Motivation

- Dynamische Verwaltung großer Datenmengen
 - effiziente Zugriffe
 - Datenbanken, Suchmaschinen
- Lösung Baum als dynamische Datenstruktur
- effizientes Suchen in O(h)
 - möglichst geringe Höhe durch Balancieren

Definition Baum

- durch Nachfolgerrelation (Parent) strukturierte Menge
- mathematische Definition
 - [[Bäume & Spannbäume]]

Eigenschaften

- \exists Knoten w ohne Parent(w) \rightarrow (w=Wurzel)
- \forall Knoten $k \neq w$ $\stackrel{1}{\exists}$ Knotenfolge $k_0, k_1, ..., k_t$ mit $k_0 = k$, $k_t = w$ und $k_i = Parent(k_{i-1})$ für i = 1, 2, ..., t. (Ast zwischen k und w, Länge t, t ... Tiefe des Knotens k)

- Ordnung eines Knotens: Anzahl seiner Kinder
- Ordnung eines Baumes: maximale Ordnung aller Knoten
- Höhe eines Baumes: Länge des längsten Astes.
- · Die Knoten eines Baumes sind entweder
 - Blätter (Knoten ohne Kinder, Ordnung 0) oder
 - Innere Knoten (Ordnung >0)
- · Jeder Knoten ist Wurzel eines Teilbaumes
- Voller Baum der Ordnung k: Jeder Knoten hat genau k Kinder oder ist ein Blatt
- Vollständiger Baum: Voller Baum, bei dem jedes Blatt gleiche Tiefe hat

