Sistemas Operativos

Comunicación y Sincronización - II

Sistemas Operativos

- ✓ Versión: Junio 2020
- ☑Palabras Claves: Proceso, Comunicación, Mensajes, mailbox, port, send, receive, IPC, Productor, Consumidor

Algunas diapositivas han sido extraídas de las ofrecidas para docentes desde el libro de Stallings (Sistemas Operativos) , el de Silberschatz (Operating Systems Concepts)

Linux Kernel Development - 3^{er} Edicion – Robert Love (Caps. 9 y 10)

Repaso... La última clase vimos:

- ☑ ¿Como hacer para pasar información de un proceso a otro y de un hilo a otro? (cooperatividad)
- ☑ ¿Cómo hacer para que no se "superpongan" entre sí?
- ☑ Concepto de Sección Crítica
- ☑ Concepto de exclusión mutua:
 - ☑ Exclusión mutua: Solo 1 proceso puede estar ejecutándose dentro de la sección crítica
 - ☑ Continuidad o Progreso: Si no hay un proceso dentro de la sección crítica, otro podrán ingresar a la misma
 - ☑ Espera limitada: Los procesos no deben esperar para siempre par entrar a la sección crítica

Repaso... La última clase vimos:

✓Soluciones por Software:

- ✓ Variables lock: También hay que protegerlas
- ✓ Solución de Peterson: Soluciona problemas de alternancia estricta

✓Soluciones por Hardware:

- ✓ Deshabilitar interrupciones: Solución posible en monoprocesadores
- ✓ Instrucción TSL/Test and set lock: Debe garantizar la atomicidad de la operación
- ✓ Instrucción xchg/swap: Mejora a la solución TSL

Comunicación

Comunicación entre procesos: IPC

- ☑ Conocido como "Inter Procedure Call"
- ☑ Es un mecanismo para comunicar y sincronizar procesos.
- **☑** Consta de:
 - ✓ Sistema de mensajes
 - ✓ Medio de almacenamiento: Memoria Compartida
 - ✓ Mecanismo de sincronización: Semaforos

IPC – Sistema de Mensajes

- ✓ Provee dos operaciones
 - ✓ send y receive.
- ☑ Se establece un link de comunicación entre los procesos que se quieren comunicar.
- ☑ Ese link puede ser unidireccional o bidireccional, simétrico o asimétrico.
- ✓ La operación send puede ser por copia o por referencia (referencia no en todos los casos es posible); los mensajes de medida fija o variable.

IPC – Sistema de Mensajes(cont.)

☑ Comunicación directa: cada proceso que quiere comunicarse con otro, explícitamente nombra de quien recibe o quien manda la comunicación:

- ☑ Send (P, mensaje) Envía un mensaje al proceso P

IPC - Medio de almacenamiento

- ☑ Comunicación Indirecta: usa un mailbox o port.
- ☑Un mailbox puede verse como un objeto donde se ponen y sacan mensajes.
- ☑ Cada mailbox tiene una identificación única
 - ☑ Send (A, mensaje) Envía un mensaje al mailbox A
 - ☑ Receive (A, mensaje) Recibe un mensaje desde el mailbox A

IPC – Medio de almacenamiento (cont.)

- ☑En un esquema de comunicación indirecta el sistema operativo debe proveer un mecanismo para que un proceso pueda:
 - ☑ Crear un nuevo mailbox
 - ☑Compartir un mailbox
 - ☑Enviar y recibir mensajes a través del mailbox
 - **☑** Destruir un mailbox

IPC – Medio de almacenamiento (cont.)

- ☑ Capacidad del Link: ¿Cuántos mensajes puede mantener el link?
 - ☑ Cero: no puede haber mensajes esperando. Es lo que se llama Rendezvous: el emisor debe esperar que el receptor reciba el mensaje para poder mandar otro. Hay sincronismo.
 - ☑ Capacidad limitada: la cola tiene una longitud finita
 - ☑Capacidad ilimitada: tiene una longitud "infinita". El emisor nunca espera.

Ejemplo: Productor consumidor con mensajes

```
☑Productor
                           ☑ Consumidor
repeat
                           repeat
                             receive (productor, n
 produce un item en
                             extc);
 nextp
                             consume el ítem en
 send (consumidor, ne
                             nextc
 xtp);
until false;
                             until false;
```


Naming asimétrico

- ☑ Send (P, message) Envía un mensaje a P
- Receive (id, message) Recibe un mensaje desde cualquier proceso. Id identifica el nombre del proceso con el que se ha establecido la comunicación (quien origina el mensaje)
- ☑Esta técnica es utilizada en esquemas asimétricos, donde existen varios procesos que envían información y uno que recibe de muchos.

Naming indirecto: propiedad del mailbox

- ☑El mailbox puede ser propiedad del proceso o del sistema:
 - ☑Propiedad del proceso: esta definido como parte de él o asignado directamente a el.
 - ☑El dueño del mailbox es el que recibe mensajes a través de él
 - ☑El usuario es quien envía los mensajes a ese mailbox.

Mecanismo de sincronización

- ☑ El pasaje de mensajes entre un emisor y un receptor puede ser con o sin bloqueo (sincrónico o asincrónico):
 - ☑Envío con bloqueo: El emisor se queda bloqueado hasta que el proceso o buzón de destino recibe e mensaje
 - ☑Envío sin bloqueo: El emisor envía y sigue operando
 - ☑Recepción con bloqueo: el receptor se bloquea hasta que haya algún mensaje disponible
 - ☑Recepción sin bloqueo: el receptor extrae mensajes válidos o nulos

