KATHMANDU UNIVERSITY

End Semester Examination August/September, 2016

Marks Scored:	

F. M. : 10

Level: B. Sc. Course : COMP 409 Year : III Semester: II

Time: 30 mins.

Registration No.:			Date :				
SECTION "A"							
		$[20 \text{ Q.} \times 0.5 = 1]$	0 marks]				
Enciro	cle the alphabetical letter of th	e most appropria	nte answer.				
1.	Which of the following cannot be applied in Computational Technology?:						
	a. Binary translation		b. Hardware synthesis				
	c. DB query interpreters		d. Computational analysis				
2.	When a computer is first turned on or restarted, a special type of absolute loader is executed which is called:						
	a. Boot loader		b. "Compile and Go" loader				
	c. Boot strap loader		d. Relating loader				
3.	In some programming language, an identifier is permitted to be a letter followed by an number of letters or digits. If L and D denote sets of letters and digits respectively, the which of the following defines identifier?						
	a. (LUD)* b.L(L U D)*	c. (L . D)*	d. L.(L.D)*			
4.	Given the following two statements: i. A DFA can simulate the behavior of NFA by increasing the number of states ii. Any NFA is a more general machine without being more powerful Which of the following is true?						
	a. Only i b. On		c. Both i and ii	d. Both are incorrect			
5.	Besides reading source text, the user interface. They are: a. Stripping out from the so blank, tab and new line of	ource program co	_	-			

- b. Correlating error messages from the compiler with the source program
- c. If the source language supports some macro pre-processor functions, then these preprocessor functions may also be implemented as lexical analysis takes place
- d. All of the above

Exam Roll No. :

Token is a sequence of characters that can be treated as a _____ 6. b. Multiple logical entity a. Single logical entity c. Single physical entity d. Multiple physical entity

7.	A shift reduce parser carries out the action specified within braces immediately after reducing with the corresponding rule of the grammar S → xxS {Print "Test"} S → y {Print "Print"} S → Sz {Print "Hello"} What is the translation of xxxxyzz using the syntax directed scheme described by the						
	above rule?						
	a. Print Test Test Hellc. Print Hello Test He		b. Print Hello Hello Ted. Print Test Hello Te				
8.	LR parser is effective because . It doesn't back track i. It can be constructed to recognize CFG corresponding to almost all programming constructs Which of the following is true? a. Only i b. Only ii c. Both i and ii d. Both are incorrect						
	•	·					
9.	Look aheads are used in a. SLR parsing b		c. LALR parsing	d. Both (b) and (c)			
10.	The stack of SLR parse a. Non-terminals of th c. States of LR(0) auto	terminals of the grammar b. Terminals of the grammar					
11.	An L-attributed definition can be implemented during:						
11.	a. Top-down parsing	ion can be implemen	o. Bottom up parsing				
	c. Recursive descent parsing		d. Breadth first traversal				
	_	-					
Quest	ion (12-15) are based up G: S → FR R → *S ε F → id	pon the following g	rammar G:				
12.	Which one of the following strings is generated by the grammar above?						
12.		o. *id	c. **id	d. id*id*id			
13.		or the correct answer in question 12, how many steps are required to derive the string om S and how many parse tree are there?					
	a. 6 and 1	o. 9 and 1	c. 7 and 2	d. 9 and 2			
14.	The number of states in SLR automation for G is:						
17,		5. 6	c. 7	d. 8			
15.	In the predictive parsing table M, the grammar entries M[S,id] and M[R,\$] respectively are						
	a. $\{S \rightarrow FR\}$ and $\{R \rightarrow \epsilon\}$ b. $\{S \rightarrow FR\}$ and error						
	c. $\{S \rightarrow FR\}$ and $\{R \rightarrow *S\}$ d. $\{F \rightarrow id\}$ and $\{R \rightarrow \epsilon\}$						
) ·· · (== ·	,	a. (1 / 1a) and (1x / b)				

- 16. A given grammar is called ambiguous if:
 - a. two or more productions have the same non-terminal on the left hand side
 - b. a derivation tree has more than one associated sentence
 - c. there is a sentence with more than one derivation tree corresponding to it
 - d. brackets are not present in the grammar
- 17. SLR parser can observe shift reduce conflict because of:
 - a. Trying to reduce in all the symbol of FOLLOW(A)
 - b. Trying to reduce in all the symbol of FIRST(A)
 - c. Trying to shift in all the symbol of FIRST(A)
 - d. Trying to shift in all the symbol of FOLLOW(A)
- 18. Phrase level recovery does not perform which of the following?
 - a. Deletion of a source symbol i.e., delete an extra semicolon
 - b. Insertion of a synthetic symbol i.e., to insert a missing semicolon
 - c. Replacement of a source symbol by synthetic symbol
 - d. Changing of the type
- 19. Given a grammar G:

$$S \rightarrow Bc \mid DB$$

$$B \rightarrow ab \mid cS$$

$$D \rightarrow d \mid \varepsilon$$

The FOLLOW(S), FOLLOW(B) and FOLLOW(D) are:

a.
$$\{a,c\},\{c,\$\},\{b,\$\}$$

b.
$$\{c,\$\}, \{c,\$\}, \{a,c\}$$

c.
$$\{b,\$\}, \{c,\$\}, \{a,b\}$$

d.
$$\{a,\$\}, \{b,\$\}, \{c,\$\}$$

- 20. Which of the following is incorrect for data optimization?
 - a. Variable propagation

- b. Dead code elimination
- c. Induction variable elimination
- d. Common sub-expression elimination

KATHMANDU UNIVERSITY

End Semester Examination August/September, 2016

Level: B. Sc. Course: COMP 409
Year: III Semester: II

Time : 2 hrs. 30 mins. F. M. : 40

$\frac{\text{SECTION "B"}}{\text{[6Q } \times 4 = 24 \text{ marks]}}$

Answer *ANY SIX* questions. Candidates are encouraged to elaborate the answer in a conceptual way. Each answer should reflect the best possible understanding to the given question.

- 1. Define bootstrapping. Explain with suitable example how bootstrapping is done on more than one machine. [1+3]
- 2. Describe the task performed by following programs

 $[4 \times 1 = 4]$

[4]

- i. Preprocessors
- ii. Assemblers
- iii. Loaders and link-editors
- iv. Error Handler
- 3. Construct a DFA from the given augmented regular expression r# = (a+b)* a b b (a+b)* a b #
- 4. Explain: (i) Input Buffering (ii) Symbol table implementation [2+2]
- 5. Differentiate between S-attributed definition and L-attributed definition. Write semantic rules for simple type declaration. [2+2]
- 6. Discuss the role of the following data structures that are used for the implementation of three address code with suitable example.

[4]

- i. Quadruples
- ii. Triplets
- iii. Indirect Triplets
- 7. Explain the need of optimization. Describe following optimization technique with example [1+1+1+1]
 - i. Copy Propagation
 - i. Loop Invariant code motion
 - ii. Loop unrolling

$\frac{\text{SECTION "C"}}{[2Q \times 8 = 16 \text{ marks}]}$

Answer ANY TWO questions.

8. Given a LL(1) grammar G for Boolean expression :

[8]

 \mathbf{G}

B
$$\rightarrow$$
 B or T | T
T \rightarrow T and F | F
F \rightarrow not B | (B) | true | false

Answer the followings:

- i. Transform G into an equivalent LL(1) grammar G'
- ii. Compute FIRST and FOLLOW for each non terminals
- iii. Construct a predictive parsing table for G'
- iv. Show how your predictive parser processes the input string

true and not false or true

- v. Draw the parse tree traced out by your parser
- 9. Show that the following grammar is LR(1) but not LALR(1)

[5+3]

 $S \rightarrow Aa$

 $S \rightarrow bAc$

 $S \rightarrow Bc$

S→bBa

 $A \rightarrow d$

 $B \rightarrow d$

10.

a. Consider the following Syntax Directed Translation Scheme (SDTS): [4]

$$E \rightarrow E_1 * T \qquad (E.val = E_1.val * T.val)$$

$$E \rightarrow T \qquad (E.val = T.val)$$

$$T \rightarrow T_1 - F \qquad (T.val = T_1.val - F.val)$$

$$T \rightarrow F \qquad (T.val = F.val)$$

$$F \rightarrow 2 \qquad (F.val = 2)$$

$$F \rightarrow 4 \qquad (F.val = 4)$$

Using the above SDTS construct a parse tree for the expression 4-2-4*2. Also compute its E.val and show the dependency graph.

b. Consider the following code fragment:

[4]

while(A<C and B>D)

do if
$$A = 1$$
 then $c = c+1$ else while $A \le D$ do $A = A + B$

Write a three address code by representing them in the quadruple data structure.