Amendments to the Claims:

1	1. (Cancelled).
1	2. (Currently Amended) The mass analyzer of claim 45, wherein the electron filament is
2	configured to generate electrons when heated in an electric field of less then 70
3	volts per centimeter.
1	3. (Currently Amended) The mass analyzer of claim 15, wherein the electron filament is
2	configured to generate electrons when heated in an electric field of less then 50
3	volts per centimeter.
1	4. (Currently Amended) The mass analyzer of claim 15, wherein the electron filament is
2	configured to generate electrons while a background pressure in the source is
3	greater than 1.0×10^{-4} Torr.
1	5. (Currently Amended) A mass analyzer comprising an electron source, the electron
2	source including:
3	an electron filament coupled to an electrical supply, the electron filament
4	including a conductive wire or conductive ribbon, the electron filament
5	configured to generate electrons when heated and configured to generate
5	electrons while a background pressure in the source is greater than 1.0 x
7	<u>10⁻⁵ Torr;</u>
3	a plurality of nanofilaments disposed on the surface of the electron filament; and

9	a filament body for positioning the electron filament relative to a mass filter The
10	mass analyzer of claim 1, wherein the electron filament is configured to
11	generate electrons while a background pressure in the source is greater
12	than 1.0 x 10 ⁻⁵ . Torr.
1	6. (Cancelled)
1	7. (Currently Amended) A mass analyzer comprising an electron source, the electron
2	source including:
3	an electron filament coupled to an electrical supply configured to pass a current
4	through the electron filament;
5	a plurality of nanofilaments disposed on the surface of the electron filament;
6	a filament body for positioning the electron filament relative to a mass filter; and
7	a magnetic field configured for directing electrons generated using the electron
8	filament. The mass analyzer of claim 6, wherein the means for directing
9	electrons is a magnetic field.
1	8. (Currently Amended) A mass analyzer comprising an electron source, the electron
2	source including:
3	an electron filament coupled to an electrical supply configured to pass a current
4	through the electron filament;
5	a plurality of nanofilaments disposed on the surface of the electron filament;
6	a filament body for positioning the electron filament relative to a mass filter; and
7	means for directing electrons generated using the electron filament;

8	The mass analyzer of claim 6, wherein the electron source is configured such that
9	the directed electrons are accelerated to an energy of approximately 70
10	electron volts.
1	9. (Currently Amended) The mass analyzer of claim 67, wherein the nanofilaments
2	include carbon nanotubes.
1	10. (Currently Amended) The mass analyzer of claim 68 , wherein the nanofilaments
•	
2	include boron.
1	11. (Currently Amended) The mass analyze of claim 67, wherein the wherein the electron
2	source is configured to generate electrons for electron capture ionization.
1	12. (Currently Amended) The mass analyzer of claim 68 , wherein the electron source is
2	configured to generate electrons for electron impact ionization.
1	13. (Currently Amended) The mass analyzer of claim 67, wherein the electron source is
2	configured to generate electrons for chemical ionization.
1	14. (Currently Amended) The mass analyzer of claim 67, wherein the electron source is
2	configured to generate electrons for ion fragmentation.
1	15. (Currently Amended) The mass analyzer of claim 68, wherein the electron filament is
2	a ribbon or wire.
1	16. (Currently Amended) The mass analyzer of claim 67, further including a mass filter.

1	17. (Currently Amended) The mass analyzer of claim 68, further including a sample
2	source.
1	18. (Cancelled).
1	19. (Currently Amended) The filament assembly of claim 1820, wherein the electron
2	filament is a wire or a ribbon.
1	20. (Currently Amended) A filament assembly comprising:
2	an electron filament coupled to an electrical supply configured to provide a
3	current through the electron filament and to hold the electron filament at a
4	potential of approximately 70 Volts relative to part of an electron source;
5	a plurality of nanofilaments disposed on the surface of the electron filament; and
6	means for positioning the electron filament. The filament assembly of claim 18,
7	wherein the potential is approximately 70 Volts
1	21. (Original) An analysis system comprising:
2	an electron filament coupled to an electrical supply configured to pass a current
3	through the electron filament and to hold the electron filament at a
4	potential of approximately 70 Volts relative to an other part of the analysis
5	system, the electron filament including a conductive wire or conductive
6	ribbon, the electron filament configured to generate electrons when
7	heated;

8

a plurality of nanofilaments disposed on the surface of the electron filament;

9	a filament body for positioning the electron filament relative to the other part of
10	the analysis system;
11	means for directing electrons generated using the electron filament;
12	a mass filter configured to filter ions generated using the generated electrons; and
13	an ion detector configured to detect the filtered ions.
1	22. (Original) The analysis system of claim 21, further including a chromatograph
2	configured to introduce a sample to the mass filter.
1	23. (Original) The analysis system of claim 21, further including a second mass filter
2	configured to introduce a sample to the mass filter configured to filter ions
3	generated using the generated electrons.
1	24. (Original) A method of analyzing a sample comprising:
2	generating electrons with energy of approximately 70eV, using an electron
3	filament coupled to an electrical supply configured to pass a current
4	through the electron filament and to hold the electron filament at an
5	approximate potential, the electron filament including a conductive wire or
6	conductive ribbon, the electron filament further including a plurality of
7	nanofilaments disposed on the surface of the electron filament;
8	causing the generated electrons to contact the sample;
9	ionizing the sample using the generated electrons, to produce ions;
10	separating the produced ions; and
11	detecting the separated ions.

1	25. (Currently Amended) The method of claim 24, wherein the separation separated ions
2	are separated in time.
1	26. (Original) The method of claim 24, wherein the produced ions are produced using
1	
2	chemical ionization.
1	27. (Original) The method of claim 24, further including maintaining a background
2	pressure greater than 1 x 10 ⁻⁵ Torr.
1	28. (Cancelled)
1	29. (Currently Amended) The method of claim 2830, further including generating the ion
2	using a mass filter.
1	30. (Currently Amended) A method of analyzing a sample comprising:
1	
2	generating electrons using an electron filament coupled to an electrical supply
3	configured to pass a current through the electron filament and to hold the
4	electron filament at an approximate potential, the electron filament
5	including a conductive wire or conductive ribbon, the electron filament
6	further including a plurality of nanofilaments disposed on the surface of
7	the electron filament;
8	causing the generated electrons to contact an ion in a region with a background
9	pressure of greater than 1 x 10 ⁻⁴ Torr;
10	fragmenting the ion using the generated electrons, to produce an ion fragment;
11	filtering the produced ion fragment; and

12	detecting the filtered ion fragment. The method of claim 28, wherein the generated
13	electrons are caused to contact the ion in a region with a background
14	pressure of greater then 1 x 10 ⁻⁴ -Torr.
1	31. (Original) A filament assembly comprising:
2	an electron filament configured to be coupled to an electrical supply for providing
3	a current through the electron filament and for holding the electron
4	filament at a potential relative to part of an electron source; and
5	a plurality of nanoparticles disposed within the electron filament.
1	32. (Original) The filament assembly of claim 31, wherein the nanoparticles are
2	configured to modify grain boundaries within the electron filament.
1	33. (Original) The filament assembly of claim 31, wherein the nanoparticles include
2	polyhederal oligomeric silsesquioxane.
1	34. (Currently Amended) The filament assembly of claim 31, wherein the nanoparticles
2	include a silicon compound of the chemical composition shown in FIG. 7
3	$\underline{\mathbf{Si}_{8}O_{8}\mathbf{R}_{8}}$.
1	35. (Cancelled).
1	36. (Original) The filament assembly of claim 31, further including means for
2	positioning the electron filament relative to a mass filter.

- 1 37. (Original) The filament assembly of claim 31, wherein the potential relative to part
- of an electron source is approximately 70 Volts.
- 1 38. (Original) The filament assembly of claim 31, further including means for
- 2 positioning the electron filament relative to an electron gun.
- 1 39. (New) The mass analyzer of claim 8, further including a mass filter.
- 1 40. (New) The mass analyzer of claim 8, wherein the nanofilaments include carbon
- 2 nanotubes.
- 1 41. (New) The mass analyzer of claim 7, wherein the electron source is configured to
- 2 generate electrons for electron impact ionization.