Machine Learning-Session 2

Al Labs

Machine Learning Session Two

Agenda

What is Regression?

Linear Regression

Multiple Linear Regression

Polynomial Regression

Support Vector Regression (SVR)

Decision Tree

Random Forest Regression

What is Regression?

Regression is a way for a computer to learn how to predict numbers.

Regression is a type of machine learning technique used to **predict a continuous numerical value** based on one or more input variables (features)..

Why is Regression Used?

- •What will the price of a house be based on its size?
- •How much rain will fall tomorrow?
- •What is the salary based on experience?

Linear Regression

Linear Regression Example

Imagine you're an HR manager trying to predict someone's salary based on their years of experience.

Years of Experience (X)	Salary (Y in ₹)	\bigcirc
1	3,00,000	
2	4,00,000	
3	5,00,000	
4	6,00,000	
5	7,00,000	

Salary = 1,00,000 × Years of Experience + 2,00,000

Multiple Linear Regression

Years of Experience	Education Level (1-5)	Salary (₹ in Lakhs)
1	2	3.0
2	3	4.0
3	2	4.5
4	4	6.0
5	5	7.5
6	3	6.8

$$\widehat{y} = b_0 + b_1 X_1 + b_2 X_2 + \cdots + b_n X_n$$

Dependent variable | Independent variable 1 | Independent variable 2 | Independent variable | Slope coefficient 1 | Slope coefficient 2 | Slope coefficient n

Salary = b₀ + b₁ × Experience + b₂ × Education

Polynomial Regression

Years of Experience	Salary (₹ in Lakhs)	
1	2.0	y
2	2.5	
3	3.2	
4	4.5	
5	6.5	$y = b_0 + b_1 x_1 + b_2 x_1^2$
6	9.0	J 50 + 51.11 + 52.1
7	12.5	
8	16.8	X_1

Sometimes, salaries don't increase in a straight line. For example:

Salary = b₀ + b₁ × Experience + b₂ × (Experience)²

Support Vector Regression(SVR)

SVR is a type of regression that tries to **predict a continuous value** (like salary), but instead of minimizing the error for each point, it tries to fit the **best line/curve** within a **margin of tolerance** (ε).

Think of it like:

Support Vector Regression(SVR)

Minimize:

$$rac{1}{2} \|w\|^2 + C \sum (\xi_i + \xi_i^*)$$

Subject to:

$$egin{cases} y_i - w^T x_i - b \leq arepsilon + \xi_i \ w^T x_i + b - y_i \leq arepsilon + \xi_i^* \ \xi_i, \xi_i^* \geq 0 \end{cases}$$

Where:

- ε : tolerance margin
- ξ_i, ξ_i^* : slack variables for errors outside ϵ
- ullet C: penalty parameter (controls trade-off between margin and error)

Decision Tree

Decision Tree

- If Experience ≤ 2.5, Salary = ₹3.25 L
- If **2.5 < Experience ≤ 4.5**, Salary = ₹5.25 L
- If 4.5 < Experience ≤ 6.5, Salary = ₹8.65 L
- If **Experience > 6.5**, Salary = ₹12.0 L

Decision Tree

Random Forest Regression

Random Forest is a group (or "forest") of Decision Trees. Instead of relying on just one tree (which might overfit), it:

- Builds many decision trees on random subsets of the data.
- Takes the average of all tree predictions for better accuracy and smoother results.

Random Forest

Random Forest

Let's say for a new input:

- **Experience = 4.5**, the trees individually predict:
 - Tree 1: ₹6.2 L
 - Tree 2: ₹5.9 L
 - Tree 3: ₹6.0 L
 - ... (up to Tree 100)
- ✓ Final Prediction = Average of all trees
- → Salary = ₹6.03 L (more stable than a single tree)

Assumptions in Linear Regression

Comparision

Regression Type	Ideal For	Pros 🔽	Cons X
Linear Regression	Predicting a number from 1 input	- Simple & fast	- Assumes straight-line relationship
	(linear)	- Easy to interpret	- Poor for non-linear data
		- Good baseline	
Multiple Linear	Predicting from multiple inputs	- Handles multiple features	- Still assumes linearity
		- Easy to implement	- Sensitive to outliers
Polynomial	When relationship is curved	- Models non-linear trends	- Can overfit with high degree
		- Flexible with degree tuning	- Less interpretable
Support Vector (SVR)	Data with noise , or where small	- Robust to outliers	- Hard to tune
	errors can be ignored	- Ignores small errors (ε margin)	- Slower than linear models
		- Works with non-linear kernels	- Requires scaling
Decision Tree	Data with non-linear splits or	- Easy to understand	- Overfits easily
	categories	- No feature scaling needed	- Predictions are not smooth (step-
		- Handles non-linear & categorical	like)
		data	
Random Forest	Complex data with noise or many	- More accurate than single tree	- Slower
	features	- Reduces overfitting	- Harder to interpret
		- Handles non-linearity well	- Needs more memory
	$(\mathbf{J}_{\mathbf{J}})$		

Use Cases

Use-case	Best Regression Type
Simple trend prediction (straight line)	Linear Regression
Many factors/features involved	Multiple Linear Regression
Salary grows slowly, then fast (curved)	Polynomial Regression
Ignore small errors and focus on bigger ones	Support Vector Regression
Explainable rules and if-else logic	Decision Tree Regression
Best performance & generalization	Random Forest Regression

More Use Cases

Regression Type	Industry	Use Case
Linear Regression	HR	Predicting salary based on experience
	Retail	Forecasting sales from advertisement spending
	Real Estate	Estimating house price from size
	Environment	Predicting temperature from elevation
	Education	Predicting student scores from study hours
Multiple Linear	Real Estate	Predicting house price using size, location, and number of rooms
	Healthcare	Estimating medical expenses from age, BMI, and smoking habits
	HR	Forecasting employee performance from experience and education
	Business	Predicting monthly revenue based on sales, marketing, and season
	Manufacturing	Estimating product defect rate based on materials, speed, and time

Polynomial	Startups	Modeling growth rate over time (e.g., user adoption curve)
	Biology	Modeling enzyme activity vs temperature
	Agriculture	Predicting crop yield with weather trends (non-linear)
	Education	Modeling learning curve over time
	Automotive	Predicting fuel efficiency at different speeds
Support Vector (SVR)	Finance	Predicting stock prices (with noise tolerance)
	IoT / Sensors	Predicting sensor readings from noisy inputs
	Maintenance	Estimating machine wear/failure over time
	Transportation	Predicting travel time with varying road and traffic conditions

Healthcare

Modeling patient response to treatments (ignore

small fluctuations)

More Use Cases

Decision Tree	E-commerce	Predicting purchase value based on customer profile
	Education	Predicting exam scores based on attendance and assignment completion
	Real Estate	Estimating rental price based on location, size, and amenities
	Insurance	Predicting claim amount from age, vehicle type, and driving history
	Agriculture	Estimating crop disease risk from soil and weather data

Random Forest	Finance	Predicting loan default from customer data
	Healthcare	Estimating hospital stay duration based on condition and history
	Marketing	Predicting customer churn probability
	Real Estate	Predicting house price with complex features
	Manufacturing	Estimating product lifespan from materials, usage, and environment

Metrics for Regression – Detailing Next Session

- Mean Absolute Error
- Mean Squared Error
- Root Mean Square Error
- Root Mean Square Logarithmic Error
- R2-Score

Notebook

Kaggle:

https://www.kaggle.com/code/ohanvi/

GitHub:

https://github.com/Ohanvi/machine-learning-module

Competition:

https://www.kaggle.com/competitions/ml-regression-salary-prediction-challenge

https://www.kaggle.com/competitions/predict-the-closing-stock-price

Donate to India Army

- <u>Indian Army</u> <u>NDF National Defense Fund</u>

(a) Name of Fund : Army Central Welfare Fund.

Bank Name : Union Bank of India

: Chandni Chowk, Delhi – 110006 Branch

IFSC Code : UBIN0530778

Account No : 520101236373338

Type of Acct : Saving

(b) Name of Fund : Armed Forces Battle Casualties Welfare Fund.

: Canara Bank, Bank Name

South Block, Defence Headquarters, New Delhi -Branch

110011

IFSC Code : CNRB0019055 : 90552010165915 Account No

Type of Acct : Saving

The End