Лабораторная работа №2 по курсу "Интеллектуальный анализ данных"

выполнил Сорокин Никита, М8О-403Б-20

2.1 Классификация датасета Титаник с помощью решающих деревьев

```
In [59]:
         import numpy as np
         import pandas as pd
         import torch
         from tqdm import tqdm
         import matplotlib.pyplot as plt
         import seaborn as sns
         from IPython.display import Image
         import pydotplus
         from sklearn.tree import export_graphviz
         sns.set()
In [58]: from sklearn.preprocessing import StandardScaler
         from sklearn.model_selection import train_test_split
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.metrics import accuracy_score, classification_report
         Загрузка датасета в pandas
In [33]: df = pd.read_csv('train.csv')
```

Out[33]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Ca
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	1
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	1
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	1
	•••											
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	1
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	1
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	1

891 rows × 12 columns

Предобработка данных:

```
In [34]: def preprocess_data(df):
    df.drop(['Name', 'Ticket', 'Cabin', 'Embarked'], axis=1, inplace=True)
```

```
df = pd.get_dummies(df)
mean_age = df['Age'].mean()
print(mean_age)
df['Age'].fillna(mean_age, inplace=True)
return df
```

```
In [35]: df_new = preprocess_data(df)
    df_new
```

29.69911764705882

	25.655117.617.65662									
Out[35]:		PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare	Sex_female	Sex_male
	0	1	0	3	22.000000	1	0	7.2500	0	1
	1	2	1	1	38.000000	1	0	71.2833	1	0
	2	3	1	3	26.000000	0	0	7.9250	1	0
	3	4	1	1	35.000000	1	0	53.1000	1	0
	4	5	0	3	35.000000	0	0	8.0500	0	1
	•••									
	886	887	0	2	27.000000	0	0	13.0000	0	1
	887	888	1	1	19.000000	0	0	30.0000	1	0
	888	889	0	3	29.699118	1	2	23.4500	1	0
	889	890	1	1	26.000000	0	0	30.0000	0	1
	890	891	0	3	32.000000	0	0	7.7500	0	1

891 rows × 9 columns

Разбивка на тренировочную и валидационную выборку:

```
In [54]: X_train, X_val, y_train, y_val = train_test_split(df_new.iloc[:, 2:], df_new.iloc[:
```

Визуализация полученной модели:

```
In [60]: def tree_graph_to_png(tree, feature_names, png_file_to_save):
    tree_str = export_graphviz(
        tree, feature_names=feature_names, filled=True, out_file=None
)
    graph = pydotplus.graph_from_dot_data(tree_str)
    graph.write_png(png_file_to_save)
```

Обучим модели с разными критериями расщепления:

```
In [48]: plt.figure(figsize=(6, 4))
    xx = np.linspace(0, 1, 50)
    plt.plot(xx, [2 * x * (1 - x) for x in xx], label="gini")
    plt.plot(xx, [4 * x * (1 - x) for x in xx], label="2*gini")
    plt.plot(xx, [0 if x in [0, 1] else -x * np.log2(x) - (1 - x) * np.log2(1 - x) for
```

```
plt.plot(xx, [1 - max(x, 1 - x) for x in xx], label="missclass")
plt.plot(xx, [2 - 2 * max(x, 1 - x) for x in xx], label="2*missclass")
plt.xlabel("p+")
plt.ylabel("criterion")
plt.title("Критерий расщепления")
plt.legend();
```


Обучение: Gini

Обучение: Entropy

```
In [84]:
               clf_entropy = DecisionTreeClassifier(criterion='entropy', max_depth=3).fit(X_train,
In [85]:
               tree_graph_to_png(
                      tree=clf_entropy,
                      feature_names=df_new.columns[2:],
                      png_file_to_save='tree_entropy.png',
               Image(filename='tree_entropy.png')
                                                                            Sex_female <= 0.5
Out[86]:
                                                                             entropy = 0.954
                                                                            samples = 668
value = [418, 250]
                                                                      True
                                                                                             False
                                                                                              Pclass <= 2.5
entropy = 0.821
samples = 230
value = [59, 171]
                                                           entropy = 0.681
samples = 438
                                                           value = [359, 79]
                                                                                                                          Fare <= 24.808
                                 Age <= 18.0
                                                                                                                          entropy = 1.0
samples = 107
                                entropy = 0.944
                                 samples = 94
                                                           samples = 344
value = [299, 45]
                                                                                               samples = 123
                                value = [60, 34]
                                                                                                value = [6, 117]
                                                                                                                           value = [53, 54]
                                                                                                        entropy = 0
samples =
                                entropy = 0.918
                                                  entropy = 0.918
                                                                                                                           entropy = 0.98
                                                                                                                           samples = 91
                                 samples = 90
                                                                                                                          value = [38, 53]
```

```
In [87]: y_pred_entropy = clf_entropy.predict(X_val)
                print(classification_report(y_val, y_pred_entropy))
 In [89]:
                                                            recall f1-score
                                       precision
                                                                                          support
                                  0
                                               0.81
                                                               0.86
                                                                               0.83
                                                                                                 131
                                  1
                                               0.78
                                                               0.71
                                                                               0.74
                                                                                                  92
                       accuracy
                                                                               0.80
                                                                                                 223
                     macro avg
                                               0.80
                                                               0.78
                                                                               0.79
                                                                                                 223
                weighted avg
                                               0.80
                                                               0.80
                                                                               0.80
                                                                                                 223
                Обучение: Log loss
               clf_ll = DecisionTreeClassifier(criterion='log_loss', max_depth=3).fit(X_train, y_t
 In [100...
                tree_graph_to_png(
 In [101...
                       tree=clf_ll,
                       feature_names=df_new.columns[2:],
                       png_file_to_save='tree_ll.png',
                Image(filename='tree ll.png')
                                                                           Sex_female <= 0.5
log_loss = 0.954
Out[102]:
                                                                            samples = 668
value = [418, 250]
                                                                     True
                                                                                            False
                                                           Pclass <= 1.5
log_loss = 0.681
                                                                                             Pclass <= 2.5
log_loss = 0.821
                                                                                             samples = 230
value = [59, 171]
                                                           samples = 438
                                                           value = [359, 79]
                                                           Age <= 3.5
log_loss = 0.56
samples = 344
value = [299, 45]
                                Age <= 18.0
log_loss = 0.944
                                                                                              Fare <= 28.856
log_loss = 0.281
                                                                                                                        Fare <= 24.808
                                                                                                                        log_loss = 1.0
samples = 107
                                 samples = 94
value = [60, 34]
                                                                                                                        value = [53, 54]
                                                  log_loss = 0.918
                                log_loss = 0.918
                                                                   log_loss = 0.504
samples = 332
value = [295, 37]
                                                                                     log_loss = 0.469
                                                                                                      log_loss = 0.104
samples = 73
value = [1, 72]
                                                                                                                        log_loss = 0.98
                                                                                                                                        log_loss = 0.337
samples = 16
value = [15, 1]
                                 samples = 90
value = [60, 30]
                                                   samples = 12
value = [4, 8]
                                                                                     samples = 50
value = [5, 45]
                                                                                                                        samples = 91
value = [38, 53]
 In [103...
               y_pred_ll = clf_ll.predict(X_val)
 In [104...
                print(classification_report(y_val, y_pred_ll))
                                       precision
                                                            recall f1-score
                                                                                           support
                                  0
                                                               0.86
                                               0.81
                                                                               0.83
                                                                                                 131
                                  1
                                                               0.71
                                               0.78
                                                                               0.74
                                                                                                  92
                                                                               0.80
                                                                                                 223
                       accuracy
```

macro avg

weighted avg

0.80

0.80

0.78

0.80

0.79

0.80

223

223