

信息安全数学基础

—— 域

信数课题组

北京邮电大学

上次课回顾

目录

- 分式域
- ② 素域与扩域
 - 有限扩域
 - 代数扩域
- ③ Galois 基本定理
- △ 有限域
 - 有限域的构造
 - 有限域的 Galois 群
 - 有限域的正规基

从整数集 \mathbb{Z} 构造出有理数集 \mathbb{Q} 是经典和重要的方法. 运用该方法可以从整环构造出对应的分式域.

为此, 我们首先介绍等价关系 R.

从整数集 Z 构造出有理数集 Q 是经典和重要的方法. 运用该方法可以从整环构造出对应的分式域.

为此, 我们首先介绍等价关系 R.

定理 8.1.1

设 A 是一个整环, 令 $E = A \times A^*$. 在 E 上定义关系 R: (a,b)R(c,d), 如果 ad = bc, 则 R 是 E 上的等价关系,即有

- (i) 自反性: 对任意 $(a,b) \in E$, 有 (a,b)R(a,b).
- (ii) 对称性: 如果 (a,b)R(c,d), 则 (c,d)R(a,b).
- (iii) 传递性: 如果 (a,b)R(c,d) 和 (c,d)R(e,f), 则 (a,b)R(e,f).

从整数集 Z 构造出有理数集 Q 是经典和重要的方法. 运用该方法可以从整环构造出对应的分式域.

为此, 我们首先介绍等价关系 R.

定理 8.1.1

设 A 是一个整环, 令 $E = A \times A^*$. 在 E 上定义关系 R: (a,b)R(c,d), 如果 ad = bc. 则 R 是 E 上的等价关系,即有

- (i) 自反性: 对任意 $(a,b) \in E$, 有 (a,b)R(a,b).
- (ii) 对称性: 如果 (a,b)R(c,d), 则 (c,d)R(a,b).
- (iii) 传递性: 如果 (a,b)R(c,d) 和 (c,d)R(e,f), 则 (a,b)R(e,f).

证: (i) 对任意 $(a,b) \in E$, 有 ab = ba, 所以 (a,b)R(a,b).

从整数集 Z 构造出有理数集 Q 是经典和重要的方法. 运用该方法可以从整环构造出对应的分式域.

为此, 我们首先介绍等价关系 R.

定理 8.1.1

设 A 是一个整环, 令 $E = A \times A^*$. 在 E 上定义关系 R: (a,b)R(c,d), 如果 ad = bc. 则 R 是 E 上的等价关系,即有

- (i) 自反性: 对任意 $(a,b) \in E$, 有 (a,b)R(a,b).
- (ii) 对称性: 如果 (a,b)R(c,d), 则 (c,d)R(a,b).
- (iii) 传递性: 如果 (a,b)R(c,d) 和 (c,d)R(e,f), 则 (a,b)R(e,f).
- 证: (i) 对任意 $(a,b) \in E$, 有 ab = ba, 所以 (a,b)R(a,b).
 - (ii) 由 (a,b)R(c,d) 知, ad = bc, 再由交换性, cb = da. 故 (c,d)R(a,b).

从整数集 \mathbb{Z} 构造出有理数集 \mathbb{Q} 是经典和重要的方法. 运用该方法可以从整环构造出对应的分式域.

为此, 我们首先介绍等价关系 R.

定理 8.1.1

设 A 是一个整环, 令 $E = A \times A^*$. 在 E 上定义关系 R: (a,b)R(c,d), 如果 ad = bc, 则 R 是 E 上的等价关系,即有

- (i) 自反性: 对任意 $(a,b) \in E$, 有 (a,b)R(a,b).
- (ii) 对称性: 如果 (a,b)R(c,d), 则 (c,d)R(a,b).
- (iii) 传递性: 如果 (a,b)R(c,d) 和 (c,d)R(e,f), 则 (a,b)R(e,f).
- 证: (i) 对任意 $(a,b) \in E$, 有 ab = ba, 所以 (a,b)R(a,b).
 - (ii) 由 (a,b)R(c,d) 知, ad = bc, 再由交换性, cb = da. 故 (c,d)R(a,b).
- (iii) 由 (a,b)R(c,d), (c,d)R(e,f) 知, ad = bc, cf = de, 进而 adf = (bc)f
- =b(de), 即 d(af-be)=0. 而 d 是整环 A 中的非零元, 则 af=be. 立得.

记 $\frac{a}{b} = C_{(a,b)} = \{(c,d) \in E \mid (c,d)R(a,b)\}$ 为 (a,b) 的等价类. 我们在商集 E/R 上定义加法和乘法如下:

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}, \quad \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}.$$

则 E/R 关于加法构成一个交换群, 零元为 $\frac{0}{1}$, $\frac{a}{b}$ 的负元为 $\frac{-a}{b}$. $(E/R)^* = (E/R) \setminus \{\frac{0}{b}\}$ 关于乘法构成一个交换群, 单位元为 $\frac{1}{1}$, $\frac{a}{b}$ 的 逆元为 $\frac{b}{a}$.

最后, E/R 关于加法和乘法满足分配律.

因此, E/R 构成一个域, 叫做 A 的**分式域**.

记 $\frac{a}{b} = C_{(a,b)} = \{(c,d) \in E \mid (c,d)R(a,b)\}$ 为 (a,b) 的等价类. 我们在商集 E/R 上定义加法和乘法如下:

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}, \quad \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}.$$

则 E/R 关于加法构成一个交换群, 零元为 $\frac{0}{1}$, $\frac{a}{b}$ 的负元为 $\frac{-a}{b}$. $(E/R)^* = (E/R) \setminus \{\frac{0}{b}\}$ 关于乘法构成一个交换群, 单位元为 $\frac{1}{1}$, $\frac{a}{b}$ 的 逆元为 $\frac{b}{a}$.

最后, E/R 关于加法和乘法满足分配律.

因此, E/R 构成一个域, 叫做 A 的分式域.

定理 8.1.2

交换环 A 有分式域的充要条件是 A 是整环.

←□ ト ←団 ト ← 臣 ト ◆ 臣 ・ りへで

例 8.1.1 取 $A = \mathbb{Z}$, 则 \mathbb{Z} 是一个整环, 从而有分式域, 叫作 \mathbb{Z} 的**有理数** 域, 记作 \mathbb{Q} . 其加法和乘法运算为

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}, \quad \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}.$$

例 8.1.1 取 $A = \mathbb{Z}$, 则 \mathbb{Z} 是一个整环, 从而有分式域, 叫作 \mathbb{Z} 的**有理数** 域, 记作 \mathbb{Q} . 其加法和乘法运算为

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}, \quad \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}.$$

例 8.1.2 取 $A = \mathbb{Z}/p\mathbb{Z}$, 其中 p 为素数, 则 A 是一个整环, 从而有分式域, 叫作 $\mathbb{Z}/p\mathbb{Z}$ 的 p-元域, 记作 \mathbb{F}_p 或 GF(p).

例 8.1.1 取 $A = \mathbb{Z}$, 则 \mathbb{Z} 是一个整环, 从而有分式域, 叫作 \mathbb{Z} 的**有理数** 域, 记作 \mathbb{Q} . 其加法和乘法运算为

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}, \quad \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}.$$

例 8.1.2 取 $A = \mathbb{Z}/p\mathbb{Z}$, 其中 p 为素数, 则 A 是一个整环, 从而有分式域, 叫作 $\mathbb{Z}/p\mathbb{Z}$ 的 p-元域, 记作 \mathbb{F}_p 或 GF(p).

例 8.1.3 设 K 是一个域,则 A = K[x] 是一个整环,从而有分式域,叫作 K[x] 的**多项式分式域**,记作 K(x),即

$$K(x) = \left\{ \frac{f(x)}{g(x)} \mid f(x), g(x) \in K[x], g(x) \neq 0 \right\}.$$

其加法和乘法运算为

$$\frac{f_1(x)}{g_1(x)} + \frac{f_2(x)}{g_2(x)} = \frac{f_1(x)g_2(x) + g_1(x)f_2(x)}{g_1(x)g_2(x)}, \quad \frac{f_1(x)}{g_1(x)} \cdot \frac{f_2(x)}{g_2(x)} = \frac{f_1(x)f_2(x)}{g_1(x)g_2(x)}.$$

マロトマ部トマミトマミト

上一章已经介绍了一般的域和子域的概念,本节首先考虑"最小"的子域.

定义 8.2.1

如果一个域不含真子域,则称其为素域.

上一章已经介绍了一般的域和子域的概念,本节首先考虑"最小"的子域.

定义 8.2.1

如果一个域不含真子域,则称其为素域.

例 8.2.1 有理数域 \mathbb{Q} 是素域. $F_p = \mathbb{Z}/p\mathbb{Z}$ 是素域.

上一章已经介绍了一般的域和子域的概念,本节首先考虑"最小"的子域.

定义 8.2.1

如果一个域不含真子域,则称其为素域.

例 8.2.1 有理数域 \mathbb{Q} 是素域. $F_p = \mathbb{Z}/p\mathbb{Z}$ 是素域.

定理 8.2.1

设 F 是一个域. 如果 F 的特征为 0, 则 F 有一个与 $\mathbb Q$ 同构的素域. 如果 F 的特征为 p, 则 F 有一个与 F_p 同构的素域.

证: 略.

定义 8.2.2

设F是一个域. 如果K是F的子域,则称F是K的扩域.

定义 8.2.2

设F是一个域.如果K是F的子域,则称F是K的扩域.

设 F 是一个域, $X \subset F$, 则包含 X 的所有子域的交集仍是包含 X 的子域, 叫作由 X 生成的子域.

如果 F 是 K 的扩域及 $X \subset F$, 则由 $K \cup X$ 生成的子域叫作 X 在 K 上生成的子域,记作 K(X).

如果 $X = \{u_1, \dots, u_n\}$, 则 F 的子域 K(X) 记作 $K(u_1, \dots, u_n)$. 如果 $X = \{u\}$, 则 K(u) 称为 K 的单扩域.

定义 8.2.2

设F是一个域. 如果K是F的子域,则称F是K的扩域.

设 F 是一个域, $X \subset F$, 则包含 X 的所有子域的交集仍是包含 X 的子域, 叫作由 X 生成的子域.

如果 F 是 K 的扩域及 $X \subset F$, 则由 $K \cup X$ 生成的子域叫作 X 在 K 上生成的子域, 记作 K(X).

如果 $X = \{u_1, \dots, u_n\}$, 则 F 的子域 K(X) 记作 $K(u_1, \dots, u_n)$. 如果 $X = \{u\}$, 则 K(u) 称为 K 的**单扩域**.

例 8.2.2 有理数域 $\mathbb Q$ 是实数域 $\mathbb R$ 和复数域 $\mathbb C$ 的子域, 复数域 $\mathbb C$ 是实数域 $\mathbb R$ 的扩域, 实数域 $\mathbb R$ 是有理数域 $\mathbb Q$ 的扩域.

定义 8.2.2

设F是一个域. 如果K是F的子域,则称F是K的扩域.

设 F 是一个域, $X \subset F$, 则包含 X 的所有子域的交集仍是包含 X 的子域, 叫作由 X 生成的子域.

如果 F 是 K 的扩域及 $X \subset F$, 则由 $K \cup X$ 生成的子域叫作 X 在 K 上生成的子域,记作 K(X).

如果 $X = \{u_1, \dots, u_n\}$, 则 F 的子域 K(X) 记作 $K(u_1, \dots, u_n)$. 如果 $X = \{u\}$, 则 K(u) 称为 K 的**单扩域**.

例 8.2.2 有理数域 $\mathbb Q$ 是实数域 $\mathbb R$ 和复数域 $\mathbb C$ 的子域, 复数域 $\mathbb C$ 是实数域 $\mathbb R$ 的扩域, 实数域 $\mathbb R$ 是有理数域 $\mathbb Q$ 的扩域.

例 8.2.3 $F_{28} = F_2[x]/(x^8 + x^4 + x^3 + x + 1)$ 是 F_2 的扩域.

目录

- 1 分式域
- 2 素域与扩域
 - 有限扩域
 - 代数扩域
- 3 Galois 基本定理
- 4 有限域
 - 有限域的构造
 - 有限域的 Galois 群
 - 有限域的正规基

再从线性空间角度讨论域的性质.

如果 F 是 K 的扩域, 则 $1_F = 1_K$. 而且, F 可作为 K 上的线性空间. 事实上, 对任意 $\alpha, \beta \in F, k \in K$, 有 $\alpha + \beta \in F, k \cdot \alpha \in F$.

用 [F:K] 表示 F 在 K 上线性空间的维数. 如果 [F:K] 是有限或无限的,则称 F 是 K 的有限扩域或无限扩域.

再从线性空间角度讨论域的性质.

如果 F 是 K 的扩域, 则 $1_F = 1_K$. 而且, F 可作为 K 上的线性空间. 事实上, 对任意 $\alpha, \beta \in F, k \in K$, 有 $\alpha + \beta \in F, k \cdot \alpha \in F$.

用 [F:K] 表示 F 在 K 上线性空间的维数. 如果 [F:K] 是有限或无限的,则称 F 是 K 的**有限扩域**或无限扩域.

定理 8.2.2

设 E 是 F 的扩域, F 是 K 的扩域, 则 [E:K]=[E:F][F:K]. 而且, 如果 $\{\alpha_i\}_{i\in I}$ 是 F 在 K 上的基底, $\{\beta_j\}_{j\in J}$ 是 E 在 F 上的基底, 则 $\{\alpha_i\beta_j\}_{i\in I,j\in J}$ 是 E 在 K 上的基底.

再从线性空间角度讨论域的性质.

如果 F 是 K 的扩域, 则 $1_F = 1_K$. 而且, F 可作为 K 上的线性空间. 事实上, 对任意 $\alpha, \beta \in F, k \in K$, 有 $\alpha + \beta \in F, k \cdot \alpha \in F$.

用 [F:K] 表示 F 在 K 上线性空间的维数. 如果 [F:K] 是有限或无限的,则称 F 是 K 的有限扩域或无限扩域.

定理 8.2.2

设 E 是 F 的扩域, F 是 K 的扩域, 则 [E:K]=[E:F][F:K]. 而且, 如果 $\{\alpha_i\}_{i\in I}$ 是 F 在 K 上的基底, $\{\beta_j\}_{j\in J}$ 是 E 在 F 上的基底, 则 $\{\alpha_i\beta_j\}_{i\in I,j\in J}$ 是 E 在 K 上的基底.

证: 首先证明 $\{\alpha_i\beta_j\}_{i\in I,j\in J}$ 是 E 在 K 上的生成元. 事实上, 对 \forall $c\in E$, 由 $\{\beta_j\}_{j\in J}$ 是 E 在 F 上的基底, 存在 $b_j\in F$, $j\in J$ 使得 $c=\sum_{j\in J}b_j\beta_j$. 再由 $\{\alpha_i\}_{i\in I}$ 是 F 在 K 上的基底, 存在 $a_{ij}\in K$, $i\in I$ 使得 $b_j=\sum_{i\in I}a_{ij}\alpha_i$. 从而,

$$c = \sum_{j \in J} \left(\sum_{i \in I} a_{ij} \alpha_i \right) \beta_j = \sum_{i \in I, j \in J} a_{ij} \alpha_i \beta_j.$$

$$c = \sum_{j \in J} \left(\sum_{i \in I} a_{ij} \alpha_i \right) \beta_j = \sum_{i \in I, j \in J} a_{ij} \alpha_i \beta_j.$$

其次证明 $\{\alpha_i\beta_j\}_{i\in I,j\in J}$ 在 K 上线性无关.

事实上, 若存在
$$a_{ij} \in K, i \in I, j \in J$$
 使得 $\sum_{i \in I, j \in J} a_{ij} \alpha_i \beta_j = 0$, 即

$$\sum_{j\in J} \left(\sum_{i\in I} a_{ij}\alpha_i\right) \beta_j = 0.$$
 因为
$$\sum_{i\in I} a_{ij}\alpha_i \in F,$$
 且 $\{\beta_j\}_{j\in J}$ 是 E 在 F 上的基底,所以
$$\sum_{i\in I} a_{ij}\alpha_i = 0, j \in J.$$
 又因为 $a_{ij} \in K,$ 以及 $\{\alpha_i\}_{i\in I}$ 是 F 在 K 上的基底,得到 $a_{ij} = 0, \ i \in I, j \in J.$

$$c = \sum_{j \in J} \left(\sum_{i \in I} a_{ij} \alpha_i \right) \beta_j = \sum_{i \in I, j \in J} a_{ij} \alpha_i \beta_j.$$

其次证明 $\{\alpha_i\beta_i\}_{i\in I, i\in J}$ 在 K 上线性无关.

事实上, 若存在
$$a_{ij} \in K, i \in I, j \in J$$
 使得 $\sum_{i \in I, j \in J} a_{ij} \alpha_i \beta_j = 0$, 即

$$\sum_{j\in J} \left(\sum_{i\in I} a_{ij}\alpha_i\right) \beta_j = 0.$$
 因为
$$\sum_{i\in I} a_{ij}\alpha_i \in F,$$
 且 $\{\beta_j\}_{j\in J}$ 是 E 在 F 上的基底,所以
$$\sum_{i\in I} a_{ij}\alpha_i = 0, j \in J.$$
 又因为 $a_{ij} \in K,$ 以及 $\{\alpha_i\}_{i\in I}$ 是 F 在 K 上的基底,得到 $a_{ij} = 0, \ i \in I, j \in J.$ 进一步 有 $[E : K] = [E : F][E : K]$

进一步, 有 [E:K] = [E:F][F:K].

$$c = \sum_{j \in J} \left(\sum_{i \in I} a_{ij} \alpha_i \right) \beta_j = \sum_{i \in I, j \in J} a_{ij} \alpha_i \beta_j.$$

其次证明 $\{\alpha_i\beta_i\}_{i\in I, i\in J}$ 在 K 上线性无关.

事实上, 若存在
$$a_{ij} \in K, i \in I, j \in J$$
 使得 $\sum_{i \in I, j \in J} a_{ij} \alpha_i \beta_j = 0$, 即

$$\sum_{j\in J} \left(\sum_{i\in I} a_{ij}\alpha_i\right) \beta_j = 0$$
. 因为 $\sum_{i\in I} a_{ij}\alpha_i \in F$, 且 $\{\beta_j\}_{j\in J}$ 是 E 在 F 上的基底, 所以 $\sum_{i\in I} a_{ij}\alpha_i = 0, j \in J$. 又因为 $a_{ij} \in K$, 以及 $\{\alpha_i\}_{i\in I}$ 是 F 在 K 上的基底, 得到 $a_{ii} = 0, i \in I, j \in J$.

进一步, 有 [E:K] = [E:F][F:K].

推论 8.2.1

设 $E \not\in K$ 的有限扩域的充要条件是 $E \not\in F$ 的有限扩域, 且 $F \not\in K$ 的有限扩域.

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ · 壹 · か९○

$$c = \sum_{j \in J} \left(\sum_{i \in I} a_{ij} \alpha_i \right) \beta_j = \sum_{i \in I, j \in J} a_{ij} \alpha_i \beta_j.$$

其次证明 $\{\alpha_i\beta_i\}_{i\in I,j\in J}$ 在 K 上线性无关.

事实上, 若存在 $a_{ij} \in K$, $i \in I, j \in J$ 使得 $\sum_{i \in I, j \in J} a_{ij} \alpha_i \beta_j = 0$, 即

$$\sum_{j\in J} \left(\sum_{i\in I} a_{ij}\alpha_i\right) \beta_j = 0.$$
 因为
$$\sum_{i\in I} a_{ij}\alpha_i \in F,$$
 且 $\{\beta_j\}_{j\in J}$ 是 E 在 F 上的基底,所以
$$\sum_{i\in I} a_{ij}\alpha_i = 0, j \in J.$$
 又因为 $a_{ij} \in K,$ 以及 $\{\alpha_i\}_{i\in I}$ 是 F 在 K 上的基底,得到 $a_{ij} = 0, \ i \in I, j \in J.$

进一步, 有 [E:K] = [E:F][F:K].

推论 8.2.1

设 $E \not\in K$ 的有限扩域的充要条件是 $E \not\in F$ 的有限扩域, 且 $F \not\in K$ 的有限扩域.

例 8.2.4 数域 $\mathbb{Q}(\sqrt{2})$ 是 \mathbb{Q} 的有限扩张, 且 $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=2$.

目录

- 1 分式域
- 2 素域与扩域
 - 有限扩域
 - 代数扩域
- ③ Galois 基本定理
- 4 有限域
 - 有限域的构造
 - 有限域的 Galois 群
 - 有限域的正规基

再从多项式的根的角度讨论扩域.

定义 8.2.3

设 R 是一个整环, K 是包含 R 的一个域, F 是 K 的一个扩域.

- (1) 对于 F 的元素 u, 如果存在一个非零多项式 $f \in R[x]$ 使得 f(u) = 0, 则称 u 为整环 R 上的代数数.
- (2) 对于 F 的元素 u, 如果存在一个非零的首一多项式 $f \in R[x]$ 使得 f(u) = 0, 则称 u 为整环 R 上的代数整数.
- (3) 对于 F 的元素 u, 如果不存在任何非零多项式 $f \in R[x]$ 使得 f(u) = 0, 则称 u 为整环 R 上的超越数.

进一步, 当 K 是整环 R 的分式域时, 人们有时就称为 K 上的代数数 和超越数. 这时, 与代数相关的多项式就可以要求其是首一多项式. 如果 F 的每个元素都是 K 上的代数数, 则 F 称为 K 的代数扩张. 如果 F 中至少有一个元素是 K 上的超越数, 则 F 称为 K 的超越扩张.

再从多项式的根的角度讨论扩域.

定义 8.2.3

设 R 是一个整环, K 是包含 R 的一个域, F 是 K 的一个扩域.

- (1) 对于 F 的元素 u, 如果存在一个非零多项式 $f \in R[x]$ 使得 f(u) = 0, 则称 u 为整环 R 上的代数数.
- (2) 对于 F 的元素 u, 如果存在一个非零的首一多项式 $f \in R[x]$ 使得 f(u) = 0, 则称 u 为整环 R 上的代数整数.
- (3) 对于 F 的元素 u, 如果不存在任何非零多项式 $f \in R[x]$ 使得 f(u) = 0, 则称 u 为整环 R 上的超越数.

进一步, 当 K 是整环 R 的分式域时, 人们有时就称为 K 上的代数数和超越数. 这时, 与代数相关的多项式就可以要求其是首一多项式. 如果 F 的每个元素都是 K 上的代数数, 则 F 称为 K 的代数扩张. 如果 F 中至少有一个元素是 K 上的超越数, 则 F 称为 K 的超越扩张.

注: 对于 $u \in K$, 有 $u \in f(x) = x - u \in K[x]$ 的根。故 $u \in K$ 上的代数数。

(1) $u = \sqrt{2}$ 是整数环 \mathbb{Z} 上的代数整数, 因为有首一多项式

$$f(x) = (x - \sqrt{2})(x + \sqrt{2}) = x^2 - 2 \in \mathbb{Z}[x]$$

使得 f(u) = 0. 故 $\mathbb{Q}(\sqrt{2})$ 是代数扩张.

(1) $u = \sqrt{2}$ 是整数环 \mathbb{Z} 上的代数整数,因为有首一多项式

$$f(x) = (x - \sqrt{2})(x + \sqrt{2}) = x^2 - 2 \in \mathbb{Z}[x]$$

使得 f(u) = 0. 故 $\mathbb{Q}(\sqrt{2})$ 是代数扩张.

(2) $u = \frac{1+\sqrt{5}}{2}$ 是整数环 \mathbb{Z} 上的代数整数, 因为有首一多项式

$$f(x) = (x - \frac{1 + \sqrt{5}}{2})(x - \frac{1 - \sqrt{5}}{2}) = x^2 - x - 1 \in \mathbb{Z}[x]$$

使得 f(u) = 0. 故 $\mathbb{Q}(\frac{1+\sqrt{5}}{2})$ 是代数扩张.

(1) $u = \sqrt{2}$ 是整数环 \mathbb{Z} 上的代数整数, 因为有首一多项式

$$f(x) = (x - \sqrt{2})(x + \sqrt{2}) = x^2 - 2 \in \mathbb{Z}[x]$$

使得 f(u) = 0. 故 $\mathbb{Q}(\sqrt{2})$ 是代数扩张.

(2) $u = \frac{1+\sqrt{5}}{2}$ 是整数环 \mathbb{Z} 上的代数整数, 因为有首一多项式

$$f(x) = (x - \frac{1 + \sqrt{5}}{2})(x - \frac{1 - \sqrt{5}}{2}) = x^2 - x - 1 \in \mathbb{Z}[x]$$

使得 f(u) = 0. 故 $\mathbb{Q}(\frac{1+\sqrt{5}}{2})$ 是代数扩张.

例 8.2.6

(1) 圆周率 $\pi = 3.14159265 \cdots$ 是有理数域 \mathbb{Q} 上的超越数.

(1) $u = \sqrt{2}$ 是整数环 \mathbb{Z} 上的代数整数, 因为有首一多项式

$$f(x) = (x - \sqrt{2})(x + \sqrt{2}) = x^2 - 2 \in \mathbb{Z}[x]$$

使得 f(u) = 0. 故 $\mathbb{Q}(\sqrt{2})$ 是代数扩张.

(2) $u = \frac{1+\sqrt{5}}{2}$ 是整数环 \mathbb{Z} 上的代数整数, 因为有首一多项式

$$f(x) = (x - \frac{1 + \sqrt{5}}{2})(x - \frac{1 - \sqrt{5}}{2}) = x^2 - x - 1 \in \mathbb{Z}[x]$$

使得 f(u) = 0. 故 $\mathbb{Q}(\frac{1+\sqrt{5}}{2})$ 是代数扩张.

例 8.2.6

- (1) 圆周率 $\pi = 3.14159265 \cdots$ 是有理数域 \mathbb{Q} 上的超越数.
- (2) 自然对数底 $e = 2.71828182 \cdots$ 是有理数域 \mathbb{Q} 上的超越数.

例 8.2.5

(1) $u = \sqrt{2}$ 是整数环 \mathbb{Z} 上的代数整数, 因为有首一多项式

$$f(x) = (x - \sqrt{2})(x + \sqrt{2}) = x^2 - 2 \in \mathbb{Z}[x]$$

使得 f(u) = 0. 故 $\mathbb{Q}(\sqrt{2})$ 是代数扩张.

(2) $u=\frac{1+\sqrt{5}}{2}$ 是整数环 \mathbb{Z} 上的代数整数,因为有首一多项式

$$f(x) = (x - \frac{1 + \sqrt{5}}{2})(x - \frac{1 - \sqrt{5}}{2}) = x^2 - x - 1 \in \mathbb{Z}[x]$$

使得 f(u) = 0. 故 $\mathbb{Q}(\frac{1+\sqrt{5}}{2})$ 是代数扩张.

例 8.2.6

- (1) 圆周率 $\pi = 3.14159265 \cdots$ 是有理数域 \mathbb{Q} 上的超越数.
- (2) 自然对数底 $e = 2.71828182 \cdots$ 是有理数域 \mathbb{Q} 上的超越数.
- (3) $2^{\sqrt{2}}$ 是有理数域 \mathbb{Q} 上的超越数.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ りゅう

例 8.2.5

(1) $u = \sqrt{2}$ 是整数环 \mathbb{Z} 上的代数整数, 因为有首一多项式

$$f(x) = (x - \sqrt{2})(x + \sqrt{2}) = x^2 - 2 \in \mathbb{Z}[x]$$

使得 f(u) = 0. 故 $\mathbb{Q}(\sqrt{2})$ 是代数扩张.

(2) $u = \frac{1+\sqrt{5}}{2}$ 是整数环 \mathbb{Z} 上的代数整数, 因为有首一多项式

$$f(x) = (x - \frac{1 + \sqrt{5}}{2})(x - \frac{1 - \sqrt{5}}{2}) = x^2 - x - 1 \in \mathbb{Z}[x]$$

使得 f(u) = 0. 故 $\mathbb{Q}(\frac{1+\sqrt{5}}{2})$ 是代数扩张.

例 8.2.6

- (1) 圆周率 $\pi = 3.14159265 \cdots$ 是有理数域 ℚ 上的超越数.
- (2) 自然对数底 $e = 2.71828182 \cdots$ 是有理数域 \mathbb{Q} 上的超越数.
- (3) $2^{\sqrt{2}}$ 是有理数域 \mathbb{Q} 上的超越数.
- (4) $\sum_{n=1}^{\infty} \frac{1}{2^{n!}}$ 是有理数域 \mathbb{Q} 上的超越数.

下面建立多项式环和多项式分式域与域扩张之间的关系.

设 F 是 K 的扩域, $u \in F$, 则可以构造 K[x] 到 K[u] 的一个同态.

$$\varphi: K[x] \rightarrow K[u]$$

$$h(x) \mapsto h(u)$$

且上述环同态可拓展为 K(x) 到 K(u) 的一个域同态.

$$\begin{array}{ccc} \varphi: K(x) & \to & K(u) \\ \frac{h(x)}{g(x)} & \mapsto & \frac{h(u)}{g(u)} \end{array}$$

下面建立多项式环和多项式分式域与域扩张之间的关系.

设 $F \in K$ 的扩域, $u \in F$, 则可以构造 K[x] 到 K[u] 的一个同态.

$$\varphi: K[x] \rightarrow K[u]$$

$$h(x) \mapsto h(u)$$

且上述环同态可拓展为 K(x) 到 K(u) 的一个域同态.

$$\varphi: K(x) \longrightarrow K(u)$$

$$\frac{h(x)}{g(x)} \mapsto \frac{h(u)}{g(u)}$$

根据环同态基本定理,有同构

$$\overline{\varphi}: K[x]/\ker(\varphi) \to K[u],$$

其中 $\ker(\varphi) = \{h(x) \in K[x] \mid h(u) = 0\}.$

分两种情况讨论:

(1) u 是 K 上超越数. $\ker(\varphi) = \{0\}$. 因此, φ 是环同构, 也是域同构, 即

定理 8.2.3

如果 F 是 K 的扩域, $u \in F$ 是 K 上的超越数, 则存在一个在 K 上为 恒等映射的域同构 $K(u) \cong K(x)$.

分两种情况讨论:

(1) u 是 K 上超越数. $\ker(\varphi) = \{0\}$. 因此, φ 是环同构, 也是域同构, 即定理 8.2.3

如果 F 是 K 的扩域, $u \in F$ 是 K 上的超越数, 则存在一个在 K 上为恒等映射的域同构 $K(u) \cong K(x)$.

(2) u 是 K 上代数数. $\ker(\varphi) \neq \{0\}$ 是素理想. 而 K[x] 是主理想环, 故存在次数最小首一不可约多项式 f(x) 使得 $\ker(\varphi) = (f(x))$, 即

定理 8.2.4

设 F 是域 K 的扩域, $u \in F$ 是 K 上的代数数, 则存在一个在 K 上的首一不可约多项式 f(x) 使得 f(u) = 0.

分两种情况讨论:

(1) u 是 K 上超越数. $\ker(\varphi) = \{0\}$. 因此, φ 是环同构, 也是域同构, 即

如果 $F \not\in K$ 的扩域, $u \in F \not\in K$ 上的超越数, 则存在一个在 K 上为恒等映射的域同构 $K(u) \cong K(x)$.

(2) u 是 K 上代数数. $\ker(\varphi) \neq \{0\}$ 是素理想. 而 K[x] 是主理想环, 故存在次数最小首一不可约多项式 f(x) 使得 $\ker(\varphi) = (f(x))$, 即

定理 8.2.4

定理 8.2.3

设 F 是域 K 的扩域, $u \in F$ 是 K 上的代数数, 则存在一个在 K 上的首一不可约多项式 f(x) 使得 f(u) = 0.

由此,可以建立代数数与多项式的对应关系.

设 F 是域 K 的扩域, $u \in F$ 是 K 上的代数数. 满足 f(u) = 0 的首一不可约多项式 f(x) 称为 u 的极小多项式或定义多项式. 将此不可约多项式 f(x) 的次数 $\deg f$ 定义为 u 在 K 上的次数, 并将此不可约多项式 f(x) 的其他根称作 u 的共轭根.

设 F 是域 K 的扩域, $u \in F$ 是 K 上的代数数. 满足 f(u) = 0 的首一不可约多项式 f(x) 称为 u 的极小多项式或定义多项式. 将此不可约多项式 f(x) 的次数 $\deg f$ 定义为 u 在 K 上的次数, 并将此不可约多项式 f(x) 的其他根称作 u 的共轭根.

例 8.2.7 $\sqrt{2}$ 在 \mathbb{Q} 上的极小多项式是 $f(x) = x^2 - 2$, 次数为 2, 共轭根为 $-\sqrt{2}$.

下面考虑由代数数生成的域.

定理 8.2.5

设F是K的扩域, $u \in F$ 是K上的代数数,则

- (i) K(u) = K[u].
- (ii) $K(u) \cong K[x]/(f(x))$, 其中 $f(x) \in K[x]$ 是 u 的极小多项式, $n = \deg f$.
- (iii) [K(u):K] = n.
- (iv) $\{1, u, u^2, \dots, u^{n-1}\}$ 是 K 上向量空间 K(u) 的基底.
- (v) K(u) 的每个元素可唯一地表示为 $a_0 + a_1 u + \cdots + a_{n-1} u^{n-1}$, $a_i \in K$.

下面考虑由代数数生成的域.

定理 8.2.5

设F是K的扩域, $u \in F$ 是K上的代数数,则

- (i) K(u) = K[u].
- (ii) $K(u) \cong K[x]/(f(x))$, 其中 $f(x) \in K[x]$ 是 u 的极小多项式, $n = \deg f$.
- (iii) [K(u):K] = n.
- (iv) $\{1, u, u^2, \dots, u^{n-1}\}$ 是 K 上向量空间 K(u) 的基底.
- (v) K(u) 的每个元素可唯一地表示为 $a_0 + a_1 u + \cdots + a_{n-1} u^{n-1}, \ a_i \in K$.

证:设 u的极小多项式为 f(x), $n = \deg f$.

(i) 对任意 $\frac{h(u)}{g(u)} \in K(u), g(u) \neq 0$, 有多项式 g(x) 与 f(x) 互素. 根据多项式广义欧几里德除法, 存在 g(x), g(x) 使得

$$s(x) \cdot g(x) + t(x) \cdot f(x) = 1$$
. 从而, $s(u)g(u) = 1$. 因此,

$$\frac{h(u)}{g(u)} = \frac{s(u) \cdot h(u)}{s(u) \cdot g(u)} = s(u) \cdot h(u) \in K[u],$$

(ii) 考虑 K[x] 到 K[u] 的映射 $\varphi: g(x) \mapsto g(u)$.

易知, σ 是满的环同态. 根据环同态基本定理, 有

$$K(u) \cong K[x]/\ker(\varphi),$$

而 $\ker(\varphi) = (f)$, 即得.

(ii) 考虑 K[x] 到 K[u] 的映射 $\varphi: g(x) \mapsto g(u)$.

易知, σ 是满的环同态. 根据环同态基本定理, 有

$$K(u) \cong K[x]/\ker(\varphi),$$

而 $ker(\varphi) = (f)$, 即得.

(iv) 对任意 $g(x) \in K[x]$, 根据多项式欧几里德除法, 存在 q(x),

 $r(x) \in K[x]$ 使得 $g(x) = q(x) \cdot f(x) + r(x)$, $0 \le \deg r < \deg f$.

因此, g(u) = r(u). 这说明, $\{1, u, u^2, \dots, u^{n-1}\}$ 是 K(u) 的生成元.

又因为 f(x) 是使得 f(u) = 0 的次数最小的多项式,

所以 $\{1, u, u^2, \dots, u^{n-1}\}$ 在 K 上线性无关.

因此, $\{1, u, u^2, \dots, u^{n-1}\}$ 是 K 上向量空间 K(u) 的基底.

(ii) 考虑 K[x] 到 K[u] 的映射 $\varphi: g(x) \mapsto g(u)$.

易知, σ 是满的环同态. 根据环同态基本定理, 有

$$K(u) \cong K[x]/\ker(\varphi),$$

而 $ker(\varphi) = (f)$, 即得.

(iv) 对任意 $g(x) \in K[x]$, 根据多项式欧几里德除法, 存在 q(x),

 $r(x) \in K[x]$ 使得 $g(x) = q(x) \cdot f(x) + r(x)$, $0 \le \deg r < \deg f$.

因此, g(u) = r(u). 这说明, $\{1, u, u^2, \dots, u^{n-1}\}$ 是 K(u) 的生成元.

又因为 f(x) 是使得 f(u) = 0 的次数最小的多项式,

所以 $\{1, u, u^2, \dots, u^{n-1}\}$ 在 K 上线性无关.

因此, $\{1, u, u^2, \dots, u^{n-1}\}$ 是 K 上向量空间 K(u) 的基底.

(iii) 和 (v) 由 (iv) 可得.

例 8.2.8 多项式 $x^2 - x - 1$ 是 \mathbb{Q} 上的不可约多项式.

例 8.2.8 多项式 $x^2 - x - 1$ 是 \mathbb{Q} 上的不可约多项式.

例 8.2.9 多项式 $x^3 - 3x - 1$ 是 \mathbb{Q} 上的不可约多项式.

- **例** 8.2.8 多项式 $x^2 x 1$ 是 \mathbb{Q} 上的不可约多项式.
- **例** 8.2.9 多项式 $x^3 3x 1$ 是 \mathbb{Q} 上的不可约多项式.

例 8.2.10 F_2 上的 4 次以下的不可约多项式与可约多项式是:

- (1) 一次不可约多项式: x, x + 1;
- (2) 二次不可约多项式: $x^2 + x + 1$;
- (3) 二次可约多项式: x^2 , $x^2 + 1 = (x+1)^2$, $x^2 + x = x(x+1)$;
- (4) 三次不可约多项式: $x^3 + x + 1$, $x^3 + x^2 + 1$;
- (5) 三次可约多项式为: x^3 , $x^3 + x$, $x^3 + x^2$, $x^3 + x^2 + x$, $x^3 + x^2 + x + 1 = (x+1)^3$, $x^3 + 1 = (x+1)(x^2 + x + 1)$.

定义 8.2.5

设 F 是域 K 的扩域, a_1, a_2, \dots, a_n 是 F 的 n 个元素. 如果存在一个非零多项式 $f \in K[x_1, \dots, x_n]$ 使得 $f(a_1, a_2, \dots, a_n) = 0$, 则称 a_1, a_2, \dots, a_n 在 K 上代数相关. 否则, a_1, a_2, \dots, a_n 叫作代数无关.

定义 8.2.5

设 F 是域 K 的扩域, a_1, a_2, \cdots, a_n 是 F 的 n 个元素. 如果存在一个非零多项式 $f \in K[x_1, \cdots, x_n]$ 使得 $f(a_1, a_2, \cdots, a_n) = 0$, 则称 a_1, a_2, \cdots, a_n 在 K 上代数相关. 否则, a_1, a_2, \cdots, a_n 叫作代数无关.

注: 所谓 a_1, a_2, \dots, a_n 代数无关, 即如果有多项式 $f \in K[x_1, \dots, x_n]$ 使得 $f(a_1, a_2, \dots, a_n) = 0$, 则 f = 0.

定义 8.2.5

设 F 是域 K 的扩域, a_1, a_2, \cdots, a_n 是 F 的 n 个元素. 如果存在一个非零多项式 $f \in K[x_1, \cdots, x_n]$ 使得 $f(a_1, a_2, \cdots, a_n) = 0$, 则称 a_1, a_2, \cdots, a_n 在 K 上代数相关. 否则, a_1, a_2, \cdots, a_n 叫作代数无关.

注: 所谓 a_1, a_2, \dots, a_n 代数无关, 即如果有多项式 $f \in K[x_1, \dots, x_n]$ 使 得 $f(a_1, a_2, \dots, a_n) = 0$, 则 f = 0.

例 8.2.11 $\pi = 3.14 \cdots$ 和自然对数底 $e = 2.718 \cdots$ 在 \mathbb{Q} 上代数无关.

定义 8.2.5

设 F 是域 K 的扩域, a_1, a_2, \cdots, a_n 是 F 的 n 个元素. 如果存在一个非零多项式 $f \in K[x_1, \cdots, x_n]$ 使得 $f(a_1, a_2, \cdots, a_n) = 0$, 则称 a_1, a_2, \cdots, a_n 在 K 上代数相关. 否则, a_1, a_2, \cdots, a_n 叫作代数无关.

注: 所谓 a_1, a_2, \dots, a_n 代数无关, 即如果有多项式 $f \in K[x_1, \dots, x_n]$ 使得 $f(a_1, a_2, \dots, a_n) = 0$, 则 f = 0.

例 8.2.11 $\pi = 3.14 \cdots$ 和自然对数底 $e = 2.718 \cdots$ 在 \mathbb{Q} 上代数无关. 定理 8.2.6

设 F 是域 K 的有限生成扩域,则 F 是 K 的代数扩张,或者存在代数无关元 θ_1,\cdots,θ_t 使得 F 是 $K(\theta_1,\cdots,\theta_t)$ 的代数扩张.

定义 8.2.5

设 F 是域 K 的扩域, a_1, a_2, \cdots, a_n 是 F 的 n 个元素. 如果存在一个非零多项式 $f \in K[x_1, \cdots, x_n]$ 使得 $f(a_1, a_2, \cdots, a_n) = 0$, 则称 a_1, a_2, \cdots, a_n 在 K 上代数相关. 否则, a_1, a_2, \cdots, a_n 叫作代数无关.

注: 所谓 a_1, a_2, \dots, a_n 代数无关, 即如果有多项式 $f \in K[x_1, \dots, x_n]$ 使 得 $f(a_1, a_2, \dots, a_n) = 0$, 则 f = 0.

例 8.2.11 $\pi = 3.14 \cdots$ 和自然对数底 $e = 2.718 \cdots$ 在 \mathbb{Q} 上代数无关.

定理 8.2.6

设 F 是域 K 的有限生成扩域,则 F 是 K 的代数扩张,或者存在代数无关元 θ_1,\cdots,θ_t 使得 F 是 $K(\theta_1,\cdots,\theta_t)$ 的代数扩张.

证:设 F 在域 K 的有限生成元为 $S = \{a_1, a_2, \cdots, a_n\}$. 若 S 中的每个元素在 K 上代数相关,则 F 是 K 的代数扩张. 否则,S 中有元素在 K 上代数无关,设为 θ_1 . 用 $K(\theta_1)$ 代替 K 作讨论. 如此下去,即得.

下面从域的同构扩充到扩域的同构. 设 $\sigma: K \to L$ 是域同构.

対于
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \in K[x]$$
, 记

$$\sigma(f)(x) = \sigma(a_n) x^n + \sigma(a_{n-1}) x^{n-1} + \dots + \sigma(a_1) x + \sigma(a_0),$$

易知f和 $\sigma(f)$ 同为可约或不可约多项式.

定理 8.2.7

设 $\sigma: K \to L$ 是域同构. $u \not\in K$ 的某个扩域中的元素, $v \not\in L$ 的某个扩域中的元素, 假设

- (i) $u \in K$ 上的超越数, $v \in L$ 上的超越数, 或者
- (ii) u 是 K 上的代数数, u 的极小多项式为 $f(x) \in K[x]$, v 是多项式 $\sigma(f) \in L[x]$ 的根,
- 则 σ 可扩充为扩域 K(u) 到 L(v) 的同构 φ , 并将 u 映射到 $v = \varphi(u)$.

下面从域的同构扩充到扩域的同构. 设 $\sigma: K \to L$ 是域同构.

対于
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \in K[x]$$
, 记

$$\sigma(f)(x) = \sigma(a_n) x^n + \sigma(a_{n-1}) x^{n-1} + \dots + \sigma(a_1) x + \sigma(a_0),$$

易知 f 和 $\sigma(f)$ 同为可约或不可约多项式.

定理 8.2.7

设 $\sigma: K \to L$ 是域同构. $u \not\in K$ 的某个扩域中的元素, $v \not\in L$ 的某 个扩域中的元素, 假设

- (i) $u \in K$ 上的超越数, $v \in L$ 上的超越数, 或者
- (ii) u 是 K 上的代数数, u 的极小多项式为 $f(x) \in K[x]$, v 是多项式 $\sigma(f) \in L[x]$ 的根,

则 σ 可扩充为扩域 K(u) 到 L(v) 的同构 φ , 并将 u 映射到 $v = \varphi(u)$.

证: 考虑 K(u) 到 L(v) 映射 $\varphi: \frac{h(u)}{g(u)} \to \frac{\sigma(h)(v)}{\sigma(g)(v)}$. 这个 φ 是 K(u) 到 L(v)的同构, 且满足 $\varphi|_{K} = \sigma, \varphi(u) = v$. 事实上, 只需说明 φ 是一对一的.

若 $\sigma(h)(v) = 0$, 根据假设条件, 在情形 (i) 下, 有 $\sigma(h) = 0$, 从而 h = 0. 在情形 (ii) 下, 有 $\sigma(f) \mid \sigma(h)$, 从而 $f \mid h$, 即有 h(u) = 0.

定理 8.2.8

设 E 和 F 都是域 K 的扩域, $u \in E, v \in F$. 则 u 和 v 是同一不可约 多项式 $f(x) \in K[x]$ 的根当且仅当存在一个 K 的同构 $K(u) \cong K(v)$, 其将 u 映射到 v.

若 $\sigma(h)(v) = 0$, 根据假设条件, 在情形 (i) 下, 有 $\sigma(h) = 0$, 从而 h = 0. 在情形 (ii) 下, 有 $\sigma(f) \mid \sigma(h)$, 从而 $f \mid h$, 即有 h(u) = 0.

定理 8.2.8

设 E 和 F 都是域 K 的扩域, $u \in E, v \in F$. 则 u 和 v 是同一不可约 多项式 $f(x) \in K[x]$ 的根当且仅当存在一个 K 的同构 $K(u) \cong K(v)$, 其将 u 映射到 v.

证: 取 $\sigma = id_K$ 为 K 上的恒等变换, σ 是 K 到自身的同构, 且 $\sigma(f) = f$. 应用定理 8.2.7 即得.

若 $\sigma(h)(v) = 0$, 根据假设条件, 在情形 (i) 下, 有 $\sigma(h) = 0$, 从而 h = 0. 在情形 (ii) 下, 有 $\sigma(f) \mid \sigma(h)$, 从而 $f \mid h$, 即有 h(u) = 0.

定理 8.2.8

设 E 和 F 都是域 K 的扩域, $u \in E, v \in F$. 则 u 和 v 是同一不可约 多项式 $f(x) \in K[x]$ 的根当且仅当存在一个 K 的同构 $K(u) \cong K(v)$, 其将 u 映射到 v.

证: 取 $\sigma = id_K$ 为 K 上的恒等变换, σ 是 K 到自身的同构, 且 $\sigma(f) = f$. 应用定理 8.2.7 即得.

定理 8.2.9

设 K 是一个域, $f \in K[x]$ 是次数为 n 的多项式, 则存在 K 的单扩域 F = K(u) 使得

- (i) $u \in F$ 是 f 的根.
- (ii) $[K(u):K] \leq n$, 等式成立当且仅当 f 是 K[x] 中的不可约多项式.

证:不妨设 $f \in K[x]$ 是不可约多项式,根据商环 K[x]/(f) 是一个域. 考虑 K[x] 到 K[x]/(f) = F 的自然同态

$$s: g(x) \mapsto g(x) \mod f(x)$$
.

易知, $s|_K$ 是 K 到 s(K) 的同构, 且 F 是 s(K) 的扩域. 对于 $x \in K[x]$, 令 u = s(x), 有

$$F = K(u) \not \!\!\! D f(u) = 0.$$

则 (i) 成立.

从定理 8.2.5 即可推出 (ii).

证:不妨设 $f \in K[x]$ 是不可约多项式,根据商环 K[x]/(f) 是一个域. 考虑 K[x] 到 K[x]/(f) = F 的自然同态

$$s: g(x) \mapsto g(x) \mod f(x)$$
.

易知, $s|_K$ 是 K 到 s(K) 的同构, 且 F 是 s(K) 的扩域.

对于 $x \in K[x]$, 令 u = s(x), 有

$$F = K(u) \not \! D f(u) = 0.$$

则 (i) 成立.

从定理 8.2.5 即可推出 (ii).

推论 8.2.2

设 K 是一个域, $f \in K[x]$ 是次数为 n 的不可约多项式. 设 α 是 f(x) 的根, 则 α 在 K 上生成的域为 $F = K(\alpha)$, 且 $[K(\alpha):K] = n$.

←□ → ←団 → ← 분 → 분 → へへ

设 K 是一个域, $f \in K[x]$ 是次数为 $n \ge 1$ 的多项式. 对于 K 的一个扩域 F, 如果 f 在 F[x] 中可完全分解成一次因式的乘积, 即

$$f(x) = \alpha(x - u_1)(x - u_2) \cdots (x - u_n),$$

且 $F = K(u_1, \dots, u_n)$, 其中 $\alpha \in K$, u_1, \dots, u_n 是 f 在 F 中的根, 则称 F 为 多项式 f 在 K 上的分裂域或根域.

设 K 是一个域, $f \in K[x]$ 是次数为 $n \ge 1$ 的多项式. 对于 K 的一个扩域 F, 如果 f 在 F[x] 中可完全分解成一次因式的乘积, 即

$$f(x) = \alpha(x - u_1)(x - u_2) \cdots (x - u_n),$$

且 $F = K(u_1, \dots, u_n)$, 其中 $\alpha \in K$, u_1, \dots, u_n 是 f 在 F 中的根, 则称 F 为 多项式 f 在 K 上的分裂域或根域.

注:设 $S \not\in K[x]$ 中一些次数 $\geqslant 1$ 的多项式组成的集合.对于 K 的一个 扩域 F, 如果 S 中的每一个多项式 f 在 F[x] 中可完全分解成一次因式的 乘积,且 F 由 S 中的所有多项式的根在 K 上生成,则称 F 为 **多项式集** 合 S 在 K 上的分裂域.

设 K 是一个域, $f \in K[x]$ 是次数为 $n \ge 1$ 的多项式. 对于 K 的一个扩域 F, 如果 f 在 F[x] 中可完全分解成一次因式的乘积, 即

$$f(x) = \alpha(x - u_1)(x - u_2) \cdots (x - u_n),$$

且 $F = K(u_1, \dots, u_n)$, 其中 $\alpha \in K$, u_1, \dots, u_n 是 f 在 F 中的根, 则称 F 为 多项式 f 在 K 上的分裂域或根域.

注:设 $S \not\in K[x]$ 中一些次数 $\geqslant 1$ 的多项式组成的集合.对于 K 的一个 扩域 F, 如果 S 中的每一个多项式 f 在 F[x] 中可完全分解成一次因式的 乘积,且 F 由 S 中的所有多项式的根在 K 上生成,则称 F 为 **多项式集** 合 S 在 K 上的分裂域.

例 8.2.12 设 $x^p - x$ 在 F_p 的分裂域就是 F_p .

设 K 是一个域, $f \in K[x]$ 是次数为 $n \ge 1$ 的多项式. 对于 K 的一个扩域 F, 如果 f 在 F[x] 中可完全分解成一次因式的乘积, 即

$$f(x) = \alpha(x - u_1)(x - u_2) \cdots (x - u_n),$$

且 $F = K(u_1, \dots, u_n)$, 其中 $\alpha \in K$, u_1, \dots, u_n 是 f 在 F 中的根, 则称 F 为 多项式 f 在 K 上的分裂域或根域.

注:设 $S \not\in K[x]$ 中一些次数 $\geqslant 1$ 的多项式组成的集合.对于 K 的一个 扩域 F,如果 S 中的每一个多项式 f 在 F[x] 中可完全分解成一次因式的 乘积,且 F 由 S 中的所有多项式的根在 K 上生成,则称 F 为 **多项式集** 合 S 在 K 上的分裂域.

例 8.2.12 设 $x^p - x$ 在 F_p 的分裂域就是 F_p .

证: 在 F_p 上有 $x^p - x = x(x-1)\cdots(x-(p-1))$.

设 K 是一个域, $f \in K[x]$ 是次数为 $n \ge 1$ 的多项式. 对于 K 的一个扩域 F, 如果 f 在 F[x] 中可完全分解成一次因式的乘积, 即

$$f(x) = \alpha(x - u_1)(x - u_2) \cdots (x - u_n),$$

且 $F = K(u_1, \dots, u_n)$, 其中 $\alpha \in K$, u_1, \dots, u_n 是 f 在 F 中的根, 则称 F 为 多项式 f 在 K 上的分裂域或根域.

注: 设 $S \neq K[x]$ 中一些次数 $\geqslant 1$ 的多项式组成的集合. 对于 K 的一个 扩域 F, 如果 S 中的每一个多项式 f 在 F[x] 中可完全分解成一次因式的 乘积, 且 F 由 S 中的所有多项式的根在 K 上生成, 则称 F 为 **多项式集** 合 S 在 K 上的分裂域.

例 8.2.12 设 $x^p - x$ 在 F_p 的分裂域就是 F_p .

证: 在 F_p 上有 $x^p - x = x(x-1)\cdots(x-(p-1))$.

例 8.2.13 设 $E \neq q$ 元有限域, 则 $x^q - x$ 在 E 的素域 F_p 的分裂域是 E.

定理 8.2.10

设 K 是一个域, $f \in K[x]$ 的次数为 $n \ge 1$, 则存在 f 的一个分裂域 F 且 $[F:K] \le n!$.

设 K 是一个域, $f \in K[x]$ 的次数为 $n \geqslant 1$, 则存在 f 的一个分裂域 F 且 $[F:K] \leqslant n!$.

证: 对 $n = \deg f$ 作数学归纳法.

如果 n=1, 或如果 f 在 K 上可完全分解, 则 F=K 是分裂域.

设 K 是一个域, $f \in K[x]$ 的次数为 $n \ge 1$, 则存在 f 的一个分裂域 F 且 $[F:K] \le n!$.

证:对 $n = \deg f$ 作数学归纳法.

如果 n=1, 或如果 f 在 K 上可完全分解, 则 F=K 是分裂域.

如果 n > 1, f 在 K 上不能完全分解, 设 $g \in K[x]$ 是 f 的次数大于 1 的不可约因式. 则存在 K 的一个简单扩张 K(u) 使得 u 是 g 的根, 且 $[K(u):K]=\deg g > 1$. 因此, 在 K(u)[x] 中有分解式 f(x)=(x-u)h(x), 其中 $\deg h=n-1$. 由归纳假设, 存在 h 在 K(u) 上的维数 $\leqslant (n-1)!$ 的分裂域 F. 易知, F 在 K 上的次数

$$[F:K] = [F:K(u)][K(u):K] \leqslant (n-1)!n = n!.$$

设 K 是一个域, $f \in K[x]$ 的次数为 $n \ge 1$, 则存在 f 的一个分裂域 F 且 $[F:K] \le n!$.

证: 对 $n = \deg f$ 作数学归纳法.

如果 n=1, 或如果 f 在 K 上可完全分解, 则 F=K 是分裂域.

如果 n > 1, f 在 K 上不能完全分解, 设 $g \in K[x]$ 是 f 的次数大于 1 的不可约因式. 则存在 K 的一个简单扩张 K(u) 使得 u 是 g 的根, 且 $[K(u):K]=\deg g > 1$. 因此, 在 K(u)[x] 中有分解式 f(x)=(x-u)h(x), 其中 $\deg h=n-1$. 由归纳假设, 存在 h 在 K(u) 上的维数 $\leq (n-1)!$ 的分裂域 F. 易知, F 在 K 上的次数

$$[F:K] = [F:K(u)][K(u):K] \leqslant (n-1)!n = n!.$$

下面讨论不能进行代数扩张的域,也就是一个在该域上的多项式总有解的域.

在域 F 上的以下条件等价:

- (i) 每个非常数多项式 $f \in F[x]$ 在 F 中有根.
- (ii) 每个非常数多项式 $f \in F[x]$ 在 F 中可完全分解.
- (iii) 每个不可约多项式 $f \in F[x]$ 的次数为 1.
- (iv) 除了F以外,不存在F的代数扩张.

在域 F 上的以下条件等价:

- (i) 每个非常数多项式 $f \in F[x]$ 在 F 中有根.
- (ii) 每个非常数多项式 $f \in F[x]$ 在 F 中可完全分解.
- (iii) 每个不可约多项式 $f \in F[x]$ 的次数为 1.
- (iv) 除了F以外,不存在F的代数扩张.

证: (i) \Rightarrow (ii). 对 f 的次数 $\deg f = n$ 作数学归纳法. n = 1 时, f(x) 为一次多项式, 结论成立. 假设结论对次数 $\leqslant n - 1$ 的多项式成立. 对于非零 $n \geqslant 2$ 次多项式 f(x), 由 (i) 知, f(x) 在 F 中有根 x = a. 根据多项式欧几里德除法可得到 $x - a \mid f(x)$, 或 $f(x) = f_1(x)(x - a)$, 其中 $\deg f_1 = n - 1$. 根据归纳假设, $f_1(x)$ 在 F 中可完全分解,故 $f \in F[x]$ 在 F 中可完全分解.

在域 F 上的以下条件等价:

- (i) 每个非常数多项式 $f \in F[x]$ 在 F 中有根.
- (ii) 每个非常数多项式 $f \in F[x]$ 在 F 中可完全分解.
- (iii) 每个不可约多项式 $f \in F[x]$ 的次数为 1.
- (iv) 除了F以外,不存在F的代数扩张.

证: (i) \Rightarrow (ii). 对 f 的次数 $\deg f = n$ 作数学归纳法. n = 1 时, f(x) 为一次多项式,结论成立. 假设结论对次数 $\leqslant n - 1$ 的多项式成立. 对于非零 $n \geqslant 2$ 次多项式 f(x),由 (i) 知, f(x) 在 F 中有根 x = a. 根据多项式欧几里德除法可得到 $x - a \mid f(x)$,或 $f(x) = f_1(x)(x - a)$,其中 $\deg f_1 = n - 1$. 根据归纳假设, $f_1(x)$ 在 F 中可完全分解,故 $f \in F[x]$ 在 F 中可完全分解. (ii) \Rightarrow (iii). 结论显然成立.

在域 F 上的以下条件等价:

- (i) 每个非常数多项式 $f \in F[x]$ 在 F 中有根.
- (ii) 每个非常数多项式 $f \in F[x]$ 在 F 中可完全分解.
- (iii) 每个不可约多项式 $f \in F[x]$ 的次数为 1.
- (iv) 除了F以外,不存在F的代数扩张.

证: (i) \Rightarrow (ii). 对 f 的次数 $\deg f = n$ 作数学归纳法. n = 1 时, f(x) 为一 次多项式, 结论成立. 假设结论对次数 $\leq n-1$ 的多项式成立. 对于非零 $n \ge 2$ 次多项式 f(x), 由 (i) 知, f(x) 在 F 中有根 x = a. 根据多项式欧几 里德除法可得到 $x - a \mid f(x)$, 或 $f(x) = f_1(x)(x - a)$, 其中 $\deg f_1 = n - 1$. 根据归纳假设, $f_1(x)$ 在 F 中可完全分解, 故 $f \in F[x]$ 在 F 中可完全分解. (ii) \Rightarrow (iii). 结论显然成立. (iii) \Rightarrow (iv). 设 E 是 F 的一个代数扩张,则 对于任意 $u \in E$, 因为 $u \in F$ 上的代数元, 由定理 8.2.5, 存在不可约多项 式 $f(x) \in F[x]$ 使得 f(u) = 0. 由 (iii), $f(x) = a_1x + a_2, a_1, a_2 \in F$. 从而,

$$u = -(a_1^{-1})a_2 \in F$$
. 这说明, $E \subset F$, 故 $E = F$, 结论成立.

(iv) \Rightarrow (i). 设 f(x) 是 F 上的非常数多项式,由定理 8.2.5,存在 f(x) 的根 u 使 F(u) 为 F 的代数扩张.由 (iv), F(u) = F.故, $u \in F$, 结论成立.

 $(iv) \Rightarrow (i)$. 设 f(x) 是 F 上的非常数多项式,由定理 8.2.5,存在 f(x) 的根 u 使 F(u) 为 F 的代数扩张.由 (iv), F(u) = F.故, $u \in F$,结论成立.

定义 8.2.7

设 F 是一个域. 如果域 F 满足定理 8.2.11 的等价条件, 则称 F 为代数闭包.

 $(iv) \Rightarrow (i)$. 设 f(x) 是 F 上的非常数多项式, 由定理 8.2.5, 存在 f(x) 的根 u 使 F(u) 为 F 的代数扩张. 由 (iv), F(u) = F. 故, $u \in F$, 结论成立.

定义 8.2.7

设 F 是一个域. 如果域 F 满足定理 8.2.11 的等价条件, 则称 F 为代数闭包.

定义 8.2.8

设 K 是一个域, f 是 K 上的不可约多项式. 如果 F 是 f 在 K 上的一个分裂域, 且 f 在 F 中的根都是单根, 则称 f 是 **可分的**.

 $(iv)\Rightarrow (i)$. 设 f(x) 是 F 上的非常数多项式, 由定理 8.2.5, 存在 f(x) 的根 u 使 F(u) 为 F 的代数扩张. 由 (iv), F(u)=F. 故, $u\in F$, 结论成立.

定义 8.2.7

设 F 是一个域. 如果域 F 满足定理 8.2.11 的等价条件, 则称 F 为代数闭包.

定义 8.2.8

设 K 是一个域, f 是 K 上的不可约多项式. 如果 F 是 f 在 K 上的一个分裂域, 且 f 在 F 中的根都是单根, 则称 f 是 可分的.

定义 8.2.9

设 F 是域 K 是一个扩域, u 是 K 上的代数数. 如果 u 在 K 上的极小多项式是可分的, 则称 u 在 K 上是可分的. 如果 F 中的每个元素 u 在 K 上都是可分的, 则称 F 为 K 的可分扩张.

设 E 和 F 是域 K 的扩域. 对于一个非零映射 $\sigma: E \to F$, 如果 σ 是一个域同态, 且 σ 在 K 上为恒等映射, 则称 σ 为 K-同态. 特别地, 当 σ 是一个域同构时, 则称 σ 为 K-同构.

设 E 和 F 是域 K 的扩域. 对于一个非零映射 $\sigma: E \to F$, 如果 σ 是一个域同态, 且 σ 在 K 上为恒等映射, 则称 σ 为 K-同态. 特别地, 当 σ 是一个域同构时, 则称 σ 为 K-同构.

注: K-同态和 K-同构都要求 K 中的元素是不变元, 即在同态或同构映射下保持不变.

设 E 和 F 是域 K 的扩域. 对于一个非零映射 $\sigma: E \to F$, 如果 σ 是一个域同态, 且 σ 在 K 上为恒等映射, 则称 σ 为 K-同态. 特别地, 当 σ 是一个域同构时, 则称 σ 为 K-同构.

注: K-同态和 K-同构都要求 K 中的元素是不变元, 即在同态或同构映射下保持不变.

对于一个自同构 $\sigma: F \to F$, 如果 σ 是 K-同构, 则称 σ 为 K-自同构. F 的所有 K-自同构组成的群叫作 F 在 K 上的伽罗瓦 (Galois) H, 记作 $\operatorname{Aut}_K F$.

设 E 和 F 是域 K 的扩域. 对于一个非零映射 $\sigma: E \to F$, 如果 σ 是一个域同态, 且 σ 在 K 上为恒等映射, 则称 σ 为 K-同态. 特别地, 当 σ 是一个域同构时, 则称 σ 为 K-同构.

注: K-同态和 K-同构都要求 K 中的元素是不变元, 即在同态或同构映射下保持不变.

对于一个自同构 $\sigma: F \to F$, 如果 σ 是 K-同构, 则称 σ 为 K-自同构. F 的所有 K-自同构组成的群叫作 F 在 K 上的伽罗瓦 (Galois) **群**, 记作 $\operatorname{Aut}_K F$.

对于中间域 $E: K \subset E \subset F$, 也有 F 在 E 上的 Galois 群 Aut_EF .

设 E 和 F 是域 K 的扩域. 对于一个非零映射 $\sigma: E \to F$, 如果 σ 是一个域同态, 且 σ 在 K 上为恒等映射, 则称 σ 为 K-同态. 特别地, 当 σ 是一个域同构时, 则称 σ 为 K-同构.

注: K-同态和 K-同构都要求 K 中的元素是不变元,即在同态或同构映射下保持不变.

对于一个自同构 $\sigma: F \to F$, 如果 σ 是 K-同构, 则称 σ 为 K-自同构. F 的所有 K-自同构组成的群叫作 F 在 K 上的伽罗瓦 (Galois) **群**, 记作 $\operatorname{Aut}_K F$.

对于中间域 $E: K \subset E \subset F$, 也有 F 在 E 上的 Galois 群 Aut_EF .

定理 8.3.1

设 $F \not\in K$ 的扩域, $f \in K[x]$. 如果 $u \in F \not\in f$ 的根, $\sigma \in \operatorname{Aut}_K F$, 则 $\sigma(u)$ 也是 f 的根.

设 E 和 F 是域 K 的扩域. 对于一个非零映射 $\sigma: E \to F$, 如果 σ 是一个域同态, 且 σ 在 K 上为恒等映射, 则称 σ 为 K-同态. 特别地, 当 σ 是一个域同构时, 则称 σ 为 K-同构.

注: K-同态和 K-同构都要求 K 中的元素是不变元,即在同态或同构映射下保持不变.

对于一个自同构 $\sigma: F \to F$, 如果 σ 是 K-同构, 则称 σ 为 K-自同构. F 的所有 K-自同构组成的群叫作 F 在 K 上的伽罗瓦 (Galois) **群**, 记作 $\operatorname{Aut}_K F$.

对于中间域 $E: K \subset E \subset F$, 也有 F 在 E 上的 Galois 群 Aut_EF .

定理 8.3.1

设 $F \not\in K$ 的扩域, $f \in K[x]$. 如果 $u \in F \not\in f$ 的根, $\sigma \in \operatorname{Aut}_K F$, 则 $\sigma(u)$ 也是 f 的根.

设 F 是 K 的扩域, E 是中间域. 设 H 是 $G = \operatorname{Aut}_K F$ 的子群. 定义 $I(H) = \{ v \in F \mid \sigma(v) = v, \sigma \in H \}$

和

$$A(E) = \{ \sigma \in Aut_K F \mid \sigma(u) = u, u \in E \}.$$

I(H) 是由 F 中在子群 H 的自同构下保持不变的元素组成的集合. A(E) 是由 $G = \operatorname{Aut}_K F$ 中使中间域 E 中的元素保持不变的自同构组成的集合.

设 F 是 K 的扩域, E 是中间域. 设 H 是 $G = \operatorname{Aut}_K F$ 的子群. 定义 $I(H) = \{ v \in F \mid \sigma(v) = v, \sigma \in H \}$

和

$$A(E) = \{ \sigma \in \operatorname{Aut}_K F \mid \sigma(u) = u, u \in E \}.$$

I(H) 是由 F 中在子群 H 的自同构下保持不变的元素组成的集合. A(E) 是由 $G = \operatorname{Aut}_K F$ 中使中间域 E 中的元素保持不变的自同构组成的集合.

定理 8.3.2

设F是K的扩域,E是中间域以及H是 Aut_KF 的子群,则

- (i) *I(H)* 是扩域 *F* 的中间域.
- (ii) A(E) 是 $Aut_K F$ 的子群.

设 $F \neq K$ 的扩域, $E \neq F$ 是中间域. 设 $H \neq G = Aut_K F$ 的子群. 定义 $I(H) = \{v \in F \mid \sigma(v) = v, \sigma \in H\}$

和

$$A(E) = \{ \sigma \in \operatorname{Aut}_K F \mid \sigma(u) = u, u \in E \}.$$

I(H) 是由 F 中在子群 H 的自同构下保持不变的元素组成的集合. A(E) 是由 $G = \operatorname{Aut}_K F$ 中使中间域 E 中的元素保持不变的自同构组成的集合.

定理 8.3.2

设F是K的扩域,E是中间域以及H是 Aut_KF 的子群,则

- (i) *I(H)* 是扩域 *F* 的中间域.
- (ii) A(E) 是 $Aut_K F$ 的子群.

注:中间域 I(H) 叫作 H 在 F 中的不变域. 易知,

$$I(G) = K, I(\lbrace e \rbrace) = F.$$

$$A(F) = \{e\}, A(K) = G.$$

设 $F \not\in K$ 的扩域. 如果 Galois 群 $\operatorname{Aut}_K F$ 的不变域是 K, 则 F 叫作 K 的 Galois 扩张.

设F 是K 的扩域. 如果 Galois 群 $\operatorname{Aut}_K F$ 的不变域是K, 则F 叫作K 的 Galois 扩张.

注: 对于中间域 $E: K \subset E \subset F$, 如果 Galois 群 Aut_EF 的不变域是 E, 则 F 叫作 E 的 Galois 扩张.

设 $F \not\in K$ 的扩域. 如果 Galois 群 $\operatorname{Aut}_K F$ 的不变域是K, 则F 叫作K 的 Galois 扩张.

注: 对于中间域 $E: K \subset E \subset F$, 如果 Galois 群 Aut_EF 的不变域是 E, 则 F 叫作 E 的 Galois 扩张.

注: 设域 F 是 K 的 Galois 扩张, 则对任意的 $u \in F \setminus K$, 存在 $\sigma \in \operatorname{Aut}_K F$ 使得 $\sigma(u) \neq u$. 设域 F 是 E 的 Galois 扩张, 则对任意的 $u \in F \setminus E$, 存在 $\sigma \in \operatorname{Aut}_E F$ 使得 $\sigma(u) \neq u$.

设 $F \not\in K$ 的扩域. 如果 Galois 群 $\operatorname{Aut}_K F$ 的不变域是K, 则F 叫作K 的 Galois 扩张.

注: 对于中间域 $E: K \subset E \subset F$, 如果 Galois 群 Aut_EF 的不变域是 E, 则 F 叫作 E 的 Galois 扩张.

注: 设域 F 是 K 的 Galois 扩张, 则对任意的 $u \in F \setminus K$, 存在 $\sigma \in \operatorname{Aut}_K F$ 使得 $\sigma(u) \neq u$. 设域 F 是 E 的 Galois 扩张, 则对任意的 $u \in F \setminus E$, 存在 $\sigma \in \operatorname{Aut}_E F$ 使得 $\sigma(u) \neq u$.

注: 给定 E, 可得 A(E), 进而得 I(A(E)), 它使得 $A(E) = \operatorname{Aut}_{I(A(E))} F$. 故 $A(E) = \operatorname{Aut}_E F \Leftrightarrow I(A(E)) = E$.

即 E 有 Galois 子群 Aut_EF 的充要条件是 I(A(E)) = E.

设 $F \in K$ 的扩域. 如果 Galois 群 $Aut_K F$ 的不变域是 K, 则 F 叫作 K 的 Galois 扩张.

注: 对于中间域 $E: K \subset E \subset F$, 如果 Galois 群 Aut_EF 的不变域是 E, 则 F 叫作 E 的 Galois 扩张.

注: 设域 F 是 K 的 Galois 扩张, 则对任意的 $u \in F \setminus K$, 存在 $\sigma \in \operatorname{Aut}_K F$ 使得 $\sigma(u) \neq u$. 设域 F 是 E 的 Galois 扩张, 则对任意的 $u \in F \setminus E$, 存在 $\sigma \in \operatorname{Aut}_E F$ 使得 $\sigma(u) \neq u$.

注: 给定 E, 可得 A(E), 进而得 I(A(E)), 它使得 $A(E) = \operatorname{Aut}_{I(A(E))} F$. 故 $A(E) = \operatorname{Aut}_{E} F \Leftrightarrow I(A(E)) = E$.

即 E 有 Galois 子群 Aut_EF 的充要条件是 I(A(E)) = E.

注: 给定 H < G, 可得 I(H), 进而得 A(I(H)) 使得 $A(I(H)) = \operatorname{Aut}_{I(H)} F$. 故

$$H = \operatorname{Aut}_{I(H)} F \Leftrightarrow A(I(H)) = H.$$

如果 E = I(A(E)), 则称**中间域** E **是闭的**. 例如 K 和 F 都是闭域. 如果 H = A(I(H)), 则称**子**群 H **是闭的**. 例如 $\{e\}$ 和 G 都是闭子群.

如果 E = I(A(E)), 则称**中间域** E **是闭的**. 例如 K 和 F 都是闭域. 如果 H = A(I(H)), 则称**子群** H **是闭的**. 例如 $\{e\}$ 和 G 都是闭子群.

定理 8.3.3

设 F 是 K 的扩域,则在其闭中间域与 Galois 群 $G = \operatorname{Aut}_K F$ 的闭子 群之间存在一一对应的映射:

$$E \mapsto A(E) = \operatorname{Aut}_E F$$

如果 E = I(A(E)), 则称**中间域** E **是闭的**. 例如 K 和 F 都是闭域. 如果 H = A(I(H)), 则称**子**群 H **是闭的**. 例如 $\{e\}$ 和 G 都是闭子群.

定理 8.3.3

设 $F \not\in K$ 的扩域,则在其闭中间域与 Galois 群 $G = \operatorname{Aut}_K F$ 的闭子 群之间存在一一对应的映射:

$$E \mapsto A(E) = \operatorname{Aut}_E F$$

由此, 定理 8.3.1 可以推广为:

定理 8.3.4

设 F 是 K 的扩域, E 是 F 的中间域, $f \in E[x]$. 如果 $u \in F$ 是 f 的根, $\sigma \in A(E)$, 则 $\sigma(u)$ 也是 f 的根.

定理 8.3.5 (Galois 理论的基本定理)

如果F是K的有限维Galois扩张,则在所有中间扩域集到Galois群 Aut_KF 的所有子群集之间存在一个一一对应的映射

$$E \mapsto A(E) = \operatorname{Aut}_E F$$

使得:

- (i) F 是每个中间域 E 上的 Galois 域.
- (ii) 两个中间域 $E_1 \subset E_2$ 的相关维数 $[E_2 : E_1]$ 等于对应子群
- $A(E_1) > A(E_2)$ 的相关指标 $[A(E_1):A(E_2)]$. 特别地, $\mathrm{Aut}_K F$ 有阶 [F:K].
- (iii) 中间域 E 是 K 上的 Galois 域当且仅当对应的子群 $A(E) = \operatorname{Aut}_E F$ 是 $G = \operatorname{Aut}_K F$ 的正规子群, 在这个情况下, G/A(E) (同构意义下) 是 E

在 K 上的 Galois 群 Aut_KE.

目录

- 1 分式域
- ② 素域与扩域
 - 有限扩域
 - 代数扩域
- ③ Galois 基本定理
- △ 有限域
 - 有限域的构造
 - 有限域的 Galois 群
 - 有限域的正规基

设 F_q 是 q 元有限域, 其特征 p 为素数, 则 F_q 包含素域 $F_p = \mathbb{Z}/p\mathbb{Z}$, 是 F_p 上的有限维线性空间. 设 $n = [F_q:F_p]$, 则 $q = p^n$, 即 q 是其特征 p 的方幂. 根据定理 8.2.5 有

设 F_q 是 q 元有限域, 其特征 p 为素数, 则 F_q 包含素域 $F_p = \mathbb{Z}/p\mathbb{Z}$, 是 F_p 上的有限维线性空间. 设 $n = [F_q:F_p]$, 则 $q = p^n$, 即 q 是其特征 p 的方幂. 根据定理 8.2.5 有

定理 8.4.1

设 $K = \mathbb{Z}/p\mathbb{Z}$ 是一个有限域, 其中 p 是素数. 设 p(x) 是 K[x] 中的 n 次不可约多项式, 则

$$K[x]/((p(x))) = \{a_{n-1}x^{n-1} + \dots + a_1x + a_0 \mid a_i \in K\}$$

构成一个域,记作 F_{p^n} . 这个域的元素个数为 p^n .

设 F_q 是 q 元有限域, 其特征 p 为素数, 则 F_q 包含素域 $F_p=\mathbb{Z}/p\mathbb{Z}$, 是 F_p 上的有限维线性空间. 设 $n=[F_q:F_p]$, 则 $q=p^n$, 即 q 是其特征 p 的方幂. 根据定理 8.2.5 有

定理 8.4.1

设 $K = \mathbb{Z}/p\mathbb{Z}$ 是一个有限域, 其中 p 是素数. 设 p(x) 是 K[x] 中的 n 次不可约多项式, 则

$$K[x]/((p(x))) = \{a_{n-1}x^{n-1} + \dots + a_1x + a_0 \mid a_i \in K\}$$

构成一个域,记作 F_{p^n} . 这个域的元素个数为 p^n .

注: F_{p^n} 中的加法和乘法是:

$$f(x) + g(x) = (f+g)(x) \mod p(x),$$

$$f(x)g(x) = (fg)(x) \mod p(x).$$

例 8.4.1 设 $F_2 = \mathbb{Z}/2\mathbb{Z}$, 则 $p(x) = x^8 + x^4 + x^3 + x + 1$ 是 $F_2[x]$ 中的 8 次不可约多项式.

事实上. 我们有

$$F_{2^8} = F_2[x]/(x^8 + x^4 + x^3 + x + 1) = \{a_7x^7 + \dots + a_1x + a_0 \mid a_i \in \{0, 1\}\}.$$
 F_{2^8} 中的加法和乘法是:
$$f(x) + g(x) = (f+g)(x) \mod (x^8 + x^4 + x^3 + x + 1),$$

$$f(x)g(x) = (fg)(x) \mod (x^8 + x^4 + x^3 + x + 1).$$

$$f(x)g(x) = (fg)(x) \mod (x^8 + x^4 + x^3 + x + 1).$$

另一方面,单独考虑非零元,可以证明: $F_q^* = F_q \setminus \{0\}$ 是 q-1 阶循环乘群. 为此,先讨论 F_q^* 的一些性质.

定理 8.4.2

 F_q^* 的任意元 a 的阶整除 q-1.

另一方面, 单独考虑非零元, 可以证明: $F_q^* = F_q \setminus \{0\}$ 是 q-1 阶循环乘群. 为此, 先讨论 F_q^* 的一些性质.

定理 8.4.2

 F_a^* 的任意元 a 的阶整除 q-1.

证: (方法一) 设 $H = \langle a \rangle$ 是 a 生成的循环群, 根据推论 8.2.1, 有 ord(a) = |H| 且 |H| | $|F_q^*|$, 即 ord(a) | q-1.

另一方面, 单独考虑非零元, 可以证明: $F_q^* = F_q \setminus \{0\}$ 是 q-1 阶循环乘群. 为此, 先讨论 F_q^* 的一些性质.

定理 8.4.2

 F_q^* 的任意元 a 的阶整除 q-1.

证: (方法一) 设 $H = \langle a \rangle$ 是 a 生成的循环群, 根据推论 8.2.1, 有 $\operatorname{ord}(a) = |H|$ 且 $|H| \mid |F_a^*|$, 即 $\operatorname{ord}(a) \mid q - 1$.

(方法二) 设 $F_q^* = \{a_1, a_2, \cdots, a_{q-1}\}$, 则 $a \cdot a_1, a \cdot a_2, \cdots, a \cdot a_{q-1}$ 是 $a_1, a_2, \cdots, a_{q-1}$ 的一个排列, 其中 $a \in F_q^*$. 因此, $(a \cdot a_1)(a \cdot a_2) \cdots (a \cdot a_{q-1}) = a_1 a_2 \cdots a_{q-1}$, 即 $a^{q-1}(a_1 \cdots a_{q-1}) = a_1 \cdots a_{q-1}$. 两端右乘 $(a_1 a_2 \cdots a_{q-1})^{-1}$,得 $a^{q-1} = 1$. 类似于定理 4.1.1 的证明,有 ord $(a) \mid q-1$.

如果有限域 F_q 的元素 g 是 F_q^* 的生成元, 即阶为 q-1, 则称 g 为 F_q 的本原元. 此时, 有 $F_q=\{0\}\cup < g>=\{0,g^0=1,g,\cdots,g^{q-2}\}$. 同时, 称本原元 g 的极小多项式为本原多项式.

如果有限域 F_q 的元素 g 是 F_q^* 的生成元, 即阶为 q-1, 则称 g 为 F_q 的本原元. 此时, 有 $F_q=\{0\}\cup < g>=\{0,g^0=1,g,\cdots,g^{q-2}\}$. 同时, 称本原元 g 的极小多项式为本原多项式.

定理 8.4.3

每个有限域都有本原元. 如果 g 是 F_q 的本原元, 则 g^d 是 F_q 的本原元当且仅当 (d,q-1)=1. 特别地, F_q 有 $\varphi(q-1)$ 个本原元.

如果有限域 F_q 的元素 g 是 F_q^* 的生成元, 即阶为 q-1, 则称 g 为 F_q 的本原元. 此时, 有 $F_q=\{0\}\cup \langle g\rangle=\{0,g^0=1,g,\cdots,g^{q-2}\}$. 同时, 称本原元 g 的极小多项式为本原多项式.

定理 8.4.3

每个有限域都有本原元. 如果 g 是 F_q 的本原元, 则 g^d 是 F_q 的本原元当且仅当 (d,q-1)=1. 特别地, F_q 有 $\varphi(q-1)$ 个本原元.

推论 8.4.1

设 $q = p^n, p$ 为素数, $d \mid q - 1$, 则有限域 F_q 中有阶为 d 的元素.

如果有限域 F_q 的元素 g 是 F_q^* 的生成元, 即阶为 q-1, 则称 g 为 F_q 的本原元. 此时, 有 $F_q=\{0\}\cup < g>=\{0,g^0=1,g,\cdots,g^{q-2}\}$. 同时, 称本原元 g 的极小多项式为本原多项式.

定理 8.4.3

每个有限域都有本原元. 如果 g 是 F_q 的本原元, 则 g^d 是 F_q 的本原元当且仅当 (d,q-1)=1. 特别地, F_q 有 $\varphi(q-1)$ 个本原元.

推论 8.4.1

设 $q=p^n, p$ 为素数, $d \mid q-1$, 则有限域 F_q 中有阶为 d 的元素.

推论 8.4.2

设p为素数,则存在整数g遍历模p简化剩余系,即存在模p原根.

类似于模 p 原根的构造方法 (定理 4.2.7), 也有有限域 F_{p^n} 的本原元构造方法.

定理 8.4.4

给定有限域 F_{p^n} , 其中 p 为素数. 设 p^n-1 的所有不同素因数是 q_1,\cdots,q_s , 则 g 是 F_{p^n} 中本原元的充要条件是 $g^{\frac{p^n-1}{q_i}}\neq 1,\ i=1,\cdots,s$.

- □ 分式域
- 2 素域与扩域
 - 有限扩域
 - 代数扩域
- ③ Galois 基本定理
- 有限域
 - 有限域的构造
 - 有限域的 Galois 群
 - 有限域的正规基

设 F_q 是 $q=p^n$ 元有限域, σ 是 F_q 到自身的映射, $\sigma: a\mapsto a^p$, 则 σ 是 F_q 的自同构, 且 F_q 中在 σ 下的不动元是素域 F_p 的元素, 而 σ 的 n 次幂是恒等映射.

设 F_q 是 $q=p^n$ 元有限域, σ 是 F_q 到自身的映射, $\sigma: a\mapsto a^p$, 则 σ 是 F_q 的自同构, 且 F_q 中在 σ 下的不动元是素域 F_p 的元素, 而 σ 的 n 次幂是恒等映射.

证: 根据定理 7.2.1 以及定理 8.3.4, 有

$$\sigma(a+b) = (a+b)^p = a^p + b^p = \sigma(a) + \sigma(b),$$

$$\sigma(ab) = (ab)^p = a^p b^p = \sigma(a)\sigma(b).$$

因此, σ 是 F_q 的自同构. 因为

 $\sigma^2(a) = \sigma(a^p) = a^{p^2}, \dots, \sigma^j(a) = \sigma(a^{p^{j-1}}) = a^{p^j}, \dots, \sigma^n(a) = a^{p^n} = a,$ 所以 σ^j 的不动元是 $x^{p^j} - x$ 的根. 特别地, 当 j = 1 时, σ 的不动元是 $x^p - x$ 的根, 这些根就是素域 F_p 的 p 个元素. 而当 j = n 时, σ 的不动元是 是 $x^q - x$ 的根, 这些根就是域 F_q 的所有 q 个元素. 因此, σ^n 是恒等映射, σ 的逆映射是 σ^{n-1} .

◆□▶ ◆□▶ ◆豊▶ ◆豊▶ ・豊 ・釣♀○

设 F_q 是 $q=p^n$ 元有限域, σ 是 F_q 到自身的映射, $\sigma: a\mapsto a^p$, 则 σ 是 F_q 的自同构, 且 F_q 中在 σ 下的不动元是素域 F_p 的元素, 而 σ 的 n 次幂是恒等映射.

证: 根据定理 7.2.1 以及定理 8.3.4, 有

$$\sigma(a+b) = (a+b)^p = a^p + b^p = \sigma(a) + \sigma(b),$$

$$\sigma(ab) = (ab)^p = a^p b^p = \sigma(a)\sigma(b).$$

因此, σ 是 F_q 的自同构. 因为

 $\sigma^2(a) = \sigma(a^p) = a^{p^2}, \dots, \sigma^j(a) = \sigma(a^{p^{j-1}}) = a^{p^j}, \dots, \sigma^n(a) = a^{p^n} = a,$ 所以 σ^j 的不动元是 $x^{p^j} - x$ 的根. 特别地, 当 j = 1 时, σ 的不动元是 $x^p - x$ 的根, 这些根就是素域 F_p 的 p 个元素. 而当 j = n 时, σ 的不动元是 是 $x^q - x$ 的根, 这些根就是域 F_q 的所有 q 个元素. 因此, σ^n 是恒等映射, σ 的逆映射是 σ^{n-1} .

设 F_q 是 $q = p^n$ 元有限域,设 $\sigma: a \mapsto a^p$ 是 F_q 到自身的映射, $\{\alpha_1, \alpha_2, \cdots, \alpha_d\}$ 是 F_q 的子集,且在 σ 下保持不变,即 $\{\sigma(\alpha_1), \sigma(\alpha_2), \cdots, \sigma(\alpha_d)\}$ 是 $\{\alpha_1, \alpha_2, \cdots, \alpha_d\}$ 的一个置换,则 $f(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_d)$ 是 F_p 上的多项式.

设 F_q 是 $q=p^n$ 元有限域,设 $\sigma: a\mapsto a^p$ 是 F_q 到自身的映射, $\{\alpha_1,\alpha_2,\cdots,\alpha_d\}$ 是 F_q 的子集,且在 σ 下保持不变,即 $\{\sigma(\alpha_1),\sigma(\alpha_2),\cdots,\sigma(\alpha_d)\}$ 是 $\{\alpha_1,\alpha_2,\cdots,\alpha_d\}$ 的一个置换,则 $f(x)=(x-\alpha_1)(x-\alpha_2)\cdots(x-\alpha_d)$ 是 F_p 上的多项式.

证: 因为多项式 f 的系数是 $\alpha_1, \alpha_2, \cdots, \alpha_d$ 的对称多项式, 所以它们在 σ 下保持不变, 即它们属于 $I(<\sigma>)=F_n$.

设 F_q 是 $q=p^n$ 元有限域,设 $\sigma: a\mapsto a^p$ 是 F_q 到自身的映射, $\{\alpha_1,\alpha_2,\cdots,\alpha_d\}$ 是 F_q 的子集,且在 σ 下保持不变,即 $\{\sigma(\alpha_1),\sigma(\alpha_2),\cdots,\sigma(\alpha_d)\}$ 是 $\{\alpha_1,\alpha_2,\cdots,\alpha_d\}$ 的一个置换,则 $f(x)=(x-\alpha_1)(x-\alpha_2)\cdots(x-\alpha_d)$ 是 F_p 上的多项式.

证: 因为多项式 f 的系数是 $\alpha_1, \alpha_2, \cdots, \alpha_d$ 的对称多项式, 所以它们在 σ 下保持不变, 即它们属于 $I(<\sigma>)=F_p$.

定理 8.4.6

设 F_q 是 $q=p^n$ 元有限域, σ 是 F_q 到自身的映射, $\sigma: a\mapsto a^p$. 如果 α 是 F_q 的任意元, 则 α 在 F_p 上的共轭元是元素 $\sigma^j(\alpha)=\alpha^{p^j}$.

设 F_q 是 $q=p^n$ 元有限域,设 $\sigma: a\mapsto a^p$ 是 F_q 到自身的映射, $\{\alpha_1,\alpha_2,\cdots,\alpha_d\}$ 是 F_q 的子集,且在 σ 下保持不变,即 $\{\sigma(\alpha_1),\sigma(\alpha_2),\cdots,\sigma(\alpha_d)\}$ 是 $\{\alpha_1,\alpha_2,\cdots,\alpha_d\}$ 的一个置换,则 $f(x)=(x-\alpha_1)(x-\alpha_2)\cdots(x-\alpha_d)$ 是 F_p 上的多项式.

证: 因为多项式 f 的系数是 $\alpha_1, \alpha_2, \cdots, \alpha_d$ 的对称多项式, 所以它们在 σ 下保持不变, 即它们属于 $I(<\sigma>)=F_p$.

定理 8.4.6

设 F_q 是 $q=p^n$ 元有限域, σ 是 F_q 到自身的映射, $\sigma: a\mapsto a^p$. 如果 α 是 F_q 的任意元, 则 α 在 F_p 上的共轭元是元素 $\sigma^j(\alpha)=\alpha^{p^j}$.

证: 设 $d = [F_p(\alpha): F_p]$, 则 $F_p(\alpha)$ 可作为有限域 F_{p^d} (在同构意义下). 因此, α 满足 $x^{p^d} = x$, 但不满足 $x^{p^j} = x$, $1 \le j < d$. 由此, 重复应用 σ , 就得到 d 个不同元 $\alpha, \sigma(\alpha) = \alpha^p, \cdots, \sigma^{d-1}(\alpha) = \alpha^{p^{d-1}}$. 断言: 这些元素是 $\alpha \in \mathcal{C}$

的极小多项式的全部根. 事实上, 设 α 的极小多项式为

$$f(x) = x^d + a_{d-1}x^{d-1} + \dots + a_1x + a_0, \ a_i \in F_p,$$

则 $f(\alpha) = \alpha^d + a_{d-1}\alpha^{d-1} + \dots + a_1\alpha + a_0 = 0$. 两端作 p 次方, 根据定理 7.2.1, 并注意到 $a_i^p = a_i, 0 \le i < d$, 有

$$f(\alpha^p) = (\alpha^p)^d + a_{d-1}(\alpha^p)^{d-1} + \dots + a_1\alpha^p + a_0 = f(\alpha)^p = 0.$$

依次继续作 p 次方, 对于 $1 \le j < d$, 有

$$f(\alpha^{p^j}) = (\alpha^{p^j})^d + a_{d-1}(\alpha^{p^j})^{d-1} + \dots + a_1\alpha^{p^j} + a_0 = f(\alpha)^{p^j} = 0.$$

的极小多项式的全部根. 事实上, 设 α 的极小多项式为

$$f(x) = x^d + a_{d-1}x^{d-1} + \dots + a_1x + a_0, \ a_i \in F_p,$$

则 $f(\alpha) = \alpha^d + a_{d-1}\alpha^{d-1} + \dots + a_1\alpha + a_0 = 0$. 两端作 p 次方, 根据定理 7.2.1, 并注意到 $a_i^p = a_i, 0 \le i < d$, 有

$$f(\alpha^p) = (\alpha^p)^d + a_{d-1}(\alpha^p)^{d-1} + \dots + a_1\alpha^p + a_0 = f(\alpha)^p = 0.$$

依次继续作 p 次方, 对于 $1 \le j < d$, 有

$$f(\alpha^{p^j}) = (\alpha^{p^j})^d + a_{d-1}(\alpha^{p^j})^{d-1} + \dots + a_1\alpha^{p^j} + a_0 = f(\alpha)^{p^j} = 0.$$

推论 8.4.4

设 F_q 是 $q = p^n$ 元有限域, σ 是 F_q 到自身的映射, $\sigma: a \mapsto a^p$. 设 f(x) 是 F_p 上的 d 次首一不可约多项式. 如果 α 是 f(x) 在 F_q 中的根, 则 $\alpha, \sigma(\alpha) = \alpha^p, \cdots, \sigma^{d-1}(\alpha) = \alpha^{p^{d-1}}$ 是 F_q 中的全部根, 其中 d 是使得 $\sigma^d(\alpha) = \alpha$ 的最小正整数.

 F_{q^n} 在 F_q 上的自同构集是一个阶为 n 的循环群, 其生成元为自同构 $\sigma_q(\alpha)=\alpha^q$.

 F_{q^n} 在 F_q 上的自同构集是一个阶为 n 的循环群, 其生成元为自同构 $\sigma_q(\alpha)=\alpha^q$.

证: 设 β 是 F_{q^n} 中的本原元,则 β 在 F_q 上的阶为 $q^n - 1$,且其极小多项式 $p(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \in F_q[x]$ 有根 $\beta, \sigma_q(\beta) = \beta^q, \sigma_q^2(\beta) = \beta^{q^2}, \cdots, \sigma^{n-1}(\beta) = \beta^{q^{n-1}}$.

 F_{q^n} 在 F_q 上的自同构集是一个阶为 n 的循环群, 其生成元为自同构 $\sigma_q(\alpha)=\alpha^q$.

证: 设 β 是 F_{q^n} 中的本原元, 则 β 在 F_q 上的阶为 $q^n - 1$, 且其极小多项式 $p(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \in F_q[x]$ 有根 $\beta, \sigma_q(\beta) = \beta^q, \sigma_q^2(\beta) = \beta^{q^2}, \cdots, \sigma^{n-1}(\beta) = \beta^{q^{n-1}}$.

设 f(x) 是 F_q 上的多项式. 因为 F_{q^n} 在 F_q 上的自同构 τ 保持 f(x) 的系数不变, 所以 $f(\alpha) = 0$ 的充要条件是 $f(\tau(\alpha)) = 0$. 换句话说, τ 对 f(x) 在 F_{q^n} 中的根进行了置换. 特别地, 对于 p(x) 的根 β , 存在 i 使得 $\tau(\beta) = \beta^{q^i}$. 故

$$\sigma_q^i(\beta) = \sigma_q(\sigma_q^{i-1}(\beta)) = \beta^{q^i} = \tau(\beta).$$

 F_{q^n} 在 F_q 上的自同构集是一个阶为 n 的循环群, 其生成元为自同构 $\sigma_q(\alpha)=\alpha^q$.

证: 设 β 是 F_{q^n} 中的本原元, 则 β 在 F_q 上的阶为 $q^n - 1$, 且其极小多项式 $p(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \in F_q[x]$ 有根 $\beta, \sigma_q(\beta) = \beta^q, \sigma_q^2(\beta) = \beta^{q^2}, \cdots, \sigma^{n-1}(\beta) = \beta^{q^{n-1}}$.

设 f(x) 是 F_q 上的多项式. 因为 F_{q^n} 在 F_q 上的自同构 τ 保持 f(x) 的系数不变, 所以 $f(\alpha) = 0$ 的充要条件是 $f(\tau(\alpha)) = 0$. 换句话说, τ 对 f(x) 在 F_{q^n} 中的根进行了置换. 特别地, 对于 p(x) 的根 β , 存在 i 使得 $\tau(\beta) = \beta^{q^i}$. 故

$$\sigma_q^i(\beta) = \sigma_q(\sigma_q^{i-1}(\beta)) = \beta^{q^i} = \tau(\beta).$$

因为 β 是 F_{q^n} 的本原元, 得 $\tau = \sigma_q^i$. 因此, F_{q^n} 在 F_q 上的自同构集 是一个阶为 n 的循环群, 其生成元为自同构 $\sigma_q(\alpha) = \alpha^q$.

目录

- 分式域
- 素域与扩域
 - 有限扩域
 - 代数扩域
- Galois 基本定理
- 有限域
 - 有限域的构造
 - 有限域的 Galois 群
 - 有限域的正规基

最后, 再次从向量空间的基底角度考虑有限域. 易知, 设 α 是 F_q 上次数为 n 的 F_{q^n} 中的元素, 则 $1, \alpha, \alpha^2, \cdots, \alpha^{n-1}$ 构成 F_{q^n} 在 F_q 上的一组基底, 称作**多项式基底**. 结合上述知识, 我们可以找到另外一种形式的基底.

最后, 再次从向量空间的基底角度考虑有限域. 易知,

设 α 是 F_q 上次数为 n 的 F_{q^n} 中的元素, 则 $1, \alpha, \alpha^2, \cdots, \alpha^{n-1}$ 构成 F_{q^n} 在 F_q 上的一组基底, 称作**多项式基底**.

结合上述知识, 我们可以找到另外一种形式的基底.

定义 8.4.2

 F_{q^n} 在 F_q 上形如 $\alpha, \alpha^q, \alpha^{q^2}, \cdots, \alpha^{q^{n-1}}$ 的基底叫作 F_{q^n} 在 F_q 上的正规基.

最后, 再次从向量空间的基底角度考虑有限域. 易知,

设 α 是 F_q 上次数为 n 的 F_{q^n} 中的元素,则 $1,\alpha,\alpha^2,\cdots,\alpha^{n-1}$ 构成 F_{q^n} 在 F_q 上的一组基底,称作**多项式基底**.

结合上述知识, 我们可以找到另外一种形式的基底.

定义 8.4.2

 F_{q^n} 在 F_q 上形如 $\alpha, \alpha^q, \alpha^{q^2}, \cdots, \alpha^{q^{n-1}}$ 的基底叫作 F_{q^n} 在 F_q 上的正规基.

定理 8.4.8

有限域 F_{qn} 在其子域 F_q 上有正规基存在.

证: 略.

例 8.4.2 求 $F_{2^4} = F_2[x]/(x^4 + x + 1)$ 中的正规基.

例 8.4.2 求
$$F_{2^4} = F_2[x]/(x^4 + x + 1)$$
 中的正规基.

解: (i) 对于 $\beta = x$, 有

$$\beta = x,$$

$$\beta^2 = x^2,$$

$$\beta^4 = x + 1,$$

$$\beta^8 = x^2 + 1,$$

所以, β , β^2 , β^{2^2} , β^{2^3} 不构成一组基底.

例 8.4.2 求 $F_{2^4} = F_2[x]/(x^4 + x + 1)$ 中的正规基.

解: (i) 对于
$$\beta = x$$
, 有

$$\beta = x,$$

$$\beta^2 = x^2,$$

$$\beta^4 = x + 1,$$

$$\beta^8 = x^2 + 1,$$

所以, β , β^2 , β^{2^2} , β^{2^3} 不构成一组基底.

(ii) 对于
$$\beta = x^3$$
, 有
$$\beta = x^3 = x^3,$$

$$\beta^2 = x^6 = x^3 + x^2,$$

$$\beta^4 = x^{12} = x^3 + x^2 + x + 1,$$

$$\beta^8 = x^9 = x^3 + x,$$

所以, β , β^2 , β^{2^2} , β^{2^3} 构成一组基底, 是正规基.

本课作业

- 1. 证明: $x^3 + x + 1$ 是 $F_2[x]$ 中的不可约多项式, 从而 $F_{2^3} = F_2[x]/(x^3 + x + 1)$ 是一个域.
- 2. 计算由 $F_2[x]/(x^3+x+1)$ 得到的有限域 F_{2^3} .
- 3. g(x) = x 是否为 F_{2^3} 的生成元?
- 4. 证明: $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$.
- 5. 设 K 是 F 的扩域, E_1 和 E_2 包含于 K 中, 且都是 F 的扩域. 证明: 如果 $[E_1:F]$ 和 $[E_2:F]$ 都是素数, 则 $E_1=E_2$ 或 $E_1\cap E_2=F$.

交流与讨论

电子邮箱:

陈秀波: xb chen@bupt.edu.cn

徐国胜: guoshengxu@bupt.edu.cn

金正平: zhpjin@bupt.edu.cn