Perspectives on Probabilistic Graphical Models

Dong Liu

Information Science and Engineering Department of Intelligent Systems KTH - Royal Institute of Technology

Profile page: https://firsthandscientist.github.io/

Slide is available at: https://github.com/FirstHandScientist/phdthesis

fer..Learn Learning
00 00000000
00000
00000

Summary and Q&A

o
o

Why are probabilistic graphical models interesting?

DIRECTED GRAPH REPRESENTATION

Decision-making (reinforcement learning)

Undirected Graph Representations

Physics Ising or Potts

- Error-control codes
- Computational biology
- Natural language processing
- etc.

WHAT ARE PROBABILISTIC GRAPHICAL MODELS

Informally...

Motivation

- attributes of our interests in a system → variable nodes
- relationship of these factors → structures of a graph

Intrinsic property: reasoning with uncertainty

A directed/undirected graph encoding dependencies/indepedencies of distribution $p(\mathbf{x}; \theta)$:

- A BN/Generative model is a directed graph
 - $p(\mathbf{x}; \theta) = \prod_{n=1}^{N} p(x_n | \mathcal{P}(x_n))$
 - $\mathcal{P}(\cdot)$ are parent nodes
 - the local functions are proper distributions
- An MRF denoted by an undirected graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$
 - The probability distribution (Gibbs distribution) is $p(\mathbf{x}; \theta) = \frac{1}{Z(\theta)} \prod_{a \in \mathcal{I}} \psi_a(\mathbf{x}_a; \theta_a)$
 - a indexes potential functions $\mathcal{I} = \{\psi_A, \psi_B, \cdots, \psi_M\}$
 - $Z(\theta) = \sum_{\mathbf{x}} \prod_{a} \psi_{a}(\mathbf{x}_{a}; \theta_{a}).$

What to do with Graphical Models

- The common inference problems:
 - Computing the likelihood of observed data.
 - Computing the marginals distribution $p(\mathbf{x}_A)$ over particular subset $A \subset \mathcal{V}$ of nodes
 - Computing the conditional distribution $p(\mathbf{x}_A|\mathbf{x}_B)$,
 - Computing the partition function or the Helmholtz free energy (for MRFs)
- Learning:

Motivation

• To model or determine $p(x; \theta)$.

Two key components interacting with each other:

What is the state of x?

A TOY EXAMPLE

Motivation

Assume that we are interested into the state of node i in an MRF, it can be answered by

- the probability $p(x_i)$, or
- an empirical version, a collection of samples $\{x_i^n\}_{n=1}^N$

What is the state of x_4

What is the state of x?

A TOY EXAMPLE

Assume that we are interested into the state of node i in an MRF, it can be answered by

- the probability $p(x_i)$, or
- an empirical version, a collection of samples $\{x_i^n\}_{n=1}^N$

Gibbs sampling: let us guess by sampling

- Sample iteratively: $x_i \sim p(x_i | \mathbf{x}_{-i}) \sim p(x_i, \mathbf{x}_{-i})$
- Queries answered by collecting samples $\{x^n\}_{1}^{N}$.

A TOY EXAMPLE

Motivation

Assume that we are interested into the state of node *i* in an MRF, it can be answered by

- the probability $p(x_i)$, or
- an empirical version, a collection of samples $\{x_i^n\}_{n=1}^N$

Mean Field and BP: message in form of sample values → message in form of belief

- Propagating beliefs iteratively
- Queries by collected beliefs $\{b_i\}$.

Intuition from Gibbs (variational) free energy

$$F_V(b) = \text{KL}(b(\mathbf{x})||p(\mathbf{x};\theta)) - \log Z(\theta)$$

with trial b(x). Instance: Bethe free energy.

ALTERNATIVE VEIW OF BP: $\alpha ext{-BP}$

Input:

Motivation

- A pairwise Markov random field:
 p(x) ∝
 Π_{s∈V} φ_s(x_s) Π_{(s,t)∈ε} φ_{st}(x_s, x_t)
- A trial distribution: $q(\mathbf{x}) \propto \prod_{s \in \mathcal{V}} \tilde{\varphi}_s(x_s) \prod_{(s,t) \in \mathcal{E}} \tilde{\varphi}_{st}(x_s, x_t)$ with factorization $\tilde{\varphi}_{s,t}(x_s, x_t) := m_{st}(x_t) m_{ts}(x_s)$
- A metric: α -Divergence

Definition of α -divergence $\mathcal{D}_{\alpha}(\rho||q) = \frac{\sum_{\mathbf{X}} \alpha \rho(\mathbf{X}) + (1-\alpha)q(\mathbf{X}) - \rho(\mathbf{X})^{\alpha}q(\mathbf{X})^{1-\alpha}}{\alpha(1-\alpha)}$ Approximate local minimization:

- $\bullet \quad \text{Direct minimization: } \underset{\tilde{\varphi}_{ls}^{\text{new}}(x_t, x_s)}{\operatorname{argmin}} \mathcal{D}_{\alpha_{ls}}\!\!\left(p^{\setminus (t, s)}\!\!(\boldsymbol{x})\varphi_{ls}(x_t, x_s) || q^{\setminus (t, s)}\!\!(\boldsymbol{x}) \tilde{\varphi}_{ls}^{\text{new}}(x_t, x_s)\right)$
- Local minimization: argmin $\mathcal{D}_{\alpha_{fs}}\left(q^{\setminus(t,s)}(\mathbf{x})\varphi_{fs}(x_t,x_s)\|q^{\setminus(t,s)}(\mathbf{x})\tilde{\varphi}_{fs}^{\mathrm{new}}(x_t,x_s)\right)$, say you are updating $\tilde{\varphi}_{fs}^{\mathrm{new}}(x_t,x_s) = m_{fs}^{\mathrm{new}}(x_s,x_s) = m_{fs}^{\mathrm{new}}(x_s,x_s)$

 $\varphi_S(X_S)$

Insights of α -BP

Connection to standard BP

- \bullet $\alpha \rightarrow 1$
- α-divergence reduces to KL-divergence
- Update rule of α -BP reduces to

 $m_{te}^{\text{new}}(x_s) \propto$ $\sum_{x_t} \varphi_{st}(x_s, x_t) \varphi_t(x_t) \prod_{w \in \mathcal{N}(t) \setminus s} m_{wt}(x_t),$ which is standard BP update rule

Convergence

For an arbitrary pairwise Markov random field over binary variables, if the largest singular value of matrix $M(\alpha, \theta)$ is less than one. α -BP converges to a fixed point.

The associated fixed point is unique. See Corollary 3.1 for relaxed condition where singular value computation is avoided.

What does that mean

- You can safely use α -BP as an alternative to (loopy) BP
- You can use matrix M to check if you are guaranteed to get stable solution from α -BP

 $(t \rightarrow s)$, as

Matrix $\mathbf{M}(\alpha, \theta)$, size $|\vec{\mathcal{E}}| \times |\vec{\mathcal{E}}|$, indexed by directed edges

For binary, symmetric log-potentials
$$\varphi_{st}(x_s,x_t) = \exp\left\{\theta_{st}(x_s,x_t)\right\},$$

$$\varphi_{s}(x_s) = \exp\left\{\theta_{s}(x_s)\right\}.$$

$$M_{(t \to s),(u \to v)} = \begin{cases} |1 - \alpha_{ts}|, & u = t, v = s, \\ |1 - \alpha_{ts}| \tanh |\alpha_{ts}\theta_{ts}|, & u = s, v = t, \\ \tanh |\alpha_{ts}\theta_{ts}|, & u \in \mathcal{N}(t) \backslash s, v = t, \\ 0, & \text{otherwise.} \end{cases}$$

otherwise. 13/48

Some Numerical Results: Convergence

Numerical illustration of convergence, with normalized error $\|\boldsymbol{m}^{(n)} - \boldsymbol{m}^*\|_2 / \|\boldsymbol{m}^*\|_2$ versus the number of iterations. Blue region: range of the normalized error of 100 graph realizations. Curve: mean error of the 100 realized graphs.

Some Numerical Results: Application Case

Numerical results of α -BP: symbol error of MIMO detection.

CONTINUING: WHAT IS THE STATE OF x?

YEDIDIA, FREEMAN, WEISS: A STEP TO GENERALIZATION

Message among variables & factors \rightarrow message among regions

- Blue region: valid region
- Red region: invalid region

Generalized belief propagation (GBP) generalizes loopy BP

- usual better approximation than LBP
- higher complexity
- sensitive to scheduling of region messages

Approximating variational free energy $F_{V}(b)$ with trial b including $\{b_{R}\}$.

A region R is a set V_R of variables nodes and a set A_R of factor nodes, such that if a factor node 'a' belongs to A_R , all the variables nodes neighboring a are in V_R .

A TOY EXAMPLE OF REGION GRAPHS

Factor graph representation of MRF (2-by-3 grid) with factor nodes. MRF \rightarrow region graph:

- Clustering nodes
- level/layer-wise
- Hierarchical
- Msg. Scheduling
- ...
- See Section 4.1

RENN: REGION-BASED ENERGY NEURAL NETWORK

The region-based free energy of a region graph is

$$F_R(\mathcal{B}; \boldsymbol{\theta}) = \sum_{R \in \mathcal{R}} \underbrace{c_R}_{\text{Counting number}} \underbrace{\sum_{\boldsymbol{x}_R}}_{\substack{\boldsymbol{x}_R \text{ Belief on region R}}} \underbrace{b_R(\boldsymbol{x}_R)}_{\text{Region energy}} + \ln b_R(\boldsymbol{x}_R)),$$

- counting number: balance the contribution of each region
- region energy: $-\sum_{a\in A_B} \ln \varphi_a(\mathbf{x}_a; \theta_a)$

RENN: REGION-BASED ENERGY NEURAL NETWORK

The region-based free energy of a region graph is

$$F_R(\mathcal{B}; \boldsymbol{\theta}) = \sum_{R \in \mathcal{R}} \underbrace{c_R}_{\text{Counting number}} \underbrace{x_R}_{\text{Belief on region R}} \underbrace{b_R(\boldsymbol{x}_R)}_{\text{Region energy}} + \ln b_R(\boldsymbol{x}_R)),$$

- counting number: balance the contribution of each region
- region energy: $-\sum_{a \in A_B} \ln \varphi_a(\mathbf{x}_a; \theta_a)$

Back-propagation

RENN

Motivation

Non-root belief:

Average incoming marginalization from parents

Objective of RENN:

RENN

Non-root belief:

Objective of RENN:

Average incoming marginalization from parents

RENN Inference:

Infer..Learn

Generalization

Bethe free energy can be recovered from region-based free energy:

- two-level region graph representation
- constraint that each region can contain at most one factor node

Section 4.2.1

Motivation

Attributes of RENN

- RENN requires neither sampling technique nor training data (ground-truth marginal probabilities) in performing inference tasks;
- RENN does gradient descent w.r.t. its neural network parameter instead of iterative message-passing, and returns approximation of marginal probabilities and partition estimation in one-shot
- No message propagation, thus no need of message scheduling
- · Competitive performance and efficiency

SOME NUMERICAL COMPARISONS

Ising model: $p(\mathbf{x}; \theta) = \frac{1}{Z(\theta)} \exp\left(\sum_{(i,j) \in \mathcal{E}_F} J_{ij} x_i x_j + \sum_{i \in \mathcal{V}} h_i x_i\right), \mathbf{x} \in \{-1,1\}^N$,

- J_{ij} is the pairwise log-potential between node i and j, $J_{ij} \sim \mathcal{N}(0,1)$
- h_i is the node log-potential for node i, $h_i \sim \mathcal{N}(0, \gamma^2)$

Inference on grid graph ($\gamma = 0.1$).

Metric	n	Mean Field	Loopy BP	Damped BP	GBP	Inference Net	RENN
ℓ_1 error	25 100 225 400	$\begin{array}{c} 0.271 \pm 0.051 \\ 0.283 \pm 0.024 \\ 0.284 \pm 0.019 \\ 0.279 \pm 0.014 \end{array}$	$\begin{array}{c} 0.086 \pm 0.078 \\ 0.085 \pm 0.041 \\ 0.100 \pm 0.025 \\ 0.110 \pm 0.016 \end{array}$	$\begin{array}{c} 0.084 \pm 0.076 \\ 0.062 \pm 0.024 \\ 0.076 \pm 0.025 \\ 0.090 \pm 0.016 \end{array}$	$\begin{array}{c} 0.057 \pm 0.024 \\ 0.064 \pm 0.019 \\ 0.073 \pm 0.013 \\ 0.079 \pm 0.009 \end{array}$	$\begin{array}{c} 0.111 \pm 0.072 \\ 0.074 \pm 0.034 \\ 0.073 \pm 0.012 \\ 0.083 \pm 0.009 \end{array}$	$\begin{array}{c} \textbf{0.049} \pm 0.078 \\ \textbf{0.025} \pm 0.011 \\ \textbf{0.046} \pm 0.011 \\ \textbf{0.061} \pm 0.009 \end{array}$
Corre- lation	25 100 225 400	$\begin{array}{c} 0.633 \pm 0.197 \\ 0.582 \pm 0.112 \\ 0.580 \pm 0.080 \\ 0.596 \pm 0.054 \end{array}$	$\begin{array}{c} 0.903 \pm 0.114 \\ 0.827 \pm 0.134 \\ 0.801 \pm 0.078 \\ 0.779 \pm 0.059 \end{array}$	$\begin{array}{c} 0.905 \pm 0.113 \\ 0.902 \pm 0.059 \\ 0.863 \pm 0.088 \\ 0.822 \pm 0.047 \end{array}$	$\begin{array}{c} 0.923 \pm 0.045 \\ 0.899 \pm 0.043 \\ 0.869 \pm 0.037 \\ 0.852 \pm 0.024 \end{array}$	$\begin{array}{c} 0.866 \!\pm 0.117 \\ 0.903 \!\pm 0.049 \\ 0.873 \pm 0.037 \\ 0.841 \pm 0.028 \end{array}$	$\begin{array}{c} \textbf{0.951} \pm 0.112 \\ \textbf{0.983} \pm 0.012 \\ \textbf{0.949} \pm 0.022 \\ \textbf{0.912} \pm 0.025 \end{array}$
log Z error	25 100 225 400	$\begin{array}{c} 2.512 \pm 1.060 \\ 13.09 \pm 2.156 \\ 29.93 \pm 4.679 \\ 51.81 \pm 4.706 \end{array}$	$\begin{array}{c} 0.549 \pm 0.373 \\ 1.650 \pm 1.414 \\ 3.348 \pm 1.954 \\ 5.738 \pm 2.107 \end{array}$	$\begin{array}{c} 0.557 \pm 0.369 \\ 1.457 \pm 1.365 \\ 3.423 \pm 2.157 \\ 5.873 \pm 2.211 \end{array}$	$\begin{array}{c} \textbf{0.169} \pm 0.142 \\ \textbf{0.524} \pm 0.313 \\ \textbf{1.008} \pm 0.653 \\ \textbf{1.750} \pm 0.869 \end{array}$	$\begin{array}{c} 0.762 \pm 0.439 \\ 2.836 \pm 2.158 \\ 3.249 \pm 2.058 \\ 3.953 \pm 2.558 \end{array}$	$\begin{array}{c} 0.240 \pm 0.140 \\ 1.899 \pm 0.495 \\ 4.344 \pm 0.813 \\ 7.598 \pm 1.146 \end{array}$

- ℓ_1 error of beliefs v.s. true
- correlation ρ between true and approximate marginals,
- log Z error, true v.s. free energy approximation.

SOME NUMERICAL COMPARISONS

RICHER COMPARISONS

Motivation

Inference on grid and complete graphs.

		Metric		Mean Field	Loopy BP	Damped BP	GBP	Inference Net	RENN
High Temp -erature	Complete graph N=16	ℓ ₁ - error	$\gamma=1$ $\gamma=4$	$\begin{array}{c} 0.273 \pm 0.086 \\ 0.197 \pm \! 0.049 \end{array}$	$\begin{array}{c} 0.239 \pm 0.059 \\ 0.181 \pm 0.035 \end{array}$	$\begin{array}{c} 0.239 \pm 0.059 \\ 0.180 \pm 0.034 \end{array}$	$\begin{array}{c} 0.260 \pm 0.086 \\ 0.210 \pm 0.070 \end{array}$	$\begin{array}{c} 0.249 \pm 0.067 \\ 0.174 \pm 0.030 \end{array}$	$\begin{array}{c} \textbf{0.181} \pm 0.092 \\ \textbf{0.125} \pm 0.050 \end{array}$
	$J_{ij} \sim \mathcal{N}(0, 1)$ $h_i \sim \mathcal{N}(0, \gamma^2)$	log Z error	$\gamma = 1$ $\gamma = 4$	$\begin{array}{c} \textbf{20.66} \pm \textbf{5.451} \\ \textbf{10.74} \pm \textbf{7.385} \end{array}$	$\begin{array}{c} 178.7 \pm 22.18 \\ 565.7 \pm 73.33 \end{array}$	$178.9 \pm 21.88 \\ 566.1 \pm 73.13$	$\begin{array}{c} 153.3 \pm 25.29 \\ 106.0 \pm 54.43 \end{array}$	$\begin{array}{c} 213.6 \pm 12.75 \\ 588.3 \pm 62.58 \end{array}$	14.41 ± 4.135 14.72 ± 4.155
Low Temp -erature	Grid graph N=100 $J_{ij} \sim \mathcal{U}(-u, u)$ $h_i \sim \mathcal{U}(-1, 1)$	ℓ ₁ error	5 15	$\begin{array}{c} 0.257 \pm 0.065 \\ 0.328 \pm 0.068 \end{array}$	$\begin{array}{c} 0.115 \pm 0.071 \\ 0.228 \pm 0.088 \end{array}$	$\begin{array}{c} 0.120 \pm 0.073 \\ 0.267 \pm 0.147 \end{array}$	$\begin{array}{c} 0.250 \pm 0.024 \\ 0.303 \pm 0.026 \end{array}$	$\begin{array}{c} 0.164 \pm 0.036 \\ 0.279 \pm 0.024 \end{array}$	$\begin{array}{c} \textbf{0.100} \pm 0.046 \\ \textbf{0.207} \pm 0.054 \end{array}$
		log Z error	5 15	$42.65 \pm 17.86 \\ 164.9 \pm 56.07$	$\begin{array}{c} 7.346 \pm 7.744 \\ 58.40 \pm 41.36 \end{array}$	$\begin{array}{c} \textbf{5.444} \pm 4.811 \\ \textbf{101.9} \pm \textbf{54.31} \end{array}$	$\begin{array}{c} \textbf{8.369} \pm \textbf{7.401} \\ \textbf{23.10} \pm \textbf{15.06} \end{array}$	$65.60 \pm 8.786 \\ 224.3 \pm 25.52$	$\begin{array}{c} 11.34 \pm 4.724 \\ 78.85 \pm 15.08 \end{array}$

Average consumed time per inference instance (unit: second)

	Mean Field	Loopy BP	Damped BP	GBP	Inference Net	RENN
Grid G , $N = 400$, $J_{ii} \sim \mathcal{N}(0, 1)$, $h_i \sim \mathcal{N}(0, 0.1^2)$	9.897	425.0	328.3	286.3	74.41	101.0
Complete \mathcal{G} , $N = 16$, $J_{ii} \sim \mathcal{N}(0, 1)$, $h_i \sim \mathcal{N}(0, 1)$	0.457	0.777	1.285	14.29	12.45	16.16
Grid \mathcal{G} , $N = 100$, $J_{ii} \sim \mathcal{U}(-15, 15)$, $h_i \sim \mathcal{U}(-1, 1)$	2.314	253.3	229.3	53.72	103.4	79.38
Complete G , $N = 9$, $J_{ii} \sim U(-15, 15)$, $h_i \sim U(-1, 1)$	0.502	15.86	18.23	3.213	17.21	7.857

INFERENCE ROUTINE IN LEARNING

What is θ in $p(\mathbf{x}; \theta) = \frac{1}{Z(\theta)} \prod_{a} \psi_{a}(\mathbf{x}_{a}; \theta_{a})$? A direct view:

$$\max_{\theta} \log p(\mathbf{x}; \theta) = \max_{\theta} \sum_{a} \log \psi_{a}(\mathbf{x}_{a}; \theta_{a}) \underbrace{-\log Z(\theta)}_{\text{can be est. by min } F_{V}},$$

An alternative view:

$$\frac{\partial \log p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}_a} = \frac{\partial \log \varphi_a(\mathbf{x}_a; \boldsymbol{\theta}_a)}{\partial \boldsymbol{\theta}_a} - \underbrace{\mathbb{E}_{p(\mathbf{x}_a; \boldsymbol{\theta})} \left[\frac{\partial \log \varphi_a(\mathbf{x}_a; \boldsymbol{\theta}_a)}{\partial \boldsymbol{\theta}_a} \right]}_{\text{can be est, by beliefs}}.$$

Remark:

Motivation

- This essentially requires estimation of partition function or marginal probabilities.
- Stationary points translate into moment matching.

Infer..Learn

000

Inference

babilities.

INFERENCE ROUTINE IN LEARNING

What is θ in $p(\mathbf{x}; \theta) = \frac{1}{Z(\theta)} \prod_{a} \psi_{a}(\mathbf{x}_{a}; \theta_{a})$? A direct view:

$$\max_{\theta} \log p(\mathbf{x}; \theta) = \max_{\theta} \sum_{a} \log \psi_{a}(\mathbf{x}_{a}; \theta_{a}) \underbrace{-\log Z(\theta)}_{\text{can be est by min } F_{t, t}},$$

An alternative view:

$$\frac{\partial \log p(\mathbf{x}; \theta)}{\partial \theta_a} = \frac{\partial \log \varphi_a(\mathbf{x}_a; \theta_a)}{\partial \theta_a} - \underbrace{\mathbb{E}_{p(\mathbf{x}_a; \theta)} \left[\frac{\partial \log \varphi_a(\mathbf{x}_a; \theta_a)}{\partial \theta_a} \right]}_{\text{lnference}}.$$

Remark:

Motivation

- This esser
- Stationary
- Two modules are not necessarily coupled
- Each module may be replaced by another algorithm while the other one remains.

WHAT IS θ IN $p(\mathbf{x}; \theta)$?

Motivation

Table of negative log-likelihood of learned MRFs

N	True	Exact	Mean Field	Loopy BP	Damped BP	GBP	Inference Net	RENN				
	Grid Graph											
25 100 225	9.000 19.34 63.90	9.004 19.38 63.97	9.811 23.48 69.01	9.139 19.92 66.44	9.196 20.02 66.25	10.56 28.61 92.62	9.252 20. 29 68.15	9.048 19.76 64.79				
	Complete Graph											
9 16	3.276 4.883	3.286 4.934	9.558 28.74	5.201 13.64	5.880 18.95	10.06 24.45	5.262 13.77	3.414 5.178				

Infer..Learn

000

Average consumed time per epoch (unit: second) for two MRF learning cases.

	Mean Field	Loopy BP	Damped BP	GBP	Inference Net	RENN
Grid $\mathcal{G}, N = 225$	40.09	335.1	525.1	12.37	19.49	16.03
Complete \mathcal{G} , $N = 16$	2.499	12.40	5.431	1.387	0.882	2.262

INCOMPLETE OBSERVATION

Partial observation:
$$\mathbf{x} = [\mathbf{x}_{U} , \mathbf{x}_{O}]$$

Unobserved Observed

$$I(\mathbf{x}_O; \boldsymbol{\theta}) = \log \sum_{\mathbf{x}_U} p(\mathbf{x}_U, \mathbf{x}_O; \boldsymbol{\theta}) = \log \underbrace{Z(\mathbf{x}_O; \boldsymbol{\theta})}_{\sum_{\mathbf{x}_{II}} \tilde{p}(\mathbf{x}; \boldsymbol{\theta})} - \log Z(\boldsymbol{\theta}),$$

Connect Free Energy to Evidence Lower Bounder:

$$\begin{split} I(\mathbf{x}_{O}; \boldsymbol{\theta}) \geqslant & - \underbrace{F_{V}(q(\mathbf{x}_{U}|\mathbf{x}_{O}))}_{\text{Variational Free Energy}} - \log Z(\boldsymbol{\theta}) \\ & = \mathbb{E}_{q(\mathbf{x}_{U}|\mathbf{x}_{O})} \left[\log \frac{p(\mathbf{x}_{U}, \mathbf{x}_{O}; \boldsymbol{\theta})}{q(\mathbf{x}_{U}|\mathbf{x}_{O})} \right] \\ & = \underbrace{\mathbb{E}_{q(\mathbf{x}_{U}|\mathbf{x}_{O})} \left[\log p(\mathbf{x}_{U}, \mathbf{x}_{O}; \boldsymbol{\theta}) \right] + H(q(\mathbf{x}_{U}|\mathbf{x}_{O}))}_{} \end{split}$$

This gives the EM as a coordinate ascent method:

Intuition of maximizing $F(q, \theta)$

- Maximizing (incomplete) likelihood
- Minimizing free energy

Evidence Lower Bound $F(q, \theta)$

$$\begin{split} \text{E step}: & \ \, q^{(t+1)} = \operatorname*{argmax}_{q} F(q, \theta^{(t)}), \\ \text{M step}: & \ \, \theta^{(t+1)} = \operatorname*{argmax}_{q} F(q^{(t+1)}, \theta). \end{split}$$

GENERATOR MIXED MODEL

EQUIPPING EM WITH NORMALIZING FLOWS

- Ideal case: The underline true $p^*(\mathbf{x})$ is in hypothesis space \mathcal{H} , i.e. $p^*(\mathbf{x}) \in \mathcal{H}$.
- Out of reach: Test p*(x) ∈ H
 Luckily, what is at our hands is:
 - \mathcal{H} is large \rightarrow condidate $p(\mathbf{x}; \boldsymbol{\theta})$ is flexible

This brings up the finite mixture models.

$$p(\mathbf{x}; \mathbf{\Theta}) = \sum_{k=1}^{K} \pi_k p_k(\mathbf{x}) = \sum_{k=1}^{K} \pi_k p(\mathbf{x})$$

 $g(z; \theta_k)$

29/48

What to expect from GenMM:

- Flexible and expressive model, enlarging hyperspace ${\cal H}$
- Tractable likelihood
- Compatible with typical statistical models
- Compatible with NN tools/frameworks
- Scale to high-dimensional structured data
- Efficient in sampling (data generation)

• ...

Variable change

A HIGH-LEVEL VIEW OF GENMM: FLOW GEARS

When the k-th generator is selected, i.e., $s_k = 1$ and $s_{k'} = 0$ for $k' \neq k$, say $\tilde{\mathbf{x}} = \mathbf{x}|_{s_k=1}$. By following the change of variable rule

Motivation

$$p(\tilde{\mathbf{x}})|_{\tilde{\mathbf{x}}=\tilde{\mathbf{g}}(\mathbf{z})}$$

Induced distribution

$$\underbrace{p(z)}$$

Assumed known distribution easy to sample

$$\det\left(\frac{\partial \mathbf{z}}{\partial \tilde{\mathbf{x}}}\right)$$

Computational load depends on the mapping

A toy example:

Gaussian linear transform: $Z \sim N(0,1) \xrightarrow{X=\sigma \cdot Z+\mu} X \sim N(\mu,\sigma)$

A HIGH-LEVEL VIEW OF GENMM: FLOW GEARS

When the k-th generator is selected, i.e., $s_k = 1$ and $s_{k'} = 0$ for $k' \neq k$, say $\tilde{\mathbf{x}} = \mathbf{x}|_{s_k=1}$. By following the change of variable rule

Motivation

$$\underbrace{p(\tilde{\mathbf{X}})|_{\tilde{\mathbf{X}}=\tilde{\mathbf{g}}(\mathbf{z})}}_{\text{nduced distribution}}$$

Induced distribution

Assumed known distribution easy to sample

$$\left| \det \left(\frac{\partial \mathbf{z}}{\partial \tilde{\mathbf{x}}} \right) \right|$$

Computational load depends on the mapping

Powering it with a *L*-layer neural network implementation:

$$\mathbf{z} = \mathbf{h}_0 \stackrel{\widetilde{\mathbf{g}}_1}{\longleftrightarrow} \mathbf{h}_1 \stackrel{\widetilde{\mathbf{g}}_2}{\longleftrightarrow} \cdots \cdots \stackrel{\widetilde{\mathbf{g}}_L}{\longleftrightarrow} \mathbf{x} = \mathbf{h}_1$$

A HIGH-LEVEL VIEW OF GENMM: ZOOM INTO LAYER

- $\mathbf{\textit{h}}_{l-1} = \begin{bmatrix} \mathbf{\textit{h}}_{l-1,a} \\ \mathbf{\textit{h}}_{l-1,b} \end{bmatrix} = \begin{bmatrix} \mathbf{\textit{h}}_{l,a} \\ \mathbf{\textit{m}}_{a}(\mathbf{\textit{h}}_{l,a}) \odot \mathbf{\textit{h}}_{l,b} + \mathbf{\textit{m}}_{b}(\mathbf{\textit{h}}_{l,a}) \end{bmatrix}$
- $m_a m_b$ Inverse $m_{l,b}$

$$\mathbf{h}_{l} = \begin{bmatrix} \mathbf{h}_{l,a} \\ \mathbf{h}_{l,b} \end{bmatrix} = \begin{bmatrix} \mathbf{h}_{l-1,a} \\ (\mathbf{h}_{l-1,b} - \mathbf{m}_{b}(\mathbf{h}_{l-1,a})) \otimes \mathbf{m}_{a}(\mathbf{h}_{l-1,a}) \end{bmatrix}$$

- ⊙ denotes element-wise product, ⊘ denotes element-wise division
- Mapping m_a, m_b can be as complex as possible and not necessary invertible
- Same computation complexity of forward and inverse mapping
- Triangular matix of Jacobian

Alternative arch. on market: Auto-regressive flow, Glow, ODE, etc.

LATMM: ALTERNATIVE MIXTURE

Multiple Latent Sources

SEMANTIC SCORES AND EXAMPLES

IS, FID, MMD and 1NN of GenMM and LatMM for MNIST dataset.

- IS: Inseption Score (large is good)
- FID: Frechet Inception Distance (small is good)
- MMD: Maximum Mean Discrepancy (small is good)
- 1NN: 1-Nearest Neighbor (the closer to 0.5 the better)

Preliminary Inference Infer..Learn

Learning 000000000 00000 Summary and Q&A

SEMANTIC SCORES AND EXAMPLES

Motivation

Generated samples by GenMM and LatMM.

Interpolation in latent space

APPLICATION TO CLASSIFICATION TASKS

Application to classification with maximum likelihood. Test Accuracy Table of GenMM for Classification Task

Dataset	K=1	K=2	K=3	K=4	K=10	K=20	State Of Art
Letter	0.9459	0.9513	0.9578	0.9581	0.9657	0.9674	0.9582
Satimage	0.8900	0.8975	0.9045	0.9085	0.9105	0.9160	0.9090
Norb	0.9184	0.9257	0.9406	0.9459	0.9538	0.9542	0.8920

GENHMM: Bring the concept into HMM

At time t, the probabilistic model of a state $s \in \mathcal{S}$ is then given by

$$p(\mathbf{\textit{x}}|s; \Phi_{s}) = \sum_{\kappa=1}^{K} \pi_{s,\kappa} p(\mathbf{\textit{x}}|s,\kappa; \theta_{s,\kappa}),$$

where

- $\pi_{s,\kappa} = p(\kappa|s; \mathbf{H})$, naturally $\sum_{\kappa=1}^{K} \pi_{s,\kappa} = 1$
- $p(\pmb{x}|\pmb{s},\kappa;\pmb{\theta}_{\pmb{s},\kappa})$ is induced by the kth generator $\pmb{g}_k(\pmb{z}) = \pmb{g}(\pmb{z};\pmb{\theta}_k)$

GENHMM: Bring the concept into HMM

ALTERNATIVE VIEW OF GENHMM

Hypothesis set of GenHMM as $\mathcal{H} := \{ \mathbf{H} | \mathbf{H} = \{ \mathcal{S}, \mathbf{q}, \mathbf{A}, p(\mathbf{x} | \mathbf{s}; \mathbf{\Phi}_{\mathbf{s}}) \} \}$

- S: the set of hidden states of H.
- $\mathbf{q} = [q_1, \dots, q_{|S|}]^\mathsf{T}$: the initial state distributions of \mathbf{H} . $q_i = p(s_1 = i; \mathbf{H})$.
- A: the transition matrix of states in H.
- $\Phi = \{\Phi_s | s \in \mathcal{S}\}.$

ALTERNATIVE VIEW OF GENHMM

Hypothesis set of GenHMM as $\mathcal{H} := \{ \mathbf{H} | \mathbf{H} = \{ \mathcal{S}, \mathbf{q}, \mathbf{A}, p(\mathbf{x} | \mathbf{s}; \mathbf{\Phi}_{\mathbf{s}}) \} \}$

- S: the set of hidden states of H.
- $\mathbf{q} = [q_1, \dots, q_{|S|}]^\mathsf{T}$: the initial state distributions of \mathbf{H} . $q_i = p(s_1 = i; \mathbf{H})$.
- A: the transition matrix of states in H.
- $\Phi = \{\Phi_s | s \in \mathcal{S}\}.$

ALTERNATIVE VIEW OF GENHMM

Hypothesis set of GenHMM as $\mathcal{H} := \{ \mathbf{H} | \mathbf{H} = \{ \mathcal{S}, \mathbf{q}, \mathbf{A}, p(\mathbf{x} | \mathbf{s}; \mathbf{\Phi}_{\mathbf{s}}) \} \}$

- S: the set of hidden states of H.
- $\mathbf{q} = [q_1, \dots, q_{|S|}]^T$: the initial state distributions of \mathbf{H} . $q_i = p(s_1 = i; \mathbf{H})$.
- A: the transition matrix of states in H.
- $\Phi = \{\Phi_s | s \in \mathcal{S}\}.$

LEARNING INTUITION

Motivation

With empirical distribution $\hat{p}(\underline{\mathbf{x}}) = \frac{1}{N} \sum_{n} \delta_{\mathbf{x}^{(n)}}(\underline{\mathbf{x}})$, learning of GenHMM boils down to

$$\min_{\boldsymbol{H} \in \mathcal{H}} KL(\hat{p}(\underline{\boldsymbol{x}}) \| p(\underline{\boldsymbol{x}}; \boldsymbol{H}))$$

Then problem becomes maximum likelihood estimation

$$\hat{\boldsymbol{H}} = \arg\max_{\boldsymbol{H} \in \mathcal{H}} \log\prod_{i} p(\underline{\boldsymbol{x}}^{i}; \boldsymbol{H}),$$

E-step: the Q function

$$\mathcal{Q}(\boldsymbol{\textit{H}};\boldsymbol{\textit{H}}^{\mathrm{old}}) = \underbrace{\mathbb{E}_{\hat{p}(\underline{\boldsymbol{x}}),p(\underline{\boldsymbol{s}},\underline{\boldsymbol{\kappa}}|\underline{\boldsymbol{x}};\boldsymbol{\textit{H}}^{\mathrm{old}})}^{\text{w.r.t. distribution } \hat{p}(\underline{\boldsymbol{x}})}_{\text{and } p(\underline{\boldsymbol{s}},\underline{\boldsymbol{\kappa}}|\underline{\boldsymbol{x}};\boldsymbol{\textit{H}}^{\mathrm{old}})} \underbrace{\frac{[\log p(\underline{\boldsymbol{x}},\underline{\boldsymbol{s}},\underline{\boldsymbol{\kappa}};\boldsymbol{\textit{H}})]}{\text{complete lklh. factorize over time}}}$$

M-step: the maximization step

$$\max_{\boldsymbol{\mathcal{Q}}} \mathcal{Q}(\boldsymbol{H}; \boldsymbol{H}^{\mathrm{old}}).$$

The M-step can be reformulated as

$$\max_{\boldsymbol{H}} \mathcal{Q}(\boldsymbol{H}; \boldsymbol{H}^{\text{old}}) = \underbrace{\max_{\boldsymbol{q}} \mathcal{Q}(\boldsymbol{q}; \boldsymbol{H}^{\text{old}})}_{\text{Initial State}} + \underbrace{\max_{\boldsymbol{A}} \mathcal{Q}(\boldsymbol{A}; \boldsymbol{H}^{\text{old}})}_{\text{Transition}} + \underbrace{\max_{\boldsymbol{\Phi}} \mathcal{Q}(\boldsymbol{\Phi}; \boldsymbol{H}^{\text{old}})}_{\text{Generators}}, \tag{1}$$

Maximizing a lower bound of $\log \prod_i p(\mathbf{x}^{(i)}; \mathbf{H})$.

LEARNING INTUITION

With empirical distribution $\hat{p}(\underline{x}) = \frac{1}{N} \sum_n \delta_{\mathbf{x}^{(n)}}(\underline{x})$, learning of GenHMM boils down to

$$\min_{\boldsymbol{H} \in \mathcal{H}} KL(\hat{p}(\underline{\boldsymbol{x}}) \| p(\underline{\boldsymbol{x}}; \boldsymbol{H}))$$

Then problem becomes maximum likelihood estimation

•
$$F = Q + \text{Entropy}$$

E-step: the

Motivation

- E-step require inference (message-passing) No optimality in M-step (NN generators, bashsize gradient descent).
- Still, guaranteed non-decreasing lklh. (c.f. Proposition 7.1)

M-step: the maximization step

$$\max_{\mathbf{H}} \mathcal{Q}(\mathbf{H}; \mathbf{H}^{\text{old}}).$$

The M-step can be reformulated as

$$\max_{\boldsymbol{H}} \mathcal{Q}(\boldsymbol{H}; \boldsymbol{H}^{\text{old}}) = \underbrace{\max_{\boldsymbol{q}} \mathcal{Q}(\boldsymbol{q}; \boldsymbol{H}^{\text{old}})}_{\text{Initial State}} + \underbrace{\max_{\boldsymbol{A}} \mathcal{Q}(\boldsymbol{A}; \boldsymbol{H}^{\text{old}})}_{\text{Transition}} + \underbrace{\max_{\boldsymbol{\Phi}} \mathcal{Q}(\boldsymbol{\Phi}; \boldsymbol{H}^{\text{old}})}_{\text{Generators}}, \tag{1}$$

Maximizing a lower bound of $\log \prod_i p(\mathbf{x}^{(i)}; \mathbf{H})$.

APPLICATION OF GENHMM

Speech Recognition:

Motivation

Configuration GenHMM in experiments on TIMIT

Latent distribution $p_{s,\kappa}(\mathbf{z})$ $s \in \mathcal{S}, \kappa = 1, 2, \cdots, K$	Standard Gaussian
Number of flow blocks	4
Non-linear mapping \mathbf{m}_a , \mathbf{m}_b	Multiple layer perception 3 layers and with hidden dimension 24

Phoneme classification / recognition

Model	Criterion	K=1	K=3	K=5
GMM-HMM linear variable change	Accuracy Precision F1	62.3 67.9 63.7	68.0 72.6 69.1	68.7 73.0 69.7
GenHMM non-linear variable change	Accuracy Precision F1	76.7 76.9 76.1	77.7 78.1 77.1	77.7 78.0 77.0

Robustness to perturbation of noise.

Model	Criterion	15dB	White No 20dB	oise SNR 25dB	30dB
GММ-НММ	Accuracy Precision F1	36.6 59.2 39.9	44.2 64.2 47.7	50.8 68.4 53.9	57.1 70.6 59.9
GenHMM	Accuracy Precision F1	52.4 60.0 52.5	62.0 65.9 62.0	69.7 71.7 69.3	74.3 74.8 73.5

Application to sepsis detection for infants, c.f. see Section 7.5.

- generative training + discriminative training
- innovative feature inspired from acoustic signal feature

REMARK ON GENMM/GENHMM

Attributes

Motivation

- Free dimension for flexibility: number of mixture + complexity of functional form of neural networks
- Compatible with classic statistic methods and neural network techniques (error back-propagation, optimizer)
- Embed batch-gradient descent into M-step
- Lack of closed-form update rule and generator changes at each gradient step. We tackle
 by maintaining old and new generators in EM steps

WHAT HAVE WE BEEN TALKING ABOUT?

WHAT HAVE WE BEEN TALKING ABOUT?

WHERE IS THE LEARNING INFO. FROM?

Optimal transport (OT): moving mass from a dist. to another

$$T(p^*,p) = \min_{\pi \in \Pi(p^*,p)} \langle \underbrace{\pi}_{\text{marginalize to } p^*,\, p}, \underbrace{\mathbf{\textit{M}}}_{\text{cost matrix}} \rangle$$

pair-wise sample difference

Key attributes:

- Doesnot require tractible lklh.
- Learning gradient info. from sample comparison
- High complexity, each evaluation is sovling an optimization problem

EOTGM: EOT BASED GENERATIVE MODEL

Alternatively scale the rows & columns of matrix $e^{-\emph{M}/\lambda}$ (Sinkhorn & Knopp) gives 'soft' solution

- joint distribution π^*
- subgradient β*

which provides the gradient information for adjusting g.

EOTGM AND EOTGAN

EOTGM

Motivation

generated v.s. empirical sample comparison

EOTGM AND EOTGAN

subgradient info.

EOTGM generated v.s. empirical sample comparison Z G Dataset Dataset Unrolled concatenated feed-forward neural network

EOTGM AND EOTGAN

generated v.s. empirical sample comparison

Motivation

EOTGAN: learn implicit distribution with feature mapping, c.f. Section 8.2.2

NUMERICAL

Motivation

→ Toy distribution learning (target at 4-mixture Gaussians) using EOTGM. Real samples (red '+') and contour (red curve), versus generated samples (blue 'o') and contour (blue curve) by g.

↓ Comparison of IS and FID (on MNIST) versus mixing ratio r.

SUMMARY

Motivation

Wrap-up

- Inference with message-passing and analysis
- Inference with free energy minimization by neural networks
- Inference .. Learning: their interactions
- Neural network generators in EM for more flexible modeling; A Further step into temporal models
- A bonus modeling method for likelihood-free learning

Thank you for your attention. Q&A.