ELEC 5450: Random Matrix Theory and Applications

Homework Assignment 1

Released on 2nd, March 2019

Department of Electronic and Computer Engineering

The Hong Kong University of Science and Technology

Due Date: 20th, March 2019

Grade: 20%

Submission Instructions: You should submit a hard copy of your solution to the TA during the lecture (you should also make a copy of your solution before submission), and submit to the TA through email the MATLAB code you would have generated to complete the assignment.

Important Note:

- 1) In order to get full marks, your solution should be very *clearly explained, including all relevant steps*.
- 2) Students should conduct their own work, including their own numerical experiments. Any copying of work, including code among students is considered plagiarism and will be dealt with seriously.

1

I. THE JACOBI ENSEMBLE

In random matrix theory, three classical ensembles have been extensively studied: the Gaussian, the Laguerre and the Jacobi ensembles. We are here interested in the double Wishart model, which belongs to the family of Jacobi ensembles.

For $m \geq N$, let \mathbf{Y} be an $N \times m$ matrix whose entries are complex Gaussian distributed random variables with zero-mean and whose columns are pairwise independent with covariance matrix $\mathbf{\Sigma}$. The matrix $\mathbf{Y}\mathbf{Y}^{\dagger}$, where \mathbf{Y}^{\dagger} stands for the conjugate transpose of the complex matrix \mathbf{Y} , is then a $N \times N$ complex Wishart matrix with m degrees of freedom and covariance matrix $\mathbf{\Sigma}$. We shall denote the complex Wishart distribution as $\mathcal{W}_N(m, \mathbf{\Sigma})$. We also use \mathbb{N} to denote the set of natural numbers.

If $\mathbf{A} \sim \mathcal{W}_N\left(m_1, \mathbf{\Sigma}\right)$ and $\mathbf{B} \sim \mathcal{W}_N\left(m_2, \mathbf{\Sigma}\right)$ are independent, it is known that the probability density function of the eigenvalues of the matrix $\mathbf{C} \triangleq \mathbf{A} \left(\mathbf{A} + \mathbf{B}\right)^{-1}$ is then

$$p(\lambda_1, ..., \lambda_N) \propto \prod_{i=1}^N \lambda_i^{m_1 - N} (1 - \lambda_i)^{m_2 - N} \prod_{i < j} (\lambda_i - \lambda_j)^2$$
(1)

where $m_1, m_2 > N$ and $\lambda_1, ..., \lambda_N \in [0, 1]$. The matrix C is known as complex double Wishart matrix, which belongs to the family of Jacobi ensembles.

This ensemble is closely related to the Jacobi polynomials $P_k^{(\alpha,\beta)}(x)$ (here, $\alpha,\beta\in\mathbb{N}$), which are orthogonal on [0,1] with respect to the Jacobi weight: $w_J^{(\alpha,\beta)}(x)\triangleq x^\alpha\,(1-x)^\beta$, i.e.,

$$\int_{0}^{1} w_{J}^{(\alpha,\beta)}(x) P_{k}^{(\alpha,\beta)}(x) P_{l}^{(\alpha,\beta)}(x) dx = \begin{cases} 1 & \text{if } k = l \\ 0 & \text{if } k \neq l \end{cases}$$
 (2)

For a given $k \in \mathbb{N}$, the associated Jacobi polynomial $P_k^{(\alpha,\beta)}(x)$ is of degree k, that is, it can be written in the form $P_k^{(\alpha,\beta)}(x) = \sum_i \nu_i x^i$ for a specific set of ν_i , with $\nu_k \neq 0$ and for all i > k, $\nu_i = 0$.

- 1) Prove that $\mathbf{A} + \mathbf{B} \sim \mathcal{W}_N(m_1 + m_2, \mathbf{\Sigma})$.
- 2) Prove that it is equivalent to study the eigenvalues of the matrix AB^{-1} or the eigenvalues of the matrix C.
- 3) Justify that the distribution of the eigenvalues of C is not affected by the covariance matrix Σ . Henceforth, without loss of generality, we will assume that $\Sigma = \mathbf{I}_N$ in the following.

II. APPLICATION: DISTRIBUTION OF INTERFERENCE-LIMITED MIMO

Consider a Multiple-Input Multiple-Output (MIMO) wireless communication channel in which a user with n_t antennas transmits information to a receiver with n_t antennas, as shown in Figure 1. The received signal is also affected by signals being transmitted by K interferers, with each interferer having n_t antennas. The total interference power is P_I , which is split equally among all interferers. In addition, each interferer

Figure 1. Interference-Limited MIMO system.

allocates its P_I/K power equally among their n_t transmit antennas. Furthermore, we assume that the system is interference-limited, which implies that the noise at the receiver can be neglected compared to the interference.

In this setting, the received signal vector $\mathbf{y} \in \mathbb{C}^{n_r}$ takes the form:

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \sum_{i=1}^{K} \mathbf{H}_{i}\mathbf{x}_{i},$$

where $\mathbf{H} \in \mathbb{C}^{n_r \times n_t}$ and $\mathbf{x} \in \mathbb{C}^{n_t}$ are the (fading) channel matrix and transmitted signal vector of the desired transmitter, and where $\mathbf{H}_i \in \mathbb{C}^{n_r \times n_t}$ and $\mathbf{x}_i \in \mathbb{C}^{n_t}$ represents the channel matrix and transmitted signal matrix of the i^{th} interferer, respectively. All channel matrices are assumed to have independent, identically distributed zero-mean and unit-variance complex Gaussian entries. The transmitted signal vectors are modeled as zero-mean complex Gaussian with covariance $E\left[\mathbf{x}\mathbf{x}^{\dagger}\right] = \frac{P}{n_t}\mathbf{I}_{n_t}$ and $E\left[\mathbf{x}_i\mathbf{x}_i^{\dagger}\right] = \frac{P_I}{Kn_t}\mathbf{I}_{n_t}$.

The goal of this section is to compute the ergodic capacity of the system, which is expressed as:

$$E[C] = E\left[\log \det \left(\mathbf{I}_{n_r} + \frac{P}{P_I/K} \mathbf{H} \mathbf{H}^{\dagger} \left(\mathbf{H}_I \mathbf{H}_I^{\dagger}\right)^{-1}\right)\right],\tag{3}$$

where $\mathbf{H}_I \triangleq [\mathbf{H}_1,...,\mathbf{H}_K] \in \mathbb{C}^{n_r \times Kn_t}$ is the aggregate channel matrix of the interferers.

The probability density function of the (unordered) eigenvalues $\mu_1, ..., \mu_{n_r}$ of the matrix $\mathbf{H}\mathbf{H}^{\dagger} \left(\mathbf{H}_I \mathbf{H}_I^{\dagger}\right)^{-1}$ is known to be given by

$$p(\mu_1, ..., \mu_{n_r}) \propto \prod_{k=1}^{n_r} \frac{\mu_k^{n_t - n_r}}{(1 + \mu_k)^{(K+1)n_t}} \prod_{1 \le i < j \le n_r} (\mu_i - \mu_j)^2$$
(4)

where $\mu_i \in (0, +\infty)$.

1) Show how to rewrite (4) in the form of (1), i.e.,

$$p(\lambda_1, ..., \lambda_N) \propto \prod_{i=1}^N \lambda_i^{m_1 - N} (1 - \lambda_i)^{m_2 - N} \prod_{i < j} (\lambda_i - \lambda_j)^2.$$

In particular, you shall give the explicit change of variables between μ_i and λ_i , and the relation between the sets of parameters (n_t, n_r, K) and (m_1, m_2, N) .

2) Consider N polynomials $P_0(x),...,P_{N-1}(x)$ written in the form $P_k(x) = \sum_{i=0}^k \nu_i^{(k)} x^i$, such that $\nu_k^{(k)} \neq 0$ (in other words, $P_k(x)$ is of degree k). Prove that the quantity $\prod_{1 \leq i < j \leq N} (\lambda_i - \lambda_j)^2$ can be written in terms of a determinant involving the polynomials $P_k(x)$. Write down the determinant explicitly.

Remark: It is then from this question clear that $\prod_{1 \leq i < j \leq N} (\lambda_i - \lambda_j)^2$ can be written in terms of the Jacobi polynomials $P_i^{(\alpha,\beta)}(x)$, i=1,...,N-1.

3) Write down the probability density function of the eigenvalues $\lambda_1,...,\lambda_N$ in terms of the Jacobi weight $w_J^{(\alpha,\beta)}(x)$ and the Jacobi polynomials. You don't have to determine the scaling (normalization) factor. Then, prove that it is possible to write $p(\lambda_1,...,\lambda_N)$ as

$$p(\lambda_1, ..., \lambda_N) \propto \det (K(\lambda_j, \lambda_k))_{j,k=1}^N$$

where $K(\lambda, \mu)$ should be given in terms of the Jacobi weight and the Jacobi polynomials. Prove that $K(\lambda, \mu)$ has the three properties:

$$K(\lambda, \mu) = K(\mu, \lambda) \quad (i)$$

$$\int_{0}^{1} K(\lambda, \lambda) d\lambda = N \quad (ii)$$

$$\int_{0}^{1} K(\lambda, \mu) K(\mu, \nu) d\mu = K(\lambda, \nu) \quad \text{(iii)}$$

4) For the case N=2, derive an exact expression for the marginal eigenvalue distribution $p(\lambda)$ of one arbitrary eigenvalue λ (including the explicit value of the leading normalization constant). Show in general that $p(\lambda)$ can be written as

$$p(\lambda) = \frac{1}{N} \sum_{i=0}^{N-1} \left(P_i^{(\alpha,\beta)}(\lambda) \right)^2 w_J^{(\alpha,\beta)}(\lambda).$$

5) Express the ergodic capacity $C_{\text{erg}} \triangleq E[C]$ in terms of $p(\lambda)$.

III. NUMERICAL SIMULATIONS

The simulations in this section should be done in MATLAB.

1) For the case N=2, generate 20000 realizations of the matrix $\mathbf{A} \sim \mathcal{W}_2(2, \mathbf{I}_2)$ and $\mathbf{B} \sim \mathcal{W}_2(2, \mathbf{I}_2)$. Compute the corresponding realizations of matrix $\mathbf{C} = \mathbf{A} (\mathbf{A} + \mathbf{B})^{-1}$. Plot the histogram of the set of eigenvalues of \mathbf{C} produced by the 20000 realizations.

Plot also the function $p(\lambda)$ (obtained in Section II, Question 4) superimposed on the same graph and verify that the simulated and theoretical curves agree. Repeat the same procedure for $m_2 = 4$, 6 and 8.

<u>Note</u>: You may refer to the sample code provided on the course website to plot histograms, and to compute the coefficients of the Jacobi polynomials¹.

- 2) Generate 20000 realizations of the matrix $\mathbf{A} \sim \mathcal{W}_4(5, \mathbf{I}_4)$ and $\mathbf{B} \sim \mathcal{W}_4(6, \mathbf{I}_4)$. Compute the corresponding realizations of matrix $\mathbf{C} = \mathbf{A} (\mathbf{A} + \mathbf{B})^{-1}$. Plot the histogram of the set of eigenvalues of the 20000 matrices \mathbf{C} . Plot the function $p(\lambda)$ superimposed on the same graph. Repeat the same procedure for $(N, m_1, m_2) = (20, 25, 30)$, and $(N, m_1, m_2) = (40, 50, 60)$. What do you observe?
- 3) Generate 20000 realizations of the matrix $\mathbf{A} \sim \mathcal{W}_4(5, \mathbf{I}_4)$ and $\mathbf{B} \sim \mathcal{W}_4(6, \mathbf{I}_4)$. Compute the corresponding realizations of matrix $\tilde{\mathbf{C}} = \frac{1}{m_1} \mathbf{A} \left(\frac{1}{m_1} \mathbf{A} + \frac{1}{m_2} \mathbf{B} \right)^{-1}$. Plot the histogram of the set of eigenvalues of the 20000 matrices $\tilde{\mathbf{C}}$. Superimposed on the same graph, plot for $\lambda \in [0,1]$ the function $p_{\mathrm{Jac}}(\lambda)$ defined as

$$p_{\text{Jac}}(\lambda) = \frac{\sqrt{4b_0b_2 - b_1^2}}{2\pi b_2},$$

where

$$b_0 = (c_1 - c_2) \lambda - c_1 + 2$$

$$b_1 = (2c_1 - 2c_2) \lambda^2 + (2 - 3c_1 + c_2) \lambda + c_1 - 1$$

$$b_2 = (c_1 - c_2) \lambda^3 + (-2c_1 + c_2) \lambda^2 + c_1 \lambda,$$

¹Please refer to the README.txt file associated with MATLAB sample code for details.

with $c_1 = N/m_1$ and $c_2 = N/m_2$.

Repeat the same procedure for $(N, m_1, m_2) = (20, 25, 30)$, and $(N, m_1, m_2) = (40, 50, 60)$. What do you observe? Is $p_{\text{Jac}}(\lambda)$ a good approximation for the histogram of the set of eigenvalues of the 20000 matrices $\tilde{\mathbf{C}}$ for $(N, m_1, m_2) = (40, 50, 60)$? Is $p_{\text{Jac}}(\lambda)$ a good approximation for the histogram of the set of eigenvalues of the 20000 matrices $\tilde{\mathbf{C}}$ for $(N, m_1, m_2) = (4, 5, 6)$? Justify.

4) Numerically compute and plot the ergodic capacity of the system versus transmit power P (in dB²) using equation (3) for $n_t = n_r = 4$, K = 4, $P_I = 5$ dB and P varying from 0 to 40dB. The capacity is obtained numerically by averaging the log det quantity in (3) over many realizations of the random matrix $\mathbf{H}\mathbf{H}^{\dagger}\left(\mathbf{H}_I\mathbf{H}_I^{\dagger}\right)^{-1}$. Superimposed on the same graph, plot the analytical ergodic capacity (you derived in Section II, Problem 5) versus P (in dB) for the same parameter configuration. Verify that the simulated and theoretical curves agree. Also comment on the effect of increasing the power of desired transmitter P on the ergodic capacity. As P increases, how does the ergodic capacity scale with P?

Note: if you need to compute an integral in MATLAB, you may use the fact that for a vector of points x = 0: step: 1, the quantity $step \times \sum_{k=0}^{length(x)} f(x_k)$ is a good approximation of $\int_0^1 f(y) \, dy$ when step is small. In cases where symbolic computation is challenging, using this computational trick may be helpful.

Recall that P denotes the total power of the desired transmitter (split equally among the antennas such that $E\left[\mathbf{x}\mathbf{x}^{\dagger}\right] = \frac{P}{n_t}\mathbf{I}_{n_t}$) while P_I denotes the total power across all the interferers (split equally among the interferers and equally across their antennas such that $E\left[\mathbf{x}_i\mathbf{x}_i^{\dagger}\right] = \frac{P_I}{Kn_t}\mathbf{I}_{n_t}$).

5) Fix $n_t = n_r = 4$. Plot the ergodic capacity of the system introduced in the previous section versus P (in dB, varying from 0 to 40dB) when $P_I = 5$ dB and K = 5. Repeat this experiment for K = 10, 15, ..., 35 and plot the curves on the same graph. Do the curves converge as K grows? If so, can you explain theoretically what they converge to?

Plot the ergodic capacity $E[C_{su}]$ for the single user MIMO system (we encountered in the lecture) versus P (in dB), i.e.,

$$E\left[C_{\mathrm{su}}\right] = E\left[\log\det\left(\mathbf{I} + \frac{P_{\mathrm{eqv}}}{n}\mathbf{H}\mathbf{H}^{\dagger}\right)\right]$$

for $n = n_r = n_t = 4$, and assume that $P_{\text{eqv}} = \frac{P}{P_I}$, with $P_I = 5 \text{dB}$ and P varying from 0 to 40dB. What do you observe? Explain your observations.

6) Fix K = 1, i.e., there is one interferer.

²dB is a logrithmic mearsure of a ratio. Mathmatically, $x(\text{in dB}) = 10 \log_{10} x$

- a) Plot the ergodic capacity E[C] of the interference-limited MIMO system in (3) versus P (in dB) for $n_r = 2$, $n_t = 2$, $P_I = 5$ dB and P varying from 0 to 40dB. Superimposed on the same graph, plot the same curve for different antenna numbers $(n_r, n_t) = (4, 4), (6, 6)$ and (8, 8). Comment on the effect of increasing the number of antennas on the ergodic capacity.
- b) Repeat the same experiment but plot the capacity **per receive antenna** (divide the capacity by n_r) versus P for different antenna size. Do the curves converge? Superimposed on the same graph, plot the capacity **per receive antenna** versus P using the approximation $p_{\text{Jac}}(\lambda)$ introduced in Section III Question 3. What do you observe?