Segmentation-Informed Captioning: A Multi-Stage Pipeline for Surgical Vision-Language Dataset Generation

Mohamed Hamdy*, Fatmaelzahraa Ali Ahmed*, Mariam Ahmed*, Mohannad AbuHaweeleh*, Muraam Abdel-Ghani*, Muhammed Arsalan*, Abdulaziz Al-Ali*, Shidin Balakrishnan*

Computer Science and Engineering Department, College of Engineering, Qatar University, Doha, Qatar

b Department of Surgery, Hamad Medical Corporation, Doha, Qata

^c College of Medicine, Qatar University, Doha, Qatar

d KINDI Computing Research Center, College of Engineering, Oatar University, Doha, Oatar

Summary

Motivation:

- Surgical vision-language models (VLMs) require high-quality paired image-text data.
- Existing datasets (often based on audio transcriptions) are noisy and poorly aligned, limiting performance on fine-grained tasks like action recognition.

Core Contribution:

We propose a five-stage pipeline that generates descriptive and naturally sounding captions using existing segmentation datasets.

Pipeline Highlights:

- Extracts structured spatial and interaction cues in stages.
- Prompts large language models (LLMs) like GPT-40 to generate clean, natural captions.
- Avoids error propagation through modular stage-wise design.

Impact:

- Produces spatially and temporally grounded pseudo-captions.
- 95% of generated captions rated ≥3 (out of 5) by medical experts
- Enables better training data for generalizable surgical AI.

Results

Expert Evaluation:

- Medical experts rated captions across 5 stages from 3 LLMs: GPT-4o, Deepseek V3, LLaMA 3.3 70B.
- 95% of captions scored ≥3, and 73% scored ≥4 on a 5-point Likert scale.

Stage-wise Trends:

- Highest scores: Stage 1 (object listing) and Stage 2 (absolute positions).
- Lowest scores: Stage 4, due to ambiguity in proximity-based interaction inference.
- Improvement in Stage 5 thanks to temporal context resolving ambiguities.

Model Comparison:

- GPT-4o consistently top-ranked (avg. rank: 1.97) and never outperformed with statistical significance in any of the stages.
- Deepseek V3 close second: LLaMA 3.3 70B performed worst in most stages.

	Stage		ige 1	1 Stage 2		Stage 3		Stage 4		Stage 5		Overall	
		Rank	p-value	Rank	p-value	Rank	p-value	Rank	p-value	Rank	p-value	Rank	p-value
GPT-40		1.96		2.00	0.564	1.98	0.914	1.84		2.07	0.169	1.97	
DeepSeek V3		2.00	0.527	2.04	0.527	2.11	0.874	1.98	0.509	1.84		2.00	0.867
LLaMA $3.3~70B$		2.04^{\ddagger}	0.042	1.96		1.91		2.18^{\ddagger}	0.005	2.09^{\ddagger}	0.025	2.04	0.162
5					LLM Avg								
A 277			3,67	3,82	4,00	+4.3 +4.2	70						9.000 1 - 9.000 2 - 9.000 2 - 9.000 4
5 Å . 431			3,78	3,64	4,01	-4.1	***						Stage 5

Methodology

Stage 1: Object Extraction

- Objective: Identify which surgical instruments and anatomical structures are visible in each frame.
- Approach: Extract labels directly from segmentation masks, without any spatial assumptions.
- Outcome: Produces accurate but minimal descriptions.

Stage 2: Absolute Positioning

- Objective: Add absolute spatial context to the detected objects.
- Approach: Divide the frame into regions (e.g., top-left, center) and assign object positions using
 overlap heuristics.
- Outcome: Captions become anchored in the image space, enabling location-aware prompts.

Stage 3: Relative Spatial Relationships

- Objective: Describe how objects are positioned relative to one another.
- Approach: Use mask dilation and centroid comparisons to infer pairwise relations like "to the right of" or "on top of."
- Outcome: Introduces layout structure into the scene, enhancing scene-level understanding.

Stage 4: Interaction Proximity

- Objective: Infer how closely instruments interact with anatomical targets as a proxy for surgical actions.
- Approach: Simulate proximity using layered dilation and categorize interactions (e.g., touching, very close, far).
- Outcome: Adds functional meaning to captions, highlighting potential clinical intent.

Stage 5: Temporal Interaction Summary

- Objective: Capture action over time using multi-frame sequences.
- Approach: Aggregate spatial and interaction data across multi-frame clips to describe transitions like "approaches", "remains in contact", and actions like "grasping."
 Outcome: Produces video-level summaries with temporal coherence crucial for surgical
- Outcome: Produces video-level summaries with temporal coherence crucial for surgica training or analysis.

Prompting Large Language Models (LLMs)

- Each stage's structured data is turned into a prompt for a Large Language Model (LLM).
- Prompts are paired with a **stage-specific system message** that guides the tone, detail, and scope of the generated caption.
- Models like GPT-40, DeepSeek V3, and LLaMA 3.3 70B are asked to produce short, clinically coherent captions.

Conclusion

High-Quality Surgical Captions from Segmentation Alone

Our five-stage pipeline generates clinically sound captions by leveraging spatial and temporal
cues from segmentation data, avoiding the noise and misalignment issues common in audio-based
approaches.

Strong Expert Validation Across Stages

95% of captions received scores ≥3, confirming strong alignment with stage-specific clinical expectations.

Foundation for Training Robust Surgical VLMs

Provides a robust base for training vision—language models and enables future work in fine-tuning, benchmarking, and surgeon-led validation.

