Gemma

Google's family of

Open Source LLMs

Pedro Gengo

Mansano

André Lopes

Caridá Gengo

Speakers

Pedro Gengo:

- GDE: Machine Learning
- Sr Machine Learning Eng @ Bestever
- Former: Sticker Mule, Deepcell, Meli, Itaú Unibanco SA

Lorenzo Cesconetto:

- Sr Software Eng @ Stealth Biotech
- Masters: AI & ML from ITA
- Former co-founder @ Triple Al
- Former: Deepcell, Itaú Unibanco SA, Embrapa

Agenda

- 1. Family: Four models in total
- 2. Usage & important facts
- 3. Internal architecture
- 4. Sources and relevant links
- 5. Live demo!

Four models in total: two sizes & two fine-tunings

Gemma-7B

- 8.54 billion parameters (<u>rename proposal</u>)
 - +20% larger than Llama-7B
- Trained on 6 trillion tokens
- Intended to run on GPUs
- ~18 GB of RAM (bfloat16 or float16)
- Particularly good at math reasoning and coding (beats CodeLLaMA-7B)

Intended run on CPUs and edge devices (mobile)

Gemma-2B

~5Gb of RAM (bfloat16 or float16)

Two versions:

- Pretrained base model
- Instruct fine-tuned

Training:

8,192 tokens of context

2.5 billion parameters

Trained on 2 trillion tokens

English-language web documents,
 mathematics, and code snippets

Usage & important facts

License:

- Permits commercial
- Prohibits: copyright infringement, generating miss information, sexual

Performance:

- Gemma-7B: 64.56 on MMLU. Does better than other open source models, e.g., Llama2-7B and Mistral-7B.
- Gemma-2B performs worse than models of similar size, e.g., 2.7-billion-parameter Phi-2.

Architecture:

- Based on Gemini's topology
- But it's not multi-modal

Additional info:

- Check out: <u>Technical report</u>.
- Little detail on base training dataset / preprocessing, and SFT / RLHF.

Open LLM Leaderboard - by Hugging Face

Model	License	Commercial use?	Pretraining size [tokens]	Leaderboard score
LLama 2 70B Chat (reference)	Llama 2 license	V	2T	67.87
Gemma-7B	Gemma license	▽	6T	63.75
DeciLM-7B	Apache 2.0	▽	unknown	61.55
<u>PHI-2 (2.7B)</u>	MIT	\checkmark	1.4T	61.33
Mistral-7B-v0.1	Apache 2.0	V	unknown	60.97
Llama 2 7B	Llama 2 license	▽	2T	54.32
Gemma 2B	Gemma license	▽	2T	46.51

Internal architecture: Activation functions

- Uses GeGLU to add non-linearity to the neural net.
- GeGLU was introduced by this paper in 2020.
- It's a combination of GeLU and GLU.

GeLU: Gaussian error Linear Unit

- Inspired by ReLU (deterministic) and the dropout (stochastic) technique.
- It's used in GPT-3, BERT and other household names.
- Introduced by this paper in 2016.
 - "We choose this distribution since neuron inputs tend to follow a normal distribution, especially with Batch Normalization"
 - "GELU weights its input depending upon how much greater it is than other inputs"
 - "GELU has a probabilistic interpretation given that it is the expectation of a stochastic regularizer"

GeLU: Gaussian error Linear Unit

- Inspired by ReLU (deterministic) and the dropout (stochastic) technique.
- It's used in GPT-3, BERT and other household names.
- Introduced by this paper in 2016.
 - "We choose this distribution since neuron inputs tend to follow a normal distribution, especially with Batch Normalization"
 - "GELU weights its input depending upon how much greater it is than other inputs"
 - "GELU has a probabilistic interpretation given that it is the expectation of a stochastic regularizer"

GLU: Gated Linear Unit

- Inspired by LSTM's gating mechanism.
- Introduced by this paper in 2016.
- Offers great gradient flow between layers, which is necessary for training deep neural nets.
- Faster convergence.

$$\mathsf{GLU} = (\mathbf{X} * \mathbf{W} + \mathbf{b}) \otimes \sigma(\mathbf{X} * \mathbf{V} + \mathbf{c})$$

Let's look at the derivative:

$$\nabla [\mathbf{X} \otimes \sigma(\mathbf{X})] = \nabla \mathbf{X} \otimes \sigma(\mathbf{X}) + \mathbf{X} \otimes \sigma'(\mathbf{X}) \nabla \mathbf{X}$$

Hi	0.4	 0.01
how	1	 -1.2
are	1.1	 0.7
you	-0.2	 0.6
?	0.8	 0.0

0.8	 1.5
2	 -0.2

Hi	0.4	 0.01	3
how	1	 -1.2	
are	1.1	 0.7	
you	-0.2	 0.6	
?	0.8	 0.0	

0.8	 1.5
2	 -0.2

Hi	0.4	 0.01
how	1	 -1.2
are	1.1	 0.7
you	-0.2	 0.6
?	0.8	 0.0

3
1.5

0.8	 1.5
2	 -0.2

Hi	0.4	 0.01	3
how	1	 -1.2	1.5
are	1.1	 0.7	-0.3
you	-0.2	 0.6	
?	0.8	 0.0	

0.8	 1.5
2	 -0.2

GeGLU: Gaussian error Gated Linear Unit

- Variation from GLU.
- Replace sigmoid with GeLU.
- We could use other non-linear functions such as ReLU.

GeLU =
$$x \times \Phi(x)$$

$$\mathsf{GLU} = (\mathbf{X} * \mathbf{W} + \mathbf{b}) \otimes \sigma(\mathbf{X} * \mathbf{V} + \mathbf{c})$$

$$GeGLU = (X*W +b) \otimes GeLU(X*V +c)$$

Positional Embeddings

- Multi-head self attention by itself doesn't take token position in consideration.
- To solve this issue, positional embeddings were introduced.
- We have two types of positional embeddings:
 - Absolute position: learned embeddings and sinusoidal
 - Relative position: T5 relative position bias

Absolute Positional Embeddings

- Fixed context size, i.e., can't exploit to longer sequences.
- We expect to closer positions to be similar to each other. However, this is not what happens.

Relative Positional Embeddings

- Distance between words is more important than absolute positions;
- T5 implemented a version of it that is called relative positions bias.

RoPE: high level explanation

- Introduced by <u>RoFormer: Enhanced</u>
 <u>Transformer with Rotary Position</u>

 <u>Embedding</u> in 2021
- Best of both worlds: absolute and relative positions

Multi-Query Attention: high level explanation

- Introduced by the paper "<u>Fast Transformer Decoding:</u>
 One Write-Head is All You Need"
- Multi-head attention consists of multiple attention layers (heads) in parallel with different linear transformations on the queries, keys, values and outputs.
- Multi-query attention is identical except that the different heads share a single set of keys and values.
- Notably, the 7B model uses multi-head attention while the 2B checkpoints use multi-query attention (with num_kv_heads = 1), based on ablation studies that revealed respective attention variants improved performance at each scale

Multi-Query Attention: high level explanation

Multi-Query Attention: high level explanation

Table 1: WMT14 EN-DE Results.						
Attention h d_k, d_v d_{ff} $\ln(\text{PPL})$ BLEU BLEU (test)						
Type			3.3	(dev)	(dev)	beam $1/4$
multi-head	8	128	4096	1.424	26.7	27.7 / 28.4
multi-query	8	128	5440	1.439	26.5	27.5 / 28.5
multi-head local	8	128	4096	1.427	26.6	27.5 / 28.3
multi-query local	8	128	5440	1.437	26.5	27.6 / 28.2
multi-head	1	128	6784	1.518	25.8	
multi-head	2	64	6784	1.480	26.2	26.8 / 27.9
multi-head	4	32	6784	1.488	26.1	
multi-head	8	16	6784	1.513	25.8	

Table 2: Amortized training and inference costs for WMT14 EN-DE Translation Task with sequence length 128. Values listed are in TPUv2-microseconds per output token.

Attention	Training	Inference	Beam-4 Search
Type		enc. + dec.	enc. + dec.
multi-head	13.2	1.7 + 46	2.0 + 203
multi-query	13.0	1.5 + 3.8	1.6 + 32
multi-head local	13.2	1.7 + 23	1.9 + 47
multi-query local	13.0	1.5 + 3.3	1.6 + 16

RMSNorm: Root Mean Squared Normalization

- Introduced by this <u>paper</u> in 2019.
- Normalization Technique.
- RMSNorm is on pair with LayerNorm, but runs 7%~64% faster.

$$ar{a}_i = rac{a_i}{ ext{RMS}(\mathbf{a})} g_i, \quad ext{where } ext{RMS}(\mathbf{a}) = \sqrt{rac{1}{n} \sum_{i=1}^n a_i^2}.$$

where
$$a_i = \sum_{j=1}^m w_{ij} x_j$$

$$y_i = f\left(\bar{a}_i + b_i\right)$$

Sources and relevant links

- Technical report:
 - https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf

- Official page:
 - https://ai.google.dev/gemma/

- Gemma is available on:
 - Hugging Face, Kaggle and Vertex AI.

Detailed <u>Model Card</u>

Live Demo

Time to get our hands dirty:)