Elliptic Curves

Lei Bichang

November 22, 2024

Exercise 1

(a) For a finitely generated abelian group G, denote by rank G the rank of G.

Let $\phi: E_1 \to E_2$ be a non-constant isogeny over K. Then ϕ induces a map

$$\phi_K: E_1(K) \to E_2(K),$$

which is clearly a group homomorphism. This gives an injection

$$E_1(K)/\ker\phi_K \hookrightarrow E_2(K)$$

of abelian groups of finite type. So $\operatorname{rank}(E_1(K)/\ker \phi_K) \leq \operatorname{rank} E_2(K)$. Since $\ker \phi_K \subset \ker \phi$ is finite, we have

$$\operatorname{rank} E_1(K) = \operatorname{rank}(E_1(K)/\ker \phi_K).$$

Hence rank $E_1(K) \leq \operatorname{rank} E_2(K)$. Doing the same thing to a non-constant isogeny $E_2 \to E_1$ over K, say $\hat{\phi}^1$, we get rank $E_2(K) \leq \operatorname{rank} E_1(K)$. So the ranks of E_1 and E_2 are equal.

(b) No. I checked on LMFDB that $E_1: y^2 = x^3 + x$ has rank 0, and $E_2: y^2 = x^3 + 3x$ has rank 1. But E_1 and E_2 are isogenous via

$$x \mapsto u^2 x, \ y \mapsto u^3 y, \quad u = \sqrt[4]{3}$$

over $\mathbb{Q}(u)$.

Exercise 2

(a) $E: y^2 = x(x^2 + 3x + 5)$. $a = 3, b = 5, a_1 = -2a = -6, b_1 = a^2 - 4b = -11$.

• Determine $\psi(E'(\mathbb{Q})/\phi(E(\mathbb{Q})))$.

The integers $r \mid b_1$ are

$$r = \pm 1, \pm 11.$$

Write

$$\begin{cases} u = rt^2, \\ u^2 + a_1 u + b_1 = \frac{v^2}{u} = rs^2, \end{cases} \qquad t = \frac{l}{m}, \ (l, m) = 1, \quad s = \frac{n}{m^2}.$$

$$E_2 \to \operatorname{Div}_0(E_2) \xrightarrow{\phi^*} \operatorname{Div}_0(E_1) \to E_1$$

are G_K -invariant.

¹I don't recall if we have shown in class that: if ϕ is defined over K, then $\hat{\phi}$ is defined over K. This can be proved by checking directly that: all the three maps in

which gives the equation

$$r^2l^4 + a_1rl^2m^2 + b_1m^4 = rn^2, (1)$$

i.e, $r^2l^4 - 6rl^2m^2 - 11m^4 = rn^2$. The value $r = -11 = b_1 = a^2 - 4b$ corresponds to (0,0). Since $\lim q$ is a group, it must be $\{[1], [-11]\}$ or $\{[1], [-11], [-1], [11]\}$.

Substitute r = -1 in Eq. (1) gives

$$l^4 + 6l^2m^2 - 11m^4 = -n^2, (2)$$

which has a solution (l, m, n) = (1, 1, 2), corresponding to

$$(u,v) = \left(\frac{rl^2}{m^2}, \frac{rnl}{m^3}\right) = (-1, -2) \in E'(\mathbb{Q}).$$

The image of (-1, -2) in $E''(\mathbb{Q})$ is

$$\psi(u,v) = \left(u + a_1 + \frac{b_1}{u}, v - \frac{b_1 v}{u^2}\right) = (4, -24).$$

The isomorphism $E'' \to E$ is

$$x = x''/4, \quad y = y''/8.$$

so the corresponding point in $E(\mathbb{Q})$ is (1, -3).

• Determine $E(\mathbb{Q})/\psi(E'(\mathbb{Q}))$.

Next, solve

$$r^2l^4 + 3rl^2m^2 + 5m^4 = rn^2 (3)$$

for $r \mid 5$. The value r = b = 5 corresponds to (0,0). Because $a^2 - 4b < 0$, we have $rs^2 = u^2 + au + b > 0$, so r > 0. Hence $[-1], [-5] \notin \operatorname{im} q'$, and thus (0,0) generates $E(\mathbb{Q})/\psi(E'(\mathbb{Q}))$.

Finally, $E(\mathbb{Q})/2E(\mathbb{Q}) = \langle (0,0), (1,-3) \rangle \simeq (\mathbb{Z}/2\mathbb{Z})^2$.

- Rank. The rank of E is 1. Since (0,0) has order 2, the rank of E is 0 or 1, depending on whether (1,-3) has finite order or not. I don't know how to do this by hand without spending too much time and ink, but using Sage I can tell that (1,-3) has infinite order by computing iP for $2 \le i \le 12$ or by letting the program tell me its order directly.
- (b) $E: y^2 = x(x^2 2x + 9)$. $a = -2, b = 9, a_1 = -2a = 4, b_1 = a^2 - 4b = -32$.
 - Solve

$$rl^4 + 4l^2m^2 - \frac{32}{r}m^4 = n^2 \tag{4}$$

for $r \mid 32$ square-free, that is $r = \pm 1, \pm 2$. [r] = [-2] = [-32] corresponds to (0,0), so im $q = \{[1], [-2]\}$ or $\{[1], [-2], [-1], [2]\}$. Let r = 2, so that

$$2l^4 + 4l^2m^2 - 16m^4 = n^2. (5)$$

Completing the square then modulo 3

$$\implies \{0,2\}\ni 2(l^2+m^2)^2=n^2\in \{0,1\} \bmod 3,$$

$$\implies l^2 \equiv m^2 \equiv n^2 \equiv 0 \mod 3.$$

 \implies 3 | l and 3 | m, contradicting (l, m) = 1. Hence Eq. (5) has no nontrivial solution in \mathbb{Z}^3 .

• Solve

$$rl^4 - 2l^2m^2 + \frac{9}{r}m^4 = n^2 (6)$$

for $r \mid 9$ square free, i.e., $r = \pm 1, \pm 3$. [r] = [1] = [9] corresponds to (0,0). $b_1 = a^2 - 4b < 0$, so $rs^2 = u^2 + au + b > 0$. Thus it remains to check r = 3:

$$3l^4 - 2l^2m^2 + 3m^4 = n^2. (7)$$

This equation has solution (l, m, n) = (1, 1, 2), corresponding to

$$(u,v) = \left(\frac{rl^2}{m^2}, \frac{rln}{m^3}\right) = (3,6) \in E(\mathbb{Q}).$$

Since (0,0) corresponds to the identity [1], we have $E(\mathbb{Q})/\psi(E'(\mathbb{Q})) = \langle (3,6) \rangle$.

So $E(\mathbb{Q})/2E(\mathbb{Q}) = \langle (3,6) \rangle \simeq \mathbb{Z}/2\mathbb{Z}$.

Rank. The rank of E is 0, because (0,0) has order 2.

(c) $E: y^2 = x(x^2 + 2x + 9)$.

a = 2, b = 9, $a_1 = -2a = -4$, $b_1 = a^2 - 4b = -32$.

• Solve

$$rl^4 - 4l^2m^2 - \frac{32}{r}m^4 = n^2 \tag{8}$$

for $r = \pm 1, \pm 2$. [r] = [-1] = [-32] corresponds to (0,0). Let r = 2, then

$$2l^4 - 4l^2m^2 - 16m^4 = n^2. (9)$$

has a solution (2,1,0), corresponding to

$$(u, v) = (8, 0) \in \psi^{-1}((0, 0)) \subset E'(\mathbb{Q}).$$

• Solve

$$rl^4 + 2l^2m^2 + \frac{9}{r}m^4 = n^2 (10)$$

for $r = \pm 1, \pm 3$. Since $b_1 < 0$, we have r = 1, 3. Let r = 3:

$$3l^4 + 2l^2m^2 + 3m^4 = n^2. (11)$$

Modulo 3, we get

$$\{0,2\} \ni 2(lm)^2 = n^2 \in \{0,1\},\$$

$$\implies (lm)^2 = n^2 = 0 \mod 3$$

 \implies 3 | lm and 3 | n. If 3 | l, then Eq. (11) shows that 3^2 | $3m^4$, so 3 | m, which is a contradiction. Similarly, 3 | $m \implies$ 3 | l and leads to contradiction. Therefore, Eq. (11) has no nontrivial integer solution.

So $E(\mathbb{Q})/2E(\mathbb{Q}) = \langle (0,0) \rangle \simeq \mathbb{Z}/2\mathbb{Z}$.

Rank. The rank of E is 0, because (0,0) is a point of order 2.

Exercise 3

- (a) A finitely generated abelian group has finitely many torsion elements. If K is algebraically closed, then $E(K)[n] = E[n] \simeq \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ for all integers n that are not divided by char K. Therefore $E(K)_{\text{tor}} = \bigcup_{n>1} E(K)[n]$ cannot be finite, thus E(K) is not of finite type.
- (b) For a set S, denote by |S| the cardinality of a set S.

A finitely generated abelian group is finite or countable. So to prove that $E(\mathbb{R})$ is not of finite type, it suffices to show that $E(\mathbb{R})$ is uncountable.

As char $\mathbb{R} = 0$, we may assume that E is defined by $y^2 = f(x)$, where $f(X) = X^3 + aX + b \in \mathbb{R}[X]$. Then $f(\mathbb{R}) = \mathbb{R}$. So for every $y \in \mathbb{R}$, there exists $x \in \mathbb{R}$ s.t. $(x, y) \in E$. This means that the map

$$E(\mathbb{R}) \setminus \{O\} \to \mathbb{R}, \ (x,y) \mapsto y$$

is surjective, and thus $|E(\mathbb{R})| \geq |\mathbb{R}| > \aleph_0$.

(c) Similar to (b), we show that $E(\mathbb{Q}_p)$ is uncountable using Hensel's lemma.

Assume that E is given by a minimal Weierstrass equation F(x,y) = 0, where $F(X,Y) \in \mathbb{Z}_p[X,Y]$, so that the curve \tilde{E} is given by $\tilde{F}(x,y) = 0$. Let $\pi : E_0(\mathbb{Q}_p) \to \tilde{E}_{ns}(\mathbb{F}_p)$ be the reduction map. Take $P_0 = (x_0, y_0) \in \tilde{E}_{ns}(\mathbb{F}_p) \setminus \{O\} \neq \emptyset$. By the definition of singularity,

$$\frac{\partial \tilde{F}}{\partial X}(x_0, y_0) \neq 0$$
 or $\frac{\partial \tilde{F}}{\partial Y}(x_0, y_0) \neq 0$.

• Assume first that $\frac{\partial \tilde{F}}{\partial X}(x_0, y_0) \neq 0$. Denote by $a \mapsto \bar{a}$ the quotient map $\mathbb{Z}_p \to \mathbb{F}_p$. Let $y \in \mathbb{Z}_p$ be any lift of $y_0 \in \mathbb{F}_p$, and let

$$f_y(X) := F(X, y) \in \mathbb{Z}_p[X].$$

Then modulo p, we have $\overline{f_u(x_0)} = 0$ in \mathbb{F}_p , and

$$\overline{f_y'(x_0)} = \overline{\frac{\partial F(X,Y)}{\partial X}}(x_0,y_0) = \frac{\partial \tilde{F}}{\partial X}(x_0,y_0) \neq 0.$$

So by Hensel's lemma, there is a unique $x \in \mathbb{Z}_p$ s.t. $F(x,y) = f_y(x) = 0$.

The set

$$y + p\mathbb{Z}_p = \{ z \in \mathbb{Z}_p \mid \bar{z} = y_0 \}$$

has cardinality equal to \mathbb{Z}_p , which is an uncountable set. The above construction gives an injection $y + p\mathbb{Z}_p \hookrightarrow E_0(\mathbb{Q}_p)$. Therefore, there are uncountably many points in $E_0(\mathbb{Q}_p) \subset E(\mathbb{Q}_p)$.

• If $\frac{\partial \tilde{F}}{\partial Y}(x_0, y_0) \neq 0$, we can argue in a much similar way that $E(\mathbb{Q}_p)$ is uncountable.