

CS4248 Natural Language Processing

Week 04

Rahul BAID, Xinyuan LU and Min-Yen KAN

Slides adapted from An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, Prof. Hwee Tou Ng (NUS), and Dan Jurafsky (Stanford)

Recap of Week 03

Language Models

N-grams

Perplexity: Evaluating Language Models

Unknown Words Redux

Smoothing

Backoff

Interpolation

Kneser-Ney

Announcements

Assignment #1 Due

Assignment #2 Out

Project Team Formation Announced – Due Next Week

Midterm to be offered both online and offline

Week 04 Agenda

Text Classification

Case Study: Sentiment Analysis

TF-IDF

Vector Space Model

Naïve Bayes and a Runthrough (time permitting)

Evaluating Text Classification

What is Text Classification?

A mapping h from input data x (drawn from instance space x) to a label (or labels) y from some enumerable output space y

- $\mathcal{X} = \text{set of all documents}$
- $\circ \mathcal{Y} = \{\text{english, mandarin, greek, ...}\}$
- \circ x = a single document

$$h(x) = y$$

E.g. Lh(μῆνιν ἄειδε θεὰ) = greek

Slide adapted from David Bamman (UCB)

Let h(x) be the "true" mapping (unknown).

How do we find the best $\hat{h}(x)$ to approximate h(x)?

Rule Based (Decision Rules)

if x has characters in unicode point range 0370-03FF: $\hat{h}(x) = \frac{1}{2}$

- Supervised learning
 - \circ Given training data in the form of < x, y > pairs, learn $\hat{h}(x)$

Slide adapted from David Bamman (UCB)

Subject Classification

Analisti entre et envectionantest.com

Syntactic frame and verb bias in aphasia: Plausibility judgments of undergoer-subject sentences

Susanne Gohl," Lies Menn," Gail Ramsberger," Duniel S. Jurafely," Elizabeth Elder," Molly Rewegs," and L. Halland Audrey"

> Harmer's incoming, flexibility and, selftimenty of flexibility, decider first, selfsometry of return, flexibility and selfdominal first and

Alteres.

Discussion benefits the beautiful beautiful and appeal to date benefits from the content acceptance for the present acceptance of the present accept

Literaturio

The simplify of "beaution from," or "beaution and state," It is most and spiritual to a place the second and spiritual to the state that a final fact that is a state of the superintees for the state of the superintees for the spiritual and by these (2005, for principal state of the state of "beaution from the superintees for the state of "beaution from the superintees for the state of "beaution from the state of the spiritual to the state of the state of the spiritual to the state of the state of the spiritual to the state of the state of the spiritual to the state of the state of the spiritual to the state of the state of the spiritual to the spiritual to

DEADL . As for the \$100 floor inc. of operators.

the forms giving rate in the general effection of positive sumportal in earth. Although the positive decision of community is removed by the graph care the Response Boston, 1985, a commontate with an expensity within the common the common the common that the expense I Subseque expenses. Describe of common action metric belongs are greater to Real (1985, the conference of the common to Real (1985, the conference of the common to the common to the common to the common to common to distinct objects to deep consent. Describe the common to distinct objects in deep consent. Describe points or extract, according to Real (1985, accepting and checkliff are therefore appears to the common form the late.

A other appear is executed from the herproposed by Menn et al. (800) also aggive the accided from ether on the non-frequency system's here. It is given set. Under this time, against prices as with probating and contentualing points after from the last time, for most consider settle, points some the frequently the contentual points of the appear and advantable by Chris (2015), is believed with a class attented by Chris (2015), is believed; and other although changing with the state that of the contents.

MeSH Subject Category Hierarchy

Antagonists and Inhibitors

Blood Supply

Drug Therapy

Embryology

Epidemiology

• • •

Spam Detection

REPLY 01-02-2021

I'm Ivan Maslyaev, the Vice President General Counsel and member of LUKOIL Management Committee. I have a file that has something to do with a member of your family. Get back for more details

Authorship Attribution

Who wrote which Federalist papers?

<u>1787-8</u>: anonymous essays try to convince New York to ratify U.S Constitution: Jay, Madison, Hamilton.

Authorship of 12 of the letters was in dispute.

1963: solved by Mosteller and Wallace using Bayesian methods

Positive or Negative Movie Review?

...zany characters and richly applied satire, and some great plot twists

It was pathetic. The worst part about it was the boxing scenes...

...awesome caramel sauce and sweet toasty almonds. I love this place!

...awful pizza and ridiculously overpriced...

Positive or Negative Movie Review?

- + ...zany characters and richly applied satire, and some great plot twists
- It was pathetic. The worst part about it was the boxing scenes...
- ...awesome caramel sauce and sweet toasty almonds. I love thisplace!
- ...awful pizza and ridiculously overpriced...

The Text Classification Problem

Given a document
$$\mathbf{x} = \left(w_1, w_2, \dots, w_{|\mathcal{X}|}\right) \in \mathcal{V}^*$$

predict a label $y \in \mathcal{Y}$

where \mathcal{Y} is an enumerated, fixed set of classes.

N.B.: Our SLP3 textbook uses d for x and c for y. We'll use both interchangeably.

Sample Text Classification Tasks

task	x	y
language ID	text	{english, mandarin, greek,}
spam classification	email	{spam, not spam}
authorship attribution	text	{jk rowling, james joyce,}
genre classification	novel	{detective, romance, gothic,}
sentiment analysis	text	{postive, negative, neutral, mixed}

and many more...

Case Study: Sentiment Analysis

Sample Text Classfication Problem

Adapted from David Bamman (UCB)

Product ratings

Political opinion mining

Movie Reviews

Movie: Soul

Year: 2020

This inventive tale stars Jamie Foxx as a jazz musician caught in a world that human souls pass through on their way into and out of life. Full review

A.O. Scott The NYTimes

Soul strives to help us remember that life itself is a blessing, even when it doesn't go as we planned. Full review

Paul Asay Plugged In

Sentiment as Tone

Dodds et al. (2011), "Temporal patterns of happiness and information in a global social network Hedonometrics and Twitter" (PLoS One)

The sentiment expressed in a text refers to the author's subjective or emotional attitude towards the central topic of the text.

Sentiment analysis is a classic application of text classification, and is typically approached with a BoW classifier.

Some linguistic phenomena require going beyond the bag-of-words:

This is not the worst thing that can happen.

I didn't like this movie.

How should we deal with negation?

- prepend the prefix NOT to every word after a token of logical negation until the next punctuation mark.

"I didn't NOT_like NOT_this NOT_movie."

Sometimes words are a good indicator of sentiment (love, amazing, hate, terrible); but ...

Many times it requires deep world and contextual knowledge:

- It would be nice if you acted like you understood.
- Valentine's Day is being marketed as a Date Movie. I think it's more of a First-Date Movie. If your date likes it, do not date that person again.
 And if you like it, there may not be a second date. - Robert Ebert

Adadpted from David Bamman (UCB)

Lack of training data?

Use external dictionaries:
 E.g.: General Inquirer, MPQA,
 LIWC, AFINN, etc.

pos	neg	
unlimited	lag	
prudent	contortions	
superb	fright	
closeness	lonely	
impeccably	tenuously	
fast-paced	plebeian	
treat	mortification	

Adadpted from David Bamman (UCB)

tf-idf

How does a word contribute meaning to a document?

Word-Document Count Matrices

Store the number of occurrences of a term in a document:

• Each document is a **count vector** in \mathcal{N}^V : a column below

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello
Antony	157	73	0	0	0
Brutus	4	157	0	1	0
Caesar	232	227	0	2	1
Calpurnia	0	10	0	0	0
Cleopatra	57	0	0	0	0
mercy	2	0	3	5	5
worser	2	0	1	1	1

Term frequency tf

- The term frequency $tf_{w,d}$ of word w in document d is defined as the number of times that w occurs in d.
- We want to use tf when computing a representation of a document. But how?
- Raw term frequency is not what we want:
 - Relevance does not increase proportionally with term frequency.
 - A document with 10 occurrences of the term is more relevant than a document with 1 occurrence. But not 10 times more relevant.

Note: frequency = count

Solution: log frequency weighting

The log frequency weight of word w in d is

$$w_{t,d} = \begin{cases} 1 + \log_{10} tf_{t,d}, & \text{if } tf_{t,d} > 0\\ 0, & \text{otherwise} \end{cases}$$

e.g.
$$0 \to 0$$
, $1 \to 1$, $2 \to 1.3$, $10 \to 2$, $1000 \to 4$, etc. t.

Document frequency

Rare terms are more informative than frequent terms

- Recall stop words
- Consider a term in the query that is rare in the collection (e.g., arachnocentric)

A document containing this term is very likely to be relevant to the query arachnocentric

• We want a high weight for rare terms like arachnocentric.

Document frequency, continued

Frequent words are less informative than rare words

Consider a word that is frequent in the collection (e.g., high, increase, line). How important is that word in characterizing it (\mathcal{R}) ?

Document frequency, continued

Frequent words are less informative than rare words

Consider a word that is frequent in the collection (e.g., high, increase, line). How important is that word in characterizing it (\mathcal{R}) ?

A document containing such a word is more important to characterize it a document that doesn't have it.

For such words, we want high positive weights for them but lower than the weights for rare words.

We will use document frequency (df) to capture this.

idf weight

 $df_{\it w}$ is the <u>document</u> frequency of $\it w$: the number of documents that contain $\it w$

- ullet df_w is an inverse measure of the informativeness of w
- $df_w \leq N$

We define the idf (inverse document frequency) of W by

$$idf_w = \log (N/df_w)$$

• We use $\log(N/df_w)$ instead of N/df_w to "dampen" the effect of idf.

Example: suppose N=1 million

term	df _t	idf_t
calpurnia	1	6
animal	100	4
sunday	1,000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

$$idf_w = \log_{10}(N/df_w)$$

There is one idf value for each term w in a collection.

Collection vs. Document frequency

The collection frequency of w is the number of occurrences of w in the collection, counting multiple occurrences.

Example:

Word	Collection frequency	Document frequency
insurance	10440	3997
try	10422	8760

Which word is a better term to characterize a document (and should get a higher weight)?

tf - idf weighting

The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$weight_{w,d} = (1 + \log t f_{w,d}) \times \log(N/df_w)$$

Best known weighting scheme NLP/IR

- Note: the "-" in tf-idf is a hyphen, not a minus sign!
- Alternative names: $tf \cdot idf$, $tf \times idf$

Increases with the number of occurrences within a document Increases with the rarity of the word in the collection

Count → Weight Matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello
Antony	5.25	3.18	0	0	0
Brutus	1.21	6.1	0	1	0
Caesar	8.59	2.54	0	1.51	0.25
Calpurnia	0	1.54	0	0	0
Cleopatra	2.85	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25
worser	1.37	0	0.11	4.15	0.25

Each document is now represented by a real-valued vector of tf-idf weights $\in \mathcal{R}^{|V|}$

Vector Space Model

Documents as vectors

So we have a |V|-dimensional vector space

Words are axes of the space

Documents are points or vectors in this space

High-dimensional: tens of thousands of dimensions; each dictionary term is a dimension

These are very sparse vectors — most entries are zero.

We'll see vector representations for words (vs. sentences) again later in word embeddings

Slide Credits: Dan Jurafsky (Stanford)

1st Try: Dot product

The dot product between two vectors is a scalar:

$$dot product(\mathbf{v}, \mathbf{w}) = \mathbf{v} \cdot \mathbf{w} = \sum_{i=1}^{N} v_i w_i = v_1 w_1 + v_2 w_2 + \dots + v_N w_N$$

The dot product tends to be high when the two vectors have large values in the same dimensions

Dot product can be a similarity metric between vectors

Nice!

Slide Credits: Dan Jurafsky (Stanford)

Problem with raw dot product

Dot product favors long vectors.

Dot product is higher if a vector is longer (has higher values in many dimension).

Vector length:

$$|\mathbf{v}| = \sqrt{\sum_{i=1}^{N} v_i^2}$$

Frequent words (of, the, you) have long vectors (since they occur many times with other words).

So the dot product overly favors frequent words. Not good.

Better: cosine for computing word similarity

$$cosine(\vec{v}, \vec{w}) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}||\vec{w}|} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}}$$

Cosine as a similarity metric

-1: vectors point in opposite directions

+1: vectors point in same directions

0: vectors are orthogonal

But since raw frequency values are non-negative, the cosine for term-term matrix vectors ranges from 0–1

Cosine examples

$$\cos(\vec{v}, \vec{w}) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}||\vec{w}|} = \frac{\vec{v}}{|\vec{v}|} \cdot \frac{\vec{w}}{|\vec{w}|} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}}$$

	pie	data	computer
cherry	442	8	2
digital	5	1683	1670
information	5	3982	3325

cos(cherry, information) =

$$\frac{442*5+8*3982+2*3325}{\sqrt{442^2+8^2+2^2}\sqrt{5^2+3982^2+3325^2}} = .017$$

cos(digital, information) =

$$\frac{5*5+1683*3982+1670*3325}{\sqrt{5^2+1683^2+1670^2}\sqrt{5^2+3982^2+3325^2}} = .996$$

Visualizing cosines (well, angles)

Dimension 2: 'computer'

Naive Bayes

Back to Reverend Thomas Bayes for Text Classification

Slide Credits: CS3245 IR and Dan Jurafsky (Stanford)

Naïve Bayes Intuition

Simple ("naïve") classification method based on Bayes rule.

Relies on a very simple representation of document:

The Bag of Words (BoW)

Completely compatible with the vector space model!

Slide adapted from CS324 IR and Dan Jurafsky (Stanford)

The Bag of Words Representation

I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun... It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet!

Slide adapted from CS324 IR and Dan Jurafsky (Stanford)

Bayes' Rule

$$P(y|\mathbf{w}) = \frac{P(\mathbf{w}|y)P(y)}{P(\mathbf{w})}$$

Bayes' Rule

$$P(y|\mathbf{w}) = \frac{P(\mathbf{w}|y)P(y)}{P(\mathbf{w})}$$

Bayes' Rule

Likelihood: How probable is the data given that our document is a member of *y*?

Prior: How probable is a document to be a member of class *y* seeing any data?

$$P(y|\mathbf{w}) = \frac{P(\mathbf{w}|y)P(y)}{P(\mathbf{w})}$$

Posterior: How probable is the instance classified as a member of class y?

Marginal: How probable is the evidence under any class?

Naïve Bayes

Likelihood: How probable is the data given that our document is a member of y?

Prior: How probable is a document to be a member of class *y* seeing any data?

$$P(y|\mathbf{w}) = P(w_1|y) \times P(w_2|y) \times \dots \times P(w_n|y) \times P(y)$$

Posterior: How probable is the instance classified as a member of class y?

Marginal: To think about. Where did it go?

Naïve Bayes: Self-Check

$$P(y|\mathbf{w}) = P(\mathbf{w}|y) \times P(y)$$

$$P(y|\mathbf{w}) \propto P(w_1|y) \times P(w_2|y) \times \cdots \times P(w_n|y) \times P(y)$$

What two assumptions did we make?

- 1.
- 2.

Naïve Bayes: Self-Check

$$P(y|\mathbf{w}) = P(\mathbf{w}|y) \times P(y)$$

$$P(y|\mathbf{w}) \propto P(w_1|y) \times P(w_2|y) \times \dots \times P(w_n|y) \times P(y)$$

What two assumptions did we make?

- 1. Bag of Words: Position doesn't matter
- 2. Conditional Independence: no interaction between words. i.e., all $P(w_i|y)$ don't give any information

Naïve Bayes Classifier

$$c_{MAP} = \operatorname*{argmax}_{c \in \mathcal{C}} P(c|d)$$

Maximum a posteriori or mostly likely class

$$= \operatorname*{argmax}_{c \in \mathcal{C}} \frac{P(d|c)P(c)}{P(d)}$$

Bayes rule

$$= \operatorname*{argmax}_{c \in \mathcal{C}} P(d|c) P(c)$$

Dropping the P(d) in the denominator

$$= \underset{c \in \mathcal{C}}{\operatorname{argmax}} \underbrace{P(f_1, f_2, ..., f_n | c)}^{\text{likelihood}} \underbrace{P(c)}^{\text{prior}}$$

Document d represented as features $f_1, ..., f_n$ (such as word counts) BoW assumption

=
$$\underset{c \in \mathcal{C}}{\operatorname{argmax}} P(f_1|c)P(f_2|c)...P(f_n)|c)P(c)$$
 Independence Assumption

$$c_{NB} = \operatorname*{argmax}_{c \in \mathcal{C}} P(c) \prod_{f \in \mathcal{F}} P(f|c)$$

Equation for NB classifier

Slide Credits: David Bamman (UCB)

Maximum Likelihood Estimates

In relative frequency estimation, the parameters are set to empirical frequencies. Estimating P(w|c):

$$\hat{P}(w_i|c_j) = \frac{count(w_i, c_j)}{\sum_{w \in \mathcal{V}} count(w, c_j)}$$

Fraction of times word w_i appears among all words of in all documents of topic c_j

Estimating P(c):

$$\hat{P}(c_j) = \frac{N_{c_j}}{N_{doc}}$$

 N_{c_j} = the number of documents in our dataset with class c_j N_{doc} = the total number of documents

Slide Credits: David Bamman (UCB)

Other Issues We've Seen Before

1. Sparsity: Multiplying small probabilities leads to numerical underflow.

Solution: transform to the equivalent addition of log probabilities.

$$c_{NB} = \operatorname*{argmax}_{c \in \mathcal{C}} \log P(c) + \sum_{f \in \mathcal{F}} \log P(f|c)$$

2. Out of Vocabulary: There will be new words seen during test time.

Solution: Smoothing, Backoff and Interpolation; Subword (BPE) Counting

$$\frac{count(w_i, c_j) + \alpha}{\sum_{w \in \mathcal{V}} count(w, c_j) + |V|\alpha}$$
 $\alpha = \text{smoothing hyperparameter.}$ Laplace (add-1) smoothing: $\alpha = 1$

Summary: Multinomial NB Classifier

```
function TRAIN NAIVE BAYES(D, C) returns log P(c) and log P(w|c)
for each class c \in C
                                    # Calculate P(c) terms
   N_{doc} = number of documents in D
   N_c = number of documents from D in class c
   logprior[c] \leftarrow log \frac{N_c}{N_{doc}}
   V \leftarrow \text{vocabulary of D}
   bigdoc[c] \leftarrow \mathbf{append}(d) for d \in D with class c
   for each word w in V
                                               # Calculate P(w|c) terms
       count(w,c) \leftarrow \# of occurrences of w in bigdoc[c]
loglikelihood[w,c] \leftarrow log \frac{count(w,c) + 1}{\sum_{w' \text{ in } V} (count(w',c) + 1)}
return logprior, loglikelihood, V
function TEST NAIVE BAYES(testdoc, logprior, loglikelihood, C, V) returns best c
for each class c \in C
   sum[c] \leftarrow logprior[c]
   for each position i in testdoc
       word \leftarrow testdoc[i]
       if word \in V
          sum[c] \leftarrow sum[c] + loglikelihood[word,c]
return argmax_c sum[c]
```

N.B.: Our SLP3 textbook uses d for x and c for y. We'll use both interchangeably.

Naive Bayes Runthrough

Weather Dataset

	Outlook	Temperature	Humidity	Windy	Play Golf
1	Rainy	Hot	High	False	No
2	Rainy	Hot	High	True	No
3	Overcast	Hot	High	False	Yes
4	Sunny	Mild	High	False	Yes
5	Sunny	Cool	Normal	False	Yes
6	Sunny	Cool	Normal	True	No
7	Overcast	Cool	Normal	True	Yes
8	Rainy	Mild	High	False	No
9	Rainy	Cool	Normal	False	Yes
10	Sunny	Mild	Normal	False	Yes
11	Rainy	Mild	Normal	True	Yes
12	Overcast	Mild	High	True	Yes
13	Overcast	Hot	Normal	False	Yes
14	Sunny	Mild	High	True	No

Outlook	Temperature	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overcast	Hot	High	Folse	Yes
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Rainy	Mild	High	False	No
Rainy	Cool	Normal	Folse	Yes
Sunny	Mild	Normal	False	Yes
Rainy	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcost	Hot	Normal	Folse	Yes
Sunny	Mild	High	True	No

Likelihood Table

		Play	Golf	
		Yes	No	
	Sunny	3/9	2/5	5/14
Outlook	Overcast	4/9	0/5	4/14
	Rainy	2/9	3/5	5/14
		9/14	5/14	

Likelihood Table

$$P(y) = P(Yes) = \frac{9}{14}$$

$$P(y|x) = P(Yes|Sunny) = \frac{3}{9} \times \frac{9}{14} \div \frac{5}{14} = \frac{3}{5}$$

All of the likelihood tables

These statistics make up the model representation for NB, our h.

		Play	Golf
		Yes	No
	Sunny	3/9	2/5
Outlook	Overcast	4/9	0/5
	Rainy	2/9	3/5

		Play	Golf
		Yes	No
	Hot	2/9	2/5
Temperature	Mild	4/9	2/5
	Cool	3/9	1/5

		Play	Golf
		Yes	No
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	True	3/9	3/5
Windy	False	6/9	2/5

		Play	Golf
		Yes	No
11	High	3/9	4/5
Humidity	Normal	6/9 Slide adapte	1/5 ed from CS3244 Machine Le

Applying NB at test time

Outlook	Temperature	Humidity	Windy	Play Golf
Overcast	Cool	High	True	Ś

		Play	Gall	150		His	6ill
		Yes	No			Yes	No
	Sunny	3/9	2/5		Hot	2/9	2/5
Outlook	Overcost	4/9	0/5	Temperature	Mild	4/9	2/5
	Rolny	2/9	3/5		Cool	3/9	1/5
		14 they	dill.			Plea	enii
		Yes	No			Yes	No
merca.	True	3/9	3/5	VIET C 15200	High	3/9	4/5
Windy	Folse	6/9	2/5	Humidity	Normal	6/9	1/5

Applying NB at test time

Outlook	Temperature	Humidity	Windy	Play Golf
Overcast	Cool	High	True	ś

 $P(Yes|x) = P(Overcast|Yes) \times P(Cool|Yes) \times P(High|Yes) \times P(True|Yes) \times P(Yes)$

 $P(No|x) = P(Overcast|No) \times P(Cool|No) \times P(High|No) \times P(True|No) \times P(No)$

		Play	
		Yes	No
Temperature	Hot	2/9	2/5
	Mild	4/9	2/5
	Cool	3/9	1/5

		Play Golf	
		Yes	No
	High	3/9	4/5
Humidity	Normal	6/9	1/5

		Play Gulf	
		Yes	No
Windy	True	3/9	3/5
	False	6/9	2/5

Applying NB at test time

Outlook	Temperature	Humidity	Windy	Play Golf
Overcast	Cool	High	True	Ś

$$P(Yes|x) = P(Overcast|Yes) \times P(Cool|Yes) \times P(High|Yes) \times P(True|Yes) \times P(Yes)$$

$$P(Yes|x) = P(Overcast|Yes) \times P(Cool|Yes) \times P(High|Yes) \times P(True|Yes) \times P(Yes)$$

$$P(Yes|x) = \frac{4}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{9}{14} = 0.010582$$

$$0.0010582$$

$$0.0010582$$

$$\frac{0.0010582}{0.0010582 + 0.0} = 1.0$$

$$P(No|x) = P(Overcast|No) \times P(Cool|No) \times P(High|No) \times P(True|No) \times P(No)$$

$$P(No|x) = \frac{0}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{3}{5} \times \frac{5}{14} = 0.0$$

$$\frac{0.0}{0.0010582 + 0.0} = 0.0$$

$$P(No|x) = \frac{0}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{3}{5} \times \frac{5}{14} = 0.0$$

$$\frac{0.0}{0.0010582 + 0.0} = 0.0$$

		Play Out	
		Yes	No
Outlook	Sunny	3/9	2/5
	Overcast	4/9	0/5
	Rainy	2/9	3/5

8.7		Play Gulf	
		Yes	No
Temperature	Hot	2/9	2/5
	Mild	4/9	2/5
	Cool	3/9	1/5

		Play Golf	
		Yes	No
Humidity	High	3/9	4/5
	Normal	6/9	1/5

		Flay Gulf	
		Yes	No
Windy	True	3/9	3/5
	False	6/9	2/5

Laplace Smoothed Frequency Table

		Play	Golf
		Yes	No
	Sunny	3 +1 =4 (4/12)	2+1=3 (3/8)
Outlook	Overcast	4+1=5 (5/12)	0+1=1 (1/8)
	Rainy	2 +1 =3 (3/12)	3+1=4 (4/8)

Priors
P(Yes) = 9+1 (10/14+2)
P(No) = 5+1 (6/14+2)

Smoothed Frequency Table

		Play	Golf
		Yes	No
	Sunny	3 <mark>+1</mark> =4 (4/12)	2+1=3 (3/8)
Outlook	Overcast	4 +1 =5 (5/12)	0+1=1 (1/8)
	Rainy	2 +1 =3 (3/12)	3+1=4 (4/8)

Priors
P(Yes) = 9+1 (10/16)
P(No) = 5+1 (6/16)

$$P(Yes|x) = P(Overcast|Yes) \times P(Cool|Yes) \times P(High|Yes) \times P(True|Yes) \times P(Yes)$$

$$P(Yes|x) = \frac{5}{12} \times \frac{4}{12} \times \frac{4}{11} \times \frac{4}{11} \times \frac{10}{16} = 0.01147$$

$$P(Yes|x) = \frac{5}{12} \times \frac{4}{12} \times \frac{4}{11} \times \frac{4}{11} \times \frac{10}{16} = 0.01147$$

$$P(No|x) = P(Overcast|No) \times P(Cool|No) \times P(High|No) \times P(True|No) \times P(No)$$

$$P(No|x) = \frac{1}{8} \times \frac{2}{8} \times \frac{5}{7} \times \frac{4}{7} \times \frac{6}{16} = 0.00478$$

		Play Galf	
		Yes	No
Outlook	Sunny	4/12	3/8
	Overcast	5/12	1/8
	Rainy	3/12	4/8

5 ⁶		Fley Gall	
		Yes	No
Temperature	Hot	3/12	3/8
	Mild	5/12	3/8
	Cool	4/12	2/8

		Play Galf	
		Yes	No
Humidity	High	4/11	5/7
	Normal	7/11	2/7

		Play Gall	
		Yes	No
Windy	True	4/11	4/7
	False	7/11	3/7

Slide adapted from CS3244 Machine Learning

Applying Smoothed NB at test time

Outlook	Temperature	Humidity	Windy	Play Golf
Overcast	Cool	High	True	Ś

$$P(Yes|x) = \frac{5}{12} \times \frac{4}{12} \times \frac{4}{11} \times \frac{4}{11} \times \frac{10}{16} = 0.01147 \qquad \frac{0.1147}{0.1147 + 0.00478} = 0.95$$

$$\frac{0.1147}{0.1147 + 0.00478} = 0.95$$

$$P(No|x) = \frac{1}{8} \times \frac{2}{8} \times \frac{5}{7} \times \frac{4}{7} \times \frac{6}{16} = 0.00478$$

$$\frac{0.001147}{0.1147 + 0.00478} = 0.05$$

		Flay Gall	
		Yes	No
Outlook	Sunny	4/12	3/8
	Overcast	5/12	1/8
	Rainy	3/12	4/8

30		Pley	Golf
		Yes	No
Temperature	Hot	3/12	3/8
	Mild	5/12	3/8
	Cool	4/12	2/8

		Play Galf	
		Yes	No
Humidity	High	4/11	5/7
	Normal	7/11	2/7

		Play Gelf	
		Yes	No
200	True	4/11	4/7
Windy	False	7/11	3/7

Applying Smoothed NB at test time

Outlook	Temperature	Humidity	Windy	Play Golf
Overcast	Cool	High	True	Yes

$$P(Yes|x) = \frac{5}{12} \times \frac{4}{12} \times \frac{4}{11} \times \frac{4}{11} \times \frac{10}{16} = 0.01147 \qquad \frac{0.1147}{0.1147 + 0.00478} = 0.95$$

$$\frac{0.1147}{0.1147 + 0.00478} = 0.95$$

$$P(No|x) = \frac{1}{8} \times \frac{2}{8} \times \frac{5}{7} \times \frac{4}{7} \times \frac{6}{16} = 0.00478$$

0.001147	= 0.05 -	
0.1147 + 0.00478	- 0.03	

		Play Sall	
		Yes	No
Outlook	Sunny	4/12	3/8
	Overcast	5/12	1/8
	Rainy	3/12	4/8

		Fley Call	
		Yes	No
Temperature	Hot	3/12	3/8
	Mild	5/12	3/8
	Cool	4/12	2/8

		Play Galf	
		Yes	No
Humidity	High	4/11	5/7
	Normal	7/11	2/7

		Play Gell	
		Yes	No
100 100	True	4/11	4/7
Windy	False	7/11	3/7

Naïve Bayes Summary

Naïve Bayes is a LM!

Let's relate to last week's lecture on Language Models, which assigns a probability to a sentence.

P(its, water, is, so, transparent, that)

Naïve Bayes then:

Naïve Bayes is a LM!

Let's relate to last week's lecture on Language Models, which assigns a probability to a sentence.

P(its, water, is, so, transparent, that)

Naïve Bayes then:

- Makes a non-contextual decision (unigram model)
- Treats each class like a separate language model*

Naïve Bayes Summary

Naïve Bayes is a class-specific language model.

Good baseline: Robust, fast to train, and has and low storage requirements.

NB makes strong assumptions that features are:

- conditionally independent of each other
- order doesn't matter

Evaluating Classifications

Going beyond Accuracy

72

Accuracy

Our basic metric is accuracy: how often is our classifier right?

$$acc(y, \hat{y}) = \frac{1}{N} \sum_{i=1}^{N} [y^{(i)} = \hat{y}]$$

Slides adapted from Diyi Yang (GaTech) and David Bamman (UCB)

Beyond Right and Wrong

For any set of labels, there are 2 ways to be wrong:

- False positive (FP): the system incorrectly predicts the label
- False negative (FN): the system incorrectly fails to predict the label.

Similarly, there are 2 ways to be right:

- True positive (TP): the system correctly predicts the label.
- True negative (TN): the system correctly predicts the label does not apply to it.

Slides adapted from Diyi Yang (GaTech)

The Binary Confusion Matrix

Actual Values

Recall

Recall is the fraction of positive instances which were correctly classified:

Actual Values

+ve -ve

$$r = \frac{TP}{TP + FN}$$

Predicted
Values

-ve

Question: What is Accuracy?

Slides adapted from Diyi Yang (GaTech)

Precision

Precision is the fraction of positive predictions that were correct:

Actual Values

$$p = \frac{TP}{TP + FP}$$

How do you generalize this to k classes?

Slides adapted from Diyi Yang (GaTech)

Precision/Recall

You can get high recall for a class (but low precision) by calling all documents as that class!

Recall is a non-decreasing function of the number of docs classified to that class.

In most systems, precision decreases when the # of documents assigned to a class increases; i.e., when recall increases

This is not a theorem, but a result with strong empirical confirmation

A combined measure: F

We can combine precision and recall into a single measure to rule them all (actually multiple ways to do this).

$$F = \frac{2 \cdot p \cdot r}{p + r}$$

Use a harmonic mean, not an arithmetic mean. Why?