Các phương pháp học máy Machine learning methods

4 TC: 2 LT - 2 TH

Giảng viên: Tạ Hoàng Thắng

tahoangthang@gmail.com

0975399307

Definitions

PAM (Partitioning Around Medoids or k-medoids) is a clustering algorithm used in data mining and machine learning, particularly for partitioning a dataset into groups or clusters.

- It is a robust version of the k-means algorithm and is commonly used for clustering when the data contains noise or outliers.
- Instead of using the mean (as in k-means), PAM uses actual data points as the center of clusters, which are called medoids.

https://en.wikipedia.org/wiki/K-medoids

https://www.cs.umb.edu/cs738/pam1.pdf

How it works?

PAM uses a **greedy search** which may not find **the optimal solution**, but it is faster than exhaustive search.

- (BUILD) Initialize: greedily select k of the n data points as the medoids to minimize the cost.
- Associate each data point to the closest medoid based-on the dissimilarity values (Manhattan Distance).
- (SWAP) While the cost of the configuration decreases:
 - For each medoid *m*, and for each non-medoid data point *o*:
 - Consider the swap of m and o, and compute the cost change
 - If the cost change is the current best, remember this *m* and *o* combination
 - Perform the best swap of m_best and o_best if it decreases the cost function. Otherwise, the
 algorithm terminates.

Examples

Given 2 points (4, 5) and (7, 8), calculate the Manhattan distance between them.

$$c = \sum_{Ci} \sum_{Pi \in Ci} |Pi - Ci|$$

2. Manhattan Distance:

The formula for Manhattan distance d is:

$$d = |x_2 - x_1| + |y_2 - y_1|$$

For points (4,5) and (7,8):

$$d = |7 - 4| + |8 - 5| = 3 + 3 = 6$$

Examples

Given 2 points (4, 5, 8, 1) and (7, 8, 9, 14), calculate the Manhattan distance between them?

Examples

https://www.geeksforgeeks.org/ml-k-medoids-clustering-with-example/

Given this table data:

Examples

Step 1: Let the randomly selected 2 medoids, so select k = 2, and let **C1 (4, 5)** and **C2 (8, 5)** are the two medoids.

Step 2: Calculating cost. The dissimilarity of each non-medoid point with the medoids is calculated and tabulated:

	X	Y	Dissimilarity from C1	Dissimilarity from C2
0	8	7	6	2
1	3	7	3	7
2	4	9	4	8
3	9	6	6	2
4	8	5	-	-
5	5	8	4	6
6	7	3	5	3
7	8	4	5	1
8	7	5	3	1
9	4	5	-	-

Examples

Step 2: Calculating cost. The dissimilarity of each non-medoid point with the medoids is calculated and tabulated:

Each point is assigned to the cluster of that medoid whose dissimilarity is less. Points 1, 2, and 5 go to cluster C1 and 0, 3, 6, 7, 8 go to cluster C2. The Cost = (3 + 4 + 4) + (3 + 1 + 1 + 2 + 2) = 20

	X	Y	Dissimilarity from C1	Dissimilarity from C2
0	8	7	6	2
1	3	7	3	7
2	4	9	4	8
3	9	6	6	2
4	8	5	-	-
5	5	8	4	6
6	7	3	5	3
7	8	4	5	1
8	7	5	3	1
9	4	5	-	-

Examples

Step 3: randomly select one non-medoid point and recalculate the cost. Let the randomly selected point be (8, 4). The dissimilarity of each non-medoid point with the medoids C1 (4, 5) and C2 (8, 4) is calculated and tabulated.

	X	Y	Dissimilarity from C1	Dissimilarity from C2
0	8	7	6	3
1	3	7	3	8
2	4	9	4	9
3	9	6	6	3
4	8	5	4	1
5	5	8	4	7
6	7	3	5	2
7	8	4	-	-
8	7	5	3	2
9	4	5	-	-

Examples

Step 3: The medoids C1 (4, 5) and C2 (8, 4) is calculated and tabulated. So, points 1, 2, and 5 go to cluster C1 and 0, 3, 6, 7, 8 go to cluster C2. The New cost = (3 + 4 + 4) + (2 + 2 + 1 + 3 + 3) = 22 Swap Cost = New Cost – Previous Cost = 22 - 20 and 2 > 0. As the swap cost is not less than zero, we undo the swap. Hence (4, 5) and (8, 5) are the final medoids.

	X	Y	Dissimilarity from C1	Dissimilarity from C2
0	8	7	6	3
1	3	7	3	8
2	4	9	4	9
3	9	6	6	3
4	8	5	4	1
5	5	8	4	7
6	7	3	5	2
7	8	4	-	-
8	7	5	3	2
9	4	5		-

Examples

pip install scikit-learn-extra

```
# Install scikit-learn-extra if not installed
2
      # !pip install scikit-learn-extra
3
                                                                29
                                                                      # Mark the medoids
4
      import numpy as np
                                                                      medoids = kmedoids.cluster centers
                                                                30
5
      import matplotlib.pyplot as plt
                                                                31
                                                                     6
      from sklearn extra.cluster import KMedoids
                                                                32
                                                                              color='red', s=200, label='Medoids')
7
                                                                33
8
      # Data from the image
                                                                34
                                                                      # Add labels, title, and legend
9
      X = [8, 3, 4, 9, 8, 5, 7, 8, 7, 4]
                                                                35
                                                                      plt.xlabel('X')
      Y = [7, 7, 9, 6, 5, 8, 3, 4, 5, 5]
10
                                                                36
                                                                      plt.ylabel('Y')
11
                                                                      plt.title('PAM (K-Medoids) Clustering')
                                                                37
12
      # Combine the X and Y into a single array of data points
                                                                38
                                                                      plt.legend()
13
      data = np.array(list(zip(X, Y)))
                                                                39
14
                                                                40
                                                                      # Show the plot
15
      # Apply PAM (K-Medoids) with k=2 clusters
                                                                41
                                                                      plt.grid(True)
      kmedoids = KMedoids(n clusters=2, random state=0)
16
                                                                42
                                                                      plt.show()
17
      kmedoids.fit (data)
                                                                43
18
                                                                44
19
      # Get cluster labels
20
      labels = kmedoids.labels
21
22
      # Plot the data points and clusters
23
      plt.figure(figsize=(6,6))
24
    For i, label in enumerate (np.unique (labels)):
25
          cluster data = data[labels == label]
         plt.scatter(cluster_data[:, 0], cluster_data[:, 1],
26
                                                             Đà Lạt, Khoa CNTT
27
                 label=f'Cluster {i+1}', s=100)
                                                                                                               11
```

Examples

pip install scikit-learn-extra

Examples

Calculate clusters for X = np.array([7, 3, 4, 9, 8, 5, 7, 8, 1, 2])

Y = np.array([7, 7, 9, 6, 5, 8, 1, 4, 5, 5]) using PAM?

PAM vs. K-means

Medoids vs. Centroids:

 In PAM, the cluster center is always an actual data point (medoid), while k-means uses the average (centroid).

Robustness:

 PAM is more robust to noise and outliers because it uses medoids, which are less influenced by extreme values compared to centroids.

Computational Cost:

 PAM can be slower than k-means due to the repeated computation of distances for medoid swaps, especially on large datasets.

Definitions:

Wikipedia: In data mining and statistics, hierarchical clustering (also called hierarchical cluster analysis or HCA) is a method of cluster analysis that seeks to build a hierarchy of clusters, fall into two categories:

- Agglomerative: This is a "bottom-up" approach: Each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy.
- **Divisive:** This is a "top-down" approach: All observations start in one cluster, and splits are performed recursively as one moves down the hierarchy.

Agglomerative clustering example

Agglomerative clustering example

X = [8, 3, 4, 9, 8, 5, 7, 8, 7, 4]

Y = [7, 7, 9, 6, 5, 8, 3, 4, 5, 5]

Agglomerative clustering example

```
# Import necessary libraries
      import numpy as np
      import matplotlib.pyplot as plt
      from scipy.cluster.hierarchy import dendrogram, linkage
      from sklearn.cluster import AgglomerativeClustering
      # Data from the image
      X = [8, 3, 4, 9, 8, 5, 7, 8, 7, 4]
      Y = [7, 7, 9, 6, 5, 8, 3, 4, 5, 5]
      # Combine the X and Y into a single array of data points
      data = np.array(list(zip(X, Y)))
13
14
      # Perform hierarchical clustering using different linkage methods
      linked = linkage(data, method='ward')
16
17
      # Plot the dendrogram
18
      plt.figure(figsize=(8, 6))
19
     dendrogram(linked,
20
                 orientation='top',
21
                 distance sort='ascending',
22
                 show leaf counts=True)
23
      plt.title('Hierarchical Clustering Dendrogram')
24
      plt.xlabel('Data Points')
25
      plt.ylabel('Euclidean Distance')
      plt.show()
```

```
# Perform Agglomerative Clustering (cut the dendrogram at 2 clusters)
29
     Ecluster = AgglomerativeClustering(n clusters=2,
30
                  metric='euclidean', linkage='ward')
31
      labels = cluster.fit predict(data)
33
      # Plot the clusters
34
      plt.figure(figsize=(6,6))
     for i, label in enumerate(np.unique(labels)):
36
          cluster data = data[labels == label]
37
          plt.scatter(cluster data[:, 0], cluster data[:, 1],
                  label=f'Cluster {i+1}', s=100)
39
40
      # Add labels, title, and legend
41
      plt.xlabel('X')
42
      plt.ylabel('Y')
43
      plt.title('Agglomerative Hierarchical Clustering')
44
      plt.legend()
45
      plt.grid(True)
      plt.show()
```

Definitions

Wikipedia: Density-based spatial clustering of applications with noise (DBSCAN) is a data clustering algorithm proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu in 1996.

It is a density-based clustering non-parametric algorithm:

- given a set of points in some space, it groups together points that are closely packed (points with many nearby neighbors),
- marks as outliers points that lie alone in low-density regions (those whose nearest neighbors are too far away).

https://www.geeksforgeeks.org/dbscan-clustering-in-ml-density-based-clustering/ https://www.youtube.com/watch?v=-p354tQsKrs

Key Concepts

Epsilon (ε): This parameter defines the radius of the neighborhood around a point.

MinPts: This parameter specifies the minimum number of points required to form a dense region.

Core Points: A point is considered a core point if it has at least MinPts neighbors (including itself) within the ϵ radius.

Border Points: A point that is not a core point but lies within the ε neighborhood of a core point.

Noise Points: Any point that is neither a core point nor a border point is considered noise.

Examples

X = [8, 3, 4, 9, 8, 5, 7, 8, 7, 4], Y = [7, 7, 9, 6, 5, 8, 3, 4, 5, 5] Steps:

- **Set Parameters**: Choose values for ϵ (epsilon) and MinPts. For this example, let's set $\epsilon = 2$ and MinPts = 3.
- Calculate Distances: Compute the distance between each pair of points.
 We will use Euclidean distance.
- **Identify Core Points:** A point is a core point if it has at least MinPts (3) neighbors within ε (2).
- Form Clusters: Use the core points to form clusters and identify border and noise points.

Examples

$$X = [8, 3, 4, 9, 8, 5, 7, 8, 7, 4], Y = [7, 7, 9, 6, 5, 8, 3, 4, 5, 5]$$

Step 1: Set Parameters

- Epsilon (ϵ) = 2
- MinPts = 3

Examples

X = [8, 3, 4, 9, 8, 5, 7, 8, 7, 4], Y = [7, 7, 9, 6, 5, 8, 3, 4, 5, 5]

Step 2: Calculate Distances

Point	(X, Y)
P1	(8, 7)
P2	(3, 7)
P3	(4, 9)
P4	(9, 6)
P5	(8, 5)
P6	(5, 8)
P7	(7, 3)
P8	(8, 4)
P9	(7, 5)
P10	(4, 5)

$$d(P_i,P_j)=\sqrt{(X_i-X_j)^2+(Y_i-Y_j)^2}$$

Let's calculate a few distances for demonstration:

•
$$d(P1, P2) = \sqrt{(8-3)^2 + (7-7)^2} = \sqrt{5^2} = 5$$

•
$$d(P1, P3) = \sqrt{(8-4)^2 + (7-9)^2} = \sqrt{4^2 + (-2)^2} = \sqrt{16+4} = \sqrt{20} \approx 4.47$$

•
$$d(P1, P4) = \sqrt{(8-9)^2 + (7-6)^2} = \sqrt{1^2 + 1^2} = \sqrt{2} \approx 1.41$$

•
$$d(P1, P5) = \sqrt{(8-8)^2 + (7-5)^2} = \sqrt{0+2^2} = 2$$

•
$$d(P1, P6) = \sqrt{(8-5)^2 + (7-8)^2} = \sqrt{3^2 + (-1)^2} = \sqrt{9+1} = \sqrt{10} \approx 3.16$$

•
$$d(P1, P7) = \sqrt{(8-7)^2 + (7-3)^2} = \sqrt{1^2 + 4^2} = \sqrt{1+16} = \sqrt{17} \approx 4.12$$

Examples

X = [8, 3, 4, 9, 8, 5, 7, 8, 7, 4], Y = [7, 7, 9, 6, 5, 8, 3, 4, 5, 5]

Step 3: Identify Core Points

- P1 (8, 7): Neighbors: P4 (1.41), P5 (2) → 2 neighbors (not a core point)
- P2 (3, 7): Neighbors: P1 (5), P3 (6.16), P4 (6.08), P5 (5.66), P6 (2.24), P7 (4.12), P8 (5), P9 (4.12),
 P10 (0) → 1 neighbor (not a core point)
- P3 (4, 9): Neighbors: P1 (4.47), P2 (6.16), P3 (0), P4 (5), P5 (5.10), P6 (1), P7 (6.08), P8 (5.1), P9 (4.47), P10 (4) → 1 neighbor (not a core point)
- P4 (9, 6): Neighbors: P1 (1.41), P2 (6.08), P3 (5), P5 (1), P6 (4.12), P7 (2.24), P8 (4.12), P9 (3.16),
 P10 (5.10) → 3 neighbors (core point)
- P5 (8, 5): Neighbors: P1 (2), P2 (5.66), P3 (5.1), P4 (1), P6 (3.16), P7 (2.24), P8 (1.41), P9 (2.24), P10
 (4) → 4 neighbors (core point)
- P6 (5, 8): Neighbors: P1 (3.16), P2 (2.24), P3 (1), P4 (4.12), P5 (3.16), P7 (5.66), P8 (4.47), P9 (3.16),
 P10 (3) → 3 neighbors (core point)

Examples

X = [8, 3, 4, 9, 8, 5, 7, 8, 7, 4], Y = [7, 7, 9, 6, 5, 8, 3, 4, 5, 5]

Step 3: Identify Core Points

- P6 (5, 8): Neighbors: P1 (3.16), P2 (2.24), P3 (1), P4 (4.12), P5 (3.16), P7 (5.66), P8 (4.47), P9 (3.16),
 P10 (3) → 3 neighbors (core point)
- P7 (7, 3): Neighbors: P1 (4.12), P2 (4.12), P3 (6.08), P4 (2.24), P5 (2.24), P6 (5.66), P8 (1), P9 (1), P10 (4) → 2 neighbors (not a core point)
- P8 (8, 4): Neighbors: P1 (2), P2 (5), P3 (5.1), P4 (4.12), P5 (1.41), P6 (4.47), P7 (1), P9 (1), P10 (2) →
 4 neighbors (core point)
- P9 (7, 5): Neighbors: P1 (3.16), P2 (4.12), P3 (4.47), P4 (3.16), P5 (2.24), P6 (3.16), P7 (1), P8 (1) → 5 neighbors (core point)
- P10 (4, 5): Neighbors: P1 (4), P2 (0), P3 (4.47), P4 (5.10), P5 (4), P6 (3), P7 (4) → 1 neighbor (not a core point)

Examples

X = [8, 3, 4, 9, 8, 5, 7, 8, 7, 4], Y = [7, 7, 9, 6, 5, 8, 3, 4, 5, 5]

Step 4: Form Clusters

Core Points: **P1**, **P7**, **P5**, **P8**, **P9**

- Form clusters based on the core points
 - Starting from P1 (core point), we find its neighbors (P7, P5, P8, P9) that are core points, leading to:
 - Cluster Members: P1, P7, P5, P8, P9 (as P1 is connected to core points)

Point	(X, Y)
P1	(8, 7)
P2	(3, 7)
P3	(4, 9)
P4	(9, 6)
P5	(8, 5)
P6	(5, 8)
P7	(7, 3)
P8	(8, 4)
P9	(7, 5)
P10	(4, 5)

Examples

$$X = [8, 3, 4, 9, 8, 5, 7, 8, 7, 4],$$

 $Y = [7, 7, 9, 6, 5, 8, 3, 4, 5, 5]$

Final Clusters and Noise

• Cluster 0: {**P1, P7, P5, P8, P9**}

Others: Noise Points

Point	(X, Y)
P1	(8, 7)
P2	(3, 7)
P3	(4, 9)
P4	(9, 6)
P5	(8, 5)
P6	(5, 8)
P7	(7, 3)
P8	(8, 4)
P9	(7, 5)
P10	(4, 5)

Examples

X = [8, 3, 4, 9, 8, 5, 7, 8, 7, 4],Y = [7, 7, 9, 6, 5, 8, 3, 4, 5, 5]

Final Clusters and Noise

- Cluster 0: {**P1, P7, P5, P8, P9**}
- Others: Noise Points

Examples

X = [8, 3, 4, 9, 8, 5, 7, 8, 7, 4],Y = [7, 7, 9, 6, 5, 8, 3, 4, 5, 5]

Final Clusters and Noise

- Cluster 0: {**P1, P7, P5, P8, P9**}
- Others: Noise Points


```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import DBSCAN
# Step 1: Define the dataset
X = np.array([8, 3, 4, 9, 8, 5, 7, 8, 7, 4])
Y = np.array([7, 7, 9, 6, 5, 8, 3, 4, 5, 5])
# Combine X and Y into a single array of coordinates
data = np.column stack((X, Y))
# Step 2: Set parameters for DBSCAN
epsilon = 2 \# \epsilon
min samples = 3 # MinPts
# Step 3: Apply DBSCAN
dbscan = DBSCAN (eps=epsilon, min samples=min samples)
labels = dbscan.fit predict(data)
# Step 4: Output clusters and noise
unique labels = set(labels)
clusters = {label: [] for label in unique labels if label != -1}
```

3

6

8

9

11

13

14

16

19

```
16
       # Step 3: Apply DBSCAN
17
       dbscan = DBSCAN(eps=epsilon, min samples=min_samples)
18
       labels = dbscan.fit predict(data)
19
20
       # Step 4: Output clusters and noise
21
       unique labels = set(labels)
22
       clusters = {label: [] for label in unique labels if label != -1}
23
24
      for point, label in zip(data, labels):
25
           if label != -1: # Ignore noise points
26
               clusters[label].append(point)
27
28
       # Display results
29
       print ("Clusters:")
      for cluster id, points in clusters.items():
31
           print(f"Cluster {cluster id}: {points}")
32
33
       print(f"Noise points: {data[labels == -1]}")
```

```
# Step 5: Visualization
       plt.figure(figsize=(8, 6))
     for cluster id, points in clusters.items():
           points = np.array(points)
39
           plt.scatter(points[:, 0], points[:, 1],
40
               label=f'Cluster {cluster id}')
41
42
       # Highlight noise points
43
       noise points = data[labels == -1]
      \existsif noise points.size > 0:
44
45
           plt.scatter(noise points[:, 0], noise points[:, 1],
46
               color='black', label='Noise', marker='x')
47
48
       plt.title('DBSCAN Clustering')
49
       plt.xlabel('X')
       plt.vlabel('Y')
       plt.legend()
       plt.grid (True)
       plt.show()
54
```

Exercises

https://www.youtube.com/watch?v=-p354tQsKrs