Matemática Discreta

1^a AULA

Universidade de Aveiro 2014/2015

http://moodle.ua.pt

Matemática Discreta

Apresentação

Linguagem Matemática e Lógica Informal

Programa da disciplina

- Linguagem Matemática e Lógica Informal
 - 1.1 Lógica proposicional
 - 1.2 Relações
 - 1.3 Lógica de primeira ordem
- 2. Contextos e Estratégias de Demonstração
 - 2.1 Estratégias de demonstração da implicação
 - 2.2 Princípios de indução e de indução completa
 - 2.3 Princípio da gaiola dos pombos
- 3. Princípios de Enumeração Combinatória.
 - 3.1 Princípio da bijecção.
 - 3.2 Princípios da adição e da multiplicação.
 - 3.3 Princípio de inclusão-exclusão.
- 4. Agrupamentos e Identidades Combinatórias.
 - 4.1 Arranjos com repetição e arranjos e combinações simples.
 - **4.2** Combinações e permutações (com e sem repetição).
 - 4.3 Identidades combinatórias.

Matemática Discreta

└─ Apresentação

Programa da disciplina (cont.)

- 5. Recorrência e Funções geradoras.
 - 5.1 Relações de recorrência.
 - **5.2** Funções geradoras
- Números Combinatórios.
 - **6.1** Factoriais e número binomiais.
 - 6.2 Números de Fibonacci e número de ouro.
 - 6.3 Números de Stirling
 - 6.4 Números Euler e Bell.
- 7. Elementos de Teoria dos Grafos.
 - 7.1 Conceitos e Resultados Fundamentais
 - 7.2 Conexidade, caminhos e árvores.

Bibliografia principal

- Matemática Discreta: combinatória, teoria dos grafos e algoritmos; D. M. Cardoso, J. Szymanski, M. Rostami; Escolar Editora, 2009.
- Noções de Lógica Matemática; D.M. Cardoso, P. Carvalho; Universidade de Aveiro; 2007 (disponível na página da disciplina).

Matemática Discreta

└─ Apresentação

Bibliografia complementar

- Tópicos de Matemática Discreta; J.S. Pinto; Universidade de Aveiro; 1999 (disponível na página da disciplina).
- Discrete Mathematics; N.L. Biggs; Oxford University Press, 2nd Ed; 2002.
- Concrete Mathematics; R.L. Graham, D.E. Knuth, O. Patashnik; Addison-Wesley; 2nd Ed; 2005.
- A Walk Through Combinatorics an introduction to enumeration and graph theory; M. Bóna; World Scientific; 2003.
- Matemática Discreta: Tópicos de Combinatória; J. M. S. Simões Pereira; Editora Luz da Vida, 2006.
- Matemática Discreta: Grafos, Redes e Aplicações; J. M. S. Simões Pereira; Editora Luz da Vida, 2009.

└ Apresentação

Avaliação Discreta

- O modelo de avaliação adoptado é o modelo discreto, com exame final como alternativa. A avaliação discreta é constituída por dois testes, a realizar nas seguintes datas:
 - 1. 17 de Abril de 2015 (sexta-feira);
 - 2. Dia do exame final.
- A matéria a abordar no primeiro teste será leccionada até ao dia 10 de Abril de 2015.
- A matéria a abordar no segundo teste é a matéria leccionada depois de 10 de Abril.

Matemática Discreta

Alfabeto grego

α	Α	alfa	ν	Ν	niu
β	В	beta	ξ	Ξ	χi
γ	Γ	gama	0	0	omicrom
δ	Δ	delta	π	П	pi
$\epsilon(\varepsilon)$	Ε	epsilon	ho(arrho)	P	ró
ζ	Z	zeta	$\sigma(\varsigma)$	Σ	sigma
η	Η	eta	au	T	tau
$\theta(\vartheta)$	Θ	teta	v	Υ	upsilon
ι	1	iota	$\phi(arphi)$	Φ	fi
κ	K	kapa	χ	X	chi
λ	Λ	lambda	ψ	Ψ	psi
μ	Μ	miu	ω	Ω	ómega

Linguagem Matemática e Lógica Informal

Sistemas matemáticos

- Proposição: afirmação que ou é verdadeira ou é falsa.
- Axioma: proposição evidente ou que, no contexto matemático em que se está a trabalhar, aceitamos como verdadeira.
- Teorema: proposição verdadeira que decorre dos axiomas por aplicação de certas regras, designadas por regras de inferência, ou dos desenvolvimentos determinados pela lógica.
- Lema: teorema "considerado" mais simples, que usualmente é utilizado para facilitar a demonstração de teoremas mais difíceis.
- Corolário: consequência imediata de outros teoremas.
- Teoria ou sistema matemático: conjunto de axiomas, regras de inferência e teoremas (onde se incluem lemas e corolários).

Matemática Discreta

Linguagem Matemática e Lógica Informal

Exemplo de sistema matemático

As proposições deste sistema matemático são palavras do alfabeto $\{x, y, z\}$

- ► Axioma: xyz.
- ► Regras de inferência:
 - 1. Proposições obtidas a partir de uma proposição verdadeira, substituindo *x* por *xyz*, são proposições verdadeiras.
 - 2. Proposições obtidas a partir de uma proposição verdadeira, substituindo *xyz* por *yxz* são proposições verdadeiras.

Exercício

Mostrar que *yyxzz* é um teorema do sistema matemático considerado no exemplo anterior.

Propriedades dos sistemas de axiomas

Um sistema de axiomas deve ser consistente e independente:

Consistente: i.e. não permite a dedução de um teorema e da sua negação.

Independente: não inclui axiomas que são consequência de outros axiomas.

Saturado: a adição de um qualquer axioma que não é consequência dos axiomas do sistema, torna o sistema não consistente.

Completo: se para toda a proposição p, correctamente formulada no contexto desta teoria, "p" ou "não p" é um teorema. A teoria diz-se incompleta no caso contrário.

Matemática Discreta

Linguagem Matemática e Lógica Informal

Exemplo de sistema saturado

Axiomas da geometria euclidiana:

- 1 Dados dois pontos existe uma recta que os contém.
- 2 Todo o segmento de recta está contido numa recta.
- 3 Dado um ponto C e um real r > 0, existe uma única circunferência de centro C e raio r.
- 4 Todos os ângulos rectos são iguais.
- 5 Axioma das paralelas: dada uma recta e um ponto não pertencente a essa recta, existe uma única recta que contém o ponto e é paralela à recta dada.

Exemplo de sistema saturado (cont.)

Axiomas da geometria euclidiana:

- 6 Duas quantidades iguais a uma terceira são iguais.
- 7 Se a quantidades iguais adicionarmos a mesma quantidade, as somas obtidas são iguais.
- 8 Se a quantidades iguais subtrairmos a mesma quantidade, as diferenças obtidas são iguais.
- 9 Objectos coincidentes são iguais.
- 10 O todo é maior do que a parte.

Matemática Discreta

Linguagem Matemática e Lógica Informal

Exemplo de uma conjectura

Trata-se de uma afirmação não provada, para a qual existe a expectativa de se vir a encontrar uma prova.

Conjectura de Goldbach

Todo o inteiro par superior a 2 é a soma de dois primos

Por exemplo, 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 3 + 7, ...

Referências bibliográficas

Escolar Editora, 2009.

- Referência bibliográfica principal:
 D. M. Cardoso, J. Szymanski e M. Rostami, *Matemática Discreta: combinatória, teoria dos grafos e algoritmos*,
- Referência bibliográfica complementar:
 N. L. Biggs, Discrete Mathematics, Oxford University Press, 2nd Ed. (2002).