Κινηματική

Σύνοψη εννοιών

- Κινηματική: Περιγραφή της κίνησης ενός σώματος
- 🔷 Θέση και μετατόπιση
- Ταχύτητα
 - Μέση
 - Στιγμιαία
- **Επιτάχυνση**
 - Μέση
 - Στιγμιαία

Κίνηση - Τροχιές

 Πετάξετε ένα αντικείμενο στον αέρα και μετρήστε την θέση του σε πολλές διαδοχικές χρονικές στιγμές

Θέλουμε ένα ρολόι για μέτρηση χρόνου και μια μονάδα μήκους για μέτρηση του χ

Σύστημα συντεταγμένων – άξονας x (χρόνος) - άξονας y (θέση)

Γράφημα θέσης-χρόνου

Αρχικός χρόνος: t_i Αρχική θέση: y_i

Τελικός χρόνος: t_f Τελική θέση: y_f

Το γράφημα δίνει τη θέση συναρτήσει του χρόνου

Μετατόπιση = αλλαγή στη θέση του σώματος

lackboxΑνεξάρτητη της διαδρομής $\Delta y = y_f - y_i$

Διαφορετική από το διάστημα, d, που κάλυψε το σώμα

Μέση ταχύτητα

Η κλίση του τμήματος ΑΒ δίνει τη μέση ταχύτητα

Μέση ταχύτητα πηγαίνοντας από το $t_f \rightarrow t_i$:

$$\vec{\overline{\mathbf{v}}} = \frac{\Delta \vec{x}}{\Delta t}$$

> διανυσματικό μέγεθος

Μονάδες μέτρησης $\frac{\lfloor L \rfloor}{\lceil T \rceil} = m / s$

$$\frac{[L]}{[T]} = m/s$$

Σε αντίθεση με που είναι βαθμωτό

Η καμπύλη πρέπει να ναι συνεχής, ομαλή και μονότιμη Η μετατόπιση και η μέση ταχύτητα μπορεί να είναι θετικές ή αρνητικές Θετική τιμή συνεπάγεται ότι το σώμα κινείται στη θετική διεύθυνση του χ

Μετατόπιση και Μέση ταχύτητα

Στο αγώνισμα των 100m, καλύπτετε την απόσταση των 50m με μέση διανυσματική ταχύτητα 10m/s και τα επόμενα 50m με μέση διανυσματική ταχύτητα 8m/s. Ποια η μέση διανυσματική ταχύτητά σας στο αγώνισμα αυτό;

Η ολική μετατόπιση είναι: $\Delta x = x_2 - x_1 = 100 m$

Χρειάζεται να βρούμε τον ολικό χρόνο κίνησης $t_{ολ}$:

είναι ο χρόνος Δt_1 για τα πρώτα 50m και ο Δt_2 για τα τελευταία 50m: $\Delta t_{o\lambda} = \Delta t_1 + \Delta t_2$

Για να βρούμε τον χρόνο Δt_1 και Δt_2 χρησιμοποιούμε τον ορισμό της μέσης διανυσματικής ταχύτητας:

$$\vec{\overline{v}} = \frac{\Delta \vec{x}}{\Delta t} \Longrightarrow \Delta t = \frac{\Delta x}{\overline{v}}$$

Αντικαθιστώντας την ταχύτητα για τα πρώτα 50m και αυτή για τα τελευταία 50m έχουμε:

$$\Delta t_1 = \frac{\Delta x_1}{\overline{v}_1} = \frac{50m}{10m/s} \Rightarrow \Delta t_1 = 5 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_2 = \frac{\Delta x_2}{\overline{v}_2} = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_3 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_4 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_4 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_4 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_4 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_4 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_4 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_5 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_5 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_5 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_5 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_5 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_5 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_5 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_5 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_5 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_5 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_5 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_5 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_5 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_5 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_5 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_5 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_5 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_5 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_5 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_5 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_5 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_5 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_5 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_5 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_5 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_5 = \frac{50m}{8m/s} = 6.25 \sec \kappa \alpha i \text{ avtíotoixa: } \Delta t_5 = \frac{50m}{8m/s} = \frac{$$

Ο ολικός χρόνος κίνησης είναι: $\Delta t_{o\lambda} = 5 + 6.25 = 11.25 \sec$

Η μέση διανυσματική ταχύτητα για το αγώνισμα αυτό ήταν:

$$\vec{v} = \frac{\Delta \vec{x}}{\Delta t} = \frac{100\hat{x}}{11.25} \Rightarrow \vec{v} = (8.89m/\text{sec})\hat{x}$$

Μετατόπιση και Μέση ταχύτητα

Δυο τρένα που βρίσκονται σε απόσταση 75km κινούνται σε αντίθετη κατεύθυνση με μέση ταχύτητα 15km/h. Ένα πουλί πετά με μέση ταχύτητα 20km/h μεταξύ των 2 τρένων από το ένα στο άλλο και μετά επιστρέφει και πάλι προς το άλλο τρένο. Ποιά η απόσταση που θα έχει διανύσει το πουλί όταν τα 2 τρένα συναντηθούν;

Σύμφωνα με την σχέση που δίνει τη μέση ταχύτητα: $\overline{v} = \frac{\Delta s}{\Delta t} \Rightarrow \Delta s = \overline{v} \Delta t = (20 \, km \, / \, h) \Delta t$

Ο συνολικός χρόνος που πετά το πουλί είναι ο χρόνος που περνά μέχρι τα 2 τρένα συναντηθούν

Τα 2 τρένα κινούνται αντίθετα με ταχύτητα 15km/h και επομένως η απόστασή τους ελαττώνεται με ρυθμό 30km ανά ώρα.

Άρα τα τρένα θα καλύψουν την αρχική τους απόσταση σε χρόνο: $\Delta t = \frac{75 \, km}{30 \, km \, / \, h} = 2.5 \, h$

Στο χρόνο αυτό το πουλί θα έχει καλύψει απόσταση: $\Delta s = (20 km / h) 2.5 h = 50 km$

Στιγμιαία ταχύτητα

Ορίζεται ως
$$\vec{\mathbf{v}} = \lim_{\Delta t \to 0} \frac{\Delta \vec{x}}{\Delta t} = \frac{d\vec{x}}{dt}$$
 \longleftarrow Διαφορικός λογισμός

ν είναι η κλίση της εφαπτομένης του γραφήματος θέση-χρόνος στα διάφορα σημεία.

Η στιγμιαία ταχύτητα έχει ίδιο πρόσημο με το πρόσημο του Δχ

Στιγμιαία ταχύτητα

Η θέση ενός σώματος συναρτήσει του χρόνου δίνεται από το διπλανό γράφημα.

- (α) Ποιά η στιγμιαία ταχύτητα του σώματος τη στιγμή t = 2sec.
- (β) Πότε το σώμα αποκτά την μέγιστη ταχύτητα;
- (γ) Πότε η ταχύτητά του είναι 0;

Σχηματίζουμε την εφαπτομένη του γραφήματος θέσης-χρόνου για τη στιγμή t = 2sec.

Υπολογίζουμε την κλίση της ευθείας αυτής θεωρώντας 2 χρονικές στιγμές και βρίσκοντας τις αντίστοιχες τιμές του x που βρίσκονται πάνω στην εφαπτομένη

Έστω t_1 =2sec και t_2 =5sec. Οι θέσεις που αντιστοιχούν είναι x_1 =4m και x_2 =8.5m

Η κλίση της ευθείας της εφαπτομένης ισούται με την στιγμιαία ταχύτητα οπότε:

$$v(t=2) = \tan \varphi = \frac{\Delta x}{\Delta t} = \frac{(8.5-4)m}{(5-2)\sec} = 1.5m/\sec$$

Από το γράφημα παρατηρούμε ότι η μέγιστη κλίση (επομένως και στιγμιαία ταχύτητα) εμφανίζεται για t=4sec

Από το γράφημα παρατηρούμε ότι η κλίση (επομένως και στιγμιαία ταχύτητα) είναι 0 για t = 0 και t = 6sec

Εύρεση της ταχύτητας σε ένα x-t γράφημα

- Μεταξύ των σημείων Α και Β x < 0 αλλά αυξάνει</p>
- Η κλίση αυξάνει συνεχώς και άρα το σώμα κινείται με αύξουσα ταχύτητα προς τα θετικά x
- Στο Β η κλίση και επομένως η ταχύτητα έχουν τις μέγιστες τιμές
- Μεταξύ Β και C η κλίση και ταχύτητα ελαττώνονται αλλά εξακολουθεί να κινείται στην +x διεύθυνση
- Στο σημείο C η κλίση και ταχύτητα είναι μηδέν
- Από το σημείο C μέχρι το E, x>0 αλλά ελαττώνεται και επομένως η κλίση και ταχύτητα ειναι αρνητικές
- Στο σημείο Ε, η κλίση και ταχύτητα →0 καθώς το x→0

Μέση επιτάχυνση

- Στην πραγματικότητα x(t) μπορεί να μην είναι γραμμική: $x(t)=f(t)=at^2+bt+c$ Τότε v_x δεν είναι σταθερή αλλά εξαρτάται από το χρόνο t
- ▶ Πόσο γρήγορα όμως μεταβάλλεται η ταχύτητα με το χρόνο?
 Η μέση τιμή της μεταβολής από t_i→t_f

$$\vec{\overline{a}} = \frac{\Delta \vec{\mathbf{v}}(t)}{\Delta t} = \frac{\vec{\mathbf{v}}(t + \Delta t) - \vec{\mathbf{v}}(t)}{(t + \Delta t) - t} = \frac{\vec{\mathbf{v}}(t + \Delta t) - \vec{\mathbf{v}}(t)}{\Delta t}$$

Η κλίση είναι η μέση επιτάχυνση

Η μέση επιτάχυνση είναι διάνυσμα

Στιγμιαία επιτάχυνση

Όταν Δt
$$\rightarrow$$
0 $\vec{a}(t) = \lim_{\Delta t \to 0} \frac{\vec{v}(t + \Delta t) - \vec{v}(t)}{\Delta t} = \frac{d\vec{v}(t)}{dt}$ με μονάδες: $\frac{[L]}{[T]^2} = m/s^2$

Από το Α στο Β το σώμα κινείται προς -x Το μέτρο της ταχύτητας ελαττώνεται $\Delta \vec{v} > 0$ και $\vec{a} > 0$ Άρα \vec{v} και \vec{a} έχουν αντίθετη κατεύθυνση

Από το B στο C το σώμα κινείται προς +x Το μέτρο της ταχύτητας αυξάνει $\Delta \vec{v} > 0$ και $\vec{a} > 0$ Άρα \vec{v} και \vec{a} έχουν ίδια κατεύθυνση

Από το Α στο Β το σώμα κινείται προς +x Το μέτρο της ταχύτητας ελαττώνεται $\Delta \vec{v} > 0$ και $\vec{a} < 0$

Άρα \vec{v} και \vec{a} έχουν αντίθετη κατεύθυνση

Από το B στο C το σώμα κινείται προς -x Το μέτρο της ταχύτητας αυξάνει $\Delta \vec{v} < 0$ και $\vec{a} < 0$

Άρα \vec{v} και \vec{a} έχουν ίδια κατεύθυνση

Εύρεση της επιτάχυνσης σε ένα ν-t γράφημα

- Από το Α στο Β, ν < 0 αλλά αυξάνει και η κλίση άρα και επιτάχυνση είναι θετικές</p>
- Το σωματίδιο "φρενάρει" μέχρι το Β οπότε v = 0 (σταματά στιγμιαία) αλλά εξακολουθεί να επιταχύνεται αφού η κλίση είναι μη μηδενική
- Από το Β στο C, v > 0 και αυξάνει, η κλίση και επιτάχυνση είναι θετικές
- > Στο C, v = max αλλά η επιτάχυνση είναι 0
- Από το C στο D, v > 0 αλλά ελαττώνεται και η επιτάχυνση είναι αρνητική.
 Το σώμα επιβραδύνει
- > Στο D, v = 0 και σταματά αλλά δέχεται επιτάχυνση
- Από το D στο E, v < 0 και συνεχίζει να ελαττώνεται και η επιτάχυνση είναι αρνητική. Το σώμα επιταχύνεται

2º Quiz

- > Γράψτε σε μια σελίδα το όνομά σας και τον αριθμό ταυτότητάς σας
- Θα στείλετε τη φωτογραφία της απάντησής σας στο fotis@ucy.ac.cyΈτοιμοι