Métodos Cuantitativos en Finanzas. Actuaría, UNAM. Proyecto 1

Alejandro Gurrola, CFA. Marco Alexis Campos Masson Mayo 2025

La fecha de entrega para este proyecto será definido en clase. Para realizarlo, deberán formar equipos de 4 personas. Deberán entregar un documento de de Google Colab como los que trabajamos en clase. El nombre del archivo debera ser: $Equipo_n Proyecto 1.ipynb$ como se observa en la siguiente imagen:

A cada equipo se le va a enviar información del mercado de derivados de divisas para los siguientes pares: USDMXN, EURMXN, USDCNY, USDCLP, USDARS, USDBRL, USDINR, USDCOP, USDPEN, USDRUB, USDKRW, USDTRY y USDZAR. A cada equipo, le tocará trabajar sobre un par en particular.

Par	Spot	Equipo
USDMXN	19.50	Equipo 1
EURMXN	22.25	Equipo 2
USDCNY	7.28	Equipo 3
USDCLP	938.50	Equipo 4
USDARS	985.25	Equipo 5
USDBRL	5.65	Equipo 6
USDINR	85.50	Equipo 7
USDCOP	4173.50	Equipo 8
USDPEN	3.73	Equipo 9
USDRUB	90.50	Equipo 10
USDKRW	1437.50	Equipo 11
USDTRY	38.42	Equipo 12
USDZAR	18.53	Equipo 13

Table 1: Tabla de pares de divisas y equipos

Sección 1: Forwards

- 1- Carga en python la tabla de información de mercado de tasas de interés.
- 2- A partir de esa tabla construye tres vectores. El primer vector que se llame: TasasDom (Tasas domésticas), TasasFor (Tasas foráneas) y PlazoDias.
- 3- Crea una función que realice interpolación lineal entre tasas de interés interpolacion_tasas(plazo_a_interpolar, vector_plazo_dias, vector_tasas) y que arroje la tasa interpolada para el plazo a interpolar.

$$r_{\text{int}} = r_1 + \left(\frac{r_2 - r_1}{p_2 - p_1}\right) \cdot (p - p_1)$$

4- Calcula y grafica la curva forward. Supon que la convención que aplica en el mercado es Act/360. Recuerda que:

$$Fwd_{FOR/DOM} = \text{spot} \times \exp\left(\left(r_{\text{dom}} - r_{\text{for}}\right) \times \frac{\text{plazo}}{360}\right)$$

- 5 Crea una función que realice el cálculo del precio forward y puntos forward dados los siguientes parámetros: valuacion_forwards(plazo_dias, tasas_dom, tasas_for, spot). Utiliza la función de interpolación creada en el inciso 3.
- 6- Llega la siguiente cotización a la mesa de trading en el banco en el que trabajas y te piden pasar precio para lo siguiente: Compra de forward de nocional 1,500,000 USD con liquidación el 18 de septiembre de 2025 (141 días). Supón que el spread bid/offer del spot es de +/- 0.0020. Calcula:
 - 1. Precio forward
 - 2. Puntos forward
 - 3. ¿Qué panorama crees que tiene el Banco respecto al subyacente al realizar este tipo de transacción? Supón que el Banco se encuentra en el país doméstico. Es decir, si el subyacente es USDMXN, el Banco es mexicano.

Sección 2: Opciones

1- Carga en python la tabla de información de mercado de tasas de volatilidades del mercado Fx

2- Observa que la tabla de volatilidad tiene las siguientes columnas: Días, ATM Bid, ATM Ask, 35D Call Bid, 35D Call Ask, etc. De esta tabla deberás seleccionar ciertas columnas para crear las siguientes dos tablas:

- VolatilidadBid: Columnas: Días, 5DPut Bid, 10DPut Bid, 25DPut Bid, 35DPut Bid, ATM Bid, 35DCall Bid, 25DCallBid, 10DCall Bid, 5DCall Bid)
- VolatilidadAsk: Columnas: Días, 5DPut Ask, 10DPut Ask, 25DPut Ask, 35DPut Bid, ATM Ask, 35DCall Ask, 25DCallBid, 10DCall Ask, 5DCall Ask)

3- Transforma las tablas Volatilidad Bid y Volatilidad Ask del espacio (Tenor, Delta, Vol) al espacio (Tenor, Strike, Vol) mediante la transformación vista en clase (ver Wystup [2006]). Con Δ y σ dados, podemos resolver directamente para el strike K (ver Wystup [2006]):

$$K = S_0 \exp\left(-N^{-1}(\Delta)\sigma\sqrt{\tau} + \left(r_d - r_f + \frac{\sigma^2}{2}\right)\tau\right)$$

 Δ : Delta de la opción, S_0 : Precio spot del subyacente, K: El strike de la opción, σ : La volatilidad del activo subyacente, τ : El tiempo hasta el vencimiento de la opción, r_d : La tasa de interés doméstica, r_f : La tasa de interés foránea, $N^{-1}(\Delta)$: La función inversa de la distribución normal aplicada a Δ .

4- Calcula una función que arroje el precio de una opción Call asumiendo interpolación lineal en las tasas de interés y en las volatilidades.

Extra - Calcula una función que arroje el precio de una opción Put asumiendo interpolación lineal en las tasas de interés e interpolación por spline cúbico en los vectores vol-strike. Hint: Utiliza la paqueteria de python: from scipy.interpolate import CubicSpline

	ATM	Σ	35D Call	II USD	35D Put	rt USD	25D Call	USD III	25D Pu	Put USD	15D Call	II USD	15D Pu	Put USD	10D Call	all USD	10D Put USD	It USD	5D Call	II USD	5D Pu	Put USD
	Bid	Ask	Bid	Ask	Bid	Ask	Bid	Ask E	Bid	Ask	Bid	Ask	Bid	Ask	Bid	Ask	Bid	Ask	Bid	Ask	Bid	Ask
10	8.54	16.21	8.874	17.186	7.713	16.067	8.695	18.57	6.609	16.656	7.383	21.59	3.899	18.939	5.469	24.631	1.582	21.068	2.128	29.352	0	22.461
1	9.77	12.32	10.338	13.075	9.244	12.003	10.772	13.965	8.852	12.081	11.2	15.573	8.243	12.694	11.168	17.012	7.555	13.545	10.05	19.895	5.708	15.625
2W	10.03	12.43	10.677	13.248	9.453	12.052	11.188	14.182	9.044	12.086	11.72	15.815	8.444	12.631	11.77	17.235	7.794	13.421	10.807	20.034	900.9	15.379
3W	10.725	12.27	11.457	13.108	10.151	11.824	12.087	14.006	9.796	11.751	12.866	15.481	9.378	12.054	13.196	16.674	8.984	12.556	12.923	18.83	7.799	13.856
1M	11.3	12.23	12.087	13.078	10.734	11.741	12.806	13.957	10.42	11.597	13.76	15.325	10.129	11.736	14.278	16.357	668.6	12.036	14.508	18.043	9.189	12.825
2M	11.66	12.49	12.514	13.394	11.071	11.972	13.305	14.325	10.734	11.786	14.387	15.771	10.428	11.864	14.997	16.833	10.2	12.11	15.358	18.478	9.542	12.788
3M	11.83	12.505	12.703	13.415	11.245	11.978	13.538	14.362	10.907	11.763	14.705	15.82	10.603	11.772	15.395	16.875	10.394	11.946	15.892	18.405	9.835	12.474
Α	11.975	12.625	12.846	13.529	11.404	12.111	13.69	14.478	11.069	11.894	14.868	15.935	10.766	11.891	15.572	16.986	10.564	12.059	16.095	18.496	10.026	12.566
2W	12.076	12.712	12.944	13.609	11.517	12.209	13.797	14.564	11.182	11.99	14.989	16.025	10.882	11.983	15.702	17.075	10.681	12.143	16.245	18.576	10.155	12.638
<u>8</u> W	12.09	12.72	12.95	13.607	11.544	12.229	13.807	14.563	11.21	12.01	15.004	16.024	10.911	12.001	15.721	17.072	10.71	12.158	16.27	18.563	10.189	12.647
<u>M</u> 6	12.34	12.94	13.201	13.821	11.822	12.475	14.1	14.81	11.484	12.246	15.336	16.291	11.148	12.185	16.066	17.329	10.915	12.29	16.647	18.789	10.39	12.725
1≺	12.215	12.845	13.13	13.783	11.676	12.371	13.992	14.743	11.36	12.175	15.195	16.21	11.065	12.18	15.907	17.251	10.86	12.342	16.423	18.707	10.329	12.849
18M	12.245	12.88	13.169	13.821	11.744	12.446	14.05	14.797	11.438	12.264	15.265	16.272	11.141	12.271	15.976	17.309	10.926	12.429	16.49	18.754	10.394	12.947
5₹	12.24	12.9	13.168	13.839	11.76	12.493	14.065	14.832	11.46	12.322	15.29	16.322	11.154	12.334	15.997	17.363	10.931	12.499	16.494	18.812	10.378	13.043
3	11.59	15.11	12.59	16.1	10.925	14.855	13.353	17.342	10.294	14.951	14.09	19.465	9.218	15.697	14.131	21.269	8.027	16.823	12.743	24.621	5.174	19.602
4√	11.025	15.75	12.08	16.722	10.308	15.6	12.825	18.08	9.55	15.855	13.424	20.511	8.128	17.037	13.229	22.656	6.457	18.728	11.296	26.63	3.057	22.141
2√	9.405	17.69	10.604	18.634	8.474	17.828	11.238	20.352	7.214	18.626	11.194	23.686	4.154	21.506	10.121	26.799	1.376	24.344	7.231	31.849	0	25.823
≿	16.955	17.46	18.198	18.654	16.629	17.189	19.743	20.237	16.307	16.973	21.506	22.154	15.963	16.876	22.462	23.313	15.731	16.944	23.299	24.744	15.27	17.322
10Y	16.97	17.465	18.169	18.598	16.71	17.252	19.829	20.281	16.382	17.028	21.626	22.214	15.982	16.868	22.499	23.271	15.698	16.872	23.264	24.574	15.181	17.162

Figure 1: Ejemplo de Superficie de volatilidad

Tenor	TasaUSD	TasaMXN
1W	4.41%	9.48%
2W	4.39%	9.50%
3W	4.39%	9.47%
1M	4.39%	9.43%
2M	4.37%	9.38%
3M	4.34%	9.31%
4M	4.29%	9.22%
5M	4.24%	9.16%
6M	4.19%	9.10%
9M	4.03%	8.91%
1Y	3.91%	8.76%
18M	3.72%	8.56%
2Y	3.63%	8.49%
3Y	3.63%	8.67%
4Y	3.72%	9.01%
5Y	3.84%	9.47%
7 Y	4.13%	10.51%
10Y	4.59%	12.55%

Figure 2: Ejemplo de Tasas de interés