SỐ PHỨC

A/ TÓM TẮC KIẾN THỨC

1. Định nghĩa

- Ta gọi là số phức, biểu thức có dạng a+bi với a, b ∈ R, i² = -1. Tập hợp các số phức ký hiệu là C. Rõ rang R ⊂ C. Với số phức z=a+bi thì a là phần thực của z, b là phần ảo của z, I là đơn vị ảo
- Hai số phức $z_1=a+bi$, $z_2=c+di$ bằng nhau khi và chỉ khi phần thực và phần ảo tương ứng bằng nhau

$$z_1 = z_2 \leftrightarrow a = c \ v \grave{a} \ b = d$$

- Trong hệ tọa độ trục Oxy, số phức z=a+bi được O a biểu diễn bằng điểm M(a; b). Mặt phẳng tọa độ biểu diễn các số phức được gọi là mặt phẳng phức, trục Ox là trục thực, trục Oy là trục ảo.
- Môdun của số phức z=a+bi là số $\sqrt{a^2 + b^2}$ và kí hiệu là |z|, là độ dài của vecto \overrightarrow{OM} với M(a, b) là điểm biểu diễn của số phức z

$$|z| = |a + bi| = |\overrightarrow{OM}| = \sqrt{a^2 + b^2}$$

• Số phức liên hợp của số phức z=a+bi là số phức $\overline{z}=a-bi$. Trên mặt phẳng phức, hai số thực liên hợp được biểu diễn bằng các điểm đối xứng nhau qua trục thực.

2. Các phép toán trên số phức

Cho các số phức $z_1 = a + bi$, $z_2 = c + di$

• Phép cộng: $z_1 + z_2 = (a + c) + (b + d)i$

• Phép trừ: $z_1 + z_2 = (a - c) + (b - d)i$

• Phép nhân: $z_1.z_2 = (ac - bd) + (ad + bc)i$

- Số nghi
ch đảo của số phức z khác không, kí hiệu z^{-1}

$$z^{-1} = \frac{1}{|z|^2}.\overline{z}$$

. **Phép chia**: $\frac{z_1}{z_2} = z_1 \cdot z_2^{-1} = \frac{z_1 \cdot \overline{z_2}}{|z_2|^2} = \frac{ac + bd}{c^2 + d^2} + \frac{bc - ad}{c^2 + d^2}i$

Các phép toán trên số phức có các tính chất giống như các phép toán tương ứng trong tập hợp số thực.

B/ LUYÊN TÂP

- **1.** Cho các số phức: 2+3i; 1+2i; 2-i
- a) Biểu diễn các số đó trong mặt phẳng phức
- b) Viết số phức liên hợp của mỗi số đó và biểu diễn chúng trong mặt phẳng phức
- **2.** Xác đinh phần thực và phần ảo của các số sau:

$$i + (2 - 4i) - (3 - 2i);$$
 $(2 + 3i);$ $(2 + 3i)(2 - 3i);$ $i(2 - i)(3 + i)$

$$(2+3i);$$

$$(2+3i)(2-3i);$$

$$i(2-i)(3+i)$$

3. Thực hiện phép tính:

$$a) \; \frac{1}{2-3i}$$

b)
$$\frac{1}{\frac{1}{2} - \frac{\sqrt{3}}{2}i}$$
 c) $\frac{3 - 2i}{i}$ d) $\frac{3 - 4i}{4 - i}$

$$c) \; \frac{3-2i}{i}$$

$$d) \; \frac{3-4i}{4-i}$$

4. Cho
$$z = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$$
. Hãy tính: $\frac{1}{z}$; \bar{z} ; z^2 ; $(\bar{z})^3$; $1 + z + z^2$

5. Chứng minh rằng với mọi số nguyên m>0, ta có:

$$i^{4m} = 1;$$

$$i^{4m+1} = -i;$$

$$i^{4m+1} = -i;$$
 $i^{4m+2} = -1;$ $i^{4m+3} = -i;$

$$i^{4m+3} = -i;$$

6. Hỏi mỗi số sau đây là số thực hay số ảo (z là số phức tùy ý cho trước sao cho biểu thức xác đinh.)?

$$z^2+(\bar{z})^2;$$

$$\frac{z - \bar{z}}{z^3 + (\bar{z})^3}; \qquad \frac{z^2 - (\bar{z})^2}{1 + z.\bar{z}}$$

$$\frac{z^2 - (\bar{z})^2}{1 + z.\,\bar{z}}$$

7. Tìm nghiệm phức của các phương trình sau:

a)
$$iz + 2 - i = 0$$

$$b) (2 + 3i)z = z - 1$$

$$c) (2-i)\bar{z} - 4 = 0$$

c)
$$(2-i)\bar{z}-4=0$$
 d) $(iz-1)(z+3i)(\bar{z}-2+3i)=0$

$$e) z^2 + 4 = 0$$

8. Cho số phức z = x + yi $(x, y \in R)$. Khi $z \neq i$, hãy tìm phần thực và phần ảo của số phức $\frac{z+i}{z-i}$