Math 461 Homework 5

Paul Hacking

October 31, 2019

Reading: Stillwell, Sections 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6.

Justify your answers carefully. Complete proofs are expected (as in MATH 300).

- (1) Consider the circle with center the origin and radius 1 and the circle with center (1,2) and radius 2.
 - (a) Find the intersection points of the two circles.
 - (b) Eliminating x^2 and y^2 from the equations of the two circles gives a linear equation in x and y. What is the geometric meaning of this equation?
- (2) Find the center and radius of the circle passing through the points A = (0,0), B = (1,2), and C = (-1,3).
- (3) Let $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ be an isometry. We define the *fixed locus* of T to be the set

$$\{(x,y) \in \mathbb{R}^2 \mid T(x,y) = (x,y)\}.$$

Determine the fixed locus of T in each of the following cases: (a) the identity, (b) a translation, (c) a rotation, (d) a reflection, (e) a glide reflection.

- (4) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a glide reflection. Show that T^2 is a translation. (Here T^2 denotes the composition $T \circ T$.)
- (5) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be an isometry. Suppose that $T^n = \text{id}$ for some positive integer n. (Here T^n denotes the composition $T \circ T \circ \cdots \circ T$ where there are n copies of T.) What are the possibilities for T? Justify your answer carefully.

- (6) Compute the formula T(x,y) = (a(x,y),b(x,y)) for the isometry T in each of the following cases.
 - (a) T is rotation about the point P=(1,2) through angle $\pi/2$ counterclockwise.
 - (b) T is reflection in the line y = 2.
 - (c) T is a glide reflection given by reflection in the line y = -x followed by translation by (2, -2).
- (7) In each of the following cases, describe the given isometry T as a translation, rotation, reflection, or glide reflection. For a translation, give the translation vector. For a rotation give the center, angle, and sense (counterclockwise or clockwise) of rotation. For a reflection give the line of reflection. For a glide reflection give the line of reflection and the translation vector.
 - (a) T(x,y) = (-x, -y).
 - (b) $T(x,y) = \frac{1}{5}(4x + 3y + 2, 3x 4y 6).$
 - (c) $T(x,y) = \frac{1}{5}(3x 4y + 8, 4x + 3y + 4).$
 - (d) T(x,y) = (y+4, x+8).

[Hint: One possible approach is as follows: To determine the type of T, compute the fixed locus and use Q3. For a rotation, find the angle using the formula $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ for the rotation matrix. For a glide reflection, find the translation vector using Q4, then use this to determine the line of reflection.]