Linear Algebra 2

Homework 1.5 – Roots of Unity

Abraham Murciano

March 22, 2021

1. (a) If z is a root of the equation $x^8=1$, then it is not necessarily true that $\operatorname{Re}(z)>0$, since as shown in figure 1, this is only true for the three rightmost of the eight roots.

Figure 1: The roots of unity of order 8.

- (b) If z is a root of the equation $x^6 = 1$, then it is not guaranteed to be the case that $\text{Im}(z) \neq 0$, since as is visible in figure 2, there are in fact two real solutions, namely 1 and -1.
- (c) For every even n, there must be two real solutions to the equation $x^n = 1$. This is because of the following which shows that both 1

Figure 2: The roots of unity of order 6.

and -1 are real solutions the equation.

$$\forall n \in \mathbb{N}, \ (-1)^{2n} = 1^{2n} = 1$$

(d) For every odd n there must be exactly one real solutions to the equation $x^n=1$. For any $n, \ x=1$ must be a solution, then adding $\frac{2\pi}{n}$ radians about the unit circle gives another, and another until we arrive again at 1. Since n here is odd, $\frac{2k\pi}{n}$ can never be equal to π , else we would have n=2k, contradicting its oddity. Thus none of the solutions are precisely π radians around the unit circle from 1, denying us the solution x=-1 which is the only other real number on the unit circle.