Отчет по лабораторной работе №5

Дисциплина: Математические основы защиты информации и информационной безопасности

Выполнила Дяченко Злата Константиновна, НПМмд-02-22

Содержание

1	Цель работы	4
2	Задание	5
3	Теоретическое введение	6
4		9
	4.1 Шаг 1	-
	4.2 IIIar 2	
	4.3 IIIar 3	
	4.4 IIIar 4	11
5	Выводы	12

List of Figures

4.1	Реализация алгоритма, реализующего тест Фирма	9
4.2	Реализация алгоритма вычисления символа Якоби	10
4.3	Пример работы алгоритма вычисления символа Якоби	10
4.4	Реализация теста Соловэя-Штрассена	11
4.5	Реализация теста Миллера-Рабина	11

1 Цель работы

Ознакомится и реализовать вероятностные алгоритмы проверки чисел на простоту.

2 Задание

Реализовать алгоритм, реализующий тест Ферма; алгоритм вычисления символа Якоби; алгоритм, реализующий тест Соловэя-Штрассена; алгоритм, реализующий тест Миллера-Рабина.

3 Теоретическое введение

Пусть a — целое число. Числа ± 1 , $\pm a$ называются тривиальными делителями числа a. Целое число $p \in Z/0$ называется простым, если оно не является делителем единицы и не имеет других делителей, кроме тривиальных. В противном случае число $p \in Z/-1, 0, 1$ называется составным. Проверка чисел на простоту является составной частью алгоритмов генерации простых чисел, применяемых в криптографии с открытым ключом. Алгоритмы проверки на простоту можно разделить на вероятностные и детерминированные. Детерминированный алгоритм всегда действует по одной и той же схеме и гарантированно решает поставленную задачу (или не дает никакого ответа). Вероятностный алгоритм использует генератор случайных чисел и дает не гарантированно точный ответ. Вероятностные алгоритмы в общем случае не менее эффективны, чем детерминированные (если используемый генератор случайных чисел всегда дает набор одних и тех же чисел, зависящих от входных данных, то вероятностный алгоритм становится детерминированным).

Тест Ферма основан на малой теореме Ферма: для простого числа p и произвольного числа $a, 1 \le a \le p-1$, выполняется сравнение

$$a^{p-1} \equiv 1 (mod p)$$

Следовательно, если для нечетного n существует такое целое a, что $1 \le a < n$, НОД(a,n) = 1 и $a^{n-1} \ne 1 (mod n)$, то число n составное. Отсюда получаем следующий вероятностный алгоритм проверки числа на простоту.

1. Алгоритм, реализующий тест Ферма.

Bxod. Нечетное целое число $n \ge 5$.

Bыход. «Число n, вероятно, простое» или «Число n составное».

- 1. Выбрать случайное целое число $a, 2 \le a \le n-2$.
- 2. Вычислить $r \leftarrow a^{n-1}(modn)$.
- 3. При r=1 результат: «Число n, вероятно, простое». В противном случае результат: «Число n составное».

Тест Соловэя-Штрассена. Основан на критерии Эйлера: нечетное число \square является простым тогда и только тогда, когда для любого целого числа $a, 1 \le a \le n-1$, взаимно простого с n, выполняется сравнение:

$$a^{\frac{n-1}{2}} \equiv (\frac{a}{n})(modn)$$

где $(\frac{a}{n})$ – символ Якоби. Пусть $m,n\in Z$, где $n=p_1p_2...p_r$ и числа $p_i\neq 2$ простые (не обязательно различные). Символ Якоби $(\frac{m}{n})$ определяется равенством

$$(\frac{m}{n}) = (\frac{m}{p_1})(\frac{m}{p_2})...(\frac{m}{p_r})$$

2. Алгоритм вычисления символа Якоби.

Вход. Нечетное целое число $n \geq 3$, целое число $a, 0 \leq a < n$. *Выход*. Символ Якоби $(\frac{a}{n})$.

- 1. Положить $g \leftarrow 1$.
- 2. При a = 0 результат: 0.
- 3. При a = 1 результат: g.
- 4. Представить a в виде $a=2^ka_1$, где число a_1 нечетное.
- 5. При четном k положить $s\leftarrow 1$, при нечетном k положить $s\leftarrow 1$, если $n\equiv \pm 1 (mod 8);$ положить $s\leftarrow -1,$ если $n\equiv \pm 3 (mod 8).$
- 6. При $a_1 = 1$ результат: g*s.
- 7. Если $n \equiv 3 (mod 4)$ и $a_1 \equiv 3 (mod 4)$, то $s \leftarrow -s$.
- 8. Положить $a \leftarrow n(moda_1), n \leftarrow a_1, g \leftarrow g * s$ и вернуться на шаг 2.

3. Алгоритм, реализующий тест Соловэя-Штрассена.

 $Bxo\partial$. Нечетное целое число $n \geq 5$.

Bыход. «Число n, вероятно, простое» или «Число n составное».

- 1. Выбрать случайное целое число $a, 2 \le a \le n 2$.
- 2. Вычислить $r \leftarrow a^{\frac{n-1}{2}} (mod n)$.
- 3. При $r \neq 1$ и $r \neq n-1$ результат: «Число n составное».
- 4. Вычислить символ Якоби $s \leftarrow \left(\frac{a}{n}\right)$
- 5. При $r \equiv s(modn)$ результат: «Число n составное». В противном случае результат: «Число n, вероятно, простое».

На сегодняшний день для проверки чисел на простоту чаще всего используется тест Миллера-Рабина, основанный на следующем наблюдении. Пусть число n нечетное и $n-1=2^s r$,где r – нечетное. Если n простое, то для любого $a \ge 2$, взаимно простого с n, выполняется условие $a_{p-1} \equiv 1 (mod p)$.

4. Алгоритм, реализующий тест Миллера-Рабина.

Вход. Нечетное целое число $n \ge 5$.

Bыход. «Число n, вероятно, простое» или «Число n составное».

- 1. Представить n-1 в виде $n-1=2^{s}r$, где число r нечетное.
- 2. Выбрать случайное целое число $a, 2 \le a < n 2$.
- 3. Вычислить $y \leftarrow a^r(modn)$.
- 4. При $y \neq 1$ и $y \neq n-1$ выполнять следующие действия:
 - 1. Положить $j \leftarrow 1$.
 - 2. Если $j \le s 1$ и $y \ne n 1$:
 - 1. Положить $y \leftarrow y^2 (mod n)$.
 - 2. При y = 1 результат: «Число n составное».
 - 3. Положить $j \leftarrow j+1$
 - 3. При $y \neq n-1$ результат: «Число n составное».
- 5. Результат: «Число n, вероятно, простое».

4 Выполнение лабораторной работы

4.1 Шаг 1

Ознакомилась с предоставленными теоретическими данными. Для выполнения задания решила использовать язык Python. Написала функцию, выполняющую проверку числа на простоту с использованием теста Ферма. Код функции и результат ее использования представлен на Рисунке 1 (рис. - fig. 4.1). Функция принимает на вход число n. При условии, что $n \geq 5$ реализуется алгоритм, представленный в теоретическом введении и функция возвращает отчет. Если условие не выполняется, будет выведено соответствующее сообщение.

```
In [13]: import numpy as np import random import math

In [20]: def ferma(n):
    if (n>=5 and n%2!=0):
        a=random.randint(2, n-2)
        r=math.pow(a, n-1)%n
        if (r==1):
        return ("Число ", n, ", вероятно, простое")
        else:
            return ("Число ", n, "составное")
        else:
            return ("Введите нечетное число больше или равное 5")

In [21]: ferma(10)

Out[21]: 'Введите нечетное число больше или равное 5'

In [22]: ferma(7)

Out[22]: ('Число ', 7, ', вероятно, простое')

In [23]: ferma(9)

Out[23]: ('Число ', 9, 'составное')
```

Figure 4.1: Реализация алгоритма, реализующего тест Фирма

4.2 Шаг 2

На Рисунке 2 (рис. - fig. 4.2) представлен код функции, реализующий алгоритм вычисления символа Якоби. Пример выполнения показан на Рисунке 3 (рис. - fig. 4.3).

Figure 4.2: Реализация алгоритма вычисления символа Якоби

```
In [91]: yakobi(21, 11)
Out[91]: -1
In [92]: yakobi(21, 7)
Out[92]: 0
In [75]: yakobi(21, 4)
Out[75]: 1
```

Figure 4.3: Пример работы алгоритма вычисления символа Якоби

4.3 Шаг 3

На Рисунке 3 (рис. - fig. 4.3) представлен код функции, реализующий тест Соловэя-Штрассена.

```
In [128]:

def solshtr(n):
    if (n>=5 and n%2!=0):
        a=random.randint(2, n-3)
        r=math.pow(a, (n-1)/2)%n
    if (r|=1 and r!=n-1):
        return ("Число", n, "составное")
    else:
        ss=yakobi(n, a)
        if (r%n==ss):
            return ("Число", n, "составное")
        else:
            return ("Число", n, ", вероятно, простое")
        else:
            return ("Число ", n, ", вероятно, простое")

In [131]:

Solshtr(13)

Out[131]: ("Число ', 13, ', вероятно, простое')
```

Figure 4.4: Реализация теста Соловэя-Штрассена

4.4 Шаг 4

На Рисунке 4 (рис. - fig. 4.4) представлен код функции, реализующий тест Миллера-Рабина, и пример выполнения.

```
In [125]: def milrab(n):
    if (m>5 and n%2!=0):
    s=0
    r=n-1
    while (r%2==0):
    r=x+1
    a=random.randint(2, n-3)
    y=math.pow(a, r)%n
    if (y!=1 and y!=n-1):
        j=1
        if (j:=s-1 and y!=n-1):
        y=math.pow(y,2)%n
        if (y=1):
        if (y=1):
        if (y=1):
        return ("число ", n, "составное")
        if (y!=n-1):
        return ("число ", n, "составное")
    return ("число ", n, ", вероятно, простое")

In [126]: milrab(7)
Out[127]: ("число ', 7, ', вероятно, простое')

In [127]: milrab(9)
Out[127]: ("число ', 9, 'составное')
```

Figure 4.5: Реализация теста Миллера-Рабина

5 Выводы

Я ознакомилась с алгоритмами проверки чисел на простоту и реализовала их. Результаты работы находятся в репозитории на GitHub, а также есть скринкаст выполнения лабораторной работы.