AMAT 362—Work Sheet 03

Dr. Justin M. Curry

Due on February 7, 2022. Worth 8 points.

	Name:
1.	(1 point) Suppose I have N students and I go around and ask everyone their birthdays. What is the size of the sample space Ω in this experiment?
2.	(1 point) Continuing Question 1, If B is the event that no one has the same birthday. Describe in words what B^c represents.
3.	(2 points) Since asking people their birthdays can be a little personal. Instead imagine that I ask everyone what their astrological sign (https://en.wikipedia.org/wiki/Astrological_sign) is. Assuming there are 40 people in my class. What's the probability that at least three people have the same sign? Explain your answer.
4.	(1 point) What's the difference between a Tarot reading and being dealt a five card hand?
5.	(3 points) In a state lottery, 5 distinct numbers are drawn from the numbers $1, 2, \dots, 40$ uniformly at random. (a) (1 point) Describe a sample space Ω and a probability measure P to model this experiment

	(b) (2 points) What is the probability that out of five picked numbers exactly three will be even?
ĵ.	(2 points) Suppose that a bag of scrabble tiles contains 5 E's, 4 A's, 3 N's, and 2 B's. Suppose I draw 4 tiles from the bag without replacement uniformly at random. Let C be the event that I draw two E's, one A and one N.
	(a) (1 point) Compute $P(C)$ by imagining that the tiles are drawn one by one as an ordered sample.
	(b) (1 point) Compute $P(C)$ by imagining that the tiles are drawn all at once as an unordered sample.
7.	(1 point) What's the probability of a full house?