Analysis of Algorithms CS 477/677

Instructor: Monica Nicolescu Lecture 26

NP-Completeness

- Polynomial-time algorithms
 - on inputs of size n, worst-case running time is $O(n^k)$, for a constant k
- Not all problems can be solved in polynomial time
 - Some problems cannot be solved by any computer no matter how much time is provided (Turing's Halting problem) – such problems are called **undecidable**
 - Some problems can be solved but not in O(n^k)

Class of "P" Problems

 Class P consists of (decision) problems that are solvable in polynomial time:

there exists an algorithm that can solve the problem in $O(n^k)$, k constant

- Problems in P are also called tractable
- Problems not in P are also called intractable
 - Can be solved in reasonable time only for small inputs

Optimization & Decision Problems

Decision problems

Given an input and a question regarding a problem,
 determine if the answer is yes or no

Optimization problems

- Find a solution with the "best" value
- Optimization problems can be cast as decision problems that are easier to study
 - E.g.: Shortest path: G = unweighted directed graph
 - Find a path between u and v that uses the fewest edges
 - Does a path exist from u to v consisting of at most k edges?

Nondeterministic Algorithms

Nondeterministic algorithm = two stage procedure:

- 1) Nondeterministic ("guessing") stage:
 - generate an arbitrary string that can be thought of as a candidate solution ("certificate")
- 2) Deterministic ("verification") stage:
 - take the certificate and the instance to the problem and return YES if the certificate represents a solution
- Nondeterministic polynomial (NP) = verification stage is polynomial

Class of "NP" Problems

- Class NP consists of problems that are verifiable in polynomial time (i.e., could be solved by nondeterministic polynomial algorithms)
 - If we were given a "certificate" of a solution, we could verify that the certificate is correct in time polynomial to the size of the input

E.g.: Hamiltonian Cycle

- Given: a directed graph G = (V, E), determine a simple cycle that contains each vertex in V
 - Each vertex can only be visited once
- Certificate:
 - Sequence: $\langle v_1, v_2, v_3, ..., v_{|V|} \rangle$

hamiltonian

- Verification:
 - $(v_i, v_{i+1}) \in E \text{ for } i = 1, ..., |V|$ $(v_{|V|}, v_1) \in E$
 - 2)

Polynomial Reduction Algorithm

- To solve a decision problem A in polynomial time
 - 1. Use a polynomial time reduction algorithm to transform A into B
 - 2. Run a known polynomial time algorithm for B
 - 3. Use the answer for B as the answer for A CS 477/677 Lecture 26

Reductions

Given two problems A, B, we say that A is

reducible to B (A
$$\leq_p$$
 B) if:

- 1. There exists a function f that converts the input of A to an input of B in polynomial time
- 2. $A(i) = YES \iff B(f(i)) = YES$ (for every input i)

NP-Completeness

A problem B is NP-complete (NPC) if:

2)
$$A \leq_p B$$
 for all $A \in \mathbf{NP}$

- If B satisfies only property 2) we say that B is NP-hard
- No polynomial time algorithm has been discovered for an NP-Complete problem
- No one has ever proven that no polynomial time algorithm can exist for any NP-Complete problem

Reduction and NP-Completeness

- Suppose we know:
 - No polynomial time algorithm exists for problem A
 - We have a polynomial reduction f from A to B
- ⇒ No polynomial time algorithm exists for B

Proving NP-Completeness

Theorem: If A is NP-Complete and A \leq_{D} B

⇒ B is NP-Hard

In addition, if $B \in NP$

⇒ B is NP-Complete

Proof: Assume that $B \in P$

Since $A \leq_p B \Rightarrow A \in P$ contradiction, so $B \notin P$

If B \in NP \Rightarrow B \in NP-Complete (by definition of NP-C)

If B \notin NP \Rightarrow B \in NP-Hard (by definition of NP-H)

Proving NP-Completeness

1. Prove that the problem B is in NP

- A randomly generated string can be checked in polynomial time to determine if it represents a solution
- 2. Show that **one known** NP-Complete problem can be transformed to B in polynomial time
 - No need to check that all NP-Complete problems are reducible to B

Is P = NP?

Any problem in P is also in NP:

$$P \subseteq NP$$

- We can solve problems in P, even without having a certificate
- The big (and open question) is whether P = NP

Theorem: If any NP-Complete problem can be solved in polynomial time \Rightarrow then P = NP.

P & NP-Complete Problems

Shortest simple path

- Given a graph G = (V, E) find a **shortest** path from a source to all other vertices
- Polynomial solution: O(VE)

Longest simple path

- Given a graph G = (V, E) find a **longest** path from a
 source to all other vertices
- NP-complete

P & NP-Complete Problems

Euler tour

- Given G = (V, E) a connected, directed graph, find a cycle that traverses each edge of G exactly once (may visit a vertex multiple times)
- Polynomial solution O(E)

Hamiltonian cycle

- G = (V, E) a connected, directed graph find a cycle
 that visits each vertex of G exactly once
- NP-complete

Boolean Formula Satisfiability

Formula Satisfiability Problem: a boolean formula **@** composed of

- 1. n boolean variables: x₁, x₂, ..., x_n
- 2. m boolean connectives: Λ (AND), V (OR), ¬ (NOT), → (implication), ←→ (equivalence, "if and only if")
- 3. Parentheses

Satisfying assignment: an assignment of values (0, 1) to variables x_i that causes Φ to evaluate to 1

E.g.:
$$\Phi = (x_1 \ V \ x_2) \ \Lambda (x_1 \ V \ \neg x_2) \ \Lambda (\neg x_1 \ V \ \neg x_2)$$

Certificate: $x_1 = 1, x_2 = 0 \Rightarrow \Phi = 1 \ \Lambda \ 1 \ \Lambda \ 1 = 1$

Formula Satisfiability is first to be proven NP-Complete
 CS 477/677 - Lecture 26

3-CNF Satisfiability

3-CNF (clause normal form) Satisfiability Problem:

- n boolean variables: x₁, x₂, ..., x_n
- **Literal**: x_i or $\neg x_i$ (a variable or its negation)
- Clause: c_i = an OR of three literals
- Formula: $\Phi = c_1 \wedge c_2 \wedge ... \wedge c_m$ (m clauses)
- E.g.:

$$\mathbf{\Phi} = (\mathbf{X}_1 \ \mathbf{V} \ \neg \mathbf{X}_1 \ \mathbf{V} \ \neg \mathbf{X}_2) \ \Lambda \ (\mathbf{X}_3 \ \mathbf{V} \ \mathbf{X}_2 \ \mathbf{V} \ \mathbf{X}_4) \ \Lambda$$
$$(\neg \mathbf{X}_1 \ \mathbf{V} \ \neg \mathbf{X}_3 \ \mathbf{V} \ \neg \mathbf{X}_4)$$

3-CNF is NP-Complete

Clique

Clique Problem:

- Undirected graph G = (V, E)
- Clique: a subset of vertices in V all connected to each other by edges in E (i.e., forming a complete graph)

 Size of a clique: number of vertices it contains Clique(G, 2) = YES

Optimization problem:

Find a clique of maximum size

Decision problem:

– Does G have a clique of size k?

Clique(G, 4) = NO

Clique Verifier

- **Given**: an undirected graph G = (V, E)
- Problem: Does G have a clique of size k?
- Certificate:
 - A set of k nodes

 Let's prove that the clique problem is NP-Complete

3-CNF \leq_p Clique

Start with an instance of 3-CNF:

$$-\Phi = C_1 \wedge C_2 \wedge ... \wedge C_k$$
(k clauses)

- Each clause C_r has three literals: $C_r = I_1^r v I_2^r v I_3^r$

• Idea:

– Construct a graph G such that Φ is satisfiable if and only if G has a clique of size k

3-CNF \leq_p Clique

- For each clause $C_r = I_1^r v I_2^r v I_3^r$ place a triple of vertices v_1^r , v_2^r , v_3^r in V
- Put an edge between two vertices v_i^r and v_i^s if:
 - v_i^r and v_i^s are in different triples
 - I_i^r is not the negation of I_j^s

3-CNF \leq_p Clique

$$\Phi = C_1 \wedge C_2 \wedge C_3$$

- Suppose **Φ** has a satisfying assignment
 - Each clause C_r has some
 literal assigned to 1 –
 this corresponds to a
 vertex v_i^r
 - Picking one such literal from each C_r ⇒ a set V'

- Claim: Vitices clique
 - $-\forall v_i^r, v_j^s \in V'$ the corresponding literals are 1 ⇒ cannot be complements
 - by the design of G the edge (v_i^r, v_j^s) ∈ E

3-CNF ≤_p Clique

$$\Phi = C_1 \wedge C_2 \wedge C_3$$

- Suppose G has a clique of size k
 - No edges between nodes in the same clause
 - Clique contains only one vertex from each clause
 - Assign 1 to vertices in C₂ ¬x₁ v x₂ v x₃ the clique (we can do it because the literals of these vertices cannot belong to complementary literals)
 - Each clause is satisfied $\Rightarrow \Phi$ is satisfied

The Traveling Salesman Problem

- G = (V, E), |V| = n, vertices
 represent cities
- Cost: c(i, j) = cost of travel from city i to city j
- Problem: salesman should make a tour (hamiltonian cycle):
 - Visit each city only once
 - Finish at the city he started from
 - Total cost is minimum
- TSP = tour with cost at most k

 $\langle u, w, v, x \rangle$

$TSP \in NP$

Certificate:

- Sequence of n vertices, cost
- E.g.: $\langle u, w, v, x \rangle$, 7

Verification:

- Each vertex occurs only once
- Sum of costs is at most k

$\mathsf{HAM}\text{-}\mathsf{CYCLE} \leq_{\mathsf{p}} \mathsf{TSP}$

- Start with a Hamiltonian cycle G = (V, E)
- Form the complete graph G' = (V, E')

$$E' = \{(i, j): i, j \in V \text{ and } i \neq j\}$$

$$c(i, j) = \begin{cases} 0 & \text{if } (i, j) \in E \\ 1 & \text{if } (i, j) \notin E \end{cases}$$

- Let's prove that:
- G has a hamiltonian cycle ⇔
 G' has a tour of cost at most 0

$\mathsf{HAM}\text{-}\mathsf{CYCLE} \leq_{\mathsf{p}} \mathsf{TSP}$

- G has a hamiltonian cycle h
 - \Rightarrow Each edge in h \in E \Rightarrow has cost 0 in G'
 - ⇒ h is a tour in G' with cost 0
- G' has a tour h' of cost at most 0
 - ⇒ Each edge on tour must have cost 0
 - ⇒ h' contains only edges in E

Approximation Algorithms

Various ways to get around NP-completeness:

- 1. If inputs are small, an algorithm with exponential time may be satisfactory
- 2. Isolate special cases, solvable in polynomial time
- 3. Find near-optimal solutions in polynomial time
 - Approximation algorithms
 - Local search (hill climbing)

The Vertex-Cover Problem

- Vertex cover of G = (V, E), undirected graph
 - A subset $V' \subseteq V$ that covers all the edges in G

Approximate solution (greedy):

- Start with a list of all edges
- Repeatedly pick an arbitrary edge (u, v)
- Add its endpoints u and v to the vertex-cover set
- Remove from the list all edges incident on u or v

APPROX-VERTEX-COVER(G)

- 1. C ← Ø
- 2. E' ← E[G]
- 3. while $E' \neq \emptyset$
- 4. **do** choose (u, v) arbitrary from E'
- 5. $C \leftarrow C \bigcup \{u, v\}$
- 6. remove from E' all edges incident on u, v
- **7.** return C

APPROX-VERTEX-COVER(G)

APPROX-VERTEX-COVER:

Optimal VERTEX-COVER:

It can be proven that the approximation algorithm returns a solution that is no more than twice the optimal vertex cover.

The Set Covering Problem

- Finite set X
- Family F of subsets of X: $F = \{S_1, S_2, ..., S_n\}$

$$X = \bigcup_{S \in F} S$$

- Find a minimum-size subset C ⊆ F that covers all the elements in X
- Decision: given a number k find if there exist k sets S_{i1} , S_{i2} , ..., S_{ik} such that:

$$S_{i1} \bigcup S_{i2} \bigcup ... \bigcup S_{ik} = X$$

Greedy Set Covering

Idea:

At each step pick a set S
 that covers the greatest
 number of remaining
 elements

Optimal: $C = \{S_3, S_4, S_5\}$

GREEDY-SET-COVER(X, F)

- 1. U ← X
- 2. C ← Ø
- **3.** while ∪ **=**/∅
- 4. **do** select an $S \in F$ that maximizes $|S \cap U|$
- 5. $U \leftarrow U S$
- 6. $C \leftarrow C \cup \{S\}$
- 7. return C

Readings

Chapters 25, 31

Optional, not required for final exam

ADDITIONAL PROOFS

Vertex Cover

- G = (V, E), undirected graph
- Vertex cover = a subset V' ⊆ V
 which covers all the edges
 - if (u, v) ∈ E then u ∈ V' or v ∈ V' or both.
- **Size** of a vertex cover = number of vertices in it

Problem:

- Find a vertex cover of minimum size
- Does graph G have a vertex cover of size k?

Clique ≤_p Vertex Cover

• G = (V, E) \Rightarrow complement graph G^c = (V, E^c) E^c = {(u, v):, u, v \in V, and (u, v) \notin E}

Idea:

 $\langle G, k \rangle$ (clique) $\rightarrow \langle G^c, |V|-k \rangle$ (vertex cover)

Clique ≤_p Vertex Cover (VC)

Size[Clique](G) + Size[Vertex Cover](G^c) = n

- G has a clique of size k

 G^c has a vertex
 cover of size n − k
- S is a clique in $G \iff V S$ is a vertex cover in G^c

Clique ≤_p Vertex Cover

- Prove: G has a clique $V' \subseteq V$, $|V'| = k \Rightarrow V-V'$ is a VC in G^c
- Let $(v, w) \in E^c \Rightarrow (v, w) \notin E$
 - ⇒ v and w were not connected in E
 - ⇒ at least one of v or w does not belong in the clique V'
 - ⇒ at least one of v or w belongs in V V'
 - \Rightarrow edge (v, w) is covered by V V'
 - \Rightarrow edge (v, w) was arbitrary \Rightarrow every edge of E^c is covered

Clique ≤_p Vertex Cover

- Prove: G^c has a vertex cover $V' \subseteq V$, $|V'| = |V| k \Rightarrow V-V'$ is a clique in G
- For all $v, w \in V$, if $(v, w) \in E^c$
 - \Rightarrow v \in V' or w \in V' or both \in V'
 - \Rightarrow For all x, y \in V, if x \notin V' and y \notin V':
 - \Rightarrow no edge between x, y in E^G \Rightarrow (x,y) \in E
 - \Rightarrow V V' is a clique, of size |V| |V'| = k

The Traveling Salesman Problem

- G = (V, E), |V| = n, vertices
 represent cities
- Cost: c(i, j) = cost of travel from city i to city j
- Problem: salesman should make a tour (hamiltonian cycle):
 - Visit each city only once
 - Finish at the city he started from
 - Total cost is minimum
- TSP = tour with cost at most k

 $\langle u, w, v, x \rangle$

$TSP \in NP$

Certificate:

- Sequence of n vertices, cost
- E.g.: $\langle u, w, v, x \rangle$, 7

Verification:

- Each vertex occurs only once
- Sum of costs is at most k

$\mathsf{HAM}\text{-}\mathsf{CYCLE} \leq_{\mathsf{p}} \mathsf{TSP}$

- Start with a Hamiltonian cycle G = (V, E)
- Form the complete graph G' = (V, E')

$$E' = \{(i, j): i, j \in V \text{ and } i \neq j\}$$

$$c(i, j) = \begin{cases} 0 & \text{if } (i, j) \in E \\ 1 & \text{if } (i, j) \notin E \end{cases}$$

- Let's prove that:

$\mathsf{HAM}\text{-}\mathsf{CYCLE} \leq_{\mathsf{p}} \mathsf{TSP}$

- G has a hamiltonian cycle h
 - \Rightarrow Each edge in h \in E \Rightarrow has cost 0 in G'
 - ⇒ h is a tour in G' with cost 0
- G' has a tour h' of cost at most 0
 - ⇒ Each edge on tour must have cost 0
 - ⇒ h' contains only edges in E

INDEPENDENT-SET

 Given a graph G = (V, E) and an integer k, is there a subset of vertices S ⊆ V such that |S| ≥ k, and for each edge at most one of its endpoints is in S?

- Is there an independent set of size ≥ 6?
 - Yes.
- Is there an independent set of size ≥ 7?
 - No.

3-CNF ≤_p INDEPENDENT-SET

- Given an instance Φ of 3-CNF, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size k iff Φ is satisfiable
- Construction
 - G contains 3 vertices for each clause, one for each literal.
 - Connect 3 literals in a clause in a triangle.
 - Connect literal to each of its negations.

48

3-CNF ≤_p INDEPENDENT-SET

- Claim: G contains independent set of size $k = |\Phi|$ iff Φ is satisfiable
- Proof: "⇒" Let S be independent set of size k
 - S must contain exactly one vertex in each triangle
 - Set these literals to true
 - Truth assignment is consistent and all clauses are satisfied

 x_1 x_2 x_1 x_2 x_3 x_4 x_4 x_5 x_4

$$\Phi = \begin{pmatrix} \overline{x_1} & v & x_2 & v & x_3 \end{pmatrix} \wedge \begin{pmatrix} x_1 & v & \overline{x_2} & v & x_3 \end{pmatrix} \wedge \begin{pmatrix} \overline{x_1} & v & x_2 & v & x_4 \end{pmatrix}$$
CS 477/677 - Lecture 26

3-CNF ≤_p INDEPENDENT-SET

- Claim: G contains independent set of size $k = |\Phi|$ iff Φ is satisfiable
- Proof: "←="
 - Each triangle has a literal that evaluates to 1
 - This is an independent set S of size k
 - If there would be an edge between vertices in S, they would have to conflict

$$\Phi = \left(\overline{x_1} \ \lor \ x_2 \ \lor \ x_3\right) \land \left(x_1 \ \lor \ \overline{x_2} \ \lor \ x_3\right) \land \left(\overline{x_1} \ \lor \ x_2 \ \lor \ x_4\right)$$
CS 477/677 - Lecture 26

G

Polynomial-Time Reductions

51

Vertex Cover

- G = (V, E), undirected graph
- Vertex cover = a subset V' ⊆ V
 which covers all the edges
 - if (u, v) ∈ E then u ∈ V' or v ∈ V' or both.
- **Size** of a vertex cover = number of vertices in it

Problem:

- Find a vertex cover of minimum size
- Does graph G have a vertex cover of size k?

INDEPENDENT-SET \leq_p VERTEX-COVER

 We show S is an independent set iff V ← S is a vertex cover

Proof "⇒"

- Let S be any independent set
- Consider an arbitrary edge (u, v)
- S independent ⇒ $u \notin S$ or $v \notin S$ ⇒ $u \in V - S$ or $v \in V - S$
- Thus, V S covers (u, v)

INDEPENDENT-SET \leq_p VERTEX-COVER

 We show S is an independent set iff V ← S is a vertex cover

Proof "←="

- Let V S be any vertex cover
- Consider two nodes u ∈ S and v ∈ S
- Observe that (u, v) ∉ E since
 V S is a vertex cover
- Thus, no two nodes in S are joined
 by an edge ⇒ S independent set

- independent set
- vertex cover

Set Cover

• Given a set U of elements, a collection $S_1, S_2, ...$., S_m of subsets of U, and an integer k, does there exist a collection of \leq k of these sets whose union is equal to U?

Example

U = { 1, 2, 3, 4, 5, 6, 7 }

k = 2

$$S_1 = \{3, 7\}$$
 $S_4 = \{2, 4\}$
 $S_2 = \{3, 4, 5, 6\}$
 $S_5 = \{5\}$
 $S_3 = \{1\}$
 $CS 477/677 - Lecture 26$

Set Cover

- Given a set U of elements, a collection $S_1, S_2, ...$., S_m of subsets of U, and an integer k, does there exist a collection of \leq k of these sets whose union is equal to U?
- Sample application
 - m available pieces of software
 - Set U of n capabilities that the system should have
 - The i-th piece of software provides the set $S_i \subseteq U$ of capabilities
 - Goal: achieve all n capabilities using fewest pieces of software

$VERTEX-COVER \leq_p SET-COVER$

- Given a VERTEX-COVER instance G = (V, E), k, we construct a set cover instance whose size equals the size of the vertex cover instance
- Construction
 - Create SET-COVER instance
 - k = k, U = E, $S_v = \{e \in E : e \text{ incident to } v \}$
 - Set-cover of size ≤ k iff vertex cover of size ≤ k


```
SET COVER

U = \{ 1, 2, 3, 4, 5, 6, 7 \}
k = 2
S_a = \{3, 7\}
S_c = \{3, 4, 5, 6\}
S_d = \{5\}
S_e = \{1\}
S_f = \{1, 2, 6, 7\}
```

$VERTEX-COVER \leq_p SET-COVER$

- Set-cover of size \leq k iff vertex cover of size \leq k
- Proof " \Rightarrow " (S_{i1} ,, S_{il} are $l \le k$ sets that cover U)
 - Every edge in G is incident on one of the vertices $i_1,...,i_l$, so $\{i_1,...,i_l\}$ is a vertex cover of size $l \le k$
- Proof " \Leftarrow " $\{i_1,...,i_l\}$ is a vertex cover of size $l \leq k$
 - Then, the sets S_{i1} ,, S_{il} cover U

SET COVER

$$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$$

$$k = 2$$

$$S_a = \{3, 7\}$$

$$S_b = \{2, 4\}$$

$$S_c = \{3, 4, 5, 6\}$$

$$S_d = \{5\}$$

$$S_e = \{1\}$$

$$S_f = \{1, 2, 6, 7\}$$

Hamiltonian Cycle

- Given an undirected graph G = (V, E), does there exists a simple directed cycle Γ that contains every node in V?
- Claim: DIR-HAM-CYCLE ≤_P HAM-CYCLE
- Construction
 - Given a directed graph G = (V, E), construct an undirected graph G' with 3n nodes: v_{in} , v, v_{out}

DIR-HAM-CYCLE ≤_p HAM-CYCLE

- Claim: G has a Hamiltonian cycle iff G' does.
- Proof: "⇒"
 - Suppose G has a directed Hamiltonian cycle Γ
 - Then G' has an undirected Hamiltonian cycle (same order)

DIR-HAM-CYCLE ≤_P HAM-CYCLE

- Claim: G has a Hamiltonian cycle iff G' does.
- Proof: "←="
 - Suppose G' has an undirected Hamiltonian cycle Γ'
 - Γ ' must visit nodes in G' using one of following two orders:
 - ..., B, G, R, B, G, R, B, G, R, B, ...
 - ..., B, R, G, B, R, G, B, R, G, B, ...
 - Blue nodes in Γ ' make up directed Hamiltonian cycle Γ in G, or reverse of one

3-Colorability

 Given an undirected graph G does there exists a way to color the nodes red, green, and blue so that no adjacent nodes have the same color?

Register Allocation

Register allocation

 Assign program variables to machine register so that no more than k registers are used and no two program variables that are needed at the same time are assigned to the same register

Interference graph

 Nodes are program variables names, edge between u and v if there exists an operation where both u and v are "live" at the same time.

Observation [Chaitin 1982]

 Can solve register allocation problem iff interference graph is k-colorable

Fact

- 3-COLOR ≤ $_{P}$ k-REGISTER-ALLOCATION for any constant k ≥ 3

• Given 3-CNF instance Φ , we construct an instance of 3-COLOR that is 3-colorable iff Φ is satisfiable

Construction

- For each literal, create a node
- Create 3 new nodes T, F, B; connect them in a triangle, and connect each literal to B
- Connect each literal to its negation
- For each clause, add a 6-node subgraph

- For each literal, create a node
- Create 3 new nodes T, F, B; connect them in a triangle, and connect each literal to B
- Connect each literal to its negation

- Any 3-coloring implicitly determines a truth assignment for variables in 3-CNF
 - Nodes T, F, B must get different colors
 - For x_i and not-x_i one will take T color one F color

- Must ensure that only satisfying assignments can result in 3-coloring of the full graph
 - For each clause, add a 6-node subgraph

- Proof "⇒" Suppose graph is 3-colorable
 - Proof by contradiction: assume that all three literals get a False color

- Proof " \longleftarrow " Suppose 3-CNF formula Φ is satisfiable
 - Color all true literals T
 - Color node below green node F, and node below B
 - Color remaining middle row nodes B
 - Color remaining bottom nodes T or F as forced

Directed Hamiltonian Cycle

• Given a digraph G = (V, E), does there exists a simple directed cycle Γ that contains every node in V?

Idea:

– Given an instance Φ of 3-CNF, we construct an instance of DIR-HAM-CYCLE that has a Hamiltonian cycle iff Φ is satisfiable

Construction

 Create a graph that has 2ⁿ Hamiltonian cycles which correspond in a natural way to 2ⁿ possible truth assignments

$3-CNF \leq_p DIR-HAM-CYCLE$

- Construction: given 3-CNF instance
 Φ with n
 variables x_i and k clauses C₁, ..., C_k
 - Construct n paths P_1 , ..., P_n , with P_i containing v_{i1} , v_{i2} ..., v_{ib}
 - There are edges between adjacent vertices on path in each direction
 - Hook the paths together with edges

3-CNF ≤_p DIR-HAM-CYCLE

Construction (continued)

- Add two vertices s and t and connect them with edges
- Add edge from t to s
- Intuition: cycle traverses path P_i from left to right \Leftrightarrow set $x_i = 1$

3-CNF ≤_p DIR-HAM-CYCLE

- Construction (continued)
 - For each clause: add a node and 6 edges

$3-CNF \leq_p DIR-HAM-CYCLE$

- Claim: Φ is satisfiable iff G has a Hamiltonian cycle
- Proof "⇒" Suppose 3-CNF has satisfying assignment x*
 - Then, define Hamiltonian cycle in G as follows:
 - If $x_i^* = 1$, traverse row i from left to right
 - If $x_i^* = 0$, traverse row i from right to left
 - For each clause C_j , there will be at least one row i in which we are going in "correct" direction to splice node C_j into tour clause node $C_j = x_1 \vee x_2 \vee x_3$ clause node $C_j = x_1 \vee x_2 \vee x_3$

3-CNF ≤_p DIR-HAM-CYCLE

- Claim: **Φ** is satisfiable iff G has a Hamiltonian cycle
- Proof " \Leftarrow " Suppose G has a Hamiltonian cycle Γ
 - If Γ enters clause node C_i , it must depart on mate edge
 - Nodes before and after C_j are connected by an edge e in G
 - Removing C_j from cycle, replace it with edge e ⇒ Hamiltonian cycle on G { C_i }
 - Continuing in this way, ⇒
 Hamiltonian cycle Γ' in
 G { C₁ , C₂ , ..., C_k }
 - Set $x_i^* = 1$ iff Γ ' traverses row i left to right, otherwise set to 0
 - Since Γ visits each clause node C_j, at least one of the paths is traversed in "correct" direction, and each clause is satisfied

Optional, not required for final exam

ADDITIONAL APPROXIMATION ALGORITHMS

Local Search (Hill Climbing, Gradient Descent)

- Explore the space of possible solutions, moving from a current solution to a "nearby" one
 - 1. Let S denote current solution
 - 2. If there is a neighbor S' of S with strictly lower cost, replace S with the neighbor whose cost is as small as possible
 - 3. Otherwise, terminate the algorithm

The Vertex-Cover Problem

- Vertex cover of G = (V, E), undirected graph
 - A subset V' ⊆ V thatcovers all the edges in G

Hill climbing (gradient descent) idea:

- Start with a solution S = V
- If there is a neighbor S' that is a vertex cover and has lower cardinality, replace S with S'.
- Algorithm ends after at most n steps (each update decreases the size of the cover by one)

Gradient Descent: Vertex Cover

Local optimum. No neighbor is strictly better.

optimum = center node only local optimum = all other nodes

optimum = all nodes on left side local optimum = all nodes on right side

optimum = even nodes local optimum = omit every third node

The Set Covering Problem

- Finite set X
- Family F of subsets of X: $F = \{S_1, S_2, ..., S_n\}$

$$X = \bigcup_{S \in F} S$$

- Find a minimum-size subset C ⊆ F that covers all the elements in X
- Decision: given a number k find if there exist k sets S_{i1} , S_{i2} , ..., S_{ik} such that:

$$S_{i1} \bigcup S_{i2} \bigcup ... \bigcup S_{ik} = X$$

Greedy Set Covering

Idea:

At each step pick a set S
 that covers the greatest
 number of remaining
 elements

Optimal: $C = \{S_3, S_4, S_5\}$

GREEDY-SET-COVER(X, F)

- 1. U ← X
- 2. C ← Ø
- **3.** while ∪ **=**/∅
- 4. **do** select an $S \in F$ that maximizes $|S \cap U|$
- 5. $U \leftarrow U S$
- 6. $C \leftarrow C \cup \{S\}$
- 7. return C

