Санкт-Петербургский Политехнический Университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

ОТЧЕТ по расчетному заданию

«Системы массового обслуживания» Системный анализ и принятие решений

Работу выполнил студент группа 33501/4 Дьячков В.В. Преподаватель

Сабонис С.С.

Санкт-Петербург 7 мая 2018 г.

Содержание

1	Техническое задание
2	Исходные данные
3	Система массового обслуживания
Спис	ок таблиц
2.1	Исходные данные
3.1	Вероятности состояний системы
Спис	ок иллюстраций
	Структура сети
3.2	Граф состояний

1. Техническое задание

Вариант 32. Рассматривается работа столовой самообслуживания. Обеды выдают K поваров. Среднее время выдачи обеда на одного посетителя равно t_1 минут. Плотность потока посетителей около N человек в минуту. В очереди могут одновременно стоять не более m человек. В среднем посетитель стоит в очереди t_2 минут, после чего покидает столовую. Если посетителя начали обслуживать, то обслуживание не прерывается. На обед посетитель в среднем затрачивает t_3 минут.

Определить, сколько времени потратит посетитель в столовой, если количество мест за столами всегда достаточно для размещения лиц, уже получивших обед. Определить среднее число занятых поваров и среднее число ожидающих посетителей. Определить вероятности того, что посетитель:

- успешно пообедает;
- уйдет, не дождавшись своей очереди;
- уйдет, не имея возможности встать в очередь;

2. Исходные данные

Таблица 2.1: Исходные данные

N, чел./мин.	t_1 , мин	t_2 , мин	t_3 , мин	K, чел.	т, чел.
1	4	10	10	3	16

3. Система массового обслуживания

На рис. 3.1 изображена структура сети M/M/3/16.

Рис. 3.1: Структура сети

На рис. 3.2 изображен граф состояний рассматриваемой сети.

Рис. 3.2: Граф состояний

Граф гибели и размножения, следовательно можно применить формулу 3.1 для расчета вероятности нахождения системы в состоянии i:

$$P_{i} = \begin{cases} \left(1 + \sum_{i=1}^{N} \prod_{j=1}^{i} \frac{\lambda_{j}}{\mu_{j}}\right)^{-1}, & \text{если } i = 0\\ \prod_{j=1}^{i} \frac{\lambda_{j}}{\mu_{j}}, & \text{если } i \neq 0 \end{cases}$$
(3.1)

В таблице 3.1 приведена вероятность каждого из состояний системы, количество заявок, находящихся в очереди, а так же число занятых каналов.

	D	7	
i	P_i	$\overline{k_3}_i$	$\overline{n_{\mathrm{o}}}_{i}$
0	0.01007	0	0
1	0.04027	1	0
2	0.08053	2	0
3	0.10738	3	0
4	0.12633	3	1
5	0.13298	3	2
6	0.12665	3	3
7	0.11013	3	4
8	0.08810	3	5
9	0.06526	3	6
10	0.04501	3	7
11	0.02904	3	8
12	0.01760	3	9
13	0.01006	3	10
14	0.00544	3	11
15	0.00279	3	12
16	0.00136	3	13
17	0.00063	3	14
18	0.00028	3	15
19	0.00012	3	16

Таблица 3.1: Вероятности состояний системы

Из найденных вероятностей найдем характеристики системы массового обслуживания:

- ullet Сумма вероятностей $\sum_{i=0}^{N} P_i = 1$, значит вероятности найдены верно.
- Среднее количество занятых каналов найдем как сумму поэлементных произведений вероятностей состояний на количество занятых каналов в этих состояних:

$$\overline{k_3} = \sum_{i=0}^{N} P_i \cdot \overline{k_3}_i \approx 2.80873$$

• Коэффициент загрузки каналов найдем как отношение среднего количества занятых каналов к общему количеству каналов в системе:

$$\eta = \frac{\overline{k_3}}{k} \approx 0.93624$$

• Среднюю длину очереди найдем как сумму поэлементных произведений вероятностей состояний на длину очереди в этих состояних:

$$\overline{n_{\rm o}} = \sum_{i=0}^{N} P_i \cdot \overline{n_{\rm o}}_i \approx 2.97698$$

• Вероятность отказа из-за заполненной очереди равна вероятности нахождения системы в последнем состоянии:

$$P_{\text{otk}} \approx 0.00012$$

• Вероятность ухода из очереди равна отношению интенсивности ухода к интенсивности поступления заявок, умноженному на среднюю длину очереди:

$$P_{\rm yx} \approx 0.29770$$

• Вероятность успешного обслуживания найдем как произведение вероятностей отстутствия отказа обслуживания и ухода заявки из очереди:

$$P_{\text{vcn}} = (1 - P_{\text{otk}}) \cdot (1 - P_{\text{vx}}) \approx 0.70222$$

• Среднее количество человек в системе найдем как сумму средней длины очереди и среднего количества занятых каналов:

$$j = \overline{k_3} + \overline{n_0} \approx 5.78571$$

• Среднее время нахождения в системе найдем с помощью закону Литтла, прибавив время обеда, умноженное на вероятность успешного обслуживания:

$$t_c = \frac{j}{\lambda} + T = \frac{j}{\lambda} + P_{\text{ycm}} \cdot t_3 \approx 12.80789$$