Cadenes alfanumèriques i conversions de format

Cadenes de caràcters (String)

Apunts de Strings en Java

Classe String

Apunts d'Expresions regulars en Java

Exemples amb String

```
Scanner lector = new Scanner(System.in);
//declarar i instanciar String (són objectes, cal invocar el constructor)
String nom = new String("Lluis");
//instanciació i inicialització abreujada amb constant
String salutacio = "Hola";
//ús de l'operador de concatenació
String missatge = salutacio + " " + nom;
System.out.println(missatge);
//obtenir la longitud del string
System.out.println("La longitud del missatge és "+missatge.length());
//obtenir el caràcter en una posició
System.out.print("Quin index? ");
int index = lector.nextInt();
    char c = missatge.charAt(index); //pot llançar
StringIndexOutOfBoundsException si l'índex està fora de límits
    System.out.println("El caràcter a la posició "+index+" és "+ c);
} catch (StringIndexOutOfBoundsException e) {
    System.out.println("Índex incorrecte");
//comparar strings (negatiu, zero o positiu segons el resultat de la comparació)
int comp = "Hola".compareTo("Holo");
System.out.println(comp);
//ús del mètode concat() per concatenar String
System.out.println(salutacio.concat(nom));
//mètodes per analitzar el contingut
String frase = "En un lugar de la Mancha de cuyo nombre no quiero acordarme";
System.out.println("Comença per En? "+ frase.startsWith("En"));
System.out.println("Acaba per rme? "+ frase.endsWith("rme"));
//igualtat de strings
String a = "Taula";
String b = "taula";
System.out.println("Son iguals? "+ a.equals(b));
System.out.println("Son iguals (ignorant case)? "+ a.equalsIgnoreCase(b));
//ús del mètode format() per obtenir un string amb dades formatades
int edat = 22;
double salari = 1800.0;
String informacio =
         String.format("%s tens %d anys i salari %.2f\n",
```

```
nom, edat, salari);
System.out.println(informacio);
//trobar la posició d'un caràcter o string (indexOf(), lastIndexOf)())
System.out.println("La primera 'u' és a l'índex: "+frase.index0f('u'));
System.out.println("La darrera 'u' és a l'índex: "+frase.lastIndexOf('u'));
System.out.println("La primera 'de' és a l'index: "+frase.index0f("de"));
//ús del mètode replace()
System.out.println(frase.replace('e', '3'));
//extracció de fragments del string (mètodes substring())
System.out.println(frase.substring(4, 20));
//conversió a majusc/minusc
System.out.println(frase.toUpperCase());
System.out.println(frase.toLowerCase());
La sortida del codi anterior és:
Hola Lluis
La longitud del missatge és 10
Quin index? 3
El caràcter a la posició 3 és a
-14
HolaLluis
Comença per En? true
Acaba per rme? true
Son iquals? false
Son iguals (ignorant case)? true
Lluis tens 22 anys i salari 1800,00
La primera 'u' és a l'índex: 3
La darrera 'u' és a l'índex: 44
La primera 'de' és a l'índex: 12
En un lugar d3 la Mancha d3 cuyo nombr3 no qui3ro acordarm3
n lugar de la Ma
EN UN LUGAR DE LA MANCHA DE CUYO NOMBRE NO QUIERO ACORDARME
en un lugar de la mancha de cuyo nombre no quiero acordarme
```

Lectura de string amb espais i lectura de línies amb Scanner

Quan cal llegir amb la classe <u>Scanner</u> una línia sencera en un String amb independència de si conté espais i altres separadors equivalents a l'espai (tabuladors, canvis de línia, etc.) es pot utilitzar el mètode **Scanner.nextLine()**.

Si es vol separar una entrada d'una línia en diverses lectures, fins i tot amb tipus de dada diferents, cal canviar el delimitador per defecte que fa servir Scanner. Per fer-ho, utilitzem el mètode *Scanner.userDelimiter()*.

```
Scanner useDelimiter(String pattern)
Scanner useDelimiter(Pattern pattern)

Exemple:
import java.util.Scanner;
/**
 * Read variables in a line with terminador '\n' and field separator ';'
 * @author Jose
 */
```

```
public class ScannerCsv {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        //show default delimiter
        System.out.println("Scanner default delimiter: "+sc.delimiter());
        //newlines and semicolons with any amount of spaces around are allowed
        sc.useDelimiter("(\\s*;\\s*)|\\n");
        //read a name (String with spaces allowed) and an integer age
        System.out.print("Input name and age: ");
        String name = sc.next();
                                  //read name
        int age = sc.nextInt();
                                  //read age
        //show variables read
        System.out.format("name: %s; age: %d\n", name, age);
   }
}
```

Exemples

Usar un delimitador per separar un text en blocs i imprimir cada bloc en una línia.

```
import java.util.Scanner;
/**
 * Prints vertically a text splitting in tokens using a delimiter
 * @author Jose
 */
public class SplitText {
    public static void main(String[] args) {
        Scanner scan = new Scanner(System.in);
        scan.useDelimiter("\n"); //read until new line
        //input text
        System.out.print("Input a text: ");
        String text = scan.next();
        //remove leading and trailing whitespaces
        text = text.strip();
        //String text = scan.nextLine();
        System.out.println("Text: "+ text);
        //input character to use as a delimiter to split text
System.out.print("Input a character: ");
        char c = scan.next().charAt(0);
//char c = ' '; //delimiter to search
        //iterative solution
        System.out.println("Iterative solution");
        printSplittedTextIterative(text, c);
        //recursive solution
        System.out.println("Recursive solution");
        printFirstToken(text, c);
        //solution using Scanner
        System.out.println("Solution using Scanner");
        printSplittedTextUsingScanner(text, c);
    }
     * Prints text vertically using a delimiter (iterative solucion)
     * @param text the text to print
```

```
* @param delimiter the delimiter to be used to split text
     */
    public static void printSplittedTextIterative(String text, char delimiter) {
        int index = 0;
        int previousIndex = -1;
        String token;
        while ((index != -1) && (index < text.length())) {</pre>
            index = text.indexOf(delimiter, previousIndex+1);
            if (index < 0) { //delimiter not found
    token = text.substring(previousIndex+1);</pre>
            } else { //delimiter found
                 token = text.substring(previousIndex+1, index);
                previousIndex = index;
            if (token.length() > 0) System.out.println(token);
        }
    }
     * Prints text vertically using a delimiter (recursive solucion)
     * @param text the text to print
     * @param delimiter the delimiter to be used to split text
    public static void printFirstToken(String text, char delimiter) {
        String token;
        int index = text.indexOf(delimiter);
        if (index < 0) \{ //delimiter not found, base case
            //final case
            token = text.substring(0);
            if (token.length() > 0) System.out.println(token);
        } else { //delimiter found, recursive case
            token = text.substring(0, index);
            if (token.length() > 0) System.out.println(token);
            printFirstToken(text.substring(index+1), delimiter);
        }
    }
     * Prints text vertically using a delimiter (using Scanner)
     * @param text the text to print
     * @param delimiter the delimiter to be used to split text
    public static void printSplittedTextUsingScanner(String text, char
delimiter) {
        Scanner sc = new Scanner(text);
        sc.useDelimiter(String.valueOf(delimiter));
        while (sc.hasNext()) {
            String token = sc.next();
            if (token.length() > 0) System.out.println(token);
        }
    }
}
```

Conversió entre String i Number

Java proveeix tota una sèria de classes envolupants (*wrappers*) dels tipus de dades primitives (int, long, ...).

Totes aquestes classes són subclasses de la classe *Number*:

- Integer
- Short
- Long
- Float
- Double etc.

Per convertir números a format string i viceversa, utilitzem aquestes classes envolupants i la classe String.

```
//donat un text que conté un número
String intText = "23";
//s'obté el valor numèric amb el mètode estàtic parseXXX de la classe envolupant
del tipus primitiu corresponent
int intValue = Integer.parseInt(intText);

//donat un valor numèric
int intValue = 23;
//s'obté la representació en format String amb el mètode toString de la classe
envolupant del tipus primitiu corresponent
String intText = Integer.toString(intValue);
//alternativament, la classe String proveeix els mètodes valueOf, els quals fan
el mateix que toString del la classe envolupant
String intText = String.valueOf(intValue);
```

Proposta d'exercici: El xifrat per desplaçament (xifrat Cèsar)

El xifrat utilitzat per Juli Cèsar per comunicar-se sense que els missatges puguessin ser llegits per l'enemic aplicava l'algorisme de xifrat per desplaçament.

Consulteu el seu funcionament aquí.

Codifiqueu un programa que demani a l'usuari un missatge (String) i un desplaçament (enter), codifiqui el missatge, el mostri codificat, després el decodifiqui i el mostri decodificat.

Els mètodes per codificar i decodificar estaran en una classe separada (sense mètode main): XifratCesar.java.

```
* xifra el missatge amb l'algorisme de desplaçament
* @param missatge el missatge a xifrar
* @param desp el desplaçament a aplicar
* @return el missatge xifrat
*/
public static String xifrarCesar(String missatge, int desp) {
    String result="";
    //TODO
    return result;
```

```
}
 * desxifra el missatge amb l'algorisme de desplaçament
 * @param missatge el missatge a desxifrar
 * @param desp el desplaçament a aplicar
 * @return el missatge desxifrat
public static String desxifrarCesar(String missatge, int desp) {
    String result="";
    //T0D0
    return result;
}
La classe principal importarà la classe XifratCesar i usarà els seus mètodes per xifrar i desxifrar.
public class XifratDeMissatges {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        sc.useDelimiter("\n");
        System.out.print("Entra la frase a xifrar: ");
        String textAXifrar = sc.next();
        System.out.print("Entra el desplaçament: ");
        int desplacament = sc.nextInt();
        System.out.println("Text a xifrar: "+ textAXifrar);
        String textXifrat = XifratCesar.xifrarCesar(textAXifrar, desplacament);
        System.out.println("Text xifrat: "+ textXifrat);
        String textDesxifrat = XifratCesar.desxifrarCesar(textXifrat,
desplacament);
        System.out.println("Text desxifrat: "+ textDesxifrat);
    }
}
```

Solució:

- Xifrat César
- Xifrat de missatges (principal)

Dates i temps

Convé utilitzar les classes del paquet **java.time**, les quals estan basades en el calendari ISO, el qual segueix les regles del calendari Gregorià introduit l'any 1582.

Les classes més destacades del paquet *java.time* són:

- **LocalDate**: representa dates sense hora i permet declarar-les, sumar-les, restar-les i comparar-les.
- LocalTime: l'equivalent a l'anterior, però per representar hores sense data.
- **LocalDateTime**: combinació de les dues anteriors, representa data i hora.

- **Instant**: emmagatzema un moment determinat en el temps amb data i hora com un timestamp.
- **ZonedDateTime**: Com LocalDateTime però tenint en consideració la zona horària.
- **Period**: representa diferències entre moments en el temps.
- **Duration**: similar a l'anterior, però només per a hores.

Totes aquestes classes produeixen instàncies immutables i no tenen constructors públics, sinó que es construeixen a partir de mètodes *factory*.

Els mètodes més importants són:

- **now()**: crea instàncies noves a partir de la data i hora actuals.
- **of()**: construeix dates i hores a partir de les seves parts.
- with(): modifica la data o hora actual segons el paràmetre.

Per a obtenir les parts d'una data o d'una hora disposen de mètodes **getHour()**, **getMinute()**, **getMonth()**, etc.

```
//get current data
LocalDate today = LocalDate.now();
System.out.println(today);
//output: 2022-11-05
//get current time
LocalTime now = LocalTime.now();
System.out.println(now);
//output: 18:35:38.330782700
//obtenir la data i l'hora actuals
LocalDateTime todayNow = LocalDateTime.now();
System.out.println(todayNow);
//output: 2022-11-05T18:35:38.330782700
//use a formatter to convert into string with specific format
DateTimeFormatter dtFormat1 = DateTimeFormatter.ofPattern("EEEE yyyy/MMMM/dd,
hh:mm:ss");
System.out.println(todayNow.format(dtFormat1));
//output: sábado 2022/noviembre/05, 06:35:38
//get current date and time with time zone
ZonedDateTime todayNowHere = ZonedDateTime.now();
DateTimeFormatter dtFormat2 = DateTimeFormatter
      .ofLocalizedDateTime(FormatStyle.FULL) //format
      .withLocale(Locale.forLanguageTag("ca-ES")); //locale
System.out.println(todayNowHere.format(dtFormat2));
//output: dissabte, 5 de novembre de 2022, a les 18:35:38 (Hora estàndard del
Centre d'Europa)
//especify format with language tag
DateTimeFormatter dtFormat3 = DateTimeFormatter.ofPattern("EEEE yyyy/MMMM/dd,
hh:mm:ss")
        .withLocale(Locale.forLanguageTag("ca-ES"));
System.out.println(todayNowHere.format(dtFormat3));
//output: dissabte 2022/de novembre/05, 06:35:38
//especify format with DateTimeFormatter constants
System.out.println(todayNowHere.format(DateTimeFormatter.ISO_DATE_TIME));
//output: 2022-11-05T18:35:38.363622+01:00[Europe/Madrid]
```

```
//determine is a year is leap year
int year = 2024, month=3, day=5;
LocalDate date = LocalDate.of(year, month, day);
System.out.format("Is %d leap year?: %s ", date.getYear(),
date.isLeapYear()?"yes":"no");

Per a analitzar (parse) dates disposen del mètode parse().
LocalDate hoy = LocalDate.parse("2023-10-25");
LocalDate seisNov = LocalDate.parse("25/10/2023",
DateTimeFormatter.ofPattern("d/M/yyyy") );
```

Per a més exemples: Cómo manejar correctamente fechas en Java: el paquete java.time

La classe StringBuilder

Classe StringBuilder

```
/**
 * Exemple d'ús de StringBuilder
 * @author Jose
public class StringBuilderExemple {
    public static void main(String[] args) {
        //instanciar un StringBuilder amb un String
        StringBuilder sb = new StringBuilder("En un lugar de la Mancha");
        //convertir a String i mostrar
        System.out.println("=contingut inicial=");
        System.out.println(sb.toString());
        //append
        System.out.println("=append=");
        sb.append(" de cuyo nombre no quiero acordarme");
        System.out.println(sb.toString());
        //insert
        System.out.println("=insert=");
        sb.insert(12, "(esto es de El Quijote) " );
        System.out.println(sb.toString());
        //delete
        System.out.println("=delete=");
        int index = sb.indexOf("la");
        sb.delete(index, index+13);
        System.out.println(sb.toString());
        //demostració d'encadenament d'accions
        System.out.println("=encadenament d'accions=");
        sb.append("aaaa").append("bbbb").insert(5, "cccc");
        System.out.println(sb.toString());
        //reverse
        System.out.println("=reverse=");
        sb.reverse();
        System.out.println(sb.toString());
    }
}
```

Sortida del codi d'exemple anterior:

DAM, DAW – M03 Programació. Apunts de UF1-NF2

=contingut inicial=

En un lugar de la Mancha

=append=

En un lugar de la Mancha de cuyo nombre no quiero acordarme

=insert=

En un lugar (esto es de El Quijote) de la Mancha de cuyo nombre no quiero acordarme

=delete=

En un lugar (esto es de El Quijote) de cuyo nombre no quiero acordarme =encadenament d'accions=

En uncccc lugar (esto es de El Quijote) de cuyo nombre no quiero acordarmeaaaabbbb

=reverse=

bbbbaaaaemradroca oreiuq on erbmon oyuc ed)etojiuQ lE ed se otse(ragul ccccnu nE

Estructures unidimensionals

Arrays en Java

Un array és un grup de variables del mateix tipus referides amb un nom comú.

Són objectes, és a dir, són de tipus referencial. Això implica que s'emmagatzemen de forma dinàmica i cal instanciar-los. Els elements de l'array s'emmagatzemen en memòria de forma consecutiva.

Poden ser unidimensionals o de més d'una dimensió.

What is an array?

Dimensions	Example	Terminology
1	0 1 2	Vector
2	0 1 2	Matrix
	3 4 5	
	6 7 8	
3	0 1 2	3D Array (3 rd order Tensor)
	3 4 5	
	6 7 8	
N	612 613 621 623 621 623 621 623 621 623	ND Array

Com a objectes, tenen atributs i mètodes.

En aquest apartat ens ocuparem dels arrays unidimensionals.

Els elements de l'array s'organitzen seqüencialment. Cada element té en anterior (llevat del primer, amb índex 0) i un posterior (llevat del darrer).

La seva longitud es pot llegir del seu atribut *length*.

L'accés als seus elements es fa de manera directa utilitzant l'índex de la posició.

Un array pot contenir dades de qualsevol tipus primitiu o referencial, incloent-hi altres arrays.

Declaració d'arrays

La declaració d'un array declara l'identificador i el tipus d'element que conté.

```
type ident[];
type [] ident;

Exemples
int intArray[];
int [] intArray[]:
float [] floatArray;
String [] stringArray;
```

La declaració no reserva espai en memòria per als elements de l'array. Com que l'array és un objecte, cal instanciar-lo definint a la vegada el nombre d'elements a emmagatzemar.

Instanciació d'arrays

```
ident = new type[size];

Exemples:
int [] intArray; //declaració
intArray = new int[10]; //instanciació de l'array de 10 elements int.

Es pot combinar la declaració i la instanciació:
int [] intArray = new int[10];
```

Definició abreujada d'arrays amb constants

Es pot declara, instanciar i inicialitzar els elements d'un array amb la següent notació abreujada:

```
int [] intArray = \{10, 20, 30, 40, 50\}; //array de 5 elements int
```

Accés als elements d'un array

L'accés als elements d'un array es fa de manera indexada amb els operadors []. Cal tenir en compte que el primer element té índex **0** i el darrer **length-1**.

```
int [] intArray = {10, 20, 30, 40, 50}; //array de 5 elements int
int valor = intArray[3]; //accés a l'element amb índex 3
System.out.prinln(valor); //mostra 40
intArray[2]=31; //canvia el valor de l'element amb índex 2 (el 30 ara és 31)

Podem utilitzar un bucle per recórrer els elements de l'array

for (int i=0; i<intArray.length; i++) {
    System.out.println("Element amb índex "+i+": "+intArray[i]);
}</pre>
```

ArrayIndexOutOfBounds

Quan s'intenta accedir a un elements fora de l'array, es genera l'excepció

ArrayIndexOutOfBounds.

```
int intArray = new int[5];
//...
intArray[7] //llança excepció
```

Arrays d'objectes

Quan els elements de l'array són objectes, la instanciació de l'array només crea espai per a les referències als objectes.

Abans de llegir un element, cal instanciar l'objecte que conté.

```
String [] names = new String[3]; //declaració de l'array de 5 elements String,
els quals encara no s'ha creat (són nuls)
System.out.println(names[0]); //NullPointerException

String [] names = {"John", "Martha", "Louis"}; //declara, instancia i
inicialitza
System.out.println(names[0]); //mostra "John"

String [] names = new String[3]; //declaració de l'array de 5 elements String,
els quals encara no s'ha creat (són nuls)
names[0] = "John"; //instancia i inicialitza String i copia referència la
primera posició de l'array
names[1] = "Martha";
names[2] = "Louis";
System.out.println(names[1]); //mostra "Martha"
```

La sintaxi general per a qualsevol tipus d'objecte (substituir String pel nom de la classe):

```
String [] names = new String[3]; //declaració de l'array de 5 elements String,
els quals encara no s'ha creat (són nuls)
names[0] = new String("John");
names[2] = new String("Martha");
names[2] = new String("Louis");
També podem assignar a un element un objecte prèviament construit:
```

```
String name = "Peter"; //o String name = new String("Peter");
names[1] = name;
```

Arrays i mètodes

Els arrays es poden passar com a paràmetres als mètodes i també poden ser retornats per ells.

Passar array a mètode

```
public void printNames(String [] names) {
   for (int i=0; i<names.length; i++) {
      System.out.println(names[i]);
   }
}
String [] listOfNames = {"John", "Martha", "Louis"};
printNames(listOfNames);</pre>
```

Retornar arrays des d'un mètode

```
public int [] getNotes() {
    //obtenir les notes
    return new int[] {3, 8, 5};
}
int [] notes = getNotes();
for (int i=0; i<notes.length; i++) {
    System.out.println(notes[i]);
}</pre>
```

Recorregut d'arrays amb bucle for-each

```
int[] intArray = { 12, 32, 95, 11, 10 };
for (int elem: intArray) {
    System.out.println(elem);
}
```

Aquests bucles són molt pràctics però no permeten modificar els elements (només la variable d'iteració) ni donen accés a l'índex de l'element.

Exemples

Càlculs estadístics amb arrays

Programa que entra un array d'enters, el mostra i calcula la suma dels seus elements, el valor mínim i el valor màxim.

Primera versió amb tot el codi a la mateixa classe i al principal.

```
import java.util.Scanner;
/**
 * Entra un array, el mostra i calcula suma, mínim i màxim
 * Versió sense funcions
 * @author Jose
public class Ex01a {
    public static void main(String[] args) {
        Scanner lector = new Scanner(System.in);
        //preguntar quants elements
        System.out.print("Quants elements? ");
        int numElements = lector.nextInt();
        //declarar i instanciar l'array
        int [] llista = new int[numElements];
        //llegir els elements
        for (int i=0; i<numElements; i++) {</pre>
            //llegir element
            System.out.print("Element "+i+": ");
            int elem = lector.nextInt();
            //posar-lo a la llista
            llista[i] = elem;
        //mostrar la llista
        for (int i=0; i<numElements; i++) {</pre>
            System.out.print(" "+llista[i]);
        System.out.println("");
        //calcular suma
        int suma = 0;
        for (int i=0; i<numElements; i++) {</pre>
            suma += llista[i];
        System.out.println("Suma: "+suma);
        //calcular mínim
        int minim = llista[0];
        for (int i=0; i<numElements; i++) {</pre>
            if (llista[i] < minim) {</pre>
                minim = llista[i];
        System.out.println("Minim: "+minim);
        //calcular màxim
        int maxim = llista[0];
        for (int i=0; i<numElements; i++) {
            if (maxim < llista[i]) {</pre>
                maxim = llista[i];
```

```
}
        System.out.println("Maxim: "+maxim);
    }
}
Segona versió amb funcions a la classe principal
import java.util.Scanner;
 * Entra un array, el mostra i calcula suma, mínim i màxim
 * Versió amb funcions a la mateixa classe
 * @author Jose
 */
public class Ex01b {
    public static void main(String[] args) {
        Scanner lector = new Scanner(System.in);
        //preguntar quants elements
        System.out.print("Quants elements? ");
        int numElements = lector.nextInt();
        //declarar i llegir la llista
        int [] llista = llegirLlista(numElements);
        //mostrar la llista
        mostrarLlista(llista);
        //calcular suma
        int suma = calcularSuma(llista);
        System.out.println("Suma: "+suma);
        //calcular minim
        int minim = calcularMinim(llista);
        System.out.println("Minim: "+minim);
        //calcular màxim
        int maxim = calcularMaxim(llista);
        System.out.println("Maxim: "+maxim);
    }
     * llegeix una llista d'enters de la longitud especificada
     * @param longitud nombre d'elements a llegir
     * @return array amb la llista
    public static int [] llegirLlista(int longitud) {
        Scanner lector = new Scanner(System.in);
        //declarar i instanciar l'array
        int [] dades = new int[longitud];
        //llegir els elements
        for (int i=0; i<longitud; i++) {</pre>
            //llegir element
            System.out.print("Element "+i+": ");
            int elem = lector.nextInt();
            //posar-lo a la llista
            dades[i] = elem;
        return dades;
```

```
}
/**
 * mostra per pantalla unaarray d'enters
 * @param dades l'array a mostrar
public static void mostrarLlista(int [] dades) {
    //mostrar la llista
    for (int i=0; i<dades.length; i++) {</pre>
        System.out.print(" "+dades[i]);
    System.out.println("");
}
 * calcula la suma dels elements de l'array
 * @param dades l'array els elements del qual cal sumar
 * @return la suma dels elements de l'array
public static int calcularSuma(int [] dades) {
    int suma = 0;
    for (int i=0; i<dades.length; i++) {</pre>
        suma += dades[i];
    return suma;
}
 * calcula el mínim dels elements de l'array
 * @param dades l'array del qual cal calcular el mínim
 * @return el mínim dels elements de l'array
public static int calcularMinim(int [] dades) {
    int minim = dades[0];
    for (int i=0; i<dades.length; i++) {</pre>
        if (dades[i] < minim) {</pre>
            minim = dades[i];
    return minim;
}
/**
 * calcula el màxim dels elements de l'array
 * @param dades l'array del qual cal calcular el màxim
 * @return el màxim dels elements de l'array
public static int calcularMaxim(int [] dades) {
    int maxim = dades[0];
    for (int i=0; i<dades.length; i++) {</pre>
        if (maxim < dades[i]) {</pre>
            maxim = dades[i];
        }
    return maxim;
}
```

}

Tercera versió amb els mètodes a una classe separada que fa de biblioteca de funcions.

```
import java.util.Scanner;
/**
 * Entra un array, el mostra i calcula suma, mínim i màxim
 * Versió amb funcions a una altra classe
 * @author Jose
 */
public class Ex01c {
    public static void main(String[] args) {
        Scanner lector = new Scanner(System.in);
        //preguntar quants elements
        System.out.print("Quants elements? ");
int numElements = lector.nextInt();
        //declarar i llegir la llista
        int [] llista = llegirLlista(numElements);
        //mostrar la llista
        mostrarLlista(llista);
        //calcular suma
        int suma = Estadistica.calcularSuma(llista);
        System.out.println("Suma: "+suma);
        //calcular mínim
        int minim = Estadistica.calcularMinim(llista);
        System.out.println("Minim: "+minim);
        //calcular màxim
        int maxim = Estadistica.calcularMaxim(llista);
        System.out.println("Maxim: "+maxim);
    }
     * llegeix una llista d'enters de la longitud especificada
     * @param longitud nombre d'elements a llegir
     * @return array amb la llista
    public static int [] llegirLlista(int longitud) {
        Scanner lector = new Scanner(System.in);
        //declarar i instanciar l'array
        int [] dades = new int[longitud];
        //llegir els elements
        for (int i=0; i<longitud; i++) {</pre>
            //llegir element
            System.out.print("Element "+i+": ");
            int elem = lector.nextInt();
            //posar-lo a la llista
            dades[i] = elem;
        return dades;
    }
    /**
     * mostra per pantalla un array d'enters
     * @param dades l'array a mostrar
    public static void mostrarLlista(int [] dades) {
        //mostrar la llista
```

```
for (int i=0; i<dades.length; i++) {</pre>
            System.out.print(" "+dades[i]);
        System.out.println("");
    }
}
on la classe biblioteca és aquesta
 * Classe per fer càlculs estadístics amb arrays
 * @author Jose
public class Estadistica {
     * calcula la suma dels elements de l'array
     * @param dades l'array els elements del qual cal sumar
     * @return la suma dels elements de l'array
    public static int calcularSuma(int[] dades) {
        int suma = 0;
        for (int i = 0; i < dades.length; i++) {
            suma += dades[i];
        return suma;
    }
     * calcula el mínim dels elements de l'array
     * @param dades l'array del qual cal calcular el mínim
      @return el mínim dels elements de l'array
    public static int calcularMinim(int[] dades) {
        int minim = dades[0];
        for (int i = 0; i < dades.length; i++) {
            if (dades[i] < minim) {</pre>
                minim = dades[i];
            }
        return minim;
    }
     * calcula el màxim dels elements de l'array
     * @param dades l'array del qual cal calcular el màxim
     * @return el màxim dels elements de l'array
    public static int calcularMaxim(int[] dades) {
        int maxim = dades[0];
        for (int i = 0; i < dades.length; i++) {
            if (maxim < dades[i]) {</pre>
                maxim = dades[i];
```

```
}
    return maxim;
}
```

Exercici proposat: Afegir a la classe *Estadistica.java* mètodes per calcular la mitjana aritmètica i la desviació estàndard. Provar-ne el funcionament invocant-les des de la classe principal.

La classe Arrays

La classe <u>java.util.Arrays</u> conté nombrosos mètodes estàtics per manipular arrays.

Tutorial d'ús de la classe Arrays

A tall d'exemple (T representa qualsevol tipus de dades):

```
static String to String (T[] a) retorna una representació en format \mathit{String} de l'array.
```

static void sort(T[] a) ordena en ordre ascendent l'array.

```
static void fill(T[] a, T val) assigna el valor val a tots els elements de l'array.
```

```
int [] dades = {10, 6, 2, 5, 7};
System.out.println( Arrays.toString(dades) ); //mostra [10, 6, 2, 5, 7]
Arrays.sort( dades ); //ordena l'array dades de menor a major
System.out.println( Arrays.toString(dades) ); //mostra [2, 5, 6, 7, 10]
dades = Arrays.fill( dades, 9 ); //omple l'array dades amb 9's
System.out.println( Arrays.toString(dades) ); //mostra [9, 9, 9, 9]
```

Taules i estructures multidimensionals

Arrays amb dimensions fixes

Els arrays multidimensionals en Java consisteixen en arrays d'arrays, és a dir, arrays on cada element és a la seva vegada un array.

Ens centrarem en aquest apartat sobretot en arrays bidimensionals, també anomenats taules o matrius.

```
//Two dimensional array (10x20 elements):
int[][] arr2D = new int[10][20];

//Three dimensional array (10x15x5 elements):
int[][][] arr3D = new int[10][15][5];
```


El nombre d'elements emmagatzemats en un array multidimensional s'obté fent el producte de totes les seves longituds.

What is an array?

Dimensions	Example	Terminology
1	0 1 2	Vector
2	0 1 2	Matrix
	3 4 5	
	6 7 8	
3	0 1 2	3D Array (3 rd order Tensor)
	3 4 5	
	6 7 8	
N	012 013 021 013 021 013 013 013 021 013	ND Array

L'accés als elements es fa amb els índexs de cada dimensió (en ordre). En el cas d'arrays bidimensionals podem imaginar-los com taules o matrius organitzats en files (primer índex) i columnes (segon índex).

```
int[][] arr2D = new int[3][2];
arr2D[0][1] = 3; //element a la primera fila, segona columna.
```

Es poden inicialitzar amb la notació abreujada {}.

```
int[][] arr2D = { {1, 2}, {3, 4}, {5, 6} };
for (int i=0; i<3; i++) { //i recorre les files (primera dimensió)
    for (int j=0; j<2; j++) { //j recorre les columnes (segona dimensió)
        System.out.format("arr[%d][%d]=%d", i, j, arr2D[i][j]);
    }
}</pre>
```

O també es poden inicialitzar en qualsevol lloc del codi instanciant un array per a l'element corresponent.

```
int [][] arr3x2 = new int[3][2];
int [] arr1x2 = new int[2];
arr1x2[0] = 1;
```

```
arr1x2[1] = 2;
arr3x2[0][0] = arr1x2;
//el mateix amb les altres files (1 i 2)
o també
int [][] arr3x2 = new int[3][2];
int [] arr1x2 = {1, 2};
arr3x2[0][0] = arr1x2;
//el mateix amb les altres files (1 i 2)
```

Exemples amb arrays bidimensionals

```
import java.util.Arrays;
import java.util.Random;
 * @author Jose
public class Matrius {
    public static void main(String[] args) {
        //declarar matriu i generar-la i inicialitzar-la amb un mètode
        int [][] matriu = generarMatriuAleatoria(3, 4);
             mostrar matriu en format unilínia
        //
        System.out.println(matrixToString(matriu));
        //declarar i instanciar matriu i inicialitzar-la amb un mètode
        int [][] matriu2 = new int [3][4];
        inicialitzarMatriuAleatoria(matriu2);
             mostrar matriu en format unilínia
        System.out.println(matrixToString(matriu2));
        //mostrar matriu en format taula
        System.out.println(matrixToTable(matriu));
    }
     * declara, instancia i inicialitza amb dades aleatòries
    * una matriu amb les files i columnes especificades
     * @param files el número de files de la matriu
     * @param columnes el número de columnes de la matriu
     * @return la matriu amb les dades
    public static int [][] generarMatriuAleatoria(int files, int columnes) {
        int [][] dades = new int[files][columnes];
        final int MAX_VALOR = 100;
        Random rnd = new Random();
        for (int i = 0; i < dades.length; i++) {
            for (int j = 0; j < dades[i].length; <math>j++) {
                dades[i][j] = rnd.nextInt(MAX_VALOR);
            }
        return dades;
    }
     * inicialitza una matriu amb dades aleatòries
```

}

```
* com que el paràmetre 'dades' és una referència,
     * es pot usar per accedir als elements de la matriu
     * i canviar els seus valors.
     * @param dades la matriu a omplir
    public static void inicialitzarMatriuAleatoria(int [][] dades) {
        final int MAX_VALOR = 100;
        Random rnd = new Random();
        for (int i = 0; i < dades.length; i++) {
            for (int j = 0; j < dades[i].length; <math>j++) {
                dades[i][j] = rnd.nextInt(MAX_VALOR);
            }
        }
    }
     * genera un format String unilínia de la matriu
     * @param dades la matriu a representar
     * @return String amb la matriu en format unilínia
    public static String matrixToString(int [][] dades) {
        StringBuilder sb = new StringBuilder();
        sb.append("[");
for (int i = 0; i < dades.length; i++) {</pre>
            sb.append(Arrays.toString(dades[i]));
            if (i<dades.length-1) sb.append(", ");</pre>
        sb.append("]");
        return sb.toString();
    }
     * genera un format tabular per a una matriu
       @param dades la matriu a tabular
     * @return format String tabular de la matriu
    public static String matrixToTable(int [][] dades) {
        StringBuilder sb = new StringBuilder();
        //sb.append("[");
        for (int i = 0; i < dades.length; i++) {
            for (int j = 0; j < dades[i].length; <math>j++) {
                 sb.append(dades[i][j]);
                 if (j<dades[i].length-1) sb.append("\t");</pre>
            if (i<dades.length-1) sb.append("\n");</pre>
        }
        //sb.append("]");
        return sb.toString();
    }
//llegir array bidimensional de teclat
Scanner lector = new Scanner(System.in);
System.out.print("Nombre de files: ");
int numFiles = lector.nextInt();
System.out.print("Nombre de columnes: ");
int numColumnes = lector.nextInt();
```

```
//declarar i instanciar la matriu de dades
int [][] dades = new int[numFiles][numColumnes];
//llegir dades de l'usuari
for (int i = 0; i < numFiles; i++) { //bucle per recórrer les files
    for (int j = 0; j < numColumnes; j++) { //bucle per recórrer les columnes
    (cel·les de cada fila)
        System.out.format("dades[%d][%d]: ", i, j);
        dades[i][j] = lector.nextInt();
    }
}</pre>
```