

Introduction to Functional Programming

Lecture 1 : Lambda Calculus

What is λ -calculus

- Programming language
 - Invented in 1930s, by Alonzo Church and Stephen Cole Kleene
- Model for computation
 - Alan Turing, 1937: Turing machines equal λ -calculus in expressiveness

Overview: λ -calculus as a language

- Syntax
 - How to write a program?
 - **Keyword “ λ ”** for defining functions
- Semantics
 - How to describe the executions of a program?
 - Calculation rules called **reduction**

Syntax

- λ terms or λ expressions:

(Terms) $M, N ::= x \mid \lambda x. M \mid M N$

- Lambda abstraction ($\lambda x. M$): “anonymous” functions

int f (int x) { return x; } $\rightarrow \lambda x. x$

- Lambda application ($M N$): $= 3$

int f (int x) { return x; }
f(3); $\rightarrow (\lambda x. x) 3$

Syntax of Lambda Calculus

- **The syntax is simple:**
- $\langle \text{expr} \rangle ::= \begin{array}{l} \langle \text{constant} \rangle \\ | \quad \langle \text{variable} \rangle \\ | \quad (\langle \text{expr} \rangle \langle \text{expr} \rangle) \\ | \quad (\lambda \langle \text{variable} \rangle. \langle \text{expr} \rangle) \end{array}$
 - **$\langle \text{constant} \rangle$** are numbers like “0” and “1” or predefined functions like “+”, “*”.
 - **$\langle \text{variable} \rangle$** are names like x,y.
 - 3rd rule means function application ($f x$)
 - 4th rule is **lambda abstraction**, for building new functions

Syntax

Derivation of $(\lambda x. ((+ 1) x))$:

$\langle \text{exp} \rangle \Rightarrow (\lambda . \langle \text{variable} \rangle . \langle \text{expr} \rangle)$

$\Rightarrow (\lambda x. \langle \text{expr} \rangle)$

$\Rightarrow (\lambda x. (\langle \text{expr} \rangle \langle \text{expr} \rangle))$

$\Rightarrow (\lambda x. ((\langle \text{expr} \rangle \langle \text{expr} \rangle) \langle \text{expr} \rangle))$

$\Rightarrow (\lambda x. ((\langle \text{constant} \rangle \langle \text{constant} \rangle) \langle \text{expr} \rangle))$

$\Rightarrow (\lambda x. ((+ 1) \langle \text{expr} \rangle))$

$\Rightarrow (\lambda x. ((+ 1) \langle \text{variable} \rangle))$

$\Rightarrow (\lambda x. ((+ 1) x))$

Calling the Function with Argument

- **Function application**

- $((\lambda x. ((+ 1) x)) 2) = (\lambda x. + 1 x) 2$

We call the above function with the argument 2

$$(\lambda x. + 1 x) 2 \Rightarrow (+ 1 2) \Rightarrow 3$$

Increase the Readability

- Parentheses are needed for function application to eliminate ambiguity
- According to the syntax description the following:
 $(\lambda x. + 1 x)$ should be written as:
 $(\lambda x. ((+ 1) x))$
but to increase readability, we omit the parentheses if no ambiguity results from it

Expressions

- The basic operation of lambda calculus is the application of expressions:

$((\lambda x. + x 1) 2)$ equals $(+ 2 1)$

by substituting x for 2 and **throwing** the lambda away

This equals applying the function with the argument 2

Historically, this is called a **beta-conversion**

Variables

- A variable x in an expression $(\lambda x. E)$ is said to be **bound** by lambda
- The scope of the binding is the expression E
- An unbound variable is said to be **free**
- Example:
 - $(\lambda x. + x y)$
 - Here, x is bound and y is free

Variables

- $(\lambda x. + x y) 2 \Rightarrow (+ 2 y)$
 - y is like a non-local reference in this function

- In Scheme:

```
(define y 5)
```

```
((lambda (x) (+ x y)) 2)
```

```
;Value 7
```

Variables

- The same variable can appear many times in different contexts. Some instances may be bound, others free.
- Example:

— $(\lambda x. + ((\lambda y. ((\lambda x. * x y) 2)) x) y)$

- The 1st x , after the $*$ is bound by a different lambda than the outer x
- The first instance of y is bound, the second is free

Let's Substitute

$$\begin{aligned} & (\lambda x. + ((\lambda y. ((\lambda x. * x y) 2)) x) y) \\ \Rightarrow & (\lambda x. + ((\lambda y. (* 2 y)) x) y) \\ \Rightarrow & (\lambda x. + (* 2 x)) y \\ \Rightarrow & (\lambda x. + (* 2 x) y) \quad ; y \text{ is free} \end{aligned}$$

- This function adds y to the product of 2 and the argument x , i.e. $(2^*x)+y$.

Applying Beta Conversion

- We may use pass by value or pass by name
 - **Pass by value:**
$$((\lambda x. (* x x)) (+ 2 3)) \Rightarrow ((\lambda x. (* x x)) 5) \Rightarrow (* 5 5) \Rightarrow 25$$
 - **Pass by name, “delayed evaluation”, “outermost evaluation”, “normal order”**
$$((\lambda x. (* x x)) (+ 2 3)) \Rightarrow (* (+ 2 3) (+ 2 3)) \Rightarrow (* 5 5) \Rightarrow 25$$

Applying Beta Conversion

- The order of **beta** conversions can affect the result. How can this happen?
- Consider this expression:
 - $((\lambda x. x x) (\lambda x. x x))$
 - Substitution will give you the same expression! (Infinite loop)
 - If this expression is used as an argument for:
 - $((\lambda y. 2) ((\lambda x. x x) (\lambda x. x x)))$ then the result is undefined according to call-by-value but if we use “pass-by-name” the value 2 is returned since the expression doesn't depend on the argument y.

Twice

$$\begin{aligned}& (((\lambda f. \lambda x. f(f x)) (\lambda y. (* y y))) 3) \\&= ((\lambda x. (\lambda y. (* y y))) ((\lambda y. (* y y)) x)) 3 \\&= (\lambda x. (\lambda y. (* y y))) ((\lambda y. (* y y)) x) 3 \\&= ((\lambda y. (* y y))) ((\lambda y. (* y y)) 3) \\&= (\lambda y. (* y y)) ((\lambda y. (* y y)) 3) \\&= (\lambda y. (* y y)) ((* 3 3)) \\&= (\lambda y. (* y y)) (* 3 3) = (\lambda y. (* y y)) 9 \\&= (* 9 9) = 81\end{aligned}$$