Identyfikacja i modelowanie statystyczne – projekt

Zasady realizacji i zakresy tematyczne projektów

Paweł Wachel

Ogólne zasady realizacji projektu

- 1. Projekty realizowane są w grupach (preferowana liczebność grupy 3 osoby (minimum 2 osoby, maksimum 4 osoby)
- 2. W ramach realizacji projektu należy:
 - dokonać **przeglądu literatury** oraz ew. innych źródeł (np. mniej formalnych odniesień internetowych)
 - przygotować oprogramowanie w wybranym języku programowania, umożliwiające wykonanie podstawowych symulacji zagadnień, których dotyczy projekt.
 - wersja podstawowa oprogramowania: konstruując oprogramowanie wykorzystać dostępne (gotowe) pakiety/biblioteki realizujące rozważane zagadnienia.
 - wersja rozszerzona oprogramowania: samodzielnie zaimplementować pro- ste wersje rozważanych podejść w celu dokładniejszego poznania/zobrazowania koncepcji leżącej u podstaw rozważanych technik.
 - **przygotować opracowanie pisemne**, w formie pliku *.pdf, w skład którego wej- dzie:
 - wstęp, rozumiany jako ogólny, nieformalny opis rozważanego problemu wraz z odniesieniami literaturowymi,
 - opis konstrukcji i interpretacja algorytmów rozważanych w ramach realizacji projektu,
 - dyskusja przykładowych zastosowań omawianych technik,
 - realizacja i opis przykładów numerycznych omawianych algorytmów,
 - dyskusja zalet i wad rozważanych technik oraz ew. dyskusja podejść pokre- wnych (modyfikacji), opracowanych w celu wyeliminowania ww. ograniczeń.
 - **przygotować prezentację** multimedialną na temat technik i algorytmów oma- wianych w projekcie.
 - przedstawić prezentację na forum grupy zajęciowej oraz wziąć udział w dyskusji dot. omawianych zagadnień.

Zakres tematyczny projektów

1. Rozwinięcia ortogonalne w przetwarzaniu i kompresji sygnałów jednowymiarowych

Literatura wprowadzająca:

- [1] Aristidi, Eric. "Representation of signals as series of orthogonal functions." EAS Publications Series 78 (2016): 99-126.
- [2] Chatterjee, Anindya. "An introduction to the proper orthogonal decomposition." Current science (2000): 808-817.

2. Rozwinięcia ortogonalne w przetwarzaniu i kompresji obrazów

Literatura wprowadzająca:

- [1] Image Approximation with Orthogonal Bases MathWorks
- [2] Aristidi, Eric. "Representation of signals as series of orthogonal functions." EAS Publications Series 78 (2016): 99-126.

3. Techniki Empirical Mode Decomposition – algorytmy i ich zastowania

Literatura wprowadzająca:

- [1] Rilling, Gabriel, Patrick Flandrin, and Paulo Goncalves. "On empirical mode decomposition and its algorithms." IEEE-EURASIP workshop on nonlinear signal and image processing. Vol. 3. No. 3. Grado: IEEER, 2003.
- [2] Huang, Norden E. "Review of empirical mode decomposition." Wavelet Applications VIII. Vol. 4391. SPIE, 2001.

4. Techniki *Dynamic Time Warping* – algorytmy i ich zastowania

- 1 https://databricks.com/blog/2019/04/30/understanding-dynamic-time-warping.html
- [2] Müller, Meinard. "Dynamic time warping." Information retrieval for music and motion (2007): 69-84.
- [3] Sempena, Samsu, Nur Ulfa Maulidevi, and Peb Ruswono Aryan. "Human action recognition using dynamic time warping." Proceedings of the 2011 International Conference on Electrical Engineering and Informatics. IEEE, 2011.

5. Modelowanie dyfuzji (informacji) w sieciach społecznych/grafach

Literatura wprowadzająca:

- [1] Gomez-Rodriguez, Manuel, Jure Leskovec, and Andreas Krause. "Inferring networks of diffusion and influence." ACM Transactions on Knowledge Discovery from Data (TKDD) 5.4 (2012): 1-37.
- [2] https://www.math.fsu.edu/~bertram/lectures/Diffusion.pdf

6. Modelowanie układów typu Single Pixel Camera

Literatura wprowadzająca:

- [1] Edgar, Matthew P., Graham M. Gibson, and Miles J. Padgett. "Principles and prospects for single-pixel imaging." Nature photonics 13.1 (2019): 13-20.
- [2] Duarte, Marco F., et al. "Single-pixel imaging via compressive sampling." IEEE signal processing magazine 25.2 (2008): 83-91.
- [3] github: single-pixel-camera

7. Metody testowania generatorów wielkości (pseudo-) losowych

Literatura wprowadzająca:

- [1] Zieliński R., Wieczorkowski R., Komputerowe generatory liczb losowych, WNT, Warszawa 1997.
- [2] Soto, Juan. "Statistical testing of random number generators." Proceedings of the 22nd national information systems security conference. Vol. 10. No. 99. Gaithersburg, MD: NIST, 1999.
- [3] L'Ecuyer, Pierre. Testing random number generators. Institute of Electrical and Electronics Engineers (IEEE), 1992.

8. Metody modelowania funkcji gęstości prawdopodobieństwa i ich zastosowania w uczeniu maszynowym

- [1] Chen, Yen-Chi. "A tutorial on kernel density estimation and recent advances." Biostatistics & Epidemiology 1.1 (2017): 161-187.
- [2] Magdon-Ismail, Malik, and Amir Atiya. "Neural networks for density estimation." Advances in Neural Information Processing Systems 11 (1998).
- [3] Wand, Matt P., and M. Chris Jones. Kernel smoothing. CRC press, 1994.

9. Metoda Najmniejszych Kwadratów – systematyka algorytmów i ich zastosowań, rys historyczny

Literatura wprowadzająca:

- [1] Stigler, Stephen M. "Gauss and the invention of least squares." the Annals of Statistics (1981): 465-474.
- [2] Nievergelt, Yves. "A tutorial history of least squares with applications to astronomy and geodesy." Journal of Computational and Applied Mathematics 121.1-2 (2000): 37-72.

10. Techniki generacji liczb pseudolosowych z rozkładu jednostajnego

Literatura wprowadzająca:

- [1] Barker, Elaine B., and John Michael Kelsey. Recommendation for random number generation using deterministic random bit generators (revised). Washington, DC, USA: US Department of Commerce, Technology Administration, National Institute of Standards and Technology, Computer Security Division, Information Technology Laboratory, 2007.
- [2] L'Ecuyer, Pierre. "Random numbers for simulation." Communications of the ACM 33.10 (1990): 85-97.

11. Identyfikacja nieliniowych systemów dynamicznych z wykorzystaniem rekurencyjnych sieci neuronowych

Literatura wprowadzająca:

- [1] Lipton, Zachary C., John Berkowitz, and Charles Elkan. "A critical review of recurrent neural networks for sequence learning." arXiv preprint arXiv:1506.00019 (2015).
- [2] Yu, Yong, et al. "A review of recurrent neural networks: LSTM cells and network architectures." Neural computation 31.7 (2019): 1235-1270.

12. Modelowanie Monte Carlo: konstrukcja, zastosowania i rys historyczny

- [1] Raychaudhuri, Samik. "Introduction to monte carlo simulation." 2008 Winter simulation conference. IEEE, 2008.
- [2] Zio, Enrico. "Monte carlo simulation: The method." The Monte Carlo simulation method for system reliability and risk analysis. Springer, London, 2013. 19-58.

13. Algorytmy redukcji wymiaru danych wielowymiarowych

Literatura wprowadzająca:

- [1] Sorzano, Carlos Oscar Sánchez, Javier Vargas, and A. Pascual Montano. "A survey of dimensionality reduction techniques." arXiv preprint arXiv:1403.2877 (2014).
- [2] Gisbrecht, Andrej, and Barbara Hammer. "Data visualization by nonlinear dimensionality reduction." Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 5.2 (2015): 51-73.

14. Modelowanie układów dynamicznych o własnościach chaotycznych

Literatura wprowadzająca:

- [1] Oestreicher, Christian. "A history of chaos theory." Dialogues in clinical neuroscience 9.3 (2007): 279.
- [2] Devaney, Robert L. An introduction to chaotic dynamical systems. CRC press, 2018.

15. Zadania i algorytmy optymalizacji wypukłej w modelowaniu statystycznym

- [1] Boyd, Stephen, Stephen P. Boyd, and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.
- [2] Mattingley, John, and Stephen Boyd. "Real-time convex optimization in signal processing." IEEE Signal processing magazine 27.3 (2010): 50-61.