Reinforcement Learning

Michèle Sebag ; TP : Diviyan Kalainathan, Laurent Cétinsoy TAO, CNRS - INRIA - Université Paris-Sud

Jan. 24th, 2018

Where we are

MDP Main Building block

General settings

	Model-based	Model-free
Finite	Dynamic Programming	Discrete RL
Infinite	(optimal control)	Continuous RL

Last course: Function approximation

This course: Direct policy search; Evolutionary robotics

Position of the problem

Notations

- ightharpoonup State space $\mathcal S$
- ightharpoonup Action space \mathcal{A}
- ▶ Transition model $p(s, a, s') \mapsto [0, 1]$
- ► Reward *r*(*s*)

bounded

Mainstream RL: based on values

$$V^*: \mathcal{S} \mapsto \mathbb{R}$$
 $\pi^*(s) = \underset{a \in \mathcal{A}}{arg \ opt} \left(\sum_{s'} p(s, a, s') V^*(s') \right)$ $Q^*: \mathcal{S} \times \mathcal{A} \mapsto \mathbb{R}$ $\pi^*(s) = \underset{a \in \mathcal{A}}{arg \ opt} (Q^*(s, a))$

What we want

$$\pi: \mathcal{S} \mapsto \mathcal{A}$$

Aren't we learning something more complex than needed ?... ⇒ Let us consider Direct policy search

From RL to Direct Policy Search

Direct policy search: define

- ► Search space (representation of solutions)
- ▶ Optimization criterion
- ▶ Optimization algorithm

Examples

×

Kohl and Stone, 2004

Ng et al, 2004

Tedrake et al, 2005

Kober and Peters, 2009

Mnih et al, 2015

(A3C)

Iteration 0

Schulman et al, 2016 (TRPO + GAE)

Levine*, Finn*, et al, 2016 (GPS)

Silver*, Huang*, et al, 2016 (AlphaGo**)

Representation

1.Explicit representation ≡ Policy space

 π is represented as a function from ${\mathcal S}$ onto ${\mathcal A}$

- ▶ Non-parametric representation, e.g. decision tree or random forest
- Parametric representation. Given a function space, π is defined by a vector of parameters θ .

$$\pi_{\theta} = \left\{ egin{array}{l} {\sf Linear function on } \mathcal{S} \\ {\sf Radius-based function on } \mathcal{S} \\ {\sf (deep) Neural net} \end{array}
ight.$$

E.g. in the linear function case, given $s \in \mathcal{S} = \mathbb{R}^d$ and θ in \mathbb{R}^d ,

$$\pi_{\theta}(s) = \langle s, \theta \rangle$$

Representation

2. Implicit representation: for example Trajectory generators

 $\pi(s)$ is obtained by solving an auxiliary problem. For instance,

Define desired trajectories

Dynamic movement primitives

- ▶ Trajectory $\tau = f(\theta)$
- ightharpoonup Action = getting back to the trajectory given the current state s

Direct policy search in RL

Two approaches

- ► Model-free approaches
- ► Model-based approaches

History

- Model-free approaches were the first ones; they work well but i) require many examples; ii) these examples must be used in a smart way.
- Model-based approaches are more recent. They proceed by i) modelling the MDP from examples (this learning step has to be smart); ii) using the model as if it were a simulator.
 - Important points: the model must give a prediction **and** a confidence interval (will be very important for the exploration).

DPS: The model-free approach

DPS: The model-based approach Gaussian processes

Evolutionary robotics
Reminder
Evolution of morphology

Other

The model-free approach

Algorithm

- 1. Explore: Generate trajectories $\tau_i = (s_{i,t}, a_{i,t})_{t=1}^T$ after π_{θ_k}
- 2. Evaluate:
 - Compute quality of trajectories
 - Compute quality of (state-action) pairs
- 3. Update: compute θ_{k+1}

Two modes

- Episode-based
 - ▶ learn a distribution \mathcal{D}_k over Θ
 - draw θ after \mathcal{D}_k , generate trajectory, measure its quality
 - \triangleright bias \mathcal{D}_k toward the high quality regions in Θ space
- Step-based
 - draw a_t from $\pi(s_t, \theta_k)$
 - measure $q_{\theta}(s, a)$ from the cumulative reward gathered after having visited (s, a)

Episode-based

Step-based

Model-free Episode-based DPS. PROS

Getting rid of Markovian assumption

Model-free Episode-based DPS. PROS

Getting rid of Markovian assumption

▶ Rover on Mars: take a picture of region 1, region 2, ...

PROS, 2

Hopes of scalability

- With respect to continuous state space
- ▶ No divergence even under function approximation

Tackling more ambitious goals

also see Evolutionary RL

- Partial observability does not hurt convergence (though increases computational cost)
- Optimize controller (software) and also morphology of the robot (hardware);
- Possibly consider co-operation of several robots...

Model-free Episode-based DPS. CONS

Lost the global optimum properties

- Not a well-posed optimization problem in general
- ▶ Lost the Bellman equation ⇒ larger variance of solutions

A noisy optimization problem

- ▶ Policy $\pi \rightarrow$ a distribution over the trajectories (depending on starting point, on noise in the environment, sensors, actuators...)
- $ightharpoonup V(heta) =_{def} \mathbb{E}\left[\sum_t \gamma^t r_{t+1} | heta\right]$ or

$$V(\theta) =_{def} \mathbb{E}_{\theta} \left[J(\text{ trajectory }) \right]$$

▶ In practice

$$V(\theta) \approx \frac{1}{K} \sum_{i=1}^{K} J(\text{trajectory }_i)$$

How many trajectories are needed ?

Requires tons of examples

CONS, 2

The in-situ vs in-silico dilemma

- ▶ In-situ: launch the robot in the real-life and observe what happens
- ▶ In-silico: use a simulator
 - ▶ But is the simulator realistic ???

The exploration vs exploitation dilemma

- ▶ For generating the new trajectories
- ▶ For updating the current solution θ

$$\theta_{t+1} = \theta_t - \alpha_t \nabla V(\theta)$$

Very sensitive to the learning rate α_t .

The model-free approach, how

An optimization objective

An optimization mechanism

- ▶ Gradient-based optimization
- ▶ Define basis functions ϕ_i , learn α_i
- ▶ Use black-box optimization

Cumulative value, gradient

The cumulative discounted value

$$V(s_0) = r(s) + \sum_{t=1}^{\infty} \gamma^t r(s_t)$$

with s_{t+1} next state after s_t for policy π_{θ}

The gradient

$$\frac{\partial \textit{V}(\textit{s}_{0},\theta)}{\partial \theta} \approx \frac{\textit{V}(\textit{s}_{0},\theta+\epsilon) - \textit{V}(\textit{s}_{0},\theta-\epsilon)}{2\epsilon}$$

- ▶ Model $p(s_{t+1}|s_t, a_t, \theta)$ not required but useful
- ► Laarge variance! many samples needed.

A trick

- Using a simulator: Fix the random seed and reset
- ▶ No variance of $V(s_0, \theta)$, much smaller variance of its gradient

Average value, gradient

No discount: long term average reward

$$V(s) = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_t r(s_t) | s_0 = s \right]$$

Assumption: ergodic Markov chain

(After a while, the initial state does not matter).

- ▶ *V*(*s*) does not depend on *s*
- ▶ One can estimate the percentage of time spent in state s

$$q(\theta, s) = Pr_{\theta}(S = s)$$

Yields another value to optimize

$$V(\theta) = \mathbb{E}_{\theta}[r(S)] = \sum_{s} r(s)q(\theta, s)$$

Model-free Direct Policy Search

Algorithm

- 1. $V(\theta) = \mathbb{E}_{\theta}[r(S)] = \sum_{s} r(s)q(\theta, s)$
- 2. Compute or estimate the gradient $\nabla V(\theta)$
- 3. $\theta_{t+1} = \theta_t + \alpha_t \nabla V(\theta)$

Computing the derivative

$$\nabla V = \nabla \left(\sum_{s} r(s) q(\theta, s) \right) = \sum_{s} r(s) \nabla q(\theta, s)$$
$$= \mathbb{E}_{S, \theta} \left[r(S) \frac{\nabla q(\theta, S)}{q(\theta, S)} \right]$$
$$= \mathbb{E}_{S, \theta} \left[r(S) \nabla \log q(\theta, S) \right]$$

Unbiased estimate of the gradient (integral = empirical sum)

$$\hat{\nabla}V = \frac{1}{N}\sum_{i} r(s_i) \frac{\nabla q(\theta, s_i)}{q(\theta, s_i)}$$

The Success Matching Principle

$$\pi_{new}(a|s) \propto \text{ Success } (s, a, \theta).\pi_{old}(a|s)$$

Different computations of "Success"

- $\theta \sim \mathcal{D}_k$ generates trajectory, evaluation $V(\theta)$
- ▶ Transform evaluation into (non-negative) probability w_k
- Find mixture policy π_{k+1}

$$p(a|s) \propto \sum w_k p(a|s,\theta_k)$$

- ▶ Find θ_{k+1} accounting for π_{k+1}
- ▶ Update \mathcal{D}_k , iterate

Computing the weights

$$w_k = exp(\beta(V(\theta) - minV(\theta)))$$

 β : temperature of optimization

simulated annealing

Example

$$= \exp\left(10\frac{V(\theta) - \mathit{minV}(\theta)}{\mathit{maxV}(\theta) - \mathit{minV}(\theta)}\right)$$

Model-free Direct Policy Search, summary

Algorithm

- Define the criterion to be optimized (cumulative value, average value)
- ▶ Define the search space (Θ : parametric representation of π)
- ▶ Optimize it: $\theta_k \rightarrow \theta_k + 1$
 - Using gradient approaches
 - ▶ Updating a distribution \mathcal{D}_k on Θ
 - ▶ In the step-based mode or success matching case: find next best $q_{k+1}^*(s,a)$; find θ_{k+1} such that $Q^{\pi} = q_{k+1}^*$

Pros

It works

Cons

- Requires tons of examples
- Optimization process difficult to tune:
 - Learning rate difficult to adjust
 - Regularization (e.g. using KL divergence) badly needed and difficult to adjust

DPS: The model-free approach

DPS: The model-based approach Gaussian processes

Evolutionary robotics
Reminder
Evolution of morphology

Other

Direct Policy Search. The model-based approach

Algorithm

- 1. Use data $\tau_i = (s_{i,t}, a_{i,t})_{t=1}^T$ to learn a forward model $\hat{p}(s'|s, a)$
- Use the model as a simulator (you need the estimation, and the confidence of the estimation, for exploration)
- 3. Optimize policy
- 4. (Use policy on robot and improve the model)

DPS: The model-free approach

DPS: The model-based approach Gaussian processes

Evolutionary robotics

Reminder Evolution of morphology

Others

Learning the model

Modeling

Learning the model

Modeling and predicting

Learning the model

Modeling

When optimizing a model: very useful to have a measure of uncertainty on the prediction

Prior belief about the function

Posterior belief about the function

Gaussian Processes

http://www.gaussianprocess.org/

Posterior belief about the function

Gaussian Processes

http://www.gaussianprocess.org/

Posterior belief about the function

Computing the gradient

Given

► Forward model

$$s_{t+1} = f(s_t, a_t)$$

Differentiable policy

$$a = \pi(s_t, \theta)$$

It comes

$$V(\theta) = \sum_t \gamma^t r_{t+1}$$

Exact gradient computation

$$\begin{split} \frac{\partial V(\theta)}{\partial \theta} &= \sum_{t} \gamma^{t} \frac{\partial r_{t+1}}{\partial \theta} \\ &= \sum_{t} \gamma^{t} \frac{\partial r_{t+1}}{\partial s_{t+1}} \cdot \frac{\partial s_{t+1}}{\partial \theta} \\ &= \sum_{t} \gamma^{t} \frac{\partial r_{t+1}}{\partial s_{t+1}} \left(\frac{\partial s_{t+1}}{\partial s_{t}} \cdot \frac{\partial s_{t}}{\partial \theta} + \frac{\partial s_{t+1}}{\partial a_{t}} \cdot \frac{\partial a_{t}}{\partial \theta} \right) \end{split}$$

Model-based Direct Policy Search, summary

Algorithm

- Learn a model (prediction and confidence interval)
- Derive the gradient of the policy return
- ▶ Optimize it standard gradient optimization, e.g. BFGS

Pros

- Sample efficient (= does not require tons of examples)
- Fast (standard gradient-based optimization)
- Best ever results on some applications (pendulum on a car, picking up objects, controlling throttle valves)

Cons

- ▶ Gaussian processes (modelling also the confidence interval) hardly scale up: in $O(n^3)$, with n the number of examples
- ▶ Require specific parametrizations of the policy and the reward function
- ▶ Only works if the model is good (otherwise, disaster)

DPS: The model-free approach

DPS: The model-based approach Gaussian processes

Evolutionary robotics
Reminder
Evolution of morphology

Other

Evolutionary Robotics

- 1. Select the search space Θ
- 2. Define the objective function $\mathcal{F}(\theta)$ in simulation or in-situ Sky is the limit: controller; morphology of the robot; co-operation of several robots...
- 3. Optimize: Evolutionary Computation (EC) and variants
- 4. Test the found solution reality gap

Covariance-Matrix-Adaptation-ES

Hansen-Ostermeier, 2001; Auger-Hansen, 2010-2017

$$\theta \sim \mathcal{D}_k = \mathcal{N}(\mu_k, \Sigma_k)$$

- ightharpoonup easy to adapt μ_k
- ightharpoonup Computationally heavy to adapt Σ_k
- ▶ does not scale up to high dimensions

(>200)

$$\mathbf{y}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{C}), \ \mathbf{C} = \mathbf{I}$$

 $\mathbf{x}_i = \mathbf{m} + \sigma \ \mathbf{y}_i, \ \sigma = 1$

$$egin{aligned} \mathbf{C}_{\mu} &= rac{1}{\mu} \sum oldsymbol{y}_{i:\lambda} oldsymbol{y}_{i:\lambda}^{\mathrm{T}} \ \mathbf{C} \leftarrow (1-1) imes \mathbf{C} + 1 imes \mathbf{C}_{\mu} \end{aligned}$$

 $m{m}_{\mathsf{new}} \leftarrow m{m} + rac{1}{\mu} \sum m{y}_{i:\lambda}$

- ▶ Invariances under monotonous transform of optimization criterion and affine transf. of Θ .
- ▶ A particular case of Information Geometry Optimization

Effects of step size

Search Space, 1

Neural Nets

- Universal approximators; continuity; generalization hoped for.
- ► Fast computation
- Can include priors in the structure
- ► Feedforward architecture: reactive policy
- Recurrent architecture: internal state

encoding memory (fast vanishing)

Critical issues

Non-parametric optimization much more difficult

Other options

- Finite state automaton (find states; write rules; optimize thresholds...)
 The Braitenberg controller.
- Genetic programming (optimization of programs)

Example: Swarm robots moving in column formation

Robot

Robotic swarm, 2

	Constants		
		l1	blind zone
		12	sensor range
Representation		ϕ	Vision angular range
	Variables(t)		
		r(t), s(t)	positions
		$\theta(t)$	angular direction

Example of a (almost manual) controller

CONTROLLER OF A ROBOT

Info. from the image sensors	Info. from the IR sensors			
into, from the image sensors	$0 \le x_{IR} < \beta_0$	$\beta_0 \leq x_{\rm IR} < \beta$	$\beta \leq x_{\text{IR}}$	
$0 \le x_{\text{image}} \le \alpha$	move backward or turn right	turn left		
$\alpha < x_{\rm image} < (19 - \alpha)$	move backward or turn right	stop	move forward	
$\alpha \leq x_{\text{image}} \leq 19$	move backward or turn right	turn right		
preceding robot NOT FOUND	move backward or turn right	move forward		

Toward defining \mathcal{F}

- The i-th robot follows the k-th robot at time t iff the center of gravity of k belongs to the perception range of i (s_k(t) ∈ A_i(t)).
- The i-th robot is a leader if i) it does not follow any other robot; ii) there exists at least one robot following it.
- A column is a subset {i₁,...i_K} such that robot i_{k+1} follows robot i_k and robot i₁ is a leader.
- A deadlock is a subset {i₁,...i_K} such that robot i_{k+1} follows robot i_k and robot i₁ follows robot i_K.

Optimization criterion

Brooks 89-01

The promise: no need to decompose the goal

Behavioral robotics hand crafted decomposition Manipulations Construction d'une carte Moteurs Capteurs Exploration Evitement d'obstacles Deplacement emergence of a structure Evolutionary robotics Moteurs Capteurs ? 9 ?

In practice: fitness shaping

- ▶ All initial (random) individuals are just incompetent
- ► Fitness landscape: Needle in the Haystack ? (doesn't work)
- ▶ Start with something simple
- ▶ Switch to more complex *during evolution*
- ► Example: visual recognition

Optimization criterion, 2

▶ Fonctional vs behavioral

state of controller vs distance walked

Implicit vs explicit

Survival vs Distance to socket

▶ Internal vs external information

Sensors, ground truth

► Co-evolution: e.g. predator/prey

performance depends on the other robots

State of art

- Standard: function, explicit, external variables
- In-situ: behavioral, implicit, internal variables
- Interactive: behavioral, explicit, external variables

Optimization criterion, 3

Fitness shaping

- ▶ Obstacle avoidance
- ▶ Obstacle avoidance, and move !
- ▶ Obstacle avoidance, and (non circular) move !!

Finally

Floreano Nolfi 2000

$$\mathcal{F}(heta) = \int_{T_{ ext{exp.}}} A(1 - \sqrt{\Delta B})(1 - i)$$

▶ A sum of wheel speed $r_i \in [-0.5, 0.5]$

 \rightarrow move

 \rightarrow ahead

▶ i maximum (normalised) of sensor values

 \rightarrow obstacle avoidance

Behavioral, internal variables, explicit

Result analysis

- ▶ First generations
 - Most rotate
 - ▶ Best ones slowly go forward
 - ► No obstacle avoidance
 - ▶ Perf. depends on starting point
- ▶ After \approx 20 gen.
 - Obstacle avoidance
 - No rotation
- ► Thereafter, gradually speed up

Result analysis, 2

► Max. speed 48mm/s (true max = 80)

Inertia, bad sensors

Never stuck in a corner

contrary to Braitenberg

Going further

- Changing environment
- Changing robotic platform

Limitations

From simulation to real-world

Reality gap!

- ▶ Opportunism of evolution
- ▶ Roboticists not impressed...

Carl Sims

Goal

- ► Evolve both morphology and controller
- using a grammar (oriented graph)
- ► Heavy computational cost simulation, several days on Connection Machine – 65000 proc.
- ► Evolving locomotion (walk, swim, jump)
- ▶ and competitive co-evolution (catch an object)

The creatures

Video: https://www.youtube.com/watch?v=JBgG_VSP7f8

Reset-Free Trial and Error

Jean-Baptiste Mouret, 17

 $https://www.youtube.com/watch?v{=}IqtyHFrb3BU\\$

Intrinsic rewards, swarm robotics

Internal rewards

Delarboulas et al., PPSN 2010

Requirements

- 2. On-board training
 - Frugal (computation, memory)
 - ▶ No ground truth
- 3. Providing "interesting results"

"Human - robot communication"

Goal: self-driven Robots: Defining instincts

Starting from (almost) nothing

Robot ≡ a data stream

$$t \rightarrow x[t] = (sensor[t], motor[t])$$

Trajectory =
$$\{x[t], t = 1 \dots T\}$$

Robot trajectory

Starting from (almost) nothing

Robot ≡ a data stream

$$t \rightarrow x[t] = (sensor[t], motor[t])$$

Trajectory =
$$\{x[t], t = 1 \dots T\}$$

Robot trajectory

Computing the quantity of information of the stream

Given $x_1, \ldots x_n$, visited with frequency $p_1 \ldots p_n$,

$$Entropy(trajectory) = -\sum_{i=1}^{n} p_i \log p_i$$

Conjecture

Controller quality \(\preceq \text{Quantity of information of the stream} \)

Building sensori-motor states

Avoiding trivial solutions...

If sensors and motors are continuous / high dimensional

- then all vectors x[t] are different
- ▶ then $\forall i, p_i = 1/T$; Entropy = log T

... requires generalization

From the sensori-motor stream to clusters

Clusters in sensori-motor space (\mathbb{R}^2)

sequence of points in \mathbb{R}^d sensori-motor states

Trajectory \rightarrow $x_1x_2x_3x_1...$

Clustering

k-Means

- 1. Draw k points $x[t_i]$
- 2. Define a partition C in k subsets C_i

Voronoï cells

$$C_i = \{x/d(x,x[t_i]) < d(x,x[t_j]), j \neq i\}$$

ϵ -Means

- 1. Init : $C = \{\}$
- 2. For t = 1 to T

▶ If $d(x[t], C) > \epsilon$, $C \leftarrow C \cup \{x[t]\}$

Initial site list

loop on trajectory

Curiosity Instinct

Search space

▶ Neural Net, 1 hidden layer.

Definition

- ▶ Controller F + environment \rightarrow Trajectory
- Apply Clustering on Trajectory
- ▶ For each C_i , compute its frequency p_i

$$\mathcal{F}(F) = -\sum_{i=1}^n p_i * \log(p_i)$$

Curiosity instinct: Maximizing Controller IQ

Properties

- ▶ Penalizes inaction: a single state \rightarrow entropy = 0
- ▶ Robust w.r.t. sensor noise (outliers count for very little)
- ▶ Computable online, on-board (use ϵ -clustering)
- Evolvable onboard

Limitations: does not work if

Environment too poor

(in desert, a single state \rightarrow entropy = 0)

▶ Environment too rich

(if all states are distinct, Fitness(controller) = log T)

both under and over-stimulation are counter-effective.

From curiosity to discovery

Intuition

- ▶ An individual learns sensori-motor states $(x[t_i]$ center of $C_i)$
- ▶ The SMSs can be transmitted to offspring
- giving the offspring an access to "history"
- ▶ The offspring can try to "make something different"

```
fitness(offspring) = Entropy(Trajectory(ancestors \cup offspring))
```

NB: does not require to keep the trajectory of all ancestors. One only needs to store $\{C_i, n_i\}$

From curiosity to discovery

Cultural evolution

transmits genome + "culture"

- 1. parent = (controller genome, $(C_1, n_1), \ldots (C_K, n_K)$)
- 2. Perturb parent controller \rightarrow offspring controller
- 3. Run the offspring controller and record $x[1], \dots x[T]$
- 4. Run ϵ -clustering variant.

$$Fitness(offspring) = -\sum_{i=1}^{\ell} p_i \log p_i$$

ϵ -clustering variant

Algorithm

- 1. Init : $C = \{(C_1, n_1), \dots (C_K, n_K)\}$
- 3. Define $p_i = n_i / \sum_i n_j$

$$Fitness(offspring) = -\sum_{i=1}^{\ell} p_i \log p_i$$

Initial site list loop on trajectory

Limitation

In stochastic environments

▶ High entropy in highly stochastic regions

Intrinsic motivations, neuro-curiosity

Oudeyer et al. 2005-2017

- lacktriangle More exploration ightarrow more data
- Are these data useful?
- Yes if Reduction of error of learned forward model.

https://www.youtube.com/watch?v=bkv83GKYpkI

Validation

Experimental setting

Robot = Cortex M3, 8 infra-red sensors, 2 motors. Controller space = ML Perceptron, 10 hidden neurons.

Medium and Hard Arenas

Validation, 2

Plot points in hard arena visited 10 times or more by the 100 best individuals.

PPSN 2010

Partial conclusions

Entropy-minimization

- computable on-board;
- ▶ yields "interesting" behavior
- needs stimulating environment

no need of prior knowledge/ground truth

DPS: The model-free approach

DPS: The model-based approach Gaussian processes

Evolutionary robotics
Reminder
Evolution of morphology

Others

Not covered

- Inverse Reinforcement Learning https://www.youtube.com/watch?v=VCdxqn0fcnE
- Programming by Feedback
- ▶ Deep Reinforcement Learning