Memristor Based Autoencoder for Unsupervised Real-Time Network Intrusion and Anomaly Detection

Md. Shahanur Alam, B. Rasitha Fernando, Yassine Jaoudi, Chris Yakopcic, Raqibul Hasan, Tarek M. Taha, and Guru Subramanyam

Dept. Of Electrical and Computer Engineering, University of Dayton, Dayton, OH, USA

Outline

- Introduction
- Anomaly Detection Methods and Applications
- Motivation and Challenges
- Proposed Anomaly Detection System
- Results of Intrusion and Anomaly Detection System
- Summary
- Future work

Introduction

- Network Intrusion
- Intrusion Detection system
- SNORT
- What if new unknown packet comes?
 E.g. 'Zero Day'

Block diagram of the neural network-based intrusion detection system

Introduction (Contd.)

Neural Network Vs Power Consumption

IoTs and Edge Devices

Memristive system could be a solution

Anomaly Detection Methods and Applications

What are the anomalies?

Abnormalities/outliers

Illustration of anomalies in two-dimensional data set

Anomaly detection Methods:

- Unsupervised (AE, GAN, RNN, LSTM etc)
- Supervised (DNN, CNN)
- Hybrid model (AE+SVM)
- One-Class Neural Network

Applications:

- Cyber-Intrusion Detection
- Malware Detection
- Internet of Things (IoTs) Big Data Anomaly Detection
- Fraud Detection
- Medical Anomaly Detection
- Industrial Damage Detection

Motivation and Challenges

Motivation:

- Neural Network implementation for IoTs and edge devices
- Detection of anomalies in real-time

Challenges:

- Boundary between normal and malicious is not explicitly defined
- Continual learning and the catastrophic forgetting

Dataset Preprocessing

NSL-KDD network dataset ← KDD Cup'99 dataset

- Training data has125,973 packets, 23 different data types
- 43 attributes, consists numerical and alphanumeric data
- Preprocessed and sorted out the packets
- Network is pretrained with 90% of Normal
- Tested with 10% normal and 10% of total malicious data

Normal Packet

Malicious Packet

Preprocessed Normal Packet

 $0,0.5,0.188,0.629,3.55e^{-7},0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.003$ 91,0.00391,0,0,0,0,1,0,0,0.588,0.098,0.17,0.03,0.17,0,0,0,0.05,0,0,0.9523

Preprocessed Malicious Packet

 $0,0.5,0.188,0.629,2.42e^{-7},0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.003$ 91,0.0039,0,0,0,1,0,0,0.0078,0.078,1,0,1,0.2,0,0,0,0,1,0.714

Proposed Anomaly Detection System

AE can reduce the dimension of input data

AE learns to regenerate the input data at output

Intrusion And Anomaly Detection System with AE neural Network

Memristive Neural Network and Crossbar Circuit

(b)

DOT Product:

$$DP_j = \sum_{i=1}^{N+1} x_i \times \left(\sigma_{ij}^+ - \sigma_{ij}^-\right) \tag{1}$$

Sigmoid Approximation:

$$f(x) = \frac{1}{1 + e^{-x}}$$
 (2)

$$g(x) = \begin{cases} 1, & x > 2 \\ 0.25x + 0.5, & |x| \le 2 \\ 0, & x < 2 \end{cases}$$
 (3)

Training of the Network

- apply x_i
- crossbar computes the dot product DP_i
- output signal y_i
- error : $\delta_j = (x_i y_j)f'(DP_j)$
- backpropagate the error $\delta_j = \sum_k \delta_k w_{k,j} f'(DP_j)$ in each hidden layer
- update the weights according δ_i as $\Delta w_i = \eta \delta_i x$
- calculate $D_m = \frac{1}{N} \sqrt{\sum (X_i Y_j)^2}$ and $D_{SD} = \sqrt{\frac{\sqrt{\sum (D D_m)^2}}{N}}$

System Flowchart of Anomaly Detection System

Anomaly Detection System

Pretraining of Autoencoder-1 (AE-1)

Input feature and regenerated feature of a sample through (AE-1)

Training Error (MSE) in software and memristor X-bar

Intrusion Detection Accuracy

False Detection (Malicious + Normal)

$\frac{N_S-N_F}{N_S}$ ×	100%
	$\frac{N_S-N_F}{N_S}$ ×

Pretraining Epochs	Global Accuracy	N _{MN}	N_{NM}	N_F	Case
50	95.22%	56	546	602	Software
50	92.91%	65	868	933	Memristor

Intrusion Detection Accuracy (contd.)

Malicious Packet Detection Accuracy Vs Epochs

Real-time learning and anomaly detection

Real-Time Anomaly Detection:

$$T_{1} = x_{1}^{1}, x_{2}^{1}, x_{1}^{2}, x_{2}^{2}, x_{1}^{3}, x_{2}^{3}, \dots$$

$$T_{2} = x_{1}^{1}, x_{2}^{1}, x_{3}^{1}, x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, \dots$$

$$T_{3} = x_{1}^{1}, x_{2}^{1}, x_{3}^{1}, x_{4}^{1}, x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{4}^{2}, \dots$$

$$T_{4} = x_{1}^{1}, x_{2}^{1}, x_{3}^{1}, x_{4}^{1}, x_{5}^{1}, x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{4}^{2}, x_{5}^{2}, \dots$$

 $x_1 = normal, x_2 = neptune, x_3 = satan, x_4 = ipsweep, x_5 = back$

Anomaly Detection in real-time

Anomaly Detection System

Power, Area and Timing Analysis

•
$$R_{off} = 1 \times 10^7 \Omega$$
, $R_{on} = 5 \times 10^4 \Omega$

- Wire Resistance =5 Ω , $V_{mem} = 1.3 volt$
- Transistor Feature Size : F= 45nm
- Op-amp power = 3×10^{-6} watt
- Transistor Size= $50F^2$
- Memristor area = $1 \times 10^4 nm^2$

Parameter	Training Data	Recognition Data
Area (mm²)	0.00271	0.00271
Power (mW)	20.6	7.56
Time (µs)/sample	4.02	0.384
Energy (nJ)/One Sample	82	2.90

Summary

- Introduced the problem and proposed a possible solution
- Presented the Autoencoder with memristor X-bar and the functionalities
- Overall accuracy 92.91% with malicious packet detection accuracy 98.89%
- Presented real-time anomaly detection system
- Explained the power and energy requirement

Current and future work

- Multiple autoencoders for intrusion and malware detection
- Incremental learning algorithm & unseen class detection

THANK YOU

Questions?