PRELIMINARY

FRESNO RIVER WATER RIGHTS

July 1980

Consulting Civil Engineers

INDEX

		Pa	ge No.
	Introduction	•	1
I.	Stream flow records	u.	5
II.	River reaches and losses	•	15
III.	M.I.D.'s adjudicated right at Franchi Dam	•	17
IV.	Other loss treatment and apportionment	•	18
٧.	Riparian land	•	21
VI.	Appropriative places of use	•	30
VII.	Irrigated land and physical facilities	•	34
VIII.	Water requirements		38
IX.	Triangle T - Road 9 outlet capacity	•	41
X.	Reach demands		62
XI.	Basis for computer programs	•	73
XII.	Computer programs		92
XIII.	Triangle T appropriation under Application 11003.		97

INTRODUCTION

Introduction

This study divides daily historical flows recorded at Daulton gage (treated as the site of Hidden Dam) between natural flows and imported flows during the 12-year period October 1, 1961-September 30, 1972. Imported flows are those originating in the Merced and San Joaquin River systems near Fish Camp and Soquel Camp Ground, respectively. A total of 4,380 daily flows varying from zero to 7,250 cfs were analyzed.

Because Madera Irrigation District has an adjudicated ancient right to the first 200 cfs of combined natural flow and imported water available at Franchi Dam, the entire reach of river in effect was broken into two parts: (1) upstream of Franchi Dam and (2) downstream of Franchi Dam. The upstream part was divided into three reaches: (1) Daulton-Madera Canal, (2) Madera Canal-Head of Island, and (3) Head of Island-Franchi Dam. The downstream part was divided into two reaches: (1) Franchi Dam-Road 16 and (2) Road 16-Triangle T Ranch.

Boundaries of originally-riparian tracts were taken from patent data in records of the Bureau of Land Management office in Sacramento. Boundaries of present ownerships were taken from Madera County records. The portion of each originally-riparian patent now in an ownership containing a bank of the river was considered riparian. The portion of each originally-riparian patent now in an ownership which does not contain a bank of the river was considered to have lost its riparian status. In general, no title search was made nor were deeds researched to prove or disprove severance of the riparian right except that title searches previously made for Triangle T Ranch were used. Originally-riparian patents, present ownerships, present riparian land and all known historical channels of Fresno River were plotted on U.S.G.S. 1:24,000 quadrangle maps.

FILE COPY

FRESNO RIVER WATER RIGHTS

July 1980

Murray, Burns and Kienlen A Corporation Consulting Civil Engineers 600 Forum Building 1107 Ninth Street Sacramento, California 95814 Crops grown on presently-riparian land were determined from field surveys and riparian demand was based on those crops using Department of Water Resources published monthly water requirements for those crops. Demand on native pasture was considered to be the estimated diversion capability in cfs but not to exceed a volume of 3/4 acre-foot per acre in any 30-day period.

For the area above Franchi Dam, the 26 cfs in channel losses were proportioned between daily natural flow and imported water reach by reach and remaining natural flow was apportioned to meet the total riparian demand on a reach basis. No effort was made to apportion natural flow to each individual riparian.

Remaining natural flow and all imported flow reaching Franchi Dam, up to the limit of M.I.D.'s adjudicated right, was assumed diverted by M.I.D. into its M.C. and I. system at Franchi Dam. The adjudicated right limit was adjusted downward to reflect M.I.D.'s voluntary relinquishment of its Soquel water under an assumed continuation of its current contract with Pacific Gas and Electric Company.

In general, flow passing Franchi Dam was allocated first to meeting 29 cfs in channel losses between Franchi Dam and Triangle T Ranch and the remainder was apportioned to riparian crop land and native pasture in the area downstream of Franchi Dam. Apportionments to M.I.D. riparian crop land serviceable from the M.C. and I. system, other riparian crop land and Sallaberry's riparian native pasture in the Franchi Dam-Road 16 reach were identified separately. Separate apportionments also were identified for Triangle T's riparian crop land and native pasture.

Appropriative rights of Triangle T, Sallaberry and M.I.D., in that order of priority, were assumed satisfied with any water remaining after meeting total riparian demand. Where permitted places of use under appropriative rights overlapped riparian areas, the appropriative demand was eliminated.

Triangle T's maximum diversion rates were taken as 60 cfs under current channel conditions below the State-constructed outlet at Road 9 and as 100 cfs if the design capacity of the outlet is restored.

There being questions as to the exact acreages of riparian land on the Sallaberry and Triangle T ranches, maximum and minimum riparian areas and corresponding non-overlapping appropriative places of use were determined.

Only riparian and appropriative crop and pasture land now irrigated from the river and having facilities capable of, or readily repairable to be capable of, such irrigation were considered to be using water. It is anticipated that if owners of presently-unirrigated riparian land become capable of diverting from the river new analyses will be made and available flows will be re-apportioned.

Apportionment of the 4,380 daily flows was done by computer. Five runs were made as follows:

- 1. (a) Sallaberry maximum riparian (2,896 A) and corresponding appropriative (480 A).
 - (b) Triangle T maximum riparian (2,783 A including 1,399 A native pasture, 1,281 A of other crops, and 103 A of non-irrigable channels).
 - (c) Road 9 outlet capacity 60 cfs.
- (a) Sallaberry minimum riparian (1,830 A) and corresponding appropriative (1,301 A).
 - (b) Triangle T minimum riparian area (2,121 A, including 840 A native pasture, 1,183 A of other crops and 98 A of non-irrigable channels).
 - (c) Road 9 outlet capacity 60 cfs.

- 1(a) and 2(b) w/ 60 cfs Road 9 outlet capacity.
- 4. 1(b) and 2(a) w/ 60 cfs Road 9 outlet capacity.
- 5. l(a) and l(b) w/ 100 cfs Road 9 outlet capacity.

I. STREAM FLOW RECORDS

I. Stream flow records

October 1, 1960, was selected as the beginning of the period of analysis primarily because consistent and continuous records of Soquel diversions from the San Joaquin watershed to Fresno River are not available prior to that date. The September 30, 1972, end of the period was selected for convenience, because the period covers a wide spectrum of flows including two very dry and two very wet years, and because average flows in the resulting 12-year period of analysis are 97% of the long-term natural flow of San Joaquin River at Friant.

Soquel diversion

Soquel imports are important because Madera I.D. has an adjudicated right to divert to Fresno River up to 50 cfs of the flow of North Fork Willow Creek, if available, at the Soquel Meadows diversion dam near Sugar Pine. (See U.S.G.S. quadrangle). The diversion season is October 1-July 31. Except for 1 cfs available under the M.I.D.-P.G. and E. contract, M.I.D. does not have the right to divert any water at this point during the months of August and September.

Soquel diversion records are available as follows:

Nov. 4, 1960—Apr. 7, 1961, and Sept. 1, 1961—Sept. 30, 1972. Daily diversions during the periods of missing records were estimated from recorded flows at Daulton and at the Big Creek diversion. Oct. 1-28, 1960 flows were taken as zero as was the case June 20-August 31, 1961.

Soquel diversion records have been kept by M.I.D. and, after October 1, 1969, are published by U.S.G.S.

Currently, and in accordance with a 1977 contract between 1.I.D. and P.G. and E., all M.I.D.'s Soquel entitlement except 1 cfs bypasses the diversion, flows to Bass Lake, and there is used for power production on the Willow Creek system before being returned to M.I.D. at Millerton Lake. The contract also permits M.I.D. to divert 1 cfs for fish in August and September. Under certain conditions the contract permits M.I.D. to divert its full entitlement, however, those conditions are not pertinent to this water right study and accordingly are not assumed to occur.

The M.I.D.-P.G. and E. contract is subject to renewal in 1981 and is assumed in this study to be renewed on the same physical terms.

There are no records between the Soquel diversion site and Daulton which enable firm estimates to be made of accretions or losses between the two points. Comparison of Soquel diversions and recorded flows at Daulton indicates that in general the first toof diverted water is lost to seepage and phreatophytes en route. Accordingly, in this study, where Soquel imports are involved, the recorded diversion is reduced by 4 cfs to determine the estimated import quantity at Daulton. A time-of-travel of one day is assumed.

Big Creek diversion

M.I.D. also has an adjudicated right to divert Merced River water into the Fresno River watershed near Fish Camp (see U.S.G.S. quadrangle). The right entitles M.I.D. to divert up to the following amounts if available:

Oct. 1-Mar. 31	50 cfs
Apr. 1-30	20 cfs
May 1-July 15	50 cfs
July 16-Sept. 30	0

Diversion records are available Oct. 1, 1960-Nov. 21, 1961, and December 5, 1961-September 30, 1972. Based on immediate-prior and -after flows, the missing dates are estimated to have diversions as follows:

Nov. 22-25, 1961 5 cfs Nov. 26-30, 1961 4 cfs Dec. 1-4, 1961 3 cfs

Records are published by, or are on file with, the Department of Water Resources.

It is estimated that the first 4 cfs of Big Creek diversion is lost due to seepage and phreaphytes between the diversion point and Daulton and this study so assumes.

Daulton

Flows of Fresno River at Daulton, which include Big Creek and Soquel diversions reaching that point, have been published by U.S.G.S. for the whole 12-year period of analysis.

North Fork Willow Creek near Sugar Pine

This U.S.G.S. station is located about 2 miles downstream of the Soquel diversion point. The station is significant in that, in the M.I.D.-P.G. and E. contract, it is used in measuring the amount of M.I.D. Soquel water entering Bass Lake. The contract provides that M.I.D.'s Soquel entitlement is 80% of the natural flow occurring at the North Fork gage, i.e., 80% of the North Fork measurement plus the Soquel diversion, but not to exceed 50 cfs.

The record extends from August 7, 1965-September 30, 1972. There being no record at all Oct. 1, 1961-Aug. 6, 1965, this study assumes, for purposes of analyzing future effects of the P.G. and E. contract, that M.I.D.'s Soquel entitlements during the missing period were exactly equal to the amounts diverted but not to exceed 50 cfs and to equal 1 cfs in August and September.

Sample copies

Sample copies of the Soquel, Big Creek, Daulton and North Fork records for the 1965-66 water year are attached. Copies of other records used in the study are available in offices of M.I.D. or Murray, Burns and Kienlen or are in U.S.G.S. or D.W.R. publications or other records.

DOCGUEL WITCH NEAR DUGAR TIME COLIE.

					1/6	0						1
- C - C - C - C - C - C - C - C - C - C	Sra	PEED	- F-ST									
	LILY		Aug		SFPT		Oz.T		201		DEC	
	(41)	Q	Cil	Q	GH	(C)	GH	Q	G4/	Q.	GH	Q.
/	.10	5.60	.52	1.80	.51	1.80	.43	1.08	.43	1.08	54	2.10
3		560	.51	1.80	.58	1.50	.42	1.02	1.43	1.08	54	2.10
4	:69	534	.50	1.50	.50	1.50	.43 43	80.1	.43	1.08	53	1.95
5		4.82	.4/9	1.44	.48	1.38	,44	1.14	52	C3.1	52	1.80
7	.67	4.82	.50	1.50	.43	1.38	: 44. :44.	1.14	.50	1.50	53 53	1.75
. 8	-68	5.08	51	1.80	. 48	1.38 1.38	44.	1.14	.50.	1.50	55	1.95
10.	.67	4.82	.,51.	1.80	143.	1.38	. :44	1.14	.50	1.50	60	3.78
12	:60	3∞ 3∞	.51	1.80 12 4/es.	.48	/·38 /·38	44	1:14	.63	1.38	Potoviji -perc "Mac N. 1	2:40
		300	1,5	7,5	,49	1.38	47.	1:32	.55	2.25	54	2.10
(4		300			149	1.3S 1.3§	.47	1.32	50	1.50	66	4.56
15	.59 .58	2.85			.49	1.38	,43	1.08	.53	1.95	93	13.77
17	.57	Z.55			,49	1.38	.43	1.05	.57	1	众	5.00
. 18	-57	2.55			149	1.38 1.38	.44.	1.20	.59	2.85	A	4.70
20	.55	2.25			.50	1.50	1.44	1.14	1.57	2.55	ξχ	4.00
21	.55	225			,50	1.50	42	1.08	1000	2.25		3.00
22 23	1.54		1	120 120	.50	1.50	,43	1.08	1,54	2.10	X	2.20
24	.53	1.95		30	45	1.32	,42	1.02	.55	7.25		2.30
25 26	1.53	195			1.43	1.720	142	1.02	15.3	1.95	K	8.00
27	1.52	1.80			44	1.14	.42	1.02	1.52	1.80	X	5.80
28	.52	_			42	1.14	.42	1.02		1.65		4.30
29 30	52	1.00	51	12 Aes	41	.96	1.43	1.03	1.51	1.6:	X	340
از)		1.50	1.51		1		44	1.14	1		TX.	13.20
LC75Day.	5	100.12		13:11		40.75	2	34 53	re -	Salu		131.11
TAN		3.24	•	: 1.77	-9-	1.37		1.11		1.87		423
12 XC. E.T.		193		41		31	et C	(10		, ,		

EQUEL DITCH NEAR COUNTY THE COLIC.

	- ICE	PEr. —	Kst. l	ilreke	d ru	f w	ilk u	Vator	Last	rive x	is Di	VISION	
		JAN		FEB		Vipio.		LAZ.		11/11		JUNE	
ZYS_		GH	Q	GH	Q	G.H.	a	GH	a	(41	Q	(1H	Q
	12345678701123456789222345678921		322222222225445078888888886666666666666666666666666666		40.000000000000000000000000000000000000		37.000000000000000000000000000000000000		6685555549999888773000000000000000000000000000000	1.52 1.53 1.53 1.53 1.53 1.53 1.53 1.53	443,000,000,000,000,000,000,000,000,000,	1.52 1.51 1.51 1.50 1.50 1.50 1.45 1.45	37.40 37.40 36.95 36 36 36 36 36 36 36 36 36 36 36 36 36
is D	,27/5.		178.5 34.8		112.0 25.4		8.7		180.0 49.3		223.9 39.5		166.71 55 Sto

WE DITCH NEAR SULAR PINE CALIE.

			,		-		- 5- 1
R	July		Luc		(EA-		Peot
5	3H,	Q	GH	(D	34	Ω	
1	1.45	34.37	1.35	27:20.		6.14	
2	1.45	3437	1:30	27.20	.65	500	4.9
3	1.45	34.3.7	1.30	27.20	11:5	5.45	4.75
4	1.44	33.95	.76	8.28	,63	4.77	4.25
.5		33,9:		-O-	503	4.93	4.25
G.	/ / /	34.31		· · O		4.71	4.25
	1.45			5,1	1	126 C	5.8
S	1961 BY 11 1864 1	34.3:		4.1	3,		4.5
9	2000000	32.41		3.5	3 3	4.97	4.25
" IC ,	1.41			24		497	4.25
_[]	1.40			2.5		4.97	4.25
. !!	1.40	10.00		-21-1		4.99	4.25
_12 -	,	_ [ا . آر ا		4.76	4.1
1.		32.00		1.5		4.70	4.1
14	1.40	and the second second		1.2	10/1889	4.76	4.1
1(,	1.40			1.0		4.76	4.1
.+ . }	1.40				1	49	4.25
10	1.39			.12		494	4.25
20	1.37			.50	1	4.71	4.25
2	1.35		.81	170		545	4.75
Z:	1.35		1	284	1	430	3.75
2	1.35			てらい	A	430	3.75
2.	1.35			3:13	1.	470	(5)
2	1.35		,	500	11	4.53	3,8
21	1.35	27.60	.74	7.7.4	(20)	450	3.75
2.	1.35	21:2	-74	7.72		4,30	3.75
21	1.34	27.12	.73	7.41	-(2)	4.30	3.75
2	1.33			7.44	1.2:	4.93	1.25
3.1	1.34	- / /		6.86	.63	4.93	4.25
31	1.33	28-6-11	.68	6.08	. 1		
VI AV	s 7	79.32	1	25.63	2 m	149.01	128.15

4.8! 24.4 TABLE B-4 (Cont.)

LY N DISCHARGE WATER YEAR STATION NO. 1969 867920 BIG CREEK DIVERSION NEAR FISH CAMP

(IN CUBIC FEET PER SECOND)

YAC	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
-	2.6	3.0	5.3	36	5.7	42	7.0	4.6	45	45	8.3	5.2	1
1	2.8	3.0	5.0	35	8.8	43	6.8	4.6	45	45	8.3	5.0	2
3	2.8	3.0	6.3	35	4.6	43	6.6	4.6	45	44	7.8	5.0	3
4	2.8	2.9	6.1	26	4.6	42	6.3	4.6	45	43	7.6 7.2	5.0	4
3	2.9	2.9 2.8	6.8	7.6	8.8	43	6.1	4.6	45	42	7.2	5.0	5
6	2.8	4.5	7.0	8.1	23	39 26	6.1	4.6	45	40	7.0	4.8	
7	2.8	4.8	5.9	8.6	25	26	6.1	34	45	39	7.0	5.9	7
8	2.9	4.6	7.2	8.6	27	24	5.9	44	44	38	6.8	5.2	8
9	2.8	4.8	5.0	8.1	19	23 23	5.7	44	45	36	6.6	5.0	
10	2.8	4.6	6.6	8.6	19 5.7	23	5.7	45	43	35	6.6	5.0	10
11	2.8	4.6	0.3	8.1	5.7	15 13	5.7	45	47	33	6.6	5.0	111
12	3.0	7.6	9.8	8.1	5.7	13	5.5	46	. 48	32	6.1	5.0	12
13	3.4	7.6 6.1	14	24	6.6	8.3	5.5	46	49	33	6.1	4.8	13
14	3.0	5.5 6.3	15	29	5.9	8.3	5.5	47	49	32	5.9	4.8	14
15	3.0	6.3	27	27	7.0	4.3	5.3	47	51	28	5.5	4.8	15
18	3.0	6.3	11	23	8.1	4.5	5.2	44	52	25	5.5	4.8	10
17	3.0	6.1	11	16	7.0	5.0	5.2	45	52	24	6.1	4.6	17
18	3.0	7.2	11	24	6.6	5.7	5.0	47	51	22	5.9	4.6	10
19	3.0	7.0	20	23	6.6	5.9	5.0	35 7.4	50	20	5.5 5.5	4.6	19
20	3.0	6.6	17	9.3	6.6	7.0	4.8	7.4	50	18	5.5	4.8	20
21	3.0	6.1	26	8.8	7.4	18 6.6	4.6	31	50	15	5.9	5.0	21
22	3.0	5.9	35	7.0	6.6	6.6	4.6	45	49	14	5.9	5.0	22
23	3.0	5.7	35	6.8	6.8	6.6	4.6	45	49	13	5.7	4.6	23
24	3.0	5.9	37	6.6	21	6.6	4.6	45	49	12	5.5	4.8	24
25	3.0	5.5	36	8.1	23	6.6	4.6	45	48	11	5.5	4.6	25
26	3.0	5.5	40	7.6	27	6.6	4.6	45	47	11	5.5	4.5	26
27	3.0	5.2	36	6.3	35	6.6	4.6	45	47	11	5.5	4.3	27
28	3:0	5.0	39	17	41	6.8	4.6	45	46	11	5.5	4.1	28
29	3.0	5.0	39	27		6.8	4.6	45	46	10 9.3	5.3	4.1	29
30	3.0	5.0	39	21		7.0	4.6	45	46	9.3	5.2	4.1	30
31	3.0		37	16		7.0		45		8.8	5.0		31
EAN	2.9	5.2	19.5	16.3	13.1	16.6	5.4	35.0	47.4	25.8	6.2	4.8	MEAN
4X		7.6	40	35	41	43	7.0	47	52	45	8.3	5.9	MAX.
AL.	(2.8	5.0	6.3	4.6	4.3	4.6	4.6	43	8.8	5.0	4.1	MIM.
_ FT.	LUL	310	1197	1002	726	1019	319	2152	28.22	1585	382	296	ACT)

ESTIMATED

I — NO RECORD

DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

- 2 440 0

MEAN		MAXIMU	M	1	MINIM	JM		,
16.5	DISCHARGE	GAGE HT. 3.85		TIME 2100	GAGE HT.	MO.	DAY	TIME

-	TOTAL	•
	ACRI FOR	
	11980	
23		

	LOCATION MAXIMUM DISCHARGE				ARGE	PERIOD O	DATUM OF GAGE				
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECOR	D	DISCHARGE	GAGE HEICHT	PER	100	ZERO	REF.
LATITODE	CONCITODE	M.D.B.&M.	CFS	GAGE HT.	DATE	DIAGRANGE	ONL1	FROM	TO	CAGE	DATUM
37 28 10	119 36 52	NE 25 5S 21E		3.58	1-30-63	DEC 58-DATE		1958		0.00	LOCAL

Station located 195 feet upstream from road culvert, 1.4 miles southeast of Fish Camp. This is regulated diversion from Big Creek to Lewis Fork, Fresno River. Stage-discharge relationship at time affected by ice and extreme high flows affected by 36-inch culvert pipe below station. Altitude of gage is approximately 5,400 feet (from topographic map). Records furnished by Madera Irrigation District.

						B HIUDAOL						331	1	
							AULTON, C							
DAY	96.1	DIPC	D16				D VEAD OC	TOBER 106	0 10 MPTI معرف	/AL 1967				
1 2 3		9.7 7.7 17 40 87	16 22 21	73 65 60 5)	619 573	8-170 1-440 1-450	100 100 970	714 100 200 200 200	189 181 178 175	135 131 127 124	30 31 31 31 32	13 13 13		
4 7 4 9		15 13 11 12	16 15 15 15	50 55 51 46	1.400	846 762 465 645	1.050	263 262 313 315	173 167 163 169	123 121 119 116 109	26 26 27	12 13 17	6	8-0
	. a 15	11 13 23 26 27	20 00 25 31 57	40 40 113 7 1:450 402	\$37 725 726 944	910	\$46 \$40 \$37 \$14 462	313 305 297 202 203	764 236 100 188	105 60 103 103	14 22 23 21	13		
16	8.6 5.6 4.3 3.8	37 29 27 25	205 100 81 42 53	230 172 7-3166 7-31600	1.318 844 1.230 1.400	574 564 578 558	654 636 638 616 602	266 267 251 232	147 201 197 179	87 79 75 72 67	21 20 20 20 20	13		
12	3.5 3.2 3.8 3.2 3.2	71 19 17 17	30 76 24	4.360 2.520 1.100 872 5.708	1.676 925 1.400 7.258 5.050	1.840 695 584 544 578	396 406 461 378	187 196 227 233 235	164 159 157 156 157	62 59 56 54 54	21 20 21 10 17	12	!	
7	2.7 2.6 2.6 3.3 6.2 6.1	15 15 15	7 378 266 129 156 117	3,850 1,840 1,840 1,680 658 718	1.720	509 498 495 494 482	354 348 332 331 328	229 218 216 211 204 201	139	\$2 47 50 47 43	16 16 16 16	11 12 12 11		
1				A 588				8.140	\$1285	2.657				
TAL AN E	95.2 3.07 15 4	507.4 19.6 48 7.7 1:170	73.9 73.9 376 19	35.019 1.130 6.340 60	39.P62 1.492 7.250 458 77.660	2.170 478 45.840	16.712 557 1.950 328 33.150	263 316 187 16-158	176 264 137 16.480	85.7 135 39 5.270	22.0 38 13 1.350	382 12.7 [6 11 758		
ITAL AN I I II I YR R YR	95.7 3.07 15 6 189	19.6 -8 7.7 1:170 at 16.5 At 135:3	73.9 378 19 9.546 32.01 oct	1:130 6:340 60 67:460 [na 37.7 [an 37]	1.402 7.250 456 77.860 WAE MAR 7.	781 2-170 478 48-840 378 HIN 250 HIN	957 1.950 323 33.150 0 AC-F	763 316 187 16-158 7 28-820 7 268-680	176 264 139 160080	05.7 135 39 5.270	22.6 38 13	12.7 [6 11		
TAL AN IS N	95.7 3.07 15 6 189	19.6 -8 7.7 1:170 at 16.5 At 135:3	73.9 378 19 9.546 32.01 oct	1:130 6:340 60 67:460 [na 37.7 [an 37]	1.402 7.250 456 77.860 WAE MAR 7.	781 2-170 478 48-840 378 HIN 250 HIN	557 1.959 328 33.158	763 316 187 16-158 7 28-820 7 268-680	176 264 139 160080	05.7 135 39 5.270	22.6 38 13	12.7 [6 11		
TAL AN IN OFT L VR R VR	95.2 3,97 15 6 189 1968 TCT 1969 TOT	19.6 -88 7.7 1.170 at 10.5 at 135.3	73.9 378 19 4.546 32.01 = 2 28.60 = E	1.130 6.340 60 69.660 Ena 39.7 (An 371	1.402 7.250 450 77.660 MAI MAI 7.	781 2-170 478 48-840 378 HIN 250 HIN	557 1.959 328 33.150 8 AC-F 8 AC-F	763 316 187 16:150 7 28:820 7 268:000	176 204 139 10-40	95.7 135 39 5.270	27.0 38 13 1.350	12.7 16 11 750	6	9-7
TAL AN I I I I I I I I I I I I I I I I I I	95.7 3.07 15 6 169 1968 TOT 1969 TOT	19.6 -68 7.7 1:170 (at 10.5 -64 135.32 (b) SC mad MOV 25 -24 -23 -26 -27 -26	73.9 378 10 4.548 32.81 eg 22.60 eg 22.22 22.22 23.31	1.136 6.340 69.440 Ean 39.7 EAN 371 BIC FEET JAH 53 45 45	1.402 7.250 77.660 MAI 7. PER SECO FER 132 122 111	781 7-170 7-	557 1.959 323 33.150 0 AC-F 0 AC-F VEAR OCTO APR 110 111 111	763 316 187 16.158 7 28.820 7 268.400 00ER 1969 MAY 115 115 113	176 264 139 16-880 TO SEPTE- JUN 87 79 76 72	95.7 135 39 5.270 See 1970 July 37 37 32 31	22.6 38 13 1.750 406 2.6 1.9 1.9	12.7 16 11 756 529 .56 .75 .71	6	7-7
TALLANE E WAS TO THE TRANSPORTER	95.6 3.67 1.5 6 1000 1000 TOT 0C7 11 11 11 11 11 11 11 11 11	19.6 68 7.7 1:170 at 16.5 At 135:32 DISCMAN MOV 25 24 29 29 29 30 58 69 30	73.0 318 10 0.556 22.00 MZ 22.00 MZ 22.2 26 31 30 22.2 24 27 22.2 28 29 20 21.30 22.2 24 27 28 28 28 28 28 28 28 28 28 28 28 28 28	1:130 6:360 69:660 (59:660 (59:37) (10:37) (40	1-402 7-750 458 77-660 MAR MAR 7- PER SECO FEB 132 122 111 100 40 40 101 81 81 81 81 81 84 84 81 84 84 86 86 86 86 86 86 86 86 86 86 86 86 86	781 7-170 478 48-840 378 HIM 250 HIM 250 HIM 250 HIM 250 HIM 350 404 937 559 408 937 559 408 937	557 1.950 228 33-159 0 AC-F 0 AC-F TEAR OCTI APR 110 111 111 110 108 108 109	263 316 187 16-159 7 28.820 7 268.600 MAT 115 115 119 109 109	176 206 139 160080 TO SEPTE: 101,141 87 79 76 72 70 68 66 66	65,7 135 39 5,278 mage 1970 Jun. 37 33 32 31 30 26 24 23 22	22.0 30 13 1.750 406 7.0 1.9 1.9 1.5 1.5 1.5	12.7 16 11 750 350 -75 -71 -65 -67 1.2 -64 -75	6	9-7
TALLANI I	95.f 3.67 180 190a Tof 190a Tof 190a Tof 11 11 11 11 11 11 11 11 11 1	19.6	73.9 376 4,546 4,546 32.61 ed 22.60 ed 50C 22 22 26 31 30 26 27 31 32 28 29 20 20 20 20 20 20 20 20 20 20	1:130 6:340 60 67:460 67:460 68:40 6	1-402 7-750 458 77-860 MAE MAE 7- PER SECO FEB 132 122 111 100 44 49 40 81 81 81 81 81	781 78170 478 48.900 378 48.900 378 48.900 49.900 4	557 1.950 228 33.158 0 AC-F 0 AC-F VEAR OCT APR 110 111 111 110 198 198 198 199 198 199	263 316 16-159 7 28-820 7 268-820 7 268-820 00000 1000 100 100 100 100 115 115 115 110 110	176 206 139 16.460 TO SEPTE- JUN 82 76 76 76 66 66 66 66 67 77 77	65,7 135 39 5,279 MC 1676 AC. 37 31 32 31 39 26 24 23 22 22 22 22 22 22 22 22 22 22 22 22	27.0 38 13 12.750 2.0 1.7 1.7 1.5 1.7 1.6 	12.7 16 11 750 350 -56 -75 -71 -65 -67 1.2 -64 -75 1.1 1.1 -60 -66 -76	6	9-7
TALL AND STATE OF THE STATE OF	95.6 3,97 160 190a ToT 190a ToT 190a ToT 111 111 111 111 111 113 113 114 14 14 15 16 78 86 87 87 87 87 87 87 87 87 87 87 87 87 87	19.6	73.0 316 10 10 10 10 10 10 10 10 10 10 10 10 10	11.130 6.300	1-402 7-750 450 77-860 MAI MAI 7- PER SECO FEB 132 122 1111 180 101 04 80 81 91 91 96 110 101 102 103 104 104 105 105 105 105 105 105 105 105 105 105	781 78170 478 48.900 378 48.900 378 48.900 418 750 488 937 550 488 937 550 488 937 550 200 200 200 200 200 200 200 200 200	557 1.950 228 33.159 0 AC-F 0 AC-F 110 111 111 110 108 109 109 112 110 110 111 111 110 108 110 111 111 110 111 111	263 316 16-159 7 28-820 7 268-820 7 268-820 7 268-820 115 115 115 119 100 100 107 111 115 110 100 107 107 107 107 107 107 107 107	176 206 139 16 460 170 5EPTE- ### ### ### ### ### ### ### ### ### #	65,7 135 39 5,279 AC. 37 31 32 31 30 26 24 22 22 22 22 22 22 22 22 23 19	27.0 36 13 1.350 2.0 1.9 1.9 1.9 1.9 1.7 1.5 1.7 1.6 .00 .03 .31 .18 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03	12.7 16 11 750 350 -56 -75 -77 -65 -67 1.2 -60 -66 -76 -71 -60 -76 -71 -61 -71 -61 -71 -61 -71 -71 -71 -71 -71 -71 -71 -7	6	9-7
TALL AND STATE OF THE STATE OF	95.6 3,97 180 190a ToT 190a ToT 190a ToT 111 111 111 111 111 113 114 14 14 14 15 16 78 78 88 89 89 89 89 89 89 89 89 89 89 89 89	19.6	73.0 376 376 4,540 32.61 ed 22.60 ed 22.2 22.2 24.30 30.2 24.2 25.2 26.3 31.3 32.2 26.2 27.3 28.2 29.2 20.2 20.3 20.4	11.130 0.300 0.300 0.000	1-402 7-250 450 77-860 MAI MAI 7- PER SECO FEB 132 122 1111 180 101 04 09 101 101 04 09 101 101 101 101 101 101 101 101 101	781 78170 478 48.900 378 48.900 378 48.900 378 48.900 400 400 400 400 400 400 400 400 400	557 1.950 228 33.159 0 AC-F 0 AC-F 110 111 111 110 108 109 109 112 110 110 110 111 111 110 108 110 111 111	263 316 16-153 7 28-820 7 268-820 7 268-820 00000 1000 1000 1000 1000 1000 1000 1	176 200 139 160 650 170 SEPTE- TO SEPTE- P.Jun 62 79 76 76 76 76 76 76 77 70 66 66 66 66 66 66 66 66 66 66 66 66 66	65,7 135 39 5,279 AC. 37 31 31 39 26 24 23 22 22 22 22 22 22 22 22 22 23 19 11 5,7 3,3 3,3 3,3 3,3 3,3 3,3 3,3 3,3 3,3 3	27.0 3 1 12 12 12 12 12 12 12 12 12 12 12 12 1	12.7 16 11 750 350 .56 .75 .71 .65 .67 1.2 .60 .66 .76 .71 .60 .60 .75 .71 .61 .61 .75 .71 .63 .75 .71 .65 .67 .75 .71 .65 .67 .75 .71 .65 .75 .71 .65 .75 .71 .65 .75 .71 .65 .75 .71 .65 .75 .71 .65 .75 .71 .65 .75 .76 .76 .76 .76 .76 .76 .76 .76	6	9-7

II. River reaches and losses

River reaches and losses are taken as follows:

Location	Reach No.	Loss
Hidden Dam		
Madera Canal	1	ll cfs
	2	4
Upper Island	3	11
Franchi Dam		ata ata
Below Franchi	4	0
	5	25
Road 16	6	4
Triangle T		
	Total	55 cfs

All loss figures are based on measurements made on June 21, 22, 25, 27 and 29 and July 2, 1979, when releases from Hidden Dam varied from 309 to 410 cfs, except that no measurement was made at Upper Island. Losses in the Madera Canal-Franchi Dam reach were measured as 15 cfs and have been divided 4-11 cfs as shown.

Rationale for reach termini are as follows:

Hidden Dam - point of controlled release.

Madera Canal - M.I.D. may release Madera Canal water to the river.

If this is done, the water, less a proportionate share
of Reach 2 and 3 losses, belongs to M.I.D. in addition
to M.I.D.'s share of natural river flow and all other
imported water reaching Franchi Dam. No Madera Canal
imports are assumed in this study but may occur in
actual operations.

Upper Island - approximate beginning of M.I.D.'s service to M.I.D. riparian land via Island Laterals or separate pumps.

- Franchi Dam M.I.D.'s diversion to Main Canal of M.C. and I.

 system and location of diversion under M.I.D.'s

 adjudicated 200 cfs right (see Section III).
- Road 16 location of Reclamation Board weir and river outlet.

 Sallaberry, Averill and Glantz have facilities for diverting from the river at or just upstream of the weir.
- Triangle T location of Triangle T's gravity diversion facilities and place of diversion under Application 11003.

III. M.I.D.'S ADJUDICATED RIGHT AT FRANCHI DAM

III. M.I.D.'s adjudicated right at Franchi Dam

As successor to Madera Canal and Irrigation Company, M.I.D. is entitled to divert, at Franchi Dam, all flow up to 200 cfs including water imported from Big Creek and Soquel. The right is an adjudicated right and has been exercised for many decades.

Upstream riparian owners can deplete natural flows before those flows reach Franchi but can have no claim on imported Soquel, Big Creek or Madera Canal water.

In this study, river losses in Reaches 1, 2 and 3 are allocated between natural flow and imported water in proportion to the amounts of each at the head of each reach. For example, with 101 cfs of natural flow and 10 cfs of imported water available at Hidden Dam, the 11 cfs of losses in Reach 1 are allocated .0 cfs to natural flow and 1 cfs to imported water, leaving 91 cfs of natural flow and 9 cfs of imported water at the Madera Canal crossing.

With M.I.D. voluntarily allowing P.G. and E. to use Soquel water at Bass Lake under contract, M.I.D.'s adjudicated right is reduced to 200 cfs less the amount of Soquel water so relinquished which otherwise would reach Franchi Dam. Accordingly, with the first 4 cfs of Soquel diversion being lost en route to Hidden, M.I.D.'s entitlement to natural flow under its adjudicated right may vary from 200 cfs (when there is no Soquel or Big Creek water reaching Franchi Dam), to 200 -46 -losses Daulton-Franchi, including Big Creek imports reaching Franchi, when M.I.D.'s Soquel entitlement is 50 cfs and 49 cfs thereof bypasses the diversion under the P.G. and E. contract. When M.I.D.'s Soquel entitlement is, say, 25 cfs, only 1 cfs is diverted and the adjudicated natural flow right at Franchi is reduced to 200 -21 losses Daulton-Franchi, including Big Creek imports reaching Franchi.

IV. OTHER LOSS TREATMENT AND APPORTIONMENT

IV. Other loss treatment and apportionment

The study does not reflect any riparian diversions in Reach 1 since none are being made (other, perhaps, than for cattle watering from pools fed with seepage in the reach).

When combined natural and imported flows passing Madera Canal are not adequate to meet Reach 2 losses no water is available for Reach 2 riparian demand.

When combined natural and imported flows passing Madera Canal are not large enough to meet both Reach 2 and 3 losses and there is enough natural flow to meet part or all of the Reach 2 riparian demand, that demand is met to the extent natural flow is available and no water is delivered to Reach 3 riparians.

When combined natural and imported flows passing Madera Canal are more than enough to meet Reach 2 and 3 losses, and there is more than enough natural flow to meet Reach 2 riparian demand but not enough to meet both Reach 2 and riparian demands, the available natural flow is apportioned first to natural flow losses in the two reaches and then to the riparian demand in each reach.

When combined natural and imported flows passing Madera Canal are more than enough to meet losses in Reaches 2 and 3, and the natural flows are more than adequate to meet riparian demands in both reaches, all remaining imported water and, within the total permissible diversion under M.I.D.'s adjudicated right as adjusted by any Soquel bypass to P.G. and E., all remaining natural flows, are assumed diverted at Franchi Dam.

When 25 cfs or less passes Franchi Dam (being excess to M.I.D.'s adjudicated right as adjusted for Soquel bypass to P.G. and E.), all such flow is assumed lost and no riparian diversions are made at or below Franchi Dam.

When 26 to 29 cfs passes Franchi Dam (as excess to M.I.D.'s adjusted adjudicated right) the flow in excess of 25 cfs of losses in Reach 5 is apportioned to Reach 5 riparians, including riparians serviceable from M.I.D.'s Main Canal system, and no riparian diversions are assumed in Reach 6.

When 30 or more cfs passes Franchi Dam (as excess to M.I.D.'s adjusted adjudicated right) the available flow is apportioned among riparians in Reach 5, including riparians serviceable from M.I.D.'s Main Canal system, and Reach 6. Assumed diversions for each right are limited to monthly demand and, in the case of native pasture, to 3/4 AF/A in any period of 30 successive days.

When flow passing Franchi Dam (as excess to M.I.D.'s adjudicated right) exceeds the sum of Reach 5 and 6 losses and riparian demands, including riparians serviceable from M.I.D.'s Main Canal system, that excess is considered available first for satisfaction of Sallaberry's appropriation under Application 13541 and then under M.I.D.'s Application 15287.

Satisfaction of Triangle T's appropriation under Application 11003 is not reflected directly in the computer study. Separate analysis of flows in the computer study identifies the dates during the analysis period when such water is available, the amounts of water available, and the impact, if any, of takings under the Triangle T appropriative right on the junior appropriative rights of Sallaberry and M.I.D. (see Section XIII).

When flows passing Franchi Dam (as excess to M.I.D.'s adjudicated right) exceed the sum of Reach 5 and 6 losses and riparian demands and appropriations under Sallaberry's Application 13541 and M.I.D.'s Application 15287, the excess is regarded as spill to the San Joaquin River via East Side Bypass and/or Fresno River. Adjustments to reflect Triangle T's appropriation under Application 11003 generally reduce this spill but on

occasion may reduce water available to satisfy M.I.D.'s Application 15287 or Sallaberry's Application 13541 (see Section XIII).

RIPARIAN LAND V.

V. Riparian land

General

- (1) Location of riparian land between Hidden Dam and the west boundary of Triangle T Ranch was determined after plotting on U.S.G.S. quadrangles (1) the boundaries of all original patents as recorded in the Sacramento office of B.L.M., (2) the boundaries of existing ownerships as shown in the records of Madera County, and (3) the location(s) of the channel(s) of Fresno River as shown on available editions of maps beginning with original public lands surveys.
- (a) Each patent which contained a bank of Fresno River on the date of patent was considered riparian on that date.
- (b) The portion of each originally-riparian patent now in an ownership containing a bank of the river was considered riparian.
- (c) The portion of each originally-riparian patent now in an ownership which does <u>not</u> contain a bank of the river was considered to have lost its riparian status. Generally no effort was made, via review of deeds or otherwise, to determine whether in past ownership transfers reservations of riparian rights to such land not in contact with the river had been made.
- (d) No title search was made to determine whether any part of a present ownership now in contact with the stream and within an originally-riparian patent had, in some past transfer, been severed from the river.
- (e) Where a part of any otherwise-presently-riparian ownership is outside the Fresno River watershed that part is considered non-riparian to the river.

		75	₹2			1000
	. 2	5/	24	27,	36	112
2		*	2.8	36	ار ا	
m	7	ે ર	Z. Ave	27	3 34	erry dates
4	•	2/		0 ₁	5.3 3.3	Sallab
Ĺ	C-a		200	N ±	80	no per
9) 6/	Ed .	3/	2 15.5
		建	24	à	98	Sonta
			23	i	35	1/0/28 1/0/28 100, 5/15/69
,,,,			2.2	27	34 R15E	122 2 6 -2
4,14			21	ء ک	33	5/20/1869 Sec) 1853 A. S. Friedland 7-5088, Cha
	+ 400 + + + 1		20	52	36	16,50;3-8 16,50;3-8 17,2543-6 22,7/0/81 505,508
ار <u></u>			0	0	31	Pat. 2955, Chap Pat. 507376, 501 State Grant (Sch Pat. 2001-25, 250 Pat 5071-505, Bat 5071-505,
		FresnoR (1554)		•		111111

- (c) The <u>red</u> area which includes Sallaberry's two half-sections in TllS, Rl6E originally was a 6,000+ A patent to W. S. Chapman on May 20, 1869. Glantz presently owns the S½ Sec. 18 in a chain of title initiated before the Sallaberry acquisition of the two half-sections. Legal review of the deeds leading to Glantz' present ownership reveals no formal reservation of the riparian right on the back land nor any reservation of right-of-way for a conveyance channel across the Glantz half-section. Sallaberry acquired the two half-sections in 1936. In an interview with Lee Gunter, an old timer who helped Roger Averill construct a channel in the area, this work was done after the 1938 flood. Thus it appears clear that when John Sallaberry acquired the present holding late in 1936 there was no physical connection between the river and the two half-sections in TllS, Rl6E. Accordingly, the two half-sections are considered non-riparian.
 - (d) The <u>orange</u> and <u>light-blue</u> areas, being outside the present Sallaberry holding, are not of concern.
 - (e) The <u>purple</u> area was patented by Isaac Friedlander on December 10, 1868. The area consisted of 48 separately-numbered 160-A tracts purchased by Friedlander with script on January 27, 1868. A separate patent was issued for each 160-A tract stating that the script was for purchase of that specific quarter-section.

The following tracts patented by Friedlander at the time and now owned by Sallaberry contained a bank of the river:

T115,	R15E	
Sec.	14	WZ
Sec.	15	All
Sec.	17	N ¹ 2
Sec.	18	NE 4

A legal opinion secured by M.I.D. concludes that the most logical interpretation of the law is that only these nine tracts were riparian at the time of patent.

In the circumstance, and realizing that both approaches can be analyzed by the computer at little cost, two different assumptions are made as to Sallaberry's irrigable riparian land. Table V-1 shows a total of 1,829.74 A in the five sections (14-18, incl.) along the south side of the ranch and Table V-2 shows 2,896 A derived for the larger area. Areas primarily are those shown on Madera County Assessor's maps.

Both tables show reductions in gross area by reason of the existence of the new Fresno River bypass channel which extends along the south side of Secs. 14, 15 and 16, thence adjacent to the old Chowchilla Canal in Secs. 17 and 18. This leveed channel is considered non-irrigable.

In Table V-2, the acreage in Secs. 9, 10 and 11 estimated to be within the Berenda Creek watershed also is deleted as being non-riparian to Fresno River. Topography is pretty flat in the area but obviously with Berenda Creek running in Secs. 4 and 5, T11S, R16E, the watershed boundary is somewhere in the northern part of the Sallaberry ownership. Available topography plus field inspection indicates it is reasonable to put the boundary on the dirt road extending through Secs. 11 and 10, thence through the southern part of the E_2^{1} Sec. 9.

(3) Triangle T holding

In March, 1975, McGlasson researched the title on each section in Triangle T ranch and, as a result, recommended that certain areas be considered riparian by virtue of the changes in ownership and what he concluded from various data were the locations of Fresno River and certain of its overflow channels (although McGlasson did not have data on which to base estimated flows at which these overflow channels would carry water).

McGlasson's report was reviewed, there were exchanges of correspondence between counsel for M.I.D. and Triangle T, and at the meeting in Madera on June 7, 1978, it was agreed to accept

Table V-1

Sallaberry Riparian Land

(Minimum -- on basis only patents touching river were originally riparian. All Sections in TllS, R15E).

Section	Area (Acres)	Total (Acres)	SSJDD (Acres)	Net (Acres)	Total Net (Acres)
SW ¹ 4 14		5)			
S of River	135.0		21.82	113.18	
N of River	25.0			25.0	
NW 4 14	160.0	320.0		160.0	298.18
15					
S of River	337.61		41.55	296.06	
N of River	298.77	636.38	-	298.77	594.83
16					
S of River	347.61		38.58	309.03	394
N of River	288.70	636.31	· · · · · · · · · · · · · · · · · · ·	288.70	597.73
N ¹ 2 17 ¹					
S of River	106.3^{2}		11.02/	95.3	
N of River	214.4^{2}	320.7		214.4	309.7
18	41.50	41.5	12.20	29.3	29.3
Totals		1,954.89	125.15		1,829.74

Block 20 of Map of Subdivision 2, Chowchilla Ranch, shows 640 A in whole of Section 17. River channel never was in S½ of Section. Assessor's Maps 43-04 and 23-25 show acreages only N and S of river, not quarter sections.

^{2/} Acreages planimetered from Assessor's Map 23-25.

Table V-2

The second

100000

NAME OF TAXABLE PARTY.

And the second

arial mark

(And maximum riparian area) Sallaberry Holding

Net Riparian Area	(ACLES)	63	158	254	!	ĭ		320	458	265	598	421	29	2,896
Berenda Exclu ₆ /	(ACLES)	252	475	382	ŀ	I I	Ĺ	i	I I	t I	1	1	!	1,109
SSJDD5/	(ACLES)	I I	l I	1	i	I	1	I	21.82	41.55	38.58	57.21	12.20	171.36
Assessor	(Acres)	314.56	632.74	636.37	-	1	ļ	320	480	636.38	636,31	477.96	41.50	4,175.82
Judge- ment2/ Area2/	(Acres)	320	640	640	640	308.85	310.01	320	480	640	640	477.963/	41.53/	5,458,324/
S/T/R		E% 9/118/15E	10/11S/15E	11/11S/15E	12/11S/15E	S½ 7/11S/16E	N\ 18/11S/16E	NY 13/11S/15E	NY SW4 14/11S/15E	15/11S/15E	16/11S/15E	$17/11S/15E^{1}$	$18/11S/15E^{1}$	
sion		10	11	12	13	14	15	16	17	18	19	207/	217	
Chowchilla th Subdivis		B1k	Blk	BIK	Blk	Blk	Blk	Blk	k Blk	Blk	Blk	Blk	Blk	
Chowchilla Ranch Subdivision		E%				SZ	NY	NY	NY SWY					

Total, using Assessor acreages for all Blocks, is 5,431 A. From latest County Assessor plats. 1937 deed totals 5,546.01 A. Total, using As Bypass area of San Joaquin Drainage District. Per 1912 map cited in Judgement except 3/. In Berenda Creek watershed. प्राध्यक्षाण्य

Portion East of Chowchilla Canal.

McGlasson's acreages in part of the area. As respects other areas in Secs. 21, 22 and 23 there was no agreement.

Riparian areas agreed upon and those in dispute are shown in Table V-3. Agreed upon were 2,121 A and in dispute were 662 A for a total of 2,783 A. It was agreed that both acreages would be reflected in computer studies to determine the effects on riparian diversions.

Table V-3
Claimed Riparian Areas in Triangle T Ranch
TllN, R14E

	McGlas	son
Section	Parcel $\frac{1}{2}$	Area
7	1,2	160 A
8	4	46
	5	50
	6	. 30
	9	138
	10	22
14	3,4	160
	2	80
15	2	320
	1	320
16	1,3	557
<u>17</u>	1,2,3,4	238
	Total	2,121 A
	In Dis	pute
21	1,2,4 5,7,8	182 A
22	1,2	320
23	1,2	160
	Total	662 A
	Grand Total	2,783 A

^{1/} Per McGlasson 3/75 report, pp. 13-16, 21-26, 29-35.

VI. Appropriative places of use

In order of priority date, pertinent appropriative rights are held as follows:

(1) Triangle T

One half of Application 11003, filed March 9, 1945, Permit 7582A, License 9073. The license is for diversion of 17.5 cfs from February 1 to July 15 of each year on the following place of use:

Sec.	14	63.0 A	Sec.	21	380.0 A
	15	102.5		22	49.0
	16	159.7		28	200.0
	17	257.5		29	131.0
	20	319.5			1,662.2 A

This place of use overlaps the riparian areas agreed upon or remaining in dispute as discussed below (see also Table V-3).

In Table V-3, riparian acreage in Sec. 15 totals 640 A so the above 102.5 A all overlaps.

Table V-3 shows only 238 A of Triangle T land in Sec. 17 so it is considered all the above 257.5 A overlaps.

Table V-3 shows 557 A of riparian land in Sec. 16 so not more than 640 -557 A = 83 A does not overlap. It is possible, even probable, the entire 159.7 A shown above overlaps but for lack of specific location in Section 16 of the appropriative area the non-overlapping area is assumed herein to be 83 A.

Sec. 20 has no riparian land so the above 319.5 A is non-overlapping.

Secs. 28 and 29 are non-riparian so the above 331.0 A do not overlap.

Table V-3 shows 240 A of riparian land in Sec. 14 so the above 63.0 A may not overlap. We cannot be sure, however, with the present data that the entire 63 A is non-overlapping, but this study so assumes.

Of the areas in dispute as to riparianism in Secs. 21 and 22, the appropriative 380 A and 49.0 A, respectively, could be non-overlapping and are so assumed.

Thus it appears 102.5 + 83 + 238 (257.5) or 423.5 (443.0) A of the 1,642.7 (1,662.2) A definitely overlap riparian areas. Also, 319.5 + 200.0 + 131.0 = 650.5 A definitely do not overlap. Some portion of the remaining 568.7 A of the appropriative area do not overlap.

(2) Sallaberry

Sallaberry holds License 4689, Permit 9076, on Application 13541. The license is for diversion of 45 cfs from November 1 to July 3 of each year on the following place of use:

Tlls, R15E	Area
Sec. 9	20 A
10	80
11	140
12	120
<mark>13</mark>	320
14	480
15	640
16	640
17	478
18	42
TllS, R16E	
Sec. 18	320
7	40
	3,320 A

From Table V-2 it can be seen that all this land except the 120 A in Sec. 12, T11S, R15E, and the 40 A in S½ Sec. 7 and the 320 A in the N½ Sec. 18, both in T11S, R16E, overlaps riparian areas when considering the maximum riparian area of 2,896 A.

In the maximum area study, appropriations are thus considered for 120 + 40 + 320 = 480 A.

Table VI-1 correlates the land owned by Sallaberry in each section, the wholly riparian areas, and the appropriative places of use to show that of the minimum riparian area a total of 1,300.79 A do not overlap.

Table VI-1

Sallaberry Acreage Under Appropriative Right (using minimum riparian acreage)

Under A-13541 (Jan. 13, 1950), P-9076, L-4689, Sallaberry can make 45 cfs direct diversion Nov. 1-July 1 each year for irrigation of the following areas:

T/R/Sec.	Area	Acres	Allowed
11S/15E/ 9	$\mathbb{E}^{rac{1}{2}}$	20 A	20 A
10	All	80	80
11	All	140	140
12	All	120	120
13	$N^{\frac{1}{2}}$	320	320
14	NE 4	16 <mark>0</mark>	160
14	W2*	298.18	
15	A11*	594.83	
- 16	All*	597.73	
17	$N^{\frac{1}{2}}\star$	309.7	3.7
17	S1/2	100.791	$100.79^{\frac{1}{2}}$
18	S1/2*	29.32/	
lls/ <mark>16E/</mark> 18	N_{1}^{2}	320	320
7	S½	40	40
		3,130.53A**	1,300.79 A

^{*} Riparian area. Omitted due to overlap.

^{1/} Allowing for S.S.J.D.D. area. Total Sec. 17 = 478 A with
57.21 A in S.S.J.D.D. area. Adjustment reflected in S¹/₂ Sec. 17,
i.e., 320 + 158 = 478; 320 + 158 -57.21 = 420.79.

^{2/} Allowing for S.S.J.D.D. area of 12.20 A.

^{**} SWRCB file shows total acreage 3,558 A. Some, but not all, due to assessor's differing acreages in Secs. 14, 15, 16, 17; reason for remaining difference not known.

VII. IRRIGATED LAND AND PHYSICAL FACILITIES

VII. Irrigated land and physical facilities

All riparian parcels were numbered and a crop survey was conducted in 1978. Results were tabulated on sheets similar to the sample attached.

In general, these crop surveys formed the crop-land acreages used in the study for all parcels except the Triangle T ranch. In the latter case, a detailed 1977-78 crop map prepared by the ranch was used since it appeared consistent with up-to-date aerial photos, was more detailed and was considered more accurate. A copy of this map (the original of which is in color) is attached.

An extensive field investigation was made of the Sallaberry ranch to confirm that the whole was in native pasture.

Capability of using water from Fresno River

A basic criteria underlying the study was that only parcels now capable physically of diverting water and using it beneficially would be included as diverters at present. It is intended that if and when riparians not now using river water do so in the future, the available natural flow will be re-divided in new computer studies to recognize that use.

To ascertain which riparians are now capable of diverting water, aerial and on-the-ground inspections were made to locate pumps and other diversion facilities. In Section VIII, as noted, individual parcels having water demand in each reach are those having some sort of facility for taking water (usually, but not always, pumps). Riparian parcels within M.I.D. physically serviceable through the Main Canal system heading at Franchi Dam were assumed served; riparian parcels in M.I.D. not capable of service were assumed not served.

	S.	SEC/T. R.	OWNER	ADDRESS	TOTAL	RIPARIAN	000	S48	eT 4 or 1	K. 100 K. 10.0 K. 100 E. 1. 1.
	0	26 10/18	State of California		1105	B.	1000	ACRES	CA PARCEL NO	L. 1972.
	ان ا	16 10/18	Smith Et. Al.	(45 Laure) St. # 8 (Sanfrancisco, 69 34113.	3948	3945	Rices	38.38	31-151-18	4,
	32	8510/1e.	State of Other ora		110%	.8011	RUER	5300.	31-201-01	1
	3	35 10/18	Smith, El Al	145 Laural St. Santrancisco, Ca 94110	000	15.00	RUET 1000	5.00 2.	51-201-03	1.4
	40	36 ¹³ /15	Smits, Ll. Al.	its Laurel St Sanfrancisco, Gasallo	5461	21930	POSTURE REALTA RUCED ROAD	57.00 00.12 00.12 00.12	31-202-01	194.65
	(C)	3610/18	Makinney, Edith	8.0. 50x 332 Madera, la 33687	408°°	ď		75.58	31-202-02	4
1.	9,	32,0/18	Boig, Dusna	30713 Island Dr. Maderas Ga 32637	30780	30760	DASTURE CONVERT ROWER NOTE TO	m	51-201-11	Put pump.
	15	35 10/18	Stockel, P. Willowse	31562 Island Dr Modera, la 95637	8675	8625	SOUTH TO SERVICE TO SE	1 0 90 0 1 0 0 90 1 0 0 90	31-201-10	Pat. pump
	80	25,12/18	Kelly, Emma Jean	18173 Rd. 400 Moderas 93637	1800	n			11-201-08	1 4
	NOTES							MAJERA IRRICATION DUTRICT MATER CAUSANA CAUSANA	BSTRCT sout. South PA L. College:	

TRIANGLE T RANCH, INC.

There were two major exceptions to the "ability-to-divert" criteria. The first was the Sallaberry ranch, where physical inspection in 1979 showed that most of the necessary Dry Creek diversion structures were either non-existent or so dilapidated as to be unuseable. The other was Triangle T where existing facilities, although somewhat adequate, could not divert water to more than a fraction of the total riparian area.

It is anticipated that negotiations will be conducted with each using riparian and appropriator looking towards developing mechanics under which his entitlement to Fresno River natural flow will be satisfied with due regard to his priority and location on the stream. Fundamental to his entitlement will be his physical ability to divert at the times his entitlement will yield useful water at his diversion point.

With Sallaberry and Triangle T being the two largest riparian users (and the two earliest appropriators) it was assumed for purposes of the study that each had installed or repaired all diversion and conveyance facilities, and was prepared to operate them and did operate them, as necessary to beneficially use their entitlements.

VIII. Water requirements

Diversion requirements, except native pasture, were taken from Bulletin 113-1 (1974) of the Department of Water Resources. Table 34 of that Bulletin presents average annual headgate demand (treated in the study as demand at a river diversion point to serve each parcel) for crops in the Madera area of San Joaquin Valley. Table 24 of the Bulletin shows the monthly distribution of the demand.

Table VIII-1 attached shows the monthly demand in AF/A for each of the crops. Where Bulletin 113-1 did not list a crop, a reasonably-similar crop was used.

Native pasture was ignored on all parcels except Sallaberry and Triangle T because of minimal acreages or lack of diversion facilities. The two large users were assumed to divert at full capability (500 cfs in the case of Sallaberry and either 60 or 100 cfs less concurrent crop demand in the case of Triangle T) with a limit of 3/4 AF/A in any 30-day period.

Field inspection of the Sallaberry ranch shows extensive diking and check dams which permit water diverted from Dry Creek channel to flood a very large percentage of the total riparian land. There are 2 or 3 shallow "ravines" and other relief which probably prevent 100% coverage. Nevertheless, the study does not reduce the area. In effect, the study says, "On his maximum riparian area, Sallaberry can use beneficially $3/4 \times 2,896 = 2,172$ AF in a 30-day period; on his minimum riparian area he can use beneficially $3/4 \times 1,830 = 1,372$ AF. His appropriative diversion limit in the maximum-riparian situation is $3/4 \times 480 = 360$ AF in a 30-day period; the limit in the minimum-riparian situation is $3/4 \times 1,301 = 976$ AF."

Table VIII-1

(Salah)

A STATE OF THE PARTY OF THE PAR

STATE OF THE PARTY OF THE PARTY

100

Control of the last

.

Crops (Table 34, Bull. 113-1, 1974, Average demand, with Farm Delivery (headgate) demand -- Madera Area Monthly distribution per Table 24)

AF/A

Total

Dec.

4.79

1.4

2.4

3,2

Nov.	ŀ	ŀ	ŀ	l	!	į	1	l	I I
Oct.	0.29	Ī	ł	ł	0.30	0.23	0.16	1	0.43
Sept.	0.57	ŀ	ŀ	0.42	0.68	0.38	0.27	0.32	
Aug.	0.78	ł	0.55	0.93	1.07	0.55	0.59	06.0	0.41 0.58 0.84 0.97 1.01 0.85 0.62
July	0.87	ł	1.26	1.24	1,18	0.65	0.69	1.16	1.01
June	0.80	0.16	0.59	0.61	0.57	0.58	0.62	0.32	0.97
May	0.68	0.35	!	i i	0.10	0.47	0.49	1	0.84
Apr.	0.47	0.40	1	1	1	0.28	0.30	[i	0.58
Mar.	0.33	0,33	1	ļ	1	0.16	0.17	i	0.41
Feb.	1	0.13	1	: !	l	i	1	ŀ	ł
Jan.	l	0.03	Į	i	I I	[f	ŀ	1
Crop	Alfalfa	Barley	Dry beans	Field corn	Cotton	Dec. Orch.	Almonds	Sorghum (milo)	Pasture

3.01

1

1

0.43

0.78

96.0

0.64

0.20

i

3,39

0.17

0.43

0.68

0.83

0.72

0.47

0.09

1

1

Vineyard

1

Tomatoes

3.79

1

1

1

0.56

0.88

0.98

0.87

0.41

0.09

1

Beets

2.7

90.00

0.13

0.17

0.25

0.34

0.40

0.39

0.34

0.23

0.16

0.15

0.08

Citrus

Pasture

5.71 /

2.7

3,29.

3.3

3.9

Triangle T's native pasture land is no where near as developed with dikes and check dams as is Sallaberry's. To maintain some relativity between the two, the study discounts Triangle T's pasture land by 5%. Thus, Triangle T's maximum riparian area (which includes Secs. 21, 22 and 23) contains 1,399 A of native pasture and is limited, in a 30-day period, to 3/4 x 0.95 x 1,399 = 997 AF. Triangle T's minimum riparian area (excluding Secs. 21, 22 and 23) contains 840 A of native pasture and the 30-day limit is 3/4 x 0.95 x 840 = 598.5 AF.

It is possible that diversion of these amounts to either Sallaberry or Triangle T would require impractical husbanding of diverted water to prevent unreasonable losses through over-irrigation, evaporation or run-off. In this sense, both 30-day allowances in total AF probably are generous.

IX. TRIANGLE T - ROAD 9 OUTLET CAPACITY

IX. Triangle T - Road 9 outlet capacity

The outlet structure was designed to discharge 100 cfs with inlet water surface at the E.S.B.P. weir crest elevation of 146.9 feet and tailwater at about elevation 146.2 feet (DWR datum). $\frac{1}{2}$ The general area, including channels, is shown on Fig. IX-1.

In 1968, DWR reviewed actual conditions at and below the outlet. Results are shown in Figs. IX-2 and IX-3 attached. DWR found the river channel below the outlet had silted up for a distance of about 8,500 feet and tailwater level, with inlet water surface at the weir crest (146.9 ft.), was at 146.65 feet, while discharge was 60 cfs. 2/DWR estimated about 7,000 cu. yd. of material would have to be removed from the aggraded channel to restore the outlet capacity to 100 cfs. Costs (in 1968) were estimated at \$3,000.

On June 9, 1978, M.I.D. and Triangle T personnel surveyed conditions at and downstream of the outlet structure. As noted current meter measurements showed a discharge of 80 cfs with the outlet gates not fully opened. Velocity measurements at the inlet with the gates fully open — it being impractical to measure discharge below the outlet at that flow — indicated 95.4 cfs was entering the outlet. Also, a difference of 0.56 foot in elevations of inlet and outlet water surfaces was measured; this would indicate a discharge of around 87-100 cfs was occurring depending on the discharge coefficient C selected in the formula $Q = CA\sqrt{2gh}$ and fairly well checks the inlet flow measurement. See attached memo IX-4.

^{1/} w/ H = 146.9 -146.2 = 0.7', and 24 sq. ft. opening, Q = 0.62 x 24 x $\sqrt{64.4 \times 0.7}$ = 99.91 cfs

^{2/} w/ H = 146.9 -146.65 = 0.25 Q = 0.62 x 24 x $\sqrt{64.4 \times 0.25}$ = 59.7'

Motes: Kajarance Triangle T Hanch Date: 6/9/78 & 9:00 A.M. Location: Outlet of Freeno River From San Joaquin By-Paes @ Road 9

Procent: Vim Wickensham Tom William Man Buren Moli.D.

Vim Van Buren Moli.D.

Fred I'x Moli.D.

Elevation shate inten of wein, inlet structure, cutlet structure, roud crossing, and water surfaces. The shato to the bench mark near the wein and near the inst structure indicate a error of 0.36 in compet elevations.

The water and many a way have been established carlier and this would as somewhele it with softeness to exhibit in the area?

The aflocked surrent meden newsuraments

(Q=80.00) word taken approximately 50'

clown-dream from the outlet structure. Subsequent
examination of the control gate (curs that
it was not fully soon (only 20'-25') and had
only reached an electrical where it was
difficult to eyell.

3. The control gate was subsequently opened to where the indicator on the stem showed 49" o Tha gata was difficult to open. (25 tuns on the crankt to the inch and most of the time 2 man on the crank required.) 4. With the gate now fully open as merease in flow was noticed and Vim Van Buren decided to take one more current measurement. 5. Jim attempted a measurement down stream and in two locations upstream and was unabla to complete measurements as the stream was too deaps 6. Jim Van Buren then attempted a measurement at the outlet structure, this was abandoned as the velocities were to high tehold the motor in position. 7. Vim than took four sample valocitios at the inlet structure. fallowing is a sketch of the Structure and location of the

* reference: Water Measurment Manual 3 2nd Ed 9. The lolat and outlat of the culvert crossing Road o was covered with water and was not accossable for measurement at 10. Peturas were taken of the wair, inlot and outlest, inlet channel and outlet channel, and the resnod wer at food on they will be included in the Tolder when developed. 11. Bill McGlasson requested copies of the current measurement and field book.

measurent

MADERA IRRIGATION DISTRICT

FEEDEN PA	/	9	73					LYP:		Rou	ier
Date Party	13	<u>/</u>	19/.C	an	P.	м. Б _ L	ocality	, Rd	19		River
											mean
Total	100			. Mea	n velo	city			DISCH		
	OBS	ERVAT	IONB	I		VELOCIT	Υ	COMPC	1	1	
DIST. FROM INITIAL POINT	DEPTH	DEPTH OF OB- SERVAT	TIME IN SEC ONDS	REV- OLU- TIONS	AT POINT	MEAN IN VER TICAL	MEAN		WIDTH	AREA	DISCHARGI
30	0			_							
		12"						25	2.0	.50	
5.0	.50			_	=						
							.40	75	1.0	.75	
6.0	100		57	20	180	-					
							.91	1.75	1.0	125	1.19
7.0	150		45	20	101						
							104	1.85	1.0	185	1.97
3.0	220		42	20	107						
							118	235	1.0	235	2.7
9.0	250		52	30	1.29						
					1		131	2%	1.0	275	3.60
0.0	3.00		51	30	132			/		1	
	71-4						132	310	1.0	310	4.00
1.0	3.20		51	30	132						
							133	320	1.0	320	4.2
2.0	3.20		50	30	135						
							139	320	10	320	4.45
3,0	3.20		47	30	144						
2,0			-1-				147	320	1.0	320	4.70
40	3.20		45	30	150						
111	7-0		15				159	325	1.0	325	5.1
5.0	330		40	35	168		-				
3.0	טניי						11/2	330	1.0	330	5.54

(MAKE NOTES ON BACK)

								OTE			,
Date -	6-	9	19.78	39	30 F.	M. SI	ream	755	SAU	K	ver
Party	LAC	Z	45C	1.2		_ L	ocality	(20.			.0.5
Meter	No4	022	Ga	ge hel	ght, be	eg		, end		I	nean
Total	area			Mea	n velo	city					
	овѕ	ERVAT	вио					COMPL	TATIO	l l	
DIST.		DEPTH	TIME	MEV-		VELOCIT		MEAN			DISCHARGE
FROM INITIAL POINT		OF OB-	ONDS	OLU- TIONS	POINT	MEAN IN VER TICAL		DEPTH	WIDTH	AREA	
16.0	330		40	30	168			<u> </u>			- 10
							100	330	1.0	330	548
17.0	330		41	30	164						
							10	335	1,0	335	5.49
18.0	310		40	30	1154					·	
							162	335	1.0	335	5.43
19.0	220	*	42	35	160						
1,10	3.70		n				160	346	10	340	5.44
20.0	260		42	30	160						
40.0	770				857		157	345	1.0	34	5.42
21.0	21-		44	30	153			27			
210	240			00			152	295	1,0	295	4.48
122.0	16		45	35	150						
22.0	470				120		145	245	1.0	240	3.48
	22		1	25	140		<u>-</u>				
23.0	250		40_	15	140		122	01	-	س, رسا	281
						-	155	215	1.0	215	2.86
24.0	200		45	25	126						1.01
							120	155	10	155	1.86
25.0	110		40	20	113						
	110						108	\$	10	95	1.03
212.0	.80		44	20	103			110,244,			
	1100						.80	75	1,0	15	.60
27.0	.70		41	10	.57			1.			
1.5	100						.57	125	10	15.	. 37
No.		_ or		- GHEET	rs. Co	MP. BY			C	HK. DY	

			CI	JRRE	TNE	METI	ER N	OTE	5	···)	12
Dete	6-	7	1078	3 9	30 5	₩. S	ream ?	1505	110	1/10	jer
Date.	Us.		3/	e	P.	м. Т.	ocality	Fd	9-	K	jer ver
Mater	No (-7.	Z G	ce hel	eht b	eg	_	end			mean
- Total	area .			Mea	n velo	city			Disch	arge	
	The state of the state of	ERVAT						COMPL			
DIST.				MEV-		VELOCIT	Y	Secondary.			
FROM INITIAL POINT	DEPTH	DEPTH OF OB- BERVAT	IN SEC	ENOIT	AT	MEAN IN VER TICAL		MEAN DEPTH	WIDTH	AREA	DISCHARGE
280	-60		41	10	.57						
					1		29	50	1.0	.50	-15
D	1	1					7				
2/.0	-40					,					
30.0	0		-								
10.0											80.03

									-		

-											
	-10-5-22										
· -											
											all the Property of the Proper
-			- 		*						
No		or		SHEET	s. Co	MP, BY			Сн	K. BY _	
8 0				1	MAKE N	OTES O	N BACK)			

1771 Far-1150	nation of the same				THE WHATE STORE	
(E)						2 IX-4/8
			Section of the sectio			0 =
51/6/0 57/50		- Jant				nc on 2
81/e/a	× ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	7)		OX		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
· · · · · · · · · · · · · · · · · · ·	0	o in Elex			.	1.93
	ruchur	ý v			PY.	1 10 11
	5	75.4		**************************************	unlet Outlat	03 ()
**	<u>6</u> 10			······································	= 0	- e
	3 .	Spill			υ ο 3	3 3 6 5
186	r.			· 35 *		კ ა <mark>ა</mark>
				4		
20		\ \cdots	2			
	Elay. 15149	146.94 159.8 158.4	14838 14838	14655		148:13 18781 18:0
(L	5 : 5 : 5 : 5 : 5 : 5 : 5 : 5 : 5 : 5 :	16." 497 146'	125	0391	-0 -0 -0	
\dashv	ហ o_		- 1002	15449	5	
Triang /	- 14					
1- 6	D	٠ ا	545	. O		
***		&				
V	0 & Z	8 3 ·	talal sw	3 4		

S. S		· · · · · · · · · · · · · · · · · · ·		TX-4/9
		:		1.93 Synd (
	3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		1-	Outlet Str.
	t 0 3		\$ 5 S S S	8. S.
5 44 158 44 15 15 15 15 15 15 15 15 15 15 15 15 15	15785 14730 14880	150°4 14874 150°6 1469)	1540'4 146'7 196'0	4823 4823
		1325	65.6 = 1.8 = 1.8	V
H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		C	(540)	
· DA			69 O	
Sta Bust 2 497	3. S.	Inlatstr W.s. Oullatstr ws	A- 1-	

A STORY OF THE STO

However, on June 9, 1978, there was substantial flow over the weir. The survey notes indicate a weir crest elevation of 146.94 feet and water surface level of 148.44 feet. From the DWR rating curve (Fig. IX-2) the weir discharge was about 700 cfs. With Hidden Dam releases varying from 88 cfs to 147 cfs in the June 2-8 period (U.S.G.S. record) it is certain all such releases would have been absorbed in diversions and channel losses upstream of the outlet structure and therefore the 700 cfs of overflow must have originated in the San Daquin River-Chowchilla Bypass area. This is confirmed by DWR's Bulletin 130-78 data, pp. 18 and 22, which shows the following:

Date	Below Friant	Mendota Gage
June 6, 1978	4,980 cfs	1,216 cfs
7	4,980	914
8	4,570	752
9	3,840	755

P. 21 of Bull. 130-78 shows no Delta-Mendota Canal water being delivered to Mendota Pool June 1-22, 1978. Although something in excess of 2,300 cfs can be diverted by C.C.I.D., other Contracting Entities and others at and above Mendota Dam, these maximum diversions would not have been underway in early June of a 1978, leaving a substantial block of San Joaquin River water to enter the Chowchilla Bypass, thence over the E.S.B.P. weir.

Further measurements of discharge were made July 1, 2 and 3, 1980, at the Road 9 culvert. Results are shown in Mr. Robert's letter of July 10, 1980, to Mr. John B. Hardin of McGlasson & Associates, copy attached.

These data lack water surface elevations at the entrance to the outlet structure. Figure IX-2 indicates the water level at 100 cfs overflow of the E.S.B.P. weir to be about elevation 147.4 which would cause a discharge of about 76 cfs from the 1968 rating curve; although this roughly checks the measured flows of July 1

I ADERA

IRRIGATION

DISTRICT

12152 ROAD 281/4

MADERA, CA 93637

July 10, 1980

(209) 673-3514

BOARD OF DIRECTORS

JOHNNY DENIZ

STEPHEN W. ERICKSON VICE President

ALFRED PISTORESI, JR. BRUNO SAMBUESO H. ROCKY TERANISHI

ROBERT L. STANFIELD Manager-Chief Engineer

MIP ORED M. VENTURI

FRANKLIN B. SECARA

CARL M. JOHNSON
Controller-Assessor
Collector

DENSLOW GREEN

Mr. John B. Hardin McGlasson & Associates Post Office Box 4436 Fresno, California 93744

Re: Triangle T - Fresno River

Dear Mr. Hardin:

On July 3, 1980 we made measurement of the flow being diverted by Triangle T at Road 9. You and representatives of Triangle T were present.

At the time of the measurement a substantial quantity of water was flowing in the main channel section past the weir at Road 9. We contacted the Water and Power Resources Service and were advised that they were diverting 1590 cfs to this channel.

As we advised you at the July 3rd meeting, we had made measurements at the Triangle T diversion on July 1st and 2nd when the flow in the River was limited to the 100 cfs range and was just spilling over the Avenue 9 weir in the river channel.

A summary of the measurements for all three days is noted on the following page.

Mr. John B. Hardin

Re: Triangle T - Fresno River

July 10, 1980 page 2

		Triangle T						
Date	Rd. 19	+	Dry Creek Spill	+ _	WPRS	=	Total	Diversion
1980							<u> </u>	
7/1	104	+	17	+	0	=	121 "	81.6
7/2	98	+	14	+	0		112	73.6
7/3	100	+	14	+	1590	=	1704	108.0

A copy of the measurement data for the Triangle T diversion is attached for your information.

Please let me know if you have any questions on this matter.

Very truly yours,

Don Roberts

Civil Engineer

enclosures

cc/w enc.:

Triangle T Ranch, Inc.

✓Mr. A. N. Murray

Denslow Green, Esq.

CURRENT METER NOTES

Date 7-1 1980 1232 A.M. Stream FUESNO PIVER												
Party VAN BUILEN LOCALITY ROAD 9												
Meter No. 622 Gage height, beg, end, mean : Total area 1902 Mean velocity 4.29 Discharge Side												
	OES	ERVAT	ONS	1		Mariana and American	200	COMPL	ITATIONS			
DIST.	ENON! DEPTH TIME REV.					VELOCIT		MEAN	WIDTH		DIECHARGE .	
POINT	A CONTRACT OF THE PARTY OF	OF OB-	ONDS	TIONS	TAICT	MEAN IN VER	MEAN IN SEC- TION	DEPTH	WIDTH	AHLA	DIECHARGE .	
-		0	.//	0-	1/2					7.2	80.64	
		· Z	41	0)	7:49					1.0L	00.01	
											00 51	
		.8	42	80	434				19	02	82.54	
							-					
					, e 2							
-												
	WA	TEC	3	30	INC	, d	SVE	12	CO	MC	RFIE	
	WE	1		100	- 1	1	NO					
-		,	-									
	FI	DE	21	ZE		2.0	1	ET	w	DE		
					3	17	1	ET	1	FP		
							0					
			EME				===1			البتدب		

CURRENT METER NOTES												
12 20 92 DE FRESNO RIVER												
Date 7-2, 1980, 93 AM. Stream FRESNO RIVER Party VAN BUREN Locality ROAD 9												
Party	Meter No. 622 Gage height, beg, end, mean											
Meter	No	18.	- Ga	ige nei Mea	n velo	city	3.95	<u></u>	Disch	arge	73.2	
70101	OBSERVATIONS COMPUTATIONS											
DIST. DEETH TIME REV-												
FROM INITIAL POINT	DEPTH	DEPTH OF OB- SERVAT	IN SEC	OLU-	AT POINT	Luc wen	MEAN IN SEC. TION	DEPTH		AREA		
		.2	44	80	4.04	<u>{</u>			1	8.6	75.14	
		.8	46	80	3.8	7			18	8.6	72.0	
<u></u>												
N 												
() - 1)												
-									-			
_												
								12	0	NCI	PETE_	
	W	IR	^	YOR	T.I-/	En	10					
	Pu	E	513	E	1	2.0	FE	FT (UI	E		
				-	=======================================			7 7				
								<u> </u>			-	

CURRENT METER NOTES											
Date 7-3 1980 A.M. Stream FEESNO RIVER											
Date 7-3, 1986, A.M. Stream FRESNO RIVER Party Van Burren Locality FOAD 9											
Meter No. 622 Gage height, beg, end, mean Total area 240 Mean velocity 450 Discharge 108.00											
OBSERVATIONS COMPUTATIONS											
DIST.	DIST. VELOCITY										
FOINT		OF OB.	IN SEC	OLU-	AT POINT	IN VER	MEAN IN SEC- TION	MEAN DEPTH	WIDTH	AREA	DISCHARGE
		.8	44	90	4.55				2	4.0	109.20
		.2	.15	90	سراران					r. 1	106.80
			45	70	445					4.0	106.00
				,	7						
									•		
-		-+									*
	C	che	nne	/	FB	w	7	1700	ck	5 7	
		_							-		
										-	
	1	E	7			6.0	01	EET	-u	100	•
						4.0	A	EF	DE	EA)
							_				
										+	:
m		CHANGE:									

and 2, the results probably aren't too credible since both curves may not fit present day conditions. The July 3 measurement of 108 cfs is well under the Figure IX-2 results for 1,700 cfs over the weir; this may be due to substantially less than 1,700 cfs being at the weir -- note WPRS says "that they were diverting 1,590 cfs to this channel" (i.e., Chowchilla By-pass at San Joaquin River).

It seems reasonable to assume from all these data that the 1968 estimated outlet capacity of 60 cfs (water at the weir crest) exists today and that the 100 cfs design capacity (water at the weir crest) could be restored by excavating the channel between the outlet and the Road 9 culverts and downstream thereof for several thousand feet. This study so assumes.

X. REACH DEMANDS

X. Reach demands

Triangle T's acreages of each crop are the totals of each as shown in the crop map of Section VII. The crop map was compared with aerial photos to develop the estimated acreage of each crop in each section of riparian land; these estimates are shown in Table X-l for the Triangle T maximum riparian area and are carried into Table X-2 which reflects maximum Sallaberry and Triangle T acreage.

The attached Table X-2 shows, by reaches, parcel numbers, owner's names, riparian acres, crops, net irrigated acres (taken as 95% of cropped acres to allow for ditches, roads, fences and turn-arounds), and monthly demand in AF based on Bulletin 113-1 data described in Section VIII. Triangle T and Sallaberry maximum riparian acreages are reflected in Table X-2

Monthly demands by reach are totalled and converted to average cfs.

Although there are a number of river pumps in Reach 3 (Head-of-Island to Franchi Dam) most of the riparian parcels in this reach are served by M.I.D. facilities.

Riparians within M.I.D. in Reach 5 that are serviceable from Franchi Dam via the M.C. and I. system are indicated.

Averill, Glantz and Sallaberry all can divert above the weir at Road 16 (end of Reach 5) and accordingly are shown as diverting in that reach.

Table X-2 considers Sallaberry's demand to be for maximum riparian acreage of 2,896 A and the corresponding appropriative acreage to be 480 A.

Table X-2 also is based on Triangle T's maximum riparian acreage (including Secs. 21, 22 and 23) of 2,873 A.

The acreages of riparian land by crop for Triangle T minimum (without Secs. 21, 22 and 23) are shown in Table X-3 as is Sallaberry's minimum riparian area of 1,830 acres and corresponding non-overlapping appropriative area of 1,301 acres.

As discussed in Section XIII, the non-overlapping Triangle T appropriative water demand and yield is derived from the computer studies rather than being reflected in them.

Table X-1 Triangle T Crops and Water Requirements

	Remarks	Pump ? Pump ? Wild flood ? Wild flood ? Wild flood ? Wild flood ?	Maximum = 3/4 AF/A in any 30-day period	Pump ? Gravity or pump ? Gravity or pump ? Pump or gravity ?		<pre>Pump ? Pump or gravity ? Gravity or pump ?</pre>		Pump ? Pump or gravity ? Pump ? Pump ? Gravity or pump ? Gravity or pump ?			Subject to 30-day limit on native pasture		
	Dec.		997		11		11		1-1		09	497	
	Nov.		997		11		1 1		11	*	09	497	
	Oct.		997 55.6		99		1 1		175		9	1 271	1,211
	Sept.		11		3.8		1 1		343		10	567	
	Aug.		11		352		11		470		12	822	1
	July		1 1		388		[[524 8.5		115	010	716
•	June		11		188		46 0.8		482		12	716	9
	Мау		1 1		33		100		409		Ø	24.2	
•	Apr.		997 53.3		11		114		283	8	09	1 204	1,006 1,034 1,230 1,334
l l	Mar.		997 55.3		11		94		3.2		09	1 200	7,430
	Feb.		997 59.3		11		37		1 1		09	,50	1,034
	Jan.		997 59.1		11		0.1		11		09	,	7,000
			AF cfs		AF		AF		AF		AF cfs		AF
	Net Area (95%) (Acres)		1,329		329		286		602		86		7,644
	Area (Acres)	160 122 168 390 113 286 160	1,399	34 64 107 56	346	30 246 25	301	74 141 179 167 42	634	26 24 25 15 3	103	0	7, 783
	Sec-	7 114 115 221 23		14 15 16 17		8 16 21		15 17 21 21	1	114 115 117 221			
	Crop	Native Pasture	Total Native	Cotton	Total Cotton	Barley	Total Barley	Alfalfa	Total Alfalfa	Channe 1s	Total Channels		GRAND TOTAL

Table X-2 FRESNO RIVER RIPARIAN DEMAND

Reach 1 - Hidden Dam to Madera Canal

			B									Elliott 10/7/77 Memo; 15 HP Pump; 2.9 cfs, R. bank		
	Renarks											Elliott 1 Pump; 2.9		
	Αl	00	00	00	00	0				000	00	6600	0 0	
	zl	00	00	00	00	0				000	00	0000	0 0	
	0	00	00	00	00	0				000	00	16 30 0	00	
	w	00	00	00	00	0				000	00	23 58 0	00	
	A	00	00	00	00	0				000	00	31 80 13 0	00	
er.	ם	00	00	00	00	0			, pt	000	00	37 89 17 0	00	
	ט	00	00	00	00	0			of Island"	000	00	36 82 5	00	
	Σ	00	00	00	00	0			"Head of	000	00	31 69 0	00	
	4	00	00	00	00	0			Canal to	000	00	21 48 0	0 0	
	Ħ	00	00	00	00	0			Madera C	000	00	34	9 9	
	[24	00	00	00	00	0			E I	000	00	00000	9	
	اد	00	00	00	00	0			7	000	00	00000	o 01	
	Net Irrig.	00	00	00	00	0			Reach	000	00	37 102 15	00	900
	Crop	Native River	Native River	Native River	Native River	Native	2			Dry grain Native River	Native River	Pasture Alfalfa Milo River	Native	
	Gross Irrig. Acres	00	00	00	00	0	REACH			000	00	39.4 107.3 16.1	0	
	Par. Riparian No. Acres	39.49	24.44	217	74.5 5.5	280	END REACH 1 - BEGIN REACH 2			60.10 83.30 16.60	377.64	39.4 107.3 16.1 38.1		
	Par.	7	œ	12	13	15	SACH			14	æ			
		Fr.Riv.Prop.	5		V042		END RE				18	23		
	Name	Fr.Riv	Perlman	Gill	Gill	Gill		-	-	Smith	Smith	Smith		

END REACH 2 - BEGIN REACH 3

173 46 2.9 0.75

175

175

173

1000

69

Total AF Ave. cfs

^{* 95%} of Gross Irr. Acres.

Table X-2 FRESNO RIVER RIPARIAN DEMAND

THE PROPERTY.

Reach 3 - "Head of Island" to Franchi Dam

	A riparian in MID 1 Service?			parian in MID cvice?	10/7/77 memo; pump 2.27 cfs pump 3.29 cfs	10/7/77 memo; pump 2.38 cfs	irrig. w/Parcel 37		
Remarks	166.0 A rilsland Sea			144.0 A riparian Island Scrvice?	Elliott 10 5 HP PP 10 HP PP	Elliott 10	Assume ir		
ΩI	000000	0 (0 0	00000	000000	00	000	000	0
zl	000000	0 0	0 0	00000	000000	00	000	000	0
0	087000	0 (0	16 16 0 0	610000	22 0	000	000	94
S	112 122 0 0 0	0 (0 0	31 0 0 0	3000	33	000	000	207
A	45 16 34 0	0 0	0	33 0 0 0	66 00 00 00 00	45	m 0 0	0 00	334
b	337 00 00	0 (0 0	39 00 0	46 0 107 0	54	m 0 0	000	407
ט	118 118 00 00	0 0	0 0	38 0 0 0 0	17 17 52 0 0	51	m 0 0	000	316
×	29 29 00 00	0 0	0	333	330	45	m 0 0	000	239
Ą	20000	0 0	0	23	27 43 0 0 0	31	000	000	182
Σ	084000	0 0	0	16 0 0 0	119 35 0 0	22	400	0 00	133
Ct.	000000	0 0	0	00000	040000	00	000	000	14
اد	000000	0 0	0	00000	0 11 0 0 0 0	00	000	000	e
Net Irrig.	747 618 0000	0 0	0	88 98 00 00	46 107 86 0 0	53	m 0 0	000	
Crop	Milo Pasture Alfalfa Native River 31F?	River/native	River/native	Pasture Alfalfa River Road Native	Pasture Barley Corn River Road	Pasture Riv/rd/nat.	Pasture Equip. yd. River	Lake Madera River Native	TOTAL FWD
Gross Irrig.	49.0 20.0 45.0 0	0 0	0 0	41.0 57.0 0 0	48.5 113.0 91.0 0	56.0	0.00	000	
Riparian Acres	49.0 20.0 45.0 266.32 37.0	39.48	15.0	41.0 57.0 42.3 3.42 75.58	48.5 113.0 91.0 29.3 4.64 21.36	56.0 30.25	3.0 2.5	136.7 26.25 281.82	
Par.	56	31	33	34	36	37	39	40	
Name	Smith	Smith State of OA		Smith	Doig	Stoetzl	Stoetzl	State of CA	

* 95% of Gross Irr. Acres.

Table X-2 FRESNO RIVER RIPARIAN DEMAND

Reach 3 CONT'D - "Head of Island" to Franchi Dam

September 1

かか

Section .

(2) (2)

THE WAY

Sec.

Mariana

1

Remarks		Elliott 10/7/77 memo; 15 HP, 8' lift; deep well also Island lateral service	Island lateral	Island lateral	Island lateral ?	1/ Idle in 1978; pasture assumed; 10/7/77 Elliott memo; 7%HP pump, 2.27cfs	Island lateral ?	Island lateral ?	Island lateral ?			Island lateral service		
ΩI	0	000	00	00	00	00	00	00	00	0	00	00	00	0
zl	0	000	00	00	00	00	00	00	00	0	00	00	00	0
0	94	933	37	28	0 3	90	ч о	0 0	14	0	00	20	21 0	265
s	207	65 0	54	40	ın O	8 <mark>0</mark>	10	0	20	0	00	29	30	471
A	334	99 7 0	74	54 0	70	110	00	о О	27	0	00	99	42	969
r	407	6 B O	98	65	80	13	0 0	11	32	0	00	4 ₀	20	829
م	316	91 8	% °	62	80	E1 0	00	110	31	0	00	45	48 0	719
×	239	78	73	54	7 0	110	0 0	<mark>о</mark> 0	27	0	00	39	4100	587
A	182	54 0	20	37	90	80	0 1	90	13	0	00	27	28	422
×	133	8 6 0	36	26	m O	0 0	10	νo	13 0	0	00	19	20	302
Īzų	14	000	00	00	00	00	00	00	00	0	00	00	00	14
pl	м	000	00	00	00	00	00	00	00	0	00	00	00	3
Net Irrig. Acres*		114 8 0	87	64	80	13	0 0	110	32	0	00	4 ₀	49	
Crop		Alfalfa Pasture Riv/rd/nat.	Pasture Riv/rd/yard	Pasture Other	Pasture Other	Pasture Other	Pasture Other	$Pasture^{1/}$ River	Pasture Other	Rd/res/nat.	Non-irr.gr. Other	Pasture Other	Pasture River	TOTAL FWD
Gross Irrig. Acres		120.0 8.72 0	91.73 0	67.0	8°0	13.51/	1.8	11.1	33.75 0	0	00	48.54	51.73	
Riparian Acres		120.0 8.72 37.0	91.73	67.0	8.0 21.41	13.5 5.91	1.80	11.1	33.75	17,83	152.8	48.54	51.73 3.5	
Par.		41	43	44	45	. 94	47	49	53	54	57	28	59	
Name	FWD	Stoetzl	Stoetzl	Oyler	Stoetzl	Martin	Wibbenhorst	Dennis	Stoetz1	Wibbenhorst	Wooley	Glantz	Case	

* 95% of Gross Irr. Acres.

Table X-2 FRESNO RIVER RIPARIAN DEMAND

PROPERTY.

22	
E	
Franchi	-
40)
Island"	-
of	
"Head	-
1	
CONT	-
m	
ach	

Remarks		Elliott 10/7/77 memo; 10-12' lift; no pump/motor; deep well; island lateral serv.	Island lateral service	Island lateral service	Island lateral service	Island lateral service	Elliott 10/7/77 memo; 1.96 cfs pump. Island lateral service	Island lateral service	Island lateral		Island lateral	
Al	0	600	00	00	00	00	00	00	0	0	0	0
zl	0	000	00	00	00	00	00	00	0	0	0	0
0	265	040	00	2100	00	60	23	20	7	0	4	353
ß	471	000	40	000	40	22	33	29	10	0	9	609
A	695	000	10	410	10	35	45	40	13	0	80	887
٦	829	000	10	84 0	40	43	54	47	16	0	6	1,057
ט	719	000	но	47	0 1	37	51	46	16	0	O	942
Σ	587	13	<mark>د ٥</mark>	04	40	24	45	39	13	0	80	677
A	422	15	40	28	н о	v 0	31	27	6	0	ហ	549
Σ	302	13	00	20	00	00	22 0	19	7	0	4	391
(Fr)	14	000	00	00	00	00	00	00	0	0	0	19
اد	m	400	00	00	00	00	00	00	0	0	0	4
Net Irrig. Acres*		38	ч о	4 0	10	52	53	47	16	0	6	
Crop		Barley Pasture Other	Pasture Resid.	Pasture Other	Pasture River	Vines Riv/road	Pasture Other	Pasture Other	Pasture	Res/rd/nat.	Pasture	TOTAL FWD
Gross Irrig. Acres		39.87 9.00 0	1.34	50.63	1.28	54.67 0	56.1	49.46	16.48	0	9.61	
Riparian Acres		39.87 9.00 8.23	1.34	50.63	1.28	54.67	56.1	49.46	16.48	10.83	9.61	
Par.		19	64	65	82	91	100	101	103	104	105	
Name	FWD	Dennis	Doig	Doig	Terance	Lomer	Huntley	Evans	Green	Латез	Huntley	

* 95% of Gross Irr. Acres.

Table X-2 FRESNO RIVER RIPARIAN DEMAND

Reach 3 CONT'D - "Head of Island" to Franchi Dam

Remarks		Island lateral	â
QI	0	0 0	0 0
zl	353 0 0	0 01	396 0
0	353	43	396 0 6.44 0
S	609	62	671 11.28 6
A	887	85	972 15.81
7	1,057	101	1,158
p	942	97	1,039
Σ	779	8°°	863
A	549	58	607
Σ	391	41	432
Cu	13	00	4 19
اط	4	0 0	4 0
Net Irrig. Acres*		100	3 - AF
Crop		Pasture Riv/rd/nat.	Total Reach
Gross Irrig. Acres		105.3	
Riparian Acres		132.3	
Par.		106	
Name	FWD	Huntley	

END REACH 3 - BEGIN REACH 4, MID ADJUDICATED DIVERSION

Reach 4 - MID Main Canal at Franchi Dam

END REACH 4 - BEGIN REACH 5

	Assumed dry farmed ?, MC&I				MC&I, Almonds assumed	
	Assumed dr	MC&I	MC&I	MC&I	MC&I, Almo	
	0	00	00	000	000	0
	0	00	00	000	000	. 0
	0	00	0	000	15	31
	0	44	25	0 0	25 0 0	127
em only	0	98	39	52 0 0	55 0 0	244
XI syste	0	130	47	690	64 0 0	304
via MC8	0	64	41	55 18 0	58 6 0	242
ervice	0	00	27	36 36 36	46 12 0	160
16 - 9	0	00	s o	44 0	28 14 0	86
to Road	0	00	00	37 0	15 0	65
Jam	0	00	00	040	040	18
hi I	0	00	00	0 m 0	010	4
Reach 5 - Franchi Dam to Road 16 - Service via MC&I system only	0	105	57 0	76 111 0	93 35 0	
Reach	Wheat	Corn Other	Vines Other	Vines Barley Riv/canal	Orchard Barley River	TOTAL FWD
	0	111	09	80 117 0	98 37.08 0	
	29.46	111 40.17	60	80 117 103.82	98 37.08 26	
	116	111	118	119	141	
	Westgate	Westgate	Mosesian	Mosesian	Kirkman	

* 95% of Gross Irr. Acres.

Table X-2 FRESNO RIVER RIPARIAN DEMAND

である。

Name of the last

Design

The second

Reach 5 CONT'D - Franchi Dam to Road 16

			¥	assumed	ds assumed	in survey med	ds assumed		ds assumed					
	Remarks		MC&I	Almonds ass	MC&I almonds	MC&I idle in Darley assumed	MC&I almonds	MC&I	MC&I, almonds					
	UI RI	0		4 000	Σ 00	Σ.A.	Σ 00	× (000	Σ 00	o ol	00	00001	0 0	0
	zl	0	00	00	00	00	00	000	00	0 0	0 0	00001	0 0	0
	0	31	22	16	16	00	90	0 18 3	15	80	139	32 32 0	133	272
	S	127	55	27	27	00	16	044	25	19	341	127 35 63 0	225	566
	A	244	86	650	59	00	36	049	55	8 o	639	278 48 87	413	1,052
	5	304	105	69	69	00	42	0 17 7	64	33	764	326 58 97	481	1,245
	ט	242	91	62	62	40	38	34	58	16	630	293 55 89 0	437	1,067
	Σ	160	60	40	49	m 0	30	15 6	46	m 0	453	231 48 75 0	354	807
	A	98	11 29	30	30	40	18	17 0 4	28	00	269	142 33 52 0	227	496
	Σ	65	24	17	17	ю O	10	14 0 E	16	00	169	80 23 37 0	140	309
	E4	18	00	00	00	н о	00	000	00	00	33	0000	0 0	33
	וכי	4	0 70	00	00	00	00	400	00	o ol	0 7	00001	0 0	7
Net Irrig.	Acres		127	100	100	00	61	42 60	93	28	IC&I - AF	472 57 111 0	R-5 AF	WD.
	Crop		Vines Barley	Orchard Riv/canal	Orchard River	Barley Riv/canal	Orchard River	Barley Cotton Pasture	Orchard Canal	Cotton Road	EACH 5 in MC&I	Cotton Pasture Alfalfa Road/res.	TOTAL AVERILL in R-5	TOTAL FWD
Gross Irriq.	Acres		133.99	105	105	60	63.68	44.68 63.32 7.45	97.84	29.67	TOTAL REACH	497.3 60.0 117.11	TOTAL	
Riparian	Acres		133.99	105 22.48	105	9.73	63,68	44.68 63.32 7.45	97.84	29.67		497.3 60.0 117.11 9.18		
Par.	No.		142		143	144	148	150	152	193		202		
	Name	FWD	Mosesian		P.R. Farms	Elgarriaga	P.R. Farms	Kirkman	Morimoto	Averill		Averill		

* 95% of Gross Irr. Acres.

A STATE OF

2

The same

(September)

STATE OF THE PERSON NAMED IN

E

	Maximum Sallaberry Riparian and Triangle T					2,172 2,172 2,172 (3/4 AF/A @500cfs max not 500 500 500 500		360) 45) Approp. Applic. 13541	
NOTE	Sallaberry and Triangle	Remarks				(3/4 AF/A exceeded		Approp. A	
	imum S	Q	0	000	0 0	500	2,172	360	
	Wax	z	0	000	o c	,172 ;	, 172	360	
		0	272	86 101 0	187	,172 2	959 2,631 2,172 2,172		
		S	566	195 198 0	393	•	959 2		
		A	., 052	307 271 0	578	flow -	,,630		
	d 16	p	,245 1	339	641	ON -	., 886]		
	Reach 5 CONT'D - Franchi Dam to Road 16	ы	1,067 1,245 1,052	164 278 0	442	,172 .	,681	360	
	i Dam	Σ	807 1	236	265	500	,244 3	360 45	
	Franch	A	496	163	163	500	, 831	360	
	- Q. I	M	309	115	1115	500	,596 2	360	
	5 CON	Œ.	33	0001	0 0	500	,205 2	360	
	Reach	b	7	0001	0 0	2,172 2,172 2,172 2,172 2,172 \(\times\) - No flow \(\to\) 500 500 500 500 500 500	,179 2	360	
		Net Irrig. Acres*		287 347 0	NTZ - AF	n to	CH-5 AF 2	480 cfs	
		<u>dor</u> 0		Cotton Alfalfa Road/res.	TOTAL GLANTZ - AF	NatIrr. 2896	MAXIMUM TOTAL RIPARIAN REACH-5 AF 2,179 2,205 2,596 2,831 3,244 3,681 1,886 1,630	NatIrr.	9
		Gross Irrig.		301.64 365.33 0		2896	TOTAL RI	480	SIN REACH
		Par. Riparian No. Acres		301.84 365.33 18.89		2896	MAXIMUM	480	END REACH 5 - REGIN REACH 6
		Par.		220		*		* *	ID REA(
		Name	FWD	Glantz		Sallaberry			E

Ranch
H
ø
Triang.
Boundary
East
40
16
Road
1
9
ach

-71-

										-							
Averill	216	618.04			0	See	Elliot	t 10/7	Elliott $10/7/77$ memo; does not appear capable of river irrigation.	no; doe	es not	appear	capab.	le of	river	irrigat	ion.
Stone	228	398.80			0	No f	acilit	ies pe	No facilities per Elliott 10/7/77 memo.	ott 10,	n ////	emo.					
Woody	238	240			0	No f	acilit	ies pe	No facilities per Elliott 10/7/77 memo.	ott 10,	ם ננ/נו	emo.					
Triangle T	240	346 301 1399 103	346 301 634 1399 0	Cotton 329 Barley 286 Alfalfa 602 Natirr. 1329 Channels 0 TOTAL MINIMUM AF cfs TOTAL MAXIMUM AF 1	329 286 602 1329 0 0M AF 0M AF	997	37 94 0 200 997 997 0 0 0 37 294 1 5 1,034 1,291	997 997 997 997 997 997 997 997 997 997		33 100 409 997 542 9 1,539 1,	187 46 482 997 0 715 1,712 1,60	389 0 524 997 0 913 15 ,910 1,	352 2 0 0 997 997 9 822 8 13 1,60	224 343 3997 997 567 567 60		000000000000000000000000000000000000000	Reduce gross by 5% due 10

95% of Gross, except Sallaberry See Sallaberry memos; BLM acreage and parcels as shown on quad maps incorrect due limitation to separate 160-A patents. Omits areas overlapping riparian acreage; otherwise, acreage in each section per Application date. * * *

Table X-3

			Name	FWD	Glantz	Sallaberry			Triangle T		1.27
		י ד	NO		220	* * *		* * *	240		
		Riparion	No. Acres			** 1830 (** = Riparian)	MXIMIW	1301 1301 = appropriative)	345 276 561 840 98	H	T
	×	Gross				1830	TOTAL	1301 iative)	346 276 561 840 98	OTAL ME	TOTAL MAXIMUM
			ट्राक्त			NatIrr.	MXIMUM TOTAL RIPARIMN ROS	Hat. Irr.	Cotton Barley Alfalfa Mativo	TOTAL HENIMUM (crop	ХІМИМ
		Net	ACTOS			1830	ch-5 A	1301	329 262 533 798 0	land) AF cfs	AF cfs
	Reac		٠.	7	0	AF 1,3	ch-5 AF 1,379 1,405 1,796 2,031 2,444 2,881 1,886 1,630	AF 976 cfs 45	AF 0 AF 8 AF 593 AF 593	(F 8	NF 606
	Reach 5 CONT'D -		[±	33	0	1,372.5 500 500	1,405	976 45	34 0 599 0	34	633
			Σ	309	115	500	1,796	976 45	965 176 598 0	262 4.26	960
	Franchi Dam to Read 16		٧	496	163	500	2,031	976 45	251 251 599 0	356 5.98	955 1
	i Dam t		E	807 1	265	200	2,444	976 45	362 598 598	487	1,085 1
	o Read		5	1,067 1	442	500	2,881 1	976 45	187 426 599 0	655 853 11.01 13.87	1,254 1,451 1,367 60 60 60
	176		اد.	1,245 1	641	500	1, 886	976 45	389 0 464 598 0		. 451
			A	1,052	578	No Flow 500	1,630	976 45	352 0 416 599 0	768 12.49	1,367 1
			S	266	393	500	959 1	976 .:5	224 0 304 598	528 8.87	1, 126 60
			0	372	187	200	959 1,831 1,372 1,372	976	99 0 155 599 0	254	653
	Mini		Z	0	0	500	.,372 1	926	000000000000000000000000000000000000000	00	865 60
3	mum Salla and T		D Re	0	0	372.5	,372	976	0 0 6 5 0	00	599 609
SOLE	Minimum Sallaberry Rips: and Triangle T		Remarks								

XI. BASIS FOR COMPUTER PROGRAMS

XI. Basis for computer programs

Attached are the following:

- (1) Table XI-1 and Column Explanation
 "Distributing imported and natural flow Fresno River water."
- (2) Table XI-2. "Summary of monthly demands by reach."
- (3) Table XI-3. "Reach losses." (from Section II)

The study is based on the period Oct. 1, 1960-Sept. 30, 1972, and utilizes recorded and/or estimated daily flows at the following gages:

- (a) Fresno River near Daulton
- (b) Big Creek Diversion near Fish Camp
- (c) Soquel Diversion near Sugar Pine
- (d) North Fork Willow Creek near Sugar Pine. (Flows assumed Oct. 1, 1961-Aug. 6, 1965).

Table XI-1 is divided into 8 sections as follows:

- A. Developing historical natural flow at Hidden.
- B. Developing future (under M.I.D.-P.G.E. contract) imported, natural and total flow at Hidden.
- C. Apportioning future Hidden inflow and Madera Canal imports among Reach 1, 2 and 3 import and natural flow losses and apportioning natural flow after losses, by reach, to riparians above Franchi Dam.
- D. Developing M.I.D. diversions at Franchi Dam of Big Creek imports, Hidden natural flow under M.I.D.'s adjudicated 200 cfs right as adjusted by Soquel by-pass, and Madera Canal imports.

- E. Developing losses, riparian demand and riparian diversions in Reach 5 (Franchi Dam to Road 16 weir).
- F. Developing losses, riparian demand and riparian diversions in Reach 6 (Road 16 weir to Triangle T ranch).
- G. Developing diversions under Triangle T (3/9/45), Sallaberry (1/13/50) and M.I.D. (4/10/53) appropriative rights under Applications 11003, 13541 and 15287.
- H. Developing M.I.D. total diversions at Franchi Dam and flows to East Side Bypass, i.e., not used under any right.

Table XI-1 presents a variety of fictitious natural and imported flow situations using reach losses from Table XI-3 and April/May reach riparian demands from Table XI-2. Demands will vary monthly, of course. Also, we will want the computer program to reflect future developments (such as growth or reduction in reach demand from those being used). We look forward also to using M.I.D.'s computer as an operational tool in which current Big Creek, Soquel and Hidden inflow data and Madera Canal import will enable daily yields of rights to be calculated. For this reason, Table XI-1 includes Madera Canal examples.

Final computer studies depart from Table XI-1 and the column explanation in only two respects. Following an initial computer run in accordance with Table XI-1, comparison of daily Daulton recorded flows with recorded Soquel and Big Creek diversions revealed many days when negative natural flows existed. There being no measurements available of losses or accretions between either of the two diversions and the Daulton gage, the 1961-72 records were compared to estimate a loss figure that would eliminate the indicated negative natural flows at Hidden. Use of a 4 cfs loss value for each diversion appeared most reasonable and was applied to both imports in the final computer studies although Table XI-1 does not reflect such losses.

Table XI-1 also has a column to reflect Triangle T's appropriations under Application 11003. It appearing that this right seldom yielded any useful water (having in mind the extent of overlapping of riparian and appropriative places of use), this factor was eliminated in the final computer studies. However, as discussed in Section XIII, an analysis was made of one computer study to measure the yield of this right and the effect of recognizing it on the yields of the appropriative rights of Sallaberry (Application 13541) and M.I.D. (Application 15287).

Jaclin & Jopan demond Sheach 3 riper 120/ Cad 7 Reach 3 Nat. 220 0-0444000 Reach 3 intait 1048 & 1000TI diversious, о-6-4-4-вичининичено иман Reach Z ripar. downow Reach 2 riper. 2001 100/2 eeddwwww.usiaiaiaaaawwww.awiamia Apoch & matural -4-400000000 300 102201 -1,00 mi 5 2 2008 0 7 2 7 1 Reach 2 6%) Johns to the to Madara Cous diversious Reach I migal Reag L. I rivan 2600 Loss Rooch 1 Hatur. -mi / Seach / m-Reach 1 housed Distant sus ben Jotol fotore Stotal Suture in の4つらいこむららななととととりにありたひともなるとといいいと + 6 m to 12055 2. i = Future soque! POE-MID CONTROL Ser Soquel right por JEWillow C なるなななななななななななななるののいのへいつい Histon or estim 3 @ Hidden Histor, imposit divors @ Hickory Histor, Soquel ति विष्य देशक है हिर्देश divers. @ Hedden Histor Big Cropt Doulton Histor, flow at ニアンチをあるこのころととははいるいのかっち

j

LAN

reach rocker sized outen TAS Spreed on jour radio & & G direct crop. S RIDGE diversions a 2157-91 P2 G C. Ripor diversion 5 70701 roach 6 Sostule domand gon ingin TA ? S. ESBP-AT E. hing Steach 6 ripar. ARAGE 6 lower Enipar, divers 000000429368364444545 2040+ 2 2000A 7 FROOCH Soller Enipar. divas 0042826 J REDEL J SOLA 5 Reach 5 E Sala. 000047 Lucistovib ripar & 0000 - - - y u w 4 4 4 4 m 4 m 3 Peach & Availl Reach 5 total French Sollow Theory of Solobers buoman upinogin & 11:1016 5 7000 C Inomor nomodio Breach & MID cared & Joosh & & Actual nati them & below Franch. (8) Contative nat the of divers (Franch. TITIES PRIOR LA MITE . SHOWON'S OIH A TO divoysion Sor MID Madora Caust 00000000 Luciton ding & Luoisions diversions J.8/19 Soque1/18,C in ordet " Franchi 5 m 5 m 5 5 5 5 5 5 5 5 5 5 7 3 MD 11 200 cts

-77-

mm mm coo-CAESIONS (inoisianip Waster & poble 1850 Applie, 11003 · dorddo gogol 3 ANG APPING, 15287 14281,3799 34 A S. 1350-1-7/pr 1-12 S Total Reach & 一日山みょうしかなるこがあるころでは、これはいいいいのは、これのは、これのは、これのは、 3 Houth

-78-

Column Explanation

Table I distributing imported and natural Fresno River flow

(1)(2) Month and date

A. To develop (8), historical natural flow at Hidden Dam.

- (3) Flow recorded at Daulton gage.
 An input value.
- (4) Flow recorded at Big Creek diversion previous day and included in Daulton flow on indicated date. (One day travel time assumed to avoid situation where Big Creek plus Soquel on a date are greater than recorded at Daulton that day.)

An input value. See memo of 2/19/80 for missing record.

(5) Big Creek right.

An input value of:

50 cfs Oct. 1-Mar. 31

20 cfs Apr. 1-30

50 cfs May 1-July 15

0 cfs July 16-Sept. 30

(6) Flow recorded at Soquel diversion <u>previous day</u> and included in Daulton flow on indicated date. (Same travel time).

An input value. See memo of 2/19/80 for missing record.

(7) Historical import at Hidden Dam.

$$(7) = (4) + (6)$$

(8) Natural flow at Hidden Dam.

$$(8) = (3) - (7)$$

B. To develop (13), future total inflow to Hidden in accordance with MID-PGE contract.

- (9) Recorded flow at gage North Fork Willow Creek near Sugar Pine.
 An input value. See memo of 2/19/80 for missing record.
- (11) Future by-pass of divertable water to Bass Lake.
 (11) = (10) 1 cfs Oct. 1-July 31
 (11) = Zero Aug. 1-Sept. 30
- (12) Total future import at Hidden
 (12) = (10) (11) + lesser of (4) or (5) Oct. 1-July 31
 (12) = 1 cfs + lesser of (4) or (5) Aug. 1-Sept. 30
- (13) Total future inflow at Hidden (13) = (8) + (12)
- C. To apportion total Hidden flow between Reach 1, 2 and 3 import and natural flow losses and to apportion remaining natural flow among riparians above Franchi Dam.
 - (14) Reach 1 total losses.

 An input value of 11 cfs.
 - (15) Reach 1 import losses.
 Proportional part of total Reach 1 losses (14) borne by import water (12) at Hidden.
 (15) = (12)/(13) x (14), but when (13) ⊆ (14), (15) = (12)
 - (16) Reach 1 natural flow losses.

 Proportional part of total Reach 1 losses borne by natural flow at Hidden.

 (16) = (8) x (14), but when (13) = (14), (16) = (8)

- (17) Reach 1 riparian demand.

 An input value which varies from month to month and is subject to future development. Currently zero in all months.
- (18) Reach 1 riparian diversions.

 Currently zero. In the future a calculated value ≤ (17) depending on available natural flow at Hidden. See apportionment process under (24) and (29) below.
- (19) Madera Canal deliveries to Fresno River at head of Reach 2.
 An input value currently assumed at zero. (Example values are shown for dates of 13th, 24th and 25th in table.)
- (20) Reach 2 total losses.
 An input value of 4 cfs.
- (21) Reach 2 import losses.

 Proportional part of total Reach 2 losses (20) borne by import water available at head of Reach 2 [(12)-(15)].

 (21) = $\frac{(12)-(15)}{(12)-(15)+(8)-(16)} \times (20)$, but, when Madera Canal deliveries (19) are being made

 (21) = $\frac{(12)-(15)+(19)}{(12)-(15)+(19)+(8)-(16)} \times (20)$
- (22) Reach 2 natural flow losses.
 Proportional part of total Reach 2 losses (20) borne
 by natural flow available at head of Reach 2.
 (22) = (20)-(21)
- (23) Reach 2 riparian demand

 An input value which varies from month to month and is subject to future development.

- (24) Reach 2 riparian diversions.
 - $(24) = Zero when (8) \le (16) + (22)$
 - (24) = (23) when (8) = (16) + (17) + (22) + (23) + (27) + (28)
 - = \langle (23) when (8) \rangle (16)+(22) but \langle (16)+(17)+(22)+(23) and available natural flow at Hidden must be apportioned between (17) and (23)

and

- :<(23) when (8) > (16)+(18)+(24) but < (16)+(18)+
 (24)+(28) when available natural flow at
 the head of Reach 2 in excess of Reach 2
 and 3 losses must be apportioned between
 (23) and (28).</pre>
- Note: The principle here is that riparian diversions can be made in an upstream reach, after losses in that reach, if natural flow at the head of that reach is not greater than the total losses in that and the next reach downstream. If natural flow at the head of a reach is greater than the total losses in both reaches but not enough to also meet total riparian demand in both reaches then the natural flow after losses must be apportioned.
- Example, date 8th: after apportioning importnatural flow losses in Reaches 1 and 2,
 there remains 4 cfs of import [(12)-(15)-(21)]
 and 7 cfs of natural flow [(8)-(16)-(22)] at
 the head of Reach 3; therefore 2 cfs of
 riparian diversion can be made in Reach 2
 without adverse effect on Reach 3 riparians
 who would be unable to divert water anyway
 because of losses in Reach 3.
- Example, date 9th: after allocating import and natural flow losses in Reaches 1 and 2 there remains 7 cfs of import water and 11 cfs of natural flow at the head of Reach 3. When this 18 cfs total is allocated to Reach 3 import (4 cfs) and natural flow (7 cfs), there remains 4 cfs of natural flow available for allocation to riparians in Reaches 2 and 3, or (23) or (23) + (28) in Reach 2 and (28) in Reach 3.
- (25) Reach 3 total losses.

 An input value of 11 cfs.

(26) Reach 3 import losses.

Proportional part of Reach 3 losses borne by import water remaining at the head of Reach 3.

$$(26) = \frac{(12) - (15) - (21)}{(12) - (15) - (21) + (8) - (16) - (22)} \times (25), \text{ or}$$

when Madera Canal deliveries (19) are being made

$$(26) = \frac{(12) - (15) - (21) + (19)}{(12) - (15) - (21) + (8) - (16) - (22) + (19)} \times (25)$$

(27) Reach 3 natural flow losses.

Proportional part of Reach 3 losses borne by natural flow available at head of Reach 3.

$$(27) = (25) - (26)$$

(28) Reach 3 riparian demand.

An input value which varies from month to month and is subject to future development.

(29) Reach 3 riparian diversions.

$$(29)$$
 = Zero when $(8) \leq (16) + (17) + (22) + (27)$

$$(29) = (27)$$
 when $(8) \ge (16) + (17) + (22) + (23) + (27) + (28)$

See (24) above for apportioning procedure when (8) > (16)+ (17)+(22)+(27) but < (16)+(17)+(22)+(23)+(27)+(28)

D. To develop MID diversions at Franchi Dam.

- (30) MID "200 cfs right" at Franchi Dam under PG and E-MID Soquel contract.
 - (30) = 200 cfs (11) Oct. 1-July 31
 - (30) = 200 cfs Aug. 1-Sept. 30
- (31) MID Soquel/Big Creek import diversion at Franchi under "200 cfs right."

(31) = (12)-(15)-(21)-(26) with no Madera Canal deliveries (19).

With Madera Canal deliveries (19)

$$(31) = (12) - (15) - \left[(21) + (26) \right] \times \frac{(12) - (15)}{(12) - (15) + (19)}$$

- (33) MID Madera Canal delivery diversions. (33) = $(19) - [(21) + (26)] \times \frac{(19)}{(12) - (15) + (19)} > zero.$
- (34) Share of natural flow available at Franchi for allocation to MID's riparians capable of service via MC&I system.

Determined after (36) as:

$$(34) = \frac{(39)}{(39)+(40)+(41)+(42)+(50)+(51)+(52)+(53)} \times \left[(36)-(38)-(49) \right]$$

Provided, when $(36) \leq (37)$

(34) = (37) and

When (36) < (37) but $\leq (37) + (49)$

$$(34) = \frac{(39)}{(39)+(40)+(41)+(42)} \times \left[(36)-(38) \right] = 0$$
 normally because Sallaberry right (41) proportion is so large.

Note: Under the 3/4 AF/A limit for Sallaberry (45) and Triangle-T (58) riparian demand, the above must be adjusted as shown under the 22d date and the "next" 16th date in the example table.

Under 22d date: (46) is limited to 83 cfs because of the 1,095 sfd limit on prior 30-day native pasture diversions.

$$(46) = \frac{(41)}{(39)+(40)+(41)+(42)+(52)+(53)} \times \left[(36)-(38)-(49) \right]$$

$$= \frac{500}{5+4+500+3+6+54} \times (173-25-4)$$

$$= 126, \text{ but limited to } 1,095-1,012=83 \text{ from } (45)$$

$$(34) = \frac{(39)}{(39)+(40)+(42)+(52)+(53)} \times \left[(36)-(38)-(45)-(49) \right]$$

$$= \frac{5}{5+4+3+6+54} \times (173-25-83-4) = 4$$

Under "next" 16th, the 4 cfs diversion of (46) on date 15th "falls off" the 30 days and can be added to maintain the 1,095 cfs limit. Also

on that "next" 16th date, the Triangle-T native pasture diversion (59) having reached the 503 cfs limit of (58) on the date 30th, the limit still holds and Triangle-T can make no native pasture diversion on "next" date 16th but can make only crop-land diversion (57).

Thus on "next" date 16th, (46) = 4 cfs and (59) = 0 cfs while (34), (44), (47) and (57) are equal, respectively, to (39), (40), (42) and (52).

- (35) Total MID prior rights (non-appropriative under Application 15287) diversions at Franchi.
 - (35) = (31)+(32)+(33)+(34) but \Rightarrow 318 cfs, the assumed maximum diversion capacity at Franchi
- E. To develop losses, riparian demand, and riparian diversions in Reach 5 from Franchi Dam to Road 16 weir.
 - (36) Tentative natural flow available below Franchi Dam (used to apportion water among Reach 5 and 6 losses and riparian demands)

$$(36) = (8) - (16) - (22) - (24) - (27) - (29) - (32)$$

- (37) Actual natural flow below Franchi Dam (37) = (36)-(34)
- (38) Reach 5 total losses
 An input value of 25 cfs

- (39) Reach 5 demand of riparians in MID serviceable via MC and I system canals.
 An input value which varies from month to month and is subject to future development.
- (40) Reach 5 riparian demand of Averill serviceable by diversions upstream of Road 16 weir and outside MID.
 An input value which varies from month to month and which may be subject to future development.
- (41) Reach 5 riparian demand of Sallaberry for wild flooding 2,896 acres of native pasture.

 An input value of 500 cfs.

- (42) Reach 5 other riparian demand serviceable by diversions upstream of Road 16 weir.
 An input value currently reflecting Glantz' diversions.
 Varies from month to month and may be subject to future development.
- (43) Reach 5 total riparian demand (43) = (39)+(40)+(41)+(42)
- (44) Reach 5 Averill riparian diversions $(44) = \frac{(40)}{(39)+(40)+(41)+(42)+(52)+(53)} \times \left[(36)-(38)-(49) \right]$ See (34) above for other conditions.
- (45) Aggregate Sallaberry diversions (46) in sfd during prior 30 days. Limited to 3/4 AF/A on 2,896 A, or 2,172 AF = 1,095 sfd.

 An input value.
- (46) Sallaberry proportional share of tentative natural flow (36) available below Franchi Dam. $(46) = \frac{(41)}{(39)+(40)+(41)+(42)+(52)+(53)} \times \left[(36)-(38)-(49) \right]$ subject to the limit of (45)
- (47) Reach 5 other riparians proportional share of tentative natural flow (36) below Franchi Dam. $(47) = \frac{(42)}{(39)+(40)+(41)+(42)+(52)+(53)} \times \left[(36)-(38)-(49) \right]$ subject to procedure of (34) when Sallaberry (46) and Triangle-T native pasture (59) diversions are limited by (45) or (58).
- (48) Total Reach 5 riparian diversions (48) = (34) + (44) + (46) + (47)

F. To develop losses, riparian demand and riparian diversions in Reach 6 from Road 16 weir through Triangle-T ranch.

- (49) Reach 6 total losses
 An input value of 4 cfs
- (50)-(51) Riparian demands between Road 16 and Triangle-T East line.Input values currently zero but subject to future development.
- (52) Triangle-T riparian crop demand.

 An input value which varies from month to month and is subject to future development.
- (53) Triangle-T riparian native pasture demand.

 An input value limited to 60 cfs -(52) due to Road 9 diversion structure limited capacity. (That limit also may require reduction to 60 cfs -(50)-(51)-(52) if those riparian demands all develop.) Currently applicable to flooding of 1,329 A.
- (54) Total Reach 6 riparian demand (54) = (50)+(51)+(52)+(53)
- (57) Triangle-T riparian crop diversion $(57) = \frac{(52)+(53)}{(39)+(40)+(41)+(42)+(52)+(53)} \times \left[(36)-(38)-(49) \right]$ but (52)
- (58) Aggregate Triangle-T diversions to native pasture (59) in sfd during prior 30 days. Limited to 3/4 AF/A on 1,329 A or 997 AF = 503 sfd.

(59) Triangle-T riparian diversions to native pasture
$$(59) = \frac{(52)+(53)}{(39)+(40)+(41)+(42)+(52)+(53)} \times \left[(36)-(38)-(49) \right]$$
but $\Rightarrow 60 \text{ cfs } -(57)$

- (60) Total Triangle-T riparian diversion
 (60) = (57)+(59)
 (limited to 60 cfs due Road 9 diversion structure capacity.
 May be further limited in future at times if riparian
 diversions occur between Road 9 and Triangle-T East line).
- (61) Total Reach 6 riparian diversions (61) = (55) + (56) + (60)
- G. To develop diversions under Triangle-T (3/9/45), Sallaberry (1/13/50) and MID (4/10/53) appropriative rights.
 - (62) Triangle-T Application 11003 appropriative right.

 An input value of zero since Road 9 structure limits flow to 60 cfs which all is assumed useable under riparian right.
 - (63) Sallaberry Application 13541 appropriative right.

 An input value of 45 cfs for use on 480-acre service area outside riparian area.
 - (64) MID "second 200 cfs" Application 15287 appropriative right to divert at Franchi Dam.
 An input value of 200 cfs limited by assumed 318 cfs total diversion capacity including (35).
 - (65) Blank
 - (66) Total appropriative rights
 (66) = (62)+(63)+(64)
 - (67) Triangle-T diversion under Application 11003.
 (67) = zero unless Road 9 diversion capacity is increased considerably.

- (68) Aggregate Sallaberry diversions (69) under Application 13541 in sfd during prior 30 days. Limited to 3/4 AF/A on 480-acre service area outside riparian area = 360 AF = 182 sfd.

 An input value.
- H. To total MID appropriations at Franchi Dam and to identify available water (spill) entering East Side By-pass unused under any right.
 - (70) MID diversions at Franchi under Application 15287. (70) = excess over (69) limited so (70)+(35) is $\nearrow 318$ cfs = (37)-(38)-(44)-(46)-(47)-(49)-(57)-(59)-(62)-(69)
 - (71) Total MID diversions at Franchi Dam (71) = (35)+(70) but \nearrow 318 cfs
 - (72) Blank
 - (73) Spill to East Side By-pass, i.e., water not used under any upstream rights.

Table XI-2 Summary of monthly demands by Reach

Total	0	1655	6845	3444	2410	!	2784	4470
Dec.	00	00	00	00	00	2172	00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Nov.	00	00	00	00	00	2172	00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Oct.	00	101	448	139	133	2172	187	274 4 997 56
Sept.	00	209	744	341 6	225 4	2172	393	567 9 997 51
Aug.	00	340	1074	639	413	2172	578	822 13 997 47
July	00	397	1280	764	481	2172	641	913 15 997 45
June	00	261	1155	630	437	2172	442	715 12 997 48
May	00	164	964	453	354	2172	265	542 9 997 51
Apr.	00	107	676	269	227	2172	163	397 6 997 54
Mar.	00	76	481 8	169	140	2172	115	294 5 997 55
Feb.	00	00	00	33	00	2172	00	37 1 997 59
Jan.	00	00	4 0	7	00	2172 500	tz) 0 0	9 0 0 0 0 0 0 0
	AF cfs	AF cfs	AF cfs	AF	AF Cfs	Sallaberry Max. AF cfs	Other (Glantz AF cfs	Crop AF cfs Pasture Max. cfs
	Reach 1	Reach 2	Reach 3	Reach 5 MID	Averill AF	Sallabe Max. AF	Othe	Reach 6 T Crop AF cfs T Pasture Max. cfs

Table XI-3
Reach losses

Location	Reach	Loss				
Hidden Dam		a r				
	1	ll cfs				
Madera Canal						
	2	4				
Head of Island						
	3	11				
Franchi Dam	•	125				
Franchi Dam	4	0				
	5	25				
Road 16 weir						
	6	4				
E.S.B.P/ T	26	*				
	ma La di da					
	Total loss	55 cfs				

Taken from Don Roberts' memo of 7/5/79 to R. L. Stanfield.

XII. COMPUTER PROGRAMS

XII. Computer programs

Five computer runs were made with each following essentially the steps of Table XI-1 and its accompanying column explanation. The studies cover the following combinations of Sallaberry/Triangle T assumptions as to extent of riparian land and, in the case of Sallaberry, corresponding appropriative land under Application 13541:

- 1. (a) Sallaberry maximum riparian (2,896 A) and corresponding appropriative (480 A).
 - (b) Triangle T maximum riparian (2,783 A including 1,399 A native pasture, 1,281 A of other crops, and 103 A of non-irrigable channels).
 - (c) Road 9 outlet capacity 60 cfs.
- 2. (a) Sallaberry minimum riparian (1,830 A) and corresponding appropriative (1,301 A).
 - (b) Triangle T minimum riparian area (2,121 A, including 840 A native pasture, 1,183 A of other crops, and 98 A of non-irrigable channels).
 - (c) Road 9 outlet capacity 60 cfs.
- 1(a) and 2(b) w/60 cfs Road 9 outlet capacity.
- 4. 1(b) and 2(a) w/60 cfs Road 9 outlet capacity.
- 5. l(a) and l(b) w/ 100 cfs Road 9 outlet capacity.

Each month of the 12-year study period occupies 3 pages in each study. The first page and the first 5 columns of page 2 (through "Natural Q Franchi Diversion") are the same each month of each of the 5 studies since the variations among the study involve only apportionment of flows below Franchi Dam.

At the end of each year are shown the daily diversions each month by reach and for Sallaberry's Application 13541, M.I.D.'s total at Franchi Dam, and unused system water (spill) below the last diversion.

As in Table XI-1, the columns are grouped to develop certain information:

- <u>Page 1</u>. A. To develop Hidden natural inflow. Cols. 1-4 Big Creek and Soquel historical diversions each reduced by 4 cfs to reflect losses and one-day travel time allowed.
 - B. To develop Hidden future inflow. Cols. 5-7. Reflects elimination of Soquel import under M.I.D.-P.G. and E. contract and conforming Big Creek import to entitlement (historically, both imports exceeded entitlements at times).
 - C. Apportionment of flows to losses and riparians above Franchi Dam in Reaches 1, 2 and 3. Cols. 8-18, with Col. 10 "Madera Canal Import" inserted for possible use in future actual-operating studies.

Losses in each reach are proportioned between import and natural flow in each reach according to amounts of each at head of the reach.

Page 2. D. To develop M.I.D.'s diversions at Franchi Dam under its adjudicated right to all flow at Franchi Dam up to 200 cfs including imports. Cols. 1-5. M.I.D.'s diversion under this right is taken as the total Franchi flow but not to exceed all import (Col. 2) plus the M.I.D. right to natural flow after allowing for M.I.D.'s bypassing of Soquel water. For example, on February 13, 1962, M.I.D. bypassed 8.10 cfs (shown as "P.G. and E. Exchange" in Col. 9) and its adjudicated right is reduced to 200 -8.10 = 191.9 cfs; with 18.48 cfs of

Big Creek import being diverted, M.I.D. is entitled to 191.9 -18.48 = 173.42 cfs (Col. 5) of the 904.08 cfs (Col. 1) of natural flow at Franchi. M.I.D.'s diversion under its "200 cfs right as adjusted for Soquel bypass" is always Cols. 2 + 5.

- E. To develop losses and riparian diversions in Reach 5.
 Cols. 6-16, except Cols. 7-9.
 - (a) Col. 10 is the flow remaining below Franchi Dam after total flow at Franchi (Col. 4) is reduced by M.I.D.'s diversions under its adjusted 200 cfs adjudicated right (Cols. 2 + 5).
 - (b) The first 25 cfs of Col. 10 flow meets Reach 5 losses.
 - (c) When Col. 10 is 26-29 cfs (see April 1, 1963), 25 cfs is lost in Reach 5 and the remainder is proportioned according to Table X-2 demands to M.I.D. Reach 5 riparians (Col. 6), other Reach 5 crop land (Col. 12), and Sallaberry native pasture (Col. 13) provided the accumulated total of the latter (Col. 14) does not exceed 3/4 AF per acre in any 30 successive days.

When 29 cfs or less passes Franchi, all would be lost in Reach 5 and 6 losses and none would be available for diversion in Reach 6 even if Reach 5 riparians diverted none. M.I.D. Reach 5 diversion apportionment is entered in Col. 6 and total diversion at Franchi Dam (Col. 8) = Col. 2 + 5 + 6.

Note that Col. 10 is total flow passing Franchi
Dam before deducting Col. 6 and 7, i.e., Col. 10 = Col. 4 -Col. 2 -Col. 5.

Page 3. F. To develop Reach 6 riparian diversions, diversions under Sallaberry's Application 13541, M.I.D. diversions under Application 15287, and unused water or spill.

- (a) Outflow from Reach 5 (i.e., past the Road 16 weir) is in the last column on page 2.
- (b) When 30 cfs or more passes Franchi Dam (Col. 10), 25 cfs is allocated to Reach 5 losses (Col. 11 on page 2) and 4 cfs is allocated to Reach 6 losses (Col. 1).
- (c) Flow passing Franchi in excess of Reach 5 and 6 losses is proportioned according to Table X-2 demands to Reach 5 and 6 riparians (Cols. 6, 12 and 13 as limited by Col. 14 on page 2, and Cols. 2, 3 and 4 with Col. 4 limited to the Col. 5 accumulated diversion to Triangle T pasture of 3/4 AF per acre in any period of 30 successive days).
- G. To develop flows available for appropriative rights.
 - (a) When flows passing Franchi Dam are more than enough to meet Reach 5 and 6 losses (Col. 11 on page 2 and Col. 1 on page 3) and total Reach 5 and 6 riparian demand (Cols. 6, 12 and 13 as limited by 14 on page 2 and Cols. 2, 3 and 4 as limited by Col. 5 on page 3), water is available for satisfaction, in order, of Sallaberry's Application 13541 and M.I.D.'s Application 15287.
 - (b) Flows available for the appropriators after all riparians is in Col. 8 on page 3.
 - (c) Sallaberry's Application 13541 diversion is in Col. 9 as limited by the Col. 10 accumulated diversion in the prior 30 days of 3/4 AF per acre.
 - (d) M.I.D.'s Application 15287 diversion is in Col. 11. (But see H. below).
- H. To develop M.I.D.'s total diversion at Franchi Dam and water spilled past Triangle T ranch, i.e., not required for any right.

- (a) M.I.D.'s total diversion at Franchi (Col. 8, page 2) is the sum of Cols. 2, 5, 6 and 7 on page 2 with that Col. 7 being the same as Col. 11 on page 3. Col. 8 on page 2 is limited to 318 cfs, the presently—estimated maximum diversion rate at Franchi Dam.
- (b) The last Col. 12 on page 3 is system spill or flow passing Triangle T ranch and exceeding all rights.

It is noted that Triangle T's Application 11003 right is prior to both Sallaberry's and M.I.D.'s appropriative right but is not reflected in the computer studies. See Section XIII.

XIII. TRIANGLE T APPROPRIATION UNDER APPLICATION 11003

XIII. Triangle T appropriation under Application 11003

The computer studies do not reflect directly the yield of the Triangle T appropriative right. That yield, and the effects of satisfying it on the yields of Sallaberry's (A-13541) and M.I.D.'s (A-15287) appropriative rights and on spill or unused water of the system can be learned from analysis of the studies.

Water is available under A-11003 only when flows at Franchi Dam exceed downstream losses of 29 cfs and requirements of riparians.

From the diversion season (February 1-July 15 of each year), the location of the diversion point and existing facilities, and the known riparian overlap, it appears the intent is to use the appropriated water for irrigation of crop land in Secs. 14 (63 A), 16 (83 A), 20 (319.5 A), 21 (380 A), 22 (49.0 A), 28 (200 A) and 29 (131 A) for a maximum of 1,225.5 A. At 80 AF/A the 17.5 cfs diversion right appears a little large which probably reinforces the belief that the 1,225.5 A is a maximum.

Water requirement

It is assumed the 1,225.5 A excludes roads, ditches and verges. There are 1,281 A of crop land in the Triangle T riparian area including a 5% allowance for roads, ditches and verges. Distribution of cotton, hay and barley on the riparian and appropriative area appear comparable. Accordingly, the monthly demand on the appropriative land is proportioned from that on the riparian land as follows (1,225/0.95 x 1,281):

February	37 AF	0.66 cfs
March	296	4.81
April	400	6.72
May	546	8.88
June	720	12.10
July	919	14.95 (to 15th)

There is no crop-land requirement on Triangle T in November and December and only barley has such a requirement in January and February. Barley on riparian land requires 9 AF (0.15 cfs) in January and 37 AF (0.66 cfs) in February. If it is considered that crop-land has priority over native pasture and maximum diversion capacity is 60 cfs, and if water is available, the 60 cfs can be diverted to riparian pasture land in November and December; in January, 0.15 cfs and 59.85 cfs can be delivered to riparian crop and pasture land, respectively, while in February 0.66 cfs and 59.34 cfs can be so diverted.

No water can be delivered to the appropriative land when there is a demand for the full 60 cfs on riparian land. Water being available, the only time the appropriative land can be serviced at all is during a 30-day period when the 3/4 AF/A limit on riparian pasture land is in effect. At such time, riparian crop land demand is always far less than 60 cfs and there is capacity available in the Road 9 outlet for delivery of water to the appropriative land.

Thus the following prevails:

- (1) When riparian demand is not limited by the 3/4 AF/A limit, no water can be delivered to the appropriative land.
- (2) When water cannot be delivered to the riparian pasture land because the 3/4 AF/A limit is in effect, water up to the above crop demand can be delivered to the appropriative land and the supply available to Sallaberry (A-13541) and Madera (A-15287) may be diminished accordingly.

If it be assumed that the silts clogging the channel below the outlet are removed, thus restoring the design outlet capacity to 100 cfs, the above is still valid if 100 cfs is substituted for 60 cfs. The effect in this case is to reduce the time required to reach the 3/4 AF per A limit in each period of water availability thereby increasing the number of days in each such period when water can be diverted to the appropriative land.

Availability of useful water under A-11003

Table XIII-1 shows the dates during the 12-year study period when water is available with Road 9 outlet capacities of 60 and 100 cfs. The table also indicates the number of days in each such occurrence when diversion would reduce Sallaberry's and M.I.D.'s diversions under their junior appropriative rights.

The table is constructed from data in Study No. 1 (maximum Sallaberry/maximum Triangle T/60 cfs) and No. 5 (maximum Sallaberry/maximum Triangle T/100 cfs). Data used are on page 3 of the studies for each month. Cols. 6, 8, 9 and 11 are used. Having in mind that all calculations leading to Col. 8 (outflow below Triangle T) reflect all upstream diversions under riparian rights, the only times water can be available for Triangle T's senior appropriative right is when water is available concurrently with Road 9 outlet capacity excess to Triangle T's riparian needs.

The concurrency exists when (1) there is outflow shown in Col. 8 and Triangle T's total diversion (Col. 6) is less than the outlet capacity of 60 or 100 cfs.

For example, using February, 1962, for illustration, there is no water available for Reach 5 and 6 diversions February 1-8, incl. (as shown in Col. 10, p. 2). February 9-13, incl., there is ample water to meet Reach 5 and 6 riparian demands (as limited by Road 9 outlet capacity) and to meet part or all of Sallaberry's and M.I.D.'s junior appropriative demands. (On the 9th, only 10.06 cfs of M.I.D.'s can be met with the available water). On February 28, water passing Franchi Dam (from Col. 10, p. 2) is again inadequate for Reach 5 losses so there is none for Reach 5 and 6 riparians. From February 14-27, incl., Triangle T's riparian pasture land demand was not limited on 11 days (60 cfs outlet) or 14 days (100 cfs outlet) and capacity was available to meet Triangle T's appropriative demand. With Sallaberry appropriative diversions being limited by the 3/4 AF per acre pasture

limit on and after February 13, Triangle T appropriations during the February 14-27 period would not affect Sallaberry. M.I.D.'s total diversion (page 2, Col. 8 of the study) was limited to the 318 cfs diversion capacity through February 22 (317.99 cfs on the 22d), so Triangle T's appropriative diversion could adversely impact M.I.D. only on February 23-27, incl.

Table XIII-1 shows that exercise of Triangle T's appropriative right under A-11003 would adversely affect Sallaberry's A-13541 and M.I.D.'s A-15287 appropriations as follows:

With Road 9 outlet capacity 60 cfs: Sallaberry - none M.I.D. - on 29 days

With Road 9 outlet capacity 100 cfs: Sallaberry - on 4 days M.I.D. - on 39 days

Table XIII-1 also shows:

- (a) With Road 9 outlet capacity at 60 cfs:
 - (1) Over the 12 years, Triangle T could divert a total of 1,525 AF on 146 days.
 - (2) Over the 12 years, diversions would average 127 AF/year.
 - (3) Omitting 1967 and 1969, the other 10 years average 23 AF/year.
- (b) With Road 9 outlet capacity at 100 cfs:
 - (1) 12-year diversions on 191 days total 1,947 AF.
 - (2) Over the 12 years, diversions average 162 AF/year.
 - (3) Omitting 1967 and 1969, the other 10 years average 38 AF/year.

The Triangle T appropriative right yields 80-85% of the 1961-72 supply in the two years, 1967 and 1969, when the entire system is over-supplied. Half to two-thirds the days when M.I.D. and Sallaberry are affected also occur in those two years.

Table XIII-1

Water availability and effects of taking under Application 11003

1 1	OI	_							(6)		×					10						<u>a</u>
ted		ł	ഗ	10)	٦	2	4	i	L	റെപ	i		7	7	1	0	0	0	0	0	i
apacity affected	berry	1	0	00)	1	0	0	1	C	00	ł		7	0	0	0	0	0	0	0	I
outlet capacity Days affecte	Tri-T	Ĭ.	14	п ч)	п	m	9	ļ	ŗ	7 7	1		m	10	7	11	14	11	11	н	!
Road 9	AF	1	18	10		Н	4	80	i i		160	ţ	įį.	4	95	19	147	187	194	194	24	ĺ
100 cfs	cfs	1	0.65	4.81	•	9.	0.65	.7	1		0.89	}		0.65	ω.		6.72			8.88	12.10	!
V ed	MID		5	но)	0	1	г	ŀ	Ľ	ი	- {		0	9	7	0	0	0	0	0	1
apacity affected Salla-	berry	1	0	00		0	0	0	ļ	c	00	1		0	0	0	0	0	0	0	0	I
outlet capacity Days affecte	Tri-T	į	디	-1 so		1	Н	7	ł	c	0 ~	1		i	9	2	11	10	11	7		1
60 cfs Road 9 o	AF	1	14	10		1	Н	27	ļ	נסנ	107	1		l i	57	19	147	133	194	123	13	Į.
cfs	ī															150 1		~	~	~	-10	,
9	cfs	į	0.65	4.81	E6	1	0.65	6.72	ļ		0.89	1		ŀ			•			8.88		!
	Dates	1961	19	Mar. 3 Mar. 6-10	1963	Feb. 11	Feb. 13-15	Apr. 21-26	1964	1965	1	1966	1967	Feb. 3-5	Mar. 17-26	Mar. 29-30	. 1-1	•		20-	June 1	1968

V ced	MID	O	0	0	0	0	Н	7	7	-1	0	0	0	•	4	I	!		39	
apa affe Salla	berry	O) H	0	0	0	0	0	٦	0	0	0	0	(0	t i	ľ		4	
Road 9 outlet c	Tri-T	12	7	8	14	n	89	13	7	2	n	٦	9	(9	I	i		191	
	AF	75	, w	10	134	29	9/	173	27	29	53	89	106	į	57	!	I	Å	1,947	
100 cfs	cfs	0.65		0.65	4.81	4.81	•	•	6.72		•		•		4.81	!	1			
ed d	MID	C	· ~	0	0	0	0	2	2	H	0	0	0	(7	1			29	
capac affec Salla-	berry	c	0	0	0	0	0	0	0	0	0	0	0	,	0	ŀ	: ! !		0	
let c Days	Tri-T	2	4	4	14	m	m	13	7	7	М	7	9	Ć	7	!	İ		146	
60 cfs Road 9 out	AF	15	n P	2	134	29	29	173	27	27	53	8	106		19	I	1		1,525	
	cfs		0.65												4.81	!	ı			
	Dates	1969 Feb 1-12	14-	. 21	Mar. 1-14	. 17	Mar. 24-31	ή.	. 17	Apr. 26-30	May 1-3		May 8-13	٠.	Mar. 6-11	1971	1972		TOTALS	