時系列解析(4)

- モデルの推定・選択 -

東京大学 数理・情報教育研究センター 北川 源四郎

前回の復習

概要

- 1. AICによるモデル選択例
 - (1)ヒストグラムのBin数の選択
 - (2)分布の形状の選択
 - (3) Box-Cox変換の選択
 - (4)分布の同一性
- 2. 重回帰モデル,多項式回帰モデル
- 3. 最小二乗法,Householder法
- 4. 部分回帰モデル

ヒストグラムのビン数の決定

$$P(\{n_{j}\} | \{p_{j}\}) = \frac{n!}{n_{1}! \cdots n_{k}!} p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}$$

$$\ell(p_{1}, \dots, p_{k}) = C + \sum_{j=1}^{k} n_{j} \log p_{j}$$

$$\hat{p}_{j} = \frac{n_{j}}{n}$$

$$AIC_{k} = (-2) \left\{ C + \sum_{j=1}^{k} n_{j} \log \left(\frac{n_{j}}{n}\right) \right\} + 2(k-1)$$

	銀河データ (Roeder (1990))												
0	5	2	0	0	0	0	0	2	0	4	18	13	6
11	9	6	1	2	0	0	0	0	0	2	0	1	0

Bin Size	log-LK	AIC
28	-189.19	432.38
14	-197.72	421.43
7	-209.52	431.03

銀河データのヒストグラム

AIC最小

少なすぎ

モデル選択例:分布の形状の選択

Pearson 分布族(type IV)

$$f(y | \mu, \tau^{2}, b) = \frac{C}{(y^{2} + \tau^{2})^{b}}$$
$$C = \tau^{2b-1} \Gamma(b) / \Gamma(b - \frac{1}{2}) \Gamma(\frac{1}{2})$$

b: 形状パラメータの選択

応用: 非ガウス型平滑化

AICによる分布の形状の選択

$$f(y \mid \mu, \tau^2, b) = \frac{C}{\left(y^2 + \tau^2\right)^b}$$

$$\ell(\mu, \tau^{2}, b) = \sum_{n=1}^{N} \log f(y_{n} | \mu, \tau^{2}, b)$$

$$= N\left\{ (b - \frac{1}{2})\log \tau^2 + \log \Gamma(b) - \log(b - \frac{1}{2}) - \log \Gamma(\frac{1}{2}) \right\} - b\sum_{n=1}^{N} \log \left\{ (y_n - \mu)^2 + \tau^2 \right\}$$

b によるパラメータとAICの変化

b	μ	$ au^2$	Log-L	AIC
0.60	0.801	0.030	-58.84	121.69
0.75	0.506	0.431	-51.40	106.79
1.00	0.189	1.380	-47.87	99.73
1.50	0.185	4.152	-47.07	98.14
2.00	0.201	8.395	-47.43	98.86
2.50	0.214	13.87	-47.82	99.63
3.00	0.222	20.21	-48.12	100.25
∞	0.166	8.545	-49.83	103.66

モデル選択例: Box-Cox変換

Box-Cox 変換

$$z_n = \begin{cases} \lambda^{-1}(y_n^{\lambda} - 1) & \text{for } \lambda \neq 0\\ \log y_n & \text{for } \lambda = 0 \end{cases}$$

$$g(y) = \left| \frac{dh_{\lambda}}{dy} \right| f(h(y))$$

$$AIC'_z = AIC_z - 2\log\left|\frac{dh_\lambda}{dy}\right|$$

- 変換後のモデルのAICでは モデル比較はできない
- 原データに関するAIC

比較可能

Box-Cox変換の選択

λ	対数尤度	AIC	AIC'
1.0	-1191	2388	2388
8.0	-1187	1936	2379
0.6	-1183	1486	2371
0.4	-1180	1038	2365
0.3	-1179	814	2362
0.2	-1178	591	3273
0.0	-1176	146	2357
-0.2	-1176	-298	2355
-0.4	-1176	-740	2356
-0.6	-1177	-1181	2357
-0.8	-1178	-1620	2360
-1.0	-1181	-2058	2365
·	·	·	· · · · · · · · · · · · · · · · · · ·

太陽黒点数データ

data(Sunspot)
plot(Sunspot,ylim=c(0,200))
plot(Sunspot,log="y")

- 太陽黒点数の原データは上に尖っている
- 対数変換すると下に尖る

AIC'による変換パラメータの選択

data(Sunspot) # Sun spot number data
boxcox(Sunspot)

lamb	oda aic'	LL'	aic	LL	mean	variance
1.00	2360.26	-1178.13	2360.26	-1178.13	4.909502e+01	1.575552e+03
0.90	2335.22	-1165.61	2174.47	-1085.24	3.545844e+01	7.049401e+02
0.80	2313.48	-1154.74	1991.98	-993.99	2.591126e+01	3.199262e+02
0.70	2295.33	-1145.66	1813.07	-904.54	1.917397e+01	1.474669e+02
0.60	2281.11	-1138.56	1638.11	-817.05	1.437922e+01	6.914276e+01
0.50	2271.26	-1133.63	1467.50	-731.75	1.093610e+01	3.303737e+01
0.40	2266.32	-1131.16	1301.81	-648.91	8.439901e+00	1.612487e+01
0.30	2267.05	-1131.52	1141.79	-568.90	6.611858e+00	8.065706e+00
0.20	2274.59	-1135.29	988.58	-492.29	5.258840e+00	4.155209e+00
0.10	2290.79	-1143.40	844.03	-420.01	4.246205e+00	2.222464e+00
0.00	2318.78	-1157.39	711.27	-353.63	3.479466e+00	1.250918e+00
-0.10	2363.66	-1179.83	595.39	-295.70	2.891856e+00	7.574966e-01
-0.20	2432.86	-1214.43	503.84	-249.92	2.435839e+00	5.096385e-01
-0.30	2534.61	-1265.31	444.85	-220.42	2.077302e+00	3.947690e-01
-0.40	2673.75	-1334.88	423.23	-209.62	1.791544e+00	3.595107e-01
-0.50	2848.16	-1422.08	436.89	-216.45	1.560501e+00	3.814048e-01
-0.60	3050.32	-1523.16	478.30	-237.15	1.370809e+00	4.562814e-01
-0.70	3271.90	-1633.95	539.12	-267.56	1.212437e+00	5.937308e-01
-0.80	3506.54	-1751.27	613.01	-304.51	1.077716e+00	8.175441e-01
-0.90	3750.16	-1873.08	695.88	-345.94	9.606427e-01	1.170321e+00
-1.00	4000.25	-1998.13	785.23	-390.61	8.563591e-01	1.722986e+00

lambda = 0.40 AIC' minimum = 2266.32

太陽黒点数データのBox-Cox変換

z <- boxcox(Sunspot)</pre>

x <- seq(1,-1,length=21)

plot(x,z\$aic.z,col="blue",type="b",pch=19)

分布の同一性

- 制約なし

- (2) $\sigma_1^2 = \sigma_2^2$ (3) $\mu_1 = \mu_2$ (4) $\mu_1 = \mu_2, \sigma_1^2 = \sigma_2^2$

分布の同一性

制約	ℓ	AIC	$\hat{\mu}_1$	$\hat{\mu}_2$	$\hat{\sigma}_1^2$	$\hat{\sigma}_2^2$
なし	-48.411	104.823	0.310	0.857	1.033	3.015
$\hat{\sigma}_1^2 = \hat{\sigma}_2^2$	-50.473	106.946	0.310	0.857	1.6	694
$\hat{\mu}_1 = \hat{\mu}_2$	-48.852	103.703	0.4	138	1.049	3.191
$\hat{\mu}_1 = \hat{\mu}_2, \ \hat{\sigma}_1^2 = \hat{\sigma}_2^2$	-51.050	106.101	0.4	192	1.7	760

応用 (モデルの同一性)

- 1. 変化点検出 (例:地震波到着時刻)
- 2. 局所定常時系列モデル

回帰モデル

連続的な値をとる変数間の確率的な構造を記述するモデル

- 単回帰モデル ・・・ ひとつの変数で説明(多項式など)
- 重回帰モデル ・・・ いくつかの変数で説明
- 自己回帰モデル・・・ 過去の値で説明
 - 1. パラメータ推定 最尤法、最小二乗法
 - 2. 次数選択 AIC
 - 3. 変数選択 AIC
 - 4. モデル選択 AIC
- 単回帰 次数選択,モデル選択(多項式,三角関数など)
- 重回帰 変数選択
- 自己回帰 変数選択,次数選択
- 非線形回帰 モデル選択,変数選択,次数選択

重回帰モデル

$$y_n = a_1 x_{n1} + \dots + a_m x_{nm} + \varepsilon_n \qquad \varepsilon_n \sim N(0, \sigma^2)$$

 y_n : 目的変数 m: 次数 ε_n : 残差

 $x_{i1}\cdots x_{im}$: 説明変数 a_i : 回帰係数 σ^2 : 残差分散

パラメータ
$$\theta = (a_1, \dots, a_m, \sigma^2)^T$$

重回帰モデルが定める確率分布

$$p(y_n | \theta, x_{n1}, ..., x_{nm}) \sim N(\sum_{j=1}^m a_j x_{nj}, \sigma^2)$$

$$= (2\pi\sigma^2)^{-\frac{1}{2}} \exp\left\{-\frac{1}{2\sigma^2} (y_n - \sum_{j=1}^m a_j x_{nj})^2\right\}$$

重回帰モデルの対数尤度

$$\ell(\theta) = -\frac{N}{2} \log 2\pi\sigma^2 - \frac{1}{2\sigma^2} \sum_{n=1}^{N} \left(y_n - \sum_{j=1}^{m} a_j x_{nj} \right)^2$$

重回帰モデルの最尤推定

$$\max \ell(\theta) \Rightarrow \hat{\theta} = (\hat{a}_1, \dots, \hat{a}_m, \hat{\sigma}^2)$$

$$\frac{\partial \ell(\theta)}{\partial \sigma^2} = -\frac{N}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{n=1}^{N} (y_n - \sum_{j=1}^{m} a_j x_{nj})^2 = 0$$

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{n=1}^{N} (y_n - \sum_{j=1}^{m} a_j x_{nj})^2 \qquad a_j \text{ of } \text{値に関係なく} \hat{\sigma}^2 \text{ of } \text{最大推定値は決まる}$$

$$\ell(a_1, \dots, a_m) = -\frac{N}{2} \log 2\pi \hat{\sigma}^2 - \frac{N}{2}$$
$$\max \ell(a_1, \dots, a_m) \Leftrightarrow \min \hat{\sigma}^2$$

線形正規型回帰モデルの場合:最尤法

重回帰モデルの最小二乗推定

$$y_n = a_1 x_{n1} + \dots + a_m x_{nm} + \varepsilon_n \qquad \varepsilon_n \sim N(0, \sigma^2)$$

 y_n :目的変数 $x_{n1}\cdots x_{nm}$:説明変数

m:次数 a_i :回帰係数 ε_n :残差 σ^2 :残差分散

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}, \quad Z = \begin{bmatrix} x_{11} & \cdots & x_{1m} \\ x_{21} & \cdots & x_{2m} \\ \vdots & \ddots & \vdots \\ x_{N1} & \cdots & x_{Nm} \end{bmatrix}, \quad \varepsilon = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_N \end{bmatrix}, \quad a = \begin{bmatrix} a_1 \\ \vdots \\ a_m \end{bmatrix}$$

$$y = Za + \varepsilon$$

y 目的変数ベクトル

Z 説明変数行列

a 回帰係数ベクトル

 ε 残差ベクトル

重回帰モデルの最小二乗法

$$\hat{\sigma}^{2} = \frac{1}{N} \sum_{n=1}^{N} (y_{n} - \sum_{j=1}^{m} a_{j} x_{nj})^{2} = ||y - Za||_{N}^{2} = ||\varepsilon||_{N}^{2}$$

$$\frac{\partial \hat{\sigma}^{2}}{\partial a} = Z^{T} (y - Za) = 0 \quad \Rightarrow Z^{T} y = Z^{T} Za \quad \Rightarrow \hat{a} = (Z^{T} Z)^{-1} Z^{T} y$$

$$\begin{bmatrix} a_1 \\ \vdots \\ a_m \end{bmatrix} = \begin{bmatrix} \sum x_{i1}^2 & \cdots & \sum x_{i1} x_{im} \\ \vdots & \vdots & \ddots & \vdots \\ \sum x_{im} x_{i1} & \cdots & \sum x_{im} x_{im} \end{bmatrix}^{-1} \begin{bmatrix} \sum x_{i1} y_i \\ \vdots \\ \sum x_{im} y_i \end{bmatrix}$$

$$\hat{a} = (\hat{a}_1, \dots, \hat{a}_m)^T$$

$$y = (y_1, ..., y_N)^T$$
 $\emptyset \ge \exists \|y\|_N^2 = y^T y = \sum_{n=1}^N y_n^2$

重回帰モデル (最大対数尤度とAIC)

$$AIC_{m} = -2\ell_{m}(\hat{\theta}) + 2k$$

$$\ell_{m}(\hat{\theta}) = -\frac{N}{2}\log 2\pi\hat{\sigma}_{m}^{2} - \frac{N}{2}$$

$$k = m+1$$

k:パラメータ数

$$AIC_m = N \log 2\pi \hat{\sigma}_m^2 + N + 2(m+1)$$

$$AIC_m^* = N \log \hat{\sigma}_m^2 + 2m$$

- ・常に定数項まで計算しておいた方がよい
- ・別のモデル(族)との比較が可能になる

例:多項式回帰

i	x_i	y_i
1	0.00	0.125
2	0.05	0.156
3	0.10	0.193
4	0.15	-0.032
5	0.20	-0.075
6	0.25	-0.064
7	0.30	0.006
8	0.35	-0.135
9	0.40	0.105
10	0.45	0.131
11	0.50	0.154
12	0.55	0.114
13	0.60	-0.094
14	0.65	0.215
15	0.70	0.035
16	0.75	0.327
17	0.80	0.061
18	0.85	0.383
19	0.90	0.357
20	0.95	0.605
21	1.00	0.499

$$y = a_0 + a_1 x + \dots + a_p x^p + \varepsilon, \quad \varepsilon \sim N(0, \sigma^2)$$
$$\theta = (a_0, a_1, \dots, a_p, \sigma^2)$$

x < - seq(0,1,length=21)

 $y < -c(0.125, \, 0.156, \, 0.193, \, -0.032, \, -0.075, \, -0.064, \, 0.006, \, -0.135, \, 0.105, \, 0.131, \, 0.154, \, 0.114, \, -0.006, \, -0.00$

^{0.094, 0.215, 0.035, 0.327, 0.061, 0.383, 0.357, 0.605, 0.499)}

plot(x,y,pch=19,ylim=c(-0.2,0.6))

多項式回帰モデル

$$y_i = f(x_i) + \varepsilon_i$$

$$f(x) = a_0 + a_1 x + \dots + a_m x^m, \qquad \varepsilon_i \sim N(0, \sigma^2)$$

$$y_i \sim N(\mu_i, \sigma^2), \quad \mu_i = a_0 + a_1 x_i + \dots + a_m x_i^m$$

多項式回帰モデル

$$x_{nj}=x^{j-1}, \quad j=1,\ldots,m+1$$

$$a=(a_0,a_1,\cdots,a_m)^T, \qquad \theta=(a_0,a_1,\cdots,a_m,\sigma^2)^T$$
 対数尤度
$$\ell_m(\hat{\theta})=-\frac{N}{2}\log 2\pi\hat{\sigma}_m^2-\frac{N}{2}$$
 パラメータ数
$$k=m+2$$

$$AIC_m = N \log 2\pi \hat{\sigma}_m^2 + N + 2(m+2)$$

$$AIC_m^* = N \log \hat{\sigma}_m^2 + 2m$$

多項式回帰の次数選択

次数	パラメータ数	残差分散	AIC
-1	1	0.05889	2.12
0	2	0.03427	-7.25
1	3	0.01669	-20.35
2	4	0.00866	-32.13
3	5	0.00839	-30.80
4	6	0.00800	-29.79
5	7	0.00798	-27.86

推定された多項式回帰曲線 (m=1,...,5)

シミュレーション

True Model:

$$y_i = \exp\{(x_i - 0.3)^2\} - 1 + 0.1\varepsilon_i$$

 $\varepsilon_i \sim N(0,1)$
 $x_i = 0.05(i-1), \quad i = 1,...,21$

注意:

多項式回帰モデルはTrue Modelを含んでいない.

データ生成

モデル推定

L回繰り返し,重ね書き

シミュレーション結果(L=10)

制約つきモデル

例えば、回帰式の最小値が0となることを知っていたら

$$y_i = \alpha(x_i + \beta)^2 + \mathcal{E}_i$$
 パラメータが1個少ないモデル

	\hat{a}_0	\hat{a}_1	\hat{a}_2	$\hat{\sigma}^2$	AIC
制約なし	0.1116	-0.6590	1.0969	0.00866	-32.13
制約付き	0.1061	-0.6990	1.1515	0.00875	-33.92

時系列への応用

単回帰モデル(多項式、三角関数)によるトレンド推定

$$y_{i} = f(x_{i}) + \varepsilon_{i} \qquad \varepsilon_{i} \sim N(0, \sigma^{2})$$

$$f(x) = a_{0} + a_{1}x + \dots + a_{m}x^{m}$$

$$f(x) = a + \sum_{j=1}^{m} b_{j} \sin(jwn) + \sum_{j=1}^{\ell} c_{j} \cos(jwn)$$

最高気温データ (三角関数回帰モデル)

data(Temperature) # Highest Temperature Data of Tokyo Isqr(Temperature)

最高気温データ (多項式回帰モデル)

polreg(maxtemp,13)

$y_i = f(x_i) + \varepsilon_i$ $\varepsilon_i \sim N(0, \sigma^2)$ $f(x) = a_0 + a_1 x + \dots + a_m x^m$

Temperature and trend component minimum aic = 2461.42 at order 7

z <- polreg(Temperature,13)

x <- seq(0,12,length=14)

nlot(x z\$aic col="blue" type="b"

plot(x,z\$aic,col="blue",type="b",pch=19)

plot(x,z\$aic,col="blue",type="b",pch=19,ylim=c(2450,2520))

最高気温データ (モデル比較)

data(Temperature)
Isqr(Temperature)

● 三角関数回帰モデル

AIC = 2435.06

polreg(TemperData,7)

● 多項式回帰モデル

AIC=2461.42

Whardデータ (多項式回帰)

data(WHARD)# Wholesale hardware data y <- log10(WHARD) polreg(y, 14)

y and trend component minimum aic = -595.98 at order 11

AIC's of polinomial regression models $z \leftarrow polreg(y,14)$ par(mar=c(2,2,2,1)+0.1) plot(z\$aic,type="b",pch=19,lwd=2,ylim=c(-600,-540))

多変量データ

都市名	気温	緯度	経度	標高
По по п	y	x_1	x_2	x_3
稚内	-8.9	45.42	141.68	2.8
旭川	-13.6	43.77	142.37	111.9
札幌	-9.5	43.05	141.33	17.2
青森	-5.4	40.82	140.78	3.0
盛岡	-6.7	39.70	141.17	155.2
仙台	-3.2	38.27	140.90	38.9
金沢	-0.1	36.55	136.65	26.1
長野	-5.5	36.67	138.20	418.2
高山	-7.6	36.15	137.25	560.2
軽井沢	-10.0	36.33	138.55	999.1
名古屋	-0.9	35.17	136.97	51.1
飯田	-4.7	35.52	137.83	481.8
東京	-0.4	35.68	139.77	5.3
鳥取	0.5	35.48	134.23	7.1
京都	-0.6	35.02	135.73	41.4
広島	0.2	34.37	132.43	29.3
福岡	1.5	33.58	130.38	2.5
鹿児島	2.0	31.57	130.55	4.3
高知	0.1	33.55	133.53	1.9
那覇	13.5	26.23	127.68	34.9

気温:1月

回帰モデルの変数選択

 y_n : 気温, x_{1n} : 緯度, x_{2n} : 経度, x_{3n} : 標高

$$y_n = a_0 + a_1 x_{1n} + a_2 x_{2n} + a_3 x_{3n} + \varepsilon_n, \quad \varepsilon_n \sim N(0, \sigma^2)$$

説明変数 x_1, x_2, x_3 のなかで y_n の予測に有用な変数を選択

$$\ell(a_0, a_1, a_2, a_3, \sigma^2) = -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n \left(y_n - a_0 - \sum_{j=1}^3 a_j x_{jn} x_{jn} \right)^2$$

$$AIC(x_{1n}, x_{2n}, x_{3n}) = n(\log 2\pi + 1) + n\log \hat{\sigma}^2 + 2(k+2)$$

選択された変数

$$x_{1n}, x_{3n}$$

選択されたモデル

$$y_n = 40.490 - 1.208x_{1n} - 0.010x_{3n} + \varepsilon_n,$$

 $\varepsilon_n \sim N(0, 1.490)$

モデル比較

モデル	説明変数	次数	残差分散	AIC		回帰位	係数	
番号		人数 ————————————————————————————————————	次左刀拟	AIC	a_0	a_1	a_2	a_3
1	1,緯度,標高	3	2.46	82.8	40.7	-1.15		-0.0098
2	1,緯度,経度,標高	4	2.46	84.8	38.3	-1.17	0.02	-0.0098
3	1, 経度, 標高	3	7.01	103.7	147.1		-1.09	-0.0064
4	1, 緯度, 経度	3	7.74	105.7	94.3	-0.69	-0.53	
5	1, 緯度	2	8.73	106.1	39.0	-1.14		
6	1, 経度	2	9.60	108.0	155.8		-1.16	
7	1, 標高	2	26.68	128.4	-1.5			
8	1	1	32.66	130.5	-2.9			
9	なし	0	41.19	133.1				

代理変数

変数の採用によるAICの変化

 $AIC(x_1) < AIC(x_2) \ll AIC(x_3)$ $AIC(x_1, x_2) > AIC(x_1, x_3)$

- モデルに x_1 (緯度)が含まれない場合, x_2 (経度)が代理変数となる.
- 日本列島では、緯度と経度の相関が高い (相関係数: 0.84)

予測誤差

$$y = 40.7 - 1.15x_1 - 0.0098x_3 + \varepsilon$$
, $\varepsilon \sim N(0, 2.46)$

福島:
$$y = -3.1, x_1 = 37.75, x_2 = 140.45, x_3 = 67.4$$

神戸:
$$y = 1.2, x_1 = 34.68, x_2 = 135.19, x_3 = 59.3$$

$$\hat{y} = 40.7 - (1.15)(37.75) - (0.0098)(67.4) = -3.37$$

$$\hat{y} = 40.7 - (1.15)(34.68) - (0.0098)(59.3) = 0.24$$

	実測値	予測値	予測値(2)
福島	-3.1	-3.37	-3.43
神戸	1.2	0.24	-0.15

注:予測値(2)はAICが2位の フルモデルによる予測

最小二乗法の解法

$$y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \ Z = \begin{bmatrix} z_{11} & \cdots & z_{1m} \\ \vdots & & \vdots \\ z_{n1} & \cdots & z_{nm} \end{bmatrix}, \ a = \begin{bmatrix} a_1 \\ \vdots \\ a_m \end{bmatrix}, \ \varepsilon = \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$
$$y = Za + \varepsilon \qquad \|\varepsilon\|^2 = \|y - Za\|^2$$

● 従来の方法

$$\hat{a} = (Z^T Z)^{-1} Z^T y$$

- 直交変換に基づく方法
 - Householder法
 - 修正Gram-Schmidt法
 - Givens法

Householder法

U: 任意の直交変換(ベクトルの長さを変えない)

$$\|\varepsilon\|_{N}^{2} = \|y - Za\|_{N}^{2} = \|U(y - Za)\|_{N}^{2} = \|Uy - UZa\|_{N}^{2}$$

$$\min_{a} \left\| \varepsilon \right\|^2 \iff \min_{a} \left\| Uy - UZa \right\|^2$$

最小二乗法(Householder法)

$$\begin{aligned} \|Uy - UZa\|_{N}^{2} &= \|\begin{bmatrix} s_{1,m+1} \\ \vdots \\ s_{1,m+1} \\ 0 \end{bmatrix} - \begin{bmatrix} s_{11} & \cdots & s_{11} \\ \vdots & \ddots & \vdots \\ s_{1,m+1} \\ 0 \end{bmatrix} \begin{bmatrix} a_{1} \\ \vdots \\ a_{m} \end{bmatrix}\|_{N}^{2} \\ a_{m} \end{bmatrix} \| \begin{bmatrix} s_{1,m+1} \\ \vdots \\ s_{m,m+1} \end{bmatrix} - \begin{bmatrix} s_{11} & \cdots & s_{1m} \\ \vdots & \ddots & \vdots \\ s_{mm} \end{bmatrix} \begin{bmatrix} a_{1} \\ \vdots \\ a_{m} \end{bmatrix} \|_{m}^{2} + s_{m+1,m+1}^{2} \end{aligned}$$

 $m \ll N$

最小二乗解(Householder法)

$$\begin{bmatrix} S_{11} & \cdots & S_{1m} \\ & \ddots & \vdots \\ & S_{mm} \end{bmatrix} \begin{bmatrix} a_1 \\ \vdots \\ & S_{m,m+1} \end{bmatrix} = \begin{bmatrix} S_{1,m+1} \\ \vdots \\ & S_{m,m+1} \end{bmatrix}$$

$$\hat{a}_m = \frac{S_{m,m+1}}{S_{mm}}$$

$$\hat{a}_i = \frac{S_{i,m+1} - S_{i,i+1} \hat{a}_{i+1} - \cdots S_{i,m} \hat{a}_m}{S_{ii}} \qquad i = m-1, \dots, 1$$

$$\hat{\sigma}_m^2 = \frac{S_{m+1,m+1}^2}{n}$$

後退代入だけで求まるので逆行列不要

AICによる次数選択

$$\ell(\hat{\theta}) = -\frac{N}{2} \log 2\pi \hat{\sigma}_m^2 - \frac{N}{2}$$

$$AIC_m = -2\ell(\hat{\theta}) + 2(パラメ - タ数)$$

$$= N(\log 2\pi \hat{\sigma}_m^2 + 1) + 2(m+1)$$

for
$$k = 1, ..., m$$

$$\begin{bmatrix} S_{11} & \cdots & S_{1k} \\ & \ddots & \vdots \\ & & S_{kk} \end{bmatrix} \begin{bmatrix} a_1 \\ \vdots \\ a_k \end{bmatrix} = \begin{bmatrix} S_{1,m+1} \\ \vdots \\ S_{k,m+1} \end{bmatrix}$$

$$\hat{\sigma}_{k}^{2} = \frac{1}{n} \left(s_{k+1,m+1}^{2} + \dots + s_{m+1,m+1}^{2} \right)$$

$$AIC_{k} = N(\log 2\pi \hat{\sigma}_{k}^{2} + 1) + 2(k+1)$$

 $\hat{\sigma}_k^2$ および \mathbf{AIC}_k の計算に 回帰係数 $\hat{a}_1, \dots, \hat{a}_k$ は不要

Householder変換

行列を三角化する直交変換の求め方

$$b = Ua = a - 2w \cdot (w^T a)$$

 $U = I - 2ww^T$

単位ベクトルwに直交する平面 M_w に関するベクトルaの鏡像b

鏡映変換

$$UU^{T} = (I - 2ww^{T})(I - 2ww^{T})^{T}$$

= $I - 4ww^{T} + 4ww^{T}ww^{T} = I$

U は直交変換

Householder変換

$$||a||^{2} = ||b||^{2} \Rightarrow \exists U \quad \text{such that} \quad Ua = b$$

$$w = \frac{a - b}{||a - b||} \quad \forall \forall \exists \forall b \in Ua = (I - 2ww^{T})a$$

$$= a - \frac{(a - b)(a - b)^{T}}{||a - b||^{2}} 2a$$

$$= a - \frac{(a - b)(a - b)^{T}}{||a - b||^{2}} \{(a - b) + (a + b)\}$$

$$= a - (a - b) - \frac{(a - b)(||a||^{2} - ||b||^{2})}{||a - b||^{2}}$$

$$= b$$

Householder変換

$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1m} \\ x_{21} & x_{22} & \cdots & x_{2m} \\ \vdots & \vdots & & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nm} \end{bmatrix}, a_{1} = \begin{bmatrix} x_{11} \\ x_{11} \\ \vdots \\ x_{11} \end{bmatrix}, b_{1} = \begin{bmatrix} x_{11}^{(1)} \\ 0 \\ \vdots \\ x_{11} \end{bmatrix} \quad x_{11}^{(1)} = \mp ||a_{1}||$$

$$U_{1}X = \begin{bmatrix} x_{11}^{(1)} & x_{12}^{(1)} & \cdots & x_{1m}^{(1)} \\ 0 & x_{22}^{(1)} & \cdots & x_{2m}^{(1)} \\ \vdots & \vdots & & \vdots \\ 0 & x_{n2}^{(1)} & \cdots & x_{mm}^{(1)} \end{bmatrix} \quad U_{2}U_{1}X = \begin{bmatrix} x_{11}^{(1)} & x_{12}^{(1)} & x_{13}^{(1)} & \cdots & x_{1m}^{(1)} \\ 0 & x_{22}^{(2)} & x_{23}^{(2)} & \cdots & x_{2m}^{(2)} \\ 0 & 0 & x_{33}^{(2)} & \cdots & x_{3m}^{(2)} \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & x_{n3}^{(2)} & \cdots & x_{nm}^{(2)} \end{bmatrix}$$

Householder法のメリット

- 1. 精度が良い(倍精度に相当)
- 2. 計算効率的
- 3. 上三角行列がモデル推定に必要な全情報を持つ
- 4. 時系列モデリングに便利
- 5. データの併合・モデルの併合等が容易

▶ 時系列モデルの最小二乗法に利用される

部分回帰モデル

 y_n : 目的変数

 x_{nj} : 説明変数 (j=1,...,m)

$$\{x_{n,j_1},\dots,x_{n,j_k}\}$$
: 部分回帰変数

$$y_n = \sum_{i=1}^k a_{j_i} x_{n,j_i} + \varepsilon_n, \quad \varepsilon_n \sim N(0, \sigma^2)$$
 次数 k $\gamma \in \mathcal{S} = (a_{j_i}, ..., a_{j_k}, \sigma^2)$

次数kには $_{m}C_{k}$ 個の部分回帰モデルがある

部分回帰モデルの推定

 (ℓ_1,\ldots,ℓ_m) : 説明変数の優先順位

$$(j_1,\ldots,j_m)$$
: (ℓ_1,\ldots,ℓ_m) の逆関数 $(\ell_{ji}=i)$

左から順に非零要素の数を $(j_1,...,j_m,m+1)$ にする.

例

$$S \implies T = \begin{bmatrix} t_{11} & t_{12} & t_{13} & t_{14} & t_{15} \\ t_{21} & 0 & t_{23} & t_{24} & t_{25} \\ t_{31} & 0 & t_{33} & 0 & t_{35} \\ t_{41} & 0 & 0 & 0 & 0 & t_{45} \\ 0 & 0 & 0 & 0 & t_{55} \end{bmatrix}$$

部分回帰モデルの推定

例: x_2, x_4, x_3, x_1 の順に採用する場合

$$T = \begin{bmatrix} t_{11} & t_{12} & t_{13} & t_{14} & t_{15} \\ t_{21} & 0 & t_{23} & t_{24} & t_{25} \\ t_{31} & 0 & t_{33} & 0 & t_{35} \\ t_{41} & 0 & 0 & 0 & t_{45} \\ 0 & 0 & 0 & 0 & t_{55} \end{bmatrix}$$

$$AIC(\ell_1, ..., \ell_k) = N(\log 2\pi \hat{\sigma}_j^2(\ell_1, ..., \ell_k) + 1) + 2(k+1)$$

$$egin{bmatrix} t_{1,\ell_1} & \cdots & t_{1,\ell_k} \ & \ddots & draingle \ 0 & t_{k,j_k} \end{bmatrix} egin{bmatrix} b_{\ell_1} \ draingle \ b_{\ell_k} \end{bmatrix} = egin{bmatrix} t_{1,m+1} \ draingle \ t_{k,m+1} \end{bmatrix}$$

説明変数(m)と部分回帰モデルの数 (2^m)

m	2^m
5	32
10	1,024
15	32,768
20	1,048,576
25	33,554,432
30	1,073,741,824
35	34,359,738,368
40	1,099,511,627,776

- *m* >35 以上ではあまり実用的でない
- 多変量時系列モデルはもう少し構造を入れて探索する

•

Hocking-Leslie アルゴリズム

$$\sigma_1^2 \le \sigma_2^2 \le \cdots \le \sigma_m^2$$

k 個以下の変数の部分集合を削除したモデルの残差分散が σ_{k+1}^2 以下ならば,k+1 個以上の変数をひとつでも削除したモデルの残差分散がそれより小さくなることはない.

実際に推定したモデル数

m=10 の場合

Number of models				
k	A IC	ALL	H-L	
0	521.0	1	1	
1	127.3	10	10	
2	110.1	4 5	9	
3	95.1	120	3 6	
4	94.7	2 1 0	8 4	
5	95.3	252	2 1	
6	95.8	210	3 5	
7	97.8	120	10	
8	99.7	4 5	6	
9	101.7	10	1 0	
10	103.7	1	1	
		1024	2 2 3	

m=20 の場合

	Number of Models				
k	ALL	H-L H	[-L(2)	H-L(3)	H-L(4)
0	1	1	1	1	1
1	20	20	20	20	20
2	190	19	19	19	19
3	1140	171	171	171	171
4	4845	969	969	514	514
5	15504	3876	3876	1601	1535
6	38760	11628	7260	3620	3256
7	77520	27132	9023	4315	1021
8	125970	6188	1832	555	140
9	167960	4368	2366	585	85
10	184756	3003	1056	205	73
11	167960	2002	46	19	19
12	125970	495	53	29	21
13	77520	330	71	13	12
14	38760	84	13	7	7
15	15504	21	6	6	6
16	4845	15	6	6	4845
17	1140	10	5	1140	1140
18	190	6	190	190	190
19	20	20	20	20	20
20	1	1	1	1	1
	1048576	60359	27004	13037	13096
		5.7%	2.6%	1.2%	1.2%

実際に推定したモデル数 (m=30の場合)

k		Number of Models			
	ALL	H-L	H-L(2)	H-L(3)	H-L(4)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	1 30 435 4060 27405 142506 593775 2035800 5852926 14307150 30045015 54627300 86493225 119759850 145422675 155117520 145422674 119759850 86493225 54627300 30045015 14307150 5852925 2035800 593775 142506 27405 4060 435 30	1 30 29 406 3654 2371 118755 475020 1560780 4292145 10015005 20030010 34597290 21474180 30421755 17383860 9657700 5200300 2704156 2496144 646646 167960 43758 1716 210 126 15 10 30 10	1 30 29 406 3654 23751 118755 475020 1560780 2072070 5328180 4263050 2771131 3860990 5327239 2163454 1360306 613225 108418 25235 2121 372 407 205 19 7 435 30 1	1 30 29 406 3654 23751 65625 244690 672751 1456774 1100320 1049505 1127403 811995 411535 233228 125643 30823 3482 557 353 159 91 31 13 6 8 4060 435 30	1 30 29 406 3654 11101 52975 179516 416592 474832 220510 272794 224052 114793 76331 43745 18592 2308 171 239 85 46 31 14 9 6 27405 4060 435 30 1
	1073741824	161315453 15.02%	30079337 2.80%	7367489 0.69%	2144793 0.20%

今後の予定

1	4/10	時系列の前処理と	イントロダクション、時系列の前処理
2	4/17	可視化 	共分散関数,スペクトルとピリオドグラム
3	4/24	モデリング	統計的モデリング・情報量規準AIC
4	5/8	ーモアリンク	最尤法、最小二乗法、ベイズモデル
5	5/15		ARMAモデルによる時系列の解析
6	5/22	定常時系列モデル	ARモデルの推定・応用
7	5/29		局所定常ARモデル,統計的制御
8	6/5		状態空間モデルによる時系列の解析
9	6/12	 状態空間モデル	ARMAモデルの推定,トレンドの推定
10	6/19	1人忠全国モブル	季節調整モデル
11	6/26		ボラティリティ、時変係数ARモデル
12	7/3	非線形・非ガウス型	一般状態空間モデル、ガウス和フィルタ
13	7/10	モデル	粒子フィルタ、シミュレーション