# **Automotive MLCC, KAM Series**

## **General Specifications**





#### **GENERAL DESCRIPTION**

KYOCERA AVX has supported the Automotive Industry requirements for Multilayer Ceramic Capacitors consistently for more than 25 years. Products have been developed and tested specifically for automotive applications and all manufacturing facilities are QS9000 and VDA 6.4 approved.

KYOCERA AVX is using AECQ200 as the qualification vehicle for this transition. A detailed qualification package is available on request and contains results on a range of part numbers.

The KAM series are plated with a Nickel/Tin finish. For FLEXITERM® please refer to the KAF series datasheet.

#### **HOW TO ORDER**



## **PACKAGING CODES**

| Code | EIA<br>(inch) | IEC(mm) | 7"<br>Paper | 7"<br>Embossed | 13"<br>Paper | 13"<br>Embossed |
|------|---------------|---------|-------------|----------------|--------------|-----------------|
| 03   | 0201          | 0603    | Н           |                | N            |                 |
| 05   | 0402          | 1005    | Н           |                | N            |                 |
| 15   | 0603          | 1608    | Т           | U              | М            | L               |
| 21   | 0805          | 2012    | Т           | U              | М            | L               |
| 31   | 1206          | 3216    | Т           | U              | М            | L               |
| 32   | 1210          | 3225    | Т           | U              | М            | L               |
| 42   | 1808          | 4520    |             | Υ              |              | К               |
| 43   | 1812          | 4532    |             | V              |              | S               |
| 55   | 2220          | 5750    |             | V              |              | S               |

<sup>\*</sup>thickness determines paper or plastic embossed packaging

### **DIELECTRIC**

| Dielectric | Operating<br>Temperature (°C) | Capacitance Change<br>Rate |
|------------|-------------------------------|----------------------------|
| X7R        | -55~+125                      | ±15%                       |
| X7T        | -55~+125                      | ±22/-33%                   |
| X8R        | -55~+150                      | ±15%                       |
| X8L        | -55~+125                      | ±15%                       |
| X8L        | +125~+150                     | +15/-40%                   |
| X8G        | -55~+150                      | 0±30ppm/°C                 |
| NP0        | -55~+125                      | 0±30ppm/°C                 |

## TYPICAL APPLICATIONS

## X7R KAM

- · High capacitance values
- · Broadest voltage and cap offerina
- Cameras
- · Body control modules
- Infotainment
- ECU
- · Climate control

## X7T KAM

- · Motor drive
- · Door lock

### NP0 KAM

- · Extreme capacitance stability
- · Automotive LED Lighting System
- Key fob
- Audio
- Touchscreen
- GPS
- Safety

#### X8G KAM

- · Extreme capacitance stability
- · High temperature
- · Battery Management Systems
- · Powertrain Sensors & Actuators
- Engine management
- · Transmission control
- Safety

# **Automotive MLCC, KAM Series**

# **General Specifications**



## COMMERCIAL VS AUTOMOTIVE MLCC PROCESS COMPARISON

|                                                            | Commercial                                                             | Automotive                                                                                 |
|------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Administrative                                             | Standard Part Numbers.<br>No restriction on who purchases these parts. | Specific Automotive Part Number. sed to control supply of product to Automotive customers. |
| Lot Qualification (Destructive<br>Physical Analysis - DPA) | As per EIA RS469                                                       | Increased sample plan stricter criteria.                                                   |
| Visual/Cosmetic Quality                                    | Standard process and inspection                                        | 100% inspection                                                                            |
| Application Robustness                                     | Standard sampling for accelerated wave solder                          | Increased sampling for accelerated wave solder followed by lot by lot reliability testing. |

All Tests have Accept/Reject Criteria 0/1

# **Automotive MLCC - C0G**

# **General Specifications**

# KYOCERA /AVXX

## **TYPICAL APPLICATIONS**

- · Extreme capacitance stability
- · Automotive LED Lighting System
- Key fob
- Audio
- Touchscreen
- GPS
- Safety

## **ENGINEERING TOOLS**

- Samples
- Technical Articles
- · Application Engineering
- Application Support





# **Automotive MLCC - C0G**





| Case Si             | _              |     | 0402<br>1.00 + 0         |          |     |          | 0603<br>60 + 0.1 | -        |          |        |        |      | 0805                    |      |      |      |        |        |        |        | <b>206</b><br>+ 0.20 |        |        |        | 1210<br>3.20 ± 0.20<br>(0.126 ± 0.008) |          |        |                                      |      | 1812<br>4.5 + 0.3 | =      |                |                        |                        |
|---------------------|----------------|-----|--------------------------|----------|-----|----------|------------------|----------|----------|--------|--------|------|-------------------------|------|------|------|--------|--------|--------|--------|----------------------|--------|--------|--------|----------------------------------------|----------|--------|--------------------------------------|------|-------------------|--------|----------------|------------------------|------------------------|
| Length (L)          | mm<br>(in.)    | (0. | 0.50 ± 0.0               | 004)     |     | (0.      | 063 ± 0.0        | 106)     |          |        |        | 0.0  | .01 ± 0.2<br>079 ± 0.0  | 800  |      |      |        |        |        | (0.126 | ± 0.20<br>± 0.008)   |        |        |        |                                        |          | (0     | 3.20 ± 0.<br>1.126 ± 0.<br>2.50 ± 0. | 008) |                   |        | (0.1           | 4.5 ± 0.3<br>177 ± 0.0 | 012)                   |
| Width (W)           | (in.)          | (0. | 0.50 ± 0.1<br>.020 ± 0.1 | 004)     |     | (0.      | 032 ± 0.0        | 106)     |          |        |        | (0.0 | .25 ± 0.2<br>049 ± 0.0  | (80  |      |      |        |        |        | (0.063 | ± 0.20<br>± 0.008)   |        |        |        |                                        |          | (0     | 0.50 ± 0.                            | 008) |                   |        | (0.1           | 3.2 ± 0.2<br>126 ± 0.0 | 008)                   |
| Terminal (t)        | mm<br>(in.)    |     | 0.25 ± 0.<br>.010 ± 0.0  |          |     |          | 014 ± 0.0        |          |          |        |        |      | 0.50 ± 0.2<br>020 ± 0.0 |      |      |      |        |        |        |        | ± 0.25<br>± 0.010)   |        |        | ,      |                                        |          |        | 0.50 ± 0.<br>.020 ± 0.               |      |                   |        |                | 024 ± 0.0              |                        |
| WVDC                |                | 25V | 50V                      | 100V     | 25V | 50V      | 100V             | 200V     | 250V     | 25V    | 50V    | 100V | 200V                    | 250V | 500V | 630V | 25V    | 50V    | 100V   | 200V   | 250V                 | 500V   | 630V   | 1000V  | 50V                                    | 100V     | 200V   | 250V                                 | 500V | 630V              | 1000V  | 50V            | 100V                   | 200V                   |
| Cap (pF) 0R5<br>1R0 | 0.5<br>1.0     | A   | A                        | A        | A   | A        | A                | A        | A        | B<br>B | B<br>B | B    | B                       | B    | B    | B    |        | B<br>B | B      | B      | B                    | B      | B<br>B | G      | Q<br>Q                                 | Q<br>Q   | Q      | Q                                    | Q    | Q<br>Q            | Q<br>Q | Y              | Y                      | Y                      |
| 100                 | 10             | A   | A                        | A        | A   | A        | A                | A        | A        | В      | В      | В    | В                       | В    | В    | В    |        | В      | В      | В      | В                    | В      | G      | G      | Q                                      | Q        | Q      | Q                                    | Q    | Q                 | Q      | Y              | Y                      | Y                      |
| 120                 | 12             | Α   | Α                        | Α        | Α   | А        | Α                | Α        | А        | В      | В      | В    | В                       | В    |      |      |        | В      | В      | В      | В                    | В      | G      | G      | Q                                      | Q        | Q      | Q                                    | Q    | Q                 | Q      | Υ              | Υ                      | Υ                      |
| 150                 | 15             | Α   | Α                        | Α        | Α   | Α        | Α                | Α        | Α        | В      | В      | В    | В                       | В    |      |      |        | В      | В      | В      | В                    | В      | G      | G      | Q                                      | Q        | Q      | Q                                    | Q    | Q                 | Q      | Υ              | Υ                      | Υ                      |
| 180<br>220          | 18<br>22       | A   | A                        | A        | A   | A        | A                | A        | A        | В      | B<br>B | В    | B<br>B                  | В    |      |      |        | В      | В      | В      | В                    | В      | G<br>G | G<br>G | Q<br>O                                 | Q<br>Q   | Q      | Q                                    | Q    | Q<br>Q            | Q<br>O | Y              | Y                      | Y                      |
| 270                 | 27             | A   | A                        | A        | A   | A        | A                | A        | A        | В      | В      | В    | В                       | В    |      |      |        | В      | В      | В      | В                    | В      | G      | G      | Q                                      | Q        | Q      | Q                                    | Q    | Q                 | Q      | Y              | Y                      | Y                      |
| 330                 | 33             | Α   | А                        | А        | А   | А        | А                | Α        | А        | В      | В      | В    | В                       | В    |      |      |        | В      | В      | В      | В                    | В      | G      | G      | Q                                      | Q        | Q      | Q                                    | Q    | Q                 | Q      | Υ              | Υ                      | Υ                      |
| 390                 | 39             | Α   | А                        | Α        | Α   | Α        | Α                | Α        | А        | В      | В      | В    | В                       | В    |      |      |        | В      | В      | В      | В                    | В      | G      | G      | Q                                      | Q        | Q      | Q                                    | Q    | Q                 | Q      | Υ              | Υ                      | Υ                      |
| 470<br>560          | 47<br>56       | A   | A                        |          | A   | A        | A                | A        | A<br>A*  | B<br>B | B<br>B | В    | B                       | B    |      |      |        | В      | В      | В      | В                    | В      | G<br>G | G      | Q<br>Q                                 | Q        | Q      | Q                                    | Q    | Q<br>Q            | Q<br>O | Y              | Y                      | Y                      |
| 680                 | 68             | A   | A                        |          | A   | A        | A                | A        | A*       | В      | В      | В    | В                       | A    |      |      |        | В      | В      | В      | В                    | В      | G      | G      | Q                                      | Q        | Q      | Q                                    | Q    | Q                 | Q      | Y              | Y                      | Y                      |
| 820                 | 82             | Α   | А                        |          | Α   | Α        | Α                | А        | A*       | В      | В      | В    | В                       | Α    |      |      |        | В      | В      | В      | В                    | В      | G      | G      | D                                      | D        | D      | D                                    | D    | D                 | D      | Υ              | Υ                      | Υ                      |
| 101                 | 100            | Α   | Α                        |          | А   | Α        | Α                | Α        | A*       | В      | В      | В    | В                       | Α    |      |      |        | В      | В      | В      | В                    | В      | G      | G      | D                                      | D        | D      | D                                    | D    | D                 | D      | Υ              | Υ                      | Υ                      |
| 121<br>151          | 120<br>150     |     |                          |          | A   | A        | A                | A*       | A*       | B<br>B | B<br>B | В    | B<br>B                  | A    |      |      |        | B<br>B | В      | B      | B                    | B<br>N | G<br>G | G<br>G | D<br>D                                 | D<br>D   | D<br>D | F                                    | F    | F<br>F            | K<br>K | Y              | Y                      | Y                      |
| 181                 | 180            |     |                          |          | A   | A        | A                | A*       | A*       | В      | В      | В    | В                       | A    |      |      |        | В      | В      | В      | В                    | N      | G      | G      | D                                      | D        | D      | F                                    | F    | F                 | K      | Y              | Y                      | Y                      |
| 221                 | 220            |     |                          |          | А   | А        | А                | A*       | A*       | В      | В      | В    | В                       | А    |      |      |        | В      | В      | В      | В                    | N      | G      | G      | D                                      | D        | D      | F                                    | F    | F                 | К      | Υ              | Υ                      | Υ                      |
| 271                 | 270            |     |                          |          | Α   | Α        | Α                | A*       | A*       | В      | В      | В    | В                       | Α    |      |      |        | В      | В      | В      | В                    | N      | G      |        | D                                      | D        | D      | F                                    | F    | F                 | К      | Υ              | Υ                      | Υ                      |
| 331                 | 330            |     |                          |          | A   | A        | A                | A*       | A*       | В      | В      | В    | В                       | Α    |      |      |        | В      | В      | В      | В                    | N      | G      |        | D                                      | D        | D      | F                                    | F    | F                 | K      | Υ              | Y                      | Y                      |
| 391<br>471          | 390<br>470     |     |                          |          | A   | A        | A<br>A*          | A*<br>A* | A*       | B<br>B | B<br>B | B    | В                       | A    |      |      |        | B<br>B | B<br>B | B<br>B | B<br>N               | N<br>N | G<br>G |        | D<br>D                                 | D<br>D   | D<br>D | F                                    | F    | F<br>F            | K<br>K | Y              | Y                      | Y                      |
| 561                 | 560            |     |                          |          | A   | A        | A*               | A*       | A*       | В      | В      | В    | A                       | A    |      |      |        | В      | В      | В      | N                    | G      | G      |        | D                                      | D        | D      | F                                    | F    | F                 |        | Y              | Y                      | Y                      |
| 681                 | 680            |     |                          |          | А   | Α        | A*               | A*       | A*       | В      | В      | В    | Α                       | Α    |      |      |        | В      | В      | В      | N                    | G      | G      |        | D                                      | D        | D      | F                                    | F    | F                 |        | Υ              | Υ                      | Υ                      |
| 821                 | 820            |     |                          |          | A*  | A*       | A*               | A*       | A*       | В      | В      | В    | Α                       | Α    |      |      |        | В      | В      | N      | N                    | G      | G      |        | D                                      | D        | D      | F                                    | F    | F                 |        | Y              | Y                      | Υ                      |
| 102<br>122          | 1000<br>1200   |     |                          |          | A*  | A*       | A*               | A*       | A*       | B<br>B | B<br>B | B    | A                       | A    |      |      |        | B<br>N | B<br>N | N<br>D | N                    | G      | G      |        | D<br>D                                 | D<br>D   | D<br>D | F                                    | F    | K*                | K*     | Y              | Y                      | Y                      |
| 152                 | 1500           |     |                          |          | A*  | A*       | A*               | A*       | A*       | В      | В      | В    | A                       | A    |      |      |        | N      | N      | D      |                      |        |        |        | D                                      | D        | D      | F                                    | F    | G*                | G*     | Y              | Y                      | Y                      |
| 222                 | 2200           |     |                          |          | A*  | A*       | A*               |          |          | В      | В      | В    | В                       | В    |      |      |        | В      | В      | В      | В                    | В      | В      |        | D                                      | D        | D      | F                                    | G*   | G*                | G*     |                |                        |                        |
| 272                 | 2700           |     |                          |          | A*  | A*       |                  |          |          |        | Α      | А    | Α                       | Α    |      |      |        | В      | В      | В      | В                    | В      | В      |        | G*                                     | G*       | G*     | G*                                   | G*   | G*                | G*     | $\square$      | igsquare               | $\sqcup$               |
| 332<br>392          | 3300<br>3900   |     |                          |          | A*  | A*<br>A* | <u> </u>         |          |          |        | A      | A    | A                       | A    |      |      |        | G<br>G | G      | G<br>G | G                    | G      | G<br>G |        | G*                                     | G*       | G*     | G*                                   | G*   | G*                | G*     | $\vdash\vdash$ | $\vdash\vdash$         | $\vdash\vdash$         |
| 472                 | 4700           |     |                          |          | A*  | A*       | $\vdash$         |          |          |        | A      | A    | A                       | A    |      |      |        | G      | G      | G      | G                    | G      | G      |        | G*                                     | G*       | G*     | G*                                   | G*   | G*                | G*     | $\vdash$       | Н                      | Н                      |
| 562                 | 5600           |     |                          |          | A*  | A*       |                  |          |          |        | A      | A    |                         |      |      |      |        | G      | G      | G      | G                    | G      | G      |        | G*                                     | G*       | G*     | G*                                   | G*   | G*                | G*     |                |                        |                        |
| 682                 | 6800           |     |                          |          | A*  | A*       |                  |          |          |        | Α      | А    |                         |      |      |      |        | G      | G      | G      | G                    | G      | G      |        | K*                                     | K*       | K*     | K*                                   | K*   | K*                | K*     | Ш              | $\Box$                 | $\Box$                 |
| 822                 | 8200           |     |                          |          | A*  |          | _                |          |          | _      | A      | Α    |                         |      |      |      |        | G      | G      | G      | G                    | G      | G      | -      | K*                                     | K*       | K*     | K*                                   | K*   | K*                | K*     | $\vdash\vdash$ | $\vdash \vdash \vdash$ | $\vdash\vdash\vdash$   |
| 103<br>123          | 10000<br>12000 |     |                          | $\vdash$ | A*  |          | $\vdash$         |          |          | -      | А      |      |                         |      |      |      | G      | G      | G<br>G | G<br>G | G                    | G      | G      |        | K*                                     | K*       | K*     | K*                                   | K*   | K*                | L*     | $\vdash$       | $\vdash\vdash\vdash$   | $\vdash\vdash\vdash$   |
| 153                 | 15000          |     |                          |          |     |          |                  |          |          |        |        |      |                         |      |      |      | G      | G      | G      | G      | G                    |        |        |        | L*                                     | L*       | L*     | L*                                   | L*   | L*                |        | $\vdash$       | М                      | П                      |
| 183                 | 18000          |     |                          |          |     |          |                  |          |          |        |        |      |                         |      |      |      | G      | G      | G      | G      | G                    |        |        |        | L*                                     | L*       | L*     | L*                                   | L*   | L*                |        |                |                        |                        |
| 223                 | 22000          |     |                          |          |     |          |                  |          |          |        |        |      |                         |      |      |      | G      | G      | G      |        |                      |        |        |        | L*                                     | L*       | L*     | L*                                   | L*   | L*                |        | $\square$      | $\vdash \vdash$        | $\vdash \vdash \vdash$ |
| 273<br>333          | 27000<br>33000 |     |                          |          |     | _        | $\vdash$         | -        | $\vdash$ | _      | _      |      |                         |      |      |      | G<br>G | G      | G      |        | $\vdash$             |        |        | -      | L*                                     | L*       | L*     | L*                                   | L*   | L*                |        | $\vdash\vdash$ | $\vdash\vdash$         | $\vdash\vdash$         |
| 393                 | 39000          |     |                          |          |     |          |                  |          |          |        |        |      |                         |      |      |      | G      | G      | -      |        |                      |        |        |        |                                        | <u> </u> |        |                                      | -    | -                 |        | H              | М                      | М                      |
| 473                 | 47000          |     |                          |          |     |          |                  |          |          |        |        |      |                         |      |      |      | G      | G      |        |        |                      |        |        |        |                                        |          |        |                                      |      |                   |        |                |                        |                        |
| 563                 | 56000          |     |                          |          |     |          |                  |          |          |        |        |      |                         |      |      |      |        |        |        |        |                      |        |        |        |                                        |          |        |                                      |      |                   |        |                |                        | Ш                      |
| 683<br>823          | 68000<br>82000 |     |                          |          |     |          | -                | -        |          |        |        |      |                         |      |      |      |        |        | -      |        |                      |        |        |        |                                        |          |        |                                      | -    |                   |        | $\vdash\vdash$ | $\vdash\vdash$         | $\vdash\vdash$         |
| 104                 | 100000         |     |                          |          |     |          |                  |          |          |        |        |      |                         |      |      |      |        |        |        |        |                      |        |        |        |                                        |          |        |                                      |      |                   |        | $\vdash$       | М                      | М                      |
| WVDC                |                | 25V | 50V                      | 100V     | 25V | 50V      | 100V             | 200V     | 250V     | 25V    | 50V    | 100V | 200V                    | 250V | 500V | 630V | 25V    | 50V    | 100V   | 200V   | 250V                 | 500V   | 630V   | 1000V  | 50V                                    | 100V     | 200V   | 250V                                 | 500V | 630V              | 1000V  | 50V            | 100V                   | 250V                   |
| Case Si             | ize            |     | 0402                     |          |     |          | 0603             |          | _        |        |        |      | 0805                    |      |      | _    | _      |        |        |        | 206                  |        |        |        |                                        |          |        | 1210                                 |      |                   |        |                | 1812                   | —                      |

<sup>\*</sup> These dimensions differ from the standard in table above and are:

0603 1210 L=  $1.6 \pm 0.2$  mm , W =  $0.8 \pm 0.2$  mm L=  $3.2 \pm 0.4$  mm , W =  $2.5 \pm 0.3$  mm

| Case Size               | 0402<br>(KAM05) | 0603<br>(KAM15) | 08<br>(KA) | 05<br>M21) |       | 12<br>(KAI |      |      |       |              | 12<br>(KAI | 110<br>M32) |      |      | 1812<br>(KAM43) |
|-------------------------|-----------------|-----------------|------------|------------|-------|------------|------|------|-------|--------------|------------|-------------|------|------|-----------------|
| Thickness Letter        | A               | Α               | В          | A          | В     | N          | D    | G    | Q     | D            | F          | G           | К    | L    | Y               |
| Max Thickness (mm)      | 0.55            | 0.90            | 0.94       | 1.45       | 0.94  | 1.27       | 1.45 | 1.78 | 0.94  | 1.45         | 1.52       | 1.78        | 2.29 | 2.80 | 1.02            |
| Carrier Tape            | PAPER           | PAPER           | PAPER      | EMB        | PAPER | EMB        | EMB  | EMB  | PAPER | EMB          | EMB        | EMB         | EMB  | EMB  | EMB             |
| Packaging Code 7" reel  | н               | Т               | T          | U          | T     | U          | U    | U    | Т     | U            | U          | U           | U    | U    | V               |
| Packaging Code 13" reel | N               | М               | М          | L          | М     | L          | L    | L    | М     | L            | L          | L           | L    | L    | s               |
|                         |                 | PAPER           | :          |            |       |            |      |      | Е     | MBOSSED (EMI | 3)         |             |      |      |                 |

# **Automotive MLCC - X7R / X7T**

# **General Specifications**



## **TYPICAL APPLICATIONS**

## X7R KAM

- · High capacitance values
- Broadest voltage and cap offering
- Cameras
- Body control modules
- Infotainment
- ECU
- · Climate control

## X7T KAM

- Motor drive
- · Door lock

## **ENGINEERING TOOLS**

- Samples
- Technical Articles
- · Application Engineering
- Application Support





# Automotive MLCC - X7R, 4V to 500V





| SI           |                        |         | 01       |        |          | 0402           |         |         |                                                  |        |         | 03       |          |          |         |       |     |               | 805      |      |          |          |          |        |       | 1206       |               |      |         |        | 121           |         |            |       | 1812        |         |         |        | 220             |                 |                   |
|--------------|------------------------|---------|----------|--------|----------|----------------|---------|---------|--------------------------------------------------|--------|---------|----------|----------|----------|---------|-------|-----|---------------|----------|------|----------|----------|----------|--------|-------|------------|---------------|------|---------|--------|---------------|---------|------------|-------|-------------|---------|---------|--------|-----------------|-----------------|-------------------|
| Sold         | ering                  |         | //Wave   |        |          | Reflow/V       |         |         |                                                  |        | Reflow  |          |          |          |         |       |     |               | w/Wave   |      |          |          |          |        |       | ow/Wave    |               |      |         |        | Reflow        |         |            |       | flow Only   |         |         |        | w Only          |                 |                   |
| (L) Length   | mm                     |         | 0.09     |        |          | 1 ± 0.         |         |         |                                                  |        |         | 0.15     |          |          |         |       |     |               | ± 0.2    |      |          |          |          |        |       | 2 ± 0.2    |               |      |         |        | 3.2 ± (       |         |            |       | .5 ± 0.3    |         |         |        | ± 0.5           |                 |                   |
| (-/          | (in.)                  |         | ± 0.004) |        | (        | (0.04 ± 0.     |         |         |                                                  |        | (0.063  |          |          |          |         |       |     |               | ± 0.008) |      |          |          |          |        |       | 6 ± 0.008) |               |      |         |        | (0.126 ±      |         |            |       | 77 ± 0.012) | 4       |         |        | ± 0.02)         |                 |                   |
| (W) Width    | mm                     |         | 0.09     |        |          | $0.5 \pm 0$    |         |         |                                                  |        |         | ± 0.15   |          |          |         |       |     |               | 5 ± 0.2  |      |          |          |          |        |       | 6 ± 0.2    |               |      |         |        | 2.5 ± (       |         |            |       | .2 ± 0.2    |         |         |        | 0.4             |                 |                   |
| . ,          | (in.)                  |         | ± 0.004) |        |          | (0.02 ± 0.     |         |         |                                                  |        |         | ± 0.006) |          |          |         |       |     |               | ± 0.008) |      |          |          |          |        |       | 3 ± 0.008) |               |      | 1       |        | (0.098 ±      |         |            | _ `   | 26 ± 0.008) | 4       |         |        | ± 0.016)        |                 |                   |
| (t) Terminal | mm                     |         | ± 0.09   |        |          | $0.25 \pm 0$   |         |         |                                                  |        |         | ± 0.15   |          |          |         |       |     |               | ± 0.25   |      |          |          |          |        |       | 5 ± 0.25   |               |      |         |        | $0.5 \pm 0$   |         |            |       | 51 ± 0.36   |         |         |        | ± 0.39          |                 |                   |
|              | (in.)                  |         | ± 0.004) |        |          | $(0.01 \pm 0.$ |         |         |                                                  |        | (0.014  |          |          |          |         |       |     |               | ± 0.01)  |      |          |          |          |        |       | 2 ± 0.01)  |               |      |         |        | (0.02 ±       |         |            |       | 24 ± 0.014) |         |         |        | ± 0.015)        |                 |                   |
| WV           |                        | 6.3V    | 10V      | 4V     | 6.3V     | 10V            | 16V 2   | 25V 50V | 6.3V                                             | 10V    | 16V 25V | 50V      | 100V 2   | 200V 25  | 0V 6.3\ | / 10V | 16V | 25V           | 50V      | 100V | / 200V   | 250V     | 16V      | 25V    | 50V 1 | 100V 200   | V 250V        | 500V | 16V     | 25V    | 50V           |         |            |       | 100V        | 25V     | 50V     | 100V   | 200V            | 250V            | 500V              |
| 101          | Cap 100                |         |          |        |          | ļ              | $\perp$ |         |                                                  |        |         | $\perp$  |          |          |         |       |     |               |          | 1    |          |          |          |        |       |            |               |      |         |        |               |         | Q Q        |       |             |         | $\bot$  | ┷      | <u> </u>        | <u> </u>        |                   |
| 221          | (pF) 220               |         |          |        |          |                |         | A A     |                                                  | Α      | A A     |          |          | Α        |         |       | 4   |               |          |      |          |          |          |        |       |            |               |      |         |        |               |         | Q Q        |       |             |         | $\perp$ | $\bot$ |                 | <u> </u>        |                   |
| 271          | 270                    |         |          |        |          |                | Α       |         |                                                  | Α      | A A     |          | _        | Α        |         | _     |     | 1             | 1        | 1    | 1        |          |          |        |       |            |               | 1    |         |        |               |         | Q Q        |       | $\bot$      |         | —       | $\bot$ | <u> </u>        | <u> </u>        |                   |
| 331          | 330                    |         |          |        |          |                |         | A A     |                                                  | Α      | A A     |          |          | Α        |         |       |     |               |          |      |          |          |          |        |       |            |               | _    |         |        |               |         | Q Q        |       |             | $\bot$  | ₩       | $\bot$ | ₩'              | <b>└</b>        |                   |
| 391          | 390                    | 4       |          |        |          | -              | A       |         | _                                                | Α      | A A     |          | _        | Α        |         |       |     |               |          |      |          | $\vdash$ | $\vdash$ |        |       |            |               | _    |         |        | $\vdash$      |         | Q Q        |       | $\bot$      | $\bot$  | —       | +-     | ₩               | ₩.              | $\longrightarrow$ |
| 471          | 470                    |         |          |        |          |                |         | A A     | _                                                | Α      | A A     |          |          | Α        |         |       | _   | _             |          | _    | 4        |          | $\vdash$ |        |       |            |               | _    |         |        | $\rightarrow$ |         | Q Q        |       |             |         | —       | +-     | ₩'              | <b>└</b>        |                   |
| 561          | 560                    |         |          |        |          | ļ              |         | A A     | _                                                | Α      | A A     |          | _        | Α        |         |       |     |               |          |      |          | $\Box$   | $\vdash$ |        |       |            |               |      | _       |        | $\vdash$      |         | Q Q        |       |             | $\bot$  | ₩       | +-     | ₩               | ₩'              | $\longrightarrow$ |
| 681          | 680                    |         |          |        |          | ļ              | A       |         | _                                                | Α      | A A     |          | _        | Α        |         |       |     |               |          |      | 4        |          |          |        |       |            |               | _    |         |        |               |         | Q Q        |       |             | $\bot$  | —       | +-     | ₩'              | <b>└</b>        |                   |
| 821          | 820                    |         |          |        |          | ļ              | _       | A A     | _                                                | Α      | A A     | 1        |          | Α        | _       |       | _   | _             |          | _    |          |          |          |        |       |            |               |      |         |        |               |         | Q Q        | _     | $\bot$      |         | —       | +      | ₩'              | Щ'              |                   |
| 102          | 1000                   |         |          |        |          | 1              |         | A A     |                                                  | A      | A A     |          | _        | A A      |         | _     | В   |               | В        | В    | В        | В        | В        | В      | _     | B B        | _             | В    | Q       | Q      | Q             |         | Q Q        |       |             | _       | +-      | +-     | ₩'              | —'              | $\blacksquare$    |
| 122          | 1220                   |         |          |        | <u> </u> | ₩              | Α       |         |                                                  | A      | A A     |          | A        | A /      | _       | +     | В   |               | В        | В    | В        | В        | В        | В      | _     | В В        |               | В    | Q       | Q      | Q             |         | Q Q        | _     | Y           | _       | ₩       | +-     | ₩'              | —'              |                   |
| 152          | 1500                   | -       |          |        |          | -              | A       |         |                                                  | A      | A A     |          | A        | A /      |         | _     | В   |               |          | В    | В        | В        | В        | В      |       | B B        |               | +    | Q       | Q      | Q             |         | Q Q        |       | Y           | _       | +-      | +-     | ₩'              | <b></b> '       | $\blacksquare$    |
| 182          | 1800                   | +       |          |        | _        | +-             |         | A A     | _                                                | A      | A A     | + +      | _        | A A      |         | +     | В   | В             | В        | В    | В        | В        | В        | В      | В     | B B        | В             | В    | Q       | Q      | Q             |         | Q Q        | _     | Y           | _       | +-      | +-     | ₩'              | —'              | -                 |
| 222          | 2200                   | +       |          |        | -        | +              |         | A A     | -                                                | A      | A A     | - ^ -    | A        | A A      |         | +     | В   | В             | В        | В    | В        | В        | В        | В      | В     | B B        | B             | В    | Q       | Q      | Q             |         | Q Q        |       | Y           | _       | +-      | +-     | ₩               | <del>   </del>  | =                 |
| 272          | 2700                   | +-      |          |        | $\vdash$ | $\vdash$       |         | A A     | _                                                | A      |         |          | A        | A A      |         | +     | В   | $\rightarrow$ | В        | В    | В        | В        | В        | В      | В     | B B        | В             | В    | Q       | Q      | Q             |         | Q Q        | _     |             | _       | +-      | +-     | ₩               | —'              | -                 |
| 332          | 3300                   | +       | <b>-</b> | -      | -        | +              | A       |         | -                                                | A      | A A     | A        | A A      | A A      |         | +     | B   |               | В        | В    | В        | В        | R        | R      | B     | B B        | В             | В    | Q       | Q      | Q             |         | Q Q        |       | Y           | _       | +-      | +      | +-              | $\vdash$        | $\dashv$          |
| 392          | 3900                   | _       |          |        |          | +              |         |         | _                                                | A      |         |          |          | A /      |         | -     | _   |               | В        | В    | В        | В        | В        | В      | -     |            | В             | В    | Q       | Q      | Q             |         | Q Q        |       |             | _       | +-      | +-     | $\vdash$        | ₩'              | -                 |
| 472<br>562   | 4700<br>5600           | +       |          |        | <u> </u> | +-             | A       | A A     | _                                                | A      | A A     |          | A A      | A A      |         | +     | B   |               | В        | В    | В        | В        | В        | В      | B     | B B        | B             | В    | Q       | Q      | Q             |         | Q Q        | _     | Y           | _       | +-      | +      | ₩               | $\vdash \vdash$ |                   |
| 562<br>682   | 6800                   | _       |          |        |          | +              |         |         | _                                                | -      |         |          | A        | A A      |         | -     | B   |               | В        | В    | B        | В        | В        | _      | В     | B B        |               | В    | Q       | Q      | 0             |         | Q Q        | _     |             |         | +-      | +-     | $\vdash$        | ₩'              | -                 |
|              |                        | +       |          |        |          | -              |         |         | _                                                | A      |         |          |          |          | _       | -     | _   |               | В        | В    |          | В        | В        | В      |       |            |               | В    | Q       | Q      |               |         | Q Q        | _     |             |         | +-      | +      | $\vdash$        | ₩'              | -                 |
| 822          | 8200                   | +       |          |        |          | -              |         | A A     | _                                                | A      | A A     | A        | A A      | A A      |         | _     | B   |               | B        | B    | B        | В        | B        | В      | В     | B B        |               | B    | Q       | Q      | Q             |         | Q Q        |       |             |         | +-      | +-     | $\vdash$        | ╙               | -                 |
| 103<br>123   | Cap 0.01<br>(μF) 0.012 | +       |          |        |          | -              | A       |         | _                                                | A      |         |          | A        | A A      | `       | -     | В   |               |          | B    | B        | В        | В        | В      | _     |            |               | G    | Q       | Q<br>Q | Q             |         | Q Q<br>Q G |       | Y           |         | +-      | +-     | $\vdash$        | ₩'              | $\dashv$          |
|              | ,                      |         |          |        |          | 1              | _       | _       | -                                                | -      |         | +        |          |          |         |       | В   |               | +-       | + -  |          | K        | В        | B<br>B | В     | B B        | _             |      | Q       | _      | Q             |         |            |       |             |         | +       | +      | -               | $\vdash \vdash$ | -                 |
| 153<br>183   | 0.015<br>0.018         | +       |          |        |          | +              |         | F F     | _                                                | A      | A A     | + +      | A        | _        | _       | _     | B   |               | B        | В    | B        | K        | В        |        |       | B B        | _             |      | Q       | Q      | Q             |         | Q G        |       | Y           |         | +-      | +-     | $\vdash$        | ₩'              | $\dashv$          |
| 223          | 0.018                  |         |          |        |          | 1              |         | F F     |                                                  | A      | A A     | - ^ -    | A        |          | _       |       | В   |               | B        | В    | K        | K        | В        | B<br>B | _     | B G        |               |      | Q       | Q<br>Q | Q             |         | Q G        |       |             | 4-      | +-      | +-     |                 | $\vdash$        |                   |
| 273          | 0.022                  | +       |          |        |          | -              | _       | F F     | _                                                | A      | A A     | +        | В        | -        | _       | _     | В   |               | В        | В    | K        | K        | В        | В      | В     | B G        |               |      | Q       | Q      | Q             |         | Q G        |       | Y           | _       | +-      | +-     | $\vdash$        | $\vdash$        | -                 |
| 333          | 0.027                  | +       |          |        |          | 1              |         | F F     |                                                  | A      | A A     |          | В        | _        | +       | -     | В   |               | B        | K    | K        | K        | В        | В      |       | B G        |               |      | Q       | Q      | 0             |         | Q G        |       | Y           | _       | +-      | +-     | $\vdash$        | $\vdash \vdash$ | -                 |
| 393          | 0.033                  | +       |          |        | _        | +-             | _       | F F     | _                                                | A      | A A     | 1 "      | В        | -        | +       | +     | В   |               | B        | K    | K        | K        | В        | В      | В     | B G        | -             |      | Q       | Q      | 0             |         | Q G        |       | Y           | +-      | +-      | +-     | $\vdash$        | ⊢-′             | -                 |
| 473          | 0.039                  | +       |          |        |          | F              |         | F F     | _                                                | A      | A A     | A        | В        | -        | +       | -     | В   | _             | В        | K    | K        | K        | В        | В      | -     | N G        |               |      | Q       | Q      | Q             |         | Q G        |       |             | _       | +-      | +-     | +-              | $\vdash \vdash$ |                   |
| 563          | 0.047                  | +       |          |        | _        | F              | F       | F F     | _                                                | A      | A A     | A        | В        | -        | +       | +     | B   |               | В        | K    |          | N.       | В        | В      | _     | N G        |               |      | Q       | Q      | 0             |         | C G        |       | Y           | _       | +-      | +-     | $\vdash$        | $\vdash$        | -                 |
| 683          | 0.068                  | +       |          |        | -        | F              | + - +   | F F     | _                                                | A      | A A     | + +      | В        | _        | +       | -     | В   |               | В        | K    |          |          | В        | В      |       | N G        |               |      | Q       | Q      | Q             |         | C G        |       |             | _       | +-      | +-     | ╨               | —′              | -                 |
| 823          | 0.008                  | +       |          |        |          | F              |         | F F     |                                                  | A      | A A     |          | В        | -+       | +       | _     | В   |               |          | K    |          |          | В        | В      |       | N G        |               |      | Q       | Q      | Q             |         | G G        |       | Y           |         | +-      | +-     | ┤               | $\vdash \vdash$ | -                 |
| 104          | 0.10                   | A       |          |        |          | F              |         | F F     | _                                                | A      | A A     |          | В        | -        | +       |       | В   |               |          | К    |          |          | В        | В      |       | N G        |               |      | Q       | Q      | Q             |         | G G        |       | Y           |         | +-      | +-     | ┼──             | $\vdash \vdash$ | Α                 |
| 124          | 0.10                   | ^       |          |        | $\vdash$ | F              | _       | F       | 1                                                | A      | B B     | _        |          | +        | +       | +     | В   |               |          | K    |          | $\vdash$ | В        | В      |       | N G        | $\rightarrow$ |      | Q       | Q      | Q             |         | G G        |       |             |         | +-      | +-     | $\vdash$        | $\vdash$        | _^                |
| 154          | 0.12                   | 1       | <b> </b> |        | $\vdash$ | F              |         | F       | 1                                                | A      | ВВ      |          | $\dashv$ | +        | +       | +     | В   |               |          | K    |          | $\vdash$ | В        | В      |       | N G        |               |      | Q       | Q      | Q             |         | K G        |       |             |         | +-      | +-     | $\vdash \vdash$ | $\vdash$        | $\neg \neg$       |
| 224          | 0.13                   | +       |          |        |          | F              |         | F       | <del>                                     </del> | A      | ВВ      |          | $\dashv$ | +        | +       | +     | J   |               |          |      |          | $\vdash$ | В        | В      |       | G G        |               |      | Q       | Q      | Q             |         | G G        | _     | _           |         | +-      | +-     | $\vdash$        | $\vdash$        | -                 |
| 334          | 0.33                   | +       |          |        |          |                |         |         | <b>†</b>                                         | В      | ВВ      | _        | -        | +        | +       | +     | К   |               | K        | K    |          | $\vdash$ | В        | N      |       | G          | Ť             |      | Q       | Q      | Q             |         | L L        |       |             |         | +       | +-     | $\vdash$        | $\vdash$        | $\dashv$          |
| 474          | 0.47                   | C(X7T)  | C (X7T)  |        | Α        | Α              |         |         | i –                                              | В      | ВВ      |          | $\dashv$ | $\pm$    | +       | +     | K   |               | K        | K    |          | $\vdash$ | N        | N      |       | G          | $\top$        | -    | F       | F      | F             | G       |            | G     |             |         | +       | +-     | $\vdash$        | $\vdash$        | $\dashv$          |
| 684          | 0.68                   | )       | ,        |        |          |                | 1 +     |         | 1                                                |        |         | 1        | -        | +        |         | +     | К   |               | K        | K    |          | Н        | N        | G      | _     | G          | +             | 1    | F       | F      | G             | К       |            | G     | _           |         | +       | +-     | $\vdash$        | $\vdash$        | $\dashv$          |
| 105          | 1.0                    | C(X7T)  |          |        | Α        | С              |         |         | Α                                                | Α      | A       | + +      | $\dashv$ | +        | _       | +     | K   |               |          | K    |          | $\vdash$ | N        | G      | _     | G          | +             | 1    | F       | G      | G             | L       | _          | G     | -           | _       | С       | С      | Α               | Α               | $\dashv$          |
| 155          | 1.5                    | ,       |          |        |          |                | 1       |         |                                                  |        |         | + +      | $\dashv$ | $\dashv$ | +       | +     | К   |               |          |      | 1        | $\Box$   | G        | G      |       | G          |               | 1    | F       | G      | L             | L       | -          | G     |             |         | С       |        | С               | С               | $\neg$            |
| 225          | 2.2                    | 1       |          |        | C(X7T)   | C(X7T)         |         |         | Α                                                | Α      |         | 1 1      | $\dashv$ | +        | _       | +     | K   |               |          |      | 1        | $\vdash$ | G        | G      | _     | G          | +             | 1    | L       | L      | L             | L       | _          | J     |             |         | С       |        | С               | С               | $\dashv$          |
| 335          | 3.3                    |         |          |        | ,        | 1              |         |         |                                                  |        |         | + +      | $\dashv$ | $\neg$   | +       | +     |     |               |          |      | 1        | $\vdash$ | G        | G      | G     |            |               | 1    | K       | L      | L             | L       | _          | J     |             | 1       | С       |        |                 |                 | $\neg$            |
| 475          | 4.7                    | 1       |          |        | C(X7T)   |                | +       | _       | С                                                |        |         | 1 1      | +        | +        |         | +     | +   | +             | +        | +    | 1        | $\vdash$ | G        | G      | G     |            | +             | 1    | K       | L      | L             | L       |            | J     | _           | +       | С       |        | т               | $\vdash$        | $\dashv$          |
| 106          | 10                     | 1       | i        | C(X7T) |          |                | +       |         | C(X7T)                                           |        |         | 1 1      | $\dashv$ | -        |         | Α     |     | $\top$        | 1        | 1    | 1        | $\Box$   | Н*       | H*     |       |            | 1             | 1    | L       | L      | L             |         |            | J     | _           | С       |         |        | $\Box$          | $\Box$          | $\neg$            |
| 226          | 22                     | 1       |          |        |          |                | 1 1     |         | C(X7T)                                           |        |         | 1 1      | $\neg$   |          | A(X7    | T)    |     |               | 1        | 1    | 1        | П        |          |        |       |            | 1             | 1    |         |        |               |         |            |       |             | С       |         | 1      | т               | $\Box$          | $\neg$            |
| WV           |                        | 6.3V    | 10V      | 4V     | 6.3V     | 10V            | 16V 2   | 25V 50V |                                                  |        | 16V 25V | 50V      | 100V 2   | 200V 25  |         |       | 16V | 25V           | 50V      | 100V | / 200V   | 250V     | 16V      | 25V    | 50V 1 | 100V 200   | V 250V        | 500V | 16V     | 25V    | 50V           | 100V 20 | 00V 250\   | V 50V | 100V        | / 25V   | 50V     | 100V   | 200V            | 250V            | 500V              |
| Si           |                        |         | :01      |        |          | 0402           |         |         |                                                  |        |         | 03       |          |          |         |       |     |               | 805      | •    | •        |          |          |        |       | 1206       |               |      |         |        | 121           |         |            |       | 1812        |         |         |        | 220             |                 |                   |
|              |                        |         |          |        |          |                |         |         |                                                  |        |         |          |          |          |         |       |     |               |          |      |          |          |          |        |       |            |               |      |         |        |               |         |            |       |             |         |         |        |                 | _               |                   |
| Case S       |                        | 0201(K/ |          |        |          | (KAM05)        |         |         |                                                  | (AM15) |         |          | _        | 0805(KAN | _       |       |     |               |          |      | 06(KAM31 | _        |          |        |       |            |               |      | (KAM32) |        |               |         |            |       |             | (KAM43) |         |        | -               | 20(KAM5         |                   |
| Thickness    |                        | Α       | С        | А      |          | F              | С       | А       | 1                                                |        | С       | В        | ,        | _        | K       | Α     |     | В             | N        |      | Е        | G        |          | Н      | Q     |            | С             | F    | G       |        | K             | L       |            | Υ     | Z           | G       |         | J      | А               |                 | С                 |
| Max Thickne  |                        | 0.33    | 0.39     | 0.56   |          | 0.6            | 0.70    | 0.90    |                                                  | 95     | 1.00    | 0.94     |          | 27       | 1.40    | 1.45  |     | 0.94          | 1.27     |      | 1.52     | 1.78     |          | 1.9    | 0.94  |            | 27            | 1.52 | 1.7     |        | 2.29          | 2.80    |            | 1.02  | 1.27        | 2.29    |         | 2.80   | 2.29            |                 | 2.80              |
| Carrier 1    |                        | PAPER   | PAPER    | PAPE   |          | APER           | PAPER   | PAPER   | _                                                | PER    | PAPER   | PAPER    | _        | ИB       | EMB     | EMB   | P   | APER          | EMB      | _    | EMB      | EM       |          | EMB    | PAPE  |            | MB            | EMB  | EM      | -      | EMB           | EMB     | _          | МВ    | EMB         | EMB     | _       | EMB    | EMB             | _               | EMB               |
| Packaging Co | ode 7"reel             | н       | H        | Н      |          | н              | H       | T       | '                                                | т      | T       | T        | (        | J        | U       | U     |     | T             | U        |      | U        | U        |          | U      | T     |            | U             | U    | U       | 1 I    | U             | U       |            | V     | V           | V       |         | V      | V               |                 | V                 |

\*These dimensions differ from the standard in table above and are: Length (mm) 3.2 ± 0.4 Width (mm) 1.6 ± 0.3

Packaging Code 13\*reel



# Automotive MLCC - X7R, 630V to 3000V





## **PREFERRED SIZES ARE SHADED**

|            | Case Size       |        |          | 1206                |      |      |     | 12                |                  |      |     |      |                   | 08                |      |        |     |      |       | 12                |      |        |     |      | 2220                |                                                  |                 |
|------------|-----------------|--------|----------|---------------------|------|------|-----|-------------------|------------------|------|-----|------|-------------------|-------------------|------|--------|-----|------|-------|-------------------|------|--------|-----|------|---------------------|--------------------------------------------------|-----------------|
|            | Soldering       |        |          | flow/W              |      |      |     | Reflow            |                  |      |     |      |                   | v Only            |      |        |     |      | Reflo |                   |      |        |     |      | flow O              |                                                  |                 |
| (L) Len    | gth (in.)       |        |          | 3.2 ± 0.<br>26 ± 0. |      |      | (   | 3.2 :<br>: 0.126) | ± 0.2<br>± 0.008 | )    |     |      | 4.57 :<br>(0.18 : |                   |      |        |     | (    |       | ± 0.3<br>± 0.012  | )    |        |     |      | 5.7 ± 0.<br>224 ± 0 |                                                  |                 |
| W) Wid     | Ith mm<br>(in.) |        |          | 1.6 ± 0.<br>63 ± 0. |      |      |     | 2.5<br>: 0.098    | ± 0.2<br>± 0.008 | )    |     |      | 2.03 :            |                   |      |        |     | (    |       | ± 0.2<br>± 0.008  | )    |        |     | (0.1 | 5 ± 0.4<br>97 ± 0.  |                                                  |                 |
| (t) Terr   | mm<br>ninal max |        |          | .5 ± 0.2<br>02 ± 0. |      |      |     | 0.5 ± (0.02 :     |                  |      |     | (    | 0.61 :            | ± 0.36<br>± 0.014 | )    |        |     | (    |       | ± 0.36<br>± 0.014 | )    |        |     |      | 64 ± 0.<br>25 ± 0.  |                                                  |                 |
| \          | /oltage (V)     | 630    | 1000     | 1500                | 2000 | 2500 | 630 | 1000              | 1500             | 2000 | 630 | 1000 | 1500              | 2000              | 2500 | 3000   | 630 | 1000 | 1500  | 2000              | 2500 | 3000   | 630 | 1000 | 1500                | 2000                                             | 3000            |
| 101        | Cap 100         | В      | В        | В                   | В    | В    |     |                   |                  |      |     |      |                   |                   |      |        |     |      |       |                   |      |        |     |      |                     |                                                  |                 |
| 121        | (pF) 120        | В      | В        | В                   | В    | В    |     |                   |                  |      |     |      |                   |                   |      |        |     |      |       |                   |      |        |     |      |                     |                                                  |                 |
| 151        | 150             | В      | В        | В                   | В    | В    |     |                   |                  |      |     |      |                   |                   |      |        |     |      |       |                   |      |        |     |      |                     |                                                  |                 |
| 181        | 180             | В      | В        | В                   | В    | В    |     |                   |                  |      |     |      |                   |                   |      |        |     |      |       |                   |      |        |     |      |                     |                                                  |                 |
| 221        | 220             | В      | В        | В                   | В    | В    |     |                   |                  |      | В   | В    | В                 | В                 | В    | В      |     |      |       |                   |      |        |     |      |                     |                                                  |                 |
| 271        | 270             | В      | В        | В                   | В    | В    | Н   | Н                 | Н                | Н    | В   | В    | В                 | В                 | В    | В      |     |      |       |                   |      |        |     |      |                     |                                                  | $oxed{oxed}$    |
| 331        | 330             | В      | В        | В                   | В    | В    | Н   | Н                 | Н                | Н    | В   | В    | В                 | В                 | В    | В      | E   |      |       |                   |      |        |     |      |                     |                                                  |                 |
| 391        | 390             | В      | В        | В                   | В    | В    | Н   | Н                 | Н                | Н    | В   | В    | В                 | В                 | В    | В      | E   |      |       |                   |      |        |     |      |                     | <u> </u>                                         | igsquare        |
| 471        | 470             | В      | В        | В                   | В    | В    | Н   | Н                 | Н                | Н    | В   | В    | В                 | В                 | В    | В      | E   | E    | E     | E                 | E    | E      |     |      |                     | <u> </u>                                         | igsquare        |
| 561        | 560             | В      | В        | В                   | В    | В    | Н   | Н                 | Н                | Н    | В   | В    | В                 | В                 | В    | В      | E   | E    | E     | E                 | E    | E      |     |      |                     | <u> </u>                                         | igspace         |
| 681        | 680             | В      | В        | В                   | В    | В    | H   | H                 | Н                | Н    | В   | В    | В                 | В                 | В    | В      | E   | E    | E     | E                 | E    | E      |     |      |                     | <u> </u>                                         | $\sqcup$        |
| 821        | 820             | В      | В        | В                   | В    | В    | Н   | Н                 | Н                | Н    | В   | В    | С                 | С                 | С    | С      | E   | E    | E     | E                 | E    | E      | -   | -    | -                   | -                                                |                 |
| 102        | 1000            | В      | В        | В                   | В    | В    | H   | Н                 | Н                | Н    | В   | В    | С                 | С                 | С    | С      | E   | E    | E     | E                 | E    | Е      | Z   | Z    | Z                   | Z                                                | С               |
| 122        | 1220            | D      | A        | Α                   | A    |      | Н   | Н                 | Н                | Н    |     |      |                   |                   |      |        | F   | F    | F     | F                 | F    |        | Z   | Z    | Z                   | Z                                                | С               |
| 152<br>182 | 1500<br>1800    | D<br>D | A        | A                   | Α    |      | H   | H                 | H                | H    |     |      |                   |                   |      |        | F   | F    | F     | F                 | F    |        | Z   | Z    | Z                   | Z                                                | C               |
| 222        | 2200            | D      | A        | A                   |      |      | Н   | Н                 | Н                | Н    | -   |      |                   |                   |      |        | F   | F    | F     | F                 | F    |        | Z   | Z    | Z                   | Z                                                | C               |
| 272        | 2700            | D      | A        | A                   |      |      | Н   | Н                 | Н                | Н    | -   |      |                   |                   |      |        | F   | F    | F     | F                 | F    |        | Z   | Z    | Z                   | Z                                                | C               |
| 332        | 3300            | D      | A        | _ ^                 |      | -    | H   | Н.                | H                | Н    | -   |      |                   | -                 |      |        | F   | F    | F     | F                 |      |        | Z   | Z    | Z                   | Z                                                | $\vdash$        |
| 392        | 3900            | D      | A        |                     |      |      | H   | H                 | H                | - '' |     |      |                   |                   |      |        | F   | F    | F     | F                 |      |        | Z   | Z    | Z                   | Z                                                | $\vdash$        |
| 472        | 4700            | D      | A        |                     |      |      | Н.  | Н.                | Н.               |      |     |      |                   |                   |      |        | F   | F    | J     | J                 |      |        | Z   | Z    | Z                   | Z                                                |                 |
| 562        | 5600            | D      | A        |                     |      |      | Н   | Н                 | Н                |      |     |      |                   |                   |      |        | F   | F    | J     | J                 |      |        | Z   | Z    | Z                   | Z                                                |                 |
| 682        | 6800            | A      | A        |                     |      |      | Н   | H                 |                  |      |     |      |                   |                   |      |        | F   | F    | J     | J                 |      |        | Z   | Z    | Z                   | Z                                                |                 |
| 822        | 8200            | Α      |          |                     |      |      | Н   | Н                 |                  |      |     |      |                   |                   |      |        | F   | F    | J     | J                 |      |        | Z   | Z    | С                   | С                                                |                 |
| 103        | Cap 0.01        | Α      |          |                     |      |      | Н   | Н                 |                  |      |     |      |                   |                   |      |        | F   | F    | J     |                   |      |        | C   | C    | C                   | C                                                |                 |
| 123        | (μF) 0.012      |        |          |                     |      |      | Н   | Н                 |                  |      |     |      |                   |                   |      |        | F   | F    | J     |                   |      |        | С   | С    | C                   | C                                                |                 |
| 153        | 0.015           |        |          |                     |      |      | Н   | Н                 |                  |      |     |      |                   |                   |      |        | F   | F    | J     |                   |      |        | С   | С    | C                   | С                                                |                 |
| 183        | 0.018           |        |          |                     |      |      | Н   |                   |                  |      |     |      |                   |                   |      |        | F   | F    |       |                   |      |        | С   | С    | С                   | С                                                |                 |
| 223        | 0.022           |        |          |                     |      |      | Н   |                   |                  |      |     |      |                   |                   |      |        | F   | F    |       |                   |      |        | С   | С    | С                   | С                                                |                 |
| 273        | 0.027           |        |          |                     |      |      | Н   |                   |                  |      |     |      |                   |                   |      |        | F   | F    |       |                   |      |        | С   | С    | С                   |                                                  |                 |
| 333        | 0.033           |        |          |                     |      |      |     |                   |                  |      |     |      |                   |                   |      |        | F   |      |       |                   |      |        | С   | С    |                     |                                                  |                 |
| 393        | 0.039           |        |          |                     |      |      |     |                   |                  |      |     |      |                   |                   |      |        | F   |      |       |                   |      |        | С   | С    |                     |                                                  |                 |
| 473        | 0.047           |        |          |                     |      |      |     |                   |                  |      |     |      |                   |                   |      |        | F   |      |       |                   |      |        | С   | С    |                     |                                                  |                 |
| 563        | 0.056           |        |          |                     |      |      |     |                   |                  |      |     |      |                   |                   |      |        |     |      |       |                   |      |        | С   | С    |                     |                                                  |                 |
| 683        | 0.068           |        |          |                     |      |      |     |                   |                  |      |     |      |                   |                   |      |        |     |      |       |                   |      |        | С   | С    |                     |                                                  | igsquare        |
| 823        | 0.082           |        | <u> </u> |                     |      |      |     |                   |                  |      |     |      |                   |                   |      |        |     |      |       |                   |      |        | С   | С    |                     | <u> </u>                                         | $\sqcup \sqcup$ |
| 104        | 0.1             |        |          |                     |      |      |     |                   |                  |      |     |      |                   |                   |      |        |     |      |       |                   |      |        | С   | С    |                     | <u> </u>                                         |                 |
| 124        | 0.12            |        |          |                     |      |      |     |                   |                  |      |     |      |                   |                   |      |        |     |      |       |                   |      |        | С   |      |                     | <u> </u>                                         | $\sqcup$        |
| 154        | 0.15            |        |          |                     |      |      |     |                   |                  |      |     |      |                   |                   |      |        |     |      |       |                   |      |        | С   |      |                     | -                                                |                 |
| 224<br>334 | 0.22<br>0.33    |        | -        |                     |      |      |     |                   |                  |      | -   |      |                   |                   |      |        |     |      |       |                   |      |        |     |      |                     | <del>                                     </del> |                 |
| 474        | 0.33            | _      | -        |                     |      |      |     | -                 |                  |      | -   |      |                   |                   |      |        |     |      |       |                   |      |        |     |      |                     | $\vdash$                                         | $\vdash$        |
| 684        | 0.47            |        |          |                     | -    | -    |     |                   |                  |      |     |      |                   |                   |      |        |     |      |       |                   |      |        | -   |      | -                   | $\vdash$                                         | $\vdash$        |
| 105        | 0.08            |        |          |                     |      |      |     |                   |                  |      |     |      |                   |                   |      |        |     |      |       |                   |      |        |     |      |                     | $\vdash$                                         | $\vdash$        |
| 100        | WVDC            | 630    | 1000     | 1500                | 2000 | 2500 | 630 | 1000              | 1500             | 2000 | 630 | 1000 | 1500              | 2000              | 2500 | 3000   | 630 | 1000 | 1500  | 2000              | 2500 | 3000   | 630 | 1000 | 1500                | 2000                                             | 3000            |
|            | Size            | 550    | . 500    | 1206                |      |      | 550 | 12                |                  |      | 000 |      |                   | 08                |      | 1 0000 | 000 |      |       | 12                |      | 1 0000 | 550 |      | 2220                |                                                  | 0000            |
|            |                 |        |          |                     |      |      |     |                   | _                |      |     |      |                   |                   |      |        |     |      |       |                   |      |        |     |      |                     |                                                  |                 |

NOTE: Contact factory for non-specified capacitance values

| Case Size              |       | 1206(KAM31) |      | 1210(KAM32) | 1808(k | (AM42) |            | 1812(KAM43) |      | 2220(K | (AM55) |
|------------------------|-------|-------------|------|-------------|--------|--------|------------|-------------|------|--------|--------|
| Thickness Letter       | В     | D           | A    | н           | В      | С      | E          | F           | J    | Z      | С      |
| Max Thickness          | 0.94  | 1.45        | 1.80 | 1.80        | 1.80   | 2.21   | 1.80       | 2.21        | 2.80 | 2.21   | 2.80   |
| Carrier Tape           | PAPER | EMB         | EMB  | EMB         | EMB    | EMB    | EMB        | EMB         | EMB  | EMB    | EMB    |
| Packaging Code 7'reel  | T     | U           | U    | U           | Y      | Y      | ٧          | V           | ٧    | V      | V      |
| Packaging Code 13"reel | М     | L           | L    | L           | К      | К      | S          | s           | S    | S      | s      |
|                        |       |             | PAPE | ER .        |        | EMBOS  | SSED (EMB) |             |      |        |        |

# **Automotive MLCC - X8R / X8L**

# **General Specifications**

# KYOCERa

## **TYPICAL APPLICATIONS**

- · All market sectors with a 150°C requirement
- Automotive on engine applications
- Oil exploration applications
- · Hybrid automotive applications
  - Battery control
  - Inverter / converter circuits
  - Motor control applications
  - Water pump
- · Hybrid commercial applications
  - Emergency circuits
  - Sensors
  - Temperature regulation

## **ENGINEERING TOOLS**

- Samples
- **Technical Articles**
- **Application Engineering**
- **Application Support**





## **ADVANTAGES OF X8R AND X8L MLC CAPACITORS**

- · Both ranges are qualified to the highest automotive AEC-Q200 standards
- Excellent reliability compared to other capacitor technologies
- RoHS compliant
- Low ESR / ESL compared to other technologies
- Tin solder finish
- FLEXITERM® available
- 100V range available

## X8R/X8L Dielectric



## **Automotive MLCC - X8R / X8L**





KYOCERA AVX has developed a range of multilayer ceramic capacitors designed for use in applications up to 150°C. These capacitors are manufactured with an X8R and an X8L dielectric material. X8R material has capacitance variation of ± 15% between -55°C and +150°C. The X8L material has capacitance variation of ±15% between -55°C to 125°C to 125°C and +15/40% from +125°C to +150°C.

The need for X8R and X8L performance has been driven by customer requirements for parts that operate at elevated temperatures. They provide a highly reliable capacitor with low loss and stable capacitance over temperature.

They are ideal for automotive under the hood sensors, and various industrial applications. Typical industrial application would be drilling monitoring system. They can also be used as bulk capacitors for high temperature camera modules.

#### X8R

|              | SIZE       | 0402           |     | 0603        |      |     | 0805           |      | 1206<br>Reflow/Wave |             |                                                  |
|--------------|------------|----------------|-----|-------------|------|-----|----------------|------|---------------------|-------------|--------------------------------------------------|
| S            | oldering   | Reflow/Wave    | F   | Reflow/Wav  |      | F   | Reflow/Wav     |      | F                   |             | e                                                |
| (L) Length   | mm         | 1.0 ± 0.2      |     | 1.6 ± 0.15  |      |     | 2.01 ± 0.2     |      |                     | 3.2 ± 0.2   |                                                  |
| (L) Lengui   | (in.)      | (0.04 ± 0.008) |     | .063 ± 0.00 |      | (0  | .079 ± 0.00    | 8)   | (0                  | .126 ± 0.00 | 18)                                              |
| (W) Width    | mm         | 0.5 ± 0.2      |     | 0.81 ± 0.15 | i    |     | $1.25 \pm 0.2$ |      |                     | 1.6 ± 0.2   |                                                  |
| (W) Widui    | (in.)      | (0.02 ± 0.008) | (0  | .032 ± 0.00 | 16)  | (0  | .049 ± 0.00    | 8)   | (0                  | .063 ± 0.00 |                                                  |
| (t) Terminal | mm         | 0.25 ± 0.15    |     | 0.35 ± 0.15 | 5    |     | 0.5 ± 0.25     |      |                     | 0.5 ± 0.25  |                                                  |
|              | (in.)      | (0.01 ± 0.006) | (0  | .014 ± 0.00 | 16)  | (   | 0.02 ± 0.01    | )    | (                   | 0.02 ± 0.01 |                                                  |
|              | WVDC       | 50V            | 25V | 50V         | 100V | 25V | 50V            | 100V | 25V                 | 50V         | 100V                                             |
| 271          | Cap 270    | A              | Α   | Α           | Α    |     |                |      |                     |             |                                                  |
| 331          | (pF) 330   | A              | Α   | A           | Α    | В   | В              | В    |                     |             |                                                  |
| 471          | 470        | Α              | Α   | Α           | Α    | В   | В              | В    |                     |             |                                                  |
| 681          | 680        | A              | Α   | Α           | Α    | В   | В              | В    |                     |             |                                                  |
| 102          | 1000       | A              | Α   | Α           | Α    | В   | В              | В    | В                   | В           |                                                  |
| 152          | 1500       | A              | Α   | Α           | Α    | В   | В              | В    | В                   | В           |                                                  |
| 182          | 1800       | A              | Α   | Α           | А    | В   | В              | В    | В                   | В           |                                                  |
| 222          | 2200       | A              | Α   | Α           | Α    | В   | В              | В    | В                   | В           |                                                  |
| 272          | 2700       | A              | Α   | А           | Α    | В   | В              | В    | В                   | В           |                                                  |
| 332          | 3300       | A              | Α   | Α           | Α    | В   | В              | В    | В                   | В           |                                                  |
| 392          | 3900       | A              | Α   | A           | А    | В   | В              | В    | В                   | В           |                                                  |
| 472          | 4700       | A              | А   | А           | А    | В   | В              | В    | В                   | В           |                                                  |
| 562          | 5600       |                | Α   | A           | A    | В   | В              | В    | В                   | В           |                                                  |
| 682          | 6800       |                | A   | A           | A    | В   | В              | В    | В                   | В           |                                                  |
| 822          | 8200       |                | A   | A           | A    | В   | В              | В    | В                   | В           |                                                  |
| 103          | Cap 0.01   |                | A   | A           | A    | В   | В              | В    | В                   | В           |                                                  |
| 123          | (uF) 0.012 |                | A   | A           |      | В   | В              | В    | В                   | В           |                                                  |
| 153          | 0.015      |                | A   | A           |      | В   | В              | A    | В                   | В           |                                                  |
| 183          | 0.018      |                | A   | A           |      | В   | В              | A    | В                   | В           | $\vdash$                                         |
| 223          | 0.022      |                | A   | A           |      | В   | В              | A    | В                   | В           |                                                  |
| 273          | 0.027      |                | A   | A           |      | В   | В              |      | В                   | В           | <del>                                     </del> |
| 333          | 0.033      |                | A   | A           |      | В   | В              |      | В                   | В           |                                                  |
| 393          | 0.039      |                | A   | A           |      | В   | В              |      | В                   | В           |                                                  |
| 473          | 0.047      |                | A   | A           |      | В   | В              |      | В                   | В           |                                                  |
|              |            |                |     | A           |      |     |                |      | N                   | N           | _                                                |
| 563          | 0.056      |                | A   | -           |      | A   | A              | -    | N<br>N              | N<br>N      | $\vdash$                                         |
| 683<br>823   | 0.068      |                | A   | _           |      | A   | A              | -    | N<br>N              | N<br>N      | $\vdash$                                         |
| 104          | 0.082      |                | -   | -           |      |     | A              | -    | N<br>N              | N<br>N      | $\vdash$                                         |
| 104          | 0.1        |                |     |             |      | A   | A              |      | N<br>N              | N<br>N      | _                                                |
|              |            |                | -   |             |      |     |                |      |                     |             | _                                                |
| 154          | 0.15       |                | -   | -           |      | A   | Α              |      | N                   | N           | $\vdash$                                         |
| 184          | 0.18       |                | -   | _           |      | A   | -              | -    | N                   | N           | <del>                                     </del> |
| 224          | 0.22       |                |     |             |      | Α   |                |      | N                   | N           | <u> </u>                                         |
| 274          | 0.27       |                |     |             |      |     |                |      | N                   | N           | <u> </u>                                         |
| 334          | 0.33       |                |     |             |      |     |                |      | N                   | N           | <u> </u>                                         |
| 394          | 0.39       |                |     |             |      |     |                |      | E                   | G           |                                                  |
| 474          | 0.47       |                |     |             |      |     |                |      | E                   | G           | <u> </u>                                         |
| 684          | 0.68       |                |     |             |      |     |                |      | G                   | G           |                                                  |
| 824          | 0.82       |                |     |             |      |     |                |      | G                   | G           | <u> </u>                                         |
| 105          | 1          |                |     |             |      |     |                |      | G                   | G<br>50V    |                                                  |
|              | WVDC       | 50V            | 25V | 50V         | 100V | 25V | 50V            | 100V | 25V                 | 100V        |                                                  |

| Case Size              | 0402(KAM05) | 0603(k | (AM15) | 0805(k | AM21) |       | 1206(k | (AM31) |            | 1210(KAM32) | 2220(KAM55) |
|------------------------|-------------|--------|--------|--------|-------|-------|--------|--------|------------|-------------|-------------|
| Thickness Letter       | А           | Α      | В      | В      | Α     | В     | N      | Е      | G          | L           | С           |
| Max Thickness          | 0.56        | 0.90   | 0.95   | 0.94   | 1.45  | 0.94  | 1.27   | 1.52   | 1.78       | 2.79        | 2.80        |
| Carrier Tape           | PAPER       | PAPER  | PAPER  | PAPER  | EMB   | PAPER | EMB    | EMB    | EMB        | EMB         | EMB         |
| Packaging Code 7"reel  | Н           | T      | Т      | T      | U     | Т     | U      | U      | U          | U           | ٧           |
| Packaging Code 13'reel | N           | М      | М      | М      | L     | М     | L      | L      | L          | L           | S           |
|                        |             |        | PAPER  |        |       |       |        | EM     | BOSSED (EN | 1B)         |             |

#### X8L

|              | SIZE       | -   | 0603         |      |     | 0805        |      |     |          | .06     |      |     |              | 210      |      |          | 220      |
|--------------|------------|-----|--------------|------|-----|-------------|------|-----|----------|---------|------|-----|--------------|----------|------|----------|----------|
|              | Soldering  |     | Reflow/Wav   |      | F   | Reflow/Wav  |      |     | Reflow   |         |      |     |              | v/Wave   |      | Reflo    |          |
| (L) Length   | mm         |     | 1.6 ± 0.15   |      |     | 2.01 ± 0.2  |      |     |          | ± 0.2   |      |     |              | ± 0.2    |      |          | ± 0.5    |
| ,,=          | (in.)      | (0  | 0.063 ± 0.00 |      | (0  | .079 ± 0.00 | 8)   |     | (0.126 : |         |      |     |              | ± 0.008) |      | (0.224   |          |
| (W) Width    | mm         |     | 0.81 ± 0.15  |      |     | 1.25 ± 0.2  |      |     |          | ± 0.2   |      |     |              | ± 0.2    |      |          | ₺ 0.4    |
|              | (in.)      | · · | 0.032 ± 0.00 |      | (0  | .049 ± 0.00 | 8)   |     | (0.063 : |         |      |     |              | ± 0.008) |      | (0.197   |          |
| (t) Terminal | mm         |     | 0.35 ± 0.15  |      |     | 0.5 ± 0.25  |      |     |          | 0.25    |      |     |              | 0.25     |      | 0.64     |          |
|              | (in.)      |     | 0.014 ± 0.00 |      |     | 0.02 ± 0.01 |      |     |          | ± 0.01) |      |     | <del> </del> | ± 0.01)  |      | (0.025   |          |
|              | WVDC       | 25V | 50V          | 100V | 25V | 50V         | 100V | 16V | 25V      | 50V     | 100V | 10V | 25V          | 50V      | 100V | 200V     |          |
| 271          | Cap 270    | Α   | A            |      |     |             |      |     |          |         |      |     |              |          |      |          | ╄        |
| 331          | (pF) 330   | Α   | A            | Α    | В   | В           | В    |     |          |         |      |     |              |          |      |          | ╄        |
| 471          | 470        | Α   | A            | A    | В   | В           | В    |     |          |         |      |     |              |          |      |          | ╄        |
| 681          | 680        | А   | Α            | A    | В   | В           | В    |     |          |         |      |     |              |          |      |          | ╄        |
| 102          | 1000       | A   | Α            | A    | В   | В           | В    |     | В        | В       | В    |     |              |          |      |          | ╄        |
| 152          | 1500       | Α   | Α            | Α    | В   | В           | В    |     | В        | В       | В    |     |              |          |      |          | ╄        |
| 182          | 1800       | Α   | Α            | Α    | В   | В           | В    |     | В        | В       | В    |     |              |          |      |          | 上        |
| 222          | 2200       | Α   | Α            | A    | В   | В           | В    |     | В        | В       | В    |     |              |          |      |          | ┸        |
| 272          | 2700       | Α   | Α            | Α    | В   | В           | В    |     | В        | В       | В    |     |              |          |      |          | ┸        |
| 332          | 3300       | Α   | Α            | Α    | В   | В           | В    |     | В        | В       | В    |     |              |          |      |          | L        |
| 392          | 3900       | Α   | Α            | Α    | В   | В           | В    |     | В        | В       | В    |     |              |          |      |          | L        |
| 472          | 4700       | Α   | Α            | Α    | В   | В           | В    |     | В        | В       | В    |     |              |          |      |          |          |
| 562          | 5600       | Α   | Α            | Α    | В   | В           | В    |     | В        | В       | В    |     |              |          |      |          | L        |
| 682          | 6800       | Α   | Α            | Α    | В   | В           | В    |     | В        | В       | В    |     |              |          |      |          | T        |
| 822          | 8200       | Α   | Α            | Α    | В   | В           | В    |     | В        | В       | В    |     |              |          |      |          | Г        |
| 103          | Cap 0.01   | Α   | Α            | Α    | В   | В           | В    |     | В        | В       | В    |     |              |          |      |          | Г        |
| 123          | (uF) 0.012 | Α   | Α            |      | В   | В           | В    |     | В        | В       | В    |     |              |          |      |          | Т        |
| 153          | 0.015      | Α   | Α            |      | В   | В           | В    |     | В        | В       | В    |     |              |          |      |          | Т        |
| 183          | 0.018      | Α   | Α            |      | В   | В           | В    |     | В        | В       | В    |     |              |          |      |          | Т        |
| 223          | 0.022      | Α   | Α            |      | В   | В           | В    |     | В        | В       | В    |     |              |          |      |          | Т        |
| 273          | 0.027      | Α   | Α            |      | В   | В           | В    |     | В        | В       | В    |     |              |          |      |          | Т        |
| 333          | 0.033      | Α   | Α            |      | В   | В           | Α    |     | В        | В       | В    |     |              |          |      |          | Т        |
| 393          | 0.039      | Α   | Α            |      | В   | В           | Α    |     | В        | В       | В    |     |              |          |      |          | Т        |
| 473          | 0.047      | Α   | Α            |      | В   | В           | Α    |     | В        | В       | В    |     |              |          |      |          | Т        |
| 563          | 0.056      | Α   | Α            |      | В   | В           | Α    |     | В        | В       | В    |     |              |          | Î    |          | T        |
| 683          | 0.068      | Α   | Α            |      | В   | В           | Α    |     | В        | В       | В    |     |              |          |      |          | Т        |
| 823          | 0.082      | Α   | А            |      | В   | В           | Α    |     | В        | В       | N    |     |              |          |      |          | T        |
| 104          | 0.1        | Α   | А            |      | В   | В           | Α    |     | В        | В       | N    |     |              |          |      |          | T        |
| 124          | 0.12       |     |              |      | В   | Α           |      |     | В        | В       | N    |     |              |          |      |          | T        |
| 154          | 0.15       | İ   | İ            | i    | В   | А           |      | В   | В        | В       | N    |     |              | 1        | i    |          | T        |
| 184          | 0.18       |     |              |      | А   | А           |      | В   | В        | В       | G    |     |              |          | 1    |          | Τ        |
| 224          | 0.22       |     | İ            | İ    | А   | А           |      | В   | В        | В       | G    |     |              |          | İ    | İ        | Τ        |
| 274          | 0.27       |     |              |      | А   | А           |      | В   | N        | N       |      |     |              |          | 1    |          | Τ        |
| 334          | 0.33       | İ   | İ            | İ    | А   | А           |      | В   | N        | Е       | İ    |     |              | Ì        | İ    | İ        | Τ        |
| 394          | 0.39       |     |              | i    | A   | А           |      | N   | N        | Е       |      |     |              |          | i –  |          | T        |
| 474          | 0.47       |     |              |      | А   | А           |      | N   | N        | Е       |      |     |              |          |      |          | ✝        |
| 684          | 0.68       |     | İ            | i    | Α   | А           |      | N   | G        | G       | i –  |     |              |          | i –  | <u> </u> | Τ        |
| 824          | 0.82       |     |              |      | А   | А           |      | N   | G        | G       |      |     |              |          |      |          | $\vdash$ |
| 105          | 1          |     |              |      | Α   | А           |      | N   | G        | G       |      |     |              |          | i    |          | $\vdash$ |
| 155          | 1.5        |     |              |      | A   |             |      | G   | G        | G       |      |     |              |          |      |          | $^{+}$   |
| 225          | 2.2        |     |              |      | A   |             |      | G   | G        | G       |      |     |              | L        | L    | С        | ٢        |
| 475          | 4.7        |     |              |      |     |             |      | G   | G        |         |      |     |              | L        |      | Ť        | ۳        |
| 106          | 10         |     |              |      |     |             |      |     |          |         |      | L   | L            | L        |      |          | +        |
|              | WVDC       | 25V | 50V          | 100V | 25V | 50V         | 100V | 16V | 25V      | 50V     | 100V | 10V | 25V          | 50V      | 100V | 200V     |          |
|              | SIZE       | 257 | 0603         | 1001 | 250 | 0805        | 1004 | 104 | 12       |         | 1001 | 104 |              | 210      | 1004 |          | 220      |

# **Automotive MLCC - X8G**

# **General Specifications**

# KYOCERA AVAX

## **TYPICAL APPLICATIONS**

- Extreme capacitance stability
- High temperature
- Battery Management Systems
- Powertrain Sensors & Actuators
- · Engine management
- Transmission control
- Safety

## **ENGINEERING TOOLS**

- Samples
- Technical Articles
- · Application Engineering
- Application Support





# Automotive X8G (-55°C to 150°C, ±30ppm/°C)



# **Capacitance Range**

| SIZE         |            | 04      |        |                 | 03       |          | 05                 |
|--------------|------------|---------|--------|-----------------|----------|----------|--------------------|
| Solder       | ing        | Reflow  |        |                 | //Wave   |          | //Wave             |
| (L) Length   | mm         | 1 ±     |        |                 | 0.15     |          | ± 0.2              |
| (=/ ==::g::: | (in.)      | (0.04 ± |        | ,               | ± 0.006) | ,        | ± 0.008)           |
| (W) Width    | mm         | 0.5     |        |                 | ± 0.15   |          | ± 0.2              |
| . ,          | (in.)      | (0.02 ± |        | (0.032 :        |          | (0.049 : | ± 0.008)<br>: 0.25 |
| (t) Terminal | mm         |         | £ 0.15 |                 | ± 0.15   |          |                    |
| WVD          | (in.)      | (0.01 ± | 50V    | (0.014 :<br>25V | 50V      | 50V      | ± 0.01)<br>100V    |
| OR5          | 0.5        | 257     | 507    | 25V<br>A        | A        | B        | B                  |
| 1R0          | 1.0        |         |        | A               | A        | В        | В                  |
| 1R2          | 1.2        |         |        | A               | A        | В        | В                  |
| 1R5          | 1.5        |         |        | A               | A        | В        | В                  |
| 1R8          | 1.8        |         |        | A               | A        | В        | В                  |
| 2R2          | 2.2        |         |        | A               | A        | В        | В                  |
| 2R7          | 2.7        |         |        | A               | A        | В        | В                  |
| 3R3          | 3.3        |         |        | A               | A        | В        | В                  |
| 3R9          | 3.9        |         |        | A               | A        | В        | В                  |
| 4R7          | 4.7        |         |        | A               | Α        | В        | В                  |
| 5R0          | 5          |         |        | Α               | Α        | В        | В                  |
| 5R6          | 5.6        |         |        | Α               | Α        | В        | В                  |
| 6R8          | 6.8        |         |        | Α               | Α        | В        | В                  |
| 8R2          | 8.2        |         |        | Α               | А        | В        | В                  |
| 100          | 10         |         |        | Α               | А        | В        | В                  |
| 120          | 12         |         |        | Α               | Α        | В        | В                  |
| 150          | 15         |         |        | Α               | Α        | В        | В                  |
| 180          | 18         |         |        | Α               | A        | В        | В                  |
| 220          | 22         |         |        | Α               | Α        | В        | В                  |
| 270          | 27         |         |        | Α               | Α        | В        | В                  |
| 330          | 33         |         |        | Α               | Α        | В        | В                  |
| 390          | 39         |         |        | Α               | A        | В        | В                  |
| 470          | 47         | A       | Α      | Α               | A        | В        | В                  |
| 510          | 51         | A       | A      | A               | A        | В        | В                  |
| 560          | 56         | A       | A      | A               | A        | В        | В                  |
| 680          | 68         | A       | A      | A               | A        | В        | В                  |
| 820          | 82         | A       | A      | A               | A        | B<br>B   | B<br>B             |
| 101          | 100        | Α       | Α      | A               | A        | В        | В                  |
| 121<br>151   | 120<br>150 |         |        | A               | A        | В        | В                  |
| 181          | 180        |         |        | A               | A        | В        | В                  |
| 221          | 220        |         |        | A               | A        | В        | В                  |
| 271          | 270        |         |        | A               | A        |          | В                  |
| 331          | 330        |         |        | A               | A        |          |                    |
| 391          | 390        |         |        | A               | A        |          |                    |
| 471          | 470        |         |        | A               | A        |          |                    |
| 561          | 560        |         |        | A               | A        |          |                    |
| 681          | 680        |         |        | Α               | А        |          |                    |
| 821          | 820        |         |        |                 |          |          |                    |
| 102          | 1000       |         |        |                 |          |          |                    |
| 122          | 1200       |         |        |                 |          |          |                    |
| 152          | 1500       |         |        |                 |          |          |                    |
| 182          | 1800       |         |        |                 |          |          |                    |
| 222          | 2200       |         |        |                 |          |          |                    |
| 272          | 2700       |         |        |                 |          |          |                    |
| 332          | 3300       |         |        |                 |          |          |                    |
| 392          | 3900       |         |        |                 |          |          |                    |
| 472          | 4700       |         |        |                 |          |          |                    |
| 562          | 5600       |         |        |                 |          |          |                    |
| 682          | 6800       |         |        |                 |          |          |                    |
| 103          | 10nF       | 251     | EOV.   | 251             | FOV.     | FOV.     | 1001               |
| WVD:<br>Size |            | 25V     | 50V    | 25V             | 50V      | 50V      | 100V               |
| Size         |            | 04      | UZ     |                 | 03       | _ 08     | 05                 |

| Case Size              | 0402(KAM05) | 0603(KAM15) | 0805(KAM21) |
|------------------------|-------------|-------------|-------------|
| Letter                 | Α           | Α           | В           |
| Max Thickness mm       | 0.56        | 0.90        | 0.94        |
| Carrier Tape           | Paper       | Paper       | Paper       |
| Packaging Code 7"reel  | Н           | Т           | Т           |
| Packaging Code 13"reel | N           | М           | М           |
|                        | PAPER       |             |             |

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

## **KYOCERA AVX:**

```
KAM15CT70J106KT KAM05CT70J225KH KAM21AT70J226KU KAM03CT70J105KH KAM05CT70J475KH
KAM15CT70J226KT KAM32HR73A332KU KAM32LCG2J223JU KAM15BR71E224KT KAM21KR71H225KU
KAM31GCG2J103JU KAM32LCG2J333JU KAM32LCG3A103JU KAM32LL81E106KU KAM32LL81H475KU
KAM15ACG1E103JT KAM31GR71C106KU KAM32GCG3A472JU KAM32KCG3A102JU KAM05ACG1H0R5CH
KAM05ACG1H100FH KAM05ACG1H100FN KAM05ACG1H100JH KAM05ACG1H101KH KAM05ACG1H120FH
KAM05ACG1H120JH KAM05ACG1H150FH KAM05ACG1H150FN KAM05ACG1H150JH KAM05ACG1H180FH
KAM05ACG1H180JH KAM05ACG1H1R0BH KAM05ACG1H1R0CH KAM05ACG1H220FH KAM05ACG1H220FN
KAM05ACG1H220JH KAM05ACG1H270FH KAM05ACG1H270JH KAM05ACG1H330FH KAM05ACG1H330JH
KAM05ACG1H390FH KAM05ACG1H390FN
                                KAM05ACG1H390JH KAM05AR71C103JH KAM05AR71C103KH
KAM05AR71C103KN KAM05AR71C103MH KAM05AR71C153KH KAM05AR71C183KH KAM05AR71C223KH
KAM05AR71C273JH
               KAM05AR71C273KH KAM05AR71C333KH KAM05AR71C472KH KAM05AR71C472KN
KAM05AR71C682KH KAM05AR71C682KN KAM05AR71E103KH KAM05AR71E103KN KAM05AR71H102JH
KAM05AR71H102KH KAM05AR71H102KN KAM05AR71H102MH KAM05AR71H103KH KAM05AR71H122JH
KAM05AR71H122KH KAM05AR71H152JH KAM05AR71H152KH KAM05AR71H152KN KAM05AR71H182JH
KAM05AR71H182KH KAM05AR71H182KN KAM05AR71H221JH KAM05AR71H221KH KAM05AR71H221MH
KAM05AR71H222JH
               KAM05AR71H222JN KAM05AR71H222KH KAM05AR71H222KN KAM05AR71H271JH
KAM05AR71H271KH KAM05AR71H272JH KAM05AR71H272KH KAM05AR71H331JH KAM05AR71H331KH
KAM05AR71H332JH KAM05AR71H332KH KAM05AR71H332KN KAM05AR71H391JH KAM05AR71H391KH
KAM05AR71H392JH KAM05AR71H392KH KAM05AR71H471JH KAM05AR71H471KH KAM05AR71H471KN
KAM05AR71H472JH KAM05AR71H472KH KAM05AR71H472KN KAM05AR71H472MH KAM05AR71H561JH
```