Санкт-Петербургский политехнический университет Петра Великого

Физико-механический иститут

Кафедра «Прикладная математика»

Отчёт по лабораторной работе №1 по дисциплине «Анализ данных с интервальной неопределённостью»

Выполнил студент: Куксенко Кирилл Сергеевич группа: 5040102/20201

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Перербург 2023 г.

Содержание

1	Постановка задачи	2
2	Теория 2.1 Индекс Жаккара	2 2 2
3	Реализация	3
4	Результаты	3
5	Обсуждение	5
C	Список иллюстраций	
	1 Исходные интервальные выборки	3
	2 Зависимость индекса Жаккара от значения R	4
	3 Объединённая выборка $X_1 \cup R_{opt}X_2$	

1 Постановка задачи

Имеется две вещественные выборки $\overline{X_1}, \overline{X_2}$. Необходимо построить из них две интервальные выборки X_1, X_2 и найти такой вещественный коэффициент R, что выборка $X_1 \cup RX_2$ будет наиболее совместной в смысле индекса Жаккара.

2 Теория

2.1 Индекс Жаккара

Индекс Жаккара определяет степень совместности двух интервалов x,y.

$$JK(x,y) = \frac{wid(x \wedge y)}{wid(x \vee y)} \tag{1}$$

Здесь \land , \lor представляют собой операции взятия минимума и максимума по включению в полной арифметике Каухера. Формула 1 легко может быть обобщена на случай интервальной выборки $X = \{x_i\}_{i=1}^n$.

$$JK(X) = \frac{wid(\wedge_{i=1,n}x_i)}{wid(\vee_{i=1,n}x_i)}$$
(2)

Видно, что $JK(X) \in [-1,1]$. Для удобства перенормируем значение JK(X) так, чтобы оно было в интервале [0,1].

$$JK(X) = \frac{1}{2} + \frac{1}{2}JK(X)$$
 (3)

2.2 Нахождение оптимального значения R

Для нахождения оптимально R необоходимо сначала найти верхнюю и нижнюю границы $\underline{R}, \overline{R}.$

$$\underline{R} = \frac{\min_{i=1,n} \underline{x_{1i}}}{\max_{i=1,n} \overline{x_{2i}}} \tag{4}$$

$$\overline{R} = \frac{\max_{i=1,n} \overline{x_{1i}}}{\min_{i=1,n} x_{2i}}$$
(5)

Затем оптимальное значение R может быть найдено методом половинного деления.

3 Реализация

Весь код написан на языке Python (версии 3.7.3). Ссылка на GitHub с исходным кодом.

4 Результаты

Данные были взяты из файлов. Обынтерваливание было произведенно следующим образом.

$$x = [x_0 - \varepsilon, x_0 + \varepsilon], \varepsilon \in U(0.01, 0.05)$$

$$\tag{6}$$

где x_0 - точечное значение, U(0.01,0.05) - равномерное распределение. Сначала посмотрим на исходные интервальные выборки X_1, X_2 .

Рис. 1: Исходные интервальные выборки

Посчитаем индекс Жаккара обеих выборок. $JK(X_1)=0.734, JK(X_2)=0.721.$ Верхняя и нижняя границы $\underline{R}=-0.967, \overline{R}=-0.961.$ Найдем оптимальное значение R (для наглядности на графике 2 изабражён более широкий интервал значений R).

Рис. 2: Зависимость индекса Жаккара от значения ${\cal R}$

Оптимаьное значние R оказалось равно $R_{opt}=-0.963$ Посторим объединённыую выборку $X_1 \cup R_{opt} X_2$.

Рис. 3: Объединённая выборка $X_1 \cup R_{opt} X_2$

5 Обсуждение