Часть 1. Необходимо с использованием системы JFLAP, построить контекстно-свободную грамматику, описывающую заданный язык, который может быть распознан алгоритмом перебора или управляемым пользователем, или формально доказать невозможность этого.

Часть 2. Необходимо доказать контекстно-свободность либо ее отсутствие для предложенных системой JFLAP языков с применением леммы о разрастании контекстно-свободных языков. Привести пошаговое выполнение доказательства.

Часть 3. Доказать формально контекстно-свободность либо ее отсутствие заданных языков. Для доказательства рекомендуется использовать лемму о разрастании контекстно-свободных языков.

Варианты заданий к части 1.

Вариант 1. Язык $L_1 = \{a^n b^m : n \le 3+m, m \ge 0, n \ge 0\}$.

Вариант 2. Язык $L_2 = \{a^n b^m : n \neq m - 1, m \geq 0, n \geq 0\}.$

Вариант 3. Язык $L_3 = \{a^n b^m : n \neq 2m, m \geq 0, n \geq 0\}$.

Вариант 4. Язык $L_4 = \{a^n b^m : 2n \le m \le 3n, m \ge 0, n \ge 0\}.$

Вариант 5. Язык $L_5 = \{w \text{ принадлежит } \{a, b\}^* : n_a(w) \neq n_b(w)\}.$

Вариант 6. Язык $L_6 = \{w \text{ принадлежит } \{a, b\}^* : n_a(v) \ge n_b(v), v - \text{любой префикс } w\}.$

Вариант 7. Язык $L_7 = \{w \text{ принадлежит } \{a, b\}^* : n_a(w) = 2n_b(w) + 1\}.$

Вариант 8. Язык $L_8 = \{a^n b^m c^k : n = m \text{ или } m \le k, m \ge 0, n \ge 0, k \ge 0 \}.$

Вариант 9. Язык $L_9 = \{a^n b^m c^k : n = m \text{ или } m \neq k, m \geq 0, n \geq 0, k \geq 0 \}.$

Вариант 10. Язык $L_{10} = \{a^n b^m c^k : k = n + m, m \ge 0, n \ge 0, k \ge 0 \}.$

Вариант 11. Язык $L_{II} = \{a^n b^m c^k : k = n + 2m, m \ge 0, n \ge 0, k \ge 0\}.$

Вариант 12. Язык $L_{12} = \{a^n b^m c^k : k = |n+m|, m \ge 0, n \ge 0, k \ge 0\}.$

Вариант 13. Язык $L_{I3} = \{w \text{ принадлежит } \{a, b, c\}^* : n_a(w) + n_b(w) \neq n_c(w), m \geq 0, n \geq 0\}.$

Вариант 14. Язык $L_{14} = \{a^n b^m c^k : k \neq n + m, m \geq 0, n \geq 0, k \geq 0\}.$

Вариант 15. Язык $L_{15} = \{a^n b^m c^k : k \ge 3, m \ge 0, n \ge 0\}.$

Вариант 16. Язык $L_{16} = \{uvwv^R : u, v, w$ принадлежат $\{a, b\}^+, |u| = |v| = 2\}.$

Варианты заданий к части 3.

Вариант 1. Язык $L_l = \{a^n b^m c^k : m \le min(n, k)\}.$

Вариант 2. Язык $L_2 = \{ww^Rw : w \text{ принадлежит } \{a,b\}^*, \text{ где } w^R \longrightarrow \text{ это строка, обратная } w\}.$

Вариант 3. Язык $L_3 = \{w \text{ принадлежит } \{a,b,c\}^* : n_a(w) + n_b(w) = 2n_c(w) \}.$

Вариант 4. Язык $L_4 = \{ w \text{ принадлежит } \{ a,b,c \}^* : n_a(w) / n_b(w) = n_c(w) \}.$

Вариант 5. Язык $L_5 = \{a^n b^j a^j b^n : n+j \le k+l\}$ на алфавите $\{a,b\}$.

Вариант 6. Язык $L_6 = \{a^n b^j c^k : n < j, n \le j \le k\}$ на алфавите $\{a,b,c\}$.

Вариант 7. Язык $L_7 = \{a^n b^j c^k : k > j, k > n\}$ на алфавите $\{a,b,c\}$.

Вариант 8. Язык $L_8 = \{a^n b^j c^k : k = j \cdot n\}$ на алфавите $\{a,b,c\}$.

Вариант 9. Язык $L_9 = \{a^n b^j : n \le j^2\}$ на алфавите $\{a,b\}$.

Вариант 10. Язык $L_{10} = \{a^n b^j : n \ge (j-1)^3\}$ на алфавите $\{a,b\}$.

Вариант 11. Язык $L_{II} = \{a^{n^2}: n \ge 0 \}$.

Вариант 12. Язык $L_{12} = \{ w \text{ принадлежит } \{ a,b,c \} : n_a(w) = n_b(w) = n_c(w) \}.$

Вариант 13. Язык $L_{13} = \{a^{n*m}: n \text{ и } m \text{— простые числа}\}.$

Вариант 14. Язык $L_{14} = \{a^n b^n c^j : n \le j\}$ на алфавите $\{a,b,c\}$.

Вариант 15. Язык $L_{15} = \{a^n b^j a^k b^l : n+j \le k+l\}$ на алфавите $\{a,b\}$.

Вариант 16. Язык $L_{16} = \{a^n b^j a^k b^l : n \le k, j \le l\}$ на алфавите $\{a,b\}$.