МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО МАТЕМАТИКА ПРОФИЛИРАНА ПОДГОТОВКА

СПРАВОЧНИ МАТЕРИАЛИ

Вектори и координати

$$\vec{a}(x_a; y_a) \qquad \vec{b}(x_b; y_b) \qquad |\vec{a}| = \sqrt{\vec{a}.\vec{a}} \qquad |\vec{a}| = \sqrt{x_a^2 + y_a^2}$$

$$\vec{a}\vec{b} = x_a x_b + y_a y_b \qquad \vec{a}\vec{b} = |\vec{a}| |\vec{b}| \cos \ll (\vec{a}, \vec{b})$$

Аналитична геометрия в равнината

ax + by + c = 0 общо уравнение на права

y = kx + b декартово уравнение на права

$$g: \frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1}$$
 , където $M_1\left(x_1;y_1\right)$ и $M_2\left(x_2;y_2\right)$ уравнение на права през две точки

 $(x-a)^2 + (y-b)^2 = r^2$ нормално уравнение на окръжност с център O(a;b) и радиус r

Криви от втора степен	Канонично уравнение	Фокуси
Елипса	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$F_1(c;0)$ и $F_2(-c;0)$, където $c = \sqrt{ a^2 - b^2 }$
Хипербола	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$F_1(c;0)$ и $F_2(-c;0)$, където $c = \sqrt{a^2 + b^2}$
Парабола	$y^2 = 2px$	$F\left(\frac{p}{2};0\right)$

Ъгъл φ между две прави $g_1: a_1x + b_1y + c_1 = 0$ и $g_2: a_2x + b_2y + c_2 = 0$

$$\cos \varphi = \left| \frac{a_1 a_2 + b_1 b_2}{\sqrt{a_1^2 + b_1^2} \cdot \sqrt{a_2^2 + b_2^2}} \right|$$

Зависимости в триъгълник и успоредник при стандартни означения

Правоъгълен триъгълник: $c^2 = a^2 + b^2$ $S = \frac{1}{2}ab = \frac{1}{2}ch_c$ $a^2 = a_1c$ $b^2 = b_1c$

 $h_c^2 = a_1 b_1$ $r = \frac{a+b-c}{2}$ $\sin \alpha = \frac{a}{c}$ $\cos \alpha = \frac{b}{c}$ $\tan \alpha = \frac{a}{b}$ $\cot \alpha = \frac{b}{a}$

Произволен триъгълник: $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R$

 $a^2 = b^2 + c^2 - 2bc \cos \alpha$

 $b^2 = a^2 + c^2 - 2ac\cos\beta$

1

 $c^2 = a^2 + b^2 - 2ab\cos\gamma$

Формула за медиана:
$$m_a^2 = \frac{1}{4}(2b^2 + 2c^2 - a^2)$$
 $m_b^2 = \frac{1}{4}(2a^2 + 2c^2 - b^2)$

$$m_c^2 = \frac{1}{4}(2a^2 + 2b^2 - c^2)$$

Формула за ъглополовяща:
$$\frac{a}{b} = \frac{n}{m} \qquad b \qquad l_c \qquad a \qquad \qquad l_c^2 = ab - mn$$

Формула за диагоналите на успоредник:
$$d_1^2 + d_2^2 = 2a^2 + 2b^2$$

Формули за лице

Триъгълник:
$$S = \frac{1}{2}ch_c \qquad S = \frac{1}{2}ab\sin\gamma \qquad \qquad S = \sqrt{p(p-a)(p-b)(p-c)}$$

$$S = pr S = \frac{abc}{4R}$$

Успоредник:
$$S = ah_a$$
 $S = ab \sin \alpha$ Трапец: $S = \frac{a+b}{2}h$

Четириъгълник:
$$S = \frac{1}{2} d_1 d_2 \sin \varphi$$
, φ – ъгъл между диагоналите

Описан многоъгълник: S = pr

Ръбести и валчести тела

Права призма:
$$S = Ph$$
 $S_1 = S + 2B$ $V = Bh$

Правилна пирамида:
$$S = \frac{Pa}{2}$$
 $S_1 = S + B$ $V = \frac{1}{3}Bh$

Пресечена пирамида:
$$S_1 = S + B + B_1$$
 $V = \frac{h}{3} \left(B + B_1 + \sqrt{BB_1} \right)$

Прав кръгов цилиндър:
$$S=2\pi rh$$
 $S_1=2\pi r\left(h+r\right)$ $V=\pi r^2 h$

Прав кръгов конус:
$$S = \pi r l$$
 $S_1 = S + B = \pi r (l + r)$ $V = \frac{\pi r^2 h}{3}$

Прав кръгов пресечен конус:

$$S = \pi l (R+r)$$
 $S_1 = \pi l (R+r) + \pi R^2 + \pi r^2$ $V = \frac{1}{3} \pi h (R^2 + Rr + r^2)$

Сфера и кълбо:
$$S=4\pi r^2$$
 $V=\frac{4}{3}\pi r^3$

Лице на проекция на многоъгълник от равнина α върху равнина β : $S_1 = S\cos\varphi$,

S – лице на многоъгълника от равнината lpha , $\,\,\phi$ – острият ъгъл между равнините $lpha\,$ и eta

Тригонометрични функции

α°	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
α rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	0	1
$tg\alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0	_	0
$\cot \alpha$	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	$-\frac{\sqrt{3}}{3}$	-1	$-\sqrt{3}$	_	0	_

	$-\alpha$	90°±α	180°±α	270°±α	360°±α
sin	$-\sin \alpha$	$\cos \alpha$	∓sinα	$-\cos \alpha$	$\pm\sin\alpha$
cos	$\cos \alpha$	$\mp \sin \alpha$	$-\cos \alpha$	$\pm \sin \alpha$	$\cos \alpha$
tg	$-\operatorname{tg}\alpha$	$\mp \cot \alpha$	$\pm \operatorname{tg} \alpha$	$\mp \cot \alpha$	$\pm \operatorname{tg} \alpha$
cotg	$-\cot \alpha$	$\mp \operatorname{tg} \alpha$	$\pm \cot \alpha$	$\mp \operatorname{tg} \alpha$	$\pm \cot \alpha$

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta \qquad \cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$

$$\sin 2\alpha = 2\sin \alpha \cos \alpha \qquad \cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$$

$$\sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2} \qquad \sin \alpha - \sin \beta = 2\sin \frac{\alpha - \beta}{2}\cos \frac{\alpha + \beta}{2}$$

$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2} \qquad \cos \alpha - \cos \beta = -2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}$$

$$1 - \cos 2\alpha = 2\sin^2 \alpha \qquad 1 + \cos 2\alpha = 2\cos^2 \alpha \qquad \sin 2\alpha = \frac{2 \operatorname{tg} \alpha}{1 + \operatorname{tg}^2 \alpha} \qquad \cos 2\alpha = \frac{1 - \operatorname{tg}^2 \alpha}{1 + \operatorname{tg}^2 \alpha}$$

Полиноми на една променлива

Теорема на Безу $P_n(x) = (x - x_0)Q_{n-1}(x) + P_n(x_0)$

Схема на Хорнер

	a_0	a_1	a_2	•••	a_{n-1}	a_n
x_0	$b_0 = a_0$	$b_1 = x_0 b_0 + a_1$	$b_2 = x_0 b_1 + a_2$		$b_{n-1} = x_0 b_{n-2} + a_{n-1}$	$x_0 b_{n-1} + a_n = P_n\left(x_0\right)$

Числови редици. Граници на редици

Нютонов бином

$$(a+b)^{n} = \binom{n}{0} a^{n} + \binom{n}{1} a^{n-1} b + \dots \binom{n}{k} a^{n-k} b^{k} + \dots + \binom{n}{n-1} a b^{n-1} + \binom{n}{n} b^{n}$$

$$\binom{n}{k} = C_{n}^{k} \qquad \binom{n}{k} = \binom{n}{n-k} \qquad \binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

Сума на безкрайно намаляваща геометрична прогресия: $S = \frac{a_1}{1-q}$ |q| < 1

Граници на редици:
$$\lim_{n\to\infty}\frac{1}{n}=0$$
 $\lim_{n\to\infty}q^n=0 \Leftrightarrow \left|q\right|<1$ $\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e$

Функции. Непрекъснатост и диференцируемост

Граници на функции:

$$\lim_{x \to \infty} \frac{1}{x} = 0 \qquad \lim_{x \to 0} \frac{\sin x}{x} = 1 \qquad \lim_{x \to \pm \infty} \left(1 + \frac{1}{x}\right)^x = e \qquad \lim_{x \to 0} \left(1 + x\right)^{\frac{1}{x}} = e$$

$$\operatorname{Ako} \lim_{x \to c} f\left(x\right) = 0, \text{ To } \lim_{x \to c} \frac{\sin f\left(x\right)}{f\left(x\right)} = 1$$

$$\lim_{x \to \infty} \frac{a_0 x^n + a_1 x^{n-1} + \ldots + a_n}{b_0 x^m + b_1 x^{m-1} + \ldots + b_{m-1}} = \begin{cases} \infty & \text{при } n > m \\ \frac{a_0}{b_0} & \text{при } n = m \\ 0 & \text{при } n < m \end{cases}$$

Функцията f(x) е непрекъсната в точката x_0 от дефиниционното ѝ множество, ако $\lim_{x\to x_0} f(x) = f(x_0)$.

Производни на някои функции	Правила за диференциране
(c)'=0, c – константа	$\left(cf\left(x\right)\right)'=cf'(x)$
(x)'=1	$(f(x)\pm g(x))' = f'(x)\pm g'(x)$
$\left(x^{\alpha}\right)' = ax^{\alpha-1}$	(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)
$\left(\sin x\right)' = \cos x$	
$\left(\cos x\right)' = -\sin x$	$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$
$\left(\operatorname{tg} x\right)' = \frac{1}{\cos^2 x}$	
$\left(\cot g x\right)' = -\frac{1}{\sin^2 x}$	(g(f(x)))' = g'(f(x))f'(x)
$\left(e^{x}\right)'=e^{x}$	
$\left(a^{x}\right)' = a^{x} \ln a, \ a > 0$	
$\left(\ln x\right)' = \frac{1}{x}$	
$(\log_a x)' = \frac{1}{x \ln a}, \ a > 0, \ a \neq 1, \ x > 0$	

Приложения на математическия анализ

 $y = f'(x_0)(x - x_0) + f(x_0)$ допирателна към графиката на функцията y = f(x) в точката с координати $(x_0; f(x_0))$

 $t:(x_0-lpha)(x-lpha)+(y_0-eta)(y-eta)=R^2$ допирателна към окръжност в точка $M_0\left(x_0;y_0
ight)$ от

Допирателна t към крива от втора степен в точка $M_{_0}ig(x_{_0};y_{_0}ig)$ от нея:

Елипса:
$$t: \frac{x_0 x}{a^2} + \frac{y_0 y}{b^2} = 1$$

Елипса:
$$t: \frac{x_0x}{a^2} + \frac{y_0y}{b^2} = 1$$
 Хипербола: $t: \frac{x_0x}{a^2} - \frac{y_0y}{b^2} = 1$

Комбинаторика

	без повторение	с повторение
	от n елемента от k – ти	от n елемента от k – ти клас
	клас	
Пермутации	$P_n = n!$	$\widetilde{P}_{n}(n_{1}, n_{2},, n_{k}) = \frac{n!}{n_{1}! n_{2}! n_{k}!}, n_{1} + n_{2} + + n_{k} = n$
Вариации	$V_n^k = \frac{n!}{(n-k)!}$	$\widetilde{V}_{n}^{k}=n^{k}$
Комбинации	$C_n^k = \frac{n!}{k!(n-k)!} = \binom{n}{k}$	$\widetilde{C}_{n}^{k} = \widetilde{P}_{n}(k, n-1) = \frac{(n+k-1)!}{k!(n-1)!} = C_{n+k-1}^{k}$

Вероятности

Класическа вероятност

$$P(A) = \frac{\text{брой на благоприятните изходи}}{\text{общ брой на изходите}}, \ 0 \le P(A) \le 1, \ P(\varnothing) = 0, \ P(\Omega) = 1$$

Вероятност на сума $P(A \cup B)$

$$P(A \cup B) = P(A) + P(B)$$
, A и B са несъвместими

$$P(A \cup B) = P(A) + P(B) - P(AB)$$
, A и B са съвместими

Условна вероятност

$$P(A \mid B) = \frac{P(AB)}{P(B)}$$
, при $P(B) > 0$

Формула за пълната вероятност

 $B_1, B_2, ..., B_n$ е пълна група събития при даден опит. Тогава вероятността да настъпи случайното събитие A e:

$$P(A) = P(A \mid B_1)P(B_1) + P(A \mid B_2)P(B_2) + \dots + P(A \mid B_n)P(B_n)$$

Формула на Бейс

за всяко
$$k=1,2,...,n$$
 е изпълнено $P(B_k \mid A) = \frac{P(A \mid B_k)P(B_k)}{P(A)}$

Математическо очакване, дисперсия и стандартно отклонение на дискретна случайна величина

X	x_1	x_2	•••	x_k
P	p_I	p_2	•••	p_k

Математическо очакване: $E(X) = x_1 p_1 + x_2 p_2 + ... + x_k p_k$

Дисперсия:

$$D(X) = (x_1 - E(X))^2 p_1 + (x_2 - E(X))^2 p_2 + \dots + (x_k - E(X))^2 p_k$$

$$D(X) = EX^{2} - (EX)^{2}$$
 $D(X) = E(X - EX)^{2}$

Стандартно отклонение: $\sigma = \sqrt{D(X)}$

Биномно разпределение с параметри n, p и q

X	0	1	 k	 n	
P	$C_n^0 p^0 q^n$	$C_n^1 p^1 q^{n-1}$	 $C_n^k p^k q^{n-k}$	 $C_n^n p^n q^0$	

$$E(X) = np$$
, $D(X) = npq$, $\sigma = \sqrt{npq}$

Нормално разпределение $N(\mu,\sigma^2)$ на случайна величина X

Функция на плътност:
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$
 при $x \in (-\infty; +\infty)$

 $E(X) = \mu$ — математическо очакване, σ — стандартно отклонение

6

N(0,1) – стандартно нормално разпределена случайна величина Z

$$Z = \frac{X - \mu}{\sigma}$$

Таблица за стойностите на стандартното нормално разпределение N(0,1)

Стойности на площите под нормалната крива, вляво от съответната стойност на аргумента.

$$P\!\left(-\infty < Z \le Z_{\alpha}\right) = \alpha$$
 , когато $\,Z_{\alpha} \ge 0\,$

За отрицателни стойности на Z_{α} площите се намират чрез $1-P\left(Z\leq Z_{\alpha}\right)$

Z_{α}	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990