SI 618 – Week 10

Instructor: Ceren Budak

A note about homeworks

Today's roadmap: relationships between two variables

- Relationships between continuous variables
 - Correlation vs causation
 - Linear models and residuals in R and ggplot2
 - Time series and autocorrelation
- Relationships between categorical variables
 - Contingency tables
- Case study: Texas housing prices

Correlation: a simple test of linear relationship

- Suppose our dataset has two variables X, Y
- Plot how X and Y change together
- Construct a rule to predict Y based on an observation of X
- If X and Y are correlated, our prediction of Y should be better than just guessing
- Linear rule: X & Y tend to fall on a sloping line

log(price) and log(carat) are highly correlated: cor(log price, log carat) = 0.92

carat and table size are weakly correlated. cor(carat, table) = 0.18

The Pearson correlation function cor() indicates the strength of a linear relationship between two variables

- cor (X, Y) has a value between -1 and +1
- Strong correlations are close to -1 or +1
- You can compute correlations between sets of variables

```
> cor(mtcars[1:3], mtcars[4:6])

hp drat wt

mpg -0.7761684 0.6811719 -0.8676594

cyl 0.8324475 -0.6999381 0.7824958

disp 0.7909486 -0.7102139 0.8879799
```

Horsepower and miles-per-gallon are negatively correlated Horsepower and number of cylinders are (highly) positively correlated

<u>http://www.statmethods.net/stats/correlations.html</u>
<u>http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient</u>

Different sets of (x,y) points with Pearson correlation per set

- Correlation reflects the noisiness and direction of a linear relationship
- But not the slope or non-linear relationships

Anscombe Dataset: All these datasets have the same correlation (r = 0.816)

Detecting seasonal cycles with autocorrelation

- Autocorrelation
 - Correlation of a time series signal with time-shift of itself
- Why would that possibly be useful?
 - Similarity of observations as a function of time lag between them
 - A mathematical tool for finding repeating patterns
 - e.g. the presence of a periodic signal obscured by noise

Autocorrelation in the Houston sales data using acf()

Using the R function acf(houston\$sales)

But be careful...

Example: Stock prices (one particular stock called INFOSYS)

Plotting the ACF of INFY returns for the past one years acf(infy_ret, main = "ACF of INFOSYS returns for past one year")

ACF of INFOSYS returns for past one year

4th and 7th lags seem to matter

But be careful...

```
## Regressing the returns till the 7th lag
summary(Im(infy_ret[8:length(infy_ret)] \sim infy_ret[8:length(infy_ret) - 1] + infy_ret[8:length(infy_ret) - 2] + infy_ret[8:length(infy_ret)] \sim infy_ret[8:length(infy_ret) - 1] + infy_ret[8:length(infy_ret) - 2] + infy_ret[8:
infy_ret[8:length(infy_ret) - 3] + infy_ret[8:length(infy_ret) - 4] + infy_ret[8:length(infy_ret) - 5] +
infy ret[8:length(infy ret) - 6] +infy ret[8:length(infy ret) - 7]))
## This is a simple OLS regression of the "inty ret" starting from the 8th observation. I have started from the 8th
observation to ensure that the number of obs. are same in the dependents and independent variables.
Output:
Coefficients:
                                          Estimate Std. Error t value Pr(>|t|)
(Intercept)
                                                   infy ret[8:length(infy ret) - 4] 0.20153  0.06457  3.121  0.00203 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Multiple R-squared: 0.08717, Adjusted R-squared: 0.05998
```

- Only the coefficient of the 4th lag is statistically significant, and the Adjusted R-squared is small 0.05998 (i.e \sim 6% of the explanation is provided by the above regression).
- The 4 days ago stock price provides a statistically significant explanation of today's stock prices. But we are missing in the above model is the transaction costs so this is not really capturing how the market moves

Correlation does not imply causation

Whenever there's a fire...

...you see the fire department.

The presence of fires and firefighters is highly correlated.

So... firefighters cause fires?

Spurious Correlations

Number of people who drowned by falling into a pool

correlates with

Films Nicolas Cage appeared in

Correlation: 66.6% (r=0.666004)

Data sources: Centers for Disease Control & Prevention and Internet Movie Database

Spurious Correlations

Per capita cheese consumption

correlates with

Number of people who died by becoming tangled in their bedsheets

Correlation: 94.71% (r=0.947091)

Data sources: U.S. Department of Agriculture and Centers for Disease Control & Prevention

Spurious Correlations

Divorce rate in Maine

correlates with

Per capita consumption of margarine

Correlation: 99.26% (r=0.992558)

tylervigen.com

Data sources: National Vital Statistics Reports and U.S. Department of Agriculture

A short trip into geology

- Nature has fascinating geological formations called geysers, a type of hot spring.
- Yellowstone National Park in the U.S. has many of these.
- The most famous geyser is called Old Faithful.
- Spews piping-hot water 120 feet into the air about every hour.

The 'faithful' dataset: eruption observations from Old Faithful

```
> str(faithful)
'data.frame': 272 obs. of 2 variables:
 $ eruptions: num 3.6 1.8 3.33 2.28 4.53 ...
  waiting : num 79 54 74 62 85 55 88 85 51 85 ...
                                    Variables:
                                     Eruptions: Length of eruption (min.)
          If we know how long
                                     Waiting: Time to next eruption (min.)
         the last eruption was,
           can we predict the
         waiting time until the
```

next one?

Things to notice:

- Bi-modal (short, long) waiting times
- Waiting time is roughly a linear function of eruption length

What is a model of data?

- A <u>model family</u> describes what kind of connection might exist between variables
 - e.g. A linear model predicts a single continuous response to a linear combination of predictor vars + Gaussian noise
 - Specified by the data miner/statistician
- A <u>fitted model</u> is an instance of a model family that has had its parameters estimated from data
 - Fitted model can make predictions on future data
 - Fitted to minimize model prediction error on the data
 - e.g. Linear model minimizes total squared deviation between responses and predictions

Example of a linear model

<u>Predictor variable</u>: length of eruption (minutes)

Linear models in R with Im()

- $lm(y \sim model)$ means the response y is modelled by a linear predictor described by the expression model
- Computes the model coefficients: stores results of the linear fit in *lmfit* object

lm(.) syntax	Model equation	Description
у ~ х	$y = \beta_0 + \beta_1 x$	Straight line with y-intercept
$y \sim -1 + x$	$y = \beta_1 x$	Straight line forced thru the origin (0,0)
y ~ x1 + x2	$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$	First-order model with no interaction term between x1, x2.
y ~ x1:x2	$y = \beta_0 + \beta_1 x_1 x_2$	Only first-order interaction term between x1, x2.

Predicting duration of Old Faithful eruptions based on time since last eruption

Every extra minute of eruption means ~10 extra minutes of waiting.

Use predict(Imfit) to get the fitted line

```
> eruption.predict = predict(eruption.lm)
> ggplot() + geom_point(data=faithful, aes(eruptions, waiting))
+ geom_line(data=faithful, aes(eruptions, eruption.predict))
```


Analyzing prediction errors via residuals: resid()

Duration of previous eruption (min) vs subsequent waiting time (min)

- > eruption.res = resid(eruption.lm)
- > qplot(faithful\$waiting, eruption.res)

Residuals (errors) of linear fit

Residuals can show us more subtle patterns after the visually striking pattern is subtracted out

Residuals

- Like a magnifying glass on a local area
- Errors are supposed to be random: any patterns are interesting to find

- The non-random pattern in the residuals indicates that predictor variables are not capturing some explanatory information that is "leaking" into the residuals. Possibilities include:
 - A missing variable
 - A missing higher-order term of a variable in the model to explain the curvature
 - A missing interaction between terms already in the model

We've been analyzing continuous variables

 What if we're interested in relationships between categorical variables?

A 2-d contingency table: diamonds dataset

Attributes: Clarity, PriceLevel
PriceLevel = {"Low" if price <= 3000, "High" if price > 3000}

```
> hiprice <- ifelse(diamonds$price > 3000, "High", "Low")
> table(diamonds$clarity, hiprice, dnn=c('Clarity', 'Price'))
      Price
Clarity High Low
  T1 425 316
  SI2 6063 3131
  SI1 6285 6780
  VS2 5043 7215
  VS1 3239 4932
  VVS2 1445 3621
  VVS1 734 2921
  TF
        370 1420
```

A 2-d contingency table: diamonds dataset

Attributes: Clarity, PriceLevel
PriceLevel = {"Low" if price <= 3000, "High" if price > 3000}

```
> hiprice <- ifelse(diamonds$price > 3000, "High", "Low")
> table(diamonds$clarity, hiprice, dnn=c('Clarity', 'Price'))
```

```
Price
Clarity High Low
I1 425 316
SI2 6063 3131
SI1 6285 6780
VS2 5043 7215
VS1 3239 4932
VVS2 1445 3621
VVS1 734 2921
IF 370 1420
```



```
ggplot(diamonds) +
geom_bar(position="stack")
+ aes(factor(diamonds$clarity,
levels=rev(levels(diamonds$cla
rity))), fill=factor(hiprice))
+ coord_flip()
```

Easier to see interesting patterns with 'filling' histogram bars

Attributes: Clarity, PriceLevel

PriceLevel = {"Low" if price <= 3000, "High" if price > 3000}

- > hiprice <- ifelse(diamonds\$price > 3000, "High", "Low")
- > table(diamonds\$clarity, hiprice, dnn=c('Clarity', 'Price'))

Price


```
ggplot(diamonds) +
geom_bar(position="fill") +
aes(factor(diamonds$clarity,
levels=rev(levels(diamonds$cla
rity))), fill=factor(hiprice))
+ coord_flip()
```

Contingency tables

- Recipe for making a contingency table
 - Pick k attributes from your dataset
 - Call them a_1, a_2, \dots, a_k
 - For every possible combination of values

$$a_1 = x_1, a_2 = x_2 \dots, a_1 = x_k$$

record how frequently that combination occurs

- Another name for a histogram:
 - a 1-dimensional contingency table

Getting harder to look at

Fun fact: These are called "datacubes" in the database and OLAP (On-Line Analytical Processing) worlds

Source: http://cisnet.baruch.cuny.edu/holowczak/classes/9440/olap/

Sales of all Products in 2Q 1997 in all regions

Sales of all Products in 4Q 1997 in SW region

Time to stop and think

- Why would people want to look at contingency tables, anyway?
- 16 attributes
 - # of 1-d contingency tables: 16-choose-1 = 16
 - # of 2-d contingency tables: 16-choose-2 = 120
 - # of 3-d contingency tables: 16-choose-3 = 560
- 100 attributes
 - # of 3-d contingency tables: 161,700

Which patterns in data are 'interesting'?

- Up until now we've relied mostly on human intelligence and subjective interpretation
- That's fine.. for small numbers of contingency tables, variables.
- What if we have 10,000 variables?
 Not fun anymore!
- Use automated statistical tests that are objective measures of 'interesting'

Contingency tables applied to texts: which words are most characteristic of a category X document?

- 2x2 contingency table for two binary variables
 - Variable 1: Word occurs or doesn't occur in document
 - Variable 2: Document in category X not in category X

	Word occurs	Word doesn't occur
Document is category X	а	С
Document not category X	С	d

Question:

Which words best characterize category X docs?

Measures of association: how likely did this relationship occur by chance?

- Chi-squared: How far are the expected counts from the observed counts?
 - Widely used, suitable for large samples
 - Null hypothesis: the two variables (word occurs, doc category) are independent.

$$\chi^2 = \sum_{\{i=1\}}^{r} \sum_{\{j=1\}}^{c} (O_{ij} - E_{ij})^2 / E_{ij}$$

	Word occurs	Word doesn't occur	
Document is category X	a = O ₁₁	b = O ₁₂	r1
Document is category Y	c = = O ₂₁	d = O ₂₂	r2
	c1	c2	t +

Source: http://www.uvm.edu/~dhowell/methods7/Supplements/ChiSquareTests.pdf

The chi-squared measure of association

```
> table(diamonds$clarity, hiprice, dnn = c("Clarity", "Price"))
   Price
Clarity High Low
 I1 425 316
 SI2 6063 3131
 SI1 6285 6780
 VS2 5043 7215
 VS1 3239 4932
 VVS2 1445 3621
 VVS1 734 2921
 IF 370 1420
> tab = table(diamonds$clarity, hiprice, dnn = c("Clarity", "Price"))
> chisq.test(tab)
     Pearson's Chi-squared test
data: tab
X-squared = 3783.385, df = 7, p-value < 2.2e-16
```

Chi-squared example

 In 2000 the Vermont State legislature approved a bill authorizing civil unions. The vote can be broken down by gender:

	Vo		
	Yes	No	Total
Women	35	9	44
	(28.83)	(15.17)	
Men	60	41	101
	(66.17)	(34.83)	
Total	95	50	145

• $E_{ij} = Ri \times Cj/N$, where Ri and Cj represent row and column marginal totals and N is the grand total.

$$\chi^2 = \sum \sum \frac{(O_{ij} - E_{ij})^2}{E_{ij}} = \frac{(35 - 28.83)^2}{28.83} + \dots + \frac{(41 - 34.83)^2}{34.83} = 5.50$$

- Degrees of freedom: (r-1) (c-1)= 1
- χ 2 > 5.50 on 1 df = .019, so we can reject the null hypothesis that voting behavior is independent of gender

A general strategy for analyzing large datasets

- 1. Start with a single unit e.g. a single city in a state database
- 2. Find interesting patterns
- 3. Summarize patterns with a model
- 4. Apply the model to all units
- 5. Find units that don't fit the pattern
- 6. Summarize with a single model

Source for the next section: http://www.slideshare.net/hadley/03-modelling

Case study: Texas housing sales data

- For each metropolitan area in Texas (45 cities)
- For each month 2000-2009 (112 months)
 - Number of houses listed and sold
 - Total value of houses and average sale price
 - Average time on the market

Strategy:

- Start with a single city (Houston)
- Explore patterns and fit models
- See how the models apply to all cities

Houston housing sales [2000-2009]

[Source: Wickham] / See Examples for this week on Canvas

Average house price (Houston)

Days on market (Houston)

ggplot(houston, aes(date, onmarket)) + geom_point() + geom_line()
+ ggtitle("Average house time on market in Houston by date")

Seasonal variations make it harder to see long-term trends and interesting short-term events

Basic time series analysis

- Understanding the relationship of present values of a time-varying variable with past or future values of the same variable.
- Correlated observations in time series:
 - Global trends
 - Seasonal or periodic patterns

Simple way of looking for seasonal variation: Group by year, plot with x-axis = month


```
avg <- stat_summary(aes(group = 1), fun.y = "mean", geom = "line",
colour = "red", size = 2, na.rm = TRUE)

line <- geom_smooth(aes(group = 1), method=lm) #Looking for linear trend
ggplot(houston, aes(month, avgprice, group = year)) +</pre>
```

geom_line(aes(colour = year)) +geom_point(aes(colour = year))+
avg+ line + ggtitle("Average prices by month with seasonal trendline") 47

Using linear models to get rid of obvious pattern

- We don't care about the coefficients learned by the linear model
- We're just using it to subtract out the pattern

Mean line becomes flat.. After subtracting out mean variation

Sales started slowing mid-2006, big drop mid-2008

House listings begin slowing at the start of 2006

Average price took big hit in mid-late 2008

Examples of hypotheses from exploratory analysis

- Number of sales falling and days on market increasing because people uncertain about buying a new house.
- Avg price not falling as rapidly because people now overvalue their current home.
- Eventually as house stays on market for longer (~6 mo), they drop the price in an effort to sell.

We know from our exploration of Houston data that many of the series have strong seasonal components.

• It's a good idea to check that's true for all cities. Start with sales:

```
tx <- read.csv("tx-house-sales.csv")
qplot(date, sales, data = tx, geom = "line", group = city)</pre>
```

Looks promising, but big variation in the scale of absolute sales numbers

De-seasonify all cities

qplot(date, sales_ds, data = tx, geom = "line", group = city, main = "Deseasonalized price")

Then zoom in using log(y) scale transform

qplot(date, log(sales_ds), data = tx, geom = "line", group = city,
main = "Logged deseasonalized price")

Do the same model fitting we did for Houston, but for all cities

```
coefs = tx[,as.list(coef(lm(log(sales) ~ month))),by=city]
city (Intercept) month2 month3 month4 month5 month6 month7
 p = ggplot (coef coef tmettene b 4-494573' ().272 = 315= 0,4668759 = 348963720' 0.6403430 = 0.6577483 0.6417541
 \texttt{group} = \texttt{city}) \; ) \; \; + \; \; \texttt{ge2mApigrill6} \; \\ \textbf{Apigrill6} \; \\ 
 p = p + scale_x_1.discArlington_{M_0}5,6967380,1938864.0,45551780.46885070.60622770.61194910.5728290
labels=c("2","3","4",Agstin_67.117592.081628327.01396988510.4390155)0.58347220.63611640.6082152
                                                                                                          5A B3 Rilla (Intersept) 258 622 09 83 8445 0.4892976 0.6375921 0.6946926 0.6285423
p = p + theme (axis.text.x) = element text (and e = 45 haust - 1).
                                                                                                             3: 0.5906212 0.4258873 0.3614071 0.2391424 0.2970186
                                                                                538:
                                                                                                                         Victoriz
                                                                                539:
                                                                                                                                                                               month 12/0.2850846
                                                                                540: Wichita Falls month 12 0,1258319
```

What are the outliers? Use facets


```
p = ggplot(coef.melt[variable != "(Intercept)"],aes(x=variable, y=value, group=city)) + geom_line()
p = p + facet_wrap(~city, nrow=5)
p = p + ggtitle("Mean effect of month on house sales per texas city")
p = p + scale_x_discrete("Month", labels=c("2","3","4","5","6","7","8","9","10","11","12"))
p = p + ylab("Effect Size\n")
p = p + theme(axis.text.x = element text(angle = 45, hjust = 1))
```

What you should know

- Finding residuals from linear models
- Autocorrelation to find seasonal patterns
- How to construct and use contingency tables