UNIVERSIDADE DO VALE DO ITAJAÍ

MATHEUS BRAZ OENNING DA SILVA

AVALIAÇÃO 1 SIMULAÇÃO E RESOLUCÃO CIRCUITOS DA AULA E LABORATÓRIO

Relatório apresentado como requisito parcial para a obtenção da M1 da disciplina de Eletrônica aplicada do curso de Engenharia da computação pela Universidade do Vale do Itajaí da Escola do Mar, Ciência e Tecnologia.

Prof. Walter Gontijo

Itajaí 2022

Laboratório: Circuito1:

Temos que calcular:

Iz, Vo, Irs para Vi = 10,12 e 15.

Equações:

It = Iz + IrI

Vi - Vz / Rs = Vz-Vzo/ Rz + Vz/RL

Vo = Vz

Com isso obtemos a seguinte tabela:

	Calculado	mensurado	Simulado
Vi(V)	10	10	10
Iz(mA)	43	48	47
Irs(mA)	49	48	49
Vo(V)	5.08	4.98	5.12
Vi(V)	12	12	12
Iz(mA)	64.7	68	59
Irs(mA)	68	71	70
Vo(V)	5.21	5.15	4.97
Vi(V)	15	15	15
Iz(mA)	93	50	95

Irs(mA)	96	98	96
Vo(V)	5.41	4.98	5.1

Circuito 2:

Equações corrente:

It = Ic + Ir

IRs = Ib + Iz

le = IRI

Tbj:

Ic = B*Ib

le = lb + lc

le = (B+1)lb

Equações tensão:

Vi = Vr + Vz

Vr = Ir*Rs

Vi = Vcb + Vz

Vo = Ie*RI

VCE = VC - VE = Vi - Vo

Potências:

Ptr = VCE*Ic

Pz = Vz*Iz

Com isso obtemos a seguinte tabela:

	Calculado	mensurado	Simulado
Vi(V)	8	8	8
Iz(mA)	12.9	14.2	13.3
Irs(mA)	49	48	49
Vo(V)	4.39	5.1	4.6
Vz(V)	5.08	5.2	5.05
Vrs(V)	2.91	2.94	2.93
VCE(V)	3.62	3.1	3.4
Vi(V)	9	9	9
Iz(mA)	17.1	16.9	17.2
Irs(mA)	17.6	17.2	17.4
Vo(V)	4.42	4.45	4.61
Vz(V)	5.12	5.12	5.01
Vrs(V)	3.76	3.91	3.9
VCE(V)	4.52	4.06	4.39
Vi(V)	10	10	10
Iz(mA)	21	22.1	23
Irs(mA)	22	24	23
Vo(V)	4.45	4.02	4.38
Vz(V)	5.15	4.8	5.1
Vrs(V)	4.84	5.1	4.96
VCE(V)	5.55	5.19	5.38

Circuito 3:

Equações:

Irs2 = Ict2 + Ibt1

le = lr + lrl

Vo' = Vo + VBE

It = Irs1 + Irs2 + Ict1

Iz = Irs1 + Iet2

Vf = Vz + VBE

VF = Vbt2

Irs1 = Vi - Vz / Rs1

Irs2 = Vi - Vo' / Rs2

lct2 = Irs2 - Ibt1

Pt = Vt*It

 $Pz = Vz^*Iz$

Vo = Vf * Ra + Rb / Rb

	Calculado	mensurado	Simulado
Vi(V)	13	13	13
Vrs1(V)	7.7	7.9	7.9
Vrs2(V)	1.4	1.5	1.8
Vo(V)	10.89	10	10.73
Vz(V)	5.1	4.8	5.1
VCE1(V)	2.11	1.98	2.3
VCE2(V)	6.49	5.98	6.19
Irs1(mA)	35	35	35
Irs2(mA)	12	16.9	14
Vi(V)	14	14	14
Vrs1(V)	8.8	9	8.9
Vrs2(V)	2.4	2.64	2.68
Vo(V)	10.89	10.5	10.8
Vz(V)	5.1	5	5.1
VCE1(V)	3.11	2.89	3.2
VCE2(V)	6.5	6.1	6.2
Irs1(mA)	40	41	40
Irs2(mA)	20	22.4	22.5
Vi(V)	15	15	15
Vrs1(V)	9.9	10	9.9
Vrs2(V)	3.36	3.46	3.53
Vo(V)	10.89	10.4	10.89
Vz(V)	5.1	5.05	5.12
VCE1(V)	4.11	3.9	4.14
VCE2(V)	6.49	6.2	6.3
Irs1(mA)	45	46	45
Irs2(mA)	28	31	28

Circuito 4:

	Calculado	mensurado	Simulado
Vi(V)	8	8	8
Vo(V)	5	4.98	5.01
Vi(V)	10	10	10
Vo(V)	5	4.98	5.01