2. Übungsblatt

Höhere Mathematik I (Analysis) für die Fachrichtung Informatik

Wintersemester 2020/21

20. November 2020

Auf diesem Übungsblatt wird der Vorlesungsstoff bis Seite 19 des Vorlesungsskripts behandelt.

Aufgabe 5:

Eine Folge heißt Nullfolge, wenn sie gegen 0 konvergiert. Es sei (a_n) eine reelle Folge. Entscheiden Sie jeweils (durch Beweis oder Gegenbeispiel), welche der folgenden Bedingungen erzwingt, dass (a_n) eine

Zu jedem $\epsilon > 0$ existiert eine Zahl $n_0 \in \mathbb{N}$, sodass für alle $n \geq n_0$ gilt:

 $\begin{vmatrix} a_n | < \sqrt{\epsilon}, \\ |2a_n - a_n^2| < \epsilon, \end{vmatrix}$

(b) $|a_n \cdot a_{n+1}| < \epsilon$, (d) $|a_n \cdot a_m| < \epsilon$ für alle $m \in \mathbb{N}$.

Lösungsvorschlag zu Aufgabe 5:

(a) Behauptung: Diese Bedingung erzwingt, dass (a_n) eine Nullfolge ist.

<u>Beweis:</u> Es sei $\epsilon > 0$ gegeben. Die Bedingung (a) impliziert, dass für $\tilde{\epsilon} := \epsilon^2 > 0$ ein $n_0 \in \mathbb{N}$ existiert, sodass für alle $n \in \mathbb{N}$ mit $n \ge n_0$ gilt: $|a_n - 0| = |a_n| < \sqrt{\tilde{\epsilon}} = \epsilon$, d.h. (a_n) konvergiert gegen 0.

(b) Behauptung: Diese Bedingung erzwingt nicht, dass (a_n) eine Nullfolge ist.

Beweis: Definiere die Folge (a_n) durch

$$a_n := \begin{cases} \frac{1}{n^2} & \text{falls } n \in \mathbb{N} \text{ gerade,} \\ n & \text{falls } n \in \mathbb{N} \text{ ungerade.} \end{cases}$$

Damit gilt $a_n \cdot a_{n+1} = \frac{1}{n}$ für alle $n \in \mathbb{N}$. Es sei nun $\epsilon > 0$. Wähle $n_0 \in \mathbb{N}$ mit $n_0 > \frac{1}{\epsilon}$. Dann gilt für alle $n \geq n_0$:

$$|a_n \cdot a_{n+1}| = \frac{1}{n} \le \frac{1}{n_0} < \epsilon.$$

Die Folge (a_n) erfüllt somit die Bedingung (b), sie ist aber keine Nullfolge (konvergiert nicht einmal).

(c) Behauptung: Diese Bedingung erzwingt nicht, dass (a_n) eine Nullfolge ist.

<u>Beweis:</u> Definiere die Folge $a_n := 2$ $(n \in \mathbb{N})$. Diese erfüllt offensichtlich die Bedingung (c), ist aber keine Nullfolge.

(d) Behauptung: Diese Bedingung erzwingt, dass (a_n) eine Nullfolge ist.

<u>Beweis:</u> Die Bedingung (d) besagt, dass zu jedem $\epsilon > 0$ ein $n_0 \in \mathbb{N}$ existiert, sodass für alle $n \geq n_0$ gilt: $|a_n \cdot a_m| < \epsilon$ für alle $m \in \mathbb{N}$. Insbesodnere gilt die Ungleichung dann auch für m = n und man erhält

$$|a_n \cdot a_n| < \epsilon \quad \Leftrightarrow \quad |a_n|^2 < \epsilon \quad \Leftrightarrow \quad |a_n| < \sqrt{\epsilon}.$$

Dies entspricht gerade der Bedingung (a), woraus die Behauptung folgt.

Aufgabe 6 (K):

Untersuchen Sie die folgenden Folgen (a_n) auf Konvergenz und bestimmen Sie gegebenenfalls den Grenzwert. Beweisen Sie Ihre Aussagen.

(a)
$$a_n := \sqrt{4n^2 + n + 5} - 2$$
,
(c) $a_n := (1 + 2(-1)^n)^n$,

(b)
$$a_n := \frac{(n+2)^3 - (n-1)^3}{(n-1)^2 + 2n^2 + 5},$$

(d) $a_n := \frac{1+2+\cdots+n}{1+3+\cdots+(2n-1)}.$

(c)
$$a_n := (1 + 2(-1)^n)^n$$

(d)
$$a_n := \frac{1+2+\cdots+n}{1+3+\cdots+(2n-1)}$$

Lösungsvorschlag zu Aufgabe 6:

(a) Die Folge (a_n) ist unbeschränkt und daher divergent.

Beweis: Es gilt:

$$a_n > \sqrt{4n^2} - 2 = 2n - 2 = 2(n-1)$$
 für alle $n \in \mathbb{N}$.

Da die Folge (n) unbeschränkt ist, ist es auch die Folge (a_n) , die somit divergiert.

(b) Behauptung: Die Folge (a_n) konvergiert gegen 3.

Beweis: Es gilt:

$$a_n = \frac{n^3 + 6n^2 + 12n + 8 - (n^3 - 3n^2 + 3n - 1)}{n^2 - 2n + 1 + 2n^2 + 5} = \frac{9n^2 + 9n + 9}{3n^2 - 2n + 6}$$
$$= \frac{9 + \frac{9}{n} + \frac{9}{n^2}}{3 - \frac{2}{n} + \frac{6}{n^2}} \xrightarrow{n \to \infty} \frac{9}{3} = 3,$$

die Konvergenz gilt nach Satz 2.2.

(c) Behauptung: Die Folge (a_n) divergiert.

<u>Beweis:</u> Da konvergente Folgen immer beschränkt sind (Satz 2.1 (b)), reicht es zu zeigen, dass die Folge (a_n) unbeschränkt ist. Wir zeigen daher:

$$\forall s > 0 \ \exists n \in \mathbb{N} \colon a_n > s. \tag{1}$$

Es sei also s>0. Wähle $k\in\mathbb{N}$ mit $k>\frac{s}{4}$ und definiere $n:=2k\in\mathbb{N}.$ Dann gilt:

$$a_n = (1 + 2(-1)^n)^n = (1 + 2(-1)^{2k})^{2k} = (1 + 2)^{2k} \ge 1 + 4k > 4k > s,$$

wobei wir die Bernoullische Ungleichung verwendet haben.

(d) Behauptung: Die Folge (a_n) konvergiert gegen $\frac{1}{2}$.

<u>Beweis:</u> Nach Vorlesung gilt: $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ für alle $n \in \mathbb{N}$. Damit folgt (mit Satz 2.2):

$$a_n = \frac{\sum_{k=1}^n k}{\sum_{k=1}^n (2k-1)} = \frac{\sum_{k=1}^n k}{2\sum_{k=1}^n k - \sum_{k=1}^n 1} = \frac{\frac{n(n+1)}{2}}{2\frac{n(n+1)}{2} - n} = \frac{1}{2} \frac{n^2 + n}{n^2}$$
$$= \frac{1}{2} \frac{1 + \frac{1}{n}}{1} \xrightarrow{n \to \infty} \frac{1}{2}.$$

Aufgabe 7:

Beweisen oder widerlegen Sie die folgenden Aussagen.

- (i) Das Produkt einer konvergenten Folge und einer beschränkten Folge ist ebenfalls konvergent.
- (ii) Das Produkt einer konvergenten Folge und einer beschränkten Folge ist ebenfalls beschränkt.
- (iii) Das Produkt einer Nullfolge und einer beschränkten Folge ist eine Nullfolge.

(iv) Das Produkt einer beliebigen Folge mit einer Nullfolge ist beschränkt.

Lösungsvorschlag zu Aufgabe 7:

(i) Behauptung: Die Aussage ist falsch.

<u>Beweis:</u> Es sei $a_n := 1$ $(n \in \mathbb{N})$ eine konstante Folge, die somit auch gegen 1 konvergiert. Definiere weiter $b_n := (-1)^n$ $(n \in \mathbb{N})$. Die Folge (b_n) ist beschränkt, denn $|b_n| = 1$ $(n \in \mathbb{N})$. Aber die Folge (c_n) mit $c_n := a_n \cdot b_n = (-1)^n$ $(n \in \mathbb{N})$ ist nicht konvergent (siehe Vorlesung).

(ii) Behauptung: Die Aussage ist wahr.

<u>Beweis:</u> Es seien (a_n) eine konvergente Folge und (b_n) eine beschränkte Folge $(d.h. |b_n| \leq B$ für ein $B \in \mathbb{R}$ und alle $n \in \mathbb{N}$). Definiere $c_n := a_n \cdot b_n$ $(n \in \mathbb{N})$. Nach Satz 2.1 (b) der Vorlesung ist die Folge (a_n) beschränkt, d.h. $|a_n| \leq A$ für ein $A \in \mathbb{R}$ und alle $n \in \mathbb{N}$. Damit folgt: $|c_n| = |a_n| |b_n| \leq A \cdot B =: C$ für alle $n \in \mathbb{N}$. Die Folge (c_n) ist also beschränkt und die Aussage somit bewiesen.

(iii) Behauptung: Die Aussage ist wahr.

<u>Beweis:</u> Es seien (a_n) eine Nullfolge und (b_n) eine beschränkte Folge, d.h. $|b_n| \leq B$ für ein $B \in \mathbb{R}$ und alle $n \in \mathbb{N}$. Wir zeigen, dass dann auch die Folge (c_n) definiert durch $c_n := a_n \cdot b_n$ $(n \in \mathbb{N})$ eine Nullfolge ist: es sei $\epsilon > 0$. Da (a_n) eine Nullfolge ist, existiert ein $n_0 \in \mathbb{N}$ mit $|a_n| < \frac{\epsilon}{B}$ für alle $n \geq n_0$. Somit gilt

$$|c_n| = |a_n| \, |b_n| \le \frac{\epsilon}{B} \cdot B = \epsilon$$
 für alle $n \ge n_0$,

d.h. (c_n) konvergiert gegen 0.

(iv) Behauptung: Die Aussage ist falsch.

<u>Beweis:</u> Definiere $a_n := n^2 \ (n \in \mathbb{N})$ und $b_n := \frac{1}{n} \ (n \in \mathbb{N})$. Die Folge (b_n) ist eine Nullfolge, aber die Folge $c_n := a_n \cdot b_n = n \ (n \in \mathbb{N})$ ist unbeschränkt.

Aufgabe 8 (K):

(i) Die Folge $(a_n)_{n=0}^{\infty}$ sei rekursiv definiert durch

$$a_0 := 0, \ a_1 := 1, \ a_n := \frac{1}{2}(a_{n-1} + a_{n-2})$$
 für alle $n \in \mathbb{N}, \ n \ge 2$.

Zeigen Sie, dass $a_n = \frac{2}{3}(1 - \frac{(-1)^n}{2^n})$ für alle $n \in \mathbb{N}_0$ ist. Prüfen Sie diese Folge zudem auf Konvergenz.

- (ii) Es sei $A \subseteq \mathbb{R}$ nichtleer und nach oben beschränkt. Zeigen Sie, dass dann eine Folge (a_n) existiert mit $a_n \in A$ für alle $n \in \mathbb{N}$ und $\lim_{n \to \infty} a_n = \sup A$.
- (iii) Es seien (a_n) und (b_n) konvergente Folgen mit Grenzwert a bzw. b. Zeigen Sie, dass die Folge $c_n := \max\{a_n, b_n\} \ (n \in \mathbb{N})$ gegen $\max\{a, b\}$ konvergiert.

Lösungsvorschlag zu Aufgabe 8:

(i) Voraussetzung: Die Folge $(a_n)_{n=0}^{\infty}$ sei rekursiv definiert durch

$$a_0 := 0, \ a_1 := 1, \ a_n := \frac{1}{2}(a_{n-1} + a_{n-2})$$
 für alle $n \in \mathbb{N}, \ n \ge 2$.

<u>Behauptung:</u> Es gilt: $a_n = \frac{2}{3} \left(1 - \frac{(-1)^n}{2^n}\right)$ für alle $n \in \mathbb{N}$ und die Folge $(a_n)_{n=0}^{\infty}$ konvergiert gegen $\frac{2}{3}$.

Beweis: Wir beweisen die explizite Darstellung der Folge durch vollständige Induktion:

$$\underline{\text{IA:}} \text{ Für } n=0 \text{ gilt } a_0=0=\tfrac{2}{3}\left(1-\tfrac{(-1)^0}{2^0}\right) \text{ und für } n=1 \text{ gilt } a_1=1=\tfrac{2}{3}\left(1-\tfrac{(-1)^1}{2^1}\right).$$

<u>IV:</u> Für ein festes aber beliebiges $n \in \mathbb{N}$ gelte bereits $a_n = \frac{2}{3} \left(1 - \frac{(-1)^n}{2^n} \right)$ und $a_{n-1} = \frac{2}{3} \left(1 - \frac{(-1)^{n-1}}{2^{n-1}} \right)$. IS $(n \leadsto n+1)$: Es gilt mit der Rekursionsgleichung:

$$\begin{split} a_{n+1} &= \frac{1}{2}(a_n + a_{n-1}) \overset{\text{(IV)}}{=} \frac{1}{2} \left(\frac{2}{3} \left(1 - \frac{(-1)^n}{2^n} \right) + \frac{2}{3} \left(1 - \frac{(-1)^{n-1}}{2^{n-1}} \right) \right) \\ &= \frac{1}{3} \left(1 - \frac{2(-1)^n}{2^{n+1}} + 1 - \frac{4(-1)^{n-1}}{2^{n+1}} \right) = \frac{1}{3} \left(2 + \frac{2(-1)^{n+1}}{2^{n+1}} - \frac{4(-1)^{n-1}}{2^{n+1}} \right) \\ &= \frac{2}{3} \left(1 + \frac{(-1)^{n+1}}{2^{n+1}} - \frac{2(-1)^{n+1}}{2^{n+1}} \right) = \frac{2}{3} \left(1 - \frac{(-1)^{n+1}}{2^{n+1}} \right). \end{split}$$

Weiter gilt (für alle $n \in \mathbb{N}$):

$$\left| a_n - \frac{2}{3} \right| = \left| -\frac{(-1)^n}{2^n} \right| = \left| \frac{1}{2^n} \right| \le \frac{1}{n} \to 0 \ (n \to \infty),$$

d.h. $(a_n)_{n=0}^{\infty}$ konvergiert gegen $\frac{2}{3}$.

(ii) Voraussetzung: Es sei $A \subseteq \mathbb{R}$ nichtleer und nach oben beschränkt.

Behauptung: Dann exisitert eine Folge (a_n) mit $a_n \in A$ für alle $n \in \mathbb{N}$ und $\lim_{n \to \infty} a_n = \sup A$.

<u>Beweis:</u> Da A nichtleer und nach oben beschränkt ist, existiert sup $A \in \mathbb{R}$. Für alle $n \in \mathbb{N}$ setze $\epsilon_n := \frac{1}{n} > 0$. Nach der Definition des Supremums gibt es für jedes $n \in \mathbb{N}$ ein $a_n \in A$ mit

$$a_n > \sup A - \epsilon_n$$
.

Da das Supremum eine obere Schranke von A ist, gilt außerdem $a_n \leq \sup A$ für alle $n \in \mathbb{N}$. Zusammen erhalten wir

$$|a_n - \sup A| \le \epsilon_n$$

für alle $n \in \mathbb{N}$. Es sei nun $\epsilon > 0$ beliebig. Dann gibt es nach Satz 1.3 (c) ein $k_{\epsilon} \in \mathbb{N}$ mit $k_{\epsilon} > \frac{1}{\epsilon}$. Somit gilt

$$|a_n - \sup A| \le \epsilon_n = \frac{1}{n} \le \frac{1}{k_{\epsilon}} < \epsilon$$

für alle $n \geq k_{\epsilon}$. Also konvergiert (a_n) gegen sup A.

(iii) <u>Voraussetzung:</u> Es seien (a_n) und (b_n) konvergente Folgen mit Grenzwert a bzw. b.

<u>Behauptung:</u> Die Folge $c_n := \max\{a_n, b_n\} \ (n \in \mathbb{N})$ konvergiert gegen $\max\{a, b\}$.

Beweis: Wir zeigen zunächst:

für
$$x, y \in \mathbb{R}$$
 gilt: $\max\{x, y\} = \frac{1}{2}(x + y + |x - y|).$ (2)

Es seien $x,y\in\mathbb{R},$ es gilt also $x\leq y$ oder $y\leq x.$ O.B.d.A. gelte $y\leq x.$ Dann gilt $x-y\geq 0$ und somit

$$\frac{1}{2}(x+y+|x-y|) = \frac{1}{2}(x+y+x-y) = x = \max\{x,y\},$$

womit (2) gezeigt wäre.

Nach Satz 2.2 gilt für die Folge (c_n) :

$$c_n = \max\{a_n, b_n\} \stackrel{(2)}{=} \frac{1}{2}(a_n + b_n + |a_n - b_n|) \xrightarrow{n \to \infty} \frac{1}{2}(a + b + |a - b|) \stackrel{(2)}{=} \max\{a, b\}.$$