

LIFE INSURANCE CASE STUDY

CAPSTONE Project Notes -2

AUGUST 14, 2022 ALIND KHANNA GREAT LAKES

Table of Contents

DATA DICTIONARY	3
INTRODUCTION	4
1) Model building and interpretation	5
a. Build various models (You can choose to build models for either or all of descriptive, por prescriptive purpose	
b. Test your predictive model against the test set using various appropriate performance	e metrics
c. Interpretation of the model(s)	
2). Model Tuning and business implication	10
a Ensemble modelling, wherever applicable	10
b. Any other model tuning measures (if applicable)	11
c. Interpretation of the most optimum model and its implication on the business	12

DATA DICTIONARY

Data	Variable	Discerption
Sales	CustID	Unique customer ID
Sales	AgentBonus	Bonus amount given to each agents in last month
Sales	Age	Age of customer
Sales	CustTenure	Tenure of customer in organization
Sales	Channel	Channel through which acquisition of customer is done
Sales	Occupation	Occupation of customer
Sales	EducationField	Field of education of customer
Sales	Gender	Gender of customer
Sales	ExistingProdType	Existing product type of customer
Sales	Designation	Designation of customer in their organization
Sales	NumberOfPolicy	Total number of existing policy of a customer
Sales	MaritalStatus	Marital status of customer
Sales	MonthlyIncome	Gross monthly income of customer
Sales	Complaint	Indicator of complaint registered in last one month by customer
Sales	ExistingPolicyTenure	Max tenure in all existing policies of customer
Sales	SumAssured	Max of sum assured in all existing policies of customer
Sales	Zone	Customer belongs to which zone in India. Like East, West, North and South
		Frequency of payment selected by customer like Monthly, quarterly, half
Sales	PaymentMethod	yearly and yearly
Sales	LastMonthCalls	Total calls attempted by company to a customer for cross sell
Sales	CustCareScore	Customer satisfaction score given by customer in previous service call

LIFE INSURANCE CASE STUDY

Introduction

Insurance is one of the vital products for both business and human life. It provides necessary financial support in case of uncertainties also it safeguards against unpredictable events.

It gives necessary cover and peace of mind against any catastrophic events which are not even in control of human being.

Model Building and Interpretation

- Given problem seems more of a regression problem, since there are continuous variables involved.
- We see there are some categorical variables in given data set since they have to be converted to numerical, as regression uses only numerical variables.

Since most of the cat variable have more than 2 categories, we apply One-Hot Encoding

Output after Encoding

A	gentBonus	Age	CustTenure	Existin	ngProdType	NumberC	OfPolicy	MonthlyIncome	Complaint	ExistingPolicy	Tenure	SumA	ssured	LastMon	thCalls
	4409.0	22.0	4.0		3.0		2.0	20993.0	1.0		2.0	806761.	000000		5.0
	2214.0	11.0	2.0		4.0		4.0	20130.0	0.0		3.0	294502.	000000		7.0
	4273.0	26.0	4.0		4.0		3.0	17090.0	1.0		2.0	619999.	699267		0.0
	1791.0	11.0	4.0		3.0		3.0	17909.0	1.0		2.0	268635.	000000		0.0
	2955.0	6.0	4.0		3.0		4.0	18468.0	0.0		4.0	366405.	000000		2.0
DW:	s × 39 colu	mns													
			ritalStatus_Ma	arried	MaritalStatus	_Single	MaritalSt	tatus_Unmarried	Zone_North	Zone_South	Zone_\	West Pa	aymentMo	ethod_ M c	onthly
	signation_V		ritalStatus_Ma	arried 0	MaritalStatus	s_Single	Marital St	tatus_Unmarried	Zone_North	Zone_South	Zone_\	West Pa	aymentMo	ethod_Mc	onthly 0
	signation_V	P Ma	ritalStatus_Ma		Marital Status	Single	M arital St				Zone_\		ayment M	ethod_Mo	
	signation_V	P Ma	ritalStatu s_M a	0	Marital Status	1	M arital St	0	1	0	Zone_\	0	ayment M	ethod_Mc	0
	signation_V	P Ma 0 0	ritalStatus_Ma	0	Marital Statu s	1	M arital St	0	1	0 0 0	Zone_\	0	ayment M	ethod_ M d	0

Before proceeding towards model building, we are renaming variables.

COLUMN NAMES

As we are using the same data, we used in PN1 and in EDA we have already treated null
values, outliers in data hence we could continue with Model Building exercise.

MODEL BUILDING:

• First step to start model building is divide data into Train and Test data.

We have split data into 75:25 ratio

Data shape After Test/Train Split

```
Train data (3390, 18)
Test Data (1130, 18)
```

Insights of R Square & RMSE

	R square	RMSE
Train Data	0.809	596
Test Data	0.781	623.1

LINEAR REGRESSION MODEL

• In the first iteration towards building linear regression model, we used all of the independent variables.

AgentBonus Age CustTenure ExistingProdType NumberOfPolicy MonthlyIncome Complaint ExistingPolicyTenure SumAssured LastMonthCalls CustCareScore Channel_Online Channel Third Party Partner Occupation_Large Business Occupation_Salaried Occupation_Small Business EducationField_Engineer EducationField_MBA EducationField_Post Graduate EducationField_Under Graduate Gender_Male Designation_Executive Designation_Manager Designation_Senior Manager Designation_VP MaritalStatus_Married MaritalStatus_Single MaritalStatus_Unmarried Zone_North Zone_South Zone_West PaymentMethod_Monthly PaymentMethod_Quarterly PaymentMethod_Yearly

LM1 summary

OLS	Regnes	sion	Results

Dep. Variable: As	gentBonus	R-squared:		a	801	
Model:	OLS	Ad1. R-squar	ed:		799	
		F-statistic:			9.4	
	Aug 2022	Prob (F-stat			.00	
Time:		Log-Likeliho		-265		
No. Observations:	3390	AIC:		5.316e		
Df Residuals:	3356	BIC:		5.337e	+84	
Df Model:	33					
	nonrobust					
cora: zamez Type.						
	coe	f std err	t	P> t	[0.025	0.9751
Intercept	-308.862	4 210.137	-1.470	0.142	-720.871	103.146
Age	21.584		15.294	0.000	18.817	24.351
CustTenure	22.798	9 1.408	16.189	0.000	20.038	25.560
ExistingProdType	-74.096	1 23,404	-3.166	0.002	-119.983	-28,209
NumberOfPolicy	0.098		0.013	0.990	-14.911	15.108
MonthlyIncome	0.072	2 0.005	14.648	0.000	0.063	0.082
Complaint	29.571		1.259	0.208	-16.485	75.629
ExistingPolicyTenure	38.259		10.208	0.000	30.911	45.608
SumAssured	0.003		58.759	0.000	0.003	0.004
LastMonthCalls	0.647	8 3.147	0.206	0.837	-5.522	6.817
CustCareScore	8.629	1 7.749	1.114	0.266	-6.564	23.822
Channel Online	24.987	7 35.035	0.713	0.476	-43.704	93.679
Channel Third Party Partner	-3.289	6 27.360	-0.120	0.904	-56.933	50.353
Occupation Large Business	-27.616	2 74.344	-0.371	0.710	-173.380	118.148
Occupation Salaried	-0.407		-0.003	0.998	-290,220	289,405
Occupation Small Business	-0.459		-0.003	0.998	-291.252	290.333
EducationField Engineer	-17.658	5 139.264	-0.127	0.899	-290.710	255.393
EducationField MBA	-127.483	2 90.602	-1.407	0.160	-305.125	50.159
EducationField Post Graduate	12.804	5 49.439	0.259	0.796	-84.128	109.737
EducationField Under Graduate	-33,509	0 32.425	-1.033	0.301	-97.084	30.066
Gender Male	15.167	3 21.646	0.701	0.484	-27.273	57.608
Designation Executive	105.420	0 46.669	2.259	0.024	13.917	196.923
Designation Manager	-70.649	6 40.914	-1.727	0.084	-150.868	9.569
Designation_Senior_Manager	-5.724	9 43.342	-0.132	0.895	-90.704	79.255
Designation VP	47.187	1 64.562	0.731	0.465	-79.398	173.772
MaritalStatus_Married	-52.949	4 29.153	-1.816	0.069	-110.109	4.211
MaritalStatus Single	11.425	6 32.325	0.353	0.724	-51.953	74.804
MaritalStatus Unmarried	-137.845	7 60.636	-2.273	0.023	-256,734	-18.957
Zone_North	49.182	6 93.357	0.527	0.598	-133.860	232.225
Zone South	201.272	2 289.706	0.695	0.487	-366.746	769.291
Zone West	42,959	4 92.886	0.462	0.644	-139.158	225.077
PaymentMethod_Monthly	-49.942	8 57.238	-0.873	0.383	-162.167	62.282
PaymentMethod_Quarterly	-9.284	1 86.238	-0.108	0.914	-178.368	159.800
PaymentMethod_Yearly	44.115	1 34.186	1.290	0.197	-22.913	111.143
Omnibus:	136.383	Durbin-Watso	on:	1.	998	
Prob(Omnibus):	0.000	Jarque-Bera	(JB):	156.	022	
Skew:	0.479	Prob(JB):		1.32e	-34	
Kurtosis:	3.430	Cond. No.		1.94e	+07	

Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 1.94e+07. This might indicate that there are strong multicollinearity or other numerical problems.

RMSE value – 608.92 The variation in R-squared and Adjusted R-squared is not too significant

ITERATION 2: In iteration 2 we consider only those independent variables for which P value is less than 0.05, therefore we drop all redundant variables to bring down multicollinearity levels.

LM2 results summary

OLS Regression Results							
Dep. Variable:	AgentBonus				0.806		
Model:	OLS	Adj. R-squ	ared:		0.805		
Method:	Least Squares	F-statisti	c:		1399.		
Date:	Sat, 11 Dec 2021	Prob (F-st	atistic):		0.00		
Time:	13:22:00	Log-Likeli	hood:	-	26511.		
No. Observations:	3390	AIC:		5.3	04e+04		
Df Residuals:	3379	BIC:		5.3	11e+04		
Df Model:	10						
Covariance Type:	nonrobust						
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	643.6161	129.776	4.959	0.000	389.168	898.064	
Age	21.8786	1.416	15.451	0.000	19.102	24.655	
CustTenure	22.7193	1.424	15.955	0.000	19.927	25.511	
MonthlyIncome	0.0372	0.004	8.473	0.000	0.029	0.046	
ExistingPolicyTenure	40.1752	4.037	9.951	0.000	32.259	48.091	
SumAssured	0.0036	5.85e-05	60.654	0.000	0.003	0.004	
Designation_Executive	-427,4484	52.722	-8.108	0.000	-530.818	-324.079	
	-436.7599				-525.367	-348.152	
Designation_Senior_Ma	nager -258.6449	43.277	-5.977	0.000	-343.496	-173.794	
MaritalStatus Married							
MaritalStatus Unmarri					-335.050		
					=====		
Omnibus:	128.393	Durbin-Wat	son:		1.999		
Prob(Omnibus):	0.000	Jarque-Ber	a (JB):	1	43.854		
Skew:	0.475				79e-32		
Kurtosis:	3.341	Cond. No.		9.	23e+06		

VIF values

```
Age VIF = 1.41
CustTenure VIF = 1.38
ExistingProdType VIF = 4.75
NumberOfPolicy VIF = 1.12
MonthlyIncome VIF = 5.24
Complaint VIF = 1.01
ExistingPolicyTenure VIF = 1.12
SumAssured VIF = 1.76
LastMonthCalls VIF = 1.2
CustCareScore VIF = 1.03
Channel_Online VIF = 1.05
Channel_Third_Party_Partner VIF = 1.04
Occupation_Laarge Business VIF = 62.39
Occupation_Large_Business VIF = 101.63
Occupation_Salaried VIF = 432.81
Occupation_Small_Business VIF = 440.93
EducationField_Engineer VIF = 18.07
EducationField_Graduate VIF = 17.29
EducationField_MBA VIF = 2.0
EducationField_Post_Graduate VIF = 4.44
EducationField UG VIF = 1.57
EducationField_Under_Graduate VIF = 2.58
Gender_Female VIF = 4.77
Gender_Male VIF = 4.54
Designation_Exe VIF = 2.3
Designation_Executive VIF = 8.62
Designation_Manager VIF = 6.08
Designation_Senior_Manager VIF = 2.82
Designation_VP VIF = 1.84
MaritalStatus_Married VIF = 1.92
MaritalStatus_Single VIF = 1.89
MaritalStatus_Unmarried VIF = 1.37
Zone_North VIF = 19.24
Zone_South VIF = 1.12
Zone_West VIF = 19.21
PaymentMethod_Monthly VIF = 2.22
PaymentMethod_Quarterly VIF = 1.12
PaymentMethod Yearly VIF = 2.4
```

We see in above case, there are many variables which exhibit multicollinearity, having VIF values more than 5, so we drop those variables.

VIF values (After dropping variables)

```
Age VIF = 1.4
CustTenure VIF = 1.37
ExistingProdType VIF = 3.73
NumberOfPolicy VIF = 1.11
MonthlyIncome VIF = 1.98
Complaint VIF = 1.01
ExistingPolicyTenure VIF = 1.11
SumAssured VIF = 1.74
LastMonthCalls VIF = 1.18
CustCareScore VIF = 1.02
Channel Online VIF = 1.02
Occupation_Laarge Business VIF = 1.58
EducationField_Engineer VIF = 1.68
EducationField Graduate VIF = 1.26
EducationField_MBA VIF = 1.04
EducationField_Post_Graduate VIF = 1.09
EducationField_UG VIF = 1.26
Gender_Female VIF = 4.74
Gender_Male VIF = 4.51
Designation_Exe VIF = 1.19
Designation Manager VIF = 1.22
Designation_Senior_Manager VIF = 1.29
MaritalStatus Married VIF = 1.92
MaritalStatus_Single VIF = 1.88
MaritalStatus_Unmarried VIF = 1.36
Zone_South VIF = 1.01
Zone West VIF = 1.02
PaymentMethod_Monthly VIF = 1.98
PaymentMethod_Quarterly VIF = 1.1
PaymentMethod_Yearly VIF = 2.11
```

Comparing Linear Model Iterations results:

	RMSE(LM1)	RMSE(LM2)
Train Data	608.92	609.65
Test Data	633.95	632.83

We see there is no significant change in R square or RMSE vales in both iterations, this could not be optimal way of choosing best model.

We need to check for different models Random Forest, Artificial Neural Network and Decision Tree with base parameters and compare results for choosing optimum model.

Data Scaling

- We scale the data in order to bring the values in the common range, which helps us making our decisions unbiased.
- We observe that age, sum assured are carrying higher weights, so in order to make our decision based on them we have rationalize the data and brought to common scale using data scaling
- Scaling doesn't impact coefficient of attributes or its intercept values.
- Data Scaling, also helps us reducing multicollinearity

Comparing Score Running Different Models (Base Parameter)

	Train RMSE	Test RMSE	Training Score	Test Score
Linear Regression	608.208934	590.392992	0.803620	0.798161
Decision Tree Regressor	0.000000	760.245991	1.000000	0.665318
Random Forest Regressor	190.483906	519.251378	0.980738	0.843873
ANN Regressor	497.488121	606.842724	0.868612	0.786756

Observations and Score Analysis

- Based on model comparison score we find most other models are in overfitting zone.
- Linear Regression is performing better when compared to others as variation between test and train data is minimal.
- In order to solve the overfitting problem, we have used the hyperparameter tuning based on grid search.

Checking if PCA can be applied here

Since cumulative variance is almost 99%, hence there is no need to perform PCA

Principal Components vs variance ratio

PCA heatmap

 Not much can be observed about the components from the heatmap, therefore dropping the need to perform PCA as almost all these variables hold a good deal of significance in the predictions

MODEL TUNNING

Next step, we go for grid search for hyper parameter tuning to observe is there any significant difference in observed results.

Grid Search on Decision Tree

```
{'max_depth': 10, 'min_samples_leaf': 3, 'min_samples_split': 50}
```

Grid Search on Random Forest Tree

```
{'max_depth': 10, 'max_features': 6, 'min_samples_leaf': 3, 'min_samples_split': 30, 'n_estimators': 300}
```

Grid Search on ANN

```
{'activation': 'relu', 'hidden_layer_sizes': 500, 'solver': 'adam'}
```

Comparing Score Running Different Models (After Hyper parameter Tuning)

	Train RMSE	Test RMSE	Training Score	Test Score
Linear Regression	608.208934	590.392992	0.803620	0.798161
Decision Tree Regressor	495.236822	573.495484	0.869798	0.809549
Random Forest Regressor	540.850048	583.163906	0.844709	0.803073
ANN Regressor	497.488121	606.842724	0.868612	0.786756

Observations after Hyper Parameter Tuning

- We observe most of the variables have moved out of overfitting zone.
- Also, we observe that Linear Regression model is still stable with train-test difference on minimal.

Based, on the observations we can say Linear Regression is most stable model throughout,

If model accuracies are some want to be watched for then we can say Random Forest model does better job and as there is less than 5 percent difference between test-train data.

Feature Importance:

We see sum assured as most important feature with Zone_South being the least.

	Imp
SumAssured	0.430643
CustTenure	0.147939
Age	0.135314
MonthlyIncome	0.122517
ExistingPolicyTenure	0.035902
Designation_VP	0.031614
Designation_Executive	0.023948
Designation_Manager	0.013429
LastMonthCalls	0.012173
Designation_Senior Manager	0.007222
Designation_Exe	0.004794
ExistingProdType	0.004702
MaritalStatus_Unmarried	0.003864
NumberOfPolicy	0.003687
Gender Female	0.002636
CustCareScore	0.002612
EducationField UG	0.001531
EducationField Under Graduate	0.001157
MaritalStatus_Married	0.001078
Zone North	0.001078
Zone West	0.001074
MaritalStatus_Single	0.001051
Gender Male	0.001030
Complaint	0.001022
Channel_Third Party Partner	0.000927
PaymentMethod Yearly	0.000889
Occupation Salaried	0.000817
Occupation Small Business	0.000794
EducationField Graduate	0.000775
EducationField_Engineer	0.000725
Channel Online	0.000642
PaymentMethod Monthly	0.000556
Occupation Large Business	0.000525
EducationField Post Graduate	0.000510
Occupation Laarge Business	0.000323
EducationField MBA	0.000290
PaymentMethod Quarterly	0.000204
Zone South	0.000207
202_200011	2.00000

Interpretation and Business Recommendations.

- Company wants to predict the ideal bonus for agent and level of engagement of high and low performing agents respectively.
- Through the model, for high performing agent we will find variable significance, for eg, Sum Assured is highly significant here.
- If the Designation is VP the person buys more policy or high value policies.
- Therefore, for high and low performing agents, we will train them, suggesting them to purchase or get policies with high sum assured as it is very significant to our model.
- Another important feature is Customer tenure where the agents need to focus on the customers who've a tenure ranging between 8-20 this where the majority of the customer are.
- Focusing on customers with greater monthly incomes as greater the monthly income, greater is the possibility of the customer buying a higher valued policy.

Recommendations.

- For High Performing Agents we can create a healthy contest with a threshold.
- Where, if they achieve the desired sum assured, they are eligible for certain incentives like latest gadgets, exotic family vacation packages and some extra perks as well.
- For low performing agents, we can introduce certain feedback upskill programs to train them into closing higher sum assured policies, reaching certain people to ultimately becoming top/high performers.
- Apart from this, we need more data/predictors like Premium Amount, this will help us to solve the business problem even better as well have more variables to test upon thereby having more accurate results in real time problems like this.
- I also feel another predictor can be added as customers geographical location or Region and not just the zones as people living in rural areas are less likely to buy a policy whereas those living in a highly developed location are likely to be belonging to the upper class and should be targeted.
- Similarly, another predictor can be AgentID can be introduced which will make it easier to observe the high and low performing agent trend
- Premium collected from customer is, also a very good predictor in terms of analysing agent bonus, this gives real insight towards the monetary business agent is doing on regular basis.