NSR Search Results Page 1 of 7

Visit the **Isotope Explorer** home page!

43 reference(s) found:

Keynumber: 1995MO40

Reference: Aust.J.Phys. 48, 125 (1995) **Authors:** A.J.Morton, D.G.Sargood

Title: Thermonuclear Reactions Rates for Reactions Leading to N = 28 Nuclei

Keyword abstract: NUCLEAR REACTIONS ⁴⁴, ⁴⁶K, ⁴⁶, ⁴⁷, ⁴⁸Ca, ⁴⁵, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Sc, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰, ⁵¹V, ⁴⁸, ⁴⁹, ⁵⁰, ⁵¹, ⁵²Cr, ⁵¹, ⁵², ⁵³Mn, ⁵², ⁵³, ⁵⁴Fe, ⁵⁵Co(n,γ), (n,p), (n,α), (p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p),E not given; ⁵⁶Ni(n,γ), (n,p), (n,α), (α,γ), (α,n), (α,p),E not given; ⁴⁶Ar, ⁴⁵, ⁴⁷K (p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p),E not given; calculated stellar reaction rates vs temperature.

Statistical model calculations, optical-model potential.

Keynumber: 1990KUZT

Reference: Program and Thesis, Proc.40th Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, Leningrad, p.55

(1990)

Authors: V.T.Kupryashkin, N.V.Strilchuk, A.I.Feoktistov, I.P.Shapovalova **Title:** Lifetimes of 55 Fe Levels Excited in (n,γ) Reaction on Thermal Neutrons

Keyword abstract: NUCLEAR REACTIONS 54 Fe(n, γ),E=thermal; measured DSA. 55 Fe levels

deduced T_{1/2}. Enriched target,NaI(Tl),hyperpure Ge detectors.

Keynumber: 1990KUZC

Reference: Proc.8th Seminar on Precise Measurements in Nucl.Spectrosc., Uzhgorod, p.85 (1990)

Authors: V.T.Kupryashkin, N.V.Strilchuk, A.I.Feoktistov, I.P.Shapovalova

Title: Measurements of Lifetime of High-Energy States Excited in (n,γ) Reaction on Thermal Neutrons **Keyword abstract:** NUCLEAR REACTIONS ²⁴Mg, ²⁷Al, ³¹P, ⁵⁴, ⁵⁷Fe (n,γ) ,E=thermal; measured DSA. ²⁵Mg, ²⁸Al, ³²P, ⁵⁵, ⁵⁸Fe levels deduced $T_{1/2}$. Enriched targets,NaI(Tl),hyperpure Ge detectors.

Kevnumber: 1990KU26

Reference: Izv.Akad.Nauk SSSR, Ser.Fiz. 54, 2145 (1990); Bull.Acad.Sci.USSR, Phys.Ser. 54, No.11,

60 (1990)

Authors: V.T.Kupryashkin, N.V.Strilchuk, A.I.Feoktistov, I.P.Shapovalova

Title: Lifetimes of ⁵⁵Fe Levels Excited in the (nγ)-Reaction Induced by Thermal Neutrons

Keyword abstract: NUCLEAR REACTIONS 54 Fe(n, γ),E=thermal; measured $\gamma\gamma$ -coin,DSA. 55 Fe levels

deduced $T_{1/2}$.

Keynumber: 1987MA14

Reference: Nucl. Phys. A465, 413 (1987)

Authors: J.P.Mason

Title: Neutron Capture Gamma-Rays from the Low-Lying Resonances of ⁵⁴Fe

Keyword abstract: NUCLEAR REACTIONS ⁵⁴Fe(n, γ),E \approx resonance; measured E γ ,I γ ,capture yield vs

E. 55 Fe deduced resonances, $\Gamma\gamma$,relative $I\gamma$,J, π . Tof. Valence model.

T7

Keynumber: 1986GU18

Reference: Ann. Nucl. Energy 13, 601 (1986)

Authors: P.T.Guenther, D.L.Smith, A.B.Smith, J.F.Whalen

NSR Search Results Page 2 of 7

Title: Total, Scattering and γ-Ray-Production Cross Sections for Few-MeV Neutrons on ⁵⁴Fe **Keyword abstract:** NUCLEAR REACTIONS 54 Fe(n,n), (n,n'), (n, γ), E=0.5-4 MeV; measured total, reaction, γ production $\sigma(E)$, $\sigma(\theta)$, $E\gamma$. ⁵⁴Fe deduced levels, γ -branching, J, π . Enriched target, tof. Spherical optical model.

Keynumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

Keyword abstract: NUCLEAR REACTIONS,ICPND ²⁰, ²¹, ²²Ne, ²³Na, ²⁴, ²⁵, ²⁶Mg, ²⁷Al, ²⁸, ²⁹, 30Si, 31P, 32, 33, 34, 36S, 35, 37Cl, 36, 38, 40Ar, 39, 40, 41K, 40, 42, 43, 44, 46, 48Ca, 45Sc, 46, 47, 48, 49, 50Ti, 50, 51V, 50, 52, 53, 54Cr, 55Mn, 54, 56, 57, 58Fe, 59Co, 58, 60, 61, 62, 64Ni, 63, 65Cu, 64, 66, 67Zn(n,γ), $(n,p), (n,\alpha), (p,\gamma), (p,n), (p,\alpha), (\alpha,\gamma), (\alpha,n), (\alpha,p), {}^{70}Zn(p,\gamma), (p,n), (p,\alpha), (\alpha,\gamma), (\alpha,n), (\alpha,p), E=low;$ compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction σ vs temperature. Statistical model.

Kevnumber: 1983BRZZ

Reference: NEANDC(E)-242U, Vol.III, p.15 (1983)

Authors: A.Brusegan, F.Corvi, G.Rohr, R.Shelley, T.van der Veen, C.Van der Vorst, B.J.Allan

Title: ⁵⁴Fe Neutron Capture Cross Section

Keyword abstract: NUCLEAR REACTIONS ⁵⁴Fe(n, γ),E=0.3-500 keV; measured σ (capture) vs E.

⁵⁵Fe deduced resonances,J, π ,absolute γ-transition strengths.

Keynumber: 1982RA32

Reference: Indian J.Pure Appl.Phys. 20, 627 (1982) Authors: S.K.Rathi, V.P.Varshney, H.M.Agrawal

Title: Calculations of Neutron Capture Cross-Sections for some Nuclei using Bilpuch Formula

Keyword abstract: NUCLEAR REACTIONS ⁴⁰, ⁴³Ca, ⁵², ⁵³Cr, ⁵⁴, ⁵⁶Fe, ⁸⁸Sr, ⁹⁰, ⁹¹, ⁹², ⁹⁴Zr, ⁹³Nb, 92, 94, 95, 96, 97, 98, 100 Mo, 138 Ba, 139 La, 140 Ce, 203 Tl(n, γ),E=24 keV; calculated σ (capture).

Experimental parameters, Bilpuch formula.

Kevnumber: 1982KN01

Reference: Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 187 (1982)

Authors: V.A.Knatko, E.A.Shimanovich

Title: Correlation Width Analysis for the Reaction 54 Fe $(n,\gamma)^{55}$ Fe

Keyword abstract: NUCLEAR REACTIONS 54 Fe(n, γ),E=low; analyzed s-wave resonance data. 55 Fe

resonances deduced $<\Gamma\gamma>$ channel correlation coefficient. Statistical model.

Keynumber: 1980RA08

Reference: Phys.Rev. C22, 328 (1980)

Authors: S.Raman, G.G.Slaughter, J.C.Wells, Jr., B.J.Allen **Title:** Valence Neutron Capture γ-Ray Spectrum in ⁵⁴Fe

Keyword abstract: NUCLEAR REACTIONS ⁵⁴Fe(n,γ),E=1-18 keV; measured Eγ,Iγ. ⁵⁵Fe deduced resonances, levels, J, π , neutron separation energy. Enriched target, Ge(Li) detector. Valence model.

Keynumber: 1980PIZN

Coden: CONF Kiev(Neutron Physics) Proc, Part3, P270, Pisanko

NSR Search Results Page 3 of 7

Keyword abstract: NUCLEAR REACTIONS ²², ²³Na,Mg, ²⁴, ²⁵, ²⁶Mg, ²⁷Al,Si, ²⁸, ²⁹, ³⁰Si, ³¹P,S, ³², ³³, ³⁴S,Cl, ³⁵, ³⁶, ³⁷Cl,Ar, ³⁶, ³⁸, ⁴⁰Ar,K, ³⁹, ⁴⁰, ⁴¹K,Ca, ⁴⁰, ⁴², ⁴³, ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁵, ⁴⁶Sc,Ti, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti,V, ⁵⁰, ⁵¹V,Cr, ⁵⁰, ⁵², ⁵³, ⁵⁴Cr,Fe, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁹Co,Ni, ⁵⁸, ⁵⁹, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni,Cu, ⁶³, ⁶⁵Cu,Zn, ⁶⁴, ⁶⁶, ⁶⁷, ⁶⁸, ⁷⁰Zn,Ga, ⁶⁹, ⁷¹Ga(n,γ), (n,n), (n,α),E=thermal; evaluated σ,radiative capture resonance integrals.

Vormumbon 1000ICO

Keynumber: 1980IS02

Reference: Can.J.Phys. 58, 168 (1980)

Authors: M.A.Islam, T.J.Kennett, S.A.Kerr, W.V.Prestwich **Title:** A Self-Consistent Set of Neutron Separation Energies

Keyword abstract: NUCLEAR REACTIONS ¹H, ⁹Be, ¹⁴N, ²⁴, ²⁵Mg, ²⁷Al, ²⁸, ²⁹Si, ³²S, ³⁵Cl, ⁴⁰, ⁴⁴Ca, ⁴⁷, ⁴⁸, ⁴⁹Ti, ⁵⁰, ⁵², ⁵³Cr, ⁵⁵Mn, ⁵⁴, ⁵⁶, ⁵⁷Fe(n,γ),E=thermal; measured Eγ,Iγ. ²H, ¹⁰Be, ²⁵, ²⁶Mg, ²⁸Al, ²⁹, ³⁰Si, ³³S, ³⁶Cl, ⁴¹, ⁴⁵Ca, ⁴⁸, ⁴⁹, ⁵⁰Ti, ⁵¹, ⁵³, ⁵⁴Cr, ⁵⁶Mn, ⁵⁵, ⁵⁷, ⁵⁸Fe deduced Q,neutron binding energy.

omanig chergy.

Keynumber: 1979RAZT

Reference: Bull.Am.Phys.Soc. 24, No.4, 631, EM7 (1979)

Authors: S.Raman, J.C.Wells, Jr., G.G.Slaughter

Title: Valence Neutron Capture in ⁵⁴Fe

Keyword abstract: NUCLEAR REACTIONS 54 Fe(n, γ),E=7.76-14.4 keV; measured E γ ,I γ . 55 Fe

deduced resonance.

Keynumber: 1979BRZN

Reference: Bull.Am.Phys.Soc. 24, No.7, 867, BB8 (1979)

Authors: A.Brusegan, F.Corvi, G.Rohr, R.Shelley, T.Van der Veen **Title:** Neutron Capture Cross Section Measurements of Fe-54 and Fe-56

Keyword abstract: NUCLEAR REACTIONS ⁵⁴, ⁵⁶Fe(n, γ),E=0.5-600 keV; measured σ .

Keynumber: 1978ALZK

Coden: CONF Brookhaven(Neutron Capt γ-Ray Spectr), Proc, P535, Allen

Keyword abstract: NUCLEAR REACTIONS ⁴⁰Ca, ⁴⁵Sc, ⁵⁴, ⁵⁶, ⁵⁷Fe(n,γ),E=thermal; calculated

radiative widths, variances. Statistical, valence, door-way models.

Keynumber: 1978ALYZ

Coden: CONF BNL(Neutron Capt γ-Ray Spectr), Contrib, No5, Allen

Keyword abstract: NUCLEAR REACTIONS ⁴⁰Ca, ⁴⁵Sc, ⁵⁴, ⁵⁶, ⁵⁷Fe(n,γ); calculated L=0,1 radiative widths. ⁵⁵Fe deduced dominance of valence effects. ⁴¹Ca, ⁴⁶Sc, ⁵⁷, ⁵⁸Fe deduced evidence for doorway components.

components.

Keynumber: 1978AL05

Reference: Phys.Lett. 72B, 323 (1978)

Authors: B.J.Allen, A.R.de L.Musgrove, W.K.Bertram

Title: Resonance and Background Interference in ⁵⁴Fe Neutron Capture

Keyword abstract: NUCLEAR REACTIONS ⁵⁴Fe(n,γ); calculated valence σ .

Keynumber: 1977RI14

Reference: Nucl.Instrum.Methods 144, 323 (1977)

Authors: M.Riihonen, J.Keinonen

NSR Search Results Page 4 of 7

Title: Measurements of Absolute Resonance Strengths in (p,γ) Reactions on Rare or Gaseous Nuclei **Keyword abstract:** NUCLEAR REACTIONS ²⁰, ²¹, ²²Ne, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe (n,γ) ; measured yields. ⁵⁵, ⁵⁷, ⁵⁸Co deduced resonance strength.

Keynumber: 1977AL12

Reference: Nucl. Phys. A283, 37 (1977)

Authors: B.J.Allen, A.R.de L.Musgrove, J.W.Boldeman, R.L.Macklin

Title: Valence Neutron Capture in ⁵⁴Fe

Keyword abstract: NUCLEAR REACTIONS 54 Fe(n, γ),E=2.5-500 keV; measured σ (E,E γ). 55 Fe deduced resonance parameters,correlation coefficient,valence capture. 6 Li(n, α) monitor. Enriched target.

Keynumber: 1975MUZX

Coden: JOUR BAPSA 20 168 HB20

Keyword abstract: NUCLEAR REACTIONS 38 Ar, 54 Fe(n, γ),E=thermal; calculated σ .

Keynumber: 1975BE07

Reference: Nucl. Phys. A240, 29 (1975)

Authors: H.Beer, R.R.Spencer

Title: keV Neutron Radiative Capture and Total Cross Section of ⁵⁰, ⁵², ⁵³Cr, ⁵⁴, ⁵⁷Fe, and ⁶², ⁶⁴Ni **Keyword abstract:** NUCLEAR REACTIONS ⁵⁰, ⁵², ⁵³Cr, ⁵⁴, ⁵⁷Fe, ⁶², ⁶⁴Ni(n,γ),E=5-200 keV; ⁵⁰, ⁵²Cr, ⁵⁴Fe, ⁶², ⁶⁴Ni(n,t),E=10-300 keV; measured $\sigma(E,E\gamma),\sigma(E,Et)$. ⁵¹, ⁵³, ⁵⁴Cr, ⁵⁵, ⁵⁸Fe, ⁶³, ⁶⁵Ni deduced resonances,J,L,n-width,γ-width. Enriched targets.

Keynumber: 1974PAZO

Coden: REPT USNDC-11 P221

Keyword abstract: NUCLEAR REACTIONS ⁵⁴Fe, ⁶¹Ni(n,X), (n, γ),E=15-100 keV; measured σ .

Keynumber: 1974PAZM

Coden: REPT COO-3058-50 P5

Keyword abstract: NUCLEAR REACTIONS ⁵⁴, ⁵⁸Fe, ⁶¹Ni(n,γ), (n,X),E=15-100 keV; measured

σ,total σ.

Keynumber: 1974BEXF **Coden:** REPT KFK-2063,CRL

Keyword abstract: NUCLEAR REACTIONS ⁵⁰, ⁵², ⁵³Cr, ⁵⁴, ⁵⁷Fe, ⁶², ⁶⁴Ni(n,γ),E <300 keV;

measured $\sigma(E,E\gamma)$. ⁵¹, ⁵³, ⁵⁴Cr, ⁵⁵, ⁵⁸Fe, ⁶³, ⁶⁵Ni deduced resonances.

Keynumber: 1973KNZZ

Coden: REPT COO-3058-34 P3 (CRL)

Keyword abstract: NUCLEAR REACTIONS ⁵⁴Fe, ⁶¹Ni(n, γ),E=10-200 keV; measured σ (E). ⁶²Ni

deduced resonances.

Keynumber: 1973BEWY

Coden: REPT EANDC(E)157-U,P1

Keyword abstract: NUCLEAR REACTIONS ⁵⁴, ⁵⁷Fe, ⁵⁰, ⁵², ⁵³Cr, ⁶², ⁶⁴Ni(n, γ),E=5-200 keV;

measured σ .

NSR Search Results Page 5 of 7

Kevnumber: 1972KOZJ

Coden: CONF Budapest, Contributions, P234, J Kopecky, 10/13/72

Keyword abstract: NUCLEAR REACTIONS ⁵⁰, ⁵²Cr, ⁵⁴Fe, ⁶⁰, ⁶²Ni(n,γ); measured γ-CP. ⁵¹, ⁵³Cr,

⁵⁵Fe, ⁶¹, ⁶³Ni levels deduced L(n),J.

Keynumber: 1972KO15

Reference: Nucl.Phys. A188, 535 (1972)

Authors: J.Kopecky, K.Abrahams, F.Stecher-Rasmussen

Title: Study of the (n,γ) Reaction in the Mass Region A = 50 - 63

Keyword abstract: NUCLEAR REACTIONS ⁵⁰Cr, ⁵²Cr, ⁵⁴Fe, ⁶⁰Ni, ⁶²Ni(polarized n,γ);E= thermal;

measured Eγ,Ιγ,γ-CP; deduced Q. ⁵¹Cr, ⁵⁵Fe, ⁶¹Ni, ⁶³Ni levels deduced J. Enriched targets.

Keynumber: 1972KN03

Reference: Nucl. Phys. A194, 458 (1972)

Authors: V.A.Knatko, E.A.Rudak

Title: Phonon-Particle Doorway States in (n,γ) Reactions on Nuclei with N=28 and N=82

Keyword abstract: NUCLEAR REACTIONS 50 Ti, 52 Cr, 54 Fe, 138 Ba, 140 Ce, 142 Nd(n,γ),E=thermal; analyzed σ(Εγ). 51 Ti, 53 Cr, 55 Fe, 139 Ba, 141 Ce, 143 Nd calculated levels, wave functions, B(E1); analyzed

phonon-particle doorway states.

Keynumber: 1972KN02

Reference: Yad.Fiz. 15, 1132 (1972); Sov.J.Nucl.Phys. 15, 626 (1972)

Authors: V.A.Knatko, E.A.Rudak

Title: Doorway States of 'Phonon + Particle' Type in (n,γ) Reactions with N = 28 and N = 82 Nuclei **Keyword abstract:** NUCLEAR REACTIONS ⁵⁰Ti, ⁵²Cr, ⁵⁴Fe, ¹³⁸Ba, ¹⁴⁰Ce, ¹⁴²Nd (n,γ) ,E=thermal; calculated E1 Iy. ⁵¹Ti, ⁵³Cr, ⁵⁵Fe, ¹³⁹Ba, ¹⁴¹Ce, ¹⁴³Nd analyzed E1 transitions,doorway states.

Keynumber: 1972HOYH

Coden: REPT COO-3058-27,P14

Keyword abstract: NUCLEAR REACTIONS ⁵⁴Fe, ⁵⁸Fe, ⁶¹, ⁶⁴Ni(n,X), (n,γ),E=0.1-35 keV; measured

 $\sigma(E)$, $\sigma(nT)(E)$. 55, 59 Fe, 62, 65 Ni deduced resonances.

Keynumber: 1972BEVV **Coden:** REPT KFK-1676 P3

Keyword abstract: NUCLEAR REACTIONS 50 , 52 , 53 Cr, 54 , 57 Fe, 62 , 64 Ni(n, γ); measured σ (E).

Keynumber: 1971WHZV

Coden: REPT ORNL-TM-3442,J E White,10/11/71

Keyword abstract: NUCLEAR REACTIONS Fe, 54 , 56 Fe(n, γ),E <10 MeV; calculated σ (E;E γ). 55 ,

⁵⁷Fe calculated levels, J, π , γ -branching.

Kevnumber: 1971KOZI

Coden: JOUR NTNAA 37 396, J Kopecky

Keyword abstract: NUCLEAR REACTIONS ⁵⁰, ⁵²Cr, ⁵⁴, ⁵⁷Fe, ⁶⁰, ⁶²Ni(n,γ),E=thermal; measured γ-

CP,Q,E γ ,I γ . ⁵¹, ⁵³Cr, ⁵⁵, ⁵⁸Fe, ⁶¹, ⁶³Ni deduced levels,J, π .

Keynumber: 1971BIZV

NSR Search Results Page 6 of 7

Coden: REPT ORNL-TM-3379, J R Bird,9/14/71

Keyword abstract: NUCLEAR REACTIONS F,Na,Mg,Al,S, ³⁵Cl,K,Ca, ⁴⁰, ⁴², ⁴⁴Ca,Ti,V,Fe, ⁵⁴, 56 Fe,Ni, 58 , 60 Ni, 63 Cu,Zn(n,γ),E=10-100 keV; measured Eγ,Iγ. 9 inx 12 in NaI detector.

Keynumber: 1970SP02

Reference: Nucl. Phys. A145, 449 (1970)

Authors: A.M.J.Spits, A.M.F. Op den Kamp, H.Gruppelaar

Title: Gamma Rays from Thermal-Neutron Capture in Natural and ²⁸Si Enriched Silicon

Keyword abstract: NUCLEAR REACTIONS ²⁸, ²⁹, ³⁰Si, ⁶Li, ¹⁴N, ¹⁹F, ²⁷Al, ⁵⁴, ⁵⁶Fe, ²⁰⁷Pb(n,γ), E=thermal; ²⁸Si(n,n'γ), E=fast; measured Eγ, Iγ; deduced Q. ²⁹, ³⁰, ³¹Si deduced levels, γ-branching.

Natural, ²⁸Si enriched targets, Ge(Li) detector.

Kevnumber: 1970BRZJ

Coden: REPT FEI-205,D Broder,5/29/72

Keyword abstract: NUCLEAR REACTIONS ⁵⁰, ⁵², ⁵³Cr, ⁵⁴, ⁵⁶Fe(n,γ); measured Eγ,Iγ. ⁵¹, ⁵³, ⁵⁴Cr

deduced levels, y-branching.

Kevnumber: 1969HO12

Reference: Phys.Rev. 178, 1746 (1969)

Authors: R.W.Hockenbury, Z.M.Bartolome, J.R.Tatarczuk, W.R.Moyer, R.C.Block

Title: Neutron Radiative Capture in Na, Al, Fe, and Ni from 1 to 200 keV

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁷Al, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁸, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni(n.y). E=0.1-200 keV; measured $\sigma(E)$. ²⁴Na, ²⁸Al, ⁵⁵, ⁵⁷, ⁵⁸, ⁵⁹Fe, ⁵⁹, ⁶¹, ⁶², ⁶³, ⁶⁵Ni deduced resonance parameters.

Keynumber: 1968BI06

Reference: Nucl. Phys. A120, 113 (1968)

Authors: J.R.Bird

Title: keV Neutron Capture in Iron

Keyword abstract: NUCLEAR REACTIONS ⁵⁴Fe, ⁵⁶Fe(n, γ) E=15-80 keV, measured σ (E; E γ). ⁵⁵Fe,

⁵⁷Fe deduced levels, resonances. Natural, enriched targets.

Kevnumber: 1967RA24

Reference: Proc.Intern.Conf.Atomic Masses, 3rd, Winnipeg, Canada, R.C.Barber, Ed., Univ.Manitoba

Press, p.278(1967)

Authors: N.C.Rasmussen, V.J.Orphan, Y.Hukai

Title: Determination of (n, γ) Reaction Q Values from Capture γ -Ray Spectra

Keyword abstract: NUCLEAR REACTIONS ⁶Li, ⁷Li, ⁹Be, ¹⁰B, ¹²C, ¹⁴N, ¹⁹F, ²³Na, ²⁴Mg, ²⁵Mg, ²⁶Mg, ²⁷Al, ²⁸Si, ³¹P, ³²S, ³⁵Cl, ⁴⁰Ca, ⁴⁵Sc, ⁴⁸Ti, ⁵¹V, ⁵⁵Mn, ⁵⁴Fe, ⁵⁶Fe, ⁵⁹Co, ⁵⁸Ni, ⁶⁰Ni, ⁶³Cu, ⁶⁵Cu, ⁶⁶Zn, ⁶⁷Zn, ⁷³Ge, ⁷⁶Se, ⁸⁵Rb, ⁸⁷Rb, ⁸⁹Y, ⁹³Nb, ¹⁰³Rh, ¹¹³Cd, ¹²³Te, ¹³³Cs, ¹³⁹La, ¹⁴¹Pr, ¹⁴⁹Sm, ¹⁵³Eu, 157 Gd, 169 Tb, 165 Ho, 167 Er, 169 Tm, 181 Ta, 182 W, 195 Pt, 197 Au, 199 Hg, 203 Tl, 207 Pb(n, γ), E = thermal; measured Eγ; deduced Q. Natural targets.

Kevnumber: 1965FI04

Reference: Nucl. Phys. 73, 312 (1965)

Authors: E.I.Firsov, N.G.Loskutova, E.A.Rudak

Title: Spectrum of γ -Rays from the 54 Fe(n, γ) 55 Fe Reaction

NSR Search Results Page 7 of 7

Keyword abstract: NUCLEAR REACTIONS ⁵⁴Fe, ⁵⁶Fe(n, γ), E = thermal; measured $\sigma(E\gamma)$. ⁵⁵Fe deduced levels. Enriched ⁵⁴Fe target.

Keynumber: 1964GR36

Reference: Nucl.Phys. 58, 465(1964)

Authors: L.V.Groshev, A.M.Demidov, G.A.Kotelnikov, V.N.Lutsenko

Title: Spectrum of γ -Rays from the Fe⁵⁶(n, γ)Fe⁵⁷ Reaction

Keyword abstract: NUCLEAR REACTIONS ⁵⁴, ⁵⁶, ⁵⁷Fe(n,γ),E=thermal; measured Eγ, Iγ, Q. ⁵⁷Fe

deduced levels, J, π . Natural target.
