Работа 3.6.1

Спектральный анализ электрических сигналов

Цель работы: изучение состава периодических электрических сигналов.

В работе используются: анализатор спектра, генератор прямоугольных импульсов, генератор сигналов специальной формы, осциллограф.

Экспериментальная установка:

Рис. 1: Схема для исследовния спектра периодической последовательности прямоугольных импульсов

Рис. 2: Схема для исследования спектра периодической последовательности цугов высокочастотных колебаний

Рис. 3: Схема для исследования спектра высокочастотного гармонического сигнала, промодулированного по амплитуде низкочастотным гармоничесим сигналом

Исследование спектра периодической последовательности прямоугольных импульсов

При длительности импульсов τ вдовое, $\Delta \nu$ уменьшается, а $\delta \nu$ остается прежней. При увеличении вдвое частоты повторения $f,\,\delta \nu$ увеличивается, а $\Delta \nu$ не изменяется. Качественная картина: рис. 4 - 6. Количественные данные: табл. 1

Для проверки соотношения неопределенности $\Delta\nu\Delta\tau\sim 1$ построим график $\Delta\nu(\tau^{-1})$ (Данные - табл. , график рис. 8)

$$\Delta \nu \Delta \tau \sim 1.06 \pm 0.06$$

Коэффициент графика сходится с единицой в пределах погрешности.

Рис. 6: $f_{\text{повт}}=2$ к Γ ц, $\tau=25$ мкс

Рис. 5: $f_{\text{повт}} = 1$ к Γ ц, $\tau = 50$ мкс

Рис. 7: $f_{\text{повт}} = 1$ к Γ ц, $\tau = 100$ мкс

Таблица 1: Изменение $\Delta \nu$ и $\delta \nu$ при изменении τ и f

f vc Dvv	7. Mario	διι τεΓττ	Λ_{II} $r_{r}\Gamma_{rr}$
f , к Γ ц	τ , mkc	$\delta \nu$, к Γ ц	$\Delta \nu$, к Γ ц
1	25	1.00	40
1	50	0.94	20
2	25	2.06	40

Таблица 2: Зависимость $\Delta(\tau^{-1})$

τ , MKC	τ^{-1} , MKC ⁻¹	$\sigma_{\tau^{-1}}$, MKC ⁻¹	$\Delta \nu$, к Γ ц	$\sigma_{\Delta \nu}$, к Γ ц
25	4.00e-02	2e-03	40	3
50	2.00e-02	4e-04	20	3
80	1.25e-02	2e-04	10	3
100	1.00e-02	1e-04	10	3
140	7.14e-03	5e-05	7.1	0.7
160	6.25e-03	4e-05	5.8	0.8
200	5.00e-03	3e-05	1.7	0.8

Исследование спектра периодичексой последовтельности цугов гармонических колебаний

Для проверки соотнощения неопределенности построим график $\delta \nu(\nu_0)$:

$$\frac{d\delta\nu_0}{df}\sim 0.93\pm 0.08$$

Соотношение сходится с единицей в пределах погрешности.

Рис. 8: Зависимость $\Delta \nu(\tau^{-1})$

Рис. $\underline{9:f_{\text{повт}}}=1 \text{к}\Gamma\text{ц}, \ \tau=50 \text{мкc}, \ f_0=25 \text{к}\Gamma\text{ц}$

Рис. 10: $f_{\text{повт}}=1$ к Γ ц, au=100мкс, $f_0=25$ к Γ ц

Рис. 11: $f_{\text{повт}} = 2 \text{к} \Gamma \text{ц}, \ \tau = 100 \text{мкс}, \ f_0 = 40 \text{к} \Gamma \text{ц}$ Рис. 12: $f_{\text{повт}} = 2 \text{к} \Gamma \text{ц}, \ \tau = 100 \text{мкс}, \ f_0 = 10 \text{к} \Gamma \text{ц}$

Таблица 3: Зависимость $\delta\nu(\nu_0)$

ν_0 , к Γ ц	$\delta \nu$, к Γ ц	$\sigma_{\delta\nu}$, к Γ ц
1	1.0	0.1
2	2.0	0.2
3	2.5	0.1
4	5.0	0.5
5	5.0	0.6
6	5.7	0.5
7	6.7	0.7
8	7.5	0.8

