

Lab	
HW	
Until	

การบ้านปฏิบัติการ 3 Functions (20 คะแนน)

າ	0		
ขอ	กา	าห	นด

- การเรียกใช้ฟังก์ชันเพื่อการทดสอบ ต้องอยู่ภายใต้เงื่อนไข if __name__ == '__main__' : เพื่อความ
 สะดวกในการ import จาก Script อื่นๆ
- แ. ไม่อนุญาตให้ใช้ Control Flow ต่าง ๆ เช่น if (Conditionals) หรือ and, or (Logical operations) หรือ for, while (Iterations), Recursions, หรือ Data Type อื่น ๆ ที่ยังไม่สอนในบทเรียน เช่น range, list หรือ map ในการแก้ปัญหา
- iii. นักศึกษาสามารถสร้างฟังก์ชันย่อยต่าง ๆ เพิ่มเติมได้ตามความเหมาะสม
- iv. ในข้อที่ระบุว่ามี **[Attachments]** ให้ Download ไฟล์ Template จาก Grader ลงมา implement (ปุ่ม Attachment บน Grader)
- v. <u>ตัวอักษรเอียงสีน้ำเงิน</u>ในตัวอย่างการ Run คือ User Input จาก keyboard (กรณีโจทย์กำหนดให้เขียนโปรแกรม)

Hint: ควรใช้ Statement assert เพื่อทำการทดสอบฟังก์ชันที่เขียนกับข้อมูลทดสอบหลายๆ ชุดโดยอัตโนมัติ (มี ตัวอย่างใน Attachment ของ HW03 1)

1) **4 คะแนน** (Lab03_1_6xxxxxxxx.py) [Attachments] ให้เขียนโปรแกรมภาษา python เพื่อรับค่าพื้นที่ผิวของ ทรงกลมจาก User แล้วคำนวณปริมาตรของทรงกลมนั้น โดยต้องเขียน code ในฟังก์ชัน find_r_from_surface_area(surface_area) และ sphere_volume(radius) ทั้งนี้โปรแกรมที่ได้จะมีผลการ Run ดังแสดงด้านล่าง (ดูคำอธิบายทั้งหมดจาก Slide เรื่อง Functions Part I หน้า 15 - 20)

ตัวอย่างการ Run

input surface area: 50)		
volume = <i>33.25</i>		eni	

•	การวิเครา	าะห์ใ	ไญหา

• Input:		จำนวนข้อมูล	ชนิดข้อมูล	
Output:	(คืนค่า)	จำนวนข้อมูล	ชนิดข้อมูล	
• Output:	(แสดงค่า)	จำนวนข้อมล	ชนิดข้อมล	

2) **4 คะแนน** (Lab3_2_6xxxxxxxx.py) ให้เขียนฟังก์ชัน octagon_area(x) เพื่อ<u>คืนค่า</u>พื้นที่รูปแปดเหลี่ยมตามที่ แรเงาเมื่อกำหนดความยาว x ดังรูป (สำหรับปัญหาในข้อนี้ให้นักศึกษา<u>คิด test case เอง</u>)

• การวิเคราะห์ปัญหา

• Input:

• Output:

(คืนค่า)

• Output:

. .

(แสดงค่า)

จำนวนข้อมูล____ชนิดข้อมูล____ จำนวนข้อมูล____ชนิดข้อมูล____

จำนวนข้อมูล_____ชนิดข้อมูล_____

3) 4 คะแนน (HW03_1_6XXXXXXXX.py) [Attachments] ให้เขียนฟังก์ชัน nearest_odd(x) เพื่อ<u>คืนค่า</u>จำนวนคี่ที่ ใกล้กับจำนวนจริง x ที่สุดโดยหาก x เป็นจำนวนคู่ ให้คืนค่าจำนวนคี่ที่<u>น้อยกว่า</u> x นอกจากนี้ไฟล์ที่ส่งจะต้องมีฟังก์ ขัน test_nearest_odd() ที่ทำหน้าที่ทดสอบการทำงานของฟังก์ชัน nearest_odd() โดยใช้ assert ด้วย Hint: จำนวนคี่คือจำนวนที่สามารถเขียนในรูป 2n+1 หรือ 2m-1 เมื่อ n,m เป็นจำนวนเต็ม

<u>Input</u>	Output
3	3
3.5	3
4 Chiang Mai	3 niversity
4.5	5

• การวิเคราะห์ปัญหา

Input: จำนวนข้อมูล ชนิดข้อมูล
 Output: (คืนค่า) จำนวนข้อมูล ชนิดข้อมูล
 Output: (แสดงค่า) จำนวนข้อมูล ชนิดข้อมูล

4) **4 คะแนน** (HW03_2_6XXXXXXXX.py) ให้เขียนฟังก์ชัน kth_digit(number, k) เพื่อ<u>คืนค่า</u>ของหลักที่ระบุ โดยตัวแปร k ($k \ge 0$) ของจำนวนเต็ม number โดยกำหนดให้ หลักที่อยู่ตำแหน่งขวาสุดคือหลักที่ 0 ทั้งนี้ ให้ถือ ว่า User จะไม่ใส่ตัวแปรในช่วงค่าที่ไม่ถูกต้อง (ไม่จำเป็นต้องตรวจสอบความถูกต้องของ Input)

<u>Input</u>	<u>Output</u>
789 0	9
789 2	7
789 3	0
0 0	0

• การวิเคราะห์ปัญหา

Input: จำนวนข้อมูล ชนิดข้อมูล
 Output: (คืนค่า) จำนวนข้อมูล ชนิดข้อมูล
 Output: (แสดงค่า) จำนวนข้อมูล ชนิดข้อมูล

5) 4 คะแนน (HW03_3_6XXXXXXX.py) ให้เขียนฟังก์ชัน set_kth_digit(number, k, value) เพื่อคืนค่า ผลลัพธ์ของการเปลี่ยนค่าของหลักที่ระบุโดยตัวแปร k ของ<u>จำนวนเต็มบวก</u> number ให้มีค่าเป็นตามที่กำหนดใน ตัวแปร value (0 ≤ value ≤ 9) โดยกำหนดให้หลักที่อยู่ตำแหน่งขวาสุดคือหลักที่ 0 เช่น set_kth_digit(2343, 2, 7) จะเปลี่ยนหลักที่ 2 ของตัวเลข 2343 ให้เป็นเลข 7 และคืนค่า 2743 ทั้งนี้ จะต้องมีการ<u>เรียกใช้</u>ฟังก์ชัน kth_digit() จาก HW03_2 และให้ถือว่า User จะไม่ใส่ตัวแปรในช่วงค่าที่ไม่ถูกต้อง (ไม่จำเป็นต้องตรวจสอบความถูกต้องของ Input)

<u>Input</u>		Output
2 <u>3</u> 43		2 <u>7</u> 43
7		R SIEIFNIEF
5 <u>1</u>		5 <u>2</u>
0 2	Chiang Mai	University
1		<u>5</u> 01
2		
)	ļ	

• การวิเคราะห์ปัญหา

• Input:		จำนวนข้อมูล	ชนิดข้อมูล	
• Output:	(คืนค่า)	จำนวนข้อมูล	ชนิดข้อมูล	
Output:	(แสดงค่า)	จำนวนข้อมล	ชนิดข้อมล	

การ<u>ส่งงาน</u>

- 1. ลักษณะ/ลำดับข้อความของการรับค่า/แสดงผล จะ<u>ต้องเป็นไปตามที่ระบ</u>ุในตัวอย่างการ run
- 2. ไฟล์งานที่ส่ง จะต้องมีการแทรก comment ที่ต้นไฟล์ตามข้อกำหนดใน canvas รายวิชา
- 3. ไฟล์งานโปรแกรมที่ส่ง จะต้องมีการแทรก pseudocode เป็น comment ในแต่ละขั้นตอน
- 4. Upload ไฟล์ source code ตามที่ระบุในแต่ละข้อ ไปยังระบบตรวจให้คะแนนอัตโนมัติ https://cmu.to/gdr111

COMPUTER SCIENCE

Chiang Mai University