变形

UHPC第一主应变(主拉应变) UHPC第三主应力(主压应力,负为压)

底板厚80mm+140mm肋,中间一条横肋为全高

UHPC参数: uhpc的性能,抗压120MPa,抗拉8MPa,弹模48GPa

两种边界条件:

边界条件一:

边界条件二:

边界条件一:

边界条件一

变形

仰视

边界条件一UHPC第一主应

UHPC第一主应变(主拉应变)

仰视

边界条件一

UHPC第三主应力(主压应力, 负为压)

俯视

仰视

边界条件二:

边界条件二

变形

超高性能混凝土单轴受压应力- 应变关系研究, 单波

马亚峰 $^{[51]}$ 通过试验与数学理论推导, 拟合出 RPC200 的单轴受压应力应变曲线模型公式(2-2)。

$$y = \begin{cases} ax + (5 - 4a)x^4 + (3a - 4)x^5 & (0 \le x \le 1) \\ \frac{x}{\alpha(x - 1)^2 + x} & (x \ge 1) \end{cases}$$
 (2-2)

其中,a为受压本构中上升段参数($a=\frac{E_0}{E_p}$, E_0 表示曲线坐标零点处的切线弹性模量, E_p 表示峰值应力对应的割线弹性模量); α 表示受压本构关系中下降段参数;

仰视

边界条件二 UHPC第一主应变(主拉应变)

边界条件二

UHPC第三主应力(主压应力, 负为压)

俯视

仰视