

Microprocessor System & Interfacing

INTRODUCTION

Dennis A. N. Gookyi

CONTENTS

Course Organization and Syllabus

INSTRUCTOR

- Instructor
 - Name: Dennis Agyemanh Nana Gookyi
 - Email: dennisgookyi@gmail.com
 - Phone: 0203493435
 - Research Portals:
 - https://www.researchgate.net/profile/Dennis-Gookyi
 - https://sites.google.com/view/eisedlab

INSTRUCTOR

Instructor

Education

- Ph.D. in Information and Communication Engineering, Hanbat National University,
 South Korea, 2021.
- M.Eng. in Information and Communication Engineering, Hanbat National University, South Korea, 2017.
- B.Sc. in Computer Engineering, Kwame Nkrumah University of Science and Technology, Ghana, 2009.

Employment

- Research Scientist, CSIR-INSTI, Ghana, 2022 Present.
- Researcher, Korea Electronics Technology Institute (KETI), South Korea, 2021 2022.
- Research and Teaching Assistant, SoC Design Lab, Hanbat National University, South Korea, 2014 – 2021.
- RTL Design Engineer, Future Systems, South Korea, 2015 2016.
- Teaching Assistant, Computer Engineering Department, Kwame Nkrumah University of Science and Technology, Ghana, 2013 – 2014.

LEARNING OUTCOMES

- Expected Learning Outcomes
 - Learn how to select development boards and toolchains for application prototyping
 - Program MCU and SoC to read sensor data and control actuators
 - Analyze sensor data and interface peripherals to microprocessors
 - Identify components of a microprocessor
 - Understand the schematic of a RISC-V microprocessor

PREREQUISITES AND GRADING

- Prerequisite
 - Inclination toward computer programming
 - Inclination towards Digital Systems Design
 - Engineering mindset
 - Inquisitive about the physical world
- Grading scheme: Homework (10%), Participation (5%), Project (15%), Exam (70%)
 - Homework: hybrid grading show your work in class
 - Participation: attendance, ask questions, answer questions, be active
 - Project: non-trivial implementation of something useful by applying knowledge including and beyond what's learned in class

LEARNING APPROACH

- Learning approach:
 - □ Type up your own code, and make it work on your device
 - Learn from sample code, assimilate then modify, integrate, or extend
 - Be ready to show your work
 - Read manuals and product specification documents

COURSE OUTLINE

Schedule

Lecture	Topic	
01	Course Overview	PART 1
02	Course Hardware and Software Toolchain Setup	
03	Developmental Boards Overview	
04	Programming Arduino and Nano 33 BLE	PARII
05	Nano 33 BLE Peripherals Interfacing	
06	Nano 33 BLE Sensors Interfacing	
07	Building Blocks of a Microprocessor	
08	Introduction to RISC-V Microprocessor	PART 2
09	RISC-V Microprocessor Single Cycle Design and Implementation	

TEXTBOOKS AND LINKS

PART 1 Textbook and Links

- https://www.adafruit.com/
- https://www.arduino.cc/
- https://www.st.com/en/microcontrollers microprocessors/stm32 32 bit
- Arm-cortex-mcus.html
- https://www.espressif.com/en/products/socs/esp32
- https://www.nordicsemi.com/
- https://www.sparkfun.com/

TEXTBOOKS AND LINKS

PART 2 Textbook and Links

- https://riscv.org
- https://en.wikichip.org/wiki/WikiChip
- https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
- https://www.elsevier.com/__data/assets/pdf_file/0011/297533/RISC-V-Reference-Data.pdf#RISC-V%20Reference%20Data
- https://github.com/dennisgookyi/comp_arch_list/tree/master/books

