

Certamen 01 de introducción a prospección geofísica Alex Villarroel Carrasco

Pregunta 1

1. De las imágenes respectivas para cada caso (2 casos: 1_PELEHUE y 10_PELEHUE) "picar" una primera llegada para cada geófono, siempre que resulte adecuado hacerlo. Construir una tabla con tiempo vs d istancia. Recordar considerar la distancia igual a cero (0) el punto del "shot point" respectivo.

Respuesta

A partir de los archivos entregados por el profesor, se realizó el manejo de datos mediante Obspy, para rehacer un plot de distancia vs tiempo(script adjuntado en Anexos).

Figura 1: Figura Tiempo-Distancia de cada sismograma para ambos eventos
(1 PELEHUE Y 10 PELEHUE)

Luego de aquello, el picado de la primera llegada se logró mediante la utilización de **Seis-Gram2K**, obteniendo las siguientes figuras.

Figura 2: Tiempos de primera llegada para cada sismograma. a) correspondiente al evento 1PE-LEHUE, b) correspondiente al evento 10 PELEHUE

Visualmente no se logra apreciar con exactitud los tiempos de llegada en cada geófono, por lo que se presenta una tabla con aquellos datos.

Geofono	Distancia [m]	Tiempo [s]
1	1	0.002
2	5	0.012
3	9	0.024
4	13	0.024
5	17	0.03
6	21	0.032
7	25	0.037
8	29	0.04
9	33	0.042
10	37	0.043
11	41	0.045
12	45	0.048
13	49	0.051
14	53	0.052
15	57	0.056
16	61	0.058
17	65	0.058
18	69	0.063
19	73	0.064
20	77	0.066
21	81	0.068
22	85	0.07
23	89	0.072
24	93	0.073

Cuadro 1: Tabla de tiempo de llegada para cada geófono en el evento 1PELEHUE

Geofono	Distancia [m]	Tiempo [s]
24	1	0.004
23	5	0.012
22	9	0.021
21	13	0.022
20	17	0.025
19	21	0.025
18	25	0.027
17	29	0.031
16	33	0.035
15	37	0.036
14	41	0.039
13	45	0.04
12	49	0.043
11	53	0.044
10	57	0.044
9	61	0.046
8	65	0.05
7	69	0.053
6	73	0.055
5	77	0.058
4	81	0.063
3	85	0.066
2	89	0.069
1	93	0.072

Cuadro 2: Tabla de tiempo de llegada para cada geógono en el evento 10PELEHUE

Curvas camino-tiempo

Al extraer los datos y realizar un gráfico de curvas camino-tiempo, se obtuvo lo siguiente:

Figura 3: Curvas camino-tiempo de ambos eventos, con sus respectivas rectas

En la figura se aprecia que en ambos eventos existen 2 rectas, la primera correspondiendo a la primera llegada de una onda directa, mientras que la otra recta corresponde a la onda refractada

La obtención de estas rectas están representadas por las siguientes ecuaciones:

Evento 1 PELEHUE

1. Onda directa:

$$T = 0 + 0.023D$$

Correspondiendo 0 al intercepto y 0.023 la pendiente de la recta. Es interesante notar que el intercepto debe ser 0 debido a que cuando en un principio si se tuviera a un geofono a 0 metros del shotpoint, demoraría 0 segundos en registrar la llegada(lo cual me parece improbable debido a la precisión y delay que presenta el instrumento)

2. Onda refractada:

$$T = \tau + m \cdot D$$

Si bien estas rectas pueden ser descritas mediante software, una forma sencilla es tomar dos puntos y calcular la pendiente m como $\frac{y_2-y_1}{x_2-y_1}$ y el intercepto despejandolo con los valores conocidos. .

Sea
$$x_1 = 9, y_1 = 0.24 \text{ y } x_2 = 89, y_2 = 0.72$$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \frac{0,072 - 0,024}{89 - 9}$$

$$m = 0,0006$$

El intercepto τ : puede ser obtenido con el punto (x_1, y_1)

$$y_1 = \tau + 0,0006x_1$$

$$\tau = y_1 - 0,0006x_1$$

$$\tau = 0,024 - 0,0006 \cdot 9$$

$$\tau = 0,018$$

por lo que la ecuación de la recta para la onda refractada queda:

$$T = \tau + 0.0006D$$

 $con \tau = 0.018$

Evento 10 PELEHUE

Realizando el mismo procedimiento que antes:

1. Onda directa:

Teniendo $(x_1,y_1)=(1,0,004)$ y $(x_2,y_2)=(9,0,021)$, y m como $\frac{y_2-y_1}{x_2-y_1}$, se tiene la siguiente ecuación de la recta:

$$T = 0 + 0.0022D$$

Correspondiendo 0 al intercepto y 0.023 la pendiente de la recta. Es interesante notar que el intercepto debe ser 0 debido a que cuando en un principio si se tuviera a un geofono a 0 metros del shotpoint, demoraría 0 segundos en registrar la llegada(lo cual me parece improbable debido a la precisión y delay que presenta el instrumento)

2. Onda refractada:

$$T = \tau + m \cdot D$$

Se puede calcular la pendiente m como $\frac{y_2-y_1}{x_2-y_1}$ y el intercepto despejandolo con los valores conocidos. .

Sea
$$x_1 = 9, y_1 = 0.021$$
 y $x_2 = 89, y_2 = 0.069$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \frac{0,069 - 0,021}{89 - 9}$$

$$m = 0,0006$$

El intercepto τ : puede ser obtenido con el punto (x_1, y_1)

$$y_1 = \tau + 0.0006x_1$$

$$\tau = y_1 - 0.0006x_1$$

$$\tau = 0.021 - 0.0006 \cdot 9$$

$$\tau = 0.016$$

por lo que la ecuación de la recta para la onda refractada queda:

$$T = \tau + 0.0006D$$

 $con \tau = 0.016$

Modelo de estructura-velocidad 1-D (para cada caso)

Se sabe que la pendiente m calculada anteriormente es el inverso de la velocidad, por lo que se puede extraer la velocidad de la onda directa y reflectada para cada caso.

- 1 PELEHUE:
 - Onda directa:

$$V_0 = \frac{1}{m} = \frac{1}{0,0023}$$
$$V_0 = 435 \left\lceil \frac{m}{s} \right\rceil$$

• Onda refractada

$$V_1 = \frac{1}{m} = \frac{1}{0,0006}$$
$$V_1 = 1667 \left[\frac{m}{s} \right]$$

- 10 PELEHUE:
 - Onda directa:

$$V_0 = \frac{1}{m} = \frac{1}{0,0022}$$
$$V_0 = 454 \left[\frac{m}{s} \right]$$

• Onda refractada

$$V_1 = \frac{1}{m} = \frac{1}{0,0006}$$
$$V_1 = 1667 \left[\frac{m}{s} \right]$$

Modelo estructura-velocidad

Para un modelo de una capa no inclinada, el tiempo se puede expresar como función del ángulo crítico, la distancia vertical y horizontal, y de la velocidad, de la siguiente forma:

$$T = 2z \frac{\cos(i_c)}{V} + \frac{x}{V}$$

lo cual se puede extender a:

$$T_r = \frac{x}{V_2} + 2z_1 \left(\frac{1}{V_1^2} - \frac{1}{V_2^2}\right)^{\frac{1}{2}}$$

es fundamental entender que ya se conoce la ecuación de la recta, y por consiguiente τ , que corresponde al término $2z_1\left(\frac{1}{V_1^2}-\frac{1}{V_2^2}\right)^{\frac{1}{2}}$, pudiendo así extraer z_1 .

1-Pelehue

$$\tau = 2z_1 \left(\frac{1}{V_1^2} - \frac{1}{V_2^2}\right)^{\frac{1}{2}}$$

$$0.018 = 2z_1 \left(\frac{1}{435^2} - \frac{1}{1667^2}\right)^{\frac{1}{2}}$$

$$0.018 = 2z_1 \cdot 0.0023$$

$$z_1 = \frac{0.018}{2 \cdot 0.0024} = 3.7[m]$$

Para el shotpoint realizado a un metro del geófono 1, el perfil sería el siguiente:

Figura 4: Modelo 1-D estructura-velocidad para el evento 1 PELEHUE

10-Pelehue

$$\tau = 2z_1 \left(\frac{1}{V_1^2} - \frac{1}{V_2^2}\right)^{\frac{1}{2}}$$

$$0.016 = 2z_1 \left(\frac{1}{454^2} - \frac{1}{1667^2}\right)^{\frac{1}{2}}$$

$$0.016 = 2z_1 \cdot 0.0022$$

$$z_1 = \frac{0.016}{2 \cdot 0.0022} = 3.5[m]$$

Para el shotpoint realizado a un metro del geófono 24, el perfil sería el siguiente:

Figura 5: Modelo 1-D estructura-velocidad para el evento 10 PELEHUE

¿Capa inclinada o no?

A partir de los tiempos de las primeras llegadas, de las ecuaciones de recta para cada caso, y del modelo 1-D de estructura-velocidad, se puede concluir que no se trata de una capa inclinada, ya que las diferencias entre cada evento son ínfimas, y pueden estar asociadas netamente a errores humanos de pickeo, de asignación de la pendiente de lentitud, del instrumento, etc.

Pregunta 2

Encontrar una relación para el tiempo de viaje de una onda refractada en un medio de 1 capa de espesor "h" cuyo shot point ocurre en $\mathbf{Z}.(Z < h)$

Sease un perfil como el de la figura.

Figura 6: Representación gráfica del problema.

se tienen las siguientes relaciones a partir de la ley de Snell:

$$\frac{sin(\theta)}{v_0} = \frac{1}{v_1} \Longrightarrow sin(\theta) = \frac{v_0}{v_1}$$
$$v_1 = \frac{v_0}{sen(\theta)}$$

y se sabe además, por trigonometría:

$$a = \frac{h - z}{\cos(\theta)}$$

$$b = x - \tan(\theta)(h - z) - \tan(\theta)h = x - \tan(\theta)(2h - z)$$

$$c = \frac{h}{\cos(\theta)}$$

y bien, el tiempo de llegada puede ser expresado por la suma que demora cada tramo, es decir:

$$T = \frac{a}{v_0} + \frac{b}{v_1} + \frac{c}{v_0}$$

Reemplazando:

$$T = \frac{\frac{h-z}{\cos(\theta)}}{v_0} + \frac{x - \tan(\theta)(2h - z)}{v_1} + \frac{\frac{h}{\cos(\theta)}}{v_0}$$

$$T = \frac{x}{v_1} + \frac{(2h - z)}{\cos(\theta)v_0} - \frac{(2h - z)\tan(\theta)}{v_1}$$

$$T = \frac{x}{v_1} + (2h - z)\left(\frac{1}{\cos(\theta)v_0} - \frac{\tan(\theta)}{v_1}\right)$$

$$T = \frac{x}{v_1} + (2h - z)\left(\frac{1}{\cos(\theta)v_0} - \frac{\tan(\theta)\sin(\theta)}{v_0}\right)$$

$$T = \frac{x}{v_1} + (2h - z)\left(\frac{1}{\cos(\theta)v_0} - \frac{\sin^2(\theta)}{\cos(\theta)v_0}\right)$$

$$T = \frac{x}{v_1} + (2h - z)\left(\frac{\cos(\theta)}{v_0}\right)$$

$$T = \frac{x}{v_1} + (2h - z)\left(\sqrt{\frac{\cos^2(\theta)}{v_0^2}}\right)$$

$$T = \frac{x}{v_1} + (2h - z)\left(\sqrt{\frac{1 - \sin^2(\theta)}{v_0^2}}\right)$$

$$T = \frac{x}{v_1} + (2h - z)\left(\sqrt{\frac{1 - \sin^2(\theta)}{v_0^2}}\right)$$

Obteniendo una relación del tiempo respecto a x, v_0, v_1, h y z. PD: el paso de pasar a raiz es debido a que el valor dentro es positivo siempre).