

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1. (Original) A magnetoresistive head comprising:
 - an antiferromagnetic layer;
 - a pinned layer formed on the antiferromagnetic layer with a magnetizing direction of the pinned layer being fixed;
 - a nonmagnetic layer formed on the pinned layer;
 - a free layer formed on the nonmagnetic layer;
 - a magnetic domain control film for magnetic domain control of the free layer;
 - and a pair of electrode films for supplying electric current to a stack of the antiferromagnetic layer, the pinned layer, the nonmagnetic layer, and the free layer;wherein, when a width of the free layer as viewed from an air bearing surface is defined as a geometrical track width $Twr_geo(nm)$ and expressed as x , a magnetization film thickness product $Br \cdot t(G \cdot \mu m)$ of the magnetic domain control film and x satisfy the following:

$$-2.94 \cdot 10^{-4}x^3 + 8.54 \cdot 10^{-2}x^2 - 5.73x + 116 \leq Br \cdot t < 3.75 \cdot 10^{-1}x + 130 \text{ and } 40 \leq x < 160.$$

2. (Original) A magnetoresistive head comprising:
 - an antiferromagnetic layer;
 - a pinned layer formed on the antiferromagnetic layer with a magnetizing direction of the pinned layer being fixed;
 - a nonmagnetic layer formed on the pinned layer;
 - a free layer formed on the nonmagnetic layer;
 - a magnetic domain control film for magnetic domain control of the free layer; and
 - a pair of electrode films for supplying electric current to a stack of the antiferromagnetic layer, the pinned layer, the nonmagnetic layer, and the free layer;

wherein, when a width of the free layer as viewed from an air bearing surface is defined as a geometrical track width Twr_{geo} (nm) and expressed as x , a magnetization film thickness product $Br \cdot t$ ($G \cdot \mu m$) of the magnetic domain control film and x satisfy the following:

$$-2.94 \cdot 10^{-4}x^3 + 8.54 \cdot 10^{-2}x^2 - 5.73x + 116 \leq Br \cdot t \leq -2.94 \cdot 10^{-4}x^3 + 8.54 \cdot 10^{-2}x^2 - 5.73x + 141, Br \cdot t < 3.75 \cdot 10^{-1}x + 130, \text{ and } 40 \leq x < 160.$$

3. (Original) A magnetoresistive head comprising:
an antiferromagnetic layer;
a pinned layer formed on the antiferromagnetic layer with a magnetizing direction of the pinned layer being fixed;
a nonmagnetic layer formed on the pinned layer;
a free layer formed on the nonmagnetic layer;
a magnetic domain control film for magnetic domain control of the free layer; and
a pair of electrode films for supplying electric current to a stack of the antiferromagnetic layer, the pinned layer, the nonmagnetic layer, and the free layer;

wherein, when a width of the free layer as viewed from an air bearing surface is defined as a geometrical track width Twr_{geo} (nm) and expressed as x , a magnetization film thickness product $Br \cdot t$ ($G \cdot \mu m$) of the magnetic domain control film and x satisfy the following:

$$-2.94 \cdot 10^{-4}x^3 + 8.54 \cdot 10^{-2}x^2 - 5.73x + 151 \leq Br \cdot t < 3.75 \cdot 10^{-1}x + 165 \text{ and } 40 \leq x < 160.$$

4. (Original) A magnetoresistive head comprising:
an antiferromagnetic layer;
a pinned layer formed on the antiferromagnetic layer with a magnetizing direction of the pinned layer being fixed;
a nonmagnetic layer formed on the pinned layer;
a free layer formed on the nonmagnetic layer;
a magnetic domain control film for magnetic domain control of the free layer; and
a pair of electrode films for supplying electric current to a stack of the antiferromagnetic layer, the pinned layer, the nonmagnetic layer, and the free layer;

wherein, when a width of the free layer as viewed from an air bearing surface is defined as a geometrical track width $T_{wr_geo}(\text{nm})$ and expressed as x , a magnetization film thickness product $B_r \cdot t(G \cdot \mu\text{m})$ of the magnetic domain control film and x satisfy the following:

$$-2.94 \cdot 10^{-4}x^3 + 8.54 \cdot 10^{-2}x^2 - 5.73x + 151 \leq B_r \cdot t \leq -2.94 \cdot 10^{-4}x^3 + 8.54 \cdot 10^{-2}x^2 - 5.73x + 176, B_r \cdot t < 3.75 \cdot 10^{-1}x + 165, \text{ and } 40 \leq x < 160.$$

5. (Original) A magnetoresistive head comprising:
an underlying layer;
a free layer formed on the underlying layer;
a magnetic domain control film for magnetic domain control of the free layer;
a nonmagnetic layer formed on the free layer;
a pinned layer formed on the nonmagnetic layer with a magnetizing direction of the pinned layer being fixed;
an antiferromagnetic layer fixing magnetization of the pinned layer; and
a pair of electrode films for supplying electric current to a stack of the underlying layer, the free layer, the nonmagnetic layer, the pinned layer and the antiferromagnetic layer;
wherein, when a width of the free layer as viewed from an air bearing surface is defined as a geometrical track width $T_{wr_geo}(\text{nm})$ and expressed as x , a magnetization film thickness product $B_r \cdot t(G \cdot \mu\text{m})$ of the magnetic domain control film and x satisfy the following:
 $-2.94 \cdot 10^{-4}x^3 + 8.54 \cdot 10^{-2}x^2 - 5.73x + 116 \leq B_r \cdot t < 3.75 \cdot 10^{-1}x + 130$ and $40 \leq x < 160$.

6. (Original) A magnetoresistive head comprising:
an underlying layer;
a free layer formed on the underlying layer;
a magnetic domain control film for magnetic domain control of the free layer;
a nonmagnetic layer formed on the free layer;
a pinned layer formed on the nonmagnetic layer with a magnetizing direction of the pinned layer being fixed;
an antiferromagnetic layer fixing magnetization of the pinned layer; and

a pair of electrode films for supplying electric current to a stack of the underlying layer, the free layer, the nonmagnetic layer, the pinned layer and the antiferromagnetic layer;

wherein, when a width of the free layer as viewed from an air bearing surface is defined as a geometrical track width $Twr_{geo}(nm)$ and expressed as x , a magnetization film thickness product $Br \cdot t(G \cdot \mu m)$ of the magnetic domain control film and x satisfy the following:

$$-2.94 \cdot 10^{-4}x^3 + 8.54 \cdot 10^{-2}x^2 - 5.73x + 116 \leq Br \cdot t \leq -2.94 \cdot 10^{-4}x^3 + 8.54 \cdot 10^{-2}x^2 - 5.73x + 141, Br \cdot t < 3.75 \cdot 10^{-1}x + 130, \text{ and } 40 \leq x < 160.$$

7. (Original) A magnetoresistive head comprising:
an underlying layer;
a free layer formed on the underlying layer;
a magnetic domain control film for magnetic domain control of the free layer;
a nonmagnetic layer formed on the free layer;
a pinned layer formed on the nonmagnetic layer with a magnetizing direction of the pinned layer being fixed;

an antiferromagnetic layer fixing magnetization of the pinned layer; and
a pair of electrode films for supplying electric current to a stack of the underlying layer, the free layer, the nonmagnetic layer, the pinned layer and the antiferromagnetic layer;

wherein, when a width of the free layer as viewed from an air bearing surface is defined as a geometrical track width $Twr_{geo}(nm)$ and expressed as x , a magnetization film thickness product $Br \cdot t(G \cdot \mu m)$ of the magnetic domain control film and x satisfy the following:

$$-2.94 \cdot 10^{-4}x^3 + 8.54 \cdot 10^{-2}x^2 - 5.73x + 151 \leq Br \cdot t < 3.75 \cdot 10^{-1}x + 165 \text{ and } 40 \leq x < 160.$$

8. (Original) A magnetoresistive head comprising:
an underlying layer;
a free layer formed on the underlying layer;
a magnetic domain control film for magnetic domain control of the free layer;
a nonmagnetic layer formed on the free layer;

a pinned layer formed on the nonmagnetic layer with a magnetizing direction of the pinned layer being fixed;

an antiferromagnetic layer fixing magnetization of the pinned layer; and

a pair of electrode films for supplying electric current to a stack of the underlying layer, the free layer, the nonmagnetic layer, the pinned layer and the antiferromagnetic layer;

wherein, when a width of the free layer as viewed from an air bearing surface is defined as a geometrical track width $Twr_geo(nm)$ and expressed as x , a magnetization film thickness product $Br \cdot t(G \cdot \mu m)$ of the magnetic domain control film and x satisfy the following:

$$-2.94 \cdot 10^{-4}x^3 + 8.54 \cdot 10^{-2}x^2 - 5.73x + 151 \leq Br \cdot t \leq -2.94 \cdot 10^{-4}x^3 + 8.54 \cdot 10^{-2}x^2 - 5.73x + 176,$$

$$Br \cdot t < 3.75 \cdot 10^{-1}x + 165, \text{ and } 40 \leq x < 160.$$

9. (Canceled)

10. (Original) A magnetoresistive head according to any one of claims 1 to 8 wherein the magnetic domain control film comprises a magnetic film made of a CoPt alloy comprising at least 4 to 30 at% of Pt, or a CoCrPt alloy, or CoCrPt-ZrO₂ or CoCrPt-SiO₂ further comprising 2 to 15 at% of Cr.

11. (Original) A magnetoresistive head according to any one of claims 1 to 8, wherein the magnetic domain control film comprises a stacked film in which at least two or more magnetic films are antiferromagnetically coupled by way of a nonmagnetic film comprising Ru, Cr, Ir, Rh, Os, Re, Au, Ag, Cu or an alloy thereof, and a magnetic film as a constituent element thereof is a magnetic film comprising a CoPt alloy comprising at least 4 to 30 at% of Pt, or a CoCrPt alloy, or CoCrPt-ZrO₂ or CoCrPt-SiO₂ further comprising 2 to 15 at% of Cr or a magnetic film having soft magnetic property containing Fe or Ni.

12. (Original) A magnetoresistive head according to any one of claims 1 to 8, wherein the magnetic domain control film is a stacked film having two-layers of magnetic films antiferromagnetically coupled by way of a nonmagnetic film, and the magnetization film thickness product $Br \cdot t$ of the magnetic domain control film is defined as

$$Br \cdot t = Br_1 \cdot t_1 - Br_2 \cdot t_2$$

assuming residual magnetic flux densities of the two layers of magnetic layers as Br_1 and Br_2 , respectively, and film thicknesses thereof as t_1 and t_2 , respectively.

13. (Original) A magnetoresistive head according to any one of claims 1 to 8, wherein the magnetic domain control film is a stacked film having three layers of magnetic films and antiferromagnetically coupled by way of a nonmagnetic film, and the magnetization film thickness product $Br \cdot t$ of the magnetic domain control film is defined as

$$Br \cdot t = Br_1 \cdot t_1 - Br_2 \cdot t_2 + Br_3 \cdot t_3$$

assuming residual magnetic flux densities of the three magnetic layers as Br_1 , Br_2 , and Br_3 , respectively, and the film thicknesses thereof as t_1 , t_2 , and t_3 , respectively.

14. (Original) A magnetic head having a magnetoresistive head according to any one of claims 1 to 8 having as a reading head and having a writing head for in-plane recording.

15. (Original) A magnetic head having a magnetoresistive head according to any one of claims 1 to 8 as a reading head and having a writing head for perpendicular recording.

16. (New) A magnetoresistive head comprising:
an insulative layer formed on a substrate;
an antiferromagnetic layer formed on the insulative layer;
a pinned layer formed on the antiferromagnetic layer with a magnetizing direction of the pinned layer being fixed;
a nonmagnetic layer formed on the pinned layer;
a free layer formed on the nonmagnetic layer;
a pair of electrode films for supplying electric current to a stack of the antiferromagnetic layer, the pinned layer, the nonmagnetic layer and the free layer; and
an electrode underlying film;

wherein the electrode underlying film is formed directly on the insulative layer in a case where a width of the free layer as viewed from an air bearing surface is defined as Twr_geo (nm) and expressed as x, and $x < 40$.