σ -алгебры-2. Измеримые функции

- 1. Доказать, что относительно тривиальной σ -алгебры, состоящей из пустого множества и всего пространства, измеримы лишь постоянные функции.
- 2. Пусть $\mathcal{A} \sigma$ -алгебра и $\{f_n\}$ последовательность измеримых относительно нее функций. Доказать, что множество тех точек x, для которых $\{f_n(x)\}$ имеет конечный предел, входит в \mathcal{A} .
- 3. Пусть $\{A_t\}$ некоторый набор множеств и \mathcal{A} наименьшая содержащая его σ -алгебра. Доказать, что всякое множество из \mathcal{A} входит в σ -алгебру, порожденную некоторым счетным поднабором из $\{A_t\}$.
- 4. Даны множество X и функция f на нем. Пусть \mathcal{A} наименьшая σ -алгебра, относительно которой f измерима.
 - а) Доказать, что \mathcal{A} есть σ -алгебра, порожденная множествами $f^{-1}(-\infty,c)$, где $c\in\mathbb{R}$.
- b) Доказать, что для всякой функции g, измеримой относительно \mathcal{A} , найдется такая борелевская функция h на прямой, что g = h(f).
 - 5. Доказать, что бесконечная σ -алгебра не может быть счетной.
- 6. Доказать, что всякая σ -алгебра в $\mathbb N$ порождается конечным или счетным разбиением $\mathbb N$ на дизъюнктные части.