2^{er} semestre, année 2019/2020 3^{ième} année licence Maths Module: Probabilités Avancées

$T.D. N^{\circ}5$

Exercice n⁰ 1: Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et identiquement distribuées telles que $E[X_n] = m$ et $Var[X_n] = \sigma^2$. On considère deux variables aléatoires :

$$M_n = \frac{1}{n} \sum_{k=1}^n X_k$$
 et $V_n = \frac{1}{n} \sum_{k=1}^n (X_k - M_n)^2$

- 1. Montrer que la suite (M_n) converge presque sûrement vers m.
- 2. Calculer la moyenne de V_n .
- 3. Montrer que V_n converge presque sûrement vers σ^2 .

Exercice n⁰ 2 : Le nombre d'inscriptions à un cours d'économie politique est une variable aléatoire de Poisson de paramètre 100. Le professeur donnant ce cours a décidé que si le nombre d'inscriptions est au-delà de 120, il créera 2 sections et donnera donc 2 cours, tandis qu'en deçà une seule classe sera formée. Quelle est la probabilité que ce professeur ait à donner 2 fois ce cours?

Exercice n⁰ **3**: Montrer, que pour n grand, la loi binomiale $\mathcal{B}(n,p)$ est proche de la loi normale $\mathcal{N}(np, p(1-p))$.

Exercice n⁰ **4** : Soit X une variable aléatoire suivant une loi de Poisson de paramètre λ : $X \hookrightarrow \mathcal{P}(\lambda)$.

- 1. On suppose que X_1 et X_2 sont indépendantes et telles que $X_1 \hookrightarrow \mathcal{P}(\lambda_1)$ et $X_2 \hookrightarrow \mathcal{P}(\lambda_2)$. Montrer que $X_1 + X_2 \hookrightarrow \mathcal{P}(\lambda_1 + \lambda_2)$.
- 2. On considère une suite X_n , n=0,1,2,... de variables aléatoires indépendantes, qui suivent des lois de Poisson de paramètre unité : pour tout $n=0,1,2,...,X_n \hookrightarrow \mathcal{P}(1)$. On pose $S_n=X_1+X_2+....+X_n$.
 - a) Quelle est la loi de S_n ? Soit F_n la fonction de répartition de la variable aléatoire S_n . Montrer que $F_n(n) = e^{-n} \sum_{k=0}^n \frac{n^k}{k!}$.
 - b) Montrer que $Z_n = \frac{S_n n}{\sqrt{n}}$ converge en loi vers la loi normale unitaire centrée.
 - c) Déduire des questions précédentes que $\lim_{n\to\infty}\left(e^{-n}\sum_{k=0}^n\frac{n^k}{k!}\right)=\frac{1}{2}$.