Vertiefung Analysis Hausaufgabenblatt Nr. 4

Jun Wei Tan* and Lucas Wollmann

Julius-Maximilians-Universität Würzburg

(Dated: November 15, 2023)

Problem 1. (a) Seien $(X, \mathcal{A}), (Y, \mathcal{B})$ messbare Räume, $C \in \mathcal{A} \otimes \mathcal{B}$ und $a \in X$. Zeigen Sie, dass

$$\{y \in Y | (a, y) \in C\} \in \mathcal{B}.$$

- (b) Sei $K \subseteq \mathbb{R}^m$ kompakt und $N \subseteq \mathbb{R}^n$ eine λ_n -Nullmenge. Zeigen Sie, dass dann $K \times N$ eine λ_{m+n} -Nullmenge ist.
- (c) Sei $M \subseteq \mathbb{R}^m$ eine λ_m -Nullmenge und $N \subseteq \mathbb{R}^n$ eine λ_n -Nullmenge. Zeigen Sie, dass dann $M \times N$ eine λ_{m+n} -Nullmenge ist.
- (d) Zeigen Sie Bemerkung 1.71, also dass $\mathcal{L}(m) \otimes \mathcal{L}(n) \subsetneq \mathcal{L}(m+n)$.

Hinweis: Sie dürfen hierfür annehmen, dass $B \notin \mathcal{L}(n)$ tatsächlich existiert.

Proof. (a) Zuerst betrachten wir dem Fall, in dem $C = A \times B \in \mathcal{A} \times \mathcal{B}$. Es gilt dann

$$\{y \in Y | (a, y) \in C\} = \begin{cases} B & x \in A \\ \varnothing & x \notin A \end{cases}$$

Weil sowohl \varnothing als auch B Elemente von \mathcal{B} sind, gilt die Aussage für solche Mengen $C \in A \times B$.

Jetzt beweisen wir die Aussage im Allgemein: Sei $C \in A \otimes B$. Dann gilt entweder:

- (i) C ist eine abzählbare Vereinigung von Mengen $C = \bigcup_{i=1}^{\infty} A_i \times B_i$, wobei $A_i \times B_i \in \mathcal{A} \times \mathcal{B}$.
- (ii) C ist eine abzählbare Schnitt von Mengen $C = \bigcap_{i=1}^{\infty} A_i \times B_i$, wobei $A_i \times B_i \in \mathcal{A} \times \mathcal{B}$.

 $^{^{\}ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

Sei dann $M \subseteq \mathbb{N}$ die Zahlen, sodass $a \in A_i \iff i \in M$. Es gilt, in der beiden Fälle

$$\{y \in Y | (a, y) \in C\} = \begin{cases} \bigcup_{i \in M} B_i & (i), \\ \bigcap_{i \in M} B_i & (ii). \end{cases}$$

was immer ein Element von \mathcal{B} ist.

(b) Sei $\epsilon > 0$ gegeben, und $\{A_1, A_2, \dots, A_n\}$, $A_i \in \mathbb{J}(m)$ eine endliche Überdeckung von K, wobei jedes $\lambda_m(A_i) < \infty$.

Das ist immer möglich, weil K kompakt ist. Wir können dann eine Überdeckung (A_i) von K wählen, und die Kompaktheit von K liefert eine endliche Teilüberdeckung.

Sei dann $A = \max(\lambda_m(A_1), \lambda_m(A_2), \dots, \lambda_m(A_n))$. Per Definition (N ist eine λ_n Nullmenge) gibt es eine abzählbare Überdeckung $(B_j), B_j \subseteq \mathbb{R}^n$, sodass

$$\sum_{i=1}^{\infty} \lambda_n(B_i) < \frac{\epsilon}{nA}.$$

Wir betrachten dann

$$M = \bigcup_{j=1}^{n} \left\{ A_j \times B_i | i \in \mathbb{N} \right\},\,$$

was eine abzählbare Überdeckung von $K \times N$ ist, aber $\sum_{C \in M} \lambda_{n+m}(C) < \epsilon$, also $K \times N$ ist eine λ_{m+n} -Nullmenge.

(c) Wir haben, für alle Würfel $I_m \in \mathbb{R}^m$ und $I_n \in \mathbb{R}^n$, dass

$$\lambda_{n+m}^*(I_n \times I_m) = \lambda_n^*(I_n)\lambda_m^*(I_m).$$

Sei $\epsilon > 0$ gegeben. Per Definition gibt es eine Überdeckung $(B_i), B_i \in \mathbb{R}^n$ von N, sodass

$$\bigcup_{i=1}^{\infty} B_i \supseteq N \qquad \sum_{i=1}^{\infty} \lambda_n^*(B_i) \le 1.$$

Wir haben daher

$$\lambda_n^* \left(\bigcup_{i=1}^\infty B_i \right) \le \sum_{i=1}^\infty \lambda_n^*(B_i) \le 1.$$

Sei $B = \bigcup_{i=1}^{\infty} B_i$. Es ist also $\lambda_n(B) \leq 1$. Sei $(A_i), A_i \in \mathbb{R}^m$ eine Überdeckung von M, für die gilt

$$\sum_{i=1}^{\infty} \lambda_m^*(A_i) < \epsilon.$$

Jetzt ist $A_i \times B$ eine abzählbare Überdeckung von $N \times M$, und

$$\sum_{i=1}^{\infty} \lambda_{n+m}^*(A_i \times B) \le \sum_{i=1}^{\infty} \lambda_n^*(A_i) < \epsilon,$$

also $M \times N$ ist eine λ_{n+m} -Nullmenge.

(d) Wie im Skript betrachten wir $\{0\} \times B, B \notin \mathcal{L}(n)$. Es gilt $\{0\} \times B \in \mathcal{L}(m+n)$, weil $\{0\} \times B$ eine λ_{n+m} -Nullmenge ist.

Jetzt versuchen wir, $\{0\} \times B$ als eine abzählbare Schnitt

$$\{0\} \times B \stackrel{?}{=} \bigcap_{i=1}^{\infty} \underbrace{A_i \times B_i}_{\in \mathcal{L}(m) \times \mathcal{L}(n)}.$$

Aber

$$\bigcap_{i=1}^{\infty} A_i \times B_i = \left(\bigcap_{i=1}^{\infty} A_i\right) \times \left(\bigcap_{i=1}^{\infty} B_i\right),\,$$

und wir wissen schon, dass es keine Folgen von Mengen $(B_i), B_i \in \mathcal{B}$ existiert, sodass $\bigcap_{i=1}^{\infty} B_i = B$, also $\{0\} \times B \notin \mathcal{M} \otimes \mathcal{N}$.

Problem 2. Sei $A \in \mathcal{L}(n)$. Beweisen oder widerlegen Sie:

(a) Es gilt

$$\lambda_n(A) = \inf \{ \lambda_n(K) | K \supseteq A, K \text{ kompakt} \}.$$

(b) Es gilt

$$\lambda_n(A) = \sup \{\lambda_n(O) | O \subseteq A, O \text{ offen} \}.$$

Proof. (a) Falsch. Betrachten Sie $A=\mathbb{Q}$. Weil \mathbb{Q} nicht beschränkt ist, gibt es keine kompakte Mengen K mit $K\supseteq A$. Deswegen ist

$$0 = \lambda_n(\mathbb{Q}) \neq \inf \{\lambda_n(K) | K \supseteq A, K \text{ kompakt}\} = \infty.$$

Bemerkung

Erinnern Sie sich daran, dass wir $\inf(\emptyset) = \infty$ definieren. Sonst kann man $\lambda_n(\mathbb{R})$ betrachten.

(b) Falsch. Die Intuition dafür ist, dass

$$\lambda_n(A) = \sup \{ K \subseteq A, K \text{ kompakt} \}$$

Wenn wir eingeschränkte Mengen betrachten, gilt dass, nur wenn K abgeschlossen ist. Die meistens abschlossenen Mengen K sind der Abschluss eine offene Menge $K = \overline{U} = U + \partial U$. Wir müssen daher nur eine offene Menge finden, sodass ∂U Maß > 0 hat.

Konkretes Gegenbeispiel: Smith-Volterra-Cantor-Menge.

Wir definieren $S_0 = [0, 1]$ und weiter induktiv

$$S_n = \bigcup_{k=1}^{2^{n-1}} \left(\left[a_k, \frac{a_k + b_k}{2} - \frac{1}{2^{2n+1}} \right] \cup \left[\frac{a_k + b_k}{2} + \frac{1}{2^{2n+1}}, b_k \right] \right),$$

wobei $0 < a_1 < b_1 < \dots, a_{2^{n-1}}, b_{2^{n-1}}$ durch

$$S_{n-1} = \bigcup_{k=1}^{2^{n-1}} [a_k, b_k]$$

definiert sind. Sei jetzt $S = \bigcap_{i=1}^{\infty} S_n$. Wir beweisen jetzt die Eigenschaften der Menge:

(i) Alle Intervalle, aus den S_n besteht, haben die gleiche Länge.

Wir beweisen es per Induktion. Für S_0 ist es trivial, weil es nur ein Intervall gibt. Jetzt nehmen wir an, das es für beliebige $n \in \mathbb{N}$ gilt, also $b_k - a_k = \Delta_n \ \forall k \in 2^{n-1}$. Es gilt:

$$\frac{a_k + b_k}{2} - \frac{1}{2^{2n+1}} = a_k + \frac{\Delta_{n-1}}{2} - \frac{1}{2^{2n+1}},$$

und auch

$$\frac{a_k + b_k}{2} + \frac{1}{2^{2n+1}} = a_k + \frac{\Delta_{n-1}}{2} + \frac{1}{2^{2n+1}}.$$

Also alle Intervalle haben die Länge

$$\Delta_n = \frac{\Delta_{n-1}}{2} - \frac{1}{2^{2n+1}}.$$

Die Lösung ist

$$\Delta_n = 2^{-(2n+1)}(1+2^n).$$

(ii) Das Innere von S ist leer.

Wir nehmen an, dass eine offene Intervall $(a,b) \subseteq S$ gibt. Das Intervall hat Länge b-a. Aber, weil $\lim_{n\to\infty} \Delta_n = 0$ gilt, muss es ein S_n geben, für das gilt, dass die Intervalle Länge < b-a haben, also $(a,b) \not\subseteq S$.

- (iii) Also $\{U|U\subseteq S\ U\ \text{offen}\}=\{\varnothing\}.$
- (iv) $\sup \{\lambda_n(O) | O \subseteq S, O \text{ offen}\} = \sup \{0\} = 0.$
- (v) $\lambda_n(S) \neq 0$. In jedem Schritt nehmen wir Intervalle mit Maß

$$\frac{2^n}{2^{2n+2}},$$

also ingesamt nehmen wir Maß

$$\sum_{n=0}^{\infty} \frac{2^n}{2^{2n+2}} = \frac{1}{2}$$

raus. Daraus folgt $\lambda_n(S) = \frac{1}{2} \neq 0$.

Problem 3. (Maße von Matrixbildern)

- (a) Sei $S \in \mathbb{R}^{n \times n}$ eine invertierbare Matrix und $\mu : \mathcal{B}^n \to [0, \infty]$ ein Maß. Zeigen Sie, dass $\mu_S : \mathcal{B}_n \to [0, \infty], \mu_S(A) := \mu(SA)$ wohldefiniert und ein Maß ist.
- (b) Sei $S \in \mathbb{R}^{n \times n}$ nicht invertierbar. Zeigen Sie, dass $\lambda_n(SA) = 0$ für alle $A \in L(n)$ gilt.
- Proof. (a) (i) (Wohldefiniert) Wir müssen nur zeigen, dass SA offen ist. Wir definieren die übliche Norm auf Matrizen $||A|| = \sup_{|x|=1} |Ax|$. Weil S invertierbar ist, muss ||A|| > 0 gelten. Sei $x \in A$ und eine r, sodass $B_r(x) \subseteq A$. Sei $y \in B_r(x)$. Es gilt

$$|Ay - Ax| \le ||A|||y - x| \le ||A||r$$

also $B_{\|A\|r}(Sx) \subseteq SA$. Daraus folgt, dass SA offen ist, und μ_S wohldefiniert ist.

- (ii) Wir haben auch, $\mu_S(\emptyset) = \mu(S\emptyset) = \mu(\emptyset) = 0$.
- (iii) Sei $(A_j), A_j \in \mathcal{L}(n)$ eine Folge von messbare Mengen. Wir betrachten

$$\mu_{S}\left(\bigcup_{i=1}^{\infty} A_{i}\right) = \mu\left(S\bigcup_{i=1}^{\infty} A_{i}\right)$$

$$= \sum_{i=1}^{\infty} \mu(SA_{i}) \qquad (\sigma\text{-Additivität von } \mu)$$

$$= \sum_{i=1}^{\infty} \mu_{S}(A_{i})$$

Hier haben wir verwendet, dass SA_i noch paarweise disjunkt ist, weil S bijektiv (insbesondere injektiv) ist.

(b) $\mu_S(A) := \mu(SA)$ ist noch Maß (vorherige Beweis gilt noch): Weil S nicht invertierbar ist, gibt es ein nichttriviales Kern. Wir entscheiden uns für ein Vektor $v_1 \in \ker(S)$. Dann machen wir ein Basisergänzung, um ein Basis zu konstruieren:

$$B = \{v_1, v_2, \dots, v_n\}$$
.

Wir bezeichnen $[0,1)^n \in \mathcal{L}(n)$ als

$$[0,1)^n = \{a_1v_1 + a_2v_2 + \dots + a_nv_n | (a_1, a_2, \dots, a_n) \in M \subseteq \mathbb{R}^n\}.$$

für eine Menge M. Es gilt dann

$$S[0,1)^n = \{a_1 S(v_1) + a_2 S(v_2) + \dots + a_n S(v_n) | (a_1, a_2, \dots, a_n) \in M\}$$
$$= \{a_2 S(v_2) + \dots + a_n S(v_n) | (a_1, a_2, \dots a_n) \in M\}$$

 $\{S(v_1), S(v_2), \ldots, S(v_n)\}$ ist kein Basis, weil die Nullvektor darin vorkommt (vielleicht mehr als einmal). Wir können jedoch ein Basisergänzung machen, die Nullvektoren einzusetzen. Sei das neue Basis

$$\{u_1,u_2,\ldots,u_n\}$$
.

Wir nehmen hier zum Beispiel an, dass $u_i = S(v_i) \forall i \geq 2$, also wir müssen nur $S(v_1) = 0$ einsetzen. Das Argument ist gleich, wenn das nicht stimmt. Sei $M = (u_1, u_2, \dots, u_n)$. Dann ist $\mu'(A) := \mu(M^{-1}SA)$ ein Maß, und

$$\mu'([0,1)^n) = \mu(\{\{0\} \times (a_2, a_3, \dots, a_n) | (a_1, a_2, \dots, a_n) \in M\}) = 0.$$

Also μ' ist ein Bewegungsinvariantes Maß mit $\mu'([0,1)^n) = 0$. Daraus folgt, dass

$$\mu(SA) = 0 \ \forall A \in \mathcal{L}(n).$$