Logica — 10-1-2019

Tutte le risposte devono essere adeguatamente giustificate

1. Provare che

$$\neg R \to Q \models P \land \neg Q \to R \lor \neg P.$$

2. Stabilire se l'insieme di formule

$$\{\neg (A \to \neg B), \neg (\neg A \to \neg C), C \to \neg B \lor A\}$$

è soddisfacibile.

- 3. Sia $\mathcal{L} = \{P, S, M\}$ un linguaggio del prim'ordine, dove P, S sono simboli relazionali unari, M è simbolo relazionale binario. Si consideri la seguente interpretazione di \mathcal{L} :
 - -P(x): x è un professore;
 - -S(x): x è uno studente;
 - -M(x,y): x morde y.

Si scrivano le seguenti frasi in formule del linguaggio \mathcal{L} :

- 1. C'è un professore che non è morso da alcuno studente.
- 2. I professori mordono gli studenti che li mordono.
- 3. Gli studenti che mordono un professore sono morsi da almeno due professori.
- **4.** Sia $\mathcal{L} = \{f\}$ un linguaggio del prim'ordine, dove f è un simbolo funzionale unario. Si considerino le \mathcal{L} -strutture $\mathcal{A} = (\mathbb{Z}, f^{\mathcal{A}}), \mathcal{B} = (\mathbb{Z}, f^{\mathcal{B}}),$ dove:
 - $-\mathbb{Z}$ è l'insieme dei numeri interi;
 - $-f^{\mathcal{A}}$ è l'operazione di opposto, cioè $f^{\mathcal{A}}(u)=-u$ per ogni $u\in\mathbb{Z};$
 - $-f^{\mathcal{B}}$ è l'operazione di successore, cioè $f^{\mathcal{B}}(u)=u+1,$ per ogni $u\in\mathbb{Z}.$

Determinare, se esiste, un enunciato φ che distingua \mathcal{A} da \mathcal{B} , cioè tale che $\mathcal{A} \models \varphi, \mathcal{B} \not\models \varphi$.

Svolgimento

1. Sia *i* un'interpretazione tale che $i(\neg R \to Q) = 1$, al fine di provare che $i(P \land \neg Q \to R \lor \neg P) = 1$.

Poiché $i(\neg R \to Q) = 1$, si hanno due possibilità:

- 1) $i(\neg R)=0.$ Quindi i(R)=1. Segue $i(R\vee \neg P)=1$ e quindi $i(P\wedge \neg Q\to R\vee \neg P)=1.$
- 2) i(Q)=1. Allora $i(\neg Q)=0$, da cui $i(P\wedge \neg Q)=0$ e quindi anche in questo caso $i(P\wedge \neg Q\to R\vee \neg P)=1$.
- **2.** Si supponga che esista un'interpretazione i che soddisfa l'insieme dato. In particolare, $i(\neg(A \to \neg B)) = 1$, quindi $i(A \to \neg B) = 0$, da cui in particolare i(A) = 1.

Inoltre $i(\neg(\neg A \to \neg C)) = 1$, cioè $i(\neg A \to \neg C) = 0$, da cui in particolare $i(\neg A) = 1$ e quindi i(A) = 0. Ma questo contraddice il valore i(A) = 1 trovato prima.

Un'interpretazione che soddisfa l'insieme dato non può pertanto esistere, e tale insieme è insoddisfacibile.

- **3.** 1. $\exists x (P(x) \land \neg \exists y (S(y) \land M(y,x)))$
 - 2. $\forall x (P(x) \rightarrow \forall y (S(y) \land M(y,x) \rightarrow M(x,y)))$
 - 3. $\forall x(S(x) \land \exists y(P(y) \land M(x,y)) \rightarrow \exists z \exists w(P(z) \land P(w) \land z \neq w \land M(z,x) \land M(w,x)))$
- **4.** L'opposto dell'opposto di un numero intero è il numero di partenza, mentre il successore del successore di un numero intero non è il numero di partenza:

$$\forall x f(f(x)) = x$$