АЛКТГ дз 2

Татаринов Георгий

2 декабря 2021 г.

Задание 1

а) $a_k = k$. Тогда производящая функция равна:

$$\sum_{k=0}^{\infty} (k * x^{k})$$

$$\frac{1}{1-x} = 1 + x + x^{2} \dots$$

$$(\frac{1}{1-x})' = 1 + 2x + 3x^{2} + \dots = \sum_{k=0}^{\infty} kx^{k-1}$$

$$(\frac{1}{1-x})' * x = (1 + 2x + 3x^{2} + \dots) * x = \sum_{k=0}^{\infty} kx^{k}$$

Ответ: $\frac{x}{(1-x)^2}$ - производящая функция последовательности a_k

б) $a_k = \frac{1}{k!}$. Тогда производящая функция равна:

$$\sum_{k=0}^{\infty} \frac{x^k}{k!}$$

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

Ответ: e^x - производящая функция последовательности a_k

Задание 2

Задание 3

Задание 4

Пусть
$$f(x) = \sum_{k=0}^{n} C_n^k * x^k = (1+x)^n$$

 $f'(x) = \sum_{k=0}^{n} C_n^k * k * x^{k-1} = n * (1+x)^{n-1}$
 $f''(x) = \sum_{k=0}^{n} C_n^k * k * (k-1) * x^{k-2} = n * (n-1) * (1+x)^{n-2}$
 $f''(x) = \sum_{k=2}^{n} C_n^k * k * (k-1) * x^{k-2} = n * (n-1) * (1+x)^{n-2}$
При $x=1$
 $\sum_{k=2}^{n} C_n^k * k * (k-1) = n * (n-1) * 2^{n-2}$

Задание 5

$$g(x) = \sum_{k=0}^{\infty} (x^k * s_k)$$

$$x * g(x) = \sum_{k=0}^{\infty} (x^{k+1} * s_k)$$

$$x * g(x) = \sum_{k=1}^{\infty} (x^k * s_{k-1})$$

$$x * g(x) - g(x) = \sum_{k=1}^{\infty} (x^k * s_{k-1} - x^k * s_k) + s_0$$

$$x * g(x) - g(x) = \sum_{k=1}^{\infty} (x^k * a_k) + s_0$$

$$x * g(x) - g(x) = \sum_{k=0}^{\infty} (x^k * a_k)$$
Otbet: $x * g(x) - g(x)$

Задание 6

При
$$\mathbf{x} \neq 0$$

$$\lim_{n \to \infty} \sum_{i=0}^n \frac{x^i}{i+1} = 1/x * \lim_{n \to \infty} \sum_{i=0}^n \frac{x^{i+1}}{i+1} = 1/x * \lim_{n \to \infty} \sum_{i=1}^n \frac{x^i}{i} = -\frac{\ln(1-x)}{x}$$
 При $\mathbf{x} = 0$
$$\lim_{n \to \infty} \sum_{i=0}^n \frac{x^i}{i+1} = 1$$
 Ответ: $-\frac{\ln(1-x)}{x}$ при $\mathbf{x} \neq 0$ и 1 при $\mathbf{x} = 0$