Лабораторная работа №4. (часть2) Решение задачи Коши для обыкновенного дифференциального уравнения

Задача. Реализация явного и неявного методов Эйлера в Матлабе. Солверы ode23 и ode23s

Задача Коши в простейшем случае ставится для дифференциального уравнения первого порядка с начальным условием

$$y' = f(x, y)$$
 $x \in [a,b]$ $y(a) = y_a$

Строится равномерная сетка ($x_0=a$, $x_n=b$) на отрезке [a,b]

Методы Рунге-Кутты 1 порядка – методы Эйлера

явный -
$$y_{i+1} = y_i + h_i f(x_i, y_i)$$

неявный - $y_{i+1} = y_i + h_i f(x_{i+1}, y_{i+1})$

БАЗА (0) Явный метод Эйлера для заданного шага (числа разбиений)

- Создать функцию ƒ(x,y) для правой части своего уравнения (по варианту)
- Создать цикл по всем узлам, в котором будет вычисляться массивы узлов и решений явным методом Эйлера
- Построить графики (№1) точного и вычисленного решений для 10 и для 1000 разбиений и соответствующие графики (№2) ошибки на отрезке
- Создав цикл по числу узлов (n=10,11...1000), построить график (№3) фактической ошибки и линию у=h
- Решить свое уравнение солвером ode23 с заданной точностью opt=odeset('AbsTol',0.1,'RelTol',0.1) ode23(f,[a,b],y0,opt)

дополнить графики новыми линиями (шаг вычислять как разность между соседними узлами)

МИНИМУМ (+1) Неявный метод Эйлера для заданного шага (числа разбиений)

- Выписать формулу неявного метода Эйлера для своего уравнения и выразить \mathbf{y}_{i+1} явным образом. Создать функцию $\mathbf{g}(\mathbf{x},\mathbf{y},\mathbf{h})$ для полученной формулы
- Вычислив решение по неявному методу Эйлера с помощью полученной формулы дополнить графики №1 и №2 новыми линиями
- Дополнить график №3 фактической ошибки линией для неявного метода Эйлера
- Используя солвер ode23s (для жестких уравнений), дополнить графики новыми линиями

ДОСТАТОЧНО (+1) Решение «плохих» задач

- Решить данное уравнение явным и неявным методами Эйлера, солверами ode23 и ode23s
- Построить графики точного и вычисленного решений для 10 и для 1000 разбиений и соответствующие графики ошибок на отрезке
- Построить график фактической ошибки (опять с линией y=h)
- а) Неустойчивая задача

$$y' = 5(y - x^2)$$
 $x \in [0, 2]$ $y(0) = 0.08$ $y_{\text{точное}}(x) = x^2 + 0.4x + 0.08$

б) Жесткая задача

$$y' = -100y + 10$$
 $x \in [0,1]$ $y(0) = 1$ $y_{\text{toyHoe}}(x) = \frac{1}{10} + \frac{9}{10}e^{-100x}$

1.
$$y' + y \lg x = \sec x$$
, $x \in [0, 1.5]$, $y = \sin x + \cos x$

2.
$$x^2y' + yx + 1 = 0$$
, $x \in [1,3]$, $xy = 1 - \ln|x|$

3.
$$(2x+1)y' = 4x+2y$$
, $x \in [0,4]$, $y = (2x+1)\ln|2x+1|+1$

4.
$$x(y' + y) = e^x$$
, $x \in [1,3]$, $y = e^x(\ln|x| + 1)$

5.
$$y = x(y' - x\cos x), \quad x \in [\frac{\pi}{2}, 2\pi], \quad y = x\sin x$$

6.
$$y' = 2x(x^2 + y)$$
, $x \in [1, 2]$, $y = e^{x^2} - x^2 - 1$

7.
$$(xy'-1)\ln x = 2y$$
, $x \in [1,3]$, $y = \ln^2 x - \ln x$, $y'(1) = -1$

8.
$$xy' + (x+1)y = 3x^2e^{-x}$$
, $x \in [1,5]$, $y = x^2e^{-x}$

9.
$$y' + 2y = y^2 e^x$$
, $x \in [-1,1]$, $y = e^{-x}$

10.
$$(x+1)(y'+y^2) = -y$$
, $x \in [1,5]$, $y(x+1)\ln|x+1| = 1$

11.
$$xy^2y' = x^2 + y^3$$
, $x \in [1.1,3]$, $y^3 = 3x^2(x-1)$

12.
$$xy' - 2x^2 \sqrt{y} = 4y$$
, $x \in [1, 2]$, $y = x^4 (\ln x + 1)^2$

13.
$$xy' + 2y + x^5y^3e^x$$
, $x \in [1,2]$, $2y^2x^4e^x = 1$

14.
$$2y' - \frac{x}{y} = \frac{xy}{x^2 - 1}$$
, $x \in [1.1, 4.1]$, $y^2 = x^2 - 1$

15.
$$(x^2+1)y'-2xy=(x^2+1)^2$$
, $x \in [0,2]$, $y = x(x^2+1)$

МАКСИМУМ (+1) Решение систем ОДУ

 Для данного уравнения поставить задачу Коши с известным решением на левом конце промежутка. Свести задачу для уравнения 2ого порядка к задаче с системой уравнений 1ого порядка. Решить изученными методами и солверами, построить графики

Варианты

1.
$$x^2(x+1)y'' - y' - 2y = \frac{1}{x^2}$$
 $x \in [0.2,1]$ $y_{\text{точное}} = 1 + \frac{1}{x}$

2.
$$y'' + y' \cos x + y \sin x = 1 - \sin x$$
 $x \in [0, \frac{\pi}{2}]$ $y_{\text{точное}} = \sin x$

3.
$$y'' - y' \sin x + y \cos x = 1 - \cos x$$
 $x \in [0, \frac{\pi}{2}]$ $y_{\text{точное}} = \cos x$

4.
$$y'' + (1 + \sin^2 x)y' + y\cos^2 x = 3e^x$$
 $x \in [0,1]$ $y_{\text{toyHoe}} = e^x$

5.
$$xy'' + 2y' - 2xy = -e^x$$
 $x \in [0.2,1]$ $y_{\text{точное}} = \frac{e^x}{x}$

6.
$$y'' + xy' - y \frac{2}{\cos^2 x} = \frac{x}{\cos^2 x}$$
 $x \in [0,1]$ $y_{\text{точное}} = \operatorname{tg} x$

7.
$$(e^x + 1)y'' - y' - ye^x = e^x$$
 $x \in [0,1]$ $y_{\text{toyHoe}} = e^x - 1$

8.
$$y'' - y' \operatorname{tg} x + 3y = \sin x$$
 $x \in [0, \frac{\pi}{2}]$ $y_{\text{точное}} = \sin x$

9.
$$y'' + 4xy' + y(4x^2 + 3) = e^{-x^2}$$
 $x \in [0,1]$ $y_{\text{TOUHOR}} = e^{-x^2}$

10.
$$2x(x+2)y'' + (2-x)y' + 2y = \sqrt{x}$$
 $x \in [1,2]$ $y_{\text{точное}} = \sqrt{x}$

11.
$$(x^2 + 6)xy'' - 4(x^2 + 3)y' + 7xy = x^4$$
 $x \in [0,1]$ $y_{\text{toyHoe}} = x^3$

12.
$$(2x^2 + x)y'' + 2(x+1)y' - y = \frac{1}{x}$$
 $x \in [0.2,1]$ $y_{\text{точное}} = \frac{1}{x}$

13.
$$xy'' - (2x+1)y' + (x+2)y = x^2e^x$$
 $x \in [0,1]$ $y_{\text{toyHoe}} = x^2e^x$

14.
$$xy'' - (2x+1)y' + 3y = e^{2x}$$
 $x \in [0,1]$ $y_{\text{точное}} = e^{2x}$

15.
$$xy'' + y' + 2y = \ln x$$
 $x \in [1, 2]$ $y_{\text{точное}} = \ln x$