ELEMENTS OF PHOTONICS Volume II

WILEY SERIES IN PURE AND APPLIED OPTICS

Founded by Stanley S. Ballard, University of Florida

EDITOR: Bahaa E.A. Saleh, Boston University

BEISER. Holographic Scanning

BERGER. SCHUNN. Practical Color Measurement

BOYD. Radiometry and The Detection of Optical Radiation

BUCK. Fundamentals of Optical Fibers

CATHEY. Optical Information Processing and Holography

CHUANG. Physics of Optoelectronic Devices

DELONE AND KRAINOV. Fundamentals of Nonlinear Optics of Atomic Gases

DERENIAK AND BOREMAN. Infrared Detectors and Systems

DERENIAK AND CROWE. Optical Radiation Detectors

DE VANY. Master Optical Techniques

GASKILL. Linear Systems, Fourier Transform, and Optics

GOODMAN. Statistical Optics

HOBBS. Building Electro-Optical Systems: Making It All Work

HUDSON. Infrared System Engineering

JUDD AND WYSZECKI. Color in Business, Science, and Industry. Third Edition

KAFRI AND GLATT. The Physics of Moire Metrology

KAROW. Fabrication Methods for Precision Optics

KLEIN AND FURTAK. Optics, Second Edition

MALACARA. Optical Shop Testing, Second Edition

MILONNI AND EBERLY. Lasers

NASSAU. The Physics and Chemistry of Color

NIETO-VESPERINAS. Scattering and Diffraction in Physical Optics

O'SHEA. Elements of Modern Optical Design

SALEH AND TEICH. Fundamentals of Photonics

SCHUBERT AND WILHELMI. Nonlinear Optics and Quantum Electronics

SHEN. The Principles of Nonlinear Optics

UDD. Fiber Optic Sensors: An Introduction for Engineers and Scientists

UDD. Fiber Optic Smart Structures

VANDERLUGT. Optical Signal Processing

VEST. *Holographic Interferometry*

VINCENT. Fundamentals of Infrared Detector Operation and Testing

WILLIAMS AND BECKLUND. Introduction to the Optical Transfer Function

WYSZECKI AND STILES. Color Science: Concepts and Methods, Quantitative Data and Formulae, Second Edition

XU AND STROUD. Acousto-Optic Devices

YAMAMOTO. Coherence, Amplification, and Quantum Effects in Semiconductor Lasers

YARIV AND YEH. Optical Waves in Crystals

YEH. Optical Waves in Layered Media

YEH. Introduction to Photorefractive Nonlinear Optics

YEH AND GU. Optics of Liquid Crystal Displays

IIZUKA. Elements of Photonics Volume I: In Free Space and Special Media

IIZUKA. Elements of Photonics Volume II: For Fiber and Integrated Optics

ELEMENTS OF PHOTONICS

Volume II For Fiber and Integrated Optics

Keigo lizuka

University of Toronto

Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration.

Copyright @ 2002 by John Wiley & Sons, Inc., New York. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic or mechanical, including uploading, downloading, printing, decompiling, recording or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ@WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold with the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional person should be sought.

ISBN 0-471-22137-6

This title is also available in print as ISBN 0-471-40815-8.

For more information about Wiley products, visit our web site at www.Wiley.com.

Kuro, starling dear, nature's gentle companion from start to finish

CONTENTS

Volume I

Pr	Preface			XXV
1	Fourier Optics: Concepts and Applications			1
	1.1	Plane W	Vaves and Spatial Frequency / 1	
			Plane Waves / 1	
		1.1.2	Spatial Frequency / 4	
	1.2	Fourier	Transform and Diffraction Patterns in Rectangular	
			ates / 9	
	1.3	Fourier	Transform in Cylindrical Coordinates / 16	
	1.4		Functions in Photonics and Their Fourier	
		Transfo	rms / 20	
		1.4.1	Rectangle Function / 20	
			Triangle Function / 21	
			Sign and Step Functions / 25	
			Circle Function / 25	
			Delta Function / 28	
			Shah Function (Impulse Train Function) / 30	
		1.4.7	Diffraction from an Infinite Array of Similar Apertures	
		1.40	with Regular Spacing / 32	
		1.4.8	Diffraction from an Infinite Array of Similar Apertures	
		1.4.9	with Irregular Spacing / 36 Diffraction from a Finite Armoy / 37	
	1.5		Diffraction from a Finite Array / 37	
	1.5		nvex Lens and Its Functions / 40	
			Phase Distribution After a Plano-Convex Lens / 41	
			Collimating Property of a Convex Lens / 42	
			Imaging Property of a Convex Lens / 43	
			Fourier Transformable Property of a Convex Lens / 46 How Can a Convex Lens Perform the Fourier	
		1.3.3	Transform? / 50	
		1.5.6	Invariance of the Location of the Input Pattern to the	
			Fourier Transform / 50	
	1.6	Spatial	Frequency Approaches in Fourier Optics / 52	
		1.6.1	Solution of the Wave Equation by Means of the Fourier	
			Transform / 52	
		1.6.2		
		1.6.3	Identifying the Spatial Frequency Components / 60	

1.7	Spatial Filters / 61	
	1.7.1 Image Processing Filters / 61	
	1.7.2 Optical Correlators / 64	
	1.7.2.1 Vander Lugt Correlator / 64	
	1.7.2.2 Detailed Analysis of the Vander Lugt	
	Correlator / 66	
	1.7.2.3 Joint Transform Correlator / 70	
	1.7.2.4 Comparison Between VLC and JTC / 72	
	1.7.3 Rotation and Scaling / 73	
	1.7.4 Real-Time Correlation / 77	
	1.7.5 Cryptograph / 78	
1.8	Holography / 81	
	1.8.1 Gabor-Type Hologram / 82	
	1.8.2 Off-Axis Hologram / 85	
	1.8.3 Pseudoscopic Image / 87	
	1.8.4 Volume Hologram / 87	
	1.8.5 Applications of Holography / 92	
	1.8.5.1 Three-Dimensional Displays / 92	
	1.8.5.2 Microfiche Recording / 93	
	1.8.5.3 Measurement of Displacement / 93	
	1.8.5.4 Measurement of Vibration 95	
	1.8.5.5 Nonoptical Holographies / 95 1.8.5.6 Computer-Generated Holograms / 97	
	1.8.5.7 Holographic Video Display / 99	
Proble	~ · · · · · · · · · · · · · · · · · · ·	
	rences / 108	
Refer	chees / 100	
Boun	ndaries, Near-Field Optics, and Near-Field Imaging	110
2.1	Boundary Conditions / 110	
2.2	Snell's Law / 112	
2.3	Transmission and Reflection Coefficients / 113	
	2.3.1 Transmission and Reflection Coefficients (at Normal	
	Incidence) / 114	
	2.3.2 Transmission and Reflection Coefficients (at an Arbitrary	
	Incident Angle) / 118	
	2.3.3 Impedance Approach to Calculating Transmission and	
	Reflection Coefficients / 124	
2.4	Transmittance and Reflectance (at an Arbitrary Incident	
	Angle) / 124	
2.5	Brewster's Angle / 127	
2.6	Total Internal Reflection / 130	
	2.6.1 Bends in a Guide / 131	
2.7	Wave Expressions of Light / 132	
	2.7.1 Fields Near the Boundary / 133	
2.8	The Evanescent Wave / 134	
	2.8.1 Transmission and Reflection Coefficients for Total	
	Internal Reflection / 135	

	2.8.2	Goos-Hänchen Shift / 141
		Evanescent Field and Its Adjacent Fields / 142
	2.8.4	k Diagrams for the Graphical Solution of the Evanescent Wave / 145
2.9	What C	enerates the Evanescent Waves? / 147
	2.9.1	Structures for Generating Evanescent Waves / 147
2.10	Diffract	ion-Unlimited Images out of the Evanescent
	Wave	/ 150
		Resolution of a Lens-Type Microscope / 150 Near-Field Optical Microscopes / 152
		2.10.2.1 Photon Tunneling Microscope 152 2.10.2.2 Scanning Near-Field Optical Microscope (SNOM) 154
	2.10.3	Probes to Detect the Evanescent Field / 154
		Apertures of the SNOM Probes / 158
		Modes of Excitation of the SNOM Probes / 158
		SNOM Combined with AFM / 160
Duobl	2.10./ ems /	Concluding Remarks / 161 163
	ences /	
KCICI	clices /	104
		Resonators, Beams, and Radiation Pressure 166
3.1		Pérot Resonators / 166
	3.1.1	
	3.1.2	Resonator / 167
	3.1.2	Transmittance and Reflectance of the Fabry–Pérot Resonator with an Arbitrary Angle of Incidence / 170
3.2	The Sc	anning Fabry–Pérot Spectrometer / 176
3.2	3.2.1	Scanning by the Reflector Spacing / 177
	3.2.1	3.2.1.1 Fabry–Pérot Resonator with a Fixed Resonator
		Spacing (Etalon) 179
		3.2.1.2 Monochromatic Incident Light with Scanned
		Reflector Spacing 179
		3.2.1.3 Free Spectral Range (FSR) / 179
	3.2.2	Scanning by the Angle of Incidence / 184
	3.2.3	Scanning by the Index of Refraction / 187
	3.2.4	Scanning by the Frequency of Incident Light / 190
3.3	Resolvi	ng Power of the Fabry–Pérot Resonator / 192
3.4		al Aspects of Operating the Fabry-Pérot
		ometer / 199
	3.4.1	Methods for Parallel Alignment of the Reflectors / 199
	3.4.2	Method for Determining the Spacing Between the
	2 4 2	Reflectors / 202 Spectral Measurements Without Absolute Measurement
	3.4.3	Spectral Measurements Without Absolute Measurement of d / 203
3.5	The Co	
ر. ر	3.5.1	1
	5.5.1	i undamental Mode / 200

	3.5.2	Properties of the q Parameter / 208
		3.5.2.1 Beam Waist / 208
		3.5.2.2 Location of the Waist / 208
		3.5.2.3 Radius of Curvature of the Wavefront / 208
	3.5.3	With the Origin at the Waist / 209
		3.5.3.1 Focal Parameters / 209
		3.5.3.2 Correction Factor / 210
	3.5.4	Gaussian Beam Expressions / 211
		3.5.4.1 Amplitude Distribution / 211
		3.5.4.2 Intensity Distribution / 211
		3.5.4.3 Angle of the Far-Field Divergence / 212 3.5.4.4 Depth of Focus / 213
3.6	Transfo	ormation of a Gaussian Beam by a Lens / 214
	3.6.1	Transformation of the q Parameter by a Lens / 215
		Size of the Waist of the Emergent Beam / 216
		Location of the Waist of the Emergent Beam / 217
		Rayleigh Range of the Emergent Beam / 218
	3.0.3	Angle of the Far-Field Divergence of the Emergent Beam / 218
	3.6.6	Comparison with Ray Optics / 218
	3.6.7	Summary of the Equations of the Transformation by a
		Lens / 219
	3.6.8	Beam Propagation Factor m^2 / 220
3.7		e Gaussian Beam (Higher Order Modes) / 223
3.8		nussian Beam in a Spherical Mirror Cavity / 227
3.9 3.10		nce Frequencies of the Cavity / 232 al Aspects of the Fabry–Pérot Interferometer / 234
5.10		
		Plane Mirror Cavity / 234 General Spherical Mirror Cavity / 235
		Focal Cavity / 235
		Confocal Cavity / 236
3.11		Beams / 237
	3.11.1	Features of the Bessel Beam / 237
	3.11.2	Practical Applications of the Bessel Beam / 239
		3.11.2.1 Precision Optical Measurement / 239
		3.11.2.2 Power Transport / 239
	2 11 2	3.11.2.3 Nonlinear Optics / 239
		One-Dimensional Model / 239 Mathematical Expressions for the Bessel Beam / 242
		Methods of Generating Bessel Beams / 245
3.12	Manipu	lation with Light Beams / 249
	3.12.1 3.12.2	Radiation Pressure of Laser Light / 249 Optical Tweezers / 251
3.13		Cooling of Atoms / 254
Proble		255
		260

4	Prop	opagation of Light in Anisotropic Crystals		
	4.1 4.2 4.3 4.4	Susceptibility of an Anisotropic Crystal / 266 The Wave Equation in an Anisotropic Medium / 268		
	7.7	Crystals / 269		
		4.4.1 Graphical Derivation of the Condition of Propagation in a Uniaxial Crystal / 270		
		 4.4.2 Analytical Representation of the Conditions of Propagation in a Uniaxial Crystal / 273 4.4.3 Wavenormal and Ray Direction / 275 		
		4.4.4 Derivation of the Effective Index of Refraction / 280		
	4.5	Graphical Methods / 282		
		4.5.1 Wavevector Method / 2824.5.2 Indicatrix Method / 285		
	4.6	Treatment of Boundary Problems Between Anisotropic Media by the Indicatrix Method / 292		
		4.6.1 Refraction of the e-Wave at the Boundary of Anisotropic Media / 292		
		4.6.2 Reflection of the e-Wave at the Boundary of Anisotropic Media / 294		
		4.6.3 Total Internal Reflection of the e-Wave at the Boundary of Anisotropic Media / 296		
	Probl	ems / 298		
	Refer	ences / 301		
5			302	
5	Optio	cal Properties of Crystals Under Various External Fields Expressing the Distortion of the Indicatrix / 302	302	
5	Optio	cal Properties of Crystals Under Various External Fields Expressing the Distortion of the Indicatrix / 302 Electrooptic Effects / 304	302	
5	Optio	ences / 301 cal Properties of Crystals Under Various External Fields Expressing the Distortion of the Indicatrix / 302 Electrooptic Effects / 304 5.2.1 Pockels Electrooptic Effect / 304	302	
5	Optio	Expressing the Distortion of the Indicatrix / 302 Electrooptic Effects / 304 5.2.1 Pockels Electrooptic Effect / 304 5.2.2 Kerr Electrooptic Effect / 316	302	
5	5.1 5.2	cal Properties of Crystals Under Various External Fields Expressing the Distortion of the Indicatrix / 302 Electrooptic Effects / 304 5.2.1 Pockels Electrooptic Effect / 304 5.2.2 Kerr Electrooptic Effect / 316 Elastooptic Effect / 317 Magnetooptic Effect / 326	302	
5	5.1 5.2	eal Properties of Crystals Under Various External Fields Expressing the Distortion of the Indicatrix / 302 Electrooptic Effects / 304 5.2.1 Pockels Electrooptic Effect / 304 5.2.2 Kerr Electrooptic Effect / 316 Elastooptic Effect / 317 Magnetooptic Effect / 326 5.4.1 Faraday Effect / 326	302	
5	5.1 5.2 5.3 5.4	cal Properties of Crystals Under Various External Fields Expressing the Distortion of the Indicatrix / 302 Electrooptic Effects / 304 5.2.1 Pockels Electrooptic Effect / 304 5.2.2 Kerr Electrooptic Effect / 316 Elastooptic Effect / 317 Magnetooptic Effect / 326 5.4.1 Faraday Effect / 326 5.4.2 Cotton-Mouton Effect / 327	302	
5	5.1 5.2	eal Properties of Crystals Under Various External Fields Expressing the Distortion of the Indicatrix / 302 Electrooptic Effects / 304 5.2.1 Pockels Electrooptic Effect / 304 5.2.2 Kerr Electrooptic Effect / 316 Elastooptic Effect / 317 Magnetooptic Effect / 326 5.4.1 Faraday Effect / 326	302	
5	5.1 5.2 5.3 5.4	Expressing the Distortion of the Indicatrix / 302 Electrooptic Effects / 304 5.2.1 Pockels Electrooptic Effect / 304 5.2.2 Kerr Electrooptic Effect / 316 Elastooptic Effect / 317 Magnetooptic Effect / 326 5.4.1 Faraday Effect / 326 5.4.2 Cotton-Mouton Effect / 327 Optical Isolator / 327 5.5.1 Polarization-Dependent Optical Isolator / 328	302	
5	5.1 5.2 5.3 5.4	Expressing the Distortion of the Indicatrix / 302 Electrooptic Effects / 304 5.2.1 Pockels Electrooptic Effect / 304 5.2.2 Kerr Electrooptic Effect / 316 Elastooptic Effect / 317 Magnetooptic Effect / 326 5.4.1 Faraday Effect / 326 5.4.2 Cotton-Mouton Effect / 327 Optical Isolator / 327 5.5.1 Polarization-Dependent Optical Isolator / 328 5.5.2 Polarization-Independent Optical Isolator / 330 Photorefractive Effect / 331 Optical Amplifier Based on the Photorefractive Effect / 334 5.7.1 Enhanced Photorefractive Effect by an External Electric Field / 334	302	
5	5.1 5.2 5.3 5.4 5.5	Expressing the Distortion of the Indicatrix / 302 Electrooptic Effects / 304 5.2.1 Pockels Electrooptic Effect / 304 5.2.2 Kerr Electrooptic Effect / 316 Elastooptic Effect / 317 Magnetooptic Effect / 326 5.4.1 Faraday Effect / 326 5.4.2 Cotton-Mouton Effect / 327 Optical Isolator / 327 5.5.1 Polarization-Dependent Optical Isolator / 328 5.5.2 Polarization-Independent Optical Isolator / 330 Photorefractive Effect / 331 Optical Amplifier Based on the Photorefractive Effect / 334 5.7.1 Enhanced Photorefractive Effect by an External Electric	302	
5	5.1 5.2 5.3 5.4 5.5	Expressing the Distortion of the Indicatrix / 302 Electrooptic Effects / 304 5.2.1 Pockels Electrooptic Effect / 304 5.2.2 Kerr Electrooptic Effect / 316 Elastooptic Effect / 317 Magnetooptic Effect / 326 5.4.1 Faraday Effect / 326 5.4.2 Cotton-Mouton Effect / 327 Optical Isolator / 327 5.5.1 Polarization-Dependent Optical Isolator / 328 5.5.2 Polarization-Independent Optical Isolator / 330 Photorefractive Effect / 331 Optical Amplifier Based on the Photorefractive Effect / 334 5.7.1 Enhanced Photorefractive Effect by an External Electric Field / 334 5.7.2 Energy Transfer in the Crystal / 335	302	

5.10	Liquid (Crystals / 341	
	5.10.1	Types of Liquid Crystals / 341	
		5.10.1.1 Cholesteric / 342	
		5.10.1.2 Smectic / 343	
		5.10.1.3 Nematic / 343	
		5.10.1.4 Discotic / 344	
	5.10.2	Molecular Orientations of the Nematic Liquid Crystal Without an External Field / 344	
	5.10.3	Molecular Reorientation of the Nematic Liquid Crystal	
	5.10.5	with an External Electric Field / 345	
	5.10.4	Liquid Crystal Devices / 346	
		5.10.4.1 Liquid Crystal Fabry-Pérot Resonator / 346	
		5.10.4.2 Liquid Crystal Rotatable Waveplate / 346	
		5.10.4.3 Liquid Crystal Microlens / 347	
		5.10.4.4 Twisted Nematic (TN) Liquid Crystal Spatial Light Modulator (TNSLM) / 349	
		5.10.4.5 Electrically Addressed Spatial Light Modulator (EASLM) / 350	
		5.10.4.6 Optically Addressed Spatial Light Modulator	
		(OASLM) / 351	
		5.10.4.7 Polymer-Dispersed Liquid Crystal (PDLC)-Type Spatial Light Modulator (SLM) / 352	
	5 10 5	Guest–Host Liquid Crystal Cell / 353	
		Ferroelectric Liquid Crystal / 354	
5 11		oped Liquid Crystal / 357	
	ems /		
	ences /		
		of Light	362
6.1		ction / 363	
6.2		Diagrams for Graphical Solutions / 365	
		Linearly Polarized Light Through a Retarder / 365	
		Sign Conventions / 368 Handedness / 374	
		Decomposition of Elliptically Polarized Light / 375	
	6.2.5	Transmission of an Elliptically Polarized Wave Through a	
	0.2.0	$\lambda/4$ Plate / 377	
6.3	Various	Types of Retarders / 378	
	6.3.1	Waveplates / 379	
	6.3.2	Compensator / 380	
	6.3.3	Fiber-Loop Retarder / 382	
6.4	How to	Use Waveplates / 385	
	6.4.1	How to Use a Full-Waveplate / 385	
	6.4.2	How to Use a Half-Waveplate / 385	
	6.4.3	How to Use a Quarter-Waveplate / 386	
		6.4.3.1 Conversion from Linear to Circular Polarization by Means of a λ/4 Plate / 386	

		6.4.3.2 Converting Light with an Unknown State of Polarization into Linearly Polarized Light by Means of a λ/4 Plate / 389	
		6.4.3.3 Measuring the Retardance of a Sample / 392	
		6.4.3.4 Measurement of Retardance of an Incident Field / 393	
6.5	Linear	Polarizers / 394	
	6.5.1	Dichroic Polarizer / 394	
	6.5.2	Birefringence Polarizer or Polarizing Prism / 402	
	6.5.3	Birefringence Fiber Polarizer / 404	
	6.5.4	Polarizers Based on Brewster's Angle and	
		Scattering / 407	
	6.5.5	Polarization Based on Scattering / 408	
6.6		rly Polarizing Sheets / 409	
		Antiglare Sheet / 409	
	6.6.2	Monitoring the Reflected Light with Minimum	
		Loss / 411	
6.7	Rotator	s / 412	
		Saccharimeter / 417	
		Antiglare TV Camera / 419	
6.8	The Jor	nes Vector and the Jones Matrix / 421	
	6.8.1		
	6.8.2		
		The Jones Matrix of a Rotator / 425	
	6.8.4		
6.9		of Polarization and Their Component Waves / 431	
	6.9.1	Wave / 431	
	6.9.2	Azimuth of the Principal Axes of an Elliptically Polarized Wave / 434	
	6.9.3	1 1 1	
		Conservation of Energy / 437	
	6.9.5	to Those of Component Waves / 439	
	6.9.6	3	
Proble		446	
Refere	ences	/ 449	
		struct and Use the Poincaré Sphere	451
7.1	-	nent Field Ratio in the Complex Plane / 452	
7.2		ant Azimuth θ and Ellipticity ϵ Lines in the Component	
		atio Complex Plane / 455	
	7.2.1		
7.3	7.2.2	r	
7.3		Diagram / 459	
	7.3.1		
	7.3.2	E 3	
	7.3.3	Solution Using a Custom-Made Argand Diagram / 468	

7.4 From Argand Diagram to Poincaré Sphere / 469	
7.4.1 Analytic Geometry of Back-Projection / 469 7.4.2 Poincaré Sphere / 474	
7.4.2 Folincaré Sphere / 4/4 7.5 Poincaré Sphere Solutions for Retarders / 479	
7.6 Poincaré Sphere Solutions for Polarizers / 485	
7.7 Poincaré Sphere Traces / 490	
7.8 Movement of a Point on the Poincaré Sphere / 494	
7.8.1 Movement Along a Line of Constant Longitude	
(or Constant θ Line) / 494	
7.8.2 Movement Along a Line of Constant Latitude	
(or Constant β Line) / 497	
Problems / 501	
References / 503	
8 Phase Conjugate Optics	504
8.1 The Phase Conjugate Mirror / 504	
8.2 Generation of a Phase Conjugate Wave Using a	
Hologram / 504	
8.3 Expressions for Phase Conjugate Waves / 507	
8.4 Phase Conjugate Mirror for Recovering Phasefront	
Distortion / 508	
8.5 Phase Conjugation in Real Time / 5118.6 Picture Processing by Means of a Phase Conjugate Mirror / 512	
8.7 Distortion-Free Amplification of Laser Light by Means of a Phase	
Conjugate Mirror / 513	
8.8 Self-Tracking of a Laser Beam / 514	
8.9 Picture Processing / 519	
8.10 Theory of Phase Conjugate Optics / 521	
8.10.1 Maxwell's Equations in a Nonlinear Medium / 521	
8.10.2 Nonlinear Optical Susceptibilities $\chi^{(2)}$ and $\chi^{(3)}$ / 523	
8.10.3 Coupled Wave Equations / 526	
8.10.4 Solutions with Bohr's Approximation / 529	
8.11 The Gain of Forward Four-Wave Mixing / 533	
8.12 Pulse Broadening Compensation by Forward Four-Wave	
Mixing / 537	
Problems / 541	
References / 543	
Appendix A Derivation of the Fresnel-Kirchhoff Diffraction Formula	- 4 -
from the Rayleigh-Sommerfeld Diffraction Formula	545
Appendix B Why the Analytic Signal Method is Not Applicable to the Nonlinear System	547
Appendix C Derivation of P_{NL}	551
Answers to Problems	554
Index	I-1

CONTENTS

Volume II

Pre	face		XXV
9	Plana	r Optical Guides for Integrated Optics	605
	9.1	Classification of the Mathematical Approaches to the Slab	
		Optical Guide / 606	
	9.2		
	9.3	Characteristic Equations of the TM Modes / 610	
		9.3.1 Solutions for K and γ / 610	
		9.3.2 Examples Involving TM Modes / 612	
	9.4	Cross-Sectional Distribution of Light and its Decomposition	
		into Component Plane Waves / 615	
	9.5	Effective Index of Refraction / 619	
	9.6		
	9.7	e	
		Equations / 622	
		9.7.1 Coefficient Matrix Method / 623	
		9.7.2 Transmission Matrix Method (General	
		Guides) / 625	
		9.7.3 Transmission Matrix Method (Symmetric	
		Guide) / 630	
		9.7.4 Modified Ray Model Method / 636	
	9.8	Asymmetric Optical Guide / 638	
	9.9	Coupled Guides / 643	
		9.9.1 Characteristic Equations of the Coupled Slab	
		Guide / 643	
		9.9.2 Amplitude Distribution in the Coupled Slab	
		Guide / 646	
		9.9.3 Coupling Mechanism of the Slab Guide	
		Coupler / 651	
		ms / 652	
	Refere	nces / 654	
10	Optica	al Waveguides and Devices for Integrated Optics	655
	10.1	Rectangular Optical Waveguide / 655	
		10.1.1 Assumptions / 655	
		1	

```
10.1.2 Characteristic Equation for the Rectangular
              Guide / 657
      10.1.3 A Practical Example / 659
10.2 Effective Index Method for Rectangular Optical Guides / 661
10.3 Coupling Between Rectangular Guides / 664
10.4 Conflection / 666
      10.4.1 Conflection Lens / 667
10.5 Various Kinds of Rectangular Optical Waveguides for Integrated
     Optics / 670
      10.5.1 Ridge Guide / 670
      10.5.2 Rib Guide / 670
      10.5.3 Strip-Loaded Guide / 671
      10.5.4 Embedded Guide / 671
      10.5.5 Immersed Guide / 672
      10.5.6 Bulge Guide / 672
      10.5.7 Metal Guide / 672
      10.5.8 Buffered Metal Guide / 672
      10.5.9 Photochromic Flexible Guide / 672
10.6 Power Dividers / 673
      10.6.1 The Y Junction and Arrayed-Waveguide
              Grating / 673
      10.6.2 Power Scrambler / 677
     Optical Magic T / 678
10.7
     Electrode Structures / 680
10.8
      10.8.1 Laminated Electrodes / 680
             Electrode Configurations / 681
      10.8.2
               10.8.2.1 Applying a Longitudinal Field to Bulk
                        Waves / 681
               10.8.2.2 Applying a Transverse Field to Bulk
                        Waves 1 681
               10.8.2.3 Vertical Field in an Embedded
                        Guide | 683
               10.8.2.4 Vertical Field in Adjacent Embedded
                        Guides | 683
               10.8.2.5 Velocity Matched Mach–Zehnder
                        Interferometer / 683
               10.8.2.6 Horizontal Field in an Embedded
                        Guide / 683
               10.8.2.7 Horizontal Field in a Rib Guide / 684
               10.8.2.8 Horizontal and Vertical Fields / 684
               10.8.2.9 Periodic Vertical Field / 684
              10.8.2.10 Periodic Horizontal Field / 684
              10.8.2.11 Trimming Electrodes / 684
              10.8.2.12 Switching Electrodes / 685
10.9 Mode Converter / 685
Problems / 688
References / 690
```

11	11.1		spersion in Optical Fibers Aspects of Optical Fibers / 693
			Numerical Aperture of a Fiber / 693
			Transmission Loss of Fibers / 694
			Loss Increase Due to Hydrogen and Gamma-Ray
		111110	Irradiation / 695
		11.1.4	
		11.1.5	•
		11.1.6	•
			Various Kinds of Optical Fibers / 703
			11.1.7.1 Multimode Step-Index Fiber / 703
			11.1.7.2 Multimode Graded-Index Fiber / 705
			11.1.7.3 Single-Mode Fiber / 705
			11.1.7.4 Dispersion-Shifted Fiber / 705
			11.1.7.5 Silica Core Fluorine-Added Cladding
			Fiber / 705
			11.1.7.6 Plastic Fiber / 706
			11.1.7.7 Multi-Ingredient Fiber / 706
			11.1.7.8 Holey Optical Fiber (HF) / 706
			11.1.7.9 Polarization-Preserving Fiber / 707
		11.1.8	1
			Fibers / 708
	11.2		of Step-Index Fibers / 709
		11.2.1	Solutions of the Wave Equations in Cylindrical
			Coordinates / 709
		11.2.2	1 1
			11.2.2.1 Solutions in the Core Region / 713
			11.2.2.2 Solutions in the Cladding Region / 714
		11.2.3	1 ψ ψ
			Components / 715
			Characteristic Equation of an Optical Fiber / 717
		11.2.5	1
			11.2.5.1 Meridional Modes: $v = 0 / 718$
	11.0	E: 11 E:	11.2.5.2 Skew Modes: $v \neq 0$ / 721
	11.3		stributions Inside Optical Fibers / 730
			Sketching Hybrid Mode Patterns / 732
		11.3.2	Sketching Linearly Polarized Mode Patterns / 735
	11.4		de Fiber / 739
	11.5	-	printed Bragg Grating Fiber / 741
		11.5.1	Methods of Writing Photoinduced Bragg Gratings in
			an Optical Fiber / 742
			11.5.1.1 Internal Writing / 743
			11.5.1.2 Holographic Writing / 743
			11.5.1.3 Point-by-Point Writing / 744

11.5.1.4 Writing by a Phase Mask / 744
 11.5.2 Applications of the Photoinduced Bragg Gratings in an Optical Fiber / 744

11.6	Definitio	ons Associated with Dispersion / 748	
	11.6.1	Definitions of Group Velocity and Group	
		Delay / 748	
		Definition of the Dispersion Parameter / 749	
11.7	Dispersion	on-Shifted Fiber / 749	
		Group Delay in an Optical Fiber / 749	
		Dispersion Parameter of an Optical Fiber / 751	
11.8	Dispersion	on Compensator / 755	
		Phase Conjugation Method / 755	
		Bragg Grating Method / 755	
		Dual-Mode Fiber Method / 757	
11.9	-	ory for Graded-Index Fibers / 759	
		Eikonal Equation / 759	
		Path of Light in a Graded-Index Fiber / 762	
	11.9.3	Quantization of the Propagation Constant in a	
	1104	Graded-Index Fiber / 766 Dispersion of Graded-Index Fibers / 768	
		Mode Patterns in a Graded-Index Fiber / 770	
11 10		ion of Optical Fibers / 775	
11.10	11.10.1	Fabrication of a Fiber by the One-Stage	
	11.10.1	Process / 775	
	11.10.2	Fabrication of a Fiber by the Two-Stage	
	1111012	Process / 777	
		11.10.2.1 Fabrication of Preforms / 777	
		11.10.2.2 Drawing into an Optical Fiber / 782	
11.11	Cabling	of Optical Fibers / 783	
11.12	Joining I	Fibers / 786	
	11.12.1	Splicing Fibers / 786	
		Optical Fiber Connector / 790	
	ns / 79		
Referei	nces /	793	
Detect	ting Ligh	t	796
12.1		ıltiplier Tube / 796 amera / 798	
12.2		neous Types of Light Detectors / 800	
12.3		todiode and APD / 801	
12.1	12.4.1	Physical Structures of PIN and APD	
	12.7.1	Photodetectors / 801	
	12.4.2	Responsivity of the PIN Photodiode and	
		APD / 803	
12.5	Direct D	etection Systems / 805	
12.6		t Detection Systems / 807	
	12.6.1		
	12.6.2	Homodyne Detection / 809	
	12.6.3	Intradyne System / 812	

		Balanced Mixer / 814 Detection by Stimulated Effects / 815 12.8.1 Stimulated Effects / 816 12.8.2 Homodyne Detection by Stimulated Brillouin Scattering / 817	
	12.9	Jitter in Coherent Communication Systems / 819 12.9.1 Polarization Jitter Controls / 819 12.9.1.1 Computer-Controlled Method of Jitter Control / 820 12.9.1.2 Polarization Diversity Method / 822 12.9.2 Phase Jitter / 823	
	12.10	Coherent Detection Immune to Both Polarization and Phase Jitter / 826	
13	Optica	al Amplifiers	833
	13.2 13.3 13.4 13.5	13.5.1 Normalized Steady-State Population Difference / 849 13.5.2 Gain of the Amplifier / 852 Pros and Cons of 1.48-μm and 0.98-μm Pump Light / 853 Approximate Solutions of the Time-Dependent Rate Equations / 857 Pumping Configuration / 864 13.8.1 Forward Pumping Versus Backward Pumping / 864 13.8.2 Double-Clad Fiber Pumping / 866	
	13.10	Electric Noise Power When the EDFA is Used as a Preamplifier / 868	
	13.11	Noise Figure of the Receiver Using the Optical Amplifier as a Preamplifier / 880	
		A Chain of Optical Amplifiers / 882 Upconversion Fiber Amplifier / 889 ms / 889 nces / 892	
14	Trans	mitters	893
	14.1	Types of Lasers / 893 14.1.1 Gas Lasers / 893	

	14.1.3	Solid-State Lasers / 894 Dye Lasers / 894 Chemical Lasers / 895
14.2	Semicon	ductor Lasers / 895
	14.2.1 14.2.2	Gain of a Semiconductor Laser Amplifier / 895 Laser Cavity / 903 Conditions for Laser Oscillation / 904
		14.2.3.1 Amplitude Condition for Laser Oscillation / 905 14.2.3.2 Phase Condition for Laser Oscillation / 907
	14.2.4	Qualitative Explanation of Laser Oscillation / 908
14.3	Rate Equ	uations of Semiconductor Lasers / 909
	14.3.1	Steady-State Solutions of the Rate
	14.3.3	Equations / 911 Threshold Electron Density and Current / 911 Output Power from the Laser / 913 Time-Dependent Solutions of the Rate Equations / 914
		14.3.4.1 Turn-On Delay 914 14.3.4.2 Relaxation Oscillation 916
	14.3.5	Small Signal Amplitude Modulation / 916
		14.3.5.1 Time Constant of the Relaxation Oscillation / 917
		14.3.5.2 Amplitude Modulation Characteristics / 919
		14.3.5.3 Comparisons Between Theoretical and Experimental Results / 920
14.4	Confiner	ment / 930
	14.4.1 14.4.2	Carrier Confinement / 930 Confinement of the Injection Current / 933
	17.7.2	14.4.2.1 Narrow Stripe Electrode / 934
		14.4.2.2 Raised Resistivity by Proton Bombardment 934
		14.4.2.3 Barricade by a Back-Biased p-n Junction Layer / 935
		14.4.2.4 Dopant-Diffused Channel 936 14.4.2.5 Modulation of the Layer Thickness 937
	14.4.3	Light Confinement / 937
		14.4.3.1 Gain Guiding / 937
		14.4.3.2 Plasma-Induced Carrier Effect / 939 14.4.3.3 Kink in the Characteristic Curve / 941 14.4.3.4 Stabilization of the Lateral Modes / 942
14.5	Wavelen	gth Shift of the Radiation / 943

	14.5.1	Continuous Wavelength Shift with Respect to Injection Current / 944
	14.5.2	
14.6		attern of a Laser / 946
14.7		ture Dependence of $L-I$ Curves / 951
14.8		ductor Laser Noise / 952
		Noise Due to External Optical Feedback / 953
		Noise Associated with Relaxation Oscillation / 955
		Noise Due to Mode Hopping / 955
		Partition Noise / 955
	14.8.5	Noise Due to Spontaneous Emission / 955
	14.8.6	Noise Due to Fluctuations in Temperature and
		Injection Current / 955
14.9	Single-F	requency Lasers / 956
		Surface Emitting Laser / 956
	14.9.2	Laser Diodes with Bragg Reflectors / 957
		$\lambda/4$ Shift DFB Lasers / 961
		Diode Pumped Solid-State Laser / 967
14.10		gth Tunable Laser Diode / 970
	14.10.1	
		Laser / 970
		14.10.1.1 Tuning of Wavelength by the Phase
		Controller Tuning Current I _p
		Alone / 973 14.10.1.2 Tuning of Wavelength by the Bragg
		Reflector Tuning Current I _b
		Alone / 973
		14.10.1.3 Continuous Wavelength Tuning by
		Combining I_p and I_b / 975
	14.10.2	Superstructure Grating Laser Diode (SSG-LD) / 977
14.11	Laser Di	iode Array / 980
14.12		uantum-Well Lasers / 984
	14.12.1	Energy States in a Bulk Semiconductor / 985
		Energy States in a Quantum Well / 988
		Gain Curves of the MQW Laser / 992
	14.12.4	`
	14.12.5	Density of States of a Quantum Wire and Quantum
		Dot / 999
14.13		Doped Fiber Laser / 1004
14.14	_	mitting Diode (LED) / 1007
	14.14.1	
	14.14.2	
14.15		nman Lasers / 1009
14.16		n of Light Sources / 1011
	ms / 10 nces /	
Kelele	nces /	1014

15	Statio	nary and Solitary Solutions in a Nonlinear Medium	1017
	15.1 15.2	Nonlinear (Kerr) Medium / 1017 Solutions in the Unbounded Kerr Nonlinear	
	13.2	Medium / 1021	
		15.2.1 Method by a Trial Solution / 1024	
		15.2.2 Method by Integration / 1026	
		15.2.3 Method Using Jacobi's Elliptic Functions / 1027	
	15 2	Guided Nonlinear Boundary Wave / 1030	
	15.3	· · · · · · · · · · · · · · · · · · ·	
	15.1	Layers / 1037	
		15.4.1 General Solutions / 1038	
		15.4.2 Characteristic Equations from the Boundary	
		Conditions / 1039	
		15.4.3 Normalized Thickness of the Nonlinear	
		Guides / 1041	
		15.4.4 Fields at the Top and Bottom Boundaries / 1042 15.4.5 Modes Associated with Equal Boundary Field	
		Intensities $(a_0 = a_2)$ / 1043	
		15.4.6 Modes Associated with $a_0 + a_2 = \epsilon_1 - \epsilon_0$ / 1048	
	15.5	How the Soliton Came About / 1049	
		How a Soliton is Generated / 1050	
		Self-Phase Modulation (SPM) / 1053	
		Group Velocity Dispersion / 1055	
	15.9	1 1	
	15 10	Solitons in the Optical Fiber / 1059 Solving the Nonlinear Schrödinger Equation / 1067	
		Fundamental Soliton / 1068	
		Pulsewidth and Power to Generate a Fundamental	
		Soliton / 1071	
		Ever-Expanding Soliton Theories / 1074	
		ms / 1077 nces / 1079	
	Refere	nices / 1079	
16	Comn	nunicating by Fiber Optics	1081
	16.1	Overview of Fiber-Optic Communication Systems / 1082	
		16.1.1 Transmitters / 1082	
		16.1.2 Modulation of Light / 1082	
		16.1.3 Transmission Through the Optical Fiber / 1084	
		16.1.4 Received Signal / 1085 16.1.5 Multiplexing Hierarchies / 1085	
	16.2	Modulation / 1085	
	10.2	16.2.1 Amplitude Modulation / 1086	
		16.2.2 Variations of Amplitude Modulation / 1086	
		16.2.3 Angle Modulation / 1092	

		Pulse Modulation / 1094
		Pulse Code Modulation / 1094
		Binary Modulation (Two-State Modulation) / 1095
	16.2.7	1
	16.2.8	Frequency Shift Keying (FSK) and Phase Shift Keying (PSK) / 1095
	16.2.9	Representation of Bits / 1096
16.3	Multiple	xing / 1097
		Wavelength Division Multiplexing (WDM) / 1098
		Frequency Division Multiplexing (FDM) / 1099
	16.3.3	
16.4	Light De	etection Systems / 1102
	16.4.1	Equivalent Circuit of the PIN Photodiode / 1102
	16.4.2	
	16.4.3	1 , 1
	10.4.5	16.4.3.1 Coupling Circuits to a Preamplifier at
		Subgigahertz / 1106
		16.4.3.2 Coupling Circuits to a Preamplifier Above a
		Gigahertz / 1110
16.5	Noise in	the Detector System / 1113
	16.5.1	Shot Noise / 1113
	16.5.2	Thermal Noise / 1114
	16.5.3	Signal to Noise Ratio / 1115
	16.5.4	Excess Noise in the APD / 1117
	16.5.5	Noise Equivalent Power (NEP) / 1117
	16.5.6	Signal to Noise Ratio for ASK Modulation / 1121
	16.5.7	Signal to Noise Ratio of Homodyne
		Detection / 1122
	16.5.8	Borderline Between the Quantum-Limited and
		Thermal-Noise-Limited S/N / 1123
	16.5.9	Relationship Between Bit Error Rate (BER) and Signal
		to Noise Ratio / 1123
16.6		g Fiber-Optic Communication Systems / 1129
	16.6.1	J Company of the Comp
		Power Requirement for Analog Modulation / 1130
	16.6.3	Rise-Time Requirement for Analog
		Modulation / 1132
	16.6.4	Example of an Analog System Design / 1134
	16.6.5	Required Frequency Bandwidth for Amplifying
		Digital Signals / 1139
	16.6.6	Digital System Design / 1141
	16.6.7	Example of Digital System Design / 1144
		16.6.7.1 Power Requirement / 1144
ъ		16.6.7.2 Rise-Time Requirement / 1145
		1147
Refer	ences /	1149

XXIV CONTENTS

Appendix A	PIN Photodiode on an Atomic Scale	1151
	A.1 PIN Photodiode / 1151 A.2 I–V Characteristics / 1156	
Appendix B	Mode Density	1160
Appendix C	Perturbation Theory	1164
Answers to I	Problems	1167
Index		I-1

PREFACE

After visiting leading optics laboratories for the purpose of producing the educational video *Fiber Optic Labs from Around the World* for the Institute of Electrical and Electronics Engineers (IEEE), I soon realized there was a short supply of photonics textbooks to accommodate the growing demand for photonics engineers and evolving fiber-optic products. This textbook was written to help fill this need.

From my teaching experiences at Harvard University and the University of Toronto, I learned a great deal about what students want in a textbook. For instance, students hate messy mathematical expressions that hide the physical meaning. They want explanations that start from the very basics, yet maintain simplicity and succinctness. Most students do not have a lot of time to spend reading and looking up references, so they value a well-organized text with everything at their fingertips. Furthermore, a textbook with a generous allotment of numerical examples helps them better understand the material and gives them greater confidence in tackling challenging problem sets. This book was written with the student in mind.

The book amalgamates fundamentals with applications and is appropriate as a text for a fourth year undergraduate course or first year graduate course. Students need not have a previous knowledge of optics, but college physics and mathematics are prerequisites.

Elements of Photonics is comprised of two volumes. Even though cohesiveness between the two volumes is maintained, each volume can be used as a stand-alone textbook.

Volume I is devoted to topics that apply to propagation in free space and special media such as anisotropic crystals. Chapter 1 begins with a description of Fourier optics, which is used throughout the book, followed by applications of Fourier optics such as the properties of lenses, optical image processing, and holography.

Chapter 2 deals with evanescent waves, which are the basis of diffraction unlimited optical microscopes whose power of resolution is far shorter than a wavelength of light.

Chapter 3 covers the Gaussian beam, which is the mode of propagation in free-space optical communication. Topics include Bessel beams characterized by an unusually long focal length, optical tweezers useful for manipulating microbiological objects like DNA, and laser cooling leading to noise-free spectroscopy.

Chapter 4 explains how light propagates in anisotropic media. Such a study is important because many electrooptic and acoustooptic crystals used for integrated optics are anisotropic. Only through this knowledge can one properly design integrated optics devices.

Chapter 5 comprehensively treats external field effects, such as the electrooptic effect, elastooptic effect, magnetooptic effect, and photorefractive effect. The treatment includes solid as well as liquid crystals and explains how these effects are applied to such integrated optics devices as switches, modulators, deflectors, tunable filters, tunable resonators, optical amplifiers, spatial light modulators, and liquid crystal television.

Chapter 6 deals with the state of polarization of light. Basic optical phenomena such as reflection, refraction, and deflection all depend on the state of polarization of the light. Ways of converting light to the desired state of polarization from an arbitrary state of polarization are explained.

Chapter 7 explains methods of constructing and using the Poincaré sphere. The Poincaré sphere is an elegant tool for describing and solving polarization problems in the optics laboratory.

Chapter 8 covers the phase conjugate wave. The major application is for optical image processing. For example, the phase conjugate wave can correct the phasefront distorted during propagation through a disturbing medium such as the atmosphere. It can also be used for reshaping the light pulse distorted due to a long transmission distance inside the optical fiber.

Volume II is devoted to topics that apply to fiber and integrated optics.

Chapter 9 explains how a lightwave propagates through a planar optical guide, which is the foundation of integrated optics. The concept of propagation modes is fully explored. Cases for multilayer optical guides are also included.

Chapter 10 is an extension of Chapter 9 and describes how to design a rectangular optical guide that confines the light two dimensionally in the *x* and *y* directions. Various types of rectangular optical guides used for integrated optics are compared. Electrode configurations needed for applying the electric field in the desired direction are also summarized.

Chapter 11 presents optical fibers, which are the key components in optical communication systems. Important considerations in the choice of optical fibers are attenuation during transmission and dispersion causing distortion of the light pulse. Such special-purpose optical fibers as the dispersion-shifted fiber, polarization-preserving fiber, diffraction grating imprinted fiber, and dual-mode fiber are described. Methods of cabling, splicing, and connecting multifiber cables are also touched on.

Chapter 12 contains a description of light detectors for laboratory as well as communication uses. Mechanisms for converting the information conveyed by photons into their electronic counterparts are introduced. Various detectors, such as the photomultiplier tube, the photodiode, and the avalanche photodiode, and various detection methods, such as direct detection, coherent detection, homodyne detection, and detection by stimulated Brillouin scattering, are described and their performance is compared for the proper choice in a given situation.

Chapter 13 begins with a brief review of relevant topics in quantum electronics, followed by an in-depth look at optical amplifiers. The optical amplifier has revolutionized the process of pulse regeneration in fiber-optic communication systems. The chapter compares two types of optical amplifier: the semiconductor optical amplifier and the erbium-doped fiber amplifier. Knowledge gained from the operation of a single fiber amplifier is applied to the analysis of concatenated fiber amplifiers.

Chapter 14 is devoted to lasers, which is a natural extension of the preceding chapter on optical amplifiers. The chapter begins with an overview of different types of lasers,

followed by an in-depth treatment of semiconductor lasers, which are the preferred light sources for most fiber-optic communication systems. The basic relationship among the laser structure, materials, and operational characteristics are clarified. The ability to tune the laser wavelength, which is indispensible to the wavelength division multiplexing of the communication system, is addressed. The quantum well, quantum wire, and quantum dot laser diodes that have low threshold current and hence a high upper limit on the modulation frequency are also included. The erbium-doped or Raman fiber lasers that are simple in structure and easy to install in an optical fiber system are also explained.

In Chapter 15, an introduction to the nonlinear (Kerr) effect is presented. Optical devices based on the Kerr effect are controlled by photons and can respond much faster than those controlled by electrons. The chapter also provides the mechanism of formation of a soliton wave. A light pulse that propagates in an optical fiber spreads due to the dispersion effect of the fiber, but as the intensity of the pulse is increased, the nonlinear effect of the fiber starts to generate a movement directed toward the center of the light pulse. When these two counteracting movements are balanced, a soliton wave pulse that can propagate distortion-free over thousands of kilometers is formed. The attraction of distortion-free pulse propagation is that it can greatly reduce, or even eliminate, the need for pulse regenerators (repeaters) in long-haul fiber-optic communication systems.

Chapter 16 interweaves the design skills developed throughout the book with realistic problems in fiber-optic communication systems.

The problems at the end of each chapter are an integral part of the book and supplement the explanations in the text.

As a photonics textbook, each volume would be sufficient for a two-semester course. If time is really limited, Chapter 16 alone can serve as a crash course in fiber-optic communication systems and will give the student a good initiation to the subject.

For those who would like to specialize in optics, I highly recommend reading through each volume, carefully and repeatedly. Each chapter will widen your horizon of optics that much more. You will be amazed to discover how many new applications are born by adding a touch of imagination to a fundamental concept.

This two-volume work has been a long time in the making. I applaud Beatrice Shube, and George Telecki and Rosalyn Farkas of John Wiley & Sons for their superhuman patience. Sections of the manuscript went through several iterations of being written, erased, and then rewritten. As painstaking as this process was, the quality of the manuscript steadily improved with each rewrite.

I am very grateful to Professor Joseph W. Goodman of Stanford University who first suggested I publish my rough lecture notes in book form.

I am indebted especially to Mary Jean Giliberto, who spent countless hours proof-reading the text, smoothing the grammatical glitches, and checking equations and numerical examples for completeness and accuracy. I greatly valued her comments and perspective during our many marathon discussions. This book was very much a partnership, in which she played a key role.

I would like to express my gratitude to Dr. Yi Fan Li, who provided much input to Chapter 15 on nonlinear optics, and Professor Subbarayan Pasupathy of the University of Toronto and Professor Alfred Wong of the University of California, Los Angeles, who critically read one of the appendixes. Frankie Wing Kei Cheng has double-checked the equations and calculations of the entire book.

xxviii PREFACE

I would also like to acknowledge the following students, who went through the manuscript very critically and helped to refine it: Claudio Aversa, Hany H. Loka, Benjamin Wai Chan, Soo Guan Teh, Rob James, Christopher K. L. Wah, and Megumi Iizuka.

Lena Wong's part in typing the entire manuscript should not be underestimated. I also owe my gratidue to Linda Espeut for retyping the original one-volume manuscript into the current two-volume manuscript. I wish to express my heartfelt thanks to my wife, Yoko, and children, Nozomi, Izumi, Megumi, and Ayumi, for their kind sacrifices. Ayumi Iizuka assisted in designing the cover of the book.

KEIGO IIZUKA

University of Toronto

ELEMENTS OF PHOTONICS Volume II

INDEX

A (Einstein's A coefficient), 842, 900	Amplitude distribution
A mode in a nonlinear layer, 1048	in coupled slab guides, 646
Absorption indicatrix, 400	in slab optical guides, 615, 616
Acceptor	Amplitude modulation (AM), 919, 1086, 1087
action in semiconductors, 1153-1155	Amplitude modulators, 312, 679, 1018
atoms, 1153	Amplitude shift keying (ASK), 812, 818, 831, 832,
energy level, 1153	1089, 1095
Accommodation in eye vision, 93	Analog modulation, 1083, 1134, 1137
Acetone (CH ₃) ₂ CO, 239	Analytic signal, 526, 547, 1022
Acoustic wave	proof of not being applicable to nonlinear cases,
imaging, 95	547, 1022
surface, 324	Angle modulation, 1088, 1092
Acoustooptic modulator (AOM), 100, 324	Angular frequency, 1
surface acoustic wave (SAW), 324	convention of, 3, 368
used for holographic video displays, 100	Anisotropic media, 263
Active layer of laser diodes, 904	Annihilation of negative carriers, 898, 1155
gain of, 905	Anomalous dispersion region, 1056, 1066
plasma effect of, 944	Antenna radiation pattern, 13, 95
Adaptive fiber coupler, 517	calculated by Fourier optics, 103, 556
ADP, see Ammonium dihydrogen phosphate	visualized by microwave holography, 96
AFM (atomic force microscope), 160, 161	Antiglare sheet, 409
Ahrens polarizing prisms, 404, 405	analyzed using Poincaré sphere, 502
Airy pattern, 28	Antiglare TV camera, 419
calculation of, 1172	Antireflection (AR) coating, 803, 838, 954
Alcohol C ₂ H ₅ OOH, stimulated Brillouin	Anti-Stokes radiation, 816
scattering of, 512	AOM, see Acoustooptic modulator
Al ₂ O ₃ (aluminum oxide), 681, 894	APC (automatic power control), 952
$Al_xGa_{1-x}As$ (gallium arsenide doped with	APD detectors, see Avalanche photodiode
aluminum) laser, 895, 949	Aperture functions
Alkali metals as cathode materials, 796	of rectangles, 20
Aluminum oxide (Al ₂ O ₃), 687, 894	of triangles, 20
AM (amplitude modulation), 919, 1086, 1087	of circles, 25
Amino acids, optical activity of, 412	of delta functions, 28
÷ • • • • • • • • • • • • • • • • • • •	of shah functions, 30
Ammonium dihydrogen phosphate (ADP)	•
elastooptic properties of, 322	of SNOM probes, 114, 158
electrooptic properties of, 305, 316, 1018	numerical (NA), 151, 693, 694, 701, 703, 706,
Ammonium fluoride (NH ₄ F), 158	770
Amplified signal power, 847	Apodization of radiation patterns, 22
Amplified spontaneous emission (ASE) noise, 838,	AR (antireflection) coating, 803, 838, 954
847, 856, 864, 866, 868, 870	Ar ₂ (argon) for excimer lasers, 894

Argand diagram, 459 converted into Poincaré sphere, 469 custom made, 466 how to use, 459, 460	Band-stop optical filter, 745 Barium titanate (BaTiO ₃) photorefractive effect, 332, 337, 511, 517, 521 electrooptic properties, 306, 316
orthogonality between θ and ϵ lines, 465	Barricade of current by means of a back-biased p-n
ready made, 460	junction layer, 935
Argon (Ar ₂) for excimer lasers, 894	Baseband signal, 1085, 1086
Argon ion (Ar ⁺) for gas lasers, 894	Baseline wander of receivers, 1096
Array diffraction patterns, 32	BaTiO ₃ , see Barium titanate
array pattern, 40, 88	BC (buried crescent) laser, 934, 936, 942
element pattern, 38, 40, 88	BCl ₃ (boron chloride), 777
in thin emulsion, 88	Beam pattern of laser diodes, 946
of finite size, 37 of infinite size, 32	Beam propagation factor m^2 of Gaussian beam, 220
of irregular spacing, 36	Beam radius of Guassian beams, 209 Beam splitter
of regular spacing, 30 of regular spacing, 32	<u>*</u>
Arrayed-waveguide grating (AWG), 673, 674,	nonpolarizing, 411 polarizing, 402, 412
1099	Beam waist of Gaussian beams, 208
Arsenic trisulfide (AsS ₃), 330	Beamwidth of laser beams, 948
Artificial ruby for solid state lasers, 894	Beat noise
ASE (amplified spontaneous emission) noise, 838,	signal-spontaneous, 870, 871
847, 856, 864, 866, 868, 870	spontaneous-spontaneous, 870, 871
ASK (amplitude shift keying), 812, 818, 831, 832,	BeF ₂ , 708
1089, 1095	Bend-induced birefringence in optical fibers, 382
AsS ₃ (arsenic trisulfide), 330	used for polarizer, 404
Asymmetric optical guide, 606, 638	used for retarder, 382
Atomic clock, 255	Bends in an optical guide for integrated optics, 131
Atomic force microscope (AFM), 160, 161	Benzene (C ₆ H ₆), Kerr constant of, 316, 317, 1017
Atomic polarization, 265	BER (bit error rate), 1123, 1124, 1134, 1148
Autocorrelation, 67, 69	Bessel beams, 237, 242, 245, 259
Fourier transform of, 69	one dimensional model of, 239
Automatic power control (APC), 952	Bessel function
Avalanche effect of APD, 803, 1103, 1159	modified, 714
multiplication factor, 804	of approximate form, 723
Avalanche photodiode (APD), 796, 801, 803, 1085, 1159	of the first kind of nth order, 17, 27, 243, 713 of the second kind of nth order, 713
excess noise of, 1117	recurrence formula of, 723
multiplication factor M of, 1118	relationship of, 719
noise equivalent power (NEP) of, 1117	BGO ($Bi_{12}GeO_{20}$) (bismuth germanium oxide),
optimizing gain of, 1148	photorefractive effect of, 332
structure of, 802	Bias voltage, 899
AWG (arrayed-waveguide grating), 673, 674, 1099 Axicon, 245	Biaxial crystal, 267, 300
Axis image, 245	Bidirectional pumping of EDFA, 864 Bi ₁₂ GeO ₂₀ (bismuth germanium oxide) (BGO),
b (normalized propagation parameter), 728	332 Bi ₁₂ SiO ₂₀ (bismuth silicon oxide) (BSO), 332
B (Einstein's B coefficient), 843, 899	Binary coding, 1095, 1096
B mode in nonlinear guides, 1048	Binocular parallax, 92
β matching, 113	Binomial expansion, 11, 729
Babinet compensator, 380	Biometric indicators for identification, 77
Back focal plane, 62, 66, 80	Birefringence, 95, 263, 821
Back projection, 469	bent-induced in fibers, 382, 404
Backward pumping of EDFA, 864	circular, 413
Balanced mixer, 814, 1122	Jones matrix of, 424
Ba ₂ NaNb ₅ O ₁₅ (BNN), 1018	linear, 413
Bandgap energy (energy gap), 804, 901, 925, 945,	materials, 365, 412
996, 998	of nematic liquid crystals, 822
Band-pass optical filter, 747	of polarization-maintaining fibers, 707, 821

Birefringence fiber polarizer, 404 Cadmium (Cd), 936 Birefringence polarizer or polarizing prism, 396, Cadmium selenide (CdSe), of photocell, 800 Cadmium sulfide (CdS), electrooptic properties of, Bismuth germanium oxide (BGO) (Bi₁₂GeO₂₀), 306, 800 photorefractive effect of, 332 Cadmium telluride (CdTe), electrooptic properties Bismuth silicon oxide (BSO) (Bi₁₂SiO₂₀), of, 306 photorefractive effect of, 332, 511 Calcite crystal (Iceland spar) (CaCO₃), 277, 290, Bit error rate (BER), 1123, 1124, 1134, 1148 versus signal to noise ratio, 1123 physical constants of, 290 Bit rate, 1073, 1081, 1097, 1102, 1139 Calcium oxide (CaO) to lower the melting point of Blackbody radiation, 843 glass, 706 BNN (Ba₂NaNb₅O₁₅), 1018 Calorimetric methods of detecting light, 800 B₂O₃ (boric oxide) to lower the melting point of Canada balsam cement, 402, 404 glass, 706 CaO (calcium oxide) to lower melting point of Bolometer, 800 glass, 706 Capacity for information transmission through Bohr's approximation, 529 Boltzman constant, 816, 876, 926, 1114 optical fibers, 703 Capping layer, 803 Boltzman distribution function, 816, 1157 Boltzman population ratio, 849 Carbon dioxide (CO₂) laser, 512, 894 Borderline between the quantum-limited and Carbon disulfide (CS₂) thermal-noise-limited S/N, 1123 Kerr constant of, 317 Boric oxide (B₂O₃) to lower the melting point of Kerr effect of, 1017 glass, 706 Carbon dioxide (CO₂) Boron chloride (BCl₃), 777 laser, 894 Boundary, 110 stimulated Brillouin scattering effect of, 512 of anisotropic media, 292 Carbon tetrachloride (CCl₄), Kerr constant of, 316, of isotropic media, 110 of nonlinear media, 1030 Card for encryption, 80, 108, 560 Boundary conditions, 110 Carrier, 841 Maxwell's, 112 concentration of, 930 confinement of, 930 periodic, 1161, 1163 standing-wave, 1161, 1163 negative and positive, 898 wavelength matching, 113 number of, 841 Bow-tie fiber, 707 population inversion of, 847 Bragg condition, 959 rate of transition of, 841 Bragg frequency, 961, 963 Carrier electrons, 1151 Bragg grating method of dispersion compensation, Carrier frequency, 1085 Cassegrain telescope, 107, 108 Bragg grating sensor of photoimprinted fibers, 742, Cavity resonance frequencies of laser diodes, 960 745, 747 Cavity, see Fabry-Pérot cavity Bragg reflection, 89 c axis of crystals, 267 Bragg reflector, 962, 970, 971, 973 C₆₀ (fullerene) doped liquid crystal, 357 Breakdown voltage of air, 803 CCl₄ (carbon tetrachloride), 317 Brewster angle, 127, 407, 566 Cd (cadmium), 936 Brewster window, 129, 408 CDH (constricted double heterojunction) laser, 937 Brillouin scattering, 512, 602, 816, 817 CDM (code division multiplexing), 1085, 1094 BSO (Bi₁₂SiO₂₀) (bithmus silicon oxide), CdS (cadmium sulfide), 306, 800 photorefractive effect of, 332, 511 CdSe (cadmium selenide), 800 Buffer-covered fiber, 784 CdTe (cadmium telluride), 306 Buffered metal guide, 672 CH₄ (gaseous methane), 512 Bulge guide, 672 C₆H₆ (benzene), 316, 317, 1017 Bulge of field, 1044 C₁₀H₁₆ (turpentine), optically active, 412 Bulk waves, 144, 681 (CH₃)₂CO (acetone), 239 C₆H₄ (CH₃)NO₂ (nitrotoluene), 1017 Buried crescent (BC) laser, 934, 936, 942 Burrus-type LED, 1008 C₆H₅NO₂ (nitrobenzene), 316, 317, 1017, 1035 $C_{12}H_{22}O_{11}$ (natural sugar), 414 C₂H₅OOH (alcohol), 512 Cabling of optical fibers, 783 CaCO₃ (calcite), 277, 290, 402 Chain of optical amplifiers, 882

I.4 INDEX

Channeled substrate planar (CSP) laser, 936, 943 Collision of solitons, 1070 Characteristic equations, 605 Color holograms, 87, 92 Comets' tails, 249 for EH modes of optical fibers, 723 for HE modes of optical fibers, 723 Comb function, 30 for even TE modes, 622 Fourier transform of, 31 for even TM modes, 610, 628, 632, 634 Commensurate, 528 for odd TE modes, 622 Compensator, 380, 494 for odd TM modes, 610, 612, 628, 633, 636 Babinet compensator, 380 for TE modes of optical fibers, 719 Soleil compensator, 382 for TM modes of optical fibers, 719 Complementary error function, 1126 of coupled slab guides, 643 approximate expression of, 1127 of optical fibers, 717, 718 Complementary mode patterns, 735 of rectangular guides, 657 Complex fields, 452 Characteristic temperatures Complex (phase) conjugate waves, 507 Complex refractive index of silver, 672 of the external quantum efficiency, 951 of the threshold current, 951 Component field ratio in the complex plane, 452 Characteristic wave impedance, 124 Component waves, 431, 615 Computer-controlled method of jitter control, 820 Chemical lasers, 893, 895 Chemical vapor deposition (CVD), 777 Computer generated holograms, 97, 98 $\chi^{(1)}$, 1018 Concave end mirrors of gas lasers, 893 $\chi^{(2)}$, 523, 525, 1018 Conduction band, 898, 988, 998, 1151 $\chi^{(3)}$, 523, 527, 1018 Confined light in the lateral (horizontal) direction, Chiral, 355 in laser diodes, 937 smectic C liquid crystal, 354, 356 Confined light in the vertical (transverse) direction, Chirp noise, 955 Chirped aperiodic Bragg grating, 748 Confinement factor, 861, 866, 994 photoimprinted in fiber cores, 755 Confinement of injection current, 933 Cholesteric type liquid crystal, 341, 342 Conflection, 666 as an optically active substance, 412 Conflection lens, 667 Chromium doped gallium arsenide (GaAs:Cr), Confocal cavity, 236 photorefractive effect of, 512 Confocal reflector UV light cavity, 775, 783 Chromium oxide (CrO₃), 894 Conjugate waves, 504, 507, 512, 521 Cinnabar (HgS) Conical lens (axicon), 245, 246 as an optically active substance, 412 Connectors electrooptic properties of, 305 fiber, 790 Circle diagrams for polarization, 365 loss, 790, 1130, 1131, 1138, 1144, 1146 Circle function, 25 Conservation of energy in elliptical polarization, Fourier transform of, 25 Circular apertures in random spacing, 37 Constant azimuth θ and ellipticity ϵ lines of Circular birefringence, 413 Argand diagrams, 455 Circularly polarized wave, 364 Constricted double heterojunction (CDH) laser, 937 Circularly polarizing sheets, 409 Contact layer in electrode lamination, 680 for antiglare, 409 Contact potential of a junction, 932, 1155 Continuous wavelength tuning by combining I_n Cladding of fibers, 382, 694 Cladding layer of optical slab guides, 606 and I_b , 975 Clamped by the Boltzmann distribution, 855 Conventions for expressing time dependence, 3 Cleaved surfaces, 1013 Conversion of joules into electron volts, 997 Conversion retarder of TM-TE converters, 499 CO₂ (carbon dioxide) laser, 512, 894 Code division multiplexing (CDM), 1085, 1094 Conversion of state of polarization Code format from circular to linear, 484 Manchester, 1097 from elliptic to linear, 389 nonreturn to zero (NRZ), 774, 1096, 1140 from linear to circular, 386 return to zero (RZ), 774, 1096, 1141 from unknown to linear, 389 Convolution, 14, 68, 69 Coefficient matrix method, 606, 622, 623 Coherent communication systems, 807 Copper chloride (CuCl), electrooptic properties of, jitter in, 819 Coherent detection, 807, 812, 970, 1094 Core-cladding interface of optical fibers, 694 immune to both polarization and phase jitter, 826 Core glass of optical fibers, 694

Core layer of slab guides, 606 Correction factor of Gaussian beams, 210 Correlation operation autocorrelation, 67, 69	d-rotary (right-handed) quartz, 412, 415 Dark current of photodiodes, 1103 Dark light soliton, 1077 DBR (distributed Bragg reflection) laser, 957, 963
countermeasures for differences in scale, 74	DC-PBH (double-channel planar buried
cross-correlation, 68, 69	heterostructure) laser, 932, 934, 936, 942, 1134
Corrugated reflectors, 957, 959, 964	De Broglie, Louis, 985
Costas PLL (phase locked loop), 809	DEks plane, 278
Cotton-Mouton effect, 327	Decomposition of elliptically polarized light, 375
Cotton type prism, 404	Decrypting, 80, 108, 560
Coulomb field, 1152	Degenerate modes, 768
Coulombic force, 341	Delay-and-detect circuit, 825, 826, 827
Coupled guides, 643, 665	$\delta(x)$ (delta function), 28
Coupled wave equations, 526	convolution of, 29
Coupler (tunable), 740	Fourier transform of, 29
Coupling between rectangular guides, 664	train of, 30
Coupling circuits to preamplifiers, 1106, 1110	Demountable fiber connectors, 786
Coupling length, 664, 666, 740	Denisyuk hologram, 92. See also Lippman
Coupling loss, 1130, 1138, 1144, 1146	hologram
Coupling mechanism of slab guide couplers, 651	Density $m(v)$ of modes per unit frequency per unit
Critical angle	volume of blackbody radiators, 843, 847, 1160
anisotropic media, 285, 296, 575, 576	Density of states, 898, 987, 988
isotropic media, 131, 142, 694	Depletion region, 1155
CrO ₃ (chromium oxide), 894	Depolarized (unpolarized) wave, 364
Crooks, Sir William, 259	Depth of focus of Gaussian beams, 213, 218
Cross sectional allines 307, 313, 300, 580	Designing fiber-optic communication systems, 1129
Cross-sectional ellipse, 307, 313, 399, 580 Crosstalk between channels, 859	Detection of light by stimulated Brillouin
Cryptograph, 78	scattering effects, 815, 830 Devices for integrated optics, 655
Crystal(s)	Devices for integrated optics, 633 Dextrorotary (<i>d</i> -rotary) optical activity, 412, 415
with inversion symmetry, 523, 599	D-fiber, 708, 744, 757, 866
with inversion symmetry, 523, 599 without second order nonlinearity, 523, 525	DFB (distributed feedback) grating, nonlinear, 1019
under various external fields, 302	DFB (distributed feedback) grating, hommeat, 1017 DFB (distributed feedback) laser, 896, 958, 961,
Crystal axis	963, 970, 977
c axis, 267	Di Francia, Toralds, 666
crystallographic axis, 307	Dichoric mirror, 167, 197, 865
z axis, 307	Dichoric polarizer, 394
Crystal cut, 307	Dielectric constant, 112
Crystallography, 13, 307	absolute, 112
CS ₂ (carbon disulphide), 239, 316, 1017	nonlinear, 1022
CSP (channeled substrate planer) laser diode, 934,	relative, 112, 266
936, 943	relationship with refractive index, 112, 266
CuCl (copper chloride), 306	Differential phase shift keying (DPSK), 824, 825,
Cutoff	828
condition in fibers, 719	Diffraction-free beams, 237
EH modes, 723, 724	Diffraction from array, 32
HE modes, 723, 724	of finite dimension, 37
TE mode, 719	of infinite dimension, 32, 36
TM mode, 720	Diffraction limited, 45
condition in planar optical guides, 612	Diffraction patterns, 9, 1162
of TM modes, 612, 613	far field, 11
of buried optical guides, 661	near field, 13
CVD (chemical vapor deposition), 777	Diffraction unlimited images, 150
Cylindrical-coordinates Fourier transform, 16	Diffusion constant, 1158
	Diffusion equation, 1157
D-cut, 757	Diffusion length
D line of sodium spectrum, 414	of electrons, 932
D modes in nonlinear guides, 1048	of holes, 932

Diffusion potential, 932 Digital modulation, 1083	Double-crucible method, 775 DPSK (differential phase shift keying), 824, 825,
Digital system 1 (DS-1), 1101	828
Digital system design, 1144	Drawing into optical fibers, 782
Digital video disk (DVD), 161	Drift of the operating point, 1092
Diode laser, see Laser diodes	Drift force, 334
Diode pumped solid-state laser, 967	DS-1 (digital system 1), 1101
Dipole antenna, 102, 103, 556, 557	DS-4 (digital system 4) PCM, 1145
Dipole-dipole interations, 341	DSB (double sideband) modulation, 1086, 1087
Dipole moment, 265	DSBC (double sideband suppressed carrier)
permanent, 265, 266	modulation, 1087
Dirac delta function $(\delta(x))$, see $\delta(x)$ (delta function)	D-shaped inner cladding, 866
Direct detection, 796, 805, 806, 830, 1086	Dual-mode fiber, 739, 758
Direction of the wavenormal, 761, 762	dispersion compensator, 741, 757
Directional couplers, 605, 1018	tunable coupler, 740
Discotic liquid crystals, 341, 344	DVD (digital video disk), 161
Dislocation spots caused by γ rays, 697	Dye-doped liquid crystals, 357
Dispersion, 699, 1086	Dye lasers, 893, 894
anomalous, 1056, 1066	Dynodes, 796, 797
material, 699, 701, 752, 1086	
mode, 699, 696, 703, 769	E_{pq}^{x} , 656, 657
normal, 1056	$E_{pq}^{y^{7}}$, 656
waveguide, 699, 701, 752, 1086	EASLM (electrically addressed spatial light
Dispersion compensator, 741, 755, 759	modulator), 350
Dispersion countermeasures, 1051	ECB (electrically controlled birefringence), 345,
Dispersion equation, 637, 638	357
Dispersion parameter, 749, 769, 1055, 1072	E mode
definition of, 749	in linear optical fibers, 722
of graded-index fibers, 768, 769	in nonlinear optical guides, 1043, 1048
Dispersion-shifted fibers, 703, 705, 748, 749, 755,	EDFA, see Erbium-doped fiber amplitude
769, 1051	Edge-emitting LED, see LED
Distortion of light pulses during transmission, 635,	Edge enhancement of images, 63
709, 838	Edible laser, 896
Distributed amplifier approach, 1111	Effective core area, 1072
Distributed Bragg reflection (DBR) laser, 957, 963	Effective densities of states, 926
Distributed element preamplifier, 1106	Effective index method for rectangular optical
Distributed feedback (DFB) grating, 1019	guides, 661
Distributed feedback (DFB) laser, 896, 958, 961,	Effective index of refraction N, 619, 659
963, 970, 977	of e-waves, 279, 280, 282, 290, 294
Distributed FET amplifiers, 1111	Effective masses, 925, 926
Divergence of Gaussian beams, 212, 218	of electrons, 898
DMOAP (N,N-dimethyl-N-octadecyl-3-	of holes, 899
aminopropyltrimethoxysilyl chloride),	EH modes, 722, 731, 732
353	$EH_{\mu\nu}$, 732
DNA, 77, 160, 253	Eigenvalue equation of M , 428, 433
Doppler cooling, 255	eigenvalue of, 429, 433
Doppler shift, 254	eigenvector of, 429, 430
Dominant mode, 612, 724	orthogonal eigenvectors of, 429, 430
Donor atoms, 1152	Eikonal, 760
Dopant-diffused channel, 936	Eikonal equation, 759, 760
Double balanced mixer, 814	Einstein's A coefficient, 842, 900
Double heterojunction, 930	Einstein's B coefficient, 843, 899
Double sideband (DSB) modulation, 1086, 1087	Elastooptic effect, 304, 317, 324
Double sideband suppressed carrier (DSBC)	due to principal strain, 318
modulation, 1087	due to shearing strain, 318
Double-channel planar buried heterostructure	table of elastooptic constants, 320
(DC-PBH) laser, 934, 936, 942, 1134	Electric flux density, 112
Double-clad fiber, 866	Electric noise power of EDFA, 868

Electrical S/N of output from PIN photodiodes, 876 Electrically addressed spatial light modulator	ESA (excited state absorption) of, 855 gain of, 838, 852, 901
(EASLM), 350	noise figure of, 880
Electrically controlled birefringence (ECB) cell,	pump light of, 853, 864
345, 357	rate equations of, 848
Electrode configurations of integrated optics, 680,	saturation of, 856
681	spectral line shape of, 196, 839
Electron-beam lithography, 98	ErCl ₃ (erbium chloride), 837
Electron density, 898	ESA (excited state absorption), 855, 889
Electron mass, 924	Etalon, 167, 179
Electron microscope, 161	Evanescent field, 58, 134, 139, 142
Electrooptic effect, 304, 1017	due to total internal reflection, 135
Kerr, 316	effective depth of penetration, 135
material, 605	generating, 147
table of, 305	graphical solution of, 145
Electrooptic material, 605	microscope by, 150
Electrooptic modulator, 1086	probes to detect, 154
of amplitude, 1086	Evanescent wave, see Evanescent field
of phase, 1096	Even TM modes in planar optical guides, 608, 609
Electrooptic probe, 313	610, 611
Element fibers of fiber cables, 784	e-wave (extraordinary wave), 269, 272, 273, 365
Element patterns of diffraction, 40, 88	Excess noise in an APD, 1117
Eliminating wave front distortion by phase	Excess noise index, 1117
conjugate waves, 508	Excimer laser, 894, 893
Ellipse or hyperbola, 434	Excited dimer, 894
Ellipsoid, 286	Excited state absorption (ESA), 855, 889
Elliptical core fiber, 707	Exposure meter, 800
Elliptically polarized wave, 364, 819	External quantum efficiency, 951
azimuth of major axes, 431	External terminal potential of laser diodes, 928
converted from linearly polarized wave, 367	Extinction ratio, 916
converted into linearly polarized wave, 389	Extraordinary wave (e-wave), 269, 272, 273, 365
Ellipticity, 431, 436	"eyes" of Panda fiber, 407
Embedded guide, 671	F (9) 905
Emission	F (fluorine), 895
spontaneous, 842	Fabrication of optical fibers, 775
stimulated, 842	by one-stage process, 775
Encryption scheme, 80, 108, 560	by two-stage process, 777
encrypted card, 80, 108, 560	Fabrication of preform rods, 775, 777
Energy gap, 804, 901, 925, 945, 996, 998	Fabry-Pérot cavity, 166, 568
Energy states, 985	antiresonance of, 174
in bulk semiconductors, 985 in quantum wells, 988	arbitrary angle of incidence of light, 170 determining the spacing of reflectors, 202, 203
Energy transfer in photorefractive crystals, 335	finesse of, 194, 195, 196, 197
Enhanced photorefractive effect by external electric	free spectral range, 171
fields, 334	modes, 232, 233
Envelope function of solitons, 1059	resolving power, 192
dynamics of, 1064	resonance, 174
Equivalent circuit of PIN photodiodes, 1102	stability diagram, 231
Er ⁺³ (erbium), 844, 845, 848, 853, 854, 858, 891	superstructure grating, 978
Erbium chloride (ErCl ₃), 837	tunable fiber, 195
Erbium-doped fiber amplifier (EDFA)	Fabry–Pérot dichroic filter, 197
ASE (amplified spontaneous emission), noise of,	Fabry–Pérot (FP) type laser, 904
847	Fabry-Pérot type fiber laser, 1005
basics of, 834	Far field region, 11
chain of, 882	divergence of Gaussian beams, 212
compared to SLA, 838	divergence of a Gaussian beam after a lens, 218
cross-talk of, 859	Fraunhofer region, 11
electric noise power of, 868	Faraday effect, 326, 327, 329, 415

Faraday rotator mirror (FRM), 1005, 1007	Fleming, Sir John A., 396
Fast axis of anistropic media, 367	Fluorescent glow, 834, 835
FDM (frequency division multiplexing), 1085,	Fluorinated alkyl methacrylate copolymer for
1094, 1099	plastic fibers, 706
FeCl ₃ (ferric chloride), 777	Fluorine (F), 895
Fe:LiNbO ₃ (Fe doped lithium niobate), 91	Fluorozirconate glass (ZBLAN) fiber for
Fermat's principle, 666	upconversion fiber amplifiers, 889
Fermi-Dirac distribution function, 898, 899, 992,	FM noise, 955
1151, 1157	FM (frequency modulation) signal, 1088, 1092,
Fermi-Dirac energy level, 898, 1151, 1152	1094
Fermi level gap, 925	Focal beam parameter (Rayleigh range of a
Ferric chloride (FeCl ₃), 777	Gaussian beam), 209
Ferroelectric liquid crystals, 354	Focal cavity, 235, 236
FETs (field effect transistors), 1111	Focal length, 43
FIB (focused ion beam), 158	Focal plane, 47
Fibers. See also Optical fibers	Focused ion beam (FIB), 158
side pit, 707	Fold-unfold-fold (FUF) law, 667
side tunnel, 707	Forward four-wave mixing, 533, 534, 537
with internal Bragg gratings, 744, 755	Forward pumping of EDFA, 864
Fiber amplifier, types of, 836	Forward pumping versus backward pumping, 864
Fiber Bragg gratings, 741, 1010	Fourier-Bessel transform, 18, 27
Fiber connectors, 790	Fourier-Hankel transform, 18, 561
Fiber coupler, adaptive, 517	Fourier optics, 1
Fiber Fabry–Pérot filter, 195	Fourier transformable property of convex lenses, 46
Fiber lasers, erbium-doped, 1004	Fourier transform in cylindrical coordinates, 16,
Fiber-loop polarization controller (FPC), 824	18, 243
Fiber-loop retarders, 382	Fourier-Bessel transform, 18, 27
design of, 383	Fourier-Hankel transform, 18, 561
how to use, 385	Fourier transform in rectangular coordinates, 16, 20
$\lambda/2$ and $\lambda/4$ of, 385, 386	of $\delta(x)$, 28
Fiber optic communication, 1081–1150	of derivatives, 64
amplifiers for, 1085	of Fourier transforms, 69
coherent detection system, 807	of logarithms, 76
design of, 1129	of the point spread function, 14
homodyne detection, 1143	of shah functions, 32
modulated light for, 1082, 1085	of sinusoidal functions, 71, 103, 556
multiplexing, 1097	Fourier transform spectroscopy, 166
overview of, 1082	Four-level model of fiber amplifiers, 836
receivers, 1085	Fourth order nonlinearity, 541, 599
soliton, 1073	Four-wave mixing (FWM), 506, 1051
space optic, 105	forward, 533, 534, 537
Fiber-optic gyros, 1012	in a general direction, 526
Fiber Raman lasers, 1009	FP (Fabry–Pérot) type laser, 904
Fiber sensing, 747	FPC (fiber-loop polarization controller), 824
50- Ω circuit with mismatch in coupling to a	Fraunhofer diffraction pattern, 11
photodetector, 1106	Fraunhofer region, 11
Field effect transistor (FET), 1111	Free electrons, 1151
Film layer as core layer, 606	Free space optical communication link, 258, 1085
Finesse, 194, 195, 197	immune to turbulence, 516
effective, 194	Free spectral range (FSR), 179, 182
flatness, 194	in terms of frequency, 181, 235
reflection, 194	in terms of wavelength, 179, 181
Fingerprint detection, 77, 103, 105, 521	Frequency chirp, 254
First-order Bessel functions of the second kind, 714	Frequency discriminator, 1094
FLAG (fiber-optic link around the globe), 693	Frequency division multiplexing (FDM), 1085,
Flame brushing method to enhance	1094, 1099
photosensitivity, 743	Frequency modulation (FM), 1088, 1092, 1094
Flatness finesse, 194	Frequency response of PIN diodes, 1104

Frequency shift keying (FSK), 1089, 1095 Fresnel field, 13	q parameter of, 207, 209, 213, 214, 215, 216 Rayleigh range of, 209, 218
Fresnel–Kirchhoff diffraction formula, 11, 58, 243,	transformation, 214, 259
545	with higher order modes, 223, 233, 235
Fresnel-Kirchhoff integral, 56, 544	with the fundamental mode, 206
Fresnel reflection equation, 121	Gaussian distribution, 1124
Fresnel region, 13	Gaussian lens formula, 43, 44, 219
Fresnel rhomb, 137	General guides, 625
Fresnel's explanation of optical activity, 413	Generalized wave equation, 269
Front focal plane, 47, 71	GeO ₂ (germanium dioxide), 697, 705, 706,
FRM (Faraday rotator mirror), 1005, 1007	GeO ₂ (germanium dioxide)-doped core, 694, 697
FSK (frequency shift keying), 1089, 1095	Geological surveys, 97
FSR, see Free spectral range	Geometrical optics theory, 605, 759
FUF (fold-unfold-fold) law, 667	Germanium dioxide (GeO ₂), 694, 697, 705, 706
Full width at half maximum (FWHM), 197, 1071	GH (guest-host) liquid crystal cell, 353
Fullerene (C ₆₀) doped liquid crystals, 357	Glan-Air polarizing prism, 402, 404
Full waveplate, 385	Glan-Faucault prism, 402, 404
Fundamental soliton, 1069, 1071	Glan-Thompsom polarizing prism, 404
Fused silica (SiO ₂)	Glass, photoreflective media, 512
elastooptic properties of, 320	Goos-Hänchen shift, 141, 142
Kerr effect of, 1017	Graded-index fiber, 705, 759, 762, 768, 769, 770
Fusen, 485	Graded index (GRIN) lens, 330
FWHM (full width at half maximum), 197, 1071	Gradient, 288
FWM, see Four-wave mixing	Graphical solution
	of evanescent waves, 145
GaAs, see Gallium arsenide	of polarization states, 365
GaAs:Cr (chromium doped gallium arsenide), 512	of propagation in an uniaxial crystals, 269, 270
GaAs MESFET, 1111	Grating
$Ga_xIn_{1-x}As_yP_{1-y}$ laser, 945	arrayed waveguide, 673, 676, 1099
Gabor-type hologram, 81	photoinduced Bragg, 741, 747, 755
Gain compression, 838	reflection from Bragg, 957
Gain constant	scattering from Bragg, 963
with respect to distance, 910	transcendental equations, 611
with respect to time, 910	Grating spectroscopy, 166
Gain guiding, 937, 939, 942	Gravitational acceleration, 572
Gain of optical amplifiers, 838, 850, 852, 895	Gravitational wave, 257
Gain spectrum	GRIN (graded index) lenses, 330
of laser diodes, 902, 904, 923, 928	Group delay in optical fibers, 699, 749, 759, 1055
of MQW lasers, 992, 995, 1004	Group index, 750, 768
Gallium arsenide (GaAs)	Group velocity, 748, 1055
elastooptic properties of, 320	Group velocity dispersion (GVD), 1053, 1055,
electrooptic properties of, 306	1057, 1058, 1069
photorefractive properties of, 332	Guard ring, 803
Galvanometric scanner, 101	Guest-host (GH) liquid crystal cell, 353
Gamma-ray $(\gamma$ -ray) irradiation to increase fiber	Guide, slab optical, see Optical slab guides
loss, 697, 698	Guided nonlinear boundary wave, 1030
Gaseous methane CH ₄ , stimulated Brillouin	Guided waves, 681, 1031
scattering, 512	GVD (group velocity dispersion), 1053, 1055,
Gas lasers, 893	1057, 1058, 1069
Gas pipes for keeping moisture off, 786	
Gaussian beam, 205	H mode, 722
amplitude distribution, 211	Half-mirror (HM), 65, 505, 1005
beam waist, 208, 216, 217	Half-wave fiber loop, 383
cross-sectional area of, 209	Half-waveplate ($\lambda/2$ plate), 383, 385
depth of focus, 213	how to use, 385
in spherical mirror cavities, 227	polyimide, 677
intensity distribution, 211	Handedness of circular polarization, 364, 374,
location of waist, 208, 217	439

HBT (heterojunction bipolar transistor), 1111 <i>HE</i> modes, 722, 731, 735, 736 cutoffs, 723	Homodyne detection, 339, 340, 809, 812, 817, 830, 1096, 1143 by stimulated Brillouin scattering, 817
HE_{11} mode, 732	Homogeneous broadening, 841
$HE_{\nu\mu}$, 731, 735, 736	Homogeneous orientation, 344, 345
Heavyside's step function, 25, 992	Homojunction, 930
HeCd (helium-cadmium) laser for blue	Horizontal and vertical external fields, 684
light, 101	Horizontal external field
Helium-neon (HeNe) laser for red light,	in rib guides, 684
101, 893	in embedded guides, 683
HEMT (high electron mobility transistor), 1111	periodic, 684
HeNe (helium-neon) laser for red light, 101, 893	Horseshoe crab's eyes, 447, 585
Hermite Gaussian beam (higher order modes), 223,	How to use waveplates, 385
226	full-wave plate, 385
Hermite polynomial of order n , 224	half-wave plate, 385
Heterodyne detection, 807, 830	quarter-wave plate, 386
Heterojunction, 930	Huygens' principle, 15, 16
Heterojunction biopolar transistor (HBT), 1111	Huygens' wavelet, 299
HF (holey fiber), 706	Huygens' wavelet, 255 Huygens' wavelet ellipsoid, 577
HF (hydrofluoric acid), 158	Hybrid modes, 709, 723
HgS (cinnabar), optically active, 305, 412	designation of, 729, 730
High density data storage, 87, 161, 162, 163	Hydrogen to create transmission loss, 695, 697
High electron mobility transistor (HEMT), 1111	Hydroxyl (OH) formation, 695, 697
High impedance (HZ) with compensating circuit,	Hyperbola or ellipse, 433
1107, 1110	Hysteresis curve, 1021
High pass spatial filter, 63	HZ (high impedance) circuit, 1107, 1110
High-powered fiber amplifier, 866	112 (mgn impedance) chedit, 1107, 1110
Higher order Gaussian beam, 226	Iceland spar (calcite crystal) (CaCO ₃), 277, 290,
Hilbert transform, 1090	402
H ₂ O (water), see Water	IF (intermediate frequency) amplifier, 808, 1094
HM (half-mirror), 505, 1005	IM (intensity modulation), 313, 1086, 1087
Holes in semiconductors, 1153	Image intensifier, 352
Hole burning, 939, 941	Image processing, see Picture processing
spatial, 968, 969, 1004, 1007	Immersed guide, 672
spectral, 945	Immobile charges, 332, 1154
Hole density, 898	Impedance
Holey optical fiber (HF), 706	characteristic wave, 124
Hologram, 81	electric, 112
Gabor-type, 81	intrinsic, 111, 112, 869
off-axis type, 85	of p-n junction, 1159
Holographic writing of photoinduced Bragg	Impedance approach, referring to the normal
grating, 743	direction, 124
Holography, 81	Impulse response function of free space, 14
acoustic, 95, 97	Impulse train function, 30
applications of, 92	•
color, 87, 92	Incoherent—coherent converter, 352 Incremental impedance of a p-n junction, 1159
computer-generated, 97	Index of refraction, 112, 266
interference, 93	relationship to the dielectric constant, 112, 266
microwave, 96	Index-matching fluids, 954
nonoptical, 95	
to explain phase conjugate, 504, 530	$In_{1-x}GaAs_yP_{1-y}$ (gallium arsenide doped with indium and phosphorus) laser, 895
thin emulsion, 88	Indicatrix, 264, 285, 292
synthetic aperture, 97 vibration measurement, 45	absorption indicatrix, 400 distortion of, 302
video display, 99	Indium tin oxide (ITO), 188 Infrared absorption associated with the vibration of
volume, 87	Si — O network, 708
white light, 87 Homeotropic orientation, 344, 345	Inhomogeneous broadening, 841
Homeoropic orientation, 344, 343	innomogeneous broadening, 641

Injection current, density of, 910, 911	$\kappa - \beta$ diagram, 617, 618
InP:Fe (iron-doped indium phosphide), 512	$\kappa - \gamma$ diagram, 618
In-phase component, 810, 1090	k coordinate expression of Snell's law, 145, 164
InP:Ti (titanium-doped indium phosphide), 512	KBr (potassium bromide), 708
Insertion loss, 132	KCl (potassium chloride), 708
Integrated optics, 605	KDP (potassium dihydrogen phosphate),
arrayed-waveguide grating (AWG) for, 673	electrooptic properties of, 305, 316, 321, 1018
couplers, 678	$KD_2PO_4(K-KDP)$, 305
electrodes, 681	k-matching, 113
modulators, 312, 1086	Kepler, Johannes, 131, 249
optical guides, 670	Kerr, John, 304, 316
optical interconnects, 982	cells, 317
optical magic T, 678	coefficients, 316
Intensity modulation (IM), 313, 1086, 1087	constants, 317
Intensity pattern of diffraction, 22, 27	electrooptic effect, 304, 316, 1019, 1051
Interdigital electrode, 324	media, 512, 518, 527, 1017
Interference filter, 167	Keying device, 1095
Interference holography, 93	Kink in the emission characteristic curve of laser
Interferometers, 167, 605	diodes, 941
Intermediate frequency (IF), 1094	Kirchhoff, Gustav Robert, 12, 13, 56, 58, 545
Internal writing of Bragg gratings, 743	Korteweg-de Vries (KdV) differential equation,
Internal reflection, total, 130, 145, 147, 296	1049
Interrogation of handwritten letters, 521	Kr ₂ (krypton) for excimer lasers, 894
Intradyne detection, 812, 830	Kr ₂ (Krypton) for exemici fascis, 694
•	l-rotary (left-handed) quartz, 412, 415
Intrinsic impedance, 111, 112, 869 Intrinsic impedance η_0 of a vacuum, 111	$\lambda/4$ shift DFB lasers, 961
Intrinsic impedance η_0 of a wadum, 111 Intrinsic impedance η_1 of a medium, 111	Laminated aluminium polyethylene (LAP), 697
• •	± • • • • • • • • • • • • • • • • • • •
Intrinsic type semiconductors, 1151 Invariance of the location of the input	Laminated electrodes, 680
•	Laplacian operator, 711
pattern, 50	Laser cavity, 175
Invariance of the state of polarization, 362	Laser(s)
Inversion, population, 836, 847, 864	chemical, 895
Inversion symmetry of crystals, 541, 599	definition of, 833
Ionic dipole, 818	dye, 894
Iron doped indium phosphide (InP:Fe),	edible, 895
photorefractive effect of, 512	erbium-doped fiber, 1004
Isopachic fringe pattern, 95	fiber Raman, 1009
Isolator, optical, 328, 330, 838, 954, 1005	gas, 893
ITO (indium tin oxide) electrodes, transparent	ring, 904
electrode of, 188	semiconductor, 895
I-type layer, 803	solid state, 894, 967
I-V characteristics of p-n junctions, 1156	Laser cooling of atoms, 254
	Doppler cooling, 254
Jacobian elliptic function with modulus	polarization gradient cooling, 254
m, 1027	Laser diode(s) (LD)
Jitter in coherent communication systems, 819	amplitude modulation characteristics, 919
Joining fibers, 786	arrays of, 980
Joint transform correlator (JTC), 64, 70	beam patterns, 946
Jones matrix of, 421, 444	conditions of laser oscillation, 905
eigenvectors, 428	confinement of carriers, 930
half-wave plates, 424	confinement of injection current, 933
polarizers, 422	confinement of light, 937
quarter-wave plates, 424	distributed Bragg reflector (DBR), 957
retarders, 424, 425	distributed feedback (DFB), 958
rotators, 425	gain spectrum, 896, 902
Jones vector, 421	laser noise, 952
JTC (joint transform correlator), 64, 70	light transmitter, 1082
compared to VLC, 72	modulation characteristics, 919

I.12 INDEX

Laser diode(s) (LD) (Continued)	LiIO ₃ (lithium iodate), 306
multi-quantum well (MQW), 984	LiNbO ₃ , see Lithium niobate
noise, 952	Linear core layer sandwiched by nonlinear
output power, 913, 926	cladding layers, 1037
quantum dot, 1002	Linear normalized thickness, 1047
quantum well, 984	Linear polarization (LP) mode, 709, 726, 727, 736
quantum wire, 999	Linear polarizer, 365, 394, 587
rate equations, 909	Linearly birefringent, 413
relaxation oscillation, 916, 917	Linearly polarized LP _{$m\mu$} mode, 726. See also
selection of light sources, 1011	$LP_{m\mu}$ modes
single frequency, 956	Linearly polarized wave, 363
temperature dependence, 951	Lines of constant parameters on Argand diagram
threshold current density, 912	azimuth θ , 455
tunable, 189, 970, 977	ellipticity ϵ , 458
turn on delay, 914, 926	Li ₂ O (lithium oxide) to lower the melting point of
unwanted FM, 944, 1086, 1095	glass, 706
wavelength tuning, 970	Lippmann hologram, 92. See also Denisyuk
Laser frequency stabilizer, 176	hologram
Laser oscillation	Liquid carbon disulphide CS ₂ , stimulated Brillouin
condition for, 905	scattering (SBS) of, 512
explanation of, 908	Liquid crystal(s), 341
Latitude lines of β (or ϵ) of Poincaré sphere, 478	cholesteric, 342
Lausent type saccharimeter, 417	discotic, 344
Law of superposition, 548–550, 1070	nematic, 343
LD, see Laser diode	smectic, 343
Leaky wave, 150	Liquid crystal devices, 346
LED, see Light-emitting diode	Fabry–Pérot resonator, 346
Leith–Upatnieks type hologram, 82	fiber filter, 176, 188
Lengths of major and minor axes of elliptical	microlens, 347
polarization, 316	
•	rotatable waveplate, 346
Lens (convex lens), 40	spatial light modulator (SLM), 349, 350, 351, 352
collimating property, 42	
diffraction limited, 45	television, 350
finite aperture, 102, 103	Lithium iodate (LiIO ₃), electrooptic properties of,
focal length, 43	306
Fourier transformable property, 46	Lithium fluoride (LiF), 708
imaging property, 43	Lithium oxide (LiO ₂), 706
radiation pressure, 260	Lithium niobate LiNbO ₃
Levorotary (<i>l</i> -rotary) optical activity, 412	deposited on lithium tantalate, 296–299, 575
LiF (lithium fluoride), 708	elastooptic effect of, 320
Lifetime, 834	electrooptic effect of, 144, 305, 307, 312, 358,
of electrons in the conduction band, 910	579, 649, 821
of photons inside a cavity, 910, 920	photorefractive effect of, 332, 511
Light computer, 1021	LiTaO ₃ , see Lithium tantalate
Light confinement in laser diodes in the horizontal	Lithium tantalate (LiTaO ₃)
(lateral) direction, 937	electrooptic properties of, 296, 298, 299, 305,
Light confinement in laser diodes in the vertical	321
(transverse) direction, 937	photorefractive effect of, 511
Light detectors used in optics laboratories, 796, 800	LO (local oscillator) light, 192, 807
Light-emitting diode (LED), 952, 1007, 1011,	Local oscillator (LO) light, 192, 807
1013, 1082, 1092	Local oscillator intensity noise power (LOIN), 1122
characteristics, 1007	Location of the Gaussian beam waist, 208, 217
structure, 1008	Longitudinal external field to bulk waves, 681
Light path (optical path), expression of, 761, 762	Longitudinal lines of the Poincaré sphere, 479
Light to pump EDFA, 837	Longitudinal mode number, 972
Light rays, direction of, 274, 275, 299	Longitudinal modes, 846, 909
Light transmitters, 893, 1082	Long-line effect, 954
Light tweezers, 226, 249, 251, 253	Loose-tube covered fiber, 784

Lorentz lineshape function, 840	Meridional rays, 693, 718, 771
Loss, fiber	Mesa structure (steep hill structure) laser diodes,
bending, 407	995
cavity, 173	MESFET (metal semiconductor field effect
connector, 790, 1130, 1131, 1138, 1144, 1146	transistor), 1110
coupling, 1130, 1138, 1144	Metal field plate to prevent stray light into detector
fiber transmission, 694, 1138, 1146	diodes, 803
increase due to hydrogen and gamma-ray	Metal guide for integrated optics, 672
irradiation, 695	Metal semiconductor field effect transistor
splicing, 790, 1130, 1131, 1138, 1146	(MESFET), 1110
Low pass spatial filter, 62	Metastable lifetime of Er ³⁺ , 891
Low-work-function material, 796	Methane (CH ₄), 512
LP (linear polarization) mode, 709, 727, 736	Method by trial solution, 1024
$LP_{m\mu}$ modes, 726, 728, 730, 735, 737	Method of separation of variables, 1022, 1160
designation of, 729	Metropolitan area network (MAN), 866
field pattern of, 735	MgF ₂ (magnesium fluoride), 681, 708
Lumped element approach, 1106	MgO (magnesium oxide) to lower the melting
Lyot-Ohman filter, 363, 385	point of glass, 706
	Michelson interferometry, 166
m^2 (beam propagation factor), 220	Microbending loss of optical fibers, 783, 784
Mach-Zehnder fiber coupler, 745	Microbes, 363
Mach-Zehnder interferometer, 679, 683, 793, 1019	Microchannel plate to enhance electron density,
Mach-Zehnder light modulator, 685	800
Magnesium fluoride (MgF ₂), 681, 708	Microfiche recording, 93
Magnesium oxide (MgO) to lower melting point of	Microscope, Schlieren, 63
glass, 706	Microwave hologram, 96
Magnetic flux densities, 112	Minimum detectable power of receivers, 1113
Magnetic flux leaking out of transformer, 145	Minor principal transmittance k_2 of polarizer
Magnetic permeability, 111, 326	sheets, 396
Magnetooptic effect, 326	Mirrors dichroic, 167
Magnetooptic property of a Nd:YAG crystal, 968 Magnification of images, 219, 220	half, 65, 505
Major and minor axes of elliptically polarized	phase conjugate, 504
waves, 372, 431, 433	MISER (monolithic isolated single-mode
Major principal transmittance k_1 of polarizer	end-pumped ring) laser, 968, 1012
sheets, 396	MMI (multimode interference) splitter, 674
MAN (metropolitan area network), 866	MNA (2-methyl-4-nitroaniline) crystal for phase
Manchester Code, 1097	modulation, 182
Manipulation of micron-sized spheres with light	Modal noise, laser diode, 955
beams, 249	Modal retarder of TM-TE converter, 499
Mass fusion splicing machine of fibers, 786, 787	Mode
Material dispersion of optical fiber, 699, 701, 752	density, 843, 847, 1160
Matrix	dispersion of optical fiber, 612, 699, 703, 769
coefficient, 623	hopping of laser diodes, 945
Jones, 421	in graded index fibers, 759, 767, 768, 772
transmission, 625, 626, 630	in nonlinear guides, 1043, 1048
Maximum available power from source, 1114	in step index fibers, 718
Maximum energy coupling in four-wave mixing,	inside cavities, 223, 226, 235
528 Maximum modulation frequency, 920	of propagation, 605 number with the periodic boundary condition,
Maxwell's equations, 268, 521, 607, 609, 610, 709,	1163
715	number in slab guides, 612
boundary conditions of continuity, 112, 121	patterns in graded-index fibers, 770
MCVD (modified chemical vapor deposition)	pattern in rectangular guides, 662
method, 778	patterns in slab guides, 615
Mellin transform, 76	Mode converter, 497, 502, 684, 685
Memory disks, high density, 161	Mode hopping, 945
Mercury flash lamp, 894	Mode-index lens, 620
•	

I.14 INDEX

Mode locking, 945	wavelength division (WDM), 191, 674, 676,
Mode number, see Mode	1085, 1098
Modified Bessel function, 714	Multiplexing fiber sensor, 747
of the first kind, 714	Multiplier layers of APD, 803
of the second kind, 714	Multi-quantum-well (MQW) laser, 984, 992,
Modified chemical vapor deposition (MCVD)	994–999
method, 778	energy states, 988
Modified ray model method, 606, 622, 636	gain curve, 992
Modulation format	threshold current, 994
amplitude (AM), 1086, 1087, 1083	Multi-quantum-well (MQW) nonlinear layer, 1019
•	Multiunit fiber cable, 784
amplitude shift keying (ASK), 812, 1089, 1095	
double sideband (DSB), 1086, 1087	MX, see Multiplexing
double sideband suppressed carrier (DSBC),	N N A AND COC
1087	$N \times N$ matrix connection by AWG, 676
frequency (FM), 1088, 1092	NA (numerical aperture), 151, 693, 694, 701, 703,
frequency shift keying (FSK), 1089, 1095	706, 770
intensity (IM), 313, 1086, 1087	N_{α} (zero gain electron density of laser media),
phase (PM), 1088, 1092, 1094	902
phase shift keying (PSK), 1089, 1095	NaCl (sodium chloride), 341, 708
pulse amplitude (PAM), 1088, 1094	NaClO ₃ (sodium chlorate), optically active, 412
pulse code (PCM), 1084, 1089, 1094	Na ₂ O (sodium oxide) to lower the melting point of
pulse duration modulation (PDM), 1088, 1094	glass, 706
pulse position (PPM), 1088, 1094	Narrow stripe electrodes of laser diodes, 934
quadrature amplitude (QAM), 1087, 1090	N,N-dimethyl-N-octadecyl-3-amino-
single sideband (SSB), 1087, 1090	propyltrimethoxysilyl chloride (DMOAP),
sinusoidal, 103	353
vestigial sideband (VSB), 1087, 1091	Natural sugar $(C_{12}H_{22}O_{11})$, 414
Modulation index, 1086	Nd:YAG (neodymium-doped
Modulators, 312, 605, 1018	yttrium-aluminum-garnet) laser
Mole fraction, 923	rod, 890, 1178
Molecular reorientation of nematic liquid crystals,	solid-state laser, 967, 1012
345	Near field (Fresnel field), 13
Momentum of photons, 250, 572	imaging, 110
Momentum-matching, 113	of optical microscopes, 150
Monochromator, 175	optics, 110
Monocoated fiber, 784	•
	Nebulae, Faraday effect of, 363
Monolithic isolated single-mode end-pumping ring	Negative birefringence, 267
(MISER) laser, 968, 1012	Negative feedback circuit, 1109
Monomode fiber (single mode fiber), 700, 705, 728	Nematic liquid crystal, 341, 343, 347, 357
Monomode optical guide, 612	NEP (noise equivalent power), 1117
Morse code, 1095	Neodymium (Nd)-doped fiber amplifier, 836, 837
Movement of a point on the Poincaré sphere, 494	Neodymium YAG laser, see Nd:YAG laser
along constant latitude (β), 497	Neodymium YAG rod, 889
along constant longitude (θ), 494	NH ₄ F (ammonium fluoride), 158
Movement parallax, 92	Nicol prism, 402
MQW laser, see Multi-quantum-well laser	Nitrobenzene ($C_6H_5NO_2$)
MQW (multi-quantum-well) nonlinear layers, 1019	Kerr constant of, 316, 317
Multiexposed hologram, 519	Kerr effect of, 1017, 1035
Multi-ingredient fiber, 706	Nitrotoluene (C ₆ H ₄ (CH ₃)NO ₂), Kerr effect of,
Multimode graded-index fiber, 705, 769	1017
Multimode interference (MMI) splitter, 674	NLC (nematic liquid crystal), 341, 343, 347, 357
Multimode step-index fiber, 703	Nondeformed strain, 304
Multiple D fiber, 866, 867	Noise
Multiplexer, 677	associated with relaxation oscillation, 955
Multiplexing (MX), 1085, 1097	due to external optical feedback, 953
code-division (CDM), 1085, 1094	due to fluctuations in temperature and injection
frequency division (FDM), 1085, 1094, 1099	current, 955
time division (TDM), 1085, 1094, 1100	due to mode hopping, 955
311101011 (12111), 1003, 1077, 1100	dat to mode nopping, 755

due to spontaneous emission, 955	Optical amplifier
excess index, 1117	based on doped fiber, 833. See also Erbium
FM, 955	doped fiber amplifier (EDFA)
in an APD, 1117	based on photorefractive effect, 334, 338
in detector systems, 1113	Optical communication, see Fiber optic
partition, 955	communication
quantum limited, 1116, 1131	Optical correlators, 64
shot, 1113	Optical directional coupler, 988
thermal, 1114	Optical feedback, 903
thermal noise limited, 1116, 1131	Optical fiber(s)
Noise equivalent power (NEP), 1117	cabling of, 783
Noise figure, 880, 883	characteristic equation of, 717, 718
Nonlinear	cross sectional field distribution, 730
differential equations, 550, 1022, 1024	dispersion shifted, 703, 705, 749, 755, 1051
distributed feedback (DFB) gratings, 1019 dominant mode of, 724	
Kerr media, 512, 518	dual mode, 739, 757, 758
normalized thicknesses, 1041, 1048	fabrication of, 775
parameter, 1072, 1077	gamma ray exposure, 697
saturable absorbers, 945	graded index, 759, 762, 768, 769, 770
Schrödinger equation, 1067	holey, 706
susceptibility of photorefractive crystals, 511	hydrogen exposure, 695
Nonlinear-index coefficient n_2 , 1023, 1066	joining, 786
Nonoptical holographies, 95	kinds of, 703
Nonpolarizing beam splitter (NPBS), 411, 822, 830	modes, 718, 726, 729, 736
Nonradiative transitions, 835	multimode, 703
Nonreciprocal effects, 713	numerical aperture of, 693
Nonreturn to zero (NRZ) code, 774, 1096, 1140	other than silica based, 708
Normal dispersion region, 1056	photoimprinted Bragg grating, 741, 1010
Normal to ellipse, expression of, 432	polarization preserving, 707
Normalized guide index <i>b</i> , 659	solution in the cladding region, 714
Normalized guide index <i>b</i> , 639 Normalized propagation parameter, 728	solution in the core region, 713
Normalized pumping rate of fiber amplifiers, 850	splicing, 786
Normalized steady-state population difference, 849	transmission loss of, 694
Normalized thickness of optical guides, 611, 1041, 1047, 1048	Optical fiber communication, see Fiber optic
	communication Onticel Sher compactor, 700, 1120
"nose" of Panda fibers, 407	Optical fiber connector, 790, 1130
NPBS (nonpolarizing beam splitter), 411, 822, 830	Optical fibers other than silica-based fibers, 708
NRZ (nonreturn to zero) code, 774, 1096, 1140	Optical guide, see Optical slab guide
n-type semiconductors, 1151, 1152	Optical guide coupler, 144
Numerical aperture (NA), 151, 693, 694, 701, 703,	Optical interconnect, 99, 982
706, 770	Optical isolator, 327, 1005
vth order Bessel function of the first kind, 713	polarization dependent, 328
	polarization independent, 330
O modes in nonlinear guides, 1043, 1048	Optical magic T, 678
OASLM (optically addressed spatial light	Optical modulator, 312, 679, 1018
modulator), 351	Optical phase conjugate (OPC), 541
Odd TM modes of optical planar optical guides,	Optical resonator, see Fabry-Pérot cavity
608, 609, 610	Optical signal multiplexing, 1085
Off-axis type hologram, 85	Optical signal processing, see Spatial filters
Offset core fiber, 866	Optical slab guides, 605, 606
OH (hydroxyl) ion impurities, 695, 697	asymmetric, 606, 638
On-off modulation (ASK modulation), 812, 1095	characteristic equation, 610, 633, 634, 643
One-stage processes of fabrication of optical fibers,	coefficient matrix approach, 622, 623
775	component waves, 615
OPC (optical phase conjugate), 541	coupled slab guide, 643, 651
Operational amplifier, 1107	dispersion equation, 612, 637, 638
Optic axis of crystals, 267	effective index of refraction, 619
Optical activity, 412, 415, 586	even modes, 608, 628

I.16 INDEX

Optical slab guides (<i>Continued</i>) field distribution, 615	Outside vapor deposition (OVD) method, 778, 780
mode cutoff, 612	Overdrive parameter of the injection current, 952
mode number, 612	Overview of fiber-optic communication systems,
modified ray model, 636	1082
normalized thickness, 611	o-wave (ordinary wave), 269, 272, 273, 365
odd modes, 608, 628	Oxazine for dye lasers, 894
propagation constant, 612	
symmetric, 606	
transmission matrix method, 625, 630	p wave (parallel wave), 118, 157
TE modes, 607, 620	Pair production, 1155, 1159
TM modes, 607	PAM (pulse amplitude modulation), 1088, 1094
wave optics approach, 607	Panda fiber, 406, 707
Optical tweezer, 226, 249, 251, 253	"eyes" of, 407
Optical waveguides	"nose" of, 407
arrayed waveguide grating (AWG), 673	polarizer, 407
characteristic equation, 657	Parallax
conflection, 666	accommodation, 93
conflection lens, 667	binocular, 92
coupling between guides, 664	movement, 92
	Parallel alignment of the reflectors of a
effective index method, 661	Fabry-Pérot interferometer, 199
electrode configurations, 681	Parallel switching, 1092
electrode structures, 680	Parallel wave (p wave), 118, 157
magic T, optical, 678	Paraxial, 11
mode converter, 685	Partition noise of laser diodes, 955
mode patterns, 662	Parts per billion (ppb) (10^{-9}) , 695
polyimide half-waveplate, 677	Pattern recognition, see Optical correlator; Phase
power divider, 673	conjugate optics
practical example of designing, 659	PBS (polarizing beam splitter), 412, 822, 830
rectangular, 655	PCS (plastic-clad silica) fiber, 775
types of waveguides for integrated	PCM (pulse code modulation), 1084, 1089, 1094
optics, 670	PCVD (plasma chemical vapor deposition) method,
Y junction, 673	778, 779
Optically addressed spatial light modulator	PDFA (praseodymium-doped fiber amplifier), 836
(OASLM), 351	PDLC (polymer-dispersed liquid crystal) type
Optically tunable optical filter, 341	spatial light modulator (SLM), 352
Optimum length of fiber amplifiers, 867	PDM (pulse duration modulation), 1088, 1094
Optimum number of EDFA repeater	Period of relaxation oscillation, 930
stations, 882	Periodic boundary condition, 1161, 1163
Optimum value of the multiplication	Periodic horizontal external field, 684
factor of an APD, 1148	Periodic vertical external field, 684
Optoelastic, see Elastooptic effects	Permanent dipole moment, 265, 266
Optoelectronic, see Electrooptic effects	Permanent joint, 786
Orbital electrons, 1151	Permeability, magnetic, 111, 326
Order of mode (mode number), see Mode	Perpendicular wave (s wave), 118, 157
Ordinary wave (o-wave), 269, 272, 273, 365	Perturbation theory, 1164
Organohydrogen polysiloxane monomer as	Phase conjugate optics, 504
hardener, 697	expressions of, 507
Orientation polarization, 265	for distortion free amplification, 513
Orthogonal eigenvectors, 429	for eliminating wave front distortion, 508
Orthogonality between constant θ and ϵ lines of	for picture processing, 512, 519
the Poincaré sphere, 465	for self-tracking, 514, 517
Orthoscopic image, 85	in real time, 511
OVD (outside vapor deposition) method, 778,	mirror, 504, 508
780	Phase conjugate wave, 504, 521, 537, 539
Outlining input image, 64	explained by holography, 504
Output power from laser diodes, 913, 926	generation of, 506

Phase conjugation method used in dispersion	Photosensitivity, 741
compensators, 755	Phototransistor, 800
Phase correction factor of Fabry-Pérot resonators,	Photovoltaic effect, 800
232	P-I curve (light power vs. injection current) of
Phase discriminator, 1094	laser diodes, 927
Phase diversity technique, 812	Picture processing, 512, 519
Phase grating, 334	by phase conjugate mirrors, 519
Phase jitter, 819, 823	by spatial filters, 61
Phase-lock loop (PLL), 809	Piezoelectric effect, 100
Phase matching, 113, 284	Piezo transducer (PZT), 176
Phase modulation (PM), 1088, 1090, 1092, 1094	Pigtailed laser diode, 1130
Phase modulators, 1018	PIN and PN photodetectors, 796, 801, 1085, 1104,
Phase shifter, 310	1151
Phase shift keying (PSK), 1089, 1095	equivalent circuit of, 1102
Phase velocity, 3, 748	Pinhole camera, 103, 558
Phonons, 817, 835	Planar optical guides, see Optical slab guide
Phosphorus oxychloride (POCl ₃), 777	Planar-type W guide, 633
Phosphorus pentaoxide (P ₂ O ₅), 697	Planck's constant, 250, 797
Photocell, 800	Planck's factor of the radiation law, 1114
Photochromic flexible guide, 672	Plane mirror cavity, 234
Photoconductive effect, 800	Plane waves, 1, 268
Photoconductor cell, 800	Plano-convex lens, 41
Photocurrent, 1159	Plasma chemical vapor deposition (PCVD)
Photodetector, 1159	method, 778, 779
Photodiode, 800	Plasma effect, 939, 944, 963
Photoelastic effect, see Elastooptic effect	Plasma-enhanced modified chemical vapor
Photoelastic fringes, 95	deposition (PMCVD) method, 779
Photoelastic sheet, 95	Plastic-clad silica (PCS) fiber, 775
Photoelasticity, 94	Plastic fiber, 706
Photoelectric effect, see Electrooptic effect	PLL (phase locked loop), 809
Photoinduced Bragg grating, 741, 747, 755	PM (phase modulation), 1088, 1092, 1094
applications of, 744	PM (pulse modulation), 1094
methods of writing, 742	PMCVD (plasma-enhanced modified chemical
photograph of, 745	vapor deposition) method, 779
Photolithography machine, 513	PMMA (polymethyl methacrylate), 706
Photomultiplier tube (PMT), 796, 798	PMT (photomultiplier tube), 796, 798
Photon	PN diode, 801
flux density, 843	p-n junction, 1154
lifetime, 920	P ₂ O ₅ (phosphorus pentaoxide), 697
momentum, 250, 572	Pockels effect, 1018
punch press, 903	Pockels electrooptic effect, 304
radiation pressure, 249	electrooptic properties, 305, 307
Photon–electron converter, of a cathode, 796	for amplitude modulators, 312
Photon-induced pair production, 1103, 1159	for phase shifters, 310
Photon tunneling microscope, 152, 161	for retarders, 311
Photorefractive beam combiner for coherent	POCl ₃ (phosphorus oxychloride), 777
homodyne detection, 339	Poincaré, Henrie, 451
Photorefractive effect, 331	Poincaré sphere, 451
adaptive fiber couplers, 517	constant θ and ε lines, 465
cockroach theory, 333	converted from Argand diagram, 469
crystals, 77, 511, 517	fabrication of a Poincaré sphere, 483
energy transfer, 335	for solving polarizer problems, 485
enhanced by external electric fields, 334	for solving retarder problems, 479
fly-swatter theory, 332	how to construct, 451
joint transform correlator, 77	how to use, 451
optical amplifiers, 334	lines of constant ε , 458, 478
optically tunable filters, 341	lines of constant θ , 455, 479
real time phase conjugate mirrors 511	traces of, 490

I.18	INDEX
	point writing of photoinduced Bragg
_	ead function, 14
	ndrical coordinates, 243
	angular coordinates, 14
	pe, 95, 363, 415
Polarizers	
	on bending optical fibers, 404
	on scattering, 408
dichroi	
	-plates, 407
-	ing beam splitter (PBS), 412
	id sheets, 399
Polarizati	
	h of, 366
circula	
	al, 364
linear,	
	ion dependent optical isolator, 328
	ion, electrical, 264, 266
	ion diversity method of detection, 822
	ion gradient laser cooling, 255
	ion independent optical isolator, 330
	ion jitter, 363, 819
Polarizati	ion jitter controls, 819
Polarizati	ion-maintaining fibers (or preserving),
404,	707, 819
Polarizati	ion microscopes, 363
Polarizing	g beamsplitter (PBS), 412, 822, 830
Polaroid	polarizer, 399
	l mirror, 101
Polyimid	e half-wave-plate ($\lambda/2$ plate), 677
	dispersed liquid crystal (PDLC) type
	ial light modulator (SLM), 352
	yl methacrylate (PMMA) for plastic
	rs, 706
Populatio	on difference of carriers, 860
	on inversion of carriers, 836
	on inversion factor, 847, 864
Position	*
	birefringence, 267
	carrier, 1153
	n bromide (KBr), 708
	n chloride (KCl), 708
	n dihydrogen phosphate (KDP)
	optic properties of, 321
	optic properties of, 305, 316, 1018
	adget (requirement), 1130, 1144, 1148
	ensity handling capability of fiber
amp	lifiers, 866

Power density-interaction length for nonlinear

Power level parameter for nonlinearity, 1041

Power required to establish a fundamental soliton,

effects, 816 Power dividers, 673

Power intensity, 114

Power saturation of EDFA, 838

1071

```
ppb (parts per billion) (10^{-9}), 695
PPM (pulse position modulation), 1088, 1094
PR, see Photorefractive effect
Practical aspects of Fabry-Pérot interferometers,
Practical aspects of optical fibers, 693
Praseodymium-doped fiber amplifier (PDFA), 836
Preform rod, optical fiber, 775, 777, 837
Preheating ends of fiber before splicing, 790
Preventing glare, 412, 419
Primitive (basic) communication system, 1101
Principal axes of an ellipse, 303, 431, 433, 434
Principal mode number of graded-index fibers,
     768, 771
Principal section, 277, 278
Principal strains, 318
Principle of conflection, 667
Prisms, polarizing, 402
Probability of spontaneous emission, 836
Probes to detect evanescent fields, 154
Projection, back, 469
Propagation
  constant, 4, 607, 612, 728, 729, 759, 768, 1055
  direction of, 1, 2, 5, 7, 9
  vector, 4, 5
Propagation in anisotropic media, 263
  in uniaxial crystals, 270, 272
Pros and cons of 1.48-\mum and 0.98-\mum pump
     light, 853
Proton-bombarded region, 935
Pseudoscopic image, 85, 87, 89
PSK (phase shift keying), 1089, 1095
p-type semiconductor, 1151, 1153
Pulfich's refractometer, 164
Pulse amplitude modulation (PAM), 1088, 1094
Pulse broadening compensation in optical fibers by
     four-wave mixing, 537
Pulse code modulation (PCM), 1084, 1089, 1094
Pulse duration modulation (PDM), 1088, 1094
Pulse modulation, 1094
Pulse position modulation (PPM), 1088, 1094
Pump light of optical amplifiers, 834, 835, 837, 844
Pyrometer, 800
PZT (piezo transducer), 176, 207, 213, 215
q parameter, 209, 214, 216, 221, 222
Q of the cavity, 194
QAM (quadrature amplitude modulation), 1087,
Quadratic electrooptic coefficients, 316
Ouadratic phase factor, 48, 49, 559
Quadrature amplitude modulation (QAM), 1087,
     1090
Quadrature component, 810, 1090
Qualitative explanation of laser oscillation, 908
```

Power scrambler for optical networks, 677 Power transmittance *k* of a polarizer, 485 Poynting vector, 114, 117, 118, 124, 125, 275, 283

Quantization of the propagation constant in	Real time correlation, 77
graded index fibers, 766	of joint transform correlator (JTC), 77
Quantum dot laser, 1002	of Vander Lugt correlator (VLC), 77
Quantum efficiency, 797, 803, 804, 831, 951	Reciprocity theorem, 713
Quantum energy, 249	Recombination of electrons and holes, 898
Quantum limited, 1116	Rectangle function, 20
Quantum size effect, 999	Fourier transform of, 20
Quantum-well laser, multi-, 933, 945, 984	Rectangular optical waveguide, 605, 655, 670
Quantum wire laser, 999	Reflectance
Quarter-wave fiber loop, 382, 383	at arbitrary incident angle, 124
Quarter-waveplate	at normal incidence, 117
function of, 371, 377, 386, 394, 480, 822	Reflected waves, 113
generate circular polarization by, 386	Reflecting telescope, Cassegrain, 107, 108
how to use, 386, 389, 392, 393	Reflection coefficients, 113, 114
Jones matrix of, 424	at arbitrary incident angle, 118
optical fiber, 382	electrical (at normal incidence), 113, 114
problems associated with, 394, 480, 483,	magnetic (at normal incidence), 113, 114
493	Reflection coefficient for total internal reflection,
Quartz crystal (SiO ₂), 412, 414, 447	135
electrooptic properties, 305	Reflection finesse, 194
rotary power, 412, 414, 448	Reflection of e-waves
Quasi-Fermi levels, 898, 994	from anisotropic boundaries, 294
Quasi-Gaussian beam, 221	in the case of total internal reflection, 295, 296
,	
Quasi single longitudinal mode laser, 909	Refractive index, see Index of refraction
The state of the s	Refractive index gradient constant of Selfoc fibers,
Radiation patterns	763, 771
antenna, 13, 95	Relative core index step Δ , 758
from a half wave dipole, 103	Relative magnetic permeability, 111
Radiation pressure, 166	Relaxation oscillation of laser diodes, 916, 917,
of laser light, 249	930
of photons, 254	Relaxation time of laser diodes, 1013
Radiation sensitive optical fiber, 698	Repeater stations, 833, 1081
Radiation therapy, 698	Required frequency bandwidth for amplifying
Radius of curvature of the wavefront of Gaussian	digital signals, 1139
beams, 208	Resolution
Raised resistivity by proton bombardment,	of lens-type microscopes, 150
934	of scanning near field optical microscope
Raman, 818	(SNOM), 154
amplifier, 818	Resolving power of Fabry-Pérot resonators, 192,
fiber laser, 1009	194
oscillator, 818	Resonance of Fabry-Pérot resonators, 167
scattering, 816, 817	condition, 174
spectrum, 818	frequency of pth longitudinal mode, 232, 233
Rate equations for the three-level model of Er ³⁺ ,	wavelength, 178
848	Responsivity R
Rate equations of semiconductor lasers, 909	of photomultiplier tubes, 798
Rate of transitions of the carriers, 841	of PIN and APD photodiodes, 803, 805
Ray, 275	Retardance, 310, 365, 367, 431, 437, 579, 587
direction of, 275, 299	measurement of, 392, 393
path, 277	microbes' pattern of, 363
velocity diagram, 579	Retarded time frame, 1064
Ray theory, 759	Retarder, 310, 365, 378, 587
Rayleigh range of a Gaussian beam, 209	Revere, Paul, 1085
Rayleigh resolution criteria, 151	Return to zero (RZ) code, 774, 1096, 1141
Rayleigh scattering, 694, 408, 448	Rhodamine 6G dye, 357, 894
Rayleigh–Sommerfeld diffraction formula, 54, 58,	Rib guide, 670
59, 545	Ribbon fiber cable, 785, 786, 790
Real image, 85, 87	Ridge guide, 670
icai iliage, 65, 67	Riage guide, 070

I.20 INDEX

Ring-type fiber laser, 1004	Self-focusing in gain guiding laser diodes, 939, 941
Ring type solid state laser, 904, 967	Self-induced transparency due to the soliton effect,
Rise time of laser diode turn-on, 930	1076
Rise-time requirement, 1132, 1145	Self-oscillation of optical amplifiers, 838
Rochon prism, 404	Self-phase modulation (SPM), 1051, 1052, 1053,
Rotary power, 412, 414	1069
dextrorotary (right-handed) or d-rotary, 412	Self-pumped phase conjugation (SPPC), 518
leverotary (left-handed) or <i>l</i> -rotary, 412	Self-tracking capability of phase conjugate waves,
Rotation and scaling of the input image in signal	514, 517
processing, 73	Self-tracking of laser beams, 514
Rotation	Sellmeier formula, 702
of coordinates, 309, 314	SEM (scanning electron microscope), 98, 161
of linearly polarized waves by the Faraday	Semiconductors
effect, 327	acceptor atoms, 1153
of major axes of an ellipse, 303	bandgap energy, 804, 901, 925, 945, 996, 998
of polarization, 327, 412	carrier concentration, 930
Rotators, 365, 412	carrier confinement, 930
Faraday effect, 326	conduction band, 1151
Fresnel's explanation of, 413	density of states, 898, 987
optical activity, 412	donor atoms, 1152
saccharimeters, 417	effective mass, 924
Rubber eraser, 303, 323	Fermi energy level, 898, 1151, 1152
Ruby laser, 894	Fermi occupancy probability function, 1151
Rutile (TiO ₂), elastooptic properties of, 321	heterojunction, 930
	3
RZ (return to zero) code, 774, 1096, 1141	intrinsic layer, 1151
S (culfum) 026	n-type semiconductor, 1151, 1152
S (sulfur), 936 S/N (signal to paige ratio) 1115, 1120	p-type semiconductor, 1151, 1153
S/N (signal to noise ratio), 1115, 1139	p-n junction, 1154
s wave (perpendicular, senkrecht in German) wave,	quantum wells, 933, 984, 999, 1002
118, 157	spontaneous emission, 254, 835, 836, 841, 842,
Saccharimeter, 414, 417	1007
SAM (stress-applying member), 707	stimulated emission, 835, 836
Sampled function, 31	valence band, 1151
Saturated back-biased current, 1102, 1158	Semiconductor laser amplifier (SLA), 837, 838,
Saturation signal power intensity, 853, 856, 857	847, 895, 1085
SBS (stimulated Brillouin scattering), 512, 602,	compared to EDFA, 838
815, 817	Semidegenerate four-wave mixing, 533
Scalar wave approach, 53	Senarmont method for measuring retardance, 392,
Scanning electron microscope (SEM), 98, 161	491, 587
Scanning of Fabry–Pérot cavities, 176	Senarmont prism, 404
by angle of incidence, 184	Senkrecht wave (perpendicular, s wave), 118
by frequency of incident light, 190	Sensing strain, vibration, and temperature by
by index of refraction, 187	optical fibers, 747
by reflector spacing, 177	Sensitivity of photomultipliers, 797
Scanning Fabry-Pérot spectrometer, 176	Sensors, 747, 1012
Scanning near-field optical microscopes (SNOM),	Separation of variables, 1022, 1160
154	SF ₆ (sulfur hexafluoride) for chemical lasers, 895
Scattering cross section, 254	Shadowgrams, 97
Schlieren camera, 63, 103	Shah function, 30
Schrödinger equation, 985, 1067	Fourier transform of, 31
Scott-Russell, John, 1049	Shearing strain, 318
Second harmonic generation (SHG), 299, 579, 1018	SHG (second harmonic generation), 299, 579, 1018
Second order nonlinear susceptibility, 523, 525,	Shift keying, 1095
1018	Shifting theorem of the Fourier transform, 36
SE (surface emitting) laser, 956	Short-wavelength-loss edge (SLE), 697
Selection of light sources, 1011	Shot noise, 1113
Selfoc fiber, 763, 766, 770, 772	Shot noise limited, 1116
Selfoc lens, 330	Shot noise power, 876

SiCl ₄ (silicon tetrachloride), 777	Sodium oxide (Na ₂ O) to lower the melting point of
Side pit fiber, 707	glass, 706
Side scan sonar, 96	SNOM (scanning near field optical microscope),
Side tunnel fiber, 707	154
Sifting property of the δ -function, 29	Šolc filters, 385
Sigma laser, 1004, 1005	Soleil compensator, 382
Sign conventions, 3, 368	Solid-state laser, 893, 894, 895, 967
Sign functions, 25	Soliton, 1049
Fourier transform of, 25	collisions of, 1070
Signal saturation intensity of EDFA, 853, 856	envelope function, 1059, 1064
Signal-spontaneous beat noise, 871	fundamental mode, 1069, 1071
Signal to noise ratio (S/N), 1115, 1139	generation of, 1050, 1052
for ASK modulation, 1121	history of, 1049
for homodyne detection, 1122	optical communication system, 1073, 1077
for thermal noise limited case, 1131	period, 1070, 1077
of output from PIN photodiodes, 876	(pulse width) × (amplitude) product, 1073, 1077
Silica core flourine-added cladding fiber, 705	waves, 1017, 1052, 1056, 1081
Silicon dioxide (SiO ₂)-based fiber, 708	Sommerfeld, see Rayleigh-Sommerfeld diffraction
Silicon tetrachloride (SiCl ₄), 777	formula Soot, 779
SiO ₂ (quartz), 305, 412, 681 Sinc function, 21	Space charge polarization, 265
Sine-Gordon equation, 1076	Spatial derivative operation in image processing, 64
Single crystal mixer, 814	Spatial filters, 61
Single heterojunction, 930	derivative operation, 64
Single longitudinal mode (SLM) laser, 907, 956	high pass, 63
Single-mode fiber (monomode), 700, 705, 728	low pass, 62
Single-mode laser, 909	phase contrast, 63
Single-mode optical guide, 612	Spatial frequency, 1, 4, 8
Single sideband (SSB) modulation, 1087, 1090	approaches in Fourier optics, 52
Sketching hybrid mode patterns in optical fibers,	components, 60
732	Spatial hole burning, 968, 969, 1004, 1007
Sketching linearly polarized mode patterns in	Spatial light modulator (SLM), 349, 350, 351, 352
optical fibers, 735	Spatial mapping of microwave radiation, 343
Skew modes in optical fibers, 721	Spectral hole burning, 945
Skew rate, 1125	Spectral lineshape, 839
Skew ray in optical fibers, 693	Spectral measurements by Fabry-Pérot resonator
SLA, see Semiconductor laser amplifier	without reflector spacing, 203
Slab optical guide, see Optical slab guides	Spectroscopy, 4
SLE (short-wavelength-loss edge), 697	Spectrum of laser diode emission, 920
Slipping-buffer layer in optical fiber cables, 783	Splicing fibers, 786, 866
Slit, apodized, 22	Splicing losses, 790, 1130, 1138, 1146
SLM (spatial light modulator), 349, 350, 351, 352	Split field polarizer as an analyzer, 418
SLM (single longitudinal mode) laser, 907, 956	SPM (self-phase modulation), 1051, 1052, 1053,
Slow axis of retarder, 367	1058, 1069
Slowly varying envelope approximation (Bohr approximation), 529	Spontaneous emission, 254, 835, 836, 841, 842, 1007
Small signal amplitude modulation, 916	Spontaneous emission lifetime, 254, 842, 926
Smectic liquid crystal, 341	Spontaneous-spontaneous beat noise, 871, 872,
"A" type, 343	875
"C" type, 343, 354, 356	SPPC (self-pumped phase conjugation), 518
S/N (signal to noise ratio), see Signal to noise ratio,	SRS (stimulated Raman scattering), 512, 818, 1009
Snell's law, 110, 112, 113, 121, 135, 292, 565, 566	SSB (single sideband) modulation, 1087, 1090
in k-coordinates, 145, 164	SSG (superstructure grating) laser diode, 977, 979
Snitzer proposal, 723	Stability condition of cavity resonators, 231, 234
SnO ₂ (tin dioxide) transparent electrode, 311	Stable operation of optical tweezers, 253
Sodium chlorate (NaClO ₃), optically active, 412 Sodium chloride (NaCl), 341, 708	Standardized Japanese system for telephone bit rate, 1102

Standardized U.S. system for telephone bit rates,	nonlinear, 511, 523, 1018
1102	tensor, 266
Standing-wave boundary condition, 1161, 1163	Switching electrodes, 685
Standing wave patterns, 89, 135, 235, 615, 636,	Symmetric guide, 606
637, 969	Symmetric matrix, 430
Star coupler, 678	Synchronous homodyne receiver, 818
State of polarization, 371	Synthetic aperture holography, 97
graphical solution of, 365	System loss, 1130
Static energy of induced polarization, 345	
Steady-state solutions of rate equations, 911	3Rs of repeaters, 833
Step and repeat function, 31, 64	TAT 1 (Trans Atlantic Transmission), 693
Step function, 25	Taylor series expansion, 538, 1063
Fourier transform of, 25	TDM (time division multiplexing), 1085, 1094,
Step index fiber, theory of, 709	1100
Step index multimode fiber, 703, 709, 1139	TE (transverse electric) wave, 607, 620, 719,
Stereoscopic motion picture, 362	1030
Stimulated Brillouin scattering (SBS), 512, 602,	$TE_{0\mu}$ mode, 720, 721, 732
815, 817	Teleaxicon, 245
Stimulated effects, 816	Telephone bit rates, standardized U.S., 1102
Stimulated emission, 835, 836, 842	TE-like modes, 656
Stimulated emission cross section, 843, 859	Tellurium dioxide (TeO ₂), elastooptic properties of,
Stimulated Raman scattering (SRS), 512, 818, 1009	100, 322
Stokes radiation, 816, 1009	TEM ₀₀ Gaussian mode, 226, 253
Stopper layer of electrode structure, 681	TEM ₁₁ Gaussian mode beam, 226, 253
Strain, 318	Temperature dependence of L-I curves of laser
fiber sensor, 747	diodes, 951
free, 304	Temperature effect on the wavelength of laser
principal, 318	diodes, 945
shearing, 318	Temperature fluctuations measured by optical
Stranded cable, 784, 786	fibers, 747
Stranding pitch, 784	Temporal frequency f , 4
Streak camera, 798	Tensor susceptibility, 266
Streak pattern due to edge diffraction, 25	TeO ₂ (tellurium dioxide), 100, 322
Stress-applying member (SAM), 707	Terminal contact resistance, 920
Stripe substrate laser, 936	Terminal potential, 928
Strip-loaded guide, 671	Terraced substrate (TS) laser diode, 936
Strongly coupled quantum wells, 988	TE-TM converter, 502, 594, 685
Subcarrier frequency, 1099	Tetrahedral substrate, 666
Substrate, 606	TFT (thin film transistor), 350
Sucrose $(C_{12}H_{22}O_{11})$, 412	Thallium bromide (TlBr), 708
Sulfur (S), 939	Thallium monoxide (Tl ₂ O) to lower the melting
Sulfur hexafluoride (SF ₆) for chemical lasers, 895	point of glass, 706
Summary of essential formulas for calculating	Thermal noise, 876, 1114
states of polarization, 439	Thermal noise limited, 1116
Summary of transformations of Gaussian beams by	Thermister, 800
a lens, 219	Thin emulsion holograms, 88, 108
Sunglasses, 362	Thin film transistor (TFT), 350
Superheterodyne radio, 807	Third-order dispersion effect, 755
Superposition, law of, 549, 1070	Third-order nonlinear electric susceptibility, 523,
Superstructure grating, 978	527, 1018
Superstructure grating (SSG) laser diode, 977, 979	Three-dimensional displays, 92
Surface acoustic wave (SAW) light deflector, 324	Three-layer optical guide with a linear core and
Surface acoustooptic modulator, 99	nonlinear identical claddings, 1038
Surface-emitting diode LED, 1008	Three-level material, 836
Surface-emitting (SE) laser, 956	Threshold carrier density, 927
Surface wave, 135	Threshold current, 909, 928, 930
Susceptibility	Threshold electron density, 928
electric, 266	Threshold gain, 928

Threshold light intensity of pump light, 860 Transoceanic fiberoptic submarine communication, Thulium (Tm³⁺) for upconversion fiber amplifiers, 1017 Transparent electrodes, 188, 311 Transverse electric (TE) wave, 607, 620, 719, 1030 Time constant of photomultipliers, 798 Time constant of relaxation oscillation, 917 Transverse external electric field to bulk waves, Time degradation of LD output power, 1130 681 Time-dependent solutions of rate equations, 859, Transverse junction stripe (TJS) laser, 936 Transverse magnetic (TM) wave, 607, 719 Trapping micron-sized dielectric spheres, 249 Time division multiplexing (TDM), 1085, 1094, Triangle function, 21 Time reversed videotape, 504 Fourier transform of, 22 Time reversed wave, 507 Trimming electrodes, 684 Tin dioxide (SnO₂) transparent electrode, 311 Triple-photon excitation, 889 TiO₂ (rutile), 321 Trunk lines, 786 Titanium doped indium phosphide (InP:Ti), as a TS (terraced substrate) laser diode, 936 Kerr medium, 512 TTL (transistor-transistor logic), 1124 TJS (transverse junction stripe) laser, 936 Tunable optical coupler, 740 Tl₂O (thallium monoxide) to lower the melting Tunable optical filter electrically, 188, 189 point of glass, 706 TlBr (thallium bromide), 708 optically, 341 Tm³⁺ (thulium) for upconversion fiber amplifiers, Tuning of the wavelength of a laser diode by Bragg reflector tuning current I_b alone, 973 TM (transverse magnetic) mode, 607, 719, 722 by combining I_p and I_b , 975 TM-like modes, 656, 657, 659 by phase controller tuning current I_p alone, 973 Turn-on characteristics of laser diodes, 920 $TM_{0\mu}$ mode, 732 TM₀ mode of optical guides (dominant mode), 612 Turn-on delay time of laser diodes, 909, 914, 926, TM-TE converter, 497, 498 930 TN (twisted nematic) liquid crystal, 344, 350, 351, Turpentine (C₁₀H₁₆), optical activity of, 412 359 Twisted nematic (TN) liquid crystal, 344, 350, 351, TNSLM (twisted nematic liquid crystal spatial light modulator), 349 Twisted nematic spatial light modulator (TNSLM) Top layer of electrode structures, 680 liquid crystal, 349 Topographic images obtained by AFM, 160 Two-frequency method to remove phase jitter, Total internal reflection Two-stage processes to fabricate optical fibers, 775, of e-waves, 285, 296, 298 of o-waves, 130, 145, 147, 605 reflection coefficient for, 135 Two stage process to fabricate erbium doped fibers, Transcendental equations, 611, 639 Two-wave mixing gain of photorefractive Transfer length of optical couplers, 651 Transformation of Gaussian beams by lenses, 214 materials, 518 Transformation of q parameters by lenses, 215 Tyndall, John, 692 Transimpedance circuit (TZ), 1109, 1110, 1136 Types of optical fibers, 703 Transistor-transistor logic (TTL), 1124 TZ (transimpedance) circuit, 1109, 1110, 1136 Transition energy, 254 Transmission coefficients U-groove cable, 786 at arbitrary incident angle, 118 Unbounded field, 627 Unclamped condition, 304 at normal incidence, 114 electrical, 113, 114 Undersea transmission cable, 833 magnetic, 113, 114 Unfolded, manipulation of conflection, 666, 667 Transmission loss of fibers, 694 Uniaxial crystals, 267 Transmission matrix method, 606, 622, 625, 626, condition of propagation in, 272 630 graphical solution of propagation in, 270 Transmittance propagation inside, 270 at arbitrary incident angle, 124 Unit fiber cable, 784 at normal incidence, 117 Unit vector for the direction of propagation, 7 Transmitted waves, 113 Unpolarized (depolarized) wave, 364 Transmitters, 893 Upatnieks hologram, see Leith-Upatnieks type Transmitting satellite, 259 hologram

I.24 INDEX

Upconversion fiber amplifier, 889 Water (H₂O) Upper limit on the modulation frequency of a laser as a nonlinear medium, 1017 diode, 909, 920, 930 as a polarized medium, 266 U.S. standard rating DS-4 PCM, 1145 elastooptic properties of, 320 UV laser beam, 744 Kerr constant of, 316, 317 Wave equations in cylindrical coordinates, 709, 710 UV-light-cured resin, 697 Wave expressions of light, 132 V shape fiber loss curve, 694 Wavefront, 276 VAD (vapor-phase axial deposition) method, 778, Waveguide, see Optical waveguides 780, 781 Waveguide dispersion of optical fibers, 699, 701, Valence band, 899, 998, 1151 752 Values of $\sin \Delta$ to determine the handedness of Waveguide index, optical fiber, 750 elliptical polarization, 375 Wavelength, 4, 8, 110, 112 Vanadium tetrachloride (VCl₄), 777 Wavelength converter, 352 Wavelength division multiplexing (WDM), 191, Van der Waals forces, 341 674, 676, 1085, 1098, 1175 Vander Lught correlator (VLC), 64, 66 Vapor-phase axial deposition (VAD) method, 778, Wavelength filter, 684 780, 781 Wavelength matching, 113 VCl₄ (vanadium tetrachloride), 777 Wavelength-selective insertion into a WDM, 747, VCSEL (vertical cavity surface-emitting laser), Wavelength-selective tapping in a WDM, 747 957, 981 Vector propagation constant, 4 Wavelength shift of radiation from laser diodes, Velocity matched Mach-Zehnder interferometer, Wavenormal, 275, 295, 759, 761, 762 Velocity of the envelope, 748 and Snell's law, 292 Velocity surface of Huygens' wavelet ellipsoid, Wavenumber, 177, 890 578 Wave optics approach, propagation in planar optical guides, 606, 607 Verdet constant, 327 Vernier effect, 977 Waveplate, 379 Vertical cavity surface-emitting laser (VCSEL), fiber type, 382, 383, 385 full, 385 957, 981 Vertical external field in adjacent embedded guides, half, 385 683 how to use, 385, 386, 389, 392, 393 Vertical external field quarter wave, 371, 377, 382, 386, 389, 393, 394, 480, 483, 493, 822 in embedded guides, 683 Wavevector method to analyze waves in periodic, 684 Very near field, 150 anisotropic media, 264, 282 Vestigial sideband (VSB) modulation, 1087, 1091 diagram of, 283, 284 V-groove fiber, 786 WDM (wavelength division multiplexing) system, V-grooved substrate buried heterostructure (VSB) 191, 674, 676, 1085, 1098, 1175 laser, 936 Weakly coupled quantum wells, 988 Vibration fiber sensor, 747 Weakly guiding approximation, 722, 726 Vibration measurement by holography, 95 Weyl expansion theorem, 545 White light hologram, 87 Virtual image, 84 VLC (Vander Lugt correlator), 64 Wollaston polarizing prism, 404 compared to JTC, 72 Work function, 796 Voice channels, number of, 1102 Writing photoinduced Bragg gratings in optical fibers, 742, 744 Voice recognition, 77 Volume hologram, 87 VSB (vestigial sideband), 1087, 1091 Xe₂ (Xenon) as medium for excimer lasers, 894 VSB (V-grooved substrate buried heterostructure) X-ray analysis, 89, 97 laser, 936 X-ray crystallography, 13 W guide, 635 Y-cut crystal, 307, 312 Waist location of Gaussian beams, 208 Y junction, 673 emergent from lenses, 217 YAG (yittrium aluminum garnet) laser, 101, 894, Waist size of Gaussian beams, 208 967 emergent from lenses, 216 Y-branch laser diode array, 983

 $Y_3Al_5O_{12}$ (YAG) yittrium aluminum garnet, 101, 894, 967

Y₃Fe₅O₁₂ (YIG) yittrium iron garnet, 329, 330 YIG (yittrium iron garnet), 329, 330 Yittrium aluminum garnet (YAG), 101, 894, 967 Yittrium iron garnet (YIG), 329, 330

ZBLAN fiber, 889 Z-cut crystal, 307 Zero gain electron density N_{α} of laser media, 902

Zeroth-order Bessel functions of the second kind, 714

Zinc (Zn), 936

Zinc chloride (ZnCl₂), 708

Zinc oxide (ZnO), electrooptic properties of, 306

Zinc sulfide (ZnS), elastooptic properties of, 320

Zinc telluride (ZnTe), electrooptic properties of, 306

Zn (zinc), 936

ZnCl₂ (zinc chloride), 708

ZnO, see Zinc oxide

ZnS, see Zinc sulfide

ZnTe, see Zinc telluride