

Procesadores de lenguajes

Ingeniería Informática Especialidad de Computación Tercer curso, segundo cuatrimestre

Escuela Politécnica Superior de Córdoba Universidad de Córdoba

Curso académico: 2012 - 2013

TRABAJO DE PRÁCTICAS

1. Introducción

- Se debe utilizar **flex** y **bison** para elaborar un <u>i</u>ntérprete de **p**seudocódigo en **e**spañol:
 - o ipe.exe
- Descripción de los apartados:
 - 2) Elaboración y entrega del trabajo
 - 3) Características del lenguaje de pseudocódigo
 - 4) Control de errores
 - 5) Modos de ejecución del intérprete
 - 6) Documentación del trabajo
 - 7) Criterios de evaluación

2. Elaboración y entrega

- Modo de realización del trabajo
 - o El trabajo se podrá realizar de
 - forma individual
 - o en grupo compuesto por un máximo de tres personas
- Modo de entrega
 - Un fichero comprimido deberá ser "subido" a la tarea de la plataforma de "moodle"
 - Dicho fichero deberá contener los siguientes ficheros
 - Documentación del trabajo (véase el apartado nº 6)
 - Fichero de flex
 - Fichero de bison
 - Ficheros de C (".c", ".h")
 - Fichero makefile
 - Al menos dos ficheros de ejemplo con la extensión ".e"

• Uno de los ejemplos deberá ser el fichero "ejemplo-1.e", proporcionado por el profesor

o Plazo de entrega

Hasta las 9:00 horas del viernes 7 de junio de 2013.

3. Características de lenguaje de pseudocódigo

a) Componentes léxicos o tokens

Palabras reservadas

- __mod, __o, __y, __no, leer, leer_cadena, escribir, escribir_cadena, si, entonces, si_no, fin_si, mientras, hacer, fin_mientras, repetir, hasta, para, desde, paso, fin_para, borrar, lugar
- No se distinguirá entre mayúsculas ni minúsculas.
- Las palabras reservadas no se podrán utilizar como identificadores.

Identificadores de variables

- Características
 - Estarán compuestos por una serie de letras, dígitos y el subrayado;
 - Deben comenzar por una letra,
 - No podrán acabar con el símbolo de subrayado, ni tener dos subrayados seguidos.
- Identificadores válidos:
 - dato, dato 1, dato 1 a
- Identificadores no válidos:
 - _dato, dato_, dato__1
- No se distinguirá entre mayúsculas ni minúsculas.

Número:

- Se utilizarán números enteros, reales de punto fijo y reales con notación científica.
- Todos ellos serán tratados conjuntamente como números.

Cadena:

 Estará compuesta por una serie de caracteres delimitados por comillas simples:

'Ejemplo de cadena'

 Deberá permitir la inclusión de la comilla simple utilizando la barra (\):

'Ejemplo de cadena con \' comillas\' simples'.

- Nota:
 - Las comillas exteriores no se almacenarán como parte de la cadena.

- Operadores aritméticos:
 - suma: +
 - Unario: +2
 - Binario: 2+3
 - resta:
 - Unario: -2
 - Binario: 2-3
 - producto:
 - división:
 - módulo: __mod
 - potencia:

Operador alfanumérico:

- concatenación:
- Operadores relacionales de números y cadenas:
 - menor que:
 - menor o igual que: <=</p>
 - mayor que: >
 - mayor o igual: >=
 - igual que: ==
 - distinto que: <>
 - Por ejemplo:
 - si A es una variable numérica y control una variable alfanumérica, se pueden generar las siguientes expresiones relacionales:

- Operadores lógicos:
 - disyunción lógica: __o
 - conjunción lógica: __y
 - negación lógica: __no
 - Por ejemplo:

$$(A \ge 0)$$
 _y _no (control <> 'stop')

- Comentarios
 - De varias líneas: delimitados por llaves

```
{ ejemplo maravilloso de comentario de tres líneas }
```

 De una línea: todo lo que siga al carácter # hasta el final de la línea.

ejemplo espectacular de cometario de una línea

o Punto y coma

Se utilizará para indicar el fin de una sentencia.

b) Sentencias

o Asignación

- identificador = expresión numérica
 - Declara a identificador como una variable numérica y le asigna el valor de la expresión numérica.
 - Las expresiones numéricas se formarán con números, variables numéricas y operadores numéricos.
- identificador = expresión alfanumérica
 - Declara a identificador como una variable alfanumérica y le asigna el valor de la expresión alfanumérica.
 - Las expresiones alfanuméricas se formarán con cadenas, variables alfanuméricas y operadores alfanuméricos

Lectura

- Leer (identificador)
 - Declara a identificador como variable numérica y le asigna el número leído.
- Leer_cadena (identificador)
 - Declara a identificador como variable alfanumérica y le asigna la cadena leída (sin comillas).

Escritura

- Escribir (expresión numérica)
 - El valor de la expresión numérica es escrito en la pantalla.
- Escribir_cadena (expresión alfanumérica)
 - La cadena (sin comillas exteriores) es escrita en la pantalla.
 - Se debe permitir la interpretación de comandos de saltos de línea (\n) y tabuladores (\t) que puedan aparecer en la expresión alfanumérica.

Sentencias de control¹

 Sentencia condicional simple si condición

entonces sentencias

¹ Una condición será una expresión relacional o una expresión lógica compuesta.

fin_si

- Sentencia condicional compuesta si condición entonces sentencias si_no sentencias fin_si
- Bucle "mientras"
 mientras condición hacer
 sentencias
 fin_mientras
- Bucle "repetir" repetir sentencias hasta condición
- Bucle² "para"
 para identificador
 desde expresión numérica 1
 hasta expresión numérica 2
 paso expresión numérica 3
 hacer
 sentencias
 fin_para
- Comandos especiales
 - Borrar: borra la pantalla
 - Lugar(expresión numérica1, expresión numérica2)
 - Coloca el cursor de la pantalla en las coordenadas indicadas por los valores de las expresiones numéricas.

4. Control de errores

El intérprete deberá controlar toda clase de errores:

- Léxicos:
 - Identificador mal escrito
 - Utilización de símbolos no permitidos
 - o Etc.
- Sintácticos:
 - o Sentencias de control más escritas.
 - Sentencias con argumentos incompatibles.
 - Etc.
 - Observación
 - Se valorará la utilización de producciones de error.

² Se valorará que se controlen los pasos con incrementos positivos y negativos del bucle "para".

- Semánticos
 - Argumentos u operandos incompatibles
- De ejecución:
 - Sentencia "para" que pueda generar un bucle infinito.
 - o Fichero de entrada inexistente o con una extensión incorrecta.
 - o Etc.

5. Modos de ejecución del intérprete

El intérprete se podrá ejecutar de dos formas diferentes:

- Modo interactivo:
 - Se ejecutarán las instrucciones tecleadas desde un terminal de texto

ipe.exe > ...

- Interpretando las sentencias de un fichero
 - El fichero deberá tener la extensión ".e"

ipe.exe ejemplo.e

- Observaciones
 - El intérprete deberá funcionar correctamente en "ThinStation" de la Universidad de Córdoba
 - o La gramática no deberá tener ningún conflicto.

6. Documentación del trabajo

- Portada
 - o Título del trabajo desarrollado
 - Nombre y apellidos de las personas que forman el grupo
 - o Nombre de la asignatura: Procesadores de lenguaje
 - o Nombre de la Titulación: Ingeniería informática
 - Curso: tercer curso
 - o Curso académico: 2012 2013
 - Escuela Politécnica Superior de Córdoba
 - Universidad de Córdoba
 - o Fecha
- Índice
 - o Las páginas deberán estar numeradas.
- Introducción
 - Breve descripción del trabajo realizado y de las partes del documento
- Lenguaje de pseudocódigo
 - Componentes léxicos
 - Sentencias
- Tabla de símbolos

- Descripción
- Análisis léxico
 - Expresiones regulares utilizadas para definir los componentes léxicos
- Análisis sintáctico:
 - Símbolos terminales (componentes léxicos)
 - Símbolos no terminales
 - o Reglas de producción de la gramática
 - Acciones semánticas:
 - Se deberán describir las acciones semánticas de las producciones que generan las sentencias de control y especialmente las diseñadas para los bucles "repetir" y "para".
- Funciones auxiliares
- Modo de obtención del intérprete
 - o Nombre y descripción de cada fichero utilizado
 - o Descripción del fichero makefile
- Modo de ejecución del intérprete:
 - o Interactiva
 - o A partir de un fichero
- Ejemplos:
 - Se valorará la cantidad de ejemplos propuestos
 - o Al menos, se deberán proponer dos ejemplos
 - Fichero de ejemplo propuesto por el profesor.
 - Fichero de ejemplo propuesto por el autor o autores
 - Se valorará "fundamentalmente" la originalidad y complejidad de este ejemplo.
- Conclusiones:
 - o Reflexión sobre el trabajo realizado
 - o Puntos fuertes y puntos débiles del intérprete desarrollado.
- Bibliografía o referencias web
- Anexos

7. Criterios de evaluación

- Informes de evaluación (10 %)
 - Cada semana, el profesor irá elaborando un "informe de evaluación" que servirá para conocer los progresos de cada grupo:
 - Partes desarrolladas
 - Documentación elaborada
 - Dificultades encontradas y soluciones adoptadas
 - Ftc.
 - Este informe permitirá conocer, revisar y sugerir propuestas de mejora del trabajo.
 - Observación
 - La asistencia a las clases de práctica se tendrá en cuenta en los informes de evaluación.

- Documentación: 40 %
 - Se tendrá en cuenta lo indicado en el apartado nº 6
 - o El código elaborado deberá estar documentado.
 - o Se valorará la inclusión de gráficos o figuras.
 - También se valorará la corrección ortográfica y la calidad en la redacción.

• Funcionamiento del intérprete (software): 50 %

- o La gramática diseñada no deberá tener ningún conflicto.
- El intérprete deberá funcionar correctamente en ThinStation tanto de forma interactiva como ejecutando la instrucciones de un fichero.
- o Los ejemplos deberán funcionar correctamente.

Otros criterios de evaluación que podrán mejorar la calificación

- o Diseño del lenguaje y la gramática.
- o Completitud del trabajo realizado.
- o Ampliación del lenguaje de pseudocódigo.
- Soluciones a dificultades encontradas durante la elaboración del trabajo que hayan sido convenientemente documentadas.
- Aportaciones propias del grupo.
- o Número y complejidad de los ejemplos propuestos

Observación

 Los alumnos podrán exponer el trabajo realizado al profesor tanto si ellos lo desean como si el profesor lo solicita.