Principles

DES

S-DES

DES Design

Other Ciphers

Block Ciphers and the Data Encryption Standard (DES)

Dr. Xiaochen Yuan 2021/2022

Contents

Principles

Block Ciphers

DES

S-DES

DES Docidi

011 67 1

Block Cipher Principles

The Data Encryption Standard

Simplified-DES

DES Details

DES Design Issues and Attacks

3DES, AES and Other Block Ciphers

Principles

·

S-DES

ES Details

DES Design

Otner Upner

Stream Ciphers

- Encrypts a digital data stream one bit or one byte at a time
- One time pad is example; but practical limitations
- > Typical approach for stream cipher:
 -) Key (K) used as input to bit-stream generator algorithm
 - Algorithm generates cryptographic bit stream (k_i) used to encrypt plaintext
 - Users share a key; use it to generate keystream

Principles

. . . .

S-DES

ES Details

DES Design

Otner Upner

Block Ciphers

- Encrypt a block of plaintext as a whole to produce same sized ciphertext
- Typical block sizes are 64 or 128 bits
- Modes of operation used to apply block ciphers to larger plaintexts

Principles

Timespi

S-DES

ES Details

DES Desigr

Other Cipher

Reversible and Irreversible Mappings

- n-bit block cipher takes n bit plaintext and produces n bit ciphertext
- > 2ⁿ possible different plaintext blocks
- > Encryption must be **reversible** (decryption possible)
- Each plaintext block must produce unique ciphertext block
- \rightarrow Total transformations is $2^n!$

Reversible Mapping

Plaintext	Ciphertext
00	11
01	10
10	00
11	01

Irreversible Mapping

Plaintext	Ciphertext	
00	11	
01	10	
10	01	
11	01	

Principles

3=DL3

ES Details

DES Desigr

Otner Upner

Ideal Block Cipher

- \rightarrow *n*-bit input maps to 2^n possible input states
- Substitution used to produce 2ⁿ output states
- > Output states map to *n*-bit output
- Ideal block cipher allows maximum number of possible encryption mappings from plaintext block
- Problems with ideal block cipher:
 - Small block size: equivalent to classical substitution cipher; cryptanalysis based on statistical characteristics feasible
 - Large block size: key must be very large; performance/implementation problems

Principles

DEC

S-DES

DES Detai

DES Desig

Other Cipher

General Block Substitution

·

Principles

DEC

3-DE3

DES Detail

DES Design

Other Ciphers

Encryption/Decryption Tables

Plaintext	Ciphertext
0000	1110
0001	0100
0010	1101
0011	0001
0100	0010
0101	1111
0110	1011
0111	1000
1000	0011
1001	1010
1010	0110
1011	1100
1100	0101
1101	1001
1110	0000
1111	0111

Ciphertext	Plaintext
0000	1110
0001	0011
0010	0100
0011	1000
0100	0001
0101	1100
0110	1010
0111	1111
1000	0111
1001	1101
1010	1001
1011	0110
1100	1011
1101	0010
1110	0000
1111	0101

- Most general form of block cipher.
- Can be used to define any reversible mapping between plaintext and ciphertext.
- Feistel refers to it as: ideal block cipher --- it allows for the maximum number of possible encryption mappings from the plaintext block.

Principles

. . . .

S-DES

LS Detail

DES Desigi

Other Cipher

Feistel Structure for Block Ciphers

- Feistel proposed applying two or more simple ciphers in sequence so final result is cryptographically stronger than component ciphers
- \rightarrow *n*-bit block length; *k*-bit key length; 2^k transformations
- Feistel cipher alternates: substitutions, transpositions (permutations)
- Applies concepts of diffusion and confusion
- Applied in many ciphers today

Approach:

-) Plaintext split into halves
- Subkeys (or round keys) generated from key
- Round function, F, applied to right half
- Apply substitution on left half using XOR
- Apply permutation: interchange to halves

Principles

S-DES

DES Design

Other Cipher

Diffusion and Confusion

Diffusion

- Statistical nature of plaintext is reduced in ciphertext
- E.g. A plaintext letter affects the value of many ciphertext letters
- How: **repeatedly** apply permutation (transposition) to data, and then apply function

Confusion

- Make relationship between ciphertext and key as complex as possible
- Even if attacker can find some statistical characteristics of ciphertext, still hard to find key
- > How: apply complex (non-linear) substitution algorithm

Principles

Principle

DEC D-4-

DES Design

Other Cipher

Feistel Encryption and Decryption

Principles

DEC

2-DE2

DES Design

Other Ciphe

Using the Feistel Structure

- Exact implementation depends on various design features
 - Block size, e.g. 64, 128 bits: larger values leads to more diffusion
 - Key size, e.g. 128 bits: larger values leads to more confusion, resistance against brute force
 - Number of rounds, e.g. 16 rounds
 - Subkey generation algorithm: should be complex
 - Round function F: should be complex
- Other factors include fast encryption in software and ease of analysis
- Trade-off: security vs performance

Principles

S-DES

DES Detai

DES Design

Other Cipher

Feistel Example

Encryption round

Decryption round

Contents

rinciples

Block Ciphers

DES

S-DES DES Deta

DES Design

Other Cipher

Block Cipher Principles

The Data Encryption Standard

Simplified-DES

DES Details

DES Design Issues and Attacks 3DES,

AES and Other Block Ciphers

Principles

DES

S-DES

DES Detai

DES Desigi

Other Cipher

Data Encryption Standard

- Symmetric block cipher
 - 56-bit key, 64-bit input block, 64-bit output block
- > One of most used encryption systems in world
 - Developed in 1977 by NBS/NIST
 - Designed by IBM (Lucifer) with input from NSA
 - Principles used in other ciphers, e.g. 3DES, IDEA
- Simplified DES (S-DES)
 - Cipher using principles of DES
 - Developed for education (not real world use)

Contents

Principle

Block Ciphers

DES

S-DES

DEC D--:-

Other Ciphe

Block Cipher Principles

The Data Encryption Standard

Simplified-DES

DES Details

DES Design Issues and Attacks

3DES, AES and Other Block Ciphers

Principles

DES

S-DES

ES Detai

DES Design

Other Cipher

Simplified DES

Input (plaintext) block: 8-bits

Output (ciphertext) block: 8-bits

Key: 10-bits

Rounds: 2

Round keys generated using **permutations** and **left shifts**

Encryption: initial permutation, round function, switch halves

 Decryption: Same as encryption, except round keys used in opposite order

Principles

DES

S-DES

DES Detai

DES Design

Other Cipher

Principl

DEC

S-DES

DES Deta

DES Design

Otner Upner

S-DES Operations

> P10 (permutate)

Input: 1 2 3 4 5 6 7 8 9 10 Output: 3 5 2 7 4 10 1 9 8 6

> P8 (select and permutate)

Input: 1 2 3 4 5 6 7 8 9 10 Output: 6 3 7 4 8 5 10 9

> P4 (permutate)

Input: 1 2 3 4 Output: 2 4 3 1

Principle

S-DES

ES Deta

DES Design

Other Cipher

S-DES Operations

EP (expand and permutate)

Input: 1 2 3 4

Output: 4 1 2 3 2 3 4 1

IP (initial permutation)

Input: 1 2 3 4 5 6 7 8 Output: 2 6 3 1 4 8 5 7

- → IP⁻¹ (inverse of IP)
- LS-1 (left shift 1 position)
- LS-2 (left shift 2 positions)

S-DES

S-DES Key Generation

S-DES Encryption Details

DES

S-DES

DES Detail

DES Design

Other Ciphers

Princip

DEC

S-DES

DES Detai

DES Design

Other Cipher

S-DES S-Boxes

- S-DES (and DES) perform substitutions using S-Boxes
- S-Box considered as a matrix: input used to select row/column; selected element is output
- 4-bit input: bit1, bit2, bit3, bit4
- bit₁bit₄ specifies row (0, 1, 2 or 3 in decimal)
- bit2bit3 specifies column
- > 2-bit output

Principles

DES

S-DES

ES Detail

DES Design

Other Ciphers

S-DES Example

Plaintext: 01110010

Key: 1010000010

> Ciphertext: 01110111

Principles

DEC

S-DES

DES Deta

DES Design

Other Cipher

S-DES Summary

- Educational encryption algorithm
- S-DES expressed as functions:

ciphertext =
$$IP^{-1}(f_{K_2}(SW(f_{K_1}(IP (plaintext)))))$$

 $plaintext = IP^{-1}(f_{K_1}(SW(f_{K_2}(IP (ciphertext)))))$

- Security of S-DES:
 - 10-bit key, 1024 keys: brute force easy
 - If know plaintext and corresponding ciphertext, can we determine key? Very hard

Contents

rinciple

Block Ciphers

DES

S-DE

DES Details

DES Design

Other Cipher

Block Cipher Principles

The Data Encryption Standard

Simplified-DES

DES Details

DES Design Issues and Attacks

3DES, AES and Other Block Ciphers

Comparing DES and S-DES

Principle

Tillicipic

S-DES

ES Deta

DES Design

Other Cipher

S-DES

- 8-bit blocks
- 10-bit key: 2 x 8-bit round keys
- IP: 8-bits
- > F operates on 4 bits
- 2 S-Boxes
- 2 rounds

S-DES encryption:

DES

- 64-bit blocks
- 56-bit key: 16 x 48-bit round keys
- IP: 64 bits
- > F operates on 32 bits
- > 8 S-Boxes
- > 16 rounds

$$ciphertext = IP^{-1} (f_{K_{2}}(SW(f_{K_{1}}(IP (plaintext)))))$$

DES encryption:

$$\textit{ciphertext} = \textit{IP}^{-1} \; (\textit{f}_{\textit{K}_{\underline{15}}} \; (\textit{SW}(\textit{f}_{\textit{K}_{\underline{15}}} \; (\textit{SW}(\ldots (\textit{f}_{\textit{K}_{\underline{1}}} (\textit{IP}(\textit{plaintext})))$$

General DES Encryption Algorithm

Block Ciphers

Principles

Timopic

S-DES

DES Details

DES Design

Other Cinhe

Permutation Tables for DES

Block Ciphers

Principles

S-DES

DES Details

DES Design

Other Upner

(a) Initial Permutation (IP)

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

(b) Inverse Initial Permutation (IP⁻¹)

40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

Permutation Tables for DES

Block Ciphers

Principles

S-DES

DES Details

DES Design

Other Cipher

(c) Expansion Permutation (E)

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

(d) Permutation Function (P)

16	7	20	21	29	12 18 27 11	28	17
1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9
19	13	30	6	22	11	4	25

DES

S-DES

DES Details

DES Design

Other Cipher

Single Round of DES Algorithm

.

S-DES

DES Details

DES Design

Other Cipher

Calculation of F(R,K)

Principles

Timopic

S-DES

DES Details

DES Desig

Other Cipher

Example of S-BOX

- → 6-bit input: bit₁, bit₂, bit₃, bit₄, bit₅, bit₆
- bit₁bit₆ specifies row (0, 1, 2 or 3 in decimal)
- *→ bit*₂*~bit*5 specifies column
- 4-bit output

Example:

Input: 100101

S-box 1

Output: S1(100101)=8=1000

rinciples

T TITICIPIC

S-DES

DES Details

DES Design

Other Ciphers

Definition	of DES	S-Boxes
------------	--------	---------

	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
\mathbf{s}_1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13
	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
s_2	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9
	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
s_3	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
	1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12
	7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
s_4	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14

DES Details

DES Design

Other Ciphers

Definition	of D	ES S-	Boxes
------------	------	-------	-------

	2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
s_5	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
	4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
	11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3
	12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
s_6	10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
	9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6
	4	3	2	12	9	5	15	10	-11	14	- 1	7	6	0	8	13
	4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
s_7	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
	1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
	6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12
	13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
s_8	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
	7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8
	2	1	14	7	4	10	8	13	15	12	9	0	3	5	6	11

DES Key Schedule Calculation

Block Ciphers

Principles

- 1

S-DES

DES Details

DES Design

Other Upner

(a) Input Key

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56
57	58	59	60	61	62	63	64

(b) Permuted Choice One (PC-1)

57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

(c) Permuted Choice Two (PC-2)

14	17	11	24	1	5	3	28
15	6	21	10	23	19	12	4
26	8	16	7	27	20	13	2
41	52	31	37	47	55	30	40
51	45	33	48	44	49	39	56
34	53	46	42	50	36	29	32

(d) Schedule of Left Shifts

Round Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Bits Rotated	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1

.

S-DF

DES Details

DES Design

Other Ciphe

DES Example

```
Plaintext: P = 0123456789ABCDEF (hexadecimal)
P = 0000 0001 0010 0011 0100 0101 0110 0111 1000
1001 1010 1011 1100 1101 1111 (64 bits)
```

```
Key: K = 133457799BBCDFF1 (hexadecimal)

K = 00010011 00110100 01010111 01111001

10011011 10111100 11011111 11110001 (64 bits)
```

C = 1000 0101 1110 1000 0001 0011 0101 0100 0000 1111 0000 1010 1011 0100 0000 0101 **Ciphertext: C** = 85E813540F0AB405 (hexadecimal)

DES Details

DES Example

STEP 1: Generate 16 subkeys, 48 bits / subkey

PC-1 permutation using DES KEY CALCULATION-(a):

Split into left & right halves:

 $C_0 = 111100001100110010101011111$

Left Shift using DES KEY CALCULATION-(d):

 $C_1 = 11100001100110010101010111111$

 $D_1 = 1010101011001100111100011110$

 $C_2 = 1100001100110010101010111111$

 $D_2 = 0101010110011001111000111101$

 $C_3 = 00001100110010101010111111111$

 $D_3 = 0101011001100111100011110101$

 $C_a = 00110011001010101011111111100$

 $D_{a} = 0101100110011110001111010101$

 $C_5 = 110011001010101011111111110000$

 $D_5 = 0110011001111000111101010101$

 $C_6 = 001100101010101111111111000011$

 $D_6 = 1001100111100011110101010101$

PHHU

DEC

S-DE

DES Details

DES Design

Other Cipher

DES Example

 $C_7 = 110010101010111111111100001100$ $D_7 = 0110011110001111010101010101$ $C_{R} = 001010101011111111110000110011$ $D_{o} = 1001111000111101010101011001$ $C_o = 010101010111111111100001100110$ $D_q = 00111100011110101010101110011$ $C_{10} = 010101011111111110000110011001$ $D_{10} = 1111000111101010101011001100$ $C_{11} = 010101111111111000011001100101$ $D_{11} = 1100011110101010101100110011$ $C_{12} = 010111111111100001100110010101$ $D_{12} = 0001111010101010110011001111$ $C_{12} = 011111111110000110011001010101$ $D_{13} = 0111101010101011001100111100$ $C_{14} = 11111111000011001100101010101$ $D_{14} = 1110101010101100110011110001$ $C_{15} = 111110000110011001010101111$ $D_{15} = 1010101010111001110011111000111$ $C_{16} = 111100001100110010101011111$ $D_{16} = 0101010101100110011110001111$

Princip

DEC

S-DE

DES Details

DES Design

Other Cipher

DES Example

PC-2 permutation using DES KEY CALCULATION-(c):

 $K_1 = 000110 110000 001011 101111 111111 000111 000001 110010$ $K_2 = 011110\ 011010\ 111011\ 011001\ 110110\ 1111100\ 100111\ 100101$ $K_3 = 010101\ 011111\ 110010\ 001010\ 010000\ 101100\ 111110\ 011001$ $K_A = 011100\ 101010\ 110111\ 010110\ 110110\ 110011\ 010100\ 011101$ $K_5 = 0111111\ 001110\ 110000\ 000111\ 111010\ 110101\ 001110\ 101000$ $K_6 = 011000 \ 111010 \ 010100 \ 111110 \ 010100 \ 000111 \ 101100 \ 101111$ $K_7 = 111011\ 001000\ 010010\ 110111\ 111101\ 100001\ 100010\ 111100$ $K_8 = 111101 \ 111000 \ 101000 \ 111010 \ 110000 \ 010011 \ 101111 \ 111011$ $K_0 = 111000\ 001101\ 101111\ 101011\ 111011\ 011110\ 011110\ 000001$ $K_{10} = 101100\ 011111\ 001101\ 000111\ 101110\ 100100\ 011001\ 001111$ $K_{12} = 011101\ 010111\ 000111\ 110101\ 100101\ 000110\ 011111\ 101001$ $K_{13} = 100101 \ 1111100 \ 010111 \ 010001 \ 111110 \ 101011 \ 101001 \ 000001$ $K_{14} = 010111 \ 110100 \ 001110 \ 110111 \ 111100 \ 101110 \ 011100 \ 111010$ $K_{16} = 110010 \ 110011 \ 110110 \ 001011 \ 000011 \ 100001 \ 011111 \ 110101$

Principles

DES

S-DE

DES Details

DES Design

Otner Upner

DES Example

STEP 2: DES Encoding

IP using PERMUTATION TABLES FOR DES-(a):

IP = 1100 1100 0000 0000 1100 1100 1111 1111 1111 0000 1010 1010 1111 0000 1010 1010

Split into left & right halves:

 $L_o = 1100 \ 1100 \ 0000 \ 0000 \ 1100 \ 1100 \ 1111 \ 1111$ $R_o = 1111 \ 0000 \ 1010 \ 1010 \ 1111 \ 0000 \ 1010 \ 1010$

1st round:

 $L_1 = R_0 = 1111\ 0000\ 1010\ 1010\ 1111\ 0000\ 1010\ 1010$ $R_1 = L_0\ {
m XOR}\ f(R_0, K_1)$

f function calculation:

▶ EP using *PERMUTATION TABLES FOR DES-(c)*:

 $E(R_0) = 011110 100001 010101 010101 011110 100001 010101 010101$

XOR calculation

 K_1 XOR $E(R_0) = 011000\ 010001\ 011110\ 111010\ 100001\ 100110\ 010100\ 100111$

> S-boxes S = $S_1(B_1)S_2(B_2)S_3(B_3)S_4(B_4)S_5(B_5)S_6(B_6)S_7(B_7)S_8(B_8)$

S = 0101 1100 1000 0010 1011 0101 1001 0111

Permutation using PERMUTATION TABLES FOR DES-(d):

 $f = P(S) = 0010\ 0011\ 0100\ 1010\ 1010\ 1001\ 1011\ 1011$

DEC

S-DE

DES Details

DES Design

Other Cipher

DES Example

 $\begin{array}{lll} L_0 = & 1100\ 1100\ 0000\ 0000\ 1100\ 1100\ 1111\ 1111 \\ f(R_0,K_1) = 0010\ 0011\ 0100\ 1010\ 1010\ 1001\ 1001\ 1011 \end{array}$

 $R_1 = L_0 \text{ XOR } f(R_0, K_1) = 1110 \ 1111 \ 0100 \ 1010 \ 0110 \ 0101 \ 0100 \ 0100$

Nth round:

$$\begin{split} & L_n = R_{n-1} \\ & R_n = L_{n-1} \text{ XOR } f(R_{n-1}, K_n) \\ & = L_{n-1} \text{ XOR P}(S (K_n \text{ XOR E}(R_{n-1}))) \\ & \cdot \end{split}$$

 $\begin{array}{l} L_{16} = 0100\ 0011\ 0100\ 0010\ 0011\ 0010\ 0011\ 0100 \\ R_{16} = 0000\ 1010\ 0100\ 1100\ 1101\ 1001\ 1001\ 0101 \\ R_{16}l_{16} = 00001010\ 01001100\ 11011001\ 10010101\ 01000011\ 01000010\ 00110010\ 00110100 \end{array}$

Inverse IP using PERMUTATION TABLES FOR DES-(b):

 $IP^{-1} = 10000101\ 11101000\ 00010011\ 01010100\ 00001111\ 00001010\ 10110100\ 00000101$

C = 85E813540F0AB405

Contents

Principle

Block Ciphers

DES

S-DES DES Detai

DES Design

Other Cipher

Block Cipher Principles

The Data Encryption Standard

Simplified-DES

DES Details

DES Design Issues and Attacks

3DES, AES and Other Block Ciphers

Princip

DES

S-DES

DES Detail

DES Design

Other Cipher

The Avalanche Effect

Aim: small change in key (or plaintext) produces large change in ciphertext

- Avalanche effect is present in DES (good for security)
- Following examples show the number of bits that change in output when two different inputs are used, differing by 1 bit

Plaintext 1: 02468aceeca86420 Plaintext 2: 12468aceeca86420

Ciphertext difference: 32 bits

Key 1: 0f1571c947d9e859Key 2: 1f1571c947d9e859Ciphertext difference: 30

Hexadecimal

the fourth bit is changed

Avalanche Effect in DES: Change in Plaintext

Block Ciphers

Principle

S-DES

DES Detail

DES Design

Other Cipher

Round		δ
	02468aceeca86420	1
	12468aceeca86420	
1	3cf03c0fbad22845	1
	3cf03c0fbad32845	
2	bad2284599e9b723	5
	bad3284539a9b7a3	
3	99e9b7230bae3b9e	18
	39a9b7a3171cb8b3	
4	0bae3b9e42415649	34
	171cb8b3ccaca55e	
5	4241564918b3fa41	37
	ccaca55ed16c3653	
6	18b3fa419616fe23	33
	d16c3653cf402c68	
7	9616fe2367117cf2	32
	cf402c682b2cefbc	
8	67117cf2c11bfc09	33
	2b2cefbc99f91153	

Round		δ
9	c11bfc09887fbc6c	32
	99f911532eed7d94	
10	887fbc6c600f7e8b	34
	2eed7d94d0f23094	
11	600f7e8bf596506e	37
	d0f23094455da9c4	
12	f596506e738538b8	31
	455da9c47f6e3cf3	
13	738538b8c6a62c4e	29
	7f6e3cf34bc1a8d9	
14	c6a62c4e56b0bd75	33
	4bc1a8d91e07d409	
15	56b0bd7575e8fd8f	31
	1e07d4091ce2e6dc	
16	75e8fd8f25896490	32
	1ce2e6dc365e5f59	
IP-1	da02ce3a89ecac3b	32
	057cde97d7683f2a	

Avalanche Effect in DES: Change in Key

Block Ciphers

Principle

S-DES

DES Details

DES Design

Other Cipher

Round		δ
	02468aceeca86420	0
	02468aceeca86420	
1	3cf03c0fbad22845	3
	3cf03c0f9ad628c5	
2	bad2284599e9b723	11
	9ad628c59939136b	
3	99e9b7230bae3b9e	25
	9939136b768067b7	
4	0bae3b9e42415649	29
	768067b75a8807c5	
5	4241564918b3fa41	26
	5a8807c5488dbe94	
6	18b3fa419616fe23	26
	488dbe94aba7fe53	
7	9616fe2367117cf2	27
	aba7fe53177d21e4	
8	67117cf2c11bfc09	32
	177d21e4548f1de4	

Round		δ
9	c11bfc09887fbc6c	34
	548f1de471f64dfd	
10	887fbc6c600f7e8b	36
	71f64dfd4279876c	
11	600f7e8bf596506e	32
	4279876c399fdc0d	
12	f596506e738538b8	28
	399fdc0d6d208dbb	
13	738538b8c6a62c4e	33
	6d208dbbb9bdeeaa	
14	c6a62c4e56b0bd75	30
	b9bdeeaad2c3a56f	
15	56b0bd7575e8fd8f	33
	d2c3a56f2765c1fb	
16	75e8fd8f25896490	30
	2765c1fb01263dc4	
IP-1	da02ce3a89ecac3b	30
	ee92b50606b62b0b	

Princip

S-DES

DES Design

Other Ciphe

Key Size

Although 64 bit initial key, only 56 bits used in encryption (other 8 for parity check)

$$2^{56} = 7.2 \times 10^{16}$$

- 1977: estimated cost \$US20m to build machine to break in 10 hours
- 1998: EFF built machine for \$US250k to break in 3 days
- Today: 56 bits considered too short to withstand brute force attack
- > 3DES uses 128-bit keys

Pririci

S-DES DES Dotail

DES Design

Other Cipher

Attacks on DES

Timing Attacks

- Information gained about key/plaintext by observing how long implementation takes to decrypt
- No known useful attacks on DES

Differential Cryptanalysis

- Observe how pairs of plaintext blocks evolve
- Break DES in 2⁴⁷ encryptions (compared to 2⁵⁵); but require 2⁴⁷ chosen plaintexts

Linear Cryptanalysis

- Find linear approximations of the transformations
- → Break DES using 2⁴³ known plaintexts

Princip

2-DE2

DES Design

Other Cipher

DES Algorithm Design

DES was designed in private; questions about the motivation of the design

- > **S-Boxes** provide non-linearity
 - important part of DES, generally considered to be secure
- S-Boxes provide increased confusion
- Permutation P chosen to increase diffusion

Contents

rinciple

Block Ciphers

DES

S-DES DES Detai

DES Desig

Other Ciphers

Block Cipher Principles

The Data Encryption Standard

Simplified-DES

DES Details

DES Design Issues and Attacks

3DES, AES and Other Block Ciphers

Principi

S-DES

....

DES Design

Other Ciphers

Multiple Encryption with DES

- > DES is vulnerable to **brute force attack**
- Alternative block cipher that makes use of DES software/equipment/knowledge
 - encrypt multiple times with different keys
- Options:
 - 1. **Double DES**: not much better than single DES
 - 2. Triple DES (3DES) with 2 keys: brute force 2112
 - 3. Triple DES with 3 keys: brute force 2168

Diock Ciprici

riiicipi

S-DES

DES Deta

DES Design

Other Ciphers

Double Encryption

- For DES, 2 × 56-bit keys, meaning 112-bit key length
- Requires 2¹¹² operations for brute force?
 - Meet-in-the-middle attack makes it easier

Principles

Timopic

S-DES

ES Detail:

DES Design

Other Ciphers

Meet-in-the-Middle Attack

- **Double DES** Encryption: $C = E(K_2, E(K_1, P))$
- > Say $X = E(K_1, P) = D(K_2, C)$
- Attacker knows two plaintext, ciphertext pairs (P_a, C_a) and (P_b, C_b)
 - Encrypt P_a using all 2⁵⁶ values of K₁ to get multiple values of X
 - 2. Store results in table and sort by X
 - 3. Decrypt C_a using all 2^{56} values of K_2
 - 4. As each decryption result produced, check against table
 - 5. If match, check current K_1 , K_2 on C_b . If P_b obtained, then accept the keys
- With two known plaintext, ciphertext pairs, probability of successful attack is almost 1
- Encrypt/decrypt operations required: 2⁵⁶ (twice as many as single DES)

Other Ciphers

Triple Encryption

- 2 keys, 112 bits
- > 3 keys, 168 bits
- Why E-D-E? To be compatible with single DES:

$$C = E(K_1, D(K_1, E(K_1, P))) = E(K_1, P)$$

Principle

S-DES

DES Desig

Other Ciphers

Advanced Encryption Standard (AES)

- NIST called for proposals for new standard in 1997
 - Aims: security, efficient software/hardware implementations, low memory requirements, parallel processing
 - Candidate algorithms from around the world
 - Rijndael chosen, standard called AES created in 2001

AES:

Block size: 128 bits (others possible)

) Key size: 128, 192, 256 bits

Rounds: 10, 12, 14 (depending on key)

Operations: XOR with round key, substitutions using S-Boxes, mixing using Galois Field arithmetic

- Widely used in file encryption, network communications
- Generally considered secure
- Refer to "Lec 03 Appendix Advanced Encryption Standard" for detailed procedures of AES

Principle

S-DES

DES Desig

Other Ciphers

Other Symmetric Encryption Algorithms

- Blowfish (Schneier, 1993): 64 bit blocks/32–448 bit keys; Feistel structure
- > Twofish (Schneier et al, 1998): 128/128, 192, 256; Feistel structure
- Serpent (Anderson et al, 1998): 128/128, 192, 256;
 Substitution-permutation network
- Camellia (Mitsubishi/NTT, 2000): 128/128, 192, 256;
 Feistel structure
- > IDEA (Lai and Massey, 1991): 64/128
- > CAST-128 (Adams and Tavares, 1996): 64/40–128; Feistel structure
- > CAST-256 (Adams and Tavares, 1998): 128/up to 256; Feistel structure
- RC5 (Rivest, 1994): 32, 64 or 128/up to 2040; Feistel-like structure
- RC6 (Rivest et al, 1998): 128/128, 192, 256; Feistel structure

Principles

S-DES

DES Design

Other Ciphers

Cryptanalysis on Block Ciphers

Cipher	Method	Key	Required resources:		
		space	Time	Memory	Known data
DES	Brute force	2 ⁵⁶	2 ⁵⁶	-	-
3DES	MITM	2^{168}	2^{111}	2 ⁵⁶	2 ²
3DES	Lucks	2^{168}	2^{113}	2 ⁸⁸	2 ³²
AES 128	Biclique	2^{128}	$2^{126.1}$	2 ⁸	2 ⁸⁸
AES 256	Biclique	2 ²⁵⁶	2 ^{254.4}	2 ⁸	2 ⁴⁰

- Known data: chosen pairs of (plaintext, ciphertext)
- > MITM: Meet-in-the-middle
- Lucks: S. Lucks, Attacking Triple Encryption, in Fast Software Encryption, Springer, 1998
- Biclique: Bogdanov, Khovratovich and Rechberger, Biclique Cryptanalysis of the Full AES, in ASIACRYPT2011, Springer, 2011