

# DYNAMIC MALWARE DETECTION USING

GENERATIVE AI

### SUPERVISOR

# Dr. Sufian Hameed

### CO-SUPERVISOR

## Dr. Muhammad Rafi

### GROUP MEMBERS:

Muhammad Hatif Mujahid (20K-0218) Wahaj Javed Alam (20K-0208) Agha Maarij Amir (20K-0160)

# ABSTRACT

Malware Detection and prevention is critical for the security of a system.

Malware Obfuscation and encryption are common techniques used to avoid static detection

We propose a Deep Learning method for Malware Classification and Detection

It leverages GANs alongside Deep Autoencoders and CNNs to acheived the proposed task.

# PROBLEM STATEMENT

Malware poses a significant threat to computer and mobile device security, with the potential to gain unauthorized access

Traditional signature-based detection methods, although effective to some extent, face scalability limitations, restricting their utility in identifying new and diverse malware threats.

Many of these approaches relied on hand-crafted features, requiring expert knowledge and limited generalizability.

As a result, there is a need for innovative approaches capable of addressing these issues and enhancing cybersecurity against evolving malware threats.

# LITERATURE REVIEW

# Malware Detection with Malware Images using Deep Learning Techniques [1]

#### Premise:

- Used CNN and CNN combined with SVM for classification
- Dataset used was Malimg Dataset

### Solution/Results

- CNN accuracy: 97.58%
- CNN with SVM accuracy: 89%

- Implementing SPP was impractical due to memory constraints.
- The study found that greyscale imaging was effective against redundant API injection, indicating a specific challenge in malware detection

# HYDRA: A multimodal deep learning framework for malware classification [2]

#### Premise:

- Traditional methods rely on expert-designed features.
- HYDRA combines various feature types to address these issues.

### Solution/Results

- Merges hand-engineered and end-to-end components.
- Evaluated on Microsoft Malware Classification Challenge.
- Achieved 99.75% accuracy and 99.51% Macro F1 score.

- Integrating multiple feature types to have a consistent result
- Memory issues when dealing with many frameworks and features.

# Malware Classification Using Static Disassembly and Machine Learning [3]

#### Premise:

Extracted 7 Features and used Auto Sklearn with RF, SVM and KNNs

### Solution/Results

- Big 2015 Dataset was used.
- An accuracy of 99.48% was achieved.
- Used File size, API 4-grams, OPCODE 4-grams, import libraries, PE section size and permissions, content complexity as features

- Code obfuscation and encryption
- Name mangling
- Lazy loading

# Zero-day Malware Detection using Transferred Generative Adversarial Networks based on Deep Autoencoders [4]

#### Premise:

Transfer Learning with AutoEncoders, Convolutional Networks and Generative Adversarial Networks

### Solution/Results

- Used the Big 2015 Dataset
- Achieved 95.74% accuracy
- converted malware codes to images, then fed to the architecture

- Data scarcity
- Adversarial instability
- Evasion Attacks

# A novel malware classification and augmentation model based on convolutional neural network [5]

Premise The proposed approach used Convolutional Neural Networks to classify malware

#### Solution/Results

- Utilizes convolutional neural networks (CNNs) to learn malware features.
- Addresses class imbalance issues through data augmentation using CycleGAN.
- 99.86% accuracy on the BIG2015 dataset and 99.60% accuracy on the DumpWare10 dataset

#### Challenges

Suffers against adversarial malware samples

# Emulating malware authors for proactive protection using GANs over a distributed image visualization of dynamic file behavior [6]

Premise:

Wassertein GANs

#### Solution/Results

- API calls converted to images using a distributed tranformation approach that allows the images to be decoded back
- A WGAN is fed these images so that it learns to create similar realistic images
- WGAN is more stable and requires less hyperparamter tuning
- The WGAN was able to generate realistic images which could be used to train classifiers to improve detection accuracy

- Difficult to train GANs
- Data Scarcity

# RESEARCH GAP

# RGB Images

# Malware Code not Failure opensource

# Analysis of work

# RESEARCH GAP IMPLEMENTATION

# RGB IMAGES

According Ke HE et al. to Converting into RGB images helps CNNs:

- find more complex patterns in the image
- shortens the distance between each pair of bytes because of increase in volume, which increases accuracy.

There were 2 steps used to create the images:

- Bytes code was converted to grey-scale images
- Then the grey-scale images were turned into RGB using intensity of pixels
  - 255 was divided into 3 ranges. If a pixel value was in the red division it was given a red color and so on.

### Input Image Pre-Processing



# INPUT IMAGES TO CNN

- CNNs are designed to process fixed-size input images.
- This necessitates standardizing malware images to a consistent size before feeding them into the network.

#### Challenges of Standardization

- Cropping leads to loss of spatial context which may be crucial for identifying patterns
- Cropping might remove important information at image corners
- Resizing can also discard important information related to malware features because of distortion

### **Image Cropping**





### **Image Resizing**





512 x 512

# IMAGE PREPROCESSING RESULTS

There were issues with input image preprocessing:

- Image cropping meant that crucial data was lost.
- Image scaling was a good approach.
- So we scaled the images to 3 different dimensions:
  - 128x128 pixels
  - 256x256 pixels
  - 512x512 pixels

# POOLING TECHNIQUES

Pooling techniques are used in NN for spatial downsampling, reducing dimensionality and capturing key features

### **Spatial Pyramid Pooling**

- SPP allows variable sized inputs to be fed into the CNN
- SPP divides the input into fixed-size regions at different levels and pooling is applied in each of these regions.
- The pooled output from each level is concatenated to produce a fixed size output

# RESULTS OF FINDINGS

- Malware images are very complex and contain a lot of data
- Using pooling on the malware images leads to loss of important information
- The network will not be able to capture and learn features from pooled images leading to degraded performance





# DAE & GAN IMPLEMENTATION

#### DAE Consists of two parts:

• An encoder that compresses the input into a lower-dimensional, A decoder that reconstructs the original input from this compressed representation.

#### A GAN consists of two parts:

 type of artificial neural network architecture consisting of two distinct networks, a generator and a discriminator, that are trained simultaneously through adversarial training

# DAE & GAN ISSUES

#### **IMPLEMENTATION HAD SEVERAL ISSUES:**

- Input image size is not defined in the paper, this resulted in high val\_loss and lower accuracy.
- RGB implementation was dubious in the paper.
- We tested out several dimensions of images all had little success:
  - 128x128 pixels
  - 256x256 pixels
  - 512x512 pixels
- Achieved only 15% accuracy on 1000 epochs.

### DATASET

### **Data Composition:**

It is taken from Microsoft Malware Classification Dataset on Kaggle.

### **Raw Data**

The hexadecimal representation of binary malware files, excluding the PE header for sterility.

### **Metadata Manifest**

Insights into the binary files' structure and behavior.

# DATASET DESCRIPTION

| Class | Name           | Туре              | Frequency |
|-------|----------------|-------------------|-----------|
| 1     | Ramnit         | Worm              | 1541      |
| 2     | Lollipop       | Adware            | 2478      |
| 3     | Kelihos_ver3   | Backdoor          | 2942      |
| 4     | Vundo          | Trojan            | 475       |
| 5     | Simda          | Backdoor          | 42        |
| 6     | Tracur         | Trojan Downloader | 751       |
| 7     | Kelihos_ver1   | Backdoor          | 398       |
| 8     | Obfuscator.ACY | obfuscate malware | 1228      |
| 9     | Gatak          | Backdoor          | 1013      |

# UPDATED PROPOSED SOLUTION

### Input Image Pre-Processing

.bytes code



Gray-scale Image



### Convolutional Neural Networks



### Generative Adversarial Networks Real **Image** Real Fake Random Noise **Discriminator** Generator **Generated Images**

## Work Flow



# TIMELINE



REC

# THANKYOU

# REFERENCES

[1] K. He and D. -S. Kim, "Malware Detection with Malware Images using Deep Learning Techniques," 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), Rotorua, New Zealand, 2019, pp. 95-102, doi: 10.1109/TrustCom/BigDataSE.2019.00022.

[2] D. Gibert, C. Mateu, and J. Planes, "HYDRA: A multimodal deep learning framework for malware classification," Computers & Security, vol. 95, p. 101873, Aug. 2020, doi: 10.1016/j.cose.2020.101873.

[5] A. Tekerek and M. M. Yapıcı, "A novel malware classification and augmentation model based on convolutional neural network," Computers & Security, vol. 112, p. 102515, Jan. 2022, doi: 10.1016/j.cose.2021.102515.

[6] V. S. Bhaskara and D. Bhattacharyya, "Emulating malware authors for proactive protection using GANs over a distributed image visualization of dynamic file behavior," arXiv (Cornell University), Jul. 2018, doi: 10.48550/arxiv.1807.07525.

## REFERENCES

[4] J. Y. Kim, S.-J. Bu, and S. B. Cho, "Zero-day malware detection using transferred generative adversarial networks based on deep autoencoders," Information Sciences, vol. 460–461, pp. 83–102, Sep. 2018, doi: 10.1016/j.ins.2018.04.092.

[3] Z. Chen, E. Brophy, and T. E. Ward, "Malware classification using static disassembly and machine learning," arXiv (Cornell University), Dec. 2021, doi: 10.48550/arxiv.2201.07649.