

Impact of Al-Big Data on SoC Design Al Study and Al-Chip Design

Chun-Zhang Chen, Ph.D.

June 25-29, 2018

Agenda

Deep Learning & Al-Chip	
Architecture in Al-Chip	
Designs of Al-Chip	
Energy Efficiency of CPUs	
Discussion	

Environment of Al *Big Data, Blockchain, IoT and Cloud Computing*

Why deep learning is suddenly changing your life? The Professional Why deep learning is suddenly changing your life?

- Google,
- Baidu,
- Facebook,
- Microsoft,
- Apple,

Source: Fortune Magazine, 2017

Al Engineering Force (Effects) in USA and China

Туре	USA	China	Comparison
Lang./voice	20200	6600	3
xPU/Chips	17900	1300	~14
ML	17600	9800	~2
UAV	9220	4660	~2
Visual/image	4335	1510	~3
Robotics	2100	6400	~0.3

Source: Tencent Institute, 2017

Background of Al

Alan Turing's Paper

Vol. LIX. No. 236.]

[October, 1950

MIND

A QUARTERLY REVIEW

OF

PSYCHOLOGY AND PHILOSOPHY

I.—COMPUTING MACHINERY AND INTELLIGENCE

By A. M. TURING

1. The Imitation Game.

The Birth of AI (1952-56)

John McCarthy (Stanford)

Marvin Minsky (MIT)

Trenchard More (IBM ret'd)

Ray Solomonoff (London)

Oliver Selfridge (MIT)

Dartmouth Summer Research Project on Artificial Intelligence 1956

John McCarthy, "AI" 1955

Herbert Simon.

Nobel78, Turing 75

Marvin Minsky, MIT AI Lab

Arthur Samuel, "ML" 1959

Claude Shannon, MIT Boolean ala.

Ray Solomonoff, Inductive Inteference

Allen Newell, Turing 1975

Oliver Selfridge, Machine Perc.

Nat Rochester (IBM 701); Trenchard More

Julian Bigelow, IAS/MANIAC

Source: https://en.wikipedia.org/wiki/Dartmouth_workshop

The Past 60+ Years of Al

"The First Wave of AI (1956-76)"

The Golden Years of AI (1956-74); H. Simon & A Newell 1975 Turing

"Winter Seasons of AI (1976-06)"

PC Market; IBM-Deep Blue 1997 & Jeopardy 2011

ML/DNN Algorithm, Backpropagation (BP);

Next Step: BP? Capsule?

Definition/Classification of AI

Merriam-Webster

- What is AI? Merriam-Webster Dictionary:
 - "An area of computer science that deals with giving machines the ability to seem like they have human intelligence"
 - "The power of a machine to copy intelligent human behavior"
- How AI is classified?
 - Artificial Weak/Narrow Intelligence (ANI)
 - Focuses on improvement of individual ability, e.g. Siri
 - Artificial General Intelligence (AGI)
 - On humankind, human's brains
 - Artificial Super Intelligence (ASI)
 - Smarter than human brains, including innovation, recognition and social

Schools of Machine Learning

- Symbolism (Frank Rosenblatt, 1957)
 - Bayes nets, Judea Pearl, ACM Turing Award 2011
 - Knowledge Graph, Google
- Connectionism (neuron study)
 - Marvin Minsky, ACM Turing Award 1969
 - Geoffrey Hinton (CNN), Backpropagation (1986, Nature)
- Actionism
 - AlphaGo (DeepMind), AlphaGo Zero (2017) and AlphaZero

Neurons and Synapses (Neural Network)

Human brain: Cerebrum, Cerebellum

Dendritic branches

The adult human brain contains about 85-86 billion (86x10⁹) neurons, [38][39] of which 16 billion (16x10⁹) are in the cerebral cortex and 69 billion (70x10⁹) in the cerebellum. [39]

Background of CNN/DNN

- Al Terms: CNN, ANN and DNN
 - Al, 1956, John McCarthy
 - ANN (Artificial Neural Network)
 - CNN (Cellular¹/Cognitive²/Convoluted³ Neural Network)
 - DNN (Deep Learning, Deep CNN or DCNN)
- Key People/Team
 - Marvin Minsky (8/9/27-1/24/16), CNN², Co-Founder, MIT AI Lab
 - Geoffrey Hinton, CNN², Deep Belief Networks, U. Toronto/Google
 - Back-Propgate 80s, 2006 DL, 12/11/13 Science
 - Yann LeCun, CNN³ (1989), Al Facebook/NYU prof.
 - Yoshua Bengio, ANN/DNN (2006), experiments for on DBN, UdM
 - IBM, CNN² (Cognitive Computer, 2012)

AI – From Object to Chip

University of Chinese Academy of Sciences

- Data
 - Big Data, massive,
- Algorithm
 - Fast evolving
 - xNN (CNN,RNN,DNN,SNN...)
- HW,
 - GPU,FPGA,DSP,ASIC,TPU...

Al Teaching at CMU and Others

- Al Boot Camp at CMU (1956) and Starting in the Fall:
 - Launched (05/10/18) Undergraduate Degree in AI at SCS

- HIT: Institute of Al Research (May 5, 2018)
- NJU: Al College (March 2018) and Under Program:
 - ML and Data Mining; AI System & Application
- BUAA: Al for Under Program (Sept 2017)

CVPR 2018 (IEEE, 1985-)

- computer vision and pattern recognition
- Geoffrey Hinton, DL is limited
- DL/CNN → GAN
 - Generative Adversarial Networks

We need to start over ... What is wrong with convolutional neural nets? Fields Institute, 2017 | Geoffrey Hinton, of Toronto

Views of AI/ML/DL

Can Al Replace Human Beings?

Brain-alike? Or Brain-inspired?

Al-Chip and SoC Design

Deep Learning & Al-Chip: XNN & Algorithms

- Architecture in Al-Chip: Von Neumann, GPU & HSA
- Designs of Al-Chip: TrueNorth, TPU, Cambricon
- Energy Efficiency of CPUs: Area/Power/Computation Efficiency
- Discussion: w.r.t BD-Cloud/loT/ADAS

Von Neumann Architecture

Single system bus evolution of the architecture

CISC vs RISC

CISC vs. RISC Today

PC Era

- Hardware translates x86 instructions into internal RISC instructions
- Then use any RISC technique inside MPU
- > 350M / year !
- x86 ISA eventually dominates servers as well as desktops

PostPC Era: Client/Cloud

- IP in SoC vs. MPU
- Value die area, energy as much as performance
- > 20B total / year in 2017
 - x86 in PCs peaks in 2011, now decline ~8% / year (2016 < 2007)
 - x86 servers ⇒ Cloud ~10M servers total* (0.05% of 20B)
- 99% Processors today are RISC

14

^{*&}quot;A Decade of Mobile Computing", Vijay Reddi, 7/21/17, Computer Architecture Today

About RISC-V

What's Different About RISC-V?

Simple

- Far smaller than proprietary ISAs
- 2500 pages for x86, ARMv8 manual vs 200 for RISC-V manual

Clean-slate design

- 25 years later, so can learn from mistakes of predecessors
- Avoids µarchitecture or technology-dependent features

Modular

- Small standard base ISA
- Multiple standard extensions

Supports specialization

Vast opcode space reserved

Community designed

- Base and standard extensions finished
- Grow via optional extensions vs. incremental required features
- RISC-V Foundation extends ISA for technical reasons
 - vs. private corporation for internal (marketing) reasons

48

HSA for Al-Chip Architecture

- CPU + GPU
 - GPU by Nvidia (GeForce), AMD, Intel, ARM etc.
 - SW: CUDA (Nvidia), OpenVX (Intel), OpenCL
- CPU+ DSP
 - DSP from Cadence; SW/OS
- CPU+FPGA
 - eFPGA, reconfig FPGA, FPGA/ASIC
- CPU+ASIC
 - Customized ASIC

Al-Chip and SoC Design

Deep Learning & Al-Chip: XNN & Algorithms

- Architecture in Al-Chip: Von Neumann, GPU & HSA
- Designs of Al-Chip: TrueNorth, TPU, Cambricon
- Energy Efficiency of CPUs: Area/Power/Computation Efficiency
- Discussion: w.r.t BD-Cloud/loT/ADAS

Top 10 Al-Chip Companies

- Nvidia, Tesla P100 GPU
- ARM, Blue Sky Program
- Intel, Nervana
- IBM, syNAPSE
- Google , TPU

- ViMicro, NPU
- MS, Catapult
- KnuEdge, LambaFablic
- Horizon Robotics,Neuromorphic
- Krtkl, 430K LUT

Al Chips in Al Era

- •Architectures are based on ...(von Neumann?)
 - GPU, FPGA, ASIC
- Based on DL/CNN module...
 - Ex.
- Cloud and AI chips
- Applications
 - Automotive, Robotics, SmartHomes

Neuromorphic AI Chip by IBM

- A neuromorphic CMOS IC, TrueNorth chip in 2014
 - Many cores, 4096 cores, simulating a total >10⁶ neurons
 - The programmable synapses is >268x10⁶ (2²⁸)
- Contains 5.4x10⁹ transistors (Sg28nm)
 - At low T, 70 mW, about 1/10,000th of conventional MPU
- Application
 - SyNAPSE 16 chips for DARPA

IBM Synapse Project and TrueNorth Chip® Park Reademy of Sciences Neuroscience Inspiration Structural Functional Physical

26 (SUMMER 2018 UCAS, Beijing)

Chip

Al Chip AlphaGo by Google

- Architecture based on CPU + GPU
 - AlphaGo (Oct. 15; Mar. 16; Mar. 17)
 - AlphaGo Zero (10/19/17)

TPU, TensorFlow and Google I/O

University of Chinese Academy of Sciences

TPU3.0 (5/8-5/10/18, Mtn View)

- TensorFlow 1.0, https://www.tensorflow.org/
 - \bullet 09/27/16 \rightarrow 11/06/16 \rightarrow 02/15/17
 - Google, DeepMind, DropBox, Qualcomm, mi
- TensorFlow, ASIC (CPU+GPU)

TPU Architecture and TensorFlow

Cambricon (2016-) Chips

- 2016, Cambricon-1A chip The First DL Chip
 - 16x10⁹ virtual neurons/s, peak at 2x10¹² synapses/s, Huawei
 970 Karin chip in Mate 10
- 2018, 3 processor cores (2TOPS/4TOPS/8TOPS), w/ 5 TOPS/W
- 5/10/2018, Cambricon MLUv01 (Smart Cloud Processor Card), TSMC 16nm

Cambricon Al-Chips

- 2016, Cambricon-1A chip
 - 16x109 virtual neurons/s, peak at 2x1012 synapses/s, Huawei 970 Karin chip in Mate 10
- 2018, 3 processor cores (2TOPS/4TOPS/8TOPS), w/ 5 TOPS/W
- 5/10/2018, Cambricon MLUv01 (Smart Cloud Processor) Card), TSMC 16nm

Al-Big Data & SoC Design

Al Strategy at Intel

- ●loT, Cloud, 2014
 - Storage and FPGA
- Nervana, ML, 2016
- Loihi chip, self-learning
 - 128 neurons + 3 x86 CPU
- Spring Crest, 2018

Qualcomm and IC

- •5G, transforming the way we interact w/ our world & each other.
- AR/VR
- SmartVideo
- Smart Home
- Drone
- Robotics

Al-Chip and SoC Design

Deep Learning & Al-Chip: XNN & Algorithms

- Architecture in Al-Chip: von Neumann, GPU & HSA
- Designs of Al-Chip: TrueNorth, TPU, Cambricon
- Energy Efficiency of CPUs: Area/Power/Computation Efficiency
- Discussion: w.r.t BD-Cloud/loT/ADAS

Performance of Computing Engines

Energy Efficiency of CPUs

Energy Efficiency ComparisonCPU vs FPGA and ASIC

Al-Chip and SoC Design

Deep Learning & Al-Chip: XNN & Algorithms

- Architecture in Al-Chip: Von Neumann, GPU & HSA
- Designs of Al-Chip: TrueNorth, TPU, Cambricon
- Energy Efficiency of CPUs: Area/Power/Computation Efficiency
- Discussion: w.r.t BD-Cloud/loT/ADAS

Al-Era Chip Design and HW-SW Co-Design® 作時代以

- HPC Chip
- HBM Chip
- MCU Chip
- ECU Chip

- CPU Architecture: DSA
- SW: DSL
- RISC-V
- Security
- SW-HW Co-Design

Do we need to start over on a new ML?

Background: ML schools are Symb., Conn., Action.

- DL: CNN/DNN → ML: GAN (CVPR 2018)?
 - Ian Goodfellow (PhD of Yoshua Benjio)
- What is the next step of TrueNorth Chip?
- How does Cambricon-MLU work with AI-ISA?