Adam Krka

Gymnázium a stední odborná kola Mikulov

- Cíl Práce
- Souasný stav eené problematiky
 - Proloení dat funkcí
 - Termoelektrický jev
- Secondary States (1988) Experiment a Výsledky
 - Popis experimentu
 - Namená data
- Diskuze
- Závr

- vysvtlení metody nejmeních tverc
- experimentální mení dat termolánku
- výpoet parametru termolánku pomocí metody nejmeních tverc

Proloení dat funkcí

Aproximace a interpolace

Interpolace

Spojení vech bod spojitou kivkou.

Aproximace

Hledání pedpisu funkce vhodn vyjadující datové body.

Metoda nejmeních tverc

- metoda pro nalezení parametr pedpisu funkce
- minimalizace druhých mocnin odchylek dat a funkce

$$S = \sum_{i=1}^{n} (y_i - f(x_i))^2$$

- metody eení
 - iterativn
 - analyticky

Proloení dat funkcí

Lineární regrese

- speciální pípad prokládání dat
- aproximace lineární funkcí
- analytické eení

Termoelektrický jev

- souhrnný název pro více efekt
 - Seebeckv efekt
 - Peltierv efekt
 - Thomsonv efekt
 - Benedickv efekt
- popis spojitosti elektrického naptí a rozdílu teplot

Termoelektrický jev

Termolánky

- spojení dvou druh kov
- rozdíl teplot spoj vede k vytvoení naptí
- rzné kombinace kov rzné vlastnosti
- standart IEC 584

Popis experimentu

- sestavení vlastního termolánku typu T
- 2 zmení termoelektrického jevu
 - ohívání a ochlazování konc termolánku
- **3** stanovení parametru α pro tento termolánek

Výpoet parametru

Závislost termoelektrického naptí pi nízkém rozdílu teplot.

$$E = \alpha \Delta T$$

Výpoet parametru

$$a = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2} \quad \Rightarrow \quad \alpha = \frac{\sum_{i=1}^{n} \Delta T_i \cdot E_i}{\sum_{i=1}^{n} (\Delta T_i)^2}$$

Tabulka dat

i	$\frac{\Delta T}{\circ C}$	$\frac{E_1}{mV}$	$\frac{E_2}{mV}$	$rac{\overline{E}}{mV}$	$\frac{(\Delta T)^2}{{}^{\circ}C^2}$	$rac{\Delta T \cdot \overline{E}}{mV^{\circ}C}$
1	80	2,8	2,8	2,8	6 400	224,0
2	75	2,8	2,6	2,7	5625	202,5
3	70	2,6	2,4	2,5	4900	175,0
4	65	2,4	2,2	2,3	4225	149,5
5	60	2,2	2,0	2,1	3 600	126,0
6	55	2,0	2,0	2,0	3025	110,0
7	50	1,8	1,8	1,8	2500	90,0
8	45	1,8	1,6	1,7	2025	76,5
9	40	1,6	1,4	1,5	1 600	60,0
10	35	1,2	1,4	1,3	1225	45,5
11	30	1,2	1,2	1,2	900	36,0
12	25	1,0	1,0	1,0	625	25,0
13	20	1,0	1,0	1,0	400	20,0
				\sum	37 050	1 340,0

Tab.: Namená data

Namená data

Data v grafu

Namená data Vypotené parametry

Závislost termoelektrického naptí pi nízkém rozdílu teplot.

$$\alpha = 0.036\,2\,\mathrm{mV}{\cdot}\mathrm{C}^{-1}$$

Výpoet parametru

$$R^2=0{,}958\,5=95{,}85\,\%$$

Diskuze

- zmit experiment vícekrát
- pouít digitální voltmetr
- provést experiment pi zahívání i ochlazování

- metoda nejmeních tverc je dleitá v prokládání dat funkcí
- termolánek dva spolu spojené druhy kov, na kterých se projevuje termoelektrický jev
- nutno mit koeficienty pro kadou dvojici kov
- termolánek typu T: $\alpha = 0.0362 \,\mathrm{mV \cdot C^{-1}}$
- pesnost naeho mení: $R^2 = 0.9585 = 95.85\%$