Scheda riassuntiva modulo Future Computing Architecture

1) Lezione

Descrizione generale delle architetture HPC e AI e loro componenti di base

- Le metriche HPL, HPCG, Green500, IO500
- I componenti base di un'architettura HPC
- Tassonomia di Flynn
- Concetti generali su architetture vettoriali
- Calcolo delle prestazioni di picco
- Limiti della scalabilita0' parallela

2) Lezione

Architetture di calcolo e loro evoluzione

- Il problema dei consumi delle CPU e limiti fisici
- Concetto di TDP
- L'architettura tipica di un sistema multi GPUs e connettivita' NVLINK per GPU NVIDIA

3) Lezione

Reti a alte prestazioni per architetture HPC e AI e loro evoluzione

- Tipologia di reti per un sistema AI&HPC
- Prestazioni di riferimento
- Concetto di bisection bandwidth
- Over-subscription rate
- Protocollo RDMA e RoCE

4) Lezione

Sottosistemi storage a alte prestazioni e loro evoluzione

- Flusso dati dal nodo al sistema storage e colli di bottiglia
- Architetture sistemi storage e loro caratteristiche principali
- Da tecnologia flash a nastro

5) Lezione

Architetture storage a alte prestazioni

- Architettura RAID: 0, 1, 3, 5, 6
- Concetti di RAID distribuito "declustered RAID"
- Architettura Ceph
- Algoritmo di "erasure code"
- Concettigenerali di architettura scale-up e scale-out
- Concetti di block e object storage
- Benchmark IOPS
- Concetti generali su filesystem parallelo

6) Lezione

Problematiche di efficientamento energetico per sistemi HPC a grande scala (architetture pre e exascale)

- TDP: perche' GPU migliore di CPU a parita' di prestazioni (GFs/Watts)
- Differento sistemi di raffreddamento e corispondenti intervalli di carico termico
- Perche' acqua meglio di aria
- Tecnologie di raffreddamento a confronto
- Il concetto del PUE e una sua stima di massima
- I parametri PUE, ITUE e ERE
- Nei sistemi a DLC l'importanza di modulare la temperatura acqua ingresso e la portata
- TCO: come si applica tale stima nelle gare Europee. Si prenda un'applicazione come esempio tra quelle nella slide 69 per valutare il TCO.Energy.App

7) Lezione

Accenni sulle architetture innovative in ambito AI&HPC

- L'importanza di utilizzare architetture con elevata memoria condivisa per problemi di training di reti neuronali complesse
- Architetture scale-up con molte GPUs per nodo (NVL72) o scale-out con poche GPUs per nodo connesse via NVLNK (NVL4)

- Valori indicativi di BW per NVLINK
- Concetti generali su architetture disaggregate
- Alcuni concetti di architetture multi-cores con elevata capacita di memoria condivisa per inferenza: Esempio Cerebras2

8) Lezione

Accenni al disegno e alla progettazione di un'architettura HPC

• Un breve esempio di come scegliere il sistema di raffreddamento ottimale, dato il carico termico complessivo del sistema, e una stima di massima del costo legato al consumo elettrico complessivo