Direct Products

Definition. Let G and H be groups. The **direct product** $G \times H$ of G and H is the set of all ordered pairs $\{(g,h) \mid g \in G, h \in H\}$ with the operation

$$(g_1, h_1) \cdot (g_2, h_2) = (g_1g_2, h_1h_2).$$

Remarks. 1. In the definition, I've assumed that G and H are using multiplication notation. In general, the notation you use in $G \times H$ depends on the notation in the factors. Examples:

G	Н	$ \begin{array}{c} \operatorname{Product} \\ (G \times H) \end{array} $	$\begin{array}{c} \text{Identity} \\ (G \times H) \end{array}$	
$g_1 \cdot g_2$	$h_1 \cdot h_2$	$(g_1, h_1)(g_2, h_2) = (g_1g_2, h_1h_2)$	(1, 1)	$(g,h)^{-1} = (g^{-1},h^{-1})$
$g_1 + g_2$	$h_1 + h_2$	$(g_1, h_1) + (g_2, h_2) = (g_1 + g_2, h_1 + h_2)$	(0,0)	-(g,h) = (-g,-h)
$g_1 \cdot g_2$	$h_1 + h_2$	$(g_1, h_1)(g_2, h_2) = (g_1g_2, h_1 + h_2)$	(1,0)	$(g,h)^{-1} = (g^{-1}, -h)$

2. You can construct products of more than two groups in the same way. For example, if G_1 , G_2 , and G_3 are groups, then

$$G_1 \times G_2 \times G_3 = \{(x, y, z) \mid x \in G_1, y \in G_2, z \in G_3\}.$$

Just as with the two-factor product, you multiply elements componentwise. \Box

Example. (A product of cyclic groups which is cyclic) Show that $\mathbb{Z}_2 \times \mathbb{Z}_3$ is cyclic.

Since
$$\mathbb{Z}_2 = \{0, 1\}$$
 and $\mathbb{Z}_3 = \{0, 1, 2\},\$

$$\mathbb{Z}_2 \times \mathbb{Z}_3 = \{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)\}.$$

If you take successive multiples of (1,1), you get

$$(1,1), (0,2), (1,0), (0,1), (1,2), (0,0).$$

Since you can get the whole group by taking multiples of (1,1), it follows that $\mathbb{Z}_2 \times \mathbb{Z}_3$ is actually cyclic of order 6 — the same as \mathbb{Z}_6 . \square

Example. (A product of cyclic groups which is not cyclic) Show that $\mathbb{Z}_2 \times \mathbb{Z}_2$ is not cyclic.

Since
$$\mathbb{Z}_2 = \{0, 1\},\$$

$$\mathbb{Z}_2 \times \mathbb{Z}_2 = \{(0,0), (1,0), (0,1), (1,1)\}.$$

Here's the operation table:

	(0,0)	(1,0)	(0,1)	(1,1)
(0,0)	(0,0)	(1,0)	(0,1)	(1,1)
(1,0)	(1,0)	(0,0)	(1,1)	(0,1)
(0,1)	(0,1)	(1, 1)	(0,0)	(1,0)
(1,1)	(1, 1)	(0,1)	(1,0)	(0,0)

Note that this is not the same group as \mathbb{Z}_4 . Both groups have 4 elements, but \mathbb{Z}_4 is cyclic of order 4. In $\mathbb{Z}_2 \times \mathbb{Z}_2$, all the elements have order 2, so no element generates the group.

 $\mathbb{Z}_2 \times \mathbb{Z}_2$ is the same as the **Klein 4-group** V, which has the following operation table:

	1	a	b	c
1	1	a	b	c
a	a	1	c	b
b	b	c	1	a
c	c	b	a	1

П

If G and H are finite, then $|G \times H| = |G||H|$. (This is true for sets G and H; it has nothing to do with G and H being groups.) For example, $|\mathbb{Z}_5 \times \mathbb{Z}_6| = 30$.

Lemma. The product of abelian groups is abelian: If G and H are abelian, so is $G \times H$.

Proof. Suppose G and H are abelian. Let $(g,h), (g',h') \in G \times H$, where $g,g' \in G$ and $h,h' \in H$. I have

$$\begin{array}{lcl} (g,h)(g',h') & = & (gg',hh') & \text{(Definition of multiplication in a product)} \\ & = & (g'g,h'h) & (G \text{ and } H \text{ are abelian)} \\ & = & (g',h')(g,h) & \text{(Definition of multiplication in a product)} \end{array}$$

This proves that $G \times H$ is abelian. \square

Remark. If either G or H is not abelian, then $G \times H$ is not abelian. Suppose, for instance, that G is not abelian. This means that there are elements $g_1, g_2 \in G$ such that

$$g_1g_2 \neq g_2g_1$$
.

Then

$$(g_1, 1)(g_2, 1) = (g_1g_2, 1),$$
 while $(g_2, 1)(g_1, 1) = (g_2g_1, 1).$

Since $(g_1g_2,1) \neq (g_2g_1,1)$, it follows that $(g_1,1)(g_2,1) \neq (g_2,1)(g_1,1)$, so $G \times H$ is not abelian. A similar argument works if H is not abelian. \square

Example. (A product of an abelian and a nonabelian group) Construct the multiplication table for $\mathbb{Z}_2 \times D_3$. (Recall that D_3 is the group of symmetries of an equilateral triangle.) The number of elements is

$$|\mathbb{Z}_2 \times D_3| = |\mathbb{Z}_2| \cdot |D_3| = 2 \cdot 6 = 12.$$

Here's the multiplication table for $\mathbb{Z}_2 \times D_3$:

	(0, id)	$(0, r_1)$	$(0, r_2)$	$(0, m_1)$	$(0, m_2)$	$(0, m_3)$
(0, id)	(0, id)	$(0, r_1)$	$(0, r_2)$	$(0, m_1)$	$(0, m_2)$	$(0, m_3)$
$(0, r_1)$	$(0, r_1)$	$(0, r_2)$	(0, id)	$(0, m_3)$	$(0, m_1)$	$(0, m_2)$
$(0, r_2)$	$(0, r_2)$	(0, id)	(0, id)	$(0, m_2)$	$(0, m_3)$	$(0, m_1)$
$(0, m_1)$	$(0, m_1)$	$(0, m_2)$	$(0, m_3)$	(0, id)	$(0, r_1)$	$(0, r_2)$
$(0, m_2)$	$(0, m_2)$	$(0, m_3)$	$(0, m_1)$	$(0, r_2)$	(0, id)	$(0, r_1)$
$(0, m_3)$	$(0, m_3)$	$(0, m_1)$	$(0, m_2)$	$(0, r_1)$	$(0, r_2)$	(0, id)
(1, id)	(1, id)	$(1, r_1)$	$(1, r_2)$	$(1, m_1)$	$(1, m_2)$	$(1, m_3)$
$(1, r_1)$	$(1, r_1)$	$(1, r_2)$	(1, id)	$(1, m_3)$	$(1, m_1)$	$(1, m_2)$
$(1, r_2)$	$(1, r_2)$	(1, id)	(1, id)	$(1, m_2)$	$(1, m_3)$	$(1, m_1)$
$(1, m_1)$	$(1, m_1)$	$(1, m_2)$	$(1, m_3)$	(1, id)	$(1, r_1)$	$(1, r_2)$
$(1, m_2)$	$(1, m_2)$	$(1, m_3)$	$(1, m_1)$	$(1, r_2)$	(1, id)	$(1, r_1)$
$(1, m_3)$	$(1, m_3)$	$(1, m_1)$	$(1, m_2)$	$(1, r_1)$	$(1, r_2)$	(1, id)
					,	1
	(1, id)	$(1, r_1)$	$(1, r_2)$	$(1, m_1)$	$(1, m_2)$	$(1, m_3)$
(0, id)	(1, id)	$(1, r_1)$	$(1, r_2)$	$(1, m_1)$	$(1, m_2)$	$(1, m_3)$
$(0, r_1)$	$(1, r_1)$	$(1, r_2)$	(1, id)	$(1, m_3)$	$(1, m_1)$	$(1, m_2)$
$(0, r_2)$	$(1, r_2)$	(1, id)	(1, id)	$(1, m_2)$	$(1, m_3)$	$(1, m_1)$
$(0, m_1)$	$(1, m_1)$	$(1, m_2)$	$(1, m_3)$	(1, id)	$(1, r_1)$	$(1, r_2)$
$(0, m_2)$	$(1, m_2)$	$(1, m_3)$	$(1, m_1)$	$(1, r_2)$	(1, id)	$(1, r_1)$
$(0, m_3)$	$(1, m_3)$	$(1, m_1)$	$(1, m_2)$	$(1, r_1)$	$(1, r_2)$	(1, id)
(1, id)	(0, id)	$(0, r_1)$	$(0, r_2)$	$(0, m_1)$	$(0, m_2)$	$(0, m_3)$
$(1, r_1)$	$(0, r_1)$	$(0, r_2)$	(0, id)	$(0, m_3)$	$(0, m_1)$	$(0, m_2)$
$(1, r_2)$	$(0, r_2)$	(0, id)	(0, id)	$(0, m_2)$	$(0, m_3)$	$(0, m_1)$
$(1, m_1)$	$(0, m_1)$	$(0, m_2)$	$(0, m_3)$	(0, id)	$(0, r_1)$	$(0, r_2)$
$(1, m_2)$	$(0, m_2)$	$(0, m_3)$	$(0, m_1)$	$(0, r_2)$	(0, id)	$(0, r_1)$
$(1, m_3)$	$(0, m_3)$	$(0, m_1)$	$(0, m_2)$	$(0, r_1)$	$(0, r_2)$	(0, id)

The operation in \mathbb{Z}_2 is addition mod 2, while the operation in D_3 is written using multiplicative notation. When you multiply two pairs, you add in \mathbb{Z}_2 in the first component and multiply in D_3 in the second component:

$$(1, r_2)(1, m_2) = (1 + 1, r_2 \cdot m_2) = (0, m_3).$$

The identity is (0, id), since 0 is the identity in \mathbb{Z}_2 , while id is the identity in D_3 . $\mathbb{Z}_2 \times D_3$ is not abelian, since D_3 is not abelian. A particular example:

$$(1, m_2)(0, r_2) = (1, m_1),$$
 but $(0, r_2)(1, m_2) = (1, m_3).$

Example. (Using products to construct groups) Use products to construct 3 different abelian groups of order 8. The groups $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, $\mathbb{Z}_4 \times \mathbb{Z}_2$, and \mathbb{Z}_8 are abelian, since each is a product of abelian groups.

 \mathbb{Z}_8 is cyclic of order 8, $\mathbb{Z}_4 \times \mathbb{Z}_2$ has an element of order 4 but is not cyclic, and $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ has only elements of order 2. It follows that these groups are distinct.

In fact, there are 5 distinct groups of order 8; the remaining two are nonabelian.

The group D_4 of symmetries of the square is a nonabelian group of order 8.

The fifth (and last) group of order 8 is the group Q of the quaternions.

 D_4 or Q are not that same as $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, $\mathbb{Z}_4 \times \mathbb{Z}_2$, or \mathbb{Z}_8 , since $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, $\mathbb{Z}_4 \times \mathbb{Z}_2$, and \mathbb{Z}_8 are abelian while D_4 or Q are not.

Finally, D_4 is not the same as Q. D_4 has 5 elements of order 2: The four reflections and rotation through 180°. Q has one element of order 2, namely -1.

I've shown that these five groups of order 8 are distinct; it takes considerably more work to show that these are the *only* groups of order 8. \Box

Definition. Let m and n be positive integers. The **least common multiple** [m, n] of m and n is the smallest positive integer divisible by m and n.

Remark. Since mn is divisible by m and n, the set of positive multiples of m and n is nonempty. Hence, it has a smallest element, by well-ordering. It follows that the least common multiple of two positive integers is always defined. For example, [18, 30] = 90.

Lemma. If s is a common multiple of m and n, then $[m, n] \mid s$.

Proof. By the Division Algorithm,

$$s = q \cdot [m, n] + r$$
, where $0 \le r < [m, n]$.

Thus, $r = s - q \cdot [m, n]$. Since $m \mid s$ and $m \mid [m, n]$, I have $m \mid r$. Since $n \mid s$ and $n \mid [m, n]$, I have $n \mid r$. Therefore, r is a common multiple of m and n. Since it's also less than the least common multiple [m, n], it can't be positive. Therefore, r = 0, and $s = q \cdot [m, n]$, i.e. $[m, n] \mid s$. \square

Remark. The lemma shows that the least common multiple is not just "least" in terms of size. It's also "least" in the sense that it *divides* every other common multiple.

Theorem. Let m and n be positive integers. Then

$$mn = (m, n)[m, n].$$

Proof. I'll prove that each side is greater than or equal to the other side.

Note that $\frac{m}{(m,n)}$ and $\frac{n}{(m,n)}$ are integers. Thus,

$$\frac{mn}{(m,n)} = m \cdot \frac{n}{(m,n)} = \frac{m}{(m,n)} \cdot n.$$

This shows that $\frac{mn}{(m,n)}$ is a multiple of m and a multiple of n. Therefore, it's a common multiple of m and n, so it must be greater than or equal to the least common multiple. Hence,

$$\frac{mn}{(m,n)} \geq [m,n], \quad \text{and} \quad mn \geq (m,n)[m,n].$$

Next, [m, n] is a multiple of n, so [m, n] = sn for some s. Then

$$\frac{mn}{[m,n]} = \frac{mn}{sn} = \frac{m}{s} \mid m.$$

(Why is $\frac{mn}{[m,n]}$ an integer? Well, mn is a common multiple of m and n, so by the previous lemma $[m,n] \mid mn$.)

Similarly, [m, n] is a multiple of m, so [m, n] = tm for some t. Then

$$\frac{mn}{[m,n]} = \frac{mn}{tm} = \frac{n}{t} \mid n.$$

In other words, $\frac{mn}{[m,n]}$ is a common divisor of m and n. Therefore, it must be less than the greatest common divisor:

 $\frac{mn}{[m,n]} \leq (m,n), \quad \text{and} \quad mn \leq (m,n)[m,n].$

The two inequalities I've proved show that mn = (m, n)[m, n]. \square

Example. Verify that mn = (m, n)[m, n] if m = 54 and n = 72.

$$(54,72) = 18, [54,72] = 216,$$
and

$$(54,72)[54,72] = 18 \cdot 216 = 3888 = 54 \cdot 72.$$

Proposition. The element (1,1) has order [m,n] in $\mathbb{Z}_m \times \mathbb{Z}_n$.

Proof.

$$[m, n](1, 1) = ([m, n], [m, n]).$$

The first component is 0, since it's divisible by m; the second component is 0, since it's divisible by n. Hence, [m, n](1, 1) = (0, 0).

Next, I must show that [m, n] is the smallest positive multiple of (1, 1) which equals the identity. Suppose k(1, 1) = (0, 0), so (k, k) = (0, 0). Consider the first components. k = 0 in \mathbb{Z}_m means that $m \mid k$; likewise, the second components show that $n \mid k$. Since k is a common multiple of m and n, it must be greater than or equal to the least common multiple [m, n]: that is, $k \geq [m, n]$. This proves that [m, n] is the order of (1, 1). \square

Example. Find the order of (1,1) in $\mathbb{Z}_4 \times \mathbb{Z}_6$. Find the order of $(1,1) \in \mathbb{Z}_5 \times \mathbb{Z}_6$.

The element (1,1) has order [4,6] = 12.

On the other hand, the element $(1,1) \in \mathbb{Z}_5 \times \mathbb{Z}_6$ has order [5,6] = 30. Since $\mathbb{Z}_5 \times \mathbb{Z}_6$ has order 30, the group is cyclic; in fact, $\mathbb{Z}_5 \times \mathbb{Z}_6 \approx \mathbb{Z}_{30}$. \square

Remark. More generally, consider $(x_1, \ldots, x_n) \in G_1 \times \ldots \times G_n$, and suppose x_i has order r_i in G_i . (The G_i 's need not be cyclic.) Then (x_1, \ldots, x_n) has order $[r_1, \ldots, r_n]$. \square

Corollary. $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic of order mn if and only if (m,n) = 1.

Note: In the next proof, "(a,b)" may mean either the ordered pair (a,b) or the greatest common divisor of a and b. You'll have to read carefully and determine the meaning from the context.

Proof. If (m,n) = 1, then [m,n] = mn. Thus, the order of (1,1) is [m,n] = mn. But $\mathbb{Z}_m \times \mathbb{Z}_n$ has order mn, so (1,1) generates the group. Hence, $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic.

Suppose on the other hand that $(m,n) \neq 1$. Since (m,n)[m,n] = mn, it follows that $[m,n] \neq mn$. Since mn is a common multiple of m and n and since [m,n] is the *least* common multiple, it follows that [m,n] < mn.

Now consider an element $(a,b) \in \mathbb{Z}_m \times \mathbb{Z}_n$. Let p be the order of a in \mathbb{Z}_m and let q be the order of b in \mathbb{Z}_n .

Since $p \mid m \mid [m, n]$, I may write pj = [m, n] for some j. Since $q \mid n \mid [m, n]$, I may write qk = [m, n] for some k. Then

$$[m,n](a,b) = ([m,n]a,[m,n]b) = (j(pa),k(qb)) = (j \cdot 0,k \cdot 0) = (0,0).$$

Hence, the order of (a, b) is less than or equal to [m, n]. But [m, n] < mn, so the order of (a, b) is less than (and not equal to) mn.

Since (a,b) was an arbitrary element of $\mathbb{Z}_m \times \mathbb{Z}_n$, it follows that no element of $\mathbb{Z}_m \times \mathbb{Z}_n$ has order mn. Therefore, $\mathbb{Z}_m \times \mathbb{Z}_n$ can't be cyclic of order mn, since a generator would have order mn. \square

Remark. More generally, if m_1, \ldots, m_k are pairwise relatively prime, then $\mathbb{Z}_{m_1} \times \ldots \times \mathbb{Z}_{m_k}$ is cyclic of order $m_1 \cdots m_k$. \square

Example. (Orders of elements in products) Find the order of $(2,4,4) \in \mathbb{Z}_4 \times \mathbb{Z}_{12} \times \mathbb{Z}_6$.

2 has order 2 in \mathbb{Z}_4 , 4 has order 3 in \mathbb{Z}_{12} , and 4 has order 3 in \mathbb{Z}_6 . Hence, the order of (2,4,4) is [2,3,3]=6. \square

Example. (A product of cyclic groups which is not cyclic) Prove directly that $\mathbb{Z}_2 \times \mathbb{Z}_4$ is not cyclic of order 8.

If
$$(a,b) \in \mathbb{Z}_2 \times \mathbb{Z}_4$$
, then

$$4(a,b) = (4a,4b) = (0,0).$$

Thus, every element of $\mathbb{Z}_2 \times \mathbb{Z}_4$ has order less than or equal to 4. In particular, there can be no elements of order 8, i.e. no cyclic generators. \square