Poset \mathbb{R}^3 Cannot Be Stuffed into \mathbb{R}^2

Xun Zhiyang

March 11, 2020

Problem 1. View \mathbb{R}^k as a poset which $(x_1, x_2, \dots x_k) \leq (y_1, y_2, \dots, y_k)$ if and only if $y - x \geq 0$ namely $\forall i, y_i \geq x_i$. Is there a subposet of \mathbb{R}^2 poset which is isomorphic with \mathbb{R}^3 ?

The answer is no.

1 A Naïve Discomfort

When we look at a cube drawn on a plane, we always feel there is something wrong. In Figure 1, we can see A and B are not comparable in \mathbb{R}^3 poset. However, as we draw them on a plane, it **seems** as if they were perfectly comparable. We'll prove this discomfort actually makes sense.

Figure 1: Something goes wrong

2 Proof

The proof is actually a formalization of the discomfort above.

Assume there is an isomorphism between poset \mathbb{R}^3 and a subposet of \mathbb{R}^2 . We denote this bijection as φ . Now we introduce the following notations:

$$(1,0,0) = a \xrightarrow{\varphi} a' = (x_a, y_a)$$

$$(0,1,1) = b \xrightarrow{\varphi} b' = (x_b, y_b)$$

$$(0,0,1) = c \xrightarrow{\varphi} c' = (x_c, y_c)$$

$$(1,1,0) = d \xrightarrow{\varphi} d' = (x_d, y_d)$$

$$(1,0,1) = e \xrightarrow{\varphi} e' = (x_e, y_e)$$

$$(0,1,0) = f \xrightarrow{\varphi} f' = (x_f, y_f)$$

Without loss of generality, we assume $x_a \ge x_b$ (the proof of the $x_a \le x_b$ case is almost the same). Because a and b are not comparable, a' and b' are not as well. Thus we know $y_a \le y_b$.

From $c \leq b$, we can see $x_c \leq x_b$. Similarly, $x_a \leq x_d$. Thus, $x_c \leq x_b \leq x_a \leq x_d$. Since c' and d' are not comparable, $y_c \geq y_d$.

From $e \geq a$, we know $e' \geq a'$. Thus $x_e \geq x_a \geq x_b$. Also, $e \geq c$ and we can conclude $y_e \geq y_c \geq y_d$. In addition, $f \leq b$ indicates $x_f \leq x_b$ and $f \leq d$ leads to $y_f \leq y_d$.

Here is the discomfort. We've proved $x_f \leq x_b \leq x_e$ and $y_f \leq y_d \leq y_e$. It immediately leads to $f' \leq e'$! However, we know e and f are not comparable. Our assumption that such bijection exists leads to a contradiction.

Hence, a subposet of \mathbb{R}^2 cannot be isomorphic with \mathbb{R}^3 .

Figure 2: Some points on a cube