TE	GOKÉ UČENÍ FAKULTA ELEKTROTECH CHNICKÉ A KOMUNIKAČNÍCH RNĚ TECHNOLOGIÍ	NIKY
M	likrosenzory a mikrome	chanické systémy
Měření polohy Zpráva z laboratorního měření		Úloha č. 1
Jméno a příjr	není:	
Spolupracovn	ík: Datum měření:	

Zadání

Proveďte kalibraci jednoduchého senzoru polohy založeného na ultrazvukovém principu. Poté proveďte měření vzdálenosti kalibrovaným dálkoměrem za různých podmínek. Proveďte ověření měřicí metody na různých detekovaných materiálech a za různých úhlů.

Postup měření

- 1. Úloha může být měřena bez předchozí kontroly vyučujícím.
- 2. Umístěte ultrazvukový měřič vzdálenosti do definované vzdálenosti od kalibrační plochy a proveďte kalibraci měření. (vzdálenosti od 0 do 50 cm, graf 1). Vypočtenou a teoretickou rychlost zvuku zhodnoťte v závěru. (kalibrace pomocí plochy s ideálním odrazem)
- 3. Kalibrovaným měřičem proveďte měření síly odraženého signálu (průběhu amplitudy přijatého napětí v čase) u dvou různě vzdálených předmětů samostatně i obou najednou. (mála a velká překážka, senzor by měl být během měření umístěn **staticky**, kvůli konstantním podmínkám pro všechny průběhy vzhledem k vzdálenosti)
- 4. Vytvořte graf 2 z naměřených hodnot bodu 3. Okomentujte a porovnejte získané výsledky.
- 5. Změřte délku neznámého vlnovodu (hadice) pomocí měřícího přístroje GIEMZA (měřená hodnota = lupa => kurzor osy x) a ověřte vypočtenou hodnotu následnou kontrolou.
- 6. Okomentujte vzniklé rozdíly mezi lvyp a lměř.
- 7. Otestujte vliv úhlu natočení a materiálu reflexní plochy ve vzdálenosti 15 cm 30 cm (ideál 15–20 cm).
- 8. Vytvořte graf odrazivosti jednotlivých materiálů v závislosti na úhlu natočení (vyneste do jednoho grafu 3). Jako referenci 100% odrazivosti použijte kalibrační plochu v kolmém směru. (velká překážka). Znovu platí, dodržování konstantních podmínek vzdálenosti senzoru)
- 9. Výsledky měření shrňte v závěru včetně odpovědí na kontrolní otázky.

Měření a jeho vyhodnocení

Tabulka 1 – Hodnoty naměřené při kalibraci měření

l [m]	0			
t [ms]				

Tabulka 2 – Naměřené a vypočítané hodnoty vlnovodu

t [ms]	l _{VYP} [m]	$l_{M\check{E}\check{R}}[m]$

Tabulka 3 – Hodnoty odrazivosti materiálů (měřeno ve vzdálenosti m)

Materiál	α [°]	U [mV]	R [%]
Kalibrační plocha	0		100
Pevná deska	0		
	22.5		
	45		
	67.5		
	0		
Tierran falmatial fax	22.5		
Lisovaná akustická pěna	45		
	67.5		
	0		
Profilovaná akustická pěna – vyberte:	22.5		•
Čtverec/Trojúhelník/Jehlan	45		•
	67.5		•

Graf 1 – Kalibrační křivka dálkoměru

Graf 2 – Průběhy měření vzdálenosti dvou předmětů

Graf 3 - Závislost odrazivosti na úhlu a materiálu reflektoru

Příklady výpočtů

Rovnice regrese kalibrační křivky

Výpočet délky vlnovodu

Příklad výpočtu odrazivosti materiálu

Použité měřicí přístroje

Kontrolní otázky (zhodnotit v závěru)

- 1. Jak zdůvodníte tvar křivky při měření dvou předmětů najednou?
- 2. Jaké parametry ovlivňují maximální vzdálenost ultrazvukového měření?
- 3. Jak byste matematicky vyjádřili pokles síly odraženého signálu na vzdálenosti v ideálních podmínkách (odrazivost 100 %, bez útlumu průchodem vzduchem)?

Závěr