

Indian Institute of Technology Bombay

Analog Circuits Lab EE 230

Lab 6 February 17, 2025

 $\begin{array}{c} \text{Mridul Choudhary} \\ 23\text{B}3933 \end{array}$

Contents

1	Me	asuren	nent of Offset voltage and Bias currents	2
	1.1	Measu	rement of V_{OS}	2
		1.1.1	Aim of the experiment	2
		1.1.2	Design	2
		1.1.3	Experimental results	3
	1.2	Measu	rement of bias current I_B^-	4
		1.2.1	Aim of the experiment	4
		1.2.2	Design	4
		1.2.3	Experimental results	5
	1.3	Measu	rement of bias current I_B^+	6
		1.3.1	Aim of the experiment	6
		1.3.2	Design	6
		1.3.3	Experimental results	6
2	Mea	asuren	nent of Open-loop gain	7
		2.0.1	Aim of the experiment	7
		2.0.2	Design	7
		2.0.3	Experimental results	8
		2.0.4	Conclusion and Inference	12
3	Exr	perime	nt completion status	12

1 Measurement of Offset voltage and Bias currents

1.1 Measurement of V_{OS}

1.1.1 Aim of the experiment

- 1. Measure V_{OS} using a circuit that enhances its contribution while minimizing the effects of bias currents.
- 2. Determine the exact resistor values to accurately calculate V_{OS} .
- 3. Compare the measured V_{OS} with the value provided in the OpAmp 741 datasheet.

1.1.2 Design

For the measurement of the input offset voltage (V_{OS}) , a non-inverting amplifier configuration is used. The circuit consists of an OpAmp 741 powered by a ± 15 V supply, with two resistors $(R_1 = 10\Omega \text{ and } R_2 = 10\text{k}\Omega)$ forming the feedback network. The output voltage (V_O) is measured and used to compute V_{OS} using the equation $V_{OS} = \frac{V_O}{1+\frac{R_2}{R_1}}$. The actual resistor values are measured beforehand to ensure accuracy, and the obtained V_{OS} is compared with the typical value provided in the OpAmp 741 datasheet.

$$V_{OS} = \frac{V_O}{1 + \frac{R_2}{R_1}} \approx \frac{V_O}{\frac{R_2}{R_1}} \tag{1}$$

Figure 1: Circuit for measurement of V_{OS}

1.1.3 Experimental results

Sr. No.	Parameter	Value
1	R_1	$10.2~\Omega$
2	R_2	10 kΩ
3	V_O	9 mV
4	V_{OS}	$9.18~\mu { m V}$

1.2 Measurement of bias current I_B^-

1.2.1 Aim of the experiment

- 1. Measure I_B^- using a circuit where output voltage is primarily influenced by bias current through a high-value resistor.
- 2. Compare the measured values of bias currents with those from the OpAmp 741 datasheet.

1.2.2 Design

The bias current I_B^- is measured using a configuration where a $10\mathrm{M}\Omega$ resistor is placed between the inverting input and ground, ensuring that the output voltage primarily depends on I_B^- . Since the offset voltage component is negligible in comparison, the bias current is determined using $I_B^- = \frac{V_O}{R}$.

$$I_B^- = \frac{V_O}{R} \tag{2}$$

Figure 2: Circuit for measurement of I_B^-

1.2.3 Experimental results

Sr. No.	Parameter	Value
1	R	$10 \text{ M}\Omega$
2	V_O	0.5 V
3	I_B^-	49.1 nA

1.3 Measurement of bias current I_B^+

1.3.1 Aim of the experiment

- 1. Measure I_B^+ using a similar circuit where the current flows through a resistor at the non-inverting terminal.
- 2. Compare the measured values of bias currents with those from the OpAmp 741 datasheet.

1.3.2 Design

 I_B^+ is measured using a circuit where a $10M\Omega$ resistor is connected to the non-inverting terminal, causing a voltage drop due to I_B^+ , and the current is calculated using the same formula. These values are then compared with the datasheet values of the OpAmp 741.

$$I_B^+ = \frac{V_O}{R} \tag{3}$$

Figure 3: Circuit for measurement of I_B^+

1.3.3 Experimental results

Sr. No.	Parameter	Value
1	R	10 MΩ
2	V_O	-0.5 V
3	I_B^+	-49.1 nA

2 Measurement of Open-loop gain

2.0.1 Aim of the experiment

- 1. Challenges in Direct Measurement of Open-Loop Gain:
 - Due to the high gain of the OpAmp, direct measurement of AOL is difficult as the amplifier quickly saturates.
 - A method called "False Summing Junction" is used to indirectly measure AOL without saturation.
- 2. Implementation of Open-Loop Gain Measurement Circuit:
 - Build a circuit where the open-loop gain can be calculated using measurable parameters.
 - Nullify the offset voltage using a potentiometer before taking measurements.
 - Verify circuit operation by applying a DC input and checking expected output.
- 3. Frequency Response Analysis of AOL:
 - Measure the peak-to-peak voltages at various frequencies to determine AOL as a function of frequency.
 - Plot the magnitude frequency response (Bode Plot) of AOL.
 - Determine the 3-dB bandwidth and the roll-off slope in dB/decade.
 - Identify the number of poles and estimate their frequencies.

2.0.2 Design

The measurement of the open-loop gain (A_{OL}) presents challenges due to the extremely high gain of the OpAmp, which causes immediate saturation. To overcome this, the "False Summing Junction" method is used. In this method, a resistive feedback network is introduced to control the gain, allowing measurement without driving the OpAmp into saturation. The circuit includes an OpAmp 741 with resistors $(R_{in} = 5k\Omega, R_{FB} = 5k\Omega, R_1 = 100k\Omega, R_2 = 100\Omega)$, which ensures proper feedback control. A sine wave input with a peak-to-peak voltage of 15V is applied at various frequencies ranging from 1Hz to 10kHz, and the output voltage (V_O) and reference voltage (V_R) are measured. The open-loop gain is then calculated using the formula $A_{OL} = \frac{|V_O|}{|V_R|} \frac{R_1 + R_2}{R_2}$. The frequency response of A_{OL} is plotted to determine the 3-dB bandwidth and the roll-off slope, identifying the dominant poles in the system.

Each of these circuits is designed to ensure precise measurement of OpAmp characteristics while accounting for real-world variations in component values. The step-by-step experimental procedure ensures that results are reliable and comparable with theoretical expectations from the OpAmp 741 datasheet.

$$A_{OL} = \frac{|V_O|}{|V_R|} \frac{R_1 + R_2}{R_2} \tag{4}$$

Figure 4: Measurement of open-loop gain A_{OL}

2.0.3 Experimental results

Sr. No.	Parameter	Value
1	R_{in}	$5 \text{ k}\Omega$
2	R_{fb}	$5~\mathrm{k}\Omega$
3	R_1	100 kΩ
4	R_2	100 Ω

Sr. No.	Frequency	$V_O(V_{PP})$	$V_R (mV_{PP})$	A_{OL}
1	10 kHz	$100 \ mV_{PP}$	$8 V_{PP}$	12.5125
2	1 kHz	$800~mV_{PP}$	$6.6\ V_{PP}$	121.33
3	500 Hz	1.2	$4.92 V_{PP}$	244.1463
4	100 Hz	1.56	$1.32 V_{PP}$	1183
5	20 Hz	1.56	280	5577
6	10 Hz	1.52	200	7607.6
7	9 Hz	1.56	200	7807.8
8	8 Hz	1.56	200	7807.8
9	7 Hz	1.56	160	9759.75
10	6 Hz	1.56	108	13717.4074
11	5 Hz	1.56	100	15615.6
12	4 Hz	1.56	80	19019
13	3 Hz	1.52	80	19019
14	2 Hz	1.52	76	20020
15	1 Hz	1.52	72	21132.22

Table 1: Frequency v/s loop gain Amplitude

Figure 5: Waveform at 10 kHz

Figure 6: Waveform at 1 kHz

Figure 7: Waveform at 500 Hz

Figure 8: Waveform at 5 Hz

Figure 9: Waveform at 1 Hz

2.0.4 Conclusion and Inference

- 1. The roll-off slope of A_{OL} w.r.t. frequency in dB/dec is estimated using the five highest frequencies and their corresponding amplitudes which comes around -19.63 dB/decade.
- 2. f_{-3dB} can be found where gain drops by 3dB from its DC value which comes around 100 Hz.

Figure 10: The Bode Plot

3 Experiment completion status

The complete experiment was performed in front of the TA in the lab itself.