Week 8: Differences among more than two samples Session 1

Spring 2020

iClicker Question 1

I want to compare fish weights in three lakes. I've sampled 32 fishes from each lake.

What statistical analysis should I perform?

- A Multiple linear regression
- B t-test
- C one-way ANOVA
- D Chi-square test

iClicker Question 2

I want to compare fish weights in two lakes. I've sampled 32 fishes from each lake.

What statistical analysis should I perform?

- A Multiple linear regression
- B t-test
- C one-way ANOVA
- D Chi-square test

Announcements

This week's material builds on ideas from pairwise group comparisons.

The ANOVA material is more *dense* than what we've covered up until this point.

We're going to have to work on our *statistical intuition* to master these *inferential statistics* concepts.

This week

Tuesday: Differences between more than two samples:

- ► Analysis of Variance (ANOVA) concepts
 - ► One-way ANOVA
 - ► Two-way ANOVA
 - ► Multipe testing

Thursday

- ► Continue ANOVA concepts
- Statistical analysis of salamanders

Moving beyond two groups

T-tests are great, but what if we need to analyze more complicated scenarios?

Let's walk through some sampling and experimental scenarios to build intuition.

Scenario context: We're interested in bluegill population densities in Massachusetts lakes.

¹Image credit: New York Fish and Game Commission

Having just analyzed some fish counts data in 16 lakes in Massachusetts, Thorsten found a significant 'lake' effect using an ANOVA, i.e., the mean number of fish was not the same in all lakes.

- 1. Thorsten wants to know which which lakes are different from each other.
 - ► Think carefully: what does this actually mean?
 - ▶ What is the sampling unit?
 - ► What did he measure?
 - ► What would be need to compare?

Having just analyzed some fish counts data in 16 lakes in Massachusetts, Thorsten found a significant 'lake' effect using an ANOVA, i.e., the mean number of fish was not the same in all lakes.

- 2. What would Thorsten do to find out which lakes were different from eachother?
- A) A series of t-tests
- B) A Tukey Honest Significant Difference test
- C) A Kruskal-Wallis test

I am interested in testing whether there is a significant difference between the population sizes of fish in 30 low salinity lakes and 30 high salinity lakes:

- 1. What is different from the last scenario?
- 2. What is the sampling unit?
- 3. What specific question(s) should I ask?
- 4. What, specifically, do I want to compare?

I am interested in testing whether there is a significant difference between the population sizes of fish in 30 low salinity lakes and 30 high salinity lakes:

- 5. Which statistical test could I use?
- A) A t-test
- B) A One-Way ANOVA
- C) A Chi-square test
- D) A Two-Way ANOVA
 - 6. Which is the test statistic for the test I chose?

I am interested in testing whether there is a significant difference between the population density of fish in 30 low salinity lakes and 30 high salinity lakes.

In fact, I actually sampled 10 large, 10 medium, and 10 small lakes in each of the high and low salinity lakes.

I want to explore whether there are differences in population size based on lake **salinity** and lake **size**.

- 1. How has our sampling scheme changed?
- 2. What is the sampling unit?
- 3. How has our question changed?

I am interested in testing whether there is a significant difference between the population density of fish in 30 low salinity lakes and 30 high salinity lakes.

In fact, I actually sampled 10 large, 10 medium, and 10 small lakes in each of the high and low salinity lakes.

I want to explore whether there are differences in population size based on lake **salinity** and lake **size**.

- 4. Now which statistical test should I use?
- A) A t-test
- B) A One-Way ANOVA
- C) A Chi-square test
- D) A Two-Way ANOVA
 - 5. Now which is the test statistic for the test?

Comparing differences - two samples

Two samples:

▶ Which test do we use?

Comparing differences - two samples

Two samples:

- ▶ the t-test?
- ▶ test whether group means differ significantly
- \blacktriangleright H_0 : there is no significant difference between the means
- \blacktriangleright H_1 : there is a significant difference between the means

Comparing differences - two smaples

Two samples:

- ▶ the t-test?
- ▶ test whether group means differ significantly
- \blacktriangleright H_0 : there is no significant difference between the means
- \blacktriangleright H_1 : there is a significant difference between the means

Significance based on:

- degrees of freedom
- ▶ p-value

Comparing differences - more than two samples

What about if there are more than 2 samples?

► can you think of any examples?

Regional differences in salamander abundance:

- ► comparing multiple populations
- ▶ quantify the differences between populations

Plant growth related to available resources (pot size):

- ► comparing multiple treatments
- quantify the effects of resource availability

Plants productivity (dry mass in grams) related to fertilizer treatment

- ▶ do our treatments influence biomass production?
- ▶ is there a positive effect relative to a control?

When there are more than 2 groups

- ► t-test is probably not optimal:
- ▶ We would need to do all possible pairs.
- ▶ We might get spurious differences just by chance. Why?

Analysis of Variance (ANOVA):

- ▶ statistical test for testing for differences among >2 groups
- ▶ ANOVA and t-test are identical when there are 2 groups
- ▶ one factor/group/category (*One-way ANOVA*)

Analysis of Variance (ANOVA):

- ▶ statistical test for testing for differences among >2 groups
- ▶ ANOVA and t-test are identical when there are 2 groups
- ▶ one factor/group/category (*One-way ANOVA*)

Assumption:

▶ data are normally distributed

Analysis of Variance (ANOVA):

- ▶ statistical test for testing for differences among >2 groups
- ▶ ANOVA and t-test are identical when there are 2 groups
- ▶ one factor/group/category (*One-way ANOVA*)

Assumption:

▶ data are normally distributed

Hypotheses:

Analysis of Variance (ANOVA):

- ▶ statistical test for testing for differences among >2 groups
- ▶ ANOVA and t-test are identical when there are 2 groups
- ▶ one factor/group/category (One-way ANOVA)

Assumption:

▶ data are normally distributed

Hypotheses:

- \blacktriangleright H_0 : there are no significant differences between the means
 - all means are equal
- \blacktriangleright H_1 : there are significant differences between the means
 - lack all means are not equal

ANOVA explained

The ANOVA partitions the *total* variation into *within* sample (group) variation with *between* sample (group) variation to determine whether samples come from a single distribution or not.

ightharpoonup Total sums of squares (SS_T)

$$SS_T = \sum (x - \bar{x})^2$$

- ightharpoonup Within-sample sums of squares (SS_W)
- \blacktriangleright add up the within sample SS

$$SS_W = \sum (x_1 - \bar{x}_1)^2 + \sum (x_2 - \bar{x}_2)^2 + \sum (x_3 - \bar{x}_3)^2$$

- ightharpoonup Within-sample sums of squares (SS_W)
- ightharpoonup more generally (g is the number of groups)

$$SS_W = \sum_g \sum_i (x_{ig} - \bar{x}_g)^2$$

- ▶ Between-sample sums of squares (SS_B)
- ▶ add up the differences in the means

$$SS_B = n_1(\bar{x}_1 - \bar{x})^2 + n_2(\bar{x}_2 - \bar{x})^2 + n_3(\bar{x}_3 - \bar{x})^2$$

- \blacktriangleright Between-sample sum of squares (SS_B)
- ightharpoonup more generally (g is the number of groups)

$$SS_B = \sum_g n_g (\bar{x}_g - \bar{x})^2$$

Total:

Within group:

Between group:

$$SS_T = \sum (x - \bar{x})^2$$

$$SS_W = \sum_g \sum_i (x_{ig} - \bar{x}_g)^2$$

$$SS_B = \sum_g n_g (\bar{x}_g - \bar{x})^2$$

ANOVA degrees of freedom

If we define the following:

- ightharpoonup n is the total sample size (number of observations)
- ightharpoonup g is the number of groups/samples

ANOVA degrees of freedom

If we define the following:

- \triangleright n is the total sample size (number of observations)
- \triangleright g is the number of groups/samples

Then the degrees of freedom (df) are:

- ightharpoonup Total: $df_T = n 1$
- ▶ Within: $df_W = g 1$
- ▶ Between: $df_B = n g$

ANOVA the mean square

The mean square (MS) is the sum of squares divided by the degrees of freedom:

$$MS = SS/df$$

So:

- ► Total: $MS_T = SS_T/df_T$
- ▶ Within: $MS_W = SS_W/df_W$
- ▶ Between: $MS_B = SS_B/df_B$

ANOVA all the ingredients

	SS	df	MS
Total	$\sum (x - \bar{x})^2$	n-1	SS_T/df_T
Within	$\sum_{g} \sum_{i} (x_{ig} - \bar{x}_{j})^{2}$	n-g	SS_W/df_W
Between	$\sum_g n_g (\bar{x}_g - \bar{x})^2$	g-1	SS_B/df_B

ANOVA the statistical test

ANOVA results are usually presented in an ANOVA table

Source of variation	SS	df	MS	F	p
Between	SS_B	df_B	MS_B		
Within	SS_W	df_W	MS_W		
Total	SS_T	df_T	_		

ANOVA the statistical test

ANOVA results are usually presented in an ANOVA table

Source of variation	SS	df	MS	F	p
Between	SS_B	df_B	MS_B		
Within	SS_W	df_W	MS_W		
Total	SS_T	df_T	_		

 \triangleright F is the test statistic for the ANOVA

$$F = \frac{MS_B}{MS_W}$$

ANOVA the statistical test

ANOVA results are usually presented in an ANOVA table

Source of variation	SS	df	MS	F	p
Between	SS_B	df_B	MS_B		
Within	SS_W	df_W	MS_W		
Total	SS_T	df_T	_		

- \triangleright p is the probability of observing the F statistic with a given degrees of freedom if the null hypothesis is true:
 - ▶ null hypothesis is 'no difference between the means'
 - \triangleright based on the F-distribution

ANOVA the F distribution

ANOVA the F distribution

ANOVA and the Sums of Squares

ANOVA and the Sums of Squares

ANOVA the p value

Hypotheses:

- \blacktriangleright H_0 : there are no significant differences between the means
 - lack all means are equal
- \blacktriangleright H_1 : there are significant differences between the means
 - lack all means are not equal

When do we reject or fail to reject the null hypothesis?

ANOVA the p value

Hypotheses:

- \blacktriangleright H_0 : there are no significant differences between the means
 - lack all means are equal
- \blacktriangleright H_1 : there are significant differences between the means
 - lack all means are not equal

When do we reject or fail to reject the null hypothesis?

- \blacktriangleright if F is large, then p is small
- ▶ if p < 0.05 we reject the null hypothesis
- if p > 0.05 we fail to reject the null hypothesis

- ► Cannot use t-tests to make pairwise comparisons
 - ▶ multiple t-tests will lead to significant results by chance

- ► Instead we conduct *Post-hoc* testing
 - Tukey Honest Significant Difference test (Tukey HSD)
 - accounts for multiple tests being conducted
 - calculation of a t-statistic
 - a pair, so degrees of freedom is 1
 - ▶ 5% critical value for df = 1 is 4.303
 - if t > 4.303 then p < 0.05

- ► Instead we conduct *Post-hoc* testing
 - Tukey Honest Significant Difference test (Tukey HSD)
 - accounts for multiple tests being conducted
 - calculation of a t-statistic
 - a pair, so degrees of freedom is 1
 - ▶ 5% critical value for df = 1 is 4.303
 - if t > 4.303 then p < 0.05

$$t_{a,b} = \frac{|\bar{x}_a - \bar{x}_b|}{\sqrt{\frac{MS_W\left(\frac{1}{n_a} + \frac{1}{n_b}\right)}{2}}}$$

- ► Instead we conduct *Post-hoc* testing
 - Tukey Honest Significant Difference test (Tukey HSD)
 - accounts for multiple tests being conducted
 - calculation of a t-statistic
 - a pair, so degrees of freedom is 1
 - ▶ 5% critical value for df = 1 is 4.303
 - if t > 4.303 then p < 0.05

	A	В	С
A	-	$t_{A,B}$	$t_{A,C}$
В	-	-	$t_{B,C}$
С	-	-	-

ANOVA Recap

Comparing differences between >2 samples (groups) using ANOVA

- ▶ null hypothesis:
 - no difference between the samples
 - data are from the same population
- ▶ alternative hypothesis:
 - sample means are different
 - data from the different populations

ANOVA Recap

Comparing differences between >2 groups using ANOVA

Source of variation	SS	df	MS	F	p
Between	SS_B	df_B	MS_B	$\frac{MS_B}{MS_W}$	
Within	SS_W	df_W	MS_W		
Total	SS_T	df_T	_		

ANOVA Recap

Comparing differences between >2 groups using ANOVA

- ► Essentially comes down to:
 - \triangleright a model with one mean or a model with a mean per group
 - which model best explains the data
 - which model significantly reduces the sums of squares

More than one factor with ANOVA

So far we have looked at multiple levels within a single factor

- ▶ factor: a single categorical predictor variable
- ▶ level: the categories within a factor

In some cases, we may be interested in >1 factor

- ▶ 2 factors: two-way ANOVA
- ▶ 3 factors: three-way ANOVA
- ► · · · multi-way ANOVA

Let's use a grazing example:

	Site		
Grazing Treatment	Top	Lower	
Lo	9	7	
Lo	11	6	
Lo	6	5	
Mid	14	14	
Mid	17	17	
Mid	19	15	
Hi	28	44	
Hi	31	38	
Hi	32	37	

Lets use the example from the book (in R looks like this):

graze

```
Site Abundance
##
      graze
## 1
          Lo
                Top
## 2
          Lo
                Top
                            11
## 3
          Lo
                Top
                             6
## 4
        Mid
                Top
                            14
## 5
         Mid
                            17
                Top
## 6
         Mid
                Top
                            19
          Ηi
                Top
                            28
## 7
## 8
          Ηi
                            31
                Top
          Ηi
                            32
## 9
                Top
## 10
          Lo Lower
## 11
          Lo Lower
                             6
                             5
## 12
          Lo Lower
## 13
         Mid Iower
                            14
```

Lets use the example from the book (in R looks like this):

graze

##		graze	Site	Abundance
##	1	Lo	Top	9
##	2	Lo	Top	11
##	3	Lo	Top	6
##	4	Mid	Top	14
##	5	Mid	Top	17
##	6	Mid	Top	19
##	7	Hi	Top	28
##	8	Hi	Top	31
##	9	Hi	Top	32
##	10	Lo	Lower	7
##	11	Lo	Lower	6
##	12	Lo	Lower	5
##	13	Mid	Lower	14

Lets use the example from the book (in R looks like this):

head(graze, 9)

##		graze	${\tt Site}$	Abundance
##	1	Lo	Top	9
##	2	Lo	Top	11
##	3	Lo	Top	6
##	4	Mid	Top	14
##	5	Mid	Top	17
##	6	Mid	Top	19
##	7	Hi	Top	28
##	8	Hi	Top	31
##	9	Hi	Top	32

Step one:

- ► SS for each factor
 - graze
 - site
- $SS_{graze} = \sum (x_{i,graze} \bar{x}_{graze})^2$
- ► Ignore site grouping

Step one:

- ► SS for each factor
 - graze
 - site
- $ightharpoonup SS_{site} = \sum (x_{i,site} \bar{x}_{site})^2$
- ► Ignore graze grouping

Step two:

- ▶ SS for each combinations of factors
- ► Treat all groupings as unique
- \triangleright $SS_{within} = (x_{i,g} \bar{x}_g)^2$

Step three:

- ► Sums of squares of both factors

Step four:

- ► Total sums of squares
- $ightharpoonup SS_{total} = \sum (x_i \bar{x})^2$
- ightharpoonup the null model
- ► Ignore all group structure

Conducting the ANOVA - sums of squares

	SS	df	MS	F	p
Graze	SS_{graze}				
Site	SS_{site}				
Both factors(interaction)	SS_{both}				
Within group	SS_{within}				
Total	SS_{total}				

Degrees of freedom

In general:

- ► Factor 1 (F1): number of levels 1
- ► Factor 2 (F2): number of levels 1
- ▶ Within: n (levels in F1 × levels in F2)
- ► Total: *n* 1

Degrees of freedom

In general:

- ► Factor 1 (F1): number of levels 1
- ► Factor 2 (F2): number of levels 1
- ▶ Within: n (levels in F1 × levels in F2)
- ► Total: *n* 1

Grazing example:

- Graze: 3 1 = 2
- ▶ Site: 2 1 = 1
- ▶ Within: $18 (3 \times 2) = 12$
- ▶ Total: 18 1 = 17

Degrees of freedom

In general:

- ► Factor 1 (F1): number of levels 1
- ► Factor 2 (F2): number of levels 1
- ▶ Within: n (levels in F1 × levels in F2)
- ► Total: *n* 1

	SS	df	MS	F	p
Graze	SS_{graze}	df_{graze}			
Site	SS_{site}	df_{site}			
Both factors(interaction)	SS_{both}	df_{both}			
Within group	SS_{within}	df_{within}			
Total	SS_{total}	df_{total}			

Mean squares

▶ the mean squares are calculated by dividing the sums of squares by the degrees of freedom for each element

	SS	df	MS	F	p
Graze	SS_{graze}	df_{graze}	$MS_{graze} = \frac{SS_{graze}}{df_{graze}}$		
Site	SS_{site}	df_{site}	$MS_{site} = \frac{SS_{site}}{df_{site}}$		
Both factors	SS_{both}	df_{both}	$MS_{both} = \frac{SS_{both}}{df_{both}}$		
Within group	SS_{within}	df_{within}	aa		
Total	SS_{total}	df_{total}			

F statistic

ightharpoonup the F-statistic is calculated by taking the element of interest divided by the within group MS (the error term)

	SS	df	MS	F	p
Graze	SS_{graze}	df_{graze}	$MS_{graze} = \frac{SS_{graze}}{df_{graze}}$	$\frac{MS_{graze}}{MS_{within}}$	
Site	SS_{site}	df_{site}	$MS_{site} = \frac{SS_{site}}{df_{site}}$	$\frac{MS_{site}}{MS_{within}}$	
Both factors	SS_{both}	df_{both}	$MS_{both} = \frac{SS_{both}}{df_{both}}$	$\frac{MS_{both}}{MS_{within}}$	
Within group	SS_{within}	df_{within}	$MS_{within} = \frac{SS_{within}}{df_{within}}$		
Total	SS_{total}	df_{total}			

ANOVA the F distribution

ANOVA in practice - R

► Read in the data as a data frame

graze

```
##
      graze
              Site Abundance
## 1
          Lo
               Top
## 2
               Top
                            11
         Lo
## 3
          Lo
               Top
                             6
## 4
        Mid
               Top
                            14
## 5
        Mid
               Top
                            17
## 6
         Mid
               Top
                            19
               Top
## 7
          Ηi
                            28
                            31
## 8
          Ηi
               Top
## 9
          Ηi
               Top
                            32
## 10
          Lo Lower
          Lo Lower
## 11
                             6
          Lo Lower
                             5
## 12
## 12
         Mid Inwar
                            14
```

► Conduct *any* test using formula syntax

```
oneway.site <- aov(Abundance ~ Site, data = graze)
summary(oneway.site)</pre>
```

► Conduct *any* test using formula syntax

```
oneway.site <- aov(Abundance ~ Site, data = graze)
summary(oneway.site)</pre>
```

##

► Conduct *any* test using formula syntax

```
oneway.graze <- aov(Abundance ~ graze, data = graze)
summary(oneway.graze)</pre>
```

```
## graze    2 2403.1 1201.6 84.48 6.84e-09 ***
## Residuals 15 213.3 14.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.3
```

Df Sum Sq Mean Sq F value Pr(>F)

##

► Conduct *any* test using formula syntax

```
oneway.graze <- aov(Abundance ~ graze, data = graze)
summary(oneway.graze)</pre>
```

```
## graze    2 2403.1 1201.6 84.48 6.84e-09 ***
## Residuals 15 213.3 14.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.3
```

Df Sum Sq Mean Sq F value Pr(>F)

##

Conduct any test using formula syntax

```
twoway.additive <- aov(Abundance ~ Site + graze, data = gra
summary(twoway.additive)
```

```
Df Sum Sq Mean Sq F value Pr(>F)
## Site 1 14.2 14.2 1.00 0.334
## graze 2 2403.1 1201.6 84.48 1.54e-08 ***
## Residuals 14 199.1 14.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.3
```

##

Conduct any test using formula syntax

```
twoway.additive <- aov(Abundance ~ Site + graze, data = gra
summary(twoway.additive)
```

```
Df Sum Sq Mean Sq F value Pr(>F)
## Site 1 14.2 14.2 1.00 0.334
## graze 2 2403.1 1201.6 84.48 1.54e-08 ***
## Residuals 14 199.1 14.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.3
```

##

Site

► Conduct *any* test using formula syntax

```
twoway.interaction <- aov(Abundance ~ Site * graze, data =
summary(twoway.interaction)</pre>
```

Df Sum Sq Mean Sq F value Pr(>F)

1 14.2 14.2 2.462 0.14264

```
## graze    2 2403.1 1201.6 207.962 4.86e-10 ***
## Site:graze    2 129.8 64.9 11.231 0.00178 **
## Residuals    12 69.3    5.8
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.11
```

##

Site

► Conduct *any* test using formula syntax

```
twoway.interaction <- aov(Abundance ~ Site * graze, data =
summary(twoway.interaction)</pre>
```

Df Sum Sq Mean Sq F value Pr(>F)

1 14.2 14.2 2.462 0.14264

```
## graze    2 2403.1 1201.6 207.962 4.86e-10 ***
## Site:graze    2 129.8 64.9 11.231 0.00178 **
## Residuals    12 69.3    5.8
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.11
```

We will conduct three analyses using the *salamANOVA*. We are interested in whether salamander snout-to-vent length (SVL) varies by sex and/or site. The data look like this:

```
str(sals)
```

Error in str(sals): object 'sals' not found

- ► Site: there are four sites (P1A, P1B, P2A, P2B)
- ► Sex: M (male) and F (female)
- ► SVL: the snout-to-vent length in mm

Analysis 1: Does SVL vary by sex?

- ▶ What is the null hypothesis?
- ► Make a plot to visualize the hypothesis.
- ▶ What statistical test will you use to test H_0 ?
- ▶ What is the:
 - \triangleright test statistic for this particular test (e.g., t, F, etc)
 - degrees of freedom (calculate this)
 - significance level
- ► Conduct the analysis:
 - what is the value of the test statistic
 - \triangleright what the *p*-value
- ▶ Write a short paragraph reporting the conclusion, use values from the statistical test to suppo, supported by the results from the test.

Analysis 2: Does SVL vary by site?

- ▶ What is the null hypothesis?
- ► Make a plot to visualize the hypothesis.
- ▶ What statistical test will you use to test H_0 ?
- ▶ What is the:
 - \triangleright test statistic for this particular test (e.g., t, F, etc)
 - degrees of freedom (calculate this)
 - significance level
- ► Conduct the analysis:
 - what is the value of the test statistic
 - \triangleright what the *p*-value
- ▶ Write a short paragraph reporting the conclusion, use values from the statistical test to suppo, supported by the results from the test.

Analysis 3: Does SVL vary by sex and/or site?

- ▶ What is the null hypothesis?
- ► Make a plot to visualize the hypothesis.
- \blacktriangleright What statistical test will you use to test H_0 ?
- ▶ What is the:
 - \triangleright test statistic for this particular test (e.g., t, F, etc)
 - degrees of freedom (calculate this)
 - significance level
- ► Conduct the analysis:
 - what is the value of the test statistic
 - \triangleright what the *p*-value
- ▶ Write a short paragraph reporting the conclusion, use values from the statistical test to suppo, supported by the results from the test.

Assignment: Statistical analysis of variation in salamnder SVL.

- ► Write a report with four sections:
 - 1. Analysis 1
 - 2. Analysis 2
 - 3. Analysis 3
 - 4. Reflection: how does analysis 3 compare to analyses 1 and 2?
- ► Sections 1 to 3 sould report on each of the prompts in the previous slides.
- ▶ Section 4 is an opportunity to demonstrate your undertanding of the material covered over the previous weeks.