Invariant Set and Controller Synthesis

FEANICSES 2018 Workshop

Danylo Malyuta, Dylan Janak, Behçet Açıkmeşe May 21, 2018

Autonomous Controls Laboratory, University of Washington

Overview

Invariant Set Synthesis

Optimization-Based Methods

Set-Theoretic Methods

Invariant Controller Synthesis

Robust Controlled Invariant Set

We consider Discrete Linear Time Invariant (DLTI) system:

$$x^+ = Ax + Bu + Dp,$$

where $x \in \mathbf{R}^n$, $p \in \mathcal{P} = \{p \in \mathbf{R}^d : Rp \le r\}$ and $u \in \mathcal{U} = \{u \in \mathbf{R}^m : Hu \le h\}$ are "specification" polytopes.

Controlled Robust Positively Invariant Set

A set \mathcal{X} is called *controlled robust positively invariant* (CRPI) if:

$$\mathcal{X} = \{ x \in \mathbf{R}^n : \exists u \in \mathcal{U} \text{ s.t. } Ax + Bu + Dp \in \mathcal{X}, \ \forall p \in \mathcal{P} \}.$$

3

Robust Invariant Set

Robust Controlled Invariant Set

A set \mathcal{X} is called *controlled robust positively invariant* (CRPI) if:

$$\mathcal{X} = \{ x \in \mathbf{R}^n : \exists u \in \mathcal{U} \text{ s.t. } Ax + Bu + Dp \in \mathcal{X}, \ \forall p \in \mathcal{P} \}.$$

Now consider that some control law exists and the system reduces to an autonomous one:

$$x^+ = Ax + Dp.$$

Robust Invariant Set

A set \mathcal{X} is called *robust positively invariant* (RPI) if:

$$Ax + Dp \in \mathcal{X}, \quad \forall x \in \mathcal{X}, \ p \in \mathcal{P}.$$

Goal: find an RPI \mathcal{X} .

Two Ways to Synthesize an Invariant Set

- \bullet Optimization-based methods rely on an explicit optimization problem (LP, LMI, etc.) to find $\mathcal X$
- Set-based methods rely on polytopic operations¹, i.e. computational geometry.

¹These operations may implicitly involve an optimization, but what differentiates set-based methods is that people don't "talk" about it – they just assume that one can compute e.g. the Pontryagin difference.

Trodden, "A One-Step Approach to Computing a Polytopic Robust Invariant Set", 2016. [1]

Equivalent RPI Condition

$$\mathcal{X}(g) = \{x : Gx \leq g\} \text{ RPI} \Leftrightarrow \sigma(G_i \mid A\mathcal{X}(g)) + \sigma(G_i \mid D\mathcal{P}) \leq \sigma(G_i \mid \mathcal{X}(g)),$$

where $g \in \mathbf{R}^{n_g}$ and $\sigma(z \mid S) \triangleq \sup\{y^T z : y \in S\}$ is the support function of (some) set S.

Note: $\sigma(G_i \mid \mathcal{X}(g)) \leq g_i$ with $< \Leftrightarrow$ facet i is redundant.

Trodden, "A One-Step Approach to Computing a Polytopic Robust Invariant Set", 2016. [1]

Existence of an RPI Set

Fix G in $\mathcal{X}(g) = \{x : Gx \leq g\}$ (i.e. pick a "template"). Assumptions:

- A1. \mathcal{P} contains the origin
- A2. $\lambda < 0 \ \forall \lambda \in \operatorname{spec}(A)$
- A3. The interior of ${\mathcal X}$ contains the origin
- A4. For the chosen G, a g exists such that $\mathcal{X}(g)$ is RPI

Then there exists a g^* such that

$$\sigma(G_i \mid A\mathcal{X}(g^*)) + \sigma(G_i \mid D\mathcal{P}) = \sigma(G_i \mid \mathcal{X}(g^*)) = g^* \quad \forall i = 1, ..., n_g.$$

 $\mathcal{X}(g^*)$ is the min-volume RPI set, i.e. g^* achieves minimum $\|g^*\|_1$.

Fixed-Point Solution Uniqueness

Given assumptions A1-A4, the g^* in the above statement is unique.

Trodden, "A One-Step Approach to Computing a Polytopic Robust Invariant Set", 2016. [1]

Existence of an RPI Set

$$\sigma(G_i \mid A\mathcal{X}(g^*)) + \sigma(G_i \mid D\mathcal{P}) = \sigma(G_i \mid \mathcal{X}(g^*)) = g^* \quad \forall i = 1, ..., n_g.$$

 $\mathcal{X}(g^*)$ is the min-volume RPI set, i.e. g^* achieves minimum $\|g^*\|_1$.

 g^* can be computed iteratively:

Algorithm 1 Iterative computation of g^* .

- 1: Set $g \leftarrow 0$
- 2: while True do
- 3: $g_i^* \leftarrow \sigma(G_i \mid A\mathcal{X}(g)) + \sigma(G_i \mid D\mathcal{P}) \ i = 1, ..., n_g$
- 4: **if** $\|g g^*\|_{\infty} < \epsilon_{\mathsf{tol}}$ **then**
- 5: return g^*
- 6: $g \leftarrow g^*$

Trodden, "A One-Step Approach to Computing a Polytopic Robust Invariant Set", 2016. [1]

- ullet g* can also be computed as a one-shot LP (main contribution of [1])
- Let $c_i(g) = \sigma(G_i \mid A\mathcal{X}(g)), d_i = \sigma(G_i \mid D\mathcal{P}), b_i(g) = \sigma(G_i \mid \mathcal{X}(g)).$ Core realization (thanks to uniqueness of g^*):

$$g^* = \arg\min_{g} \{ \|g\|_1 : c(g) + d = b(g) \} = \arg\max_{g} \{ \|g\|_1 : c(g) + d = b(g) \}$$

• Recalling that $b(g) \le g$, the above is readily converted to an LP:

$$\begin{split} g^* &= c^* + d^*, \text{ where } (c^*, d^*) = \underset{\substack{\{c_i, d_i, \xi^i, \omega^i\}\\ \forall i \in \{1, \dots, n_g\}}}{\text{subject to}} & \sum_{i=1}^{n_g} c_i + d_i \\ & c_i \leq c_i + d_i \\ & c_i \leq G_i A \xi^i \\ & G \xi^i \leq c + d \\ & d_i \leq G_i D \omega^i \\ & F \omega^i \leq g. \end{split}$$

Trodden, "A One-Step Approach to Computing a Polytopic Robust Invariant Set", 2016. [1]

Let
$$c_i(g) = \sigma(G_i \mid A\mathcal{X}(g)), \ d_i = \sigma(G_i \mid D\mathcal{P}), \ b_i(g) = \sigma(G_i \mid \mathcal{X}(g))$$

$$g^* = c^* + d^*, ext{ where } (c^*, d^*) = ext{arg maximize } \begin{cases} \sum\limits_{\{c_i, d_i, \xi^i, \omega^i\} \\ \forall i \in \{1, \dots, n_g\} \end{cases}} \sum_{i=1}^{n_g} c_i + d_i$$
 subject to $c_i \leq G_i A \xi^i$ $G \xi^i \leq c + d$ $d_i \leq G_i D \omega^i$ $F \omega^i \leq g$.

The first two constraints evaluate $c_i(g)$ and the last two evaluate d_i . The first constraint holds with equality at optimality, since we want to maximize c_i . The RHS of the second constraint $= g^*$ at optimality, therefore the second constraint enforces $P\xi^i \leq g^*$, i.e. the definition of $b(g^*)$.

Trodden, "A One-Step Approach to Computing a Polytopic Robust Invariant Set", 2016. [1]

Image credit: NASA/JPL-Caltech

Trodden, "A One-Step Approach to Computing a Polytopic Robust Invariant Set", 2016. [1]

Parameters [2]:

$$m_{
m wet} = 1905 \
m kg$$
 $g = -3.7114 \
m m/s^2$ $g_{
m e} = 9.81 \
m m/s^2$ $I_{
m sp} = 225 \
m s$ $T_{
m max} = 3.1 \
m kN$ $\phi = 27 \
m deg$ $n = 6$

$$(\dot{x},\dot{y})=(v_x,v_y)$$

$$(\dot{v}_x, \dot{v}_y) = (T_x, T_y)/m + g$$
$$\dot{m} = -\frac{\|(T_x, T_y)\|_2}{L_{g, \cos \phi}}$$

Letting $T \leftarrow T + mg$ be the gravity compensated control, the system is linearized about $(\bar{x}, \bar{y}, \bar{v}_x, \bar{v}_y, \bar{m}) = (0, 0, 0, 0, m_{\text{wet}})$ and $(\bar{T}_x, \bar{T}_y) = (0, 0)$.

Trodden, "A One-Step Approach to Computing a Polytopic Robust Invariant Set", 2016. [1]

Synthesize an LQR stabilizing controller:

- State scaling: $D_{\rm x} = \begin{bmatrix} 1 & 1 & 0.05 & 0.05 & 0.1 \end{bmatrix}$
- Input scaling: $D_u = \begin{bmatrix} nT_{\text{max}}\cos\phi\sin\alpha_{\text{max}} & nT_{\text{max}}\cos\phi \end{bmatrix}$
- State penalty $Q = D_x^{-1} \hat{Q} D_x$ with $\hat{Q} \in \{\emph{I}_5, 10\emph{I}_5\}$
- Input penalty $R = D_{\scriptscriptstyle X}^{-1} \hat{R} D_{\scriptscriptstyle X}$ with $\hat{R} = I_2$

Trodden, "A One-Step Approach to Computing a Polytopic Robust Invariant Set", 2016. [1]

Direct application of LP on slide 10 ($\hat{Q} = I_5$, $\hat{Q} = 10I_5$):

Trodden, "A One-Step Approach to Computing a Polytopic Robust Invariant Set", 2016. [1]

The one-shot LP of slide 10 and the iterative algorithm of slide 8 are identical...

.. but iterative takes ≈ 315 s while one-shot takes ≈ 0.2 s!

Maximal RCI Computation

Kvasnica et al., "Reachability Analysis and Control Synthesis for Uncertain Linear Systems...", 2015. [3]

First Way: Optimization

The control problem can be formulated as an optimization problem:

Control Policy Synthesis via Optimization

Let $\mathcal{I} \triangleq \{x \in \mathbf{R}^n \mid Gx \leq g\}$ be the maximal positively invariant set induced by the control policy $u[k] = \mu_k(z[k])$. Consider the following sequence of optimization problems (for $i = 1, ..., n_p$):

$$\begin{split} g_i^+ &= \underset{x,u,w,v,e,G,g,k}{\text{maximize}} &\quad G_i(A[k]x + B[k](u+e) + E[k]w) \\ &\quad \text{subject to} &\quad x \in \mathcal{I}, \ u \in \mathcal{U}, \ w \in \mathcal{W}(x,u), \ v \in \mathcal{V}(x), \ e \in \mathcal{L}(u) \\ &\quad u = c_k(x+v) \\ &\quad \mathcal{I} \subseteq \mathcal{X}, \quad k \in \mathbf{Z}_+. \end{split}$$

The control policy solves the control problem if and only if $g^+ \leq g$.

Authors employing optimization solve this problem via clever tricks for the particular structure that they consider (yields an LP, an SDP, etc.).

Second Way: Set-Based Iterative

Predecessor Set

Given a set $\mathcal{R}\subseteq\mathcal{X}$, the predecessor set $\mathsf{Pre}(\mathcal{R})$ is:

$$Pre(\mathcal{R}) \triangleq \{x \in \mathbf{R}^n \mid \exists u \in \mathcal{U} \text{ s.t. } A[k]x + B[k](u+v) + E[k]w \in \mathcal{R} \}$$
$$\forall v \in \mathcal{V}(x), w \in \mathcal{W}(x,u)\},$$

i.e. \mathcal{R} is 1-step robustly *reachable* from $Pre(\mathcal{R})$.

Consider the algorithm:

$$\mathcal{I}_0 = \mathcal{X}, \quad \mathcal{I}_{k+1} = \mathsf{Pre}(\mathcal{I}_k).$$

Then $\mathcal{I}_{k+1} \subseteq \mathcal{I}_k \ \forall i \in \mathbf{Z}_+$ and the maximal robust controlled invariant set in \mathcal{X} is $\mathcal{I}_{\infty} \subseteq \bigcap_{i \in \mathbf{Z}_+} \mathcal{I}_i$ and $\mathcal{I}_{\infty} = \mathcal{I}_j$ for some $j \in \mathbf{Z}_+ \Leftrightarrow \mathcal{I}_{j+1} = \mathcal{I}_j$.

The resulting control policy is set valued and is obtained a posteriori:

$$c_k(x) = \{ u \in \mathcal{U} \mid A[k]x + B[k](u+v) + E[k]w \in \mathcal{I}_{\infty} \ \forall v \in \mathcal{V}(x), w \in \mathcal{W}(x,u) \}.$$

Can then use e.g. dynamic programming to obtain some optimal point-valued policy.

Comparison of Set-Based versus Optimization-Based

- Optimization-based methods are faster and compute point-valued controllers directly
- Set-based methods are slower but can potentially accommodate more features and can be anytime (i.e. aborted at any point and yield a valid albeit imprecise answer anyway)
- Set-based methods compute set-valued controllers ⇒ post-processing (e.g. dynamic programming) required to obtain point-valued controllers.

Whether one or the other will solve all our problems remains to be seen as we actually try to solve all our problems.

Overview

Invariant Set Synthesis

Optimization-Based Methods

Set-Theoretic Methods

Invariant Controller Synthesis

Overview

- Present "the control problem"
- LQR, Linear From Spec, Bertsekas, perhaps other new ones...

Bibliography

- [1] P. Trodden, "A one-step approach to computing a polytopic robust positively invariant set," *IEEE Transactions on Automatic Control*, vol. 61, pp. 4100–4105, dec 2016.
- [2] B. Acikmese and S. R. Ploen, "Convex programming approach to powered descent guidance for mars landing," *Journal of Guidance, Control, and Dynamics*, vol. 30, pp. 1353–1366, sep 2007.
- [3] M. Kvasnica, B. Takács, J. Holaza, and D. Ingole, "Reachability analysis and control synthesis for uncertain linear systems in MPT," *IFAC-PapersOnLine*, vol. 48, no. 14, pp. 302–307, 2015.