

High Efficiency, 1.0A, 100V Input Synchronous Step Down Regulator

Introduction

DB_SY21051FCC_1 is intended for evaluating 1A, 100V synchronous step down regulator.

Design Specifications

Input Voltage (V)	Output Current (A)	Output Voltage (V)	Test conditions
7-100	0-1	5	K ₁ Close

Schematic

Figure 1. Schematic Diagram

Recommended Table

V _{OUT} (V)	$R_1(k\Omega)$	$R_2(k\Omega)$	L ₁ (μH)
5	100	31.6	33
12	100	11.11	47

Figure 2. Test Results

Quick Start Guide (Refer to Figure 3)

- 1. Connect the output load to V_{OUT} and GND output connectors. Preset the load current to between 0A and 1A.
- 2. Preset the input supply to a voltage between 7V and 100V. Turn the supply off. Connect the input supply to $V_{\rm IN}$ and GND input connectors.
- 3. Short jumper K_1 . Change R_2 to achieve the desired output voltage. See Table 1.
- 4. Turn on the input supply and measure the output voltage.

Figure 3. Top Silkscreen

PCB Layout

Figure 4. PCB Layout Plots: (a) top layer, (b) bottom layer

BOM List

Reference	Description	Part Number	Manufacturer
Designator			
U1	100V Input synchronous step down regulator	SY21051FCC	SILERGY
C1	22uF/200V Electrolytic Cap		
C3	1uF/100V/X7R,1206	C3216X7R2E105K	TDK
C4	10uF/25V/X5R, 1206	C3216X5R1E106M	TDK
C6,C8	0.1uF/50V/X7R, 0603	C1608X7R1H104K	TDK
C7	100pF/50V/X5R, 0603		
C2	Spare	%	
R1	100k, 1%, 0603		
R2	31.6k, 1%, 0603		
R3,R5	1ΜΩ, 1%, 0603	2	
R4	10kΩ, 1%, 0603		
D1	BAT54		
L1	Inductor 33uH 2.2A	CDRH8D43NP-330NC	

Output Voltage Ripple Test

A proper output ripple measurement should be done according to Figure 5 setup. Output voltage ripple should be measured across the output ceramic cap near the IC.

- 1. Remove the ground clip and head of the probe. Wind thin wires around the ground ring of the probe. Solder the end of the ground ring wire to the negative node of the C_{OUT} . Touch the probe tip to the positive node of the C_{OUT} . Refer to Figure 5.
- 2. Minimize the loop formed by Courterminals, probe tip and ground ring.
- 3. Change the probing direction to decouple the electromagnetic noise generated from the nearby buck inductor (Refer to Figure.5)

Figure.5 Recommended way to measure the output voltage ripple