DDA3020 WEEK 3 TUTORIAL

LINEAR REGRESSION - PART 1

Kangran ZHAO

School of Data Science, The Chinese University of Hong Kong, Shenzhen

February 9, 2025

INTRODUCTION

- ▶ Given data (\mathbf{x}, y) sampled from random variable \mathcal{X} and other random variable(s) \mathcal{Y} , we need to find out a linear relationship between them, e.g., the linear relationship between the price of a house and the size of a house.
- One variable linear relationship:

$$y = b + wx$$

Many variable linear relationship:

$$y = w_0 + w_1 x_1 + w_2 x_2 + ... + w_k x_k$$

= $w_0 + \sum_{i=1}^k w_i x_i$, (where $x_0 = 1$)
= $\mathbf{x}^T \mathbf{w}$

The goal of linear regression is to find out the optimal value of **a** so to minimize the gap between your predicted value and actual value. That is, given data samples $\{(\mathbf{x}_i, y_i)\}_{i=1}^m$, the value you predicted using $\hat{y}_i = \mathbf{x}^T \mathbf{w} + b$ should be as close to actual value of y_i . In linear regression, the goal is to minimize the average prediction error

$$\frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}_{i}^{\mathsf{T}} \mathbf{w} - y_{i})^{2}$$
$$= \frac{1}{m} (\mathbf{X} \mathbf{w} - \mathbf{y})^{\mathsf{T}} (\mathbf{X} \mathbf{w} - \mathbf{y})$$

CLOSED-FORM SOLUTION

► Solution (from lecture):

$$\frac{\partial}{\partial \mathbf{w}} \frac{1}{m} (\mathbf{X} \mathbf{w} - \mathbf{y})^T (\mathbf{X} \mathbf{w} - \mathbf{y}) = 0$$

$$\frac{\partial}{\partial \mathbf{w}} (\mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} - 2\mathbf{y}^T \mathbf{X} \mathbf{w} + \mathbf{y}^T \mathbf{y}) = 0$$

$$2\mathbf{X}^T \mathbf{X} \mathbf{w} - 2\mathbf{X}^T \mathbf{y} = 0$$

$$2\mathbf{X}^T \mathbf{X} \mathbf{w} = 2\mathbf{X}^T \mathbf{y}$$

$$\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Supplementary about vector/matrix derivatives:

$$\frac{\partial}{\partial \mathbf{x}} \mathbf{a}^T \mathbf{x} = \begin{bmatrix} \frac{\partial}{\partial x_1} \mathbf{a}^T \mathbf{x} & \dots & \frac{\partial}{\partial x_m} \mathbf{a}^T \mathbf{x} \end{bmatrix}^T$$

$$= \begin{bmatrix} \frac{\partial}{\partial x_1} \sum_{i=1}^k a_i x_i & \dots & \frac{\partial}{\partial x_m} \sum_{i=1}^k a_i x_i \end{bmatrix}^T$$

$$= \begin{bmatrix} a_1, \dots, a_m \end{bmatrix}^T$$

$$= \mathbf{a}$$

Small Exercise

$$\frac{\partial}{\partial \mathbf{x}} \mathbf{x}^T \mathbf{A} \mathbf{x} = \begin{bmatrix} \frac{\partial}{\partial x_1} \mathbf{x}^T \mathbf{A} \mathbf{x} & \dots & \frac{\partial}{\partial x_m} \mathbf{x}^T \mathbf{A} \mathbf{x} \end{bmatrix}^T = \dots = (\mathbf{A} + \mathbf{A}^T) \mathbf{x}$$

EXTENSION OF MATRIX/VECTOR/SCALER DERIVATIVES

▶ Usually we have nominator layout and denominator layout, which means to mainly use nominator or denominator matrix/vector/constant shape as output. Take denominator layout as example:

	$y\in\mathbb{R}$	$\mathbf{y} \in \mathbb{R}^{ ho}$	$\mathbf{Y} \in \mathbb{R}^{p imes q}$
$x \in \mathbb{R}$	$\mathbb R$	$\begin{bmatrix} \frac{\partial \mathbf{y}_1}{\partial x} & \cdots & \frac{\partial \mathbf{y}_p}{\partial x} \end{bmatrix} \in \mathbb{R}^{1 \times p}$	$\begin{bmatrix} \frac{\partial \mathbf{Y}_{11}}{\partial x} & \cdots & \frac{\partial \mathbf{Y}_{p1}}{\partial x} \\ \vdots & \ddots & \vdots \\ \frac{\partial \mathbf{Y}_{1q}}{\partial x} & \cdots & \frac{\partial \mathbf{Y}_{pq}}{\partial x} \end{bmatrix} \in \mathbb{R}^{q \times p}$
$\mathbf{x} \in \mathbb{R}^m$	$\begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \vdots \\ \frac{\partial y}{\partial x_m} \end{bmatrix} \in \mathbb{R}^m$	$\begin{bmatrix} \frac{\partial \mathbf{y}_1}{\partial \mathbf{x}_1} & \cdots & \frac{\partial \mathbf{y}_p}{\partial \mathbf{x}_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial \mathbf{y}_1}{\mathbf{x}_m} & \cdots & \frac{\mathbf{y}_p}{\partial \mathbf{x}_m} \end{bmatrix} \in \mathbb{R}^{m \times p}$	beyond this course
$\mathbf{X} \in \mathbb{R}^{m \times n}$	$\begin{bmatrix} \frac{\partial y}{\partial \mathbf{X}_{11}} & \cdots & \frac{\partial y}{\partial \mathbf{X}_{1n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial y}{\partial \mathbf{X}_{m1}} & \cdots & \frac{\partial y}{\partial \mathbf{X}_{mn}} \end{bmatrix} \in \mathbb{R}^{m \times n}$	beyond this course	beyond this course

GRADIENT DESCENT

Gradient Descent is frequently used in Machine Learning algorithms, which means to use gradient to descent on the optimization hyper-plane. In one-variable and two-variable cases, the gradient descent look like

Figure. Gradient Descent Visualization Example

4/5

Define the objective function you're about to optimize is $\mathcal{J}(\mathbf{w})$. The gradient on some value $\mathbf{w}^{(i)}$ is $\frac{\partial \mathcal{J}(\mathbf{w}^{(i)})}{\partial \mathbf{w}^{(i)}}$. The parameter update is $\mathbf{w}^{(i+1)} := \mathbf{w}^{(i)} - \alpha \frac{\partial \mathcal{J}(\mathbf{w}^{(i)})}{\partial \mathbf{w}^{(i)}}$, where the superscript (i) indicates the i-th times of optimization, α is called step size.

CODE IMPLEMENTATION

- ► Closed-form Solution
- ▶ Gradient Descent
- ► Scikit-learn