mude เราตัวเขารักการใช้และเกิดเลื่อง ขางเลืองกับ Turing Machines

Alan M. Turing (1912-1954)

- English mathematician, computer scientist
- providing the concepts of algorithm and computation with the Turing machine, which can be considered a model of a computer.
- During the 2nd World War, Turing devised a technique for breaking German ciphers machine (Enigma).
- Turing was prosecuted in 1952 for homosexual acts.
- He accepted chemical treatment, as an alternative to prison.
 However, it was unsuccessful.
- In 1954, he committed suicide by cyanide poisoning.
- In 2017, UK retroactively apologize for an outlawed homosexual acts.

The Language Hierarchy

Languages accepted by Turing Machines

 $a^nb^nc^n$

WW

Context-Free Languages

 a^nb^n

 WW^{R}

Regular Languages

a *

*a***b**

A Turing Machine

Tape

Read-Write head

Control Unit

The Tape

> END SIGNE

No boundaries -- infinite length

gunggo rapnyle

The head moves Left or Right

Read-Write head

The head at each time step:

- 1. Reads a symbol in
- 2 Writes a symbol win
- 3) Moves Left or Right www

Example:

Time 0

Time 1

- 2. Writes k
- 3. Moves Left

- 1. Reads b
- 2. Writes f
- 3. Moves Right

The Input String

Remark: the input string is never empty

States & Transitions

Example:

Time 1

$$q_1 \xrightarrow{a \to b, R} q_2$$

$$\begin{array}{ccc}
 & a \rightarrow b, R \\
 & q_2
\end{array}$$

Example:

$$\begin{array}{ccc}
 & a \rightarrow b, L \\
 & q_1
\end{array}$$

Example:

Time 1

Determinism

, moun state Rollin

Turing Machines are deterministic

มีแบกตา - ไม่สาม - อกามสอกรถฐานเค่ากับ Not Allowed

Allowed

OSILUMI No lambda transitions allowed

Partial Transition Function

Example:

In aions, define input Translich

<u>Allowed:</u>

No transition

for input symbol c

Halting water warms hall = msugn

The machine *halts* if there are no possible transitions to follow

Example:

No possible transition

Final States

· Final states have no outgoing transitions

In a final state the machine halts

Acceptance

Accept Input

If machine halts in a final state

Reject Input

If machine halts in a non-final state or

If machine enters an infinite loop

Turing Machine Example

A Turing machine that accepts the language:

Rejection Example monsmareject

No possible Transition Halt & Reject

Infinite Loop Example

Time 2

Time 4

Time 5

Because of the infinite loop: detect los

The final state cannot be reached

The machine never halts

The input is not accepted

Another Turing Machine Example

Halt & Accept

Observation:

If we modify the machine for the language $\{a^nb^n\}$

we can easily construct a machine for the language $\{a^nb^nc^n\}$

Formal Definitions for Turing Machines

Transition Function

DFA
$$g(q_1, a) = q_2$$
 DPDA $\delta(q_1, a, b) = g_2$

$$\begin{array}{ccc}
 & a \to b, R \\
 & q_2
\end{array}$$

July My D

$$\delta(q_1, a) = (q_2, b, R)$$

Transition Function

$$\delta(q_1,c) = (q_2,d,L)$$

Configuration

unastato a va-nu

Instantaneous description:

A Move:

$$q_2 xayb \succ x q_0 ayb$$

$$q_2 xayb \succ x q_0 ayb \succ xx q_1 yb \succ xxy q_1 b$$

$$q_2 xayb \succ x q_0 ayb \succ xx q_1 yb \succ xxy q_1 b$$

Equivalent notation:
$$q_2 xayb \stackrel{*}{\succ} xxy q_1 b$$

edruwly

Initial configuration: 90 W

1324715747655tring (821)

Input string

The Accepted Language

For any Turing Machine M

$$L(M) = \{w : q_0 \ w \succ x_1 \ q_f \ x_2\}$$

Initial state

Final state

681/2/2011 - whent on tape

Just Geop gains to final state

Standard Turing Machine

The machine we described is the standard:

· Deterministic

· Infinite tape in both directions

·Tape is the input/output file

Computing Functions with Turing Machines

A function

f(w)

has:

A function may have many parameters:

Example: Addition function

$$f(x,y) = x + y$$

Integer Domain

turing muchine sulations rational

Decimal: 5

Binary: 101

Unary: 11111

We prefer unary representation:

easier to manipulate with Turing machines

Definition:

A function f is computable if there is a Turing Machine M such that:

function (2=21211 nonverson) of

Initial configuration

For all $w \in D$ Domain

In other words:

A function f is computable if there is a Turing Machine M such that:

$$q_0 w \succ q_f f(w)$$
Initial Final
Configuration

For all $w \in D$ Domain

Example

The function
$$f(x,y) = x + y$$
 is computable

x, y are integers

Turing Machine:

x0y unary

Input string:

Output string:

The 0 is the delimiter that separates the two numbers

algorithme m 5010 (20) 0 10 2 9 2015 (20) The 0 helps when we use the result for other operations x + yFinish

final state

Turing machine for function f(x,y) = x + y

Execution Example:

Time 0

$$x = 11$$
 (2)

$$y = 11$$
 (2)

Final Result

$$\begin{array}{c|c|c|c}
x + y \\
\hline
 & 1 & 1 & 1 & 0 & \diamond \\
\hline
 & q_4 & & & & \\
\end{array}$$

Time 3

Time 5

Time 8

Another Example

$$f(x) = 2x$$

The function f(x) = 2x is computable

is integer

Turing Machine:

Output string:

XX

unary

Turing Machine Pseudocode for f(x) = 2x

- Replace every 1 with \$
- · Repeat:

· Go to right end, insert 1

Until no more \$ remain

Turing Machine for f(x) = 2x

Example

Finish

Another Example

findin un discrete

The function
$$f(x,y) = \begin{cases} 1 & \text{if } x > y \\ 0 & \text{if } x \le y \end{cases}$$
 is computable

Turing Machine for

$$f(x,y) = \begin{cases} 1 & \text{if } x > y \\ 0 & \text{if } x \le y \end{cases}$$

Input:
$$x0y$$

Output: 1 or 0

Turing Machine Pseudocode:

Repeat

Match a 1 from x with a 1 from y

Until all of x or y is matched

If a 1 from x is not matched erase tape, write 1 (x > y) else erase tape, write 0 $(x \le y)$

Shlugan -> consson algorithm ass turny madhu = algerth

Combining Turing Machines

Block Diagram

$$f(x,y) = \begin{cases} x+y & \text{if } x > y \\ 0 & \text{if } x \le y \end{cases}$$

