## Homework 1 Report - PM2.5 Prediction

學號:b04505021 系級:工海三 姓名:黃廉弼

1. (1%) 請分別使用每筆 data9 小時內所有 feature 的一次項(含 bias 項)以及每筆 data9 小時內 PM2.5 的一次項(含 bias 項)進行 training,比較並討論這兩種模型的 root meansquare error(根據 kaggle 上的 public/private score)。

在固定 learning rate 為 0.5 Iteration number 為 100000 的情況下

## 用全部 feature:

| output.csv              | 7.31451 | 7.61433 |
|-------------------------|---------|---------|
| 4 days ago by zander363 |         |         |
| do some data selection  |         |         |
| 用 PM2.5:                |         |         |
| output_comp1.csv        | 8.47726 | 8.62201 |
|                         |         |         |
| a day ago by zander363  |         |         |

很明顯可以看出 僅用 PM2.5 下去 train 出來的結果 不論是 public score 還是 private score 都硬生生比用所有 feature 的表現差了一截。

這樣的結果可說是合情合理,畢竟 PM2.5 的數值可能受很多不同 feature 影響,因此直接排除其他 feature 勢必會降低預測的準確性。

但話又說回來,在捨棄了 17 項的 feature 後,在 RMSE 上卻只掉 1 左右,其實也算是表現非常不俗了。可見 PM2.5 本身對後續 PM2.5 值的影響是十分可觀的。

2. (2%) 請分別使用至少四種不同數值的 learning rate 進行 training (其他參數需一致),作圖並且討論其收斂過程。

## 執行結果如下圖,討論請見下頁:





左圖為取 learning rate 在 1,0.8,0.6,0.4 等四種不同 learning rate 在 100 個 iteration 中所得到的 iteration-RMSE 折線圖。

從圖中可以看出,最一開始 4 個不同線各自散佈在不同的點,接下來在 5 個 iteration 內 eta=1 的線便掉到最低,看似趨於收斂的位置。

而為了方便觀察,我從第 3 個 iteration 開始作圖得到右圖,可看出在經過一翻抖動後 eta=0.4 的紅線的 error 竟小於 eta=0.8 與 eta=0.6,但好景不常,然而在差不多經過 80 次 iteration 時,出現了 0.4 與 0.6 的黃金交叉,這點就展現出了 learning 較大的優勢,但 0.8 那條可能是一開始噴得太可怕了,因此還要好一段時間才能超英趕美。

因此可以得出兩個結論:

- Eta 較小 一開始暴增的範圍也比較小
- Eta 較大 Loss decay 的速度較快

3. (1%) 請分別使用至少四種不同數值的 regulization parameter λ 進行 training(其他參數需一致),討論其 root mean-square error(根據 kaggle 上的 public/private score)。

由於取點較多,故不逐一附圖,僅表列結果並無條件捨去至小數點後四位

| lambda  | 0      | 0.5    | 1      | 1.5    | 3      | 5      | 20     | 50     | 100    |
|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Private | 7.3145 | 7.3143 | 7.3142 | 7.3142 | 7.3140 | 7.3139 | 7.3135 | 7.3144 | 7.3159 |
| Public  | 7.6143 | 7.6140 | 7.6135 | 7.6130 | 7.6114 | 7.6095 | 7.5978 | 7.5842 | 7.5739 |



由圖可觀察出隨 lambda 增加,RMSE 會逐漸下降,但下降幅度也漸緩。

而 private score 在 lambda 大於 20 後會暴增,而 public socre 卻不會。看起來是 public 的最低點還要再往後才會碰到。

此外,雖說 regulization 會幫助減少 Error,但很明顯其減少的幅度相當有限,因此此方法僅能當作優化的一部份,最其根本還是要設定一個有效的 model 才能使 Error 有效降低。

4. (1%) 請這次作業你的 best\_hw1.sh 是如何實作的?(e.g. 有無對 Data 做任何 Preprocessing? Features 的選用有無任何考量?訓練相關參數的選用有無任何依據?)

這次實作主要是用課堂上教到的 linear regression

此外,原本為了判斷各 feature 的 order,在圖像化顯示出各項 feature 與 PM2.5 關係時,意外發現似乎有一些點是不太正常的。因此借了老師上課提到的 3-folder cross 的觀念,來去除包含不正常數據的資料,雖然會因此損失掉能 training 的 data 量,但在用 training data 測試 以及 kaggle 評估結果都有亮眼的表現,大大的降低了 error。此外,原本從散布圖看來 O3 的分布集中在兩條線上,原本判斷該用二次項,但實際 run 起來似乎沒有什麼幫助,因此猜想或許是 O3 實際上是更高次方項。