HY Todennäköisyysteoria II, syksy 2013, loppukoe (18.12.2013)

Valitse kolme tehtävää neljän tehtävän listasta $\{1, 2, 3, 4\}$ ja vastaa tehtävien kysymyksiin. Jos jää aikaa voit toki vastata myös neljanteen tehtävään. Kokeen kesto on neljä tuntia + aikalisää.

- 1. (a) Kirjoita tasaisen integroituvuuden määritelmä.
 - (b) Olkoon $(X_n(\omega): n \in \mathbb{N})$ satunnaismuuttujen jono jolla

$$\sup_{n} E_{P}(|X_{n}|^{q}) < \infty, \quad \text{jossa } q > 1$$

Osoita että jono $(X_n(\omega): n \in \mathbb{N})$ on tasaisesti integroituva. Vihje

$$|X_n(\omega)|^q \ge K^{q-1}|X_n(\omega)| \quad \mathbf{1}(|X_n(\omega)| > K), \quad \forall K > 0.$$

(c) Osoita:

$$E_P(|X|^q) = q \int_0^\infty t^{q-1} P(|X| > t) dt.$$
 Käytä Fubini! $q \ge 1$

- 2. Todennäköisyysavaruudessa (Ω, \mathcal{F}, P) , olkoon $\mathcal{G} \subseteq \mathcal{F}$ ali- σ -algebra, ja $X \in L^1(\Omega, \mathcal{F}, P)$ satunnaismuuttuja.
 - (a) Kirjoita ehdollisen odotusarvon $E_P(X|\mathcal{G})(\omega)$ määritelmä .

Satunnaismuttuja $U(\omega) \in [0,1]$ tasaisesti jakautunut eli

$$P(U \in (a,b]) = (b-a) \text{ kun } (a,b] \subseteq [0,1],$$

ja olkoon satunnaismuuuttuja $N(\omega)$ Poisson(1) jakautunut, siis

$$P(N=k) = \frac{\exp(-1)}{k!}$$

Oletamme että $N \stackrel{P}{\perp\!\!\!\perp} U$, eli N ja U ovat rippumattomia satunnaismuuttujat P-mitan suhteen. Olkoon

$$X(\omega) := (U(\omega))^{N(\omega)} = \exp\left(N(\omega)\log(U(\omega))\right)$$

(b) Laske odotusarvo $E_P(U^n)$ jossa $n \in \mathbb{N}$ on vakio.

- (c) Laske odotusarvo $E_P(u^N) = E_P\left(\exp(N\log(u))\right)$ jossa u > 0 on vakio.
- (d) Laske ehdollinen odotusarvo $E_P(X|\sigma(U))(\omega)$.
- (e) Laske ehdollinen odotusarvo $E_P(X|\sigma(N))(\omega)$.
- (f) Laske odotusarvo $E_P(X)$.
- 3. Todennäköisyysavaruudessa (Ω, \mathcal{F}) , olkoon P, Q todennäköisyysmittoja jolla $Q \ll P$, eli kun P(A) = 0, siitä seuraa Q(A) = 0. Silloin on olemassa Radon-Nikodymin derivaata

$$Z(\omega) = \frac{dQ}{dP}(\omega) \ge 0,$$

jossa $Z \in L^1(\Omega, \mathcal{F}, P)$ ja $E_P(Z) = 1$, ja kaikille satunnaismuuttujalle $X(\omega) \geq 0$ pätee odotusarvon mitanvaihtoaava

$$E_Q(X) = E_P(XZ)$$

Olkoon $\mathcal{G} \subseteq \mathcal{F}$ ali- σ -algebra, ja $X \in L^1(\Omega, \mathcal{F}, P)$ satunnaismuuttuja.

(a) Todista abstrakti Bayesin kaava, joka on mitta vaihto kaava ehdolliselle odotusarvolle: jos $\mathcal{G}\subseteq\mathcal{F}$ on ali- σ -algebra,

$$E_Q(X|\mathcal{G})(\omega) = \frac{E_P(XZ|\mathcal{G})(\omega)}{E_P(Z|\mathcal{G})(\omega)}$$

Vihje käytä ehdollisen odotusarvon määritelmää ja ominaisuuksia.

- 4. Todennäköisyysavaruudessa (Ω, \mathcal{F}, P) . Olkoon $(X_t(\omega) : t \in \mathbb{N})$ jono P-riipumattomia ja samoin jakautuneita satunnaismuuttujat, jolla $X_t(\omega) \geq 0$ ja $E_P(X_t) = 1 \ \forall t \in T$.
 - (a) Osoita

$$E_P(\log(X_t)) \le \log E_P(X_t) = \log(1) = 0$$

Vihje muista Jensenin epäyhtälö konveksi funktiolle. Eksponentiaali funktio on konveksi ja logaritmi on konkaavi.

Oletamme että $P(X_t \neq 1) > 0$, eli suljetaan pois tapaus jossa $X_t(\omega) \equiv 1$ P-melkein varmasti. Siitä seuraa helposti

$$E_P(\log(X_t)) < 0$$

aidolla epäyhtälöllä (sinun ei tarvitse tätä todistaa).

Jatkossa merkitään $Y_n(\omega) = \log(X_n(\omega))$, ja $E_P(\log(X_t)) = -c$ jossa c > 0.

Olkoon $\mathcal{F}_t = \sigma(X_1, \dots, X_t)$ ja $\mathbb{F} = (\mathcal{F}_t : t \in \mathbb{N})$ filtraatio.

(b) Osoita että

$$Z_t(\omega) = \prod_{s=1}^t X_{\c s}(\omega)$$

on (P, \mathbb{F}) -martingaali.

C Tassas lix

(c) Osoita että on olemassa rajarvo

$$Z_{\infty}(\omega) = \lim_{t \to \infty} Z_t(\omega)$$
 P-melkein varmasti

jossa $Z_{\infty} \in L^1(P)$.

(d) Osoita että

$$\lim_{t \to \infty} \frac{1}{t} \log(Z_t(\omega)) = \lim_{t \to \infty} \frac{1}{t} \sum_{s=1}^t \log(X_s(\omega)) = (-c \qquad P\text{-melkein varmasti}$$

$$(0.1)$$

(e) Osoita että

Vihje käytä 0.1

$$\lim_{t \to \infty} Z_t(\omega) = 0 \iff \lim_{t \to \infty} \sum_{s=1}^t \log(X_s(\omega)) = -\infty$$

(f) Osoita että martingaali $(Z_t : t \in \mathbb{N})$ ei ole tasaisesti integroituva (muuten se suppenisi myös $L^1(P)$:n mielessä).