

Learning Goals

- 1. Calculate information gain
- 2. Make choices that maximize information gain
- 3. Numerically score how similar two distributions are

Uncertainty Theory

Beta Distributions

Thompson Sampling

Adding Random Vars

Central Limit
Theorem

Sampling

Bootstrapping

Algorithmic Analysis

Information Theory

WorldeBot

Decision Trees

Value of Info in Poker

Adaptive Tests

Comparing Distributions

Compression of Data

Plot Line

- 1. We want to chose questions in think of an animal (Let X be the animal random var)
- 2. Idea! Select the question which most reduces our "uncertainty" in X
- 3. We can measure "uncertainty" as "expected amount of surprise when we find out X"
- 4. We can measure "surprise" in an assignment as log 1/P(X=x)
- 5. This measure of uncertainty of X is super helpful for lots of problems!

Review

Expectation

The probability that X takes on that value
$$E[X] = \sum_{x} x \cdot P(X = x)$$
 All the values that X can take on

Limitation of Expectation

Expectation of a Function

Law of unconscious statistician

$$E[g(X)] = \sum_{x} g(x) \cdot P(X = x)$$

So for example...

$$E[X^2] = \sum_{x} x^2 \cdot P(X = x)$$

Def: Law of Total Expectation

$$E[X] = \sum_{y} E[X|Y = y]P(Y = y)$$

End Review

I am thinking of an animal...

I am thinking of an animal

What is the **best question** to ask?

Question Choosing Algorithms

Algorithm	Average Questions	Standard Error of the Mean
Random Questions	61.34	1.41
Binary Search	6.79	0.02
Information Theory Search	5.33	0.04

5

Hey what's that?

Which Question is Better?

Is it a pet?

Is it a Dog?

Which Question is Better?

Which Question is Better?

Which Question is Better

Can you "score" how bad each of these PMFs are?

Which Question is Better

uncertain

Can you "score" how bad each of these PMFs are?

What we really need is a measure of our uncertainty in a random variable

Let X be any random variable. We can calculate a statistic, "Uncertainty" to express how much we don't know about X

Let X be any random variable. We can calculate a statistic, "Uncertainty" to express how much we don't know about X

Let X be any random variable. We can calculate a statistic, "Uncertainty" to express how much we don't know about X

Uncertainty(X) = Expected "Surprise" when I observe X

Let X be any random variable. We can calculate a statistic, "Uncertainty" to express how much we don't know about X

Uncertainty
$$(X) = \sum_{x \in X} \text{Surprise}(X = x) \cdot P(X = x)$$

Uncertainty is expected Surprise

Ok, but then what is our measure of **Surprise**?

Surprise of an Event

High probability events are not surprising
Low probability events are surprising
Relationship should be monotonic

Surprise of an Event

High probability events are not surprising
Low probability events are surprising
Relationship should be monotonic

Here are three reasonable options

Surprise of an Event, I(E)

Probability of Event $P(E)$	Surprise of Event $I(E)$
1	0
1/2	1
1/4	2
1/8	3
1/16	4
1/32	5
1/64	6

I(E) stands for "Information Content" aka"Surprisal" aka"Self-Information"

Surprise of an Event, I(X = x)

Probability of Event $P(X = x)$	Surprise of Event $I(X = x)$
1	0
1/2	1
1/4	2
1/8	3
1/16	4
1/32	5
1/64	6

I(X = x) stands for "Information Content" aka "Surprisal" aka "Self-Information"

Back to the measure of uncertainty in the outcome of a random variable

Let X be any random variable. We can calculate a statistic, "Uncertainty" to express how much we don't know about X

Uncertainty
$$(X) = \sum_{x \in X} \text{Surprise}(X = x) \cdot P(X = x)$$

Uncertainty is expected Surprise

Let X be any random variable. We can calculate a statistic, "Uncertainty" to express how much we don't know about X

$$\operatorname{Uncertainty}(X) = \sum_{x \in X} \operatorname{Surprise}(X = x) \cdot P(X = x)$$
 Uncertainty is expected Surprise

Let X be any random variable. We can calculate a statistic, "Uncertainty" to express how much we don't know about X

$$\begin{aligned} &\operatorname{Uncertainty}(X) = \sum_{x \in X} \operatorname{Surprise}(X = x) \cdot P(X = x) & \operatorname{Uncertainty is expected Surprise} \\ &= \sum_{x \in X} \log_2 \frac{1}{P(X = x)} \cdot P(X = x) & \operatorname{Our favorite measure of Surprise} \\ &= \sum_{x \in X} \log_2 P(X = x)^{-1} \cdot P(X = x) & 1/\text{x is the same as } \text{x}^{-1} \\ &= \sum_{x \in X} -\log_2 P(X = x) \cdot P(X = x) & \operatorname{Log of a power (here -1)} \\ &= -\sum_{x \in X} \log_2 P(X = x) \cdot P(X = x) & \operatorname{Pull the negative out} \end{aligned}$$

Uncertainty of a Random Variable (Entropy)

Let X be any random variable. We can calculate a statistic, "Uncertainty" to express how much we don't know about X

By the way...

H(X)

Is called **Shannon Entropy** to scare students and impress Physics people

Back to I am thinking of an animal...

Which Question is Better?

Uncertainty (aka Entropy) in code

```
def calc_uncertainty(pmf):
    # this calculates the entropy of the distribution
    # aka the uncertainty
    uncertainty = 0
    for x in pmf:
        p_x = pmf[x]
        # skip zero probabilities
        if p_x == 0: continue
        suprise_x = np.log2(1/p_x)
        uncertainty += suprise_x * p_x
    return uncertainty
```


Entropy in the sum of two dice.

What is more informative:

I tell you that the sum is odd
I tell you the value of the first dice

Traffic Predictions Over Time

Should You Wait to Plan Your Route?

Prediction 1 day in advance

Prediction 30 mins in advance

Chris Piech, CS109

Should You Wait to Plan Your Route?

Prediction 1 day in advance

Prediction 30 mins in advance

Chris Piech, CS109

Should You Wait to Plan Your Route?

Let X be the amount of time to drive from SF to Stanford

Limitations of Entropy for Decision Making?

WorldeBot PIQUE TREAD ORE ER

DALL-E 3

Distance Between Two Distributions

Recall this

Distance Between Two Distributions

Three reasonable ideas

Let poisson prediction be XLet real data be Y

Total Variation (TV)

Loop over all possible values and calculate the **absolute difference** in probability

$$TV(X,Y) = \sum_{i} |P(X=i) - P(Y=i)|$$

Earth Movers (EMD)

Imagine one distribution is a lump of dirt. How much work would it take to make it look just like the other?

Solved using an LP Solver $O(n^3 \log n)$

Kullback Leibler (KL)

Expected excess
surprise from using Y
as a model instead of X
when the actual
distribution is X.

$$KL(X,Y) =$$

$$\sum_{x} \log \frac{P(X=x)}{P(Y=x)} \cdot P(X=x)$$

KL Divergence Without Tears

$$\begin{aligned} \operatorname{KL}(X,Y) &= \sum_{x \in X} \operatorname{ExcessSurprise}(x) \cdot P(X=x) & \text{How much more surprising is x} \\ &= \sum_{x \in X} \left[\operatorname{Surprise}_Y(x) - \operatorname{Surprise}_X(x) \right] \cdot P(X=x) & \text{Surprise according to?} \\ &= \sum_{x \in X} \left[\log_2 \frac{1}{P(Y=x)} - \log_2 \frac{1}{P(X=x)} \right] \cdot P(X=x) & \text{Surprise!} \\ &= \sum_{x \in X} - \log_2 P(Y=x) + \log_2 P(X=x) \cdot P(X=x) & 1/x = x^{-1} \\ &= \sum_{x \in X} \log_2 \frac{P(X=x)}{P(Y=x)} \cdot P(X=x) & \text{Log rules} \end{aligned}$$

Log rules

People often use natural log

KL Divergence in Code

from scipy import stats import math

```
Let poisson prediction be X
          Let real data be Y
```



```
def kl divergence(predicted lambda, observed pmf):
 1111111
 We predicted that the number of hurricanes would be
 X ~ Poisson(predicted lambda) and observed a real world
 number of hurricanes Y ~ observed_pmf
 \Pi\Pi\Pi\Pi
 X = stats.poisson(predicted lambda)
 divergence = 0
 # loop over all the values of hurricanes
 for i in range(0, 40):
   pr X i = X.pmf(i)
   pr Y i = observed pmf[i]
   excess_surprise_i = math.log(pr_X_i / pr_Y_i)
   divergence += excess_surprise_i * pr_X_i
 return divergence
```

$$KL(X,Y) \approx 0.376$$

WorldeBot

Decision Trees

Value of Info in Poker

Adaptive Tests

Comparing Distributions

Compression of Data

Where are we in CS109?

