

Machine Learning (IS ZC464) Session 11:

Feed forward Neural Networks – Multilayer Perceptron (MLP) and Radial Basis Function Neural Network (RBFNN)

Computing Gradient

Revision

$$E(w) = \sum_{i} T_{i}^{2}$$

= $\sum_{i} (y^{i}-g(h_{w}(x^{i})))^{2}$

where T_i is the error term for the ith observation and is given by the difference between the desired output (yⁱ) value and the estimated value ($h_w(x^i)$) of the output

$$T_i = y^i - g(h_w(x^i))$$

h_w(xⁱ) is the hypothesis function given by

$$h_w(x^i) = w_1 x_1^i + w_2 x_2^i + \dots + w_n x_n^i$$

Observe: E is a function of w.

Note: Here the superscript 'i' represents the 'i'th observation and NOT the power of x.

Observe

• E is the function of T_i

- Revision
- Ti is the function of g (assuming y as constant)
- g is the function of h
- h is the function of w

Chain rule of Differentiation

$$\partial E/\partial w_k = \sum_i \partial E/\partial T_i * \partial T_i/\partial g * \partial g/\partial h * \partial h/\partial w_k$$

Equation 1

Observe

Since

Revision

$$E(w) = \sum_{i} T_{i}^{2}$$
$$\partial E/\partial T_{i} = 2*T_{i}$$

Chain rule of Differentiation

$$\partial E/\partial w_k = 2*\sum_i T_i * \partial T_i/\partial g * \partial g/\partial h * \partial h/\partial w_k$$

Also since

$$T_i = y^i - g(h_w(x^i))$$

Therefore

$$\partial T_i/\partial g = 0 - 1 = -1$$

Equation 2

Working with derivatives

Revision

Equation 2 now becomes

$$\partial E/\partial w_k = 2*\sum_i T_i * (-1) * \partial g/\partial h * \partial h/\partial w_k$$

Also since

$$\partial g/\partial h = \partial g(h_w(x^i))/\partial h = g'$$

And

$$h_w(x^i) = w_1 x_1^i + w_2 x_2^i + \dots + w_n x_n^i$$

Therefore

$$\partial h/\partial w_k = x_k^i$$

Hence equation 3 is simplified as

$$\partial E/\partial w_k = -2*\sum_i T_i *g' *x_k^i$$

Equation 3

Equation 4

Computing gradient in the direction of wk

Revision

Substitute expression for T_i in equation 4

$$\partial E/\partial w_k = -2*\sum_i (y^i - g(h_w(x^i))) * g' * x_k^i$$

Equation 5

• The Weight update in the direction of w_k

$$\Delta w_k = -2*\sum_i (y^i - g(h_w(x^i))) * g' * x_k^i$$

Equation 6

Where 2 can be dropped to bring normalization.

$$\Delta w_k = - \sum_i (y^i - g(h_w(x^i))) * g' * x_k^i$$

Equation 7

March 31, 2019 IS ZC464 6

Delta Learning: Modification of the Initial weight

Learning rate: fast or slow learning

Revision

Feed Forward and Back propagation

- In feed forward neural network, the weights are computed on the basis of the input propagating through neurons in the forward direction. In this no neuron receives the modified input.
- In back propagation neural network, the processed input is cycled again through the previous layer neurons and the weights are modified.

Feed Forward Neural Networks

Weights learning is one way

Back Propagation Neural Networks

Weights learning is cyclic

If Error <= ToleranceLimit Then terminate

$$-\Delta w_k = -\sum_i (y^i - g(h_w(x^i))) * g' * x_k^i$$

- The function g' is 0 if g is not differentiable
- Example Activation functions
- Step Function : Not differentiable
- Sigmoid Function :
 Differentiable

$$y = \frac{1}{1 + \exp(-x)}$$

Gradient Descent Algorithm

- 1. Initialize weights in the n-dimensional space randomly.
- 2. Compute error E.
- 3. Define error tolerance limit L.
- 4. While (E > L)
 - Modify weights W according to delta rule
 - Compute error E with the modified weights and the given input.

Terminology used in text book

	Used in the slides here	Used in book by Mitchell (Chapter 4)						
Set of Training samples	Input : vector x ^{i :} i = 1,2,m output: y ⁱ : i = 1,2,m	D is the set of training samples $d \in D$ Input: vector $x_d : d \in D$ output: $t_d : d \in D$						
Target (Known- supervised)	Y ⁱ	t _d						
Input feature vector	$x^{i} = \langle x_{1}^{i}, x_{2}^{i}, x_{3}^{i},, x_{n}^{i} \rangle$	$x_{d} = \langle x_{d1}, x_{d2}, x_{d3},, x_{dn} \rangle$						
Output- predicted by ANN	h _w (x ⁱ)	o _d						
error	y ⁱ -h _w (x ⁱ)	t _d - o _d						

- Let W = <w₁,w₂,w₃,....w_n> [as a result of training]
- Have a new feature vector is $x = (x_1, x_2, x_3, ..., x_n)$ corresponding to the sample not yet seen by the machine (known as test vector)
- Compute output y as follows
- $y = h_w(x) = w_1x_1 + w_2x_2 + w_nx_n$
- This is the identification of the output [Machine has learned]

Multilayer Feed Forward neural network

- These represent the class of networks which approximate the complex functions.
- The network has one or more hidden layers.
- The neuron 'i' of layer 'L' is connected by a synaptic weight w_{ki} to the 'k'th neuron of layer 'L+1'

17

Weight Terminology

Layer L March 31, 2019 Layer 'L+1'

MLP

Multilayer Feed forward Neural Network

Multilayer Feed forward Neural Network

Multilayer Feed forward Neural Network

Multi Layer Perceptrons

- These are acyclic directed graphs.
- MLP is a feedforward neural network.
- Can handle non linearly separable data.
- Have different hidden layers of neurons which process the data.
- Training is through weight learning.
- ith layer passes information to i+1th layer

Real World Problem

Face Recognition

A face to recognizefor a Computer

203 204 202 202 202 205 206 209 207 206 207 205 203 201 196 189 180 168 150

... for Humans

	196	203	204	202	202	202	205	200	209	207	200	201	205	203	201	190	109	100	100	150	
	199	192	181	168	164	164	163	166	172	183	193	195	197	198	200	200	197	189	Dad		
	177	175	178	167	145	127	117	120	123	131	145	163	178	189	196	196	193	187	Pa	tter	ns
	179	194	197	188	175	159	138	127	125	121	123	138	156	176	190	189	181	172	159	146	
	192	194	186	171	162	159	153	145	140	139	138	142	156	178	191	185	170	152	132	123	
	186	176	154	151	164	162	152	136	127	135	140	146	166	191	198	190	171	145	124	119	
	181	165	158	161				_			_							136	116	113	
	183	159	127	127	M	/ho	se	tac	e is	thi	S ?							125	105	107	
	192	163	126	149	N	lac	hin	e ca	an i	eco	ogn	ize	if t	rair	ned	l 		121	103	110	
	202	193	170	164	161	142	118	117	127	130	147	169	193	203	207	199	163	131	117	122	
	205	202	192	175	156	120	107	105	120	1/12	166	100	201	206	200	107	150	140	127	137	
	204	202	199	1 V	۷hi	ch	pat	ter	n o	f nı	ımı	eric	va	lue	s re	epro	ese	nts	а	154	
	206	206	205	2 r	ers	ัดท	's fa	ace	un	ian	elv	7				•				165	
	206	207	207	200	200	207	201	205	205	200	200	• 203	205	208	207	TAN	15/	143	145	162	-
	206	207	207	207	207	205	205	205	204	205	204	204	207	207	203	190	165	146	142	157	100
	207	206	206	207	207	204	199	198	200	200	203	206	207	206	204	195	173	149	134	144	4
	207	205	205	205	205	202	191	187	188	100	est.	100		W	200	192	168	145	140	134	10
	204	205	205	204	203	200	191	183	185	38	92		50	36	191	171	146	136	144	135	- 35
ш			's F					82	192	10	60			w	162	136	111	130	137	132	1000
								89	199	- 4	25	17.3	50	80	136	111	81	110	129	136	В
R	ecc	ogn	itic	n a	bili	ity	İS	98	200	9.8	3	9	8	P	129	116	107	114	131	139	
a	ma	zin	g					00	203	W	194		20.	и			131	133	139	141	
	197	198	197	194	195	197	200	203	204		w	胀	-84				139	143	144	145	
	197		ւջի ₀ 3			199	201	205	203	202	202	198	193	178	ıs	ZC46		145	146	148	
	TAI	200	. 2000	ים בעד	130	133	201	203	203	202	202	130	133	T / 0			172	143	140	140	

A Face Image

- It is simply a grid of numeric values for the machine.
- A machine uses its computational powers to identify patterns from the above numeric values. (Feature Extraction)
- These patterns are unique to a person.
- A face image is represented by various numerical ways such as PCA eigen faces, DCT, wavelets, other statistical methods.

Training Patterns

Class 1: <1, 2, 3, >

Consecutive integers in ascending order

Class 2: <1,4,9>

Squares of Consecutive integers

Class 3: <-1, -3, -5>

Descending integers with step size 2

Testing Pattern : <25, 36, 49>

Humans: Recognize easily (Good Generalization Capability)

Machines: Need Mathematical Models to recognize patterns

Patterns

- Individual values in the pattern do not give valuable information about the pattern.
- All values in association with each other are informative.
- Patterns have an underlying mathematical structure.

Complexity of Face Data

- The geometric face features are not robust with respect to variations in expression or illumination conditions.
- Mathematical representations such as coefficients of the Discrete Cosine Transform, Wavelet Transforms etc. are used to represent the face.

Complexity of Face Data

- A large number of such coefficients are required to retain identity of a person face.
- A small number of the optimal Features are selected. (to reduce computational load)
- The number (n) of optimal features is also high (e.g. 45 as against all 10000 pixels)

Linearly Separable Non-Face Data

Each face is a point in the n-dimensional space. (ORL face data for three persons)

The points in the n-dimensional space cannot be clustered (colorwise) by hyperplanes.

Face data is nonlinearly separable (Hyper-Surfaces can create boundaries between clusters)

Classification Problem

Given Training Data

Face Recognition Problem

- Posed as a classification problem
- Classes are the person names (identity)
- Training face images are visualized as points in d-dimensional space (d: pattern size)
- Challenge is in identifying appropriate boundaries demarcating individual cluster.

Why More neurons?

- More number of classes.
- Large input sizes of the patterns
- Nonlinear separability of clusters in ndimensional space.

RBFNN

- They capture the training environment in terms of weights.
- The radial basis functions units (RBFU) locally capture the structure of the data
- Basis functions at the RBFU play an important role in transforming the nonlinearly separable high dimensional data to a space of linearly separable data.

Multi Layer Perceptron Vs. RBFNN

The center of the natural cluster is the center of the hidden neuron

A hidden neuron is sensitive for data points near its center

Nearest Neighbor Classification Vs. RBFNN based classification

"Do not know "
condition can be handled well by RBFNN

Nearest neighbor: Shortest distance to the mean of the cluster

RBFNN: Within limits of Radial distance to the mean of the cluster