Calcul Numeric

Cursul 9

2020

Descompunerea după valori singulare

(Singular Value Decomposition)

Teoremă

Fie $A \in \mathbb{R}^{m \times n}$. Atunci există o matrice ortogonală pătratică de dimensiune m, $U \in \mathbb{R}^{m \times m}$, o matrice ortogonală pătratică de dimensiune n, $V \in \mathbb{R}^{n \times n}$ și constantele pozitive:

$$\sigma_{l} \geq \sigma_{2} \geq \dots \geq \sigma_{r} > 0, \quad r \leq \min\{m, n\} \text{ a.î.}$$

$$A = U \Sigma V^{T}, \quad \Sigma \in \mathbb{R}^{m \times n}, \quad \Sigma = \begin{bmatrix} D & 0_{r \times (n-r)} \\ 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{bmatrix}, \quad (1)$$

$$D \in \mathbb{R}^{r \times r}, \quad D = \operatorname{diag} \left[\sigma_{1}, \dots, \sigma_{r}\right]$$

Constanta r este chiar rangul matricii A, r = rang(A).

Constantele $\sigma_1, \sigma_2, \ldots, \sigma_r$ poartă numele de *valori singulare* ale matricii A.

Folosind relația (1) avem:

$$A^{T} = (U\Sigma V^{T})^{T} = V\Sigma^{T}U^{T},$$

$$AA^{T} = U\Sigma V^{T}V\Sigma^{T}U^{T} = U\Sigma\Sigma^{T}U^{T} = U\Lambda_{m}U^{T},$$

$$\Lambda_{m} = \Sigma\Sigma^{T} = \begin{bmatrix} D^{2} & \mathbf{0}_{r\times(m-r)} \\ \mathbf{0}_{(m-r)\times r} & \mathbf{0}_{(m-r)\times(m-r)} \end{bmatrix} \in \mathbb{R}^{m\times m}$$

$$A^{T}A = V\Sigma^{T}U^{T}U\Sigma V^{T} = V\Sigma^{T}\Sigma V^{T} = V\Lambda_{n}V^{T},$$

$$\Lambda_{n} = \Sigma^{T}\Sigma = \begin{bmatrix} D^{2} & \mathbf{0}_{r\times(n-r)} \\ \mathbf{0}_{(n-r)\times r} & \mathbf{0}_{(n-r)\times(n-r)} \end{bmatrix} \in \mathbb{R}^{n\times n}$$

Ținând cont de ortogonalitatea matricilor U și V, putem rescrie relațiile de mai sus astfel:

$$(AA^{T})U = U \Lambda_{m} , \Lambda_{m} = \operatorname{diag}\left[\sigma_{1}^{2}, \sigma_{2}^{2}, \dots, \sigma_{r}^{2}, 0, \dots, 0\right] \in \mathbb{R}^{m \times m}$$

$$(A^{T}A)V = V \Lambda_{n} , \Lambda_{n} = \operatorname{diag}\left[\sigma_{1}^{2}, \sigma_{2}^{2}, \dots, \sigma_{r}^{2}, 0, \dots, 0\right] \in \mathbb{R}^{n \times n}$$

Din aceste relații deducem că $\sigma_1^2, \sigma_2^2, ..., \sigma_r^2$ sunt valorile proprii strict pozitive ale matricilor AA^T și/sau A^TA iar matricile U și V sunt matrici ale căror coloane sunt vectorii proprii asociați (cei ce formează baze ortonormate). Matricile AA^T și A^TA sunt matrici simetrice:

$$\left(AA^{T}\right)^{T} = \left(A^{T}\right)^{T}A^{T} = AA^{T} \quad , \quad \left(A^{T}A\right)^{T} = A^{T}\left(A^{T}\right)^{T} = A^{T}A$$

și au toate valorile proprii nenegative:

$$(AA^{T})u = \lambda u \Rightarrow (AA^{T}u, u) = (\lambda u, u) \Rightarrow$$

$$\lambda = \frac{(A^{T}u, A^{T}u, u)}{(u, u)} = \frac{\|A^{T}u\|_{2}^{2}}{\|u\|_{2}^{2}} \ge 0$$

Putem folosi descompunerea după valori singulare pentru a defini pseudo-inversa unei matrici oarecare $A \in \mathbb{R}^{m \times n}$ $(n \neq m)$.

$$A = U\Sigma V^{T}$$
, $A^{-1} =_{?} (U\Sigma V^{T})^{-1} = (V^{T})^{-1}\Sigma_{?}^{-1}U^{-1} = V\Sigma_{?}^{-1}U^{T}$

Rămâne de definit matricea $\Sigma_{?}^{-1}$. Urmând acest raţionament se definește *pseudoinversa Moore-Penrose* a unei matrici

 $A \in \mathbb{R}^{m \times n}$ astfel:

$$A^{I} = V\Sigma^{I}U^{T} , A^{I} \in \mathbb{R}^{n \times m} , \Sigma^{I} = \begin{bmatrix} D^{-1} & 0_{r \times (m-r)} \\ 0_{(n-r) \times r} & 0_{(n-r) \times (m-r)} \end{bmatrix} \in \mathbb{R}^{n \times m} ,$$

$$D^{-1} \in \mathbb{R}^{r \times r}, D^{-1} = \operatorname{diag} \left[\frac{1}{\sigma_{1}}, \dots, \frac{1}{\sigma_{n}} \right].$$

Pseudoinversa definită mai sus satisface următoarele proprietăți:

$$(A^{I})^{I} = A$$
, $\forall A \in \mathbb{R}^{m \times n}$; $(A^{T})^{I} = (A^{I})^{T}$, $\forall A \in \mathbb{R}^{m \times n}$
 $AA^{I}A = A$, $A^{I}AA^{I} = A^{I}$

Există o proprietate care nu mai este satisfăcută de psudoinversă deși este respectată de inversa clasică:

$$\exists A, B \text{ a.i.} (AB)^I \neq B^I A^I.$$

Descompunerea după valori singulare poate fi utilizată și pentru rezolvarea sistemelor liniare cu matrici oarecare $(m\neq n)$

$$Ax = b$$
 , $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $x := A^I b \in \mathbb{R}^n$.

Problema celor mai mici pătrate

$$A \in \mathbb{R}^{m \times n} , b \in \mathbb{R}^{m} , Ax = b , x \in \mathbb{R}^{n}$$

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = b_{2}$$

$$\vdots$$

$$a_{i1}x_{1} + a_{i2}x_{2} + \dots + a_{in}x_{n} = b_{i}$$

$$\vdots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} = b_{m}$$

Sistemul are soluții clasice dacă:

$$\operatorname{rang} A = \operatorname{rang} \left[A / b \right]$$

- m < n o infinitate de soluţii
- $\bullet m \geq n$
 - dacă $\operatorname{rang} A = \operatorname{rang} [A/b]$ soluții clasice
 - dacă $\operatorname{rang} A \neq \operatorname{rang} [A / b]$ soluții în sensul celor mai mici pătrate

Vectorul reziduu:

$$r(x)=b-Ax \in \mathbb{R}^m$$

Vectorul $x \in \mathbb{R}^n$ se numește *soluție în sensul celor mai mici pătrate* pentru sistemul (1) dacă este soluția următoarei probleme de optimizare:

$$\min\{\|r(x)\|_{2}^{2} = \|b - Ax\|_{2}^{2}; x \in \mathbb{R}^{n}\}$$
 (LSP)

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \in \mathbb{R}^{3 \times 2} , b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, m = 3, n = 2$$

$$\operatorname{rang} A = 2 \neq \operatorname{rang} \left[A / b \right] = 3$$

Sistemul:

$$x_{1} + 4x_{2} = 0$$

$$2x_{1} + 5x_{2} = 0$$

$$3x_{1} + 6x_{2} = 1$$
(2)

nu are soluție clasică (nu există x_1 , x_2 care să satisfacă toate cele 3 ecuații simultan). Vectorul reziduu are forma:

$$r(x) = b - Ax = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} - \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -x_1 - 4x_2 \\ -2x_1 - 5x_2 \\ 1 - 3x_1 - 6x_2 \end{pmatrix}$$

Soluția în sensul celor mai mici pătrate a acestui sistem este definită ca soluția problemei de optimizare:

$$\min\{(-x_1 - 4x_2)^2 + (-2x_1 - 5x_2)^2 + (1 - 3x_1 - 6x_2)^2; x_1, x_2 \in \mathbb{R}\}$$

$$\min\{1 - 6x_1 - 12x_2 + 64x_1x_2 + 14x_1^2 + 77x_2^2; x_1, x_2 \in \mathbb{R}\}$$

Această problemă de minimizare are soluția:

$$x_1 = \frac{13}{18}$$
, $x_2 = -\frac{2}{9}$, $||r(x)||_2^2 = \frac{1}{6}$

și este soluția în sensul celor mai mici pătrate a sistemului (2).

range(A) = {
$$y \in \mathbb{R}^m$$
; $y = a_1 A^1 + a_2 A^2 + \dots + a_n A^n$, $a_i \in \mathbb{R}$, $i = 1, n$ }

$$A = \begin{bmatrix} A^1 & A^2 & \cdots & A^n \end{bmatrix}, A^i \in \mathbb{R}^m$$
 sunt coloanele matricii A

Teoremă

Fie $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$, $b \in \mathbb{R}^m$. Un vector $x \in \mathbb{R}^n$ minimizează norma euclidiană a vectorului reziduu /|r(x)|/2 = ||b-Ax|/2|, rezolvând problema (LSP), dacă și numai dacă:

$$r(x) \perp \text{range}(A) \Leftrightarrow A^T r(x) = 0$$

sau echivalent

$$A^T A x = A^T b \tag{3}$$

Sistemul (3) poartă numele de sistemul de *ecuații normale*.

Este un sistem pătratic de dimensiune n, matricea sistemului $A^T A \in \mathbb{R}^{n \times n}$ este simetrică. Sistemul de ecuații normale (3) este nesingular dacă și numai dacă $\operatorname{rang} A = n$, în acest caz soluția x a sistemului (3) este unică.

$$\det A^T A \neq 0 \iff \operatorname{rang} A = n$$

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}, A^{T}A = \begin{bmatrix} 14 & 32 \\ 32 & 77 \end{bmatrix}, A^{T}b = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$

$$14x_{1} + 32x_{2} = 3$$

$$32x_{1} + 77x_{2} = 6 \Rightarrow x_{1} = \frac{13}{18}, x_{2} = -\frac{2}{9}$$

Pseudo-inversa matricii A

Presupunem că A are $\mathbf{rang} A = n$. Atunci pseudo-inversa poate fi definită ca:

$$A^{+} = \left(A^{T} A\right)^{-1} A^{T} \in \mathbb{R}^{n \times m} \qquad (A^{+} = A^{I} ?)$$

$$A^{+} = \begin{bmatrix} 14 & 32 \\ 32 & 77 \end{bmatrix}^{-1} * \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

Rezolvarea sistemului de ecuații normale

1) Folosind factorizarea Cholesky (descompunere *LU*) pentru matrici simetrice:

$$A^{T}A = LL^{T}, L \in \mathbb{R}^{n \times n}$$
 matrice inferior triunghiulară

- Se calculează matricea A^TA și vectorul A^Tb ;
- Se calculează factorizarea Cholesky a matricii $A^TA = LL^T$;
- Se rezolvă sistemul inferior triunghiular $Ly = A^Tb$ pentru y;
- Se rezolvă sistemul superior triunghiular $L^T x = y$ pentru x;
- 2) Se calculează descompunerea QR (cu algoritmul lui

Householder adaptat) pentru matricea A:

$$A = QR$$
, $Q \in \mathbb{R}^{m \times m}$ matrice ortogonală, $R \in \mathbb{R}^{m \times n}$,

$$R = \begin{bmatrix} \overline{R} \in \mathbb{R}^{n \times n} \\ \mathbf{0}_{(m-n) \times n} \end{bmatrix}$$
, \overline{R} —matrice superior triunghiulară

- Se calculează factorizarea QR modificată a matricii A;
- Se calculează vectorul $Q^T b$;
- Se rezolvă sistemul sup. triunghiular $\overline{R}x = (Q^T b)_{i=1,n}$;

- 3) Se folosește desc. după valori singulare a matricii A $A = U\Sigma V^{T}, \ \Sigma \in \mathbb{R}^{m \times n}, U \in \mathbb{R}^{m \times m}, V \in \mathbb{R}^{n \times n}$
 - Se calculează SVD pentru matricea $A = U\Sigma V^T$;
 - Se calculează vectorul U^Tb ;
 - Se rezolvă sistemul diagonal $\Sigma w = U^T b$ pentru w;
 - Soluția este x=Vw;
- 1), 2) sau 3)? \rightarrow se recomandă 2)

Interpolare numerică

Presupunem că despre o funcție f cunoaștem doar valorile într-un număr finit de puncte. Pornind de la aceste date, dorim să aproximăm funcția f într-un alt punct.

În tabelul de mai sus $f(x_i) = y_i$, i=0,1,...,n și $x_i \neq x_j$, $i\neq j$.

Dat un punct $x \neq x_i$, i=0,1,...,n dorim să aproximăm f(x) cunoscând cele (n+1) perechi (x_i,y_i) , i=0,...,n. Punctele x_i se numesc *noduri de interpolare*.

Polinomul de interpolare Lagrange

Notăm cu Π_n mulțimea polinoamelor de grad cel mult n. Dimensiunea acestui spațiu este n+1, baza uzuală fiind dată de polinoamele $1, x, x^2, ..., x^n$. Vom considera o altă bază în acest spațiu. Se consideră polinoamele p_i :

$$p_i \in \Pi_n \text{ astfel ca } p_i(x_j) = \begin{cases} \mathbf{0} & \text{pentru } j \neq i \\ \mathbf{1} & \text{pentru } j = i \end{cases}, j = \mathbf{0}, \dots, n, i = \mathbf{0}, \dots, n$$

Din relația $p_i(x_j)=0$, $\forall j \neq i$ și faptul că p_i este de grad n rezultă că $x_0, x_1, ..., x_{i-1}, x_{i+1}, ..., x_n$ sunt cele n rădăcini ale polinomului p_i .

Avem:

$$p_{i}(x) = c_{i}(x - x_{0}) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_{n}),$$

$$c_{i} \in \mathbb{R}, i = 0, \dots, n$$

Constanta c_i se determină din relația $p_i(x_i) = 1$:

$$p_{i}(x_{i}) = 1 = c_{i}(x_{i} - x_{0}) \cdots (x_{i} - x_{i-1})(x_{i} - x_{i+1}) \cdots (x_{i} - x_{n}) \Rightarrow$$

$$c_{i} = \frac{1}{(x_{i} - x_{0}) \cdots (x_{i} - x_{i-1})(x_{i} - x_{i+1}) \cdots (x_{i} - x_{n})}$$

Polinoamele p_i au forma:

$$p_{i}(x) = \frac{(x - x_{0}) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_{n})}{(x_{i} - x_{0}) \cdots (x_{i} - x_{i-1})(x_{i} - x_{i+1}) \cdots (x_{i} - x_{n})} = \prod_{\substack{j=0 \ j \neq i}}^{n} (\frac{x - x_{j}}{x_{i} - x_{j}})$$

$$i = 0, \dots, n$$

Propoziție

Polinoamele $p_0, p_1, ..., p_n$ formează o bază în Π_n .

Demonstrație: Vom arăta că cele n+1 polinoame sunt liniar independente:

$$q(x) = a_0 p_0(x) + a_1 p_1(x) + \dots + a_n p_n(x) = 0, \forall x$$

$$\Rightarrow a_0 = a_1 = \dots = a_n = 0$$

Vom face pe rând $x = x_0, x = x_1, ..., x = x_n$ în polinomul q:

$$x = x_{0} \quad q(x_{0}) = a_{0}p_{0}(x_{0}) + a_{1}p_{1}(x_{0}) + \dots + a_{n}p_{n}(x_{0}) =$$

$$= a_{0}1 + a_{1}0 + \dots + a_{n}0 = a_{0} = 0 \implies a_{0} = 0$$

$$x = x_{1} \quad q(x_{1}) = 0 \implies a_{1} = 0$$

$$\vdots$$

$$x = x_{k} \quad q(x_{k}) = a_{0}p_{0}(x_{k}) + \dots + a_{k}p_{k}(x_{k}) + \dots + a_{n}p_{n}(x_{k}) =$$

$$= a_{0}0 + \dots + a_{k}1 + \dots + a_{n}0 = a_{k} = 0 \implies a_{k} = 0$$

$$\vdots$$

$$x = x_{n} \quad q(x_{n}) = 0 \implies a_{n} = 0$$

Toate constantele a_i sunt nule deci polinoamele $\{p_i; i=0,...,n\}$ formează o bază în Π_n .

Pentru a aproxima funcția f pornind de la tabelul de mai sus, vom construi un polinom $l_n \in \Pi_n$ a.î. să satisfacă *condițiile de interpolare*:

$$l_n \in \Pi_n$$
 , $l_n(x_i) = y_i$, $\forall i = 0,...,n$ (1)

Odată construit acest polinom, vom aproxima f(x) prin $l_n(x)$, $f(x) \approx l_n(x)$

Vom scrie polinomul l_n în raport cu noua bază $\{p_i; i=0,...,n\}$, deci există constantele reale $a_0, a_1,...,a_n$ astfel ca:

$$l_n(x) = \sum_{i=0}^n a_i p_i(x)$$

Constantele a_k se determină astfel:

$$y_{k} = l_{n}(x_{k}) = a_{0}p_{0}(x_{k}) + \dots + a_{k}p_{k}(x_{k}) + \dots + a_{n}p_{n}(x_{k}) =$$

$$= a_{0}0 + \dots + a_{k}1 + \dots + a_{n}0 = a_{k} \implies a_{k} = y_{k}$$

Prin urmare un polinom de grad n care îndeplinesc condițiile de interpolare (1) este:

$$l_{n}(x) = \sum_{i=0}^{n} y_{i} p_{i}(x) = \sum_{i=0}^{n} y_{i} \frac{(x - x_{0}) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_{n})}{(x_{i} - x_{0}) \cdots (x_{i} - x_{i-1})(x_{i} - x_{i+1}) \cdots (x_{i} - x_{n})}$$

$$= \sum_{i=0}^{n} y_{i} \prod_{\substack{j=0 \ j \neq i}}^{n} (\frac{x - x_{j}}{x_{i} - x_{j}})$$

$$(2)$$

Polinomul din formula (2) se numește *polinomul de interpolare Lagrange*.

Propoziție

Polinomul l_n dat de formula (2) este unicul polinom de grad n care îndeplinește condițiile de interpolare (1).

Demonstrație: Presupunem că mai există un polinom $q \in \Pi_n$ care îndeplinește condițiile (1):

$$q \in \Pi_n$$
, $q(x_i) = y_i$, $\forall i = 0,...,n$

Fie polinomul $p(x)=l_n(x)-q(x) \in \Pi_n$.

$$p(x_k) = l_n(x_k) - q(x_k) = y_k - y_k = 0, \forall k = 0,...,n$$

Polinomul p are ca rădăcini toate nodurile de interpolare. Polinomul p este polinom de grad cel mult n și are (n+1) rădăcini distincte $(x_i \neq x_j, \forall i \neq j)$. Acest polinom nu poate fi decât polinomul identic nul:

$$p(x) = l_n(x) - q(x) \equiv 0 \quad \forall x, \quad l_n(x) = q(x) \quad \forall x$$

Polinomul l_n este unicul care satisface (2).

Fie w_{n+1} polinomul de grand (n+1) care are ca rădăcini nodurile de interpolare:

$$W_{n+1}(x) = (x - x_0)(x - x_1) \cdots (x - x_n) \in \Pi_{n+1}$$

Fie $a = \min\{x_0, x_1, ..., x_n\}, b = \max\{x_0, x_1, ..., x_n\}.$

Teorema restului (eroarea la interpolarea Lagrange_

Fie
$$f \in C^{n+1}[a,b]$$
 $\bar{x} \in [a,b], \bar{x} \neq x_i, \forall i = 0,...,n.$

Atunci există un punct $y \in [a,b]$, $y = y(x_0,x_1,...,x_n,\overline{x})$ (punctul y depinde de nodurile de interpolare x_i și de punctul \overline{x}) astfel că eroarea la interpolarea numerică este dată de:

$$f(\overline{x}) - l_n(\overline{x}) = \frac{f^{(n+1)}(y)}{(n+1)!} w_{n+1}(\overline{x})$$
 (3)

Demonstrație: Considerăm funcția F:

$$F(x) := f(x) - l_n(x) - cw_{n+1}(x)$$

Constanta reală c este aleasă astfel ca $F(\bar{x}) = 0$ adică:

$$c = \frac{f(\overline{x}) - l_n(\overline{x})}{w_{n+1}(\overline{x})}, (x \neq x_i \ \forall i) \Rightarrow w_{n+1}(\overline{x}) \neq 0)$$
 (4)

Funcția f fiind de clasă C^{n+1} pe intervalul [a,b] rezultă că și funcția F este din $C^{n+1}[a,b]$. Avem:

$$F(x_i) = f(x_i) - l_n(x_i) - cw_{n+1}(x_i) = y_i - y_i - c \ 0 = 0 , \forall i = 0,...,n$$

Funcția F are (n+2) zerouri, $x_0, x_1, ..., x_n, \overline{x}$. Aplicând succesiv Teorema lui Rolle rezultă că F' are (n+1) zerouri, F'' are n zerouri,..., $F^{(n+1)}$ are 1 zero în intervalul [a,b]. Vom nota această rădăcină a lui $F^{(n+1)}$ cu y. Punctul y depinde de zerourile inițiale $x_0, x_1, ..., x_n, \overline{x}$ și:

$$y = y(x_0, x_1, ..., x_n, \overline{x}) \in [a, b]$$
 a.î. $F^{(n+1)}(y) = 0$. (5)

Derivata de ordinul (n+1) a funcției F se calculează astfel:

$$F^{(n+1)}(x) = f^{(n+1)}(x) - l_n^{(n+1)}(x) - c w_{n+1}^{(n+1)}(x) =$$

$$= f^{(n+1)}(x) - 0 - c(n+1)! = f^{(n+1)}(x) - c(n+1)!$$
(6)

(derivata de ordin (n+1) a polinomului de grad n l_n este θ). Din relațiile (4), (5) și (6) rezultă că:

$$c = \frac{f^{(n+1)}(y)}{(n+1)!} = \frac{f(\overline{x}) - l_n(\overline{x})}{w_{n+1}(\overline{x})} \Rightarrow f(\overline{x}) - l_n(\overline{x}) = \frac{f^{(n+1)}(y)}{(n+1)!} w_{n+1}(\overline{x})$$

Forma Newton a polinomului de interpolare Lagrange

Fie $l_k(x, x_0, x_1,..., x_k, f)$ polinomul de interpolare Lagrange pentru funcția f pe sistemul de noduri distincte $\{x_0, x_1,..., x_k\}$.

Propoziție

Fie $l_{k-1}(x, x_0, x_1,..., x_{k-1}, f)$, $l_{k-1}(x, x_1, x_2,..., x_k, f) \in \Pi_{k-1}$ polinoamele de interpolare Lagrange pentru funcția f pe sistemele de noduri $\{x_0, x_1,..., x_{k-1}\}$ și respectiv $\{x_1, x_2,..., x_k\}$. Atunci:

$$l_{k}(x,x_{0},x_{1},...,x_{k},f) = \frac{(x-x_{0})l_{k-1}(x,x_{1},x_{2},...,x_{k},f) - (x-x_{k})l_{k-1}(x,x_{0},x_{1},...,x_{k-1},f)}{x_{k}-x_{0}}$$
(1)

Demonstrație: Exercițiu.

Considerăm următoarele probleme de interpolare pentru f:

$$\left\{ (x_0, y_0), (x_1, y_1), \dots, (x_{k-1}, y_{k-1}) \right\} \rightarrow l_{k-1}(x, x_0, x_1, \dots, x_{k-1}, f)$$

$$\left\{ (x_0, y_0), (x_1, y_1), \dots, (x_k, y_k) \right\} \rightarrow l_k(x, x_0, x_1, \dots, x_k, f)$$

Ne interesează să găsim o formulă de trecere rapidă de la polinomul de interpolare pe k noduri la cel care are un nod în plus. Deoarece polinomul de grad cel mult k:

$$q(x) = l_k(x, x_0, x_1, \dots, x_k, f) - l_{k-1}(x, x_0, x_1, \dots, x_{k-1}, f) \in \Pi_k$$

are ca rădăcini punctele $x_0,x_1,...,x_{k-1}$ ($q(x_i)=y_i-y_i=0$, i=0,...,k-1) avem relația:

$$l_k(x, x_0, x_1, \dots, x_k, f) = l_{k-1}(x, x_0, x_1, \dots, x_{k-1}, f) + A \prod_{j=0}^{k-1} (x - x_j)$$
 (2)

în care A este dat de relația:

$$A = \frac{l_k(x_k, x_0, x_1, \dots, x_k, f) - l_{k-1}(x_k, x_0, x_1, \dots, x_{k-1}, f)}{\prod_{j=0}^{k-1} (x_k - x_j)}$$
(3)

$$A = \frac{y_k}{\prod_{j=0}^{k-1} (x_k - x_j)} - \frac{\sum_{i=0}^{k-1} y_i \prod_{\substack{j=0 \ j \neq i}}^{k-1} (\frac{x_k - x_j}{x_i - x_j})}{\prod_{\substack{j=0 \ 1 \ j = 0}}^{k-1} (x_k - x_j)} = \frac{y_k}{\prod_{j=0}^{k-1} (x_k - x_j)} - \sum_{i=0}^{k-1} \frac{y_i}{(x_k - x_i) \prod_{\substack{j=0 \ j \neq i}}^{k-1} (x_i - x_j)}$$

$$A = \sum_{i=0}^{k} \frac{y_i}{\prod_{\substack{j=0\\j\neq i}}^{k} (x_i - x_j)}$$
 (4)

Considerăm următoarele problemele de interpolare pentru f:

$$\{(x_1, y_1), (x_2, y_2), \dots, (x_k, y_k)\} \rightarrow l_{k-1}(x, x_1, x_2, \dots, x_k, f)$$

$$\{(x_0, y_0), (x_1, y_1), \dots, (x_k, y_k)\} \rightarrow l_k(x, x_0, x_1, \dots, x_k, f)$$

Vom avea, analog ca mai sus:

$$l_{k}(x,x_{0},x_{1},...,x_{k},f) = l_{k-1}(x,x_{1},x_{2},...,x_{k},f) + B \prod_{j=1}^{k} (x-x_{j})$$
(5)

Dacă înmulțim relația (2) cu $(x-x_k)$ iar relația (5) cu $(x-x_0)$ și scădem aceste relații obținem:

$$(x_0 - x_k)l_k(x, x_0, x_1, \dots, x_k, f) = (x - x_k)l_{k-1}(x, x_0, x_1, \dots, x_{k-1}, f) - (x - x_0)l_{k-1}(x, x_1, x_2, \dots, x_k, f) + (A - B)\prod_{j=0}^{k} (x - x_j)$$

Ținând seama de relația (1) rezultă că:

$$(A-B)\prod_{j=0}^{k}(x-x_{j})=0 \text{ adică } A=B$$

Vom nota în cele ce urmează:

$$A = \left[x_0, x_1, \dots, x_k\right]_f$$

numită diferență divizată de ordin k a funcției f pe nodurile $\left\{x_0, x_1, \ldots, x_k\right\}$

Vom înlocui în formula (2) $l_{k-1}(x, x_0, ..., x_{k-1}, f)$ cu:

$$l_{k-1}(x, x_0, ..., x_{k-1}, f) = l_{k-2}(x, x_1, ..., x_{k-1}, f) +$$

$$+ \left[x_0, x_1, ..., x_{k-1} \right]_f \prod_{j=1}^{k-1} (x - x_j)$$

iar în formula (5) $l_{k-1}(x, x_1, ..., x_k, f)$ cu:

$$l_{k-1}(x, x_1, \dots, x_k, f) = l_{k-2}(x, x_1, \dots, x_{k-1}, f) + \left[x_1, x_2, \dots, x_k\right]_f \prod_{l=1}^{k-1} (x - x_l)$$

și apoi scădem membru cu memebru cele două relații. Obținem:

$$[x_0, \dots, x_{k-1}]_f \prod_{j=1}^{k-1} (x - x_j) + [x_0, \dots, x_k]_f \prod_{j=0}^{k-1} (x - x_j) - [x_1, \dots, x_k]_f \prod_{l=1}^{k-1} (x - x_l) - [x_0, \dots, x_k]_f \prod_{l=1}^{k} (x - x_l) = 0$$

Putem scrie:

$$\prod_{j=1}^{k-1} (x - x_j) \left\{ \begin{bmatrix} x_0, \dots, x_{k-1} \end{bmatrix}_f - \begin{bmatrix} x_1, \dots, x_k \end{bmatrix}_f \right\} + \begin{bmatrix} x_0, \dots, x_k \end{bmatrix}_f \prod_{j=0}^{k-1} (x - x_j) \begin{bmatrix} x - x_0 - x + x_n \end{bmatrix} = 0$$

relație din care obținem:

$$[x_0, x_1, \dots, x_k]_f = \frac{[x_1, x_2, \dots, x_k]_f - [x_0, x_1, \dots, x_{k-1}]_f}{x_k - x_0}$$
 (6)

Relația (6) justifică denumirea de diferență divizată.

Se introduce și noțiunea de diferență divizată de ordinul 0:

$$\left[x_{k}\right]_{f} = y_{k} = f(x_{k}) , \qquad (7)$$

Diferențele divizate se pot obține folosind definiția directă (4) sau folosind definiția recursivă (7), (6). Cele 2 definiții sunt echivalente:

Propoziție

$$[x_0, x_1, \dots, x_k]_f = \sum_{i=0}^k \frac{y_i}{\prod_{\substack{j=0\\j\neq i}}^k (x_i - x_j)} = \sum_{i=0}^k \frac{y_i}{(w_{n+1}(x_k))'}$$
 (8)

pentru orice sistem de noduri $\{x_0, x_1, ..., x_k\}$ și orice k.

Demonstrație: Se face prin inducție. Pentru k=1 avem:

$$[x_0, x_1]_f = \frac{y_0}{x_0 - x_1} + \frac{y_1}{x_1 - x_0} = \frac{[x_1]_f - [x_0]_f}{x_1 - x_0}$$

Presupunem că relația (8) este valabilă pentru orice k și pentru orice sistem de noduri $\{x_0, x_1, ..., x_k\}$. Pentru k+1 folosim relația de recurență și apoi aplicăm ipoteza inductivă:

$$\begin{split} \left[x_{0}, x_{1}, \ldots, x_{k+1}\right]_{f} &= \frac{\left[x_{1}, x_{1}, \ldots, x_{k+1}\right]_{f} - \left[x_{0}, x_{2}, \ldots, x_{k}\right]_{f}}{x_{k+1} - x_{0}} = \\ &= \frac{1}{x_{k+1} - x_{0}} \left(\sum_{i=1}^{k+1} \frac{y_{i}}{\prod\limits_{\substack{j=1\\j \neq i}}^{k+1} \left(x_{i} - x_{j}\right)} - \sum_{i=0}^{k} \frac{y_{i}}{\prod\limits_{\substack{j=0\\j \neq i}}^{k} \left(x_{i} - x_{j}\right)}\right) = \\ &= \frac{1}{x_{k+1} - x_{0}} \left\{ -\frac{y_{0}}{\prod\limits_{\substack{j=0\\j \neq 0}}^{k} \left(x_{0} - x_{j}\right)} + \frac{y_{k+1}}{\prod\limits_{\substack{j=1\\j \neq k+1}}^{k+1} \left(x_{k+1} - x_{j}\right)} + \sum_{i=1}^{k} \left[\frac{y_{i}}{\prod\limits_{\substack{j=1\\j \neq i}}^{k} \left(x_{i} - x_{j}\right)} \left(\frac{1}{x_{i} - x_{k+1}} - \frac{1}{x_{i} - x_{0}}\right)\right]\right\} = \end{split}$$

$$= \frac{y_0}{\prod_{\substack{j=0\\j\neq 0}}^{k+1}(x_0 - x_j)} + \frac{y_{k+1}}{\prod_{\substack{j=0\\j\neq k+1}}^{k+1}(x_{k+1} - x_j)} + \sum_{\substack{i=1\\j=0\\j\neq i}}^{k} \frac{y_i}{\prod_{\substack{j=0\\j\neq i}}^{k+1}(x_i - x_j)} = \sum_{\substack{j=0\\j\neq i}}^{k+1} \frac{y_i}{\prod_{\substack{j=0\\j\neq i}}^{k+1}(x_i - x_j)}$$

Inducția este completă.

Din definiție se observă că diferența divizată $[x_0, x_1, ..., x_k]_f$ nu depinde de ordinea nodurilor $\{x_0, x_1, ..., x_k\}$

Vom nota în continuare cu $l_k(x)$ polinomul de interpolare Lagrange pe nodurile $\{x_0, x_1, ..., x_k\}$ pentru funcția f. Avem:

$$\begin{split} l_n(x) &= l_0(x) + [l_1(x) - l_0(x)] + \dots + [l_k(x) - l_{k-1}(x)] + \dots + [l_n(x) - l_{n-1}(x)] = \\ &= y_0 + \Big[x_0, x_1\Big]_f(x - x_0) + \dots + \Big[x_0, x_1, \dots, x_k\Big]_f(x - x_0) \dots (x - x_{k-1}) + \dots \\ &+ \Big[x_0, x_1, \dots, x_n\Big]_f(x - x_0) \dots (x - x_{n-1}) \end{split}$$

Am obținut *forma Newton* a polinomului de interpolare Lagrange:

$$l_n(x) = y_0 + [x_0, x_1]_f (x - x_0) + [x_0, x_1, x_2]_f (x - x_0)(x - x_1) + \cdots + [x_0, x_1, \dots, x_n]_f (x - x_0) \cdots (x - x_{n-1})$$

Schema lui Aitken de calcul a diferențelor divizate

Ne propunem să calculăm diferențele divizate

$$\begin{bmatrix} x_0, x_1 \end{bmatrix}_f, \begin{bmatrix} x_0, x_1, x_2 \end{bmatrix}_f, \dots, \begin{bmatrix} x_0, x_1, \dots, x_n \end{bmatrix}_f$$

necesare construirii polinomului de interpolare Lagrange în forma Newton. Procedeul folosește definiția recursivă a diferențelor divizate și se desfășoară în *n* pași. La pasul *1* se calculează numai diferențe divizate de ordinul *1*:

$$\begin{bmatrix} x_0, x_1 \end{bmatrix}_f, \begin{bmatrix} x_1, x_2 \end{bmatrix}_f, \dots, \begin{bmatrix} x_{n-1}, x_n \end{bmatrix}_f.$$

În general, la pasul k se calculează diferențe divizate de ordin k:

$$[x_0, x_1, ..., x_k]_f, [x_1, x_2, ..., x_{k+1}]_f, ..., [x_{n-k}, x_{n-k+1}, ..., x_n]_f.$$

La pasul n se calculează o singură diferență divizată de ordin n și anume $[x_0, x_1, ..., x_n]_f$.

Pas 1 ··· Pas k ··· Pas n $x_0 y_0 x_1 y_1 [x_0, x_1]_f x_2 y_2 [x_1, x_2]_f \vdots x_k y_k [x_{k-1}, x_k]_f [x_0, x_1, ..., x_k]_f$

$$x_n$$
 y_n $\begin{bmatrix} x_{n-1}, x_n \end{bmatrix}_f$ $\begin{bmatrix} x_{n-k}, \dots, x_{n-1} \end{bmatrix}_f$ \cdots $\begin{bmatrix} x_0, x_1, \dots, x_n \end{bmatrix}_f$

 $\begin{bmatrix} x_{n-1} & y_{n-1} & [x_{n-2}, x_{n-1}]_f & [x_{n-k-1}, \dots, x_{n-1}]_f \end{bmatrix}$

Notăm $\mathbf{dd[i,k]} = \begin{bmatrix} x_i, x_{i+1}, \dots, x_{i+k} \end{bmatrix}_f$ diferența divizată de ordin k, pe nodurile consecutive $\{x_i, x_{i+1}, \dots, x_{i+k}\}$ $i=0,\dots,n-k$, $k=1,\dots,n$, cu $dd[i,0]=y_i,$ $i=0,\dots,n$. Schema lui Aitken se implementează astfel:

$$dd[i,0] = y_i, i = 0,...,n;$$

for $k = 1,...,n$

for $i = 0,...,n-k$

$$dd[i,k] = \frac{dd[i+1,k-1] - dd[i,k-1]}{x_{i+k} - x_i}$$

Putem face aceleași calcule folosind un singur vector, de exemplu rescriind vectorul y astfel:

for
$$k = 1,...,n$$

for $i = n,...,k$

$$y_i = \frac{y_i - y_{i-1}}{x_i - x_{i-k}}$$

La finalul acestei secvențe de program, vectorul *y* va conține elementele:

$$y_0, [x_0, x_1]_f, [x_0, x_1, x_2]_f, ..., [x_0, x_1, ..., x_n]_f$$

 $(y_k = [x_0, x_1, ..., x_k]_f, k = 0, ..., n).$