#### Sprawozdanie Algorytmy Metaheurysyczne - Labolarorium

Radosław Wojtczak, Witold Karaś

#### 1 Wstęp:

#### 1.1 Algorytm Genetyczny

Algorytmy genetyczne są heurystykami, które działają w oparciu o przeszukiwanie przestrzeni rozwiązań w celu wyszukania najlepszego rozwiązania względem zadanego krytermium. Nazwa ów algorytmu pochodzi od sposobu działania, który przypomina znane w przyrodzie zjawisko ewolucji biologicznej.

Algorytm genetyczny rozpoczyna pracę poprzez wybranie pewnej grupy osobników, którą będziemy nazywać **populacją**. Każda osobnik należący do populacji posiada przypisane pewne informacje, które stanowią jego **genotyp**, na podstawie którego tworzony jest **fenotyp**. Genotyp opisuje proponowane rozwiązanie problemu, a fenotyp przedstawia nam, jak dobre jest to rozwiązanie (tu: funkcja celu). Genotyp składa się z **chromosomów**, natomiast chromosomy składają się z **genów**. W naszym przypadku pojedynczym genem będzie jedno miasto. Po wygenerowaniu populacji początkowej algorytm dokonuje szeregu operacji, których zadaniem jest przystowanie osobników do danego środowiska. W naszym przypadku algorytm będzie dążył do redukcji funkcji celu.

Przed rozpoczeciem działania algorytm pobiera od użytkownika szereg informacji, które w znaczy sposób mogą wpłynąć na wydajność jak i ostateczny wynik wyprodukowany przez algorytm. Parametry zależne od użytkownika to:

- Maksymalna liczba iteracji algorytmu (jest to również warunek końcowy działania programu) reprezentowany przez nieujemną liczbę całkowitą
- Współczynnik mutacji- liczba wymierną z zakresu [0,1], która przedstawia z jaką szansą dany osobnik może ulec mutacji
- Współczynnik selekcji- W zależności od trybu działania programu parametr przyjmuje jedną z dwóch form:

- Nieujemną liczbę całkowitą w przypadku skorzystania z turnieju.
   Wtedy ów liczba reprezentuje z ilu uczestników turnieju wybieramy rodziców do dalszego krzyżowania
- Liczbę wymierną z zakresu [0,1], która przedstawia jaki procent populacji ulegnie krzyżowaniu. Wybierając liczbę 0.7 przypisujemy operacji krzyżowania 70% najlepszych osobników, 30% najgorszych nie ulegnie ewolucji i zostanie zastąpiona (odcięcie)
- Liczbę wymierną z zakresu [0,1], która wykorzysytywana jest w metodzie selekcji typu ruletka, która polega na znomrmalizowaniu współczynnika dopasowania tak, że suma wszystkich wynosi 1 odwrotnie propocjonalnie do długości ścieżki.
- Rozmiar populacji określający ilu osobników wchodzi w skład populacji
- Maksymalna liczba iteracji bez poprawy, której przekroczenie uruchamia specjalną procedurę mającą na celu rozwiązanie problemu stagnacji oraz potencjalnej zbieżności osobników
- Maksymalny wiek- jeśli osobnik osiągnie maksymalny wiek zostanie poddany specjalnej procedurze modyfikującej oraz jego wiek zostanie zresetowany. Ma to na celu zapobieganie stagnacji oraz zbyt szybkiej zbieżności osobników do najstarszego, najlepiej przystosowanego

W trakcie swojego działania algorytm wykonuje następujące kroki:

- 1. Pierwszym krokiem jest wygenerowanie pierwszej populacji przy użyciu metody **generate population()**
- 2. Dochodzi do operacji selekcji osobników, która realizowana jest przez metodę **selection()**. W zależności od wyboru użytkownika, selekcja jest przeprowadzana w formie turnieju lub ogranieczenia zbioru populacji do wskazanego procenta, najsłabi osobnicy poza wskazanym procentem są nadpisywani przez najlepszych (tak zwane **Odcięcie**).
- 3. Przy użyciu metody crossover() dochodzi do operacji krzyżowania, która wykorzystując dwóch osobników z obecnej populacji (tak zwanych rodziców) generuje nowych dwóch osobników (dzieci). Generowanie dzieci zachodzi poprzez wymianę genów między rodzicami z zachowaniem własności cyklu Hamiltona. Z reguły generacja drugiego dziecka przebiega identycznie do wygenerowania drugiego, z jedyną różnicą zamiany kolejności rodziców w argumentach wywowałnia funkcji. Wykorzystane metody krzyżowania to:
  - (a) Partially Mapped Crossover (PMX)
  - (b) Cycle Crossover (CX)

- 4. Metoda **mutation()** odpowiada za dokonywanie mutacji osobników populacji ze wskazanym przez użytkownika prawdopodobieństwem. W celu dokonywania mutacji zaimplementowano dwie metody
  - (a) Znana metoda z algorytmu two opt invert, która dokonuje inwersji kawałka drogi między dwoma losowo wybranymi miastami
  - (b) RGIBNNM metoda, która poza invertem wyszukuje najbliższego sąsiada losowego miasta i dokonuje z nim operacji zamiany miejscami. Ów metoda dodatkowo jest wykorzystywana w celu uniknięcia procesu stagnacji
- 5. Dla każdego osobnika z populacji zostaje dodany wiek. Osobnicy przekraczający maksymalny wiek zostają poddani procesowi "odmłodzenia" przy pomocy metody **unstack()**
- 6. Po wygenerowaniu nowej populacji znajdujemy najbardziej przystosowanego do warunków zadania osobnika. Jeśli jest on lepszy, niż obecnie znaleziony osobnik to dokonujemy nadpisania i przechodzimy do następnego etapu
- 7. Opcjonalny etap, który polega na wykonaniu operacji **unstack()** w sytuacji, gdy algorytm wykryje wystąpenie stagnacji

**UWAGA**: Kroki 2-7 wykonywane są w pętli, której warunkiem końcowym jest liczba iteracji podana przez użytkownika jako jeden z argumentów uruchomienia programu.

#### Złożoność obliczeniowa:

UWAGA: Literą n oznaczono rozmiar permutacji, l- rozmiar populacji, a k- liczbę iteracji algorytmu

Główna pętla programu znajduje się w metodzie o nazwie **populate()**. Analiza złożoności obliczeniowej zostanie wykonana poprzez analizę poszczególnych metod wykonywanych w trakcie działania głównej pętli. Przyjmujemy, że liczba wykonań pętli **while()** jest wartością stałą.

1. GeneratePopulation()- W tej metodzie dochodzi do wygenerowania początkowej populacji. Ze względu na fakt, iż uzyskane wyniki zależą od początkowej populacji, w realizacji programu zdecydowaliśmy się na dwie metody generacji. Drugą z nich jest metoda o nazwie ImproveAtsp(). Metoda Generate Population generuje liczbę osobników równą rozmiarowi populacji. Rozmiar populacji jest stałą, podaną przez użytkownika. W pętli główej metody dochodzi do generacji osobników dwoma sposobami. Jeden z nich wykorzystuje wbudowaną funkcję shuffle(), drugą natomiast jest wykorzystanie wcześniej zaimplementowanego algorytmu K-random() ze stałą liczbą powtórzeń równą 10. Złożoność obliczeniowa ów metod generacyjnych wynosi odpowiednio: O(n) oraz O(n). Zauważamy wiec, iż wygenerowanie

pojedynczego osobnika zależy liniowo od liczby miast w danej instancji. Wygenerowanie wszystkich osobników pierwszej populacji zajmuję więć O(l\*n) = O(n),

- 2. Metoda **ImproveAtsp()** dodatkowo generuje 5% osobników przy wykorzystaniu metody najbliższego sąsiada, której implementacja odbyła się w ramach poprzednich list zadań. Ponadto w celu wymieszania osobników wykorzystujemy metodę **unstack()**, której złożoność wynosi O(n\*logn) Wiemy więc, iż złożoność obliczeniowa metody najbliższego sąsiada wynosi  $O(n^2*logn)$ , zatem z sumy  $O((19*l/20)*n) + O((l/20)*n^2*logn) + O((l/20)*n*logn)$  otrzymujemy złożoność obliczeniowa na poziomie  $O(n^2*logn)$ .
- 3. **FindBest()** Metoda znajdująca najlepszego osobnika po funkcji celu wykorzystująca wbudowaną w pythonie funkcję **min()**. Złożoność obliczeniowa jest stała względem wielkości instancji.
- 4. **Selection()** Metoda dokonująca selekcji osobników. W zależności od użytej metody otrzymujemy odpowiednie złożoności obliczeniowe:
  - Wykorzystując odcięcie korzystamy z sortowania wcześniej obliczonych funkcji celu, z tego powodu złożoność obliczeniowa tego sposobu wynosi O(l), czyli z perspektywy długości instancji jest równa O(1).
  - Wykorzystując turniej losujemy z populacji daną część osobników, z której następienie wybieramy dwóch najlepszych. Jak powyżej, ze względu na wykonanie sortowania otrzymujemy złożonosć równą O(k\*l)=O(1), gdyż ów operację powtarzamy, aż osiągniemy wskazany przez użytkownika rozmiar populacji.
- 5. **Crossover()** Metoda dokonująca krzyżowania osobników. Program realizuje krzyżowania przy pomocy dwóch metod:
  - PMX W tej metodzie po wybraniu odpowiedniego punktu przecięcia dokonywane jest odpowiednie przestawianie genów rodziców w celu uzyskania dwójki potomstwa. Zakładając, że w najgorszym przypadku punkt przecięcia to ostatni gen zauważamy, iż złożoność obliczeniowa tej metody wynosi O(n), gdyż wszystkie operacje w pętli for wykonują się w czasie stałym
  - CX W tej metodzie wyszukujemy cykle między rodzicami, po czym generujemy potomstwo poprzez odpowiednie przepisanie wybranych cyklów. W najgorszym przypadku jeden z cykli może składać się z wszystkich genów- wtedy złożoność ów metody również wynosi O(n).

Reasumując, metoda krzyżowań działa ze złożonością O((l/2)\*n) = O(l\*n) ze względu na to, iż krzyżowaniu ulega każdy osobnik z poprzedniej generacji.

- 6. **Mutation()** Metoda dokonująca mutacji. Mutacja pojedynczego osobnika w najgorszym przypadku może się odbywać w czasie liniowym względem liczby miast w instancji (jeśli do inverta zostanie wylosowane pierwsze i ostatnie miasto permutacji). Dodatkowo częstotliwość mutacji jest zależna od współczynnika wprowadzonego przez użytkownika. Złożoność obliczeniowa tej metody wynosi O(l\*n) = O(n), gdyż w najgorszym przypadku dla każdego osobnika z populacji możemy dokonać mutacji w pojedynczym przebiegu metody.
- 7.  $\mathbf{AddAge}()$  Metoda dodająca wiek do każdego członka populacji, która wykonuje się w czasie stałym względem rozmiaru pojedyncznej instancji, poza przypadkiem, gdy osobnik osiągnie maksymalny wiek. Wtedy uruchamiana jest procedura  $\mathbf{unstack}()$ , której złożoność obliczeniowa wynosi O(n\*logn)
- 8. **Unstack()** Metoda wykorzystywana do uniknięcia stagnacji oraz przedwczesnych zbieżności. Ze względu na użycie w niej sortowania otrzymujemy złożność na poziomie O(l\*n\*logn) = O(n\*logn).

**Reasumując:** Metody oznaczone na liście numerami 3-8 wykonują się w pętli **while()** dokładnie k razy. Policzmy więc złożoność obliczeniową pojedynczego wykonania głównej pętli metody **populate()**.

O(1)+O(1)+O(l\*n)+O(l\*n)+O(1)+O(l\*n\*logn)=O(l\*n\*logn). Dodając liczbę wykonań pętli otrzymujemy złożoność na poziomie O(k\*l\*n\*logn). Biorąc pod uwagę, iż k oraz l to stałe otrzymujemy złożoność na poziomie O(n\*logn)

**UWAGA:** Powyższa złożoność zakładałą wykorzystanie metody generacji o nazwie **GeneratePopulation()** oraz metody selekcji typu odcięcie. Wykorzystująć metodę generacji **ImproveAtsp()**, która jak sama nazwa wskazuje jest wkorzystywana przy pracy z instancjami asymetrycznymi, złożoność obliczeniowa zmienia się na  $O(k * l * n^2 * logn) = O(n^2 * logn)$ .

**Wykresy:** Testy zostały wykonane przy użyciu następujących, stałych parametrów:

• Liczba iteracji: 100

• Współczynnik mutacji: 0.2

• Współczynnik selekcji: 0.7

• Rozmiar populacji: 200

• Maksymalna stagnacja: 10

#### • Maksymalny wiek: 35

Ponadto badane rozmiary pojedynczych permutacji należą do zbioru  $n \in \{10, 60, 110, ..., 960\}$  Poniższe wykresy przedstawiają faktyczną złożoność obliczeniową każdej z wyżej wymienionych metod:

### Czas działania generate\_population od rozmiaru permutacji



Rysunek 1: Zależność czasu działania metody Generate Population od rozmiaru permutacji

Przewidywana złożoność: O(n) Złożoność wynikająca z testów: O(n)

## Czas działania improve\_atsp względem rozmiaru permutacji



Rysunek 2: Zależność czasu działania metody ImproveAtsp od rozmiaru permutacji

Przewidywana złożoność:  $O(n^2*logn)$  Złożoność wynikająca z testów: Przypominająca  $O(n^2)$  Należy zauważyć, iż przeprowadzana analiza jest dla przypadku worst-case, stąd mogą wystąpić rozbieżności między faktyczną, a przewidywaną złożonością.

#### Czas działania find\_best względem rozmiaru permutacji



Rysunek 3: Zależność czasu działania metody FindBest od rozmiaru permutacji

Przewidywana złożoność: O(1) Złożoność wynikająca z testów: O(1)

### Czas działania selection względem rozmiaru permutacji



Rysunek 4: Zależność czasu działania metody Selection od rozmiaru permutacji

Przewidywana złożoność: O(1) Złożoność wynikająca z testów: Przypominająca O(1)

### Czas działania Crossover względem rozmiaru



Rysunek 5: Zależność czasu działania metody Crossover od rozmiaru permutacji

Przewidywana złożoność: O(n)Złożoność wynikająca z testów: O(n)

# Czas działania Mutation względem rozmiaru permutacji



Rysunek 6: Zależność czasu działania metody Mutation od rozmiaru permutacji

Przewidywana złożoność: O(n)Złożoność wynikająca z testów:O(n)

# Czas działania Unstack względem rozmiaru populacji



Rysunek 7: Zależność czasu działania metody Unstack od rozmiaru permutacji

Przewidywana złożoność: O(n \* logn) Złożoność wynikająca z testów:  $O(n^2)$ 

## Czas działania Populate względem rozmiaru populacji



Rysunek 8: Zależność czasu działania metody Populate od rozmiaru permutacji

Przewidywana złożoność: O(n \* logn)Złożoność wynikająca z testów: Przypominająca O(n)

Wniosek: Zauważamy rozbieżność między teoretycznym wynikiem otrzymanym w wyniku analizy złożoności z praktycznym wynikiem otrzymanym w ramach testów. Wynika to z faktu, iż teoretyczny model zakłada podejście "worst-case", czyli podejście najgorszego przypadku, w którym metoda Unstack() wykonuje się w każdej iteracji pętli, jednakże w praktyce ów procedura wykonuje się stosunkowo rzadko. Ze względu na ten fakt zauważamy, iż w większości iteracji możemy pominąć wywołanie tej funkcji, co prowadzi do otrzymania liniowej złożoności obliczeniowej, którą faktycznie obserwujemy w przeprowadzonych testach.

### 2 Przypadek Testowy 1 - Algorytm genetyczny - zależność PRD od liczby iteracji

#### 2.1 Cel:

W tej części zostaną ze sobą porównane PRD rozwiązania algorytmu genetycznego w zależności od liczby iteracji.

#### 2.2 Założenia:

Do badania tego przypadku została wykorzystana instancje

- berlin52.tsp
- eil76.tsp
- eil51.tsp
- gr17.tsp
- gr21.tsp
- gr24.tsp
- gr48.tsp
- hk48.tsp
- kroA100.tsp
- $\bullet$  kroA150.tsp
- kroB100.tsp
- kroB150.tsp
- $\bullet$  swiss42.tsp
- ftv33.atsp
- ftv35.atsp
- ftv38.atsp
- ftv44.atsp
- ftv47.atsp
- br17.atsp

Dodatkowo współczynnik mutacji został ustalony na 0.2, współczynnik selekcji na 0.7. Ponad to wielkość populacji została ustalona na 100. Badane iteracje były z zakresu 100, 200, 300, ... 1000.

#### 2.3 Wyniki:

Poniższa tabela przedstawia wyniki testów - średnie PRD (w procentach), odchylenie standardowe oraz błęd standardowy.

| Iterations | PRD    | SD     | SE    |
|------------|--------|--------|-------|
| 100        | 136.24 | 143.32 | 33.78 |
| 200        | 93.97  | 106.53 | 25.11 |
| 300        | 68.04  | 78.38  | 18.48 |
| 400        | 55.14  | 66.65  | 15.71 |
| 500        | 47.74  | 56.61  | 13.34 |
| 600        | 40.10  | 44.34  | 10.45 |
| 700        | 35.53  | 37.29  | 8.79  |
| 800        | 30.60  | 31.65  | 7.46  |
| 900        | 29.82  | 29.68  | 7.00  |
| 1000       | 31.33  | 32.55  | 7.67  |

Tabela 1: PRD - uśrednione wyniki, SD - odchylenie standardowe, SE - Błąd standardowy

Odchylenie standardowe oraz błąd standardowy zostały obliczone według wzorów:

Odchylenie standardowe:

$$\sigma = \sqrt{\frac{\sum_{n=1}^{18} (\bar{x} - x_n)^2}{18}}$$

Błąd standardowe:

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{18}}$$

#### 2.4 Wykresy:



Rysunek 9: Zależność PRD od liczby iteracji dla różnych wielkości populacji

Na wykresie przedstawione są średnie wartości PRD dla badanych danych. Uśrednione wartości PRD maleją logarytmicznie, wraz ze wzrostem liczby iteracji.

#### 2.5 Wnioski:

Zgodnie z oczyekiwaniami, zwiękaszanie liczby iteracji zwiększa jakość rozwiązań. wartości maleją logarytmicznie od liczby iteracji, zgodnie z zaznaczoną linią trendu. Ponadto wraz ze wzrostem liczby iteracji zmiejsza się odchylenie standardowe oraz błąd standardowy wyników.

### 3 Przypadek Testowy 2 - Algorytm genetyczny - zależność PRD od wskaźnika mutacji

#### 3.1 Cel:

W tej części zostaną ze sobą porównane PRD rozwiązania algorytmu genetycznego w zależności od wskaźnika mutacji.

#### 3.2 Założenia:

Do badania tego przypadku została wykorzystana instancje

- berlin52.tsp
- eil76.tsp
- eil51.tsp
- gr17.tsp
- gr21.tsp
- gr24.tsp
- gr48.tsp
- hk48.tsp
- kroA100.tsp
- $\bullet$  kroA150.tsp
- kroB100.tsp
- kroB150.tsp
- $\bullet$  swiss42.tsp
- ftv33.atsp
- ftv35.atsp
- ftv38.atsp
- ftv44.atsp
- ftv47.atsp
- br17.atsp

Dodatkowo współczynnik selekcji został ustalony na 0.7, wielkość populacji została ustalona na 100, liczba iteracji to 200. Badane współczynniki mutacji  $m \in 0.05, 0.10, 0.15...0.95$ . Metoda selekcji to obcięcie.

#### 3.3 Wyniki:

Poniższa tabela przedstawia wyniki testów, odchylenie standardowe oraz błęd standardowy.

| MR   | PRD    | SD     | SE    |
|------|--------|--------|-------|
| 0.05 | 119.80 | 125.64 | 29.61 |
| 0.10 | 105.52 | 118.54 | 27.94 |
| 0.15 | 96.14  | 109.88 | 25.90 |
| 0.20 | 88.65  | 104.24 | 24.57 |
| 0.25 | 81.35  | 101.21 | 23.85 |
| 0.30 | 88.38  | 102.82 | 24.24 |
| 0.35 | 83.54  | 97.42  | 22.96 |
| 0.40 | 81.49  | 96.37  | 22.71 |
| 0.45 | 82.40  | 100.09 | 23.59 |
| 0.50 | 88.34  | 106.14 | 25.02 |
| 0.55 | 93.55  | 107.88 | 25.43 |
| 0.60 | 101.05 | 113.10 | 26.66 |
| 0.65 | 100.91 | 112.06 | 26.41 |
| 0.70 | 115.50 | 109.33 | 25.77 |
| 0.75 | 120.50 | 110.17 | 25.97 |
| 0.80 | 129.11 | 118.01 | 27.81 |
| 0.85 | 131.69 | 113.98 | 26.87 |
| 0.90 | 137.50 | 115.65 | 27.26 |
| 0.95 | 142.55 | 118.34 | 27.89 |

Tabela 2: PRD - wyrażone w procętach, SD - Odchylenie standardowe, SE - Błąd standardowy

Odchylenie standardowe oraz błąd standardowy zostały obliczone według wzorów:

Odchylenie standardowe:

$$\sigma = \sqrt{\frac{\sum_{n=1}^{18} (\bar{x} - x_n)^2}{18}}$$

Błąd standardowe:

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{18}}$$

#### 3.4 Wykresy:



Rysunek 10: zależność PRD od współczynnika mutacji

Na wykresach przedstawione są średnie wartości PRD dla badanych danych.

#### 3.5 Wnioski:

Dla zebranych wyników, dla współczynnika mutacji w zakresie od 0.00 do 0.25 oraz 0.30 do 0.40 PRD maleje, od 0.4 do 1.00 rośnie. Przy szansie na mutację 0.25 algorytm osiągnął minimum w testach. Po przekroczeniu 0.5 algorytm daje coraz gorsze wyniki co ma związek z częstymi mutacjami - bardziej zaczyna przypominać k-random.

### 4 Przypadek Testowy 3 - Algorytm genetyczny - zależność PRD od użytej metody selekcji

#### 4.1 Cel:

W tej części zostaną ze sobą porównane PRD rozwiązania algorytmu genetycznego w zależności użytej metody selekcji.

#### 4.2 Założenia:

Do badania tego przypadku została wykorzystana instancje

- berlin52.tsp
- eil76.tsp
- $\bullet$  eil51.tsp
- gr17.tsp
- gr21.tsp
- gr24.tsp
- gr48.tsp
- hk48.tsp
- kroA100.tsp
- $\bullet$  kroA150.tsp
- kroB100.tsp
- kroB150.tsp
- $\bullet$  swiss42.tsp
- ftv33.atsp
- ftv35.atsp
- ftv38.atsp
- ftv44.atsp
- ftv47.atsp
- br17.atsp

Dodatkowo współczynnik mutacji został ustalony na 0.2, liczba iteracji została ustalona na 200, wielkość populacji została ustalona na 100. współczynnik selekcji był w zakresie  $SR \in 0.5, 0.55, 0.6...0.9$ .

#### 4.3 Metody selekcji:

#### 4.3.1 Ruletka:

Metoda selekcji przedstawicieli populacji polega na znormalizowaniu współczynnika dopasowania tak że suma wszystkich wynosi 1 odwrotnie proporcjonalnie do długości ścieżki. Następnie losowana jest liczba z przedziału [0,1). Do nowej populacji dopisywana jest jedna ścieżka aż nowa populacja będzie tego samego rozmiaru co poprzednia.

#### 4.3.2 Odcięcie:

Metoda selekcji przedstawicieli populacji polega na posortowaniu populacji względem długości rozwiązania i odcięcie sparametryzowanej najgorszej części (np. 10%). aby uzupełnić populację najlepsze odobniki są doklejane po raz kolejny.

#### 4.4 Wyniki:

Poniższa tabela przedstawia wyniki testów, odchylenie standardowe oraz błęd standardowy. Odchylenie standardowe oraz błąd standardowy zostały

| SR   | О      | R      | Τ     | $SD_O$ | $\mathrm{SD}_\mathrm{R}$ | $\mathrm{SD}_{\mathrm{T}}$ | $SE_{O}$ | $\mathrm{SD}_\mathrm{R}$ | $\mathrm{SD}_{\mathrm{T}}$ |
|------|--------|--------|-------|--------|--------------------------|----------------------------|----------|--------------------------|----------------------------|
| 0.5  | 90.31  | 274.21 | 76.47 | 104.79 | 207.25                   | 84.46                      | 24.70    | 48.85                    | 19.91                      |
| 0.55 | 85.55  | 270.70 | 67.55 | 100.87 | 208.68                   | 81.11                      | 23.77    | 49.19                    | 19.12                      |
| 0.6  | 86.40  | 271.83 | 74.78 | 100.70 | 210.56                   | 83.83                      | 23.74    | 49.63                    | 19.76                      |
| 0.65 | 87.69  | 269.76 | 71.43 | 103.10 | 211.25                   | 83.36                      | 24.30    | 49.79                    | 19.65                      |
| 0.7  | 91.79  | 272.51 | 75.35 | 106.24 | 205.00                   | 84.03                      | 25.04    | 48.32                    | 19.81                      |
| 0.75 | 91.51  | 273.32 | 74.74 | 108.68 | 216.22                   | 85.11                      | 25.62    | 50.96                    | 20.06                      |
| 0.8  | 93.19  | 264.47 | 71.91 | 105.50 | 204.03                   | 87.26                      | 24.87    | 48.09                    | 20.57                      |
| 0.85 | 91.89  | 272.87 | 79.23 | 108.05 | 207.47                   | 86.79                      | 25.47    | 48.90                    | 20.46                      |
| 0.9  | 98.22  | 262.21 | 72.88 | 117.56 | 185.75                   | 83.56                      | 27.71    | 43.78                    | 19.69                      |
| 0.95 | 113.79 | 263.77 | 71.11 | 120.98 | 199.82                   | 82.98                      | 28.52    | 47.10                    | 19.56                      |

Tabela 3: SR - współczynnik selecji, O - PRD dla selekcji przez odcięcie, R - PRD dla selekcji przez ruletkę, T - PRD dla selekcji przez turniej, SD $_{\rm O}$  - odchylenie standardowe dla selekcji przez odcięcie, SD $_{\rm R}$  - odchylenie standardowe dla selekcji przez ruletkę, SD $_{\rm T}$  - odchylenie standardowe dla selekcji przez turniej, SE $_{\rm O}$  - Błąd standardowy dla selekcji przez odcięcie, SE $_{\rm R}$  - Błąd standardowy dla selekcji przez turniej

obliczone według wzorów:

Odchylenie standardowe:

$$\sigma = \sqrt{\frac{\sum_{n=1}^{18} (\bar{x} - x_n)^2}{18}}$$

Błąd standardowe:

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{18}}$$

#### 4.5 Wykresy:



Rysunek 11: zależność PRD od współczynnika selekcji

Na wykresach przedstawione są średnie wartości PRD dla badanych danych.

#### 4.6 Wnioski:

Selekcja przez odcięcie oraz turniejowa sprawdza się zdecydowanie lepiej niż selekcja metodą ruletki. W metodzie ruletki najsłabsze osobniki mają szansę przejść do krzyżowania gdzie w metodzie odcięcia oraz w turnieju są zawsze usuwane i krzyżują się tylko najlepsze cechy.

### 5 Przypadek Testowy 4 - Algorytm genetyczny - zależność funkcji celu od rozmiar populacji

#### 5.1 Cel:

Celem tego testu jest sprawdzenie w jakim stopniu rozmiar populacji wpływa na uzyskane PRD. W celu wykonania testu wygenerowano instancje losowe typu **EUC2D** o rozmiarach permutacji należących do zbioru  $n \in \{30, 60, 90, 120, 150\}$ . Wszystkie inne argumenty zostały zainicjowane stałymi wartościami optymalnymi dla każdej z instancji. Rozmiary populacji należą do zbioru  $\{50, 100, 150, 200, 250\}$ 

#### 5.2 Wyniki:

Wyniki testu przedstawione zostały w poniższej tabeli:

| Rozmiar | PRD   |
|---------|-------|
| 50      | 19.84 |
| 100     | 14.16 |
| 150     | 6.92  |
| 200     | 6.36  |
| 250     | 6.57  |

Tabela 4: Wyniki otrzymane dla instancji składającej się z 30 miast

| Rozmiar | PRD    |
|---------|--------|
| 50      | 158.72 |
| 100     | 140.95 |
| 150     | 101.75 |
| 200     | 95.82  |
| 250     | 93.08  |

Tabela 5: Wyniki otrzymane dla instancji składającej się z 60 miast

| Rozmiar | PRD    |
|---------|--------|
| 50      | 155.58 |
| 100     | 156.61 |
| 150     | 144.25 |
| 200     | 146.0  |
| 250     | 138.35 |

Tabela 6: Wyniki otrzymane dla instancji składającej się z 90 miast

| Rozmiar | PRD    |
|---------|--------|
| 50      | 155.58 |
| 100     | 156.61 |
| 150     | 144.25 |
| 200     | 146.0  |
| 250     | 138.35 |

Tabela 7: Wyniki otrzymane dla instancji składającej się z 120 miast

| Rozmiar | PRD    |
|---------|--------|
| 50      | 155.58 |
| 100     | 156.61 |
| 150     | 144.25 |
| 200     | 146.0  |
| 250     | 138.35 |

Tabela 8: Wyniki otrzymane dla instancji składającej się z 150 miast

#### 5.3 Wykresy:



Rysunek 12: Zależność otrzymanego PRD od rozmiaru populacji dla instancji berlin<br/>52

#### Zależność PRD od rozmiar populacji



Rysunek 13: Zależność otrzymanego PRD od rozmiaru populacji dla instancji gr<br/>120



Rysunek 14: Zależność otrzymanego PRD od rozmiaru populacji dla instancji  ${\rm ftv}70$ 

#### 5.4 Wnioski:

Zauważamy, iż zwiększenie rozmiaru populacji przy stałym utrzymaniu tych samych wariantów wpływa na uzyskanie lepszych wyników, z tą różnicą, że dla instancji asymetrycznych wpływ rozmiaru populacji jest zdecydowanie mniejszy niż dla instancji symetrycznych.

# 6 Przypadek Testowy 5 - Algorytm genetyczny - zależność PRD od wybranej metody krzyżowania

#### 6.1 Cel:

Celem tego testu będzie sprawdzenie, w jakim stopniu otrzymywane wyniki zależą od wybranej metody krzyżowania. W naszej implementacji algorytmu genetycznego znalazły się dwie metody krzyżowania:

- Partially Mapped Crossover (PMX)
- Cycle Crossover (CX)

Testy wykonano na wybranych instancjach z biblioteki TSPLIB:

- 1. gr48.tsp
- 2. gr21.tsp
- 3. berlin52.tsp
- 4. gr120.tsp
- 5. br17.atsp
- 6. ftv47.atsp
- 7. ftv70.atsp
- 8. kro124p.atsp

Wszystkie parametry wywołania pozostały niezmienne przez cały okres wykonywania testów.

#### 6.2 Wyniki:

**UWAGA**: W poniższej tabeli kolumna *Różnica* oznacza różnicę między otrzymanymi średnimi wartościami PRD dla testowanych metod krzyżowania. Dodatnia wartość różnicy świadczy o tym, iż w danym teście lepsze wyniki średnio produkowały wywołania wykorzystujące metodę krzyżowania CX, natomiast ujemna różnica świadczy o lepszych wynikach metody PMX.

Poniższa tabela przedstawia uśrednione wyniki testów:

| Instancja    | PMX           | CX            | Różnica  |
|--------------|---------------|---------------|----------|
| gr48.tsp     | 3.324~%       | 3.506~%       | -0,182 % |
| gr21.tsp     | 3.746~%       | 3.502~%       | 0,244 %  |
| berlin52.tsp | 8,096 %       | $7,\!362~\%$  | 0,734 %  |
| br17.atsp    | 0 %           | 0 %           | 0 %      |
| ftv47.atsp   | $39,\!3~\%$   | 35,8~%        | 3,5%     |
| ftv70.atsp   | $25,\!898~\%$ | $32,\!482~\%$ | -6,584 % |
| kro124p.atsp | 27,184%       | 26,008 %      | 1,176 %  |

Tabela 9: Tabela zależności otrzymanych wyników PRD od wybranej metody krzyżowania

#### 6.3 Wykresy:



Rysunek 15: Otrzymane różnice dla wskazanych metod krzyżowań

#### 6.4 Wnioski:

Z testów wynika, iż nie można jednoznacznie określić, która z metod krzyżowania osobników jest uniwersalnie lepsza, zauważamy, iż odpowiednie metody radzą sobie lepiej od pozostałych dla odpowiednich przykładów.

#### 7 Przypadek Testowy 6 - Test statystyczny - Porównanie działania GA z 2OPT

#### 7.1 Cel:

W teście statystycznym porównanym działanie algorytmu genetycznego z algorytmem TABU, którego implementacją zajęliśmy się w ramach listy 2. Hipotezą startową jest stwierdzenie, że algorytm genetyczny zwraca lepszą średnią medianę wyników niż algorytm TABU. Do analizy uzyskanych wyników zostanie wykorzystany test Wilcoxon'a dla par obserwacji (one-sided).

#### 7.2 Założenia:

Do wykonania tego testu wykorzystano instancje znajdujące się w bibliotece TSPLIB. Początkowe permutacje są generowane w sposób losowy.

#### 7.3 Wykorzystane instancje:

W tym teście zostały wykorzystane następujące instancje z biblioteki TSPLIB:

- 1. berlin52.tsp
- 2. bier127.tsp
- 3. ch150.tsp
- 4. eil76.tsp
- 5. gr120.tsp
- 6. gr48.tsp
- 7. hk48.tsp
- 8. kroA150.tsp
- 9. kroB100.tsp
- 10. kroC100.tsp
- 11. kroD100.tsp
- 12. pr107.tsp
- 13. pr124.tsp
- 14. pr144.tsp
- 15. pr76.tsp
- 16. st70.tsp
- 17. u159.tsp

#### 7.4 Test:

Hipoteza zerowa: GA >= TABU

Hipoteza alternatywna: GA < TABU

| Pair | GA     | TABU   | Abs.Diff | Rank | Sign |
|------|--------|--------|----------|------|------|
| 6    | 11941  | 11976  | 35       | 1    | -1   |
| 15   | 678    | 718    | 40       | 2    | -1   |
| 5    | 5214   | 5283   | 69       | 3    | -1   |
| 4    | 7703   | 7895   | 192      | 4    | -1   |
| 1    | 8098   | 8295   | 197      | 5    | -1   |
| 8    | 23508  | 23302  | 206      | 6    | +1   |
| 3    | 7964   | 7332   | 632      | 7    | +1   |
| 13   | 64418  | 63677  | 741      | 8    | +1   |
| 9    | 21360  | 22141  | 781      | 9    | -1   |
| 10   | 23717  | 25243  | 1526     | 10   | -1   |
| 11   | 46617  | 48680  | 2063     | 11   | -1   |
| 12   | 69279  | 71421  | 2142     | 12   | -1   |
| 2    | 132632 | 130217 | 2415     | 13   | +1   |
| 7    | 31533  | 28460  | 3073     | 14   | +1   |
| 16   | 53914  | 49123  | 4791     | 15   | +1   |
| 14   | 109056 | 118174 | 9118     | 16   | -1   |

Tabela 10: Tabela rang dla testu Wilcoxona dla wartości funkcji celu

$$W_{-} = 1 + 2 + 3 + 4 + 5 + 9 + 10 + 11 + 12 + 16 = 73$$
  
 $W_{+} = 6 + 7 + 8 + 13 + 14 + 15$   
 $min(W_{+}, W_{-}) = 63 = T$ 

Poniżej powtórzony test dla wartości PRD:

**UWAGA:** W kolumnach GA oraz TABU wartości podawane są w **PROCENTACH!**. Ze względów estetycznych w samych tabelach oznaczenia procenta (%) zostały pominięte.

| Pair | GA   | TABU | Abs.Diff | Rank | Sign |
|------|------|------|----------|------|------|
| 6    | 4.2  | 4.5  | 0.3      | 1    | -1   |
| 8    | 6.1  | 5.2  | 0.9      | 2    | +1   |
| 13   | 10   | 8.8  | 1.2      | 3    | +1   |
| 5    | 3.3  | 4.6  | 1.3      | 4    | -1   |
| 2    | 12   | 10   | 2        | 5    | +1   |
| 1    | 7    | 10   | 3        | 6.5  | -1   |
| 4    | 11   | 14   | 3        | 6.5  | -1   |
| 12   | 17.3 | 21   | 3.7      | 8    | -1   |
| 9    | 2.9  | 6.7  | 3.8      | 9    | -1   |
| 11   | 5.2  | 9/9  | 4.7      | 10   | -1   |
| 15   | 0.1  | 6.3  | 6.2      | 11   | -1   |
| 10   | 11.3 | 18.6 | 7.3      | 12   | -1   |
| 14   | 0.8  | 9.3  | 8.5      | 13   | -1   |
| 3    | 22   | 12   | 10       | 14   | +1   |
| 16   | 28.1 | 16.7 | 11.4     | 15   | +1   |
| 7    | 18.8 | 7.3  | 11.5     | 16   | +1   |

Tabela 11: Tabela rang dla testu Wilcoxona dla wartości PRD  $W_- = 1 + 4 + 6.5 + 6.5 + 8 + 9 + 10 + 11 + 12 + 13 = 81$   $W_+ = 2 + 3 + 5 + 14 + 15 + 16 = 55$   $min(W_+, W_-) = 55 = T$ 

W obu przypadkach wnioski będą identyczne.

#### 7.5 Wnioski:

Wartość krytyczna  $\alpha=0.05$ , dla tego typu statystyk  $T_{crit}=35$  (dana z tabeli dla hipotez "o jednym ogonie"). Nie możemy odrzucić hipotezy zerowej, gdyż nie ma wystarczających dowodów aby spekulować o tym, iż różnica median w tym przypadku jest mniejsza niż 0 (T>35).

#### 8 Przypadek Testowy 7 - Test statystyczny - Porównanie działania GA z 20PT

#### 8.1 Cele:

W teście statystycznym porównanym działanie algorytmu genetycznego z algorytmem 2OPT, którego implementacją zajęliśmy się w ramach listy 2. Hipotezą startową jest stwierdzenie, że algorytm genetyczny zwraca lepszą średnią medianę wyników niż algorytm 2OPT. Do analizy uzyskanych wyników zostanie wykorzystany test Wilcoxon'a dla par obserwacji (one-sided).

#### 8.2 Założenia:

Do wykonania tego testu wykorzystano instancje znajdujące się w bibliotece TSPLIB. Początkowe permutacje są generowane w sposób losowy.

#### 8.3 Wykorzystane instancje:

Lista wykorzystanych instancji jest identyczna do tej, która znajduje się dla 6 przypadku testowego.

#### 8.4 Test:

Hipoteza zerowa: GA >= 2OPT

Hipoteza alternatywna: GA < 2OPT

| Pair | GA     | 2OPT   | Abs.Diff | Rank | Sign |
|------|--------|--------|----------|------|------|
| 6    | 11941  | 11930  | 11       | 1    | +1   |
| 15   | 678    | 696    | 18       | 2    | -1   |
| 5    | 5214   | 5304   | 90       | 3    | -1   |
| 8    | 23508  | 23325  | 183      | 4    | +1   |
| 4    | 7703   | 7423   | 280      | 5    | +1   |
| 1    | 8098   | 7811   | 287      | 8    | +1   |
| 13   | 64418  | 64025  | 393      | 7    | +1   |
| 11   | 46617  | 47035  | 418      | 8    | -1   |
| 3    | 7964   | 7098   | 866      | 9    | +1   |
| 9    | 21360  | 22364  | 1004     | 10   | -1   |
| 10   | 23717  | 21866  | 1851     | 11   | +1   |
| 7    | 31533  | 28218  | 3315     | 12   | +1   |
| 14   | 109056 | 112479 | 3423     | 13   | =1   |
| 2    | 132632 | 127530 | 5102     | 14   | +1   |
| 12   | 69279  | 64071  | 5208     | 15   | +1   |
| 16   | 53914  | 46294  | 7620     | 16   | +1   |

Tabela 12: Tabela rang dla testu Wilcoxona dla wartości funkcji celu

$$W_{-} = 2 + 3 + 8 + 10 + 13 = 36$$
 
$$W_{+} = 1 + 4 + 5 + 6 + 7 + 9 + 11 + 12 + 14 + 15 + 16 = 100$$
 
$$min(W_{+}, W_{-}) = 36 = T$$

Poniżej powtórzony test dla wartości PRD:

**UWAGA:** W kolumnach GA oraz 2OPT wartości podawane są w **PROCENTACH!**. Ze względów estetycznych w samych tabelach oznaczenia procenta (%) zostały pominięte.

| Pair | GA   | 2OPT | Abs.Diff | Rank | Sign |
|------|------|------|----------|------|------|
| 6    | 4.2  | 4    | 0.2      | 1    | +1   |
| 13   | 10   | 9.3  | 0.7      | 2    | +1   |
| 8    | 6.1  | 5.3  | 0.8      | 3    | +1   |
| 11   | 5.2  | 6.1  | 0.9      | 4    | =1   |
| 5    | 3.3  | 5    | 1.7      | 5    | -1   |
| 15   | 0.1  | 3    | 2.9      | 6    | -1   |
| 1    | 7    | 4    | 3        | 7    | +1   |
| 14   | 0.8  | 4    | 3.2      | 8    | -1   |
| 2    | 12   | 8    | 4        | 9.5  | +1   |
| 4    | 11   | 7    | 4        | 9.5  | +1   |
| 9    | 2.9  | 7.8  | 4.9      | 11   | -1   |
| 10   | 11.3 | 2.7  | 8.6      | 12   | +1   |
| 12   | 17.3 | 8.5  | 8.8      | 13   | +1   |
| 7    | 18.8 | 6.3  | 12.5     | 14   | +1   |
| 3    | 22   | 9    | 13       | 15   | +1   |
| 16   | 28.1 | 1    | 27.1     | 16   | +1   |

Tabela 13: Tabela rang dla testu Wilcoxona dla wartości PRD  $W_{-} = 1 + 2 + 3 + 7 + 9.5 + 9.5 + 12 + 13 + 14 + 15 + 16 = 102$   $W_{+} = 4 + 5 + 6 + 8 + 11 = 34$   $min(W_{+}, W_{-}) = 34 = T$ 

Zauważamy, że w tym przypadku otrzymujemy całkowicie różne wnioski

#### 8.5 Wnioski:

Wartość krytyczna  $\alpha = 0.05$ , dla tego typu statystyk  $T_{crit} = 35$  (dana z tabeli dla hipotez "o jednym ogonie").

Dla testu, który składał się z wartości równych funkcji celu otrzymaliśmy T=36. Nie możemy odrzucić hipotezy zerowej, gdyż nie ma wystarczających dowodów aby spekulować o tym, iż różnica median w tym przypadku jest mniejsza niż 0 (T>35). Natomiast dla testu, który składał się z wartości równych otrzymanemu PRD otrzymaliśmy T=34, dla którego już hipoteza zerowa zostaje odrzucona.

Zauważamy, iż użyte dane mają znaczenie na otrzymane wyniki. Ze względów normalizacyjnych poprawniejsze wyniki produkuje porównywanie otrzymanych PRD.