Supplementary Information:

Directed evolution of mesophilic HNA polymerases providing insight into DNA polymerase mechanisms.

Authors and affiliations:

Paola Handal-Marquez^{1,2}, Leticia L. Torres¹ and Vitor B. Pinheiro^{2*}

¹ University College London, Department of Structural and Molecular Biology, Gower Street, WC1E 6BT, London, UK

² KU Leuven, Rega Institute for Medical Research, Department of Pharmaceutical and Pharmacological Sciences, Herestraat, 49 – box 1041, 3000 Leuven, Belgium

^{*} Corresponding author: e-mail: v.pinheiro@kuleuven.be

Table of Contents:

Figure S1. Phi29 DNAP homologues in public databases	. 3
Figure S2. HNA synthesis time courses by D12A-THR and p562del with differe templates	
Figure S3. Phi29 DNAP P562del reduced fidelity and increased InDel incorporations rate	
Figure S4. Transition and transversion hotspots introduced by phi29 DNAP variants	. 7
Figure S5. Location of most abundant InDel introductions by each mutant during isothermal DNA replication	. 8
Table S1. Sequences ^a of all the plasmids used in this study	10
Table S2. Sequences ^a of the oligonucleotides and templates used in this study	
Supplementary references	17

Figure S1. Phi29 DNAP homologues in public databases.

Sequences with >80% sequence identity and >80% query cover from a blast search of the Phi29 DNAP protein sequence were selected, aligned using the NCBI Multiple Alignment Tool (Altschul et al., 1990) and viewed using the NCBI'S Sequence Viewer (Rangwala et al., 2021). Mismatches relative to the query (Phi29 DNAP sequence) are shown in red and insertions are indicated by a blue bracket. Only 20 sequences show significant similarity to phi29 DNAP.

Figure S2. HNA synthesis time courses by D12A-THR and p562del with different templates. Products from primer extensions by D12A-THR and P562 mutants on the TempN-exoR (Table S2) template with incubation times from 4 to 16 h (A) as well as on the TempN_2.7_ExoR template (Table S2) with incubation times from 0 to 1 h (B) were separated by denaturing PAGE. The TempN_2.7_ExoR template is a modified version of TempN-exoR with 4 substitutions and 1 deletion that reduces the probability of secondary structure formation. Fully extended products (57 hNTP incorporations) are shown. HNA migrates slower than DNA in denaturing PAGE (Torres & Pinheiro, 2018).

Figure S3. Phi29 DNAP P562del reduced fidelity and increased InDel incorporations rate. (A) Workflow of the isothermal polymerase fidelity assay. The red dot marks the

nicking site for single stranded plasmid generation, the non-complementary overhang of the primer for downstream amplification is shown in green and 1 bp mismatches are shown in black. The primer is extended, captured, and purified through biotin-streptavidin pulldown and used as template in a secondary PCR amplification step. (B) Distribution and quantification of error (misincorporation) types introduced by each mutant during isothermal DNA replication. Each error type was identified by comparing the isothermal amplification products post-deep sequencing and after their alignment to the Fidelity_ref (Table S2) on a base-to-base manner. The sum of each error type was divided by the total number of misincorporations and multiplied times a 100 to yield the error type percentage displayed. (C) The total percentage of inversions and transversions introduced by each mutant.

Figure S4. Transition and transversion hotspots introduced by phi29 DNAP variants. The products from the isothermal DNA replication fidelity assays generated by Exo+THR, D12A-THR and p562del were deep sequenced, filtered by quality, trimmed, and aligned. The MSA alignments were used to quantify the abundance of transitions and transversions per position by comparing each of the aligned reads to the Fidelity_ref (table S2) sequence within each the alignment in a base-by-base manner. The total number of transitions and transversions per position was divided by the number of reads to obtain overall frequency scores. Only positions with transitions or transversions with overall frequency scores above 0.5% were selected for visualization. The scores of each error type were divided by the sum of both scores to obtain the frequency value per position and were plotted against the Fidelity ref length.

Figure S5. Location of most abundant InDel introductions by each mutant during isothermal DNA replication. Location of deletions (blue to green dots) and insertions (orange to yellow dots) appearing with >5% frequency relative to all the insertions or deletions identified in the MSA of the isothermal amplification products generated by each mutant. The x-axis indicates the sequence length of the template used in the assay/analysis. Blue or orange dots indicate the 'start' of the deletion or insertion respectively, and the green or yellow dots indicate the 'end' of the deletion or insertion

respectively. The percentage values adjacent to the 'end' dots represent the abundance of deletions or insertions relative to the total number of deletions or insertions respectively. The percentage values are followed the location of the particular InDel in a range format.

Table S1. Sequences^a of all the plasmids used in this study.

pET23-P2-D12A-THR

acgcgccctgtagcggcgcattaagcgcggccgctgtggtggttacgcgcagcgtgaccgctacacttgccagcgc ctagcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggctcc ctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatc gccctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacact caaccctatctcggtctattcttttgatttataagggattttgccgatttcggcctattggttaaaaaatgagctgatttaacaa aaatttaacgcgaattttaacaaaatattaacgtttacaatttcaggtggcacttttcggggaaatgtgcgcggaacccct atttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaataaccctgataaatgcttcaataatattgaaaaa ggaagagtatgagtattcaacatttccgtgtcgcccttattcccttttttgcggcattttgccttcctgtttttgctcacccagaaa cgctggtgaaagtaaaagatgctgaagatcagttgggtgcacgagtgggttacatcgaactggatctcaacagcggta agatccttgagagttttcgccccgaagaacgttttccaatgatgagcacttttaaagttctgctatgtggcgcggtattatcc cgtattgacgccgggcaagagcaactcggtcgccgcatacactattctcagaatgacttggttgagtactcaccagtca cagaaaagcatcttacggatggcatgacagtaagagaattatgcagtgctgccataaccatgagtgataacactgcg gccaacttacttctgacaacgatcggaggaccgaaggagctaaccgcttttttgcacaacatgggggatcatgtaactc gccttgatcgttgggaaccggagctgaatgaagccataccaaacgacgagcgtgacaccacgatgcctgcagcaat gcggataaagttgcaggaccacttctgcgctcggcccttccggctggtttattgctgataaatctggagccggtga gcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatcgtagttatctacacgacgggg agtcaggcaactatggatgaacgaaatagacagatcgctgagataggtgcctcactgattaagcattggtaactgtca gaccaagtttactcatatatactttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcctttttgataat ctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttga agctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgtacttctagtgtagccgtagt taggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtg gcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacgggg ggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaa gcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcac gagggagettccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgt

gatgctcgtcaggggggggggggcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctgcgtt atcccctgattctgtggccttttgcgcgtctgcgttatcccctgattctgatgttctttcctgcgttatcccctgattctgtggataa ccgtattaccgcctttgagtgagctgcgttatcccctgattctgctgataccgctcgccgcagccgaacgaccgagcgca gcgagtcagtgagcgaggaagcggaatatcgcctgatgcggtattttctccttacgcatctgtgcggtatttcacaccgc aatggtgcactctcagtacaatctgctctgatgccgcatagttaagccagtatacactccgctatcgctacgtgactgggt catggctgcgccccgacacccgccaacacccgctgacgcgccctgacgggcttgtctgctcccggcatccgcttaca gacaagctgtgaccgtctccgggagctgcatgtgtcagaggttttcaccgtcatcaccgaaacgcgcgaggcagctgc ggtaaagctcatcagcgtggtcgtgaagcgattcacagatgtctgcctgttcatccgcgtccagctcgttgagtttctccag aagcgttaatgtctggcttctgataaagcgggccatgttaagggcggttttttcctgtttggtcactgatgcctccgtgtaagg gggatttctgttcatgggggtaatgataccgatgaaacgagaggatgctcacgatacgggttactgatgatgaacat gcccggttactggaacgttgtgagggtaaacaactggcggtatggatgcggcgggaccagagaaaaatcactcagg gtcaatgccagcgcttcgttaatacagatgtaggtgttccacagggtagccagcagcatcctgcgatgcagatccgga acataatggtgcagggcgctgacttccgcgtttccagactttacgaaacacggaaaccgaagaccattcatgttgttgct ccccgccagcctagccgggtcctcaacgacaggagcacgatcatgcgcacccgtggccaggacccaacgctgccc gagatctcgatcccgcgaaattaatacgactcactatagggagaccacaacggtttccctctagaaataattttgtttaac tttaagaaggagatataccatggatcctctagagtcgacctgcaggcatgcaagcttgcggccacacaggagatagtc atacatgaaacacatgcctcgcaaaaggtatagctgcgcttttgaaaccaccaccaaagttgaagattgtcgtgtttggg catatggctatatgaacattgaagatcacagcgagtataaaatcggcaatagcctggatgaatttatggcatgggctctg a a agt t cagg ccg at ctg t at tt caca at ctg a a at ttg at g t g t cat tat ta a ctg g ctg g a a c g cat t g t t tat ta a ctg g ctg g a a c g cat t g t tat ta a ctg g ctg g a a c g cat t g t tat ta a ctg g ctg g a a c g cat t g t tat t a ctg g ctg g a a c g cat t g t tat t a ctg g ctg g a a c g cat t g t tat t a ctg g ctg g a a c g cat t g t tat t a ctg g ctg g a a c g cat t g t a ctg g ctg g a a c g cat t g t a ctg g ctg g a a c g cat t g t a ctg g ctg g a a c g cat t g t a ctg g ctg g a a c g cat t g t a ctg g ctg g a a c g cat t g t a ctg g ctg g a a c g cat t g t a ctg g ctg g a a c g cat t g c a ctg g ctg g a a c g cat t g c a ctg g ctg g a a c g cat t g c a ctg g c a c g c a c cgttataaaggcaaacgcaaaattcataccgtgatctatgacagcctgaaaaaactgccgtttccggtgaaaaaaatcg ccaaagatttcaaactgaccgtgctgaaaggcgatatcgattatcacaaagaacgtccggttggctacaaaattacac cggaagaatatgcctacatcaaaaacgacattcagattattgcagaagccctgctgattcagtttaaacagggtctggat cgtatgaccgcaggtagcgatagcctgaaagattttaaagatatcattaccaccaaaaaaattcaaaaaagtgttcccga ccctgagcctgggcctggataaaaaagttcgttacgcatatcgcggtggttttacctggctgaatgatcgctttaaagaaa aagaaattggcgagggcatggtgtttgatgttaatagcctgtatccggcacagatgtatagccgtctgctgccgtatggtg aaccgattgtttttgaaggtaaatatgtgtgggatgaggattatccgctgcatattcagcatattcgttgcgaatttgaactga aagaaggctatattccgaccattcagatcaaacgtagccgcttctataaaggtaacgagtatctgaaaagcagcggtg gtgaaattgcagatctgtggctgagcaatgttgatctggaactgatgaaagaacactacgatctgtacaacgtggaatat at cag cgg t ctg a a at tca a ag ca accac cgg t ctg tt ca a ag a ctt cat tg at a a at tgg a cct at at ca a a accac ctc considerable and considerable at the consider

pET23_KOD_DA_Mut

tggcgaatgggacgccctgtagcggcgcattaagcgcggccgctgtggtggttacgcgcagcgtgaccgctacac tcgggggctccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgt agtgggccatcgcctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaact ggaacaacactcaaccctatctcggtctattcttttgatttataagggattttgccgatttcggcctattggttaaaaaatgag ctgatttaacaaaaatttaacgcgaattttaacaaaatattaacgtttacaatttcaggtggcacttttcggggaaatgtgcg cggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaataaccctgataaatgcttcaata atattgaaaaaggaagagtatgagtattcaacatttccgtgtcgcccttattcccttttttgcggcattttgccttcctgtttttgct cacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtgcacgagtgggttacatcgaactggatct caacagcggtaagatccttgagagttttcgccccgaagaacgttttccaatgatgagcacttttaaagttctgctatgtggc gcggtattatcccgtattgacgccgggcaagagcaactcggtcgccgcatacactattctcagaatgacttggttgagta ctcaccagtcacagaaaagcatcttacggatggcatgacagtaagagaattatgcagtgctgccataaccatgagtga taacactgcggccaacttacttctgacaacgatcggaggaccgaaggagctaaccgcttttttgcacaacatggggga ctggatggaggggataaagttgcaggaccacttctgcgctcggcccttccggctggtttattgctgataaatctgg agccggtgagcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatcgtagttatctaca cgacggggagtcaggcaactatggatgaacgaaatagacagatcgctgagataggtgcctcactgattaagcattgg ttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaagg ggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgtacttctagtgt agccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctg ctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggct gaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagct atgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacagga gagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcg tcgatttttgtgatgctcgtcagggggggggggcctatggaaaaacgccagcaacgcggcctttttacggttcctggcctt ttgctgcgttatcccctgattctgtggccttttgcgcgtctgcgttatcccctgattctgatgttctttcctgcgttatcccctgattct gtggataaccgtattaccgcctttgagtgagctgcgttatcccctgattctgctgataccgctcgccgcagccgaacgacc gagcgcagcgagtcagtgagcgaggaagcggaatatcgcctgatgcggtatttctccttacgcatctgtgcggtatttc acaccgcaatggtgcactctcagtacaatctgctctgatgccgcatagttaagccagtatacactccgctatcgctacgt gactgggtcatggctgcgccccgacacccgccaacacccgctgacgcgcctgacgggcttgtctgctcccggcatc cgcttacagacaagctgtgaccgtctccgggagctgcatgtgtcagaggttttcaccgtcatcaccgaaacgcgcgag gcagctgcggtaaagctcatcagcgtggtcgtgaagcgattcacagatgtctgcctgttcatccgcgtccagctcgttga gtttctccagaagcgttaatgtctggcttctgataaagcgggccatgttaagggcggttttttcctgtttggtcactgatgcctc cgtgtaagggggatttctgttcatgggggtaatgataccgatgaaacgagagaggatgctcacgatacgggttactgat gatgaacatgcccggttactggaacgttgtgagggtaaacaactggcggtatggatgcggcgggaccagagaaaaa tcactcagggtcaatgccagcgcttcgttaatacagatgtaggtgttccacagggtagccagcagcatatggtgcaggg cgctgacttccgcgtttccagactttacgaaacacggaaaccgaagaccattcatgttgttgctcaggtcgcagacgtttt cgggtcctcaacgacaggagcacgatcatgcgcacccgtggccaggacccaacgctgcccgagatctcgatcccg cgaaattaatacgactcactatagggagaccacaacggtttccctctagaaataattttgtttaactttaagaaggagata taccatggatcctctagagtcgacctgcaggcatgcaagcttgcggccacacaggagatagtcatacatgaaacaca aagaggagaaattaactatgagaggatctcaccatcaccatcaccatacggatccaagcggcctggtgccgcgcgg cagcatgatcctcgacactgactacataaccgaggatggaaagcctgtcataagaattttcaagaaggaaaacggcg agtttaagattgagtacgaccggacttttgaaccctacttctacgccctcctgaaggacgattctgccattgaggaagtca agaagataaccgccgagaggcacgggacggttgtaacggttaagcgggttgaaaaggttcagaagaagttcctagg gagaccagttgaggtctggaaactctactttactcatccgcaggacgaaccagcgataagggacaagatacgagag catccagcagttattgacatctacgagtacgacatacccttcgccaagcgctacctcatagacaagggattagtgccaa

tggaaggcgacgaggagctgaaaatgctcgccttcgcgattgcgactctctaccatgagggcgaggagttcgccgag gggccaatccttatgataagctacgccgacgaggaaggggccagggtgataacttggaagaacgtggatctccccta cgttgacgtcgtctcgacggagaggagatgataaagcgcttcctccgtgttgtgaaggagaaagacccggacgttct cataacctacaacggcgacaacttcgacttcgcctatctgaaaaagcgctgtgaaaagctcggaataaacttcgccct cggaagggatggaagcgagccgaagattcagaggatgggcgacaggtttgccgtcgaagtgaagggacggatac acttcgatctctatcctgtgataagacggacgataaacctgcccacatacacgcttgaggccgtttatgaagccgtcttcg gtcagccgaaggagaaggtttacgctgaggaaataaccacagcctgggaaaccggcgagaaccttgagagagtcg cttaatcggccagtccctctgggacgtctcccgctccagcactggcaacctcgttgagtggttcctcctcaggaaggcct atgagaggaatgagctggccccgaacaagcccgatgaaaaggagctggccagaagacggcagagctatgaagg aggctatgtaaaagagcccgagagagggttgtgggagaacatagtgtacctagattttagatccctgtacccctcaatc atcatcacccacaacgtctcgccggatacgctcaacagagaaggatgcaaggaatatgacgttgccccacaggtcg gccaccgcttctgcaaggacttcccaggatttatcccgagcctgctaggagacctcctagaggagaggcagaagata aagaagaagatgaaggccacgattgacccgatcgagaggaagctcctcgattacaggcagaggttgatcaagatcc tggcaaacagctactacggttactacggctatgcaagggcgcgctggtactgcaaggagtgtgcagagagcgtaacg gcctggggaagggagtacataacgatgaccatcaaggagatagaggaaaagtacggctttaaggtaatctacagcg acaccgacggattttttgccacaatacctggagccgatgctgaaaccgtcaaaaagaaggctatggagttcctcaagt atatcaacgccaaacttccgggcgcgcttgagctcgagtacgagggcttctacaaacgcggcttcttcgtcacgaaga agaagtatgcggtgatagacgaggaaggcaagataacaacgcgcggacttgagattgtgaggcgtgactggagcg agatagcgaaagacgcaggcgagggttcttgaagctttgctaaaggacggtgacgtcgagaaggccgtgaggat agtcaaagaagttaccgaaaagctgagcaagtacgaggttccgccggagaagctggtgatccacgagcagataac gagggatttaaaggactacaaggcaaccggtccccacgttgccgttgccaagaggttggccgcgagaggagtcaaa atacgccctggaacggtgataagctacatcgtgctcaagggctctgggaggataggcgacagggcgataccgttcga cgagttcgacccgacgaagcacaagtacgacgccgagtactacattgagaaccaggttctcccagccgttgagaga caccaccaccaccactgagatccggctgctaacaaagcccgaaaggaagctgagttggctgctgccaccgctg agcaataactagcataaccccttggggcctctaaacgggtcttgaggggttttttgctgaaaggaggaactatatccgga t

^aAll sequences are written in the 5'→3' direction

Table S2. Sequences^a of the oligonucleotides and templates used in this study.

Category	Name	Sequence ^b
Exo loop InDel mutagenesis	Exo_loop_R	TTCAACTTTGGTGGTGGTTTC
	Exo_loop_INS1	NNSGATTGTCGTGTTTGGGCATATG
	Exo_loop_INS2	NNSNNSGATTGTCGTGTTTGGGCATATG
	Exo_loop_INS3	NNSNNSGATTGTCGTGTTTGGG
	Exo_loop_DEL1	TGTCGTGTTTGGGCATATGG
	Exo_loop_DEL2	CGTGTTTGGGCATATGGCTATATG
	Exo_loop_DEL3	GTTTGGGCATATGGCTATATGAAC
TPR2 loop InDel mutagenesis	TPR2_loop_R	TTCTTTCAGATAAGGAACTTTACC
	TPR2_loop_INS2	NNSNNSAATGGTGCACTGGGT
	TPR2_loop_INS1	NNSAATGGTGCACTGGG
	TPR2_loop_INS3	NNSNNSAATGGTGCACTGGG
	TPR2_loop_DEL1	GGTGCACTGGGTTTTC
	TPR2_loop_DEL2	GCACTGGGTTTTCGTC
Thumb loop InDel mutagenesis	Thumb_loop_R	AACCTGAACCGGTTTCGGTTTC
	Thumb_loop_INS2	NNSNNSCCGGGTGGTGTTC
	Thumb_loop_INS1	NNSCCGGGTGGTGTTCTG
	Thumb_loop_INS3	NNSNNSCCGGGTGGTGTTC

	Thumb_loop_DEL1	GGTGGTGTTCTGGTTGATGATAC
	Thumb_loop_DEL2	GGTGTTGTTCTGGTTGATGATACCTTTAC
	Thumb_loop_DEL3	GTTGTTCTGGTTGATGATACCTTTACGATC
	Thumb_loop_DEL4	GTTCTGGTTGATGATACCTTTACGATCAAA
CST selection	CST_04(7)exoR	/5BiotinTEG/ACC*G*C*A
P562del	p2_thumb_loop_R	AACCTGAACCGGTTTCGGTTTC
mutant	p2_thumb_loop_DEL1	GGTGGTGTTCTGGTTGATGATAC
Exo+THR mutant	iPCR_P2_Exo+_F1	GTATAGCTGCGATTTTGAAACC
mutant	iPCR_P2_Exo+_R1	CTTTTGCGAGGCATGTG
Primer	TempN-exoR	TGGTCCAGCATCGTGAGATCGATTACCGAA
extension		CAGCACTACGTGGCTAAGTGCTTATCTCCTA
assay		GCTTAAACGGAT*C*C*G
	TempN_2.7_ExoR	TGGTCCAGCATCGTGAGATCCCTTACTGAA
		CAGACTACATGGCTAAGTGCTTATCTCCTAG
		CTTAAACGGAT*C*C*G
RCA assay	P2_RCA_N8_ExoR	NNNNN*N*N
Fidelity	PH_pET23_DA_Biotin	/5BiotinTEG/CCCCTTATTAGCGTTTGCCAGC
assay	3	TCTTCCACTCAGGGTtAATGCCAGC
	outnest_1	CCCCTTATTAGCGTTTGCCA
	P2_fidelity_inestR1	CTGTGTGGCCGCAAG
	Fidelity_ref	agggttaatgccagcgcttcgttaatacagatgtaggtgttccac
		agggtagccagcagcatatggtgcagggcgctgacttccgcgtt

tccagactttacgaaacacggaaaccgaagaccattcatgttgtt
gctcaggtcgcagacgttttgcagcagcagtcgcttcacgttcgc
tcgcgtatcggtgattcattctgctaaccagtaaggcaaccccgc
cagcctagccgggtcctcaacgacaggagcacgatcatgcgc
acccgtggccaggacccaacgctgcccgagatctcgatcccg
cgaaattaatacgactcactatagggagaccacaacggtttccc
tctagaaataattttgtttaactttaagaaggagatataccatggat
cctctagagtcgacctgcaggcatgcaagcttgcggccacaca
g

bN: A/C/G/T; S:G/C

*: phosphorothioate bond

/5BiotinTEG/: Biotin with a 15 atom triethylene glycol (TEG) spacer

Supplementary references

- Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. *Journal of Molecular Biology*, *215*(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
- Rangwala, S. H., Kuznetsov, A., Ananiev, V., Asztalos, A., Borodin, E., Evgeniev, V., Joukov, V., Lotov, V., Pannu, R., Rudnev, D., Shkeda, A., Weitz, E. M., & Schneider, V. A. (2021). Accessing NCBI data using the NCBI sequence viewer and genome data viewer (GDV). *Genome Research*, *31*(1), 159–169. https://doi.org/10.1101/gr.266932.120
- Torres, L. L., & Pinheiro, V. B. (2018). Xenobiotic Nucleic Acid (XNA) Synthesis by Phi29 DNA Polymerase. *Current Protocols in Chemical Biology*, *10*(2), e41. https://doi.org/10.1002/cpch.41

^aAll sequences are written in the 5'→3' direction