科学计算中的量子算法: 总结

安冬

北京大学北京国际数学研究中心(BICMR)

andong@bicmr.pku.edu.cn

24-25 学年第 2 学期

基础

数据结构:

▶ 向量: 量子态

▶ 矩阵: block-encoding

算法基元: SWAP/Hadamard 测试、QFT、QPE、振幅放大、振幅估计

两个重要算法

LCU QSVT

	矩阵函数	常用范围	辅助比特	复杂度
LCU	特征值变换	任意矩阵	多	高
QSVT	奇异值变换	厄米矩阵	少	低

线性方程组

Ax = b

	思路	访问复杂度
HHL	QPE+ 旋转	$\widetilde{\mathcal{O}}(\kappa^2/\epsilon)$
LCU	Fourier/Chebyshev 逼近 +LCU	$\mathcal{O}(\kappa^2 \operatorname{poly} \log(\kappa/\epsilon))$
QSVT	Taylor/Chebyshev 逼近 +QSVT	$\widetilde{\mathcal{O}}(\kappa^2 \log(\kappa/\epsilon))$
AQC	特征值问题 + 哈密顿量模拟	$\widetilde{\mathcal{O}}(\kappa \operatorname{poly}\log(\kappa/\epsilon))$

线性 ODE

$$\frac{du(t)}{dt} = A(t)u(t)$$

	思路	稳定性假设	访问复杂度
欧拉法	时间离散 + 线性方程组	$\lambda(A(t)) \le 0$	$\widetilde{\mathcal{O}}(\mathit{T}^4/\epsilon^2)$
时间推进	时间离散 +USVA	$A(t) + A(t)^{\dagger} \le 0$	$\mathcal{O}(\mathit{T}^2 \; poly \log(\mathit{T}/\epsilon))$
LCHS	哈密顿量模拟 +LCU	$A(t) + A(t)^{\dagger} \le 0$	$\mathcal{O}(\mathit{T} poly \log(\mathit{T}/\epsilon))$

哈密顿量模拟

$$i\frac{du(t)}{dt} = Hu(t), \quad H = H^{\dagger}$$

	思路	适用范围	访问复杂度	Commutator
乘积公式	算子分解	$H = \sum H_j$	$\mathcal{O}(\mathit{T}^{1+1/p}/\epsilon^{1/p})$	有
截断 Taylor	Taylor + LCU + OAA	block-encoding	$\mathcal{O}(T \log(T/\epsilon))$	无
QSVT	${\sf Taylor/Jacobi\text{-}Anger} + {\sf QSVT}$	block-encoding	$\mathcal{O}(T + \log(1/\epsilon))$	无

含时哈密顿量模拟: (推广) 乘积公式、Magnus、截断 Dyson

特征值问题

$$Ax = \lambda x$$

	问题	适用范围	思路	访问复杂度
QPE	已知特征向量,求特征值	酉矩阵	QFT	$\widetilde{\mathcal{O}}(1/\epsilon)$
Filtering	已知特征值,改进特征向量的精度	厄米矩阵	过滤函数 +QSVT	$\mathcal{O}(1/(\Delta p_0)\log(1/\epsilon))$
AQC	求特征向量/特征值	厄米矩阵	哈密顿量模拟	$\mathcal{O}(1/(\Delta_*^3\epsilon))$
VQA	求特征向量/特征值	厄米矩阵	混合量子经典	?

未来方向

- ▶ 更好的算法、更多的应用
- ▶ 专用算法
- ▶ 端到端