Chapitre 8 – Séries entières

- I Notion de série entière et de rayon de convergence
- II Calcul de rayon de convergence
- III Modes de convergence et continuité
- IV Régularité d'une fonction définie par la somme d'une série entière de variable réelle
- V Fonction développable en série entière

VI - Bonus

I – Notion de série entière et de rayon de convergence

<u>Définition</u>: On appelle série entière une série de fonctions sur $\mathbb R$ ou $\mathbb C$ une fonction de la forme :

$$S(x) = \sum_{n=0}^{+\infty} a_n x^n$$

$$S(z) = \sum_{n=0}^{+\infty} a_n z^n$$

Lemme d'Abel:

Soit $z_0 \in \mathbb{C}^*$.

$$(a_n z_0^n)_n \ est \ born\'ee \Rightarrow \forall z \in \mathbb{C} \ tq \ |z| < |z_0|, \sum_n a_n z^n \ CVA$$

Définition:

Rayon de convergence $\mathcal{R} \in \mathbb{R}_+ \cup \{+\infty\}$:

$$\mathcal{R} = \sup \begin{cases} \{|z| \mid (a_n z^n)_n \ est \ born\acute{e}e\} \\ \{x \in \mathbb{R}_+ \mid (a_n x^n)_n \ est \ born\acute{e}e\} \\ \{|z| \mid a_n z^n \to 0\} \\ \{x \in \mathbb{R}_+ \mid a_n x^n \to 0\} \\ \{|z| \mid \sum_n a_n z^n \ CV\} \\ \{x \in \mathbb{R}_+ \mid \sum_n a_n x^n \ CVA\} \\ \{|z| \mid \sum_n a_n x^n \ CVA\} \end{cases}$$

Propositions:

- $|z| < \mathcal{R} \Rightarrow \sum_{n} a_n z^n CVA$
- $|z| > \mathcal{R} \Rightarrow (a_n z^n)_n$ non bornée
- $|z| = \mathcal{R} \Rightarrow ???$

II – Calcul du rayon de convergence

Propositions:

- $\forall a_n \in \mathbb{C}^{\mathbb{N}}, \forall \lambda \in \mathbb{C}^*, \mathcal{R}(\sum_n \lambda a_n z^n) = \mathcal{R}(\sum_n a_n z^n)$
- Soient $(a_n)_n$, $(b_n)_n \in \mathbb{C}^{\mathbb{N}}$.

$$(\forall n \in \mathbb{N}, |a_n| < |b_n|) \Rightarrow (\mathcal{R}_a \ge \mathcal{R}_b)$$

$$(|a_n| = O(b_n)) \Rightarrow (\mathcal{R}_a \ge \mathcal{R}_b)$$

$$(|a_n| = o(|b_n|)) \Rightarrow (\mathcal{R}_a \ge \mathcal{R}_b)$$

$$(|a_n| \sim |b_n|) \Rightarrow (\mathcal{R}_a \ge \mathcal{R}_b)$$

Théorème (Règle de d'Alembert):

$$\left[\exists l \in \mathbb{R}_+, \left| \frac{a_{n+1}}{a_n} \right| \to l \right] \Rightarrow \left[\mathcal{R} = \frac{1}{l} \in \mathcal{R}_+ \cup \{+\infty\} \right]$$

Proposition:

$$\left| \mathcal{R} \left(\sum_{n} (a_n + b_n) z^n \right) \ge \min(\mathcal{R}_a, \mathcal{R}_b) \right|$$

avec égalité si
$$\mathcal{R}_a \neq \mathcal{R}_b$$

Proposition (Produit de Cauchy de séries entières):

Soient
$$S_a(z) = \sum_{n=0}^{+\infty} a_n z^n$$
 et $S_b(z) = \sum_{n=0}^{+\infty} b_n z^n$.

$$\forall n \in \mathbb{N}, on \ note$$
 $c_n = \sum_{k=0}^n a_k b_{n-k} = \sum_{k=0}^n a_{n-k} b_k$

Alors: $\mathcal{R}_c \ge \min(\mathcal{R}_a, \mathcal{R}_b)$ et

$$\forall z \ tq \ |z| < \mathcal{R}_c, \left(\sum_{n=0}^{+\infty} a_n z^n \right) \left(\sum_{n=0}^{+\infty} b_n z^n \right) = \sum_{n=0}^{+\infty} c_n z^n$$

III - Modes de convergence et continuité

Proposition:

$$\forall [a;b] \subset]-\mathcal{R},\mathcal{R}[,\sum_n a_n x^n \ CVN \ sur \ [a;b]$$

$$\forall K \ compact \ tq \ K \subset \mathcal{B}_o(0,\mathcal{R}), \sum_n a_n z^n \ CVN \ sur \ K$$

Théorème de continuité:

- $sur \mathbb{R}$, S est continue $sur] \mathcal{R}$; $\mathcal{R}[$
- $sur \mathbb{C}$, S est continue $sur \mathcal{B}_o(0, \mathcal{R})$

IV – Régularité d'une fonction définie par la somme d'une série entière de variable réelle

Théorème de convergence radiale d'Abel:

$$\sum_{n=0}^{+\infty} a_n \mathcal{R}^n CV \Rightarrow S \text{ est continue sur } [0; \mathcal{R}] \text{ ie } S(x) \xrightarrow[x \to \mathcal{R}^-]{} S(\mathcal{R})$$

Lemme:

$$\forall p \in \mathbb{Z}, \mathcal{R}\left(\sum_{n=0}^{+\infty} n^p a_n x^n\right) = \mathcal{R}$$

Théorème:

Une fonction définie par une série entière est de classe \mathcal{C}^∞ sur son ouvert de convergence et dérivable terme à terme.

$$\forall p \in \mathbb{N}, S^{(p)}(x) = \sum_{n=p}^{+\infty} \frac{n!}{(n-p)!} a_n x^{n-p}$$

$$\forall p \in \mathbb{N}, a_p = \frac{S^{(p)}(0)}{p!}$$

Proposition:

 S_a, \mathcal{R}_a et S_b, \mathcal{R}_b définis comme avant avec $R_a, R_b \ge 0$

$$[\forall x \in]-\mathcal{R}, \mathcal{R}[, S_a(x) = S_b(x)] \Leftrightarrow [\forall n \in \mathbb{N}, a_n = b_n]$$

(cas particulier : S_b la série nulle)

<u>Proposition</u>: Une fonction définie par une série entière CVN sur tout $[a; b] \subset]-\mathcal{R}$, $\mathcal{R}[$ donc on peut l'intégrer terme à terme sur [a; b].

Soit $f C^1 sur]-\mathcal{R}, \mathcal{R}[.$

 $Sur]-\mathcal{R}, \mathcal{R}[:$

$$\left[f'(x) = \sum_{n=0}^{+\infty} a_n x^n\right] \Rightarrow \boxed{f(x) = f(0) + \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1}}$$

V – Fonction développable en série entière

Définition:

Soit $f: I \to R$ une fonction telle que $0 \in \mathring{I}$.

On dit que f est développable en série entière au voisinage de 0 si :

$$\exists \alpha > 0, \exists (a_n)_n \in \mathbb{R}^{\mathbb{N}}, \forall x \in]-\alpha; \alpha[f(x)] = \sum_{n=0}^{+\infty} a_n x^n$$

Dans ce cas, f est \mathcal{C}^{∞} sur $]-\alpha;\alpha[$ et :

$$\forall x \in]-\alpha; \alpha[, f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n$$

Propositions:

- Il y a unicité du DSE en cas d'existence
- $f non C^{\infty} \Rightarrow f non DSE$

DSE usuels:

$$\forall x \in]-1; 1[, \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n]$$

$$\forall z \in \mathbb{C}, e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$$

$$\forall x \in \mathbb{R}, \cos x = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$

$$\forall x \in \mathbb{R}, \sin x = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$

$$\forall x \in]-1; 1[, (1+x)^{\alpha} = \sum_{n=0}^{+\infty} \frac{\alpha(\alpha-1) \dots (\alpha-n+1)}{n!} x^n$$

VI - Bonus

1) $f \mathcal{C}^{\infty}$ au voisinage de $0 \Rightarrow f DSE$?

NON C'EST FAUX !!!

Exemple:

$$f: 0 \mapsto 0$$

$$x \mapsto e^{-\frac{1}{x^2}} si \ x \neq 0$$

2) Démo du théorème de convergence radiale d'Abel