CHƯƠNG 1: KIẾN THỰC CƠ SỞ

Môn học: Nhập môn Khoa học Dữ liệu

Giảng viên: Nguyễn Kiều Linh

Email: linhnk@ptit.edu.vn

Học viện Công nghệ Bưu chính Viễn thông

Hà Nội, năm 2023 http://www.ptit.edu.vn

- 1 Ôn tập về đại số tuyến tính
 - Ma trận
 - Đinh thức
 - Ma trận nghịch đảo
- 2 Ôn tập về xác suất
 - Sự kiện ngẫu nhiên và quan hệ giữa các sự kiện
 - Xác suất có điều kiện và quy tắc Bayes
 - Biến ngẫu nhiên và phân loại biến ngẫu nhiên
 - Phân phối chuẩn
- 3 Ôn tập về Thống kê
 - Khoảng tin cậy
 - Kiểm định giả thuyết thống kê

- 1 Ôn tập về đại số tuyến tính
 - Ma trân
 - · Dinh thức
 - Ma trận nghịch đảo
- 2 Ôn tập về xác suất
 - Sự kiện ngẫu nhiên và quan hệ giữa các sự kiện
 - Xác suất có điều kiện và quy tắc Bayes
 - Biến ngẫu nhiên và phân loại biến ngẫu nhiên
 - Phân phối chuẩn
- 3 Ôn tập về Thống kê
 - Khoảng tin cậy
 - Kiểm định giả thuyết thống kê

Định nghĩa Ma trận

 $\it Ma\ trận\ cỡ\ m \times n$ là một bảng số hình chữ nhất có $\it m$ hàng và $\it n$ cột, được ký hiệu là

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix},$$

trong đó a_{ij} là phần tử nằm trên hàng thứ i, cột thứ j của ma trận A.

- * Ma trận A còn được ký hiệu gọn là $A = (a_{ij})_{m \times n}$.
- \star Nếu m=n thì A được gọi là ma trận vuông cấp n. Khi đó $A=(a_{ij})_{n\times n}.$
- * Nếu n=1 thì A được gọi là ma trận cột, hay một $v\acute{e}ct$

Nhập môn Khoa học Dữ liệu – Nguyễn Kiều Linh —

Ma trận vuông

Cho ma trận vuông $A = (a_{ij})_{n \times n}$. Đường chéo $a_{11}, a_{22}, \dots, a_{nn}$ được gọi là đường chéo chính.

- * Ma trận vuông mà mọi phần tử nằm phía dưới đường chéo chính đều bằng 0 (tức là $a_{ij}=0, \forall i>j$) gọi là *ma trận tam giác trên*.
- * Ma trận vuông mà mọi phần tử nằm phía trên đường chéo chính đều bằng 0 (tức là $a_{ij} = 0, \forall i < j$) gọi là *ma trận tam giác dưới*.
- * Ma trận vuông mà mọi phần tử không nằm trên đường chéo chính đều bằng 0 (tức là $a_{ij}=0, \forall i\neq j$) gọi là *ma trận đường chéo*, ký hiệu $diag(a_{11},a_{22},\ldots,a_{nn})$.
- * Ma trận đường chéo mà mọi phần tử của đường chéo chính đều bằng 1 được gọi là *ma trận đơn vị*, ký hiệu là *l*.

Nhập môn Khoa học Dữ liệu – Nguyễn Kiều Linh —

Phép cộng hai ma trận

Cho hai ma trận cùng cỡ $A=(a_{ij})_{m\times n}, B=(b_{ij})_{m\times n}$. Tống của hai ma trận A và B, ký hiệu A+B, là ma trận xác định bởi

$$A+B=(a_{ij}+b_{ij})_{m\times n}.$$

Phép nhân ma trận với một số

Cho ma trận $A=(a_{ij})_{m\times n}$ và số thực k. Tích của ma trận A với số k, ký hiệu kA, là ma trận xác định bởi

$$kA = (ka_{ij})_{m \times n}$$
.

Phép nhân hai ma trận

Cho ma trận $A=(a_{ij})_{m\times p}, B=(b_{ij})_{p\times n}$. Tích của ma trận A và B, ký hiệu AB, là ma trận $AB=(c_{ij})_{m\times n}$ xác định bởi

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{ip}b_{pj} = \sum_{k=1}^{p} a_{ik}b_{kj}.$$

Ma trận chuyển vị

Ma trận thu được từ ma trận A bằng cách chuyển các hàng thành các cột (các cột chuyển thành các hàng) được gọi là ma trận chuyển vi của ma trận A, ký hiệu là A^T .

- 1 Ôn tập về đại số tuyến tính
 - Ma trân
 - Định thức
 - Ma trận nghịch đảo
- 2 Ôn tập về xác suất
 - Sự kiện ngẫu nhiên và quan hệ giữa các sự kiện
 - Xác suất có điều kiện và quy tắc Bayes
 - Biến ngẫu nhiên và phân loại biến ngẫu nhiên
 - Phân phối chuẩn
- 3 Ôn tập về Thống kê
 - Khoảng tin cậy
 - Kiểm định giả thuyết thống kê

Ma trận con

Xét ma trận $A=(a_{ij})_{n\times n}$. Ma trận vuông cấp n-1 thu được từ ma trận A bằng cách bỏ đi hàng thứ i và cột thứ j được gọi là ma trận con ứng với phần tử a_{ij} được ký hiệu là M_{ij} .

Dịnh thức

Định thức của ma trận A, ký hiệu $\det(A)$ hoặc |A|, được định nghĩa theo quy nạp như sau:

- \star A là ma trận cấp 1: $A=(a_{11})$ thì $\det(A)=a_{11}$.
- \star A là ma trận cấp n thì

$$\det(A) = a_{11} \det(M_{11}) - a_{12} \det(M_{12}) + \cdots + (-1)^{n+1} a_{1n} \det(M_{1n}).$$

Định thức của ma trận cấp n còn gọi là định thức cấp n.

Tính chất của Định thức

- (i) $det(A) = det(A^T)$.
- (ii) Nếu ma trận B thu được từ ma trận A bởi phép đổi chỗ hai hàng cho nhau thì det(B) = -det(A).
- (iii) Một định thức có hai hàng (hoặc hai cột) như nhau thì bằng 0.
- (iv) Khai triển định thức theo hàng i:

$$\det(A) = (-1)^{i+1} a_{i1} \det(M_{i1}) + (-1)^{i+2} a_{i2} \det(M_{i2}) + \cdots + (-1)^{i+n} a_{in} \det(M_{in}).$$

Khai triển định thức theo cột j:

$$\det(A) = (-1)^{1+j} a_{1j} \det(M_{1j}) + (-1)^{2+j} a_{2j} \det(M_{2j}) + \cdots + (-1)^{n+j} a_{nj} \det(M_{nj}).$$

Tính chất của Định thức (tiếp theo)

- (v) Một định thức có một hàng (hay một cột) toàn là số không thì bằng 0.
- (vi) Khi nhân các phần tử của một hàng (hay một cột) với cùng một số k thì được một định thức mới bằng định thức cũ nhân với k.
- (vii) Một định thức có hai hàng (hay hai cột) tỷ lệ thì bằng không.
- (viii) Khi tất cả các phần tử của một hàng (hay một cột) có dạng tổng của hai số hạng thì định thức có thể phân thành tổng của hai định thức, chẳng hạn:

$$\begin{vmatrix} a_{11} & a_{12} + a'_{12} \\ a_{21} & a_{22} + a'_{22} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a'_{12} \\ a_{21} & a'_{22} \end{vmatrix}.$$

Tính chất của Định thức (tiếp theo)

- (ix) Nếu định thức có một hàng (hay một cột) là tổ hợp tuyến tính của các hàng khác (hay các cột khác) thì định thức ấy bằng không.
- (x) Khi cộng bội k của một hàng vào một hàng khác (hay bội k của một cột vào một cột khác) thì được một định thức mới bằng định thức cũ.

Ví dụ

Tính định thức của ma trận
$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 0 & 5 \\ 3 & 1 & 2 \end{bmatrix}$$
.

- 1 Ôn tập về đại số tuyến tính
 - Ma trân
 - Định thức
 - Ma trận nghịch đảo
- 2 Ôn tập về xác suất
 - Sự kiện ngẫu nhiên và quan hệ giữa các sự kiện
 - Xác suất có điều kiện và quy tắc Bayes
 - Biến ngẫu nhiên và phân loại biến ngẫu nhiên
 - Phân phối chuẩn
- 3 Ôn tập về Thống kê
 - Khoảng tin cậy
 - Kiểm định giả thuyết thống kê

Ma trận nghịch đảo

Giả sử A là ma trận vuông cấp n, I là ma trận đơn vị cùng cấp. Ma trận A được gọi là khả nghịch nếu tồn tại ma trận vuông B sao cho AB = BA = I. Khi đó B được gọi là ma trận nghịch đảo của ma trận A, ký hiệu là A^{-1} .

Ma trận phụ hợp

Xét ma trận $A=(a_{ij})_{n\times n}$. Đặt $A_{ij}=(-1)^{i+j}\det(M_{ij})$, trong đó M_{ij} là ma trận con ứng với phần tử a_{ij} . Khi đó $P_A=(A_{ij})_{n\times n}$ được gọi là ma trận phụ hợp của ma trận A.

Định lý

Ma trận vuông A có ma trận nghịch đảo A^{-1} khi và chỉ khi $\det(A) \neq 0$. Khi đó

$$A^{-1} = \frac{1}{\det(A)} P_A^T = \frac{1}{\det(A)} \begin{bmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \dots & \dots & \dots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{bmatrix}.$$

Ví dụ

Tìm ma trận nghịch đảo của
$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 0 & 5 \\ 3 & 1 & 2 \end{bmatrix}$$
.

Bài tập số 1

Viết chương trình python thực hiện các yêu cầu dưới đây:

- (a) Kiểm tra một ma trận bất kỳ có phải là ma trận tam giác trên, dưới, đường chéo không?
- (b) Tính tổng hai ma trận, nhân ma trận với một số, nhân hai ma trân?
 - (c) Tính định thức của một ma trận, tính ma trận nghịch đảo của một ma trân?

Chú ý: Mỗi yêu cầu thực hiện theo hai cách:

- * Cách 1: code trực tiếp theo định nghĩa, định lý, cách xây dựng,...
- ★ Cách 2: sử dụng thư viện từ python.

- 1 Ôn tập về đại số tuyến tính
 - Ma trận
 - Đinh thức
 - Ma trận nghịch đảo
- 2 Ôn tập về xác suất
 - Sự kiện ngẫu nhiên và quan hệ giữa các sự kiện
 - Xác suất có điều kiện và quy tắc Bayes
 - Biến ngẫu nhiên và phân loại biến ngẫu nhiên
 - Phân phối chuẩn
- 3 Ôn tập về Thống kê
 - Khoảng tin cậy
 - Kiểm định giả thuyết thống kê

- 1 Ôn tập về đại số tuyến tính
 - Ma trận
 - · Dinh thức
 - Ma trận nghịch đảo
- 2 Ôn tập về xác suất
 - Sự kiện ngẫu nhiên và quan hệ giữa các sự kiện
 - Xác suất có điều kiện và quy tắc Bayes
 - Biến ngẫu nhiên và phân loại biến ngẫu nhiên
 - Phân phối chuẩn
- 3 Ôn tập về Thống kê
 - Khoảng tin cậy
 - Kiểm định giả thuyết thống kê

Các định nghĩa cơ bản

- (i) Phép thử là việc thực hiện một thí nghiệm hoặc quan sát theo dõi một hiện tượng thực tế trong từng trường hợp cụ thể với những điều kiện cho trước.
- (ii) Hiện tượng có thể xảy ra hoặc không xảy ra trong kết quả của phép thử được gọi là *sự kiện* hay *biến cố*.
- (iii) $S \psi$ kiện ngẫu nhiên là sự kiện có thể xảy ra hoặc không xảy ra khi phép thử được thực hiện và ký hiệu là A, B, C, \ldots
- (iv) Trong một phép thử, tập hợp tất cả các kết quả có thể xảy ra được gọi là *không gian mẫu* và được ký hiệu là Ω .

Quan hệ giữa các sự kiện

- (i) Hai sự kiện A và B được gọi xung khắc với nhau nếu chúng không đồng thời xảy ra trong cùng một phép thử, ký hiệu $AB = \emptyset$.
- (ii) Họ các sự kiện A_1, A_2, \ldots, A_n được gọi là xung khắc từng đôi nếu một sự kiện bất kỳ trong họ xảy ra khì các sự kiện còn lại không xảy ra, tức là $A_i \cap A_j = \emptyset, \forall i \neq j$.
- (iii) Hai sự kiện A và B được gọi là độc lập với nhau nếu sự kiện này xảy ra hay không xảy ra không làm ảnh hướng tới khả năng xảy ra của sự kiện kia. Ngược lại thì chúng phụ thuộc.
- (vi) Họ các sự kiện A_1, A_2, \dots, A_n được gọi là độc lập từng đôi nếu A_i, A_j độc lập với mọi $i \neq j$.
- (vii) Nhóm n sự kiện A_1, A_2, \ldots, A_n được gọi là nhóm đầy đủ các sự kiện nếu nhất định phải xảy ra một và chỉ một sự kiện trong các sự kiện ấy sau phép thử. Tức là $A_iA_j=\varnothing$ với $\forall i\neq j$ và $A_1\cup A_2\cup\ldots\cup A_n=\Omega$.

Nhập môn Khoa học Dữ liệu - Nguyễn Kiều Linh

- 1 Ôn tập về đại số tuyến tính
 - Ma trận
 - · Dinh thức
 - Ma trận nghịch đảo
- 2 Ôn tập về xác suất
 - Sự kiện ngẫu nhiên và quan hệ giữa các sự kiện
 - Xác suất có điều kiện và quy tắc Bayes
 - Biến ngẫu nhiên và phân loại biến ngẫu nhiên
 - Phân phối chuẩn
- 3 Ôn tập về Thống kê
 - Khoảng tin cậy
 - Kiểm định giả thuyết thống kê

Xác suất có điều kiện

Xác suất của sự kiện A trong điều kiện biết sự kiện B đã xảy ra được gọi là xác suất của A với điều kiện B. Ký hiệu là P(A|B). Khi đó

$$P(A|B) = \frac{P(AB)}{P(B)}$$
, với $P(B) > 0$.

Ví dụ

Một ngân hàng đề thi có cấu trúc như sau:

	Dễ	Khó
Lý thuyết	20	10
Bài tập	30	40

Bốc ngẫu nhiên một câu hỏi. Nếu biết bốc được câu bài tập, tính xác suất bốc được câu dễ.

Nhập môn Khoa học Dữ liệu – Nguyễn Kiều Linh —

Công thức nhân xác suất

Cho A và B là hai sự kiện bất kỳ. Khi đó

$$P(AB) = P(A)P(B|A) = P(B)P(A|B).$$

- Nếu A và B độc lập thì P(AB) = P(A)P(B).
- Nếu A và B xung khắc thì P(AB) = 0.
- Mở rộng cho tích n sự kiện bất kỳ A_1, A_2, \ldots, A_n :

$$P(A_1A_2\cdots A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1A_2)\cdots P(A_n|A_1A_2)\cdots A_{n-1}).$$

Ví dụ

Có 4 que thăm, trong đó có 3 que thăm dài bằng nhau và 1 que thăm ngắn hơn. Bốn người lần lượt lên rút ngẫu nhiên một que thăm. Tính xác suất người thứ i rút được thăm ngắn (i=1,2,3,4).

Công thức cộng xác suất

Nếu A và B là hai sự kiện bất kỳ thì

$$P(A+B) = P(A) + P(B) - P(AB).$$

- Nếu A và B là hai sự kiện xung khắc thì

$$P(A+B) = P(A) + P(B).$$

- Nếu A, B, C là ba sự kiện bất kỳ thì

$$P(A + B + C) = P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC).$$

- Nếu $ar{A}$ là sự kiện đối của A thì $P(ar{A})=1-P(A).$

Nhập môn Khoa học Dữ liệu - Nguyễn Kiều Linh

Ví dụ

Một lớp có 100 sinh viên, trong đó có 30 sinh viên giỏi tiếng Anh, 40 sinh viên giỏi xác suất, 10 sinh viên giỏi cả tiếng Anh lẫn xác suất. Chọn ngẫu nhiên một sinh viên trong lớp. Tìm xác suất để sinh viên đó giỏi ít nhất 1 trong 2 môn trên.

Công thức xác suất dầy đủ

Cho các sự kiện A_1, A_2, \ldots, A_n là một nhóm đầy đủ các sự kiện của một phép thử ngẫu nhiên, B là một sự kiện ngẫu nhiên bất kỳ. Khi đó

$$P(B) = \sum_{i=1}^{n} P(A_i B) = \sum_{i=1}^{n} P(A_i) P(B|A_i).$$

Ví dụ

Có 3 hộp đựng bi. Hộp I đựng 4 bi trắng và 6 bi đen, hộp II đựng 3 bi trắng và 6 bi đen, hộp III đựng 5 bi trắng và 3 bi đen. Lấy ngẫu nhiên một hộp, rồi từ hộp đó lấy ngẫu nhiên một viên bi. Tìm xác suất để được bi trắng.

Công thức xác suất Bayes

Cho các sự kiện A_1,A_2,\ldots,A_n là một nhóm đầy đủ các sự kiện và B là một sự kiện bất kỳ nào đó. Khi đó xác suất có điều kiện của sự kiện $A_k, k=1,2,\ldots,n$ với điều kiện B được xác định bởi

$$P(A_k|B) = \frac{P(A_k)P(B|A_k)}{\sum\limits_{i=1}^n P(A_i)P(B|A_i)}.$$

Ví dụ

Hai xạ thủ bắn mỗi người một phát đạn vào mục tiêu. Xác suất bắn trúng của từng người lần lượt là 0.6 và 0.7. Xác suất mục tiêu bị tiêu diệt khi trúng 1 phát đạn là 0.5 và khi trúng 2 phát là 0.8.

- a) Tính xác suất mục tiêu bị tiêu diệt.
- b) Giả sử mục tiêu bị diệt. Tính xác suất chỉ có một xạ thủ hắn

- 1 Ôn tập về đại số tuyến tính
 - Ma trận
 - Đinh thức
 - Ma trận nghịch đảo
- 2 Ôn tập về xác suất
 - Sự kiện ngẫu nhiên và quan hệ giữa các sự kiện
 - Xác suất có điều kiện và quy tắc Bayes
 - Biến ngẫu nhiên và phân loại biến ngẫu nhiên
 - Phân phối chuẩn
- 3 Ôn tập về Thống kê
 - Khoảng tin cậy
 - Kiểm định giả thuyết thống kê

Biến ngẫu nhiên

Biến ngẫu nhiên là biến nhận giá trị là các số thực phụ thuộc vào kết cục của một phép thử ngẫu nhiên.

Ta thường dùng các chữ cái hoa X, Y, Z, \ldots để chỉ các biến ngẫu nhiên và các chữ cái thường x, y, z, \ldots để chỉ các giá trị cụ thể mà biến ngẫu nhiên đó nhận.

Phân loại biến ngẫu nhiên

Biến ngẫu nhiên được phân làm hai loại:

- (a) Biến ngẫu nhiên rời rạc: X là biến ngẫu nhiên rời rạc nếu tập giá trị của nó là tập hợp hữu hạn hoặc vô hạn đếm được phần tử.
- (b) **Biến ngẫu nhiên liên tục:** X là biến ngẫu nhiên liên tục nếu tập giá trị của nó lấp đầy một khoảng trên trục số.

Ví dụ

- (a) Gọi X là tổng số chấm xuất hiện khi tung đồng thời hai con xúc xắc thì X là một biến ngẫu nhiên rời rạc có thể nhận các giá trị từ 2 đến 12.
- (b) Tại một bến xe buýt cứ 20 phút lại có một chuyến xe. Một người tới bến xe tại một thời điểm nào đó. Gọi Z là thời gian người đó phải chờ xe. Khi đó Z là một biến ngẫu nhiên liên tục có thể nhận các giá trị thuộc [0,20).

- 1 Ôn tập về đại số tuyến tính
 - Ma trận
 - Đinh thức
 - Ma trận nghịch đảo
- 2 Ôn tập về xác suất
 - Sự kiện ngẫu nhiên và quan hệ giữa các sự kiện
 - Xác suất có điều kiện và quy tắc Bayes
 - Biến ngẫu nhiên và phân loại biến ngẫu nhiên
 - Phân phối chuẩn
- 3 Ôn tập về Thống kê
 - Khoảng tin cậy
 - Kiểm định giả thuyết thống kê

Phân phối chuẩn

Biến ngẫu nhiên X được gọi là tuân theo phân phối chuẩn với tham số μ, σ^2 , ký hiệu là $X \sim N(\mu, \sigma^2)$, nếu hàm mật độ xác suất của X có dạng

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \forall x \in \mathbb{R}.$$

Kỳ vọng và phương sai của biến ngẫu nhiên X tuân theo luật phân phối chuẩn là

$$E(X) = \mu, \quad D(X) = \sigma^2,$$

độ lệch chuẩn là $\sigma(X) = \sqrt{D(X)} = \sigma$.

Phân phối chuẩn

PINT

Phân phối chuẩn

Phân phối chuẩn tắc

Phân phối chuẩn tắc

Phân phối chuẩn $N(\mu,\sigma^2)$ với $\mu=0$ và $\sigma=1$ gọi là *phân phối chuẩn tắc* N(0,1).

Hàm mật độ xác suất của biến ngẫu nhiên U có phân phối chuẩn tắc là

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \quad x \in \mathbb{R}.$$

Hàm phân phối xác suất của biến ngẫu nhiên U có phân phối chuẩn tắc là

$$\Phi(x) = \int_{-\infty}^{x} \varphi(t) dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt, \quad x \in \mathbb{R}.$$

Phân phối chuẩn tắc

STANDARDIZATION

$$\sim (\mu, \sigma^2) \longrightarrow \sim (0,1)$$

$$\frac{x - \mu}{\sigma}$$

Nếu X là biến ngẫu nhiên có phân phối chuẩn $N(\mu, \sigma^2)$ thì

$$Z = \frac{X - \mu}{\sigma}$$

là biến ngẫu nhiên có phân phối chuẩn tắc N(0,1).

- Nếu $Z \sim N(0,1)$ thì $P(a \le Z < b) = \Phi(b) \Phi(a)$.
- Nếu $X \sim \textit{N}(\mu, \sigma^2)$ thì

$$P(a \le X < b) = F(b) - F(a) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right).$$

- Hàm $\Phi(x)$ đối xứng qua đường thẳng x=0 nên

$$\Phi(-x)=1-\Phi(x).$$

Ví dụ

Giả sử độ dài một chi tiết máy tuân theo phân bố chuẩn với giá trị trung bình là 20cm và độ lệch chuẩn là 0,5cm. Tính xác suất khi chọn ngẫu nhiên ra một chi tiết thì độ dài của nó:

- 1. Lớn hơn 20cm
- 2. Bé hơn 19,5cm
- 3. nằm trong khoảng 19cm đến 21cm.

Bài tập số 2

- (1) Tính xác suất để chọn được 1 số trong đoạn từ 1 đến 10000 thỏa mãn điều kiện không chia hết cho bất kỳ số nào trong ba số 4, 6, và 9?
- (2) Xét một lô sản phẩm có số lượng rất lớn, trong đó, số sản phẩm do phân xưởng I sản xuất chiếm 20%, phân xưởng II sản xuất chiếm 30%, phân xưởng III sản xuất chiếm 50%. Xác suất phế phẩm của phân xưởng I là 0,001; phân xưởng 2 là 0,005; phân xưởng III là 0,006. Lấy ngẫu nhiên 1 sản phẩm của lô hàng. Tìm xác suất để sản phẩm đó là phế phẩm. Nêu ý nghĩa của xác suất đó?

Bài tập số 2 (tiếp)

- (3) Một nhà máy sản xuất bóng đèn có tỉ lệ bóng đèn tốt là 90%. Trước khi xuất ra thị trường mỗi bóng đèn dều được kiểm tra chất lượng. Vì sự kiểm tra không tuyệt đối nên một bóng đèn tốt có xác xuất 0,9 được công nhận tốt, còn một bóng đèn hỏng có xác suất 0,95 bị loại bỏ. Tính tỉ lệ bóng qua được kiểm tra chất lượng mà lại là bóng hỏng.
- (4) Thời gian cho đến khi sạc lại pin cho máy tính xách tay trong các điều kiện thông thường (thời gian sử dụng pin) có phân phối chuẩn với giá trị trung bình là 260 phút và độ lệch chuẩn là 50 phút.
 - (a) Tính xác suất để thời gian sử dụng pin là hơn bốn giờ?
 - (b) Thời gian sử dụng pin tối thiểu bằng bao nhiều để có xác suất là 95%?
 - (c) Vẽ đồ thị của phân phối chuẩn đã cho sử dụng thư viện của python?

Nhập môn Khoa học Dữ liệu – Nguyễn Kiều Linh —

Bài tập số 2 (tiếp)

(5) Giả sử mẫu dữ liệu sau:

13, 16, 19, 22, 23, 38, 47, 56, 58, 63, 65, 70, 71,

được trích ra từ một biến ngẫu nhiên có phân phối chuẩn với kỳ vọng là 43,15 và độ lệch tiêu chuẩn là 22,13. Chuẩn hoá mẫu dữ liệu đã cho.

Nội dung chính

- 1 Ôn tập về đại số tuyến tính
 - Ma trận
 - · Định thức
 - Ma trận nghịch đảo
- 2 Ôn tập về xác suất
 - Sự kiện ngẫu nhiên và quan hệ giữa các sự kiện
 - Xác suất có điều kiện và quy tắc Bayes
 - Biến ngẫu nhiên và phân loại biến ngẫu nhiên
 - Phân phối chuẩn
- 3 Ôn tập về Thống kê
 - Khoảng tin cậy
 - Kiểm định giả thuyết thống kê

Nội dung chính

- 1 Ôn tập về đại số tuyến tính
 - Ma trận
 - · Dinh thức
 - Ma trận nghịch đảo
- 2 Ôn tập về xác suất
 - Sự kiện ngẫu nhiên và quan hệ giữa các sự kiện
 - Xác suất có điều kiện và quy tắc Bayes
 - Biến ngẫu nhiên và phân loại biến ngẫu nhiên
 - Phân phối chuẩn
- 3 Ôn tập về Thống kê
 - Khoảng tin cậy
 - Kiểm định giả thuyết thống kê

Khoảng tin cậy

Confidence Interval

Nhập môn Khoa học Dữ liệu - Nguyễn Kiều Linh

Dinh nghĩa

Giả sử chưa biết đặc trưng θ nào đó của biến ngẫu nhiên X. Ước lượng khoảng của θ là chỉ ra một khoảng số (g_1,g_2) nào đó chứa θ , tức là có thể ước lượng $g_1<\theta< g_2$.

Ước lượng bằng khoảng tin cậy

Với $\alpha>0$ khá bé, ta tìm được $P(g_1<\theta< g_2)=1-\alpha=:\beta$ thì ta kết luận: với độ tin cậy $1-\alpha=\beta$, tham số θ nằm trong khoảng (g_1,g_2) . Khi đó

- (a) (g_1,g_2) được gọi là khoảng tin cậy của θ với độ tin cậy $\beta=1-\alpha.$
- (b) $1 \alpha = \beta$ được gọi là độ tin cậy của ước lượng.
- (c) $I = g_2 g_1$ được gọi là độ dài khoảng tin cậy.

Khoảng tin cậy

Bài toán ước lượng bằng khoảng tin cậy

Giả sử biến ngẫu nhiên X tuân theo luật phân phối chuẩn $N(\mu,\sigma^2)$ với kỳ vọng $E(X)=\mu$ chưa biết. Hãy ước lượng E(X). Bài toán được xét trong 3 trường hợp:

- Trường hợp 1: đã biết phương sai $V(X)=\sigma^2$
- Trường hợp 2: chưa biết phương sai $V(X)=\sigma^2$ và kích thước mẫu n>30
- Trường hợp 3: chưa biết phương sai $V(X)=\sigma^2$ và kích thước mẫu n<30

Trường hợp đã biết phương sai $V(X) = \sigma^2$

Khoảng tin cậy đối xứng của E(X) là

$$\left(\bar{x}-z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}},\bar{x}+z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}\right),$$

ở đây

- \bar{x} là trung bình mẫu, $\bar{x} = \frac{1}{n}(x_1 + x_2 + \cdots + x_n)$,
- z_{\frac{\pi}{2}} được xác định từ bảng giá trị hàm phân phối chuẩn tắc từ
 hê thức

$$\Phi(z_{\frac{\alpha}{2}})=1-\frac{\alpha}{2}.$$

Trường hợp chưa biết phương sai, cỡ mẫu $n \ge 30$

Khoảng tin cậy đối xứng của E(X) là

$$\left(\bar{x}-z_{\frac{\alpha}{2}}\frac{s}{\sqrt{n}},\bar{x}+z_{\frac{\alpha}{2}}\frac{s}{\sqrt{n}}\right),$$

ở đây

 $ar{x}$ là trung bình mẫu, $s=\sqrt{s^2},\,s^2$ là phương sai mẫu hiệu chỉnh

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2,$$

 $ightharpoonup z_{\frac{\alpha}{2}}$ được xác định từ bảng giá trị hàm phân phối chuẩn tắc từ hê thức

$$\Phi(z_{\frac{\alpha}{2}})=1-\frac{\alpha}{2}.$$

Trường hợp chưa biết phương sai, cỡ mẫu n < 30

Khoảng tin cậy đối xứng của E(X) là

$$\left(\bar{x}-t_{\frac{\alpha}{2}}^{(n-1)}\frac{s}{\sqrt{n}},\bar{x}+t_{\frac{\alpha}{2}}^{(n-1)}\frac{s}{\sqrt{n}}\right),$$

ở đây

- $ar{x}$ là trung bình mẫu, $s=\sqrt{s^2},\,s^2$ là phương sai mẫu hiệu chỉnh,
- $\mathbf{t}_{\frac{\alpha}{2}}^{(n-1)}$ được xác định từ bảng phân phối Student với n-1 bậc tự do.

Ví dụ

Giả sử rằng tuổi thọ của một loại bóng đèn hình TV có độ lệch chuẩn bằng 500, nhưng chưa biết trung bình. Ngoài ra, tuổi thọ của loại bóng đèn đó tuân theo luật phân phối chuẩn. Khảo sát trên một mẫu ngẫu nhiên gồm 15 bóng loại trên, người ta tính được tuổi thọ trung bình là 8900 giờ. Hãy tìm khoảng tin cậy 95% cho tuổi thọ trung bình của loại bóng đèn hình nói trên.

How to Calculate Confidence Intervals in Python?

- Với dữ liệu đã cho xác định sử dụng hàm của phân phối chuẩn (norm.interval() function) hay phân phối t (t.interval() function).
- Xác định kích thước mẫu, độ tin cậy.
- Sử dụng thư viện scipy.stats trong Python.

Ví dụ: Ước lượng bằng khoảng tin cậy 95% chiều cao trung bình của một tổng thể cây dựa vào mẫu quan sát gồm độ cao của 22 cây sau:

How to Calculate Confidence Intervals in Python?

Ví dụ: Ước lượng bằng khoảng tin cậy 95% chiều cao trung bình của một tổng thể cây dựa vào mẫu quan sát gồm độ cao của 22 cây sau:

```
11, 12, 12.5, 13, 13, 15.5, 16, 17, 22, 23, 25, 26, 27, 28, 28, 29, 30, 32, 33, 33, 34, 34.
```

```
import numpy as np
import scipy.stats as st

#define sample dat
data = [11, 12, 12.5, 13, 13, 15.5, 16, 17, 22, 23, 25, 26, 27, 28, 28, 29, 30, 32, 33, 34, 34]

#create 95% confidence interval for population mean weight
a = st.t.interval(alpha=0.95, df=len(data)-1, 32, 33, 34, 34, 34)

**The confidence interval for population mean weight
a = st.t.interval(alpha=0.95, df=len(data)-1, 32, 33, 34, 34)
```


How to Calculate Confidence Intervals in Python?

Ví dụ: Ước lượng bằng khoảng tin cậy 95% chiều cao trung bình của một tổng thể cây dựa vào mẫu quan sát gồm độ cao của 33 cây sau:

```
11, 11, 11.5, 11.5, 11.5, 12, 12, 12, 12.5, 13, 13, 15.5, 16, 17, 22,
```

23, 25, 26, 27, 28, 28, 29, 30, 32, 33, 33, 34, 34, 35, 35, 35, 35, 5, 35.5, 36.

Nội dung chính

- 1 Ôn tập về đại số tuyến tính
 - Ma trận
 - · Dinh thức
 - Ma trận nghịch đảo
- 2 Ôn tập về xác suất
 - Sự kiện ngẫu nhiên và quan hệ giữa các sự kiện
 - Xác suất có điều kiện và quy tắc Bayes
 - Biến ngẫu nhiên và phân loại biến ngẫu nhiên
 - Phân phối chuẩn
- 3 Ôn tập về Thống kê
 - Khoảng tin cậy
 - Kiểm định giả thuyết thống kê

Giả thuyết không, giả thuyết đối

- (i) Giả sử cần nghiên cứu tham số θ của biến ngẫu nhiên X và có cơ sở nào đó để nêu lên giả thuyết $\theta = \theta_0$. Giả thuyết này ký hiệu là H_0 , còn gọi là giả thuyết cần kiểm định hay giả thuyết không (null hypothesis).
- (ii) Mệnh đề đối lập với giả thuyết H_0 ký hiệu là H_1 , còn gọi là đối thuyết (alternative hypothesis). Dạng tổng quát nhất của H_1 là $\theta \neq \theta_0$. Trong nhiều trường hợp giả thuyết đối được phát biểu cụ thể là $H_1: \theta > \theta_1$ hoặc $H_1: \theta < \theta_0$.

Bài toán Kiểm định Giả thuyết thống kê

Giả sử biến ngẫu nhiên gốc X trong tổng thể có phân phối chuẩn $N(\mu,\sigma^2)$, trong đó $E(X)=\mu$ chưa biết nhưng có cơ sở để nêu lên giả thuyết $H_0:\mu=\mu_0$ với μ_0 là tham số đã biết. Với mức ý nghĩa α hãy kiểm định giả thuyết này với các đối thuyết $H_1:\mu\neq\mu_0$ hoặc $\mu>\mu_0$ hoặc $\mu<\mu_0$.

Bài toán được xét trong 3 trường hợp:

- Trường hợp 1: đã biết phương sai $V(X)=\sigma^2$
- Trường hợp 2: chưa biết phương sai $V(X)=\sigma^2$ và kích thước mẫu n>30
- Trường hợp 3: chưa biết phương sai $V(X)=\sigma^2$ và kích thước mẫu n<30

Trường hợp đã biết phương sai $V(X) = \sigma^2$

- Bước 1. Đặt giả thuyết H_0 và đối thuyết H_1 .
- Bước 2. Xác định miền bác bỏ H_0 là W_{α} theo bảng sau

H_0	H_1	Miền bác bỏ W_lpha
$\mu = \mu_0$	$\mu \neq \mu_0$	$\left(-\infty,-z_{rac{lpha}{2}} ight)\cup\left(z_{rac{lpha}{2}},+\infty ight)$
$\mu = \mu_0$	$\mu > \mu_0$	$(z_{lpha},+\infty)$
$\mu = \mu_0$	$\mu < \mu_0$	$(-\infty,-z_lpha)$

trong đó z_{α} , $z_{\frac{\alpha}{2}}$ được xác định từ bảng giá trị hàm phân phối chuẩn tắc $\Phi(x)$.

Trường hợp đã biết phương sai $V(X) = \sigma^2$ (tiếp theo)

Bước 3. Tính giá trị quan sát

$$z_{qs} = \frac{\bar{x} - \mu_0}{\sigma} \sqrt{n}.$$

Bước 4. Xem z_{qs} có thuộc W_{α} hay không để kết luận.

- \star Nếu $z_{qs} \in W_{\alpha}$ thì bác bỏ giả thuyết H_0 .
- * Nếu $z_{qs} \notin W_{\alpha}$ thì chưa có cơ sở để bác bỏ giả thuyết H_0 .

Trường hợp chưa biết phương sai, cỡ mẫu $n \ge 30$

- Bước 1. Đặt giả thuyết H_0 và đối thuyết H_1 .
- Bước 2. Xác định miền bác bỏ H_0 là W_{α} theo bảng sau

H_0	H_1	Miền bác bỏ W_lpha
$\mu = \mu_0$	$\mu \neq \mu_0$	$\left(-\infty,-z_{\frac{\alpha}{2}}\right)\cup\left(z_{\frac{\alpha}{2}},+\infty\right)$
$\mu = \mu_0$	$\mu > \mu_0$	$(z_{lpha},+\infty)$
$\mu = \mu_0$	$\mu < \mu_0$	$(-\infty,-z_lpha)$

trong đó $z_{\alpha}, z_{\frac{\alpha}{2}}$ được xác định từ bảng giá trị hàm phân phối chuẩn tắc $\Phi(x)$.

Trường hợp chưa biết phương sai, cỡ mẫu $n \ge 30$ (tiếp theo)

Bước 3. Tính giá trị quan sát

$$z_{qs}=\frac{\bar{x}-\mu_0}{s}\sqrt{n}.$$

Bước 4. Xem z_{qs} có thuộc W_{lpha} hay không để kết luận.

- \star Nếu $z_{qs} \in W_{\alpha}$ thì bác bỏ giả thuyết H_0 .
- * Nếu $z_{qs} \notin W_{\alpha}$ thì chưa có cơ sở để bác bỏ giả thuyết H_0 .

Trường hợp chưa biết phương sai, cỡ mẫu n < 30

- Bước 1. Đặt giả thuyết H_0 và đối thuyết H_1 .
- Bước 2. Xác định miền bác bỏ H_0 là W_{α} theo bảng sau

H_0	H_1	Miền bác bỏ W_lpha
$\mu = \mu_0$	$\mu \neq \mu_0$	$\left[(-\infty, -t_{rac{lpha}{2}}^{(n-1)}) \cup (t_{rac{lpha}{2}}^{(n-1)}, +\infty) ight]$
$\mu = \mu_0$	$\mu > \mu_0$	$(t_{\alpha}^{(n-1)},+\infty)$
$\mu = \mu_0$	$\mu < \mu_0$	$(-\infty,-t_\alpha^{(n-1)})$

trong đó $t_{\alpha}^{(n-1)}, t_{\frac{\alpha}{2}}^{(n-1)}$ được xác định từ bảng phân phối Student.

Trường hợp chưa biết phương sai, cỡ mẫu $n \ge 30$ (tiếp theo)

Bước 3. Tính giá trị quan sát

$$t_{qs}=\frac{\bar{x}-\mu_0}{s}\sqrt{n}.$$

Bước 4. Xem t_{qs} có thuộc W_{α} hay không để kết luận.

- \star Nếu $t_{qs} \in W_{\alpha}$ thì bác bỏ giả thuyết H_0 .
- * Nếu $t_{qs} \notin W_{\alpha}$ thì chưa có cơ sở để bác bỏ giả thuyết H_0 .

Ví dụ

Một hãng bảo hiểm thông báo rằng số tiền trung bình hãng chi trả cho khách hàng bị tai nạn ô tô là 8500 USD. Để kiểm tra lại, người ta kiểm tra ngẫu nhiên hồ sơ chi trả của 25 khách hàng thì thấy số tiền trung bình chi trả là 8900 USD. Giả sử số tiền chi trả tuân theo luật phân phối chuẩn với độ lệch chuẩn là 2600 USD. Hãy kiểm định lại thông báo của hãng bảo hiểm trên với mức ý nghĩa 5%.

Kiểm định giả thuyết thống kê bằng p-value

P-value là mức ý nghĩa nhỏ nhất có thể dẫn đến việc bác bỏ giả thuyết H_0 với dữ liệu đã cho.

Trường hợp đã biết phương sai

Bước 1. Đặt giả thuyết H_0 và đối thuyết H_1 .

Bước 2. Xác định giá trị quan sát

$$z_{qs} = \frac{\bar{x} - \mu_0}{\sigma} \sqrt{n}.$$

Trường hợp đã biết phương sai

Bước 3. Xác định p-value

H_0	H_1	P-value
$\mu = \mu_0$	$\mu \neq \mu_0$	$2[1-\Phi(z_{qs})]$
$\mu = \mu_0$	$\mu > \mu_0$	$1-\Phi(z_{qs})$
$\mu = \mu_0$	$\mu < \mu_0$	$\Phi(z_{qs})$

Bước 4. Kết luân:

- Nếu p-value < 0.05, bác bỏ giả thuyết H_0 .
- Ngược lại: Chưa đủ điều kiện bác bỏ giả thuyết H_0 .

Các trường hợp còn lại tương tự trường hợp đã biết phương sai, chỉ thay giá trị quan sát tương ứng.

Bài tập số 3

- Một tổng thể X có phân phối chuẩn. Quan sát một mẫu ngẫu nhiên kích thước 25 người ta tính được trung bình là 15 và độ lệch chuẩn là 3. Hãy ước lượng kỳ vọng của X bằng khoảng tin cậy 95%.
- 2. Trọng lượng của một sản phẩm theo quy định là 6kg. Sau một thời gian sản xuất, người ta nghi ngờ trọng lượng của sản phẩm giảm đi. Bởi vậy, người ta tiến hành kiểm tra 121 sản phẩm và tính được trung bình mẫu là 5.975kg và phương sai mẫu hiệu chỉnh là 5.7596kg². Với mức ý nghĩa 5%, hãy kết luận về nghi ngờ nói trên.

Bài tập số 3 (tiếp)

3. Một công ty sản xuất hạt giống tuyên bố rằng một loại giống mới của họ có năng suất trung bình là 21.5 tạ/ha. Gieo thử hạt giống mới này tại 16 vườn thí nghiệm và thu được kết quả:

19.2, 18.7, 22.4, 20.3, 16.8, 25.1, 17.0, 15.8, 21.0, 18.6, 23.7, 24.1,

23.4, 19.8, 21.7, 18.9.

Dựa vào kết quả này hãy xác nhận xem quảng cáo của công ty có đúng không với mức ý nghĩa $\alpha=5\%$. Biết rằng năng suất giống cây trồng là một biến ngẫu nhiên tuân theo luật phân phối chuẩn.

Bài tập Nhóm số 1

- Tìm hiểu thư viện để giải bài toán kiểm định giả thuyết thống kê trong Python?
- Tìm dữ liệu và đặt đầu bài cho dữ liệu và giải bằng chương trình Python với 3 nội dung sau:
 - 1. Chuẩn hoá dữ liêu tìm được.
 - 2. Ước lượng kỳ vọng bằng khoảng tin cậy
 - 3. Kiểm định giả thuyết thống kê cho kỳ vọng.

