ROS-Based 3D On-Line Monitoring for LMD Robotized Cells

Jorge Rodríguez-Araújo¹, Juan J. Rodríguez-Andina²

¹AIMEN Technology Center, Porriño, Spain

²Department of Electronic Technology, University of Vigo, Spain

INDIN2015, Cambridge, 23-7-2015

Index

- 1. Motivation and Innovative Character.
- 2. Proposed Solution.
- 3. 3D Geometrical Monitoring.
- 4. Self-Calibration.
- 5. Experimental Results.
- 6. Conclusions and future work.

Motivation and Innovative Character

Laser Metal Deposition (LMD)

- Promising additive manufacturing technique.
 - Parts are built up layer by layer directly from a 3D CAD
- For repair and direct fabrication of pieces.
- Near-net-shape (close to the final shape).
- Manufacturing of large metallic parts.
 - The material is directly deposited on the previous surface.

LMD Issues

- Thermal heating accumulation produces geometrical distortions.
- Distortions rise in poor dimensional accuracy and defects.
- Traditional off-line process (with constant parameters) becomes unsuccessful.

Motivation

- There are a lot of industrial robotized laser cells.
- Empower robotized laser cells for effective AM.

Innovation

- Retrofit current industrial facilities.
- Apply state of the art robotic software solutions.

Proposed Solution

LMD geometrical control

- On-line geometrical monitoring.
- Adaptive path planning.

3D scanning setup

- Industrial CMOS camera.
- Industrial RED laser stripe.
- Fixture to attach the components to the laser cladding head.

3D Geometrical Monitoring

3D Geometrical Monitoring

- 3D point cloud (geometric information)
 - On-line generation.
 - In robot coordinates.
 - Independently of the speed.
 - No movement restrictions.
 - Free orientation.

Monitoring main tasks

- Laser Stripe Detection
- Laser Triangulation
- Transformation to robot coordinates

3D profile calculation

- Center Of Gravity method as peak finder.
- Point correspondence for 2D-to-3D mapping solution.

Point cloud reconstruction

ROS-basedTf library

(interpolation)

ROS-Industrial components

Self-Calibration

Calibration steps

- Camera calibration (OpenCV method)
- Laser stripe calibration
- Hand-eye calibration (Classical method Tsai-Lenz)

Laser stripe calibration steps

- 1. Checkerboard localization.
- 2. Laser stripe detection (RANSAC).
- 3. Laser plane estimation (RANSAC).
- 4. 2D-to-3D transformation matrix estimation.

Experimental results

On-line scanning

Processing results

Conclusions and Future Work

Future work

- Complete the layer measurement module.
- Develop the on-line path planning system.
- Enable a full automatic LMD robotized cell.

LASHARE Project

http://www.lashare.eu/

ainen CENTRO TECNOLÓGICO

AIMEN – Central y Laboratorios c/ Relva 27 A

36410 – O PORRIÑO (Pontevedra) Telf.+34 986 344 000 – Fax. +34 986 337 302

Delegación Tecnológica A Coruña

Fundación Mans – Paideia Pol. Pocomaco - Parcela D-22 - Oficina 20A 15190 – A CORUÑA (A Coruña) Telf. +34 617 395 153

Delegación Tecnológica Madrid

Avda. del General Perón, 32, 8 A 28020 – MADRID (Madrid) Telf.+34 687 448 915

Thank you for your attention

Jorge Rodríguez Araujo | Research Engineer

Ph +34 986 344 000 | jorge.rodriguez@aimen.es