Danilo Issy Hirabara Jordana C. B. A. Carnicelli Laura Takako Kohatsu Rodrigo Rossi dos Santos

Exercício Programa 2

Tópicos em Planejamento em Inteligência Artificial - ACH2137 Prof^a Dr^a Karina Valdivia Delgado

Universidade de São Paulo - USP Escola de Artes, Ciências e Humanidades Bacharelado em Sistemas de Informação

> São Paulo 2020

ÍNDICE

INTRODUÇÃO	2
Fundamentos teóricos	2
IMPLEMENTAÇÃO	6
Contextualização e Desenvolvimento	6
Testes	7
EXPERIMENTOS E RESULTADOS	8
Experimentos	8
Conclusões	11

INTRODUÇÃO

Fundamentos teóricos

O trabalho realizado aborda algoritmos simples (sem informação) de planejamento probabilístico, que é uma extensão do planejamento não-determinístico. Nessa categoria de planejamento trabalhamos com ambientes estáticos e completamente observáveis, percepções perfeitas e ações instantâneas e estocásticas.

Enquanto no planejamento clássico o objetivo final era identificar um plano (sequência de ações), no planejamento probabilístico deseja-se definir qual a melhor política, ou seja, o melhor mapeamento de estados em ações, a partir da informação das probabilidades dos eventos não-determinísticos.

As probabilidades são importantes para quantificar os custos e as probabilidades de sucesso dos planos quando as ações são não-determinísticas. Entretanto, não basta apenas ter um plano. É importante ter um plano eficiente, tal que o custo das ações não exceda as recompensas obtidas ao atingir as metas. Em alguns casos, não há a garantia de uma plano que atinja as metas. Nesses casos, é importante maximizar a probabilidade de atingir as metas. Por isso, é importante usar informações sobre as probabilidades de diferentes efeitos de operadores.

Para trabalhar com os problemas de planejamento probabilístico utilizamos um modelo matemático chamado processo de decisão markoviano, MDP. Existem 3 tipos de MDPs:

- De horizonte finito;
- De horizonte infinito de recompensa com desconto;
- De caminho mais curto estocástico.

O último tipo é o que utilizamos neste trabalho. Trata-se do MDP cuja característica é a ausência de informação sobre a quantidade de ações a serem tomadas, porém o conhecimento de que essa quantidade é finita, uma vez que quando um estado meta é atingido, nenhuma outra ação é realizada.

Um MDP de caminho estocástico mais curto, ou SSP MDP, pode ser definido com uma tupla <S, A, T, C, G>, onde:

- S é o conjunto finito de estados;
- A é o conjunto de ações;
- T é a função de probabilidade de transição;
- C é a função de custo;
- G é o conjunto de estados meta (um estado meta apresenta custo 0).

A solução para um SSP MDP é uma política: π : S \rightarrow A . Existem duas condições básicas para que exista uma política para um MDP:

- A política deve ser própria, ou seja, será possível chegar na meta a partir de qualquer estado;
- 2. Se existir alguma política imprópria, o custo para a sua execução a partir de qualquer estado será infinito.

Para compreender o funcionamento dos algoritmos a serem citados é necessário entender primeiro alguns conceitos importantes:

- Valor de uma política π : representado pela notação V^{π} é o custo de alcançar a meta utilizando a política π .
- Valor da política π no estado s: representado pela notação $V^{\pi}(s)$ é o custo de alcançar a meta a partir do estado s utilizando a política π .
- Avaliação de política: há duas maneiras de se calcular o valor de uma política π para um estado s, por sistemas lineares ou iterativamente. Em ambos casos precisa-se utilizar a seguinte equação:

$$V^{\pi}(s) = 0$$
, se $s \in G$ ou $V^{\pi}(s) = \Box T (C + V^{\pi}(s'))$

s' representa o próximo estado, ou seja, o estado resultante da aplicação da ação. A resolução por sistemas lineares implica montar o sistema a partir da aplicação da equação acima para todos os estados. Já no modo iterativo, os valores recebem inicialmente números aleatórios e a partir deles, calcula-se a equação. O processo é repetido diversas vezes, até que os valores encontrados comecem a convergir.

Valor ótimo de uma política no estado s: representado pela notação V*(s)
 é o custo ótimo de alcançar a meta a partir do estado s, ou seja, o menor custo. Para calcular V*(s) deve-se selecionar a ação de menor custo:

$$V^*(s) = 0$$
, se $s \in G$ ou $V^*(s) = min \square T (C + V^{\pi}(s'))$

• Qualidade ótima de aplicar a ação a no estado s: representada pela notação Q*(s, a) é o custo esperado ótimo se a primeira ação a ser tomada é a no estado s, e depois mantém-se de maneira ótima, ou seja, usando apenas os valores ótimos dos próximos estados. V*(s) é obtido a partir de Q*(s, a), conforme pode-se reescrever a equação acima:

$$V^*(s) = 0$$
, se $s \in G$ ou $V^*(s) = \min Q^*(s, a)$

• Bellman backup: a partir dos conceitos acima, pode-se pensar em calcular o valor ótimo de uma política para todos os estados de um SSP MDP. Para realizar essa tarefa são geradas várias iterações representadas pelo intervalo [0,n], sendo que para cada iteração n calcula-se o Qn (s, a) e depois o menor valor é selecionado. Isso significa que na iteração 1, utilizam-se os valores obtidos na iteração 0, e assim por diante. Esse é o chamado algoritmo de Bellman backup:

$$Vn(s) = min \square T (C + Vn - 1(s'))$$

Uma vez compreendidos os conceitos acima, é possível introduzir os dois algoritmos simples, ou seja, sem informação, que podem ser utilizados para definir uma política para um SSP MDP:

1. Iteração de valor: Realiza busca no espaço - infinito - de valores, e no final, identifica a política. Esse algoritmo pode ser traduzido da seguinte forma: primeiro ocorre a inicialização arbitrária do valor de cada estado para a iteração 0 (V0). Depois, em um laço, calcula-se o valor de cada estado para a iteração atual utilizando o algoritmo de Bellman backup e computa-se o valor residual - o módulo da diferença entre o valor do estado s na iteração atual e na iteração imediatamente anterior. Esse processo é realizado até que o valor residual máximo seja menor do que um valor ε definido previamente. Por fim, é necessário identificar a política responsável por aqueles valores, e para tal, utiliza-se uma função similar ao bellman backup, com a diferença

- que ela retorna o *argmin*, ou seja, a ação que gera o valor mínimo encontrado, para cada um dos estados.
- 2. Iteração de política: realiza busca no espaço finito de políticas e no final encontra o valor da política. Em cada iteração, há duas partes, a primeira é a Avaliação de Política, nela a partir das ações da política própria, calculamos o custo de cada estado até a meta, esses valores são armazenados em uma tabela para que seja usada no próximo passo. A segunda parte é a Melhoria da Política, a qual para cada estado, calculamos o custo até a meta usando todas ações, e depois pegamos a de menor custo e armazenamos para que assim forme a nova política própria. Iremos rodar isso até que a política própria da iteração anterior seja igual a atual.

IMPLEMENTAÇÃO

Contextualização e Desenvolvimento

O domínio do problema a ser resolvido com o uso de MDP é o gridworld onde um agente deve percorrer o mapa até chegar ao seu objetivo definido no arquivo de configuração do problema, as ações disponíveis são movimentos nas quatro direções: norte, sul, leste e oeste.

Desenvolvemos um script em Python que pode ser executado conforme o arquivo README. Organizamos o código conforme a sequência:

- 1. Transformação do arquivo de domínio para o formato especificado abaixo;
- 2. Execução do algoritmo de iteração de valor;
- 3. Execução do algoritmo de iteração de política modificada.

Criamos uma única estrutura (um dicionário) contendo tudo o que for relativo a um determinado estado. Iterando o dicionário têm-se todas as informações relativas aos estados, conforme o exemplo:

```
'robot-at-x12y18': [

['move-south', '1.000000', 'robot-at-x12y17', '0.500000', 'robot-at-x12y18', '0.500000'],

['move-north', '1.000000', 'robot-at-x12y19', '0.500000', 'robot-at-x12y18', '0.500000'],

['move-west', '1.000000', 'robot-at-x11y18', '0.500000', 'robot-at-x12y18', '0.500000'],

['move-east', '1.000000', 'robot-at-x13y18', '0.500000', 'robot-at-x12y18', '0.500000']
```

Para esse estado podemos aplicar as ações move-south, move-north, move-west e move-east. Os valores ao lado de cada ação representam os custos delas, e logo em seguida os estados resultantes e probabilidades. De maneira simplificada, a representação gerada é a seguinte:

[ação, custoDessaAção, próximoEstadoX, probabilidadeX, próximoEstadoY, probabilidadeY, ...]

A implementação do algoritmo de iteração de valor foi realizada adaptando-se o texto descrito anteriormente. Já na iteração de política modificada realizamos uma pequena alteração para facilitar a implementação, porém sem prejuízo dos resultados:

a. No laço, ao invés de iniciarmos com a avaliação de política e depois realizarmos a melhoria da política, invertemos os papeis, pois na iteração n=1, que é realizada antes do laço, nós já fizemos o passo de avaliação da política.

Os principais métodos do código são:

- 1. Bellman_backup: utilizado para calcular o Qn(s,a). É criada uma lista que é preenchida com o valor Q durante o laço no qual são verificadas todas as ações possíveis para um dado estado. No final, o método retorna o menor valor ou a melhor ação encontrada, a depender dos parâmetros informados.
- 2. Value_iteration: utilizado para coordenar todas as etapas do algoritmo de iteração de valor. No início todos os valores são inicializados com números aleatórios, depois entra-se no laço principal no qual para cada estado é chamado o método bellman_backup com retorno do menor valor, calcula-se o residual e atualizam-se os valores para a iteração n. Esse laço é encerrado quando o valor máximo residual é menor do que o epsilon (0,1) e então para cada estado é chamado novamente o bellman_backup, porém para retornar a melhor ação a partir dos valores da última iteração n.
- 3. Iterative_policy_evaluation: utilizado para coordenar todas as etapas do algoritmo de iteração de política. No início todos os valores são inicializados com números aleatórios e na primeira iteração realiza-se a avaliação da política e atualizam-se os valores para n = 1. Depois, no laço principal, para cada estado é chamado o método bellman_backup com retorno da melhor ação, passo da melhoria de política atualiza-se a política atual com a ação recebida e calcula-se Vn^π(s) passo da avaliação de política. Esse laço é encerrado quando a política atual for igual à anterior.
- 4. **Policy_evaluation:** utilizado para calcular a avaliação de uma política, a partir de uma aproximação do valor de πn .

Testes

Para checar se o código realizava as operações corretamente, modelamos o problema do slide 68 da seguinte forma:

		Ideia:			
	x 0	x1	x2	Estados:	Ações:
y2	SG	S4	S3	00	a00 = move-north
y1	y 1 \$2		*	S0	a01 = move-east
y0	SO.	S1	*	S1	a1 = move-north
Grid:				S2	a20 = move-north
	х0	x1	x2	32	a21 = move-south
y2	robot-at-x0y2	robot-at-x1y2	robot-at-x2y2	S3	a3 = move-west
y1	robot-at-x0y1	*	*	CA	a40 = move-west
y0	robot-at-x0y0	robot-at-x1y0	*	S4	a41 = move-east

Segue comparação entre os resultados esperados e obtidos:

Valores esperados:				Valores obtidos:			
	x0	x1	x2		х0	x1	x2
y2	0	~4	~5	y2	0	4,0256	5,0102
y1 ~5		*	y1	5,01024		*	
y0	~6	~6	*	y0	6,0640	6,0640	*
722	Polític	a esperada:		Mt 1795	Polític	a obtida:	
	х0	x1	x2		x0	x1	x2
y2	G	move-east	move-west	y2	G	move-east	move-west
y1	move-north		*	y1	move-north		*
y0	move-north	move-north	*	y0	move-north	move-north	*

Desse modo, pode-se notar que a modelagem foi bem-sucedida, bem como a tradução dos algoritmos para código. Outra questão que observamos, foi a eficiência. Conforme era esperado, o algoritmo de iteração de valor levou mais iterações do que o de iteração de política para chegar ao resultado final. A partir disso, começamos então a registrar as demais execuções necessárias e a analisar os resultados.

EXPERIMENTOS E RESULTADOS

Experimentos

Executamos todos os problemas disponibilizados, compilamos e analisamos os resultados. Para os problemas com estados iniciais e meta definidos, os resultados obtidos foram:

ixed Goal Initial State	Algoritmo	Iterações	Tempo de execução (s)	Tempo de execução
Navigation_1	Iteração de política	44	5,89	00:00:06
Navigation_2	Iteração de política	173	90,42	00:01:30
Navigation_3	Iteração de política	235	278,42	00:04:38
Navigation_4	Iteração de política	290	600,65	00:10:01
Navigation_5	Iteração de política	361	1218,21	00:20:18
Navigation_6	Iteração de política	275	1883,64	00:31:24
Navigation_7	Iteração de política	397	2905,90	00:48:26
Navigation_8	Iteração de política	446	4348,67	01:12:29
Navigation_9	Iteração de política	537	6987,51	01:56:28
Navigation_10	Iteração de política	659	11410,99	03:10:11
Navigation_1	Iteração de valor	88	14,80	00:00:15
Navigation_2	Iteração de valor	173	142,91	00:02:23
Navigation_3	Iteração de valor	257	406,41	00:06:46
Navigation_4	Iteração de valor	340	997,79	00:16:38
Navigation_5	Iteração de valor	423	1988,99	00:33:09
Navigation_6	Iteração de valor	505	4818,79	01:20:19
Navigation_7	Iteração de valor	587	6115,41	01:41:55
Navigation_8	Iteração de valor	670	9293,51	02:34:54
Navigation_9	Iteração de valor	751	13999,94	03:53:20
Navigation_10	Iteração de valor	833	21578,28	05:59:38

Comparando-se as quantidades de iterações e os tempos de execução, temos as seguintes representações gráficas:

Para os problemas com estados iniciais e meta aleatórios, os resultados obtidos foram:

Random Goal Initial State	Algoritmo	Iterações	Tempo de execução (s)	Tempo de execução
Navigation_1	Iteração de política	33	5,16	00:00:05
Navigation_2	Iteração de política	143	89,84	00:01:30
Navigation_3	Iteração de política	167	189,63	00:03:10
Navigation_4	Iteração de política	272	731,65	00:12:12
Navigation_5	Iteração de política	239	994,73	00:16:35
Navigation_6	Iteração de política	333	2098,49	00:34:58
Navigation_7	Iteração de política	287	2505,96	00:41:46
Navigation_8	Iteração de política	318	3102,44	00:51:42
Navigation_9	Iteração de política	351	4527,81	01:15:28
Navigation_10	Iteração de política	509	9091,00	02:31:31
Navigation_1	Iteração de valor	66	14,07	00:00:14
Navigation_2	Iteração de valor	116	102,39	00:01:42
Navigation_3	Iteração de valor	173	278,80	00:04:39
Navigation_4	Iteração de valor	240	864,25	00:14:24
Navigation_5	Iteração de valor	315	1800,20	00:30:00
Navigation_6	Iteração de valor	402	3536,61	00:58:57
Navigation_7	Iteração de valor	451	5475,35	01:31:15
Navigation_8	Iteração de valor	505	7422,28	02:03:42
Navigation_9	Iteração de valor	682	12828,94	03:33:49
Navigation_10	Iteração de valor	659	16054,94	04:27:35

Comparando-se as quantidades de iterações e os tempos de execução, temos as seguintes representações gráficas:

Conclusões

Como era esperado, o algoritmo de iteração de política se mostrou, no geral mais eficiente que o de iteração de valor, tanto em quantidade de iterações, quanto em tempo de execução. Esse fator era esperado por conta do espaço de busca de ambos. Enquanto o iteração de valor trabalha com números reais, e, portanto, em um intervalo infinito, o iteração de política trabalha com políticas, representadas por um conjunto finito. Desse modo, era esperada uma conversão mais rápida e com menos passos por parte da iteração de política.

O algoritmo de iteração de valor apresenta gráficos mais comportados, demonstrando crescimento linear na quantidade de iterações de acordo com o crescimento do tamanho dos problemas e crescimento exponencial de tempo. O algoritmo de iteração de

política apresenta padrões menos constantes, porém fica evidente que também cresce linearmente em quantidade de iterações e exponencialmente em tempo. Além disso, para os problemas menores ambos algoritmos apresentam comportamentos similares, porém na medida em que trabalhamos com grids maiores, eles tendem a se separar em intervalos cada vez maiores, sendo que o algoritmo de iteração de política tem crescimento, tanto para iterações, quanto de tempo, menores do que o de iteração de valor.

Existem dois fatores principais que podem ter afetado o desempenho dos algoritmos:

- 1. A estrutura auxiliar criada para a representação do contexto (do grid);
- 2. A utilização de dataframes do Pandas, pois essa estrutura de dados é ótima para a realização de operações em tabelas (linhas e colunas), entretanto é ineficiente para atualização individual de valores por posição. Essa escolha foi realizada baseada nos conhecimentos prévios da equipe, possibilitando maior facilidade na codificação dos algoritmos e mais tempo para realizar ajustes e correções.

Em suma, conclui-se que os algoritmos utilizados foram eficazes, porém, para os problemas maiores não foram tão eficientes. A primeira opção seria refatoração do código para otimizá-lo, eliminando, por exemplo, o dataframe do pandas e o substituindo por outras estruturas de dados mais eficientes para as operações realizadas. Todavia, um algoritmo como o assíncrono VI ou algum outro do grupo de algoritmos priorizados teria desempenho melhor para esses problemas, exatamente por não atualizar os valores dos estados em todas as iterações.