Mattia Bianchi Barbara Franci Sergio Grammatico

1 Infinite horizon cost and constraints

Consider the discrete-time system

$$x(k+1) = \left[\begin{array}{cc} 0.3 & -0.9 \\ -0.4 & -2.1 \end{array} \right] x(k) + \left[\begin{array}{c} 0.5 \\ 1 \end{array} \right] u(k),$$

subject to the constraints

$$|x_1 + x_2| \le 1$$
, $|x_1 - x_2| \le 1$.

1. By considering the proportional feedback law u(k) = Kx(k), $K = [0.4 \ 1.8]$, show by hand that the following set is a valid terminal constraint set:

$$X_f := \{x \in \mathbb{R}^2 \mid |x_1 + x_2| \le 1, |x_1 - x_2| \le 1\}.$$

Hint: Consider what happens on the vertices of X_f .

2. Describe a procedure for determining the largest terminal constraint set for a given, stabilizing feedback gain K.

2 Infinite horizon cost to go as terminal penalty

Consider the discrete-time system

$$x(k+1) = \left[\begin{array}{cc} 2 & 1 \\ 0 & 2 \end{array} \right] x(k) + \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] u(k),$$

subject to the following constraints:

$$x \in \mathbb{X} \coloneqq \left\{ x \in \mathbb{R}^2 \mid |x_1| \le 5 \right\}, \ u \in \mathbb{U} \coloneqq \left\{ u \in \mathbb{R}^2 \mid -\mathbf{1}_2 \le u \le \mathbf{1}_2 \right\}.$$

Algorithm 1:

Initialization: Set k := 0

Iteration:

For all i = 1, 2, ..., s

$$x_i^{\star} := \begin{cases} \underset{x}{\operatorname{argmax}} & f_i(A_K^{k+1} x) \\ \text{s.t.} & f_j(A_K^t x) \le 0, \quad \forall j \in \{1, 2, \dots, s\}, \ \forall t \in \{0, 1, \dots, k\} \end{cases}$$

End

If $f_i(A_K^{k+1}x_i^*) \leq 0 \ \forall i \in \{1, 2, \dots, s\} \longrightarrow$ then set $k^* = k$ and define

$$X_f := \{x \in \mathbb{R}^n \mid f_i(A_K^t x) \le 0, \ \forall i \in \{1, 2, \dots, s\}, \ \forall t \in \{0, 1, \dots, k^*\}\}.$$

Else set k := k + 1 and continue.

The cost function of the optimal control problem is

$$V_N(x_0, \boldsymbol{u}_N) = \frac{1}{2} \sum_{k=0}^{N-1} (\|x(k)\|_Q^2 + \|u(k)\|^2) + V_f(x),$$

where $Q = \begin{bmatrix} \alpha & 0 \\ 0 & \alpha \end{bmatrix}$, $V_{\rm f}(x) = \frac{1}{2} x^{\top}(N) Px(N)$ and P is the solution of the steady-state Riccati equation. Set N=3 and $\alpha=10^{-5}$.

- 1. Compute the infinite horizon optimal cost and control law for the unconstrained system.
- 2. By using the control law for the unconstrained system, let us consider the following set:

$$\mathcal{X} := \{x \in \mathbb{R}^2 \mid x \in \mathbb{X}, \ Kx \in \mathbb{U}\} = \{x \in \mathbb{R}^2 \mid f_i(x) \le 0, \ i = 1, 2, \dots, s\}.$$

Find the explicit expression for $f_i(\cdot)$, for all $i = 1, 2, \ldots, s$.

Apply Algorithm 1 to find \mathbb{X}_f , the maximal constraint admissible set for the system $x(k+1) = (A+BK)x(k) = A_Kx(k)$ with constraint $x \in \mathcal{X}$. Numerically check that

Algorithm 2: Solution algorithm for m = 1 (1 input)

Input: $G \in \mathbb{R}^{s \times n}$, $H \in \mathbb{R}^{s \times 1}$ and $\psi \in \mathbb{R}^{s \times 1}$

Single iteration:

- 1. Identify the following subset of $S := \{1, 2, \dots, s\}$
 - $I^0 \coloneqq \{i \in \mathcal{S} \mid H(i) = 0\}$, with cardinality $s^0 \coloneqq |I^0|$
 - $I^+ := \{i \in \mathcal{S} \mid H(i) > 0\}$, with cardinality $s^+ := |I^+|$
 - $I^- := \{i \in \mathcal{S} \mid H(i) < 0\}$, with cardinality $s^- := |I^-|$
- 2. Let $C := [G \ \psi]$ and define the matrix $D \in \mathbb{R}^{r \times (n+1)}$, $r = s^0 + s^+ s^-$, as follows

$$D(i,:) := \begin{cases} C(i,:), & \forall i \in I^0 \\ H(i)C(j,:) - H(j)C(i,:), & \forall i \in I^+, \forall j \in I^- \end{cases}$$

Output: Extract $P := D(:, 1 : \text{end} - 1), \gamma := -D(:, \text{end}).$

$$\mathbb{X}_{\mathbf{f}} = \left\{ x \in \mathbb{R}^2 \mid \begin{bmatrix} -1.23 & -0.9 \\ 1.35 & 0.9 \\ -0.225 & -1.65 \\ 0.225 & 1.65 \end{bmatrix} x \le \mathbf{1}_4 \right\}.$$

3. Add a terminal constraint $x(N) \in \mathbb{X}_f$ and implement the constrained MPC with $x(0) = x_0 = [0.5 \ 0.5]^{\top}$. Find matrices and vector G, H and ψ that described the linear representation of the following set:

$$\mathbb{Z} := \{(x, \mathbf{u}_3) \mid x, \phi(1; k, \mathbf{u}_3), \phi(2; k, \mathbf{u}_3), \phi(3; k, \mathbf{u}_3) \in \mathbb{X}, \ \mathbf{u}_3 \in \mathbb{U}^6 \}.$$

Apply Algorithm 2-3 to compute \mathcal{X}_N , the region of attraction for the MPC problem with $V_f(\cdot)$ as the terminal cost and $x(N) \in \mathbb{X}_f$ as the terminal constraint.

4. Estimate by hand the set of initial states (\mathcal{X}_N^0) for which the MPC control sequence with control horizon N is equal to the MPC control sequence for an infinite horizon.

Hint: Recall that $x \in \mathcal{X}_N^0$ if and only if $x^0(N; x) \in \operatorname{int}(\mathbb{X}_f)$.

Algorithm 3: Solution algorithm for m > 1

Input: $G \in \mathbb{R}^{s \times n}$, $H \in \mathbb{R}^{s \times m}$ and $\psi \in \mathbb{R}^{s \times 1}$

Initialization: Set j := m, $G_j := [G \ H(:, 1 : m - 1)]$, $H_j := H(:, m)$ and $\psi_j = \psi$.

Iteration:

- 1. Compute P_j and γ_j by means of Algorithm 2 with G_j , H_j and ψ_j
- 2. **if** j = 0

Output: Set $P=P_0, \ \gamma=\gamma_j$ and exit from Algorithm 2 else Set j:=j-1, update

$$G_j = P_{j+1}(:,1: \text{end}-1), \ H_j = P_{j+1}(:,\text{end}), \ \psi_j = \gamma_{j+1},$$
 and go to 1.

3 Terminal penalty with and without terminal constraint

Consider the discrete-time system

$$x(k+1) = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} x(k) + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} u(k),$$

subject to the constraints

$$x \in \mathbb{X} \coloneqq \left\{ x \in \mathbb{R}^2 \mid |x_1| \leq 15 \right\}, \ u \in \mathbb{U} \coloneqq \left\{ u \in \mathbb{R}^2 \mid -5 \cdot \mathbf{1} \leq u \leq 5 \cdot \mathbf{1}_2 \right\},$$

and with finite-horizon cost function

$$V_N(x_0, \boldsymbol{u}_N) = \frac{1}{2} \sum_{k=0}^{N-1} (\|x(k)\|_Q^2 + \|u(k)\|^2) + V_f(x),$$

where $Q = \begin{bmatrix} \alpha & 0 \\ 0 & \alpha \end{bmatrix}$, $V_{\rm f}(x) = \frac{1}{2} x^{\top}(N) Px(N)$ and P is the solution of the steady-state Riccati equation. Use N=3 and $\alpha=10^{-5}$.

1. As in Exercise 2, compute the infinite horizon control law for the unconstrained system and find regions \mathbb{X}_f , \mathcal{X}_N and \mathcal{X}_N^0 .

- 2. Remove the terminal constraint and estimate by hand the new domain of attraction $\tilde{\mathcal{X}}_N$. Compare $\tilde{\mathcal{X}}_N$ with \mathcal{X}_N and \mathcal{X}_N^0 computed at the previous point.
- 3. Discuss what happens if the terminal cost function changes to $V_f(x) = \frac{3}{2}x^{\top}Px$.

4 Unreachable setpoints in constrained versus unconstrained linear systems

Consider the discrete-time linear system

$$x(k+1) = \begin{bmatrix} -1 & 2 \\ 0 & -2 \end{bmatrix} x(k) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(k), \ x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 (1)

and the cost function

$$V_N^{\mathbf{a}}(x_0, \boldsymbol{u}_N) = \frac{1}{2} \sum_{k=0}^{N-1} \ell(x(k), u(k)) =$$

$$= \frac{1}{2} \sum_{k=0}^{N-1} (x(k) - x^{\star})^{\top} Q(x(k) - x^{\star}) + (u(k) - u^{\star})^{\top} R(u(k) - u^{\star}),$$
(2)

where $x^* = [3, 3]^\top$, $u^* = 1$ is a given set-point, with weight matrices

$$Q = \begin{bmatrix} 1 & 2 \\ 2 & 6 \end{bmatrix}, \ R = 2I.$$

- 1. Determine if (x^*, u^*) is an equilibrium point for the system in (1) and compute the value of the cost function for the infinite horizon problem.
- 2. Compute the optimal steady state (x_s, u_s) , i.e., the pair (x, u) that satisfies

$$(x_{\mathrm{s}}, u_{\mathrm{s}}) = \begin{cases} \underset{x \in \mathbb{R}^{2}, u \in \mathbb{R}}{\operatorname{argmin}} & \ell(x, u) \\ \text{s.t.} & (x, s) \text{ steady state for (1)} \end{cases}$$

Then, consider the cost function

$$V_N^{\rm b}(x_0, \boldsymbol{u}_N) = \frac{1}{2} \sum_{k=0}^{N-1} (x(k) - x_{\rm s})^{\top} Q(x(k) - x_{\rm s}) + (u(k) - u_{\rm s})^{\top} R(u(k) - u_{\rm s}).$$
(3)

Set $x_0 = x(0)$, N = 5, and the terminal constraint $x(N) = x_s$.

Solve two different MPC control problems for the cost functions (2) and (3), and compare the results.

Hint: You should get the same input sequence for the two control problems.

3. Consider the input constraint |u(k)| < 2. Compute the optimal steady state (x_c, u_c) , i.e., the pair (x, u) that satisfies

$$(x_{c}, u_{c}) = \begin{cases} \underset{x \in \mathbb{R}^{2}, |u| < 2}{\operatorname{s.t.}} & (x, u) \\ \text{s.t.} & (x, s) \text{ steady state for (1)} \end{cases}$$

Then, consider the cost function

$$V_N^{c}(x_0, \boldsymbol{u}_N) = \frac{1}{2} \sum_{k=0}^{N-1} (x(k) - x_c)^{\top} Q(x(k) - x_c) + (u(k) - u_c)^{\top} R(u(k) - u_c).$$
(4)

Set $x_0 = x(0)$, N = 5, and the terminal constraint $x(N) = x_c$.

Solve two different MPC control problems for the cost functions (2) and (4) and compare the results.

5 Terminal penalty and input constraints

Consider the discrete-time linear system

$$x(k+1) = \begin{bmatrix} 0.1 & 0 \\ 0 & 2 \end{bmatrix} x(k) + \begin{bmatrix} -1 \\ 1 \end{bmatrix} u(k), \ x(0) = \begin{bmatrix} 100 \\ 0.4 \end{bmatrix}$$

and the cost function

$$V_N(x_0, \boldsymbol{u}_N) = \frac{1}{2} \sum_{k=0}^{N-1} \left\{ x(k)^{\top} Q x(k) + u(k)^{\top} R u(k) \right\} + x(N)^{\top} P x(N)$$

with

$$Q = \begin{bmatrix} 100 & 0 \\ 0 & 0.1 \end{bmatrix}, \ R = 0.1 I$$

Choose N=2.

- 1. Determine if the system controllable. Choose P so that the unconstrained MPC is equivalent to the infinite horizon problem. Simulate the closed-loop system on MATLAB.
- 2. Consider the constraint |u| < 0.6. Simulate the closed-loop system with the same weight P as in point 1. Determine if the closed-loop system is stable.
- 3. Repeat point 2, but this time take N=10. Determine if the closed-loop system is stable.