L17: Applications of Sylow's theorem

Application

Cot $n_p = 1$ = There exists a normal Sylon p-subgroup.

If "=" led P be the unique Sylon p-subgroup, For any $g \in G$, gP_g^{-2} if another Sylon p-subgroup, hence $gP_g^{-1} = P$ and thus P = G.

"=" led P be a normal Sylon p-subgroup. Let Q be any other Sylon p-subgroup. Then $Q \in G$.

Sylon p-subgroup. Then $Q \in G$.

Proposel.

Circups of order 6: Let G be a stemp of order 6:2:3 $N_2: N_2 \mid 3$ d $N_2 \equiv 1 \pmod{2}$ $L N_2 \in 31,33$

Cose 12 = 1: The Sylon 2- subgroup is normal

Let 17, 11 4 6 be the Sylon 2 and 3 substarps.

As KnH = 11 and KnH = 11 we get KnK = {e}

by Lagrange.

By the theorem below we set K×H=G

Case $n_z = 3$: Let X = 5 Sylon z-substanp?

Then $G \subset X$ transitively d = |X| = 3We get $Y : G - i S_X = S_3$ What that has $Y \leq Stab_G(X)$ for all $X \in X$ Nad $n_z = \left| \frac{G}{N_G(X)} \right|$ Thus $|N_G(X)| = 2$.

If here $Y \neq f \in S = i$ here $Y = N_G(X) \geq X$ and thus here $Y = X \cup X \in X$ Hence here $Y = S = S_3 = S_3$ Hence here $Y = S = S_3 = S_$

```
Prop (characterization of direct products)
    Let a be a group and HK & a normal subgroups and
    that i) HK = G
       4) HM = (0)
    Then H × K = G.
Pl Deflu 4: HxK - G
           (h, k) + hk
   Claim 4 is a bijedion
    Pt 4 surj: 1)
        Vinj: V(hr, kr) = Y(hr, kr) = hrks = hrkz
                 = , h, h, = k, k, E H n K = fei
                 =1 h, h, = k, k, = e
                 =1 hj=hz, 4,= Kz
     Claim hk=kh Vh=H, k=K
     of HaG => kh = hk'
                                 for some h' & K (nandy k' - h"hh)
         Kaa => kh = h'k
                                for some h'EH (h'-khh-1)
                                 about h'-h, k=k'
          => 4/h/k) = hh = 11/h,h')
         I.e. kh = hk.
     Claim 4 is a group hom.
     If Y(h,kx) Y(he,kx) = hikihaka = hihakika = Y(hiha kaka)
```