Laboratório 06 - Modelo 03 - M/M/1/kf - Cap . Finita

Teoria das Filas

-

Laboratório 06

_

Modelo 03 - M/M/1/kf - Capacidade Finita

Laboratório 06: Modelo 03 - M/M/1/Kf - Capacidade Finita//

Utilizando o sistema de comunicação esquematizado a seguir, temos 1 (um) servidor e três computadores (C_1 , C_2 , C_3) interligados através de serviços de dados (modens, fibra ótica etc.). Vamos utilizar o modelo de Fila 03 e o Kf = 6 para simular o comportamento do sistema com os dados fornecidos:

Dados do sistema:

- a = 110 msg/h (razão de chegada das msg no sistema)
- $ts_{m\'edio}$ (gerar 20 amostras de tempos do servidor (usando a distribuição exponencial) \rightarrow [$ts_1 = -\theta.ln(r_1)$, $ts_2 = -\theta.ln(r_2)$,, $ts_{20} = -\theta.ln(r_{20})$]
- $\theta = 8$ segundos
- Parâmetro de $C_1 \rightarrow ts = 2.0 s$
- Parâmetro de $C_2 \rightarrow ts = 4.0 s$
- Parâmetro de $C_3 \rightarrow ts = 12,15 s$

Laboratório 06: Modelo 03 - M/M/1/Kf - Capacidade Finita ///

Laboratório 06: Modelo 03 - M/M/1/Kf - Capacidade Finita//

- Com os resultados da simulação determinar qual é o computador mais rápido e comparar com os resultados do servidor?
- Compare a simulação do Modelo 01 com a simulação do Modelo 03.
- Elaborar os gráficos das variações de Tr e Lw com relação a razão de chegada "a"?

• Quais conclusões podemos chegar com os gráficos e os cálculos de Tr, , Lw, Ls,

Po, P_(n=2)?

Sugestão para a criação da tabela que vai gerar os gráficos

Simulação													
N: Simulação	a	TR-C1	Lw-C1	TR - C2	Lw-C2	TR - C3	Lw-C3	TR - C4	Lw-C4	TR SERV	Lw - SERV		
1	20												
2	40						vo s						
3	60						8						
4	80												
5	100												
6	120												
7	140				338		/45 Y	3.5		2	-		
8	160	6			(8)		A 3	(5)		0			
9	180										3	1	
10	200				- 3		85 - 5				9		
11	220				100		in a	3:0		s s			
12	240												
13	260												
14	280				-								
15	300				200		/4 V	31		27			
16	320	6			130		A 3	15		0			
17	340		1									3	
18	360	10 0		-			85 0			*			
19	380				88		set a			s s			
20	400												
21	420												
22	440						79						
23	460	1			388		(A) N	34		2	-		
24	480	10 0			- 0		8 3	100		6			
25	500		3								3		
26	520												

$$r = \frac{a}{\mu} = \rho$$
; $ts = \frac{1}{\mu}$

$$ts = \frac{1}{\mu}$$

$$aef = a.(1 - P_{kf}); \quad U = \frac{aef}{\mu}$$

K_f - n° de mensagens suportadas na Fila

$$P_0 = \begin{cases} \frac{\left(1 - \frac{a}{\mu}\right)}{\left(1 - \left(\frac{a}{\mu}\right)^{Kf+1}\right)}, & \text{para a} \neq \mu \\ \frac{1}{(Kf+1)}, & \text{para a} = \mu \end{cases}$$

$$Pn = \begin{cases} \left(\frac{a}{\mu}\right)^n \cdot \frac{\left(1 - \frac{a}{\mu}\right)}{\left(1 - \left(\frac{a}{\mu}\right)^{Kf+1}\right)}, & \text{para } a \neq \mu \\ \frac{1}{(Kf+1)}, & \text{para } a = \mu \end{cases}$$

$$Ls = \begin{cases} \left(\frac{r}{(1-r)}\right) - \left(\frac{(kf+1)}{(1-(r)^{kf+1})}\right) \cdot (r)^{kf+1} &, \text{ para } a \neq \mu \\ \frac{Kf}{2} &, \text{ para } a = \mu \end{cases}$$

$$Lw = \begin{cases} \left(\frac{r}{(1-r)}\right) - \left(\frac{r.(1+Kf.r^{Kf})}{(1-r^{kf}+1)}\right) & , \text{ para } a \neq \mu \\ \frac{Kf.(Kf-1)}{2.(Kf+1)} & , \text{ para } a = \mu \end{cases}$$

$$Tr = \begin{cases} \left(\frac{1}{\mu}\right) \cdot \left[\left(\frac{1}{(1-r)}\right) - \left(\frac{Kf \cdot r^{Kf}}{(1-r^{kf})}\right)\right] &, \text{ para } a \neq \mu \\ \frac{(Kf+1)}{2 \cdot \mu} &, \text{ para } a = \mu \end{cases}$$

