Suhas Maddali

Khoury MSDS Student

1203 Boylston Street, Boston, MA 02215 ● (617) 671-5751, 480-28-63087

maddali.s@northeastern.edu

• LinkedIn: https://www.linkedin.com/in/suhas-maddali/

GitHub: github.com/suhasmaddali
Available: May – December 2022

EDUCATION

Northeastern University, Boston, MA **Khoury College of Computer Sciences** Sept. 2021 – Present Expected Graduation: Dec. 2022

Candidate for Master of Science in Data Science

Related Courses: Linear Algebra for Data Science, Collecting Storing and Retrieving Data,

Supervised Machine Learning and Learning Theory, Data Processing and Data Management

VNR Vignana Jyothi Institute of Technology, Hyderabad, India

June 2015- May 2019

Bachelor of Technology in Electronics and Communication Engineering

Related Courses: Database Design and Management, Object Oriented Programming and Design,

Data Mining, Data Visualization, Database Management Systems

TECHNICAL KNOWLEDGE

Programming Languages: Python, R, Pytorch, SQL-lite, SQL workbench, Scikit learn, Scipy, Numpy, Pandas,

Plotly, Git, GitHub, Tableau, Conda, Keras, Excel, Powerpoint, Office.

Operating Systems: Windows, MacOS

Certifications: Machine Learning by Stanford University, Python for Data Science and Machine

Learning, Deep Learning Specialization by Andrew Ng, Data Science and Machine Learning Bootcamp with R, Complete Tensorflow 2 and Keras Deep Learning

Bootcamp

ACADEMIC PROJECTS

Washington Bike Demand Predictor Northeastern University, Boston, MA

Feb. 2021 - Apr. 2019

- Performed exploratory data analysis and added important features for the prediction of the demand for bikes in Washington.
- Used various machine learning models such as Deep Neural Networks, K Nearest Neighbors, PLS Regression, Decision Tree, Gradient Boosting Regression and Logistic Regression.
- Reduced the Mean Absolute Error from 52 to 22.54 from predictions.

Predicting the Readability of Text Using Machine Learning

Sep.2020 - Dec.2020

Northeastern University, Boston, MA

- Used vectorizers such as BOW, TFIDF, Word2Vec, BERT and Roberta for text analysis and feature extraction.
- Performed machine learning predictions such as Neural Networks, Gradient Boosting Decision Tree, PLS Regression, Decision Tree Regressor and Linear Regression to predict the difficulty score.

Youtube Video Analysis

April 2020 - Aug. 2020

Northeastern University, Boston, MA

- Performed Exploratory Data Analysis for identifying different, categories, IDs, comments, ratings and trending videos and years along with publishing months.
- Grouped the data frame based on categories and channel title for the prediction of the use of different tools that were only used for the long term.