A Memo on Exploration of SPLASH-2 Input Sets

PARSEC Group Princeton University, June 2011

Abstract

This memo presents the study of the exploration of input sets for SPLASH-2. Based on experimental data, we generate a modernized SPLASH-2, a.k.a., SPLASH-2x, by selecting multiple scales of input sets. SPLASH-2x will be integrated into PARSEC framework.

1. Introduction

SPLASH-2 benchmark suite [4] includes applications and kernels mostly in the area of high performance computing (HPC). It has been widely used to evaluate multiprocessors and their designs for the past 15 years. During the past few years, we have collaborated with several institutions to develop PARSEC benchmark suite [1] which include 13 applications and kernels in emerging areas such as data mining, finance, physical modeling, data clustering and data deduplication. Recent studies [2] show that SPLASH-2 and PARSEC benchmark suites complement each other well in term of diversity of architectural characteristics such as instruction distribution, cache miss rate and working set size. In order to provide computer architects with the convenient use of both benchmarks, we have integrated SPLASH-2 into the PARSEC environment in this release. Users can now build, run and manage both workloads under the same environment framework.

The new release of SPLASH-2 is called SPLASH-2x because it also has several input datasets at different scale. Since SPLASH-2 was designed many years ago, their standard input datasets are relatively small for contemporary shared memory multiprocessors. To scale up the input sets for SPLASH-2, we have explored the input space of the SPLASH2 workloads. Our method is to analyze the impact of various inputs and to select multiple scales reasonable input sets. We have extracted input parameters from source codes and designed a framework to automatically generate about 1,600 refined combinations of input parameters, execute workloads with the input combinations and collect measurement data. To investigate the impact of different input sets on program behavior, we mainly use two metrics, i.e., execution time and memory footprint size. Experimental results show that most programs' behavior is influenced by less than three input parameters. We picked those parameters and selected values for them to generate multiple scales of input sets, i.e., Native (< 15 minutes), Simlarge (<16 seconds), Simmedium (<4 seconds) and Simsmall (<1 second), similar to PARSEC's criterion [3]. SPLASH-2x will be released with these input sets.

This document describes the major input parameters of the SPLASH2 workloads, presents experimental data and shows the selected input sets for SPLASH-2x.

2. Input Parameters

We extracted all input parameters from SPLASH-2 source codes. There are 81 parameters in total and we assigned a value range for each parameter. A typical value range is designated by *MIN*, *MAX* and *DELTA*. It should be noted that *DELTA* already includes arithmetic operation. For example, a parameter assigned with the value range of "[16K, 16M], Δ =*2" will explore the following values {16K, 32K, 64K, ... 4M, 8M, 16M}. We explored the whole input space and found that in fact there are only a few parameters which affect

program behavior. Then we select those parameters as the principle parameters for later analysis. Table 1 illustrates those principle parameters.

In order to explore as large space as possible, we modified some original input files and slightly changed some source files. For example, we appended more random numbers into the "random.in" input file for the *water_nsuqared* and *water_spatial* workloads. We also tried to generate symmetric positive-definite matrices for the *cholesky* workload, but those matrices failed to let the program complete execution. So we have to use the original small matrices for *cholesky*.

Table 1. Exploration of Input Sets Space for principle parameters

Workload	Input Param	Range & Delta	Description
Barnes	nbody	[16K, 16M], Δ=*2	The number of particles to generate under a plummer.
	dtime	$[0.010, 0.025], \Delta = +0.005$	The integration time-step.
	tol	$[0.5, 1.0], \Delta = +0.5$	The cell subdivision tolerance.
E	NP	[1K, 4M], Δ=*2	Number of Particles.
Fmm	TS	[5, 15], Δ=+5	Number of Time Steps.
	N	[256+2, 4096+2], Δ=*2	Simulate NxN ocean. N must be (power of 2)+2.
Ocean	R	$[10^4, 5*10^4], \Delta = +10^4$	Distance between grid points in meters.
	T	[14400, 28800], Δ =*2	Timestep in seconds.
Radiosity	AE	[2000, 3000], Δ =+500	Area epsilon
	BF	$[1.5*10^{-4}, 1.5*10^{-2}],\Delta=10$	BFepsilon (BF refinement)
	Model	{"room", "large room"}	Use room/large room model
Raytrace	A	{64, 128}	Enable antialiasing with n subpixels
	File	{"teapot.env","balls4.env", "car.env"}	Inpu image file
	Step	{4,10,20,50,100,500,1000}	Rotate steps
Volrend	File	{"head","head-scaleddown2", "head-scaleddown4"}	Input image file
XX - 4	M	$M=n^3$, $n \in [8,32]$, $\Delta n=+1$	The number of molecules to be simulated
Water	NSTEP	[3,9], $\Delta = +2$	The number of timesteps to be simulated
Choleksy	Matrix	{tk14,tk29}U{lshp,wr10,d750}	Sparse Symmetric Positive-Definite Matrix
Fft	M	[18, 28], $\Delta = +2$	2 ^M total complex data points to be transformed.
Lu	N	[512, 16K], Δ=*2	Decompose NxN matrix.
radix	N	[64K, 512M], Δ=*2	Number of keys to sort

3. Experimental Results

We conducted experiments on a server machine. The machine is with two Intel Xeon E5430 quad-core processor, 32 GB memory and Linux 2.6.18. All SPLASH-2 workloads are compiled by GCC-4.2.1 with flag "-O3". Since our objective is to investigate input sets other than scalability, we assigned one process for each workload. We use two metrics (execution time and memory footprint size) to measure the impact on program

behavior. It should be noted that we use physical resident memory size rather than virtual memory size because physical resident memory is the actual amount one program consumes.

Experimental results show that the execution time and memory size have strong correlation to input parameters. The figures in Appendix A illustrate the correlations between the two metrics and the input sets for each workload. Take BARNES as an example, there are three input parameters influencing the two metrics: 1) nbody (the number of particles to generate under a plummer) significantly changes both time and memory; 2) dtime (the integration timestep) slightly changes both time and memory; 3) tol (the cell subdivision tolerance) changes only execution time.

For more details of each workload, please refer to Appendix A.

4. Input Set Selection

We selected multiple input sets for SPLASH-2x, the modernized SPLASH-2. We adopted the criterion for PARSEC input set selection (Table 2). PARSEC criterion has six input sets, among which four are experiments of either simulations or native executions while the other two are for test and development. In this work, we focus on only the four criterions, i.e., *Simsmall, Simmedium, Simlarge* and *Native*.

Input Set Description Time **Purpose** Test Minimal execution time N/A Test & Simdev Best-effort code coverage of real inputs N/A Development Simsmall Small-scale experiments $\leq 1s$ $\leq 4s$ Simmedium Medium-scale experiments Simulations Simlarge Large-scale experiments $\leq 15s$ < 15min Native Real-world behavior Native execution

Table 2. The six standardized input sets offered by PARSEC. [3]

We employed the same scaling model in previous studies [3]. The simple model divides the impact of input set into two categories: **the linear part** and **the complex part**. The linear part has linear effect on the execution time and memory size while the complex part includes any other effect on the program. For example, a linear part might be simple incrementing iteration step from S to 2S and a complex part might be increasing input matrix size from N to 2N. The former increment probably only increase execution time by twice but the latter change would require 4 times of memory size and execution time.

Table 3 illustrates the overview of the input set selection of SPLASH-2x. The input set for most workloads cover both the linear impact and the complex impact. Different from most of the PARSEC workloads that have identical input sets for the complex part, the input sets of SPLASH-2x workloads exhibit more complex impacts. This difference results from the different design goals of the two benchmark suites. PARSEC is targeted to emerging applications such as video, data mining and finance which usually have fixed input size, e.g., a video frame. However, SPLASH-2 focuses on HPC applications which include a large number of matrix manipulations whose overheads are usually exponential to matrix size.

Table 3. Input Set Selection for SPLASH-2x

***	T . G .	Size			Reference	
Workload	Input Set	Comple	X	Linear	Mem	Time
	Simsmall	16K Particles, Timestep = 0.25		Tolerance = 1.0	7M	0.8s
Barnes	Simmedium	32K Particles, Timestep = 0.25		Tolerance = 1.0	26M	3.7s
	Simlarge	256K Particles, Timestep= 0.25		Tolerance = 1.0	98M	16.3s
	Native	2M Particles, Timestep = 0.15		Tolerance = 0.5	1017M	1160.0s
	Simsmall	16K Particles		Timestep = 5	10M	0.6s
_	Simmedium	64K Particles		Timestep = 5	36M	2.5s
Fmm	Simlarge	256K Particles		Timestep = 5	140M	10.5s
	Native	4M Particles		Timestep = 5	2217M	176.0s
	Simsmall	514x514 Grid Distance=20		000, Timestep = 28800	57M	0.9s
Ocean Contiguous	Simmedium	1026x1026 Grid	Distance= 20000,Timestep = 28800		223M	3.6s
Partition	Simlarge	2050x2050 Grid	Distance= 20000,Timestep = 28800		887M	14.0s
(Ocean_cp)	Native	4098X4098 Grid	Distance= 10000,Timestep = 14400		3546M	254.3s
Ocean Non-	Simsmall	514x514 Grid	Distance= 20000,Timestep = 28800		114M	1.2s
Contiguous	Simmedium	1026x1026 Grid	Distance= 20000, Timestep = 28800		337M	4.8s
Partition	Simlarge	2050x2050 Grid	Distance= 20000,Timestep = 28800		1114M	19.0s
(Ocean_ncp)	Native	4098X4098 Grid	Distance= 10000,Timestep = 14400		4003M	277.0s
	Simsmall	BF refinement =1.5e-1		Room	64M	0.4s
5	Simmedium	BF refinement =1.5e-2		Room	64M	2.3s
Radiosity	Simlarge	BF refinement =1.5e-3		Room	877M	16.8s
	Native	BF refinement =1.5e-4		Largeroom	1442M	241.9s
	Simsmall Teapot		Antialiasing	g w/ 8 subpixels	6M	0.6s
Daritmaaa	Simmedium	Balls4 Antialiasing		g w/ 2 subpixels	6M	3.1s
Raytrace	Simlarge	Balls4 Antialiasing		g w/ 8 subpixels	6M	12.4s
	Native	Car Antialiasing		g w/ 128 subpixels	22M	225.4s
	Simsmall	Head-Scaledown4		Rotate Step = 20	1.7M	0.6s
Volrend	Simmedium	Head-Scaledown2		Rotate Step = 50	5M	4.0s
voireila	Simlarge	Head-Scaledown2		Rotate Step = 100	5M	7.5s
	Native	Head		Rotate Step = 1000	30M	246.2s
	Simsmall	8 ³ Molecules		Timestep = 3	2M	1.0s
Water	Simmedium	medium 15 ³ Molecules		Timestep = 3	4M	3.5s
Nsquared	Simlarge	arge 20 ³ Molecules		Timestep = 3	7M	19.3s
	Native	32 ³ Molecules		Timestep = 7	26M	839.3s
	Simsmall	15 ³ Molecules		Timestep = 3	3M	0.9s
Water	Simmedium	m 20 ³ Molecules		Timestep = 3	6M	2.1s
Spatial	Simlarge 32 ³ Molecules		Timestep = 3	23M	7.7s	
	Native 100 ³ Molecules			Timestep = 3	668M	233.7s
	Simsmall 13992x13992, NZ		16740		37M	0.3s
Choleksy	Simmedium	m 13992x13992, NZ=316740			37M	0.3s
Choleksy	Simlarge	imlarge 13992x13992, NZ=316740			37M	0.3s
	Native	13992x13992, NZ=316740			37M	0.3s

Table 3. Input Set Selection for SPLASH-2x (cont.)

Warddaad	Immud Cod	Size	Reference		
Workload	Input Set	Complex	Linear	Mem	Time
Fft	Simsmall	2 ²⁰ total complex data points		49M	0.4s
	Simmedium	2 ²² total complex data points		193M	1.5s
	Simlarge	2 ²⁴ total complex data points		769M	6.0s
	Native	2 ²⁸ total complex data points		12G	128.5s
LU	Simsmall	512x512 Matrix, Block = 16		3M	0.1s
Contiguous	Simmedium	1Kx1K Matrix, Block = 16		9M	0.7s
Block	Simlarge	2Kx2K Matrix, Block = 16		33M	5.1s
(Lu_cb)	Native	8Kx8K Matrix, Block = 32		513M	320.7s
LU Non-	Simsmall	512x512 Matrix, Block = 16		3M	0.1
Contiguous	Simmedium	1Kx1K Matrix, Block = 16		9M	0.9s
Block	Simlarge	2Kx2K Matrix, Block = 16		33M	8.7s
(Lu_cb)	Native	8Kx8K Matrix, Block = 32		513M	509.2s
	Simsmall	4M Keys, Radix = 4K		65M	0.9s
mo div	Simmedium	16M Keys, Radix = 4K		257M	3.6s
radix	Simlarge	64M Keys, Radix = 4K		1G	14.6s
	Native	256M Keys, Radix = 4K		4G	59.3s

5. Conclusion

SPLASH-2 is a widely used benchmark suite for shared memory machines. However, its original input sets are already obsolete. We have explored the input spaces for all of the SPLASH-2 workloads and analyzed their impact on program behavior in term of execution time and memory footprint size. We have conducted about 1600 experiments and collect a large number of data. Based on the experimental results, we have selected multiple scales of input sets to generate SPLASH-2x, a modernized SPLASH-2, which has been integrated into the PARSEC framework.

Reference

- [1] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh and Kai Li, The PARSEC Benchmark Suite: Characterization and Architectural Implications. In *Proceedings of the 17th International Conference on Parallel Architectures and Compilation Techniques*, October 2008.
- [2] Christian Bienia, Sanjeev Kumar and Kai Li, PARSEC vs. SPLASH-2: A Quantitative Comparison of Two Multithreaded Benchmark Suites on Chip-Multiprocessors. In *Proceedings of the IEEE International Symposium on Workload Characterization*, September 2008
- [3] Christian Bienia and Kai Li, Fidelity and Scaling of the PARSEC Benchmark Inputs. In *Proceedings of the IEEE International Symposium on Workload Characterization*, December 2010.
- [4] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop Gupta. 1995. The SPLASH-2 programs: characterization and methodological considerations. In *Proceedings of the 22nd annual international symposium on Computer Architecture*, June 1995.

Appendix A

We use two metrics to measure program behavior, i.e., execution time (T) and memory footprint size (M). For the data collection phase, we use Equation (1) to collect the T and M metrics by changing input parameters. The following charts are drawn based on Equation (2). The label associated with each dot in the charts represents one combination of input parameters ($p_1, p_2, ..., p_n$). (NOTE: the input parameters in legend with "**" is principle parameters.)

 $(T, M)=F(p_1, p_2, ..., p_n)$ (1),

 $(p_1, p_2, ..., p_n) = F^{-1}(T, M)$ (2), where T is execution time, M is memory size, and p_i is input parameter.

