Semiparametric robust mean estimations based on the orderliness of quantile averages

Tuban Lee

This manuscript was compiled on June 8, 2023

semiparametric | mean-median-mode inequality | asymptotic | unimodal | Hodges—Lehmann estimator

Inequalities related to weighted averages

- 2 So far, it is quite natural to hypothesize that the bias of a
- $_{\mbox{\scriptsize 3}}$ $\,$ trimmed mean should be monotonically related to its degree
- $_{4}$ of robustness in a semiparametric distribution, since it is a
- $_{5}$ $\,$ linear combination of quantile averages as shown in Section
- ??. Analogous to the γ -orderliness, the γ -trimming inequality
- $_{7}~$ for a right-skewed distribution is defined as $\forall 0 \leq \epsilon_{1} \leq \epsilon_{2} \leq$
- $\frac{1}{1+\gamma}, TM_{\epsilon_1,\gamma} \ge TM_{\epsilon_2,\gamma}.$
- Data Availability. Data for Figure ?? are given in SI Dataset
- 10 S1. All codes have been deposited in GitHub.
- 11 **ACKNOWLEDGMENTS.** I sincerely acknowledge the insightful
- 12 comments from the editor which considerably elevated the lucidity
- and merit of this paper.