Caracteristicas do átomo

Aqui encontram-se os principais conceitos e termos que foram sendo introduzidos com o desenvolvimento e conhecimento do átomo e suas características.

Como TAREFA..LEIAM cada conceito/termo descrito nesta publicação. Posteriormente..visualizem so videos e façam os exercícios propostos.

1ª coisa...peguem a tabela periódica e fiquem com esta

2º OLHEM a LEGENDA desta. Onde estão localizados cada termo

✓ Número Atômico (Z): caracteristico de cada elemento

Corresponde ao Número de prótons contidos no núcleo

Átomo eletricamente neutro - terei o Z igual ao número de elétrons

Na tem 11 prótons então Z = 11 e...11 eletrons

Fe tem 26 prótons então Z=26 e ...26 eletrons

✓ Número de massa (A): soma do n° de protons + nêutrons do núcleo do átomo.

$$A = p + n$$

✓ Número de nêutrons (n): n°de massa (A) – n°atômico (Z)

✓ Íons: particula eletricamente carregada

Cátions: átomos positivamente carregados_Na+,Ca++,AI+3

Anios: átomos negativamentecarregados_Cl-,O2-

Cuidado!

Na Z=11...Na⁺ tem 11 protons e....10 eletrons

Ca Z = 20....Ca $^{2+}$ tem 20 prontons e.....18 eletrons

 $CIZ = 17...CI^{-1}$ tem 17 protons e......18 eletrons

 $OZ = 8....O^{-2}$ tem 8 protons e.....10 eletrons

Carga de valência: indica o número de ligações que um átomo pode fazer

Monovalente: Na+, Cl- Bivalentes: Ca²⁺, O²⁻

Trivalentes: Al ³⁺ ,P³⁻ Tetravalentes: Pt ⁴⁺, (SO₄)⁴⁻

Massa atômica: é a massa atômica média dos isótopos do elemento químico.(u.m.a). Padrão universal ¹²C = 12 u.m.a

1 u.m.a = 1/12 da massa 12C.

Massa atômica média: média ponderada das massa atômicas dos diferentes isotopos que constituem o elemento.

Ex:

Isótopo	Abundância (%)	Massa isotópica (u)	75,53x34,97 + 24,47x36,97
35 17	75,53	34,97	massa =
37 17	24,47	36,97	massa = 35,46u

Aqui precisamos esclarecer !!!
O que é isotopo..isobaro...isotono

ISOTOPOS: ISOBAROS e ISOTONOS

Isótopos: átomos de um mesmo elemento que possuem propriedades quimicas idênticas, mas propriedades fisicas diferentes.

Possuem o mesmo Z, porém apresentam diferentes n°de massa (A)

Hidrogênio: ₁H¹, ₁H² e ₁H³

Oxigênio: 8O16, 8O17 e 8O18

Isóbaros: átomos que tem o mesmo n° massa (A), mas diferentes n°atômico (Z)

Propriedades químicas sao totalmente diferentes

₁₉K⁴⁰ isóbaro de ₂₀C⁴⁰.....A=40

₂₀C⁴² isobaro de ₂₂Ti⁴²....A=42

Isótonos: átomos com diferentes n° atômicos (Z) e de massa (A), porém com igual n° de neutrons

 $_{17}\text{Cl}^{37}$ isotono de $_{20}\text{C}^{40}$...n= 20 neutrons $_{5}\text{B}^{11}$ isotono de $_{6}\text{C}^{12}$n=6 neutrons

Massa molecular: é igual a soma das massas atômicas de todos os átomos que formam a molécula.

- (a) $H_2O:(1x2)+(16x1) = 18 \text{ g/mol}$
- (b) (b) Molécula de ácido sulfúrico. (H₂SO₄)

Total: 98,0734

Mol: é a unidade de medida da quantidade da matéria

1mol = 6,023x10²³ moléculasn = m/M

Massa molar: é a massa de um mol de átomos de qualquer elemento

OBS: Livro. Treichel e Kotz. Cap2. pag. 60 a 65. Exemplos de calculo e exercícios

N° Avogadro: número de átomos de C_{12} em 0,012kg de C_{12} = 6,02x10²³.

Lorenzo Romano Amedeo Avogadro (1776-1856)

Explicou a diferenca entre átomo e molécula

Distinguiu massas moleculares de massas atômicas

Volume molar: volume, em litros, ocupado por um mol de substância.

Volume molar = 22,71L/mol na CNTP. OBS..nao e mais 22,4L MUDOU!!

Substância	Volume molar (L/mol)
Argônio (Ar)	22,09
Dióxido de carbono (CO ₂)	22,26
Gás nitrogênio (N ₂)	22,40
Gás oxigênio (O ₂)	22,40
Gás hidrogênio (H ₂)	22,43

[1mol/L] T = 0°C

P = 101325 Pa

V = 22,71L

Tabela 1. Leis Ponderais⁽²⁾

Primeira Experiência	Conclusão
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Lei de Lavoisier Lei da Conservação das Massas A soma das massas antes da reação é igual à soma das massas após a reação.
Segunda Experiência	Conclusão
Carbono + oxigênio → gás carbônico C + O₂ → CO₂ 3 g + 8 g → 11 g 6 g + 16 g → 22 g 9 g + 24 g → 33 g	Lei de Proust Lei das Proporções Constantes A proporção das massas que reagem permanece sempre constante.
Terceira Experiência	Conclusão
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Lei de Dalton Lei das Proporções Múltiplas Quando dois elementos químicos formam vários compostos, se a massa de um participante permanecer constante, a massa do outro só poderá variar segundo valores múltiplos.

OBS:. Explanações sobre os termos, exemplos e exercícios Livros. Treichel e Kotz. **Química geral e reações químicas. Cap2** e BROWN, Theodore L. [et al.]. **Química: a ciência central. Cap2**.