Будущая стоимость инструментов путем начисления сложных процентов

Болотникова Елизавета, Тевс Анна

11 ноября 2023 г.

Содержание

1	Цель и задачи	1
2	Введение	2
3	Необходимые библиотеки:	2
4	Исходные данные:	2
5	Вычисления:	2
6	Визуализация:	3
7	Разведочный анализ:	5
8	Выводы	6

1 Цель и задачи

Цель: Получить стоимость инструментов путем начисления сложных процентов, определить предполагаемые ошибки в данных и предприянть действия по их исправлению.

Задачи:

- 1. Рассчитать стоимость инструментов с использованием сложных процентов и отсортировать результат.
- 2. Визуализировать результаты
- 3. Провести разведочный анализ данных (EDA)
- 4. Определить предполагаемые ошибки в данных и предложить возможные исправления

2 Введение

FV - это сумма денег, которую инвестиция или депозит будет стоить в будущем, основываясь на определенной ставке процента или доходности. Это показатель, который помогает оценить, сколько денег вы получите в будущем от своих инвестиций или депозитов. Рассчет future value позволяет инвесторам принимать решения о том, какие инвестиции сделать и какие доходы ожидать в будущем.

3 Необходимые библиотеки:

- matplotlib.pyplot для построения графиков
- питру для работы с векторами данных
- pandas для работы с датасетом

4 Исходные данные:

Column1	Instrument 1	Instrument 2	Instrument 3	Instrument 4	Instrument 5
r	21	12	25	10	23
Term (years)	9	5	3	8	6
	Instrument 6	Instrument 7	Instrument 8	Instrument 9	Instrument 10
r	15	10	14	12	20
Term (years)	6	5	7	4	5
	Instrument 11	Instrument 12	Instrument 13	Instrument 14	Instrument 15
r	10	21	15	12	24
Term (years)	7	6	10	3	9
	Instrument 16	Instrument 17	Instrument 18	Instrument 19	Instrument 20
r	14	11	25	19	13
Term (years)	6	15	6	4	9

5 Вычисления:

Перед началом исследования данных посчитаем FV в гугл таблицах по формуле:

$$FV = PV \cdot (1 + r/100)^n$$

где PV-present value

FV-Future value

r-ставка процента

n-кол-во лет

Получили FV_1 : 5559,917313

 FV_2 : 1762,341683 FV_3 : 1953,125 FV_4 : 2143,58881

FV₅: 3462,825992

 FV_6 : 2313,060766

 FV_7 : 1610,51

FV₈: 2502,268791

FV₉: 1573,51936

 FV_{10} : 2488,32

 FV_{11} : 1948,7171

 FV_{12} : 3138,428377

 FV_{13} : 4045,557736

 FV_{14} : 1404,928

 FV_{15} : 6930,988312

 FV_{16} : 2194,972624

 FV_{17} : 4784,589488

FV₁₈: 3814,697266

 FV_{19} : 2005,33921

 FV_{20} : 3004,041938

Соответственно для 20 инструментов

Далее мы отсортировали их по убыванию в Коллабе с помощью библиотеки пандас

6 Визуализация:

Затем мы перешли к визуализации даннных, чтобы наглядно посмотреть какие FV соответствуют разным процентам и колличеству лет

На первом графике в виде точек покажем получившиеся значения и для сравнения нарисуем линию на уровне PV=1000

Рис. 1: Подробнее про построение

Также для каждого инструмента пострим графики ежегодного прироста изначальных вложений

7 Разведочный анализ:

Построим график "Ящик с усами чтобы понять в чем может быть ошибка в данных

На первом этапе определим минимальное значение, максимальное значение, медиану, верхний и нижний квартили данных о стоимости инструментов. Затем на графике построим прямоугольник, ограниченный верхним и нижним квартилями, чтобы показать диапазон, в котором находится большинство данных. Далее проводим линии (усы) от этого прямоугольника до минимального и максимального значений данных, чтобы показать весь размах данных. Выбросы (экстремальных значений), также будут отображены на графике в виде точки. Итоговый график ящик с усами позволит наглядно представить распределение данных о стоимости инструментов и выявить возможные выбросы и аномалии.

Итак, мы выяснили, что 15 инструмент выбивается из общей выборки. Скорее всего это происходит из-за того, что этот актив самый рискованный, поэтому мы заменим его в выборке для того чтобы уменьшить риски потенциального инвестора. Для решения этой проблемы, предлагаем изменить его параметры на параметры инструмента с ближайшим значением FV, то есть первого, так как это позволит убрать выброс, но при этом несильно исказит данные. Вновь построим график "Ящик с усами но уже с замененными данными.

Таким образом, мы выявили выброс и предложили рабочее решение по его устранению, на графике можно заметить, что точка исчезла.

8 Выводы

Мы выполнили все поставленные цели, проанализировали данные и отсортировали полученные результаты по параметру FV. Так же вывявили какие из инструментов выбиваются из диапазона значений, к которому принадлежат все остальные точки, то есть обнаружили выброс и нашли решение для его устранения. Исходя из нашего анализа самым прибыльным являлся 15 инструмент, но после устранения выброса лучшими инструментами стали 1 и 15.