

การแข่งขันเคมีโอถิมปิกระดับชาติ ครั้งที่ 8 ณ คณะวิทยาศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี วันเสาร์ที่ 5 พฤษภาคม พ.ศ. 2555 เวลา 08.30 – 13.30 น.

เฉลยข้อสอบภาคทฤษฎี

คำตอบข้อที่ 1 (14.5 คะแนน)

ตอบเลขจำนวนเต็มและระบุหน่วย

วิธีคิดความเข้มข้นสาร 4-NP ในน้ำตัวอย่าง (2.5 คะแนน)

ความเข้มข้นของสารมาตรฐาน 4-NP เริ่มต้น =
$$\frac{0.2500 \mathrm{g}}{100 \mathrm{mL}} \times \frac{1000 \mathrm{mg}}{1 \mathrm{g}} \times \frac{1000 \mathrm{mL}}{1 \mathrm{L}} = 2500 \mathrm{mg/L}$$
 (0.5 คะแนน) ความเข้มข้นของสารมาตรฐาน 4-NP ในขวดที่ $1 = \frac{2500 \mathrm{mg}}{1 \mathrm{L}} \times \frac{1 \mathrm{mL}}{25 \mathrm{mL}} = 100 \mathrm{mg/L}$

ตารางค่า Absorbance ของสารมาตรฐาน 4-NP

(0.5 คะแนน)

ขวดที่	ความเข้มข้นของสารมาตรฐาน 4-NP (mg/L)	Absorbance
1	100	0.21
2	200	0.43
3	300	0.64
4	400	0.87
5	500	1.07

กราฟมาตรฐานของสาร 4-NP

(0.5 คะแนน)

จากกราฟ ค่า Absorbance ของส่วนสกัดคลอโรฟอร์ม = 0.83 ปริมาณสาร 4-NP= 379 mg/L (0.5 คะแนน) ส่วนสกัดนี้ปริมาตร 10.00 mL ประสิทธิภาพในการสกัด 95 % จากน้ำตัวอย่าง 5.00 mL

ความเข้มข้นสาร 4-NP ในน้ำตัวอย่าง =
$$\frac{379\,\mathrm{mg}}{1\,\mathrm{L}} \times \frac{10\,\mathrm{mL}}{5\,\mathrm{mL}} \times \frac{100}{95} = 798\,\mathrm{mg/L} \tag{0.5 คะแนน}$$

วิธีกิด molar absorptivity (E) ของสาร 4-NP (1 คะแนน)

จาก
$$A = \epsilon bc$$
 $\epsilon b =$ ความชั้นจากกราฟมาตรฐาน (0.5 คะแนน) $\epsilon =$ ความชั้นจากกราฟมาตรฐาน (โจทย์กำหนด $b = 1$ cm) $\epsilon = 0.0022 \text{ L mg}^{-1} \text{ cm}^{-1}$ เปลี่ยนหน่วย ϵ ให้เป็น $\epsilon b = 1$ L mol $\epsilon b = 1$ cm (0.5 คะแนน) $\epsilon b = 1$ เปลี่ยนหน่วย $\epsilon b = 1$ เ

1.2 (3.5 คะแนน)

สูตรเคมีของใอออน AsO _x y-	ภาพโครงสร้างที่แสดงรูปร่าง	ชื่อเรียกรูปร่าง	เลขออกซิเคชัน
(ระบุ x, y เป็นตัวเลข)	ใอออน		ของ As
AsO ₃ 3- หรือ AsO ₂ -	-o-Àso-	พีระมิคฐานสามเหลี่ยม (Trigonal pyramidal)	
	หรือ	หรือ	+3
(0.5 คะแนน) ตอบแบบใคกีได้	As O	มุมงอ (Bent)	(0.25 คะแนน)
אז ווואז ח חיזיח פוא	(0.5 กะแนน) O	(0.5 คะแนน)	
AsO ₄ ³⁻		ทรงสี่หน้า	+5
(0.7	-o Aso-	(Tetrahedral)	(0.05
(0.5 คะแนน)	(0.5 คะแนน)	(0.5 คะแนน)	(0.25 คะแนน)

1.3 สมการแสดงปฏิกิริยาระหว่างผงสังกะสีกับ $\mathrm{AsO}_x^{\ y^-}$ ในสารละลายกรด (ตอบโดยระบุตัวเลขแทน x และ y ในสูตรเคมี) (2 คะแนน)

$$AsO_3^{3-}$$
 (aq) + 3Zn (s) + 9H⁺ (aq) \rightarrow AsH_3 (g) + 3Zn²⁺ (aq) + 3H₂O (l) หรือ
 AsO_2^{-} (aq) + 3Zn (s) + 7H⁺ (aq) \rightarrow AsH_3 (g) + 3Zn²⁺ (aq) + 2H₂O (l)
 AsO_4^{3-} (aq) + 4Zn (s) + 11H⁺ (aq) \rightarrow AsH_3 (g) + 4Zn²⁺ (aq) + 4H₂O (l)
(การตรวจ ให้คะแนนสมการละ 1 คะแนน ตรวจให้คะแนนเฉพาะสมการของ AsO_3^{3-} หรือ AsO_2^{-} และ AsO_4^{3-} เท่านั้น คุลสมการผิดหักสมการละ (0.5 คะแนน)

1.4 pH ต่ำที่สุดจากการคำนวณที่ทำให้
$$As_2S_3$$
 ตกตะกอน = 7.56 (0.5 คะแนน) (ตอบทศนิยม 2 ตำแหน่ง)

วิธีคิด (2.5 คะแนน)

pH = 7.56

1.5

วิธีคิด (1 คะแนน)

จากข้อ 1.1 ความเข้มข้นเริ่มต้นของสาร 4-NP ในน้ำ
$$\approx 800 \text{ mg/L}$$
 $800 \text{ mg/L} \xrightarrow{30 \cdot \text{min}} 400 \text{ mg/L} \xrightarrow{30 \cdot \text{min}} 200 \text{ mg/L} \xrightarrow{30 \cdot \text{min}} 100 \text{ mg/L} \xrightarrow{30 \cdot \text{min}} 50 \text{ mg/L}$ $\xrightarrow{30 \cdot \text{min}} 25 \text{ mg/L} \xrightarrow{30 \cdot \text{min}} 12.5 \text{ mg/L}$ ต้องใช้เวลาทั้งหมด 6 ครึ่งชีวิต ($6 \times 30 \text{ min} = 180 \text{ min}$)

คำตอบข้อที่ 2 (11 คะแนน)

2.1 ทำเครื่องหมาย "x" ที่จุดสมมูลของการไทเทรตไว้ที่เส้นกราฟ

2.2 อินดิเคเตอร์ที่เหมาะสมที่สุดคือ Thymol blue (0.5 คะแนน)

2.3 สารละลายกรดชนิดนี้คือ Succinic acid หรือ $C_4H_6O_4$ (2 คะแนน)

เหตุผล จากข้อมูลที่โจทย์กำหนดและกราฟพบว่าจุดสมมูลของการไทเทรตมีสองช่วง (2 คะแนน) คือเมื่อใช้ NaOH ปริมาตร 20.00 และ 40.00 mL ตามลำดับ $pK_{a1} = \text{ ค่า pH ของสารละลาย เมื่อใช้ NaOH ปริมาตร 10.00 mL (pH ~ 4)} \\ pK_{a2} = \text{ค่า pH ของสารละลาย เมื่อใช้ NaOH ปริมาตร 30.00 mL (pH ~ 5)}$

โครงสร้างของกรคชนิดนี้คือ

วิธีคำนวณ (2.5 คะแนน)

เนื่องจาก
$$C_4H_6O_4$$
 เป็น diprotic acid แทนด้วย H_2A
 $H_2A + OH \rightarrow HA^- + H_2O$
 $mol\ H_2A$ ที่เหลือในสารละลาย = $(0.100\ mol/L) \frac{20.00\ L}{1000}$ - $(0.100\ mol/L) \frac{5.00\ L}{1000}$
 $= 1.50 \times 10^{-3}\ mol$ (0.5 กะแนน)

ความเข็มขันของ H_2A ที่เหลือในสารละลาย = $\frac{1.50 \times 10^{-3}\ mol}{(20.00 + 5.00)/1000\ L}$ (0.5 กะแนน)

 $= 0.0600\ mol/L$
 $= 0.0600\ mol/L$
 $= 0.0600\ mol/L) \times \frac{5.00\ L}{1000}$ (0.5 กะแนน)

 $= 0.50 \times 10^{-3}\ mol$
 $= 0.0200\ mol/L$
 $= 0.0200\ mol/L$

วิธีคำนวณ (1.5 คะแนน)

คำตอบข้อที่ 3 (16 คะแนน)

${f 3.1}$ ระหว่างการสังเคราะห์สาร ${f A}$ ต้องทำในระบบที่มีออกซิเจนมากเกินพอ เพราะ

เพื่อให้
$$rx^n$$
 ออกซิเดชันดำเนินไปข้างหน้า โดย Co^{3+} ไม่เกิดเป็น Co^{2+} กลับมา $4Co^{2+} + O_2 + 4H^+ \rightarrow 4Co^{3+} + H_2O$ (1 กะแนน) ไม่จำเป็นต้องใส่สมการ // ถ้าตอบแค่ทำให้เกิด oxidation ให้ 0.5 กะแนน

3.2 สมการไอออนิกแสดงปฏิกิริยาการไทเทรตระหว่างสารประกอบโคออร์ดิเนชัน ${f A}$ กับ ${f AgNO_3}$ คือ

$$Ag^+ + Cl^- o AgCl(s)$$
 (0.5 คะแนน)
ค่า pAg ที่จุดสมมูล = 4.87 (0.5 คะแนน)
ตอบทศนิยม 2 ตำแหน่ง

วิธีคิด (1.5 คะแนน)

 $\frac{\overline{2}\overline{b}\overline{\eta}}{1}$ เขียนกราฟความสัมพันธ์ระหว่าง ค่า pAg ในแนวแกน y กับปริมาตรของสารละลาย AgNO $_3$ ใน แนวแกน x แล้วหาจุดที่มีความชั้นสูงสุดจากกราฟ (จะหาจากกราฟ first derivative ก็ได้)

ระบุแกน x (0.25 คะแนน) แกน y (0.25 คะแนน) ถักษณะกราฟและแสดงวิธีหาจุดสมมูลในกราฟ (1 คะแนน)

 $rac{2}{2}$ อาศัยการคำนวณจากหลักการที่ว่า ที่จุดสมมูล Ag^+ ทำปฏิกิริยากับ CI^- พอดี สารละลายที่ได้เสมือน การละลายตะกอน AgCI ซึ่งตะกอน AgCI จะแตกตัวให้ Ag^+ และ CI^- ด้วยจำนวนโมลเท่ากัน จะได้ $[Ag^+] = [CI^-]$ (0.5 คะแนน)

ค่าความเข้มข้นของ \mathbf{Ag}^+ คำนวณจาก \mathbf{Ksp} ดังนี้

$$[Ag^{+}][Cl^{-}] = Ksp$$
 $[Ag^{+}] = [Cl^{-}] = (Ksp)^{1/2}$ (0.5 คะแนน)

3.3 ชื่อภาษาอังกฤษและสูตรของสาร A ที่เขียนส่วนของสารเชิงซ้อนอย่างชัดเจน

สูตร **A** [Co(en)₂Cl₂]Cl (0.5 คะแนน)

ชื่อ A

dichlorobis(ethylenediamine)cobalt(III) chloride

(1 คะแนน)

สมการเคมีที่คุลแสดงการสังเคราะห์สารประกอบโคออร์ดิเนชัน ${f A}$

$$4 \text{ CoCl}_2 \cdot 6\text{H}_2\text{O} + \text{O}_2 + 4 \text{ HCl} + 8 \text{ en} \rightarrow 4 \text{ [Co(en)}_2\text{Cl}_2\text{]Cl} + 26 \text{ H}_2\text{O}$$
 (1 คะแนน)

วิธีคิดการหาสูตร A (2 คะแนน)

สารประกอบโคออร์ดิเนชัน ${f A}$ ละลายน้ำ แล้วได้ ${f Cl}^-$ ซึ่งสามารถทำปฏิกิริยากับ ${f AgNO_3}$ ได้ โดยปริมาตร ${f AgNO_3}$ ที่จุดสมมูล = 8.25 mL (คูจากกราฟไทเทรต)

และจากปฏิกิริยาการไทเทรต $Ag^+ + Cl^- o AgCl(s)$ จะได้

$$\operatorname{mol} \operatorname{Cl}^- = \operatorname{mol} \operatorname{Ag}^+ = \frac{0.0500 \operatorname{mol} \operatorname{Ag}^+}{1000 \operatorname{mL} \operatorname{AgNO}_3} \times 8.25 \operatorname{mL} \operatorname{AgNO}_3$$
 (0.25 คะแนน)
$$= 4.125 \times 10^{-4} \operatorname{mol}$$
 (0.25 คะแนน)

คิดเป็นน้ำหนักคลอไรด์ =
$$\frac{35.5\,\mathrm{g\,Cl}^-}{1\,\mathrm{mol\,Cl}^-} \times 4.125 \times 10^{-4}\,\mathrm{mol\,Cl}^-$$
 (0.25 คะแนน) = $0.01464\,\mathrm{g}$ (0.25 คะแนน)

%
$$Cl^{-}$$
 โดยน้ำหนัก = $\frac{0.01464 g \, Cl^{-}}{0.1177 g \, A} \times 100 = 12.44\%$ (0.5 คะแนน)

สูตรของสารประกอบโคออร์ดิเนชัน $\mathbf A$ ที่เป็นไปได้ มีดังนี้ [Co(en)₂Cl₂]Cl และ [Co(en)₃]Cl₃

%Cl โดยน้ำหนักของ [Co(en)₃]Cl₃ = $(3\times35.5/345.4)\times100 = 30.83\%$ (0.25 คะแนน) และจาก % Cl โดยน้ำหนัก ทำให้ทราบว่า สูตรของสารประกอบโคออร์ดิเนชัน \mathbf{A} คือ [Co(en)₂Cl₂]Cl

หรือ อาจตอบโดยการใช้ข้อมูล stereoisomer ก็ได้ เนื่องจากสารเชิงซ้อน $[M(en)_x Cl_y]$ ที่มีทั้ง diastereoisomer และ คู่ enantiomer คือ $[M(en)_2 Cl_2]$ เท่านั้น (2 คะแนน)

3.4

จำนวน stereoisomer ทั้งหมดของสาร **A** = (0.5 คะแนน) 3

รูปแสดงไอโซเมอร์ ชื่อไอโซเมอร์และสี

(3 คะแนน)

3 คะแนน - ไอโซเมอร์ละ 1 คะแนน: รูปโครงสร้าง 0.5, เรียกชื่อสัมพันธ์กับรูป 0.25, สี 0.25

รูปแสดงคู่ enantiomer

3.5

คำตอบข้อที่ 4 (6 คะแนน)

4.1

ร้อยละโดยโมลของตะกั่ว = 25 (0.5 คะแนน)

<u>วิธีคิด</u> ให้วาดรูปหน่วยเซลล์ประกอบการคำนวณ (1.5 คะแนน)

(0.75 คะแนน)

จากรูป อะตอมที่มุมคือ ตะกั่ว

มีจำนวนคิดเป็นของหน่วยเซลล์ = $8 \times \frac{1}{8} = 1$ อะตอม อะตอมที่กึ่งกลางหน้าคือ ทองคำ (0.25 คะแนน)

มีจำนวนคิดเป็นของหน่วยเซลล์ = $6 \times \frac{1}{2} = 3$ อะตอม (0.25 คะแนน)

ในหน่วยเซลล์มีอะตอมของตะกั่วคิดเป็นร้อยละ $\frac{1}{1+3} \times 100$

(0.25 คะแนน)

= 25

ดังนั้น ในผลึกของโลหะผสมมีตะกั่วคิดเป็นร้อยละ 25 โดยโมล

ความหนาแน่น =
$$14.45$$
 g/cm^3 (0.5 คะแนน)

ตอบทศนิยม 2 ตำแหน่ง

วิธีคิด (2.5 คะแนน)

a = ความยาวตามขอบเซลล์
(0.5 คะแนน)

พิจารณาที่หน้าของรูปลูกบาศก์

- Pb อยู่ที่มุม Au อยู่ที่กึ่งกลางหน้า อะตอม Pb และ Au ตามแนวทะแยงมุมของหน้าจะสัมผัสกัน $2r_{Pb} + 2r_{Au} = \sqrt{2} \ a \ (a = ความยาวตามขอบเซลล์) (0.5 กะแนน)$

- หาค่า r_{Pb} และ r_{Au} ได้จากรูปทำนองเดียวกันนี้ (โดยทุก อะตอมตามแนวทะแยงมุมเป็นธาตุเดียวกัน)

Pb:
$$4 r_{Pb} = \sqrt{2} a_{Pb} = \sqrt{2} \times 495$$

$$r_{Pb} = \frac{\sqrt{2}}{4} \times 495 = 175 \text{ pm} \dots \qquad (0.5$$

Au: $4 r_{Au} = \sqrt{2} a_{Au} = \sqrt{2} \times 408$ $r_{Au} = \frac{\sqrt{2}}{4} \times 408 = 144 \text{ pm} \dots \qquad (0.5 กะแนน)$

- แทนค่า
$$2 \times 175 + 2 \times 144 = \sqrt{2}$$
 a
$$a = \frac{2 \times 175 + 2 \times 144}{\sqrt{2}} = 451 \text{ pm} \qquad (0.25 คะแนน)$$

จากจำนวนอะตอมในหน่วยเซลล์ข้างต้น Pb=1 และ Au=3

ความหนาแน่น D =
$$\frac{M}{V}$$
 = $\frac{207.2 + 3 \times 197.0}{6.02 \times 10^{23} \times (451 \times 10^{-10})^3}$ (0.25 คะแนน) = 14.45 g/cm³

4.3

(จากรูปในข้อ 4.1 (และจินตนาการเพิ่มเติม คือ คู 2 หน่วยเซลล์ต่อกัน) จะเห็นว่า Au 1 อะตอม มี Pb ล้อมรอบ 4 อะตอม)

คำตอบข้อที่ 5 (2.5 คะแนน)

5.1

หินก้อนนี้มีอายุ

 3.87×10^8

ปี

(0.5 คะแนน)

ตอบในรูป $x.xx \times 10^n$

วิธีคิด (1 คะแนน)

 40 K \rightarrow 40 Ar

เริ่มต้น \mathbf{w}_0 0

 \mathbf{w}_1 ปัจจุบัน

> $w_0 = w_1 + w_2$ โดยถือใค้ว่า $w_1 + w_2 = 100$ (0.25 คะแนน)

 $2.303 \log \left(\frac{w_0}{w_1}\right) = \frac{0.693}{t_{1/2}} t$ จากสมการ (0.25 คะแนน)

 $2.303 \log \left(\frac{100}{80}\right) = \frac{0.693}{1.2 \times 10^9} t$ แทนค่า (0.25 คะแนน)

> t = $2.303 \times \frac{1.2 \times 10^9}{0.693} \log(\frac{100}{80})$ (0.25 คะแนน) $= 0.387 \times 10^9 \text{ 1}$

นั่นคือ หินก้อนนี้มีอายุ $3.87 imes 10^8$ ปี

5.2 สมการนิวเคลียร์เป็นดังนี้

$$^{40}_{19}K + ^{0}_{-1}e \rightarrow ^{40}_{18}Ar$$
 (electron capture)

(1 คะแนน)

คำตอบข้อที่ 6 (8.25 คะแนน)

²³⁰₉₀Th 6.1 สัญลักษณ์นิวเคลียร์ของชาตุ C คือ (1 คะแนน)

6.2 โครงสร้างอิเล็กตรอนของชาตุ ${f D}$ แบบสมบูรณ์ โดยเขียนตั้งแต่ $1{
m s}^2\,2{
m s}^2\dots$ คือ

6.3 ปริมาณธาตุ
$${f A}=$$
 0.0 โมล (0.5 คะแนน)

ตอบทศนิยม 1 ตำแหน่ง ปริมาณธาตุ **B** = โมล 0.8 (0.5 คะแนน) ตอบทศนิยม 1 ตำแหน่ง

วิธีคิด (1 คะแนน)

ขั้น ${f A} o {f B}$ เป็นขั้นที่เกิดขึ้นเร็วกว่าขั้น ${
m Th} o {f A}$ มากถึง $36{,}000$ เท่า เพราะฉะนั้นทันทีที่ ${
m Th}$ สลายตัวเป็น ${f A}$ ก็จะเกิด ${f B}$ ขึ้นในทันที ขณะเดียวกันขั้น ${f B} o {f C}$ ก็เป็นขั้นที่เกิดช้ามากๆ ในช่วงเวลา เพียง 60 วันจึงเกิดชาตุ C น้อยมากจนไม่ต้องนำมาคิดก็ได้ การคำนวณหาปริมาณชาตุ **B** จึงคิด เหมือนกับว่า $\operatorname{Th} o \mathbf{B}$ มีครึ่งชีวิตเท่ากับ 25 วันได้เลย ในขณะที่ปริมาณชาตุ \mathbf{A} นั้นเป็นศูนย์เนื่องจาก เปลี่ยนเป็นธาตุ **B** จนหมด (0.5 คะแนน)

ขาก
$$\ln\!\left(\frac{N}{N_0}\right) = -0.693 \; \frac{t}{t_{\frac{1}{2}}} \; = \; -0.693 \times 60 \;$$
 วัน / 25 วัน $\; = \; -1.66$

 $\frac{N}{N_{\odot}} = 0.19$ เนื่องจากเริ่มต้นด้วย $^{234}_{90}$ Th 1 โมล จึงเกิดธาตุ **B** ขึ้น 1.0-0.19 = 0.8 โมล

(0.5 คะแนน)

6.4 ชาตุที่เป็น isotope กับ
$$\frac{234}{90}$$
Th คือ $\frac{236}{90}$ Th โดย $\mathbf{Z} = 90$ แต่ A มีค่าเท่าใหร่ก็ได้ (0.25 ค

(0.25 คะแนน)

ชาตุที่เป็น isotone กับ ²³⁴₉₀Th คือ

 $^{235}_{91}$ Pa หรือชาตุอื่นโดย A-Z = 144

(0.5 คะแนน)

ชาตุที่เป็น isobar กับ ²³⁴Th คือ

 $_{91}^{234}$ Pa หรือชาตุอื่นโดย A=234

(0.5 คะแนน)

6.5

อนุภาคที่
$$^{210}_{84}$$
 Po ปลดปล่อยออกมาคือ $^{4}_{2}$ He หรือ α (0.5 คะแนน) สัญลักษณ์นิวเคลียร์ของผลิตภัณฑ์หลังการสลายตัวคือ $^{206}_{82}$ Pb (0.5 คะแนน) พลังงานจากการสลายตัวของ $^{210}_{84}$ Po หนึ่งโมล = $^{5.23 \times 10^{11}}_{82}$ J (0.5 คะแนน) ตอบในรูป $^{2.05}_{82}$ Ro

วิธีคิด (1.5 คะแนน)

หาก
$$^{210}_{84}$$
Po สลายตัวให้รังสีบีตา สมการที่เกี่ยวข้องคือ $^{210}_{84}$ Po $\rightarrow ^{210}_{85}$ At $+$ $_{-1}$ e คำนวณมวลที่เปลี่ยนแปลงไปดังนี้ มวล $^{210}_{85}$ At $+$ มวล $_{-1}$ e $-$ มวล $^{210}_{84}$ Po $=$ 209.987131 amu $+$ 0 amu $-$ 209.982857 amu $=$ 0.004274 amu $=$ 0.005805 amu $=$ 0.005805 amu $=$ 0.05805 amu $=$ 0.05805 amu $=$ 209.982857 amu $=$ 209.982857 amu $=$ 200.05805 amu $=$ 200.

คำตอบที่ 7 (6 คะแนน)

เมื่อ KF ละลายน้ำจะได้ไอออน \mathbf{K}^+ และ \mathbf{F}^- ซึ่งเมื่อ \mathbf{F}^- อยู่ในน้ำแล้วจะเกิดปฏิกิริยาไฮโครไลซิสกับน้ำ คังสมการ

 $F_{(aq)}^- + H_2O_{(l)}$ \longrightarrow $HF_{(aq)}^- + OH_{(aq)}^-$ เกิด $OH_{(aq)}^-$ ขึ้นจึงทำให้สารละลายมีฤทธิ์เป็นเบส

7.5 โครงสร้างของ borazine คือ

ประจุฟอร์มัลของ B =

คำตอบข้อที่ 8 (7.5 คะแนน)

8.1

8.1.1 สมการ (2) ที่คุลแล้วคือ
$$I_2 + 2S_2O_3^{2-} \rightarrow 2\Gamma + S_4O_6^{2-} \qquad (0.25 \text{ คะแนน})$$
 สมการ (3) ที่คุลแล้วคือ
$$I_3^- + 2S_2O_3^{2-} \rightarrow 3\Gamma + S_4O_6^{2-} \qquad (0.25 \text{ คะแนน})$$
 8.1.2 ค่าคงที่สมคุล $K_2 = \frac{2.7 \times 10^{-2}}{\text{ตอบในรูป}} \times x.x \times 10^n$

วิธีคิด (1 คะแนน)

จากสมการที่ (2)
$$[I_2]/[S_2O_3^{2-}] = 1/2$$

$$[I_2(H_2O)] = 1/2 \times 0.0100 \times 4.00 / 25.00 = 8 \times 10^{-4} \text{ mol/L} \qquad (0.25 \text{ คะแนน})$$

$$[I_2(CHCl_3)] = 1/2 \times 0.1000 \times 15.00 / 25.00 = 3 \times 10^{-2} \text{ mol/L} \qquad (0.25 \text{ คะแนน})$$

$$K_2 = [I_2(H_2O)] / [I_2(CHCl_3)] \qquad (0.25 \text{ คะแนน})$$

$$K_2 = 8 \times 10^{-4} \text{ mol/L} / 3 \times 10^{-2} \text{ mol/L}$$

$$= 2.7 \times 10^{-2}$$

8.2

วิธีกิด (0.25 คะแนน)

$$[I_2] + [I_3]$$
 ในชั้นน้ำ = T = $1/2 \times 0.1000 \times 30.00 / 25.00$ (0.25 กะแนน) = 6.0×10^{-2} mol/L

8.2.2 ความเข้มข้นของ
$$I_2$$
 ในชั้นคลอโรฟอร์ม = 5.0×10^{-2} mol/L $(0.5$ คะแนน) ตอบในรูป $x.x \times 10^n$

วิธีคิด (0.25 คะแนน)

$$[I_2(CHCl_3)] = 1/2 \times 0.1000 \times 25.00 / 25.00$$
 (0.25คะแนน) = 5.0×10^{-2} mol/L

วิธีคิด (0.5 คะแนน)

$$[I_2(H_2O)] = K_2 [I_2(CHCl_3)]$$
 (0.25 คะแนน)
= $2.7 \times 10^{-2} \times 5.0 \times 10^{-2}$ (0.25 คะแนน)
= 1.4×10^{-3} mol/L

8.2.4 ความเข้มข้นของ
$$I_3^-$$
 ในชั้นน้ำ = 5.9×10^{-2} mol/L (0.5 คะแนน) ตอบในรูป $x.x \times 10^n$

วิธีคิด (0.5 คะแนน)

$$[I_3^-] = T - [I_2(H_2O)]$$
 (0.25 คะแนน)
= $6.0 \times 10^{-2} - 1.4 \times 10^{-3}$ (0.25 คะแนน)
= 5.9×10^{-2} mol/L

วิธีคิด (0.5 คะแนน)

$$I_2(H_2O)$$
 + $\bar{I}(H_2O)$ \Longrightarrow $I_3^-(H_2O)$ เริ่มต้น 0.1200 0 สมคุล $0.1200-5.9\times 10^{-2}$ 5.9×10^{-2} $(0.25$ คะแนน) $[\Gamma] = [KI] - [I_3^-] = 0.1200-5.9\times 10^{-2}$ $(0.25$ คะแนน) $= 6.1\times 10^{-2}$ mol/L

8.2.6 ค่าคงที่สมคุล
$$\mathbf{K}_1 = \begin{bmatrix} 6.9 \times 10^2 \\ \text{ตอบในรูป} \ \mathbf{x}.\mathbf{x} \times 10^n \end{bmatrix}$$
 $\mathrm{mol/L}$ $(0.5\ คะแนน)$

วิธีคิด (0.5 คะแนน)

$$K_1 = [I_3^-] / \{ [I_2] [\Gamma] \}$$
 (0.25 คะแนน)
$$= 5.9 \times 10^{-2} / \{ 1.4 \times 10^{-3} \times 6.1 \times 10^{-2} \}$$
 (0.25 คะแนน)
$$= 6.9 \times 10^2$$

ดังนั้น เวลาที่ใช้คือ 1/0.0534 = 18.7 นาที

คำตอบข้อที่ 9 (2.5 คะแนน)

เวลาที่ใช้คือ 18.7 นาที (0.5 คะแนน) ตอบท**ศ**นิยม 1 ตำแหน่ง

วิธีคิด (2 คะแนน)

Arhenius Equation : $k = A \exp(-Ea/RT)$ (0.25 กะแนน) ที่ระดับน้ำทะเล : T = 273 + 100 = 373 K (0.25 กะแนน) ที่ขอดเขา : T = 273 + 95 = 368 K (0.25 กะแนน) ที่ระดับน้ำทะเล : $R_1 = 1/3 = A \exp(-Ea/R \times 373)$ (1) (0.25 กะแนน) ที่ขอดเขา : $R_2 = A \exp(-Ea/R \times 368)$ (2) (0.25 กะแนน) สมการ (2) / (1) ได้ : $R_2 = \exp[-Ea/R \times (1/368 - 1/373)]$ (0.25 กะแนน) $R_3 = \exp[-418\times 10^3/8.314 \times (1/368 - 1/373)]$ (0.25 กะแนน) $R_4 = 0.0534 / \text{นาที}$ (0.25 กะแนน)

คำตอบข้อที่ 10 (6 คะแนน)

วิธีคิด (1 คะแนน)

$$E_{cell} = E^{\circ}_{cell} - \frac{RT}{nF} \ln Q$$
 (0.25 คะแนน)
ที่ภาวะสมคุล $E_{cell} = 0$
 $E^{\circ}_{cell} = \frac{RT}{nF} \ln K$ (0.25 คะแนน)
 $\ln K = \frac{nFE^{\circ}_{cell}}{RT}$
 $E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode}$
 $E^{\circ}_{cell} = 0.52 - 0.16 = 0.36 \, V$ (0.25 คะแนน)
 $\ln K = \frac{1 \times 96500 \times 0.36}{8.314 \times 298} = 14.022$ (0.25 คะแนน)
 $K = 1.2 \times 10^6$

10.2 แผนภาพของเซลล์ไฟฟ้าเคมี คือ

$$Pt \mid Cu^{2+}(aq), Cu^{+}(aq) \parallel Cu^{+}(aq) \mid Cu(s)$$
 (1 กะแนน)

วิธีคิด (1.5 คะแนน)

Fe²+(aq) + 2e⁻ → Fe(s)(1)
$$\Delta G^{o}{}_{1}$$
 (0.125 กะแนน)
Fe³+(aq) + 3e⁻ → Fe(s)(2) $\Delta G^{o}{}_{2}$ (0.125 กะแนน)
Fe³+(aq) + e⁻ → Fe²+(aq)(3) $\Delta G^{o}{}_{3} = \Delta G^{o}{}_{2} - \Delta G^{o}{}_{1}$ (0.25 กะแนน)
$$\Delta G^{o}{}_{1} = -nFE^{o}$$
 (0.25 กะแนน)
$$\Delta G^{o}{}_{1} = 2(0.440 \text{ F}) = 0.880 \text{ F}$$
 (0.25 กะแนน)
$$\Delta G^{o}{}_{2} = 3(0.036 \text{ F}) = 0.108 \text{ F}$$
 (0.25 กะแนน)
$$\Delta G^{o}{}_{3} = -(E^{o}F)$$
 (0.25 กะแนน)
$$\Delta G^{o}{}_{3} = -(E^{o}F)$$
 (0.25 กะแนน)
$$\Delta G^{o}{}_{3} = -(E^{o}F)$$
 (0.25 กะแนน)

10.4 ปฏิกิริยาเกิดขึ้น

เหตุผลและวิธีคิด (0.75 คะแนน)

$$Fe^{2+}(aq) \rightarrow Fe^{3+}(aq) + e^{-}$$
 (0.25 กะแนน)

ครึ่งปฏิกิริยารีดักชัน
$$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \rightarrow 2Cr^{3+}(aq) + 7H_2O$$
 (0.25 คะแนน)

คำตอบข้อที่ 11 (4 คะแนน)

11.1 ปฏิกิริยาที่แอโนคคือ
$$2O^{2-} + C(s) \rightarrow CO_2(g) + 4e^-$$
 (0.25 คะแนน) ปฏิกิริยาที่แคโทคคือ $Al^{3+} + 3e^- \rightarrow Al(l)$ (0.25 คะแนน) 11.2 น้ำหนักของ $Al = 3.19$ กรัม (0.5 คะแนน)

วิธีคิด (1 คะแนน)

 P_{CO_2}

= 5.26 atm

คำตอบข้อที่ 12 (6 คะแนน)

$$\Delta \text{H}^{\circ}$$
 ของปฏิกิริยา ที่ 298 K = 32.73 kcal (0.5 คะแนน)

วิธีคิด (0.5 คะแนน)

$$\Delta H^{o}_{298}(\text{reaction}) = \Sigma \Delta H^{o}_{f}(\text{product-reactant})$$

$$= \Delta H^{o}_{f}(C_{2}H_{4} + H_{2}) - \Delta H^{o}_{f}(C_{2}H_{6}) \qquad (0.25 \text{ คะแนน})$$

$$= (12.49 + 0) - (-20.24) \qquad (0.25 \text{ คะแนน})$$

$$= 32.73 \text{ kcal}$$

12.2

วิธีคิด (2.5 คะแนน)

$$\begin{array}{lll} \mathfrak{d} \mathfrak{l} \mathfrak{d} & \underline{\Delta(G^{\circ}_{298^{-}} H^{\circ}_{298})} = \underline{\Delta(G^{\circ}_{298^{-}} H^{\circ}_{298} + H^{\circ}_{0^{-}} H^{\circ}_{0})} \\ & = \underline{\Delta(G^{\circ}_{298^{-}} H^{\circ}_{0})} - \underline{\Delta(H^{\circ}_{298^{-}} H^{\circ}_{0})} \\ 298 & - \underline{\Delta(G^{\circ}_{298^{-}} H^{\circ}_{0})} \\ & = [\underline{(G^{\circ}_{298^{-}} H^{\circ}_{0})}]_{\text{reaction}} = [\underline{(G^{\circ}_{298^{-}} H^{\circ}_{0})}]_{\text{product}} - [\underline{(G^{\circ}_{298^{-}} H^{\circ}_{0})}]_{\text{reactant}} & (0.25 \text{ reaction}) \\ & = [(-43.98) - 24.42)] - (-45.27) & (0.25 \text{ reaction}) \\ & = -23.13 \text{ cal/K} & (0.25 \text{ reaction}) \\ & = -23.13 \text{ cal/K} & (0.25 \text{ reaction}) \\ & = (2.525 + 2.024) \times 1000 - 2.856 \times 1000 \\ & = 298 & 298 & 298 \\ & = 5.68 \text{ cal/K} & (0.25 \text{ reaction}) \\ & = 5.68 \text{ cal/K} & (0.25 \text{ reaction}) \\ & = 5.68 \text{ cal/K} & (0.25 \text{ reaction}) \\ & = (-23.13) - (5.68) & (0.5 \text{ reaction}) \\ & = (0.25 \text{ reaction}) \\$$

= -28.81 cal/K

$$\Delta G^{\circ}$$
 ของปฏิกิริยา ที่ 298 K = 24.14 kcal (0.5 คะแนน) ตอบทศนิยม 2 ตำแหน่ง

วิธีคิด (0.75 คะแนน)

$$\frac{\Delta(G^{\circ}_{298} - H^{\circ}_{298})}{298} = \frac{\Delta G^{\circ}_{298}}{298} - \frac{\Delta H^{\circ}_{298}}{298} = \frac{\Delta G^{\circ}_{298}}{298} - \frac{32.73 \times 1000}{298} \qquad (0.25 \text{ คะแนน})$$

$$-28.81 = \frac{\Delta G^{\circ}_{298}}{298} - \frac{32.73 \times 1000}{298} \qquad (0.25 \text{ คะแนน})$$

$$\Delta G^{\circ}_{298} = (-28.81 \times 298) + (32.73 \times 1000) \qquad (0.25 \text{ คะแนน})$$

$$= 24,144 \text{ cal} = 24.14 \text{ kcal}$$

12.4

วิธีคิด (0.5 คะแนน)

$$\Delta G^{o}_{298} = -RT \ln K$$
 (0.25 คะแนน)
 $24{,}144 = -1.987 \times 298 \ln K$ (0.25 คะแนน)
 $\ln K = -40.78$

คำตอบข้อที่ 13 (4.25 คะแนน)

13.1

อุณหภูมิ	ความคันไอ	T(K)	$(1/T)x10^3$	P(atm)	ln P	
(°C)	(mmHg)					
20	17.5	293	3.41	0.023	-3.77	
22	19.8	295	3.39	0.026	-3.65	(0.5 คะแนน)
24	22.4	297	3.37	0.029	-3.53	
26	25.2	299	3.34	0.033	-3.41	
28	28.3	301	3.32	0.037	-3.29	
29	30.0	302	3.31	0.040	-3.23	

ความดันใจของของเหลวที่
$$32^{\circ}$$
C = 36.3 mmHg (0.5 คะแนน) ตอบทศนิยม 1 ตำแหน่ง

วิธีคิด (0.5 คะแนน)

ที่ 32 °C หรือ 305 K ได้
$$\frac{1}{T} = 3.28 \times 10^{-3}$$

จากกราฟ ได้ $\ln P = -3.04$
หรือ $P = 0.048 \ atm = 36.3 \ mmHg$

วิธีคิด (0.75 คะแนน)

จากสมการ Clausius – Clapeyron
$$\ln P = \frac{-\Delta H_v}{RT} + k \qquad (0.25 \text{ กะแนน})$$

$$slope = \frac{\ln P_2 - \ln P_1}{\frac{1}{T}} = \frac{-3.77 \cdot (-3.23)}{(3.41 - 3.31)10^{-3}} = \frac{-0.54 \times 10^3}{0.10} = -5.4 \times 10^3 \quad (0.25 \text{ กะแนน})$$

$$slope = \frac{-\Delta H_v}{R} = -5.4 \times 10^3 = \frac{-\Delta H_v}{8.314}$$

$$\Delta H_v = 5.4 \times 10^3 \times 8.314$$

$$= 44.90 \times 10^3 \text{ J}$$

$$= 44.90 \text{ kJ}$$

คำตอบข้อที่ 14 (12.5 points)

14.1.1 Structures of all possible stereoisomers of compound 2.

(5 points)

- **14.1.2** Absolute configurations of all stereogenic carbons in one of the chosen stereoisomer.
- 14.1.3 $\stackrel{\text{E}}{\longleftarrow}$ show each pair of enantiomers
- **14.1.4** D show all pair of diastereoisomers

Grading scheme:

- (2 points) Each correct structure of stereoiomer = 0.5 point (4 structures)
- (1 point) Correct absolute stereochemistry at stereogenic carbons in one compound
 - = 0.5 point (2 stereocenters for each compound)
- (1 point) Each arrow for enantiomers = 0.5 point (2 pairs)
- (1 point) Each arrow for diastereoisomers = 0.25 point (4 pairs)

14.2 Structures of compounds A - H

(5 points)

14.3 Structure and name of reagent to check for the keto group in compound G. (1 point)

Structure of reagent	Name
O_2N H_2N-NH NO_2	2,4-dinitrophenylhydrazine

Structure of the product and a change observed from the test. (1 point)

Structure of the product	Change observed	
O_2N NH NO_2	yellow-orange precipitates	

14.4 The signal of the keto group in IR spectrum is approximately at

Total synthetic scheme

Question no. 15 (6 points)

The synthetic pathway toward folic acid can be shown below:

glutamic acid
$$(0.5 \text{ point})$$
 (0.5 point)
 (0.5 point)

Question no. 16 (7 points)

16.1 Structures of all products obtained from the degradation reaction are: (3 points)

No stereochemistry requirement

16.2 Fischer projection(s) of monosaccharide(s) obtained from degradation reaction is (are):(4 points)