Measurement

Lecture 8, Computer Networks (198:552)

Why measure networks?

Application QoS Throughput Delay Loss Availability
Congestion/overload
Long-term demands
SLO violations

Application QoS Problematic ISPs Problematic CDNs

Measurements for ISP Network Operators

Example (1): Excess Traffic

Example (2): DoS Attack

Web server at its knees...

Example (3): Link Failure

Routing change alleviates congestion

New route overloads a link

Measurements for ISP network operators

"Measure" forwarding updates!

How do ISPs measure today?

- Periodic link statistics
 - SNMP counters
 - Example: port1: 500 packets transmitted, 13 dropped
- Periodic flow statistics
 - NetFlow, sFlow, IPFIX
 - Example: src: 10.0.0.1, dst:8.8.8, inport: 4, count: 45
- Active end-to-end probes
 - Ping: 64 bytes from 128.6.68.140: icmp_seq=0 ttl=55 time=6.575 ms
 - Traceroute: more to come
- User complaints!
 - Customer phone calls, NANOG posts

Diagnosis & Traffic engineering

- Control plane issues
 - New routes
 - Link failures
 - Network upgrades!
- Data plane issues
 - DoS attack
 - Flash crowds
 - Poor demand prediction, in general
- "Decision plane" issues
 - Poor provisioning
 - Lack of peering

Lot of neat algorithms & measurement systems

Quality of input data matters! Scope to do a lot more...

Challenge: Measurement data reduction

- A network can't capture every packet with timestamps
 - Too much data!
- Filter to restrict to data of interest
 - Ex: by source, by app, by (physical) port, ...
- Sample to thin the data stream for exact computations
 - Systematic, random, stratified
 - "Consistently" sample same/distinct packet at each hop
- Aggregate (ex: by flow) to summarize data over many packets
 - One problem: too many flows
 - Sketches: aggregation that approximates with limited memory

Challenge: Joining traffic with forwarding

- Where is DoS traffic entering the network?
- How do I know which traffic is DoS traffic?
- Are there other links that are affected?
- Should you reroute other traffic that is affected?

Web server at its knees...

End-to-End Measurements

Why end-to-end measurements?

Endpoints could directly measure what matters to users

- ISPs may not be willing to share data
 - Proprietary design, net neutrality, ...
 - Data shared improperly may violate user privacy!

- Indirect view: can't say for sure why something happens
 - Hard to corroborate with ground truth
 - Possible to use multiple endpoints and span ISP boundaries!

Metrics and tools

Reachability: ping & its variants

Path: traceroute & its variants

Available bandwidth: speedtest, iperf, pathrate, ...

Delays and loss rate: a selection of the above tools

Traceroute

- 1. Launch a probe packet towards DST, with a TTL of 1
- 2. Each router hop decrements the TTL of the packet by 1
- 3. When TTL hits 0, router returns ICMP TTL Exceeded
- 4. SRC host receives this ICMP, displays a traceroute "hop"
- 5. Repeat from step 1, with TTL incremented by 1, until...
- 6. DST host receives probe returns ICMP Dest Unreach

Traceroute: Example output (1/2)

```
[552]$ traceroute google.com
traceroute to google.com (172.217.10.78), 64 hops max, 52 byte packets
1 fios_quantum_gateway (192.168.1.1) 1.628 ms 1.537 ms 1.506 ms
2 lo0-100.nwrknj-vfttp-354.verizon-gni.net (74.102.79.1) 2.093 ms 2.486 ms 1.835 ms
3 b3354.nwrknj-lcr-21.verizon-gni.net (100.41.137.110) 4.962 ms 2.935 ms 3.985 ms
4 * * *
5 0.et-10-1-5.gw7.ewr6.alter.net (140.222.2.233) 3.864 ms
  0.et-11-1-0.gw7.ewr6.alter.net (140.222.239.27) 3.503 ms
  0.et-10-1-5.gw7.ewr6.alter.net (140.222.2.233) 3.581 ms
6 209.85.149.208 (209.85.149.208) 3.949 ms 4.222 ms 4.669 ms
7 * * *
8 108.170.226.198 (108.170.226.198) 9.154 ms
  108.170.237.214 (108.170.237.214) 7.080 ms
  72.14.234.64 (72.14.234.64) 10.782 ms
9 lga34s14-in-f14.1e100.net (172.217.10.78) 4.097 ms
  108.170.248.66 (108.170.248.66) 5.462 ms
  108.170.248.20 (108.170.248.20) 9.410 ms
```

Traceroute: Example output (2/2)

```
[552]$ traceroute rutgers.edu
traceroute to rutgers.edu (128.6.68.140), 64 hops max, 52 byte packets
1 fios_quantum_gateway (192.168.1.1) 1.536 ms 1.083 ms 1.098 ms
2 lo0-100.nwrknj-vfttp-354.verizon-gni.net (74.102.79.1) 2.343 ms 1.932 ms 1.948 ms
3 b3354.nwrknj-lcr-21.verizon-gni.net (100.41.137.110) 3.124 ms
  b3354.nwrknj-lcr-22.verizon-gni.net (100.41.137.112) 4.026 ms 2.766 ms
5 * * *
6 0.ae1.gw1.phil.alter.net (140.222.0.221) 6.599 ms
  0.ae6.gw1.phil.alter.net (140.222.0.223) 5.401 ms 5.670 ms
7 rutgers-gw.customer.alter.net (63.65.75.238) 5.061 ms 6.937 ms 6.205 ms
8 172.29.8.17 (172.29.8.17) 5.321 ms 5.475 ms 10.577 ms
9 172.29.6.63 (172.29.6.63) 6.500 ms 7.154 ms 7.254 ms
10 172.29.6.45 (172.29.6.45) 6.808 ms 6.799 ms 6.612 ms
11 172.28.193.138 (172.28.193.138) 8.201 ms 7.956 ms 8.180 ms
64 * * *
```

Some problems with traceroute

- Control traffic (ICMP) and data traffic may see different behavior
 - Router CPU versus forwarding table
 - Probes load-balanced differently
- A different packet observes each hop
 - Route changes while packet "in transit"
- Not all routers may respond to ICMP messages
 - Hidden routers
 - Anonymous routers
 - Improper processing
- One-way measurement

End-to-End Routing Behavior in the Internet

LBNL Technical Report (1996)

Vern Paxson

Methodology

- Traceroute between NPDs distributed worldwide (add pic)
- Exponential sampling/PASTA property
 - Why?
 - What might happen otherwise?
- D1: unidirectional traceroutes
- D2: "paired" traceroutes
- Confidence intervals for probability that an event occurred
- Measurements sample half of the Internet by AS weight

Pathologies in Internet routing

- Forwarding loops!
 - Persistent and temporary
- Circuitous routing
- Routing transients
 - Recovery times are bimodal
- Route fluttering
- Partitioned network
- Temporary outages, some > 30 seconds
- Too many hops
- Pathologies correlated with operator change and congestion

Summary of pathologies

Pathology	Probability	Trend	Notes
Persistent loops	0.13-0.16%		Some lasted hours.
Temporary loops	0.055-0.078%		
Erroneous routing	0.004-0.004%		No instances in \mathcal{D}_2 .
Mid-stream change	0.16% // 0.44%	worse	Suggests rapidly
			varying routes.
Infrastructure failure	0.21% // 0.48%	worse	No dominant link.
Outage $\geq 30 \text{ secs}$	0.96% // 2.2%	worse	Duration exponent.
			distributed.
Total pathologies	1.5% // 3.4%	worse	

Routing stability

- Why does routing stability matter?
- Prevalence: how frequently do you see a route?
 - PASTA ensures that samples see "true" stable behavior
- Persistence: how long does a given route persist over time?
 - Challenging to measure!
 - Example: R1, R2, R1, but samples miss the intermediate R2

Routing prevalence

Routing persistence

Time scale	%	Notes
seconds	N/A	"Flutter" for purposes of load balancing.
		Treated separately, as a pathology, and not in-
		cluded in the analysis of persistence.
minutes	N/A	"Tightly-coupled routers." We identified
		five instances, which we merged into single
		routers for the remainder of the analysis.
10's of minutes	9%	Frequent route changes inside the network. In
		some cases involved routing through different
		cities or AS's.
hours	4%	Usually intra-network changes.
6+ hours	19%	Also intra-network changes.
days	68%	Bimodal. 50% of routes persist for under 7
		days. The remaining 50% account for 90%
		of the total route lifetimes.

Routing asymmetry

- 49% of D2 measurements saw asymmetric paths!
 - visiting a different city each way around
 - 30% with a different AS!
- Trend worsening over time

A summary

- No guarantees on where your traffic might end up
 - A black-hole!
 - Somewhere unintended (US east > London goes through Israel)
- Routes are dominated by single winner but can be quite flappy
 - Implications on what performance apps might expect
 - What measurement tools provide
- Asymmetry makes a lot of things complex
 - Diagnosis: Assumptions about where problems lie
 - Flow state in the core: can't assume you'll see return traffic

Limitations of the study

- Representativeness:
 - Routes within an AS may not have similar characteristics!
 - Sample a really small subset of actual Internet paths
- Methodology:
 - PASTA doesn't hold when the network is down
 - Hard to extrapolate trends in Internet evolution with just 2 points
- E2E measurements:
 - Fundamentally hard to corroborate with ground truth

Reverse Traceroute

Usenix NSDI 2010

Ethan Katz-Bassett, Harsha V. Madhyastha, Vijay Kumar Adhikari, Colin Scott, Justine Sherry, Peter van Wesep, Thomas Anderson, and Arvind Krishnamurthy

Can we find the reverse path?

Routes aren't always symmetric!

What are reverse routes useful for?

Main techniques

- Distributed set of vantage points issuing forward traceroutes
 - Create an "atlas" of nodes and paths to the source
- Incrementally stitch reverse path until you hit an atlas node
- IP record route: grab first (few) router IP address(es) on return path
 - Recursively reverse traceroute from there!
- Timestamp option: verify whether a router is on reverse path
- Source spoofing: sample reverse path without forward path
 - Use prior mapping of vantage points "closest" to the destination
- When all else fails, assume symmetric routing

How accurate is reverse traceroute?

Ground truth: actual traceroutes from D to S

- Overlap in hops of reverse and (ground truth) traceroute
 - Close to 87% in the median

Why are there differences between the two?

Reverse paths used undiscovered peering links

(E2E) Measurement research challenges

- Ground truth
 - Explaining empirical observations
 - Aliasing, router identification, AS identification, ...
- Representativeness
- Measuring without bias
 - PASTA
- Coordinating distributed vantage points
- Probing overheads
- Detailed knowhow of the Internet and its quirks!
 - Ex: IP timestamp marked only when router sees itself on top
- How will the conclusions evolve over time?