Suppression de reflets sur les tableaux

Jean Caillé - Théophile Dalens

Suppression de reflets sur les tableaux

- Méthode
- Résultats
- Amélioration possibles

Méthode

- Recalage des tableaux
- Fusion des images

Recalage des tableaux

 Trouver la perspective entre le tableau photographié et le tableau de référence (cadre rectangulaire ou photo du tableau)

Recalage des tableaux

Recadrage à la main

- Demander à l'utilisateur de cliquer sur les 4 coins dans un ordre précis
- Trouver la perspective permettant de transformer les 4 coins en un rectangle donné.

Recalage des tableaux

Recadrage par SIFT

- Trouver des points particuliers dans chaque image
- Trouver la correspondance entre les points d'une image et ceux de l'image de référence
- Trouver la perspective permettant de transformer les points de l'image en ceux de l'image de référence

Image de référence

Image de travail

Recalage

 Comment faire remonter dans l'image finale la bonne information (i.e. les zones non reflétées)

 Hypothèse: Les reflets ne font qu'ajouter de la lumière

- Hypothèse: Les reflets ne font qu'ajouter de la lumière
- Fusion par minimum: Pour chaque pixel, on choisis la valeur qui minimise R, G et B.

- Hypothèse: Les reflets ne font qu'ajouter de la lumière
- Fusion par minimum: Pour chaque pixel, on choisis la valeur qui minimise R, G et B.
- Résultats : Corrects sur les images où les reflets sont uniquement Lambertiens ...

- Hypothèse: Les reflets ne font qu'ajouter de la lumière
- Fusion par minimum: Pour chaque pixel, on choisis la valeur qui minimise R, G et B.
- Résultats: Corrects sur les images où les reflets sont uniquement Lambertiens, mais mauvais avec des reflets spéculaires.

 Hypothèse: En un pixel donné, la majorité des images n'ont pas de reflet

- Hypothèse: En un pixel donné, la majorité des images n'ont pas de reflet
- Solution: Prendre pour nouvelle valeur la médiane des images.

- Hypothèse: En un pixel donné, la majorité des images n'ont pas de reflet
- Solution: Prendre pour nouvelle valeur la médiane des images.
- Résultats : Avec une médiane composante par composante

 Hypothèse: En un pixel donné, la majorité des images n'ont pas de reflet

- Solution: Prendre pour nouvelle valeur la médiane des images.
- Résultats : Avec une médiane vectorielle

- Hypothèse: En un pixel donné, la majorité des images n'ont pas de reflet
- Solution: Prendre pour nouvelle valeur la médiane des images.
- Résultats: On voit encore apparaître du ghosting.

- Hypothèse: En un pixel donné, la majorité des images n'ont pas de reflet
- Solution: Prendre pour nouvelle valeur la médiane des images.
- Résultats: On voit encore apparaître du ghosting.
- Amélioration : Passage par l'espace gradient

Résultats