Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчёт О выполнении задания №2

Скрябин Глеб 423 группа

Оглавление

1.	ОПИСАНИЕ ЗАДАЧИ	2
2.	ОПИСАНИЕ АЛГОРИТМА ПРОГРАММЫ	2
3.	РЕЗУЛЬТАТЫ И ИХ СРАВНЕНИЕ С 1 ЗАДАЧЕЙ	3
4.	ГРАФИКИ	

1. Описание задачи

Требуется написать программу с использованием MPI для решения системы линейных уравнений Ax=b методом отражений. После чего сравнить результаты работы этой программы с аналогичной ей OpenMP версией в 1 задаче.

2. Описание алгоритма программы

- 1. Приведение матрицы к верхнему треугольному виду методом отражений, это занимает n-I шагов, так как матрица имеет размер $n \times n$.
- 2. Обратный ход методом Гаусса.

В программе время разложение матрицы и время решения методом Гаусса замеряется при помощи функции get_time(), записывая время до операции и после. Для проверки корректности работы программы в каждом опыте также измерялась норма невязки и норма разницы между полученным и точным решениями. Так как за время запусков данные параметры не превышали значения le-5 и le-7 соответственно, можно считать, что результаты не имеют ошибок.

Тестирование программы выполнялось на вычислительной системе Polus. Компиляция проводилась командами mpicxx -Wall -Werror -c main.cpp; mpicxx -Wall -Werror main.o -o run. Постановка задачи в очередь проводилась через планировщик IBM Spectrum LSF командой bsub < ./task2 job.lsf. Содержание файла task2 job.lsf имело вид:

```
#BSUB -n 4 -q normal

#BSUB -W 00:59

#BSUB -o "my_job.%J.3000.4.out"

#BSUB -e "my_job.%J.3000.4.err"

mpiexec ./run 3000
```

Исследования проводились для матриц размером 300×300 , 1000×1000 , 3000×3000 и 6000×6000 . Для распараллеливания программы использовались 1, 2, 4, 8, 16 и 32 MPI процесса.

3. Результаты МРІ запусков и сравнение с ОрепМР

Таблица 1: MPI, size = 300

Процессов	1	2	4	8	16	32
T1	1.562460e-01	9.328600e-02	4.931400e-02	2.585010e-02	5.749800e-02	3.423500e-02
T2	4.529950e-04	1.109840e-03	1.369000e-03	1.581910e-03	8.632900e-03	8.147950e-03
Точность	2.863060e-10	2.867860e-10	2.870160e-10	2.867800e-10	4.786450e-10	1.073690e-10
Невязка	1.707890e-16	3.220490e-16	3.747020e-16	2.731000e-16	2.903360e-16	9.397880e-17

Таблица 2: OpenMP, size = 300

Процессов	1	2	4	8	16	32
T1	0.033730	0.026611	0.025046	0.039173	0.058580	0.101731
T2	0.000450	0.001148	0.001337	0.001683	0.001977	0.002511
Точность	3.55926e-11	2.23861e-11	1.08301e-11	2.2636e-11	1.77584e-11	1.51479e-11
Невязка	1.6159e-09	1.34051e-09	1.23619e-09	1.27843e-09	1.22325e-09	1.24432e-09

Таблица 3: MPI, size = 1000

Процессов	1	2	4	8	16	32
T1	5.529860e+00	2.850610e+00	1.429540e+00	8.66320e-01	4.77038e-01	3.52280e-01
T2	4.607920e-03	6.511930e-03	8.399010e-03	5.34296e-03	8.95905e-03	1.05741e-02
Точность	1.474660e-09	1.476280e-09	4.497510e-09	1.92833e-08	4.49676e-09	1.19282e-08
Невязка	4.233900e-16	8.833580e-16	4.819870e-16	5.15232e-16	4.20050e-16	2.21893e-16

Таблица 4: OpenMP, size = 1000

Процессов	1	2	4	8	16	32
T1	0.977665	0.502424	0.346307	0.327805	0.247614	0.269805
T2	0.002773	0.003717	0.004954	0.006473	0.006288	0.008532
Точность	7.19072e-10	7.37132e-09	1.21028e-10	1.73273e-09	1.82449e-09	2.96872e-09
Невязка	9.68902e-09	8.10843e-09	7.84952e-09	7.4893e-09	7.56072e-09	7.22317e-09

Таблица 5: MPI, size = 3000

Процессов	1	2	4	8	16	32
T1	1.532580e+02	7.589330e+01	3.734630e+01	1.924440e+01	3.592170e+01	6.582030e+00
T2	4.067800e-02	4.301790e-02	3.683900e-02	2.209900e-02	9.180210e-02	3.081010e-02
Точность	4.958380e-08	1.717980e-08	1.744160e-07	1.744160e-07	1.626010e-07	9.925800e-08
Невязка	1.694150e-15	9.381950e-16	6.270350e-16	1.057950e-15	2.236810e-16	5.155420e-16

Таблица 6: OpenMP, size = 3000

Процессов	1	2	4	8	16	32
T1	27.651724	14.135834	7.762235	4.753887	4.916452	5.554626
T2	0.012756	0.017123	0.016439	0.017782	0.019941	0.027537
Точность	2.43248e-09	1.57075e-09	1.56599e-09	1.79622e-09	1.69117e-09	8.33576e-10
Невязка	4.94688e-08	4.39756e-08	4.16076e-08	4.02889e-08	4.01092e-08	3.96435e-08

Таблица 7: MPI, size = 6000

Процессов	1	2	4	8	16	32
T1	2.071030e+03	6.663240e+02	3.145930e+02	4.835820e+02	1.838854e+02	1.226030e+02
T2	1.599950e-01	1.577230e-01	9.306000e-02	1.397960e-01	5.518790e-02	8.935300e-02
Точность	1.305680e-07	1.307340e-07	2.087230e-07	1.075450e-05	2.069000e-07	2.212520e-06
Невязка	1.808260e-15	1.151260e-15	2.212960e-15	7.719400e-16	7.445440e-16	3.168420e-16

Таблица 8: OpenMP, size = 6000

Процессов	1	2	4	8	16	32
T1	824.271903	420.837544	206.452682	177.388909	69.545985	51.152127
T2	0.040524	0.041154	0.036481	0.039391	0.051820	0.062373
Точность	6.78865e-10	3.31087e-09	2.75693e-09	1.32591e-09	1.97213e-09	2.42504e-09
Невязка	1.44236e-07	1.27406e-07	1.21465e-07	1.17146e-07	1.16274e-07	1.15001e-07

4. Графики

Рис. 1: Т1 – время приведения к треугольному виду (логарифмический график)

Рис. 2: Т2 – время обратного хода Гаусса (логарифмический график)

Рис. 3: Ускорение

Рис. 4: Эффективность