MAT409 - Complex Analysis - II

Semester II

Lecture 1

Argument Principle

13th February, 2023

Kapil Chaudhary

kapilchaudhary[at]university-domain

Prerequisites: You must know in details about the followings

MAT409 - Complex Analysis - II

Semester II

Lecture 1
Argument Principle
13th February, 2023

Kapil Chaudhary

kapilchaudhary[at]university-domain

Prerequisites: You must know in details about the followings

- Residue Theorem
- Zeros and Singularities of a function
- Cauchy Integral Formula

The winding number η of a contour γ about a point z_0 is defined by:

$$\eta(\gamma, z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - z_0}$$

It indicates how many times the γ curve circles z_0 in the anticlockwise direction. A positive winding number is given to anticlockwise winding and a negative winding number to clockwise winding. The winding number is sometimes called as index as well by some authors, so don't be confused.

$$\mathsf{Ind}_{\gamma}(z_0) = \eta(\gamma, z_0)$$

See 2 for problems.

The winding number η of a contour γ about a point z_0 is defined by:

$$\eta(\gamma, z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - z_0}$$

It indicates how many times the γ curve circles z_0 in the anticlockwise direction. A positive winding number is given to anticlockwise winding and a negative winding number to clockwise winding. The winding number is sometimes called as index as well by some authors, so don't be confused.

$$\mathsf{Ind}_{\gamma}(z_0) = \eta(\gamma, z_0)$$

See 2 for problems.

Proposition 1 Let γ and σ be two closed rectifiable curve having same initial points then

- $\eta(\gamma, a) = -\eta(-\gamma, a)$ for every $a \notin \{\gamma\}$,
- $\eta(\gamma + \sigma, a) = \eta(\gamma, a) + \eta(\sigma, a)$ for every $a \notin \{\gamma\} \cup \{\sigma\}$.

¹of finite length

The winding number η of a contour γ about a point z_0 is defined by:

$$\eta(\gamma, z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - z_0}$$

It indicates how many times the γ curve circles z_0 in the anticlockwise direction. A positive winding number is given to anticlockwise winding and a negative winding number to clockwise winding. The winding number is sometimes called as index as well by some authors, so don't be confused.

$$\mathsf{Ind}_{\gamma}(z_0) = \eta(\gamma, z_0)$$

See 2 for problems.

Proposition 1 Let γ and σ be two closed rectifiable curve having same initial points then

- $\eta(\gamma, a) = -\eta(-\gamma, a)$ for every $a \notin \{\gamma\}$,
- $\eta(\gamma + \sigma, a) = \eta(\gamma, a) + \eta(\sigma, a)$ for every $a \notin \{\gamma\} \cup \{\sigma\}$.

Proof: Left to reader.

¹of finite length

The winding number η of a contour γ about a point z_0 is defined by:

$$\eta(\gamma, z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - z_0}$$

It indicates how many times the γ curve circles z_0 in the anticlockwise direction. A positive winding number is given to anticlockwise winding and a negative winding number to clockwise winding. The winding number is sometimes called as index as well by some authors, so don't be confused.

$$\mathsf{Ind}_{\gamma}(z_0) = \eta(\gamma, z_0)$$

See 2 for problems.

Proposition 1 Let γ and σ be two closed rectifiable curve having same initial points then

- $\eta(\gamma, a) = -\eta(-\gamma, a)$ for every $a \notin \{\gamma\}$,
- $\eta(\gamma + \sigma, a) = \eta(\gamma, a) + \eta(\sigma, a)$ for every $a \notin \{\gamma\} \cup \{\sigma\}$.

Proof: Left to reader.

Definition 2 Let G be an open set then γ is homologous to zero $(\gamma \approx 0)$ if $\eta(\gamma, w) = 0$ for each $w \in \mathbb{C} - G$.

¹of finite length

2. Argument Principle

The argument principle (or principle of the argument) is a consequence of the residue theorem. It connects the winding number of a curve with the number of zeros and poles inside the curve. This is useful for applications (mathematical and otherwise) where we want to know the <u>location of zeros and poles</u>.

2. Argument Principle

The argument principle (or principle of the argument) is a consequence of the residue theorem. It connects the winding number of a curve with the number of zeros and poles inside the curve. This is useful for applications (mathematical and otherwise) where we want to know the <u>location of zeros and poles</u>.

Theorem 3 Let $\Omega \subset \mathbb{C}$ be open. Let $\gamma \approx 0$ be a closed rectifiable curve inside Ω such that interior of the γ belongs to Ω . Let f be a meromorphic function such that f has no zeros and poles on γ . Then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \begin{pmatrix} \text{number of zeros of } f \text{ inside interior} \\ \text{of } \gamma \text{ counted with multiplicities} \end{pmatrix} - \begin{pmatrix} \text{number of poles of } f \text{ inside interior} \\ \text{of } \gamma \text{ counted with multiplicities} \end{pmatrix}.$$

$$= Z_{f,\gamma} - P_{f,\gamma}$$

2. Argument Principle

The argument principle (or principle of the argument) is a consequence of the residue theorem. It connects the winding number of a curve with the number of zeros and poles inside the curve. This is useful for applications (mathematical and otherwise) where we want to know the <u>location of zeros and poles</u>.

Theorem 3 Let $\Omega \subset \mathbb{C}$ be open. Let $\gamma \approx 0$ be a closed rectifiable curve inside Ω such that interior of the γ belongs to Ω . Let f be a meromorphic function such that f has no zeros and poles on γ . Then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \begin{pmatrix} \text{number of zeros of } f \text{ inside interior} \\ \text{of } \gamma \text{ counted with multiplicities} \end{pmatrix} - \begin{pmatrix} \text{number of poles of } f \text{ inside interior} \\ \text{of } \gamma \text{ counted with multiplicities} \end{pmatrix}.$$

$$= Z_{f,\gamma} - P_{f,\gamma}$$

Ouline of proof: What are the singularities of the function f'/f?

- \bullet zeros of f.
- poles of f as function f is not defined at pole.
- Any other? No! (Why?)

Calculate the residue of the function f'/f at singularities (zeroes and poles of f) and use **residue** theorem.

Proof: All the singularities of the function f'/f are either zeroes of function f or poles of the function f. Let z_0 be the zero of order n of f(z). Then, for every z in the neighbourhood of z_0 , we have

$$f(z) = (z - z_0)^n g(z)$$

where $g(z_0) \neq 0$ and g(z) is holomorphic in neighbourhood of z_0 .

$$\frac{f'(z)}{f(z)} = \frac{n(z-z_0)^{n-1}g(z) + (z-z_0)^n g'(z)}{(z-z_0)^n g(z)}$$
$$= \frac{n}{z-z_0} + \frac{g'(z)}{g(z)}.$$

So, z_0 is a simple pole of f'/f and $\operatorname{res}_{z=z_0} \frac{f'(z)}{f(z)} = n$. Let z_1 lebe the pole of order m of f(z). Then, for every z in the neighbourhood of z_1 , we have

$$f(z) = (z - z_1)^{-m}h(z)$$

where $h(z_1) \neq 0$ and h(z) is holomorphic in neighbourhood of z_1 .

$$\frac{f'(z)}{f(z)} = \frac{-m(z-z_1)^{-m-1}h(z) + (z-z_1)^{-m}h'(z)}{(z-z_1)^{-m}h(z)}$$
$$= \frac{-m}{z-z_1} + \frac{h'(z)}{h(z)}.$$

So, z_1 is a simple pole of f'/f and $\operatorname{res}_{z=z_1} \frac{f'(z)}{f(z)} = -m$. Using **residue theorem**,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \text{sum of the residue of the function } \frac{f'}{f}$$

$$= \begin{pmatrix} \text{number of zeros of } f \text{ inside interior} \\ \text{of } \gamma \text{ counted with multiplicities} \end{pmatrix} - \begin{pmatrix} \text{number of poles of } f \text{ inside interior} \\ \text{of } \gamma \text{ counted with multiplicities} \end{pmatrix}.$$

 $^{^2}$ A continuous deformation of a region is where we can shrink or twist the region but without tearing. Gluing is also not allowed.

Question: Why the above theorem is called Argument principle?

Hint: Read introduction part of argument principle from book - *Complex Variables and Applications* by *Brown and Churchill*.

Question: Is this theorem somehow related to the winding number or index of the contour γ ?

²A continuous deformation of a region is where we can shrink or twist the region but without tearing. Gluing is also not allowed.

Question: Why the above theorem is called Argument principle?

Hint: Read introduction part of argument principle from book - *Complex Variables and Applications* by *Brown and Churchill*.

Question: Is this theorem somehow related to the winding number or index of the contour γ ?

Theorem 4 (Argument's Principle) Let $\Omega \subset \mathbb{C}$ be open. Let $\gamma \approx 0$ be a closed simple curve oriented in counterclockwise direction and f be a meromorphic function inside interior of γ (means f is analytic inside γ except for finitely many points, also f should not have any zero or singularity on γ). Then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = Z_{f,\gamma} - P_{f,\gamma} = \eta(f \circ \gamma, 0)$$

²A continuous deformation of a region is where we can shrink or twist the region but without tearing. Gluing is also not allowed.

Question: Why the above theorem is called Argument principle?

Hint: Read introduction part of argument principle from book - *Complex Variables and Applications* by *Brown and Churchill*.

Question: Is this theorem somehow related to the winding number or index of the contour γ ?

Theorem 4 (Argument's Principle) Let $\Omega \subset \mathbb{C}$ be open. Let $\gamma \approx 0$ be a closed simple curve oriented in counterclockwise direction and f be a meromorphic function inside interior of γ (means f is analytic inside γ except for finitely many points, also f should not have any zero or singularity on γ). Then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = Z_{f,\gamma} - P_{f,\gamma} = \eta(f \circ \gamma, 0)$$

Outline of proof: This proof is easy, just use the transformation w = f(z).

Proof: Let us use the transformation w=f(z) With this change of variables the contour $z=\gamma(t)$

²A continuous deformation of a region is where we can shrink or twist the region but without tearing. Gluing is also not allowed.

becomes $w=f(z)=f(\gamma(t))=f\circ\gamma(t)$ and dw=f'(z)dz. so,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \int_{f \circ \gamma} \frac{dw}{w}$$
$$= \frac{1}{2\pi i} \int_{f \circ \gamma} \frac{dw}{w - 0}$$
$$= \eta(f \circ \gamma, 0)$$

Now, using Theorem 3

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \eta(f \circ \gamma, 0) = Z_{f,\gamma} - P_{f,\gamma}$$

becomes $w = f(z) = f(\gamma(t)) = f \circ \gamma(t)$ and dw = f'(z)dz. so,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \int_{f \circ \gamma} \frac{dw}{w}$$
$$= \frac{1}{2\pi i} \int_{f \circ \gamma} \frac{dw}{w - 0}$$
$$= \eta(f \circ \gamma, 0)$$

Now, using Theorem 3

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \eta(f \circ \gamma, 0) = Z_{f,\gamma} - P_{f,\gamma}$$

Corollary 5 Assume that $f \circ \gamma$ does not go through -1 (i.e. there is no zeroes of 1 + f(z) on γ). Then,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{1 + f(z)} dz = \eta(f \circ \gamma, -1) = Z_{f+1,\gamma} - P_{f,\gamma}$$

Proof: Applying the argument principle on function 1 + f,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{(1+f)'(z)}{1+f(z)} dz = \eta((1+f) \circ \gamma, 0) = Z_{1+f,\gamma} - P_{1+f,\gamma}$$

Note that: (1+f)'(z)=f'(z) , $P_{1+f,\gamma}=P_{f,\gamma}$ (why?) and function 1+f winds about 0 if and only if f winds about -1.

becomes $w = f(z) = f(\gamma(t)) = f \circ \gamma(t)$ and dw = f'(z)dz. so,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \int_{f \circ \gamma} \frac{dw}{w}$$
$$= \frac{1}{2\pi i} \int_{f \circ \gamma} \frac{dw}{w - 0}$$
$$= \eta(f \circ \gamma, 0)$$

Now, using Theorem 3

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \eta(f \circ \gamma, 0) = Z_{f,\gamma} - P_{f,\gamma}$$

Corollary 5 Assume that $f \circ \gamma$ does not go through -1 (i.e. there is no zeroes of 1 + f(z) on γ). Then,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{1 + f(z)} dz = \eta(f \circ \gamma, -1) = Z_{f+1,\gamma} - P_{f,\gamma}$$

Proof: Applying the argument principle on function 1 + f,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{(1+f)'(z)}{1+f(z)} dz = \eta((1+f) \circ \gamma, 0) = Z_{1+f,\gamma} - P_{1+f,\gamma}$$

Note that: (1+f)'(z)=f'(z) , $P_{1+f,\gamma}=P_{f,\gamma}$ (why?) and function 1+f winds about 0 if and only if f winds about -1.

Corollary 6 Consider f be a polynomial of degree n then for sufficiently large positive number R,

$$\frac{1}{2\pi i} \oint_{|z|=R} \frac{f'(z)}{f(z)} dz = n.$$

Outline of proof: Given that f is a polynomial of degree n. Using fundamental theorem of algebra, we can assume that $r_1, r_2, r_3, \cdots r_n$ (need not to be distinct) are zeroes of f counted multiplicity wise. i.e.

$$f(z) = C(z - r_1)(z - r_2)(z - r_3) \cdots (z - r_n)$$

Now, consider the counterclockwise oriented circle |z|=R with sufficiently large radius R (R can be chosen in such a way that the open disc |z|< R contains all the roots $r_1, r_2, r_3, \cdots r_n$ of f)

$$R = 1 + \max\{|r_1|, |r_2|, \cdots |r_n|\}$$

Now, use the argument principle.

Corollary 6 Consider f be a polynomial of degree n then for sufficiently large positive number R,

$$\frac{1}{2\pi i} \oint_{|z|=R} \frac{f'(z)}{f(z)} dz = n.$$

Outline of proof: Given that f is a polynomial of degree n. Using fundamental theorem of algebra, we can assume that $r_1, r_2, r_3, \cdots r_n$ (need not to be distinct) are zeroes of f counted multiplicity wise. i.e.

$$f(z) = C(z - r_1)(z - r_2)(z - r_3) \cdots (z - r_n)$$

Now, consider the counterclockwise oriented circle |z| = R with sufficiently large radius R (R can be chosen in such a way that the open disc |z| < R contains all the roots $r_1, r_2, r_3, \dots r_n$ of f)

$$R = 1 + \max\{|r_1|, |r_2|, \cdots |r_n|\}$$

Now, use the argument principle.

Theorem 7 (Extended Argument Principle) Let f be a meromorphic function with zeros $z_1, z_2, \cdots z_n$ and poles $p_1, p_2, \cdots p_m$ counted multiplicities wise in the region G. If g is analytic in region G and γ be a closed rectifiable curve such that $\gamma \approx 0$ and it does not pass through any of z_i or p_j . Then,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} g(z) dz = \sum_{i=1}^{n} g(z_i) \eta(\gamma, z_i) - \sum_{j=1}^{m} g(p_j) \eta(\gamma, p_j)$$

Proof: Exempted.

Problems

1. Find the winding number of the following curves γ about points mentioned.

(a) about red, blue and black point

(c) about red, blue and green point

(b) about z_0 , z_1 and z_1

- 2. Let $\gamma(t) = it$ with $-\infty < t < \infty$ (the y-axis). Let f(z) = 1/(z+1). Describe the curve $f \circ \gamma(t)$.
- 3. Let $f(z)=z^2+z$. Find the winding number of $f\circ\gamma$ about 0 using argument principle.

(a)
$$\gamma_1(t) = 2e^{it}$$
, $0 < t < 2\pi$

(b)
$$\gamma_2(t) = e^{it}, \ 0 \le t \le 2\pi$$

(c)
$$\gamma_3(t) = \frac{1}{2}e^{it}$$
, $0 \le t \le 2\pi$

4. Find the value of the following integrals using **argument principle**. Further, verify the answers using **residue theorem**.

(a)
$$\int_{|z|=2} \frac{3z^2 - 2z + 1}{(z^2 + 1)(z - 1)} dz$$

(b)
$$\int_{|z|=2}^{\infty} \frac{z^2}{z-1} dz$$

- 5. Let $f(z) = \frac{(z-2)^2 z^3}{(z+5)^2 (z+i)^3 (z-1)^4}$. Compute the value of $\int_{|z|=3}^{\infty} \frac{f'(z)}{f(z)} dz$.
- 6. Let p be a polynomial of degree 2 such that p(0) = 2024, and the following condition holds:

$$\oint_{|z|=2} z \frac{p'(z)}{p(z)} dz = 0, \quad \oint_{|z|=2} z^2 \frac{p'(z)}{p(z)} dz = -4.$$

Then, what is the coefficient of z^2 in polynomial p?

3. Rouche's Theorem

Theorem 8 Let γ be a simple closed curve. Assume f,h be the analytic function on and inside γ except for finitely many poles (no zeroes and poles of f,h on γ) such that |h|<|f| everywhere on γ . Then

$$\eta((f+h)\circ\gamma,0) = \eta(f\circ\gamma,0)$$
$$Z_{f+h} - P_{f+h} = Z_f - P_f$$

3. Rouche's Theorem

Theorem 8 Let γ be a simple closed curve. Assume f,h be the analytic function on and inside γ except for finitely many poles (no zeroes and poles of f,h on γ) such that |h|<|f| everywhere on γ . Then

$$\eta((f+h)\circ\gamma,0) = \eta(f\circ\gamma,0)$$
$$Z_{f+h} - P_{f+h} = Z_f - P_f$$

Outline of Proof: We will verify the hypothesis of argument principle on f, h, f + h, (f + h)/f.

Now, $|h| < |f| \implies \left| \frac{h}{f} \right| < 1 \implies \left(\frac{h}{f} \right) \circ \gamma$ lies strictly inside unit circle.

This means, $\left(1+\frac{h}{f}\right)\circ\gamma$ lies strictly inside unit circle centred at 1.

0 doesn't belongs to the interior of $\left(1+\frac{h}{f}\right)\circ\gamma$. Consequently, $\eta\left(\left(1+\frac{h}{f}\right)\circ\gamma,0\right)=0$.

Let
$$g=1+\frac{h}{f}=\frac{f+h}{f}$$
, so $\int_{\gamma}\frac{g'}{g}=0$ (Using argument principle, as $\eta(g\circ\gamma,0)=0$)

Now,

$$g' = \left(1 + \frac{h}{f}\right)' = \frac{fh' - hf'}{f^2} \implies \frac{g'}{g} = \frac{fh' - hf'}{f(f+h)} = \frac{(f+h)'}{f+h} - \frac{f'}{f}$$

Hence,

$$0 = \int_{\gamma} \frac{g'}{g} = \int_{\gamma} \frac{(f+h)'}{f+h} - \int_{\gamma} \frac{f'}{f} = 2\pi i \left[\eta((f+h) \circ \gamma, 0) - \eta(f \circ \gamma, 0) \right]$$

$$\implies \frac{\eta((f+h)\circ\gamma,0)=\eta(f\circ\gamma,0)}{Z_{f+h}-P_{f+h}=Z_f-P_f}$$

$$\implies \frac{\eta((f+h)\circ\gamma,0) = \eta(f\circ\gamma,0)}{Z_{f+h} - P_{f+h} = Z_f - P_f}$$

Corollary 9 (Special Case of Rouche's Theorem) Let C be a circle in an open set $\Omega \subset \mathbb{C}$. Further, assume that f_1, f_2 be two holomorphic function (no poles) on Ω s.t. $|f_1(z)| > |f_2(z)| > 0$ for each $z \in C$. Then, $f_1 + f_2$ and f_1 have same number of zeroes inside the interior of C.

$$\implies \frac{\eta((f+h)\circ\gamma,0) = \eta(f\circ\gamma,0)}{Z_{f+h} - P_{f+h} = Z_f - P_f}$$

Corollary 9 (Special Case of Rouche's Theorem) Let C be a circle in an open set $\Omega \subset \mathbb{C}$. Further, assume that f_1, f_2 be two holomorphic function (no poles) on Ω s.t. $|f_1(z)| > |f_2(z)| > 0$ for each $z \in C$. Then, $f_1 + f_2$ and f_1 have same number of zeroes inside the interior of C.

Proof: Since, functions f_1, f_2 are analytic on Ω so is $f_1 + f_2$. i.e. $P_{f_1 + f_2} = P_{f_1} = 0$. Using above theorem,

$$Z_{f_1+f_2} = Z_{f_1}$$

$$\Rightarrow \frac{\eta((f+h)\circ\gamma,0) = \eta(f\circ\gamma,0)}{Z_{f+h} - P_{f+h} = Z_f - P_f}$$

Corollary 9 (Special Case of Rouche's Theorem) Let C be a circle in an open set $\Omega \subset \mathbb{C}$. Further, assume that f_1, f_2 be two holomorphic function (no poles) on Ω s.t. $|f_1(z)| > |f_2(z)| > 0$ for each $z \in C$. Then, $f_1 + f_2$ and f_1 have same number of zeroes inside the interior of C.

Proof: Since, functions f_1, f_2 are analytic on Ω so is $f_1 + f_2$. i.e. $P_{f_1 + f_2} = P_{f_1} = 0$. Using above theorem,

$$Z_{f_1+f_2} = Z_{f_1}$$

Example. Show that all the zeroes of $z^5 + 3z + 1$ lies inside |z| = 2.

$$\implies \frac{\eta((f+h)\circ\gamma,0) = \eta(f\circ\gamma,0)}{Z_{f+h} - P_{f+h} = Z_f - P_f}$$

Corollary 9 (Special Case of Rouche's Theorem) Let C be a circle in an open set $\Omega \subset \mathbb{C}$. Further, assume that f_1, f_2 be two holomorphic function (no poles) on Ω s.t. $|f_1(z)| > |f_2(z)| > 0$ for each $z \in C$. Then, $f_1 + f_2$ and f_1 have same number of zeroes inside the interior of C.

Proof: Since, functions f_1, f_2 are analytic on Ω so is $f_1 + f_2$. i.e. $P_{f_1+f_2} = P_{f_1} = 0$. Using above theorem,

$$Z_{f_1+f_2} = Z_{f_1}$$

Example. Show that all the zeroes of $z^5 + 3z + 1$ lies inside |z| = 2.

Solution. Assume two holomorphic functions $f_1=z^5, f_2=3z+1$ and let $C=\{z\in\mathbb{C}\mid |z|=2\}$. Now, $|z^5|>|3z+1|$ for each $z\in C$. So, it satisfies the hypothesis of the Corollary 9. Thus, z^5+3z+1 have same number of zeroes as z^5 inside circle C. But all the zeros of z^5 are inside the circle C. Consequently, all the zeroes of z^5+3z+1 lies inside |z|=2.

$$\implies \frac{\eta((f+h)\circ\gamma,0) = \eta(f\circ\gamma,0)}{Z_{f+h} - P_{f+h} = Z_f - P_f}$$

Corollary 9 (Special Case of Rouche's Theorem) Let C be a circle in an open set $\Omega \subset \mathbb{C}$. Further, assume that f_1, f_2 be two holomorphic function (no poles) on Ω s.t. $|f_1(z)| > |f_2(z)| > 0$ for each $z \in C$. Then, $f_1 + f_2$ and f_1 have same number of zeroes inside the interior of C.

Proof: Since, functions f_1, f_2 are analytic on Ω so is $f_1 + f_2$. i.e. $P_{f_1+f_2} = P_{f_1} = 0$. Using above theorem,

$$Z_{f_1+f_2} = Z_{f_1}$$

Example. Show that all the zeroes of $z^5 + 3z + 1$ lies inside |z| = 2.

Solution. Assume two holomorphic functions $f_1=z^5, f_2=3z+1$ and let $C=\{z\in\mathbb{C}\mid |z|=2\}$. Now, $|z^5|>|3z+1|$ for each $z\in C$. So, it satisfies the hypothesis of the Corollary 9. Thus, z^5+3z+1 have same number of zeroes as z^5 inside circle C. But all the zeros of z^5 are inside the circle C. Consequently, all the zeroes of z^5+3z+1 lies inside |z|=2.

Problems

1. Use Rouche's theorem to prove that all the zeroes of the following equation lies in the annulus $0.5 \le |z| < 1.25$.

$$z^6 + (1+i)z + 1 = 0$$

- 2. Find the number of roots of $h(z)=6z^4+z^3-2z^2+z-1=0$ inside unit disc $|z|\leq 1$.
- 3. (True/False) Suppose f is a holomorphic function on and inside simple closed curve γ such that that it has n zeroes inside γ then f' has n-1 zeroes inside γ . Hint: $f(z) = e^z 1$ inside $|z| = 3\pi$.
- 4. Prove that the equation $z=2-e^{-z}$ has exactly one root in the right half-plane $\{Re(z)>0\}$.
- 5. Use Rouche's theorem to count the number of zeroes for $f(z)=z^2-4+3e^{-z}$ on the right half plane $\{Re(z)>0\}$.
- 6. Show that $f(z) = z + 3 + 2e^z$ has one root in the left half-plane $\{Re(z) < 0\}$.
- 7. Use Rouche's Theorem to prove the fundamental theorem of algebra.

4. Mobius Transformation

Definition 10 A Mobius (Fractional linear or Bilinear) transformation is a function of the form

$$T: z \to \frac{az+b}{cz+d}$$
, where $a,b,c,d \in \mathbb{C} \mid ad-bc \neq 0$.

Note: whenever $ad - bc = 0 \implies T$ is a constant function (How?).

Remark 2 The inverse of a Mobius transformation is again a Mobius transformation.

$$T^{-1}: z \to \frac{dz-b}{-cz+a}$$

Remark 3 Each Fractional linear transformation is the composition of the following four elementary maps:

- (Translation) $z \to z + z_0, z_0 \in \mathbb{C}$
- (Dilation or Scaling) $z \to \lambda z$, $\lambda \in \mathbb{R}^+$
- (Rotation) $z \to ze^{i\theta}, \theta \in \mathbb{R}$
- (Inversion) $z \to 1/z$

Whenever $c=0 \implies T(z)=\frac{a}{d}z+\frac{b}{d}$ is the composition of dilation, rotation, followed by a translation.

Whenever $c \neq 0$

$$T(z) = \frac{az+b}{cz+d} = \frac{az}{c(z+d/c)} + \frac{b}{c(z+d/c)}$$
$$= \frac{a}{c} - \frac{ad}{c^2(z+d/c)} + \frac{b}{c(z+d/c)}$$
$$= \frac{a}{c} + \frac{bc-ad}{c^2} \left(\frac{1}{z+d/c}\right)$$

is the composition of translation, inversion, dilation, rotation followed by a translation.

Example. Write down the Mobius transformation $T:z\to \frac{z+i}{z-i}$ as composition of translation, scaling, rotation, and inversion. Ans: $1+2e^{i\pi/2}\left(\frac{1}{z-i}\right)$

Definition 11 A point z is said to be fixed point of transformation T if it satisfies T(z)=z.

Remark 4 Any Mobius transformation (except the identity transformation) can have at most 2 fixed points in \mathbb{C}_{∞} .

$$T(z) = \frac{az+b}{cz+d} = z \implies cz^2 + (d-a)z - b = 0.$$

Example. Find the fixed points of the Mobius transformation $T: z \to \frac{3z-1}{z+5}$. Ans: z=-1.

Theorem 12 A Mobius transformation is completely determined by it's action on three distinct points in \mathbb{C}_{∞} .

Proof: Suppose to contrary, there are two distinct Mobius transformation S and T which (both) maps three distinct points a, b, c to α, β, γ respectively. i.e.

$$S(a) = T(a) = \alpha$$
$$S(b) = T(b) = \beta$$
$$S(c) = T(c) = \gamma.$$

Now, consider the Mobius map $T^{-1} \circ S$ having three distinct fixed points a,b,c. So, it must be an identity transformation. ie. $T^{-1} \circ S = \operatorname{Id} \implies S = T$.

Theorem 13 A Mobius transformation maps circles and lines to circles and lines complex plane \mathbb{C} .

Proof: Let S be a circle and L be a line in complex plane \mathbb{C} . Any Mobius transform consisting of rotation, translation and scaling maps circle S to a circle S' and line L to line L'.

Now, consider a circle $|z-z_0|=r$ and ${\tt I}:z\to w=1/z$ be the inversion map.

$$|z - z_0|^2 = r^2$$

$$\implies (z - z_0)\overline{(z - z_0)} = r^2$$

$$\implies |z|^2 + |z_0|^2 - 2\operatorname{Re}(\overline{z}z_0) - r^2 = 0$$

$$\implies \frac{1}{|w|^2} + |z_0|^2 - 2\frac{\operatorname{Re}(wz_0)}{|w|^2} - r^2 = 0$$

Whenever $|z_0| = r$, we get $2\text{Re}(wz_0) = 1$. Assuming w = u + iv, $z_0 = x_0 + iy_0 \implies 2(ux_0 - vy_0) = 1$ is a line in complex plane.

Otherwise, we get $1 - 2\text{Re}(wz_0) + |w|^2 \left(|z_0|^2 - r^2\right) = 0 \implies |w|^2 + \frac{1 - 2\text{Re}(wz_0)}{|z_0|^2 - r^2} = 0$ which can be further written as

$$\left| w - \frac{\overline{z_0}}{|z_0|^2 - r^2} \right|^2 - \frac{r^2}{\left(|z_0|^2 - r^2\right)^2} = 0$$

is an equation of circle in \mathbb{C} .

Consider a line $L: 2\operatorname{Re}(z\overline{z_0}) = a$ for some $a \in \mathbb{R}$ then w = 1/z gives $2\operatorname{Re}(wz_0) = a|w|^2$.

Whenever $a=0 \implies 2\text{Re}(wz_0)=0$ which is a line in complex plane through origin.

Whenever $a \neq 0$, Equation of the line $2\text{Re}(wz_0) = 0$ becomes

$$wz_0 + \overline{w}\overline{z_0} - a|w|^2 = 0$$

$$\implies |w|^2 - \frac{(wz_0 + \overline{w}\overline{z_0})}{a} + \frac{|z_0|^2}{a^2} - \frac{|z_0|^2}{a^2} = 0$$

$$\implies \left|w - \frac{\overline{z_0}}{a}\right|^2 = \frac{|z_0|^2}{a^2}.$$

is a circle in complex plane. Hence, all the elementary maps of a mobius transformation maps lines and circle to lines and circles in complex plane \mathbb{C} .

Definition 14 The Conformal maps are the functions that preserves angle between curves.

Problems

- Find a Mobius transformation with two fixed points, namely i and 1-i.
- Find the inverse of Mobius transformation $T:z \to \frac{z+i}{2z+3i}.$

•

References

- [1] Wolfram website aboutwinding number https://mathworld.wolfram.com/ContourWindingNumber.html
- [2] Class notes from Dr. Jeremy Orloff available at https://math.mit.edu/~jorloff/18.04/notes/topic11.pdf
- [3] Gilles Castel Notes available at https://drive.google.com/uc?id=1PkLRHconRAIG2boVadfpkePuqhhHtNom
- [4] Conway, J. B. Functions of One Complex Variable. https://psm73.files.wordpress.com/2009/03/conway.pdf https://www.maths.ed.ac.uk/~v1ranick/papers/conwaycx2.pdf

Report any dead link to me at kapilchaudhary@gujaratuniversity.ac.in