Metody nieparametryczne w statystyce

Tomasz Wójtowicz

Wydział Zarządzania AGH Akademia Górniczo-Hutnicza im. S. Staszica w Krakowie

Metody rangowe

Metody rangowe

Współczynnik korelacji Spearmana

Gdy mamy dane pary (X_i, Y_i) dla i = 1, ... n opisujące cechy o rozkładzie ciągłym. Niech R_i będą rangami X_i , a Q_i niech będą rangami Y_i .

Współczynnik Spearmana ma postać:

$$r_{\rm S} = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n(n^2 - 1)},$$

 $gdzie d_i = R_i - Q_i$.

Własności współczynnika Spearmana:

- mierzy siłę zależności monotonicznej pomiędzy X i Y,
- jeżeli X i Y są niezależne, to $r_S=0$,
- \bullet $-1 \le r_s \le 1$
- jeżeli $r_s \approx 1$, to wzrostowi wartości X odpowiada wzrost wartości Y,
- jeżeli $r_S \approx -1$, to wzrostowi wartości X odpowiada spadek wartości Y,
- ullet Jeżeli X i Y są niezależne, to rozkład r_{S} nie zależy od rozkładu X i Y.

Gdy cechy (X,Y) pochodzą z rozkładów skokowych, wtedy wśród rang R_i , Q_i mogą wystąpić rangi wiązane. Wtedy współczynnik korelacji Spearmana ma postać:

$$r_{S} = \frac{\frac{1}{6}(n^{3} - n) - \left(\sum_{i=1}^{n} d_{i}^{2}\right) - T_{X} - T_{Y}}{\sqrt{\left(\frac{1}{6}(n^{3} - n) - 2T_{X}\right)\left(\frac{1}{6}(n^{3} - n) - 2T_{Y}\right)}}$$

gdzie:

$$T_X = \frac{1}{12} \sum_{j=1}^k (t_j^3 - t_j)$$

$$T_Y = \frac{1}{12} \sum_{j=1}^l (s_j^3 - s_j)$$

a t_j liczba wartości X_i posiadających tę samą rangę R_j , s_j - liczba Y_i posiadających tę samą rangę Q_i .

Na podstawie r_s można badać istotność korelacji pomiędzy cechami X i Y.

$$H_0: \rho = 0$$

$$H_1: \rho \neq 0$$

W przypadku małych prób do weryfikacji tych hipotez można bezpośrednio stosować statystykę r_s , której rozkład jest wtedy stablicowany.

Dla dużych n można zastosować statystykę:

$$t = \frac{r_S}{\sqrt{1 - r_S^2}} \sqrt{n - 2}$$

która ma asymptotycznie rozkład t-Studenta o n-2 stopniach swobody.

Współczynnik Kendalla

$$r_K = P((X_i - X_j)(Y_i - Y_j) > 0) - P((X_i - X_j)(Y_i - Y_j) < 0)$$

czyli:

$$r_K = 2 \frac{P - Q}{n(n-1)},$$

gdzie

P - liczba par zgodnych,

 ${\it Q}$ - liczba par niezgodnych

Para (X_i, Y_i) jest zgodna z parą (X_j, Y_j) jeżeli $(X_i - X_j)(Y_i - Y_j) > 0$

Para (X_i, Y_i) jest niezgodna z parą (X_j, Y_j) jeżeli $(X_i - X_j)(Y_i - Y_j) < 0$

Jeżeli X i Y są niezależne, to rozkład r_K **nie zależy** od rozkładu cech X i Y. Wtedy

$$E(r_K) = 0$$

$$D^2(r_K) = \frac{2(2n+5)}{9n(n-1)}$$

Do badania istotności korelacji pomiędzy X i Y można wykorzystać:

- ullet dla małych n: r_K bo jej wartości są stablicowane,
- dla dużych n: statystykę

$$t = \frac{r_K}{\sqrt{1 - r_K^2}} \sqrt{n - 2}$$

Rozważmy problem analogiczny do przypadku testu Wilcoxona. Tym razem badamy równość rozkładu k cech:

$$H_0: F_1 = F_2 = \cdots = F_k$$

 H_1 : dla pewnych $i, j: \forall x \in \mathbb{R} \ F_i(x) \leq F_j(x)$ oraz $F_i \neq F_j$

Każda i-ta cecha (spośród nadanych k cech) jest reprezentowana przez n_i -elementową próbę Y_{i1},\ldots,Y_{in_i} , przy czym $n=n_1+\cdots+n_k$.

W przypadku, gdy rozważane cechy mają rozkład normalny o takich samych odchyleniach standardowych, to powyższe hipotezy możemy weryfikować za pomocą analizy wariancji (ANOVA) przy pomocy statystyki:

$$F = \frac{\sum_{i=1}^{k} n_i (\bar{y}_i - \bar{y})^2}{\sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2} \cdot \frac{n - k}{k - 1}$$

$$H_0: F_1 = F_2 = \dots = F_k$$

$$H_1: F_i(x) < F_j(x) \text{ dla pewnych } i, j$$

Jeżeli założenia ANOVA nie są spełnione to możemy zastosować **test Kruskala-Wallisa.**

Każda i-ta cecha (spośród nadanych k cech) jest reprezentowana przez n_i -elementową próbę Y_{i1},\ldots,Y_{in_i} , przy czym $n=n_1+\cdots+n_k$.

Niech R_{i1} , ... R_{in_i} oznaczają rangi elementów Y_{i1} , ... , Y_{in_i} i-tej próby wśród wszystkich elementów połączonych k-prób.

Niech $ar{R}_i$ oznacza średnią arytmetyczną rang R_{i1} , ... R_{in_i}

Statystyka Kruskala-Wallisa ma postać:

$$T = \frac{12}{n(n+1)} \sum_{i=1}^{K} n_i \left[\bar{R}_i - \frac{1}{2} (n+1) \right]^2 =$$

$$= \frac{12}{n(n+1)} \sum_{i=1}^{K} n_i \bar{R}_i^2 - 3(n+1)$$

Statystyka ta mierzy odstępstwo średnich \bar{R}_i od średniej $\frac{n+1}{2}$.

Stanowi monotoniczne odwzorowanie statystyki F (w ANOVA) obliczonej na podstawie rang.

Jeżeli badane cechy mają rozkłady ciągłe i prawdziwa jest hipoteza H_0 , to:

- ullet rozkład T nie zależy od rozkładów F_i ,
- statystyka T ma asymptotycznie (gdy $\min\{n_1,\dots,n_k\}\to +\infty$) rozkład χ^2 o k-1 stopniach swobody.

Przybliżenie rozkład T rozkładem χ^2 o k-1 st. swobody stosuje się już:

- dla k = 3, gdy wszystkie $n_i > 5$,
- dla k > 3, gdy wszystkie $n_i > 4$.

W przypadku odrzucenia hipotezy głównej w teście Kruskala-Wallisa przeprowadzamy analizę post-hoc by za pomocą porównań wielokrotnych uszeregować rozkłady F_1, \ldots, F_k i odkryć, dla których z nich zachodzi istotna nierówność

$$F_i < F_j$$
.

Zauważmy, że jeżeli $F_i(x) \leq F_j(x)$ dla wszystkich $x \in \mathbb{R}$, to taka sama nierówność zachodzi dla wartości oczekiwanych rang, tzn,:

$$E(R_{il}) \leq E(R_{jm})$$

gdzie R_{il} jest rangą pewnego Y_{il} z próby Y_{i1} , ..., Y_{in_i} , a R_{jm} jest rangą pewnego Y_{jm} z próby Y_{j1} , ..., Y_{jn_j} .

Aby sprawdzić nierówność

$$E(R_{il}) \leq E(R_{jm})$$

możemy skonstruować przedział ufności dla $E(R_{il}) - E(R_{jm})$.

Jeżeli przedział ten (wyznaczony dla współczynnika ufności $1-\alpha$) będzie leżał na prawo od 0, to na poziomie istotności α można będzie odrzucić

hipotezę $F_i = F_j$ na rzecz hipotezy alternatywnej:

$$\forall x \in \mathbb{R} \ F_i(x) \leq F_i(x) \text{ oraz } F_i \neq F_i.$$

Przy założeniu prawdziwości hipotezy H_0 dla dowolnych $i, j \in \{1, ..., k\}$:

 $\bar{R}_i - \bar{R}_j$ ma w przybliżeniu rozkład normalny:

$$N\left(0,\sqrt{\frac{n(n+1)}{12}\cdot\left(\frac{1}{n_i}+\frac{1}{n_j}\right)}\right)$$

Na tej podstawie przedział ufności ma postać:

$$\left(\bar{R}_i - \bar{R}_j - u_\alpha \sqrt{\frac{n(n+1)}{12} \cdot \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}, \bar{R}_i - \bar{R}_j + u_\alpha \sqrt{\frac{n(n+1)}{12} \cdot \left(\frac{1}{n_i} + \frac{1}{n_j}\right)},\right)$$

Konstrukcja tego przedziału ufności jest równoważna przeprowadzeniu testu Manna-Whitneya-Wilcoxona dla każdej pary i, j.

Po odrzuceniu hipotezy głównej w teście Kruskala-Wallisa dokonujemy $p=\frac{k(k-1)}{2} \text{ porównań. W związku z tym, jeżeli test przeprowadzamy przy poziomie istotności } \alpha$, to przy konstrukcji pojedynczego przedziału ufności należy zastosować poprawkę Boferroniego i zastąpić α przez α/p .

W przypadku dużego p to procedura może być mało efektywna, bo wtedy α/p jest małe.