

	Course Name:			Machine Learning			Exam Duration:			2 h	2 hours		
	De	Dept.: Depar		tment of Computer Science			ience aı	ence and Engineering					
	Exa	Exam Paper Sett			nature):	:	ı	Reviewe	er(Signa	ature):			
			-		· · · /								
	Ques		1	2	3	4	5	6	7	8	9	10	
	Sco	ore	20	5	5	10	10	10	20	20	10		
	This	s exam	paper c	ontains_	9 que	stions an	d the sco	re is <u>11</u>	0 in tot	al. (Pleas	e hand ir	n your	
	exam paper, answer sheet, and your scrap paper to the proctor when t					he exam	ends.)						
	Problem I Multiple Choice (20 Points) (only one correct answer for each question)												
	(on	ly one c	orrect a	nswer for	each que	estion)							
A	1.	(2 poi	i nts) Th	e most s	uitable lo	ss functi	on for lin	ear regre	ssion is		_		
A		A	. the s	um of sq	uared em	ors							
		E	B. the e	entropy fo	unction								
		C	c. the c	ross entr	opy func	tion							
		Ι). the n	number o	f mistake	es							
_	2.	(2 poi	i nts) Th	e logistic	e regressi	on is a		regressio	on techni	que that i	s used to	ı	
В		mode	l data ha	aving a _		outcome	.						
		A	. linea	ır, numer	ric								
		Е	3. linea	ır, binary									
		C	C. nonl	inear, nu	meric								
		Ι). nonl	inear, bir	nary								
	3.	(2 poi	i nts) Th	e most s	uitable lo	ss functi	ons for n	eural net	works ar	e			
В		A	the e	ntropy f	unction a	nd KL di	vergence						
		E	3. the s	quared e	rror func	tion and	cross-ent	ropy fun	ction				
				-	ropy func								
		Ι). the n	number o	f mistake	es and en	tropy fun	ction					
	4.	(2 noi	ints) Th	e most si	uitable lo	ss functio	ons for S	VM are	•	?			
3	••				unction a					-			
		1	•	PJ 1		41							

		C.	the hinge error function and ϵ -insensitive error function
		D.	the number of mistakes and entropy function
_	5.	(2 poin	ts) The most suitable loss functions for GMM are
A		A.	the maximum likelihood function and maximum a posterior function
		B.	the squared error function and cross-entropy function
		C.	the cross-entropy function and KL divergence
		D.	the number of mistakes and entropy function
D	6.	(2 poin	ts) The three most important problems for HMM are
В		A.	message propagation, expectation and maximization
		B.	learning, evaluation and decoding
		C.	belief propagation, parameter learning and state estimation
		D.	ML learning, MAP learning, and fully Bayesian learning
_	7.	(2 point	s) The reinforcement learning problem can be solved through
U		A.	dynamic programming if the rewards and transition probabilities are known
		B.	the Monte Carlo method if only reward functions are known
		C.	the temporal difference method if the online learning is preferred
		D.	all of the above
_	8.	(2 poin	ts) Which activation function has the least computational complexity?
C		A.	tanh
		B.	sigmod
		C.	ReLu
		D.	Leaky ReLu
^	9.	(2 poin	ts) Which of the following is NOT a way to reduce the model under-fitting?
C		A.	increase the amount of training data
		B.	increase the model complexity
		C.	decrease the number the model parameters with prior distributions
		D.	decrease the amount of data augmentation
n	10	. (2 point	ts) Which of the following is NOT true for a machine learning system?
		A.	It has three main components: model, error function and optimization algorithm
		В.	It reduces the KL divergence between the distributions of data and the model.
		C.	It involves the procedure of EM for incomplete data problems.
		D.	It will achieve the global optimum if the training data is sufficient enough.

B. the squared error function and cross-entropy function

Problem II Numerical Calculation (40 Points)

- (1) **Linear Regression** (5 points). For three points $\{(1, 0), (3, 3), (5, 4)\}$, what is the linear regression function for the least squared errors (assuming y = ax + b, using psudo-inverse)?
- (2) **Maximum margin classifier** (**5 points**). For one class of two points {(1, 2) (2, 2)} and another class of two points {(4, 4) (5, 6)}, what are the support vectors and what is the decision boundary's function (*plot your answer*)?
- (3) **Clustering** (10 points). For four points with two classes, {(1, 2) (2, 2) (4, 4) (5, 6)}, how to achieve two cluster centers using the K-means algorithm?

- (4) **Factor Graph (10 points)**. How to design a factor graph to solve the following linear equation $[2\ 4\ 3]^T = [1\ 0\ 1;\ 1\ 2\ 1;\ 1\ 1\ 1][x_1\ x_2\ x_3]^T$? Assuming the initial value of X is $[0\ 1\ 1]$), show the computation procedure of one iteration.
- (5) **Hidden Markov Model (10 points)**. For a HMM, the hidden states are {bull, bear}, the observation variables are {rise, fall}, the initial state probability distribution π is $[0.5 \ 0.5]^T$, the transition probability distribution A is $[0.4 \ 0.7; 0.6 \ 0.3]$, and the observation probability distribution B is $[0.8 \ 0.1; 0.2 \ 0.9]$. If the observation sequence is {fall fall rise}, please show the computation procedure for estimating the most likely state sequence?

Problem III Theoretical Analysis (40 Points)

(1) **Density Mixture Model (20 points).** For a random variable X distributed in a mixture of probability densities, the joint distribution of X and its latent variable Z with the model θ is given by

$$p(X,Z|\theta) = \prod_{i=1}^{K} [\pi_i p(X|\theta_i)]^{z_i}$$

- a) Summarize the general EM scheme for DMM (*E*-step and *M*-step).
- b) Assuming each probability density is Bernoulli, *i.e.*, $p(X \mid \theta_i) = \theta_i^x (1 \theta_i)^{1-x}$, please derive the corresponding model learning procedure for $\{\pi_i, \theta_i\}$ under the EM scheme.
- (2) **Hidden Markov Model (20 Points).** For a finite-state random sequence $\{Z_t\}$ with the model of $\{\pi, A\}$ and its observation sequence is $\{X_t\}$, the joint distribution of X and Z with the model θ is given by $p(X, Z|\theta)$.
 - a) Summarize the general EM scheme for HMM (*E*-step and *M*-step).
 - b) Assuming each observation probability density is Bernoulli, i.e.

$$p(X,Z|\theta) = \prod_{i=1}^{K} [p(z_i)p(X|\theta_i)]^{z_i}$$

please derive the corresponding model learning procedure under the EM scheme.

Problem IV Expectation and Maximization (Bonus 10 Points)

- (1) What is the EM procedure? When do we need the EM procedure for machine learning?
- (2) What is the EM procedure in terms of the Q function?
- (3) What is the EM procedure in terms of likelihood and KL divergence?
- (4) What is the EM procedure in terms of optimization of non-convex function?
- (5) What is the EM procedure for the factor graph network model?