

Thapar Institute of Engineering & Technology (Deemed to be University)

Bhadson Road, Patiala, Punjab, Pin-147004 Contact No.: +91-175-2393201

Email: info@thapar.edu

What is superconductivity?

Superconductors shows

Zero resistivity or

Infinite conductivity below a certain temperature called as critical temperature.

Current carrying capacity

The maximum current a superconductor can carry is limited by the magnetic field that it produces at the surface of the superconductor

Superconducting state if

$$T < T_c$$
 $J < J_c$
 $H < H_c$

How to identify a superconductor?

- A superconductor is a perfect diamagnet.
- o Magnetic susceptibility $\chi = -1$.
- Flux lines of the magnetic field are excluded out of the superconductor ⇒ Meissner effect

Normal

Superconducting

- 1. Phonon is a quanta of lattice vibrations.
- 2. Analogous to photon a quanta of light.
- 3. Produced by a distortion due to lattice vibrations.
- 4. Can interact with another phonon or electrons.

Bardeen-Cooper-Schreiffer (BCS) theory

How superconductors shows zero resistivity?

- 1. Phonon scattering due to lattice vibrations felt by one electron in the Cooper pair is nullified by the other electron in the pair.
- 2. The electron pair moves through the lattice without getting scattered by the lattice vibrations.
- 3. The force of attraction between the electrons in the Cooper pair is stronger than the repulsive force between the electrons when T < Tc.

Three-way interaction between two electron and a phonon.

Cooper pair

Normal state

At Tc

Superconducting state

Type-I (Ideal) superconductors

Type I SC placed in a magnetic field totally repels the flux lines till the magnetic field attains the critical value H_c

Type-II (Hard) superconductors

Type-II (Hard) superconductors

- •As type II SC can carry high current densities (J_c) they are of great practical importance
- •The penetration characteristics of the magnetic flux lines (between H_{c1} and H_{c2}) is a function of the microstructure of the material \Rightarrow presence of pinning centers in the material.
- Pinning centers:
 - Cell walls of high dislocation density (cold worked/recovery annealed)
 - Grain boundaries(Fine grained material)
 - ⇒ Precipitates (Dispersion of very fine precipitates with interparticle spacing ~ 300 Å)

Applications of superconductors

- Strong magnetic fields → 50 Tesla (without heating, without large power input)
- Logic and storage functions in computers Josephson junction → fast switching times (~ 10 ps)
- Magnetic levitation (arising from Meissner effect)
- Power transmission

Comparison

	Type I superconductors	Type II superconductors
1	Soft superconductors- can tolerate impurities without affecting properties.	Hard superconductors- cannot tolerate impurities and affects the properties.
2	Low critical field (0.1 T)	High critical field (30 T)
3	Show complete Meissner effect.	Traps magnetic flux, hence, incomplete Meissner effect.
5	Sudden loss of magnetization.	Gradual loss of magnetization.
6	Current flows through the surface only.	Current flows throughout the material.
6	e.g. Tin, Aluminum, Zinc	e.g. Tantalum, Neobium, NbN

High temperature superconductors

Compound	T _c	Comments
Nb₃Ge	23 K	Till 1986
La-Ba-Cu-O	34 K	Bednorz and Mueller (1986)
YBa ₂ Cu ₃ O _{7-x}	90 K	$>$ Boiling point of Liquid N_2
TI (Bi)-Ba(Sr)-Ca-Cu-O	125 K	
H ₂ S	203 K	Gas solidifies on application of high pressure (in Gpa)

Summary

- 1. Superconductors shows zero resistance below a certain temperature.
- 2. The superconducting state is limited by a temperature, current and magnetic field called as critical temperature, critical current and critical field.
- 3. In superconductors, the electrical conduction takes place by a pair of electrons, called as Cooper pair.
- 4. Type-I superconductors are perfectly diamagnetic and shows Meissner effect.
- 5. Type-II superconductors are not perfectly diamagnetic and do not show complete Meissner effect.

