平成23年度 日本留学試験(第1回)

試験問題

化学

「解答科目」記入方法

解答科目には「物理」、「化学」、「生物」がありますので、この中から2科目を選んで解答してください。選んだ2科目のうち、1科目を解答用紙の表面に解答し、もう1科目を裏面に解答してください。

「化学」を解答する場合は、右のように、解答用紙にある「解答科目」の「化学」を〇で囲み、その下のマーク欄をマークしてください。

科目が正しくマークされていないと、探点されません。

計算には次の数値を用いること。また、体積の単位記号 L はリットル(liter)を表す。

標準状態 (standard state): 0° C, 1.0×10^{5} Pa (= 1.0 atm)

標準状態における気体 1 mol の体積 : 22.4 L

気体定数 (gas constant) : $R = 8.31 \times 10^3 \text{ Pa·L/(K·mol)}$

アボガドロ定数 (Avogadro constant): $N_A = 6.02 \times 10^{23}$ /mol

ファラデー定数 (Faraday constant): $F = 9.65 \times 10^4$ C/mol

原子量 (atomic weight): H:1.0 C:12 N:14 O:16 Na:23

問 1 次の①~⑥の原子またはイオンのうち、電子 (electron) の総数が<u>他と異なるもの</u>を 一つ選びなさい。

① Al^{3+} ② Ca^{2+} ③ F^- ④ Na^+ ⑤ Ne ⑥ O^{2-}

間2 周期表 (periodic table) に関する次の記述①~⑤のうち, 正しいものを一つ選びなさい。

2

- ① 周期表中の元素 (element) の数は、100以下である。
- ② 金属元素 (metallic element) は、どの族 (group) にも含まれている。
- ③ Li から始まる周期 (period) の元素では、その原子の電子配置 (electron configuration)の最外殻 (outermost shell) は M 殻 (M shell) である。
- ① 同族の典型元素 (main group element) は、互いに価電子 (valence electron) の数が 等しい。
- ⑤ 典型元素は、すべて非金属元素 (nonmetallic element) である。

問3 次の記述(a)~(c)にそれぞれあてはまる物質の組み合わせとして最も適当なものを、下表の①~⑥の中から一つ選びなさい。

- (a) 直線状の分子である。
- (b) 共有結合 (covalent bond) の結晶 (crystal) をつくる。
- (c) 極性 (polarity) をもたない。

	а	b	С
①	CO_2	CaO	CCI ₄
2	CO_2	ダイヤモンド	NH ₃
3	H ₂ O	SiO ₂	CCl ₄
4	H ₂ O	ダイヤモンド	CH₄
⑤	нс≡сн	MgO	CH ₄
6	НС≡СН	SiO ₂	CCI ₄

注) ダイヤモンド (diamond)

問 4	4 15 mol/L のアンモニア水 NH₃ aq の密度(density)は 0.90 g/cm³ である。	この
	アンモニア水中のアンモニアの質量パーセント濃度(mass percent concentration)	(%)
	として最も近い値を、次の①~⑤の中から一つ選びなさい。	! %

① 14 ② 18 ③ 24 ④ 28 ⑤ 34

問 5 ある窒素酸化物 (nitrogen oxide) の質量 (mass) の組成 (composition) は, 窒素 N が 63.6%, 酸素 O が 36.4%である。この窒素酸化物として最も適当なものを, 次の①~⑤の中から 一つ選びなさい。

① NO ② NO $_2$ ③ N $_2$ O ④ N $_2$ O $_3$ ⑤ N $_2$ O $_4$

問 6 0.10 mol/L の酸 (acid) A 10 mL を 0.10 mol/L の水酸化ナトリウム水溶液 NaOH aq によって中和滴定 (neutralization titration) をしたところ, 次の図の滴定曲線 (titration curve) を得た。使用した酸 A と終点 (end point) を決定する指示薬 (indicator) の組み合わせとして最も適当なものを, 下表の①~⑥の中から一つ選びなさい。ただし, メチルオレンジ (Methyl Orange) の変色域 (transition interval) は pH 3.1~4.4, フェノールフタレイン (phenolphthalein) の変色域は pH 8.0~9.8 である。

	酸 A	指示薬
1	塩酸 HCI	フェノールフタレイン
2	塩酸	メチルオレンジ
3	酢酸 CH₃COOH	フェノールフタレイン
4	酢酸	メチルオレンジ
⑤	硝酸 HNO ₃	フェノールフタレイン
6	硝酸	メチルオレンジ

 問7
 次の化学反応式①~④のうち、下線をつけた原子の酸化数(oxidation number)が反応前に

 比べて最も大きく減少しているものを一つ選びなさい。
 7

- ① $Cu + 4HNO_3 \longrightarrow Cu(NO_3)_2 + 2H_2O + 2NO_2$
- ② $2A1 + Fe_2O_3 \longrightarrow Al_2O_3 + 2Fe$
- 3 2NaHCO₃ \longrightarrow Na₂CO₃ + H₂O + CO₂
- 4 5H₂O₂ + 2KMnO₄ + 3H₂SO₄ \longrightarrow 5O₂ + K₂SO₄ + 2MnSO₄ + 8H₂O

問 8 白金電極 (platinum electrode) A と, 炭素電極 (graphite electrode) B を, 図のように直流電源 (direct-current source) につなぎ, 塩化ナトリウム水溶液 NaCl aq を 1.0 A の電流で 32 分 10 秒間 電気分解 (electrolysis) した。

電極 A と B それぞれで発生した気体とその体積 [mL] の組み合わせとして最も適当なものを、次表の①~⑨の中から一つ選びなさい。ただし、気体の体積は標準状態における体積とする。

	電	乙極 A	電	極 B
	気体	体積〔mL〕	気体	体積〔mL〕
①	Cl ₂	224	H ₂	224
2	Cl ₂	448	H ₂	448
3	Cl ₂	448	O_2	112
4	H ₂	224	Cl ₂	224
5	H ₂	224	Cl ₂	448
6	H ₂	448	O_2	112
7	O ₂	112	Cl ₂	224
8	O ₂	112	H ₂	224
9	O_2	224	H ₂	448

問 9	沙	この化合物①~⑤	かうち, 0.10	mol/L 水	溶液の凝固点	(freezing p	oint)が	<u>最も低いも</u>	<u>の</u>
	を一	一つ選びなさい。						4	9
	①	アンモニア NH3	2	塩化ナト	、リウム NaC	3	グルコ	ース (glucos	se)
	4	尿素(urea)	⑤	硫酸ナー	・リウム Na ₂	SO ₄			
問 1	0 1	失 Fe を主成分とす	「る触媒(cat	alyst)を	用いて,高温 [・]	で水素 H ₂ と	窒素 N ₂	を反応させ	る
	٤,	次のようにアンモ	テニア NH3	が生成す	る。				
		$N_2 + 3H_1$, = 2NH	. + 9	2.2 kJ/mol				
		112 / 311	2 21111	, , ,,	2.2 K3/IIIOI				
	S	の反応が平衡状態	と (equilibriu	m state)	にあるとき,	アンモニア	の生成量	せを増やす操	作
	とし	て最も適当なもの	のを,次の①)~(5) <i>0</i>) q	コから一つ選	びなさい。		1	0
	1	触媒の量を増やす	; 。						
	2	反応時間を長くて	する。						
	③ 温度を変えないで、圧力を上げる。								
	④ 圧力を変えないで、温度を上げる。								
	⑤	圧力を下げて, 流	温度を上げる) a					
問 1	1 %	次の金属(a)~(e)の	うち, 硫酸鉀	同(II)水溶;	夜 CuSO₄aq (こ浸すと銅(Cu が析	出(depositio	n)
	する	ものはどれか。聶	長も適当な組	み合わせ	を, 下の①~	~⑥の中から	一つ選び	びなさい。	
								1	1
	(a)	Ag (b) Fe	(c) H ₂	g (d)	Pt (e)	Zn			
	①	a, b ② a	ı, c ③	a, d	① b, e	⑤ c, e	6	d, e	

問 12 次の化学反応式①~⑤のうち、酸化還元反応 (oxidation-reduction reaction) であるものを 一つ選びなさい。

①
$$P_4O_{10} + 6H_2O \longrightarrow 4H_3PO_4$$

②
$$Pb(NO_3)_2 + H_2S \longrightarrow PbS + 2HNO_3$$

$$\textcircled{4}$$
 2NH₄Cl + Ca(OH)₂ \longrightarrow CaCl₂ + 2H₂O + 2NH₃

$$5$$
 $3Fe_2O_3 + CO \longrightarrow 2Fe_3O_4 + CO_2$

問 13 Na₂CO₃, NaHSO₄, NH₄Cl の水溶液の性質の組み合わせとして最も適当なものを, 次表の

①~⑧の中から一つ選びなさい。

13

	Na ₂ CO ₃	NaHSO₄	NH₄Cl
1	中性	酸性	中性
2	中性	酸性	酸性
3	中性	塩基性	中性
4	中性	塩基性	酸性
(5)	塩基性	酸性	中性
6	塩基性	酸性	酸性
7	塩基性	塩基性	中性
8	塩基性	塩基性	酸性

注) 中性 (neutral), 酸性 (acidic), 塩基性 (basic)

問 14 次の記述(a)~(c)にあてはまる金属の組み合わせとして最も適当なものを、下表の①~⑥の中から一つ選びなさい。

- (a) 濃硝酸 conc. HNO₃ には溶けないが、希硫酸 dil. H₂SO₄ には溶ける。
- (b) 塩酸 HCl aq や水酸化ナトリウム水溶液 NaOH aq のいずれにも溶ける。
- (c) 電気や熱を最もよく導く。

	а	b	С
1)	Ag	Al	Fe
2	Ag	Fe	Al
3	Al	Fe	Ag
4	Al	Ag	Fe
(5)	Fe	Ag	Al
6	Fe	Al	Ag

問 15 金属イオン Ba²⁺, Cu²⁺, Zn²⁺ を含む水溶液に, 次の図のような操作をして, 各イオンを分離した。沈殿 (precipitate) **a**, **b** および ろ液 (filtrate) **c** に主に含まれる金属イオンの組み合わせとして最も適当なものを, 下表の①~⑥の中から一つ選びなさい。

15

	а	b	С
①	Ba ²⁺	Cu ²⁺	Zn ²⁺
2	Ba ²⁺	Zn ²⁺	Cu ²⁺
3	Cu ²⁺	Ba ²⁺	Zn ²⁺
4	Cu ²⁺	Zn ²⁺	Ba ²⁺
5	Zn ²⁺	Ba ² '	Cu ²⁺
6	Zn ²⁺	Cu ²⁺	Ba ²⁺

問 16	次の仕	比合物(a)∼(f)のうち	, 1-ブテン	(1-butene)	の構造異性体	(structural	isomer) 17	ţ
بخ	れか。	最も適当な組み合わ)せを,下の	70~8の中	から一つ選び7	なさい 。	16	5

- (a) $CH_2 = CH CH_3$ (b) $CH_3 CH_2 CH_2 CH_3$ (c) $CH_3 CH = CH CH_3$

- (d) $CH_2 = CH CH = CH_2$

- (1) a, b, d
- ② a, c, e
- ③ a, d, f
- ④ b, c, e

- ⑤ b, d, f
- ⑥ c, d, e
- ⑦ c, e, f
- ® d, e, f
- 問 17 次の化合物(a)~(f)のうち, 酸性 (acidic) 水溶液中で過マンガン酸カリウム KMnO, と 反応する化合物の組み合わせとして最も適当なものを,下の①~⑥の中から一つ選び 17 なさい。
 - (a) エチルアルコール (エタノール) (ethyl alcohol (ethanol))
 - (b) 酢酸 (acetic acid)
- (c) シクロヘキサン (cyclohexane)
- (**d**) 1-ブテン(1-butene)
- (e) プロパン (propane)
- (f) ベンゼン (benzene)
- ① a, c
- ② a, d
- ③ b, d
- 4 b, f
- ⑤ d. e
- 6 e, f
- 問 18 ベンゼン (benzene) とシクロヘキセン (cyclohexene) の混合物を, 触媒 (catalyst) を 用いて完全に水素化 (hydrogenation) した。この反応では 10 mol の水素 H₂ を要し, 6 mol のシクロヘキサン (cyclohexane) が生成した。混合物に含まれていたベンゼンの量 [mol] として最も適当なものを、次の①~⑤の中から一つ選びなさい。 18 mol
 - (I) 1
- ② 2
- ③ 3
- **4**
- ⑤ 5

- 問 19 次の反応(a), (b)でそれぞれ得られる生成物は下の化合物(i) \sim (v)の中のどれか。その組み合わせとして最も適当なものを、下表の① \sim ⑥の中から一つ選びなさい。
 - (a) 高温・高圧で、クロロベンゼン (chlorobenzene) を水酸化ナトリウム NaOH と反応 させる。
 - (b) 酸性 (acidic) 条件で, p-キシレン (p-xylene) を過マンガン酸カリウム KMnO_4 と 反応させる。

соон

	а	b
①	i	iv
2	i	v
3	iii	ii
4	iii	v
5	v	ii
6	v	iv

問 20 次の化合物(a)~(e)のうち、縮合重合反応 (condensation polymerization) により合成される ものはどれか。最も適当な組み合わせを、下の①~⑥の中から一つ選びなさい。

- (a) ナイロン 66 (6,6-ナイロン) (nylon 6,6) (b) ポリエチレン (polyethylene)
- (c) ポリエチレンテレフタラート (poly(ethylene terephthalate))
- (d) ポリ酢酸ビニル (poly(vinyl acetate)) (e) ポリスチレン (polystyrene)
- ① a, c ② a, e ③ b, c ④ b, e ⑤ c, d ⑥ d, e

化学の問題はこれで終わりです。解答欄の **21** ~ **75** はマークしないでください。 解答用紙の科目欄に「化学」が正しくマークしてあるか、もう一度確かめてください。

この問題冊子を持ち帰ることはできません。