KHIDI Brief

발행일_ 2018.12.31 **발행처_** 한국보건산업진흥원 **발행인_** 이영찬

보 건 산 업 브 리 프 의 료 기 기 주 요 이 슈 분 석

품목분석 | 해외시장 | 주요이슈

** 인공지능(AI) 기반의료기기 현황 및 이슈(1)

의료기기산업팀

Contents

- 1. 서론
- II. 국내·외 시장 현황
- Ⅲ. 국내·외 기술 현황
- Ⅳ. 국내·외 정책 현황 및 최근이슈
- V . 시사점

부록

개요

- 이 브리프에서는 인공지능(AI) 기반 의료기기 분야의 기술 및 시장동향과 최근 이슈를 기술·분석 하고자 함
- 의료에 인공지능을 접목했을 때 효과적인 진단 및 치료법 제시, 정밀한 치료 등 헬스케어의 난제들을 획기적으로 개선할 방안으로 기대
 - 헬스케어 비용을 얼마나 효과적으로 감축시킬 수 있느냐가 향후 인공지능(AI) 기반 의료기기의 발전 방향과 속도에 결정적 영향을 미칠 것으로 보임
- 국내는 AI을 활용한 의료 영상 분석분야가 화두가 되고 있어, EMR 및 의료데이터를 대상으로 하는 인공지능 의료기기 제품개발은 상대적으로 많지 않은 상황임
 - 그러나, 향후 많은 업체가 생체신호 분석 또는 공통데이터모델(CDM)기반 의료 빅데이터 분석을 활용한 인공지능 의료기기 개발과 관련 사업에 뛰어들 것으로 전망
 - 최근 들어 24시간 연속적으로 기록되는 시그널 정보를 분석 및 예측하는 시그널 모니터링 인공지능 의료기기들에 대한 연구개발이 지속적으로 이뤄짐
- 최근 가장 주목을 받고 있는 딥러닝(Deep Learning) 방식은 알고리즘이 제시하는 결과 도출에 대한 해석이 어려운 'Black box'의 성격을 지니고 있어 임상검증에 있어 보다 엄격하고 체계적인 평가가 요구됨
 - 결과가 나온 이유를 어느 정도 직관적으로 이해할 수 있도록 도와주는 방법들이 제시되거나 딥러닝의 설명력(Interpretability)을 높일 수 있는 연구가 진행 중임
- ⊙ 전 세계적으로 인공지능 기술을 활용한 의료기기 개발, 의료에 활용하려는 사례가 증가함에 따라 이를 통해 의료서비스의 질을 크게 향상할 수 있을 것이라 보이지만, 사회적으로 민감한 부분인 의료분야에 속하는 사례이기에 반드시 해결해야 할 법적, 윤리적 이슈들이 존재함
 - 성공적인 AI 기반 의료기기의 활용사례를 만들기 위해서는 정부를 비롯한 의료기기 제조업체. 의료기관 등 이해 관계자들 간의 적극적인 협업이 필요함

서론

1) 배경 및 정의

- 4차 산업혁명 등의 기술 발달에 맞추어, ICT 융합기술 및 의료 빅데이터를 활용하 인공지능(AI) 기반 의료기기 기술개발이 활발히 진행 중임
 - 인공지능을 이용한 영상, 음성 그리고 데이터 인식 기능을 의료기기에 접목하면 판독 정확성을 높이고, 질병 예측 및 예방 등 새로운 가치 창출을 기여할 수 있을 것으로 기대됨
 - AI 기반 의료기기는 기존 의료기기보다 성능, 효율 그리고 질적 수준을 크게 향상 시킬 수 있음

[그림 1] 인공지능 기반 의료기기 기술개발의 장점

출처: 소프트웨어정책연구소(SPRi)

- 의료 인공지능(artificial intelligence)은 질병을 진단 또는 예측함에 있어 인간의 지능(학습능력, 추론능력, 지각능력, 이해능력 등)을 수행할 수 있도록 개발된 기술을 의미[1]
- AI 기반 의료기기는 ICT 장비 또는 기존 의료기기에서 얻어진 의료 빅데이터를 분석하여 성능을 향상시키는 소프트웨어 또는 소프트웨어가 내장된 의료기기를 의미하며, 인공지능 알고리즘은 주로 의료 빅데이터 분석 기술과 함께 사용됨
- AI 기반 의료기기는 기존 의료기기보다 성능, 효율 그리고 질 등을 높일 수 있다는 특징이 있음
 - 성능을 높이는 관점에서는 기존의 규칙에 기반하(Rule-based) 의료기기보다는 의료 빅데이터로 학습된 지능형 의료기기가 진단 예측률이 더 높고, 위양성(False Positive)이 낮음
 - 효율을 높이는 의료기기는 인간과 비교했을 때, 인공지능 시스템의 진단 및 예측 시간이 더 짧기에 인간보다 더 많은 데이터를 이용하여 진단, 치료 및 예방 등의 판단 가능
 - 질을 높이는 의료기기는 정상 군과 비정상 군을 나눠 의료진이 비정상 군만 보고 진단할 수 있게 하여 의료 전체의 질 향상

● AI 기반 의료기기는 수집되는 데이터의 특성에 따라서 EMR 및 의료데이터 인공지능 의료기기, 의료 및 병리영상 인공지능 의료기기, 시그널 모니터링 인공지능 의료기기 등으로 나눌 수 있음. 본 브리프에서는 이에 따라 현황을 살펴보고자 함

2) 원리 및 기술분류

- 인공지능(AI) 기반 의료기기의 워리
 - AI 기반 의료기기는 환자들의 의료 빅데이터를 분석하여 특정 패턴을 인식하고, 질병을 진단, 치료 및 예측함으로써 환자에게 맞춤형 진단 및 치료법을 제공
- 인공지능 연구는 매우 오래된 역사와 다양한 기술 방법론에 기반하고 있음
 - 추론(Inferencing)에 바탕을 둔 심볼릭 러닝(Symbolic learning), 다양한 기계학습(Machine learning) 중에 생물학적 신경망을 모델링 한 인공신경망(Artificial neural net)과 딥러닝(Deep learning), 통계학적 원리에 기반한 베이시안 모델(Bayesian model) 등으로 구분

표 1. 의료 인공지능 기술 방법론

- 최근 상용화 등으로 주목을 받는 인공지능 기술임
- 심볼릭 러닝은 데이터를 규칙 기반으로 분석해 의미 있는 정보를 찾아내는 알고리즘을 의미
- 기계학습은 데이터를 통한 학습 및 분류하는 알고리즘을 의미
 - ·예를 들면, 뷰노의 뷰노메드 본에이지(의료영상 분석 장치 소프트웨어, 2등급)는 사람 이 더 나은 결정을 내리도록 기계학습 중 인공신경망에 기반한 컨볼루션 신경망을 이용 하여 '의사결정을 지원'하는 기술임

심볼릭 러닝 (Symbolic learning)과 기계학습 (Machine learning)

그림 2. 국내 최초 인공지능 의료기기 VUNO Med - Bond Age

출처 : 뷰노(https://www.vuno.co/)

- 심층신경망 (Deep Neural Network, DNN)을 의미하는 딥러닝(Deep Learning)은 AI라는 범주 안에 속한 세부 기술임
- 딥러닝 방법 중 특히 인간의 시각중추를 모델링 한 컨볼루션 신경망(Convolutional Neural Network, CNN)이 유행[2]
- · CNN은 원하는 특징을 얻어내기 위하여 컨볼루션(convolution)*과 폴링(pooling)** 을 여러 번 반복하여 하나의 영상으로부터 그 영상의 개별 특징들을 각각 보여주는 매우 많은 수의 작은 영상들을 만들어 내게 됨[3]
- * 컨볼루션(convolution)은 원래의 영상에 무수히 많은 영상 필터(예: 대조도를 강조하 는 필터, 사물의 가장자리를 강조하는 필터 등)들을 씌워 변형된 새로운 영상들을 만들 어내는 것
- ** 폴링 (pooling)은 컨볼루션 과정을 통해 만들어진 영상들의 크기를 줄이는(예: 1000 ×1000 화소를 100×100 화소로 줄임) 것

딥러닝 (Deep learning)

그림 3. Convolutional Neural Network(CNN) 구조

출처 : S. Albelwi and A. Mahmood, A Framework for Designing the Architectures of Deep Convolutional Neural Networks, Entropy 2017, 19(6), 242

● 인공지능을 활용한 기술은 헬스케어 다양한 분야에 적용되고 있고, 환자 맞춤형으로 진화하고 있음[표2]

표 2. 인공지능 관련 기술의 헬스케어분야 적용 현황

기술	적용형태	적용부문	
로보틱스	수술 과정의 정밀함과 정확도를 높여 질 높은 치료를 제공	의료기기, 헬스케어 IT	
디지털 개인 비서	환자의 상태를 알 수 있는 지표들을 지속적으로 모니터링하고 필요 상황에 간호사에게 알림을 줌으로서 골든타임을 찾을 수 있음		
기계학습	치료결과에 영향을 미치는 데이터를 기반으로 패턴을 예측하고 분석함	헬스케어 IT	

기술	적용형태	적용부문	
딥러닝	스스로 학습하는 능력을 이용해 대량의 의료 영상기록을 처리함으로써 의료 진의 치료 결정에서 불확실성을 줄여줌	진단 영상,	
영상처리	대규모 의료영상을 빠르게 처리해 질환 형태, 음성/양성 판단 등에 적용	헬스케어 IT	
자연언어 처리	진료 기록과 같은 긴 서술형 문자 묶음들을 해석할 수 있도록 변환해줌	의료기기, 헤스케이 IT	
음성인식	환자의 음성과 언어를 포착해 중요한 정보를 전자 기록함에 기록	헬스케어 IT	
통계분석	대용량 환자 의료데이터를 빠르게 조사하고 분석하여 환자의 치료 결과를 예측할 수 있음		
빅데이터 분석	헬스케어 기관들이 보유한 방대한 환자 의료데이터를 처리하고 환자와 치료 제공자들에게 맞춤형 권고를 제공	의약품, 헬스케어 IT	
예측모델링	위험 질환 예측 등과 같은 진료 결과를 예측하는 데 수학 모델 적용		

출처: Frost & Sullivan

국내 · 외 시장 현황

1) 국내외 시장규모

- 인공지능 기술의 필수요소인 데이터의 축적 속도가 기하급수적으로 증가하고 있는 헬스케어 분야는 인공지능 기술이 적극적으로 활용될 수 있는 환경임
- 세계적인 시장분석 전문업체인 Alliedmarketresearch(2018)은 세계 인공지능 헬스케어 시장이 2016년 14.4억 달러에서 연평균성장률(CAGR) 48.7%를 기록하며 2023년 227.9억 달러까지 성장할 것으로 예측
 - 크게 하드웨어, 소프트웨어, 서비스 세 부문으로 구분하였을 때 소프트웨어 부문에서의 성장이 2016년 9.4억 달러에서 연평균성장률 47.6%로 2023년까지 14.5억 달러 규모까지 성장함으로써 인공지능 헬스케어 시장 성장에 가장 크게 기여할 것으로 전망함[표3]
 - 소프트웨어 부문 다음으로 하드웨어 부문이 연평균성장률 49.7%로 2023년까지 32.8억 달러 규모의 시장으로 성장할 것으로 추정함

부문	2016	2018	2020	2022	2023	CAGR(%)
하드웨어	191.63	441.89	999.87	2219.65	3283.41	49.7
소프트웨어	940.91	2107.34	4633.51	9999.99	14587.77	47.6
서비스	308.25	696.04	1543.04	3357.77	4918.56	48.2

7176.42

15577.40

22789.74

48.7

표 3. 세계 인공지능 헬스케어 시장 규모, 2016-2023(단위: \$million)

출처 : Alliedmarketresearch

1440.79

3245.28

합계

- 인공지능 헬스케어 시장을 인공지능 기술별로 세부적으로 나누어 봤을 때는 자연어처리(natural language processing) 부문이 2016년도에 7.1억 달러 규모로 시장에서 가장 큰 부분을 차지하고 있으며, 47.1% 연평균성장률로 2023년에는 107.9억 달러에 이를 것이라 전망됨[표 4]
- 딥러닝(deep learning) 부분의 경우 가장 높은 연평균성장률인 52%로 2023년까지 28.5억 달러 규모의 시장으로 성장할 것으로 예상됨

표 4. 기술 별 세계 인공지능 헬스케어 시장 규모, 2016-2023(단위: \$million)

부문	2016	2018	2020	2022	2023	CAGR(%)
Deep Learning	149.10	355.99	831.80	1,902.32	2,853.89	52.0
Querying Method	298.14	667.62	1,467.68	3,166.98	4,619.52	47.6
Natural Language Processing	713.14	1,586.52	3,464.60	7,425.46	10,794.00	47.1
Context Aware Processing	280.41	635.14	1,412.33	3,082.65	4,522.34	48.4
Total	1,440.79	3,245.28	7,716.42	15,577.40	22,789.74	48.7

출처: Alliedmarketresearch

- 향후 수많은 국내업체가 '빅데이터 및 인공지능(AI) 기술이 적용된 의료기기의 허가·심사 가이드라인'을 따라 생체신호를 활용한 인공지능 의료기기를 개발하고 인증절차를 진행하며 관련 사업에 뛰어들 것으로 전망됨[4-5]
 - 작년 말 식약처에서 발표한 가이드라인[1]을 보면 의료영상을 이용한 빅데이터 및 AI 기술이 적용된 의료기기 뿐 아니라 생체신호 및 혈액이나 체액 등 인체에서 유래한 시료를 통한 검사결과를 분석하는 AI 기술이 적용된 의료기기에 대한 품목이 정의되어 있음

표 5. 생체정보를 이용한 빅데이터 및 인공지능 기술 적용 의료기기 품목

품목명(등급)	정의
생체신호검출보조소프트웨어(2)	환자의 각종 생체정보(의료영상 제외)를 사용하여 정상과 다른 이상 신호를 검출한 후 알람을 제공하거나 색상 또는 지시선 등으로 표시하여 의료인의 진단 결정을 보조하는데 사용하는 소프트웨어
생체신호진단소프트웨어(3)	환자의 각종 생체정보(의료영상 제외)를 사용하여 질병의 유무, 질병의 중증도 또는 질병의 상태 등을 진단 또는 예측하거나 가능성 정도를 자동으로 표시하여 의료인의 진단결정을 보조하는데 사용하는 소프트웨어

출처: 식품의약품안전처

- 또 다른 시장분석 전문업체인 Marketsandmarkets(2016) 에 의하면 전체 인공지능 기술 적용 분야 중 헬스케어 분야는 가장 높은 연평균성장률인 60.3%를 보일 것으로 전망했으며, Frost&Sullivan(2015) 은 2015년 8.1억 달러에서 2021년 66.6억 달러로 빠른 성장세를 보이며 헬스케어 분야가 성장할 것으 로 예측함
- 국내에서도 인공지능 헬스케어 시장은 빠른 속도로 확대될 것으로 예상하는데 한국정보기술연구원 (2016)에 의하면, 2015년 17.9억 원에서 2020년 256.4억 원으로 전 세계 연평균성장률보다 높은 수치 인 70.4%를 보이며 성장할 것으로 추정함

2) 국내외 기업 및 제품 현황

가. EMR 및 의료데이터 인공지능 의료기기

- 전자의무기록(Electric medical record, EMR) 및 의료데이터 인공지능 의료기기란 병원내의 전자의무기록 및 의료데이터를 기반을 둔 지능형 SW 시스템을 말함
- 현재 인공지능 의료기기는 대부분 의료영상을 대상으로 하고 있어, EMR 및 의료데이터를 대상으로 하는 인공지능 의료기기는 많지 않은 상황임
- 현재 제품화되어서 판매되고 있는 제품은 IBM Watson이 가장 대표적이며 전 세계적으로 널리 활용 중[6-7]
 - 미국에서는 생각보다 도입이 많지는 않으나 조금씩 많아지고 있음
 - 인도에서는 의료질의 문제로 인하여 많은 병원들이 도입을 하고 있음
 - 중국의 경우 병원 수로는 전 세계에서 Watson을 가장 많이 도입한 국가임

표 6. IBM Watson 국내외 도입현황

국외		전 세계적으로 널리 도입중
태국	2014년 10월	태국의 Bumrungrad International Hospital이 미국 외 지역으로 최초로 Watson for Oncology 도입
미국	2017년 2월	미국의 Jupiter Medical Center가 미국 community hospital로는 최초 도입 결정
	2015년 12월	인도의 Manipal 병원 Watson for Oncology 도입
인도	2018년 5월	인도의 Apollo Hospitals (인도의 가장 큰 전문 병원 네트워크)의 10개 병원이 Watson for Oncology와 Watson for Genomics를 도입하기로 결정
	2016년 8월	중국의 Hangzhou Cognitive Care가 21개 병원에 Watson for Oncology 도입
중국	2017년 6월	중국의 Baheal Pharmaceutical Group에서 Watson for Genomics 도입. Baheal Pharmaceutical Group는 중국에서 12,000개 병원과 거래를 하고 있으며, 2017년 8개 병원에 Watson for Genomics 도입 완료
국내		길병원을 시작으로 8개 병원이 도입
	2016년 9월	한국 최초로 길병원에서 Watson for Oncology 도입
2017년 1월		한국의 부산대병원이 Watson for Oncology와 Watson for Genomics 도입. Watson for Genomics는 국내 최초 도입
현재		건양대병원, 대구카톨릭병원, 계명대 동산병원, 조선대병원, 화순전남대병원, 중앙보훈병원 등 8개 병원이 도입

- 국내도 의료기기법 개정에 따라 '왓슨(Watson)'도 의료기기로 허가 가능해짐('18.11)[8]
 - IBM Watson은 EU에서만 의료기기로 분류하고, 미국과 우리나라에서는 의료기기로 분류 되지 않았음
 - 본 개정안은 의료기기 정의에 소프트웨어를 추가하고, 왓슨 등 인공지능(AI) 기반의 의료 데이터 분석 소프트웨어도 의료기기로 허가를 받을 수 있게 함
- 2017년 2월에 CB Insight에서 발표한 "106 Startups Transforming 헬스케어 with Al"[9]에 의하면 EMR 및 의학 데이터 분석에 다양한 의료 인공지능 스타트업들이 진입하고 있음을 확인할 수 있음[그림 4]

표 7. EMR 및 의료데이터 인공지능 의료기기 스타트업 현황

분야	기업수
Patient Data & Risk Analytics	23개의 스타트업
Lifestyle Management & Monitoring	10개사
Nutrition	2개사
Emergency Room & Surgery	4개사
Research	2개사
Mental Health	3개사
Drug Discovery	9개사

그림 4. 의료인공지능 주요 스타트업 현황

106 STARTUPS TRANSFORMING HEALTHCARE WITH AI

출처: CB Insights, 106 Startups Transforming 헬스케어 with AI(2017.2)

- 국내회사로는 셀바스인공지능, 라인웍스 등이 대표적인 회사들이지만, 아직 제품군이 다양하지 않음
- 다만, 해당 제품 중에서 의료기기를 승인 받은 제품은 거의 없으며, 또한 의료기기로 분류되는 제품들이 많지는 않은 상황임

나. 의료 및 병리영상 인공지능 의료기기

- 의료 및 병리영상 인공지능 의료기기란 의료영상장비에서 생성된 영상을 이용하여 진단, 치료방법 선택, 예후 예측할 수 있는 인공지능 의료기기를 말함
- ⊙ 국내에서 품목허가를 받은 의료 및 병리영상 관련 인공지능 의료기기는 총 3건이 허가 완료된 상태임(2018.8.17.기준)
 - 아래 세 가지 제품은 '빅데이터 및 인공지능(AI) 기술이 적용된 의료기기의 허가·심사 가이드라인' 적용 대상으로 선정되어 임상시험 설계에서 허가까지 맞춤 지원을 받아 진행

그림 5 & 표 8. 국내 의료 및 병리영상 인공지능 의료기기 허가 현황

('18.8.17기준)

연 번	업체명	제품사진 및 품목명(등급)	제품명 및 설명	신청일	허가일 (소요기간)
1	㈜뷰노	의료영상분석 장치소프트웨어(2)	VUNOmed-BoneAge :인공지능(AI)이 엑스레이 영상을 분석하여 환자의 뼈 나이를 제시하고, 의사가 제시된 정보 등으로 성조숙 성이나 저성장을 진단하는 데 도움을 주는 소프트웨어	'18.1.24	'18.5.16
2	㈜제이엘 케이인스 펙션	의료영상진단보조소프트웨어(3)	JBS-01K : 단순촬영(X-ray)으로 촬영한 환자의 흉부 영상을 입력·분석하여 폐 결절이 의심되는 부위의 정도를 색깔 등으로 표시함으로써의 사가 폐결절을 진단하는 데 도움을 주는 소프트웨어	' 18.5.2	'18.8.14 (58일*)

연 번	업체명	제품사진 및 품목명(등급)	제품명 및 설명	신청일	허가일 (소요기간)
3	㈜루닛	의료영상검출보조소프트웨어(2)	Lunit INSIGHT : 환자의 뇌 MR(Magnetic Resonance) 영상과 심방세 동유무에 대한 자료를 바탕으로 뇌경색(허혈성 뇌졸중) 의유형을 자동으로 분석하여 의료진의 뇌경색 유형 분류를 진단하는데 지원하는소프트웨어	'18.5.29	'18.8.14 (44일*)

*식약처 발표 소요기간

출처 : 식약처 보도자료, 국내에서 개발한 인공지능(AI) 기반 의료기기 2건 허가(2018.8.17)

● 2018년 11월 기준 FDA 승인을 받은 의료 및 병리영상 관련 주요 인공지능 의료기기 현황은 다음과 같음[표 9]

표 9. FDA 승인 받은 의료 및 병리영상 관련 주요 인공지능 의료기기 현황

기업명	FDA 승인 날짜	부위	역할
Aidoc	2018/08	뇌, 척추	판독 우선순위 조절 및 중요 이미지 표시
iCAD	2018/08	유방	유방암 진단
Zebra Medical	2018/07	심장 동맥	관상동맥석회화 진단
Bay Labs	2018/06	심장	심 초음파 검사
Neural Analytics	2018/05	뇌	뇌졸중 진단
IDx	2018/04	망막	당뇨 망막 진단
Imagen	2018/03	손목	X-ray 손 목 골절 진단
Viz.ai	2018/02	뇌	뇌졸중 진단(CT)
Arterys	2018/02	간, 폐	간암, 폐암 진단(MRI, CT)
MaxQ-AI	2018/01	뇌	뇌출혈 진단
Alivecor	2017/11	심장	심방성 부정박동 진단
Arterys	2017/01	심장	MRI 심장 분석

출처: https://twitter.com/EricTopol/status/1028642832171458563

⊙ 주요 기업 및 제품군

표 10. 의료 및 병리영상 인공지능 의료기기 주요 기업 제품군 현황

기업명	제품군명 및 내용
Arterys	· LIVERAI : 딥러닝을 이용한 자동화된 간 병변 분할 · LUNGAI : 딥러닝을 이용한 자동화된 폐 결절 분할 · CARDIOAI : 딥러닝을 이용한 4D 심장 혈류 시각화 및 정량화
Zebra Medical Vision	관상동맥 석회화 정도에 대한 스코어링
Quantitative Insights	QuantX SE : MRI, mammography, 초음파 등 통합 분석을 통한 유방 병변 (breast lesion) 평가 플랫폼
iCAD	PowerLook Density Assessment Version 3.4 : 유방 밀도 측정 제품
aidoc	백그라운드에서 항상 동작하면서 판독의 우선순위 결정을 돕고, 이상 발생 시 알려주는 영상의학 업무 최적화 솔루션

다. 시그널 모니터링 인공지능 의료기기

- 시그널 모니터링 기기란 주로 의료목적으로 신체에 부착하거나 착용하는 센서를 통해 사용자로부터 시그널 정보를 획득하여 실시간 대응 및 24시간 모니터링 등을 할 수 있는 인공지능 의료기기를 말함[10]
 - 시그널 모니터링기기는 중환자실, 응급실, 병실 등 다양한 병원 환경 또는 환자들이 질환 관리 및 치료 목적으로 의료기기로 상용화된 제품들이 존재함
 - 최근 질병 사전 예측 및 예방이 필요하다는 의료패러다임의 변화로 인해 의료분야에서의 활용도가 점차 확대되고 있음
 - 의료 분야에서 의료기기로써 상용화된 제품 중 대표적인 사례로 Medtronic의 연속 혈당계와 IBM의 인공지능 왓슨이 결합하여 만든 Sugar.IQ 제품이 있음[그림 6]
 - · 해당 제품은 연속 혈당계를 통해 혈당의 변화를 측정하고 측정한 값을 통해 저혈당증을 사전에 예측할 수 있는 어플리케이션 형태의 제품임. Sugar.IQ를 활용하게 되면 저혈당이나 고혈당을 겪는 횟수가 감소하는 등 혈당 조절이 필요한 환자에게 여러 가지 도움을 줄 수 있음

그림 6. Medtronic의 Sugar.IQ

출처: Medtronic

- Sugar.IQ 외에도 physiQ 社의 pinpointIQ은 최근 FDA 인증을 받은 제품으로 웨어러블 바이오센서로부터 지속적으로 환자의 상태를 측정함으로써 환자의 미묘한 상태 변화를 감지 할 수 있어 갑작스러운 위험상황에 대비할 수 있도록 도와주는 제품임[그림 7]
- ·해당 제품은 클라우드 환경에서 동작할 수 있도록 개발되어 환자의 상태를 파악하는데 필요한 바이오센서의 종류에 상관없이 사용 가능하다는 장점이 존재
- 또한, 응급실, 입원실, 병동 내 간호 스테이션에서 모니터링 하는 환자의 상태를 언제 어디서나 태블릿PC, 스마트폰 등을 통해 의료진들이 확인할 수 있도록 구축한 IT 솔루션인 필립스의 "커넥티드 모니터링 솔루션"이 상용화 중[그림 8]

그림 7. physiQ의 pinpointIQ

그림 8. 필립스 커넥티드 모니터링 솔루션

출처: physiQ

출처: 필립스 홈페이지

3) 국내외 제품개발 동향

가. EMR 및 의료데이터 인공지능 의료기기

- 미국의 경우 EMR 개발 회사들인 Allscripts, athenahealth, Cerner, eClinicalWorks, Epic 등이 인공지능 기술을 차세대 EMR에 도입하여 clinical workflow를 개선하겠다고 발표. 이는 병원의 프로세스를 인공지능을 통해 최적화하는 접근을 취하겠다는 의미임[11]
- 국내는 대부분 영상 분석을 위주로 하고 있으나, 생체신호 분석 또는 공통데이터모델(Common data model, CDM)기반 빅데이터 분석 등의 접근이 존재함[12-13]

표 11. 국내 EMR 및 의료데이터 인공지능 의료기기 제품개발 동향

뷰노	세종병원과 연구하여 생체신호 분석을 통해 심정지, 패혈증, 중환자실 재입실 예측 등의 인공지능 개발 중
에비드넷	OHDSI(Observational Health Data Sciences and Informatics) CDM기반으로 다기관 의료 빅데이터 분석 기술 개발 중
삼성SDS & 빈티지랩	삼성서울병원과 같이 건강검진 자료 및 EMR 자료를 이용해 유방암 환자 재발 위험도 및 발생 위험도 예측 모델 개발 중 [15]
3Billion	희귀질환환자 유전체 분석을 통해 진단 및 치료 기법 개발 중
셀바스Al	세브란스와 함께 심장음, 심전도 분석을 통한 심장질환 발병 위험도 예측 모델 개발 중
엘렉시	분당서울대병원과 뇌파를 분석하여 뇌전증 발작 시간 예측 SW 개발 중

나. 의료 및 병리영상 인공지능 의료기기

● 식약처 승인받은 의료기기 기업 이외에도 활발하게 의료영상 관련 인공지능 의료기기를 개발하고 있는 국내외 주요 기업 현황은 다음과 같음

표 12. 국내 의료 및 병리영상 인공지능 의료기기 제품개발 동향

딥바이오	· 병리에 인공지능을 도입해 전립선암 진단을 돕는 제품 · 병리학 의사가 눈으로 오랜 시간 관찰해 진단을 내렸던 기존의 방식에 비해 효율성을 높이고 오 진율을 줄일 수 있도록 함
메디픽셀	· 인공지능으로 흉부CT를 분석하여 폐암의 조기진단을 돕는 제품 · 모든 폐결절을 검출한 후 폐암으로 판단하는 폐결절을 시각화하여 보여주고 폐암일 가능성을 확률로 표시 · 영상의학의의 폐암 진단 생산성을 향상시킬 뿐만 아니라 오진율을 낮출 수 있도록 함
메디웨일	· 안저 검사 영상을 분석해 안질환의 진단을 보조하는 제품 · 혈관, 시신경, 황반 등의 병변 여부 진단
Enlitic	· 인공지능으로 흉부 X-ray를 분석하여 비정상 스크리닝 · 인공지능으로 흉부 CT를 분석하여 폐암 스크리닝

다. 시그널 모니터링 인공지능 의료기기

- ⊙ 앞서 언급한 상용화된 제품 외에도 인허가는 받지 못하였으나 대학 연구기관과 기업들에서 개발 중인 인공지능 기술 기반 시그널 모니터링 의료기기들이 많이 존재함
- 해외에서는 단순히 연구개발 단계에 머물러 있는 것이 아닌 실제로 제품개발 목적에 맞게 다양한 분야에서 활용되고 있음[표 13]

표 13. 국외 시그널 모니터링 인공지능 의료기기 제품 활용사례

IBM	2008년부터 캐나다 온타리오 공과대학과의 공동연구로부터 중환자실에 입원한 신생아들의 이상 징후를 사전 예측 프로젝트 진행 2010년에는 프로비던스의 여성아동병원의 신생아 중환자실 80병상에 대한 데이터를 측정 및 수집하여 신생아의 감염 징후를 사전에 예측하기 위한 연구를 계속 진행함으로써 중환자실 내에 서의 신생아 생존율을 높이기 위해 노력
엑센추어랩	환자가 호흡 등에 이상이 있을 시 셔츠에 장착된 센서가 감지하여 의료기관과 연계된 콜센터로 경고신호를 보내고 의료기관 내 의료진이 수집된 데이터를 토대로 후속조치를 취할 수 있는 라이프셔츠 개발
필립스	심장질환을 예방하기 위한 목적으로 MyHeart 프로젝트를 통해 EU내 10개국 22개 기업, 연구소 대학 등이 공동으로 의복형 생체신호 측정 시스템을 개발하여 실생활에 적용하기 위해 시도

● 특히, 최근 들어 24시간 연속적으로 기록되는 방대한 크기의 시그널 정보를 분석 및 예측하는데 있어 인공지능 기술을 활용한 의료기기들에 대한 연구개발이 지속해서 이루어지고 있음

표 14. 국외 시그널 모니터링 인공지능 의료기기 연구개발 사례

VitalConnect	패치 형태의 제품을 통해 ECG, HRV, HR, RR, BT를 측정하여 부정맥을 감지할 수 있는 제품을 개발 중이며, 이를 통해 환자가 병원에 입원해 있는 기간뿐 아니라 퇴원 후에도 지속적으로 관리 할 수 있는 서비스를 제공하는 것을 목표로 함
Cardiogram	애플의 애플워치를 활용하여 사용자의 심박수를 분석함으로써 맥박이 불규칙하고 빠르게 뛰는 심방세동과 맥박이 빠르지만 규칙적으로 뛰는 심방세동을 파악할 수 있는 제품을 개발 중임[그림 9]

- 애플워치의 심박수, 지오 패치의 심전도 분석 인공지능의 경우, 부정맥을 예측하지는 않지만 웨어러블을 통해 일상생활에서 얻는 데이터의 경우에도 인공지능을 통한 질병의 진단에서 예측으로 발전가능성은 있음
 - *해당 제품의 핵심 기술에 대한 성능은 2017년 5월 UCSF와의 공동연구 결과물로써 AUC 0.97이라는 높은 성능을 보이며 웨어러블 디바이스로 얻은 심박수 데이터를 통해 심방세동을 판별할 수 있다는 것을 증명함

그림 9. 애플워치 기반 Cardiogram의 심박수 분석

출처 : Cardiogram

● 해외뿐 아니라 국내에서도 인공지능 기술을 활용하여 환자의 생체 정보를 분석하고 이를 통해 환자의 위험상황을 예측하여 시각 또는 청각 등에 의한 경보를 발생시키는 제품이 개발 중임[표 15]

표 15. 국내 국외 시그널 모니터링 인공지능 의료기기 제품개발 사례

뷰노	 전자의무기록에 기록된 시그널 정보를 활용하여 실시간으로 환자의 위험도를 예측하는 DeepEWS 제품 개발 중 해당 제품은 24시간 내 심정지 예측 정확도가 91%로 MEWS(기존의 환자 위험도 예측 방법)와 비교해봤을 때 확연히 뛰어난 성능으로 35.3% 낮은 오경보율을 보여 의료현장 에서의 효율적인 진료가 가능하도록 돕는 것이 가능함 · 공동 개발한 심장전문병원인 메디플렉스 세종병원에 연구목적으로 해당 제품을 설치하고 환자 모니터링이 가능하도록 병원 내 모니터링 환경을 구축
KAIST	환자가 집에서 수면을 취하는 동안 심장박동이나 뇌파, 호흡 등의 환자 생체신호를 자동으로 측정하고 이를 저장할 수 있는 수면 관련 생체신호시스템 개발
서울대	피부 부착형 웨어러블 나노소자를 개발하는 데 성공하여 반창고처럼 피부에 붙여 파킨슨병과 같은 운동강애 질환에 대한 발병 여부를 판별 가능한 제품을 개발

〈참고문헌〉-

- [1] 식품의약품안전처 식품의약품안전평가원. (2017.11). 빅데이터 및 인공지능(AI) 기술이 적용된 의료기기의 허가·심사 가이드라인
- [2] S. Albelwi and A. Mahmood, A Framework for Designing the Architectures of Deep Convolutional Neural Networks, Entropy 2017, 19(6), 242
- [3] 의료인공지능: 인공지능 초심자를 위한 길라잡이, 대한영상의학회지, 박성호, (2018)
- [4] 한국과학기술정보연구원, "생체신호 모니터링 디바이스 예방에서 치료와 관리까지 다양한 제품 성장 기대", 2016. 8. 31.
- [5] 정보통신기술진흥센터, "생체신호 모니터링 디바이스 기술 및 개발 동향", 2014. 8. 27.
- [6] IBM Watson Health. https://www.ibm.com/watson/health/(2018).
- [7] 최윤섭, "인공지능은 의료를 어떻게 혁신할 것인가:(2) IBM Watson 의 이상과 현실적 과제", 2017. 6. 13.
- [8] 의료기기법 개정안 국회 본회의 통과...'왓슨'도 의료기기로 허가 가능, 라포트시안2018.11.23.
- [9] CB Insights. From Virtual Nurses to Drug Discovery: 106 Artificial Intelligence Startups in healthcare. https://www.cbinsights.com/research/artificial-intelligence-startups-헬스케어/(2017)
- [10] O. Faust, et al., Deep learning for healthcare applications based on physiological signals: A review, Comput. Methods Programs Biomed. 161, 1-13(2018)
- [11] Sullivan, T. Next up for EHRs: Vendors adding aritificial intelligence into the workflow, 헬스케어 IT News. https://www.헬스케어itnews.com/news/next-ehrs-vendors-adding-artificial-intelligence-workflow(2018).
- [12] 최윤섭, "인공지능은 의료를 어떻게 혁신할 것인가(7)생체 신호 모니터링을 통한 질병 예측(상)", 2017. 10. 8.
- [13] 최윤섭, "인공지능은 의료를 어떻게 혁신할 것인가(8)생체 신호 모니터링을 통한 질병 예측(하)", 2017. 10. 17.
- [14] 전자공학회지, 딥러닝을 이용한 객체분류 및 검출 기술, 2017년 11월호
- [15] 데일리메디, "삼성메디슨 섣부른 인공지능 마케팅 '눈살'", 2017. 1. 11.

- 외부자문 및 작성: 서울아산병원 영상의학과 김남국 교수, 서준범 교수, 이아름 연구원, 성균관대 삼성융합의과학원 신수용 교수, ㈜뷰노 이예하 대표, ㈜메디픽셀 송교석 대표, 단비 연구원(dg0306@khidi.or.kr)
- ◉ 편집인 : 박순만 단장, 이진수 팀장
- 본 내용은 연구자의 개인적인 의견이 반영되어 있으며, 한국보건산업진흥원의 공식견해가 아님을 밝혀둡니다.

WWW.khidi.or.kr/device 의료기기산업정보시스템

의료기기화장품산업단

Department of Medical Devices & Cosmetics Industry