Accounting for Mortality

Death Rates in the Age of COVID-19

Team Members

Julie Kirkpatrick

Kyle Tomlinson

Alex Melnick

Description

An investigation into the relationship between mortality rates and COVID-19.

What are the challenges involved in extrapolating data from excess mortality rates during the COVID-19 pandemic?

What are the secondary effects of the pandemic on mortality rates?

GLOBAL TOLL

By January 2022, there had been 5.5 million official COVID-19 deaths worldwide in the pandemic. But models estimate that there have been between two and four times that number of excess deaths — that is, mortality above what was expected — since the start of 2020.

Graph by David Adam. From "The Effort to Count the Pandemic's Global Death Toll" Nature, Vol 601, 20 January 2022.

Prior Work

- Substantial research has been done concerning the pandemic's effect on mortality rates, particularly excess mortality
 - Excess mortality: # of deaths occurring above the predicted mortality rates for a given population
- Majority of prior work focuses on either...
 - Total excess mortality
 - Excess mortality directly attributable to COVID-19
- Our project will replicate the basic findings of this prior work, then seek to investigate the changes in mortality rates from non-COVID causes during the pandemic

Datasets

- Human Mortality Database (HMD)
 - Accessed at: https://www.mortality.org/
 - Stored on Alex's machine locally and on Github
 - Mortality data by week and age group for 38 countries

3	CountryC	c Year	Week	Sex	DO_14	D15_64	D65_74	D75_84	D85p	DTotal	RO_14	R15_64	R65_74	R75_84	R85p	RTotal	Split	SplitSex	Forecast
108164	TWN	2020	51	f	6	271	227	415	538	1457	0.00022	0.00167	0.00985	0.03678	0.12298	0.00636	C	() 1
108165	TWN	2020	51	b	13	881	658	868	1087	3507	0.00023	0.00271	0.01509	0.0436	0.142	0.00772	C	() 1
108166	TWN	2020	52	m	10	633	419	451	556	2069	0.00033	0.00389	0.02039	0.05228	0.1695	0.00919	C	() 1
108167	TWN	2020	52	f	8	261	199	392	544	1404	0.00029	0.00161	0.00864	0.03474	0.12435	0.00613	C	() 1
108168	TWN	2020	52	b	18	894	618	843	1100	3473	0.00031	0.00275	0.01418	0.04234	0.1437	0.00765	C	() 1
108169	USA	2015	2	m	343.357	8912.98	6110.07	7516.47	8012.73	30895.6	0.00057	0.00439	0.02474	0.06495	0.19274	0.01018	1	. 1	L C
108170	USA	2015	2	f	267.905	5435.76	4601.93	7281.53	13399.3	30986.4	0.00047	0.00266	0.01637	0.0479	0.17088	0.0099	1	. 1	L C
108171	USA	2015	2	b	611.262	14348.7	10712	14798	21412	61882	0.00052	0.00352	0.02029	0.05527	0.17845	0.01004	1	. () (
108172	USA	2015	3	m	353.55	8825.92	6018.8	7413.36	7961.83	30573.5	0.00059	0.00434	0.02437	0.06406	0.19152	0.01007	1	. 1	L C
108173	USA	2015	3	f	275.858	5382.67	4533.2	7181.64	13314.2	30687.5	0.00048	0.00263	0.01613	0.04724	0.16979	0.0098	1	. 1	L C
108174	USA	2015	3	b	629.408	14208.6	10552	14595	21276	61261	0.00054	0.00349	0.01998	0.05451	0.17732	0.00994	1	. () (
108175	USA	2015	4	m	349.764	8487.22	5743.87	7214.76	7550.94	29346.6	0.00058	0.00418	0.02326	0.06234	0.18163	0.00967	1	. 1	L C
108176	USA	2015	4	f	272.904	5176.11	4326.13	6989.24	12627.1	29391.4	0.00048	0.00253	0.01539	0.04598	0.16103	0.00939	1	. 1	L C
108177	USA	2015	4	b	622.668	13663.3	10070	14204	20178	58738	0.00053	0.00335	0.01907	0.05305	0.16817	0.00953	1	. (0
108178	USA	2015	5	m	345.978	8298.85	5767.83	6986.19	7311.44	28710.3	0.00058	0.00408	0.02336	0.06037	0.17587	0.00946	1	. 1	L C
108179	USA	2015	5	f	269.95	5061.22	4344.17	6767.81	12226.6	28669.7	0.00047	0.00248	0.01546	0.04452	0.15592	0.00916	1		L C
108180	USA	2015	5	b	615.928	13360.1	10112	13754	19538	57380	0.00052	0.00328	0.01915	0.05137	0.16283	0.00931	1	. () (
108181	USA	2015	6	m	325.301	8596.27	5747.87	6967.39	7177.85	28814.7	0.00054	0.00423	0.02327	0.06021	0.17266	0.00949	1	. 1	L C

Datasets

COVID-19 Dataset

- Accessed at: https://ourworldindata.org/explorers/coronavirus-data-explorer
- Stored on Alex's machine locally and on Github
- Global COVID Statistics by country and date

1	iso_code	continent	location	date	total_case	new_case	new_case	total_deatr	new_deat	new_deat	total_case	new_case	new_case	total_deat n	ew_deat i
150818	GBR	Europe	United Kingdom	1/26/2022	16189420	102076	92151	154831	346	262.143	237356.8	1496.559	1351.047	2270.012	5.073
150819	GBR	Europe	United Kingdom	1/27/2022	16286017	96597	90683.14	155169	338	263.286	238773	1416.231	1329.526	2274.968	4.955
150820	GBR	Europe	United Kingdom	1/28/2022	16374927	88910	89662.29	155447	278	261.571	240076.5	1303.53	1314.559	2279.044	4.076
150821	GBR	Europe	United Kingdom	1/29/2022	16447070	72143	89192.86	155743	296	261.429	241134.2	1057.705	1307.677	2283.384	4.34
150822	GBR	Europe	United Kingdom	1/30/2022	16509469	62399	87421.29	155828	85	262.857	242049.1	914.846	1281.703	2284.63	1.246
150823	GBR	Europe	United Kingdom	1/31/2022	17357945			155885	57	263.286	254488.8			2285.465	0.836
150824	GBR	Europe	United Kingdom	2/1/2022	17470812	112867	76427.43	157008			256143.5	1654.769	1120.52	2301.93	
150825	GBR	Europe	United Kingdom	2/2/2022	17558231	87419	74333.57	157542	534	226.857	257425.2	1281.67	1089.821	2309.759	7.829
150826	GBR	Europe	United Kingdom	2/3/2022	17651284	93053	73827.29	157865	323	224.714	258789.5	1364.271	1082.399	2314.495	4.736
150827	GBR	Europe	United Kingdom	2/4/2022	17733624	82340	72888.71	158119	254	221.286	259996.7	1207.205	1068.638	2318.219	3.724
150828	USA	North America	United States	1/22/2020	1						0.003				
150829	USA	North America	United States	1/23/2020	1	0					0.003	0			
150830	USA	North America	United States	1/24/2020	2	1					0.006	0.003			
150831	USA	North America	United States	1/25/2020	2	0			1.00		0.006	0			
150832	USA	North America	United States	1/26/2020	5	3					0.015	0.009			
150833	USA	North America	United States	1/27/2020	5	0					0.015	0			
150834	USA	North America	United States	1/28/2020	5	0	0.571				0.015	0	0.002		
150835	USA	North America	United States	1/29/2020	6	1	0.714				0.018	0.003	0.002		

Proposed Work

- Datasets require little cleaning
- Data preprocessing reveals some mismatching attribute labels and formats
 - mm/dd/yyyy (COVID) vs. year/week(1-53) (Mortality)
 - Country ID codes
- COVID dataset missing many values
 - Iterative, automated scanning to reveal importance of missing values and potential remedies
- Datasets to be integrated
 - Separately by country
 - Together for global scale (limited to 38 countries contained in HMD)

List of Tools

- Python/Pandas
 - Powerful for data processing
 - Familiarity among team members
- Tableau
 - Visualization
 - Using Info Vis ideas from that course

Evaluation

- Exploratory regression tests
 - Which attributes affect each other
 - Will reveal further question avenues
- Clustering
 - Comparing and Contrasting on groups
- K-nearest neighbors
 - Linear algebra background on team

