Lecture 3 – Thermal equilibrium & temperature

LAST TIME: we considered closed (or isolated) systems – no interactions with surroundings, fixed *U* and *N*

TODAY: What happens when two systems can exchange energy?

<u>Thermal contact</u> – two systems are brought into contact such that they interact weakly and can exchange energy (no exchange of particles, yet)

Take two systems A and B with N_A , U_A and N_B , U_B brought into thermal contact. What is the multiplicity of the combined system A + B?

What does Ω_{tot} look like for systems in thermal contact?

Take an Einstein solid as an example. $\Omega(U) \sim U^N$ is a very rapidly increasing function of U

The product $\Omega_{A}(U_{A})\Omega_{B}(U-U_{A})$ is very sharply peaked – peak at most likely macrostate of total combined system A + B

Question 1: Take two Einstein solids with N_A , U_A and N_B , U_B in thermal contact. At what energy is the product $\Omega_A(U_A)\Omega_B(U-U_A)$ peaked?

Hint: it's easier to consider $\ln\Omega$. If $\frac{d\Omega}{dU}=0$, then $\frac{d\ln\Omega}{dU}=\frac{1}{\Omega}\frac{d\Omega}{dU}=0$

 $\ln\Omega_A(U_A)\Omega_B(U-U_A) = \ln\Omega_A(U_A) + \ln\Omega_B(U-U_A)$, so we're looking for energy \overline{U}_A at which

$$\frac{\partial}{\partial U_{A}} \ln \Omega_{A}(U_{A}) + \frac{\partial}{\partial U_{A}} \ln \Omega_{B}(U - U_{A}) = 0$$

Since $\Omega(U) \sim U^N$ it follows that

$$\frac{N_A}{\overline{U}_A} - \frac{N_B}{U - \overline{U}_A} = 0$$
, $\frac{U}{\overline{U}_A} - 1 = \frac{N_B}{N_A}$, so $\overline{U}_A = \frac{U}{1 + N_B/N_A}$ and $\overline{U}_B = \frac{U}{1 + N_A/N_B}$

Notice that this means:

$$\frac{\overline{U}_A}{N_A} = \frac{U}{N_A + N_B} = \frac{\overline{U}_B}{N_B}$$

i.e. in the most likely macrostate, the <u>average energy per oscillator</u> in the two systems is equal. Also, if $N_A = N_B$, then $\overline{U}_A = U/2 = \overline{U}_B$.

How sharp is the multiplicity around this peak?

Look at deviations around the peak (assume for simplicity $N_A = N_B$ so $\overline{U}_A = U/2$): $U_A = \overline{U}_A + \delta U$

$$\Omega(U) = \left(\frac{eU}{N\hbar\omega}\right)^{N} \text{ for an Einstein solid}$$

So,

$$\begin{split} \ln\Omega_{A}(U_{A}) + \ln\Omega_{B}(U - U_{A}) &= 2N + N \ln \frac{\overline{U}_{A} + \delta U}{N\hbar\omega} + N \ln \frac{\overline{U}_{A} - \delta U}{N\hbar\omega} \\ &= 2N - 2N \ln N\hbar\omega + N \ln(\overline{U}_{A}^{2} - \delta U^{2}) \\ &= 2N \ln \left(\frac{e\overline{U}_{A}}{N\hbar\omega}\right) + N \ln \left(1 - \frac{\delta U^{2}}{\overline{U}_{A}^{2}}\right) \approx 2N \ln \left(\frac{e\overline{U}_{A}}{N\hbar\omega}\right) - \frac{N\delta U^{2}}{\overline{U}_{A}^{2}} \end{split}$$

using $ln(1+x) \approx x$. Exponentiating both sides

$$\Omega_{A}\Omega_{B} \approx \left(\frac{e\overline{U}_{A}}{N\hbar\omega}\right)^{2N} e^{-\frac{N\delta U^{2}}{\overline{U}_{A}^{2}}} = \left(\frac{e\overline{U}_{A}}{N\hbar\omega}\right)^{2N} e^{-\frac{\delta U^{2}}{2\sigma_{U_{A}}^{2}}}$$

This is the equation for a Gaussian peaked at $\delta U=0$ with a half-width $\sigma_{U_A}=\overline{U}_A/\sqrt{2N}$. The fractional width $\sigma_{U_A}/\overline{U}_A=1/\sqrt{2N}$ is extremely small for N>>1 (10⁻¹⁰ for $N\simeq10^{20}$)

So Ω_{tot} is an extremely sharp function, peaked at $U_A = \overline{U}_A$.

This is the most likely macrostate of the total system A + B, and any other macrostate is extremely unlikely:

$$\Omega_{tot} = \sum_{U_A} \Omega_A(U_A) \Omega_B(U-U_A) \approx \Omega_A(\overline{U}_A) \Omega_B(U-\overline{U}_A)$$

KEY CONCEPT: Thermal equilibrium

Let's look at this in terms of entropy $\sigma \equiv \ln \Omega$ Imagine two systems A + B, brought into thermal contact at t = 0

$$\sigma_{tot} = \sigma_{A}(U_{A}) + \sigma_{B}(U - U_{A})$$

Assume that initially, $U_A^0 > U_B^0$

Initially, $\sigma_{tot} = \sigma_{A}(U_{A}^{0}) + \sigma_{B}(U - U_{A}^{0})$. Systems evolves to $\sigma_{tot} = \sigma_{A}(\overline{U}_{A}) + \sigma_{B}(U - \overline{U}_{A})$ where entropy is maximum and system is in likeliest macrostate -2^{nd} law of thermodynamics.

In order to maximize the total entropy $\sigma_{\scriptscriptstyle tot}$, energy is transferred between systems until

$$\frac{\partial \sigma_{tot}}{\partial U_A} = 0 = \frac{\partial \sigma_A}{\partial U_A} + \frac{\partial \sigma_B}{\partial U_A}$$
$$= \frac{\partial \sigma_A}{\partial U_A} + \frac{\partial \sigma_B}{\partial U_B} \frac{\partial U_B}{\partial U_A}$$

so $\frac{\partial \sigma_{A}}{\partial U_{A}} = \frac{\partial \sigma_{B}}{\partial U_{B}}$. This condition is called <u>thermal equilibrium</u>.

Formal definition of fundamental temperature:

$$\frac{1}{\tau} = \left(\frac{\partial \sigma}{\partial U}\right)_{N}$$
 (subscript reminds us that *N* is fixed)

and $\tau_{\scriptscriptstyle A}=\tau_{\scriptscriptstyle B}$ at thermal equilibrium.

Note: if system A is in thermal equilibrium with systems B and C, then B and C must be in thermal equilibrium (i.e. $\tau_A = \tau_B = \tau_C$) – 0^{th} law of thermodynamics

Note: the fundamental temperature τ has units of energy because entropy σ is unitless. Absolute temperature T in units of degrees Kelvin is defined as:

$$\tau \equiv k_{\scriptscriptstyle R} T$$

where $k_B = 1.381 \times 10^{-23}$ J/K is the Boltzmann constant.

Conventional definition of entropy:

$$S \equiv k_B \ln \Omega$$
, such that $\frac{1}{T} \equiv \left(\frac{\partial S}{\partial U}\right)_N$

K & K use σ and τ , but we will use the conventional S and T for the rest of the semester

To summarize:

- In this example $T_A > T_B$ initially because $\frac{\partial S_A}{\partial U_A}\Big|_{U_A^0} < \frac{\partial S_B}{\partial U_B}\Big|_{U_A^0}$.
- The total system A + B spontaneously evolves to maximize S_{tot} by transferring energy.

Because
$$\frac{\partial S_A}{\partial U_A}\Big|_{U_A^0} < \frac{\partial S_B}{\partial U_B}\Big|_{U_A^0}$$
, S_{tot} increases by U_A decreasing and U_B increasing, i.e. energy

flows from the "hotter" system A to the "colder" system B. Thermal equilibrium is reached when $T_A = T_B$ (notice that \overline{U}_A is not necessarily equal to \overline{U}_B , though)

- A "hot" object has a tendency to give up its energy to a "cold" object because $|\Delta S_{hot}| < \Delta S_{cold}$
- The individual entropies S_A and S_B can <u>decrease</u>, so long as the total entropy S_{tot} increases to its maximum. Here, S_A , T_A , and U_A decrease, S_B , T_B , and U_B increase.

How much energy is transferred in reaching thermal equilibrium?

$$\Delta S_{tot} = \Delta S_A + \Delta S_B = \frac{\partial S_A}{\partial U_A} \Delta U_A + \frac{\partial S_B}{\partial U_B} \Delta U_B = \frac{1}{T_A} \Delta U_A + \frac{1}{T_B} \Delta U_B$$
$$= \left(\frac{1}{T_A} - \frac{1}{T_B}\right) \Delta U_A \ge 0$$

Therefore if $T_A > T_B$ then $\Delta U_A < 0$ and $\Delta U_B > 0$ (energy flows from hot to cold). Energy transferred is $\Delta U_A = T_A \Delta S_A = -T_B \Delta S_B = -\Delta U_B$. This form of energy transfer is called <u>heat</u> $Q = -\frac{1}{2}$ law of thermodynamics

Question 2: Relate the energy U of an Einstein solid to its temperature T using the definition of temperature

 $\Omega \sim U^N$ so $S = Nk_B \ln U + \text{terms independent of } U$

$$\frac{1}{T} = \left(\frac{\partial S}{\partial U}\right)_{N} = Nk_{B} \frac{\partial}{\partial U} \ln U = \frac{Nk_{B}}{U}$$

$$U = Nk_{B}T$$

This result will be re-derived later in the semester using the <u>equipartition theorem</u>. Note that it says that the energy per oscillator is on average k_BT . Two Einstein solids in thermal equilibrium with each other have the same average energy per oscillator.

As we discussed in Lect. 2, many systems have multiplicity $\Omega \sim U^f$ with $f \propto N$, so $S \sim fk_B \ln U$ and $k_B T \sim U/f$. As U increases, so does S and T.

KEY CONCEPT: Heat bath or heat reservoir

Consider now that system A is much, much larger than system B: $U_A \gg U_B$, $N_A \gg N_B$

Assuming system A is such that $\Omega \sim U^f$ with $f \propto N$, then can also expect $S_A \gg S_B$.

Initially, systems have energy U_A^0 and U_B^0

Putting system A + B in thermal contact, energy (or heat) transferred $\Delta U_A = -\Delta U_B$ is such that:

$$\left|\Delta U_{\scriptscriptstyle A}\right| \ll U_{\scriptscriptstyle A}^0$$

How much does the entropy of A change in reaching equilibrium?

$$S_{A}(\overline{U}_{A} = U_{A}^{0} + \Delta U_{A}) \approx S_{A}(U_{A}^{0}) + \frac{\partial S_{A}}{\partial U_{A}} \bigg|_{U_{A}^{0}} \Delta U_{A} = S_{A}(U_{A}^{0}) + \frac{\Delta U_{A}}{T_{A}^{0}}$$

How much does the temperature of A change in reaching equilibrium?

$$\left. \frac{\partial S_{A}}{\partial U_{A}} \right|_{\bar{U}_{A}} \approx \left. \frac{\partial S_{A}}{\partial U_{A}} \right|_{U_{A}^{0}} + \left. \frac{\partial^{2} S_{A}}{\partial U_{A}^{2}} \right|_{U_{A}^{0}} \Delta U_{A}$$

If
$$\Omega_A \sim U_A^f$$
, then $S_A = fk_B \ln U_A + \text{const.}$, and $\frac{1}{T_A} = \frac{\partial S_A}{\partial U_A} = \frac{fk_B}{U_A}$ and $\frac{\partial^2 S_A}{\partial U_A^2} = -\frac{fk_B}{U_A^2} = -\frac{1}{T_A U_A}$, so
$$\frac{1}{T_A} = \frac{1}{T_A^0} - \frac{1}{T_A^0 U_A^0} \Delta U_A = \frac{1}{T_A^0} \left(1 - \frac{\Delta U_A}{U_A^0} \right) \approx \frac{1}{T_A^0}$$

i.e. the reservoir temperature does not change appreciably. Reservoir – exchanges heat with system B, sets its temperature: $T_B = T_A \approx T_A^0$

What about systems for which Ω is not $\sim U^f$ – e.g. a paramagnet?

Entropy of N independent spin-½ particles in

What does it mean for $T = \infty$? Imagine putting a paramagnet with $T_A = \infty$ in thermal contact with a system at finite T_B .

$$\Delta S_{tot} = \Delta S_A + \Delta S_B = \frac{\partial S_A}{\partial U_A} \Delta U_A + \frac{\partial S_B}{\partial U_B} \Delta U_B$$
$$= \left(\frac{1}{f_A} - \frac{1}{T_B}\right) \Delta U_A = -\frac{1}{T_B} \Delta U_A \ge 0$$

Since $T_A = \infty$, then $\Delta U_A < 0$ and energy flows from A to B (makes sense, A is hotter).

Question 3: Now imagine putting a paramagnet with $T_A < 0$ in thermal contact with a system at finite $T_B > 0$. Which way does energy flow?

The change in entropy is

$$\Delta S_{tot} = \left(\frac{1}{T_A} - \frac{1}{T_B}\right) \Delta U_A = \left(-\frac{1}{|T_A|} - \frac{1}{T_B}\right) \Delta U_A \ge 0$$

Since $T_A < 0$, then $\Delta U_A < 0$ and energy still flows from A to B The system with T < 0 is "hotter"!