UNIVERSIDADE DO MINHO

Licenciatura em Ciências da Computação

Análise Numérica

Duração: 2 horas (+30 minutos de tolerância) 19 de novembro de 2022 teste 1 (COM CONSULTA)

Deves escrever na tua folha de respostas todos os comandos executados no Matlab.

1. No formato duplo da norma IEEE 754, um número \boldsymbol{x} normalizado expressa-se na forma

$$x = \pm (1.b_1 b_2 \cdots b_{52})_2 \times 2^E$$

onde $b_i = 0$ ou $b_i = 1$, para cada $i = 1, \dots, 52$, e $-1022 \le E \le 1023$. Denotamos por \mathcal{F} o conjunto dos números deste sistema.

- a) Diz, justificando, se concordas com a afirmação seguinte "se $x \in \mathcal{F}$ e $y \in \mathcal{F}$, então $x + y \in \mathcal{F}$ ".
- **b)** Mostra que $1/3 \notin \mathcal{F}$.
- c) Assumindo o modo de arredondamento para o mais próximo, determina majorantes para os erros

$$|1/3 - fl(1/3)|$$

е

$$\frac{|1/3 - fl(1/3)|}{1/3}$$

onde fl(1/3) representa o valor arredondado de 1/3.

2. Considera o seguinte desenvolvimento em série de potências de \boldsymbol{x}

$$log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{k+1} \frac{x^k}{k} + \dots$$

que é válido para $-1 < x \le 1$.

- a) Para calcular uma aproximação de log(1.1) com erro absoluto garantidamente inferior a 10^{-10} , qual é o último termo que deve ser somado? Justifica a tua resposta.
- b) Calcula a soma até ao termo que indicaste na alínea anterior. Na tua folha de respostas apresenta os comandos executados no Matlab e o resultado obtido em format long.
- c) No Matlab executa

e compara o valor obtido como que calculaste na alínea b). A diferença entre os dois valores é devida a cancelamento subtrativo no cálculo efetuado na alínea b) ou é outra a razão? Explica detalhadamente.

- 3. a) No Matlab,
 - >> format long, raiz= bisec (@(x) 1/(1-x),0,2,1e-10)

produz o resultado raiz=1.000000000029104. Este valor aproxima um zero da função f(x)=1/(1-x)? Explica detalhadamente.

b) Se tentares executar

$$\Rightarrow$$
 raiz= bisec (@(x) 1/(1-x),0,2,1e-16)

o Matlab não termina a execução e terás de interromper o processo fazendo Ctrl-C. Analisa o critério de paragem implementado no código da função bisec e explica porque é que a execução daquele comando não termina.

4. a) Usa o método do ponto fixo para calculares o mais exatamente possível (no format long) a abcissa do ponto em que a curva de equação y = log(x) + 10 interseta a reta y = x (ver figura em baixo). Na folha de respostas escreve os valores da aproximação inicial $x^{(0)}$ por ti escolhida e os valores produzidos na primeira e última iteração.

- b) Mostra que a sequência produzida com $x^{(k+1)} = log(x^{(k)}) + 10$ converge para a raiz da equação x = log(x) + 10 qualquer que seja a aproximação inicial $x^{(0)} > 1$.
- 5. A sucessão de termo geral

$$\left(1+\frac{1}{n}\right)^n$$

converge lentamente para o número de Neper e=2.71828... e é necessário usar valores de n muito grandes para obter boas aproximações daquele número. No entanto, há que ter cuidado na escolha do valor de n porque um pequeno erro relativo na representação da base $\left(1+\frac{1}{n}\right)$ produzirá uma aproximação com erro muito grande. Por que é que tal acontece?

questão	1a	1b	1c	2a	2b	2c	3a	3b	4a	4b	5	Total
cotação	1,5	1,5	2	2	1,5	1,5	2	2	2	2	2	20

RESOLUÇÃO

- 1. a) A afirmação é falsa. Por exemplo, 1 e 2^{-53} pertencem ambos a \mathcal{F} mas $1+2^{-53}$ não pertence porque o sucessor de 1 em \mathcal{F} é $1+2^{-52}$.
 - **b)** Vamos usar o algoritmo das multiplicações sucessivas para determinar a representação binária do número 1/3. De

$$2 \times 1/3 = 2/3 < 1$$

e

$$2 \times 2/3 = 4/3 = 1 + 1/3$$

concluímos que

$$1/3 = 0 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} + 1 \times 2^{-4} + 0 \times 2^{-5} + \cdots$$

Como não é finita a representação, então $1/3 \notin \mathcal{F}$.

c) No intervalo [1/4, 1/2], a distância entre um número de \mathcal{F} e o seu sucessor é 2^{-54} . No modo de arredondamento para o mais próximo, tem-se, para qualquer número de \mathcal{F} entre 1/4 e 1/2

$$|1/3 - fl(1/3)| \le 2^{-55}.$$

Para qualquer número x normalizado tem-se, no modo de arredondamento para o mais próximo,

$$\frac{|x - fl(x)|}{|x|} \le 2^{-53}.$$

- 2. a) Uma vez que a série é alternada, o erro de truncatura é, em valor absoluto, inferior ao valor absoluto do primeiro termo que se despreza. Uma vez que $0.1^9/9 > 10^{-10}$ e $0.1^{10}/10 < 10^{-10}$, para garantir uma aproximação com erro inferior a 10^{-10} deve adicionar-se ainda o termo $0.1^9/9$.
 - b) No Matlab,

>> format long; x=0.1; soma=0; for k=1:9, soma=soma+ $(-1)^(k+1)*x^k/k$; end, soma produz o resultado soma=0.095310179813492.

c) No Matlab,

ans =

9.167139269905533e-12

e a diferença é inferior à tolerância fixada 10^{-10} . Não há cancelamento subtrativo uma vez que o resultado soma = 0.095... é da mesma ordem de grandeza do termo de maior ordem de grandeza, neste caso x = 0.1.

3. a) Obviamente, f definida por f(x) = 1/(1-x) não tem zeros. O resultado produzido é o ponto médio de um intervalo [a,b] tal que $b-a < 10^{-10}$ e f(a) * f(b) < 0. A função não é contínua num intervalo que contenha o ponto x=1 porque não está definida neste ponto. É verdade que f(x) < 0 para valores próximos de 1, à direita, e f(x) > 0 para valores próximos de 1, à esquerda mas, por não ser f contínua, tal não implica a existência de um zero entre a e b.

- b) A função bisec não termina as iterações enquanto b-a>tol. O intervalo de menor amplitude tal que a e b pertencem a \mathcal{F} e $f(a)\times f(b)<0$ é [a,b]=[1,1+eps]. Como $eps=2^{-52}\approx 2.2\times 1e-16$, é sempre b-a>1e-16.
- 4. a) Vamos tomar como aproximação inicial $x^{(0)} = 12$ e terminaremos quando duas aproximações sucessivas coincidirem em todos os algarismos no format long.

```
>> x=12; k=0;

>> x=log(x)+10, k=k+1

x =12.484906649788000

k = 1

....

x = 12.527963201982175

k =14
```

- **b)** A função iteradora é $\phi(x) = log(x) + 10$. A condição $|\phi'(x)| < 1$, ou seja $|\frac{1}{x}| < 1$, é verdadeira para x > 1 e, portanto, qualquer que sejal $x^{(0)} > 1$, a sequência produzida com $x^{(k+1)} = log(x^{(k)}) + 10$ converge para o ponto fixo de $\phi(x) = log(x) + 10$ que é a solução de x = log(x) + 10.
- 5. O número de condição relativo de uma função f num ponto x é dado por x.f'(x)/f(x). No caso de ser $f(x) = x^n$, o número de condição é n, isto é o erro relativo em f(x) pode ser n vezes maior do que o erro relativo em x. Portanto, para usar a expressão $\left(1 + \frac{1}{n}\right)^n$ deve garantir-se que a base $1 + \frac{1}{n}$ é representada exatamente (sem erro de arredondamento).