

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

Offenlegungsschrift DE 3917285 A1

(51) Int. Cl. 5:
A61F 2/40
A 61 L 27/00
C 23 C 26/00

DE 3917285 A1

(21) Aktenzeichen: P 39 17 285.6
(22) Anmeldetag: 27. 5. 89
(43) Offenlegungstag: 29. 11. 90

(71) Anmelder:
Roth, Wolfgang, 8552 Höchstadt, DE

(72) Erfinder:
gleich Anmelder

(74) Vertreter:
Louis, D., Dipl.-Chem. Dr.rer.nat., 8183
Rottach-Egern; Pöhlau, C., Dipl.-Phys., 8500
Nürnberg; Lohrentz, F., Dipl.-Ing., 8130 Starnberg;
Segeth, W., Dipl.-Phys., Pat.-Anwälte, 8500
Nürnberg

(54) Schulterprothese

Es wird eine Schulterprothese mit einem Gelenkelement (12) und einem Pfannenelement (40) beschrieben, wobei das Gelenkelement (12) eine konvexe teilkugelförmige Gelenkberührungsfläche (18) und das Pfannenelement (40) eine konkave teilkugelförmige Gelenkberührungsfläche (42) aufweist. Die Gelenkberührungsfläche (18) des Gelenkelements (12) ist an einem Kappenelement (14) vorgesehen, das einen von ihrem Krümmungsmittelpunkt ausgehenden Öffnungswinkel aufweist, der kleiner oder höchstens gleich 180 Winkelgrad beträgt. Vom Kappenelement (14) steht ein Bolzelement (16) weg, das mit einem mit einem Innengewindeabschnitt (28) ausgebildeten Sackloch (26) versehen ist. Ein Schraubelement (30) ist mit dem Bolzelement (16) verschraubar. Die konkave teilkugelförmige Gelenkberührungsfläche (42) des Pfannenelementes (40) weist vom Krümmungsmittelpunkt ausgehend einen Öffnungswinkel auf, der kleiner als 180 Winkelgrad ist.

DE 3917285 A1

Beschreibung

Die Erfindung betrifft eine Schulterprothese mit einem die Gelenkkugel des Oberarmknochens ersetzen den Gelenkelement und einem die Gelenkpfanne des Schulterblattes ersetzen den Pfannenelement, wobei das Gelenkelement eine konvexe teilkugelförmige Gelenkberührungsfläche aufweist, die an die konkave teilkugelförmige Gelenkberührungsfläche des Pfannenelementes bezügliche Krümmungsradius angepaßt ist.

Eine derartige Schulterprothese ist bspw. aus dem Firmenprospekt 1982 OEC International, A-41, ALIVIUM Total Shoulder Replacements, Stanmore Total Shoulder, bekannt. Bei dieser bekannten Schulterprothese handelt es sich um eine Modifikation bekannter Hüftgelenkprothesen, wobei sich durch das lanzenartige Befestigungsteil, das mit dem Gelenkelement einstückig verbunden ist, und das im Oberarmknochen fixiert wird, ein gewisser Herstellungsaufwand sowie ein nicht unerheblicher Implantationsaufwand ergibt.

In der Kniegelenk-Prothetik ist u.a. ein sog. Oxford-Kniegelenk bekannt, das in seiner Bewegungsfunktion ein natürliches Kniegelenk gut annähert.

Der Erfundung liegt die Aufgabe zugrunde, eine Schulterprothese der eingangs genannten Art zu schaffen, die bezüglich ihrer Bewegungsfunktion ähnlich wie ein Oxford-Kniegelenk funktioniert, d.h. die einen Bewegungsablauf besitzt, welcher dem Bewegungsablauf eines natürlichen Schultergelenkes ohne große Einschränkungen entspricht, und deren Implantation einfach möglich ist.

Diese Aufgabe wird erfundungsgemäß dadurch gelöst, daß die teilkugelförmige konvexe Gelenkberührungsfläche des Gelenkelementes an einem Kappenelement vorgesehen ist, das einen Öffnungswinkel aufweist, der kleiner oder höchstens gleich 180 Winkelgrad beträgt, daß vom Kappenelement auf der von seiner Gelenkberührungsfläche abgewandten Seite ein Bolzenelement wegstehet, das mit einem von der vom Kappenelement entfernten Stirnfläche ausgehenden Sackloch ausgebildet ist, das einen Innengewindeabschnitt aufweist, daß in das mit dem Innengewindeabschnitt versehene Sackloch zur Fixierung des Gelenkelementes am Oberarmknochen ein Schraubelement einschraubar ist, das einen Kopf aufweist, und daß die konkave teilkugelförmige Gelenkberührungsfläche des Pfannenelementes von ihrem Krümmungsmittelpunkt ausgehend einen Öffnungswinkel aufweist, der kleiner als 180 Winkelgrad ist.

Durch eine solche Ausbildung der Schulterprothese, d.h. des Gelenkelementes und des mit dem Gelenkelement gelenkig verbundenen Pfannenelementes ergibt sich zwischen den zuletzt genannten Elementen ein Bewegungsablauf, der dem Bewegungsablauf eines natürlichen Schultergelenkes weitestgehend entspricht. Durch die Ausbildung des Gelenkelementes mit einem Bolzenelement und durch die Möglichkeit, mit dem Bolzenelement ein Schraubelement mechanisch fest zu verbinden, ist es vergleichsweise einfach möglich, das Gelenkelement mit einem entsprechend vorbereiteten Oberarmknochen mechanisch fest zu verbinden. Dabei besteht sowohl die Möglichkeit, die Schulterprothese einzuzementieren, als auch die Möglichkeit, die Schulterprothese zementfrei zu implantieren.

Das Kappenelement der erfundungsgemäß Schulterprothese weist vorzugsweise einen mindestens annähernd kreisförmigen Umfangsrand auf. Als zweckmäßig hat es sich erwiesen, wenn das Pfannenelement der Schulterprothese einen abgerundet eckigen Umfangs-

rand aufweist. Durch eine solche Ausbildung ergibt sich für die Schulterprothese bei einem kleinen Platzbedarf eine gute Beweglichkeit. Der Umfangsrand des Pfannenelementes ist zu diesem Zwecke vorzugsweise abgerundet rechteckig ausgebildet.

Bei der erfundungsgemäß Schulterprothese besteht das Gelenkelement vorzugsweise aus Titan oder aus einer Titanlegierung. Das Pfannenelement besteht vorzugsweise aus Kunststoffmaterial. Bei dem Kunststoffmaterial handelt es sich vorzugsweise um RCH 100 Chirulen.

Um eine direkte Anlage des Kopfes des Schraubelementes am Oberarmknochen zu vermeiden, ist vorzugsweise zwischen dem Kopf des Schraubelementes und der Stirnfläche des vom Kappenelement wegstehenden Bolzenelementes ein Beilageelement vorgesehen. Dieses Beilageelement besteht vorzugsweise aus Kunststoffmaterial. Bei diesem Kunststoffmaterial kann es sich um das gleiche Kunststoffmaterial handeln, wie es für das Pfannenelement zur Anwendung gelangt. Selbstverständlich kann das Beilageelement auch aus einem anderen Kunststoffmaterial bestehen.

Zur Befestigung des Pfannenelementes am Schulterblatt weist das Pfannenelement vorzugsweise an der von seiner Gelenkberührungsfläche abgewandten Rückseite mindestens ein Befestigungselement auf. Dieses mindestens eine Befestigungselement kann stiftförmig ausgebildet sein. Das/Jedes Befestigungselement kann mit dem Pfannenelement unlösbar verbunden sein, es ist jedoch auch möglich, daß das Befestigungselement zur loslösbarer Befestigung des Pfannenelementes vorgesehen ist. Bei der zuletzt genannten Ausbildung der erfundungsgemäß Schulterprothese ist es möglich, das einzementierte oder zementfrei implantierte Befestigungselement im Schulterblattknochen zu belassen und nur das Pfannenelement gegen ein neues Pfannenelement auszutauschen, wenn dieses nach einer langen Standzeit abgenutzt ist. Ein Befestigungselement der zuletzt genannten Art wird als sog. Inlay bezeichnet.

Um die Verankerung des Gelenk- bzw. Pfannenelementes mit dem zugehörigen Knochen weiter zu verbessern, hat es sich als vorteilhaft erwiesen, wenn das Gelenkelement und/oder das Pfannenelement mindestens teilweise mit einem keramischen Knochenersatzmaterial beschichtet ist/sind. Desgleichen kann es zweckmäßig sein, wenn das Schraubelement und/oder das Beilagelement und/oder das/jedes Befestigungselement mindestens teilweise mit einem keramischen Knochenersatzmaterial beschichtet ist/sind. Bei diesem Knochenersatzmaterial handelt es sich vorzugsweise um Hydroxylapatit.

Weitere Einzelheiten, Merkmale und Vorteile ergeben sich aus der nachfolgenden Beschreibung eines in der Zeichnung dargestellten Ausführungsbeispieles des Gelenkelementes und zweier in der Zeichnung dargestellter Ausführungsbeispiele des zum Gelenkelement zugehörigen Pfannenelementes der erfundungsgemäß Schulterprothese. Es zeigt:

Fig. 1 einen Längsschnitt durch das Gelenkelement, durch das mit dem Gelenkelement mechanisch fest verbundene Schraubelement und durch das Beilagelement an einem Abschnittweise mit einer dünnen Linie angezeigten Oberarmknochen.

Fig. 2 eine Ansicht des Gelenkelementes in Blickrichtung des Pfeiles II in Fig. 1, wobei auf die Darstellung des Schraubelementes und des Beilagelementes verzichtet wurde,

Fig. 3 einen Längsschnitt durch eine Ausführungs-

form des Pfannenelementes,

Fig. 4 eine Ansicht des Pfannenelementes gem. Fig. 3 in Blickrichtung des Pfeiles IV.

Fig. 5 eine teilweise aufgeschnittene Seitenansicht einer zweiten Ausführungsform des Pfannenelementes,

Fig. 6 eine Ansicht des Pfannenelementes gem. Fig. 5 in Blickrichtung des Pfeiles VI, und

Fig. 7 eine Ansicht des Pfannenelementes gem. Fig. 5 in Blickrichtung des Pfeiles VII.

Fig. 1 zeigt einen Abschnitt eines Oberarmknochens 10 mit einem Gelenkelement 12, das ein Kappenelement 14 und ein mit dem Kappenelement 14 einstückig verbundenes Bolzelement 16 aufweist. Das Kappenelement 14 ist mit einer konvexen teilkugelförmigen Gelenkberührungsfläche 18 ausgebildet, deren Krümmungsmittelpunkt 20 in der zentralen Längsmittellinie 22 liegt, entlang welcher das Bolzelement 16 ausgerichtet ist. Das Bolzelement 16 weist eine Stirnfläche 24 auf, die vom Kappenelement 14 bzw. von der Gelenkberührungsfläche 18 des Kappenelementes 14 entfernt ist. Ausgehend von dieser Stirnfläche 24 erstreckt sich in das Bolzelement 16 ein Sackloch 26 hinein, das mit einem Innengewindeabschnitt 28 versehen ist. In den Innengewindeabschnitt 28 des Bolzelementes 16 ist ein Schraubelement 30 mit seinem Außengewindeabschnitt eingeschraubt, das einen Kopf 32 aufweist. Der Kopf 32 kann mit einer (nicht gezeichneten) Innensechs-kant-Ausnehmung ausgebildet sein. Zwischen dem Kopf 32 und der Stirnfläche 24 des Bolzelementes 16 des Gelenkelementes 12 ist ein Beilageelement 34 vorgesehen, das an der von der Gelenkberührungsfläche 18 abgewandten Rückseite 36 des Oberarmknochens 10 anliegt.

Wie aus Fig. 2 deutlich ersichtlich ist, weist das Kappenelement 14 des Gelenkelementes 12 einen kreisförmigen Umfangsrund 38 auf, der — wie aus Fig. 1 ersichtlich ist — abgerundet ist. Mit der Bezugsziffer 16 ist auch in Fig. 2 das Bolzelement bezeichnet, das mit einem Sackloch 26 versehen ist, in welches ein Innengewindeabschnitt 28 vorgesehen ist.

Fig. 3 zeigt in einem Längsschnitt ein Pfannenelement 40, das mit einer konkaven teilkugelförmigen Gelenkberührungsfläche 42 ausgebildet ist. Der Krümmungsradius der Gelenkberührungsfläche 42 des Pfannenelementes 40 entspricht dem Krümmungsradius der Gelenkberührungsfläche 18 des Gelenkelementes 12 (sh. Fig. 1).

Von der von der Gelenkberührungsfläche 42 des Pfannenelementes 40 abgewandten Rückseite 44 stehen zwei stiftförmige Befestigungselemente 46 voneinander 50 beabstandet und zueinander parallel ausgerichtet weg, die mit dem Pfannenelement 40 verschraubt sind, was durch die Schraubabschnitte 48 angedeutet ist.

Aus Fig. 4 ist ersichtlich, daß das Pfannenelement 40 einen abgerundet eckigen, d.h. abgerundet rechteckigen 55 Umfangsrund 50 aufweist. Mit der Bezugsziffer 42 ist auch in Fig. 4 die konkave teilkugelförmige Gelenkberührungsfläche des Pfannenelementes 40 bezeichnet. Desgleichen sind aus Fig. 4 die Schraubabschnitte 48 der Befestigungselemente 46 (sh. Fig. 3) zu erkennen.

Die Fig. 5 bis 7 zeigen eine zweite Ausführungsform des Pfannenelementes 40, die sich von der in den Fig. 3 und 4 gezeichneten Ausbildung des Pfannenelementes 40 insbes. dadurch unterscheidet, daß das Befestigungselement 46 nicht in Form von Stiften ausgebildet ist, die mit dem Pfannenelement 40 mechanisch fest verbunden sind, sondern daß das Befestigungselement 46 als sog. Inlay ausgebildet ist, von dem das Pfannenelement 40 im

Bedarfsfall entfernt und durch ein neues Pfannenelement 40 ersetzt werden kann, während das Befestigungselement 46 in den Knochen des Schulterblattes implantiert bleibt. Auch bei dieser Ausbildung des Pfannenelementes 40 ist die konkave teilkugelförmige Gelenkberührungsfläche 42 durch einen abgerundet eckigen, insbes. abgerundet rechteckigen Umfangsrund 50 begrenzt. Das Befestigungselement 46 weist eine am Pfannenelement 40 anliegende Basis 52 und eine von der Basis 52 wegstehende Lasche 54 auf, wobei die Lasche 54 mit einer Ausnehmung 56 ausgebildet ist. Dadurch ist eine sichere Implantation des Pfannenelementes in einen Schulterblattknochen möglich.

Patentansprüche

1. Schulterprothese mit einem die Gelenkkugel des Oberarmknochens (10) ersetzen Gelenkelement (12) und einem die Gelenkpfanne des Schulterblattes ersetzen Pfannenelement (40), wobei das Gelenkelement (12) eine konvexe teilkugelförmige Gelenkberührungsfläche (18) aufweist, die an die konkave teilkugelförmige Gelenkberührungsfläche (42) des Pfannenelementes (40) bzgl. Krümmungsradius angepaßt ist, dadurch gekennzeichnet,
daß die teilkugelförmige konvexe Gelenkberührungsfläche (18) des Gelenkelementes (12) an einem Kappenelement (14) vorgesehen ist, das einen Öffnungswinkel aufweist, der kleiner oder höchstens gleich 180 Winkelgrad beträgt,
daß vom Kappenelement (14) auf der von seiner Gelenkberührungsfläche (18) abgewandten Seite ein Bolzelement (16) wegsteht, das mit einem von der vom Kappenelement (14) entfernten Stirnfläche (24) ausgehenden Sackloch (26) ausgebildet ist, das einen Innengewindeabschnitt (28) aufweist, daß in das mit dem Innengewindeabschnitt (28) versehene Sackloch (26) zur Fixierung des Gelenkelementes (12) am Oberarmknochen (10) ein Schraubelement (30) einschraubar ist, das einen Kopf (32) aufweist, und daß die konkave teilkugelförmige Gelenkberührungsfläche (42) des Pfannenelementes (40) von ihrem Krümmungsmittelpunkt ausgehend einen Öffnungswinkel aufweist, der kleiner als 180 Winkelgrad ist.

2. Schulterprothese nach Anspruch 1, dadurch gekennzeichnet, daß das Kappenelement (14) einen mindestens annähernd kreisförmigen Umfangsrund (38) aufweist.

3. Schulterprothese nach Anspruch 1, dadurch gekennzeichnet, daß das Pfannenelement (40) einen abgerundet eckigen Umfangsrund (50) aufweist.

4. Schulterprothese nach Anspruch 3, dadurch gekennzeichnet, daß der Umfangsrund (50) des Pfannenelementes (40) abgerundet rechteckig ausgebildet ist.

5. Schulterprothese nach einem der vorhergegangenen Ansprüche, dadurch gekennzeichnet, daß das Gelenkelement (12) aus Titan oder aus einer Titanlegierung besteht.

6. Schulterprothese nach einem der vorhergegangenen Ansprüche, dadurch gekennzeichnet, daß das Pfannenelement (40) aus Kunststoffmaterial besteht.

7. Schulterprothese nach einem der vorhergegangenen Ansprüche, dadurch gekennzeichnet, daß zwischen dem Kopf (32) des Schraubelementes (30)

und der Stirnfläche (24) des vom Kappenelement (14) wegstehenden Bolzenelementes (16) ein Beilageelement (34) vorgesehen ist.

8. Schulterprothese nach Anspruch 7, dadurch gekennzeichnet, daß das Beilageelement (34) aus 5 Kunststoffmaterial besteht.

9. Schulterprothese nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Pfannenelement (40) an der von seiner Gelenkberührungsfläche (42) abgewandten Rückseite (44) 10 mindestens ein Befestigungselement (46) aufweist.

10. Schulterprothese nach Anspruch 9, dadurch gekennzeichnet, daß das/jedes Befestigungselement (46) stiftförmig ausgebildet ist.

11. Schulterprothese nach Anspruch 9, dadurch gekennzeichnet, daß das Befestigungselement (46) zur loslösbarer Befestigung des Pfannenelementes (40) 15 vorgesehen ist.

12. Schulterprothese nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das 20 Gelenkelement (12) und/oder das Pfannenelement (40) mindestens teilweise mit einem keramischen Knochenersatzmaterial beschichtet ist/sind.

13. Schulterprothese nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das 25 Schraubelement (30) und/oder das Beilageelement (34) und/oder das/jedes Befestigungselement (46) mindestens teilweise mit einem keramischen Knochenersatzmaterial beschichtet ist/sind.

14. Schulterprothese nach Anspruch 12 oder 13, 30 dadurch gekennzeichnet, daß das Knochenersatzmaterial aus Hydroxylapatit besteht.

Hierzu 2 Seite(n) Zeichnungen

FIG. 1

FIG. 2

FIG. 3

FIG. 4

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: _____**

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.