

Reaction Network Viewer (ReNView): An opensource framework for reaction path visualization of chemical reaction

Udit Gupta
Dec 2023 VLab Workshop

About me

- Postdoctoral researcher from Vlachos group (May 2018 – Aug 2019)
- Solution Architect at Siemens Industry Software Inc.
- Based in Parsippany, New Jersey
- LinkedIn:

https://www.linkedin.com/in/uditgupta0912/

Agenda

- 1. Reaction Network Viewer (RenView) slides
- Demo session

Q&A

Reaction Path Visualizer (General Idea)

- Identify important species and reactions
- Identify equilibrated and fast reactions
- View the dominant chemistry in process
- Graphically explore chemical bottlenecks
- Key tool in mechanism reduction

- Green edges represent equilibrated reactions
- Black edges represent surface reactions
- Reaction fluxes represented using edge thickness

- Green edges represent equilibrated reactions
- Black edges represent surface reactions
- Reaction fluxes represented using edge thickness
- Network refinement
 - Cutoff reaction rate For edges
 - Visualization Elements For nodes

- Green edges represent equilibrated reactions
- Black edges represent surface reactions
- Reaction fluxes represented using edge thickness
- Network refinement
 - Cutoff reaction rate For edges
 - Visualization Elements For nodes
- Different visualizations generated based on normalizations
 - Normalized using net rate of initial reactant
 - Normalized using max. rate in the network
 - Common basis 100% (local consumption)

- Green edges represent equilibrated reactions
- Black edges represent surface reactions
- Reaction fluxes represented using edge thickness
- Network refinement
 - Cutoff reaction rate For edges
 - Visualization Elements For nodes
- Different visualizations generated based on normalizations
 - Normalized using net rate of initial reactant
 - Normalized using max. rate in the network
 - Common basis 100% (local consumption)
- Easily integrable with any kinetic code

- Green edges represent equilibrated reactions
- Black edges represent surface reactions
- Reaction fluxes represented using edge thickness
- Network refinement
 - Cutoff reaction rate For edges
 - Visualization Elements For nodes
- Different visualizations generated based on normalizations
 - Normalized using net rate of initial reactant
 - Normalized using max. rate in the network
 - Common basis 100% (local consumption)
- Easily integrable with any kinetic code
- Generate at any point within the reactor

Inputs to the visualizer

Fwd_Rate	Rev_Rate	Net_Rate	PEI	Reaction_String
4.99E-01	4.99E-01	-3.51E-08	5.00E-01	H2 + 2 RU(S1) <=> 2 H(S1) + 2 RU(B)
8.07E-02	8.07E-02	-1.17E-08	5.00E-01	N2 + RU(S1) <=> N2(S1) + RU(B)
5.49E-01	5.49E-01	2.34E-08	5.00E-01	NH3 + RU(S1) <=> NH3(S1) + RU(B)
2.50E-08	1.57E-09	2.34E-08	9.41E-01	NH3(S1) + RU(S1) <=> H(S1) + NH2(S1) + RU(B)
6.11E-06	6.09E-06	2.34E-08	5.01E-01	NH2(S1) + RU(S1) <=> H(S1) + NH(S1) + RU(B)
3.15E-04	3.15E-04	2.34E-08	5.00E-01	NH(S1) + RU(S1) <=> H(S1) + N(S1) + RU(B)
6.93E-14	1.17E-08	-1.17E-08	5.92E-06	N2(S1) + RU(S1) <=> 2 N(S1) + RU(B)

Reactions file

Species_name	Phase	N	Н	RU
H2	Gas	0	2	0
N2	Gas	2	0	0
NH3	Gas	1	3	0
RU(B)	Surface	0	0	1
RU(S1)	Surface	0	0	1
N2(S1)	Surface	2	0	0
N(S1)	Surface	1	0	0
H(S1)	Surface	0	1	0
NH3(S1)	Surface	1	3	0
NH2(S1)	Surface	1	2	0
NH(S1)	Surface	1	1	0

Species file

- Input files contain species and reaction flux information
- No need for inputs if connected to kinetic simulator since we already have the set of reactions specified and fluxes from simulation.

Normalized using net rate of inlet reactant

Reaction Path Analysis

Edge label,
$$e_i = \frac{Reaction\ rate, r_i}{\sum_{j=1}^{n} r_j} * 100$$

- Generally seen in homogeneous systems like combustion, pyrolysis
- One mole of ethanol yields one mole of methane, 0.54 moles of CO, and 0.46 moles of CO₂

Normalized using maximum rate in the network

$$Edge\ label, e_i = \frac{Reaction\ rate, r_i}{r_{\max\ rate}} * 100$$

- Useful for heterogeneous reaction systems where reaction flux is dependent on surface coverage of intermediate
- Maximum reaction rate provides an upper bound on flux
- Node colors represent surface coverages

Normalized using maximum rate in the network

Common basis 100% (local consumption)

Reaction Path Analysis

Local consumption of reaction
$$r_{i,S} = \frac{r_i}{\sum_{j=1}^{m} r_j} * 100$$

Provides local analysis of reaction fluxes

Legend	
	0.85+
	0.7-0.85
	0.55-0.7
	0.4-0.55
	0.2-0.4
	0.1-0.2
	0.05-0.1
	1e ⁻⁵ -0.05
	1e ⁻¹⁰ -1e ⁻⁵
	0.0-1e ⁻¹⁰

Species Visualization

For **non-equilibrium** reactions, we specify the following details:

- 1. Reaction Number
- 2. % Prod/Cons for the specific reaction
- 3. Net-rate of the reaction
- 4. Partial Equilibrium Index (pei)

For **equilibrated** reactions, we specify the following details:

- Reaction Number
- 2. % Prod/Cons for the specific reaction
- 3. Equilibrium constant for the specific reaction (with units)
- 4. Partial Equilibrium Index (pei)

Case Studies

	Species	Reactions
Ammonia synthesis	11	7
Ethanol reforming on Pt	68	162
<i>p</i> -cresol hydrodeoxygenation (HDO)	183	500

GitHub: https://github.com/VlachosGroup/ReNView

Documentation: https://github.com/VlachosGroup/renview/wiki/Documentation

Citation: U. Gupta and D. G. Vlachos, SoftwareX, 2020. 11: p. 100442

https://www.sciencedirect.com/science/article/pii/S2352711019302432

Future Work

- Preliminary work done on listing the dominant pathways in the visualization
- The output will generate the top 5 pathways (if present) from Species A to B based on users' input
- Rate-determining steps will also be identified for each pathway
- Graphical user interface for easier usability

Hands-on Exercises

Ammonia synthesis

Input specifications	
Species file	/data/example_ammonia/species_comp.out
Reactions file	/data/example_ammonia/reaction_rates.out
Initial reactant	NH3
Reaction cutoff rate	1.0E-09
Elements desired	'N', 'H'
Normalization	1 or 2 or 3
Output directory	/results/example_ammonia/

Ethanol steam reforming on Pt

Input specifications	
Species file	/data/example_sutton/species_comp.out
Reactions file	/data/example_sutton/reaction_rates.out
Initial reactant	CH3CH2OH
Reaction cutoff rate	1.0E-07
Elements desired	'C', 'O', 'H'
Normalization	1 or 2 or 3
Output directory	/results/example_sutton/

p-cresol hydrodeoxygenation (HDO)

Input specifications	
Species file	/data/example_gu_long_contact_time/species_comp.out
Reactions file	/data/example_gu_long_contact_time/reaction_rates.out
Initial reactant	PCOH
Reaction cutoff rate	1.0E-08
Elements desired	'C'
Normalization	1 or 2 or 3
Output directory	/results/example_gu_long_contact_time/

Questions?