UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE CIENCIAS ESCUELA PROFESIONAL DE MATEMÁTICAS

Primera Práctica Dirigida CALCULO DIFERENCIAL CM132 2011 I.

1. Construir las tablas de verdad para las siguientes proposiciones

a)
$$[p \land (p \lor q)] \longleftrightarrow p$$

b)
$$[(p \longleftrightarrow q) \land (q \longleftrightarrow r)] \longleftrightarrow (p \longleftrightarrow r)$$

2. Para una proposición arbitraria p, se define la función V tal que V(p)=1, si p es verdadero, V(p) = 0, siempre que p sea falso.

a) Pruebe que
$$V(\sim p) + V(p) = 1$$

b) Demuestre
$$V(p \lor q) = V(p) + V(q) - V(p)V(q)$$

3. De las premisas $p \lor q, q \longrightarrow r, (p \land \sim r) \longrightarrow s, \sim r$ concluya $\rightleftarrows p$

4. Dada las siguientes proposiciones

$$a) \sim (\sim p \rightarrow \sim q)$$

b)
$$(p \to q) \land \sim (\sim p \land q)$$
 c) $\sim p \land q$

$$c) \sim p \wedge q$$

indique cuales son equivalentes.

5. Si p,q,r,s,t,w son proposiciones cualquiera tales que por $(p \land \sim r) \longleftrightarrow (s \longrightarrow w)$ es verdadera $y (\sim w \longrightarrow \sim s)$ es falsa, halle el valor de verdad de .

$$(\sim (p \land q) \longrightarrow r) \lor s$$

$$(t \longrightarrow (w \, \mathbb{V} \sim p) \, \mathbb{V} \sim (p \longrightarrow r)$$

6. Sea la proposición $p \land q \rightarrow (q \rightarrow r)$ falsa. Halle el valor de verdad de las siguientes proposiciones:

$$a) \sim (q \vee r) \vee (p \wedge q)$$

$$b) \ (p \lor \sim q) \to (\sim r \lor q)$$

7. Sean $p \neq q$ proposiciones arbitrarias. Se define el conectivo * de la forma siguiente

$$p*q = \sim p \lor \sim q$$
.

Expresar sólo en terminos de conectivo * cada proposición siguiente

$$a) \sim p$$

c)
$$p \vee q$$

b)
$$p \wedge q$$

$$d) p \rightarrow q$$

8. Si p y q representa proposiciones y definimos el conectivo * mediante la siguiente tabla

luego

a) LSe satisface
$$p * q \equiv q * p$$
 y $p * (q * r) \equiv (p * q) * r$?

- b) Expresar p*q en terminos de los conectivos \vee, \wedge, \sim
- c) Escribir una proposición equivalente a

$$(p \to q) \lor (q \land \sim p)$$

en términos del conectivo *.

9. Sabiendo que la proposición siguiente

$$\sim [(\sim p \vee q) \vee (r \to q)] \wedge [(\sim p \vee q) \to (q \wedge \sim p)]$$

es verdadea. determine el valor de verdad de $q \longleftrightarrow r$

- 10. Dada las proposiciones $A \equiv [(p \land \sim q) \lor (p \land q)] \lor (\sim p \land \sim q)$ y $B \equiv p \lor \sim q$ determinar si
 - a) A es necesaria y suficiente para B
 - b) La conjunción de A con B es necesaria para $p \to q$
 - c) La disyunción de p con A es suficiente para B.
- 11. Negar la proposición: para todo entero r, existe un entero a tal que si ar es par, entonces (a+1)r es par y expreselo simbolicamente.
- 12. Exprese simbolicamente y luego niegue las siguientes proposiciones:
 - a) No existe ningun numero racional x tal que $x^2 = 3$
 - b) Para todo número racional r existe un número entero n tal que $n \le r < n+1$.
 - c) Para todo número positivo $\epsilon > 0$, siempre que existe un número natiral n_0 se tal para todo número natural n mayor que n_0 se cumple que |a| es menor que ϵ .
 - d) Es posible encontrar un número real y entre 0 y 1 de modo que todo par de números $x,z \in R$, tambien entre 0 y 1, satisfacen $z \le y < x$.
 - e) Si x es menor que dos, entoces x es igual a uno o es igual a cero.
 - f) Sea $L \in \mathbb{R}$. Para cualquier $\epsilon > 0$ esta garantizada la existencia de un $\delta > 0$ de modo que cualquiera que sea x que este en el dominio de f (Dom(f)) se cumple lo siguiente: Si $0 < |x-a| < \delta$ implica que $|f(x)-L| < \epsilon$
- 13. ¿Porqué las siguientes proposiciones no son equivalentes? Justifique

a)
$$\forall x \in A, \exists y \in R/x < y$$

b)
$$\exists y \in R / \forall x \in A, x < y$$

14. Indique si los siguientes argumentos son válidos

$$\begin{array}{c} p \to \sim q \\ a) \quad \underline{p \lor \sim q} \\ \sim q \end{array}$$

Si trabajo duro y tengo talento, entonces seré un músico

b) Si soy un músico, entonces seré feliz

Si no seré feliz, entoces no trabaré duro o no tuve talento

15. Dado el conjunto $A = \{0, 1, 2, 3\}$. Determine el valor de verdad de las siguientes proposiciones

a)
$$\forall x \in A, x^2 < 4 \leftrightarrow x < 3$$

c)
$$\exists y \in A/\forall x \in Ay^2 < x+1$$

b)
$$\forall x \in A, \exists y \in A/x^2 + y^2 < 11$$