西安电子科技大学

			讨	2		题			
题号	_	=	三	四	五	六	七	八	总分
万级	一种 一种	K-K-P	p.+ 151 34	120 (tale atta	(100 A		2021 4	1

- 一、填空题(每小题4分,共40分)
 - 1.设向量a,b,c两两垂直,且|a|=1, $|b|=\sqrt{7}$,|c|=1,则|a+b+c|=——·
 - 2.过点 A(1,1,1)、 B(3,2,0) 和 C(2,0,3) 的平面方程为_____
 - 3.曲线 $\begin{cases} 2y^2 + z^2 + 4x = 4z, \\ y^2 + 3z^2 8x = 7z, \end{cases}$ 关于 yOz 坐标面的投影柱面方程为______
- 4.平面 2x + y + z + 2 = 0 与曲面 $e^x \sin y z^2 = 0$ 在点 (0, 0, -1) 处的切平面的夹角为_____.

- 8.函数 $f(x, y, z) = x^3 xy^2 \sin z$ 在点 $P_0(1,1,0)$ 处沿增加最快方向的方向导数为______.
- 9.设平面区域 D 为 $x^2 + y^2 \le 1$,则积分 $\iint_D (x^3y 3x^2 \sin y + 2) dx dy = _____.$
- 10.设 f(x,y) 连续,二次积分 $\int_0^1 dy \int_0^{\sqrt{y}} f(x,y) dx + \int_1^2 dy \int_0^{2-y} f(x,y) dx$ 的积分 次序改变后为______.
- 二、(8分)求曲线 $x=2\sin^2 t$, $y=\sin t \cos t$, $z=2\cos^2 t$ 在对应于 $t=\frac{\pi}{4}$ 的点处

的切线方程和法平面方程.

三、(8分)函数
$$z = z(x, y)$$
 由方程 $2xz - 2xyz + \ln(xyz) = 0$ 所确定,求 $\frac{\partial^2 z}{\partial x^2}\Big|_{\substack{x=1\\y=1}}$.

四、(8 分)写出二次积分 $\int_0^2 dx \int_0^{\sqrt{2x-x^2}} \sqrt{x^2+y^2} dy$ 在极坐标下的积分区域,并求此积分.

五、(10 分)设函数 $u = f(x^2z + y, y^2z - x^2) + g(\frac{y}{x})$, 其中函数 f 具有二阶连续 偏导数,函数 g 二阶可导,求 $\frac{\partial u}{\partial x}$, $\frac{\partial^2 u}{\partial x \partial y}$.

六、(10 分) 求过点 M(4,0,-1), 平行于平面 x-4y+3z-10=0, 且与直线 $\frac{x}{1} = \frac{y-3}{1} = \frac{z+1}{2}$ 相交的直线方程.

生

七、(10 分)设曲面S的方程为 $8+x^2+4y^2=z^2$ (z>0),平面 π 的方程为 x+2y+2z-2=0,在曲面S上求一点,使得该点到平面 π 的距离最近,并求该最近距离。

八、(6分) 设 f(x,y) 为连续函数, $D = \{(x,y) | (x-x_0)^2 + (y-y_0)^2 \le r^2 \}$,求 $\lim_{r \to 0} \frac{1}{\pi r^2} \iint_D f(x,y) d\sigma.$