Implementation of a full-wave code for the numerical simulation of Plasma-Wave interaction, using a B-Splines finite elements method

18 Juin - 31 Août 2018

Margaux BRULIARD¹ Superviseur: Ahmed RATNANI²

Max-Planck Institute of Plasma Physics¹

27 Septembre 2018

Sommaire

- Présentation de l'IPP
 - L'institut Max-Planck
 - Objectifs du stage
- 2 Polynômes de Berstein
 - Base des polynômes de Berstein
 - Les courbes de Bézier
- 3 Les B-splines
- 4 Résolution d'une équation de Poisson 1D
- 5 Présentation des équations de Maxwell
- 6 Maxwell 1D
 - Réduction des équations dans le cas 1D
 - Formulation variationnelle et discrétisation
 - séquence de DeRham
 - Résultats obtenus
 - Energie du système
- 7 Maxwell 2D
 - le système 2D
 - Discrétisation du système
 - Conclusion

L'Institut Max-Planck

- Institut de physique
- membre de la Société Max-Planck
- fait partie de la Comunauté Européenne de l'énergie atomique
- 2 sites en Allemagne :
 - Garching (1960)
 - Greifswald (1994)

FIGURE - Marientplatz - centre de Munich

- Numerical Methods for Plasma Physics
- responsable du NMPP: Dr. Eric SONNENDRÜCKER
- 1 des 11 divisions de IPP
- Crée des méthodes numériques avancées pour la résolution de problèmes

MagnetoHydroDynamics

- chef d'équipe : Ahmed RATNANI
- sujets de travail
 - Isoparametric and Isogeometric Analysis (IGA)
 - Compatible Finite Elements Methods
 - High Order Discontinuous Galerkin Method
 - Mesh Generation

000

Objectifs du stage

- étudier l'évolution d'une onde électromagnétique et implémenter les calculs nécéssaires en se basant sur une méthode des éléments finis et les B-Splines
- Utiliser les résultats et les codes précédents pour améliorer le module SPL de Python

le module SPL et la librairie FEEC

- librairie Python pour le calcul via éléments finis et B-Splines
- transformation du code Python en Fortran
- disponible en OpenSource sur github: https://github.com/pyccel/spl

Définitions

Définition de la base des polynômes de Berstein

soit $t \in [0, 1]$, on peut définir $\forall p \geq 0, B_0^p, B_1^p, ..., B_n^p$:

$$B_i^p(t) = \binom{p}{i} t^i (1-t)^{p-i}$$

Définition par récurence

$$\forall p \ge 1 \quad B_i^{p}(t) = \begin{cases} (1-t)B_i^{p-1} & i = 0\\ (1-t)B_i^{p-1}(t) + tB_{i-1}^{p-1}(t) & \forall i \in \{1, ..., p-1\}\\ tB_{i-1}^{p-1}(t) & i = p \end{cases}$$
 (1)

les courbes de Bézier

Définition

soit les **points de contrôle** $P_0, P_1, ..., P_p$ où p est le degré de la courbe de Bézier. De plus nous utilisons la base des polynômes de Berstein de dégré p. Ainsi la courbe de Bézier correspondante s'exprime comme suit :

$$C(t) = \sum_{i=0}^{p} P_i \cdot B_i^{p}(t)$$

Les courbes de Bézier ont donc la même forme que les polynômes de Bernstein

0000

Présentation de l'IPP

Les courbes de Bézier

Un exemple simple

$$P_0 = (0,0)$$

$$P_1 = (0.3, 0)$$

$$P_2 = (-0.1, 0.1)$$

$$\forall t \in [0,1] \left\{ \begin{array}{l} B_0^2(t) = (1-t)^2 \\ B_1^2(t) = 2t(1-t) \\ B_2^2(t) = t^2 \end{array} \right.$$

Exemples

FIGURE - Exemples de courbe de Bézier quadratiques

Définitions et propriétés des B-Splines

Première Définition

On définie $t_0 \le t_1 \le ... \le t_{m-1}$ une séquence croissante de réels. nous pouvons alors définir une famille de B-Splines de degrée p (notée as $(N_i^p)_i$) par récurence :

$$\forall 0 \le i \le m - 1 \quad \left\{ \begin{array}{ll} N_i^0(t) = 1 & t \in [t_i, t_{i+1}] \\ N_i^0(t) = 0 & \text{if not} \end{array} \right. \tag{2}$$

$$\forall p \geq 1 \text{ and } i \leq m-p-1 \quad N_i^p(t) = \frac{t-t_i}{t_{i+p}-t_i} N_i^{p-1}(t) + \frac{t_{i+p+1}-t}{t_{i+p+1}-t_{i+1}} N_{i+1}^{p-1}(t)$$

Hypothèse de construction

On suppose lors des calculs de construction des B-Splines que : $\frac{x}{0} = 0$, $\forall x \in \mathbb{R}$

Les B-Splines

Dérivation d'une B-Spline

Nous pouvons définir la dérivée de la fonction de base $N_i^p(t)$ comme :

$$(N_i^p)'(t) = \frac{p}{t_{i+p} - t_i} N_i^{p-1}(t) - \frac{p}{t_{i+1+p} - t_{i+1}} N_{i+1}^{p-1}(t)$$

Quelques propriétés

- Partition de l'unité
- Support compact

FIGURE – Une famille de B-Splines de degré

Les courbes B-Splines

Courbe Spline

Une courbe spline est une courbe paramétrique basée sur une famille de Splines (ex : B-splines) et plusieurs points de contrôle $P_0, P_1, ..., P_{n-1}$.

$$S: [0,1] \to \mathbb{R}^d S(t) = \sum_{i=0}^{n-1} N_i^p(t) \cdot P_i \quad t \in [0,1]$$
 (3)

- $\Omega = [0, 6]$
- la liste de knots : T = [0, 0, 1, 2, 3, 4, 5, 6, 6]
- points de contrôle :

$$P_0 = (0,0)$$

$$P_1 = (0.5,0.8)$$

$$P_2 = (2.1,0.5)$$

$$P_3 = (3.4,0.9)$$

$$P_4 = (4,2.3)$$

$$P_5 = (5.5,1.4)$$

 $P_6 = (6, 0.6)$

L'équation

Rappelons rapidement l'équation de Poisson :

$$\begin{cases}
-\Delta u = f & \text{in } \Omega = [0, 1] \\
u = 0 & \text{on } \partial \Omega
\end{cases}$$
(4)

On pose $v \in V_h$, où V_h est un espace test et :

$$(4) \iff -\Delta u = f$$

$$\iff -\Delta u \cdot v = f \cdot v$$

$$\iff -\int_{\Omega} \Delta u \cdot v = \int_{\Omega} f \cdot v$$

$$\iff \int_{\Omega} \overrightarrow{\nabla} u \cdot \overrightarrow{\nabla} v - \underbrace{\int_{\partial \Omega} u \cdot v \cdot n}_{=0} = \int_{\Omega} f \cdot v$$

Et donc on obtient la formulation variationnelle suivante :

$$\int_{\Omega} \overrightarrow{\nabla} u \cdot \overrightarrow{\nabla} v = \int_{\Omega} f \cdot v, \quad \forall v \in \mathcal{V}_h$$

(5)
Max-Planck-Institut
für Plasmaphysik

Margaux BRULIARD - IPP -

Construction du système

On cherche à présent à discrétiser notre équation pour travailler avec les familles de B-Splines.

On choisit:

$$\begin{cases} u = \sum_{j} u_{j} N_{j}^{p} \\ v = N_{j}^{p} \end{cases}$$

et ainsi (5) devient :

$$\sum_{j} u_{j} \underbrace{\int_{\Omega} \overrightarrow{\nabla} N_{i}^{p} \cdot \overrightarrow{\nabla} N_{j}^{p}}_{S_{ii}} = \underbrace{\int_{\Omega} f \cdot N_{i}^{p}}_{F_{i}}$$

avec S la matrice de rigidité et F le vecteur second membre.

Résultats

Prenons un exemple simple :

$$\begin{cases}
-\Delta u = 2 \\
\Omega = [0, 1] \\
u(0) = 0 \quad u(1) = 0
\end{cases}$$
(6)

dont on connait la solution exact : $u_e(x) = x(1-x)$

FIGURE - Résolution du problème de Poisson 1D

Présentation Générale

Selon le livre de M. BOSSAVIT :

$$-\partial_t \mathcal{D} + \nabla \times \mathbf{H} = \mathbf{i} \tag{7}$$

$$\partial_t \mathcal{B} + \nabla \times \mathbf{E} = \mathbf{0} \tag{8}$$

$$\mathcal{D} = \epsilon_0 E + p \tag{9}$$

$$\mathcal{B} = \mu_0(H + m) \tag{10}$$

- E(x, t) l'intensité du champs électrique
- \blacksquare $\mathcal{B}(x,t)$ densité du flux magnétique
- $\mathbf{D}(x,t)$ est l'induction magnétique
- H(x, t) le champs magnétique
- ρ la densité de charge
- i(x, t) vecteur de courant
- \blacksquare μ_0 la perméabilité magnétique dans le vide
- lacksquare ϵ_0 la permittivité électrique dans le vide
- $\mathbf{x} \in \mathbb{R}^d$ variable spatiale
- $t \in \mathbb{R}^+$ variable temporelle

Présentation Générale

Simplifions légèrement ces équations :

$$-\partial_t \mathcal{D} + \nabla \times H = j$$

$$\iff -\partial_t (\epsilon_0 E + \rho) + \nabla \times (\frac{1}{\mu_0} B - m) = j$$

$$\iff -\epsilon_0 \partial_t E + \frac{1}{\mu_0} \nabla \times B = j - \partial_t \rho + \nabla \times m$$

et si on suppose que m = 0, p = 0, alors

$$\begin{cases} -\epsilon_0 \partial_t E + \frac{1}{\mu_0} \nabla \times B = j \\ \partial_t B + \nabla \times E = 0 \\ \mathcal{D} = \epsilon_0 E \\ \mathcal{B} = \mu_0 H \end{cases}$$

Présentation Générale

On retrouve donc les lois de Faraday et d'Ampère

$$\int \nabla \times E(x,t) = -\partial_t \mathcal{B}(x,t) \qquad (Faraday's law) \qquad (11)$$

$$\begin{cases} \nabla \times E(x,t) = -\partial_t \mathcal{B}(x,t) & (\textit{Faraday's law}) & (11) \\ \nabla \cdot E(x,t) = \frac{\rho(x,t)}{\epsilon_0} & (\textit{Gauss' law}) & (12) \\ \nabla \times \mathcal{B}(x,t) = \mu_0 j(x,t) + \mu_0 \epsilon_0 \partial_t E(x,t) & (\textit{Ampere's law}) & (13) \\ \nabla \cdot \mathcal{B}(x,t) = 0 & (\textit{Gauss' law for magnetism}) & (14) \end{cases}$$

$$\nabla \times \mathcal{B}(x,t) = \mu_0 j(x,t) + \mu_0 \epsilon_0 \partial_t E(x,t) \qquad (Ampere's law) \qquad (13)$$

$$\nabla \cdot \mathcal{B}(x,t) = 0 \qquad (Gauss' law for magnetism) \tag{14}$$

Dans le reste du projet, on s'intéresse principalement au calcul des champs E et \mathcal{B} en les nommant par abus de langage "champs électrique" et "champs magnétique"

für Plasmaphysik

Réduction des équations au cas 1D

Dans le cas présent on choisit d'étudier une onde électromagnétique dans la direction x et polarizée dans la direction v.

$$\mathbf{E}_{\mathbf{v}} = \mathcal{B}_{\mathbf{v}} = \mathbf{0}$$

$$\partial_{\mathbf{v}} \cdot = \partial_{\mathbf{z}} \cdot = \mathbf{0}$$

Ainsi:

$$\left\{ \begin{array}{l} \partial_y E_z - \partial_z E_y + \partial_t \mathcal{B}_x = 0 \\ \partial_z E_x - \partial_x E_z + \partial_t \mathcal{B}_y = 0 \\ \partial_x E_y - \partial_y E_x + \partial_t \mathcal{B}_z = 0 \\ -\epsilon_0 \partial_t E_x + \frac{1}{\mu_0} (\partial_y \mathcal{B}_z - \partial_z \mathcal{B}_y) = j_x \\ -\epsilon_0 \partial_t E_y + \frac{1}{\mu_0} (\partial_z \mathcal{B}_x - \partial_x \mathcal{B}_z) = j_y \\ -\epsilon_0 \partial_t E_z + \frac{1}{\mu_0} (\partial_x \mathcal{B}_y - \partial_y \mathcal{B}_x) = j_z \end{array} \right.$$

se réduit à

$$\left\{ \begin{array}{l} \partial_x E_y + \partial_t \mathcal{B}_z = 0 \\ \epsilon_0 \partial_t E_y + \frac{1}{\mu_0} \partial_x \mathcal{B}_z = -j_y \end{array} \right.$$

Formulation Variationnelle

Reprenons notre système :

$$\begin{cases} \epsilon_0 \partial_t E(x,t) + \frac{1}{\mu_0} \partial_x \mathcal{B}(x,t) = -j \\ \partial_t \mathcal{B}(x,t) + \partial_x E(x,t) = 0 \end{cases}$$
 (15)

Commencons par chercher une formulation variationnelle 'faible' pour (15): On prend $v \in V_h$ une fonction dans un espace test

$$(15) \iff \int_{\Omega} \epsilon_0 \partial_t E \cdot v + \frac{1}{\mu_0} \partial_x \mathcal{B} \cdot v dx = \int_{\Omega} -j \cdot v dx$$

$$\iff \int_{\Omega} \epsilon_0 \partial_t E \cdot v dx + \frac{1}{\mu_0} - \int_{\Omega} \mathcal{B} \cdot \partial_x v dx = \int_{\Omega} -j \cdot v dx$$

La seconde équation (16) est alors considérée comme 'forte' et n'est pas modifiée

Discrétisation des espaces

$$E \in H^1 \Longrightarrow \mathbb{S}^p$$

$$\mathbb{B} \in L^2 \Longrightarrow \mathbb{S}^{p-1}$$

- $(N_i^p)_{0 \le i \le p-1}$ la famille de B-Splines, base de \mathbb{S}^p
- $(D_i^{p-1})_{0 \le i \le n-2}$ famille de B-Splines, base de \mathbb{S}^{p-1} , où

$$(N_i^p)'(x) = D_i^{p-1}(x) - D_{i+1}^{p-1}(x)$$

On peut donc discrétiser nos champs E et \mathcal{B} :

$$E(x,t) = \sum_{i=0}^{n-1} e_i N_i^p(x)$$

$$B(x,t) = \sum_{i=0}^{p-1} b_i D_i^{p-1}$$

et on choisit $v = N_i^p(x)$ comme fonction test

Reprenons (15) en utilisant la discrétisation de E et B :

$$\sum_{j=0}^{n-1} \epsilon_0 \dot{E}_j \underbrace{\int_{\Omega} N_j^p(x) N_i^p(x) dx}_{M_{ij}} - \frac{1}{\mu_0} \sum_{j=0}^{n-2} \mathcal{B}_j \underbrace{\int_{\Omega} D_j^{p-1}(x) (N_i^p(x))' dx}_{R_{ij}} = \sum \underbrace{\int_{\Omega} -j(\overline{x}_i) \cdot N_i^p(x) dx}_{J_i}$$

ďoù

$$(15) \Longleftrightarrow \epsilon_0 M \dot{E} - \frac{1}{\mu_0} RB = J$$

Regardons à présent l'équation (16) :

$$(16) \iff \sum_{j=0}^{n-2} \dot{\mathcal{B}}_j D_j^{p-1}(x) + \sum_{j=0}^{n-1} E_j (N_j^p)'(x) = 0$$

Sachant que l'on a choisit $(D_i^{p-1})_i$ tel que

$$(N_i^p(x))' = D_i^{p-1}(x) - D_{i+1}^{p-1}(x)$$

alors on a:

$$\begin{split} \sum_{j=0}^{n-1} E_j(N_j^p)'(x) &= \sum_{j=0}^{n-1} E_j \left(D_j^{p-1}(x) - D_{j+1}^{p-1}(x) \right) \\ &= \sum_{j=0}^{n-1} E_j D_j^{p-1}(x) - \sum_{j=0}^{n-1} E_j D_{j+1}^{p-1}(x) \\ &= \sum_{j=0}^{n-1} E_j D_j^{p-1}(x) - \sum_{j=1}^{n} E_{j-1} D_j^{p-1}(x) \\ &= E_0 D_0^{p-1}(x) + \sum_{j=1}^{n-1} (E_j - E_{j-1}) D_j^{p-1}(x) + E_{n-1} D_n^{p-1}(x) \end{split}$$

ďoù

$$\text{avec } G = \begin{pmatrix} 1 & -1 & 0 & ... & 0 & 0 \\ 0 & 1 & -1 & ... & 0 & 0 \\ ... & ... & ... & ... & ... & 0 \\ 0 & 0 & 0 & ... & 1 & -1 \end{pmatrix} \in \mathcal{M}_{n-1,n}(\mathbb{R})$$

Max-Planck-Institut für Plasmaphysik

24 / 43

FIGURE - DeRham sequence 1D

Résultats obtenus

On choisit comme exemple:

- \equiv j = 0
- we have homogenous Dirichlet boundary conditions
- \blacksquare $E(x,0) = E^0$ and $B(x,0) = B^0$ are known

où la solution analytique est connue :

- $E(x,t) = \sin(2\pi x)\cos(t)$
- $B(x,t) = \cos(2\pi x)\sin(t)$

Résultats obtenus

Euler Explicite:

Computing Electrical (E) and Magnetic field (B) with Euler Explicit scheme Δt=5e-05 t=0.01000

Ω

Computing Electrical (E) and Magnetic field (B) with Euler Explicit scheme

Computing Electrical (E) and Magnetic field (B) with Euler Explicit scheme Δt=5e-05 t=0.05000

Max-Planck-Institut für Plasmaphysik

27 / 43

Euler Implicite:

FIGURE - Résultats numérique pour le champs électrique Maxwell 1D (Euler Implicit Scheme), D

Runge Kutta 4:

FIGURE - Résultats numériques pour le champs électrique Maxwell 1D (Runge Kuta 4 scheme), 4

Calcul de l'énergie du système

Energie électromagnétique

$$U_{em}(t) = \frac{1}{2} \int_{\Omega} (\epsilon_0 \cdot E(x, t)^2 + \frac{1}{\mu_0} \mathcal{B}(x, t)^2) dx$$
 (18)

A partir des résultats numériques obtenus E^{τ} et B^{τ} à l'instant t^{τ} , on peut approximer $U_{em}(t)$:

$$U_{em}(t) = \frac{1}{2} \int_{\Omega} \epsilon_0 \cdot E(x, t)^2 + \frac{1}{\mu_0} \mathcal{B}(x, t)^2 dx$$
$$= \frac{1}{2} \int_{\Omega} \epsilon_0 E(x, t)^2 dx + \frac{1}{2} \int_{\Omega} \frac{1}{\mu_0} \mathcal{B}(x, t)^2 dx$$

Energie du système

et

$$\int_{\Omega} E(x,t)^2 dx = \int_{\Omega} \left(\sum_{i=0}^n e_i^T N_i^p(x)\right)^2 dx$$

$$= \int_{\Omega} \left(\sum_{i=0}^n e_i^T N_i^p(x)\right) \left(\sum_{j=0}^n e_j^T N_j^p(x)\right) dx$$

$$= \sum_{i=0}^n \sum_{j=0}^n e_i^T e_j^T \int_{\Omega} N_i^p(x) N_j^p(x) dx$$

$$= (E^T)^T ME$$

pour un instant $t = t^{\tau}$ donné.

Résultats

Les schémas Euler présentent une énergie décroissante.

Le schéma de Runge Kutta 4 tend quand à lui vers une énergie constante même si l'on peut constater une légère décroissance lorsque le temps final devient grand.

k-Institut

iur masmaphysik

Les équations de Maxwell

Les équations de Maxwell 2D

Reprenons la formule générale des équations de Maxwell

$$\begin{cases} -\epsilon_0 \partial_t E + \frac{1}{\mu_0} \nabla \times B = j \\ \partial_t \mathcal{B} + \nabla \times E = 0 \end{cases}$$

$$\iff \begin{cases} \partial_y E_z - \partial_z E_y + \partial_t B_x = 0 \\ \partial_z E_x - \partial_x E_z + \partial_t B_y = 0 \\ \partial_x E_y - \partial_y E_x + \partial_t B_z = 0 \\ -\epsilon_0 \partial_t E_x + \frac{1}{\mu_0} (\partial_y B_z - \partial_z B_y) = j_x \\ -\epsilon_0 \partial_t E_y + \frac{1}{\mu_0} (\partial_z B_x - \partial_x B_z) = j_y \\ -\epsilon_0 \partial_t E_z + \frac{1}{\mu_0} (\partial_x B_y - \partial_y B_x) = j_z \end{cases}$$

27 Septembre 2018

Réduction dans le cas 2D

On définit deux **modes** dans le cas des éguations de Maxwell 2D :

Le mode Electrique Transverse (TE):

On suppose que le champs électrique ne se déplace pas dans le sens de propagation (ici la direction z) donc:

$$\begin{cases} \partial_{x}E_{y} - \partial_{y}E_{x} + \partial_{t}\mathcal{B}_{z} = 0 \\ -\epsilon_{0}\partial_{t}E_{x} + \frac{1}{\mu_{0}}\partial_{y}\mathcal{B}_{z} = j_{x} \\ -\epsilon_{0}\partial_{t}E_{y} - \frac{1}{\mu_{0}}\partial_{x}\mathcal{B}_{z} = j_{y} \end{cases}$$

Le mode Magnétique Transverse (TM):

On suppose que le champs électrique se déplace uniquement dans le sens de propagation (ici la direction z) d'où:

$$\begin{cases} \partial_y E_z + \partial_t \mathcal{B}_x = 0 \\ -\partial_x E_z + \partial_t \mathcal{B}_y = 0 \\ -\epsilon_0 \partial_t E_z + \frac{1}{\mu_0} (\partial_x \mathcal{B}_y - \partial_y \mathcal{B}_x) = j_z \end{cases}$$

Nous choisissons de travailler avec le mode électrique transverse par la suite

$$\left\{ \begin{array}{l} \partial_x E_y - \partial_y E_x + \partial_t \mathcal{B}_z = 0 \\ -\epsilon_0 \partial_t E_x + \frac{1}{\mu_0} \partial_y \mathcal{B}_z = j_x \\ -\epsilon_0 \partial_t E_y - \frac{1}{\mu_0} \partial_x \mathcal{B}_z = j_y \end{array} \right.$$

et si on pose $E = \begin{pmatrix} E_X \\ E_V \end{pmatrix}$ et $B = B_Z$ alors on retrouve bien notre système de départ :

$$\begin{cases} -\epsilon_0 \partial_t E + \frac{1}{\mu_0} \nabla \times B = j \\ \partial_t \mathcal{B} + \nabla \times E = 0 \end{cases}$$

les opérateurs $\nabla \times$

2 opérateurs $\nabla \times$ différents : soit $u \in \mathbb{R}$ et $v \in \mathbb{R}^2$

$$\nabla \times u = \begin{pmatrix} \partial_y u \\ -\partial_x u \end{pmatrix}$$

$$\nabla \times \mathbf{v} = \partial_{\mathbf{x}} \mathbf{u}_{\mathbf{v}} - \partial_{\mathbf{v}} \mathbf{u}_{\mathbf{x}}$$

k-Institut

tür Plasmaphysik

Discrétisation des espaces

Dans le cas 2D, on utilisera les espaces suivants :

$$\begin{split} V &= span\{N_{i}^{p}(x)N_{j}^{p}(y), 0 \leq i \leq N_{x}-1, 0 \leq j \leq N_{y}-1\} \\ W_{div} &= span\{\begin{pmatrix} N_{i}^{p}(x)D_{j}^{p-1}(y) \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ D_{i}^{p-1}(x)N_{j}^{p}(y) \end{pmatrix}, 0 \leq i \leq N_{x}-1, 0 \leq j \leq N_{y}-1\} \\ &= span\{\psi_{i,j}^{1}, \psi_{i,j}^{2}, 0 \leq i \leq N_{x}-1, 0 \leq j \leq N_{y}-1\} \\ X &= span\{D_{j}^{p-1}D_{j}^{p-1}, 0 \leq i \leq N_{x}-2, 0 \leq j \leq N_{y}-2\} \end{split}$$

- $(N_i^p(x))_i$ une famille de B-Splines de degré p
- $(D_i^{p-1})_i$ une famille de B-Splines de degré p-1

$$D_i^{p-1} = \frac{p}{t_{i+p}-t_i} N_i^{p-1}$$

De la même façon que dans le cas 1D, nous choisissons une équation du système dont la formulation sera 'faible'.

Ici on prend:

$$\begin{split} &\int_{\Omega} \nabla \times \boldsymbol{E} \cdot \phi d\boldsymbol{x} + \int_{\Omega} \partial_t \mathcal{B} \cdot \phi d\boldsymbol{x} = 0 \quad \phi \in V_h \\ &\int_{\Omega} \boldsymbol{E} \cdot \nabla \times \phi d\boldsymbol{x} - \underbrace{\int_{\partial \Omega} (\boldsymbol{E} \times \boldsymbol{n}) \cdot \phi d\boldsymbol{S}}_{=0} + \int_{\Omega} \partial_t \mathcal{B} \cdot \phi d\boldsymbol{x} = 0 \quad \text{(formule de Green)} \\ &\int_{\Omega} \boldsymbol{E} \cdot \nabla \times \phi d\boldsymbol{x} + \int_{\Omega} \partial_t \mathcal{B} \cdot \phi d\boldsymbol{x} = 0 \end{split}$$

avec: $\nabla \times \phi \in W_{div} \Longrightarrow V_h = V$, et $E \in W_{div}$, $\mathcal{B} \in V$

On dicrétise B et $E = \begin{pmatrix} E_x \\ F_y \end{pmatrix}$ de la manière suivante :

$$\blacksquare \mathcal{B} = \sum_{i_1=0}^{N_x-1} \sum_{i_2=0}^{N_y-1} b_{i_1,i_2} N_{i_1}^p(x) N_{i_2}^p(y)$$

$$\blacksquare E_x = \sum_{i_1=0}^{N_x-1} \sum_{i_2=0}^{N_y-1} e_{i_1,i_2}^x N_{i_2}^p(x) D_{i_2}^{p-1}(y)$$

$$\blacksquare E_y = \sum_{i_1=0}^{N_x-1} \sum_{i_2=0}^{N_y-1} e_{i_1,i_2}^y D_{i_2}^{p-1}(x) N_{i_2}^p(y)$$

$$E = \sum_{i_1=0}^{N_x-1} \sum_{i_2=0}^{N_y-1} e_{i_1,i_2}^x \psi_{i_1,i_2}^1 + e_{i_1,i_2}^y \psi_{i_1,i_2}^2$$

Alors.

$$\int_{\Omega} E \cdot \nabla \times \phi dx = \sum_{j_{1}=0}^{N_{x}-1} \sum_{j_{2}=0}^{N_{y}-1} e_{j_{1},j_{2}}^{x} \int_{\Omega} N_{j_{1}}^{p}(x) D_{j_{2}}^{p-1}(y) N_{i_{1}}^{p}(x) (N_{i_{2}}^{p}(x))' dx$$

$$+ \sum_{j_{1}=0}^{N_{x}-1} \sum_{j_{2}=0}^{N_{y}-1} e_{j_{1},j_{2}}^{y} \int_{\Omega} -D_{j_{1}}^{p-1}(x) N_{j_{2}}^{p}(y) (N_{i_{1}}^{p}(x))' N_{i_{2}}^{p}(x) dx$$

$$(R_1)_{i_1,i_2,j_1,j_2} = \int_{\Omega} N_{j_1}^{\rho}(x) D_{j_2}^{\rho-1}(y) N_{i_1}^{\rho}(x) (N_{i_2}^{\rho}(x))' dx$$

$$(R_2)_{i_1,i_2,j_1,j_2} = \int_{\Omega} -D_{j_1}^{\rho-1}(x) N_{j_2}^{\rho}(y) (N_{i_1}^{\rho}(x))' N_{i_2}^{\rho}(x) dx$$

et donc on obtient la matrice rotationnelle R:

$$R = \begin{bmatrix} R_1 & R_2 \end{bmatrix}$$

On regarde également la seconde partie de l'équation :

$$\int_{\Omega} \partial_t \mathcal{B} \cdot \phi = \sum_{i_1=0}^{N_x-1} \sum_{i_2=0}^{N_y-1} b_{j_1,j_2}^{\cdot} \int_{\Omega} N_{j_1}^{p}(x) N_{j_2}(y) N_{i_1}^{p}(x) N_{i_2}^{p}(y) dx$$

On obtient finalement la discrétisation de notre 1ère équation

$$RE + M_{\nu}\dot{\mathcal{B}} = 0$$

M., est la matrice de masse de l'espace V Full-Wave implementation

38 / 43

Nous allons utiliser une 'formulation forte' pour la seconde équation du système

$$\epsilon_0 \partial_t E = \frac{1}{\mu_0} \nabla \times B - j$$

et on a:

$$\begin{split} \nabla \times \mathcal{B} &= \sum_{j_1=0}^{N_x-1} \sum_{j_2=0}^{N_y-1} b_{j_1,j_2} \begin{pmatrix} N_{j_1}^{\rho}(x)(D_{j_2}^{\rho-1}(y) - D_{j_2+1}^{\rho-1}(y)) \\ -(D_{j_1}^{\rho-1}(x) - D_{j_1+1}^{\rho-1}(x))N_{j_2}^{\rho}(y) \end{pmatrix} \\ &= \sum_{j_1=0}^{N_x-1} \sum_{j_2=0}^{N_y-1} b_{j_1,j_2} (\psi_{j_1,j_2}^1 - \psi_{j_1,j_2+1}^1 - \psi_{j_1,j_2}^2 + \psi_{j_1+1,j_2}^2) \\ &= (\sum_{j_1=0}^{N_x-1} b_{j_1,0}\psi_{j_1,0}^1 + \sum_{j_1=0}^{N_x-1} \sum_{j_2=1}^{N_y-1} (b_{j_1,j_2} - b_{j_1,j_2}) + \sum_{j_1=0}^{N_y-1} \psi_{j_1,j_2}^1) \\ &- (\sum_{j_1=1}^{N_x-1} \sum_{j_2=0}^{N_y-1} (b_{j_1,j_2} - b_{j_1-1,j_2}) \psi_{j_1,j_2}^2 + \sum_{j_2=0}^{N_y-1} b_{0,j_2} \psi_{0,j_2}^2) \end{split}$$

A l'aide du **produit de Kronecker** nous pouvons exprimer $\nabla \times \mathcal{B}$:

et on rappelle que J est le vecteur second membre.

On obtient la seconde équation discrétisée :

$$\epsilon_0 \dot{E} = \frac{1}{\mu_0} GB - J$$

Un exemple de résolution

On a le système discrétisé suivant :

$$\begin{cases} \dot{E} = \frac{1}{\mu_0 \epsilon_0} \mathbb{G} B - \frac{1}{\epsilon_0} J \\ \dot{\mathcal{B}} = -(M_V)^{-1} RE \end{cases}$$

Choisissons un exemple simple. Soit la solution analytique suivante :

$$H(x, y, t) = \cos(k_1 x + \sigma_1) \sin(k_2 y + \sigma_2) \cos(\omega t)$$

$$E_X(x, y, t) = -\frac{k_2}{\omega} \cos(k_1 x + \sigma_1) \sin(k_2 y + \sigma_2) \sin(\omega t)$$

$$E_Y(x, y, t) = \frac{k_2}{\omega} \sin(k_1 x + \sigma_1) \cos(k_2 y + \sigma_2) \sin(\omega t)$$

avec j = 0, $k_1 = k_2 = 1$, $\sigma_1 = \sigma_2 = 0$, $\omega = \pi$ et $H_Z(x, y, 0)$, $E_X(x, y, 0)$ et $E_Y(x, y, 0)$ connus

Alors notre système devient :

$$\begin{cases} \dot{E} = \frac{1}{\mu_0 \epsilon_0} \mathbb{G}B \\ \dot{\mathcal{B}} = -(M_V)^{-1} RE \end{cases}$$

Pour aller un peu plus loin :

les projecteurs de la séquence de DeRham 2D

FIGURE - DeRham sequence 2D

le schéma Leap-Frog

Conclusion

- découverte d'un institut de recherche
- travailler dans un lieu multiculturel

- la méthode des éléments finis
- découverte de la méthode d'interpolation des B-Splines
- les équations de Maxwell
- ...

liens github

- Le module Python SPL: https://github.com/pyccel/spl
- pour retrouver mon projet :
 https://github.com/MBruliard/electromagnetic_wave

