Chapter 4

Sho Shirasaka, December 9, 2022

Exercise 4.2.

By taking derivatives of both sides of $f^{-1} \circ f(x) = x$, we obtain

$$D_{f(x)}(f^{-1}) \cdot D_x f = \mathbf{I}. \tag{0.1}$$

Exercise 4.5.

Consider a characteristic polynomial

$$f(x) = x^2 - \text{tr}(A)x + \text{det}(A).$$
 (0.2)

Its descriminant is $\operatorname{tr}(A)^2 - 4\operatorname{det}(A) > 2^2 - 4 = 0$. Moreover, f(0) = 1 > 0 and $f(1) = 2 - \operatorname{tr}(A) < 0$. Hence the two eigenvalues λ_1, λ_2 of A are real and positive and satisfy $\lambda_1 < 1 < \lambda_2$.

The matrix A can be diagonalized as $A = P \operatorname{diag}(\lambda_1, \lambda_2) P^{-1}$ since the eigenvalues are distinct. Let us define $y = P^{-1}x$. This conjugates $x \mapsto Ax$ and $y \mapsto \operatorname{diag}(\lambda_1, \lambda_2)y$. An orbit in the y-coordinate can be expressed as $(\lambda_1^n y_1(0), \lambda_2^n y_2(0))_{n \in \mathbb{Z}}, (y_1(0), y_2(0)) \in \mathbb{R}^2$. The orbit belongs to $y_1 y_2 = y_1(0)y_2(0) = \operatorname{const}$, since $\lambda_1 \lambda_2 = \det(A) = 1$. This is a hyperbola if $y_1(0)y_2(0) \neq 0$ and a line otherwise. An image of a linear transformation of a hyperbola (resp. a line) by a regular matrix x = Py is a hyperbola (resp. a line). Thus each orbit of the linear map $x \mapsto Ax$ belongs to a hyperbola (or a line in a degenerate situation).

Exercise 4.10. (WIP)

This answer greatly relies on [1].

Let f_1, f_2 be C^n and

$$Q_k(\omega) = \left\{ \pi = (\pi_1, \dots, \pi_k) \mid \emptyset \neq \pi_i \subset \omega, \ \bigcup_{i=1}^k \pi_i = \omega, \ \pi_i \cap \pi_j = \emptyset \text{ and } \min \pi_i < \min \pi_j \text{ for all } i < j \right\}, \quad (0.3)$$

$$Q(\omega) = \bigcup_{k=1}^{|\omega|} Q_k(\omega), \quad Q(\emptyset) = \{\emptyset\}, \quad Q(n) = Q(\{1, \dots, n\}).$$

$$(0.4)$$

Then the Faá di Bruno's formula is given as [2, Sec. 2.4]¹

$$D^{n}(f_{1} \circ f_{2})(x)h_{\omega} = \sum_{\substack{\pi \in \mathcal{Q}(n) \\ (k := |\pi|)}} D^{k} f_{1}(f_{2}(x)) \left(D^{|\pi_{1}|} f_{2}(x)h_{\pi_{1}}, \dots, D^{|\pi_{k}|} f_{2}(x)h_{\pi_{k}} \right), \tag{0.5}$$

where for any $\pi = (\pi_1, \dots, \pi_k)$ let $|\pi| = k$ denote its length and for any finite subset $\omega = \{\omega_1, \dots, \omega_n\}$ of \mathbb{N} ,

$$h_{\omega} = (h_{\sigma(\omega_1)}, \cdots, h_{\sigma(\omega_n)}) \tag{0.6}$$

where σ is a permutation and $\sigma(\omega_1) < \cdots < \sigma(\omega_n)$.

Let $\tilde{g}(x) := (x, g(x))$. We take the *n*-th derivatives of the both sides of

$$g \circ f^{s}(\eta, g(\eta)) = f^{u}(\eta, g(\eta)) \Leftrightarrow g \circ f^{s} \circ \tilde{g}(\eta) = f^{u} \circ \tilde{g}(\eta)$$

$$(0.7)$$

¹Note that how the sum is taken in the last expression in the page. 97 is somewhat vague.

and apply the rule (0.5).

$$(l.h.s): D^{n}(g \circ f^{s} \circ \tilde{g})(0)(h_{1}, \dots, h_{n})$$

$$= \sum_{\substack{\pi \in \mathcal{Q}(n) \\ (k:=|\pi|)}} D^{k}(g \circ f^{s})(0) \left(D^{|\pi_{1}|} \tilde{g}(0) h_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) h_{\pi_{k}} \right)$$

$$= \sum_{\substack{\pi \in \mathcal{Q}(n) \\ (k:=|\pi|)}} \sum_{\substack{\tau \in \mathcal{Q}(k) \\ (k:=|\pi|)}} D^{l}g(0) \left(D^{|\tau_{1}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) h_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) h_{\pi_{k}} \right)_{\tau_{1}}, \dots, D^{|\tau_{l}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) h_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) h_{\pi_{k}} \right)_{\tau_{1}}, \dots, D^{|\tau_{l}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) h_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) h_{\pi_{k}} \right)_{\tau_{1}} \right)$$

$$(0.8)$$

(r.h.s): $D^n(f^{\mathbf{u}} \circ \tilde{g})(0)(h_1, \cdots, h_n)$

$$= \sum_{\substack{\pi \in \mathcal{Q}(n) \\ (k:=|\pi|)}} D^k f^{\mathrm{u}}(0) \left(D^{|\pi_1|} \tilde{g}(0) h_{\pi_1}, \dots, D^{|\pi_k|} \tilde{g}(0) h_{\pi_k} \right). \tag{0.9}$$

Here, we defined

$$\left(D^{|\pi_1|}\tilde{g}(0)h_{\pi_1},\dots,D^{|\pi_k|}\tilde{g}(0)h_{\pi_k}\right)_{\omega} = \left(D^{|\pi_{\sigma(\omega_1)}|}\tilde{g}(0)h_{\pi_{\sigma(\omega_1)}},\dots,D^{|\pi_{\sigma(\omega_n)}|}\tilde{g}(0)h_{\pi_{\sigma(\omega_n)}}\right),$$
(0.10)

where $\sigma(\omega_1) < \cdots < \sigma(\omega_n)$. Thus we obtain

$$\sum_{\substack{\pi \in \mathcal{Q}(n) \\ (k:=|\pi|)}} \sum_{\substack{\tau \in \mathcal{Q}(k) \\ (k:=|\pi|)}} D^{l}g(0) \left(D^{|\tau_{1}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) h_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) h_{\pi_{k}} \right)_{\tau_{1}}, \dots, \right.$$

$$D^{|\tau_{l}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) h_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) h_{\pi_{k}} \right)_{\tau_{l}} \right) = \sum_{\substack{\pi \in \mathcal{Q}(n) \\ (k:=|\pi|)}} D^{k} f^{u}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) h_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) h_{\pi_{k}} \right). \tag{0.11}$$

We can draw a n-th order equation from (0.11) as follows:

References

- [1] Wolf-Jürgen Beyn and Winfried Kleß. Numerical taylor expansions of invariant manifolds in large dynamical systems. *Numerische Mathematik*, 80(1):1–38, 1998.
- [2] Ralph Abraham, Jerrold E Marsden, and Tudor Ratiu. *Manifolds, tensor analysis, and applications*, volume 75. Springer Science & Business Media, 2012.