San José State University Department of Computer Science

Ahmad Yazdankhah

ahmad.yazdankhah@sjsu.edu www.cs.sjsu.edu/~yazdankhah

Non-Regular Languages (Part 1)

Lecture 24 Day 28/31

CS 154
Formal Languages and Computability
Spring 2019

Agenda of Day 28

- Solution and Feedback of Quiz 9
- Summary of Lecture 23
- A Few Slides from the Past (Slides are added to the Lecture 23)
- Lecture 24: Teaching ...
 - Non-Regular Languages (Part 1)

Solution and Feedback of Quiz 9 (Out of 20)

Section	Average	High Score	Low Score
01 (TR 3:00 PM)	17.13	20	11
02 (TR 4:30 PM)	16.48	20	6
03 (TR 6:00 PM)	17.57	20	12

Summary of Lecture 23: We learned ...

Parser

- Parser is ...
 - a program that gets a string as input and gives the sequence of derivation as the output.
 - We can construct parse-tree from that sequence.

 Every compiler has its own grammar and parser.

Parse-Trees

- Parse-tree is ...
 - an ordered-tree that can be constructed for every string by using the grammar.

Parser Algorithms

- There are two types of algorithms for parsers:
 - Top-down and bottom-up
- Exhaustive parsing algorithm is ...
 - a top-down algorithm that check all possible derivations to find a derivation sequence for a given string.

Any Question

Summary of Lecture 23: We learned ...

Exhaustive Parsing Algorithm

- This algorithm has two serious problems:
 - It is extremely inefficient: O(|P|^{2|w|+1})
 - It is possible that it never terminates.
- Two good news:
 - Theorem: there exists an efficient algorithm for every CFG with complexity O(|w|³).
 - 2. If we use s-grammar, the efficiency would be O(|w|).

S-Grammar

- A simple grammar is ...
 - ... a cfg with two restrictions:
 - All production rules are of the form
 A → av
 where A ∈ V, a ∈ T, v ∈ V*

One terminal as prefix and any number of variables as suffix.

- 2. Any pair (A, x) occurs only once in all production rules.
- Note that there is no λ.

Any Question

A Few Slides From the Past

Added to Lecture Notes 23

Objective of This Lecture

- We defined "regular languages" as ...
 - A language is called regular iff there exists a ...
 - ... DFA/NFA to accept it.
 - REGEX to represent it.
 - ... regular grammar to generate it.
- But the most interesting languages are non-regular.
- The main question of this lecture is:
 - How TO PROVE a language is NON-REGULAR?
- Obviously, we cannot say:
 - L is non-regular because I CANNOT construct a DFA/NFA/REGEX/regular grammar for it!

Objective of This Lecture

- Before, we learned a heuristic technique to figure out a language was non-regular.
 - We looked at the language's strings pattern and if it needed some kind of memory or counter, then it could not be regular.
- But this is NOT a mathematical proof!
- Also, in some cases, we might make mistakes.
 - e.g.: L = {w : w has an equal number of ab and ba} is regular!
- So, in this lecture we are looking for a ...
 ... solid technique to prove a language is NON-REGULAR.
- Before that, we introduce an important property of infinite regular languages.

Required Background

- 1. The concept of regular and non-regular languages
- 2. Proof by contradiction
- 3. Cycle and simple cycle definitions in graphs
- 4. One-dimensional projection of a walk
- 5. Pigeonhole principle

(will be covered shortly!)

Regular and Non-Regular Languages

U = All Formal Languages

Proof by Contradiction

- Logically, proving a theorem means to assume the truth of some statements (e.g.: p) and entailing the truth of another statement (e.g.: q)
- Sometimes, it is hard to follow this procedure.
- In these cases, we might use the following logical equivalency:

Contrapositive

$$p \rightarrow q \equiv \sim q \rightarrow \sim p$$

- In fact, we prove that if the negation of the desired result (e.g. ~q) is true, then it leads to a contradiction.
- And to resolve the contradiction, we have no choice except blaming our assumption (~q is true) and this means q ≡ T.
- This technique is called "proof by contradiction".

- A walk from a vertex (called base) to itself with no repeated edges.
- But: Walk + No repeated edges = path
- Rewording: A cycle is a path from a vertex (called base) to itself.

Examples 1

- Walk 1: (v₃, v₁), (v₁, v₃)
- Walk 2: (v₁, v₃), (v₃, v₃), (v₃, v₁)
- Walk 3: (v₃, v₃)

- A cycle that no vertex other than the base is repeated.
- In other words, in a simple cycle, all vertices (except the base) and all edges are visited uniquely.

Examples 2

- Walk 1: (v₁, v₃), (v₃, v₁)
- Walk 2: $(v_3, v_1), (v_1, v_3)$
- Walk 3: (v₃, v₃)

Example 3

Given following DFA with 3 states over Σ = {a, b}:

Show one-dimensional projection of w = baab.

Every string has its own one-dimensional projection.

Note that w ∉ L. How do we know that?

Example 4

• Given following NFA with 4 states over $\Sigma = \{a, b\}$:

Show one-dimensional projection of w = aaaab.

In this example, q₂ is the first repeated state.

Pigeonhole Principle

Recap

Pigeonhole Principle

Example 5

 If we have 10 pigeons and 9 pigeonholes (boxes), then one pigeonhole must contain more than one pigeon.

Pigeonhole Principle

If we put n objects (pigeon) into m boxes (pigeonholes) &&

n > m

- At least one box must contain more than one object.
- Reference: https://en.wikipedia.org/wiki/Pigeonhole_principle

What is Pigeonhole Principle and DFAs Relationship!

Pigeonhole Principle and DFAs Relationship

Example 6

Given following DFA with 4 states.

- Consider the walk of w = aaaab. (|w| = 5)
- Can we conclude that:

At least one state must be visited more than once.

 Yes, because the size of the string is bigger than the number of states.

Pigeonhole Principle and DFA's

Example 6 (cont'd) w = aaaab

 Now, let's show the walk by one-dimensional projection method to investigate our guess.

q₂ and q₃ are visited twice.

What is Pigeon and what is Pigeonhole?

- Pigeons are the symbols of the string w = aaaab.
- Pigeonholes are the transitions.

- The edges don't look like HOLES!
- But states do!

What is Pigeon and what is Pigeonhole?

- The states give us a better feeling of pigeonholes!
- Therefore, we might consider states as pigeonholes.

- Note that in one-dimensional projection, q₀ (q₁ in this example), does not have any role.
- The first repeated-state in this example is q₂.
- Now, let's see this relationship in the original transition graph.

What is Pigeon and what is Pigeonhole?

- So, we can consider the edges or the states right after them as the pigeonholes.
- In this lecture, we'll switch between these two based on the context.

Pigeonhole Principle and DFA's

Conclusion

If a DFA has m states, and

we process a string w whose size is $|w| \ge m$,

then by the pigeonhole principle,

at least one state should be visited more than once.

- Consider L as an INFINITE REGULAR language.
- Since L is regular, so, there exists a DFA that accepts it.
- Let's assume this DFA has m states (that should be a finite number).

- Take the general string $w = a_1 a_2 ... a_k \in L$ whose size is $|w| \ge m$.
- Since |w| ≥ m, therefore, based on pigeonhole principle, in the walk of w,
 - at least one state is visited more than once.

The following graph is the one-dimensional projection of w.

- Why is the last state accepting-state?
 - Because w ∈ L, therefore the last state must be accepting-state.
- Can there be any other accepting-state in the middle too?
 - Of course! Any state can be accepting-state.

- Note that between two q's, there is no nested repeated-states.
 - We can always pick the first repeated state in which there is no nested repeated-states.
 - Therefore, if we show the original transition graph, this portion must be a "simple cycle".

- Let's review the facts we have so far:
 - 1. From a₁ to a_i, we have unique states (visited once). because we assumed q is the first repeated-state.
 - 2. From a_{i+1} to a_j , we have unique states because it is a simple cycle. (Only q, the base, is repeated!)
- Therefore, we have unique states from a₁ to a_j.

- Now, let's name different portions of the string:
- We can split w as xyz. (x, y, and z are variables for substrings.)
- Note that y corresponds to substring between two q's.

Now let's see how x, y, and z looks in the original transition graph.

(1) Important Questions

1. Is this true: $|xy| \le m$

Yes, because we learned a_1 to a_j (= xy) are unique states and there is no repeated-states between them.

y = a_{i+1} ... a_i

Recall that the DFA has m states and xy is only a part of that.

2. Is this true: $|y| \ge 1$

Yes, because y is a simple cycle and the smallest simple cycle is a loop whose size is 1.

More Questions!

We've already know $w = xyz \in L$.

- 3. Is string $xz = a_1 a_2 ... a_i a_{i+1} ... a_k$ accepted by this DFA? Yes, so $xz \in L$
- 3. How about xyyz? Or, xyyyz?
- 4. Or in general: $x y^{i} z$, for i = 0, 1, 2, ...
- The answer is yes to all, so all strings x yi z belongs to L.

Conclusion

- We could pump any number of y and the resulting strings were accepted by the DFA.
- So, if w = xyz ∈ L, ...
- ... then $w_i = xy^iz \in L$ for i = 0, 1, 2, ...

And this is the mysterious concept of "Pumping Lemma"!

References

- Linz, Peter, "An Introduction to Formal Languages and Automata, 5th ed.," Jones & Bartlett Learning, LLC, Canada, 2012
- Kenneth H. Rosen, "Discrete Mathematics and Its Applications, 7th ed.," McGraw Hill, New York, United States, 2012
- 3. Costas Busch's website: http://csc.lsu.edu/~busch/
- Michael Sipser, "Introduction to the Theory of Computation, 3rd ed.," CENGAGE Learning, United States, 2013 ISBN-13: 978-1133187790