UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE INGENIERÍA

Arquitectura

Nombre del Alumno	Diego Joel Zuñiga Fragoso	Grupo	511		
Fecha de la Práctica	04/09/2022	No. Práctica	4		
Nombre de la Práctica	Redes				
Unidad	Sistemas de Ecuaciones Lineales				

CONOCIMIENTOS PREVIOS

Conocimientos básicos de álgebra. Lenguaje algebraico, variables y constantes, ecuaciones

OBJETIVO

Que el alumno sea capaz de transformar una situación real en una representación matemática para que pueda dar solución e interpretar los resultados obtenidos

EQUIPO Y MATERIALES

Scientific WorkPlace

DESARROLLO

Un sistema de redes puede ser representado y resuelto mediante un sistema de ecuaciones lineales. Los puntos donde convergen varias líneas se llama nodo. Las líneas tienen flechas que indican la dirección de flujo, la entrada a un nodo debe ser igual a la salida porque no puede acumularse nada en él. El uso de redes puede aplicarse a hidráulica, tránsito vehicular, datos, corriente eléctrica, etc...

- 1. Por un acueducto fluye agua (en miles de metros cúbicos por hora) como se muestra en la figura.
 - a. Resuelve el sistema para el caudal de agua representado por x_i , i = 1, 2, 3..., 7

Nodo	Entrada	Salida	Ecuación
1	500	$x_1 + x_3$	$x_1 + x_3 = 500$
2	x_1	$x_2 + x_4$	$-x_1 + x_2 + x_4 = 0$
3	$x_2 + x_5$	300	$x_2 + x_5 = 300$
4	$x_6 + x_3$	600	$x_3 + x_6 = 600$
5	$x_4 + x_7$	<i>x</i> ₆	$x_4 - x_6 + x_7 = 0$
6	400	$x_5 + x_7$	$x_5 + x_7 = 400$

Resolver el sistema:

1	0	1	0	0	0	0	500
-1	1	0	1	0	0	0	0
0	1	0	0	1	0	0	300
0	0	1	0	0	1	0	600
0	0	0	1	0	-1	1	0
0	0	0	0	1	0	1	400

, row echelon form

	1	0	0	0	0	-1	0	-100
	0	1	0	0	0	0	-1	-100
n:	0	0	1	0	0	1	0	600
1.	0	0	0	1	0	-1	1	0
	0	0	0	0	1	0	1	400
	0	0	0	0	0	0	0	0

Es una solución infinita pues todas las variables dependen de x₆ y/o x₇.

$$x_1 = -100 + x_6$$

 $x_2 = -100 + x_7$
 $x_3 = 600 - x_6$
 $x_4 = 0 + x_6 - x_7$
 $x_5 = 400 - x_7$

 $x_6, x_7 \in \mathbb{R}^+$

b. Encuentra flujo de la red cuando se cierran las compuertas evitando la circulación de agua por las líneas x_6 y x_7

Nodo	Entrada	Salida	Ecuación
1	500	$x_1 + x_3$	$x_1 + x_3 = 500$
2	x_1	$x_2 + x_4$	$-x_1 + x_2 + x_4 = 0$
3	$x_2 + x_5$	300	$x_2 + x_5 = 300$
4	<i>x</i> ₃	600	$x_3 = 600$
5	x_4	0	$x_4 = 0$
6	400	<i>x</i> ₅	$x_5 = 400$

Resolver el sistema:

1	0	1	0	0	0	0	500
-1	1	0	1	0	0	0	0
0	1	0	0	1	0	0	300
0	0	1	0	0	0	0	600
0	0	0	1	0	0	0	0
0	0	0	0	1	0	0	400

row echelon form:

	1	0	0	0	0	0	0	-100
	0	1	0	0	0	0	0	-100
	0	0	1	0	0	0	0	600
-	0	0	0	1	0	0	0	0
	0	0	0	0	1	0	0	400
	0	0	0	0	0	0	0	0

$$x_1 = -100$$

 $x_2 = -100$
 $x_3 = 600$
 $x_4 = 0$
 $x_5 = 400$

c. Encuentra el flujo de la red cuando se cierra x_6 y el flujo de $x_5 = 1000$

Nodo	Entrada	Salida	Ecuación
1	500	$x_1 + x_3$	$x_1 + x_3 = 500$
2	x_1	$x_2 + x_4$	$-x_1 + x_2 + x_4 = 0$
3	$x_2 + x_5$	300	$x_2 + x_5 = 300$
4	<i>x</i> ₃	600	$x_3 = 600$
5	$x_4 + x_7$	0	$x_4 + x_7 = 0$
6	400	$x_5 + x_7$	$x_5 + x_7 = 400$

Resolver el sistema:

resolver er sisterna.							
1	0	1	0	0	0	0	500
-1	1	0	1	0	0	0	0
0	1	0	0	1	0	0	300
0	0	1	0	0	0	0	600
0	0	0	1	0	0	1	0
0	0	0	0	1	0	1	400
0	0	0	0	1	0	0	1000

, row echelon form

	1	0	0	0	0	0	0	-100
	0	1	0	0	0	0	0	-700
	0	0	1	0	0	0	0	600
1:	0	0	0	1	0	0	0	600
	0	0	0	0	1	0	0	1000
	0	0	0	0	0	0	1	-600
	0	0	0	0	0	0	0	0

$$x_1 = -100$$

$$x_2 = -700$$

$$x_3 = 600$$

$$x_4 = 600$$

$$x_5 = 1000$$

$$x_7 = -600$$

2. El flujo de tráfico (en vehículos por hora) que circula por una red de calles se muestra en la figura

a. Resuelve el sistema para x_i , i = 1, 2, 3, 4

Nodos	Entrada	Salida	Ecuación
1	$400 + x_2$	x_1	$x_1 - x_2 = 400$
2	$x_1 + x_3$	$600 + x_4$	$x_1 + x_3 - x_4 = 600$
3	300	$x_2 + x_3 + x_5$	$x_2 + x_3 + x_5 = 300$
4	$x_4 + x_5$	100	$x_4 + x_5 = 100$

Resolver el sistema:

1	-1	0	0	0	400
1	0	1	-1	0	600
0	1	1	0	1	300
0	0	0	1	1	100

, row echelon form:

1	0	1	0	1	700
0	1	1	0	1	300
0	0	0	1	1	100
0	0	0	0	0	0

Es un sistema con soluciones infinitas pues hay mas variables que ecuaciones

$$x_1 = 700 - x_3 - x_5$$

$$x_2 = 300 - x_3 - x_5$$

$$x_3 = 300 - x_2 - x_5$$

$$x_4 = 100 - x_5$$

$$x_5 \in \mathbb{R}^+$$

b. Encuentra el flujo vehicular cuando no hay circulación en la línea 4

Resolver el sistema:

1	-1	0	0	0	400
1	0	1	0	0	600
0	1	1	0	1	300
0	0	0	0	1	100

, row echelon form:

1	0	1	0	0	600
0	1	1	0	0	200
0	0	0	0	1	100
0	0	0	0	0	0

Solución Infinita

$$x_1 = 600 - x_3$$

$$x_2 = 200 - x_3$$

$$x_3 = 200 - x_2$$

$$x_5 = 100$$

c. Encuentra el flujo vehicular cuando por la línea 4 circulan 100 vehículos por hora Resolver el sistema:

1	-1	0	0	0	400
1	0	1	-1	0	600
0	1	1	0	1	300
0	0	0	1	1	100
0	0	0	1	0	100

, row echelon form:

1	0	1	0	0	700
0	1	1	0	0	300
0	0	0	1	0	100
0	0	0	0	1	0
0	0	0	0	0	0

Solución Infinita

$$x_1 = 700 - x_3$$

$$x_2 = 300 - x_3$$

$$x_3 = 300 - x_2$$

$$x_4 = 100$$

$$x_5 = 0$$

Resuelve los sistemas de ecuaciones obtenidos utilizando el Scientific Work Place

CONCLUSIONES

Fue una práctica muy tardada, aunque también divertida de hacer, pero al final fue sencilla gracias a la explicación en clase. Aprendí a usar las matrices en Scientific Work place y un método para resolverlas.

EVALUACIÓN DE LA PRÁCTICA

Envía el archivo con el procedimiento, resultados obtenidos y las conclusiones utilizando el Campus Virtual