Topic: Designed experiments with blocking factors

Block Designs

Motivation - sometimes the variability of responses among experimental units is large, making detection of differences among treatment means $\mu_1, \mu_2, \dots, \mu_t$ difficult

In a randomized complete block design (RBD) to evaluate t treatments in b complete blocks, ,

- matched sets of experimental units are formed, each consisting of ______ units. Goal is _____ of the response within a block That is, the units within a block are homogeneous. Variance between blocks is _____.
- Units are randomly assigned to each of the t treatments _______ as opposed to the completely randomized design where units are assigned completely at random to treatments.

```
%let seed0=234:
                  *Randomized Complete Block Design;
%let seed=368:
data trts:
  do driver=1 to 6;
  do i=1 to 3:
      u=ranuni(&seed):
      output;
   end:
   end:
  keep driver u;
run;
proc rank data=trts out=rtrts;
  by driver;
   var u;
  ranks ru;
run;
data rtrts;
   array cname {3} $ ("D", "E", "F");
  set rtrts;
  by driver;
  cartype=cname{ru};
  keep cartype driver;
run;
proc transpose data=rtrts out=rcbd prefix=day;
  by driver;
  var cartype;
run;
proc print data=rcbd;run;
```

Obs	driver	_NAME_	day1	day2	day3
1	1	cartype	D	F	E
2	2	cartype	E	D	F
3	3	cartype	F	E	D
4	4	cartype	D	E	F
5	5	cartype	D	F	E
6	6	cartype	E	D	F

RBD - first example

Acrophopia can be treated in several ways:

- "Contact desensitization" activity/task demonstrated then walked through while a therapist is in constant contact with the subject.
- "Demonstration participation" therapist talks subject thru task, no contact.
- "Live Modeling" subject simply watches completion of task

Severity of acrophobia measured by HAT (Height Avoidance Test) scores, measured before/after therapy. Considerable heterogeneity in degree of acrophobia. So N=15 subjects put into **blocks** according to original HAT score, then one from each block randomly assigned to a therapy. Δ HAT score below:

	Therapy							
	Contact	Demonstration	Live					
Block j	Desensitization	Participation	Modeling	\bar{y}_{+j}				
1	8	2	-2	2.67				
2	$y_{12} = 11$	1	0	4				
3	9	12	6	9				
4	16	11	2	9.67				
5	24	19	11	18				
Avg \bar{y}_{i+}	13.6	9	3.4					

RBD example

Source	Sum of Squares	d.f.	d.f. Mean Square	
A: Therapies	260.9	2	130.5	15.3
B: Blocks	438	4	109.5	
Error	68.4	8	8.6	
Total	767.3	14		

(Data taken from Larsen and Marx, 1986)

$$SS[Tot] = SS[A] + SS[B] + SS[E]$$

$$SS[Tot] =$$

$$SS[A] =$$

$$SS[B] =$$

$$SS[E] =$$

Note that

$$y_{ij} - \bar{y}_{++} = \underbrace{(\bar{y}_{i+} - \bar{y}_{++})}_{\text{therapy effect}} + \underbrace{\qquad \qquad }_{\text{block effect}} + \underbrace{\qquad \qquad }_{\text{error}}$$

F-tests in the RBD

A model for RBD with fixed treatment (therapy) effects is

$$Y_{ij} = \mu + \alpha_i + \beta_j + E_{ij}$$

where
$$i=1,\ldots,a$$
 $j=1,\ldots,b$ and $E_{ij}\stackrel{iid}{\sim} N(0,\sigma^2)$

Mean squares obtained by dividing SS by df:

$$MS[A] = \frac{SS[A]}{a-1}$$

$$MS[B] = \frac{SS[B]}{b-1}$$

$$MS[E] = \frac{SS[E]}{N-a-b+1}$$

The primary hypothesis of interest is for a therapy effect:

$$H_0: \alpha_1 = \alpha_2 = \alpha_3 = 0$$
 vs $H_1:$ not all equal.

Using level α , reject H_0 if

$$F = \frac{MS[A]}{MS[E]} > F(\alpha, a - 1, N - a - b + 1)$$

The EMS for error is $E(MS[E]) = \sigma^2$, but only under the additivity assumption that there is no block-trt interaction. This assumption is required for inference about treatment effects in the absence of replication, common to block designs.

For the HAT scores, $F_A = MS[A]/MS[E] = 130.5/8.6 = 15.3$ which has p < 0.01 on 2,8 df, providing strong evidence of a therapy effect. Inference, including MCPs, for CONTRASTS involving fixed effects is the same in the complete RBD as it is for other factorial experiments with fixed effects. E.g.

$$\widehat{SE}(\overline{Y}_{i+}) = \sqrt{MS[E]/b}, \quad \widehat{SE}(\overline{Y}_{i+} - \overline{Y}_{j+}) = \sqrt{2MS[E]/b}$$

Another example

Expt conducted to see whether or not artificial food supplements might entice rats to eat rat poison. 3200 baits placed around garbage-storage areas. Baits were mixed with t=4 flavors Baits randomized to four close locations with equal access. After 2 wks, the percentage of baits devoured was recorded. Then other sets of locations in the same area were selected and the experiment was repeated for four more two-weeks periods:

Expt	Percentage of baits accepted						
	Plain	Vanilla	RoastB	Bread	Avg.		
1	13.8	11.7	14.0	12.6	13.0		
2	12.9	16.7	15.5	13.8	14.7		
3	25.9	29.8	27.8	25.0	27.1		
4	18.0	23.1	23.0	16.9	20.3		
5	15.2	20.2	19.0	13.7	17.0		
Avg	17.2	20.3	19.9	16.4	18.4		
Std Dev.	5.3	6.8	5.6	5.1			

Source	Sum of Squares
Flavor	56.38
Expt.	495.32
Error	29.76
Total	581.46

- Calculate an F-ratio that can be used to test for a flavor effect.
- Conduct all pairwise comparisons using Tukey's HSD with FWE .05.
- Inhomogeneity of variance? Ranks of means and variances?

Multiple comparisons among means in the RBD

Scheffè simultaneous 95% confidence intervals for contrasts like

$$c_1\mu_1+c_2\mu_2+\cdots+c_a\mu_a$$

look like

$$c_1\bar{y}_{1+}+c_2\bar{y}_{2+}+\cdots+c_a\bar{y}_{a+}\pm\sqrt{(a-1)(F^*)MS[E]\sum\frac{c_i^2}{b}}$$

where $F^* = F(0.05, a-1, N-a-b+1)$. For simultaneous pairwise differences,

$$ar{y}_{i+} - ar{y}_{j+} \pm \qquad \underbrace{\sqrt{(a-1)(F^*)MS[E]rac{2}{b}}}$$

"minimum significant difference"

For the HAT scores, $\bar{y}_{1+} = 13.6$, $\bar{y}_{2+} = 9$, $\bar{y}_{3+} = 3.4$ and

$$\sqrt{(a-1)(F^*)(MS[E])(1/5+1/5)} = \sqrt{(3-1)(4.46)(8.6)(2/5)} = 5.5$$

with \bar{y}_{LM+} significantly different from the other two. (LM brings about significantly less improvement than the other two therapies.)

Tukey's Studentized Range (HSD) Test for variable: DIFF

NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ.

Alpha= 0.05 df= 8 MSE= 8.55 Critical Value of Studentized Range= 4.041 Minimum Significant Difference= 5.2843

Means with the same letter are not significantly different.

Tukey	Grouping	Mean	N	TREAT
	A A	13.600	5	Contact Desensit
	A	9.000	5	Demonstration Pa
	В	3,400	5	Live Modelling

Scheffe's test for variable: DIFF

NOTE: This test controls the type I experimentwise error rate but generally has a higher type II error rate than REGWF for all pairwise comparisons

> Alpha= 0.05 df= 8 MSE= 8.55 Critical Value of F= 4.45897 Minimum Significant Difference= 5.5226

Scheffe Grouping	Mean	N	TREAT
A	13.600	5	Contact Desensit
A A	9.000	5	Demonstration Pa
В	3.400	5	Live Modelling

Another example, block effects are random

A study investigates the efficiency of four different unit-dose injection systems. For each system, an individual subject (pharmacist or nurse) measures the average time it takes to remove a unit of each system from its outer package, assemble it, and simulate an injection. (Data from Larsen and Marx, 1986.)

Average times (seconds) for implementing systems

U	(, ,	0	,	
Subject	Standard	Vari-Ject	Unimatic	Tubex	\bar{y}_{+j}
1	35.6	17.3	24.4	25.0	25.6
2	31.3	16.4	22.4	26.0	24.0
3	36.2	18.1	22.8	25.3	25.6
4	31.1	17.8	21	24	23.5
5	39.4	18.8	23.3	24.2	26.4
6	34.7	17	21.8	26.2	24.9
7	34.1	14.5	23	24	23.9
8	36.5	17.9	24.1	20.9	24.9
9	40.7	16.4	31.3	36.9	31.3
\bar{y}_{i+}	35.5	17.1	23.8	25.8	25.6

Model

$$Y_{ii} =$$

```
data one;
  input subject system time;
  cards;
1 1 35.6
2 1 31.3
    ...
8 4 20.9
9 4 36.9
;
run;

proc mixed method=type3;
  class system subject;
  model time=system/ddfm=satterth;
  random subject;
  lsmeans system/adj=tukey cl pdiff;
run;
```

```
The Mixed Procedure
              Dependent Variable
                                          time
              Covariance Structure
                                         Variance Components
              Estimation Method
                                         Type 3
              Fixed Effects SE Method
                                        Model-Based
              Degrees of Freedom Method Satterthwaite
                Class
                          Levels
                                    Values
                system
                                    1 2 3 4
                subject
                                    1 2 3 4 5 6 7 8 9
                        Total Observations
                                                       36
                           Type 3 Analysis of Variance
                        Sum of
Source
                        Squares
                                  Mean Square Expected Mean Square
              DF
system
              3
                  1559.202222
                                519.734074 Var(Residual) + Q(system)
subject
              8
                   177.405000
                                  22.175625 Var(Residual) + 4 Var(subject)
Residual
              24
                     148.472778
                                     6.186366 Var(Residual)
```

```
Error
  Source
              Error Term
                                                             DF
                                                                    F Value
                                                                                Pr > F
  svstem
              MS(Residual)
                                                             24
                                                                      84 01
                                                                                < 0001
  subject
              MS(Residual)
                                                             24
                                                                       3 58
                                                                                0.0072
  Residual
                           Covariance Parameter Estimates
                                 Cov Parm
                                               Estimate
                                 subject
                                                 3 9973
                                 Residual
                                                 6 1864
                           Type 3 Tests of Fixed Effects
                                  Nıım
                                           Den
                  Effect
                                   DF
                                            DF
                                                  F Value
                                                              Pr > F
                  system
                                            24
                                                     84 01
                                                              < 0001
                                  Least Squares Means
                                   Standard
Effect
                     Estimate
                                      Error
                                                  DF
                                                         t Value
                                                                     Pr > Itl
           system
                                                                                    Alpha
                      35.5111
                                     1.0637
                                                21.9
                                                           33.38
                                                                       < .0001
                                                                                     0.05
system
                      17.1333
                                     1.0637
                                                21.9
                                                           16.11
                                                                       < .0001
                                                                                    0.05
system
                      23.7889
                                     1.0637
                                                21.9
                                                           22.36
                                                                       < .0001
                                                                                    0.05
system
system
                      25.8333
                                     1.0637
                                                21.9
                                                           24.29
                                                                       < .0001
                                                                                    0.05
                      Effect
                                 system
                                               Lower
                                                            Upper
                                             33.3044
                                                          37.7178
                      system
                     system
                                                          19.3400
                                             14.9266
                      system
                                             21.5822
                                                          25.9956
                                             23.6266
                                                          28.0400
                      system
```

Injection systems significantly different. Estimated variance component of block effects:

$$\hat{\sigma}_B^2 = \frac{1}{2}(MS[B] - MS[E]) = \frac{1}{4}(22.2 - 6.2) = 4(\text{squared seconds})$$

			Differences	of Least	Squares	Means			
				Standard					
Effect	system	_system	Estimate	Error	DF t	Value 1	Pr > t	Adjustme	ent
system	1	2	18.3778	1.1725	24	15.67	< .0001	Tukey-K:	ramer
system	1	3	11.7222	1.1725	24	10.00	< .0001	Tukey-K:	ramer
system	1	4	9.6778	1.1725	24	8.25	< .0001	Tukey-K	ramer
system	2	3	-6.6556	1.1725	24	-5.68	< .0001	Tukey-K:	ramer
system	2	4	-8.7000	1.1725	24	-7.42	< .0001	Tukey-K:	ramer
system	3	4	-2.0444	1.1725	24	-1.74	0.0940	Tukey-K	ramer
							A	dj	Adj
Effect	syste	m _syste	m Adj P	Alpha	Lower	Upper	r Low	er Uj	pper
syster	1 1	2	< .0001	0.05	15.9579	20.797	7 15.14	33 21.6	5122
syster	n 1	3	< .0001	0.05	9.3023	14.142	1 8.48	78 14.9	9567
syster	1 1	4	< .0001	0.05	7.2579	12.097	6.44	33 12.9	9122
syster	1 2	3	< .0001	0.05	-9.0755	-4.2356	-9.89	00 -3.4	4211
syster	1 2	4	< .0001	0.05 -	11.1199	-6.280	1 -11.93	45 -5.4	4655
syster	1 3	4	0.3242	0.05	-4.4644	0.375	-5.27	89 1.:	1900

Note the df columns:

- For difference of means, pesky mean random effects wash out
- For means, random effects don't wash out:

$$\begin{array}{rcl} \overline{Y}_{i_1+} &=& \\ \overline{Y}_{i_2+} &=& \\ \overline{Y}_{i_1+} - \overline{Y}_{i_2+} &=& \\ SE(\overline{Y}_{i_1+}) &=& \\ SE(\overline{Y}_{i_1+} - \overline{Y}_{i_2+}) &=& \end{array}$$

Latin squares: for experiments with

Fisher's famous experiment with $3 \times 2 = 6$ combos of

- 3 levels of phosphate
- 2 levels of nitrogen

			Colı	ımn		
Row	1	2	3	4	5	6
1	Е	В	F	Α	С	D
2	В	C	D	E	F	Α
3	Α	Ε	С	В	D	F
4	F	D	E	С	Α	В
5	D	Α	В	F	E	С
6	С	F	Α	D	В	Ε

Labels:

	Phosphate					
	none	single	double			
without Nitrate	Α	В	С			
with Nitrate	D	Ε	F			

Data (data taken from p. 91 of Fisher's "The Design of Experiments.")

			Coli	ımn			
Row	1	2	3	4	5	6	
1	633 E	527 B	652 F	390 A	504 C	416 D	520.3
2	489 B	475 C	415 D	488 E	571 F	282 A	453.3
3	384 A	481 E	483 C	422 B	334 D	646 F	458.3
4	620 F	448 D	505 E	439 C	323 A	384 B	453.2
5	452 D	432 A	411 B	617 F	594 E	466 C	495.3
6	500 C	505 F	259 A	366 D	326 B	420 E	396.0
means	513	478	454.2	453.7	442.0	435.7	462.8

Means:

Level of	Level of		y			
phosphate	nitrogen	N	Mean	Std Dev		
0	0	6	345.000000	67.7701999		
0	1	6	405.166667	46.5635766		
1	0	6	426.500000	72.3512267		
1	1	6	520.166667	78.7589148		
2	0	6	477.833333	23.9116429		
2	1	6	601.833333	55.4163033		

Model: $Y_{iik} =$

```
proc glm data=both;
   title "Factorial effects of phosphate and nitrogen";
   class row col phosphate nitrogen;
   model y=row col nitrogen|phosphate;
   estimate "nitrogen effect without phosphate" nitrogen -1 1
                                nitrogen*phosphate -1 1;
   estimate "nitrogen effect with single phosphate" nitrogen -1 1
                                nitrogen*phosphate 0 0 -1 1;
   estimate "nitrogen effect with double phosphate" nitrogen -1 1
                                nitrogen*phosphate 0 0 0 0 -1 1;
   estimate "phosphate nonlinear"
                                              phosphate 1 -2 1;
   contrast "phosphate nonlinear"
                                              phosphate 1 -2 1;
   lsmeans nitrogen*phosphate/slice=phosphate;
run:
```

```
The GLM Procedure
Class
               Levels
                          Values
                          1 2 3 4 5 6
row
                     6
                     6
col
                          1 2 3 4 5 6
                     3
                          0 1 2
phosphate
nitrogen
                          0 1
                                      Sum of
Source
                           DF
                                     Squares
                                               Mean Square
                                                             F Value
                                                                      Pr > F
Model
                           15
                                326845.7500
                                                21789.7167
                                                               14.27
                                                                      < .0001
Error
                           20
                                 30541.0000
                                                 1527.0500
Corrected Total
                           35
                                357386.7500
R-Square
             Coeff Var
                             Root MSE
                                              y Mean
0.914544
              8.444622
                             39.07749
                                            462.7500
                                  Type I SS
Source
                           DF
                                               Mean Square
                                                             F Value
                                                                      Pr > F
                                                                7.10
row
                            5
                                 54198.5833
                                                10839.7167
                                                                      0.0006
col
                            5
                                 24467.2500
                                                 4893.4500
                                                                3.20
                                                                      0.0276
                            1
                                                77191.3611
                                                               50.55
nitrogen
                                 77191.3611
                                                                      < .0001
                            2
                                164871.5000
                                                82435.7500
phosphate
                                                               53.98
                                                                      < .0001
                            2
phosphate*nitrogen
                                  6117.0556
                                                 3058.5278
                                                                2.00
                                                                      0.1611
```

Exercise

Let Y_{ij} denote the observation in row i column j. Let \overline{Y}_k denote the treatment mean for k^{th} treatment level. For latin square, identify these sums of squares:

$$\sum_{i=1}^{a} \sum_{j=1}^{a} (\overline{y}_{i+} - \overline{y}_{i++})^{2} = SS[]$$

$$\sum_{i=1}^{a} \sum_{j=1}^{a} (y_{ij} - \overline{y}_{i++})^{2} = SS[]$$

$$a \sum_{j=1}^{a} (\overline{y}_{+j} - \overline{y}_{+j})^{2} = SS[]$$

$$\sum_{i=1}^{a} \sum_{j=1}^{a} (y_{ij} - \overline{y}_{i+} - \overline{y}_{+j} - \overline{y}_{k} + 2\overline{y}_{++})^{2} = SS[]$$

$$a \sum_{i=1}^{a} (\overline{y}_{k} - \overline{y}_{i++})^{2} = SS[]$$

Note that \overline{y}_k determined by the i, j combination. For i = j = 1 in Fisher's potatoes design, $\overline{y}_5 = 520.2$.

Test the hypothesis that neither nitrogen nor phosphate have any effect on yield. (Do the averages on slide 17 differ significantly?)

$$F = \frac{MS(trt)}{MS(E)}$$

$$= \frac{[SS(N) + SS(P) + SS(N * P)]/5}{MS(E)}$$

$$= \frac{[77191 + 164871 + 6117]/5}{?}$$

$$= \frac{248180/5}{?} = 32.5(df = 5, 20)$$

Next we might test for $N \times P$ interaction:

$$F = \frac{MS(N \times P)}{MS(E)} = \frac{6117/}{1527} =$$

Appropriate $\alpha = .01, .05, .10$ critical values, respectively: 5.84, 3.49, 2.59. Conclusion?

If one does not want to assume phosphate and nitrogen effects are additive, one could assess simple effects:

```
Least Squares Means
phosphate
             nitrogen
                              v LSMEAN
                            345.000000
                            405.166667
                            426.500000
1
             1
                            520.166667
                            477.833333
                            601.833333
          phosphate*nitrogen Effect Sliced by nitrogen for y
                             Sum of
                                         Mean Square
                                                        F Value
nitrogen
                 DF
                            Squares
                                                                    Pr > F
                              53844
                                               26922
                                                           17.63
                                                                    < .0001
                             117144
                                               58572
                                                           38.36
                                                                    < .0001
          phosphate*nitrogen Effect Sliced by phosphate for y
                              Sum of
phosphate
                  DF
                             Squares
                                          Mean Square
                                                          F Value
                                                                     Pr > F
                               10860
                                                10860
                                                             7.11
                                                                     0.0148
                               26320
                                                26320
                                                            17.24
                                                                     0.0005
                               46128
                                                46128
                                                            30.21
                                                                      < .0001
```

- Observed phosphate effects significant for each level of nitrogen
- Observed nitrogen effects significant for each level of phosphate

Main effects:

```
Level of
phosphate
                N
                               Mean
                                              Std Dev
0
               12
                         375.083333
                                           63.7216366
               12
                        473.333333
                                           87.1303447
               12
                         539.833333
                                           76.4803401
Level of
                              Mean
                                             Std Dev
nitrogen
0
              18
                       416.44444
                                        78.904426
                       509.055556
                                          101.272766
1
              18
```

Is phosphate effect *linear*? (Note SS(phosphate) = SS(lin) + SS(nonlinear).)

```
contrast "phosphate linear" phosphate -1 0 1;
contrast "phosphate nonlinear" phosphate 1 -2 1;
```

Contrast	DF	Contrast SS	Mean Square	F Value	Pr > F
phosphate linear phosphate nonlinear		162855.3750 2016.1250	162855.3750 2016.1250		<.0001 0.2641

How to randomize a latin square:

- randomly permute rows
- randomly permute columns
- randomly permute labels

Suppose we have a = 4 treatments, labelled 1,2,3,4.

1	2	3	4
2	3	4	1
3	4	1	2
4	1	2	3

Aside: The latin square we started with is in *reduced form*, where the first row is 1,2,3,4 and so is the first column. Any 4×4 latin square in reduced form will take either the form above or the form below:

1	2	3	4
2	1	4	3
3	4	2	1
4	3	1	2

(Two "isotopy classes")

- Advantages:
 - better control of error (smaller MS(E))
- Disadvantages
 - loss of df for MS(E) (few would advocate the use of a solitary 3×3 Latin Square.
 - limited existence of designs can be restrictive

Graeco-Latin Squares

(Hyper) Graeco-Latin Squares permit investigation of a treatment allowing for three (or more) blocking factors.

Multiple superimposed (mutually) orthogonal latin squares:

	•		
α	β	γ	δ
β	γ	δ	α
γ	δ	α	β
δ	α	β	δ

В	C	D
C	В	Α
Α	D	C
D	Α	В
	C A	C B A D

Orthogonal - every greek-latin combo appears exactly once.

Latin rectangle

Case 2 Example, taken from Oehlert's book: 3 methods of drug-delivery: *A*-solution, *B*-tablet, *C*-capsule.

	Period					
Subject	1		2		3	
1	Α	1799	С	1846	В	2147
2	С	2075	В	1156	Α	1777
3	В	1396	Α	868	С	2291
4	В	3100	Α	3065	C	4077
5	С	1451	В	1217	Α	1288
6	Α	3174	C	1714	В	2919
7	С	1430	Α	836	В	1063
8	Α	1186	В	642	C	1183
9	В	1135	C	1305	Α	984
10	С	873	Α	1426	В	1540
11	Α	2061	В	2433	С	1337
12	В	1053	С	1534	Α	1583