Raport 4

Paweł Matławski album 249732

14 marca 2021

Spis treści

1	Zaa	awansowane metody klasyfikacji
	1.1	Rodziny klasyfikatorów
		1.1.1 Wczytanie danych
		1.1.2 Drzewo klasyfikacyjne
		1.1.3 Bagging
		1.1.4 Boosting
		1.1.5 Lasy losowe
		1.1.6 Ważność cech
		1.1.7 Podsumowanie
	1.2	Metoda wektorów nośnych (SVN)
		1.2.1 Jądro liniowe
		1.2.2 SVM dla innych funkcji jądrowych
		1.2.3 Optymalizacja parametrów
		1.2.4 Podsumowanie
2	Zad	lanie nr 2. Analiza skupień 14
	2.1	Wybór danych
	2.2	Zastosowanie algorytmu grupującego PAM
		2.2.1 wizualizacja macierzy niepodobieństwa
		2.2.2 zastosowanie metody oraz wizualizacja wyników
		2.2.3 Wybór optymalnej liczby klastrów K
		2.2.4 Porównanie wyników klasyfikacji z rzeczywistymi klasami 2
	2.3	Zastosowanie algorytmu hierarchicznego AGNES
		2.3.1 Wybór optymalnej liczby skupień K
	2.4	Podsumowanie
		2.4.1 Medoidy PAM
		2.4.2 Wykresy pudełkowe
		2.4.3 Wnioski końcowe

1 Zaawansowane metody klasyfikacji

1.1 Rodziny klasyfikatorów

1.1.1 Wczytanie danych

Na początek wczytamy dane, z którymi pracowaliśmy w poprzednim sprawozdaniu. W naszym przypadku była to ramka **Vehicle** z biblioteki **mlbench**. Najpierw zastosujemy standaryzację, a następnie podzielimy dane na zbiór uczący i testowy, tak jak miało to miejsce w zadaniu 2 z listy 3.

```
library(ipred)
library(rpart)
library(rpart.plot)
library(mlbench)
library(randomForest)
```

```
data("Vehicle")
attach(Vehicle)
set.seed(1)
veh1 <- scale(Vehicle[1:18])</pre>
veh1 <- data.frame(veh1)</pre>
etykietki.veh <- Vehicle$Class
etykietki.veh <- data.frame(etykietki.veh)
veh2 <- cbind(veh1, etykietki.veh)</pre>
n.veh \leftarrow dim(veh2)[1]
learning.indx.veh <- sample(1:n.veh,2/3*n.veh)</pre>
learning.set.veh <- veh2[learning.indx.veh,]</pre>
test.set.veh <- veh2[-learning.indx.veh,]</pre>
n.veh.learning <- floor(2*n.veh/3)</pre>
n.veh.test <- n.veh - n.veh.learning</pre>
etykietki.learning.veh <- learning.set.veh$etykietki.veh
etykietki.test.veh <- test.set.veh$etykietki.veh
veh.tree.simple <- rpart(model, data=learning.set.veh)</pre>
# prognozy dla zbioru uczącego
pred.labels.learning <- predict(veh.tree.simple, newdata=learning.set.veh, type = "class")</pre>
# prognozy dla zbioru testowego
pred.labels.test <- predict(veh.tree.simple, newdata=test.set.veh, type = "class")</pre>
# wyznaczenie prognozowanych prawdopodobieństw a posteriori
pred.probs.test <- predict(veh.tree.simple, newdata=test.set.veh, type = "prob")</pre>
```

1.1.2 Drzewo klasyfikacyjne

Na początek zastosujemy znaną nam już metodę drzewa klasyfikacyjnego. Posłuży nam ona jako punkt odniesienia przy porównywaniu skuteczności "nowych" algorytmów.

```
rpart.plot(veh.tree.simple)
```


Rysunek 1: Pojedyncze drzewo klasyfikacyjne - zbiór uczący

Wyznaczamy macierze pomyłek i liczymy błąd klasyfikacyjny.

```
conf.mat.learning <- table(pred.labels.learning, learning.set.veh$etykietki.veh)
print(xtable(conf.mat.learning, caption="Macierz pomyłek - zbiór uczący"))</pre>
```

	bus	opel	saab	van
bus	140	14	17	0
opel	1	85	43	3
saab	0	26	80	2
van	5	10	10	128

Tabela 1: Macierz pomyłek - zbiór uczący

Błąd klasyfikacyjny dla zbioru uczącego:

```
(error.rate.learning <- (nrow(learning.set.veh) - sum(diag(conf.mat.learning))) / nrow(]
## [1] 0.2322695</pre>
```

```
conf.mat.test <- table(pred.labels.test, test.set.veh$etykietki.veh)
print(xtable(conf.mat.test, caption="Macierz pomyłek - zbiór testowy"))</pre>
```

	bus	opel	saab	van
bus	68	8	12	0
opel	0	35	22	2
saab	1	27	26	5
van	3	7	7	59

Tabela 2: Macierz pomyłek - zbiór testowy

Błąd klasyfikacyjny dla zbioru testowego:

```
(error.rate.test <- (nrow(test.set.veh) - sum(diag(conf.mat.test))) / nrow(test.set.veh)
## [1] 0.3333333</pre>
```

1.1.3 Bagging

Pierwszą "nową" metodą, której użyjemy, będzie bagging (od angielskiego bootstrap aggregating). Na początek sprawdźmy, jak liczba replikacji wpływa na dokładność:

```
B.vector <- c(1, 5, 10, 20, 30, 40, 50, 100)
bagging.error.rates <- sapply(B.vector, function(b) {errorest(Class~., data=Vehicle, monoplot(B.vector, bagging.error.rates, xlab="B", main="Bagging: error rate vs. B", type="b"
grid()</pre>
```

Bagging: error rate vs. B

Rysunek 2: Bagging - liczba replikacji a dokładność

Jak widać po wykresie, dokładność rośnie wraz ze wzrostem liczby replikacji, choć zdarzają się od tej reguły wyjątki. W naszej analizie użyjemy modelu z 50 replikacjami.

```
btree <- bagging(model, data=learning.set.veh, nbagg=50, minsplit=1, cp=0)</pre>
```

```
# prognozy dla zbioru uczącego
pred.labels.bagg.learning <- predict(btree, newdata=learning.set.veh, type = "class")
# prognozy dla zbioru testowego
pred.labels.bagg.test <- predict(btree, newdata=test.set.veh, type = "class")</pre>
```

Wyznaczamy macierze pomyłek i błąd klasyfikacyjny:

```
conf.mat.bagg.learning <- table(pred.labels.bagg.learning, learning.set.veh$etykietki.ve
print(xtable(conf.mat.bagg.learning, caption="Macierz pomyłek - zbiór uczący"))</pre>
```

	bus	opel	saab	van
bus	146	0	0	0
opel	0	134	0	0
saab	0	1	150	0
van	0	0	0	133

Tabela 3: Macierz pomyłek - zbiór uczący

Błąd klasyfikacyjny dla zbioru uczącego:

```
(error.rate.bagg.learning <- (nrow(learning.set.veh) - sum(diag(conf.mat.bagg.learning))
## [1] 0.00177305</pre>
```

```
conf.mat.bagg.test <- table(pred.labels.bagg.test, test.set.veh$etykietki.veh)
print(xtable(conf.mat.bagg.test, caption="Macierz pomyłek - zbiór testowy"))</pre>
```

	bus	opel	saab	van
bus	68	1	5	0
opel	1	40	21	0
saab	0	31	37	1
van	3	5	4	65

Tabela 4: Macierz pomyłek - zbiór testowy

Błąd klasyfikacyjny dla zbioru testowego:

```
(error.rate.bagg.test <- (nrow(test.set.veh) - sum(diag(conf.mat.bagg.test))) / nrow(test
## [1] 0.2553191</pre>
```

Bagging spisuje się bardzo dobrze - błąd klasyfikacyjny dla zbioru uczącego w każdej próbie jest bliski 0. Nieco gorzej prezentuje się on w przypadku zbioru testowego, ale wciąż zauważalna jest poprawa względem pojedynczego drzewa klasyfikacyjnego.

1.1.4 Boosting

library(adabag)

Kolejnym algorytmem, który wykorzystamy w naszym sprawozdaniu jest boosting. Działa on w ten sposób, że w kolejnych iteracjach trenuje a następnie mierzy błąd wszystkich dostępnych słabych klasyfikatorów. W każdej następnej iteracji "ważność" źle zakwalifikowanych obserwacji jest zwiększana, tak że klasyfikatory zwracają na nie większą uwagę (źródło: Wikipedia).

```
boost <- boosting(model, data=learning.set.veh, mfinal = 15)

# prognozy dla zbioru uczącego
pred.labels.boost.learning <- as.factor(predict.boosting(boost, newdata=learning.set.veh)</pre>
```

pred.labels.boost.test <- as.factor(predict.boosting(boost, newdata=test.set.veh)\$class)</pre>

Wyznaczamy macierze pomyłek i błąd klasyfikacyjny:

prognozy dla zbioru testowego

```
conf.mat.boost.learning <- table(pred.labels.boost.learning, learning.set.veh$etykietki.
print(xtable(conf.mat.boost.learning, caption="Macierz pomyłek - zbiór uczący"))</pre>
```

	bus	opel	saab	van
bus	146	0	0	0
opel	0	133	2	0
saab	0	1	147	0
van	0	1	1	133

Tabela 5: Macierz pomyłek - zbiór uczący

Błąd klasyfikacyjny dla zbioru uczącego:

```
(error.rate.boost.learning <- (nrow(learning.set.veh) - sum(diag(conf.mat.boost.learning
## [1] 0.008865248</pre>
```

```
conf.mat.boost.test <- table(pred.labels.boost.test, test.set.veh$etykietki.veh)
print(xtable(conf.mat.boost.test, caption="Macierz pomyłek - zbiór testowy"))</pre>
```

Błąd klasyfikacyjny dla zbioru testowego:

	bus	opel	saab	van
bus	66	0	1	0
opel	2	35	22	0
saab	2	36	42	2
van	2	6	2	64

Tabela 6: Macierz pomyłek - zbiór testowy

```
(error.rate.boost.test <- (nrow(test.set.veh) - sum(diag(conf.mat.boost.test))) / nrow(test.set.veh) - sum(diag(conf.mat.boost.test)) / nrow(test.set.veh) - sum(diag(conf.mat.boost.test)) / nrow(test.set.veh) / nrow(test.set.veh)
```

Jak widać algorytm boosting działa dobrze nawet przy niewielkiej liczbie iteracji (w naszej analizie było to 15). Jest on jednak bardzo czasochłonny - stąd właśnie niewielka liczba iteracji.

1.1.5 Lasy losowe

Ostatnią z metod przetestowanych przez nas w tym zadaniu są lasy losowe (ang. random forest).

```
p <- ncol(Vehicle) - 1
las <- randomForest(model, data=learning.set.veh, ntree=100, mtry=sqrt(p), importance=TF

# prognozy dla zbioru uczącego
pred.labels.las.learning <- predict(las, newdata=learning.set.veh, type="class")

# prognozy dla zbioru testowego
pred.labels.las.test <- predict(las, newdata=test.set.veh, type="class")</pre>
```

Wyznaczamy macierze pomyłek i błąd klasyfikacyjny:

```
conf.mat.las.learning <- table(pred.labels.las.learning, learning.set.veh$etykietki.veh)
print(xtable(conf.mat.las.learning, caption="Macierz pomyłek - zbiór uczący"))</pre>
```

-	bus	opel	saab	van
bus	146	0	0	0
opel	0	135	0	0
saab	0	0	150	0
van	0	0	0	133

Tabela 7: Macierz pomyłek - zbiór uczący

Błąd klasyfikacyjny dla zbioru uczącego:

```
(error.rate.las.learning <- (nrow(learning.set.veh) - sum(diag(conf.mat.las.learning)))
## [1] 0</pre>
```

```
conf.mat.las.test <- table(pred.labels.las.test, test.set.veh$etykietki.veh)
print(xtable(conf.mat.las.test, caption="Macierz pomyłek - zbiór testowy"))</pre>
```

	bus	opel	saab	van
bus	69	0	3	0
opel	0	40	26	0
saab	0	31	34	1
van	3	6	4	65

Tabela 8: Macierz pomyłek - zbiór testowy

Błąd klasyfikacyjny dla zbioru testowego:

```
(error.rate.las.test <- (nrow(test.set.veh) - sum(diag(conf.mat.las.test))) / nrow(test.
## [1] 0.2624113</pre>
```

Rezultaty w przypadku tego algorytmu są bardzo dobrze. Działa on też nieco szybciej niż chociażby boosting.

1.1.6 Ważność cech

```
# Ranking ważności cech
varImpPlot(las, main = "Variable Importance Plot")
```

Variable Importance Plot

Rysunek 3: Wykres ważności cech

Zmiennej o największej zdolności dyskryminacyjnej jest Max.L.Ra, a o najmniejszej Skew.maxis, Pr.Axis.Rect oraz Kurt.maxis. Oznacza to, że zmienne wybrane przez nas w zadniu drugim z listy 3 nie były wcale tymi, które mają największy wpływ na budowę skutecznego modelu.

1.1.7 Podsumowanie

- Wszystkie trzy algorytmy dają wyraźnie lepsze rezulataty niż pojedyncze drzewo klasyfikacyjne.
- Różnice w błedach klasyfikacyjnych w przypadku trzech testowanych metod nie są duże, wszystkie dają zbliżone wyniki.
- Zdecydowanie najwolniejszą i najbardziej skomplikowaną metodą jest boosting. Na drugim miejscu znajduje się bagging, a najszybsze okazały się być lasy losowe.
- Nie wszystkie zmienne mają takie same zdolności dyskryminacyjne, jednak stworzenie skutecznego modelu wymaga użycia większości z nich (a najlepiej wszystkich).

1.2 Metoda wektorów nośnych (SVN)

Głównym celem tej metody jest segregacja zbioru w taki sposób, by odległość między najbliższymi punktami (margines) była możliwie jak największa. W teorii metoda ta powinna cechować się sporą dokładnością.

1.2.1 Jądro liniowe

Zbudujemy klasyfikator SVM dla jądra liniowego i postaramy się zbadać, jak wartość C (parametr kosztu) wpływa na dokładność klasyfikacji.

• C=0.1

Liczba wektorów nośnych w klasach:

```
library(e1071)
svm.linear.C0.1 <- svm(model, data=learning.set.veh, kernel="linear", cost=.1)
svm.linear.C0.1$nSV
## [1] 73 66 128 126</pre>
```

Dokładność klasyfikacji:

```
pred.svm.lin.CO.1 <- predict(svm.linear.CO.1, newdata=test.set.veh)
(acc.svm.lin.CO.1 <- sum(diag(table(pred.svm.lin.CO.1, etykietki.test.veh)))/n.ve
## [1] 0.7340426</pre>
```

• C=1

Liczba wektorów nośnych w klasach:

```
svm.linear.C1 <- svm(model, data=learning.set.veh, kernel="linear", cost=1)
svm.linear.C1$nSV
## [1] 41 34 113 110</pre>
```

Dokładność klasyfikacji:

```
pred.svm.lin.C1 <- predict(svm.linear.C1, newdata=test.set.veh)
(acc.svm.lin.C1 <- sum(diag(table(pred.svm.lin.C1, etykietki.test.veh)))/n.veh.te
## [1] 0.751773</pre>
```

\bullet C=5

Liczba wektorów nośnych w klasach:

```
svm.linear.C5 <- svm(model, data=learning.set.veh, kernel="linear", cost=5)
svm.linear.C5$nSV
## [1] 29 23 102 104</pre>
```

Dokładność klasyfikacji:

```
pred.svm.lin.C5 <- predict(svm.linear.C5, newdata=test.set.veh)
(acc.svm.lin.C5 <- sum(diag(table(pred.svm.lin.C5, etykietki.test.veh)))/n.veh.te
## [1] 0.7659574</pre>
```

• C=10

Liczba wektorów nośnych w klasach:

```
svm.linear.C10 <- svm(model, data=learning.set.veh, kernel="linear", cost=10)
svm.linear.C10$nSV
## [1] 23 16 97 100</pre>
```

Dokładność klasyfikacji:

```
pred.svm.lin.C10 <- predict(svm.linear.C10, newdata=test.set.veh)
(acc.svm.lin.C10 <- sum(diag(table(pred.svm.lin.C10, etykietki.test.veh)))/n.veh.
## [1] 0.7836879</pre>
```

• C=50

Liczba wektorów nośnych w klasach:

```
svm.linear.C50 <- svm(model, data=learning.set.veh, kernel="linear", cost=50)
svm.linear.C50$nSV
## [1] 21 15 96 98</pre>
```

Dokładność klasyfikacji:

```
pred.svm.lin.C50 <- predict(svm.linear.C50, newdata=test.set.veh)
(acc.svm.lin.C50 <- sum(diag(table(pred.svm.lin.C10, etykietki.test.veh)))/n.veh.
## [1] 0.7836879</pre>
```

Dokładność klasyfikacji rośnie wraz ze wzrostem parametru C i waha się między 73-78%. Zauważamy ponadto, że im wyższy parametr kosztu, tym mniej wektorów nośnych w klasach.

1.2.2 SVM dla innych funkcji jądrowych

Zbudujemy klasyfikator dla jądra wielomianowego 2 i 4 stopnia, a także jądra radialnego.

```
svm.poly2 <- svm(model, data=learning.set.veh, kernel="polynomial", degree = 2)
svm.poly4 <- svm(model, data=learning.set.veh, kernel="polynomial", degree = 4)
svm.radial <- svm(model, data=learning.set.veh, kernel="radial")

pred.svm.poly2 <- predict(svm.poly2, newdata=test.set.veh)
pred.svm.poly4 <- predict(svm.poly4, newdata=test.set.veh)
pred.svm.radial <- predict(svm.radial, newdata=test.set.veh)</pre>
```

Dokładność klasyfikacji:

• Jądro wielomianowe stponia 2

```
(acc.svm.poly2 <- sum(diag(table(pred.svm.poly2, etykietki.test.veh)))/n.veh.test)
## [1] 0.6170213</pre>
```

• Jądro wielomianowe stponia 4

```
(acc.svm.poly4 <- sum(diag(table(pred.svm.poly4, etykietki.test.veh)))/n.veh.test)
## [1] 0.5425532</pre>
```

• Jądro radialne

```
(acc.svm.radial <- sum(diag(table(pred.svm.radial, etykietki.test.veh)))/n.veh.test
## [1] 0.7375887</pre>
```

Dokładność klasyfikacji w przypadku jąder wielomianowych nie jest zbyt wysoka. W przypadku jądra radialnego jest ona porównywalna do jądra liniowego z niskim parametrem kosztu.

1.2.3 Optymalizacja parametrów

Postaramy się "dostroić" jednocześnie parametry C oraz $\gamma.$

Zobrazujmy zależności błędu od parametrów jądra:

```
plot(radial.tune, transform.x=log, transform.y=log, color.palette = topo.colors)
```


Rysunek 4: Jądro radialne - błąd a parametry

Sprawdźmy teraz, jak dokładny jest model z optymalnie dobranymi parametrami:

Dokładność przekroczyła 81%, co należy uznać za bardzo dobry wynik. Jest to wyraźna poprawa względem nieoptymalnie dobranych parametrów.

1.2.4 Podsumowanie

- Jądro radialne daje dużo lepsze wyniki od jądra wielomianowego.
- Dzięki optymalizacji parametrów możemy znacznie poprawić dokładność klasyfikacji.
- Zadowalające rezultaty udało nam się również uzyskać w przypadku jądra liniowego. Tam również dokładność można poprawić optymalnie dobierając parametr C.

2 Zadanie nr 2. Analiza skupień

2.1 Wybór danych

Raz jeszcze analizować będziemy zbiór **Vehicle** z biblioteki **mlbench**. Celem zadania jest wykorzystanie algorytmów analizy skupień, sprawdzenia ich efektywności i porównania metod. Przeprowadzimy analizę wykorzystując jeden algorytm grupujący oraz jeden algorytm hierarchiczny.

```
Vehicle2 <- Vehicle[sample(nrow(Vehicle), 200),]
Vehicle3 <- Vehicle2[,-19]
etykietki.veh <- Vehicle2$Class
veh1 <- as.data.frame((scale(Vehicle3[1:18])))</pre>
```

2.2 Zastosowanie algorytmu grupującego PAM

Jako pierwszy zastosujemy algorytm grupujący PAM (Partitioning Around Medoids. Przyjmuję liczbę skupień równą aktualnej liczbie klas, czyli K=4).

2.2.1 wizualizacja macierzy niepodobieństwa

```
library(MASS)
library(cluster)
vehicles.macniepod <- daisy(veh1)
vehicles.macniepod.matrix <- as.matrix(vehicles.macniepod)
library(factoextra)
fviz_dist(vehicles.macniepod, order = TRUE)</pre>
```


Rysunek 5: Macierz niepodobieństwa

2.2.2 zastosowanie metody oraz wizualizacja wyników

Stosujemy algorytm PAM, a następnie przedstawiamy domyślną wizualizację. Później poprzez metodę MDS redukujemy wymiar danych i przedstawiamy wizualizację metody w 2D.

```
Vehicles.pam <- pam(x=vehicles.macniepod, diss=TRUE, k=4)
etykietki.pam <- Vehicles.pam$clustering

#wizualizacja domyślna
plot(Vehicles.pam)</pre>
```

Silhouette plot of pam(x = vehicles.macniepo

Average silhouette width: 0.2

Rysunek 6: Domyślna wizualizacja

```
#wizualizacja wyników w 2D MDS
veh.MDS <- cmdscale(d=vehicles.macniepod, k=4)
symbole <- 0:4
plot(veh.MDS[,1], veh.MDS[,2], col=etykietki.pam, pch=symbole[Vehicle2$Class])
legend(x="bottomright",cex = 0.5, pch=symbole, legend=levels(Vehicle2$Class))</pre>
```


Rysunek 7: Wizualizacja w 2D

Zdecydowanie widać po wizualizacji, że algorytm PAM nie grupuje danych zgodnie z rzeczywistymi wartościami. Prawie w każdym z czterech skupisk możemy zaobserwować dużo elementów z różnych klas pierwotnych.

2.2.3 Wybór optymalnej liczby klastrów K

Dokonamy wyboru ilości skupień, aby algorytm mógł najbardziej optymalnie podzielić nasze dane na wyodrębnione grupy.

```
fviz_nbclust(veh1, FUNcluster = pam, method = "wss") + geom_vline(xintercept = 3, linety
```


Rysunek 8: Wybór optymalnej liczby klastrów

fviz_nbclust(veh1, FUNcluster = pam, method = "silhouette")

Rysunek 9: Wybór optymalnej liczby klastrów

Rysunek 10: Wybór optymalnej liczby klastrów

Na podstawie trzech różnych metod znajdowania optymalnego K ("within cluster sums of squares", "average silhouette", "gap statistics") decydujemy się na K=2.

Zastosujmy algorytm dla innych K niż początkowo i sprawdźmy średnicę, rozmiar oraz separacje dla K=2,3,4,5,6.

• Dla K=2

```
Vehicles.pam2 <- pam(x=vehicles.macniepod, diss=TRUE, k=2)
Vehicles.pam3 <- pam(x=vehicles.macniepod, diss=TRUE, k=3)
Vehicles.pam5 <- pam(x=vehicles.macniepod, diss=TRUE, k=5)
Vehicles.pam6 <- pam(x=vehicles.macniepod, diss=TRUE, k=6)

sep.k2<-as.data.frame(Vehicles.pam2$clusinfo[,-c(2,3)])
print(xtable(sep.k2,caption="Średnica, rozmiar i separacja dla K = 2"),table.placem</pre>
```

	size	diameter	separation
1	149.00	10.15	1.42
2	51.00	18.92	1.42

Tabela 9: Średnica, rozmiar i separacja dla $\mathcal{K}=2$

• Dla K=3

```
sep.k3<-as.data.frame(Vehicles.pam3$clusinfo[,-c(2,3)])
print(xtable(sep.k3,caption="Średnica, rozmiar i separacja dla K = 3"),table.placem</pre>
```

_				
		size	diameter	separation
	1	76.00	7.19	1.42
	2	51.00	18.92	1.42
	3	73.00	7.80	1.51

Tabela 10: Średnica, rozmiar i separacja dla K=3

• Dla K=4

```
sep.k4<-as.data.frame(Vehicles.pam$clusinfo[,-c(2,3)])
print(xtable(sep.k4,caption="Średnica, rozmiar i separacja dla K = 4"),table.placem</pre>
```

	size	diameter	separation
1	38.00	7.95	1.27
2	50.00	18.92	1.42
3	36.00	7.08	1.00
4	76.00	7.35	1.00

Tabela 11: Średnica, rozmiar i separacja dla K=4

• Dla K=5

```
sep.k5<-as.data.frame(Vehicles.pam5$clusinfo[,-c(2,3)])
print(xtable(sep.k5,caption="Średnica, rozmiar i separacja dla K = 5"),table.placem</pre>
```

	size	diameter	separation
1	34.00	17.12	1.20
2	36.00	7.93	1.67
3	36.00	7.08	1.00
4	69.00	6.34	1.00
5	25.00	6.34	1.42

Tabela 12: Średnica, rozmiar i separacja dla $\mathcal{K}=5$

• Dla K=6

```
sep.k6<-as.data.frame(Vehicles.pam6$clusinfo[,-c(2,3)])
print(xtable(sep.k6,caption="Średnica, rozmiar i separacja dla K = 6"),table.placem</pre>
```

	size	diameter	separation
1	27.00	16.73	0.98
2	36.00	7.93	1.67
3	40.00	5.73	1.48
4	39.00	5.67	1.44
5	18.00	5.45	1.44
6	40.00	5.47	0.98

Tabela 13: Średnica, rozmiar i separacja dla K = 6

A więc, wyświetlone dane potwierdzają nam, że podział na dwa skupienia jest najbardziej optymalny.

2.2.4 Porównanie wyników klasyfikacji z rzeczywistymi klasami

```
library(e1071)
etykietki.pam2 <- Vehicles.pam2$clustering
etykietki.pam3 <- Vehicles.pam3$clustering
etykietki.pam5 <- Vehicles.pam5$clustering
etykietki.pam6 <- Vehicles.pam6$clustering
com2<-table(etykietki.pam2,etykietki.veh)</pre>
diag2<-compareMatchedClasses(etykietki.pam2,etykietki.veh,method = "rowmax")$diag
cat("Skuteczność Pam dla K=2:",diag2)
## Skuteczność Pam dla K=2: 0.6938776
com3<-table(etykietki.pam3,etykietki.veh)</pre>
diag3<-compareMatchedClasses(etykietki.pam3,etykietki.veh,method = "rowmax")$diag</pre>
cat("Skuteczność Pam dla K=3:",diag3)
## Skuteczność Pam dla K=3: 0.4805195
com4<-table(etykietki.pam,etykietki.veh)</pre>
diag4<-compareMatchedClasses(etykietki.pam,etykietki.veh,method = "rowmax")$diag
cat("Skuteczność Pam dla K=4:",diag4)
## Skuteczność Pam dla K=4: 0.435
com5<-table(etykietki.pam5,etykietki.veh)</pre>
diag5<-compareMatchedClasses(etykietki.pam5,etykietki.veh,method = "rowmax")$diag
cat("Skuteczność Pam dla K=5:",diag5)
## Skuteczność Pam dla K=5: 0.3293173
com6<-table(etykietki.pam6,etykietki.veh)</pre>
diag6<-compareMatchedClasses(etykietki.pam6,etykietki.veh,method = "rowmax")$diag
cat("Skuteczność Pam dla K=6:",diag6)
## Skuteczność Pam dla K=6: 0.2785235
```

2.3 Zastosowanie algorytmu hierarchicznego AGNES

Zastosujemy teraz algorytm AGNES z metod hierarchicznych. Na początku zwizualizujemy dendrogramy dla trzech metod algorytmu AGNES: "average linkage", "single linkage" oraz "complete linkage" i wybierzemy jedną.

• Average linkage

```
library(cluster)
Vehicle.agnes.avg <- agnes(Vehicle3, metric="euclidean", method="average", stand=TR
Vehicle.agnes.k4 <- cutree(Vehicle.agnes.avg, k=4)
fviz_dend(Vehicle.agnes.avg, k=4, main="Dendrogram - average linkage")</pre>
```

Dendrogram - average linkage

Rysunek 11: Average linkage

fviz_cluster(list(data=Vehicle3, cluster=Vehicle.agnes.k4))

Rysunek 12: Average linkage

• Single linkage

```
Vehicle.agnes.sin <- agnes(Vehicle3, metric="euclidean", method="single", stand=TRU
Vehicle.agnes.k4.sin <- cutree(Vehicle.agnes.sin, k=4)
fviz_dend(Vehicle.agnes.sin, k=4, main="Dendrogram - single linkage")</pre>
```

Dendrogram – single linkage

Rysunek 13: Single linkage

fviz_cluster(list(data=Vehicle3, cluster=Vehicle.agnes.k4.sin))

Rysunek 14: Single linkage

• Complete linkage

```
Vehicle.agnes.com<- agnes(Vehicle3, metric="euclidean", method="complete", stand=TR
Vehicle.agnes.k4.com <- cutree(Vehicle.agnes.com, k=4)
fviz_dend(Vehicle.agnes.com, k=4, main="Dendrogram - complete linkage")</pre>
```

Dendrogram - complete linkage

Rysunek 15: Complete linkage

fviz_cluster(list(data=Vehicle3, cluster=Vehicle.agnes.k4.com))

Rysunek 16: Complete linkage

Z zaobserwowanych dendrogramów możemy stwierdzić, że najlepszym wyborem do analizy będzie metoda "complete".

2.3.1 Wybór optymalnej liczby skupień K

Z porównania współczynników silhouette wygląda na to, że wartość K=2 jest najbardziej optymalna dla naszych danych w algorytmie AGNES. Porównajmy teraz wyniki analizy do rzeczywistych wynikóW.

```
agn.diag2<-compareMatchedClasses(Vehicle.agnes.k2.com, etykietki.veh,method = "rowmax") {
cat("Zgodność z rzeczywistą przynależnością klas dla K=2 wynosi:", agn.diag2)

## Zgodność z rzeczywistą przynależnością klas dla K=2 wynosi: 0.5428571

agn.diag3<-compareMatchedClasses(Vehicle.agnes.k3.com, etykietki.veh,method = "rowmax") {
cat("Zgodność z rzeczywistą przynależnością klas dla K=3 wynosi:", agn.diag3)

## Zgodność z rzeczywistą przynależnością klas dla K=3 wynosi: 0.4965986

agn.diag4<-compareMatchedClasses(Vehicle.agnes.k4.com, etykietki.veh,method = "rowmax") {
cat("Zgodność z rzeczywistą przynależnością klas dla K=4 wynosi:", agn.diag4)

## Zgodność z rzeczywistą przynależnością klas dla K=4 wynosi: 0.3891626

agn.diag5<-compareMatchedClasses(Vehicle.agnes.k5.com, etykietki.veh,method = "rowmax") {
cat("Zgodność z rzeczywistą przynależnością klas dla K=5 wynosi:", agn.diag5)
```

```
Vehicle.agnes.k6.com <- cutree(Vehicle.agnes.com, k=6)</pre>
sil.k2 <- silhouette(x=Vehicle.agnes.k2.com, dist=vehicles.macniepod.matrix)</pre>
cat("wartość średnia silhouette dla K=2:", summary(sil.k2)$avg.width)
## wartość średnia silhouette dla K=2: 0.6741887
sil.k3 <- silhouette(x=Vehicle.agnes.k3.com, dist=vehicles.macniepod.matrix)</pre>
cat("wartość średnia silhouette dla K=3:", summary(sil.k3)$avg.width)
## wartość średnia silhouette dla K=3: 0.3862943
sil.k4 <- silhouette(x=Vehicle.agnes.k4.com, dist=vehicles.macniepod.matrix)</pre>
cat("wartość średnia silhouette dla K=4:", summary(sil.k4)$avg.width)
## wartość średnia silhouette dla K=4: 0.3417172
sil.k5 <- silhouette(x=Vehicle.agnes.k5.com, dist=vehicles.macniepod.matrix)</pre>
cat("wartość średnia silhouette dla K=5:", summary(sil.k5)$avg.width)
## wartość średnia silhouette dla K=5: 0.2123498
sil.k6 <- silhouette(x=Vehicle.agnes.k6.com, dist=vehicles.macniepod.matrix)</pre>
cat("wartość średnia silhouette dla K=6:", summary(sil.k6)$avg.width)
## wartość średnia silhouette dla K=6: 0.1916359
## Zgodność z rzeczywistą przynależnością klas dla K=5 wynosi: 0.3242188
agn.diag6<-compareMatchedClasses(Vehicle.agnes.k6.com, etykietki.veh,method = "rowmax")$
cat("Zgodność z rzeczywistą przynależnością klas dla K=6 wynosi:", agn.diag6)
```

Widzimy, że największą zgodność mamy dla K=2.

Vehicle.agnes.k2.com <- cutree(Vehicle.agnes.com, k=2)
Vehicle.agnes.k3.com <- cutree(Vehicle.agnes.com, k=3)
Vehicle.agnes.k5.com <- cutree(Vehicle.agnes.com, k=5)</pre>

2.4 Podsumowanie

2.4.1 Medoidy PAM

Spójrzmy na rekordy, które są centrami skupisk w algorytmie PAM

```
CentraSkupisk.nazwy <- Vehicles.pam$medoids
print(xtable(veh1[CentraSkupisk.nazwy,], table.placement='H'))</pre>
```

Zgodność z rzeczywistą przynależnością klas dla K=6 wynosi: 0.2885246

	Comp	Circ	D.Circ	Rad.Ra	Pr.Axis.Ra	Max.L.Ra	Scat.Ra	Elong	Pr.Axis.Rect	Max.
543	0.04	-0.86	0.37	0.47	-0.29	0.25	0.06	-0.36	-0.12	
301	1.75	1.55	1.17	0.87	-0.16	0.53	1.56	-1.43	1.49	
511	-0.88	-0.17	-0.69	-1.21	-0.69	-0.60	-0.54	0.57	-0.52	
801	-0.61	-0.51	-0.03	-0.56	0.10	-0.03	-0.60	0.44	-0.52	

2.4.2 Wykresy pudełkowe

Sprawdzimy teraz, jak wyglądają wykresy pudełkowe dla poszczególnych (losowo) wybranych cech.

```
par(mfrow=c(2,2))
boxplot(Vehicle2$Comp~Vehicles.pam$clustering)
boxplot(Vehicle2$Circ~Vehicles.pam$clustering)
boxplot(Vehicle2$D.Circ~Vehicles.pam$clustering)
boxplot(Vehicle2$Rad.Ra~Vehicles.pam$clustering)
```


Rysunek 17: Boxploty dla losowych cech

Możemy zaobserwować, że dla wybranych cech, wyniki nie są bardzo rozbieżne dla różnych klas, co świadczy o trudności przyporządkowania jednoznacznie niektórych obiektóW.

2.4.3 Wnioski końcowe

Przechodząc przez całą analizę, dochodzimy do wniosku że nasze dane są ciężkie do jednoznacznej klasyfikacji, ponieważ w najlepszych warunkach, dla optymalnego K osiągamy zgodność na poziomie około 60 procent. Metoda PAM osiąga lepsze wyniki dla naszych danych niż metoda AGNES.