Signals and Systems

娄鑫, louxin@shanghaitech.edu.cn

徐林, <u>xulin1@shanghaitech.edu.cn</u>

周勇, zhouyong@shanghaitech.edu.cn

赵子平, <u>zhaoziping@shanghaitech.edu.cn</u>

Reference Books

□ Alan V. Oppenheim, Alan S. Willsky and S. Hanid Nawab, Signals and Systems, 2rd Edition

Topics

- ☐ Overview of Signals and Systems
- ☐ Linear-Time-Invariant Systems
- ☐ Fourier Series Representation of Periodic Signals
- ☐ The Continues-Time Fourier Transform
- ☐ The Discrete-Time Fourier Transform
- □ Sampling
- ☐ The Laplace Transform
- ☐ The Z-Transform

Assessment

☐ Homework: 20%

☐ Mid-term: 30%

☐ Final Exam: 50%

QQ Group

2020信号与系统

扫一扫二维码,加入群聊。

Lecture 1 Signals and Systems: An Overview

Signals

- ☐ A signal is a function of independent variables such as time, distance, position, temperature, and pressure
- ☐ Example of typical signals
 - >Sound
 - >Image
 - > Video

Examples of Typical Signals

□ Sounds - represent air pressure as a function of time at a point in space

Examples of Typical Signals

☐ Grey-scale pictures - represent light intensity as a function of two spatial coordinates

Examples of Typical Signals

□ Videos - consists of a sequence of images, called frames, and is a function of 3 variables: 2 spatial coordinates and time

The Objective of This Course

Signal Analysis

- ☐ This task deals with the measurement of signal properties
 - > Spectrum analysis
 - frequency and/or phase
 - >Speech recognition
 - Target detection and tracking
 - Radar

Signal Filtering

☐ This task deals with the transformation of signals.

The systems that perform this task are called filters

Removal of unwanted background noise

Noise removal

☐ Original uncorrupted speech signal

☐ Impulse-noise-corrupted speech signal

☐ Median filtered version of the noisy signal

Noise removal

☐ Noise corrupted image and its noise-removed version

20% pixels corrupted with additive impulse noise

Noise-removed version

Signal Filtering

- ☐ This task deals with the transformation of signals.

 The systems that perform this task are called filters
 - > Removal of unwanted background noise
 - > Separation of frequency bands

Separation of frequency bands

Signal Filtering

- ☐ This task deals with the transformation of signals.

 The systems that perform this task are called filters
 - > Removal of unwanted background noise
 - > Separation of frequency bands
 - > Removal of interference
 - Shaping of the signal spectrum

Representation of Signals

- ☐ In terms of basis functions in the domain of original independent variable
 - >Time
 - ➤ Spatial, etc.
- ☐ In terms of basis functions in a transform domain
 - Fourier Transform
 - ► Laplace Transform
 - \triangleright Z-Transform, etc.

Classification of Signals

- ☐ Continuous vs. Discrete
 - > Depends on the independent variable
- ☐ Real-valued vs. Complex-valued
 - > Depends on the function defining the signal
- □ 1-D signal vs. *M*-D signal
 - \triangleright 1 independent variable or M independent variables
- ☐ Stationary vs. Non-stationary
- \square etc.

Classification of Signals

- ☐ The speech signal is an example of a 1-D signal
 - > The independent variable is time
- ☐ The image signal is an example of a 2-D signal
 - > The 2 independent variables are the 2 spatial variables
- ☐ The color image signal is composed of three 2-D signals representing the three primary colors: red, green and blue (RGB)
 - ►3-channel 2D signal

RGB Image

☐ The 3 color components of a color image

R

G

B

RGB Image

☐ The full color image obtained by displaying the previous 3 color components

Video Signals

- ☐ Black-and-white video signal is an example of a 3-D signal
 - >2 spatial variables and time
- Color video signal is a 3-channel 3-D signal
 - > Red channel
 - Green channel
 - ►Blue channel

Characterization of Signals

- ☐ The value of a signal at a specific value of the independent variable is called amplitude
- ☐ The variation of the amplitude as a function of the independent variable is called waveform
- ☐ Let's consider 1-D signal

Continuous and Discrete Signals

- ☐ If the independent variable is continuous, the signal is called a continuous-time signal
 - A continuous-time signal is defined at every instant of time
- ☐ If the independent variable is discrete, the signal is called a discrete-time signal
 - A discrete-time signal is defined at discrete instants of time, i.e., it is a sequence of numbers
 - The signal is not defined in between the time instants

Analog Signal

- ☐ Analog signal
 - Continuous-time signal with continuous-valued amplitude
 - A speech signal is an example of an analog signal
- □ Quantized boxcar signal
 - Continuous-time signal with discrete-valued amplitude
 - ➤ Occurs in digital electronic circuits

Digital Signal

- ☐ Sampled-data signal
 - Discrete-time signal with continuous-valued amplitude
 - The amplitude of the signal may be any value
- □ Digital signal
 - Discrete-time signal with discrete-valued amplitude
 - A digital signal is a quantized sampled-data signal

Power & Energy

 \square A resistor R with v(t) and i(t), the instantaneous power is

$$p(t) = v(t)i(t) = \frac{1}{R}v^{2}(t)$$

 \square The total energy over the time interval $t_1 \le t \le t_2$ is

$$E_R = \int_{t_1}^{t_2} p(t)dt = \int_{t_1}^{t_2} \frac{1}{R} V^2(t)dt$$

☐ The average power over this interval is

$$P_{R} = \frac{1}{t_{2} - t_{1}} \int_{t_{1}}^{t_{2}} p(t) dt = \frac{1}{t_{2} - t_{1}} \int_{t_{1}}^{t_{2}} \frac{1}{R} v^{2}(t) dt$$

Power & Energy

 \square Similarly for any x(t) or any x[n], the total energy is defined as

$$E = \int_{t_1}^{t_2} |x(t)|^2 dt$$

$$t_1 \le t \le t_2$$

Continuous-time

$$E = \sum_{n=n_1}^{n_2} |x[n]|^2 \qquad n_1 \le n \le n_2$$

$$n_1 \le n \le n_2$$

Discrete-time

☐ Similarly, the total power is defined as

$$P = E / (t_2 - t_1)$$

Continuous-time

$$P = E / (n_2 - n_1 + 1)$$

Discrete-time

Power & Energy

 \square Over infinite time interval $-\infty \le t \le \infty$ or $-\infty \le n \le \infty$

$$E_{\infty} = \lim_{\tau \to \infty} \int_{-\tau}^{\tau} |x(t)|^2 dt = \int_{-\infty}^{\infty} |x(t)|^2 dt$$

Continuous-time

$$E_{\infty} = \lim_{N \to \infty} \sum_{n=-N}^{N} |x[n]|^2 = \sum_{n=-\infty}^{\infty} |x[n]|^2$$

Discrete-time

$$P_{\infty} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^{2} dt$$

Continuous-time

$$P_{\infty} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2$$

Discrete-time

Three Classes of Signals

$$E_{\infty} < \infty$$
 $P_{\infty} = 0$

$$P_{\infty}=0$$

$$E_{\infty} = \infty$$

$$E_{\infty} = \infty$$
 $P_{\infty} < \infty$

$$\square$$
 Infinite energy & power signal $E_{\infty} \to \infty$ $P_{\infty} \to \infty$

$$E_{\infty} \to \infty$$

$$P_{\infty} \to \infty$$

☐ Time shifting

$$x(t) \to x(t - t_0)$$

$$x[n] \rightarrow x[n-n_0]$$

☐ Time reversal

$$x[n] \rightarrow x[-n]$$

$$x(t) \rightarrow x(-t) \rightarrow x(1-t)$$

☐ Time scaling

$$x(t) \rightarrow x(2t)$$
 compressed $x(t) \rightarrow x(t/2)$ stretched

$$\square$$
 Let $x(t) \rightarrow x(\alpha t + \beta)$

- \triangleright If $|\alpha| > 1$ compressed
- \triangleright If $|\alpha| < 1$ stretched
- \triangleright If $\alpha < 0$ reversed
- \triangleright If $\beta \neq 0$ shifted
- \square Example: Given the signal x(t), to illustrate

$$\triangleright x(t+1)$$

$$> x(-t+1)$$

$$\triangleright x(3t/2)$$

$$> x(3t/2 + 1)$$

$$>x(t+1)$$

$$\triangleright x(-t+1)$$

$$> x(3t/2+1)$$

$$x(-t+1)=x[-(t-1)]$$

$$x(\frac{3}{2}t+1)=x[\frac{3}{2}(t+2/3)]$$

Transformations of Independent Variable

 \square Example: A discrete signal x[n] is shown below, sketch and label following signals:

$$\triangleright x[2n]$$

$$\triangleright x[2n+1]$$

Periodic Signals

- \square Continuous-time: x(t)=x(t+T) for all t
- ☐ Fundamental period
 - The smallest positive value of T for which x(t)=x(t+T) holds

Periodic Signals

 \square Discrete-time: x[n]=x[n+N] for all n

- ☐ Fundamental period
 - The smallest positive value of N for which x[n]=x[n+N] holds

Even and Odd Signals

☐ Even signal

$$\triangleright x(-t) = x(t)$$
 $x[-n] = x[n]$

$$x[-n]=x[n]$$

Odd signal

$$\triangleright x(-t) = -x(t)$$
 $x[-n] = -x[n]$

Even and Odd Signals

☐ Any signal can be broken into a sum of two signals

➤One even and one odd

$$x(t) = x_e(t) + x_o(t)$$

$$x_o(t) = O_d\{x(t)\} = \frac{1}{2}[x(t) - x(-t)]$$

$$x_e(t) = E_v\{x(t)\} = \frac{1}{2}[x(t) + x(-t)]$$

$$x_o(t) = O_d\{x(t)\} = \frac{1}{2}[x(t) - x(-t)]$$

$$x_e(t) = E_v\{x(t)\} = \frac{1}{2}[x(t) + x(-t)]$$

General Complex Signals

 $\square c$ and a are complex numbers

$$x(t) = ce^{at}$$
 $c = |c|e^{j\theta}$ $a = r + j\omega_0$

$$ce^{at} = |c|e^{j\theta}e^{(r+j\omega_0)t} = |c|e^{rt}e^{j(\omega_0+\theta)}$$

$$= |c| e^{rt} \cos(\omega_0 t + \theta) + j |c| e^{rt} \sin(\omega_0 t + \theta)$$

Exponential Signals

☐ Real exponential signal

$$x(t) = ce^{at}$$

- $\triangleright c$ and a are real
- $\triangleright a > 0$, as $t \uparrow$, $|x(t)| \uparrow$
- $\geqslant a < 0$, as $t \uparrow$, $|x(t)| \downarrow$
- $\triangleright a=0, |x(t)|$ is constant

- ☐ Periodic exponential signals
 - ► a is purely imaginary
 - >Fundamental period?

$$x(t) = e^{j\omega_0 t}$$

$$T_{\theta} = \frac{2\pi}{|\omega_{\theta}|}$$

Sinusoidal Signals

$$x(t) = A\cos(\omega_0 t + \phi)$$

- Closely related to complex exponential signals
- □ How?

Exponential and Sinusoidal Signals

 $\Box e^{j\omega_0 t}$ and $A\cos(\omega_0 t + \phi)$

$$E_{period} = \int_0^{T_0} \left| e^{j\omega_0 t} \right|^2 dt = \int_0^{T_0} 1 dt = T_0$$

$$p_{period} = \frac{1}{T_0} E_{period} = 1$$

- Total energy? Infinite
- >Average power? Finite

Examples- Periodic or Not?

$$(1) x_1(t) = je^{j10t}$$

$$\omega_0 = 10, \ T_0 = \frac{2\pi}{10} = \frac{\pi}{5}$$

(2)
$$x_2(t) = e^{(-1+j)t}$$

Aperiodic

(3)
$$x_3(t) = 2\cos(3t + \frac{\pi}{4})$$
 $\omega_0 = 3$, $T_0 = \frac{2\pi}{3}$

$$\omega_0 = 3, \ T_0 = \frac{2\pi}{3}$$

(4)
$$x(t) = 2\cos(3t + \frac{\pi}{4}) + 3\cos(2t - \frac{\pi}{6})$$

$$T_{01} = \frac{2\pi}{2}, \quad T_{02} = \pi$$

$$T_{01} = \frac{2\pi}{3}, \quad T_{02} = \pi \qquad T_0 = SCM(T_{01}, T_{02}) = 2\pi$$

Discrete Complex Exponential

$$x[n] = c a^n$$
 $c = |c| e^{j\theta}$ $a = |a| e^{j\omega_0}$

- \square Real exponential signals: c and a are real
 - > |a| > 1, as $n \uparrow$, |x[n]| exponentially \uparrow
 - > |a| < 1, as $n \uparrow$, |x[n]| exponentially \downarrow
 - > a > 0, all values of x[n] have same sign
 - $\geqslant a < 0$, then the sign of x[n] alternates
 - $\geq a=0, x[n]=0$ for all n

Periodicity Properties

 \Box Three definite difference between $e^{j\omega_0 t}$ and $e^{j\omega_0 n}$

1)
$$e^{j(\omega_0 + 2\pi)t} = e^{j2\pi t} \cdot e^{j\omega_0 t} \neq e^{j\omega_0 t}$$

 $e^{j(\omega_0 + 2\pi)n} = e^{j2\pi n} \cdot e^{j\omega_0 n} = e^{j\omega_0 n} \quad (\because e^{j2\pi n} = 1)$

Periodicity Properties

2) For $e^{j\omega_0 t}$, the larger the magnitude of ω_0 , the higher is the rate of oscillation

For $e^{j\omega_0 n}$, the low-frequency have values of ω_0 near $0, 2\pi$, and any other even multiple of π , while the high frequency are located near $\omega_0 \approx \pm \pi$ and other odd multiples of π

□ Q: Which one is a higher frequency signal?

$$\omega_0 = \pi$$
 or $\omega_0 = \frac{3}{2}\pi$

□ Q: Which one is a higher frequency signal?

$$\omega_0 = \pi$$
 or $\omega_0 = \frac{3}{2}\pi$

A:
$$\omega_0 = \pi$$

$\cos(\omega_0 n)$

$\cos(\omega_0 n)$

Periodicity Properties

3) $e^{j\omega_0 t}$ is periodic for any value of ω_0 , while $e^{j\omega_0 n}$ may not be periodic for any ω_0

Examples:

$$\rho^{j3t}$$

Periodic $T_0 = 2\pi/3$

$$\rho^{j3n}$$

Aperiodic

Periodicity Properties

 \square In order for $e^{j\omega_0 n}$ to be periodic with N>0, must

$$e^{j\omega_0(n+N)} = e^{j\omega_0 n} \implies e^{j\omega_0 N} = 1$$

$$\Rightarrow \omega_0 N = 2\pi m$$

$$\Rightarrow \frac{\omega_0}{2\pi} = \frac{m}{N}$$
 Rational

$$\Rightarrow N = \frac{2\pi m}{\omega_0}$$

- $\square x[n] = \cos(2\pi n/12)$
 - \triangleright periodic N=12
- $\square x[n] = \cos(8\pi n/31)$
 - \triangleright periodic N=31
- $\square x[n] = \cos(n/6)$
 - > aperiodic
- $\square x[n] = \exp(j(2\pi/3)n) + \exp(j(3\pi/4)n)$
 - \triangleright Periodic, N=24

Periodicity Properties

□ In the continuous case, all of the harmonically related complex exponentials $e^{jk\omega_0 t}|_{\omega_0=2\pi/T}$ for k=0, ±1, ±2..., are distinct

☐ This is not true in discrete case Why?

if
$$k_1 = k_2 + mN$$

$$e^{jk_1(2\pi/N)n} = e^{jk_2(2\pi/N)n}$$

Periodicity Properties

$\mathbf{e}^{\mathbf{j}\omega_0\mathbf{t}}$	$e^{\mathbf{j}\omega_0\mathbf{n}}$
Distinct signals for distinct ω_0	Identical signals for values of ω_0 separated by multiples of 2π
Periodic for any ω_0	Only if $\omega_0=2\pi m/N$ for some integers N>0 and m
fundamental frequency ω ₀	ω_0/m
fundamental period $2\pi/\omega_0$	$N=m(2\pi/\omega_0)$

Discrete Unit Impulse & Unit Step

☐ Unit impulse (unit sample) is defined as

$$\delta[n] = \begin{cases} 0, n \neq 0 \\ 1, n = 0 \end{cases}$$

☐ Unit step is defined as

$$u[n] = \begin{cases} 0, n < 0 \\ 1, n \ge 0 \end{cases}$$

Discrete Unit Impulse & Unit Step

☐ The impulse is the first difference of the step

$$\delta[n] = u[n] - u[n-1]$$

☐ Conversely, the step is the running sum of unit sample

$$u[n] = \sum_{m=-\infty}^{n} \delta[m]$$

or
$$u[n] = \sum_{k=0}^{\infty} \delta[n-k]$$

Sampling Property of Unit Impulse

☐ Sampling property

$$x[n]\delta[n] = x[0]\delta[n] = x[0]$$

More generally

$$x[n]\delta[n-n_0] = x[n_0]\delta[n-n_0] = x[n_0]$$

Continuous Unit Step & Unit Impulse

☐ Unit step

$$u(t) = \begin{cases} 0, & t < 0 \\ 1, & t > 0 \end{cases}$$

 \square The continuous unit step u(t) is the running integral of unit impulse $\delta(t)$

$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$$

 \square $\delta(t)$ the first derivative of u(t)

$$\delta(t) = \frac{du(t)}{dt}$$

Continuous Unit Impulse

 \square How we can get $\delta(t)$?

$$\therefore u(t) = \lim_{\Delta \to 0} u_{\Delta}(t) \qquad \qquad \therefore \quad \frac{du(t)}{dt} = \lim_{\Delta \to 0} \frac{du_{\Delta}(t)}{dt} = = \delta (t)$$

Sampling Property

 \square As with $\delta[n]$, $\delta(t)$ also has a very important sampling property

$$x(t)\delta(0) = x(0)\delta(t)$$

$$x(t)\delta(t-t_0) = x(t_0)\delta(t-t_0)$$

- (1) Calculate and sketch the x'(t);
- (2) Recover x(t) from x'(t).

Solution:

(1)
$$x(t) = 2u(t-1) - 3u(t-2) + 2u(t-4)$$

$$\therefore x'(t) = 2\delta(t-1) - 3\delta(t-2) + 2\delta(t-4)$$

Continuous and Discrete Systems

☐ Input and output are continuous

$$\begin{array}{c} x(t) \\ \hline \end{array} \quad \begin{array}{c} y(t) \\ \hline \end{array}$$

☐ Input and output are discrete

Interconnection of Systems

☐ Series (or cascade), parallel, feedback

parallel

Interconnection of Systems

System Properties: Memory or Memoryless

- ☐ Memoryless system
 - ➤ Output is dependent only on the current input
- ☐ Examples:

$$y[n] = (2x[n] - x^2[n])^2$$

$$y(t) = x(t)$$

System Properties: Memory or Memoryless

☐ Memory system:

➤Output is dependent on the current and previous inputs

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

Accumulator

$$y[n] = x[n-1]$$

Delay

$$y(t) = \frac{1}{c} \int_{-\infty}^{t} x(\tau) d\tau$$

Integrator

System Properties: Invertibility and Inverse System

☐ A system is said to be invertible if distinct inputs lead to distinct outputs.

Examples: Invertible Systems

$$y(t) = 2x(t) \qquad w(t) = y(t)/2$$

$$x(t) \longrightarrow y(t) = 2x(t) \longrightarrow w(t) = y(t)/2 \longrightarrow w(t) = x(t)$$

Examples: Invertible Systems

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

Accumulator

☐ The difference between two successive outputs is precisely the inputs

$$y[n] - y[n-1] = x[n]$$

$$x[n]$$

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

$$y[n] = y[n] - y[n-1]$$

$$w[n] = x[n]$$

Examples: Noninvertible Systems

$$y[n] = 0$$

All x[n] leads to the same y[n]

$$y(t) = x^2(t)$$

Cannot determine the sign of the inputs

$$y(t) = \cos[x(t)]$$

$$x(t)$$
 and $[x(t) + 2\pi k] \rightarrow \text{same } y(t)$

System Properties: Causality

☐ Causal: the output at any time depends only on the inputs at the present time and in the past

$$y[n] = (2x[n] - x^2[n])^2$$

Causal

$$y(t) = x(t)$$

Causal

$$y[n] = x[n] - x[n+1]$$

Noncausal

$$y(t) = x(t+1)$$

Noncausal

$$y[n] = x[-n]$$

Noncausal

System Properties: Stability

☐ Stable: if the input to a system is bounded, then the output is also bounded

$$S_1$$
: $y(t) = tx(t)$

Unstable

$$S_2$$
: $y(t) = e^{x(t)}$

$$|x(t)| < B \Longrightarrow e^{-B} < |y(t)| < e^{B}$$

Stable

System Properties: Time Invariance

☐ Time invariant: a time shift in the input signal results in an identical time shift in the output signal

If
$$x[n] \rightarrow y[n]$$
Then $x[n-n_0] \rightarrow y[n-n_0]$
If $x(t) \rightarrow y(t)$
Then $x(t-t_0) \rightarrow y(t-t_0)$

Examples of time-varying system:

$$y[n] = nx[n]$$
$$y(t) = x(2t)$$

System Properties: Linearity

☐ For a system, if

$$x_1(t) \rightarrow y_1(t), \quad x_2(t) \rightarrow y_2(t)$$

$$ax_1(t) + bx_2(t) \rightarrow ay_1(t) + by_2(t)$$

then the system is linear

This is known as the superposition property (additivity and scaling or homogeneity)

Examples

$$y[n] = y[n-1] + x[n]$$

$$y(t) = \frac{1}{c} \int_{-\infty}^{t} x(\tau) d\tau$$

$$y(t) = tx(t)$$

$$y(t) = x^2(t)$$

$$y[n] = \Re e\{x[n]\}$$

$$y(t) = \sin[x(t)]$$

$$y[n] = 2x[n] + 3$$

Linear

Nonlinear

