Form B Solutions

1. (a) Going through the list of elements in *A*, we have

$$f(-8) = -8$$
, $f(-7) = -8$, $f(-6) = -6$, $f(-5) = -6$, $f(1) = 0$, $f(2) = 2$, $f(3) = 2$.

Thus, $f(A) = \{-8, -6, 0, 2\}.$

- (b) For each integer x, f(x) is the largest even integer that does not exceed x. Since f(8) = 8 and f(9) = 8, and no other $x \in \mathbb{Z}$ satisfies f(x) = 8, the desired preimage is $\{8, 9\}$.
- (c) f is not injective. For instance, f(2) and f(3) are both 2, but $2 \neq 3$.
- 2. Let us temporarily use propositional variables to rewrite p. Taking

b: welk is Type B

r: welk is red

s: welk has been visible for at least 10 days

then statement p can be written in these equivalent forms:

$$b \to (r \lor s) \equiv \neg b \lor r \lor s.$$

(a) The negation of p, in symbols, is

$$\neg(\neg b \lor r \lor s) \equiv b \land \neg r \land \neg s.$$

Writing this in English, we have "A welk is considered Type B and it is not red and it has not been visible for at least 10 days."

- (b) The contrapositive of p is $\neg (r \lor s) \to \neg b \equiv (\neg r \land \neg s) \to \neg b$. In English, this is "If a welk is not red and has not been visible for at least 10 days, then it is not considered Type B."
- 3. $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p) \equiv (\neg p \lor q) \land (\neg q \lor p)$.
- 4. (a) $q \rightarrow p \equiv \neg q \lor p$
 - (b) $p \oplus q \equiv (p \land \neg q) \lor (\neg p \land q)$
 - (c) $p \vee q$
- 5. (a) Something like this: "There is precisely one movie that Ellen has not watched."
 - (b) "Every student has watched some movie."
 - (c) $\exists s \exists m_1 \exists m_2 (m_1 \neq m_2 \land R(m_1) \land R(m_2) \land W(s, m_1) \land W(s, m_2))$
 - (d) The statement you are out to negate can be written as $\exists s \forall m(R(m) \rightarrow W(s, m))$. Following our rules of negation,

$$\neg \exists s \, \forall m (R(m) \to W(s, m)) \equiv \forall s \, \neg \, \forall m (R(m) \to W(s, m)) \equiv \forall s \, \exists m \, \neg (R(m) \to W(s, m))$$
$$\equiv \forall s \, \exists m \, \neg (\neg R(m) \lor W(s, m)) \equiv \forall s \, \exists m \, (R(m) \land \neg W(s, m))$$

This is a trick question, albeit an unintentional one, as the correct option is not in the list. Nothing in the list even binds both variables using the correct quantifiers.

- 6. (a) $A \subseteq B$
 - (b) $B \subseteq A$

- 7. (a) 5
 - (b) $2^6 = 64$
 - (d) $|A \times A| = |A|^2 = 25$
 - (e) This statement is False. For there to be a bijection f, each element in A would be paired with just one in B, and likewise each element in B would be paired with one in A. That cannot happen when $|A| \neq |B|$, as is the case here.
- 8. A membership table is one way to carry this out.

A	В	С	B-C	$A \cup (B-C)$	$A \cup B$	$(A \cup B) - C$
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	1	1	1	1
0	1	1	0	0	1	0
1	0	0	0	1	1	1
1	0	1	0	1	1	0
1	1	0	1	1	1	1
1	1	1	0	1	1	0

Comparing the A - (B - C) column with the $(A - B) \cup C$ one, we see discrepancies in rows 2 and 4. Thus, these sets are not equal.

Another approach is to use specific sets, or a Venn diagram. We illustrate both, taking

$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, A = \{1, 2, 3, 4, 5\}, B = \{2, 4, 6, 8\}, C = \{4, 5, 6\}.$$

Drawing Venn diagrams with these elements inserted, we have $A \cup (B - C) = \{1, 2, 3, 4, 5, 8\}$ on the left, and $(A \cup B) - C = \{1, 2, 3, 8\}$ on the right:

- 9. Many answers are correct. Here are several:
 - (a) Each of $f(x) = x^2$, f(x) = |x|, f(x) = 0, or $f(x) = \lfloor x \rfloor$ suffices, as each fails the horizontal line test as a function from \mathbb{R} to \mathbb{R} .
 - (b) Each of f(x) = 2x + 5, f(x) = 1 7x, or $f(x) = x^3$ suffices, as each passes the horizontal line test and has range \mathbb{R} .
- 10. (a) $a_n = 73 + 28n$ (b) $a_n = 11(4)^n$
- 11. (i) This sum involves finitely many, 285 2 + 1 = 284, to be exact, terms of an arithmetic series with first term 19 7(2) = 5 and last term 19 7(285) = -1976. The sum, then, is

$$\left(\frac{1}{2}\right)(284)(5 + -1976) = \left(\frac{1}{2}\right)(284)(-1971) = -279882.$$

(ii) The sum involves infinitely many terms of a geometric series with $a_0 = 57/27$ and r = 1/3. Since |r| < 1, the series converges to

$$s = \frac{a_0}{1-r} = \frac{57/27}{1-1/3} = \frac{57/27}{2/3} = \frac{57}{27} \cdot \frac{3}{2} = \frac{57}{18} = \frac{19}{6} = 3.1\overline{6}.$$