神戸市立工業高等専門学校 電気工学科/電子工学科 専門科目「数値解析」

2017.10.20

常微分方程式3

山浦 剛 (tyamaura@riken.jp)

講義資料ページ

http://climate.aics.riken.jp/members/yamaura/numerical_analysis.html

色々な差分法

▶ オイラー法

> ホイン法

$$k_1 = f(t_j, Y_j), \qquad k_2 = f(t_j + \Delta t, Y_j + \Delta t k_1)$$

▶ ルンゲ・クッタ法

$$k_1 = f(t_j, Y_j),$$
 $k_2 = f(t_j + \frac{\Delta t}{2}, Y_j + \frac{\Delta t}{2}k_1)$

$$k_3 = f\left(t_j + \frac{\Delta t}{2}, Y_j + \frac{\Delta t}{2}k_2\right), \qquad k_4 = f\left(t_j + \Delta t, Y_j + \Delta t k_3\right)$$

オイラー法

$$\geq \frac{1}{\Delta t} \{ Y_{j+1} - Y_j \} = f(t_j, Y_j)$$

ホイン法(改良オイラー法)

ルンゲ・クッタ法

局所打ち切り誤差1

- ▶ 各差分法の近似精度はどの程度か?
 - ightharpoonup $\frac{1}{\Delta t}\{Y_{j+1}-Y_j\}=F(t_j,Y_j)$ とおく
- $> t = t_j$ での微分解 $y(t_j)$ を差分方程式の Y_j に代入し、 Y_{j+1} を計算する。
 - $Y_{j+1} = y(t_j) + \Delta t F(t_j, y(t_j))$
- ightharpoonup このときの誤差 $|y(t_{j+1})-Y_{j+1}|$ を求める。 \Rightarrow 差分解と微分解の差の目安となる。
 - $|y(t_{j+1}) Y_{j+1}| = |y(t_{j+1}) y(t_j) \Delta t F(t_j, y(t_j))|$
- \triangleright この量を Δt で割ったものを**局所打ち切り誤差**と呼ぶ。
 - $\delta = \left| \frac{y(t_{j+1}) Y_{j+1}}{\Delta t} \right| = \left| \frac{y(t_{j+1}) y(t_j)}{\Delta t} F(t_j, y(t_j)) \right|$

局所打ち切り誤差2

- ▶ 局所打ち切り誤差を $O((\Delta t)^p)$ という形で評価した時、pを次数と呼び、その差分方程式をp次の公式という。
 - pが大きいほどΔtを小さくしたときに誤差が小さくなり、元の微分方程式をよく近似している。
- ▶ オイラー法の次数を考える。テイラー展開で、
 - $> y(t_{j+1}) = y(t_j) + \Delta t \ y'(t_j) + O((\Delta t)^2)$
 - $\geq \frac{y(t_{j+1})-Y_{j+1}}{\Delta t} f(t_j, Y_j) = y'(t_j) f(t_j, y(t_j)) + O(\Delta t)$
- ▶ オイラー法は1次の公式であることが分かる。
 - 同様にホイン法は2次の公式、ルンゲ・クッタ法は4次の公式。

練習問題

- > 以下の微分方程式の初期値問題を考える
 - $\frac{dy}{dt} = y(5-y), \qquad y(0) = 1$
- $> t_i = j\Delta t$, 差分解 Y_i を用いて、ホイン法およびルンゲ・クッタ法の差分方程式を示せ。
 - $> k_1, k_2, k_3, k_4$ を用いて表現してもよい
- $\Delta t = 0.5$ の場合において、t = 0からt = 2までホイン法およびルンゲ・クッタ法を用いて差分解をそれぞれ導出し、さらに微分解 $y = \frac{5}{1+4e^{-5t}}$ との誤差を有効数字6桁で示せ。
 - ▶ 表を作ると何を求めるべきかわかりやすくなる

回答例1

- > 以下の微分方程式の初期値問題を考える
- $> t_i = j\Delta t$, 差分解 Y_i を用いて、ホイン法およびルンゲ・クッタ法の差分方程式を示せ。
- ▶ ホイン法
 - $Y_{j+1} = Y_j + \frac{\Delta t}{2}(k_1 + k_2), \quad k_1 = Y_j(5 Y_j), \quad k_2 = (Y_j + k_1 \Delta t)(5 (Y_j + k_1 \Delta t))$
- ▶ ルンゲ・クッタ法
 - $Y_{j+1} = Y_j + \frac{\Delta t}{6}(k_1 + 2k_2 + 2k_3 + k_4),$
 - $k_1 = Y_j (5 Y_j), \quad k_2 = \left(Y_j + \frac{k_1 \Delta t}{2}\right) \left(5 \left(Y_j + \frac{k_1 \Delta t}{2}\right)\right)$
 - $k_3 = \left(Y_j + \frac{k_2 \Delta t}{2}\right) \left(5 \left(Y_j + \frac{k_2 \Delta t}{2}\right)\right), \quad k_4 = \left(Y_j + k_3 \Delta t\right) \left(5 \left(Y_j + k_3 \Delta t\right)\right)$

回答例2

- > 以下の微分方程式の初期値問題を考える
- $\Delta t = 0.5$ の場合において、t = 0からt = 2までホイン法およびルンゲ・クッタ法を用いて差分解を それぞれ導出し、さらに微分解 $y = \frac{5}{1+4e^{-5t}}$ との誤差を有効数字6桁で示せ。
- 真値 $y(2) = \frac{5}{1+4e^{-10}} = 4.99909216627 ... 誤差|3.0008499 4.99909216627| = 1.99824$

t	0	0.5	1	1.5	2
Y_j	1	3.5	3.0898438	2.9933965	3.0008499
k_1	4	5.25	5.9020844	6.0065598	
k_2	6	-6.890625	-6.2878731	-5.9767464	

回答例2(続)

- > 以下の微分方程式の初期値問題を考える
 - $\frac{dy}{dt} = y(5-y), \quad y(0) = 1$
- $\Delta t = 0.5$ の場合において、t = 0からt = 2までホイン法およびルンゲ・クッタ法を用いて差分解をそれぞれ導出し、さらに微分解 $y = \frac{5}{1+4e^{-5t}}$ との誤差を有効数字6桁で示せ。
- ightharpoonup 真値 $y(2) = \frac{5}{1+4e^{-10}} = 4.99909216627 ...$ 誤差|4.7796523 4.99909216627| = 0.219440

t	0	0.5	1	1.5	2
Y_j	1	3.6757813	4.4567944	4.6633890	4.7796523
k_1	4	4.8675385	2.4209556	1.5697481	
k_2	6	0.5251501	-0.3140147	-0.2822466	
k_3	6.25	4.5415712	2.7220240	1.8700738	
k_4	3.609375	-5.6288232	-4.7578392	-3.3502428	