,750 ns	1,800 ns	1,850 ns	1,900 ns	1,950 ns	2,000 ns	2,050 ns	, 2,
🥞 q[2:0]	000	110		101		0:0	\rightarrow	100		0.1	_	001		000		111
Un dk Un ce	0															
Un ce Un dr	0															

RYSUNEK 3 - PRZEBIEG BEHAWIORALNY

Symulacja behawioralna pozwoliła na sprawdzenie poprawności zaprojektowanego przez nas układu.

RYSUNEK 4 - PRZEBIEG POST-FIT

Jak możemy zaobserwować na przebiegu Post-Fit różnica pomiędzy sygnałem zegarowym a zmianą sygnału wyjściowego jest na poziomie około 5/6 ns.

Na koniec uruchomiliśmy zgodnie z instrukcją układ CPLD zgodnie z przygotowanym projektem i sprawdziliśmy jego poprawność na płycie laboratoryjnej. Wszystkie wyniki zgadzały się z oczekiwaniami.

b. Projekt hierarchiczny

Kolejnym zadaniem było przekształcenie naszego układu w schemat a następnie połączenie go z gotowym układem HexTo7Seg. Podczas zajęć udało się stworzyć gotowy schemat do instalacji na płytkę. Jednakże nie wiedzieliśmy że układ będzie działał jedynie na płytce więc, próbowaliśmy w pierwszej kolejności uruchomić dla niego symulacje. Dopiero pod koniec zajęć prowadzący poinformował nas że układ będzie działał jedynie na płytce. Jednak nie zdążyliśmy go przetestować na płytce.

RYSUNEK 5 – SCHEMAT PROJEKTU HIERARCHICZNEGO

4. Wnioski

Na laboratoriach utrwaliliśmy naszą wiedzę wykorzystania narzędzia Xilinx ISE. Przypomnieliśmy jak działają układy sekwencyjne oparte na przerzutnikach, oraz jak z dowolnego układu stworzonego w środowisku przekształcić go w schemat pojedynczy element. Dodatkowo dowiedzieliśmy się jak skonfigurować układy aby były wstanie współpracować pomimo różnicy w ilości wyjść/wejść. Dowiedzieliśmy się również że schematy w formie czarnych skrzynek działają jedynie na fizycznym układzie, a nie w symulacji.