Ecuaciones diferenciales para estudiantes de ciencias e ingenierías (2014): Erratas

Página	Dice	Debe decir
x, l. 19	extraordinaramente	extraordinariamente
6, 1. 16	de de	de
17, l. 19	en en	en
20, l. 15	t x'' - t (t + 2) x' + (t + 2) x = 0	$t^{2} x'' - t (t+2) x' + (t+2) x = 0$
30, 1. 3	$\frac{y x}{x-1}$	$\frac{y x}{x^2 - 1}$
30, 1. 4	y' = 2x + 2xy	$y' = 2x + 2xy^2$
31, l. 12	$x(t) = 1 + c e^{t/2}$	$x(t) = 1 + c e^{t^2/2}$
31, l. 13	$ x-1 ^{1/2}$	$ x^2 - 1 ^{1/2}$
31, l. 13	$\tan(x + \frac{\pi}{4})$	$\tan(x^2 + \frac{\pi}{4})$
31, l. 24	$(-\infty, \sqrt[4]{3})$	$(-\sqrt[4]{3}, \sqrt[4]{3})$
33, l. 11	$\frac{1}{t}\frac{dx}{dt} - \frac{1}{t}x = 1$	$\frac{1}{t}\frac{dx}{dt} - \frac{1}{t^2}x = 1$
34, l. 3	$\int_{t_0}^t A(s)b(s)ds$	$\int_{t_0}^t A(s)g(s)ds$
57, l. 29	$\mathrm{antig} ilde{\mathrm{A}} \mathrm{ijedad}$	antigüedad
63, l. 17	$\frac{2500}{(500+t)^4}$	$\frac{50}{(1+t/500)^4}$
77, l. 12	$\sum_{j=0}^{m}$	$\sum_{j=1}^{m}$
90, l. 11	$(-\infty,b)$	(b,∞)
97, 1.14	u = z	$u=z^3$
114, l. 12	$b(t) = \frac{1}{t}$	$b(t) = \frac{1}{t^2}$
118, l. 19	Sí	Si
120, l. 21	las las funciones	las funciones
134, l. 22	1.	3.
134, l. 23	2.	4.
134, l. 24	3.	1.
134, l. 25	4.	2.
150, l. 5	$\sqrt{\alpha - \omega}$	$\sqrt{\alpha^2 - \omega^2}$
151, l. 6	$\alpha - \omega = 0$	$\alpha^2 - \omega^2 = 0$
151, l. 13	$\alpha - \omega > 0$	$\alpha^2 - \omega^2 > 0$
152, l. 7	las solución	la solución
160, l. 23	$\gamma = 1000\sqrt{7} \text{ N/m}$	$\gamma = 2000 \text{ N/m}$

161, l. 15	$x(t) = \cdots$	$x(t) = e^{-t} \left(a \cos \sqrt{3} t + b \sin \sqrt{3} t \right) +$
		$c\cos 4\pi t + d\sin 4\pi t,$
		$a = \frac{4\pi^3}{5 - 20\pi^2 + 80\pi^4}, b = \frac{4\pi^3 - 2\pi}{5\sqrt{3}(1 - 4\pi^2 + 16\pi^4)},$
		$c = -\frac{4\pi^3}{5 - 20\pi^2 + 80\pi^4}, \ d = \frac{1}{10(1 - 4\pi^2 + 16\pi^4)},$
198, l. 17	$1 + \frac{t}{2 \cdot 3} + \frac{t}{(2 \cdot 5)(3 \cdot 6)} + \cdots$	$1 + \frac{t^3}{2 \cdot 3} + \frac{t^6}{(2 \cdot 5)(3 \cdot 6)} + \cdots$
205, 1.19	$\left(\frac{t}{2}\right)^{2k}$	$\left(\frac{t}{2}\right)^{2n}$
261, l. 17	$p(\lambda) = -(\lambda - 2)(\lambda + 1)$	$p(\lambda) = -(\lambda - 2)^{2} (\lambda + 1)$
275, l. 16	$ \begin{pmatrix} e^{-t} & t e^{-t} & 0 \\ 0 & e^{-t} & 0 \\ 0 & 2 & e^{t} \end{pmatrix} $	$\begin{pmatrix} e^{-t} & t e^{-t} & 0 \\ 0 & e^{-t} & 2 \\ 0 & 0 & e^{t} \end{pmatrix}$
305, l. 16	ãCuál	¿Cuál