

Meng-Gen Tsai plover@gmail.com

July 16, 2021

Contents

Chapter I: Algebraic Integers	2
I.1. The Gaussian Integers	2
Exercise I.1.1	2
Exercise I.1.4	2
Exercise I.1.5	2
I.1. Integrality	3
Exercise I.2.1.	3

Chapter I: Algebraic Integers

I.1. The Gaussian Integers

Exercise I.1.1.

 $\alpha \in \mathbb{Z}[i]$ is a unit if and only if $N(\alpha) = 1$.

Proof.

- (1) (\Longrightarrow) Since α is a unit, there is $\beta \in \mathbb{Z}[i]$ such that $\alpha\beta = 1$. So $N(\alpha\beta) = N(1)$, or $N(\alpha)N(\beta) = 1$. Since the image of N is nonnegative integers, $N(\alpha) = 1$.
- (2) (\Leftarrow) $N(\alpha) = \alpha \overline{\alpha}$, or $1 = \alpha \overline{\alpha}$ since $N(\alpha) = 1$. That is, $\overline{\alpha} \in \mathbb{Z}[i]$ is the inverse of $\alpha \in \mathbb{Z}[i]$. (Or we solve the equation $N(\alpha) = a^2 + b^2 = 1$, and show that all four solutions $(\pm 1 \text{ and } \pm i)$ are units.)
- (3) Conclusion: a unit $\alpha = a + bi$ of $\mathbb{Z}[i]$ is satisfying the equation $N(\alpha) = a^2 + b^2 = 1$ by (1)(2). That is, the only unit of $\mathbb{Z}[i]$ are ± 1 and $\pm i$.

Exercise I.1.4.

Show that the ring $\mathbb{Z}[i]$ cannot be ordered.

Proof. Similar to the fact that i cannot be ordered in \mathbb{C} , i cannot be ordered in $\mathbb{Z}[i]$ either. \square

Exercise I.1.5.

Show that the only units of the ring $\mathbb{Z}[\sqrt{-d}] = \mathbb{Z} + \mathbb{Z}\sqrt{-d}$, for any rational integer d > 1, are ± 1 .

Proof.

(1) Define the norm N on $\mathbb{Z}[\sqrt{-d}]$ by

$$N(x + y\sqrt{-d}) = (x + y\sqrt{-d})(x - y\sqrt{-d}) = x^2 + y^2d,$$

i.e., by $N(z) = |z|^2$. It is multiplicative.

(2) Similar to Exercise I.1.1,

$$x+y\sqrt{-d}\in\mathbb{Z}[\sqrt{-d}]$$
 is a unit $\Longleftrightarrow N(x+y\sqrt{-d})=x^2+y^2d=1$ $\iff x^2=1$ and $y=0$ $\iff x=\pm 1$ and $y=0$.

Hence the only units of the ring $\mathbb{Z}[\sqrt{-d}]$ are ± 1 (d > 1).

I.2. Integrality

Exercise I.2.1.

Is $\frac{3+2\sqrt{6}}{1-\sqrt{6}}$ an algebraic integer?

Proof.

- (1) $\alpha := \frac{3+2\sqrt{6}}{1-\sqrt{6}} = -3-\sqrt{6}$. Since the set of all algebraic integers is a ring, α is an algebraic integer.
- (2) Or show that α satisfies a monic equation $x^2 + 6x + 3 = 0 \in \mathbb{Z}[x]$.