CS-681

Assignment #1

Assigned: Monday, September 15, 2025 Due: Monday, September 22nd, 2025

Comparing GAN and VAE for Data Generation

Objective:

This assignment gives you hands-on experience with two foundational families of generative models: **Generative Adversarial Networks (GANs)** and **Variational Autoencoders (VAEs)**. You will implement, train, and evaluate both models on the **same dataset** and compare their ability to generate new samples.

Task:

Apply both a **GAN** and a **VAE** to the same dataset. Generate new samples with each model and compare results in terms of **quality**, **diversity**, **and limitations**.

Main Steps:

- 1. Select a suitable dataset.
- 2. Preprocess the data (normalize, resize, ...etc.).
- 3. Build and train a VAE on the dataset.
 - o Generate new samples from the learned latent space.
- 4. Build and train a GAN on the same dataset.
 - Generate new samples from the generator.
- 5. Evaluate and compare:
 - o Show examples of generated data from both models.
 - Use quantitative metric (e.g., Precision and Recall for generative models, FID, Inception Score, etc.)
 - o Provide comments discussing visual quality, diversity, and reconstruction ability.
- 6. Summarize your findings:
 - Strengths and weaknesses of each model.
 - o Limitations and challenges you faced.

Submission Requirements:

- A well-documented Python codebase (.py file or Jupyter Notebook).
- Code must be complete, runnable and include clear comments

Rubric:

Criterion	Points	Description
Correctness and Functionality	3	Code runs without errors, implements GAN & VAE correctly, produces valid outputs.
Clarity and Documentation	3	Generated samples are meaningful; at least one quantitative metric is reported; comparisons are clear.
Quality of Results	2	Generated outputs demonstrate successful application of the chosen technique using correct metric computation.
Effort & Completeness	2	Evidence of genuine effort (e.g., handling training challenges, trying different settings, thoughtful discussion of limitations).