Title of My Thesis

SUBMITTED BY

Jan-Philipp Anton Konrad Christ

Titel meiner Arbeit

Bachelorarbeit

FAKULTÄT FÜR PHYSIK
QUANTEN VIELTEILCHENSYSTEME/ THEORETISCHE NANOPHYSIK
LUDWIG-MAXIMILIANS-UNIVERSITÄT
MÜNCHEN

VORGELEGT VON

Jan-Philipp Anton Konrad Christ

Title of My Thesis

Bachelor Thesis

FACULTY OF PHYSICS

QUANTUM MANY-BODY SYSTEMS/ THEORETICAL NANOPHYSICS GROUP

LUDWIG MAXIMILIAN UNIVERSITY

MUNICH

SUBMITTED BY

Jan-Philipp Anton Konrad Christ

Supervisor: Prof. Dr. Fabian Bohrdt, geb. Grusdt

ABSTRACT

CONTENTS

No	otation and conventions	iii
Al	bstract	\mathbf{v}
1	Introduction	1
2	Theoretical Background	3
3	Chapter 02	5
4	Conclusion	7
A	Detailed Calculations A.1 Deriving the flow equations in the case of no n-dependence	9
В	The second appendix	15
Bi	bliography	17

CHAPTER 1_	
Í	
	INTRODUCTION

2 Introduction

CHAPTER 2_	
I	
	THEORETICAL BACKGROUND

CHAPTER 3	
I	
	CHAPTER 02

6 Chapter 02

CHAPTER 4	
1	
	CONCLUSION

8 Conclusion

DETAILED CALCULATIONS

A.1 Deriving the flow equations in the case of no ndependence

First the canonical generator $\hat{\eta}$ has to be evaluated:

$$\hat{\eta} := \hat{\eta}(\lambda) := \left[\hat{\mathcal{H}}_{0}, \hat{\mathcal{H}}_{int}\right] = \left[\sum_{k} \omega_{k} \hat{a}_{k}^{\dagger} \hat{a}_{k}, \sum_{q \neq q'} V_{q,q'} \hat{a}_{q}^{\dagger} \hat{a}_{q'} + \sum_{p,p'} \left(W_{p,p'} \hat{a}_{p}^{\dagger} \hat{a}_{p'}^{\dagger} + W_{p,p'}^{*} \hat{a}_{p} \hat{a}_{p'}\right)\right]$$

$$= \sum_{k} \sum_{q,q'} \omega_{k} V_{q,q'} \left[\hat{a}_{k}^{\dagger} \hat{a}_{k}, \hat{a}_{q}^{\dagger} \hat{a}_{q'}\right] + \sum_{k} \sum_{p,p'} \left(\omega_{k} W_{p,p'} \left[\hat{a}_{k}^{\dagger} \hat{a}_{k}, \hat{a}_{p}^{\dagger} \hat{a}_{p'}^{\dagger}\right] + \omega_{k} W_{p,p'}^{*} \left[\hat{a}_{k}^{\dagger} \hat{a}_{k}, \hat{a}_{p} \hat{a}_{p'}\right]\right)$$

$$= \sum_{k} \sum_{q,q'} \omega_{k} V_{q,q'} \left(\hat{a}_{k}^{\dagger} \hat{a}_{q'} \delta_{k,q} - \hat{a}_{q}^{\dagger} \hat{a}_{k} \delta_{k,q'}\right)$$

$$+ \sum_{k} \sum_{p,p'} \left(\omega_{k} W_{p,p'} \left(\hat{a}_{k}^{\dagger} \hat{a}_{p}^{\dagger} \delta_{k,p'} + \hat{a}_{k}^{\dagger} \hat{a}_{p'}^{\dagger} \delta_{k,p}\right) - \omega_{k} W_{p,p'}^{*} \left(\hat{a}_{p} \hat{a}_{k} \delta_{k,p'} + \hat{a}_{p'} + \hat{a}_{p'} \hat{a}_{k} \delta_{k,p}\right)\right)$$

$$= \sum_{q \neq q'} V_{q,q'} (\omega_{q} - \omega_{q'}) \hat{a}_{q}^{\dagger} \hat{a}_{q'} + \sum_{p,p'} \left(W_{p,p'} (\omega_{p} + \omega_{p'}) \hat{a}_{p}^{\dagger} \hat{a}_{p'}^{\dagger} - W_{p,p'}^{*} (\omega_{p} + \omega_{p'}) \hat{a}_{p} \hat{a}_{p'}\right)$$

$$(A.2)$$

Since $\hat{\eta}$ has the same form as $\hat{\mathcal{H}}_{int}$, $\left[\hat{\eta}, \hat{\mathcal{H}}_{0}\right]$ follows by inspection of A.2:

$$\left[\hat{\eta}, \hat{\mathcal{H}}_{0}\right] = -\sum_{q \neq q'} V_{q,q'} (\omega_{q} - \omega_{q'})^{2} \hat{a}_{q}^{\dagger} \hat{a}_{q'}$$

$$-\sum_{p,p'} \left(W_{p,p'} (\omega_{p} + \omega_{p'})^{2} \hat{a}_{p}^{\dagger} \hat{a}_{p'}^{\dagger} + W_{p,p'}^{*} (\omega_{p} + \omega_{p'})^{2} \hat{a}_{p} \hat{a}_{p'} \right)$$
(A.3)

10 Detailed Calculations

The commutator of the generator and $\hat{\mathcal{H}}_{int}$ needs more work:

In the following, A.5-A.8 will be evaluated separately:

A.5:

$$\begin{split} & \left[\sum_{q \neq q'} V_{q,q'}(\omega_{q} - \omega_{q'}) \hat{a}_{q}^{\dagger} \hat{a}_{q'}, \sum_{\bar{q} \neq \bar{q}'} V_{\bar{q},\bar{q}'} \hat{a}_{\bar{q}}^{\dagger} \hat{a}_{\bar{q}'} \right] \\ & = \sum_{q \neq q'} \sum_{\bar{q} \neq \bar{q}'} V_{\bar{q},\bar{q}'} V_{q,q'}(\omega_{q} - \omega_{q'}) \left[\hat{a}_{q}^{\dagger} \hat{a}_{q'}, \hat{a}_{\bar{q}}^{\dagger} \hat{a}_{\bar{q}'} \right] \\ & = \sum_{q \neq q'} \sum_{\bar{q} \neq \bar{q}'} V_{\bar{q},\bar{q}'} V_{q,q'}(\omega_{q} - \omega_{q'}) \left(\hat{a}_{q}^{\dagger} \hat{a}_{\bar{q}'} \delta_{q',\bar{q}} - \hat{a}_{\bar{q}}^{\dagger} \hat{a}_{q'} \delta_{q,\bar{q}'} \right) \\ & = \sum_{q \neq q'} \sum_{\bar{q}'} V_{q',\bar{q}'} V_{q,q'}(\omega_{q} - \omega_{q'}) \hat{a}_{q}^{\dagger} \hat{a}_{\bar{q}'} - \sum_{q \neq q'} \sum_{\bar{q}} V_{\bar{q},q} V_{q,q'}(\omega_{q} - \omega_{q'}) \hat{a}_{\bar{q}}^{\dagger} \hat{a}_{q'} \\ & = \sum_{q,q'} \sum_{\bar{q}'} V_{q,\bar{q}'} V_{q,q'}(\omega_{q} - \omega_{q'}) \hat{a}_{q}^{\dagger} \hat{a}_{\bar{q}'} - \sum_{q,q'} \sum_{\bar{q}} V_{\bar{q},q} V_{q,q'}(\omega_{q} - \omega_{q'}) \hat{a}_{\bar{q}}^{\dagger} \hat{a}_{q'} \\ & = \sum_{q,q'} \sum_{\bar{q}} V_{\bar{q},q'} V_{q,\bar{q}}(\omega_{q} - \omega_{\bar{q}}) \hat{a}_{q}^{\dagger} \hat{a}_{q'} - \sum_{q,q'} \sum_{\bar{q}} V_{q,\bar{q}} V_{\bar{q},q'}(\omega_{\bar{q}} - \omega_{q'}) \hat{a}_{q}^{\dagger} \hat{a}_{q'} \\ & = \sum_{q \neq q'} \sum_{\bar{q}} V_{\bar{q},q'} V_{q,\bar{q}}(\omega_{q} - \omega_{\bar{q}}) \hat{a}_{q}^{\dagger} \hat{a}_{q'} - \sum_{q \neq q'} \sum_{\bar{q}} V_{q,\bar{q}} V_{\bar{q},q'}(\omega_{\bar{q}} - \omega_{q'}) \hat{a}_{q}^{\dagger} \hat{a}_{q'} \\ & + \sum_{k} \sum_{\bar{q}} V_{\bar{q},q'} V_{q,\bar{q}}(\omega_{q} - \omega_{\bar{q}}) \hat{a}_{q}^{\dagger} \hat{a}_{q'} - \sum_{q \neq q'} \sum_{\bar{q}} V_{q,\bar{q}} V_{\bar{q},q'}(\omega_{\bar{q}} - \omega_{q'}) \hat{a}_{q}^{\dagger} \hat{a}_{q'} \\ & + \sum_{k} \sum_{\bar{q}} V_{\bar{q},q'} V_{q,\bar{q}}(\omega_{q} - \omega_{\bar{q}}) \hat{a}_{q}^{\dagger} \hat{a}_{q'} - \sum_{q \neq q'} \sum_{\bar{q}} V_{q,\bar{q}} V_{\bar{q},q'}(\omega_{\bar{q}} - \omega_{q'}) \hat{a}_{q}^{\dagger} \hat{a}_{q'} \\ & + \sum_{k} \sum_{\bar{q}} V_{\bar{q},q'} V_{q,\bar{q}}(\omega_{q} - \omega_{\bar{q}}) \hat{a}_{q}^{\dagger} \hat{a}_{q'} - \sum_{q \neq q'} \sum_{\bar{q}} V_{q,\bar{q}} V_{\bar{q},q'}(\omega_{\bar{q}} - \omega_{q'}) \hat{a}_{q}^{\dagger} \hat{a}_{q'} \\ & + \sum_{k} \sum_{\bar{q}} 2 V_{\bar{q},k} V_{k,\bar{q}}(\omega_{k} - \omega_{\bar{q}}) \hat{a}_{k}^{\dagger} \hat{a}_{k} \end{split} \tag{A.9}$$

A.6:

$$\begin{split} & \left[\sum_{q \neq q'} V_{q,q'}(\omega_{q} - \omega_{q'}) \hat{a}_{q}^{\dagger} \hat{a}_{q'}, \sum_{\bar{p},\bar{p}'} \left(W_{\bar{p},\bar{p}'} \hat{a}_{\bar{p}}^{\dagger} \hat{a}_{\bar{p}'}^{\dagger} + W_{\bar{p},\bar{p}'}^{*} \hat{a}_{\bar{p}}^{\dagger} \hat{a}_{\bar{p}'}^{\dagger} \right) \right] \\ & = \sum_{q \neq q'} \sum_{\bar{p},\bar{p}'} V_{q,q'}(\omega_{q} - \omega_{q'}) \left(W_{\bar{p},\bar{p}'} \left[\hat{a}_{q}^{\dagger} \hat{a}_{q'}, \hat{a}_{\bar{p}}^{\dagger} \hat{a}_{\bar{p}'}^{\dagger} \right] + W_{\bar{p},\bar{p}'}^{*} \left[\hat{a}_{q}^{\dagger} \hat{a}_{q'}, \hat{a}_{\bar{p}}^{\dagger} \hat{a}_{\bar{p}'} \right] \right) \\ & = \sum_{q,q'} \sum_{\bar{p},\bar{p}'} V_{q,q'}(\omega_{q} - \omega_{q'}) \left(W_{\bar{p},\bar{p}'} \left(\hat{a}_{q}^{\dagger} \hat{a}_{\bar{p}}^{\dagger} \delta_{q',\bar{p}'} + \hat{a}_{q}^{\dagger} \hat{a}_{\bar{p}'}^{\dagger} \delta_{q',\bar{p}} \right) - W_{\bar{p},\bar{p}'}^{*} \hat{a}_{\bar{p}} \left(\hat{a}_{\bar{p}'} \hat{a}_{q'} \delta_{q',\bar{p}'} + \hat{a}_{\bar{p}} \hat{a}_{\bar{q}'} \delta_{q',\bar{p}} \right) \right] \\ & = \sum_{q,p'} \sum_{q} V_{q,p'}(\omega_{q} - \omega_{q'}) W_{p,p'}^{*} \hat{a}_{q}^{\dagger} \hat{a}_{p}^{\dagger} + \sum_{p,p'} \sum_{q} V_{q,p}(\omega_{q} - \omega_{p}) W_{p,p'} \hat{a}_{q}^{\dagger} \hat{a}_{p'}^{\dagger} \\ & - \sum_{p,p'} \sum_{q} V_{p,q'}(\omega_{p} - \omega_{q'}) W_{p,p'}^{*} \hat{a}_{p'}^{\dagger} \hat{a}_{p'} + \sum_{p,p'} \sum_{q} V_{p,q}(\omega_{p} - \omega_{q}) W_{q,p'} \hat{a}_{p}^{\dagger} \hat{a}_{p'}^{\dagger} \\ & - \sum_{p,p'} \sum_{q} V_{q,p}(\omega_{q} - \omega_{p}) W_{q,p'}^{*} \hat{a}_{p}^{\dagger} \hat{a}_{p'} + \sum_{p,p'} \sum_{q} V_{q,p'}(\omega_{q} - \omega_{p}) W_{p,q}^{*} \hat{a}_{p}^{\dagger} \hat{a}_{p'} \\ & = \sum_{p,p'} \sum_{q} V_{p,q}(\omega_{p'} - \omega_{q}) W_{p,q} \hat{a}_{p}^{\dagger} \hat{a}_{p'}^{\dagger} + \sum_{p,p'} \sum_{q} V_{p,q}(\omega_{p} - \omega_{q}) W_{q,p'} \hat{a}_{p}^{\dagger} \hat{a}_{p'} \\ & - \sum_{p,p'} \sum_{q} V_{q,p}(\omega_{q} - \omega_{p}) W_{q,p'}^{*} \hat{a}_{p} \hat{a}_{p'} + \sum_{p,p'} \sum_{q} V_{q,p'}(\omega_{q} - \omega_{p}) W_{p,q}^{*} \hat{a}_{p}^{\dagger} \hat{a}_{p'} \\ & - \sum_{p,p'} \sum_{q} V_{q,p}(\omega_{q} - \omega_{p}) W_{q,p'}^{*} \hat{a}_{p} \hat{a}_{p'} - \sum_{p,p'} \sum_{q} V_{q,p'}(\omega_{q} - \omega_{p'}) W_{p,q}^{*} \hat{a}_{p}^{\dagger} \hat{a}_{p'} \\ & - \sum_{p,p'} \sum_{q} V_{q,p}(\omega_{p} - \omega_{q}) (W_{q,p'} + W_{p',q}) \hat{a}_{p}^{\dagger} \hat{a}_{p'} \\ & + \sum_{p,p'} \sum_{q} V_{q,p}(\omega_{p} - \omega_{q}) (W_{q,p'} + W_{p',q}) \hat{a}_{p}^{\dagger} \hat{a}_{p'} \end{aligned} \tag{A.10}$$

A.7:

$$\begin{split} & \left[\sum_{p,p'} \left(W_{p,p'}(\omega_{p} + \omega_{p'}) \hat{a}_{p}^{\dagger} \hat{a}_{p'}^{\dagger} - W_{p,p'}^{*}(\omega_{p} + \omega_{p'}) \hat{a}_{p} \hat{a}_{p'} \right), \sum_{\vec{q} \neq \vec{q}'} V_{\vec{q},\vec{q}'} \hat{a}_{\vec{q}}^{\dagger} \hat{a}_{\vec{q}'} \right] \\ & = \sum_{p,p'} \sum_{\vec{q} \neq \vec{q}'} V_{\vec{q},\vec{q}'}(\omega_{p} + \omega_{p'}) \left(W_{p,p'} \left[\hat{a}_{p}^{\dagger} \hat{a}_{p'}^{\dagger}, \hat{a}_{\vec{q}}^{\dagger} \hat{a}_{\vec{q}'} \right] - W_{p,p'}^{*} \left[\hat{a}_{p} \hat{a}_{p'}, \hat{a}_{\vec{q}}^{\dagger} \hat{a}_{\vec{q}'} \right] \right) \\ & = -\sum_{p,p'} \sum_{q \neq q'} V_{q,q'}(\omega_{p} + \omega_{p'}) W_{p,p'}^{*} \left(\hat{a}_{q}^{\dagger} \hat{a}_{p}^{\dagger} \delta_{q',p'} + \hat{a}_{q}^{\dagger} \hat{a}_{p'}^{\dagger} \delta_{q',p} \right) \\ & - \sum_{p,p'} \sum_{q \neq q'} V_{q,q'}(\omega_{p} + \omega_{p'}) W_{p,p'}^{*} \left(\hat{a}_{p} \hat{a}_{q'} \delta_{q,p'} + \hat{a}_{p'} \hat{a}_{q'} \delta_{q,p} \right) \\ & = -\sum_{p,p'} \sum_{q} V_{q,p'}(\omega_{p} + \omega_{p'}) W_{p,p'}^{*} \hat{a}_{q}^{\dagger} \hat{a}_{p}^{\dagger} - \sum_{p,p'} \sum_{q} V_{q,p}(\omega_{p} + \omega_{p'}) W_{p,p'}^{*} \hat{a}_{q}^{\dagger} \hat{a}_{p'} \\ & - \sum_{p,p'} \sum_{q'} V_{p',q'}(\omega_{p} + \omega_{p'}) W_{p,p'}^{*} \hat{a}_{p} \hat{a}_{q'} - \sum_{p,p'} \sum_{q'} V_{p,q'}(\omega_{p} + \omega_{p'}) W_{p,p'}^{*} \hat{a}_{p}^{\dagger} \hat{a}_{p'} \\ & - \sum_{p,p'} \sum_{q'} V_{p',q}(\omega_{p} + \omega_{q'}) W_{p,q}^{*} \hat{a}_{p}^{\dagger} \hat{a}_{p'} - \sum_{p,p'} \sum_{q'} V_{p,q}(\omega_{q} + \omega_{p'}) W_{q',p'}^{*} \hat{a}_{p} \hat{a}_{p'} \\ & - \sum_{p,p'} \sum_{q'} V_{p,q}(\omega_{q} + \omega_{q'}) W_{p,q}^{*} \hat{a}_{p}^{\dagger} \hat{a}_{p'} - \sum_{p,p'} \sum_{q'} V_{q',p}(\omega_{q'} + \omega_{p'}) W_{q',p'}^{*} \hat{a}_{p} \hat{a}_{p'} \\ & - \sum_{p,p'} \sum_{q'} V_{p,q}(\omega_{q} + \omega_{p'}) (W_{p',q} + W_{q,p'}) \hat{a}_{p}^{\dagger} \hat{a}_{p'}^{\dagger} \\ & - \sum_{p,p'} \sum_{q} V_{p,p}(\omega_{q} + \omega_{p'}) (W_{p',q} + W_{q,p'}) \hat{a}_{p}^{\dagger} \hat{a}_{p'} \end{aligned} \tag{A.11}$$

12 Detailed Calculations

A.8:

$$\begin{split} & \left[\sum_{p,p'} \left(W_{p,p'}(\omega_p + \omega_{p'}) \hat{a}_p^{\dagger} \hat{a}_{p'}^{\dagger} - W_{p,p'}^{*}(\omega_p + \omega_{p'}) \hat{a}_p \hat{a}_{p'} \right), \sum_{\vec{p},\vec{p'}} \left(W_{\vec{p},\vec{p'}} \hat{a}_p^{\dagger} \hat{a}_{\vec{p'}}^{\dagger} + W_{\vec{p},\vec{p'}}^{*} \hat{a}_p \hat{a}_{\vec{p'}} \right) \right] \\ & = \sum_{p,p'} \sum_{\vec{p},\vec{p'}} W_{p,p'}(\omega_p + \omega_{p'}) W_{\vec{p},\vec{p'}}^{*} \left[\hat{a}_p^{\dagger} \hat{a}_{\vec{p'}}^{\dagger}, \hat{a}_p \hat{a}_{\vec{p'}} \right] - \sum_{p,p'} \sum_{\vec{p},\vec{p'}} W_{p,p'}^{*}(\omega_p + \omega_{p'}) \left[\hat{a}_p \hat{a}_{p'}, \hat{a}_p^{\dagger} \hat{a}_{\vec{p'}} \right] \\ & = -\sum_{p,p'} \sum_{\vec{p},\vec{p'}} W_{p,p'}(\omega_p + \omega_{p'} + \omega_{\vec{p'}} + \omega_{\vec{p'}}) W_{\vec{p},\vec{p'}}^{*} \hat{a}_p^{\dagger} \hat{a}_p^{\dagger} \hat{a}_{p'} \right] \\ & = -\sum_{p,p'} \sum_{\vec{p},\vec{p'}} W_{p,p'}(\omega_p + \omega_{p'} + \omega_{\vec{p'}} + \omega_{\vec{p'}}) W_{\vec{p},\vec{p'}}^{*} \hat{a}_p^{\dagger} \hat{a}_p^{\dagger} \hat{a}_{p'} \right] \\ & = -\sum_{p,p'} \sum_{\vec{p},\vec{p'}} W_{p,p'}(\omega_p + \omega_{p'} + \omega_{\vec{p'}} + \omega_{\vec{p'}}) W_{\vec{p},\vec{p'}}^{*} \hat{a}_p^{\dagger} \hat{a}_p^{\dagger} \hat{a}_{p'} \right] \\ & = -\sum_{p,p'} \sum_{\vec{p},\vec{p'}} W_{p,p'}(\omega_p + \omega_{p'} + \omega_{\vec{p'}} + \omega_{\vec{p'}}) W_{\vec{p},\vec{p'}}^{*} \hat{a}_p^{\dagger} \hat{a}_p^{\dagger} \hat{a}_{p'} \hat{a}_{p'} \right] \\ & = -\sum_{p,p'} \sum_{\vec{p},\vec{p'}} W_{p,p'}(\omega_p + \omega_{p'} + \omega_{\vec{p}} + \omega_{\vec{p'}}) W_{\vec{p},\vec{p'}}^{*} \hat{a}_p^{\dagger} \hat{a}_p^{\dagger} \hat{a}_{p'} \hat{a}_{p'} \hat{a}_{p'} \\ & - \sum_{p,p'} \sum_{\vec{p},\vec{p'}} W_{p,p'}(\omega_p + 2\omega_{p'} + \omega_{\vec{p}}) W_{\vec{p},\vec{p'}}^{*} \hat{a}_p^{\dagger} \hat{a}_p^{\dagger} \hat{a}_p^{\dagger} \hat{a}_p^{\dagger} \hat{a}_p^{\dagger} \hat{a}_{p'} - \sum_{p,p'} \sum_{\vec{p}} W_{p,p'}(2\omega_p + \omega_{p'} + \omega_{\vec{p}}) W_{\vec{p},\vec{p'}}^{*} \hat{a}_p^{\dagger} \hat{a}_{p'} \hat{a}_p^{\dagger} \hat{a}_p^{\dagger} - \sum_{p,p'} \sum_{\vec{p}} W_{p,p'}(2\omega_p + \omega_{p'} + \omega_{\vec{p}}) W_{\vec{p},\vec{p'}}^{*} \hat{a}_p^{\dagger} \hat{a}_p^{\dagger} \hat{a}_p^{\dagger} \hat{a}_p^{\dagger} \hat{a}_p^{\dagger} - \sum_{p,p'} \sum_{\vec{p}} W_{p,p'}(2\omega_p + \omega_{p'} + \omega_{\vec{p}}) W_{\vec{p},\vec{p'}}^{*} \hat{a}_p^{\dagger} \hat{a}_p^$$

Using the expressions for the commutators of the generator and $\hat{\mathcal{H}}_0$ respectively $\hat{\mathcal{H}}_{int}$ derived above, the flow $\partial_{\lambda}\hat{\mathcal{H}}(\lambda) = [\hat{\eta}(\lambda), \hat{\mathcal{H}}(\lambda)]$ yields the following flow equations:

$$\partial_{\lambda}\omega_{k} = \sum_{\tilde{q}} 2V_{\tilde{q},k}V_{k,\tilde{q}}(\omega_{k} - \omega_{\tilde{q}}) - 2\sum_{\tilde{p}} (W_{k,\tilde{p}} + W_{\tilde{p},k})(\omega_{k} + \omega_{\tilde{p}})(W_{\tilde{p},k}^{*} + W_{k,\tilde{p}}^{*})$$
(A.13a)

$$\partial_{\lambda} V_{q,q'} = -V_{q,q'} (\omega_q - \omega_{q'})^2 - \sum_{\tilde{p}} (W_{q,\tilde{p}} + W_{\tilde{p},q}) (\omega_q + 2\omega_{\tilde{p}} + \omega_{q'}) (W_{\tilde{p},q'}^* + W_{q',\tilde{p}}^*)$$

$$+\sum_{\tilde{q}} V_{\tilde{q},q'} V_{q,\tilde{q}}(\omega_q - \omega_{\tilde{q}}) - \sum_{\tilde{q}} V_{q,\tilde{q}} V_{\tilde{q},q'}(\omega_{\tilde{q}} - \omega_{q'})$$
(A.13b)

$$\partial_{\lambda}W_{p,p'} = -W_{p,p'}(\omega_p + \omega_{p'})^2 - \sum_{q} V_{p,q}(\omega_q + \omega_{p'})(W_{p',q} + W_{q,p'})$$

$$+\sum_{q} V_{p,q}(\omega_p - \omega_q)(W_{q,p'} + W_{p',q})$$
(A.13c)

$$\partial_{\lambda} W_{p,p'}^{*} = -W_{p,p'}^{*} (\omega_{p} + \omega_{p'})^{2} - \sum_{q} V_{q,p} (\omega_{q} + \omega_{p'}) (W_{p',q}^{*} + W_{q,p'}^{*})$$

$$+\sum_{q} V_{q,p}(\omega_p - \omega_q)(W_{q,p'}^* + W_{p',q}^*)$$
(A.13d)

$$\partial_{\lambda}\varepsilon = -2\sum_{p,p'} (W_{p,p'} + W_{p',p})(\omega_p + \omega_{p'})W_{p,p'}^*$$
(A.13e)

Obviously, equations A.13c and A.13d are not independent from each other, since they are related by complex conjugation. It is nevertheless a good consistency check to see that the two independently derived equations are equivalent.

14 Detailed Calculations

APPENDIX B	
I	
	THE SECOND APPENDIX

Here comes the second appendix.

BIBLIOGRAPHY

- [Keh06] S. Kehrein. The Flow Equation Approach to Many-Particle Systems. Springer Tracts in Modern Physics. Springer, 2006. ISBN: 9783540340676. URL: https://link.springer.com/book/10.1007/3-540-34068-8.
- [Weg06] Franz Wegner. "Flow equations and normal ordering: a survey". In: *Journal of Physics A: Mathematical and General* 39.25 (2006), p. 8221. DOI: 10. 1088/0305-4470/39/25/S29. URL: https://dx.doi.org/10.1088/0305-4470/39/25/S29.
- [CTDL19] C. Cohen-Tannoudji, B. Diu, and F. Laloë. Quantum Mechanics, Volume 3: Fermions, Bosons, Photons, Correlations, and Entanglement. Wiley, 2019. ISBN: 9783527345557. URL: https://books.google.de/books?id=B3EoswEACAAJ.

18 BIBLIOGRAPHY

DECT A	RATION	OF ATT	TUOD	CLID
DECLA	R.A I IUIN	OF AU	IHUK	\mathbf{SHIP}

I hereby	decla	are tha	tΙ	have	writt	en '	this	thesi	s i	ndepe	ndent	$_{\rm ly}$	and b	У	myself	and	that	Ιl	have
not used	any	sources	or	auxil	liary 1	mat	eria	ls oth	ıer	than	those	in	dicate	d :	in the	thesi	s.		

Munich, 22.06.2023