1. X=A*(B+C)-D/(B+C)

具体计算顺序可以调换,时钟周期不唯一,关键在于各类型系统的计算方法

栈式	累加器式	寄存器-内存	寄存器-寄存器
PUSH A	LOAD B	LOAD R0 B	LOAD R0 B
PUSH B	ADD C	ADD R1 R0 C	LOAD R1 C
PUSH C	STORE T1	MUL R2 R1 A	ADD R2 R0 R1
ADD	LOAD A	DIV R3 D R1	LOAD R3 A
MUL	MUL T1	SUB R4 R2 R3	MUL R4 R3 R2
PUSH D	STORE T1	STORE R4 X	LOAD R5 D
PUSH B	LOAD B		DIV R6 R5 R2
PUSH C	ADD C		SUB R7 R4 R6
ADD	STORE T2		STORE R7 X
DIV	LOAD D		
SUB	DIV T2		
POP X	STORE T2		
	LOAD T1		
	SUB T2		
	STORE X		

栈式:7(访存)*3+5*1=26

累加器式: 15 * 3 = 45 (全部指令都是访存指令)

寄存器-内存: 5 * 3 + 1* 1 = 16 寄存器-寄存器: 5 * 3 + 4 * 1 = 19

2. 启发式图着色法

移除顺序	理由	
ь	连接数小于 k(2), 分配	
a	都不小于 k, 随便去一个, 不分配	
у	还是都不小于 k, 随便去一个, 不分配	
i	都小于 k,随便去一个,分配	
X	最后一个	

然后再顺序出栈分配就行啦! (标记为不分配的就不分配)

3. 正则表达式证明

这种东西算离散数学的,考试不考。

- (1) A 或 A 就是 A 嘛,嗯。我和你前女友一起掉水里你是救我还是救我==救我。
- (2) (A^*) *就是 (ϵ) U (A) U (A^2) U (A^3) U...U (A^n) = A^* 我给你买了无数次每次无数个礼物==我给你买了无数个礼物。
- (3)和(2)同理
- (4) (AB) *A
- = $(\varepsilon U (AB) U (AB)^2 U ... U (AB)^n) A$
- $=\epsilon A \cup (AB) A \cup (AB)^2 A... \cup (AB) ^n A$
- =**A**εUA (BA) U**A**(BA)²...U**A** (BA) ⁿ ——这里是拆开后的结合律不是交换律 =**A**(B**A**)*
- (5)三个正则表达的语言都是"每次选 A 还是 B 都行,可以选任意次"

4. 状态图

用公式法不如对着正则表达式脑画, 就嗯画, 画完走一遍看看语言对不对。

5. 正则表达式与正则文法

这俩表达的语言都是"a 屁股后面随便跟 a 或 b"语言相同即等价,证毙。

讲究人证法:

 $Z \rightarrow a(a|b)$ *

<=>Z->aA, A->(a|b)*

 $<=>Z->aA, A->(a|b)A, A->\epsilon$

Z->Za|Zb|a

<=>(消除左递归法)Z->aA, A->aA|bA|ε

 $<=>Z->aA, A->(a|b)A, A->\epsilon$