

Chapter 1. Convolutional Layers - Part B

Neural Networks

2022/2023

Máster Universitario en Inteligencia Artificial, Reconocimiento de Formas e Imagen Digital

Departamento de Sistemas Informáticos y Computación

Index

- 1 Introduction ▷ 3
- 2 Highway Networks ▷ 6
- 3 Residual Nets ▷ 11
- 4 Wide ResNets ▷ 21
- 5 DenseNets ▷ 29
- 6 Bilinear ▷ 34
- 7 De-Convolution ▷ 39
- 8 DCGAN ⊳ 44

Index

- 1 Introduction ▷ 3
 - 2 Highway Networks ▷ 6
 - 3 Residual Nets ▷ 11
 - 4 Wide ResNets ▷ 21
 - 5 DenseNets ▷ 29
 - 6 Bilinear ▷ 34
 - 7 De-Convolution ▷ 39
 - 8 DCGAN ⊳ 44

Introduction

• Train Deep Networks is hard:

Introduction

- Increasing network depth does not work by simply stacking layers together
- Still vanishing gradient problem
- Potential solutions: Optimizers, Initializers (Layer-sequential unit-variance, LSUV), Activation Functions (PReLU, ELU, SELU)
- Potential solutions: GoogleNet with auxiliary loss in a middle layer as extra supervision
- Better Solutions: identity shortcut connections, Residual Nets

February 27, 2023 CV - 2022/2023 Page 1.5

Index

- 1 Introduction ▷ 3
- 2 Highway Networks ▷ 6
 - 3 Residual Nets ▷ 11
 - 4 Wide ResNets ▷ 21
 - 5 DenseNets ▷ 29
 - 6 Bilinear ▷ 34
 - 7 De-Convolution ▷ 39
 - 8 DCGAN ⊳ 44

- Inspired by the LSTM recurrent neural networks
- Special gate that can allow computation paths without attenuation
- This paths are known as information highways
- In general an output of a layer can be expressed as:

$$\mathbf{y} = H(\mathbf{x}, W_H)$$

ullet Additionally two non-linear transforms are define, $T(\mathbf{x},W_T)$ and $C(\mathbf{x},W_C)$

$$\mathbf{y} = T(\mathbf{x}, W_T) \cdot H(\mathbf{x}, W_H) + \mathbf{x} \cdot C(\mathbf{x}, W_C)$$

• In this expression:

$$\mathbf{y} = T(\mathbf{x}, W_T) \cdot H(\mathbf{x}, W_H) + \mathbf{x} \cdot C(\mathbf{x}, W_C)$$

- ullet T is the $\emph{transform}$ gate and C the \emph{carry} gate
- For simplicity C = 1 T

$$\mathbf{y} = T(\mathbf{x}, W_T) \cdot H(\mathbf{x}, W_H) + \mathbf{x} \cdot (1 - T(\mathbf{x}, W_T))$$

• we could define T as:

$$T(\mathbf{x}) = \sigma(W_T^t \mathbf{x} + \mathbf{b}_t)$$

Network	No. of Layers	No. of Parameters	Accuracy (in %)
Fitnet Results (reported by	Romero et. al.[25])		
Teacher	5	\sim 9M	90.18
Fitnet A	11	\sim 250K	89.01
Fitnet B	19	\sim 2.5M	91.61
Highway networks			
Highway A (Fitnet A)	11	~236K	89.18
Highway B (Fitnet B)	19	\sim 2.3M	92.46 (92.28±0.16)
Highway C	32	∼1.25M	91.20

Network	CIFAR-10 Accuracy (in %)	CIFAR-100 Accuracy (in %)
Maxout [20]	90.62	61.42
dasNet [36]	90.78	66.22
NiN [35]	91.19	64.32
DSN [24]	92.03	65.43
All-CNN [37]	92.75	66.29
Highway Network	92.40 (92.31 \pm 0.12)	67.76 (67.61 \pm 0.15)

Index

- 1 Introduction ▷ 3
- 2 Highway Networks ▷ 6
- 3 Residual Nets ▷ 11
 - 4 Wide ResNets ▷ 21
 - 5 DenseNets ▷ 29
 - 6 Bilinear ▷ 34
 - 7 De-Convolution ▷ 39
 - 8 DCGAN ⊳ 44

• Key idea: fit residual mappings instead of mappings

like a highway but parameter-free, no gate.

• ResNet with different depth

layer name	output size	e 18-layer 34-layer 50-layer 101-layer			101-layer	152-layer	
conv1	112×112			7×7, 64, stride 2	2		
				3×3 max pool, stric	le 2		
conv2_x	56×56	$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	
conv3_x	28×28	$\left[\begin{array}{c}3\times3,128\\3\times3,128\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,128\\3\times3,128\end{array}\right]\times4$	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 4 $	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 4 $	$ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8 $	
conv4_x	14×14	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$\left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 6$	$ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 23 $	$ \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36 $	
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	
	1×1	average pool, 1000-d fc, softmax					
FLO	OPs	1.8×10^9	3.6×10^9	3.8×10^9	7.6×10^9	11.3×10^9	

February 27, 2023 CV - 2022/2023 Page 1.13

• ResNet 34-layers

- Dotted lines usually: 1x1 convolution, stride 2
- Convolution + BN + Activation

• Results on ImageNet

model	top-1 err.	top-5 err.
VGG-16 [41]	28.07	9.33
GoogLeNet [44]	-	9.15
PReLU-net [13]	24.27	7.38
plain-34	28.54	10.02
ResNet-34 A	25.03	7.76
ResNet-34 B	24.52	7.46
ResNet-34 C	24.19	7.40
ResNet-50	22.85	6.71
ResNet-101	21.75	6.05
ResNet-152	21.43	5.71

February 27, 2023 CV - 2022/2023 Page 1.15

Residual Nets - Ensemble of shallow nets

• ResNets as an esemble:

• All paths with one block, two blocks and three blocks are considered

Residual Nets - Pre-activation

• Identity Mapping, Pre-activation resnets:

case	Fig.	ResNet-110	ResNet-164
original Residual Unit [1]	Fig. 4(a)	6.61	5.93
BN after addition	Fig. 4(b)	8.17	6.50
ReLU before addition	Fig. 4(c)	7.84	6.14
ReLU-only pre-activation	Fig. 4(d)	6.71	5.91
full pre-activation	Fig. 4(e)	6.37	5.46

February 27, 2023 CV - 2022/2023 Page 1.17

Residual Nets - Stochastic Depth

• A drop-out over the resnet blocks:

Residual Nets - Stochastic Depth

• Results:

	CIFAR10+	CIFAR100+	SVHN	ImageNet
Maxout [21]	9.38	-	2.47	-
DropConnect [20]	9.32	-	1.94	-
Net in Net [24]	8.81	-	2.35	-
Deeply Supervised [13]	7.97	-	1.92	33.70
Frac. Pool [25]	-	27.62	-	-
All-CNN [6]	7.25	-	-	41.20
Learning Activation [26]	7.51	30.83	-	-
R-CNN [27]	7.09	-	1.77	-
Scalable BO [28]	6.37	27.40	1.77	-
Highway Network [29]	7.60	32.24	-	-
Gen. Pool [30]	6.05	-	1.69	28.02
ResNet with constant depth	6.41	27.76	1.80	21.78
ResNet with stochastic depth	5.25	24.98	1.75	21.98

Residual Nets - Stochastic Depth

• Computing cost improvement:

	CIFAR10+	CIFAR100+	SVHN
Constant Depth	20h 42m	20h 51m	33h 43m
Stochastic Depth	15h 7m	15h 20m	$25h\ 33m$

February 27, 2023 CV - 2022/2023 Page 1.20

Index

- 1 Introduction ▷ 3
- 2 Highway Networks ▷ 6
- 3 Residual Nets ▷ 11
- 4 Wide ResNets ▷ 21
 - 5 DenseNets ▷ 29
 - 6 Bilinear ▷ 34
 - 7 De-Convolution ▷ 39
 - 8 DCGAN ⊳ 44

- Some ResNet layers does not provide any beneficial representation learning, they are bypassed
- Provide more expresivity to ResNets and computation efficiency
- Wide the convolutions: more filters, more channels (depth)
- ullet Use a scaling factor k to control the wide of the convolutions, where k=1 is the original ResNet params
- Also introduce a dropout layer

• Different configurations:


```
def conv_block_wideresnet(input, filters=16, k=1, dropout=0.0):
    x = Conv2D(filters * k, (3, 3), padding='same')(input)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    if dropout > 0.0:
        x = Dropout(dropout)(x)
    x = Conv2D(filters * k, (3, 3), padding='same')(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    m = add([input, x])
    return m
```



```
N = (depth - 4) // 6
k=10
dropout=0.0
x =conv_block(img_input); //initial conv+BN+ReLu
for i in range(N):
    x =conv_block_wideresnet(x, 16 , k , dropout)
x = MaxPooling2D((2, 2))(x)
for i in range(N):
    x =conv_block_wideresnet(x, 32 , k , dropout)
x = MaxPooling2D((2, 2))(x)
for i in range(N):
    x =conv_block_wideresnet(x, 64 , k , dropout)
x = MaxPooling2D((2, 2))(x)
x = GlobalAveragePooling2D()(x)
x = Dense(classes, activation='softmax')(x)
```


• Results, note the depth factor:

depth	k	# params	CIFAR-10	CIFAR-100
40	1	0.6M	6.85	30.89
40	2	2.2M	5.33	26.04
40	4	8.9M	4.97	22.89
40	8	35.7M	4.66	-
28	10	36.5M	4.17	20.50
28	12	52.5M	4.33	20.43
22	8	17.2M	4.38	21.22
22	10	26.8M	4.44	20.75
16	8	11.0M	4.81	22.07
16	10	17.1M	4.56	21.59

• Results:

	depth-k	# params	CIFAR-10	CIFAR-100
NIN [20]			8.81	35.67
DSN [19]			8.22	34.57
FitNet [24]			8.39	35.04
Highway [28]			7.72	32.39
ELU [5]			6.55	24.28
original DagNat[11]	110	1.7M	6.43	25.16
original-ResNet[11]	1202	10.2M	7.93	27.82
stop donth[1/1]	110	1.7M	5.23	24.58
stoc-depth[14]	1202	10.2M	4.91	-
	110	1.7M	6.37	-
pre-act-ResNet[13]	164	1.7M	5.46	24.33
	1001	10.2M	4.92(4.64)	22.71
	40-4	8.9M	4.53	21.18
WRN (ours)	16-8	11.0M	4.27	20.43
	28-10	36.5M	4.00	19.25

• Results with dropout:

depth	k	dropout	CIFAR-10	CIFAR-100	SVHN
16	4		5.02	24.03	1.85
16	4	✓	5.24	23.91	1.64
28	10		4.00	19.25	-
28	10	✓	3.89	18.85	-
52	1		6.43	29.89	2.08
52	1	✓	6.28	29.78	1.70

February 27, 2023 CV - 2022/2023 Page 1.28

Index

- 1 Introduction ▷ 3
- 2 Highway Networks ▷ 6
- 3 Residual Nets ▷ 11
- 4 Wide ResNets ▷ 21
- 5 DenseNets ▷ 29
 - 6 Bilinear ▷ 34
 - 7 De-Convolution ▷ 39
 - 8 DCGAN ⊳ 44

- Connections from all preceding layers of the same block
- All inputs are concatenated instead of added
- The basic operator to each input is: BN-ReLU-Conv3x3
- Transition layers between blocks to fit sizes: Conv1x1-MaxPool2x2
- Bottleneck version: BN-ReLU-Conv1x1 BN-ReLU-Conv3x3 (DenseNet-B)
- Compression: Transition Layers reduce the number of feature-maps (DenseNet-C)

• Implementation: Densenet in Keras

Results

Method	Depth	Params	C10	C10+	C100	C100+	SVHN
Network in Network [22]	-	-	10.41	8.81	35.68	-	2.35
All-CNN [32]	-	-	9.08	7.25	-	33.71	-
Deeply Supervised Net [20]	-	-	9.69	7.97	-	34.57	1.92
Highway Network [34]	-	-	-	7.72	-	32.39	-
FractalNet [17]	21	38.6M	10.18	5.22	35.34	23.30	2.01
with Dropout/Drop-path	21	38.6M	7.33	4.60	28.20	23.73	1.87
ResNet [11]	110	1.7M	-	6.61	-	-	-
ResNet (reported by [13])	110	1.7M	13.63	6.41	44.74	27.22	2.01
ResNet with Stochastic Depth [13]	110	1.7M	11.66	5.23	37.80	24.58	1.75
	1202	10.2M	-	4.91	-	-	-
Wide ResNet [42]	16	11.0M	-	4.81	-	22.07	-
	28	36.5M	-	4.17	-	20.50	-
with Dropout	16	2.7M	-	-	-	-	1.64
ResNet (pre-activation) [12]	164	1.7M	11.26*	5.46	35.58*	24.33	-
	1001	10.2M	10.56*	4.62	33.47*	22.71	-
DenseNet $(k = 12)$	40	1.0M	7.00	5.24	27.55	24.42	1.79
DenseNet $(k = 12)$	100	7.0M	5.77	4.10	23.79	20.20	1.67
DenseNet $(k = 24)$	100	27.2M	5.83	3.74	23.42	19.25	1.59
DenseNet-BC $(k=12)$	100	0.8M	5.92	4.51	24.15	22.27	1.76
DenseNet-BC $(k=24)$	250	15.3M	5.19	3.62	19.64	17.60	1.74
DenseNet-BC $(k = 40)$	190	25.6M	-	3.46	-	17.18	-

Results

Model	top-1	top-5
DenseNet-121	25.02 / 23.61	7.71 / 6.66
DenseNet-169	23.80 / 22.08	6.85 / 5.92
DenseNet-201	22.58 / 21.46	6.34 / 5.54
DenseNet-264	22.15 / 20.80	6.12 / 5.29

Index

- 1 Introduction ▷ 3
- 2 Highway Networks ▷ 6
- 3 Residual Nets ▷ 11
- 4 Wide ResNets ▷ 21
- 5 DenseNets ▷ 29
- 6 *Bilinear* ▷ 34
 - 7 De-Convolution ▷ 39
 - 8 DCGAN ⊳ 44

Bi-Linear Convolutional Networks

• Convolutional Networks show some problems on fine-grained classification

February 27, 2023 CV - 2022/2023 Page 1.35

Bi-Linear Convolutional Networks

- Visual differences between the categories are small
- Larger differences caused by factors such as:
 - pose
 - viewpoint
 - location of the object in the image
- Some solutions:
 - Hand-localized parts of images
 - Combination of CNN features + VLAD/Fisher Vectos
 - Outter products of CNN-features extractor \rightarrow Bi-Linear CNN

Bi-Linear Convolutional Networks

• Bi-Linear model

Bi-Linear Convolutional Networks

End-to-end training through backpropagation


```
def outer_product(x):
    # Einstein Notation [batch,rows,cols,depth] x [batch,rows,cols,depth] -> [batch,depth,depth]
    phi_I = tf.einsum('ijkm,ijkn->imn',x[0],x[1])

# Reshape from [batch_size,depth,depth] to [batch_size, depth*depth]
    phi_I = tf.reshape(phi_I,[-1,128*128])

# Divide by feature map size [sizexsize]
    phi_I = tf.divide(phi_I,31*31)

# Take signed square root of phi_I
    y_ssqrt = tf.multiply(tf.sign(phi_I),tf.sqrt(tf.abs(phi_I)+1e-12))

# Apply 12 normalization
    z_12 = tf.nn.12_normalize(y_ssqrt, dim=1)
    return z_12
```


Index

- 1 Introduction ▷ 3
- 2 Highway Networks ▷ 6
- 3 Residual Nets ▷ 11
- 4 Wide ResNets ▷ 21
- 5 DenseNets ▷ 29
- 6 Bilinear ▷ 34
- 7 De-Convolution ▷ 39
 - 8 DCGAN ⊳ 44

• Goal of a De-Convolution network:

- Deconvolution layer is a very unfortunate name and should rather be called a transposed convolutional layer
- Deconvolution works as the transpose mechanism of the Convolution
- Convolution Forward is the Deconvolution Backward
- Convolution Backward is the Deconvolution Forward
- Some animations: https://github.com/vdumoulin/conv_arithmetic

- In Keras:
 - Conv2DTranspose
 - UpSampling2D
- Options for incresing the size of the map:
 - Deconv with fractional stride
 - UpSampling
- Tying options:
 - Conv-DeConv (tying the weights)
 - DePooling (tying the pool indexes)
- I suggest to check this implementation:

https://github.com/nanopony/keras-convautoencoder

Page 1.43

Index

- 1 Introduction ▷ 3
- 2 Highway Networks ▷ 6
- 3 Residual Nets ▷ 11
- 4 Wide ResNets ▷ 21
- 5 DenseNets ▷ 29
- 6 Bilinear ▷ 34
- 7 De-Convolution ▷ 39
- 0 8 *DCGAN* ⊳ 44

- DeConvolution for the Generator
- Convolution for the Discriminator

• Can you determine the operations involved in the Generator?

• In TensorFlow deconv2D:

```
tf.nn.conv2d_transpose(
    value,
    filter,
    output_shape,
    strides,
    padding='SAME',
    data_format='NHWC',
    name=None
)
```


• In TensorFlow (https://github.com/carpedm20/DCGAN-tensorflow)

```
self.z_, self.h0_w, self.h0_b = linear(
z, self.gf_dim*8*s_h16*s_w16, 'g_h0_lin', with_w=True)
self.h0 = tf.reshape(
self.z_, [-1, s_h16, s_w16, self.gf_dim * 8])
h0 = tf.nn.relu(self.g_bn0(self.h0))
self.h1, self.h1_w, self.h1_b = deconv2d(
h0, [self.batch_size, s_h8, s_w8, self.gf_dim*4], name='g_h1', with_w=True)
h1 = tf.nn.relu(self.g_bn1(self.h1))
h2, self.h2_w, self.h2_b = deconv2d(
h1, [self.batch_size, s_h4, s_w4, self.gf_dim*2], name='g_h2', with_w=True)
h2 = tf.nn.relu(self.g_bn2(h2))
h3, self.h3_w, self.h3_b = deconv2d(
h2, [self.batch_size, s_h2, s_w2, self.gf_dim*1], name='g_h3', with_w=True)
h3 = tf.nn.relu(self.g_bn3(h3))
h4, self.h4_w, self.h4_b = deconv2d(
h3, [self.batch_size, s_h, s_w, self.c_dim], name='g_h4', with_w=True)
```


Some Keras implementation use Conv2D and UpSampling:

```
def generator_model():
   model = Sequential()
   model.add(Dense(input_dim=100, output_dim=1024))
   model.add(Activation('tanh'))
   model.add(Dense(128*7*7))
   model.add(BatchNormalization())
   model.add(Activation('tanh'))
   model.add(Reshape((7, 7, 128), input_shape=(128*7*7,)))
    model.add(UpSampling2D(size=(2, 2)))
    model.add(Conv2D(64, (5, 5), padding='same'))
    model.add(Activation('tanh'))
   model.add(UpSampling2D(size=(2, 2)))
    model.add(Conv2D(1, (5, 5), padding='same'))
   model.add(Activation('tanh'))
    return model
```


