Logic Coursework

1) i)

Formalising the argument, we get:

1.
$$P \leftrightarrow \neg(O \land P)$$
given2. $(\neg O \rightarrow P) \rightarrow DDI$ given3. $(O \land R \rightarrow \neg P) \rightarrow DAI$ givenDDI $\land DAI$ conclusion

ii)

We want to show that the argument is valid.

Let us first prove the following lemma : $\neg P \leftrightarrow (O \land R)$

We have:

1.
$$P \leftrightarrow \neg(O \land P)$$
given2. $P \rightarrow \neg(O \land P)$ $\leftrightarrow E$,13. $(O \land R) \rightarrow \neg P$ contraposition, 24. $\neg(O \land R) \rightarrow P$ $\leftrightarrow E$,15. $\neg P \rightarrow O \land R$ contraposition, 46. $\neg P \leftrightarrow O \land R$ $\leftrightarrow I$,5,3

So we get : lemma1 : $\neg P \leftrightarrow O R$

So now, using the premises and lemma1, we can derive the conclusion:

1. $P \leftrightarrow \neg (O \land P)$		given
$2. \neg P \leftrightarrow O \land R$		lemma1
$3. (\neg O \rightarrow P) \rightarrow DDI$		given
$4. (O \land R \rightarrow \neg P) \rightarrow DAI$		given
5. $O \land R \rightarrow \neg P$		\leftrightarrow E,2
6. DAI		\rightarrow E,4,5
7. ¬O		Assume
	8. ¬P	Assume
	9. $\neg P \rightarrow O \land R$	↔ E ,2
	10. O∧R	→ E,8,9
	11. 0	∧E,10
12. P		RAA,11,7
13. ¬O→P		→ I,7,12
14. DDI		\rightarrow E,13,3
15. DDI ∧ DAI		∧ I,6,14

The argument is valid.

2)i)

In terms of the standard connectives, the definition of @(P,Q,R) is:

$$(P \rightarrow Q) \land (\neg P \rightarrow R)$$

ii) We want to show : $@(A, B, C), @(A, \neg B, C) \mid -C$

We have that @(A, B, C) and $@(A, \neg B, C)$ are given, so replacing by their definition we get:

1.
$$(A \rightarrow B) \land (\neg A \rightarrow C)$$
 given
2. $(A \rightarrow \neg B) \land (\neg A \rightarrow C)$ given
3. $\neg A \rightarrow C$ $\land E, 1$
4. A $\land B$ $\land E, 1$
6. $A \rightarrow \neg B$ $\land E, 2$
7. B $\rightarrow E, 4, 5$
8. $\neg B$ $\rightarrow E, 4, 6$
9. $\neg A$ RAA,7,8
10. C $\rightarrow E, 3, 9$

Hence :
$$@(A, B, C), @(A, \neg B, C) \mid -C \ .$$
 Q.E.D

3)i)

- a. $\forall X (length(X,0) \leftrightarrow \forall Y \neg member(Y,X))$
- b. \forall L1, L2, L3 (append(L1,L2,L3) \rightarrow \forall X(member(X,L3) \rightarrow (member(X,L1) \vee member(X,L2))))
- c. \forall L,X (length(L,X) \rightarrow (X=0 \lor X>0))
- d. \forall L1, L2 (same_elts(L1,L2) \leftrightarrow \forall X (member(X,L1) \leftrightarrow member(X,L2)))
- e. \exists L length(L,0)

ii)

Take:

X = [1,2]

Y = [3,4]

Z=[1,1,2,3,4]

Then, for the above example:

The left hand of the principal implication holds while the right hand does not.

Hence the statement is false.