3/7/23, 22:33

Homework due Mar 8, 2023 08:59 -03

Consider a sequence of n-dimensional data points, $x^{(1)}, x^{(2)}, \ldots$, and a sequence of m-dimensional feature vectors, $z^{(1)}, z^{(2)}, \ldots$, extracted from the x's by a linear transformation, $z^{(i)} = Ax^{(i)}$. If m is much smaller than n, you might expect that it would be easier to learn in the lower dimensional feature space than in the original data space.

2. (a)

1 point possible (graded)

Suppose n=6, m=2, z_1 is the average of the elements of x, and z_2 is the average of the first three elements of x minus the average of fourth through sixth elements of x. Determine x.

Note: Enter A in a list format: $\left[\left[A_{11},\ldots,A_{16}\right],\left[A_{21},\ldots,A_{26}\right]\right]$

Submit

You have used 0 of 5 attempts

2. (b)

1.0/1 point (graded)

Using the same relationship between z and x as defined above, suppose $h\left(z\right)=sign\left(\theta_z\cdot z\right)$ is a linear classifier for the feature vectors, and $g\left(x\right)=sign\left(\theta_x\cdot x\right)$ is a linear classifier for the original data vectors. Given a θ_z that produces good classifications of the feature vectors, determine a θ_x that will identically classify the associated x's.

Note: Use trans(...) for transpose operations, $theta_z$ as θ_z and assume A is a fixed matrix (enter this as A).

Note: Expects $heta_x$ (an [n imes 1] vector), not $heta_x^ op$.

$$oldsymbol{ heta_x} = oldsymbol{ heta_x}$$
 trans(A) * theta_z

Submit

You have used 1 of 5 attempts

2. (c)

1/1 point (graded)

Given the same classifiers as in (b), if there is a θ_x that produces good classifications of the data vectors, will there **always** be a θ_z that will identically classify the associated z's?

Note: \boldsymbol{A} is a fixed matrix.

O Yes			

__

~

Submit

You have used 1 of 1 attempt

2 of 5

2. (d)		
/1 point (graded) Given the same classifiers as in (b), if there is a will there always be a that will identically classif	that produces good classific fy the associated 's?	cations of the data vectors,
Note: Now assume that you can change the	matrix .	
Yes		
○ No		
✓		
Submit You have used 1 of 1 attempt		
2. (e)		
/2 points (graded) f , can we find a more accurate classifier by	y training in -space, as mea	sured on the training data?
○ Yes		
○ No		
Depends		
×		
low about on unseen data?		
Yes		
○ No		
Depends		
•		
Culturate		
Submit You have used 1 of 1 attempt		
Discussion		Hide Discussion
opic: Unit 2. N ar veeks):Homew < Previous a	Next >	

3/7/23, 22:33

	For 2b, I am assuming my answer needs to be a matrix. In that case should my answer be in terms of elements of A and Z Ii	
?	2b transpose I tried to enter trans(A), but the grader does not show A^T. Also, should I input A*B for matrix product of A and B?	4
2	Probably good to come back later My feeling is that there is a lot to unroll from these questions. These are really important topics for linear regression, but it t Community TA	4
Q	Hint on 2c and 2b Hi, considering that it has taken me pretty long to figure out the solution without just guessing them, I would like to share w	2
Q	2(c) fixed matrix If A is fixed and the same as what we got in previous parts, it is invertible and should work. isn't it? what does a fixed A me	4
?	2(d) Just to be clear regarding 2(d): are we allowed to change the shape of the matrix (m in this case), or just the entries within	2
?	How do i type A transposed in question 1b? I'm trying to type trans(A) as it is said in the note but it doesn't work for me What am I doing wrong?	5
Q	request Can the TAs ask the problem setter to be less ambiguous about the questions? It is really frustrating to spend time on the h	10
?	Hint for 2(b)? No idea how to start. We have sign(theta_z*z) separating linearly in 2D z-space, meaning that all the transformed data poin	3
2	Part (e) is too ambiguous I feel like you can justify any answer depending on your interpretation of the questions. Does it mean "we can **always** fi	6
2	No view answer for those problems? I have several mistakes and I would like to see the answers and the explanations, so I can learn from my mistakes.	2
€	Relating 2(c) and 2(d)	6

edX

<u>About</u>

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Do Not Sell My Personal Information

4 of 5

Connect

<u>Blog</u>

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2023 edX LLC. All rights reserved. 深圳市恒宇博科技有限公司 粤ICP备17044299号-2

3/7/23, 22:33 5 of 5