def edsons chaîne (S,t),

where ity s comme à $t \subseteq \mathcal{I}$ # -1 sinon

For in range (bilt) - $l_1(s+1)$:

if $s = z + \mathcal{I}_{i}$: $i + l_{i}(s) \mathcal{I}_{i}$: return i

Complanti O(lsl. 171)

Alop pour honner des plus bon gues sous-chaîtres communes de S et t on teste toutes les sous chaîtres de S, si elles soit sous chaîtres de t on pad une des plus longues

Complexit : $O(\frac{|S|^2 \cdot |S| \cdot |II|}{nhr ss thair comparchage ket}) = O(|S|^3 \cdot |II|)$

	0	1	2	3	4	5	6	3= o12345 t=deabceg
							3,0	
1	3,0	0,5	0, {	2,05	3,0	0,5	OF	lplsce (i,j)
2	0/8	9,0	210	3,0	Book	310	0,5	pl scc (i, j)
3	1,0	3,0	ع ره	0,8	0,8	0,2	0,5	$\frac{1}{5} \cdot 6 \times 10^{3} \times 10^{3$
4	0,8	2/12	0, 2	0,5	018	J, E	0,5	Iplice $(i,j)=0$ $SE_{1}=0$ $SE_{1}=0$ $SE_{2}=0$ $SE_{3}=0$
5	0,5	3,0	0,5	3,0	O _L E	0, 8	12,08	0 pl(cc (ij): 1 + lplsce (i-1,j-1) sinon
	J		•					@(plscc(i-1,i-1),sC:)

Carles (141.141)

```
O1 car and dans le cas 2: a==a
det distance (a,b):
  Li [[ j for jin range leu (b) +1)]
                                                  lici en a initialisé les ligneskelment
      + [ (i) + [o for k in range (1, len(a) +1)]
  for i in range (1, len Cal+1):
   for jin range (1, len (6) +1);
          ih a [i-1] 2 z b [j-1]: L [i] [j]= L [i-1] [ j-1]
          Ole: LCi) Cj) = 1+ min (LCi-1) [j-1), LCi) Cj-1), LCi) Cj-1)
  return I [lhala] [lhalb]
Co-plexité O(bal. 161)
```