$$Q_2' = c_1 m_1 T_2 \ln \frac{T_1}{T_1''}.$$

Отличие численного значения, расчитанного по этой формуле, от полученного ранее менее чем на 0.1%.

10.4. Рассмотрим условия равновесия шариков. На каждый из них действуют $m\vec{g}$ - сила тяжести, \vec{F} - сила кулоновского отталкивания, \vec{T} - сила натяжения нити. Шарики будут находится в равновесии, когда суммарный момент сил, действующих на них будет равен нулю, что будет выполняться при

$$mgl\sin\theta = Fl\cos\theta$$
. (1)

Учитывая, что

$$F = \frac{q^2}{4\pi\varepsilon_0 (2l\sin\theta)^2},$$
 (2)

получим уравнение, определяющее угол отклонения нити

$$\frac{\sin^3 \theta}{\cos \theta} = \frac{q^2}{16\pi\varepsilon_0 l^2 mg} \ . \tag{3}$$

Приведенный в условии график, фактически является решением этого уравнения для различных значений q (в чем можно убедиться непосредственной подстановкой) . По этому графику можно найти величину заряда каждого шарика $q \approx 2.6 \cdot 10^{-7} \ Kn$.

При включении однородного электрического поля на шарики начинает действовать дополнительная сила, которая постоянна и не

зависит от положения шариков, так же как и сила тяжести . В таком случае разумно «объединить» эту силу с силой тяжести и ввести, так называемое, «эффективное» ускорение свободного падения \vec{g}^* , модуль которого

$$g^* = g\sqrt{I + \left(\frac{qE}{mg}\right)^2} \ . \tag{4}$$

Тогда угол отклонения θ_l каждой нити от направления вектора \vec{g}^* можно найти как решение уравнения (3), в котором необходимо заменить g на g^*

$$\frac{\sin^3 \theta_l}{\cos \theta_l} = \frac{q^2}{16\pi\varepsilon_0 l^2 mg^*} \ . \tag{5}$$

К сожалению, это уравнение элементарными методами не разрешимо. Поэтому еще раз воспользуемся предоставленным графиком, для чего перепишем (5) в виде

$$\frac{\sin^3 \theta_l}{\cos \theta_l} = \frac{q^2}{16\pi\varepsilon_0 l^2 mg^*} = \frac{\left(\sqrt{\frac{g}{g^*}}q\right)^2}{16\pi\varepsilon_0 l^2 mg} \tag{6}$$

Как видно, это уравнений полносью совпадает с уравнением (3), если в качестве пареметра q использовать величину

$$q^* = \sqrt{\frac{g}{g^*}} q = \frac{q}{\sqrt{1 + \left(\frac{qE}{vg}\right)}} \approx 1.0 \cdot 10^{-7} \, K.$$

По графику находим $\theta_{l} \approx 27^{\circ}$, следовательно, искомый угол $2\theta_1 \approx 54^0$ между нитями равен

10.5. диск со стороны Ha стержней действуют силы нормальной реакции \vec{N} и силы трения \vec{F}_{mp} . Диск прекратит движение, когда

$$F_{mp.}\cos\alpha/2 = N\sin\alpha/2$$
.

Учитывая, что

$$F_{mp.}=\mu N,$$

найдем

$$\mu = tg \frac{\alpha}{2}$$
.

Заметим, что ответ не зависит от значения силы N, поэтому «заклинивание» диска произойдет при данном угле при любом значении сил, действующих на стержни.

Обозначим напряжение на диоде U_1 , тогда напряжение на резисторе будет равно $U_{\scriptscriptstyle 0}$ – $U_{\scriptscriptstyle 1}$ (где $U_{\scriptscriptstyle 0}$ – напряжение источника). Зависимость силы тока I через диод от напряжения U_1 задана в виде вольт-амперной характеристики

$$I = I(U_1).$$
 (1)

Сила тока через резистор определяется законом Ома

