Esercizi sul simplesso

1) Risolvere il seguente problema di programmazione lineare.

Soluzione. Riscriviamo il problema in forma standard $(min \{c^Tx : Ax = b, x \ge 0\}).$

Aggiungiamo le variabili di slack, in questo caso x_4, x_5, x_6 per rendere le disuguaglianze delle uguaglianze. Ricordiamo inoltre che z diventa -z. Si ricordi inoltre di definire i domini di esistenza anche per le variabili di slack. Immaginiamo, a questo punto, la base di partenza sia proprio composta da $B = \{x_4, x_5, x_6\}$ e organizziamo i dati in forma di tableau.

Quando questo accade, trascriviamo le righe e il valore iniziale della variabile $z \ge -1$.

Siamo in forma canonica in quanto ci sono le colonne della matrice identità, sia vicine che volendo lontane

	x_1	x_2	x_3	x_4	x_5	x_6	z	$ar{b}$
-z	-3	-1	-3	0	0	0	-1	0
x_4	1 2	1	1	1	0	0	0	2
x_5	1	2	3	0	1	0	0	5
x_6	2	2	1	0	0	1	0	6

Mi pongo la serie di domande:

- è ammissibile? Sì \rightarrow tutti i \overline{b}_i sono ≥ 0 (cioè, tutta l'ultima colonna di destra)
- è ottima? No → Tutti i coefficienti di costo ridotto sono ≤ 0

Dobbiamo cambiare base e dobbiamo scegliere la variabile che entra nella nuova base.

Seguiamo la regola anticiclo di Bland, che mi dice di selezionare tra le variabili di costo ridotto, quella con valore minore; se ce ne sono diverse, scelgo la prima secondo l'ordine.

Quindi, in questo caso scelgo x_1 come variabile entrante in base.

Come in altri casi, per decidere la variabile uscente, prendo quella che ha rapporto minimo tra la posizione della variabile scelta come pivot e le variabili \overline{b}_i .

$$\min\left\{\frac{2}{2}, \frac{5}{1}, \frac{6}{2}\right\} = \frac{2}{2} = 1 \quad \text{Tra le variabili, esce } x_4$$

Ora, riportiamo il tableau in forma canonica ed eseguiamo le successive operazioni di pivoting:

Operazioni:
$$R_1 \leftarrow R_1/2$$
, $R_2 \leftarrow R_2 - R_1/2$, $R_3 \leftarrow R_3 - R_1$, $R_0 \leftarrow R_0 + 3/2R_1$.

A questo punto, abbiamo come base $B = \{x_1, x_5, x_6\}$ ed eseguiamo l'operazione di pivot rispetto all'elemento in prima riga e prima colonna (dato che abbiamo fatto uscire x_4 è l'unico elemento logicamente utile su cui operare in questo senso.

	x_1	x_2	x_3	x_4	x_5	x_6	z	$ar{b}$
-z	0	1/2	-3/2	3/2	0	0	-1	3
x_1	1	1/2	1/2	1/2	0	0	0	1
x_5	0	3/2	$\frac{1/2}{5/2}$	-1/2	1	0	0	1 4
x_6	0	1	0	-1	0	1	0	4

- F.C.? Sì → Appaiono le colonne della matrice identità
- è ammissibile? Sì \rightarrow tutti i $\overline{b_i}$ sono ≥ 0 (cioè, tutta l'ultima colonna di destra)
- è ottima? Non lo so → Esiste qualche coefficiente di costo ridotto < 0 (condizione sufficiente di ottimalità; se fossero <u>tutti</u> uguali a zero, allora sarebbe ottima)
- è illimitata? Non lo so → Vado a vedere se in corrispondenza di colonne con costi ridotti strettamente minori di 0 abbiamo sotto una colonna tutta negativa → Esiste almeno un valore strettamente positivo in corrispondenza di qualche valore negativo e quindi non possiamo concludere con certezza
- chi entra in base? \rightarrow Una qualsiasi variabile con costo ridotto negativo $\rightarrow x_3$
- chi esce dalla base? Calcoliamo l'argomento del minimo tra i rapporti di \bar{b} e gli $\overline{a_{lh}}$ per righe rispetto alla colonna dell'elemento del pivot $\rightarrow x_5$

$$\min\left\{\frac{1}{1/2}, \frac{4}{5/2}, \frac{4}{0}\right\} = \frac{4}{5/2} = \frac{8}{5}$$
, che corrisponde alla variabile x_5 e dunque x_5 esce di base.

Quindi ora la nuova base è $B = \{x_1, x_3, x_6\}$. Anche qui, apparirebbe un elemento simile alla matrice identità ma ora dobbiamo far entrare x_3 in base cambiando le righe (e quindi non avremmo più le colonne sparse per la matrice identità, come si vede per $[x_1, x_1]$, $[x_5, x_5]$, $[x_6, x_6]$

Abbiamo vari elementi, ma scegliamo l'elemento in riga 2 e colonna 3, come fatto dal prof, anche se in effetti potremmo scegliere quello della colonna precedente o della colonna successiva.

Operazioni: $R_2 \leftarrow R_2 \cdot 2/5, R_1 \leftarrow R_1 - R_2/5, R_0 \leftarrow R_0 + 3/5R_2.$

- F.C.? Sì → Appaiono le colonne della matrice identità
- è ammissibile? Sì \rightarrow tutti i $\overline{b_i}$ sono ≥ 0 (cioè, tutta l'ultima colonna di destra)
- è ottima? Sì → Tutti i costi ridotti sono > 0

$$z_{MAX} = -z_{MIN} = 27/5$$
 $x_1 = 1/5$ $x_2 = 0$ $x_3 = 8/5$ $x_4 = 0$ $x_5 = 0$ $x_6 = 4$

Con x_4 , x_5 saturi (in quanto = 0) Con x_6 lasco (in quanto > 0)

Esercizio 10 Dispense Prof

Risolvere il seguente problema di programmazione lineare partendo dalla base $\{x_4, x_5, x_6\}$ oppure dalla base $\{x_1, x_5, x_6\}$.

Riscriviamo il problema in forma standard. Siccome $x_2 \le 0$, si introduce una nuova variabile $\widehat{x_2} = -x_2$ con $\widehat{x_2} > 0$. Attenzione che si inverte il segno della f.o. in quanto si passa da *max* a *min*.

Mettiamo sul tableau per vedere cosa succede, scegliendo come base tra le due $[x_4 \ x_5 \ x_6]$, che però risulta non ammissibile avendo x_4 negativo.

Ecco perché il prof dà varie basi di partenza, dato non tutte possono essere ammissibili; infatti, qui si parte da $B = [x_1 \ x_5 \ x_6]$, essendo l'altra non ammissibile. Segnalo le operazioni di pivoting:

Operazioni:
$$R_1 \leftarrow R_1/2, R_2 \leftarrow R_2 - R_1/2, R_3 \leftarrow R_3 + R_1/2.$$

Partiamo dalla prima iterazione, mettendo in forma canonica rispetto a *B*:

- 1) F.C? → Sì, ci sono le colonne della matrice identità
- 2) Ammissibile? \rightarrow Sì, le variabili della colonna di \bar{b} sono tutte ≥ 0
- 3) Illimitata? Non so → Esiste sempre almeno un coefficiente > 0 per i costi ridotti in corrispondenza di costi ridotti negativi e non posso concludere
- 4) Ottimo? Non so \rightarrow Esiste qualche costo ridotto < 0 e non posso concludere
- 5) Entra? \rightarrow Decido tra le variabili di costo ridotto negativo e decido tra x_3 e x_4 e scelgo x_3 (il motivo è spiegato formalmente dopo, ma accontentiamoci qui di dire $x_3 < x_4$)

6) Esce? Decido sulla base del rapporto minimo tra $\overline{b_i}$ e x_i , dove x_i è la posizione su cui si è fatti pivoting, quindi x_3 . Facendo i rapporti, il minimo è x_5 con gli altri due che sono negativi e sono scartati.

Andiamo all'iterazione 2, considerando come pivot l'elemento(3) di seconda riga e terza colonna, eseguendo le operazioni di pivoting che seguono:

Operazioni: $R_2 \leftarrow R_2/3$, $R_1 \leftarrow R_1 + R_2/3$, $R_3 \leftarrow R_3 + 2/3R_2$, $R_0 \leftarrow R_0 + R_2$.

- 1) È in forma canonica → Sì, ci sono le colonne della matrice identità
- 2) È ammissibile? Sì, le variabili della colonna di \bar{b} sono tutte ≥ 0
- 3) È illimitato → No → Non ci sono colonne con costi ridotti < 0, pertanto non mi pongo il problema se nella colonna sotto ci siano coefficienti negativi
- 4) È ottima? Sì → Tutti i costi ridotti sono >= 0

In merito ai vincoli:

- x_1 all'ottimo vale 1 (colonna di \overline{B})
- x₂ all'ottimo vale 0 (è fuori base)
- x_3 all'ottimo vale 1/2 (colonna di \overline{B})
- x_4 all'ottimo vale 0 (è fuori base)
- x₅ all'ottimo vale 0 (è fuori base)
- x_6 all'ottimo è 9/2 (colonna di $\overline{\mathrm{B}}$)

Leggendolo bene;

- $x_4 = 0$ è vincolo saturo, poiché ha valore zero
- $x_5 = 0$ è vincolo saturo poiché ha valore zero
- $x_6 = \frac{9}{2}$ è vincolo lasco, poiché ha valore maggiore di zero

Esistono metodi come quello delle *due fasi*, in cui si scrive un problema artificiale in cui la f.o. è somma di queste variabili artificiali.

- Se il valore della funzione obiettivo $\grave{e} > 0$, si ha un problema inammissibile
- Se il valore della funzione obiettivo, allora y=0, metto tutte le y fuori base e ottengo x_B come soluzione del problema di partenza

In tal caso, risolvo il problema a partire dalla base ottenuta.

Simulazione Esame 2018-2019

2. Si risolva il seguente problema di programmazione lineare con il metodo del simplesso, a partire dalla base relativa alle variabili x1, x2, x3 e applicando la regola di Bland:

Passo alla forma standard:

- Funzione obiettivo di minimo: min -x₁ - 5x₂
- 2. vincoli di uguaglianza:

$$x_1$$
 $+x_4$ $=$ 5
 x_1 $+x_2$ $-x_5$ $=$ -1
 x_2 $+2x_3$ $=$ -2

3. variabili non negative: effettuo la sostituzione $\hat{x}_2=-x_2,\,\hat{x}_2\geq 0$ min $-x_1$ $+5\hat{x}_2$

s.t.
$$x_1 + 3x_2$$

 $x_1 - \hat{x}_2 - x_5 = -1$
 $-\hat{x}_2 + 2x_3 = -2$
 $x_1 \hat{x}_2 - x_3 - x_4 - x_5 \ge 0$

4. termini noti non negativi

Attenzione che:

- la funzione obiettivo è di minimo e si cambia di segno
- Data $\widehat{x_2}$, si va a cambiare segno a x_2 quando la si introduce poi, avendo i termini noti non negativi, si va a cambiare segno alle variabili di slack (e, se ci fossero altre variabili oltre a quelle di slack, si cambia segno anche a quelle)

 $+ R'_1$

 $+ R'_1$

Imposto il tableau del simplesso:

Per il pivot, siccome non siamo in forma canonica, scelgo di volta in volta un elemento utile per le operazioni di Gauss-Jordan. Faccio entrare in base x_1 :

	\downarrow								\downarrow					
	x_1	\hat{x}_2	x_3	x_4	x_5	$ar{b}$		x_1	\hat{x}_2	x_3	x_4	x_5	$ar{b}$	
-z	-1	5	0	0	0	0	-z	0	5	0	1	0	5	$R_0' \leftarrow R_0$
?		0	0	1	0	5	x_1	1	0	0	1	0	5	$R_1' \leftarrow R_1$
?	-1	1	0	0	1	1	?	0		0	1	1	6	$R_2' \leftarrow R_2$
?	0	1	-2	0	0	2	?	0	1	-2	0	0	2	$R_3' \leftarrow R_3$

Faccio poi entrare in base $\widehat{x_2}$ (ho evidenziato in rosso gli elementi di pivoting):

			\downarrow				
	x_1	\hat{x}_2	x_3	x_4	x_5	$ar{b}$	
-z	0	0	0	-4	-5	-25	$R_0' \leftarrow R_0 - 5R_2'$
x_1	1	0	0	1	0	5	$R_1' \leftarrow R_1$
\hat{x}_2	0	1	0	1	1	6	$R_2' \leftarrow R_2$
?	0	0	-2	-1	-1	-4	$R_3' \leftarrow R_3 - R_2'$

Si fa poi entrare in base x_3 facendo pivot sull'elemento in rosso, tale che otteniamo finalmente la forma canonica.

La base si compone sulle colonne dove appaiono i coefficienti della matrice identità, quindi $B=\{x_1,\widehat{x_2},x_3\}$ Si nota che è ammissibile (avendo tutte le colonne di $\overline{b_i}>0$). Non sappiamo se sia ottima (avendo costi ridotti negativi) ma non è illimitata (infatti, tutti i coefficienti sono positivi sotto colonne con costi ridotti negativi).

Partiamo con il simplesso e decidiamo la variabile che entra in base. Per la regola di Bland, scegliamo la prima variabile in ordine tra quelle con coefficienti di costo ridotto negativo (quindi, tra x_4 , x_5 scelgo x_4).

La variabile che esce dalla base si capisce rispetto al rapporto $\frac{\overline{b_t}}{\overline{a_t}}$ nella posizione della variabile che entra in base, quindi x_4 . Esce dalla base $\arg\min\left\{\frac{5}{1},\frac{6}{1},\frac{2}{1/2}\right\} = \arg\{4\} = x_3$

Per $B = \{x_1, \overline{x_2}, x_4\}$ scegliamo come elemento di pivoting $\frac{1}{2}$ come visto nel tableau precedente.

	x_1	\hat{x}_2	x_3	x_4	x_5	$ar{b}$	
-z	0	0	8	0	-1	-9	$R_0' \leftarrow R_0 + 4R_3'$
x_1	1	0	-2	0	-1	1	$R_1' \leftarrow R_1 - R_3'$
\hat{x}_2	0	1	-2	0	0	2	$R_2' \leftarrow R_2 - R_3'$
$\leftarrow x_4$	0	0	2	1	1	4	$R_3' \leftarrow 2R_3$

- F.C.? Sì
- è ammissibile? Sì \rightarrow tutti i $\overline{b_i}$ sono ≥ 0 (cioè, tutta l'ultima colonna di destra)
- è ottima? Non lo so → Esiste qualche coefficiente di costo ridotto < 0 (condizione sufficiente di ottimalità; se fossero tutti uguali a zero, allora sarebbe ottima)
- è illimitata? Non lo so → Vado a vedere se in corrispondenza di colonne con costi ridotti strettamente minori di 0 abbiamo sotto una colonna tutta negativa → Esiste almeno un valore strettamente positivo in corrispondenza di qualche valore negativo e quindi non possiamo concludere con certezza
- chi entra in base? $\rightarrow x_5$
- chi esce dalla base $ightarrow rg \min\left\{X,X,rac{4}{1}
 ight\} = rg\{4\} = x_4$

 $B = \{x_1, \widehat{x_2}, x_5\}$ ed eseguo il pivoting rispetto all'elemento riquadrato poco fa.

	x_1	\hat{x}_2	x_3	x_4	x_5	$\overline{m{b}}$	
-z	0	0	10	1	0	-5	$R_0' \leftarrow R_0 + R_3'$
x_1	1	0	0	1	0	5	$R_1' \leftarrow R_1 + R_3'$
\hat{x}_2	0	1	-2	0	0	2	$R_2' \leftarrow R_2$
x_5	0	0	2	1	1	4	$R_3' \leftarrow R_3$

- F.C.? Sì
- è ammissibile? Sì \rightarrow tutti i $\overline{b_i}$ sono ≥ 0 (cioè, tutta l'ultima colonna di destra)
- è ottima? Si → Non esiste qualche coefficiente di costo ridotto < 0

La soluzione ottima del problema è $z_{MIN}=-z_{MAX}=-(-5)=5$ Inoltre, abbiamo $x_1=5, \hat{x}_2=2, x_5=4, x_3=x_4=0$

con vincoli x_4 saturo in quanto ha valore zero e x_5 lasco, per valore > 0 (si ricordi che lasco e saturo si va a dire sulle variabili di slack aggiunte).