Question 4

4. In Scenario 1, a swimmer holds a block of mass m at rest in a tank of freshwater with density ρ_1 , as shown in Figure 1. The block is released from rest and accelerates upward with an initial acceleration a_1 . All frictional forces are negligible.

Figure 1

In Scenario 2, the swimmer holds the same block at rest in a tank of salt water with density ρ_2 , where $\rho_2 > \rho_1$. The swimmer again releases the block from rest, and the block accelerates upward with initial acceleration a_2 . All frictional forces are negligible.

- **A. Indicate** whether a_1 is greater than, less than, or equal to a_2 by writing one of the following in your answer booklet.
 - $a_1 > a_2$
 - $a_1 < a_2$
 - $a_1 = a_2$

Justify your answer in terms of ALL forces exerted on the block in each scenario. Use qualitative reasoning beyond referencing equations.

- **B.** Consider the general case where a block of mass m and volume V is completely submerged in a fluid of density ρ .
 - Starting with Newton's second law, **derive** an expression for the initial upward acceleration a of the block when the block is released from rest. Express your answer in terms of m, V, ρ , and physical constants, as appropriate. Begin your derivation by writing a fundamental physics principle or an equation from the reference information.
- **C. Indicate** whether the expression for the acceleration *a* you derived in part B is or is not consistent with the claim made in part A. Briefly **justify** your answer by referencing your derivation in part B.

STOP END OF EXAM