Signals and Systems

Lecturer: Dr. Lin Xu, Dr. Xiran Cai

Email: xulin1@shanghaitech.edu.cn

caixr@shanghaitech.edu.cn

Office: 3-428(Xu), 3-438(Cai) SIST

Tel: 20684449(Xu), 20684431(Cai)

ShanghaiTech University

Chapter 6: Time and frequency characterization of signals and systems

- ☐ The magnitude-phase representation of Fourier Transform
- ☐ The magnitude-phase representation of the frequency response of LTI systems
- ☐ Time-domain properties of ideal frequency-selective filters
- ☐ Time-domain and frequency-domain aspects of non-ideal filters
- **□** First-order system

Magnitude and phase spectrum

Continuous FT
$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j\omega)$$
 $X(j\omega) = |X(j\omega)|e^{j\angle X(j\omega)}$

Discrete FT
$$x[n] \longleftrightarrow X(e^{j\omega}) \quad X(e^{j\omega}) = |X(e^{j\omega})|e^{j\angle X(e^{j\omega})}$$

- \square Magnitude spectrum: $|X(j\omega)|$ and $|X(e^{j\omega})|$
- \square Phase spectrum (angle): $\angle X(j\omega)$ and $\angle X(e^{j\omega})$

Magnitude spectrum

Continuous time as an example

IFT:
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

- $\square |X(j\omega)|$: describes the basic frequency content of a signal, and the relative magnitude of the each frequency (complex exponential)
- $\square |X(j\omega)|^2$: energy-density spectrum of x(t)
- $\Box |X(j\omega)|^2 d\omega/2\pi$: energy in the signal between ω and $\omega + d\omega$

Phase spectrum

- $\angle X(j\omega)$
- relative phase of the each complex exponential
- significant effect on the nature of the signal
- changes in $\angle X(j\omega)$ lead to phase distortion

$$\phi_1 = \phi_2 = \phi_3 = 0$$

$$\varphi_1 = \varphi_2 = \varphi_3 = 0$$

$$\varphi_1 = 4 \ rad, \varphi_2 = 8 \ rad, \varphi_3 = 12 \ rad$$

$$\varphi_1 = 6 \, rad, \varphi_2 = -2.7 \, rad, \varphi_3 = 0.93 \, rad$$

$$\varphi_1 = 1.2 \ rad, \varphi_2 = 4.1 \ rad, \varphi_3 = -7.02 \ rad$$

Chapter 6: Time and frequency characterization of signals and systems

- ☐ The magnitude-phase representation of Fourier Transform
- ☐ The magnitude-phase representation of the frequency response of LTI systems
- ☐ Time-domain properties of ideal frequency-selective filters
- ☐ Time-domain and frequency-domain aspects of non-ideal filters
- **□** First-order system

Gain and phase shift

☐ For LTI system

$$x(t) \longrightarrow h(t) \longrightarrow y(t) = x(t) * h(t)$$

$$X(j\omega)$$
 \longrightarrow $H(j\omega)$ $Y(j\omega) = H(j\omega)X(j\omega)$

- The frequency response $H(j\omega) = |H(j\omega)|e^{j\angle H(j\omega)}$
- \square $|H(j\omega)|$: Gain of the LTI system; $\angle H(j\omega)$: phase shift of the LTI system

$$Y(j\omega) = H(j\omega)X(j\omega) = |H(j\omega)||X(j\omega)|e^{j(\angle H(j\omega) + \angle X(j\omega))}$$

$$|Y(j\omega)| = |H(j\omega)||X(j\omega)| \quad \angle Y(j\omega) = \angle H(j\omega) + \angle X(j\omega)$$

Linear phase system

$$x(t) \longrightarrow \left\{ h(t) \right\} \longrightarrow y(t)$$

 $|H(j\omega)|$

For
$$H(j\omega) = e^{-j\omega t_0}$$

$$|H(j\omega)| = 1$$
 $\angle H(j\omega) = -\omega t_0$

Output of system:

$$Y(j\omega) = H(j\omega)X(j\omega)$$
$$= X(j\omega)e^{-j\omega t_0}$$
$$y(t) = x(t - t_0)$$

All-pass system

 $\angle H(j\omega)$

Phase shift

Non-linear phase system

$$x(t) \longrightarrow h(t) \longrightarrow y(t)$$

For
$$H(j\omega) = H_1(j\omega)H_2(j\omega)$$

$$H_1(j\omega) = e^{-j\omega t_0}$$

$$H_2(j\omega) = e^{\angle H_2(j\omega)}$$

 $\angle H_2(j\omega)$ is a nonlinear function of ω

$$|H(j\omega)| = 1$$

$$\angle H(j\omega) = -\omega t_0 + \angle H_2(j\omega)$$

Group delay

$$x(t) \longrightarrow h(t) \longrightarrow y(t)$$

- \square Consider a system with $\angle H(j\omega)$ (a nonlinear function of ω)
- \square For a narrow band input x(t), $\angle H(j\omega) \simeq -\phi \alpha\omega$

$$Y(j\omega) \simeq X(j\omega)|H(j\omega)|e^{-j\phi}e^{-j\alpha\omega}$$

 \Box The time delay α is referred to as the group delay at $\omega = \omega_0$

$$\tau(\omega) = -\frac{d}{d\omega} \{ \angle H(j\omega) \}$$

The magnitude-phase represegent

Group delay: example

$$x(t) \qquad \qquad b(t)$$

Consider

$$H(j\omega) = \prod_{i=1}^{3} H_i(j\omega) \qquad H_i(j\omega) = \frac{1 + (j\omega/\omega_i)^2 - 2j\zeta_i(\omega/\omega_i)}{1 + (j\omega/\omega_i)^2 + 2j\zeta_i(\omega/\omega_i)}$$

$$\begin{cases} \omega_1 = 315 \text{ rad/sec and } \zeta_1 = 0.066, \\ \omega_2 = 943 \text{ rad/sec and } \zeta_2 = 0.033, \\ \omega_3 = 1888 \text{ rad/sec and } \zeta_3 = 0.058. \end{cases}$$

$$|H_i(j\omega)| = 1 \Rightarrow |H(j\omega)| = 1$$

$$\angle H_i(j\omega) = -2\arctan\left[\frac{2\zeta_i(\omega/\omega_i)}{1-(\omega/\omega_i)^2}\right]$$

$$\angle H(j\omega) = \sum_{i=1}^{3} \angle H_i(j\omega) \qquad \tau(\omega) = -\frac{d}{d\omega} \{ \angle H(j\omega) \}$$

Log-Magnitude and Bode Plots

$$x(t) \qquad b(t)$$

Time domain:

$$y(t) = x(t) * h(t)$$

Convolution

Frequency domain:

$$Y(j\omega) = H(j\omega)X(j\omega)$$

Multiplication

$$|Y(j\omega)| = |H(j\omega)||X(j\omega)|$$

$$\angle Y(j\omega) = \angle H(j\omega) + \angle X(j\omega)$$

Logarithmic amplitude:

$$\log|Y(j\omega)| = \log|H(j\omega)| + \log|X(j\omega)|$$

Summation

Logarithmic amplitude scale: 20 log₁₀, referred to as *decibels* (dB).

Bode plots: Plots of $20\log_{10}|H(j\omega)|$ and $\angle H(j\omega)$ versus $\log_{10}(\omega)$

Log-Magnitude and Bode Plots

Plot of $20\log_{10}|H(j\omega)|$ vs $\log_{10}(\omega)$

Plot of $\angle H(j\omega)$ vs. $\log_{10}(\omega)$

Figure 6.8 A typical Bode plot. (Note that ω is plotted using a logarithmic scale.)

Chapter 6: Time and frequency characterization of signals and systems

- ☐ The magnitude-phase representation of Fourier Transform
- ☐ The magnitude-phase representation of the frequency response of LTI systems
- ☐ Time-domain properties of ideal frequency-selective filters
- ☐ Time-domain and frequency-domain aspects of non-ideal filters
- **□** First-order system

Frequency-selective filters

Low-pass filter

High-pass filter

Band-pass filter

We focus on low-pass filter, similar concepts and results hold for high-pass and band pass filter.

Ideal low-pass filters: zero phase

CT

$$H(j\omega) = \begin{cases} 1, & |\omega| \le \omega_c \\ 0, & |\omega| > \omega_c \end{cases}$$

DT

$$H(e^{j\omega}) = \begin{cases} 1, & |\omega| \le \omega_c \\ 0, & \omega_c < |\omega| < \pi \end{cases}$$

Ideal low-pass filters: zero phase

☐ Impulse response:

$$h(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} H(j\omega)e^{j\omega t} d\omega$$

$$= \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} 1 \cdot e^{j\omega t} d\omega$$

$$= \frac{1}{2\pi} \cdot \frac{1}{jt} e^{j\omega t} \Big|_{-\omega_c}^{\omega_c}$$

$$= \frac{1}{2\pi} \cdot \frac{1}{jt} \cdot 2j\sin(\omega_c t) = \frac{\sin \omega_c t}{\pi t}$$

$$h(n) = \frac{\sin \omega_c n}{\pi n}$$

Ideal low-pass filters: zero phase

☐ Step response:

$$s(t) = \int_{-\infty}^{t} h(\tau) d\tau$$

$$s(n) = \sum_{m=-\infty}^{n} h(m)$$

Ideal low-pass filters: linear phase

☐ Impulse response:

Chapter 6: Time and frequency characterization of signals and systems

- ☐ The magnitude-phase representation of Fourier Transform
- ☐ The magnitude-phase representation of the frequency response of LTI systems
- ☐ Time-domain properties of ideal frequency-selective filters
- ☐ Time-domain and frequency-domain aspects of non-ideal filters
- **□** First-order system

Non-ideal filters

Frequency domain (low-pass)

- Idea Low-pass filter is not implementable
- Gradual transition band is sometimes preferable

- Pass band: $0 \omega_p$, stop band: $\omega > \omega_s$, transition: $\omega_s \omega_p$
- Pass-band ripple: δ_1 , stop-band ripple: δ_2
- Linear (nearly) linear phase over the passband is desirable.

Non-ideal filters

Time domain (low-pass)

Step response of a CT low-pass filter

- Rise time: t_r
- Overshoot: Δ
- Ringing frequency: ω_r
- Settling time: t_s

Non-ideal filters

An example

- Fifth-order Butterworth filter and a fifth-order elliptic filter
- Same cutoff frequency (500 Hz)
- Same passband and stopband ripple

Trade-off between time-domain (t_s) and frequency-domain $(\omega_s - \omega_p)$.

Chapter 6: Time and frequency characterization of signals and systems

- ☐ The magnitude-phase representation of Fourier Transform
- ☐ The magnitude-phase representation of the frequency response of LTI systems
- ☐ Time-domain properties of ideal frequency-selective filters
- ☐ Time-domain and frequency-domain aspects of non-ideal filters
- ☐ First-order and second-order systems

First-order systems

First-order system (Continuous time)

$$\tau \frac{dy(t)}{dt} + y(t) = x(t), \tau = RC$$

$$H(j\omega) = \frac{Y(j\omega)}{X(j\omega)} = \frac{1}{j\omega\tau + 1}$$

First-order systems

First-order system (Continuous time)

Impulse response
$$H(j\omega) = \frac{1}{j\omega\tau + 1} = \frac{1/\tau}{j\omega + 1/\tau}$$

$$e^{-at}u(t), a > 0 \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad \frac{1}{j\omega + a}$$

$$h(t) = \frac{1}{\tau} e^{-t/\tau} u(t)$$

☐ Step response

$$s(t) = \int_{-\infty}^{t} h(t') dt' = \frac{1}{\tau} \int_{0}^{t} e^{-t'/\tau} dt' = \begin{cases} 0, t < 0 \\ 1 - e^{-t/\tau} \end{pmatrix}, t \ge 0$$

$$s(t) = (1 - e^{-t/\tau}) u(t)$$

• τ : time constant

• $\tau \downarrow$, h(t) decays more sharply s(t) rises more sharply

First-order systems

Bold Plots (Continuous time) $H(j\omega) = \frac{1}{i\omega\tau + 1}$

$$H(j\omega) = \frac{1}{j\omega\tau + 1}$$

 \square 20log₁₀| $H(j\omega)$ | = -10log₁₀[$(\omega\tau)^2 + 1$]

$$\simeq \begin{cases} 0, & \omega \ll 1/\tau \\ -20\log_{10}(\omega) - 20\log_{10}(\tau), \omega \gg 1/\tau \end{cases}$$

$$\omega = 1/\tau$$
, $20\log_{10}|H(j\omega)| = -10\log_{10}(2) \approx -3dB$

 $\omega = 1/\tau$: break frequency

$$\Box \angle H(j\omega) = -\tan^{-1}(\omega\tau)$$

$$\simeq \begin{cases} 0, & \omega \le 0.1/\tau \\ -\frac{\pi}{4}[\log_{10}(\omega\tau) + 1], & 0.1/\tau \le \omega \le 10/\tau \\ -\pi/2, & \omega \ge 10/\tau \end{cases}$$

 $\omega = 1/\tau$, $\angle H(j\omega) = -\pi/4$

 $\tau \downarrow$, h(t) and s(t) more sharply, break frequency 1. 上海科

Differential equation

$$m\frac{d^2y(t)}{dt} = x(t) - ky(t) - b\frac{dy(t)}{dt}$$

$$\frac{d^2y(t)}{dt} + \left(\frac{b}{m}\right)\frac{dy(t)}{dt} + \left(\frac{k}{m}\right)y(t) = \frac{1}{m}x(t)$$

$$\omega_n^2 = \frac{k}{m}$$

$$\omega_n^2 = \frac{k}{m} \qquad \omega_n = \sqrt{\frac{k}{m}} \qquad \zeta = \frac{b}{2\sqrt{km}} \qquad 2\zeta\omega_n = \frac{b}{m}$$

$$\zeta = \frac{b}{2\sqrt{km}}$$

$$2\zeta\omega_n = \frac{b}{m}$$

$$\frac{d^2y(t)}{dt} + 2\zeta\omega_n \frac{dy(t)}{dt} + \omega_n^2 y(t) = \omega_n^2 x(t)$$

Frequency response:
$$\frac{d^2y(t)}{dt} + 2\zeta\omega_n \frac{dy(t)}{dt} + \omega_n^2 y(t) = \omega_n^2 x(t)$$
$$(j\omega)^2 Y(j\omega) + 2\zeta\omega_n(j\omega)Y(j\omega) + \omega_n^2 Y(j\omega) = \omega_n^2 X(j\omega)$$
$$H(j\omega) = \frac{\omega_n^2}{(j\omega)^2 + 2\zeta\omega_n(j\omega) + \omega_n^2}$$

Impulse response:
$$H(j\omega) = \frac{{\omega_n}^2}{(j\omega - c_1)(j\omega - c_2)} = \frac{M_1}{(j\omega - c_1)} - \frac{M_2}{(j\omega - c_2)}$$

$$\zeta \neq 1$$

$$c_1$$
, c_2 : roots of $(j\omega)^2 + 2\zeta\omega_n(j\omega) + \omega_n^2 = 0$

$$c_1 = -\zeta \omega_n + \omega_n \sqrt{\zeta^2 - 1}, \quad c_2 = -\zeta \omega_n - \omega_n \sqrt{\zeta^2 - 1}$$

$$M_1 = M_2 = M = \frac{\omega_n}{2\sqrt{\zeta^2 - 1}} \implies h(t) = M[e^{c_1 t} - e^{c_2 t}]u(t)$$

☐ Impulse response:

Impulse response:
$$\zeta = 1 \qquad c_1 = c_2 = -\omega_n \qquad H(j\omega) = \frac{\omega_n^2}{(j\omega + \omega_n)^2}$$
Critically damped
$$te^{-at}u(t) \xrightarrow{\mathcal{F}} H(j\omega) = \frac{1}{(j\omega + a)^2} \qquad \therefore h(t) = \omega_n^2 t e^{-\omega_n t} u(t)$$

$$\square \text{ Recall } \zeta \neq 1 \quad h(t) = M[e^{c_1 t} - e^{c_2 t}]u(t)$$

$$0 < \zeta < 1 \qquad h(t) = \frac{\omega_n}{2\sqrt{\zeta^2 - 1}} \left[e^{\left(-\zeta \omega_n + \omega_n \sqrt{\zeta^2 - 1}\right)t} - e^{\left(-\zeta \omega_n - \omega_n \sqrt{\zeta^2 - 1}\right)t} \right] u(t)$$

$$\zeta > 1: \text{ over damped} = \frac{\omega_n e^{-\zeta \omega_n t}}{2\sqrt{\zeta^2 - 1}} \left[e^{j\omega_n \sqrt{1 - \zeta^2} t} - e^{-j\omega_n \sqrt{1 - \zeta^2} t} \right] u(t)$$

$$=\frac{\omega_n e^{-\zeta \omega_n t}}{2\sqrt{\zeta^2 - 1}} \left[2j \sin(\omega_n \sqrt{1 - \zeta^2} t) \right] u(t) = \frac{\omega_n e^{-\zeta \omega_n t}}{\sqrt{1 - \zeta^2}} \left[\sin(\omega_n \sqrt{1 - \zeta^2} t) \right] u(t)$$

☐ Impulse response:

 $0 < \zeta < 1$: damped

 $\zeta > 1$: overdamped

 $\zeta = 1$: critically damped

 ω_n : un-damped natural frequency

 ζ : damping ratio

☐ Step response

Step response
$$\zeta \neq 1 \qquad s(t) = \int_{-\infty}^{t} h(t') dt' = M \int_{0}^{t} e^{c_1 t'} - e^{c_2 t'} dt' \qquad h(t) = M [e^{c_1 t} - e^{c_2 t}] u(t)$$

$$= \begin{cases} 0, t < 0 \\ M(\frac{e^{c_1 t'}}{c_1} - \frac{e^{c_2 t'}}{c_2})|_{0}^{t} = 1 + M \left[\frac{e^{c_1 t}}{c_1} - \frac{e^{c_2 t}}{c_2}\right], t \ge 0 \end{cases} = \left\{ 1 + M \left[\frac{e^{c_1 t}}{c_1} - \frac{e^{c_2 t}}{c_2}\right] \right\} u(t)$$

$$\zeta = 1 \qquad h(t) = \omega_n^2 t e^{-\omega_n t} u(t)$$

$$s(t) = \int_{0}^{t} \omega_{n}^{2} t' e^{-\omega_{n}t'} dt' = -\omega_{n} \int_{0}^{t} t' de^{-\omega_{n}t'}$$

$$= \begin{cases} 0, t < 0 \\ -\omega_{n}t' e^{-\omega_{n}t'} \Big|_{0}^{t} - \int_{0}^{t} e^{-\omega_{n}t'} d(-\omega_{n}t') = 1 - e^{-\omega_{n}t} - \omega_{n} t e^{-\omega_{n}t}, t \ge 0 \end{cases}$$

$$s(t) = [1 - e^{-\omega_{n}t} - \omega_{n} t e^{-\omega_{n}t}] u(t)$$

☐ Step response

Bold plots
$$H(j\omega) = \frac{\omega_n^2}{(j\omega)^2 + 2\zeta\omega_n(j\omega) + \omega_n^2} = \frac{1}{(j\omega/\omega_n)^2 + 2\zeta(j\omega/\omega_n) + 1}$$
$$20\log_{10}|H(j\omega)| = -20\log_{10}|(j\omega/\omega_n)^2 + 2\zeta(j\omega/\omega_n) + 1|$$

$$= -10\log_{10} \left\{ \left[1 - \left(\frac{\omega}{\omega_n} \right)^2 \right]^2 + 4\zeta^2 \left(\frac{\omega}{\omega_n} \right)^2 \right\}$$

$$\simeq \left\{ 0, \quad \omega \ll \omega_n \right\}$$

$$\simeq \left\{ -40\log_{10}\omega + 40\log_{10}\omega_n, \quad \omega \gg \omega_n \right\}$$

$$\angle H(j\omega) = -\tan^{-1}\left[\frac{2\zeta(\omega/\omega_n)}{1 - (\omega/\omega_n)^2}\right] \simeq \begin{cases} 0, & \omega \leq 0.1\omega_n \\ -\frac{\pi}{2}\left[\log_{10}\left(\frac{\omega}{\omega_n}\right) + 1\right], 0.1\omega_n \leq \omega \leq 10\omega_n \\ -\pi, \omega \geq 10\omega_n \end{cases}$$

□ Bold plots

$\angle H(j\omega)$

