«УТВЕРЖДАЮ»
Директор
ФГБНУ «Федеральный институт
педагогических измерений»

YI

«СОГЛАСОВАНО»
Председатель
Научно-методического совета
ФГБНУ «ФИПИ» по физике

М.Н. Стриханов

ОА. Решетникова Ож. 12020 г.

Единый государственный экзамен по ФИЗИКЕ

Кодификатор

элементов содержания и требований к уровню подготовки выпускников образовательных организаций для проведения единого государственного экзамена по физике

подготовлен Федеральным государственным бюджетным научным учреждением

«ФЕДЕРАЛЬНЫЙ ИНСТИТУТ ПЕДАГОГИЧЕСКИХ ИЗМЕРЕНИЙ»

Кодификатор ЕГЭ 2021 г.

ФИЗИКА, 11 класс 2 / 16

Кодификатор

элементов содержания и требований к уровню подготовки выпускников образовательных организаций для проведения единого государственного экзамена по ФИЗИКЕ

Кодификатор элементов содержания по физике и требований к уровню подготовки выпускников образовательных организаций для проведения единого государственного экзамена (ЕГЭ) является одним из документов, определяющих структуру и содержание контрольных измерительных материалов (КИМ) ЕГЭ. Он составлен на основе федерального компонента государственных стандартов основного общего и среднего (полного) общего образования по физике (базовый и профильный уровни) (приказ Минобразования России от 05.03.2004 № 1089).

Раздел 1. Перечень элементов содержания, проверяемых на едином государственном экзамене по физике

В первом столбце указан код раздела, которому соответствуют крупные блоки содержания. Во втором столбце приведен код элемента содержания, для которого создаются проверочные задания. Крупные блоки содержания разбиты на более мелкие элементы.

Код раз- дела	Код контро лиру- емого элемен- та	Элементы содержания, проверяемые заданиями КИМ
1		МЕХАНИКА
1.1	КИНЕМА	<i>АТИКА</i>
	1.1.1	Механическое движение. Относительность механического движения. Система отсчета
	1.1.2	Материальная точка. Ее радиус-вектор: $\vec{r}(t) = (x(t), y(t), z(t)),$ траектория, перемещение: $\Delta \vec{r} = \vec{r}(t_2) - \vec{r}(t_1) = (\Delta x, \Delta y, \Delta z),$ путь. Сложение перемещений: $\Delta \vec{r}_1 = \Delta \vec{r}_2 + \Delta \vec{r}_0$

© 2021 Федеральная служба по надзору в сфере образования и науки

кодификатор Ег Э	2021 1. Project 37
1.1.3	Скорость материальной точки:
	$\left \vec{\upsilon} = \frac{\Delta \vec{r}}{\Delta t} \right _{\Delta t \to 0} = \vec{r}_t' = \left(\upsilon_x, \upsilon_y, \upsilon_z \right),$
	$\left \upsilon_x = \frac{\Delta x}{\Delta t} \right _{\Delta t \to 0} = x_t'$, аналогично $\upsilon_y = y_t'$, $\upsilon_z = z_t'$
	Сложение скоростей: $\vec{v}_1 = \vec{v}_2 + \vec{v}_0$
	Вычисление перемещения по графику зависимости $\upsilon(t)$
1.1.4	Ускорение материальной точки:
	$\left \vec{a} = \frac{\Delta \vec{v}}{\Delta t} \right _{\Delta t \to 0} = \vec{v}_t' = (a_x, a_y, a_z),$
	$\left a_x = \frac{\Delta v_x}{\Delta t} \right _{\Delta t \to 0} = (v_x)_t'$, аналогично $a_y = (v_y)_t'$, $a_z = (v_z)_t'$
1.1.5	Равномерное прямолинейное движение:
	$x(t) = x_0 + v_{0x}t$
	$v_x(t) = v_{0x} = \text{const}$
1.1.6	Равноускоренное прямолинейное движение:
	$x(t) = x_0 + v_{0x}t + \frac{a_x t^2}{2}$
	$ \begin{aligned} \upsilon_x(t) &= \upsilon_{0x} + a_x t \\ a_x &= \text{const} \end{aligned} $
	$v_{2x}^2 - v_{1x}^2 = 2a_x(x_2 - x_1)$
1.1.7	Свободное падение.
	Ускорение свободного
	падения. Движение тела, брошенного под углом α _{ν₀} α
	к горизонту: y_0 y_0
	$O \xrightarrow{x_0} x$
	$(x(t)-x+y, t-x+y) \cos a_t t$
	$\int_{-1}^{1} x(t) - x_0 + v_{0x}t - x_0 + v_0 \cos u \cdot t$
	$\begin{cases} x(t) = x_0 + \nu_{0x}t = x_0 + \nu_0 \cos \alpha \cdot t \\ y(t) = y_0 + \nu_{0y}t + \frac{g_y t^2}{2} = y_0 + \nu_0 \sin \alpha \cdot t - \frac{gt^2}{2} \end{cases}$
	$\begin{cases} \upsilon_x(t) = \upsilon_{0x} = \upsilon_0 \cos \alpha \\ \upsilon_y(t) = \upsilon_{0y} + g_y t = \upsilon_0 \sin \alpha - gt \end{cases}$
	$\int g_x = 0$
	$\begin{cases} g_x = 0 \\ g_y = -g = \text{const} \end{cases}$
	1

Кодифи	катор ЕГЭ	2021 г. ФИЗИКА, 11 класс 4	/ 16
	1.1.8	Движение точки по окружности.	
		Линейная и угловая скорость точки соответственно: $\upsilon = \omega R$,
		2π	
		$\omega = \frac{2\pi}{T} = 2\pi v.$	
		,, ²	
		Центростремительное ускорение точки: $a_{\text{цс}} = \frac{v^2}{R} = \omega^2 R$	
	1.1.9	Твёрдое тело. Поступательное и вращательное движение твёрдого тела	
1.2	ДИНАМ		
1.2	1.2.1	Инерциальные системы отсчёта. Первый закон Ньютона	.
		Принцип относительности Галилея	1.
	1.2.2	Масса тела. Плотность вещества: $\rho = \frac{m}{V}$	
	1.2.3	Сила. Принцип суперпозиции сил: $\vec{F}_{\text{равнодейств}} = \vec{F}_1 + \vec{F}_2 +$	
	1.2.4	Второй закон Ньютона: для материальной точки в ИСО	\neg
		$\vec{F} = m\vec{a}$; $\Delta \vec{p} = \vec{F} \Delta t$ при $\vec{F} = const$	
	1.2.5	Третий закон Ньютона для	
		материальных точек: $\vec{F}_{12} = -\vec{F}_{21}$ \vec{F}_{12} \vec{F}_{21}	
		12 21 12	
	1.2.6	Закон всемирного тяготения: силы притяжения межд	17
	1.2.0		у
		точечными массами $F = G \frac{m_1 m_2}{R^2}$	
		κ Сила тяжести. Зависимость силы тяжести от высоты h на,	
		·	Д
		поверхностью планеты радиусом R_0 :	
		$mg = \frac{GMm}{(R_0 + h)^2}$	
			_
	1.2.7	Движение небесных тел и их искусственных спутников	3.
		Первая космическая скорость:	
		$C_{N} = \sqrt{g_{R}} = \sqrt{GM}$	
		$\upsilon_{1\kappa} = \sqrt{g_0 R_0} = \sqrt{\frac{GM}{R_0}}$	
		Dramag via a grava avan a avan a are	
		Вторая космическая скорость:	
		$\upsilon_{2\kappa} = \sqrt{2}\upsilon_{1\kappa} = \sqrt{\frac{2GM}{R_0}}$	
		$V_{\rm K} \sim V_{\rm K} \sim V_{\rm K}$	
	1.2.8	Сила упругости. Закон Гука: $F_x = -kx$	
	1.2.9	Сила трения. Сухое трение.	
		Сила трения скольжения: $F_{\rm rp} = \mu N$	
		Сила трения покоя: $F_{\text{1D}} \leq \mu N$	
		Коэффициент трения	
		коэффицисті Ірсния	

тодифи	Katop Et J	
	1.2.10	Давление: $p = \frac{F_{\perp}}{S}$
1.3	СТАТИК	CA .
	1.3.1	Момент силы относительно оси
		вращения:
		$M=Fl$, где $l-$ плечо силы \vec{F}
		относительно оси, проходящей через \overrightarrow{F}
		точку O перпендикулярно рисунку
	1.3.2	Условия равновесия твёрдого тела в ИСО:
		$\left[M_1 + M_2 + \dots = 0\right]$
		$\vec{F}_1 + \vec{F}_2 + \ldots = 0$
	1.3.3	Закон Паскаля
	1.3.4	Давление в жидкости, покоящейся в ИСО: $p = p_0 + \rho g h$
	1.3.5	Закон Архимеда: $\vec{F}_{Apx} = -\vec{P}_{Bытесн.}$,
		если тело и жидкость покоятся в ИСО, то $F_{\rm Apx} = \rho g V_{\rm вытесн.}$
		Условие плавания тел
1.4	ЗАКОНЕ	Ы СОХРАНЕНИЯ В МЕХАНИКЕ
	1.4.1	Импульс материальной точки: $\vec{p} = m\vec{\upsilon}$
	1.4.2	Импульс системы тел: $\vec{p} = \vec{p}_1 + \vec{p}_2 +$
	1.4.3	Закон изменения и сохранения импульса:
		в ИСО $\Delta \vec{p} = \Delta (\vec{p}_1 + \vec{p}_2 +) = \vec{F}_{1 \text{ внешн}} \Delta t + \vec{F}_{2 \text{ внешн}} \Delta t +$
		в ИСО $\Delta \vec{p} \equiv \Delta (\vec{p}_1 + \vec{p}_2 +) = 0$, если $\vec{F}_{1 \text{ внешн}} + \vec{F}_{2 \text{ внешн}} + = 0$
	1.4.4	Работа силы: на малом перемещении
		$A = \vec{F} \cdot \Delta \vec{r} \cdot \cos \alpha = F_x \cdot \Delta x$ $\Delta \vec{r} \qquad \vec{F}$
	1.4.5	Мощность силы:
		$P = \frac{\Delta A}{\Delta t} \Big _{\Delta t \to 0} = F \cdot \upsilon \cdot \cos \alpha \qquad \qquad \boxed{F}$
	1.4.6	Кинетическая энергия материальной точки:
		$E_{\text{\tiny KHH}} = \frac{mv^2}{2} = \frac{p^2}{2m}.$
		Закон изменения кинетической энергии системы
		материальных точек: в ИСО $\Delta E_{\text{кин}} = A_1 + A_2 +$
	·	

-, T	ікатор Ег Э	2021 F. WISHKA, 11 KHACC 6/1
	1.4.7	Потенциальная энергия:
		для потенциальных сил $A_{12} = E_{1 \text{ потенц}} - E_{2 \text{ потенц}} = -\Delta E_{\text{ потенц}}$
		Потенциальная энергия тела в однородном поле тяжести:
		$E_{\text{потенц}} = mgh$
		Потенциальная энергия упруго деформированного тела:
		$E_{\text{потенц}} = \frac{kx^2}{2}$
	1.4.0	Z
	1.4.8	Закон изменения и сохранения механической энергии:
		$E_{\text{mex}} = E_{\text{кин}} + E_{\text{потенц}},$
		в ИСО $\Delta E_{\text{мех}} = A_{\text{всех непотенц. сил}}$,
		в ИСО $\Delta E_{\text{мех}} = 0$, если $A_{\text{всех непотенц. сил}} = 0$
1.5	<i>MEXAH</i>	ИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ
	1.5.1	Гармонические колебания. Амплитуда и фаза колебаний.
		Кинематическое описание:
		$x(t) = A\sin(\omega t + \varphi_0),$
		$\upsilon_{x}(t) = x_{t}',$
		$a_x(t) = (v_x)'_t = -\omega^2 x(t).$
		Динамическое описание:
		$ma_x = -kx$, где $k = m\omega^2$
		Энергетическое описание (закон сохранения механической
		энергии): $\frac{mv^2}{2} + \frac{kx^2}{2} = \frac{mv_{max}^2}{2} = \frac{kA^2}{2} = \text{const}$
		Связь амплитуды колебаний исходной величины
		с амплитудами колебаний её скорости и ускорения:
		$v_{max} = \omega A, \ a_{max} = \omega^2 A$
	1.5.2	
		Период и частота колебаний: $T = \frac{2\pi}{\omega} = \frac{1}{v}$
		Период малых свободных колебаний математического
		\overline{l}
		маятника: $T = 2\pi \sqrt{\frac{l}{g}}$
		Период свободных колебаний пружинного маятника:
		$T = 2\pi \sqrt{\frac{m}{L}}$
	1.5.3	Вынужденные колебания. Резонанс. Резонансная кривая
	1.5.4	Поперечные и продольные волны. Скорость
	1.5.7	1
		распространения и длина волны: $\lambda = \nu T = \frac{\nu}{\nu}$
		Интерференция и дифракция волн

2		МОЛЕКУЛЯРНАЯ ФИЗИКА. ТЕРМОДИНАМИКА
2.1		УЛЯРНАЯ ФИЗИКА
	2.1.1	Модели строения газов, жидкостей и твёрдых тел
	2.1.2	Тепловое движение атомов и молекул вещества
	2.1.3	Взаимодействие частиц вещества
	2.1.4	Диффузия. Броуновское движение
	2.1.5	Модель идеального газа в МКТ: частицы газа движутся
		хаотически и не взаимодействуют друг с другом
	2.1.6	Связь между давлением и средней кинетической энергией
	,,	поступательного теплового движения молекул идеального
		газа (основное уравнение МКТ):
		$p = \frac{1}{3} m_0 n \overline{v^2} = \frac{2}{3} n \cdot \left(\frac{m_0 v^2}{2} \right) = \frac{2}{3} n \cdot \overline{\varepsilon_{\text{nocr}}}$
	2.1.7	Абсолютная температура: $T = t^{\circ} + 273 \mathrm{K}$
	2.1.8	Связь температуры газа со средней кинетической энергией
		поступательного теплового движения его частиц:
		$ (m_0v^2)$ 3.7
		$\overline{\varepsilon_{\text{nocr}}} = \left(\frac{m_0 v^2}{2}\right) = \frac{3}{2} kT$
	2.1.9	Уравнение $p = nkT$
	2.1.10	Модель идеального газа в термодинамике:
		(Уравнение Менделеева – Клапейрона
		Выражение для внутренней энергии
		Уравнение Менделеева – Клапейрона (применимые формы
		записи):
		$pV = \frac{m}{\mu}RT = \nu RT = NkT, p = \frac{\rho RT}{\mu}$
		Выражение для внутренней энергии одноатомного
		идеального газа (применимые формы записи):
		$U = \frac{3}{2} vRT = \frac{3}{2} NkT = \frac{3}{2} \frac{m}{\mu} RT = vc_v T = \frac{3}{2} pV$
	2.1.11	Закон Дальтона для давления смеси разреженных газов:
		$p = p_1 + p_2 + \dots$
	2.1.12	Изопроцессы в разреженном газе с постоянным числом
		частиц N (с постоянным количеством вещества v):
		изотерма ($T = const$): $pV = const$,
		изохора ($V = \text{const}$): $\frac{p}{T} = const$,
		изобара ($p = \text{const}$): $\frac{V}{T} = const$
		Графическое представление изопроцессов на <i>pV-</i> , <i>pT-</i> и <i>VT-</i> диаграммах
		дин рыници

© 2021 Федеральная служба по надзору в сфере образования и науки

	2.1.13	Насыщенные и ненасыщенные пары. Качественная зависимость плотности и давления насыщенного пара от температуры, их независимость от объема насыщенного пара
	2.1.14	Влажность воздуха. Относительная влажность: $\varphi = \frac{p_{\text{пара}}\left(T\right)}{p_{\text{насыш. пара}}\left(T\right)} = \frac{\rho_{\text{пара}}\left(T\right)}{\rho_{\text{насыш. пара}}\left(T\right)}$
	2.1.15	Изменение агрегатных состояний вещества: испарение и конденсация, кипение жидкости
	2.1.16	Изменение агрегатных состояний вещества: плавление и кристаллизация
	2.1.17	Преобразование энергии в фазовых переходах
2.2	TEPMO)	ДИНАМИКА
	2.2.1	Тепловое равновесие и температура
	2.2.2	Внутренняя энергия
	2.2.3	Теплопередача как способ изменения внутренней энергии без совершения работы. Конвекция, теплопроводность, излучение
	2.2.4	Количество теплоты. Удельная теплоёмкость вещества c : $Q = cm\Delta T$
	2.2.5	Удельная теплота парообразования $r: Q = rm$
		Удельная теплота плавления λ : $Q = \lambda m$
		Удельная теплота сгорания топлива $q: Q = qm$
	2.2.6	Элементарная работа в термодинамике: $A = p\Delta V$
		Вычисление работы по графику процесса на <i>pV</i> -диаграмме
	2.2.7	Первый закон термодинамики:
		$Q_{12} = \Delta U_{12} + A_{12} = (U_2 - U_1) + A_{12}$
		Адиабата:
		$Q_{12} = 0 \implies A_{12} = U_1 - U_2$
	2.2.8	Второй закон термодинамики, необратимость
	2.2.9	Принципы действия тепловых машин. КПД:
		$A_{\text{PRIMITED}} = Q_{\text{HAPD}} - Q_{\text{YOT}} \qquad Q_{\text{YOT}} $
		$\eta = \frac{A_{\text{3a IJMKN}}}{Q_{\text{Harp}}} = \frac{Q_{\text{Harp}} - Q_{\text{xon}} }{Q_{\text{Harp}}} = 1 - \frac{ Q_{\text{xon}} }{Q_{\text{Harp}}}$
	2.2.10	Жнагр Жнагр Максимальное значение КПД. Цикл Карно
	2.2.10	T - T T
		$max \ \eta = \eta_{\text{Kapho}} = \frac{T_{\text{Harp}} - T_{\text{xon}}}{T_{\text{Harp}}} = 1 - \frac{T_{\text{xon}}}{T_{\text{Harp}}}$
	2211	
	2.2.11	Уравнение теплового баланса: $Q_1 + Q_2 + Q_3 + = 0$

	Karop Er 5	ЭЛЕКТРОДИНАМИКА
3	ЭЛЕКТРИЧЕСКОЕ ПОЛЕ	
3.1		
	3.1.1	Электризация тел и её проявления. Электрический заряд.
		Два вида заряда. Элементарный электрический заряд. Закон
	212	сохранения электрического заряда
	3.1.2	Взаимодействие зарядов. Точечные заряды. Закон Кулона:
		$F = k \frac{ q_1 \cdot q_2 }{r^2} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{ q_1 \cdot q_2 }{r^2}$
		$r^2 - 4\pi\epsilon_0 \qquad r^2$
	3.1.3	Электрическое поле. Его действие на электрические заряды
	3.1.4	-
		Напряжённость электрического поля: $\vec{E} = \frac{F}{q_{\text{пробный}}}$
		У пробный
		Поле точечного заряда: $E_r = k \frac{q}{r^2}$,
		,
		однородное поле: $\vec{E}=\mathrm{const}$
		Картины линий этих полей
	3.1.5	Потенциальность электростатического поля.
		Разность потенциалов и напряжение.
		$A_{12} = q(\varphi_1 - \varphi_2) = -q\Delta\varphi = qU$
		Потенциальная энергия заряда в электростатическом поле:
		$W = q \varphi$
		Потенциал электростатического поля: $\varphi = \frac{W}{}$
		Потенциал электростатического поля. ψ = — q
		Связь напряжённости поля и разности потенциалов для
		однородного электростатического поля: $U = Ed$
	3.1.6	Принцип суперпозиции электрических полей:
		$\vec{E} = \vec{E}_1 + \vec{E}_2 + \dots, \phi = \phi_1 + \phi_2 + \dots$
	3.1.7	Проводники в электростатическом поле. Условие
	3.1.7	равновесия зарядов: внутри проводника $\vec{E} = 0$, внутри и на
		равновесия зарядов. внутри проводника $E = 0$, внутри и на поверхности проводника $\varphi = \text{const}$
	210	
	3.1.8	Диэлектрики в электростатическом поле. Диэлектрическая
	2 1 0	проницаемость вещества ε
	3.1.9	Конденсатор. Электроёмкость конденсатора: $C = \frac{q}{L}$
		C
		Электроёмкость плоского конденсатора: $C = \frac{\varepsilon \varepsilon_0 S}{d} = \varepsilon C_0$
		ü
	3.1.10	Параллельное соединение конденсаторов:
		$q = q_1 + q_2 + \dots, \ U_1 = U_2 = \dots, \ C_{\text{паралл}} = C_1 + C_2 + \dots$
		Последовательное соединение конденсаторов:
		<u> </u>
		$U = U_1 + U_2 + \dots, q_1 = q_2 = \dots, \frac{1}{C_{\text{moch}}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$
		посл ст с2

Кодифи	катор ЕГЭ	2021 г. ФИЗИКА, 11 класс 10 / 16
	3.1.11	Энергия заряженного конденсатора: $W_C = \frac{qU}{2} = \frac{CU^2}{2} = \frac{q^2}{2C}$
3.2	ЗАКОНЕ	Ы ПОСТОЯННОГО ТОКА
	3.2.1	Сила тока: $I = \frac{\Delta q}{\Delta t} \bigg _{\Delta t \to 0}$. Постоянный ток: $I = const$
		Для постоянного тока $q = It$
	3.2.2	Условия существования электрического тока. Напряжение <i>U</i> и ЭДС ε
	3.2.3	Закон Ома для участка цепи: $I = \frac{U}{R}$
	3.2.4	Электрическое сопротивление. Зависимость сопротивления однородного проводника от его длины и сечения. Удельное сопротивление вещества: $R = \rho \frac{l}{S}$
	3.2.5	Источники тока. ЭДС и внутреннее сопротивление источника тока: $\mathcal{E} = \frac{A_{\text{сторонних сил}}}{q}$
	3.2.6	Закон Ома для полной (замкнутой) электрической цепи: $\mathcal{E} = IR + Ir$, откуда ε , r R $I = \frac{\mathcal{E}}{R+r}$
	3.2.7	Параллельное соединение проводников: $I = I_1 + I_2 + \dots \;, \;\; U_1 = U_2 = \dots \;, \;\; \frac{1}{R_{\text{паралл}}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$ Последовательное соединение проводников: $U = U_1 + U_2 + \dots \;, \;\; I_1 = I_2 = \dots \;, \;\; R_{\text{посл}} = R_1 + R_2 + \dots$
	3.2.8	Работа электрического тока: $A = IUt$ Закон Джоуля — Ленца: $Q = I^2Rt$
	3.2.9	Мощность электрического тока: $P=\frac{\Delta A}{\Delta t}\Big _{\Delta t\to 0}=IU$ Тепловая мощность, выделяемая на резисторе: $P=I^2R=\frac{U^2}{R}$ Мощность источника тока: $P_{\mathcal{E}}=\frac{\Delta A_{\text{ст. сил}}}{\Delta t}\Big _{\Delta t\to 0}=\mathcal{E}I$
	2 2 10	121-70
	3.2.10	Свободные носители электрических зарядов в проводниках. Механизмы проводимости твёрдых металлов, растворов и расплавов электролитов, газов. Полупроводники. Полупроводниковый диод

ФИЗИКА, 11 класс 11 / 16

2.5	ΩΠΕΝΤΙ	ΡΟΜΑΓΗΝΤΗΙ ΙΕ ΚΌΠΕΓΑΠΙΝΟ ΙΑ ΡΟΠΗΙ Ι
3.5	3.5.1	РОМАГНИТНЫЕ КОЛЕБАНИЯ И ВОЛНЫ Колебательный контур. Свободные
	3.3.1	Колебательный контур. Свободные электромагнитные колебания в идеальном $C = \begin{cases} 1 & 1 \\ 1 & 1 \end{cases}$
		колебательном контуре:
		$\int q(t) = q_{max} \sin(\omega t + \varphi_0)$
		$I(t) = q'_t = \omega q_{max} \cos(\omega t + \varphi_0) = I_{max} \cos(\omega t + \varphi_0)$
		$T_{\text{constant}} = \frac{2\pi}{100}$
		Формула Томсона: $T=2\pi\sqrt{LC}$, откуда $\omega=\frac{2\pi}{T}=\frac{1}{\sqrt{LC}}$
		Связь амплитуды заряда конденсатора с амплитудой силы
		тока в колебательном контуре: $q_{max} = \frac{I_{max}}{\omega}$
	3.5.2	Закон сохранения энергии в колебательном контуре:
		$CU^2 U^2 CU^2 U^2$
		$\frac{CU^2}{2} + \frac{LI^2}{2} = \frac{CU_{max}^2}{2} = \frac{LI_{max}^2}{2} = const$
	3.5.3	Вынужденные электромагнитные колебания. Резонанс
	3.5.4	Переменный ток. Производство, передача и потребление
	3.3.7	электрической энергии
	3.5.5	Свойства электромагнитных волн. Взаимная ориентация
		векторов в электромагнитной волне в вакууме: $\vec{E} \perp \vec{B} \perp \vec{c}$
	3.5.6	Шкала электромагнитных волн. Применение
		электромагнитных волн в технике и быту
3.6	ОПТИК	A
	3.6.1	Прямолинейное распространение света в однородной среде.
		Луч света
	3.6.2	Законы отражения света.
	3.6.3	Построение изображений в плоском зеркале
	3.6.4	Законы преломления света.
		Преломление света: $n_1 \sin \alpha = n_2 \sin \beta$
		Абсолютный показатель преломления: $n_{\text{a6c}} = \frac{c}{v}$
		Относительный показатель преломления: $n_{\text{отн}} = \frac{n_2}{n_1} = \frac{v_1}{v_2}$
		Ход лучей в призме.
		Соотношение частот и длин волн при переходе
		монохроматического света через границу раздела двух
		оптических сред: $v_1 = v_2$, $n_1 \lambda_1 = n_2 \lambda_2$
	3.6.5	Полное внутреннее отражение.
		Предельный угол полного n_2
		внутреннего отражения:
		$\sin \alpha_{\rm np} = \frac{1}{n} = \frac{n_2}{n}$
		$\sin \alpha_{\rm np} = \frac{1}{n_{\rm oth}} = \frac{n_2}{n_1}$
<u> </u>	+	

Кодифи	катор El Э	2021 г. ФИЗИКА, 11 класс 13 / 1
	3.6.6	Собирающие и рассеивающие линзы. Тонкая линза. Фокусное расстояние и оптическая сила тонкой линзы: $D = \frac{1}{F}$
	3.6.7	Формула тонкой линзы: $\frac{1}{d} + \frac{1}{f} = \frac{1}{F}$ Увеличение, даваемое линзой: $\Gamma = \frac{h}{H} = \frac{f}{d}$
	3.6.8	Ход луча, прошедшего линзу под произвольным углом к её главной оптической оси. Построение изображений точки и отрезка прямой в собирающих и рассеивающих линзах и их системах
	3.6.9	Фотоаппарат как оптический прибор. Глаз как оптическая система
	3.6.10	Интерференция света. Когерентные источники. Условия наблюдения максимумов и минимумов в интерференционной картине от двух синфазных когерентных источников максимумы: $\Delta = 2m\frac{\lambda}{2}, \ m=0, \ \pm 1, \ \pm 2, \ \pm 3,$ минимумы: $\Delta = (2m+1)\frac{\lambda}{2}, m=0, \ \pm 1, \ \pm 2, \ \pm 3,$
	3.6.11	Дифракция света. Дифракционная решётка. Условие наблюдения главных максимумов при нормальном падении монохроматического света с длиной волны λ на решётку с периодом d : $d\sin \phi_m = m\lambda$, $m = 0, \pm 1, \pm 2, \pm 3,$
	3.6.12	Дисперсия света
4		Ы СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ
	4.1	Инвариантность модуля скорости света в вакууме. Принцип относительности Эйнштейна
	4.2	Энергия свободной частицы: $E=\frac{mc^2}{\sqrt{1-\frac{v^2}{c^2}}}$ Импульс частицы: $\vec{p}=\frac{m\vec{v}}{\sqrt{1-\frac{v^2}{c^2}}}$
	4.3	Связь массы и энергии свободной частицы: $E^2 - (pc)^2 = (mc^2)^2$ Энергия покоя свободной частицы: $E_0 = mc^2$

кодифи	ікатор Ет Э	2021 Γ. ΨΗΣΗΚΑ, 11 KJICC 147 I
5	КВАНТОВАЯ ФИЗИКА И ЭЛЕМЕНТЫ АСТРОФИЗИКИ	
5.1	КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ	
	5.1.1	Гипотеза М. Планка о квантах. Формула Планка: $E = hv$
	5.1.2	Фотоны. Энергия фотона: $E = hv = \frac{hc}{\lambda} = pc$
		Импульс фотона: $p = \frac{E}{c} = \frac{hv}{c} = \frac{h}{\lambda}$
	5.1.3	Фотоэффект. Опыты А.Г. Столетова. Законы фотоэффекта
	5.1.4	Уравнение Эйнштейна для фотоэффекта:
		$E_{\text{фотона}} = A_{\text{выхода}} + E_{\text{кин} max}$,
		где $E_{ m фотона} = h m v = rac{hc}{\lambda}$, $A_{ m выхода} = h m v_{ m kp} = rac{hc}{\lambda_{ m kp}}$,
		$E_{\text{\tiny KMH}\ max} = \frac{m v_{max}^2}{2} = e U_{\text{\tiny 3AII}}$
	5.1.5	Волновые свойства частиц. Волны де Бройля.
		Длина волны де Бройля движущейся частицы: $\lambda = \frac{h}{p} = \frac{h}{m\upsilon}$
		Корпускулярно-волновой дуализм. Дифракция электронов
	5.1.6	на кристаллах Давление света. Давление света на полностью отражающую
	3.1.0	поверхность и на полностью поглощающую поверхность
5.2	ФИЗИК	А ATOMA
3.4	5.2.1	Планетарная модель атома
	5.2.2	Постулаты Бора. Излучение и поглощение фотонов при
	3.2.2	переходе атома с одного уровня энергии на другой:
		$hv_{mn} = \frac{hc}{\lambda_{mn}} = E_n - E_m $
	5.2.3	Линейчатые спектры.
		Спектр уровней энергии атома водорода:
		$E_n = \frac{-13,6 \text{ 9B}}{n^2}, n = 1, 2, 3,$
	5.2.4	Лазер
5.3		А АТОМНОГО ЯДРА
	5.3.1	Нуклонная модель ядра Гейзенберга – Иваненко. Заряд ядра. Массовое число ядра. Изотопы
	5.3.2	Энергия связи нуклонов в ядре. Ядерные силы
	5.3.3	
	2.2.3	Дефект массы ядра ${}_Z^AX$: $\Delta m = Z \cdot m_p + (A - Z) \cdot m_n - m_{\text{ядра}}$

	5.3.4	Радиоактивность.
		Альфа-распад: ${}_Z^AX \rightarrow {}_{Z-2}^{A-4}Y + {}_2^4He$
		Бета-распад. Электронный β-распад: ${}_{Z}^{A}X \rightarrow {}_{Z+1}^{A}Y + {}_{-1}^{0}e + \widetilde{\nu}_{e}$
		Позитронный β -распад: ${}^{A}_{Z}X \rightarrow {}^{A}_{Z-1}Y + {}^{0}_{+1}\widetilde{e} + \nu_{e}$
		Гамма-излучение
		$-\frac{t}{z}$
	5.3.5	Закон радиоактивного распада: $N(t) = N_0 \cdot 2^{-T}$
	5.3.6	Ядерные реакции. Деление и синтез ядер
5.4	ЭЛЕМЕ	НТЫ АСТРОФИЗИКИ
	5.4.1	Солнечная система: планеты земной группы и планеты-гиганты, малые тела Солнечной системы
	5.4.2	Звезды: разнообразие звездных характеристик и их закономерности. Источники энергии звезд
	5.4.3	Современные представления о происхождении и эволюции Солнца и звезд
	5.4.4	Наша Галактика. Другие галактики. Пространственные масштабы наблюдаемой Вселенной
	5.4.5	Современные взгляды на строение и эволюцию Вселенной

Раздел 2. Перечень требований к уровню подготовки, проверяемому на едином государственном экзамене по физике

Код		Требования к уровню подготовки выпускников, освоение
требования		которых проверяется на ЕГЭ
1		Знать/Понимать:
1.1		смысл физических понятий
1.2		смысл физических величин
1.3		смысл физических законов, принципов, постулатов
2		Уметь:
2.1		описывать и объяснять:
	2.1.1	физические явления, физические явления и свойства тел
	2.1.2	результаты экспериментов
2.2		описывать фундаментальные опыты, оказавшие существенное влияние на развитие физики
2.3		приводить примеры практического применения физических знаний, законов физики
2.4		определять характер физического процесса по графику, таблице, формуле; продукты ядерных реакций на основе законов сохранения электрического заряда и массового числа

2.5	2.5.1	OWNERS DANGED IN OUR HOLINARY TOOMAN, TOTOWN TO THE TAXABLE PARTY TO	
2.3	2.3.1	отличать гипотезы от научных теорий; делать выводы на основе экспериментальных данных; приводить примеры, показывающие, что наблюдения и эксперимент являются	
		основой для выдвижения гипотез и теорий и позволяют	
		проверить истинность теоретических выводов, физическая	
		теория даёт возможность объяснять известные явления	
		природы и научные факты, предсказывать ещё неизвестные	
	2.5.2	явления;	
	2.5.2	приводить примеры опытов, иллюстрирующих, что: наблюдения и эксперимент служат основой для выдвижения гипотез и построения научных теорий; эксперимент	
		позволяет проверить истинность теоретических выводов;	
		физическая теория даёт возможность объяснять явления	
		природы и научные факты; физическая теория позволяет	
		предсказывать ещё неизвестные явления и их особенности;	
		при объяснении природных явлений используются	
		физические модели; один и тот же природный объект или	
		явление можно исследовать на основе использования разных	
		моделей; законы физики и физические теории имеют свои	
	2.5.3	определённые границы применимости	
	2.3.3	измерять физические величины, представлять результаты измерений с учётом их погрешностей	
2.6		применять полученные знания для решения физических	
2.0		задач	
3	Испо	пьзовать приобретённые знания и умения в практической	
	деятельности и повседневной жизни для:		
	3.1	обеспечения безопасности жизнедеятельности в процессе	
		использования транспортных средств, бытовых	
		электроприборов, средств радио- и телекоммуникационной	
		связи; оценки влияния на организм человека и другие	
		организмы загрязнения окружающей среды; рационального	
<u> </u>		природопользования и охраны окружающей среды	
	3.2	определения собственной позиции по отношению к	
		экологическим проблемам и поведению в природной среде	