Application No. 10/523,166 Amendment "E" dated July 27, 2010

Reply to Office Action mailed April 27, 2010

AMENDMENTS TO THE CLAIMS

The listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

 (Currently Amended) A device for sealing a puncture extending through tissue proximal to an interior vessel surface, the device comprising:

a first disk having a self-expanding first bare wire frame that forms a plurality of petals, the plurality of petals having a first end and a second end, each petal of the plurality of petals is joined to the remaining petals of the plurality of petals at a joint;

a joint connected to the first end and second end of the plurality of petals; and

a proximal element having a second bare wire frame coupled to the first <u>bare wire frame</u>, the first disk being configured to be releasably coupled to the proximal element <u>in a delivery configuration and translating along a portion of the proximal element to allow altering of a distance between the first disk and the proximal element;</u>

the first disk having a retracted delivery configuration adapted configured for delivery to the puncture and an expanded deployed configuration in which the first disk is adapted configured to engage with and substantially conform to the interior vessel surface, and the proximal element ishaving a retracted delivery configuration for delivery to the tissue proximal to the puncture and a retracted deployed configuration configured to engage the tissue proximal to the interior vessel surface.

(Previously Presented) The device of claim 1, wherein the first disk is configured to be released from engagement with the interior vessel surface.

(Canceled).

4. (Previously Presented) The device of claim 1, wherein the proximal element comprises a second disk.

Amendment "E" dated July 27, 2010

Reply to Office Action mailed April 27, 2010

 (Previously Presented) The device of claim 4, wherein the first disk is attached to a nut and the second disk is attached to a bolt, the nut configured to be releasably coupled to the bolt.

 (Previously Presented) The device of claim 5, further comprising at least one delivery shaft configured to facilitate coupling of the first disk to the proximal element;

the at least one delivery shaft including at least first and second delivery elements,

the first delivery element being configured to engage with a keyway on the nut for positioning the first disk relative to the interior vessel surface and for holding the first disk in a stationary position relative to the bolt.

the second delivery element being configured to engage with at least one slot on the bolt for driving the bolt relative to the nut to position the first disk in sealing engagement against the interior vessel surface and to position the proximal element in engagement with the tissue proximal to the interior vessel surface.

- (Previously Presented) The device of claim 1, further comprising at least one delivery element constrained to translate a maximum distal depth.
- (Previously Presented) The device of claim 6, wherein the at least one delivery shaft is configured to facilitate decoupling of the first disk from the proximal element.
- (Previously Presented) The device of claim 1, wherein the proximal element comprises a spring.
- (Previously Presented) The device of claim 1, wherein one or both of the first disk and the proximal element comprises barbs, hooks, sharp edges, or roughened surfaces.
- (Previously Presented) The device of claim 1, further comprising a
 membrane encasing at least the self-expanding frame of the first disk.
- (Previously Presented) The device of claim 1, further comprising a coagulant-enhancing agent disposed on one or both of the first disk and the proximal element.

Amendment "E" dated July 27, 2010

Reply to Office Action mailed April 27, 2010

13. (Previously Presented) The device of claim 1, wherein the device

comprises a biodegradable material.

14. (Currently Amended) A device for sealing a puncture extending through tissue

proximal to an interior vessel surface, the device comprising:

a first self-expanding disk having a first bare wire frame and a second self-expanding disk having a second bare wire frame, the frames of each of the first and second disks forming a

plurality of petals with each petal of the plurality of petals being joined to the remaining petals of

the plurality of petals at a joint, the plurality of petals having a first end and a second end, the

first disk and the second disk being connected in a delivery configuration, and the first disk

translating along a portion of the second disk to allow altering of a distance between the first disk

and the proximal element; and

a joint connected to the first end and second end of the plurality of petals, the first disk

including a first threaded member to which the plurality of petals of the first disk are connected and the second disk including a second threaded member to which the plurality of petals of the

second disk are connected, the first and second threaded members being configured for

releasably coupling the first disk to the second disk;

the first threaded member including a keyway and the second threaded member including

at least one slot, the keyway being adapted to permit positioning of the first disk relative to the interior vessel surface and for holding the first disk in a stationary position relative to the interior

vessel surface, and the at least one slot being adapted for driving the second threaded member

relative to the first threaded member, and

wherein the device is configured to be released from engagement with the interior vessel

surface after full deployment of the device, thereby permitting the device to be repositioned.

15. (Previously Presented) The device of claim 14, wherein the second self-

expanding disk substantially conforms to the interior vessel surface.

16. (Previously Presented) The device of claim 14, further comprising a

membrane encasing at least the second self-expanding disk.

4

Amendment "E" dated July 27, 2010

Reply to Office Action mailed April 27, 2010

17. (Previously Presented) The device of claim 14, further comprising a

coagulant-enhancing agent disposed on one or both of the first and second self-expanding disks.

18. (Canceled).

19. (Previously Presented) The device of claim 14, the first threaded member

comprising a nut and the second threaded member comprising a bolt, wherein the first self-

expanding disk is attached to the nut and the second self-expanding disk is attached to the bolt,

the nut configured to be releasably coupled to the bolt.

20. (Previously Presented) The device of claim 14, further comprising at least

one delivery shaft configured to facilitate coupling of the first self-expanding disk to the second

self-expanding disk.

21. (Previously Presented) The device of claim 20, wherein the at least one

delivery shaft is configured to facilitate decoupling of the first self-expanding disk from the

second self-expanding disk.

22-23 (Canceled).

24. (Previously Presented) The device of claim 14, wherein the device

comprises a biodegradable material.

25. (Withdrawn) A device for sealing a puncture extending through tissue proximal

to an interior vessel surface, the device comprising: a nut coupled to a bolt, wherein the device is

configured to be releasably engaged to the interior vessel surface.

26. (Withdrawn) The device of claim 25, wherein the bolt is configured to

substantially conform to the interior vessel surface.

27. (Withdrawn) The device of claim 25, wherein the nut is configured to be

releasably coupled to the bolt.

5

Amendment "E" dated July 27, 2010

Reply to Office Action mailed April 27, 2010

 (Withdrawn) The device of claim 25, wherein the nut comprises a first selfexpanding disk and the bolt comprises a second self-expanding disk.

maing disk and the boit comprises a second sen-expanding disk

29. (Withdrawn) The device of claim 25, wherein the device is biodegradable.

30. (Currently Amended) A device for sealing a puncture extending through tissue

proximal to an interior vessel surface, the device comprising:

a first disk having a self-expanding first bare wire frame that forms a plurality of petals,

the plurality of petals having a first end and a second end, each petal of the plurality of petals is joined to the remaining petals of the plurality of petals at a joint:

a joint connected to the first end and second end of the plurality of petals:

a proximal element having a second bare wire frame coupled to the first frame, wherein

at least part of the device is biodegradable, the first disk being configured to be releasably

coupled to the proximal element in a delivery configuration and translating along a portion of the

proximal element to allow altering of a distance between the first disk and the proximal element;

the first disk including a first threaded member and the proximal element including a second threaded member, the first and second threaded members being configured for releasably

coupling the first disk to the proximal element in the delivery configuration and translating the

first disk along a portion of the proximal element to allow altering of a distance between the first

first disk along a portion of the proximal element to allow altering of a distance between the first

disk and the proximal element;

the first threaded member including a keyway and the second threaded member including at least one slot, the keyway being adapted to permit positioning of the first disk relative to the

interior vessel surface and for holding the first disk in a stationary position relative to the interior

vessel surface, and the at least one slot being adapted for driving the second threaded member

relative to the first threaded member while the first disk is held in the stationary position relative

to the interior vessel; and

the first disk having a retracted delivery configuration adapted for delivery to the

puncture and an expanded deployed configuration in which the first disk is adapted to engage with and substantially conform to the interior vessel surface, and the proximal element being

configured to engage the tissue proximal to the interior vessel surface.

6

wherein the first disk and the proximal element are biased toward one another such that first disk is held in scaling engagement against the interior vessel surface by the proximal element being engaged with the tissue proximal to the interior vessel surface.

(Canceled)

- 32. (Previously Presented) The device of claim 30, wherein the device is configured to be releasably engaged to the interior vessel surface.
- 33. (Previously Presented) The device of claim 30, wherein the first disk is configured to be releasably coupled to the proximal element.
- 34. (Previously Presented) The device of claim 30, wherein the proximal element comprises a second disk.
- 35. (Previously Presented) The device of claim 34, wherein the first disk is attached to a nut and the second disk is attached to a bolt, the nut configured to be releasably coupled to the bolt.
- (Previously Presented) The device of claim 30, wherein the proximal element comprises a spring.
- (Previously Presented) The device of claim 30, wherein one or both of the first disk and the proximal element comprises barbs, hooks, sharp edges, or roughened surfaces.
- 38. (Previously Presented) The device of claim 30, further comprising a minimally invasive delivery element configured to deliver the first disk and the proximal element.
- (Previously Presented) The device of claim 30, further comprising at least one delivery element constrained to translate a maximum distal depth.

Amendment "E" dated July 27, 2010

Reply to Office Action mailed April 27, 2010

 (Currently Amended) A device for sealing a puncture extending through tissue proximal to an interior vessel surface, the device comprising:

a first disk having a self-expanding frame, without coatings or membranes, that forms a plurality of petals, each petal of the plurality of petals is joined to the remaining petals of the plurality of petals at a joint, each petal of the plurality of petals having a first end, a second end disposed adjacent to the first end, and an intermediate portion extending from the first end towards the second end;

a joint directly connected to the first end and second end of each of petal of the plurality of petals:

a proximal element releasably coupled to the first disk, the first disk and the proximal element being connected in a delivery configuration and translating along a portion of the proximal element to allow altering of a distance between the first disk and the proximal element;

the first disk including a threaded nut and the proximal element including a threaded bolt, the threaded nut and the threaded bolt being configured for releasably coupling the first disk to the proximal element, the threaded bolt being configured to be driven relative to the threaded nut:

the first disk having a retracted delivery configuration adapted for delivery to the puncture and an expanded deployed configuration in which the first disk is adapted to engage with and substantially conform to the interior vessel surface, and the proximal element having a retracted delivery configuration for delivery to the tissue proximal to the puncture and a retracted deployed configuration configured to engage the tissue proximal to the interior vessel surface,

a minimally invasive delivery apparatus comprising first and second delivery elements configured to at least selectively limit distal translation of the first delivery element with respect to the second delivery element so that only the first disk is extended out of the minimally invasive delivery apparatus; and

the minimally invasive delivery apparatus further comprising third and fourth delivery elements;

the third delivery element being configured to engage with a keyway on the threaded nut for positioning the first disk relative to the interior vessel surface and for holding the first disk in a stationary position;

the fourth delivery element being configured to engage with at least one slot on the threaded bolt for driving the threaded bolt relative to the threaded nut to hold the first

Amendment "E" dated July 27, 2010

Reply to Office Action mailed April 27, 2010

disk in sealing engagement against the interior vessel surface and to position the proximal element in engagement with the tissue proximal to the interior vessel surface; and

the third and fourth delivery elements being further configured to permit the first disk to be released from engagement with the interior vessel surface, thereby permitting the device to be repositioned.