

Visualization with Hierarchical Clustering and t-SNE

② Created @October 22, 2024 10:57 PM
 ③ Class Unsupervised Learning with Python

Hierarchical Clustering for Data Visualization

Prerequisites

Key Details

Hierarchical Clustering Concept

Definition

Mathematical Foundation

Types of Hierarchical Clustering

1. Agglomerative Clustering (Bottom-up)

Mathematical Process

2. Divisive Clustering (Top-down)

Implementation

Basic Implementation

Mathematical Distance Metrics

Dendrogram Interpretation

Structure

Mathematical Representation

Key Takeaways

Mathematical Concept Integration

Cophenetic Distance

Cluster labels in Hierarchical Clustering

Introduction and Context

Hierarchical Clustering Overview

Real-World Examples

Key Concepts

Mathematical Foundation

Distance Metrics

Linkage Criteria

Implementation in Python

Basic Implementation

Example with Eurovision 2016 Dataset

Dendrogram Interpretation

Structure

Reading the Dendrogram

Key Applications

Advantages

Practical Example Findings (Eurovision Case)

t-SNE (t-Distributed Stochastic Neighbor Embedding) for Data Visualization

Introduction

Mathematical Foundation

Core Concept

Implementation in Python

Basic Implementation

Example with Iris Dataset

Key Characteristics

Advantages

Limitations

Practical Applications

Case Study: Iris Dataset

Case Study: Piedmont Wine Dataset

Best Practices

Applications

Hierarchical Clustering for Data Visualization

Prerequisites

- · Understanding of clustering concepts
- Sample dataset: Eurovision 2016 voting data

Key Details

• Focus: Hierarchical clustering as a visualization technique

- · Application: Creating dendrograms for data interpretation
- Purpose: Communication of insights to non-technical audiences

Hierarchical Clustering Concept

Definition

A method that arranges samples into a hierarchy of nested clusters, represented as a tree-like structure.

Mathematical Foundation

For a set of samples S, the hierarchy H is defined as:

$$H = \{C_1, C_2, ..., C_n\}$$
 where:

- Each C_i is a cluster
- If $C_i, C_j \in H$, then either:
 - $\circ \ \ C_i \cap C_j = \emptyset$ (disjoint)
 - $\circ \ \ C_i \subseteq C_j \ {
 m or} \ C_j \subseteq C_i \$$ (nested)

Types of Hierarchical Clustering

1. Agglomerative Clustering (Bottom-up)

- ullet Starts with n single-sample clusters
- Iteratively merges closest clusters
- Process continues until single cluster remains

Mathematical Process

For clusters A and B, at each step:

1. Find
$$(\hat{A}, \hat{B}) = \arg\min_{A,B} d(A,B)$$

2. Merge:
$$C_{new} = A^* \cup B^*$$

Where

d(A,B) is the distance between clusters

2. Divisive Clustering (Top-down)

- Starts with one cluster containing all samples
- Recursively splits clusters
- Continues until individual samples remain

Implementation

Basic Implementation

```
from scipy.cluster.hierarchy import linkage, dendrogram
import matplotlib.pyplot as plt
# Perform hierarchical clustering
hierarchical cluster = linkage(
    X, # Sample array
    method='complete' # Linkage method
)
# Create dendrogram
plt.figure(figsize=(10, 7))
dendrogram(
    hierarchical_cluster,
    labels=country_names, # Sample labels
    leaf rotation=90
)
plt.title('Eurovision Voting Patterns')
plt.tight_layout()
plt.show()
```

Mathematical Distance Metrics

Common distance metrics between clusters A and B:

1. Single Linkage:

$$d_{single}(A,B) = \min_{a \in A, b \in B} ||a-b||$$

2. Complete Linkage:

$$d_{complete}(A,B) = \max_{a \in A, b \in B} ||a-b||$$

3. Average Linkage:

$$d_{average}(A,B) = \frac{1}{|A||B|} \sum_{a \in A} \sum_{b \in B} ||a-b||$$

Dendrogram Interpretation

Structure

- · Vertical axis: Distance/dissimilarity between clusters
- Horizontal axis: Samples/clusters
- · Vertical lines: Clusters
- · Horizontal lines: Merging points

Mathematical Representation

For a merge point at height h between clusters C_1 and C_2 :

$$h = d(C_1, C_2)$$

Key Takeaways

- Hierarchical clustering creates interpretable visualizations
- Dendrograms show both cluster relationships and distances
- Useful for discovering natural groupings in data
- Effective for communicating patterns to non-technical audiences
- No need to specify number of clusters beforehand

Mathematical Concept Integration

Cophenetic Distance

The cophenetic distance c(i, j) between samples i and j is:

 $c(i,j)={
m height}$ of lowest common ancestor in dendrogram Cophenetic correlation coefficient:

$$c=rac{\sum_{i< j}(d_{ij}-ar{d})(c_{ij}-ar{c})}{\sqrt{\sum_{i< j}(d_{ij}-ar{d})^2\sum_{i< j}(c_{ij}-ar{c})^2}}$$

Where:

- d_{ij} is the original distance
- c_{ij} is the cophenetic distance
- \bar{d} and \bar{c} are their respective means

This measures how faithfully the dendrogram represents the original distances between samples.

Cluster labels in Hierarchical Clustering

Introduction and Context

- Key purpose: Communication of data science insights, especially to nontechnical audiences
- Part of unsupervised learning visualization techniques
- Paired with t-SNE (to be covered later) for 2D data mapping

Hierarchical Clustering Overview

Real-World Examples

- Biological classification system
 - Narrow groups: humans, apes, snakes, lizards

Broader groups: mammals, reptiles

Broadest groups: animals, plants

Key Concepts

- · Arranges samples into nested clusters forming a hierarchy
- · Can be applied to any type of data
- Two main types:
 - 1. Agglomerative Clustering (bottom-up approach)
 - 2. Divisive Clustering (top-down approach)

Mathematical Foundation

Distance Metrics

For two samples x_i and x_j in feature space, common distance metrics include:

1. Euclidean Distance:

$$d(x_i,x_j)=\sqrt{\sum_{k=1}^n(x_{ik}-x_{jk})^2}$$

2. Manhattan Distance:

$$d(x_i, x_j) = \sum_{k=1}^n |x_{ik} - x_{jk}|$$

Linkage Criteria

For clusters \boldsymbol{A} and \boldsymbol{B} containing multiple points:

1. Single Linkage:

$$d(A,B) = \min_{a \in A, b \in B} d(a,b)$$

2. Complete Linkage:

$$d(A,B) = \max_{a \in A, b \in B} d(a,b)$$

3. Average Linkage:

$$d(A,B) = rac{1}{|A||B|} \sum_{a \in A} \sum_{b \in B} d(a,b)$$

Implementation in Python

Basic Implementation

```
from scipy.cluster.hierarchy import linkage, dendrogram
import matplotlib.pyplot as plt

# Perform hierarchical clustering
hierarchical_cluster = linkage(samples, method='ward')

# Create dendrogram
plt.figure(figsize=(10, 7))
dendrogram(hierarchical_cluster, labels=sample_labels)
plt.show()
```

Example with Eurovision 2016 Dataset

```
# Assuming scores_array contains Eurovision voting data
# and country_names contains list of country names

from scipy.cluster.hierarchy import linkage, dendrogram
import matplotlib.pyplot as plt

# Perform clustering
eurovision_clusters = linkage(scores_array, method='ward')

# Create visualization
plt.figure(figsize=(15, 10))
dendrogram(eurovision_clusters, labels=country_names)
plt.title('Eurovision 2016 Voting Patterns')
plt.xlabel('Countries')
```

```
plt.ylabel('Distance')
plt.show()
```

Dendrogram Interpretation

Structure

Vertical axis: Distance or dissimilarity between clusters

Horizontal axis: Samples or clusters

Vertical lines: Clusters

Horizontal lines: Merging of clusters

Reading the Dendrogram

1. Bottom level: Individual samples (one per cluster)

2. Moving upward: Progressive merging of closest clusters

3. Height of merge: Indicates dissimilarity between merged clusters

4. Top level: Single cluster containing all samples

Key Applications

- Geographic and cultural pattern detection
- Voting behavior analysis
- Biological taxonomy
- Market segmentation
- Document clustering

Advantages

- Visual representation of hierarchical relationships
- No need to specify number of clusters beforehand
- Reveals natural groupings in data

Suitable for small to medium-sized datasets

Practical Example Findings (Eurovision Case)

- Clusters often correspond to:
 - Geographic proximity
 - Cultural ties
 - Political alliances
 - Language groups

This structure helps reveal underlying patterns in voting behavior without requiring prior assumptions about groupings.

t-SNE (t-Distributed Stochastic Neighbor Embedding) for Data Visualization

Introduction

- Purpose: Dimensionality reduction for visualization
- Full name: t-distributed stochastic neighbor embedding
- Primary use: Converting high-dimensional data to 2D/3D representations

Mathematical Foundation

Core Concept

t-SNE converts high-dimensional Euclidean distances between datapoints into conditional probabilities that represent similarities:

1. Similarity of datapoint x_j to x_i in high-dimensional space:

$$p_{j|i} = rac{\exp(-\|x_i - x_j\|^2/2\sigma_i^2)}{\sum_{k
eq i} \exp(-\|x_i - x_k\|^2/2\sigma_i^2)}$$

2. Joint probability in high-dimensional space:

$$p_{ij}=rac{p_{j|i}+p_{i|j}}{2n}$$

3. Student t-distribution in low-dimensional space:

$$q_{ij} = rac{(1+\|y_i-y_j\|^2)^{-1}}{\sum_{k
eq l} (1+\|y_k-y_l\|^2)^{-1}}$$

4. Cost function (Kullback-Leibler divergence):

$$C = \sum_i \sum_j p_{ij} \log rac{p_{ij}}{q_{ii}}$$

Implementation in Python

Basic Implementation

```
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt

# Create and fit t-SNE
tsne = TSNE(n_components=2, learning_rate=100, random_state=4
2)
tsne_features = tsne.fit_transform(X)

# Visualize results
plt.figure(figsize=(10, 6))
plt.scatter(tsne_features[:, 0], tsne_features[:, 1], c=label
s)
plt.colorbar()
plt.title('t-SNE visualization')
plt.show()
```

Example with Iris Dataset

```
from sklearn.manifold import TSNE import matplotlib.pyplot as plt
```

```
# Create t-SNE object
tsne = TSNE(learning_rate=100)

# Fit and transform the data
tsne_features = tsne.fit_transform(iris_samples)

# Create visualization
plt.figure(figsize=(8, 6))
plt.scatter(tsne_features[:, 0], tsne_features[:, 1], c=speci
es_labels)
plt.title('Iris Dataset t-SNE Visualization')
plt.show()
```

Key Characteristics

Advantages

- Preserves local structure of the data
- Can reveal clusters and patterns
- Works well with non-linear relationships
- Effective for high-dimensional data visualization

Limitations

- 1. No Transform Method
 - Only has fit_transform
 - Cannot extend map to new samples
 - Must recompute for new data
- 2. Learning Rate Sensitivity
 - Requires experimentation (typically 50-200)
 - Poor choice results in clustered points
 - Dataset-dependent parameter

3. Axis Interpretation

- Axes have no inherent meaning
- Different orientations for same data
- Maintains relative positions between clusters

Practical Applications

Case Study: Iris Dataset

- 4D to 2D reduction
- Unsupervised learning (no species information used)
- Reveals:
 - Natural separation of species
 - Close proximity of versicolor and virginica
 - Potential 2-cluster structure

Case Study: Piedmont Wine Dataset

- Multiple runs produce different orientations
- Preserves relative positions of wine varieties
- Demonstrates consistency in cluster relationships

Best Practices

- 1. Data Preparation:
 - Scale features before applying t-SNE
 - Remove irrelevant features
 - Handle missing values
- 2. Parameter Selection:
 - Try multiple learning rates
 - Check for point crowding

• Validate cluster separation

3. Interpretation:

- Focus on relative positions
- Don't interpret axis values
- Consider multiple runs

Applications

- · Cluster analysis
- Pattern recognition
- Feature visualization
- Dimensionality reduction
- Data exploration

This technique serves as a powerful tool for initial data exploration and pattern discovery in high-dimensional datasets.