CRYPTOGRAPHY MISSION 06 DOSSIER

Deadline: Thursday, 20 October 2016 at 3:05pm

This mission covers Sections 3.9, 3.10, and 4.2.

Check one:						
☐ I received help from the following classmate(s) on this assignment:						
☐ I did not receive any help on this assignment.						
1. Graded Problems						
1. Given an integer a and an odd prime p . Determine if $x^2 \equiv a \mod p$ has a solution or not. Justify. a. $a=4, p=11$						
b. $a = 2, p = 19$						
c. $a = 3, p = 29$						

2.	Given an	integer	a (not	congruent to	0	$\mod p$	and	an	odd	prime	p,	recall	that	the
	Legendre	symbol	is defin	ed as:										

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} = \begin{cases} 1 & a \text{ is a quadratic residue } \mod p \\ -1 & a \text{ is a quadratic non-residue } \mod p \end{cases}$$

Evaluate the following:

a.
$$(\frac{7}{13})$$

b. $(\frac{7}{19})$

0	1	2	1	
С.	(13	J	

d. $(\frac{14}{13})$

3. Recall that the Law of Quadratic Reciprocity says: Let p and q be odd primes. Then

$$\left(\frac{p}{q}\right) = \begin{cases} \binom{q}{p} & p \equiv 1 \mod 4 \text{ or } q \equiv 1 \mod 4 \\ \binom{-q}{p} & p \equiv q \equiv 3 \mod 4 \end{cases}$$

Compute the following. Be sure to show all work.

a. $\left(\frac{97}{101}\right)$	
b. $\left(\frac{101}{97}\right)$	
(5)	
c. $\left(\frac{5}{103}\right)$	
d. $(\frac{103}{5})$	
e. $\left(\frac{69}{389}\right)$	

2. RECOMMENDED EXERCISES

These will not be graded but are recommended if you need more practice.

- Section 3.13: # 29, 30, 31, 32Section 3.14: # 11, 12, 13