

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:		(11) International Publication Number: WO 93/10221
C12N 5/12, C12P 21/02	A1	(43) International Publication Date: 27 May 1993 (27.05.93)
(21) International Application Number: PCT/US (22) International Filing Date: 12 November 1992		Lande & Rose, 2121 Avenue of the Stars, Suite 1400, Los
(30) Priority data: 791,934 13 November 1991 (13.1	1.91) 1	(81) Designated States: CA, JP, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, SE).
(71) Applicant: THE REGENTS OF THE UNIVER CALIFORNIA [US/US]; 300 Lakeside Dri Floor, Oakland, CA 94612-3550 (US).		
(72) Inventors: IRIE, Reiko, F.; 869 Gretna Green Angeles, CA 90049 (US). MORRISON, Sheric Denslow Avenue, Los Angeles, CA 90049 (US) INGS, Alice; 1923 - 35th Place, N.W. #3, Wa DC 20007 (US).	, L. ; 2). HAS	8 [-]

(54) Title: CHIMERIC MURINE/HUMAN ANTI-IDIOTYPE MONOCLONAL ANTIBODIES

(57) Abstract

A murine/human chimeric anti-idiotype monoclonal antibody is provided which has murine complementarity determining regions fused to human constant regions. The antidoby preferentially binds gangliosides present on tumors, and when introduced into a human, elicits an anti-ganglioside response causing regression of cancer cells bearing the gangliosides. Further provided are a transfectoma producing the antibody, compositions containing the antibody, and cancer treating methods that involve administering the compositions to subjects.

Atty Dock. No: Serial No.: Reference: 6750-018-999 09/831,631 BO

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

			•		
AT	Austria	PR	France	MR	Mauritonia
AU	Australia	GA	Cabon	MW	Malowi
88	Barbados	GB	United Kingdom	NL	Netherlands
BE	Belgium	GN.	Guinea	NO	Norway
8F	Bucking Faso	GR	Greece	NZ	New Zcaland
BC Pt	Balgarin	HU	Hungary	PĹ	Poland
	Benin	ΙE	Ireland	PT	Portugal
Bj		iτ	Italy	RO	Romania
BR	Brazil	16		RU	Russian Federation
CA	Canada	-	Japan Democratic People's Republic	SD	Sudan
CF	Central African Republic	KP		SE	Sweden
CG	Congo		of Korea	SK.	Slovak Republic
CH	Switzerland	KR	Republic of Korea	SN	Senegal
CI	Citic d'Ivoire	KZ	Kazallistan	SU	Soviet Union
CM1	Camerina	u	Liedstenstela		Chad
CZ	("Actionoralia .	LK	Sri Lanta	TD	
CZ	Creek Republic	ILI	Luxenbourg	TG	Jato
DE	Germany	MC	Munaco	UA	Ukraide
DK	Denmark	MC	Madagawar -	US	United States of America
ES.	=	MI.	Mali	VN '	Vict Nam
E1	Spain Finland	MN	Mongolia		
-1	rinianu	(444.4	1.10-2		

CHIMERIC MURINE/HUMAN ANTI-IDIOTYPE MONOCLONAL ANTIBODIES

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally anti-idiotype monoclonal antibodies and their use as 5 surrogate antigens, immunomodulators, immunosuppressants and immunodiagnostic agents. More particularly, the present invention involves chimeric human monoclonal anti-idiotype antibodies which are developed against a human monoclonal antibody reactive to cancer cells. The invention further involves 10 present use anti-idiotype antibodies for treating and diagnosing cancer, the cell lines which produce the anti-idiotype antibodies, and vectors for producing these cell lines.

15 2. <u>Description of Related Art</u>

The publications and other reference materials referred to herein to describe the background of the invention and to provide additional detail regarding its practice are hereby incorporated by reference. For convenience, the reference materials are numerically referenced and grouped in the appended bibliography.

The possibility that the variable regions of immunoglobulins could act as external antigens was first recognized by Jerne in his idiotype network theory (1). 25 According to this theory, recognition of idiotypes on the antigen-combining site, or on the framework of AB1. results in the production of anti-idiotypes (anti-ids or AB2) beta and alpha, respectively. Such "internal image" anti-idiotypes, by virtue of. 30 complementarity with the original antigen binding site, mimic the original antigen and often behave in a similar biological manner. The concept of internal image refers to th fact that some AB2 molecules can act as surrogate antigens and their administration can lead to the

production of anti-anti-idiotype antibodies displaying similar characteristics of AB1.

Immunization using anti-ids as surrogate antigens has generated much interest among researchers, many of 5 whom have experimented with AB2 vaccines for active specific immunization against viruses, bacteria, and other pathogens (2,3). This approach is useful when a conventional vaccine or antibodies are not available, or when they are difficult to produce or when the 10 corresponding antigen is not a suitable product for genetic engineering. In addition, anti-ids can be used as immunomodulators for up-regulating immunity against cancer, and as immunosuppressants to prevent rejection of transplanted organs and to prevent the progression of 15 auto-immune disease.

glycospingolipids that Gangliosides are fundamental membrane components on human tissues. Gangliosides undergo characteristic changes during malignant transformation of normal cells and thus are 20 desirable target antigens for immunotherapy of cancer. Unlike proteins, ganglioside antigens cannot be made using genetic engineering techniques and, accordingly, are not available in abundance. There is therefore noobvious way at this time to produce these important 25 substances in large quantities. It would be desirable if ganglioside antigens, especially those associated with cancer cells, could be mimicked by proteins, which, unlike gangliosides, can be produced in abundance with genetic engineering techniques.

Melanoma synthesizes a large number of gangliosides and thus has served as a useful model to assess the potential of gangliosides as immunotherapy targets. number of tumor-associated gangliosides of human melanoma and their respective immunogenicity have been 35 defined (12-29). In addition, it has been sh wn that active immunization with gangliosid antigens results in melanoma patients survival of prolonged

Nevertheless, this technique suffers in many areas, namely that the ganglioside antigens are frequently rare or in short supply.

Tumor-associated antigens, in most cases, are present in nature only at low levels and are relatively difficult to purify in large amounts. In contrast, anti-ids can be secreted from hybridoma cells at low cost over long periods of time. Furthermore, current genetic engineering technology, while not applicable to ganglioside epitopes, can be used to synthesize the anti-id peptides. Anti-ids previously developed for active specific immunotherapy of human cancer have used murine monoclonal antibodies (MuMabs) as the immunogens (6-11).

Murine monoclonal antibodies have been employed to define and characterize many antigenic molecules on human cancer cells. Murine monoclonal antibodies have a strong affinity for tumor antigens and are secreted at high rates by hybridoma ascites.

Although murine antibodies are valuable in therapy of human diseases, their effectiveness is limited because rodent monoclonal antibodies have a short survival time in humans and induce an immune response that neutralizes their therapeutic effect. Furthermore, the responses induced by murine antibodies are limited because they only weakly recruit human effector elements and are relatively ineffective as cytocidal agents.

To get around these difficulties, genetically engineered antibodies have been produced that combine the murine variable or hypervariable regions with the human constant or constant and variable framework regions (31-35). The goal of generating such humanized antibodies (HuMabs) is the reduction of their immunogenicity as compared to their murine counterparts.

The developm nt of HuMAbs that react with ganglioside antigens on human cancer cells and the demonstration of their anti-tumor effect at the clinical

level has been reported (12, 23). Patients with recurrent melanoma received intratumor injections of HuMAb to ganglioside GD2 or GM2, and partial or complete regression was observed in about 70% of the patients.

5 In those melanoma patients in whom the immunotherapy was ineffective, the target antigen GD2 or GM2, was not expressed on the tumor cells.

Because the quantity and quality of gangliosides on human melanoma are widely heterogeneous between 10 different cancer patients, it is desirable to avoid unnecessary administration of HuMAb by examination of a pre-treatment biopsy to identify which gangliosides dominate on each patient's tumor cells.

Although human monoclonal antibodies are desirable over murine monoclonal antibodies for therapeutic use, researchers encounter persistent problems with them, including low affinity, low clonal frequency, low antibody production, and clonal instability.

Purthermore, researchers are limited to producing
human monoclonal antibodies from human B cells only if
they can obtain B cells from a human who happens to be
making antibodies against a desired protein. Attempts
have been made to develop techniques for in-vitro
immunization of human lymphocytes, but the range of
antigens is quite limited (36). Attempts to produce
human monoclonal antibodies by reconstituting mice with
human antibody-producing cells have met with limited
success, as well (37). The responding human B cells
make extremely poor primary antibody responses, and were
not good candidates for immunization and subsequent
production of human hybridomas for the production of
human monoclonal antibodies.

Accordingly, there is a need for cells that produce or secrete monoclonal antibodies at high rates from 35 which humanized monoclonal antibodies can be easily recovered and purified.

2.5

As is apparent from the above backgr und, there presently is a need to provide additional types of anti-idiotype antibodies which can be used as surrogate antigens in treating tumors. There is a further need to 5 provide these anti-idiotype antibodies in a form that does not elicit strong, pathogenic immune reactions reducing their effectiveness.

SUMMARY OF THE INVENTION

In accordance with the present invention, murine/human chimeric anti-idiotype monoclonal antibody This monoclonal anti-id antibody is is provided. comprised of complementarity determining regions comprising variable regions substantially derived from 15 murine variable regions fused to human constant regions.

The murine variable regions, both V_H and V_L , are derived from DNA sequences encoding an anti-idiotype antibody raised against human monoclonal a anti-ganglioside antibody identified as L612. The V_H and are regions 20 V, sufficiently juxtaposed in murine/human chimeric monoclonal anti-idiotype antibody of the present invention so that the antibodies preferentially bind at least one antigenic determinant of the L612 human monoclonal anti-ganglioside antibody.

The complementarity determining region of the chimeric antibody of the present invention further includes an antigenic determinant site which mimics a sialic acid galactose residue of gangliosides present on When introduced into a human subject, the 30 chimeric antibody of the present invention elicits an anti-ganglioside response. This response includes the antibodies immuno-reactive production of gangliosides associated with the presence of cancer This results in the cytoxic destruction of 35 cancer cells bearing those gangliosides. In particular, the anti-ganglioside response is an anti-GM3 response.

The murine human chimeric anti-id monoclonal antibody of the present invention is produced by recombinant means. The recombinant means comprises an in-vivo recombinant gene expression system which expresses DNA sequences sufficient to code for murine V_H and V_L regions and human IgG gamma 1 and kappa constant regions. The DNA sequences encoding and expressing the murine V_H and V_L regions are derived from hybridoma cell line 4ClO (ATCC No. HB10722). These DNA sequences are sufficient to encode at least a portion of an immunoglobulin molecule. The DNA sequences encoding the human constant regions are derived in part from human IgG1 heavy chain constant region genes (38). The chimeric monoclonal antibody provided by the present invention is a β-type anti-idiotype antibody.

The present invention further provides a transfectoma which produces the chimeric murine/human monoclonal anti-idiotype antibody of the present invention.

As another feature of the present invention, a method is provided for treating a tumor present in a mammal. The method involves administering a pharmacologically effective amount of the chimeric monoclonal anti-idiotype antibody of the present in vention in association with a pharmaceutically-effective carrier.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows SDS-polyacrylamide gradient gel 30 electrophoresis and Western blot analysis of the purified chimeric mouse-human anti-id monoclonal antibody.

Fig. 2 shows binding reactivity patterns of TVE1 and 4C10 with anti-GM3 L612, L72 (human monoclonal 35 antibody to ganglioside GD2), and human polyclonal IgM.

Fig. 3 shows ELISA plates coated with L612, comparing the affinities of TVE1 and 4C10 with L612.

Fig. 4 is an ELISA assay showing the specificity of chimeric TVE1. The plates were coated with GM3 positive M12 melanoma cells and tested for L612 binding inhibition with TVE1 and 4C10 antibodies.

Fig. 5 shows the PCR generation of V_L gene cloned into a drug marked expression vector. The heavy chain vector DNA was linearized at the Pvu I site and used to transfect into non-producing myeloma cell lines.

Fig. 6 shows the PCR generation of V_H gene cloned 10 into a drug marked expression vector. The heavy chain vector DNA was linearized at the Pvu I site and used simultaneously with the light chain vector shown in Fig. 5 to transfect into non-producing myeloma cell lines.

DETAILED DESCRIPTION OF THE INVENTION

The chimeric murine/human anti-idiotype monoclonal antibodies of the present invention, or functional equivalents thereof, are comprised of complementarity determining region comprising variable regions substantially derived from murine V_H and V_L regions fused to human constant regions.

The variable regions are derived from a murine anti-idiotype monoclonal antibody raised against a human monoclonal antibody identified as L612. The L612 antibody is secreted by a human B-cell line also identified as L612 and which is maintained at the Division of Surgical Oncology at the University of California at Los Angeles School of Medicine. The L612 cell line is deposited at the American Type Culture Collection (ATCC) under ATCC Accession No. CRL10724.

The L612 cell line was established in culture from lymphocytes by the Epstein-Barr virus transformation technique used to produce two other human monoclonal anti-ganglioside antibodies, L55 (anti-GM2) and L72 (anti-GD2) (26-27). The L612 monoclonal antibody reacts str ngly with human melanoma tumor biopsies. The L612 antibody also reacts less strongly with human tumor

biopsies from lung cancer, breast cancer, pancreatic cancer, colon cancer, and kidney cancer. The UCLASO-M12 melanoma cell line has been identified as the most reactive cell line among the lines tested with the L612 monoclonal antibody. The UCLASO-M12 cell line is maintained at the Division of Surgical Oncology at the University of California at Los Angeles School of Medicine.

Methods for preparing hybridoma cells, and in 10 particular, the 4ClO hybridoma, that produce the anti-idiotype antibodies against human monoclonal anti-ganglioside antibody L612 are disclosed in U.S. Patent Application Serial No. 07/609,255.

The preferential binding to HuMAb L612 and immunogenic usefulness of the chimeric murine/human anti-idiotype monoclonal antibody of the present invention, comprising the V_H and V_L of the 4C10 anti-idiotype antibody, derives from the preferential binding and immunogenic usefulness of the complementarity determining region comprising homologous V_H and V_L regions of the 4C10 anti-id antibody.

The complementarity determining regions (CDRs) correspond to the hypervariable regions of the variable regions. The hypervariable regions comprise highly divergent stretches of amino acids. In an intact immunoglobulin, the hypervariable regions of each light chain and of each heavy chain can be brought together in three-dimensional space to form an antigen-binding surface. Because these sequences are thought to form a surface complementary to the three-dimensional surface of a bound antigen, the hypervariable regions are also called complementarity-determining regions (CDRs). The CDRs determine antigen-binding specificity, the residue in the CDRs often making contact with the antigen.

The preferential binding of the 4C10 anti-idiotype antibody to at least one antigenic determinant of human monoclonal anti-ganglioside antibody (HuMAb) L612 and

· 25

the immunogenic usefulness of the beta type anti-id 4C10 have been demonstrated as follows:

The 4C10 cloned hybridoma cell line was selected and grown in accordance with the methods of U.S. Patent 5 Application Serial No. 07/609,255. The 4C10 hybridoma was selected from 40 hybridomas secreting antibodies with distinct reactivity to L612 HuMAb but no reactivity to three other control human IgMs and two unrelated serum protein antigens.

10 To determine whether these anti-L12 antibodies were beta-type directed against the antigen combining site of L612, or were alpha antibodies bound to peptide regions outside the antigen-combining site of L612, the inhibitory activity of these anti-L612 antibodies against L612 binding to GM3 positive target cells lines or to the purified antigen, ganglioside GM3, was tested.

Ganglioside GM3 includes a terminal sugar having NeuAc alpha 2,3 galactose residue. The three assay systems were: IA inhibition, cell-ELISA inhibition, and GM3-ELISA inhibition. Of the 40 antibodies tested, seven inhibited L612 binding to an antigen positive target melanoma cell line (UCLASO-M12), and to GM3 treater than 50% in the assays, while 12 others had weak or no inhibitory activity.

Of the seven inhibitory anti-ids, one identified as 4C10 was selected for cloning as the preferred beta-type anti-id for use in treating tumors. 4C10 was tested with isotype antiglobulins and found to be of the IgG1 class and contain kappa light chains.

The 4ClO cloned hybridoma cell lines were grown in FCS-containing RP MI 1640 medium and secreted 5-10 ug/ml of antibody into culture supernatants. Titers of the anti-ids in these culture supernatants against L612 by ELISA ranged between 1:200 to 1:1000/106 hybridoma.

35 Anti-id 4C10 demonstrated strong binding inhibition of HuMab L612 to target cells in the IA assay (100%) and to ganglioside GM3 in the ELISA assay (100%). As a control

assay, 4C10 failed to inhibit the binding of an unrelated antigen system, HuMAb L72, to M14 target cells, or to GD2 antigen. The specific binding inhibition of 4C10 indicates its binding location to be within or near the antigen combining site.

The hybridoma cell line which secretes the 4C10 anti-id is maintained at the Division of Surgical Oncology at the University of California at Los Angeles School of Medicine. The 4C10 hybridoma cell line was deposited at the American Type Culture Collection under ATCC No. HB10723.

The 4C10 anti-id and other beta-type anti-ids can be used alone or in combination with other agents to treat tumors. Using recombinant technology, the variable and hypervariable regions of the chimeric anti-id may be fused to proteins having properties including the biological activity of growth factors or cytokines. These growth factors include insulin like growth factor (IgF1 or IgF2), and transferrin. The cytokines include interleukin 2 or 4, and tumor necrosis factor.

The 4C10 anti-id and other beta-type anti-ids are preferred for use in treating melanoma tumors. These beta-type anti-ids may also be used as an immunomodulator to enhance anti-cancer immunity, suppress organ transplant rejection and suppress autoimmune disease.

The immunogenic usefulness of the chimeric murine/human anti-idiotype monoclonal antibody of the present invention is based, in part, upon the demonstration that murine anti-idiotype antibody 4C10, comprising homologous V_H and V_L regions, stimulated the production of antibodies which were immunoreactive with melanoma tumors. This was demonstrated as follows:

Five syngeneic Balb/c mice were immunized with 35 purified 4C10-KLH. As controls, four mice were immunized with mouse IgG1-KLH and one mouse with KLH alone. Th immunized sera were monitored by ELISA using

purified GM3 as the antigen source and by the IA assay using the antigen positive M12 melanoma cell line. In the ELISA, peroxidase conjugated goat anti-mouse IgM + IgG (Boeringer Mannheim) was used as a second antibody.

5 Measurable antibody (AB3) was produced in three of the five immunizations with 100 ug 4C10-KLH. The immunized sera bound to GM3 but not to CDH (asialo-GM3). Sera from the control mice immunized with IgG-KLH or KLH alone gave no response to either glycolipid. In further analysis to determine the Ig class of the AB3 (ELISA and TLC immunostaining), the majority of the reactivity was identified as IgM.

In order to exclude the species specific natural antibodies that might react to M12 cells in the IA assay, the immunized murine sera were pre-absorbed by human red blood cells at 4°C overnight. An IA score of 4+ was obtained at 1:10 dilution of the absorbed sera. Control sera gave no reactivity even at 1:2 dilution. To confirm that the positive reactivity was directed against GM3 antigen on the cell surface, IA inhibition was performed using GM3 (10 ug), CDH (10 ug), 4C10 (10 ug) and unrelated IgG1 (10 ug) purified from Balb/c hybridoma ascites. While reactivity was completely inhibited by GM3 or purified 4C10, no inhibition was obtained with CDH or unrelated IgG1.

The above example demonstrated that the murine 4C10 beta-type anti-id AB3 antibodies are immunoreactive with melanoma tumors. presented "Characterization of the Structure and Specificity of 30 Chimeric Mouse/Human Antibody, " the inventors found that the anti-id specificity property of the chimeric mouse/human anti-id monoclonal antibody of the present invention was virtually identical with the original mouse 4C10 monoclonal antibody. Based upon these 35 findings and the effectiveness of the 4C10 anti-id in stimulating anti-melanoma response, the anti-ids of the present invention are

effective as an immunization agent in the treatment of melanoma.

In particular, the chimeric murine/human antiidiotype monoclonal antibody, which incorporates the
variable regions of the 4C10 anti-id antibody, is
expected to be effective as an immunization agent in the
treatment of melanoma. The chimeric antibody has a
further advantage in not eliciting an immune response
against the murine constant regions. These murine
constant regions are present in the 4C10 antibody but
absent in the chimeric anti-id antibody of the present
invention.

The chimeric murine/human anti-idiotype monoclonal antibodies of the present invention, comprising the 15 variable regions derived from the 4C10 beta anti-ids, may be administered by any of the conventional procedures used to introduce antibodies into patients. These procedures include subcutaneous, intravenous or intratumor injection. The chimeric beta-type anti-ids 20 are preferably conjugated with KLH and emulsified in a suitable carrier typically used for administration of antibodies. The particular doses used for the chimeric beta-type anti-ids will vary depending upon the tumor being treated and numerous other factors. The dosage 25 levels are established by the known techniques and principles generally recognized and utilized in treating patients with antigen immunization agents or monoclonal antibodies.

30 Recombinant Production of the Chimeric Murine/Human Anti-Idiotype Monoclonal Antibody

The chimeric murine/human anti-idiotype monoclonal antibodies of the present invention were produced by recombinant means. An in-vivo recombinant gene expression system was constructed so as to express DNA sequences suffici nt to code for murine complementarity determining regions comprising $V_{\rm H}$ and $V_{\rm L}$ r gions. The $V_{\rm H}$

and V_L regions were derived, at least in part from hybridoma cell line ATCC No. 4C10. The transfectoma so constructed also express DNA sequences that code for human immunoglobulin constant region, including human $\gamma 1$ constant regions. Derivation of human IgG1 constant region sequences is well known in the art (38).

The transfectoma referred to above which secretes the chimeric murine/human anti-idiotype anticlonal antibody of the present invention was produced with light chain and heavy chain vectors. Preparation of the vectors is described below.

A light chain vector was prepared which contained a cloned DNA sequence encoding the variable region of the light chain anti-id monoclonal antibody expressed by 15 the 4C10 hybridoma. This DNA sequence was prepared from mRNA which had been prepared from the 4C10 mouse myeloma cell line and reverse transcribed and amplified with the PCR amplification method. A heavy chain vector comprising a DNA sequence encoding the variable region 20 of the heavy chain of the anti-idiotype monoclonal antibody raised against human monoclonal anti-ganglioside antibody L612 was similarly prepared.

Heavy and light chain vectors were used to simultaneously transfect non-producing myeloma cells.

From these transformed cells, surviving clones were selected which secreted both heavy and light chains having the appropriate specificity.

Cloning of Variable Region cDNA sequences from 4C10

Preparation of RNA. RNA was prepared from the 4C10 mouse myeloma cell line using guanidinium thiocyanate and the polyA containing fraction isolated using oligodT cellulose (Boehringer Mannheim, Indianapolils, IN). Direct mRNA sequencing with a murine C_k primer indicated that the light chain used Jkl. From the sequence of framing region FR3, it was found that the light chain was in the V_kIII group of Kabat (45). Many members of

that group share similar or identical leader sequences. Therefore, a consensus leader primer was synthesized (ATGGAGACAGACACACTC) and in conjunction with a J_sl primer was used to amplify the mRNA which had been reverse transcribed using a C_s primer.

One Vx clone was identified and analyzed. Sequencing of this clone demonstrated that it was identical to an aberrant light chain transcript initially described by Walfield et al. (39) and demonstrated by Carroll (40) to be present in the MOPC-21 derived myeloma cell lines routinely used for producing hybridomas. The leader sequence of the aberrant transcript is identical to the leader sequence useful for priming; the aberrant transcript utilizes J₂2 instead of J₂1, however, over the extent of our primer, there is only one base mismatch between J₂1 and J₂2. Accordingly, our primer would effectively prime for J₂2.

pcr Amplification. One μg of poly A+ mrnA was mixed with 100 ng of 3' primer. dnTPs were added to a final concentration of 200 μM, MgCl₂ to 1.5 mM, KCl to 50 mM, Tris-Cl pH 8.3 to 10 mM, and galatin to 0.01%. The reaction mix was heated to 70° C, cooled, after which 20 U of reverse transcriptase (Life Sciences, St. Petersburg, FLA) was added and incubated for 1 hour at 37°. 100 ng of the 5' primer was then added and amplification continued for 25 cycles. The primers used included the following:

Heavy Chain Leader

CATAGGATATCCACCATGGGATGGAGCTGGATC

This contains an EcoRV site (underlined) to facilitate cloning into the promoter.

Heavy chain J region: CTTGGTGCTAGCTGCAGAGACAGTGACCAG

35 This c ntains an NheI site (underlined) for cloning into $C_{\rm H}1$ of IgG.

Light Chain. Leader:

CATAGGATATCCACCATGGAGACAGACACACTC

This contains an Eco RV site (underlined) to facilitate cloning into the promoter.

Light chain J region:

GGAAGTCGACTTACGTTTGATTTCCAGCTTGGAG

This contains a Sal I site (underlined) for cloning into the intron.

The strategy employed for constructing the light-10 chain expression vector and heavy chain expression vector of the present invention are schematically presented in Figs. 5 and 6, respectively. amplification, the products were digested with the appropriate restriction endonucleases: EcoRV and NhEI 15 for heavy chain and EcoRV and Sal I for light chain. The heavy variable region was cloned into Bluescript containing an Nhe I site that had been produced by ligating Nhe I linkers into the Sma I site. chain was cloned into EcoRV and Sal I cut Bluescript. 20 The variable regions were initially sequenced in Bluescript to verify that they encode a functional domain; they were then cloned into the expression The nucleotide and deduced vectors and resequenced. amino acid sequences of the light chain variable regions 25 of 4C10 are shown in SEQ ID NO:1 and SEQ ID NO:2, respectively.

Sequencing of V. Primers were constructed and the mRNA of the light chain sequenced up to the ATG initiation codon. This sequence analysis showed that the leader sequence predicted from the fact that the light chain was a member of the V₁ III family had been correct. The PCR reaction was repeated using the same primers as were originally used. From this reaction, th rearranged V_x was cloned into both Bluescript and the expression vector, and sequenced. The sequence is shown in SEQ ID NO: 1. As noted in feature information f r

SEQ ID NO:1, PCR amplification introduced a substitution at nucleotide position number 152. The substitution changed the codon from ACT in the original hybridoma to AGT in the PCR substituted nucleic acid.

5 Accordingly, a serine was substituted for threonine at amino acid position number 31 in the polypeptide expressed from the PCR-substituted nucleic acid. It was determined that this substitution did not influence the function of the chimeric antibody of the present invention.

Sequencing of V_H . The sequence of the entire V_H mRNA was determined using a mouse primer and a set of intermediate primers. The construction of these primers was based on partial sequence information. Using the appropriate PCR primers, the V_H was amplified, cloned into both Bluescript and into the expression vector. The nucleotide and inferred amino acid sequences of the V_H are shown in SEQ ID NO:3 and SEQ ID NO:4, respectively.

The results showed that V_H uses J_H3 . However, for the first residue, the T normally present is replaced by a G leading to a Trp to Gly replacement at amino acid position number 101. The sequence between the end of V_H and the beginning of JH (beginning at nucleotide number 349) is GGCGAAGGTCACGCGTGG.

Transfection

Vectors were linearized at the PvuI site. For transfection, 1.1 x 10⁷ P3 X 63.Ag8.653 non-producing myeloma cells were suspended in 1 ml of PBS containing 10 μg of each vector into which the VL and VH regions from 4C10 cells were cloned. Accordingly, heavy and light chain vector DNA linearized at the PvuI site were simultan ously transfect d into non-producing myeloma cell lines as follows. Cells were el ctroporated at 200

V, 960 microF using a Gene Pulser (BioRad, CITY, STATE), diluted to 2.2 x 106/ml with Iscoves modification of Dulbeccos Medium (GIBCO, Grand Island, NY) supplemented with 10% iron supplemented calf serum (Hyclone, CITY, 5 STATE) and plated into 96 well microliter dishes, 125 μ l After 48 hours, Histodinol (Sigma, St. per well. Louis, MO) as added to 10 mM and mycophenolic acid to 3 To screen for producing clones, ELISA plates were coated with an anti-human kappa chain antiserum st. Louis, MO. After adding 10 (Sigma, supernatants and washing off unbound antibodies, the plates were developed with alkaline phosphatase labeled anti-human gamma chain (Sigma, St. Louis, MO). frequency of surviving clones was 1.7 x 105; the 15 frequency of clones secreting both heavy and light chains was 6.2 x 106, calculated from the original number of transfected P3 cells.

The PCR generated V_L and V_R were cloned into separate drug marked expression vectors, respectively 20 shown in Figs. 5 and 6. Heavy and light chain vector DNA linearized at the Pvu I site were simultaneously transfected into non-producing myeloma cell lines by electroporation and cells selected by mycophenolic acid and histidinol.

25 Transfectomas producing both chimeric heavy and light chains were identified, and one clone, TVE1, was amplified for further analysis. Transfectoma TVE1 has been deposited at the American Type Tissue Culture, designated number ATCC CRL 10867.

To initially characterize the chimeric protein, the transfectoma TVE1 was labeled by growth in 35smethionine, cytoplasmic was extracted, and secreted antibody was isolated, and Ig species precipitated with rabbit anti-human Fab and Staphylococcus protein A. The 35 precipitates were analyzed by SDS-PAGE, both before and after reduction of the disulfide bonds (Fig. 4). chimeric heavy and light chains were of the expected

55,000 daltons and 22,000 daltons molecular weights. The chimeric protein was secreted as a fully assembled $\mathtt{H}_2\mathtt{L}_2$ molecule.

5 Characterization of Structure and Specificity of Chimeric Antibody

To characterize the assembly, secretion, and molecular weight of the immunoglobulin, cells were labeled with "S-methionine and cytoplasmic lysates and secretions prepared. Antibody molecules were immunoprecipitated with polyclonal rabbit Ab against human Fc and Staphylococcus aureus protein A (IgGsorb, The Enzyme Center, Malden MA) and analyzed by SDS/PAGE with and without reduction of disulfide bonds. The chimeric protein was secreted as a fully assembled H₂I₂ molecule.

Figs. 1a and 1b show the SDS-polyacrylamide gradient (4-20%) gel electrophoresis profile of chimeric antibody TVE1 after purification by protein affinity chromatography from culture media. The results show that there was no significant difference in the size of intact IgG molecules of the chimeric TVE1 antibody, the original mouse 4C10 anti-id monoclonal antibody, polyclonal murine IgG, or polyclonal human IgG (Fig. 1a).

Figs. 1c, 1d, and 1e show the results of Western blotting analysis of the TVE1 chimeric antibody to test specificity. The chimeric antibody after blotting showed specific anti-id reactivity with human L612 monoclonal antibody like the original murine 4C10 anti-id (Fig. 1e). However, unlike 4C10, the chimeric antibody after blotting reacted with anti-human IgG, but not with anti-mouse IgG immunoglobulins (Figs. 1c and 1d).

35 The anti-idiotype specificity of the TVE1 chimeric antibody also was confirmed by ELISA. Fig. 2 shows binding reactivity patterns of TVE1 and 4C10 with anti-

GM3 L612, L72 (human monoclonal antibody to ganglioside GD2), and human polyclonal IgM. ELISA plates were coated with TVE1 or 4C10, then the reactivities of the three human IgM monoclonal and polyclonal antibodies 5 were examined. TVE1 and 4C10 reacted only with L612 IgM but did not react with L72 or human polyclonal IgM. Fig. 3 shows the results of a reversed ELISA experiment to compare the affinities of TVE1 and 4C10 with L612. ELISA plates were coated with L612 and binding 10 reactivity of TVE1 and 4C10 were tested alone or by competition. Both TVE1 and 4C10 exhibited the expected concentration dependent binding. In competitive assays, TVE1 and 4C10 displayed reciprocal inhibition with L612 at almost identical concentration, consistent with equivalent anti-id affinity.

The specificity of chimeric TVE1 was further examined by the cell ELISA inhibition assay using melanoma cell line UCLASO-M12, which mainly expresses ganglioside GM3 on the cell membrane at high density 20 (Fig. 4). ELISA plates were coated with GM3 positive M12 melanoma cells and tested for L612 binding inhibition with TVE1 and 4C10 antibodies. Both chimeric TVE1 and 4C10 antibodies inhibited binding activity of L612 to ganglioside GM3 on the tumor cell membrane to a 25 similar extent (Fig. 4). These results showed that the anti-id specificity property of the chimeric human antibody, TVE1, is virtually identical with the original mouse 4C10 monoclonal. Thus, by all the assays used, it appears that the chimeric TVE1 bears the internal image 30 of ganglioside GM3. When injected into humans, the principal immune response should be directed against the variable region of the TVE1. Accordingly, the TVE1 antibody of the present invention has usefulness as an idiotypic vaccine in cancer patients, 35 inducing specific anti-GM3 immunity against human tumors expressing this ganglioside.

Purification of Chimeric Antibody

Antibody secreting transfectomas were cultured in RPMI 1640 (Gibco Laboratories, Grand Island, NY) supplemented with 5% fetal calf serum (Gemini Bioproducts, Calabasas, CA) and a combination of antibiotics including penicillin, streptomycin, and Fungizone (Gibco) in humidified 5% CO₂/95% air at 37° C.

After four days in culture, 1/10 cells were transferred to fresh medium and maintained. The 10 remaining cells were washed with serum free RPMI 1640 three times and sub-cultured in serum-free medium containing growth factor, AIM-V medium (Gibco), for an additional four days.

The serum-free spent supernatant was then obtained by centrifugation at 2000x g for 10 minutes and pelted cells were discarded. These transfectoma cells were freshly prepared each time from the seed culture flask and transferred into serum free medium.

The chimeric antibody in pooled serum-free spent
20 medium was precipitated by slow addition of solid
ammonia sulfate to 50% saturation at 22° C. The protein
precipitate was obtained by centrifugation at 4000x g
for 20 minutes. After resuspension and dialysis against
phosphate buffered saline (PBS) at 4° C, the chimeric
25 antibody was purified on an affinity column (5ml bed
volume of protein G sepharose 4B Fast Flow, Pharmacia
LKB Biotechnology, Inc., Piscataway, NJ) equilibrated
with PBS containing 0.05% Tween 20(TPBS).

The dialysate was applied repeatedly to the column at half bed volumes with protein G binding for 1 hour at 22° C for each sample. After washing with 10-bed volumes of TPBS, the chimeric antibody was eluted with 0.1 M glycine HCl buffer (pH 2.8) and neutralized immediately by adding a small amount of 1.5 M Tris-HCl (pH 8.8). The fractions containing the chimeric antibody were pooled, concentrated, and dialyzed against

PBS. One mg of th purified IgG/ml was calculated based on a standard value of 1.35 absorbance units at 280 nm.

Immunochemical analysis

solutions 5 solutions 5 solutions (41) and Western blotting (42) were carried out as previously described. For the detection of human or mouse IgGs, anti-human or anti-mouse IgG antibodies conjugated with peroxidase were used. For the detection of reactivity with the human IgM monoclonal antibody L612, the blotted strip was incubated with 20 μg/ml of L612 in TPBS at 22° C for 1.5 hours. Then bound L612 was detected with peroxidase-conjugated anti-human IgM.

4-chloro-1-naphthol (0.05% in PBS) was used as the substrate for the peroxidase reaction. Enzyme-linked immunosorbent assay (ELISA) and cell-ELISA inhibition assays were used to test the specificity of the chimeric antibody as described in (43).

Anti-human IgG antiserum was obtained from Dako Corp., Carpenteria, CA. Other antisera were obtained from Boehringer Mannheim Biochemicals, Indianapolis, IN; human IgG and IgM were obtained from Sigma Chemicals, St. Louis, MO; mouse IgG was from Calbiochem Corp., La Jolla, CA. Human monoclonal antibodies L612 and L72 were purified as described in (44).

Having thus disclosed exemplary embodiments of the present invention, it should be noted by those skilled in the art that the within disclosures are exemplary only and that various other alternatives, adaptations, and modifications may be made within the scope of the present invention. Accordingly, the present invention is not limited to the specific embodiments as illustrated herein, but is only limited by the following claims.

BIBLIOGRAPHY

- Jerne NK. Towards a network theory of the immune system. Ann Immunol (Paris) 125C:373-389, 1974.
- Dalgleish AG, Kennedy RC. Anti-idiotype antibodies as immunogens: idiotype-based vaccines. Vaccine 6:215-220, 1962.
- 3. Sikorska HM. Therapeutic applications of anti-idiotypic antibodies. J Biol Res Mod 7:327-358, 1988.
- 4. Livingston PO, Natoli EJ, Calves MJ, Stockert E, Oettgen HF, Old LJ. Vaccines containing purified GM2 ganglioside elicit GM2 antibodies in melanoma patients. Proc Natl Acad Sci USA 84:2911-2915, 1987.
- 5. Livingston PO. Experimental and clinical studies with active specific immunotherapy. In "Immunity to Cancer II." Eds MS Mitchell, Pub Alan L Liss, Inc, NY.
- Herlyn D, Wettendorff M, Schmoll E. Anti-idiotype immunization of cancer patients: modulation of immune response. Proc Natl Acad Sci 84:8055-8059, 1987.
- 7. Bhattacharya-Chatterjee M, Pride MW, Seon BK, Kohler H. Idiotype vaccines against human T-cell acute lymphoblastic leukemia. I. Generation and characterization of biologically active monoclonal anti-idiotypes. J Immunol 139:1354-1360, 1987.

- 8. Viale G, Grassi F, Pelagi M, Alzani R, Menard S, Miotti S, Buffa R, Gina A, Siccardi AG. Anti-human tumor antibodies induced in mice and rabbits by "internal image" anti-idiotype monoclonal immunoglobulins. J Immunol 139:4250-4255, 1987.
- 9. Chen H, Mittelman A, Yamada M. Association of restricted specificity of anti-anti-idiotypic antibodies with prolonged survival of melanoma patients. Proc Amer Assoc Clin Oncol 8:A1125, 1989.
- 10. Kahn M, Hellstrom I, Estin CD, Hellstrom KE.

 Monoclonal anti-idiotypic antibodies related to the
 p97 melanoma antigen. Cancer Res 49:3157-3162,
 1989.
- 11. Barth A, Waibel R, Stahei RA. Monoclonal anti-idiotypic antibody mimicking a tumor-associated sialoglycoprotein antigen induces humoral immune response against human small cell lung carcinoma. Int J Cancer 43:896-900, 1989.
- 12. Irie RF, Matsuki T, Morton DL. Human monoclonal antibody to ganglioside GM2 for melanoma treatment. Lancet 1:786-787, 1989.
- 13. Tsuchida T, Saxton RE, Morton DL, Irie RF. Gangliosides of human melanoma II. Cancer, 623:1166-1174, 1989.
- 14. Ravindranath MH, Morton DL, Irie RF. An epitope common to ganglioside O-acetyl AD3 recognized by antibodies in melanoma patients after active specific immunotherapy. Cancer Res 49:3691-3897, 1989.

- 15. Hoon DBS, Ando I, Sviland G, Tsuchida T, Okun E, Morton DL, Irie RF. Ganglioside GM2 expression on human melanoma cells correlates with sensitivity to lymphokine-activated killer cells. Int J Cancer 43:857-862, 1989.
- 16. Hoon DBS, Irie RF, Cochran AJ. Gangliosides from human melanoma immodulate response of T-cells to interleukin-2. Cell Immunol 111:410-419, 1988.
- 17. Ravindranath MH, Paulson JC, Irie RF. Human melanoma antigen O-acetylated ganglioside GD3 is recognized by cancer autennarius lectin.l J Biol Chem 263:2079-2086, 1988.
- 18. Tsuchida T, Ravindranath MH, Saxton RE, Irie RF. Gangliosides of human melanoma: Altered expression in vivo and in vitro. Cancer Res 47:1278-1281, 1987.
- 19. Tai T, Sze LL, Kawashima I, Saxton RE, Irie RF. Monoclonal antibody detects monosialoganglioside having sialic acid 2-3 Galactosyl residue. J Biol Chem 262:6803-6807, 1987.
- 20. Ando I, Hoon DSB, Suzuki Y, Saxton RE, Golub SH, Irie RF. Ganglioside GM2 on the K56 cell line is recognized as a target structure by human natural killer cells. Int J Cancer 40:12-17, 1987.
- 21. Tsuchida T, Saxton RE, Irie RF. Gangliosides of human melanoma: GM2 and tumorigenicity. J Natl Cancer Inst 78:55-60, 1987.
- 22. Tsuchida T, Saxton RE, Morton DL, Irie RF. Gangliosides of human melanoma. J Natl Cancer Inst 78:45-54, 1987.

- 23. Irie RF, Morton DL. Regression f cutan ous metastatic melanoma by intralesional injection with human monoclonal antibody to ganglioside GD2. Proc Natl Acad Sci 83:8694-8698, 1986.
- 24. Katano M, Irie RF. Suppressed growth of human melanoma in nude mice by human monoclonal antibody to ganglioside GD2. Immunology Letters 8:169-174, 1984.
- 25. Katano M, Saxton RE, Irie RF. Human monoclonal antibody to tumor-associated ganglioside GD2. J Clin Lab Immunol 15:119-126, 1984.
- 26. Tai T, Paulson JC, Cahan LD, Irie RF. Ganglioside GM2 as a human tumor antigen (OFA-I-1). Proc Natl Acad Sci, USA 80:5392-5396, 1983.
- 27. Cahan LD, Irie RF, Singh R, Cassidenti A, Paulson JC. Identification of human neuroectodermal tumor antigen (OFA-I-1) as ganglioside GD2. Proc Natl Acad Sci 79:7629-7633, 1982.
- 28. Tai T, Cahan LD, Tsuchida T, Saxton RE, Irie RF, Morton DL. Immunogenicity of melanoma-associated gangliosides in cancer patients. Int J Cancer 35:607-612, 1985.
- 29. Irie RF, Sze Ll, Saxton RE. Human antibody to OFA-I, tumor antigen produced in vitro by EBV-transformed human B-lymphoblastoic cell lines. Proc Natl Acad Sci 79:5666-5670, 1982.
- 30. Yano T, Yasumoto K, Nagashima A, Murakami H, Hashizume S and Nomoto K (1988) Immunohistological characterization of human monoclonal antibody against lung cancer. J Surg Oncol. 39, 108.

- 31. Morrison, S.L., and Oi, V.T. Genetically engineered antibody molecules, Adv. Immunol. 44:65-92 1989.
- 32. Morrison, S.L., In vitro antibodies: Strategies for production and application, Ann. Rev., submitted.
- 33. Hutzell, P., Kashmiri, S., colcher, D., Primus, F.J., Horan Hand, P., Roselli, M., Finch, M. Yarranton, G., bodmer, M., Whittle, N., King, D., Loullis, c.C., McCony, D.W., Callahan, R., and Schlom, J., Generation and characterization of a recombinant/chimeric B72.3 (Human γ1), Cancer Res. 51:181-189, 1991.
- 34. Sharon, J., Kabat, E.A., and Morrision, S.L., Studies on mouse hybridomas secreting IgM or IgA antibodies to a (1-6) linked deletion, Molecular Immunol. 18:831-846, 1981.
- 35. Bruck, C., co, M.S., Slaqui, M., Gaulton, g.N., Smith, T., Fields, B.N., Mullins, J.I., and Greene, M.I., Nucleic acid sequence of an internal image-bearing monoclonal anti-idiotype and its comparison to the sequence of the external antigen, Proc. Natl. Acad. Sci., USA 83:6578-6582, 1986.
- 36. Borrebaeck, C.A.K., Danielson, and Moller, S.A., Proc. Natl. Acad. Sci. USA 85:3995-3999, 1988.
- 37. Bosma, G.C., Custer, R.P., and Bosma, M.J. Nature 301:527-530 (1983)
- 38. Morrison, S.L., Johnson, M.J., Herzenberg, L.A., and Oi, V.T., Chimeric human antibody molecules: Mouse antigen-binding domains with human constant region domains, Proc. Nat. Acad. Sci. USA 81:6851-6855, 1984.

- 39. Walfield, A., Selsing, E., Arp, B., and Storb, U., Misalignment of V and J gene segments resulting in a nonfunctional immunoglobulin gene, Nucl. Acid Res. 9:1101-1109, 1981.
- 40. Carroll, W.L., Mendel, E. and Levy, S., Hybridoma fusion cell lines contain an aberrant kappa transcript, Molec. Immunol. 25:9911-995, 1988.
- 41. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227:680-685, 1970.
- 42. Towbin, H., Staehelin, T., and Gordon, J., electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications, Proc. Nat. Acad. Sci. 76:4350-4354, 1979.
- 43. Yamamoto, S., Yamamoto, T., Saxton, R.E., Hoon, D.S.B., and Itie, R.F., J. Natl. Cancer Inst. 82:1757-1760, 1990.
- 44. Katano, M., Saxton, R.E., and Irie, R.F., Human monoclonal antibody to tumor-associated ganglioside GD2, J. Clin. Lab. Immunol. 15:119-126, 1984.
- 45. Kabat, E.A., Wu, T.T., Reid-Miller, M., Perry, H.M., Gottesman, K.S., <u>Sequences of Proteins of Immunological Interest</u>, U.S. Dept. Health and Human Services, 4th ed., 1987.

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Hastings, Alice Morrison, Sherie L. Irie, Reiko F.
 - (ii) TITLE OF INVENTION: Chimeric Anti-idiotype Antibody
 Carrying the Internal Image of Ganglioside GM3
 - (111) NUMBER OF SEQUENCES: 4
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Poms, Smith, Lande & Rose
 - (B) STREET: 2121 Avenue of the Stars, Suite 1400
 - (C) CITY: Los Angeles
 - (D) STATE: CA
 - (E) COUNTRY: USA
 - (F) ZIP: 90067
 - (V) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: Patentin Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Oldenkamp, David J.
 - (B) REGISTRATION NUMBER: 29,421
 - (C) REFERENCE/DOCKET NUMBER: 85-368
 - (ix) TELECOHHUNICATION INFORMATION:
 - (A) TELEPHONE: (310) 788-5000
 - (B) TELEFAX: (310) 277-1297
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 396 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: CDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (B) STRAIN: mouse
 - (G) CELL TYPE: Hybridoma
 - (H) CELL LINE: ATCC No. HB10722
- (ix) FEATURE:
 - (A) NAME/KEY: sig peptide
 - (B) LOCATION: 1..60
 - (D) OTHER INFORMATION: /function= "region coding for cleavable leader sequence"
- (ix) FEATURE:
 - (A) NAME/KEY: misc difference
 - (B) LOCATION: replace(151..153, "act")
 - (D) OTHER INFORMATION: /note= "C substituted for C at nucleotide position number 152 due to PCR amplification of this gene sequence. "
- (ix) FEATURE:
 - (A) NAME/KEY: mat peptide
 - (B) LOCATION: 61..396
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..396
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

ATG GAG ACA GAC ACA CTC CTG CTA TGG GTG CTG CTG CTC TGG GTT CCA

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Trp Val Pro
-20 -15 -10 -5

GGT TCC ACA GGT GAC ATC GTG CTG ACC CAA TCT CCA GCT TCT TTG GCT

Glv	Ser	Thr	Gly	Asp	Ile	Val	Leu	Thr	Gln	Ser	Pro	Ala	Ser	Leu	Ala	
2			•	ī				5.					10			
														-		
GTG	TCT	CTA	GGG	CAG	AGG	GCC	ACC	ATG	TCC	TGC	AGA	GCC	a gt	GAA	agt	144
Val	Ser	Leu	Gly	Gln	Arg	Ala	Thr	Met	Ser	Cys	Arg	Ala	Ser	Glu	ser	
		15	-				20					25				•
GTT	GAT	AGT	TAT	GTC	AAT	AGT	TTT	ATG	CAC	TGG	TAC	CAG	CAG	AAA	CCA	192
Val	Asp	Ser	Tyr	Val	Asn	Ser	Phe	Met	Kis	Trp	Tyr	Gln	Gln	Lys	Pro	
	30		_			35					40					
GGA	CAG	CCA	CCC	AAA	CTC	CTC	ATC	TAT	CGT	GCA	TCT	AAC	CTA	GAA	TCT	240
Gly	Gln	Pro	Pro	Lys	Leu	Leu	Ile	Tyr	Arg	Ala	Ser	Asn	Leu	Glu	Ser	
45	-				50					.55					60	
					TTC											288
Gly	Ile	Pro	Ala	Arg	Phe	Ser	Gly	Ser	Glu	Ser	Arg	Thr	yeb	Phe	Thr	
				65					70					75		
			•											-		
					GTG											336
Leu	Thr	Ile	Asn	Pro	Val	Glu	Ala	Asp	Хвр	Val	Ala	Thr		Tyr	Cys	_
			80					85					90			
				•				:								
					GAT											 384
Gln	Gln	Ser	Asn	Glu	Asp	Pro	Thr	Trp	Thr	Phe	Gly	_	Gly	Ser	Lys	
		95					100					105				
																396
CIG	GAA	atc	AAA													330
Leu	Glu	Ile	Lys													
	110															
(2)					SEQ											
	((i) 8			CHAI											
				•	(CTH				acid	B						
				•	?E: 4											
			(D)	TOI	POLO	Y: .	Linea	æ								

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
-20 -15 -10 -5

Gly Ser Thr Gly Asp Ile Val Leu Thr Gln Ser Pro Ala Ser Leu Ala
1 5 10

Val Ser Leu Gly Gln Arg Ala Thr Met Ser Cys Arg Ala Ser Glu Ser 15 20 25

Val Asp Ser Tyr Val Asn Ser Phe Het His Trp Tyr Gln Gln Lys Pro 30 35 40

Gly Gln Pro Pro Lys Leu Leu Ile Tyr Arg Ala Ser Asn Leu Glu Ser 45 50 55 60

Gly Ile Pro Ala Arg Phe Ser Gly Ser Glu Ser Arg Thr Asp Phe Thr
65 70 75

Leu Thr Ile Asn Pro Val Glu Ala Asp Asp Val Ala Thr Tyr Tyr Cys 80 85 90

Gln Gln Ser Asn Glu Asp Pro Thr Trp Thr Phe Gly Gly Ser Lys 95 100 105

Leu Glu Ile Lys 110

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 414 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 1..414

(ix) FEATURE:

- (A) NAME/KEY: sig-peptide
- (B) LOCATION: 1..57
- (D) OTHER INFORMATION: /function= "region coding for cleavable leader sequence"

(ix) FEATURE:

(A) NAME/KEY: mat peptide

(B) LOCATION: 58..414

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

ATG	GAT	TGG	CTG	TGG	AAC	TTG	CTA	TTC	CCG	ATG	GCA	GCT	GCC	CAA	agt	48
Het	Asp	Trp	Leu	Trp	Asn	Leu	Leu	Phe	Pro	Met	Ala	Ala	Ala		Ser	
-19				-15					~10					-5		
								•			_					0.0
	CAA															96
Ile	Gln	Ala	Gln	Ile	Gln	Leu		Gln	Ser	Gly	Pro		Ļeu	rås	гÃв	
			1				5					10				
													~~~		-	144
	GGA															144
Pro	Gly	Glu	Thr	Val	Lys		Ser	Cys	ГÂВ	ŸIŦ		GIĀ	TYE	Inr	Pne	
	15					20					25					
_										c c m	<b>503</b>	CCR	220	CCT	Hells V	192
	AAC															
	Asn	Tyr	CTÅ	Met		Trp	VAI	TÃR	GIN	40	FIG	GIY	ryo	GIY	45	
30					35					40					43	
	TGG	200	666		a ma	220	ACC	220	ACT	GGA	GAG	CCA	ACA	TAT	ACT	240
	Trp															
тўв	Trp	nec	GTÄ	50	TIE	WO!!	1111	ABII	55	u_j	014			60		
				30		-			-		•				•	• `
CAA	GAG	ጥጥር	AAC	CCA	ccc	TTT	GCC	TTC	TCT	TTG	GAA	ACC	TCT	GCC	AAC	288
	Glu															
		••••	65	1	3			70					75	*-		
ACT	GCC	TAT	TTG	CTG	ATC	AAC	AAC	CTC	AAA	AAT	GAG	GAC	ACG	GCT	ACA	336
	Ala															
		80					85		_			90				•
TAT	TIC	TGT	GCA	AGA	GGC	GAA	<b>G</b> GT	CAC	GCG	TGG	GGG	TTT	GCT	TAC	TGG	. 384
Tyr	Phe	Сув	Ala	Arg	Gly	Glu	Gly	His	Ala	Trp	Gly	Phe	Ala	Tyr	Trp	
	95					100					105					
GGC	CAA	GGG	ACT	CIG	GTC	ACT	GTC	TCT	GCA							414
Gly	Gln	Gly	Thr	Leu	Val	Thr	Val	Ser	Ala							
110					115											

## (2) INFORMATION FOR SEQ ID NO:4:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 138 amino acids

- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: protein

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Asp Trp Leu Trp Asn Leu Leu Phe Pro Met Ala Ala Ala Gln Ser
-19 -15 -10 -5

Ile Gln Ala Gln Ile Gln Leu Val Gln Ser Gly Pro Glu Leu Lys Lys

1 5 10

Pro Gly Glu Thr Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe
15 20 25

Thr Asn Tyr Gly Met Asn Trp Val Lys Gln Ala Pro Gly Lys Gly Leu 30 35 40 45

Lys Trp Net Gly Trp Ile Asn Thr Asn Thr Gly Glu Pro Thr Tyr Thr 50 55 60

Glu Glu Phe Lys Gly Arg Phe Ala Phe Ser Leu Glu Thr Ser Ala Asn
65 70 75

Thr Ala Tyr Leu Leu Ile Asn Asn Leu Lys Asn Glu Asp Thr Ala Thr 80 85 90

Tyr Phe Cys Ala Arg Gly Glu Gly His Ala Trp Gly Phe Ala Tyr Trp 95 100 105

Gly Gln Gly Thr Leu Val Thr Val Ser Ala 110 ' 115

#### CLAIMS

## What is claimed is:

- 1. A murine/human chimeric monoclonal antiidiotype antibody, and functional equivalents thereof, comprised of
- complementarity determining regions 5 comprising variable regions substantially derived from murine  $V_H$  and  $V_L$  regions derived from an anti-idiotype antibody raised against a human monoclonal anti-ganglioside antibody identified as L612;
  - human constant regions fused to said.
- 10 murine  $V_H$  and  $V_L$  regions

wherein said murine/human chimeric monoclonal anti-idiotype antibody preferentially binds at least one antigenic determinant of said human monoclonal anti-ganglioside antibody identified as L612.

- 2. The murine/human chimeric monoclonal antiidiotype antibody of claim 1 wherein the antibody is produced by recombinant means.
- 3. The murine/human chimeric monoclonal antiidiotype antibody of claim 2 wherein said chimeric anti-idiotype antibody is a beta-type anti-idiotype antibody.
- 4. The murine/human chimeric monoclonal antiidiotype antibody of claim 3 further including an
  antigenic determinant that mimics a sialic acid
  galactose residue of gangliosides present on tumors.
- 5. The monoclonal antibody f claim 3 which when introduced into a human subject elicits an immune

anti-ganglioside response, said anti-ganglioside response including the production of antibodies immunoreactive with gangliosides associated with the presence of cancer cells.

- 6. The monoclonal antibody of claim 5 wherein the anti-ganglioside response is an anti-GM3 response.
- 7. The monoclonal antibody of claim 5 wherein said cancer cells include melanoma cells, lung cancer cells, breast cancer cells, pancreatic cancer cells, colon cancer cells, and kidney cancer cells.
- The murine/human chimeric monoclonal antibody of claim 3 wherein the recombinant means comprises an <u>in vivo</u> recombinant gene expression system, the gene expression system constructed so as to express DNA sequences sufficient to code for said murine V_H and V_L regions and said human constant regions, said DNA sequences encoding said murine V_H and V_L regions being derived at least in part from hybridoma cell line ATCC No. HB10722 and encoding at least a portion of an immunoglobulin molecule.
- The murine/human chimeric monoclonal antibody of claim 3 wherein said murine/human chimeric monoclonal antibody is produced by a transfectoma hybridoma which is identified as TVE1 and which is deposited at the ATCC under ATCC accession number CRL 10867.
  - 10. A method for treating a tumor present in a mammal comprising the step of administering to said mammal a pharmacologically effective amount of the murine/human chimeric monoclonal antibody of claim 3.

- 11. The method for treating a tumor present in a mammal according to claim 10 wherein said murine/human chimeric monoclonal antibody is produced by a transfectoma which is identified as TVE1 and which is deposited at the ATCC under the ATCC accession number CRL 10867.
- 12. A composition for treating a tumor present in a mammal comprising providing to said mammal a therapeutically effective amount of the chimeric murine/human monoclonal antibody of claim 4 in 5 association with a pharmaceutically acceptable carrier vehicle.
- 13. The murine/human chimeric monoclonal antiidiotype antibody of claim 1 further wherein said human constant region is selected from the group of immunoglobulin constant regions consisting of IgG1, 5 IgG2, IgG3, IgG4, IgM, and IgA.
  - 14. The murine/human chimeric monoclonal antiidiotype antibody of claim 1 further comprising a growth factor fused to said antibody.
  - 15. The murine/human chimeric monoclonal antiidiotype antibody of claim 14 wherein said growth factor is selected from the group consisting of insulin like growth factors and transferrin.
  - 16. The murine/human chimeric monoclonal antiidiotype antibody of claim I further comprising a cytokine fused to said antibody.
  - 17. The murine/human chimeric monoclonal antiidi type antibody of claim 16 wherein said cytokine is selected from the group consisting of interleukins and tumor n crosis factor.

- 18. A transf ctoma which is identified as TVE1 and which is deposited at the American Type Culture Collection under ATCC accession number CRL 10867.
- 19. The transfectoma of claim 18 which produces a murine/human chimeric anti-idiotype monoclonal antibody comprised of
- complementarity determining regions 5 comprising variable regions substantially derived from murine V_H and V_L regions derived from an anti-idiotype antibody raised against a human monoclonal antiganglioside antibody identified as L612;
- human constant regions fused to said 10 murine  $V_{\rm H}$  and  $V_{\rm L}$  regions

wherein said murine/human chimeric monoclonal anti-idiotype antibody preferentially binds at least one antigenic determinant of said human monoclonal anti-ganglioside antibody identified as 15 L612.

## FIG. 1

a. Non-reducing b. Reducing c.  $\alpha$ -Hu lgG d.  $\alpha$ -Mo lgG e. L612 +  $\alpha$ -Hu lgM 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

















F/G.

FIG. 5

LIGHT CHAIN PCR



EcoRV

pSV2-gpt

**HpaI** 

'IgH ENHANCER Scal

FIG. 6

HEAVY CHAIN PCR





## SEARCH REPORT

el application No. /2/10166

	• • • • • • • • • • • • • • • • • • •			<u> </u>						
A. CLASSIFICATION OF SUBJECT MATTER  IPC(5) :C12N 5/12; C12P 21/02  US CL :530/387.2, 387.3, 387.5; 435/70.21, 240.27  According to International Patent Classification (IPC) or to both national classification and IPC										
B. FIELDS SEARCHED										
	Minimum documentation searched (classification system followed by classification symbols)									
i	U.S. : 530/387.2, 387.3, 387.5; 435/70.21, 240.27									
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched										
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)  APS, Medline search terms: Interleukin, tumor necrosis factor, growth factor, antibody										
C. DOCL	MENTS CONSIDERED TO BE RELEVANT	•								
Category*	Citation of document, with indication, where a	ppropriate, of the role	vant passages	Relevant to claim No.						
]	J. Natl. Cancer Inst., Volume 82, Number 22, iss et al., *Anti-idiotype monoclonal antibody carring t abstract.	0, S. Yamamoto inglioside GM3*,	1-19							
Y	EP A, 0,239,400 (Winter) 30 September 1987, see		1-19							
	Nucleic Acids Research, Volume 14, Number 8, iss nucleotide sequence of the gene for human interleuk document.		1-19							
	A.M. WU ET AL eds, "The Molecular Immu published 1988 by Plenum Press (New York), see		1-19							
	Bona et al., "Monoclonal and Anti-Idiotypic Antibo Function", published 1984 by Alan R. Liss, It document.		1-19							
X Funhe	r documents are listed in the continuation of Box C	See reter	it family annex.							
	·	<u> </u>	<u>`</u>	restonal filing date or property						
.V. qoca	nal contegories of cited documents; ment defining the general state of the art which is not considered : part of particular relevance	date and ant is		stices but exted to understand the						
L	er document published on or after the international filing date	considered no	rel or commot be commisse	e cisioned invention cannot be red to involve an inventive map						
eited	ment which may throw doubts on priority claim(s) or which is to establish the publication data of another critisian or other all reason (as specified)	particular pthronoce; th	a claimed invention cannot be							
O. quer	step when the document of a documents, such combination as art									
	ment published prior to the international filing date but later than provity date etaimed	.ę. document men	sher of the same patent	funily						
Date of the a	ctual completion of the international search	Da : of maus., of th								
05 January		02 FEB 1993,/								
Commissione Box PCT										
	D.C. 20231 NOT APPLICABLE		7 73) 308-0196	· . · · · · · · · · · · · · · · · · · ·						