Отчёт по лабораторной работе №5

Модель эпидемии (SIR)

Ощепков Дмитрий Владимирович НФИбд-01-22

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	15

Список иллюстраций

3.1	Настройка
	Модель SIR в xcos
	Задал начальные значения в блоках интегрирования
3.4	Задал конечное время интегрирования в хсоз
3.5	Эпидемический порог модели SIR 5.1 при β = 1, ν = 0.3
3.6	Параметры блока Modelica для модели
3.7	Модель SIR в xcos с применением блока Modelica
3.8	Эпидемический порог модели SIR 5.1 при β = 1, ν = 0.3
3.9	код в Openmodelica
	Точно такой же вывод
3.11	Схема
3.12	Код в блоке
3.13	ВЫВОД

Список таблиц

1 Цель работы

Построить модель SIR в xcos и OpenModelica.

2 Задание

Реализовать модель SIR в в хсоs; Реализовать модель SIR с помощью блока Modelica в в хсоs; Реализовать модель SIR в OpenModelica; Реализовать модель SIR с учётом процесса рождения / гибели особей в хсоs (в том числе и с использованием блока Modelica), а также в OpenModelica; Построить графики эпидемического порога при различных значениях параметров модели (в частности изменяя параметр µ); Сделать анализ полученных графиков в зависимости от выбранных значений параметров модели.

3 Выполнение лабораторной работы

Открыл Scilab, там открыл xcos

Зафиксируем начальные данные: β = 1, ν = 0, 3, s(0) = 0, 999, i(0) = 0, 001, r(0) = 0.

Рис. 3.1: Настройка

Собрал схему

Рис. 3.2: Модель SIR в хсоs

Настраиваю блоки (рис. 3.3)

Рис. 3.3: Задал начальные значения в блоках интегрирования

Рис. 3.4: Задал конечное время интегрирования в хсоѕ

Рис. 3.5: Эпидемический порог модели SIR 5.1 при β = 1, ν = 0.3

Реализация модели с помощью блока Modelica в хсоз

Рис. 3.6: Параметры блока Modelica для модели

Рис. 3.7: Модель SIR в xcos с применением блока Modelica

Рис. 3.8: Эпидемический порог модели SIR 5.1 при β = 1, ν = 0.3

Задание для самостоятельного выполнения Предположим, что в модели SIR учитываются демографические процессы, в частности, что смертность в популяции полностью уравновешивает рождаемость, а все рожденные индивидуумы появляются на свет абсолютно здоровыми.

```
🖶 🔏 🧧 🐧 Доступный на запись 🛮 Model 🔻 Вид Текст 🔻 lab5 /home/openmodelica/lab5.r
        model lab5
           parameter Real I_0 = 0.001;
parameter Real R_0 = 0;
parameter Real S_0 = 0.999;
   4
   5
           parameter Real beta = 1;
           parameter Real nu = 0.3;
           parameter Real mu = 0.5;
   8
           Real s(start=S_0);
Real i(start=I_0);
   9
  10
           Real r(start=R_0);
  11
 12
  13
       equation
          der(s)=-beta*s*i;
 14
  15
          der(i)=beta*s*i-nu*i;
  16
          der(r)=nu*i;
  17
 18
      end lab5;
```

Рис. 3.9: код в Openmodelica

Рис. 3.10: Точно такой же вывод

Рис. 3.11: Схема

```
Ввод значения
Function definition in Modelica
Here is a skeleton of the functions which you should edi
class generic
 ////automatically generated ////
   //input variables
   Real beta, mu, nu;
   //output variables
   Real s,i,r;
 ////do not modif above this line ////
// начальные значения
  Real s(start=.999), i(start=.001),r(start=.0);
// модель SIR
equation
der(s)=-beta*s*i + mu*i + mu*r;
der(i)=beta*s*i-nu*i - mu*i;
der(r)=nu*i - mu*r;
end generic;
                                            Отменить
```

Рис. 3.12: Код в блоке

Рис. 3.13: вывод

4 Выводы

В процессе выполнения данной лабораторной работы была построена модель SIR в xcos и OpenModelica.