COMPRESSOR STATION

Facility	Control Modes	Constraints
Compressor Station	inlet pressure $(p_{i,set})$ outlet pressure $(p_{o,set})$ pressure ratio (Π_{set}) pressure difference (Δp_{set}) flow rate (Q_{set}) volumetric flow $(Q_{vol,set})$ flow velocity (V_{set}) shaft power (PWS_{set}) driver power (PWB_{set}) driver fuel $(Q_{f,set})$ closed (OFF) bypass (BP)	internal hard limits: $p_o \ge p_i \& Q \ge 0$ user defined limits: max. outlet pressure $(p_{o,max}, 80 \text{ bar-g})$ min. inlet pressure $(p_{i,min}, 25 \text{ bar-g})$ max. volumetric flow $(Q_{vol,max}, 100 \text{ m}^3/\text{s})$ max. flow rate (Q_{max}) max. pressure ratio $(\Pi_{max}, 2)$ max. driver power $(PWd_{max}, 100 \text{ MW})$

MODEL

models a compressor station with generic constraints, allows the specification of a control mode of the station (e.g. outlet pressure control, inlet pressure control, flow rate control etc.)

REGULATOR STATION

Regulator Station

inlet pressure $(p_{i,set})$ outlet pressure $(p_{o,set})$ pressure difference (Δp_{set}) flow rate (Q_{set}) volumetric flow $(Q_{vol,set})$ flow velocity (V_{set}) closed (OFF)bypass (BP) internal hard limits:

 $p_i \ge p_o \ \& \ Q \ge 0$

user defined limits:

max. outlet pressure $(p_{o,max}, 80 \text{ bar-g})$

min. inlet pressure $(p_{i,min}, 25 \text{ bar-g})$

max. volumetric flow $(Q_{vol,max}, 100 \text{ m}^3/\text{s})$

max. flow rate (Q_{max})

regulator

models a pressure reduction and metering station located at the interface of two neighbouring networks with different maximum operating pressures, allows the specification of a control mode of the station (e.g. outlet pressure control, inlet pressure control, flow rate control etc.)

MODEL

VALVE STATION

MODEL

models a valve station, which is is either opened or closed

COMPRESSOR ON

Control Mode	Equation	Coefficients $c_1 \cdot p_1 + c_2 \cdot p_2 + c_3 \cdot Q = d$
inlet pressure $(p_{i,set})$	$p_i = p_{i,set}$	$c_1=1,c_2=0,c_3=0,d=p_{i,set}$
outlet pressure $(p_{o,set})$	$p_o = p_{o,set}$	$c_1 = 0, c_2 = 1, c_3 = 0, d = p_{o,set}$
pressure ratio (Π_{set})	$\frac{p_o}{p_i} = \Pi_{set}$	$c_1 = -\Pi_{set}, c_2 = 1,$ $c_3 = 0, d = 0$
flow rate (Q_{set})	$Q=Q_{set}$	$c_1 = 0, c_2 = 0, c_3 = 1, d = Q_{set}$
shaft power (PWs_{set})	$\begin{aligned} PWs_{set} &= \frac{K_i Q}{c_{\kappa}} \left[\Pi^{c_{\kappa}} - 1 \right] \\ K_i &= \frac{Z_i T_i R \rho_n}{\eta_{ad}}, \ \Pi = \frac{p_o}{p_i}, \\ c_{\kappa} &= \frac{\kappa - 1}{\kappa} \end{aligned}$	$\begin{aligned} c_1 &= -\frac{K_i Q}{p_i} \Pi^{c_\kappa}, \ c_2 &= \frac{K_i Q}{p_o} \Pi^{c_\kappa}, \\ c_3 &= \frac{K_i}{c_\kappa} \left[\Pi^{c_\kappa} - 1 \right], \ d = PWs_{set} \end{aligned}$

COMPRESSOR OFF

Control Mode	Equation	Coefficients $c_1 \cdot p_1 + c_2 \cdot p_2 + c_3 \cdot Q = d$
bypass (BP)	$p_i=p_o$	$c_1 = -1, c_2 = 1, c_3 = 0, d = 0$
off (OFF)	Q = 0	$c_1 = 0, c_2 = 0, c_3 = 1, d = 0$

j-being non-pipe element

Diagonal matrix

FOCUS ON: COMPRESSOR STATION

DRIVER POWER CONTROL MODE

DRIVER POWER CONTROL MODE

Inside the blue box P_out CONTROL MODE $p_{ou\ c',SET} = p_{out_{C},MAX}$ P_in CONTROL $p_{in_C,SET} = p_{in_C,MAX}$ $p_{in_C,k} < p_{in_C,min}$ $c_1 = 0$ $p_{out_C,k} < \beta_{min}$ $\dot{m}_{C,k}$, $p_{in_{C},k}$, β , PW_{driver} $c_2 = 1$ $p_{in_{C},k}$ ARE DEFINED AFTER k-cycle $\beta_{\text{SET}} = \beta_{MIN}$ β CONTROL $c_3 = 0$ $\beta_{\text{SET}} = \beta_{MAX}$ $d = p_{out_C,SET}$ $\frac{p_{out_{C},k}}{p_{in_{C},k}} > \beta_{MAX}$ $\dot{m}_{\mathcal{C}}$ CONTROL $\dot{m}_{C,k} > \dot{m}_{C,MAX}$ $\dot{m}_{C,\text{SET}} = \dot{m}_{C,\text{MAX}}$

 $PW_{driver} > PW_{driver_{nom}}$

PW_{driver} CONTROL

 $PW_{driver,SET} = PW_{driver_{nom}}$

P_in CONTROL MODE

 $PW_{driver,SET} = PW_{driver_{nom}}$

β CONTROL MODE

$\dot{m}_{\it C}$ CONTROL MODE

