Institut für Numerische Mathematik und Optimierung

Prof. Dr. O. Rheinbach

Dipl.-Math. Matthias Brändel

02.11.2021

Lineare Algebra, Datenanalyse und maschinelles Lernen 2

2. Exercise Sheet

Exercise 40

Write a python program. Load the $data_ex7.mat$. We will assume multiple different polynomial hypotheses, see (c).

(a) Write a function that calculates the value of the mean squared error cost function $J(\boldsymbol{\theta})$ for $\boldsymbol{\theta} \in \mathbb{R}^d$.

$$J(\boldsymbol{\theta}) = \frac{1}{2} \frac{1}{m} \sum_{j=1}^{m} (\boldsymbol{\theta}^{T} \boldsymbol{x}_{j} - y_{j})^{2}.$$

(b) Write a function that performs gradient descent on $J(\theta)$. Recall

$$\boldsymbol{\theta}_{i+1} = \boldsymbol{\theta}_i - \alpha \frac{1}{m} \sum_{j=1}^m (\boldsymbol{\theta_i}^T \boldsymbol{x_j} - y_j) \boldsymbol{x_j},$$

where α is the learning rate or the step length of the algorithm.

(c) Assume three different hypotheses

$$h_{1,\theta}(x) = \theta_0 x,$$

$$h_{2,\theta}(\mathbf{x}) = \theta_0 + \theta_1 x_1,$$

$$h_{3,\theta}(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2^2.$$

Use the gradient descent algorithm to find the optimal $\boldsymbol{\theta}$ for each hypothesis. For $h_{2,\boldsymbol{\theta}}(\boldsymbol{x})$ use $\boldsymbol{\theta} = [4,2]$ as starting parameters.

- (d) For $h_{1,\theta}(x)$ and $h_{2,\theta}(x)$ use a brute force approach to identify the optimal θ :
 - (d1) In \mathbb{R}^1 take the interval $\theta \in [0,3]$, compute the cost function for sufficiently many values θ and plot the resulting curve. Plot the values of θ from the respective gradient descend history into the same plot and compare the results.
 - (d2) In \mathbb{R}^2 take the area $[-2,4] \times [-2,4]$, compute the cost function for sufficiently many values $\boldsymbol{\theta}$ (compare matlab's meshgrid function for this approach) and plot the resulting cost values in a contour plot. Plot the values of $\boldsymbol{\theta}$ from the respective gradient descend history into the same plot and compare the results.
- (e) Plot the data and the hypotheses in the same plot and discuss the results.