南昌大学物理实验报告

课程名称:		普通物理实验	(2)	
实验名称:		偏振光实验		
学院:	理学院	专业班级:	物理学 151 班	
学生姓名:	黄泽豪	学号:	5502115014	
实验地点:	B509	座位号:	13	
实验时间:	第七月	<u> </u>	(四十五开始	

【实验目的】

- 1.通过观察光的偏振现象,加深对光波传播规律的认识.
- 2.掌握产生和检验偏振光的原理和方法.

【实验仪器】

半导体激光器、碘钨灯、硅光电池、UT51 数字多用表、偏振片(2 片)、1/4 波片、反射镜、玻璃堆、平台和光具座等.

【实验原理】

1.光的偏振性

光是一种电磁波,由于电磁波对物质的作用主要是电场,故在光学中把电场强度 E 称为光矢量.在垂直于光波传播方向的平面内,光矢量可能有不同的振动方向,通常把光矢量保持一定振动方向上的状态称为偏振态.如果光在传播过程中,若光矢量保持在固定平面上振动,这种振动状态称为平面振动态,此平面就称为振动面(见图 1).此时光矢量在垂直与传播方向平面上的投影为一条直线,故又称为线偏振态.若光矢量绕着传播方向旋转,其端点描绘的轨道为一个圆,这种偏振态称为圆偏振态.如光矢量端点旋转的轨迹为一椭圆,就成为椭圆偏振态(见图 2).

普通光源发出的光一般是自然光,自然光不能直接显示出偏振想象.但自然光可以看成是两个振幅相同,振动相互垂直的非相干平面偏振光的叠加.在自然光与平面偏振光之间有一种部分偏振光,可以看作是一个平面偏振光与一个自然光混合而成的.其中的平面偏振光的振动方向就是这个部分偏振光的振幅最大方向.

2.偏振片

虽然普通光源发出自然光,但在自然界中存在着各种偏振光,目前广泛使用的偏振光的器件是人造偏振片,它利用二向色性获得偏振光(有些各向同性介质,在某种作用下会呈现各向异性,能强烈吸收入射光矢量在某方向上的分量,而通过其垂直分量,从而使入射的自然光变为偏振光介质的这种性质称为二向色性,如图 3.).

偏振器件即可以用来使自然光变为平面偏振光——起偏,也可以用来鉴别线偏振光、自然光和部分偏振光——检偏.用作起偏的偏振片叫做起偏器,用作检偏的偏振器件叫做检偏器.实际上,起偏器和检偏器是通用的.

3.马吕斯定律

设两偏振片的透振方向之间的夹角为 α ,透过起偏器的线偏振光振幅为 A_0 ,则透过检偏器的线偏振光的振幅为 $A=A_0\cos\alpha$.强度为

$$I = A_0^2 \cos^2 \alpha = I_0 \cos^2 \alpha \tag{1}$$

式中 I_0 为进入检偏器前(检偏器无吸收时)线偏振光的强度.公式(1)就是 1809 年马吕斯在实验中发现的,所以称马吕斯定律.显然,以光线传播方向为轴,转动检偏器时,透射光强度I将发生周期变化.若入射光是部分偏振光或椭圆偏振光,则极小值不为 0.若光强完全不变化,则入射光是自然光或圆偏振光.这样,根据透射光强度变化的情况,可将线偏振光和自然光和部分偏振光区别开来.

4.椭圆偏振光、圆偏振光的产生; 1/4 波片的作用

单轴晶体制成厚度为 d,表面平行于光轴的片,称波片.波片有正晶体或负晶体之分. 一束振幅为 A 的线偏振光垂直入射在波片表面上,且振动方向与光轴夹角为 α ,在晶体内分解为 o 光和 e 光,振动可分别表示为 $E_x = A_0 \cos(\omega t)$, $E_y = A_e \cos(\omega t + \delta)$ (见图 39-4).经过波片后,

二光产生光程差为:
$$\Delta = d(n_0 - n_e)$$
 (2)

二光产生相位差为:
$$\delta = 2\pi (n_0 - n_e) d / \lambda \tag{3}$$

式中, λ_0 为光在真空中的波长; n_0 、 n_e 为晶片对o光和e光的折射率.因为波片能使o光或e光的相位延迟,又称为相位延迟器.

o 光和 e 光振动方向相互垂直, 频率相同, 相位差恒定

$$\frac{E_x^2}{A_o^2} + \frac{E_y^2}{A_e^2} - 2\frac{E_x E_y}{A_e A_o} \cos \delta = \sin^2 \delta$$
 (4)

这是椭圆方程式,代表椭圆偏振光.

当改变厚度 d 时,光程差 Δ 亦改变.

(1) 当 $\Delta = k\lambda(k = 0,1,2,\cdots)$ 时,由式(4)可得

$$E_{y} = \frac{A_{e}}{A_{o}} E_{x} \tag{5}$$

这是直线方程,故出射光为平面偏振光,与原入射光振动方向相同,满足此条件之晶片叫全波片.光通过全波片不发生振动状态的变化.

(2) 当 $\Delta = (2k+1)\lambda/2(k=0,1,2,\cdots)$ 时,由式(4)可得

$$E_{y} = -\frac{A_{e}}{A_{o}} E_{x} \tag{6}$$

出射光也是平面偏振光,但与原入射光夹角为 2α ,满足此条件的晶片叫 1/2 波片,或半波片,平面偏振光通过半波片后,振动面转过 2α 角,若 $\alpha=45^\circ$,则出射光的振动面与入射光的振动面垂直.

(3) 当 $\Delta = (2k+1)\lambda/4(k=0,1,2,\cdots)$ 时,由式(4)可得

$$\frac{E_x^2}{A_a^2} + \frac{E_y^2}{A_e^2} = 1\tag{7}$$

出射光为椭圆偏振光,椭圆的两轴分别与晶体的主截面平行及垂直,满足此条件的晶片叫 1/4 波片.1/4 波片是作偏振光实验重要的常用元件.

若 $A_e = A_0$,则 $x^2 + y^2 = A^2$,出射光为圆偏振光.由于 o 光和 e 光的振幅是 α 的函数,所以通过 1/4 波片后的合成偏振状态也将随角度 a 变化而不同.

当 $\alpha = \pi/2$ 时,出射光为振动方向垂直于光轴的平面偏振光.

当 $\alpha = \pi/4$ 时,出射光为圆偏振光.

当 α 为其它值时,出射光为椭圆偏振光.

【实验内容及步骤】

1、验证马吕斯定律

实验装置如图 39-5 所示,光束经过起偏器产生线偏振光,再透过检偏器射到硅光电池上,转动检偏器(360°)观察光强的变化,找到最大电压值(对于硅光电池,其短路电流与光源的光强呈很好的线性关系),确定该位置为相对 0°.实验时,测量精度: 3°,测量范围: 360°.作 $I-\cos 2\alpha$ 的关系曲线,验证马吕斯定律.

2.用 1/4 波片产生圆偏振光和椭圆偏振光

在光具座上按图 6 放置各元件,其中 P 为起偏器,在为放入 1/4 波片时,是 A 与 P 正 交,光屏上呈现消光现象.插入 1/4 波片后,转动 1/4 波片观察光屏.调节波片至呈现消光现象. 然后转动 A 一周.观察光屏上光强的变化情况,并记录电压值.再将 1/4 波片分别转动 30°,45°,每次对应转动检偏器一周,记录观察到的电压值.

【数据处理】

1. 验证马吕斯定律

由测量数据易知 $U_0 = 0.166V$,数据处理如下:

<i>θ</i> / °	0	15	30	45	60	75	90	105	120
U/V	0.406	0.405	0.400	0.393	0.376	0.327	0.168	0.332	0.366
$U-U_0/V$	0.240	0.239	0.234	0.227	0.210	0.161	0.002	0.166	0.200
<i>θ</i> / °	135	150	165	180	195	210	225	240	255
U/V	0.382	0.39	0.394	0.396	0.393	0.388	0.379	0.362	0.323
$U-U_0/V$	0.216	0.224	0.228	0.23	0. 227	0.222	0.213	0.196	0.157
$ heta/\circ$	270	285	300	315	330	345	360		
U/V	0.166	0.329	0.364	0.387	0.396	0.4	0.401		
$U-U_0/V$	0.000	0. 163	0. 198	0. 221	0.230	0. 234	0. 235		

作出 $U_0 - \theta$ 图如下:

由图像可初步验证马吕斯定律的准确性.

2.用 1/4 波片产生圆偏振光和椭圆偏振光

(1) $\theta = 0$ °时,数据处理如下:

<i>θ</i> / °	0	15	30	45	60	75	90	105	120
U/V	0.178	0.323	0.359	0.376	0.385	0.389	0.391	0.389	0.385
$U-U_0/V$	0.012	0. 157	0. 193	0.210	0.219	0. 223	0. 225	0. 223	0.219
$ heta/\circ$	135	150	165	180	195	210	225	240	255

U/V	0.375	0.358	0.321	0.177	0.327	0.363	0.383	0.392	0.396
$U-U_0/V$	0.209	0. 192	0. 155	0.011	0.161	0. 197	0.217	0. 226	0.230
$ heta/\circ$	270	285	300	315	330	345	360		
U/V	0.397	0.395	0.391	0.384	0.367	0.32	0.177		
$U-U_0/V$	0. 231	0. 229	0. 225	0.218	0. 201	0.154	0.011		

 $\theta = 0$ °时,测得电压与角度关系图

由图像可知, $\theta = 0$ °时,偏振光为线偏振光.

(2) $\theta = 30$ °时,数据处理如下:

θ /°	0	15	30	45	60	75	90	105	120
U/V	0.369	0.375	0.38	0.382	0.382	0.38	0.376	0.37	0.364
$U-U_0/V$	0.203	0. 209	0. 214	0.216	0.216	0.214	0.21	0. 204	0.198
$ heta/\circ$	135	150	165	180	195	210	225	240	255
U/V	0.358	0.356	0.359	0.367	0.377	0.382	0.387	0.389	0.388
$U-U_0/V$	0. 192	0.19	0. 193	0.201	0.211	0.216	0. 221	0. 223	0. 222
$ heta/\circ$	270	285	300	315	330	345	360		
U/V	0.386	0.383	0.379	0.374	0.367	0.363	0.368		
$U-U_0/V$	0.22	0.217	0. 213	0.208	0.201	0. 197	0.202		

 $\theta = 30^{\circ}$ 时,测得电压与角度关系图

由图像可知, $\theta=30$ °时,偏振光为椭圆偏振光.

(3) $\theta = 45$ °时,数据处理如下:

$ heta/\circ$	0	15	30	45	60	75	90	105	120
U/V	0.380	0.380	0.378	0.377	0.373	0.370	0.367	0.365	0.367
$U-U_0/V$	0.214	0. 214	0. 212	0.211	0. 207	0. 204	0.201	0.199	0.201
<i>θ</i> / °	135	150	165	180	195	210	225	240	255
U/V	0.369	0.373	0.376	0.378	0.379	0.380	0.382	0.384	0.384
$U-U_0/V$	0.203	0. 207	0. 210	0.212	0.213	0.214	0.216	0.218	0.218
<i>θ</i> / °	270	285	300	315	330	345	360		
U/V	0.383	0.383	0.382	0.382	0.381	0.379	0.379		
$U-U_0/V$	0.217	0. 217	0.216	0.216	0.215	0.213	0.213		

 θ = 45° 时,测得电压与角度关系图

由图像可知, $\theta = 45$ °时,偏振光为圆偏振光.

【思考题】

1. 两偏振片用支架安置于光具座上,正交后消光,一片不动,另一片的两个表面转换 180°,会有什么现象?如有出射光,是什么原因?

答: 有光射出. 偏振片只起到过滤一个方向的光波的作用,两个偏振片正交刚好将 360° 的光波全部滤波,也就不透明了,转 180° 后刚好两个滤波的方向一致,也就是另一个方向的光波能够穿过两个偏振片,就有光射出来了.

2. 两片正交偏振片中间再插入一偏振片会有什么现象? 怎样解释?

答:两个正交的偏振片本是不能通过自然光的,但是如果中间再插入第三个偏振片,就有可能有光通过. 当插入的偏振片和另外两片偏振片的偏振化方向夹角为 45 度时,出射光最强,为入射自然光强的 1/8. 若夹角为 0°或 180°, 出射光强为零.

3. 波片的厚度与光源的波长什么关系?

答: 波片厚度 $\Delta = (2k+1)\lambda/4(k=0,1,2,\cdots)$.

【误差分析】

数据分析过程中虽然减去了环境光带来的电压 U_0 ,但是实验结果依然不能做到足够准确. 因为环境光强会受到室外的光强,人为因素干扰和其他实验仪器影响,不会是一个稳定值. 所以假如将这个实验放在暗室中进行,可一定程度上减小实验误差.

【实验结果分析与小结】

1.对于光学实验来说,调仪器一直是一个难点,但是假如找到一个好的方法,可以使工作量大大减少.刚开始实验时,我总是不能通过调整光学元件的位置而使激光完全进入孔内. 原来,激光光源并不是水平的.所以我索性先将所有光学元件取下,先在这种情况下,使激光完全进入孔内,再逐个把光学元件加上,并做微调.用这种方法很快就把实验仪器调整到的可以开始进行实验的状态.

2.这次实验一共需要记录 100 个数据,这样庞大的数据量是之前的实验从来没有遇到过的,这锻炼了我的耐心.

3.在数据处理过程中,需要使用极坐标系进行作图,而 Excel 并没有极坐标绘图的相关功能,所以我自学了 Origin.虽然用 Origin 作出一个极坐标图并不是特别难,但是在自学和作图的过程给我带来了很大的成就感.

【原始数据】

		8 4								
	(A)		南	昌大	学!	物理	上实	验者	及告	
	学生姓名	3.黄泽	夏 学	J: 550211	5014 \$	业班级:	物理(5)	_班级编	号:	-
		可:时_								
, L	79	٥	us°	30	U5°	60'	71.	96°	105°	
15		0.380								
		120°								
	υ/υ	6.367	0.369	0.373	6.376	0.378	0.379	0.380	0.382	
	0	240°	255°	270°	285°	300'	315°	336°	345	360°
	V/V	0.384	0.384	0.383	0.383	0.382	0.382	0.381	0.379	0.379
										,
	-							37777		
					-					
		17 2/2/3								
	-									
	-			13 17 19						
	-									
	-									
		100		4.13(1.1)						
								MARKET		
	-				-	-				