A short course on reinforcement learning

Hugo Touchette

Department of Mathematical Sciences Stellenbosch University, South Africa

Introduction

- Learn from interactions (exploration, trial and error)
- Reinforce good actions (exploitation)
- Goal-directed learning (reward)
- Find optimal way to act (optimal policy)
- Actions can affect future (delayed reward)
- Actions depend on situations (associativity)
- Uncertainty in environment and agent (probabilistic model)

Reward hypothesis

Practical version

All goals can be described by the maximisation of reward.

- Reward communicates what we want to achieve.
- Not how we want to achieve it (no instructions).

Strong version

[Silver et al. 2021]

Maximising reward is enough to drive behaviour that exhibits most if not all abilities studied in natural and artificial intelligence.

Simplified model

- Dynamics: $P(S_{t+1}, R_{t+1}|S_t, A_t)$
- Control: $P(A_t|S_t)$
- History/trajectory:

$$S_0, A_0; R_1, S_1, A_1; R_2, S_2, A_2; \dots$$

Comparison

- Supervised learning:
 - Training set of examples
 - Instructive feedback: indicate correct 'action to take' (input, label)
 - External supervisor
 - Extrapolate, generalize
 - Not interactive
- Reinforcement learning (3rd paradigm):
 - No examples of desired behaviour
 - No representative set of examples
 - Learn from experience, not training set
 - Evaluate actions to be taken (need for exploration)
 - Online, interactive learning
- Unsupervised learning:
 - Find hidden structure (e.g. classification boundary)
 - Not necessarily based on reward

Plan

- Week 1: Markov processes
- Week 2: Markov decision processes
- Week 3: Dynamic programming and Bellman equations
- Week 4: Temporal difference algorithms: Sarsa and Q-learning
- Courseworks:
 - Applications (weeks 1-3)
 - 2D navigation with gym (week 4)
- Assistant: Umesh Kumar umesh.kumar@icts.res.in
- Github: https://github.com/HugoTouchette/ICTS-RL
- See information sheet on github

Maze

[Source: David Silver's course]

• State: Location

Action: N, S, E, W

• Reward: -1 per step

Linear model

[Source: Mars rover example, Stanford RL course]

s_1	s_2	s_3	S_4	s_5	s_6	<i>S</i> ₇
			T.			
			of the same			

• State: Location

• Actions: Move left or right

• Rewards: +1 from state s_1 (0), +10 from state s_7 (6)

Gridworld model

[Source: Sutton and Barto, Example 3.6]

.0 19.4	17.5
.8 17.8	16.0
.8 16.0	14.4
.0 14.4	13.0
.4 13.0	11.7
	.0 19.4 .8 17.8 .8 16.0 .0 14.4 .4 13.0

Gridworld

 v_*

 π_*

State: Location

Actions: N, S, E, W

• Rewards: -1 if leaving grid, +10 from A to A', +5 from B to B'

Cartpole

[Source: Sutton and Barto, Example 3.5]

- State: Stick angle θ_t
- Actions: Impulse right or left
- Dynamics: Physics 101
- Rewards:
 - 0 if $|\theta| < \eta$ (balanced)
 - ullet -1 otherwise (unbalanced)
- Optimal policy: ?