C/C++/Rust/Pascal 4
C/C++/Rust/Pascal 512 M
64bit IO Format: %Ild

The input data for this problem is large, please use a faster input method.

In a mysterious spacetime, there are x unknown energies, numbered from 1 to x. These energies appear at specific times and positions, following these rules:

1. Spacetime Appearance Rule:

- There are n different time points, numbered from 1 to n.
- At time point t, all energies in the interval [l,r] will appear and disappear at time point t+1.

2. Generation Rule:

- There are m generators, numbered from 1 to m. Each generator i requires all energies in the interval $[L_i, R_i]$.
- If at some integer time point t, at least k_i energies in the interval $[L_i, R_i]$ appear simultaneously, then generator i will be activated at time point t
- Each generator is activated only once at the earliest moment when requirements are met.

You need to process q queries. Each query gives tl tr l r, asking:

- Within the time range [tl, tr], what is the earliest time point t such that: there exists some generator i satisfying $l \le L_i \le R_i \le r$ that is activated at time point t.
- $\bullet \ \ \text{If no such t exists, output -1}.$

The first line contains a number $1 \leq T \leq 10^5$, indicating there are T test cases, each in the following format:

The first line contains four integers $1 \le n, m, x, q \le 5 \times 10^5$.

The next n lines, each containing three integers $1 \le t \le 10^9$, $1 \le l \le r \le x$, indicating that at time point t, all energies in interval [l,r] appear. (The problem guarantees all time points are different)

① C++?clang++18?

1 ACMDE