SVD 1/

Singular Value Decomposition (SVD)

Def. An $m \times n$ matrix Σ_i is rectangular diagonal of $\Sigma_i = 0$ for $i \neq j$.

Examples

The diagonal of Σ is $diag(\Sigma) = (\Sigma_{11}, \Sigma_{22}, ..., \Sigma_{kh})$ where $k = \min(m, n)$.

Example

diag = [3 4 -17, on [1, -6]

SVD Theorem Any mxn real matrix A can be factored as

A= Q, S Q2 T

where $Q_1 = m \times m \text{ or thogonal matrix}$ $Q_2 = n \times n \text{ orthogonal matrix}$ $\Sigma = m \times n \text{ rectangular diagonal matrix, and}$

diag $\Sigma = [\sigma_1, \sigma_2, ..., \sigma_h]$ satisfies $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_k \geq 0$

where k = min(m, n). Moreover, the columns of Q_1 are e-vectors of $A \cdot A^{T}$, the columns of Q_2 are e-vectors of $A^{T}A$, and the $(G_i)^2$ are e-values of both $A \cdot A^{T}$ and $A^{T}A$.

Remark: The entries of diag (S)
are called <u>Singular values</u> of A.

Proof of the theorem

ATA is nxn real and symmetric. Hence there exist orthonormal e-vectors {v'_1-, v''} such that $A^TAvi = \lambda_{\bar{j}}v^j$. W. L.O. G., we can assume that

 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$

(if not, simply re-order the vis).

For his >0, say 1=j=r, we define

Claim
$$(qi)^T qi = Sij = \begin{cases} 1 & i=j \\ 0 & i\neq j \end{cases}$$

for 150,550.

Pf.
$$\begin{aligned}
(7)^{i} & \overrightarrow{q} \circ = \frac{1}{\sigma_{i}} \frac{1}{\sigma_{j}} (v^{i})^{T} A^{T} A v^{j} \\
&= \frac{\lambda_{j}}{\sigma_{i} \sigma_{j}} (v^{i})^{T} v^{j} \\
&= \begin{cases}
\frac{\lambda_{i}}{(\sigma_{i})^{2}} & \xi = j \\
0 & i \neq j
\end{aligned}$$

$$\begin{aligned}
(2)^{T} & \overrightarrow{q} \circ = \frac{1}{\sigma_{i}} \frac{1}{\sigma_{j}} (v^{i})^{T} A^{T} A v^{j} \\
&= \frac{\lambda_{j}}{\sigma_{i} \sigma_{j}} (v^{i})^{T} v^{j} \\
&= \frac{\lambda_{i}}{(\sigma_{i})^{2}} (v^{i})^{T} v^{$$

If rcm, we can extend the girs to an orthonormal basis for Rm.

Define

$$Q_1 = [q' | q^2 | \dots | q^m]$$

$$Q_2 = [v' | v^2 | \dots | v^n]$$

SVD 5

Défine
$$\Sigma = m \times n$$
 by $\Sigma_{ij} = \begin{cases} \sigma(s_{ij}) \leq r \\ \sigma(s_{ij}) \leq r \end{cases}$ otherwise.

Then Sis sectangular diagonal with diag (S) = [51,52...,50,0...,0].

Proof of the Theorem

It is enough to show that $Q_i^TAQ_i = \Sigma_i$

If j >r, then Av = 0, and thus
qual Av = 0

SVD 6

If i >r, Hen gi selected to be orthogonal to sq',..., gr' = {\frac{1}{2}, Av', \frac{1}{2}, Av', ..., \frac{1}{2}, Av'', \frac{1}{2}, Av'' = 0.

Consider 150,j 50

 $(Q_{i}^{T}AQ_{2})_{ij}^{ij} = \frac{1}{\sigma_{i}}(v^{i})^{T}A^{T}Av^{j}$ $= \frac{\lambda_{i}}{\sigma_{i}}v^{i}_{i}^{T}V^{j}$ $= \sigma_{i} \quad \delta_{ij}$

as required.