116116

COMP 4 - 3(RC)

S.E. Computer Engineering (RC) (Semester – IV) Examination, May/June 2016 COMPUTER ORGANIZATION

Duration: 3 Hours Total Marks: 100

Instructions: 1) Assume suitable data if necessary.

2) Answer any five questions; attempt at least one question from each Module.

- 3) Draw neat diagrams if required.
- 4) Write question numbers legibly while answering.
- 5) Write description for the questions based on the marks allotted.

MODULE-I

1.	a)	a) Explain the different bus structures supported by desktop systems.				
	b)	Explain the following parameters	wi	th reference to memory system :	ė	
		i) access time	ii)	cycle time		
		iii) speed i	v)	speed		
		v) transfer rate	/i)	cost		
c) With a neat diagram, explain the typical 16Mb DRAM.						

2. a). Consider a memory system that uses a 32-bit address to address at the byte

level, plus a cache that uses a 64-byte line size.

- i) Assume a direct mapped cache with a tag field in the address of 20 bits. Show the address format and determine the following parameters: number of addressable units, number of blocks in main memory, number of lines in cache, size of tag.
- ii) Assume an associative cache. Show the address format and determine the following parameters: number of addressable units, number of blocks in main memory, number of lines in cache, size of tag.

8

6

8

6

6

8

6

4

- iii) Assume a four-way set-associative cache with a tag field in the address of 9 bits. Show the address format and determine the following parameters: number of addressable units, number of blocks in main memory, number of lines in set, number of sets in cache, number of lines in cache, size of tag.
- b) Explain need for RAID technology in computer organization with suitable structures.
- c) Explain the various terms related to access of a magnetic disk. Find the average access time that reads or writes to 2048 byte sector. Assume that the disk rotates at 3000rpm; each track of the disk has 16 sectors and the data transfer rate of the disk is 64MB/sec. Assume seek time 12ms.

MODULE - II

- 3. a) Explain with neat flowchart the process of multiplication of floating point number using computer arithmetic.
 - b) Divide-122 by 13 in binary twos complement notation, using 12 -bit words. Show the steps clearly.
 - c) Use the Booth algorithm to multiply-33 (multiplicand) by 29 (multiplier), where each number is represented using 7 bits.
- 4: a) With a neat flowchart, explain the interrupt I/O processing.
 - b) With a neat block diagram, explain the structure of the I/O module.
 - c) Describe mechanisms for identifying device in interrupt I/O processing.

MODULE - III

5. a) Assume a pipeline with four stages: fetch instruction (FI), decode instruction and calculate addresses (DA), fetch operand (FO) and execute (EX). Draw a diagram for a sequence of 7 instructions, in which the third instruction is a branch that is taken and in which there are no data dependencies.

	b)	Discuss the taken/not taken switch techniques used I branch prediction.	8				
	c)	Describe any three important issues in instruction set design.	8				
6.	a)	Write the one two and three address instructions that could be used to compute $Y = (A + B*C - D) / (E*F - G*H)$	6				
	b)	Explain the interrupt cycle of the instruction cycle. Also show the flow of data during the cycle.	8				
	c)	Describe the addressing modes supported by \times 86 processor with examples.	6				
MODULE - IV							
7.	a)	How does micro programmed control unit function? Illustrate with neat diagram.	6				
	b) What is relationship between instruction and micro operations? Explain with example.						
	c)	Describe superscalar instruction issue policies.	6				
	d)	Briefly explain block diagram of tightly coupled multiprocessor.	4				
8.	a)	What is meaning of each of four states in MESI protocols?	6				
	b)	Give advantages and disadvantages of micro programmed control unit.	4				
	c)	Explain concept of:	6				
		i) True data dependency					
		ii) Procedural dependency					
	155	iii) Resource conflict					
	d)	Differentiate between horizontal and vertical microinstruction.	4				