Naïve Bayes Classification

Introduction

- The Bayes Classifier requires probability structure of the problem to be known.
- Density estimation (using non-parametric or parametric methods) is one way to handle the problem.
- There are several problems

Problems with density estimation

- Large datasets are needed.
- Numeric valued features are required.

In practice these two may not be satisfied.

How to overcome the problem

- One has to work with the given data set.
- So, Probability estimations needs to be done using the given data only.
- Often marginal probabilities can be better estimated than the joint probabilities.
- Also, marginal probabilities are easy to compute.

Play-tennis data

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	false	N
sunny	hot	high	true	N
overcast	hot	high	false	Р
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	N
overcast	cool	normal	true	Р
sunny	mild	high	false	N
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	N

- P(<sunny,cool,high,false>|N) = 0
- But, P(sunny|N) = 3/5, P(cool|N) = 1/5,
 P(high|N) = 4/5, P(false|N) = 2/5.

- P(<sunny, cool, high, false>|N) = 0
- This may be because of the smaller dataset.
- If we increase the dataset size, this may become a positive number.

 This problem is often referred to as "the curse of dimensionality".

Assumption

- Make the assumption that for a given class, features are independent of each other.
- In practice, this assumption holds very often.

Then P(<sunny,cool,high,false>|N) =
 P(sunny|N) . P(cool|N) . P(high|N) . P(false|N)
 = 3/5 . 1/5 . 4/5 . 2/5 = 24/625.

Naïve Bayesian Classification

 Naïve assumption: for a given class, features are independent of each other

$$P(\langle x_1,...,x_k \rangle | C) = P(x_1 | C) \cdot ... \cdot P(x_k | C)$$

- P(x_i|C) is estimated as the relative freq of samples having value x_i as i-th attribute in class C
- It often makes the problem a feasible and easy one to solve.

Play-tennis example: estimating $P(x_i|C)$

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	false	N
sunny	hot	high	true	N
overcast	hot	high	false	Р
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	N
overcast	cool	normal	true	Р
sunny	mild	high	false	N
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	N

$$P(p) = 9/14$$

$$P(n) = 5/14$$

outlook		
outlook		
P(sunny p) = 2/9	P(sunny n) = 3/5	
P(overcast p) = 4/9	P(overcast n) = 0	
P(rain p) = 3/9	P(rain n) = 2/5	
temperature		
P(hot p) = 2/9	P(hot n) = 2/5	
P(mild p) = 4/9	P(mild n) = 2/5	
P(cool p) = 3/9	P(cool n) = 1/5	
humidity		
P(high p) = 3/9	P(high n) = 4/5	
P(normal p) = 6/9	P(normal n) = 2/5	
windy		
P(true p) = 3/9	P(true n) = 3/5	
P(false p) = 6/9	P(false n) = 2/5 9	

Play-tennis example: classifying X

- An unseen sample X = <rain, hot, high, false>
- P(X|p)·P(p) =
 P(rain|p)·P(hot|p)·P(high|p)·P(false|p)·P(p) = 3/9·2/9·3/9·6/9·9/14 =
 0.010582
- P(X|n)·P(n) =
 P(rain|n)·P(hot|n)·P(high|n)·P(false|n)·P(n) = 2/5·2/5·4/5·2/5·5/14 =
 0.018286
- Sample X is classified in class n (don't play)

With Continuous features

 In order to use the Naïve Bayes classifier, the features has to be discretized appropriately (otherwise what happens?)

With Continuous features

- In order to use the Naïve Bayes classifier, the features has to be discretized appropriately (otherwise what happens?)
- Height = 4.234 will not occur anywhere in that column; but 4.213, 4.285 may be occuring. If you discretize (eg., rounding) then fequency ratio's are meaningful.
- Clustering of feature values of a feature may be done to achieve a better discretization.