FI FCTRIC VFHICLE X DRIVING RANGE PREDICTION - FV X DRP

Relatório de progresso

David P Coutinho Artur I Ferreira david.coutinho@isel.pt

arturj@isel.pt

David A. S. G. Albuquerque A43566@alunos.isel.pt

Instituto Superior de Engenharia de Lisboa

Friday, 25 March 2022

Outline

Introdução

Objetivo

Que fatores influenciam o eRange?

Formulação do problema

Dificuldades do problema

Estado da arte

Datasets

Datasets

Implementações

Trabalho realizado

Trabalho futuro

Objetivos futuros

Diagrama

Introdução - Objetivo

- Cálculo das estimativas de distância de condução restante que um veículo elétrico pode efetuar relativamente ao estado da sua bateria - eRange
- Aliviar a ansiedade do condutor

Introdução - Que fatores influenciam o eRange?

- SOC (State of charge) indica o estado de carga da bateria
- Estado do ar condicionado / Aquecimento
- Condições atmosféricas
- Inclinação da estrada
- Travagem regenerativa
- (entre outros)

Introdução - Formulação do problema

- Desenvolvimento aplicacional TODO:
 - Uso de inteligência artificial (machine learning) para a resolução do problema
 - Aprendizagem do modelo através de datasets contendo os consumos em viagens efetuadas por carros electricos

Introdução - Dificuldades do problema

- Escassez de datasets para testes de algoritmos
- Escolha dos algoritmos de machine learning
- Dependência de vários fatores aumenta a complexidade do problema
 - Limitado aos fatores existentes nos datasets
 - Seleção de fatores mais relevantes

Estado da arte - Datasets

- EV Database (ev-database.org)1
- VED Dataset²
 - Dados reais de condução de veículos elétricos (2013 Nissan leaf)
- Emobpy³
 - Geração de dados de condução de veículos elétricos

¹Electric Vehicle Database.

https://ev-database.org/car/1011/Nissan-Leaf. Accessed: 2022-04-12.

²G. S. Oh, David J. Leblanc, and Huei Peng. Vehicle Energy Dataset (VED), A Large-scale Dataset for Vehicle Energy Consumption Research. 2019.

³Carlos Gaete-Morales et al. "An open tool for creating battery-electric vehicle time series from empirical data, emobpy". In: *Scientific Data* (June 2021).

Estado da arte - Datasets de condução

	VED dataset	Emobpy	
Tipo de viagens	Reais	Geradas	
Número de viagens	507	Infinitas	
Modelos de veículos disponíveis	1	102	
	velocidade, SOC da bateria,		
	potência do aquecimento,	distância, consumo,	
Parâmetros úteis	potência do ar condicionado,	consumo instantâneo,	
	currente da bateria,	potência média	
	voltagem da bateria		

Estado da arte - Implementações

- Uso combinado de Gradient Boosting Regression Trees⁴
- Ensemble learning⁵ com:
 - Decision Tree
 - Random Forest
 - K-Nearest Neighbor
- Self-Organizing Maps⁶ (e híbridos com Regression Trees⁷)
- Redes neuronais com Multiple Linear Regression⁸

⁴Liang Zhao et al. "Machine Learning-Based Method for Remaining Range Prediction of Electric Vehicles". In: *IEEE Access* (2020).

⁵Irfan Ullah et al. "Electric vehicle energy consumption prediction using stacked generalization: an ensemble learning approach". In: International Journal of Green Energy (2021).

⁶Chung-Hong Lee and Chih-Hung Wu. "A Novel Big Data Modeling Method for Improving Driving Range Estimation of EVs". In: *IEEE Access* (2015).

⁷B. Zheng et al. "A Hybrid Machine Learning Model for Range Estimation of Electric Vehicles". In: 2016 IEEE Global Communications Conference (GLOBECOM). 2016.

⁸Cedric De Cauwer et al. "A Data-Driven Method for Energy Consumption Prediction and Energy-Efficient Routing of Electric Vehicles in Real-World Conditions". In: *Energies* (2017).

Trabalho realizado

- Estudo do problema e soluções existentes
- Estudo de datasets
- Implementação de dois algoritmos para cálculo do eRange:
 - Algoritmo básico ... (TODO)
 - Algoritmo history-based⁹

⁹David Pereira Coutinho. Classic EV X Project Driving Range Prediction TECHNICAL REPORT (draft version). July 2021.

Trabalho futuro

- Arquitetura de projeto:
 - Escolha do algoritmo de machine learning
- Implementação do projeto
 - Integração do dataset
 - Implementação do modelo
- Testes
- Recolha de resultados

Name :	Start Date :	End Date :	Duration :	Progress %	Dependency :
Project Report Delivery	Mar 15, 2022	Mar 15, 2022	1 day	100	
→ Writting the document	Mar 15, 2022	Sep 15, 2022	132.75 days	0	
Finalization - Results & Conclusion	Aug 01, 2022	Sep 01, 2022	24 days	0	4FS
Document revision	Sep 01, 2022	Sep 13, 2022	9 days	0	6FS-1 days
Writting the document	Mar 15, 2022	Sep 15, 2022	132.88 days	0	
Project Testing	Jul 11, 2022	Jul 29, 2022	15 days	0	17FS+19 days
Valid estimations	Jul 29, 2022	Jul 29, 2022	0 days	0	
Project Implementation	Mar 28, 2022	Jul 28, 2022	89 days	0	
Implemented Model	Jun 13, 2022	Jun 13, 2022	0 days	0	15FS+20 days
Project Architecture	Mar 16, 2022	Jun 06, 2022	58.88 days	0	
Dataset integration	May 16, 2022	May 16, 2022	0 days	0	14FS+15 days
Choosen Machine Learning Algorithms	Apr 25, 2022	Apr 25, 2022	0 days	0	