A first PDE solution in PETSC Finite differences on a structured grid

Ed Bueler Dept. of Mathematics and Statistics, UAF

9 February 2016

outline for today

book Chapter 2:

▶ finish up the tri.c example (only 2 slides)

book Chapter 3:

boundary-value problem for Poisson's equation:

$$-\nabla^2 u = f$$

- finite difference (FD) method
- ▶ FD method generates linear system Au = b

large (merely tridiagonal) linear system

- ▶ look at c/ch2/tri.c; notice
 - PetscOptions...()
 - MatGetOwnershipRange(A, &Istart, &Iend)
 - generic row of A is

$$-1 \ 3 \ -1$$

- o "manufacture" exact solution: MatMult (A, xexact, b)
- for example, use Richardson as KSP:
 - \$./tri -ksp_monitor -ksp_type richardson \
 -pc_type none
 - \$./tri -ksp_monitor -ksp_type richardson \
 -pc_type jacobi
- performance = execution time, for now
 - \$ time ./tri -tri_m 10000
 - \$ alias timer
 - \$ timer ./tri -tri_m 10000

performance on $m = 2 \times 10^7$ unknowns

\$ timer mpiexec -n N ./tri -tri_m 20000000 \
 -ksp_rtol 1.0e-10 -ksp_type KSP -pc_type PC

<u>KSP</u>	<u>PC</u>	N=1 time (s)	N=4 time (s)
preonly	lu	10.74	
	cholesky	5.84	
richardson	jacobi	13.48	5.45
gmres	none	9.99	5.30
	jacobi	10.23	4.49
	ilu	4.77	
	bjacobi+ilu		2.99
cg	none	7.22	3.18
	jacobi	7.49	3.31
	icc	4.81	
	bjacobi+icc		2.87

Table 2.2: Times for tri.c to solve systems of dimension $m=2\times 10^7$. In this case the matrix is tridiagonal, symmetric, diagonally-dominant, and positive definite. All runs were on WORKSTATION (see page 41).

note: for N> 1 use

-pc_type bjacobi -sub_pc_type PC

if you want PC=ilu, icc on each process

Poisson equation on a square

- ▶ let S be the open unit square $(0,1) \times (0,1)$
- recall *Laplacian* of u(x, y):

$$\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

boundary value problem:

$$-\nabla^2 u = f \quad \text{on } \mathcal{S}$$
$$u = 0 \quad \text{on } \partial \mathcal{S}$$

for example, if

$$f(x,y) = 2(1 - 6x^2)y^2(1 - y^2)$$
$$+ 2(1 - 6y^2)x^2(1 - x^2)$$
then $u(x,y) = (x^2 - x^4)(y^4 - y^2)$

Figure 3.1: The Poisson equation on the unit square S, with homogeneous Dirichlet boundary conditions.

where does Poisson come from?

- model for: electrostatic potential, equilibrium distribution from random walks, various other physical phenomena
- for example, heat conduction in solids:
 - if k is the conductivity then Fourier's law says heat flux is

$$\mathbf{q} = -k\nabla u$$

if f describes a heat source then energy conservation says

$$c\rho \partial u/\partial t = -\nabla \cdot \mathbf{q} + f$$

 \circ if k = 1, and in equilibrium (steady state) then get our Poisson equation

$$0 = \nabla^2 u + f$$

choice of grid = first step of an approximation

- ▶ put structured grid of m_x by m_y points on S
- ▶ spacing $h_x = 1/(m_x 1)$ and $h_y = 1/(m_y - 1)$
- grid coordinates are $x_i = i h_x$, $y_j = j h_y$
- ► the main notation of numerical differential equations: the unknown value of u(x, y) at node (x_i, y_j) will be approximated by the numbers u_{i,j} which we actually compute:

$$u_{i,j} \approx u(x_i, y_j)$$

Figure 3.2: A grid on the unit square S, with $m_x = 5$ and $m_y = 7$.

finite difference approximation of partial derivatives

- our equation has second partial derivatives
- steps to the finite difference form of the Laplacian:

$$\frac{\partial u}{\partial x}(x,y) = \lim_{h \to 0} \frac{u(x+h,y) - u(x,y)}{h}$$

$$\frac{\partial u}{\partial x}(x_i,y_j) \approx \frac{u(x_i+h_x,y_j) - u(x_i,y_j)}{h_x}$$

$$\approx \frac{u_{i+1,j} - u_{i,j}}{h_x}$$

$$\frac{\partial^2 u}{\partial x^2}(x_i,y_j) \approx \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h_x^2}$$

$$\nabla^2 u(x_i,y_j) \approx \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h_x^2}$$
"stencil" \nearrow

$$+ \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h_v^2}$$

FD scheme gives linear system

FD equations for our Poisson problem:

$$-\frac{u_{i+1,j}-2u_{i,j}+u_{i-1,j}}{h_X^2}-\frac{u_{i,j+1}-2u_{i,j}+u_{i,j-1}}{h_y^2}=f_{i,j},$$

$$u_{0,j}=0,\quad u_{m_x-1,j}=0,\quad u_{i,0}=0,\quad u_{i,m_y-1}=0$$

- first equation applies at all interior points
- boundary condition treated as trivial equations: "1 u = 0"
- ▶ is a linear system of $L = m_x m_y$ equations in L unknowns

$$A\mathbf{u} = \mathbf{b}$$

where A is $L \times L$ matrix and **u**, **b** are $L \times 1$ column vectors

ordering of unknowns

- ► actually building linear system requires global ordering of unknowns: k = 0, 1, ..., L
- $m_x = 4$ and $m_y = 3$ case has L = 12:

- o only k = 5, 6 eqns are *not* b.c.s
- (weak) diagonal dominance: a = |2b + 2c|
- but matrix is not symmetric
- surprisingly-large condition number for small example: $\kappa(A) = 43.16$

