

BEUTH HOCHSCHULE FÜR TECHNIK BERLIN

University of Applied Sciences

Water Simulation with Particle Method, RGB LED-Matrix-Panels and Accelerometer

ARM Project Presentation

ABE KAYOKO (826058)

BAGA OLEKSANDRA (849852)

RADDE HEIKO (887027)

ADVANCED ARM PROGRAMMING

Based on Keil MCB2300 Board

LPC2300 ARM family and allows us to create and test working programs for this advanced architecture.

Two serial interfaces, a speaker, analog input (via potentiometer), two CAN interfaces, LCD, USB, Ethernet, and eight LEDs make this board a great starting point for our next ARM project.

What is behind the water simulation?

- Two basic principles: Grid based calculation or particle based calculation
- Particle based faster but less precise

Particle Based Method

- Particle based
 simulation with the incompressible Navier Stokes
 equations
- Kernel: poly6, spikey, viscosity
- Speedup via grid-structure

- 1. Calculate all Forces on particle
- 2. Integrate forces for acceleration
- 3. Calculate movement

Calculation speed-up via RP 1B

- Problem: Clock of MCB2388 too slow (72MHz) for simulation and smooth display
- Solution: Move simulation to external device: Raspberry Pi 1B (700MHz)
 - Bare-Metal programming on RP
 - UART communication between RP and MCB

3-Axis Digital Accelerometer

The ADXL345 is well suited for mobile device applications. It measures the static acceleration of gravity in tilt-sensing applications, as well as dynamic acceleration resulting from motion or shock.

Register 0x32 and Register 0x33 hold the output data for the x-axis, Register 0x34 and Register 0x35 hold the output data for the y-axis, and Register 0x36 and Register 0x37 hold the output data for the z-axis. The output data is twos complement, with DATAx0 as the least significant byte and DATAx1 as the most significant byte, where x represent X, Y, or Z.

12C digital interface

Write to One Register in a Device

I2C only uses two wires to transmit data between devices:

SDA (Serial Data) – The line for the master and slave to send and receive data.

SCL (Serial Clock) – The line that carries the clock signal.

Read From One Register in a Device

WINTERSEMESTER 2018/2019

32x32 RGB LED-Matrix-Panels

- 6x 32x32 RGB LED-Matrix-Panels for cube
- Signals
 - * RGB signals for upper and lower half rows
 - * Address ABCD for row selection
 - * CLK, LAT, OE
- 32-bit shift register
- No PWM module
- Daisy-chainable

LED-Matrix-Panels: Programming

Load color information into shift register

- 1. Set all pins low
- 2. Set RGB pins
- 3. Set clock high/low

Select row address

4. Set ABCD

Control signal

- 5. Set OE high
- 6. Set LAT high (LEDs are lit)
- 7. Set LAT low
- 8. Set OE low

Back to the top

o. Set OL low

Demonstration of color intensity by use of Binary Coded Manipulation instead of PWM module

85/255th duty cycle

Source: http://www.batsocks.co.uk/readme/art_bcm_3.htm

Assembled Cube for water simulation

- 6 LED-Panels connected by angled brackets in the corners
- Accelerometer screwed to top
- Custom cabling to MCB2388, chaining of panel-IOs

