```
import pandas as pd

# Pakai pemisah tab

df = pd.read_csv("marketing_campaign.csv", sep='\t')

# Tampilkan 5 baris awal

df.head()
```

→ *		ID	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Customer	Recency	MntWines	 NumWebVisitsMonth	Α
	0	5524	1957	Graduation	Single	58138.0	0	0	04-09-2012	58	635	 7	
	1	2174	1954	Graduation	Single	46344.0	1	1	08-03-2014	38	11	 5	
	2	4141	1965	Graduation	Together	71613.0	0	0	21-08-2013	26	426	 4	
	3	6182	1984	Graduation	Together	26646.0	1	0	10-02-2014	26	11	 6	
	4	5324	1981	PhD	Married	58293.0	1	0	19-01-2014	94	173	 5	

5 rows × 29 columns

```
# Cek jumlah baris dan kolom
print("Jumlah baris dan kolom:", df.shape)

# Cek tipe data dan jumlah null
df.info()

# Cek total nilai null per kolom
df.isnull().sum()
```

Jumlah baris dan kolom: (2240, 29)

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2240 entries, 0 to 2239
Data columns (total 29 columns):

#	Column	Non-Null Count	Dtype
0	ID	2240 non-null	int64
1	Year_Birth	2240 non-null	int64
2	_ Education	2240 non-null	object
3	Marital_Status	2240 non-null	object
4	Income	2216 non-null	float64
5	Kidhome	2240 non-null	int64
6	Teenhome	2240 non-null	int64
7	Dt_Customer	2240 non-null	object
8	Recency	2240 non-null	int64
9	MntWines	2240 non-null	int64
10	MntFruits	2240 non-null	int64
11	MntMeatProducts	2240 non-null	int64
12	MntFishProducts	2240 non-null	int64
13	MntSweetProducts	2240 non-null	int64
14	MntGoldProds	2240 non-null	int64
15	NumDealsPurchases	2240 non-null	int64
16	NumWebPurchases	2240 non-null	int64
17	NumCatalogPurchases	2240 non-null	int64
18	NumStorePurchases	2240 non-null	int64
19	NumWebVisitsMonth	2240 non-null	int64
20	AcceptedCmp3	2240 non-null	int64
21	AcceptedCmp4	2240 non-null	int64
22	AcceptedCmp5	2240 non-null	int64
23	AcceptedCmp1	2240 non-null	int64
24	AcceptedCmp2	2240 non-null	int64
25	Complain	2240 non-null	int64
26	<pre>Z_CostContact</pre>	2240 non-null	int64
27	Z_Revenue	2240 non-null	int64
28	Response	2240 non-null	int64
d+vn4	$ac \cdot f(a) + 61(1) = in + 61(1)$	(25) objec+(3)	

dtypes: float64(1), int64(25), object(3)

memory usage: 507.6+ KB ID Year_Birth Education 0 0 Marital_Status 0 Income 24 Kidhome 0 Teenhome 0 Dt_Customer Recency 0 MntWines ${\sf MntFruits}$ MntMeatProducts MntFishProducts 0 MntSweetProducts ${\tt MntGoldProds}$

```
NumDealsPurchases 0
NumWebPurchases 0
NumCatalogPurchases 0
NumStorePurchases 0
NumMebPuschases 0
NumStorePurchases 0
NumStore
```

1 1954 61 2 27 2 1965 50 0 776	→	Year_Birth A	_Birth Age Kids_Teen Total_Spe	ding	
2 1965 50 0 776	0	1957	1957 58 0	1617	
	1	1954 6	1954 61 2	27	
2 4004 04 4 50	2	1965	1965 50 0	776	
3 1984 31 1 53	3	1984	1984 31 1	53	
4 1981 34 1 422	4	1981	1981 34 1	422	

_	Age	Income	Total_Spending
count	2240.000000	2216.000000	2240.000000
mean	46.194196	52247.251354	605.798214
std	11.984069	25173.076661	602.249288
min	19.000000	1730.000000	5.000000
25%	38.000000	35303.000000	68.750000
50%	45.000000	51381.500000	396.000000
75%	56.000000	68522.000000	1045.500000
max	122.000000	666666.000000	2525.000000

```
import matplotlib.pyplot as plt
import seaborn as sns

plt.figure(figsize=(8, 5))
sns.histplot(df['Age'], bins=20, kde=True)
plt.title('Distribusi Umur Pelanggan')
plt.xlabel('Umur')
plt.ylabel('Jumlah Pelanggan')
plt.show()
```



```
print("Statistik Umur Pelanggan:")
df = df[df['Age'] <= 100]
print(df['Age'].describe())</pre>
```

```
Statistik Umur Pelanggan:
     count
              2237.000000
     mean
                46.098346
                11.701917
     std
                19.000000
     min
     25%
                38.000000
                45.000000
     50%
                56.000000
     75%
     max
                75.000000
     Name: Age, dtype: float64
plt.figure(figsize=(8, 5))
sns.histplot(df['Income'], bins=30, kde=True, color='green')
plt.title('Distribusi Pendapatan')
plt.xlabel('Pendapatan (USD)')
plt.ylabel('Jumlah Pelanggan')
plt.show()
```



```
print("Statistik Pendapatan Pelanggan:")
print(df['Income'].describe())
```

```
→ Statistik Pendapatan Pelanggan:
                2216.000000
               52247.251354
     mean
               25173.076661
     std
                1730.000000
     min
               35303.000000
     25%
               51381.500000
     50%
               68522.000000
     75%
     max
              666666.000000
     Name: Income, dtype: float64
plt.figure(figsize=(8, 5))
sns.histplot(df['Total_Spending'], bins=30, kde=True, color='orange')
plt.title('Distribusi Total Belanja')
plt.xlabel('Total Spending (USD)')
plt.ylabel('Jumlah Pelanggan')
plt.show()
```



```
print("Statistik Total Belanja Pelanggan:")
print(df['Total_Spending'].describe())
```

```
\overline{\mathbf{T}}
     Statistik Total Belanja Pelanggan:
               2240.000000
     count
                605.798214
     mean
                602.249288
     std
                  5.000000
     min
                 68.750000
     25%
     50%
                396.000000
     75%
               1045.500000
               2525.000000
     Name: Total_Spending, dtype: float64
plt.figure(figsize=(8, 5))
sns.scatterplot(x='Income', y='Total_Spending', data=df)
plt.title('Pendapatan vs Total Belanja')
plt.xlabel('Pendapatan')
plt.ylabel('Total Spending')
plt.show()
```


correlation = df[['Income', 'Total_Spending']].corr()
print("Korelasi antara Income dan Total Spending:")
print(correlation)

plt.show()


```
print("Distribusi Respons Kampanye:")
print(df['Response'].value_counts(normalize=True) * 100)

Distribusi Respons Kampanye:
    Response
    0    85.089286
    1    14.910714
    Name: proportion, dtype: float64

print("Median umur:", df['Age'].median())
```

print("Pendidikan terbanyak:", df['Education'].mode()[0])

```
Median umur: 45.0
     Pendidikan terbanyak: Graduation
# Segmentasi pelanggan berdasarkan total spending
df['Spending_Segment'] = pd.qcut(df['Total_Spending'], q=3, labels=['Low Spender', 'Medium Spender', 'High Spender'])
# Cek jumlah per segmen
print(df['Spending_Segment'].value_counts())
→ Spending_Segment
     Low Spender
                       746
     High Spender
                       746
                       745
     Medium Spender
     Name: count, dtype: int64
df['Income_Segment'] = pd.qcut(df['Income'], q=3, labels=['Low Income', 'Medium Income', 'High Income'])
print(df['Income_Segment'].value_counts())
→ Income_Segment
     Low Income
                      738
     High Income
                      738
     Medium Income
                     737
     Name: count, dtype: int64
def age_category(age):
   if age <= 30:
       return 'Young'
    elif age <= 50:
       return 'Adult'
    else:
        return 'Senior'
df['Age_Segment'] = df['Age'].apply(age_category)
print(df['Age_Segment'].value_counts())
→ Age_Segment
     Adult
               1233
     Senior
                783
     Young
                221
     Name: count, dtype: int64
import seaborn as sns
{\tt import\ matplotlib.pyplot\ as\ plt}
plt.figure(figsize=(7, 4))
\verb|sns.countplot(x='Spending_Segment', data=df, order=['Low Spender', 'Medium Spender', 'High Spender']|)| \\
plt.title('Distribusi Pelanggan berdasarkan Spending')
plt.show()
∓
```


Hitung jumlah pelanggan per segmen
segment_counts = df['Spending_Segment'].value_counts().reindex(['Low Spender', 'Medium Spender', 'High Spender'])

```
# Buat pie chart
plt.figure(figsize=(6, 6))
segment_counts.plot.pie(autopct='%1.1f%", startangle=90, colors=['lightblue', 'orange', 'green'])
plt.title('Segmentasi Pelanggan Berdasarkan Total Spending')
plt.ylabel('') # Hilangkan label Y
plt.show()
```

→*

Segmentasi Pelanggan Berdasarkan Total Spending

Bandingkan karakteristik berdasarkan Spending Segment df.groupby('Spending_Segment')[['Income', 'Age', 'Total_Spending', 'Kids_Teen', 'Response']].mean().round(1)

Income Age Total_Spending Kids_Teen Response

套 C:\Users\lenovo ideapad 330\AppData\Local\Temp\ipykernel_924\934148667.py:2: FutureWarning: The default of observed=False is depreca df.groupby('Spending_Segment')[['Income', 'Age', 'Total_Spending', 'Kids_Teen', 'Response']].mean().round(1)

Spending_Segment					
Low Spender	32737.7	42.9	51.2	1.3	0.1
Medium Spender	50832.6	47.5	413.0	1.1	0.1
High Spender	73022.8	47.9	1352.8	0.5	0.2

df.groupby('Income_Segment')[['Income', 'Total_Spending', 'Response']].mean().round(1)
df.groupby('Age_Segment')[['Income', 'Total_Spending', 'Response']].mean().round(1)

🛨 C:\Users\lenovo ideapad 330\AppData\Local\Temp\ipykernel_924\3817086190.py:1: FutureWarning: The default of observed=False is deprec df.groupby('Income_Segment')[['Income', 'Total_Spending', 'Response']].mean().round(1)

Income	Total_Spending	Response

Age_Segment								
Adult	50094.3	538.7	0.2					
Senior	57313.1	710.4	0.1					
Young	46295.0	609.1	0.2					

import seaborn as sns ${\tt import\ matplotlib.pyplot\ as\ plt}$ $\verb|sns.countplot(x='Response', data=df)|\\$ plt.title('Respons terhadap Kampanye Marketing') plt.xlabel('Response (1 = Ya, 0 = Tidak)') plt.ylabel('Jumlah Pelanggan') plt.show()

Respons terhadap Kampanye Marketing 1750 1500 1500 1000 -

response_rate = df['Response'].value_counts(normalize=True) * 100
print("Persentase Respons:")
print(response_rate)

```
0 85.069289
1 14.930711
Name: proportion, dtype: float64

# Bandingkan rata-rata income
print("Income rata-rata:")
print(df.groupby('Response')['Income'].mean())

# Bandingkan rata-rata total belanja
print("Total Spending rata-rata:")
print(df.groupby('Response')['Total_Spending'].mean())

# Bandingkan umur rata-rata
print("Umur rata-rata:")
print(df.groupby('Response')['Age'].mean())
```

Persentase Respons:

Response

Income rata-rata:
Response
0 50824.326064
1 60209.675676
Name: Income, dtype: float64
Total Spending rata-rata:
Response
0 538.759327
1 987.392216
Name: Total_Spending, dtype: float64