Orthogonal splits of geometric algebras

Let G be a geometric algebra. For any 1-vector u, we can define the subspaces

$$\begin{split} G^{\parallel u} &:= \left\{ A^{\parallel u} \mid A \in G \right\} = \left\{ A \in G \mid u \land A = 0 \right\} \\ G^{\perp u} &:= \left\{ A^{\perp u} \mid A \in G \right\} = \left\{ A \in G \mid u \mid A = 0 \right\} \end{split}$$

where we use the <u>multivector projections</u> and <u>rejections</u> $A = A^{\parallel u} + A^{\perp u}$.

Lemma. $G = G^{\perp u} \oplus G^{\parallel u}$

Proof. Any $A \in G$ is a sum of its projections and rejections $A^{\parallel u} \in G^{\parallel u}$ and $A^{\perp u} \in G^{\perp u}$.

Lemma. $G^{\perp u}$ is a subalgebra.

Proof. Let $A, B \in G^{\perp u}$ which means $u \mid A = u \mid B = 0$. Since $u \mid$ is linear, $G^{\perp u}$ is a vector space. To show that $G^{\perp u}$ is closed under the geometric product, observe that $u \mid (AB) = (u \mid A)B + A^*(u \mid B) = 0$ from the <u>anti-derivation identity</u>.

Lemma. Any element $A \in G^{\parallel u}$ is of the form $A = uA_{\perp} = u \wedge A_{\perp}$ where $A_{\perp} \in G^{\perp u}$.

Proof. For any $A \in G^{\parallel u}$ take $A_{\perp} := u^{-1}A$. To show $A_{\perp} \in G^{\perp u}$, write

$$u \mid A_{\perp} = u \mid (u^{-1}A) = (u \mid u^{-1})A - u^{-1}(u \mid A) = A - u^{-1}(uA) = 0$$

using the anti-derivation identity. Hence, $A = uA_{\perp}$.

Corollary. $G^{\parallel u} = uG^{\perp u} = \{uA \mid A \in G^{\perp u}\}$

Proof. By the lemma above, the map f(uA) = A is well defined for $f: G^{\parallel u} \to G^{\perp u}$. Since it has inverse $f^{-1}(A) = uA$ it is bijective so $f^{-1}(G^{\perp u}) = G^{\parallel u}$ and hence $uG^{\perp u} = G^{\parallel u}$.

Lemma. $G = G^{\perp u} \oplus G^{\parallel u}$ forms a \mathbb{Z}_2 -grading: elements multiply under the geometric product according to the multiplication table:

$$G^{\perp u}$$
 $G^{\parallel u}$
 $G^{\perp u}$ $G^{\parallel u}$ $G^{\parallel u}$
 $G^{\parallel u}$ $G^{\parallel u}$ $G^{\perp u}$

Proof. We have already shown that $G^{\perp u}$ is a subalgebra, so $G^{\perp u} \times G^{\perp u} \to G^{\perp u}$ under the geometric product.

To show that $G^{\perp u} \times G^{\parallel u} \to G^{\parallel u}$, take $A \in G^{\perp u}$ and $B \in G^{\parallel u}$. By the previous lemma, $B = uB_{\perp}$ where $B_{\perp} \in G^{\perp u}$. We show $u \wedge (AB) = 0$ and hence $AB \in G^{\parallel u}$ by writing

$$u \mid (AB) = (u \mid A)uB_{\perp} + A^{*}(u \mid (uB_{\perp})) = A^{*}u^{2}B_{\perp} - A^{*}u(u \mid B_{\perp}) = uAuB_{\perp} = uAB_{\perp}$$

where we used $u \mid A = 0 \iff uA = u \land A = A^* \land u = A^*u$. Same for $G^{\parallel u} \times G^{\perp u} \to G^{\parallel u}$.

To complete the table, pick $A, B \in G^{\parallel u}$ and let $A = uA_{\perp}$ and $B = uB_{\perp}$ where $A_{\perp}, B_{\perp} \in G^{\perp u}$ as before. We can show $u \mid (AB) = 0$ since

$$u \rfloor (uA_{\perp}uB_{\perp}) = (u \rfloor u)A_{\perp}uB_{\perp} - u(u \rfloor A_{\perp})uB_{\perp} - uA_{\perp}^{\star}(u \rfloor u)B_{\perp} + uA_{\perp}^{\star}u(u \rfloor B_{\perp})$$
$$= A_{\perp}uB_{\perp} - uA_{\perp}^{\star}B_{\perp} = A_{\perp}uB_{\perp} - A_{\perp}uB_{\perp} = 0$$

which means $AB \in G^{\perp u}$.