25X1

Approved For Release 2009/07/02: CIA-RDP80T00246A010800400001-7

The ACADEMY of SCIENCES of theuser. The Institute of Oceanography

1959. Volume XXXV

M.V.Kozlianinov.

HYDROOPTICAL CHARACTERISTICS and METHODS of DETERMINING THEM.

The term - HYDRO-OPTICAL CHARACTERISTICS describes the physicalchemical and biological characteristics of ocean, sea, lakes and other bodies of water which determine the conditions of diffusion of light The term "light" in this case means the electro-magnetic radiation concentrated in the so-called optical part of the spectrum, i.e. the radiation contained in the interval of wave-lengths from The optical part of the spectrum therefore, 0.01 to = 3.40is considerably wider than its part that is visible which lies between $\sim = 0.4$ to $\sim = 0.8$. Thus the hydro-optical characteristics determine the conditions of radiation in the water of rays of light seen, as well as unseen, by human eyes, the latter belonging to the ultra-violet and infra-red parts of the spectrum. It is necessary to A study the conditions of radiation of these rays because in solving different kinds of problems/with reactions of the field of radiation not only on human eyes but on multiple plant and animal bodies, photo - plates, photo-elements, pyranometers etc... Besides the infra-red radiation plays a very substantial part in the exchange of heat between the ocean and

Until the present there is a lack of strictly differentiated (determined) hydrophotometrical concepts and there is no clearly determined terminology. The same units of measurements are often given different names and vice versa, the same term sometimes indicate different physical units of measurements. This confusion is found not only in our literature but in the foreign publications, especially in literature translated from other languages. As a result different

the atmosphere.

authors often fail to understand each other - mistakes occur often and sometimes even misinterpretations.

In the first place let us state the definition of the basic hydro- optic characteristics and indicate their dimensions and units of measurements. These measurements are kard based wherever it is possible upon the definitions and terminology elaborated and stated in the S.I. Vaviloff Government Optical Institute Statement of Standards "G.O.S.T. 760I-55". Optical Physics Definitions of Basic Measurements ") established in 1956.

It is to be hoped that the publication of such a terminology, to our knowledge non existent in the literature on the subject, will serve to unify and standardize the terms in the field of hydrophotometry and will dispel thus the lack of clarity an confusion in this branch of scientific research.

The theoretic basis of hydrooptics, the most important foundation of which consists of the problem of diffusion and radiation of light in troubled (unclear) mediums, has been studied in great detail.

The works of "volsson, Mee, Gershon, Hamburtzev, Shulejkin, Fokk, Joseph, and the recent research works of Ambartzumjan and of the School of Soviet Astro-physicits of which he is the director, present very fully the complex laws governing the optical processes that take place in various bodies of water. Things have not progressed so well as far as methods and techniques of hydrophotometric measurements are concerned, and consequently in the field of our knowledge of hydro-optical characteristics of water in oceans and various seas. The absence of standardized apparatus of measurements and insufficient development of methods of observation by means of existing single (variable) and rxperimentally used apparatus result in crude and primitively

Approved For Release 2009/07/02: CIA-RDP80T00246A010800400001-7 M.V.Kozlianinov.

made observations and a technique of measurements that is obsolete in view of contemporary possibilities.

As the research work in hydrooptics progressed in the Institute of Oceanography of the Academy of Sciences of the USSR, it was taken into consideration that the first problem in this field would be the perfecting of the existing and the development of new methods of hydrophotometric research. It is natural, therefore, that the first step in this direction should be the creation of a standard measurement apparatus based on the use of contemporary technical means, in particular on electronic and semi-conductivity (?) techniques.

experimental instruments built during the last few years by the S.I.

Optical the
Vaviloff Government/Institute. MX Oceanography Institute of the Academy
the/
of Sciences of the USSR, together with/Government Institute of Oceanography and others - different technical conditions were developed for
projecting and manufacturing a group of standard hydrooptical apparatus
consisting of four instruments and an order was placed for their production
Besides, in order to insure the possibility of making observations
during the ship's motion and for special measurements of very dim lighting
in great depths the Institute of Oceanography of the Academy of Sciences
has developed and produced another two madeix experimental models of
hydrooptical instruments.

In this article are given: a/a list of hydrooptical characteristics, b/ some basic theoretical premises necessary as basis for various methods of measurements and for the study of interdependencies between different optical characteristics. It is followed by a description of new hydrooptical instruments together with the statement of basic problems connected with contemporary methods of hydrophotometrical

measurements. The treatment of problems/based on data found in literto
ature, in the study of methods/is/
based on data found in literto
ature, in a considerable extend in the research results achieved during
the cruise of S.S."Vityaz", and the works of the Institute's Scientific
Experimental Station on the Black Sea.

hydrooptical characteristics. This study is of a very definite interest due to the fact that direct measurements of these demands the use of special instruments. On the basis of these interdependencies obtained the theoretically and discovered experimentally, kx/research work on the seas can be limited to a minimum number of measurements. It is obvious that the knowledge of these interdependencies is absolutely necessary in order to obtain a correct idea of optical processes in the waters of the seas. The empirical connections between the depths at which the standard white disc is visible and some basic optical characteristics are not being discussed in this article as they will be exposed in a special article devoted to the study of conditions of visibility of underwater objects.

I/ BASIC HYDROOPTICAL CHARACTERISTICS. Definitions and specifications.

Before defining hydrooptical characteristics let us note that in hydrophotometries it is more convenient to use not the units of light measurements, but units of energy (Sena 1949) - i.e. to operate not with concepts of "the flow of light", brightness", "irradiation" etc..., but with concepts of "radial flow", "energy," radiation", energy lighting" etc.... As it has been mentioned before, in hydrooptics we study not only the radiation that can be seen, but the ultra-violet and

reactions of the field of rdiation upon very different receptales. Their curves recording sensitivity to spectral radiation may substantially differ from the curves recording the sensitivity to spectral radiation of the human eye. It is well known that units of energy (energetics' units) are quite free of any physiological peculiarities of human sight, whereas units of lighting depend upon these peculiaring of lighting can be realized very simply. For this we have to know the so-called relative visibility of the given receptable of radiation, i.e. visibility function

where is the wave length of radiation. In further discussion under terms of - flow, brightness, light power, lighting, etc... we mean units of energy.

an infinitely small unit of volume

dv = dq.dz (Pic.I).Let a flow of

monochromatic rays fall upon the

upper surface of this unit.

We will mark the flow of rays falling

upon the upper surface of the unit

of volume by , and the field of

light created by it by

ities.

Pic. I. Schematic designof the definition of indicators of absorption, diffusion and diminution of light in sea water.

part of it down will be absorbed, and part down diffused.

The amount of energy absorbed and diffused in sea water is determined accordingly by its indicators of absorption and diffusion, which belong to the number of the most important hydrooptical characteritics.

By an indicator of absorption x of sea water is understood a unit of volume inversely proportional to the distance in which the flow of monochromatic radiation forming a parallel cluster (shaft) is weakened IO times as a result of absorption. The indicator of absorption can be determined also as a unit of volume equal to the ratio of the flow of radiation forming a parallel cluster (shaft) and which is absorbed by one unit of volume of sea water, to the lighting created by this flow on a plane surface perpendicular to it.

$$\gamma = -\frac{m \, d \, \varphi_{ox}}{\varphi_{odz}} = -\frac{m \, d \, \varphi_{ox}}{E \, dv} \qquad (I)$$

where M = 04343. .. moduls of decimal logarithms.

The indicator of diffusion of sea water is a unit of volume inversely proportional to distance in which the flow of monochromatic radiation forming a parallel cluster is weakened. To times by diffusion. The indicator of diffusion can be determined also as a unit of volume equal to the ratio of the flow of radiation, that forms a parallel cluster and is diffused in a unit of volume of sea water, to the lighting created by this flow upon a plane surface perpendicular to it.

$$= - M \frac{d}{dz} = - M \frac{d}{dz}$$
 (2)

It follows from these definitions that the dimension of indicators of absorption and diffusion is inversely proportional to the dimensions of length: i.e. x = L and C = L.

In hydrooptics these indicators are usually measured in reversed(?) meters.

As a result of combined action of processes of absorption and diffusion the flow of radiation that entered the unit of volume dv experiences a general weakening, i.e. a part of it

$$x = d + d = s - will not flow in the first (original)$$

direction. The summary quantity of radiation absorbed and diffused in water, is defined by the indicator of weakening which represents also one of the most important optical charateristics of sea water.

The indicator of weakening of sea water is called a unit of volume inversely proportional to distance in which a flow of monochromatic radiation forming a parallel cluster (shaft of light) is weakened IO times/as a result of a joint action of absorption and diffusion.

The indicator of weakening may be also defined as a unit of volume equal to the ratio of the flow of radiation forming a parallel cluster (shaft of light) weakened by the result of absorption and diffusion in a unit of volume of sea water - to the lighting created by this unit volume upon a plane (flat) surface perpendicular to it.

(3)

The dimension of the indicator of weakening is the same as the dimension of the indicator of absorption & diffusion, i.e.

The indicator is measured, as the indicators x and , in inverse (reverse?) meters.

In the Russian as well as in foreign literatures indicators of absorption, diffusion & weakening are used which are defined not by 10 times weakening of lighting but by e times, (where e - represents the basis of common/natural logarithms.) In this case these units indicators/of volume are called natural of absorption x, diffusion and weakening. It is obvious that:

x = Mx, S = MS, and C = MC. (5)

According to the equation of the transfer of radiation, the flow of monochromatic rays passing kkrwwgh a certain distance through a homogeneous

Approved For Release 2009/07/02: CIA-RDP80T00246A010800400001-7

body of water without a change of direction, is deducted from a proportion: $\frac{d}{dz}$

The integration (integral) of this equation results in the very well known Booger's representative law of weakening:

The equation (6) allows to define two very important optical characteristics of water - transparence & the coefficient of filtration.

The coefficient of filtration gives in its turn a definition of optical density.

The term - coefficient of fix filtration T of sea water is applied ratio/
to the/mxxxxx of the flow of radiation through a certain layer of water
to the flow of radiation falling upon that layer:

$$T = \frac{2}{\sqrt{2}} = e^{-\frac{2}{3}} = 10^{-\frac{2}{3}}. \tag{7}$$

The unit of volume $\{$? is called the optical depth From the $x \in \mathbb{R}$ equation (7) it follows that the coefficient of filtration T is a non-dimensional unit.

The decimal logarithm of a unit of volume inversely proportional to the coefficient of filtration is termed the optical density $\underline{\mathbf{p}}$

$$D = lg \frac{I}{T}$$
 (8)

The transparence of sea water is the term applied to the ratio of the flow of radiation that passes through the water without changing its direction a distance = to I point, to the flow of radiation that entered into the water as a parallel cluster (shaft of light). In other words, the term transparence of sea water is applied to the coefficient of filtration for a uniform layer of a unit of density (?).

From the equation (7) it follows that:

$$(9)$$

M.V.Kozlianinov.

is a non dimensional unit.

For the units of volume T and () this condition is always observed:

$$\ell \leqslant T \leqslant I$$
 and $0 \leqslant \ell \leqslant I$.

The formula (9) shows that the indicator of weakening is equal numerically to the absolute numerical quantity of the decimal logarithm of transparency: $\xi = /\lg \delta /. \tag{10}$

Therefore, units and define each other identically.

If we will study the elementary unit of volume of water (Pic.I)

dy lighted by the flow of radiation of from a certain distance in

direction 5 forming an angle with direction of falling rays, because

of diffusion, this unit will be lighted and will become a source of

radiation in this direction possessing the power and energy of light:

$$aI = \frac{I}{L} \otimes (r) E dv = \sqrt{\frac{E}{L}} bv$$
 (II)

Where 6() - is the natural indicator of diffusion in a given direction (Gershon 1958). By $\frac{1}{2}$ in this equation is shown the natural indicator of brightness of sea water, and by $\frac{1}{2}$ - the lighting of the upper facet of the unit of volume.

It is known that the brightness B_o 1/4/4/4 of an ideally white surface perpendicular to the direction of light, is determined as follows: $B_0 = \frac{1}{4}$

Substituting the formula for Bo in equation (II) we obtain an equation which makes it possible to define one more important hydropotical characteristic - the indicator of the brightness of kinking water.

By the term :indicator of brightness b of sea water we call

I) Here and in the following discussions under ideally white non-shiny surface we assume a surface non transparent, non light absorbing and not diffusing it.

Approved For Release 2009/07/02 : CIA-RDP80T00246A010800400001-7

M.V.Kozlianinov.

the ratio of the power of light diffused in a given direction by a unit of volume of water, to the brightness of an ideally white non shiny surface which is perpendicular to the direction of rays that light the given volume of water: $F = \frac{dI}{B_d P} \qquad (12)$

It follows from this equation that the dimension of brightness is inversely proportional to the dimension of length $\begin{bmatrix} \cdot \cdot \cdot \\ \cdot \cdot \cdot \end{bmatrix} = \begin{bmatrix} L \cdot \cdot \\ \cdot \cdot \end{bmatrix}$. The indicator of brightness is usually measured in inversely meters.

equal in their dimension to the indicator of brightness p, the surface that surrounds the eds of these vektors will represent the dimensional distribution of the energy of the diffused light around the given unit of volume of water. Such a surface is called the indicatress of the indicator of brightness p (). For non polarized light this surface is symmetrical in relation to any plane that passes through the direction of the falling rays. Therefore, the indicators of the indicator of brightness may be represented by a flat curve which characterizes the distribution of the energy of diffused light in relation to the angle of diffusion. A full characteristic of conditions of diffusion of non polarized light in sea water will be given by the spectral indicatorsesses of the indicator of brightness p , where is the length of radiation.

The general flow diffused by the elementary volume dv in all directions, will be defined thus:

$$\mathcal{P} = \int I dw \qquad (13)$$

where dw is the elementary body angle, the axis of which forms the angle with the direction of the falling rays.

From the equations (2) & (I3) discounting (II)it follows that the indicator of diffusion is == anxie

(I4)

where M - as before 1s the module (coefficient) of decimal logarithms. because

(I5)

so instead of (T4) we finally obtain the coordination that serves for the calculation of the indicator of diffusion according to the measurements 3 ():

(16)

In works treating the theoretical side, as well as in those treating the results of measurements and in elaborating different calculations often the indicatress of diffusion is used -x () instead of the indicatress of brightness. If the we mark the potential of diffusion of radiation inside the solid angle \underline{dw} by $x()_4^{dw}$, we obtain the following obvious condition

1 x () dw + T

or, taking into consideration (19):

(17)

From equations (I6 & (I7) it follows that

(3I)

If through the center of the volume of diffusion we pass a flat surface which will be perpendicular to falling rays, the shafts of light (flow of diffused radiation flowing on both sides of this surface xrs will considerably differ one from another. From the view point of molecular diffusions/ conditioned by fluctuations of the surface these shafts of light are equal and conform to to the spherical form of the

Indicatress of diffusion (the so-called indicatress of Riley?)

Ocean/
The incatresses of diffusion of even the purest of/waters are considerably drawn forward, i.e. in the direction of falling rays and assume the form of a dagger. The difference in the shafts of light directed forward and backward from the limit of the above mentioned surface, (or, in other words, the assymetry of the indicatresses of diffusion), defines to a great extent the conditions of the spreading of light in the sea. Therefore knexnexxxxxxxxxxx it becomes necessary to obtain quantitative characteristics determining the difference in these shafts of light (flow) The indicators of diffusion forward and backard are considered as these characteristics.

We call the component of the indicator of diffusion determining the fix part of the flow of the shaft of light of diffused radiation - the indicator of diffusion forward. It spreads in the limits of the coinciding body angle 2 m steradian, its axis beingxanners with the direction of the falling rays of light.

(I9)

We call the component of the indicator of diffusion determining the part of the flow of the shaft of light of diffused radiation - the indicator of diffusion backward. It spreads in the limits of the body angle 2 steradian, its axis going counterwise the direction of the falling rays of light.

(50)

It is evident that the indicator of diffusion is equal to the sum of these indicators i.e. = + 9 (21)

Often it is important to know which part of the entire diffusion of radiance.

is concentrated in the cone limited by angles and , or the meaning of the function

(22)

One must point out that equations (3) and (10) which served to define the indicator of weakening, and the equation (6) that expresses the law of Booger(? spel.) are correct for a directed monochromatic radiation only, diffused (spreading) in a homogeneous medium. At the amo time in practice one has to operate with the spread of daylight in the sea which is not only non monochromatic (complex), but mixed (directed and diffused) radiation. For this reason the concept of the indicator of vertical weakening has been introduced into hydrooptics. This indicator characterizes the modification (change) of natural light in connection with depth. Numerous experiments made in different times by various authors completely concur in showing that daylight, at its first approach to the sea water, is weakened in accordance with depth penetration as demonstrated by/

(23)

where $\frac{1}{2}$ - is the flow of nonmonochromatic mixed radiation in depth z_i ; $z_i = z_i - z_i$ - the flow of the same radiation in depth z_i ; $z_i = z_i - z_i$ - the thickness of the water layer.

By indicator of vertical weakening — is called a unit of volume inversely proportional to distance in which the flow of natural light is weakened IO times, as the result of combined action of absorption and diffusion. according to equation (23), the indicator of wertical weakening can be defined also as a the difference of logarithms of the flow of natural light upon the upper and lower surfaces of the layer of water, as related to its thickness:

Approved For Release 2009/07/02 : CIA-RDP80T00246A010800400001-7

- I4 - M.V.Kozlianinov.

Analogous to the concept of the natural indicator of weakening \mathbb{R} the concept of the natural indicator of vertical weakening \mathbb{R} can be introduced: $\mathbb{R} = \mathbb{M}^{\times}$.

From equation (24) it follows that the dimension of the indicator of vertical weakening is inversely proportional to the dimension of length:

= L. The indicators Land Lare usually measured in reverse meters.

The change of/light spread in the sea in relation to depth is termed the coefficient of underwater lighting . - it represents the relation of lighting E of a certain surface in the sea at depth z to the formula of lighting of x underwater E... This formula represents the lighting of a horisontal surface directly under the surface of the sea and thus lighted by a flow of natural light that has already undergone reflection and refraction upon this surface. Then

(25)

In the majority of cases the surface / upper lighted surface E, and the /horisontal/
surface lighted from below E, are studien in different depths. The graph of the function = 12 gives a fair view of the character of vertical distribution of lighting created by natural light.

The coefficients of diffused reflection and brightness of the sea form belong to the number of very important hydrooptical characteristics.

We call the coefficient of diffused reflection of the sea the relation of the flow of diffused radiation R penetrating to the depth z to the surface of the sea, and to the natural firm radiation going vertically into the same depth/down into the sea:

(26)

The term COMPFICIENT OF THE BRIGHTNESS OF THE SEA is applied to the relation of the diffused brightness B. coming from the thickness of the layer of sea water immediately under the sea surface, to in the

direction determined by the angles and (where is the zenith distance and - the azimuth) to the brightness B of an ideally white dull surface(non shiny) lighted by natural light:

(27)

where xkm E - is the lighted surface of the sea.

The dependence of the coefficient of brightness of the sea from the length of the wave of radiation A characterizes the distribution of energy in the spectrum of radiation emerging from the layer of sea water and , therefore, determines its proper color.

From these definitions we see that the coefficients and are non-dimensional units of volume.

In the process of diffusion light is partly polarized. Because of that it is necessary to obtain the characteristics of polarization of light in sea water. The degree of polarization P and the degree of depolarization Q are basic for this.

We call kee degree of polarization the relation maximum between two flows of mutually perpendicularly polarized components, into upon which a given partially polarized radiation may be divided, to the sum of this flows:

(28)

where __= to the flow of partially polarized radiation the electric vector of which lies in the plane of diffusion, and ___ the flow of the same radiation, the electric vector of which is perpendicular to

In distinction of the seen color of the sea which depends of the condition of the sea surface, the cloudiness and sight angle of the observer, the proper color of the sea is determined by the physico-chemical characteristics only in a certain region, and therefore, it can & must interest oceanographers, hydrographers, navigators, etc.....

THEXES

I/

Approved For Release 2009/07/02 : CĪA-RDP80T00246A010800400001-7

Volume
$$c = \frac{I - P}{I + P}$$
 (29)

is called the degree of depolarization.

It is not always taken into consideration that indicators of weakening, absorption and diffusion for a directed radiation often deviate in their value from the same indicators for diffused radiation.

Nevertheless this difference is not mentioned in thespecial literature on the subject. Let us define these characteristics in the following way:

The indicator of absorption of diffused radiation is a same unit of volume inversely proportional to distance in which the flow of completely diffused radiation is weakened IO times as a result of repeated diffusion.

The <u>indicator of diffusion of diffused (?)</u> radiation b - is a unit of volume , inversely proportional to the distance in which the the completely diffused flow of radiation is weakened IO times as a result of repeated diffusion.

We have given above the definitions of indicators of diffusion in the forward direction and in the backward direction for directed radiation. We will introduce the same concepts for diffused radiation as we did for the often obseved cases of diffusion of light from the surface in the direction of the depth sixthexampth of the sea, and in in the opposite direction.

We will term as indicator of attimum diffusion (?) of/radiation

forward the component of the indicator of diffusion b, which determine
the part of the flow of completely diffused radiation which spreads
in an the sea in the limits of the body(?) angle 2 steradian, whose axis
down
is directed vertically if towards the streets of the sea.

backward the component of the indicator of diffusion b which determ the part of the flow of completely diffused radiation spreading in the sec in the limits of the angle 2 steradian, whose axis is directed ver cally up, towards the surface of the sea.

Approved For Release 2009/07/02 : CIA-RDP80T00246A010800400001-7 - 17 -

M.V. Kozlianbnov.

of completely diffused radiation is weakened/by as a result of simultanous action of absorption and diffusion.

It is obvious that $c = a = b. \tag{30}$ b = *

As before, by a, b and c we will call the natural indicators of absorption, diffusion and weakening respectively; in this case a = 0.43 a; b = 0.43 b; c = 0.43 c.

In conclusion let's mention that as we use the generally accepted term of the distance of optical visibility in meteorology, and in particular, in atmospheric optics - so we use the term of depth of visibility in hydrooptics.

The term depth of visibility H of any unit or object indicates the limit of distance at which this object, being accessible to observation, is seen at given conditions of lighting in given optical characteristics of sea water.

MERIEN have been widely studied in oceanology. The term"transparence applies to the depth at which a white standard disk, in plunged in sea water, can be seen. It is measured in meters. It is quite obvious that this unit of measurement is not at all equal to the transparency of water in the ordinary physical meaning determined by equation (9). Therefore, in order to exoid inexactitude, in the discussion following the results of measurements using the disk will be termed as depth of the visibility of the disk or a relative transparency h.

M.V. Kozlianinov.

on the standard scale of coloring, the shade of which is the nearest to the coloring of a column of water over the disk at the observation spot.

2. Some Basic Frinciples of the theory of diffusion of radiation in the sea.

Not entering into detailed examination of complex laws of diffusion of radiation in the sea which goes beyond the limits of this work, let us discuss a few basic theoretical principles, indispensable for the choice of methods of measurements hydrooptical characteristics and the study of their inter-dependence. For this objective we will use the research publications of V.A.Ambartzumian(1943,1944), A.G. Hamburtzev (1924) and I.Joseph (1950).

The question of computing the process of lighting in the sea is reduced to the solution of the equation showing the spread of the radiation in an absorbing and diffusing medium, i.e. to the solution of the so called equation of transference of radiation which can be registered in the following fashion:

$$\frac{\mathrm{d}\,\mathbf{J}}{\mathrm{dl}} = \mathbf{J} + \mathbf{1}. \tag{32}$$

By J we mark the intencity of rdiation spread in a medium in the direction 1; by 1 - the coefficient of radiation, and by - the natural indicator of weakening. In problems of hydroopticts one can dispense with the capacity radiation of the sea itself and consider that the radiating manking of sea water is equal to her diffusing opacity capacity. In that case the coefficient 1 will show the amount of energy diffused by a unit of volume of water in a unit of a body angle (?), the axis of which forms the angle with the direction of falling rays of light:

(33)

Approved For Release 2009/07/02: CIA-RDP80T00246A010800400001-7

This equation is called the equation of the equilibrium of light rays.

Let's study now the simplest case - the weakening of the directed flow (i.e. of direct rays of the sun) spreading vertically into the depth of the sea in the direction of axis z. The equation of the transference of radiation will be written thus:

$$\frac{\mathrm{d}J}{\mathrm{d}z} = - \left(\mathbf{J} \right). \tag{34}$$

By integrating this equation and going km from the intensivness of radiation to the flow we will obtain the above mentioned law of Booger:

It follows from simple geometric considerations that, if the rays of sunlight are falling on the sea surface not perpendicularly but under a certain angle, where - is the zenith distance of the sun, then in case the surface of the sea is smooth, the flow of directed radiation, having reached the depth 2 will form:

(36.)

where \psi/ \psi/ is the angle of refraction of rays of the sun bound (connected) with the zenith distance of the sun by a simple coordinate:

where n represents the indicator of refraction of sea water. Having assumed that in the indicator of degree by \underline{e} in formula (36) ($\mathbf{i} = \langle \sec \rangle$), which correlates to the formal replacement of increase of distance of directed radiation by the increase of amount of \mathbf{z} the indicator of maxima weakening. Booger's law can be transcribed thus:

It was noted above that in this form Booger's law is correct for the directed monochromatic radiation percading in a homogeneous

Approved For Release 2009/07/02: CIA-RDP80T00246A010800400001-7

medium. In a non homogeneous medium, but with monochromatic radiation, instead of (35) we have

(95)

When a flow of monochromatic, but directed radiation (i.e. a flow of straight sun rays) , falls in the sea, in this wary comparatively simple case the variation in connection with depth of thes flow cannot be expressed by the simple law of weakening; because the indicator | becomes dependent on the distribution of energy in the radiation spectrum. This distribution continuously changes as related to depth because of the selectivity of the processes of absorption, and diffusion. Therefore, even in case of a homogeneous medium, the indicator will represent the function not only of the length of wave , but of depth z, ; z = z (* , z). Now, let us introduce the concept of a certain median value of indicator : for the flow of radiation enclosed in the interval of the length of waves (; /) and spreading from the surface of the sea to depth z. By virtue of the law of spectral additiveness the flow of monochromatic radiation of in depth z may be presented thus: (40)

where the flow of monochromatic radiation contained in the interval of legth of waves , , + d)) in depth \underline{z} . The median value z can be deducted from equation (35)

(4I)

where (- is the idicator of the weakening of monochromatic radiation in the intervan of legth of waves ',, | d ').

Then the law of weakening of the flow of non-monochromatic rectation

Approved For Release 2009/07/02: CIA-RDP80T00246A010800400001-7 M.V.Kozlianinov.

but directed radiation appears thus :

(42)

For the case of spreading of duffused radiation going under the angle P towards the vertical V.A. Ambartzumian (1943) solves the equation of transfer of radiation thus:

(43)

where - represents the optic depth, b (:) - a certain function depermentation dent on the angle of distribution of energy, k - a parametr dependent on the indicatress of diffusion and on the correlation between the diffusion and the general weakening.

For chiefly diffusing media parametr k is determined by

(44)

where \underline{s} - is the part of diffusion in general weakening, $s = \underbrace{\hat{s}}_{\xi}, \text{ and } \underline{x}_{\xi} - is \text{ the first coefficient in the dissociation of the to indicatress of diffusion in the range according <math>\underline{x}$? Legendre's polynomials.

 $x_i = \frac{3}{2} \int_{-\infty}^{\infty} x(i) \cos i \sin i di$.

we are going to study the waxexement waxes the bacic rules of the most general case of the spreading in the sea of mixed, that is to say simultaneous directed and diffused radiation (1.e. of natural when the sun is light of sunshine max/not covered by clouds) on the basis of scientific research works of A.G.Hamburtzeff, (1924) and Joseph (1950). We will limit our study of cases when the sea is deep enough, so that there can not be any reflection/from the bottom that would influence the intensity of spreading in the sea radiation a situation is wholly possible for in a distance equal to the depth of sighting the disk, the "albedo" (?) cannot be observed in practice.

Approved For Release 2009/07/02 : CIA-RDP80T00246A010800400001-7

Approved For Release 2009/07/02: CIA-RDP80T00246A010800400001-7 N.V. Kozlianinov.

To study the rules of changes of the flow of radiation S which is which is to the diffused one/ and moving in the direction of the depth of the sea, and of the flow R which is spreading in sea in a vertical direction towards the surface of sea, Hamburtzeff composes the following equations which represent the equations of transfer of radiation in detail (but max presented in our own markings.)

(45)

Hamburtzeff solves these equations together (in conjunction) with magnitude $\frac{R}{8}$ which is according to definition (25), the coefficient of the diffused reflection of sea. This is the equation:

Let us remind the reader that a marks the indicator of absorption, and -- the indicator of inverse diffusion of diffused radiation.

Let us study now the spreading in the sea simultaneously of directed and diffused radiation. Let us isolate in depth z from the general flow of radiation S its component F which represents the pure diffused flow and let us mark ,as before, the directed flow by to to In this case/the system of equations (45) by Hamburtzeff one must add parts of and of , which represents the change in the flows F and R caused by addition of components of diffused forward (indicator) and backward (indicator) radiation from directed flow (Then , instead of equation (45) we will obtain:

(47)

The third equation in this series represent several times mentioned above equation of transfer of radiation of directed flow (34). Let us introduce the same limiting conditions as in the integration of equation (34), that is to say let us assume that:

$$C_{C} = C_{C}$$
, $F_{C} = F_{C}$ and $S_{C} = S_{C}$

In other words, let's mark by (), F and S respectively the flow of directed, diffused and general (mixed) radiation, which has just entered under the surface of the sea. It is obvious that

$$S_c = F_c + \langle Q \rangle$$
.

Joseph solves the system (47) (going from natural indicators to decimal and keeping our markings) in this manner:

(48)

The equations use the following symbols:

(49)

The rest of the symbols are the same.

The physical meaning of parameter \mathbf{q} becomes clear following these considerations. If only the diffused radiation is spread in the sea, (i.e. in the event of complete cloudiness, of diffuse spreading of light in sufficiently great depths, of considerable distance of the source of artificial light, etc...) - then the equations (48) will be considerably simplified, for \mathbf{Q} becomes equal to zero, and $\mathbf{S}_{\mathbf{q}} = \mathbf{F}_{\mathbf{q}}$. Then

(50)

M.V. Kozlianinov.

One can easily see that the first equation is completely identical with Booger's law, and the parameter q is nothing else but the indicator of weakening of diffused radiation in sea water -

(5I)

In conclusion we note that equations (48) and (50) are correct only for monochromatic light. In precision calculations of the spread of non-monochromatic radiation the "magnitude" (value) of indicators and q = c must be replaced by their mean magnitudes (values) which are calculated like in (41).

3. Basic problems of methods of hydrooptical measurements.

In hydrooptical research of any sea or ocean region the following problems are considered as basic: I/obtaining spectral characteristics of transparence of water in different depths; 2/calculating the light regimen of the sea, that is calculating the field of radiation created by natural lighting in any point of a stratum of water.

of

For the solution / The first of these problems the knowledge of indicators of weakening of the light in different parts of the spectrum is required.

These indicators are determined by organic and inorganic calcium contained in the water and in the organic matter attacked in the water.

The calculation Exerginer of the lighting regimen of the sea is reduced to the solution of the equation of transference of radiation. We conclude from the paragraph above and from the consideration of mentioned / interrelations between different hydrooptical characteristics/below, that for the solution of this equation it is necessary to know

Approved For Release 2009/07/02: CIA-RDP80T00246A010800400001-7

M.V.Kozlianinov.

the following: the magnitude of the indicators of absorption, diffusion and weakening of light in water, the indicatores of diffusion, the indicator of vertical weakening and the coefficient of diffused reflection of the sea. A number of practical problems correlated with the sighting of underwater objects and their masking (concealement) necessitates, besides, the knowledge of the coefficient of brightness of the sea. It is necessary to have complete data of spectral charracteristics of elements of weakening radiation in the sea which this will be mentioned below./It is needed for a complete calculation of the light regimen of the sea as well as for finding answers for many questions arising from the development of techniques of study of the sea and the modern set up of hydrobiological research.

For determining the hydrooptical characteristics direct as well as laboratory methods can be used. Measurements can be made by apparatus dipped into the sea, or by the study of samples of weak water with apparatus in the ship's laboratory. Some of the characteristics as/mentioned above, such w/i.e. the indicator of vertical weakening and the coefficients of brightness and diffused reflections in the sea may be determined by direct measurements only. Others, as i.e. the indicatress of diffusion may be measured at present only in laboratory conditions. One of the most important optical characteristics - the spectrum transparence of sea water which determines the nea water's indicators of spetrum weakening can be measured both by direct and laboratory methods. The direct measurements the value of which is quite obvious, possess at the same time an important defect - the fact that the depth of immersion of modern optical apparatus connected by cable with the ship, is very limited and does not go beyond 150 - 200 meters

M.V.Kozlianinov.

and only seldom (if very light and solid manifes carrying core sampling cables are used) reaches the depth of AMEXXXX 400 - 500 meters. Measurements of samples of sea water obtained by bathometers can be made at very great depths. For instance, research of the expeditionary ship "Vityaz" was dealing with the study of optical characteristics at depths reaching 9400 meters. It is easier to make measurements of the different regions of the spectrum in a laboratory, and the quality of the measurements is not tonfluenced by conditions of weather. But a great defect of laboratory research is the impossibility of detailed probing of the vertical distribution of optical characteristics, whereas in direct measurements the magnitude" (value) of these characteristics can be determined/often. The latter fact is very important study of strata of water containing an increased amount of phyte and zoo plankton, in the determining of the locality/strata layer of discontinuity of density, etc Therefore, both methods have definite good and bad points, and both of these groups do not exclude, but , to the contrary, complement each other and in the process of research may be used jointly.

I/ Direct measurements of optical characteristics of sea water.

a/ Measurements of underwater lighting.

The measurements of underwater lighting according to equations (24),(25) and (26) permit us to find the following hydrooptical characteristics: the indicator of vertical weakening, the coefficient of underwater lighting and the coefficient of diffused reflection of the sea. The obtaining of this "magnitude" besides the measurement of the lighting from above of horizontal surfaces disposed in the sea at different depths, # requires also the measuring of lighting of these

Approved For Release 2009/07/02: CIA-RDP80T00246A010800400001-7
M.V.Kozlianinov.

surfaces from below - a lighting created by diffused light spreading in the sea from deeper strata to the surface. In connection with the fact, that the lighting of sea surface may be subjected to very sharp and great changes which certainly are reflected in the changes of underwater lighting, all measurements of this "magnitude" (amount?) must be necessarily made in conjunction with measurements of surface lighting.

We use the electric photometr ON NO - 57 for measuring underwater lighting. This apparatus consists of a underwater part ((Figure 2) and/registering apparatus on board ship connected by a cable. The underwater part represents a hermetically closed body (I), in which five photoelements are enclosed (2). Four of them are xwr placed having their surface sensitive to light turned upward, to the sea surface; the fifth has its surface sensitive to light turned towards the bottom of the sea. Cut of these four photoelements xxxx three are covered with light philters, so as to allow the possibility of measuring not only by white light, but by the light of the three parts of the spectrum that can be seen. All the photoelements are placed behind protective bulkheads of/opaque glass (3). The use of this glass has a double purpose. In the first place, without them , because of the phenomenon of complete inner reflection on the lower surface of the protective bulkheads, the photoelements would be reached/by rays whose angles with the vertical would be smaller than 48, 55, that is to say, those concentrated in a perpendicular light cone the angle of which at the top would be = 97°. The use of milk" glass eliminates this effect and the photoelements take in the radiation of the entire half-sphere. In the second place, the placing of the

Approved For Release 2009/07/02 : CIA-RDP80T00246A010800400001-7

M.V.Kozlianinov.

of light philters under milk glass secures the uniformity of the course of rays of light in their passing through the philter independently of the distribution of the angles of energy in the flowing shaft of light. Without milk glass the rays falling under greater angle to the vertical would be passing a longer way to reach the philter and, therefore, would be peakened more than rays that fall more vertically.

In the apparatus are used selenium photoelements with a max sealing layer, with the photosensitivity (sensitivity to light) area of 20 centimeters. The interal sensitivity of each of the photoelements has about 300 mka/lumen.

The registering part of the apparatus mx is a potentiometer E: - 09 of Russian production - it has given a good account of itself in operations in the sea.

The apparatus is lowered into the sea by cables of 46×1,5 which have, besides current-carrying cores, a steel strand (center, mandrel?). The apparatus/ is always lowered from the ship's board lighted by the sun. The depth limit of immersion is 150 meters. In order to make possible measurements in wide spaces of lighted planes from tens of thousands of lux in the superficial surfaces of the sea up to slightly lighted planes in depths of 120 - 150 meters, the potentio-meter is equipped with a system of shunts

Approved For Release 2009/07/02: CIA-RDP80T00246A010800400001-7

dividing the range (band) of measurement in five parts.

The measurements of underwater lighting are conducted with a deviation of not more than 10% of the area under measurement.

Home produced (4) glass philters for light are used in this device: - blue CC - 4 (effective length of wave = 400 m) green 3C-I (=520 m) and red (=604 m).

The electric power for the apparatus is supplied by the/direct current of IIO or220 volt.

an objective luxometer U - I6 Russian transcription 1 - I6) was used, made by "Vibrator", a reningrad Factory. Because of the fact that this device is graded for comparatively small lighting phenomena, the use of weakening neuter philters (HC-6, HC-7, HC-8, HC_9, and HC-IO) becomes necessary. These philters guarantee the possibility of making measurements under any natural lighting up to the maximum magnitude of (I30000 lux). As the glass philters have a mirroring surface, in measurements they are placed between the receiver of the objective luxometer (sometimes a selenium photoelement is used) and the milk glass. For measuring the lighting of sea surface in different parts of the spectrum the objective luxometer is equipped with a set of light philters of the same make as the photoelectric photometer. During measurements the light philters are always placed between the photoelement and the milk glass.

Picture 3. Diagram of a measurer of small lightings.

Approved For Release 2009/07/02: CIA-RDP80T00246A010800400001-7

M.V.Kozlianinov.

REMEM equations (24),(25) and (26), from data obtained by measurements one can calculate kke and obtain the indicators of vertical weakening for different layers of the sea and the coefficients of underwater lighting and diffused reflection of the sea.

the voltometer of the lamp.

light

Picture 4. Electric diagram of the measurer of small lighting. In order to make it possible to measure very small lightings at great depths the Oceanographic Institute of the Academy of Sciences had conceived and constructed an objective submersible photometer in which the receiver of the flow of light is a photoelectronic multiplier of the type (2) 9-17 or (2) 9-18. The device is calculated to work up to depths/400-500 meters. Its principle is represented in the diagram of ficture 3. The flow of radiation under measurement is received by the katod of photomultiplier (I), consisting of a layer of antimonial desium covering the inner surface of the retort of the multiplier. The knukknufkkue/mukkkpkker The unit of the feeder of the multipler consists of the kenotron (2), the transformation (3) and the condenser (4). An alternate electric current of 1000 volt for (5) y-17 and of 1200 volt for () 1-19 is then directed on the multipler. The signal of the photomultiplier proportionate to the intensity of falling radiation is transmitted by cable to the measuring device a bulb voltometer. The picture 4 shows the electric diagram of the device.

Approved For Release 2009/07/02: CIA-RDP80T00246A010800400001-7

M.V.KOzlianinov.

b/ Measurements of the indicator of weakening (transparency)
of sea water.

The measurements are made by a photoelectrical photometer - transparrency meter (2014-57. The device, the optical diagram of which is shown on <u>Picture 5</u>, presents a differential-zero photometer destined to measure the indicator of weakening of light in the sea **xx** by white light as well as in the five parts of the spectrum that canbe seen.

Picture 5. The optical diagram of a photoelectrical photo - transparency meter OppiM - 57.

/- light bulb. 2 - supporting photoelement, 3 - measuring photoelement, 4 & I2 - condensers, 5 - light philters, 6, I4 & I5 _ diafragms, 7,8 & 9 - systems of lenses, IO - protective glass, II - heat isolating plate, I3 - mirror.

The device consists of an underwater part and of a registering unit placed on board ship.

In the immersible part of the device is placed a source of artificial light, aximits an incandescent bulb C = 6I is unsed for that. After passing through a rotating disc-modulator and the layer of sea water under observation the shaft of light falls on the photoelement. The other part of the shaft is directed upon the supporting photoelement, the signal of which is equalized by means of an electric weakener with the signal of the photoelement by light passing through sea water. The receivers 2 & 3 are are antimonial-cesium

M.V Kozlianinov.

photoelements () --), chosen according to their nearest photometric characteristics. The device works on the principle of the tracking system. The shafts of light modulated by a revolving disk, are transformed by photoelements into an alternate current proportionate to the falling shafts (flows) of light. The alternate voltage from the measuring and sustaining photoelements in the "counterphase"(?) are directed upon katod repeaters from where they move to a booster-converter // the . In the mixer of the booster-converter in tensions of the measuring and supporting photoelements are summarized the by vector, and the resulting intensity of the signal (unbalance ?) goes to the synchronizing detector. Besides, upon the same synchronizing detector goes the sustaining intesity (tension?). Upon the emergence from synchronizing detector a direct currect is created the polarity of which depends on the symbol of the "unbalance" in the mixer, and the "magnitude" is proportionate to the amplitude of the "unbakaca"

The signal of the direct current from the synchronizing detector goes to the booster of the registering part.

The device is able to make measurements of the indicator of weakening of light in the sea at depths from 0 to 150 meters in waters of different degrees of muddiness - from very clear waters of open 0.05 coean ranges (= 2,00 coean ranges (=

A potentiometer -09 is used as a registration device with a few changes in its construction which allow kmm to perform the registration of symbols of indicators of weakening in a wide keyer of water muddiness with about the same precision.

M.V.Kozlianinov

For measurement of transparencies of water in great depths the is equipped with a removable container located between the lighting appliance and the photoelement. In this case the apparatus is on board ship, and the container is filled with water from bathometers. The capacity of the container is of 500 cubic centimeters and it permits the performance of mass measurements with standard hydrological series.

The underwater and the registering parts of the device xx are connected by a cable of trademark 6 1,5.

The electric feeding of the apparatus is made by the ship network of current of 220 volt. In order to allow uninterrupted registering of water transparencies in the upper layers of the surface of the sea while the ship is in motion the Institute of Oceanography has built measurer a transparency-meker which is towed by the ship. (Picture 6)

M.V.Kozlianinov.

natural light on the photoelement while working with apparatus in daylight.

c/ Measurements of the coefficient of brightness of the sea.

The measurements are made with the hydrophotometer 20 T -19. Its optical diagram is shown in Pic. 7. The apparatus is a visual photometer based on the equalizing of brightnesses of two fields, one of which is made by light shinking out of the sea, and the other - created by the natural light of the sky and the sun falling upon a horisontal plate of dulled milk glass. The device is equipped with a pipe the bottom end of which is immersed into the sea. The light coming out of the density of the sea goes through the lenses of the reversing system and enters a photometric prism that serves to equalize the brightnesses of both fields. The squalization is achieved by moving the milk glass with the help of a system of levers. The readings are made through an ocular (eye piece) on a sector scale lighted by an "illuminator" (opening). In order to/measurements in different parts of the spectrum the device is equipped with a revolving diafragm with replaceable philters. In that way it is possible to make measurements not only in a white light, but also in the following perceptible parts of the spectrum: blue(= 459m =), blue-green ($\mathcal{A}_{NS} = 494 \text{ mps}$), green ($\mathcal{A}_{NS} = 528 \text{ mps}$), green-yellow ($\mathcal{A}_{NS} = 556 \text{ mps}$), orange ($\hat{\mathcal{F}}_{\gamma_0} = 587$) and red ($\hat{\mathcal{F}}_{\gamma_0} = 600$ m $_{\gamma_0}$). The readings on the scale of the apparatus are translated into coefficients of brightness of the sea with the application of calibration data of the device. Picture 7. The optical diagram of the hydrophoto meter U OT - 19

Approved For Release 2009/07/02: CIA-RDP80T00246A010800400001-7

Approved For Release 2009/07/02: CIA-RDP80T00246A010800400001-7

Picture 7 (cont.) Description: I/a dulled milk glass plate.2/ a moving milk glass.

3 & 5/- lenses; 4/ photometrical prism; 6/- ocular; 7/- changeable (removable) light philters;

8/ divided scale; 9/ directing prism;

10/- transforming system's lens;

11/- diaphragm; 12/- illuminator;

13/- lever system; 14/- flange.

Picture 8: Description A device for measuring the indicatress of brightness of the sea.

The relative error in determining the coefficient of brightness of the sea is 5 to 15%, depending on the value of the amount measured. For measuring the coefficients of brightness of radiation coming from the layer of the sea not only vertically, but under different angles in regard to the vertical, and in different azimuths in regard to the sun, the apparatus is equipped with a special device (that replaces, (Picture 8) the lowerbend of the pipe in the apparatus. The device BUKKAGE consists of a flat mirror (I), placed under the makes illuminator ent rance (opening) of the pipe of the apparatus and of a mechanism of for its turning and pumping. To make measurements in different azimuths the mirror is turned by a wheel (2) which moves this mirror by means of a feed shaft (3). The wheel is equipped with a dial that shows the azimuth, in which the mesurements are made. The necessary

M.V.Kozlianinov.

The necessary incline of the mirror is achieved by means of a handle (4). The locator (5) fixes the mirror in three positions allowing to measure the coefficient of brightness of radiation coming from deep layers of the sea to the surface under angles towards the vertical of 30,60,and90°.

The measurements are performed when the ship is on anchor or drifting from board ship lighted by the sun. The apparatus is fastened to board ship with special supporting plates. In case of a very high board ship when the maximum length of the apparatus (3,5 meter) is insufficient, the apparatus is fastened to a special platform overboard ship as it was done on S.S."Vityaz". Such a system of fastening is represented on Picture 9.

Picture 9. The fastening of the hydrophotometer and T - 19 on a high board ship.

2/ Laboratory measurements of optical characteristics of sea water.

The measurements are performed with the help of the spectrohydronephelometer - transparency meter 4.72-25. The device, represented on

Picture IO
General aspect of spectrohydronephelometer transparency meter -25.

allows to determine in a white light and on six
different segments of the spectrum the coefficients
of penetration of sea water and ix its indicators

of brightness und different angles of diffusion.

/These data are determined the basic optical

I/ After the printing of this article another improved spectrohydronephelometer was devised and builty -57 based on the existing -25.

M.V.Kozlianinov.

characteristics of the water - the indicators of diffusion and weakening as well as the indicatress of diffusion. These characteristics, in */
turn, allow to determine the value (amount?) of the indicator of absorption and to evaluate the amount of absorption and diffusion in of general weakness of a directed flow (shaft) in sea water. The measurements can be performed in polarized as well as in unpolarized light.

The device is a visual photometer in which the brightness of light passed through or diffused by water is compared with the brightness of a plate of milk glass measured before. The optical diagram of the device is reproduced on Picture II.

The container of the device is filled with water pumped by a pump, or taken by bathometers. The lighting of the device is effectuated by an electric bulb, a condenser, diaphragms and a lens. The lighting apparatus is fastened to the limb of the wheel (turnstile?) which turns on its axis and is f covering the container.

Picture II (see page 26 of the original) Description:

I/ container of the device. 2 lens of the lighting apparatus.

3/ - diaphragms. 4 - condenser; 5 & I5-electric bulbs; 6- directing axis of the container; 7/ - lens of the photometer; 8/ - photometric prism; 9 - ccular; IO/ - light philters; II - movable "pupils" of exit; I2,I3 & I4/ - milk glass of the photometer; I6/ - the roller for readings; I7/ - an extra weakener; I8/ - replaceable diaphragms, I9 - graded calibration plate; 20/ graded neutral philters; 2I/ - fillers, 22/ milk glass of the lighter; 23/ fitted - analyzer; 24/ - fitted - polarizer; 25/ - spheric mipror; 26/ - accumulators; 27/ - reostat; 28/ - amperometer; 29/ - voltometer; 30/ - switch.

In order to measure the indicator of weakening the lighting device is placed in the extreme backward position, and its light, passing through the layer of water in the appartus, is reflected from the spherical mirror, then it reaches the lens of the photometer in the

Approved For Release 2009/07/02: CIA-RDP80T00246A010800400001-7 M.V.Kozlianinov.

focal plane (surface) of which is placed a device to create fields of comparison. The measurements of Thhe brightness of light diffused at different angles,/xx made by turning the lighting device to a certain angle. In this case the lens of the photometer is lighted by a light, diffused by a layer of water lying in the shaft of parallel rays coming from the lighting device.

The comparing part of the photometer consists of a turning lighting device which includes a bulb and milk glass, an unmovable milk glass and Tphotometric prism.

The degrees of brightness of diffused light and of light passing through the water are compared with the brightness of the unmovable milk xx glass. Thus, one of the fields (planes?) of comparison is lighted by light passing through water, and the other . by light in the p comparing part of the photometer. On the equalization of both these fields the measurements are based.

The measuring device is mounted onthe body of the photometer fashioned in the form of a cup which represents the container of the device. On the same body the lens of the photometer, the ocular and the light philters are fastenend. When measurements are made the lighting device of the photometer is moved by a screw propeller put into motion by a roller. By turning the roller in different directions an equalization of the brightness of photometrical fields is achieved, and the readings are made from the tracings graded roller.

in hundreds of thousands and even in million times on the

The brightness oflight diffused in sea water may change/ depending on the content of the suspension (?) matter and the difference in angles of diffusion. In order to be able to measure brightness in such wide variations different removable diaphragms are placed

- 39 -

Approved For Release 2009/07/02: CIA-RDP80T00246A010800400001-7

in the measuring part of the photometer, and in the comparing part diaphragms
an extra lighting device. The existence of removable diaphrams
requires the placement of two "pupils"(?) in the exits - a round one
and a segmentary one.

To conduct measurements in polarized light a "cap" - polarizer is placed in front of the lens, of the lighting device, and in front of the exit "pupil" a "cap" - analyzer is placed.

to the bulb of the photometer. This creates the identical environment voltage for their action independent of possible fluctuations in tension of the source of feeding. The tension and power of the current going to the bulbs in the apparatus are controlled by a voltometer and an amperometer. The feeding of the apparatus is done by direct current voltage with tension of 16 volts.

For conducting measurements in different parts of the mx spectrum the apparatus is equipped with a series of light philters composed of 6 models: - blue (= 475 m); green - (= 520 m); yellow -green (= 544 m); orange (= 568 m); and two red - (= 604 m); and (= 648 m).

The water-intaking part of the device consists of a pump and hoses to lift the water and to pour it off. The centrifugal pump is activated by an electro-motor my - 80 which works with alternate or direct current of IIO and 220 voltage. The pump can lift the water 3 - 4 meters above the water line of the ship.

The general volume of water in the apparatus is 3 1(?). This fact makes the study of optical characteristics of deep layers of water rather difficult, when pumping of water is impossible due to insufficient length of the cable, and samples are taken by bathometers.

Approved For Release 2009/07/02: CIA-RDP80T00246A010800400001-7

M.V.Kozlianinov

Readings taken from the roller of the device by means of graded graphs are translated into coefficients of filtration and indicators of brightness of water. Then, using equations (7), (16), (19) and (20), the indicators of weakening and diffusion of light in water are calculated and the indicatress of diffusion is constructed (found?).

The error in determining the indicator of weakening fluctuates between 3 - 5% for muddy waters to TXXXX 12 - 15% for pure waters of open ocean regions. The relative error in determining the indicator of diffusion averages about 15%.

> 4. Some interrelations between hydrooptical characteristics. According to Ambartaumian's equation (43)

$$I = \underbrace{869 \ \mathbf{i} \ \mathbf{e}^{-k}}_{\mathbf{i} + \mathbf{k} \ \mathbf{cos} \ \mathbf{0}}$$

 $c = k \hat{z}$.

the intensity of diffused radiation changes with depth according to the exponential law, and the indicator of weakening in this case differs from the indicator of directed radiation &. Then, marking as before, the indicator of weakening of diffused flow by c, we have: (52)

We have mentioned above that parameter K may be deducted from the equation (45) if the indicatress of diffusion and the correlation between diffusion and general weakening are known. Taking into consideration that this parameter plays an important part in many practical calculations, let's study the possibility of a simple and quick definition of this "magnitude" (unit) by using other optical characteristics.

Let's substitute in the equation (24), which gives the definition/(or:determines) the indicator of vertical weakening a, the values Szand Sza , obtained for depths z, and z from the first equation Approved For Release 2009/07/02 : CIA-RDP80T00246A010800400001-7

M.V.Kozlianinov

of the system (48). Replacing the indicator \underline{a} by an equal to it indicator \underline{a} (51), and marking.....

$$IO^{-\binom{n-1}{2}} = A, \quad \text{and } IO^{-\binom{n-1}{2}} = B,$$
we find: (53)

It follows from this formula that the indicator of vertical weakening is not a constant "magnitude", but with the increase of depths - (z and z) and with the increase of the thickness of the layer (z) it approaches its limiting value \underline{c} . The indicator becomes exactly equal to the indicator of weakening of diffused radiation \underline{c} under conditions of lighting of the surface of the sea by diffused light only or in sufficiently great depths where direct solar radiation does not penetrate ($\mathcal{C} = 0$). Then instead of (52), we have:

(54)

In this way, according to data of simultaneously made measurements of sea water transparency (indicator) and underwater lighting (indicator), it is easy to calculate the coefficient k, which shows how many times the weakening of directed flow exceeds the weakening of diffused radiation.

In Krew the equation (54) one may clearly see the difference between the indicators of general weakening and the vertical weakening. The results of numerous measurements show that for open regions in the ocean the mean "magnitude" of coefficient k consists of 0,20 - 0,25. Physically the difference between these "magnitudes" is quite understandable, because indicator represents the sum of indicators of absorption and diffusion, and indicator is composed of the indicator of

16 · V. Kozlianinov.

absorption and of a part of the indicator of diffusion only, because, owing to the lengthening of the indicatress of diffusion forward falling in the direction of Exercise rays, the light diffused in the sea is not lost for the lighting of lower layers.

Let's return to the equation (46) of Hamburgtzeff. After a series of simple modifications it appears thus:

(55)

The resulting equation shows that the diffused reflection of the sea depends only of the correlation between the diffusion backwards and absorption and does not materially change with depth. This important deduction is wholly corroborated by numerous experimental data.

(56)

Solving the equation in reference to pa and substituting its value in (56), we have :

(57)

From here, assuming that in conformity with (53) $\underline{\mathbf{c}} = \mathbf{c}$, we find an equation that determines (or defines) the indicator of absorption of diffused radiation $\underline{\mathbf{c}}$ by means of the indicator of vertical weakening α and of the coefficient of diffused reflection of the sea :

(58)

The latter equation is interesting because the direct experimental definition of the indicator of absorption represents great difficulties. Taking into consideration that diffused reflection of the sea in

M.V.Kozlianinov

follows

in open spaces is very small (generally is not over 0,02 - 0,03), it from (58) that the weakening of the diffused flow in the sea can be defined (determined) almost completely by the real absorption. In this process the diffusion backwards undoubtedly plays a definite part.

As stated above (51)

(59)

it results, with a deviation not over 0,0I, as magnitude is very small, that

= a + 30 .

Using correlations (30) and (58) it is easy to find the indicator of diffused radiation b:

(60)

and its components (31) - indicators of diffusion forward and backwards . Solving the transposed Hamburtzeff's equation (56) in relation to and substituting the value a from (58) we have;

(6I):

ed

The indicator of diffusion radiation forward is very near zero.

In fact, as = a + b (30), and in its turn b = t + (31), then

= a + t + t . We saw before that = a + t. In this way, in the

first approximation, as it follows from equation (60), the weakening of

diffusing/
of the/flow spreading in the sea is determined only by diffusion backwards

and the real absorption.

The equations obtained thus allow to calculate the amount of a whole series of optical characteristics by the use of easily determined from measurements "magnitudes" of indicators of vertical weakening and the coefficient of diffused reflection of the sea. Using data of simultaneous measurements of weakening of the flow of natural light and elements of weakening of directed flow (of transparency of sea water and its indicatresses of diffusion) it is possible to

M.V.Kozlianinov.

to obtain all my "magnitudes" necessary for calculating characteristics of the lighting regimen of the sea. The same calculations may be used maken successfully for determining the characteristics of flows of radiation going into the sea from the direction mit have rays of the projector and vice versa. Such computations are interesting when applied to the solution of problems connected with lighting during emergency-salvage work, during solution of problems connected with the defining of visibility of underwater objects, rescuences security of work of underwater television sets, determining the optimum conditions for airphotography over the sea, etc...

Literature

Ambartzumian, V?A . Problems of diffused reflection of light in muddy water. DAN (Documents of the Academy of Science (?) 1943, vol.37; N°8.

Ambartzumian, V.A. New method of computation of diffusing of light in a muddy medium. Report of the Academy of Sciences USSR. Geography & cophysics series. 1944, N° 3.

Hamburtzeff, A.G. The problem of coloring of the sea. M. 1924. Gershon, A.A. Selected works on photometry & phototechnique. M. 1958 Ceha, L.A. Units of measurements of physical units.

Government technical publications 1948.

Joseph.J.

Studies/of lighting above and below in the sea and their correlation with measurements of transparence. German Hydrographic Journal B.J. 1950.

A K A A E M N A R A V K C C C P 1239 TPYAM UNCTHIVTA OREABOJOTUR TOM XXXV

М. В. Козлянинов

ГИДРООНТИЧЕСКИЕ ХАРАКТЕРИСТИКИ И МЕТОДИКА ИХ ОПРЕДЕЛЕНИЯ

Под гидроонтическими характеристиками понимаются замяческие и биологические характеристики вод океанов, морей, озер и дичим водных бассейнов, определяющие условия распространения в них смета. При этом под понятием «свет» подразумевается электромагнитное излучение, сосредоточенное и так называемом оптическом участке спектра, т. е. ванучение, заключенное в интервале длин волн от $\lambda = 0.01$ до $\lambda =$ = 3,40 д. Оптический участок спектра, следовательно, значительно шире его выдамой части, лежащей в пределах от $\lambda = 0.4$ до $\lambda = 0.8$ μ . Таким образом, гидрооптические характеристики определяют условия распропранения в воде как видимых лучей, так и невидимого человеческим главом излучения, принадлежащего к ультрафиолетовой и инфракрасной частям спектра. Необходимость исследования условий распространения этих лучей объясняется тем, что при решении различного рода задач приходится встречаться с воздействием поли излучения не только на человеческий глаз, но п на разпосбразвые растительные и животные организмы, фотопластинки, фотордементы, пиранометры и др. Кроме того, как известно, инфракрасное излучение играет весьма существенную роль в теплообмене между оксаном и атмосферой.

В гидрофотометрии до сих пор отсутствует строгое разграничение понятий и не выработаво достаточно четкой и ясной терминологии. Одни и те же величины часто называются по-разному и, наоборот, под одними и теме же терминами иногда понимаются разные физические величины. Эт начастся как нашей отечественной, так и иностранной и, особенно, перенодной литературы. В результате разные авторы не всегда нонимают один другого, поэтому часто вознакают ошибки, а иногда и просто заблуж-

Правиде всего, приведем определения основных гидрооптических характеристик с указанием их размерности и единиц, в которых они измерностя. Там, где только это возможно, определения и обозначения основиваются на разработанном в Государственном оптическом институто им С. И. Вавилова Государственном стандарте («ГОСТ 7604-55. Физическая оптика. Обозьачения основных величин»), введенном в действее в 1956 г.

Можно надеяться, что номещение такого неречня (насколько известно, до сих пор его в литературе не приводилось) послужит делу унификации и стандартизации в области гидрофотометрии и тем самым поможет устранить отмеченные выше неопределенность понятий и нечеткость терминологии.

Теоретические основы гидрооптики, кравугольным камием которых меляется проблема рассеяния излучения в мутных средах, разработаны весьма тлубоко. Труды Хвольсона, Ми, Гершуна, Гамбурцева, Шулейкина, Фока, Иозефа и особенно последние работы Амбарцумяна и возглавляемой им школы советских астрофизиков весьма полно раскрывают очень сложные закономерности оптических процессов, протекающих в водах различных бассейнов. Далеко не так обстоит дело с методикой и техникой гидрофотометрических измерений и, как следствие этого, с нашими сведениями о гидрооптических характеристиках водных масс океанов и различных морей. Отсутствие стандартной измерительной аппаратуры и недостаточная разработка методики наблюдений с имеющимися уникальными и опытными образцами приборов приводят к тому, что эти наблюдения часто ведутся грубо и примитивно с заметным отставанием техники измерений от современных возможностей.

При развертывании работ в области гидрооптики в Ипституте океанологии АН СССР было учтено, что первоочередной задачей в этом направлении является совершенствование существующих и разработка повых методов гидрофотометрических исследований. Естественно, что первым шагом на этом пути должно было быть создание стандартной измерительной аппаратуры, основанной на использовании современных технических средств, в частности, средств электронной и полупроводниковой техники.

Основываясь на данных испытаний и эксплуатации опытных образцов приборов, сконструированных в течение последних лет в Государственном оптическом институте им. С. И. Вавилова (ГОИ), Институтом океанологии АН СССР (ИОАН) совместно с ГОИ и др., были разработаны технические условия для проектирования и изготовления комилекта стандартной гидрооптической аппаратуры, состоящего из четырех приборов и размещен заказ на их изготовление. Кроме того, для обеспечения возможности выполнения наблюдений на ходу судна и для специальных измерений очень малых освещенностей на больших глубинах в ИОАНе были разработаны и изготовлены опытные образцы еще двух гидрооптических приборов. В этой статье после перечня гидрооптических характеристик и изложения некоторых основных теоретических предпосылок, необходимых для обоснования тех или иных методов измерений, и для исследования зависимостей между различными оптическими характеристиками, приводится краткое описание новой гидрооптической аппаратуры и рассматриваются основные вопросы методики современных гидрофотометрических измерений. Изложение методических вопросов основывается как на литературных данных, так и в значительной мере на разработках, выполненных во время экспедиционных и экспериментальных работ на э/с «Витязь» и на Черноморской экспериментальной научно-исследовательской станции Института.

Статья заканчивается исследованием зависимостей между различными гидрооптическими характеристиками, рассмотрение которых приобретает вполне определенный интерес в связи с тем, что непосредственное измерение ряда этих характеристик весьма трудоемко и требует применения специальной аппаратуры. Основываясь на таких зависимостях, полученных теоретически или найденных экспериментально, при работах в море можно ограничиться минимальным числом измерений. Вполне понятно, что знание этих зависимостей также совершенно необходимо для получения правильных представлений об оптических процессах, протекающих в море. Эмпирические связи между глубиной видимости белого стандартного диска и некоторыми основными оптическими характеристиками здесь не затраживаются, так как будут рассмотрены в специальной работе, посвященной

Approved For Release 2009/07/02 : CIA-RDP80T00246A010800400001-7

١

1. ОСНОВНЫЕ ГИДРООПТИЧЕСКИЕ ХАРАКТЕРИСТИКИ. определения и обозначения

Прежде чем приступать к определениям гидрооптических характеристек, отметем, что в гидрефотеметрии значительно удобнее пользоваться не светотехническими, а энергетическими величинами (Сена, 1949), т. е. оперировать не понятиями «световой поток», «яркость», «оснещенность» и т. д., а понятиями «лучистый поток», «энергетическая яркость», «энергетическая освещенность» и т. д. Выше уже упоминалось, что в гидроонтике исследуется не только видимое, но и ультрафиолетовое и вифракрасное излучения и при решении ряда задач можно встретиться с действием поля излучения на самые различные присмники радпации, кривые спектральной чунствительности которых могут весьма существенно отличаться от кривой спектральной чувствительности человеческого глаза. Энергетиче-

ские величины, как известно, совершенно свободны от каких бы то ни было физиологических особенностей зрения, в то время как светотехнические зависят OT HMX. В случае необходимости переход от энергетических величин к светотехническим осуществляется весьма престо. Для этого необходимо только знать так называемую относительную видность в интересующего нас приемвика излучения, т. е. вид функция $v = f(\lambda)$, где х - длина волны излучения. В дальнейшем под терминами ноток, яркость, сила света, освещенность и т. д. всюду ненимаются энергетические величины.

Рис. 1. Схема определения показателей поглощения, рассеяния и ослабления света в морской воле

Выделим в море бесконечно малый объем dv=dq , dz (рис. 1). Пусть на перхнюю грань dq этого объема отвесно падает поток монохроматических лучей, расхождением которых в пределах элементарного объема можно пренебречь. Обозначим поток излучения, падающий на грань, через Φ_0 , а создаваемую им освещенность через E.

При прохождении потока Φ_0 через объем dv часть его $d\Phi_{0 imes}$ будет поглощена, а часть — $d\Phi_0 \sigma$ — рассеяна. Количество поглощенной и рассеянной морской водой эпергии излучения определяется соответственно значениями ее показателей поглощения и рассеяния, которые принадлежат к числу наиболее важных гидроонтических характеристик.

Показателем поглощения к морской воды называется величина; обратиая расстоянию, на котором ногок монохроматического излучения, образующего параллельный нучок, ослабляется в результате поглощения в 10 раз. Показатель поглошения также может быть определен как величина, равная отношению потока излучения, образующего параллельный пучек и поглощенного единичным объемом морской воды, к освещенности, создаваемой этим потоком на перпендикулярной к нему плоскости:

$$x = -M \frac{d\Phi_0 x}{\Phi_0 dz} = -M \frac{d\Phi_0 x}{E dv}, \qquad (1)$$

где М == 0,4343 ... — модуль десятичных логарифмов.

II оказателем рассеяния эморской воды называется величина, обратная расстоянию, на котором поток монохроматического излучения, образующего паравлельный пучок, ослабляется в результате рассеяния в 10 раз. Показатель рассеяния также может быть определен как величина, равная отношению потока излучения, образующего параллельный пучок, и рассеянного единичным объемом морской воды, к освещенности, создаваемой этим потоком на перпендикулярной к нему плоскости:

$$\sigma = -M \frac{d\Phi_0 \sigma}{\Phi_0 dz} = -M \frac{d\Phi_0 \sigma}{E dv}.$$
 (2)

Из определений следует, что размерность показателей поглощения и рассеяния обратна размерности длины, т. е. $[x] = [L^{-1}]$ и $[\mathfrak{c}] = [L^{-1}]$. В гидрооптике эти показатели обычно измеряются в обратных метрах.

В результате совокупного действия процессов поглощения и рассеяния поток излучения Φ_0 , вошедший в объем dv, испытывает общее ослабление, т. е. часть его — $d\Phi_0$ $\varepsilon = d\Phi_{0x} + d\Phi_0$ σ — не пойдет, в первоначальном направлении. Суммарное количество поглощенной и рассеянной в воде эпергии излучения определяется значением показателя ослабления, который также является одной из важнейших оптических характеристик морской воды.

Показателем ослабления в морской воды называется величина, обратная расстоянию, на котором поток монохроматического излучения, образующего параллельный пучок, ослабляется в результате совместного действия поглощения и рассеяния в 10 раз. Показатель ослабления также может быть определен как величина, равная отношению потока излучения, образующего параллельный пучок и ослабленного в результате поглощения и рассеяния единичным объемом морской воды, к оснещенности, создаваемой этим объемом на перпендикулярной к нему плоскости:

$$\varepsilon = - M \frac{d\Phi_0 \varepsilon}{\Phi_0 dz} = - M \frac{d\Phi_0 \varepsilon}{E dv}. \tag{3}$$

Очевидно, что

$$\varepsilon = \kappa + \sigma.$$
 (4)

Размерность показателя ослабления такова же, как и размерность показателей поглощения и рассеяния, т. е. $[z] = [L^{-1}]$. Как и показатели и о, показатель z измеряется в обратных метрах.

В отечественной, а также и в иностранной литературе часто пользуются показателями поглощения, рассеяния и ослабления, определяемыми послаблению света не в 10, а в е раз (где е—основание натуральных логарифмов). В этом случае эти величины называются натуральным и оказателями поглощения х', рассеяния с' и ослабления з'. Очевидно, что

$$x = Mx', \ \sigma = M\sigma' \ \text{in } \varepsilon = M\varepsilon'. \tag{5}$$

Согласно уравнению переноса излучения, поток монохроматических лучей, прошедший в однородной воде без изменения направления некоторый путь dz (рис. 1), определяется из соотношения:

$$-\varepsilon'\Phi=\frac{d\Phi}{dz}.$$

Интегрирование этого уравнения дает хорошо известный показательный закон ослабления Бугера:

$$\Phi = \Phi_0 e^{-\varepsilon' z} \,. \tag{6}$$

Раненство (6) позволяет определить еще две весьма важные оптические заражтеристики воды — прозрачность и коэффициент пропускания. Последний, в свою очередь, однозначно определяет оптическую плотность.

Исторфициентом пропускания Т морской воды называется отношение потока излучения, пропущенного некоторым слоем воды, к потоку излучения, упавшему на этот слой:

$$T = \frac{\Phi}{\Phi_0} = e^{-\epsilon' z} = 10^{-\epsilon z}. \tag{7}$$

Величина в'г называется оптической глубиной т.

Из равенств (7) очевидно, что коэффициент пропускания T является величиной безразмерной.

Десятичный логарифм величины, обратной коэффициенту пропускания, называется оптической плотностью D:

$$D = \lg \frac{1}{T}.$$
 (8)

Прозрачностью в морской воды называется отношение потока излучения, прошедиего в ней без изменения направления путь, равный единице к потоку излучения, вошедшему в воду в виде параплельного пучка. Иначе говоря, прозрачностью морской воды называется ее коэффициент пропускания для однородного слоя единичной толщивы. Из равенств (7) следует, что

$$\theta = e^{-\epsilon'} = 10^{-\epsilon}. \tag{9}$$

Прозрачность θ — величина безразмерная. Для значений величин T и θ всегда соблюдается условие:

$$\theta \leqslant T \leqslant 1 \text{ m} \cdot 0 \leqslant \theta \leqslant 1.$$

Из формулы (9) спедует, что показатель ослабления численно равен абсолютному значению десятичного логарифма прозрачности:

$$\varepsilon = |\lg \theta|. \tag{10}$$

Таким образом, величины є и в однозначно определяют друг друга.

Если элементарный объем воды dv (см. рис. 1), освещаемый потоком излучения Φ_0 , рассматривать с некоторого расстояния в направлении S, составляющем угол γ с направлением падающих лучей, то, вследствие явления расссяния, этот объем будет светиться как источник излучения, имеющий в этом направлении энергетическую силу света:

$$dI = \frac{1}{4\pi}\sigma(\gamma) E dv = \beta' \frac{R}{\pi} dv. \tag{11}$$

где σ' (γ)-натуральный показатель рассения в данном направлений (Гершун, 1958). Через β' в этом равенстве обозначен натуральный показатель яркости морской воды, а через E — по-прежнему освещенность верхней грани объема. Как известно, яркость B_0 идеально белой поверхности 1 , перпендикулярной направлению освещения, определяется как

$$B_0 = \frac{E}{\pi}$$
.

¹ Эдесь и в дальнейшем под идеально белой матовой поверхностью понимается диффузно отражающая, непрозрачная и не поглощающая новерхность.

Подставляя выражение для B_0 в (11), получаем равенство, дающее возможность определить еще одну важную гидрооптическую характеристику— показатель яркости воды.

Показателем яркости β' морской воды называется отношение силы света, рассеянного в данном направлении единичным объемом воды, к яркости идеально белой матовой поверхности, перпендикулярной направлению лучей, освещающих рассматриваемый объем:

$$\beta' = \frac{dI}{B_0 dv}. (12)$$

Из этого равенства следует, что размерность показателя яркости обратна размерности длины [β'] = [L^{-1}]. Показатель яркости обычно измеряется в

обратных метрах.

Если из центра рассеивающего объема отложить векторы, равные по величине показателю яркости β' , то поверхность, огибающая копцы этих векторов, будет представлять пространственное распределение энергим рассеянного света вокруг рассматриваемого объема. Такая поверхность носит название индикатрисы показателя яркости $\beta'(\gamma)$. Для неполяризованного света эта поверхность симметрична относительно любой плоскости, проходящей через направление падающих лучей. Поэтому индикатрису показателя яркости можно представлять плоской кривой, характеризующей распределение энергии рассеянного света в зависимости от угла рассеяния. Полную характеристику условий рассеяния неполяривованного света в морской воде будут давать спектральные индикатрисы показателя яркости $\beta'(\gamma, \lambda)$, где λ —длина волны излучения.

Общий поток, рассеянный элементарным объемом dv по всем направле-

ниям, определится как

$$\Phi_0 \sigma = \int_{4\pi} I dw, \tag{13}$$

где dw — элементарный телесный угол, ось которого составляет угол γ с направлением падающих лучей.

Из уравнений (2) и (13), с учетом (11), следует, что показатель рас-

сеяния с равен

$$\sigma = \frac{1}{\pi} \int_{4\pi} \beta(\gamma) dw = \frac{M}{\pi} \int_{4\pi} \beta'(\gamma) dw, \qquad (14)$$

где М — по-прежнему модуль десятичных погарифмов.

Так как

$$\int_{4\pi} dw = 2\pi \int_{0}^{\pi} \sin \gamma d\gamma, \tag{15}$$

то вместо (14), получаем окончательно соотношение, которое служит для расчета показателя рассеяния σ по измеренным значениям $\beta'(\gamma)$:

$$\sigma = 2M \int_{0}^{\pi} \beta'(\gamma) \sin \gamma d\gamma. \tag{16}$$

Как в теоретических работах, так и при обработке результатов измерений и при производстве различных расчетов часто пользуются не индикатрисой пожазателя яркости, а и н д и к а т р и с о й р а с с е я н и я \times (γ). Если вероятность рассениия излучения внутри телесного угла dw обозначить через x(γ) $\frac{dw}{4\pi}$,

то имеем очевидное условие:

$$\int_{4\pi} x(\gamma) \frac{dw}{4\pi} = 1,$$

или, принимая во внимание (15):

$$\frac{1}{2}\int_{0}^{\pi}x\left(\gamma\right)\sin\gamma d\gamma=1. \tag{17}$$

Из равенств (16) и (17) следует, что

$$x(\gamma) = \frac{4M\beta'(\gamma)}{\sigma} = \frac{4\beta(\gamma)}{\sigma}.$$
 (18)

Если через центр рассеивающего объема провести плоскость, перпендикулярную падающим лучам, то потоки рассеянного излучения, распространяющиеся по обе стороны от этой плоскости, значительно различаются между собой. Только для чисто молекулярного рассеяния, обусловленного флуктуациями плотности, эти потоки одинаковы, что соответствует сферической форме индикатрисы рассеяния (так называемой индикатрисе Релея). Индикатрисы рассеяния даже для очень чистых океанических вод сильно вытянуты вперед, т. е. в направлении падающих лучей и имеют кинжальную форму. Различие в потоках рассеянного излучения, отбрасываемых вперед и назад от только что упомянутой пограничной плоскости (или, иначе говоря, асимметрия индикатрис рассеяния), в значительной мере определяет условия распространения света в море. Поэтому возникает необходимость в получении количественных характеристик, определяющих различие в этих потоках. Такими характеристиками являются показатели рассеяния вперед и назад.

Показателем рассения вперед δ называется компонент показателя рассения, определяющий долю потока рассенного излучения, распространяющегося в пределах телесного угла 2π стерадиан, ось которого совпадает с направлением падающих лучей:

$$\delta = 2 \int_{0}^{\frac{\pi}{2}} \beta(\gamma) \sin \gamma d\gamma. \tag{19}$$

Показателем рассеяния навад ф называется компонент по казателя рассеяния, опредсияющий долю потока рассеянного излучения распространяющегося в пределах телесного угла 2π стерадиан, ось которого противоположна направлению падающих лучей:

$$\psi = 2 \int_{\frac{\pi}{2}}^{\pi} \beta(\gamma) \sin \gamma d\gamma. \tag{20}$$

Очевидно, что показатель рассенния о равен сумме этих показателей, т. е.

$$\sigma = \delta + \phi. \tag{21}$$

Часто оказывается существенным знать, какая часть всего рассеянного излучения сосредоточена в конусе, ограниченном углами γ_1 и γ_2 , т. е. какое значение функции

$$f(\gamma) = \frac{\int_{\gamma_1}^{\gamma_2} \beta(\gamma) \sin \gamma d\gamma}{\int_{0}^{\gamma_2} \beta(\gamma) \sin \gamma d\gamma}.$$
 (22)

Необходимо подчеркнуть, что равенства (3) и (10), послужившие для определения показателя ослабления, а также равенство (6), выражающое закон Бугера, справедливы только для направленного, монохроматического излучения, распространяющегося в одпородной среде. В то же время практически очень часто приходится иметь дело с распространением в море дневного света, являющегося не только немонохроматическим (сложным), но и смещанным (направленным и диффузным) излучением. Поэтому в гидрооптику было введено понятые о показателе вертикального ослабления, характеризующем изменение естественного света с глубнной. Многочисленные эксперименты, выполненные в разное время развыми авторами, с полным согласием показывают, что в первом приближении дневной свет в море ослабляется с глубиной по показательному закону:

$$S_{z_z} = S_{z_z} 10^{-\alpha z}, \tag{23}$$

где S_{z_1} — поток немонохроматического смешанного излучения на глубине z_1 ; S_{z_2} — поток того же излучения на глубине z_2 ; $z=z_2-z_1$ — толицина водного слоя.

Покаватслем вертикального ослабления а называется величина; обратная расстоянию, на котором поток естественного света ослабляется в розультате совместного действия поглощения и рассеяния в 10 раз. Согласно равенству (23) показатель вертикального ослабления может быть также определен как разность логарифмов потоков естественного света на верхней и нижней границах водного слоя, отнесенная к его толще:

$$\alpha = \frac{\lg S_{z_t} - \lg S_{z_z}}{z} = \frac{1}{z} \lg \frac{S_{z_t}}{S_{z_c}}.$$
 (24)

Аналогично понятию о патуральном показателе ослабления \mathfrak{s}' может быть введено понятие и о натуральном показателе вертикального ослабления \mathfrak{s}' :

$$\alpha = M\alpha'$$
.

Из равенства (24) следует, что размерность показателя вертикального ослабления обратна размерности длины: $[\alpha] = [L^{-1}]$. Так же как и показатель ϵ , показатель α обычно измеряется в обратных метрах.

Изменение с глубиной распространяющегося в море нотока дневного света удобно характеризовать к о э ф ф и ц и е и т о м п о д в о д и о й о с в е щ е и и о с т и η , под которым понимается отношение освещенности E_z некоторой плоскости, находящейся в море на глубине z, к одновременному значению подповерхностной освещенности $E_{\rm OB}$. Последняя величина представляет собой освещенность горизонтальной плоскости, расположенной непосредственно под поверхностью моря и освещаемой таким образом потоком естественного света, уже претерневшим отражение и

преломление на этой поверхности. Тогда

$$\eta = \frac{E_z}{E \text{on}}.$$
 (25)

 ${f B}$ большинстве случаев рассматривается освещенность сверху E_z и снизу E'z горизонтальных поверхностей, расположенных в море на различных глубинах. График функции $\eta = \eta(z)$ дает наглядное представление о характере вертикального распределения освещенности, создаваемой естественным светом.

К числу весьма важных гидроонтических характеристик принадлежат

коэффициенты диффузного отражения и яркости моря.

Коэффициентом диффузного отражения моря 5 называется отношение потока диффузного излучения R_z , идущего на глубине zк поверхности моря, к потоку естественного излучения S_z , идущего на той же глубине вертикально вниз, в глубь моря:

$$\zeta = \frac{R_z}{S_z} \,. \tag{26}$$

Коэффициентом яркости моря фо. ф называется отношение яркости диффузного излучения $B_{\theta,\,\,\phi}$, идущего из толщи моря непосредственно под его поверхностью в направлении, определяемом углами в и ф (где θ — зенитное расстояние, а ϕ — азимут), к яркости B_0 идеально белой матовой поверхности, освещенной естественным светом:

$$\rho_{\theta, \varphi} = \frac{B_{\theta, \varphi}}{B_{0}} = \frac{\pi B_{\theta, \varphi}}{E_{0}}, \tag{27}$$

тде E_0 — освещенность поверхности моря.

Зависимость коэффициента яркости моря от длины волны излучения х жарактеризует распределение энергии в спектре излучения, выходящего мв толщи моря и, следовательно, определяет его собственный цвет 1.

Из определений следует, что коэффициенты η , ζ и ϕ — величины без-

размерные.

При рассеянии свет частично поляризуется. В связи с этим для решения некоторых задач возникает необходимость в получении характеристик поляризации света в морской воде. К основным из них относятся степень ноляризации P и степень деполяризации Q.

Степенью поляризации Р называется отношение максимальной разности потоков двух взаимно перпендикулярно поляризованных составляющих, на которые может быть разложено данное частично поляризованное излучение, к сумме этих потоков:

$$P = \frac{\Phi_- - \Phi_l}{\Phi_- + \Phi_l},\tag{28}$$

где Φ — поток частично поляризованного излучения, электрический вектор которого лежит в плоскости рассеяния, а Фі-поток того же излучения, электрический вектор которого перпендикулярен этой плоскости.

¹ В отличие от видимого цвета моря, который зависит от состояния его поверхности, облачности и угла зрепия наблюдателя, собственный цвет моря определяется тольно физико-химическими характеристиками воды в том или ином районе, и поэтому именно он может и должен интересовать океанолога, гидрографа, мореплавателя и т. д.

Величина

$$Q = \frac{1 - P}{1 + P} \tag{29}$$

носит название степени деполяризации.

Далеко не всегда учитывается, что показатели ослабления, поглощения и рассеяния для направленного излучения по своим значениям сильно отличаются от этих же показателей для диффузного излучения. Однако эторазличие часто не находит отражения в специальной литературе. Определим эти характеристики следующим образом.

Показатель поглощения диффузного излучения о — величина, обратная расстоянию, на котором поток полностью рассеянного излучения ослабляется в результате поглощения в 10 раз.

Показатель рассеяния диффузного излучения b— величина, обратная расстоянию, на котором поток полностью рассеянного излучения ослабляется в результате многократного рассеяния в 10 раз.

Выше были даны определения показателей рассеяния вперед б и назад ф для направленного излучения. Для рассмотрения наиболее часто встречающегося в практике случая распространения света от поверхности в глубь моря и в обратном направлении введем такие же понятия и для диффузного излучения.

Показателем рассеяния диффузного излучения вперед ξ будем называть компоненту показателя рассеяния b, определяющую долю потока полностью рассеянного излучения, распространяющегося в море в пределах телесного угла 2π стерадиан, ось которого направлена вертикально вниз, в глубь моря.

Показателем рассеяния диффузного излучения назад μ будем называть компоненту показателя рассеяния b, определяющую долю потока полностью рассеянного излучения, распространяющегося в море в пределах телесного угла 2π стерадиан, ось которого направлена вертикально вверх, к поверхности моря.

Показателем ослабления диффузного излучения с называется величина, обратная расстоянию, на котором поток полностью рассеянного излучения ослабляется в результате совместного действия поглощения и рассеяния в 10 раз.

Очевидно, что

$$c = a + b, (30)$$

$$b = \xi + \mu. \tag{31}$$

Как и прежде, будем обозначать натуральные показатели поглощения, рассеяния и ослабления через a', b' и c', причем a=0.43 a'; b=0.43 b'; c=0.43 c'.

В заключение этого раздела отметим, что аналогично принятому в метеорологии и, в частности, в оптике атмосферы, понятию оптической дальности видимости в гидрооптике применяется понятие глубины видимости.

Под глубиной видимости Н какого-либо объекта понимается то предельное расстояние, на котором этот объект, геометрически доступный наблюдению, виден при данных условиях освещения и данных оптических характеристиках морской воды.

В океанологии нашли широкое распространение наблюдения над «проврачностью» и «цветом» морской воды. При этом под прозрачностью понимается глубина видимости погруженного в море белого стандартного ди-

ска, выраженная в метрах. Совершенно очевидно, что эта величина совсем не равноценна прозрачности морской воды в в обычном физическом смысле, определяемой равенством (9). Поэтому в дальнейшем, во избежание неточностей, результаты измерений по диску будут именоваться г л убиной видимости диска, или относительной проарачностью h. Под цветом морской воды C понимается номер раствора стандартной шкалы цветности, окраска которого наиболее близна к цвету столба воды над диском в месте наблюдений.

2. НЕКОТОРЫЕ ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕОРИИ РАСПРОСТРАНЕНИЯ ИЗЛУЧЕНИЯ В МОРЕ

Не вдаваясь в детальное рассмотрение сложных закономерностей распространения излучения в море, безусловно выходящее за рамки настоящей работы, остановимся только на некоторых основных теоретических положениях, необходимых для выбора и обоснования тех или иных методов измерений гидрооптических характеристик и рассмотрения зависимостей между ними. Для этой цели воснользуемся исследованиями В. А. Амбарпумяна(1943, 1944), А. Г. Гамбурцева (1924) и И. Иозефа (1950).

Вопрос о расчете светового режима моря сводится к решению уравнения распространения излучения в поглощающей и рассеивающей среде, т. е. к решению так называемого уравнения переноса излучения, которое может быть записано в следующей общей форме:

$$\frac{dJ}{dt} = -\epsilon'J + i. \tag{32}$$

Через Ј обозначена интенсивность излучения, распространяющегося в среде в направлении l; через i — коэффициент излучения, а через ε' натуральный показатель ослабления. В задачах гидрооптики можно пренебрегать собственным излучением моря и считать, что излучательная способность морской воды равна ее рассеивающей способности. Тогда коэффициент і будет выражать количество энергии, рассеянное единицей объема воды в единице телесного угла, ось которого составляет угол ү с направлением падающих лучей:

$$i = \frac{\sigma}{4\pi} \int x(\gamma) Jdw. \tag{33}$$

Это уравнение носит название уравнения лучевого равновесия.

Рассмотрим сначала наиболее простой случай — ослабление направленного потока (например прямых солнечных лучей), распространяющегося вертикально в глубь моря в направлении оси г. Уравнение переноса излучения запишется в простой форме:

$$\frac{dJ}{dz} = -\varepsilon'J. \tag{34}$$

Интегрируя это уравнение и переходя от интенсивности излучения к потоку, получим уже упоминавшийся выше закон Бугера:

$$\Phi = \Phi_0 e^{-\epsilon' z}. \tag{35}$$

Из простых геометрических соображений следует, что если солнечные лучи падают на поверхность моря не отвесно, а под некоторым углом θ — зенитное расстояние солнца, то в случае гладкой поверхности моря поток направленного излучения Ф, достигший глубины

$$\Phi = \Phi_0 e^{-\kappa' 2 \sec \theta'}. \tag{36}$$

где, в свою очередь, 0' — угол преломления солнечных лучей, связанный с зенитным расстоянием солнца простым соотношением:

$$\sin\theta' = \frac{1}{n}\sin\theta. \tag{37}$$

Здесь через п обозначен показатель преломления морской воды.

Положив в показателе степени при e в формуле (36) $\epsilon'_1 = \epsilon' \sec \theta'$, что соответствует формальной замене увеличения пути направленного излучении увеличением значения показателя ослабления, закон Бугера можнозаписать в следующем виде:

$$\Phi = \Phi_0 e^{-s_1^2}. \tag{38}$$

Выше уже упоминалось, что закон Бугера в такой форме справеддив только для направленного монохроматического излучения, распространяющегося в однородной среде. При неоднородной среде, но монохроматическом излучении, вместо (35), имеем:

$$\Phi = \Phi_{0}e^{-\int_{0}^{\pi} e' dx} \tag{39}$$

Если в море распространяется поток немонохроматического, но направленного излучения (например поток прямых солнечных лучей), то даже в этом сравнительно простом случае изменение с глубиной рассматринаемого потока не может быть выражено простым законом ослабления, так как показатель в становится зависящим от распределения энергии. в спектре излучения. В свою очередь, это распределение непрерывно меняется с глубиной вследствие селективности процессов поглощения и рассеяния. Поэтому даже в случае однородной среды показатель в' будет явинться функцией не только длины волны à, но и глубины z, т. e. s' =ε'(λ, z). Введем понятие о некотором среднем значении показателя ε' для потока излучения, заключенного в интервале длин волн (λ1, λ2) и распространяющегося от поверхности моря до глубины z. В силу закона спектральной аддитивности поток немонохроматического излучения Ф, на глубине z может быть представлен как

$$\Phi_z = \int_{\lambda_z}^{\lambda_z} \Phi_{\lambda,z} d\lambda, \tag{40}$$

где $\Phi_{\lambda,\,z}$ — поток монохроматического излучения, заключенного в интервале длин волн (λ , $\lambda+d\lambda$) на глубине z.

Среднее значение є находится из равенства (35):

$$\bar{\varepsilon}' = \frac{\int\limits_{\lambda_z}^{\lambda_z} \varepsilon' \chi \Phi_{\lambda,z} d\lambda}{\int\limits_{\lambda_z}^{\lambda_z} \Phi_{\lambda,z} d\lambda},$$
(41)

где ва — показатель ослабления мопохроматического излучения в интервале длин волн $(\lambda, \lambda + d\lambda)$.

Тогда закон ослабления потока немонохроматического, но направленного излучения принимает вид:

$$\Phi = \Phi_0 e^{\int_0^z \vec{r} dz}$$
(42)

Для случая распространения в среде только диффузного излучения, инущего под углом в к вертикали, В. А. Амбарцумян (1943) находит решение уравнения переноса излучения в виде:

$$J = \frac{b(0) e^{-k\tau}}{1 + k\cos\theta},\tag{43}$$

где т — оптическая глубина, $b\left(\theta\right)$ — некоторая функция, зависящая от углового распределения энергии излучения, k — параметр, зависящий от индикатрисы рассеяния и от соотношения между рассеянием и общим

Для преимущественно рассеивающих сред параметр к определяется

$$k = \sqrt{(1-s)(3-x_1)},$$
 (44)

где s — доля рассения в общем ослаблении, т. е. $s=\frac{\sigma}{s}$, а x_1 — первый коэффициент в разложении индикатрисы рассеяния в ряд по полиномам

$$x_1 = \frac{3}{2} \int_0^x x(\gamma) \cos \gamma \sin \gamma d\gamma.$$

Основные закономерности наиболее общего случая — распространения в море смешанного, т. е. одновременно направленного и диффузного. излучения (например, естественного света при солице, не закрытом облаками), рассмотрим, базируясь, на теоретических разработках А. Г. Гамбурцева (1924) и Иозефа (Joseph, 1950). При этом ограничимся случаем, когда море достаточно глубоко, т. е. когда отражение от дна не влинет. на интенсивность распространяющегося в море излучения. Такое предпопожение вполне допустимо, так как уже на расстояния, равном глубине видимости диска, альбедо дна прантически не сказывается.

Для исследования закономерностей изменения потока излучения \mathcal{S}_{\star} близкого к диффузному, идущего в глубъ моря и потока R, распространяющегося в море вертикально вверх к его поверхности, Гамбурцев составляет следующие уравнения, представляющие собой уравнения переноса излучения, записанные в развернутом виде (в наших обозначениях);

$$\frac{dS}{dz} = -aS - \mu S + \mu R .$$

$$-\frac{dR}{dz} = -aR - \mu R + \mu S. \tag{45}$$

Гамбурцев решает эти уравнения совместно относительно величины диффузного отражения моря ζ. Решение находится в виде:

$$\zeta = \frac{R}{S} = \frac{a + \mu - \sqrt{a^2 + 2a\mu}}{\mu}.$$
 (46)

Напомиим, что через a обозначен ноказатель поглощения, а через μ — показатель рассеяния назад для диффузного излучения.

Рассмотрим теперь распространение в море одновремение и направленного и диффузного излучений. Выделим на глубине z из общего потока излучения S ого компоненту F, представляющую собой чисто диффузный поток и обозначим по-прежнему направленный поток через Φ . В этом случае система уравнений (45) Гамбурцева должна быть донолнена членами Φ и Φ , учитывающими изменение потоков Φ и Φ за счет добавления компонентов рассеянного вперед (показатель Φ) и назад (показатель Φ) излучения направленного потока Φ . Тогда, вместо уравнения (45), имеем:

$$\frac{dF}{dz} = -aF - \mu F + \mu R + \delta \Phi$$

$$-\frac{dR}{dz} = -aR - \mu R + \mu F + \phi \Phi$$

$$\frac{d\Phi}{dz} = -\epsilon \Phi = -(\kappa + \sigma) \Phi.$$
(47)

Третье уравнение этой системы представляет собой не раз уже упоминавшесся выше уравнение персноса излучения для направленного потока (34). Введем такие же граничные условия, как и при интегрировании уравнения (34), т. е. положим, что

$$\Phi_{(0)} = \Phi_0, \ F_{(0)} = F_0 \ \text{if} \ S_{(0)} = S_0.$$

Иначе говоря, обозначим через $\Phi_{\rm o}$, $F_{\rm o}$ и $S_{\rm o}$ соответственно потоки паправленного, диффузиого и общего (смещанного) излучения, только что вошеднего под поверхность моря. При этом очевидно, что

$$S_0 = F_0 + \Phi_0.$$

Решение системы (47) Иозеф (переходя от патуральных показателей к десятичным и сохрания наши обозначения) находит в виде:

$$S = [S_0 + n_2 \Phi_0 (1 - 10^{-(\epsilon - q)z}) 10^{-qz}]$$

$$R = \left[S_0 + n_2 \Phi_0 (1 - \frac{n_1}{n_2} \frac{q + a}{q - a} 10^{-(\epsilon - q)z}) \right] \frac{q - a}{q + a} 10^{-qz}.$$
(48)

В этих равенствах обозначено:

$$n_1 = \frac{\sigma\left(\mu - \psi\right) + \phi\left(a - \varkappa\right)}{\varepsilon^2 - \sigma^2}; \quad n_2 = \frac{\left(a + \varepsilon\right)\left(a - \varkappa + \mu - \psi\right)}{\varepsilon^2 - \sigma^2}; \quad q = \sqrt{a\left(a + 2\mu\right)}. \quad (49)$$

Остальные обозначения прежние.

Физический смысл нараметра q становится исным из следующих соображений. Если в море распростравнется только диффузиое излучение (например, при полной облачности, при распространении дневного света на достаточно больших глубинах, при значительном удалении от источников искусственного освещения и т. д.), то уравнения (48) существенно упрощаются, так как Φ_0 становится равным нулю, а $S_0 = F_0$. Тогда

$$F = F_0 \cdot 10^{-qz},$$

$$R = F_0 \frac{q - a}{q + a} \cdot 10^{-qz}.$$
(50)

Нетрудно видеть, что первое уравнение совершенно идентично закону Бугера, а парамотр с представляет собой не что иное, как и оказатель оспабления диффузного излучения в морской воде с. т. е.

$$q=c=\sqrt{a(a+2\mu)}.$$
 (51)

В заключение отметим, что уравнения (48) и (50), строго говоря, спра-11. 11 . 12. 1 1. 14. 14. 14. 15. 15. ведиввы только для монохроматического света. При точных расчетах, свизанных с распространением немонохроматического излучения; значения показателей в и $q={\mathfrak c}$ должны заменяться их средними значениями, вычисляемыми аналогично (41).

з. основные вопросы методики гидрооптических измерении

К числу основных задач гидроонтического исследования того или иного моря или океанического района относятся: 1) получение спектральных характеристик прозрачности воды на различных глубинах; 2) расчет светового режима моря, т. е. расчет поля излучения, создаваемого естественным светом в любой точке солщи моря.

Первая из этих задач требует для своего решения знания только показателей ослабления света в различных участках спектра, определяемых содержащейся в воде органической и неорганической взвесью и раство-

реиными в воде окрашенными органическими веществами.

Раочет светового режима моря сводится к решению уравнения переноса излучения. Для решения этого уравнения, как это следует из предыдущего раздела и из рассматриваемых ниже зависимостей между различными гидрооптическими характеристиками, оказывается необходимым знание следующих величин: показателей поглощения, рассеяния и ослабления света в воде, индикатрисы рассеяния, показателя вертикального ослабления и коэффициента диффузного отражения моря. Ряд практическах задач, связанных с видимостью подводных объектов и их маскировкой, требует, кроме того, еще знания коэффициента яркости моря. Для полного расчета свотового режима моря, так же как и для ответа на многие вопросы, выдвигаемые развитием морской техники и постановкой современных гидробиологических исследований, необходимы данные о с п е к тральных характеристиках перечисленных элементов ослабления излучения в море.

Для определения гидрооптических характеристик служат методы как непосредственные, так и лабораторные, т. е. измерения могут проводиться приборами, погружаемыми в море, или выполняться на пробах морской воды при помощи аппаратуры, находящейся в судовой лаборатории. Некоторые из только что перечисленных характеристик, такие, например, как показатель вертикального ослабления и коэффициенты яркости и диффузного отражения моря, могут определяться только из непосредственных измерений. Некоторые же, как, например, индикатриса рассеяния, наоборот, в настоящее время могут измеряться только в лабораторных условиях. Одна из важнейших оптических характеристик - спектральная прозрачность морской воды, - однозначно определяющая ее спектральные показатели ослабления, -- может измеряться как непосредственно, так и лабораторными методами. Непосредственные измерения, достоинства которых совершенно очевидны, обладают в то же время тем крупным недостатком, что глубина погружения современных оптических приборов, свизанных с судном кабелем, весьма ограничена и практически не

² Труды Ин-та оневнологии, т. XXXV

превышает 150 - 200 м и только в редких случаях (при условии применения очень легких и прочных несущих каротажных кабслей) достигает 400-500 м. Измерения же на пробах морской воды, получаемых из батометров, естественно, могут проводиться до очень больших глубин. Так, например, при работах на э/с «Витизь» определения оптических характеристик проводились до глубины 9400 м. При лабораторных исследованиях легче выполнять измерения в различных областях спектра, причем качество измерений значительно меньше подвержено влиянию погодных условий, чем при непосредственных паблюдениях. Крупным недостатком лабораторных исследований является невозможность детального зондирования вертикального распределения онтических характеристик, в то время как при пепосредственных измерениях значения этих характеристик могут определяться очень часто. Последнее обстоятельство приобретает несьма существенное значение при исследовании слоев с повышенным содержанием фито- и зоопланктова, при определении местоположения слоев скачка плотности и т. д. Таким образом, как той, так и другой группе методов присущи определенные достоинства и недостатки, и обе эти группы отнюдь не искиючают, а дополняют одна другую и при работах в море должны применяться совместно.

1) Испосредственные измерения оптических характеристик морской воды

а) Измерения подводной освещенности

Измерения подводной освещенности, как это следует из равенств (24), (25) и (26), нозволяют находить следующие гидрооптические характеристики: показатель вертикального ослабления а, коэффициент подводной освещенности и коэффициент диффузного отражения моря С. Получение последней величины, помимо измерения освещенности сверху горизонтальных поверхностей, расположенных в море на различных глубинах, требует также измерения освещенности этих поверхностей снизу, т. е. оснещенности, создаваемой диффузным светом, распространяющимся в море из более глубоких слоев к его поверхности. В связи с тем, что освещенность поверхности моря может быть подвержена очень резким и сильным колебаниям, которые, безусловно, сказываются и на колебаниях нодводной освещенности, все измерения этой величины должны обязательно сопровождаться измерениями наружной освещенности.

Для измерений подводной освещенности служит фотоэлектрический фотометр ФМПО-57. Прибор состоит из подводной части (рис. 2) и регистратора, находящегося на борту судна, соединенных между собой кабелем. Подводная часть прибора представляет собой герметичный корпус (1), в который вмонтировано инть фотоэлементов (2). Четыре из них обращены своей светочувствительной новерхностью кнерху, т. е. к поверхности моря; а пятый — вииз к его диу. Для обеспечения возможности проведения измерений не только в белом снете, а и в трех участках видимой части снектра, из четырех фотоэлементов обрашенных вверх, три закрыты светофильтрами. Все фотоэлементы номещены за защитными иллюминаторами из молочного стекла (3). Применение этих стекол имеет двоякую цель. Вопервых, без них, вследствие явления полного внутреннего отражения на нижней поверхности защитных иллюминаторов, на фотоэлементы попадали бы только лучи, составляющие с вертикалью углы, меньшие, чем 48,°5, т. е. сосредоточенные в отвесно расположенном световом конусе с углом при вершине, равном 97°. Применение молочных стекол позволяет элиминировать этот эффект и фотоэлементы принимают излучение, посту-

памиее со всей полусферы. Во-вторых, помещение светофильтров под молочене стекла обеспечивает постоянство пути световых лучей при их прокождении через фильтр, вне зависимости от углового распределения энертии в падающем потоке. Без молочных стекол лучи, падающие под больпини углами к вертикали, проходили бы и больший путь через фильтр и, следовательно, ослаблялись бы сильнее, чем лучи, падающие более отвесно.

Рис. 2. Фотоэлектрический фотометр для измерения подводной освещенности ФМПО-57

В приборе применены селеновые фотоэлементы с запирающим слоем, площадью светочувствительной поверхности 20 см2. Интегральная чувствительность каждого из фотоэлементов составляет около 300 мка/люмен.

Регистрирующая часть прибора представляет собой потенциометр ЭПП-09 отечественного производства; очень хорошо зарекомендовавший

себя при работе в морских условиях. При наблюдениях прибор опускается в море на кабеле марки КРП 6 ×1,5, имеющем, кроме токопроводящих жил, стальной сердечник. Прибор всегда опускается с борта, освещенного солнцем. Предельная глубина

погружения составляет 150 м.

Для возможности проведения измерений в широком интервале освещенностей от десятнов тысяч люкс в поверхностных слоях моря до незначительных освещенностей на глубинах 120 — 150 м, потенциометр снабжен системой шунтов, делящих весь дианазон измерений на пять частей.

Измерение подводной освещенности ведется с погрешностью, не пре-

вышающей 10% от измеряемой величины.

В приборе применяются стеклянные светофильтры (4) отечественного производства — синий СС-4 (эффективная длина волны $\lambda_{\theta \varphi} = 400$ m μ), зеленый 3С-4 ($\lambda_{в \Phi} = 520$ m μ) и красный ($\lambda_{s \Phi} = 604$ m μ).

Электропитание прибора осуществляется от судовой сети постоянного

тока напряжением 110 или 220 в.

Для одновременного измерения освещенности поверхности моря успешно применяется объективный люксметр Ю-16, выпускаемый ленинградским заводом «Вибратор». В связи с тем, что этот прибор градуируется только для сравнительно небольших освещенностей, при проведении измерений требуется применение ослабляющих нейтральных фильтров (НС-6, НС-7, НС-8, НС-9 и НС-10), обеспечивающих возможность проведения измерений при любых природных освещенностях, вплоть до их максимального значения (130 000 люкс.). Так как стеклянные фильтры имеют зеркальную поверхность, при измерениях они помещаются между приемником объективного люксметра (в качестве которого используется также селеновый фотоэлемент) и молочным стеклом. Для измерения освещенности поверхности моря в различных областях спектра объективный люксметр снабжается комплектом светофильтров тех же самых марок, что и фотоэлектрический фотометр. При измерениях светофильтры всегда помещаются между фотоэлементом и молочным стектом.

Рис. 3. Схема измерителя малых освещенностей

Пользуясь соотношениями (24), (25) и (26), по данным измерений вычисляются показатели вертикального ослабления для различных слоев моря и коэффициенты подводной освещенности и диффузного отражения моря.

Рис. 4. Электрическая схема измерителя малых освещенностей

Пля возможности измерения очень малых освещенностей на больших глубинах в ИОАНе был сконструирован и построен объективный погружаемый фотометр, приемником светового потока в котором служит фотоэлектронный умножитель типа ФЭУ-17 или ФЭУ-19. Прибор рассчитан на работу до глубин 400 — 500 м. Принципиальная схема прибора представлена на рис. 3. Измеряемый ноток излучения естественного света принимается катодом фотоумеожителя (1), представляющим собой полупрозрачный сурьмяно-цезиевый слой, нанесенный на внутреннюю поверхность колбы умножителя. Влок питания умножителя состоит из кенотрона (2), трансформатора (3) и конденсатора (4). На умножитель подается переменный ток напряжением около 1000 в для ФЭУ-17 и около 1200 в для ФЭУ-19. Сигнал фотоумножителя, пропорциональный интенсивности падающего излучения, по кабелю (5) подается на измерительный прибор, в качестве которого используется ламповый вольтметр. На рис. 4 дана электрическая схема прибора.

б) Ивмерения показателя ослабления (проврачности) морской воды

Измерения производятся при помощи фотоэлектрического фотометра прозрачномера ФПМ-57. Прибор, оптическая схема которого показана на рис. 5, представляет собой дифференциально-нулевой фотометр, преднезначенный для измерения показателя ослабления света в море как в белом свете, так и в пяти участках видимой части спектра.

Рис. 5. Оптическая схема фотоэлектрического фотометра — прозрачномера ФПМ-57

осветитель; 2 — опорный фотовлемент; 3 — измерительный фотовлемент;
 и 12 — нонденсоры; 6 — светофильтры; 6, 14 и 16 — дизфрагмы; 7, 8 и
 9 — светемы лини; 10 — защитные стекла; 11 — теплоизолиционная пластинна; 13 — зеркало

Прибор состоит из подводной части и регистратора, находящегося на

борту судна.

В погружаемой части прибора помещен источник искусственного снета, в качестве которого используется лампа накаливания СЦ-61. После прохождения через вращающийся диск — модулятор и исследуемый слой морской воды световой поток от лампы попадает на фотоэлемент. Другая часть потока от лампы направляется на опорный фотоэлемент, сигнал которого при помощи электрического ослабителя уравнивается с сигналом фотоэлемента, освещенного светом, прошедшим через морскую воду. Приемники 2 и 3 представляют собой сурьмяно-цезиевые фотоэлементы СЦВ-3, подбираемые с возможно более близкими фотометрическими ха-

рактеристиками.

В основу работы прибора заложен принцип следящей системы. Модупированные вращающимся диском световые потоки преобразуются фотоэлементами в переменный ток, пропорциональный падающим потокам.
Переменные напряжения с измерительного и опорного фотоэлементов в
противофазе подаются на катодные повторители, откуда поступают в усилитель-преобразователь. В смесителе усилителя-преобразователя напряжения измерительного и опорного фотоэлементов векторно суммируются,
и результирующее напряжение сичнала (разбаланс) через усилитель
поступает на синхронный детектор. Кроме того, на тот же синхронный
детектор поступает и опорное напряжение. На выходе синхронный
детектора возникает постоянный ток, полярность которого зависит от знака разбаланса в смесителе, а величина — пропорциональна амплитуде
разбаланса. Сигнал постоянного тока с синхронного детектора поступает
на усилитель регистрирующей части.

Прибор позволяет проводить измерения показателя ослабления света в море на глубинах от 0 до 150 м в водах различной мутности — от высоко прозрачных вод открытых океанических районов ($\varepsilon = 0.05$ 1 /м) до мутных прибрежных вод ($\varepsilon = 2.00$ 1 /м). Регистрация показателя ослабления ведется с отпосительной погрешностью, не превышающей 1%.

В качестве регистратора используется потенциометр ЭПП-09 с внесенными в его конструкцию некоторыми изменениями, позволяющими вести

регистрацию значений цоказателей ослабления в широком диапазоне мутностей воды примерно с одинаковой точностью.

Для нозможности измерения прозрачностей воды на больших глубинах ирибор спабжается съемной кюветой, помещаемой между осветителем и фотоэлементом. В этом случае прибор находится на борту судна, и кювета заполняется водой из батометров. Объем кюветы составляет всего

Рис. 6. Бунсируемый прозрачномер ИОАН

500 см², что обеспечивает проведение массовых измерений при взятии стандартных гидрологических серий.

Подводная и регистрирующая части прибора связаны между собой кабелем марки КРП 6 × 1.5.

Электропитание прибора осуществляется от судовой сети переменного тока напряжением 220 в.

Для возможности непрерывной регистрации прозрачности воды в поверхностных слоях моря на ходу судна Институтом океанологии сконструирован буксируемый прозрачномер (рис. 6). Прибор представляет собой объективный фотометр, в котором световой поток, посылаемый лампой (1), после нрохождения слоя воды толщиной в 1 м принимается фотосопротивлением ФСК-1 (3). Лампа и фотосопротивление закрыты защитными стеклянными иллюминаторами (2). Подводная часть прибора соединяется с регистратором, в качестве которого также используется потенциометр ЭПП-09, каротажным кабелем (4) марки КТШ-03, имеющим, кроме токопроводищих медных жил, несущие стальные жилы. Вырезы (5) в корпусе прибора выподнены таким образом, чтобы обеспечить свободный доступ воды в ирибор и в то же время не допустить попадания естественного света

в) Измерения коэффициента яркости моря

жа фотоэлемент при работе с прибором в светлое время суток.

Измерения провзводятся при помощи гидрофотометра ИФТ-19. Оптическая скема его ноказана на рис. 7. Прибор представляет собой визуальный фотометр, основанный на уравнивании яркостей двух полей, одне из которых создается светом, выходящим из толщи моря, а другое — естественным светом солица и неба, освещающим горизомтальную пластинку матированного молочного стекла. Прибор снабжен трубой, нижний конец которой погружается под поверхность моря. Свет, идущий из толщи моря, через линзы оборачивающей системы поступает в фотометрическую призму, служащую для уравнивания яркостей обеих полей. Уравнивание производится перемещением молочного стекла при помощи рычажной системы. Отсчеты ведутся через окуляр по секторной шкале, освещаемой через иллюминатор. Для возможности проведения измерений в различных участках спектра прибор снабжен револьверной диафрагмой со сменными фильтрами. Таким образом, помимо измерений в белом свете, прибор

Lact CHER B. KP कृष्णः

озможность вести измерения в спедующих областях видимой части а: синей ($\lambda_{00} = 459 \,\mathrm{m}\mu$), сине-зеленой ($\lambda_{00} = 494 \,\mathrm{m}\mu$), зеленой 528 mp), желто-зеленой ($\lambda_{b\phi} = 556$ mp), оранжевой ($\lambda_{b\phi} = 587$ mp) ной (дее = 600 мр). Отсчеты по шкале прибора переводятся в коэфяты яркости моря с применением данных градуировок прибора.

Рис. 8. Приспособление для измерения видикатрис яркости моря

ля; 2 — подвижное молочное стекло; з и 7 — сменные светофильтры; 6 - окуляр:

-секторива шкала; 9-направляющая призмя; 10 — лимаа оборачивающей системы;

11 — диафрагма; 12 — влиюминатор; 13 — рычанная система; 14 — фланец

Относительная погрешность определения коэффициента яркости моря составляет от 5 до 15%, в зависимости от значения измеряемой величины.

Для измерения коэффициентов яркости излучения, выходящего из тольци моря не только вертикально вверх, но и под различными углами к вертикали и в различных азимутах по отношению к солицу, прибор снабжается специальным приспособлением (рис. 8), заменяющим нижнее концевое колено трубы прибора. Приспособление состоит из плоского зеркала (1), устанавливаемого под входным иллюминатором трубы прибора, и механизма для его поворота и качания. Для проведения измерений в различных азимутах зеркало поворачивается штурвалом (2), перемещающим это зеркало при помощи ходового валика (3). Штурвал

снабжен лимбом, показывающим азимут, в котором ведутся измерения. Установка требуемого наклона зеркала осуществляется при помощи рукоятки (4). Фиксатор (5) закрепляет зеркало в трех положениях, позволяющих измерять коэффициент яркости излучения, идущего из глубоких слоев моря к его поверхности, под углами к вертикали 30, 60 и 90°.

Измерения производятся на якорных и дрейфовых станциях с борта, освещенного солнцем. Для проведения измерений прибор крепится к борту корабля специальными опорными платами. При работе с высокобортных судов, когда максимальная длина прибора (3,5 м) оказывается недостаточной, можно рекомендовать крепление прибора за бортом на навесной беседке — трапе, как это делалось в практике экспедиционных работ на э/с «Витязь». Система такого крепления прибора представлена на рис. 9.

2) Лабораторные измерения оптических характеристик морской воды

Измерения производятся при помощи спектрогидронефелометра-прозрачномера ИФ-25 ¹. Прибор, общий вид которого изображен на рис. 10, позволяет определять в белом свете и шести различных участках видимой части спектра коэффициенты пропускания морской воды и ее показатели яркости для различных углов рассеяния. По этим данным определяются основные оптические характеристики воды — показатели рассеяния и ослабления и индикатриса рассеяния. Эти характеристики, в свою очередь, дают возможность определить значения показателя поглощения и оценить долю поглощения и рассеяния в общем ослаблении направленного потока в морской воде. Измерения могут выполняться как в неполяризованном, так и в поляризованном свете.

Прибор представляет собой визуальный фотометр, в котором яркость пропущенного или рассеянного водой света сравнивается с известной заранее яркостью пластины молочного стекла. Оптическая схема прибора представлена на рис. 11.

Кювета прибора заполняется исследуемой водой, которая либо прокачивается насосом, либо берется батометрами. Осветитель прибора состоит из лампы накаливания, конденсора, диафрагм и объектива. Осветитель укреплен на поворотном лимбе, закрывающем кювету прибора и вращающимся вокруг оси.

Для измерения показателя ослабления осветитель ставится в крайнее заднее положение, и свет от него, пройдя толщу воды в приборе, отражается от сферического зеркала, после чего достигает объектива фотометра, в фокальной плоскости которого помещено устройство для создания полей сравнения. Проведение измерений яркости света, рассеянного под различными углами, достигается поворотом осветителя на тот или иной угол. В этом случае объектив фотометра освещается снетом, рассеянным толщей воды, лежащей в снопе параллельных лучей, идущих от осветителя.

Ветвь сравнения фотометра состоит из новоротного осветителя, включающего в себя ламиу и молочное стекло, из неподвижного молочного стекла и фотометрической призмы.

Нркости рассеянного или пропущенного водой света сравниваются с яркостью неподвижного молочного стекла. Таким образом, одно из нолей сравнения освещается светом, прошедшим через воду, а другое —

¹ После сдачи статьи в печать на основе прибора ИФ-25 был разработан и изготовлен новый усовершенствованный спектрогидропефелометр СГН-57.

осветителем в нетви сравнения фотометра. На уравнивании яркостей этих полей и основаны измерения.

Измерительное устройство смонтировано на корпусе фотометра, выполненном в виде литой чаши, являющейся кюветой прибора. На этом же корпусе закреплены объектив фотометра, окуляр и светофильтры. При измерениях осветитель фотометра перемещается с помощью рычажно-винтового механизма, приводимого в движение барабаном. Вращением барабана в ту или другую сторопу добиваются равенства яркостей фотометрических полей, после чего по нанесенным на барабан делениям снимается отсчет.

Яркость рассеянного в морской воде света может меняться в зависимости от содержания взвеси и различия в углах рассеяния всотии тысяч и даже миллионы раз. Для возможности измерения яркостей в столь широком дианазоне в измерительной ветви фотометра номещаются сменные днафрагмы, а в ветви сравнения— дополнительной соложения.

Рис. 9. Крепление гидрофотометра ПФТ-49 на высокобортном судие

ный ослабитель. Смена диафрагм обусловнивает необходимость наличия в приборе двух зрачков выхода — круглого и сегментного.

Для проведения измерений в поляризованном свете перед объективом осветителя устанавливается насадка-поляризатор, а перед зрачком выхода немещается насадка-анализатор.

Рис. 10. Общий вид спектрогидрепефелометра-прозрачномера ИФ-25

Намиа осветителя прибора включается последовательно с ламной фотомотра, что обеспечивает одинаковый режим их работы вне зависимости от возможных колебаний напряжения в источнике питания. Подаваемое на прибор наприжение и сила тока, идущего через лампы, фиксируются вольтметром и амперметром. Электропитание прибора осуществляется постоянным током напряжением 16 в.

Рис. 11. Оптическая схема сцектрогидронефелометра-прозрачномера ИФ-25

1 — конста прибора; 2 — объектив осветителя; 3 — квафрагмы; 4 — монденсор; 5 и 16 — лампы наналивания; 6 — ваправляющий интырь (осъ нюветы прибора); 7 — объектив фотометра; 8 — фотометрическая привма; 9 — окуляр; 10 — светофяльтры; 11 — смещные врачив выхода; 12, 13 и 14 — монометрическая фотометра; 16 — отечетный барабан; 17 — деполическаний селябитель; 18 — сменные днафрагмы; 19 — отвъеманя градуировочная инастинка; 20 — градуировочные нейтральные фильтры; 21 — заполнителя, 32 — моночное стехло осветителя; 24 — васадиз-аналиватор; 24 — насадиз-аналиватор; 24 — васадиз-аналиватор; 24 — васадиз-аналиватор; 25 — вольтметр; 30 — перемиотельно

Для проведения измерений в различных участках спектра прибор снабжен комплектом светофильтров, состоящим из шести образцов — синего ($\lambda_{0\phi} = 475$ mp), веленого ($\lambda_{0\phi} = 520$ mp), желто-зеленого ($\lambda_{0\phi} = 544$ mp), оранжевого ($\lambda_{0\phi} = 568$ mp) и двух красных ($\lambda_{0\phi} = 604$ mp и $\lambda_{0\phi} = 648$ mp).

Водозаборная часть прибора состоит из инсоем и системы иплангов для подачи воды в прибор и ее слива. Центробежный насос приводится в действие электромотором МУ-80, работающим нак на переменном, так и на постоянном токе напряжением 110 и 220 в. Насос вполне обеспечивает подъем воды на 3—4 м от ватерлинии судна.

Общий объем воды в приборе составляет около 3 л, что несколько эмтрудняет исследования оптических характеристик глубоких слоев, когда

проначна воды насосом невозможна из-за недостаточной длины шланга

и пробы приходится брать батометрами. Отсчеты, снятые с барабана прибора, при помощи соответствующих градуировочных графиков переводятся в козффициенты пропускания и показатели яркости воды, по которым затем, пользуясь равенствами (7),(16), (19) и (20), вычислиются показатели ослабления и рассенния света в воде и

строится видинатриса рассения.

Погрешность определения показателя ослабления колеблется от 3-5% для мутных вод до 12-15% для чистых вод открытых океанических районов. Относительная погренность определения показателя рассеяния в среднем составляет около 15%.

4. НЕКОТОРЫЕ ЗАВИСИМОСТИ МЕЖДУ ГИДРООПТИЧЕСКИМИ ХАРАКТЕРИСТИКАМИ

Согласно уравнению (43) Амбарцумяна,

$$I = \frac{b(\theta) e^{-\kappa \tau}}{1 + k \cos \theta},$$

интенсивность диффузного излучения меняется с глубиной по экспоненциальному закону, причем показатель ослабления в этом случае в к раз отличается от показателя ослабления направленного излучения в. Тогда, обозначая по-прежнему показатель ослабления диффузного потока через с, имеем:

$$c = \kappa \epsilon \mathcal{A}_{\text{eff}}$$
 (52)

Выше уже уноминалось, что нараметр К может быть определен из равенства (44), если известны индикатриса рассеяния и соотношение между рассеянием и общим ослаблением. В связи с тем, что этот нараметр играет существенную роль при проведении многих практических расчетов, рассмотрим возможность простого и быстрого определения этой величины через другие оптические характеристики.

Подставим в равенство (24), определяющее показатель вертикального ослабления α , значения S_{Z1} и S_{Z2} , полученные для глубин z_1 и z_2 из первого уравнения системы (48). Заменяя показатель q равным ему показателем с

(51) и обозначив

$$10^{-(s-c)z_1} = A \times 10^{-(s-c)z_2} = B,$$

находим:

$$\alpha = c - \frac{1}{z} \lg \left\{ 1 - \frac{n_2 \Phi_0}{S_0} (A + B) \left[1 - \frac{n_2}{S_0} (1 - B) + \frac{n_2 \Phi_0}{S_0} (1 - B^2) \right] \right\}.$$
 (53)

Из этого выражения следует, что показатель вергикального ослабленин с не является величиной постоянной, а с увеличением глубины (величин z1 и z2) и с возрастанием толщины слоя (величины z) приближается к своему граничному значению с. Показатель а становится в точности равным показателю ослабления диффузного излучения с при условии освещения поверхности моря только рассеянным светом или на достаточно больших глубинах, куда не проникает прямое излучение солнца ($\Phi_0=0$). Тогда, вместо (52), имеем:

$$\kappa = \frac{\alpha}{\epsilon}.\tag{54}$$

Таким образом, по данным одновременных измерений прозрачности морской воды (показатель α) и подводной освещенности (показатель α), легко вычисляется коэффициент k, показывающий во сколько раз ослабление направленного потока превышает ослабление диффузного излучения.

Из раненства (54) отчетливо видно различие между показателями общего ослабления ε и вертикального ослабления α. Результаты многочисленных измерений показывают, что для открытых районов океана среднее значение коэффициента к составляет ≈0,20 — 0,25. Физически различие между этими величивами вполне понятно, так как показатель в представляет собой сумму ноказателей поглощения и рассеяния, а показатель α слагается из показателя поглощения и лишь из доли ноказателя рассеяния, так как благодаря вытянутости индикатрис рассеяния вперед, в направлении надающих лучей, рассеянный в море свет не является потерянным для освещения нижележащих слоев.

Возвратимся теперь к уравнению (46) Гамбурцева. После несложных

преобразований оно принимает следующий вид: -

$$\zeta = \frac{\mu / a}{1 + \mu / a + \sqrt{1 + 2\mu / a}}.$$
 (55)

Полученное равенство позволяет сделать заключение о том, что диффузное отражение моря зависит только от соотношения между расселнием назад и поглощением и поэтому не должно существенно меняться с глубиной. Этот важный вывод полностью подтверждается многочисленными экспериментальными данными.

Отметим, что радикал, стоящий в правой части уравнения (46) Гамбурцева, согласно равенству (51) представляет собой не что иное, как показатель ослабления диффузного излучения с. Тогда, вместо (46), получаем

$$\zeta = \frac{a + \mu - c}{\mu}.\tag{56}$$

Решая уравнение (51) относительно р и подставляя его значение в (56), имеем:

$$\zeta = \frac{c-a}{c+a}. (57)$$

Отсюда, полагая в соответствии с (53) $c = \alpha$, находим выражение, определяющее показатель поглощения диффузного излучения α через показатель вертикального ослабления α и коэффициент диффузного отражения моря ζ :

$$a = \frac{\alpha (1 - \zeta)}{1 + \zeta}. \tag{58}$$

Последнее равенство приобретает определеный интерес в связи с тем, что непосредственное экспериментальное определение показателя поглощения сопряжено с большими трудностями.

Учитывая, что диффузное отражение моря в открытых районах весьма невелико (обычно 5 не превышает 0,02—0,03), из соотношения (58) следует, что ослабление диффузного потока в море почти полностью определяется истинным поглощением. В то же время, безусловно, определенную роль в этом процессе играет и рассеяние назад. Выше уже было показано (51), что

$$\alpha = \sqrt{a^2 + 2a\mu},\tag{59}$$

откуда с ошибкой, не превышающей 0.01, так как величина μ^2 очень мала,

$$\alpha = a + \mu$$
.

Таким образом, по данным одновременных измерений прозрачности морской воды (показатель ε) и подводной освещенности (показатель α), легко вычисляется коэффициент k, показывающий во сколько раз ослабление направленного потока превышает ослабление диффузного излучения.

Из равенства (54) отчетливо видно различие между показателями общего ослабления с и вертикального ослабления а. Результаты многочисленных измерений показывают, что для открытых районов океана среднее значение коэффициента k составляет $\approx 0.20 - 0.25$. Физически различие между этими величинами вполне понятно, так как показатель с представляет собой сумму показателей поглощения и рассеяния, а показатель а слагается из показателя поглощения и лишь из доли показателя рассеяния, так как благодаря вытянутости индикатрис рассеяния вперед, в направлении падающих лучей, рассеянный в море свет не является потерянным для освещения нижележащих слоев.

Возвратимся теперь к уравнению (46) Гамбурцева. После несложных преобразований оно принимает следующий вид:

$$\zeta = \frac{\mu / a}{1 + \mu / a + \sqrt{1 + 2\mu / a}}.$$
 (55)

Полученное равенство позволяет сделать заключение о том, что диффузное отражение моря зависит только от соотношения между расселнием назад и поглощением и поэтому не должно существенно меняться с глубиной. Этот важный вывод полностью подтверждается многочисленными экспериментальными данными.

Отметим, что радикал, стоящий в правой части уравнения (46) Гамбурцева, согласно равенству (51) представляет собой не что иное, как показатель ослабления диффузного излучения с. Тогда, вместо (46), получаем

$$\zeta = \frac{a + \mu - c}{\mu}.\tag{56}$$

Решая уравнение (51) относительно μ и подставляя его зпачение в (56), имеем:

$$\zeta = \frac{\sigma - a}{\sigma + a}.\tag{57}$$

Отсюда, полагая в соответствии с (53) $c = \alpha$, находим выражение, определяющее показатель поглощения диффузного излучения a через показатель вертикального ослабления α и коэффициент диффузного отражения моря ζ :

$$a = \frac{\alpha \left(1 - \zeta\right)}{1 + \zeta}.\tag{58}$$

Последнее равенство приобретает определеный интерес в связи с тем, что непосредственное экспериментальное определение показателя поглощения сопряжено с большими трудностями.

Учитывая, что диффузное отражение моря в открытых районах весьма невелико (обычно ζ не превышает 0,02—0,03), из соотношения (58) следует, что ослабление диффузного потока в море почти полностью определяется истинным поглощением. В то же время, безусловно, определенную роль в этом процессе играет и рассеяние навад. Выше уже было показано (51), что

$$\alpha = \sqrt{a^2 + 2a\mu},\tag{59}$$

откуда с ошибкой, не превышающей 0.01, так как величина μ^2 очень мала,

$$\alpha = a + \mu$$
.

Пользуясь соотношениями (30) и (58), легко найти показатель рассеяния диффузного излучения b:

$$b = \frac{2a\zeta}{1+\zeta},\tag{60}$$

а также его компоненты (31) — показатели рассеяния вперед ξ и назад μ . Решая преобразованное уравнение Гамбурцева (56) относительно μ и подставляя в него значение а из (58), находим:

$$\mu = \frac{2\alpha \zeta}{1 - \zeta^2}.\tag{61}$$

Показатель рассеяния диффузного излучения вперед \ оказывается очень близким к нулю. Действительно, так как $\alpha = a + b$ (30) и, в свою очерередь, $b = \xi + \mu$ (31), то $\alpha = a + \mu + \xi$. Вместе с тем мы видели, что $\alpha = a + \mu$. Таким образом, в первом приближении, как это и следует из равенства (60), ослабление распространяющегося в море диффузиого потока определяется только рассеянием назад и истипным поглощением.

Полученные равенства позволяют вычислять значения целого ряда опгаческих характеристик через легко определяемые из измерений величины показателей вертикального ослабления а и коэффициента диффузного отражения моря ζ. Пользуясь данными одновременных измерений ослабления потока естественного света и элементов ослабления направленного потока (прозрачности морской воды и ее индикатрис рассеяния), можно получать все необходимые величины для расчета характеристик светового режима моря. Эти же расчеты с успехом могут быть применены для определения характеристик потоков излучения, идущих в море в направлении прожекторного луча и обратно. Такие расчеты имеют несомненный интерес прирешении задач, связанных с освещением при аварийноспасательных работах, с определением видимости подводных объектов, с обеспечением работы подводной телевизионной аппаратуры, с определением оптимальных условий производства аэрофотосъемки на море и т. д.

JUTEPATUPA

Амбарцумян В. А. К вопросу о диффузном отражении света мутной среды. ДАН СССР, 1943, т. 37, № 8.

Амбарцумян В. А. Новый способ расчета рассеяния света в мутной среде. «Изв. АН СССР, сервя геогр. в геофиз.», 1944, № 3.

Гамбурцев А. Г. К вопросу о цветности моря. М., 1924.

Гериун А. А. Избранные труды по фотометряв и фототехнике. М., 1958.

Сена Л. А. Единицы измерения физических величик. Гостехиздат, 1948.

Јозер В. J. Untersuchungen über Ober-und Unterlichtmessungen im Meere und über ihram Zusammenhang mit Durchsichtiokeitmessungen. Deutsche Hydrograüber ihrem Zusammenhang mit Durchsichtigkeitmessungen. Deutsche Hydrographische Zeitschrift, B. 3, 1950.

ТРУДЫ ИНСТИТУТА ОКЕАНОЛОГИИ 1959

Ton XXXV

М. В. Ковлянинов

ГИДРООПТИЧЕСКИЕ ХАРАКТЕРИСТИКИ и методика их определения

характеристиками понимаются гидрооптическими жежические и биологические характеристики вод океанов, морей, озер и двугих водных бассейнов, определяющие условия распространения в них смета. При этом под понятием «свет» подразумевается электромагнитное излучение, сосредоточенное в так называемом оптическом участке спектра, т. е. валучение, заключенное в интервале длин воли от $\lambda = 0.01$ до $\lambda =$ = 3,40 н. Онтический участок спектра, следовательно, значительно шире его видимой части, лежащей в пределах от $\lambda = 0.4$ до $\lambda = 0.8$ μ . Таним образом, гидроонтические характеристики определяют условия распространения в воде как видимых лучей, так и невидимого человеческим главом излучения, принадлежащего к ультрафиолетовой и инфракрасной частям снектра. Необходимость исследования условий распрострапения этих лучей объясняется тем, что при решении различного рода задач приходится встречаться с воздействием поля излучения не только на человеческий глаз, но и на разнообразные растительные и животные организмы, фотопластинки, фотоэлементы, пиранометры и др. Кроме того, нак известно, инфракрасное излучение играет весьма существенную роль в теплообмене между океаном и атмосферой.

В гидрофотометрии до сих пор отсутствует строгое разграничение понятий и не выработано достаточно четкой и ясной терминологии. Одни и те же величины часто называются по-разному и, наоборот, под одними и теми же терминами иногда понимаются разные физические величины. Это масается как нашей отечественной, так и иностранной и, особенно, переводной литературы. В результате разные авторы не всегда нонимают один другого, ноэтому часто возникают ошибки, а иногда и просто заблуж-

Прежде всего, приведем определения основных гидрооптических характеристик с указанием их размерности и единиц, в которых они измеряются. Там, где только это возможно, определения и обозначения основынаются на разработанном в Государственном оптическом институте им.С. И. Вавилова Государственном стандарте («ГОСТ 7601-55. Физическай оптика. Обозначения основных величин»), введенном в действие в 1956 г.

Можно надеяться, что помещение такого перечня (насколько известно, до сих пор его в литературе не приводилось) послужит делу унификации и стандартизации в области гидрофотометрии и тем самым номожет устранить отмеченные выше неопределенность понятий и нечеткость терминологии.

Теоретические основы гидрооптики, краеугольным камнем которых яванется проблема рассеяния излучения в мутных средах, разработаны

весьма глубоко. Труды Хвольсона, Ми, Гершуна, Гамбурцева, Шулейкина, Фока, Иозефа и особенно последние работы Амбарцумяна и возглавляемой им школы советских астрофизиков восьма полно раскрывают очень сложные закономерности оптических процессов, протекающих в водах различных бассейнов. Далеко не так обстоит дело с методикой и техникой гидрофотометрических измерений и, как следствие этого, с нашими сведениями о гидрооптических характеристиках водных масс океанов и различных морей. Отсутствие стандартной измерительной аппаратуры и педостаточная разработка методики наблюдений с имеющимися уникальными и опытными образцами приборов приводят к тому, что эти наблюдения часто ведутся грубо и примитивно с заметным отставанием техники измерений от современных возможностей.

При развертывании работ в области гидроонтики в Институте океанологии АН СССР было учтено, что первоочередной задачей в этом направлении является совершенствование существующих и разработка новых методов гидрофотометрических исследований. Естественно, что первым шагом на этом пути должно было быть создание стандартной измерительной аппаратуры, основанной на использования современных технических средств, в частности, средств электронной и полупроводниковой тех-

Осповываясь на данных испытаний и эксплуатации опытпых образцов HAKU. приборов, сконструпрованных в течение последних лет в Государствевном оштическом институте им. С. И. Вавилова (ГОИ), Ивститутом оксанологии АН СССР (ПОАН) совместно с ГОИ и др., были разработаны технические условия для проектарования и изготовления комилекта стандартной гидрооптической аппаратуры, состоящего из четырех приборов и размещен заказ на их изготовление. Кроме того, для обеспечения возможности выполнения наблюдений на ходу судна и для специальных измерений очень малых освещенностей на больших глубинах в ИОАНе были разработаны и изготовлены опытные образцы еще двух гидрооптических приборов. В этой статье после перечия гидрооптических характеристик и изложения пекоторых основных теоретических предпосылок, необходимых для обоснования тех или иных методов измерений, и для исследования зависимостей между различными оптичесними характеристиками, приводится краткое описание новой гидроонтической аппаратуры и рассматриваются основные вопросы методики сопременных гидрофотометрических измерений. Изложение методических вопросов основывается как па интературных данных, так и в значительной мере на разработках, выполненных во время экспедиционных и экспериментальных работ на э/с «Витязь» и на Черноморской экспериментальной научно-исследовательской станции Института.

Статья заканчивается исследованием зависимостей между различными гидрооптическими характеристиками, рассмотрение которых приобретает вношне определенный интерес в связи с тем, что непосредственное измерение ряда этих характеристик весьма трудоемко и требует примснения специальной аппаратуры. Основываясь на таких зависимостях, полученных теоретически или найденных экспериментально, при работах в море можно ограничиться минимальным числом азмерений. Вполне понятно, что знание этих зависимостей также совершение необходимо для получения правильных продставлений об оптических процессах, протекающих в море. Эмпирическое связи между глубиной видимости белого стандартного диска и покоторымя осношными оптическими характеристиками здесь не затрагиваются, так как будут рассмотрены в специальной работе, посвящени о

1. ОСНОВНЫЕ ГИДРООПТИЧЕСКИЕ ЖАРАКТЕРИСТИКИ. ОПРЕДЕЛЕНИЯ И ОБОЗНАЧЕНИЯ

Прежде чем приступить к определениям гидрооптических характеристик, отметим, что в гидрефотеметрии значительно удобнее пользоваться не светотехническими, а энергетическими величинами (Сена, 1949), т. е. оперировать не понятиями «световой поток», «яркость», «освещенность» и т. д., а понятиями «лучистый поток», «энергетическая яркость», «энергетическая освещенность» и т. д. Выше уже упоминалось, что в гидрооптике исследуется не только видимое, но и ультрафиолетовое и ивфракрасное излучения и при решении ряда задач можно встретиться с действием поля излучения на самые различные присмники радиации, кривые спектральной чувствительности которых могут весьма существенно отличаться от кривой спектральной чувствительности человеческого глаза. Энергетиче-

ские величины, как известно, совершенно свободны от каких бы то ни было физиологических особенностей эрсиия, в то время как светотехнические **зависят** от них. В случае необходимости переход от внергетических величин к светотехническим осуществляется весьма просто. Для этого необходимо только знать так называемую относительную видность и интересующего нас приемпика излучения, т. е. вид функции $v = f(\lambda)$, где λ - длина волны излучения. В дальнейшем под терминами поток, яркость, сила света, освещенность и т. д. всюду понимаются энергетические величины.

Рис. 1. Схема определения показателей поглощения, рассеяния и ослабления света в морской воде

Выделим в море бесконечно малый объем dv = dq. dz (рис. 1). Пусть на верхнюю грань dq этого объема отвесно падает поток монохроматических лучей, расхождением которых в пределах элементарного объема можно пренебречь. Обозначим поток излучения, падающий на грань, нерез Φ_0 , а создаваемую им освещенность через E.

При прохождении потока Φ_0 через объем dv часть его $d\Phi_{0\times}$ будет поглощена, а часть — $d\Phi_0\sigma$ — рассеяна. Количество поглощенной и рассеянной морской водой энергии излучения определяется соответственно значениями ее показателей поглощения и рассеяния, которые принадлежат к часлу наиболее важных гидрооптических характеристик.

Показателем поглощения х морской воды называется величина, обратная расстоянию, на котором поток монохроматического излучения, образующего параллельный пучок, ослабляется в результате поглощения в 10 раз. Показатель поглошения также может быть определен как величина, равная отношению потока излучения, образующего параллельный пучок и поглощенного единичным объемом морской воды, к освещенности, создаваемой этим потоком на перпендикулярной к нему плоскости:

$$\varkappa = -M \frac{d\Phi_0 x}{\Phi_0 dz} = -M \frac{d\Phi_0 x}{E dv}, \qquad (1)$$

где М=0,4343 ...-модуль десятичных логарифмов.

Показателем рассеяния эморской воды называется величина, обратная расстоянию, на котором поток монохроматического излучения,

образующего параллельный пучок, ослабляется в результате рассеяния в 10 раз. Показатель рассеяния также может быть определен как величина, равная отношению потока излучения, образующего параллельный пучок, и рассеянного единичным объемом морской воды, к освещенности, создаваемой этим потоком на периепдикулярной к нему плоскости:

$$\sigma = -M \frac{d\Phi_0 \sigma}{\Phi_0 dz} = -M \frac{d\Phi_0 \sigma}{E dv}.$$
 (2)

Из определений следует, что размерность показателей поглощения и рассеяния обратиа размерности длины, т. е. $[\kappa] = [L^{-1}]$ и $[\mathfrak{s}] = [L^{-1}]$. В гидрооптике эти показатели обычно измеряются в обратных метрах.

В результате совокупного действия процессов поглещения и рассеяния поток излучения Φ_0 , вошедший в объем dv, испытывает общее ослабление, т. с. часть ого $-d\Phi_0$ $\varepsilon=d\Phi_{0x}+d\Phi_0$ $\sigma-$ не нойдет в первоначальном направлении. Суммарное количество поглощенной и рассеянной в воде эпергии излучения определяется значением ноказателя ослабления, который также является одной из важнейших оптических характеристик морской воды.

Показателем ослабления сморской воды называется величина, обратная расстоянию, на котором ноток монохроматического излучения, образующего параллельный нучок, ослабляется в результате совместного действия поглощения и рассеяния в 10 раз. Показатель ослабления также может быть опредёлен как величина, разная огношению потока излучения, образующего параллельный пучок и ослабленного в результате поглощения и рассеяния единичным объемом морской воды, к освещенности, создаваемой этим объемом на перпендикулярной к нему илоскости:

$$\varepsilon = -M \frac{d\Phi_0 \varepsilon}{\Phi_0 dz} = -M \frac{d\Phi_0 \varepsilon}{E dv}.$$
 (3)

Очевидно, что

$$\varepsilon = \kappa + \sigma$$
. (4)

Размерность показателя ослабления такова же, как и размерность показателей поглощения и рассеяния, т. е. $[z] = [L^{-1}]$. Как и показатели z и σ , показатель z измеряется в обратных метрах.

В отечественной, а также и в вностранной литературе часте поисзуются показотелиям поглощения, рассенния и ослабления, определяемыми по ослаблению света не в 10, а в с раз (где с—основание натуральных логарифмов). В этом случае эти пелачины называются и а т у р а л ь и ы и и о к а з а т е л я м и поглощения х', рассенния σ' и ослабления з'. Очевидно, что

$$\kappa = Mx', \ \sigma = M\sigma' \ n \ \varepsilon = M\varepsilon'. \tag{5}$$

Согласто уравнению переноса излучения, поток монохроматических лучей, прошениий в однородной воде без изменения направления некоторый путь dz (рис. 1), определяется из соотношении:

$$-\varepsilon'\Phi = \frac{d\Phi}{dz}$$
.

Интерирование этого уравнения дет хорошо известный поиззательный закон ослабления Бугера:

$$\Phi = \Phi_0 e^{-i/2} \,. \tag{6}$$

Равенство (6) позволяет определить еще две весьма важные оптические характеристики воды — прозранность и коэффициент пропускания. Последний, в свою очередь, однозначно определяет оптическую плотность.

Коэффициентом пропускания *Т* морской воды называется отношение потока излучения, пропущенного некоторым слоем воды, к потоку излучения, упавшему на этот слой:

$$T = \frac{\Phi}{\Phi_0} = e^{-\epsilon'z} = 10^{-\epsilon z}.$$
 (7)

Величина в'г называется оптической глубиной т.

Из равенств (7) очевидно, что коэффициент пропускания T является величиной безразмерной.

Десятичный логарифм величины, обратной коэффициенту пропускания, называется оптической плотностью D:

$$D = \lg \frac{1}{T}.$$
 (8)

Прозрачностью в морской воды называется отношение потока излучения, прошедшего в ней без изменения направления путь, равный единице к потоку излучения, вошедшему в воду в виде параплельного пучка. Иначе говоря, прозрачностью морской воды пазывается ее коэффициент пропускания для однородного слоя единичной толицины. Из равенств (7) следует, что

$$\theta = e^{-\varepsilon'} = 10^{-\varepsilon}. \tag{9}$$

Прозрачность 0 — величина безразмерная.

Для значений величин T и θ всегда соблюдается условие:

$$\theta \leqslant T \leqslant 1 \text{ if } 0 \leqslant \theta \leqslant 1.$$

Из формулы (9) следует, что показатель ослабления численно равен абсолютному значению десятичного логарифма прозрачности:

$$\varepsilon = |\lg \theta|. \tag{10}$$

Таним образом, величины в и в однозначно определяют друг друга.

Если элементарный объем воды dv (см. рис. 1), освещаемый потоком излучения Φ_0 , рассматривать с некоторого расстояния в направлении S, составляющем угол γ с направлением падающих лучей, то, вследствие явления рассеяния, этот объем будет светиться как источник излучения, имеющий в этом направлении энергетическую силу света:

$$dI = \frac{1}{4\pi}\sigma(\gamma) E dv = \beta' \frac{E}{\pi} dv.$$
 (11)

где σ' (γ)-натуральный ноказатель рассеяния в данном направлении (Гершун, 1958). Через β' в этом равенстве обозначен натуральный показатель яркости морской воды, а через E — по-прежнему освещенность верхней грани объема. Как известно, яркость B_0 идеально белой поверхности 1 , перпендикулярной направлению освещения, определяется как

$$B_0=\frac{E}{\pi}$$
.

¹ Здесь и в дальнейшем под идеально белой матовой поверхностью понимается диффузне отражающая, непрозрачная и не поглощающая поверхность.

Подставляя выражение для B_0 в (11), получаем равенство, дающее позможность определить еще одну важную гидрооптическую характеристику— показатель яркости воды.

Показателем яркости β' морской воды называется отношение силы света, рассеянного в данном направлении единичным объемом воды, к яркости идеально белой матовей поверхности, перпендикулярной направлению лучей, освещающих рассматриваемый объем:

$$\beta' = \frac{dI}{B_0 dz}. (12)$$

Из этого равенства следует, что размерность показателя яркости обратна размерности длины $[\beta'] = [L^{-1}]$. Показатель яркости обычно измеряется в обратных метрах.

Если из центра рассешающего объема отложить векторы, равные по величине показателю пркости р', то новерхность, огибающая концы этих векторов, будет представлять пространственное распределение энергим рассеянного света вокруг рассматриваемого объема. Такая поверхность носит назнание индикатрисы показателля пркости р'(ү). Для пенолиризованного света эта новерхность симметрична относительно любой плоскости, проходящей через направление надающих лучей. Поэтому индипатрысу показателя яркости можно представлять плоской кривой, характеризующей распределение энергии рассеянного света в зависимости от угла рассеяния. Полную характериститу условий рассеяния пеноляризованного света в морской воде будут давать спектряльные индикатрисы показателя яркости р' (ү, к), где к — длина волны излучения.

Общий поток, рассеянный элементарным объемом dv по всем направлениям, определится как

$$\Phi_0 \sigma = \int_{4\pi} I dw, \tag{13}$$

где dw — элементарный телесный угол, ось которого составляет угол γ с направлением надающих лучей.

113 уравненяй (2) и (13), с учетом (11), следует, что показатель рас-

$$\sigma = \frac{1}{\pi} \int_{4\pi} \beta(\gamma) \, dw = \frac{M}{\pi} \int_{4\pi} \beta'(\gamma) \, dw, \tag{14}$$

где M — по-прежнему модуль десятичных логарифмов. Так как

$$\int_{4\pi}^{\pi} dw = 2\pi \int_{0}^{\pi} \sin \gamma d\gamma, \tag{15}$$

то вместо (14), получаем окончательно соотношение, которое служит для расчета показателя рассеяния σ по измеренным значениям $\beta'(\gamma)$:

$$\sigma = 2M \int_{0}^{\pi} \beta'(\gamma) \sin \gamma d\gamma. \tag{16}$$

Как в теоретических работах, так и при обработке результатов измерений и при производстве различных расчетов часто пользуются не индикатрисой помазателя яркости, а и п д и к а т р и с о й р и с с е я и и я $x(\gamma)$. Если вероятность рассеяния излучения внутри телесного угла dw обозначить через $x(\gamma)\frac{dw}{4\pi}$,

то имеем очевидное условие:

$$\int_{4\pi} x(\gamma) \frac{dw}{4\pi} = 1,$$

или, принимая во видмание (15):

$$\frac{1}{2} \int_{0}^{\pi} x(\gamma) \sin \gamma d\gamma = 1. \tag{17}$$

Из равеиств (16) и (17) следует, что

$$x(\gamma) = \frac{4M\beta'(\gamma)}{\sigma} = \frac{4\beta(\gamma)}{\sigma}.$$
 (18)

Если через центр рассеивающего объема провести илоскость, перпендикулирную падающим лучам, то потоки рассеянного излучения, распространиющиеся по обе етороны от этой илоскости, значительно различаются между собой. Только для чисто молекулярного рассеяния, обусловленного флуктуациями плотности, эти потоки одинаковы, что соответствует сферической форме индикатрисы рассениия (так называемой индикатрисе Релеп). Индикатрисы рассениия даже дли очень чистых океапических вод сильно вытянуты вперед, т. с. в направлении падающих лучей и имеют кипикальную форму. Различие в потоках рассениного излучения, отбрасываемых вперед и назад от только что упомянутой пограничной плескости (или, кначе говоря, всимметрия индикатрис рассения), в значятельной мере определяет условия распространения света в море. Поэтому возникает необходимость в получении количественных характеристик, определяющих различие в этих потоках. Такими характеристиками являются показатели рассения вперед и назад.

Покавателем рассеяния внеред δ называется компонент показателя рассеяния, определяющий долю потока рассеянного излучения, распространиющегося в пределах телеспого угла 2π стерадиан, ось которого совпадает с направлением надающих лучей:

$$\delta = 2 \int_{0}^{\frac{\pi}{2}} \beta(\gamma) \sin \gamma d\gamma. \tag{19}$$

Показателем рассеяния назад ф называется компонент по казателя рассеяния, определяющий долю потока рассеянного излучения распространяющегося в пределах телесного угла 2π стерадиан, ось которого противоположна направлению падающих лучей:

$$\phi = 2 \int_{\frac{\pi}{2}}^{\pi} \beta(\gamma) \sin \gamma d\gamma. \tag{20}$$

Очевидно, что попазатель рассенния **с равен сумме этих** ноказателей, т. е.

$$\sigma = \delta + \phi. \tag{21}$$

Часто оказывается существенным знать, какая часть всего рассеянного излучения сосредоточена в конусе, ограниченном углами γ_1 и γ_2 , т. е. какое значение функции

$$f(\gamma) = \frac{\int_{\gamma_1}^{\gamma_2} \beta(\gamma) \sin \gamma d\gamma}{\int_{0}^{\gamma} \beta(\gamma) \sin \gamma d\gamma}$$
(22)

Необходимо подчеркнуть, что равенства (3) и (10), послужившие для определения показателя ослабления, а также равенство (6), выражающое закон Бугера, справедливы только для направленного, монохроматического излучения, распространяющегося в однородной среде. В то же время практически очень часто приходится иметь дело с распространением в море дневного света, являющегося не только немонохроматическим (сложным), но и смешанным (направленным и диффузным) излучением. Поэтому в гидрооптику было введено поиятие о показателе вертикального ослабления, характеризующем изменение естественного света с глубиной. Многочисленные эксперименты, выполненные в разное время разными авторами, с полным согласием показывают, что в первом приближении дневной свет в море ослабляется с глубиной по показательному закону: (23)

$$S_{z_1} = S_{z_1} 10^{-\alpha z}, (23)$$

тде S_{z_1} — поток немонохроматического смешанного излучения на глубине z_1 ; S_{z_1} — поток того же излучения на глубине z_2 ; $z=z_2-z_1$ — тол-

Показателем вертикального ослабления с нащина водного слоя. зывается величина; обратная расстоянию, на котором поток естественного света ослабляется в результате совместного действия поглощения п рассеяния в 10 раз. Согласно равенству (23) показатель вертикального ослабления может быть также определен как разность логарифмов потоков естественного света на верхней и нижней границах водного слоя, отнесенная к его толще:

$$\alpha = \frac{\lg S_{z_1} - \lg S_{z_2}}{z} = \frac{1}{z} \lg \frac{S_{z_1}}{S_{z_2}}.$$
 (24)

Аналогично понятию о натуральном показателе ослабления є может быть введено понятие и о натуральном показателе вертикального ослабления a^1 :

 $\alpha = M\alpha'$.

Из равенства (24) следует, что размерность показателя вертикального ослабления обратна размерности длины: $[a] = [L^{-1}]$. Так же как и показатель ε, показатель α обычно измеряется в обратных метрах.

Изменение с глубиной распространяющегося в море потока дневного света удобно характеризовать коэффициентом подводной освещен ности л, под которым понимается отношение освещенности E_z некоторой плоскости, находящейся в море на глубине z, к одновременному значению подповерхностной освещенности $E_{
m on}$. Последняя величина представляет собой освещенность горизонтальной плоскости, распопоженной непосредственно под поверхностью моря и освещаемой таким образом потоком естественного света, уже претерневшим отражение и преломление на этой поверхности. Тогда

$$\eta = \frac{E_z}{E \text{ on}}.$$
(25)

В большинстве случаев рассматривается освещенность сверху E_z и снизу E_z' горизоптальных поверхностей, расположенных в море на различных глубинах. График функции $\eta = \eta(z)$ дает паглядное представление о характере вертикального распределения освещенности, создаваемой естественным светом.

К числу весьма важных гидрооптических характеристик принадлежат коэффициенты диффузного отражения и яркости моря.

Коэффициентом диффузного отражения моря ξ называется отношение потока диффузного излучения B_z , идущего на глубине z к поверхности моря, к потоку естественного излучения S_z , идущего на той на глубине вертикально вниз, в глубь моря:

$$\zeta = \frac{R_z}{S_z} \,. \tag{26}$$

Коэффициентом яркости моря $\varphi_{0,\phi}$ называется отношение пркости диффузного излучения $B_{\theta,\phi}$, идущего из толще мора непосредственно под его поверхностью в направлении, определяемом углами θ и ϕ (где θ — зенитное расстояние, а ϕ — азимут), к яркости B_0 идеально белой матовой поверхности, освещенной естественным светом:

$$\rho_{\theta, \varphi} = \frac{B_{\theta, \varphi}}{B_0} = \frac{\pi B_{\theta, \varphi}}{E_0}, \tag{27}$$

хде E_0 — освещенность поверхности моря.

Зависимость коэффициента яркости моря от длины волны излучения λ характеризует распределение энергин в спектре излучения, выходящего из толщи моря и, следовательно, определяет его собственный цвет 1.

Из определений следует, что коэффиционты η , ζ и φ — величины безразмерные.

При рассеящии свет частично поляризуется. В связи с этим для решения некоторых задач возникает необходимость в получении характеристик поляризации света в морской воде. К основным из них относятся степень поляризации P и степень деполяризации Q.

Степенью поляризации Р называется отношение максимальной разности потоков двух взаимно периендикулярно поляризованных составляющих, на которые может быть разложено данное частично поляризованное излучение, к сумме этих потоков:

$$P = \frac{\Phi_{-} - \Phi_{\parallel}}{\Phi_{-} + \Phi_{\parallel}},\tag{28}$$

тде Φ_- поток частично поляризованного излучения, электрический вектор которого лежит в илоскости рассеяния, а Φ_l поток того же излучения, электрический вектор которого перпендикулярен этой плоскости.

¹ В отличие от видимого цвета моря, который зависит от состояния его новерхности, облачности и угла среиня наблюдателя, собственный цвет моря определяется только физико-химическими характеристиками воды в том или ином районе, и поэтому именно он может и должен интересовать океанолога, гидрографа, морешлавателя и т. д.

Величина

$$Q = \frac{1 - P}{1 + P} \tag{29}$$

носит название степепи деполяризации.

Далеко не всегда учитывается, что показатели ослабления, поглощения и рассеяния для направленного излучения по своим значениям сильноотличаются от этих же показателей для диффузиого излучения. Однако эторазличне часто не находит отражения в специальной литературе. Определим эти характеристики следующим образом.

Показатель поглощения диффузного излучения о — величина, обратная расстоянню, на котором поток полностью рассеянного излучения ослабляется в результате поглощения в 10 раз.

Показатель рассеяния деффузного излучен и я b — велячина, обративя расстоянню, на котором иоток полностью рассеянного излучения ослабляется в результате многократного рассеяния в 10 раз.

Выше были даны определения показателей рассеяния вперед в и назад 💠 для направленного излучения. Для рассмотрения наиболее часто встречающегося в практике случая распространения света от поверхности в глубь мори и в обратнем направлении введем такие же попятии и для диффузиого излучения.

Показателем рассеяния диффузиого излучения внеред в будем называть компоненту показателя рассеяния в, определяющую долю потока полностью рассеянного излучения, распространяющегося в море в пределах телесного угла 2 π стерадиан, ось которого направлена вертикально винз, в глубь моря.

Показателем рассеиния диффузного излучения назад p будем называть компоненту показателя рассеяния b_{st} определяющую долю потока полностью рассеянного излучения, распространяющегося в море в нределах телесного угла 2к стерадиан, ось когорого направлена вертикально вверх, к поверхности моря.

Показателем ослабления диффузного излучепия c называется величиня, обратная расстоянию, на котором поток нолностью рассеянного взлучения ослабляется в результате совместного действии поглощения и рассеяния и 10 раз.

Очевидаю, что

$$c = a + b, (30)$$

$$b = \xi + \mu. \tag{31}$$

Как и прежде, будем обозначать натуральные показатели поглощения, рассеяния и оснабления через a', b' и c', причем a=0.43 a'; b=0.43 b';

В заключение этого раздела отметим, что апалогично принятому в метеорологии и, в частности, в оптике атмосферы, иснятию оптической дальности видимости в гидрооптике применяется понятие глубины видимости.

Под глубиной видимости Н какого-либо объекта нонимается то предольное расстояние, на котором этот объект, геометречески доступный наблюдению, виден при данных условиях освещения и данных онтических характеристиках морской воды.

В океанологии нашля широкое распространение наблюдения над «прозрачностью» и «цветом» морской воды. При этом нод прозрачностью понимается глубина видимости погруженного в море белого стандартного диска, выраженная в метрах. Совершенно очевидно, что эта величина совсем не равноценна прозрачности морской воды в в обычном физическом смысле, определяемой равенством (9). Поэтому в дальнейшем, во избежание неточностей, результаты измерений по диску будут именоваться глубиной видимости диска, или относительной прозрачностью h. Под цветом морской воды С понимается немер раствора стандартной шкалы цветности, окраска которого наиболее близка к цвету столба воды над диском в месте наблюдений.

2. НЕКОТОРЫЕ ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕОРИИ РАСПРОСТРАНЕНИЯ ИЗЛУЧЕНИЯ В МОРЕ

Не вдаваясь в детальное рассмотрение сложных закономерностей распространения излучения в море, безусловно выходящее за рамки настоящей работы, остановимся только на некоторых основных теоретических положениях, необходимых для выбора и обоснования тех или иных методов измерений гидрооптических характеристик и рассмотрения зависимостей между вими. Для этой цели воспользуемся исследованиями В. А. Амбарцумяна (1943, 1944), А. Г. Гамбурцева (1924) и И. Иозефа (1950).

Вопрос о расчете светового режима моря сводится к решению уравнения распространения излучения в поглощающей и рассеивающей среде, т. е. к решению так называемого уравнения переноса излучения, которое может быть записано в следующей общей форме:

$$\frac{dJ}{dl} = -\varepsilon'J + i. \tag{32}$$

Через J обозначена интенсивность излучения, распространяющегося в среде в направлении l; через i — коэффициент излучения, а через є' — натуральный ноказатель ослабления. В задачах гидрооптики можно пренебрегать собственным излучением моря и считать, что излучательная способность морской воды равна ее рассеивающей способности. Тогда коэффициент i будет выражать количество энергии, рассеянное единицей объема воды в единице телесного угла, ось которого составляет угол у с направлением падающих лучей:

$$i = \frac{\sigma}{4\pi} \Big\langle x(\gamma) \, Jdw. \tag{33}$$

Это уравнение носят название уравнения лучевого равновесия.

Рассмотрим сначала наиболее простой случай — ослабление направленного потока (например прямых солиечных лучей), распространяющегося пертикально в глубь моря в направлении ося z. Уравнение переноса излучения запишется в простой форме:

$$\frac{dJ}{dz} = -\varepsilon'J. \tag{34}$$

Интегрируя это уравнение и переходя от интенсивности излучения к потоку, получим уже упоминавшийся выше закон Бугера:

$$\Phi = \Phi_0 e^{-\epsilon' z}. \tag{35}$$

Из простых геометрических соображений следует, что если солнечные лучи падают на поверхность моря не отвесно, а под некоторым углом θ , где θ — зенитьое расстояние солнца, то в случае гладкой поверхности моря поток направленного излучения Φ , достигший глубины

z, будет составлять:

$$\Phi = \Phi_0 e^{-\kappa' z \sec \theta'}, \tag{36}$$

где, в свою очередь, 0'— угол преломления солнечных лучей, связанный с зенитным расстоянием солнца простым соотношением:

$$\sin \theta' = \frac{1}{n} \sin \theta. \tag{37}$$

Здесь через п обозначен показатель преломления морской воды.

Положив в ноказателе степени при е в формуле (36) є'1 = є'sесв', что соответствует формальной замене увеличения пути направленного излучения увеличением значения показателя ослабления, закон Бугера можно записать в следующем виде:

$$\Phi = \Phi_0 e^{-\epsilon_1'^z}. \tag{38}$$

Выше уже упоминалось, что закон Бугера в такой форме справедливтолько для направленного монохроматического излучения, распространяющегося в однородной среде. При неоднородной среде, но монохроматическом излучении, вместо (35), имеем:

$$\Phi = \Phi_0 e^{-\int_0^z e'dz}$$
 (39)

Если в море распространяется поток немонохроматического, но направленного излучения (например ноток прямых солнечимх лучей), то даже в этом сравнительно простом случае изменение с глубиной рассматриваемого потока не может быть выражено простым законом ослабления, так как показатель ε' становится зависящим от распределения энергии в спектре излучения. В свою очередь, это распределение непрерывно меняется с глубиной вследствие селективности процессов поглощения и рассеяния. Поэтому даже в случае однородной среды показатель ε' будет являться функцией пе только длины волны λ , но и глубины z, τ . е. $\varepsilon' = \varepsilon'(\lambda, z)$. Введем понятие о некотором среднем значении показателя ε' для потока излучения, заключенного в интервале длин воли (λ_1, λ_2) и распространяющегося от новерхности моря до глубины z. В силу закона спектральной аддитивности поток немонохроматического излучения Φ_z на глубине z может быть представлен как

$$\Phi_z = \int_{\lambda_1}^{\lambda_2} \Phi_{\lambda,z} d\lambda, \qquad (40)$$

где $\Phi_{\lambda,z}$ — поток монохроматического излучения, заключенного в интервале длин волн $(\lambda, \lambda + d\lambda)$ на глубине z.

Среднее значение є находится из равенства (35):

$$\bar{\varepsilon}' = \frac{\int_{\lambda_1}^{\lambda_2} \varepsilon'_{\lambda} \Phi_{\lambda, z} d\lambda}{\int_{\lambda_1}^{\lambda_2} \Phi_{\lambda, z} d\lambda},$$
(41)

где ε_{λ} — поназатель ослабления мопохроматического излучения в интерваледлин воли $(\lambda,\lambda+d\lambda)$.

Тогда закон ослабления потока пемонохроматического, но направленного излучения принимает вид:

$$\Phi = \Phi_{0}e^{-\int\limits_{0}^{z}\bar{\epsilon}'dz}.$$
(42)

Для случая распространения в среде только диффузного излучения, идущого под углом 0 к вертикали, В. А. Амбарцумин (1943) находит решение уравнении переноса излучения в виде:

$$J = \frac{b\ (0)\ e^{-k\tau}}{1 + k\cos\theta},\tag{43}$$

где au — онтическая глубина, $b\left(heta
ight)$ — некоторая функция, зависящая от углового распределения энергии излучения, k — параметр, зависящий от индикатрисы рассеяния и от соотношения между рассеянием и общим

Для преимущественно рассеивающих сред параметр к определяется

$$k = \sqrt{(1-s)(3-x_1)},\tag{44}$$

где s — доля рассения в общем ослабления, т. е. $s=\frac{\sigma}{\varepsilon}$, а x_1 — первый коэффициент в разложении видикатрисы рассеяния в ряд по полиномам

$$x_1 = \frac{3}{2} \int_0^x x(\gamma) \cos \gamma \sin \gamma d\gamma.$$

Основные закономерности наиболее общего случая — распространения в море смешанного, т. е. одновременно направленного и диффузного. излучения (например, естественного света при солнце, не закрытом облаками), рассмотрим, базируясь, на теоретических разработках А. Г. Гамбурпева (1924) и Иозефа (Joseph, 1950). При этом ограничимся случаем, когда море достаточно глубоко, т. е. когда отражение от дна не влияет. на интенсивность распространяющегося в море излучения. Такое продноложение вполне допустимо, так как уже на расстоянии, равном глубине видимости диска, альбедо дна практически не сказывается.

Дия исследования закономерностей изменения потока излучения S, близкого к диффузному, идущего в глубь мори и потока R, распространяющегося в море вертикально вверх к его новерхности, Гамбурцев составляет следующие уравнения, представляющие собой уравнения переноса излучения, записанные в разворнутом виде (в наших обозначениях):

$$\frac{dS}{dz} = -aS - \mu S + \mu R \qquad (45)$$

$$\frac{dR}{dz} = -aR - \mu R + \mu S.$$

Гамбурцев решает эти уравнения совместно относительно величивы $\frac{R}{S}$, которая, согласно определению (26), представляет собой коэффициент диффузного отражения моря 7. Решение находится в виде:

$$\zeta = \frac{R}{S} = \frac{a + \mu - \sqrt{a^2 + 2a\mu}}{\mu}.$$
 (46)

Напомним, что через а обозначен показатель поглощения, а через μ — по-казатель рассеяния назад для диффузного излучения.

Рассмотрим теперь распространение в море одновременно и направленного и диффузного излучений. Выделим на глубине z из общего потока излучения S его компоненту F, представляющую собой чисто диффузный поток и обозначим но-прежнему направленный поток через Φ . В этом случае система уравнений (45) Гамбурцева должна быть дополнена членами Φ и Φ , учитывающими изменение потоков Φ и Φ за счет добавления компонентов рассеянного вперед (показатель Φ) и назад (показатель Φ) излучения направленного потока Φ . Тогда, вместо уравнения (45), имеем:

$$\frac{dF}{dz} = -aF - \mu F + \mu R + \delta \Phi$$

$$-\frac{dR}{dz} = -aR - \mu R + \mu F + \psi \Phi$$

$$\frac{d\Phi}{dz} = -\epsilon \Phi = -(x + \sigma) \Phi.$$
(47)

Третье уравнение этой системы представляет собой не раз уже упоминавшееся выше уравнение переноса излучения для направленного потока (34). Введем такие же граничные условия, как и при интегрировании уравнения (34), т. е. положим, что

$$\Phi_{(0)} = \Phi_0, \ F_{(0)} = F_0 \ \pi \ S_{(0)} = S_0.$$

Иначе говоря, обозначим через Φ_0 , F_0 и S_0 соответственно потоки направленного, диффузного и общего (смешанного) излучения, только что вошедшего под новерхность моря. При этом очевидно, что

$$S_0 = F_0 + \Phi_0.$$

Решение системы (47) Иозеф (переходя от натуральных показателей к десятичным и сохраняя наши обозначения) находит в виде:

$$S = [S_0 + n_2 \Phi_0 (1 - 10^{-(z-q)z}] 10^{-qz}$$

$$R = \left[S_0 + n_2 \Phi_0 (1 - \frac{n_1 \cdot q + a}{n_2 \cdot q - a} 10^{-(z-q)z} \right] \frac{q - a}{q + a} 10^{-qz}.$$
(48)

В этих равенствах обозначено:

$$n_{1} = \frac{\sigma(\mu - \psi) + \psi(a - \kappa)}{\varepsilon^{2} - q^{2}}; \quad n_{2} = \frac{(a + \varepsilon)(a - \kappa + \mu - \psi)}{\varepsilon^{2} - q^{2}}; \quad q = \sqrt{a(a + 2\mu)}, \quad (49)$$

Остальные обозначения прежние.

Физический смысл параметра q становится ясным пз следующих соображений. Если в море распространяется только диффузное излучение (например, при полной облачности, при распространении дневного света на достаточно больших глубинах, при значительном удалении от источников искусственного освещения и т. д.), то уравнения (48) существенно упрощаются, так как Φ_0 становится равным нулю, а $S_0 = F_0$. Тогда

$$F = F_0 \cdot 10^{-qz},$$

$$R = F_0 \frac{q - a}{q + a} \cdot 10^{-qz}.$$
(50)

Нетрудно видеть, что первое уравнение совершенно идентично закону Бугера, а нараметр q представляет собой не что иное, как показатель ослабления диффузного излучения в морской воде с, т. е.

$$q = c = \sqrt{a(a + 2\mu)}. (51)$$

В заключение отметим, что уравнения (48) и (50), строго говоря, справедливы только для монохроматического света. При точных расчетах, связанных с распространением немонохроматического излучения, значения показателей ε и q=c должны заменяться их средними значениями, вычисляемыми аналогично (41).

3. ОСНОВНЫЕ ВОПРОСЫ МЕТОДИКИ гидрооптических измерений

К числу основных задач гидрооптического исследования того или иного моря или оксанического района относятся: 1) получение спектральных характеристик прозрачности воды на различных глубинах; 2) расчет светового режима моря; т. е. расчет поля налучения, создаваемого естественным светом в любой точке солщи моря,

Первая из этих задач требует для своего решения знания только показателей ослабления света в различных участках спектра, определяемых содержащейся в воде органической и неорганической взвесью и раство-

ренными в воде окращенными органическими веществами.

Расчет светового режима моря сводится к решению уравнения переноса излучения. Для решения этого уравнения, как это следует из предыдущего раздела и из рассматриваемых виже зависимостей между различными гидрооптическими характеристиками, оказывается необходимым знание следующих величин: показателей поглощения, рассеяния и ослабления света в воде, пидикатрисы рассеяния, показателя пертикального ослабления и коэффициента диффузного отражения моря. Ряд практических задач, связанных с видимостью подводных объектов и их маскировкой, требует, кроме того, еще знания коэффициента яркости моря. Для полного расчета светового режима моря, так же как и для ответа на многие вопросы, выдвигаемые развитием морской техники и постановкой современных гидробиологических исследований, необходимы данные о с п е к тральных характеристиках перечисленных элементов ослабления излучения в море.

Для определения гидроонтических характеристик служат методы как пеносредственные, так и лабораторные, т. е. измерения могут проводиться приборами, погружаемыми в море, или выполняться на пробах морской воды при номощи аппаратуры, находящейся в судовой лаборатории. Некоторые из только что перечисленных характеристик, такие, например, как показатель вертикального ослабления и коэффициенты яркости и диффузного отражения моря, могут определяться только из непосредственных измерений. Некоторые же, как, например, индикатриса рассеяния, наоборот, в настоящее время могут измеряться только в лабораторных условиях. Одна из важнейших оптических характеристик — спектральная прозрачность морской воды, -- однозначно определяющая ее спектральные ноказатели ослабления, - может измеряться как непосредственно, так и лабораторными методами. Непосредственные измерения, достоинства которых совершенно очевидны, обладают в то же время тем крупным недостатком, что глубина погружения современных оптических приборов, связанных с судном кабелем, весьма ограничена и практически не

² Труды Ин-та оксанологии, т. ХХХУ

превышает 150 — 200 м и только в редких случаях (при условии применения очень легких и прочных несущих каротажных кабелей) достигает 400 — 500 м. Измерения же на пробах морской воды, получаемых из батометров, естественно, могут проводиться до очень больших глубин. Так, например, при работах на э/с «Витязы» определения оптических характеристик проводились до глубины 9400 м. При лабораторных исследованиях легче выполнять измерения в различных областях спектра, причем качество измерений значительно меньше подвержено влиянию погодиых условий, чем при непосредственных наблюдениях. Крупным недостатком лабораторных исследований является невозможность детального зондирования вертикального распределения оптических характеристик, в то время как при непосредственных измерениях значения этих характеристик могут определяться очень часто. Последнее обстоятельство приобретает весьма существенное значение при исследовании слоев с повышенным содержанием фито- и зоопланктона, при определении местоположения слоев скачка плотности и т. д. Таким образом, как той, так и другой группе методов присущи определенные достоинства и недостатки, и обе эти группы отнюдь не исключают, а дополняют одна другую и при работах в море должны применяться совместно.

Непосредственные измерения оптических характеристик морской воды

а) Измерения подводной освещенности

Измерения подводной освещенности, как это следует из равенств (24), (25) и (26), позволяют находить следующие гидроонтические характеристики: показатель нертикального ослабления α, коэффициент подводной освещенности η и коэффициент диффузного отражения моря ζ. Получение последней величины, помимо измерения освещенности сверху горизонтальных поверхностей, расположенных в море на различных глубинах, требует также измерения освещенности этих поверхностей снизу, т. е. освещенности, создаваемой диффузным светом, распространяющимся в море из более глубоких слоев к его поверхности. В связи с тем, что освещенность поверхности моря может быть подвержена очень резким и сильным колебаниям, которые, безусловно, сказываются и на колебаннях подводной освещенности, все измерения этой величины должны обязательно сопровождаться измерениями наружной освещенности.

Для измерений подводной освещенности служит фотоэлектрический фотометр ФМПО-57. Прибор состоит из подводной части (рис. 2) и регистратора, находящегося на борту судна, соединенных между собой кабелем. Подводная часть прибора представляет собой герметичный корпус (1), в который вмонтировано пять фотоэлементов (2). Четыре из них обращены своей светочувствительной поверхностью кверху, т. е. к поверхности моря; а пятый — вииз к его длу. Для обеспечения возможности проведения измерений не только в белом свете, а и в трех участках видимой части спектра, из четырех фотоэлементов обращенных вверх, три закрыты светофильтрами. Все фотоэлементы помещены за защитными иллюминаторами из молочного стекла (3). Применение этих стекол имеет двоякую цель. Вопервых, без них, вследствие явления полного внутреннего отражения на нижней поверхности защитных иллюминаторов, на фотоэлементы попадали бы только лучи, составляющие с вертиналью углы, меньшие, чем 48, 5, т. е. сосредоточенные в отвесно расположенном световом конусе с углом при вершине, равном 97°. Применение молочных стекол позволяет элиминировать этот эффект и фотоэлементы принимают излучение, поступающее со всей полусферы. Ве-вторых, помещение светофильтров под молочные стекла обеспечивает постоянство пути световых лучей при их прожождении через фильтр, вне зависимости от углового распределения энергии в падающем потоке. Без молочных стекои лучи, падающие под большими углами к вертикали, проходили бы и больший путь через фильтр и, следовательно, ослаблялись бы сильнее, чем лучи, падающие более отвесно.

Рис. 2. Фотоэлектрический фотометр для измерения подводной освещенности

В приборе применены селеновые фотоэлементы с запирающим слоем, нлощадью светочувствительной поверхности 20 см2. Интегральная чувствительность каждого из фотоэлементов составляет около 300 мка/люмен.

Регистрирующая часть прибора представляет собой потенциометр ЭПП-09 отечественного производства; очень хорошо зарскомендовавший себя при работе в морских условиях.

При наблюдениях прибор опускается в море на кабеле марки КРП 6×1.5, имеющем, кроме токопроводящих жил, стальной сердечник. Прибор всегда опускается с борта, освещенного солнцем. Предельная глубина погружения составляет 150 м.

Для возможности проведсния измерений в широком интервале освещенностей от десятнов тысяч люкс в поверхностных слоях моря до незначительных освещенностей на глубинах 120 — 150 м, потенциометр снабжен системой шунтов, делящих весь диапазон измерений на инть частей.

Измерение подводной освещенности ведется с погрешностью, не пре-

вышающей 10% от измеряемой величины.

В приборе применяются стеклянные светофильтры (4) отечественного производства — синий СС-4 (эффективная длина волны $\lambda_{\rm eff} = 400$ mµ), эеленый 3C-1 ($\lambda_{\theta \Phi} = 520$ m μ) и красный ($\lambda_{\theta \Phi} = 604$ m μ).

Электропитание прибора осуществляется от судовой сети постоянного

тока напряжением 110 или 220 в.

Для одновременного измерения освещенности поверхности моря успешно применяется объективный люксметр Ю-16, выпускаемый лепинградским заводом «Вибратор». В связи с тем, что этот прибор градуируется только для сравнительно небольших освещенностей, при проведении измерений требуется применение ослабляющих нейтральных фильтров (НС-6, НС-7, НС-8, НС-9 и НС-10), обеспечивающих возможность проведения измерений при любых природных освещенностях, вилоть до их максимального значения (130 000 люкс.). Так как стеклянные фильтры имеют зеркальную поверхность, при измерениях они

номещаются между приемником объективного люксметра (в качестве которого используется также селеновый фотоэлемент) и молочным стеклом. Для измерения освещенности поверхности моря в различных областях спектра объективный люксметр снабжается комплектом светофильтров тех же самых марок, что и фотоэлектрический фотометр. При измерениях светофильтры всегда помещаются между фотоэлементом и молочным стеклом.

Рис. 3. Схема измерителя малых освещенностей

Пользуясь соотношениями (24), (25) и (26), по данным измерений вычисляются показатели вертикального ослабления для различных слоев моря и коэффициенты подводной освещенности и диффузного отражения моря.

Рис. 4. Электрическая схема измерителя малых освещенностей

Для возможности измерения очень малых освещенностей на больших глубинах в ИОАНе был сконструирован и построен объективный погружаемый фотометр, приемником светового потока в котором служит фотоэлектронный умножитель типа ФЭУ-17 или ФЭУ-19. Прибор рассчитан на работу до глубин 400 — 500 м. Принципиальная схема прибора представлена на рис. З. Измеряемый поток излучения естественного света принимается катодом фотоумножителя (1), представляющим собой полупрозрачный сурьмяно-цезиевый слой, паяесенный на внутреннюю новерхность колбы умножителя. Влок питания умножителя состоит из кенотрона (2), трансформатора (3) и конденсатора (4). На умножитель подается переменный ток напряжением около 1000 в для ФЭУ-17 и около 1200 в для ФЭУ-19. Сигнал фотоумножителя, пропорциональный интенсивности падающего излучения, по кабелю (5) подается на измерительный прибор, в качестве которого используется ламповый вольтметр. На рис. 4 дана электрическая схема прибора.

б) Измерения показателя ослабления (проврачности) морской воды

Измерения производится при помощи фотоэлектрического фотометра прозрачномера ФПМ-57. Прибор, оптическая схема которого показана на рис. 5, представляет собой дифференциально-нулевой фотометр, предназначенный для измерения показателя ослабления света в море как в белом свете, так и в пяти участках видимой части спектра.

Рис. 5. Оптическая схема фотоэлектрического фотометра — прозрачномера ФПМ-57

1 — осветитель; 2 — опорный фотовлемент; 3 — измерительный фотовлемент; \hat{s} й 12 — конденсоры; δ — светофильтры; δ , 18 и 15 — диафрагмы; 7, 8 и 9 — системы лина; 10 — защитные стемла; 11 — теплоизолиционная пластинка; 13 — зеркало

Прибор состоит из подводной части и регистратора, находящегося на борту судна.

В погружаемой части прибора помещен источник искусственного света, в качестве которого используется ламиа накаливания СЦ-61. После прохождения через вращающийся диск — модулятор и исследуемый слой морской воды световой поток от лампы попадает на фотоэлемент. Другая часть потока от лампы направляется на опорный фотоэлемент, сигнал которого при помощи электрического ослабителя уравнивается с сигналом фотоэлемента, освещенного светом, прошедшим через морскую воду. Приемники 2 и 3 представляют собой сурьмяно-пезиевые фотоэлементы СЦВ-3, подбираемые с возможно более близкими фотометрическими характеристиками.

В основу работы прибора заложен принцип следящей системы. Модулированные вращающимся диском световые потоки преобразуются фотоэлементами в переменный ток, пропорциональный падающим потокам. Переменные напряжения с измерительного и опорного фотоэлементов в противофазе подаются на катодные повторители, откуда поступают в усилитель-преобразователь. В смесителе усплитель-преобразователя напряжения измерительного и опорного фотоэлементов векторно суммируются, и результирующее напряжение сигнала (разбаланс) через усилитель поступает на синхронный детектор. Кроме того, на тот же синхронный детектор поступает и опорное напряжение. На выходе синхронного детектора возникает постоянный ток, полярность которого зависит от знака разбаланса в смесителе, а величина — пропорциональна амилитуде разбаланса. Сигнал постоянного тока с синхронного детектора поступает на усилитель регистрирующей части.

Прибор позволяет проводить измерения показателя ослабления света в море на глубинах от 0 до 150 м в водах различной мутности — от высоко прозрачных вод открытых океанических районов ($\varepsilon = 0.05~\text{l/m}$) до мутных прибрежных вод ($\varepsilon = 2.00~\text{l/m}$). Регистрация показателя ослабления ведется с отвосительной погрешностью, не превышающей 1%.

В качестве регистратора используется потенциометр ЭПП-09 с внесенными в его конструкцию некоторыми изменениями, позволяющими вести

регм рацяю значений показателей ослабления в широком диапазоне муть стей воды примерно с одинаковой точностью.

я возможности измерения прозрачностей воды на больших глубиибор снабжается съемной кюнетой, помещаемой менду осветителем HOX : элементом. В этом случае прибор находится на борту судна, и кювета эполняется водой из батометров. Объем кюветы составляет всего

Рис. 6. Бунсируемый прозрачномер ИОАН

500 см³, что обеспечивает проведение массовых измерений при взятии стандартных гидрологических серий.

Подводная и регистрирующая части прибора связаны между собой кабелем марки КРП $6 \times 1,5$.

Электропитание прибора осуществляется от судовой сети переменного

тока напряжением 220 в.

Для возможности непрерывной регистрации прозрачности воды в поверхностных слоях моря на ходу судна Институтом океанологии сконструирован бужсируемый прозрачномер (рис. 6). Прибор представляет собой объективный фотометр, в котором световой поток, посылаемый лампой (1), после прохождения слоя воды толщиной в 1 м принимается фотосопротивлением ФСК-1 (3). Лампа и фотосопротивление закрыты защитными стеклянными иллюминаторамы (2). Подподная часть прибора соединиется с регистратором, в качестве которого также используется потенциометр ЭПП-09, каротажным кабелем (4) марки КТШ-03, имеющим, кроме токопроводящих медных жил, несущие стальные жилы. Вырезы (5) в корпусе прибора выполнены таким образом, чтобы обеспечить свободный доступ воды в прибор и в то же время не допустить понадания естественного света на фотоэлемент при работе с прибором в светное времи суток.

в) Измерения коэффициента яркости моря

Измерения производятся при помощи гидрофетометра ИФТ-19. Оптическая схема его показана на рис. 7. Прибор представляет собой визуальный фотометр, основанный на уравнивании яркостей двух нолей, одно из которых создается светом, выходящим из тольци моря, а другое — естественным светом солнца и неба, освещающим горизонтальную пластинку матированного молочного стекла. Прибор снабжен трубой, нижний конец которой погружается под поверхность моря. Свет, идущий из толщи моря, через линаы оборачивающей системы поступает в фотометрическую призму, служащую для уравнивания яркостей обсих полей. Уравшивание производится перемещением молочного стекла при помощи рычажной системы. Оточеты ведутся через окуляр по селторной шкале, освещаемой черев иллюминатор. Для возможности проведения измерений в различных участках спектра прибор спабжен револьверной диафрагмой со сменными фильтрами. Таким образом, номимо измерений в белом свете, прибор

дает возможность вести измерения в следующих областях видимой частл сиектра: синей ($\lambda_{\text{вф}}=459 \text{ m}\mu$), сине-зеленой ($\lambda_{\text{вф}}=494 \text{ m}\mu$), зеленой ($\lambda_{\text{вф}}=528 \text{ m}\mu$), желто-зеленой ($\lambda_{\text{вф}}=556 \text{ m}\mu$), оранжевой ($\lambda_{\text{вф}}=587 \text{ m}\mu$) и красной ($\lambda_{\text{вф}}=600 \text{ m}\mu$). Отсчеты по шкале прибора нереводятся в коэффициенты яркости моря с применением данных градуировок прибора.

Рис. 8. Приспособление для измерения индикатрис яркости моря

ла; 2 — полвинное молочное стенло; 3 и 5 — линзы; 4 — фотометрическан прима; 6 — окуляр; 7 — сменные светофильтры; 8—сенторная шкала; 9 — направляющая призма; 10 — линза оборачивающей системы;

11 — диафрагма; 12 — иллюмилатор;

13 — рычажная система; 14 — фланец

Относительная погрешность определения коэффициента яркости моря составляет от 5 до 15 %, в зависимости от значения измеряемой величины.

Для измерения коэффициентов яркости излучения, выходящего из толщи моря не только вертикально вверх, но и под различными углами к вертикали и в различных азимутах по отношению к солнцу, прибор снабжается специальным приспособлением (рис. 8), заменяющим нижнее концевое колено трубы нрибора. Приспособление состоит из плоского зеркала (1), устанавливаемого под входным иллюминатором трубы прибора, и механизма для его поворота и качания. Для проведения измерений в различных азимутах зеркало поворачивается штурвалом (2), перемещающим это зеркало при номощи ходового валика (3). Штурвал

снабжен лимбом, показывающим азимут, в котором ведутся измерения. Установка требуемого наклона зеркала осуществляется при помощи рукоятки (4). Фиксатор (5) закрепляет зеркало в трех положениях. позволяющих измерять коэффициент яркости излучения, идущего из глубоких слоев моря к его поверхности, под углами к вертикали 30, 60 и 90°.

Измерения производятся на якорных и дрейфовых станциях с борта, освещенного солицем. Для проведения измерений прибор крепится к борту корабля специальными опорными платами. При работе с высокобортных судов, когда максимальная длина прибора (3,5 м) оказывается недостаточной, можно рекомендовать крепление прибора за бортом на навесной беседке — трапе, как это делалось в практике экспедиционных работ на э/с «Витязь». Система такого крепления прибора представлена на рис. 9.

2) Лабораторные измерения онтических характеристик морской воды

Измерения производятся при номощи спектрогидронефелометра-прозрачномера ИФ-25 ¹. Прибор, общий вид которого изображен на рис. 10, позволяет определять в белом свете и шести различных участках видимой части спектра коэффициенты пропускания морской воды и ее показатели яркости для различных углов рассеяния. По этим данным определяются основные оптические характеристики воды — ноказатели рассеяния и ослабления и индикатриса рассеяния. Эти характеристики, в свою очередь, дают возможность определить значения показателя поглощения и оценить долю поглощения и рассеяния в общем ослаблении направленного нотока в морской воде. Измерения могут выполняться как в неполяризованном, так и в ноляризованном свете.

Прибор представляет собой визуальный фотометр, в котором яркость пропущенного или рассеянного водой света сравнивается с известной заранее яркостью пластины молочного стекла. Оптическая схема прибора представлена на рис. 11.

Кювета прибора заполняется исследуемой водой, которая либо прокачивается насосом, либо берется батометрами. Осветитель прибора состоит из лампы накаливания, конденсора, диафрагм и объектива. Осветитель укреплен на поверотном лимбе, закрывающем кювету прибора и вращающимся вокруг оси.

Для измерения показатели ослабления осветитель ставится в крайнее заднее положение, и свет от него, пройдя толщу воды в приборе, отражается от сферического зеркала, носле чего достигает объектива фотометра, в фокальной илоскости которого номещено устройство для создания полей сравнения. Проведение измерений яркости света, рассеянного под различными углами, достигается новоротом осветителя на тот или иной угол. В этом случае объектив фотометра освещается светом, рассеянным толщей воды, лежащей в снопе нараллельных лучей, идущих от осветителя.

Ветвь сравнения фотометра состоит из поворотного осветителя, включающего в себя лампу и молочное стекло, из неподвижного молочного стекла и фотометрической призмы.

Яркости рассеянного или пропущенного водой света сравниваются с эркостью неподвижного молочного стекла. Таким образом, одно из полей сравнения освещается светом, прошедшим через воду, а другое —

¹ После сдачи статьи в печать на основе прибора ИФ-25 был разработан и изготовлен новый усовершенствованный спектрогидронефелометр СГН-57.

осветителем в ветви сравнения фотометра. На уравнивании вркостей этих полей и основаны измерения.

Измерительное устройство смонтировано на корпусе фотометра, выполненном в виде литой чаны, являющейся кюветой прабора. На этом же корпусе закреплены объектив фотометра, окулир и светофильтры, При измерениях осветитель фотометра перемещается с помощью рычазьно-винтового механизма, приводимого в движение барабаном. Вращением барабана в ту или другую сторопу добаваются равенства яркостей фотомстрических полей, носле чего по напесевным на барябая делениям синмаetem oreger,

Яркость рассединого в морской воде света может меняться в зависимости от содержании извеси и различия в углах рассединя всотим тысят и даже миллионы раз. Для возможности измерения пркостей в столь инроком дианазоне в измерительной встви фотометра номенаются сменые днафратмы, а в ветии сравнения— донолнитель-

Рис. 9. Препление гизрофотометра ИФТ-19 на высокобортном судие

ный ослабитель. Смена днафрагм обусловлинает необходимость наличия в приборе двух зрачков выхода — круглого и сегментного.

Для проведения измерений в поляризованиом светс перед объективом эслетителя устанавливается насадка-поляризатор, а перед зрачком выхода немещается насадка-анализатор,

Рис. 40. Общий вид спектрогиздющефелометра прозрачномера ИФ 25

Лампа осветителя прибора включается последовательно с лампой фотометра, что обеспечивает одинаковый режим их работы вне зависимости от возможных колебапий папряжения в источнике питания. Подаваемое на прибор напряжение и сила тока, идущего через лампы, фиксируются вольтметром и амперметром. Электропитание прибора осуществляется постоянным током папряжением 16 в.

Рис. 11. Онтическая схема спектрогидропефелометра-прозрачномера ИФ-25

1 — кювета прибора; 2 — объектив осветителя; 3 — диафрагмы; 4 — конденсор; 6 и 16 — лампы пакаливания; 6 — направилющий интырь (ось кюветы прибора); 7 — объектив фотометра; 8 — фотометрическая привма; 9 — окумяр; 10 — светофильтры; 11 — сменыю врачки выхода; 12, 13 и 14 — мочные стенла фотометра; 16 — оточетный барабан; 17 — дополящительный ослабитель; 18 — сменые диафрагмы; 19 — эталониая градуировочная инастинка; 20 — градуировочные нейтральные фильтры; 21 — заполнятель, 32 — молочное стеклю осветителя; 23 — насадиа-анализатор; 24 — насадиа-поляризатор; 26 — сфермческое веркало; 26 — аккумулилоры; 27 — реостат; 28 — амперметр; 29 — водьтметр; 30 — переилючатоль

Для проведения измерений в различных участках снектра прибор снабжен комилектом светофильтров, состоящим из шести образцов — синего ($\lambda_{2\Phi} = 475 \,\mathrm{mμ}$), зеленого ($\lambda_{2\Phi} = 520 \,\mathrm{mμ}$); желто-зеленого ($\lambda_{2\Phi} = 544 \,\mathrm{mμ}$), оранжевого ($\lambda_{2\Phi} = 568 \,\mathrm{mμ}$) и двух красных ($\lambda_{2\Phi} = 604 \,\mathrm{mμ}$ и $\lambda_{2\Phi} = 648 \,\mathrm{mμ}$).

Водозаборная часть прибора состоит из насоса и системы шлангов для подачи воды в прибор и ее слива. Центробежный насос приводится в действие электромотором МУ-80, работающим как на переменном, так и на подъем воды на 3—4 м от ватерлинии судна.

Общий объем воды в приборе составляет около 3 л, что несколько затрудняет исследования оптических характеристик глубоких слоев, когда прокачка воды насосом невозможна из-за недостаточной длины шланга и пробы приходится брать батометрами.

Отсчеты, снятые с барабана прибора, при помощи соответствующих градуировочных графиков переводится в коэффициенты пропускания и показатели яркости воды, по которым затем, пользуясь равенствами (7),(16),

(19) и (20), вычисляются неказатели ослабления и рассеяния света в воде и

строится видикатриса рассеяния.

Погрешность определения показателя ослабления колеблется от 3—5% для мутных вод до 12—15% для чистых вод открытых океанических районов. Относительная погрешность определения показателя рассеяния в среднем составляет около 15%.

4. НЕКОТОРЫЕ ЗАВИСИМОСТИ МЕЖДУ ГИДРООПТИЧЕСКИМИ ХАРАКТЕРИСТИКАМИ

Согласно уравнению (43) Амбарцумяна,

$$I = \frac{b(\theta) e^{-\kappa \tau}}{1 + k \cos \theta},$$

интенсивность диффузного излучения меняется с глубиной по экспоненциальному закону, причем показатель ослабления в этом случае в к раз отличается от показателя ослабления направленного излучения є. Тогда, обозначая по-прежнему показатель ослабления диффузного потока через с, имоем:

$$c = \kappa \epsilon$$
. (52)

Выше уже уноминалось, что параметр K может быть определен из равенства (44), если известны индикатриса рассеяния и соотношение между рассеянием и общим ослаблением. В связи с тем, что этот нараметр играет существенную роль при проведении многих практических расчетов, рассмотрим возможность простого и быстрого определения этой величины через другие оптические характеристики.

Подставим в равенство (24), определяющее показатель вертикального ослабления α , значения S_{Z1} и S_{Z2} , полученные для глубин z_1 и z_2 из первого уравнения системы (48). Заменяя показатель q равным ему показателем c (51) и обозначив

$$10^{-(\epsilon-c)z_1} = A \times 10^{-(\epsilon-c)z_2} = B,$$

находим:

$$\alpha = c - \frac{1}{z} \lg \left\{ 1 - \frac{n_2 \Phi_0}{S_0} (A + B) \left[1 - \frac{n_2}{S_0} (1 - B) + \frac{n_2 \Phi_0}{S_0} (1 - B^2) \right] \right\}.$$
 (53)

Из этого выражения следует, что показатель вертикального ослабления α не является величиной постоянной, а с увеличением глубины (величин z_1 ц z_2) и с возрастанием толщины слоя (величины z) приближается к своему граничному значению c. Показатель α становится в точности равным показателю ослабления диффузного излучения c при условии освещения поверхности моря только рассеянным светом или на достаточно больших глубинах, куда не проникает прямое излучение солнца ($\Phi_0 = 0$). Тогда, вместо (52), имеем:

$$\kappa = \frac{\alpha}{\varepsilon}.\tag{54}$$

Пользуясь соотношениями (30) и (58), легко найти показатель рассеяпия диффузного излучения b:

 $b=\frac{2a\zeta}{1+\zeta},$ (60)

а также его компоненты (31) — показатели рассеяния вперед ξ и назад μ . Решая преобразованное уравнение Гамбурцева (56) относительно и и подставляя в него значение а из (58), находим:

$$\mu = \frac{2\alpha\zeta}{1-\zeta^2}.\tag{61}$$

Показатель рассеяния диффузного излучения вперед ξ оказывается очень близким к пулю. Действительно, так как $\alpha = a + b$ (30) и, в свою очерередь, $b = \xi + \mu$ (31), то $\alpha = a + \mu + \xi$. Вместе с тем мы видели, что α = а + μ. Таким образом, в первом приближении, как это и следует из равенства (60), ослабление распространяющегося в море диффузного потока определяется только рассеянием назад и истипным поглощением.

Полученные равенства позволяют вычислять значения целого ряда опгических характеристик через легко определяемые из измерений величины показателей вертикального ослабления а и коэффициента диффузного отражения моря ζ. Пользуясь данными одновременных измерений ослабления потока естественного света и элементов ослабления направленного потока (прозрачности морской воды и ее индикатрис рассеяния), можно получать все необходимые величины для расчета характеристик светового режима моря. Эти же расчеты с успехом могут быть применены для определения характеристик потоков излучения, идущих в море в направлении прожекторного луча и обратно. Такие расчеты имеют несомненный интерес прирешении задач, связанных с освещением при аварийноспасательных работах, с определением видимости подводных объектов, с обеспечением работы подводной телевизионной аппаратуры, с определением оптимальных условий производства аэрофотосъемки на море и т. д.

ЛИТЕРАТУРА

Амбарцумян В. А. К вопросу о диффузном отражении света мутной среды. ЛАН СССР, 1943, т. 37, № 8.

Амбарцумян В. А. Новый способ расчета рассепия света в мутной среде. «Изв. АН СССР, серия геогр. и геофиз.», 1944, № 3.

Самбурцев А. Г. К вопросу о цветности моря. М., 1924.

Теригун А. А. Избранные труды по фотометрии и фототехнике. М., 1958.

Сена Л. А. Единицы измерения физических величин. Гостехиздат, 1948. Гозер h J. Untersuchungen über Ober-und Unterlichtmessungen im Meere und über ihrem Zusammenhang mit Durchsichtigkeitmessungen. Deutsche Hydrographische Zeitschrift, B. 3, 1950.