Economic and Demographic Trends in Downtown Calgary

Downtown Strategy: Final Presentation

Team: Karen R G, Jessica S M, Jesse T, Bozhao W, Jayden Y, and Nihal A

In today's presentation

Research Question

How have the population, age distribution, household size, and household types in downtown Calgary changed from 2011 to 2025, and what are the demographic projections for the future?

This will conduct the following analysis:

- What is the distribution of renters and home-owners?
- How can we measure population changes in downtown?
- What might the future look like?

Data (Community)

Datasets Used:

- Historical Population by Year (1968-2017) by community
- 2021 Federal Community Housing & Dwelling Census by community

Purpose of Merge:

- Connect long-term population trends with recent housing data
- Analyze how population growth aligns with housing availability

Key Variables Extracted:

- Total Population
- Number of Dwellings
- Average People per Dwelling (Population/Dwellings)

Why These Variables Matter:

Show relationship between population and housing supply

Data (Ward)

Datasets Used:

- 2011 & 2016 Ward-Level Census
- 2021 Federal Community Housing & Dwelling Census (transformed to wards)

Key Variables Tracked:

- Male/Female Population
- Dwelling Size
- Age Ranges:
 - 0-4 years old
 - 5-19 years old

What We Did:

- Tracked demographic changes by ward (2011 & 2016)
- Estimated 2021 ward demographics by transforming community-level data into ward boundaries

Methodology (1 of 2)

Goal: Develop regression models to forecast demographic variables using population and occupied dwelling data

Challenge: Demographic data is only available every 5 years at the ward level, limiting real-time analysis. Needs to be scaled down to community level.

Solution: Use *annual* population and dwelling data to estimate interim demographic trends (e.g. age groups, household size)

Methodology (2 of 2)

Benefits:

- Enables "nowcasting" demographic changes without waiting 5 years
- Nowcast will be tested on the Beltline community
- Can be enhanced with (archived) prior demographic observations
- Can understand and observe these changes as they are occurring
- Simplifies forecasting process by being able to compare with current, real-time data

Regression Model

$$Demographic = \beta_0 + \beta_1 Population + \beta_2 Dwellings + \beta_3 \left(\frac{Population}{Dwellings}\right) + \epsilon$$

Household Size =
$$\beta_0 + \beta_1 Population + \beta_2 Dwelling Count + \beta_3 \left(\frac{Population}{Dwelling}\right) + \epsilon$$

This regression produced coefficients that can then applied to community population data to estimate their trends over time in the "gaps" between the census.

This regression estimated using *all* wards and then we compared it with ward 7 and 8.

Regression Results: Household Size

Independent Variable	Coefficient	P value	Standard Error	R-squared of Regression
Population	<mark>-0.255</mark>	0.004	0.084	0.914
Dwelling count	1.021	0.000	0.184	
Pop/Dwell ratio	<mark>3847.789</mark>	0.199	2946.552	

Household Size =
$$\beta_0 + \beta_1 Population + \beta_2 Dwelling Count + \beta_3 \left(\frac{Population}{Dwelling}\right) + \epsilon$$

Regression Results: Demographic

Independent Variable	Coefficient	P value	Standard Error	R-squared of Regression
Population	<mark>0.299</mark>	0.000	0.062	0.880
Dwelling count	<mark>-0.400</mark>	0.005	0.134	
Pop/Dwell ratio	<mark>-1126.414</mark>	0.603	2149.856	

Using the demographic variable of children ages 5-14

$$Demographic = \beta_0 + \beta_1 Population + \beta_2 Dwellings + \beta_3 \left(\frac{Population}{Dwellings}\right) + \epsilon$$

Visual: Household Size

All wards

$$Household \ Size = \beta_0 + \beta_1 Population + \beta_2 Dwelling \ Count + \beta_3 \left(\frac{Population}{Dwelling}\right) + \epsilon_3 \left(\frac{Population}{Dwelling}\right) + \epsilon_4 \left(\frac{Population}{Dwelling}\right) + \epsilon_5 \left(\frac$$

Visual: Household Size

Wards 7 and 8

Predicted vs Actual Values

$$Household \ Size = \beta_0 + \beta_1 Population + \beta_2 Dwelling \ Count + \beta_3 \left(\frac{Population}{Dwelling}\right) + \beta_3 \left(\frac$$

Visual: Demographic

Children ages 5-14

$$Demographic = \beta_0 + \beta_1 Population + \beta_2 Dwellings + \beta_3 \left(\frac{Population}{Dwellings}\right) + \epsilon$$

Estimation of Dwelling Count: Beltline

Year	Estimated Population	Actual Population	Percent Error (%)
2011	<mark>22,273</mark>	19,556	13.89
2016	<mark>21501</mark>	21,958	-2.08
2021	<mark>23284</mark>	25,880	-10.03

Values for 2016, 2011 filled in from Calgary Civic Census

Forecasting - Vector Autoregressions

- Forecasting multiple variables with its impacts in each other
- To prepare the dataset, it was necessary to interpolate for the years 2017, 2018, 2019 and 2020
- The variables used: population, dwellings and persons per unit
- The estimation was done for Beltline community

Forecasting – Dickey Fuller test

Forecasting – Dickey Fuller test

Forecasting - Dickey Fuller test

Forecasting - Granger causality

	population_x	dwellings_x	persons_per_unit_x
population_y	1.0000	0.0312	0.0144
dwellings_y	0.0343	1.0000	0.0254
persons_per_unit_y	0.0000	0.0000	1.0000

• The results indicates: population causes dwellings and persons per unit, dwellings causes population and persons per unit and, persons per unit causes population and dwellings

Forecasting - Cointegration test

```
:: Test Stat > C(95%) => Signif

0 :: 71.75 > 24.2761 => True

1 :: 31.5 > 12.3212 => True

2 :: 12.33 > 4.1296 => True
```

• There are two vector of cointegration for these three variables

Forecasting - VAR Population

Forecasting - VAR Dwelling

Forecasting – VAR Person per unit

Household Size Distribution by Year (Wards 7 & 8)

Gender Composition by Year (Wards 7 & 8)

Summary

