AVALIAÇÃO - INFERÊNCIA BIVARIADA

Felipe Neres Silva Bezerra

RGM: 1901333-7

Exercício 1

Um trabalhador, suspeitando que o preço dos estacionamentos na região em que trabalha é acima da média da região em que ele mora, resolveu avaliar se sua suspeita era verdadeira. Ele coletou informações do preço de meia diária (12 h) em cinco estacionamentos próximos a seu trabalho e em cinco estacionamentos próximos a sua residência. Os resultados estão apresentados na tabela abaixo. Com base nessas informações, determine se a suspeita do indivíduo é verdadeira ou não. Assuma um α = 2,5% e considere que a normalidade e a homogeneidade foram respeitadas. Custo do período de 12 h (em R\$).

Custo do período de 12h (em R\$)				
Próximo ao trabalho	Próximo à residência			
35,00	25,00			
40,00	18,00			
50,00	30,00			
45,00	20,00			
45,00	25,00			

$$\bar{X}_t = 43; s_t = 5,7; n_t = 5; \bar{X}_r = 23,6; s_r = 4,72; n_r = 5$$

$$\begin{cases} H_0: \bar{X}_t \le X_r \\ H_1: \bar{X}_t > X_r \end{cases} \rightarrow \begin{cases} H_0: 43 \le 23,6 \\ H_1: 43 > 23,6 \end{cases}$$

$$t = \frac{\bar{X}_t - \bar{X}_r}{\sqrt{\frac{s_t^2}{n_t} + \frac{s_r^2}{n_r}}} = \frac{43 - 23.6}{\sqrt{\frac{5.7^2}{5} + \frac{4.72^2}{5}}} = 5.8617$$

$$\alpha^* = 0.0001$$

$$RC = \{t > 2.306\}$$

Sob o nível de significância de 2,5%, tendo o valor de t=5,8617 pertencente à região crítica, rejeita-se H_0 e admite-se que o preço do estacionamento próximo a onde o trabalhador trabalha é, em média, maior que o preço próximo a onde reside.

Exercício 2

Um dos estudos em psicologia social e educacional mais citados é de Rosenthal e Jacobson (1966), sobre como a expectativa dos professores pode influenciar o desempenho acadêmico das crianças. Rosenthal e Jacobson foram a uma escola básica e receberam a permissão de aplicar um teste de inteligência em todas as crianças. O teste havia sido desenvolvido

recentemente e se baseava em uma inteligência não verbal que nenhum dos estudantes ou professores teria provavelmente visto antes. Assim, os pesquisadores foram capazes de criar expectativas nos professores, principalmente ao informar-lhes (erroneamente e de propósito) que o novo teste era "um teste para o desabrochar da inteligência". Os pesquisadores selecionaram aleatoriamente alguns alunos e informaram aos professores que aqueles haviam obtido desempenhos excepcionais no teste. Claramente, aqueles estudantes não haviam sido identificados com base em seus desempenhos reais. Em outras palavras, eles conduziram um experimento para testar as expectativas dos professores.

Oito meses depois, retornaram e administraram o mesmo teste novamente em todas as salas de aula. Sem grandes surpresas, a maioria das crianças apresentou um melhor desempenho nos testes, visto que completaram quase um ano de formação acadêmica. A pergunta principal, é claro, era se as crianças que haviam sido previamente rotuladas como "potencialmente inteligentes" apresentariam aumentos de desempenho ainda maiores do que as demais crianças (que não haviam sido rotuladas). A tabela abaixo apresenta informações resumidas de parte dos dados desse trabalho. Com base nessas informações, determine se as crianças rotuladas apresentaram um desempenho melhor do que as crianças não rotuladas. Assuma um $\alpha = 2,5\%$ e considere que a normalidade e a homogeneidade foram respeitadas.

A criança foi rotulada	n	Média do desempenho	Desvio padrão
Não	19	12,00	16,39
Sim	11	27,36	12,57

$$\begin{cases} H_0: \bar{X}_s \le X_s \\ H_1: \bar{X}_s > X_n \end{cases} \to \begin{cases} H_0: 43 \le 23,6 \\ H_1: 43 > 23,6 \end{cases}$$

$$t = \frac{\bar{X}_s - \bar{X}_n}{\sqrt{\frac{s_s^2}{n_s} + \frac{s_n^2}{n_n}}} = \frac{27,36 - 12}{\sqrt{\frac{12,57^2}{11} + \frac{16,39^2}{19}}} = 2,6784$$

$$\alpha^* = 0,0038$$

$$RC = \{t > 2,048\}$$

Conforme o valor de t=2,6784 pertencente à região crítica, a nível de significância de 2,5%, rejeita-se H_0 e assume-se que as crianças previamente rotuladas como "potencialmente inteligentes" apresentaram ganhos de desempenho acima dos ganhos de desempenho das demais crianças.

Exercício 2

Dois laboratórios determinaram a quantidade de cloro das mesmas amostras de água retiradas da rede de abastecimento de uma cidade. Com base nessas informações, há evidências suficientes para afirmar que existem diferenças significativas entre as medições realizadas pelos dois laboratórios? Assuma um $\alpha = 1\%$ e considere que a normalidade foi respeitada.

$$\overline{D} = 0.03; \ s_D = 0.0922; n = 7$$

$$t = \frac{\overline{D}}{\sqrt{\frac{s_D^2}{n}}} = \frac{0.03}{\sqrt{\frac{0.0922^2}{7}}} = 0.86007$$

$$\alpha^* = 0.1949$$

$$RC = \{t < -3.7074 \ ou \ t > 3.7074\}$$

Conforme o valor de t=0.86007 não pertence à região crítica, a nível de significância de 1%, aceita-se H_0 e assume-se que não existem diferenças significativas entre as medições realizadas por ambos os laboratórios.

Exercício 2

Deseja-se verificar se o número de acidentes em uma estrada muda conforme o dia da semana. O número de acidentes observado para cada dia, de uma semana escolhida aleatoriamente, foi de: (Considere um α = 0,05.)

Dia da Semana	Seg	Ter	Qua	Qui	Sex	Sáb	Dom	TOTAL
Observado	20	10	10	15	30	20	35	140
Esperado	20	20	20	20	20	20	20	140
Qui ²	0	5	5	1,25	5	0	11,25	27,5
Qui² Tabelado								12,6

Como o valor qui-quadrado obtido (27,5) para as 7 classes (g.l.=6) foi maior que o esperado ao acaso ($\alpha=0.05$; $\chi^2{}_{tabelado}=12.6$), rejeita-se a hipótese nula e admite-se que a frequências observada de acidentes ao longo dos dias da semana escolhida é diferente da frequência esperada.

Exercício 3

Um pesquisador resolveu avaliar se a droga Prozac (fluoxetina) apresentaria efeitos benéficos no tratamento da anorexia, em pacientes que sofrem desse distúrbio. O Prozac é um inibidor seletivo da recaptação de serotonina, utilizado normalmente para combater sintomas de depressão, pânico, ansiedade, e sintomas obsessivos-compulsivos. Após o tratamento, observou-se se o quadro de anorexia seria superado (Sucesso), ou se haveria reincidência do distúrbio alimentar (Falha). Com base nos resultados abaixo, justifique se há associação entre o tipo de tratamento e a permanência do distúrbio alimentar. Considere um α = 0,05.

Anorexia - Observado							
Droga	Sucesso	Falha	TOTAL				
Prozac	13	36	49				
Placebo	14	30	44				
TOTAL	27	66	93				

Anorexia - Proporção						
Droga	Sucesso	Falha	TOTAL			
Prozac	0,152966	0,373916	0,526882			
Placebo	0,137357	0,335761	0,473118			
TOTAL	0,290323	0,709677	1			

Anorexia - Esperado						
Droga	Droga Sucesso Falha					
Prozac	14,22581	34,77419	49			
Placebo	Placebo 12,77419		44			
TOTAL	27	66	93			

Anorexia - Qui²						
Droga		Falha				
Prozac	0,105625 0,117628	0,04321	0,148835			
Placebo	0,117628	0,048121	0,165748			
TOTAL	0,223253	0,091331	0,314584			

$$\chi^2_{tabelado}(\alpha = 0.05; g.l. = 1) = 3.84$$

Como o valor qui-quadrado obtido (0,314) foi menor que o esperado ao acaso ($\alpha=0.05$; $\chi^2_{tabelado}=3.84$), aceita-se a hipótese nula e admite-se que não há tendência a associar o tipo de tratamento com Prozac e a permanência da anorexia nos pacientes observados.

Exercício 4

Um amante dos Três Patetas resolveu contar e dividir em categorias o número de tapas na cara sofrido por cada um dos Patetas ao longo de 199 episódios, originalmente criados para a televisão. Existe associação entre o número de tapas sofridos e quem o sofreu? Considere um α = 0,05. Os resultados dessa análise estão apresentados na tabela a seguir:

Observado		Pateta que recebeu o tapa				
		Curly	Shemp	Joe	TOTAL	
pa	0 a 10 tapas	49	34	10	93	
que o tapa	11 a 20 tapas	36	21	5	62	
	21 a 30 tapas	7	14	5	26	
Pateta cebeu	mais de 31 tapas	5	8	5	18	
T 9	TOTAL	97	77	25	199	

	Dranaraão	Pateta que recebeu o tapa			
	Proporção	Curly	Shemp	Joe	TOTAL
ba	0 a 10 tapas	0,227797	0,180829	0,058711	0,467337
que o tapa	11 a 20 tapas	0,151865	0,120553	0,03914	0,311558
	21 a 30 tapas	0,063685	0,050554	0,016414	0,130653
Pateta cebeu	mais de 31 tapas	0,04409	0,034999	0,011363	0,090452
_ ē	TOTAL	0,487437	0,386935	0,125628	1

Esperado		Pateta que recebeu o tapa			
	Esperado	Curly	Shemp	Joe	TOTAL
ba	0 a 10 tapas	11,16207	6,148178	0,587106	17,89735
que o tapa	11 a 20 tapas	5,467135	2,531603	0,195702	8,19444
	21 a 30 tapas	0,445797	0,70776	0,082069	1,235625
Pateta cebeu	mais de 31 tapas	0,220449	0,279993	0,056817	0,557259
– ě	TOTAL	17,29545	9,667534	0,921694	27,88467

Qui²		Pateta que recebeu o tapa				
		Curly	Shemp	Joe	TOTAL	
ue tapa	0 a 10 tapas	128,2656	126,1714	150,914	405,351	
que o tap	11 a 20 tapas	170,52	134,7295	117,9409	423,1904	
	21 a 30 tapas	96,36134	249,6378	294,7051	640,7043	
Pateta cebeu	mais de 31 tapas	103,6254	212,8572	430,0679	746,5505	
re	TOTAL	498,7723	723,3959	993,6279	2215,796	
5	TOTAL	498,7723	723,3959	993,6279	2215,796	

$$\chi^2_{tabelado}(\alpha = 0.05; g.l. = 6) = 12.6$$

Como o valor qui-quadrado obtido (2215,796) foi maior que o esperado ao acaso ($\alpha=0.05; \chi^2_{tabelado}=12.6$), rejeita-se a hipótese nula e admite-se que há associação entre o número de tapas sofridos em cada episódio e o personagem que os sofreu.