Information Retrieval & Text Mining

Evaluation of Text Retrieval Systems: Basic Measure

Dr. Saeed UI Hassan Information Technology University

Evaluation of Text Retrieval Systems

Why Evaluation?

- Reason 1: Assess the actual utility of a TR system
 - Measures should reflect the utility to users in a real application
 - Usually done through user studies (interactive IR evaluation)
- Reason 2: Compare different systems and methods
 - Measures only need to be correlated with the utility to actual users, thus don't have to accurately reflect the exact utility to users
 - Usually done through test collections (test set IR evaluation)

What to Measure?

- Effectiveness/Accuracy: how accurate are the search results?
 - Measuring a system's ability of ranking relevant documents on top of non-relevant ones
- Efficiency: how quickly can a user get the results? How much computing resources are needed to answer a query?
 - Measuring space and time overhead
- Usability: How useful is the system for real user tasks?
 - Doing user studies

The Cranfield Evaluation Methodology

- A methodology for laboratory testing of system components developed in 1960s
- Idea: Build <u>reusable</u> test collections & define measures
 - A sample collection of documents (simulate real document collection)
 - A sample set of queries/topics (simulate user queries)
 - Relevance judgments (ideally made by users who formulated the queries) → Ideal ranked list
 - Measures to quantify how well a system's result matches the ideal ranked list
- A test collection can then be reused many times to compare different systems

Test Collection Evaluation

Queries

Document Collection

Relevance Judgments

Q1 D1 +

Q1 D2 +

Q1 D3 -

Q1 D4 -

Q1 D5+

. .

Q2 D1 -

Q2 D2+

Q2 D3+

Q2 D4 -

. . .

Q50 D1 -

Q50 D2 -

Q50 D3 +

Test Collection Evaluation

Test Collection Evaluation

Evaluating a Set of Retrieved Docs: Precision and Recall

Action	Retrieved	Not Retrieved
Relevant	Relevant Retrieved a	Relevant Rejected b
Not relevant	Irrelevant Retrieved c	Irrelevant Rejected d

Precision =
$$\frac{a}{a+c}$$

$$Recall = \frac{a}{a+b}$$

In reality, high recall tends to be associated with low precision

How to combine Precision and Recall?

How about

$$0.5*P + 0.5*R = ?$$

$$\frac{P+R}{2} = ?$$

Combine Precision and Recall: F-Measure

$$F_{\beta} = \frac{1}{\frac{\beta^2}{\beta^2 + 1}} \frac{1}{R} + \frac{1}{\beta^2 + 1} \frac{1}{P} = \frac{(\beta^2 + 1)P * R}{\beta^2 P + R}$$

$$F_1 = \frac{2PR}{P+R}$$

Why not 0.5*P+0.5*R?

P: precision

R: recall

 β : parameter (often set to

1)

Summary

- Precision: are the retrieved results all relevant?
- Recall: have all the relevant documents been retrieved?
- F measure combines Precision and Recall
- Tradeoff between Precision and Recall depends on the user's search task