



# Welcome to the course!





### About me

- Professor in mathematical statistics, actuarial science, and quantitative finance
- Author of Quantitative Risk Management: Concepts, Techniques & Tools with R. Frey and P. Embrechts
- Creator of <u>qrmtutorial.org</u> with M. Hofert
- Contributor to R packages including qrmdata and qrmtools









## The objective of QRM

- In quantitative risk management (QRM), we quantify the risk of a portfolio
- Measuring risk is first step towards managing risk
- Managing risk:
  - Selling assets, diversifying portfolios, implementing hedging with derivatives
  - Maintaining sufficient capital to withstand losses
- Value-at-risk (VaR) is a well-known measure of risk





### Risk factors

- Value of a portfolio depends on many risk factors
- Examples: equity indexes/prices, FX rates, interest rates
- Let's look at the S&P 500 index



## Analyzing risk factors with R

```
> library(qrmdata)
> data(SP500)
> head(SP500, n = 3)
                 ^GSPC
1950-01-03 16.66
1950-01-04 16.85
1950-01-05 16.93
> tail(SP500, n = 3)
                    ^GSPC
2015-12-29 2078.36
2015-12-30 2063.36
2015-12-31 2043.94
```



## Plotting risk factors

> plot(SP500)

#### SP500







# Let's practice!





## Risk-factor returns





## Risk-factor returns

- Changes in risk factors are risk-factor returns or returns
- Let  $(Z_t)$  denote a time series of risk factor values
- Common definitions of returns  $(X_t)$ :

$$X_t = Z_t - Z_{t-1}$$
 (simple returns)
$$X_t = \frac{Z_t - Z_{t-1}}{Z_{t-1}}$$
 (relative returns)

• 0.02 = 2% gain, -0.03 = 3% loss

$$X_t = \ln(Z_t) - \ln(Z_{t-1}) \qquad \text{(log-returns)}$$



## Properties of log-returns

- Resulting risk factors cannot become negative
- Very close to relative returns for small changes:

$$\ln(Z_t) - \ln(Z_{t-1}) \approx \frac{Z_t - Z_{t-1}}{Z_{t-1}}$$

- Easy to aggregate by summation to obtain longerinterval log-returns
- Independent normal if risk factors follow geometric Brownian motion (GBM)



## Log-returns in R

```
> sp500x <- diff(log(SP500))
> head(sp500x, n = 3) # note the NA in first position
                            ^GSPC
1950-01-03
1950-01-04 0.011340020
1950-01-05 0.004736539
> sp500x <- diff(log(SP500))[-1]
> head(sp500x)
                             ^GSPC
1950-01-04
           0.011340020
1950-01-05 0.004736539
1950-01-06 0.002948985
1950-01-09 0.005872007
1950-01-10 -0.002931635
1950-01-11 0.003516944
```



# Log-returns in R(2)

> plot(sp500x)

#### sp500x







# Let's practice!





## Aggregating log-returns



## Aggregating log-returns

- Just add them up!
- Assume  $(X_t)$  are daily log-returns calculated from risk-factor values  $(Z_t)$
- Log-returns for a trading week is the sum of log-returns for each trading day:

$$\ln(Z_{t+5}) - \ln(Z_t) = \sum_{i=1}^{5} X_{t+i}$$

Similar for other time horizons



## Aggregating log-returns in R

 Use the sum() function within apply.weekly() and apply.monthly() in the xts package

```
> sp500x_w <- apply.weekly(sp500x, sum)</pre>
> head(sp500x_w, n = 3)
                              ^GSPC
1950-01-09 0.02489755
1950-01-16 -0.02130264
1950-01-23 0.01189081
> sp500x_m <- apply.monthly(sp500x, sum)</pre>
> head(sp500x_m, n = 3)
                              ^GSPC
1950-01-31 0.023139508
1950-02-28 0.009921296
1950-03-31 0.004056917
```





# Let's practice!





# Exploring other kinds of risk factors



## Exploring other kinds of risk factors

- So far we have looked at:
  - Calculating log-returns and aggregating log-returns over longer intervals
  - Equity data, indexes and single stocks, and foreignexchange (FX) data
- Two other categories of risk factors:
  - Commodities prices
  - Yields of zero-coupon bonds



#### Commodities data and interest-rate data

- Commodities such as gold and oil prices
  - Do log-returns behave like stocks?
- Government bonds value depends on interest rates
  - Consider yields of zero-coupon bonds as risk factors



## Bond prices

- Let p(t, T) denote the price at time small t of a zerocoupon bond paying one unit at maturity T
- p(0, 10): price at t = 0 of bond maturing at T = 10
- p(0, 5): price at t = 0 of bond maturing at T = 5
- p(5, 10): price at t = 5 of bond maturing at T = 10



#### Yields as risk factors

• The yield y(t, T) is defined by the equation:

$$y(t,T) = \frac{-\ln p(t,T)}{T-t}$$

- y(t, 10): yield for a 10-year bond acquired at time t
- y(t, 5): yield for a 5-year bond acquired at time t
- Advantage of yields: comparable across maturities T
- The mapping T to y(t, T) is yield curve at time t
- Log-returns or simple returns of yields?





# Let's practice!





## The normal distribution



### Definition of normal

- If risk factors follow GBM, then log-returns should be independent normal
- Is this the case?
- A variable x is normal if it has density:

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{\sigma^2}}$$

Depends on two parameters:  $\mu$  and  $\sigma$ 



## Properties of the normal

- $\mu$  is the mean and  $\sigma^2$  is the variance
- Usual notation:  $X \sim N(\mu, \sigma^2)$
- Parameters easily estimated from data
- Sum of 2+ independent normal variables is also normal





## Central limit theorem (CLT)

Sum of 5 Gamma 2 variables



Sum of 100 Gamma 2 variables



Sum of 1000 Gamma 2 variables







#### How to estimate a normal distribution

- Data:  $X_1, \ldots, X_n$
- Method of moments:  $\hat{\mu} = \frac{1}{n} \sum_{t=1}^{n} X_t$

$$\hat{\sigma}_u^2 = \frac{1}{n-1} \sum_{t=1}^n (X_t - \hat{\mu})^2$$

Application to FTSE log-returns from 2008-09





## FTSE example

```
> head(ftse)
[1] -0.09264548 -0.08178433 -0.07428657 -0.05870079 -0.05637430
-0.05496918
> tail(ftse)
[1] 0.05266208 0.06006960 0.07742977 0.07936751 0.08469137
0.09384244
> mu <- mean(ftse)
> sigma <- sd(ftse)
> c(mu, sigma)
[1] -0.0003378627 0.0194090385
```



## Displaying the fitted normal

```
> hist(ftse, nclass = 20, probability = TRUE)
> lines(ftse, dnorm(ftse, mean = mu, sd = sigma), col = "red")
```

#### Histogram of ftse







# Let's practice!





# Testing for normality





## How to test for normality

- Use the quantile-quantile plot (Q-Q plot)
- Sample quantiles of data versus theoretical quantiles of a normal distribution

#### Normal Q-Q Plot





## Interpreting the Q-Q plot

- Data with heavier tails than normal: inverted S shape
- Data with lighter tails than normal: S shape
- Data from a very skewed distribution: curved shape
  - > qqnorm(ftse)
  - > qqline(ftse)







# Let's practice!





# Skewness, kurtosis and the Jarque-Bera test



#### Skewness and kurtosis

- **Skewness** (b) is a measure of asymmetry
- Kurtosis (k) is a measure of heavy-tailedness
- Skewness and kurtosis of normal are o and 3, respectively



$$= \frac{1}{n} \frac{\sum_{t=1}^{n} (X_t - \hat{\mu})^3}{\hat{\sigma}^3}$$

$$= \frac{1}{n} \frac{\sum_{t=1}^{n} (X_t - \hat{\mu})^4}{\hat{\sigma}^4}$$





### Skewness and kurtosis (II)

- > library(moments)
- > skewness(ftse)
  [1] -0.01187921
- > kurtosis(ftse)
  [1] 7.437121





#### The Jarque-Bera test

- Compares skewness and kurtosis of data with theoretical normal values (o and 3)
- Detects skewness, heavy tails, or both

$$T = \frac{1}{6}n\left(b^2 + \frac{1}{4}(k-3)^2\right)$$

```
> jarque.test(ftse)

Jarque-Bera Normality Test

data: ftse
JB = 428.23, p-value < 2.2e-16
alternative hypothesis: greater</pre>
```



#### Longer-interval and overlapping returns

- Daily returns are usually very non-normal
- What about longer-intervals returns?
- Weekly, monthly, quarterly returns obtained by summation
- Recall CLT suggests they may be more normal
- Reduce quantity of data so tests are weaker
- Can also analyze overlapping or moving sums of returns









#### The Student t distribution



#### The Student t distribution

$$f_X(x) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sigma\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{(x-\mu)^2}{\nu\sigma^2}\right)^{-\frac{\nu+1}{2}}$$

- This distribution has three parameters:  $\mu, \sigma, \nu$
- Small values of  $\nu$  give heavier tails
- As  $\nu$  gets larger the distribution tends to normal



### Fitting the Student t distribution

- Method of maximum likelihood (ML)
- fit.st() in QRM package
- Small  $\nu$  value (2.95) for FTSE log-returns from 2008-09



#### Displaying the fitted Student t distribution

```
> hist(ftse, nclass = 20, probability = TRUE)
> lines(ftse, dnorm(ftse, mean = mean(ftse), sd = sd(ftse)), col = "red")
> yvals <- dt((ftse - mu)/sigma, df = nu)/sigma
> lines(ftse, yvals, col = "blue")
```













# Characteristics of volatile return series



### Log-returns compared with iid data

- Can financial returns be modeled as independent and identically distributed (iid)?
- Random walk model for log asset prices
- Implies that future price behavior cannot be predicted
- Instructive to compare real returns with iid data
- Real returns often show volatility clustering









# Estimating serial correlation





#### Sample autocorrelations

- Sample autocorrelation function (acf) measures correlation between variables separated by lag (k)
- Stationarity is implicitly assumed:
  - Expected return constant over time
  - Variance of return distribution always the same
  - Correlation between returns k apart always the same
- Notation for sample autocorrelation:  $\hat{
  ho}(k)$



## The sample acf plot or correlogram

> acf(ftse)

#### Series ftse





## The sample acf plot or correlogram

> acf(abs(ftse))

Series abs(ftse)











# The Ljung-Box test



#### Testing the iid hypothesis with the Ljung-Box test

- Numerical test calculated from squared sample autocorrelations up to certain lag
- Compared with chi-squared distribution with k degrees of freedom (df)
- Should also be carried out on absolute returns

$$X^{2} = n(n+2) \sum_{j=1}^{k} \frac{\hat{\rho}(j)^{2}}{n-j}$$



## Example of Ljung-Box test

```
> Box.test(ftse, lag = 10, type = "Ljung")
  Box-Ljung test
data: ftse
X-squared = 41.602, df = 10, p-value = 8.827e-06
> Box.test(abs(ftse), lag = 10, type = "Ljung")
  Box-Ljung test
data: abs(ftse)
X-squared = 314.62, df = 10, p-value < 2.2e-16
```



#### Applying Ljung-Box to longer-interval returns

```
> ftse_w <- apply.weekly(ftse, FUN = sum)</pre>
> head(ftse_w, n = 3)
                 ^FTSE
2008-01-04 -0.01693075
2008-01-11 -0.02334674
2008-01-18 -0.04963134
> Box.test(ftse_w, lag = 10, type = "Ljung")
  Box-Ljung test
data: ftse_w
X-squared = 18.11, df = 10, p-value = 0.05314
> Box.test(abs(ftse_w), lag = 10, type = "Ljung")
  Box-Ljung test
data: abs(ftse_w)
X-squared = 34.307, df = 10, p-value = 0.0001638
```









# Looking at the extreme in financial time series



### Extracting the extreme of return series

• Extract the most extreme negative log-returns exceeding 0.025

There are none from 1993-1996!



## Plotting the extremes values

```
> plot(ftse_extremes, type = "h", auto.grid = FALSE)
```

#### ftse\_extremes











# The stylized facts of return series



#### The stylized facts

- 1. Return series are heavier-tailed than normal, or leptokurtic
- 2. The volatility of return series appears to vary over time
- 3. Return series show relatively little serial correlation
- 4. Series of absolute returns show profound serial correlation
- 5. Extreme returns appear in clusters
- 6. Returns aggregated over longer periods tend to become more normal and less serially dependent









# Value-at-risk and expected shortfall





#### Value-at-risk (VaR)

- Consider the distribution of losses over a fixed time period (day, week, etc.)
- $\alpha$ -VaR is the  $\alpha$ -quantile of the loss distribution
- $\alpha$  known as confidence level (e.g. 95%, 99%)
- Should lose no more than  $\alpha$ -VaR with probability  $\alpha$



#### 95% VaR illustrated

#### Loss Distribution







#### Expected shortfall (ES)

- Increasingly important in banking regulation
- Tail VaR (TVaR), conditional VaR (CVaR) or expected shortfall (ES)
- $\alpha$ -ES is expected loss given that loss exceeds  $\alpha$ -VaR
- Expectation of tail of distribution



#### 95% ES illustrated

#### Loss Distribution











## International equity portfolio example



### International equity portfolio

- Imagine a UK investor who has invested her wealth:
  - 30% FTSE, 40% S&P 500, 30% SMI
- 5 risk factors: FTSE, S&P 500 and SMI indexes, GBP/USD and GBP/CHF exchange rate

```
> riskfactors <- merge(FTSE, SP500, SMI, USD_GBP, CHF_GBP, all = FALSE)
["/2012-12-31", ]</pre>
```



### Displaying the risk factors

> plot.zoo(riskfactors)









#### Historical simulation

- Simple method that is widely used in financial industry
- Resample historical risk-factor returns and examine their effect on current portfolio
- Loss operator shows effect of different risk-factor returns on the portfolio
- Loss operator functions will be provided in the exercises



#### Empirical estimates of VaR and ES

```
> mean(losses[losses > quantile(losses, 0.95)])
[1] 1.714671
> ESnorm(0.95)
[1] 2.062713
```





## Let's practice!





## Option portfolio and Black-Scholes



#### European options and Black-Scholes

- European call option: gives right but not obligation to buy stock for price K at time T
- European put option: gives right but not obligation to sell stock for price K at T
- Value at time t < T depends on:
  - Stock price S, time to maturity T-t, interest rate r, annualized volatility  $\sigma$  or sigma
- Pricing by Black-Scholes formula



### Pricing a first call option

```
> K <- 50
> T <- 2
> t <- 0
> S <- 40
> r <- 0.005
> sigma <- 0.25
> Black_Scholes(t, S, r, sigma, K, T, "call")
[1] 2.619183
> Black_Scholes(t, S, r, sigma*1.2, K, T, "call")
[1] 3.677901
```

- Price increases with volatility
- Option above is in-the-money



#### Implied volatility X needs change

- Volatility not directly observable
- Market participants use implied volatility, the value of volatility implied by quoted option price





#### The VIX index

> plot(VIX)









## Let's practice!





# Historical simulation for the option example



#### Historical simulation

- Portfolio: single European call option on equity index
- Consider losses and profits over one day
- Changes to index value S, implied volatility  $\sigma$  and interest rate r affect value of portfolio
- We consider S and  $\sigma$  (and assume r stays constant)
- Create loss operator taking S and  $\sigma$  as input and giving the loss or profit as output





#### Estimating VaR and ES

- Apply loss operator lossop() to historical log-returns of S&P 500 and VIX to get simulated losses
- Estimate VaR by sample quantile as before
- Estimate ES by average of losses exceeding VaR estimate





## Let's practice!





## Wrap up





#### Not the end of the story...

#### Consider two things:

- 1. Can we improve risk sensitivity of VaR and ES estimates?
  - Filtered historical simulation, GARCH models, EWMA volatility filters
- 2. Can we improve simple empirical estimates of VaR and ES?
  - Parametric tail models, heavy-tailed distributions, extreme value theory





## Thanks for taking the course!