Cálculo I

Darvid darvid.torres@gmail.com

August 22, 2022

Definición: Sea a un número real, definimos el valor absoluto de a, denotado por |a| como sigue:

$$|a| = \begin{cases} a, & \text{si } a \ge 0 \\ -a, & \text{si } a < 0 \end{cases}$$

Observación. $|a| \geq 0, \ \forall a \in \mathbb{R}.$

Lista de Ejercicios 4 (LE4)

Sean a, b, c números reales, demuestre lo siguiente:

- **a)** $|a| \ge \pm a$.
- **b)** |ab| = |a||b|.
- **c)** |a| = |-a|.
- d) $|a+b| \le |a| + |b|$. Desigualdad del triángulo.
- e) Si $b \neq 0$, entonces $\left| \frac{a}{b} \right| = \frac{|a|}{|b|}$.
- f) |a| < b si y solo si -c < b < c.
- **g)** $||a| |b|| \le |a b|$
- **h)** $|a|^2 = a^2$.

Demostración

- a) i) Si $a \ge 0$, entonces |a| = a, así, $|a| \ge a$. Luego, $-a \le 0$, de donde sigue que $a \ge -a$. Finalmente, $|a| \ge -a$.
 - ii) Si a < 0, entonces |a| = -a, así, $|a| \ge -a$. Luego, -a > 0, de donde sigue que -a > a. Finalmente, $|a| \ge a$.

En cualquier caso, $|a| \ge \pm a$.

- b) i) Si a > 0 y b > 0, entonces |a| = a y |b| = b. Luego, ab > 0 por lo que |ab| = ab. De este modo, |ab| = |a||b|.
 - ii) Si a > 0 y b < 0, entonces |a| = a y |b| = -b. Luego, ab < 0 por lo que |ab| = -ab. De este modo, |ab| = |a||b|.
 - iii) Si a < 0 y b < 0, entonces |a| = -a y |b| = -b. Luego, ab > 0 por lo que |ab| = ab. De este modo, |ab| = |a||b|.

- c) i) Si $a \ge 0$, entonces |a| = a. Luego, $-a \le 0$. Si -a < 0, |-a| = a y si -a = 0, |-a| = a. De este modo, |a| = |-a|.
 - ii) Si a < 0, entonces |a| = -a. Luego, -a > 0 por lo que |-a| = -a. De este modo, |a| = |-a|.
- d) i) Si $0 \le a + b$, entonces |a + b| = a + b. Además, $a \le |a|$ y $b \le |b|$. Luego, $a + b \le |a| + |b|$. Así, $|a + b| \le |a| + |b|$.
 - ii) Si 0>a+b, entonces |a+b|=-a-b. Además, $-a\leq |a|$ y $-b\leq |b|$. Luego, $-a-b\leq |a|+|b|$. Así, $|a+b|\leq |a|+|b|$.
- e) i) Si $a \ge 0$ y b > 0, entonces |a| = a y |b| = b. Además, $\frac{1}{b} > 0$, de donde sigue que $\frac{a}{b} \ge 0$ por lo que $\left|\frac{a}{b}\right| = \frac{a}{b}$. De este modo, $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}$.
 - ii) Si $a \ge 0$ y b < 0, entonces |a| = a y |b| = -b. Además, $\frac{1}{b} < 0$, de donde sigue que $\frac{a}{b} \le 0$, por lo que $\left|\frac{a}{b}\right| = -\frac{a}{b}$. De este modo, $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}$.
 - iii) Si a < 0 y b > 0, entonces |a| = -a y |b| = b. Además, $\frac{1}{b} > 0$, de donde sigue que $\frac{a}{b} < 0$, por lo que $\left|\frac{a}{b}\right| = -\frac{a}{b}$. De este modo, $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}$.
 - iv) Si a < 0 y b < 0, entonces |a| = -a y |b| = -b. Además, $\frac{1}{b} < 0$, de donde sigue que $\frac{a}{b} > 0$ por lo que $\left| \frac{a}{b} \right| = \frac{a}{b}$. De este modo, $\left| \frac{a}{b} \right| = \frac{|a|}{|b|}$.
- f) i) Supongamos que |b| < c. Por (a) de LE4, $\pm b \le |b|$, de donde sigue que -b < c y b < c. Luego, -c < b. De este modo, -c < b < c.
 - ii) Supongamos que -c < b < c. Luego,
 - 1) Si $b \ge 0$, entonces |b| = b. Por lo que |b| < c.
 - 2) Si b < 0, entonces |b| = -b. Por hipótesis, -c < b, por lo que -b < c. Así |b| < c.
- g) Por la desigualdad del triángulo,

$$|(a-b) + b| \le |a-b| + |b|$$

 $|a| \le |a-b| + |b|$
 $|a| - |b| \le |a-b|$ (1)

Similarmente,

$$|(b-a) + a| \le |b-a| + |a|$$

 $|b| \le |b-a| + |a|$
 $|b| - |a| \le |b-a|$
 $-|b-a| \le |a| - |b|$ (2)

Luego, aplicando (f) de LE4 en (1) y (2), $\big||a|-|b|\big| \leq |a-b|.$

h) Por (o) de LE3, $a^2 \ge 0$, por lo que

$$a^2 = |a^2|$$

 $= |a \cdot a|$
 $= |a| \cdot |a|$ Por (b) de LE4
 $= |a|^2$