Topic 6: Hypothesis Testing Solutions

Q1

a) H₀: $\mu = 14.6$ hour H₁: $\mu \neq 14.6$ hour

b) A Type I error is the mistake of **concluding** that the mean number of hours studied at your school is **different** from the 14.6 hour benchmark reported by Business Week when **in fact** it is not any different.

(Type I Error occurs if reject the H_0 when it is true)

c) A Type II error is the mistake of **not concluding** that the mean number of hours studied at your school is **different** from the 14.6 hour benchmark reported by Business Week when it is **in fact** different.

(Type II Error occurs if do not reject the H_0 when it is false)

 $\mathbf{Q2}$

a)

$$H_0: \mu \ge 160$$

$$H_1: \mu < 160$$

Let μ be the population mean of withdrawal

Population distribution unknown, \because n = 36>30, by Central Limit Theorem, the sampling distribution of \overline{X} is approximately normal

 σ known (σ =30) :. Z test can be used (Lower-tail test)

At
$$\alpha = 0.05$$
, Critical value = -Z = -1.645

Reject H₀ if Z < -1.645

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} = \frac{148 - 160}{30 / \sqrt{36}} = -2.4$$

Since Z = -2.4 < -1.645, Reject H₀ at $\alpha = 0.05$

There is sufficient evidence that the population mean amount of money withdrawn from ATMs per customer transaction is less than \$160.

b) p-value = $P(Z \le -2.4) = 0.0082$

Probability of obtaining a test statistic -2.4 or less is 0.0082, given H₀ is true.

a) H_0 : $\mu = 8.17$ ounces

H₁: $\mu \neq 8.17$ ounces

: n = 50 > 30 from unknown population distribution, by Central Limit Theorem, the sampling distribution of \overline{X} is approximately normal

 \therefore σ unknown \therefore t test should be used (two-tail test)

$$\alpha = 0.05$$
, Critical value = $\pm t_{\frac{0.05}{2},50-1} = \pm 2.0096$

Reject H₀ if t < -2.0096 or t > 2.0096

$$t = \frac{\overline{X} - \mu_0}{s / \sqrt{n}} = \frac{8.159 - 8.17}{0.051 / \sqrt{50}} = -1.5251$$

Since t = -1.5251 > -2.0096 and < 2.0096

Do not Reject H₀ at $\alpha = 0.05$

There is insufficient evidence that population mean amount is different from 8.17 ounces.

b) p-value = $P(t \le -1.5251) + P(t \ge 1.5251) = 2 \times P(t \ge 1.5251)$

 $= 2 \times (0.05, 0.1) = (0.1, 0.2)$

Interpretation:

Probability of obtaining a test statistics 1.5251 or more or -1.5251 or less is between 0.1 and 0.2 exclusively, given H_0 is true.

Q4

a) H₀: $\mu \ge 2.8$ feet

H₁: μ < 2.8feet

 \because the population is normal distribution, the sampling distribution of \overline{X} is also normal distribution

 \therefore σ unknown \therefore t test should be used (lower-tail test)

$$\alpha = 0.05$$
, Critical value = $t_{0.05,25-1} = -1.7109$

Reject H_0 if t < -1.7109

$$t = \frac{\overline{X} - \mu_0}{s / \sqrt{n}} = \frac{2.73 - 2.8}{0.2 / \sqrt{25}} = -1.75$$

Since t = -1.75 < -1.7109

Reject H₀ at $\alpha = 0.05$

Reject Region 0.05 CV=-1.7109 -1.75 Reject H0

There is sufficient evidence that the production equipment needs adjustment.

H₁: μ < 2.8feet

 \because the population is normal distribution, the sampling distribution of \overline{X} is also normal distribution

 $: \sigma$ unknown : t test should be used (lower-tail test)

$$\alpha = 0.05$$

Reject H_0 if p-value < 0.05

$$t = \frac{\overline{X} - \mu_0}{s / \sqrt{n}} = \frac{2.73 - 2.8}{0.2 / \sqrt{25}} = -1.75$$

p -value = $P(t \le -1.75) = (0.025, 0.05)$

Since p-value = (0.025, 0.05) < 0.05

Reject H₀ at $\alpha = 0.05$

There is sufficient evidence that the production equipment needs adjustment.

c) Probability of obtaining a test statistics -1.75 or less is between 0.025 and 0.05 exclusively, given H_0 is true.

d) The conclusions are the same.

Q5

Assume population distribution is normal

Let μ be the true average waiting time at back in commercial district.

$$H_0$$
: $\mu \geq 5$

$$H_1: \mu < 5$$

$$:$$
 n < 30 and σ unknown

$$\alpha = 0.05$$
, $t_{critical} = -t_{0.05,15-1} = -1.7613$; Reject H₀ if $t < -1.7613$

$$\bar{X} = 4.286667$$
, s = 1.637985

$$t = \frac{4.286007, s - 1.037963}{\frac{4.28667 - 5}{\sqrt{157}}} = -1.6867 > -1.7613$$

 \therefore We do not reject H₀ at $\alpha = 0.05$. There is insufficient evidence that the population average waiting time is less than 5 mins.

- As n = 18 < 30, we need to assume the population distribution is normal. a)
- Let μ be the population mean of overweight b)

$$H_0: \mu = 10$$

$$H_1: \mu \neq 10$$

 $\therefore n = 18 < 30$, σ is unknown, assume population distribution is normal

$$\therefore \text{ Use the t test, } t = \frac{\overline{x - \mu_0}}{\sqrt[8]{n}} \quad \text{(two-tail test)}$$

$$\alpha = 0.01; \text{ Critical Value} = -t_{\frac{\alpha}{2}, n-1} = -t_{0.005, 17} = -2.8982$$

$$\alpha = 0.01$$
; Critical Value = $-t_{\frac{\alpha}{2}, n-1} = -t_{0.005, 17} = -2.8982$

$$= t_{\frac{\alpha}{2}, n-1} = t_{0.005, 17} = 2.8982$$

Reject H_0 if t < -2.8982 or t > 2.8982

$$\bar{x} = 12.4$$
 $\mu_0 = 10$ $s = 2.7$ $n = 18$

$$t = \frac{12.4 - 10}{2.7 / \sqrt{18}} = 3.7712$$

$$:: t=3.7712>2.8982$$

$$\therefore$$
 We reject H_0 .

There is sufficient evidence that the population mean overweight is not 10 pounds

- c) Type I error (α)
 - = P (do not agree the claim of 10-pound overweight when in fact the claim is true)

Type II error (β)

= P (Agree the claim of 10-pound overweight when in fact the claim is false)

a) n = 40 > 30 and σ is unknown, use t-distribution

$$H_0: \mu \le 10$$

$$H_1: \mu > 10$$

$$\alpha = 0.01$$
; $t_{critical} = t_{0.01, 39} = 2.4258$

$$t = \frac{\overline{X} - 10}{\frac{s}{\sqrt{40}}} > 2.4528$$
, as H₀ is rejected

Now sample size, $n \uparrow$, n' = 41, hence

$$t'_{critical} = t_{0.01, 40} = 2.4233$$
, and

$$\frac{\sigma}{\sqrt{n}} \downarrow$$
, as a result, t' will be increased

i.e. t' > t > 2.4258 > 2.4233

b) Now α "= 0.05

t'' $_{critical} = 1.6839$, with 40 degrees of freedom

 \therefore t' > 2.4233 from above

 \therefore t' > 2.4233 > 1.6839

Therefore, H₀ is still rejected