Machine Learning in Computational Biology (Fall 2023)

Assignment #2

Deadline: 23:59:59 17th November, 2023 (Delayed submission is not allowed for any reason)

Purpose: to enhance the learning outcomes for the topics in "**Features Encoding and Investigation**" and "**Protein Sequence Analysis**".

After the removal of homologous sequences in both positive and negative dataset using CD-Hit, in order to carry out a binary classification between ubiquitination and non-ubiquitination sites, please accomplish the tasks described as follows.

1. [Amino acid composition] (20 points)

Amino acid composition (AAC) is a common method used to transform protein sequences into 20-dimensional numeric vectors. As you learned from Chapter 2 in this class, please calculate AAC for each sequences in both positive and negative datasets; then, the comparison of AAC between positive (ubiquitination) and negative data (non-ubiquitination) can be displayed as the histogram shown below.

Please provide the histogram plot of AAC based on your training dataset using CD-Hit with 50% similarity.

50 % CD-HIT has uploaded

2. [Sequence log and TwoSampleLogo] (20 points)

2.1 In order to observe the position-specific AAC for protein ubiquitination sites, the **WebLogo** tool can be utilized to create **frequency** and **entropy plots** of sequence logos for visualizing the potential amino acid motifs surrounding the modification sites (centered as

position 0). Please provide the **frequency** and **entropy plots** of sequence logos on both positive and negative datasets.

Positive Dataset

.....

Negative Dataset

2.2 In order to investigate the difference of position-specific AAC between ubiquitination and non-ubiquitination sites, please use the **TwoSampleLogo** to visualize potential amino acid motifs surrounding the modification sites as shown below.

3. [Positional Weighted Matrix] (60 points)

3.1 Please create the positional weighted matrix (PWM) for both positive and negative datasets, as shown below.

Positive Dataset

	-15	-14	-13	-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0
A	0.0879	0.0873	0.09032	0.09153	0.08508	0.08165	0.08367	0.08427	0.09032	0.09355	0.10282	0.09536	0.08911	0.09315	0.09194	0
С	0.01472	0.01089	0.0119	0.01169	0.01008	0.01492	0.01109	0.00766	0.00625	0.00706	0.0121	0.00887	0.00685	0.01069	0.00887	0
D	0.0621	0.06391	0.05726	0.06653	0.0619	0.05786	0.05504	0.05746	0.06008	0.06512	0.0623	0.06734	0.07157	0.07016	0.05302	0
E	0.07964	0.07944	0.07621	0.0869	0.08831	0.08952	0.0875	0.08972	0.08851	0.08427	0.08206	0.1123	0.11653	0.09052	0.11855	0
F	0.02863	0.03246	0.03125	0.02762	0.03065	0.03246	0.02923	0.02742	0.02964	0.03044	0.02903	0.0256	0.03004	0.03065	0.0244	0
G	0.07137	0.07782	0.07016	0.07258	0.06633	0.06472	0.06794	0.06875	0.0625	0.05786	0.06492	0.06694	0.06573	0.07621	0.08206	0
Н	0.01915	0.01714	0.01794	0.02097	0.02117	0.01673	0.01855	0.01653	0.01774	0.01956	0.01815	0.01129	0.01714	0.01472	0.01673	0
I	0.04052	0.04435	0.0498	0.04194	0.04698	0.04819	0.04294	0.04012	0.04899	0.05262	0.0506	0.03871	0.04435	0.05383	0.04153	0
K	0.07177	0.07399	0.0744	0.07903	0.0754	0.08085	0.07661	0.08407	0.07762	0.0629	0.06472	0.06129	0.05585	0.05605	0.05827	1
L	0.08548	0.07843	0.08105	0.07964	0.07581	0.07601	0.08548	0.08145	0.07581	0.0871	0.0877	0.07883	0.07863	0.09254	0.08125	0
M	0.02802	0.02258	0.01835	0.02056	0.01915	0.02258	0.01754	0.01835	0.02177	0.01996	0.02036	0.01633	0.01734	0.01895	0.01754	0
N	0.03669	0.03589	0.04133	0.03407	0.04052	0.03327	0.03609	0.0375	0.0375	0.03206	0.03286	0.0373	0.0371	0.0377	0.03468	0
Р	0.05242	0.05383	0.04819	0.04355	0.04657	0.04718	0.04073	0.04899	0.04879	0.04577	0.04355	0.05464	0.04274	0.04315	0.04032	0
Q	0.03891	0.03831	0.03508	0.03589	0.03569	0.03286	0.03468	0.03407	0.0379	0.03266	0.0381	0.03548	0.04496	0.03911	0.04617	0
R	0.06532	0.07198	0.0752	0.06976	0.07964	0.07621	0.08306	0.08952	0.08306	0.08125	0.07681	0.0627	0.0619	0.05403	0.05927	0
S	0.06976	0.06996	0.06935	0.06996	0.0752	0.06855	0.0756	0.06996	0.06734	0.07863	0.06714	0.08306	0.08306	0.07238	0.08024	0
Т	0.04819	0.04294	0.0496	0.04677	0.04597	0.05484	0.04718	0.04415	0.04617	0.04919	0.04738	0.04778	0.04536	0.04859	0.05141	0
V	0.06613	0.07036	0.07056	0.06915	0.06552	0.06976	0.07137	0.06956	0.06774	0.06915	0.07218	0.06714	0.06129	0.07278	0.06996	0
W	0.00887	0.00766	0.00887	0.00766	0.00786	0.00806	0.00988	0.00605	0.00665	0.00625	0.00625	0.00544	0.00665	0.00464	0.00625	0
Υ	0.0244	0.02077	0.02319	0.02419	0.02218	0.02379	0.02581	0.0244	0.0256	0.0246	0.02097	0.02359	0.02379	0.02016	0.01754	0
-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Q	R	S	T	U	٧	W	X	Υ	Z	AA	AB	AC	AD	AE	AF
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0.10141	0.09476	0.0881	0.09234	0.09052	0.0873	0.08831	0.09032	0.08427	0.08468	0.08226	0.08427	0.08669	0.08972	0.09052
0	0.00786	0.00927	0.00585	0.00504	0.01169	0.00988	0.00867	0.00867	0.01149	0.00927	0.01069	0.01129	0.01391	0.0121	0.01492
0	0.07198	0.05484	0.06734	0.06552	0.0619	0.05444	0.06008	0.05766	0.05867	0.06069	0.05927	0.05847	0.05907	0.05746	0.05827
0	0.10444	0.08629	0.10907	0.10504	0.09012	0.08488	0.0879	0.08488	0.0748	0.08024	0.08508	0.08427	0.07782	0.08407	0.07641
0	0.02339	0.02742	0.0254	0.03327	0.03226	0.03024	0.03004	0.02823	0.02964	0.03165	0.02641	0.02923	0.03125	0.02883	0.03427
0	0.06573	0.07984	0.0748	0.06492	0.06734	0.07056	0.07379	0.06532	0.07097	0.07056	0.0748	0.06411	0.07823	0.07802	0.07399
0	0.01653	0.01512	0.01794	0.01855	0.0131	0.01855	0.01774	0.01774	0.02097	0.02056	0.02097	0.01976	0.01633	0.01935	0.01754
0	0.04839	0.05544	0.03972	0.04335	0.04597	0.04778	0.04516	0.04859	0.04677	0.05363	0.04234	0.05081	0.04435	0.04133	0.04738
1	0.04173	0.04698	0.05444	0.06431	0.06855	0.06734	0.07984	0.08044	0.08105	0.08044	0.0877	0.07641	0.07742	0.07964	0.07702
0	0.07923	0.09355	0.08105	0.07762	0.08468	0.08367	0.06593	0.07359	0.07681	0.07661	0.07258	0.08468	0.08065	0.07863	0.07823
0	0.01673	0.01915	0.01694	0.02056	0.02016	0.01875	0.01855	0.01593	0.02157	0.01956	0.01956	0.01915	0.01855	0.02238	0.02077
0	0.03407	0.03649	0.03931	0.03044	0.03669	0.03589	0.03266	0.03569	0.04012	0.03347	0.03931	0.0373	0.03992	0.03629	0.03488
0	0.04597	0.04254	0.0504	0.04516	0.04315	0.04234	0.04516	0.04839	0.04435	0.0494	0.04597	0.04456	0.04637	0.05141	0.04093
0	0.04516	0.03851	0.04234	0.04254	0.03851	0.0379	0.03629	0.03831	0.03589	0.03508	0.0373	0.0381	0.0373	0.0381	0.03367
0	0.07762	0.0748	0.0746	0.07298	0.07722	0.08911	0.08992	0.08468	0.08548	0.07419	0.07621	0.06512	0.07198	0.06169	0.06976
0	0.075	0.06815	0.0748	0.07359	0.06935	0.06794	0.07419	0.07218	0.06411	0.07339	0.07198	0.07077	0.06855	0.07782	0.07198
0	0.04798	0.0494	0.0496	0.0496	0.04778	0.04496	0.04919	0.0502	0.04294	0.04698	0.05222	0.05302	0.04839	0.04637	0.04879
0	0.06633	0.07621	0.06593	0.07137	0.06976	0.07399	0.06573	0.06734	0.07238	0.07016	0.06371	0.07258	0.06774	0.06512	0.07177
0	0.00645	0.00786	0.00605	0.00464	0.00726	0.00907	0.00524	0.00948	0.00927	0.00726	0.00948	0.00887	0.0121	0.00806	0.01069
0	0.02399	0.02339	0.01633	0.01915	0.02399	0.0254	0.0256	0.02238	0.02843	0.02218	0.02218	0.02722	0.02339	0.02359	0.02823
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Negative Dataset

		-15	-14	-13	-12	-11	-10)	-9	-8	-7	-	6 -5	-4	-3	-2	-1	0
A		0.08005	0.07782	0.07896	0.08072	0.08021	0.08069	0.081	14 0.07	726	0.07716	0.0814	4 0.08151	0.07684	0.08189	0.08237	0.07952	0
С		0.01629	0.01425	0.01451	0.016	0.01478	0.01518	0.015	26 0.	016	0.01523	0.0165	0.0152	0.01499	0.01528	0.01589	0.01643	0
D		0.0607	0.06054	0.05799	0.06015	0.0632	0.06041	0.060	25 0.05		0.06339		8 0.06097	0.06703	0.06785	0.06009	0.05611	0
E		0.07468	0.07779	0.07806	0.07795	0.07753	0.07721	0.075	0.07	806	0.08141	0.0779	8 0.07633	0.09082	0.09661	0.07819	0.09082	0
F		0.0353	0.03825	0.03694	0.03795	0.03647	0.03782	0.038	91 0.03	833	0.0404	0.0390	4 0.03894	0.03684	0.03931	0.04122	0.03466	0
G		0.06862	0.06974	0.06849	0.06884	0.07094	0.07128	0.067	91 0.06	993	0.06714	0.0696	0.06453	0.06443	0.06607	0.06565	0.077	0
Н		0.02105	0.02062	0.02286	0.02286	0.02283	0.02318				0.02134	0.021				0.02025	0.02012	0
1		0.04853	0.05029	0.05021	0.04731	0.0485	0.04779				0.04978						0.04712	0
K		0.04888	0.04994	0.04765	0.04633	0.04582	0.04335				0.03631						0.00784	1
L		0.09326	0.09071	0.09363	0.08866	0.09007	0.09122				0.09199					0.10363	0.10031	0
M		0.02554	0.02254	0.02331	0.02121	0.02235	0.02174				0.02166					0.02397	0.0252	0
N		0.0388	0.04005	0.04231	0.04255	0.04417	0.03997				0.04242	0.043					0.04056	0
P		0.05092	0.04837	0.04877	0.05151	0.04856	0.05092				0.05071						0.05042	0
Q		0.03835	0.03689	0.03649	0.03872	0.03692	0.0396				0.03973					0.03955	0.04202	0
R		0.05398	0.05502	0.05496	0.05597	0.05268	0.05355				0.05616					0.0572	0.06304	0
S		0.08747	0.08803	0.08941	0.08678	0.08869	0.08829				0.08936					0.0859	0.08603	0
Т		0.0513	0.05124	0.05015	0.05247	0.04959	0.05098	0.052			0.05045					0.05321	0.05039	0
V		0.06977	0.07086	0.06849	0.0687	0.07049	0.07123	0.071	36 0.07	219	0.0691	0.0704	9 0.07165	0.06756	0.0653	0.07072	0.07296	0
W		0.00997	0.0105	0.01116	0.01007	0.0106	0.01002	0.010	23 0.0	109	0.0109	0.0113	8 0.01191	0.01225	0.01119	0.01217	0.01414	0
Υ		0.02645	0.02647	0.02554	0.02517	0.02554	0.02549				0.02538						0.02533	0
-		0	0	0	0	0	()	0	0	0		0 (0	0	0	0	0
	0	1		2	3	4	5	6	7		8	9	10	11	12	13	14	15
	0	0.07445	0.07652	0.073	7 0.074	15 0.07	811 0.0	7755	0.07452	0.	.075 0	.07644	0.07721	0.07625	0.07527	0.07745	0.07378	0.07923
	0	0.01451	0.01573	0.0136	9 0.013	34 0.01	478 0.0	1496	0.01411	0.01	379 0	.01449	0.01542	0.01512	0.01366	0.01472	0.0151	0.01454
	0	0.05882	0.04941	0.060	0.061	45 0.05	967 0.0	5576	0.06076	0.06	166 0	.05757	0.05672	0.05946	0.05858	0.05672	0.05706	0.05813
	0	0.08013	0.07003	0.0863	8 0.088	96 0.07	819 0.	0733	0.07915	0.07	795 0	.07822	0.07631	0.0745	0.07702	0.07846	0.0774	0.0753
	0	0.03253	0.03809	0.0350	0.036	65 0.03	641 0.0	3785	0.03662	0.03	439 0.	.03641	0.03758	0.03599	0.03476	0.03795	0.03662	0.03891
	0	0.05842	0.06355	0.0656	7 0.064	21 0.06	283 0.0	6703	0.06629	0.0	0644 0	.06825	0.06878	0.06804	0.06589	0.06599	0.06836	0.0665
	0	0.0207	0.02169	0.0200	7 0.020	39 0.01	985 0.0	2193	0.02105	0.02	203 0	.02177	0.02179	0.02078	0.02084	0.0215	0.02169	0.02126
	0	0.04914						5068	0.0484	0.04		.04872	0.05066	0.04787	0.0492	0.05026	0.04938	0.04944
	1	0.07601							0.07211	0.07		.06793	0.07126	0.0712	0.07038	0.06756	0.07035	0.06841
	0	0.09422							0.08773	0.08			0.08949	0.09231	0.08906	0.08981	0.08997	0.08906
	0	0.02365							0.02195	0.02		.02251	0.02177	0.02142	0.02097	0.02057	0.02206	0.02222
	0	0.02303							0.04098	0.02			0.02177	0.0425	0.02037	0.04258	0.02200	0.04024
	1000	0.05159																
	0								0.04858	0.04			0.04906	0.04728	0.04757	0.04928	0.04928	0.04845
	0	0.03915							0.03633			.03806	0.03628	0.03569	0.03702	0.03676	0.0387	0.03609
	0	0.05595							0.05273	0.05			0.05177	0.0547	0.05597	0.05374	0.05175	0.05135
	0	0.07535							0.08598	0.08		.08306	0.08199	0.08524	0.08603	0.08367	0.08441	0.08811
	0	0.05021							0.04747	0.04		.04845	0.04872	0.04981	0.0493	0.04904	0.05047	0.04901
	0	0.06525							0.06831	0.06		0.0674	0.06613	0.06703	0.07038	0.06873	0.0686	0.06793
	0	0.01223	0.01183	0.011	.3 0.011	19 0.01	164 0.0	1212	0.01164	0.01	.082 0	.01116	0.01119	0.01058	0.01135	0.011	0.00999	0.01087
	0	0.02629	0.0265	0.0246	6 0.023	65 0.	0.0	2676	0.02528	0.0	248 0	.02509	0.02615	0.02421	0.0253	0.02421	0.02583	0.02496
	0	0	(0	0	0	0	0	0		0	0	0	0	0	0	0	0

- 3.2 Please compare the PWM of positive dataset to that of negative dataset to identify the significantly differential represented amino acids in each position.
 - Difference 比較:將兩個 PWM table 互減 (Positive Negative)

Row	Max	Column	Max Value	Row_Min	Min Value
K		-15	0.022897	S	-0.01771
K		-14	0.024052	S	-0.01807
K		-13	0.026741	S	-0.02005
K		-12	0.032707	S	-0.01682
K		-11	0.029583	L	-0.01427
K		-10	0.037498	S	-0.01974
K		-9	0.037835	S	-0.01423
K		-8	0.04471	S	-0.01692
K		-7	0.041315	S	-0.02202
K		-6	0.03085	G	-0.01175
K		-5	0.036013	S	-0.01754
K		-4	0.037397	L	-0.0134
K		-3	0.036684	L	-0.01136
K		-2	0.041962	S	-0.01352
K		-1	0.050426	L	-0.01906
Α		0	0	Α	0
Α		1	0.026966	K	-0.03428
R		2	0.021855	K	-0.02619
E		3	0.022694	K	-0.0181
R		4	0.020598	L	-0.01266
R		5	0.023477	S	-0.0115
R		6	0.036834	S	-0.01394
R		7	0.037188	L	-0.02181
R		8	0.030564	L	-0.01579
R		9	0.032221	S	-0.01894
R		10	0.022419	L	-0.01288
R		11	0.021512	L	-0.01973
R		12	0.009148	S	-0.01527
R		13	0.018235	S	-0.01512
Α		14	0.015937	L	-0.01134
R		15	0.018409	S	-0.01613

$$\mathrm{PWM}_{ij} = \log_2\left(rac{p_{ij}}{p_i}
ight),$$

Row_	Max	Column	Max Value	Row_Min	Min Value
K		-15	0.554307	S	-0.3264
K		-14	0.567166	W	-0.4545
K		-13	0.642597	S	-0.36642
K		-12	0.770633	F	-0.45847
K		-11	0.71863	С	-0.55181
K		-10	0.899197	Н	-0.46987
K		-9	0.982371	С	-0.46027
K		-8	1.094827	С	-1.06241
K		-7	1.096252	С	-1.28492
K		-6	0.972668	С	-1.22821
K		-5	1.172893	W	-0.92988
K		-4	1.35903	W	-1.17046
K		-3	1.543166	С	-1.15668
K		-2	1.992372	W	-1.39236
K		-1	2.893634	W	-1.17781
K		0	0	K	0
R		1	0.47239	W	-0.92221
R		2	0.498553	С	-0.76261
R		3	0.461723	С	-1.22717
R		4	0.478413	С	-1.40441
R		5	0.522913	W	-0.68158
R		6	0.769401	С	-0.599
R		7	0.769983	W	-1.15107
R		8	0.646003	С	-0.67005
R		9	0.682533	S	-0.37348
R		10	0.519064	С	-0.73307
R		11	0.478495	С	-0.50108
R		12	0.21838	W	-0.35538
R		13	0.421493	Н	-0.39687
Α		14	0.282149	F	-0.34521
R		15	0.442028	S	-0.29173

3.3 Can we use the PWM to be a predictive model for the prediction of ubiquitination sites? Explain why or why not?

可以拿去預測,只是結果好壞不可知。

因為透過兩個方法去觀察 positive data 和 negative data 的差異性

- 1. Difference
- 2. Log2 Transformation

發現,確實在特定位點會有胺基酸特異性(就以這筆資料來說)。

比如,做完 log2 的 table 中,位置 -1 的氨基酸位點,最大和最小值是整筆資料中相差較大的。在這個位點,可以 Positive 的資料是 K 比較重要,而 Negative 則是 W 貢獻度比較大。但如果有一個統計上的顯著性衡量標準去評判何謂顯著會更好。