Temperaturas Positivas y Negativas en sistemas de dos niveles.

Una perspectiva Termodinámica y Mecánico-Estadística

By Mark Musthay and Harry Fannin Murray State University

Introducción

- A través de la combinación de la idea termodinámica (TD) de la temperatura (T°) y la definición mecánica-estadística (M-E) de la entropía se busca dar a entender el fenómeno de las temperaturas negativas (T) en el sistema mas simple posible: Un sistema de dos niveles.
- Luego con el uso de ciertas aproximaciones se modelara el comportamiento para sistemas de 10,50,100,10⁴,N_A e infinito numero de partículas y se obtendrán las conclusiones del caso.

<u>Ideas Preliminares:</u> Temperaturas Negativas

- Las T⁻ son aquellas que caen por debajo de la escala Kelvin (contraponiéndose al segundo principio de la TD)
- Fueron primeramente registradas en 1950 para sistemas de dos niveles. Luego se masifico el concepto para simplificar problemas de Vortex de fluidos unidimensionales, Plasmas, simuladores dinámicos moleculares idénticos a osciladores armónicos, partícula unidimensional en una caja, cadenas Lennard-Jones, sistemas fuera del equilibrio, Estado condensado Bose-Einstein y Física de partículas elemental, entre muchos otros, en los cuales este concepto colabora en la creación y resolución de sus modelos.

<u>Ideas Preliminares:</u> Alto y Bajo Spin

- Las temperaturas negativas ocurren cuando los grados de libertad de un sistema tienen:
- A) Finitos niveles de energía,
- B) Son una población invertida de Boltzmann, y
- c) Están en equilibrio consigo mismos, pero no con otros grados de libertad.
- Un caso representativo es el de una capa de spin nuclear, inmediatamente después de rotar en 180º un campo electromagnético (H) externo
- Se define allí un Spin de baja energía que se orienta paralelo al campo, o Bajo Spin, y un spin de alta energía que se orienta en contra al campo, también denominado Alto Spin.

<u>Ideas Preliminares:</u> Sistemas de dos niveles *

- Al suceder esto los estados cambian su identidad aumentando la población inversa. Esto puede existir en un tiempo significativo cuando el emparejamiento entre los spin y las vibraciones térmicas son débiles.
- Entonces las temperaturas negativas ocurren en un pequeño numero de sistemas y contradicen la TD tradicional. Esto nos da pie para buscar las relaciones entre la TD y la M-E respecto a la temperatura

<u>Definición de Temperatura:</u> Análisis Termodinámico

 El cambio de energía interna de un sistema cerrado se puede definir como:

$$\partial U = T\partial S - P\partial V \quad (1)$$

Con U Energía interna, T Temperatura, S Entropía,
 P Presión y V Volumen, todas variables de estado.
 Ya que U función de estado, su diferencial es:

$$\partial U = \left(\frac{\partial U}{\partial S}\right) \partial S + \left(\frac{\partial U}{\partial V}\right) \partial S \partial V \quad (2)$$

Obteniéndose al despejar:

$$\partial T = \left(\frac{\partial U}{\partial S}\right)_{V} (3)$$

<u>Definición de Temperatura:</u> Análisis Termodinámico

 De manera análoga para la entalpía a Presión constante se obtiene:

$$\partial H = \left(\frac{\partial H}{\partial S}\right)_{P} \partial S + \left(\frac{\partial H}{\partial P}\right)_{S} \partial P \quad (4) \quad \mathbf{y} \quad T = \left(\frac{dH}{dS}\right)_{P} \quad (5)$$

- Entonces la To es definida como la taza de cambio de la energía interna respecto a S a V cte o como la variación de entalpía en función a la entropía a P constante.
- Entonces la derivación TD resulta bastante directa, aunque su interpretación física puede ser compleja para quienes la enfrentan por primera vez.

Definición de Temperatura: Análisis Mecánico-Estadístico

 Por otro lado el análisis M-E comienza con la temperatura según esta rama de la Fisicoquímica.

$$T = \left(\frac{1}{k_B}\right) \left(\frac{dU}{d\ln\Omega}\right)$$
 (6)

$$S = k_B \ln \Omega \ (7)$$

• La ecuación anterior se obtiene al mezclar (3) con (7), con $k_B=1.38\times10^{-23}$ K⁻¹ partículas⁻¹ y la función partición 'Ω (N,V,U) es igual a la degeneración del nivel de energía U.

<u>Definición de Temperatura:</u> Análisis Mecánico-Estadístico

- Ω, Degeneración: Es el numero de caminos el cual un conjunto de partículas indistinguibles en un volumen V puede ser distribuido sobre un conjunto de estados de energía de una partícula cuya producción de estado de multiparticulas con energía total U.
- En estos los estudios se utiliza el concepto de "Temperatura micro canónica", que son numéricamente iguales a las To canónicas pero en sistemas finitos y asilados. En este modelo la temperatura será la para el arreglo micro canónico.

Tº en sistemas de 2 niveles y n partículas: Niveles de energía

Figura 1

- La M-E y la TD enfocan la temperatura como una propiedad que en un numero finito de niveles de energía puede describirse por la estadística de Boltzmann.
- El sistema mas simple corresponde a uno con dos niveles de energía que esta expuesto a campos magnéticos orientados.
- Bajo estas condiciones el sistema se puede hacer virar de alto spin a bajo spin al invertir la dirección del campo magnético B. Siendo el spin alto el antiparalelo a B y el bajo spin el paralelo a B.

Tº en sistemas de 2 niveles y n partículas: Población y energías de los niveles

- Los spins bajos se pueblan preferentemente a los spin altos debido a la diferencia de energía (TOM, TCC)
- De forma análoga los niveles altos de energía se pueblan a expensa de los bajos cuando se quita la energía térmica del sistema.
- Se asumirá por simplicidad que la energía basal del sistema es 0 joules y que la energía del estado excitado es de € joules sobre el estado excitado.

Tº en sistemas de 2 niveles y n partículas: Interpretación Matemática

- La energía $U_{[n_\uparrow,n_\downarrow]}$ del estado multipartículas $[n_\uparrow,n_\downarrow]$ es igual a: $U_{[n_\uparrow,n_\downarrow]} = n_\downarrow \mathcal{E} \ (8a)$
- Y la energía de transición será:

$$\Delta U = \left(n_{\downarrow}^{f} - n_{\downarrow}^{i} \right) \varepsilon = \Delta n_{\downarrow} \varepsilon \ (8b)$$

 De acuerdo con esto la entropía y la diferencia de entropía quedan como:

quedan como:
$$S_{\left[n_{\uparrow},n_{\downarrow}\right]} = k_{B} \ln \Omega_{\left[n_{\uparrow},n_{\downarrow}\right]} (9a) \qquad \Delta S = k_{B} \ln \left(\frac{\ln \Omega^{f}}{\ln \Omega^{i}_{\left[n_{\uparrow},n_{\downarrow}\right]}} \div (9b)\right)$$

O Nótese que la degeneración, considerando $N=n_{\uparrow}+n_{\downarrow}$ queda:

$$\Omega_{\left[n_{\uparrow},n_{\downarrow}\right]} = \frac{N!}{n_{\uparrow}!n_{\downarrow}!} = \frac{N!}{n_{\uparrow}!(N-n_{\uparrow})!} \quad (10)$$

T° en sistemas de 2 niveles y n partículas: Interpretación matemática

 Ahora combinando 3,8b,9b y 10 la expresión para calcular la temperatura registrada durante una transición de nivel:

$$T = \left(\frac{\Delta U}{\Delta S}\right)_{S} = \frac{\Delta n_{\downarrow} \varepsilon}{k_{B} \ln \left(\frac{\ln \Omega^{f}}{\ln \Omega^{i}_{[n\uparrow,n\downarrow]}}\right)} = \frac{\Delta n_{\downarrow} \varepsilon}{k_{B} \ln \left(\frac{(n_{\uparrow}^{i}, n_{\downarrow}^{i})}{(n_{\uparrow}^{f}, n_{\downarrow}^{f})}\right)} (11)$$

 Que se simplifica quedando una expresión en función de los saltos iniciales y la energía del salto al estado excitado:

$$T_{\Delta n_{\downarrow}} = \frac{\pm \varepsilon}{k_{B} \ln \left(\frac{(n_{\uparrow}^{i}, n_{\downarrow}^{i})}{(n_{\uparrow}^{i} \mathbf{m}, n_{\downarrow}^{i} \pm 1)} \right)} = \pm 1 (12)$$

Aplicación a sistemas de 2 niveles:

- Si aplicamos el modelo derivado anteriormente a un sistema con 10 partículas distinguibles se obtienen 11 posibles estados en el arreglo de 2 niveles.
- Esto es mostrado en las tablas 1 y 2 y en los gráficos 1 y 2, con los datos obtenidos al reemplazar los valores antes dados.

Aplicación a sistemas de 2 niveles: Tabla 1: Energía Interna y Entropía

Estado	Energia Interna	Degenerracion	Entropia
	Joules	(Adimensional)	Joule/Kelvin
(10,0)	0€	1	0
(9,1)	1€	10	2,302kb
(8,2)	2€	45	3,087kb
(7,3)	3€	120	4,787kb
(6,4)	4€	210	5,347kb
(5,5)	5€	252	5,529kb
(4,6)	6€	210	5,347kb
(3,7)	7€	120	4,787kb
(2,8)	8€	45	3,087kb
(1,9)	9€	10	2,302kb
(0,10)	10€	1	0

Energías U en valores de función de partición micro canónica, degeneración y entropía para los 11 posibles estados en sistema que contiene 2 niveles.

Aplicación a sistemas de 2 niveles: Grafico U v/s S

Aplicación a sistemas de 2 niveles: Tabla 2: Temperaturas Negativas

Cambios de energía interna, entropía y temperaturas para transiciones +1 en sistemas de 2 niveles que contienen 10 partículas. Atención con Temperaturas negativas

Transicion		Transicion de energia	Transicion de entropia	Temperatura
k=k _B		Joule (Ec.8a)	Joule/Kelvin (Ec.9b)	Kelvin (Ec.3)
(10,0)	(9,1)	+€	+2,302k	+0,434€/k
(9,1)	(8,2)	+€	+1 ,504k	+0,665€/k
(8,2)	(7,3)	+€	+0,981k	+1,02€/k
(7,3)	(6,4)	+€	+0,560k	+1,79€/k
(6,4)	(5,5)	+€	+0,182k	+5,48€/k
(5,5)	(4,6)	+€	-0,182k	-5,48€/k
(4,6)	(3,7)	+€	-0,560k	-1,79€/k
(3,7)	(2,8)	+€	-0,981k	-1,02€/k
(2,8)	(1,9)	+€	-1,504k	-0,665€/k
(1,9)	(0,10)	+€	-2,302k	-0,434€/k

Aplicación a sistemas de 2 niveles: Grafico 2: Temperaturas Negativas

Donde la zona azul es la Temperatura y la Roja es la entropía. El eje vertical tiene doble valoración. Para la T^o esta en Kelvin, para la entropía en JK⁻¹. El eje horizontal indica el numero de transición de las partículas en el sistema.

Aplicación a sistemas de 2 niveles: Observaciones

- De estos datos se obtienen 3 observaciones:
- La Temperatura será positiva para los estados en los cuales spin alto mayor a bajo spin, los cuales aparecen como una derivada positiva en la curva del grafico 1.Por el contrario las Temp. Negativas se manifiestan cuando en el grafico de E v/s S la pendiente es negativa.
- 2) La magnitud mínima de la temperatura será cuando la entropía sea máxima para el estado (Grafico 2)
- El valor absoluto de la temperatura aumenta cuando la entropía alcanza su máxima configuración.

Aplicación a sistemas de 2 niveles: Justificación Matemática

 En la segunda y tercera observaciones se justifican los fenómenos con las ecuaciones 13 y 14 respectivamente:

$$T_{[N,0]} = -T_{[0,N]} = \frac{\varepsilon}{k_B \ln N}$$
 (13)

$$T_{Max} = \frac{\varepsilon}{k_B \ln(1 + \frac{2}{N})}$$
 (14)

Aplicación a sistemas de 2 niveles: Tabla 3: Aplicación a varias partículas

Transition	N	Temperature/K
+: [N,0] → [(N - 1), 1] -: [1, (N - 1)] → [0, N]		$T = \pm \frac{\varepsilon}{k_{\rm B} \ln N}$
[10, 0] → [9, 1]	10	+0.434e/kg
[1,9] → [0, 10]	10	-0.434z/k _s
[50, 0] → [49, 1]	50	+0.256e/kg
[1, 49] → [0, 50]	50	-0.256ε/k _B
[100, 0] [99, 1]	100	+0.217e/kg
[1,99] → [0,100]	100	-0.217ε/k _B
[10000, 0] → [9999, 1]	10,000	+0.109e/kg
[1,9999] [0,10000]	10,000	-0.109e/kg
$[N_A, 0] \rightarrow [[N_A - 1], 1]$	$N_A = 6.02 \times 10^{29}$	+0.018e/kg
$[1, (N_A - 1)] \rightarrow [0, N_A]$	$N_A = 6.02 \times 10^{23}$	-0.018e/kg
[∞, 0] → [(∞ − 1), 1]	00	+0e/k _B
[1, (≈ - 1)] → [0, ≈]		-0e/k ₈
Transition	N	Temperature/K
+: [[N/2 + 1], (N/2 - 1]] → [N/2, N/2] -: [N/2, N/2] → [[N/2 - 1], (N/2 + 1)]		$T = \pm \frac{\varepsilon}{k_{\rm B} \ln \left(1 + \frac{2}{N}\right)}$
[6, 4] → [5, 5]	10	+5.48±/k ₈
[5, 5] → [4, 6]	10	-5.48ε/k _B
[26, 24] [25, 25]	50	+25.5 c/kg
[25, 25] [24, 26]	50	-25.5e/ka
[51, 49] [50, 50]	100	+50.5 c/kg
[50, 50] - [49, 51]	100	-50.5ε/k ₈
[5001, 4999] [5000, 5000]	10,000	+5000.5e/kg
[5000, 5000] [4999, 5001]	10,000	-5000.5e/kg
$[(N_A/2 + 1),(N_A/2 - 1)] \rightarrow [N_A/2, N_A/2]$	$N_A = 6.02 \times 10^{23}$	→ +∞
$[N_A/2, N_A/2] \rightarrow [(N_A/2 - 1), (N_A/2 + 1)]$	$N_A = 6.02 \times 10^{23}$	

Conclusiones

- Temperatura es menor a mayor numero de partículas (equiparticion de la energía) Por esta razón la temperatura es una propiedad estadística.
- To tiende a cero cuando N es muy grande
- S es máximo cuando el numero de partículas de alto y bajo spin es equivalente

Conclusiones

 Estos son sistemas con temperaturas limites. La temperatura de mínima y máxima entropía es la misma.

Mas información

- Atkins, P.W.; J. Physical Chemestry,
 7ma ed. 2002, pp 121-122 (30)
- Hill, T.L.; An introduction to Stadistical Thermodinamics, 2da ed. 1986, cap 1
- http ://campus.murraystate.edu/academi c/faculty/mark.masthay/