Massey Triple Product

Definition 0.1. Let *A* be a DG algebra. The **Massey triple product** of $\bar{a}_1, \bar{a}_2, \bar{a}_3 \in HA$ is defined by

$$\langle \overline{a}_1, \overline{a}_2, \overline{a}_3 \rangle = \{ \overline{a_{12}a_3 - a_1a_{23}} \mid da_{12} = a_1a_2 \text{ and } da_{23} = (-1)^{|a_1|} a_2a_3 \}$$

Note that $a_{12}a_3 - a_1a_{23}$ represents an element in HA since

$$d(a_{12}a_3 - a_1a_{23}) = [a_1, a_2, a_3] = 0.$$

The Massey product is non-empty if the products a_1a_2 and a_2a_3 are both exact, in which case all of its elements are in the same element of the quotient group

$$HA/\langle HA \overline{a}_3 + \overline{a}_1 HA \rangle$$
.

So the Massey product can be regarded as a function defined on triples of classes such that the product of the first or last two is zero, taking values in the above quotient group.

Example 0.1. (Katthän) Let $R = \mathbb{k}[x, y, z, u, v]$, let $m = v^3, xzv, zu^2, xy^2, u^2v^2, y^2v^2, xyzu, y^2u^2v$, and let F be the minimal free resolution of R/m over R. One can visualize F as below:

Let T be the Taylor algebra resolution of R/m over R and let $A = T \otimes_R \mathbb{k}$. We compute Massey triple products in $HA = H(T \otimes_R \mathbb{k}) = \operatorname{Tor}^R(R/m,\mathbb{k}) = H(F \otimes_R \mathbb{k})$. We claim that $\langle \overline{e}_1, \overline{e}_3, \overline{e}_4 \rangle$ contains a nonzero element. Indeed, let $e_{1,3} = e_{135}$ and $e_{3,4} = e_{347}$. Note that $de_{135} = e_1e_3$ and $de_{347} = e_3e_4$ so $\overline{e_{1,3}e_4 - e_1e_{3,4}}$ is an element in $\langle \overline{e}_1, \overline{e}_4, \overline{e}_7 \rangle$. We claim that $\overline{e_{1,3}e_4 - e_1e_{3,4}} \neq 0$. First we observe that

$$e_{1,3}e_4 - e_1e_{3,4} = e_{135}e_4 - e_1e_{347}$$

= $e_{1345} - e_{1347}$.

Example o.2. Avromov says the Massey product $\langle [a_1], [a_2], [a_3] \rangle = \langle [x\epsilon_1], [x\epsilon_3], [w\epsilon_4] \rangle$ contains the element $\gamma = [xw\epsilon_1\epsilon_2\epsilon_3\epsilon_4]$, for the defining system

$$b_{12} = x\varepsilon_1\varepsilon_2\varepsilon_3$$
 and $b_{23} = 0$.

In this case, we have

$$[a_1]H_3(A) + H_3(A)[a_3] = 0.$$