Axiomas de la categoría de conjuntos abstractos

Fulano de Tal

March 18, 2025

Primero veremos una lista de axiomas como nos han ido aparenciendo en clase. Luego, refinaremos un poco la primera lista para evitar tantas redundancias.

1 Lista burda de axiomas

Axioma 0 \mathscr{S} es una categoría.

Axioma 1 \mathcal{S} tiene objeto terminal 1.

Axioma 2 1 es separador.

Axioma 3 \mathcal{S} tiene objeto inicial 0.

Axioma 4 $0 \not\cong 1$.

Axioma 5 \mathcal{S} tiene productos binarios (finitos).

Axioma 6 \mathcal{S} tiene coproductos binarios (finitos).

Axioma 7 \mathcal{S} tiene productos fibrados.

Axioma 8 \mathcal{S} tiene clasificador de subobjetos Ω .

Axioma 9 \mathscr{S} satisface el axioma de elección.

Axioma 10 \mathcal{S} tiene exponenciales.

Axioma 11 \mathscr{S} es booleana, es decir, $\Omega = 1 + 1$.

Axioma 12 \mathscr{S} es dos valuada, es decir, Ω tiene exactamente dos elementos.

2 Lista refinada de axiomas

Axioma 0 \mathscr{S} es una categoría.

Axioma 1 \mathcal{S} tiene límites finitos.

Axioma 2 ${\mathscr S}$ tiene clasificador de subobjetos $\Omega.$

Axioma 3 \mathcal{S} tiene exponenciales.

Axioma 4 1 es separador.

Axioma 5 \mathscr{S} satisface el axioma de elección.

Axioma 6 \mathscr{S} es booleana.

Axioma 7 \mathcal{S} es dos valuada.

3 Comentarios

En esta última lista, si $\mathscr E$ satisface los axiomas 0–3, entonces se llama topos elemental. Los axiomas 4–7 son propiedades adicionales que hacen que $\mathscr E$ sea un topos de conjuntos abstractos.

Como veremos más adelante hay topos cuyos objetos se pueden pensar como conjuntos variables. Sin embargo, la categoría \mathbf{Con} no se comporta de esta manera. Así, el axioma 4 es necesario para detener la variación. Los axiomas 6 y 7 hacen que la lógica interna de $\mathscr E$ sea clásica y con sólo dos valores de verdad. Finalmente, el axioma 5 es necesario para realizar muchas construcciones en \mathbf{Con} y es independiente del resto. Por lo tanto, se debe añadir a la lista de axiomas.