

Alexander Neuwirth

ZO Resonanz

ZO-Resonanz

wissen.leben

2018-11-2

└─Gliederung

-Gliederung

Z0 Resonanz

Gliederung Historischer Überblick

Gliederung

Historischer Überblick

Theorie

Experimentelle Untersuchung

Zusammenfassung

80 Resonanz 1 − Historischer Überblick

Historischer Überblick

2018

U ER ZO Resonanz

Historischer Überblick

Alexander Neuwirth 3

Z0 Resonanz

Historischer Überblick

Historischer Überblick

- 1. Vereinheitlichung von elektr. + schwache WW. Kräfteaustausch durch Photon, W^{\pm} , Z^0
- 2. 1979 Nobelpreis für GWS
- Neutrale Ströme von links nach rechts Antineutrinostrahl in Blasenkammer. Photon nur bei elektr. Prozessen. (⇒) neutraler Strom, Z) Anhand von Winkel und 1/3 Energie des e[−] folgt Wechselwirkung durch neutrale Ströme. 700000 - Bilder überprüft. Spiral/Bremsstrahlung.
- 4. CERN

2018-

- Large Electron Positron Ring (CERN) Präzessionsmessungen weiter Bestätigtbis 2000
- 6. 2013 François Englert und Peter Higgs Nobelpreis

Historischer Überblick

- 1. Vereinheitlichung von elektr. + schwache WW. Kräfteaustausch durch Photon. W^{\pm} . Z^0
- 2. 1979 Nobelpreis für GWS
- Neutrale Ströme von links nach rechts Antineutrinostrahl in Blasenkammer. Photon nur bei elektr. Prozessen. (⇒) neutraler Strom, Z) Anhand von Winkel und 1/3 Energie des e[−] folgt Wechselwirkung durch neutrale Ströme. 700000 - Bilder überprüft. Spiral/Bremsstrahlung.
- 4. CERN
- Large Electron Positron Ring (CERN) Präzessionsmessungen weiter Bestätigtbis 2000
- 6. 2013 François Englert und Peter Higgs Nobelpreis

Historischer Überblick

- 1. Vereinheitlichung von elektr. + schwache WW. Kräfteaustausch durch Photon, W^{\pm} , Z^0
- 2. 1979 Nobelpreis für GWS
- 3. Neutrale Ströme von links nach rechts Antineutrinostrahl in Blasenkammer. Photon nur bei elektr. Prozessen. (=> neutraler Strom, Z) Anhand von Winkel und 1/3 Energie des e⁻ folgt Wechselwirkung durch neutrale Ströme. 700000 Bilder überprüft. Spiral/Bremsstrahlung.
- 4. CERN
- Large Electron Positron Ring (CERN) Präzessionsmessungen weiter Bestätigtbis 2000
- 6. 2013 Francois Englert und Peter Higgs Nobelpreis

Historischer Überblick

- 1. Vereinheitlichung von elektr. + schwache WW. Kräfteaustausch durch Photon, W^\pm , Z^0
- 2. 1979 Nobelpreis für GWS
- 3. Neutrale Ströme von links nach rechts Antineutrinostrahl in Blasenkammer. Photon nur bei elektr. Prozessen. (=> neutraler Strom, Z) Anhand von Winkel und 1/3 Energie des e⁻ folgt Wechselwirkung durch neutrale Ströme. 700000 Bilder überprüft. Spiral/Bremsstrahlung.
- 4. CERN
- Large Electron Positron Ring (CERN) Präzessionsmessungen weiter Bestätigtbis 2000
- 6. 2013 Francois Englert und Peter Higgs Nobelpreis

Historischer Überblick

- 1. Vereinheitlichung von elektr. + schwache WW. Kräfteaustausch durch Photon, W^\pm , Z^0
- 2. 1979 Nobelpreis für GWS
- 3. Neutrale Ströme von links nach rechts Antineutrinostrahl in Blasenkammer. Photon nur bei elektr. Prozessen. (=> neutraler Strom, Z) Anhand von Winkel und 1/3 Energie des e⁻ folgt Wechselwirkung durch neutrale Ströme. 700000 Bilder überprüft. Spiral/Bremsstrahlung.
- 4. CERN
- 5. Large Electron Positron Ring (CERN) Präzessionsmessungen weiter Bestätigtbis 2000
- 6. 2013 Francois Englert und Peter Higgs Nobelpreis

ZO Resonanz —Theorie

Theorie

Einordnung im Standardmodell der Elementarteilchen Elektroschwache Vereinheitlichung

Einordnung im Standardmodell der Elementarteilchen

Standardmodell[3]

Z

4

Z0 Resonanz

–Theorie └─Einordnung im Standardmodell der Elementarteilchen

Einordnung im Standardmodell der

Einordnung im Standardmodell der Eiementarteilches

Tandardnung

Tanda

• Fichboson und Flementarteilchen

• Elchboson und Elementarteilcher

• Ladung

uct: 2/3dsb: -1/3

- v: 0

– eμτ: -1

Antiteilchen inversSpin

- Bosonen: 1

Masse steigt mit Generationschwache WW

• W+- => elek. Teilchen WW (beta Zerfall)

• Z0 => auch neutral Teilchen WW (Neutrino)

- Fermionen (Quarks+Leptonen): 1/2

• eigenes Antiteilchen

• Higgs aus Vollständigkeit

Alexander Neuwirth

5

Elektroschwache VereinheitlichungAustauschteilchen

- 1. Allg. Grund + Was es ist.
- 2. Warum? Weil Divergenzen in höherer Ordnung/Energien auftreten
- 3. Vereint QED mit schwacher WW.
- 4. Kräfte durch Austauschteilchen
- 5. W,Z bsplw. Beta-Zerfall, Gluon Kernzusammenhalt,Farbladung,8 (n-p-Anziehung)
- 6. (Higgs)
- 7. ?schwere Austauschteilchen => geringe Stärke der WW. (Graviton schwerer als Higgs)?
- 8. (experimentelle Bestimmung)

Elektroschwache VereinheitlichungAustauschteilchen

ightharpoonup Photon ightharpoonup elektromagnetische Wechselwirkung

Alexander Neuwirth

Z0 Resonanz

Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

▶ Photon → elektromagnetische Wechselwirkung

- 1. Allg. Grund + Was es ist.
- 2. Warum? Weil Divergenzen in höherer Ordnung/Energien auftreten
- 3. Vereint QED mit schwacher WW.
- 4. Kräfte durch Austauschteilchen
- 5. W,Z bsplw. Beta-Zerfall, Gluon Kernzusammenhalt,Farbladung,8 (n-p-Anziehung)
- 6. (Higgs)
- 7. ?schwere Austauschteilchen => geringe Stärke der WW. (Graviton schwerer als Higgs)?
- 8. (experimentelle Bestimmung)

Elektroschwache VereinheitlichungAustauschteilchen

ightharpoonup Photon ightharpoonup elektromagnetische Wechselwirkung

▶ W,Z-Boson → schwache Wechselwirkung

Z0 Resonanz

Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

Photon → elektromagnetische Wechselwirkung
 W,Z-Boson → schwache Wechselwirkung

- 1. Allg. Grund + Was es ist.
- 2. Warum? Weil Divergenzen in höherer Ordnung/Energien auftreten
- 3. Vereint QED mit schwacher WW.
- 4. Kräfte durch Austauschteilchen
- 5. W,Z bsplw. Beta-Zerfall, Gluon Kernzusammenhalt,Farbladung,8 (n-p-Anziehung)
- 6. (Higgs)
- 7. ?schwere Austauschteilchen => geringe Stärke der WW. (Graviton schwerer als Higgs)?
- 8. (experimentelle Bestimmung)

Elektroschwache VereinheitlichungAustauschteilchen

ightharpoonup Photon ightharpoonup elektromagnetische Wechselwirkung

► W,Z-Boson → schwache Wechselwirkung

► Gluon → starke Wechselwirkung

ZO Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

Photon → elektromagnetische Wechselwirkun
 W,Z-Boson → schwache Wechselwirkung
 Gluon → starke Wechselwirkung

- 1. Allg. Grund + Was es ist.
- 2. Warum? Weil Divergenzen in höherer Ordnung/Energien auftreten
- 3. Vereint QED mit schwacher WW.
- 4. Kräfte durch Austauschteilchen
- 5. W,Z bsplw. Beta-Zerfall, Gluon Kernzusammenhalt,Farbladung,8 (n-p-Anziehung)
- 6. (Higgs)
- 7. ?schwere Austauschteilchen => geringe Stärke der WW. (Graviton schwerer als Higgs)?
- 8. (experimentelle Bestimmung)

Elektroschwache Vereinheitlichung Schwacher Isospin

	Fermionmultipletts		
Leptonen	$\begin{pmatrix} \nu_{\rm e} \\ {\rm e} \end{pmatrix}_{\rm L}$ ${\rm e_R}$	$\begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{L}$ μ_{R}	$ \begin{pmatrix} \nu_{\tau} \\ \tau \end{pmatrix}_{\rm L} $ $ \tau_{\rm R} $
Quarks	$\begin{pmatrix} u \\ d' \end{pmatrix}_L$ u_R	$\begin{pmatrix} c \\ s' \end{pmatrix}_{L}$	$\left(\begin{array}{c} t \\ b' \end{array} \right)_L$ t_R
	d_{R}	$s_{ m R}$	b_{R}

Schwacher Isospin[4]

ZO Resonanz

—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

- Einführung von schwachem Isospin, analogon zu starkem Isospin
 Umwandung durch Absorption von W[±]-Boson innerhalb Multiplett (darin Ladungsdifferenz = 1)
- Chiralität Index R/L formal: Zerlegung von Dirac-Spinoren in orthogonale Zustände die unter Paritätsoperationen ineinander übergehen. Eigenzustände +1
- Rechtshändige e, μ, τ Singulett Zustand.
 invers für Antiteilchen: rechshändige Fermionen (linkshändige Antifermionen) Singulettt (T = 0 = T₃)
- Chiralität (l/r), Spinor Symmetrie
- Rechtshändige Neutrinos $T_3 = z = 0$, keine WW, Auftreten in Natur unbekannt
- z_f beschreibt Ladung
 Der 'bedeuted!= Masseneigenzustände, sondern Quarkmisch-Matrix CKM
- ?was bedeutet der ' (Cabibbo-Rotation)?

Elektroschwache Vereinheitlichung Schwacher Isospin

	Fermionmultipletts			T	
Leptonen	$\begin{pmatrix} \nu_{\rm e} \\ { m e} \end{pmatrix}_{ m L}$	$\begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{\mathrm{L}}$	$\left(\begin{array}{c} u_{ au} \\ \tau \end{array} ight)_{ ext{L}}$	1/2	
Le	e_{R}	$\mu_{ m R}$	$ au_{ m R}$	0	
Quarks	$\begin{pmatrix} u \\ d' \end{pmatrix}_L$	$\begin{pmatrix} c \\ s' \end{pmatrix}_L$	$\left(\begin{array}{c}t\\b'\end{array}\right)_L$	1/2	
Que	u_{R}	c_{R}	$\mathrm{t_R}$	0	
	d_{R}	\mathbf{s}_{R}	b_{R}	0	

Schwacher Isospin[4]

ZO Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

- Einführung von schwachem Isospin, analogon zu starkem Isospin
 Umwandung durch Absorption von W[±]-Boson innerhalb Multiplett (darin Ladungsdifferenz = 1)
- Chiralität Index R/L formal: Zerlegung von Dirac-Spinoren in orthogonale Zustände die unter Paritätsoperationen ineinander übergehen. Eigenzustände +1
- Rechtshändige e, μ, τ Singulett Zustand.
 invers für Antiteilchen: rechshändige Fermionen (linkshändige Antifermionen) Singulettt (T = 0 = T₂)
- Chiralität (l/r), Spinor Symmetrie
- Rechtshändige Neutrinos $T_3 = z = 0$, keine WW, Auftreten in Natur unbekannt
- z_f beschreibt Ladung
- Der 'bedeuted!= Masseneigenzustände, sondern Quarkmisch-Matrix CKM
 - ?was bedeutet der ' (Cabibbo-Rotation)?

Elektroschwache Vereinheitlichung Schwacher Isospin

	Fermionmultipletts			T	T_3	
eptonen	$\begin{pmatrix} u_{ m e} \\ { m e} \end{pmatrix}_{ m L}$	$\left(\begin{array}{c} \nu_{\mu} \\ \mu \end{array} \right)_{\mathrm{L}}$	$\begin{pmatrix} \nu_{\tau} \\ \tau \end{pmatrix}_{\mathrm{L}}$	1/2	$+1/2 \\ -1/2$	
Ľ	e_{R}	$\mu_{ m R}$	$ au_{ m R}$	0	0	
Quarks	$\begin{pmatrix} u \\ d' \end{pmatrix}_L$	$\begin{pmatrix} c \\ s' \end{pmatrix}_L$	$\left(\begin{array}{c}t\\b'\end{array}\right)_L$	1/2	$+1/2 \\ -1/2$	
Que	u_{R}	c_{R}	t_{R}	0	0	
	d_{R}	\mathbf{s}_{R}	b_{R}	0	0	

Schwacher Isospin[4]

ZO Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

- Einführung von schwachem Isospin, analogon zu starkem Isospin
 Umwandung durch Absorption von W[±]-Boson innerhalb Multiplett (darin Ladungsdifferenz = 1)
- Chiralität Index R/L formal: Zerlegung von Dirac-Spinoren in orthogonale Zustände die unter Paritätsoperationen ineinander übergehen. Eigenzustände +1
- Rechtshändige e, μ, τ Singulett Zustand.
- invers für Antiteilchen: rechshändige Fermionen (linkshändige Antifermionen) Singulettt ($T = 0 = T_3$)
- Chiralität (l/r), Spinor Symmetrie
- Rechtshändige Neutrinos $T_3 = z = 0$, keine WW, Auftreten in Natur unbekannt
- z_f beschreibt Ladung
- Der' bedeuted != Masseneigenzustände, sondern Quarkmisch-Matrix CKM
- ?was bedeutet der ' (Cabibbo-Rotation)?

Elektroschwache Vereinheitlichung Schwacher Isospin

	Fermionmultipletts			T	T_3	$z_{ m f}$
Leptonen	$\begin{pmatrix} \nu_{\rm e} \\ {\rm e} \end{pmatrix}_{ m L}$	$\begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{\mathrm{L}}$	$\left(\begin{array}{c} \nu_{\tau} \\ \tau \end{array}\right)_{\mathrm{L}}$	1/2	$^{+1/2}_{-1/2}$	0 -1
Lej	e_{R}	$\mu_{ m R}$	$ au_{ m R}$	0	0	-1
rks	$\begin{pmatrix} u \\ d' \end{pmatrix}_L$	$\begin{pmatrix} c \\ s' \end{pmatrix}_{L}$	$\begin{pmatrix} t \\ b' \end{pmatrix}_{L}$	1/2	$^{+1/2}_{-1/2}$	$+2/3 \\ -1/3$
Quarks	u_{R}	c_{R}	$t_{\rm R}$	0	0	+2/3
	d_{R}	\mathbf{s}_{R}	b_{R}	0	0	-1/3

Schwacher Isospin[4]

• z_f beschreibt Ladung

- -Theorie -Elektroschwache Vereinheitlichung -Elektroschwache Vereinheitlichung
 - Einführung von schwachem Isospin, analogon zu starkem Isospin • Umwandung durch Absorption von W^{\pm} -Boson innerhalb Multiplett (darin Ladungsdifferenz = 1)
- Chiralität Index R/L formal: Zerlegung von Dirac-Spinoren in orthogonale Zustände die unter Paritätsoperationen ineinander übergehen. Eigenzustände +1
- Rechtshändige *e*, *μ*, *τ* Singulett Zustand.
- invers für Antiteilchen: rechshändige Fermionen (linkshändige Antifermionen) Singulettt ($T = 0 = T_3$)
- Chiralität (l/r), Spinor Symmetrie
- Rechtshändige Neutrinos $T_3 = z = 0$, keine WW, Auftreten in Natur unbekannt

ZO Resonanz

- Der 'bedeuted! = Masseneigenzustände, sondern Quarkmisch-Matrix CKM
- ?was bedeutet der' (Cabibbo-Rotation)?

Elektroschwache Vereinheitlichung

Austauschteilchen

 β -Zerfall[5]

Alexander Neuwirth

Elektroschwache Vereinheitlichung Austauschteilchen

- 1. Bekannt aus schwacher WW
- 2. $d\rightarrow u + W^-$
- 3. analog u \rightarrow d + W^+
- 4. T: d(-1/2)=W(?)+u(1/2)
- 5. T: W(?)=e(-1/2)+v(-1/2)
- 6. ?Wieso T=1?
- 7. B⁰ postuliert
- 8. Mehr zum Beta-Zerfall nächste Woche (+Paritätsverletzung)

Elektroschwache Vereinheitlichung

Austauschteilchen

 $ightharpoonup T_3$ soll erhalten bleiben

 β -Zerfall[5]

Alexander Neuwirth

Z0 Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

T₃ soll erhalten bleiben

- 1. Bekannt aus schwacher WW
- 2. $d\rightarrow u + W^-$
- 3. analog u \rightarrow d + W^+
- 4. T: d(-1/2)=W(?)+u(1/2)
- 5. T: W(?)=e(-1/2)+v(-1/2)
- 6. ?Wieso T=1?
- 7. B⁰ postuliert
- 8. Mehr zum Beta-Zerfall nächste Woche (+Paritätsverletzung)

Elektroschwache Vereinheitlichung

Austauschteilchen

 $ightharpoonup T_3$ soll erhalten bleiben

$$W^-: T_3 = -1$$

 β -Zerfall[5]

Alexander Neuwirth

ZO Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

W⁻: T₂ = −1

1. Bekannt aus schwacher WW

2. $d\rightarrow u + W^-$

3. analog u \rightarrow d + W^+

4. T: d(-1/2)=W(?)+u(1/2)

5. T: W(?)=e(-1/2)+v(-1/2)

6. ?Wieso T=1?7. B⁰ postuliert

8. Mehr zum Beta-Zerfall nächste Woche (+Paritätsverletzung)

Elektroschwache Vereinheitlichung

Austauschteilchen

 $ightharpoonup T_3$ soll erhalten bleiben

$$W^-: T_3 = -1$$

$$W^+: T_3 = 1$$

 β -Zerfall[5]

Alexander Neuwirth 8

Z0 Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

T₃ soll erhalten bleiben
 W⁻: T₃ = −1
 W⁺: T₃ = 1

- 1. Bekannt aus schwacher WW
- 2. $d\rightarrow u + W^-$
- 3. analog u \rightarrow d + W^+
- 4. T: d(-1/2)=W(?)+u(1/2)
- 5. T: W(?)=e(-1/2)+v(-1/2)
- 6. ?Wieso T=1? 7. B⁰ postuliert
- 8. Mehr zum Beta-Zerfall nächste Woche (+Paritätsverletzung)

Elektroschwache Vereinheitlichung

Austauschteilchen

- $ightharpoonup T_3$ soll erhalten bleiben
- $W^-: T_3 = -1$
- $W^+: T_3 = 1$
- W^0 : $(T=1, T_3=0)$
- B^0 : $(T = 0, T_3 = 0)$

 β -Zerfall[5]

ZO Resonanz -Theorie -Elektroschwache Vereinheitlichung -Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung

- V^0 : $(T = 1, T_1 = 0)$ B^0 : $(T = 0, T_1 = 0)$

- 1. Bekannt aus schwacher WW
- 2. $d\rightarrow u + W^-$
- 3. analog u \rightarrow d + W^+
- 4. T: d(-1/2)=W(?)+u(1/2)
- 5. T: W(?)=e(-1/2)+v(-1/2)
- 6. ?Wieso T=1?
- 7. B^0 postuliert
- 8. Mehr zum Beta-Zerfall nächste Woche (+Paritätsverletzung)

Elektroschwache Vereinheitlichung

$$|\gamma\rangle = +\cos\theta_{\rm W}|B^0\rangle + \sin\theta_{\rm W}|W^0\rangle$$

 $|Z^0\rangle = -\sin\theta_{\rm W}|B^0\rangle + \cos\theta_{\rm W}|W^0\rangle$

ZO Resonanz

Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

troschwache Vereinheitlichung $|\gamma\rangle = +\cos\theta_W |B^0\rangle + \sin\theta_W |W^0\rangle$ $|Z^0\rangle = -\sin\theta_W |B^0\rangle + \cos\theta_W |W^0\rangle$

- Drehung um Weinberg-Winkel/elektroschwachen Mischungswinkel, Naturkonstante
- 2. spontane Symmetriebrechung, diagonaliesierung der Massematrix führt zu diesen.
- 3. orthogonal + linear Kombination
- 4. Kopplungsstärke g für schwache WW. aus QFT => Kopplungskonstante
- 5. experimentelle Bestimmung, später mehr

Elektroschwache Vereinheitlichung

$$|\gamma\rangle = +\cos\theta_{\mathrm{W}}|B^{0}\rangle + \sin\theta_{\mathrm{W}}|W^{0}\rangle$$

 $|Z^{0}\rangle = -\sin\theta_{\mathrm{W}}|B^{0}\rangle + \cos\theta_{\mathrm{W}}|W^{0}\rangle$

$$\cos \theta_{
m W} = rac{M_{
m W}}{M_{
m Z}} pprox 0.88$$

ektroschwache Vereinheitlichung $|\gamma\rangle = +\cos\theta_{W}|B^{0}\rangle + \sin\theta_{W}|W^{0}|$ $|Z^{0}\rangle = -\sin\theta_{W}|B^{0}\rangle + \cos\theta_{W}|W^{0}|$

 $\cos\theta_W = \frac{M_W}{M_Z} \approx 0.88$

- 1. Drehung um Weinberg-Winkel/elektroschwachen Mischungswinkel, Naturkonstante
- 2. spontane Symmetriebrechung, diagonaliesierung der Massematrix führt zu diesen.
- 3. orthogonal + linear Kombination
- 4. Kopplungsstärke g für schwache WW. aus QFT => Kopplungskonstante
- 5. experimentelle Bestimmung, später mehr

Elektroschwache Vereinheitlichung

$$|\gamma\rangle = +\cos\theta_{\mathrm{W}}|B^{0}\rangle + \sin\theta_{\mathrm{W}}|W^{0}\rangle$$

 $|Z^{0}\rangle = -\sin\theta_{\mathrm{W}}|B^{0}\rangle + \cos\theta_{\mathrm{W}}|W^{0}\rangle$

$$\cos \theta_{
m W} = rac{M_{
m W}}{M_{
m Z}} pprox 0.88$$

$$e = g \cdot sin\theta_{w}$$

ZO Resonanz -Elektroschwache Vereinheitlichung Elektroschwache Vereinheitlichung

- 1. Drehung um Weinberg-Winkel/elektroschwachen Mischungswinkel, Naturkonstante
- 2. spontane Symmetriebrechung, diagonaliesierung der Massematrix führt zu diesen.
- 3. orthogonal + linear Kombination
- 4. Kopplungsstärke g für schwache WW. aus QFT => Kopplungskonstante
- 5. experimentelle Bestimmung, später mehr

10

Historischer Überblick

Theorie

Experimentelle Untersuchung

Erzeugung

Nachweis

Eigenschaften Neutrinogenerationen

7usammenfassun

2018-11-28

-58 -78

ZO Resonanz

Historischer Überblick

Experimentelle Untersuchung
Erzeugung
Nachweis
Elgenschaften
Neutrinogenerationen

Experimentelle Untersuchung

Erzeugung -Erzeugung

Z0 Resonanz

Erzeugung

 e^+ ^^^^ e^{-}

 e^+e -Vernichtung über γ [6]

• W/Z-Boson durch Antilepton+Lepton/AntiQuark+Quark Reaktion • kollidierende Teilchenstrahlen

- feynman diagram
- Zeit nach rechts

QFT+Feynmanregeln

- Antiteilchen Zeitlich invers (Aus Dirac-Gleichung (Schrödinger gleichung mit eingesetzter Impuls/Energie Relation wirkt auf vier komponentigen Dirac Spinor) ergeben sich positive und negative Lösungen für die Energie) (bzw. Klein Gordon Gleichung (entkoppelt))
- nach Stückelberg-Feynman-Interpretation, bsplw. E-Feld e^- vs e^+ mit anderer Richtung ist gleich. (Dirac sagte Antiteilchen vorher/definierte, wobei negative Energien besetzt sind und Löcher sich ausbreiten basierend auf Pauli-Ausschlussprinzip, da Bosonen nicht gehorchen => reverse Zeit Interpretation)
- über yoder Z zu Fermion und Antifermion paar. • bei passender Energie approx M_Z dominiert Z^0 , aus

Erzeugung

Schwerpunktsenergie $\sqrt{s} = 2E_e \ge M_Z c^2 \approx 91.6 \, GeV$

ZO Resonanz
Experimentelle Untersuchung
Erzeugung
Erzeugung

Erzeugung

Schwerpunktsenerele $\sqrt{3} = 2E_c > M_c C^2 \approx 91.6 \text{ GeV}$

- 1. 1989 am Stanford Linear Collider und LEP
- 2. Energie muss in Quarks enthalten sein \to sehr viel mehr Energie auf Protonen (analog mit d) => e-e+ Kollision einfacher
- 3. 1996 am LEP, 50 \rightarrow 86 \rightarrow 104,6 GeV

Erzeugung

- Schwerpunktsenergie $\sqrt{s} = 2E_{\rho} \ge M_7 c^2 \approx 91.6 \, GeV$
- ▶ pp-Kollision: $u + \overline{u} \rightarrow Z^0$ benötigt $\sqrt{s} \gtrsim 600 \, GeV$ pro Proton

ZO Resonanz
—Experimentelle Untersuchung
—Erzeugung
—Erzeugung

Erzeugung

▶ Schwerpunktsenergie $\sqrt{s} = 2E_e \ge M_2c^2 \approx 91.6 \text{ GeV}$ ▶ ρp -Kollision: $u + \overline{u} \rightarrow Z^0$ benötigt $\sqrt{s} \gtrsim 600 \text{ GeV}$ pro Proton

- 1. 1989 am Stanford Linear Collider und LEP
- 2. Energie muss in Quarks enthalten sein \rightarrow sehr viel mehr Energie auf Protonen (analog mit d) => e-e+ Kollision einfacher
- 3. 1996 am LEP, $50 \rightarrow 86 \rightarrow 104,6\,\text{GeV}$

Erzeugung

- Schwerpunktsenergie $\sqrt{s} = 2E_{\rho} \ge M_7 c^2 \approx 91.6 \, GeV$
- ▶ pp-Kollision: $u + \overline{u} \rightarrow Z^0$ benötigt $\sqrt{s} \gtrsim 600$ GeV pro Proton
- $ightharpoonup e^+ + e^-
 ightarrow W^+ + W^-$ benötigt $\sqrt{s} \ge 2 M_{
 m W} c^2 pprox 160,8 \, GeV$

Erzeugung

▶ Schwerpunktsenergie $\sqrt{s} = 2E_g \ge M_2c^2 \approx 91.6 \text{ GeV}$ ▶ pp-Kollision: $u + \overline{v} \rightarrow Z^0$ benötigt $\sqrt{s} \gtrsim 600 \text{ GeV}$ pro Proton
▶ $e^+ + e^- \rightarrow W^+ + W^-$ benötigt $\sqrt{s} \ge 2M_Wc^2 \approx 160.8 \text{ GeV}$

1. 1989 am Stanford Linear Collider und LEP

3. 1996 am LEP, $50 \rightarrow 86 \rightarrow 104,6 \, \text{GeV}$

2. Energie muss in Quarks enthalten sein \rightarrow sehr viel mehr Energie auf Protonen (analog mit d) => e-e+ Kollision einfacher

Nachweis

1983 am CERN

 $q + \overline{q} \rightarrow Z^0 \rightarrow e^+ + e^-$ [4]

Alexander Neuwirth 13

ZO Resonanz
—Experimentelle Untersuchung
—Nachweis
—Nachweis

- Plane unten sind Kaloriemeterzellen
- Energie Summe = Masse Z^0
- Beispiel Event einer Messung
- Winkel 180° => entgegen gesetzte Richtungen
- ?Woher sicher, dass Z⁰ Zerfall?

Nachweis

1993 am LEP/CERN

$$e^- + e^- \rightarrow Z^0 \rightarrow \mu^+ + \mu^-$$
 [7]

8-11-28

Z0 Resonanz

Experimentelle Untersuchung

└─Nachweis └─Nachweis

- Beispiel Muon
- Winkel 180° => entgegen gesetzte Richtungen
- ?Woher sicher, dass Z⁰ Zerfall?

Eigenschaften

Experimentelle Bestimmung

- Messung:
 - $M_7 = 91,188(2) \, GeV/c^2$
 - $\Gamma_Z = 2,495(2) \, GeV$

Experimentelle Bestimmun

▶ Messung:
▶ M₂ = 91,188(2) GeV/c²
▶ f₂ = 2,495(2) GeV

- 1. Über Wirkungsquerschnitt? src [PD12]
- 2
- 3. Hadronen (idR. Anti+Quark) nicht unterscheidbar
- Anti+Neutrino schwer detektierbar => % über Γ_{tot}
 totale Breite = alle Zerfälle Anti+Fermion???

Eigenschaften

Experimentelle Bestimmung

- Messung:
 - $M_7 = 91,188(2) \, GeV/c^2$
 - $\Gamma_7 = 2,495(2) \, GeV$
- > Zerfall:

$$Z^0 \rightarrow e^+ + e^-$$
 3,363(4)%
 $\mu^+ + \mu^-$ 3,366(7)%
 $\tau^+ + \tau^-$ 3,370(8)%
 $v_{e,\mu,\tau}^+ + \overline{v}_{e,\mu,\tau}^-$ 20,0(6)%
Hadronen 69,91(6)%

ZO Resonanz

Experimentelle Untersuchung

Eigenschaften

Eigenschaften

- 1. Über Wirkungsquerschnitt? src [PD12]
- 2
- 3. Hadronen (idR. Anti+Quark) nicht unterscheidbar
- 4. Anti+Neutrino schwer detektierbar \Rightarrow % über Γ_{tot}
- 5. totale Breite = alle Zerfälle Anti+Fermion???

Neutrinogenerationen

Wirkungsquerschnitt

$$\sigma_f = \sigma_0 \cdot \frac{s\Gamma_Z^2}{(s - M_Z^2)^2 + M_Z^2 \Gamma_Z^2}$$

mit

$$\sigma_0 = \frac{12\pi}{M_Z^2} \cdot \frac{\Gamma_{i=e}\Gamma_f}{\Gamma_Z^2}$$

ZO Resonanz

2018-1

Lexperimentelle Untersuchung
Neutrinogenerationen
Neutrinogenerationen

Neutrinogenerationen Wirkungsquerschnitt

$$\begin{split} \sigma_f &= \sigma_0 \cdot \frac{s\Gamma_2^3}{(s-M_2^2)^2 + M_2^2\Gamma_2^2} \\ \text{mit} \\ \sigma_0 &= \frac{12\pi}{M_2^2} \cdot \frac{\Gamma_{l-\sigma}\Gamma_f}{\Gamma_2^2} \end{split}$$

- 1. Formel für σ Breit-Wigner
- 2. Abhängig von ...
- 3. y unterdrückt

Neutrinogenerationen

Zerfallsbreite

$$\Gamma_Z = \sum_f \Gamma_{Z \to f\bar{f}}$$

Alexander Neuwirth 17

Z0 Resonanz
Experimentelle Untersuchung
Neutrinogenerationen
Neutrinogenerationen

1.
$$\Gamma_f = \frac{G_f M_2^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2)$$

2. *G_F* Fermikonstante

3. Q_f Ladung des Fermions

4. Lép: e^{\pm} , μ^{\pm} , τ^{\pm}

5. Had: u,c=2/3; d,s,b=-1/3

6. Neutrinos

7. kein top-Quark weil nicht genug Energie aus Z^0 ($\approx 175 \, GeV$)

8. Korrekturen aus QFT, höherer Ordungen, Strahlungskorrektur

9. Passt mit Unsicherheiten zu Exp. (nicht auf Folie)

10. $\Gamma_e/\Gamma_{tot}=3,37\%$ passt auch zu Exp.

Neutrinogenerationen

Zerfallsbreite

$$\Gamma_{Z} = \sum_{f} \Gamma_{Z o f ar{f}}$$

$$= \Gamma_{\mathsf{Had}} + \Gamma_{\mathsf{Lep}} + \Gamma_{\mathsf{v}}$$

18-11-28

Z0 Resonanz

Experimentelle Untersuchung

Neutrinogenerationen

Neutrinogenerationen

Neutrinogenerationer Zerfallsbreite
$$\begin{split} &\Gamma_{Z} = \sum_{f} \Gamma_{Z \rightarrow f f} \\ &= \Gamma_{Rad} + \Gamma_{Lep} + \Gamma_{\nu} \end{split}$$

1.
$$\Gamma_f = \frac{G_f M_Z^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2)$$

2. G_F Fermikonstante

3. Q_f Ladung des Fermions

4. Lép: e^{\pm} , μ^{\pm} , τ^{\pm}

5. Had: u,c = 2/3; d,s,b = -1/3

6. Neutrinos

7. kein top-Quark weil nicht genug Energie aus Z^0 ($\approx 175 \, GeV$)

8. Korrekturen aus QFT, höherer Ordungen, Strahlungskorrektur

9. Passt mit Unsicherheiten zu Exp. (nicht auf Folie)

10. $\Gamma_e/\Gamma_{tot}=3,37\%$ passt auch zu Exp.

Neutrinogenerationen

Zerfallsbreite

$$\begin{split} \Gamma_{Z} &= \sum_{f} \Gamma_{Z \to f\bar{f}} \\ &= \Gamma_{\text{Had}} + \Gamma_{\text{Lep}} + \Gamma_{v} \\ &= N_{C} \cdot 2 \cdot \Gamma_{u} + N_{C} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{e} + 3 \cdot \Gamma_{v} \end{split}$$

Z0 Resonanz

Experimentelle Untersuchung
Neutrinogenerationen
Neutrinogenerationen

eutrinogenerationen rifallsbreite $= \sum_{r} \Gamma_{Z \rightarrow f f}$ $= \Gamma_{Rad} + \Gamma_{Lep} + \Gamma_{v}$ $= N_{C} \cdot 2 \cdot \Gamma_{u} + N_{C} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{g} + 3 \cdot \Gamma_{p}$

1.
$$\Gamma_f = \frac{G_f M_2^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2)$$

2. G_F Fermikonstante

3. Q_f Ladung des Fermions

4. Lép: e^{\pm} , μ^{\pm} , τ^{\pm}

5. Had: u,c=2/3; d,s,b=-1/3

6. Neutrinos

7. kein top-Quark weil nicht genug Energie aus Z^0 ($\approx 175 \, GeV$)

8. Korrekturen aus QFT, höherer Ordungen, Strahlungskorrektur

9. Passt mit Unsicherheiten zu Exp. (nicht auf Folie)

10. $\Gamma_e/\Gamma_{tot}=3,37\%$ passt auch zu Exp.

Neutrinogenerationen

Zerfallsbreite

$$\begin{split} & \Gamma_{Z} = \sum_{f} \Gamma_{Z \to f\bar{f}} \\ & = \Gamma_{\text{Had}} + \Gamma_{\text{Lep}} + \Gamma_{v} \\ & = N_{C} \cdot 2 \cdot \Gamma_{u} + N_{C} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{e} + 3 \cdot \Gamma_{v} \\ & = 3 \cdot 2 \cdot 94,9 \, \textit{MeV} + 3 \cdot 3 \cdot 122,4 \, \textit{MeV} + 3 \cdot 83,3 \, \textit{MeV} + 3 \cdot 165,8 \, \textit{MeV} \end{split}$$

ZO Resonanz

Experimentelle Untersuchung

Neutrinogenerationen

Neutrinogenerationen

The second of t

1.
$$\Gamma_f = \frac{G_F M_Z^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2)$$

- 2. G_F Fermikonstante
- 3. Q_f Ladung des Fermions
- 4. Lep: e^\pm , μ^\pm , τ^\pm
- 5. Had: u,c=2/3; d,s,b=-1/3
- 6. Neutrinos
- 7. kein top-Quark weil nicht genug Energie aus Z^0 ($\approx 175 \, GeV$)
- 8. Korrekturen aus QFT, höherer Ordungen, Strahlungskorrektur
- 9. Passt mit Unsicherheiten zu Exp. (nicht auf Folie)
- 10. $\Gamma_e/\Gamma_{tot}=3,37\%$ passt auch zu Exp.

Neutrinogenerationen

Zerfallsbreite

$$\begin{split} &\Gamma_{Z} = \sum_{f} \Gamma_{Z \to f\bar{f}} \\ &= \Gamma_{\text{Had}} + \Gamma_{\text{Lep}} + \Gamma_{v} \\ &= N_{C} \cdot 2 \cdot \Gamma_{u} + N_{C} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{e} + 3 \cdot \Gamma_{v} \\ &= 3 \cdot 2 \cdot 94.9 \, \text{MeV} + 3 \cdot 3 \cdot 122.4 \, \text{MeV} + 3 \cdot 83.3 \, \text{MeV} + 3 \cdot 165.8 \, \text{MeV} \\ &= 2.42 \, \text{GeV} \end{split}$$

Z0 Resonanz

Experimentelle Untersuchung

Neutrinogenerationen

Neutrinogenerationen

eutrinogenerationen rfallsbreite

 $\Gamma_Z = \sum_f \Gamma_{Z \rightarrow ff}$ = $\Gamma_{Rad} + \Gamma_{Lep}$

 $\Gamma_{\text{figd}} + \Gamma_{\text{Lep}} + \Gamma_{\text{y}}$ $N_{\text{C}} \cdot 2 \cdot \Gamma_{\text{y}} + N_{\text{C}} \cdot 3 \cdot \Gamma_{\text{d}} + 3 \cdot \Gamma_{\text{d}} + 3 \cdot \Gamma_{\text{y}}$ $3 \cdot 2 \cdot 94.9 \text{ MeV} + 3 \cdot 3 \cdot 122.4 \text{ MeV} + 3 \cdot 83.3 \text{ MeV} + 3 \cdot 165.$ 2.42 GeV

1.
$$\Gamma_f = \frac{G_f M_2^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2)$$

- 2. *G_F* Fermikonstante
- 3. Q_f Ladung des Fermions
- 4. Lép: e^{\pm} , μ^{\pm} , τ^{\pm}
- 5. Had: u,c=2/3; d,s,b=-1/3
- 6. Neutrinos
- 7. kein top-Quark weil nicht genug Energie aus Z^0 ($\approx 175 \, GeV$)
- 8. Korrekturen aus QFT, höherer Ordungen, Strahlungskorrektur
- 9. Passt mit Unsicherheiten zu Exp. (nicht auf Folie)
- 10. $\Gamma_e/\Gamma_{tot}=3,37\%$ passt auch zu Exp.

17

Neutrinogenerationen

Zerfallsbreite

$$\begin{split} &\Gamma_{Z} = \sum_{f} \Gamma_{Z \rightarrow f\bar{f}} \\ &= \Gamma_{\text{Had}} + \Gamma_{\text{Lep}} + \Gamma_{v} \\ &= N_{C} \cdot 2 \cdot \Gamma_{u} + N_{C} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{e} + 3 \cdot \Gamma_{v} \\ &= 3 \cdot 2 \cdot 94,9 \, \textit{MeV} + 3 \cdot 3 \cdot 122,4 \, \textit{MeV} + 3 \cdot 83,3 \, \textit{MeV} + 3 \cdot 165,8 \, \textit{MeV} \\ &= 2,42 \, \textit{GeV} \\ &\xrightarrow[\text{korrektur}]{\text{Strahlungs-}} 2,497 \, \textit{GeV} \end{split}$$

ZO Resonanz Experimentelle Untersuchung

1.
$$\Gamma_f = \frac{G_F M_Z^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2)$$

- 2. *G_F* Fermikonstante
- 3. Q_f Ladung des Fermions
- 4. Lep: e^{\pm} , μ^{\pm} , τ^{\pm}
- 5. Had: u,c = 2/3; d,s,b = -1/3
- 6. Neutrinos
- 7. kein top-Quark weil nicht genug Energie aus Z^0 ($\approx 175 \, GeV$)
- 8. Korrekturen aus QFT, höherer Ordungen, Strahlungskorrektur
- 9. Passt mit Unsicherheiten zu Exp. (nicht auf Folie)
- 10. $\Gamma_e/\Gamma_{tot} = 3,37\%$ passt auch zu Exp.

Neutrinogenerationen

Wirkungsquerschnitt $e^+e^- \rightarrow$ Hadronen [4]

Alexander Neuwirth 18

Z0 Resonanz

Experimentelle Untersuchung

└Neutrinogenerationen

-Neutrinogenerationen

- 1. Cern Experiment
- 2. Schwerpunkt energie gegen Wirkungsquerschnitt
- 3. Ähnlich der Breit Wigner Funktion aber nicht passend symmetrisch durch Korrekturen höherer Ordnung udn Bremstrahlung durch e^-
- 4. Verschiedene Anzahl-Neutrinogenerationen-Kurven
- 5. 3 Neutrinogenerationen \rightarrow 3 Leptonen 3 Quarks Generationen

Z0 Resonanz -Zusammenfassung 2018-11-2

Zusammenfassung Zusammenfassung

Zusammenfassung Zusammenfassung

19

Zusammenfassung

- ightharpoonup Weinbergwinkel $\cos \theta_{\rm W} \approx 0.88$
- ightharpoonup Zerfallsbreite $\Gamma_7 \approx 2.4 \, GeV$
- ▶ 3 Neutrinogeneration

Zusammenfassung

➤ Weinbergelnkel cos θ₀ = 0.88

➤ Zerfalbertelf : = 2.4 GeV

➤ 3 Heurinogeneration

- 1. Weinbergwinkel Massenverhältniss W,Z Boson
- 2. Zerfallsbreite aus QFT großer Erfolg in Übereinstimmung mit Experiment
- 3. Bestätigung, dass es 3 Neutrinogenerationen gibt
- 4. Weiterfüherend Große Vereinheitlichung Analog ab 10¹⁶ GeV ⇒ keine Differenzierung Fermionen, Quarks und Leptonen. (Astrovorträge, Universumentwicklungröhre)
- 5. Noch Weiterfüherend Quantengravitation kombiniert mit GUT

Quellen I

Sheldon Glashow, Abdus Salam and Steven Weinberg. URL: http://thescientificodyssey.libsyn.com/episode-225-putting-the-puzzle-together (besucht am 12.11.2018).

F.J. Hasert u. a. "Search for elastic muon-neutrino electron scattering". In: Physics Letters B 46.1 (1973), S. 121–124. ISSN: 0370-2693. DOI: https://doi.org/10.1016/0370-2693(73)90494-2. URL: http://www.sciencedirect.com/science/article/pii/0370269373904942

ZO Resonanz
Zusammenfassung
Zusammenfassung
Zusammenfassung
Quellen

Quellen I

Sheldon Glashow, Abdus Salam and Steven Weinberg, URL http://theacientificodyssey.libayn.com/episode-2/ putting-the-pazzle-toesther (besucht am 12.11.2018

F.J. Hasert u. z. "Search for elastic muon-neutrino electron scattering". In: Physics Letters B 46.1 (1973), S. 121-124. ISSI 0370-2693. DOI: https://doi.org/10.1016/0370-2693(73)90404-2. URI: https://www.sciencedirect.com/science/article/pii/ 037006973006042

Quellen II

- Standardmodell. URL: https://de.wikipedia.org/wiki/Standardmodell (besucht am 12.11.2018).
- Povh et al. Teilchen und Kerne. Springer Spektrum, 2014. Kap. 12.
 - Beta-Decay. URL: https://de.wikipedia.org/wiki/Betastrahlung (besucht am 12.11.2018).
- Donald H. Perkins. Introduction to High Energy Physics. Cambridge University Press, 2000.

Z0 Resonanz

Zusammenfassung

Zusammenfassung

Zusammenfassung

Quellen

Quellen

Quellen

A tracked to Allege A tracked to Al

23

Quellen III

Versuch ZO-Resonanz. URL: https://www.physik.hu-berlin.de/de/eephys/teaching/lab/zOresonance/index_html (besucht am 25.11.2018).

ZO Resonanz

Zusammenfassung

Zusammenfassung

Quellen

Quellen III

Versuch ZO-Resonanz, URI: https://www.physik.huberlin.de/de/eephys/teaching/lab/xOresonance/index_ht (besucht am 25.11.2018).

Fragen?

Vielen Dank für eure Aufmerksamkeit!

Z0 Resonanz -Zusammenfassung

Vielen Dank für eure Aufmerksamkeit!

24