- \bullet Read \forall as 'for each/for all/for every' and ' \exists ' as 'there exists/there is'.
- Statement P: ' $\forall x \in A$, x is a zyx' means 'each element in A is a zyx'.
 - P is considered true, if each element of A is a zyx.
 P is considered false, if there is an element of A which is not a zyx.
 - Hence, the statement P is true for $A=\emptyset$.
- Take Q: ' $\exists x \in A$ such that x is a zyx'. Means 'there is an element in A which is a zyx'.
 - Q is considered true, if at least one element of A is a zyx.
 - ullet Q is considered false, if no element of A is a zyx.
 - Thus, the statement Q is false for $A = \emptyset$.
- Notice the style of writing: 'for each x, (comma) something' and 'there exists x such that (in place of comma) something'. Other variations exist.

[D]Real numbers A set F with two binary operations +, * and a binary relation \leq satisfying the following axioms. Here $a, b, c \in \mathbb{F}$. Write ab for a*b.

closure
$$\forall a, b$$
, we have $a + b, ab \in F$.

associative
$$a + (b + c) = (a + b) + c$$
, $a(bc) = (ab)c$ hold $\forall a, b, c$.

commutative a + b = b + a, ab = ba hold for each a, b.

identity elements $\exists 0, 1 \in F$, $0 \neq 1$, s.t. a+0=a and a1=a hold for each a.

additive inverse $\forall a, \exists z_a \in F \text{ s.t. } a + z_a = 0.$

distributive $\forall a, b, c$, we have a(b+c) = ab + ac.

multiplicative inverse $\forall a \neq 0, \exists y_a \in F$ such that $ay_a = 1$.

Such a set is unique. Notn: \mathbb{R} .

trichotomy $\forall a, b$, exactly one of a < b, a = b, a > b holds true.

transitive $a \leq b, b \leq c \Rightarrow a \leq c \text{ holds } \forall a, b, c.$

positivity $\forall a, b, c$, we have $b < c \Rightarrow a + b < a + c$ and $a, b > 0 \Rightarrow ab > 0$. special axiom If ' $A, B \subseteq F$, nonempty and $a \le b$ for each $a \in A$, $b \in B$ ', then ' $\exists m \in F$ such that $a \le m \le b$ for each $a \in A$ and $b \in B$ '. [R] We can deduce many properties from this definition. (See notes for proofs.)

- \bullet The additive and multiplicative identities in $\mathbb R$ are unique.
- The additive inverse of an element a in $\mathbb R$ is unique. Denoted by -a.
- The multiplicative inverse of $a \neq 0$ in $\mathbb R$ is unique. Denoted by a^{-1} or $\frac{1}{a}$.
- $(a^{-1})^{-1} = a$ for each $a \neq 0$. Also -0 = 0 and $1^{-1} = 1$.
- x0 = 0 for each x. Also, if ab = 0 then either a = 0 or b = 0.
- $a \ge 0$ implies $-a \le 0$. Also 1 > 0. (This means $1 \ge 0$ and $1 \ne 0$.)
- a > 0 implies $a^{-1} > 0$. Also $a \ge b$, $c \ge 0$ imply $ac \ge bc$.
- [D] We inductively define the natural numbers $\mathbb N$ as $\{1,1+1,1+1+1,\ldots\}$.

• -a = (-1)a and -(-a) = a for each a. So (-1)(-1) = -(-1) = 1.

By definition it is a subset of \mathbb{R} . We use the symbols $1, 2, 3, \ldots$ for them.

[D] We define $\mathbb{Z} := \mathbb{N} \cup \{-n \mid n \in \mathbb{N}\} \cup \{0\}$ and $\mathbb{Q} := \{\frac{m}{n} \mid m \in \mathbb{Z}, n \in \mathbb{N}\}.$

Bounds

[D] A set $S \subseteq \mathbb{R}$ is called bounded above if there is an ub of S in \mathbb{R} . The term bounded below is defined similarly.

• What is the meaning of a is not an ub of S? $\exists s \in S$ such that s > a.

• Is 5 an ub of \emptyset ? Yes. In fact, each real number is an ub of \emptyset .

- Let $S = \{1, 2, 4\}$. Is there a maximum of S? Is it in S? Is it an ub of S?
- [D] Let $S \subseteq \mathbb{R}$ and a be an ub of S. If $a \in S$, then a is called a maximum of S. The term minimum is defined similarly.

S. The term minimum is defined similarly.

[R] If a is a maximum of S, then it is unique.!!

So, we can use the notation of S.

tions $\max S$, $\min S$.

Bounds 5

- [Eg] Is (0,1) bounded above? Is it bounded below?
- [D] We say S is bounded if it is bounded above and below.
- [Eg] A bounded set need not have a maximum or a minimum. (0,1)
- [Eg] What is the set of all upper bounds of $S = \{0, 1, 2\}$? [2, ∞). Which one is the smallest ub? 2.
- [R: lub property] Let $\emptyset \neq A \subseteq \mathbb{R}$ be bounded above. Then the set U of upper bounds of A always contains a minimum.
 - Po A is bounded above. So U is nonempty. So $a \le u$, for each $a \in A$ and $u \in U$. By the special axiom, $\exists m \in \mathbb{R}$ such that $a \le m \le u$ for each $a \in A$ and $u \in U$. Is m an upper bound of A? Yes. So $m \in U$. Is m a lower bound of U? Yes. So $m = \min U$.

[D] Let $\emptyset \neq S \subseteq \mathbb{R}$ be bounded above. Then the least element of the upper bound set is called the least upper bound/supremum of S. (lub $S/\sup S$.)

[D] The greatest lower bound/infimum of S is defined similarly. (glb $S/\inf S$.)

[Eg] $\sup(0,2] = 2$. $\inf \mathbb{Q} \cap (0,2) = 0$. $\sup \emptyset$ does not exist in \mathbb{R} .

[Eg]. Let lub S=a. Is $a-\epsilon$ an ub? (Here ϵ is some positive number.) No. So, $\exists s \in S$ such that $s>a-\epsilon$.

[R] $\operatorname{lub} S = a$ iff a is an ub of S and for each $\epsilon > 0$, $\exists s \in S$ such that $s > a - \epsilon$.

[Eg] Is $\mathbb N$ bounded above in $\mathbb Q$? No. Let $\frac{p}{q}$ be an upper bound of $\mathbb N$. Then $\frac{p}{q} \geq 1$. So $p \in \mathbb N$. So, $\frac{p}{q} \leq p < p+1 \in \mathbb N$. So $\frac{p}{q}$ cannot be an ub of $\mathbb N$. A contradiction.

[Nonstandard notation] $-A := \{-a \mid a \in A\}$ and $\frac{1}{A} := \{\frac{1}{a} \mid a \in A, a \neq 0\}$.

• Similarly, even though $\mathbb N$ is not bounded above in $\mathbb Q$, it may be bounded above in the superset $\mathbb R$. What is the truth?

[R] The set $\mathbb N$ is not bounded above in $\mathbb R$.

Po Suppose $\mathbb N$ is bounded above. Using lub property, let $x = \operatorname{lub} \mathbb N$. As $x - \frac{1}{2}$ is not an ub, $\exists n \in \mathbb N$ such that $x - \frac{1}{2} < n$. But then $x < n + \frac{1}{2} < n + 1 \in \mathbb N$, a contradiction.

[Eg] So sup \mathbb{N} _____ in \mathbb{R} . does not exist

[R: glb property] Let $\emptyset \neq S \subseteq \mathbb{R}$ be bounded below. Then glb S exists in \mathbb{R} . !!

[R: well ordering principle] Every nonempty subset of $\mathbb N$ contains a minimum. !! [R: Archimedean property] Let $\alpha > 0$. Then there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < \alpha$.

Po Otherwise $\mathbb N$ becomes bounded above in $\mathbb R$.

[Eg] Does $A = \{x > 0 \mid x^6 < 3\}$ have a maximum? No. If yes, let it be a. So $\frac{3-a^6}{(1+a)^6} > 0$. By Archimedean principle $\exists n \in \mathbb{N}$ such that $\frac{1}{n} < \frac{3-a^6}{(1+a)^6}$. So

$$\left(a + \frac{1}{n} \right)^{6} = a^{6} + \binom{6}{1} a^{5} \frac{1}{n} + \binom{6}{2} a^{4} \frac{1}{n^{2}} + \dots + \binom{6}{6} \frac{1}{n^{6}}$$

$$\leq a^{6} + \binom{6}{1} a^{5} \frac{1}{n} + \binom{6}{2} a^{4} \frac{1}{n} + \dots + \binom{6}{6} \frac{1}{n}$$

$$< a^{6} + \frac{1}{n} \left[a^{6} + \binom{6}{1} a^{5} + \binom{6}{2} a^{4} + \dots + \binom{6}{6} \right]$$

$$= a^{6} + \frac{1}{n} (1 + a)^{6} < 3.$$

Thus $a + \frac{1}{n} \in A$, a contradiction.

[R: kth root] Fix a>0 and $k\in\mathbb{N}$. Then there is a unique b>0 s.t. $b^k=a$. !! We call this number b the kth root of a. Notn. $\sqrt[k]{a}$, $a^{\frac{1}{k}}$

[Eg] In the above, if we take a=2=k, we get a real number b such that $b^2=2$. We denote this b by $\sqrt{2}$. It is easy to show that $\sqrt{2} \notin \mathbb{Q}$. So it is an irrational number. In fact, \sqrt{n} is an irrational number, when n is not a perfect square. !!

[R: greatest integer function] Let $\alpha \in \mathbb{R}$. Then there exists a unique $z \in \mathbb{Z}$ such that $z \leq \alpha < z+1$. \blacksquare We denote it by $[\alpha]$.

[R.] Each interval (a, b) contains a rational and an irrational number. Po Take $n \in \mathbb{N}$, large s.t. length of (na, nb) > 3. It has at least two integers

Po Take $n \in \mathbb{N}$, large s.t. length of (na, nb) > 3. It has at least two integers, m = [na] + 1 and m + 1. So $m, m + \frac{1}{\sqrt{2}} \in (na, nb)$. So $\frac{m}{n}, \frac{m + \frac{1}{\sqrt{2}}}{n} \in (a, b)$. \square

[Ex.] Each (a, b) contains infinitely many rationals and irrationals.

[R: nested interval theorem] Let $[a_1,b_1]\supseteq [a_2,b_2]\supseteq \cdots$ and $I=\bigcap\limits_{n=1}^{\infty} [a_n,b_n]$. Then $I\neq\emptyset$.

$$\begin{bmatrix} a_1 & \begin{bmatrix} a_2 & \begin{bmatrix} a_3 & & & \\ & a_n & & b_n \end{bmatrix} & b_1 \end{bmatrix} & b_2 \end{bmatrix} b_1 \end{bmatrix}$$

Po Let $L = \{a_1, a_2, \dots\}$ (left endpoints), $R = \{b_1, b_2, \dots\}$ (right endpoints). Is $a_n \le a_{n+m} \le b_{n+m} \le b_m$, for each $n, m \in \mathbb{N}$? Yes. Apply the special

property: $\exists z$ such that $a_i \leq z \leq b_j$ for each $i,j \in \mathbb{N}$. In particular, $z \in [a_n,b_n]$ for each $n \in \mathbb{N}$. Hence z is in the intersection I.

One can show that the intersection I is actually a closed interval.

Po Is L is bounded above? Yes, each b_i is an ub. So Iub L exists in \mathbb{R} . Let it be a. Similarly, put $b = \operatorname{glb} R$. If $z \in [a, b]$, then $a_n \leq a \leq z \leq b \leq b_n$. So $[a, b] \subseteq [a_n, b_n]$. So it is contained in I. If $z < a = \operatorname{Iub} L$, then $\exists a_{n_0} \in L$ such that $a_{n_0} > z$. So $z \notin [a_{n_0}, b_{n_0}]$. So $z \notin I$. Similarly, if z > b, then

 $z \notin I$. Hence, I = [a, b].

Then $|x-y| := \sqrt{(x_1-y_1)^2 + \cdots + (x_n-y_n)^2}$.

• In \mathbb{R}^2 , $D_1(0)$ means the open unit disc without center 0.

• Let $a \in \mathbb{R}^n$. We define $B_{\alpha}(a) := \{x \mid |a-x| < \alpha\}$ and $D_{\alpha}(a) := \{x \mid 0 < \alpha\}$ $|a-x|<\alpha$. Here $\alpha>0$.

distance, neighbourhood

[Eg] In
$$\mathbb{R}$$
, the set $B_{\epsilon}(a) = (a - \epsilon, a + \epsilon)$.

- In \mathbb{R}^2 , $B_1(0)$ means the open unit disc centered at 0.
- In \mathbb{R} , the set $D_{\delta}(a)=(a-\delta,a)\cup(a,a+\delta)$
- $B_{\alpha}(a)$ is called the open ball of radius α centered at a. Also called a
- neighbourhood of a.
 - $D_{\alpha}(a)$ is called the punctured open ball of radius α centered at a. Also called a deleted neighbourhood of a.
 - Each $B_{\epsilon}(0)$ means $B_{\epsilon}(0)$ for each $\epsilon > 0$.

- In \mathbb{R} , does $D_1(0)$ contain a rational number? What about $D_{\frac{1}{2}}(0)$? $D_{\epsilon}(0)$?
- [D] Let $A \subseteq \mathbb{R}$. Then $a \in \mathbb{R}$ is called a cluster point of A, if each $D_{\epsilon}(a)$ contains at least one point of A. Also called a limit point of A. The definition is similar for subsets of \mathbb{R}^n .

[Eg] Each real number is a cluster point of \mathbb{Q} . Also of \mathbb{Q}^c .

- Does there exists a limit point of $\mathbb N$ in $\mathbb R$? In other words, does there exist a real number b such that each $D_{\epsilon}(b)$ contains a natural number? No. If n < b < n+1, then take $\epsilon = \min\{b-n, n+1-b\}$. Then $D_{\epsilon}(b) \cap \mathbb N = \emptyset$.
 - (b-n) (b-n

If b=n, take $\epsilon=1$. Then $D_{\epsilon}(b)\cap \mathbb{N}=\emptyset$. If b<1, argue similarly.

- [Eg] Take A=(0,1) and a=0.9. Can you find a $B_{\delta}(a)\subseteq A$? Draw picture and tell $\delta=.1$ or less.
 - What if I take a=.99? Will you be able to give a $B_{\delta}(a)$?
- Take $A=B_1(0)$ in \mathbb{R}^2 and a=(x,y). Can we give a $B_\delta(a)\subseteq A$? Yes, $\delta \leq 1-\sqrt{x^2+y^2}$.
- [D] A set $A \subseteq \mathbb{R}^n$ is open if A contains a neighbourhood around <u>each</u> point a of A. A set A is closed if A^c is open.
- [Eg] (0,1) is open in \mathbb{R} . Any $B_{\alpha}(a)$ is open in \mathbb{R}^n .
 - Union of open sets is open.
 - [0,1) is not open in \mathbb{R} . Here 0 creates a problem.
 - [0,1) is not closed in \mathbb{R} . As its complement $(-\infty,0)\cup[1,\infty)$ is not open.
 - Consider $B_1(0) \cup \{(1,0)\}$ in \mathbb{R}^2 . It is neither open nor closed.