Musterlösung der Klausur

Analysis I WS 2012/13

Aufgabe (C1).

Die Folge $(x_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ sei durch

$$x_n := \frac{(2+3n^2)(1+2n)^2}{\left(3+\frac{n}{2}\right)^4} \left(1-\frac{1}{n}\right)^{2n}$$

gegeben. Man untersuche mittels der Rechenregeln für Konvergenz, ob $(x_n)_{n\in\mathbb{N}}$ konvergiert und berechne ggf. den Grenzwert.

Behauptung: $(x_n)_{n\in\mathbb{N}}$ konvergiert gegen $\frac{192}{e^2}$.

Beweis Sei $n \in \mathbb{N}$, dann gilt:

$$x_n = \frac{(2+3n^2)(1+2n)^2}{\left(3+\frac{n}{2}\right)^4} \left(1-\frac{1}{n}\right)^{2n}$$
$$= \frac{\left(\frac{2}{n^2}+3\right)\left(\frac{1}{n}+2\right)^2}{\left(\frac{3}{n}+\frac{1}{2}\right)^4} \left(1-\frac{1}{n}\right)^n \left(1-\frac{1}{n}\right)^n.$$

Nun gilt nach Grenzwertsätzen für $n \to \infty$:

$$\frac{3}{n} + \frac{1}{2} \rightarrow \frac{1}{2}$$
, also nach Grenzwertsätzen $\left(\frac{3}{n} + \frac{1}{2}\right)^4 \rightarrow \frac{1}{2^4} = \frac{1}{16} \neq 0$, $\frac{2}{n^2} + 3 \rightarrow 3$, $\left(\frac{1}{n} + 2\right)^2 \rightarrow 4$ und $\left(1 - \frac{1}{n}\right)^n \rightarrow \frac{1}{e}$.

Nun folgt mit den Grenzwertsätze für $n \to \infty$:

$$x_n \to \frac{3 \cdot 4}{\frac{1}{16}} \cdot \frac{1}{e^2} = \frac{192}{e^2}.$$

Aufgabe (C 2).

Sei $f : \mathbb{R} \to \mathbb{R}$, $f(x) := \exp(x^2)$. Zeigen Sie, dass f beliebig oft differenzierbar ist und es für alle $n \in \mathbb{N}$ ein Polynom p_n n-ten Grades gibt, so dass gilt:

$$f^{(n)}(x) = p_n(x)f(x), \qquad x \in \mathbb{R}.$$

Beweis Per vollständiger Induktion nach n. Sei $x \in \mathbb{R}$.

Induktionsanfang: Für n=1 gilt: f ist (1-mal) differenzierbar nach Kettenregel mit $f^{(1)}=f'(x)=2x\exp(x^2)$, da $\exp: \mathbb{R} \to \mathbb{R} \ x \mapsto \exp(x)$ und $g: \mathbb{R} \to \mathbb{R} \ x \mapsto x^2$ differenzierbar sind. Weiter ist $p_1: \mathbb{R} \to \mathbb{R}, \, p_1(x):=2x$ ein Polynom ersten Grades und damit ist $f'(x)=p_1(x)f(x)$.

Induktionsschluss: Für beliebiges $n \in \mathbb{N}$ gelte, dass f n-mal differenzierbar ist und ein Polynom p_n vom Grad n existiert mit $f^{(n)}(x) = p_n(x)f(x)$ (Induktionsvoraussetzung).

Wegen $f^{(n)}(x) = p_n(x)f(x)$ ist $f^{(n)}$ als Produkt differenzierbarer Funktionen differenzierbar mit Ableitung

$$f^{(n+1)}(x) = \left(f^{(n)}\right)'(x) = p'_n(x)\exp(x^2) + 2xp_n(x)\exp(x^2) = \left(2xp_n(x) + p'_n(x)\right)\exp(x^2).$$

Setze $p_{n+1}(x) := 2xp_n(x) + p'_n(x)$. Dann ist p_{n+1} ein Polynom vom Grad (n+1) und $f^{(n+1)}(x) = p_{n+1}f(x)$. Nach Induktionsvoraussetzung ist f bereits n-mal differenzierbar, also zusammen mit Obigem (n+1)-mal differenzierbar.

Damit ist f n-mal differenzierbar für alle $n \in \mathbb{N}$, also unendlich oft differenzierbar.

Aufgabe (C3).

Weisen Sie unter Benutzung der Konvergenzkriterien aus der Vorlesung die Konvergenz bzw. Divergenz der folgenden beiden Reihen nach:

$$\sum_{k=1}^{\infty} \frac{k^3}{3^k}, \qquad \sum_{k=1}^{\infty} \left(1 - \frac{1}{k}\right)^{k^2}.$$

Behauptung: Beide Reihen konvergieren.

Beweis Sei $k \in \mathbb{N}$ und $a_k := \frac{k^3}{3^k}$. Dann gilt:

$$\frac{a_{k+1}}{a_k} = \frac{(k+1)^3}{3^{k+1}} \frac{3^k}{k^3} = \left(1 + \frac{1}{k}\right)^3 \frac{1}{3}.$$

Für $k \ge 3$ ist

$$\left(1+\frac{1}{k}\right)^3 \le \left(1+\frac{1}{3}\right)^3 = \left(\frac{4}{3}\right)^3 = \frac{64}{27} < 3.$$

Setze $q:=\frac{64}{27}\cdot\frac{1}{3}=\frac{64}{81}$. Dann ist $|\frac{a_{k+1}}{a_k}|\leq q<1$ für alle $k\geq 3$ und $\sum\limits_{k=1}^{\infty}\frac{k^3}{3^k}$ konvergiert nach Quotienten-kriterium.

Sei nun $n \in \mathbb{N}$ und $b_n := \left(1 - \frac{1}{n}\right)^{n^2}$. Dann gilt

$$\sqrt[n]{b_n} = \left(1 - \frac{1}{n}\right)^{\frac{n^2}{n}} = \left(1 - \frac{1}{n}\right)^n$$

Mit $\left(1-\frac{1}{n}\right)^n \to \frac{1}{e} < \frac{1}{2}$ für $n \to \infty$ existiert also ein $n_0 \in \mathbb{N}$ mit $\sqrt[n]{b_n} \le \frac{1}{2} =: q < 1$ für alle $n \ge n_0$. Damit konvergiert die Reihe $\sum\limits_{k=1}^{\infty} \left(1-\frac{1}{k}\right)^{k^2}$ nach dem Wurzelkriterium.

Aufgabe (C 4).

Sei $f: \mathbb{R} \to \mathbb{R}$, $f(x) := 4\sin^2 x - 4\sin^4 x$. Bestimmen Sie die Extrema und Wendepunkte von f in $\left[0, \frac{\pi}{2}\right]$. Welche der Extrema sind Maxima bzw. Minima?

Behauptung: f hat in 0 und $\frac{\pi}{2}$ Minima, in $\frac{\pi}{4}$ ein Maximum und Wendepunkte in $\frac{\pi}{8}$ und $\frac{3\pi}{8}$. Dies sind alle Extrem- bzw. Wendestellen in $\left[0, \frac{\pi}{2}\right]$.

Beweis Sei $x \in \mathbb{R}$. Dann gilt mit den Additionstheoremen:

$$f(x) = 4\sin^{2}(x) - 4\sin^{4}(x)$$

$$= 4\sin^{2}(x) (1 - \sin^{2}(x))$$

$$= 4\sin^{2}(x) \cos^{2}(x)$$

$$= (2\sin(x)\cos(x))^{2} = \sin^{2}(2x).$$

Nach Kettenregel ist

$$f'(x) = 2\sin(2x) \cdot \cos(2x) \cdot 2 = 4\sin(2x)\cos(2x) = 2\sin(4x)$$

und damit

$$f''(x) = 8\cos(4x).$$

Sei nun $x \in [0, \frac{\pi}{2}]$, dann gilt: $f'(x) = 0 \iff \sin(4x) = 0 \iff x = 0 \lor x = \frac{\pi}{4} \lor x = \frac{\pi}{2}$.

Nun ist $f''(0) = f''\left(\frac{\pi}{2}\right) = 8 > 0$, also hat f in 0 und $\frac{\pi}{2}$ Minima.

Weiter ist $f''\left(\frac{\pi}{4}\right) = -8 < 0$, also hat f ein Maximum in $\frac{\pi}{4}$.

Schließlich gilt: $f''(x) = 0 \iff \cos(4x) = 0 \iff 4x = \frac{\pi}{2} + m\pi, m \in \mathbb{Z} \iff x = \frac{\pi}{8} \lor x = \frac{3\pi}{8}.$

Also hat f Wendepunkte in $\frac{\pi}{8}$ und $\frac{3\pi}{8}$.

Aufgabe (C 5).

Zeigen Sie, dass $f:(0,1)\to\mathbb{R}$, $f(x)=\frac{1}{x}$ nicht gleichmäßig stetig ist.

Beweis Zu zeigen:

$$\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x, y \in (0,1) \quad (|x-y| < \delta \ \land \ |f(x) - f(y)| > \varepsilon).$$

Wähle $\varepsilon:=1$. Sei $\delta>0$ beliebig gegeben. Sei o.B.d.A $\delta<1$. Wähle $x=\delta,\,y=\frac{\delta}{2}$. Dann ist $|x-y|=\frac{\delta}{2}<\delta$ und

$$|f(x) - f(y)| = \left|\frac{1}{\delta} - \frac{2}{\delta}\right| = \frac{1}{\delta} > 1 = \varepsilon.$$

Aufgabe (C 6).

Man beweise, dass der Grenzwert

$$A := \lim_{x \to 1} \frac{x^3 - 1}{x - 1} \frac{\ln x}{x - 1}$$

existiert und bestimme A.

Behauptung: $\lim_{n\to\infty} \frac{x^3-1}{x-1} \frac{\ln x}{x-1} = 3.$

Beweis Für $x \in \mathbb{R}_{>0} \setminus \{1\}$ gilt: $\frac{x^3-1}{x-1} = x^2 + x + 1 \to 1^2 + 1 + 1 = 3$ für $n \to \infty$.

 $\frac{\ln x}{x-1} \text{ hat für } x \to 1 \text{ die Form } , \underset{0}{\overset{0}{\text{"}}} \text{"und es gilt: } (x-1)' = 1 \neq 0 \text{ für alle } x \in \mathbb{R}_{>0} \setminus \{1\}. \text{ Ferner gilt: } \frac{\frac{1}{x}}{1} \to 1 \text{ für } x \to 1. \text{ Nach der Regel von L'Hospital existiert also der Grenzwert von } \frac{\ln x}{x-1} \text{ für } x \to 1 \text{ und } \lim_{x \to 1} \frac{\ln x}{x-1} = \lim_{x \to 1} \frac{\frac{1}{x}}{1} = 1. \text{ Es folgt mit den Grenzwerts\"{atzen, dass }} \lim_{x \to 1} \frac{x^3-1}{x-1} \frac{\ln x}{x-1} = 3 \cdot 1 = 3. \quad \Box$

Aufgabe (C7).

Seien $a, b \in \mathbb{R}$, a < b und sei $f : (a, b) \to \mathbb{R}$ in $x_0 \in (a, b)$ differenzierbar. Zeige unter direkter Benutzung der Definitionen von Stetigkeit und Differenzierbarkeit, dass f in x_0 stetig ist.

Beweis Zu zeigen:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in (a,b) \quad (|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon).$$

Sei $0 < \varepsilon < 1$. Da f in x_0 differenzierbar ist, existiert der Grenzwert

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x).$$

Also gibt es $\delta_1 > 0$, sodass für alle $x \in (a, b)$ gilt:

$$|x-x_0|<\delta_1\Rightarrow \left|\frac{f(x)-f(x_0)}{x-x_0}-f'(x_0)\right|<\varepsilon,$$

also

$$|x - x_0| < \delta_1 \Rightarrow |f(x) - f(x_0) - f'(x_0)(x - x_0)| < \varepsilon |x - x_0|$$

und mit inverser Dreiecksungleichung

$$|x - x_0| < \delta_1 \Rightarrow |f(x) - f(x_0)| \le (|f'(x_0)| + \varepsilon)|x - x_0| \le (|f'(x_0)| + 1)|x - x_0|.$$

Wähle $\delta:=\min\Big\{\delta_1,\; rac{\varepsilon}{|f'(x_0)|+1}\Big\}$. Dann folgt aus $|x-x_0|<\delta$, dass

$$|f(x) - f(x_0)| \le (|f'(x_0)| + 1) \frac{\varepsilon}{|f'(x_0)| + 1} = \varepsilon.$$