

Homework IV - Two-Stage Operational Amplifier

Due date: 2022. 12. 15. 10:00pm

First release: 2022. 12. 01.

This homework is a single-ended CMOS two-stage operational amplifier. The problem set includes HSPICE simulations and hand calculations. The SPICE model is cic018.1. <u>Please use the parameters from HSPICE simulation results</u> for hand calculations.

Please note again:

- 1. Please hand in your report using eeclass system.
- 2. 若無於繳交期限前,先行向老師說明並獲許可,作業一律不同意補交!
- 3. 嚴禁抄襲(參考)!
- 4. Please generate your report with pdf format. At first page please add your student ID and name. Try to make the information "readable". (Note: Don't use black color in background for your screen capture figures). (Without performance table, -10pt)
- 5. Please hand in the spice code file (.sp) for each item of work. Do not include output file.
- 6. Please fill the number into HW4.xls. (Without excel file, -20pt)
- 7. Please do not zip your report.
- 8. Please write down the "values" associated with each variable in the equations. Do not just give answer directly.

In this two-stage op-amp circuit, please use $V_{DD}=1.5V$, $V_{icm}=0.75V$, $V_{ocm}=0.75V$, $V_{icm}=0.75V$, $V_{icm}=0.75$

In this design, the DC gain has to be larger than 60dB, unity gain frequency larger than 50MHz, phase margin larger than 45°. Our target is to achieve *maximum unity gain frequency* and *maximum slew rate* with *minimum current*.

(a) Operation point

- 1. Please DESIGN your bias $(M_{b1} M_{b3})$ and amplifier $(M_1 M_5)$ size to make the *gain at DC larger than* <u>60dB</u>.
- 2. Print out the results from **.op** command. And make sure all the devices are properly biased.
- 3. Use .tf command to print out the voltage gain.
- 4. Verify your DC gain with hand calculation.

(b) Before compensation

- 1. Please simulate and plot the frequency response (magnitude and phase) of your design in (a). Mark the (i) DC gain (ii) unity gain frequency, and (iii) phase margin on figure.
- 2. Use .pz to identify the poles and zeros, and mark them on bode plot.
- 3. Verify the first and second dominant poles and first RHP zeros with hand calculation.

(c) with compensation capacitor Cc

- 1. Please design your value of Cc and simulate the AC response in (b). (please note, your *Cc must be smaller than* <u>10pF</u>, and the phase margin must larger than <u>0</u>⁰ in this case).
- 2. Please print .pz output of the new poles (first and second dominant) and zeros (first RHP), and mark them on bode plot.
- 3. Verify the compensation with hand calculation.

(d) with compensation capacitor Cc in (c) and nulling resistor Rc

- Please design your value of Rc to shift the RHP zero and simulate the AC response in (c).
 (please note, your unity gain frequency must be larger than <u>50MHz</u> and phase margin must larger than <u>45°</u> in this case).
- 2. Please print .pz output of the new poles and zeros, and mark them on bode plot as (c).
- 3. Verify the compensation with hand calculation.

Now, we apply this op-amp to an inverting type configuration. The closed-loop gain should be -1, with the feedback resistors Ri=Rf=100k Ω .

The closed-loop total harmonic distortion (THD) has to be smaller than -60dB, when input with 0.7Vpp 10kHz sinusoidal waveform.

(e) Closed-loop transfer curve

- 1. Please simulation the closed-loop DC transfer curve when input from 0 to 1.5V, and plot the closed-loop gain and mark the slope.
- 2. Print .tf output to discuss the gain and input/output impedance.
- 3. Please calculate the closed-loop DC gain with the real op-amp gain in your design.

(f) Closed-loop AC response

- 1. Please simulation the closed-loop AC response. Draw the bode plot and mark its DC gain and -3dB frequency.
- 2. Put this bode plot with open-loop response and compare the results.

(g) Closed-loop linearity response

- 1. Please simulation the closed-loop *THD* when input with 0.7Vpp 10kHz sinusoidal waveform. (*THD has to be smaller than* <u>-60dB</u>).
- 2. Please plot the input and output waveforms.

(h) Closed-loop large-signal step response

- 1. Please plot the output waveform when input with a step- from 0.3V to 1.2V, and a step+ from 1.2V to 0.3V, with rise/fall time of 10ns.
- 2. Please mark slew rate (slope between 10% 90% of final value), and the settling time (to within

10mV error) on your step+ and step- responses.

3. Compare slew rate simulation results with hand calculation.

- (i) Please change the feedback resistors Ri=Rf=1k Ω . Repeat the closed-loop transfer curve as (e).
 - 1. Print .tf output to discuss the gain and input/output impedance
 - 2. Please discuss the difference.
- (j) Please fill the following table. and discuss your design for frequency compensation and for best FoM.

V _{DD}	1.5V	
Idd (total current exclude of I Mb1) (*1)	μΑ	
Імь2, Імь3	μΑ	μΑ
Rc, Cc (<10pF)		
Open-loop performance (after final compensation)		
DC gain (> 60dB)		dB
Unity gain frequency (1pF load) (> 50MHz) (*2)		MHz
Phase margin (> 45°)		degree
Closed-loop performance (after final compensation)		
T.H.D. (0.3V-1.1V, 10KHz test) (THD < -60dB)		dB
S.R.+ (Vo 0.3V-1.2V, slope from 10%-90%) (*3)		V/µs
S.R (Vo 1.2V-0.3V, slope from 90%-10%) (*4)		V/µs
Settling time (Vo 0.3-to-1.2V within 10mV error)		ns
Figure of Merit (after final compensation)		
$\frac{*2_{(MHz)}}{*1_{(uA)}}$		
$\frac{*3_{(V/us)}}{*1_{(uA)}}$		
$\frac{*4_{(V/us)}}{*1_{(uA)}}$		