Лабораторная работа №7

Модель $M|M|1|\infty$

Астраханцева А. А.

Содержание

1	Цель работы	4
2	Задание	5
3	Теоретическое введение	6
4	Реализация модели в xcos	7
5	Выводы	11
Список литературы		12

Список иллюстраций

4.1	Значения переменных	7
4.2	Суперблок поступления заявок	8
4.3	Суперблок обработки заявок	8
4.4	Модель $M M 1 \infty$ в хсоз	9
	Динамика размера очереди	
4.6	Поступление (голубой) и обработка (зеленый) заявок	10

1 Цель работы

Реализовать модель $M|M|1|\infty$ с помощью средства имитационного моделирования Scilab, xcos.

2 Задание

1. Реализовать модель в хсоѕ

3 Теоретическое введение

Теория массового обслуживания (или теория очередей) является разделом теории вероятностей, целью которого является изучение и оптимизация систем массового обслуживания (СМО). СМО представляют собой модели, в которых заявки поступают в систему, где они обслуживаются в соответствии с определенной дисциплиной. Одной из наиболее простых и широко используемых моделей СМО является система типа $M|M|1|\infty$, где:

M|M|1: Означает, что заявки поступают в систему по пуассоновскому потоку (M), обслуживаются одним сервером (1), а время обслуживания также распределено по экспоненциальному закону (M).

 ∞ : Указывает на то, что в системе нет ограничений на количество заявок, которые могут находиться в очереди.

Эта модель часто используется для анализа различных характеристик СМО, таких как среднее время ожидания, среднее время пребывания в системе и вероятность наличия заявок в очереди. В лабораторной работе мы будем использовать программное обеспечение хсох для моделирования и анализа поведения системы $M|M|1|\infty$. Это позволит нам наглядно продемонстрировать основные принципы теории массового обслуживания и оценить эффективность системы при различных условиях [2],[3].

4 Реализация модели в хсоѕ

Откроем окно Scilab, далее - инструменты - визуальное программирование хсоs. Зафиксируем начальные данные: $\lambda=0.3, \mu=0.35, z_0=6$. В меню "Моделирование -> Задать переменные окружения" зададим значения переменных $\lambda,\,\mu,\,z_0$ (рис. 4.1).

Рис. 4.1: Значения переменных

Суперблок, моделирующий процесс поступления заявок, представлен на рис 4.2.

Рис. 4.2: Суперблок поступления заявок

Суперблок, моделирующий процесс обработки заявок, представлен на рис 4.3.

Рис. 4.3: Суперблок обработки заявок

Готовая модель $M|M|1|\infty$ представлена на рис.4.4.

Рис. 4.4: Модель $M|M|1|\infty$ в хсоs

Результат моделирования представлен на рис. 4.5 и 4.6.

Рис. 4.5: Динамика размера очереди

Рис. 4.6: Поступление (голубой) и обработка (зеленый) заявок

5 Выводы

В ходе выполнения лабораторной работы я реализовала модель $M|M|1|\infty$ с помощью средства имитационного моделирования Scilab, xcos.

Список литературы

- 1. Королькова А.В., Кулябов Д.С. Руководство к лабораторной работе №7. Модель « $M|M|1|\infty$ » 2025. 4 с.
- 2. Плескунов М.А. Теория массового обслуживания : учебное пособие / М-во науки и высшего образования РФ, Урал. федер. ун-т. Екатеринбург : Изд-во Урал. ун-та, 2022. 264 с.
- 3. Гнеденко Б.В., Коваленко И.Н. Введение в теорию массового обслуживания. М.: Наука, $2017.-432~\mathrm{c}.$