

W/W 去原生技术开源开放日

目录

openKylin**简介** 桌面操作系统开源社区 技术创新与开源 Virtio GPU硬件视频加速 框架介绍

欢迎加入openKylin
Virtualization SIG

Q&A 互动交流

Part 01 OPENKYLIN 简介

openKylin 是什么?

openKylin 社区是在开源、自愿、平等和协作的基础上,由基础软硬件企业、非营利性组织、社团组织、高等院校、科研机构和个人开发者共同创立的一个开源社区,致力于通过开源、开放的社区合作,构建桌面操作系统开源社区,推动Linux开源技术及其软硬件生态繁荣发展。

openKylin 的发展

开源

自愿

平等

协作

Part 02

技术创新与开源: Virtio GPU硬件视频加速框架解析

云桌面与GPU虚拟化

对于云桌面应用,我们可以根据图形性能需求将其简单的划分为两大业务场景,一种是以文字编辑为主的普通办公场景,一种是以3D设计、视频编辑等为主的高性能办公场景。目前,针对前者通常采用QXL显卡等,而后者则只能选用vGPU等硬件虚拟化方案,成本大大增加。

为此,openKylin Virtualization SIG选取Virtio GPU作为探索方向,并对其进行了深度优化,大幅提升了3D性能,并增加了硬件视频加速功能,使其成为一种新的、具有更高性价比的云桌面显示方案。

方案	典型代表	优点	缺点	适用场景
软件模拟	QXL	成本低,部署灵活,无 需额外硬件	性能低下,无3D加速	普通办公
硬件虚拟化 (透传/分片)	vGPU, SR-IOV	性能非常高,功能完善	成本高、灵活性差,依 赖于硬件厂商	AI、高性能计算、 GPU服务器、云游 戏
API转发	Virtio GPU	部署灵活,性能较强, 成本低	软件栈较复杂,性能有 一定损耗	高性能办公

Virtio GPU 3D图形性能优化进展

通过使用virgIrenderer组件, Virtio GPU可以实现3D加速,完成一些基本的图形 处理。但由于其软件栈复杂,性能损耗也较 大。

我们尝试对其进行了深度优化,目前其 3D性能已有大幅提高。经测试,在arm64和 x86_64平台上,虚拟机的3D性能均提高了约 一倍。

经过上述优化后, Virtio GPU目前已可以应用于一些高性能办公场景, 比如简单的 3D图形制作、休闲游戏等。

W/W 去原生技术开源开放日

Virtio GPU 视频性能依然不足

虽然3D性能获得了很大提升,但在视频处理方面,Virtio GPU仍存在短板。目前,Virtio GPU由于缺乏硬件视频加速功能,只能使用CPU进行软件编解码。

经测试,在arm64平台和AMD Radeon RX550显卡下,在虚拟机内使用MPV播放器播放4K/60fps的H.264视频时,播放器的CPU占用率可达到321%左右,极大的影响了用户的使用体验。

新的Virtio GPU硬件视频加速框架

为了解决Virtio GPU的视频性能问题, 我们为其新建了一套硬件视频加速框架。借 助该机制,目前已经实现了Virtio GPU下的 H.264和H.265的硬件编解码功能。

启用该功能后,由于虚拟机内的播放器 在播放视频时,无需再使用CPU进行软件解码,而是借助宿主侧的物理显卡进行硬件解码,因而能极大的降低CPU占用率,提升用户体验。

W/W 去原生技术开源开放日

硬件视频加速效果

无硬件加速

有硬件加速

硬件视频加速效果对比 (x86_64)

播放器的平均CPU占用率

硬件视频加速效果对比 (arm64)

Virtio GPU硬件视频加速框架

Virtio GPU硬件视频加速框架(续)

Virtio GPU硬件视频加速框架采用前后端设计,总体上分为三部分:

- Virtio GPU**视频前端。**视频前端作为驱动,负责接收应用程序的视频请求,并将其转化成视频协议,然后发送给后端处理。
- Virtio GPU视频后端。视频后端作为设备,负责接收并解析视频协议,并调用宿主机侧的相关视频加速接口来完成视频请求的处理。
- Virtio GPU视频协议。视频协议是前端和后端之间的通信协议,它定义了创建编解码器、解码比特流等命令及相关数据结构。

在该框架中,定义了两种对象,分别是视频编解码器和视频缓冲区。这两个对象也是前后端结构的,在前端中,它们分别对应着virgl_video_codec和virgl_video_buffer结构,在后端中,它们分别对应着vrend_video_codec和vrend_video_buffer结构。

Virtio GPU视频协议

Virtio GPU视频协议实际上是VIRGL Context Command的扩展,在其基础上新 增了创建编解码器、创建视频缓冲区、解码 比特流和编码比特流等视频命令。

编解码器是对视频编解码上下文的抽象, 在基于VA-API实现的后端中,通常对应着 VAContext对象。

视频缓冲区用于存储解码后或编码前的 图像数据,在基于VA-API实现的后端中,通 常对应着VASurface对象。

解码比特流和编码比特流命令是最核心的编解码命令,绝大部分的编解码操作都是由其完成。

VIRGL Context CMD	说明
VIRGL_CCMD_CREATE_VIDEO_CODEC	创建编解码器
VIRGL_CCMD_DESTROY_VIDEO_CODEC	销毁编解码器
VIRGL_CCMD_CREATE_VIDEO_BUFFER	创建视频缓冲区
VIRGL_CCMD_DESTROY_VIDEO_BUFFER	销毁视频缓冲区
VIRGL_CCMD_BEGIN_FRAME	开始编解码帧
VIRGL_CCMD_DECODE_MACROBLOCK	解码宏块
VIRGL_CCMD_DECODE_BITSTREAM	解码比特流
VIRGL_CCMD_ENCODE_BITSTREAM	编码比特流
VIRGL_CCMD_END_FRAME	结束编解码帧

WM 去原生技术开源开放日

视频前端的实现

Virtio GPU硬件视频加速框架的前端位于客户机内的mesa中,以用户空间驱动的形式为应用程序提供硬件视频加速接口,如VA-API、VDPAU等。

视频前端根据mesa gallium驱动框架,主要实现了以下几个部分:

- virgl_screen对象中的相关方法,主要为视频参数查询等。
- virgl_video_codec对象,表示视频编解码器(或上下文)。
- virgl_video_buffer对象,表示视频缓冲区,用于存储图像数据。

其中, virgl_video_codec继承自pipe_video_codec, 并实现了begin_frame, decode_bitstream等方法; virgl_video_buffer继承自pipe_video_buffer, 并实现了get_sampler_view_planes等方法。

上述两个对象实例均由virgl_context创建,virgl_context集成自pipe_context,是对Virgl OpenGL等上下文的抽象。

视频前端的实现 (续)

宿主机侧的实现

Virtio GPU硬件视频加速功能的 后端位于宿主机侧的virgIrenderer组 件中,与前端对象相对应的,其定义 了两个后端对象,分别为:

- vrend_video_codec: 编解码器的 后端实现。
- vrend_video_buffer: 视频缓冲区的后端实现。

另外,为了支持不同的底层加速接口,采用了通用视频模块来屏蔽接口差异。目前其基于VA-API实现,后续可考虑支持V4L2或NVDEC等私有驱动。

W/W 去原生技术开源开放日

已支持的视频规范

目前, Virtio GPU硬件视频加速框架已支持H.264和H.265视频规范的解码和编码功能(仅支持YUV420图像格式)。

	H.264	H.265	VP8	VP9	AV1	
编码	$\sqrt{}$	$\sqrt{}$	N/A	N/A	N/A	
解码	$\sqrt{}$	\checkmark	N/A	N/A	N/A	

www 去原生技术开源开放日

开源进展

提交解码补丁

向mesa和virglrenderer 上游提交解码补丁

解码补丁被接收

mesa和virglrenderer接 收解码补丁

提交编码补丁

向mesa和virglrenderer 上游提交编码补丁

编码补丁接收中...

virglrenderer已接收 mesa仍在等待审核...

2022/06

2022/08

2022/09

2022/10

WW 去原生技术开源开放日

版本要求

对于解码功能,目前virglrenderer已经 集成在了0.10.1及以后的版本中,而mesa预 计在正式版本22.3.0中集成。

对于编码功能,还在等待上游完全合入, 暂时无法直接下载试用。

目前,openKylin社区已经完成里解码和编码功能的合入(yangtze分支),预计后续会集成在openKylin 1.0版本中。

仓库		解码	编码
上游	virglrenderer	≥ 0.10.1	master branch
	mesa	≥ mesa- 22.3.0-rc1	N/A
openKylin	virglrenderer	yangtze branch	yangtze branch
	mesa	yangtze branch	yangtze branch

W/M 去原生技术开源开放日

后续工作?

- □ 支持更多的图像格式,如YUV422, YUV444;
- 口 支持更多的视频规范,如VP8、VP9、AV1等
- □ 视频后端增加对NVDEC等私有驱动的支持
- □ 支持视频的后期处理,如降噪、白平衡等
- □ ...

V//// 云原生技术开源开放日

Part 03 欢迎加入

openKylin Virtualization SIG		
基本信息	https://gitee.com/openkylin/community/tree/master/sig/Virtualization	
主要工作	负责openKylin虚拟化相关组件社区技术发展和决策 负责openKylin虚拟化相关软件包的规划、升级和维护 及时响应openKylin虚拟化产品用户反馈和解决虚拟化相关问题	
主要项目	kernel, qemu, libvirt, edk2, virglrenderer, spice, mesa,	
邮件列表	virtualization@lists.openkylin.top	

Part 04 Q & A

openKylin 微信公众号

[

openKylin 微博

openKylin bilibili

