Оглавление

1	Графы	2
	1.1 Сетевой график	2
	1.1.1 Нахождение резервов работ	2
	1.2 Паросочетания	2

Глава 1

Графы

1.1 Сетевой график

1.1.1 Нахождение резервов работ

Задан сетевой график $G=\langle M,N\rangle$, работы – дуги, $u\in N, t(u)\geq 0$

Знаем $t_{\rm kp}$ – критическое время

v[i] — времена наступления событий (закончены все работы, которые туда входят, и можно приступать к любому из тех, которое выходит)

Замечание. В форме работы – вершины, v[i] – самое раннее возможное время входа в эту вершину (начала работы)

w[i] — самое позднее время наступления события i

Алгоритм (определения w[i]).

1. Топологическая сортировка, $w[i] \coloneqq t_{\text{кр}} \quad \forall i$

$$2. \quad \begin{array}{l} \textbf{for } i \coloneqq m; \ i\text{--} \ to \ 1 \ \textbf{do} \\ & | \ \textbf{for } u \in N_i^+ \ \textbf{do} \\ & | \ \textbf{if } w[\operatorname{beg}(u)] > w[i] - t[u] \ \textbf{then} \\ & | \ w[\operatorname{beg}(u)] \coloneqq w[i] - t[u] \\ & | \ \textbf{end} \\ & \ \textbf{end} \end{array}$$

Задача. Есть задачи, которые выполняются на m параллельных процессорах

Задан сетевой график в форме работы – вершины

Для каждой вершины задано время работы t[i] > 0

Для каждой дуги задано c(i,j) – время передачи данных от i к j, если i и j выполняются на разных процессорах

1.2 Паросочетания

Определение 1. Паросочетание в графе – набор дуг, не имеющих общих начал и концов

Задача. Найти паросочетание наибольшего размера

Определение 2. Вершинная база графа – подмножество вершин, которым инцидентны все другие

Утверждение 1. Размер максимального паросочетания равен размеру минимальной вершинной базы

Наша задача эквивалентна этой:

Задача. Найти минимальную вершинную базу

Мы будем решать задачу о паросочетании, тем самым решим и задачу о вершинной базе Задачу о паросочетании будем рассматривать на двудольном графе **Определение 3.** Двудольный граф $G = \langle M_1 \cup M_2, N \rangle : u = (i, j) \in N \quad i \in M_1, \ j \in M_2, \ \text{т. е. вершины рабиты на два множества, и все рёбра идут из одного множества в другое$

Алгоритм (построения максимального паросочетания). Дан двудольный граф $G=\langle M_1\cup M_2,N\rangle$ \overline{N} – паросочетание, $\overline{N}\neq\emptyset$

 $X(\overline{N})\subset M_1, Y(\overline{N})\subset M_2$ – вершины из M_1 и M_2 соответственно, которые **не** покрываются паросочетанием

Начальное состояние. $X = M_1, \quad Y = M_2$

Считаем, что все дуги идут из M_1 в M_2

- 1. Дуги из \overline{N} перенаправляем, чтобы они шли из M_2 в M_1
- 2. Ищем путь из $X(\overline{N})$ в $Y(\overline{N})$
- 3. Если пути нет, алгоритм заканчивается

4.
$$P=u_1v_1u_2v_2...u_k$$
, где $\begin{cases} u_i\notin\overline{N} \\ v_j\in\overline{N} \end{cases}$ (последняя обязательно u)

5.
$$\overline{N} := \left(\overline{N} \setminus \{v_j \mid v_j \in P\}\right) \cup \{u_i \mid u_i \in P\}$$

6. Все дуги идут из M_1 в M_2

Алгоритм (нахождения минимального вершинного покрытия).

1.