Research Article Spring 2017 - I524 1

Predicting Readmission of Diabetic patients

KUMAR SATYAM^{1,*}, PIYUSH SHINDE^{1,**}, AND SRIKANTH RAMANAM^{1,***}

project-000, March 25, 2017

We are trying to predict whether a diabetic patient will be readmitted to the hospital, using several features representing patient and hospital outcomes. We will use Hadoop/Spark distributed architecture on multiple clouds as the core infrastructure and machine learning classification algorithms for data analysis.

© 2017 https://creativecommons.org/licenses/. The authors verify that the text is not plagiarized.

Keywords: Hadoop, Spark, Ansible, Python

https://github.com/cloudmesh/classes/blob/master/project/S17-IR-P004/report/report.pdf

CONTENTS

				Data Arialysis	
1	Introduction	1		Data node2 Task Tracker	Data Analysis
2	Timeline	1	Data Analysis	Datanode2	
3	Technologies	2	Data node1 Task Tracker Datanode1	Job Tracker	Data node3 Task Tracker Datanode3
1	Deployment	2		3	
			19	NameNode1	
5	Benchmarking	2		Clouds Vendors	
6	Results	2	Fig. 1. Deployment Archit	ecture	
7	Conclusion	2			

2

1. INTRODUCTION

Acknowledgments

We will use Hadoop to split the dataset and transfer the data chunks to different data nodes. We will use Ansible to install pre-requisite softwares and push configurations on different machines. The data chunks would then be analyzed using machine learning techniques and the results would be aggregated predicting whether a patient would be readmitted or not. This information would help hospitals to be better prepared for readmitting patients.

2. TIMELINE

Week	Target	
1	Finalizing Technologies, Data Cleansing	
2	Hadoop/Spark Deployment on Chameleon Cloud	
3	Troubleshooting	
4	Data Analysis	
5	Deployment on other cloud using Ansible	
6	Benchmarking	
7	Report Preparation	

¹ School of Informatics and Computing, Bloomington, IN 47408, U.S.A.

^{*}Corresponding authors: ksatyam@indiana.edu

^{**} Corresponding authors: pshinde@iu.edu

^{***} Corresponding authors: srikrama@iu.edu

Research Article Spring 2017 - I524 2

3. TECHNOLOGIES

Technology	Usage		
Hadoop[1]/Spark [2]	Distributed Data Storage		
Python[3]/Java[4]/Scala[5]	Development		
Ansible [6]	Application Deployment		
	& Configuration Management		
TBD	Benchmarking		
LaTex [7]	Document Preparation		

4. DEPLOYMENT

We will deploy a master & multiple slave nodes in the Hadoop/Spark distributed cluster environment.

We will use **Ansible** as an automated application and configuration deployment tool. This will enable us to install softwares and push configurations simultaneously from master node to the respective target nodes.

5. BENCHMARKING

We will assess the performance of the Hadoop/Spark clusters deployed on different clouds. The parameters for benchmarking would be memory usage, storage size and IO throughput.

6. RESULTS

Results of data analysis and benchmarking will be showcased in this section.

7. CONCLUSION

Using the 130-US hospitals dataset [8] for years 1999-2008, we should be able to analyze factors pertaining to readmission of patients with diabetes.

8. ACKNOWLEDGMENTS

This project was a part of the Big Data Software and Projects (INFO-I524) course. We would like to thank Professor Gregor von Laszewski and the associate instructors for their help and support during the course.

REFERENCES

- [1] "Welcome to Apache™ Hadoop®!" Web Page, accessed: 2017-03-12.[Online]. Available: http://hadoop.apache.org/
- [2] "Apache Spark: Lightning-fast cluster computing," Web Page, accessed: 2017-03-12. [Online]. Available: http://spark.apache.org/
- [3] "python," Web Page, accessed: 2017-03-12. [Online]. Available: https://www.python.org/
- [4] "java," Web Page, accessed: 2017-03-12. [Online]. Available: https://www.java.com/en/
- [5] "Scala," Web Page, accessed: 2017-03-12. [Online]. Available: https://www.scala-lang.org/
- [6] "ANSIBLE," Web Page, accessed: 2017-03-12. [Online]. Available: https://www.ansible.com/
- [7] "The LATEX Project," Web Page, accessed: 2017-03-12. [Online]. Available: https://www.latex-project.org/
- [8] "Diabetes 130-US hospitals for years 1999-2008 Data Set," Web Page, accessed: 2017-03-12. [Online]. Available: https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008#