平成24年度(2012年度)日本留学試験

数学(80分)

【コース1(基本, Basic)・コース2(上級, Advanced)】

※ どちらかのコースを一つだけ選んで解答してください。

I 試験全体に関する注意

- 1. 係員の許可なしに、部屋の外に出ることはできません。
- 2. この問題冊子を持ち帰ることはできません。

II 問題冊子に関する注意

- 1. 試験開始の合図があるまで、この問題冊子の中を見ないでください。
- 2. 試験開始の合図があったら、下の欄に、受験番号と名前を、受験票と同じように記入してください。
- 4. 足りないページがあったら、手をあげて知らせてください。
- 5. 問題冊子には、メモや計算などを書いてもよいです。

Ⅲ 解答方法に関する注意

- 1. 解答は、解答用紙に鉛筆(HB)で記入してください。
- 2. 問題文中のA, B, C,…には、それぞれ-(マイナスの符号)、または、0から9までの数が一つずつ入ります。あてはまるものを選び、解答用紙 (マークシート)の対応する解答欄にマークしてください。

解答に関する記入上の注意

- (1) 根号 ($\sqrt{}$) の中に現れる自然数が最小となる形で答えてください。 (例: $\sqrt{12}$ のときは、 $2\sqrt{3}$ と答えます。)
- (2) 分数を答えるときは、符号は分子につけ、既約分数(reduced fraction) にして答えてください。

(例: $\frac{2}{6}$ は $\frac{1}{3}$, $-\frac{2}{\sqrt{6}}$ は $\frac{-2\sqrt{6}}{6}$ と分母を有理化してから約分し, $\frac{-\sqrt{6}}{3}$ と答えます。)

- (3) $A\sqrt{B}$ に $-\sqrt{3}$ と答える場合は、以下のようにマークしてください。
- (4) $\boxed{\mathsf{DE}} x$ に -x と答える場合は、 D を-, E を1 とし、以下のようにマークしてください。

【解答用紙】

Α	•	0	1	2	3	4	9	6	0	8	9	
В	Θ	0	1	2	•	4	9	6	0	8	9	
С	Θ	0	1	2	3		5	6	Ø	8	9	
D	•	0	1	2	3	4	5	6	0	8	9	
E	θ	0	•	2	3	4	9	6	0	8	9	

- 3. 解答用紙に書いてある注意事項も必ず読んでください。
- ※ 試験開始の合図があったら、必ず受験番号と名前を記入してください。

受験番号	*			*			
名 前			 			•	

数学 コース 2

(上級コース)

「解答コース」記入方法

解答コースには「コース1」と「コース2」がありますので、どちらかのコースを<u>一つだけ</u>選んで解答してください。「コース2」を解答する場合は、右のように、解答用紙の「解答コース」の「コース2」を 〇 で囲み、その下のマーク欄をマークしてください。

選択したコースを正しくマークしないと、採点されません。

I

問 1 a, b を定数とし、a > 0 とする。2 次関数

$$y = 4x^2 + 2ax + b$$

のグラフをx軸方向にa, y軸方向に1-7a だけ平行移動する。平行移動したグラフが点(0,4)を通るとき

$$b = \boxed{\mathbf{AB}} a^2 + \boxed{\mathbf{C}} a + \boxed{\mathbf{D}}$$

であり、そのグラフを表す2次関数は

$$y = \begin{bmatrix} \mathbf{E} \end{bmatrix} x^2 - \begin{bmatrix} \mathbf{F} \end{bmatrix} ax + \begin{bmatrix} \mathbf{G} \end{bmatrix}$$

である。

2 次関数 ① のグラフが x 軸に接するとき,a= H であり,そのときの接点の x座標は x= J である。

間 2 多項式

$$P = x^2 + 2(a-1)x - 8a - 8$$

を考える。

- (1) a を有理数とする。 $x=1-\sqrt{2}$ に対して,P の値が有理数になるのは a= **K** のときであり,そのときの P の値は P= **LM** である。
- (2) x, a を正の整数とする。P の値が素数になるような x, a をみつけよう。P を因数分解して

$$P = (x - \boxed{\mathbf{N}})(x + \boxed{\mathbf{O}}a + \boxed{\mathbf{P}})$$

を得る。したがって、 $x = \mathbf{Q}$ である。

さらに、P の値が素数になるような a の中で最小のものは $a = \begin{bmatrix} \mathbf{R} \end{bmatrix}$ であり、そのときの P の値は $P = \begin{bmatrix} \mathbf{ST} \end{bmatrix}$ である。

 $oxed{I}$ の問題はこれで終わりです。 $oxed{I}$ の解答欄 $oxed{U}$ ~ $oxed{Z}$ はマークしないでください。

II

初項から第n項までの和が

$$\sum_{k=1}^{n} a_k = n^2 + 3n$$

である数列 $\{a_n\}$ $(n = 1, 2, 3, \cdots)$ を考える。

- (1) $a_n = \begin{bmatrix} \mathbf{A} & n + \begin{bmatrix} \mathbf{B} \end{bmatrix} \end{bmatrix}$ $\nabla \delta \delta_o$
- (2) $b_n = n^2 5n 6$ である数列 $\{b_n\}$ $(n = 1, 2, 3, \cdots)$ に対して、 $b_n < 0$ となる項は全部で **C** 個あり、それらの項の和は **DE** である。
- (3) (1), (2) $\mathcal{O}(a_n)$, b_n に対して

$$\sum_{k=1}^{n} \frac{k^2 b_k}{a_k} = \frac{1}{\boxed{\mathsf{F}}} n \left(n + \boxed{\mathsf{G}} \right) \left(n^2 - \boxed{\mathsf{H}} n - \boxed{\mathsf{I}} \right)$$

である。

 $oxed{II}$ の問題はこれで終わりです。 $oxed{II}$ の解答欄 $oxed{oxed}$ $oxed{oxed}$ はマークしないでください。

数学-22

a, b, c を正の実数とする。座標平面上の 3 点 A(a,0), B(3,b), C(0,c) を頂点とする 三角形 ABC を考える。その三角形 ABC の外接円は原点 O(0,0) を通り、 $\angle BAC = 60^\circ$ とする。

- (1) $\angle AOB = \boxed{\mathbf{AB}}^{\circ}$ であるから, $b = \sqrt{\boxed{\mathbf{C}}}$ である。
- (2) 外接円を表す方程式は

$$\left(x - \frac{a}{\boxed{\mathbf{D}}}\right)^2 + \left(y - \frac{c}{\boxed{\mathbf{E}}}\right)^2 = \frac{a^2 + c^2}{\boxed{\mathbf{F}}}$$

であり、c は a を用いて $c = \sqrt{\mathbf{G}} \left(\mathbf{H} - a \right)$ と表される。

(3) 線分 OB と線分 AC の交点を D とし、 \angle OAC = α 、 \angle ADB = β とおく。 $a=2\sqrt{3}$ のとき

$$\tan \alpha = \boxed{1} - \sqrt{\boxed{J}}, \quad \tan \beta = \boxed{K}$$

である。

注) 外接円: circumscribed circle

 $oxed{III}$ の問題はこれで終わりです。 $oxed{III}$ の解答欄 $oxed{L}$ \sim $oxed{Z}$ はマークしないでください。

問 1 a を正の実数とするとき、関数

$$f(x) = x^2 - 5 + 4a\log(2x + a + 8) \qquad \left(-\frac{a}{2} - 4 < x < -2\right)$$

の極値について調べよう。

(1) 関数 f(x) を x について微分して

を得る。

(2) 条件 a>0 と関数 f(x) の定義域が $-\frac{a}{2}-4 < x < -2$ であることを考慮すると、 f(x) が極大値、極小値の両方をとるのは

のときである。そのとき、f(x) の極大値と極小値の和は

$$\frac{a^2}{ }$$
 + $\boxed{ }$ + $\boxed{ }$ + $\boxed{ }$ $a \log \boxed{ }$ K a

である。

問 2 正の整数 n と実数 a に対して、関数

$$f_n(a) = \int_0^{\pi} (\cos x + a \sin 2nx)^2 dx$$

を考える。

(1) 関数 f_n(a) を

$$f_n(a) = \int_0^{\pi} \left\{ \frac{1 + \cos \boxed{\mathbf{L}} x}{2} + a^2 \frac{1 - \cos \boxed{\mathbf{M}} nx}{2} + a \left(\sin (2n+1)x + \sin (2n-1)x \right) \right\} dx$$

と変形して、この右辺の定積分を計算すると

$$f_n(a) = \frac{\pi}{|\mathbf{N}|} a^2 + \frac{|\mathbf{O}| n}{|\mathbf{P}| n^2 - |\mathbf{Q}|} a + \frac{\pi}{|\mathbf{R}|}$$

を得る。

(2) $f_n(a)$ を最小にする a の値を a_n とし, $S_N = \sum_{n=1}^N \frac{a_n}{n}$ とおく。 このとき

$$S_{N} = -\frac{\mathbf{S}}{\pi} \sum_{n=1}^{N} \left(\frac{1}{2n - \mathbf{T}} - \frac{1}{2n + \mathbf{U}} \right)$$
$$= -\frac{\mathbf{S}}{\pi} \left(\mathbf{V} - \frac{1}{\mathbf{W} N + \mathbf{X}} \right)$$

である。よって

$$\sum_{n=1}^{\infty} \frac{a_n}{n} = \lim_{N \to \infty} S_N = -\frac{\mathbf{Y}}{\pi}$$

を得る。

IV の問題はこれで終わりです。
IV の解答欄 Z はマークしないでください。
コース2の問題はこれですべて終わりです。解答用紙の V はマークしないでください。
解答用紙の解答コース欄に「コース2」が正しくマークしてあるか、
もう一度確かめてください。

この問題冊子を持ち帰ることはできません。

〈数 学〉

コース 1						
F	問	解答欄	正解			
		ABCD	-273			
	問1	EF	46			
		G	4			
		HI	43			
		J	1			
I		K	0			
		LM	-7			
	問2	NOP	422			
	1012	Q Q	5			
		R	2			
		ST	11			
		ABC	881			
		D	5			
	問1	Е	4			
		FG	4			
		HI	32			
I		J	1			
		KL	16			
	問2	MN	29			
		0	3			
		PQ	16			
		RST	336			
		Α	2			
		В	2			
		С	4			
Ш		D	1			
ш		E	2			
		FGH	124			
		ı	0			
		J. J.	1			
		ABCD	1032			
		EF	-2			
IV		G	1			
		Н	2			
	L	IJ	-1			

	-	コース 2	
ļ ļ	問	解答欄	正解
		ABCD	-273
		EF	46
7	問1	G	4
		HI	43
	1 1 1 1	J	1
I		K	0
	9 - 90 - 1	LM	-7
	問2	NOP	422
	1914	Q	5
		R	2
	<u></u>	ST	11
	100	AB	22
I		С	5
•	- 57	DE	50
		FGHI	8174
mun ann	10 (19 0) 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AB	30
		С	3
	1	DE	22
Ш	H 48 4 4 4	F.	4
		GH	34
		IJ	23
		K	1
		ABC	224
	14 14 14 14 1	DE	28
	問1	F	4
		G	8
N		HIJK	4648
		LM	24
		NOPQR	28412
	問2	STU	411
		VWX	121
		Υ	4