Groups and linear algebra (SC220) Autumn 2018 In Sem -I Time: 1hr 30 min

Name:
Student I.D.:
Section 1. True/False (2 pts. each)
Print "T" if the statement is true, otherwise print "F". In either case give a justification or a counter example.
If G and H are cyclic groups then $G \times K$ is also cyclic.
D_6 (Group of Symmetries of a hexagon) is isomorphic to A_4 (Group of even permutations of 4 letters)
Z_{11}^* is a cyclic group.
The remainder when 3^{47} is divided by 23 is 9
In S_4 let $\sigma = (123)(34)$ then σ^{2018} is $(13)(24)$
In 54 let 0 = (125)(64) then 0 is (15)(24)

In D_n the subgroup generated by r is a Normal subgroup.	
Every abelian group is cyclic	
The matrices of type $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ with $a,b,d \in \mathbb{R}, ad \neq 0$ form a subgroup of $GL_2(\mathbb{R})$	
The group $(\mathbb{Q}, +)$ is isomorphic to (\mathbb{Q}^+, \times)	
Let α and β be any two permutations in S_n then $\alpha^4 \beta^{-2} \alpha$ is an odd permutation α is an even permutation.	if

Section 2. Short Answer (10 pts each)

Answer all problems in as thorough detail as possible.

1. Prove that the subgroup of S_4 generated by (12) and (12)(34) is isomorphic to D_4 .

2. Let G be a group and |G|=pq where p and q are primes. Show that any proper subgroup of G is cyclic.

3. Let H and K be Normal subgroups of a group G such that $H \cap K = e$. Show that every element of H commutes with every element of K.

Answer Key for Exam $\boxed{\textbf{A}}$

Section 1.	True/False	(2 pts.)	each)
------------	------------	----------	-------

Print "T" if the statement is true, otherwise print "F". In either or a counter example.	case give a justification
If G and H are cyclic groups then $G \times K$ is also cyclic.	
D_6 (Group of Symmetries of a hexagon) is isomorphic to A_4 tations of 4 letters)	(Group of even permu-
Z_{11}^* is a cyclic group.	
The remainder when 3^{47} is divided by 23 is 9	
In S_4 let $\sigma = (123)(34)$ then σ^{2018} is $(13)(24)$	

In D_n the subgroup generated by r is a Normal subgroup.	
Every abelian group is cyclic	
The matrices of type $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ with $a,b,d \in \mathbb{R}, ad \neq 0$ form a s	subgroup of $GL_2(\mathbb{R})$
The group $(\mathbb{Q}, +)$ is isomorphic to (\mathbb{Q}^+, \times)	
Let α and β be any two permutations in S_n then $\alpha^4 \beta^{-2} \alpha$ is a α is an even permutation.	ın odd permutation if

Section 2. Short Answer (10 pts each)

Answer all problems in as thorough detail as possible.

1. Prove that the subgroup of S_4 generated by (12) and (12)(34) is isomorphic to D_4 .

2. Let G be a group and |G|=pq where p and q are primes. Show that any proper subgroup of G is cyclic.

3. Let H and K be Normal subgroups of a group G such that $H \cap K = e$. Show that every element of H commutes with every element of K.