Fundamentos de Inteligencia Artificial

¿Qué vamos a ver hoy?

- Flujo de aprendizaje supervisado
- Validación cruzada
- GPU vs CPU
- Principales métricas
- Overfitting & underfitting

Flujo de aprendizaje Supervisado

Validación cruzada

■¿Qué se puede hacer si no se dispone de un conjunto de datos suficientemente grande para entrenar?

Validación cruzada

Aprovechar al máximo los datos disponibles. Cross Validation

GPU vs CPU

СРИ	GPU
Central Processing Unit	Graphics Processing Unit
4-8 Cores	100s or 1000s of Cores
Low Latency	High Throughput
Good for Serial Processing	Good for Parallel Processing
Quickly Process Tasks That Require Interactivity	Breaks Jobs Into Separate Tasks To Process Simultaneously
Traditional Programming Are Written For CPU Sequential Execution	Requires Additional Software To Convert CPU Functions to GPU Functions for Parallel Execution

Ver: https://www.youtube.com/watch?v=C wSHKG8 fg

GPU vs CPU

Leading tech companies worldwide 2024, by market capitalization

(in billion U.S. dollars)

Ver: https://www.youtube.com/watch?v=oypdocrbTOE

Principales Métricas. Clasificación

Principales Métricas. Regresión

MAE (Mean Absolute Error)
MSE (Mean Square Error)
RMSE (Root Mean Square Error)

Principales Métricas. Representación gráfica Error

Gráfica típica error vs epochs. Caso de buen ajuste

Se observa convergencia. El modelo consigue generalizar, es decir, funcionar bien (con poco error) con nuevas muestras

Ajuste insuficiente (Underfitting)

En este caso se requieren más épocas de entrenamiento para lograr la convergencia

En este caso, con más épocas de entrenamiento no se llegará a la convergencia. Se requiere un modelo más complejo

Sobre ajuste (Overfitting)

En este caso, las gráficas de error comienzan descendiendo tanto para la muestra de entrenamiento como para la de validación. Sin embargo, a medida que se sigue entrenando, el error en entrenamiento disminuye pero el error en validación comienza a ascender

Una solución sencilla al Overfitting: Early Stopping

Consiste en detener el entrenamiento cuando se observa que se ha llegado al mínimo en el error de validación.

¡Gracias por vuestra Atención!