

Lucia Scheele & Laura Vetter

Patterns & Trends in Environmental data FS 2024

Travel Mode Detection with k-means clustering

Data and research question

Strava trajectories (randomly recorded)

! Mixed-movement types in one trajectory

elevation 🗦	timestamp	ActivityName	ActivityType •	year [‡]	geometry
410.4	2024-04-02 14:05:15	Zugfahrt nach Hause	trainride	2024	POINT (2692957 1232239)
410.4	2024-04-02 14:05:16	Zugfahrt nach Hause	trainride	2024	POINT (2692958 1232232)
410.4	2024-04-02 14:05:17	Zugfahrt nach Hause	trainride	2024	POINT (2692954 1232235)

Which travel modes can be differentiated in a collection of trajectories using k-means clustering?

Best possible outcome:

→ Clusters contain only one movement type

Contextual data

Kommunaler Richtplan Verkehr Information on Street type of Zurich

https://data.stadt-zuerich.ch/dataset/geo kommunaler richtplan verkehr

Betriebspunkte Location of train stations in Switzerland

https://data.sbb.ch/explore/dataset/linie-mit-

Research plan

Results: Segmentation


```
mixed_Laura <- mixed_Laura |>
  mutate(category = case_when(
    stepMean < 20 ~ "walking",
    stepMean >= 20 & stepMean < 40 ~ "running",
    stepMean >= 40 ~ "tram"
))
```


Which parameter splits the mixed trajectory at the point where the movement type changes?

time_diff	÷	speed [‡]	speed_kmh 🗦	acceleration 🗦	avg_acc_10s 💂
	1	1.6946088	6.100592	-5.300063e-01	0.2210812594
	1	1.2286238	4.423046	-4.659850e-01	-0.1569585866
	1	2.0737675	7.465563	8.451437e-01	-0.2627122120
	1	2.6529501	9.550620	5.791825e-01	-0.0981261405
	1	1.2169836	4.381141	-1.435967e+00	0.1229935197
	1	3.5462777	12.766600	2.329294e+00	-0.0552682745
	1	1.4832470	5.339689	-2.063031e+00	0.2286238290
	1	0.3751003	1.350361	-1.108147e+00	0.0715153672

Plan B: Use fix information

Results: Join with contextual data

	<pre>joined <- st_join(mixed_Laura, lines_select,</pre>	kategorie	teilplan
		Veloroute	Velo
		Veloroute	Velo
		Veloroute	Velo
		NA	NA
		NA	NA

Works! But only 230 fixes have description, out of 3800 (for 1 trajectory)

Work in Progress!:)

Further Steps

- Enriching with Infrastructure Data (not Intersection but Neighbourhood analysis)
- K means application km <- kmeans(df, centers = 4, nstart = 25)
- Comparison

Feedback & Discussion

Segments vs. fixes – what is more appropriate?

CAT	1	2	1	2	1	2	3	1	2
SEG_ID	1	2	3	4	5	6	7	8	ဇ္
fix_ID	123	4567	8						••••

SEG_ID	GEOM	Avg_speed	CAT
1	Line(xxx)	5	walking
2	Line(xxx)	10	running
3	Line(xxx)	25	train

Fix_ID	GEOM	Avg_speed	CAT
1	POINT(xxx)	(slide?)	walking
2	POINT(xxx)	(slide?)	running
3	POINT(xxx)	(slide?)	train

Sources

- Bachir, D., Khodabandelou, G., Gauthier, V., El Yacoubi, M., Vachon, E., (2018). Com-bining Bayesian inference and clustering for transport mode detection from sparse and noisy geolocation data. Joint European Conference on Machine Learning and Knowledge Discovery in Databases 569–584.
- Sadeghian, P., Zhao, X., Golshan, A., & Håkansson, J. (2022). A stepwise methodology for transport mode detection in GPS tracking data. Travel Behaviour and Society, 26, 159-167.
- Shamoun-Baranes, J., Bom, R., van Loon, E. E., Ens, B. J., Oosterbeek, K., & Bouten, W. (2012). From sensor data to animal behaviour: an oystercatcher example. *PloS one*, 7(5), e37997.
- Laube, P., & Purves, R. S. (2011). How fast is a cow? Cross-scale analysis of movement data. Transactions in GIS, 15(3), 401-418.

Further questions:

• Join of table from trajectory and the infrastructure data shows empty colums. Why? Already answered. But: possibility to replace NAs with something

meaningful, that k means doesnt take into account?

•	Involving	decision	ntree for n	nanual	analysis?
---	-----------	----------	-------------	--------	-----------

How to treat this k means result? What is this?

How to calculate sinuosity? Trajs doesnt work?

○ km	NA list [9] (\$3: kmeans)	NA List of length 9
		•
cluster	integer [19300]	2 2 2 2 2 2
centers	double [4 x 1]	1.25e+06 3.63e+00 2.68e+06 2.68e+06
totss	double [1]	2.18446e+16
withinss	double [4]	1.56e+09 2.76e+05 1.74e+08 1.42e+08
tot.withinss	double [1]	1872333455
betweenss	double [1]	2.18446e+16
size	integer [4]	3860 11580 1362 2498
iter	integer [1]	2
ifault	integer [1]	0

kategorie

teilplan

K means

- Find optimal number of clusters with fviz_nbclust(df, kmeans, method = "wss")
 Usually, it is where the curve "knicks" in this case at k=3
- 2. create a df that has only the variables that should be considered (like velocity, sinuosity, Strassenbelag etc)

library(factoextra) library(cluster)

3. apply k means:

km <- kmeans(df, centers = 4, nstart = 25)

N start is objects per cluster(?)

But: cannot out NAs in k means, therefore the category infrastructure cannot be included...

💟 km		list [9] (S3: kmeans)	List of length 9
O clus	ster	integer [19300]	2 2 2 2 2 2
cen	nters	double [4 x 1]	1.25e+06 3.63e+00 2.68e+06 2.68e+06
tots	ss	double [1]	2.18446e+16
witl	hinss	double [4]	1.56e+09 2.76e+05 1.74e+08 1.42e+08
tot.	.withinss	double [1]	1872333455
bet	weenss	double [1]	2.18446e+16
size	e	integer [4]	3860 11580 1362 2498
iter	r	integer [1]	2
ifau	ult	integer [1]	0

I think for k means we need a data frame that actually contains the segments, not the points.

Travel Mode Detection Methods

Travel Mode Detection Methods

Segmentation of trajectories in to segments of 20 points (laglead)

Calculation of step mean for 20 points.

Filtering of Outliers (missing signal) with
Filter timelag>1=FALSE

Calculation of predictor variables (velocity, acceleration(?), sinuosity?..?

Segmentation analysis & Context aware Movement analysis

Categorization according to ve locity of segment

Join data with OSM map – verify results

Addition of Strassenbelag to every point (or segment?)

Categorization according to Strassenbelag

K means clustering

Give K means the variables velocity & strassenbelag & the number of classes (e.g. 7)

Comparison

Are the classes encountered in the manual segmentation & k means the same?