Algorithms for the 0-1 Knapsack Problem (KP01)

```
KP01: given:
```

```
n items,
```

$$P_i$$
 "profit" of item j , $j = 1, ..., n$ $(P_i > 0)$,

$$W_j$$
 "weight" of item $j, j = 1, ..., n (W_j > 0),$

one container ("knapsack") with "capacity" C:

"Determine a subset of the *n* items so as to maximize the global profit, and such that the global weight is not larger than the knapsack capacity *C*."

- KP01 is NP-Hard.
 - * Assume (P_j) and (W_j) positive integers.

*
$$\sum_{j=1,n} W_j > C$$

Branch-and-Bound Algorithms for KP01

- * Horowitz-Sahni (Journal of ACM, 1974).
- * Ahrens-Finke (Operations Research, 1974).
- * Nauss (Management Science, 1976).
- * Martello-T. (European Journal of Operational Research, 1977).
- * Balas-Zemel (Operations Research, 1980).
- * Fayard-Plateau (Computing, 1982).
- * Martello-T. (Management Science, 1988, Operations Res. 1997).
- * Pandit Ravi Kumar (Opsearch, 1993).
- * Pisinger (Operations Research, 1997).
- * Martello-Pisinger-T. (Management Science, 1999).

Dynamic Programming Algorithms for KP01

- * Bellman (Dynamic Programming Book, 1957).
- * Horowitz-Sahni (Journal of ACM, 1974).
- * T. (Computing, 1980).

ILP Model KP01

$$x_{j} = \begin{cases} 1 & \text{if item } j \text{ is inserted in the knapsack} \\ 0 & \text{otherwise} \end{cases} \quad (j = 1, ..., n)$$

$$z(KP01) = \max \sum_{j=1, n} P_{j} x_{j}$$

$$\sum_{j=1, n} W_{j} x_{j} \leq C \quad (**)$$

$$x_{j} \in \{0, 1\} \qquad (j = 1, ..., n)$$

- * Relaxations:
- * Continuous (LP) Relaxation.
- * Lagrangian Relaxation of the "Capacity Constraint (**)

LP Relaxation of KP01

$$x_j = \begin{cases} 1 & \text{if item } j \text{ is inserted in the knapsack} \\ 0 & \text{otherwise} \end{cases}$$
 $(j = 1, ..., n)$

$$UB_{D} = \max \qquad \sum_{j=1, n} P_{j} x_{j}$$

$$\sum_{j=1,n} W_j x_j \leq C$$

$$0 \le x_j \le 1 \quad (j = 1, ..., n)$$

LP Relaxation of KP01: Dantzig Upper Bound

1) Assume:

$$P_j / W_j \ge P_{j+1} / W_{j+1}$$
 for $j = 1, ..., n-1$

2) Define the "critical item" s such that:

$$s = \min \{ k : \sum_{j=1, k} W_j > C \}$$

3) Optimal LP solution:

$$x_{j} = 1$$
 for $j = 1, ..., s - 1$; $x_{j} = 0$ for $j = s + 1, ..., n$;
 $x_{s} = (C - \sum_{j=1, s-1} W_{j}) / W_{s}$ $(0 \le x_{s} < 1)$
 $UB_{D} = [\sum_{j=1, s-1} P_{j} + (C - \sum_{j=1, s-1} W_{j}) P_{s} / W_{s}]$

Dantzig Upper Bound (2)

- 1) $P_j / W_j \ge P_{j+1} / W_{j+1}$ for j = 1, ..., n-1
- 2) $s = \min \{j : \sum_{i=1,j} W_j > C \}$
- 3) $x_j = 1$ for j = 1, ..., s 1; $x_j = 0$ for j = s + 1, ..., n; $x_s = (C \sum_{j=1, s-1} W_j) / W_s$

$$UB_D = \left[\sum_{j=1, s-1} P_j + (C - \sum_{j=1, s-1} W_j) P_s / W_s \right]$$

- At most one non-integer variable (x_s) .
- Computation of UB_D in O(n) time, once s is known;
- Computation of s in O(n log(n)) time (Sorting Proc.),
 in O(n) time through the "partitioning" procedure proposed
 by Balas-Zemel (Operations Research, 1980)

Dantzig Upper Bound (3)

1) $P_j / W_j \ge P_{j+1} / W_{j+1}$ for j = 1, ..., n-12) $s = \min \{ j : \sum_{i=1,j} W_j > C \}$ 3) $x_j = 1$ for $j = 1, ..., s-1; x_j = 0$ for j = s+1, ..., n; $x_s = (C - \sum_{j=1, s-1} W_j) / W_s$

 $UB_D = [\Sigma_{i=1, s-1} P_i + (C - \Sigma_{i=1, s-1} W_i) P_s / W_s]$

*Example:

$$n = 7$$
; $C = 100$; $(P_j) = (100, 90, 60, 40, 15, 10, 10)$; $(W_j) = (20, 20, 30, 40, 30, 60, 70)$. $s = 4$; $x_1 = x_2 = x_3 = 1$; $x_4 = 30/40$; $x_5 = x_6 = x_7 = 0$. $UB_D = [100 + 90 + 60 + 30 * 40 / 40] = 280$ $(z* = 265)$.

Balas-Zemel Procedure (O.R., 1980): Finding the Critical Item in O(n) time

- 1) For each $j \in N = \{1, ..., n\}$ define $r_j = P_j / W_j$.
- 2) The "critical ratio" r_s can be identified by determining a "partition" of N into subsets J1, JC, J0:

```
r_j > r_s \text{ for } j \in J1
r_j = r_s \text{ for } j \in JC
r_j < r_s \text{ for } j \in J0
\text{with } \Sigma_{j \text{ in } J1} W_j \leq C < \Sigma_{j \text{ in } J1 \text{ union } JC} W_j
```

- * Progressively determine J1 and J0 using, at each iteration, a tentative value U for r_s to partition the subset of the currently "free" items in $N \setminus (J1 \text{ union } J0)$: U = ``median'' of (r_j) (with j in $N \setminus \{J1 \text{ union } J0\}$).
- * Given the subsets J1, JC and J0, the critical item s is determined by filling, in any order, the "residual capacity" $(C \Sigma_{j \text{ in } J1} \ W_j)$ with items in subset JC.

Lagrangian Relaxation of KP01

$$x_{j} = \begin{cases} 1 & \text{f item } j \text{ is inserted in the knapsack} \\ 0 & \text{otherwise} \end{cases}$$
 $(j = 1, ..., n)$

$$z(KP01) = \max \sum_{j=1, n} P_{j} x_{j}$$

$$\sum_{j=1, n} W_{j} x_{j} \leq C \quad (**)$$

$$x_j \in \{0, 1\}$$
 ($j = 1, ..., n$)

Lagrangian Relaxation of inequality (**), with $v \ge 0$:

$$UB(v) = \max \left(\sum_{j=1, n} P_j x_j + v \left(C - \sum_{j=1, n} W_j x_j \right) \right)$$

Lagrangian Relaxation of KP01

$$x_j = \begin{cases} 1 & \text{if item } j \text{ is inserted in the knapsack} \\ 0 & \text{otherwise} \end{cases}$$
 $(j = 1, ..., n)$

Lagrangian Relaxation of inequality (**), with $v \ge 0$:

$$UB(v) = (\max \sum_{j=1, n} P_j x_j + v (C - \sum_{j=1, n} W_j x_j))$$

$$UB(v) = v C + \max \sum_{j=1, n} P(v)_j x_j$$
(where $P(v)_j = P_j - v W_j$)

$$x_i \in \{0, 1\}$$
 ($j = 1, ..., n$)

Lagrangian Relaxation of KP01

$$x_j = \begin{cases} 1 & \text{if item } j \text{ is inserted in the knapsack} \\ 0 & \text{otherwise} \end{cases}$$
 $(j = 1, ..., n)$

Lagrangian Relaxation of inequality (**), with $v \ge 0$:

$$UB(v) = v C + \max \sum_{j=1, n} P(v)_j x_j$$
(where $P(v)_j = P_j - v W_j$)

$$x_j \in \{0, 1\}$$
 ($j = 1, ..., n$)

- * Optimal Solution (O(n) time):
- $x_i = 1$ if $P(v)_i > 0$; $x_i = 0$ if $P(v)_i \le 0$ (j = 1, ..., n)
- It can be proved that: $UB(v^*) = UB_D$

and that:
$$v^* = P / W$$
 (where $s = critical$ item)

Determination of "good" Lagrangian multipliers: Subgradient Optimization Procedure for KP01

*
$$UB(v) = v C + \max \sum_{j=1, n} P(v)_j x_j$$
 $(P(v)_j = P_j - v W_j)$
 $x_j \in \{0, 1\}$ $(j = 1, ..., n);$ $v \ge 0$
* $x_i = 1$ if $P(v)_i > 0;$ $x_i = 0$ if $P(v)_i \le 0$ $(j = 1, ..., n)$

Define:
$$S(v) = C - \sum_{j=1,n} W_j x_j$$
 ("subgradient element")

Input parameters:

LB = Lower Bound (value of a feasible solution);

$$v_0 > 0$$
; Kmax = max number of iterations; h
= "step length" $(h > 0)$;

Subgradient Optimization Procedure for KP01 (2)

```
k := 1; \ v := v_0; \ UB = \infty;
while UB > LB do
   UB(v) := v * C; S(v) := C;
   \underline{for} \ j := 1 \ \underline{to} \ n \ \underline{do}
      P(v)_i = P_i - v * W_i;
      <u>if</u> P(v)_i \ge 0 <u>then</u> x(v)_i := 1; UB(v)_i := UB(v) + P(v)_i; S(v) := S(v) - W_i
                    else x(v)_i := 0;
      UB := \min \{UB, UB(v)\}; k := k + 1;
      if k > Kmax then STOP;
      v := \max \{0, v - h * S(v)\}
```

<u>endwhile</u>

Subgradient Optimization Procedure for KP01 (3)

$$S(v) = C - \sum_{j=1,n} W_j x_j$$
 ("subgradient element")

Multiplier Updating Formula:

$$v := \max \{0, v - h * S(v)\}$$

- * If S(v) > 0 the relaxed constraint is "too satisfied":
 - v must be decreased;
- * If S(v) < 0 the relaxed constraint is violated:
 - v must be increased;
- * If S(v) = 0 the relaxed constraint is exactly satisfied:
 - v must not be changed.

Branching Scheme for KP01

- * Assume: $P_j / W_j \ge P_{j+1} / W_{j+1}$ for j = 1, ..., n-1
- * At each level i (i = 1, ..., n) consider item i and generate two descendent nodes by setting first $x_i = 1$, and then $x_i = 0$.
- * Depth-first branching strategy.
- * At each node k, corresponding to subproblem generated at level (i-1):

$$P(k) = \sum_{i=1, i-1} P_i x_i \qquad \text{(profit at node } k\text{)}$$

$$C(k) = C - \sum_{j=1, i-1} W_j x_j$$
 (residual capacity at node k)

Upper Bound for KP01 at node k

* At each node k, corresponding to subproblem P^k generated at level (i-1):

$$P(k) = \sum_{j=1, i-1} P_j x_j$$
 (profit at node k)
$$C(k) = C - \sum_{j=1, i-1} W_j x_j$$
 (residual capacity at node k , $C(k) \ge 0$)
$$* UB(P^k) = P(k) + UB_D(P^k)$$
, where:

$$UB_{D}(P^{K}) = \max \sum_{j=i,n} P_{j} y_{j}$$

$$\sum_{j=i,n} W_{j} y_{j} \leq C(k)$$

$$0 \leq y_{i} \leq 1 \qquad (j = i, ..., n)$$

Dantzig Upper Bound (LP Relaxation of P^{K})

Branching Scheme for KP01 (2)

* At each node k, corresponding to subproblem P^k generated at level (i-1):

$$P(k) = \sum_{j=1, i-1} P_j x_j$$
 (profit at node k)

$$C(k) = C - \sum_{j=1, i-1} W_j x_j$$
 (residual capacity at node $k, C(k) \ge 0$)

* At the first descendent node (k + 1) $(x_i = 1, generated only if <math>W_i \le C(k)$:

$$P^* = P(k) + P_i$$
; $C^* = C(k) - W_i$ (with $C^* \ge 0$)

* At the second descendent node (k + b) $(x_i = 0$, always generated):

$$P^* = P(k); C^* = C(k)$$

Upper Bounds at the descendent nodes

* At each node k, corresponding to subproblem P^k generated at level (i-1):

$$P(k) = \sum_{j=1, i-1} P_j x_j$$
 (profit at node k)

$$C(k) = C - \sum_{i=1, i-1} W_i x_i$$
 (residual capacity at node $k, C(k) \ge 0$)

* At node
$$(k + 1)$$
 $(x_i = 1$, generated only if $W_j \le C(k)$:

$$P^* = P(k) + P_i$$
; $C^* = C(k) - W_i$ (with $C^* \ge 0$):
 $P^{k+1} = P^k$
* $UB() = UB()$

* the new imposed constraint $(x_i = 1)$ is satisfied by the optimal solution of the LP Relaxation determined at node k (parametric technique: the critical item at node (k + 1) is equal to the critical item at node k).

Upper Bounds at the descendent nodes (2)

* At each node k, corresponding to subproblem P^k generated at level (i-1):

level (i -1):

$$P(k) = \sum_{i=1, i-1} P_i x_i \quad \text{(profit at node } k\text{)}$$

$$C(k) = C - \sum_{i=1, i-1} W_i x_i$$
 (residual capacity at node $k, C(k) \ge 0$)

* At node
$$(k + b) (x_i = 0)$$
:

$$P^* = P(k)$$
; $C^* = C(k)$ (with $C^* \ge 0$):
 P^{k+1}
 P^k
* $UB($) $\le UB($)

* the new imposed constraint $(x_i = 0)$ is violated by the optimal solution of the LP Relaxation determined at node k (parametric technique: the critical item at node (k + b) is greater than or equal to the critical item at node k).

Reduction Procedure for KP01

- * Partition the item set $N = \{1, 2, ..., n\}$ into three subsets N0, N1 and F, so that any feasible solution (x^*_j) of value greater than a given Lower Bound LB (corresponding to a feasible solution (x^*_j)) must have:
- * $x^*_{i} = 0$ for $j \in N0$, $x^*_{i} = 1$ for $j \in N1$
- 1) For j = 1, ..., s compute:
- $U0(j) = Upper Bound \text{ on } z(KP01) \text{ by imposing } x_j = 0;$ 2) For j = s, ..., n compute:
- U1(j) = Upper Bound on z(KP01) by imposing $x_i = 1$.
- 3) Define: $N0 = \{j : U1(j) \le LB\}; N1 = \{j : U0(j) \le LB\};$

Reduction Procedure for KP01 (2)

* Partition the item set $N = \{1, 2, ..., n\}$ into three subsets N0, N1 and F, so that any feasible solution (x^*_j) of value greater than a given Lower Bound LB (corresponding to a feasible solution (x^*_j)) must have: $* x^*_j = 0$ for $j \in N0$, $x^*_j = 1$ for $j \in N1$

* Reduced Problem RD:

$$\mathbf{z}(\mathbf{R}\mathbf{D}) = \sum_{j \text{ in } N1} P_j + \max \sum_{j \text{ in } F} P_j x_j$$

$$\sum_{j \text{ in } F} W_j x_j \leq C - \sum_{j \text{ in } N1} W_j$$

$$x_i \in \{0, 1\} \qquad j \in F$$

* The Reduction Procedure can be implemented to run in $O(n \log(n))$ time (a "weaker" version in O(n) time).

Test Instances for KP01

* Given: *n* and *R*, generate *k* random instances as follows:

- 1) Uncorrelated (UCR) Instances:
- * W_j integer value randomly generated according the uniform distribution in the interval [1, R] (j = i, ..., n);
 - * P_j integer uniformly random in [1, R] (j = i, ..., n).

$$C = 0.5 \sum_{j=1, n} W_j$$

- 2) Weakly Correlated (WCR) Instances:
 - * W_j integer uniformly random in [1, R] (j = i, ..., n);
 - * P_i integer un. rand. in $[W_j, W_j + R/10]$ (j = i, ..., n).
- 3) Strongly Correlated (SCR) Instances:
 - * W_i integer uniformly random in [1, R] (j = i, ..., n);

Computational Results for the Reduction Procedure for KP01 (3) with R = 1000

- * Partition the item set N into three subsets N0, N1 and F
- * The global computing times of the Reduction Procedure are about 1.5 times the corresponding sorting times.
- * For the UCR instances, the average number of items left in the Reduced Problem (i.e., |F|) is about 25 if n = 100, and about 80 if n = 500.
- * For the WCR instances, average |F| is about 55 if n = 100, and about 180 if n = 500.
- * For the SCR instances, average |F| is about 90 if n = 100, and about 450 if n = 500.

"Core Problem" Approach for KP01

- * In Large-Size "easy" KP01 instances: most of the computing time is spent for preliminary sorting of the items according to non-increasing P_j / W_j ratios
- * If the items are sorted, the Optimal Solution (x_j^*) to a Large-Size *KP01* instance is defined by:

```
x^*_{j} = 1 for j = 1, ..., j_1 - 1; x^*_{j} = 0 for j = j_2 + 1, ..., n; x^*_{j} \in \{0, 1\} for j = j_1, ..., j_2 ("Core Problem" CP) with j_1 < s < j_2
```

* $(j_2 - j_1)$ very small fraction of n (30 to 40 for n = 1000) and slowly increasing with n

Algorithm MT2 for KP01 (M. - T., Man. Sc. 1988)

- 1) Find J1, JC, J0, s without sorting (Balas-Zemel, 1980).
- 2) Define: j_1^* and j_2^*

```
such that j_1^* < s < j_2^* and j_2^* - j_1^* \ge u (u given)
```

- "Approximate Core Problem" ACP (O(n) time).
- 3) Sort the items in ACP according to non-increasing P_j / W_j ratios.
- 4) Solve ACP through a Branch-and-Bound Algorithm:

```
LB = \sum_{j \text{ in } J1} P_j + z(ACP) (where z(ACP) is the optimal value) is a valid Lower Bound for KP01.
```

- **UB** = Upper Bound for KP01 (Improved Dantzig Upper Bound).
- 5) If LB = UB then STOP (optimal solution found).

Algorithm MT2 for KP01 (2)

- 6) Apply the Reduction Procedure (version without "sorting", O(n) time) to KP01, and determine subsets N0, N1 and F.
- 7) If $\{1, ..., j^*_1 1\} \subseteq N1$ and $\{j^*_2 + 1, ..., n\} \subseteq N0$ then *STOP* (optimal solution found).
- 8) Sort the items in F according to non-increasing P_j / W_j ratios.
- 9) Solve the KP01 corresponding to F through a Branch-and-Bound Algorithm.

Computational Results for KP01

- * Algorithm MT2 is able to solve to optimality UCR and WCR instances with up to 100,000 items in few CPU seconds,
- but it can fail to determine, within 5-10 minutes, the optimal solution for SCR instances with 100 items.
- * Dynamic Programming Algorithm DPT (T. 1980) is able to solve to optimality UCR and WCR instances with up to 10000 items in 5-10 CPU seconds,
- but it can fail to determine, within 5-10 CPU minutes, the optimal solution for SCR instances with 1000 items.