Visualization and Histograming with COAST

Ralf Ulrich

Karlsruhe Institute of Technology

CORSIKA School 2010, Ooty, India

Please get: coast-exercises-ooty.tar.gz from: www-ik.fzk.de/~rulrich/coast/releases

Outline

Introduction, Installation

Histograming	page 10
2D-Visualization	page 7
CORSIKA Binary Data Reader	page 14
3D-Visualization	very straightforward, just try
Particle Sampling on Inclined Plane	works, but major revision ongoing
•••	

Requirements

Dependencies

For histograming Animations (optional)

ROOT gifsicle pstopnm/ppmtogif root.cern.ch
packet: gifsicle/ungifsicle

packet: netpbm

CORSIKA

At least version v6.970 (On the USB-stick)

COAST + COAST-Interface

Version: v4r1

Get coast-v4r1.tar.gz and coast-interfaces-v4r1.tar.gz from

- http://www-ik.fzk.de/\$\sim\$rulrich/coast
- USB-sticks

Exercises

Get coast-exercises-ooty.tar.gz

Using COAST Together with CORSIKA

- Get COAST (e.g. from http://www-ik.fzk.de/\$\sim\$rulrich/coast)
- Define environment variable COAST_DIR
 (e.g. export COAST_DIR=path>/COASTinstall)
- Add \${COAST_DIR}/lib to LD_LIBRARY_PATH
- Define environment variable COAST_USER_LIB to select the user interface you want to use in CORSIKA.
 e.g. export COAST_USER_LIB=<path>/coast-interfaces-v4r1/plot2D
- Install COAST with ./configure; make install
- Install CORSIKA with ./coconut and option ROOTRACK
- Run CORSIKA
 - ROOTSYS environment variable must be defined verify with: echo \$ROOTSYS
 - \${ROOTSYS}/lib must be part of LD_LIBRARY_PATH verify with: echo \$LD_LIBRARY_PATH

Preparation / Environment

Unpack source code

- Change to your favorite directory (e.g. \${HOME}/coast-exercise)
- Unpack tar.gz in this directory
 - tar xzvf coast-v4r1.tar.gz
 - tar xzvf coast-interfaces-v4r1.tar.gz
 - tar xzvf corsika-6970.tar.gz
 - tar xzvf coast-exercises-ooty.tar.gz

Define environment (e.g. by: source setEnvironment.[c]sh)

Location of COAST installation

```
export COAST_DIR=<dir>/coast-v4r1-install
setenv COAST_DIR <dir>/coast-v4r1-install
```

Choice of COAST-Interface

```
export COAST_USER_LIB=<dir>/coast-interfaces-v4r1/plot2D setenv COAST_USER_LIB <dir>/coast-interfaces-v4r1/Histogram
```

Add \${COAST_DIR}/lib to your LD_LIBRARY_PATH

export LD_LIBRARY_PATH=\${LD_LIBRARY_PATH}:\${COAST_DIR}/lib
setenv LD_LIBRARY_PATH \${LD_LIBRARY_PATH}:\${COAST_DIR}/lib

Compilation / Installation

COAST + COAST-Interface

- cd <dir>/coast-v4r1
- ./configure; make install

< 3-4 min

CORSIKA

• cd <dir>/corsika-6970

<2-3 min

- ./coconut
- Always accept the [default] offered by coconut (by pressing enter). Just change:
- If you work on a 64-bit system, select the 64-bit option of coconut

Compile in 32 or 64bit mode ? 1 - Force 32bit mode [DEFAULT] 2 - Use compiler default ('-m64' on a 64bit machine)

- Select: SIBYLL and GHEISHA (\rightarrow fast)
- Options: Thinning (5), Slant (9) and ROOTRACK (q)
- Finish selection and start compilation (by pressing several enters)

Visualization (2D)

Customization of 2D Plots

Edit: COAST2DConfig.config

Option	Description	Default
output-extension	everything TCanvas::SaveAs under-	png
	stands (e.g. png, eps, root, jpg,)	
bg-color	RGB code [01]	1.0 1.0 1.0
particle	name pid RGB	γ , e, μ , p, n, π
weight-boost-muons	visually increase weight of muons	1
weight-boost-hadrons	visually increase weight of hadrons	1
auto-range	automatically determine the horizontal	1
	range	
xmin, xmax, ymin, ymax	range of coordinates to display in km	-0.05, 0.05, -0.1, 33
stretch_x	stretch shower in x-direction	50
pxl_per_km	output resolution	50

Try to e.g. increase the weight-boost-muons and weight-boost-hadrons to 50

Run CORSIKA

./corsika6970Linux_SIBYLL_gheisha < plot2D.inp

(The plot2D.inp CORSIKA steering card: proton, 10¹⁴ eV, vertical, strong thinning)

cd <dir>/corsika-6970/run
Output: DAT000001_1.png

<1 min

Experiment with the COAST2DConfig.config and plot2D.inp files and CORSIKA options.

Histograming

Customization of Histograming

Edit: \${COAST_USER_LIB}/TUser.cc

fParticles[3] = ParticleDef("electron", 4);

Function: void TPlotter::InitParticles()

```
(e.g. \gamma:1, e<sup>+</sup>:2, e<sup>-</sup>:3, \mu<sup>+</sup>:5, \mu<sup>-</sup>:6, \pi<sup>0</sup>:7, \pi<sup>+</sup>:8, \pi<sup>-</sup>:9, n:13, p:14, \overline{p}:15)

Function: void TPlotter::InitHistograms(HistDef& hists)

hists["2"] = new TProfile("hAngle", "angle",
6, -2.5, 2.5, "s"); //[lg(r/rm)]

hists["2"]->SetMarkerStyle(21);
hists["2"]->SetXTitle("log_{10}(r/r_{m})");
hists["2"]->SetYTitle("Theta [deg]");
```

((TProfile*)hists["2"])->Fill(log10(r/rm), theta/deg,

weight);

Don't forget: cd \${COAST_USER_LIB}; make

Function: TPlotter::FillHistograms(...)

Run CORSIKA

```
cd <dir>/corsika-v6970/run
./corsika6970Linux_SIBYLL_gheisha < hist.inp
(e.g. the hist.inp CORSIKA steering card: proton, 10<sup>17</sup> eV, 20°)
```

```
Read output

root DAT000001_1.hist.root

TProfile* h = 0;
data_electron->SetBranchAddress("hAngle_electron", &h);
data_electron->GetEntry(10);
h->Draw():
```

Generate animated histograms (OPTIONAL)

\${COAST_USER_LIB}/MakeAnim DATO00001_1.hist.root gifview DAT000001_1.hist_hAngle_electron.gif

Result

electrons muons

- \Rightarrow Powerful tool for studying the internal structure of air showers
- $\Rightarrow \mathsf{Easy} \; \mathsf{to} \; \mathsf{use}/\mathsf{customize}$
- ⇒ Very flexible

CORSIKA File Reading

CORSIKA Reader Skeleton

- See \${COAST_USER_LIB}/CorsikaRead for an example.
- Auto-detect of thinning
- This example generates one ROOT TTree with the particles for each observation level found in the data file.

Try:

```
cd <dir>/coast-interfaces-v4r1/CorsikaRead; make
./CorsikaPlotter <dir>/coast-exercises-ooty/DAT000001
root DAT000001_1.root
data_1->Draw("y:x")
```

```
crsRead::MCorsikaReader cr(fname, 3):
crs::MRunHeader Run;
while (cr.GetRun(Run)) {
  crs::MEventHeader Shower:
  while (cr.GetShower(Shower)) {
    crs::TSubBlock Data;
    while (cr.GetData(Data)) {
      switch (Data.GetBlockType()) {
          case crs::TSubBlock::ePARTDATA:
            const crs::MParticleBlock& ParticleData = Data:
            crs::MParticleBlock::ParticleListConstIterator iEntry;
            for (iEntry = ParticleData.FirstParticle();
                 iEntry != ParticleData.LastParticle();
                 ++iEntry) {
              if (iEntry->IsParticle()) {
                crs::MParticle iPart(*iEntry);
                const int id = iPart.GetParticleID();
                const int level = iPart.GetObservationLevel();
                const double e = iPart.GetKinEnergy();
                const double x = iPart.GetX():
                const double y = iPart.GetY();
```

. . .

The End