Prednášky z Matematiky (4) — Logiky pre informatikov

Ján Kľuka, Jozef Šiška

Katedra aplikovanej informatiky FMFI UK Bratislava

Letný semester 2018/2019

9. prednáška

Definície predikátov. Sémantika relačnej logiky prvého rádu

15. apríla 2019

Obsah 9. prednášky

3 Logika prvého rádu
Syntax (opakovanie)
Formalizácia v logike prvého rádu
Definície predikátov
Sémantika relačnej logiky prvého rádu

3.2

Syntax (opakovanie)

Sémantika

Symboly jazyka relačnej logiky prvého rádu

Definícia 3.3

```
Symbolmi jazyka \mathcal{L} relačnej logiky prvého rádu sú:
```

```
symboly (indivíduových) premenných z nejakej nekonečnej spočítateľnej
      množiny \mathcal{V}_{f} (označujeme ich x, y, ...);
```

mimologické symboly:

```
symboly konštánt z nejakej spočítateľnej množiny C_{\Gamma} (označované a, b, ...);
predikátové symboly z nejakej spočít. množiny \mathcal{P}_{f} (ozn. P, R, ...);
```

logické symboly:

```
logické spojky: unárna \neg, binárne \land, \lor, \rightarrow,
symbol rovnosti \doteq,
```

kvantifikátory: existenčný kvantifikátor \exists a všeobecný kvantifikátor \forall ;

pomocné symboly (,) a , (ľavá, pravá zátvorka a čiarka).

Množiny \mathcal{V}_f , \mathcal{C}_f , \mathcal{P}_f sú vzájomne disjunktné.

Logické a pomocné symboly sa nevyskytujú v symboloch z $\mathcal{V}_{\mathcal{L}}, \mathcal{C}_{\mathcal{L}}, \mathcal{P}_{\mathcal{L}}$. Každému symbolu $P \in \mathcal{P}_f$ je priradená **arita** ar $(P) \in \mathbb{N}^+$.

Atomické formuly relačnej logiky prvého rádu

Definícia 3.5 (Term)

Nech $\mathcal L$ je jazyk relačnej logiky prvého rádu.

Symboly premenných z $\mathcal{V}_{\mathcal{L}}$ a konštánt z $\mathcal{C}_{\mathcal{L}}$ súhrnne nazývame **termy**.

Definícia 3.6 (Atomické formuly)

Nech $\mathcal L$ je jazyk relačnej logiky prvého rádu.

Rovnostný atóm jazyka \mathcal{L} je každá postupnosť symbolov $t_1 \doteq t_2$, kde t_1 a t_2 sú termy.

Predikátový atóm jazyka \mathcal{L} je každá postupnosť symbolov $P(t_1, \ldots, t_n)$, kde P je predikátový symbol s aritou n a t_1, \ldots, t_n sú termy.

$$\label{eq:linear_continuity} \begin{split} &\textbf{Atomickými formulami} \; \text{(skrátene } \textbf{atómami)} \; \text{jazyka} \; \mathcal{L} \\ &\text{súhrnne nazývame všetky rovnostné a predikátové atómy jazyka} \; \mathcal{L}. \\ &\text{Množinu všetkých atómov jazyka} \; \mathcal{L} \; \text{označujeme} \; \mathcal{A}_{\mathcal{L}}. \end{split}$$

Formuly jazyka relačnej logiky prvého rádu

Definícia 3.7

Množina $\mathcal{E}_{\mathcal{L}}$ všetkých **formúl** jazyka relačnej logiky prvého rádu \mathcal{L} je *najmenšia* množina postupností symbolov jazyka \mathcal{L} , pre ktorú platí:

- Všetky atomické formuly z $\mathcal{A}_{\mathcal{L}}$ sú formulami z $\mathcal{E}_{\mathcal{L}}$ (teda $\mathcal{A}_{\mathcal{L}} \subseteq \mathcal{E}_{\mathcal{L}}$).
- Ak A je formula z $\mathcal{E}_{\mathcal{L}}$, tak aj \neg A je formula z $\mathcal{E}_{\mathcal{L}}$ (**negácia** A).
- Ak A a B sú formuly z $\mathcal{E}_{\mathcal{L}}$, tak aj $(A \wedge B)$, $(A \vee B)$, $(A \to B)$ sú formuly z $\mathcal{E}_{\mathcal{L}}$ (konjunkcia, disjunkcia, implikácia A a B).
- Ak x je indivíduová premenná a A je formula z & L,
 tak aj ∃x A a ∀x A sú formuly z & L
 (existenčná a všeobecná kvantifikácia formuly A vzhľadom na x).

Dohoda 3.8

Formuly označujeme písmenami A, B, C, \dots s prípadnými indexmi. $(A \leftrightarrow B)$ je skratka postupnosti symbolov $((A \to B) \land (B \to A))$.

3.2

Formalizácia v logike prvého rádu

Jednoznačnosť rozkladu formúl

Pre našu definíciu formúl platí:

Tvrdenie 3.9 (o jednoznačnosti rozkladu)

Pre každú formulu $X \in \mathcal{E}_{\mathcal{L}}$ v jazyku relačnej logiky prvého rádu \mathcal{L} platí práve jedna z nasledujúcich možností:

- Existuje práve jeden taký predikátový symbol $P \in \mathcal{P}_{\mathcal{L}}$ a práve jedna taká n-tica termov t_1, \ldots, t_n z $\mathcal{V}_{\mathcal{L}} \cup \mathcal{C}_{\mathcal{L}}$, kde n je arita P, že $X = P(t_1, \ldots, t_n)$.
- Existuje práve jedna dvojica termov t_1 , t_2 z $\mathcal{V}_{\mathcal{L}} \cup \mathcal{C}_{\mathcal{L}}$ taká, že $X = t_1 \doteq t_2$.
- Existuje práve jedna formula $A \in \mathcal{E}$ taká, že $X = \neg A$.
- Existujú práve jedna dvojica formúl A, B ∈ & a jedna spojka
 b ∈ {∧, ∨, →} také, že X = (A b B).
- Existuje práve jedna formula $A \in \mathcal{E}$ a jedna indivíduová premenná $x \in \mathcal{V}_{\mathcal{L}}$ také, že $X = \forall x A$ alebo $X = \exists x A$.

Vytvárajúci strom relačnej prvorádovej formuly

Definícia 3.10

Vytvárajúci strom *T* pre formulu *X* je binárny strom obsahujúci v každom vrchole formulu, pričom platí:

- v koreni *T* je formula *X*,
- ak vrchol obsahuje formulu v tvare ¬A, ∀x A, ∃x A, tak má práve jedno dieťa, ktoré obsahuje formulu A,
- ak vrchol obsahuje formulu v tvare (A b B), kde b je jedna z binárnych spojok, tak má dve deti, pričom ľavé dieťa obsahuje formulu A a pravé formulu B,
- vrcholy obsahujúce atómy sú listami.

Príklad 3.11

Zostrojme vytvárajúci strom pre formulu

 $\forall x((\exists y R(x, y) \land \exists z R(y, z)) \rightarrow x \doteq y).$

Formuly jazyka relačnej logiky prvého rádu

Otestujte sa IX.1

Ktoré z nasledujúcich postupností symbolov sú formulami relačnej logiky prvého rádu, ak vhodne zvolíme jazyk?

- a $\forall x \, \check{\text{clovek}}(x) \wedge \check{\text{zena}}(\text{Eva})$
- b chytá(mačka(Muro), myš(y))
- $(\neg prši \lor \exists x(zmoknutý(x)))$

Ak postupnosť nie je formulou, ako sa dá správne vyjadriť pravdepodobne zamýšľaný význam?

3.2.5

Definície predikátov

Pojmy

- V mnohých doménach sú zaujímavé komplikovanejšie kombinácie vlastností alebo vzťahov:
 - ► x má spoločného rodiča s y, ale x je rôzne od y: $\exists z (\text{rodič}(z, x) \land \text{rodič}(z, y)) \land \neg x \doteq y$
 - x je živočích, ktorý konzumuje iba rastliny: (živočích(x) ∧ ∀y(konzumuje(x, y) → rastlina(y)))
- Často sa vyskytujúce kombinácie vzťahov a vlastností je výhodné:
 - pomenovať
 - a jasne vyjadriť význam nového mena pomocou doteraz známych vlastností a vzťahov,

teda zadefinovať pojem

Definície pojmov

Definícia 3.12 (neformálna)

Definícia je tvrdenie, ktoré vyjadruje význam pojmu.

Explicitná definícia (najčastejší druh definície) je ekvivalencia medzi pojmom a opisom jeho významu, v ktorom sa definovaný pojem sám nevyskytuje.

Príklad 3.13

- x je súrodencom y práve vtedy, keď x má spoločného rodiča s y, ale x je rôzne od y $\forall x \forall y \big(\text{súrodenec}(x,y) \leftrightarrow (\exists z (\text{rodič}(z,x) \land \text{rodič}(z,y)) \land \neg x \doteq y) \big)$
- x je bylinožravec vtedy a len vtedy, keď x je živočích, ktorý konzumuje iba rastliny ∀x(bylinožravec(x) ↔

$$(\check{z}ivo\check{c}ich(x) \land \forall y(konzumuje(x, y) \rightarrow rastlina(y))))$$

Explicitná def. a nutná a postačujúca podmienka

Poznámka 3.14

Všimnite si:

- Definícia pojmu súrodenec vyjadruje nutnú aj postačujúcu podmienku toho, aby medzi dvoma ľuďmi existoval súrodenecký vzťah.
- Definícia pojmu bylinožravec vyjadruje nutnú aj postačujúcu podmienkou toho, aby niečo bolo bylinožravcom.

V prípade súrodencov to znamená:

- Pre každú dvojicu objektov x a y, ktoré označíme za súrodencov, musí existovať ich spoločný rodič a musia byť navzájom rôzne.
- Každé dva navzájom rôzne objekty x a y, ktoré majú spoločného rodiča, musia byť súrodenci.

Podobne pre iné definície.

Použitie pojmov

Využitím definovaného pojmu

- skracujeme tvrdenia:
 - ▶ králiky sú bylinožravce: ∀x(králik(x) → bylinožravec(x))
- jednoduchšie definujeme ďalšie pojmy:
 - ▶ x je sestrou y práve vtedy, keď x je žena, ktorá je súrodencom y: $\forall x \forall y (\text{sestra}(x, y) \leftrightarrow (\text{žena}(x) \land \text{súrodenec}(x, y)))$

Vyskúšajte si IX.2

Zadefinujte pojem *teta* (chápaný ako vzťah dvoch ľudí) neformálne (v slovenčine) aj formálne (formulou logiky prvého rádu).

3.3

Sémantika relačnej logiky prvého rádu

Význam atomických formúl — výroková logika

Významom atomických formúl je pravdivostná hodnota *Výroková* logika:

- Atomické formuly sú výrokové premenné nemajú žiadnu štruktúru študent_Evka, zapísaný_Evka_LPI
- Význam im **priamo** priraďuje **ohodnotenie**

```
v = \{ \text{\tt študent\_Evka} \mapsto t, \quad \text{\tt zapisaný\_Evka\_LPI} \mapsto f \}
```

• Rôzne ohodnotenia – rôzne stavy sveta

Význam atomických formúl — logika prvého rádu

Významom atomických formúl je pravdivostná hodnota Logika *prvého rádu*:

 Atomické formuly majú štruktúru: predikátový symbol/rovnosť a jeho argumenty (termy)

$$\begin{split} \mathtt{\check{s}tudent}(\mathtt{E}\mathtt{vka}), \quad \mathtt{zap} \mathtt{\check{s}an} \check{y}(\mathtt{E}\mathtt{vka}, \mathtt{x}), \quad \mathtt{x} &\doteq \mathtt{LPI}, \\ \quad \mathtt{hodnoten} \check{y}(\mathtt{Ferko}, \mathtt{LPI}, \mathtt{C}) \end{split}$$

Termy (symboly konštánt a indivíduových premenných)

Evka, Ferko, LPI, A, ...
$$u, x, \ldots$$

označujú objekty

Predikátové symboly

študent¹, zapísaný², hodnotený³ označujú vlastnosti alebo vzťahy objektov

Vlastnosti a vzťahy matematicky

Aký matematický objekt zodpovedá...

- vlastnosti objektov?
 - Množina objektov s vlastnosťou
- vzťahu niekoľkých objektov?
 - ► Usporiadaná *n*-tica
 - ► (**†**_{Cvril}, 1-AIN-221, 2.5)
- všetkým vzťahom rovnakého druhu?
 - ► *n*-árna relácia (množina usporiadaných *n*-tíc)
 - ► {(♠_{Alica}, 1-AIN-221, 1.5), (♠_{Alica}, 1-AIN-412, 1), (♠_{Bonifác}, 1-AIN-221, 2), (♠_{Cyril}, 1-AIN-221, 2.5), (♠_{Cyril}, 1-AIN-222, 4), (♠_{František}, 1-AIN-412, 2)}

Význam mimologických symbolov

Priradenie významu symbolom nejakého jazyka $\mathcal L$ relačnej logiky 1. rádu:

1 Vyberieme doménu M –

množinu objektov v časti sveta, ktorá nás zaujíma

$$M = \{ \mathring{\boldsymbol{\Phi}}_{Alica}, \mathring{\boldsymbol{\eta}}_{Bonifác}, \mathring{\boldsymbol{\eta}}_{Cyril}, \mathring{\boldsymbol{\Phi}}_{Eva}, \mathring{\boldsymbol{\eta}}_{František}, \dots, \mathring{\boldsymbol{\eta}}_{Dr. \check{Z}in\check{c}ica}, \mathring{\boldsymbol{\Phi}}_{prof. Kováčová}, \\ 1-AIN-221, 1-AIN-222, 1-AIN-412, \dots, 1, \dots, 4, \dots \}$$

Interpretujeme mimologické symboly v tejto doméne:

symboly konštánt ako objekty z domény

$$i(\text{Evka}) = \hat{\Phi}_{\text{Eva}}, \quad i(\text{Ferko}) = \hat{\Phi}_{\text{František}}, \quad i(\text{LPI}) = 1-\text{AIN-412},$$

 $i(A) = 1, \quad i(B) = 1.5, \quad i(B) = 2, \quad \dots, \quad i(Fx) = 4, \quad \dots$

predikátové symboly podľa arity ako množiny prvkov domény

$$i(\mathtt{\check{s}tudent}^1) = \{ \mathbf{\mathring{\varphi}}_{\mathsf{Alica}}, \mathbf{\mathring{\P}}_{\mathsf{Bonif\acute{a}c}}, \mathbf{\mathring{\P}}_{\mathsf{Cyril}}, \mathbf{\mathring{\varphi}}_{\mathsf{Eva}}, \mathbf{\mathring{\P}}_{\mathsf{Franti\check{s}ek}}, \ldots \}$$

alebo ako množiny n-tíc prvkov domény

$$i(\text{hodnoten}\hat{y}^3) = \{(\mathring{\Phi}_{Alica}, 1-\text{AIN-221}, 1.5), (\mathring{\Phi}_{Alica}, 1-\text{AIN-412}, 1), (\mathring{\Phi}_{Bonifác}, 1-\text{AIN-221}, 2), (\mathring{\Phi}_{Cyril}, 1-\text{AIN-221}, 2.5), \ldots \}$$

Dvojica (M, i) — **štruktúra** pre jazyk \mathcal{L}

Štruktúra

Definícia 3.15

Nech \mathcal{L} je jazyk relačnej logiky prvého rádu.

Štruktúrou pre jazyk $\mathcal L$ nazývame dvojicu $\mathcal M=(\mathsf M,\mathsf i)$, kde

doména M štruktúry \mathcal{M} je ľubovoľná neprázdna množina;

interpretačná funkcia i štruktúry \mathcal{M} je zobrazenie, ktoré

- každému symbolu konštanty c jazyka \mathcal{L} priraďuje prvok $i(c) \in M$;
- každému predikátovému symbolu P jazyka \mathcal{L} s aritou n priraďuje množinu $i(P) \subseteq M^n$.

Dohoda 3.16

Štruktúry označujeme veľkými *písanými* písmenami $\mathcal{M}, \mathcal{N}, \dots$ Doménu označujeme *rovnakým*, ale *tlačeným* písmenom ako štruktúru.

Štruktúra ako informatický objekt

Štruktúru sme definovali pomocou matematických objektov.

Aký informatický objekt zodpovedá štruktúre?

Databáza:

- Predikátové symboly a ich arita ~ veľmi zjednodušená schéma DB
- Interpretácia predikátových symbolov ~ konkrétne tabuľky s dátami

i(študent ¹)	i(zaj	i(zapísaný²)		i(hodnotený ³)		
1	1	2	1	2	3	
♣ Alica	‡ Eva	1-AIN-221	♣Alica	1-AIN-221	1.5	
n Bonifác	Å Alica	1-AIN-221	Å Alica	1-AIN-412	1	
r Cyril	Å Alica	1-AIN-412	n Bonifác	1-AIN-221	2	
∳ Eva	n Bonifác	1-AIN-221	r Cyril	1-AIN-221	2.5	
•••	r Cyril	1-AIN-221	n Cyril	1-AIN-222	4	
	n Cyril	1-AIN-222	r František	1-AIN-412	2	
		•••		•••		

Štruktúry — upozornenia

- Štruktúr pre daný jazyk je nekonečne veľa
- Doména štruktúry
 - môže mať ľubovoľné prvky
 - nijak nesúvisí s intuitívnym významom interpretovaného jazyka
 Jazyk o vysokoškolských vzťahoch číselná doména štruktúry
 - môže byť nekonečná
- Interpretácia symbolov konštánt:
 - Každej konštante je priradený objekt domény
 - Nie každý objekt domény musí byť priradený nejakej konštante
 - Rôznym konštantám môže byť priradený rovnaký objekt
- Interpretácie predikátových symbolov môžu byť nekonečné
- Štruktúra nedefinuje význam jednej zložky atomických formúl indivíduových premenných

Ohodnotenie premenných

Definícia 3.17

Nech $\mathcal{M} = (M, i)$ je štruktúra pre jazyk \mathcal{L} .

Ohodnotenie (indivíduových) premenných je ľubovoľná funkcia $e \colon \mathcal{V}_{\mathcal{L}} \to M$ (priraďuje premenným prvky domény).

Zápisom e(x/v) označíme ohodnotenie indivíduových premenných, ktoré priraďuje premennej x hodnotu v z domény M a všetkým ostatným premenným rovnakú hodnotu ako im priraďuje e.

Nech

$$\mathcal{V}_{\mathcal{L}} = \{x, y\}$$
 $M = \{\mathring{\mathbf{A}}_{Alica}, \mathring{\mathbf{n}}_{Bonifác}, \mathring{\mathbf{n}}_{Cyril}, \mathring{\mathbf{A}}_{Eva}, \mathring{\mathbf{n}}_{František}, 1, 1.5, \dots, 4\}.$

Ohodnotením (indivíduových) premenných je napríklad

$$e = \{x \mapsto \mathbf{\mathring{\Phi}}_{\mathsf{Eva}}, y \mapsto \mathbf{\mathring{\Phi}}_{\mathsf{Bonifác}}\}$$

Potom

$$e(y/2.5) = \{x \mapsto \mathbf{\mathring{A}}_{Eva}, y \mapsto 2.5\}$$

Hodnota termov

Definícia 3.18

Nech $\mathcal{M} = (M, i)$ je štruktúra, e je ohodnotenie premenných. **Hodnotou termu t v štruktúre** \mathcal{M} **pri ohodnotení premenných e** je prvok $t^{\mathcal{M}}[e]$ z M určený nasledovne:

- $t^{\mathcal{M}}[e] = e(x)$, ak t je premenná $x \in \mathcal{V}_{\mathcal{L}}$,
- $t^{\mathcal{M}}[e] = i(a)$, ak t je konštanta $a \in C_{\mathcal{L}}$.

Splnenie atomickej formuly v štruktúre

```
Určenie významu atomickej formuly, napr. zapísaný (Ferko, y),
v danej štruktúre, napr. \mathcal{M} = (M, i), kde
   M = \{ \mathring{\mathbf{A}}_{Alica}, \mathring{\mathbf{n}}_{Bonifác}, \mathring{\mathbf{n}}_{Cyril}, \mathring{\mathbf{A}}_{Eva}, \mathring{\mathbf{n}}_{František}, 1, 1.5, \dots, 3, 4, 
             1-AIN-221, 1-AIN-222, 1-AIN-412}
   i(Evka) = \mathbf{\mathring{\Phi}}_{Eva}
                                              i(študent) =
                                                                           i(zapísaný) =
                                                 {♠<sub>Alica</sub>,
                                                                               \{(\mathring{\mathbf{A}}_{Alica}, 1-AIN-221),
   i(Ferko) = \mathbf{\hat{n}}_{František}
                                                                                 (†<sub>Alica</sub>, 1-AIN-412),
                                                   TBonifác,
   i(LPI) = 1-AIN-412
                                                                                                  1-AIN-221),
                                                                                 (T<sub>Bonifác</sub>,
                                                   TCyril,
                                                                                 (n<sub>Cyril</sub>,
                                                                                                  1-AIN-221),
                                                   ∳Eva,
                                                   rantišek }
                                                                                 (T<sub>Cyril</sub>,
                                                                                                  1-AIN-222),
                                                                                 (♣<sub>Eva</sub>,
                                                                                                  1-AIN-221)}
```

a pri ohodnotení premenných, napr. $e = \{x \mapsto 1, y \mapsto 1\text{-AIN-221}\}$:

1 vyhodnotíme termy vo formule: Ferko^{\mathcal{M}}[e] = i(Ferko) = $\mathbf{\hat{m}}_{\text{František}}$, $y^{\mathcal{M}}[e] = e(y) = 1$ -AIN-221

2 zistíme, či ($\mathbf{\hat{h}}_{\text{František}}$, 1-AIN-221) $\in i(\text{zapísan}\acute{y})$:

v tomto prípade nie

Takže štruktúra ${\mathcal M}$ ${\it nespĺňa}$ formulu zapísaný(Ferko, y) pri ohodnotení e

Splnenie existenčne kvantifikovanej formuly

- Vyhodnotenie splnenia formuly s výrokovými spojkami v štruktúre pri ohodnotení – rovnaké ako vo výrokovej logike
- Ako vyhodnotíme splnenie formuly s kvantifikátormi?

Splnenie existenčne kvantifikovanej formuly

 $\mathcal{M} \models \exists y \text{ zapísaný}(y, \text{LPI})[e]$?

1 Vyskúšame **všetky** ohodnotenia, ktoré postupne priraďujú kvantifikovanej premennej jednotlivé prvky domény:

m	e(y/m)	$\mathcal{M} \models \mathtt{zapisan} \circ (y, \mathtt{LPI}) \left[e(y/\mathtt{m}) \right]$
Å Alica	$\{x\mapsto 1,y\mapsto \clubsuit$	_{alica} } áno
n Bonifác	$\{x\mapsto 1,y\mapsto \mathring{\P}_{\mathbb{B}}$	_{onifác} } nie
n Cyril	$\{x\mapsto 1,y\mapsto \mathring{\P}_0$	_{yril} } nie
‡ Eva	$\{x\mapsto 1, y\mapsto \mathbf{\dot{\uparrow}}_{E}$	_{va} } nie
r František	$\{x\mapsto 1,y\mapsto \mathring{\P}_{F}$	_{rantišek} } nie
1	$\{x\mapsto 1, y\mapsto 1\}$	nie
1-AIN-412	$\{x\mapsto 1, y\mapsto 1$ -	AIN-421} nie

2 $\mathcal{M} \models \exists y \text{ zapísan} \circ (y, \text{LPI}) [e] \text{ vtt}$ pre aspoň jedno $m \in M$ máme $\mathcal{M} \models \text{zapísan} \circ (y, \text{LPI}) [e(y/m)];$ pravá strana je pravdivá pre $m = \clubsuit_{\text{Alica}} - \text{svedok}$

Splnenie všeobecne kvantifikovanej formuly

 $\mathcal{M} \models \forall x (\mathtt{\check{s}tudent}(x) \rightarrow \mathtt{zap\check{s}an\check{y}}(x,y)) [e]?$ Nech $A = \mathtt{\check{s}tudent}(x), B = \mathtt{zap\check{s}an\check{y}}(x,y)$

1 Vyskúšame **všetky** ohodnotenia, ktoré postupne priraďujú kvantifikovanej premennej jednotlivé prvky domény:

m	$\mathcal{M} \models A[e(x/m)]$	$\mathcal{M} \models B[e(x/m)]$	$\mathcal{M} \models (A \rightarrow B)[e(x/m)]$
Alica	áno	áno	áno
n Bonifác	áno	áno	áno
T Cyril	áno	áno	áno
‡ Eva	áno	áno	áno
T František	áno	nie	nie
1	nie	nie	áno
1-AIN-4	12 nie	nie	áno

2 $\mathcal{M} \models \forall x \ (\check{\operatorname{student}}(x) \to \operatorname{zap}(x,y)) [e] \ \operatorname{vtt} \operatorname{pre} \operatorname{v\check{\operatorname{setky}}} m \in M \ \operatorname{m\'{a}me} \ \mathcal{M} \models (\check{\operatorname{student}}(x) \to \operatorname{zap}(\check{\operatorname{san}}(x,y)) [e(x/m)];$ pravá strana je nepravdivá pre $m = \mathring{\P}_{\operatorname{Franti\check{\operatorname{sek}}}} - \operatorname{kontrapriklad}$

Viazané premenné a splnenie

Pri určovaní splnenia formuly $\forall x A, \exists x A$ v štruktúre M pri ohodnotení e

- Nezáleží na pôvodnej hodnote e(x) pre kvantifikovanú premennú x
- Hovoríme, že premenná x je **viazaná** kvantifikátorom
- Podobné ako formálny parameter funkcie v programovaní
- Môže záležať na hodnote e(y) premenných $y \neq x$

Splnenie formuly v štruktúre

Definícia 3.19

Nech $\mathcal{M} = (M, i)$ je štruktúra, e je ohodnotenie premenných. Relácia **štruktúra** \mathcal{M} **spĺňa formulu A pri ohodnotení e** (skrátene $\mathcal{M} \models A[e]$) má nasledovnú induktívnu definíciu:

- $\mathcal{M} \models \neg A[e] \text{ vtt } \mathcal{M} \not\models A[e],$
- $\mathcal{M} \models (A \land B)[e]$ vtt $\mathcal{M} \models A[e]$ a zároveň $\mathcal{M} \models B[e]$,
- $\mathcal{M} \models (A \lor B)[e] \text{ vtt } \mathcal{M} \models A[e] \text{ alebo } \mathcal{M} \models B[e],$
- $\mathcal{M} \models (A \rightarrow B)[e] \text{ vtt } \mathcal{M} \not\models A[e] \text{ alebo } \mathcal{M} \models B[e],$
- ▶ $\mathcal{M} \models \exists x A[e]$ vtt pre nejaký prvok $m \in M$ máme $\mathcal{M} \models A[e(x/m)]$,
- ▶ $\mathcal{M} \models \forall x A[e]$ vtt pre každý prvok $m \in M$ máme $\mathcal{M} \models A[e(x/m)]$,

pre všetky arity n > 0, všetky predikátové symboly P s aritou n, všetky termy $t_1, t_2, ..., t_n$, všetky premenné x a všetky formuly A, B.

Splnenie množiny formúl

Definícia 3.20

Nech S je množina formúl jazyka \mathcal{L} , nech \mathcal{M} je štruktúra pre \mathcal{L} , nech e je ohodnotenie výrokových premenných.

Štruktúra \mathcal{M} spĺňa množinu S pri ohodnotení e (skrátene $\mathcal{M} \models S[e]$) vtt pre všetky formuly X z S platí $\mathcal{M} \models X[e]$.

Príklad 3.21

Nájdime štruktúru a ohodnotenie, ktoré spĺňajú množinu $S_{\text{spolubývajúce}} = \{A_1, \dots, A_6\}$ prvých 6 formúl o spolubývajúcich:

```
A_1 = (m\underline{a}_rada(Biba, Ciri) \lor m\underline{a}_rada(Biba, Dada)),
A_2 = \forall x (m\underline{a}_rada(Biba, x) \rightarrow m\underline{a}_rada(A\underline{a}_x)),
A_3 = \forall x (m\underline{a}_rada(x, Ciri) \rightarrow m\underline{a}_rada(Ciri, x)),
A_4 = \exists x (m\underline{a}_rada(x, Biba) \land m\underline{a}_rada(Biba, x)),
A_5 = \forall x \neg m\underline{a}_rada(x, x),
A_6 = \forall x \exists y m\underline{a}_rada(x, y)
```

Splniteľnosť

Definícia 3.22

Nech X je formula jazyka $\mathcal L$ a nech S je množina formúl jazyka $\mathcal L$.

Formula X je **splniteľná** vtt aspoň jedna štruktúra $\mathcal M$ pre $\mathcal L$ spĺňa X pri aspoň jednom ohodnotení e.

Množina formúl S je **splniteľná** vtt aspoň jedna štruktúra \mathcal{M} pre \mathcal{L} spĺňa S pri aspoň jednom ohodnotení e.

Formula X (množina formúl S) je **nesplniteľná** vtt nie je splniteľná.

Príklad 3.23

Dokážme, že množina všetkých 7 formúl o spolubývajúcich, teda $S_{\text{spolubývajúce}} \cup \{\exists x \, \forall y \, \text{má_rada}(y, x)\}$, je nesplniteľná.

Platné formuly a prvorádové vyplývanie

Definícia 3.24

Nech X je formula v jazyku \mathcal{L} .

Formula X je **platná** (skrátene $\models X$) vtt

každá štruktúra $\mathcal M$ pre $\mathcal L$ spĺňa X pri každom ohodnotení e.

Platné formuly sú prvorádovou obdobou tautológií.

Keď rovnaké atomické alebo kvantifikované podformuly nahradíme rovnakými výrokovými premennými, tak

- formula, z ktorej vznikne tautológia, je platná; ale
- nie z každej platnej formuly vznikne tautológia.

Definícia 3.25

Nech X je formula v jazyku \mathcal{L} , nech S je množina formúl v jazyku \mathcal{L} . Formula X (prvorádovo) vyplýva z S (skrátene $S \models X$) vtt pre každú štruktúru \mathcal{M} pre \mathcal{L} a každé ohodnotenie e platí, že ak \mathcal{M} spĺňa S pri e, tak \mathcal{M} spĺňa X pri e.

Platné formuly a prvorádové vyplývanie

Tvrdenie 3.26

Nech X je formula v jazyku \mathcal{L} .

Potom X je platná (\models X) vtt

X prvorádovo vyplýva z prázdnej množiny formúl ($\{\} \models X$).

Tvrdenie 3.27

Nech X je formula a S je množina formúl v spoločnom jazyku $\mathcal{L}.$

Potom z S vyplýva X vtt S $\cup \{\neg X\}$ je nesplniteľná.

Literatúra

- Martin Davis and Hillary Putnam. A computing procedure for quantification theory. *J. Assoc. Comput. Mach.*, 7:201–215, 1960.
- Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-proving. *Communications of the ACM*, 5(7):394–397, 1962.
- Michael Genesereth and Eric Kao. *Introduction to Logic*. Morgan & Claypool, 2013. ISBN 9781627052481.
- Christos H. Papadimitriou. *Computational complexity*. Addison-Wesley, 1994. ISBN 978-0-201-53082-7.
- Raymond M. Smullyan. *Logika prvého rádu*. Alfa, 1979. Z angl. orig. *First-Order Logic*, Berlin-Heidelberg: Springer-Verlag, 1968 preložil Svätoslav Mathé.
- Vítězslav Švejdar. *Logika: neúplnost, složitost, nutnost.* Academia, 2002. Prístupné aj na http://www1.cuni.cz/~svejdar/book/LogikaSve2002.pdf.