structure

(과제 설명)

이번 과제는 AC simulation 수행하고, 기존에 구한 analytic, small signal의 admittance의 값과 비교해보는 것이다. AC simulation을 하기 위해서는 기존의 식을 수정해야 할 필요가 있다. 기존의 current density와 time component가 포함된 식을 time domain에서 frequency domain으로 옮기는 것이다.

(equation)

- transient part

$$\frac{dn(t)}{dt} = \frac{1}{q} \nabla \cdot J_n$$

$$\frac{dp(t)}{dt} = -\frac{1}{q} \nabla \cdot J_p$$

- transient part -> AC part

$$jwn = rac{1}{q} \,
abla \, \cdot J_n$$

$$jwp = -\frac{1}{q} \nabla \cdot J_p$$

- poisson equation : $\nabla \cdot (-\epsilon \nabla \delta \phi) = \delta q$

- electron current density : $\delta J_n = -q \times \mu_n ((n_{dc} \nabla \delta \phi + \delta n \, \nabla \phi_{dc}) - V_t \nabla \delta n)$

- hole current density : $\delta J_n = -q \times \mu_b ((p_{dc} \nabla \delta \phi + \delta p \nabla \phi_{dc}) + V_t \nabla \delta p)$

또한, Boundary condition을 제외한 모든 residue 항의 값을 0으로 설정하고, Anode에서는 sin 파를 입력신호로 넣었기 때문에, residue 항에 $j\,V_{Amb}$ 을 추가해주었습니다.

이를 통해 1 shot으로 solution을 구할 수 있습니다.

Admittance Result

	Analytic		Full-DD		Small signal		AC	
freq	real	imaginary	real	imaginary	real	imaginary	real	imaginary
0.1GHz	1.3832E-04	5.4242E-06	1.3831E-04	5.4206E-06	1.3832E-04	5.4207E-06	1.3832E-04	5.4241E-06
1THz	1.3832E-04	5.4242E-05	1.3831E-04	5.4206E-05	1.3832E-04	5.4206E-05	1.3832E-04	5.4241E-05
2THz	1.3832E-04	1.0849E-04	1.3831E-04	1.0841E-04	1.3832E-04	1.0841E-04	1.3832E-04	1.0848E-04
3THz	1.3832E-04	1.6273E-04	1.3831E-04	1.6262E-04	1.3832E-04	1.6262E-04	1.3832E-04	1.6273E-04
4THz	1.3832E-04	2.1697E-04	1.3831E-04	2.1682E-04	1.3832E-04	2.1682E-04	1.3832E-04	2.1697E-04
5THz	1.3832E-04	2.7121E-04	1.3831E-04	2.7103E-04	1.3832E-04	2.7103E-04	1.3832E-04	2.7121E-04
6THz	1.3832E-04	3.2545E-04	1.3831E-04	3.2524E-04	1.3832E-04	3.2524E-04	1.3832E-04	3.2545E-04
7THz	1.3832E-04	3.7970E-04	1.3831E-04	3.7944E-04	1.3832E-04	3.7944E-04	1.3832E-04	3.7969E-04
8THz	1.3832E-04	4.3393E-04	1.3831E-04	4.3365E-04	1.3833E-04	4.3365E-04	1.3832E-04	4.3394E-04
9THz	1.3832E-04	4.8818E-04	1.3831E-04	4.8785E-04	1.3833E-04	4.8786E-04	1.3832E-04	4.8818E-04
10THz	1.3832E-04	5.4242E-04	1.3831E-04	5.4206E-04	1.3833E-04	5.4206E-04	1.3832E-04	5.4242E-04

Result analysis

AC simulation과 analytic solution 과는 거의 일치하는 것을 확인할 수 있었지만, 기존의 small signal result와 analytic solution은 imaginary part가 0.1%의 오차가 존재하여 AC simulation과 small signal analysis 또한 imaginary part가 0.1%의 오차를 가지는 것을 확인할 수 있었다.