Anexo (teoría)

Definición 1 (Experimentos aleatorios). Un experimento con diferentes resultados, incluso si es repetido en la misma manera, se llama un experimento aleatorio.

Definición 2 (Espacio muestra). El conjunto de todos los posibles resultados de un experimento aleatorio, se llama el espacio muestra del experimento. Ejemplo:

$$S = \mathbb{R} + = \{x \in \mathbb{R} | x > 0\} \tag{51}$$

$$S = \{x \in N | 10 < x < 20\} \tag{52}$$

$$S = \{low, medium, light\} \tag{53}$$

$$S = \{ yes. \, not \} \tag{54}$$

Definición 3 (Espacio muestra discreto). Un espacio muestra es discreto si y sólo si, es contable.

Ejemplo:

$$S = \{x \in \mathbb{N} \mid 10 < x < 20\}$$

$$S = \{ \text{low, medium, light } \}$$

$$S = \{ yes, \text{ not } \}$$

$$S = \{ x \in \mathbb{N} \mid \exists y \in \mathbb{N} : 2y + 1 = x \}$$

$$S = \{0, 1\}^*$$

$$(55)$$

Definición 4 (Espacio muestra continuo). Un espacio muestra S es continuo si y sólo si, existe una biyección $f:S\mapsto \mathbb{R}$.

Ejemplos:

$$S = \{x \in \mathbb{R} \mid 0 < x < 2\}$$

$$S = \mathbb{R}^+ \times \mathbb{R}^+$$

$$S = \{x \mid x = |S'|, S' \subseteq \mathbb{N}\}$$

$$(56)$$

Definición 5 (Evento). Un evento S, es decir, $E \subseteq S$.

- La unión de dos eventos E_1, E_2 se define $E_1 \cup E_2 = \{x | x \in E_1 or x \in E_2\}$.
- La intersección de dos eventos E_1, E_2 , se define $E_1 \cap E_2 = \{x | x \in E_1 \text{ and } x \in \}$.
- El complemento de un evento E en el espacio muestral S se define $E=\{x\in S|x\in E\}$.

Ejemplos: Considere el espacio muestra S = yy, yn, ny, nn. Los siguientes son eventos S.

$$E_{1} = \{yy, yn, ny\}$$
 $E_{2} = \{nn\}$
 $E_{3} = \emptyset$
 $E_{4} = S$
 $E_{5} = \{yn, ny, nn\}$
(57)

$$E_1 \cup E_2 = S$$
 $E_1 \cap E_5 = \{yn, ny\} E_1 \cup E_2 = S, \quad E_1 (58)E_5 = \{yn, ny\} E_1 \cup E_2 = S, \quad E_1 (58)E_1 = \{yn, ny\} E_1 \cup E_2 = S, \quad E_1 (58)E_1 = \{yn, ny\} E_1 \cup E_2 = S, \quad E_1 (58)E_1 = \{yn, ny\} E_1 \cup E_2 = S, \quad E_1 (58)E_1 = \{yn, ny\} E_1 \cup E_2 = S, \quad E_1 (58)E_1 = \{yn, ny\} E_2 \cup E_2 = S, \quad E_1 (58)E_2 = \{yn, ny\} E_2 \cup E_2 = S, \quad E_2 \cup E_3 = \{yn, ny\} E_2 \cup E_3 = S, \quad E_3 \cup E_3 = \{yn, ny\} E_2 \cup E_3 = S, \quad E_3 \cup E_3 = S, \quad E_4 \cup E_3 = S, \quad E_4 \cup E_3 = S, \quad E_5 \cup E_5 = S, \quad E_$

Mas ejemplos. Considere $S=\mathbb{R}^+, E_1=\{x\mid 1\leq x<10\}$ y $E_2=\{x\mid 3< x<118\},$ entonces

$$E_{1} \cup E_{2} = \{x \mid 1 \leq x < 118\}$$

$$E_{1} \cap E_{2} = \{x \mid 3 < x < 10\}$$

$$E_{1}^{c} = \{x \mid x \geq 10\}$$

$$E_{1}^{c} \cap E_{2} = \{x \mid 10 \leq x < 118\}$$

$$(59)$$

Algunas propiedades de los eventos.

Dos eventos A y B se dicen mutuamente exclusivos si y sólo si, su intersección de vacía, es decir, $A\cap B=\emptyset$

$$(E^{c})^{c} = E$$

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

$$(A \cup B)^{c} = A^{c} \cap B^{c}$$

$$(A \cap B)^{c} = A^{c} \cup B^{c}$$

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

$$(60)$$

$$(E^{c})^{c} = E$$

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

$$(A \cup B)^{c} = A^{c} \cap B^{c}$$

$$(A \cap B)^{c} = A^{c} \cup B^{c}$$

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

$$(61)$$

Definición 6 (Probabilidad). En un espacio muestra discreto, la probabilidad de un evento E, escrito P(E), es igual a la suma de las probabilidades de sus resultados en E.

Ejemplo.

Un experimento aleatorio puede resultar en a,b,c,d con probabilidades 0.1,0.3,0.5 y 0.1, respectivamente. Considere el evento A como $\{a,b\},B=\{b,c,d\}$ y C=d. Entonces,

$$P(A) = 0.1 + 0.3 = 0.4$$

 $P(B) = 0.3 + 0.5 + 0.1 = 0.9$
 $P(C) = 0.1$ (62)

También, $P\left(A^c\right)=0.6, P\left(B^c\right)=0.1, P\left(C^c\right)=0.9$. Más aún, debido a $A\cap B=\{b\}$, entonces $P(A\cap B)=0.3$. Debido a $A\cup B=\{a,b,c,d\}, P(A\cup B)=0.1+0.3+0.5+0.1=1$. Y debido a $A\cap C=\emptyset$, entonces $P(A\cap C)=0$.

Definición 7 (Axiomas de la probabilidad). Considere los eventos E, E_1 y E del espacio muestra S de un experimento aleatorio.

- P(S) = 1
- $0 \le P(E) \le 1$
- Si $E_{1}\cap E_{2}=\emptyset$, entonces $P\left(E_{1}\cup E_{2}
 ight)=P\left(E_{1}
 ight)+P\left(E_{2}
 ight)$

Algunas propiedades.

$$P(\emptyset) = 0$$
 $P(E^c) = 1 - P(E)$ Si $E_1 \subseteq E_2$, entonces $P(E_1) \le P(E_2)$ (63)

Ejercicios

Problema 1

Suponga que las placas de los vehículos están compuestas inicialmente por tres dígitos (0-9), seguidas de tres letras (A-Z). Calcule la probabilidad de una determinada placa.

Problema 2

Un mensaje puede seguir diferentes rutas a través de una red de servidores. En el primer paso, el mensaje puede llegar a cinco servidores, a partir de cada uno de estos servidores, el mensaje puede llegar a cinco servidores m´as, desde los cuales puede acceder a otros cuatro servidores.

- Calcule la cantidad de rutas.
- Si todas las rutas son igualmente probables, calcule la probabilidad de que el mensaje llegue a alguno de los cuatro servidores del tercer bloque.

Demuestre lo siguiente

$$P(\emptyset) = 0 \tag{64}$$

$$S^{c} = \emptyset$$
 Definimos el conjunto (65)

$$P(S \cup S^{c}) = P(S) + P(S^{c}) - P(S \cap S^{c})$$
 Usamos la prpiedad (66)

$$P(S \cup S^{c}) = 1 + P(S^{c}) - 0$$
 Sustituimos (67)

$$P(S \cup S^{c}) = 1$$
 Decladamos una propieda (68)

$$1 - 1 = P(S^{c})$$
 Sustituimos lo anterios (69)

$$0 = P(S^{c})$$
 (70)

$$P(S^{c}) = 0$$
 (71)

$$\therefore P(\emptyset) = 0$$
 (72)

$$P(E^c) = 1 - P(E) \tag{73}$$

Para cualquier evento A, P(A) + P(A') = 1, a partir de la cual P(A) = 1 - P(A'). (74)

Comprobación En el axioma 3 , sea $k=2, A_1=A$ y $A_2=A'$. Como por definición de $A', A\cup A'=\mathcal{S}$ en tanto A y A' sean eventos disjuntos, $1=P(\mathcal{S})=P\left(A\cup A'\right)=P(A)+P\left(A'\right)$

Si
$$E_1 \subseteq E_2$$
 entonces $P(E_1) \le P(E_2)$ (75)

• Si tienen los mismos elementos, entonces la probabilidad de obtener un evento E_1, E_2 , es la misma, pero y si E_2 Tiene un elemento más que E_2 su probabilidad aumenta, esto se puede demostrar por ordinales de conjuntos.

$$\frac{\#E_1}{Total} \le \frac{\#E_2}{Total} \tag{76}$$

 E_1, E_2 es el número de elementos a favor.

Mas ejemplos

Problema 1

Una mezcla química es preparada correctamente por el 25% de los técnicos de un laboratorio, 70% de los técnicos la preparan con un error mínimo, y 5% con un error mayor.

• Si un técnico es elegido aleatoriamente, ¿Cuál es la probabilidad de que prepare la mezcla sin error alguno?

$$P(E) = 25\% (77)$$

• Calcule la probabilidad de que el técnico la prepare con cualquier tipo de error.

$$P(E) = 70\% + 5\% = 75\% \tag{78}$$

Problema 2

Considere las emisiones de tres fabricas clasificadas por su calidad. De la primera fábrica 22 muestras de emisiones cumplen con el mínimo, y 8 no lo hacen; 25 cumplen con el mínimo y 5 no, en el caso de la segunda fábrica; en cuanto a la tercera, 30 cumplen y 10 no. Considere A denota el evento de las muestras de emisiones de la primera fábrica, y B como el evento de una muestra cumple con el mínimo. Calcule las siguientes probabilidades.

$$P(A)$$
 $P(B)$ $P(A^c)$ $P(A \cap B)$ $P(A \cup B)$ $P(A^c \cup B)$ (79)

Solución:

$$P(A) = \frac{22+8}{100} = 0.3 \tag{80}$$

$$P(B) = \frac{22 + 25 + 30}{100} \tag{81}$$

$$P(B) = \frac{22 + 25 + 30}{100}$$

$$P(A^{c}) = \frac{70}{100}$$
(81)

$$P(A \cap B) = \frac{22}{100} \tag{83}$$

$$P(A \cup B) = \frac{22 + 25 + 30}{100} \tag{84}$$

$$P(A^c \cup B) = \frac{70 + 8}{100} \tag{85}$$

Definición 8 (regla de la adición).

$$P(A \cup B) = P(A) + (B) - P(A)ls \tag{86}$$

Definición (Regla de la adición).

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \tag{87}$$

Ejemplo

Considere la tabla abajo con el historial de producción de 949 semiconductores. Suponga que un semiconductor es elegido aleatoriamente. Considere M denota el evento de que el semiconductor contiene niveles altos de contaminación. C es el evento cuando el semiconductor se encuentra en el centro de una herramienta de pulverización.

$$P(H \cup C) = P(H) + P(C) - P(H \cap C) = \frac{1}{940}(358 + 626 - 112) = \frac{872}{940}$$
 (88)

Ejemplo: En el mismo contexto del ejemplo anterior, considere E_1 el evento de que un semiconductor contiene 4 o más partículas contaminantes, $\it E2$ es el evento de que un semiconductor se encuentra en la orilla de la herramienta.

$$P(E_1 \cap E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2) = \tag{89}$$

Ejercicios

Si P(A) = 0.3, P(B) = 0.2, y P(A \cap B) = 0.1, determine las siguientes probabilidades:

$$P(A^c) P(A \cup B) P(A^c \cap B) P(A \cap B^c) P((A \cup B)^c) P(A^c \cup B)$$

$$(90)$$

Definición 9 (Probabilidad condicional) . La probabilidad condicional de un evento B dado otro evento A, escrita P(B|A), se define

$$P(B|A) = \frac{P(A \cap B)}{P(A)} \tag{91}$$

pág8

- Calcule la probabilidad de que el inspector detecte un objeto defectuso.
- Si un objeto es clasificado libre de defectos, determine la probabilidad de que efectivamente lo esté.

Definición 13 (Clasificación Bayesiana). Considere el espacio muestra compuesto por los siguientes vectores:

El modelo de clasificación Bayesiana se define como sigue:

$$\hat{y} = \max \{ P(y_i) P(x_1 \mid y_i) P(x_2 \mid y_i) \dots P(x_n \mid y_i) \mid i = 1, \dots, m \}$$
(92)

Ejemplo

Considere la siguiente base de datos

Género	Calificación
Terror	1
Acción	3
Drama	2
Drama	2
Acción	2
Terror	3
Teror	3
Drama	1
Acción	2

• Calcule la probabilidad de que el inspector detecte un objeto defecuso

La calificación de una película de acción se puede predecir de la siguiente forma:

$$P(1)P(\text{Acción } | 1) = 2/9 * 0 = 0$$

 $P(2)P(\text{Acción } | 2) = 4/9 * 1/2 = 2/9$
 $P(3)P(\text{Acción } | 3) = 1/3 * 1/3 = 1/9$ (93)

por lo tanto, la calificación de una película de acción será 2.

pág 9

Ejemplo. Considere la siguiente base de datos.

#	Usuario	Género	Calificación
1	F	Terror	1
2	М	Acción	3
3	F	Drama	2
4	М	Drama	2
5	F	Acción	2
6	М	Terror	3
7	F	Terror	3
8	М	Drama	1
9	F	Acción	2

Calcule la calificación que le pondría un usuario ${\cal M}$ a una película de Drama.

$$P(1)P(M \mid 1)P(Drama \mid 1) = 2/9 * 1/2 * 1/2 = 1/18$$

 $P(2)P(M \mid 2)P(Drama \mid 2) = 4/9 * 1/4 * 1/2 = 1/18$
 $P(3)P(M \mid 3)P(Drama \mid 3) = 1/3 * 2/3 * 0 = 0$

$$(94)$$

Ejercicios

Considere la siguiente base de datos.

#	Productora	Usuario	Género	Calificación
1	Universal	F	Terror	1
2	Universal	M	Acción	3
3	Warner	F	Drama	2
4	Disney	M	Drama	2
5	Warner	F	Acción	2
6	Disney	M	Terror	3
7	Universal	F	Terror	3
8	Disney	M	Drama	1
9	Warney	F	Acción	2
10	Warner	M	Acción	1
11	Disney	F	Drama	2
12	Universal	F	Terror	3
13	Warner	F	Terror	3
14	Disney	M	Acción	2
15	Universal	М	Drama	1

Calcule la calificación que otorgará un usuario ${\it F}$ a una película de Acción producida Warner.

$$P(1) \cdot P(F|1) \cdot P(A|1) \cdot P(W|1)$$

$$= \frac{4}{15} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{4}{960} = 0.0041\overline{6}$$

$$P(2) \cdot P(F|2) \cdot P(A|2) \cdot P(W|2)$$

$$= \frac{6}{15} \cdot \frac{4}{6} \cdot \frac{3}{6} \cdot \frac{3}{6} = \frac{216}{3240} = 0.0666\overline{6}$$

$$P(3) \cdot P(F|3) \cdot P(A|3) \cdot P(W|3)$$

$$= \frac{5}{15} \cdot \frac{3}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} = \frac{15}{1,875} = 0.0026\overline{6}$$

$$(95)$$

pag 10

Ejercicio

• Considere la siguiente base de datos.

#	Director	Productora	Usuario	Género	Calificación
1	Hnos. Coen	Universal	F	Terror	1
2	Del tor	Universal	M	Acción	3
3	Bañuel	Warner	F	Drama	2
4	Bañuel	Disney	М	Drama	2
5	Hnos. Coen	Warner	F	Acción	2
6	Del toro	Disney	М	Terror	3
7	Del toro	Universal	F	Terror	3
8	Hnos. Coen	Disney	М	Drama	1
9	Bañuel	Warner	F	Acción	2
10	Del toro	Warner	М	Acción	1
11	Bañuel	Disney	F	Drama	2
12	Hnos. Coen	Universal	F	Terror	3
13	Hnos. Coen	Warner	F	Terror	3
14	Del Toro	Disney	М	Acción	2
15	Bañuel	Universal	М	Drama	1
16	Bañuel	Warner	М	Acción	1
17	Del Toro	Warner	F	Acción	2
18	Bañuel	Disney	М	Drama	3
19	Hnos. Coen	Universal	М	Terror	1
20	Hnos. Coen	Warner	F	Terror	1
21	Del Toro	Disney	F	Acción	2
22	Bañuel	Uiversal	М	Drama	3

Calcule la calificación que otorgará un usuario ${\cal M}$ a una película de Terror, producida y dirigida por Bañuel.

• Implemente un algoritmo para el modelo de clasificación Bayesiana.

$$P(1) \cdot P(M|1) \cdot P(Terror|1) \cdot P(Universal|1) \cdot P(Ba\tilde{n}uel|1)$$

$$= \frac{7}{22} \cdot \frac{5}{7} \cdot \frac{3}{7} \cdot \frac{3}{7} \cdot \frac{2}{7} = \frac{45}{3773} = 0.0119268$$
(98)

$$P(2) \cdot P(M|2) \cdot P(Terror|2) \cdot P(Universal|2) \cdot P(Ba\tilde{n}uel|2)$$

$$= \frac{8}{22} \cdot \frac{2}{7} \cdot 0 \cdot \dots = 0$$
(99)

$$P(3) \cdot P(M|3) \cdot P(Terror|3) \cdot P(Universal|3) \cdot P(Ba\tilde{n}uel|3)$$

$$= \frac{7}{22} \cdot \frac{4}{7} \cdot \frac{4}{7} \cdot \frac{4}{7} \cdot \frac{2}{7} = \frac{896}{52,822} = 0.0169626$$
(100)