Lab04-Matroid

CS214-Algorithm and Complexity, Xiaofeng Gao, Spring 2021.

* If there is any problem, please contact TA Haolin Zhou.

- * Name:Renyang Guan Student ID:519021911058 Email: guanrenyang@sjtu.edu.cn
- 1. Property of Matroid.
 - (a) Consider an arbitrary undirected graph G = (V, E). Let us define $M_G = (S, C)$ where S = E and $C = \{I \subseteq E \mid (V, E \setminus I) \text{ is connected}\}$. Prove that M_G is a **matroid**.

Proof.

i. Hereditary property:

For $\forall A \subset B$, where $\forall B \in C$,

$$B \setminus A \supset \emptyset \Rightarrow B \setminus A = \{e_1, e_2, \cdots, e_k\} (k \ge 1)$$

Since $(V, E \backslash B)$ is connected, for $\forall D \subseteq B \backslash A$: $(V, (E \backslash B) \cup D)$ is connected.

Considering $(V, (E \backslash B) \cup D) \subset (V, E \backslash A)$, $(V, E \backslash A)$ is connected.

In other words, $A \in C$.

The property of hereditary has been proved.

ii. Exchange property:

Let us figure out a way to change graph G_B into $G_A = (V, E - A)$.

For any edge e in E, it could be sorted into one of the categories below:

Case 1: $e \notin A \cup B$

No-Changing. The edge e will remain in G_A because $e \in E - a$.

Case 2: $e \in A \cap B$

No-Changing. The edge e is excluded from both G_A and G_B .

Case 3: $e \in A \setminus B (e \in B \setminus A \text{ is discussed in this case in the form of } e')$

Change. The edge e will be removed from G_B . Such case should be divide into subcases depending on whether e is a cut edge.

Case 3-1: e is a cut edge of G_B .

If e is removed from G_B , G_B will be disconnected. There must be one edge $e' \in B \setminus A$ added to the graph, such that e' connects the two connected components which e connected.

Case 3-2: e is not a cut edge of G_B .

e ought to be removed from G_B with no need to add a corresponding edge.

Let us define such notations:

 E_1 denotes the set of e mentioned in Case 3-1.

 E_2 denotes the set of e' in corresponding with e.

Since $|E_2| = |E_1| \le |A| < |B|$ and $E_2 \subset B \setminus A$, for any edge $x \in B \setminus A - E_2$, x is not a cut edge, which means $E/(A \cup \{x\})$ is connected. In other words,

$$A \cup \{x\} \in C$$

(b) Given a set A containing n real numbers, and you are allowed to choose k numbers from A. The bigger the sum of the chosen numbers is, the better. What is your algorithm to choose? Prove its correctness using **matroid**.

Remark: Denote \mathbf{C} be the collection of all subsets of A that contains no more than k elements. Try to prove (A, \mathbf{C}) is a matroid.

Solution. My algorithm to choose:

Algorithm 1: My Algorithm

Input: $A[1, \dots, n]$ Output: $A[1, \dots, k]$

- 1 Sort all elements in A into ordering $a_1 \leq a_2 \leq \cdots \leq x_n$;
- 2 $T \leftarrow \emptyset$;
- 3 for $i \leftarrow 1$ to n do
- 4 | if $|A \cup \{x_i\}| \le k$ then

Prove that (A, C) is a matroid.

i. Hereditary property:

 $\forall X \subset Y, \quad Y \in C, \text{ since } |Y| \leq k$:

 $|X| \le k$

Because $Y \subset A$, such that

 $X \subset A$

Combining the two formulas above,

$$X \in C$$

•

The property of hereditary has been proved.

ii. Exchange property:

 $\forall X, Y \in C \text{ and } |X| < |Y|, \text{ such that}$

$$|X| < |Y| \le k$$

Denote D as

$$D = Y \setminus X = \{d_1, d_2, \cdots, d_k\} (k \le 1)$$

 $\forall d \in D$:

$$|X \cup \{d\}| \le k$$

Because $Y \subseteq A$ and $\{d\} \subseteq Y$:

$$X \cup \{d\} \subseteq A$$

Combining the formulas above:

$$X \cup \{d\} \in C$$

The property of exchange has been proved yet.

- 2. Unit-time Task Scheduling Problem. Consider the instance of the Unit-time Task Scheduling Problem given in class.
 - (a) Each penalty ω_i is replaced by $80 \omega_i$. The modified instance is given in Tab. 1. Give the final schedule and the optimal penalty of the new instance using Greedy-MAX.

Table 1: Task

a_i	1	2	3	4	5	6	7
d_i	4	2	4	3	1	4	6
ω_i	10	20	30	40	50	60	70

Solution.

The final schedule is $< a_5, a_6, a_4, a_3, a_7, a_1, a_2 >$.

The optimal penalty is $\omega_1 + \omega_2 = 30$.

(b) Show how to determine in time O(|A|) whether or not a given set A of tasks is independent. (Hint: You can use the lemma of equivalence given in class)

Solution.

Lemma of Equivalence:

That the set A is independent is equivalent to that for $t=0,1,2,\cdots,n,N_t(A)\leq t$, where $N_t(A)$ denotes the number of tasks in A whose deadline is t or earlier.

The algorithm to determine whether A is dependent in time O(|A|)

Algorithm 2: Algorithm of determining in time O(|A|)

Input: A set A of tasks

Output: independent or unindependent

- $1 n \leftarrow |A|$;
- $N[n+1] \leftarrow = \{0,0,\cdots,0\};$
- з for $i \leftarrow 1$ to n do
- $d_i \leftarrow deadline \ of \ task \ A[i];$
- if $d_i \leq n$ then $\lfloor N[d_i] \leftarrow N[d_i] + 1$;
- 7 for $t \leftarrow 1$ to n do
- $N[t] \leftarrow N[t-1] + N[t];$
- if N[t] > t then
- return unindependent
- 11 return independent

Description of the algorithm:

After analysing the property of $N_t(A)$ we could get such recursive formula easily:

$$N_t(A) = \begin{cases} 0 & t = 0\\ N_{t-1}(A) + number\ of\ tasks\ whose\ dealine\ is\ t & t \ge 1 \end{cases}$$

The for loop starting in line 3, which loops for |A| times, traverses the set A. It set the number of tasks whose deadline is t in N[t].

The **for** loop starting in line 7, which loops for |A| times, calculate $N_t(A)$ according to the recursive formula above and set $N_t(A)$ to N[t]. At the same time, it checks every $N_t(A)$ whether or not it is greater than t, where t is an integer ranges from 1 to n. The total time complexity of the algorithm is O(|A|).

3. MAX-3DM. Let X, Y, Z be three sets. We say two triples (x_1, y_1, z_1) and (x_2, y_2, z_2) in $X \times Y \times Z$ are disjoint if $x_1 \neq x_2$, $y_1 \neq y_2$, and $z_1 \neq z_2$. Consider the following problem:

Definition 1 (MAX-3DM). Given three disjoint sets X, Y, Z and a non-negative weight function $c(\cdot)$ on all triples in $X \times Y \times Z$, **Maximum 3-Dimensional Matching** (MAX-3DM) is to find a collection \mathcal{F} of disjoint triples with maximum total weight.

- (a) Let $D = X \times Y \times Z$. Define independent sets for MAX-3DM.
- (b) Write a greedy algorithm based on Greedy-MAX in the form of pseudo code.
- (c) Give a counter-example to show that your Greedy-MAX algorithm in Q. 3b is not optimal.
- (d) Show that: $\max_{F \subset D} \frac{v(F)}{u(F)} \leq 3$. (Hint: you may need Theorem 3 for this subquestion.)

Solution.

(a)

Definition 2 ((D,C)). Let A denote any subset of S, in which any two triples $x,y \in A$, x and y are disjoint. C is the collection of all possible subset As.

Proof of independent property of (D, C).

 $\forall A\subset B,\,\forall B\in C,\,\forall x,y\in A$

$$x, y \in B \Rightarrow x, y \text{ are disjoint} \Rightarrow A \in C$$

(b)

Algorithm 3: Greedy-Max For MAX-3DM

Input: A set of triples D

Output: A collection A of disjoint triples

- 1 Sort all elements in D into ordering $c(x_1) \ge c(x_2) \ge \cdots \ge c(x_n)$;
- $\mathbf{2} \ A \leftarrow \emptyset;$
- $\mathbf{s} \ n \leftarrow |D|;$
- 4 for $i \leftarrow 1$ to n do
- 5 | if $A \cup x_i \in C$ then
- $\mathbf{6} \quad \bigsqcup A \leftarrow A \cup \{x_i\};$
- 7 return A
- (c) A Counter Example:

$$X = \{1, 2\}$$
 $Y = \{3, 4\}$ $Z = \{5, 6\}$

In such case:

$$D = \{(1,3,5), (1,3,6), (1,4,5), (1,4,6), (2,3,5), (2,3,6), (2,4,5), (2,4,6)\}$$

The function C(*) is shown below:

$$(1,3,5) \to 9 \quad (2,4,6) \to 1$$

 $(2,4,5) \to 8 \quad (1,3,6) \to 8$
 $(1,4,5) \to 1 \quad (1,4,6) \to 1$
 $(2,3,5) \to 1 \quad (2,3,6) \to 1$ (1)

It is obvious that the optimal solution is $\mathcal{F} = \{(2,4,5), (1,3,6)\}$ where the maximum is 18 while the solution of Greedy-Max algorithm is $\mathcal{F} = \{(1,3,5), (2,4,6)\}$ where the sum is 10.

(d) According to the Theorem. 3, to prove the origin proposition we just need to prove the Lemma. 1 and Lemma. 2 below.

Lemma 1.

Let the set A satisfy:

$$A = \{(x, y, z) | x \in X, y \in Y, z \in Z, \text{ and } \forall (x_1, y_1, z_1), (x_2, y_2, z_2) \in A : x_1 \neq x_2 \}$$

and \mathcal{F}_x is the collection of all the subsets of A.

The system (D, \mathcal{F}_x) is a matroid.

Lemma 2. We define matroid (D, \mathcal{F}_y) and (D, \mathcal{F}_z) similar to that in Lemma. 1. \mathcal{F}_x , \mathcal{F}_y , and \mathcal{F}_z satisfy:

$$\mathcal{F}_x \cap \mathcal{F}_y \cap \mathcal{F}_z = \mathcal{F}$$

Proof of Lemma. 1.

Hereditary property:

 $\forall B \in \mathcal{F}_x, \forall A \subset B$:

$$\forall (x_1, y_1, z_1), (x_2, y_2, z_2) \in A$$

$$\Rightarrow (x_1, y_1, z_1), (x_2, y_2, z_2) \in B$$

$$\Rightarrow x_1 \neq x_2$$

$$\Rightarrow A \in \mathcal{F}_x$$

Exchange property:

 $\forall A, B \in \mathcal{F}_x$ and |A| < |B|, according to the definition of \mathcal{F}_x , we could easily get:

$$\forall (x_1, y_1, z_1), (x_2, y_2, z_2) \in A : x_1 \neq x_2$$

$$\forall (x_1, y_1, z_1), (x_2, y_2, z_2) \in B : x_1 \neq x_2$$

Let set $A_x = \{x | \forall (x, y, z) \in A\}$ and set $B_x = \{x | \forall (x, y, z) \in B\}$

Because |A| < |B| and that the x value of every two different triples in A are different, which is similar to B, we have:

$$|A_x| < |B_x|$$

As a result of this,

$$\exists x \in B_x, \ \forall x' \in A_x: \ x \neq x'$$

(Otherwise B_x is a subset of A_x , which conflicts with |A| < |B|.) and

$$\forall y \in Y, \ \forall z \in Z, (x, y, z) \notin A$$

According to the definition of B_x :

$$\exists (x, y, z) \in B \setminus A, \ \forall (x', y', z') \in A : \ x \neq x' \Rightarrow A \cup \{(x, y, z)\} \in \mathcal{F}_x$$

Proof of Lemma. 2. Every element of \mathcal{F} is in \mathcal{F}_x , \mathcal{F}_y , and \mathcal{F}_z

$$\forall A \in \mathcal{F}, \ \forall (x_1, y_1, z_1), (x_2, y_2, z_2) \in A: \ x_1 \neq x_2, y_1 \neq y_2, z_1 \neq z_2$$

$$x_1 \neq x_2 \Rightarrow A \in \mathcal{F}_x$$

$$y_1 \neq y_2 \Rightarrow A \in \mathcal{F}_y \Rightarrow A \in \mathcal{F}_x \cap \mathcal{F}_y \cap \mathcal{F}_z$$

$$z_1 \neq z_2 \Rightarrow A \in \mathcal{F}_z$$

$$(2)$$

Any element not in \mathcal{F} is not in \mathcal{F}_x (or \mathcal{F}_y or \mathcal{F}_z):

$$\forall A \notin \mathcal{F}, \ \forall (x_1, y_1, z_1), (x_2, y_2, z_2) \in A:$$

$$x_1 \neq x_2 \ or \ y_1 \neq y_2 \ or \ z_1 \neq z_2 \Rightarrow (A \notin \mathcal{F}_x) \lor (A \notin \mathcal{F}_y) \lor (A \notin \mathcal{F}_z)$$

Theorem 3. Suppose an independent system (E, \mathcal{I}) is the intersection of k matroids (E, \mathcal{I}_i) , $1 \leq i \leq k$; that is, $\mathcal{I} = \bigcap_{i=1}^k \mathcal{I}_i$. Then $\max_{F \subseteq E} \frac{v(F)}{u(F)} \leq k$, where v(F) is the maximum size of independent subset in F and u(F) is the minimum size of maximal independent subset in F.

Remark: You need to include your .pdf and .tex files in your uploaded .rar or .zip file.