선형대수학

박찬영

June 21, 2024

Contents

1	벡터	벡터공간														5							
	1.1	벡터공	간과 .	부분	공경	간																	5
		1.1.1	체 .																				5
		1.1.2	벡터·	공간																			6
	1.2	생성과	일차	독립																			8
	1.3	기저와	차워																				8

4 CONTENTS

Chapter 1

벡터공간

선형대수학은 벡터와 선형성을 보존하는 변환에 대해 다루는 과목이다. 가장 처음으로는 벡터에대해 다루도록 하자.

1.1 벡터공간과 부분공간

1.1.1 체

벡터공간을 정의하기 앞서 체가 무엇인지에 대해 이야기하고 간다.

제

정의. 체는 +와 ·에 대해 다음의 성질을 만족하는 집합 F이다.

$$\forall x, y, z \in \mathbf{F}, (x+y) + z = x + (y+z)$$

$$\forall x, y \in \mathbf{F}, x+y = y+x$$

$$\exists 0 \in \mathbf{F}, \text{ s.t. } \forall x \in \mathbf{F}, x+0 = x$$

$$\forall x \in \mathbf{F}, \exists (-x) \text{ s.t. } x+(-x) = 0$$

$$\forall x, y, z \in \mathbf{F}, (x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$\forall x, y \in \mathbf{F}, x \cdot y = y \cdot x$$

$$\exists 1 \in \mathbf{F}, \text{ s.t. } \forall x \in \mathbf{F}, x \cdot 1 = x$$

$$(\times 1)$$

 $\forall x \in \mathbf{F}, \ x \neq 0 \implies \exists \ x^{-1} \quad \text{s.t.} \quad x \cdot x^{-1} = 1 \tag{3 8}$

 $\forall x, y, z \in \mathbf{F}, \ x \cdot (y+z) = x \cdot y + x \cdot z \tag{3 9}$

대표적인 체의 예시로는 유리수체 $\mathbb Q$ 와 실수체, 복소수체 $\mathbb R$, $\mathbb C$ 가 있다. 더욱 쉬운 체의 이해는 사칙연산이 잘 정의된 집합이다.

예시 1.1.1. $\mathbb{Z}_2 = \{0,1\}$ 에 대해 덧셈(+)과 곱셈(\cdot) 을 다음과 같이 정의하자

$$0+0=0, \qquad 0+1=1, \qquad 1+0=1, \qquad 1+1=0$$

 $0\cdot 0=0, \qquad 0\cdot 1=0, \qquad 1\cdot 0=0, \qquad 1\cdot 1=1$

이면 \mathbb{Z}_2 는 체가 된다.

1.1.2 벡터공간

이제 벡터공간을 정의 해보자.

7

벡터공간

정의. 체 \mathbf{F} 에 대해 +와 \cdot 이 정의되어 다음 조건을 만족하는 집합 V를 벡터공간이라고 한다.

$$\forall a \in \mathbf{F}, \ \forall \mathbf{x}, \mathbf{y} \in V, \ \mathbf{x} + \mathbf{y} \in V, \ a \cdot \mathbf{x} \in V$$
 (벡터공간 1)
$$\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in V, \ (\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$$
 (벡터공간 2)
$$\forall \mathbf{x}, \mathbf{y} \in V, \ \mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$$
 (벡터공간 3)
$$\exists \mathbf{0} \in V, \quad \text{s.t.} \quad \forall \mathbf{x} \in V, \ \mathbf{x} + \mathbf{0} = \mathbf{x}$$
 (벡터공간 4)
$$\forall \mathbf{x} \in V, \ \exists \ \mathbf{y} \quad \text{s.t.} \quad \mathbf{x} + \mathbf{y} = \mathbf{0}$$
 (벡터공간 5)
$$\forall a, b \in \mathbf{F}, \ \forall \mathbf{x} \in V, \ (a \cdot b) \cdot \mathbf{x} = a \cdot (b \cdot \mathbf{x})$$
 (벡터공간 6)
$$\exists \mathbf{1} \in \mathbf{F}, \quad \text{s.t.} \quad \forall \mathbf{x} \in V, \ \mathbf{1} \cdot \mathbf{x} = \mathbf{x}$$
 (벡터공간 7)
$$\forall a, b \in \mathbf{F}, \ \forall \mathbf{x} \in V, \ (a + b) \cdot \mathbf{x} = a \cdot \mathbf{x} + b \cdot \mathbf{x}$$
 (벡터공간 8)
$$\forall a \in \mathbf{F}, \ \forall \mathbf{x}, \mathbf{y} \in V, \ a \cdot (\mathbf{x} + \mathbf{y}) = a \cdot \mathbf{x} + b \cdot \mathbf{y}$$
 (벡터공간 9)

벡터공간의 원소를 벡터라고 부르고 체 F의 원소를 스칼라라고 부른다. 이제 벡터공간의 정의로부터 이끌어내는 성질들을 살펴보자.

정리 1.1.1. 벡터공간 V에 대해 다음이 성립한다.

- $(1) \mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ 에 대해 $\mathbf{x} + \mathbf{z} = \mathbf{y} + \mathbf{z} \Leftrightarrow \mathbf{x} = \mathbf{y}$ 이다.
- (2) $\forall \mathbf{x} \in V, \ 0 \cdot \mathbf{x} = \mathbf{0}$
- (3) $\mathbf{x} + \mathbf{y} = \mathbf{0}$ 인 y는 유일하고, $\mathbf{y} = -1 \cdot \mathbf{x} = -\mathbf{x}$ 이다.
- $(4) \forall a \in \mathbf{F}, \ a \cdot \mathbf{0} = \mathbf{0}$ 이다.

증명

- (1) z + v = 0인 v를 더하면 보일 수 있다.
- $(2) 0\mathbf{x} = (0+0)\mathbf{x}$ 에서 보일 수 있다.
- (3) x + y = 0 = 0x = (1 1)x = x x (1)에의해 y = -x
- (4) (2)와 유사하다.

- 1.2 생성과 일차독립
- 1.3 기저와 차원