Sun Mon Tue Wed Thu Fri Sat Perception: Basic building black of an ann. - used for binary classification Supervised. Terring Components: Perceptron takes binary inputs or real valued 2- Weignes: parameters that the perception learns. It determine influence of each input on output 3- Summation function: perceptron computes the weighted sum E wizi u- Activation function: The weighted cum is passed to activationfunction to get output in sineny. Threshold or Sign function. -weight update: During training, Based on difference in true dypredicted wi= wi+ (n. Yest. pred.) - Only learn linear seprentile data: bouz it makes linear decision boundary - only binary outputs. - Sensitive to noise Single layer so unable to learn complex relations - Original weight update lacks adaptive mechanism Bigs: - Snifts the activation function - Adjust the decision boundary. - handle asympthy in data - improve fresibily Learning rate: Controls the Rize of Etap during wellut update

+

Multilayer perception: -type of ANN made by multiple largers of neurons. - Include input layer, lorrouse hidden layers on output layer. - copable of lorning complex ant How Bester two Single ryer: - layers lorn properessivley = - Network extract meaningful features from dute. - In-red parameters aid generalizedion. · Gradient Vis a vector that points to steeped ascent · we want the minimum lock so we descent to the grand. · Magnitude of gradient tells the rate of change of function · In gradient decent the gradient guides thre applates of prameters. . As the gradient becomes smaller signers that model is reaching an a minimum. Considert Descente + is an optimizing algorithm. used for tinding minimum of a function. egod is to move towards the minimum of Loss function by updating perameters

Steps: 1- Initialize parameters. 2 Define the cost functions 3 uparte Parameters. 3- compute Gradient 4- uponte weights 5- iterate until mimmimum Lose function= 1 \(\frac{1}{2}\left(y'') - y^(i)\right)^2 new-parameter = oldparameter - LR x 82055 & porometer. Learning Kate: - nyperparameter - Determine lize of step taken toward descent Too Small LR: Converge Slow, stuck and local minima Too bij Il: Diverge, miss out minima. Convergence: oceurs when: 1- An point correctly classified 2- Error resches gloved minima. 3- optimal weights are set 4- LR is backneed - Perceptron can identify black of white patterns. - Struggles with grey pixels.

Dat	e:					
Sun	Mon	Tue	Wed	Thu	Fri	Sat

J
Multi Layer Neural Network
- forward pres: A levining enomple is fed to retwork and the the output is compared with ground truth
- Backward pass: compute the derivative with respect to weights then weights are updated to make an optimzed network.
$\Lambda = \frac{1}{2} - \frac{1}{2} = \frac{1}{2}$
Activation Function: - Sings / Threshold function not differentiable. - Discontinues at 0
- Discontinous at 0
- Signoid of tents agrametric at 0
- Bo tann in hidden by sigmoid at output.
, 1
Sigmoid = 1 (x)= S(x).(1-S(x))
14e
$tenh = e^{\chi} - e^{-\chi}$ betonh'(χ) = 1-betonh'(χ)
$tenh = e^{x} - e^{-x}$ betonh'(x) = 1-betonh'(x) $e^{x} + e^{-x}$
Park, and in
Backprop-gedian:
- combined forward passey backward passe to compute
dy propagate gradients.
apply of J. S. Comp.
- The state adjuste an interior of the
- Itratively adjusts weights to minimize error

Date:

Sun Mon Tue Wed Thu Fri Sat

A B Owlful

Ware A Amon Menson B = Rigmord

Wror: MSE

Deights: Neu-A: WAR, WAR, WAR,

Neu-B: WBRD | WBR,

Men-A = tenin (WAXO+ XI-WAXI-X2WAX2)

NEN-B = S(WEXO+ NEN-A-WBZ2) -> ypred.orf

20

Error (yert - S(WEXO+ WEX-0+200) (WAXO+ XWARZ+ X2WAX2))

From = (4-2)² iok 2 komon & aya.

Cross:

6

4)

M-

0

3

8

-

				Date:	
			5	Sun Mon Tue We	ed Thu Fri Sat
Derror =	Sever.	yered	. 26		
Swero	Typred	ZB	WBro	,	
				,	
derror =	g error	· Yrrad	- 28		
7008x	gypred	28	wex	\	
dernov =	Serror.	ypred	. 28 . 1	ANeu-A	2A
DURAUS	dyraed	28	uchear be	DAMY ZA	OKAW
			A-Men_A		
dervor =	200000	(pred =	28 . Neu	A - 2A	
			YEUA ZA	WAX.	
	11.00	-15			
		1100 -1	Do Mo		
	derner.		ZB. New Meu A ZA		
SWAMS	Shea	28	74	W .	-
gerror	· dypred	com	mon in all		
Sypred	828				0 10 1 0 00
					2, yourse som
seron =	D (4-2)	=	- x (y-f)	= - (4	-4)
porgs	72		1		
	s best	<i>></i>			
2 yered =	A S'(26) -	J'(28)		
2	228		2 (-5)		
	210			•	
		Α		in last	2
2=8	2 Men	, , ,	Country		
2 = B		, ,	Compon		

S'= S. (1-S) -tonh = (1- mtonh) Date: Sun Mon Tue Wed Thu Fri Sat & (WEXON MEN. A. WBXI) = USBXI Drew A A-usMG +nh (20) à (WBXO+ +M/2·WAXI ONBWS 3 (WBRO - MEUA. (WAZI) NeuA 1 Raw 6 LXAWLX + IXAWIX + OXAW) 6 or Acus CKAGIG 628 = XI 62005 -1-1CE 5 -de = - (y-f) . S'(28). Nou-A = 2e = - (y-5). S'(2B).1 DWBRO -> de =- (4f). S'(26). WBX, tenh(2A). 26 = - (y-1).S'(26). WBX . +nh'(2A).1 on Am.

THE REAL PROPERTY.	
5	
-	Data Sets:
-	- good duticet must contain overrepresentation
	(diversity) of the real word to
	J
	1- Handle missely duta: Imputation 2- belotin
-	2- Houdle categorical date: 1- One not encoding 2- to bel encoding
5	3- Ordinal encoding
9	3- Scaling Normatication: 1. MinMan Scaling 2- Standardization.
•	4- handle outliers: 1- Identification 2- transformation (10), equal)
•	3-Removal
	5- Festure Enginearing: 1- Create New festure 2- Reduce fasture
	6- Handle Imbalance data: 1- Recompling 2- Cythatic North Cheneration
,	Over litting:
	Over titting: Memorizin -> Overfitting
,	Memorizing -> Overfitting
	1- Incrose training Cet
	2- only stopping
	Hyper parameter techniques:
	1- Grid Reach: Grid of parametrs
	2- Randon Seach: Chooce random combinations
	3- Bayesin Optimization: probabilistic model for parameters.
	4- Considered - broked: Use Gradient based algos
	5- Encomble: combine different models into one.
	C- Autom-ted: in
	•

Training: Coming up with weight for the network infrance: using network without upanting weights Optimal Model. Make duty not biased - Preproces the dista - spirt train, test, validation - proper loss functions - Suitible optimizer - Proper byper parameter tuning. Baten Size :- faster Convergence - Efficient memory usage

- Simple model complex dute Donat capture patterns
- leads to under fitting
- * use complex model

- * Add fedures
- a Add polynomial feeds
- a becross h

vorionce:

- Model's sensitivity to noise
- overly complex model captures noise
- leads to over fitting
- * Simplify model

- * Reduce feet
- a leduce poly feed
- d Inceruse X

Regularization: introduces penalty terms to reduce influence of inputs on outputs

Larsso L1: - adds sum of absolute values to loss function - Encorages sparsity, some coefficient may become o

Ridge L2: - adds sum of squared values to the loss function - Spreads out the impact of each feature across all features, reducing impact of any single feature

A -> Regularization Strength: controls madeloft between under by over fit

- Prevent of ovefit, Enurage Complicity, Improve Generalist