

The concrete theory of numbers: initial numbers and wonderful properties of numbers repunit

Tarasov, B. V.*

February 5, 2008

Abstract

In this work initial numbers and repunit numbers have been studied. All numbers have been considered in a decimal notation. The problem of simplicity of initial numbers has been studied. Interesting properties of numbers repunit are proved: $\gcd(R_a, R_b) = R_{\gcd(a,b)}$; $R_{ab}/(R_a R_b)$ is an integer only if $\gcd(a, b) = 1$, where $a \geq 1, b \geq 1$ are integers. Dividers of numbers repunit, are researched by a degree of prime number.

**Devoted to the tercentenary from the date of birth (4/15/1707)
of Leonhard Euler**

1 Introduction

Let $x \geq 0, n \geq 0$ be integers. An integer N , which record consists from n records of number x , we shall designate by

$$N = \{x\}_n = x \dots x, n > 0. \quad (1)$$

For $n = 0$ it is received $\{x\}_0 = \emptyset$ an empty record. For example, $\{10\}_{31} = 1010101, \{10\}_0 1 = 1$, etc.

Palindromic numbers of a kind

$$E_{n,k} = \{1\{0\}_k\}_n 1, \quad (2)$$

where $n \geq 0, k \geq 0$ we will name initial numbers. We will notice that $E_{0,k} = 1$ at any $k \geq 0$.

Numbers repunit(see[2, 3, 4]) are natural numbers, which records consist of units only, i.e. by definition

$$R_n = E_{n-1,0}, \quad (3)$$

where $n \geq 1$.

In decimal notation the general formula for numbers repunit is

$$R_n = (10^n - 1)/9, \quad (4)$$

* Tarasov, B. V. The concrete theory of numbers: initial numbers and wonderful properties of numbers repunit. MSC 11A67+11B99. ©2007 Tarasov, B. V., independent researcher.

where $n = 1, 2, 3, \dots$.

There are known only five prime repunit for $n = 2, 19, 23, 317, 1031$.

Known problem ((Prime repunit numbers[3])). *Whether exists infinite number of prime numbers repunit ?*

Will we use designations further :

$(a, b) = \gcd(a, b)$ the greatest common divider of integers $a > 0, b > 0$.
 p, q odd prime numbers.

If it is not stipulated specially, the integer positive numbers are considered.

2 Initial numbers

Let's consider the trivial properties of initial numbers.

Theorem 1. *Following trivial statements are fair :*

(1) *General formula of initial numbers is*

$$E_{n,k} = \frac{R_{(k+1)(n+1)}}{R_{k+1}} = \frac{10^{(k+1)(n+1)} - 1}{10^{k+1} - 1}. \quad (5)$$

(2) *For $k \geq 0, n \geq m \geq 1$ if $n + 1 \equiv 0 \pmod{(m + 1)}$, then $(E_{n,k}, E_{m,k}) = E_{m,k}$.*

(3) *For $k \geq 0, n > m \geq 1$ if integer $s \geq 1$, exists such that $n + 1 \equiv 0 \pmod{(s + 1)}, m + 1 \equiv 0 \pmod{(s + 1)}$, then $(E_{n,k}, E_{m,k}) \geq E_{s,k} > 1$.*

(4) *For $k \geq 0, n > m \geq 1$ $(E_{n,k}, E_{m,k}) = 1$ when and only then, $(n + 1, m + 1) = 1$.*

Proof. 1) Properties (1)–(3) are obvious.

2) The Proof of property (4). **Necessity.** Let

$(E_{n,k}, E_{m,k}) = 1$ and $(n + 1, m + 1) = s > 1, s - 1 \geq 1$. From property (3) of the theorem follows that $(E_{n,k}, E_{m,k}) \geq E_{s-1,k} = \{1\{0\}_k\}_{s-1}1 > 1$. Appears the contradiction .

Sufficiency of property (4). Let $(n + 1, m + 1) = 1$, then will be integers $a > 0, b > 0$, such that either $a(n + 1) = b(m + 1) + 1$

or $b(m + 1) = a(n + 1) + 1$. Let's assume, that $(E_{n,k}, E_{m,k}) = d > 1$.

a) Let $a(n + 1) = b(m + 1) + 1$, then $E_{b(m+1),k} = E_{a(n+1)-1,k} = (10^{a(n+1)(k+1)} - 1)/(10^{k+1} - 1) \equiv 0 \pmod{E_{n,k}} \equiv 0 \pmod{d}$.

On the other hand $E_{b(m+1),k} = (10^{(k+1)\{b(m+1)+1\}} - 1)/(10^{k+1} - 1) = ((10^{b(m+1)(k+1)} - 1)/(10^{k+1} - 1)) \cdot 10^{k+1} + 1 \equiv$

$\equiv 1 \pmod{E_{m,k}} \equiv 1 \pmod{d}$. Appears the contradiction.

b) Let $b(m + 1) = a(n + 1) + 1$, then $E_{a(n+1),k} = E_{b(m+1)-1,k} = (10^{b(m+1)(k+1)} - 1)/(10^{k+1} - 1) \equiv 0 \pmod{E_{m,k}} \equiv 0 \pmod{d}$.

On the other hand $E_{a(n+1),k} = (10^{(k+1)\{a(n+1)+1\}} - 1)/(10^{k+1} - 1) = ((10^{a(n+1)(k+1)} - 1)/(10^{k+1} - 1)) \cdot 10^{k+1} + 1 \equiv$

$\equiv 1 \pmod{E_{n,k}} \equiv 1 \pmod{d}$. Have received the contradiction. \square

3 Numbers repunit

Let's consider trivial properties of numbers repunit.

Theorem 2. Following trivial statements are fair :

- (1) The number R_n is prime only if n number is prime.
- (2) If $p > 3$ all prime dividers of number R_p look like $1 + 2px$ where $x \geq 1$ is integer.
- (3) $(R_a, R_b) = 1$ if and only if $(a, b) = 1$.

Proof. Property (1) of theorem is proved in ([2, 3]), property (2) is proved in ([1]), as exercise. Property (3) is the corollary of the theorem 1. \square

Theorem 3. $(R_a, R_b) = R_{(a,b)}$, where $a \geq 1, b \geq 1$ are integers.

Proof. Validity of the theorem for $(a, b) = 1$ follows from property (3) of theorem 2. Let $(a, b) = d > 1$, where $a = a_1d, b = b_1d, (a_1, b_1) = 1$. Let's consider equations

$$R_a = R_d \cdot \{10^{d(a_1-1)} + \dots + 10^d + 1\},$$

$$R_b = R_d \cdot \{10^{d(b_1-1)} + \dots + 10^d + 1\}.$$

Let

$$A = 10^{d(a_1-1)} + \dots + 10^d + 1,$$

$$B = 10^{d(b_1-1)} + \dots + 10^d + 1.$$

Let's assume, that $(A, B) > 1$, and q is a prime odd number such that

$$A \equiv 0 \pmod{q}, B \equiv 0 \pmod{q}. \quad (6)$$

If $q = 3$, then $10^t \equiv 1 \pmod{q}$ for any integer $t \geq 1$. Then from (6) it follows that $a_1 \equiv b_1 \equiv 0 \pmod{q}$. Have received the contradiction.

Thus, $q > 3$. Then there exists an index d_{min} , to which the number 10^d belongs on the module q .

$$(10^d)^{d_{min}} \equiv 1 \pmod{q},$$

where $d_{min} \geq 1$.

If $d_{min} = 1$, then it follows from (6) that $a_1 \equiv b_1 \equiv 0 \pmod{q}$. Have received the contradiction. Hence $d_{min} > 1$. As $R_a \equiv R_b \equiv 0 \pmod{q}$, then $(10^d)^{a_1} \equiv 1 \pmod{q}$ and $(10^d)^{b_1} \equiv 1 \pmod{q}$.

Then $a_1 \equiv b_1 \equiv 0 \pmod{d_{min}}$. Have received the contradiction. \square

Theorem 4. Let $p > 3$ be a prime number, $k \geq t \geq 1, t \geq s \geq 1$ integer numbers. Then

$$\gcd(R_{p^k}/R_{p^t}, R_{p^s}) = 1. \quad (7)$$

Proof. Let's consider expression

$$A = R_{p^k}/R_{p^t} = (10^{p^t})^{p^{k-t}-1} + (10^{p^t})^{p^{k-t}-2} + \dots + 10^{p^t} + 1.$$

If $(A, R_{p^s}) > 1$, then the prime number q exists such that

$A \equiv 0 \pmod{q}$ $R_{p^s} \equiv 0 \pmod{q}$. Hence $10^{p^t} \equiv 1 \pmod{q}$, then $A \equiv p^{k-t} \equiv 0 \pmod{q}$, $p = q = 3$. Have received the contradiction, because $p > 3$. \square

Theorem 5. Let $a \geq 1, b \geq 1$ are integers, then the following statements are true :

(1) If $(a, b) = 1$, then

$$\gcd(R_{ab}, R_a R_b) = R_a R_b. \quad (8)$$

(2) If $(a, b) > 1$, then

$$R_a R_b / R_{(a,b)} \leq \gcd(R_{ab}, R_a R_b) < R_a R_b. \quad (9)$$

Proof. 1) Let $(a, b) = 1$, then $(R_a, R_b) = R_{(a,b)} = 1$,

$R_{ab} = R_a X = R_b Y, X = c R_b$, where $c \geq 1$ is integer. $R_{ab} = c R_a R_b$.

2) Let $(a, b) = d > 1, a = a_1 d, b = b_1 d, (a_1, b_1) = 1, a_1 \geq 1, b_1 \geq 1$.

As $\gcd(R_a, R_b) = R_{(a,b)}$, we receive equality

$$R_a = R_{(a,b)} X, R_b = R_{(a,b)} Y, \quad (10)$$

where $(X, Y) = 1$.

Further, $R_{ab} = R_a A = R_b B = X A R_{(a,b)} = Y B R_{(a,b)}, X A = Y B, A = Y z, B = X z, z \geq 1$ is integer. Then $R_{ab} = X Y R_{(a,b)} z$,

$R_{ab} = z R_a R_b / R_{(a,b)}$. We have proved, that

$R_a R_b / R_{(a,b)} \leq \gcd(R_{ab}, R_a R_b)$.

Let's assume, that $\gcd(R_{ab}, R_a R_b) = R_a R_b$, then $R_{ab} = z R_a R_b$, where $z \geq 1$ is integer. Let's consider equalities

$$R_{ab} = R_a A = R_b B,$$

where

$$A = 10^{a(b-1)} + 10^{a(b-2)} + \dots + 10^a + 1,$$

$$B = 10^{b(a-1)} + 10^{b(a-2)} + \dots + 10^b + 1.$$

Since $A = R_b z, B = R_a z, 10^a \equiv 1 \pmod{R_{(a,b)}}$,

$10^b \equiv 1 \pmod{R_{(a,b)}}$, then $A \equiv B \equiv 0 \pmod{R_{(a,b)}}$, hence $a \equiv b \equiv 0 \pmod{R_{(a,b)}}$.

Thus, comparison $(a, b) \equiv 0 \pmod{R_{(a,b)}}$ or $d \equiv 0 \pmod{R_d}$ is fair, that contradicts an obvious inequality

$$(10^x - 1)/9 > x, \quad (11)$$

where $x > 1$ is real. \square

({★} The Important corollary of the theorem 5).

Number $R_{ab}/(R_a R_b)$ is integer when and only when $(a, b) = 1$, where $a \geq 1, b \geq 1$ are integers.

Let's quote some trivial statements for numbers repunit.

Lemma 1. If $a = 3^n b, (b, 3) = 1$, then

$$R_a \equiv 0 \pmod{3^n}, \text{ but } R_a \not\equiv 0 \pmod{3^{(n+1)}}. \quad (12)$$

Proof. If $n = 1$, then $R_a = R_3B$, where $B = 10^{3(b-1)} + \dots + 10^3 + 1$, $R_3 \equiv 0 \pmod{3}$, $B \equiv b \not\equiv 0 \pmod{3}$. Thus, $R_a \equiv 0 \pmod{3}$, but $R_a \not\equiv 0 \pmod{3^2}$.

Let comparisons (12) be proved for $n \leq k - 1$. We shall consider $a = 3^k b$, $(b, 3) = 1$. Then $R_a = R_{3^{k-1}b}A$, where $A = 10^{3^{k-1}b^2} + 10^{3^{k-1}b} + 1$.

$R_{3^{k-1}b} \equiv 0 \pmod{3^{k-1}}$, but $R_{3^{k-1}b} \not\equiv 0 \pmod{3^k}$, $A \equiv 0 \pmod{3}$, but $A \not\equiv 0 \pmod{3^2}$. \square

Lemma 2. If $n \geq 0$ is integer, then

$$r_n = 10^{11^n} + 1 \equiv 0 \pmod{11^{n+1}}, \text{ but } r_n \not\equiv 0 \pmod{11^{n+2}}. \quad (13)$$

Proof. $r_0 = 11 \equiv 0 \pmod{11}$, but $r_0 = 11 \not\equiv 0 \pmod{11^2}$.

$r_1 = 10^{11} + 1 \equiv 0 \pmod{11^2}$, but $r_1 \not\equiv 0 \pmod{11^3}$.

Let's make the inductive assumption, that formulas (13) are proved for $n \leq k - 1$, where $k - 1 \geq 1$, $k \geq 2$. Let $n = k$, then

$r_k = 10^{11^k} + 1 = (10^{11^{k-1}})^{11} + 1 = r_{k-1}A$, where

$$\begin{aligned} A = & 10^{11^{k-1}10} - 10^{11^{k-1}9} + 10^{11^{k-1}8} - 10^{11^{k-1}7} + 10^{11^{k-1}6} - \\ & - 10^{11^{k-1}5} + 10^{11^{k-1}4} - 10^{11^{k-1}3} + 10^{11^{k-1}2} - 10^{11^{k-1}} + 1. \end{aligned} \quad (14)$$

Since, due to the inductive assumption $10^{11^{k-1}} \equiv -1 \pmod{11^k}$, where $k \geq 2$, then $A \equiv 11 \pmod{11^k}$. Then $A \equiv 0 \pmod{11}$, but $A \not\equiv 0 \pmod{11^2}$. Thus, we receive, that $r_k \equiv 0 \pmod{11^{k+1}}$, but $r_k \not\equiv 0 \pmod{11^{k+2}}$. \square

Lemma 3. For an integer $a \geq 1$, the following statements are true :

(1) If a is odd, then $R_a \not\equiv 0 \pmod{11}$.

(2) If $a = 2(11^n)b$, $(b, 11) = 1$, then

$$R_a \equiv 0 \pmod{11^{n+1}}, \text{ but } R_a \not\equiv 0 \pmod{11^{n+2}}. \quad (15)$$

Proof. If a is odd, then $R_a \equiv 1 \pmod{11}$. If $a = 2(11^n)b$, $(b, 11) = 1$, then $R_a = ((10^{2(11^n)})^b - 1)/9 = R_{11^n} \cdot r_n \cdot A$, where $r_n = 10^{11^n} + 1$, $A = 10^{2(11^n)(b-1)} + \dots + 10^{2(11^n)} + 1$. $R_{11^n} \not\equiv 0 \pmod{11}$, $A \equiv b \not\equiv 0 \pmod{11}$. Then validity of the statement (2) of lemma 3 follows from lemma 2. \square

($\{\star\}$) The assumption: the general formula for $\gcd(R_{ab}, R_a R_b)$.
If $a \geq 1$, $b \geq 1$ are integers, $d = (a, b)$, where $d = 3^L \cdot 11^S \cdot c$, $(c, 3) = 1$, $(c, 11) = 1$, $L \geq 0$, $S \geq 0$, then equalities are true :
— if c is an odd number, then

$$\gcd(R_{ab}, R_a R_b) = ((R_a R_b)/R_{(a,b)}) \cdot 3^L, \quad (16)$$

— if c is an even number, then

$$\gcd(R_{ab}, R_a R_b) = ((R_a R_b)/R_{(a,b)}) \cdot 3^L \cdot 11^S. \quad (17)$$

Let's give another two obvious statements in which divisors of numbers repunit are studied, as degrees of prime number.

Lemma 4. If p, q are prime numbers and $R_p \equiv 0 \pmod{q}$, but $R_p \not\equiv 0 \pmod{q^2}$, then statements are true :

- (1) For any integer r , $0 < r < q$, $R_{pr} \not\equiv 0 \pmod{q^2}$.
- (2) For any integer n , $n \geq 1$, $R_{p^n} \not\equiv 0 \pmod{q^2}$.

Proof. 1) $R_{pr} = R_p \cdot \hat{R}_{pr}$, where $\hat{R}_{pr} = 10^{p(r-1)} + 10^{p(r-2)} + \dots + 10^p + 1$. If $R_{pr} \equiv 0 \pmod{q^2}$, then $\hat{R}_{pr} \equiv 0 \pmod{q}$, $r \equiv 0 \pmod{q}$. Have received the contradiction.

2) If $n > 1$ found such that $R_{p^n} \equiv 0 \pmod{q^2}$, then from (7) follows $(R_{p^n}/R_p, R_p) = 1$. Have received the contradiction. \square

Lemma 5. If p, q are prime numbers and $R_p \equiv 0 \pmod{q}$, then $R_{pq^n} \equiv 0 \pmod{q^{n+1}}$.

Proof. Since $R_{pq} = R_p \cdot \hat{R}_{pq}$, where $\hat{R}_{pq} = 10^{p(q-1)} + 10^{p(q-2)} + \dots + 10^p + 1$, then $\hat{R}_{pq} \equiv 0 \pmod{q}$, $R_{pq} \equiv 0 \pmod{q^2}$.

Let's assume that $R_{pq^{n-1}} \equiv 0 \pmod{q^n}$. Then

$$\begin{aligned} R_{pq^n} &= R_{pq^{n-1} \cdot q} = R_{pq^{n-1}} \cdot \hat{R}_{pq^{n-1} \cdot q}, \text{ where} \\ \hat{R}_{pq^{n-1} \cdot q} &= 10^{pq^{n-1} \cdot (q-1)} + 10^{pq^{n-1} \cdot (q-2)} + \dots + 10^{pq^{n-1}} + 1 \equiv 0 \pmod{q}, \\ R_{pq^n} &\equiv 0 \pmod{q^{n+1}}. \end{aligned} \quad \square$$

4 Problem of simplicity of initial numbers

Let's consider the problem of simplicity of initial numbers $E_{n,k}$, where $k \geq 0$, $n \geq 0$.

If $k = 0$, then $E_{n,0} = R_{n+1}$. Thus, simplicity of numbers $E_{n,0}$ – is known problem of prime numbers repunit R_p , where p is prime number.

If $n = 1$, then $E_{1,k} = 1\{0\}_k 1 = 10^{k+1} + 1$. As number $E_{1,k}$ can be prime only when $k+1 = 2^m$, $m \geq 0$ is integer, then we come to the known problem of simplicity of the generalized Fermat numbers $f_m(a) = a^{2^m} + 1$ for $a = 10$. Generalized Fermat numbers have been define by Ribenboim [5] in 1996, as numbers of the form $f_n(a) = a^{2^n} + 1$, where $a > 2$ is even.

The generalized Fermat numbers $f_n(10) = 10^{2^n} + 1$ for $n \leq 14$ are prime only if $n = 0, 1$. $f_0(10) = 11$, $f_1(10) = 101$.

Theorem 6. Let $n > 1$, $k > 0$. If any of conditions

- (1) n number is odd,
- (2) k number is odd,
- (3) $n+1 \equiv 0 \pmod{3}$,
- (4) $(n+1, k+1) = 1$,

is true, then number $E_{n,k}$ is compound.

Proof. 1) $n+1 = 2t$, $t > 1$. Then $E_{n,k} = E_{t-1,k} \cdot (10^{t(k+1)} + 1)$, where $t > 1$, $t-1 \geq 1$. As $E_{t-1,k} > 1$, then $E_{n,k}$ is compound number.

2) Let k be an odd number. Due to the proved condition (1) we count that number $(n+1)$ is odd. $k+1 = 2t \geq 2$, $t \geq 1$. Further,

$$E_{n,k} = E_{n,t-1} \cdot ((10^{(n+1)t} + 1)/(10^t + 1)),$$

where $n > 1$, $t-1 \geq 0$, $E_{n,t-1} > 1$, number $(10^{(n+1)t} + 1)/(10^t + 1) > 1$ is integer.

3) If $n + 1 \equiv 0 \pmod{3}$, then $E_{n,k} \equiv 0 \pmod{3}$, $E_{n,k} > 11$.

4) Let $n > 1$, $k \geq 1$, $(n + 1, k + 1) = 1$, then

$$E_{n,k} = R_{(n+1)(k+1)} / R_{(k+1)} = R_{(n+1)} \cdot (R_{(n+1)(k+1)} / (R_{k+1} \cdot R_{n+1})).$$

Due to the theorem 5 number $z = R_{(n+1)(k+1)} / (R_{k+1} \cdot R_{n+1})$ is integer.
Further,

$$z > (10^{(n+1)(k+1)} - 1) / (10^{n+k+2}) = 10^{nk-1} - 1 / (10^{n+k+2}), nk - 1 \geq 1, \\ \text{thus, } z > 1. \quad \square$$

Question of simplicity of initial numbers under conditions, when
 $(n + 1, k + 1) > 1$, $(n + 1)$ number is odd, $(k + 1)$ number is odd,
 $n + 1 \not\equiv 0 \pmod{3}$, remains open.

In particular, it is interesting to considerate numbers $E_{p-1,p-1} = R_{p^2} / R_p$,
where p is prime number. For $p < 100$ numbers $E_{p-1,p-1}$ are compound.

5 The open problems of numbers repunit

The known problem of numbers repunit remains open.

Problem 1 ((Prime repunit numbers[3])). *Whether there exists infinite number of prime numbers R_p , p -prime number ?*

Problem 2. *Whether all numbers R_p , p -prime number, are numbers free from squares ?*

The author has checked up for $p < 97$, that numbers R_p are free from squares. Another following open questions are interesting :

Problem 3. *If number R_p is free from squares, where $p > 3$ is prime number, whether will number n , be found such what number R_{p^n} contains a square ?*

Problem 4. *p is prime number, whether there are simple numbers of a kind $E_{p-1,p-1} = R_{p^2} / R_p$?*

The author has checked up to $p \leq 127$, that numbers $E_{p-1,p-1}$ is compound. It is known, that R_p divide by number $(2p + 1)$ for prime numbers $p = 41, 53$, R_p divide by number $(4p + 1)$ for prime numbers $p = 13, 43, 79$. There appears a question :

Problem 5. *Whether there is infinite number of prime numbers p , such that R_p divide by number $(2p + 1)$ or is number $(4p + 1)$?*

(The remark). *If the number $p > 5$ Sophie Germain prime (i.e. number $2p + 1$ is prime too), then either R_p or $R_p^+ = (10^p + 1) / 11$ divide by number $(2p + 1)$.*

6 The conclusion

Leonhard Euler, professor of the Russian Academy of sciences since 1731, **has paid mathematics forever !** Euler's invisible hand directs the development of concrete mathematics for more than 200 years.

Euler's titanic work which has opened a way to freedom to mathematical community, admires. The pleasure caused by Euler's works warms hearts.

References

- [1] Vinogradov I. M. *Osnovy teorii chisel.* - M. : Nauka, 1981.
- [2] Ronald L. Graham, Donald E. Knuth, Oren Patashnik, *Concrete Mathematics : A Foundation for Computer Science, 2nd edition* (Reading, Massachusetts: Addison-Wesley), 1994.
- [3] Weisstein, Eric W. "Repunit." From MathWorld—A Wolfram Web Resource.
—<http://mathworld.wolfram.com/Repunit.html/>.
©1999—2007 Wolfram Research, Inc.
- [4] *The Prime Glossary repunit.*
—<http://primes.utm.edu/glossary/page.php?sort=Repunit/>.
- [5] Ribenboim, P. "Fermat Numbers" and "Numbers $k \times 2^n \pm 1$." 2.6 and 5.7 in *The New Book of Prime Number Records*. New York: Springer-Verlag, pp. 83-90 and 355-360, 1996.

Institute of Thermophysics, Siberian Branch of RAS
Lavrentyev Ave., 1, Novosibirsk, 630090, Russia
E-mail: tarasov@itp.nsc.ru

Independent researcher,
E-mail: tarasov-b@mail.ru
