Fikina

Hatnicová

Směrka

Ni-spol

1. Teorie grup: Grupoidy, pologrupy, monoidy a grupy. Podgrupy, cyklické grupy a jejich generátory.

NI-MPI

- Grupoid uspořádaná dvojice (M, ∘)
 - o *M* = libovolná neprázdná množina
 - \circ = binární operace nad M (tzv. kule)
- Pologrupa grupoid, pro který je asociativní
- Monoid pologrupa, ve které existuje neutrální prvek $e: \forall a \in M: e \circ a = a \circ e = a$
 - o V monoidu existuje právě jeden neutrální prvek
- Grupa monoid, ve kterém ke každému $a \in M$ existuje inverzní prvek a^{-1} : $a^{-1} \circ a = a \circ a^{-1} = e$
 - o V grupě má každý prvek právě 1 inverzní prvek
- **Abelovská grupa** grupa, kde je komutativní

Uzavřená \rightarrow grupoid \rightarrow asociativní \rightarrow pologrupa \rightarrow e \rightarrow monoid \rightarrow inverze \rightarrow grupa \rightarrow komutativní \rightarrow Abel. grupa

- Podgrupa grupy $G = (M, \circ)$ je $H = (N, \circ)$: $N \subseteq M, (N, \circ)$ je grupa
 - V každé grupě s alespoň 2 prvky existují alespoň 2 podgrupy
 - Triviální podgrupy ($\{e\}$, \circ), $G = (M, \circ)$
 - Ostatní podgrupy jsou vlastní podgrupy
 - o **Průnik** podgrup je podgrupa
 - o Kritérium podgrupovosti: H = (N, ∘) je podgrupa G, právě když $\forall a, b ∈ N$: $a ∘ b^{-1} ∈ N$
 - o Neutrální prvek podgrupy je roven neutrálnímu prvku grupy
 - o Inverze prvku v podgrupě je stejná, jako inverze stejného prvku v grupě
- **Řád grupy** $G = (M, \circ)$ počet prvků množiny M #G
 - o Podle řádu se dělí na **konečné a nekonečné grupy** (nekonečná M)
 - o Lagrangeova věta buď H podgrupa konečné grupy G, potom řád H dělí řád G
 - Sylowova věta buď G grupa konečného řádu n a číslo p prvočíselný dělitel čísla n. Pokud p^k dělí n (pro k přirozené), pak grupa G obsahuje podgrupu řádu p^k
- $G = (M, \circ), N \subset M \neq \emptyset \Rightarrow < N > := \cap \{H: H \text{ je podgrupa grupy } G \text{ obsahující } N\}$ je podg. G obsah. N
- Grupa generovaná množinou podgrupa < N > grupy $G = (M, \circ), N \subseteq M$
 - o Množina *N* je **generující množina** grupy *N*
 - o Pro jednoprvkovou množinu $N = \{a\}$ zavádíme značení $< a> := < \{a\}>$, a = generátor < a>
 - \circ < N > je nejmenší podgrupa G obsahující množinu N
 - o Všechny prvky < N > lze získat pomocí "grupového obalu" $< N > = \{a_1^{k_1} \circ a_2^{k_2} \circ ... \circ a_n^{k_n} : n \in N, \ k_i \in Z, a_i \in N\}$
 - o **Generátor** = prvek, jehož **mocněním** dostaneme všechny prvky grupy
- Grupa \mathbb{Z}_n^+ je rovna $< k >, k \in \mathbb{Z}_n^+$ právě když k a n jsou nesoudělná čísla
- Cyklická grupa existuje prvek $a \in M$: < a > = G, a = generátor cyklické grupy G
- **Řád** prvku buď g prvek grupy G. Pokud existuje $\in \mathbb{N}^+$: $g^m = e$, pak **nejmenší m** s touto vlastností je **řád prvku** g. Pokud takové m neexistuje, řád prvku je nekonečno
 - o Řád prvku $g \ ord(g)$ je roven řádu grupy < g > : ord(g) = # < g >
 - o \mathbb{Z}_n^{\times} je cyklická, právě když $n=2,4,p^k,2p^k$, kde p je liché prvočíslo a $k\in\mathbb{N}^+$
- Jak najít všechny generátory
 - o Je-li (G, \circ) cyklická grupa řádu n a a nějaký její generátor, potom a^k je také generátor tehdy, a jen tehdy, když k a n jsou nesoudělná $(\gcd(k, n) = 1)$
 - o V cyklické grupě řádu n je počet generátorů roven $\varphi(n)$
 - φ = Eulerova funkce každému $n \in \mathbb{N}$ přiřazuje počet přirozených čísel menších než n, které jsou s ním nesoudělná
 - Takže pro prvočíslo p je \mathbb{Z}_p^{\times} cyklická grupa řádu p-1 a má $\varphi(p-1)$ generátorů,
- Libovolná podgrupa cyklické grupy je opět cyklická grupa
- Malá Fermatova věta pro libovolné p a libovolné $1 \le a < p$: $a^{p-1} \equiv 1 \pmod{p}$
 - o Z důsledku Lagrangeovy věty: $\forall a \in M$: $a^n = e$, kde e je neutrální prvek

2. Tělesa a okruhy: Základní definice a vlastnosti. Konečná tělesa. Okruhy polynomů, ireducibilní polynom.

NI-MPI

- Okruh $R = (M, +, \cdot)$, kde M je neprázdná množina a +, · binární operace na ní a platí:
 - 1. (M, +) je abelovská grupa = aditivní grupa okruhu R
 - Neutrální prvek = **nulový prvek** značí se 0
 - Inverzní prvek vůči + k $a \in M$ značíme -a
 - Lze definovat odčítání: a b = a + (-b)
 - 2. (M, \cdot) je monoid = multiplikativní monoid okruhu R
 - Je-li · komutativní, je R komutativní okruh
 - Neutrální prvek = jednička, značení 1
 - 3. Platí **distributivní zákon:** $\forall a, b, c \in M$: $(a(b+c) = ab + ac \land (b+c)a = ba + ca)$
- Základní vlastnosti okruhu
 - o Násobení nulovým prvkem dává nulový prvek
 - o Levý i pravý distribuční zákon pro odečítání: c(b-a)=cb-ca
- Obor integrity okruh, ve kterém neexistují dělitelé nuly
 - o **Dělitelé nuly** = nenulové prvky $a, b \in M$: $a \cdot b = b \cdot a = 0$
- **Těleso** okruh $T = (M, +, \cdot)$, kde $(M \setminus \{0\}, \cdot)$ je abelovská grupa
 - o Tuto grupu nazýváme multiplikativní grupou tělesa T
 - o Pokud pro a, b z tělesa T platí ab=0, potom a=0, nebo b=0
 - Každé těleso je oborem integrity
- Zobrazení h z okruhu/tělesa R do okruhu/tělesa S je homomorfismus těchto okruhů/těles, jestliže je h homomorfismem příslušných aditivních a multiplikativních monoidů/grup a platí $h(1_R) = 1_S$
 - o Je-li navíc *h* bijekce (prosté a na), jedná se o izomorfismus těchto okruhů/těles
 - o Tělesa T a K nazýváme izomorfní, právě když existuje izomorfismus $T \to K$. V tomto případě je těleso T izomorfní s tělesem K
- Konečné těleso těleso, které má konečný počet prvků
- Řád tělesa = počet prvků tělesa
- Základní příklad konečného tělesa množina $\mathbb{Z}_p=\{0,1,...,p-1\}$ s operacemi **modulo prvočíslo p**
 - o $\left(\mathbb{Z}_p,+,\,\cdot\,
 ight)$ aditivní grupa \mathbb{Z}_p^+ , multiplikativní grupa $\mathbb{Z}_p^{ imes}$
 - \mathbb{Z}_p^+ řád p
 - Každý nenulový prvek je její **generátor**
 - Je grupou i pro neprvočíselné *p*
 - \mathbb{Z}_p^{\times} řád p-1 není prvočíslo
 - Je cyklická
 - Počet generátorů závisí na řádu, je roven $\varphi(p-1)$
- **Řád konečného tělesa** musí být mocnina prvočísla p^n , kde p je prvočíslo a n je kladné celé číslo
 - o Všechna tělesa řádu p^n jsou **navzájem izomorfní**
- **Galois field** těleso s p^n prvky $GF(p^n)$
 - o Prvočíslo p = charakteristika tělesa $GF(p^n)$
 - o $GF(p^n)$ aditivní grupa
 - Řád p^n
 - Neutrální prvek $0 = 00 \cdots 0 = 0^n$
 - Pro n > 1 není cyklická
 - o $GF(p^n)$ multiplikativní grupa
 - Řád $p^n 1$
 - Neutrální prvek: $00 \cdots 1 = 0^{n-1}1$
 - Inverzi lze nalézt pro každý prvek s REA v polynomiálním čase
 - Je vždy cyklická

Polynom nad okruhem

$$P(x) = \sum_{i=0}^{n} a_i x^i$$

- o Nad okruhem R; $a_i \in R$; i = 0, 1, ..., n
- o a_i ... koeficienty polynomu P(x)
- o x ... formální proměnná polynomu P(x)
- o Pokud pro P(x) existuje $k \in \{0, 1, ..., n\}$: $a_k \neq 0$, pak největší z k = stupeň polynomu P(x), značeno $\deg(P(x))$
- o P(x) = 0 ... nulový polynom nedefinovaný stupeň
- o Abychom mohli dělat operace s polynomy, potřebujeme je umět s jejich koeficienty lze vybudovat okruh polynomů nad libovolným okruhem (i tělesem)
- Okruh polynomů množina všech polynomů nad okruhem R spolu s operacemi sčítání a násobení definovanými předpisy

$$\sum_{i=0}^{n} a_i x^i + \sum_{i=0}^{n} b_i x^i = \sum_{i=0}^{n} (a_i + b_i) x^i$$
$$\left(\sum_{i=0}^{n} a_i x^i\right) \cdot \left(\sum_{i=0}^{m} b_i x^i\right) = \sum_{i=0}^{n+m} \left(\sum_{j+k=i}^{n} a_j b_k\right) x^i$$

kde $a_i, b_i \in R$, tvoří okruh polynomů nad okruhem R - R[x]

- Násobení polynomů: buď T těleso a $f(x), g(x) \in T[x]$ nenulové polynomy. Platí
 - deg(f(x)g(x)) = deg(f(x)) + deg(g(x))
- Dělení polynomů: buď T těleso a $f(x), g(x) \in T[x]$ nenulové polynomy. Pak existují jednoznačně určené polynomy $q(x), r(x) \in T[x]$ takové, že

$$f(x) = q(x)g(x) + r(x)$$

kde r(x) je buď nulový, nebo má stupeň ostře menší než stupeň g(x)

Bézoutova rovnost pro polynomy: Buďte f(x) a g(x) nenulové polynomy nad tělesem T. Pak existují polynomy $u(x), v(x) \in T[x]$ tak, že:

$$\gcd(f(x), g(x)) = u(x)f(x) + v(x)g(x)$$

o Buď T těleso a $p(x) \in T[x]$ polynom stupně n. Prvek $\xi \in T$ je kořen polynomu p právě tehdy, když:

$$p(\xi) = (x - \xi)g(x)$$

 $kde g(x) \in T[x]$ je stupně n-1

4

Ireducibilní polynom – buď $P(x) \in K[x]$ stupně alespoň 1. Řekneme, že P(x) je ireducibilní nad okruhem K, jestliže $\forall A(x), B(x) \in K[x]$:

$$A(x)B(x) = P(x) \Longrightarrow (deg(A(x)) = 0 \lor deg(B(x)) = 0)$$

o Mějme celé n>1 a prvočíslo p. Označme N(p,n) počet monických polynomů stupně n ireducibilních nad \mathbb{Z}_n . Potom

$$N(p,n) = \frac{1}{n} \sum_{d/n} \mu(d) p^{n/d} \ge \frac{1}{n} \left(p^n - \sum_{q,q \text{ prvoč.}} p^{n/q} \right)$$

- Monický polynom má za koeficient u nejvyšší mocniny jedničku
- μ Möbiova funkce definovaná pro celé n > 0:
- $\mu(n) = \begin{cases} 1 & n \text{ neobsahuje čtverec prvočísla a má sudý počet prvočíselných faktorů} \\ -1 & n \text{ neobsahuje čtverec prvočísla a má lichý počet prvočíselných faktorů} \\ 0 & \text{obsahuje čtverec prvočísla} \end{cases}$

3. Funkce více proměnných: gradient, Hessián, definitnost matic, extrémy funkcí více proměnných bez omezení a s rovnostními omezeními.

NI-MPI

Parciální derivace

- **Norma** na vektorovém prostoru V je zobrazení $||\cdot||:V\to\mathbb{R}_0^+$ splňující:
 - 1. $||x|| = 0 \Rightarrow x = 0$
 - $2. \quad ||\alpha x|| = |\alpha| \cdot ||x||$
 - 3. $||x + y|| \le ||x|| + ||y||$ (trojúhelníková nerovnost)
 - o Pro každé $x, y \in V$ a všechny skaláry α
 - o Euklidovská norma na \mathbb{R}^n (\mathbb{C}^n): $\|x\|_2 = (\sum_{i=1}^n |x_i|^2)^{1/2}$
- Reálná funkce více proměnných zobrazení $D_f o \mathbb{R}$, $D_f \subset \mathbb{R}^n$
 - o D_f ... definiční obor, $f(D_f)$... obor hodnot
 - o Graf funkce = množina:

$$\Gamma_f = \{(b_1, b_2, \dots, b_n, f(b_1, b_2, \dots, b_n)) : (b_1, b_2, \dots, b_n) \in D_f\} \subset \mathbb{R}^{n+1}$$

- Okolí bodu = buď $x \in \mathbb{R}^n$ a $\delta \in \mathbb{R}^+$, δ -okolí bodu x je množina $H_{\delta}(x) = \{b \in \mathbb{R}^n : ||x b|| < \delta\}$
- **Hromadný bod** = $x \in \mathbb{R}^n$ je hromadným bodem M ($M \subset \mathbb{R}^n$), pokud $\forall r > 0$: $H_r(x)\{x\} \cap M \neq \emptyset$
 - Bod $x \in M$, který není hromadný, je izolovaný
- **Limita funkce více proměnných** funkce $f: D_f \to \mathbb{R}, D_f \subset \mathbb{R}^n$, má limitu $L \in \overline{\mathbb{R}}$ v hromadném bodě bmnožiny D_f , pokud:

$$\forall H(L) \quad \exists H(\mathbf{b}) \quad \mathbf{x} \in (D_f \cap H(\mathbf{b})) \setminus \{\mathbf{b}\} \Longrightarrow f(\mathbf{x}) \in H(L)$$

Značení:

$$\lim_{\mathbf{x} \to \mathbf{b}} f(\mathbf{x}) = I$$

- $\lim_{\mathbf{x}\to\mathbf{b}}f(\mathbf{x})=L$ o Limita posloupnosti posl. $(x_i)_{i=0}^{+\infty}$ má limitu $L\in\mathbb{R}^n$, pokud $\forall \varepsilon>0$ $\exists N \ \forall n>N \ x_n\in H_{\varepsilon}(L)$
- Mějme funkci $f: D_f \to \mathbb{R}$, $D_f \subset \mathbb{R}^n$. Funkce F má v bodě b limitu $L_\varepsilon \Longleftrightarrow \forall (x_i)_{i=0}^{+\infty} \ x_i \neq b$:

$$\lim_{n \to +\infty} \mathbf{x}_n = \mathbf{b} \quad \Longrightarrow \quad \lim_{n \to +\infty} f(\mathbf{x}_n) = L$$

Spojitost funkce – funkce $f: D_f \to \mathbb{R}, D_f \subset \mathbb{R}^n$ je spojitá v bodě $x_0 \in D_f$, pokud:

$$\forall \epsilon > 0 \quad \exists \delta > 0 : \quad x \in (D_f \cap H_\delta(\mathbf{x}_0)) \Longrightarrow f(x) \in H_\epsilon(f(\mathbf{x}_0))$$

- Funkce je spojitá, pokud je spojitá ve všech bodech definičního oboru
- Formulace pomocí limity f je spojitá, pokud pro všechny neizolované body $x_0 \in D_f$:

$$\lim_{\mathbf{x}\to\mathbf{x}_0}f(\mathbf{x})=f(\mathbf{x}_0)$$

Parciální derivace funkce
$$f$$
 ve směru (podle) x_i v bodě $b \in D_f$, $\exists H(b) \subset D_f$:
$$\lim_{h \to 0} \frac{f(b_1, b_2, \dots, b_i + h, \dots, b_n) - f(b_1, b_2, \dots, b_i, \dots, b_n)}{h} = L$$

pokud tato limita existuje

- o Je to směrnice tečny ke grafu funkce f ve směru osy x_i
- **Gradient funkce** f v bodě $b \in D_f$ je vektor

$$abla f(\mathbf{b}) = \left(rac{\partial f}{\partial x_1}(\mathbf{b}), rac{\partial f}{\partial x_2}(\mathbf{b}), \dots, rac{\partial f}{\partial x_n}(\mathbf{b})
ight)$$

Derivace ve směru – $v \in \mathbb{R}^{n,1} = \mathbb{R}^n$, ||v|| = 1, pak derivace f ve směru v v bodě $b \in D_f$, $\exists H(b) \subset D_f$ je:

$$\nabla_{\mathbf{v}} f(\mathbf{b}) = \lim_{h \to 0} \frac{f(\mathbf{b} + h\mathbf{v}) - f(\mathbf{b})}{h}.$$

Pokud existuje gradient f v bodě b (všechny parc. derivace f jsou na nějakém okolí b spojité), pak:

$$\nabla_{\mathbf{v}} f(\mathbf{b}) = \nabla f(\mathbf{b}) \cdot \mathbf{v}$$

Parciální derivace 2. řádu v bodě *b*:

$$\frac{\partial^2 f}{\partial x_i \partial x_i} \left(\mathbf{b} \right) = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i} \right) \left(\mathbf{b} \right)$$

o $i \neq j \rightarrow \text{smíšená 2. parciální derivace}$

$$\circ \quad i = j \to \frac{\partial^2 f}{\partial x_i^2}(b)$$

- o Opět zobrazení z podmnožiny D_f
- Hessova matice existují-li všechny 2. parciální derivace v bodě b, zaznamenávají se do Hessovy matice (=Hessián):

$$abla^2 f(\mathbf{b}) = egin{pmatrix} rac{\partial^2 f}{\partial x_1^2}(\mathbf{b}) & \cdots & rac{\partial^2 f}{\partial x_1 \partial x_n}(\mathbf{b}) \ dots & dots \ rac{\partial^2 f}{\partial x_n \partial x_1}(\mathbf{b}) & \cdots & rac{\partial^2 f}{\partial x_n^2}(\mathbf{b}) \end{pmatrix}$$

- o Zaměnitelnost 2. parciálních derivací
 - Pokud jedna existuje a ta funkce je v *b* spojitá, potom druhá existuje, platí:

$$\frac{\partial^{2} f}{\partial x \partial y}(\mathbf{b}) = \frac{\partial^{2} f}{\partial y \partial x}(\mathbf{b})$$

- **2.** derivace ve směru lze derivovat ve směru v v první derivaci ve směru v druhá parciální derivace f ve směru v v bodě b: $\nabla_v(\nabla_v f)(b)$
 - Existuje-li Hessova matice (existuje okolí takové, že má f na něm spojité všechny druhé parciální derivace), potom:

$$\nabla_v(\nabla_v f)(b) = v^T \cdot \nabla^2 f(b) \cdot v$$

- Jacobiho matice matice prvních derivací
 - o Máme $\Psi: \mathbb{R}^n \to \mathbb{R}^n, \Psi(\mathbf{v}) = (\Psi_1(\mathbf{v}), \dots, \Psi_n(\mathbf{v}))$
 - o Jacobiho matice funkce ψ (psi) je zobrazení $\mathbb{R}^n \to \mathbb{R}^{n,n}$:

$$J_{\Psi} = \begin{pmatrix} \frac{\partial \Psi_1}{\partial v_1} & \cdots & \frac{\partial \Psi_1}{\partial v_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial \Psi_n}{\partial v_1} & \cdots & \frac{\partial \Psi_n}{\partial v_n} \end{pmatrix}$$

pokud všechny derivace existují

- o Má na řádcích **složky gradientů** jednotlivých složek ψ
- Geometrický význam gradientu
 - o Gradient ukazuje směr (v definičním oboru) nejvyššího růstu funkce f
 - o V místech, kde je gradient nulový (stacionární body) hledáme extrémy
 - o **Tečná nadrovina** sjednocení tečen ve všech směrech (v bodě b) tečná nadrovina f v b
 - Musí existovat gradient f v b
 - Rovnice nadroviny:

$$z = \frac{\partial f}{\partial x_1}(\mathbf{b}) (x_1 - b_1) + \frac{\partial f}{\partial x_2}(\mathbf{b}) (x_2 - b_2) + \dots + \frac{\partial f}{\partial x_n}(\mathbf{b}) (x_n - b_n) + f(\mathbf{b})$$

Normálový vektor:

$$(\frac{\partial f}{\partial x_1}(\mathbf{b}), \frac{\partial f}{\partial x_2}(\mathbf{b}), \dots, \frac{\partial f}{\partial x_n}(\mathbf{b}), -1)$$

Lokální extrémy – bez omezení

- Reálná funkce f má v bodě $b \in D_f$:
 - o Lokální minimum, pokud:

$$\exists \delta > 0, \ \forall \mathbf{x} \in (D_f \cap H_\delta(\mathbf{b})), f(\mathbf{x}) \geq f(\mathbf{b})$$

Ostré lokální minimum, pokud:

$$\exists \delta > 0, \forall \mathbf{x} \in (D_f \cap H_\delta(\mathbf{b})) \setminus \{\mathbf{b}\}, f(\mathbf{x}) > f(\mathbf{b})$$

o Globální minimum, pokud:

$$\forall \mathbf{x} \in D_f, f(\mathbf{x}) \geq f(\mathbf{b})$$

- Je-li D_f omezená a uzavřená, pak má spojitá funkce $f\colon D_f o \mathbb{R}$ globální minimum a globální maximum
- Nutná podmínka existence lokálního extrému nechť má $f: D_f \to \mathbb{R}, D_f \subset \mathbb{R}^n$ v bodě b parciální derivaci podle i-té proměnné. Pokud má f v bodě b lokální extrém, pak:

$$\frac{\partial f}{\partial x_i}(\mathbf{b}) = 0$$

o Pokud existuje gradient f v b, pak exitence lokálního extrému implikuje, že $\nabla f(b) = 0$

- o Stacionární body = body $b \in D_f$ splňující $\nabla f(b) = 0$
- o V úloze hledání extrémů jsou stacionární body podezřelé z extrému = kritické body
 - Počítají se mezi ně i body, kde ∇f neexistuje
- **Definitnost matic** $-A \in \mathbb{R}^{n,n}$. Řekneme, že A je:
 - o Pozitivně semidefinitní, pokud $x^T A x \ge 0 \ \forall x \in \mathbb{R}^{n,1}$
 - o Negativně semidefinitní, pokud $x^T A x \leq 0 \ \forall x \in \mathbb{R}^{n,1}$
 - o Pozitivně definitní, pokud $x^T A x > 0 \ \forall x \in \mathbb{R}^{n,1}, x \neq 0$
 - o Negativně definitní, pokud $x^T A x < 0 \ \forall x \in \mathbb{R}^{n,1}, x \neq 0$
 - o Indefinitní, pokud není pozitivně ani negativně semidefinitní
 - Matice A je indefinitní $\Leftrightarrow \exists x, y \in \mathbb{R}^n, x^T A x > 0$ a $y^T A y < 0$
- Pokud je $A \in \mathbb{R}^{n,n}$ symetrická matice, potom:
 - o *A* je **pozitivně semidefinitní** ⇔ **nezáporná** všechna její vlastní čísla
 - o A je **pozitivně definitní** \Leftrightarrow **kladná** všechna její vlastní čísla
 - o A je **negativně semidefinitní** \Leftrightarrow **nekladná** všechna její vlastní čísla
 - o A je **negativně definitní** \Leftrightarrow **záporná** všechna její vlastní čísla
 - o A je indefinitní ⇔ alespoň jedno kladné a alespoň jedno záporné vlastní číslo
- Sylvestrovo kritérium: $A \in \mathbb{R}^{n,n}$ je symetrická matice. Pro A A_1 ... A_n : $A_k \in \mathbb{R}^{k,k}$ je čtvercová matice v levém horním rohu A
 - o A je pozitivně definitní \Leftrightarrow determinant všech matic $A_1 \dots A_n$ je kladný
 - o A je negativně definitní \Leftrightarrow determinant A_k je záporný pro k liché a kladný pro k sudé
- Jak poznat **indefinitnost** pokud má $A \in \mathbb{R}^{n,n}$ na diagonále 2 prvky s **různým znaménkem**, pak je indefinitní
- Postačující podmínka existence extrému a sedlového bodu nechť $b \in D_f$ je stacionární bod funkce $f: D_f \to \mathbb{R}, D_f \subset \mathbb{R}^n$. Nechť existuje okolí bodu b takové, že f má na okolí spojité všechny 2. parciální derivace, potom:
 - o Je-li $\nabla^2 f(b)$ pozitivně definitní, pak b je ostré lokální minimum
 - o Je-li $\nabla^2 f(b)$ negativně definitní, pak b je ostré lokální maximum
 - o Je-li $\nabla^2 f(b)$ indefinitní, pak b je sedlový bod
- Nutná podmínka existence lokálního extrému nechť $b \in D_f$ je stacionární bod funkce $f: D_f \to \mathbb{R}, D_f \subset \mathbb{R}^n$. Nechť existuje okolí bodu b takové, že f má na okolí spojité všechny 2. parciální derivace, potom:
 - o Je-li b lokální minimum, pak $\nabla^2 f(b)$ je pozitivně semidefinitní
 - o Je-li b lokální maximum, pak $\nabla^2 f(b)$ je negativně semidefinitní
 - o Tvrzení nelze obrátit
- Postup analytického hledání extrémů:
 - 1. Najít **body podezřelé z extrému** = stacionární body a body, kde alespoň jedna parciální derivace neexistuje
 - 2. Nalézt **Hessovu matici** v bodě *b* podezřelém z extrému, pokud ta je
 - a. Pozitivně definitní, pak je bodb bodem ostrého lokálního minima
 - b. **Negativně definitní**, pak je bod *b* bodem **ostrého lokálního maxima**
 - c. **Indefinitní,** pak je bod *b* **sedlovým bodem** (takže není extrém)
 - d. V ostatních případech je třeba rozhodovat jiným způsobem

Lokální extrémy – rovnostní omezení

- Úloha vázaného extrému (minima) s rovnostní podmínkou = minimalizuj f(x) za podmínky $g_i = 0, j \in \widehat{m}$
 - $\widehat{m} = \{1 \dots m, m \in \mathbb{N}\}$
 - o f ... objektivní / účelová / minimalizovaná / optimalizovaná funkce
 - o g_i ... rovnostní podmínka / vazba
 - o Jsou-li všechny funkce lineární, je to úloha lineárního programování
- Množina přípustných řešení:

$$\mathcal{M} = \{ \mathbf{x} \in D \colon (\forall j \in \hat{m}) (g_j(\mathbf{x}) = 0) \land (\forall k \in \hat{p}) (h_k(\mathbf{x}) \le 0) \}$$

- o Máme úlohu hledání $m^* = \min\{f(x): x \in M\}$ a bodů $x^* \in M$, pro které $m^* = f(x^*)$
- o Hledáme body lokálního minima vzhledem k množině M: (pro nějaké okolí $H(x^*)$

$$\forall \mathbf{x} \in (H(\mathbf{x}^*) \cap \mathcal{M}) \quad f(\mathbf{x}^*) \le f(\mathbf{x})$$

Lagrangeova funkce $L: M \times \mathbb{R}^m \to \mathbb{R}$ pro danou úlohu:

$$L(\mathbf{x};\lambda) = f(\mathbf{x}) + \sum_{j=1}^{m} \lambda_j g_j(\mathbf{x})$$

- \circ Lagrangeovy multiplikátory ... $\lambda = (\lambda_1, \dots, \lambda_m)$
- Postačující podmínka existence ostrého lokálního minima pro rovnostní vazby nechť $f,g,j\in\widehat{m}$ mají spojité všechny 2. parciální derivace na nějaké otevřené nadmnožině $\widetilde{M}\supset M$. Pokud dvojice $(x^*,\lambda^*)\in\mathbb{R}^n\times\mathbb{R}^m$ splňuje podmínky:
 - i. (0. derivace) $x^* \in M$

ii. (1. derivace)
$$orall i, rac{\partial L}{\partial x_i}\left(x^*;\lambda^*
ight)=0$$

iii. (2. derivace) pro každý (sloupcový) vektor $0
eq v \in \mathbb{R}^n$ splňují

$$\nabla g_j(x^*) \cdot v = 0$$
, pro $\forall j \in \{1, \dots, m\}$ platí:

$$v^T \cdot \nabla_x^2 L(x^*; \lambda^*) \cdot v > 0$$

kde ∇^2_x je Hessova matice funkce L vzhledem k proměnným $x=(\dots)$ potom je x^* bodem **ostrého lokálního minima**

o Body i. a ii. jsou ekvivalentní rovnosti $\nabla L(x^*, \lambda^*) = 0$

4. Integrál funkcí více proměnných (Darbouxova konstrukce).

NI-MPI

Teorie 1D a 2D integrálu

- Integrál = nástroj pro výpočet obsahu pod grafem nějaké funkce
- Rozdělení intervalu [a,b] = konečná množina $\sigma = \{x_0 \dots x_n\}$ taková, že $a = x_0 < \dots < x_n = b$
 - o x_k , k=1,2,..., n-1 ... dělící body intervalu [a,b]
 - $v(\sigma) = \max\{\Delta k, \ k=1,...,n\}, \ \Delta k = x_k x_{k-1} \dots$ norma rozdělení σ
- **Darbouxův součet** (horní/dolní) nechť f je definovaná na [a,b] a $\sigma = \{x_0 \dots x_n\}$ je jeho rozdělení. Označme:

$$M_i = \sup_{x \in [x_{i-1}, x_i]} f(x)$$
 a $m_i = \inf_{x \in [x_{i-1}, x_i]} f(x)$

Potom

$$S_f(\sigma) = \sum_{i=1}^n M_i \Delta_i$$
 a $s_f(\sigma) = \sum_{i=1}^n m_i \Delta_i$

je **horní a dolní (Darbouxův) součet** funkce f při rozdělení σ

Horní Darbouxův integrál (f na [a, b]):

$$D_f = \inf \left\{ S_f(\sigma) : \sigma \text{ je rozdělení } [a, b] \right\}$$

Dolní darbouxův integrál
$$(f$$
 na $[a,b]$): $d_f=\sup\left\{s_f(\sigma)\colon \sigma \text{ je rozdělení } [a,b]\right\}$

Pokud $D_f = d_f$, nazveme tuto hodnotu **Darbouxovým integrálem** f na [a, b]:

$$\int_a^b f(x) \mathrm{d}x = D_f = d_f$$

- f je (Darbouxovsky) integrabilní na [a,b]
- Posloupnost rozdělení σ_n je **normální**, pokud pro její normy platí:

$$\lim_{n\to\infty}\nu(\sigma_n)=0$$

Buď f **spojitá** na [a,b]. Potom existuje $\int_a^b f(x)dx$. Je-li σ_n normální posloupnost rozdělení, potom

$$\lim_{n \to \infty} s_f(\sigma_n) \quad \text{a} \quad \lim_{n \to \infty} S_f(\sigma_n)$$

existují a jsou rovny $\int_a^b f(x)dx$

Aditivita integrálu:

$$\int_{a}^{b} (f+g)(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

Multiplikativita integrálu:

$$\int_{a}^{b} (cf)(x) dx = c \int_{a}^{b} f(x) dx$$

Primitivní funkce – nechť funkce f je definována v intervalu (a,b), kde $-\infty \le a < b \le +\infty$. Funkci F splňující podmínku

$$F'(x) = f(x) \forall x \in (a, b)$$

nazýváme primitivní funkcí k funkci f v intervalu (a, b)

- 2D integrál nad obdélníkovou oblastí
 - o Máme 2 rozdělení $\sigma_x[a,b]$, $\sigma_y[c,d]$. $\sigma=\sigma_x\times\sigma_y$ je rozdělením $D=[a,b]\times[c,d]$
 - Označme:

$$M_{i,j} = \sup \Big\{ f(x,y) \colon (x,y) \in [x_{i-1},x_i] \times [y_{j-1},y_j] \Big\} \text{ a } m_{i,j} = \inf \Big\{ f(x,y) \colon (x,y) \in [x_{i-1},x_i] \times [y_{j-1},y_j] \Big\}$$

o Horní Darbouxova suma f vzhledem k σ :

$$S_f(\sigma) = \sum_{i=1}^n \sum_{j=1}^m M_{i,j} (x_i - x_{i-1}) (y_j - y_{j-1})$$

o **Dolní Darbouxova suma** f vzhledem k σ :

$$s_f(\sigma) = \sum_{i=1}^n \sum_{j=1}^m m_{i,j} (x_i - x_{i-1}) (y_j - y_{j-1})$$

o Horní Darbouxův integrál (funkce f na D):

$$D_f = \inf \Big\{ S_f(\sigma) \colon \sigma$$
je rozdělení $D \Big\}$

O Dolní Darbouxův integrál (funkce \hat{f} na D):

$$d_f = \sup \left\{ s_f(\sigma) \colon \sigma \text{ je rozdělení } D \right\}$$

o (dvojitý) Darbouxův integrál:

$$\iint_D f(x,y) \mathrm{d}x \mathrm{d}y = D_f = d_f$$

- f je Darbouxovsky integrabilní na D
- Posloupnost rozdělení je normální, pokud jsou obě původní rozdělení normální
- Buď f(x,y) integabilní funkce na $D=[a,b]\times [c,d]$. Pokud existuje jeden z integrálů

$$\int_a^b \left(\int_c^d f(x, y) dy \right) dx \qquad \text{nebo} \qquad \int_c^d \left(\int_a^b f(x, y) dx \right) dy$$

potom je roven dvojnému integrálu $\iint_D f(x,y) dx dy$

- Výpočet dvojného integrálu funkci nejdřív zintegrujeme vzhledem k jedné proměnné a druhou považujeme za konstantu, výsledek (získaný pomocí Newtonovy formule) potom závisí už jen na jedné proměnné, vzhledem ke které se provede 2. integrace
- Vlastnosti dvojného integrálu
 - o Množina **míry nula** je pro hodnotu integrálu zanedbatelná
 - o Pokud má průnik D1 a D2 míru nula, pak $\iint_D f = \iint_{D_1} f + \iint_{D_2} f$
 - o Pokud $f_1(x,y) \le f_2(x,y)$, pak $\iint_D f_1 \le \iint_D f_2$
 - o Pro reálné c a integrabilní f:

$$\iint_D c \cdot f(x,y) \mathrm{d}x \mathrm{d}y = c \cdot \iint_D f(x,y) \mathrm{d}x \mathrm{d}y$$

Metody pro výpočet 1D a 2D integrálu

Newtonova formule:

$$\int_a^b f(x) \mathrm{d}x = \lim_{x o b_-} F(x) - \lim_{x o a_+} F(x)$$

Per partes pro určitý integrál:

$$\int_a^b f(x)g(x)\mathrm{d}x = ig[f(x)G(x)ig]_a^b - \int_a^b f'(x)G(x)\mathrm{d}x$$

- Substituce – funkce f, φ , φ a její derivace spojité na $[\alpha, \beta]$, f spojitá na $\varphi([\alpha, \beta])$. Potom

$$\int_{\alpha}^{\beta} f(\varphi(t)) \cdot \varphi'(t) dt = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) dx$$

Výpočet dvojného integrálu nad obecnou oblastí

- 2 typy oblastí:
 - Typ 1 x z intervalu [a, b], y omezené spojitými fcemi $\varphi_1(x)$ a $\varphi_2(x)$ splň. $\varphi_1(x) \le \varphi_2(x)$
 - Typ 2 y z intervalu [c,d], x omezené spojitými fcemi $\psi_1(x)$ a $\psi_2(x)$ splň. $\psi_1(x) \le \psi_2(x)$
- Pokud dané integrály existují, platí pro oblast *D*:
 - Je-li D typu 1, pak:

$$\iint_D f(x,y) dx dy = \int_a^b \left(\int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y) dy \right) dx.$$

Je-li D typu 2, pak:

$$\iint_D f(x,y) dx dy = \int_c^d \left(\int_{\psi_1(y)}^{\psi_2(y)} f(x,y) dx \right) dy.$$

- Substituce ve dvojném integrálu
 - Jacobiho matice matice prvních derivací
 - Máme $\Psi: \mathbb{R}^n \to \mathbb{R}^n, \, \Psi(\mathbf{v}) = (\Psi_1(\mathbf{v}), \dots, \Psi_n(\mathbf{v}))$
 - Jacobiho matice funkce ψ (psi) je zobrazení $\mathbb{R}^n \to \mathbb{R}^{n,n}$:

$$J_{\Psi} = \begin{pmatrix} \frac{\partial \Psi_1}{\partial v_1} & \cdots & \frac{\partial \Psi_1}{\partial v_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial \Psi_n}{\partial v_1} & \cdots & \frac{\partial \Psi_n}{\partial v_n} \end{pmatrix}$$

pokud všechny derivace existují

- Má na řádcích **složky gradientů** jednotlivých složek $\psi{:}J_{\Psi}=$
- o Věta o substituci nechť D je omezená uzavřená množina na \mathbb{R}^n . Nechť $\psi: \mathbb{R}^n \to \mathbb{R}^n$ má spojité všechny parciální derivace (všech složek) na nějaké otevřené nadmnožině množiny D a skoro všude na D platí, že:
 - ψ je bijekce
 - $det J_{\psi}$ je nenulový

Potom pro každou spojitou funkci $f: D \to \mathbb{R}$ platí:

$$\int_{\psi(D)} f(\mathbf{x}) d\mathbf{x} = \int_D f(\Psi(\mathbf{v})) \left| \det J_{\Psi}(\mathbf{v}) \right| d\mathbf{v}$$

 $kde x = (x_1 \dots x_n)$

5. Numerická matematika: reprezentace čísel v počítači, chyby vznikající při výpočtech s pohyblivou řádovou čárkou, podmíněnost a stabilita numerických algoritmů.

NI-MPI

Strojová čísla

- Standard IEEE-754 strojové číslo lze reprezentovat znaménkem s a celými kladnými čísly e a m
- Pro celá čísla x vědecký zápis čísel v binární bázi: $x \pm m \cdot 2^e$
 - o m ... mantisa pevný počet cifer platné cifry
 - o e ... exponent pevný počet cifer
- Omezení reprezentovatelných čísel podle přesnosti:

přesnost	délka m	$d = délka \frac{e}{}$	parametr b
poloviční (binary16, half precision)	10	5	15
jednoduchá (binary32, single precision)	23	8	127
dvojitá (binary64, double precision)	52	11	1023
čtyřnásobná (binary128, quadruple prec.)	112	15	16383

- Určení reprezentované hodnoty x:
 - o Pokud $e = 2^d 1$ a $m \neq 0$, pak x = NaN
 - o Pokud $e = 2^d 1$ a m = 0, pak $x = (-1)^s \cdot Inf$
 - o Pokud $0 < e < 2^d 1$ a $m \neq 0$, pak $x = (-1)^s \cdot (1, m_2)_2 \cdot 2^{e-b}$... normalizovaná čísla
 - o Pokud e=0 a $m\neq 0$, pak $(-1)^s\cdot (0,m_2)_2\cdot 2^{1-b}$... subnormální čísla
 - o Pokud e = 0 a m = 0, pak $(-1)^s \cdot 0$
- Skrytá jednička pro normalizované číslo x se uloží o 1 platnou cifru více, než kolik je délka m
- Čísla, která lze takto reprezentovat = strojová čísla
- Množina strojových čísel $F \equiv F(|m|, |e|, b)$
 - o F charakterizováno pomocí **strojové přesnosti** ε_F (machine epsilon) = vzdálenost čísla $1 = +1 \cdot 2^0$ od nejbližšího většího čísla v F:

$$\varepsilon_F = (1.0...01)_2 \cdot 2^0 - (1.0...00)_2 \cdot 2^0$$

- Pro jednoduchou přesnost platí $\varepsilon_F = 2^{-23}$
- o **Vzdálenost** libovolného normalizovaného čísla $x \in F$ od jeho nejbližších sousedů z F je nejméně $\varepsilon_F \frac{|x|}{2}$ a nejvíce $\varepsilon_F |x|$
- Pokud o reprezentaci čísel mimo rozsah → **přetečení / podtečení**

Chyby při výpočtech s pohyblivou řádovou čárkou

- Typy chyb
 - O Chyba **modelu** mat. model úlohy je nějak zjednodušený, nebo se používají průměrné místo aktuálních hodnot
 - o Chyba dat data z měření bez absolutní přesnosti
 - o Chyba algoritmu algoritmus nemusí najít v konečném počtu kroků přesné řešení
 - o Zaokrouhlovací chyba při samotném výpočtu dochází např. k chybám v aritmetických operacích
- **Zaokrouhlovací chyby** $\alpha \in F$ je přibližnou hodnotou čísla $\alpha \in \mathbb{R}$
 - o Absolutní chyba reprezentace α pomocí $\alpha = |\alpha \alpha|$
 - Relativní chyba pro $a \neq 0$ reprezentace a pomocí $\alpha = \frac{|\alpha a|}{|a|}$
- Zaokrouhlovací jednotka meze pro relativní chybu $u = 2^{-23}$ (pro jednoduchou přesnost)
 - o Zaokrouhlování směrem k 0 usekneme bity přeskakující délku mantisy
- Aritmetické operace a chyba při jejích provádění
 - o $x,y \in F$; \odot značí operaci sčítání, násobení, odčítání nebo dělení
 - o Pokud nedojde k přetečení nebo podtečení, platí:

$$fl(x \odot y) = (x \odot y)(1 + \delta), \quad kde |\delta| \le u$$

o Operací 🔾 nemusíme dostat strojové číslo – obecně reálné číslo, které je třeba zaokrouhlit

- Ztráta platných cifer
 - Velké problémy krácení lze se mu vyhnout:
 - Přeformulováním problému tak, aby nedocházelo k odčítání
 - Použitím rozvojů funkcí do řad
 - Použitím jiných rovností
 - Odečítání nechť x a y jsou normalizovaná strojová čísla a x>y>0. Pokud $2^{-p} \le 1 \frac{y}{x} \le 2^{-q}$ pro nějaká kladná celá p a q, tak platí, že nejvíce p a nejméně q platných binárních bitů je ztraceno při provedení odčítání x-y
- Původy zaokrouhlovacích chyb zaokrouhlovací chyby jednotlivých operací a jejich kumulace, krácení

Numerické algoritmy

- **Přímá metoda** počítá řešení v konečném počtu kroků tak, že v teoretické absolutní přesnosti dává (přesné) řešení
 - o Příklady:
 - GEM (Gaussova eliminační metoda)
 - Hledání inverze matice pomocí GEM
 - Hledání vlastních čísel
 - o Není "samoopracující" když v jednom kroku vznikne chyba, už se jí nemusíme zbavit
- **Iterační metody** hledají přibližná řešení matematických problémů tak, že konstruují posloupnost přibližných řešení $x_0, x_1, x_2, ...$
 - o Každé další přibližné řešení je odvozeno z předchozího: $x_k = T(x_{k-1})$ pro k>0 a zobrazení T
 - o Zobrazení T je voleno tak, aby posl. $(x_k)_{k=0}^{\infty}$ měla limitu, která je skutečným řešením dané úlohy
 - Stacionární metoda = pokud je T neměnné pro všechny iterace k
 - o Příklady:
 - Richardsova metoda
 - Jacobiho metoda
 - Gauss-Seidelova metoda / SOR

Podmíněnost numerických algoritmů

- V ... numerický algoritmus
- $V^*(d)$... teoretický (přesný) výstup V
- $d \dots$ vstupní data
- V(d) ... výsledek v konečné (strojové) aritmetice
- Dopředná / přímá chyba $\Delta v = V^*(d) V(d)$... odchylka spočítaného řešení od přesného řešení
- **Zpětná chyba** $V^*(d + \Delta d) = V(d)$, Δd je nejmenší číslo v normě, které to splňuje
 - o Promítnutí chyby algoritmu V do jeho vstupu
- Pokud je pro všechny vstupy d zpětná chyba relativně malá (podle kontextu), algoritmus je **zpětně stabilní**
- Podmíněnost úlohy / algoritmu vyjadřuje závislost změny výstupu na změně vstupních dat
 - o Relativní číslo podmíněnosti:

$$C_r = \lim_{\epsilon \to 0^+} \sup_{\substack{d + \delta d \in D \\ \|\delta d\| \le \epsilon}} \frac{\frac{\|V^*(d + \delta d) - V^*(d)\|}{\|V^*(d)\|}}{\frac{\|\delta d\|}{\|d\|}}$$
wtf

- o D ... zkoumaný definiční obor V/V^*
- o $C_r \approx 1 \rightarrow$ úloha je dobře podmíněná
- o C_r velké \rightarrow úloha je špatně podmíněná
- Soustavy lineárních rovnic $n \in \mathbb{N}$ lineárních rovnic pro n neznámých
 - o Zápis Ax = b
 - $A \in \mathbb{R}^{n,n}$... regulární matice soustavy
 - $b \in \mathbb{R}^{n,1}$... vektor pravých stran
 - $x \in \mathbb{R}^{n,1}$... hledané řešení

- Norma na vektorovém prostoru V = zobrazení $\|\cdot\|: V \to \mathbb{R}_0^+$ splňující (pro každé $x, y \in V$, α skalár atd.):
 - i. $||x|| = 0 \implies x = 0$
 - ii. $\|\alpha x\| = |\alpha| \cdot \|x\|$
 - iii. $||x + y|| \le ||x|| + ||y||$
 - o **Přidružená maticová norma** matice $A \in \mathbb{R}^{n,n}$ k vektorové normě $\|\cdot\|$ na $\mathbb{R}^n \equiv \mathbb{R}^{n,1}$:

$$||A|| := \sup \{||Ax|| : x \in \mathbb{R}^{n,1} \text{ a } ||x|| = 1\}$$

■ Definice suprema neprázdné omezené množiny *M*:

$$\sup M = \min\{y \in \mathbb{R} \colon \forall x \in M \colon x \leq y\}$$

- ||A|| je norma a platí pro ni (pro všechny $A, B \in \mathbb{R}^{n,n}$):
 - ||E|| = 1 (E ... jednotková matice)
 - $||Ax|| \le ||A|| \cdot ||x||$... konzistence normy
 - $||AB|| \le ||A|| \cdot ||B||$... submultiplikativita
- Podmíněnost úlohy:

$$\frac{\|\delta x\|}{\|x\|} \le \|A\| \cdot \|A^{-1}\| \cdot \frac{\|\delta b\|}{\|b\|}$$

- o "relativní chyba v řešení soustavy Ax = b je menší, než relativní chyba pravé strany b vynás. $\kappa(A)$
- o $\kappa(A) = ||A|| \cdot ||A^{-1}|| \dots$ číslo podmíněnosti matice A
 - Čím větší, tím horší podmíněnost a hrozí větší chyba
- o Takhle to dopadne, když je b lehce změněna o perturbaci δb
 - Změna v řešení $x = A^{-1}b$ označena δb , potom platí:

$$Ax = b$$
 a $A(x + \delta x) = Ax + A\delta x = b + \delta b$

Z toho se dá odvodit ta nerovnost výše přes pravidla pro normu, ale vypisovat to nechcu

Iterační numerické metody

- Cílem je algoritmus, který konstruuje **posl. vektorů** $x_0, x_1, ...$, která se **"blíží" přesnému řešení** Ax = b
- Postup:
 - 1. Startovací vektor x_0 zvolíme náhodně
 - 2. Zvolíme **regulární matici Q** (podle metody)
 - 3. x_0, x_1, \dots počítáme podle:

$$\begin{aligned} Qx_k &= (Q - A)x_{k-1} + b, & \forall k > 0 \\ x_k &= Q^{-1} \big((Q - A)x_{k-1} + b \big) \end{aligned}$$

- Kdyby byla posloupnost $(x_k)_{k=0}^{\infty}$ konvergentní s limitou x^* , potom je x^* hledané řešení
- Konvergence volba Q
 - o Rovnost $x_k = Q^{-1}((Q-A)x_{k-1} + b)$ dosadíme:

$$\begin{aligned} x_k - x &= Q^{-1} \big((Q - A) x_{k-1} + b \big) - x \\ &= (E - Q^{-1} A) x_{k-1} - x + Q^{-1} b \\ &= (E - Q^{-1} A) x_{k-1} - (E - Q^{-1} A) x \\ &= (E - Q^{-1} A) (x_{k-1} - x), \end{aligned}$$

- x je vektor splňující Ax = b a E je jednotková matice
- $\circ \quad W = E Q^{-1}A$
- Vektor chyby: $e_k = x_k x$
- o Potom platí:

$$e_k = We_{k-1} = W^2e_{k-2} = \dots = W^ke_0$$

- o Potřebujeme W, pro které $\lim_{k\to\infty}W^k=0$
 - Chceme, aby se e_k blížilo k 0"
- Spektrální poloměr matice $M: \rho(M) \ge 0$ = absolutní hodnota největšího vlastního čísla (abs): $\rho(M) := \max\{|\lambda|: \lambda \text{ je vlastním číslem } M\}.$
- o Nechť $M \in \mathbb{C}^{n,n}$. Potom platí

$$\lim_{k \to +\infty} M^k = 0 \quad \Leftrightarrow \quad \rho(M) < 1$$

- Máme zajištěnou konvergenci iterační metody, právě tehdy, když $\rho(W) < 1$
- Všechna vlastní čísla $W=E-Q^{-1}A$ jsou v absolutní hodnotě < 1

- **Ukončení iterace** – v kroku k, dosáhne-li x_k požadované přesnosti $||W|| < 1 \rightarrow$ posloupnost ($||e_k||$) je ostře klesající a iteraci lze zastavit, když nastane:

$$||e_k|| = ||x_k - x|| < \epsilon$$

- \circ ϵ ... uživatelem zadaný parametr
- o Nepraktické nemáme x
- o V kroce k napočítámě reziduum $A_{x_k}-b$, získáme **kritérium konvergence**:

$$||Ax_k - b|| < \epsilon$$

- o Někdy místo rezidua méně náročné kritérium $||x_{k+1} x_k|| < \epsilon$
- o V praxi maximální počet iterací, po překročení metoda selže
- o Tady vzniká chyba algoritmu
- Konkrétní metody volby Q
 - $x_k = Q^{-1}((Q-A)x_{k-1} + b)$
 - o $a_{i,j}$ prvky matice A, definujeme matice L, D jako:

$$L := \begin{pmatrix} 0 & 0 & \cdots & 0 \\ a_{2,1} & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,n-1} & 0 \end{pmatrix} \quad \text{a} \quad D := \begin{pmatrix} a_{1,1} & 0 & \cdots & 0 \\ 0 & a_{2,2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & a_{n,n} \end{pmatrix}$$

o U = A - L - D, takže platí

$$A = L + D + U$$

- o L = lower (pod diagonálou), D jakože diagonála, U = upper (nad diagonálou)
- o Richardsonova metoda: Q = E
 - Iterace:

$$x_k = Q^{-1}((Q-A)x_{k-1} + b) = (E-A)x_{k-1} + b$$

- Konvergenci kontroluje matice $W = E Q^{-1}A = E A$
 - A musí být blízko E, aby byl třeba rozdíl pod 1
- o Jacobiho metoda: Q = D
 - Iterace:

$$x_k = Q^{-1}((Q-A)x_{k-1} + b) = D^{-1}(-L-U)x_{k-1} + D^{-1}b$$

- Konvergence kontrolována maticí $W = E Q^{-1}A = D^{-1}A$
- Postačující podmínka A je diagonálně dominantní \to Jacobiho metoda konverguje pro všechny volby x_0
- Matice je diagonálně dominantní, pokud pro každý řádek platí, že součet absolutních hodnot prvků vyjma diagonálního je menší než absolutní hodnota diagonálního prvku
- o SOR / Gauss-Seidel metoda:
 - Gauss-Seidel: Q = D + L
 - SOR: $Q = \frac{1}{0}D + L$
 - ω ... k urychlení konvergence, nenulové
 - Iterace:

$$\left(\frac{1}{\omega}D+L\right)x_k = \left(\frac{1}{\omega}D+L-A\right)x_{k-1} + b = \left(\left(\frac{1}{\omega}-1\right)D-U\right)x_{k-1} + b$$

• SOR konverguje, pokud $0<\omega<2$ a A je symetrická a pozitivně definitní s kladnými prvky na diagonále

6. Testování statistických hypotéz. T-testy, testy nezávislosti, testy dobré shody.

NI-VSM

- **Náhodný výběr** z rozdělení F = n-tice stejně rozdělených nezávislých náhodných veličin (iid) $x_1 \dots x_n$ s distribuční funkcí F
- Realizace náhodného výběru = n-tice konkrétních pozorovaných čísel $x_1 \dots x_n$
- Kroky statistického uvažování
 - o Odhad tvaru rozdělení
 - o Odhad parametrů rozdělení
 - Bodový odhad
 - Intervalový odhad
 - o Testování hypotéz ověření správnosti modelu
 - Testy dobré shody ověřujeme hypotézy o tvaru pravděpodobnostního rozdělení
 - "má veličina normální rozdělení?"
 - **Parametrické testy** tvoříme hypotézu o parametru θ a na základě dat se snažíme rozhodnout, zda je možné hypotézu zamítnout
 - " $\theta = 0$ "

Intervaly spolehlivosti

- Zajímá nás interval, ve kterém leží skutečná hodnota parametru s danou pravděpodobností $1-\alpha$
- Interval (L, U) určený statistikami $L \equiv L(x_1 \dots x_n)$ a $U \equiv U(x_1 \dots x_n)$, splňující:

$$P(\theta \in (L, U)) = P(L < \theta < U) = 1 - \alpha$$

se nazývá oboustranný $100 \cdot (1-\alpha)\%$ interval spolehlivosti (konfidenční interval)

Interval $(L, +\infty)$, resp. $(-\infty, U)$ určený statistikou L/U, splňující:

$$P(\theta \in (L, +\infty)) = P(\theta \in (-\infty, U)) = 1 - \alpha$$

se nazývá horní/dolní (jednostranný) $100 \cdot (1 - \alpha)\%$ interval spolehlivosti

- L/U = dolni/horni mez intervalu spolehlivosti
- (1α) = hladina spolehlivosti
- Pro oboustranný interval spolehlivosti volíme L, U tak, aby platilo

$$P(\theta < L) = \frac{\alpha}{2} \land P(U < \theta) = \frac{\alpha}{2}$$

- Interval spolehlivosti pro střední hodnotu při známém rozptylu:

$$\left(\overline{X_n}-z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}$$
 , $\overline{X_n}+z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}\right)$

- o $z_{\alpha}=\phi^{-1}(1-\alpha)$... kritická hodnota standardního normálního rozdělení N(0,1)
- Interval spolehlivosti pro **střední hodnotu při neznámém rozptylu \sigma^2**
 - o Neznáme $\sigma^2 \rightarrow$ odhadujeme ho pomocí výběrového rozptylu s_n^2
 - o Oboustranný interval spolehlivosti:

$$\left(\overline{X_n} - t_{\frac{\alpha}{2}, n-1} \frac{s_n}{\sqrt{n}}, \overline{X_n} + t_{\frac{\alpha}{2}, n-1} \frac{s_n}{\sqrt{n}}\right)$$

- o $t_{\alpha,n-1}$ = kritická hodnota **studentova rozdělení** t_{n-1} s n-1 stupni volnosti
- Interval spolehlivosti pro rozptyl
 - o Náhodný výběr z **normálního rozdělení** $N(\mu, \sigma^2)$
 - o Využijeme **výběrový rozptyl** s_n^2
 - o Oboustranný interval spolehlivosti

$$\left(\frac{(n-1)s_n^2}{\mathcal{X}_{\frac{\alpha}{2},n-1}^2}, \frac{(n-1)s_n^2}{\mathcal{X}_{1-\frac{\alpha}{2},n-1}^2}\right)$$

- \circ $\mathcal{X}^2_{\alpha,n-1}$ = **kritická hodnota rozdělení** \mathcal{X}^2 s n-1 stupni volnosti na hladině α
- o Na rozdíl od předchozích platí POUZE pro normální rozdělení

Hypotézy a jejich testování

- **Náhodný vektor** $X = (x_1 ... x_n)^T$ s nějakým rozdělením
 - Tvrzení o tomto rozdělení s neznámou platností = hypotéza
- **Testování hypotéz** ověřování platnosti na základě pozorování hodnot X
 - o Nulová hypotéza H_0 = tvrzení, o kterém chceme rozhodovat
 - \circ Alternativní hypotéza H_A/H_1 = opačné tvrzení, které v rozhodovacím procesu stavíme proti H_0
 - o Rozhodovací proces je založen na hod. X, na jehož základě **zamítneme/nezamítneme** hypotézu H_0
- Chyby při testování hypotéz
 - o Chyba 1. druhu zamítneme H_0 , i když platí
 - \circ Chyba 2. druhu nezamítneme H_0 , i když neplatí
- Výsledek testujeme H_0 proti H_A na hladině významnosti lpha
 - o **(ne)zamítáme** H_0 ve prospěch H_A
- **Kritický obor** W_{lpha} = množina realizací X, pro které testování na hladině lpha skončí zamítnutím H_0
 - o $x \in W_{\alpha} \Leftrightarrow \mathbf{zamít\acute{a}me} \, H_0$ na hladině α
 - o $x \notin W_{\alpha} \Leftrightarrow \text{nezamítáme } H_0$ na hladině α
- P-hodnota = minimální hladina významnosti \hat{p} , na které lze hypotézu H_0 zamítnout

$$\hat{p} \equiv \hat{p}(x) = \inf\{\alpha \mid x \in W_{\alpha}\}\$$

- o Je-li p-hodnota menší než naše lpha, zamítáme H_0
- o P-hodnota je **horní mez** pro pravděpodobnost, s jakou bude při platnosti nulové hypotézy další realizace x' stejně příznivá zamítnutí, jako ta aktuální $\hat{p} \ge P_{\theta}(x' \in W_{\hat{p}})$
 - P_{θ} ... možné rozdělení X

Parametrické testy

- Určen náh. výběr $X = (x_1 \dots x_n)^T$ z rozdělení určeno par. $\theta \in \Theta \subset \mathbb{R}$, n. v. $x_1 \dots x_n$ jsou iid s tímto rozd.
- Chceme testovat jednoduchou parametrickou hypotézu proti oboustranné alternativě:
 - o H_0 : $\theta = \theta_0$ proti H_A : $\theta \neq \theta_0$ pro konkrétní hodnotu θ_0
- (L(x),U(x)) oboustranný $100\cdot(1-\alpha)\%$ interval spolehlivosti pro parametr θ sestavený na základě náhodné veličiny $X\to \forall \theta\in\Theta$: $P_{\theta}(\theta\in(L,U))=1-\alpha$
 - Zamítneme H_0 , pokud $\theta_0 \notin (L, U)$
 - o Nezamítneme H_0 , pokud $\theta_0 \in (L, U)$
- Parametrické testy proti jednostranné alternativě:
 - o H_0 : $\theta \le \theta_0$ proti H_A : $\theta > \theta_0$
- Jednostranný interval spolehlivosti typu odpovídajícího alternativní hypotéze horní interval spolehlivosti $(L, +\infty) \to \forall \theta \in \Theta$: $P_{\theta}(\theta \in (L, +\infty)) = P_{0}(\theta > L) = 1 \alpha$
 - o Zamítneme H_0 , pokud $\theta_0 \notin (L, +\infty)$
 - Nezamítneme H_0 , pokud $\theta_0 \in (L, +\infty)$
- Pro H_0 : $\theta \ge \theta_0$ proti H_A : $\theta < \theta_0$ analogicky

Testy o parametrech normálního rozdělení

- $x_1 \dots x_n$ náhodný výběr z $N(\mu, \sigma^2)$
- Test H_0 : $\mu=\mu_0$ proti alternativě H_A : $\mu
 eq \mu_0$ na hladině významnosti lpha
 - \circ Známý rozptyl $\sigma^2 \to H_0$ zamítneme, pokud μ_0 neleží v intervalu $\left(\overline{X_n} z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X_n} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)$
 - $\bigcirc \quad \mathsf{Nezn\acute{a}m\acute{y}} \ \mathsf{rozptyl} \ \sigma^2 \ \to \ H_0 \ \mathsf{zam.}, \ \mathsf{pokud} \ \mu_0 \ \mathsf{nele\check{z}\acute{i}} \ \mathsf{v} \ \mathsf{intervalu} \left(\overline{X_n} t_{\frac{\alpha}{2},n-1} \frac{s_n}{\sqrt{n}} \right), \overline{X_n} + t_{\frac{\alpha}{2},n-1} \frac{s_n}{\sqrt{n}} \right)$
- Test H_0 : $\sigma^2 = \sigma^2_0$ proti alternativě H_A : $\sigma^2 \neq \sigma^2_0$ na hladině významnosti α
 - $\circ \quad H_0 \text{ zamítneme, pokud } \sigma^2_{\ 0} \text{ neleží v intervalu } \left(\frac{(n-1)s_n^2}{\chi_{\frac{\alpha}{2},n-1}^2}, \frac{(n-1)s_n^2}{\chi_{1-\frac{\alpha}{2},n-1}^2} \right)$
- **Jednostranné** analogicky
 - $\circ \quad \boldsymbol{H_0} \colon \boldsymbol{\mu} \leq \boldsymbol{\mu_0} \ \land \ \boldsymbol{H_A} \colon \boldsymbol{\mu} > \boldsymbol{\mu_0} \ \land \operatorname{znám\acute{y}} \operatorname{rozptyl} \colon \left(\overline{X_n} \boldsymbol{z}_\alpha \frac{\sigma}{\sqrt{n}} \ , + \infty \right)$
 - $\circ \quad \pmb{H_0} \colon \pmb{\mu} \leq \pmb{\mu_0} \ \land \ \textit{H}_A \colon \pmb{\mu} > \pmb{\mu_0} \ \land \ \text{neznámý rozptyl} \colon \left(\overline{X_n} t_{\alpha,n-1} \frac{s_n}{\sqrt{n}} \text{ ,} + \infty \right)$
 - $\circ \quad \boldsymbol{H_0} \colon \boldsymbol{\sigma^2} \leq \boldsymbol{\sigma^2}_0 \ \land \ \boldsymbol{H_A} \colon \boldsymbol{\sigma^2} > \boldsymbol{\sigma^2}_0 \colon \left((n-1) s_n^2 / \boldsymbol{\chi}_{\alpha,n-1}^2, +\infty \right)$

Testové statistiky

- **Testová statistika** = sestrojíme statistiku $T \equiv T(x)$ = funkci náhodného vektoru X, u které při platnosti nulové hypotézy známe její rozdělení
- V oblasti možných hodnot T vybereme podmnožinu S_{α} , pro kterou:

$$\sup_{\theta \in \Theta_0} P_{\theta}(T \in S_{\alpha}) \le \alpha$$

- = při platnosti H_0 má T hodnoty v S_{lpha} s pravděpodobností nejvýše lpha
- Zároveň obvykle chceme, aby $\forall \theta \in \Theta_A : P_{\theta}(T \in S_{\alpha}) > \sup_{\theta \in \Theta_{\alpha}} P_{\theta}(T \in S_{\alpha})$
- Testování hypotéz: **Zamítneme** H_0 , jestliže $T \in S_\alpha$, nezamítneme H_0 , jestliže $T \notin S_\alpha$

Jednovýběrové testy o střední hodnotě a rozptylu

- Testy o střední hodnotě normálního rozdělení
 - $x_1 ... x_n$ náhodný výběr z $N(\mu, \sigma^2)$ + předpoklad, že známe σ^2
 - ightarrow Pro testy o hodnotě μ porovnávané s μ_0 uvažujeme testovou statistiku

$$T = \frac{\overline{X_n} - \mu_0}{\sigma / \sqrt{n}}$$

- $T \sim N(u, 1)$, kde $u = \frac{\mu \mu_0}{\sigma / \sqrt{n}}$
- O Pro test H_0 : $\mu = \mu_0$ proti H_A : $\mu \neq \mu_0$ na hladině α : $S_{\alpha} = (-\infty, -z_{\frac{\alpha}{2}}] \cup [z_{\frac{\alpha}{2}}, +\infty)$

$$\rightarrow T \in S_{\alpha} \iff |T| \ge z_{\frac{\alpha}{2}}$$

o Pro test H_0 : $\mu \le \mu_0$ proti H_A : $\mu > \mu_0$ na hladině α : $S_\alpha = [z_\alpha, +\infty)$

$$\rightarrow T \in S_{\alpha} \iff |T| \ge z_{\alpha}$$

- \rightarrow podmínka na zamítnutí H_0 je stejná jako při testu na konfidenčním intervalu
- Je tady jen α , ne $\alpha/2$, pozor
- Testy o parametrech normálního rozdělení
 - o $x_1 \dots x_n$ náhodný výběr z $N(\mu, \sigma^2)$
 - o **Test o střední hodnotě** testová statistika a kritické obory při známém rozptylu σ^2 :

H_0	H_A	testová statistika T	kritický obor
$\mu=\mu_0$	$\mu \neq \mu_0$		$ T \ge z_{\alpha/2}$
$\mu \leq \mu_0$	$\mu > \mu_0$	$T = \frac{\Lambda_n - \mu_0}{\sqrt{n}} \sqrt{n}$	$T \geq z_{lpha}$
$\mu \geq \mu_0$	$\mu < \mu_0$	σ	$T \leq -z_{\alpha}$

 \circ **Test o střední hod**. – test. statistika a krit. obory při neznámém rozptylu σ^2 (**jednovýběrový t-test**):

H_0	H_A	testová statistika T	kritický obor
$\mu = \mu_0$	$\mu \neq \mu_0$	V	$ T \ge t_{\alpha/2,n-1}$
$\mu \leq \mu_0$	$\mu > \mu_0$	$T = \frac{\bar{X}_n - \mu_0}{\sqrt{n}} \sqrt{n}$	$T \ge t_{\alpha,n-1}$
$\mu \geq \mu_0$	$\mu < \mu_0$	s_n	$T \leq -t_{\alpha,n-1}$

o Testy **o rozptylu** na hladině významnosti α :

H_0	H_A	testová statistika T	kritický obor
$\sigma^2 = \sigma_0^2$ $\sigma^2 \le \sigma_0^2$ $\sigma^2 \ge \sigma_0^2$	$ \begin{vmatrix} \sigma^2 \neq \sigma_0^2 \\ \sigma^2 > \sigma_0^2 \\ \sigma^2 < \sigma_0^2 \end{vmatrix} $	$T=rac{(n-1)s_n^2}{\sigma_0^2}$	$T \leq \chi^2_{1-\alpha/2,n-1} \lor T \geq \chi^2_{\alpha/2,n-1}$ $T \geq \chi^2_{\alpha,n-1}$ $T \leq \chi^2_{1-\alpha,n-1}$

Párový t-test

- Náhodný výběr $(X_1,Y_1)^T\dots(X_n,Y_n)^T$ z nějakého 2D rozdělení s neznámým vektorem středních h. $(\mu_1,\mu_2)^T$
- Testujeme hypotézu H_0 : $\mu_1 = \mu_2$ proti H_A : $\mu_1 \neq \mu_2$
- $Z_i = X_i Y_i \rightarrow Z_i$ jsou iid se střední hodnotou $\mu_{\Delta} = \mu_1 \mu_2$
 - o Předpoklad, že $Z_i \sim N(\mu, \sigma^2)$ kde σ^2 neznáme
 - → Lze převést na **párový t-test**
 - = Jednovýběrový t-test hypotézy H_0 : $\mu_{\Delta} = 0$ proti H_A : $\mu_{\Delta} \neq 0$

H_0	H_A	testová statistika T	kritický obor
	$\mu_1 \neq \mu_2$	$ar{Z}$	$ T \ge t_{\alpha/2, n-1}$
$\mu_1 \leq \mu_2$	$\mu_1 > \mu_2$	$T = \frac{Z_n}{n} \sqrt{n}$	$T \ge t_{\alpha,n-1}$
$\mu_1 \geq \mu_2$	$\mu_1 < \mu_2$	s_Z	$T \leq -t_{\alpha,n-1}$

o $s_Z^2 \dots$ výběrový rozptyl veličiny Z

Dvouvýběrový t-test

- Náhodné výběry $X_1 \dots X_n$ z $N(\mu_1, \sigma_1^2)$ a $Y_1 \dots Y_n$ z $N(\mu_2, \sigma_2^2)$ (nezávislé)
- Testujeme hypotézu H_0 : $\mu_1 = \mu_2$ proti H_A : $\mu_1 \neq \mu_2$
- Test na základě stat., která má při plat. $\mu_1=\mu_2$ studentovo rozdělení s určitým počtem stupňů volnosti
 - o Záleží, jestli $\sigma_1^2=\sigma_2^2$ (homoskedasticita)
 - Stejné rozptyly $\sigma_1^2 = \sigma_2^2$:

H_0	H_A	testová statistika T	kritický obor
1	$\mu_1 \neq \mu_2$	$X = Y = (n \cdot m)$	$ T \ge t_{\alpha/2, n+m-2}$
$\mu_1 \leq \mu_2$	$\mu_1 > \mu_2$	$T = \frac{X_n - Y_m}{s_{12}} \sqrt{\frac{n + m}{n + m}}$	$T \ge t_{\alpha,n+m-2}$
$\mu_1 \geq \mu_2$	$\mu_1 < \mu_2$		$T \le -t_{\alpha,n+m-2}$

$$s_{12} = \sqrt{\frac{(n-1)s_X^2 + (m-1)s_Y^2}{n+m-2}}.$$

• Různé rozptyly $\sigma_1^2 \neq \sigma_2^2$:

H_0	H_A	testová statistika ${\cal T}$	kritický obor
$\mu_1=\mu_2$	$\mu_1 eq \mu_2$	$ar{f v}$ $ar{f v}$	$ T \ge t_{\alpha/2, n_d}$
$\mu_1 \leq \mu_2$	$\mu_1 > \mu_2$	$T = \frac{X_n - Y_m}{s}$	$T \ge t_{\alpha,n_d}$
$\mu_1 \geq \mu_2$	$\mu_1 < \mu_2$	s_d	$T \leq -t_{\alpha,n_d}$

$$s_d = \sqrt{\frac{s_X^2}{n} + \frac{s_Y^2}{m}} \quad \text{a} \quad n_d = \frac{s_d^4}{\frac{1}{n-1} \left(\frac{s_X^2}{n}\right)^2 + \frac{1}{m-1} \left(\frac{s_Y^2}{m}\right)^2}$$

F-test rovnosti rozptylů

- Nezávislé náhodné výběry $X_1 \dots X_n$ z $N(\mu_1, \sigma_1^2)$ a $Y_1 \dots Y_n$ z $N(\mu_2, \sigma_2^2)$
- Chceme testovat hypotézy porovnávající σ_1^2 a σ_2^2

H_0	H_A	testová statistika T	kritický obor
$\sigma_1^2=\sigma_2^2$	$\sigma_1^2 eq \sigma_2^2$	2	$T \le F_{1-\alpha/2, n-1, m-1} \lor T \ge F_{\alpha/2, n-1, m-1}$
$\sigma_1^2 \leq \sigma_2^2$	$\sigma_1^2 > \sigma_2^2$	$T = \frac{s_X^2}{s_2^2}$	$T \ge F_{\alpha, n-1, m-1}$
$\sigma_1^2 \geq \sigma_2^2$	$\sigma_1^2 < \sigma_2^2$) or	$T \le F_{1-\alpha, n-1, m-1}$

- $F_{1-lpha,n-1,m-1}$... kritická hod. Fisher-Snedecorova F-rozdělení s n-1 a m-1 stupni volnosti, které splňuje

$$F_{1-\alpha,n-1,m-1} = 1/F_{1-\alpha,n-1,m-1}$$

- Citlivý na normalitu X a Y – při nejistotě např. Levenův test

Testy dobré shody

- D.n.v. X nabývající hodnot $1 \dots k$ s pravděpodobnostmi $p_1 \dots p_k$ rozdělení $x \colon p = (p_1 \dots p_k)^T$
- Multinomické rozdělení
 - o Provedeme náhodný výběr $X_1 \dots X_n$ z rozdělení p můžeme výsledek až na pořadí zaznamenat pomocí **četností**, s jakými jednotlivé hodnoty nastaly
 - Dostaneme náhodné veličiny $N_1 \dots N_k$, $N_i = |\{j \mid X_j = i\}|$
 - o Multinomické rozdělení = rozdělení tohoto náhodného vektoru $N = (N_1 ... N_k)^T$
 - Značení M(n, p), určeno pstmi:

$$P(N_1 = n_1, \dots, N_k = n_k) = \frac{n!}{n_1! \dots n_k!} p_1^{n_1} \dots p_k^{n_k},$$

- o $k = 2 \dots$ binomické rozdělení
- Vlastnosti multinomického rozdělení
 - Buď $N \sim M(n, p)$
 - Podmíněná rozdělení podmnožin složek n při fixovaných hodnotách zbylých složek jsou opět multinomická
 - Marginální rozdělení jsou binomická: $N_i \sim Binom(n, p_i)$
 - $EN_i = np_i \ \forall i$
 - $varN_i = np_i(1-p_i) \forall i$
 - $cov(N_i, N_i) = -np_ip_i \ \forall i \neq j$

Pearsonova statistika – buď $N \sim M(n, p)$. Pak Pearsonova statistika

$$\chi^2 = \sum_{i=1}^k \frac{(N_i - np_i)^2}{np_i} = \sum_{i=1}^k \frac{N_i^2}{np_i} - n$$

má při $n \to +\infty$ asymptoticky rozdělené \mathcal{X}_{k-1}^2

- o N_i ... naměřené četnosti
- o np_i ... teoretické četnosti
- Test \mathcal{X}^2 při známých parametrech
 - o Testování shodnosti diskrétních rozdělení
 - o Náhodný výběr $X=X_1\dots X_n$ o velikosti n z diskrétního rozdělení p'
 - Četnosti $N_1 \dots N_k$ hodnot X mají multinomické rozdělení M(n,p')
 - o Testujeme hypotézu H_0 , že skutečné hodnoty pravděpodobností $p_1 \dots p_k$
 - o Provedení testu:

H_0	H_A	testová statistika χ^2	kritický obor
$oldsymbol{p'} = oldsymbol{p}$	p' eq p	$\chi^2 = \sum_{i=1}^k \frac{(N_i - np_i)^2}{np_i}$	$\chi^2 \ge \chi^2_{\alpha,k-1}$

- $p = (p_1 \dots p_k)^T$
- $\chi^2_{\alpha,k-1}$... kritická hodnota χ^2 rozdělení s k-1 stupni volnosti
- o Test \mathcal{X}^2 je asymptotický, takže lze použít jen pro dostatečně velký rozsah výběru $n: \forall i: np_i \geq 5$
- Test \mathcal{X}^2 při neznámých parametrech
 - o Obecná situace, kdy:
 - H_0 : "náhodný výběr $X_1 \dots X_n$ pochází z rozdělení F_{θ} , které může záviset na neznámé hodnotě nějakého parametru θ
 - H_A : náhodný výběr pochází z jiného rozdělení (mimo parametrickou třídu F_{θ})
 - Převod na test hypotézy pro multinomiální rozdělení:
 - Rozklad \mathbb{R} do k kintervalů $I_1=(-\infty,b_1], I_1=(b_1,b_2],\ldots,I_k=(b_{k-1},+\infty)$
 - Četnosti $N_1 \dots N_k$ naměřených hodnot v jednotlivých intervalech $I_1 \dots I_k$, $N_i = \left| \{j | X_j \in I_i\} \right|$ mají multinomické rozdělení M(n, p'), kde $p'_1 = P(X_1 \in I_i)$
 - H_0 : skutečné hodnoty pravděpodobností jsou $p_1 \dots p_k$ a mohou záviset na **neznámém m**rozměrném parametru $\theta = (\theta_1 \dots \theta_m)^T$, jehož hodnotu při testování také **odhadujeme**

$$\chi^{2}(\boldsymbol{\theta}) = \sum_{i=1}^{k} \frac{\left(N_{i} - np_{i}(\boldsymbol{\theta})\right)^{2}}{np_{i}(\boldsymbol{\theta})}$$

- $\hat{\boldsymbol{\theta}}$ = hodnota θ minimalizující
- Bodový odhad θ = odhad metodou minimálního \mathcal{X}^2
 - ullet Pro něj má statistika $\mathcal{X}^2(\hat{ heta}\,)$ asymptoticky $\mathcal{X}^2{}_{k-m-1}$ rozdělení

H_0	H_A	testová statistika χ^2	kritický obor
p'=p	p' eq p	$\chi^2 = \sum_{i=1}^k \frac{(N_i - np_i)^2}{np_i}$	$\chi^2 \ge \chi^2_{\alpha,k-m-1}$

- o Provedení testu (při $p_i = p_i(\hat{\theta})$)
 - Počet stupňů volnosti = # chlívků = # odhadovaných parametrů 1
 - Zas platí $np_i \geq 5$

Test nezávislosti v kontingenčních tabulkách

- Máme náhodný vektor $X = (Y, Z)^T$ s diskrétním rozdělením Y hodnoty $1 \dots r$, Z hodnoty $1 \dots c$
- Sdružené a marginální pravděpodobnosti:

$$p_{ij} = P(Y = i, Z = j), \quad p_{i \bullet} = \sum_{j} p_{ij}, \quad p_{\bullet j} = \sum_{i} p_{ij}$$

- Ještě máme náhodný výběr zX o velikosti n
 - o N_{ij} počet výsledků, kdy nastala dvojice (i,j), $N_{ij} = |\{k | Y_k = i, Z_k = j\}|$
 - o Náhodné veličiny N_{ij} mají sdružené multinomiální rozdělení s parametrem n a pravděpodobnostmi p_{ij}

- Kontingenční tabulka = náhodná matice N rozměru r imes c se složkami N_{ij}
 - Marginální četnosti:

$$N_{iullet} = \sum_j N_{ij}, \quad N_{ullet j} = \sum_i N_{ij}$$

Kontingenční tabulka

		Z		
Y	1		c	Σ
1	N_{11}		N_{1c}	N_{1ullet}
r	N_{r1}		N_{rc}	N_{rullet}
Σ	$N_{ullet 1}$		$N_{ullet c}$	n

Matice pravděpodobností

		Z		
Y	1		c	Σ
1	p_{11}		p_{1c}	p_{1ullet}
			• • •	
r	p_{r1}		p_{rc}	p_{rullet}
Σ	$p_{ullet 1}$		$p_{ullet c}$	1

o Pro celkový počet platí:

$$n = \sum_{i} N_{i \bullet} = \sum_{j} N_{\bullet j} = \sum_{i,j} N_{ij}$$

o Chceme testovat nezávislost veličin Y a Z

$$H_0: p_{ij} = p_{i ullet} p_{ullet j} \quad \text{pro každé } i,j$$

- lacktriangle Pravděpodobností p_{ij} funkcemi marginálních pravděpodobností $p_{i\cdot}$, $p_{\cdot j}$
- Počet nezávislých parametrů je m=(c-1)+(r-1), protože $\sum_i p_{i\bullet}=\sum_j p_{\bullet j}=1$
- Test nezávislosti ightarrow test \mathcal{X}^2
 - $_{\circlearrowleft}$ $H_0: p_{ij} = p_{iullet}p_{ullet j}, ext{ s } m = c + r 2$ neznámými parametry $p_{i\cdot j}p_{\cdot j}$
 - o Odhady metodou min. \mathcal{X}^2 :

$$\hat{p}_{i\bullet} = \frac{N_{i\bullet}}{n}$$
 a $\hat{p}_{\bullet j} = \frac{N_{\bullet j}}{n}$

- o Statistika \mathcal{X}^2 má asymptoticky \mathcal{X}^2 rozd. s k-m-1=rc-(c+r-2)-1=(r-1)(c-1) stupni volnosti
- o Provedení testu:

H_0	H_A	testová statistika χ^2	kritický obor
$p_{ij} = p_{iullet}p_{ullet j}$	$p_{ij} \neq p_{i\bullet}p_{\bullet j}$	$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{\left(N_{ij} - \frac{N_{i\bullet}N_{\bullet j}}{n}\right)^2}{\frac{N_{i\bullet}N_{\bullet j}}{n}}$	$\chi^2 \ge \chi^2_{\alpha,(r-1)(c-1)}$

- Počet **stupňů volnosti** (degrees of freedom dF) = $(\# \check{r} \acute{a} dk \mathring{u} 1)(\# sloupc \mathring{u} 1)$
- o Alternativní výpočet statistiky \mathcal{X}^2 :

$$\chi^2 = n \sum_{i=1}^r \sum_{j=1}^c \frac{N_{ij}^2}{N_{i\bullet} N_{\bullet j}} - n$$

7. Základy teorie informace a kódování, entropie.

NI-VSM

Entropie

- Entropie = "míra neuspořádanosti"
- Uvažujeme diskrétní náhodné veličiny
 - o Množina hodnot $X \dots X$
 - o Pravděpodobnostní funkce $X \vee x \dots p(x) = P(X = x)$
 - o Pravděpodobnostní rozdělení ... p
 - o Argument pravděpodobnostní funkce o kterou veličinu se jedná
- Entropie H(X) diskrétní náhodné veličiny:

$$H(X) = -\sum_{x} p(x) \log p(x)$$

- o Log o základu 2, $0 \log 0 = 0$
- o Entropie závisí pouze na rozdělení p veličiny X
- o Je invariantní vůči transformacím: H(X) = H(g(x))
- **Jednotky entropie** báze b > 1 logaritmu $H_b(X)$, b označuje jednotky entropie
 - o b = 2 ... bit
 - o $b = 10 \dots$ digit
 - o $b = e \dots$ nat
 - o Přechod mezi bázemi: $H_b(X) = (\log_b a) \cdot H_a(X) = (\log_b 2) H(X)$
- Entropie jako očekávaná míra neurčitosti
 - o H(X) lze chápat jako **střední hodnota**:

$$H(X) = -E \log p(x) = EI(X)$$

$$I(X) = -\log p(x)$$

- I(X) = vlastní informace = míra neurčitosti $X \in \mathcal{X}$
 - → entropie je očekávaná míra neurčitosti X
- o Míra neurčitosti je vždy nezáporná a pro jisté jevy 0
- o Méně pravděpodobný jev → vyšší míra neurčitosti
- o I(X) se při pozorování nezávislých jevů sčítá
- Vlastnosti entropie
 - o Nezápornost entropie: $H(X) \ge 0$
 - o Entropie je konkávní funkcí rozdělení
 - V deterministických případech je entropie 0
 - o Maximální $H(X) \rightarrow$ rovnoměrné rozdělení nejvyšší neurčitost
- Sdružená entropie H(X,Y) diskrétních náhodných veličin X,Y se sdruženým rozdělením p(x,y):

$$H(X,Y) = -\sum_{x} \sum_{y} p(x,y) \log p(x,y)$$

 \circ Sdružená entropie diskrétního náhodného vektoru X se sdruženým rozdělením p(x):

$$H(X) = -\sum_{x} p(x) \log_{p}(x)$$

- Podmíněná entropie H(Y|X) diskrétních náhodných veličin X,Y se sdruženým rozdělením p(x,y):

$$H(Y|X) = -\sum_{x} \sum_{y} p(x, y) \log p(y|x)$$

- $\circ \quad p(y|x) = \frac{p(x,y)}{p(x)}$
- o Alternativně $H(X,Y) = -E \log H(Y|X)$
- Řetězové pravidlo:

$$H(X,Y) = H(X) + H(Y|X)$$

 $\rightarrow H(Y|X) = H(X,Y) - H(X)$... určuje, která část informace je ve veličině Y navíc oproti tomu, co je v X

- **Relativní entropie** = Kullback-Leiblerova vzdálenost D(p||q):

$$D(p||q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

- o Pokud $\exists x : p(x) > 0, q(x) = 0 : D(p||q) = +\infty$
- o Je to "vzdálenost" nezáporná a 0, jen pokud p=q
 - Ale ne opravdová, neplatí D(q||p) ani trojúhelníková nerovnost
 - Alternativně:

$$D(p||q) = E_p \log \frac{p(x)}{q(x)}$$

Vzájemná informace I(X; Y):

$$I(X;Y) = \sum_{x} \sum_{y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

= relativní entropie skutečného sdruženého rozdělení a rozdělení nezáv. veličin se stejnými marginálami:

$$I(X;Y) = D(p(x,y)||p(x)p(y))$$

- o Symetrie: I(X;Y) = I(Y;X)
- o Z nezápornosti relativní entropie: $I(X;Y) \ge 0$
- Vztah vzájemné informace a entropie

$$I(X;Y) = H(Y) - H(Y|X) = H(X) - H(X|Y)$$

- o Odvození přes věty o logaritmech
- $\circ I(X;Y) = H(X) + H(Y) H(X,Y)$
- o I(X;X) = H(X) vlastní informace
- Informační nerovnost: p(x), q(x) možná rozdělení X: $D(p||q) \ge 0$
 - o Rovnost pouze pokud $p(x) = q(x) \ \forall x \in \mathcal{X}$
 - o Důsledky:
 - Nezápornost vzájemné informace pro dvě d.n.v. $X,Y:I(X;Y)\geq 0$
 - Pokud rovnost, pak jsou závislé
 - *I* je číselná charakteristika sdruženého rozdělení, která je schopná poznat nezávislost
 - Maximalizace entropie pro d.n.v. X s hodnotami z X: $H(X) \leq \log |X|$
 - $|\mathcal{X}|$... počet prvků množiny \mathcal{X} rovnost, pokud rovnoměrné rozdělení
 - Entropie je maximalizována rovnoměrným rozdělením
 - Podmiňování redukuje entropii: $H(Y|X) \le H(X)$
 - Rovnost, pokud jsou X a Y nezávislé
 - "informace neublíží" znalost n.v. Y může v průměru pouze redukovat neurč. v X
 - Pouze v průměru, samotné H(X|Y=y) může být pro nějaké y větší než H(X), ale:

$$H(X|Y) = \sum_y p(y) H(X|Y=y) \leq H(X)$$

Teorie kódování

- Jak zapsat zdrojovou zprávu, tak, aby následný přenos byl co nejefektivnější
- **D-ární abeceda** abeceda $\mathcal D$ obsahující D přenositelných symbolů
- **Zpráva** $x_1 \dots x_n$ je posloupnost znaků z \mathcal{X}
- Chceme co nejkratší zakódovanou zprávu
- Zobrazení $C: \mathcal{X} \to \mathcal{D}^*$ z množiny \mathcal{X} do množiny \mathcal{D}^* konečných řetězců symbolů D-ární abecedy \mathcal{D} nazýváme **kód** diskrétní náhodné veličiny X
 - Obraz C(x) = **kódové slovo** příslušného prvku x a jeho délku značíme l(x)
 - $\circ \quad \mathcal{D}^* = \bigcup_{k=1}^{\infty} \mathcal{D}^k$
 - \mathcal{D}^k ...řetězec symbolů z \mathcal{D} délky k
- Střední délka L(C) kódu C náhodné veličiny X s rozdělením p(x):

$$L(C) = \sum_{x} l(x)p(x)$$

o l(x)...délka kódového slova příslušejícího k prvku $x \in \mathcal{X}$:

$$\rightarrow L(C) = El(x)$$

- Typy kódů
 - o **Nesingulární kód** C d.n.v. X pokud je C prosté zobrazení

$$\forall x, x' \in \mathcal{X}: x \neq x' \Rightarrow C(x) \neq C(x')$$

- Dostačující pro schopnost rekonstruovat z kódových slov jednotlivé hodnoty X
- Není dostačující pro dekódování posloupnosti hodnot X (celých zpráv)
- o **Jednoznačně dekódovatelný kód** C pokud je C^* nesingulární
 - C^* = rozšíření kódu C zobrazení X^* do D^* :

$$C^*(x_1 ... x_n) = C(x_1) ... C(x_n)$$

- Zápis jednotlivých kódových slov po sobě
- Jsme schopni jednoznačně dekódovat libovolnou přijatou zprávu
- o Kód je **instantní** (prexifový), pokud žádné kódové slovo není prefixem jiného kódového slova
- o Hierarchie kódů:

- Kraftova nerovnost – pro libovolný instantní kód nad D-ární abecedou musí délky kódových slov $l_1 \dots l_n$ splnit nerovnost:

$$\sum_{i} D^{-l_i} \le 1$$

Navíc, ke každé n-tici délek, které splní tuto nerovnost, existuje instantní kód s kódovými slovy těchto délek

- o Pro jednoznačně dekódovatelné kódy analogicky (McMillanova věta)
 - Ke každému jednoznačně dekódovatelnému kódu lze sestrojit instantní kód, který má stejně dlouhá kódová slova
- Optimální kódy
 - o **Střední délka** L(C) instantního D-árního kódu C d.n.v. X je:

$$L(C) \ge H_D(X)$$

- lacktriangle Rovnost, právě když $D^{-l_i}=p_i \; orall i=1 \dots |\mathcal{X}|$
 - $p_i = p(x_i)$
- o Optimální kód = kód o nejmenší střední délce
- o Uvažujme optimální instantní kód C^*

$$H_D(X) \le L(C^*) < H_D(X) + 1$$

Optimálním kódem se od dolní meze dané entropií můžeme vzdálit maximálně o 1

- Huffmanovo kódování
 - o Algoritmus na sestrojení binárního Huffmanova kódu:
 - 1. Spojíme 2 nejmíň pravděpodobné hodnoty → nové rozdělení s o 1 menším počtem hodnot
 - 2. Opakujeme, dokud nezůstane 1 hodnota → prázdný řetěz jako kódové slovo
 - 3. Zpětným chodem zkonstruujeme kódová slova všech původních hodnot
 - **4.** Pro hodnotu X, která vznikla spojením u a v vytvoříme kódové slovo méně pravděpodobné hodnoty připojením 1 za kódové slovo C(x) a analogicky kódové slovo více pravděpodobné hodnoty připojením 0 za C(x)
 - Tzn. Pokud $\{u,v\} \mapsto x$ a $p(u) \le p(v)$, tak C(u) = C(x)1 a C(v) = C(x)0
 - o Huffmanův kód je **optimální** je-li C^* Huffmanův kód a C' libovolný jednoznačně dekódovatelný kód, potom $L(C^*) \leq L(C')$
 - Algoritmus sestrojení je hladový algoritmus, který lokálně agreguje 2 nejméně pravděpodobné hodnoty

8. Markovské řetězce s diskrétním časem. Jejich limitní vlastnosti.

NI-VSM

- **Náhodný proces** – buďte (Ω, \mathcal{F}, P) pravděpodobnostní prostor a $T \subseteq \mathbb{R}$ indexová množina. Náhodná proces je systém náhodných veličin

$$X = \{X_t | t \in T\}, X_t : \Omega \to \mathbb{R}$$

- **Množina** T lze chápat jako $\check{c}as \rightarrow \check{c}asová$ souslednost dána uspořádáním T
 - o **Diskrétní čas** je-li *T* nejvýše spočetná
 - o **Spojitý čas** je-li *T* nespočetná
- Množina stavů S = minimální podmnožina \mathbb{R} , pro kterou platí, že $\forall t \in T \ P(X_t \in S) = 1$
 - o S = společná množina hodnot X_t (diskrétní/kontinuum)
- Trajektorie náhodného procesu
 - Náhodný proces $X = \{X_t | t \in T\}$ = zobrazení z Ω do prostoru funkcí $X: \Omega \to \{f: T \to S\}$
 - o $X_t(w)$...hodnota funkce X(t, w) proměnných t a w (w je elementární jev)
 - o Trajektorie/realizace náhodného procesu X = funkce $f: T \to \mathbb{R}: f(t) = X_t(w)$
- Spočetná množina $S: S = \mathbb{N}, S = \{1, ..., |S|\}$
- Diskrétní čas: $T = \mathbb{N}_0$: $X = \{X_n \mid n = 0, 1, 2, ...\}$
- Rozdělení v čase $n \in \mathbb{N}_0$ char. pravděpodobnostní funkcí: $p_i(n) = P(X_n = i), p(n) = (p_1(n), p_2(n), ...)$
- Matice pravděpodobnostního přechodu za čas mezi n a $m \ge n$:

$$P_{ij}(n,m) = P(X_m = j \mid X_n = i)$$
 $P(m,n) = (P_{ij}(n,m))_{i,j \in S}$

Markovský řetězec

- Náhodný proces $\{X_n \mid n \in \mathbb{N}_0\}$ s nejvýše spočetnou množinou stavů S nazýváme **markovský řetězec** s diskrétním časem, pokud pro každý stav S splňuje **markovskou podmínku**:

$$P(X_n = s | X_{n-1} = s_{n-1}, \dots, X_1 = s_1, X_0 = s_0) = P(X_n = s | X_{n-1} = s_{n-1})$$

- Následující podmínky jsou ekvivalentní markovské podmínce:

$$P(X_{n+m} = s | X_m = s_m, ..., X_1 = s_1, X_0 = s_0) = P(X_{n+m} = s | X_m = s_m)$$

 $P(X_{n_k} = s_k | X_{n_{k-1}} = s_{k-1}, ..., X_{n_0} = s_0) = P(X_{n_k} = s_k | X_{n_{k-1}} = s_{k-1})$

 Ekvivalentní definice markovského řetězce – náhodný proces s nejvýše spočetnou množinou stavů S je markovský řetězec právě tehdy, když pro každé k, n, s:

$$P(X_{n_0}=s_0,\ldots,X_{n_k}=s_k)=$$

$$= p_{s_0}(n_0) \cdot \mathbf{P}_{s_0s_1}(n_0, n_1) \cdot \mathbf{P}_{s_1s_2}(n_1, n_2) \cdot \cdots \cdot \mathbf{P}_{s_{k-1}s_k}(n_{k-1}, n_k)$$

- Chapman-Kolmogorova rovnice – pro matice přechodu markovského řetězce platí $\forall n \leq m \leq r \in \mathbb{N}_0$:

$$P(n,r) = P(n,m)P(m,r)$$

Homogenní markovský řetězec

- Markovský řetězec je **homogenní**, pokud $\forall n \in \mathbb{N}, \forall i, j \in S$:

$$P(X_{n+1} = j | X_n = i) = P(X_1 = j | X_0 = i)$$

- Pro homogenní markovský řetězec platí $\forall m, n \in \mathbb{N}_0$:

$$P(m, m + n) = P(0, n) = P^n$$

- Pro homogenní m. ř. definujeme (jednokrokovou) **matici přechodu**:

$$P = P(0,1) = (P(X_1 = j | X_0 = i))_{i,j \in S}$$

- o Značení $P(n) = P(0, n) = P^n$
- o **Pravděpodobnost přechodu** ze stavu i do j během n kroků:

$$P(X_n = j | X_0 = i) = P_{ij}(n) = (P^n)_{ij}$$

o Ch-K. rovnice pro homo. m. ř.:

$$P(n+m) = P(n)P(m)$$

Jiný zápis pro $P^{n+m} = P^n P^m$

- Rozdělení náhodné veličiny X_n
 - o Pro n > m platí, že:

$$\begin{aligned} \boldsymbol{p}_{j}(n) &= \mathrm{P}(X_{n} = j) = \sum_{i \in S} \mathrm{P}(X_{m} = i) \, \mathrm{P}(X_{n} = j | X_{m} = i) \\ &= \sum_{i \in S} \boldsymbol{p}_{i}(m) \mathbf{P}_{ij}(m, n) \, . \end{aligned}$$

o Maticový zápis:

$$p(n) = p(m)P(m,n) = p(0)P(0,n)$$

o Tím pádem pro h. m. ř. platí:

$$p(n) = p(m)P^{n-m} = p(0)P^n$$

- Stochastické matice matice přechodu je stochastická:
 - o P má nezáporné prvky: $P_{ij} \ge 0 \ \forall i, j \in S$
 - Součet řádků P je roven 1: $\sum_{i \in S} P_{ij} = 1 \ \forall i \in S$
 - o Součin stochastických matic je opět stochastická matice
 - K libovolné čtvercové stochastické matici P existuje homogenní markovský řetězec s diskrétním časem takový, že P je jeho maticí přechodu
- Příklad diagramu přechodu a matice přechodu:

Stacionární rozdělení

- **Počáteční rozdělení** p(0) – může být libovolný vektor $q \in \mathbb{R}^{|S|}$ splňující:

$$\forall i \in S: \boldsymbol{q}_i \geq 0 \,, \qquad \text{a} \qquad \sum_{i \in S} \boldsymbol{q}_i = 1 \label{eq:qi}$$

o Maticí přechodu P definujeme třídu náhodných procesů $\{X_n \mid n \in \mathbb{N}_0\}$ definovaných na prostorech (Ω, F, P_a) , pro které platí:

$$\mathbf{P}_{\boldsymbol{q}}(X_0=i) = \boldsymbol{q}_i\,, \qquad \mathbf{P}_{\boldsymbol{q}}(X_n=i) = (\boldsymbol{q}\mathbf{P}^n)_i$$

- Stacionární rozdělení buď $\{X_n \mid n \in \mathbb{N}_0\}$ homogenní markovský řetězec s maticí přechodu P. Pokud existuje vektor π takový, že:
 - $\circ \forall i \in S: \pi_i \geq 0$
 - $\circ \quad \sum_{i \in S} \pi_i = 1$

pro který platí $\pi P = \pi$, nazýváme jej stacionárním rozdělením řetězce

o Existuje-li stacionární rozdělení, pak

$$p(0) = \pi \implies p(n) = \pi \mathbf{P}^n = \pi \mathbf{P}^{n-1} = \cdots = \pi \mathbf{P} = \pi$$

o Stacionární rozdělení má požadovanou vlastnost $P_{\pi}(X_n=i)=\pi_i$

Klasifikace stavů markovského řetězce

- Stav *i* nazveme **trvalý (rekurentní)**, pokud:

$$P(\exists n \in \mathbb{N}: X_n = i | X_0 = i) = 1$$

- o **Trvalost** = každá trajektorie začínající v i se někdy vrátí do i skoro jistě
- Stav *i* nazveme **přechodný (transientní)**, pokud není trvalý, tj:

$$P(\exists n \in \mathbb{N}: X_n = i | X_0 = i) < 1$$

- o **Přechodnost** = existuje hodně trajektorií, které se do i už nikdy nevrátí
- Čas první návštěvy stavu $i \in S$:

$$\tau_i = \min\{n \in \mathbb{N} | X_n = i\}$$

je-li množina neprázdná, a $\tau_i = +\infty$, je-li množina prázdná

- o f_{ij} ...pravděpodobnost, že **řetězec někdy navštíví** j, startoval-li v i
- o $f_{ii}(n)$...pst, že **1. návštěva** j při startu z i nastane v n-tém kroku
- o Z toho vyplývá:
 - Stav je **trvalý** \Leftrightarrow $f_{ii} = P(\tau_i < +\infty \mid X_0 = i) = 1$
 - Stav je **přechodný** $\Leftrightarrow f_{ii} = P(\tau_i < +\infty \mid X_0 = i) < 1$

Střední doba návratu do $i \in S$:

$$\mu_i := \mathrm{E}(\tau_i|X_0 = i) = \begin{cases} \sum_{n=1}^\infty n f_{ii}(n) & \text{je-li } i \text{ trval\'y}\,, \\ +\infty & \text{je-li } i \text{ p\'echodn\'y} \end{cases}$$

- o Trvalý stav i = nenulový, pokud je střední doba návratu konečná: $\mu_i < +\infty$
 - Jinak je stav nulový
- Perioda stavu i ∈ S:

$$d(i) = \gcd\{n \in \mathbb{N} \mid P_{ii}(n) > 0\}$$

- = největší společný dělitel časů, kdy se řetězec vrátí do stavu i
 - o Periodický stav = d(i) > 1
 - o Aperiodický stav = d(i) = 1
 - o $P_{ii}(n) = P_{ii}^n$, je-li stav periodický s d(i), pak $\forall n \in \mathbb{N}_0$:

$$n \notin \{k \cdot d(i) \mid k \in \mathbb{N}_0\} \implies \mathbf{P}_{ii}(n) = 0$$

o Pokud existují $n,m\in\mathbb{N}$ takové, že $P_{ij}(n)>0$ a $P_{ji}(m)>0$ = stavy jsou **vzájemně dosažitelné**, pak:

$$d(i) = d(j)$$

- Klasifikace stavů pomocí matice přechodu P stav i m.ř. je:
 - o Přechodný $\Leftrightarrow \sum_{n=0}^{\infty} P_{ii}(n) < +\infty$, potom $P_{ii}(n) \to 0$
 - o Trvalý nulový $\Leftrightarrow \sum_{n=0}^{\infty} P_{ii}(n) = +\infty$ a $\lim_{n\to\infty} P_{ii}(n) = 0$, potom $P_{ji}(n) \to 0$
 - o Trvalý nenulový aperiodický $\Leftrightarrow \lim_{n\to\infty} P_{ii}(n) = 1/\mu_i > 0$, potom $P_{ii}(n) \to f_{ii}/\mu_i$
 - o Trvalý nenulový periodický \Leftrightarrow má periodu d(i) a $\lim_{k\to\infty} P_{ii}(kd(i)) = d(i)/\mu_i > 0$

Rozklad množiny stavů

- Dosažitelný stav j ze stavu i ($i \to j$), pokud se lze dostat z i do j v konečném čase = $\exists n \in \mathbb{N}_0: P_{ij}(n) > 0$
- Stavy i a j jsou **vzájemně dosažitelné** $(i \leftrightarrow j)$, pokud $i \to j$ a $j \to i$
 - $0 \quad i \neq j: i \rightarrow j \iff f_{ij} > 0$
 - Relace ↔ je ekvivalence
 - o Pokud $i \leftrightarrow j$, jsou oba stejného typu
- Uzavřená množina $C \subseteq S$: $\forall i \in C, \forall j \notin C$: $P_{ij} = 0$
 - o Uspořádejme stavy tak, aby C byly na konci (S = (C', C)):

$$\mathbf{P} = \frac{C'}{C} \begin{pmatrix} \mathbf{A} & \mathbf{B}_1 \\ \mathbf{0} & \mathbf{C} \end{pmatrix}, \quad \mathbf{P}^2 = \frac{C'}{C} \begin{pmatrix} \mathbf{A}^2 & \mathbf{B}_2 \\ \mathbf{0} & \mathbf{C}^2 \end{pmatrix}, \quad \mathbf{P}^n = \frac{C'}{C} \begin{pmatrix} \mathbf{A}^n & \mathbf{B}_n \\ \mathbf{0} & \mathbf{C}^n \end{pmatrix}$$

- o Z uzavřené množiny řetězec neuteče: $\forall i \in C \text{ a} \rightarrow j \implies j \in C$
- o Je-li uzavřená množina C tvořena jediným stavem $C = \{S\}$, pak tento stav = pohlcující (absorbční)
- Rozložitelnost množina stavů $C \subseteq S$ nerozložitelná (ireducibilní), pokud $\forall i, j \in C$ platí $i \leftrightarrow j$
 - o Markovský řetězec je nerozložitelný, pokud S je nerozložitelná
- **Jednoznačný rozklad** množina stavů S lze jednoznačně rozložit do tvaru $S = T \cup C_1 \cup C_2 \cup ...$
 - o T ... množina všech přechodných stavů
 - o $C_1, C_2, ...$ vzájemně disjunktní nerozložitelné uzavřené **množiny trvalých stavů**
 - o Matice přechodu po uspořádání $S = (T, C_1, C_2, ...)$ má tvar:

$$\mathbf{P} = egin{array}{ccccc} T & C_1 & C_2 & \dots \\ T & R_1 & R_2 & \dots \\ 0 & C_1 & 0 & \dots \\ 0 & 0 & C_2 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

- T ... čtvercová matice přechodů mezi **přechodnými stavy** v T
- C_i ... čtvercová matice přechodů mezi **trvalými stavy** v C_i
- lacktriangle R_i ... matice přechodů z množiny přechodných stavů do množiny trvalých stavů C_i
- Je-li stav $i \in S$ trvalý a $i \to j$, pak $j \in S$ je také trvalý a $j \to i$

- V řetězci s konečně mnoha stavy $|S| < +\infty$
 - Nemohou být všechny stavy přechodné (takže alespoň 1 trvalý)
 - o Neexistují stavy trvalé nulové (takže trvalé stavy vždy nenulové)
 - Tím pádem alespoň 1 uzavřená nerozložitelná množina trvalých nenulových stavů (bude jich konečně mnoho), zbylé stavy přechodné
- Mějme konečnou množinu stavů S a $i \in S$. $S_i = \{ j \in S \mid i \to j \}$ množina stavů dosažitelných z i. Pak
 - o Pokud $\forall j \in S_i$: $j \to i$, stav i je **trvalý nenulový**
 - o Pokud $\exists j \in S_i$: $j \nrightarrow i$, stav i je **přechodný**

Existence stacionárního rozdělení

- Pro rozložitelný markovský řetězec platí:
 - o Jsou-li všechny stavy přechodné nebo trvalé nulové, stacionární rozdělení neexistuje
 - Jsou-li všechny stavy **trvalé nenulové**, stacionární rozdělení π existuje a je **jediné**. Jsou-li navíc všechny stavy aperiodické, platí $\forall i,j \in S: \pi_j = \lim_{n \to \infty} P_{ij}(n) = 1/\mu_j > 0$, tedy

$$\pi = \lim_{n \to \infty} p(n)$$
 pro libovolné $p(0)$

- Je-li množina stavů konečná, pak stacionární rozdělení existuje
- Počet stacionárních rozdělení
 - o Pro každou množinu C_r trvalých nenulových stavů, $r \in I$, existuje **stacionární rozdělení** $\tilde{\pi}^{(r)}$ splňující:

$$\widetilde{\boldsymbol{\pi}}^{(r)} \cdot \mathbf{C}_r = \widetilde{\boldsymbol{\pi}}^{(r)}$$

- o Pak platí, že vektor $\pmb{\pi}^{(r)}:=(0,\dots,0,\widetilde{\pi}^{(r)},0,\dots,0)$ řeší rovnici $\pmb{\pi}^{(r)}\cdot \mathbf{P}=\pmb{\pi}^{(r)}$
- o Z toho plyne, že máme celkem tolik lineárně nezávislých **stacionárních rozdělení** $\pi^{(r)}$, $r \in I$, kolik je (nenulových) množin C_r
- o Pak libovolná konvexní kombinace

$$\sum_{r \in I} \lambda_r \, \boldsymbol{\pi}^{(r)} \,, \qquad \lambda_r \ge 0 \,, \quad \sum_{r \in I} \lambda_r = 1$$

je stacionárním rozdělením procesu s maticí přechodu P

Pravděpodobnosti pohlcení

- Množinu stavů S lze jednoznačně rozložit do tvaru $S=T\cup C_1\cup C_2\cup...,T$ přechodné, C_r nerozložitelné trvalé
- S konečná \rightarrow alespoň 1 neprázdná C_r , všechny stavy jsou nenulové
- $i \in T$ přechodný $\rightarrow \forall j \in S$:

$$\lim_{n\to\infty} \mathbf{P}_{ji}(n) = 0 \quad \wedge \quad \sum_{n=1}^{+\infty} \mathbf{P}_{ii}(n) < +\infty$$

- Je-li S konečná, bude řetězec v konečné době pohlcen jednou z množin C_r
- Čas absorbce = náhodná veličina $\tau_A: \Omega \to \{0, 1, ..., +\infty\}$:

$$\tau_A(\omega) := \min\{n \in \mathbb{N}_0 \mid X_n(\omega) \notin T\}$$

- o Je-li množina neprázdná, jinak $\tau_A(\omega) = +\infty$
- o Je-li množina stavů S konečná, pak $P(\tau_A = +\infty \mid X_0 = i) \ \forall i \in T$
- Označme U_{ij} pravděpodobnost, že řetězec startující v $i \in T$ opustí T přechodem do stavu $j \in C$:

$$U_{ij} = P(X_{\tau_A} = j \mid X_0 = i)$$

- $\circ \quad U = \left(U_{ij}\right)_{i \in T, i \in C} \in \mathbb{R}^{|T|, |C|}$
- o Pravděpodobnost pohlcení v množině C:

$$P\big(X_{\tau_A} \in C_r | X_0 = i\big) = \sum\nolimits_{j \in C_r} U_{ij}$$

- o Pokud nás nezajímá, **kudy se řetězec** do uzavřené množiny C_r dostal, je výhodné sloučit stavy $j \in C_r$ do jednoho "superstavu":
 - Matice přechodu P: $\mathbf{P} = \frac{T}{C} \begin{pmatrix} \mathbf{T} & \mathbf{R} \\ \mathbf{0} & \mathbf{I} \end{pmatrix}$

Matice pravděpodobností pohlcení *U* je řešením rovnice

$$U = R + TU$$

Řešení rovnice:

$$U = R + TU \iff R = U - TU = (I - T)U$$

Je-li matice (I-T) regulární, existuje jediné řešení:

$$U = (I - T)^{-1}R$$

- o Buď A čtvercová matice taková, že $A^n \to 0$ při $n \to \infty$. Pak matice I A je regulární a platí $(I-A)^{-1} = I + A + A^2 + \dots = \sum_{k=0}^{\infty} A^k$
- o Pro matici pravděpodobnosti pohlcení platí $U = (I T)^{-1}R$
- Počet návštěv stavu $j \in C$ = náhodná veličina W_j :

$$W_j:=\sum_{n=0}^\infty 1\!\!1_{\{X_n=j\}}$$

- o Pro $j \in \mathcal{C}$ trvalý tedy platí $W_j = +\infty$ skoro jistě: $P\big(W_j = +\infty\big) = 1$
- o Pro $i \in T$ přechodný naopak $P(W_i < +\infty) = 1$

$$\mathbb{E} \, \mathbb{1}_{\{X_n = j\}} = 0 \cdot \mathrm{P}(X_n \neq j) + 1 \cdot \mathrm{P}(X_n = j) = \mathrm{P}(X_n = j)$$

 N_{ik} = střední počet návštěv stavu $k \in T$, jestliže řetězec startuje v $i \in T$

$$N_{ik} = E(W_k | X_0 = i)$$

 $N_{ik} = E(W_k | X_0 = i)$ o Pro matici $N = (N_{ik})_{i,k \in T} \in \mathbb{R}^{|T|,|T|}$:

$$N = (I - T)^{-1}$$

- N ... fundamentální matice řetězce
- **Střední doba do pohlcení** při startu v $i \in T$:

$$E(\tau_A|X_0=i) = \left[(\mathbf{I} - \mathbf{T})^{-1} \cdot \mathbf{1} \right]_i$$

- Limita matice C^n
 - Struktura matice C odpovídající trvalým stavům

$$\mathbf{C} = egin{pmatrix} C_1 & C_2 & \dots & & & C_1 & C_2 & \dots \ C_1 & \mathbf{C}_1 & \mathbf{0} & \dots \ \mathbf{0} & \mathbf{C}_2 & \dots \ dots & dots & dots \end{pmatrix} \implies \mathbf{C}^n = egin{pmatrix} C_1 & \mathbf{C}_1 & \mathbf{0} & \dots \ \mathbf{0} & \mathbf{C}_1^n & \mathbf{0} & \dots \ \mathbf{0} & \mathbf{C}_2^n & \dots \ dots & dots & dots & \ddots \end{pmatrix}$$

Předpoklad, že stavy trvalé jsou aperiodické. Pak $\forall \mathcal{C}_r$:

$$(\mathbf{C}_r)^n \xrightarrow{n \to +\infty} \widetilde{\mathbf{C}}_r \,, \quad \text{ kde } \quad (\widetilde{\mathbf{C}}_r)_{i,j} = \widetilde{\boldsymbol{\pi}}_j^{(r)} \text{ pro } i,j \in C_r$$

o $\widetilde{\mathcal{C}_r}$ má v řádcích stacionární rozdělení \mathcal{C}_r :

$$\mathbf{C}^n \xrightarrow{n o +\infty} \widetilde{\mathbf{C}} := egin{pmatrix} C_1 & C_2 & \dots \\ C_1 & \widetilde{\mathbf{C}}_1 & \mathbf{0} & \dots \\ 0 & \widetilde{\mathbf{C}}_2 & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

Limita matice P^n – buď $S=T\cup C$ konečná množina stavů, T přechodné, C trvalé aperiodické. Pak

$$\lim_{n \to +\infty} \mathbf{P}^n = \lim_{n \to +\infty} {\begin{smallmatrix} T \\ C \end{smallmatrix}} \left(\begin{matrix} \mathbf{T}^n & \mathbf{R}_n \\ \mathbf{0} & \mathbf{C}^n \end{matrix} \right) = {\begin{smallmatrix} T \\ C \end{smallmatrix}} \left(\begin{matrix} \mathbf{0} & \mathbf{U}\widetilde{\mathbf{C}} \\ \mathbf{0} & \widetilde{\mathbf{C}} \end{matrix} \right)$$

9. Markovské řetězce se spojitým časem. Souvislost s Markovskými řetezci s diskrétním časem a s Poissonovým procesem.

NI-VSM

- **Čítací proces** = náhodný proces $\{N_t \mid t \ge 0\}$, jehož trajektorie jsou nezáporné, celočíselné a neklesající:
 - \circ $N_t \geq 0$
 - \circ $N_t \in \mathbb{Z}$
 - \circ $s \leq t \Longrightarrow N_s \leq N_t$
 - o Pro s < t udává přírůstek $N_t N_s$ počet událostí, které nastaly během časového intervalu
 - Binomický proces = čítací proces takový, že časy mezi událostmi jsou nezávislé a geometricky rozdělené
 - o Spojitý ekvivalent geometrického rozdělení je exponenciální
 - o Poissonův proces = čítací proces s nezávislými exponenciálně rozdělenými časy mezi událostmi

Poissonův proces

- Buďte $\{X_j \mid j \in \mathbb{N}\}$ iid náhodné veličiny s rozdělením $Exp(\lambda)$. Definujeme $\{T_n \mid n \in \mathbb{N}\}$:

$$T_0 = 0$$
, $T_n = T_{n-1} + X_n = \sum_{j=1}^n X_j$, $n \ge 1$

pak náhodný proces $\{N_t \mid t \in [0, +\infty)\}$, kde:

$$N_t(\omega) := \max\{n \in \mathbb{N}_0 \mid T_n(\omega) \le t\}$$

nazveme Poissonovým procesem

- Modeluje příchody událostí, které jsou na sobě nezávislé. Mezi přicházejícími událostmi není žádná interakce
- Řekneme, že proces $\{N_t \mid t \in [0, +\infty)\}$ je **Poissonův proces**, pokud:
 - i. $N_0 = 0$ skoro jistě
 - ii. $N_t N_s \sim Poisson(\lambda(t-s)) \ \forall t > s \ge 0$
 - iii. $\{N_t\}$ má nezávislé přírůstky: $\forall k \in \mathbb{N}$ a pro všechny $0 \le t_0 < t_1 < \cdots < t_k$

$$N_{t_1}-N_{t_0},\ N_{t_2}-N_{t_1},\ \ldots,\ N_{t_k}-N_{t_{k-1}}$$
nezávislé

- Binomický x Poissonův proces
 - o Liší se pouze rozdělením času mezi událostmi

Binomický	Poissonův	
$X_j \sim \operatorname{Geom}(p)$	$X_j \sim \operatorname{Exp}(\lambda)$	
$T=\mathbb{N}_0$	$T = [0, +\infty)$	
$Y_n \sim \operatorname{Binom}(n,p)$	$N_t \sim \text{Poisson}(\lambda t)$	
$\mathrm{E}Y_n=pn$	$\mathrm{E}N_t=\lambda t$	

- o Geometrické a exponenciální rozdělení mají společnou vlastnost bezpaměťovost
- o Poisson lze chápat jako spojitou variantu binomického
- o Bezpaměťovost klíčová pro MŘ se spojitým časem
- Exponenciální rozdělení $T \sim Exp(\lambda)$:

Hustota pravděpodobnosti

$$f_T(t) = \begin{cases} \lambda e^{-\lambda t} & t \ge 0 \,, \\ 0 & t < 0 \,. \end{cases} \text{Funkce přežití}$$

$$P(T > t) = \begin{cases} e^{-\lambda t} & t \ge 0 \,, \\ 1 & t < 0 \,. \end{cases}$$

Distribuční funkce

$$F_T(t) = egin{cases} 1 - e^{-\lambda t} & t \geq 0 \,, \\ 0 & t < 0 \,. \end{cases} \qquad \text{E}\, T = rac{1}{\lambda} \,, \qquad ext{var}\, T = rac{1}{\lambda^2} \,, \qquad ext{E}\, T^k = rac{k!}{\lambda^k}$$

- Bezpaměťovost exponenciálního rozdělení – buď $T \sim Exp(\lambda)$ exponenciálně rozdělená náhodná veličina. Pak $\forall t, s \geq 0$:

$$P(T > t + s | T > t) = P(T > s)$$

O Pokud jsme na bus čekali t minut, pak pst, že budeme čekat dalších s minut je stejná, jako kdybychom vůbec nečekali

Silná bezpaměťovost exponenciálního rozdělení – buď $T \sim Exp(\lambda)$ a buď A spojitá nezáporná náhodná veličina nezávislá na T. Pak $\forall s \geq 0$:

$$P(T > A + s | T > A) = P(T > s)$$

- Pokud jsme na bus 143 čekali do příjezdu 180, pak pst, že budeme čekat dalších s minut je stejná, jako kdybychom vůbec nečekali
- Bud'te $X_1,X_2\ldots i.i.d.,\,X_j\sim \operatorname{Exp}(\lambda)$. Pak $T_n:=X_1+X_2+\cdots+X_n\sim\operatorname{Ga}(\lambda,n)$, tj. $f_{T_n}(t) = \frac{\lambda^n}{(n-1)!} e^{-\lambda t} t^{n-1}, \quad t \ge 0$
- Náhodná veličina N_s má Poissonovo rozdělení s parametrem λ_s
- **Bezpaměťovost** buď $s \ge 0$ pevné. Pak náhodný proces $\{N_{t+s} N_s | t \ge 0\}$ je Poissonův proces s intenzitou λ . Navíc $N_{t+s}-N_s$ je nezávislé na N_r pro $0\leq r\leq s$
 - Když přijdu k běžícímu Poiss. procesu v čase s, je to stejné, jako by se proces restartoval → má nezávislé přírůstky

Markovský řetězec se spojitým časem

Markovský řetězec se spojitým časem = náhodný proces $\{X_t | t \ge 0\}$ s nejvýše spočetnou množinou stavů S, který splňuje markovskou podmínku: $\forall k \in \mathbb{N}, \forall 0 \leq t_0 < t_1 < \cdots < t_k \in \mathbb{R}_0^+, \text{ a } \forall s_0, \ldots, s_k \in S$

$$P(X_{t_k} = s_k | X_{t_{k-1}} = s_{k-1}, \dots, X_{t_0} = s_0) = P(X_{t_k} = s_k | X_{t_{k-1}} = s_{k-1})$$

Rozdělení v čase $t \in [0, +\infty)$. Pro $i \in S$:

$$p_i(t) := P(X_t = i), \quad p(t) := (p_1(t), p_2(t), ...)$$

Matice pravděpodobností přechodu za čas mezi s a $t \le s$:

$$\mathbf{P}_{ij}(t,s) := P(X_s = j | X_t = i), \qquad \mathbf{P}(t,s) := (\mathbf{P}_{ij}(t,s))_{i,j \in S}$$

Náhodný proces $\{X_t | t \ge 0\}$ s nejvýše spočetnou množinou stavů S je markovský právě tehdy, když $\forall k \in \mathbb{N}, \forall 0 \leq t_0 < t_1 < \cdots < t_k \in \mathbb{R}_0^+, \text{ a } \forall s_0, \ldots, s_k \in S$

$$P(X_{t_0} = s_0, \dots, X_{t_k} = s_k) =$$

$$= \mathbf{p}_{s_0}(t_0) \cdot \mathbf{P}_{s_0 s_1}(t_0, t_1) \cdot \mathbf{P}_{s_1 s_2}(t_1, t_2) \cdot \cdots \cdot \mathbf{P}_{s_{k-1} s_k}(t_{k-1}, t_k)$$

Chapman-Kolmogorova věta – pro matice přechodu markovského řetězce platí $\forall t \leq s \leq r \in [0, +\infty)$:

$$P(t,r) = P(t,s) \cdot P(s,r)$$

Homogenní markovský řetězec - $\forall t, s \ge 0$ platí:

$$P(t,t+s) = P(0,s) = P(s)$$

Chapman-Kolmogorova věta pro homogenní MŘ:

$$P(t+s) = P(t)P(s) = P(s)P(t)$$

Rozdělení $\forall t \geq 0$:

$$p(t) = p(0) \cdot P(t)$$

- Matice skokových intenzit
 - o Pokud $\forall i, j \in S, i \neq j$ existují konečné limity

$$\mathbf{Q}_{ii} = \lim_{h \to 0_+} \frac{\mathbf{P}_{ii}(h) - 1}{h} , \qquad \mathbf{Q}_{ij} := \lim_{h \to 0_+} \frac{\mathbf{P}_{ij}(h)}{h}$$

nazveme
$$Q = \left(Q_{ij}\right)_{i,j \in S}$$
 maticí (skokových) intenzit
$$\mathbf{P}(0) = I \implies \mathbf{Q} := \lim_{h \to 0_+} \frac{1}{h} (\mathbf{P}(h) - \mathbf{I}) = \lim_{h \to 0_+} \frac{1}{h} (\mathbf{P}(h) - \mathbf{P}(0))$$

• Předpokládáme, že limity existují a jsou konečné. Pak:

$$\mathbf{Q} = \lim_{h \to 0_+} \frac{1}{h} (\mathbf{P}(h) - \mathbf{P}(0)) = \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{P}(t) \Big|_{t=0} = \mathbf{P}'(0)$$

- o Vlastnosti matice skokových intenzit:
 - Neboť $0 \le P_{ij}(t) \le 1$, platí pro $i \ne j$:
 - Neboť $P_{ii}(t) = 1 \sum_{i \neq j} P_{ij}(t)$, platí:

$$\mathbf{Q}_{ii} = \lim_{h \to 0+} \frac{1}{h} \left(1 - \sum_{j \neq i} \mathbf{P}_{ij}(h) - 1 \right) = -\sum_{j \neq i} \lim_{h \to 0+} \frac{\mathbf{P}_{ij}(h)}{h} = -\sum_{j \neq i} \mathbf{Q}_{ij}$$

- Skok z \boldsymbol{i} do \boldsymbol{j} : $P_{ij}(h) = Q_{ij} \cdot h + o(h)$
- Skok z \boldsymbol{i} pryč: $1 P_{ii}(h) = -Q_{ii} \cdot h + o(h)$
- Simulace procesu pomocí skokových intenzit
 - o Buď τ_i čas do výskoku ze stavu i, tj. $X_{\tau_i} \neq i$, $X_s = i$ pro $s \in [0, \tau_i)$. Pak:
 - i. Čas do výskoku z i je exponenciální s $\lambda_i = -Q_{ii}$

$$= \tau_i \sim Exp(-Q_{ii})$$

ii. Pravděpodobnost, že řetězec skočí zi do j je dána poloměrem intenzit Q_{ij} , tj.

$$P(X_{\tau_i} = j \mid X_0 = i) = \frac{\mathbf{Q}_{ij}}{\lambda_i} = \frac{\mathbf{Q}_{ij}}{-\mathbf{Q}_{ii}} = \frac{\mathbf{Q}_{ij}}{\sum_{k \neq i} \mathbf{Q}_{ik}}$$

- Princip simulace:
 - 1. Začínám v $i \in S$
 - 2. Generuji náhodný čas $\tau_i \sim Exp(-Q_{ii})$ a "posunu" hodiny o τ_i
 - 3. Změním stav z i na j s pravděpodobností $\frac{Q_{ij}}{-Q_{ii}}$
 - 4. Opakuji od 2.

Konstrukce řetězců se spojitým časem

- Homogenní MŘ se spojitým časem (shrnutí)
 - Markovská podmínka

$$P(X_{t_k} = s_k | X_{t_{k-1}} = s_{k-1}, \dots, X_{t_0} = s_0) = P(X_{t_k} = s_k | X_{t_{k-1}} = s_{k-1})$$

o Homogenita

$$\mathbf{P}(t, t+s) = \mathbf{P}(0, s) := \mathbf{P}(s)$$

Chapman-Kolmogorova rovnice

$$\mathbf{P}(s+t) = \mathbf{P}(s)\mathbf{P}(t) = \mathbf{P}(t)\mathbf{P}(s)$$

Matice skokových intenzit

$$\mathbf{Q} = \mathbf{P}'(0) = \lim_{h \to 0_+} \frac{\mathbf{P}(h) - \mathbf{I}}{h}$$

Vlastnosti matice Q

$$\mathbf{Q}_{ij} \geq 0 \,, i \neq j \,, \qquad \mathbf{Q}_{ii} = -\sum_{k \neq i} \mathbf{Q}_{ij} \leq 0 \label{eq:Qij}$$

- **Diskrétní čas** časovaný Poissonovým procesem
 - Buď $\{N_t \mid t \geq 0\}$ Poissonovský proces s intenzitou λ . Buď $\{Y_n \mid n \in \mathbb{N}_0\}$ homogenní MŘ s diskrétním časem mající matici přechodu D. Pak proces $\{X_t \mid t \geq 0\}$ definovaný jako

$$X_t := Y_{N_t}, \quad tj. \quad X_t(\omega) := Y_{N_t(\omega)}(\omega)$$

je homogenní markovský proces se spojitým časem

- o Dynamika procesu $\{X_t\}$
 - $X_0 = i$
 - Bez ohledu na minulost má čas do další události rozdělení $Exp(\lambda)$
 - Po uplynutí tohoto času přeskočí řetězec z i do j s pravděpodobností D_{ij}
 - Čas do další události je opět exponenciální a nezávislý na minulosti
- o Matice přechodu
 - Pravděpodobnost, že za čas t nastane právě n události je $P(N_t = n)$
 - Za podmínky, že nastalo n událostí, je pst přeskoku z i do j dána n-krokovou pravděpodobností přechodu řetězce $\{Y_n\}$:

$$P(X_t = j | X_0 = i, N_t = n) = (\mathbf{D}^n)_{ij}$$

Navíc platí:

$$P(X_t = j | X_0 = i) = \sum_{t=0}^{+\infty} P(N_t = n) P(X_t = j | X_0 = i, N_t = n)$$

 $\blacksquare \quad \text{Matice přechodu} \ \text{\'retězce} \ X_t = Y_{N_t} \ \text{mají tvar} :$

$$\mathbf{P}_{ij}(t) = \sum_{n=0}^{+\infty} \frac{(\lambda t)^n}{n!} e^{-\lambda t} (\mathbf{D}^n)_{ij}$$

• Prvky matice přechodu pro $i \neq j$ a $h \rightarrow 0_+$:

$$P_{ij}(h) = \lambda h(D_{ij}) + o(h)$$

• Prvky Q pto $i \neq j$:

$$Q_{ij} = \lambda D_{ij}$$

• Prvky Q pro i = j:

$$Q_{ii} = \lambda(D_{ii} - 1)$$

- Konstrukce diskrétního řetězce pomocí Q:
 - $O \quad Q = \lambda(D I) \implies D = I + \frac{1}{\lambda}Q$
 - o Aby byla D stochastická, musí být $\lambda \geq Q_{ij} \implies sup_{i \in S}(-Q_{ii}) < +\infty$
 - Vždy splněno, je-li S konečná
- Simulace pomocí diskrétního řetězce mám Q a chci simulovat trajektorii $\{X_t\}$
 - 1. $\lambda = \sup_{i \in S} (-Q_{ii})$
 - 2. Matice přechodu: $D = I + \frac{1}{\lambda}Q$
 - 3. Vygeneruji trajektorii Poissonova procesu $\{N_t\}$
 - 4. Vygeneruji trajektorii $\{Y_n\}$ pomocí matice D
 - 5. Trajektorie $\{X_t\}$: $X_t = Y_N$

Kolmogorovy rovnice

- Výpočet matic přechodu pomocí matice intenzit
 - o MŘ se spojitým časem definovaná pomocí matice intenzit přeskoku Q_{ij}
 - o Chceme znát vývoj rozdělení v čase $t \ge 0$:

$$p(t) = p(0) \cdot P(t)$$

- K tomu potřebujeme matice přechodu P(t)
- o P(t) je řešením soustavy diferenciálních rovnic:

$$\mathbf{P}'_{ij}(t) = F_{ij}(\mathbf{P}_{k\ell}(t); k, \ell \in S), \quad i, j \in S$$

Maticově:

$$\mathbf{P'}(t) := \big(\mathbf{P'}_{ij}(t)\big)_{ij \in S}\,, \qquad \mathbf{P'}(t) = \boldsymbol{F}\big(\mathbf{P}(t)\big)$$

- Kolmogorovy rovnice buď $\{X_t \mid t \geq 0\}$ markovský řetězec s maticí intenzit Q. Pak pro matice přechodu P(t) platí:
 - o Kolmogorova dopředná rovnice: $P'(t) = P(t) \cdot Q$
 - Kolmogorova zpětná rovnice: $P'(t) = Q \cdot P(t)$
- Rozdělení p(t) je řešením soustavy diferenciálních rovnic

$$p'(t) = p(t) \cdot Q$$
, $p(0) = p_{initial}$

o Po složkách:

změna psti
$$i$$

$$= \sum_{j \in S} p_j(t) \mathbf{Q}_{ji} = \sum_{j \neq i} p_j(t) \mathbf{Q}_{ji} - \sum_{k \neq i} \mathbf{ztráta} \text{ psti } i$$

$$= \sum_{j \in S} p_j(t) \mathbf{Q}_{ji} - \sum_{k \neq i} \mathbf{p}_i(t) \mathbf{Q}_{ik}$$

- Řešení Kolmogorových rovnic – pro matice přechodu platí $P(t) = e^{Qt}$, kde

$$e^{\mathbf{Q}t} := \sum_{n=0}^{+\infty} \frac{(\mathbf{Q}t)^n}{n!}$$

Stacionární rozdělení

- Buď $\{X_t \mid t \geq 0\}$ MŘ s pravděpodobnostmi přechodu P(t). Pak vektor π nazvu **stacionárním rozdělením**, pokud $\forall t \geq 0$:

$$\pi \cdot P(t) = \pi$$

- Vektor π je **stacionárním rozdělením**, právě když $\pi \cdot Q = 0$
- Limitní vlastnosti
 - o MŘ $\{X_t \mid t \geq 0\}$ je **nerozložitelný (ireducibilní)**, pokud se z každého stavu $i \in S$ mohu dostat do libovolného stavu $j \in S$ pomocí konečně mnoha přeskoků
 - = pokud existuje $n\in\mathbb{N}$ a stavy $i=s_0,\ldots,s_n=j\in S$ takové, že $Q_{s_k,s_{k+1}}>0$ pro $k=0,\ldots,n-1$
 - o Buď $\{X_t \mid t \ge 0\}$ nerozložitelný MŘ se spojitým časem:
 - i. Existuje-li stacionární rozdělení π , pak je jednoznačné a $\forall i, j \in S$:

$$\lim_{t\to +\infty} \mathbf{P}_{ij}(t) = \pi_j$$

ii. Pokud stacionární rozdělení neexistuje, pak $\forall i, j \in S$:

$$\lim_{t\to +\infty} \mathbf{P}_{ij}(t) = 0$$

- Je-li množina stavů S konečná, pak stacionární rozdělení markovského řetězce se spojitým časem existuje
- Detailní rovnováha
 - Stacionární rozdělení splňuje

$$0 = \frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{\pi}_i = \sum_{j \in S} \boldsymbol{\pi}_j \mathbf{Q}_{ji} = \sum_{j \neq i} \boldsymbol{\pi}_j \mathbf{Q}_{ji} - \sum_{k \neq i} \boldsymbol{\pi}_i \mathbf{Q}_{ik}$$

Lze přepsat na:

$$0 = \sum_{j \neq i} \left(\boldsymbol{\pi}_j \mathbf{Q}_{ji} - \boldsymbol{\pi}_i \mathbf{Q}_{ij} \right)$$

o Pokud rozdělení π splňuje detailní rovnováhu:

$$\pi_j \mathbf{Q}_{ji} = \pi_i \mathbf{Q}_{ij}$$

pak je stacionárním rozdělením

10. Systémy hromadné obsluhy a jejich limitní vlastnosti. Souvislost s Markovskými řetězci se spojitým časem.

NI-VSM

Exponenciální závody a Markovské řetězce

- Model hromadné obsluhy

- o Princip:
 - Požadavky na server přichází náhodně s intenzitou λ
 - Je-li server zaneprázdněn vyřizováním požadavku, zařadí se nový do fronty
 - Server vyřizuje požadavky s intenzitou μ
- Rozdělení minima buďte $T \sim Exp(\lambda)$ a $S \sim Exp(\mu)$ nezávislé. Pak

$$Z := \min\{T, S\} \sim \operatorname{Exp}(\lambda + \mu)$$

ightarrow buď $T_1 \dots T_n$ nezávislé veličiny, $T_j {\sim} Exp(\lambda)$. Pak

$$\min\{T_1,\ldots,T_n\}\sim \operatorname{Exp}(\lambda_1+\cdots+\lambda_n)$$

o Z toho plyne, že:

$$\operatorname{Emin}\{T,S\} = \frac{1}{\mu + \lambda}, \qquad \operatorname{Emin}\{T_1,\ldots,T_n\} = \frac{1}{\lambda_1 + \cdots + \lambda_n}$$

o Platí, že $\max\{T,S\} - T + S - \min\{T,S\}$. Potom

$$\operatorname{E}\max\{T,S\} = \operatorname{E}T + \operatorname{E}S - \operatorname{E}\min\{T,S\} = \frac{1}{\lambda} + \frac{1}{\mu} - \frac{1}{\lambda + \mu}$$

o Pro libovolné nezávislé náhodné veličiny X, Y platí

$$\{\max\{X,Y\} \le t\} = \{X \le t\} \cap \{Y \le t\}$$

$$\{\min\{X,Y\} \le t\} = \{X \le t\} \cup \{Y \le t\}$$

- **Vítěz závodů** – buďte $T{\sim}Exp(\lambda)$ a $S{\sim}Exp(\mu)$ nezávislé. Pak

$$P(T < S) = \frac{\lambda}{\lambda + \mu}, \quad P(S < T) = \frac{\mu}{\lambda + \mu}$$

 \rightarrow buď $T_1 \dots T_n$ nezávislé veličiny, $T_j{\sim}Exp(\lambda)$. Pak

$$P(T_i = \min\{T_1, \dots, T_n\}) = \frac{\lambda_i}{\lambda_1 + \dots + \lambda_n}$$

- Konstrukce matice intenzit
 - i. Přeskok o $k \ge 2$: $Q_{n,n\pm k} = 0$
 - ii. Přeskok o 1: $Q_{n,n+1} = \lambda$

$$Q_{n,n-1} = \mu$$

- iii. Setrvání: $Q_{n,n} = -(\lambda + \mu)$
- Proces $\{X_t \mid t \geq 0\}$ je MŘ se spojitým časem \Leftrightarrow mezi jednotlivými stavy probíhají **exponenciální závody**
 - 1. Začínám v $i \in S$
 - 2. Generuji náhodný čas $au_i \sim Exp(\lambda_i)$, kde $\lambda_i = \sum_{k \neq i} \lambda_{ik}$ a "posunu hodiny" o au_i
 - 3. Změním stav z i na j s pravděpodobností $\frac{\lambda_{ij}}{\lambda_i}$
 - 4. Opakuji od 2.
 - o Pak se jedná o markovský řetězec s maticí intenzit Q takovou, že:

$$Q_{ij} = \lambda_{ij}, \quad i \neq j, \quad Q_{ii} = -\lambda_i$$

- Řetězec se spojitým časem lze popsat **diagramem** – váhy hran určeny intenzitou přeskoku $Q_{ij}=\lambda_{ij}$ mezi jednotlivými stavy

Systémy hromadné obsluhy

- Model hromadné obsluhy
 - ο λ [zákazníků za časovou jednotku] ... intenzita příchodů
 - o A_i ... náhodný čas mezi příchodem (i-1)-ního a i-tého zákazníka,

$$A_i \sim F_A$$
, $EA_i = \frac{1}{\lambda}$

- o μ [zákazníků za časovou jednotku] ... intenzita obsluhy 1 serveru
- o S_j ... čas obsluhy j-tého zákazníka

$$S_j \sim F_S$$
, $ES_j = \frac{1}{\mu}$

- o Veličiny $A_1, A_2, ..., S_1, S_2, ...$ jsou nezávislé
- o Server obsahuje c nezávislých obslužných míst
- Proces hromadné obsluhy $X = \{X_t \mid t \ge 0\}$ = proces, který zaznamenává počet zákazníků v systému hromadné obsluhy (= serveru a frontě) v čase t
 - o Konečněrozměrná rozdělení procesu jsou jednoznačně určena rozděleními F_A a F_S
 - o Intenzita příchodů je λ
 - o Intenzita obsluhy zákazníků je nejvýše $c\mu$
 - $\circ \quad \varrho = \frac{\lambda}{c\mu}$
 - $\varrho > 1 \rightarrow$ počet zákazníků v systému poroste nad všechny meze
 - $\varrho < 1 \rightarrow$ systém se ustálí na stabilním rovnovážném rozdělení
- Kendallova notace $A \mid S \mid c \mid K \mid N \mid D$
 - o A ... rozdělení **časů příchodu** F_A
 - o S ... rozdělení **časů obsluhy** F_S
 - o c ... počet obslužných míst
 - o K ... kapacita systému (neuvedeno = $+\infty$)
 - o N ... velikost populace (neuvedeno = $+\infty$)
 - o D ... typ obsluhy (neuvedeno = FIFO)
- Rozdělení *A, S* jsou značena:
 - o $M, M(\lambda)$ exponenciální rozdělení (markovské)
 - o D, D(d) **degenerované rozdělení** soustředěné v hodnotě d
 - o G obecné rozdělení, neznámé nebo známé "neexponenciální"
- Systém *M* | *M* | 1
 - o Proces zrodu a zániku s parametry:

$$\lambda_n = \lambda, \quad \mu_m = \mu$$

O Matice intenzit:

$$\mathbf{Q} = \begin{bmatrix} 0 & 1 & 2 & 3 & \dots \\ 0 & -\lambda & \lambda & 0 & 0 & \dots \\ \mu & -(\lambda + \mu) & \lambda & 0 & \dots \\ 0 & \mu & -(\lambda + \mu) & \lambda & \dots \\ \vdots & 0 & 0 & \ddots & \ddots & \ddots \end{bmatrix}$$

o Pokud $\lambda < \mu$, pak existuje **stacionární rozdělení** ve tvaru:

$$oldsymbol{\pi}_n = \left(1 - rac{\lambda}{\mu}
ight) \left(rac{\lambda}{\mu}
ight)^n$$

$$P(X_t = n) \to \pi_n = (1 - \varrho)\varrho^n$$

- Pokud $\varrho \geq 1$, stacionární rozdělení neexistuje a $P(X_t = n) \rightarrow 0$
- o Stacionární vlastnosti *M* | *M* | 1
 - Střední počet zákazníků v systému: $EN = E_{\pi}X_{t} = \frac{\varrho}{1-\varrho}$
 - Střední počet zákazníků na serveru: $EN_S=1-\pi_0=\varrho$
 - Střední počet zákazníků ve frontě: $EN_f=EN-EN_S=rac{arrho^2}{1-o}$
- o **Doba W čekání** zákazníka ve **frontě**:
 - $P(W = 0) = \pi_0 = 1 \varrho \rightarrow P(W > 0) = 1 \pi_0 \varrho$
 - $P(W > S) = \varrho e^{-(\mu \lambda)S} \rightarrow (W \mid W > 0) \sim Exp(\mu \lambda)$

- Systémy M | M | ∞
 - o Nekonečno obslužných míst každý zákazník okamžitě obsluhován
 - o Proces zrodu a zániku s parametry:

$$\mathbf{Q}_{n,n+1} = \lambda_n \equiv \lambda$$
, $\mathbf{Q}_{n,n-1} = \mu_n = n \cdot \mu$

Matice intenzit:

$$\mathbf{Q} = \begin{bmatrix} 0 & 1 & 2 & 3 & \dots \\ 0 & -\lambda & \lambda & 0 & 0 & \dots \\ \mu & -(\lambda + \mu) & \lambda & 0 & \dots \\ 0 & 2\mu & -(\lambda + 2\mu) & \lambda & \dots \\ 0 & 0 & \ddots & \ddots & \ddots \end{bmatrix}$$

 \circ Stacionární rozdělení vždy existuje a je Poissonovo rozdělení s parametrem $\frac{\lambda}{\mu}$, takže pro $n \in \mathbb{N}_0$:

$$\mathrm{P}_{m{\pi}}(X_t=n)=m{\pi}_n=rac{1}{n!}\left(rac{\lambda}{\mu}
ight)^ne^{-rac{\lambda}{\mu}}$$
 .

- Systém *M* | *M* | *c*:
 - o $1 < c < +\infty$ nezávislých obslužných míst \rightarrow existuje **fronta**
 - Proces zrodu a zániku s intenzitami:

$$\mathbf{Q}_{n,n+1} = \lambda_n \equiv \lambda, \qquad \mathbf{Q}_{n,n-1} = \mu_n = \min\{c,n\} \cdot \mu = \begin{cases} n \cdot \mu & n \leq c, \\ c \cdot \mu & n > c. \end{cases}$$

O Matice intenzit:

$$\mathbf{Q} = \begin{array}{c} 0 & 1 & 2 & 3 & \dots & c+1 & c+2 & \dots \\ 0 & -\lambda & \lambda & 0 & 0 & \dots & 0 & 0 & \dots \\ 1 & \mu & -(\lambda + \mu) & \lambda & 0 & \dots & 0 & 0 & \dots \\ 0 & 2\mu & -(\lambda + 2\mu) & \lambda & \dots & 0 & 0 & \dots \\ 0 & 2\mu & -(\lambda + 2\mu) & \lambda & \dots & 0 & 0 & \dots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots & \dots \\ 0 & 0 & 0 & c\mu & -(\lambda + c\mu) & \lambda & 0 & \dots \\ 0 & 0 & 0 & 0 & c\mu & -(\lambda + c\mu) & \lambda & \dots \\ \vdots & \vdots & 0 & 0 & 0 & 0 & \ddots & \ddots & \ddots \end{array}$$

o Stacionární rozdělení existuje pro $\varrho < 1$:

$$m{\pi}_n = egin{cases} rac{1}{n!} \left(rac{\lambda}{\mu}
ight)^n m{\pi}_0 & n \leq c \,, \ rac{c^c}{c!} \left(rac{\lambda}{c\mu}
ight)^n m{\pi}_0 & n > c \,. \end{cases}$$

- Littleho věta buď $\{X_t \mid t \geq 0\}$ striktně stacionární proces hromadné obsluhy. Buďte dále:
 - i. *EN* ... střední **počet zákazníků** v systému
 - ii. ET ... střední doba strávená zákazníkem v systému
 - iii. λ ... intenzita procesu příchodů

Jsou-li všechny střední hodnoty konečné, pak $EN = \lambda \cdot ET$

- Systém G | G | 1
 - o **Obecné rozdělení** příchodů i obsluhy (při zachování stacionarity)
 - o λ ... intenzita příchodů
 - o μ ... intenzita obsluhy
 - Střední doba obsluhy = $ES = \frac{1}{\mu}$
 - o $T_k = W_k + S_k \dots$ doba strávená k-tým zákazníkem v systému
 - W_k ... doba čekání ve frontě
 - S_k ... doba obsluhy
 - o Littleho věta pro:
 - Celý systém: $EN = \lambda ET_k = \lambda EW_k + \lambda ES_k$
 - Samotnou frontu: $EN_f = \lambda EW_k$
 - o Z toho vyplývá: $\pi_0 = 1 \frac{\lambda}{\mu}$

Nehomogenní Poissonův proces

- Buď $\lambda(r)$ funkce integrabilní na libovolném konečném intervalu, pak proces $\{N_t \mid t \geq 0\}$ nazvu nehomogenním Poissonovým procese s intenzitou $\lambda(r)$, pokud
 - i. $N_0 = 0$ skoro jistě
 - ii. $\{N_t\}$ má nezávislé přírůstky
 - iii. Pro t > s:

$$N_t - N_s \sim \text{Poisson}\left(\int\limits_s^t \lambda(r) \,\mathrm{d}r\right)$$

- Modelujeme situaci, kdy se intenzita příchodu zákazníka mění s časem: $\lambda = \lambda(t)$
- Systém M | G | ∞
 - o M ... Poissonovské příchody s intenzitou λ
 - o G ... obecné rozdělení časů obsluhy se střední hodnotou $ES = \frac{1}{\mu}$ a distribuční funkci G
 - o ∞ ... neomezený počet serverů (**žádná fronta**)
 - o Systém v t=0 prázdný \rightarrow požadavek, který přišel v čase s je v čase t>s stále v systému s pravděpodobností:

$$P(doba \ obsluhy > t - s) = 1 - G(t - s)$$

lacktriangledown Z pohledu t tedy událost, která přišla v čase s < t přijmu s pravděpodobností

$$p(s) = 1 - G(t - s)$$

- Poissonovo rozdělení s parametrem $\lambda \cdot ES$
- o Počet zákazníků v systému má z dlouhodobého pohledu $(t \to +\infty)$ Poissonovo rozdělení s parametrem $\frac{\lambda}{\mu} = \lambda \cdot \frac{1}{\mu} = \lambda \cdot ES$
- o Poissonovo rozdělení:

$$\mathrm{P}(X=k) = rac{\lambda^k}{k!} \mathrm{e}^{-\lambda}, \quad k=0,1,2,\ldots, \quad \mathrm{E}\, X = \mathrm{var}\, X = \lambda$$

• Pravděpodobnost, že v systému bude k požadavků z dlouhodobého hlediska

11. Význam tříd NP a NPH pro praktické výpočty.

NI-KOP

Kombinatorický problém

- Kombinatorický problém charakterizují ho:
 - o Vstupní proměnné seznam prvků
 - Výstupní proměnné pořadí prvků (popis výstupu)
 - o Konfigurační proměnné pořadí prvků (popis konfigurace)
 - o Omezení každý prvek právě jednou
 - o Optimalizační kritérium nejmenší
- **Proměnné** konečný počet, konečné domény
- Instance a řešení problému
 - o **Instance** *I* ohodnocení vstupních proměnných
 - **Konfigurace** *Y* ohodnocení konfiguračních proměnných (během řešení instance)
 - Řešení instance ohodnocení konfiguračních proměnných splňujících omezení
 - Omezení R(I,Y) říká, jestli je Y řešením instance I
 - o **Optimální řešení** řešení s nejlepší hodnotou optimal. Kritéria
 - o Suboptimální řešení řešení s vyhovující hodnotou opt. Kritéria
- Typy problémů
 - o Rozhodovací problém: Existuje řešení? Nebo platí omezení pro všechny konfigurace?
 - o Konstruktivní problém: Sestrojte řešení (konfiguraci) takovou, aby platila omezení
 - o Enumerační problém: Sestrojte všechna řešení, pro které platí omezení
 - Všechny typy problémů lze převést na optimalizační verze
 - Měření složitosti pomocí asymptotické složitosti
- Turingův stroj původně pro rozhodnutelnost problému
 - o Neomezená páska, čtecí hlavice, řídící jednotka (stav)
 - Zastavení = přechod do koncového stavu
 - o Q konečná neprázdná množina stavů
 - Σ konečná vstupní abeceda
 - o G konečná neprázdná pracovná abeceda
 - o δ přechodová funkce
 - o q_0 počáteční stav
 - o *B* prázdný symbol
 - o F množina koncových stavů

NPC NPH

Třídy složitosti

- Třída P rozhodovací problém patří do třídy P, jestliže pro něj existuje program pro deterministický Turingův stroj, který jej řeší v čase $O(n^k)$, kde n je velikost instance a k konečné číslo
- **PSPACE** existuje program pro deterministický Turingův stroj, který jej řeší v **paměti** $O(n^k)$, kde n je velikost instance a k konečné číslo
- **EXPTIME** existuje program pro deterministický Turingův stroj, který jej řeší v čase $O(2^{P(n)})$, kde P(n) je polynom ve velikosti instance n
- NP problém patří do NP, pokud existuje program pro NTS, který každou ANO-instanci řeší v polynomiálním čase $O(n^k)$, kde n je velikost instance a k konečné číslo
 - o NP
- ANO ověření probíhá jako existence odpovědi certifikát v P
- NE musíme zkontrolovat všechny možnosti
- o co-NP doplněk k NP problémům
 - NE ověření jako existence 1 odpovědí (ne, není pravda, že nemůžeme najít řešení –
 - ANO ano, nemůžeme najít řešení potřeba kontroly všech
- NPH problém Π je NPH, pokud se efektivní (polynomiální) řešení všech problémů v NP dá zredukovat na řešení Π

- o Nejtěžší problém je takový, na který se dají převést všechny ostatní problémy
- o Je nejméně tak těžký, jako problémy, jež na něj byly převedeny
- o Certifikát lze ověřit v P
- o NPC pokud Π je zároveň NPH a NP
 - Cookova věta všechny NP problémy lze převést na SAT

- Redukce problémů

- **Karpova redukce** problém $\Pi 1$ je karp-redukovatelný na $\Pi 2$, pokud existuje polynomiální algoritmus na DTS, který provede každou instanci I1 problému $\Pi 2$ na instanci I2 problému $\Pi 2$ tak, že jejich výstup je shodný
 - Platí tranzitivita redukovatelnosti problémů
- ο **Turingova redukce** problém $\Pi 1$ je turing-redukovatelný na $\Pi 2$, pokud existuje polynomiální algoritmus na DTS, který řeší každou instanci I1 problému $\Pi 1$ tak, že používá program M2 propoblém $\Pi 2$ jako podprogram
 - Karpova redukce je speciální případ

Význam pro praktické výpočty

- NP a NPH problémy nelze efektivně řešit řešení je exponenciální, které pro větší instance může trvat neakceptovatelně dlouho $O(n^k)$ využití v kryptografii, hashování
- Neznámé problémy můžeme redukcí převádět na známé problémy a řešit je dle zvyku
 - o Např. převod na SAT problém splnitelnosti
- V některých případech nepotřebujeme přesné řešení, stačí přibližné/suboptimální
- Zrychlení řešení NPO úloh
 - o Metoda redukce stavového prostoru např. branch and bound nepoužitelné výsledky ignorovány
 - O Pseudopolynomiální algoritmy počet kroků algoritmu závisí na velikosti instance, ale závisí dále na parametru, který s velikostí nemá nic společného O(nM)
 - o **Aproximace** FPTAS, PTAS, APX jednodušší heuristika pro přibližné řešení spokojenost s určitou hladinou chybovosti algoritmu
 - o Randomizace algoritmy založené na náhodné volbě

- Aproximativní algoritmy

- o C(S) ... hodnota optimalizačního kritéria řešení S
- o APR(I) ... aproximované řešení instance I
- o OPT(I) ... optimální řešení instance I
- Relativní chyba:

$$R \geq \max_{\forall I} \left\{ \frac{C(\mathsf{APR}(I))}{C(\mathsf{OPT}(I))}, \frac{C(\mathsf{OPT}(I))}{C(\mathsf{APR}(I))} \right\}$$

$$R \geq \max_{\forall I} \left\{ \frac{C(\mathsf{APR}(I))}{C(\mathsf{OPT}(I))}, \frac{C(\mathsf{OPT}(I))}{C(\mathsf{APR}(I))} \right\}$$

- NPH
 NPO
 APX
 PTAS
 FPTAS
 FPTAS
 P*NP
- O APR algoritmus APR pro problém Π je R-aproximativní (ε -aproximativní), jestliže každou instanci Π vyřešeí v polynomiálním čase s relativní kvalitou R (ε)
 - $R(\varepsilon)$ je aproximační prah problému
- o PTAS algoritmus APR, který pro každé $1>\varepsilon>0$ vyřeší každou instanci I problému Π s relativní chybou nejvýše ε v čase polynomiálním v |I| nazýváme polynomiální aproximační schéma problému Π
- o **FPTAS** polynomiální aproximační schéma APR, jehož čas výpočtu závisí polynomiálně na **1/ɛ** nazýváme plně polynomiální aproximační schéma

- Nejtypičtější NPH úlohy

- o SAT, 3SAT problém splnitelnosti booleovské formule
- o Problém batohu, obchodní cestující, hamiltonovská kružnice, diskrétní logaritmus
- Existence zadání
 - Offline mám všechna data
 - Online postupně dostávám údaje a upravuji řešení
- Některé úlohy lze řešit ne lokálními, ale globálními metodami (dekompozice, dynam. prog., ...)

12. Experimentální vyhodnocení algoritmů, zejména randomizovaných.

NI-KOP

Experimentální vyhodnocení

- Analytické odpovědi o algoritmech
 - o Nejhorší případ, asymptotické meze
 - Významná oblast může být mimo zájem
 - Konstanty jsou nepraktické
 - Nejhorší případ je vzácný a nezajímavý, analýza je příliš složitá
 - o Průměrný případ
 - Analýza je proveditelná pro jednoduché případy
 - Analýza závisí na statistických vlastnostech vstupu, které nemusí být známy
- Co nás zajímá
 - o **Složitost** (teoretická x z hlediska nasazení)
 - Kvalita řešení
 - o **Porozumění** proč to blbne na určitých instancích
 - Závislost něčeho na něčem (výpočetní čas na velikosti instance, kvalita řešení na param.)
- Experiment:

co chci zjistit → plán experimentu → provedení experimentu → sběr dat → interpretace výsledku → odpověďí

- **Metriky** metrika vstupu → závislost → metrika výstupu → interpretace
 - o Abstrahujeme vlastnosti vstupu a výstupu do kvantitativních veličin = metrik
 - o Zkoumáme závislost mezi metrikami vstupu a výstupu
 - o Interpretace zobecnění podle jednotlivých chodů

Metriky výstupu – složitost

- o Metriky vypovídající o algoritmu (např. počet zkoumaných konfigurací)
- o Metriky vypovídající o implementaci (např. čas CPU)
- o Chceme metriku, která nezávisí na detailech implementace (v praxi náročné vyhodnocení optimalizačního kritéria)

- Metriky vstupu

- o Ostatní metriky vstupu známe a udržíme konstantní při generování, nebo vůbec o nich nevíme
 - Tlak, teplota okolí, ... snažíme se udržet konstantní
- **Příklad metrik a závislostí** (3-SAT)
 - Závislost počtu kroků procedury DP (backtracking, výstupní metrika) na poměru počtu klauzulí k počtu proměnných (vstupní metrika)
 - o Fázový přechod pst splnitelnosti v závislosti na poměru počtu klauzulí k počtu proměnných

- Neznámé metriky

- o **Generování instancí** pro každou hodnotu nastavované metriky vygenerujeme náhodné instance tak, aby každá instance se zadanou metrikou byla stejně pravděpodobná
- o Sběr instancí seberu co nejvíce instancí, které má nasazený algoritmus zpracovávat
- o Více instancí je zdroj variance
- o Pro každou hodnotu zadané metriky provádím měření na více instancích
- o Statistické zpracování umožní potlačit varianci

- Statistika pro jednu hodnotu zadané metriky

- o Nejoblíbenější průměr, medián
- o Poctivější kontrola **statistického rozložení** nemusí být uniformní ani normální
- o Parametry rozložení (střední hodnota, variance, ...): komprese získaných dat
- o Příprava pro důležitou kvalitativní interpretaci identifikace a charakterizace statistického rozložení (proč je to mix dvou rozdělení? Proč jsou některé instance o tolik těžší?)

- Srovnání dvou algoritmů A, B

- o Na základě parametrů rozložení:
 - A má lepší všechny parametry → A je lepší
 - Jinak nevíme

Na základě dominance:

- Pro každou instanci (zadané metriky) je A lepší nebo stejně dobrý → A dominuje
- o Nevíme → hlubší analýza, kde a proč je A nebo B lepší

Odvozené metriky

- o **Primární metriky** přímo měřené hodnoty
- o Vizualizace, vzhled histogramy apod.
- Kvantitativní srovnání sekundární metriky:
 - Průměr, medián
 - Ad hoc kombinace primárních metrik (pokuty za nevyřešení)
 - Úplné charakteristiky statistického rozložení
 - Distribuční funkce, korigované distribuční funkce
 - Křížení distribučních funkcí

Randomizovaný algoritmus

- Vyhodnocení na jedné instanci jedna instance → algoritmus → statistika, interpretace
 - Srovnání na jedné instanci
 - Počet kroků algoritmu jako náhodná proměnná
 - Histogramy úspěšných běhů
 - Distribuční funkce Estimated Cumulative Distribution Function ECDF
 - Pro každý krok pravděpodobnost, že algoritmus skončil nejvýše v tomto kroku
 - Počítá se z úspěšných běhů jinak je na konci skok
 - Korekce na úspěšnost jak do CDF promítnout, že algoritmus v nějakém počtu případů neuspěl
 - o Pro každý krok pst, že algoritmus úspěšně skončil nejvýše v tomto kroku
 - Stačí přenásobit CDF úspěšností

Vyhodnocení na sadě instancí

- Generátor instancí všechny instance se zadanou metrikou jsou stejně pravděpodobné
- Algoritmus všechny hodnoty generátoru náhodných čísel jsou stejně pravděpodobné
- Statistika 1 potlačení variance z randomizace
- Statistika 2 potlačení variance v instancích
- Interpretace
- o **Dva zdroje variance** dva stupně zpracování
- o Protože statistické rozložení vůči char. vstupní instance nemusí být stejné jako rozložení vůči RNG
- Vlastně statistika ze statistik
- o Přes hodnoty RNG pro každou instanci tolik spuštění algoritmu, až dostaneme spolehlivá data
- o Přes instance jako bez randomizace

- Metriky 2. fáze

- o Potlačení variance od instancí
- o Statistika ze statistik
- o Co je důležité pro odpověď z experimentu co vypovídá nejvíc
 - Charakteristiky rozložení
 - Dominance obecně a dominance v zajímavých oblastech např. malé instance nebo krátké časy nejsou důležité
 - Úspěšnost do určitého počtu kroků, atd.

Robustnost heuristiky

- Zpřeházení pořadí proměnných ve formuli (stejná booleova funkce) a SAT solver dá jiné řešení v jiném čase
- o Zpřeházením pořadí deklarací proměnných v programu a ten funguje rychleji
- o Závislost práce heuristiky na popisu instance (na rozdíl od instance samotné)
- o Např. lexikálním uspořádání dat, které nemění význam
- o Lexikální uspořádání může být důsledkem
 - Reprezentace množiny vektorem
 - Výběru první konfigurace z množiny stejně dobrých

- o Náhodný výběr místo postupného provádění → randomizace
- Měření robustnosti
 - Před algoritmem náhodná perturbace (všechny jsou stejně pravděpodobné)
 - Ve statistice měření variance vyvolané perturbací
- Interpretace experimentu
 - o Data chování na konkrétních instancích, s konkrétními parametry
 - Kvantitativní, pohled zvenčí, mnoho jednotlivých dat
 - Interpretace obecný (obecně užitečný) závěr
 - Nutná extrapolace obecně málo spolehlivá vyžaduje důvěru
 - Nejčastěji kvalitativní
 - Často vyžaduje porozumění
 - Pohled zevnitř
 - Jednoduchá formulace

Prezentace výsledků

- Experiment

- IMRaD

- Introduction kontext výzkumu, proč byla studie provedena,
 jaká otázka, jaká hypotéza, proč experimentální přístup
 - Vybuduje výchozí bod pro další výklad
 - Důvod zahrnuje chybějící nebo neúplné znalosti, problémy
- Methods kdy, kde, jak provedeno, proč takové metody, co se podniklo k ověření korektnosti (RNG, ...), jaký experimentální materiál, proč takový materiál
- o **Results** jaké výsledky, jaká odpověď, hypotéza potvrzena?
 - Všechna relevantní data a pouze relevantní data
- Discussion co odpověď může znamenat, vztah k dosavadnímu výzkumu, perspektivy pro budoucí výzkum
 - Všechno, co podporuje tvrzení článku, všechno, co se nezdá podporovat tvrzení článku

Přesvědčení a data

- o Tabulky bez grafů nepřesvědčí, grafy bez tabulek nejdou použít pro další výzkum
- O Chyby: Chybějící sloupce v tabulkách, grafy bez srozumitelného sdělení, nevýstižné, matoucí popisky, grafy/obrázky vyžadující dlouhý popis složité sdělení, neúmyslné lži (lexikografické pořadí instancí, oslí můstky, posunuté počátky pokud to nedává smysl)

13. Princip lokálních heuristik, pojem globálního a lokálního minima, obrana před uváznutím v lokálním minimu.

NI-KOP

Stavový prostor

- Stav jedno ohodnocení proměnných
- Stavový prostor dvojice (S, Q), S = množina stavů, Q = množina operátorů
- **Akce** aplikace operátoru na stav
- Graf stavového prostoru algoritmu orientovaný graf, kde hrany odpovídají akcím
- Okolí stavu množina stavů dosažitelných ze stavu aplikací některé operace
- K-okolí stavu množina stavů dosažitelných ze stavu aplikací nejméně jedné a nejvýše k operací
- **Sousedn**í stavy stavy z okolí stavu
- Inverzní operátory libovolnou vloženou věc lze vyjmout, v grafu lze libovolně dlouho bloudit
- Stavový prostor TSP/HC:
 - o Konfigurace podgraf
 - Uzel stavového grafu = podgraf
 - Operátor = např. dvojzáměna na hranách
- Pokud je úkol nalézt cestu, je množina stavů posloupností akcí
- Prohledávání stavového prostoru:
 - o Úplná strategie navštíví všechny stavy kromě těch, o kterých víme, že nedávají (optimální) řešení
 - o Systematická strategie úplná strategie, která navštíví každý stav nejvýše jednou

Heuristiky

- **Heuristika** = přístup k řešení používající metody, které negarantují nalezení optimálního řešení
- Požadavky na heuristiku:
 - Použitelnost v praxi metoda musí pracovat na praktických instancích, s přijatelnou přesností a přijatelným výpočetním časem
 - o Omezení a optimalizace nejlepší čas pro potřebnou přesnost, nejlepší přesnost v časovém limitu
 - o **Přesnost** přibližné a pro nás uspokojující řešení
- Druhy heuristik
 - o Konstruktivní heuristika začne z triviální konfigurace a postupnými kroky konstruuje řešení
 - o Iterativní heuristika začne z nějakého (i neplatného) řešení a to postupně vylepšuje
 - O **Dvojfázové heuristiky** první fáze slouží k získání řešení (konstruktivně, náhodné řešení) , ve druhé fázi iterativní vylepšování
- Druhy heuristických metod
 - o **Lokální metody** práce vždy jen s aktuálním stavem, může uvažovat i blízké okolí, např. sousedy
 - o Globální metody dekompozice instance na menší instance téhož problému
- Heuristická funkce
 - o Stavu s je přiřazena hodnota (odhad)
 - o Preferovány jsou stavy s vyššími/nižšími hodnotami
 - o Při shodné hodnotě u více stavů lze vybrat náhodně
- Hladové heuristiky rozhodují ve prospěch lokálního optima
 - o Doufáme, že nalezneme globální optimum

Lokální heuristiky

- U náročnějších problémů je prohledávání neúnosné
- Jednoduché heuristiky jen jeden aktuální stav, koukají na sousedy (okolí)
- Cyklus heuristiky:
 - o Kontrola ukončující podmínky
 - o Pokud není ukončeno, výběr stavu z okolí
 - o Pokud je lepší, označí se jako nejlepší
 - o Pokud není, vrací se do prvního kroku bez nalezení nejlepšího

- Náhodná procházka
 - o Posun na jakéhokoliv souseda, i horšího
 - o Není úplná ani systematická
- **Best-only** metoda nejrychlejšího sestupu/vzestupu
 - o Pokud je nový stav lepší, tak se nahradí za momentální
 - Cyklus přes Q, takže se opravdu vybere nejlepší ze všech možností
 - o Vrátí prázdný stav, pokud neexistuje lepší soused
 - o Pořadí procházení množiny Q neovlivní výsledek, pokud nejlepších stavů není více

- First improvement

- o Znovu cyklus přes Q, ale jakmile se nalezne lepší řešení, tak return = první zlepšení
- Vrátí prázdný stav, pokud neexistuje lepší soused
- o Pořadí procházení množiny Q ovlivní výsledek randomizace
- Návrh heuristiky a jejího stavového prostoru
 - o Chceme mnoho jednoduchých, ale rychlých akcí
 - o Chceme mnoho akcí, které nemění konfiguraci drasticky (občas menší množství radikálních akcí)
- Okolí heuristik **Kernighan-Lin** heuristiky pro TSP a bisekci grafu
 - Aplikace daného operátoru opakovaně až do stop podmínky bez ohledu na optimalizační kritérium nebo heuristickou funkci
 - o Z takto získaného okolí výběr nejlepšího stavu jako příštího

- Pohyb v prohledávacím prostoru

- o Strategie mohou, ale nemusí být systematické
- o Typický krok prohledávání: výběr proměnné, výběr hodnoty proměnné
- o Prořezávání se vztahuje na oblast stavového prostoru
- o Možnost odvolat nastavení proměnné (backtracking, ...)

- Práce s heuristikou

- White box fáze omezená sada instancí, detailní měření, vzhled, porozumění, modifikace heuristiky
- Black box fáze plná sada instancí, měření výsledků, ověření kvality a výkonu, žádné modifikace heuristiky

Lokální minima

- **Lokální minimum** všechny sousední stavy mají horší hodnotu optimalizačního kritéria, ale není to ta nejnižší hodnota v celém SP
- Globální optimum stav, ve kterém je hodnota optimalizačního kritéria nejlepší mezi všemi možnými stavy
- **Uváznutí v lokálních minimech** kvalita výsledného řešení silně závisí na kvalitě počátečního řešení
- Řízení úniku z lokálních minim
 - o **Diverzifikace** rovnoměrný průzkum stavového prostoru
 - Velká ochota připustit akci, která vede k horšímu řešení
 - o Intenzifikace konvergence k finálnímu řešení
 - Malá ochota připustit akci, která vede k horšímu řešení

- Řešení diverzifikace

- o Zvětšení okolí pravidelné k-okolí exponenciální velikost s k
 - Okolí Kernigham-Lin
 - Dynamické řízení okolí
- o Pokročilejší heuristiky:
 - Připuštění akce, která zhorší řešení (simulované ochlazování)
 - Nutné řízení intenzifikace vs. Diverzifikace
 - Práce s více stavy/konfiguracemi (genetické algoritmy)
 - Různé způsoby interakce mezi současně zpracovávanými stavy
 - Spuštění z více různých náhodných počátečních stavů (randomizované algoritmy)
 - Mapování stavového prostoru (částečné), modelování stavového prostoru, učení
 - Backtracking Algoritmus vycouvá z minima návratem může být časově náročné
 - Restriktivní opatření, kterým stavům se vyhnout (tabu search)

14. Princip genetických algoritmů, význam selekčního tlaku pro jejich funkci.

NI-KOP

Simulovaná evoluce

- o Více stavů najednou snížení možnosti uváznutí v jediném minimu, zpravidla konstantní počet
- o Operátory unární x binární
- o Definice operátorů nad reprezentacemi, problémově nezávislé
- Konfigurace = jedinec (fenotyp)
- o Kódování konfigurace genetická reprezentace jedince (genotyp, chromozom)
- o Proměnná kódování gen
- o Hodnota proměnné alela
- o Aktuální množina reprezentací konfigurací generace, populace
- o Unární operátor mutace
- o Binární operátor křížení
- o Optimalizační kritérium zdatnost (fitness)
- o Rozšíření kvalitní konfigurace konvergence
- o Rozšíření konfigurace uvázlé v lokálním minimu degenerace
- o Biodiverzita diverzita populace

- Explorace = diverzifikace, exploitace = intenzifikace
- Genetické algoritmy

0

- Kódování binární řetězec
- Binární operátory křížení 1-bodové, 2-bodové, uniformní
- Unární operátory mutace, inverze
- Řízení populace nová generace nahradí původní

Evoluční strategie

- Kódování vektor reálných čísel
- Strategické parametry mutace, interakce mezi složkami
- Operátory mutace (dominuje) přičtení Gaussova rozložení
- Křížení diskriminující, průměrující
- Řízení populace z x rodičů a y potomků se vybere x členů nové generace, nebo náhrada vcelku

Genetické programování

- Kódování **rozkladový strom** výrazu
- Operátory křížení, mutace, definice stavebního bloku, editace
- Řízení populace nová populace nahradí starou

Evoluční programování

- Kódování automat
- Operátory (pouze unární)
 - Změna výstupního symbolu
 - Změna přechodu
 - Přidání/vypuštění stavu
 - Změna počátečního stavu
- Řízení populace z x rodičů a y potomků se vybere x členů nové generace
- Společné rysy
 - více individuí

- prostředky diverzifikace mutace, ...
- prostředky intenzifikace selekce pro rekombinaci, selekce pro další generaci
- charakteristické rysy
 - jaká reprezentace
 - jaké unární, binární operátory
 - jaká selekce pro rekombinaci a konstrukci následující generace

Genetické algoritmy

- o Binární řetězec
- o Vektor proměnných obecně různých domén
- o Permutace řetězce z dané abecedy
- o Genetické operátory nastavení pravděpodobnost mutace, pravděpodobnost křížení
- Křížení (rekombinace) jednobodové (náhodný bod), dvoubodové (dva náhodné body), uniformní (vektor náhodných 0/1)
- o Inverze zpřeházet pořadí bitů, ale ponechat význam proměnných
- o Mutace náhodně vybraný bod z celé populace
 - Někteří jedinci mohou být mutování vícekrát, někteří vůbec
- o Selekce účel je způsobit, aby početní zastoupení jedince v populaci odpovídalo jeho zdatnosti
 - Řízení selekčního tlaku převod informace ze zdatnosti na početnost
 - Selekční tlak = pravděpodobnost výběru nejlepšího jedince
 - Velký nebezpečí degenerace
 - Malý pomalá konvergence
 - Šum vnesený mutací může převážit nad pomalou konvergencí divergence
 - Regulace selekčního tlaku se liší podle výběrového mechanismu
- o Ruletový výběr rozevření políčka rulety odpovídá žádané pravděpodobnosti výběru
 - Provedeme m náhodných voleb úhlu, odtud m prvků
 - Jeden prvek může být vybrán vícekrát
- o **Řízení selekčního tlaku pro ruletový výběr** přímá úměra mezi zdatností a poměrnou pravděpodobností výskytu často zdegeneruje populaci je třeba nadržovat slabším
 - Přepočítání zdatnosti lineární funkcí scaling Lineární škálování
 - Použití pořadí ve zdatnosti místo zdatnosti (ranking)
- o **Turnajový výběr** náhodně vybrat r jedinců (turnaj) a z něj nejlepšího
 - Opakovat až do naplnění populace
 - Selekční tlak se řídí velikostí turnaje
 - "turnaj" s jedním jedincem žádný selekční tlak
 - Turnaj přes celou populaci jistota výběru nejlepšího jedince
- Zkrácený výběr z populace M jedinců se vybere pM nejzdatnějších, každý vstupuje do rekombinace 1/p krát
 - Informace obsažená ve zdatnosti je redukována na jediný bit
 - Variace několik stejně velkých skupin podle zdatnosti, pro každou skupinu četnost výběru, redukce informace na typicky 2 bity

Řízení populace

- Náhrada en bloc nová generace vzniklá křížením a mutací nahradí starou
- Částečná náhrada z x rodičů a y potomků se vybere x členů nové generace
- Ustálená populace po každém křížení potomek nahradí nejslabšího jedince
- Přechodové formy mezi en bloc a ustálenou populací
- Elitismus několik málo nejlepších jedinců přejde ze staré populace do nové (pozor na degeneraci)
- Velikost populace
 - Malá (10) nebezpečí ztráty diverzity
 - Méně obtížné problémy od 30 jedinců, lineární růst
 - Obtížné problémy 100 jedinců
 - Velké instance sublineární růst s velikostí populace, technické důvody

- o podmínky ukončení pevný počet generací, příznaky konvergence
 - změna průměrné zdatnosti mezi generacemi
 - Rozložení zdatnosti v generaci
- o Omezující podmínky co když výsledek genetického operátoru není řešení
 - Relaxace převod omezujících podmínek na penalizaci
 - Velikost penalizace každé řešení lepší než ne-řešení, minimální penalizace, která zabrání aby bylo ne-řešení vybráno jako optimální
 - Způsob penalizace vzdálenost od řešení (odhad ceny opravy, počet porušených podmínek)
 - Trest smrti zahodit výsledek
 - Zmarněná práce výpočet optimalizačního kritéria, genetický operátor
 - Snížená dostupnost stavového prostoru
 - Doménové reprezentace a operátory viz permutační operátory
 - Dekodéry volba reprezentace tak, aby každý genotyp odpovídal řešení
 - Každé řešení musí být poskytnuto
 - Každý výstup dekodéru je řešením
 - Každé řešení reprezentováno týmž počtem genotypů
 - Lokalita malá změna genotypu působí malou změnu řešení
 - Rychlý výpočet

Schémata a teorie stavebních bloků

- o Reprezentace stavebních bloků schémata co mají chromozomy společného?
- o Implicitní paralelismus každý genotyp o n genech obsahuje 2^n schémat
 - Každý výpočet zdatnosti získává údaj o průměrné zdatnosti všech schémat
 - Zpracování populace o velikosti M znamená zpracování O(M^3) schémat
 - Jiný pohled na GA:
 - Populace jako množina schémat
 - Vývoj populace jako vývoj zastoupení schémat
 - GA jako zpětnovazební dynamický systém ve smyčce obíhají schémata, převod zdatnosti schémat na jejich zastoupení
 - Věta o schématech selekce s pravděpodobností úměrnou zdatnosti, jednobodové křížení
 - Krátká schémata malého řádu přežívají ve smyčce snáze
 - Větší schémata potřebují lepší zdatnost
 - Mutace zkracuje životnost

Linkage problém

- Životnost a vývoj schémat závisí na jejich délce, nikoliv pouze na řádu
 - Uniformní křížení zpracovává správně pouze schémata řádu 1
- Řešení dynamické přeuspořádání, explicitní práce se stavebními bloky
- Zavádějící, klamné funkce kombinace podobných funkcí optimalizační kritérium testovacích úloh
 - Reálné úlohy mohou skrytě mít podobný charakter

Kompetentní GA

- Klasický GA nezachází optimálně se schématy vyšších řádů, protože o nich neví
- Řešení:
 - Práce se stavebními bloky explicitně jako s oddělenými fragmenty genetické informace – messy GA
 - Práce s pravděpodobnostním modelem vazeb mezi hodnotami proměnných, které vytvářejí stavební bloky – bayesovská optimalizace

Fast messy GA

- o Fragment genetické informace někde nedospecifikovaný, někde přespecifikovaný
- Hodnocení schémat referenční jedinec (kompetetivní šablona) poskytne informaci pro nedospecifikovaná místa

- Bereme v úvahu první výskyt hodnoty pro dané místo genotypu
- Generování schémat
 - Deterministicky vygenerovat všechny a vyhodnotit (messy GA)
 - Stochasticky vygenerovat schémata většího řádu s rovnoměrnou pravděpodobností
 - Při filtraci využít selekce a implicitního paralelismu (fast messy GA)
- o Filtrace schémat generovaná schémata mají řád k < l
 - Selekce turnajovým výběrem
 - Velikost turnaje 2, prvý účastník zvolen náhodně
 - Druhý účastník musí mít společnou určitou míru informace
 - Soutěží nápady na podobné téma
 - Zůstává zdatnější
 - Zkrácení schématu vyjmutím náhodného genu
 - Zkrácená schémata musí být znovu vyhodnocena
- Rekombinace schémat
 - Rozdělení (cut) obou rodičů v náhodných bodech
 - Spojení (splice) rozdělených fragmentů
 - Obě operace mají nezávisle nastavenou pravděpodobnost
- Algoritmy založené na statistických modelech závislostí

- Bayesovská optimalizace po odhadu modelování bayesovskou sítí optimalizační algoritmus a metrika
- o **Bayesovská síť** každá proměnná reprezentace modelována uzlem orientovaného acyklického grafu
- Užití bayesovských sítí
 - Najít nejpravděpodobnější vysvětlení pozorovaných pravděpodobností
 - Zjistit pravděpodobnosti hodnot proměnných v závislosti na vstupních pravděpodobných
- Optimalizace bayesovských sítí
 - Metrika jak dobře vystihuje měřená síť současnou populaci
 - Algoritmus pouze nejlepší nebo jiná lokální heuristika
 - Operace přidání hrany, obrácení hrany, odebrání hrany
- Paralelizace evolučních algoritmů
 - Granularita

0

- Jedna aktuální generace v paralelním systému
 - Sdílená paměť
 - Výpočet zdatnosti, křížení, mutace se snadno škálují s počtem procesorů
 - Minimální a maximální zdatnost, ranking nutná komunikace, logaritmická složitost
- Jedna aktuální generace na procesor nutná občasná výměna genetického materiálu (např. se sousedními procesory)
 - Napomáhá zachovat diverzitu genetického materiálu
- Island parallel GA

15. Princip simulovaného ochlazování, význam parametrů a způsoby jejich řízení.

NI-KOP

Simulované ochlazování

- Algoritmus iterativní optimalizace

```
T ← počáteční teplota;
best ← Ø;
while (!frozen (T, ...)) {
   while (!equilibrium (...)) {
     state = try(state);
     if (state.better(best)) best ← state;
   }
   T = cool (T, ...);
}
```

- o Frozen, equilibrium a cool určují průběh teploty rozvrh ochlazování
- o Princip algoritmu:
 - Náhodně se zvolí počáteční řešení, volba počáteční teploty
 - Náhodný výběr souseda
 - Pokud je lepší, přechod
 - Pokud ne, zjistí se, jak moc je horší
 - o Pokud je dostatečně vysoká teplota a zhoršení dostatečně malé, přejdeme
 - Po x krocích snižování teploty (ne pokaždé, aby to nebylo moc rychle)
 - x = délka ekvilibria
 - Ovlivňuje pravděpodobnost přechodu do horšího stavu
 - Po dostatečném snížení teploty konec
- Vlastnosti simulovaného ochlazování
 - o **Diverzifikace** rovnoměrný průzkum stavového prostoru
 - Velká ochota připustit akci, která vede k horšímu řešení
 - o Intenzifikace konvergence k finálnímu řešení
 - Malá ochota připustit akci, která vede k horšímu řešení
 - o **Počáteční stav** řešení z jiné heuristiky nebo náhodná řešení
 - o Vysoké teploty převaha diverzifikace
 - Vysoká pravděpodobnost přijetí horšího řešení
 - o Nízké teploty převaha intenzifikace, konvergence k minimu
- Ochlazovací funkce:

$$t_k = \frac{c}{\log(1+k)}$$

- o k ... číslo kroku
- o c ... hloubka lokálního minima
- o Proces po nekonečném počtu kroků skončí v globálním minimu asymptotická konvergence

- Parametry

- Equilibrium a koeficient ochlazování
 - Teplota se vynásobí parametrem mezi 0 a 1. většinou 0.8 0.999
 - Správná míra ochlazování lze za běhu řídit délkou ekvilibria (konstantní nebo proměnná délka)
 - Příliš velký koeficient výpočet trvá dlouho bez zlepšení
 - Příliš nízký malé prohledávání, riziko uváznutí v lokálním minimu
 - Délka ekvilibria ovlivňuje počet okolních stavů, které prohledáváme v každém teplotním skoku
 - Správná hodnota závisí na míře ochlazování
 - Příliš vysoká dlouhý výpočet bez zlepšení
 - Příliš nízká uváznutí v lokálním minimu
- o Počáteční teplota
 - Známe hloubku lokálních minim → nastavíme teplotu tak, aby pravděpodobnost úniku z minima byla např. 0.5

Zpětnovazební řízení

- Rychle zvyšujeme teplotu
- Sledujeme četnost přijatých změn k horšímu
- Zaznamenáme teplotu pro pravděpodobnost např. 0.5
- Vrátíme původní stav a nastavíme teplotu
- Příliš vysoká přijmutí i velkých zhoršení
- Příliš nízká riziko uváznutí v lokálním minimu v důsledku nedostatečného prohledávání stavového prostoru
- o Frozen ukončovací podmínka
 - Četnost změn (jakýchkoliv) klesla pod nastavenou mez
 - Četnost změn k lepšímu klesla pod nastavenou mez
 - Pevná mez teploty
 - Koncová teplota
 - Příliš vysoká riziko uváznutí v lokálním minimu
 - Příliš nízká výpočet trvá dlouho bez dalšího zlepšení výsledku

Cenová funkce

- o Lze spočítat, i když konfigurace není řešením (výpočet optimalizačního kritéria)
- o Navádí optimalizaci stále blíže k řešení (hodnocení "špatnosti" konfigurace)
- o Možnosti implementace
 - Konfigurace, která není řešení, má mnohem horší cost než jakékoliv řešení
 - Konvergence vždy k řešení
 - 2 úlohy, 2 fáze nalezení řešení, vylepšení řešení
 - Nebudou se střídat
 - Mohou potřebovat jiná řešení
 - Konfigurace, která není řešením, může mít stejné cost jako nějaké řešení
 - Lepší vlastnosti stavového prostoru
 - Konvergence k "ne-řešení" je možná

Počáteční řešení

- Náhodná počáteční řešení
 - Vícenásobné spuštění
 - Měření iterativní síly
 - Dobře aplikované simulované ochlazování není závislé na počátečním řešení těžiště práce v iteracích
- o Konstruktivní počáteční řešení
 - Chytrá konstruktivní fáze vede k hlubokému lokálnímu minimu
 - Je to aspoň nějaké minimum

Omezující podmínky

- Např. vvhození nevalidních sousedů, relaxace je vhodnější
- o Relaxace náhrada omezujících podmínek přirážkou
- Omezující podmínky co když nemohu zabránit, aby akce převedla řešení na konfiguraci, která řešením není?
 - Relaxace, zahození kandidátní konfigurace, oprava kandidátní konfigurace

- Vývoj heuristiky

- White box evaluation omezená sada instancí, detailní měření, vzhled, porozumění, modifikace heuristika a adaptačních mechanismů
- o Black box evaluation plná sada instancí, měření výsledků, ověření kvality a výkonu

16. Výkonnostní měřítka paralelních algoritmů, PRAM model, APRAM model, škálovatelnost.

NI-PDP

Výkonnostní měřítka paralelních algoritmů

- Paralelní časová složitost T(n,p) závisí nejen na n, ale i na počtu procesorů/jader p
 - o p = # procesorů = # jader = # vláken
 - o Paralelní čas T(n, p) = čas, který uplynul od začátku paralelního výpočtu do okamžiku, kdy poslední (nejpomalejší) procesor skončil výpočet
 - o T(n,p) závisí na architektuře paralelního výpočtu \rightarrow hodnocení par. Algoritmu musí vždy brát v úvahu architekturu počítače
 - o T(n,p) je meřen čítáním:
 - Výpočetních kroků aritmetické, logické, paměťové operace
 - Komunikačních kroků přenos a výměna dat mezi procesory
- Paralelní cena $C(n, p) C(n, p) = p \times T(n, p)$
 - Většinou statická alokace výpočetních jader
 - Výpočet začíná vytvořením vláken a ty jsou použita k výpočtu až do konce, i když některá mohou být nějakou dobu neaktivní (idle)
 - o Měřením kvality je součin procesory čas = paralelní cena
 - o Sekvenční složitost = $SU(n) \rightarrow C(n,p) = \Omega(SU(n))$
 - \circ Cenová optimalita paralelní algoritmus má optimální cenu, pokud C(n,p)=O(SU(n))
 - Cena je optimální právě tehdy když $C(n,p) = \theta(SU(n))$
- Paralelní zrychlení $S(n,p) S(n,p) = \frac{SU(n)}{T(n,p)} \le p$, nebo asymptoticky S(n,p) = O(p)
 - o Paralelní zrychlení je lineární, právě když $S(n,p) = \Omega(p) \to S(n,p) = \theta(p) \ (\leq p)$
 - o **Lineární zrychlení** = nejvyšší cíl paralelního programu jestliže p stoupne k-krát, chceme, aby T(n,p) klesnul k-krát obtížně splnitelné
 - o Superlineární zrychlení výjimečně dosažitelné
 - a. Sekvenční algoritmus je paměťově náročnější, než kapacita paměti a souhrnná kapacita pamětí paralelního systému je dostatečná a při paralelním výpočtu ušetříme swapování mezi hlavní pamětí a diskem
 - Sekvenční algoritmus znevýhodněn tím, že běží za jiných HW podmínek než paralelní
 - b. Anomálie při prohledávání kombinatorického stavového prostoru
- **Paralelní efektivnost** E(n,p) relativní vytížení jader dedikovaných paralelnímu výpočtu během výpočtu
 - o Vždy < 100% (komunikační a synchronizační režie)
 - $\circ \quad E(n,p) = \frac{SU(n)}{C(n,p)} \le 1$
 - o E(n,p) =zrychlení na jádro
 - o Konstanta $0 < E_0 < 1$
 - o Paralelní algoritmus má konstantní efektivnost, jestliže $E(n,p) \ge E_0 \to E(n,p) = \Omega(1)$
- Paralelní optimalita výkonnosti z definic plyne, že paralelní algoritmus je cenově optimální ⇔ má lineární zrychlení ⇔ má konstantní efektivnost

PRAM model

- **PRAM** = paralelní RAM = výpočetní model
 - Množina p procesorů
 - 1 procesor → vlastní lokální (soukromá) paměť + index i
 - o M sdílených paměťových buněk (pole)
 - o Každý p může přistoupit do jakékoliv buňky sdílené paměti v O(1) čase
 - o Řešení konfliktů explicitní ošetření
- PRAM algoritmus
 - o Vstup = n položek v (obvykle prvních) n buňkách sdílené paměti
 - Výstup = n' položek v n' buňkách sdílené paměti

- Procesy provádí synchronně 3 typy instrukcí:
 - o **READ** čtení sdílené buňky
 - o LOCAL lokální operace
 - o WRITE zápis do buňky sdílené paměti
- Komunikace procesorů = READ/WRITE sdílené buňky
- PRAM algoritmus lze zapsat regulárními výrazy
- Jednotkový model → R/L/W trvá čas 1
- Globální model \rightarrow L trvá 1 a R/W trvají konstantní čas d>1
- Ošetřování konfliktů při přístupech do sdílené paměti
 - o EREW Exclusive Read Exclusive Write
 - Žádné 2 procesory nesmějí číst nebo zapisovat tutéž sdílenou pam. Buňku současně
 - o CREW Concurrent Read Exclusive Write
 - Současná čtení 1 b. povolena, ale v 1 okamžiku může jen 1 proces zkoušet zapsat do dané buňky
 - o CRCW Concurrent Read Concurrent Write
 - Povoleny současné čtení a zápisy téže buňky
 - Priority-CRCW-PRAM
 - Procesy mají pevné priority dokončení zápisu povoleno procesu s nejvyšší prioritou
 - Arbitrary CRCW-PRAM
 - Dokončení zápisu povoleno náhodně vybranému procesu (algoritmus nesmí činit žádné předpoklady, který proces byl vybrán)
 - Common-CRCW-PRAM
 - Všechny procesy smí dokončit zápis, pokud jsou všechny zapisované hodnoty stejné
 - o Každý a. musí zajistit splnění podmínky
 - o Jinak a. není správný a stav PRAM není definován

APRAM model

- APRAM = asynchronní PRAM
 - o Procesy pracují asynchronně, neexistují centrální hodiny
 - o READ, WRITE, LOCAL jako PRAM
 - o Nutná explicitní synchronizace bariérová synchronizace
 - o Doba přístupu do sdílené paměti není jednotková
- APRAM výpočet = posloupnost globálních fází, ve kterých procesory pracují asynchronně, oddělených bariérovou synchronizací
- Dva + procesory nemohou přistupovat do téže buňky v téže globální fázi, pokud jeden z nich do ní zapisuje
- Výkonnostní parametry:
 - o Lokální operace 1
 - o Globální READ/WRITE: d
 - o K po sobě jdoucích globálních R/W: d+k-1
 - o Bariérová synchronizace: B(p)
 - $2 \le d \le B(p) \le p$
- 2 možné implementace bariéry
 - o Centrální čítač
 - Inicializovaný na 0 a na příchozí fázi, procesy přistupují ve vzájemném vyloučení
 - $B(p) = \theta(dp)$
 - 1. Proces dorazí k bariéře, zkontroluje, zda je v příchozí fázi a inkrementuje čítač
 - 2. Je-li čítač < p, proces se deaktivuje
 - 3. Jinak nastaví bariéru do odchozí fáze a aktivuje ostatní procesy
 - 4. Poslední aktivovaný proces nastaví bariéru do příchozí fáze

- Binární redukční strom
 - $B(p) = \theta(dlog p)$
 - 1. Každý proces dorazí k bariéře a zkontroluje, zda je v příchozí fázi
 - 2. Čeká, až skončí redukce v jeho podstromu
 - 3. Po jejím skončení pošle signál rodiči
 - 4. Kořen stromu počká na redukci z obou podstromů a přepne do odchozí fáze

Škálovatelnost

Amdahlův zákon saturace paralelizace

- o Každý sekvenční algoritmus A s časem $T_A(n)$ nad daty o velikosti n se proporčně skládá z
 - 1. Inherentně sekvenčního podílu f_s , který může provést pouze 1 vlákno $0 < f_s < 1$
 - 2. Paralelizovatelného podílu $1 f_s$
- o Nechť A je paralelizován pro pevné n pomocí p>1 vláken
- o Pak pro zrychlení A platí při p vláknech ideálně:

$$S(n,p) = \frac{1}{f_s + \frac{1 - f_s}{p}} \le \frac{1}{f_s}$$

- o Nezávisle na tom, kolik vláken bylo použito, nemůže zrychlení přesáhnout $rac{1}{f_c}$
- o Po jisté hranici nemá přidávání procesů už smysl, bo pro něj není dost paralelní práce
- o Problém fixní velikosti poskytuje omezené množství paralelismu a tudíž při provedení i omezuje použitelný počet paralelních vláken/jader

• Gustafsonův zákon

- o S rostoucím p máme úměrně navyšovat i velikost problému n
- Pak sekvenční část trvá konstantní čas t_{seq} nezávisle na p (V/V operace, inicializace), kdežto inherentně paralelní část $t_{par}(n,p)$ bude lineárně škálovat sp v čase

$$S(n,p) = \frac{t_{seq} + t_{par}(n,1)}{t_{seq} + t_{par}(n,p)}$$

- o $\lim_{n\to\infty} S(n,p) = p$ pro monotónně rostoucí SU(n)
- o **Paralelní škálovatelnost** schopnost par. Počítače se zvětšit, pokud narůstá velikost řešeného problému
 - Silná schopnost p. a. pro fixní n dosáhnout lineárního zrychlení s rostoucím p
 - Měří pokles efektivnosti, pokud p roste a n se nemění
 - Slabá definuje, jak se mění par. Čas s p pro fixní n/p
 - Měří růst n takový, že při rostoucím p zůstává efektivnost stejná
 - Škálovatelnost = schopnost p. a. držet paralelní optimalitu, pokud oba p a n rostou/klesají
- o Izoefektivní funkce ψ_1, ψ_2
 - $\psi_1(p)$ = asymptoticky minimální funkce taková, že

$$\forall n_p = \Omega(\psi_1(p)) : E(n_p, p) \ge E_0$$

• $\psi_2(p)$ = asymptoticky maximální funkce taková, že

$$\forall n_p = O(\psi_2(n)) : E(n, p_n) \ge E_0$$

o Z Amdahlova zákonu vyplývá:

$$p = \omega(\psi_2(n))$$

- Abychom si udrželi konstantní efektivnost, musí být procesorů alespoň $\psi_2(p)$
- o Z Gustafsonova zákonu vyplývá, že když velikost problému roste s p vztahem

$$n = \Omega(\psi_1(p))$$

efektivnost nebude klesat

17. Programování nad sdílenou pamětí, programový model OpenMP, datový a funkční paralelismus, synchronizace vláken, vícevláknové algoritmy (násobení polynomů, násobení matic, řazení).

NI-PDP

OpenMP

- **OpenMP** explicitní model paralelního výpočtu, kdy má programátor plnou kontrolu a zodpovědnost za paralelní výpočet
- Paralelní regiony = části původně sekvenčního kódu
 - o V nich pomocí fork-join mechanismu vytvářena, prováděna a ukončována paralelní vlákna

- Mimo par. regiony pouze 1 hlavní (master) vlákno
- Podpora pro iterační i funkční model paralelismu
- Pomocí OpenMP direktiv v kódu paralelní regiony, ve kterých bude výpočet prováděn více paralelně běžícími vlákny nebo paralelně běžícími úlohami, kdy je každá úloha prováděna 1 vláknem
- Zákaz skákat z paralelního regionu ven či dovnitř
- Kompilace s -fopenmp
- Tvorba paralelních regionů direktiva parallel
 - Možné klauzule direktivy:
 - If(podmínka): podmínka paralelizace regionu
 - Num_threads(výraz): počet vláken v paralelním regionu
 - Vlastnosti(seznam proměnných): OpenMP vlastnosti proměnných v paralelním regionu
 - o Na konci p. r. je implicitní bariéra
 - o Po jejím provedení jsou nová vlákna ukončena a dál pokračuje jen hlavní vlákno 0
 - o Pokud je 1 vlákno předčasně ukončeno, jsou ukončena všechna vlákna i celý program
- Vlastnosti proměnných v paralelním regionu
 - o Shared daná skalární proměnná (ne pole, ne struktura) je sdílená všemi vlákny
 - o **Private** daná proměnná je lokální ve vláknech každé vlákno má nezávislou minimalizovanou instanci této proměnné
 - o **Firstprivate** proměnná je lokální ve vlákně, každé vlákno ji má inicializovanou na hodnotu, kterou měla před vstupem do p. r.
 - o **Lastprivate** (pouze v paralelních cyklech) p. je lokální ve vláknech, ale hodnota ze sekvenčně poslední iterace se po skončení p. cyklu překopíruje do proměnné hlavního vlákna procesu
 - Default určuje, jakou z předchozích vlastností budou mít implicitně všechny proměnné použité v paralelním regionu
 - o **Reduction** určuje, že daná sdílená proměnná je lokálně nakopírovaná do každého vlákna a že po skončení par. Regionu se všechny lokální instance této proměnné zredukují pomocí zadaného redukčního operátoru a výsledek bude zapsán do původní sdílené proměnné
 - Musí to být skalární proměnná
 - Redukční operátory: +,*,-,&,^,|,&&,||
 - Nelze kombinovat s direktivou task
 - o **Threadprivate** def. Globální platnost hodnot lokálních proměnných vláken v rámci celého programu napříč všemi paralelními regiony
 - Počet vláken ve všech regionech musí být stejný, proměnné si "drží" hodnoty při přestupech mezi
 p. r.

Datový a funkční paralelismus

- **Direktiva for** přidělení jednotlivých iterací for cyklu uvnitř par. Regionu jednotlivým vláknům
- Na konci par. Cyklu implicitně bariéra
- Možné klauzule:
 - o **Schedule**(): upřesňuje způsob přidělení iterací cyklu vláknům
 - o Collapse(): upřesňuje paralelizaci vnořených cyklů (implicitně for jen na nejvyšší úrovni)
 - o Ordered(): pořadí provádění iterací je stejné jako při sekvenčním provádění
 - Nowait(): vlákna po dokončení svých iterací nečekají na bariéře
- **Klauzule schedule** schedule(typ) × schedule(typ, chunk-size)
 - o Typy klauzulí:
 - Static buď jsou vláknům přiděleny staticky cyklicky bloky (=chunks) o velikosti chunk-size, nebo se přidělí rovnoměrně (n/p)
 - Dynamic dynamicky přiřazuje chunky po sobě jdoucích iterací velikosti chunk-size nebo 1
 - Guided vláknům dynamicky přiděleny bloky x iterací, kde

$x = \max([\#dosud\ nepřidělených\ iterací], chunk_size)$

- Runtime způsob přiřazení zvolen v okamžiku spuštění dle systémové proměnné OMP_SCHEDULE
- Auto přidělení it. Necháno kompilátoru/běhovému prostředí
- Efektivita:
 - Schedule(static[,k])
 - Nejmenší režie
 - Rovnoměrné rozdělení iterací
 - Ideální, pokud mají všechny iterace stejnou výpočetní dobu
 - K ovlivňuje promíchání iterací
 - Schedule(dynamic[,k])
 - Vyšší režie kvůli synchronizaci
 - Vyšší k snižuje režii
 - Výhodné při kolísavé době iterací
 - Schedule(guided[,k])
 - Vyšší režie (synchr.)
 - Vyšší k režii snižuje
 - Výhodné při postupně rostoucí době iterací
- Paralelizace 2-úrovňového for cyklu
 - Statické přidělení vláken (pro jednoduchost)

Paralelizace pouze vnitřního cyklu

```
For(...)
#...parallel for
For(...)
Funkce()
# ... parallel
For(...)
#...for
For(...)
Funkce()
```

Nutné, je-li vnitřní smyčka datově závislá na vnější smyčce

- **Task** = úloha
- Podporuje složitější funkční paralelismus s větší režií vhodné i pro rekurzivní algoritmy (zapouzdření kódu i
 dat)
- **Přidělování úloh** typ producent-konzument
 - o Vlákna jsou producenti i konzumenti
- Úloha = jednotka par. Výpočtu, obsahuje:
 - Ukazatel na začátek svého kódu (k provedení)

- Vstupní data
- O Dat. Strukturu, do které vloží svůj identifikátor vlákno, jakmile danou úlohu začne provádět jeho konzument (=vlastnické vlákno)
- **#pragma omp task** způsobí:
 - o Vlákno producent vygeneruje novou úlohu a vloží ji do zásobárny úloh (=task pool)
 - o Úloha čeká, než ji volné vlákno konzument vyzvedne a provede

- Podmíněné spouštění par. Úloh

- o If(...) efektivní řízení task par. Rekurzivních kódů, kdy rekurze závisí na splnění podmínky
 - Splněno synovská úloha do task poolu
 - Nesplněno pozastavení rodičovské úlohy a odložení do zásobárny úloh, ihned provedení nové synovské úlohy, po dokončení vyzvednutí rodiče a dokončení
- o #pragma omp **taskwait**
 - Rodičovská úloha čeká na dokončení všech synovských úloh
 - Stromová rekurze
- Volání task direktivy musí být uvnitř paralelního regionu
- Rekurzi startuje jediné vlákno
 - pragma omp parallel num_threads(...){# pragma omp singleFunkce()

Synchronizace vláken

- Synchronizační direktivy
 - Barrier místo, kam par. Vlákna daného p. r. musí dorazit a čekat na ostatní
 - o **Master** daný blok kódu smí provést pouze hlavní vlákno
 - o Single daný blok kódu smí provést pouze 1 libovolné vlákno
 - o Critical vytvoření kritické sekce
 - o Atomic operace nad paměťovou buňkou bude provedena jednovláknově a nepřerušitelně
 - o Flush propsání aktuálních hodnot daných sdílených proměnných do sdílené paměti
 - o **Taskwait** synchronizace synovských úloh s rodičovskou v task paralelismu
- Bariéra a serializace v par. Regionu
 - # pragma omp single následující blok se smí provést pouze jednou ostatní vlákna čekají na implicitní bariéře za single blokem
 - # pragma omp master následující blok smí provést pouze hlavní vlákno ostatní pokračují hned kódem, který je za tím
 - o # pragma omp **barrier** synchronizační bod, vlákna uspávána a probouzena, až dorazí všechna vlákna
 - Implicitně na konci par. Regionu a single
- Kritická sekce
 - o Jedna/více částí kódu par. Regionu, které lze v 1 okamžiku provádět pouze 1 vláknem
 - o Direktiva # pragma omp critical anonymní kritická sekce
 - o Několik kritických sekcí vzájemné vyloučení vstupu vláken platí globálně pro všechny její výskyty
 - Direktiva #pragma omp critical name pojmenovaná krit. sekce taky může být víckrát, platí to samé
- Direktiva atomic a její použití
 - Přístup do pam. Místa se skalárním datovým typem (integer, floating-point, ...) bude atomická operace
 - Nepřerušitelná R/W/RMW
 - Bude deterministický výsledek
 - o Read, write, update, capture
 - o Inkrementace #... atomic update
 - o Capture rozšiřuje update o získání hodnoty dané pr. Před/po modifikaci
- Uživatelsky řízené předčasné ukončení par. Regionu **direktiva cancel**
 - o Provedením vydá vlákno ostatním signál k ukončení přejde na bariéru

- o Další vlákna, která později narazí na cancel provedou totéž
- o Vlákna, která už poslední volání cancel minuly, standardně dokončují
- o # pragma omp cancel construct[if(expr)]
 - Construct ∈[parallel, for, taskgroup, sections]

Vícevláknové algoritmy

Prohledávání kombinatorického SP

- o NPH úloha najít určitý 1 stav ve velkém SP
- o Vstupní proměnné, stavové proměnné, výstupní proměnné, omezení, optimalizační kritérium
- o Rozhodovací vs konstruktivní vs enumerační
- o SB-DFS přípustný koncový stav bez optimalizace
- o BB-DFS diskrétní optimalizační problém
 - Přípustný koncový stav s max./min. cenou
- o **PP-DFS** prohledávání v iteracích se zvyšující se hloubkou SP (např. lineární prohlubování)
 - BB-DFS do hloubky L, pokud nenašlo řešení, prohloubí se

Paralelní algoritmy pro PKPS

- o Čas. Složitost PKPS je superpolynomiální
- o Paralelní prohledávání může mít anomální chování
- o Základní podmínka úspěšného par. PKPS:
 - Jádra by měla být pokud možno stále vytížena prohl. pokud možno disjunktních částí SP

Statické rozdělení SP

- o Nerozlišujeme mezi procesem a vláknem
- o P CPU jader, každé p_i provádí v 1 okamžiku jedno vlákno π_i
- o Základní postup statického rozdělení výpočtu:
 - Master vlákno τ_0 sekvenční BFS vygeneruje p odlišných stavových prostorů s cca stejným počtem nastavených stavových proměnných
 - Prohledávání stavových podprostorů přiděleno vláknům π_i
 - Každé vlákno τ_i (včetně hlavního) provede sekvenční DFS přiděleného SPp pomocí lokálního zásobníku
 - Výsledky lokálních PKSP předají hlavnímu vláknu au_0 globální řešení

Problémy efektivnosti statického rozdělení SP

- o P jader by mělo mít podobný výkon a parametry paměti
 - Stejně rozsáhlé podprostory se stejnou sekvenční časovou náročností
- o ALE: navracení (=backtracking) je silně datově závislé
 - Výpočet vláken se může dost lišit
 - Některá pak budou neúčinná neefektivní

Statické rozdělení SP a anomální chování

- V případě prohledávání celého SP rozděleného pouze staticky může vzniknout anomální chování:
 - 4-vláknové řešení vpravo pomalejší než 2-vláknové vlevo
- o 2. příklad:
 - V případě FSB-DFS:
 - Paralelní DFS s 2 vlákny trvá stejně jako se 4 vlákny
 - Anomálie přidáním jader může DFS
 - o Superlineárně zrychlit
 - o Zpomalit
- o Pro efektivní PKSP:
 - Jemnější statická dekompozice v modelu dynamického Master-Slave
 - Doplnění o dynamické vyvažování zátěže

Dynamické vyvažování zátěže

o au_0 generuje podprostory a přiřadí je vláknům

- o τ_i DFS pomocí lokálního zásobníku (= je aktivní)
- o Aktivní τ_i vyprázdní zásobník, ale nenajde řešení
 - Stává se nečinným, ale žádá jiná vlákna o přidělení neprozkoumaných částí jejich SP
- o τ_i se stane dárcem τ_i = příjemce
- o Půlení zásobníku (rozdělování na k částí požadavků) $2^{\lceil \log k \rceil}$ částí
 - Neexp. stavy blízko dna/vrcholu zásobníku skrývají pravděpodobně větší/menší části SP
 - Položky nad řeznou výškou H se nepředávají
- Paralelní algoritmus dyn. Master-Slave DFS
 - o Hlavní vlákno = Master, p-1 dalších vláken = Slaves
 - o M sekvenční BFS → podprostory pro vlákna S
 - o M pošle každému S 1 podprostor z množiny
 - o S po přijetí podprostoru jede sekvenční DFS, nikdy se nevrací za počáteční stav svého zásobníku
 - o S neúspěšně ukončí lok. PKSP → požádá M o další podprostor (definován lok. Zásobníkem)
 - M má nepřidělené podprostory → přidělí S → další lokální PKSP
 - M odpoví negativně → požádá S o ukončení aktivity
 - o FSB-DFS S nalezne řešení → informuje M → M oznámí všem S konec
- Klasifikace efektivně paralelizovatelných algoritmů
 - Výpočetně intenzivní algoritmy čas procesoru strávený výpočtem nad daty je větší než čas nutný na přesun dat z paměti do CPU (PKSP pro NPH úlohy, ...)
 - o **Paměťově intenzivní algoritmy –** čas procesoru strávený nad výpočtem je menší, než čas nutný na přesun dat z paměti do CPU
 - Počet výpočetních operací na přenesený bajt/prvek je příliš malý
 - Typicky a. s lineární výpočetní složitostí, kde data přen. Z paměti do CPU použita jen k-krát, kde $k \ge 1$ je malá konstanta
 - Skalární součin, dynamické programování, Fourierovy transformace
 - o O smysluplnosti paralelizace rozhoduje typ úlohy
 - Nutná podmínka = teoretické zrychlení
 - Rozhodující je řád výpočetní složitosti nebo multiplikativní konstanta (u lin. Složitosti)
- **Zdroje neefektivity** OpenMP kódů
 - o Nevyvázěná výpočetní zátěž pro jednotlivá vlákna bariéra → čekající vlákna → nevyužitá jádra
 - o Příliš **těsná synchronizace –** velký počet bariér/krit. sekcí
 - o **Omezený paralelismus –** # iterací for < # vláken
 - o **Vysoká režie** správy vláken častá tvorba/zánik, schedule(dynamic)
 - o **Významná sekvenční část –** z Amdahlova zákonu
 - o **Neefektivní využívání keš** paměti falešné sdílení, častý zápis
- **Falešné sdílení –** různá vlákna zapisují na různé adresy, které jsou ale natolik blízké, že jsou namapovány do stejného bloku keš paměti
 - o U datového paralelismu typické
 - Zabránění vede na protichůdný požadavek, než je požadavek přístupu se třídou 1 u jednovláknových aplikací
- Snížení dopadu falešného sdílení
 - Vhodnější rozdělení iterací cyklu nad dostatečně velkým polem mezi vlákna je blokově rovnoměrné

 schedule(static)
 - o Vhodná **chunk-size** při statickém/dynamickém přidělování bloků iterací vláknům
 - Pole A začíná na adrese dělitelné cache_line_size, čili pole A je v paměti zarovnáno stejně jako bloky keše
 - o Umělé navýšení velikosti zapisované datové struktury připojením jalové výplně (dummy data)
 - Např. každý prvek pole navýšen na velikost bloku keše + podm. Zarovnání
 - Dobré pro malá sdílená pole, kde má každé vlákno vyhrazené místo pro zápis svého lok. Výsledku velikosti ≤ 1 blok keše

Paralelizace násobení polynomů, násobení matic, řazení

- Násobení polynomů vstup = 2 polynomy A, B, výstup = $C = A \times B$, sekvenční složitost O(nm)
 - O Sekvenční algoritmus for cyklus pro init C, potom dvojitý for cyklus pro C[i + j] = A[i] * B[j]
 - o Paralelizace vnějšího cyklu každé vlákno počítá násobení 1 členu 1. polynomu kritické zápisy
 - Všechna vlákna čtou postupně všechny prvky polynomu B
 - Oblasti v poli C (zápis) nejsou disjunktní potřeba vzájemného vyloučení (*atomic update*)
 - C[i+j]+=A[i]*B[j] uvnitř dvojitého for cyklu
 - o **Paralelizace vnitřního j-cyklu –** vlákna sdílejí index i najednou čtou A[i] (paralelní vnitřní for cyklus)
 - Paralelní zápis je disjunktní, ale + režie opak. Rozdělení m iterací vnitřního cyklu nově vytvořeným p vláknům + režie synchronizace → n*T_bar
 - Pro 1 člen jsou spočítány násobky
 - 2. možnost: + použití omp parallel před i-cyklem vlákna se vytvoří jen jednou → v iteracích se rozděluje B → na konci každé iterace bariéra
 - Ale vždy vzájemné zneplatnění keše, neodstranitelné falešné sdílení
 - Paralelizace polynomu C nerozdělujeme násobení, ale výsledné členy každý se počítá zvlášť
 - Pouze paralelní čtení, žádné kolize zápisu, potřeba vyvažování výpočetní zátěže
 - Minimum falešného sdílení vlákna provedou maximum výpočtů lokálně zápis pouze výsledku do sdílené paměti
- Násobení hustých matic 2 čtvercové n×n matice A, B, výstup = C = A × B
 - Sekvenčně středoškolský algoritmus n^2 skalárních součinů ř. A a sloupců B n^3 násobení
 - 2 for cykly pro iteraci přes A a B a třetí for cyklus (k < n) pro skalární součin
 - o Paralelizace i-cyklu každý řádek matice C = 1 vlákno, zapisovatelné oblasti disjunktní
 - Pouze 1 implicitní bariéra na konci par. regionu
 - o **Paralelizace j-cyklu s blokovaným přidělením** oblastí větší synchronizace n*T_barr, bez kolizí
 - Pro velké n/p není falešné sdílení
 - Každé vlákno zapisuje do souvislé části daného řádku C o velikosti n/p prvků
 - Paralelizace j-cyklu s cyklickým přidělením iterací jako předtím synchron. n*T_barr + bez kolizí
 - Místo schedule(static) je schedule(static, 1)
 - Falešné sdílení různá vlákna zapisují současně do sousedních prvků stejné řádky matice
 C do stejného keš bloku
 - Přidělení iterací j-cyklu v paralelním regionu stejné jako 2 kromě synchronizace
 - Před for(i<n) *omp parallel* vytvoření p vláken pouze jednou
 - \circ Paralelizace k-cyklu parallel for schedule(static) reduction(t:s)
 - Skalární součin paralelní redukcí (1 řádek A a 1 sloupec B) obrovská režie synchronizace
 - Možnost přidat fork join ($omp\ master$) před zapsání C 1x tvorba vláken, ale rychlejší
- **Násobení řídké matice vektorem –** y = Ax (A n x n, počet nenulových prvků N), algoritmus SpMVM
 - Formáty pro uložení řídkých matic
 - Souřadnicový (COO) A reprezentována 3 poli: indexy řádků nenulových prvků, indexy sloupců nenulových p., hodnoty nenulových p. pořadí typicky po řádcích
 - Paralelizace: 2x parallel for, výpočet jako tmp přičtení za tím jako atomic update
 - Nepřímá indexace falešné sdílení neefektivní
 - o Možno, aby víc vláken přičítalo ke stejnému prvku vektoru v současně
 - Komprimované řádky (CSR) A repr. 3 poli: (položky podle indexů ř. a sl.) indexy do pole A.Collnd, od kterých jsou v něm uloženy indexy sloupců nenulových prvků jednotlivých řádků A; indexy sloupců nenulových prvků; hodnoty nenulových prvků A
 - Paralelizace: Parallel for schedule([static[, c]] | dynamic [, X]]) před 1. for
 - o Schedule(static) řádky distribuovány blokově
 - Nevyvážená zátěž, falešné sdílení sousedních vláken
 - o *Schedule*(*static*, 1) řádky přidělovány cyklicky
 - Taky nevyvážená zátěž, horší falešné sdílení (všechna vlákna)
 - o Schedule(dynamic, X) dyn. přidělování lepší vyváženost, ale vyšší režie
 - Matice s nepravidelným rozdělením nenulových prvků

- Vyvažující metoda matice v CSR formátu na p řádkových pásů (=bands),
 které mají přibližně stejný počet nenulových prvků, každé vlákno 1 pás
- o Pomocí omp parallel a omp barrier (iterace po pásech)

Paralelizace QuickSortu

- o **QuickSort** varianta Lomuto: pivot → třízení prvků → L a R
 - Funkční paralelismus $\rightarrow omp \ task$ rekurzivní volání na L a R
 - Velké množství malých tasků → velká režie, zlepšení:
 - Tail call optimization odstranění koncové rekurze (tail recursion), resp. Nahrazení
 1 ze 2 rekurzivních volání iterací
 - Prahování zavedení prahu počtu prvků pro vytváření nových OpenMP úloh
 - Paralelizace rozdělování řetězce varianta Hoare

QuickSort – varianta Hoare

- Pole se souběžně prochází zleva i zprava a přitom se porovn. navštívené prvky s pivotem
- L menší než pivot a R větší rovno pivot → oba na správných pozicích; L i R menší než pivot
 → L je správně; L i R větší než pivot → R je správně; L větší a R menší → prohození
- Iterace, až se průchody zleva a zprava potkají = neutralizace v každé i. neutr. min. 1 prvek
- Rozdělení řetězce pro rekurzi lze paralelizovat indexy průchodů = sdílené proměnné
 - Každé vlákno chce získat unikátní hodnoty těchto proměnných tak, aby mohlo k rozdělení přispět svou prací na disjunktních dvojicích prvků pole
 - Na konci zbyde max. 1 špatně zařazený prvek levný a rychlý úklid
 - Vyžaduje aktivovaný vnořený OpenMP paralelismus Omp_set_nested(1)
 - o Vede na strom rekurzivních volání → par. vlákna se rozvětvují do par. vláken
 - Operace s indexy pomocí omp atomic capture
- Paralelizace MergeSortu: MergeSort → standartní binární rozdělování, problém je s Merge fází
 - o Klasický task paralelismus je moc pomalý slučování moc krátkých částí, falešné sdílení
 - Zlepšení: Prah počtu prvků; místo 2 nových úloh pouze 1 pro levou část → pravá zpracována sekvenčně; paralelizace Merge
 - Paralelizace Merge u sekvenčního průchod 2 seřazenými poli zleva doprava a porovn. počátečních prvků → menší do výsledního pole = 2-cestné slučování
 - Binární matice, kde seř. pole A jsou řádky a B sloupce, pokud A[i]>B[j], pak M[i,j]=0, jinak 1
 - Tlustá lomená čára dělí oblast 0 a 1
 - M proložíme p-1 vedlejšími diagonálami v diagonální matici vzdálenosti n/2p od sebe → označíme průsečíky s hranicí (x0...xp) → oblasti jsou ohraničené pomocí průsečíků
 - Dělení na pásy podle # CPU, průsečíky = oblast čísel rozdělených podle 1 ekviv. počtu
 - Budou se všemi vlákny zapisovat do setříděného pole
 - Každé vlákno pak sekv. sloučí bloky Ai, Bi, na konci zřetězení slouč. pos. od každého vlákna
 - p-1 vláken počítá p-1 průsečíků za O(logn), možné falešné sdílení, rychlejší p-cestné

Paralelizace p-cestného MergeSortu – PMWMS = parallel multi-way MergeSort

- o P vláken rozdělí vstupní neseřazené pole o velikosti n na p částí velikostí n/p, vlákna seřadí sekv. svoje s
- Po bariéře každé vlákno i > 0 vypočte vektor svých p tzv. rozdělovačů split_vec[i]
 = p indexů do p seřazených částí pole S[p][n/p] takových, že součet délek disjunktních úseků určených v S[p][n/p] dvěma po sobě jdoucími vektory rozdělovačů split_vec[i] a split_vec[i+1] má velikost n/p
- o Po bariéře vlákno i vyřízne podle svých p rozdělovačů svých p disjunktních seřazených úseků délky n/p
- Úseky sloučí pomocí sekvenčního p-cestného slučování do seřazeného pole velikosti n/p
- Výsledný seřazený úsek o velikosti n/p vloží na připravené disjunktní místo B[i] výstupního pole
- Splitters_by_Rank vlákno vezme sdílené pole p seřazených polí s[0]...s[p-1] a pořadí rank svého 1. čísla na výstupu a vygeneruje pole p rozdělovačů těchto polí takových, že počet prvků vlevo od nich sečtený přes všechna pole S[i] se rovná přesně rank
- Po seřazení jednotlivých částí a výpočtu oddělovačů musí být bariéry
- \circ **Části:** Sekvenční řazení n/p čísel, $\log n$ provedení p hledání v polích velikosti n/p, sekvenční p-cestné slučování p polí celkové délky n/p
- o N je velké, p malé bude dominovat první člen

18. Programování nad distribuovanou pamětí, programový model MPI (vícevláknové procesy, komunikátory, 2-bodové blokující a neblokující komunikační operace, kolektivní operace), paralelní násobení hustých matic, paralelní mocninná metoda.

NI-PDP

- MPI = systém zasílání zpráv mezi procesy
- Komunikace procesů/vláken
 - o **OpenMP** pomocí čtení/zápisů z/do sdílené paměti, podpora pro redukci
 - o MPI procesy nesdílí paměť komunikace zasíláním zpráv, všechny proměnné privátní
 - Redukce pro všechny procesy najednou: MPI_Allreduce
- Využití sdílené paměti:
 - o Jen MPI na každém jádru 1 či několik MPI procesů nedělí se o vlákna
 - MPI + OpenMP výpočetní uzel → MPI proces(y) → pomocí OpenMP dělení na několik vláken, běžících na jádrech
 - o **Hybrid** 1 OpenMP vlákno na jádro
- Kombinace MPI + OpenMP
 - o Inicializace \rightarrow *MPI_Init_thread*: Vrací v proměnné zaručenou míru spolupráce MPI s vlákny
 - o Požadovaná míra spolupráce MPI s vlákny:
 - MPI_THREAD_SINGLE pouze MPI, procesy se nedělí na vlákna
 - MPI_THREAD_FUNNELED vícevláknové procesy s omezením, že pouze hlavní vlákno může zavolat funkce MPI = jednoportový model
 - MPI_THREAD_SERIALIZED vícevláknové procesy s om., že v daném okamžiku smí funkce MPI volat pouze 1 vlákno (volání MPI funkcí je kritická sekce) = jednoportový model
 - MPI_THREAD_MULTIPLE vícevláknové procesy, kde všechna vlákna mohou volat funkce MPI bez omezení = všeportový model
- Komunikátor určuje množinu procesů, v rámci níž probíhá komunikace
- Intra-komunikátor asociovaný s konkrétní skupinou procesů
- MPI_COMM_WORLD předdef. Intra-kom. Pro všechny MPI procesy
- Inter-komunikátor 2 různé skupiny procesů
- MPI_Comm_rank číslo procesu, MPI_Comm_size počet procesů
- Komunikační MPI operace: 2-bodové (komunikace mezi 2 procesy), kolektivní (komunik. mezi všemi p.)
- **Základní 2-bodová kom.** zdrojový p. *MPI_Send* určí cílový p., cílový p. *MPI_Recv* určí zdrojový p.
- Blokující komunikační operace příslušná MPI funkce je ukončena teprve po dosažení určitého stavu dané komunikační operace
- MPI_Send
 - o Buf ukazatel na posílaná data
 - o Count počet posílaných položek
 - o Datatype dat. Typ posílaných dat
 - o Dest číslo cíl. Procesu
 - o Tag značka zprávy
 - o Comm MPI komunikátor

- MPI_Recv

- o Source číslo zdrojového procesu
- Status ukazatel na stavový objekt
- o Zbytek stejně jako u Send
- Typ přenášených dat
 - o Parametr datatype typ *MPI_Datatype*
 - o Základní datové typy MPI_CHAR, MPI_INT, ...
 - Složitější MPI_Type_create_struct
- Množství přenášených dat Lze najednou posílat víc prvků, ale stejného dat. Typu a uložené za sebou v paměti, Parametr count
- Zdrojový a cílový proces Cíl parametr dest, Zdroj parametr source

- o Přijetí od 1 konkrétního zdroje × od libovolného zdroje MPI_ANY_SOURCE
- Značky přenášených dat Tag rozeznání sémantického významu zpráv
 - o Přijetí konkrétní značky × libovolné značky MPI_ANY_TAG
- Stavový objekt Proměnná typu *MPI_Status*
 - o Můžeme ignorovat MPI_STATUS_IGNORE
 - o Struktura s položkami:
 - *MPI_SOURCE* číslo zdroj. Procesu zprávy
 - *MPI_TAG* značka přijaté zprávy
 - o Pomocí *MPI_Get_count* velikost zprávy
- **MPI_Send** je blokující ukončena až když lze modifikovat vstupní buffer
 - o Realizuje standardní mód návrat z funkce nastane, když jsou data:
 - Odeslána cílovému procesu
 - Překopírována do dočasného systémového bufferu pro pozdější odeslání
 - o Kvůli odesílání je to nelokální operace
- MPI_BSend realizuje Buffered mode, návrat zaručeně nezávisí na připravenosti příjemce přijímat data, lokální operace
 - o Pokud příjem nebyl iniciován, MPI musí odesílaná data uložit do bufferu, který si musí uživatel předtím připravit pomocí *MPI_Buffer_attack*
- MPI_SSend Synchronous mode není návrat, dokud není inicializace přijetí dat, nelokální operace
- **MPI_RSend** Ready mode pokud při volání není init příjmu, vrátí chybu, nelokální operace
- Standardní mód MPI rozhodne, jestli použít Buffered/Synchronous Uživatel to neovládá
 - o MPI stanovisko, že korektní MPI program není na systémovém bufrování závislý
- Tyhle sendy jsou blokující ve smyslu, že po návratu z nich můžeme buffer odesílaných dat přepsat
- Recv je blokující ve smyslu, že po jejich ukončení jsou přijatá data uložená v bufferu a lze je číst
- Neblokující funkce **MPI_ISend, MPI_Ibsend, MPI_Issend, MPI_Irsend** iniciují odeslání dat a skončí
 - o MPI_Irsend může začít, až když příjemce iniciuje příjem, ostatní libovolně
- Buffer vstupních dat nelze modifikovat, dokud není dokončení komunikační operace explicitně otestováno
- Neblokující funkce **MPI_Irecv** iniciuje příjem dat
- Buffer není možné použít, dokud není dokončení operace příjmu dat explicitně otestováno
- Všechny neblokující funkce mají dodatečný parametr ukazatel na proměnnou typu MPI_Request
 - o Vstupní arg. Funkcí, které slouží pro testování/čekání na dokončení těchto komunikačních operací
 - o Testování dokončení MPI_Test
 - Neblokující, vrátí okamžitě MPI_SUCCESS nebo chybu
 - Čekání na dokončení MPI_Wait
 - Blokující, vrátí až tehdy, když jsou data skutečně obdržena
- U neblokujícího příjmu **stavový objekt** až z funkcí Test/Wait, NE z Irecv
 - o Parametry MPI_Request a stavový objekt MPI_Status
- Neblokující operace důležité, bo umožňují překrývání volání komunikačních párů není nutná serializace
- **MPI_Testany/Waitany** dokončení libovolné operace
- **MPI_Testall/Waitall** dokončení všech operací z množiny
- Komunikační módy neblokujících operací
 - o Vrací okamžitě nezávisle na splnění dané podmínky
 - o Na splnění podm. závisí návrat z funkcí čekání na dokončení neblokujících operací MPI_Wait, ...
- **MPI_Iprobe**, **MPI_Probe** testují příchod zprávy, aniž by zpráva byla přijata
 - (int source, int tag, MPI_Comm comm, int * flag, MPI_Status * status)
- **MPI_IProbe** nebolokující lokální funkce
 - o flag = true, pokud existuje zpráva, kterou lze přijmout a která odpovídá parametrům source, tag, comm
 - o Pak vrátí argumentu *status* stejnou hodnotu, jakou by vrátila operace *MPI_Receive*
 - o Jinak vrátí flag = false a status je nedefinován
- source může být MPI_ANY_SOURCE a tag může být MPI_ANY_TAG
- Sondovaná zpráva nemusí být přijata po té, co byla sondována a danou zprávu lze tedy sond. opakovaně

- **MPI_Probe** blokující nelokální funkce
 - Vrátí až poté, co existuje zpráva, kterou lze přijmout a která odpovídá parametrům source, tag, comm a ve výstupním argumentu status vrátí stejnou hodnotu, jakou by vrátila operace MPI_Receive
- **Požadavky na implementaci** *MPI_Iprobe* a *MPI_Probe* měly by garantovan následující:
 - Je-li zavolán MPI_Probe jedním procesem a jiný proces zavolá Send s kompatibilními parametry, pak se volání MPI_Probe úspěšně vrátí KROMĚ případů, kdy zprávu přijme konkurenční funkce MPI_Receive
 - O Pokud proces aktivně čeká pomocí MPI_Iprobe a odpovídající zpráva byla vyslána, pak volání MPI_Iprobe v konečném čase vrátí flag = True, pokud
 - Kompat. zprávu nepřijme konkurenční MPI_Receive provedená jiným vl. téhož procesu
 - Taková zpráva nebyla sond. konkurenční operací *Probe* provedenou jiným vl. téhož proc.
- Volání Iprobe/Probe det. zprávu, kterou by byla přij. ve stejném místě vol. f. MPI_Recv se stejnými arg.
- Ve vícevláknových procesech je seznam příchozích zpráv sdílen a může docházet k soupeření vláken o přijetí zpráv kompatibilních s těmi, které vysondovaly předchozími voláními Probe/Iprobe
- Sondování s rezervací pro budoucí *Receive* pro zajištění větší korektnosti a efektivnosti soupeření
 - Neblokující MPI_Improbe(source, tag, comm, flag, MPI_Message * message, status)
 - Oproti Iprobe vrátí v případě, že zpráva existuje, v hodnotě argumentu message message hangle na vysondovanou zprávu
 - Message je vstupem volání funkce MPI_Mrecv (buf, count, datatype, MPI_message * message, status)
 - Před návr. z volání MPI_Mrecv se message handle reset. Na MPI_MESSAGE_NO_PROC
 - Volání *MPI_Mrecv* s takovouto hodnotou argumentu message nic nepřijme
- Využití funkcí pro testování příchodu zpráv
 - o Příchod "volitelných" zpráv předčasné uk. výpočtu při nalezení optim. řešení jiným procesem
 - Příjem zprávy neznámé velikosti zjištění velikosti zprávy pomocí MPI_Probe a MPI_Get_count,
 alokace bufferu, příjem dat pomocí MPI_Recv
- MPI neposkytuje mechanismy pro řešení chyb komunikačního systému
- Chyby způsobené voláním MPI funkce s chybným argumentem, nedostatek zdrojů, ...
- **Návratová hodnota MPI funkce** úspěch/neúspěch
 - o Úspěch $\rightarrow MPI_SUCCESS$, neúspěch \rightarrow chybový kód
- Chybový kód = základ pro obsluhu chyby (=error handler) dané MPI funkce, která se při výskytu chyby zavolá před návratem
- 3 předdefinované obsluhy chyb:
 - o MPI_ERRORS_ARE_FATAL chyba → násilně ukončen celý pr., k návratu chyb. funkce nedojde
 - Procesy interně zavolají MPI_ABORT
 - Implicitně asociovaná s MPI_COMM_WORLD
 - o MPI_ERRORS_RETURN neukončí program, vrátí chybový kód funkce
 - Stav MPI výpočtu není po chybě MPI standardem definován
 - Pro diagnostiku stavu a výpis chybového hlášení
 - o MPI_ERRORS_ABORT násilné ukončení procesů spoj. s daným komunikátorem, ale ne všech
- Funkce pro **vytvoření kódu obsluhy chyby**, její navázání na komunikátory, testování vazeb a jejich zrušení:
 - ${\it o MPI_Comm_create_errhandler, MPI_Comm_set_errhandler, MPI_Comm_get_errhandler} \\ {\it MPI_errhandler_free} \rightarrow {\it u} \\ {\it v} \\ {\it v} \\ {\it u} \\ {\it v} \\ {\it v} \\ {\it u} \\ {\it v} \\ {\it v} \\ {\it v} \\ {\it u} \\ {\it v} \\ {\it v} \\ {\it v} \\ {\it u} \\ {\it v} \\ {\it v$

Násobení hustých matic

- Násobení hustých matic: Předpokládám klasický školní algoritmus na násobení matic a blokověšachovnicové mapování matic
- Naivní algoritmus: Každý procesor potřebuje odpovídající submatice pomocí AAG
 - o Na závěr se provede lokální vynásobení, časová náročnost: $\Theta(N/p \cdot (\sqrt{p} + \sqrt{N}))$, paměťově neefektivní (nevleze se to do paměti jednoho procesoru)

Cannonův systolický algoritmus:

- Přesouvá iterativně a synchronně submatice tak, že vždy můžu násobit Ai: * B: j
- o Systematicky rotuji i. sloupec a j. řádek o i/j pozic pomocí cyklický posun MPI_Sendrecv
- o Vždy přičtu výsledek a orotuji o 1 víc, na vhodné topologii (všeportová WH Q log p) současně
- Výsledná složitost

$$T_{Cannon}(N,p) = O\left(t_s\sqrt{p}\right) + O\left(\frac{N}{\sqrt{p}}t_m\right) + O\left(\frac{\sqrt{N^3}}{p}\right)$$

Foxův algoritmus – Broadcast-Multiply-Roll:

- Nejprve se submatice pošle všem procesorům v rámci řádku i (OAB: MPI_Bcast)
- Následně se provede lokální násobení přijatých submatic
- o Na závěr se provede rotace ve sloupci k o jednu pozici nahoru (cyklický posun)
- o Časová složitost, škálovatelnost podobná jako u Cannonova algoritmu

Paralelní mocninná metoda

Mocninná metoda: hledá iterativně největší vlastní číslo, vhodné pro velmi řídkou matici, využití: Google PageRank

Algoritmus:

- Vytvořím nenulový počáteční vektor (typicky x = (1,1,1,1,...))
- o Vynásobím A vektorem x, vznikne vektor y = Ax (nějaký algoritmus pro řídkou MVM)
- o Spočteme normu α vektoru y, nahradíme x normalizovaným y = x/ α (paralelní redukce)
- o Vyhodnotíme kritérium konvergence, pokud není splněno, pokračujeme dál

Implementace v MPI:

- o Předpokládáme řídkou matici, předem neurčená struktura
- Procesory provádí lokální násobení, dílčí výsledky redukují (MPI_Allreduce)

Náhodné mapování matice:

- o Každý procesor potřebuje celý vektor x a vytvoří libovolný prvek vektoru y
- o Po provedení algoritmu má každý proces celý vektor y a α
- o Složitost: O(n) paměť, kde $n = \sqrt{N}$

Řádkové mapování matice:

- o Každý procesor potřebuje celý vektor x, ale vektor y si již můžou rovnoměrně rozdělit
- o Matice rozdělena do p horizontálních pásů velikosti n/p
- o Získání vektoru x, složení vektoru y: **MPI_Allgather**
- o Rychlejší (nepotřebujeme kopírovat y do x),
- o Složitost: x O(n), y O(n/p)

Šachovnicové mapování matice:

- o Procesy tvoří virtuální 2D mřížku M(n,n)
- Každý procesor potřebuje jen část vektoru x (menší paměťové nároky)
- o Po lokálních MVM mají procesy příspěvek k části y a provedeme redukci
- Nejpřirozenější mapování na diagonální procesy
- Složitost: $x O\left(\frac{n}{p}\right)$, $y O\left(\frac{n}{p}\right)$

Šachovnicové mapování – rozdělení komunikátorů:

- Potřebujeme provést paralelní redukci jen ve virtuálních řádcích matice procesů
- o MPI: MPI_Comm_split rozdělí komunikátor podle pole "barev" (řádková souřadnice)
- o Redukci tak můžeme provádět ve všech řádcích nezávisle na sobě
- MPI_Comm_split(MPI_Comm, int color, int new_rank, MPI_Comm * newComm)
- Potřebujeme ale taky komunikátor pro diagonální procesy, nejefektivnější časově i paměťově

19. Přímé ortogonální a hyperkubické propojovací sítě paralelních počítačů (definice, vlastnosti, vnořování).

NI-PDP

Základní definice a vlastnosti

- **Přímé propojovací sítě** lze je popsat souvislými grafy
 - o Vrchol = výpočetní uzel = procesory, lokální paměť a směrovač
 - o Hrana = komunikační linka
 - o Nepřímé sítě tvořeny přepínači
 - o Přímé sítě vlastně propojují jednotlivé směrovače mezi sebou

- Vlastnosti

- O Stupeň uzlu $deg_G(u)$ = počet sousedů uzlu u
- o **Bisekční šířka** $bw_e(G)$ = velikost nejmenšího hranového řezu grafu na 2 poloviny
- o **Uzlová symetrie** = pro libovolnou dvojici uzlů u a v existuje automorfismus, který zobrazí u na v (obrázek)
- automorfismus, který zobrazí u na v (obrázek)
 Souvislost = minimální počet uzlů/hran, jejichž odebrání způsobí rozpojení grafu G

- o **Bipartita** = existuje obarvení vrcholu dvěma barvami tak, že koncové vrcholy každé hrany mají odlišnou barvu
- Kartézský součin k. s. množin vrcholů, a hrana vede tehdy, pokud vedla původně v jednom nebo druhém grafu

- o **Regularita** stupeň každého uzlu je roven konstantě k
- Požadavky na propojovací sítě
 - o Malý a konstantní stupeň uzlu technologický požadavek
 - Řídké grafy = stupeň je omezený konstantou, počet hran $\Theta(N)$
 - Hustá topologie = stupně uzlů jsou rostoucí funkcí
 - Konstantní stupeň nutnou podmínkou pro uzlovou symetrii
 - o Malý průměr a malá průměrná vzdálenost pro snížení režie komunikačních operací
 - V protikladu s požadavkem na nízký stupeň uzlů
 - Průměr N-uzlové sítě s konstantním stupněm je $\Omega(\log N)$
 - o **Symetrie** zjednodušený návrh algoritmů
 - Škálovatelnost
 - Inkrementálně škálovatelná topologie = definovaná pro jakékoli N
 - Částečně škálovatelná topologie = není definovaná pro jakékoliv N
 - Efektivně škálovatelná topologie = pro vytvoření (N + k)-uzlové instance z N-uzlové instance je třeba odebrat pouze O(k) hran a pak O(k) hran přidat
 - Chceme-li zmenšit nebo zvětšit danou síť o k uzlů, musíme v původní síti přepojit pouze O(k) uzlů
 - 2D mřížka: částečně škálovatelná, ne efektivně:
 - O Obrázek zvětšení uzlu o 1, ale přepojení 4 hran
 - O Hierarchická rekurzivita graf má h. r. topologii, jestliže obsahuje menší instance sebe sama
 - Množina stejně definovaných grafů různých dimenzí, kde nižší dimenze jsou podgrafy vyšších dimenzí
 - Obvykle částečně škálovatelné
 - Dobrá pro realizaci obvodů a induktivní návrhy a mapování paralelních rekurzivních algo.
 - Vysoká souvislost a odolnost vůči poruchám kvůli spolehlivosti a robustnosti sítí
 - V případě výpadku uzlů nebo spojů by měla síť nabídnout náhradní krátké spoje
 - Chceme malý chybový průměr a malou chybovou průměrnou vzdálenost
 - o Velká bisekční šířka pro algoritmy typu binární rozděl a panuj
 - Rozdělení problému na dva stejně velké podproblémy
 - Rekurzivní řešení v obou polovinách paralelně, možná výměna mezivýsledků

- Sloučení výsledků z obou polovin do konečného výsledku
- o Podpora pro směrování a kolektivní komunikační operace chceme minimální směrování
- Vnořitelnost jiných a do jiných topologií
 - Vnoření = má-li komunikační graf par. algoritmu jinou strukturu, odlišnou od topologie propojovací sítě, je třeba efektivně zobrazit graf procesů do topologie sítě
- o Existence hamiltonovských kružnic či cest a existence 2-barvení
 - Hamiltonovská kružnice = vnoření *N*-uzlové kružnice speciální případ vnořitelnosti
 - Kritická vlastnost zjednodušení návrhu algoritmů, kde jsou procesory označeny čísly $1 \dots p$ a komunikace je posun dat ve směru indexování, např. třídící algoritmy

Striktně ortogonální (mřížkové) topologie

- n-rozměrná binární hyperkrychle Q_n

$V(Q_n) = \mathcal{B}^n$	$ V(Q_n) = 2^n$
$E(Q_n) = \{\langle x, \mathrm{neg}_i(x) \rangle; x \in V(Q_n), 0 \leq i < n\}$	$ E(Q_n) = n2^{n-1}$
$\phi(Q_n) = n$	$\deg(Q_n) = \{n\}$
$bw_{\mathbf{e}}(Q_n) = 2^{n-1}$	

- Uzly = binární řetězce
 - Sousední uzly = liší se právě v 1 bitu \rightarrow každý uzel má n sousedů a hyperkrychle je **regulární**
- o Stupeň není konstantní, roste logaritmicky hustá topologie
- o Vzdálenost dvou uzlů je Hammingova vzdálenost řetězců (počet odlišných stejnolehlých bitů)
- o Počet uzlů vzdálenosti i od libovolného uzlu vždy $\binom{n}{i}$ \rightarrow průměrná vzdálenost n/2
- Uzlově i hranově symetrická
- o **Částečná škálovatelnost** velikost pouze mocniny 2
- o **Efektivně škálovatelná** 2 podkrychle Q_{n-1} apod. dobré pro řešení problému přidělování procesorů v hyperkubickém počítači
- Optimální souvislost (rovna stupni uzlu n), největší možná bisekční šířka bw_{ρ}
- o Vyvážený bipartitní graf, hamiltonovský graf
- o Základní minimální směrovací algoritmus e-cube
 - Cesta (u, v): porovnají se bitové řetězce a dimenze hran, ze kterých se cesta skládá, odpovídají zprava doleva souřadnicím, ve kterých se u a v liší
- o Simuluje efektivně téměř jakoukoli jinou známou topologií většina topologií je do ní **optimálně vnořitelná**
- Její hamiltonovské kružnice = Grayovy kódy
- o Testovací architektura pro paralelizaci problémů
- n-rozměrná mřížka o velikosti stran $z_1 \dots z_n$, $M(z_1 \dots z_n)$

$V(M()) = \{(a_1, a_2,, a_n, a_n, a_n, a_n, a_n, a_n, a_n, a_n$	$V(M()) = \{(a_1, a_2,, a_n); 0 \le a_i \le z_i - 1 \forall i \in \{1,, n\}\}$			
$E(M(\ldots)) = \{\langle (\ldots, a_i, \ldots), ($	$\langle \ldots, a_i+1, \ldots angle angle ; 0 \leq a_i \leq z_i-2 \}$			
$ V(M(\ldots)) = \prod_{i=1}^n z_i$	$ E(M(\ldots)) = \sum_{i=1}^{n} (z_i - 1) \prod_{\substack{j=1 \ j \neq i}}^{n} z_j$			
$\phi(M()) = \sum_{i=1}^{n} (z_i - 1) = \Omega(\sqrt[n]{V(M())})$ $\deg(M()) = \{n,, n+j\}, j = \{z_i; z_i > 2\} $				
				$\mathrm{bw}_{\mathrm{e}}(M(\ldots)) = \begin{cases} (\prod_{i=1}^{n} z_i) / \\ \Omega((\prod_{i=1}^{n} z_i)) \end{cases}$

- o Sestavena kartézským součinem mřížek nižších dimenzí:
 - $M(z_1 ... z_n) = M(z_1 ... z_{n-1}) \times M(z_n) = M(z_1) \times ... \times M(z_n)$
- o 1-D mřížka je vlastně řada procesorů
- Uzly mřížky jsou značeny n-znakovými k-árními řetězci
- o Dva uzly jsou sousední, právě když se liší v jedné souřadnici o jedničku
- o Není regulární ani uzlově symetrická stupeň uzlu závisí na jeho poloze
- o **Nejsou hranově symetrické** (kvůli tomu tak debilní vzorce)

- o 2-D a 3-D mřížky topologie s **velkým průměrem**
- \circ **Částečně škálovatelná** (líp než hyperkrychle) N součin n čísel větších než 1
- o Je hierarchicky rekurzivní obsahuje podmřížky stejné dimenze, ale menších délek stran
- Má optimální souvislost počet disjunktních cest mezi 2 uzly je roven minimu ze stupňů koncových uzlů
- o **Bipartitní,** ne nutně vyvážená, vždy má hamiltonovské cesty a jestliže má aspoň 1 strana sudou délku, má i hamiltonovskou kružnici
- o Algoritmus pro minimální směrování dimenzionálně uspořádané směrování
 - Při konstrukci cesty mezi lib. 2 uzly se hrany smějí používat pouze v jediném pořadí dimenzí
- n-rozměrný toroid o velikosti stran $z_1 \dots z_n$, $T(z_1 \dots z_n)$

$V(T(\ldots)) = V(M(\ldots))$	$(T(\ldots)) = V(M(\ldots))$		
$E(T(\ldots)) = \{\langle (\ldots, a_i, \ldots), (\ldots, \alpha), (\ldots, $	$= \{ \langle (\ldots, a_i, \ldots), (\ldots, a_i \oplus_{z_i} 1, \ldots) \rangle; 0 \le a_i < z_i \}$		
$ E(T(\ldots)) = n \times \prod_{i=1}^{n} z_i$	$\phi(T(\ldots)) = \sum_{i=1}^n \lfloor z_i/2 \rfloor$		
$\deg(T(\ldots)) = \{2n\}$	$\mathrm{bw}_{\mathrm{e}}(T(\ldots)) = 2\mathrm{bw}_{\mathrm{e}}(M(\ldots))$		

- o "zabalená mřížka" od mřížky se liší jen tak, že každá lineární řada je uzavřena do kružnice přidáním hrany (=obalující hrana), která spojí první a poslední uzel
 - Jednorozměrný toroid je kružnice = prstenec
- Dva uzly jsou sousední, právě když se liší v jedné souřadnici o jedničku modulo velikost strany v dané dimenzi
 - Díky tomu je toroid regulární (stupeň 2n) a uzlově symetrický
 - Automorfismus = přeložení
- o Průměr poloviční oproti stejně velké mřížce
- O Částečně škálovatelné a hierarchicky rekurzivní, dekompozice na kartézský součin stejně jako u mřížek: $M(z_1 \dots z_n) = M(z_1) \times \dots \times M(z_n)$
- o Algoritmus pro minimální směrování dimenzionálně uspořádané směrování
 - Kvůli kružnicím může dojít k zablokování
- o Bipartitní, pokud jsou všechny délky stran sudé (kvůli kružnicím), hamiltonovský
- o Komerčně populární pro masové paralelní počítače

Hyperkubické topologie

- Nedostatek hyperkrychle logaritmicky rostoucí stupeň uzlu
 - o Proto topologie odvozené z hyperkrychle, které mají její dobré vlastnosti, ale konstantní stupeň
- O motýlcích a spol. obecně platí:
 - o Vzniknou rozvinutím každého uzlu hyperkrychle na více uzlů
 - o Kvůli tomu zhoršená částečná škálovatelnost N hodnoty $n2^n$ apod.
 - o Optimální z hlediska průměru dosahují logaritmický průměr při konstantním stupni uzlů
 - o Dobrá bisekční šířka $\Omega(N/\log N)$
- Zabalený motýlek dimenze n, wBF_n

$V(w\!B\!F_n) = \{(i,x); 0 \le i < n \land x \in \mathcal{B}^n\}$		
$E(\mathit{wBF}_n) = \{ \langle (i,x), (i \oplus_n 1, x) \rangle, \langle (i,x), (i \oplus_n 1, \mathrm{neg}_i(x)) \rangle \mid (i,x) \in V(\mathit{wBF}_n) \}$		
$ V(wBF_n) = n2^n$	$ E(wBF_n) = n2^{n+1}$	
$\phi(w\!B\!F_n)=n+\left\lfloor\frac{n}{2}\right\rfloor$	$\deg(w\!E\!F_n)=\{4\}$	
$bw_e(wBF_n) = 2^n$		

- o Vznikne rozvinutím Q_n do K(n) kružnice n nových uzlů
- o Vrcholy kružnic jsou indexovány 0, ..., n-1
- o Dva druhy hran **hyperkubické a kružnicové** (proto není hranově symetrický)
 - Kružnicová (motýlková) hrana v rámci jedné kružnice

- o Vrchol i v cyklu x je spojen hyperkubickou hranou s vrcholem $i \oplus_n 1$ v cyklu $neg_i(x)$
 - Hyperkubické hrany spojují sousední uzly vlevo a vpravo každý uzel má dva sousedy ve své kružnici a dva sousedy v sousedních kružnicích
 - Takhle vznikají křížové hrany, které spolu s kružnicovými hranami tvoří základní motýlky
- Regulární, uzlově symetrický
- o Není hierarchicky rekurzivní K(n) neobsahuje podkružnice
- o Kvůli kružnicím je vyvážený bipartitní, pokud je n sudé
- o Vždy existují hamiltonovské kružnice
- o Optimální průměr, řídký graf
- Obyčejný motýlek dimenze n, oBF_n

- o Obrázek: rozřezání wBF3 na wBF3
- \circ Vznikne ze zabaleného motýlka, tak, že rozřízneme každou kružnici v wBF_n v uzlu na pozici 0 tak, že tento uzel se rozdvojí a vzniklé poloviny se podělí o hyperkubické hrany
- o Místo n-uzlových kružnic vzniknou (n + 1)-uzlové **lineární řady**
- o oBF_n se má k wBF_n podobně jako mřížka k toroidu
- o Není symetrický, není regulární
- o Dva druhy hran **přímé a křížové** (hyperkubické)
- o Uzly oBF_n organizovány do **řad** $0 \le x \le 2^n 1$ a do **sloupců** (stupňů) $0 \le i \le n$
 - Hrany spojující sloupec i se sloupcem i+1 = hrany úrovně i
- o Hierarchicky rekurzivní oBF_n obsahuje dva podgrafy oBF_{n-1}
 - Odebrání uzlů ve sloupci 0 nebo ve sloupci n
- o Bipartitní (střídání barvy po sloupcích), není hamiltonovský
- o Směrování pouze jedna nejkratší cesta, e-cube směrování
- o Využití minimální permutační síť levná náhrada křížového přepínače

Vnořovací problém

- Statické vnořování máme graf procesů a graf fyzického propojení výpočetních uzlů, chceme namapovat procesy a uzly tak, aby mohly efektivně komunikovat a nevytěžovat síť
 - Simulační mechanismus, který dovolí, aby se počítač s topologií 1choval jako počítač s topologií 2 a nebyly potřeba algoritmické změny
 - Uvažujeme **zdrojový** graf G s **vrcholy** V(G) a **hranami** E(G) a **cílovou síť** H s **uzly** V(H) a **linkami** E(H). Pak **(statické) vnoření** G do H je dvojice zobrazení (φ, χ) , kde:

$$\varphi: V(G) \to V(H)$$

 $\chi: E(G) \to \mathcal{P}(H)$

- $\mathcal{P}(H)$... množina všech **cest** v síti H
- Uspořádaná dvojice zobrazení procesní uzly se mapují na výpočetní uzly, hrany mezi procesy se však musí namapovat na cesty ve výpočetních uzlech
- Měřítka kvality vnoření
 - Maximální zatížení cílového uzlu maximální počet zdrojových vrcholů namapovaných na jeden cílový uzel
 - Maximální počet procesů, který bude přidělen 1 procesoru
 - Chceme stejnoměrné zatížení (liší se max o 1)
 - Expanze vnoření poměr velikosti cílové sítě (= počet výpočetních uzlů) a velikosti zdrojového grafu (=počet procesů)
 - Větší expanze implikuje dražší simulace

- Chceme blízkou 1 při jedničkovém zatížení a snižujeme úměrným rovnoměrným zvětšením zatížení uzlů
- Maximální dilatace zdrojových hran v cílové síti maximální délka obrazů zdrojových hran v cílové síti
 - Po jak dlouhých cestách budou muset v cílovém počítači putovat zprávy posílané mezi procesy, které jsou v zdrojovém grafu sousední
 - Sledujeme, pokud máme přepínání citlivé na vzdálenosti, jinak průměrná dilatace
- Maximální zahlcení cílové hrany
 - Linkové zahlcení maximální počet obrazů zdrojových hran procházejících skrz cílové linky
 - **Uzlové zahlcení** maximální počet obrazů zdrojových hran procházejících skrz cílové uzly
 - Spíš sledujeme průměrné zahlcení
- \circ Kvaziizometrická topologie sítě G a H jsou kvaziizometrické, pokud G může být vnořen do H a naopak s konstantními měřítky vnoření
 - *G* a *H* jsou výpočetně ekvivalentní, pokud jedna může může simulovat druhou s konstantním zpomalením (implikováno kvaziizometrií)
- Vnoření hyperkrychle do nízkorozměrných mřížek

- Jde vlastně o mapování logické funkce
 - Svobodovy a Karnaughovy mapy Svoboda lexikograficky, Karnaugh Grayův kód
- Máme hyperkrychlický algoritmus a chceme, aby běžel na 2D mřížce
- Hyperkrychle i mřížka jsou rekurzivní
- Využití Mortonovy křivky jednotlivé hyperkubické souřadnice se mapují rekurzivně střídavě ve směrech x a y:

$$\varphi(b_{2k-1}b_{2k-2}\dots b_0) = [b_{2k-1}b_{2k-3}\dots b_1, b_{2k-2}b_{2k-4}\dots b_0]$$

- Alternativně lexikografické mapování po řádcích/sloupcích
 - o Po řádcích horní půlka bitů do 1 dimente, dolní do druhé, sloupce analogicky jako transpozice
- Tímhle dostaneme **4 podkrychle**, které se mapují do 2D mřížky rekurzivně v tzv. **Z-fraktálu**
- Hyperkrychli rozdělíme na 4 podkrychle, mřížku na 4 kvadranty
- Uděláme vnoření podkrychlí do kvadrantů
 - Děláme rekurzivně do doby, než se dojde na mřížky 2x2
 - Poté lexikograficky uděláme cestu Z tvar, který se skládá z malých Z fraktální křivka

20. Paralelní algoritmy pro redukci, prefixový součet a segmentový prefixový součet na PRAM, v ortogonálních, hyperkubických a obecných topologiích, aplikace.

NI-PDP

Paralelní redukce

- Dáno **vstupní pole** $X = \{x_0 \dots x_{n-1}\}$ prvků množiny D a **binární operace** \bigoplus na D
- Cíl = vypočítat hodnotu $S = x_0 \oplus ... \oplus x_{n-1}$
- Postačující podmínka pro paralelizovatelnost asociativnost operace \oplus
- $SL(n) = \Omega(n), SU(n) = O(n)$
- Optimální triviální algoritmus:

Algorithm Reduction(in:
$$X[0, ..., n-1]$$
; out: C ;)
$$\{ i := 0; sum := X[i];$$
while $(i < n-1)$ do $\{ i := i+1; sum := sum \oplus X[i] \};$
 $C := sum \}$

- Paralelní výpočet operace 🕀 se musí aplikovat na co nejvíc nezávislých párů vstupních hodnot
- Pokud je ⊕ na D asociativní bin. Operace, potom je paralelní redukce pole X o velikosti n hodnot z D na p procesorech proveditelné na EREW PRAM, přímých a nepřímých stromech, hyperkrychlích a hyperkubických topologiích, WH mřížkách a toroidech s následujícími vlastnostmi:

$T(n,p) = O(n/p + \log p)$	$C(n,p) = O(n + p \log p)$	$E(n,p) = \Theta(n/(n+p\log p))$
$\psi_1(p) = p \log p$	$\psi_2(n) = n/\log n$	$\psi_3(n) = n/\log n$

- Paralelní redukce na (a) EREW PRAM, (b) hyperkrychli, (c)1-D WH mřížce, (d) nepřímém stromu

- o Bruh je to vlastně součet vrcholů no já se poseru
- Redukce v MPI MPI_Reduce
- **Hyperkrychle** předávání po binomiální kostře
- **Binární strom** nebo motýlek z listů redukce
- Wormhole (WH) 1D mřížka simulace hyperkrychle
- **PRAM** redukce každého 2ⁿ-tého prvku

Prefixový součet

- **Prefixový součet** zobecnění redukce taky pole X z množiny D a asociativní binární operace \bigoplus nad D (říkáme jí součet, ale nemusí to být součet, může to být libovolná asociativní operace)
- Výstup není jedna hodnota (redukce X), ale pole Y stejně velké jako původní pole
 - o y_i je rovno **redukci počátečních** *i* **hodnot** z X
 - o Cíl = vypočítat **pole prefixů** pole $X: Y = y_0, \dots, y_{n-1}, y_i = x_0 \oplus \dots \oplus x_i$

Paralelní prefixový součet (PPS) na EREW PRAM

- o $O(\log(n))$ jako paralelní redukce
- o V každém n kroku seřazeno 2^n prvků
- o Pro tvorbu n-tého stavu se přičítají všechny prvky s posunem o 2^n prvků
- PPS na **nepřímém stomu/motýlku**
 - o Pořadí indexace vstupu dáno pořadím listů při průchodu do hloubky
 - o Vnitřní uzly nevlastní vstupní hodnoty, ale realizují výpočet
 - o PPS n vstupních hodnot v listech binárního stromu T výšky h(T) lze vypočítat v 2h(T) krocích. Je-li T úplný, PPS potřebuje $O(\log n)$ kroků
 - Výpočet má podobu vzestupné vlny, kdy každý vnitřní uzel čeká na hodnoty z obou podstromů, které sečte a pošle svému rodiči, současně ale předá hodnotu z levého podstromu do pravého
 - Vzestupná vlna iniciuje menší sestupné vlny, až dorazí do kořene, tam iniciuje sestupnou vlnu v pravém podstromu
 - o Sestupující hodnoty se pouze kopírují do všech listů podstromu, kde jsou přidány k mezivýsledku

Celkový počet kroků = nejvýše dvojnásobek výšky stromu

- PPS na **přímém stromu** modifikace předchozího algoritmu pro p. strom s omezeným větvením
 - Každý uzel stromu vlastní počáteční hodnotu
 - o Strom není pole, takže musí proběhnout lineární indexace
 - Číslování postorder průchod stromu od listů v podstromu zleva
 - o Vnitřní uzel při vzestupné vlně čeká na hodnoty ze všech podstromů
 - o K nim přidá svoji hodnotu a výsledek pošle rodiči
 - o Hodnotu z daného podstromu pošle do všech podstromů vpravo
 - o Při sestupné vlně si hodnotu shora započte pro sebe a předá podstromům
 - o PPS v 2h(T) krocích

- PPS na hyperkrychli
 - o Rozšíření vysílání všichni-všem v SF modelu, trvá r paralelních kroků pro \mathcal{Q}_r
 - o Indexace zase potřeba linearizace buď lexikografická, nebo podle Grayova kódu
 - \sim Každý procesor P_i má f 2 pomocné registry zelenf y a f zlutf y
 - Ve žlutém procesy akumulují pouze to, co je zajímá z hlediska prefixového součtu (dáno indexem)
 - V zeleném akumulují vše včetně hodnot, které je nezajímají, ale které mají jako prostředníci předat procesorům, které je potřebují
 - PPS na hyperkrychli je normální hyperkubický algoritmus lze efektivně implementovat na jakékoliv hyperkubické či posuvné síti

- PPS na ortogonální mřížce
 - o SF
- Mapování vstupního pole na mřížku podle řádku, sloupce, zig-zag, diagonálně, náhodně
- Po řádku 3 fáze:

- Fáze 1: horizontální PPS s jednotlivými řádky uzly nejvíc vpravo drží součet řádku
- Fáze 2: vertikální PPS se sloupcem nejvíc vpravo takže uzly nejvíc vpravo budou mít správné globální hodnoty prefixového součtu
- Fáze 3: uzly nejvíc vpraco pošlou horizontálně globální hodnoty prefixového součtu do jejich řádků tak, aby všechny uzly mohly globalizovat svůj výsledek
- o WH
 - Simulace na 1-D WH mřížce je v podstatě PPS na nepřímém úplném binárním stromu, který se zploští do lineárního pole
 - Oblouky zleva doprava odpovídají vzestupným vlnám, oblouky zprava doleva sestupným vlnám

- Aplikace prefixového součtu

- o **Zhušťovací problém** (packing problem)
 - Podmnožina z N procesorů připojených ke vstupům nepřímé vícestupňové sítě (nD motýlek) má paket, který je potřeba dopravit na 2.

- výstupní stranu sítě tak, aby i-tý paket odshora skončil na i-tém výstupním vodiči shora
- Máme množinu procesů, každý má příznak 0 nebo 1 (1 = patří do distribuované množiny)
- Chci určit pořadí procesů označených 1 (např. dle pořadí se rozhoduje místo pro zápis)

o Paralelní RadixSort – řazení v lexikografickém pořadí

- Nejdřív řadí podle jednotek, desítek apod.
- Zhušťování dle každého lexikografického symbolu a přehazování se zachováním pořadí

- Aby operace netrvala O(n)
- 2-bitová čísla paralelně sčítáním sečteme jako 0+0=s, 0+1=p, 1+1=g
- g = určitě carry, s = ne, p = možná carry řetěžec spg doplníme s zprava a vyměníme p za g z g se stávají 1, z s 0, posuneme o jedno místo $\ll 2$ máme C
- Sčítámě X, Y, C

1 1 0 0 0 1 0 0

Segmentový prefixový součet – SPPS

- Zobecnění PPS pro případ, kdy je vstupní pole rozděleno do různě velkých segmentů
- o Cíl = vypočítat všechny **prefixové součty uvnitř segmentů izolovaně**, rovnoměné zatížení procesorů
- o SPPS se provádí jako globální PPS nad celým polem, ale s **modifikovanou operací** ⊕, jejíž tabulka se odvodí z tabulky ⊕:

 $\begin{array}{c|c|c|c}
\hline{\oplus} & b & |b| \\
\hline
a & a \oplus b & |b| \\
\hline
|a & (a \oplus b) & |b| \\
\end{array}$

- Vertikální čáry = dané číslo je na levé hranici nějakého segmentu, nebo vlevo od něj už jsou pouze levé hraniční prvky
- Operace je stejná jako ta původní, ale navíc si všímá, zda její operandy jsou levými hraničními prvky segmentů
- Pokud ano, žádná hodnota zleva se nesmí za tuto hranici dostat
- Aplikace ⊕ současně značku levé hranice posouvá doprava
- Je-li ⊕ asociativní, pak je ⊕ taky asociativní

- Aplikace segmentového prefixového součtu paralelní segmentový QuickSort
 - o Rozdělení pole podle procesů (rovnoměrně)
 - o Vstupní posloupnost A je rovnoměrně rozdělena mezi p < n procesorů
 - o V 1 iteraci hlavní smyčky je každý segment S rozdělen na 3 podsegmenty $S_{\leq}, S_{=}, S_{>}$
 - o Pivot pro daný segment je jeho první prvek zleva