

UNIVERSIDAD POLITÉCNICA DE SAN LUIS POTOSÍ ACADEMIA DE MATEMÁTICAS

FORMULARIO

NOMBRE: GRUPO:

TRIGONOMETRÍA

IDENTIDADES

$$sen^2 A + cos^2 A = 1$$
 $tan^2 A + 1 = sec^2 A$
 $cos A sec A = 1$
 $tan A cot A = 1$
 $tan A = \frac{senA}{cosA}$
 $tan A = \frac{cosA}{senA}$

FÓRMULAS

$$sen(-A) = -sin A$$
 $cos(-A) = cos A$
 $tan(-A) = -tan A$ $cot(-A) = -cot A$
 $sec(-A) = sec A$ $csc(-A) = -csc A$

$$sen\left(\frac{\pi}{2} - A\right) = \cos A \qquad \cos\left(\frac{\pi}{2} - A\right) = \sin A
tan\left(\frac{\pi}{2} - A\right) = \cot A \qquad \cot\left(\frac{\pi}{2} - A\right) = \tan A
sec\left(\frac{\pi}{2} - A\right) = \csc A \qquad \csc\left(\frac{\pi}{2} - A\right) = \sec A$$

$$sen 2A = 2 sen A cos A$$

$$cos 2A = cos2 A - sen2 A$$

$$cos 2A = 1 - 2 sin2 A$$

$$cos 2A = 2 cos2 A - 1$$

$$tan 2A = \frac{2 tan A}{1 - tan2 A}$$

$$sen(A \pm B) = sen A cos B \pm sen B cos A$$

$$cos(A \pm B) = cos A cos B \mp sen A sen B$$

$$tan(A \pm B) = \frac{tan A \pm tan B}{1 \mp tan A tan B}$$

$$sen2 A = \frac{1 - \cos 2A}{2} \qquad cos2 A = \frac{1 + \cos 2A}{2}
tan2 A = \frac{1 - \cos 2A}{1 + \cos 2A} \qquad tan A = \frac{1 - \cos 2A}{\sin 2A} = \frac{\sin 2A}{1 + \cos 2A}$$

$$\operatorname{sen} A \cos B = \frac{1}{2} [\operatorname{sen}(A+B) + \operatorname{sen}(A-B)]$$

$$\cos A \sin B = \frac{1}{2} [\operatorname{sen}(A+B) - \operatorname{sen}(B-A)]$$

$$\cos A \cos B = \frac{1}{2} [\cos(A+B) + \cos(A-B)]$$

$$\operatorname{sen} A \operatorname{sen} B = \frac{1}{2} [\cos(A-B) - \cos(A+B)]$$

$$\operatorname{sen} A + \operatorname{sen} B = 2 \operatorname{sen} \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$$

$$\operatorname{sen} A - \operatorname{sen} B = 2 \cos \left(\frac{A+B}{2}\right) \operatorname{sen} \left(\frac{A-B}{2}\right)$$

$$\operatorname{cos} A + \cos B = 2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$$

$$\operatorname{cos} A - \cos B = -2 \operatorname{sen} \left(\frac{A+B}{2}\right) \operatorname{sen} \left(\frac{A-B}{2}\right)$$

Ley de senos:
$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Ley de cosenos: $a^2 = b^2 + c^2 - 2bc \cos A$

PROPIEDADES DE EXPONENTES

$$a^{n}a^{m}=a^{n+m}$$
 $\frac{a^{n}}{a^{m}}=a^{n-m}$ $(a^{n})^{m}=a^{nm}$ $\sqrt[m]{a^{n}}=a^{n/m}$ $\sqrt[m]{a^{n}}=a^{n/m}$ $a^{0}=1$ $a^{1}=a$ $a^{-n}=\frac{1}{a^{n}}$ $(ab)^{n}=a^{n}b^{n}$ $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$ PROPIEDADES DE LOGARITMOS

 $log(a^b) = b(loga); \quad log \sqrt[b]{a} = \frac{1}{b} loga$

$$log_a b = x$$
 si $a^x = b$; $log_a 1 = 0$ $log_a a = 1$ $log_a b = \frac{logb}{loga}$ $log(ab) = loga + logb$; $log(\frac{a}{b}) = loga - logb$

DERIVADAS

u, v: funciones de x; a, c, n: constantes $\neq 0$

$$(c)' = 0 \qquad (x)' = 1 \qquad (cu)' = cu' \\ (u \pm v)' = u' \pm v' \qquad (x^n)' = nx^{n-1} \\ (uv)' = vu' + uv' \qquad \left(\frac{u}{v}\right)' = \frac{vu' - uv'}{v^2}, \ v \neq 0$$

$$\left(\frac{u}{c}\right)' = \frac{w}{c} \qquad \left(\frac{c}{u}\right)' = -\frac{cu'}{u^2}, \ u \neq 0$$

$$(u^n)' = nu^{n-1}u' \qquad (log_a u)' = \frac{log_a e}{u}u' \qquad (e^u)' = u'e^u \qquad (a^u)' = u'a^u \ln a$$

$$(u^v)' = u'v(u^{v-1}) + v'(u^v \ln u)$$

$$(sen u)' = u' \cos u \qquad (cos u)' = -u' sen u \qquad (cos u)' = -u' csc^2u \qquad (cot u)' = -u' csc^2u \qquad (csc u)' = u' csc^2u \qquad (csc u)' = -u' csc^2u \qquad (cs$$

$$(\sin^{-1} u)' = \frac{u'}{\sqrt{1 - u^2}}$$

$$(\tan^{-1} u)' = \frac{u'}{1 + u^2}$$

$$(\sec^{-1} u)' = \frac{u'}{1 + u^2}$$

$$(\csc^{-1} u)' = -\frac{u'}{1 + u^2}$$

$$(\csc^{-1} u)' = -\frac{u'}{1 + u^2}$$

$$(\csc^{-1} u)' = -\frac{u'}{u \sqrt{u^2 - 1}}$$

FUNCIONES HIPERBÓLICAS

$$senh(x) = \frac{e^{x} - e^{-x}}{2} \qquad cosh(x) = \frac{e^{x} + e^{-x}}{2} \qquad tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
$$coth(x) = \frac{e^{x} + e^{-x}}{e^{x} - e^{-x}} \qquad sech(x) = \frac{2}{e^{x} + e^{-x}} \qquad csch(x) = \frac{2}{e^{x} - e^{-x}}$$

DERIVADAS DE FUNCIONES HIPERBÓLICAS

$(\operatorname{senh} u)' = u' \cosh u$	$(\cosh u)' = u' \operatorname{senh} u$
$(\tanh u)' = u' \operatorname{sech}^2 u$	$(\coth u)' = -u' \operatorname{csch}^2 u$
$(\operatorname{sech} u)' = -u'\operatorname{sech} u \tanh u$	$(\operatorname{csch} u)' = -u'\operatorname{csch} u \operatorname{coth} u$
$(\sinh^{-1} u)' = \frac{u'}{\sqrt{1+u^2}}$	$(\cosh^{-1} u)' = \frac{u'}{\sqrt{u^2 - 1}}$
$(\tanh^{-1} u)' = \frac{u'}{1-u^2}$	$(\coth^{-1} u)' = \frac{u'}{1 - u^2}$
$(\operatorname{sech}^{-1} u)' = -\frac{u'}{u\sqrt{u^2-1}}$	$(\operatorname{csch}^{-1} u)' = -\frac{u'}{ u \sqrt{u^2+1}}$

INTEGRALES

FÓRMULAS DIRECTAS

u, v, w: funciones de x; a, n, c, k: constantes $\neq 0$ $\int dx = x + c$ $\int k dx = k \int dx$ $\int (u \pm v) dx = \int u dx + \int v dx$ $\int x^n dx = \frac{1}{n+1} x^{n+1} + c; \quad n \neq -1$ $\int u^n du = \frac{1}{n+1} u^{n+1} + c; \quad n \neq -1$ $\int \frac{1}{u} du = \int u^{-1} du = \ln|u| + c$ $\int e^u du = e^u + c$ $\int a^u du = \frac{1}{\ln a} a^u + c$ $\int \sin u \, du = -\cos u + c$ $\int \cos u \, du = \sin u + c$ $\int \tan u \, du = \ln |\sec u| + c = -\ln|\cos u| + c$ $\int \cot u \, du = \ln|\sin u| + c$ $\int \sec u \, du = \ln|\sec u + \tan u| + c$ $\int \csc u \, du = \ln|\csc u - \cot u| + c$ $\int \sec^2 u \, du = \tan u + c$ $\int \csc^2 u du = -\cot u + c$ $\int \sec u \tan u \, du = \sec u + c$ $\int \csc u \cot u \, du = -\csc u + c$ $\int \text{sen}^{-1} u du = u \text{sen}^{-1} u + \sqrt{1 - u^2} + c$ $\int \cos^{-1} u \, du = u \cos^{-1} u - \sqrt{1 - u^2} + c$ $\int \tan^{-1} u du = u \tan^{-1} u - \frac{1}{2} ln(1 + u^2) + c$ $\int \frac{1}{a^2 + u^2} du = \frac{1}{a} \tan^{-1} \frac{u}{a} + c$ $\int \frac{1}{a^2 - u^2} du = \frac{1}{2a} \ln \left| \frac{u + a}{u - a} \right| + c$ $\int \frac{1}{u^2 - a^2} du = \frac{1}{2a} \ln \left| \frac{u - a}{u + a} \right| + c$ $\int \frac{1}{\sqrt{a^2 - u^2}} du = \text{sen}^{-1} \frac{u}{a} + c$ $\int \frac{1}{u\sqrt{u^2 - a^2}} du = \frac{1}{a} \sec^{-1} \frac{u}{a} + c$ $\int \frac{1}{\sqrt{u^2 + a^2}} du = \ln |u + \sqrt{u^2 + a^2}| + c$ $\int \frac{1}{\sqrt{u^2 - a^2}} du = \ln |u + \sqrt{u^2 - a^2}| + c$ $\int \sqrt{u^2 + a^2} du = \frac{u}{2} \sqrt{u^2 + a^2} + \frac{a^2}{2} ln |u + \sqrt{u^2 + a^2}| + c$ $\int \sqrt{u^2 - a^2} du = \frac{u}{2} \sqrt{u^2 - a^2} + \frac{\tilde{a}^2}{2} ln |u + \sqrt{u^2 - a^2}| + c$ $\int \sqrt{a^2 - u^2} du = \frac{u}{2} \sqrt{a^2 - u^2} + \frac{a^2}{2} \operatorname{sen}^{-1} \frac{u}{a} + c$ $\int \operatorname{senh} u du = \cosh u \, u + c$ $\int \cosh u du = \sinh u + c$ $\int \tanh u \, du = \ln|\cosh u| + c$ $\int \coth u \, du = \ln|\mathrm{senh} \, u| + c$ $\int \operatorname{sech} u \, du = tan^{-1} |\operatorname{senh} u| + c$ $\int \operatorname{csch} u \, du = \ln \left| \tanh \frac{1}{2} u \right| + c$ $\int \operatorname{sech}^2 u du = \tanh u \, u + c$ $\int \operatorname{csch}^2 u du = -\coth u + c$ $\int \operatorname{sech} u \tanh u \, du = - \operatorname{sech} u + c$ $\int \operatorname{csch} u \operatorname{coth} u \, du = -\operatorname{csch} u + c$

SÓLIDOS DE REVOLUCIÓN

$$V_Y = \pi \int_a^b r^2 dy$$
; $r = f(y)$ $V_X = \pi \int_a^b r^2 dx$; $r = f(x)$
 $V_Y = 2\pi \int_a^b x f(x) dx$

MÉTODOS DE INTEGRACIÓN

Por partes: $\int u dv = uv - \int v du$

Sustitución trigonométrica

$$\sqrt{a^2 - u^2} \rightarrow u = asen\theta \rightarrow \sqrt{a^2 - u^2} = acos \theta$$

$$\sqrt{a^2 + u^2} \rightarrow u = atan\theta \rightarrow \sqrt{a^2 + u^2} = asec \theta$$

$$\sqrt{u^2 - a^2} \rightarrow u = asec\theta \rightarrow \sqrt{u^2 - a^2} = atan \theta$$

Fracciones parciales

Fracciones parciales
$$\frac{P(x)}{Q(x)} = \frac{P(x)}{(ax+b)(cx+d)...} = \frac{A}{ax+b} + \frac{B}{cx+d} + \cdots$$

$$\frac{P(x)}{Q(x)} = \frac{P(x)}{(ax^2+bx+c)(dx^2+ex+f)...} = \frac{Ax+B}{ax^2+bx+c} + \cdots$$

$$\frac{P(x)}{Q(x)} = \frac{P(x)}{(ax+b)^n...} = \frac{A}{ax+b} + \frac{B}{(ax+b)^2} + \cdots + \frac{N}{(ax+b)^n} + \cdots$$

CÓNICAS

Coordenadas rectangulares:

Ecuación general de segundo grado con dos incógnitas:

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$

Discriminante: $B^2 - 4AC$

Circunferencia: $(x-h)^2 + (y-k)^2 = r^2$

Parábola: ancho focal=4p Excentricidad = 1

Hor.
$$(y-k)^2 = \pm 4p(x-h)$$
 Ver: $(x-h)^2 = \pm 4p(y-k)$

Elipse: ancho focal $\frac{2b^2}{a}$ Excentricidad: $\frac{c}{a} < 1$

Hor.
$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$
 Ver: $\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$

Hipérbola: ancho focal $\frac{2b^2}{c}$ Excentricidad: $\frac{c}{a} > 1$

Hor.
$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$
 Ver: $\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$

Transformación de coordenadas (rotación en ángulo θ)

 $x = x'\cos\theta - y'\sin\theta;$ $y = x'\sin\theta + y'\cos\theta$ Eliminar término xy: $\cos 2\theta = \frac{A-B}{B}$

FUNCIONES PARAMÉTRICAS

$$\begin{split} \frac{dy}{dx} &= \frac{\frac{dy}{dt}}{\frac{dx}{dt}}, \, \operatorname{si} \, \frac{dx}{dt} \neq 0 & \frac{d^2y}{dx^2} = \frac{\frac{d}{dt}(\frac{dy}{dx})}{\frac{dx}{dt}} \\ \operatorname{Si} \, x &= x(t), y = y(t), y \, \alpha \leq t \leq \beta, \\ A &= \int_a^b y dx = \int_\alpha^\beta y(t) x'(t) dt & \text{(Área c. r. a eje } \textbf{\textit{Y}}) \\ A &= \int_a^b x dy = \int_\alpha^\beta x(t) y'(t) dt & \text{(Área c. r. a eje } \textbf{\textit{Y}}) \\ L &= \int_\alpha^\beta \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt & \text{Longitud de arco} \end{split}$$

COORDENADAS POLARES

 $r = \sqrt{x^2 + y^2}$; $\tan \theta = \frac{y}{x}$ Rectangular a polar: $x = r \cos \theta$; $y = r \sin \theta$ Polar a rectangular:

Derivada: como función paramétrica $r = f(\theta)$:

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\frac{dr}{d\theta} \sin \theta + r \cos \theta}{\frac{dr}{d\theta} \cos \theta - r \sin \theta}$$

Área de una superficie polar: $A = \frac{1}{2} \int_{\theta_2}^{\theta_2} r^2 d\theta$

Cónicas en coordenadas polares:
$$r = \frac{de}{1 \pm e \cos \theta}$$
; $r = \frac{de}{1 \pm e \sin \theta}$, $e = \text{excentricidad} > 0$

SERIES DE TAYLOR Y MACLAURIN

Taylor:
$$f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(a)}{n!}(x-a)^n$$
 , Maclaurin a =0 $R_n(x)=\frac{f^{(n+1)}(z)}{(n+1)!}(x-c)^{n+1}$, con z entre x y c

CONVERGENCIA PARA SERIES DE MACLAURIN					
Función	Intervalo de Término n-és convergencia de la serie				
$\frac{1}{1-x}$	(-1,1)	x^n			
$(1+x)^m$	(-1,1)	$\binom{m}{n}x^n$			
sen x	$(-\infty,\infty)$	$(-1)^n \frac{x^{2n+1}}{(2n+1)!}$			
cos x	$(-\infty,\infty)$	$(-1)^n \frac{x^{2n}}{(2n)!}$			
e ^x	$(-\infty,\infty)$	$\frac{x^n}{n!}$			
ln(1+x)	(-1, 1]	$(-1)^{n-1} \frac{x^n}{n},$ $n > 0$			
tan ⁻¹ x	[-1,1]	$(-1)^n \frac{x^{2n+1}}{2n+1}$			

DERIVADAS PARCIALES

REGLA DE LA CADENA

Si z = f(x, y) es derivable; x = g(t); y = h(t) derivables, entonces:

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

Caso general:

Si $z = f(x_1, x_2, ..., x_n)$ es derivable; $x_i = g(t)$; y = h(t), son derivables, entonces:

$$\frac{\partial z}{\partial t_i} = \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial t_i} + \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial t_i} + \dots + \frac{\partial f}{\partial x_n} \frac{\partial x_n}{\partial t_i}$$

DERIVACIÓN IMPLÍCITA:

Si
$$F(x, y) = 0$$
, entonces $\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}$

DIFERENCIAL TOTAL

$$df(x,y) = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$$

GRADIENTE

SI z = f(x, y) es una función derivable, entonces:

$$\nabla f(x,y) = \frac{\partial f}{\partial x}\hat{\boldsymbol{i}} + \frac{\partial f}{\partial y}\hat{\boldsymbol{j}}$$

MÁXIMOS Y MÍNIMOS

$$f_x=0$$
, $f_y=0$, $D=\begin{vmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{vmatrix}$ Método del Hessiano

DERIVADA DIRECCIONAL

SI z = f(x, y) es una función derivable y $\mathbf{u} = \langle a, b \rangle$ es un vector unitario:

$$D_{\widehat{\boldsymbol{u}}}f(x,y) = \frac{\partial f}{\partial x}a + \frac{\partial f}{\partial y}b = \nabla f(x,y) \cdot \widehat{\boldsymbol{u}}$$

INTEGRALES MÚLTIPLES

Región de tipo I: $D = \{(x,y) | a \le x \le b, g_1(x) \le y \le g_2(x)\}$: $\iint_D f(x,y) dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y) dy dx$

Región de tipo II: $D = \{(x,y) | c \le y \le d, h_1(y) \le x \le h_2(y)\}$: $\iint_D f(x,y) dA = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x,y) dx dy$

ÁREA DE SUPERFICIES

$$\iint_{R} \sqrt{[f_{x}(x,y)]^{2} + [f_{y}(x,y)]^{2} + 1} dA$$

ECUACIONES DIFERENCIALES

Ecuación lineal: y' + p(x)y = f(x)Solución: $y(x) = e^{-\int p(x)} \int f(x)e^{\int p(x)} dx$ (Factor integrante)

Ecuación de variables separables: $\frac{dy}{dx} = \frac{F(x)}{G(y)}$ Solución: $\int G(y)dy = \int F(x)dx$

Ecuación diferencial exacta: H(x,y)dx + G(x,y)dy = 0, $\operatorname{con} \frac{\partial H}{\partial y} = \frac{\partial G}{\partial x}$

<u>Método</u>: calcula $D(x, y) = \int H(x, y) dx$ Despeja g'(y) de $\frac{\partial D}{\partial y} = G(x, y)$

Solución de la forma D(x, y), incluyendo el término g(y)

Reducción de orden:

Ecuación del tipo: $y'' + a_1(x)y' + a_0(x)y = f(x)$; Solución: $y_2(x) = u(x)y_1(x)$; siendo $y_1(x)$ una solución conocida de la EDO. Con $u(x) = C \int \frac{e^{-\int a_1(x)}}{[v_n(x)]^2} dx$

Variación de parámetros:

Ecuación del tipo: $a_2y'' + a_1y' + a_0y = f(x)$ <u>Método</u>: Si $y_1(x)$ y $y_2(x)$ son soluciones linealmente independientes de la EDO Homogénea, la solución completa de la EDO está dada por:

$$y(x) = u_1(x)y_1(x) + u_2(x)y_2(x) \text{ con}$$

$$u_1(x) = \int \frac{-f(x)y_2(x)}{W(y_1, y_2)(x)} dx; \qquad u_2(x) = \int \frac{f(x)y_1(x)}{W(y_1, y_2)(x)} dx$$

$$W(y_1, y_2)(x) = y_1(x)y_2'(x) - y_2(x)y_1'(x)$$

Ecuación de Bernoulli: $\frac{dy}{dx} + P(x)y = Q(x)y^n$ <u>Método</u>: Sustituyendo $u = y^{1-n}$ en la EDO anterior queda: $\frac{du}{dx} + (1-n)P(x)u = (1-n)Q(x)$

Que es una ecuación lineal de primer orden que puede resolverse ahora. (No olvides regresar el cambio de variable efectuado)

Transformada de Laplace:

<u>Definición</u>: $F(s) = \mathcal{L}\{f(t)\} = \int_0^\infty e^{-st} f(t) dt$

TABLA 4.1 COEFICIENTES INDETERMINADOS PARA L[y](x) = g(x)

Tipo	g(x)	$y_p(x)$
(I)	$p_n(x) = a_n x^n + \cdots + a_1 x + a_0$	$x^{s}P_{n}(x) = x^{s}\{A_{n}x^{n} + \cdots + A_{1}x + A_{0}\}^{s}$
(II)	ae ax	$x^sAe^{\alpha x}$
(III)	$a\cos\beta x + b\sin\beta x$	$x^s \{ A \cos \beta x + B \sin \beta x \}$
(IV)	$p_n(x)e^{\alpha x}$	$x^s P_n(x) e^{\alpha x}$
(V)	$p_n(x)\cos \beta x + q_m(x)\sin \beta x$, donde $q_m(x) = b_m x^m + \cdots + b_1 x + b_0$	$x^{s} \{ P_{N}(x) \cos \beta x + Q_{N}(x) \sin \beta x \},$ donde $Q_{N}(x) = B_{N}x^{N} + \cdots + B_{1}x + B_{0} \text{y} N = \max(n, m)$
(VI)	$ae^{\alpha x}\cos\beta x + be^{\alpha x}\sin\beta x$	$x^{s}\{Ae^{\alpha x}\cos\beta x + Be^{\alpha x}\sin\beta x\}$
(VII)	$p_n(x)e^{\alpha x}\cos\beta x + q_m(x)e^{\alpha x}\sin\beta x$	$x^{s}e^{nx}\{P_{N}(x)\cos\beta x + Q_{N}(x)\sin\beta x\},\$ donde $N = \max(n, m)$

El entero no negativo s se elige para que sea el entero más pequeño de tal forma que ningún término en la solución particular $y_p(x)$ sea una solución a la correspondiente ecuación homogénea L[y](x) = 0.

(Tabla tomada del libro "Ecuaciones diferenciales y problemas con valores en la frontera", 4ta Edición, Nagle, Staff, Snider. Ed. Pearson)

TRANSFORMADA DE LAPLACE

	f(T)	$F(s) = \mathcal{L}\{f(s)\}\$	f(T)	$F(s) = \mathcal{L}\{f(s)\}$
1.	f(at)	$\frac{1}{a}F\left(\frac{s}{a}\right)$	19. $\frac{1}{\sqrt{t}}$	$\frac{\sqrt{\pi}}{\sqrt{s}}$
2.	$e^{at}f(t)$	F(s-a)	20. √ <i>t</i>	$\frac{\sqrt{\pi}}{2s^{3/2}}$
3.	f'(t)	sF(s) - f(0)	21. $t^{n-1/2}$, $n \in \mathbb{N}$	$\frac{1 \cdot 3 \cdot 5 \cdot (2n-1)\sqrt{\pi}}{2^{n} s^{n+1/2}}$
	c(n)	$s^{n}F(s) - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - sf^{(n-2)}(0) - f^{(n-1)}(0)$	22. t^r , $r > -1$	$\frac{\Gamma(r+1)}{s^{r+1}}$
4.	$f^{(n)}(t)$		23. sen <i>bt</i>	$\frac{b}{s^2 + b^2}$
5.	$t^n f(t)$	$(-1)^n F^{(n)}(s)$	24. cos bt	$\frac{s}{s^2+b^2}$
6.	$\frac{1}{t}f(t)$	$\int_{s}^{\infty} F(u) du$	25. <i>e</i> ^{at} sen <i>bt</i>	$\frac{b}{(s-a)^2+b^2}$
7.	$\int_0^t f(v)dv$	$\frac{F(s)}{s}$	26. <i>e</i> ^{at} cos <i>bt</i>	$\frac{s-a}{(s-a)^2+b^2}$
8.	$(f \cdot g)(t)$	F(s)G(s)	27. senh <i>bt</i>	$\frac{b}{s^2-b^2}$
9.	f(t+T) = f(t)	$\frac{\int_0^T e^{-st} f(t)dt}{1 - e^{-sT}}$	28. cosh <i>bt</i>	$\frac{s}{s^2 - b^2}$
10.	$f(t-a)u(t-a),$ $a \ge 0$	$e^{-as}F(s)$	29. $\operatorname{sen} bt - bt \cos bt$	$\frac{2b^3}{(s^2+b^2)^2}$
11.	$g(t)u(t-a),$ $a \ge 0$	$e^{-as}\mathcal{L}\{g(t+a)\}(s)$	30. <i>t</i> sen <i>bt</i>	$\frac{2bs}{(s^2+b^2)^2}$
12.	$u(t-a), a \ge 0$	$\frac{e^{-as}}{s}$	31. $\operatorname{sen} bt + bt \cos bt$	$\frac{2bs^2}{(s^2+b^2)^2}$
13.	$\delta(t-a), \ a \ge 0$	e^{-as}	32. t cos bt	$\frac{s^2 - b^2}{(s^2 + b^2)^2}$
14.	e ^{at}	$\frac{1}{s-a}$	33. sen bt cosh bt — cos bt senh bt	$\frac{4b^3}{s^4+4b^4}$
15.	t^n , $n \in \mathbb{N}$	$\frac{n!}{s^{n+1}}$	34. sen bt senh bt	$\frac{2b^2s}{s^4+4b^4}$
16.	$e^{at}t^n$, $n \in \mathbb{N}$	$\frac{n!}{(s-a)^{n+1}}$	35. senh <i>bt</i> – sen <i>bt</i>	$\frac{2b^3}{s^4-b^4}$
17.	$e^{at}-e^{bt}$	$\frac{(a-b)}{(s-a)(s-b)}$	36. $\cosh bt - \cos bt$	$\frac{2b^2s}{s^4-b^4}$
18.	$ae^{at}-e^{bt}$	$\frac{(a-b)s}{(s-a)(s-b)}$	37. $J_v(bt)$	$\frac{\left(\sqrt{s^2 + b^2} - s\right)^v}{b^v \sqrt{s^2 + b^2}}, v > -1$

 $^{^{\}dagger}P_n(x)$ debe incluir todos sus términos aun cuando $P_n(x)$ tenga ciertos términos iguales a cero.