Partie de mathis

Anonymous

Overleaf

2024

Cadre

Prenons un relevé F analytique de rotation α (et donc semi-conjugué à R_{α}). Que l'on écrit :

$$F(x) = x + \alpha + \eta(x)$$

avec η analytique et "assez petit". η est également 1-périodique.

Détermination

Par théorème de semi-conjugaison, on a :

$$F \circ H(x) = H(x + \alpha)$$
 et on cherche H de la forme $H = id + U$

$$\Rightarrow U(x+\alpha)-U(x)=\eta(x+U(x))$$
 simplifié en $U(x+\alpha)-U(x)=\eta(x)$

On choisit de chercher U 1-périodique. On a que

$$(\exp(2i\pi n\alpha)-1)\widehat{U}(n)=\widehat{\eta}(n)$$

Perte de régularité et Petit diviseur

Dans quelle mesure \widehat{U} est-elle liée à une série de Fourier convergente ?

En effet, $\exp(2i\pi n\alpha) - 1$ peut arbitrairement s'approcher de 0.

Petit diviseur avec α irrationnel:

$$\left\|\alpha - \frac{m}{n}\right\| \ge \frac{k}{n^{\nu}} \Rightarrow \left\|\exp(2i\pi n\alpha) - 1\right\| \ge \frac{4k}{n^{\nu-1}}$$

Induit la perte de régularité suivante

$$\begin{split} \|F\|H\mathsf{per}^s &= \left(\sum_{n\in\mathbb{Z}} |n|^{2s} |\hat{F}(n)|^2\right)^{1/2}, \quad s\geq 0 \\ \|U\|H\mathsf{per}^s &\leq \frac{1}{4K} \|\eta\|H\mathsf{per}^{s+\nu-1}. \end{split}$$

Enoncé et Preuve

Le théorème d'Arnold affirme donc que si F a un relevé $F(x) = x + \alpha + \eta(x)$ avec η analytique et assez petit (au sens d'une norme analytique), alors F est analytiquement conjugué à R_{α} .

Éléments de démonstration :

- ▶ U_n la solution de $U_n(x + \alpha) U_n(x) = \eta_n(x) \hat{\eta}_n(0)$.
- $H_n(x) = x + U_n(x).$
- $F_{n+1} = H_n^{-1} \circ F_n \circ H_n = (H_1 \circ \cdots \circ H_n)^{-1} \circ F \circ (H_1 \circ \cdots \circ H_n).$

Cadre

On considère ici deux suites d'espaces de Banach $E\sigma, \|\cdot\|\sigma$ et $F\sigma, \|\cdot\|\sigma$.

De telle sorte qu'il existe une fonction régularisante S telle que

$$\forall \theta \in \mathbb{R}, \quad S: E \to F$$

- 1. $||S_{\theta}u||_{b} \leq C||u||_{a}$, si $b \leq a$
- 2. $||S_{\theta}u||_{b} \leq C\theta^{b-a}||u||_{a}$, si a < b
- 3. $\|u S_{\theta}u\|_{b} \le C\theta^{b-a}\|u\|_{a}$, si a > b
- 4. $\left\| \frac{d}{d\theta} S_{\theta} u \right\|_b \leq C \theta^{b-a-1} \|u\|_a$.

Outil

On prend θ_j une suite d'indices divergents et on définit $\Delta_j = \theta_{j+1} - \theta_j$ et $R_j u = \left(S_{\theta_{j+1}} u - S_{\theta_j} u\right)/\Delta_j$ si j > 0, $R_0 u = S_{\theta_1} u/\Delta_0$.

On obtient alors:

$$u = \sum_{j=0}^{\infty} \Delta_j R_j u$$

Convergente dans E_a si $u \in E_b$ et a < b.

Enoncé

Soit $a_2 \in \mathbf{R}$ et soit $\alpha, \beta \in [0; a_2]$. De plus, considérons une application $\Phi : E_{\alpha} \to F_{\beta} C^2$ vérifiant :

$$\|\Phi''(u)(v,w)\| \beta + \delta \le C(1+\|u\|\alpha)\|w\|\alpha - \frac{\epsilon}{2} \cdot \|v\|\alpha - \frac{\epsilon}{2}$$

On a de plus l'existence d'une inverse à droite pour Φ' , c'est-à-dire : $\forall v \in E_{\infty}$, on a $\Psi(v): f_{\infty} \to E_{\infty}$ avec

$$\|\Psi(v)g\| a \le C \|g\| \beta + a - \alpha + \|g\| 0 \|v\| \alpha + \beta$$

Alors, $\exists \eta > 0$ telle que $\forall f \in F_{\beta}$ vérifiant $||f|| \beta \leq \eta$, alors $\exists u \in E\alpha$ vérifiant $\Phi(u) - \Phi(0) = f$.

Shéma de la preuve:

On construit les suites suivantes en prenant $g \in F_{\beta}$

$$g = \sum \Delta_j g_j; \quad \|g_j\| \ b \leq C_b \theta_j^{b-\beta-1} \|g\| \beta'.$$

$$u_{j+1} = u_j + \Delta_j \dot{u}j, \quad \dot{u}_j = \psi(v_j) g_j, \quad v_j = S\theta_j u_j$$

et on montre que $\Phi(u) - \Phi(0) = T(g) + g$ avec T application continue .