ЛАБОРАТОРНАЯ РАБОТА № 3 "Использование модулей памяти"

1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1.1. Общие сведения о памяти ЭВМ

Память предназначена для фиксации, хранения и выдачи информации в процессе работы ЭВМ. Процессы чтения и записи информации определяются как процессы обращения к запоминающему устройству (ЗУ). ЗУ характеризуются:

- местом расположения (на кристалле ЦП, мат. плате, внешняя память);
- ёмкостью;
- единицей пересылки;
- методом доступа;
- быстродействием;
- физическим типом (полупроводники, магнитный носитель, оптика);
- физическими особенностями (энергозависимая /энергонезависимая);
- стоимостью.

<u>Емкость ЗУ</u> характеризуют числом битов либо байтов, которое может храниться в запоминающем устройстве.

<u>Единица пересылки</u> обычно равна ширине шины данных (ШД) (слову), но не обязательно.

Методы доступа к ЗУ:

Последовательный доступ. ЗУ с последовательным доступом, ориентированные на хранение информации в виде последовательности блоков данных, называемых записями. Для доступа к нужному элементу (слову или байту) необходимо прочитать все предшествующие ему данные. Пример - Магнитные ленты.

Прямой доступ. Каждая запись имеет уникальный адрес, отражающий ее физическое размещение на носителе информации. Обращение осуществляется как адресный доступ к началу записи с последующим последовательным доступом к определенной единице информации внутри записи. Пример - жесткий диск.

Произвольный доступ. Каждая ячейка памяти имеет уникальный физический адрес. Обращение к любой ячейке занимает одно и то же время и может проводиться в произвольной очередности. Пример - ОЗУ.

Ассоциативный доступ. Этот вид доступа позволяет выполнять поиск ячеек, содержащих такую информацию, в которой значение отдельных битов совпадает с состоянием одноименных битов в заданном образце. Сравнение осуществляется параллельно для веек ячеек памяти, независимо от ее емкости. Пример – КЭШ-память.

Быстродействие ЗУ:

<u>Время доступа</u>. Для памяти с произвольным доступом оно соответствует интервалу времени от момента поступления адреса до момента, когда данные заносятся в память или становятся доступными. В ЗУ с подвижным носителем информации это время, затрачиваемое на установку головки записи/считывания (или носителя) в нужную позицию.

Длительность цикла памяти или период обращения (ТЦ). Понятие применяется к памяти с произвольным доступом, для которой оно означает минимальное время между двумя последовательными обращениями к памяти. Период обращения включает в себя время доступа плюс некоторое дополнительное время. Дополнительное время может требоваться для затухания сигналов на линиях, а в некоторых типах ЗУ, где считывание информации приводит к ее разрушению, - для восстановления считанной информации.

<u>Скорость передачи</u>. Это скорость, с которой данные могут передаваться в память или из нее. Для памяти с произвольным доступом она равна 1/ТЦ. Для других видов памяти скорость передачи определяется соотношением:

$$TN = TA + N/R$$
,

где TN - среднее время считывания или записи N битов; TA - среднее время доступа; R - скорость пересылки в битах в секунду.

<u>Стоимость</u> - отношение общей стоимости 3У к его ёмкости в битах, стоимость хранения одного бита информации.

Основная память (ОП) - единственный вид памяти, к которой ЦП может обращаться непосредственно. Основная память - 3У с произвольным доступом.

Основная память может включать в себя два типа устройств:

- оперативные запоминающие устройства (ОЗУ) RAM (Random Access Memory) и
- постоянные запоминающие устройства (ПЗУ) ROM (Read Only Memory).

ПЗУ обеспечивает считывание информации, но не допускает ее изменения в отличие от ОЗУ.

Традиционно, понятие RAM противопоставляется ROM. Исходя из полных английских названий, можно сделать вывод, что память типа ROM не является памятью с произвольным доступом. Однако это неверно, потому как доступ к устройствам ROM может осуществляться в произвольном, а не строго последовательном порядке. И на самом деле, наименование «RAM» изначально противопоставлялось ранним типам памяти, в которых операции чтения/записи могли осуществляться только в последовательном порядке. В связи с этим, более правильно назначение и принцип работы оперативной памяти отражала бы аббревиатура RWM (Read/Write Memory), которая, тем не менее, практически не встречается. Стоит отметить, что русскоязычным названиям и сокращениям (ОЗУ и ПЗУ) подобная путаница не присуща.

Энергозависимые ОЗУ можно также подразделить еще на две основные подгруппы: динамическую память (DRAM – Dynamic Random Access Memory) и статическую память (SRAM - Static Random Access Memory).

1.2. Использование параметризированных модулей памяти в проектах CAПР Quartus

В библиотеке параметризированных модулей можно найти следующие модули ROM/RAM-памяти, поддерживаемые семейством Flex10K:

lpm_ram_dq	Parameterized RAM with separate input and output ports megafunc-				
	tion.				
lpm_ram_dp	Parameterized dual port RAM megafunction.				
alt3pram	Parameterized triple-port RAM megafunction.				
lpm_rom	Parameterized ROM megafunction.				
lpm_ram_io	Parameterized RAM with a single I/O port megafunction.				
altdpram	Parameterized dual-port RAM megafunction.				
csdpram Parameterized cycle-shared dual port RAM megafunction.					

Рассмотрим некоторые из этих блоков более подробно.

Встраивание параметризированных модулей в проект, как вы уже могли заметить, можно производить с помощью мастера, который запускается автоматически после выбора соответствующего модуля из библиотеки, если выставлена галочка "Launch MegaWisard Plugin". Ручная настройка параметров имеет некоторые плюсы, в частности для блоков памяти это вход, позволяющий перевести выходы в третье состояние. При запуске мастера создается VHDL-описание фактически нового блока с указанными вами параметрами, при ручной же настройке модуль берется стандартный, а уже настройки указываются вручную в его свойствах. Задание рассчитано на использование ручных настроек. Однако это не означает, что нельзя использовать мастер, просто понадобится дополнительные буферы для перевода линий в третье состояние, чтобы исключить конфликт шин. Советы и пояснения по работе с мастером приводятся в отдельном файле megawisard.pdf. Дальше приводится описание настроек выставляемых вручную.

1.2.1. Работа с модулем lpm_rom.

Находим модуль в библиотеке и добавляем его на рабочую область.

Рис. 1.1. Модуль lpm rom

Далее необходимо выбрать используемые и неиспользуемые порты. Сделать это можно в свойствах модуля, на закладке портов (рис. 1.2).

Рис. 1.2. Свойства модуля lpm гот – закладка Порты

В настройках присутствуют порты address и q — соответственно порт ввода адреса и порт вывода данных. Присутствуют также два порта тактирования — inclock и outclock. Стоит обратить внимание, что если порты inclock и outclock не используются (Unused), то ввод и вывод данных производится асинхронно. В противном случае ввод синхронизируется передним фронтом inclock, а вывод — передним фронтом outclock. Порт memenab позволяет перевести выходную шину в состояние высокого импеданса (отключено).

Рис. 1.3. Свойства модуля lpm_rom – закладка Параметры

Переходим к закладке параметров модуля (рис. 1.3). Здесь указываются такие параметры, как разрядность адресного входа, разрядность выхода данных, количество слов в памяти, а также параметры указывающие присутствуют

ли на входе и выходе регистры (необходимы для синхронных операций). Также здесь указвыается путь и название файла инициализации памяти (т.н. файл «прошивки»). Обратите внимание на то, что все строковые параметры записываются в кавычках. По умолчанию файл инициализации памяти ищется в директории проекта. Файл может иметь формат Memory Initialization File (.mif) или Hexadecimal (Intel-Format) File (.hex). Если вы указали несуществующий файл инициализации, то перед компиляцией его необходимо создать либо в текстовом редакторе, либо в самом Quartus'e через меню New. При редактировании в Quartus'e (рис. 1.4) в меню View->Address Radix и Memory Radix задается система счисления для адреса и данных соответственно.

+3 +7 01 02 03 04 05 06 08 09 0A 0B OC. 0D 0E 0F 10

Рис. 1.4. Редактирование файла прошивки в среде Quartus

После окончания настройки модуля можно попробовать промоделировать его работу. Дня этого необходимо проинициализировать память значениями из файла и получить на выходе значения по заданному адресу. Для файла rom.hex, содержимое которого приводилось на рис. 1.4 моделирование будет выглядеть следующим образом (рис. 1.5).

Рис. 1.5. Моделирование блока lpm rom

Стоит также отметить тот факт, что изменение файла инициализации должно сопровождаться перекомпиляцией проекта.

Также нельзя забывать, что модуль имеет достаточно большое время срабатывания (>20 нс). Поэтому очень часто работа с памятью является самым узким местом системы.

Таблицу истинности для данного модуля можно посмотреть в помощи Quartus.

1.2.2. Работа с модулем lpm_ram_io.

Работа с модулем lpm_ram_io производится аналогично. Отличием являются наличие входа разрешения записи и возможность выполнения операции записи в этот модуль.

Таблица истинности модуля также находится в помощи Quartus.

Особое внимание стоит уделить тактированию входа, поскольку под входом понимается не только занесение данных в модуль, но и адреса.

Результаты операций записи необходимо искать не в файле инициализации, а в отчете моделирования в пункте Simulator->Logical Memories.

2. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 1. Разработать блок, включающий в себя модули lpm_rom и lpm_ram выходящие на общую шину. Продемонстрировать операции чтения из памяти. Синхронность/асинхронность операций указана по варианту.
- 2. Используя 8-разрядный регистр, прочитать данные из ячейки-источника памяти ПЗУ и записать их в ячейку-приемник памяти ОЗУ.

Семейство ПЛИС для реализации - Flex10K (изменить семейство ПЛИС(Family) можно в настройках проекта в ветке Device или в пункте меню Assignments->Device)

ВАРИАНТЫ ЗАДАНИЙ К ЛАБОРАТОРНОЙ РАБОТЕ № 3

№ ва-	lpm_rom		lpm_ram_io		Ячейка	Ячейка
риан- та	Ввод	Ввод	Ввод	Вывод	Источник	Приемник
1	Синхр.	Асинхр.	Синхр.	Синхр.	1	8
2	Асинхр.	Асинхр.	Синхр.	Асинхр.	2	7
3	Синхр.	Синхр.	Синхр.	Асинхр.	3	6
4	Асинхр.	Синхр.	Синхр.	Синхр.	4	5
5	Синхр.	Асинхр.	Синхр.	Асинхр.	5	4
6	Асинхр.	Асинхр.	Синхр.	Синхр.	6	3
7	Синхр.	Синхр.	Синхр.	Асинхр.	7	2
8	Асинхр.	Синхр.	Синхр.	Синхр.	8	1

СОДЕРЖАНИЕ ОТЧЕТА ПО ЛАБОРАТОРНОЙ РАБОТЕ №3

- 1. Задание.
- 2.1. Схема блока.
- 2.2. Результаты моделирования.