Lecture 2: Introduction

Amos Ron

University of Wisconsin - Madison

January 27, 2021

Outline

- e-vectors, e-values
 - Definition, example
 - Diagonalizability

Outline

- e-vectors, e-values
 - Definition, example
 - Diagonalizability

Definition

 $A m \times m$. $(\lambda, v), \lambda \in C, v \in C^m \setminus 0$, is eigenpair of A, if

$$Av = \lambda v$$
.

The set of all eigenvalues is the spectrum

$$\sigma(A)$$

of A.

Note: A real valued matrix might have complex eigenvalues! Reminder: The characteristic polynomial of *A* is

$$p_A(t) := \det(A - tI).$$

 $\lambda \in \sigma(A) \iff p_A(\lambda) = 0.$

The eigenvectors of the matrix A is any linearly independent maximal set of eigenvectors. The cardinality of such set depends only on A.

$$A = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix}.$$

Then:

•
$$p_A(t) = (t-2)(t-3) - 2 = t^2 - 5t + 4$$

• This implies that $\sigma(A) = \{1, 4\}$.

$$A = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix}.$$

Then:

• The matrix A - 4I must be singular. Indeed,

$$A - 4I = \begin{pmatrix} -2 & 2 \\ 1 & -1 \end{pmatrix}$$

• Every non-zero vector in $\ker(A-4I)$ is an eigenvector. Since $\dim \ker(A-4I)=1$, we select only one eigenvector from this null space. For example, we can choose $v_1=\dots$ Then, $(4,v_1)$ is an eigenpair.

$$A = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix}.$$

Then:

• The matrix A - I must be singular. Indeed,

$$A - I = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$$

• Every non-zero vector in $\ker(A-I)$ is an eigenctor. Since $\dim \ker(A-I)=1$, we select only one eigenvector from this null space. For example, $v_2=\dots$ Then, $(1,v_2)$ is an eigenpair.

$$A = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix}.$$

Then:

 Since eigenvectors associated with different e-values are always linearly independent, (ν₁, ν₂) are independent, hence form a basis for R².

Diagonalizability

Definition: Diagonalizability

 $A m \times m$ is diagonalizable is there exists a basis for C^m made of e-vectors of A

Diagonalizability

Theorem:

A is square. TFCAE:

- A is diagonalizable
- 2 There exist a matrix P and a diagonal matrix D such that

$$A = PDP^{-1}$$
.

Another equivalent condition deferred.

Proof of Theorem

(2) \implies (1): We have AP = PD. We prove that each column of P is an eigenvector of A. This proves (1), since the columns of any $m \times m$ invertible matrix form a basis for C^m . The jth column of P is Pe_j . Now:

$$A(Pe_j) = (AP)e_j = (PD)(e_j) = P(De_j) = P(D(j,j)e_j) = D(j,j)(Pe_j).$$

So, $(D(j,j), Pe_j)$ is an eigenpair of A.

Proof of Theorem

(1) \Longrightarrow (2) We are given m eigenpairs (λ_j, v_j) , with (v_1, \ldots, v_m) a basis for C^m . Let P be the matrix whose columns are v_1, \ldots, v_j , and let D be the diagonal matrix whose diagonal is $\lambda_1, \ldots, \lambda_m$. We show that $A = PDP^{-1}$ by showing that AP = PD, i.e., by showing that, for every j,

$$(AP)e_j = (PD)e_j.$$

Now,

$$(AP)e_j = A(Pe_j) = Av_j = \lambda_j v_j = P(\lambda_j e_j) = P(De_j) = (PD)e_j.$$