# МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Национальный исследовательский Нижегородский государственный университет им. Н.И.Лобачевского

### В. Г. Гавриленко, Е. Ю. Петров

# СБОРНИК ЗАДАЧ ПО КУРСУ "ТЕРМОДИНАМИКА И СТАТИСТИЧЕСКАЯ ФИЗИКА"

Учебно-методическое пособие

Рекомендовано методической комиссией радиофизического факультета ННГУ для студентов, обучающихся по направлению подготовки 03.03.03 "Радиофизика"

#### Рецензент:

зав. кафедрой общей физики ННГУ, профессор М.И.Бакунов

Г17 Гавриленко В. Г., Петров Е. Ю. Сборник задач по курсу "Термодинамика и статистическая физика": Учебно-методическое пособие. — Нижний Новгород: Нижегородский государственный университет, 2019.-10 с.

Пособие представляет собой сборник задач по основным разделам курса "Термодинамика и статистическая физика". Часть задач, входящих в пособие, взята из монографий, указанных в списке литературы, другая часть составлена на основе многолетней практики проведения занятий, зачетов и экзаменов на радиофизическом факультете Нижегородского госуниверситета.

Пособие рассчитано на студентов старших курсов, специализирующихся в области радиофизики.

## Ответственные за выпуск:

председатель методической комиссии радиофизического факультета ННГУ, к.ф.-м.н., доцент **Н. Д. Миловский**,

зам. председателя методической комиссии радиофизического факультета  $HH\Gamma Y$ , д.ф.-м.н., профессор **Е. З. Грибова** 

УДК 536.7 ББК 22.317

<sup>©</sup>Гавриленко В. Г., Петров Е. Ю., 2019

<sup>©</sup>Нижегородский государственный университет им. Н.И.Лобачевского, 2019

# ТЕРМОДИНАМИКА

# 1. Первый принцип термодинамики. Теплоёмкость. Политропические процессы

- **1.1.** Нагревается или охлаждается идеальный газ при расширении по закону  $P^2V = \text{const}$ ? Какова его молярная теплоёмкость в этом процессе (выразить через  $C_P$  и  $C_V$ )?
- **1.2.** Вывести уравнение политропы для модели газа Ван дер Ваальса в переменных (T,V) и (P,V) (использовать выражение  $U=C_VT-a/V$  для внутренней энергии газа Ван дер Ваальса).
- **1.3.** Записать уравнения для изотермы, адиабаты и изохоры для газа Ван дер Ваальса.
- **1.4.** Вычислить  $C_P C_V$  для модели газа Ван дер Ваальса на основе первого принципа термодинамики и уравнения состояния.

# 2. Математическая формулировка второго принципа термодинамики. Полный дифференциал энтропии

2.1. Вывести соотношение

$$\left(\frac{\partial \mathcal{X}}{\partial T}\right)_x = \frac{1}{T} \left[ \left(\frac{\partial U}{\partial x}\right)_T + \mathcal{X} \right],$$

где U — внутренняя энергия,  $\mathcal{X}$  — обобщенная сила, а x — отвечающий ей внешний параметр.

2.2. Вывести формулу

$$C_{\mathcal{X}} - C_x = -T \frac{\left[\left(\frac{\partial x}{\partial T}\right)_{\mathcal{X}}\right]^2}{\left(\frac{\partial x}{\partial \mathcal{X}}\right)_T}.$$

**2.3.** Для диэлектрика в однородном электрическом поле вычислить разность теплоёмкостей  $C_E$  при постоянной напряжённости электрического поля E и

 $C_D$  при постоянной электрической индукции D. Объём диэлектрика считать постоянным, а зависимость диэлектрической проницаемости от температуры — известной. Предложить способ измерения указанных теплоёмкостей.

- **2.4.** Вычислить  $C_E C_D$  диэлектрика с диэлектрической проницаемостью  $\varepsilon(T) = 1 + 4\pi\alpha_e/T$  ( $\alpha_e = {
  m const}$ ).
- **2.5.** Для магнетика в однородном магнитном поле вычислить разность теплоёмкостей  $C_H$  при постоянной напряжённости магнитного поля H и  $C_B$  при постоянной магнитной индукции B. Объём магнетика считать постоянным, а зависимость магнитной проницаемости от температуры известной.
- **2.6.** Найти  $C_H C_B$  для магнетика с магнитной проницаемостью  $\mu(T) = 1 + 4\pi\alpha_m/T$  ( $\alpha_m = {\rm const}$ ).
  - 3. Следствия из первого и второго принципов термодинамики. Характеристические функции
- 3.1. Доказать соотношение

$$\left(\frac{\partial T}{\partial P}\right)_{S} = \frac{T}{C_{P}} \left(\frac{\partial V}{\partial T}\right)_{P}.$$

- **3.2.** Получить выражение для производной  $(\partial T/\partial H)_S$ , описывающее магнитное охлаждение парамагнетика.
- 3.3. Доказать соотношение

$$\left(\frac{\partial T}{\partial V}\right)_S = -\frac{\alpha T}{\beta C_V},$$

где

$$\alpha = \frac{1}{V} \left( \frac{\partial V}{\partial T} \right)_{\!P}, \quad \beta = -\frac{1}{V} \left( \frac{\partial V}{\partial P} \right)_{\!T}.$$

#### 4. Термодинамика равновесного электромагнитного излучения

**4.1.** Из выражения для давления излучения P = w(T)/3 (w(T) — плотность внутренней энергии) получить закон Стефана-Больцмана

$$w = \sigma T^4$$
,

где  $\sigma = \mathrm{const} - \mathrm{постоянная}$  Стефана-Больцмана.

- 4.2. Вычислить энтропию равновесного излучения.
- 4.3. Получить уравнение адиабаты для равновесного излучения.
- **4.4.** Вычислить термодинамический потенциал Гиббса и свободную энергию излучения.

# 5. Необратимые процессы

- **5.1.**Вычислить изменение энтропии и температуры при теплоизолированном расширении в пустоту а) идеального газа; б) равновесного излучения. Рассмотреть эквивалентные обратимые процессы.
- **5.2.** Рассчитать дифференциальный эффект Джоуля-Томсона. Найти производную  $(\partial T/\partial P)_I$  (I энтальпия) для а) идеального газа; б) газа Ван дер Ваальса.
- **5.3.** Вычислить изменение энтропии и температуры при теплоизолированном расширении в пустоту газа Ван дер Ваальса.

# 6. Условия равновесия и устойчивости макроскопических систем. Тепловые двигатели

**6.1.** Цилиндр с объёмом V, заполенный идеальным газом, находится в термостате и разделён лёгким подвижным поршнем на две части. Исходя из

экстремальных свойств свободной энергии, определить равновесное положение поршня, если в одной части цилиндра находится  $N_1$  молекул газа, а в другой —  $N_2$  молекул. Исследовать устойчивость состояния равновесия.

- **6.2.** Найти непосредственным расчетом коэффициент полезного действия (КПД) цикла Карно для равновесного излучения.
- **6.3.** Вычислить коэффициент полезного действия цикла, изображенного на рис. 1. Рабочее тело идеальный газ. Выразить КПД цикла через объёмы  $V_1$  и  $V_2$ .



Рис. 1. График цикла в задаче 6.3

# СТАТИСТИЧЕСКАЯ ФИЗИКА

#### 7. Распределение Максвелла

- **7.1.** Записать максвелловское распределение для компоненты скорости  $v_x$  и модуля скорости.
- **7.2.** Найти наиболее вероятную  $(v_{\rm Bep})$ , среднюю (< v>) и среднюю квадратичную  $(< v^2>)$  скорости частицы.
- 7.3. Найти наиболее вероятную и среднюю кинетическую энергию частицы.
- **7.4.** Найти скорость истечения газа через маленькое отверстие в стенке сосуда в вакуум. Сколько частиц покидает сосуд в единицу времени, если распределение молекул газа по скоростям в сосуде описывается законом Максвелла?

При каком условии можно пользоваться максвелловским распределением в данной ситуации?

**7.5.** Определить давление газа на стенку сосуда, считая распределение молекул в сосуде максвелловским. Удары молекул о стенку предполагаются абсолютно упругими.

## 8. Распределение Больцмана

- **8.1.** Идеальный газ с температурой T находится в сосуде высотой h в однородном поле силы тяжести. Найти среднюю потенциальную энергию молекул газа. Проанализировать предельные случаи большой и малой высоты сосуда:  $h \gg kT/(mg)$  и  $h \ll kT/(mg)$  (k постоянная Больцмана, m масса молекулы газа, g ускорение свободного падения).
- **8.2.** Определить диэлектрическую восприимчивость и диэлектрическую проницаемость газообразного диэлектрика из невзаимодействующих между собой полярных молекул. Дипольный момент молекул  $p_0$  и их концентрацию n считать известными.

### 9. Распределение Гиббса

- 9.1. Вычислить статистический интеграл и свободную энергию для одноатомного идеального газа.
- **9.2.** Вычислить давление, внутреннюю энергию, изохорную теплоёмкость и энтропию для одноатомного идеального газа.
- **9.3.** Вычислить статистический интеграл и свободную энергию для идеального газа, состоящего из двухатомных жестких молекул (модель молекулы две точечные массы, связанные невесомым нерастяжимым стержнем).
- **9.4.** Вычислить давление, внутреннюю энергию, изохорную теплоёмкость и энтропию для двухатомного идеального газа, состоящего из жестких молекул.

**9.5.** На основе распределения Гиббса вычислить поляризацию (средний дипольный момент единицы объёма) газа, состоящего из полярных двухатомных жестких молекул.

## 10. Равновесные флуктуации

- **10.1.** На основе распределения Гиббса вычислить дисперсию флуктуаций внутренней энергии идеального газа.
- **10.2.** На основе распределения Гиббса вычислить дисперсию флуктуаций продольной (по отношению к направлению внешнего электрического поля) составляющей дипольного момента газообразного диэлектрика, состоящего из полярных двухатомных жестких молекул. Рассмотреть предельные случаи  $p_0E/(kT) \ll 1$  и  $p_0E/(kT) \gg 1$  ( $p_0$  дипольный момент молекул, E напряженность внешнего постоянного электрического поля).
- **10.3.** С помощью квазитермодинамической теории равновесных флуктуаций найти средние  $<(\Delta P)^2>,<(\Delta S)^2>,<\Delta P\Delta S>.$
- **10.4.** С помощью квазитермодинамической теории равновесных флуктуаций найти средние  $<\Delta P\Delta V>$ ,  $<\Delta S\Delta T>$ ,  $<\Delta S\Delta V>$ .

#### 11. Квантовая статистика

- **11.1.** Получить уравнение состояния ультрарелятивистского квантового идеального газа, связь между энергией и импульсом частиц которого может быть записана в виде  $\mathcal{E} = pc$ .
- 11.2. Найти равновесное значение концентрации электронов вблизи поверхности металла при термоэлектронной эмиссии.
- 11.3. Вычислить плотность тока насыщения при термоэлектронной эмиссии.

- **11.4.** Для конденсированного Бозе-газа вычислить основные термодинамические величины (среднее число частиц, внутреннюю энергию, изохорную теплоёмкость, энтропию, свободную энергию и давление).
- 11.5. Получить уравнение адиабаты для конденсированного Бозе-газа.

## ЛИТЕРАТУРА

- 1. Базаров И. П. Термодинамика. М.: Высшая школа, 1991. 376 с.
- 2. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика. Том V. Статистическая физика. Часть 1. М.: Наука, 1983. 584 с.
- 3. Леонтович М. А. Введение в термодинамику. Статистическая физика. М.: Наука, 1967. 416 с.

# Владимир Георгиевич **Гавриленко** Евгений Юрьевич **Петров**

# СБОРНИК ЗАДАЧ ПО КУРСУ "ТЕРМОДИНАМИКА И СТАТИСТИЧЕСКАЯ ФИЗИКА"

Учебно-методическое пособие

Компьютерная верстка — Е. Ю. Петров

Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского". 603950, Нижний Новгород, пр. Гагарина, 23.