1 Modélisation des filtres passe-haut et passe-bas

Dans cette section, nous allons expliquer la méthode que nous avons utiliseé pour trouver une expression analytique de la tension de sortie dans un filtre passe-bas et dans un filtre passe-haut.

Nous avons en réalité utilisé deux méthodes différentes qui, heureusement, aboutissent à la même solution. La première méthode utilise ce que nous avons appris au premier quadrimestre concernant les équations différentielles. Cette méthode est plus longue et plus compliquée que la deuxième, c'est pourquoi nous ne la décrirons pas ici. La deuxième méthode utilise ce que nous avons appris au deuxième quadrimestre concernant les équations différentielles et les complexes.

1.1 Le filtre passe-bas

Le filtre passe-bas dans notre haut-parleur a pour but de laisser passer les hautes-fréquences et d'atténuer les hautes fréquences.

Soit V_R la tension à travers la résistance R, V_C la tension à travers le condensateur C, V_{in} la tension d'entrée et V_{out} la tension de sortie du filtre.

FIGURE 1 – Schéma électrique d'un filtre passe-bas

Sur le circuit ci-dessus (Figure 1), on peut utiliser la loi des tensions de Kirchhoff :

$$V_{in} = V_R + V_{out}$$

On note V l'amplitude de la tension d'entrée sinusoïdale, i(t) est le courant en fonction du temps :

$$V \cdot \cos(\omega t) = R \cdot i(t) + V_C$$

Or, le courant i(t) à travers un condensateur est donné par $C\frac{dV_C}{dt}$, l'équation devient alors une équation différentielle en la fonction inconnue $V_C(t)$:

$$V \cdot \cos(\omega t) = RC \frac{dV_C}{dt} + V_C$$

On peut réecrire cette équation de la manière suivante, où $y = V_C(t)$:

$$RCy' + y = V \cdot \cos(\omega t)$$

Cette équation va être la base de la méthode qui suit. On va également utiliser la condition initiale suivante :

$$y(0) = 0$$

1.1.1 Résolution de l'équation différentielle

On sait que $\cos(\omega t)$ est égale à la partie réelle de l'exponentielle complexe $e^{\omega it}$. On réecrit alors l'équation différentielle de la manière suivante :

$$RCy' + y = V \cdot e^{\omega it}$$

Comme pour toute équation différentielle linéaire non-homogène, nous allons travailler en deux étapes :

Recherche de la solution homogène Le polynôme caractéristique de l'équation homogène est :

$$RC \cdot x + 1 = 0$$

On a alors $x = \frac{-1}{RC}$ comme racine, et on trouve donc comme solution homogène :

$$y_h(t) = A \cdot e^{\frac{-t}{RC}}$$

Où A est une constante appartenant à l'ensemble des réels.

Recherche de la solution particulière La solution particulière qu'on recherche est de la forme :

$$y_p(t) = \alpha \cdot e^{\omega it}$$

Il nous reste donc à déterminer la constante complexe α . Pour ce faire, nous injectons dans l'équation de départ $y_p(t)$ et sa dérivée première. On trouve alors :

$$\alpha = \frac{V(1 - RC\omega i)}{1 + R^2C^2\omega^2}$$

La solution particulière est donc :

$$y_p(t) = \frac{V(1 - RC\omega i)}{1 + R^2C^2\omega^2} \cdot e^{\omega it}$$

Solution complète La solution finale y(t) est égale à $y_h(t) + y_p(t)$:

$$y(t) = A \cdot e^{\frac{-t}{RC}} + \frac{V(1 - RC\omega i)}{1 + R^2C^2\omega^2} \cdot e^{\omega it}$$

En retransformant ensuite l'exponentielle complexe en sa forme trigonométrique et en ne gardant que la partie réelle, on trouve :

$$y(t) = V_C(t) = \frac{V(\cos(\omega t) + RC\omega\sin(\omega t))}{1 + \omega^2 R^2 C^2} + A \cdot e^{\frac{-t}{RC}}$$

Elimination de la constante Il ne nous reste plus qu'à éliminer la constante A en utilisant la condition initiale. On trouve enfin :

$$A = -\frac{V}{1 + \omega^2 R^2 C^2}$$

Conclusion La tension de sortie en fonction du temps est donc donnée par :

$$V_{out} = \frac{V}{1 + \omega^2 R^2 C^2} \cdot (\cos(\omega t) + RC\omega \sin(\omega t) - e^{\frac{-t}{RC}})$$

On peut ensuite réecrire cette formule de manière à faire apparaître le déphasage de la tension de sortie par rapport à la tension d'entrée. En transformant $y_p(t)$ en utilisant la notation exponentielle $|z|e^{\phi i}$ d'un couple de la forme a+bi et en utilisant ensuite la notation trigonométrique d'une exponentielle complexe, on trouve, après quelques simplifications et mises en évidence :

$$V_{out} = \frac{V}{\sqrt{1 + R^2 \omega^2 C^2}} \left(-\frac{e^{\frac{-t}{RC}}}{\sqrt{1 + R^2 \omega^2 C^2}} + \cos(\arctan(-RC\omega) + \omega t) \right)$$

On remarque donc que le déphasage entre V_{out} et V_{in} est $-\arctan(RC\omega) = -\arctan(2\pi fRC)$. Ce déphasage augmente donc linéairement avec ω et est dû au temps que met le condensateur à se charger.

1.1.2 Vérification des résultats

Une première vérification que l'on peut faire est de vérifier que V_{out} tend vers 0 lorsque ω tend vers l'infini. C'est bien le cas ici puisqu'on a ω^2 au dénominateur.

On peut ensuite regarder les graphes de V_{out} , V_{in} (Figure 2) et V_{out}/V_{in} (Figure 3).

FIGURE 2 – Graphe de V_{out} (en noir) et V_{in} (en bleu) pour les valeurs suivantes : $V_{max}=7.5~{\rm V},~C=0.00001~{\rm F},~R=1000~\Omega$ et $f=63.66~{\rm Hz}$

FIGURE 3 – Graphe de $V_{out}/V_{in}=\frac{1}{\sqrt{1+(RC\omega)^2}}$ pour les valeurs suivantes : $R=100~\Omega$ et $C=0.00001~\rm F.$

1.2 Le filtre passe-haut

Le filtre passe-haut a le rôle inverse du filtre passe-bas : il atténue les basses fréquences et laisse passer les hautes fréquences.

Soit V_R la tension à travers la résistance R, V_C la tension à travers le condensateur C, V_{in} la tension d'entrée et V_{out} la tension de sortie du filtre.

Sur la Figure 4, la loi des tensions de Kirchhoff donne la même équation que pour le filtre passe-bas :

FIGURE 4 – Schéma électrique d'un filtre passe-haut.

$$V_{in} = V_R + V_C$$

Cette fois, $V_{out}=V_R$. Or on connait déjà V_C que l'on a calculé dans le section précédente. On a alors simplement :

$$V_R = V_{in} - V_C$$

$$V_{out} = \frac{V}{\sqrt{1 + R^2 \omega^2 C^2}} \left(\frac{e^{\frac{-t}{RC}}}{\sqrt{1 + R^2 \omega^2 C^2}} - \cos(\arctan(-RC\omega) + \omega t) + \cos(\omega t) \cdot (\sqrt{1 + R^2 \omega^2 C^2}) \right)$$

Le déphasage reste donc le même que pour le filtre passe-bas.

1.2.1 Vérification des résultats

Pour le filtre passe-haut, on va cette fois vérifier que lorsque ω tend vers 0, on a V_{out} qui tend vers 0 également. Une fois de plus, c'est bien le cas.

On peut ensuite comparer les graphes de V_{out} , V_{in} (Figure 5) et V_{out}/V_{in} (Figure 6).

1.3 Le filtre passe-bande

Le filtre passe-bande sert, comme son nom l'indique, à laisser passer une certaine bande de fréquences. Il est constitué d'un filtre passe-haut suivi d'un passe-bas, ou inversément. Les fréquences de coupure respectives des filtres déterminent l'ampleur de la bande passante. Plus la résistance pour le filtre passe-bas (resp.passe-haut) est petite (resp.grande), plus la bande passante est large, étant donné que la fréquence de coupure est inversément proportionnelle à la résistance. Nous nous intéresserons ici à un signal passant d'abord par un filtre passe-haut, et ensuite par le filtre passe-bas.

Soit $V_{in,1}$ la tension à l'entrée du filtre passe-bas, R_1 la résistance, et C_1 la capacité. Dans la section précédente, nous sommes arrivés au résultat suivant :

$$V_{out,1} = \frac{V_{in,1}}{\sqrt{1 + R_1^2 \omega^2 C_1^2}}$$

FIGURE 5 – Graphe de V_{out} et V_{in} pour les valeurs suivantes : $V_{max}=7.5~{\rm V},$ $C=0.00001~{\rm F},$ $R=1000~\Omega$ et $f=15.91~{\rm Hz}$

FIGURE 6 – Graphe de $V_{out}/V_{in}=1+\frac{1}{\sqrt{1}\sqrt{1+(RC\omega)^2}}$ pour les valeurs suivantes : $R = 100 \Omega$ et C = 0.0001 F.

$$\left(-\mathrm{e}^{\frac{-t}{R_1C_1}}\frac{\sqrt{1+R_1^2\omega^2C_1^2}+\cos(\arctan(-R_1C_1\omega)+\omega t)}\right)$$

 $(-\mathrm{e}^{\frac{-t}{R_1C_1}}\frac{1}{\sqrt{1+R_1^2\omega^2C_1^2}+\cos(\arctan(-R_1C_1\omega)+\omega t))}$ Cette tension de sortie du filtre passe-bas sera notre tension d'entrée pour le filtre passe-haut. Précédemment, dans la section concernant le filtre passe haut, nous trouvions:

$$V_{out,2} = \frac{V_{in,2}}{\sqrt{1 + R_2^2 \omega^2 C_2^2}} \left(\frac{e^{\frac{-t}{R_2 C_2}}}{\sqrt{1 + R_2^2 \omega^2 C_2^2}} - \cos(\arctan(-R_2 C_2 \omega) + \omega t) + V_{in2} \cos(\omega t)\right)$$

où $V_{in,2}$ est la tension à l'entrée du filtre passe-haut, R_2 la résistance, et C_2 la capacité. En remplaçant $V_{in,2}$ par $V_{out,1}$, la tension à la sortie du passe-bas, nous trouverons $V_{out,3}$, la tension de sortie finale. Après simplification, nous obtenons :

$$V_{out3} = \frac{V_{out1} \cdot V_{out2}}{V_{in1}}$$

Figure 7 – Graphe de $V_{out,3}/V_{in,1}$ pour le filtre passe-bande.

1.3.1 Vérification des résultats

Au vu du graphe de $V_{out,3}/V_{in1}$, de l'équation obtenue pour le passe-bande, nous pouvons valider notre résultat, étant donné que l'allure du graphique correspond à nos attentes. En effet, nous pouvons apercevoir très nettement une première fréquence de coupure, et en envisager une autre.