

ACIT4830 – Special Robotics and Control Subject Topic5 – Regression methods

Evi Zouganeli OsloMet – Oslo Metropolitan University (evizou@oslomet.no)

Content

(Chapter 6 – Regression methods)

- Linear and Multiple regression
- Non-linear regression
- Regression trees
- Model trees

Linear Regression

$$y = \alpha + \beta x$$

Linear Regression

Minimize error: sum least squares

$$\sum (y_i - \hat{y}_i)^2 = \sum e_i^2$$

Linear Regression

$$a = \overline{y} - b\overline{x}$$

$$y = \alpha + \beta x$$

$$b = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} \qquad b = \frac{Cov(x, y)}{Var(x)}$$

$$b = \frac{Cov(x, y)}{Var(x)}$$

$$Var(X) = \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$

Cov (X, Y) =
$$\frac{\sum (X_i - \overline{X})(Y_j - \overline{Y})}{n}$$

variance

covariance

Pearson's correlation (-1 to +1)

$$\rho_{x,y} = Corr(x,y) = \frac{Cov(x,y)}{\sigma_x \sigma_y}$$

Multiple Regression

Strengths		Weaknesses
•	By far the most common approach for modeling numeric data	Makes strong assumptions about the data
•	Can be adapted to model almost any data	The model's form must be specified by the user in advance
•	Provides estimates of the strength and size of the relationships among features and the outcome	 Does not do well with missing data Only works with numeric features, so categorical data require extra processing
		 Requires some knowledge of statistics to understand the model

Multiple Regression

$$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_i x_i + \varepsilon$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_i x_i + \varepsilon$$

Multiple Regression

Non-linear Regression

$$y = \alpha + \beta_1 x + \beta_2 x^2$$

Model adjustment

- medical expences example in hands-on
- Added a non-linear term for age
- Created an indicator for obesity
- Specified an interaction between obesity and smoking

Adding Regression to Trees

Strengths	Weaknesses	
 Combines the strengths of decision trees with the ability to model 	 Not as commonly-used as linear regression 	
 numeric data Does automatic feature selection, 	 Requires a large amount of training data 	
which allows the approach to be used with a very large number of features	 Difficult to determine the overall net effect of individual features on the outcome 	
 Does not require the user to specify the model in advance 	May be more difficult to interpret than a regression model	
 May fit some types of data much better than linear regression 		
 Does not require knowledge of statistics to interpret the model 		

Regression Tree

Regression Trees

Standard Deviation Reduction $SDR = sd(T) - \sum_{i} \frac{|T_i|}{|T|} \times sd(T_i)$

Choose the feature and split that maximizes SDR

Model Tree: every branch is a separate regression model

OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET

Performance evaluation

Mean Absolute Error
$$MAE = \frac{1}{n} \sum_{i=1}^{n} |e_i|$$