Problem 1 (M.1)

$$\mathbf{I} = \begin{cases} 1, 0 \end{cases}$$

$$A = \begin{cases} q^2, q^3 \end{cases}$$

		q_1	q_2	q_3	q_4	q_5
δ:	1	q2	q3	q4	q4	q1
	0	q5	q5	q5	q4	q5

Explanation:		
1		

b)

Note: Remember to label your start state and double circle your accepting states.

Explanation:

Problem 2.1 (M.2)

a) qa1

b) Label the states of in step in the boxes in the order the FSA goes through them.

c)

Accept O Reject

Problem 2.2 (M.2)

For a sample input of 1100 the Turing Machine tape will start out looking like:

 \uparrow head

And after 2 steps will look like:

a	1	0	1	*	*	
---	---	---	---	---	---	--

 \uparrow head

For your answers fill out the tape in the same format given in the sample input.

b)

1 1 1 0 1 1 0 0 0 ...

head

a)

$$(qstart, 0) = (q2, b, R) = b 1 0 1 * *$$

$$(q2, 1) = (q2, 1, R) = b \cdot 1 \cdot 0 \cdot 1 * *$$

$$(q2, 0) = (q2, 0, R) = b 1 0 1 * *$$

$$(q2, 1) = (q2, 1, R) = b \cdot 1 \cdot 0 \cdot 1 * *$$

$$(q2, *) = (q4, *, L) = b \ 1 \ 0 \ 1 \ * *$$

$$(q4, 1) = (q4, 0, L) = b \ 1 \ 0 \ 0 * * H$$

$$(qstart, 0) = (q2, b, R) = b 1 0 1 1 1 *$$

$$(q2, 1) = (q2, 1, R) = b 1 0 1 1 1 *$$

$$(q2, 0) = (q2, 0, R) = b 1 0 1 1 1 *$$

$$(q2, 1) = (q2, 1, R) = b 1 0 1 1 1 *$$

$$(q2, 1) = (q2, 1, R) = b 1 0 1 1 1 *$$

$$(q2, 1) = (q2, 1, R) = b 1 0 1 1 1 *$$

$$(q2, *) = (q4, *, L) = b 1 0 1 1 1 *$$

$$(q4, 1) = (q4, 0, L) = b 1 0 1 1 0 *$$

$$(q4, 1) = (q4, 0, L) = b \ 1 \ 0 \ 1 \ 0 \ *$$

$$(q4, 1) = (q4, 0, L) = b 1 0 0 0 0 *$$

$$(q4, 0) = (q5, 1, L) = b 1 1 0 0 0 *$$

$$(q5, 1) = (q5, 1, L) = b 1 1 0 0 0 *$$

$$(q5, b) = (qacc, 0, L) = 0.1.1.0.0.0 *$$

Problem 3.1 (M.3)

a)		

Note: Remember to label your start state and double circle your accepting states.

 $q_1 \hspace{1cm} q_2$

 q_3 q_4

Documentation:

 q_2 :

 q_1 :

 q_3 :

 q_4 :

Problem 3.2 (M.2)

$$\Sigma = \{a, b\}$$

			δ :		
	q_{start}	q_{ra}	q_{rb}		
a	$($, α , L $)$	(q_{ra}, a, L)	(q_{rb}, a, L)	(, ,)	(, ,)
b	$($ $, \beta, L)$	(q_{ra}, b, L)	(q_{rb}, b, L)	(, ,)	(, ,)
x	$(q_{rej} \;, \mathbf{x}, \mathbf{L})$	(q_{ra}, x, L)	(q_{rb}, x, L)	(, ,)	(, ,)
α	(q_{rej}, α, L)	$($, α , $L)$	$($, α , $L)$	(, ,)	(, ,)
β	(q_{rej}, β, L)	$($ $,$ $\beta,$ $L)$	(,β, L)	(, ,)	(, ,)
γ	(q_{rej}, γ, L)	$($ $, \gamma, L)$	$($ $, \gamma, L)$	(, ,)	(, ,)
*	$(q_{rej}, *, L)$	(, *, L)	(, *, L)	(, ,)	(, ,)
		(, ,)	(, ,)	(, ,)	(, ,)
	(, ,)				
	(, ,)	(, ,)	(, ,)	(, ,)	$\left \left(\begin{array}{ccc} & & & & \\ & & & \\ \end{array} \right) \right $

Use ·	this p	age if	you h	iave i	more t	than 5	state	es in	your '	Turing	Macl	hine i	for 3.	2.						
a	(,	,)	(,	,)	(,	,)	(,	,)	(,	,)
b	(,	,)	(,	,)	(,	,)	(,	,)	(,	,)
x	(,	,)	(,	,)	(,	,)	(,	,)	(,	,)
α	(,	,)	(,	,)	(,	,)	(,	,)	(,	,)
β	(,	,)	(,	,)	(,	,)	(,	,)	(,	,)
γ	(,	,)	(,	,)	(,	,)	(,	,)	(,	,)
*	(,	,)	(,	,)	(,	,)	(,	,)	(,	,)
	(,	,)	(,	,)	(,	,)	(,	,)	(,	,)
	(,	,)	(,	,)	(,	,)	(,	,)	(,	,)
	(,	,)	(,	,)	(,	,)	(,	,)	(,	,)
	(,	,)	(,	,)	(,	,)	(,	,)	(,	,)
Docı	ıment	ation 1	for st	ates (on thi	s page	:													

Problem 3.3 (M.3)						
Description:						
Explanation:						