HW5

- 1. (15%) A sequential circuit with two D flip-flops A and B, two inputs X and Y, and one output Z is specified by the following input equations:
 - $D_A=X'B'+XY'$, $D_B=A'+Y'B$, Z=YA'B
 - (a) Draw the logic diagram of the circuit.

(b) Derive the state table.

Present state		Inp	ut₽	Next	Next state		
A(t)₊	B(t)₽	X 43	Y₽	A(t+1)₽	B(t+1)₽	Z ₽	
0↔	0€	0€3	0∘	1₽	1₽	1₽	
0₊⋾	0€3	0⁴₃	1₽	1₊3	1₽	042	
0₊⋾	0€3	1₽	0₀	1₊3	1₽	1₽	
0€	0€	1₽	1₽	0€	1₽	043	
0€	1₽	0€3	0₽	0€	1₽	043	
0€3	1₽	0€3	1₽	0€	1₽	0 ¢ ³	
0€3	1₽	1₽	0€	1₽	1₽	0€3	
0€3	1.₽	1₊	1₽	0€3	1₽	043	
1.₽	0€	043	0₽	1₽	0₽	1₽	
1€	0€3	0€3	1₽	1₽	0€	043	
1.₽	0€3	1₊	0₽	1₽	0₽	1₽	
1.	0€	1₽	1₽	0€	0₽	043	
1₽	1₽	0€	0€	0€3	1₽	0€	
1.₽	1₽	0€3	1₽	0€	0₽	043	
1.	1₽	1₽	0₽	1₽	1₽	0 ¢ ³	
1.	1₽	1₽	1₽	0€	0⇔	043	

(c) Derive the state diagram.

2. (10%) Design a sequential circuit with two D flip-flops A and B and one input X. When X = 1, the state of the circuit remains the same. When X = 0, the circuit goes through the state transitions from 00 to 11 to 01 to 10, back to 00, and then repeats.

3. (20%) For the D-type positive edge-triggered flip-flop and D-type positive level-sensitive (level-triggered) latch with the same clock (clk), asynchronous reset signal (rst, active low), and input (Data) below. Assume the initial state of both the flip-flop and latch are '0', and both devices are with 0 D-to-Q delay. Point out the incorrect parts for Q1 and Q2 in the timing diagram and redraw the correct timing diagram.

Incorrect parts:

Correct timing diagram:

4. (10%) A sequential circuit has two flip-flops A and B, one input X, and one output Y. The state diagram is shown in figure below. Design the circuit with D flip-flops.

Ans:

Logic Diagram (Optional):

5. (10%) Draw the state diagram of the sequential circuit specified by the following state table.

Present State		Inputs		Next	Outpu		
A	В	X	Y	Α	В	Z	
0	0	0	0	0	0	0	
0	0	0	1	0	1	0	
0	0	1	0	1	0	1	
0	0	1	1	1	1	1	
0	1	0	0	0	1	1	
0	1	0	1	1	0	1	
0	1	1	0	1	0	0	
0	1	1	1	0	0	0	
1	0	0	0	1	1	1	
1	0	0	1	1	1	0	
1	0	1	0	1	1	1	
1	0	1	1	1	0	0	
1	1	0	0	0	0	0	
1	1	0	1	0	0	1	
1	1	1	0	0	0	0	
1	î	1	1	0	1	1	

Ans:

- 6. (15%) Design a recognizer that recognizes an input sequence that has at least three 1's. The recognizer has a single input X, and a single output Y, and one asynchronous Reset input signal. The recognizer sets the output Y to 1 if the input signal X was equal to 1 in at least 3 clock cycles after reset. (a) Derive the state diagram. (b) Encode the states to minimize the combinational logic. (c) Draw the logic diagram using D flip-flops.
 - *本題使用 Moore Machine 或 Mealy Machine 皆可,解答以 Mealy Machine 為例

(b)								
	present		next :	state₽	output ye e x=0e x=1ee			
	presem	State	x=0€	k=1₽	x=0₊□	x=1+2+2		
	\$0₽	90₽	00₽	01₽	0₽	0∻ ∻		
	S1₽	01₽	00₽	10₽	0₽	00 ₽		
	S2₽	10₽	00₽	11₽	0₽	10 0		
	41							

7. (20%) Reduce the number of states in the following state table and tabulate the reduced state table.

Present	Nex	t State	Output			
State	x=0	x=1	x=0	x=1		
a	f	b	0	0		
b	d	e	1	0		
С	f	e	0	0		
d	g	a	1	0		
e	d	e	1	0		
f	f	b	1	1		
g	g	a	1	0		
h	g	С	0	0		

Show that the same output sequences are obtained for both the state table of the previous problem and the reduced state table from the previous problem. The state-circuit starts from state a, and the input sequence is 10110101001.

Ans:

1st turn							2nd turn				
		Next	state	Out	put			Next	Next state		tput
	Present state	x=0	x=1	x=0	x=1		Present state	х=O	x=1	x=0	X=
	a	f	Ъ	0	0		a	f	Ъ	0	0
	ь	d	\e b		0		ь	d	Ъ	1	(
	С	f	e	0	0		С	f	Ъ	0	(
	d	g	a	1	0	A	d	gd	a	1	(
*	е е	d	е	1	0						
	f	f	Ъ	1	1		f	f	Ъ	1	1
	g	g	a	1	0	¥	g	g	a	1	-0
	h	g	С	0	0		h	\g d	С	0	0
Reduced table								ì			
	Dunnant state	Next	state	Output							
	Present state	x=0	x=1	x=0	x=1						
	a	f	ь	0	0						
	ь	d	Ъ	1	0						
	С	f	Ъ	0	0						
	d	d	a	1	0						
	f	f	Ъ	1	1						
	h	d	С	0	0						

Brfore Reduced											
Time	1	2	3	4	5	6	7	8	9	10	11
Present state	a	Ъ	d	a	Ъ	d	a	f	Ъ	d	Ŋ
Input	1	0	1	1	0	1	0	1	0	0	1
Next State	Ъ	d	a	Ъ	d	a	f	Ъ	d	Ŋ	a
Output	0	1	0	0	1	0	0	1	1	1	0
After Reduced											
Time	1	2	3	4	5	6	7	8	9	10	11
Present state	a	Ъ	d	a	Ъ	d	a	f	Ъ	d	d
Input	1	0	1	1	0	1	0	1	0	0	1
Next State	Ъ	d	a	Ъ	d	a	f	ь	d	d	a
Output	0	1	0	0	1	0	0	1	1	1	0