TD 17 : corrigé de 3 exercices

Exercice 19.19:

 \diamond Unicité. Soit $(l, l') \in K^2$ tel que f(l) = l et f(l') = l'.

Si $l \neq l'$, ||l - l'|| = ||f(l) - f(l')|| < ||l - l'||, ce qui est faux, donc l = l'.

 \diamond Existence.

[Il existe $l \in K$ tel que f(l) = l si et seulement si l'application $x \longmapsto ||f(x) - x||$ admet 0 comme minimum sur K. Ce changement de vocabulaire permet d'utiliser l'hypothèse de compacité.]

L'application $x \mapsto \|x - f(x)\|$ est continue sur K et K est compact, donc elle est bornée et elle atteint ses bornes. En particulier, il existe $a \in K$ tel que, pour tout $x \in K$, $(1) : \|x - f(x)\| \ge \|a - f(a)\|$.

Si $f(a) \neq a$, ||f(f(a)) - f(a)|| < ||f(a) - a|| ce qui est en contradiction avec (1) pour x = f(a), donc f(a) = a.

 \diamond Montrons que $x_n \xrightarrow[n \to +\infty]{} a$.

S'il existe $N \in \mathbb{N}$ tel que $x_N = a$, alors pour tout $n \geq N$, $x_n = a$, donc $x_n \xrightarrow[n \to +\infty]{} a$. On peut donc supposer que $x_n \neq a$ pour tout $n \in \mathbb{N}$.

Pour tout $n \in \mathbb{N}$, posons $d_n = d(x_n, a)$. Alors $d_{n+1} = d(f(x_n), f(a)) < d(x_n, a) = d_n$, donc la suite (d_n) est décroissante et minorée par 0. D'après le cours, il existe $d \in \mathbb{R}_+$ tel que $d_n \underset{n \to +\infty}{\longrightarrow} d$. Il reste à montrer que d = 0.

Raisonnons par l'absurde en supposant que d > 0.

K étant compact, il existe une application $\varphi: \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante et $b \in K$ tel que $x_{\varphi(n)} \underset{n \to +\infty}{\longrightarrow} b$.

D'une part $d_{\varphi(n)} \xrightarrow[n \to +\infty]{} d$ et d'autre part $d_{\varphi(n)} = d(x_{\varphi(n)}, a) \xrightarrow[n \to +\infty]{} d(b, a)$, par continuité de la distance. Par unicité de la limite, on en déduit que d = d(a, b). Ainsi, d(a, b) > 0 et $a \neq b$.

Alors $d_{\varphi(n)+1} \xrightarrow[n \to +\infty]{} d$ et $d_{\varphi(n)+1} = d(f(x_{\varphi(n)}), f(a)) \xrightarrow[n \to +\infty]{} d(f(b), f(a))$, car f est lipschitzienne donc continue. Ainsi, d = d(f(b), f(a)), mais $a \neq b$, donc d = d(f(b), f(a)) < d(a, b) = d: c'est impossible, ce qu'il fallait démontrer.

Exercice 19.22:

1°)

Soit $(M_n)_{n\in\mathbb{N}}$ une suite de points du graphe de f qui converge vers un point $(a,b)\in\mathbb{R}^2$. Pour tout $n\in\mathbb{N}$, il existe $x_n\in\mathbb{R}$ tel que $M_n=(x_n,f(x_n))$. Ainsi, $x_n\underset{n\to+\infty}{\longrightarrow} a$ et $f(x_n) \xrightarrow[n \to +\infty]{} b$, mais f est continue, donc $f(x_n) \xrightarrow[n \to +\infty]{} f(a)$. D'après l'unicité de la limite, b = f(a), donc (a, b) est un point du graphe de f. Ceci prouve que le graphe de f est fermé.

2°) Soit (x_n) une suite bornée de réels admettant une unique valeur d'adhérence notée a. Supposons que (x_n) ne converge pas vers a. Ainsi Il existe $\varepsilon > 0$ tel que $\forall N \in \mathbb{N} \ \exists n \geq N \ \|x_n - a\| \geq \varepsilon$.

 $\{n \in \mathbb{N}/\|x_n - a\| \ge \varepsilon\}$ n'est donc pas majoré. C'est une partie infinie de \mathbb{N} . On sait alors qu'il existe une unique bijection φ strictement croissante de \mathbb{N} dans cet ensemble. En particulier, pour tout $n \in \mathbb{N}$, $\|x_{\varphi(n)} - a\| \ge \varepsilon$.

La sous-suite $(x_{\varphi(n)})_{n\in\mathbb{N}}$ est bornée, donc d'après le théorème de Bolzano-Weierstrass, elle admet une valeur d'adhérence notée b. Il existe $\varphi': \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante telle que $x_{\varphi(\varphi'(n))} \underset{n \to +\infty}{\longrightarrow} b$. Pour tout $n \in \mathbb{N}$, $||x_{\varphi(\varphi'(n))} - a|| \ge \varepsilon$, donc en passant à la limite, on obtient que $||b - a|| \ge \varepsilon$.

Mais $(x_{\varphi(\varphi'(n))})$ est aussi une suite extraite de la suite (x_n) , donc b est aussi une valeur d'adhérence de la suite (x_n) . Ainsi b = a alors que ||b - a|| > 0. C'est impossible, donc $x_n \xrightarrow[n \to +\infty]{} a$.

3°) Soient $a \in \mathbb{R}$ et (x_n) une suite qui converge vers a.

Soit b une valeur d'adhérence de la suite $(f(x_n))$. Il existe $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante telle que $f(x_{\varphi(n)}) \xrightarrow[n \to +\infty]{} b$.

 $(x_{\varphi(n)}, f(x_{\varphi(n)})) \xrightarrow[n \to +\infty]{} (a, b)$. Ainsi (a, b) est la limite d'une suite d'éléments du graphe de f, or ce dernier est fermé, donc (a, b) est un élément du graphe. Ainsi, b = f(a). $(f(x_n))_{n \in \mathbb{N}}$ est une suite bornée, donc elle admet au moins une valeur d'adhérence et ce qui précède montre que cette valeur d'adhérence est unique et égale à f(a). D'après la question précédente, $(f(x_n))$ converge vers f(a). Ceci prouve que f est continue.

4°) Pour tout $x \in \mathbb{R}$, posons $f(x) = \begin{cases} \frac{1}{x} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$. On définit ainsi une application f de \mathbb{R} dans \mathbb{R} .

Notons $G = \{(x, \frac{1}{x})/x \neq 0\}$. Soit $(x_n, \frac{1}{x_n})$ une suite de G qui converge vers $(a, b) \in \mathbb{R}^2$.

Si a=0, alors $\left|\frac{1}{x_n}\right| \xrightarrow[n \to +\infty]{} +\infty$ ce qui est faux, donc $a \neq 0$ et $b=\frac{1}{a}$. Ainsi G est fermé. Le graphe de f est égal à $G \cup \{0\}$, donc il est fermé alors que f n'est pas continue.

Exercice 19.25:

 $1^{\circ})$

 \diamond Remarquons que φ est une forme linéaire. Ainsi, elle est continue si et seulement s'il existe $k \in \mathbb{R}_+$ tel que, pour tout $(u_n) \in E$, $|\varphi((u_n))| \le k ||(u_n)||$.

- \diamond Pour tout $(u_n) \in E$, $|\varphi((u_n))| \le \sum_{p=0}^{+\infty} |u_n| = ||(u_n)||_1$, donc φ est continue pour $||.||_1$
- et $\|\varphi\| \le 1$. De plus, lorsque (u_n) est la suite définie par $u_n = \begin{cases} 1 \text{ si } n = 0 \\ 0 \text{ si } n \ge 1 \end{cases}$,
- $1 = |\varphi((u_n))| \le ||\varphi|| ||(u_n)||_1 = ||\varphi||. \text{ Ainsi, } [||\varphi|| = 1]$
- $\Rightarrow \text{ Pour tout } (u_n) \in E, |\varphi((u_n))| \leq \sum_{p=0}^{+\infty} \frac{\|(u_n)\|_{\infty}}{2^p} = 2\|(u_n)\|_{\infty}, \text{ donc } \varphi \text{ est continue pour } \|.\|_{\infty} \text{ et } \|\varphi\| \leq 2.$

Soit $N \in \mathbb{N}^*$. Lorsque (u_n) est la suite définie par $u_n = \begin{cases} 1 & \text{si } n \leq N-1 \\ 0 & \text{si } n \geq N \end{cases}$

 $|\varphi((u_n))| = \sum_{n=0}^{N-1} \frac{1}{2^n} = 2(1 - \frac{1}{2^N}), \text{ donc } 2(1 - \frac{1}{2^N}) \le ||\varphi|| ||(u_n)||_{\infty} = ||\varphi||. \text{ Ainsi, en}$

faisant tendre N vers $+\infty$, on obtient que $\|\varphi\| \ge 2$, ce qui prouve que $\|\varphi\| = 2$.

2°) [Pour nier la propriété "il existe $k \in \mathbb{R}_+$ tel que, pour tout $(u_n) \in E$, $|\varphi((u_n))| \leq kN((u_n))$ ", il faut construire une norme N sur E qui soit "négligeable" devant φ .]

Pour tout $(u_n) \in E$, posons $N((u_n)) = \sum_{n=0}^{+\infty} \frac{|u_n|}{3^n}$. N est une norme sur E.

Supposons que φ est continue pour N. Ainsi, il existe $k \in \mathbb{R}_+$ tel que, pour tout $(u_n) \in E$, $|\varphi((u_n))| \leq kN((u_n))$.

Soit $M \in \mathbb{N}$. Lorsque (u_n) est la suite définie par $u_n = \begin{cases} 1 \text{ si } n = M \\ 0 \text{ si } n \neq M \end{cases}$, on obtient que

 $\frac{1}{2^M} \leq \frac{k}{3^M}$, donc, pour tout $M \in \mathbb{N}$, $(\frac{3}{2})^M \leq k$, ce qui signifie que la suite géométrique de raison $\frac{3}{2}$ est bornée. C'est faux, donc φ n'est pas continue pour N.