

PART V PLAN:

- Practical implications of a Monte Carlo method
- Introducing 3 algorithms:
 - Inversion method
 - Transformation method
 - Reject sampling

A KEY NEED TO IMPLEMENT MONTE CARLO METHOD

- We have seen that the Monte Carlo estimator provides us with an approximation of the expected value of a function g(X) of any random variable X.
- We can calculate probabilities using expected values of appropriate functions of random variable (e.g. indicator functions).
- To implement Monte Carlo estimation, <u>we ought to be able to simulate random values from distributions!</u>

HOW TO SIMULATE RANDOM VARIABLES

- How do we simulate values of a random variable X that follows a certain distribution with p.d.f. f(x)?
- If the distribution has a name, then we can use R and the appropriate function of the form "r+name of distribution", such as runif, rgamma, rnorm, rbinom, rpoiss, rexp, rbeta, etc
- What if the random variable X follows a distribution for which we don't know the name? How do we simulate values for the random variable X?

INVERSION METHOD

- There are different algorithms that can be used to simulate random variales.
- The <u>inversion method</u> is one of the most commonly used methods to simulate random variables and perhaps the simplest to implement.

To use this method, we ought to go back to c.d.f.'s.

PROPERTIES OF CDF'S

• We have seen the definition of a c.d.f. starting from a random variable X:

$$F(x) = P(X \le x).$$

- What quarantees that a function F(x) is a c.d.f.? What are the properties of a c.d.f.?
 - F(x) is increasing. [Why?]
 - F(x) is right continuous, that is $F(x+\varepsilon) \to F(x)$ as $\varepsilon \to 0$
 - $F(x) \to 0$ as $x \to -\infty$ while $F(x) \to 1$ as $x \to \infty$.

THE CDF OF A RANDOM VARIABLE HAS A UNIFORM DISTRIBUTION!

• Propostion: If F(x) is a continuous and strictly increasing function on R. Let X be a random variable with c.d.f. F(x). Suppose F(x) has an inverse $F^{-1}(x)$.

The random variable F(X) follows a uniform distribution on [0,1].

GENERATING RANDOM VARIABLES FROM ANY CDF

- This result is at the basis of the Inversion method to generate random variables from a given distribution.
- Proposition: Let F(x) be a continuous and strictly increasing c.d.f. on R with inverse function $F^{-1}(x)$, which maps the interval [0,1] onto R.
 - Let U^-U niform((01)), that is, let U be a uniform random variable on[0,1], then $X=F^{-1}(U)$ is a random variable with c.d.f. F(x).

GENERAL INVERSION METHOD ALGORITHM

A general inversion method algorithm then would be structured as follows:

- Given a c.d.f F(x), calculate $F^{-1}(x)$
- Simulate independent U_i~Uniform (0,1)
- Return $X_i = F^{-1}(U_i)$

ILLUSTRATIVE EXAMPLE

Top: pdf of a Gaussian r.v., bottom: associated cdf.

EXPONENTIAL DISTRIBUTION EXAMPLE

• Let $\lambda > 0$. The exponential CDF is given by

$$F(x) = 1 - e^{-\lambda x}$$

Generate values of a random variable following an exponential distribution!

Set
$$F(x) = y$$

$$1 - e^{-\lambda x} = y$$

$$1-y=e^{-\lambda x}$$

$$\log(1-y)=-\lambda x$$

$$x = -\log(1-y)$$

Algorithm: $N = (, \infty)$ 1. Simulate n independent U;~ unif(0,1) 2. Calculate $X_i = - \left(\frac{1}{2} - \frac{1}{2} \right)$

EXPONENTIAL R.V.'S USING THE INVERSION METHOD

```
# Generating values following an exponential distribution
lambda <- 0.25
n <- 10000
u <- runif(n)
x.inv <- -log(1-u)/lambda
x.rexp <- rexp(n,rate=lambda)

# Checking if the two samples are different
wilcox.text(x.inv,x.rexp)$p.value</pre>
```

EXPONENTIAL R.V.'S USING THE INVERSION METHOD

Histogram of x_inversion

Histogram of x_rexp

ANOTHER EXAMPLE: LOGISTIC DISTRIBUTION

• The logistic distribution has p.d.f. and c.d.f. given respectively by:

$$f(x) = \frac{exp(-x)}{(1+exp(-x))^2}$$
 $F(x) = \frac{1}{1+exp(-x)}$

How would we simulate a random sample from a logistic distribution?

HOW TO HANDLE DISCRETE R.V.'S?

- Simulating discrete random variables with the method of inversion requires slight more care.
- Why?

GENERALIZED INVERSE

- For discrete random variables, we don't apply the inverse of the c.d.f. to a sample of values drawn from the uniform distribution. Rather, what we use is the generalized inverse to the c.d.f.
- Let F(x) be a c.d.f. on R. We define the <u>generalized inverse</u> F-1: $[0,1] \to R$ as the function $F^{-1}(u) = \inf\{x \in \mathbb{R}: F(x) = u\}$.

Then, if U^{-1} Uniform(0,1), $X=F^{-1}(U)$ has F(x) as c.d.f.

DISCRETE RANDOM VARIABLES

• If X is a discrete random variable with p.d.f. P(X = k) = p(k), then the c.d.f. of X is defined as:

$$F(x) = \sum_{k=0}^{\lfloor x \rfloor} P(x=k) = \sum_{k=0}^{\lfloor x \rfloor} p(k)$$

and its generalized inverse is defined as follows: $F^{-1}(u)$ is $x \in \mathbb{N}$ such that

$$\sum_{k=0}^{x-1} p(k) < x \le \sum_{k=0}^{x} p(k)$$

with the LHS equal to 0 if x=0.

EXAMPLE

```
p \leftarrow c(0.5, 0.3, 0.2) \# pmf
p_norm <- c(0, cumsum(p)) ## 0.0 0.5 0.8 1.0
m <- length(p)</pre>
n <- 100000
u <- runif(n)
x <- array(NA, n)
for(i in 1:n) {
    for(j in 1:m) {
         if ((p_norm[j] < u[i]) & (u[i] <= p_norm[j + 1])) {</pre>
             x[i] \leftarrow j
sum(is.na(x)) ## 0
table(x)
##
## 50227 30105 19668
```

TRANSFORMATION METHOD

- Suppose we have a random variable Y that follow some distribution with c.d.f. Fy and defined on some space Sy, which we know how to simulate.
- Suppose that there is a random variable X that follows some distribution with c.d.f. F_X and defined on some space S_X , that we wish to simulate.
- If we can find a function $\varphi\colon S_Y\to S_X$, with the property that if Y follows the distribution with c.d.f. F_X , we can simulate the random variable X, by simulating first Y and then applying the transformation φ onto the sampled values for Y

TRANSFORMATION METHOD GENERAL ALGORITHM

• The <u>transformation method</u> general algorithm to generate samples from a given distribution will be as follows:

- 1. Find Y~F_Y that you can simulate from, and a function φ such that X= $\varphi(Y)\sim F_X$.
- 2. Simulate independently $Y_i \sim F_Y$.
- 3. Return $X_i = \varphi(Y_i) \sim F_X$.

EXAMPLE: EXPONENTIAL TO GAMMA

- Note: Let Y_i , $i=1,2,...\alpha$ be independent random variables that follow an Exponential distribution with parameter $\lambda = 1$, that is: $Y_i \sim Exp(1)$.
- Denote by $X = \frac{1}{\beta} \sum_{i=1}^{\alpha} Y_i$, then $X \sim Gamma(a, \beta)$.

• Use this result to devise an algorithm to sample values from a Gamma(7,10) distribution.

REJECTION SAMPLING: MAIN IDEA

- Another algorithm to simulate random variables is based on a <u>rejection sampling idea</u>.
- The method consists into drawing random variables from a larger space defined by a proposal p.d.f., and "reject" those values that are not in the region defined by the target p.d.f.

FUNDAMENTAL THEOREM OF SAMPLING

Theorem (Fundamental Theorem of simulation)

Let X be a rv on Ω with pdf or pmf f_X . Simulating X is equivalent to simulating

$$(X, U) \sim \text{Unif}(\{(x, u) | x \in \Omega, 0 < u < f_X(x)\})$$

REJECTION SAMPLING IDEA

- ▶ Direct sampling of (X, U) uniformly over the set \mathcal{A} is in general challenging
- ▶ Consider some superset S such that $A \subseteq S$, such that simulating uniform rv on S is easy
- Therefore, a uniform distribution on A can be obtained by drawing from a uniform distribution on S, and rejecting samples in S not in A
- ► Rejection sampling technique:
 - 1. Simulate $(Y, V) \sim \text{Unif}(S)$, with simulated values y and v
 - 2. if $(y, v) \in \mathcal{A}$ then stop and return X = y, U = v,
 - 3. otherwise go back to 1.
- ▶ The resulting rv (X, U) is uniformly distributed on A
- ightharpoonup X is marginally distributed from f_X

EXAMPLE: BETA DENSITY

• Let $X \sim Beta(\alpha = 5, \beta = 5)$, then the p.d.f. is given by:

$$f(x) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} \cdot (1 - x)^{\beta - 1}$$

for 0<x<1 and with $\alpha=5$, $\beta=5$.

Then, f(x) is bounded above by 3 on [0, 1].

EXAMPLE: BETA DENSITY

- ▶ Let $S = \{(y, v) | y \in [0, 1], v \in [0, 3]\}$
 - 1. Simulate $Y \sim \mathcal{U}([0,1])$ and $V \sim \mathcal{U}([0,3])$, with simulated values y and v
 - 2. If $v < f_X(x)$, return X = x
 - 3. Otherwise go back to Step 1.
- Only requires simulating uniform random variables and evaluating the pdf pointwise

REJECTION SAMPLING MORE PRECISELY

- In general: consider a random variable X defined on a space S_X with p.d.f. f(x), the target distribution.
- We want to sample from f(x) using a proposal p.d.f. q(x) from which <u>can sample easily</u>.
- We find a constant M such that $\frac{f(x)}{q(x)} \leq M$ for all $x \in S$.
- The following rejection algorithm, returns samples for a random variable X with p.d.f. f(x).

REJECTION SAMPLING GENERAL ALGORITHM

- 1. Identify a proposal c.d.f. Q(x) from which it is easy to sample with p.d.f. q(x). Find M such that $\frac{f(x)}{q(x)} \le M$ for all $x \in S$.
- 2. Simulate $Y_i \sim Q$ and $U_i \sim Unif((0,1))$.
- 3. If $U_i \leq \binom{f(Y_i)}{q(Y_i)}/M$, then return $X_i = Y_i$, otherwise do not return anything.