题目名称	Qrj 的排列	Mt_F 的矩阵	Fun_S 的有向图	Sixy 的神秘机器
源程序文件名	permutation.cpp	matrix.cpp	path.cpp	machine.cpp
输入文件名	permutation.in	matrix.in path.in		machine.in
输出文件名	permutation.out	matrix.out	path.out	machine.out
时间限制	1s	1s	1s	3s
内存限制	512MB	512MB	512MB	1024MB
是否捆绑测试	是	否	否	否
是否有SPJ	否	否	否	否
题目类型	传统型	传统型	传统型	传统型

编译选项: -1m -std=c++14 -02 -w1,--stack=2147483647

出题人提示:不要尝试搜索题目中出现的名字,你会大败而归。

A: Qrj 的排列

题目描述

Qrj 有一个长为 n 的排列 a。

定义一个长为n的数列为一个排列,当且仅当这个数列中1到n每个数都出现过一次。

现在他可以对这个排列做出多次如下操作:

选定排列中连续的三个位置,并将其翻转,例如排列 1,2,3,4,5 ,可以选中第二到四个位置翻转为 1,4,3,2,5 。

现在给定这个排列,需要通过数次操作将其还原为从 1 到 n,试问最少需要进行多少次操作能还原,或者根本不能还原,如果不能还原则输出 -1。

输入格式

第一行一个正整数 n 表示排列长度。

接下来一行n个正整数 a_i 表示这个排列。

输入格式

输出一个整数,表示最小操作次数,如果不能完成输出-1。

样例

样例输入#1

```
4
3 2 1 4
```

样例输出#1

1

样例输入#2

3 1 3 2

样例输出#2

-1

数据范围

本题开启捆绑测试。

子任务	n	特殊性质	分值
1	$\leq 5 imes 10^5$	$\forall 1 \leq i \leq n, a_i = i$	1
2	≤ 4	保证排列是出题人手搓的	4
3	≤ 20	保证排列随机生成	10
4	$\leq 5 imes 10^5$	$\forall 1 \leq i \leq n, a_i = n+1-i$	20
5	$\leq 5 imes 10^5$	$a_1-a_2=2$	5
6	≤ 2000	保证排列在有解情况下随机生成	20
7	$\leq 5 imes 10^5$	无	40

对于所有数据,有 $3 \leq n \leq 5 \times 10^5, 1 \leq a_i, b_i, c_i \leq 3, 1 \leq p_i \leq 10^9$ 。保证 a 是一个排列。

B: Mt_F 的矩阵

题目描述

 Mt_F 有一个 $n \times m$ 的矩阵,它是有初始值的。

同时还有 q 次询问,每次询问矩阵的某一个子矩阵内部所有元素的 \gcd 。

由于 Mt_F 太唐氏了,所以没有修改操作。

输入格式

第一行三个数 n、m、q, 分别表示矩阵的行数, 列数和询问的个数。

接下来 n 行,每行 m 个正整数,表示矩阵的每个数。

接下来 q 行,每行四个数 x_1 y_1 x_2 y_2 ,表示询问以 (x_1,y_1) 为左上角,以 (x_2,y_2) 为右下角的矩阵中所有元素的 \gcd 。

输出格式

输出 q 行,每行一个数。表示每次询问的答案。

样例 #1

样例输入#1

3 3 3

1 2 3

4 5 6

9 8 7

1 2 3 3

1 1 2 2

1 3 2 3

样例输出#1

1

1

3

温馨提示

数据掺杂了一些水分,所以提供了一点神奇做法的可能性。

数据范围

本题不开启捆绑测试。

测试点	n,m	q	特殊性质
$1\sim 2$	≤ 10	≤ 10	无
$3\sim 4$	≤ 300	$\leq 10^5$	无
$5\sim 10$	≤ 500	$\leq 10^5$	无

对于 100% 的数据,保证所有数据在 int 范围以内。

C: Fun_S 的有向图

题目描述

Fun S有一个由n个点和m条边构成的**有向图**G。

对于这个有向图,请你找到一条从1到n的路径,使得这条路径上第k长的边尽可能长。

注意: 一条路径允许重复经过某些边。相应地,在计算第 k 大的边时,这些重复经过的边也会被算**多** 次。如果一条路径经过的边数不足 k,那么我们认为这条路径第 k 长 的边长度为 0。一条路径允许多次经过 1 和 n,只要起始点为 1,最终落在 n 即可。

输入格式

第一行两个数字 n, m, k, n, m 表示有向图的点数、边数, k 的意义如上所述。

接下来 m 行,每行三个数 u, v, w,表示有向图中存在一条由 u 指向 v,长度为 w 的边。

输出格式

一个数,表示这条路径第k长的边的长度。

如果这样的边不存在,输出-1。

样例 #1

样例输入#1

```
6 9 3
1 3 2
1 5 5
1 6 4
2 5 2
2 6 3
3 4 5
3 5 3
5 6 4
4 5 4
```

样例输出#1

4

样例#1解释

显然, $1 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6$ 就是我们要找的那条路径。

数据规模

测试点编号	$n \le$	$m \leq$	$k \leq$	特殊性质
$1\sim 4$	6	10	10	无
$5\sim 6$	1000	2000	1	保证输入为 有向无环图
$7\sim 8$	1000	5000	100	保证输入为 有向无环图
$9\sim12$	10^5	$5 imes 10^5$.	1	无
$13\sim 20$	10^{5}	$5 imes 10^5$.	10^{6}	无

对于 100%。的数据,保证 $1 \le w \le 10^9$,不保证 1 能到达 n。

D: Sixy 的神秘机器

题目描述

Sixy 进入一个神秘的区域,在这里他发现了一个神秘的机器。

这个机器以一个数组的样子存在,它的长度为 n,第 i 个位置的值为 $machine_i$ 。

这个机器的原理十分神秘,它可以执行一些操作。对于一次操作 operate(x,v) (其中 x 指这次操作的下标,v 指这次操作的权值) ,它执行以下代码:

```
void operate(int x,int v){
    for(;x<=n;x+=x & -x){
        machine[x]+=v;
    }
}</pre>
```

其中, 我们把 x+=x & -x 叫做这个机器对于下标x的一次转递。

Sixy 固执地认为,这种操作特别像一种 OI 算法。

接着,Sixy 又发现了一串长为 m 的操作,这些操作的下标 x 是 add_i 。幸运的是,这些操作的权值 v 都 是 1。

Sixy 很高兴,他正好可以使用这个机器去执行这些操作。但突然,一束宇宙射线打中了这个机器,使这个机器产生一定程度的损坏。具体地,这个机器对于下标x的一次转递成功的概率变成了 p_x 。当一次传递失败后,这个operate()操作将不再执行。

Sixy 很伤心,但他还是用这个机器执行了这些操作。现在他想知道,在这个机器中, $machine_x$ 的值恰好等于 k 的概率。

输入格式

第 1 行一个正整数 n,表示机器 machine 的长度为 n。

第 2 到 n+1 行每行两个整数 x,y,表示这个机器下标 i 一次传递成功的概率 $p_i=\displaystyle\frac{x}{y}$ 。

第n+2行一个正整数m, 表示这串操作的长为m。

第 n+3 行一行 m 个正整数 add_i , $1 \le i \le m$,表示每个操作的下标,**保证** add_i **各不相同**。

第n+4行一行一个正整数q,表示有q个询问。

第 n+5 行到第 n+q+4 行每行两个正整数 x,k,询问 $machine_x$ 的值恰好等于 k 的概率。

输出格式

对于每个询问,输出一行 $machine_x$ 的值恰好等于 k 的概率,对 998244353 取模。

所有运算都在模 998244353 的意义下。

样例

样例输入#1

样例输出#1

```
1
```

样例解释:每个点上传的概率都为1,所以每个操作一定执行。

那对于第一个操作, $machine_1+=1$ 、 $machine_2+=1$ 、 $machine_4+=1$ 、 $machine_8+=1$ 。

对于第二个操作, $machine_3+=1$ 、 $machine_4+=1$ 、 $machine_8+=1$ 。

对于第三个操作, $machine_5+=1$ 、 $machine_6+=1$ 、 $machine_8+=1$ 。

对于第四个操作, $machine_7 + = 1$ 、 $machine_8 + = 1$ 。

所以, $machine_8 = 4$ 的概率为 1。

样例输入#2

样例输出#2

```
499122177
748683265
```

样例解释: $machine_3+=1$ 、 $machine_5+=1$ 有1的概率执行,对于3,执行一次传递的概率为 $\frac{1}{2}$ 。对于5,执行一次传递的概率也为 $\frac{1}{2}$ 。

当 3 完成一次传递,会变成 4,当 5 完成一次传递,会变成 6,而当 4, 6 完成一次传递,都会变成 8,对于 4, 6,有 1 的概率上传。

所以 $machine_4+=1$ 、 $machine_6+=1$ 有 $\frac{1}{4}$ 的概率同时执行,也有 $\frac{1}{4}$ 的概率同时不执行,所以 $machine_8=2$ 的概率是 $\frac{1}{4}$, $machine_8=0$ 的概率也是 $\frac{1}{4}$ 。由于 $machine_8$ 一定小于 2,相减得 $machine_8=1$ 的概率是 $\frac{1}{2}$ 。

样例输入#3

样例输出#3

748683265

样例 #3 解释

对于 3,执行一次传递的概率为 $\frac{1}{2}$ 。假设上传成功,3 传递到 4,则 $machine_4+=1$ 的概率为 $\frac{1}{2}$ 。对于 4,执行一次传递的概率也为 $\frac{1}{2}$,传递到 8,所以这个操作上传到 8 的概率,也就是 $machine_8+=1$ 的概率是 $\frac{1}{2}\times\frac{1}{2}=\frac{1}{4}$ 。

数据规模

测试点	n	m	q	特殊性质
1	$\leq 2 imes 10^5$	= 0	$\leq 5 imes 10^5$	无
2~4	$\leq 2 imes 10^5$	≤ 300	$\leq 5 imes 10^5$	所有上传的概率为1
5~7	≤ 10	≤ 10	≤ 2000	无
8	≤ 1000	= 1	$\leq 5 imes 10^5$	询问中的v全是1
9~10	≤ 1000	= 1	$\leq 5 imes 10^5$	无
11~25	$\leq 2 imes 10^5$	≤ 300	$\leq 5 imes 10^5$	无

对于所有测试点, $1 \leq n \leq 2 \times 10^5$ 、 $1 \leq m \leq 300$ 、 $1 \leq q \leq 5 \times 10^5$,所有数据在输入时会对 998244353 取模。