## ЧИСЛЕННОЕ РЕШЕНИЕ СТАЦИОНАРНЫХ И НЕСТАЦИОНАРНЫХ ЗАДАЧ ТЕПЛОПРОВОДНОСТИ

Теоретический материал к данной теме содержится в [1, глава 15].

**Отчет** по лабораторной работе должен содержать следующие материалы по каждой задаче: 1) постановка задачи; 2) необходимый теоретический материал; 3) **тестовый** пример и результаты вычислительного эксперимента по тесту (если необходимо); 4) полученные результаты и их анализ; 5) графический материал (если необходимо); 6) тексты программ.

Варианты заданий к задачам 10.1-10.6 даны в ПРИЛОЖЕНИИ 10.А.

Фрагмент решения задачи 10.1 дан в ПРИЛОЖЕНИИ 10.В.

Задача 10.1. Промоделировать стационарные процессы теплопроводности стержня в зависимости от входных данных задачи:

$$\begin{cases} -\frac{d}{dx} \left( K(x) \frac{du}{dx} \right) = f, \\ u(a) = UA, \quad u(b) = UB. \end{cases}$$

### ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Представить коэффициент теплопроводности K(x) в виде функции двух переменных x и c: K(x)=K(x,c), где c параметр.
- 2. При заданных в индивидуальном варианте функциях k(x) (что соответ-ствует K(x,1)), f(x) и значениях UA, UB найти аналитическое решение задачи символьно (см.  $\Pi P U J O \mathcal{K} E H U \mathcal{B} I 0.B$  и I 0.C).
- 3. Изменяя значения параметра c в коэффициенте теплопроводности, найти решения задачи для наборов параметров 1-3 (см. таблицу ниже).
- 4. На одном чертеже построить графики найденных решений. Сравнить полученные результаты.
- 5. Аналогично п.2, найти аналитическое решение для набора параметров 4. На одном чертеже построить графики решений для наборов 1 и 4. Сравнить полученные результаты.
- 6. Изменяя граничные условия UA, UB, построить решения для наборов параметров 5-7.

Таблица наборов параметров

| Параметры | 1 набор | 2 набор | 3 набор | 4 набор | 5 набор | 6 набор | 7 набор |
|-----------|---------|---------|---------|---------|---------|---------|---------|
| С         | 1       | 10      | 0.1     | 1       | 1       | 1       | 1       |
| K(x)      | k(x)    | ck(x)   | ck(x)   | 1/k(x)  | k(x)    | k(x)    | k(x)    |
| UA        | иа      | иа      | иа      | иа      | -ua     | иа      | -ua     |
| UB        | иb      | иb      | ub      | иb      | иb      | -ub     | -ub     |

**Задача 10.2.** Найти приближенное решение краевой задачи методом конечных разностей:

$$\begin{cases} u'' + p(x)u' + q(x)u = f(x), & x \in (a,b), \\ u(a) = UA, & u(b) = UB. \end{cases}$$

с заданной точностью  $\varepsilon$  и построить его график.

# ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

1. Составить разностную схему второго порядка точности и выписать коэффициенты матрицы системы уравнений и коэффициенты правой части.

- 2. Подготовить тестовый пример и провести расчет для него. Построить на одном чертеже графики приближенного и точного решений для тестового примера. После проверки правильности работы программы перейти к решению основной задачи.
- 3. Для вычисления решения задачи с заданной точностью произвести расчет с начальным шагом h, затем уменьшить шаг вдвое. Вывести на экран два соседних приближенных решения и сравнить результаты. Если заданная точность не достигнута, то продолжить уменьшение шага.
- 4. Построить график найденного решения и указать шаг, при котором заданная точность достигается.

Задача 10.3. Методом конечных разностей найти приближенное решение указанной в индивидуальном варианте краевой задачи с точностью  $\varepsilon$  и построить его график. Решение системы разностных уравнений найти, используя метод прогонки.

#### УКАЗАНИЯ.

Использовать разностную схему второго Для порядка точности. аппроксимации производных в граничных VСЛОВИЯХ воспользоваться разностными отношениями:

$$y_0' = \frac{-y_2 + 4y_1 - 3y_0}{2h}$$
 и  $y_n' = \frac{3y_n - 4y_{n-1} + y_{n-2}}{2h}$ .

- 2. Организовать компактное хранение ненулевых элементов трехдиагональной матрицы системы разностных уравнений.
- 3. Подготовить самостоятельно тестовый пример и провести расчет для него. Построить на одном чертеже графики приближенного и точного решений для тестового примера. После проверки правильности работы программы перейти к решению основной задачи.
- Задача 10.4. Промоделировать стационарные процессы теплопроводности стержня в зависимости от входных данных задачи – переменного коэффициента теплопроводности k(x) и плотности источников тепла f(x):

$$\begin{cases} -\frac{d}{dx} \left( k(x) \frac{du}{dx} \right) = f, \\ u(a) = UA, \quad u(b) = UB. \end{cases}$$

## ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Составить разностную схему второго порядка точности для решения указанной задачи.
- 2. Взять исходные данные из 1-го набора параметров для задачи 10.1. Шаг сетки положить равным h = (b - a)/150.
- 3. Промоделировать процесс теплопроводности в зависимости от коэффициента k(x):

3.1. Пусть стержень состоит из 2-х материалов с различными свойствами: 
$$k(x) = \begin{cases} k1, a \le x \le 0.5 \cdot (b+a) \\ k2, 0.5(b+a) < x \le b \end{cases}, \quad \text{a) } k1 << k2, \qquad \text{б) } k1 >> k2.$$

3.2. Пусть стержень состоит из 3-х материалов с различными свойствами:

$$k(x) = \begin{cases} k1, \ a \le x \le a + (b-a)/3 \\ k2, \ a + (b-a)/3 \le x \le a + 2(b-a)/3 \\ k2, \ a + 2(b-a)/3 < x \le b \end{cases}$$

a) k1 < k2 < k1, b) k1 > k2 > k3, c) k1 > k2 > k3, c) k1 = 100k, k2 = k, k3 = 100k.

4. Промоделировать процесс теплопроводности в зависимости от правой части — функции f(x), предполагая, что f(x) - точечный источник тепла. Задать точечный источник тепла онжом следующим образом:  $f(x) = c \cdot \delta(x - x0)$ , где c- некоторая константа (мощность источника),  $\delta(x)$ дельта-функция, x0 - точка из отрезка [a,b], в которую ставится источник.

Рассмотреть следующие варианты расположения источника:

- а) точечный источник поставлен в середину отрезка [a,b];
- б) два одинаковых по мощности источника поставлены в разные точки отрезка, симметричные относительно середины отрезка;
- в) два различных по мощности источника поставлены симметрично;
- г) предложить свой вариант расположения источников.

Задача 10.5. Методом конечных разностей найти приближенное решение краевой задачи

$$\begin{cases} -(k(x)u')' + q(x)u = f(x), & x \in (a,b), \\ -k(a)u'(a) + 0.5u(a) = 0, \\ k(b)u'(b) + 0.5u(b) = 0. \end{cases}$$

с тремя верными значащими цифрами. Решение системы разностных уравнений найти, используя метод прогонки.

УКАЗАНИЯ.

- 1. Использовать разностную схему второго порядка точности.
- 2. При аппроксимации производных в граничных условиях использовать метод баланса.

Задача 10.6. Промоделировать нестационарные процессы теплопроводности в зависимости от входных данных задачи - коэффициента теплопроводности k(x) и начальной температуры  $\phi(x)$ :

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left( k(x) \frac{\partial u}{\partial x} \right) + f(x)(1 - e^{-t}), & 0 < x < l, & 0 < t < T, \\ u(0,t) = UA, & u(l,t) = UB, & 0 \le t \le T, \\ u(x,0) = \phi(x), & 0 \le x \le l. \end{cases}$$

### ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

1. Найти приближенное решение задачи с шагами  $\tau = 0.05$  и h=0.1, используя явную разностную схему. Построить графики решений при значениях  $t = 0.5 \tau$ ,  $10 \tau$ ,  $20 \tau$ .

- 2. Используя результаты задачи 10.1, экспериментально определить момент времени t, при котором происходит установление процесса (визуально).
- 3. Произвести анимацию процесса установления.
- 4. Исследовать, как влияет начальная температура на процесс установления, взяв другие функции  $\phi(x)$  (согласованные с граничными условиями). УКАЗАНИЕ.

Для создания анимационного клипа нужно:

- выбрать пункт меню Animate,
- заключить в выделяющий пунктирный прямоугольник поле графика, который нужно анимировать,
- в диалоговом окне установить значение переменной **FRAME**, например, 10,
- нажать кнопку Create (или Animate),
- воспроизвести анимацию.

### ПРИЛОЖЕНИЕ 10.А

Схема вариантов к лабораторной работе 10

| N  | Выполняемые задачи       | N  | Выполняемые задачи         | N      | Выполняемые задачи         |
|----|--------------------------|----|----------------------------|--------|----------------------------|
| 1  | 10.1.1, 10.2.1, 10.4.1,  | 11 | 10.1.11, 10.2.6, 10.4.11,  | 21     | 10.1.21, 10.2.11, 10.4.21, |
|    | 10.5.1, 10.6.1           |    | 10.5.11, 10.6.11           |        | 10.5.21, 10.6.21           |
|    |                          |    | Окончание схемы вариа      | НТОВ 1 | к лабораторной работе 10   |
| 2  | 10.1.2, 10.3.1,10.4.2,   | 12 | 10.1.12, 10.3.6, 10.4.12,  | 22     | 10.1.22, 10.3.12,10.4.22,  |
|    | 10.5.2, 10.6.2           |    | 10.5.12, 10.6.12           |        | 10.5.22, 10.6.22           |
| 3  | 10.1.3, 10.2.2, 10.4.3,  | 13 | 10.1.13, 10.2.7,10.4.13,   | 23     | 10.1.23, 10.2.12, 10.4.23, |
|    | 10.5.3, 10.6.3           |    | 10.5.13, 10.6.13           |        | 10.5.23, 10.6.23           |
| 4  | 10.1.4, 10.3.2, 10.4.4,  | 14 | 10.1.14, 10.3.7, 10.4.14,  | 24     | 10.1.24, 10.3.12, 10.4.24, |
|    | 10.5.4, 10.6.4           |    | 10.5.14, 10.6.14           |        | 10.5.24, 10.6.24           |
| 5  | 10.1.5, 10.2.3, 10.4.5,  | 15 | 10.1.15, 10.2.8, 10.4.15,  | 25     | 10.1.25, 10.2.13, 10.4.25, |
|    | 10.5.5, 10.6.5           |    | 10.5.15, 10.6.15           |        | 10.5.25, 10.6.25           |
| 6  | 10.1.6, 10.3.3, 10.4.6,  | 16 | 10.116, 10.3.8, 10.4.16,   | 26     | 10.1.26, 10.3.13, 10.4.26, |
|    | 10.5.6, 10.6.6           |    | 10.5.16, 10.6.16           |        | 10.5.26, 10.6.26           |
| 7  | 10.1.7, 10.2.4, 10.4.7,  | 17 | 10.1.17, 10.2.9, 10.4.17,  | 27     | 10.1.27, 10.2.14, 10.4.27, |
|    | 10.5.7, 10.6.7           |    | 10.5.17, 10.6.17           |        | 10.5.27, 10.6.27           |
| 8  | 10.1.8, 10.3.4, 10.4.8,  | 18 | 10.1.18, 10.3.9,10.4.18,   | 28     | 10.1.28, 10.3.14, 10.4.28, |
|    | 10.5.8, 10.6.8           |    | 10.5.18, 10.6.18           |        | 10.5.28, 10.6.28           |
| 9  | 10.1.9, 10.2.5, 10.4.9,  | 19 | 10.1.19, 10.2.10, 10.4.19, | 29     | 10.12.9, 10.2.15, 10.4.29, |
|    | 10.5.9, 10.6.9           |    | 10.5.19, 10.6.19           |        | 10.5.29, 10.6.29           |
| 10 | 10.1.10, 10.3.5,10.4.10, | 20 | 10.1.20, 10.3.10, 10.4.20, | 30     | 10.1.30, 10.3.15,10.4.30,  |
|    | 10.5.10, 10.6.10         |    | 10.5.20, 10.6.20           |        | 10.5.30, 10.6.30           |

#### Таблица к задаче 10.1

|                     |          |              |     |    | <u> </u> |    |
|---------------------|----------|--------------|-----|----|----------|----|
| $N_{\underline{0}}$ | k(x)     | f(x)         | а   | UA | b        | UB |
| 10.1.1              | $x^3$    | $10x^{1/4}$  | 1   | 3  | 2        | 0  |
| 10.1.2              | X        | $\sqrt{x}+4$ | 0.5 | 0  | 1.5      | 5  |
| 10.1.3              | $x^{-2}$ | $-2x^2 - 2x$ | 0.5 | 2  | 1.5      | 6  |
| 10.1.4              | $x^3$    | $1+x^{1/3}$  | 0.2 | 4  | 1.2      | 1  |
| 10.1.5              | x        | $x^{3}+2$    | 0.1 | 2  | 1.1      | 4  |
| 10.1.6              | $e^x$    | $e^{2x}$     | 0.5 | 1  | 1.5      | 5  |

| 10.1.7  | х         | $3x + x^2$          | 1   | 3  | 2   | 3   |
|---------|-----------|---------------------|-----|----|-----|-----|
| 10.1.8  | x         | $x+x^{\frac{1}{3}}$ | 0.1 | 6  | 0.8 | 0.6 |
| 10.1.9  | $\cos(x)$ | 10sin( <i>x</i> )   | 0.1 | 3  | 0.8 | 1   |
| 10.1.10 | х         | ln(x)               | 0.1 | 1  | 0.6 | 5   |
| 10.1.11 | $\cos(x)$ | $10\cos(x)$         | 1   | 2  | 1.5 | 1   |
| 10.1.12 | х         | $x^{-1}$            | 1   | 3  | 2   | 3   |
| 10.1.13 | $x^{-2}$  | $6x^2 - 3x$         | 1   | -2 | 2.2 | 2   |
| 10.1.14 | $e^x$     | $x + e^x$           | 1   | 2  | 2.5 | -2  |

Окончание таблицы к задаче 10.1

| Окончание таблицы к задаче 10.1 |               |                  |     |    |     |    |  |  |  |  |
|---------------------------------|---------------|------------------|-----|----|-----|----|--|--|--|--|
| 10.1.15                         | $x^{-1/3}$    | $x + \sqrt{x}$   | 1.5 | 3  | 2.5 | -3 |  |  |  |  |
| 10.1.16                         | $x^3$         | $10x^{-1/4}$     | 0.1 | 3  | 1.1 | 0  |  |  |  |  |
| 10.1.17                         | $x^{-1}$      | $4-\sqrt{x}$     | 1.5 | -2 | 2.5 | -4 |  |  |  |  |
| 10.1.18                         | $x^2$         | $2x^2 + 2x$      | 0.5 | 2  | 1.6 | 6  |  |  |  |  |
| 10.1.19                         | $x^{-3}$      | $4x^3 + 6$       | 0.2 | 4  | 1.2 | 1  |  |  |  |  |
| 10.1.20                         | $x^{-2}$      | $5x^4 - 5$       | 1.5 | -1 | 2.5 | 4  |  |  |  |  |
| 10.1.21                         | $e^x$         | $2-e^{2x}$       | 0.3 | -1 | 2.3 | 1  |  |  |  |  |
| 10.1.22                         | $x^{-1}$      | x                | 1   | 3  | 2   | 3  |  |  |  |  |
| 10.1.23                         | $1/\cos(x)$   | $5\sin(x)$       | 0.5 | 1  | 1.5 | 1  |  |  |  |  |
| 10.1.24                         | $1/\cos^2(x)$ | $6\cos^3(x)$     | 0.5 | 2  | 1.3 | 2  |  |  |  |  |
| 10.1.25                         | $1/\sin^2(x)$ | $15\sin^3(x)$    | 0.2 | -1 | 1.2 | -1 |  |  |  |  |
| 10.1.26                         | $x^{-1}$      | 3ln(x)           | 0.3 | 3  | 2.3 | 1  |  |  |  |  |
| 10.1.27                         | $x^{-1}$      | $2x^2-x$         | 2   | -4 | 3   | 2  |  |  |  |  |
| 10.1.28                         | $x^{-2}$      | $3x^2 + 4$       | 1.2 | -4 | 2.4 | 1  |  |  |  |  |
| 10.1.29                         | $x^{1/2}$     | $15(x-\sqrt{x})$ | 0.5 | 1  | 1.5 | 1  |  |  |  |  |
| 10.1.30                         | $e^{-x}$      | $3+e^{3x}$       | 0.3 | 3  | 2.3 | 1  |  |  |  |  |

## Таблица к задаче 10.2

|        |                  |            |                  |   |   |    | 1  | F 1           |
|--------|------------------|------------|------------------|---|---|----|----|---------------|
| №      | p(x)             | q(x)       | f(x)             | а | b | UA | UB | $\mathcal{E}$ |
| 10.2.1 | $0.5 + \sin^2 x$ | $2(1+x^2)$ | $10(1+\sin^2 x)$ | 0 | 2 | 0  | 4  | 0.02          |

| 10.2.2 | $e^{-x^2}$     | $5(2+\sin 2x)$           | $e^x(1+\sin 2x)$    | 0 | 2 | 0 | 5 | 0.05 |
|--------|----------------|--------------------------|---------------------|---|---|---|---|------|
| 10.2.3 | $e^{-(x^2+1)}$ | $10(1+e^{-x})$           | $e^{2.5x}(0.5+x)$   | 0 | 1 | 4 | 0 | 0.03 |
| 10.2.4 | $e^{-2x}$      | $16/(1+x^2)$             | $e^{3x}(2-x^2)$     | 0 | 1 | 1 | 3 | 0.05 |
| 10.2.5 | ln(1+x)        | 10/(1+x)                 | x+9/(1+x)           | 0 | 2 | 5 | 0 | 0.01 |
| 10.2.6 | $\cos^2(x)$    | $\frac{10}{1+\sin^2(x)}$ | $e^{-0.5x}(12-x^2)$ | 0 | 2 | 3 | 0 | 0.05 |

Окончание таблицы к задаче 10.2

|         |                   |                       | O RO              |   | 110 1   | a comme | LDI IC S. | адаче 10.2 |
|---------|-------------------|-----------------------|-------------------|---|---------|---------|-----------|------------|
| 10.2.7  | $\ln(1+x^2)$      | $e^{-x}(8+x^2)$       | $8-x^2$           | 0 | 2       | 4       | 0         | 0.01       |
| 10.2.8  | $1 + \cos^2(x)$   | $x^2 + 1$             | $(x^2+1)\cos(x)$  | 1 | 3       | -1      | 4         | 0.05       |
| 10.2.9  | $0.5(1.5-x^2)$    | $e^{x}(4-x)$          | $5x^2e^{-x}$      | 1 | 2       | 0       | 3.5       | 0.02       |
| 10.2.10 | $\sin(2x)$        | $8(1+\sin^2 x)$       | $10\cos x$        | 1 | 3       | 0       | 0         | 0.05       |
| 10.2.11 | $0.25(1-x^2)$     | $5(1+\cos^2(x))$      | $15\cos x$        | 0 | 2       | 0       | 4         | 0.02       |
| 10.2.12 | $-0.5 + \sin x$   | $\frac{8}{1+0.25x^2}$ | $5(1-x^2)$        | 0 | 2       | 0       | 0         | 0.01       |
| 10.2.13 | $\sin(x-2)$       | 5(x+1/x)              | 8                 | 1 | 3       | 0       | 5         | 0.04       |
| 10.2.14 | $1/(1+x^2)$       | 10-x                  | $e^{1.5x}(1+x^2)$ | 0 | 2       | 0       | 5         | 0.05       |
| 10.2.15 | $0.5e^{-x}$       | $10(1+\sin^2 x)$      | 12                | 0 | 1       | -1      | 4         | 0.02       |
| 10.2.16 | $0.5(1-0.4x^2)$   | $e^{-x}(9+x)$         | $10\sin x$        | 0 | 1.<br>5 | 0       | 4         | 0.03       |
| 10.2.17 | $0.5\sin x$       | $7(1+\sin^2 x)$       | $6(1+x^2)$        | 0 | 2       | 4       | 0         | 0.05       |
| 10.2.18 | $0.4\sqrt{1+x^2}$ | $4(1+x^2)$            | $20e^{-x}$        | 0 | 2.<br>5 | 0       | 0         | 0.05       |
| 10.2.19 | $0.3\sqrt{4-x^2}$ | $5(1+x^2)$            | $8e^{0.5x}$       | 0 | 2       | -1      | 3         | 0.1        |
| 10.2.20 | $0.5/(1+x^2)$     | $7(1+\sin^2 x)$       | $20/(1+0.5x^2)$   | 0 | 1.<br>5 | 2       | -1        | 0.005      |
| 10.2.21 | $\sin x$          | $4(1+x^2)$            | $6e^{0.5x}$       | 0 | 2       | 0       | 5         | 0.05       |
| 10.2.22 | $\sin x$          | $6\sqrt{1+x^2}$       | $7(1+\sin^2 x)$   | 0 | 2       | 0       | 0         | 0.05       |
| 10.2.23 | $\cos(x)$         | $5(1+\cos^2 x)$       | $10/(1+0.5x^2)$   | 0 | 1.<br>5 | 5       | 0         | 0.05       |
| 10.2.24 | $\cos(x)$         | $5(1+\sin^2 x)$       | $4e^{0.5x}$       | 0 | 2       | 0       | 4         | 0.02       |
| 10.2.25 | $e^{-x}$          | $8(1+\sin^2 x)$       | $20-x^2$          | 1 | 3       | 0       | 0         | 0.01       |
| 10.2.26 | $0.5e^x$          | $5(1+\sin^2 x)$       | 10                | 0 | 1       | 1       | 4         | 0.02       |
| 10.2.27 | $2/(1+x^2)$       | 2-x                   | $e^{1.5x}(1+x^2)$ | 0 | 2       | 2       | 5         | 0.05       |
| 10.2.28 | ln(1+x)           | 5/(1+x)               | 5/(1+x)           | 0 | 2       | 5       | 0         | 0.05       |
| 10.2.29 | $5\sin x$         | $5(1+x^2)$            | $5e^{0.5x}$       | 0 | 2       | 0       | 5         | 0.2        |
| 10.2.30 | $0.5\sqrt{1+x^2}$ | $5(1+x^2)$            | $10e^{-x}$        | 0 | 2.<br>5 | 0       | 0         | 0.2        |

| 3.C     | 2                          |       | 1 3.0   | 1 аолиц                     |          |
|---------|----------------------------|-------|---------|-----------------------------|----------|
| №       | Задача                     | ε     | №       | Задача                      | <i>E</i> |
| 10.3.1  | u'' - xu' + 0.2u = x + 1   | 0.04  | 10.3.11 | $u'' + u' + 2xu = x^2 + 1$  | 0.03     |
|         | u(0.9) - 0.5u'(0.9) = 2    |       |         | u(0.3) + 0.5u'(0.3) = 3     |          |
|         | u(2.9) = 1                 |       |         | u(2.7) = 1                  |          |
| 10.3.2  | u'' - 0.5xu' + u = 2       | 0.005 | 10.3.12 | u'' - xu = 2x               | 0.1      |
|         | u(0.4) = 1.2               |       |         | u(1.5) - 2u'(1.5) = 4.5     |          |
|         | u(1.4) + 2u'(1.4) = 3.2    |       |         | u'(3.5) = 3                 |          |
|         | u'' - 0.5u' + 0.5xu = 2x   | 0.05  | 10.3.13 | u'' + xu' - u = x           | 0.1      |
| 10.3.3  | u'(1) = 0.5                |       |         | u'(3) = 6                   |          |
|         | 2u(3) - u'(3) = 2          |       |         | u(4) + u'(4) = 2            |          |
| 10.3.4  | u'' - xu' + 2xu = 2.8      | 0.07  | 10.3.14 | u'' - u' / x + u = 2x       | 0.05     |
|         | u(1.2) - 0.2u'(1.2) = 0.2  |       |         | u(1.5) + 0.5u'(1.5) = 1.5   |          |
|         | u'(2.2) = 4                |       |         | u'(4.5) = 5                 |          |
| 10.3.5  | $u'' - u' + 2x^2u = x + 1$ | 0.1   | 10.3.15 | $u'' - xu' + 2xu = x^2 + 1$ | 0.03     |
|         | u(1.3) = 1                 |       |         | u(1.2) + 10u'(1.2) = 2.2    |          |
|         | u(2.4) + u'(2.4) = 3.2     |       |         | u(3.6) = 1                  |          |
| 10.3.6  | u'' - 4xu' + 5u = 2x       | 0.07  | 10.3.16 | $u'' - \cos(x^2)u = 2x + 1$ | 0.02     |
|         | u'(2) = 0                  |       |         | u'(1) - 3u(1) = 1           |          |
|         | u(4) - 3u'(4) = 2          |       |         | u(3) = 10                   |          |
| 10.3.7  | u'' - 3u' + 8xu = 8        | 0.1   | 10.3.17 | $u'' + u' - x^2u = 2$       | 0.02     |
|         | u(1.8) - 0.5u'(1.8) = 2    |       |         | u(1) + 0.5u'(1) = 2         |          |
|         | u(3.8) = 5                 |       |         | u(4) = 4                    |          |
| 10.3.8  | u'' - 6xu' + 0.5u = -3     | 0.03  | 10.3.18 | $u'' - 5u = e^x$            | 0.2      |
|         | u(2.2) + 0.1u'(2.2) = 0.2  |       |         | u'(2) = 0                   |          |
|         | u'(4.2) = 4                |       |         | u(4) = 2                    |          |
| 10.3.9  | u'' - 1.5u' - 5xu = 0.5    | 0.05  | 10.3.19 | u'' + 2u' - 1.5xu = 2/x     | 0.1      |
|         | 2u(1.3) - 0.5u'(1.3) = 1   |       |         | u'(0.8) = 1                 |          |
|         | u(3.9) = 4                 |       |         | u(3.8) + 2u'(3.8) = 1       |          |
| 10.3.10 | u'' - 3u'/x + xu = 3       | 0.03  | 10.3.20 | u'' - u'/4 + 2u/x = x/2     | 0.03     |
|         | u'(0.7) = 0.2              |       |         | 1.5u(1.3) - u'(1.3) = 0.6   |          |
|         | u'(3.6) + 20u(3.6) = 4     |       |         | u(2.6) = 2                  |          |

# Таблица к задаче 10.5

| $\mathcal{N}_{\underline{0}}$ | а | b   | c     | k(                    | (x)                                                                                                | q (.                           | <i>x</i> )                   | f(x)           |
|-------------------------------|---|-----|-------|-----------------------|----------------------------------------------------------------------------------------------------|--------------------------------|------------------------------|----------------|
|                               |   |     |       | <i>a</i> < <i>x</i> < | c <x<b< td=""><td><i>a</i>&lt;<i>x</i>&lt;<i>c</i></td><td>c<x<< td=""><td></td></x<<></td></x<b<> | <i>a</i> < <i>x</i> < <i>c</i> | c <x<< td=""><td></td></x<<> |                |
|                               |   |     |       | c                     |                                                                                                    |                                | b                            |                |
| 10.5.1                        | 0 | 1.5 | 1.125 | 0.5                   | 1.4                                                                                                | 3.2                            | 8.5                          | $8x^2(2-x)$    |
| 10.5.2                        | 0 | 1.8 | 1.275 | 0.4                   | 1.4                                                                                                | 3.2                            | 12                           | $8x(2-x^2)$    |
| 10.5.3                        | 0 | 2.0 | 1.515 | 0.5                   | 1.8                                                                                                | 3.5                            | 8.2                          | 10x(2.5-x)     |
| 10.5.4                        | 0 | 2.3 | 1.875 | 0.4                   | 1.8                                                                                                | 3.5                            | 12.8                         | $10x(1.2-x^2)$ |
| 10.5.5                        | 0 | 2.5 | 1.875 | 1.2                   | 0.5                                                                                                | 8.3                            | 3.5                          | $9/(1+0.5x^2)$ |
| 10.5.6                        | 0 | 2.8 | 1.875 | 1.2                   | 0.4                                                                                                | 8.3                            | 2.8                          | $9/(2+0.3x^2)$ |
| 10.5.7                        | 0 | 3.0 | 1.875 | 1.5                   | 0.6                                                                                                | 8.3                            | 12                           | $7e^{-0.5x}$   |
| 10.5.8                        | 0 | 1.5 | 0.925 | 1.5                   | 0.4                                                                                                | 7.5                            | 12                           | $7e^{-x}$      |

Окончание таблицы к задаче 10.5

|         |   |     |       |     |     |     | KOII Iuliii | е таолицы к задаче то. |
|---------|---|-----|-------|-----|-----|-----|-------------|------------------------|
| 10.5.9  | 0 | 1.7 | 0.925 | 1.8 | 0.4 | 7.0 | 12          | $8x/(2+x^3)$           |
| 10.5.10 | 0 | 2   | 1.125 | 1.8 | 0.6 | 6.5 | 7.8         | 8x(2.5-x)              |
| 10.5.11 | 0 | 2.2 | 1.125 | 0.5 | 1.8 | 3.5 | 7.8         | $10x^2(2.5-x)$         |
| 10.5.12 | 0 | 2.5 | 1.515 | 0.3 | 1.8 | 3.5 | 8.3         | $10x(1.5-0.3x^2)$      |
| 10.5.13 | 0 | 2.7 | 1.815 | 0.5 | 1.2 | 5.6 | 12.3        | $9(x+1/(1+x^3))$       |
| 10.5.14 | 0 | 3   | 1.815 | 0.3 | 1.2 | 5.6 | 10          | 9x(3.5-x)              |
| 10.5.15 | 0 | 1.5 | 0.875 | 0.5 | 1.8 | 5.6 | 8.5         | 9x(3.5-x)              |
| 10.5.16 | 0 | 1.8 | 1.215 | 0.4 | 1.2 | 3.2 | 8.5         | 8x(2-x)                |
| 10.5.17 | 0 | 2   | 1.215 | 0.4 | 1.5 | 3.2 | 12          | $8x(1.5-0.5x^2)$       |
| 10.5.18 | 0 | 2.3 | 1.725 | 0.5 | 1.2 | 3.5 | 8.2         | 10x(2.5-x)             |
| 10.5.19 | 0 | 2.5 | 1.725 | 0.5 | 1.5 | 3.5 | 12.08       | $10x(1.3-0.2x^2)$      |
| 10.5.20 | 0 | 2.8 | 1.725 | 1.5 | 0.4 | 8.3 | 3.5         | $9e^{-x}$              |
| 10.5.21 | 0 | 3.0 | 2.015 | 1.5 | 0.5 | 8.3 | 2.8         | $8/(1+x^2)$            |
| 10.5.22 | 0 | 1.5 | 0.925 | 1.2 | 0.4 | 8.3 | 12          | 7(x+1/(x+0.5))         |
| 10.5.23 | 0 | 1.7 | 0.925 | 1.2 | 0.5 | 7.5 | 12          | $7e^{-x}$              |
| 10.5.24 | 0 | 2.0 | 1.215 | 1.8 | 0.4 | 7.0 | 12          | 8x(2.5-x)              |
| 10.5.25 | 0 | 2.2 | 1.215 | 1.8 | 0.5 | 6.5 | 12          | $8x(1.5+0.2x^2)$       |
| 10.5.26 | 0 | 2.5 | 1.515 | 0.3 | 1.8 | 3.5 | 8.3         | $10x(1.5-0.3x^2)$      |
| 10.5.27 | 0 | 3.0 | 1.875 | 1.5 | 0.6 | 8.3 | 12          | $7e^{-0.5x}$           |
| 10.5.28 | 0 | 1.5 | 0.875 | 0.5 | 1.8 | 5.6 | 8.5         | 9x(3.5-x)              |
| 10.5.29 | 0 | 2   | 1.215 | 0.4 | 1.5 | 3.2 | 12          | $8x(1.5-0.5x^2)$       |
| 10.5.30 | 0 | 2.3 | 1.725 | 0.5 | 1.2 | 3.5 | 8.2         | 10x(2.5-x)             |

Таблица к задаче 10.6

В задаче 10.6 взять входные данные k(x), f(x), ua, ub из задачи 10.1,  $\phi(x) = (ub - ua)(x - a)/l + ua$ , l = b - a.

### ПРИЛОЖЕНИЕ 10.В

### Фрагмент решения задачи 10.1.0

Плотность источников тепла  $f(x) \coloneqq \frac{4}{3} \cdot x^{\frac{1}{3}}$ 

Коэффициент теплопроводности  $k(x,c) := c \cdot x$ 

Символьное вычисление точного решения краевой задачи

$$\int \frac{-f(x) dx}{k(x,c)} dx + \int \frac{c1}{k(x,c)} dx + c2 \to \frac{-3}{4} \cdot \frac{x^3}{c} + \frac{c1}{c} \cdot \ln(x) + c2$$

Найденное решение:  $u(x,c,c1,c2) := \frac{-3}{4} \cdot \frac{x^{\frac{2}{3}}}{2} + \frac{c1}{2} \cdot \ln(x) + c2$ 

 $u(x,c,c1,c2) := \frac{-3}{4} \cdot \frac{x^{\frac{3}{3}}}{1 \cdot c^{\frac{3}{3}}} + \frac{c1}{c} \cdot \ln(x) + c2$ Найденное решение:

Нахождение констант c1, c2 при условии c=1, то есть k(x,1)

Given

$$u(a, 1, c1, c2) = ua$$

$$u(b, 1, c1, c2) = ub$$

$$Find(c1,c2) \rightarrow \begin{pmatrix} 2.0953158917601025127 \\ 2.75000000000000000000 \end{pmatrix} -c$$

c1 := 2.0953158917601025127

$$c2 := 2.75$$

$$u1(x) := u(x, 1, c1, c2)$$



#### ПРИЛОЖЕНИЕ 10.С

Для нахождения решения уравнения  $-\frac{d}{dx}\left(k(x,c)\frac{du}{dx}\right) = f(x)$  дважды проинтегрируем его. Первое интегрирование дает такой результат  $u'(x) = -\frac{1}{k(x,c)} \int f(x) dx + c_1.$ 

Проинтегрируем полученное соотношение еще раз:

$$u(x) = -\int \left(\frac{\int f(x)dx}{k(x,c)}\right) dx + c_1 x + c_2.$$

Константы  $c_1, c_2$  находятся из граничных условий:

$$u(a) = ua$$
,  $u(b) = ub$ .

Пример решения задачи 10.1.0. Пусть k(x,c) = cx.

$$-\frac{d}{dx}\left(cx\frac{du}{dx}\right) = \frac{4}{3}x^{\frac{1}{3}},$$
  
 
$$u(0.5) = 1, \quad u(1) = 2.$$

Проинтегрируем уравнение:  $cxu' = -x^{\frac{4}{3}} + c_1$ . Повторное интегрирование дает соотношение:  $u(x) = -\frac{3}{4c}x^{\frac{4}{3}} + \frac{c_1}{c}\ln x + c_2$ .

Найдем константы  $c_1$  и  $c_2$ , при условии, что c=1:  $u(1)=-\frac{3}{4}+c_2=2$ ;  $c_2=2.75$   $u(0.5)=-\frac{3}{4}\big(0.5\big)^{4/3}+c_1\cdot\ln(0.5)+2.75=1$ , поэтому  $c_1=1.780827$ .

Окончательно, решение примет вид:

$$u(x,k(x,1)) = -\frac{3}{4}x^{4/3} + 1.780827\ln x + 2.75.$$

Для проверки можно подставить найденное решение в исходное уравнение и проверить выполнение граничных условий.