Image Inpainting via Conditional Texture and Structure Dual Generation

(ICCV 2021)

Image Inpainting

Image Inpainting

Image inpainting is the process of genarating or reconstructing distorted regions of an Image.

Challenges: (Previous methods)

- The cases with large corruptions, generally suffer from distorted results.
- Previous methods have a common drawback in recovering the global structure of the image.
- Previous methods involving structures are sensitive to the accuracy of structures (e.g. edges and contours) which is not easy to guarantee.

Architecture

Structure-constrained texture synthesis

Texture-guided structure reconstruction

Bi-directional Gated Feature Fusion (Bi-GFF)

Contextual Feature Aggregation (CFA)

Input: The corrupted image and its corresponding edge map.

Output: Texture and structure Feature map.

Discriminator:

Input: Texture and structure Feature map.

Output: Real/Fake.

Bi-GFF:

$$egin{aligned} oldsymbol{F}_t' &= eta(oldsymbol{G}_s\odot oldsymbol{F}_s) \oplus oldsymbol{F}_t, \ oldsymbol{F}_s' &= lpha(oldsymbol{G}_t\odot oldsymbol{F}_t) \oplus oldsymbol{F}_s, \ oldsymbol{F}_b &= \operatorname{Concat}(oldsymbol{F}_s', oldsymbol{F}_t'). \end{aligned}$$

CFA:

 $(oldsymbol{F}_{rec}^4\odotoldsymbol{W}^4)\oplus (oldsymbol{F}_{rec}^8\odotoldsymbol{W}^8)$.

$$S_{contextual}^{i,j} = \left\langle \frac{f_i}{\|f_i\|_2}, \frac{f_j}{\|f_j\|_2} \right\rangle, \quad \hat{S}_{contextual}^{i,j} = \frac{\exp\left(S_{contextual}^{i,j}\right)}{\sum_{j=1}^{N} \exp\left(S_{contextual}^{i,j}\right)}.$$

$$\hat{F}_i = \sum_{j=1}^{N} f_j \cdot \hat{S}_{contextual}^{i,j}, \quad \hat{F}_{rec}^{i,j} = \operatorname{Conv}_k\left(F_{rec}\right),$$

$$F_{rec} = \operatorname{Conv}_k\left(F_{rec}\right),$$

$$W = \operatorname{Softmax}\left(G_w\left(F_{rec}\right)\right),$$

$$W^1, W^2, W^4, W^8 = \operatorname{Slice}(W),$$

$$W = \left(F_{rec}^1 \odot W^1\right) \oplus \left(F_{rec}^2 \odot W^2\right) \oplus$$

$$\operatorname{Element-wise Addition}$$

Loss Functions

- ullet Reconstruction Loss: $\mathcal{L}_{rec} = \mathbb{E}\left[\left\|oldsymbol{I}_{out} oldsymbol{I}_{gt}
 ight\|_{1}
 ight]$.
- Perceptual Loss: $\mathcal{L}_{perc} = \mathbb{E}\left[\sum_{i}\left\|\phi_{i}\left(oldsymbol{I}_{out}
 ight) \phi_{i}\left(oldsymbol{I}_{gt}
 ight)
 ight\|_{1}
 ight],$
- Style Loss: $\mathcal{L}_{style} = \mathbb{E}\left[\sum_{i}\left\|\left(\psi_{i}\left(oldsymbol{I}_{out}
 ight) \psi_{i}\left(oldsymbol{I}_{gt}
 ight)
 ight)
 ight\|_{1}
 ight],$
- $\begin{array}{ll} \bullet & \text{Adversarial Loss:} \ \ \mathcal{L}_{adv} = \min_{G} \max_{D} \mathbb{E}_{\boldsymbol{I}_{gt}, \boldsymbol{E}_{gt}} \left[\log D\left(\boldsymbol{I}_{gt}, \boldsymbol{E}_{gt}\right) \right] \\ & + \mathbb{E}_{\boldsymbol{I}_{out}, \boldsymbol{E}_{out}} \log \left[1 D\left(\boldsymbol{I}_{out}, \boldsymbol{E}_{out}\right) \right]. \end{array}$
- $$\begin{split} \bullet \quad & \text{Intermediate Loss}: \ \mathcal{L}_{inter} = \mathcal{L}_{structure} + \mathcal{L}_{texture} \\ & = \text{BCE}(\boldsymbol{E}_{gt}, \mathcal{P}_{s}(\boldsymbol{F}_{s})) + \ell_{1}(\boldsymbol{I}_{gt}, \mathcal{P}_{t}(\boldsymbol{F}_{t})), \end{split}$$
- Joint Loss: $\mathcal{L}_{joint} = \lambda_{rec} \mathcal{L}_{rec} + \lambda_{perc} \mathcal{L}_{perc} + \lambda_{style} \mathcal{L}_{style} + \lambda_{adv} \mathcal{L}_{adv} + \lambda_{inter} \mathcal{L}_{inter},$

G : Generator

D: Discriminator

I_{gt}: Ground-truth image

E_{gt}: Complete Edge Map

Y_{gt}: Gray-scale image

M_{in}: Initial binary mask

 I_{in} : I_{gt} M_{in} (damaged image)

 E_{in} : $E_{gt} \cap M_{in}$ (damaged edge map)

Y_{in}: Y_{gt} M_{in} (damaged gray

 I_{out} , $E_{out} = G(I_{in}, E_{in}, Y_{in}, M_{in})$

: element-wise multiplication

Training: Experimental Settings

- CelebA, ParisStreetView and Places2 with their original training, testing and validation split.
- All the images and corresponding masks are resized to 256 X 256 pixels.
- The model is implemented in PyTorch. Training is launched on a single NVIDIA 1080TI GPU (11GB) with batch size of 6.
- we first use a learning rate of 2×10^{-4} initial training, then finetune the model with a learning rate of 5×10^{-5} .
- The discriminator is trained with a learning rate of 1/10 of the generator.
- It takes around 4 days to train the models on CelebA and Paris StreetView and 10 days on Places2.

Results

• Qualitative and quantitative experiments on the CelebA, ParisStreetView and Places2.

Metrics	LPIPS [†]			PSNR [¶]				SSIM¶	User Study [¶]	
Mask Ratio	0-20%	20-40%	40-60%	0-20%	20-40%	40-60%	0-20%	20-40%	40-60%	0-60%
PatchMatch [2]	0.074	0.183	0.332	30.02	24.77	20.51	0.864	0.680	0.487	2.7%
PConv [13]	0.065	0.134	0.283	30.19	25.18	21.20	0.885	0.730	0.527	4.0%
DeepFillv2 [36]	0.056	0.123	0.266	30.32	25.34	21.48	0.889	0.735	0.531	14.0%
RFR [11]	0.048	0.101	0.239	30.74	25.80	21.99	0.899	0.750	0.553	23.3%
EdgeConnect [18]	0.061	0.131	0.268	30.28	25.30	21.39	0.886	0.737	0.535	4.7%
PRVS [10]	0.057	0.124	0.257	30.30	25.39	21.50	0.893	0.742	0.541	5.3%
MED [14]	0.053	0.120	0.248	30.41	25.45	21.63	0.895	0.745	0.547	6.0%
Ours	0.042	0.095	0.227	30.81	25.97	22.23	0.904	0.759	0.561	40.0%

Table 1: Objective quantitative comparison and user study on Places2 (†Lower is better; ¶Higher is better).

Results

Metrics		LPIPS†			PSNR [¶]			SSIM¶	
Mask Ratio	0-20%	20-40%	40-60%	0-20%	20-40%	40-60%	0-20%	20-40%	40-60%
PatchMatch [1]	0.059	0.202	0.371	29.81	23.49	18.77	0.878	0.704	0.516
PConv [4]	0.046	0.122	0.221	31.89	26.48	21.32	0.899	0.750	0.558
DeepFillv2 [7]	0.040	0.107	0.214	32.48	26.93	21.70	0.906	0.757	0.569
RFR [3]	0.031	0.090	0.185	33.50	27.63	22.69	0.916	0.780	0.603
EdgeConnect [6]	0.042	0.117	0.215	32.12	26.79	21.66	0.904	0.758	0.566
PRVS [2]	0.039	0.112	0.209	32.34	26.89	21.78	0.908	0.762	0.573
MED [5]	0.037	0.106	0.203	32.68	27.01	21.86	0.907	0.763	0.575
Ours	0.028	0.081	0.179	33.91	27.73	22.70	0.920	0.788	0.609

Table 2: Objective quantitative comparison on CelebA (†Lower is better; ¶Higher is better).

Metrics	LPIPS [†]				$PSNR^{\P}$		SSIM [¶]		
Mask Ratio	0-20%	20-40%	40-60%	0-20%	20-40%	40-60%	0-20%	20-40%	40-60%
PatchMatch [1]	0.078	0.195	0.362	30.70	25.31	20.59	0.881	0.689	0.499
PConv [4]	0.058	0.133	0.273	32.05	26.66	22.17	0.898	0.741	0.538
DeepFillv2 [7]	0.050	0.128	0.269	32.31	26.92	22.48	0.905	0.752	0.551
RFR [3]	0.041	0.112	0.234	32.69	27.33	22.76	0.919	0.772	0.568
EdgeConnect [6]	0.053	0.129	0.262	31.98	26.70	22.39	0.903	0.757	0.554
PRVS [2]	0.051	0.125	0.254	32.23	26.89	22.50	0.910	0.762	0.563
MED [5]	0.050	0.122	0.248	32.36	26.97	22.44	0.915	0.760	0.559
Ours	0.039	0.107	0.226	32.93	27.48	22.89	0.923	0.777	0.573

Table 3: Objective quantitative comparison on Paris StreetView (†Lower is better; ¶Higher is better).

Comparisons

Figure 1: Visualization of the feature maps learned by the network.

Comparisons

Figure 7: Visualization of the effects of network architecture and individual modules on Paris StreetView.

Metrics	LPIPS [†]			PSNR [¶]			SSIM [¶]		
Mask Ratio	0-20%	20-40%	40-60%	0-20%	20-40%	40-60%	0-20%	20-40%	40-60%
w/o structure priors single-stream	0.054 0.051	0.129 0.122	0.251 0.245	31.72 32.27	26.71 27.03	22.22 22.59	0.909 0.913	0.755 0.764	0.550 0.558
w/o Bi-GFF w/o CFA w/ CA	0.045 0.049 0.043	0.114 0.119 0.115	0.236 0.243 0.240	32.61 32.34 32.54	27.20 27.09 27.15	22.75 22.64 22.69	0.919 0.914 0.920	0.772 0.766 0.769	0.567 0.561 0.566
Ours	0.039	0.107	0.226	32.93	27.48	22.89	0.923	0.777	0.573

Table 2: Quantitative ablation study on Paris StreetView.

