

Learning production functions for supply chains with graph neural networks

Departamento de Ciencia de la Computación

IIC3696 - Tópicos Avanzados en Aprendizaje de Máquina

Presentador: Gabriel Catalán

10/09/2024

¿Por qué elegí este paper?

THE PANDEMIC ISN'T A BLACK SWAN BUT A PORTENT OF A MORE FRAGILE GLOBAL SYSTEM

By Bernard Avishel April 21, 2020

followed by a glut.

Autores

Serina Chang¹, Zhiyin Lin¹, Benjamin Yan¹, Swapnil Bembde², Qi Xiu², Chi Heem Wong^{1,2}, Yu Qin^{2,3}, Frank Kloster², Alex Luo², Raj Palleti^{1,2}, and Jure Leskovec¹

¹Stanford University, Department of Computer Science ²Hitachi America, Ltd. ³Tulane University

Resumen

- Economía global
- Funciones de producción
- Nuevo modelo
- Simulador
- Resultados

Introducc<u>ión</u>

- Importancia
- Temporal production graphs TPGs
- Nueva clase de GNNs

Introducción

- 1 Problema
- **2** Modelos
- **3** Datos
- 4 Resultados

Aprendiendo de TPGs

- Definición del problema
- Arquitectura del modelo
- Entrenamiento y evaluación

Definición del problema

Observed transactions

Definición del problema

- \blacksquare Set de transacciones \mathcal{T}
- Grafo $G_{txns} = \{\mathcal{N}, \mathcal{E}\}$
- Nodos \mathcal{N} , n firmas y m productos
- Aristas $\mathcal{E} := \{e(s, b, p, t)\}$
- Función $\mathcal{F}_p : \mathbb{R}_+ \to \mathbb{R}_+^m$
- Grafo G_{prod}

Arquitectura del modelo

- **1** Módulo inventario
- 2 SC-TGN
- SC-GraphMixer
- 4 Decoder

Módulo inventario

$$\mathsf{buy}(i, p, t) = \sum_{e(s, i, p, t) \in \mathcal{E}} \mathsf{amt}(s, i, p, t) \tag{1}$$

$$consume(i, p, t) = \sum_{e(i, b, p_s, t) \in \mathcal{E}} \alpha_{p_s p} \cdot amt(i, b, p_s, t)$$
 (2)

$$\mathbf{x}_{i}^{(t+1)} = \max\left(0, \mathbf{x}_{i}^{(t)} + \mathbf{b}_{i}^{(t)} - \mathbf{c}_{i}^{(t)}\right)$$
 (3)

Módulo inventario

$$\alpha_{p_1p_2} = \text{ReLU}\left(\mathbf{z}_{p_1}\mathbf{W}_{\text{att}}\mathbf{z}_{p_2} + \nu_{p_1p_2}\right) \tag{4}$$

$$\ell_{\text{inv}}\left(i,t\right) = \lambda_{\text{debt}} \sum_{\boldsymbol{p} \in [m]} \max\left(0, \text{ consume } (i,\boldsymbol{p},t) - \mathbf{x}_i^{(t)}[\boldsymbol{p}]\right)$$

$$-\lambda_{\text{cons}} \sum_{\boldsymbol{p} \in [m]} \text{ consume } (i,\boldsymbol{p},t). \tag{5}$$

$$\ell_{\text{inv}}(t) = \frac{1}{n} \sum_{i \in [n]} \ell_{\text{inv}}(i, t) + \lambda_{L_2} \sqrt{\sum_{p_1, p_2 \in [m]} \nu_{p_1 p_2}^2}$$
 (6)

SC-TGN

Inventory + SC-TGN

SC-GraphMixer

- Simplicidad
- Multi-layer perceptrons MLPs

Decoder

$$\hat{y}(s, b, p, t) = \text{DEC}\left(\mathbf{z}_{s}^{(t)}, \mathbf{z}_{b}^{(t)}, \mathbf{z}_{p}^{(t)}\right) = \text{MLP}\left(\left[\mathbf{z}_{s}^{(t)} \left| \mathbf{z}_{b}^{(t)} \right| \mathbf{z}_{p}^{(t)}\right]\right)$$

$$\text{pen}(s, b, p, t) = -\sum_{p' \in [m]} \max\left(0, \alpha_{pp'} - \mathbf{x}_{s}^{(t)} \left[p'\right]\right)$$
(8)

$$cap(s, b, p, t) = \min_{p' \in [m]; \alpha_{pp'} > 0} \left\{ \frac{\mathbf{x}_s^{(t)}[p']}{\alpha_{pp'}} \right\}$$
(9)

SC-TGN

Inventory + SC-TGN

Entrenamiento y evaluación

- Aprendiendo funciones de producción
- Existencia de aristas y muestreo negativo
- Peso de la arista

Datos de las cadenas de suministro

- 1 Mundo real
- **2 Simulador** SupplySim

Datos mundo real

- TradeSparq
- Dataset automotriz Tesla
- Dataset equipos industriales IED

Datos simulador SupplySim

- Construyendo G_{prod}
- **■** Construyendo relaciones proveedor-comprador
- Generando transacciones

Experimentos

- Aprendiendo funciones de producción
- Prediciendo futuras aristas

Aprendiendo funciones de producción

- Correlaciones temporales
- Punto de información mutua (PMI)
- 3 node2vec

Aprendiendo funciones de producción

	SS-std	SS-shocks	SS-missing	IED
Random baseline	0.124 (0.009)	0.124 (0.009)	0.124 (0.009)	0.060 (0.002)
Temporal correlations	0.745	0.653	0.706	0.128
PMI	0.602	0.602	0.606	0.175
node2vec	0.280	0.280	0.287	0.127
Inventory module (direct)	0.771 (0.005)	0.770 (0.006)	0.744 (0.006)	0.143 (0.004)
Inventory module (emb)	0.790 (0.005)	0.778 (0.011)	0.755 (0.007)	0.262 (0.005)

Table 1: Results for production learning, evaluated with mean average precision (MAP↑). For the models with randomness, we report mean and standard deviation (in parentheses) over 10 seeds.

Aprendiendo funciones de producción

Figure 2: True production functions (left), predictions from inventory module (middle), predictions from temporal correlations (right), trained on SS-std.

Prediciendo futuras aristas

- 1 Edgebank
- 2 Static
- **3** Graph transformer

Prediciendo futuras aristas

	SS-std	SS-shocks	SS-missing	Tesla	IED
Edgebank (binary)	0.174	0.173	0.175	0.131	0.164
Edgebank (count)	0.441	0.415	0.445	0.189	0.335
Static	0.439 (0.001)	0.392 (0.002)	0.442 (0.001)	0.321 (0.001)	0.358 (0.001)
Graph transformer	0.431 (0.003)	0.396 (0.024)	0.428 (0.003)	0.507 (0.020)	0.613 (0.045)
SC-TGN	0.522 (0.003)	0.449 (0.004)	0.494 (0.004)	0.820 (0.007)	0.842 (0.004)
SC-TGN+inv	0.540 (0.003)	0.461 (0.009)	0.494 (0.004)	0.818 (0.004)	0.841 (0.008)
SC-GraphMixer	0.453 (0.005)	0.426 (0.004)	0.446 (0.003)	0.690 (0.027)	0.791 (0.009)
SC-GraphMixer+inv	0.497 (0.004)	0.448 (0.004)	0.446 (0.002)	0.681 (0.014)	0.791 (0.008)
Edgebank (avg)	0.341	0.387	0.349	1.148	0.489
Static	0.343 (0.008)	0.425 (0.019)	0.374 (0.027)	1.011 (0.007)	0.504 (0.018)
Graph transformer	0.340 (0.005)	0.398 (0.025)	0.361 (0.016)	0.885 (0.024)	0.425 (0.008)
SC-TGN	0.303 (0.003)	0.359 (0.007)	0.313 (0.002)	0.796 (0.012)	0.428 (0.011)
SC-TGN+inv	0.312 (0.003)	0.370 (0.009)	0.312 (0.002)	0.801 (0.015)	0.422 (0.011)
SC-GraphMixer	0.318 (0.003)	0.384 (0.005)	0.330 (0.005)	0.774 (0.077)	0.457 (0.008)
SC-GraphMixer+inv	0.320 (0.004)	0.378 (0.005)	0.328 (0.003)	0.767 (0.054)	0.454 (0.012)

Table 2: Results for edge prediction. Top 8 rows are edge existence, evaluated with mean reciprocal rank (MRR \uparrow). Bottom 7 rows are edge weight (i.e., transaction amount), evaluated with root mean squared error (RMSE \downarrow). We report mean and standard deviation (in parentheses) over 10 seeds.

Trabajo relacionado

- Otros sistemas
- Descubrimiento causal temporal
- Dominio: cadenas de suministro

Conclusión

- TPGs
- Nueva clase de GNNs
- Objetivos
- SupplySim
- Trabajo a futuro

Referencias

[1] [2]

Zhang S. Kang J. Yuan B. Wu H. Zhou X. Tong H. Cong, W. and M. Mahdavi. Do we really need complicated model architectures for temporal networks? In *Proceedings of the 11th International Conference on Learning Representations*, 2023.

Chamberlain B. Frasca F. Eynard D. Monti F. Rossi, E. and M. Bronstein. Temporal graph networks for deep learning on dynamic graphs. In *ICML 2020 Workshop on Graph Representation Learning*, 2020.

Apéndice

- 1 Detalles del modelo
- 2 Datos
- 3 Detalles de los experimentos

Detalles del modelo

- 1 SC-TGN
- SC-GraphMixer
- 3 Penalizaciones y límites del módulo de inventario
- 4 Entrenamiento y evaluación del modelo

SC-TGN

- Memoria
- Función de mensaje
- Actualizador de memoria
- Incrustación
- Nuevos elementos en SC-TGN

Memoria

- **m**_i^(t) $\mathbf{v}_{i}^{(0)}$

Función de mensaje

$$\mathrm{msg}_{e} = \left[\mathbf{m}_{s}^{(t)} \left| \mathbf{m}_{b}^{(t)} \right| \mathbf{m}_{p}^{(t)} \mid \mathrm{cnc}(t) \right] \tag{10}$$

Actualizador de memoria

$$\mathbf{m}_{i}^{(t+1)} = RNN\left(\mathbf{m}_{i}^{(t)}, \overline{ms}g_{i}^{(t)}\right) \tag{11}$$

Incrustación

- $\mathbf{z}_{i}^{(t)}$
- Incrustación ID
- Modelo UniMP

Nuevos elementos en SC-TGN

- Hiperaristas
- Prediciendo pesos de aristas
- Actualización de penalización
- Memoria inicial aprendible $\mathbf{v}_i^{(0)}$
- Entrenando siguiendo el esquema de muetreo negativo

Nuevos elementos en SC-TGN

$$\ell_{\text{update}} = \frac{\lambda_{\text{update}}}{m+n} \sum_{i \in [m+n]} \left\| \mathbf{m}_{i}^{(t+1)} - \mathbf{m}_{i}^{(t)} \right\|_{2}$$
 (12)

SC-Graphmixer

- Codificador de enlaces
- Codificador de nodos
- Nuevos elementos SC-Graphmixer

Codificador de enlaces

- Codificación de tiempo
- Construcción matriz $\mathbf{T}_i(t)$
- MLP-mixer de una capa

Codificación de tiempo

Dado un paso de tiempo t, GraphMixer lo codifica a un vector de dimensión d. Utiliza $\omega = \left\{\alpha^{-(d'-1)/\beta}\right\}_{d'=1}^d$, donde α y β son hiperparámetros predefinidos, y proyecta t a $\cos(t \times \omega) \in [-1, +1]$.

Construcción matriz $T_i(t)$

Cada fila corresponde una arista reciente de i, donde el enlace es representado por la concatenación de $\cos{((t-t_e)\times\omega)}$, donde t_e es el paso de tiempo de la arista, y las características del enlace. Codificar $t-t_e$ en vez de t_e captura con reciente fue la arista, y de esa forma cuanta influencia tiene sobre el paso de tiempo actual.

MLP-mixer de una capa

$$\begin{aligned} \mathbf{H}_{\text{token}} &= \mathbf{T}_{i}(t) + \mathbf{W}_{\text{token}}^{(2)} \text{ GeLU}\left(\mathbf{W}_{\text{token}}^{(2)} \text{ Layer Norm}\left(\mathbf{T}_{i}(t)\right)\right) \\ & (13) \\ \mathbf{H}_{\text{channel}} &= & \mathbf{H}_{\text{token}} + \text{GeLU}\left(\text{ Layer Norm}\left(\mathbf{H}_{\text{token}}\right) \mathcal{W}_{\text{channel}}^{(1)}\right) \\ & \mathcal{W}_{\text{channel}}^{(2)}. \end{aligned}$$

Codificador de nodos

$$\mathbf{s}_{i}(t) = \mathbf{x}_{i}^{\text{node}} + \frac{1}{|\mathcal{N}(i; t - T, t)|} \sum_{j \in \mathcal{N}(i; t - T, t)} \mathbf{x}_{j}^{\text{node}}$$
(15)

Nuevos elementos SC-Graphmixer

- Hiperaristas
- Características aprendibles del nodo
- Prediciendo pesos de aristas
- Entrenando siguiendo el esquema de muetreo negativo

Penalizaciones y límites del módulo de inventario

- Opcionalidad
- Solo puede ayudar
- Limitaciones

Entrenamiento y evaluación del modelo

- Pérdida del modelo
- Aprendiendo funciones de producción
- Prediciendo existencia de aristas
- Prediciendo peso de las aristas

Pérdida del modelo

$$\mathcal{L} = \ell_{\text{exist}} + \ell_{\text{weight}} + \ell_{\text{inv}} + \ell_{\text{update}} \tag{16}$$

Aprendiendo funciones de producción

AvePrec
$$(p_o) = \frac{1}{|\mathcal{P}_{p_o}|} \sum_{k=1}^{m} \text{Prec @ } \mathrm{K}(\alpha_{p_o}, \mathcal{P}_{p_o}, k) \cdot \mathbb{1}[\mathrm{pos}(\alpha_{p_o}, k) \in \mathcal{P}_{p_o}]$$

$$(17)$$

Prec
$$\mathbb{Q} \ \mathrm{K}(\alpha, \mathcal{P}, k) = \frac{1}{k} \sum_{k=1}^{k} \mathbb{1} \left[\mathrm{pos} \left(\alpha, k' \right) \in \mathcal{P} \right]$$
 (18)

Prediciendo existencia de aristas

$$MRR = \frac{1}{|B|} \sum_{e \in B} \left(\frac{\sum_{n \in \mathcal{N}_e} \mathbb{1} \left[\hat{y}_n < \hat{y}_e \right] + \sum_{n \in \mathcal{N}_e} \mathbb{1} \left[\hat{y}_n \le \hat{y}_e \right]}{2} + 1 \right)^{-1}$$
(19)

Prediciendo peso de las aristas

$$RMSE = \sqrt{\frac{1}{|B|}} \sum_{e \in B} (amt(e) - \hat{y}_e)^2$$
 (20)

Datos

- 1 Datos mundo real
- **Detalles acerca de** SupplySim

Datos mundo real

- Dataset automotriz
- Dataset equipos industriales
- Limitaciones

Datos mundo real

Figure 3: Overview of supply chain network data construction process.

Datos mundo real

Attribute Counts	SS-std	Tesla	IED
# Product Nodes	50	2,690	3,029
# Firms Nodes	119	11,628	2,583
# Transactions	71646	581,002	279,712
Timespan (Days)	198	1683	359

Table 3: Dataset statistics.

Detalles acerca de SupplySim

- Grafos estáticos
- Generando transacciones variables en el tiempo

Grafos estáticos

- **Construyendo** G_{prod}
- Construyendo relaciones proveedor-comprador

Construyendo Gprod

```
- Nivel 0: producto 0 al producto n_{\text{exog}} - 1,
- Nivel 1: producto n_{\text{exog}} al producto n_{\text{exog}} + n_{\text{tier}} - 1,
- Nivel 2: producto n_{\text{exog}} + n_{\text{tier}} al producto n_{\text{exog}} + 2 \cdot n_{\text{tier}} - 1,
- . .
- Nivel T: producto n_{\text{exog}} + (T - 1) \cdot n_{\text{tier}} al producto n_{\text{exog}} + T \cdot n_{\text{tier}} - 1,
- Nivel T + 1: producto n_{\text{exag}} + T \cdot n_{\text{tier}} al producto n_{\text{exog}} + T \cdot n_{\text{tier}} + n_{\text{consumer}} - 1.
```

Construyendo Gprod

Figure 4: Visualizing products in our synthetic datasets. Each point represents the position of one of the 50 products, and points are color-coded by the product's tier. We also denote part-product relations between Tier 1 and Tier 2 products, where an arrow from product p_1 be means that p_1 is required to make p_2 . For each product, we sample its number of parts from $\{1, 2, 3, 4\}$ uniformly, then assign its parts to the closest products in the previous tier, resulting in commonly co-occurring parts.

Construyendo relaciones proveedor-comprador

```
- Grupo 0: Nivel 0 al Nivel n<sub>consec</sub> - 1,
- Grupo 1: Nivel 1 al Nivel n<sub>consec</sub>,
- Grupo 2: Nivel 2 al Nivel n<sub>consec</sub> + 1,
- . .
- Grupo T - n<sub>consec</sub> + 2 : Nivel T - n<sub>consec</sub> + 2 al Nivel T + 1.
```

Generando transacciones variables en el tiempo

- Modelo ARIO
- Nueva oferta
- Producción
- Nueva demanda
- Productos nivel 0 y oferta exógena
- Productos nivel final y demanda exógena

Nueva demanda

$$k_{f,p_i}^{(t)} = \sum_{(b,f,p,k)\in\mathcal{I}^{(t)}} u_{p_ip} \cdot k - \sum_{(f,s,p_i,k)\in\mathcal{I}^{(t)}} k$$
 (21)

Productos nivel 0 y oferta exógena

Figure 5: Visualizing the number of transactions per timestep, over the three synthetic datasets: SS-std, SS-shocks, and SS-missing.

Productos nivel final y demanda exógena

$$\nu \sim \mathcal{N}(0, 0.1) \tag{22}$$

$$\lambda = \begin{cases} 1 \text{ if type} = \text{uniform,} \\ 2 \text{ if type} = \text{weekday and } t \text{ mod } 7 < 5, \\ 0.5 \text{ if type} = \text{weekday and } t \text{ mod } 7 \geq 5, \\ 0.5 \text{ if type} = \text{weekend and } t \text{ mod } 7 < 5, \\ 2 \text{ if type} = \text{weekend and } t \text{ mod } 7 \geq 5. \end{cases}$$

$$d(p, t) = \lambda \cdot (d(p, t - 1) + \nu) \tag{24}$$

d(f, p, t) = Poisson(d(p, t))

(24)

(25)

Detalles acerca de los experimentos

- Aprendizaje de producción
- 2 Predicción de aristas

Aprendizaje de producción

- Correlaciones temporales
- Punto de información mutua (PMI)
- node2vec
- Módulo de inventario

Punto de información mutua (PMI)

$$\mathsf{PMI}(p_1, p_2) = \log \left(\frac{\mathsf{Pr}(\mathsf{buy}(p_1) \land \mathsf{supply}(p_2))}{\mathsf{Pr}(\mathsf{buy}(p_1)) \cdot \mathsf{Pr}(\mathsf{supply}(p_2))} \right) \quad (26)$$

Módulo de inventario

	Synthetic data	Tesla	IED				
SC-TGN							
Memory dimension	500	1000	1000				
Embedding dimension	500	1000	1000				
Time dimension	100	100	100				
# neighbors for node embedding	20	20	100				
Update penalty λ_{update}	1	1	1				
SC-GraphMixer							
# MLPMixer layers	2	2	2				
Node encoding dimension	500	50	300				
Link encoding dimension	100	10	10				
# neighbors for node encoding	20	100	10				
# neighbors for link encoding	20	10	2				
Inventory module							
Debt penalty λ_{debt}	5	5	5				
Consumption reward $\lambda_{\rm cons}$	4	4	4				
Adjustment penalty $\lambda_{\rm adjust}$	4	4	4				
Training parameters							
Batch size	30	30	100 (SC-TGN), 30 (SC-GraphMixer)				
Learning rate	0.001	0.001	0.001				
Max # epochs	100	100	100				
Patience	10	10	10				
Table 4: Hyperparemeters that we used in our experiments							

Table 4: Hyperparameters that we used in our experiments.

Módulo de inventario

Figure 6: Comparing inventory module's loss (6) vs. MAP on ground-truth production functions, trained on SS-std.

Predicción de aristas

- Entrenamiento
- Ablaciones
- Análisis de experimentos +inv

Entrenamiento

Figure 7: Performance over 10 random seeds of SC-TGN on SS-std.

Figure 8: Performance over 10 random seeds of SC-GraphMixer on SS-std.

Ablaciones

	Tesla	IED
TGN	0.612 (0.009)	0.582 (0.016)
SC-TGN (id)	0.537 (0.021)	0.422 (0.015)
SC-TGN	0.820 (0.007)	0.842 (0.004)

Table 5: Ablations of SC-TGN: comparing to original TGN (Rossi et al.) [2020) and SC-TGN with ID embeddings, i.e., use memory directly as embedding, instead of applying GNN to memories. We only evaluate edge existence here, with mean reciprocal rank (MRR \uparrow), and leave out edge weight, since the original TGN did not predict edge weight. We report mean and standard deviation (in parentheses) over 10 seeds.

Análisis de experimentos +inv

	SS-std	SS-shocks	SS-missing
SC-TGN	0.522 (0.003)	0.449 (0.004)	0.494 (0.004)
SC-TGN+inv*	0.548 (0.003)	0.474 (0.003)	0.476 (0.003)
SC-GraphMixer	0.453 (0.005)	0.426 (0.004)	0.446 (0.003)
SC-GraphMixer+inv*	0.477 (0.005)	0.450 (0.005)	0.430 (0.003)

Table 6: Testing the impact of inventory module on edge existence prediction, when the inventory module is provided the ground-truth production functions. We report mean and standard deviation (in parentheses) over 10 seeds.