

Kursus: M4STI1 re-eksamen

Eksamensdato: 17.08.2015 – 09:00 – 13:00 (forlænget prøvetid 14:15)

Eksamenstermin: Q4 sommer 2015 august

Underviser: Allan Leck jensen

Praktiske informationer

Ingeniørhøjskolen udleverer:

2 omslag samt papir til kladde og renskrift. Der skal udfyldes og afleveres 2 omslag.

Denne eksamen inkluderer muligheden for elektronisk aflevering. Opgaven skal afleveres i **PDF**-format. Du bedes krydse af på omslaget, om du har afleveret håndskrevet, elektronisk eller begge dele.

Husk angivelse af navn og studienummer på alle sider, samt i dokument-/filnavn

Alle hjælpemidler må benyttes, herunder internettet som opslagsværktøj, men det er **IKKE** tilladt at kommunikere med andre digitalt.

Særlige bemærkninger: Det er muligt at aflevere elektronisk via Blackboard

Bilag: Data_M4STI_2015_reeksamen

Ingeniørhøjskolen Aarhus Universitet - Maskinteknik

Eksamenstermin: Q4, sommer 2015 august

Prøve i: M4STI1 re-eksamen

Dato: 17.08.2015

Bemærk følgende:

- Alle decimaltal i opgaverne er angivet med engelsk decimalseparator (.)
- Alle data fra opgaverne kan downloades fra Blackboard i et regneark med navnet Data_M4STI1_2015F_reeksamen.xlsx. I regnearket angiver kolonnenavnet, hvilken opgave data hører til. Der er data til opgave 2 og 3.

Opgave 1

En robot til sprøjtemaling laver utilsigtede 'helligdage', d.v.s. små pletter, der ikke er blevet dækket af maling. Robotten laver i gennemsnit 0.8 helligdage per malet kvadratmeter. Robotten skal male 70 cirkelformede skiver på forsiden. Hver skive har en diameter på 1.2 m.

- a. Hvor mange helligdage må der forventes at være på en tilfældig skive?
- b. Hvilken sandsynlighedsfordeling vil du bruge til at beskrive antal helligdage på en skive, og hvad er fordelingens middelværdi, varians og spredning?
- c. Hvad er sandsynligheden for, at ingen af de 70 skiver har helligdage?
- d. Beregn det forventede antal skiver med henholdsvis 0, 1, 2, 3 og 4 eller flere helligdage.

Efter at robotten har malet skiverne viser det sig, at 22 af de 70 skiver ingen helligdage har, 31 skiver har 1 helligdag, o.s.v., som vist i følgende tabel:

Antal hellig- dage per skive	Observeret hyppighed				
0	22				
1	31				
2	10				
3	7				
4 eller flere	0				

e. Lav en Goodness of Fit test for, om de observerede og de forventede hyppigheder stemmer overens på 1 % signifikansniveau.

Ingeniørhøjskolen Aarhus Universitet - Maskinteknik

Eksamenstermin: Q4, sommer 2015 august

Prøve i: M4STI1 re-eksamen

Dato: 17.08.2015

Opgave 2

Den følgende tabel viser målinger af sammenhørende værdier for vindhastighed (x) og den strøm, en bestemt vindmølle producerer (y):

den suøm, en	bestemt vindn						
Vind-	Produktion						
hastighed	af strøm						
5.00	1.582						
6.00	1.822						
3.40	1.057						
2.70	0.500 2.236						
10.00							
9.70	2.386						
9.55	2.294						
3.05	0.558						
8.15	2.166						
6.20	1.866						
2.90	0.653						
6.35	1.930						
4.60	1.562						
5.80	1.737						
7.40	2.088						
3.60	1.137						
7.85	2.179						
8.80	2.112						
7.00	1.800						
5.45	1.501						
9.10	2.303						
10.20	2.310						
4.10	1.194						
3.95	1.144						
2.45	0.123						

- a. Lav en lineær regressionsanalyse af produceret vindmøllestrøm som funktion af vindhastighed og skriv regressionsligningen op. Beregn den forventede produktion ved en vindhastighed på 9.5.
- Forklar v.h.a. regressionsanalysens statistikker (f.eks. R-squared og p-value), om modellen beskriver observationerne godt.
- c. Lav et scatterplot med målt (y) og estimeret (y_hat) strømproduktion som funktion af vindhastighed. Lav desuden et residualplot (residual mod y_hat). Hvad viser de to plots om regressionsmodellen?
- d. Forsøg at forbedre modellen med transformationer. Prøv følgende to modeller (henholdsvis en logaritmisk og en reciprok transformation af vindhastigheden):

$$y = b_0 + b_1 \ln(x)$$

 $y = b_0 + b_1 \frac{1}{x}$

Skriv funktionsudtrykkene for de to transformerede modeller op.

- e. Lav scatterplots og residualplots af de to transformerede modeller.
- f. Diskutter hvilken model, der er bedst.

Ingeniørhøjskolen Aarhus Universitet - Maskinteknik

Eksamenstermin: Q4, sommer 2015 august

Prøve i: M4STI1 re-eksamen

Dato: 17.08.2015

Opgave 3

En særlig maskine bruges til at måle slitage på emner på en standardiseret måde. Det foregår ved, at emnet spændes fast i maskinen, som dernæst påvirker emnet på en ensartet måde i et fastlagt tidsrum. Til sidst bruger maskinen laserbelysning til at måle den slitage, som emnet er blevet påført. Slitagen måles på et indeks fra 0 til 100, hvor et højt indeks betyder meget slitage.

I et eksperiment blev to forskellige materialer, A og B, testet i maskinen for at måle forskel i materialernes slidstyrke. 12 emner af materiale A og 10 emner af materiale B blev testet. Resultatet vises i følgende tabel:

Materiale	Slitageindeks											
Α	89	90	88	91	89	85	87	83	89	78	80	83
В	78	88	83	77	88	72	80	80	83	83		

- a. Lav og kommenter et parallelt boksplot, der viser slitageindeks for de to materialer.
- b. Man ønsker at slå fast med et signifikansniveau på 5 %, om materiale B er mindst 2 enheder på slitageindekset mere slidstærkt end materiale A. Opstil nulhypotese og alternativhypotese for denne hypotesetest.
- c. Opstil og beregn teststatistikken. Angiv hvilken fordeling den følger.
- d. Beregn den kritiske region for testen og konkludér på hypotesetesten.
- e. Er der forskel på slidstyrken af de to materialer på 5 % signifikansniveau?
- f. Beregn et 95 % konfidensinterval for forskellen på materialernes middelværdi.
- g. Diskutter hvordan boksplot, hypotesetest og konfidensinterval stemmer overens.
- h. Oplys hvilke antagelser, der er gjort i hypotesetesten, og om antagelserne er rimelige på baggrund af data.