Partial Operator Induction with Beta Distribution

Nil Geisweiller

AGI-18

SingularityNET OpenCog Foundations

Problem:

Combining Models from Different Contexts

Theory:

Solomonoff Operator Induction and Beta Distribution

Practice:

Problem:

Combining Models from Different Contexts

Theory:

Solomonoff Operator Induction and Beta Distribution

Practice

Problem:

Combining Models from Different Contexts

Theory:

Solomonoff Operator Induction and Beta Distribution

Practice

Problem

How to combine models obtained from different contexts?

Solution

Bayesian Model Averaging (esp. Solomonoff Operator Induction)

+ partial models (obtained from different data sets)

TODO: draw a line with overlapping lines of data

Preserve Uncertainty

Preserve Uncertainty

Exploration vs Exploitation (Thompson Sampling)

Problem:

Combining Models from Different Contexts

Theory:

Solomonoff Operator Induction and Beta Distribution

Practice

Problem:

Combining Models from Different Contexts

Theory:

Solomonoff Operator Induction and Beta Distribution

Practice

Solomonoff Operator Induction

Probability Estimate:

$$\hat{P}(A_{n+1}|Q_{n+1}) = \sum_{j} a_0^j \prod_{i=1}^{n+1} O^j(A_i|Q_i)$$

where:

- $Q_i = i^{th}$ question
- $A_i = i^{th}$ answer
- $O^j = j^{th}$ operator
- a_0^j = prior of j^{th} operator

Second Order Solomonoff Operator Induction

Probability Estimate:

$$\hat{P}(A_{n+1}|Q_{n+1}) = \sum_{j} a_0^{j} \prod_{i=1}^{n+1} O^{j}(A_i|Q_i)$$

 \Downarrow

Probability Distribution Estimate:

$$\hat{cdf}(A_{n+1}|Q_{n+1})(x) = \sum_{O^j(A_{n+1}|Q_{n+1}) \le x} a_0^j \prod_{i=1}^n O^j(A_i|Q_i)$$

TODO: add estimate and cdf graphs

Beta Distribution

Probability Density Function:

$$pdf_{\alpha,\beta}(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}$$

Beta Function:

$$B_X(\alpha, \beta) = \int_0^X p^{\alpha - 1} (1 - p)^{\beta - 1} dp$$

$$B(\alpha, \beta) = B_1(\alpha, \beta)$$

TODO: add graphs about beta distributions

Meta-model of reality: capture uncertainty

Beta Distribution Operator

OpenCog implication link

```
ImplicationLink <TV>
R
S
```

 \equiv

Class of parameterized operators

$$O_p^j(A_i|Q_i) = \text{if } R^j(Q_i) ext{ then } egin{cases} p, & ext{if } A_i = A_{n+1} \\ 1-p, & ext{otherwise} \end{cases}$$

Program Completion

$$O_{p,C}^{j}(A_i|Q_i) = ext{if } R^{j}(Q_i) ext{ then } egin{dcases} p, & ext{if } A_i = A_{n+1} \ 1-p, & ext{otherwise} \end{cases}$$

A completion C of O_p^j is a program that completes O_p^j for the unaccounted data, when $R^j(Q_i)$ is false, such that the operator once completed is as follows

Combing Solomonoff Operator Induction and Beta Distributions

$$\hat{cdf}(A_{n+1}|Q_{n+1})(x) \propto \sum_{j} a_0^j r^j B_x(m^j + \alpha, h^j + \beta) B(m^j + \alpha, h^j + \beta)$$

where

- m^j = true positives explained by j^{th} model
- h^{j} = false positives explained by j^{th} model
- r^j = likelihood of the unexplained data

Combing Solomonoff Operator Induction and Beta Distributions

$$\hat{cdf}(A_{n+1}|Q_{n+1})(x) \propto \sum_{j} a_0^j r^j B_x(m^j + \alpha, h^j + \beta) B(m^j + \alpha, h^j + \beta)$$

where

- m^j = true positives explained by j^{th} model
- h^{j} = false positives explained by j^{th} model
- r^j = likelihood of the unexplained data

$$r^{j} = ???$$

Combing Solomonoff Operator Induction and Beta Distributions

$$\hat{cdf}(A_{n+1}|Q_{n+1})(x) \propto \sum_{j} a_0^j r^j B_x(m^j + \alpha, h^j + \beta) B(m^j + \alpha, h^j + \beta)$$

where

- m^j = true positives explained by j^{th} model
- h^j = false positives explained by j^{th} model
- r^j = likelihood of the unexplained data

$$r^j = ???? \approx 2^{-v_j^{(1-c)}}$$

- v_i = size of unexplained data
- *c* = compressability parameter
 - $c = 1 \rightarrow$ explains remaining data (down to one bit)
 - $c = 0 \rightarrow \text{can't explain remaining data}$

Problem:

Combining Models from Different Contexts

Theory:

Solomonoff Operator Induction and Beta Distribution

Practice:

Problem:

Combining Models from Different Contexts

Theory:

Solomonoff Operator Induction and Beta Distribution

Practice:

Learn how to reason efficiently

Methodology:

1. Solve sequence of problems (via reasoning)

Learn how to reason efficiently

Methodology:

- 1. Solve sequence of problems (via reasoning)
- 2. Store inference traces

Learn how to reason efficiently

Methodology:

- 1. Solve sequence of problems (via reasoning)
- 2. Store inference traces
- 3. Mine traces to discover patterns

Learn how to reason efficiently

Methodology:

- 1. Solve sequence of problems (via reasoning)
- 2. Store inference traces
- 3. Mine traces to discover patterns
- 4. Build control rules

Learn how to reason efficiently

Methodology:

- 1. Solve sequence of problems (via reasoning)
- 2. Store inference traces
- 3. Mine traces to discover patterns
- 4. Build control rules

```
Implication <TV>
 And
    <inference-pattern>
    <rule>
 <good-inference>
```

5. Combine control rules to guide future reasoning

Combine Control Rules

