Chapter 0 - Introduction (Skipped)

Chapter 1 - Regular Languages

Theorem 1.39	Every NFA has an equivalent DFApg. 55				
Theorem 1.45 - 1.49	Regular languages closure propertiespg. 59				
Theorem 1.54	A language is regular iff some regular expression describes it pg. 66				
Example 1.73 - 1.77	Non-regular languages examplespg. 80-82				
$\bullet \ \{0^n 1^n \mid n \ge 0\}$	$ \begin{array}{ll} \bullet & \left\{1^{n^2} \mid n \ge 0\right\} \\ \bullet & \left\{0^i 1^j \mid i > j\right\} \end{array} $				
• $\{w \mid w \text{ has an eq}\}$	[ual number of 0s and 1s] $\{0^{i}1^{j} \mid i > i\}$				
• $\{ww \mid w \in \{0,1\}$	<pre>}*}</pre>				

NOTE More examples are given under EXERCISES and PROBLEMS, pg. 83-93

Chapter 2 - Context-Free Languages

NOTE More examples are given under EXERCISES and PROBLEMS, pg. 154 - 159

Chapter 3 - The Church-Turing Thesis

Definition 3.3 - 3.6 **Turing machine**, recognizable and decidable definitions pg. 168 Example 3.7 - 3.12 Turing machines examples (with diagrams)pg. 171-175 • $\{0^{2^n} \mid n \ge 0\}$ • $\{w#w \mid w \in \{0,1\}^*\}$ • $\{a^i b^j c^k \mid i \times j = k \text{ and } i, j, k \ge 1\}$ • $\{ \#x_1 \# x_2 \# \cdots \# x_l \mid \text{ each } x_i \in \{0, 1\}^* \text{ and } x_i \neq x_j \text{ for each } i \neq j \}$ • $\{w \mid w \text{ contains an equal number of 0s and 1s}\}$ (proof on pg. 191) • Multitape \equiv single-tape • Nondeterministic ≡ deterministic Figure 3.20 Description of an **enumerator**pg. 180 Theorem 3.21 A language is Turing-recognizable iff it's enumerated pg. 181 Hilbert's problem $\{p \mid p \text{ has an integral root}\}\$ is recognizable but not decidable .. pg. 184 Example 3.23 $\{\langle G \rangle \mid G \text{ is a connected undirected graph } \}$ is decidablepg. 185

EXERCISES Useful theorems, unproved unless otherwise notedpg. 188-190 Note: items with an A symbol instead of a • symbol have a proof on page 191 • 2-PDAs are more powerful than 1-PDAs • 3-PDAs are NOT more powerful than 2-PDAs A Variant: write-once Turing machine • Variant: Turing machine with doubly infinite tape • Variant: Turing machine with left reset • Variant: Turing machine with stay put instead of left • A language can be recognized by a deterministic queue automaton iff the language is Turing-recognizable A Decidable languages closure properties A Recognizable languages closure properties • NOTE Turing-recognizable languages are NOT closed under complement! Very useful. **STUDY GUIDE**'s theorems. *Note: page numbers refer to the study guide, not to the book.* Example Every finite language is decidablepg. 19 Exercise 1.9a Chapter 4 - Decidability Theorem 4.1 - 4.23 Common languages & decidabilitiespg. 194-210 • A_{DFA} is decidable • E_{CFG} is decidable • A_{NFA} is decidable • Every context-free language is decidable • A_{REX} is decidable • EQ_{CFG} is NOT decidable • A_{TM} is NOT decidable • EQ_{DFA} is decidable • $\overline{A_{\rm TM}}$ is NOT Turing-recognizable • A_{CFG} is decidable Figure 4.10 regular \subset context-free \subset decidable \subset Turing-recognizable ...pg. 201 Theorem The diagonalization methodpg. 202 Theorem 4.22 A language is decidable iff it's recognizable and co-recognizable pg. 209 **EXERCISES** All of the languages below are **decidable**pg. 211-214 Note: items with an A symbol instead of a • symbol have a proof on page 214. • ALLDFA • $\{\langle G \rangle \mid G \text{ is a CFG that generates } \varepsilon\}$ • $INFINITE_{DFA} = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) \text{ is an infinite language} \}$ • $INFINITE_{PDA} = \{ \langle M \rangle \mid M \text{ is a PDA and } L(M) \text{ is an infinite language} \}$ A $\{\langle M \rangle \mid M \text{ is a DFA that doesn't accept any string containing an odd numbers of 1s}\}$ • $\{\langle R, S \rangle \mid R \text{ and } S \text{ are regular expressions and } L(R) \subseteq L(S)\}$ A $\{\langle G \rangle \mid G \text{ is a CFG over } \{0,1\} \text{ and } 1^* \cap L(G) \neq \emptyset\}$ • $\{\langle G \rangle \mid G \text{ is a CFG over } \{0,1\} \text{ and } 1^* \subseteq L(G)\}$

• $\{\langle M \rangle \mid M \text{ is a I}\}$	DFA that accepts w^R whenever it accepts w				
A Say that an NF	A is <i>ambiguous</i> if it accepts some string along two different computation				
branches. AMB	$PIG_{NFA} = \{\langle N \rangle \mid N \text{ is an ambiguous NFA}\}\$ is decidable				
A $BAL_{DFA} = \{\langle M \rangle\}$	$ M $ is a DFA that accepts strings with an equal number of 0s and 1s}				
• $PAL_{DFA} = \{\langle M \rangle\}$	$\setminus M$ is a DFA that accepts palindromes				
• $\{\langle M \rangle \mid M \text{ is a I}\}$	OFA that accepts strings with more 1s than 0s}				
• $\{\langle G, x \rangle \mid G \text{ is a}\}$	CFG and x is a substring of some $y \in L(G)$				
• $\{\langle G, k \rangle \mid G \text{ is a}\}$	a CFG and L(G) contains exactly k strings where $k \ge 0$ or $k = \infty$				
Problem 4.5	$\overline{E_{\text{TM}}}$ is recognizable (proof on pg. 213)pg. 211				
Problem 4.18	C recognizable iff $\exists D$ decideable s.t. $\mathbf{C} = \{\mathbf{x} \mid \exists \mathbf{y} \ (\langle \mathbf{x}, \mathbf{y} \rangle \in \mathbf{D})\}$. pg. 212				
Problem 4.19	Decidable languages are NOT closed under homomorphismpg. 212				
STUDY GUIDE's the	eorems. Note: page numbers refer to the study guide, not to the book.				
Exercise 2.6	If G is a CFG in <i>Chomsky's normal form</i> , and $w \in L(G)$ has a length of				
	n > 0, then every derivation of w has exactly $2n - 1$ stepspg. 28				
Claim	L and \overline{L} are both Turing-recognizable iff L is decidablepg. 32				
Chapter 5 - Redu	ıcibility				
Theorem 5.1 - 5.14	Common languages & decidabilities				
• $HALT_{TM}$ is unc	decidable • A _{LBA} is decidable				
• $E_{\rm TM}$ is undecid	able • E_{LBA} is undecidable				
• <i>REGULAR</i> _{TM} i	s undecidable • <i>ALL</i> _{CFG} is undecidable				
• EQ_{TM} is undec	idable				
Definition 5.5	Computation historypg. 221				
Definition 5.6	Linear bounded automaton (LBA)pg. 221				
Lemma 5.8	There are exactly qng^n distinct configurations of an LBA with q states, g				
	symbols and tape of length n pg. 221				
NOTE Gray theore	ems are not in the syllabus				
Theorem 5.15	PCP is undecidablepg. 228				
Definition 5.17	Computable functionpg. 234				
Definition 5.20	Mapping reduction				
Theorem 5.22	If $A \leq_m B$ and B is decidable, then A is decidablepg. 236				
Corollary 5.23	If $A \leq_m B$ and A is undecidable, then B is undecidablepg. 236				
Example 5.24	Reduction from A_{TM} to $HALT_{\text{TM}}$ pg. 236				
Example 5.25	Reduction from A_{TM} to PCP pg. 237				
Example 5.28	If $A \leq_m B$ and B is recognizable, then A is recognizablepg. 237				
Corollary 5.29	If $A \leq_m B$ and A is unrecognizable, then B is unrecognizable pg. 238				
Theorem 5.30	$EQ_{\rm TM}$ is neither recognizable nor co-recognizable pg. 238				
Exercise 5.28	Rice's theorem (<i>proof on pg. 243</i>)pg. 241				

EXERCISES Useful theorems, unproved unless otherwise notedpg. 239-244

Note: items with an A symbol instead of a • symbol have a proof on page 242-244.

- EQ_{CFG} is undecidable
- EQ_{CFG} is co-Turing-recognizable
- A A_{TM} is NOT mapping reducible to E_{TM}
- A \leq_m is a transitive relation
- A If A is recognizable and $A \leq_m \overline{A}$, then A is decidable
- $\{\langle M \rangle \mid M \text{ is a TM that accepts } w^R \text{ whenever it accepts } w\}$ is undecidable
- The following three languages are undecidable:
- $\{\langle M, w \rangle \mid M \text{ is a two-tape TM that writes a nonblank symbol on its second tape when it is run on } w\}$
- $\{\langle M \rangle \mid M \text{ is a two-tape TM that writes a nonblank symbol on its second tape when it is run on some input}$
- $\{\langle M \rangle \mid M \text{ is a single-tape TM that writes a blank symbol over a nonblank symbol when it is run on some input}\}$
- $\{\langle M \rangle \mid M \text{ has a } useless \, state\}$ is undecidable
- $\{\langle M, w \rangle \mid M \text{ attempts to move its head left whilst on the left-most tape cell} \}$ is undecidable
- $\{\langle M, w \rangle \mid M \text{ attempts to move its head left at any point when run on } w\}$ is decidable
- BB (busy beaver function) is not a computable function
- PCP is decidable over the unary alphabet $\Sigma = \{1\}$
- PCP is undecidable over the binary alphabet $\Sigma = \{0, 1\}$
- SPCP (silly PCP) is decidable
- *AMBIG*_{CFG} is undecidable (hint: reduction from *PCP*)
- There exists an undecidable subset of {1}*
- A is Turing-recognizable iff $A \leq_m A_{TM}$
- A is decidable iff $A \leq_m 0^*1^*$
- Let $J = \{w \mid \text{ either } w = 0x \text{ for some } x \in A_{TM}, \text{ or } w = 1y \text{ for some } y \in \overline{A_{TM}}\}$. Neither J nor \overline{J} is Turing-recognizable
- There exists an undecidable language B where $B \leq_m \overline{B}$
- A_{2DFA} (two-headed finite automaton) is decidable
- E_{2DFA} is undecidable
- A_{2DIM-DFA} (two-dimensional finite automaton) is undecidable
- The following languages are undecidable (prove using Rice's theorem):
- A $INFINITE_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is an infinite language} \}$
- $\{\langle M \rangle \mid M \text{ is a TM and } 1011 \in L(M)\}$
- $ALL_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \Sigma^* \} \}$
- $OVERLAP_{CFG} = \{ \langle G, H \rangle \mid G \text{ and } H \text{ are CFGs where } L(G) \cap L(H) \neq \emptyset \}$
- $PREFIX FREE_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG where } L(G) \text{ is a prefix-free} \}$
- $NECESSARY_{CFG} = \{ \langle G, A \rangle \mid A \text{ is a necessary variable in } G \}$ is recognizable & undecidable
- $MIN_{CFG} = \{\langle G \rangle \mid G \text{ is a minimal CFG} \}$ is recognizable and undecidable

STUDY GUIDE's the	orems. Note: page numbers refer to the study guide, not to the book.				
Exercise 3.1	Proof of Rice's theorempg. 41				
Exercise 3.2	Each of the two conditions in Rice's theorem is mandatorypg. 41				
Exercise 3.5	In the proof of Theorem 5.9, $(q-2) \cdot n \cdot g^n + 1$ steps would suffice pg. 42				
Exercise 3.8	Describe a 2DFA that recognizes $\{a^n b^n c^n \mid n \ge 0\}$ pg. 45				
Exercise 3.15	Natural number's multiplication is a computable functionpg. 48				
Chapter 6 - Adva	nced Topics in Computability Theory (Skipped)				
Chapter 7 - Time	Complexity				
Definition 7.1	Time complexitypg. 276				
Theorem 7.8	Every $t(n)$ time multitape Turing-machine has an equivalent $O(t^2(n))$				
	time single-tape Turing-machine, where $t(n) \ge n$				
Definition 7.9	Nondeterministic running time				
Theorem 7.11	Every $t(n)$ time nondeterministic single-tape Turing-machine has an				
	equivalent $2^{O(t(n))}$ time deterministic single-tape Turing-machine, where				
	$t(n) \ge n$ pg. 284				
Definition 7.12	P class pg. 286				
Definition 7.18	Polynomial time verifierpg. 293				
Definition 7.19	NP classpg. 294				
Theorem 7.14 - 7.25	Common problems and their classes				
• $PATH \in P$	• $CLIQUE \in NP$				
• $RELPRIME \in P$	• $SUBSET$ - $SUM \in NP$				
 Every context-fr 	ree language is in P				
Theorem 7.27	$SAT \in P \text{ iff } P = NP \dots pg. 300$				
Definition 7.28	Polynomial time computable functionpg. 300				
Definition 7.29	Polynomial time reductionpg. 300				
Theorem 7.31	If $A \leq_P B$ and $B \in P$, then $A \in P$ pg. 301				
Theorem 7.32	3SAT is polynomial time reducible to CLIQUEpg. 302				
Definition 7.34	NP-completepg. 304				
Exercise 7.34	NP-hard definitionpg. 326				
Theorem 7.35	If <i>B</i> is NP-complete and $B \in P$, then $P = NP \dots pg. 304$				
Theorem 7.36	If <i>B</i> is NP-complete and $B \leq_P C \in NP$, then <i>C</i> is NP-complete .pg. 304				
Theorem 7.37	SAT is NP-complete				
Theorem 7.43 - 7.56	1				
• CLIQUE	• UHAMPATH				
• VERTEX-COVE	• SUBSET-SUM				
• HAMPATH					

```
EXERCISES
                          Useful theorems, unproved unless otherwise noted ......pg. 322-330
      Note: items with an A symbol instead of a • symbol have a proof on page 329.
    • P and NP closure properties (NP star proof on pg. 329)
    • CONNECTED = \{\langle G \rangle \mid G \text{ is a connected undirected graph} \} is in P
    • TRIANGLE = \{\langle G \rangle \mid G \text{ contains a 3-clique} \} is in P
    • ALL_{DFA} \in P, EQ_{DFA} \in P
    • ISO = \{ \langle G, H \rangle \mid G \text{ and } H \text{ are isomorphic graphs} \} \text{ is in NP}
    • MODEXP = \{ \langle a, b, c, p \rangle \mid a, b, c, p \in \mathbb{N}^+ \text{ such that } a^b \equiv c \pmod{p} \} \text{ is in P}
    • PERM-POWER = \{\langle p, q, t \rangle \mid p = q^t \text{ where } p \text{ and } q \text{ are permutations on } \{1, \dots, k\} \} is in P
    • UNARY-SSUM \in P (definition on pg. 323 ex. 7.17)
    • If P = NP, then every language A \in P, except A = \phi and A = \Sigma^*, is NP-complete
    • PRIMES = \{m \mid m \text{ is a prime number in binary}\}\ is in NP
    • Proving that PATH is not NP-complete would prove P \neq NP
    • SPATH \in P, and LPATH is NP-complete (definitions on pg. 324 ex. 7.21)
    • DOUBLE-SAT = \{\langle \phi \rangle \mid \phi \text{ has at least two satisfying assignments} \} is NP-complete
   A HALF-CLIQUE = \{\langle G \rangle \mid G \text{ has a half clique}\} is NP-complete
    • CNF_2 \in P
    • CNF<sub>3</sub> is NP-complete
    • MAX-CUT = \{\langle G, k \rangle \mid G \text{ has a cut of size } k \text{ or more} \} is NP-complete
    • 3COLOR = \{\langle G \rangle \mid G \text{ is colorable with 3 colors} \} is NP-complete
   A SOLITAIRE = \{\langle G \rangle \mid G \text{ is a winnable game configuration} \} is NP-complete
    • \{\langle p \rangle \mid p \text{ is a polynomial in several variables having an integral root}\} is NP-hard
    • If P = NP, then these problems can be solved in polynomial time:
         Satisfying a boolean formula
         Factoring integers
         Finding a largest clique in an undirected graph (proof on pg. 330)
    • Minimizing DFAs can be done in polynomial time (Details on pg. 327 ex. 7.42)
    • P \neq NP implies that NFAs cannot be minimized in polynomial time
    • 2SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable 2cnf-formula} \} \in P
    • TIME(f(n)) contains only the regular languages when f(n) = o(n \log n)
    • P is closed under homomorphism iff P = NP
STUDY GUIDE's theorems. Note: page numbers refer to the study guide, not to the book.
                          The problem (does a string derived from a CFG) is in P ...... pg. 64
 Exercise 4.2
                          COMPOSITES ∈ P ......pg. 67
 Example 2
                          Swapping q_{\text{accept}} with q_{\text{reject}} will NOT make a TM decide the complement
 Question
                          language ......pg. 69
                          Common NP-complete languages ......pg. 78-79
 Theorems
    • INDEPENDENT-SET
                                                           • k-COLORING
    • SET-COVER
                                                           • k-SET-PACKING
```

Chapter 8 - Space Complexity

Definition 8.1	Space complexitypg. 331
Savitch's theorem	$f(n) \ge \log n$ implies NSPACE $(f(n)) \subseteq SPACE(f^2(n)) \dots pg. 334$
Definition 8.8	PSPACE-complete (hard)pg. 337
Theorem 8.9 - 8.14	Common PSPACE-complete problems pg. 339-348
Definition 8.17	Classes L and NL
Example 8.18	$\{0^k 1^k \mid k \ge 0\} \in L$ pg. 349
Example 8.19	<i>PATH</i> ∈ NLpg. 350
Definition 8.20	Configuration of <i>M</i> on <i>w</i> pg. 350
Definition 8.21	Log space transducer
Definition 8.22	NL-completepg. 352
Theorem 8.23	If $A \leq_L B$ and $B \in L$, then $A \in L$ pg. 352
Corollary 8.24	If any NL-complete language is in L, then $L = NL \dots pg. 353$
Theorem 8.25	PATH is NL-complete
Corollary 8.26	$NL \in P$ pg. 354
Theorem 8.27	NL = coNL pg. 355
EXERCISES	Useful theorems, unproved unless otherwise notedpg. 357-361
NT / '/	

Note: items with an A symbol instead of a • symbol have a proof on page 361.

- SPACE(f(n)) is the same whether we define this class using a single-tape TM or double-tape read-only TM when $f(n) \ge n$
- PSPACE closure properties
- $A_{DFA} \in L$
- Any PSPACE-hard language is also NP-hard
- A NL closure properties
- $EQ_{REX} \in PSPACE$
- If every NP-hard language is also PSPACE-hard, then PSPACE = NP
- A_{LBA} is PSPACE-complete
- The following languages are in L:
- The language of properly nested parentheses and brackets
- $MULT = \{a\#b\#c \mid a, b, c \in \mathbb{N} \text{ and } a \times b = c\}$
- $ADD = \{\langle x, y, z \rangle \mid x, y, z > 0 \text{ and } x + y = z\}$
- $PAL-ADD = \{\langle x, y \rangle \mid x, y > 0 \text{ and } x + y \text{ is a palindrome} \}$
- $\{\langle G \rangle \mid G \text{ is an undirected graph that contains a simple cycle}\}$
- BIPARTITE = $\{\langle G \rangle \mid G \text{ is a bipartite graph} \}$ is in NL
- The following languages are NL-complete:
- STRONGLY- $CONNECTED = \{\langle G \rangle \mid G \text{ is a strongly connected graph}\}$
- $BOTH_{NFA} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are NFAs and } L(M_1) \cap L(M_2) \neq \emptyset \}$
- A_{NFA} E_{NFA} 2SAT
- A $\{\langle G \rangle \mid G \text{ is a directed graph that contains a directed cycle}\}$
- There exists an NL-complete context-free language

STUDY GUIDE	's theorems. Note: page numbers refer to the study guide, not to the book.					
Question	The space complexity of a problem cannot be greater than the problem's					
	time complexitypg. 97					
Question	Every PSPACE-hard language is also NP-hardpg. 100					
Exercise 5.4	Example of a TM with space complexity $f(n) = o(n)$ and time complexity $2^{O(f(n))}$					
Exercise 5.8	If $NL \in P$, and $A, B \in NL$, and $B \notin \{\phi, \Sigma^*\}$, then $A \leq_P B \dots pg$.					
Exercise 5.9	If $A \leq_L B$ using a log space computable function f , then the length of $f(w)$ is at most polynomial in w					
Exercise 5.10	\leq_L is transitive					
Section 9.1 - I	Hierarchy Theorems					
Definition 9.1	Space constructible functions					
Example 9.2	$\log_2 n$, $n \log_2 n$, n^2 are space constructible (at least $O(\log n)$)pg. 364					
Space hierarch						
•	For any space constructible function $f: \mathbb{N} \to \mathbb{N}$, a language A exists that is					
	decidable in $O(f(n))$ space but not in $o(f(n))$ space					
Corollary 9.4	For any two functions $f_1, f_2 : \mathbb{N} \to \mathbb{N}$ where $f_1(n) = o(f_2(n))$ and f_2 is space					
D C '': 00	constructible, SPACE $(f_1(n)) \subseteq SPACE(f_2(n))$					
Definition 9.8	Time constructible functions					
Example 9.9	$n \log n, n\sqrt{n}, n^2$ and 2^n are time constructible (at least $n \log n$)pg. 368					
Time hierarchy						
	For any time constructible function $t: \mathbb{N} \to \mathbb{N}$, a language A exists that is					
Corollary 9.11	decidable in $O(t(n))$ space but not decidable in $o(t(n)/\log t(n))$ pg. 369 For any two functions $t_1, t_2 : \mathbb{N} \to \mathbb{N}$ where $t_1(n) = o(t_2(n)/\log t_2(n))$ and t_2					
G 11 0.12	is time constructible, $TIME(t_1(n)) \subseteq TIME(t_2(n))$					
Corollary 9.12	For any $1 \le \epsilon_1 < \epsilon_2 \in \mathbb{R}$, we have $TIME(n^{\epsilon_1}) \subsetneq TIME(n^{\epsilon_2})$ pg. 371					
Corollary 9.13	$P \subseteq EXPTIME$					
Definition 9.14	EXPSPACE					
Theorem 9.15	$EQ_{\text{REX}\uparrow}$ is EXPSPACE-complete					
EXERCISES	Useful theorems, unproved unless otherwise notedpg. 389-391					
	s with an A symbol instead of a • symbol have a proof on page 391.					
, ,	$= TIME(2^{n+1})$					
A TIME (2^n)						
A NTIME(n)						
	ME \neq EXPTIME, then P \neq NP (proof in the study guide)					
A The pad fur						
• $E_{\text{REX}\uparrow}$ is in	Г					

Chapter 10 - Advanced Topics in Complexity Theory

Theorem 10.1	MIN-VERTEX-COVER approximation algorithmpg. 394
Theorem 10.2	MAX-CUT 2-optimal approximation algorithm)pg. 395
Definition 10.3	Probabilistic Turing machinepg. 396
Definition 10.4	BPP class
Lemma 10.5	The error probability ϵ is valid as long as $\epsilon \in [0, \frac{1}{2})$
Theorem 10.6	If p is prime and $a \in \mathbb{Z}_p^+$, then $a^{p-1} \equiv 1 \pmod{p}$ pg. 399
Lemma 10.7	If p is an odd prime number, $Pr[PRIME \text{ accepts } p] = 1 \dots pg. 40$
Lemma 10.8	If p is an odd composite number, $Pr[PRIME \text{ accepts } p] \le 2^{-k} \dots pg. 402$
Theorem 10.9	<i>PRIMES</i> ∈ <i>BPP</i> pg. 403
Theorem 10.10	RP classpg. 403
Exercise 10.7	$BPP \subseteq PSPACE$ pg. 44
STUDY GUIDE'	s theorems. Note: page numbers refer to the study guide, not to the book.
Problem	Traveling Salesman Problem (TSP)
Problem	Minimal Steiner Tree
Corollary	TSP has no approximation algorithm unless $P = NP \dots pg. 120$
Problem	0/1-Bin Packingpg. 105
Exercise 7.7	All of the theorems belowpg. 140-143
• COMPOSIT	$TES \in RP$ • $coRP \subseteq BPP$
• $PRIMES \in \mathcal{C}$	$coRP$ • $RP \subseteq NP$
• RP ⊂ RPP	

Appendix A - Closure Properties

	$A \cup B$	$A \cap B$	$A \cdot B$	A^*	\overline{A}	homomorphism
Regular	✓	✓	✓	✓	✓	✓
Context-free	1	×	✓	✓	X	✓
Decidable	1	✓	✓	✓	✓	X
Recognizable	1	✓	✓	✓	X	✓
P	1	✓	✓	✓	✓	iff P=NP
NP	1	✓	✓	✓	iff NP=coNP	
PSPACE	1	1	✓	✓	✓	
L	1	✓	✓	iff L=NL		
NL	✓	✓	✓	✓	✓	
BPP	✓	✓			✓	

Appendix B - Classes Hierarchies

 $Regular \subset Context\text{-}free \subset Decidable \subset Turing\text{-}recognizable$

$$\begin{array}{ccc} L \subseteq & NL & \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXPTIME \subseteq EXPSPACE \\ & & || & & || \\ & conl & & NPSPACE & NEXPSPACE \end{array}$$

Note: $NL \subsetneq PSPACE$, $P \subsetneq EXPTIME$, $PSPACE \subsetneq EXPSPACE$

