6.0 Language Modeling

References: 1. 11.2.2, 11.3, 11.4 of Huang or

- 2. 6.1-6.8 of Becchetti, or
- 3. 4.1-4.5, 8.3 of Jelinek

Some Fundamentals of Information Theory

Examples for Languages

- $0 \le H(S) \le \log M$
- Source of English text generation
 - S this course is about speech.....
 - the random variable is the character \Rightarrow 26*2+....<64=2⁶ H (S) < 6 bits (of information) per character
 - the random variable is the word \Rightarrow assume total number of words=30,000<10¹⁵ H (S) < 15 bits (of information) per word
- Source of speech for Mandarin Chinese
 - S → 這一門課有關語音.....
 - the random variable is the syllable (including the tone) $\Rightarrow 1300 < 2^{11}$ H (S) < 11 bits (of information) per syllable (including the tone)
 - the random variable is the syllable (ignoring the tone) $\Rightarrow 400 < 2^9$ H (S) < 9 bits (of information) per syllable (ignoring the tone)
 - the random variable is the character \Rightarrow 8,000 < 2¹³ H (S) < 13 bits (of information) per character
- Comparison: speech— 語音, girl— 女孩, computer— 計算機

Perplexity

Perplexity of A Language Source S

$$H(S) = -\sum_{i} p(x_{i}) \log [p(x_{i})]$$

$$PP(S) = 2^{H(S)}$$

- size of a "virtual vocabulary" in which all words (or units) are equally probable
 - e.g.1024 words each with probability $\frac{1}{1024}$, $I(x_i) = 10$ bits (of information)

$$H(S) = 10 \text{ bits (of information)}, PP(S) = 1024$$

branching factor estimate for the language

A Language Model

- assigning a probability $P(w_i|c_i)$ for the next possible word w_i given a condition c_i

e.g.
$$P(W=w_1, w_2, w_3, w_4, ..., w_n) = P(w_1)P(w_2|w_1) \prod_{i=3}^{n} P(w_i|w_{i-2}, w_{i-1})$$

 \bullet A Test Corpus D of N sentences, with the i-th sentence W_i has n_i words and total words N_D

$$D = [W_1, W_2, ..., W_N],$$
 $W_i = w_1, w_2, w_3, ..., w_{n_i}$
 $N_D = \sum_{i=1}^{N} n_i$

Perplexity

• Perplexity of A Language Model P(w_i|c_i) with respect to a Test **Corpus D**

$$- H(P; D) = -\frac{1}{N_D} \sum_{i=1}^{N} \left[\sum_{j=1}^{n_i} \log P(w_j | c_j) \right]$$
, average of all log $P(w_j | c_j)$ over the

whole corpus D

$$= -\sum_{i=1}^{N} \sum_{j=1}^{n_j} log \left[P(w_i | c_i)^{\frac{1}{N_D}} \right] , logarithm of geometric mean of $P(w_i | c_i)$$$

$$- pp (P; D) = 2^{H(P;D)}$$

average branching factor (in the sense of geometrical mean of reciprocals)

- the capabilities of the language model in predicting the next word given the linguistic constraints extracted from the training corpus
- the smaller the better, performance measure for a language model with respect to a test corpus
- a function of a language model P and text corpus D

Perplexity

• Cross-Entropy

$$D[p(x)||q(x)] = \sum_{i} p(x_{i}) \log \left[\frac{p(x_{i})}{q(x_{i})}\right] \ge 0$$

Jensen's Inequality

$$-\sum_{i} p(x_{i}) \log [p(x_{i})] \leq -\sum_{i} p(x_{i}) \log [q(x_{i})]$$

Someone call this "cross-entropy" = X[p(x) || q(x)]

- entropy when p(x) is incorrectly estimated as q(x) (leads to some entropy increase)
- The True Probabilities $\overline{P}(w_i|c_1)$ incorrectly estimated as $P(w_i|c_i)$ by the language model

$$\lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} \log[q(x_k)] = \sum_{i} p(x_i) \log[q(x_i)]$$

(averaging by all samples) \prod (averaging if $p(x_i)$ is known)

law of large numbers

- The Perplexity is a kind "Cross-Entropy" when the true statistical characteristics of the test corpus D is incorrectly estimated as $p(w_i|c_i)$ by the language model
 - H(P; D) = X(D || P)
 - the larger the worse

An Perplexity Analysis Example with Respect to Different Subject Domains

• Domain-specific Language Models
Trained with Domain Specific
Corpus of Much Smaller Size very 650
often Perform Better than a
General Domain Model

-Training corpus: Internet news in Chinese language

1	politics	19.6 M
2	congress	2.7 M
3	business	8.9 M
4	culture	4.3 M
5	sports	2.1 M
6		1.6 M
	society	10.8 M
	local	8.1 M
9	general(average)	58.1 M

-Sports section gives the lowest perplexity even with very small training corpus

Smoothing of Language Models

Data Sparseness

- many events never occur in the training data
 e.g. Prob [Jason immediately stands up]=0 because Prob [immediately Jason]=0
- smoothing: trying to assign some non-zero probabilities to all events even if they never occur in the training data

Add-one Smoothing

- assuming all events occur once more than it actually does

e.g. bigram
$$p(w^{j}|w^{k}) = \frac{N(\langle w^{k}, w^{j} \rangle)}{N(w^{k})} = \frac{N(\langle w^{k}, w^{j} \rangle)}{\sum_{j} N(\langle w^{k}, w^{j} \rangle)} \Rightarrow \frac{N(\langle w^{k}, w^{j} \rangle) + 1}{\sum_{j} N(\langle w^{k}, w^{j} \rangle) + V}$$

V: total number of distinct words in the vocabulary

Back-off Smoothing

$$\overline{P}(w_i|w_{i-n+1},w_{i-n+2},...\ w_{i-1}) = P(w_i|w_{i-n+1},w_{i-n+2},...\ w_{i-1})\ ,\ if\ N(< w_{i-n+1},...\ w_{i-1},w_i>)>0\\ a\ (w_{i-n+1},...\ w_{i-1})\ \overline{P}(w_i|w_{i-n+2},...\ w_{i-1})\ ,\ if\ N(< w_{i-n+1},...,w_{i-1},w_i>)=0$$

- back-off to lower-order if the count is zero, prob (you | see)>prob (thou | see)

Interpolation Smoothing

$$P(w_{i}|w_{i-n+1}, w_{i-n+2}, ... w_{i-1}) = b(w_{i-n+1}, ... w_{i-1})P(w_{i}|w_{i-n+1}, ... w_{i-1}) + (1 - b(w_{i-n+1}, ... w_{i-1}))\overline{P}(w_{i}|w_{i-n+2}, ... w_{i-1})$$

 interpolated with lower-order model even for events with non-zero counts

Smoothing of Language Models

Good-Turing Smoothing

- Good-Turning Estimates: properly decreasing relative frequencies for observed events and allocate some frequencies to unseen events
- Assuming a total of K events {1,2,3...,k,....K}
 number of observed occurrences for event k: n(k),

N: total number of observations, $N = \sum_{k=1}^{K} n(k)$

 n_r : number of distinct events that occur r times (number of different events k such that n(k) = r)

$$N = \sum_{r} r \, n_r$$

— Good-Turning Estimates:

an event occurring r times is assumed to have occurred r* times,

$$r^* = (r+1)\frac{n_{r+1}}{n_r}$$

•
$$\sum_{r} r^* n_r = \sum_{r} (r+1) \frac{n_{r+1}}{n_r} n_r = \sum_{r} (r+1) n_{r+1} = N$$

- total occurrences for events having occurred r times: $rn_r \rightarrow (r+1)n_{r+1}$
- total counts assigned to unseen events = $n_0 \left(\frac{n_1}{n_0} \right) = n_1$

Smoothing of Language Models

Good-Turing Smoothing

An analogy: during fishing, getting each kind of fish is an event an example: n(1)=10, n(2)=3, n(3)=2, n(4)=n(5)=n(6)=1, N=18 prob (next fish got is of a new kind) = prob (those occurring only once) = $\frac{3}{18}$ prob (next fish is 6) = $\frac{1}{18} = \frac{(1+1)\cdot 1/3}{18} = \frac{1}{27}$

Katz Smoothing

- large counts are reliable, so unchanged
- small counts are discounted, with total reduced counts assigned to unseen events, based on Good-Turning estimates

$$\sum_{r=1}^{r_0} n_r (1 - d_r) r = n_1 , d_r$$
: discount ratio for events with r times

- distribution of counts among unseen events based on next-lower-order model: back off
- an example for bigram:

$$\overline{P}(w_i | w_{i-1}) = \begin{cases} N(\langle w_{i-1}, w_i \rangle) / N(w_i), r > r_0 \\ d_r \cdot N(\langle w_{i-1}, w_i \rangle) / N(w_i), r_0 \ge r > 0 \\ a(w_{i-1}, w_i) P(w_i), r = 0 \end{cases}$$

a (w_{i-1},w_i): such that the total counts equal to those assigned

Class-based Language Modeling

• Clustering Words with Similar Semantic/Grammatic Behavior into Classes

 $c(w_j)$: the class including w_j

- Smoothing effect: classes complementing the lower order models
- parameter size reduced
- Limited Domain Applications: Rule-based Clustering by Human Knowledge

e.g. Tell me all flights of United China Airline Eva Air from Taipei to Los Angeles on Sunday

- new items can be easily added without training data
- General Domain Applications: Data-driven Clustering (probably aided by rule-based knowledge)

Class-based Language Modeling

Data-driven Word Clustering Algorithm Examples

- Example 1:
 - initially each word belongs to a different cluster
 - in each iteration a pair of clusters was identified and merged into a cluster which minimizes the overall perplexity
 - stops when no further (significant) reduction in perplexity can be achieved

Reference: "Cluster-based N-gram Models of Natural Language", Computational Linguistics, 1992 (4), pp. 467-479

- Example 2:

Prob
$$[W = w_1 w_2 w_3 w_n] = \prod_{i=1}^n Prob(w_i | w_1, w_2 w_{i-1}) = \prod_{i=1}^n Prob(w_i | h_i)$$

 $h_i : w_1, w_2, w_{i-1}, \text{ history of } w_i$

- clustering the histories into classes by decision trees (CART)
- developing a question set, entropy as a criterion
- may include both grammatic and statistical knowledge, both local and long-distance relationship

Reference: "A Tree-based Statistical Language Model for Natural Language Speech Recognition", IEEE Trans. Acoustics, Speech and Signal Processing, 1989, 37 (7), pp. 1001-1008

An Example Class-based Chinese Language Model

• A Three-stage Hierarchical Word Classification Algorithm

stage 1 : classification by 198

POS features (syntactic & semantic)

- each word belonging to one class only
- each class characterized by a set of POS's

stage 2: further classification with data-driven approaches

stage 3: final merging with data-driven approaches

- rarely used words classified by human knowledge
- both data-driven and human-knowledge-driven

An Example of Class-based Chinese Language Model

• An Improved Approach for the Three-stage Hierarchical Classification Algorithm

words with multiple features assigned to more than one classes

- the same word belongs to different classes characterized by different features
- language model trained by "tagged corpus" only
- a modification in stage 1

POS Tagging

- tagging POS for each word in the sentence
- automatic POS tagging algorithm based on a lexicon of words with possible POS's and POS N-grams trained with human-tagged corpus

Integrated Class-based and Word-based Models

- word-based models are more precise for frequently used words
- back-off to class-based models for events with inadequate counts
- each single word is a class if frequent enough

Structural Features of Chinese Language

- Almost Each Character with Its Own Meaning, thus Playing Some Linguistic Role Independently
- No Natural Word Boundaries in a Chinese Sentence

電腦科技的進步改變了人類的生活和工作方式

- word segmentation not unique
- words not well defined
- commonly accepted lexicon not existing
- Open (Essentially Unlimited) Vocabulary with Flexible Wording Structure
 - new words easily created everyday
 - long word arbitrarily abbreviated
 - name/title
 - unlimited number of compound words

電(electricity)+腦(brain)→電腦(computer)

臺灣大學 (Taiwan University) →臺大

李登輝前總統 (former President T.H. Lee)→李前<u>總統</u>登輝

高 (high) + 速 (speed) + 公路 (highway)→高速公路(freeway)

- Difficult for Word-based Approaches Popularly Used in Alphabetic Languages
 - serious out of vocabulary(OOV) problem

Word-based and Character-based Chinese Language Models

Word-based and Class-based Language Modeling

- words are the primary building blocks of sentences
- more information may be added
- lexicon plays the key role
- flexible wording structure makes it difficult to have a good enough lexicon
- accurate word segmentation needed for training corpus
- serious "out-of -vocabulary(OOV)" problem in many cases
- all characters included as "mono-character words"

Character-based Language Modeling

- avoiding the difficult problem of flexible wording structure and undefined word boundaries
- relatively weak without word-level information
- higher order N-gram needed for good performance, which is relatively difficult to realize
- Integration of Class-based/Word-based/Character-based Models

Segment Pattern Lexicon for Chinese

• Segment Patterns Replacing the Words in the Lexicon

- segments of a few characters often appear together : one or a few words
- regardless of the flexible wording structure
- automatically extracted from the training corpus (or network information) statistically
- including all important patterns by minimizing the perplexity

Advantages

- bypassing the problem that the word is not well-defined
- new words or special phrases can be automatically included as long as they appear frequently in the corpus (or network information)
- can construct multiple lexicons for different task domains as long as the corpora are given(or available via the network)

Example Segment Patterns Extracted from Network News Outside of A Standard Lexicon

Patterns with 2 Characters

一套,他很,再往,在向,但從,苗市,記在深表,這篇,單就,無權,開低,蜂炮,暫不

Patterns with 3 Characters

一 今年初,反六輕,半年後,必要時,在七月次微米,卻只有,副主委,第五次,陳水扁,開發中

Patterns with 4 Characters

大受影響,交易價格,在現階段,省民政廳,專責警力 通盤檢討,造成不少,進行了解,暫停通話,擴大臨檢

Word/Segment Pattern Segmentation Samples

•With Extracted Segment Pattern

With A Standard Lexicon

交通部 考慮 禁止 民眾 開 車 時 使用 大哥大 已 委 由 逢甲大學 研究 中 預計 六月 底 完成 至於 實施 時 程 因 涉及 交通 處罰 條例 的 修 必須 經 立法院 三讀通過 交通部 無法 確定 交通部 官員 表示 世界 各 國 對 應否 立法 禁止 民眾 開 車 時 打 大哥大 意見 相當 分岐

•Percentage of Patterns outside of the Standard Lexicon: 28%