You are given an undirected, connected graph, G, with n nodes and m edges where m=n-1. Each node i is initially assigned a value, $node_i$, that has at most 3 prime divisors.

You must answer q queries in the form u v. For each query, find and print the number of (x,y) pairs of nodes on the path between u and v such that $gcd(node_x, node_y) = 1$ and the length of the path between \boldsymbol{u} and \boldsymbol{v} is minimal among all paths from \boldsymbol{u} to \boldsymbol{v} .

Input Format

The first line contains two space-separated integers describing the respective values of n and q. The second line contains n space-separated integers describing the respective values of $node_1, node_2, \ldots, node_n$.

Each of the n-1 subsequent lines contains two space-separated integers, u and v, describing an edge between nodes \boldsymbol{u} and \boldsymbol{v} .

Each of the q subsequent lines contains two space-separated integers, u and v, describing a query.

Constraints

- $1 \le n, q \le 25 \times 10^3$
- $egin{array}{l} \cdot & 1 \leq node_i \leq 10^7 \ \cdot & 1 \leq u,v \leq n \end{array}$

Output Format

For each query, print an integer on a new line denoting the number of (x, y) pairs of nodes on the path between u and v such that $gcd(node_x, node_y) = 1$ and the length of the path between u and v is minimal among all paths from \boldsymbol{u} to \boldsymbol{v} .

Sample Input 0

```
6 5
3 2 4 1 6 5
1 2
1 3
2 4
2 5
3 6
4 6
5 6
1 6
```

Sample Output 0

Explanation 0

The diagram below depicts graph G and the $u \leftrightarrow v$ paths specified by each query, as well as the Pair *Values* for each path in the form $(node_x, node_y)$:

Recall that, for each queried path, we want to find and print the number of (x, y) pairs of nodes such that $gcd(node_x, node_y) = 1$.