12 Validità dei predicati

Diamo di seguito le definizioni di modello e di interpretazione valida di un predicato in un modello.

Intuitivamente un modello definisce in modo primitivo l'interpretazione delle costanti e dei predicati atomici, dopo aver fissato un dominio in cui varino le variabili per termine.

Nell'esempio di formalizzazione dell'asserzione

Tutti gli uomini sono mortali Socrate è un uomo Socrate è mortale

tramite

M(x)= "x è mortale" U(x)= "x è un uomo" \bar{s} = "Socrate".

Un modello è dato da

D= Esseri viventi $M(x)^{\mathcal{D}}$ =1 sse "x è mortale" $U(x)^{\mathcal{D}}$ =1 sse "x è un uomo"

 $\forall x A(x) \text{ è vera nel modello } (\mathcal{D}, A(x)^{\mathcal{D}})$ se $PER \ OGNI \ d \in \mathcal{D} \ A(x)^{\mathcal{D}}(d) = 1$ ovvero $A(x)^{\mathcal{D}} = \mathcal{D}$

 $\exists x A(x) \text{ è vera nel modello } (\mathcal{D}, A(x)^{\mathcal{D}})$ se ESISTE $d \in \mathcal{D}$ tale che $A(x)^{\mathcal{D}}(d) = 1$ ovvero $A(x)^{\mathcal{D}} \neq \emptyset$

Def. Dato un modello \mathcal{D} , un predicato $\operatorname{pr}(\mathtt{x})$ si dice *valido nel modello* \mathcal{D} se, per ogni elemento d del dominio D risulta che la funzione interpretante pr è la constante 1 ovvero, $\operatorname{per ogni} d \in D$ $\operatorname{pr}^{\mathcal{D}}(\mathbf{d}) = \mathbf{1}$.

1. Considera le seguenti definizioni

Def. un formula fr in un linguaggio \mathcal{L} è VALIDA rispetto alla semantica classica se è VALIDA in OGNI modello per \mathcal{L} .

Def. un formula fr in un linguaggio \mathcal{L} è *SODDISFACIBILE rispetto alla semantica classica* se è *VALIDA in ALMENO UN modello per* \mathcal{L} .

Def. un formula fr in un linguaggio \mathcal{L} è NON VALIDA rispetto alla semantica classica se è FALSA in ALMENO UN modello per \mathcal{L}

ovvero la sua negazione ¬fr è SODDISFACIBILE rispetto alla semantica classica

Def. un formula fr in un linguaggio \mathcal{L} è INSODDISFACIBILE rispetto alla semantica classica se è FALSA in OGNI modello per \mathcal{L} .

ovvero la sua negazione ¬fr è VALIDA rispetto alla semantica classica

Dire se le seguenti formule sono valide, soddisfacibili o insoddisfacibili:

- (a) A(c)
- (b) $A(x) \rightarrow \forall x A(x)$

- (c) $A(c) \rightarrow \forall x A(x)$
- (d) $A(c) \rightarrow \exists x \, A(x)$
- (e) $\exists x \, A(x) \rightarrow \forall x \, A(x)$ è falso?
- (f) $\mathcal{D} \equiv \{ \text{ i sogni del mio vicino di banco } \}$ $A(x)^{\mathcal{D}}(d) = 1$ sse il sogno d fa paura $A(x)^{\mathcal{D}}(d) = 0$ sse il sogno d NON fa paura $c^{\mathcal{D}} = \text{il sogno più brutto}$ è un modello ben definito per il linguaggio con A(x) e c?? in questo modello vale $\forall x \ A(x)$??
- (g) $\forall x \exists y \ B(x,y)$
- (h) $B(x,y) \rightarrow A(x)$