# Beispiellösungen zu Übung 6

## Aufgabe 1: Beispieldurchlauf für die Multiplikation -7\*7

Binärdarstellung von 7:  $0111_2$ Binärdarstellung von -7:  $1001_2$ 

#### Shift & Add Algorithmus aus der Vorlesung

$$Q := -7 = 1001_2, M := 7 = 0111_2$$

| V | A    | Q     | Ndchste Operation          | Counter  |
|---|------|-------|----------------------------|----------|
| 0 | 0000 | 1001  | Add 7                      | Initial. |
| 0 | 0111 | _'''_ | $\mathrm{shift} \to$       | 0        |
| 0 | 0011 | 1100  | $\mathrm{shift} \to$       | 0        |
| 0 | 0001 | 1110  | $\mathrm{shift} \to$       | 1        |
| 0 | 0000 | 1111  | Add 7                      | 2        |
| 0 | 0111 | _'''_ | $\mathrm{shift} \to$       | 3        |
| 0 | 0011 | 1111  | Sub 7 (Ergebnis Korrektur) | 3        |
| 0 | 1100 | _'''_ | $\rightarrow$ Ergebnis     |          |

Ergebnis:  $1001111_2 = -49_{10}$ 

#### **Booth Algorithmus**

$$Q := 7 = 0111_2, M := -7 = 1001_2$$

| A    | Q      | Nächste Operation            | Counter |
|------|--------|------------------------------|---------|
| 0000 | 0111 0 | sub -7                       | 0       |
| 0111 | 0111 0 | $\mathrm{shift} \rightarrow$ | 1       |
| 0011 | 1011 1 | $\mathrm{shift} \rightarrow$ | 2       |
| 0001 | 1101 1 | $\mathrm{shift} \rightarrow$ | 3       |
| 0000 | 1110 1 | add -7                       | 3       |
| 1001 | 1110 1 | ⇒ Ergebnis                   |         |

Ergebnis:  $1001111_2 = -49_{10}$ 

### Kernidee des Booth-Algorithmus

Angenommen die Binärzahlen Y und X sollen multipliziert werden. Dabei sei X von der Form  $X=x_2\cdot 2^{i+k+2}+x_1\cdot 2^i+x_0$ . Weiterhin wird davon ausgegangen, daß  $x_1$  von der Form ist:

$$x_1 = \begin{matrix} i+k+1 \\ 0 & 11 \cdots 111 \ 0 \end{matrix} \tag{1}$$

Im folgenden soll nur der Anteil von  $x_1$  am Endergebnis betrachtet werden:

$$Y \cdot x_{1} = Y \cdot 2^{i+k} + \dots + Y \cdot 2^{i+1}$$

$$= Y \cdot \sum_{j=i+1}^{i+k} 2^{j}$$

$$= Y \cdot (\sum_{j=0}^{i+k} 2^{j} - \sum_{h=0}^{i} 2^{h})$$

$$= Y \cdot ((2^{i+k+1} - 1) - (2^{i+1} - 1))$$

$$= Y \cdot (2^{i+k+1} - 2^{i+1})$$
(2)

Somit sind zur Multiplikation von Blöcken mit Einsen nur eine Addition und eine Subtraktion erforderlich. Dieses nutzt der Algorithmus aus. Allerdings arbeitet er nur ab Bursts mit mehr als zwei Einsen besser als der 'Schul-Algorithmus'. Bei Zahlen mit ständigem Wechsel von '0' und '1' (z.B. 0101010) ist der Algorithmus um den Faktor 2 schlechter.

Damit der Algorithmus den Beginn eines Einser-Bursts erkennen kann, wird die Stelle n des Registers Q mit Null initialisiert.

Abschließend ein plausibles Beispiel:

$$Y * 01110_2 = Y * 14_{10} = Y * (16_{10} - 2_{10}) = Y * 1000_2 - Y * 00010_2$$
 (3)

### Aufgabe 2: Realisierung des Booth-Algorithmus



Aufteilung der Register und die Datenflußpfade, zusammen mit den Statusund den Steuersignalen.

Reset Registerinhalte werden auf Null gesetzt.

- LM Vom INBUS werden die Daten in das M-Register übernommen.
- LQ Vom INBUS werden die Daten in das Q-Register übernommen.
- Add Addition von M und A wird vorgenommen und Ergebnis in A geschrieben.
- Sub Subtraktion von M und A wird vorgenommen und Ergebnis in A geschrieben.
- Shift A und Q werden gemeinsam nach rechts geschoben; Bit 0 wird dupliziert.
- Inc Counter wird um eins hochgezählt.
- StA Inhalt von A wird an den OUTBUS übergeben
- StQ Inhalt von Q wird an den OUTBUS übergeben
  - E3 Counter ist gleich 3.
  - x1 Bit n-1 von Q.
  - x0 Bit n von Q.



Automat des Steuerwerks:

S0: LM, Reset

S1: LQ

S2: Add

S3: Sub

S4: Shift, Inc

S5: StA

S6: StQ