

Этикетка

Микросхема 1564ТМ5Т1ЭП

КСНЛ.431253.003ЭТ Микросхема интегральная 1564ТМ5Т1ЭП

Функциональное назначение: Четыре D - триггера

Таблица назначения выводов

$N_{\underline{0}}$	Обозначение	Назначение	№	Обозначение	Назначение
вывода	вывода	вывода	вывода	вывода	вывода
1	1D1	Вход первого триггера первой группы	8	2Q2	Вход второго триггера второй группы
2	1D2	Вход второго триггера первой группы	9	2Q1	Выход первого триггера второй группы
3	2CLK	Вход синхронизации общий для второй группы триггеров	10	NC	Не подключен
4	V	Питание	11	0V	Общий
5	V _{cc}	Выход первого триггера второй группы	12	1CLR	Вход синхронизации общий для первой группы триггеров
6	2D2	Вход второго триггера второй группы СНОВНЫЕ ТЕХН	13	1Q2	Выход второго триггера первой группы
7	NC NC	Не подключен	14	1Q1	Выход первого триггера первой гркппы

= 25+10 °C) 110

1.1 Основные электрические параметры (при $t = 25\pm10$ °C)				
Наименование параметра, единица измерения, режим измерения	Буквенное	Буквенное Норма		
	обозначение	не менее	не более	
1	2	3	4	
1. Максимальное выходное напряжение низкого уровня, В, при:				
$U_{CC}=2.0 \text{ B}, U_{IL}=0.3 \text{ B}, U_{IH}=1.5 \text{ B}, I_{O}=20 \text{ MKA}$	$U_{OL\;max}$	-	0,10	
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} = 20 мкА		-	0,10	
U_{CC} =6,0 B, U_{IL} =1,2 B, , U_{IH} =4,2 B, I_{O} =20 мкА		-	0,10	
при:				
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} =4,0 mA		-	0,26	
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 5,2 mA		ı	0,26	
2. Минимальное выходное напряжение высокого уровня, В, при:				
U_{CC} =2,0 B, U_{IL} =0,3 B, , U_{IH} =1,5 B, I_{O} = 20 мкА	U_{OHmin}	1,9	-	
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} = 20 MKA		4,4	-	
U_{CC} =6,0 B, U_{IL} =1,2 B, , U_{IH} =4,2 B, I_{O} = 20 мкА		5,9	-	
при:				
U_{CC} =4,5 B, U_{IH} =3,15 B, I_{O} = 4,0 mA		4,0	-	
U_{CC} =6,0 B, U_{IH} =4,2 B, I_{O} = 5,2 mA		5,5	-	
3. Входной ток низкого уровня, мкА, при:				
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	${ m I}_{ m IL}$	-	/-0,1/	

4. Входной ток высокого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{IH}	-	0,1
5.Ток потребления, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{CC}	-	2,0
6. Динамический ток потребления, мА, при:			
$U_{CC} = 6.0 \text{ B, f} = 10.0 \text{ M} \Gamma \text{ц}$	I _{OCC}	-	6
7. Время задержки распространения при включении и(выключении), нс,			
- от входа D к выходу Q при:	$t_{PHL,}$		
U _{CC} = 2.0 B, C ₁ =50 пФ	$t_{\rm PLH}$		115
$U_{CC} = 4.5 \text{ B, } C_1 = 50 \text{ n}\Phi$		_	24
$U_{CC} = 6.0 \text{ B. } C_1 = 50 \text{ п}\Phi$		_	23
0,0 B, CL 30 HP			23
- от входа СLК по выходу Q при:			
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ m}\Phi$		-	132
$U_{CC} = 4,5 B, C_L = 50 п\Phi$		-	28
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ m}\Phi$		-	24
9. Входная емкость, пФ	C_{I}	-	10

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г. серебро г.

в том числе:

золото г/мм на 14 выводах длиной мм.

Цветных металлов не содержится

2 НАДЕЖНОСТЬ

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) $^{\circ}$ C не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 120000ч.

 $2.2\ \Gamma$ амма – процентный срок сохраняемости ($T_{C\gamma}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям AEЯР.431200.424-08ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564ТМ5Т1ЭП соответствуют техническим условиям АЕЯР.431200.424-08ТУ и признаны годными для эксплуатации.

Приняты по от (извещение, акт и др.) (дата)	
Место для штампа ОТК	Место для штампа ПЗ
Место для штампа « Перепроверка произведена	» (дата)
Приняты по от от (дата)	-
Место для штампа ОТК	Место для штампа ПЗ
<u>Цена договорная</u>	

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала не более 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общий, вход-питание.

Остальные указания по эксплуатации – в соответствии с АЕЯР.431200.424 ТУ.