Connected Stocks: Evidence from Tehran Stock Exchange

S.M. Aghajanzadeh M. Heidari M. Mohseni

Tehran Institute for Advanced Studies

February, 2021

Table of Contents

- Motivation
- 2 Literature
- 3 Empirical Studies
- 4 Results
- 6 Robustness Check
- Identification Method

Motivation

Research Question

- Can common ownership cause stock return comovement ?
 - We connect stocks through common ownership by blockholders (ownership > 1%)
 - We focus on excess return comovement for a pair of stocks
 - We use common ownership to forecast cross-sectional variation in the realized correlation of four-factor + industry residuals

Why does it matter?

- Covariance
 - Covariance is a key component of risk in many financial applications.
 (Portfolio selection, Risk management, Hedging and Asset pricing)
 - Covariance is a significant input in risk measurement models (Such as Value-at-Risk)
- Return predictability
 - If it's valid, we can build a profitable buy-sell strategy

Table of Contents

- Motivation
- 2 Literature
- 3 Empirical Studies
- 4 Results
- 6 Robustness Check
- 6 Identification Method

Main

Common-ownership comovement efect

[Antón and Polk (2014)]

Stocks sharing many common investors tend to comove more strongly with each other in the future than otherwise similar stocks.

Common-ownership liquidity demand

[Koch et al (2016) ,Pastor and Stambaugh (2003), Acharya and Pedersen (2005)] Commonality in stock liquidity is likely driven by correlated trading among a given stock's investors. Commonality in liquidity is important because it can influence expected returns

• Trading needs and comovement

[Greenwood and Thesmar (2011)]

If the investors of mutual funds have correlated trading needs, the stocks that are held by mutual funds can comove even without any portfolio overlap of the funds themselves

Stock price synchronicity and poor corporate governance

[Boubaker et al. (2014), Khanna, Thomas (2009), Morck et al. (2000)] Stock price synchronicity has been attributed to poor corporate governance and a lack of firm-level transparency. On the other hand, better law protection encourages informed trading, which facilitates the incorporation of firm-specific information into stock prices, leading to lower synchronicity

Papers' Detail

Table of Contents

- Motivation
- 2 Literature
- 3 Empirical Studies
 - Measuring Common Ownership
 - Correlation Calculation
 - Controls
- 4 Results
- 6 Robustness Check
- 6 Identification Method

Sum

$$FCAP_{ij,t} = \frac{\sum_{f=1}^{F} (S_{i,t}^{f} P_{i,t} + S_{j,t}^{f} P_{j,t})}{S_{i,t} P_{i,t} + S_{j,t} P_{j,t}}$$

SQRT

Quadratic

$$\frac{\left[\frac{\sum_{f=1}^{F}(\sqrt{S_{i,t}^{f}P_{i,t}}+\sqrt{S_{j,t}^{f}P_{j,t}})}{\sqrt{S_{i,t}P_{i,t}}+\sqrt{S_{j,t}P_{j,t}}}\right]^{2}}{\sqrt{S_{i,t}P_{i,t}}+\sqrt{S_{j,t}P_{j,t}}}$$

$$\left[\frac{\sum_{f=1}^{F}[(S_{i,t}^{f}P_{i,t})^{2}+(S_{j,t}^{f}P_{j,t})^{2}]}{(S_{i,t}P_{i,t})^{2}+(S_{j,t}P_{j,t})^{2}}\right]^{-1}$$

Intuition

If two stocks in a pair have n mutual owner, with equal shares of the whole market cap, the mentioned indexes equal n. Proof

Comparison

Comparison of three methods for calculating common ownership

Example of three common owner

Example of three common owner

Ownership	Type I	Type II	Type III	Type IV	Type V	Type VI	Type VII
x ₁	1/3	10	20	5	10	20	1
<i>y</i> ₁	1/3	10	10	5	10	20	1
<i>x</i> ₂	1/3	80	10	5	10	20	1
<i>y</i> ₂	1/3	80	20	5	10	20	1
<i>X</i> 3	1/3	10	70	5	10	20	1
<i>y</i> 3	1/3	10	70	5	10	20	1
SQRT	3	2.33	2.56	0.45	0.9	1.8	0.09
SUM	1	1	1	0.15	0.3	0.6	0.03
Quadratic	3	1.52	1.85	133.33	33.33	8.33	3333.33

Conclusion

We use the SQRT formula because it has an acceptable variation and has fair values at lower level of common ownership.

Data Summary

- We use blockholders' data from 2015/03/25 to 2020/11/16
 - Include of 1362 Day, 153 Fortnight and 69 Month
 - Consists of 605 firm inculding 340 firm with common owners

Year	2015	2016	2017	2018	2019	2020	Mean
No. of Firms	351	378	504	530	567	590	487
No. of Holders	719	870	1222	1305	1354	1347	1136
Av. Owners' Percent	20.93	21.54	20.47	23.14	25.61	25.17	22.81
Median of Owners' Percent	7.66	6.95	6.89	7.22	9.31	9.51	7.92
Av. Number of Owners	5	5	5	5	5	4	5
Max. Number of Owners	20	22	29	28	24	24	25
Av. Ins. Ownership	71.99	71.67	68.63	78.12	78.48	69.24	73.02
No. of Groups	42	43	47	48	48	48	46
No. of Firms not in Groups	109	120	183	181	216	240	175
No. of Firms in Groups	242	265	329	349	351	350	314
Avg. Number of Members	6	6	7	7	7	7	7
Max. Number of Members	24	25	27	29	29	29	27

Pair Composition

- · Pairs consist of two firms with at least one common owner
 - 10310 unique pairs which is 18% of possible pairs ($\frac{340*399}{2} = 67830$)

Number of unique paris

Frequency	mean	min	median	max
Fortnightly	4161	2626	4101	5397
Monthly	4397	3010	4247	5485

Year	2015	2016	2017	2018	2019	2020	Mean
No. of Pairs	4259	5307	6297	6800	6197	4877	5623
Median of Owners' Percent	10.44	10.53	10.71	10.48	10.42	11	11
Av. Number of Owners	6	6	6	6	6	6	6
Max. Number of Owners	8	8	8	8	8	8	8
Av. Ins. Ownership	80.99	81.94	82.36	83.26	83.7	83.62	83
No. of Pairs not in Groups	0	0	0	0	0	0	0
No. of Pairs not in one Group	3668	4689	5524	5804	5220	3931	4806
No. of Pairs in one Group	591	697	930	999	977	946	857
Avg. Number of Pairs in one Group	21	21	23	23	23	23	22
Max. Number of Pairs in one Group	107	116	121	130	124	115	119

Business Group

FCA vs. FCAP Summary Monthly

	variable	count	mean	std	min	median	max
Total	FCA	303419	0.168	0.269	0.002	0.059	4.342
TOLAI	FCAP	303419	0.142	0.190	0.002	0.054	0.999
Same Group	FCA	50808	0.486	0.417	0.003	0.432	4.342
Same Group	FCAP	50808	0.391	0.259	0.004	0.400	0.999
Not Same Group	FCA	253163	0.104	0.165	0.002	0.045	2.813
Not Same Group	FCAP	253163	0.091	0.122	0.002	0.043	0.999
Come Industry	FCA	46797	0.379	0.419	0.007	0.243	4.342
Same Industry	FCAP	46797	0.292	0.259	0.006	0.208	0.999
Not Same Industry	FCA	257174	0.129	0.210	0.002	0.049	2.869
Not Same industry	FCAP	257174	0.114	0.160	0.002	0.046	0.999

FCA vs. FCAP Distributions

Monthly

Correlation Calculation

4 Factor + Industry

- Calculate correlation of returns' residuals from the model for each firm:
 - CAPM + Industry (2 Factor):

$$R_{i,t} - R_{F,t} = \alpha_i + \beta_{mkt,i} (R_{M,t} - R_{F,t}) + \beta_{Ind,i} (R_{Ind,t} - R_{F,t}) + \boxed{\varepsilon_{i,t}}$$

• 4 Factor:

$$R_{i,t} - (R_{F,t}) = \alpha_i + \beta_{mkt,i} (R_{M,t} - R_{F,t}) + \beta_{HML,i} HML_t + \beta_{SMB,i} SMB_t + \beta_{UMD,i} UMD_t + \varepsilon_{i,t}$$

• 4 Factor + Industry (5 Factor) :

$$R_{i,t} - R_{F,t} = \alpha_i + \beta_{mkt,i} (R_{M,t} - R_{F,t}) + \beta_{Ind,i} (R_{Ind,t} - R_{F,t}) + \beta_{HML,i} HML_t + \beta_{SMB,i} SMB_t + \beta_{UMD,i} UMD_t + \boxed{\varepsilon_{i,t}}$$

Correlation Calculation Results

Factors	count	mean	std	min	max
SMB	1374	0.19	1.47	-5.64	19.52
HML	1374	-0.12	1.39	-4.90	23.20
Winner – Loser	1374	0.69	1.06	-2.61	8.58
Market	1374	0.24	1.23	-4.71	4.89

$ ho_{ij,t}$	count	mean	std	min	25%	50%	75%	max
Monthly5	292895	0.015	0.326	-1	-0.19	0.01	0.22	1
Monthly2	292895	0.016	0.327	-1	-0.19	0.01	0.22	1
Monthly4	292895	0.057	0.345	-1	-0.17	0.05	0.28	1

Conclusion

We use the 4 Factor + Industry model to control for exposure to systematic risk because it almost captures all correlations between two firms in each pair.

Controls

- ρ_t : Current period correlation
- ActiveHolder: Dummy variable for whether at least one holder is Active. (the active holder is the one whose average percentage change is greater than median)
- SameGroup: Dummy variable for whether the two stocks belong to same business group.
- SameIndustry: Dummy variable for whether the two stocks belong to same Industry.
- SameSize : The negative of absolute difference in percentile ranking of size across a pair
- SameBookToMarket : The negative of absolute difference in percentile ranking of the book to market ratio across a pair

Summary of Controls

Monthly

Type of Pairs	Yes	No
SameIndustry	1142	9125
	(11.1%)	(88.9%)
SameGroup	1173	9094
	(11.4%)	(88.6%)
ActiveHolder	2819	7448
	(27.5%)	(72.5%)

Variable	count	mean	std	min	25%	50%	75%	max
Size1	303419	0.75	0.22	0.01	0.60	0.81	0.93	1
Size2	303419	0.47	0.26	0.00	0.26	0.44	0.66	1.00
SameSize	303419	-0.28	0.22	-0.99	-0.42	-0.24	-0.10	0.00
BookToMarket1	303419	0.52	0.27	0.00	0.31	0.54	0.74	1.00
BookToMarket2	303419	0.50	0.25	0.00	0.29	0.49	0.70	1.00
${\sf SameBookToMarket}$	303419	-0.30	0.21	-1.00	-0.43	-0.25	-0.12	0.00

Fortnightly

Regression Summary

- **Value**: We use the percentile rank of a particular characteristic for each stock in regression.
- **Interaction**: We use the interaction between percentile rankings for a particular characteristic across a pair in regression.

Table of Contents

- Motivation
- 2 Literature
- 3 Empirical Studies
- Results
 - Logaritmic
 - Discontinuity
 - Business Group
- 6 Robustness Check
- 6 Identification Method

Future Correlation via FCA

4 Factor + Industry (Monthly)

Fama MacBeth Estimation

Monthly variables

		De	pendent Vari	abie:Future IV	iontniy Correl	ation of 4F+I	naustry Resid	iuais	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
In(FCA)	0.0107***	0.00890***	0.00510***	0.00892***	0.00409***	0.00322***	0.00321***	0.00334***	0.00355**
	(7.17)	(9.13)	(5.07)	(8.94)	(4.91)	(4.82)	(4.79)	(4.85)	(4.60)
ρ_t		0.145***	0.144***	0.145***	0.143***	0.141***	0.141***	0.141***	0.143***
		(6.36)	(6.30)	(6.36)	(6.35)	(6.51)	(6.50)	(6.48)	(6.37)
SameGroup			0.0273***		0.0215***	0.0192***	0.0190***	0.0195***	0.0227***
			(9.78)		(6.98)	(5.50)	(5.48)	(5.65)	(7.77)
ActiveHolder				0.00606***	0.00403*	0.00236	0.00246	0.00188	0.00260
				(3.63)	(2.45)	(1.30)	(1.37)	(1.04)	(1.52)
SameIndustry					0.0210***	0.0173***	0.0170***	0.0166***	0.0191***
					(4.43)	(4.77)	(4.55)	(4.37)	(4.15)
Samesize								0.0417**	0.0232***
								(3.20)	(3.99)
SameBookToMarket								0.00788*	0.00866**
								(2.51)	(2.96)
Constant	0.0456***	0.0362***	0.0217***	0.0347***	0.0158***	0.0471**	0.0558***	0.0415***	0.0238***
	(5.63)	(8.51)	(5.27)	(8.34)	(5.03)	(3.26)	(3.50)	(3.84)	(6.17)
Value	No	No	No	No	No	Yes	Yes	No	No
Interaction	No	No	No	No	No	No	Yes	Yes	No
N	287509	286678	286678	286678	286678	286678	286678	286678	286678
R^2	0.00211	0.0380	0.0391	0.0383	0.0407	0.0441	0.0450	0.0439	0.0417

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

4 Factor + Industry Future Correlation via FCA*

Normalized Rank Transformed for each cross section (Monthly)

Fortnightly

Fama MacBeth Estimation

Monthly variables

			Dependent	Variable:Futi	ure Monthly	Correlation of	of 4F+Indus	try Residuals	5	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
FCA*	0.0122***	-0.00227	-0.00208	-0.000828	-0.00171	-0.000472	-0.00207	-0.00213	-0.00204	-0.00119
	(6.13)	(-1.51)	(-1.53)	(-0.67)	(-1.32)	(-0.41)	(-1.84)	(-1.90)	(-1.80)	(-1.09)
(FCA* > Median[FCA*]) × FCA*		0.0302***	0.0253***	0.0145***	0.0246***	0.0138***	0.0123***	0.0123***	0.0125***	0.0112***
		(7.27)	(7.68)	(4.50)	(7.79)	(4.46)	(4.88)	(4.89)	(4.78)	(4.15)
ρ_t			0.145***	0.144***	0.145***	0.144***	0.141***	0.141***	0.141***	0.143***
			(6.36)	(6.31)	(6.36)	(6.31)	(6.51)	(6.51)	(6.49)	(6.38)
SameGroup				0.0255***		0.0255***	0.0175***	0.0174***	0.0178***	0.0214***
				(9.22)		(9.24)	(4.87)	(4.85)	(4.98)	(7.26)
ActiveHolder					0.00496**	0.00486**	0.00181	0.00188	0.00131	0.00211
					(3.01)	(2.93)	(0.99)	(1.04)	(0.72)	(1.23)
SameIndustry							0.0170***	0.0166***	0.0162***	0.0189***
							(4.73)	(4.50)	(4.34)	(4.15)
Samesize									0.0422**	0.0233***
									(3.26)	(4.00)
SameBookToMarket									0.00776*	0.00853**
									(2.48)	(2.91)
Constant	0.0178***	0.00513	0.00224	0.00267	0.00127	0.00171	0.0347*	0.0429**	0.0284**	0.0102***
	(3.80)	(1.44)	(1.52)	(1.95)	(0.86)	(1.25)	(2.56)	(2.80)	(2.91)	(4.39)
Value	No	No	No	No	No	No	Yes	Yes	No	No
Interaction	No	No	No	No	No	No	No	Yes	Yes	No
N	287509	287509	286678	286678	286678	286678	286678	286678	286678	286678
R^2	0.00184	0.00268	0.0384	0.0394	0.0387	0.0397	0.0444	0.0453	0.0442	0.0420

t statistics in parentheses

^{*} p < 0.05, *** p < 0.01, **** p < 0.001

4 Factor + Industry Future Correlation via FCA*

Normalized Rank Transformed for each cross section (Monthly)

Fortnightly

Fama MacBeth Estimation

Monthly variables

	Future Mo	nthly Correl	ation of 4F+In	dustry Residuals
	(1)	(2)	(3)	(4)
FCA*	-0.00111	0.00161	-0.00246	0.00104
	(-0.88)	(1.48)	(-1.87)	(1.04)
$(FCA^* > Median[FCA^*]) \times FCA^*$	0.00666*		0.00866**	
((2.63)		(3.38)	
SameGroup	0.0144***	0.0147***	0.0118**	0.0122**
SameGroup	(4.31)	(4.38)	(3.17)	(3.25)
	(4.51)	(4.50)	(3.17)	(3.23)
(FCA*) × SameGroup	0.0107***	0.0123***	0.00857***	0.0108***
	(5.06)	(5.59)	(3.99)	(5.18)
ActiveHolder	0.00199	0.00226	0.00186	0.00223
	(1.13)	(1.29)	(1.01)	(1.21)
(FCA*) × ActiveHolder	0.00196	0.00196	0.00301*	0.00300
(I CA) × Active loider	(1.29)	(1.26)	(2.05)	(1.99)
	(1.29)	(1.20)	(2.03)	(1.99)
ρ_t	0.143***	0.143***	0.141***	0.141***
	(6.37)	(6.37)	(6.50)	(6.50)
Constant	0.0116***	0.0140***	0.0436**	0.0466**
	(4.86)	(5.62)	(2.82)	(2.96)
Value	No	No	Yes	Yes
Interaction	No	No	Yes	Yes
N	286678	286678	286678	286678
R^2	0.0426	0.0424	0.0459	0.0457

t statistics in parentheses

 $^{^*}$ $\rho <$ 0.05, ** $\rho <$ 0.01, *** $\rho <$ 0.001

Fama MacBeth Estimation

Monthly variables (Grouped by size)

	All Firms		Big Firms		Big & Small Firms		Small Firms	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
FCA*	-0.00111	-0.00246	-0.00164	-0.00250	0.00112	0.0000565	-0.00474	-0.00272
	(-0.88)	(-1.87)	(-0.84)	(-1.24)	(0.57)	(0.03)	(-1.15)	(-0.67)
$(FCA^* > Median[FCA^*]) \times FCA^*$	0.00666*	0.00866**	0.0108**	0.0143***	-0.00603	-0.00536	0.0166	0.0147
	(2.63)	(3.38)	(2.81)	(3.64)	(-1.70)	(-1.45)	(1.73)	(1.59)
SameGroup	0.0144***	0.0118**	0.00497	0.00356	0.0207***	0.0199***	0.0121	0.0104
	(4.31)	(3.17)	(1.09)	(0.79)	(4.31)	(4.45)	(1.79)	(1.45)
$(FCA^*) \times SameGroup$	0.0107***	0.00857***	0.0125***	0.0103**	0.0103**	0.00994**	0.00589	0.00544
	(5.06)	(3.99)	(3.50)	(2.94)	(2.92)	(2.77)	(0.93)	(0.85)
ActiveHolder	0.00199	0.00186	0.00340*	-0.000301	0.00619	0.00637	0.0000826	-0.000577
	(1.13)	(1.01)	(2.27)	(-0.18)	(1.70)	(1.79)	(0.02)	(-0.11)
(FCA*) × ActiveHolder	0.00196	0.00301*	0.00190	0.00175	0.00510*	0.00514*	0.00192	0.00118
	(1.29)	(2.05)	(0.94)	(0.84)	(2.15)	(2.18)	(0.70)	(0.39)
$ ho_{ m t}$	0.143***	0.141***	0.112***	0.111***	0.130***	0.130***	0.184***	0.181***
	(6.37)	(6.50)	(6.59)	(6.54)	(5.60)	(5.58)	(6.08)	(5.99)
Constant	0.0116***	0.0436**	0.0104***	-0.160*	0.00757	0.0546***	0.0237**	0.0911***
	(4.86)	(2.82)	(3.97)	(-2.24)	(1.33)	(3.44)	(2.96)	(4.16)
Value	No	Yes	No	Yes	No	Yes	No	Yes
Interaction	No	Yes	No	Yes	No	Yes	No	Yes
N	286678	286678	97793	97793	123391	123391	65494	65494
R^2	0.0426	0.0459	0.0378	0.0424	0.0418	0.0458	0.0667	0.0735

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Future Correlation via FCA*

4 Factor + Industry (by Business Group)

Fama MacBeth Estimation

Monthly variables (Grouped by be in the same group or not)

•	Different Group						Same Group					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
FCA*	0.00696° (2.04)	-0.000943 (-0.50)	0.00248** (2.78)	0.000371 (0.33)	0.00227** (2.79)	-0.000780 (-0.69)	0.0115 (1.69)	-0.0154 (-1.31)	0.0105*** (4.45)	0.00120 (0.22)	0.00899*** (4.63)	-0.000541 (-0.10)
$(FCA^* > \mathit{Median}[FCA^*]) \times FCA^*$		0.0203 (1.61)		0.00523* (2.35)		0.00769** (2.97)		0.0407*** (3.59)		0.0147 (1.60)		0.0151 (1.85)
$ ho_{t}$			0.128*** (5.80)	0.128*** (5.80)	0.127*** (5.87)	0.127*** (5.87)			0.206*** (8.81)	0.206*** (8.86)	0.203*** (9.17)	0.203*** (9.22)
ActiveHolder			-0.00118 (-1.00)	-0.00135 (-1.16)	-0.00226 (-1.77)	-0.00254 (-1.98)			0.0191* (2.61)	0.0184* (2.47)	0.0208** (2.88)	0.0200** (2.75)
${\sf SameGroup} \times {\sf SamePosition}$			0 (.)	0 (.)	0 (.)	0 (.)			0.00880* (2.05)	0.00741 (1.79)	0.00573 (1.47)	0.00433 (1.12)
Constant	0.0123° (2.54)	0.00584** (3.02)	0.0126*** (5.57)	0.0108*** (4.56)	0.0328* (2.22)	0.0302* (2.06)	0.0360*** (5.68)	0.0186** (3.31)	0.0343*** (6.74)	0.0274*** (4.45)	0.0870*** (4.55)	0.0798*** (4.28)
Value	No	No	No	No	Yes	Yes	No	No	No	No	Yes	Yes
Interaction	No	No	No	No	Yes	Yes	No	No	No	No	Yes	Yes
N	242504	242504	241802	241802	241802	241802	45005	45005	44876	44876	44876	44876
R^2	0.00123	0.00227	0.0346	0.0348	0.0377	0.0380	0.00927	0.0117	0.0814	0.0832	0.0920	0.0937

t statistics in parentheses

Fortnightly

[&]quot; p < 0.05, "" p < 0.01, """ p < 0.001

Table of Contents

- Motivation
- 2 Literature
- 3 Empirical Studies
- 4 Results
- Robustness Check
 - Random Pairs
 - Random Pairs from Same Business Group
 - Random Pairs from Same Size
- 6 Identification Method

Random Pairs

Fama MacBeth Estimation for pseudo pairs

Fortnightly variables for Random group

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
FCA*	0.000606	0.00333**	0.00261**	0.00206*	0.00244*	0.00202*	0.00190
	(0.99)	(2.60)	(2.71)	(2.11)	(2.49)	(2.04)	(1.94)
$(FCA^* > Median[FCA^*]) \times FCA^*$		-0.00559*	-0.00427*	-0.00316	-0.00377*	-0.00314	-0.00274
		(-2.57)	(-2.56)	(-1.84)	(-2.19)	(-1.82)	(-1.63)
ActiveHolder			0.0000628	-0.000258	-0.000307	-0.000319	0.0000163
			(0.06)	(-0.23)	(-0.27)	(-0.28)	(0.01)
Constant	0.0219***	0.0243***	0.0173***	0.0666***	0.121***	0.0508***	0.0299***
	(5.27)	(5.75)	(6.82)	(11.33)	(18.46)	(10.35)	(8.12)
Main	No	No	No	Yes	Yes	No	No
Interaction	No	No	No	No	Yes	Yes	No
N	1105543	1105543	1067554	1067554	1067554	1067554	1067554
r2	0.000237	0.000448	0.223	0.227	0.228	0.226	0.225

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Random Pairs

$(FCA^* > Median[FCA^*]) \times FCA^*$

Random Pairs from Same Business Group

Random Pairs from Same Business Group

$(FCA^* > Median[FCA^*]) \times FCA^*$

Fama MacBeth Estimation for pseudo pairs

Fortnightly variables for Random group from Same Business Group

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
FCA*	0.00808***	0.00365*	0.00230	-0.000386	-0.000628	-0.000128	0.000500
	(10.59)	(2.37)	(1.88)	(-0.31)	(-0.50)	(-0.11)	(0.42)
$(FCA^* > Median[FCA^*]) \times FCA^*$		0.00932**	0.00691**	0.000962	0.00104	-0.000242	-0.00233
		(3.24)	(3.18)	(0.46)	(0.49)	(-0.12)	(-1.18)
ActiveHolder			0.00648***	0.00223	0.0000493	0.00285*	0.00325**
			(5.09)	(1.87)	(0.04)	(2.52)	(2.86)
Constant	0.0288***	0.0248***	0.0160***	0.115***	0.232***	0.0821***	0.0418**
	(8.08)	(6.62)	(6.88)	(15.79)	(26.40)	(14.10)	(11.86)
Main	No	No	No	Yes	Yes	No	No
Interaction	No	No	No	No	Yes	Yes	No
N	1111129	1111129	1073214	1073214	1073214	1073214	1073214
r2	0.000515	0.000796	0.226	0.235	0.240	0.234	0.231

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Random Pairs from Same Size

Fama MacBeth Estimation for pseudo pairs

Fortnightly variables for Pseudo group from Same Size

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
FCA*	0.000524	-0.00205	-0.00126	-0.00335	-0.000312	-0.00314	-0.00114
	(0.47)	(-0.68)	(-0.61)	(-1.71)	(-0.17)	(-1.61)	(-0.55)
$(FCA^* > Median[FCA^*]) \times FCA^*$		0.00510	0.00375	0.000580	-0.00431	0.00113	0.000589
		(0.99)	(1.04)	(0.17)	(-1.26)	(0.33)	(0.17)
ActiveHolder			-0.00180	0.00129	0.00294	0.0000404	-0.00154
			(-0.69)	(0.53)	(1.18)	(0.02)	(-0.60)
Constant	0.0240***	0.0217***	0.0167***	0.116***	0.255***	0.0792***	0.0347***
	(8.56)	(5.65)	(6.25)	(14.36)	(19.32)	(11.49)	(9.81)
Main	No	No	No	Yes	Yes	No	No
Interaction	No	No	No	No	Yes	Yes	No
N	442279	442279	426218	426218	426218	426218	426218
r2	0.000653	0.00125	0.224	0.238	0.243	0.236	0.232

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Table of Contents

- Motivation
- 2 Literature
- 3 Empirical Studies
- 4 Results
- 6 Robustness Check
- 6 Identification Method

Identification

- Possible Events
 - The Sepah bank Merge
 - Fixed Income Rule change
 - Mutual funds Limit extension
 - Dara 1 and Palayeshi 1
 - Government Transfer to Banks
 - Portfolio adjustments

Portfolio adjustments

	Future Mo	nthly Corre	lation of 4F+I	Industry Residuals
	(1)	(2)	(3)	(4)
FCA*	-0.00111	0.00206	-0.00246	0.000160
	(-0.88)	(0.39)	(-1.87)	(0.03)
$(FCA^* > \mathit{Median}[FCA^*]) \times FCA^*$	0.00666*	-0.00337	0.00866**	0.00167
	(2.63)	(-0.31)	(3.38)	(0.15)
SameGroup	0.0144***	0.00392	0.0118**	0.00213
	(4.31)	(0.41)	(3.17)	(0.22)
$(FCA^*) \times SameGroup$	0.0107***	0.0208*	0.00857***	0.0176*
	(5.06)	(2.44)	(3.99)	(2.05)
ActiveHolder	0.00199	-0.00836	0.00186	-0.00981
	(1.13)	(-1.56)	(1.01)	(-1.80)
$(FCA^*) \times ActiveHolder$	0.00196	0.00594	0.00301*	0.00674
	(1.29)	(1.15)	(2.05)	(1.30)
$ ho_{t}$	0.143***	0.111***	0.141***	0.111***
	(6.37)	(12.00)	(6.50)	(11.98)
Constant	0.0116***	0.00834	0.0436**	0.0233
	(4.86)	(1.26)	(2.82)	(1.18)
Value	No	No	Yes	Yes
Interaction	No	No	Yes	Yes
EndOfYear	No	Yes	No	Yes
N	286678	21022	286678	21022
R ²	0.0426	0.0133	0.0459	0.0138

t statistics in parentheses

 $^{^{*}}$ $\rho<$ 0.05, ** $\rho<$ 0.01, *** $\rho<$ 0.001

Anton, Polk, Connected Stocks, Jornal of Finance 2014

Andrew Koch, Stefan Ruenzi, Laura Starks , *Commonality in Liquidity A Demand-Side Explanation* ,The Review of Financial Studies 2016

Pastor, L., and R. Stambaugh , Liquidity risk and expected stock returns , Journal of Political Economy 2003

Acharya,V., and L. Pedersen , *Asset pricing with liquidity risk* ,Journal of Financial Economics 2005

Khanna, T., Thomas, C., Synchronicity and firm interlocks in an emerging market, Journal of Financial Economics 2009

Boubaker, S., Mansali, H., Rjiba, H.-Large controlling shareholders and stock price synchronicity, Journal of Banking and finance 2014

Morck, R., Yeung, B., Yu, W., The information content of stock markets: Why do emerging markets have synchronous stock price, Journal of Financial Economics 2000

Table of Contents

- Appendix I
- 8 Appendix II
- 9 Appendix III
- Appendix IV

Measuring Common Ownership

Proof

- If two stocks in pair have n mutual owner, which total market cap divides them equally, the mentioned indexes equal n.
 - Each holder owns 1/n of each firm.
 - Firm's market cap is α_1 and α_2 :
 - So for each holder of firms we have $S_{i,t}^f P_{i,t} = \alpha_i$
 - SQRT

$$\left[\frac{\sum_{f=1}^{n} \sqrt{\alpha_1/n} + \sum_{f=1}^{n} \sqrt{\alpha_2/n}}{\sqrt{\alpha_1} + \sqrt{\alpha_2}}\right]^2 = \left[\frac{\sqrt{n}(\sqrt{\alpha_1} + \sqrt{\alpha_2})}{\sqrt{\alpha_1} + \sqrt{\alpha_2}}\right]^2 = n$$

Quadratic

$$\left[\frac{\sum_{f=1}^{n} (\alpha_1/n)^2 + \sum_{f=1}^{n} (\alpha_2/n)^2}{\alpha_1^2 + \alpha_2^2}\right]^{-1} = \left[\frac{\alpha_1^2 + \alpha_2^2}{n(\alpha_1^2 + \alpha_2^2)}\right]^{-1} = n$$

Table of Contents

- Appendix I
- 8 Appendix II
 - Synchronicity and firm interlocks
 - Large controlling shareholder and stock price synchronicity
 - Connected Stocks
- 9 Appendix III
- Appendix IV

Synchronicity and firm interlocks

JFE-2009-Khanna

- Three types of network
 - Equity network
 - ② Director network
 - Owner network
- Dependent variables

Using deterended weekly return for calculation

- 1 Pairwise returns synchronicity = $\frac{\sum_{t} (n_{i,j,t}^{up} n_{i,j,t}^{down})}{T_{i,j}}$
- 2 Correlation = $\frac{Cov(i,j)}{\sqrt{Var(i).Var(j)}}$
- Tobit estimation of

$$f_{i,j}^d = \alpha I_{i,j} + \beta (1 * N_{i,j}) + \gamma Ind_{i,j} + \varepsilon_{i,j}$$

being in the same director network has a significant effect

Large controlling shareholder and stock price synchronicity JBF-2014-Boubaker

Stock price synchronicity:

$$SYNCH = \log(\frac{R_{i,t}^2}{1 - R_{i,t}^2})$$

where $R_{i,t}^2$ is the R-squared value from

$$\textit{RET}_{\textit{i},\textit{w}} = \alpha + \beta_1 \textit{MKRET}_{\textit{w}-1} + \beta_2 \textit{MKRET}_{\textit{w}} + \beta_3 \textit{INDRET}_{\textit{i},\textit{w}-1} + \beta_4 \textit{INDRET}_{\textit{i},\textit{w}} + \varepsilon_{\textit{i},\textit{w}}$$

OLS estimation of

$$\begin{aligned} \textit{SYNCH}_{i,t} &= \beta_0 + \beta_1 \textit{Excess}_{i,t} + \beta_2 \textit{UCF}_{i,t} + \sum_k \beta_k \textit{Control}_{i,t}^k \\ &+ \textit{IndustryDummies} + \textit{YearDummies} + \varepsilon_{i,t} \end{aligned}$$

- Stock price synchronicity increases with excess control
- Firms with substantial excess control are more likely to experience stock price crashes

Connected Stocks

JF-2014-Anton Polk

- Common active mutual fund owners
- Measuring Common Ownership

•
$$FCAP_{ij,t} = \frac{\sum_{f=1}^{F} (S_{i,t}^{f} P_{i,t} + S_{j,t}^{f} P_{j,t})}{S_{i,t}P_{i,t} + S_{j,t}P_{j,t}}$$

- ullet Using normalized rank-transformed as $FCAP_{ij,t}^*$
- $\rho_{ij,t}$: within-month realized correlation of each stock pair's daily four-factor returns

0

$$ho_{ij,t+1} = a + b_f imes \textit{FCAPF}^*_{ij,t} + \sum_{k=1}^{n} \textit{CONTROL}_{ij,t,k} + arepsilon_{ij,t+1}$$

Estimate these regressions monthly and report the time-series average as in Fama and MacBeth

Table of Contents

- Appendix I
- 8 Appendix II
- Oppendix III
- Appendix IV

4 Factor + Industry Future Correlation via FCA*

Normalized Rank Transformed for each cross section (Monthly)

Monthly variables

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
FCA*	0.0122***	0.0131***	0.0108***	0.00418***	0.00418***	0.00433***	0.00569**
	(6.17)	(6.26)	(7.77)	(4.75)	(4.75)	(4.75)	(4.35)
FCA*2		0.00948***	0.00793***	0.00392***	0.00397***	0.00399***	0.00429**
		(7.49)	(7.91)	(5.15)	(5.20)	(5.02)	(4.42)
ρ_t			0.145***	0.141***	0.141***	0.141***	0.144***
			(6.35)	(6.51)	(6.50)	(6.48)	(6.33)
ActiveHolder				0.000958	0.000952	0.000375	0.00252
				(0.52)	(0.53)	(0.20)	(1.53)
SameGroup				0.0170***	0.0169***	0.0173***	0.0257**
				(4.78)	(4.75)	(4.89)	(9.78)
SameIndustry				0.0171***	0.0167***	0.0163***	
•				(4.63)	(4.41)	(4.26)	
Samesize						0.0433**	0.0265**
						(3.22)	(4.00)
SameBookToMarket						0.00811*	0.0114**
						(2.64)	(4.27)
Constant	0.0177***	0.00875*	0.00534**	0.0369*	0.0442**	0.0308**	0.0146**
	(3.84)	(2.33)	(3.42)	(2.63)	(2.82)	(2.98)	(4.73)
Value	No	No	No	Yes	Yes	No	No
Interaction	No	No	No	No	Yes	Yes	No
N	287000	287000	286155	286155	286155	286155	286155
r2	0.00188	0.00281	0.0386	0.0446	0.0455	0.0444	0.0410

t statistics in parentheses

 $^{^{*}}$ p < 0.05, ** p < 0.01, *** p < 0.001

Table of Contents

- Appendix I
- 8 Appendix II
- 9 Appendix III
- Appendix IV
 - Measuring Common Ownership
 - Controls
 - Logaritmic
 - Discontinuity
 - Business Group
 - Other

FCA vs. FCAP Distributions

Fortnightly

Summary of Controls

Fortnightly

Type of Pairs	Yes	No
SameIndustry	1142	9125
	(11.1%)	(88.9%)
SameGroup	1173	9094
	(11.4%)	(88.6%)
ActiveHolder	2819	7448
	(27.5%)	(72.5%)

Variable	count	mean	std	min	25%	50%	75%	max
Size1	636641	0.75	0.21	0.01	0.61	0.81	0.93	1
Size2	636641	0.47	0.26	0.00	0.26	0.45	0.67	1.00
SameSize	636641	-0.28	0.22	-0.99	-0.42	-0.24	-0.10	0.00
BookToMarket1	636641	0.52	0.27	0.00	0.31	0.54	0.74	1.00
BookToMarket2	636641	0.50	0.25	0.00	0.29	0.49	0.70	1.00
${\sf SameBookToMarket}$	636641	-0.29	0.21	-1.00	-0.43	-0.25	-0.12	0.00

Monthly

Future Correlation via FCA

4 Factor + Industry (Fortnightly)

Fortnightly variables

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
In(FCA)	0.0108***	0.00989***	0.00964***	0.00511***	0.00499***	0.00271***	0.00276***	0.00281***	0.00297**
(7 67.1)	(8.48)	(9.12)	(8.81)	(5.15)	(4.95)	(4.12)	(4.07)	(4.16)	(3.78)
ρ_t		0.0740*** (5.50)	0.0739*** (5.49)	0.0734*** (5.44)	0.0733*** (5.44)	0.0710*** (5.36)	0.0708*** (5.34)	0.0711*** (5.36)	0.0723** (5.39)
ActiveHolder			0.00970*** (6.05)		0.00810*** (5.06)	0.00425* (2.35)	0.00416* (2.40)	0.00356 (1.94)	0.00410 ³ (2.41)
SameGroup				0.0329*** (10.98)	0.0322*** (10.80)	0.0216*** (7.32)	0.0214*** (7.29)	0.0218*** (7.47)	0.0247** (9.32)
SameIndustry						0.0275*** (7.00)	0.0267*** (6.73)	0.0264*** (6.55)	0.0288** (6.45)
Samesize								0.0403*** (3.53)	0.0235** (4.35)
SameBookToMarket								0.0127** (3.22)	0.0146** (4.34)
Constant	0.0432*** (8.14)	0.0395*** (8.73)	0.0363*** (8.10)	0.0214*** (5.32)	0.0191*** (4.71)	0.0396** (3.13)	0.0504** (3.20)	0.0372*** (4.04)	0.0225** (5.91)
Value	No	No	No	No	No	Yes	Yes	No	No
Interaction	No	No	No	No	No	No	Yes	Yes	No
N	613875	613875	613875	613875	613875	613875	613875	613875	613875
r2	0.00152	0.0127	0.0131	0.0137	0.0141	0.0184	0.0193	0.0183	0.0164

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

4 Factor + Industry Future Correlation via FCA*

Normalized Rank Transformed for each cross section (Fortnightly)

Monthly

Fortnightly variables

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
FCA*	0.0124***	-0.00545***	-0.00518***	-0.00450***	-0.00440***	-0.00408**	-0.00537***	-0.00420**	-0.00526***	-0.00448**
	(7.43)	(-3.99)	(-3.90)	(-3.44)	(-3.40)	(-3.19)	(-4.06)	(-3.22)	(-3.98)	(-3.49)
$(FCA^* > Median[FCA^*]) \times FCA^*$		0.0360***	0.0332***	0.0314***	0.0240***	0.0232***	0.0228***	0.0156***	0.0231***	0.0231***
		(9.80)	(10.20)	(9.78)	(8.68)	(8.29)	(9.37)	(5.83)	(9.14)	(8.17)
$\rho_{-}t$			0.0738***	0.0737***	0.0727***	0.0727***	0.0711***	0.0708***	0.0712***	0.0724**
			(5.50)	(5.49)	(5.42)	(5.41)	(5.38)	(5.34)	(5.38)	(5.41)
ActiveHolder				0.00792***		0.00494**	0.00362	0.00322	0.00284	0.00354*
				(4.85)		(2.98)	(1.94)	(1.81)	(1.49)	(2.02)
SameIndustry					0.0363***	0.0357***	0.0315***	0.0261***	0.0303***	0.0339**
					(8.06)	(7.91)	(7.93)	(6.60)	(7.47)	(7.54)
SameGroup								0.0191***		
								(6.14)		
Samesize									0.0416***	0.0213**
									(3.67)	(3.91)
SameBookToMarket									0.0128**	0.0147**
									(3.24)	(4.36)
Constant	0.0150***	-0.000422	-0.000591	-0.00187	-0.00234	-0.00312*	0.0300*	0.0375*	0.0258**	0.00782**
	(6.31)	(-0.25)	(-0.38)	(-1.19)	(-1.70)	(-2.19)	(2.59)	(2.50)	(3.22)	(3.56)
Value	No	No	No	No	No	No	Yes	Yes	No	No
Interaction	No	No	No	No	No	No	No	Yes	Yes	No
N	613875	613875	613875	613875	613875	613875	613875	613875	613875	613875
r2	0.00132	0.00208	0.0132	0.0136	0.0149	0.0151	0.0182	0.0196	0.0181	0.0162

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

4 Factor + Industry Future Correlation via FCA*

Normalized Rank Transformed for each cross section (Fortnightly)

Monthly variables

	(2)
-0.00370**	-0.00472***
(-2.79)	(-3.39)
0.0128***	0.0141***
(4.34)	(5.15)
0.0722***	0.0708***
(5.39)	(5.35)
0.00140	0.000470
(0.73)	(0.22)
0.00338	0.00522
(1.17)	(1.75)
0.0117**	0.0106**
(3.29)	(2.87)
0.0130***	0.0109**
(4.05)	(3.14)
0.00072***	0.0380*
	(2.51)
	Yes
	Yes
	613875
0.0173	0.0202
	0.0128*** (4.34) 0.0722*** (5.39) 0.00140 (0.73) 0.00338 (1.17) 0.0117** (3.29) 0.0139*** (4.05) No No No O613875

t statistics in parentheses

 $^{^*}$ $\rho <$ 0.05, ** $\rho <$ 0.01, *** $\rho <$ 0.001

Future Correlation via FCA*

4 Factor + Industry (by Business Group)

Fortnightly variables for subset of Same Business Group

(1)	(2)	(3)	(4)	(5)	(6)
0.0183***	-0.0127*	0.0100***	-0.00219	0.00842***	-0.00535
(7.04)	(-2.13)	(5.21)	(-0.39)	(5.37)	(-0.98)
	0.0460***		0.0186*		0.0210*
	(4.63)		(2.08)		(2.53)
					0.0174***
		(3.41)	(3.07)	(4.00)	(3.61)
		0.0226***	0 0222***	0 0330***	0.0327***
					(7.83)
		(7.05)	(1.10)	(7.95)	(7.03)
		0.0340**	0.0318**		
		(3.11)	(3.03)		
		0.0609***	0.0605***		
		(5.97)	(5.90)		
		,	,		
0.0344***	0.0149**	0.0399***	0.0314***	0.104***	0.0941***
(9.76)	(3.01)	(8.38)	(5.53)	(5.71)	(5.16)
No	No	No	No	Yes	Yes
No	No	No	No	Yes	Yes
103914	103914	103914	103914	103914	103914
0.00281	0.00488	0.0390	0.0407	0.0494	0.0511
	0.0344*** (9.76) No No 103914	0.0183*** -0.0127* (7.04) (-2.13) 0.0460*** (4.63) 0.0344*** 0.0149** (9.76) (3.01) No No No No 103914 103914	0.0183*** -0.0127* 0.0100*** (7.04) (-2.13) (5.21) 0.0460*** (4.63) 0.0162*** (3.41) 0.0336*** (7.85) 0.0340** (3.17) 0.0609*** (5.97) 0.0344*** 0.0149** 0.0399*** (9.76) (3.01) (8.38) No No No No No No 103914 103914 103914	0.0183*** -0.0127* 0.0100*** -0.00219 (7.04) (-2.13) (5.21) (-0.39) 0.0460*** (2.08) 0.0186* (2.08) 0.0162*** 0.0149** (3.41) (3.07) 0.0336*** 0.0333*** (7.78) (7.78) 0.0340*** 0.0318** (3.17) (3.03) 0.0609*** 0.0609*** (5.90) 0.0344*** 0.0149** 0.0399*** 0.0314*** (9.76) (3.01) (8.38) (5.53) No No No No No No No No 103914 103914 103914 103914	0.0183*** -0.0127* 0.0100*** -0.00219 0.00842*** (7.04) (-2.13) (5.21) (-0.39) (5.37) 0.0460**** 0.0186** (2.08) 0.0162*** 0.0149** 0.0188*** (3.41) (3.07) (4.00) 0.0336*** 0.0333*** 0.0330*** (7.85) (7.78) (7.95) 0.0340*** 0.0318** (3.03) 0.0609*** 0.0605*** (5.97) (5.97) (5.90) (5.71) No No No No No No No No 103914 103914 103914 103914 103914

t statistics in parentheses

^{*} $\rho < 0.05$, ** $\rho < 0.01$, *** $\rho < 0.001$

Fortnightly variables for subset of Different Business Group

	(1)	(2)	(3)	(4)	(5)	(6)
FCA*	0.00422**	-0.00178	0.00194*	-0.00210	0.00172	-0.00290*
	(3.11)	(-1.37)	(1.98)	(-1.75)	(1.93)	(-2.26)
	,	,	,	, ,	, ,	` ,
$(FCA^* > Median[FCA^*]) \times FCA^*$		0.0146***		0.00996***		0.0115***
		(4.22)		(3.48)		(3.82)
		(1.22)		(0.10)		(0.02)
ActiveHolder			0.000676	0.000186	-0.000437	-0.00102
, terrer forder			(0.48)	(0.13)	(-0.30)	(-0.70)
			(0.40)	(0.13)	(0.50)	(0.70)
SameIndustry			0.0238***	0.0231***	0.0211***	0.0202***
Samemoustry			(4.34)	(4.23)		
			(4.34)	(4.23)	(4.23)	(4.05)
Samesize			0.0217***	0.0217***		
Samesize						
			(3.94)	(3.94)		
SameBookToMarket			0.00482	0.00477		
SameBook Folviarket						
			(1.49)	(1.48)		
Constant	0.00831***	0.00285	0.0124***	0.00886***	0.0240	0.0202
Constant						
	(4.07)	(1.67)	(5.03)	(4.03)	(1.53)	(1.32)
Value	No	No	No	No	Yes	Yes
Interaction	No	No	No	No	Yes	Yes
N	509961	509961	509961	509961	509961	509961
r2	0.000490	0.000899	0.0120	0.0124	0.0148	0.0152

t statistics in parentheses

^{*} $\rho < 0.05$, ** $\rho < 0.01$, *** $\rho < 0.001$

4 Factor + Industry Future Correlation via FCA*

Normalized Rank Transformed for each cross section (Fortnightly)

Fortnightly variables

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
FCA*	0.0124***	0.0126***	0.0114***	0.0112***	0.00613***	0.00618***	0.00634***	0.00717***
	(7.43)	(7.54)	(8.09)	(7.90)	(8.02)	(7.89)	(8.12)	(7.01)
FCA*2		0.0109*** (10.30)	0.0101*** (10.52)	0.00959*** (10.08)	0.00697*** (9.59)	0.00700*** (9.97)	0.00701*** (9.37)	0.00710*** (8.49)
ρt			0.0737*** (5.49)	0.0736*** (5.48)	0.0711*** (5.37)	0.0709*** (5.36)	0.0712*** (5.38)	0.0724*** (5.41)
ActiveHolder				0.00761*** (4.62)	0.00345 (1.84)	0.00331 (1.84)	0.00267 (1.40)	0.00336 (1.90)
SameIndustry					0.0310*** (7.85)	0.0301*** (7.57)	0.0299*** (7.40)	0.0334*** (7.46)
Samesize							0.0416*** (3.66)	0.0214*** (3.91)
${\sf SameBookToMarket}$							0.0126** (3.19)	0.0146*** (4.29)
Constant	0.0150*** (6.31)	0.00429* (2.35)	0.00372* (2.24)	0.00224 (1.35)	0.0330** (2.82)	0.0428** (2.85)	0.0288*** (3.52)	0.0108*** (4.76)
Value	No	No	No	No	Yes	Yes	No	No
Interaction	No	No	No	No	No	Yes	Yes	No
N	613875	613875	613875	613875	613875	613875	613875	613875
r2	0.00132	0.00215	0.0133	0.0136	0.0183	0.0191	0.0182	0.0162

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001