3. Convolutional Neural Network

A Quick Note on Loss

Mean Squared Error

- Used primarily for regression tasks (continuous output)
- Provides a scalar error for an entire sample
- Model predictions look like (potentially scaled) continuous values of a function

Cross Entropy Loss/Softmax

- Used primarily for classification tasks (probability output)
- Provides a scalar error for an entire sample
- Model predictions look like 0-1 scores for each class

Common Ways to Use Loss

Cumulative

How is the model doing holistically

Running Average

 How is the model doing on an average sample (training step)

Single sample

 How well does the model predict this one sample

Convolutional Neural Network

- Stores features in "filters"
- Convolves image into feature space, preserving locality
 - Kernel passed over image "searches" for feature

Convolution as matrix operation

feature extraction with a sliding window

2	1	3	1	4
4	1	0	1	3
1	3	1	1	1
2	6	1	1	1
3	3	1	0	4

1	2
-1	3

$$2x1 + 1x2 + 4x(-1) + 1x3$$

=3

3		

Some Common Image Operations

IdentityShiftingAveragingBlurDifferentiationCorrelationConvolution

Feature Extraction

Image (0 Padded)

0	0	0	0	0		3x	3 Keri	nel			Filter
0	3	0	1	0		0	1	0		Α	В
0	5	0	0	0	\otimes	0	1	0	=	D	Е
0	4	1	0	0		0	1	1		G	Н
0	0	0	0	0							

в с

Padding

• What happens if we don't include the zeros in the before example?

Stride

What if I set my stride to 2?

Image (0 Padded)

0	0	0	0	0
0	3	0	1	0
0	5	0	0	0
0	4	1	0	0
0	0	0	0	0

$$D_0 = \frac{D_I - k + 2p}{s} + 1$$

Max Pooling

• What happens if we don't include the zeros in the before example?

Image				2x2 O	utput
3	0	1		_	1
5	0	0	=	5	
4	1	0		5	1

$$D_0 = \frac{D_I - k}{s} + 1$$

Demo

https://colab.research.google.com/drive/14S1aRsakVigBv3GaLB2tptkdINz0svYj?usp=sharing