Assignment 8 Al1110: Probability and Random Variables Indian Institute of Technology, Hyderabad

JARUPULA SAI KUMAR CS21BTECH11023

June 17, 2022

Outline

Problem

Solution

Final Result

Abstract

Abstract

This Presentation contains the detailed solution of problem 10.9 of chapter 10 in the famous papoullis textbook.

Problem

Chapter 10-10.9

The position of a particle in underdamped harmonic motion is a normal process with autocorrelation as in (10-60). Show that its conditional density assuming $x(O) = X_O$ and $x'(O) = v(O) = V_O$ equals

$$f(x|x_o, v_o) = \frac{1}{\sqrt{2\pi P}} e^{-\frac{(x-ax_o-bv_o)^2}{2}}$$
 (1)

Find the constants a, b, and P.

$$R_{x}(\tau) = \frac{kT}{c} e^{-\alpha|\tau|} \left(\cos \beta \tau + \frac{\alpha}{\beta} \sin \beta |\tau| \right)$$
 (2)

Solution

Let us try to use the given conditions to solve the constants a,b and P

$$R_{x}(\tau) = \frac{kT}{c} e^{-\alpha|\tau|} \left(\cos \beta \tau + \frac{\alpha}{\beta} \sin \beta |\tau| \right)$$
 (3)

$$\underset{\sim}{x}(\tau) - \underset{\sim}{ax}(0) - \underset{\sim}{bv}(0) \perp \underset{\sim}{x}(0), \underset{\sim}{v}(0)$$
 (4)

We know that.

$$R_{xx}(\tau) = aR_{xx}(0) + bR_{xv}(0)$$
 (6)

$$R_{xv}(\tau) = aR_{xv}(0) + bR_{vv}(0) \tag{7}$$

$$R_{xx}(\tau) = Ae^{-\alpha\tau} \left(\cos B\tau + \frac{\alpha}{B} \sin B\tau \right)$$
 (8)

$$R_{xv}(\tau) = -R'_{xx}(\tau) = Ae^{-\alpha\tau}(\sin B\tau) \frac{\alpha^2 + 3^2}{\beta}$$
 (9)

$$R_{vv}(\tau) = R'_{xv}(\tau) = Ae^{-lpha au} \left(\cos B au - rac{lpha}{B}\sin B au
ight) rac{lpha^2 + eta^2}{eta^2}$$

Inserting into (i) and solving, we obtain

Inserting into (i) and solving, we obtain (11)
$$a = e^{-\alpha \tau} \left(\cos B\tau + \frac{\alpha}{B} \sin B\tau \right)$$
 (12)

$$b = \frac{1}{B} e^{-\alpha \tau} \sin B\tau \tag{13}$$

(10)

final Result

$$P = E\{[x(t) - ax(0) - bv(0)] x(t)\} = R_{xx}(0) - aR_{xx}(t) - bR_{xv}(t)$$
$$= \frac{2kTf}{m^2} \left[1 - e^{-2\alpha t} \left(1 + \frac{2\alpha^2}{B} \sin^2 Bt + \frac{\alpha}{B} \sin 2\beta t \right) \right]$$

