Assignment 3

Deadline: 23 April 2021, 12 noon Total marks: 20

1 Uniformly distributed points on the disk [10 marks]

The goal of this exercise is to use inverse transform and rejection sampling for generating uniformly distributed points on the unit disk

$$D = \{ x \in \mathbb{R}^2 \mid ||x||_2 \le 1 \}.$$

1. Complete randdisk_rejection() such that it samples $X \sim \text{Uniform } D$ using rejection sampling with proposal distribution Uniform $[-1,1]^2$.

Hint. You can check your answer using plot_samples().

- 2. How many samples of Uniform $[-1,1]^2$ does randdisk_rejection() require on average to produce a single sample of Uniform D?
- 3. Show that if $R \sim \text{PDF}(r \mapsto 2r \text{ on } [0,1])$ and $\Phi \sim \text{Uniform}[0,2\pi]$ independently, then

$$X(R, \Phi) = \begin{pmatrix} R \cos(\Phi) \\ R \sin(\Phi) \end{pmatrix} \sim \text{Uniform } D.$$

Hint. You may want to use that

$$\int_{D} f(x) \, dx = \int_{0}^{1} \int_{0}^{2\pi} f(X(r,\phi)) \, r \, d\phi \, dr.$$

4. Complete randdisk_transform() such that it samples $X \sim \text{Uniform } D$ using the result from Task 3.

Hint. You can check your answer using plot_samples().

5. [unmarked] Which of randdisk_rejection() and randdisk_transform() do you think is faster? Check your answer using performance_shootout().

2 Importance sampling for highly concentrated integrals [10 marks]

The goal of this task is to use Monte Carlo sampling to estimate the integral

$$\mathbb{E}[f(X)] = \int_0^1 f(x) dx$$
 where $X \sim \text{Uniform}[0,1].$

1

1. Complete uniform_sampling(f,N) such that it estimates both

$$\mathbb{E}[f(X)]$$
 and $\operatorname{Var}[f(X)] = \mathbb{E}\Big[\big(f(X) - \mathbb{E}[f(X)]\big)^2\Big]$

using N Monte Carlo samples.

2. [Unmarked] The provided function sin_integral() uses uniform_sampling() to estimate

$$\int_0^1 \frac{\pi}{2} \sin(\pi x) \, dx = 1,\tag{1}$$

and plot_histogram() to visualise the accuracy of the estimates. Use this function to check your answer to Task 1. If your answers are correct, you will observe that $\tilde{\mathbb{E}}_{100}[f(X)]$ lies within a distance 0.1 of the exact expectation with high probability.

3. [Unmarked] The provided function concentrated_integral() uses uniform_sampling() to estimate

$$\int_{0}^{1} \frac{1}{0.0906401} \exp\left(-\left(20\left(x - 0.5\right)\right)^{4}\right) dx \approx 1.$$
 (2)

Run this function and observe how the error in $\mathbb{E}_{100}[f(X)]$ increases to roughly 0.5 when applied to (2) instead of (1).

The problem in concentrated_integral() is that the integrand in (2) is highly concentrated (see plot_integrand()); hence it is far from constant and hence it has a high variance. We can improve the situation by replacing direct sampling with importance sampling with a sampling distribution PDF(q) such that new random variable

$$f(Y) \frac{p(Y)}{q(Y)}, \qquad Y \sim PDF(q),$$

is as close to constant as possible. Put differently, this means that we want to estimate (2) through importance sampling with a sampling distribution which is as close to f(x) p(x) as possible but which is also easily samplable. Looking at plot_integrand() once more, we conclude that choosing q(x) to be an appropriately shifted and scaled Gaussian should achieve this goal.

4. Complete importance_sampling(f,N,m,s) such that it estimates both

$$\mathbb{E}\left[f(Y)\frac{p(Y)}{q(Y)}\right]$$
 and $\operatorname{Var}\left[f(Y)\frac{p(Y)}{q(Y)}\right]$

using N Monte Carlo samples, where $Y \sim \text{Normal}(m, s^2)$ and

$$p(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1, \\ 0 & \text{otherwise,} \end{cases} \qquad q(x) = \frac{1}{\sqrt{2\pi}s} \exp\left(-\frac{(x-m)^2}{2s^2}\right)$$

denote the PDFs of Uniform[0, 1] and Normal (m, s^2) , respectively.

Hints. You can sample $Y \sim \text{Normal}(m, s^2)$ using y = m + s*randn(). The normal PDF q(x) is implemented in normal_pdf(m,s,x).

5. (Unmarked) Rerun concentrated_integral(), but this time change importance = false to importance = true. Observe how importance sampling achieves a much better accuracy than uniform sampling.