Introduction to Robotics ME 639 Industrial Project final Presentation

Project Title: Development of Series Elastic Actuator Unit & Controller

Team Name: Top Guns

Team Members: Pupul Dalbehera, Pushan Pravin Patel, Shubham Singh

Instructor: Prof. Harish PM

Teaching Assistant: Suraj Borate

Problem Statement:

In general, actuators are built to be as stiff as possible to increase the bandwidth. When a robot works in a structured environment, its automation is easier than in a non-structured environment in which its modeling is quite difficult and presents a high computational effort. To overcome this difficulty, Series Elastic Actuator (SEA) has been applied in compliant robotic grasping. SEA contains an elastic element in series with the mechanical energy source like drive motor. Such an elastic element gives SEAs tolerance to impact loads, low mechanical output impedance, passive mechanical energy storage, and increased peak power output. Series Elastic Actuators provide many benefits in force control of robots in unconstrained environments. These benefits include high force fidelity, extremely low impedance, low friction, and good force control bandwidth.

Industry name: ISRO

Objectives:

- To design and develop a SEA unit consisting of drive motor, gear train unit, compliance element such as linear/torsional spring, position encoder.
- To develop a controller for the SEA

Rationale / Approach / Ideas:

- 1. Design of the Actuator- SolidWorks
- 2. Design of the Controller-Simulink
- 3. Simulation of the Actuator-Simscape or Hyperworks for visualisation

Deliverables:

Initial:

- A brief explanation of the concept (including type of robot, number of links and joints, and other such details)
- Figures/drawings/sketches/CAD showing the concept
- Relevant equations of the robotics solution
- Codes incorporating the solution
- Representative plots/or other representative results from the codes
- Explanation of the solution and the results

Extra:

- Literature review of different configuration
- Analysis of different control strategies

Different Configurations:

- ☐ Reaction Force Sensing Series Elastic Actuator(RFSEA)
- □ Transmitted Force Sensing Series Elastic Actuator(TFSEA)
- ☐ Force Sensing Series Elastic Actuator(FSEA)-Chosen Configuration

Why FSEA??

- **□** Force Sensitivity:
 - ☐ Highest magnitude of force sensitivity compared to other two configurations
- Compliance:
 - FSEA, TFSEA & RFSEA shows similar response in the lower frequency range.
- **☐** Transmissibility:
 - Torque transmission efficiency of FSEA is slightly lower than RFSEA & TFSEA in the high frequency range and almost similar in the low frequency range.
- Compactness & Application:
 - Compact and generic (from application point of view).

CAD Design of the FSEA

Exploded View

Spring

- Spring under consideration is Planar torsional spring.
- Spring constant is linearly proportional to the thickness of the geometry.

Differential equations of selected configurations

FSEA configuration:

$$\tau_s = k(N^{-1}\theta_m - \theta_l)$$

$$J_m \dot{\theta_m} + B_m \dot{\theta_m} = \tau_m - N^{-1}\tau_s$$

$$J_l \ddot{\theta_l} + B_l \dot{\theta_l} = \tau_l + \tau_s$$

FSEA

PL(s)=

PM(s)=

	$\theta_m(s)$	$\theta_s(s)$	$\theta_l(s)$	$ au_{S}$ (s)
$\tau_m(s)$	$\frac{P_m(s)\left[P_l(s)+K_s^{-1}\right]}{D(s)}$	$\frac{N^{-1}P_m(s)K_s^{-1}}{D(s)}$	$\frac{N^{-1}P_m(s)P_l(s)}{D(s)}$	$\frac{N^{-1}P_m(s)}{D(s)}$
τ_{l} (s)	$\frac{N^{-1}P_m(s)P_l(s)}{D(s)}$	$\frac{P_l(s)K_s^{-1}}{D(s)}$	$\frac{P_l(s)\left[N^{-2}P_m(s)+K_s^{-1}\right]}{D(s)}$	$\frac{P_l(s)}{D(s)}$

where $D(s) = P_l(s) + N^{-2}P_m(s) + K_s^{-1}$.

COMPLETE SYSTEM WITH DOB AND PID

COMPLETE SYSTEM WITHOUT DOB AND PID

PLANT/ACTUATOR

FEED FORWARD

Key Results 1 before Feedback and DOB control:

Blue is T Desired Yellow is Toutput

Key Results 2 after Feedback and DOB control for SQUARE input Torque:

Blue is T Desired Yellow is Toutput

Key Results 3 after Feedback and DOB control for Sinusoidal input Torque:

Blue is T Desired Yellow is Toutput

Square Wave response comparison for P, PD, PI, PID feedback

Stiffness, k = 0.48 Nm/rad, Square Wave Amplitude = 1Nm, frequency= 1Hz

Square Wave response comparison for k=0.48 Nm/rad and k =48Nm/rad at 0.25Hz

Purple - Desired, Orange - k=48, blue - k=0.48

Square Wave response comparison for k=0.48 Nm/rad and k =48Nm/rad at 100Hz

Purple - Desired, Orange - k=48, blue - k=0.48

Square Wave response for Very High stiffness(Rigid) without feedback

Stiffness, k =10000 Nm/rad

Step Response:

2nd order filter: Zeta range(0.38-0.78) Wn range(280-680)

Its observed that the variation of the above results in better response at higher frequency

STABILITY: Wpc >Wgc

ROBUSTNESS:

We observe the Robustness of SEA wrt a Stiff Actuator With respect to variation in JI and BI

Pole zero comparison:

We observe that the Tm as input and ThetaL vs ThetaS which shows has poles more away from origin

Force Sensitivity:θs(s)/TI(s)

Transmissibility:Ts(s)/Tm(s)

We observe that the Force sensitivity is better in Stiff actuator compared to SEA Transmissibility is same

References:

- 1. Lee, C., Kwak, S., Kwak, J. and Oh, S., 2017, September. Generalization of series elastic actuator configurations and dynamic behavior comparison. In Actuators (Vol. 6, No. 3, p. 26). Multidisciplinary Digital Publishing Institute.
- 2. Qiu, F., Michizono, S., Miura, T., Matsumoto, T., Omet, M. and Sigit, B.W., 2015. Application of disturbance observer-based control in low-level radio-frequency system in a compact energy recovery linac at KEK. Physical Review Special Topics-Accelerators and Beams, 18(9), p.092801.
- 3. Oh, S. and Kong, K., 2016. High-precision robust force control of a series elastic actuator. IEEE/ASME Transactions on mechatronics, 22(1), pp.71-80.
- 4. Williamson, M.M., 1995. Series elastic actuators.
- 5. Cummings, J.P., Ruiken, D., Wilkinson, E.L., Lanighan, M.W., Grupen, R.A. and Sup, F.C., 2016. A compact, modular series elastic actuator. Journal of Mechanisms and Robotics, 8(4).
- 6. https://robots.ieee.org/robots/valkyrie/
- 7. Sergi, F., Tagliamonte, N.L. and Guglielmelli, E., A Novel Compact Torsional Spring for Series Elastic Actuators for Assistive Wearable Robots.

