$$Test - 50pt - 60$$

Gli studenti aventi diritto a svolgere la **prova ridotta** del 30% secondo la L.170/2010 (indicazioni **Multichance** team) **NON** svolgono i quesiti contrassegnati con (***)

1 - 0 pt

Inserire il numero di matricola.

2 — 0 pt

Selezionare l'ultima cifra X del numero di matricola.

3 — 2 pt

Data la matrice $A=\begin{bmatrix} 2 & -2 & 0\\ (\varepsilon-2) & 2 & 0\\ 0 & -1 & 3 \end{bmatrix}$, dove $\varepsilon>0$ è un numero reale positivo, si calcoli la sua fattorizzazione LU senza pivoting. Indicato con $l_{32}=(L)_{32}$, si

si calcoli la sua fattorizzazione LU senza pivoting. Indicato con $l_{32}=(L)_{32}$, si determini il seguente limite: $\lim_{\varepsilon \to 0} l_{32}$.

 $+\infty$

4 — 3 pt (***)

Dato il sistema lineare A \mathbf{x} = \mathbf{b} , dove A = $\begin{bmatrix} (2\gamma) & 2 & -8 \\ \gamma & 1 & 8 \\ 2 & 0 & 1 \end{bmatrix}$ è una matrice

dipendente da un parametro $\gamma > 0$ e $\mathbf{b} = (1\ 2\ 8)^T$. Si risolva il sistema tramite il metodo della fattorizzazione LU con pivoting per righe. Si riportino, in funzione di γ , gli elementi $l_{21} = (L)_{21}$ e $u_{33} = (U)_{33}$ dei fattori L ed U della matrice permutata e la seconda componente y_2 del vettore ausiliario \mathbf{y} associato alla soluzione del sistema triangolare inferiore che compare durante l'applicazione del metodo.

$$l_{21} = \frac{1}{\gamma} \qquad u_{33} = 12 \qquad y_2 = 8 - \frac{1}{\gamma}$$

5 — 3 pt

Dato il sistema lineare
$$A \mathbf{x} = \mathbf{b}$$
, dove $A = \begin{bmatrix} 6 & -2 & -2 \\ -2 & 8 & -4 \\ -2 & -4 & 10 \end{bmatrix}$ e $\mathbf{b} = \begin{pmatrix} 1, & 1, & 1 \end{pmatrix}^T$,

si consideri il metodo iterativo $\mathbf{x}^{(k+1)} = B \mathbf{x}^{(k)} + \mathbf{g}$, per k = 0, 1, ..., dato $\mathbf{x}^{(0)}$. Sapendo che il metodo è fortemente consistente e la matrice di precondizionamento

è
$$P = \begin{bmatrix} 6 & 0 & 0 \\ -1 & 8 & 0 \\ -1 & -2 & 10 \end{bmatrix}$$
, si calcoli e si riporti $\mathbf{x}^{(2)}$, avendo posto $\mathbf{x}^{(0)} = \mathbf{b}$.

 $(0.6694, 0.6399, 0.5491)^T$

6 — 3 pt

Dati
$$A = \begin{bmatrix} 3 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 8 \end{bmatrix}$$
 e $\mathbf{b} = (5, 5, 8)^T$, si consideri il sistema lineare $A\mathbf{x} = \mathbf{b}$.

Quale delle seguenti affermazioni è vera?

- **A)** Il metodo di Richardson stazionario non precondizionato converge, per ogni scelta di $\mathbf{x}^{(0)}$, per ogni $\alpha \in (0, 1/2)$.
- **B)** Il metodo di Richardson stazionario precondizionato con precondizionatore P = diag(A) converge, per ogni scelta di $\mathbf{x}^{(0)}$, per ogni $\alpha \in (0, 1.2)$.
- **C**) il metodo di Jacobi applicato al sistema $A\mathbf{x} = \mathbf{b}$ non converge per ogni scelta di $\mathbf{x}^{(0)}$.
- **D)** k=10 iterazioni del metodo di Richardson stazionario precondizionato con $P=\operatorname{diag}(A)$ e parametro α_{opt} ottimale permettono di ridurre l'errore $\|\mathbf{e}^{(k)}\|_A/\|\mathbf{e}^{(0)}\|_A$ di un fattore al più pari a 2.

В

Si consideri il sistema lineare
$$A\mathbf{x} = \mathbf{b}$$
, con $A = \begin{bmatrix} 4 & 2 & 1 \\ 2 & 4 & 1 \\ 1 & 1 & 7 \end{bmatrix}$ e $\mathbf{b} = (2, 2, 2)^T$, e

il metodo del gradiente per l'approssimazione della soluzione $\mathbf{x} \in \mathbb{R}^3$. Si calcolino e si riportino: il valore del parametro dinamico ottimale α_0 associato all'iterata iniziale $\mathbf{x}^{(0)} = \mathbf{b}$ usato per determinare l'iterata $\mathbf{x}^{(1)}$ e l'iterata $\mathbf{x}^{(1)} \in \mathbb{R}^3$.

$$0.1269$$
, $\mathbf{x}^{(1)} = (0.4776, 0.4776, -0.0299)^T$

8 — 2 pt

Dato il sistema lineare $A \mathbf{x} = \mathbf{b}$, dove $A = \begin{bmatrix} 8 & -2 & -2 \\ -2 & 6 & -1 \\ -2 & -1 & 9 \end{bmatrix}$ e $\mathbf{b} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}^T$, si

consideri il metodo del gradiente coniugato per l'approssimazione di \mathbf{x} . Si utilizzi opportunamente la funzione Matlab[®] pcg e si riporti il valore di $\mathbf{x}^{(2)}$ avendo posto l'iterata iniziale $\mathbf{x}^{(0)} = \mathbf{b}$.

 $(0.2097, 0.3277, 0.2047)^T$

9 — 2 pt

Si consideri la matrice $A = \begin{bmatrix} 10 & -2 \\ -2 & \beta \end{bmatrix}$, dipendente dal parametro $\beta > 0$. Assumendo che $\mathbf{x} = \begin{pmatrix} 1 & 1 \end{pmatrix}^T$ sia un'approssimazione di uno dei suoi autovettori, si riporti l'autovalore corrispondente λ in termini di β .

 $3 + \beta/2$

10 — 3 pt

Si consideri la matrice $A=\begin{bmatrix} 4 & -2 \\ -1 & 1 \end{bmatrix}$ e il metodo delle potenze (dirette) per approssimare l'autovalore di modulo massimo. Assegnato il vettore iniziale $\mathbf{x}^{(0)}=(1,\ 0)^T$, si riportino i valori approssimati $\lambda^{(0)},\ \lambda^{(1)}$ e $\lambda^{(2)}$ dell'autovalore ottenuti rispettivamente all'iterata iniziale e dopo l'applicazione di un'iterazione del metodo.

4, 4.5294, 4.5587

11 — 2 pt (***)

Si consideri la matrice $A=\left[\begin{array}{ccc} 8 & 0 & 0 \\ 1 & 4 & 0 \\ 3 & 8 & 1 \end{array}\right]$. Per quali valori dello shift $s\in\mathbb{R}$

è possibile approssimare l'autovalore $\lambda_2(\vec{A})=4$ tramite il metodo delle potenze inverse con shift?

2.5 < s < 6

12 — 2 pt

Si consideri la funzione $f(x) = 1 - x e^x$ dotata di un unico zero α . Quale delle seguenti affermazioni inerenti la sua approssimazione numerica è <u>vera</u>?

- **A)** Il metodo di bisezione converge in una sola iterazione a partire dall'intervallo [-1, 1].
- B) Il metodo di bisezione non può essere applicato a partire dall'intervallo [-1,1] dato che f(x) non cambia segno su tale intervallo.
- C) Il metodo di Newton converge con ordine p=1, per $x^{(0)}$ "sufficientemente" vicino ad α , dato che lo zero è multiplo.
- **D)** Il metodo di Newton converge con ordine p=2, per $x^{(0)}$ "sufficientemente" vicino ad α , dato che lo zero è semplice.

D

13 — 2 pt

Siano assegnati i nodi equispaziati x_0, x_1, \ldots, x_4 nell'intervallo [-2, 2] e la funzione $f(x) = \left| 1 - e^{|\sin x|} \right|$. Si consideri il polinomio di Lagrange $\Pi_4 f(x)$ interpolante tali dati ai precedenti nodi e si riporti il valore massimo di $\Pi_4 f(x)$ nell'intervallo [-2, 2].

2.1154

14 — 3 pt

Si consideri l'interpolante composito lineare $\Pi_1^H f(x)$ della funzione $f(x) = x \, e^{\sin x}$ sull'intervallo [0,10]. Considerando M=10 sottointervalli equispaziati in tale intervallo, si costruisca $\Pi_1^H f(x)$ e si riportino il valore dell'errore di interpolazione $e_1^H(f) = \max_{x \in [0,10]} |f(x) - \Pi_1^H f(x)|$ e il punto $\bar{x} \in [0,10]$ dove tale errore massimo è realizzato.

$$e_1^H(f) = 1.6997, \quad \bar{x} = 7.5800$$

15 — 3 pt

Si consideri la formula del punto medio composita per l'approssimazione dell'integrale $\int_{-1}^{1} \left[e^x + \beta \, x \right] \, dx, \text{ dove } \beta \in \mathbb{R} \text{ è un parametro. Senza applicare esplicitamente la formula di quadratura, si stimi il numero <math>M$ di sottointervalli equispaziati di [-1,1] tali per cui l'errore di quadratura è inferiore alla tolleranza $tol = 10^{-2}$.

10

16 — 3 pt

Si consideri l'approssimazione dell'integrale $I(f)=\int_0^3 \left[5+x^7\right]\,dx$ attraverso la fomula di quadratura composita di Gauss–Legendre con 2 nodi; tali nodi di quadratura riferiti all'intervallo [-1,1] sono $\hat{x}_0=-\sqrt{\frac{1}{3}}$ e $\hat{x}_1=+\sqrt{\frac{1}{3}}$, con corrispondenti pesi di quadratura dati da $\hat{\alpha}_0=1$ e $\hat{\alpha}_1=1$. Si riporti l'approssimazione $I^c_{GL}(f)$ di I(f) ottenuta considerando M=3 sottointervalli di ampiezza H=1.

831.3542

Si consideri la funzione $f(x) = x^2 (7x - 3)$ e l'approssimazione di $f'(\overline{x})$ tramite le differenze finite centrate $\delta_c f(\overline{x})$ in un generico punto $\overline{x} \in \mathbb{R}$ con passo h > 0. Si riporti l'espressione dell'errore $E_c f(\overline{x}) = f'(\overline{x}) - \delta_c f(\overline{x})$ in funzione di h.

$$-7h^2$$

Si consideri il problema di Cauchy

$$\left\{ \begin{array}{ll} y'(t) = -3 y(t) & t \in (0, +\infty), \\ y(0) = 9. \end{array} \right.$$

Quale delle seguenti affermazioni inerenti la sua approssimazione numerica è vera?

- **A)** Un metodo numerico incondizionatamente assolutamente stabile è tale che $\lim_{n \to +\infty} u_n = 0$ per ogni passo h > 0, ma solo anche se $0 < u_{n+1} < u_n \le 9$ per ogni $n = 0, 1, \ldots$, essendo u_n l'approssimazione di $y(t_n)$.
- B) Il metodo di Eulero in avanti è assolutamente stabile per ogni h < 1 .
- C) I metodi di Runge–Kutta sono metodi a più stadi e quindi assolutamente stabili per ogni h>0.
- **D)** Il metodo di Heun risulta assolutamente stabile per $h = \frac{1}{3}$.

D

Si consideri il seguente problema di Cauchy:

$$\begin{cases} y'(t) = -(1+t)y(t) & t \in (0,+\infty), \\ y(0) = 3. \end{cases}$$

Utilizzando il metodo di Crank-Nicolson con passo h=0.1, si riporti il valore calcolato di u_1 , ovvero l'approssimazione di $y(t_1)$.

2.7014

20 — 3 pt

Si consideri il seguente problema ai limiti:

$$\begin{cases} -u''(x) + 2u(x) = 10x & x \in (0,1), \\ u(0) = 0, & u(1) = 1. \end{cases}$$

Si approssimi il problema utilizzando il metodo delle differenze finite centrate con passo di discretizzazione h=1/10 ottenendo la soluzione numerica $\{u_j\}_{j=0}^{N+1}$ nei corrispondenti nodi $\{x_j\}_{j=0}^{N+1}$ per (N+1)=10. Si risolva il problema e si riporti il valore della soluzione numerica u_5 , ovvero l'approssimazione di $u(x_5)$.

0.9129

Si consideri il seguente problema ai limiti:

$$\begin{cases} -u''(x) = f(x) & x \in (a,b), \\ u(a) = u(b) = 0. \end{cases}$$

Si supponga di approssimare tale problema utilizzando il metodo delle differenze finite centrate con passo di discretizzazione h>0 ottenendo la soluzione numerica $\{u_j\}_{j=0}^{N+1}$ nei corrispondenti nodi $\{x_j\}_{j=0}^{N+1}$. Assumendo che la soluzione esatta $u\in C^4([a,b])$ sia nota e che l'errore per $h=h_1=0.1$ sia $E_{h_1}=\max_{j=0,\dots,N+1}|u(x_j)-u_j|=4\cdot 10^{-2}$, si riporti il valore stimato dell'errore E_{h_2} corrispondente alla scelta $h=h_2=0.05$.

 10^{-2}

Si consideri il seguente problema di diffusione:

$$\begin{cases} \frac{\partial u}{\partial t}(x,t) - \frac{\partial^2 u}{\partial x^2}(x,t) = 0 & x \in (0,1), \ t > 0, \\ u(0,t) = u(1,t) = 0 & t > 0, \\ u(x,0) = 7\sin(\pi x) & x \in (0,1). \end{cases}$$

Si consideri l'approssimazione di tale problema tramite il metodo delle differenze finite con passo di discretizzazione spaziale h=0.5 e il metodo di Eulero all'indietro con passo di discretizzazione temporale $\Delta t=0.2$. Si calcoli $u_1^{N_t}$, ovvero l'approssimazione di u(0.5,1), essendo $N_t=1/\Delta t=5$.

0.0589