Fixpunktlogik mit Zählquantoren

Florian Weingarten

Betreuer: Dipl.-Inform. Roman Rabinovich

Lehr und Forschungsgebiet Mathematische Grundlagen der Informatik Prof. Dr. Erich Grädel RWTH Aachen

Aachen, 17. Juli 2009

Fixpunktlogik mit Zählquantoren Inhalt

- Einführung
 - Motivation: Logiken für Komplexitätsklassen
 - Wiederholung
 - Logiken mit Zählquantoren
- IFP+C und PTIME
 - ullet Die Logik \mathcal{C}_k
 - Das C_k -Spiel
 - Konstruktion von Cai-Fürer-Immerman
 - \bullet Folgerungen: IFP+C erfasst PtIME nicht
- Zusammenfassung und Ausblick

Motivation: Logiken für Komplexitätsklassen

Motivation

Definition

Logik L erfasst Komplexitätsklasse C, wenn

- \bullet für alle $\psi \in L$, das Model-Checking-Problem für ψ in C ist und
- $\bullet \ \ \text{für alle} \ \mathcal{K} \in C \text{, ein} \ \psi \in L \ \text{existiert mit} \ \operatorname{Mod}(\psi) = \mathcal{K}.$

Definition

Logik L erfasst Komplexitätsklasse C, wenn

- \bullet für alle $\psi \in L$, das Model-Checking-Problem für ψ in C ist und
- für alle $K \in C$, ein $\psi \in L$ existiert mit $Mod(\psi) = K$.

Beispiel

- MSO erfasst über Wortstrukturen die regulären Sprachen (Satz von Büchi, Elgot, Trahktenbrot).
- ESO erfasst über endlichen Strukturen NP (Satz von Fagin).

Satz (Immerman, Vardi)

Die Logik IFP erfasst PTIME auf geordneten (endlichen) Strukturen.

Satz (Immerman, Vardi)

Die Logik IFP erfasst PTIME auf geordneten (endlichen) Strukturen.

Frage

Gibt es eine Logik, die PTIME auf allen (endlichen) Strukturen erfasst?

Satz (Immerman, Vardi)

Die Logik IFP erfasst PTIME auf geordneten (endlichen) Strukturen.

Frage

Gibt es eine Logik, die Ptime auf allen (endlichen) Strukturen erfasst?

Falls...

- ja, dann kann diese nicht stärker als ESO sein.
- nein, dann ist $PTIME \neq NP$.

Motivation: Logiken für Komplexitätsklassen

Motivation

FO ist zu schwach, um $\ensuremath{\mathrm{PTIME}}$ zu erfassen.

FO ist zu schwach, um PTIME zu erfassen.

Beispiel

Zwei in Polynomialzeit entscheidbare Eigenschaften:

- (1) Ist ein Graph $\mathcal{G} = (V, E)$ zusammenhängend? (Tiefensuche)
- (2) Hat das Universum A einer Struktur $\mathfrak A$ eine gerade Anzahl von Elementen?

Beide sind nicht in FO ausdrückbar (Beweis z.B. über Ehrenfeucht-Fraïssé-Spiele).

FO ist zu schwach, um PTIME zu erfassen.

Beispiel

Zwei in Polynomialzeit entscheidbare Eigenschaften:

- (1) Ist ein Graph $\mathcal{G} = (V, E)$ zusammenhängend? (Tiefensuche)
- (2) Hat das Universum A einer Struktur $\mathfrak A$ eine gerade Anzahl von Elementen?

Beide sind nicht in FO ausdrückbar (Beweis z.B. über Ehrenfeucht-Fraissé-Spiele).

Idee

Erweitere FO um

- (1) Rekursion (IFP) und
- (2) Zählkonstrukte (FO+C, IFP+C).

Inflationäre Fixpunktlogik

- LFP: Relationsvariable muss positiv auftreten
- ullet $\psi(X,\overline{x})$ induziert inflationären Operator:

$$F_{\psi}: \mathcal{P}(A^{k}) \to \mathcal{P}(A^{k})$$

$$R \mapsto \mathbf{R} \cup \{\overline{a} \in A^{k} \mid (\mathfrak{A}, R) \models \psi(R, \overline{a})\}.$$

Inflationäre Fixpunktlogik

- LFP: Relationsvariable muss positiv auftreten
- ullet $\psi(X,\overline{x})$ induziert inflationären Operator:

$$F_{\psi}: \mathcal{P}(A^{k}) \longrightarrow \mathcal{P}(A^{k})$$

$$R \longmapsto \mathbf{R} \cup \{\overline{a} \in A^{k} \mid (\mathfrak{A}, R) \models \psi(R, \overline{a})\}.$$

- Folge $(F_{\psi}^k(\emptyset))_{k\in\mathbb{N}}$ wird stationär, d.h. Fixpunkt existiert (IFP)
- $\mathfrak{A} \models [\mathsf{ifp} \ R\overline{x}.\psi](\overline{t}) : \Leftrightarrow \overline{t}^{\mathfrak{A}} \in \mathsf{IFP}(F_{\psi}).$

Inflationäre Fixpunktlogik

- LFP: Relationsvariable muss positiv auftreten
- $\psi(X, \overline{x})$ induziert inflationären Operator:

$$F_{\psi}: \mathcal{P}(A^{k}) \longrightarrow \mathcal{P}(A^{k})$$

$$R \longmapsto \mathbf{R} \cup \{\overline{a} \in A^{k} \mid (\mathfrak{A}, R) \models \psi(R, \overline{a})\}.$$

- Folge $(F_{\psi}^k(\emptyset))_{k\in\mathbb{N}}$ wird stationär, d.h. Fixpunkt existiert (IFP)
- $\mathfrak{A} \models [\mathsf{ifp} \ R\overline{x}.\psi](\overline{t}) : \Leftrightarrow \overline{t}^{\mathfrak{A}} \in \mathsf{IFP}(F_{\psi}).$

Beispiel

$$\psi(u,v) := [\mathsf{ifp}\ Txy.((x=y) \lor \exists z (Exz \land Tzy))](u,v)$$

Zählen

Erweitere Strukturen um Zahlen.

Zählen

Erweitere Strukturen um Zahlen.

Definition

Sei
$$\mathfrak{A} = (A, (R_i)_{i \in I}^{\mathfrak{A}}), |A| = n.$$

$$\mathfrak{A}^* := (\underbrace{A, (R_i)_{i \in I}^{\mathfrak{A}}}_{\mathsf{Punkte}}) \, \cup \, (\underbrace{\{0, 1, ..., n\}, \leq, \min, \max}_{\mathsf{Zahlen}}).$$

Inflationäre Fixpunktlogik mit Zählquantoren (IFP+C)

- ullet Terme über au (mit Variablen x,y,z,\ldots).
- Terme über $\{\leq, \min, \max\}$ (mit Variablen $\mu, \lambda, \nu, ...$).
- Atomare τ -Formeln und atomare $\{\leq, \min, \max\}$ -Formeln.
- $Xt_1...t_k\rho_1...\rho_l$, wobei X Relationsvariable der Stelligkeit (k,l).
- φ, ψ Formeln, dann sind $\neg \varphi$, $\varphi \wedge \psi$ und $\varphi \vee \psi$ Formeln.
- φ Formel, dann sind $\exists x \varphi$ und $\exists \mu \varphi$ Formeln.
- φ Formel, μ Variable, dann ist $\exists^{\geq \mu} x \varphi(x)$ Formel.
- $\varphi(X, \overline{x}, \overline{\mu})$ Formel, dann auch [ifp $\overline{x}\overline{\mu}.\varphi$] $(\overline{t}, \overline{\rho})$.

Beispiel IFP+C

Beispiel

$$\psi := [\mathsf{ifp} \ X\mu. (\underbrace{(\mu = \min) \vee \exists \nu (X\nu \wedge \mu = \nu + 2)}_{=:\varphi(X,\mu)})](\max)$$

Beispiel IFP+C

Beispiel

$$\psi := [\text{ifp } X\mu.(\underbrace{(\mu = \min) \vee \exists \nu(X\nu \wedge \mu = \nu + 2)}_{=:\varphi(X,\mu)})](\max)$$

Fixpunktiteration:

- $F_{\varphi}(R) = \{ i \mid i = 0 \text{ oder } i = j + 2 \text{ für ein } j \in R \}$
- $\bullet \ F_{\varphi}^1(\emptyset) = \{0\}$
- $F_{\varphi}^{2}(\emptyset) = \{0, 2\}$
- $F_{\varphi}^{3}(\emptyset) = \{0, 2, 4\}$
- ..
- $\bullet \ F_{\varphi}^k(\emptyset) = \{ \ i \mid i \leq 2k \ \text{und} \ i \ \text{ist gerade} \ \}$

Beispiel IFP+C

Beispiel

$$\psi := [\mathsf{ifp} \ X\mu.(\underbrace{(\mu = \min) \lor \exists \nu(X\nu \land \mu = \nu + 2)}_{=:\varphi(X,\mu)})](\max)$$

Fixpunktiteration:

- $F_{\varphi}(R) = \{ i \mid i = 0 \text{ oder } i = j + 2 \text{ für ein } j \in R \}$
- $\bullet \ F_{\varphi}^1(\emptyset) = \{0\}$
- $F_{\varphi}^{2}(\emptyset) = \{0, 2\}$
- $F_{\varphi}^{3}(\emptyset) = \{0, 2, 4\}$
- ..
- $F_{\varphi}^{k}(\emptyset) = \{ i \mid i \leq 2k \text{ und } i \text{ ist gerade } \}$

Insgesamt:

$$\mathfrak{A} \models \psi \iff \max^{\mathfrak{A}^*} \in \mathrm{IFP}(F_{\varphi}) \iff |A| \text{ gerade}$$

Ziel

Satz (Cai, Fürer, Immerman) IFP+C erfasst PTIME nicht.

Ziel

Satz (Cai, Fürer, Immerman)

IFP+C erfasst PTIME nicht.

Beweisüberblick

- Neue Logik C_k .
- ullet Spieltheoretische Semantik für \mathcal{C}_k .
- Konstruiere Graphen \mathcal{G}_k und \mathcal{H}_k , so dass
 - ullet \mathcal{G}_k und \mathcal{H}_k sich in Polynomialzeit unterscheiden lassen und
 - \mathcal{G}_k und \mathcal{H}_k sich durch \mathcal{C}_k -Formeln **nicht** unterscheiden lassen.
- Folgerung: IFP+C erfasst PTIME nicht.

Logik \mathcal{C}_k

Definition

Wie FO, nur

- maximal k Variablen.
- neue Quantoren: $\exists^{\geq i} x \varphi(x)$ (für jedes $i \in \mathbb{N}$).

Logik \mathcal{C}_k

Definition

Wie FO, nur

- maximal k Variablen.
- neue Quantoren: $\exists^{\geq i} x \varphi(x)$ (für jedes $i \in \mathbb{N}$).

Beobachtung

- $C_k < FO$.
- Aber: Man braucht mehr Variablen!
- Beispiel: $\exists^{\geq 2} x \varphi(x)$ äquivalent zu $\exists x_1 \exists x_2 (x_1 \neq x_2 \land \varphi(x_1) \land \varphi(x_2))$.

Das \mathcal{C}_k -Spiel

$$\mathsf{Sei}\ \mathcal{G} = (V_{\mathcal{G}}, E_{\mathcal{G}})\ \mathsf{und}\ \mathcal{H} = (V_{\mathcal{H}}, E_{\mathcal{H}})\ \big(\mathsf{mit}\ V_{\mathcal{G}} \cap V_{\mathcal{H}} = \emptyset\big).$$

Das \mathcal{C}_k -Spiel

Sei
$$\mathcal{G} = (V_{\mathcal{G}}, E_{\mathcal{G}})$$
 und $\mathcal{H} = (V_{\mathcal{H}}, E_{\mathcal{H}})$ (mit $V_{\mathcal{G}} \cap V_{\mathcal{H}} = \emptyset$).

Definition (C_k -Spiel)

Es gibt zwei Spieler (I und II) und für jedes $1 \le i \le k$ zwei Spielsteine x_i .

- Spieler I wählt einen Stein x_i und (danach!) eine Teilmenge A von $V_{\mathcal{G}}$ oder $V_{\mathcal{H}}$.
- Spieler II wählt eine Menge B im anderen Graphen mit |A| = |B|.
- Spieler I platziert seinen Stein x_i auf einem Knoten aus B.
- Spieler II platziert den zweiten Stein x_i auf einem Knoten aus A.

Das C_k -Spiel

Sei
$$\mathcal{G} = (V_{\mathcal{G}}, E_{\mathcal{G}})$$
 und $\mathcal{H} = (V_{\mathcal{H}}, E_{\mathcal{H}})$ (mit $V_{\mathcal{G}} \cap V_{\mathcal{H}} = \emptyset$).

Definition (C_k -Spiel)

Es gibt zwei Spieler (I und II) und für jedes $1 \le i \le k$ zwei Spielsteine x_i .

- Spieler I wählt einen Stein x_i und (danach!) eine Teilmenge A von $V_{\mathcal{G}}$ oder $V_{\mathcal{H}}$.
- Spieler II wählt eine Menge B im anderen Graphen mit |A| = |B|.
- Spieler I platziert seinen Stein x_i auf einem Knoten aus B.
- ullet Spieler II platziert den zweiten Stein x_i auf einem Knoten aus A.

Definition (Spielkonfiguraion, Gewinnbedingung)

- Zwei partielle Funktionen u, v.
- $u(x_i) = g$: Auf dem Knoten g im Graphen \mathcal{G} liegt ein Stein x_i .

Das C_k -Spiel

Sei
$$\mathcal{G} = (V_{\mathcal{G}}, E_{\mathcal{G}})$$
 und $\mathcal{H} = (V_{\mathcal{H}}, E_{\mathcal{H}})$ (mit $V_{\mathcal{G}} \cap V_{\mathcal{H}} = \emptyset$).

Definition (C_k -Spiel)

Es gibt zwei Spieler (I und II) und für jedes $1 \le i \le k$ zwei Spielsteine x_i .

- Spieler I wählt einen Stein x_i und (danach!) eine Teilmenge A von $V_{\mathcal{G}}$ oder $V_{\mathcal{H}}$.
- ullet Spieler II wählt eine Menge B im anderen Graphen mit |A|=|B|.
- Spieler I platziert seinen Stein x_i auf einem Knoten aus B.
- ullet Spieler II platziert den zweiten Stein x_i auf einem Knoten aus A.

Definition (Spielkonfiguraion, Gewinnbedingung)

- Zwei partielle Funktionen u, v.
- $u(x_i) = g$: Auf dem Knoten g im Graphen \mathcal{G} liegt ein Stein x_i .
- I gewinnt, wenn $u(x_i) \mapsto v(x_i)$ kein Isomorphismus ist (oder wenn II kein B findet).
- "Spieler I will die Graphen unterscheiden, Spieler II will sie gleich aussehen lassen."

Spieler I gewinnt das C_3 -Spiel:

• Idee: $\exists x \exists y \exists z (Exy \land Eyz \land Ezx)$.

- Idee: $\exists x \exists y \exists z (Exy \land Eyz \land Ezx)$.
- ullet Wähle Dreieck als Menge A.

- Idee: $\exists x \exists y \exists z (Exy \land Eyz \land Ezx)$.
- ullet Wähle Dreieck als Menge A.
- Spieler II muss mit gleicher Farbe antworten.

- Idee: $\exists x \exists y \exists z (Exy \land Eyz \land Ezx)$.
- ullet Wähle Dreieck als Menge A.
- Spieler II muss mit gleicher Farbe antworten.

- Idee: $\exists x \exists y \exists z (Exy \land Eyz \land Ezx)$.
- ullet Wähle Dreieck als Menge A.
- Spieler II muss mit gleicher Farbe antworten.

- Idee: $\exists x \exists y \exists z (Exy \land Eyz \land Ezx)$.
- ullet Wähle Dreieck als Menge A.
- Spieler II muss mit gleicher Farbe antworten.

- Idee: $\exists x \exists y \exists z (Exy \land Eyz \land Ezx)$.
- ullet Wähle Dreieck als Menge A.
- Spieler II muss mit gleicher Farbe antworten.

- Idee: $\exists x \exists y \exists z (Exy \land Eyz \land Ezx)$.
- ullet Wähle Dreieck als Menge A.
- Spieler II muss mit gleicher Farbe antworten.

- Idee: $\exists x \exists y \exists z (Exy \land Eyz \land Ezx)$.
- ullet Wähle Dreieck als Menge A.
- Spieler II muss mit gleicher Farbe antworten.

- Idee: $\exists x \exists y \exists z (Exy \land Eyz \land Ezx)$.
- ullet Wähle Dreieck als Menge A.
- Spieler II muss mit gleicher Farbe antworten.

- Idee: $\exists x \exists y \exists z (Exy \land Eyz \land Ezx)$.
- ullet Wähle Dreieck als Menge A.
- Spieler II muss mit gleicher Farbe antworten.

- Idee: $\exists x \exists y \exists z (Exy \land Eyz \land Ezx)$.
- ullet Wähle Dreieck als Menge A.
- Spieler II muss mit gleicher Farbe antworten.

- Idee: $\exists x \exists y \exists z (Exy \land Eyz \land Ezx)$.
- ullet Wähle Dreieck als Menge A.
- Spieler II muss mit gleicher Farbe antworten.

- Idee: $\exists x \exists y \exists z (Exy \land Eyz \land Ezx)$.
- ullet Wähle Dreieck als Menge A.
- Spieler II muss mit gleicher Farbe antworten.

- Idee: $\exists x \exists y \exists z (Exy \land Eyz \land Ezx)$.
- ullet Wähle Dreieck als Menge A.
- Spieler II muss mit gleicher Farbe antworten.
- Kein Isomorphismus!

Spieler II gewinnt das \mathcal{C}_2 -Spiel

Spieler II gewinnt das C_2 -Spiel

 \bullet Spieler I wählt A, II wählt B mit gleichen Farben.

Spieler II gewinnt das C_2 -Spiel

 \bullet Spieler I wählt A, II wählt B mit gleichen Farben.

- ullet Spieler I wählt A, II wählt B mit gleichen Farben.
- Spieler I wählt x.

- ullet Spieler I wählt A, II wählt B mit gleichen Farben.
- Spieler I wählt x.
- Spieler II antwortet mit x' mit gleicher Farbe.

- ullet Spieler I wählt A, II wählt B mit gleichen Farben.
- Spieler I wählt x.
- Spieler II antwortet mit x' mit gleicher Farbe.

- ullet Spieler I wählt A, II wählt B mit gleichen Farben.
- Spieler I wählt x.
- Spieler II antwortet mit x' mit gleicher Farbe.

- ullet Spieler I wählt A, II wählt B mit gleichen Farben.
- Spieler I wählt x.
- ullet Spieler II antwortet mit x^\prime mit gleicher Farbe.

- Spieler I wählt A, II wählt B mit gleichen Farben.
- Spieler I wählt x.
- Spieler II antwortet mit x' mit gleicher Farbe.
- Spieler II kann immer antworten, egal ob Exy oder nicht.

Spieler II gewinnt das \mathcal{C}_2 -Spiel

Spieler II gewinnt das C_2 -Spiel

• Spieler I muss Stein wählen, den er erneut benutzen möchte.

- Spieler I muss Stein wählen, den er erneut benutzen möchte.
- Danach wird erst das neue A gewählt.

- Spieler I muss Stein wählen, den er erneut benutzen möchte.
- Danach wird erst das neue A gewählt.
- ullet Spieler II kann B so wählen, dass Spieler I die Graphen nicht unterscheiden kann.

Das C_k -Spiel

Satz

Spieler II hat genau dann eine Gewinnstrategie für das \mathcal{C}_k -Spiel auf \mathcal{G} und \mathcal{H} , wenn sich \mathcal{G} und \mathcal{H} durch \mathcal{C}_k -Formeln **nicht** unterscheiden lassen.

Das \mathcal{C}_k -Spiel

Satz

Spieler II hat genau dann eine Gewinnstrategie für das \mathcal{C}_k -Spiel auf \mathcal{G} und \mathcal{H} , wenn sich \mathcal{G} und \mathcal{H} durch \mathcal{C}_k -Formeln **nicht** unterscheiden lassen.

Beweis $(,,\Rightarrow")$

- Angenommen $\varphi \in \mathcal{C}_k$ unterscheidet \mathcal{G} und \mathcal{H} .
- $m := \mathsf{Quantorenrang} \ \mathsf{von} \ \varphi.$
- Interessanter Fall: $\varphi = \exists^{\geq N} x_i \psi$.
- Spieler I wählt x_i und |A| = N in \mathcal{G} , so dass ψ für alle $v \in A$ gilt.
- Spieler II wählt |B| = N.
- In \mathcal{H} gilt ψ für $\leq N-1$ viele Knoten.
- ullet Spieler I legt Stein auf ein Element aus B, für dass ψ nicht gilt.
- ullet und ${\mathcal H}$ unterscheiden sich nun schon durch $\psi.$
- Quantorenrang von ψ ist m-1.
- Per Induktion: Spieler II verliert!

Definition

Sei $\mathcal{X}_k := (V_k, E_k)$ mit

- $\bullet \ V_k := A_k \cup B_k \cup M_k$
- $A_k := \{a_i \mid 1 \le i \le k\}$
- $B_k := \{b_i \mid 1 \le i \le k\}$
- $M_k := \{m_S \mid S \subseteq \{1, ..., k\}, |S| \text{ gerade}\}$
- $E_k := \{(m_S, a_i) \mid m_S \in M_k, i \in S\}$ $\cup \{(m_S, b_i) \mid m_S \in M_k, i \notin S\}$
- a_i und b_i seien mit der Farbe i gefärbt.
- Knoten in M_k haben alle die gleiche Farbe.

Beispiel: \mathcal{X}_2 und \mathcal{X}_3

Beispiel: \mathcal{X}_2 und \mathcal{X}_3

Beobachtung

- $|M_k| = 2^{k-1}$.
- m_S sind für jedes $1 \le i \le k$ entweder mit a_i oder mit b_i verbunden.
- m_S haben alle Grad k.

tromorphismen von A_k

- $\{a_i, b_i\}$ werden fest gelassen.
- Anzahl $a_i \leftrightarrow b_i$ ist gerade.
- ullet Umgekehrt: Permutation von gerade vielen $a_i \leftrightarrow b_i$ induziert Automorphismus.

Automorphismen von \mathcal{X}_k

- $\{a_i, b_i\}$ werden fest gelassen.
- Anzahl $a_i \leftrightarrow b_i$ ist gerade.
- Umgekehrt: Permutation von gerade vielen $a_i \leftrightarrow b_i$ induziert Automorphismus.

Beispiel (Tausche a_1 mit b_1 und a_2 mit b_2)

- $\{a_i, b_i\}$ werden fest gelassen.
- Anzahl $a_i \leftrightarrow b_i$ ist gerade.
- Umgekehrt: Permutation von gerade vielen $a_i \leftrightarrow b_i$ induziert Automorphismus.

Beispiel (Tausche a_1 mit b_1 und a_2 mit b_2)

- $\{a_i, b_i\}$ werden fest gelassen.
- Anzahl $a_i \leftrightarrow b_i$ ist gerade.
- Umgekehrt: Permutation von gerade vielen $a_i \leftrightarrow b_i$ induziert Automorphismus.

Beispiel (Tausche a_1 mit b_1 und a_2 mit b_2)

Automorphismen von \mathcal{X}_k

- $\{a_i, b_i\}$ werden fest gelassen.
- Anzahl $a_i \leftrightarrow b_i$ ist gerade.
- Umgekehrt: Permutation von gerade vielen $a_i \leftrightarrow b_i$ induziert Automorphismus.

Beispiel (Tausche a_1 mit b_1 und a_2 mit b_2)

Automorphismen von \mathcal{X}_k

Also:

- Jeder Automorphismus *entspricht* einer Permutation auf $A_k \cup B_k$, die alle $\{a_i, b_i\}$ fest lässt und geradzahlig viele a_i mit b_i tauscht.
- Jeder Automorphismus kann durch ein $m_S \in M_k$ kodiert werden.

Konstruktion von Cai-Fürer-Immerman

Graphen $\mathcal{X}(\mathcal{G})$, $\tilde{\mathcal{X}}(\mathcal{G})$ und $\hat{\mathcal{X}}(\mathcal{G})$

Sei $\mathcal G$ ein endlicher, zusammenhängender ungerichteter Graph, in dem jeder Knoten mindestens Grad 2 hat.

Graphen $\mathcal{X}(\mathcal{G})$, $\tilde{\mathcal{X}}(\mathcal{G})$ und $\hat{\mathcal{X}}(\mathcal{G})$

$$\mathcal{X}(\mathcal{G})$$

- ullet Ersetze jeden Knoten v mit Grad k durch eine Kopie von \mathcal{X}_k (genannt $\mathcal{X}(v)$).
- \bullet Ordne jeder Kante (v,w) in ${\mathcal G}$ ein Paar $\{a_i,b_i\}=:\{a(v,w),b(v,w)\}$ zu.
- Knoten in $\mathcal{X}(v)$ bekommen Farbe von v.

Graphen $\mathcal{X}(\mathcal{G})$, $\tilde{\mathcal{X}}(\mathcal{G})$ und $\hat{\mathcal{X}}(\mathcal{G})$

ullet Verdrehe genau eine Kante in $\mathcal{X}(\mathcal{G})$.

Graphen $\mathcal{X}(\mathcal{G})$, $\tilde{\mathcal{X}}(\mathcal{G})$ und $\hat{\mathcal{X}}(\mathcal{G})$

ullet Verdrehe mehrere Kanten in $\mathcal{X}(\mathcal{G})$.

Verschieben der Verdrehungen

Verschieben der Verdrehungen

Isomorphieklassen von $\hat{\mathcal{X}}(\mathcal{G})$

$$\hat{\mathcal{X}}(\mathcal{G}) \cong \begin{cases} \mathcal{X}(\mathcal{G}) & t \text{ gerade} \\ \hat{\mathcal{X}}(\mathcal{G}) & t \text{ ungerade} \end{cases}$$

Position unwichtig, da Verdrehungen "verschoben" werden können. Nur Parität relevant.

Graphseparatoren

Definition

Ein Separator eines Graphen $\mathcal{G}=(V,E)$ ist eine Menge $S\subseteq V$, so dass in $\mathcal{G}\setminus S$ für alle Zusammenhangskomponente C gilt: $|C|\leq \frac{|V|}{2}$.

Graphseparatoren

Definition

Ein Separator eines Graphen $\mathcal{G}=(V,E)$ ist eine Menge $S\subseteq V$, so dass in $\mathcal{G}\setminus S$ für alle Zusammenhangskomponente C gilt: $|C|\leq \frac{|V|}{2}$.

Definition

Ein Separator eines Graphen $\mathcal{G}=(V,E)$ ist eine Menge $S\subseteq V$, so dass in $\mathcal{G}\setminus S$ für alle Zusammenhangskomponente C gilt: $|C|\leq \frac{|V|}{2}$.

Graphseparatoren

Definition

Ein Separator eines Graphen $\mathcal{G}=(V,E)$ ist eine Menge $S\subseteq V$, so dass in $\mathcal{G}\setminus S$ für alle Zusammenhangskomponente C gilt: $|C|\leq \frac{|V|}{2}$.

Graphseparatoren

Definition

Ein Separator eines Graphen $\mathcal{G}=(V,E)$ ist eine Menge $S\subseteq V$, so dass in $\mathcal{G}\setminus S$ für alle Zusammenhangskomponente C gilt: $|C|\leq \frac{|V|}{2}$.

Satz (Cai, Fürer, Immerman)

Sei ${\mathcal T}$ ein Graph, so dass jeder Separator mindestens s+1 Knoten hat, dann gilt

$$\mathcal{X}(\mathcal{T}) \equiv_{\mathcal{C}_s} \tilde{\mathcal{X}}(\mathcal{T}).$$

D.h. es gibt keine C_s -Formel, die die beiden Graphen unterscheidet.

Spieler I versucht die Verdrehung aufzuzeigen, Spieler II versucht sie zu verstecken.

- $P_r := \{ g \in V_T \mid \text{ in } \mathcal{X}(g) \text{ liegt nach } r \text{ Z\"{u}gen ein Stein } \}.$
- $|P_r| \leq s$, also kann P_r kein Separator sein.
- ullet $Q_r:=$ größte Zusammenhangskomponente von $\mathcal{T}\setminus P_r.$
- ullet Q_r enthält mehr als die Hälfte der Knoten.
- $ilde{\mathcal{X}}^g(\mathcal{T}) := ilde{\mathcal{X}}(\mathcal{T})$ mit Verdrehung an einer zu $g \in Q_r$ adjazenten Kante.
- $Q_r \cap Q_{r+1} \neq \emptyset.$

Spieler I versucht die Verdrehung aufzuzeigen, Spieler II versucht sie zu verstecken.

- $P_r := \{ g \in V_T \mid \text{ in } \mathcal{X}(g) \text{ liegt nach } r \text{ Zügen ein Stein } \}.$
- $|P_r| \le s$, also kann P_r kein Separator sein.
- $ullet \ Q_r := \mathsf{gr\"{o}Bte} \ \mathsf{Zusammenhangskomponente} \ \mathsf{von} \ \mathcal{T} \setminus P_r.$
- ullet Q_r enthält mehr als die Hälfte der Knoten.
- ullet $ilde{\mathcal{X}}^g(\mathcal{T}):= ilde{\mathcal{X}}(\mathcal{T})$ mit Verdrehung an einer zu $g\in Q_r$ adjazenten Kante.
- $Q_r \cap Q_{r+1} \neq \emptyset.$

Gewinnstrategie für Spieler II im \mathcal{C}_s -Spiel

Spieler I versucht die Verdrehung aufzuzeigen, Spieler II versucht sie zu verstecken.

- $P_r := \{ g \in V_T \mid \text{ in } \mathcal{X}(g) \text{ liegt nach } r \text{ Zügen ein Stein } \}.$
- $|P_r| \le s$, also kann P_r kein Separator sein.
- $Q_r := \text{gr\"oßte Zusammenhangskomponente von } \mathcal{T} \setminus P_r$.
- ullet Q_r enthält mehr als die Hälfte der Knoten.
- ullet $ilde{\mathcal{X}}^g(\mathcal{T}):= ilde{\mathcal{X}}(\mathcal{T})$ mit Verdrehung an einer zu $g\in Q_r$ adjazenten Kante.
- $Q_r \cap Q_{r+1} \neq \emptyset.$

Spieler I versucht die Verdrehung aufzuzeigen, Spieler II versucht sie zu verstecken.

- $P_r := \{ g \in V_T \mid \text{ in } \mathcal{X}(g) \text{ liegt nach } r \text{ Zügen ein Stein } \}.$
- $|P_r| \leq s$, also kann P_r kein Separator sein.
- $Q_r := \text{gr\"oßte Zusammenhangskomponente von } \mathcal{T} \setminus P_r.$
- ullet Q_r enthält mehr als die Hälfte der Knoten.
- $ilde{\mathcal{X}}^g(\mathcal{T}) := ilde{\mathcal{X}}(\mathcal{T})$ mit Verdrehung an einer zu $g \in Q_r$ adjazenten Kante.
- $Q_r \cap Q_{r+1} \neq \emptyset.$

Spieler I versucht die Verdrehung aufzuzeigen, Spieler II versucht sie zu verstecken.

- $P_r := \{ g \in V_T \mid \text{ in } \mathcal{X}(g) \text{ liegt nach } r \text{ Zügen ein Stein } \}.$
- $|P_r| \leq s$, also kann P_r kein Separator sein.
- $Q_r := \text{gr\"oßte Zusammenhangskomponente von } \mathcal{T} \setminus P_r$.
- ullet Q_r enthält mehr als die Hälfte der Knoten.
- $ilde{\mathcal{X}}^g(\mathcal{T}):= ilde{\mathcal{X}}(\mathcal{T})$ mit Verdrehung an einer zu $g\in Q_r$ adjazenten Kante.
- $Q_r \cap Q_{r+1} \neq \emptyset.$

Züge von Spieler I im \mathcal{C}_s -Spiel

Beobachtung

Züge von Spieler I im \mathcal{C}_s -Spiel

Beobachtung

Es bringt Spieler I keinen Vorteil, mehrfabige Mengen A zu wählen.

 \bullet I verliert einfarbig \Rightarrow I verliert auch mehrfarbig.

Beobachtung

- I verliert einfarbig ⇒ I verliert auch mehrfarbig.
- ullet II wählt sein B für jede Farbe von A separat nach seiner einfarbigen Strategie.

Beobachtung

- I verliert einfarbig ⇒ I verliert auch mehrfarbig.
- ullet II wählt sein B für jede Farbe von A separat nach seiner einfarbigen Strategie.

Züge von Spieler I im \mathcal{C}_s -Spiel

Beobachtung

- I verliert einfarbig ⇒ I verliert auch mehrfarbig.
- ullet II wählt sein B für jede Farbe von A separat nach seiner einfarbigen Strategie.

Beobachtung

- I verliert einfarbig ⇒ I verliert auch mehrfarbig.
- ullet II wählt sein B für jede Farbe von A separat nach seiner einfarbigen Strategie.

Beobachtung

- I verliert einfarbig ⇒ I verliert auch mehrfarbig.
- ullet II wählt sein B für jede Farbe von A separat nach seiner einfarbigen Strategie.
- Kann Spieler II nicht gleichviele Elemente finden für eine Farbe, so hätte Spieler I alleine mit dieser Farbe schon gewinnen können.

Beobachtung

- I verliert einfarbig ⇒ I verliert auch mehrfarbig.
- ullet II wählt sein B für jede Farbe von A separat nach seiner einfarbigen Strategie.
- Kann Spieler II nicht gleichviele Elemente finden für eine Farbe, so hätte Spieler I alleine mit dieser Farbe schon gewinnen können.

Beobachtung

- I verliert einfarbig ⇒ I verliert auch mehrfarbig.
- ullet II wählt sein B für jede Farbe von A separat nach seiner einfarbigen Strategie.
- Kann Spieler II nicht gleichviele Elemente finden für eine Farbe, so hätte Spieler I alleine mit dieser Farbe schon gewinnen können.

Beobachtung

- I verliert einfarbig ⇒ I verliert auch mehrfarbig.
- ullet II wählt sein B für jede Farbe von A separat nach seiner einfarbigen Strategie.
- Kann Spieler II nicht gleichviele Elemente finden für eine Farbe, so hätte Spieler I alleine mit dieser Farbe schon gewinnen können.

Beobachtung

- I verliert einfarbig ⇒ I verliert auch mehrfarbig.
- ullet II wählt sein B für jede Farbe von A separat nach seiner einfarbigen Strategie.
- Kann Spieler II nicht gleichviele Elemente finden für eine Farbe, so hätte Spieler I alleine mit dieser Farbe schon gewinnen können.

Züge von Spieler I im \mathcal{C}_s -Spiel

Erinnerung:

- In $\mathcal{X}(v)$: a_i und b_i haben Farbe i, Knoten in M(v) alle gleich gefärbt.
- ullet Jedes v hat in ${\mathcal T}$ eine eindeutige Farbe.
- Jeder Knoten von $\mathcal{X}(v)$ hat zweite Farbe (die von v).

Also: Spieler I wählt nur $A \subseteq \{a_i, b_i\}$ oder $A \subseteq M(v)$ in einem $\mathcal{X}(v)$.

Züge von Spieler I im \mathcal{C}_s -Spiel

Erinnerung:

- In $\mathcal{X}(v)$: a_i und b_i haben Farbe i, Knoten in M(v) alle gleich gefärbt.
- ullet Jedes v hat in ${\mathcal T}$ eine eindeutige Farbe.
- Jeder Knoten von $\mathcal{X}(v)$ hat zweite Farbe (die von v).

Also: Spieler I wählt nur $A \subseteq \{a_i, b_i\}$ oder $A \subseteq M(v)$ in einem $\mathcal{X}(v)$.

Ausserdem:

Element aus der Mitte M(v) eines $\mathcal{X}(v)$ legt bereits alle anderen fest. Daher:

- Spieler I wählt in jedem Zug nur in der Mitte $(A \subseteq M(v))$.
- Spieler I wählt in jedem Zug nur ein einziges Element $(A = \{m_S\})$ (d.h. Zählen hilft Spieler I nicht!).

Gewinnbedingung

Spieler II gewinnt, falls er folgende Bedingung aufrechterhalten kann:

(*) Für alle $g \in Q_r$ gibt es (nach r Zügen) ein

$$\alpha_{r,g}: \tilde{\mathcal{X}}^g(\mathcal{T}) \stackrel{\cong}{\to} \tilde{\mathcal{X}}(\mathcal{T})$$

welches die Platzierung der Steine respektiert.

Gewinnbedingung

Spieler II gewinnt, falls er folgende Bedingung aufrechterhalten kann:

(*) Für alle $g \in Q_r$ gibt es (nach r Zügen) ein

$$\alpha_{r,g}: \tilde{\mathcal{X}}^g(\mathcal{T}) \stackrel{\cong}{\to} \tilde{\mathcal{X}}(\mathcal{T})$$

welches die Platzierung der Steine respektiert.

Anschaulich

Spieler II gewinnt, weil er die verdrehte Kante in Q_r verstecken kann. Funktioniert, weil die "steinfreien Komponenten" Q_r und Q_{r+1} sich überschneiden.

nach r Zügen

nach r+1 Zügen

Induktion

Induktion über Anzahl der Züge

- ullet Nach r=0 Zügen
 - Noch keine Steine platziert.
 - Also $Q_0 = \mathcal{T}$.
 - $\bullet \ \tilde{\mathcal{X}}^g(\mathcal{T}) \cong \tilde{\mathcal{X}}(\mathcal{T}).$

 $\mathsf{nach}\ r\ \mathsf{Z} \ddot{\mathsf{u}} \mathsf{gen}$

 $\mathsf{nach}\ r+1\ \mathsf{Z} \ddot{\mathsf{u}} \mathsf{gen}$

Induktion

Angenommen (*) gilt nach r Zügen.

- Spieler I legt in Zug r+1 einen Stein auf Knoten in M(w).
- Sei $q \in Q_r \cap Q_{r+1}$.
- Q_{r+1} ist zusammenhängend: Es gibt Pfad von g zu jedem $h \in Q_{r+1}$.
- $\bullet \alpha_{r+1,h} := \pi \circ \alpha_{r,q}$.
- Pfad von q nach h ist "steinfrei".
- Also: π lässt Knoten fest, auf denen Steine liegen.
- $\alpha_{r+1,h}$ erfüllt Bedingung (*) \Rightarrow Spieler II gewinnt.

nach r Zügen

nach r+1 Zügen

Folgerungen: IFP+C erfasst PTIME nicht

Folgerung: IFP+C kann die Graphen auch nicht entscheiden

- $\bullet \ \, {\rm Angenommen} \,\, \varphi \in {\rm IFP+C} \,\, ({\rm mit} \,\, k \,\, {\rm Variablen}) \,\, {\rm kann} \,\, {\rm die} \,\, {\rm Graphen} \,\, {\rm unterscheiden}.$
- Gebe Formel $\varphi_n \in \mathrm{FO}$ an, die für Graphen der Größe $\leq n$ äquivalent zu φ ist.
- Fixpunkte "abwickeln".

Folgerung: IFP+C kann die Graphen auch nicht entscheiden

- Angenommen $\varphi \in \mathsf{IFP} + \mathsf{C} \ (\mathsf{mit} \ k \ \mathsf{Variablen}) \ \mathsf{kann} \ \mathsf{die} \ \mathsf{Graphen} \ \mathsf{unterscheiden}.$
- Gebe Formel $\varphi_n \in \mathrm{FO}$ an, die für Graphen der Größe $\leq n$ äquivalent zu φ ist.
- Fixpunkte "abwickeln".

Beispiel zum "Abwickeln"

- $[\mathsf{ifp} Xxy.(x = y \lor \exists z (Exz \land Xzy))](x,y)]$
- $\bullet \leadsto x = y \lor \exists z (Exz \land (Ezy \lor \exists x (Ezx \land (Exy \lor \exists z (Exz \land Ezy))))))$
- Beide Formeln für $|\mathcal{G}| \leq 5$ äquivalent.

Folgerung: IFP+C kann die Graphen auch nicht entscheiden

- Angenommen $\varphi \in \mathsf{IFP} + \mathsf{C} \; (\mathsf{mit} \; k \; \mathsf{Variablen}) \; \mathsf{kann} \; \mathsf{die} \; \mathsf{Graphen} \; \mathsf{unterscheiden}.$
- Gebe Formel $\varphi_n \in FO$ an, die für Graphen der Größe $\leq n$ äquivalent zu φ ist.
- Fixpunkte "abwickeln".

Beispiel zum "Abwickeln"

- $[\mathsf{ifp} Xxy.(x = y \lor \exists z (Exz \land Xzy))](x,y)]$
- $\bullet \leadsto x = y \lor \exists z (Exz \land (Ezy \lor \exists x (Ezx \land (Exy \lor \exists z (Exz \land Ezy))))))$
- Beide Formeln für $|\mathcal{G}| \leq 5$ äquivalent.
- $\exists \mu$ durch $\bigvee_{i=0}^{n}$ ausdrücken, z.B.

$$\exists \mu \exists^{\geq \mu} x \varphi(x) \rightsquigarrow \bigvee_{i=0}^{n} \exists^{\geq i} x \varphi(x)$$

- Keine neuen Variablen dazu gekommen.
- Also: $\varphi_n \in \mathcal{C}_k$ unterscheidet die Graphen auch. Widerspruch.

Zusammenfassung

- ullet FO+C und IFP+C sind Erweiterungen von FO bzw. IFP um $\it Z\ddot{a}hlquantoren$.
- IFP+C reicht nicht aus um PTIME zu erfassen.

Zusammenfassung

- FO+C und IFP+C sind Erweiterungen von FO bzw. IFP um Zählquantoren.
- IFP+C reicht nicht aus um PTIME zu erfassen.

Offene Fragen

- Welche Logik erfasst PTIME (auf der Klasse aller endlichen Strukturen)?
- Gibt es so eine Logik überhaupt?

Zusammenfassung

- FO+C und IFP+C sind Erweiterungen von FO bzw. IFP um Zählquantoren.
- IFP+C reicht nicht aus um PTIME zu erfassen.

Offene Fragen

- Welche Logik erfasst PTIME (auf der Klasse aller endlichen Strukturen)?
- Gibt es so eine Logik überhaupt?

Vielen Dank für die Aufmerksamkeit!