1 Part a) I predict the assigned speed condition will affect the risk.

The foster the speed, the risk will get higher.

Part b)

risk_pullover	speed_cond	Mean	Median	N
	76	33.552	25.000	404
	82	37.672	31.500	398
	86	43.411	40.000	404

As we can see, they all follows the prediction. The risk-pullover increases as speed get faster.

Part c) The speed condition of 76,82,86 are all right-slawed. Because Median is smaller than Mean.

2. Part a)
$$P = \frac{40}{100} = \frac{72}{5}$$
Part b) $P = 1 - \frac{10}{100} = \frac{9}{10}$

Part c)
$$P = 1 - \frac{6+2+1}{100} = \frac{91}{100}$$

Part d) Flowing Rh Postive and not howing

Part e)
$$P = \frac{6}{700} = \frac{3}{50}$$

Part f)
$$P = \frac{4}{39+35+8+4} = \frac{4}{80} = \frac{2}{43}$$

Part b)
$$P(A) = 35\%$$
, $P(B) = 63\%$
 $P(A \land B) = 32\%$

4 Port a) 62% of adults aged 18-29 use TikTok 39% of adults aged 30-49 use TikTok : N= 62% 53060451= 33023719-62 N2= 39% · 869/4 205= 33895540.95 :. They are more likely to be (b) N27/1 Part b) 53262 95/ + 869/4 Jost 65/62989 + 57822315 = 2609 61960 $P = \frac{67\% \times 5326245}{260961966} = [3.67\%]$ (ii) $P = \frac{75\% \times 86914205}{266961966} = 244.98\%$

(i)
$$P = \frac{260961966}{260961966} = \frac{13.67}{86941966}$$

(ii) $P = \frac{75\% \times 86914205}{266961966} = 244.98\%$
(iii) $P = \frac{9\%62962989}{260961960} = \frac{16.65\%}{260961960}$
(iv) $P = \frac{58\% \times 57822316}{260961960} = 12.88\%$

Part c) p=13.67% +24.98%+16.65% +12-85% = 68.15%

Part d)
$$p = \frac{[3.67\%}{68.15\%} = 20.06\%$$

Part e) $p[[8-29]] = \frac{5326205}{260961960} = 20.41\%$
 $p["Face book"] = 68.15\%$
 $p["[8-29]]$. $p["Face book"] = 20.41\%$ rfs.65%

 $p["face book"] = 13.41\%$ rfs.65%

 $p["[8-29]]$. $p["face book"] = 20.41\%$ rfs.65%