

BSM307 İşaretler ve Sistemler

Dr. Seçkin Arı

İçerik

- Fark Denklemleri
- Doğal Çözüm
- Özel Çözüm
- Zorlanmış Çözüm
- Tam Çözüm

Dr. Ari

•
$$a_0y[n] + a_1y[n-1] + \dots + a_Ny[n-N]$$

= $b_0x[n] + b_1x[n-1] + \dots + b_Mx[n-M]$

•
$$a_0y[n] + a_1y[n-1] + \dots + a_Ny[n-N]$$

= $b_0x[n] + b_1x[n-1] + \dots + b_Mx[n-M]$

Blok Diyagram Temsilleri

Toplama	Çarpma	Birim Gecikme
$x_2[n]$ $x_1[n] \rightarrow x_1[n] + x_2[n]$	x[n] $ax[n]$	x[n] x[n-1]

Dr. Ari

- Birim darbe cevabı ile çözüm
 - ♦ Konvolüsyon toplamı
- Fark Denklemi ile çözüm

- Birim darbe cevabı ile çözüm
 - ♦ Konvolüsyon toplamı
- Fark Denklemi ile çözüm
 - ◆ Doğal Çözüm
 - ♦ Özel Çözüm
 - ♦ Zorlanmış Çözüm
 - ◆ Tam Çözüm

- Birim darbe cevabı ile çözüm
 - ♦ Konvolüsyon toplamı
- Fark Denklemi ile çözüm
 - ◆ Doğal Çözüm
 - Giriş işareti x[n] = 0 kabul edilir.
 - Başlangıç koşullarına (y[-1], y[-2], ...) göre çözüm, $y_d[n]$
 - ♦ Özel Çözüm
 - ◆ Zorlanmış Çözüm
 - ◆ Tam Çözüm

- Birim darbe cevabı ile çözüm
 - ♦ Konvolüsyon toplamı
- Fark Denklemi ile çözüm
 - ◆ Doğal Çözüm
 - Giriş işareti x[n] = 0 kabul edilir.
 - Başlangıç koşullarına (y[-1], y[-2], ...) göre çözüm, $y_d[n]$
 - ♦ Özel Çözüm
 - Giriş işareti x[n]' ye bağlı çözüm, $y_{\ddot{0}}[n]$
 - ♦ Zorlanmış Çözüm
 - ◆ Tam Çözüm

- Birim darbe cevabı ile çözüm
 - ♦ Konvolüsyon toplamı
- Fark Denklemi ile çözüm
 - ◆ Doğal Çözüm
 - Giriş işareti x[n] = 0 kabul edilir.
 - Başlangıç koşullarına (y[-1], y[-2], ...) göre çözüm, $y_d[n]$
 - ♦ Özel Çözüm
 - Giriş işareti x[n]' ye bağlı çözüm, $y_{\ddot{0}}[n]$
 - ♦ Zorlanmış Çözüm
 - Başlangıç koşulları (y[-1] = y[-2], ... = 0) kabul edilir.
 - Giriş işareti x[n]' ye bağlı çözüm, $y_z[n]$
 - Özel Çözüm, Zorlanmış Çözümün içerisinde
 - ◆ Tam Çözüm

- Birim darbe cevabı ile çözüm
 - ♦ Konvolüsyon toplamı
- Fark Denklemi ile çözüm
 - ◆ Doğal Çözüm
 - Giriş işareti x[n] = 0 kabul edilir.
 - Başlangıç koşullarına (y[-1], y[-2], ...) göre çözüm, $y_d[n]$
 - ♦ Özel Çözüm
 - Giriş işareti x[n]' ye bağlı çözüm, $y_{\ddot{0}}[n]$
 - ♦ Zorlanmış Çözüm
 - Başlangıç koşulları (y[-1] = y[-2], ... = 0) kabul edilir.
 - Giriş işareti x[n]' ye bağlı çözüm, $y_z[n]$
 - Özel Çözüm, Zorlanmış Çözümün içerisinde
 - ◆ Tam Çözüm
 - Doğal Çözüm + Zorlanmış Çözüm, $y_t[n] = y_d[n] + y_z[n]$

1.
$$a_0y[n] + a_1y[n-1] + \cdots + a_Ny[n-N] = 0$$

- ♦ Fark denkleminde, giriş işaretine bağlı olan kısım 0 yapılır.
- N, sistem derecesi

12

- 1. $a_0y[n] + a_1y[n-1] + \cdots + a_Ny[n-N] = 0$
 - ♦ Fark denkleminde, giriş işaretine bağlı olan kısım 0 yapılır.
- 2. $y[n] = \lambda^n$ kabul edilir, fark denkleminde yerine konulur.

- 1. $a_0y[n] + a_1y[n-1] + \dots + a_Ny[n-N] = 0$
 - ♦ Fark denkleminde, giriş işaretine bağlı olan kısım 0 yapılır.
- 2. $y[n] = \lambda^n$ kabul edilir, fark denkleminde yerine konulur.
- 3. $a_0 \lambda^n + a_1 y[n-1] + \dots + a_N y[n-N] = 0$

- 1. $a_0y[n] + a_1y[n-1] + \dots + a_Ny[n-N] = 0$
 - ♦ Fark denkleminde, giriş işaretine bağlı olan kısım 0 yapılır.
- 2. $y[n] = \lambda^n$ kabul edilir, fark denkleminde yerine konulur.
- 3. $a_0 \lambda^n + a_1 \lambda^{n-1} + \dots + a_N \lambda^{n-N} = 0$

- 1. $a_0y[n] + a_1y[n-1] + \cdots + a_Ny[n-N] = 0$
 - ♦ Fark denkleminde, giriş işaretine bağlı olan kısım 0 yapılır.
- 2. $y[n] = \lambda^n$ kabul edilir, fark denkleminde yerine konulur.
- 3. $a_0 \lambda^n + a_1 \lambda^{n-1} + \dots + a_N \lambda^{n-N} = 0$
- 4. En küçük dereceli terim parantezine alınır.
 - $\lambda^{n-N}(a_0\lambda^N + a_1\lambda^{N-1} + \dots + a_N) = 0$

- 1. $a_0y[n] + a_1y[n-1] + \dots + a_Ny[n-N] = 0$
 - ♦ Fark denkleminde, giriş işaretine bağlı olan kısım 0 yapılır.
- 2. $y[n] = \lambda^n$ kabul edilir, fark denkleminde yerine konulur.
- 3. $a_0 \lambda^n + a_1 \lambda^{n-1} + \dots + a_N \lambda^{n-N} = 0$
- 4. En küçük dereceli terim parantezine alınır.
 - $\lambda^{n-N} \underbrace{(a_0 \lambda^N + a_1 \lambda^{N-1} + \dots + a_N)}_{\text{Karakteristik Denklem}} = 0$

- 1. $a_0y[n] + a_1y[n-1] + \dots + a_Ny[n-N] = 0$
 - ♦ Fark denkleminde, giriş işaretine bağlı olan kısım 0 yapılır.
- 2. $y[n] = \lambda^n$ kabul edilir, fark denkleminde yerine konulur.
- 3. $a_0 \lambda^n + a_1 \lambda^{n-1} + \dots + a_N \lambda^{n-N} = 0$
- 4. En küçük dereceli terim parantezine alınır.
 - $\lambda^{n-N} \underbrace{(a_0 \lambda^N + a_1 \lambda^{N-1} + \dots + a_N)}_{\text{Karakteristik Denklem}} = 0$
- 5. Karakteristik denklem kökleri bulunur.

- 1. $a_0y[n] + a_1y[n-1] + \cdots + a_Ny[n-N] = 0$
 - ♦ Fark denkleminde, giriş işaretine bağlı olan kısım 0 yapılır.
- 2. $y[n] = \lambda^n$ kabul edilir, fark denkleminde yerine konulur.
- 3. $a_0 \lambda^n + a_1 \lambda^{n-1} + \dots + a_N \lambda^{n-N} = 0$
- 4. En küçük dereceli terim parantezine alınır.

$$\lambda^{n-N} \underbrace{(a_0 \lambda^N + a_1 \lambda^{N-1} + \dots + a_N)}_{\text{Karakteristik Denklem}} = 0$$

- 5. Karakteristik denklem kökleri bulunur. Köklerin durumuna göre doğal çözüm yapısı seçilir.
- 6. Örneğin, N=3 için. Kökler: λ_1 , λ_2 , λ_3

- 1. $a_0y[n] + a_1y[n-1] + \dots + a_Ny[n-N] = 0$
 - ♦ Fark denkleminde, giriş işaretine bağlı olan kısım 0 yapılır.
- 2. $y[n] = \lambda^n$ kabul edilir, fark denkleminde yerine konulur.
- 3. $a_0 \lambda^n + a_1 \lambda^{n-1} + \dots + a_N \lambda^{n-N} = 0$
- 4. En küçük dereceli terim parantezine alınır.

$$\lambda^{n-N} \underbrace{(a_0 \lambda^N + a_1 \lambda^{N-1} + \dots + a_N)}_{\text{Karakteristik Denklem}} = 0$$

- 5. Karakteristik denklem kökleri bulunur. Köklerin durumuna göre doğal çözüm yapısı seçilir.
- 6. Örneğin, N=3 için. Kökler: λ_1 , λ_2 , λ_3

- 1. $a_0y[n] + a_1y[n-1] + \dots + a_Ny[n-N] = 0$
 - ♦ Fark denkleminde, giriş işaretine bağlı olan kısım 0 yapılır.
- 2. $y[n] = \lambda^n$ kabul edilir, fark denkleminde yerine konulur.
- 3. $a_0 \lambda^n + a_1 \lambda^{n-1} + \dots + a_N \lambda^{n-N} = 0$
- 4. En küçük dereceli terim parantezine alınır.

$$\lambda^{n-N} \underbrace{(a_0 \lambda^N + a_1 \lambda^{N-1} + \dots + a_N)}_{\text{Karakteristik Denklem}} = 0$$

- 5. Karakteristik denklem kökleri bulunur. Köklerin durumuna göre doğal çözüm yapısı seçilir.
- 6. Örneğin, N=3 için. Kökler: λ_1 , λ_2 , λ_3

$$y_{d}[n] = \begin{cases} C_{1}\lambda_{1}^{n} + C_{2}\lambda_{2}^{n} + C_{3}\lambda_{3}^{n}, & \lambda_{1} \neq \lambda_{2} \neq \lambda_{3} \\ C_{1}\lambda_{1}^{n} + C_{2}n\lambda_{2}^{n} + C_{3}\lambda_{3}^{n}, & \lambda_{1} = \lambda_{2} \neq \lambda_{3} \\ C_{1}\lambda_{1}^{n} + C_{2}n\lambda_{2}^{n} + C_{3}n^{2}\lambda_{3}^{n} & \lambda_{1} = \lambda_{2} = \lambda_{3} \end{cases}$$

6. Örneğin, N=3 için. Kökler: $\lambda_1, \lambda_2, \lambda_3$

$$y_{d}[n] = \begin{cases} C_{1}\lambda_{1}^{n} + C_{2}\lambda_{2}^{n} + C_{3}\lambda_{3}^{n}, & \lambda_{1} \neq \lambda_{2} \neq \lambda_{3} \\ C_{1}\lambda_{1}^{n} + C_{2}n\lambda_{2}^{n} + C_{3}\lambda_{3}^{n}, & \lambda_{1} = \lambda_{2} \neq \lambda_{3} \\ C_{1}\lambda_{1}^{n} + C_{2}n\lambda_{2}^{n} + C_{3}n^{2}\lambda_{3}^{n}, & \lambda_{1} = \lambda_{2} = \lambda_{3} \end{cases}$$

- 7. Yapı belirlendikten sonra fark denklemi kullanılarak y değerleri bulunur.
 - N=1 ise, y[0] bulunur. $a_0y[0] + a_1y[-1] = 0$

6. Örneğin, N=3 için. Kökler: λ_1 , λ_2 , λ_3

$$y_{d}[n] = \begin{cases} C_{1}\lambda_{1}^{n} + C_{2}\lambda_{2}^{n} + C_{3}\lambda_{3}^{n}, & \lambda_{1} \neq \lambda_{2} \neq \lambda_{3} \\ C_{1}\lambda_{1}^{n} + C_{2}n\lambda_{2}^{n} + C_{3}\lambda_{3}^{n}, & \lambda_{1} = \lambda_{2} \neq \lambda_{3} \\ C_{1}\lambda_{1}^{n} + C_{2}n\lambda_{2}^{n} + C_{3}n^{2}\lambda_{3}^{n}, & \lambda_{1} = \lambda_{2} = \lambda_{3} \end{cases}$$

7. Yapı belirlendikten sonra fark denklemi kullanılarak y değerleri bulunur.

N=1 ise,
$$y[0]$$
 bulunur. $a_0y[0] + a_1y[-1] = 0$
N=2 ise, $y[0]$, $y[1]$ bulunur.
$$a_0y[0] + a_1y[-1] + a_2y[-2] = 0$$
$$a_0y[1] + a_1y[0] + a_2y[-1] = 0$$

6. Örneğin, N=3 için. Kökler: $\lambda_1, \lambda_2, \lambda_3$

$$y_{d}[n] = \begin{cases} C_{1}\lambda_{1}^{n} + C_{2}\lambda_{2}^{n} + C_{3}\lambda_{3}^{n}, & \lambda_{1} \neq \lambda_{2} \neq \lambda_{3} \\ C_{1}\lambda_{1}^{n} + C_{2}n\lambda_{2}^{n} + C_{3}\lambda_{3}^{n}, & \lambda_{1} = \lambda_{2} \neq \lambda_{3} \\ C_{1}\lambda_{1}^{n} + C_{2}n\lambda_{2}^{n} + C_{3}n^{2}\lambda_{3}^{n}, & \lambda_{1} = \lambda_{2} = \lambda_{3} \end{cases}$$

7. Yapı belirlendikten sonra fark denklemi kullanılarak y değerleri bulunur.

N=1 ise,
$$y[0]$$
 bulunur. $a_0y[0] + a_1y[-1] = 0$

N=2 ise,
$$y[0]$$
, $y[1]$ bulunur.
$$a_0y[0] + a_1y[-1] + a_2y[-2] = 0$$

$$a_0y[1] + a_1y[0] + a_2y[-1] = 0$$

$$a_0y[0] + a_1y[-1] + a_2y[-2] = 0$$
N=3 ise, $y[0]$, $y[1]$, $y[2]$ bulunur.
$$a_0y[1] + a_1y[0] + a_2y[-1] = 0$$

$$a_0y[2] + a_1y[1] + a_2y[0] = 0$$

7. Yapı belirlendikten sonra fark denklemi kullanılarak y değerleri bulunur.

N=1 ise,
$$y[0]$$
 bulunur. $a_0y[0] + a_1y[-1] = 0$

N=2 ise, $y[0]$, $y[1]$ bulunur.
$$a_0y[0] + a_1y[-1] + a_2y[-2] = 0$$

$$a_0y[1] + a_1y[0] + a_2y[-1] = 0$$

$$a_0y[0] + a_1y[-1] + a_2y[-2] = 0$$
N=3 ise, $y[0]$, $y[1]$, $y[2]$ bulunur.
$$a_0y[1] + a_1y[0] + a_2y[-1] = 0$$

$$a_0y[2] + a_1y[1] + a_2y[0] = 0$$

- 8. y' ler belirlenen doğal çözüm yapısı ile eşleştirilir. C katsayıları bulunur.
 - N=1 ise, $y[0] = y_d[0]$, C_1 bulunur.

7. Yapı belirlendikten sonra fark denklemi kullanılarak y değerleri bulunur.

N=1 ise,
$$y[0]$$
 bulunur. $a_0y[0] + a_1y[-1] = 0$

N=2 ise, $y[0]$, $y[1]$ bulunur.
$$a_0y[0] + a_1y[-1] + a_2y[-2] = 0$$

$$a_0y[1] + a_1y[0] + a_2y[-1] = 0$$

N=3 ise, $y[0]$, $y[1]$, $y[2]$ bulunur.
$$a_0y[1] + a_1y[0] + a_2y[-1] = 0$$

$$a_0y[2] + a_1y[1] + a_2y[0] = 0$$

8. y' ler belirlenen doğal çözüm yapısı ile eşleştirilir. C katsayıları bulunur.

N=1 ise,
$$y[0] = y_d[0]$$
, C_1 bulunur.
N=2 ise, $y[0] = y_d[0]$
 $y[1] = y_d[1]$, C_1 , C_2 bulunur.

7. Yapı belirlendikten sonra fark denklemi kullanılarak y değerleri bulunur.

N=1 ise,
$$y[0]$$
 bulunur. $a_0y[0] + a_1y[-1] = 0$
N=2 ise, $y[0]$, $y[1]$ bulunur.
$$a_0y[0] + a_1y[-1] + a_2y[-2] = 0$$

$$a_0y[1] + a_1y[0] + a_2y[-1] = 0$$

$$a_0y[0] + a_1y[-1] + a_2y[-2] = 0$$
N=3 ise, $y[0]$, $y[1]$, $y[2]$ bulunur.
$$a_0y[1] + a_1y[0] + a_2y[-1] = 0$$

$$a_0y[2] + a_1y[1] + a_2y[0] = 0$$

8. y' ler belirlenen doğal çözüm yapısı ile eşleştirilir. C katsayıları bulunur.

N=1 ise,
$$y[0] = y_d[0]$$
, C_1 bulunur.
N=2 ise, $y[0] = y_d[0]$, $y[1] = y_d[1]$, $y[0] = y_d[0]$
N=3 ise, $y[1] = y_d[1]$, $y[1] = y_d[1]$, $y[2] = y_d[2]$

•
$$y(n) + ay(n-1) = x(n)$$
 ise $y_d(n) = ?$

- y(n) + ay(n-1) = x(n) ise $y_d(n) = ?$
- $\lambda^n + a\lambda^{n-1} = 0$
 - $\lambda^{n-1}(\lambda + a) = 0$
 - $\star \lambda = -a$
- $y_d(n) =$

- y(n) + ay(n-1) = x(n) ise $y_d(n) = ?$
- $\lambda^n + a\lambda^{n-1} = 0$
 - $\lambda^{n-1}(\lambda + a) = 0$
 - $\lambda = -a$
- $y_d(n) = C_1(-a)^n$

- y(n) + ay(n-1) = x(n) ise $y_d(n) = ?$
- $\lambda^n + a\lambda^{n-1} = 0$
 - $\lambda^{n-1}(\lambda + a) = 0$
 - $\star \lambda = -a$
- $y_d(n) = C_1(-a)^n$
- n = 0 için y(0) + ay(-1) = 0

- y(n) + ay(n-1) = x(n) ise $y_d(n) = ?$
- $\lambda^n + a\lambda^{n-1} = 0$
 - $\lambda^{n-1}(\lambda + a) = 0$
 - $\star \lambda = -a$
- $y_d(n) = C_1(-a)^n$
- n = 0 için y(0) + ay(-1) = 0
 - y(0) = -ay(-1)
- $y_d(0) = y(0)$

- y(n) + ay(n-1) = x(n) ise $y_d(n) = ?$
- $\lambda^n + a\lambda^{n-1} = 0$
 - $\lambda^{n-1}(\lambda + a) = 0$
 - $\lambda = -a$
- $y_d(n) = C_1(-a)^n$
- n = 0 için y(0) + ay(-1) = 0
 - y(0) = -ay(-1)
- $y_d(0) = y(0)$
- $C_1 = -ay(-1)$

- y(n) + ay(n-1) = x(n) ise $y_d(n) = ?$
- $\lambda^n + a\lambda^{n-1} = 0$
 - $\lambda^{n-1}(\lambda + a) = 0$
 - $\lambda = -a$
- $y_d(n) = C_1(-a)^n$
- n = 0 için y(0) + ay(-1) = 0
 - y(0) = -ay(-1)
- $y_d(0) = y(0)$
- $C_1 = -ay(-1)$
- $y_d(n) = -ay(-1)(-a)^n = y(-1)(-a)^{n+1}$

•
$$y(n) - 2y(n-1) - 3y(n-2) = x(n)$$
 ve $y(-1) = y(-2) = 2$ ise $y_d(n) = ?$

- y(n) 2y(n-1) 3y(n-2) = x(n) ve y(-1) = y(-2) = 2 ise $y_d(n) = ?$
- $\lambda^n 2\lambda^{n-1} 3\lambda^{n-2} = 0$

- y(n) 2y(n-1) 3y(n-2) = x(n) ve y(-1) = y(-2) = 2 ise $y_d(n) = ?$
- $\bullet \ \lambda^n 2\lambda^{n-1} 3\lambda^{n-2} = 0$
 - $\lambda^{n-2}(\lambda^2 2\lambda 3) = 0$

- y(n) 2y(n-1) 3y(n-2) = x(n) ve y(-1) = y(-2) = 2 ise $y_d(n) = ?$
- $\bullet \ \lambda^n 2\lambda^{n-1} 3\lambda^{n-2} = 0$
 - $\lambda^{n-2}(\lambda^2 2\lambda 3) = 0$
 - $\lambda_1 = -1, \lambda_2 = 3$
- $y_d(n) =$

- y(n) 2y(n-1) 3y(n-2) = x(n) ve y(-1) = y(-2) = 2 ise $y_d(n) = ?$
- $\bullet \ \lambda^n 2\lambda^{n-1} 3\lambda^{n-2} = 0$
 - $\lambda^{n-2}(\lambda^2 2\lambda 3) = 0$
 - $\lambda_1 = -1, \lambda_2 = 3$
- $y_d(n) = C_1(-1)^n + C_2(3)^n$

- y(n) 2y(n-1) 3y(n-2) = x(n) ve y(-1) = y(-2) = 2 ise $y_d(n) = ?$
- $\bullet \ \lambda^n 2\lambda^{n-1} 3\lambda^{n-2} = 0$
 - $\lambda^{n-2}(\lambda^2 2\lambda 3) = 0$
 - $\lambda_1 = -1, \lambda_2 = 3$
- $y_d(n) = C_1(-1)^n + C_2(3)^n$
- n = 0 için y(0) 2y(-1) 3y(-2) = 0
 - $y(0) = 2 \times 2 + 3 \times 2 = 10$

- y(n) 2y(n-1) 3y(n-2) = x(n) ve y(-1) = y(-2) = 2 ise $y_d(n) = ?$
- $\lambda^n 2\lambda^{n-1} 3\lambda^{n-2} = 0$
 - $\lambda^{n-2}(\lambda^2 2\lambda 3) = 0$
 - $\lambda_1 = -1, \lambda_2 = 3$
- $y_d(n) = C_1(-1)^n + C_2(3)^n$
- n = 0 için y(0) 2y(-1) 3y(-2) = 0
 - $y(0) = 2 \times 2 + 3 \times 2 = 10$
 - $y_d(0) = C_1 + C_2$

- y(n) 2y(n-1) 3y(n-2) = x(n) ve y(-1) = y(-2) = 2 ise $y_d(n) = ?$
- $\lambda^n 2\lambda^{n-1} 3\lambda^{n-2} = 0$
 - $\lambda^{n-2}(\lambda^2 2\lambda 3) = 0$
 - $\lambda_1 = -1, \lambda_2 = 3$
- $y_d(n) = C_1(-1)^n + C_2(3)^n$
- n = 0 için y(0) 2y(-1) 3y(-2) = 0
 - $y(0) = 2 \times 2 + 3 \times 2 = 10$
 - $y_d(0) = C_1 + C_2 = 10$
- n = 1 için y(1) 2y(0) 3y(-1) = 0
 - $y(1) = 2 \times 10 + 3 \times 2 = 26$
 - $y_d(1) = -C_1 + 3C_2 = 26$

- $y_d(n) = C_1(-1)^n + C_2(3)^n$
- n = 0 için y(0) 2y(-1) 3y(-2) = 0
 - $y(0) = 2 \times 2 + 3 \times 2 = 10$
 - $y_d(0) = C_1 + C_2$
- $n = 1 i \sin y(1) 2y(0) 3y(-1) = 0$
 - $y(1) = 2 \times 10 + 3 \times 2 = 26$
 - $y_d(1) = -C_1 + 3C_2$
- $y_d(0) = y(0) \rightarrow C_1 + C_2 = 10$
- $y_d(1) = y(1) \rightarrow -C_1 + 3C_2 = 26$

- $y_d(n) = C_1(-1)^n + C_2(3)^n$
- $y_d(0) = y(0) \rightarrow C_1 + C_2 = 10$
- $y_d(1) = y(1) \rightarrow -C_1 + 3C_2 = 26$
 - \bullet $C_2 = 9, C_1 = 1$
- $y_d(n) = (-1)^n + 9(3)^n$

- $y_d(n) = C_1(-1)^n + C_2(3)^n$
- $y_d(0) = y(0) \rightarrow C_1 + C_2 = 10$
- $y_d(1) = y(1) \rightarrow -C_1 + 3C_2 = 26$
 - \bullet $C_2 = 9, C_1 = 1$
- $y_d(n) = (-1)^n + 9(3)^n = (-1)^n + (3)^{n+2}$

•
$$y(n) - 3y(n-1) - 4y(n-2) = x(n) + 2x(n-1)$$
 ve $y(-1) = 5$, $y(-2) = 0$ ise $y_d(n) = ?$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ve y(-1) = 5, y(-2) = 0 ise $y_d(n) = ?$
- $\bullet \ \lambda^n 3\lambda^{n-1} 4\lambda^{n-2} = 0$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ve y(-1) = 5, y(-2) = 0 ise $y_d(n) = ?$
- $\bullet \ \lambda^n 3\lambda^{n-1} 4\lambda^{n-2} = 0$
 - $\lambda^{n-2}(\lambda^2 3\lambda 4) = 0$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ve y(-1) = 5, y(-2) = 0 ise $y_d(n) = ?$
- $\lambda^n 3\lambda^{n-1} 4\lambda^{n-2} = 0$
 - $\lambda^{n-2}(\lambda^2 3\lambda 4) = 0$
 - $\lambda_1 = -1, \lambda_2 = 4$
- $y_d(n) =$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ve y(-1) = 5, y(-2) = 0 ise $y_d(n) = ?$
- $\lambda^n 3\lambda^{n-1} 4\lambda^{n-2} = 0$
 - $\lambda^{n-2}(\lambda^2 3\lambda 4) = 0$
 - $\lambda_1 = -1, \lambda_2 = 4$
- $y_d(n) = C_1(-1)^n + C_2(4)^n$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ve y(-1) = 5, y(-2) = 0 ise $y_d(n) = ?$
- $\lambda^n 3\lambda^{n-1} 4\lambda^{n-2} = 0$
 - $\lambda^{n-2}(\lambda^2 3\lambda 4) = 0$
 - $\lambda_1 = -1, \lambda_2 = 4$
- $y_d(n) = C_1(-1)^n + C_2(4)^n$
- n = 0 için y(0) 3y(-1) 4y(-2) = 0
 - $varphi y(0) = 3 \times 5 + 4 \times 0 = 15$
 - $y_d(0) = C_1 + C_2 = 15$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ve y(-1) = 5, y(-2) = 0 ise $y_d(n) = ?$
- $\lambda^n 3\lambda^{n-1} 4\lambda^{n-2} = 0$
 - $\lambda^{n-2}(\lambda^2 3\lambda 4) = 0$
 - $\lambda_1 = -1, \lambda_2 = 4$
- $y_d(n) = C_1(-1)^n + C_2(4)^n$
- n = 0 için y(0) 3y(-1) 4y(-2) = 0
 - $y(0) = 3 \times 5 + 4 \times 0 = 15$
 - $y_d(0) = C_1 + C_2$
- n = 1 için y(1) 3y(0) 4y(-1) = 0
 - $y(1) = 3 \times 15 + 4 \times 5 = 65$
 - $y_d(1) = -C_1 + 4C_2 = 65$

- $y_d(n) = C_1(-1)^n + C_2(4)^n$
- n = 0 için y(0) 3y(-1) 4y(-2) = 0
 - $y(0) = 3 \times 5 + 4 \times 0 = 15$
 - $y_d(0) = C_1 + C_2$
- n = 1 için y(1) 3y(0) 4y(-1) = 0
 - $y(1) = 3 \times 15 + 4 \times 5 = 65$
 - $\bullet \ y_d(1) = -C_1 + 4C_2$
- $y_d(0) = y(0) \rightarrow C_1 + C_2 = 15$
- $y_d(1) = y(1) \rightarrow -C_1 + 4C_2 = 65$

- $y_d(n) = C_1(-1)^n + C_2(4)^n$
- $y_d(0) = y(0) \rightarrow C_1 + C_2 = 15$
- $y_d(1) = y(1) \rightarrow -C_1 + 4C_2 = 65$
 - \bullet $C_2 = 16, C_1 = -1$
- $y_d(n) = -(-1)^n + 16(4)^n$

- $y_d(n) = C_1(-1)^n + C_2(4)^n$
- $y_d(0) = y(0) \rightarrow C_1 + C_2 = 15$
- $y_d(1) = y(1) \rightarrow -C_1 + 4C_2 = 65$
 - \bullet $C_2 = 16, C_1 = -1$
- $y_d(n) = -(-1)^n + 16(4)^n = (-1)^{n+1} + (4)^{n+2}$

• Zorlanmış çözümün bir kısmıdır.

- Zorlanmış çözümün bir kısmıdır.
- 1. Giriş işaretine bağlı olarak aşağıdaki tablodan yapısı belirlenir.

Giriş İşareti, $x(n)$	Özel Çözüm Yapısı, $oldsymbol{y}_{\ddot{ ext{o}}}(oldsymbol{n})$
Au(n)	Ku(n)
$AB^nu(n)$	$KB^nu(n)$
$A\cos(\omega_0 n)$ ve/veya $A\sin(\omega_0 n)$	$K_1 \cos(\omega_0 n) + K_2 \sin(\omega_0 n)$

- Zorlanmış çözümün bir kısmıdır.
- 1. Giriş işaretine bağlı olarak aşağıdaki tablodan yapısı belirlenir.

Giriş İşareti, $x(n)$	Özel Çözüm Yapısı, $oldsymbol{y}_{\ddot{ ext{o}}}(oldsymbol{n})$
Au(n)	Ku(n)
$AB^nu(n)$	$KB^nu(n)$
$A\cos(\omega_0 n)$ ve/veya $A\sin(\omega_0 n)$	$K_1 \cos(\omega_0 n) + K_2 \sin(\omega_0 n)$

2. Yapı belirlendikten sonra fark denkleminde yerine konulur.

$$a_0 y_{\ddot{0}}[n] + a_1 y_{\ddot{0}}[n-1] + \dots + a_N y_{\ddot{0}}[n-N]$$

$$= b_0 x[n] + b_1 x[n-1] + \dots + b_M x[n-M]$$

- Zorlanmış çözümün bir kısmıdır.
- 1. Giriş işaretine bağlı olarak aşağıdaki tablodan yapısı belirlenir.

Giriş İşareti, $oldsymbol{x}(oldsymbol{n})$	Özel Çözüm Yapısı, $oldsymbol{y}_{\ddot{ ext{o}}}(oldsymbol{n})$
Au(n)	Ku(n)
$AB^nu(n)$	$KB^nu(n)$
$A\cos(\omega_0 n)$ ve/veya $A\sin(\omega_0 n)$	$K_1 \cos(\omega_0 n) + K_2 \sin(\omega_0 n)$

- 2. Yapı belirlendikten sonra fark denkleminde yerine konulur.
 - $a_0 y_{\ddot{0}}[n] + a_1 y_{\ddot{0}}[n-1] + \dots + a_N y_{\ddot{0}}[n-N]$ $= b_0 x[n] + b_1 x[n-1] + \dots + b_M x[n-M]$
- 3. K katsayıları bulunur.

•
$$y(n) + ay(n-1) = x(n)$$
 ve $x(n) = u(n)$ ise $y_{\ddot{0}}(n) = ?$

- y(n) + ay(n-1) = x(n) ve x(n) = u(n) ise $y_{\ddot{0}}(n) = ?$
- $\lambda = -a$ ve $x(n) = (1)^n u(n)$

- y(n) + ay(n-1) = x(n) ve x(n) = u(n) ise $y_{\ddot{0}}(n) = ?$
- $\lambda = -a \text{ ve } x(n) = (1)^n u(n)$
- $-a \neq 1$ ise $y_{\ddot{0}}(n) = Ku(n)$

- y(n) + ay(n-1) = x(n) ve x(n) = u(n) ise $y_{\ddot{0}}(n) = ?$
- $\lambda = -a \text{ ve } x(n) = (1)^n u(n)$
- $-a \neq 1$ ise $y_{\ddot{0}}(n) = Ku(n)$
- -a = 1 ise $y_{\ddot{0}}(n) = Knu(n)$

- y(n) + ay(n-1) = x(n) ve x(n) = u(n) ise $y_{\ddot{0}}(n) = ?$
- $x(n) = u(n) \rightarrow y_{\ddot{0}}(n) =$

- y(n) + ay(n-1) = x(n) ve x(n) = u(n) ise $y_{\ddot{0}}(n) = ?$
- $x(n) = u(n) \rightarrow y_{\ddot{0}}(n) = Ku(n)$
- $Ku(n) + \cdots$

- y(n) + ay(n-1) = x(n) ve x(n) = u(n) ise $y_{\ddot{0}}(n) = ?$
- $x(n) = u(n) \rightarrow y_{\ddot{0}}(n) = Ku(n)$
- $Ku(n) + aKu(n-1) = \cdots$

- y(n) + ay(n-1) = x(n) ve x(n) = u(n) ise $y_{\ddot{0}}(n) = ?$
- $x(n) = u(n) \rightarrow y_{\ddot{0}}(n) = Ku(n)$
- Ku(n) + aKu(n-1) = u(n)

- y(n) + ay(n-1) = x(n) ve x(n) = u(n) ise $y_{\ddot{0}}(n) = ?$
- $x(n) = u(n) \rightarrow y_{\ddot{0}}(n) = Ku(n)$
- Ku(n) + aKu(n-1) = u(n)
- $n \ge 1$ için

- y(n) + ay(n-1) = x(n) ve x(n) = u(n) ise $y_{\ddot{0}}(n) = ?$
- $x(n) = u(n) \rightarrow y_{\ddot{0}}(n) = Ku(n)$
- Ku(n) + aKu(n-1) = u(n)
- $n \ge 1$ için $K + aK = 1 \rightarrow$

- y(n) + ay(n-1) = x(n) ve x(n) = u(n) ise $y_{\ddot{0}}(n) = ?$
- $x(n) = u(n) \rightarrow y_{\ddot{0}}(n) = Ku(n)$
- Ku(n) + aKu(n-1) = u(n)
- $n \ge 1$ için $K + aK = 1 \to K = \frac{1}{a+1}$

- y(n) + ay(n-1) = x(n) ve x(n) = u(n) ise $y_{\ddot{0}}(n) = ?$
- $x(n) = u(n) \rightarrow y_{\ddot{0}}(n) = Ku(n)$
- Ku(n) + aKu(n-1) = u(n)
- $n \ge 1$ için $K + aK = 1 \rightarrow K = \frac{1}{a+1}$
- $y_{\ddot{0}}(n) = \frac{1}{a+1}u(n)$

•
$$y(n) - 2y(n-1) - 3y(n-2) = x(n)$$
 ve $x(n) = 10u(n)$ ise $y_{\ddot{0}}(n) = ?$

- y(n) 2y(n-1) 3y(n-2) = x(n) ve x(n) = 10u(n) ise $y_{\ddot{0}}(n) = ?$
- $\lambda_1 = -1, \lambda_2 = 3 \text{ ve } x(n) = 10(1)^n u(n) \rightarrow y_0(n) = ?$

- y(n) 2y(n-1) 3y(n-2) = x(n) ve x(n) = 10u(n) ise $y_{\ddot{0}}(n) = ?$
- $\lambda_1 = -1, \lambda_2 = 3 \text{ ve } x(n) = 10(1)^n u(n) \rightarrow y_{\ddot{0}}(n) = ?$
 - $\lambda_1 = -1 \neq 1$ ve $\lambda_2 = 3 \neq 1$ olduğu için

- y(n) 2y(n-1) 3y(n-2) = x(n) ve x(n) = 10u(n) ise $y_{\ddot{0}}(n) = ?$
- $x(n) = 10u(n) \rightarrow y_{\ddot{0}}(n) = Ku(n)$

- y(n) 2y(n-1) 3y(n-2) = x(n) ve x(n) = 10u(n) ise $y_{\ddot{0}}(n) = ?$
- $x(n) = 10u(n) \rightarrow y_{\ddot{0}}(n) = Ku(n)$
- *Ku(n)* ···

- y(n) 2y(n-1) 3y(n-2) = x(n) ve x(n) = 10u(n) ise $y_{\ddot{0}}(n) = ?$
- $x(n) = 10u(n) \rightarrow y_{\ddot{0}}(n) = Ku(n)$
- $Ku(n) 2Ku(n-1) \cdots$

- y(n) 2y(n-1) 3y(n-2) = x(n) ve x(n) = 10u(n) ise $y_{\ddot{0}}(n) = ?$
- $x(n) = 10u(n) \rightarrow y_{\ddot{0}}(n) = Ku(n)$
- $Ku(n) 2Ku(n-1) 3Ku(n-2) = \cdots$

- y(n) 2y(n-1) 3y(n-2) = x(n) ve x(n) = 10u(n) ise $y_{\ddot{0}}(n) = ?$
- $x(n) = 10u(n) \rightarrow y_{\ddot{0}}(n) = Ku(n)$
- Ku(n) 2Ku(n-1) 3Ku(n-2) = 10u(n)

- y(n) 2y(n-1) 3y(n-2) = x(n) ve x(n) = 10u(n) ise $y_{\ddot{0}}(n) = ?$
- $x(n) = 10u(n) \rightarrow y_{\ddot{0}}(n) = Ku(n)$
- Ku(n) 2Ku(n-1) 3Ku(n-2) = 10u(n)
- $n \ge 2$ için

Dr. Ari

- y(n) 2y(n-1) 3y(n-2) = x(n) ve x(n) = 10u(n) ise $y_{\ddot{0}}(n) = ?$
- $x(n) = 10u(n) \rightarrow y_{\ddot{0}}(n) = Ku(n)$
- Ku(n) 2Ku(n-1) 3Ku(n-2) = 10u(n)
- $n \ge 2$ için $K 2K 3K = 10 \rightarrow$

- y(n) 2y(n-1) 3y(n-2) = x(n) ve x(n) = 10u(n) ise $y_{\ddot{0}}(n) = ?$
- $x(n) = 10u(n) \rightarrow y_{\ddot{0}}(n) = Ku(n)$
- Ku(n) 2Ku(n-1) 3Ku(n-2) = 10u(n)
- $n \ge 2 \text{ için } K 2K 3K = 10 \rightarrow K = -\frac{5}{2}$

- y(n) 2y(n-1) 3y(n-2) = x(n) ve x(n) = 10u(n) ise $y_{\ddot{0}}(n) = ?$
- $x(n) = 10u(n) \rightarrow y_{\ddot{0}}(n) = Ku(n)$
- Ku(n) 2Ku(n-1) 3Ku(n-2) = 10u(n)
- $n \ge 2 \text{ için } K 2K 3K = 10 \rightarrow K = -\frac{5}{2}$
- $y_{\ddot{0}}(n) = -\frac{5}{2}u(n)$

•
$$y(n) - 3y(n-1) - 4y(n-2) = x(n) + 2x(n-1)$$
 ve $x(n) = (2)^n u(n)$ ise $y_{\ddot{0}}(n) = ?$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ve $x(n) = (2)^n u(n)$ ise $y_{\ddot{0}}(n) = ?$
- $\lambda_1 = -1, \lambda_2 = 4 \text{ ve } x(n) = (2)^n u(n) \rightarrow y_{\ddot{0}}(n) = ?$
 - $\lambda_1 = -1 \neq 2 \text{ ve } \lambda_2 = 4 \neq 2$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ve $x(n) = (2)^n u(n)$ ise $y_{\ddot{0}}(n) = ?$
- $x(n) = (2)^n u(n) \rightarrow y_{\ddot{0}}(n) = K(2)^n u(n)$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ve $x(n) = (2)^n u(n)$ ise $y_{\ddot{0}}(n) = ?$
- $x(n) = (2)^n u(n) \rightarrow y_{\ddot{0}}(n) = K(2)^n u(n)$
- $K(2)^n u(n) \cdots$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ve $x(n) = (2)^n u(n)$ ise $y_{\ddot{0}}(n) = ?$
- $x(n) = (2)^n u(n) \rightarrow y_{\ddot{0}}(n) = K(2)^n u(n)$
- $K(2)^n u(n) 3K(2)^{n-1} u(n-1) \cdots$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ve $x(n) = (2)^n u(n)$ ise $y_{\ddot{0}}(n) = ?$
- $x(n) = (2)^n u(n) \rightarrow y_{\ddot{0}}(n) = K(2)^n u(n)$
- $K(2)^n u(n) 3K(2)^{n-1} u(n-1) 4K(2)^{n-2} u(n-2) =$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ve $x(n) = (2)^n u(n)$ ise $y_{\ddot{0}}(n) = ?$
- $x(n) = (2)^n u(n) \rightarrow y_{\ddot{0}}(n) = K(2)^n u(n)$
- $K(2)^n u(n) 3K(2)^{n-1} u(n-1) 4K(2)^{n-2} u(n-2)$ = $(2)^n u(n) + \cdots$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ve $x(n) = (2)^n u(n)$ ise $y_{\ddot{0}}(n) = ?$
- $x(n) = (2)^n u(n) \rightarrow y_{\ddot{0}}(n) = K(2)^n u(n)$
- $K(2)^n u(n) 3K(2)^{n-1} u(n-1) 4K(2)^{n-2} u(n-2)$ = $(2)^n u(n) + 2(2)^{n-1} u(n-1)$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ve $x(n) = (2)^n u(n)$ ise $y_{\ddot{0}}(n) = ?$
- $x(n) = (2)^n u(n) \rightarrow y_{\ddot{0}}(n) = K(2)^n u(n)$
- $K(2)^n u(n) 3K(2)^{n-1} u(n-1) 4K(2)^{n-2} u(n-2)$ = $(2)^n u(n) + 2(2)^{n-1} u(n-1)$
- $n \ge 2 \operatorname{için} K(2)^n 3K(2)^{n-1} 4K(2)^{n-2} = (2)^n + 2(2)^{n-1}$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ve $x(n) = (2)^n u(n)$ ise $y_{\ddot{0}}(n) = ?$
- $x(n) = (2)^n u(n) \rightarrow y_{\ddot{0}}(n) = K(2)^n u(n)$
- $K(2)^n u(n) 3K(2)^{n-1} u(n-1) 4K(2)^{n-2} u(n-2)$ = $(2)^n u(n) + 2(2)^{n-1} u(n-1)$
- $n \ge 2 \text{ için } K(2)^n 3K(2)^{n-1} 4K(2)^{n-2} = (2)^n + 2(2)^{n-1}$
- $K(2)^{n-2}(2^2-3\times 2-4)=(2)^{n-1}(2+2)$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ve $x(n) = (2)^n u(n)$ ise $y_{\ddot{0}}(n) = ?$
- $x(n) = (2)^n u(n) \rightarrow y_{\ddot{0}}(n) = K(2)^n u(n)$
- $K(2)^n u(n) 3K(2)^{n-1} u(n-1) 4K(2)^{n-2} u(n-2)$ = $(2)^n u(n) + 2(2)^{n-1} u(n-1)$
- $n \ge 2 \text{ için } K(2)^n 3K(2)^{n-1} 4K(2)^{n-2} = (2)^n + 2(2)^{n-1}$
- $K(2)^{n-2}(2^2-3\times 2-4)=(2)^{n-1}(2+2)$
- -6K = 8

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ve $x(n) = (2)^n u(n)$ ise $y_{\ddot{0}}(n) = ?$
- $x(n) = (2)^n u(n) \rightarrow y_{\ddot{0}}(n) = K(2)^n u(n)$
- $K(2)^n u(n) 3K(2)^{n-1} u(n-1) 4K(2)^{n-2} u(n-2)$ = $(2)^n u(n) + 2(2)^{n-1} u(n-1)$
- $n \ge 2 \text{ için } K(2)^n 3K(2)^{n-1} 4K(2)^{n-2} = (2)^n + 2(2)^{n-1}$
- $K(2)^{n-2}(2^2 3 \times 2 4) = (2)^{n-1}(2 + 2)$
- $-6K = 8 \rightarrow K = -\frac{4}{3}$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ve $x(n) = (2)^n u(n)$ ise $y_{\ddot{0}}(n) = ?$
- $x(n) = (2)^n u(n) \rightarrow y_{\ddot{0}}(n) = K(2)^n u(n)$
- $K(2)^n u(n) 3K(2)^{n-1} u(n-1) 4K(2)^{n-2} u(n-2)$ = $(2)^n u(n) + 2(2)^{n-1} u(n-1)$
- $n \ge 2 \operatorname{igin} K(2)^n 3K(2)^{n-1} 4K(2)^{n-2} = (2)^n + 2(2)^{n-1}$
- $K(2)^{n-2}(2^2 3 \cdot 2 4) = (2)^{n-1}4 \rightarrow -6K = 8 \rightarrow K = -\frac{4}{3}$
- $y_{\ddot{0}}(n) = -\frac{4}{3}(2)^n u(n)$

•
$$y(n) - 3y(n-1) - 4y(n-2) = x(n) + 2x(n-1)$$
 ve $x(n) = (4)^n u(n)$ ise $y_{\ddot{0}}(n) = ?$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ve $x(n) = (4)^n u(n)$ ise $y_{\ddot{0}}(n) = ?$
- $\lambda_1 = -1, \lambda_2 = 4 \text{ ve } x(n) = (4)^n u(n) \rightarrow y_{\ddot{0}}(n) = ?$
 - $\lambda_1 = -1 \neq 4$ ancak $\lambda_2 = 4$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ve $x(n) = (4)^n u(n)$ ise $y_{\ddot{0}}(n) = ?$
- $x(n) = (4)^n u(n) \rightarrow y_{\ddot{0}}(n) = Kn(4)^n u(n)$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ve $x(n) = (4)^n u(n)$ ise $y_{\ddot{0}}(n) = ?$
- $x(n) = (4)^n u(n) \rightarrow y_{\ddot{0}}(n) = Kn(4)^n u(n)$
- $Kn(4)^nu(n)\cdots$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ve $x(n) = (4)^n u(n)$ ise $y_{\ddot{0}}(n) = ?$
- $x(n) = (4)^n u(n) \rightarrow y_{\ddot{0}}(n) = Kn(4)^n u(n)$
- $Kn(4)^n u(n) 3K(n-1)(2)^{n-1} u(n-1) \cdots$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ve $x(n) = (4)^n u(n)$ ise $y_{\ddot{0}}(n) = ?$
- $x(n) = (4)^n u(n) \rightarrow y_{\ddot{0}}(n) = Kn(4)^n u(n)$
- $Kn(4)^n u(n) 3K(n-1)(4)^{n-1}u(n-1)$ -4 $K(n-2)(4)^{n-2}u(n-2) =$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ve $x(n) = (4)^n u(n)$ ise $y_{\ddot{0}}(n) = ?$
- $x(n) = (4)^n u(n) \rightarrow y_{\ddot{0}}(n) = Kn(4)^n u(n)$
- $Kn(4)^n u(n) 3K(n-1)(4)^{n-1}u(n-1)$ -4 $K(n-2)(4)^{n-2}u(n-2) = (4)^n u(n) \cdots$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ve $x(n) = (4)^n u(n)$ ise $y_{\ddot{0}}(n) = ?$
- $x(n) = (4)^n u(n) \rightarrow y_{\ddot{0}}(n) = Kn(4)^n u(n)$
- $Kn(4)^n u(n) 3K(n-1)(4)^{n-1}u(n-1)$ -4 $K(n-2)(4)^{n-2}u(n-2) = (4)^n u(n) + 2(4)^{n-1}u(n-1)$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ve $x(n) = (4)^n u(n)$ ise $y_{\ddot{0}}(n) = ?$
- $x(n) = (4)^n u(n) \rightarrow y_{\ddot{0}}(n) = Kn(4)^n u(n)$
- $Kn(4)^n u(n) 3K(n-1)(4)^{n-1}u(n-1)$ -4 $K(n-2)(4)^{n-2}u(n-2) = (4)^n u(n) + 2(4)^{n-1}u(n-1)$
- $n \ge 2$ için $Kn(4)^n 3K(n-1)(4)^{n-1} 4K(n-2)(4)^{n-2}$ = $(4)^n + 2(4)^{n-1}$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ve $x(n) = (4)^n u(n)$ ise $y_{\ddot{0}}(n) = ?$
- $x(n) = (4)^n u(n) \rightarrow y_{\ddot{0}}(n) = Kn(4)^n u(n)$
- $Kn(4)^n u(n) 3K(n-1)(4)^{n-1}u(n-1)$ -4 $K(n-2)(4)^{n-2}u(n-2) = (4)^n u(n) + 2(4)^{n-1}u(n-1)$
- $n \ge 2$ için $Kn(4)^n 3K(n-1)(4)^{n-1} 4K(n-2)(4)^{n-2}$ = $(4)^n + 2(4)^{n-1}$
- $K(4)^{n-2}(n4^2 3(n-1)4 4(n-2)) = 4^{n-1}(4+2)$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ve $x(n) = (4)^n u(n)$ ise $y_{\ddot{0}}(n) = ?$
- $x(n) = (4)^n u(n) \rightarrow y_{\ddot{0}}(n) = Kn(4)^n u(n)$
- $Kn(4)^n u(n) 3K(n-1)(4)^{n-1} u(n-1)$ -4 $K(n-2)(4)^{n-2} u(n-2) = (4)^n u(n) + 2(4)^{n-1} u(n-1)$
- $n \ge 2$ için $Kn(4)^n 3K(n-1)(4)^{n-1} 4K(n-2)(4)^{n-2}$ = $(4)^n + 2(4)^{n-1}$
- $K(4)^{n-2}(n4^2 3(n-1)4 4(n-2)) = 4^{n-1}(4+2)$
- K(12 + 8) = 24

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ve $x(n) = (4)^n u(n)$ ise $y_{\ddot{0}}(n) = ?$
- $x(n) = (4)^n u(n) \rightarrow y_{\ddot{0}}(n) = Kn(4)^n u(n)$
- $Kn(4)^n u(n) 3K(n-1)(4)^{n-1} u(n-1)$ -4 $K(n-2)(4)^{n-2} u(n-2) = (4)^n u(n) + 2(4)^{n-1} u(n-1)$
- $n \ge 2$ için $Kn(4)^n 3K(n-1)(4)^{n-1} 4K(n-2)(4)^{n-2}$ = $(4)^n + 2(4)^{n-1}$
- $K(4)^{n-2}(n4^2 3(n-1)4 4(n-2)) = 4^{n-1}(4+2)$
- $K(12+8) = 24 \rightarrow K = \frac{6}{5}$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ve $x(n) = (4)^n u(n)$ ise $y_{\ddot{0}}(n) = ?$
- $x(n) = (4)^n u(n) \rightarrow y_{\ddot{0}}(n) = Kn(4)^n u(n)$
- $Kn(4)^n u(n) 3K(n-1)(4)^{n-1} u(n-1)$ -4 $K(n-2)(4)^{n-2} u(n-2) = (4)^n u(n) + 2(4)^{n-1} u(n-1)$
- $n \ge 2 \operatorname{için} Kn(4)^n 3K(n-1)(4)^{n-1} 4K(n-2)(4)^{n-2}$ = $(4)^n + 2(4)^{n-1}$
- $K(4)^{n-2}(n4^2 3(n-1)4 4(n-2)) = 4^{n-1}(4+2)$
- $K(12+8) = 24 \rightarrow K = \frac{6}{5}$
- $y_{\ddot{0}}(n) = \frac{6}{5}n(4)^n u(n)$

- C katsayıları değiştirilmiş Doğal çözüm yapısı + Özel çözümdür.
- 1. Zorlanmış çözüm yapısı belirlenir
- 2. Örneğin, N=3 için. Kökler: $\lambda_1, \lambda_2, \lambda_3$

2. Örneğin, N=3 için. Kökler: $\lambda_1, \lambda_2, \lambda_3$

- 3. Yapı belirlendikten sonra fark denklemi kullanılarak y değerleri bulunur.
 - N=1 ise, y[0] bulunur. $a_0y[0] + a_1y[-1] = \sum bx(0)$

2. Örneğin, N=3 için. Kökler: $\lambda_1, \lambda_2, \lambda_3$

$$\star y_{z}[n] = \begin{cases} C_{4}\lambda_{1}^{n} + C_{5}\lambda_{2}^{n} + C_{6}\lambda_{3}^{n} + y_{\ddot{0}}(n), & \lambda_{1} \neq \lambda_{2} \neq \lambda_{3} \\ C_{4}\lambda_{1}^{n} + C_{5}n\lambda_{2}^{n} + C_{6}\lambda_{3}^{n} + y_{\ddot{0}}(n), & \lambda_{1} = \lambda_{2} \neq \lambda_{3} \\ C_{4}\lambda_{1}^{n} + C_{5}n\lambda_{2}^{n} + C_{6}n^{2}\lambda_{3}^{n} + y_{\ddot{0}}(n), & \lambda_{1} = \lambda_{2} = \lambda_{3} \end{cases}$$

3. Yapı belirlendikten sonra fark denklemi kullanılarak y değerleri bulunur.

N=1 ise,
$$y[0]$$
 bulunur. $a_0y[0] + a_1y[-1] = \sum bx(0)$
N=2 ise, $y[0]$, $y[1]$ bulunur.
$$a_0y[0] + a_1y[-1] + a_2y[-2] = \sum bx(0)$$
$$a_0y[1] + a_1y[0] + a_2y[-1] = \sum bx(1)$$

2. Örneğin, N=3 için. Kökler: λ_1 , λ_2 , λ_3

3. Yapı belirlendikten sonra fark denklemi kullanılarak y değerleri bulunur.

N=1 ise,
$$y[0]$$
 bulunur. $a_0y[0] + a_1y[-1] = \sum bx(0)$

N=2 ise,
$$y[0]$$
, $y[1]$ bulunur.
$$a_0y[0] + a_1y[-1] + a_2y[-2] = \sum bx(0)$$
$$a_0y[1] + a_1y[0] + a_2y[-1] = \sum bx(1)$$
$$a_0y[0] + a_1y[-1] + a_2y[-2] = \sum bx(0)$$

N=3 ise, y[0], y[1], y[2] bulunur. $a_0y[1] + a_1y[0] + a_2y[-1] = \sum bx(1)$

$$a_0y[2] + a_1y[1] + a_2y[0] = \sum bx(2)$$

3. Yapı belirlendikten sonra fark denklemi kullanılarak y değerleri bulunur.

N=1 ise,
$$y[0]$$
 bulunur. $a_0y[0] + a_1y[-1] = \sum bx(0)$
N=2 ise, $y[0], y[1]$ bulunur.
$$a_0y[0] + a_1y[-1] + a_2y[-2] = \sum bx(0)$$

$$a_0y[1] + a_1y[0] + a_2y[-1] = \sum bx(1)$$

$$a_0y[0] + a_1y[-1] + a_2y[-2] = \sum bx(0)$$
N=3 ise, $y[0], y[1], y[2]$ bulunur.
$$a_0y[1] + a_1y[0] + a_2y[-1] = \sum bx(1)$$

$$a_0y[2] + a_1y[1] + a_2y[0] = \sum bx(2)$$

- 4. y' ler belirlenen doğal çözüm yapısı ile eşleştirilir. C katsayıları bulunur.
 - N=1 ise, $y_z[0] = y[0]$, C_4 bulunur.

3. Yapı belirlendikten sonra fark denklemi kullanılarak y değerleri bulunur.

N=1 ise,
$$y[0]$$
 bulunur. $a_0y[0] + a_1y[-1] = \sum bx(0)$
N=2 ise, $y[0], y[1]$ bulunur. $a_0y[0] + a_1y[-1] + a_2y[-2] = \sum bx(0)$
 $a_0y[1] + a_1y[0] + a_2y[-1] = \sum bx(1)$
 $a_0y[0] + a_1y[-1] + a_2y[-2] = \sum bx(0)$
N=3 ise, $y[0], y[1], y[2]$ bulunur. $a_0y[1] + a_1y[0] + a_2y[-1] = \sum bx(1)$
 $a_0y[2] + a_1y[1] + a_2y[0] = \sum bx(2)$

4. y' ler belirlenen doğal çözüm yapısı ile eşleştirilir. C katsayıları bulunur.

N=1 ise,
$$y_z[0] = y[0]$$
, C_4 bulunur.
N=2 ise, $y_z[0] = y[0]$, $y_z[1] = y[1]$, $y_z[1] = y[1]$, $y_z[1] = y[1]$

3. Yapı belirlendikten sonra fark denklemi kullanılarak y değerleri bulunur.

N=1 ise,
$$y[0]$$
 bulunur. $a_0y[0] + a_1y[-1] = \sum bx(0)$

N=2 ise, $y[0], y[1]$ bulunur.
$$a_0y[0] + a_1y[-1] + a_2y[-2] = \sum bx(0)$$

$$a_0y[1] + a_1y[0] + a_2y[-1] = \sum bx(1)$$

$$a_0y[0] + a_1y[-1] + a_2y[-2] = \sum bx(0)$$

N=3 ise, $y[0], y[1], y[2]$ bulunur.
$$a_0y[1] + a_1y[0] + a_2y[-1] = \sum bx(1)$$

$$a_0y[2] + a_1y[1] + a_2y[0] = \sum bx(2)$$

4. y' ler belirlenen doğal çözüm yapısı ile eşleştirilir. C katsayıları bulunur.

N=1 ise,
$$y_z[0] = y[0]$$
, C_4 bulunur.
N=2 ise, $y_z[0] = y[0]$
 $y_z[1] = y[1]$, C_4 , C_5 bulunur.
 $y_z[0] = y[0]$
N=3 ise, $y_z[1] = y[1]$, C_4 , C_5 , C_6 bulunur.
 $y_z[2] = y[2]$

Tam Çözüm

Zorlanmış Çözüm + Doğal Çözümdür.

Tam Çözüm

- Zorlanmış Çözüm + Doğal Çözümdür.
- Örneğin, N=3 için. Kökler: $\lambda_1, \lambda_2, \lambda_3$

•
$$y_d[n] = \begin{cases} C_1 \lambda_1^n + C_2 \lambda_2^n + C_3 \lambda_3^n, & \lambda_1 \neq \lambda_2 \neq \lambda_3 \\ C_1 \lambda_1^n + C_2 n \lambda_2^n + C_3 \lambda_3^n, & \lambda_1 = \lambda_2 \neq \lambda_3 \\ C_1 \lambda_1^n + C_2 n \lambda_2^n + C_3 n^2 \lambda_3^n, & \lambda_1 = \lambda_2 = \lambda_3 \end{cases}$$

•
$$y_{z}[n] = \begin{cases} C_{4}\lambda_{1}^{n} + C_{5}\lambda_{2}^{n} + C_{6}\lambda_{3}^{n} + y_{\ddot{0}}(n), & \lambda_{1} \neq \lambda_{2} \neq \lambda_{3} \\ C_{4}\lambda_{1}^{n} + C_{5}n\lambda_{2}^{n} + C_{6}\lambda_{3}^{n} + y_{\ddot{0}}(n), & \lambda_{1} = \lambda_{2} \neq \lambda_{3} \\ C_{4}\lambda_{1}^{n} + C_{5}n\lambda_{2}^{n} + C_{6}n^{2}\lambda_{3}^{n} + y_{\ddot{0}}(n), & \lambda_{1} = \lambda_{2} = \lambda_{3} \end{cases}$$

Tam Çözüm

- Zorlanmış Çözüm + Doğal Çözümdür.
- Örneğin, N=3 için. Kökler: $\lambda_1, \lambda_2, \lambda_3$

•
$$y_d[n] = \begin{cases} C_1 \lambda_1^n + C_2 \lambda_2^n + C_3 \lambda_3^n, & \lambda_1 \neq \lambda_2 \neq \lambda_3 \\ C_1 \lambda_1^n + C_2 n \lambda_2^n + C_3 \lambda_3^n, & \lambda_1 = \lambda_2 \neq \lambda_3 \\ C_1 \lambda_1^n + C_2 n \lambda_2^n + C_3 n^2 \lambda_3^n, & \lambda_1 = \lambda_2 = \lambda_3 \end{cases}$$

•
$$y_{z}[n] = \begin{cases} C_{4}\lambda_{1}^{n} + C_{5}\lambda_{2}^{n} + C_{6}\lambda_{3}^{n} + y_{\ddot{0}}(n), & \lambda_{1} \neq \lambda_{2} \neq \lambda_{3} \\ C_{4}\lambda_{1}^{n} + C_{5}n\lambda_{2}^{n} + C_{6}\lambda_{3}^{n} + y_{\ddot{0}}(n), & \lambda_{1} = \lambda_{2} \neq \lambda_{3} \\ C_{4}\lambda_{1}^{n} + C_{5}n\lambda_{2}^{n} + C_{6}n^{2}\lambda_{3}^{n} + y_{\ddot{0}}(n), & \lambda_{1} = \lambda_{2} = \lambda_{3} \end{cases}$$

• $y_{t}[n] = \begin{cases} (C_{1} + C_{4})\lambda_{1}^{n} + (C_{2} + C_{5})\lambda_{2}^{n} + (C_{3} + C_{6})\lambda_{3}^{n} + y_{\ddot{0}}(n), & \lambda_{1} \neq \lambda_{2} \neq \lambda_{3} \\ (C_{1} + C_{4})\lambda_{1}^{n} + (C_{2} + C_{5})n\lambda_{2}^{n} + (C_{3} + C_{6})\lambda_{3}^{n} + y_{\ddot{0}}(n), & \lambda_{1} = \lambda_{2} \neq \lambda_{3} \\ (C_{1} + C_{4})\lambda_{1}^{n} + (C_{2} + C_{5})n\lambda_{2}^{n} + (C_{3} + C_{6})n^{2}\lambda_{3}^{n} + y_{\ddot{0}}(n), & \lambda_{1} = \lambda_{2} = \lambda_{3} \end{cases}$

•
$$y(n) + ay(n-1) = x(n)$$
 ve $x(n) = u(n)$ ise $y_z(n) = ?$

- y(n) + ay(n-1) = x(n) ve x(n) = u(n) ise $y_z(n) = ?$
- $y_d(n) = C_1(-a)^n = -ay(-1)(-a)^n = y(-1)(-a)^{n+1}$
- $y_{\ddot{0}}(n) = \frac{1}{a+1}u(n)$
- $y_z(n) =$

- y(n) + ay(n-1) = x(n) ve x(n) = u(n) ise $y_z(n) = ?$
- $y_d(n) = C_1(-a)^n = -ay(-1)(-a)^n = y(-1)(-a)^{n+1}$
- $y_{\ddot{0}}(n) = \frac{1}{a+1}u(n)$
- $y_z(n) = C_2(-a)^n + \frac{1}{a+1}u(n)$

- y(n) + ay(n-1) = x(n) ve x(n) = u(n) ise $y_z(n) = ?$
- $y_d(n) = C_1(-a)^n = -ay(-1)(-a)^n = y(-1)(-a)^{n+1}$
- $y_{\ddot{0}}(n) = \frac{1}{a+1}u(n)$
- $y_z(n) = C_2(-a)^n + \frac{1}{a+1}u(n)$
- n = 0 için y(0) + ay(-1) = x(0)

- y(n) + ay(n-1) = x(n) ve x(n) = u(n) ise $y_z(n) = ?$
- $y_d(n) = C_1(-a)^n = -ay(-1)(-a)^n = y(-1)(-a)^{n+1}$
- $y_{\ddot{0}}(n) = \frac{1}{a+1}u(n)$
- $y_z(n) = C_2(-a)^n + \frac{1}{a+1}u(n)$
- n = 0 için y(0) + ay(-1) = x(0)
 - y(0) = 1

- y(n) + ay(n-1) = x(n) ve x(n) = u(n) ise $y_z(n) = ?$
- $y_d(n) = C_1(-a)^n = -ay(-1)(-a)^n = y(-1)(-a)^{n+1}$
- $y_{\ddot{0}}(n) = \frac{1}{a+1}u(n)$
- $y_z(n) = C_2(-a)^n + \frac{1}{a+1}u(n)$
- n = 0 için y(0) + ay(-1) = x(0)
 - y(0) = 1
- $y_z(0) = y(0)$

- $y(n) + ay(n-1) = x(n) \text{ ve } x(n) = u(n) \text{ ise } y_z(n) = ?$
- $y_d(n) = C_1(-a)^n = -ay(-1)(-a)^n = y(-1)(-a)^{n+1}$
- $y_{\ddot{0}}(n) = \frac{1}{a+1}u(n)$
- $y_z(n) = C_2(-a)^n + \frac{1}{a+1}u(n)$
- n = 0 için y(0) + ay(-1) = x(0)
 - y(0) = 1
- $y_z(0) = y(0)$
- $C_2 + \frac{1}{a+1} = 1$

- $y(n) + ay(n-1) = x(n) \text{ ve } x(n) = u(n) \text{ ise } y_z(n) = ?$
- $y_d(n) = C_1(-a)^n = -ay(-1)(-a)^n = y(-1)(-a)^{n+1}$
- $y_{\ddot{0}}(n) = \frac{1}{a+1}u(n)$
- $y_z(n) = C_2(-a)^n + \frac{1}{a+1}u(n)$
- n = 0 için y(0) + ay(-1) = x(0)
 - y(0) = 1
- $\bullet \ y_z(0) = y(0)$
- $C_2 + \frac{1}{a+1} = 1 \rightarrow C_2 = \frac{a}{a+1}$

- $y(n) + ay(n-1) = x(n) \text{ ve } x(n) = u(n) \text{ ise } y_z(n) = ?$
- $y_d(n) = C_1(-a)^n = -ay(-1)(-a)^n = y(-1)(-a)^{n+1}$
- $y_{\ddot{0}}(n) = \frac{1}{a+1}u(n)$
- $y_z(n) = C_2(-a)^n + \frac{1}{a+1}u(n)$
- n = 0 için y(0) + ay(-1) = x(0)
 - y(0) = 1
- $y_z(0) = y(0)$
- $C_2 + \frac{1}{a+1} = 1 \rightarrow C_2 = \frac{a}{a+1}$
- $y_z(n) = \frac{a}{a+1}(-a)^n + \frac{1}{a+1}u(n)$

- y(n) + ay(n-1) = x(n) ve x(n) = u(n) ise $y_z(n) = ?$
- $y_d(n) = C_1(-a)^n = -ay(-1)(-a)^n = y(-1)(-a)^{n+1}$
- $y_z(n) = \frac{a}{a+1}(-a)^n + \frac{1}{a+1}u(n)$
- $y_t(n) =$

- y(n) + ay(n-1) = x(n) ve x(n) = u(n) ise $y_z(n) = ?$
- $y_d(n) = C_1(-a)^n = -ay(-1)(-a)^n = y(-1)(-a)^{n+1}$
- $y_z(n) = \frac{a}{a+1}(-a)^n + \frac{1}{a+1}u(n)$
- $y_t(n) = y(-1)(-a)^{n+1} \frac{1}{a+1}(-a)^{n+1} + \frac{1}{a+1}u(n)$

- y(n) + ay(n-1) = x(n) ve x(n) = u(n) ise $y_z(n) = ?$
- $y_d(n) = C_1(-a)^n = -ay(-1)(-a)^n = y(-1)(-a)^{n+1}$
- $y_z(n) = \frac{a}{a+1}(-a)^n + \frac{1}{a+1}u(n)$
- $y_t(n) = y(-1)(-a)^{n+1} \frac{1}{a+1}(-a)^{n+1} + \frac{1}{a+1}u(n)$
- $y_t(n) = \left(\left(y(-1) \frac{1}{a+1} \right) (-a)^{n+1} + \frac{1}{a+1} \right) u(n)$

•
$$y(n) - 2y(n-1) - 3y(n-2) = x(n)$$

 $y(-1) = y(-2) = 2 \text{ ve } x(n) = 10u(n) \text{ ise } y_z(n) = ?$

- y(n) 2y(n-1) 3y(n-2) = x(n) $y(-1) = y(-2) = 2 \text{ ve } x(n) = 10u(n) \text{ ise } y_z(n) = ?$
- $y_d(n) = C_1(-1)^n + C_2(3)^n$
- $y_{\ddot{0}}(n) = -\frac{5}{2}u(n)$
- $y_z(n) =$

- y(n) 2y(n-1) 3y(n-2) = x(n) $y(-1) = y(-2) = 2 \text{ ve } x(n) = 10u(n) \text{ ise } y_z(n) = ?$
- $y_d(n) = C_1(-1)^n + C_2(3)^n$
- $y_{\ddot{0}}(n) = -\frac{5}{2}u(n)$
- $y_z(n) = C_3(-1)^n + C_4(3)^n \frac{5}{2}u(n)$

- y(n) 2y(n-1) 3y(n-2) = x(n) $y(-1) = y(-2) = 2 \text{ ve } x(n) = 10u(n) \text{ ise } y_z(n) = ?$
- $y_d(n) = C_1(-1)^n + C_2(3)^n$
- $y_{\ddot{0}}(n) = -\frac{5}{2}u(n)$
- $y_z(n) = C_3(-1)^n + C_4(3)^n \frac{5}{2}u(n)$
- n = 0 için y(0) 2y(-1) 3y(-2) = x(0)

- y(n) 2y(n-1) 3y(n-2) = x(n) $y(-1) = y(-2) = 2 \text{ ve } x(n) = 10u(n) \text{ ise } y_z(n) = ?$
- $y_d(n) = C_1(-1)^n + C_2(3)^n$
- $y_{\ddot{0}}(n) = -\frac{5}{2}u(n)$
- $y_z(n) = C_3(-1)^n + C_4(3)^n \frac{5}{2}u(n)$
- n = 0 için y(0) 2y(-1) 3y(-2) = x(0)
 - y(0) = 10

- y(n) 2y(n-1) 3y(n-2) = x(n) $y(-1) = y(-2) = 2 \text{ ve } x(n) = 10u(n) \text{ ise } y_z(n) = ?$
- $y_d(n) = C_1(-1)^n + C_2(3)^n$
- $y_{\ddot{0}}(n) = -\frac{5}{2}u(n)$
- $y_z(n) = C_3(-1)^n + C_4(3)^n \frac{5}{2}u(n)$
- n = 0 için y(0) 2y(-1) 3y(-2) = x(0)
 - y(0) = 10
 - $y_z(0) = C_3 + C_4 \frac{5}{2}$

- y(n) 2y(n-1) 3y(n-2) = x(n) $y(-1) = y(-2) = 2 \text{ ve } x(n) = 10u(n) \text{ ise } y_z(n) = ?$
- $y_d(n) = C_1(-1)^n + C_2(3)^n$
- $y_{\ddot{0}}(n) = -\frac{5}{2}u(n)$
- $y_z(n) = C_3(-1)^n + C_4(3)^n \frac{5}{2}u(n)$
- n = 0 için y(0) 2y(-1) 3y(-2) = x(0)
 - y(0) = 10
 - $y_z(0) = C_3 + C_4 \frac{5}{2} = 10$
- $n = 1 i \sin y(1) 2y(0) 3y(-1) = x(1)$

- y(n) 2y(n-1) 3y(n-2) = x(n) $y(-1) = y(-2) = 2 \text{ ve } x(n) = 10u(n) \text{ ise } y_z(n) = ?$
- $y_d(n) = C_1(-1)^n + C_2(3)^n$
- $y_{\ddot{0}}(n) = -\frac{5}{2}u(n)$
- $y_z(n) = C_3(-1)^n + C_4(3)^n \frac{5}{2}u(n)$
- n = 0 için y(0) 2y(-1) 3y(-2) = x(0)
 - y(0) = 10
 - $y_z(0) = C_3 + C_4 \frac{5}{2} = 10$
- n = 1 için y(1) 2y(0) 3y(-1) = x(1)
 - $y(1) = 10 + 2 \times 10 = 30$

- y(n) 2y(n-1) 3y(n-2) = x(n) $y(-1) = y(-2) = 2 \text{ ve } x(n) = 10u(n) \text{ ise } y_z(n) = ?$
- $y_d(n) = C_1(-1)^n + C_2(3)^n$
- $y_{\ddot{0}}(n) = -\frac{5}{2}u(n)$
- $y_z(n) = C_3(-1)^n + C_4(3)^n \frac{5}{2}u(n)$
- n = 0 için y(0) 2y(-1) 3y(-2) = x(0)
 - y(0) = 10
 - $y_z(0) = C_3 + C_4 \frac{5}{2} = 10$
- n = 1 için y(1) 2y(0) 3y(-1) = x(1)
 - $y(1) = 10 + 2 \times 10 = 30$
 - $y_z(1) = -C_3 + 3C_4 \frac{5}{2}$

- $y_z(n) = C_3(-1)^n + C_4(3)^n \frac{5}{2}u(n)$
- n = 0 için y(0) 2y(-1) 3y(-2) = x(0)
 - y(0) = 10
 - $y_z(0) = C_3 + C_4 \frac{5}{2} = 10$
- n = 1 için y(1) 2y(0) 3y(-1) = x(1)
 - $y(1) = 10 + 2 \times 10 = 30$
 - $y_z(1) = -C_3 + 3C_4 \frac{5}{2} = 30$
- $y_z(0) = y(0) \rightarrow C_3 + C_4 \frac{5}{2} = 10$

•
$$y_z(n) = C_3(-1)^n + C_4(3)^n - \frac{5}{2}u(n)$$

- n = 0 için y(0) 2y(-1) 3y(-2) = x(0)
 - y(0) = 10
 - $y_z(0) = C_3 + C_4 \frac{5}{2}$
- n = 1 için y(1) 2y(0) 3y(-1) = x(1)
 - $y(1) = 10 + 2 \times 10 = 36$
 - $y_z(1) = -C_3 + 3C_4 \frac{5}{2}$
- $y_z(0) = y(0) \rightarrow C_3 + C_4 \frac{5}{2} = 10$
- $y_z(1) = y(1) \rightarrow -C_3 + 3C_4 \frac{5}{2} = 30$

•
$$y_z(n) = C_3(-1)^n + C_4(3)^n - \frac{5}{2}u(n)$$

•
$$y_z(0) = y(0) \rightarrow C_3 + C_4 - \frac{5}{2} = 10$$

•
$$y_z(1) = y(1) \rightarrow -C_3 + 3C_4 - \frac{5}{2} = 30$$

•
$$C_4 = \frac{45}{4} \text{ ve } C_3 = \frac{5}{4}$$

•
$$y_z(n) = C_3(-1)^n + C_4(3)^n - \frac{5}{2}u(n)$$

•
$$y_z(0) = y(0) \rightarrow C_3 + C_4 - \frac{5}{2} = 10$$

•
$$y_z(1) = y(1) \rightarrow -C_3 + 3C_4 - \frac{5}{2} = 30$$

•
$$C_4 = \frac{45}{4} \text{ ve } C_3 = \frac{5}{4}$$

•
$$y_z(n) = \frac{5}{4}(-1)^n + \frac{45}{4}(3)^n - \frac{5}{2}u(n)$$

- $y_d(n) = (-1)^n + 9(3)^n$
- $y_z(n) = \frac{5}{4}(-1)^n + \frac{45}{4}(3)^n \frac{5}{2}u(n)$
- $y_t =$

- $y_d(n) = (-1)^n + 9(3)^n$
- $y_z(n) = \frac{5}{4}(-1)^n + \frac{45}{4}(3)^n \frac{5}{2}u(n)$
- $y_t = \frac{9}{4}(-1)^n + \frac{81}{4}(3)^n \frac{5}{2}u(n)$

- $y_d(n) = (-1)^n + 9(3)^n$
- $y_z(n) = \frac{5}{4}(-1)^n + \frac{45}{4}(3)^n \frac{5}{2}u(n)$
- $y_t = \frac{9}{4}(-1)^n + \frac{81}{4}(3)^n \frac{5}{2}u(n)$
- $y_t = \left(\frac{9}{4}(-1)^n + \frac{81}{4}(3)^n \frac{5}{2}\right)u(n)$

Dr. Ari

•
$$y(n) - 3y(n-1) - 4y(n-2) = x(n) + 2x(n-1)$$

 $y(-1) = 5, y(-2) = 0 \text{ ve } x(n) = (2)^n u(n) \text{ ise } y_z(n) = ?$

148

Dr. Ari

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) $y(-1) = 5, y(-2) = 0 \text{ ve } x(n) = (2)^n u(n) \text{ ise } y_z(n) = ?$
- $y_d(n) = C_1(-1)^n + C_2(4)^n$

149

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) $y(-1) = 5, y(-2) = 0 \text{ ve } x(n) = (2)^n u(n) \text{ ise } y_z(n) = ?$
- $y_d(n) = C_1(-1)^n + C_2(4)^n$
- $y_{\ddot{0}}(n) = -\frac{4}{3}(2)^n u(n)$
- $y_z(n) =$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) $y(-1) = 5, y(-2) = 0 \text{ ve } x(n) = (2)^n u(n) \text{ ise } y_z(n) = ?$
- $y_d(n) = C_1(-1)^n + C_2(4)^n$
- $y_{\ddot{0}}(n) = -\frac{4}{3}(2)^n u(n)$
- $y_z(n) = C_3(-1)^n + C_4(4)^n \frac{4}{3}(2)^n u(n)$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) $y(-1) = 5, y(-2) = 0 \text{ ve } x(n) = (2)^n u(n) \text{ ise } y_z(n) = ?$
- $y_d(n) = C_1(-1)^n + C_2(4)^n$
- $y_{\ddot{0}}(n) = -\frac{4}{3}(2)^n u(n)$
- $y_z(n) = C_3(-1)^n + C_4(4)^n \frac{4}{3}(2)^n u(n)$
- n = 0 için y(0) 3y(-1) 4y(-2) = x(0) + 2x(-1)

BSM307 - İşaretler ve Sistemler

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) $y(-1) = 5, y(-2) = 0 \text{ ve } x(n) = (2)^n u(n) \text{ ise } y_z(n) = ?$
- $y_d(n) = C_1(-1)^n + C_2(4)^n$
- $y_{\ddot{0}}(n) = -\frac{4}{3}(2)^n u(n)$
- $y_z(n) = C_3(-1)^n + C_4(4)^n \frac{4}{3}(2)^n u(n)$
- n = 0 için y(0) 3y(-1) 4y(-2) = x(0) + 2x(-1)
 - y(0) = 1

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) $y(-1) = 5, y(-2) = 0 \text{ ve } x(n) = (2)^n u(n) \text{ ise } y_z(n) = ?$
- $y_d(n) = C_1(-1)^n + C_2(4)^n$
- $y_{\ddot{0}}(n) = -\frac{4}{3}(2)^n u(n)$
- $y_z(n) = C_3(-1)^n + C_4(4)^n \frac{4}{3}(2)^n u(n)$
- n = 0 için y(0) 3y(-1) 4y(-2) = x(0) + 2x(-1)
 - y(0) = 1
 - $y_Z(0) = C_3 + C_4 \frac{4}{3}$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) $y(-1) = 5, y(-2) = 0 \text{ ve } x(n) = (2)^n u(n) \text{ ise } y_z(n) = ?$
- $y_d(n) = C_1(-1)^n + C_2(4)^n$
- $y_{\ddot{0}}(n) = -\frac{4}{3}(2)^n u(n)$
- $y_z(n) = C_3(-1)^n + C_4(4)^n \frac{4}{3}(2)^n u(n)$
- n = 0 için y(0) 3y(-1) 4y(-2) = x(0) + 2x(-1)
 - y(0) = 1
 - $y_z(0) = C_3 + C_4 \frac{4}{3} = 1$
- $n = 1 i \sin y(1) 3y(0) 4y(-1) = x(1) + 2x(0)$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1)y(-1) = 5, y(-2) = 0 ve $x(n) = (2)^n u(n)$ ise $y_z(n) = ?$
- $y_d(n) = C_1(-1)^n + C_2(4)^n$
- $y_{\ddot{0}}(n) = -\frac{4}{3}(2)^n u(n)$
- $y_z(n) = C_3(-1)^n + C_4(4)^n \frac{4}{3}(2)^n u(n)$
- n = 0 için y(0) 3y(-1) 4y(-2) = x(0) + 2x(-1)
 - y(0) = 1
 - $y_z(0) = C_3 + C_4 \frac{4}{3} = 1$
- n = 1 için y(1) 3y(0) 4y(-1) = x(1) + 2x(0)
 - $y(1) = 2 + 2 \times 1 + 3 \times 1 = 7$
 - $y_z(1) = -C_3 + 4C_4 \frac{8}{3}$

- $y_z(n) = C_3(-1)^n + C_4(4)^n \frac{4}{3}(2)^n u(n)$
- n = 0 için y(0) 3y(-1) 4y(-2) = x(0) + 2x(-1)
 - y(0) = 1
 - $y_z(0) = C_3 + C_4 \frac{4}{3}$
- n = 1 için y(1) 3y(0) 4y(-1) = x(1) + 2x(0)
 - $y(1) = 2 + 4 + 3 \times 1 = 9$
 - $y_z(1) = -C_3 + 4C_4 \frac{8}{3}$
- $y_z(0) = y(0) \rightarrow C_3 + C_4 \frac{4}{3} = 1$
- $y_z(1) = y(1) \rightarrow -C_3 + 4C_4 \frac{8}{3} = 7$

•
$$y_z(n) = C_3(-1)^n + C_4(4)^n - \frac{4}{3}(2)^n u(n)$$

•
$$y_z(0) = y(0) \to C_3 + C_4 - \frac{4}{3} = 1$$

•
$$y_z(1) = y(1) \rightarrow -C_3 + 4C_4 - \frac{8}{3} = 7$$

$$\bullet \ C_4 = \frac{12}{5}, C_3 = -\frac{1}{15}$$

•
$$y_z(n) = C_3(-1)^n + C_4(4)^n - \frac{4}{3}(2)^n u(n)$$

•
$$y_z(0) = y(0) \to C_3 + C_4 - \frac{4}{3} = 1$$

•
$$y_z(1) = y(1) \rightarrow -C_3 + 4C_4 - \frac{8}{3} = 7$$

$$\bullet \ C_4 = \frac{12}{5}, C_3 = -\frac{1}{15}$$

•
$$y_z(n) = -\frac{1}{15}(-1)^n + \frac{12}{5}(4)^n - \frac{4}{3}(2)^n u(n)$$

- $y_d(n) = -(-1)^n + 16(4)^n$
- $y_z(n) = -\frac{1}{15}(-1)^n + \frac{12}{5}(4)^n \frac{4}{3}(2)^n u(n)$
- $y_t(n) =$

•
$$y_d(n) = -(-1)^n + 16(4)^n$$

•
$$y_z(n) = -\frac{1}{15}(-1)^n + \frac{12}{5}(4)^n - \frac{4}{3}(2)^n u(n)$$

•
$$y_t(n) = -\frac{16}{15}(-1)^n + \frac{92}{5}(4)^n - \frac{4}{3}(2)^n u(n)$$

- $y_d(n) = -(-1)^n + 16(4)^n$
- $y_z(n) = -\frac{1}{15}(-1)^n + \frac{12}{5}(4)^n \frac{4}{3}(2)^n u(n)$
- $y_t(n) = -\frac{16}{15}(-1)^n + \frac{92}{5}(4)^n \frac{4}{3}(2)^n u(n)$
- $y_t(n) = \left(-\frac{16}{15}(-1)^n + \frac{92}{5}(4)^n \frac{4}{3}(2)^n\right)u(n)$

Dr. Ari

•
$$y(n) - 3y(n-1) - 4y(n-2) = x(n) + 2x(n-1)$$

 $y(-1) = 5, y(-2) = 0 \text{ ve } x(n) = (4)^n u(n) \text{ ise } y_z(n) = ?$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) $y(-1) = 5, y(-2) = 0 \text{ ve } x(n) = (4)^n u(n) \text{ ise } y_z(n) = ?$
- $y_d(n) = C_1(-1)^n + C_2(4)^n$

164

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) $y(-1) = 5, y(-2) = 0 \text{ ve } x(n) = (4)^n u(n) \text{ ise } y_z(n) = ?$
- $y_d(n) = C_1(-1)^n + C_2(4)^n$
- $y_{\ddot{0}}(n) = \frac{6}{5}n(4)^n u(n)$
- $y_z(n) =$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) $y(-1) = 5, y(-2) = 0 \text{ ve } x(n) = (4)^n u(n) \text{ ise } y_z(n) = ?$
- $y_d(n) = C_1(-1)^n + C_2(4)^n$
- $y_{\ddot{0}}(n) = \frac{6}{5}n(4)^n u(n)$
- $y_z(n) = C_3(-1)^n + C_4(4)^n + \frac{6}{5}n(4)^n u(n)$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) $y(-1) = 5, y(-2) = 0 \text{ ve } x(n) = (4)^n u(n) \text{ ise } y_z(n) = ?$
- $y_d(n) = C_1(-1)^n + C_2(4)^n$
- $y_{\ddot{0}}(n) = \frac{6}{5}n(4)^n u(n)$
- $y_z(n) = C_3(-1)^n + C_4(4)^n + \frac{6}{5}n(4)^n u(n)$
- n = 0 için y(0) 3y(-1) 4y(-2) = x(0) + 2x(-1)

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) $y(-1) = 5, y(-2) = 0 \text{ ve } x(n) = (4)^n u(n) \text{ ise } y_z(n) = ?$
- $y_d(n) = C_1(-1)^n + C_2(4)^n$
- $y_{\ddot{0}}(n) = \frac{6}{5}n(4)^n u(n)$
- $y_z(n) = C_3(-1)^n + C_4(4)^n + \frac{6}{5}n(4)^n u(n)$
- n = 0 için y(0) 3y(-1) 4y(-2) = x(0) + 2x(-1)
 - y(0) = 1

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) $y(-1) = 5, y(-2) = 0 \text{ ve } x(n) = (4)^n u(n) \text{ ise } y_z(n) = ?$
- $y_d(n) = C_1(-1)^n + C_2(4)^n$
- $y_{\ddot{0}}(n) = \frac{6}{5}n(4)^n u(n)$
- $y_z(n) = C_3(-1)^n + C_4(4)^n + \frac{6}{5}n(4)^n u(n)$
- n = 0 için y(0) 3y(-1) 4y(-2) = x(0) + 2x(-1)
 - y(0) = 1

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1)y(-1) = 5, y(-2) = 0 ve $x(n) = (4)^n u(n)$ ise $y_z(n) = ?$
- $y_d(n) = C_1(-1)^n + C_2(4)^n$
- $y_{\ddot{0}}(n) = \frac{6}{5}n(4)^n u(n)$
- $y_z(n) = C_3(-1)^n + C_4(4)^n + \frac{6}{5}n(4)^n u(n)$
- n = 0 için y(0) 3y(-1) 4y(-2) = x(0) + 2x(-1)
 - y(0) = 1
 - $y_z(0) = C_3 + C_4 = 1$
- n = 1 için y(1) 3y(0) 4y(-1) = x(1) + 2x(0)

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1)y(-1) = 5, y(-2) = 0 ve $x(n) = (4)^n u(n)$ ise $y_z(n) = ?$
- $y_d(n) = C_1(-1)^n + C_2(4)^n$
- $y_{\ddot{0}}(n) = \frac{6}{5}n(4)^n u(n)$
- $y_z(n) = C_3(-1)^n + C_4(4)^n + \frac{6}{5}n(4)^n u(n)$
- n = 0 için y(0) 3y(-1) 4y(-2) = x(0) + 2x(-1)
 - y(0) = 1
 - $y_z(0) = C_3 + C_4 = 1$
- n = 1 için y(1) 3y(0) 4y(-1) = x(1) + 2x(0)
 - $y(1) = 2 + 4 + 3 \times 1 = 9$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1)y(-1) = 5, y(-2) = 0 ve $x(n) = (4)^n u(n)$ ise $y_z(n) = ?$
- $y_d(n) = C_1(-1)^n + C_2(4)^n$
- $y_{\ddot{0}}(n) = \frac{6}{5}n(4)^n u(n)$
- $y_z(n) = C_3(-1)^n + C_4(4)^n + \frac{6}{5}n(4)^n u(n)$
- n = 0 için y(0) 3y(-1) 4y(-2) = x(0) + 2x(-1)
 - y(0) = 1
 - \bullet $y_z(0) = C_3 + C_4 = 1$
- n = 1 için y(1) 3y(0) 4y(-1) = x(1) + 2x(0)
 - $y(1) = 2 + 4 + 3 \times 1 = 9$
 - $y_z(1) = -C_3 + 4C_4 + \frac{24}{5} = 9$

Dr. Ari

- $y_z(n) = C_3(-1)^n + C_4(4)^n + \frac{6}{5}n(4)^n u(n)$
- n = 0 için y(0) 3y(-1) 4y(-2) = x(0) + 2x(-1)
 - y(0) = 1
- n = 1 için y(1) 3y(0) 4y(-1) = x(1) + 2x(0)
 - $y(1) = 2 + 4 + 3 \times 1 = 9$
 - $y_z(1) = -C_3 + 4C_4 + \frac{24}{5}$

•
$$y_z(n) = C_3(-1)^n + C_4(4)^n + \frac{6}{5}n(4)^n u(n)$$

•
$$n = 0$$
 için $y(0) - 3y(-1) - 4y(-2) = x(0) + 2x(-1)$

- y(0) = 1
- $y_z(0) = C_3 + C_4$
- n = 1 için y(1) 3y(0) 4y(-1) = x(1) + 2x(0)
 - $y(1) = 2 + 4 + 3 \times 1 = 9$
 - $y_z(1) = -C_3 + 4C_4 + \frac{24}{5}$
- $y_z(0) = y(0) \rightarrow C_3 + C_4 = 1$
- $y_z(1) = y(1) \rightarrow -C_3 + 4C_4 + \frac{24}{5} = 9$

•
$$y_z(n) = C_3(-1)^n + C_4(4)^n + \frac{6}{5}n(4)^n u(n)$$

•
$$y_z(0) = y(0) \rightarrow C_3 + C_4 = 1$$

•
$$y_z(1) = y(1) \rightarrow -C_3 + 4C_4 + \frac{24}{5} = 9$$

$$\bullet \ C_4 = \frac{26}{25}, \ C_3 = -\frac{1}{25}$$

•
$$y_z(n) = C_3(-1)^n + C_4(4)^n + \frac{6}{5}n(4)^n u(n)$$

•
$$y_z(0) = y(0) \rightarrow C_3 + C_4 = 1$$

•
$$y_z(1) = y(1) \rightarrow -C_3 + 4C_4 + \frac{24}{5} = 9$$

$$\bullet \ C_4 = \frac{26}{25}, \ C_3 = -\frac{1}{25}$$

•
$$y_z(n) = -\frac{1}{25}(-1)^n + \frac{26}{25}(4)^n + \frac{6}{5}n(4)^n u(n)$$

- $y_d(n) = -(-1)^n + 16(4)^n$
- $y_z(n) = -\frac{1}{25}(-1)^n + \frac{26}{25}(4)^n + \frac{6}{5}n(4)^n u(n)$
- $y_t(n) =$

•
$$y_d(n) = -(-1)^n + 16(4)^n$$

•
$$y_z(n) = -\frac{1}{25}(-1)^n + \frac{26}{25}(4)^n + \frac{6}{5}n(4)^n u(n)$$

•
$$y_t(n) = -\frac{26}{25}(-1)^n + \frac{426}{25}(4)^n + \frac{6}{5}n(4)^n u(n)$$

•
$$y_d(n) = -(-1)^n + 16(4)^n$$

•
$$y_z(n) = -\frac{1}{25}(-1)^n + \frac{26}{25}(4)^n + \frac{6}{5}n(4)^n u(n)$$

•
$$y_t(n) = -\frac{26}{25}(-1)^n + \frac{426}{25}(4)^n + \frac{6}{5}n(4)^n u(n)$$

•
$$y_t(n) = \left(-\frac{26}{25}(-1)^n + \frac{426}{25}(4)^n + \frac{6}{5}n(4)^n\right)u(n)$$

Fark Denkleminin Birim Darbe Cevabi

4. Hafta sonu buraya kadar geldi hoca

•
$$a_0y[n] + a_1y[n-1] + \dots + a_Ny[n-N] = b_0x[n] + b_1x[n-1] + \dots + b_Mx[n-M]$$

- $a_0y[n] + a_1y[n-1] + \dots + a_Ny[n-N] = b_0x[n] + b_1x[n-1] + \dots + b_Mx[n-M]$
- 1. $x(n) = \delta(n) \text{ ve } y(n) = h(n)$

•
$$a_0y[n] + a_1y[n-1] + \dots + a_Ny[n-N] = b_0x[n] + b_1x[n-1] + \dots + b_Mx[n-M]$$

1.
$$x(n) = \delta(n) \text{ ve } y(n) = h(n)$$

 $a_0 h[n] + a_1 h[n-1] + \dots + a_N h[n-N]$
 $= b_0 \delta[n] + b_1 \delta[n-1] + \dots + b_M \delta[n-M]$

- $a_0y[n] + a_1y[n-1] + \dots + a_Ny[n-N] = b_0x[n] + b_1x[n-1] + \dots + b_Mx[n-M]$
- 1. $x(n) = \delta(n) \text{ ve } y(n) = h(n)$ $a_0 h[n] + a_1 h[n-1] + \dots + a_N h[n-N]$ $= b_0 \delta[n] + b_1 \delta[n-1] + \dots + b_M \delta[n-M]$
- 2. Doğal çözüm yapısına benzer h[n] belirlenir.

- $a_0y[n] + a_1y[n-1] + \dots + a_Ny[n-N] = b_0x[n] + b_1x[n-1] + \dots + b_Mx[n-M]$
- 1. $x(n) = \delta(n) \text{ ve } y(n) = h(n)$ $a_0 h[n] + a_1 h[n-1] + \dots + a_N h[n-N]$ $= b_0 \delta[n] + b_1 \delta[n-1] + \dots + b_M \delta[n-M]$
- 2. Doğal çözüm yapısına benzer h[n] belirlenir.
- 3. Örneğin, N=3 için. Kökler: $\lambda_1, \lambda_2, \lambda_3$

$$h[n] = \begin{cases} C_7 \lambda_1^n + C_8 \lambda_2^n + C_9 \lambda_3^n, & \lambda_1 \neq \lambda_2 \neq \lambda_3 \\ C_7 \lambda_1^n + C_8 n \lambda_2^n + C_9 \lambda_3^n, & \lambda_1 = \lambda_2 \neq \lambda_3 \\ C_7 \lambda_1^n + C_8 n \lambda_2^n + C_9 n^2 \lambda_3^n, & \lambda_1 = \lambda_2 = \lambda_3 \end{cases}$$

- $a_0y[n] + a_1y[n-1] + \dots + a_Ny[n-N] = b_0x[n] + b_1x[n-1] + \dots + b_Mx[n-M]$
- 1. $x(n) = \delta(n) \text{ ve } y(n) = h(n)$ $a_0 h[n] + a_1 h[n-1] + \dots + a_N h[n-N]$ $= b_0 \delta[n] + b_1 \delta[n-1] + \dots + b_M \delta[n-M]$
- 2. Doğal çözüm yapısına benzer h[n] belirlenir.
- 3. Örneğin, N=3 için. Kökler: λ_1 , λ_2 , λ_3

$$h[n] = \begin{cases} C_7 \lambda_1^n + C_8 \lambda_2^n + C_9 \lambda_3^n, & \lambda_1 \neq \lambda_2 \neq \lambda_3 \\ C_7 \lambda_1^n + C_8 n \lambda_2^n + C_9 \lambda_3^n, & \lambda_1 = \lambda_2 \neq \lambda_3 \\ C_7 \lambda_1^n + C_8 n \lambda_2^n + C_9 n^2 \lambda_3^n, & \lambda_1 = \lambda_2 = \lambda_3 \end{cases}$$

4. 1'deki Fark denklemi kullanılarak h değerleri bulunur.

- $a_0y[n] + a_1y[n-1] + \dots + a_Ny[n-N] = b_0x[n] + b_1x[n-1] + \dots + b_Mx[n-M]$
- 1. $x(n) = \delta(n) \text{ ve } y(n) = h(n)$ $a_0 h[n] + a_1 h[n-1] + \dots + a_N h[n-N]$ $= b_0 \delta[n] + b_1 \delta[n-1] + \dots + b_M \delta[n-M]$
- 2. Doğal çözüm yapısına benzer h[n] belirlenir.
- 3. Örneğin, N=3 için. Kökler: λ_1 , λ_2 , λ_3

$$h[n] = \begin{cases} C_7 \lambda_1^n + C_8 \lambda_2^n + C_9 \lambda_3^n, & \lambda_1 \neq \lambda_2 \neq \lambda_3 \\ C_7 \lambda_1^n + C_8 n \lambda_2^n + C_9 \lambda_3^n, & \lambda_1 = \lambda_2 \neq \lambda_3 \\ C_7 \lambda_1^n + C_8 n \lambda_2^n + C_9 n^2 \lambda_3^n, & \lambda_1 = \lambda_2 = \lambda_3 \end{cases}$$

4. 1'deki Fark denklemi kullanılarak h değerleri bulunur.

N=1 ise,
$$h[0]$$
 bulunur. $a_0h[0] + a_1h[-1] = b_0\delta[n] + b_1\delta[n-1]$

- $a_0y[n] + a_1y[n-1] + \dots + a_Ny[n-N] = b_0x[n] + b_1x[n-1] + \dots + b_Mx[n-M]$
- 1. $x(n) = \delta(n) \text{ ve } y(n) = h(n)$ $a_0 h[n] + a_1 h[n-1] + \dots + a_N h[n-N]$ $= b_0 \delta[n] + b_1 \delta[n-1] + \dots + b_M \delta[n-M]$
- 2. Doğal çözüm yapısına benzer h[n] belirlenir.
- 3. Örneğin, N=3 için. Kökler: λ_1 , λ_2 , λ_3

$$h[n] = \begin{cases} C_7 \lambda_1^n + C_8 \lambda_2^n + C_9 \lambda_3^n, & \lambda_1 \neq \lambda_2 \neq \lambda_3 \\ C_7 \lambda_1^n + C_8 n \lambda_2^n + C_9 \lambda_3^n, & \lambda_1 = \lambda_2 \neq \lambda_3 \\ C_7 \lambda_1^n + C_8 n \lambda_2^n + C_9 n^2 \lambda_3^n, & \lambda_1 = \lambda_2 = \lambda_3 \end{cases}$$

4. 1'deki Fark denklemi kullanılarak h değerleri bulunur.

N=1 ise,
$$h[0]$$
 bulunur. $a_0h[0] + a_1h[-1] = b_0\delta[0] + b_1\delta[-1]$

N=2 ise,
$$h[0]$$
, $h[1]$ bulunur.
$$a_0h[0] + a_1h[-1] + a_2h[-2] = b_0\delta[0] + b_1\delta[-1] + b_2\delta[-2]$$
 $a_0h[1] + a_1h[0] + a_2h[-1] = b_0\delta[1] + b_1\delta[0] + b_2\delta[-1]$

- $a_0y[n] + a_1y[n-1] + \dots + a_Ny[n-N] = b_0x[n] + b_1x[n-1] + \dots + b_Mx[n-M]$
- 1. $x(n) = \delta(n) \text{ ve } y(n) = h(n)$ $a_0 h[n] + a_1 h[n-1] + \dots + a_N h[n-N]$ $= b_0 \delta[n] + b_1 \delta[n-1] + \dots + b_M \delta[n-M]$
- 2. Doğal çözüm yapısına benzer h[n] belirlenir.
- 3. Örneğin, N=3 için. Kökler: λ_1 , λ_2 , λ_3

$$h[n] = \begin{cases} C_7 \lambda_1^n + C_8 \lambda_2^n + C_9 \lambda_3^n, & \lambda_1 \neq \lambda_2 \neq \lambda_3 \\ C_7 \lambda_1^n + C_8 n \lambda_2^n + C_9 \lambda_3^n, & \lambda_1 = \lambda_2 \neq \lambda_3 \\ C_7 \lambda_1^n + C_8 n \lambda_2^n + C_9 n^2 \lambda_3^n, & \lambda_1 = \lambda_2 = \lambda_3 \end{cases}$$

4. 1'deki Fark denklemi kullanılarak h değerleri bulunur.

N=1 ise,
$$h[0]$$
 bulunur. $a_0h[0] + a_1h[-1] = b_0\delta[0] + b_1\delta[-1]$

N=2 ise,
$$h[0]$$
, $h[1]$ bulunur.
$$a_0h[0] + a_1h[-1] + a_2h[-2] = b_0\delta[0] + b_1\delta[-1] + b_2\delta[-2] \\ a_0h[1] + a_1h[0] + a_2h[-1] = b_0\delta[1] + b_1\delta[0] + b_2\delta[-1]$$

$$a_0h[0] + \cdots + a_3h[-3] = b_0\delta[0] + \cdots + b_3\delta[-3]$$

N=3 ise,
$$h[0]$$
, $h[1]$, $h[2]$ bulunur. $a_0h[1] + \cdots + a_3h[-2] = b_0\delta[1] + \cdots + b_3\delta[-2]$

$$a_0 h[2] + \dots + a_3 h[-1] = b_0 \delta[2] + \dots + b_3 \delta[-1]$$

Dr. Arı

4. 1'deki Fark denklemi kullanılarak h değerleri bulunur.

$$\begin{aligned} & \mathsf{N=1} \text{ ise, } h[0] \text{ bulunur. } a_0 h[0] + a_1 h[-1] = b_0 \delta[0] + b_1 \delta[-1] \\ & \mathsf{N=2} \text{ ise, } h[0], h[1] \text{bulunur.} & a_0 h[0] + a_1 h[-1] + a_2 h[-2] = b_0 \delta[0] + b_1 \delta[-1] + b_2 \delta[-2] \\ & a_0 h[1] + a_1 h[0] + a_2 h[-1] = b_0 \delta[1] + b_1 \delta[0] + b_2 \delta[-1] \\ & a_0 h[0] + \dots + a_3 h[-3] = b_0 \delta[0] + \dots + b_3 \delta[-3] \\ & \mathsf{N=3} \text{ ise, } h[0], h[1], h[2] \text{bulunur. } a_0 h[1] + \dots + a_3 h[-2] = b_0 \delta[1] + \dots + b_3 \delta[-2] \\ & a_0 h[2] + \dots + a_3 h[-1] = b_0 \delta[2] + \dots + b_3 \delta[-1] \end{aligned}$$

5. C katsayıları bulunur

h' ler belirlenen birim darbe cevabı yapısı ile eşleştirilir,

•
$$y(n) + ay(n-1) = x(n)$$
 ise $h(n) = ?$

- y(n) + ay(n-1) = x(n) ise h(n) = ?
- $y_d(n) = C_1(-a)^n$
- h(n) =

Dr. Arı

- y(n) + ay(n-1) = x(n) ise h(n) = ?
- $y_d(n) = C_1(-a)^n$
- $h(n) = C_3(-a)^n$

- y(n) + ay(n-1) = x(n) ise h(n) = ?
- $y_d(n) = C_1(-a)^n$
- $h(n) = C_3(-a)^n$
- $h(n) + ah(n-1) = \delta(n)$
- n=0 için

- y(n) + ay(n-1) = x(n) ise h(n) = ?
- $y_d(n) = C_1(-a)^n$
- $h(n) = C_3(-a)^n$
- $h(n) + ah(n-1) = \delta(n)$
- n = 0 için $h(0) + ah(-1) = \delta(0)$

- y(n) + ay(n-1) = x(n) ise h(n) = ?
- $y_d(n) = C_1(-a)^n$
- $h(n) = C_3(-a)^n$
- $h(n) + ah(n-1) = \delta(n)$
- n = 0 için $h(0) + ah(-1) = \delta(0)$
- h(0) = 1

- y(n) + ay(n-1) = x(n) ise h(n) = ?
- $y_d(n) = C_1(-a)^n$
- $h(n) = C_3(-a)^n$
- $h(n) + ah(n-1) = \delta(n)$
- n = 0 için $h(0) + ah(-1) = \delta(0)$
- $h(0) = 1 = C_3$

- y(n) + ay(n-1) = x(n) ise h(n) = ?
- $y_d(n) = C_1(-a)^n$
- $h(n) = C_3(-a)^n$
- $h(n) + ah(n-1) = \delta(n)$
- n = 0 için $h(0) + ah(-1) = \delta(0)$
- $h(0) = 1 = C_3$
- $h(n) = (-a)^n u(n)$

•
$$y(n) - 2y(n-1) - 3y(n-2) = x(n)$$
 ise $h(n) = ?$

- y(n) 2y(n-1) 3y(n-2) = x(n) ise h(n) = ?
- $y_d(n) = C_1(-1)^n + C_2(3)^n$
- h(n) =

- y(n) 2y(n-1) 3y(n-2) = x(n) ise h(n) = ?
- $y_d(n) = C_1(-1)^n + C_2(3)^n$
- $h(n) = C_5(-1)^n + C_6(3)^n$

- y(n) 2y(n-1) 3y(n-2) = x(n) ise h(n) = ?
- $y_d(n) = C_1(-1)^n + C_2(3)^n$
- $h(n) = C_5(-1)^n + C_6(3)^n$
- $h(n) 2h(n-1) 3h(n-2) = \delta(n)$

- y(n) 2y(n-1) 3y(n-2) = x(n) ise h(n) = ?
- $y_d(n) = C_1(-1)^n + C_2(3)^n$
- $h(n) = C_5(-1)^n + C_6(3)^n$
- $h(n) 2h(n-1) 3h(n-2) = \delta(n)$
- n=0 için

- y(n) 2y(n-1) 3y(n-2) = x(n) ise h(n) = ?
- $y_d(n) = C_1(-1)^n + C_2(3)^n$
- $h(n) = C_5(-1)^n + C_6(3)^n$
- $h(n) 2h(n-1) 3h(n-2) = \delta(n)$
- n = 0 için $h(0) 2h(-1) 3h(-2) = \delta(0)$

- y(n) 2y(n-1) 3y(n-2) = x(n) ise h(n) = ?
- $y_d(n) = C_1(-1)^n + C_2(3)^n$
- $h(n) = C_5(-1)^n + C_6(3)^n$
- $h(n) 2h(n-1) 3h(n-2) = \delta(n)$
- n = 0 için $h(0) 2h(-1) 3h(-2) = \delta(0)$
 - h(0) = 1

- y(n) 2y(n-1) 3y(n-2) = x(n) ise h(n) = ?
- $y_d(n) = C_1(-1)^n + C_2(3)^n$
- $h(n) = C_5(-1)^n + C_6(3)^n$
- $h(n) 2h(n-1) 3h(n-2) = \delta(n)$
- n = 0 için $h(0) 2h(-1) 3h(-2) = \delta(0)$
 - \bullet $h(0) = 1 = C_5 + C_6$
- $n = 1 \text{ için } h(1) 2h(0) 3h(-1) = \delta(1)$

- y(n) 2y(n-1) 3y(n-2) = x(n) ise h(n) = ?
- $y_d(n) = C_1(-1)^n + C_2(3)^n$
- $h(n) = C_5(-1)^n + C_6(3)^n$
- $h(n) 2h(n-1) 3h(n-2) = \delta(n)$
- n = 0 için $h(0) 2h(-1) 3h(-2) = \delta(0)$
 - \bullet $h(0) = 1 = C_5 + C_6$
- $n = 1 \text{ için } h(1) 2h(0) 3h(-1) = \delta(1)$
 - h(1) = 2

- y(n) 2y(n-1) 3y(n-2) = x(n) ise h(n) = ?
- $y_d(n) = C_1(-1)^n + C_2(3)^n$
- $h(n) = C_5(-1)^n + C_6(3)^n$
- $h(n) 2h(n-1) 3h(n-2) = \delta(n)$
- n = 0 için $h(0) 2h(-1) 3h(-2) = \delta(0)$
 - \bullet $h(0) = 1 = C_5 + C_6$
- $n = 1 \text{ için } h(1) 2h(0) 3h(-1) = \delta(1)$
 - \bullet $h(1) = 2 = -C_5 + 3C_6$

- y(n) 2y(n-1) 3y(n-2) = x(n) ise h(n) = ?
- $h(0) = 1 = C_5 + C_6$
- $h(1) = 2 = -C_5 + 3C_6$

- y(n) 2y(n-1) 3y(n-2) = x(n) ise h(n) = ?
- $h(0) = 1 = C_5 + C_6$
- $h(1) = 2 = -C_5 + 3C_6$
 - $\bullet \ C_6 = \frac{3}{4}, C_5 = \frac{1}{4}$

- y(n) 2y(n-1) 3y(n-2) = x(n) ise h(n) = ?
- $h(0) = 1 = C_5 + C_6$
- $h(1) = 2 = -C_5 + 3C_6$
 - $\bullet \ C_6 = \frac{3}{4}, C_5 = \frac{1}{4}$
- $h(n) = \left(\frac{1}{4}(-1)^n + \frac{3}{4}(3)^n\right)u(n)$

•
$$y(n) - 3y(n-1) - 4y(n-2) = x(n) + 2x(n-1)$$
 ise $h(n) = ?$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ise h(n) = ?
- $y_d(n) = C_1(-1)^n + C_2(4)^n$
- h(n) =

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ise h(n) = ?
- $y_d(n) = C_1(-1)^n + C_2(4)^n$
- $h(n) = C_5(-1)^n + C_6(4)^n$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ise h(n) = ?
- $y_d(n) = C_1(-1)^n + C_2(4)^n$
- $h(n) = C_5(-1)^n + C_6(4)^n$
- $h(n) 3h(n-1) 4h(n-2) = \delta(n) + 2\delta(n-1)$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ise h(n) = ?
- $y_d(n) = C_1(-1)^n + C_2(4)^n$
- $h(n) = C_5(-1)^n + C_6(4)^n$
- $h(n) 3h(n-1) 4h(n-2) = \delta(n) + 2\delta(n-1)$
- n = 0 için $h(0) 3h(-1) 4h(-2) = \delta(0) + 2\delta(-1)$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ise h(n) = ?
- $y_d(n) = C_1(-1)^n + C_2(4)^n$
- $h(n) = C_5(-1)^n + C_6(4)^n$
- $h(n) 3h(n-1) 4h(n-2) = \delta(n) + 2\delta(n-1)$
- n = 0 için $h(0) 3h(-1) 4h(-2) = \delta(0) + 2\delta(-1)$
 - h(0) = 1 =

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ise h(n) = ?
- $y_d(n) = C_1(-1)^n + C_2(4)^n$
- $h(n) = C_5(-1)^n + C_6(4)^n$
- $h(n) 3h(n-1) 4h(n-2) = \delta(n) + 2\delta(n-1)$
- n = 0 için $h(0) 3h(-1) 4h(-2) = \delta(0) + 2\delta(-1)$
 - \bullet $h(0) = 1 = C_5 + C_6$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ise h(n) = ?
- $y_d(n) = C_1(-1)^n + C_2(4)^n$
- $h(n) = C_5(-1)^n + C_6(4)^n$
- $h(n) 3h(n-1) 4h(n-2) = \delta(n) + 2\delta(n-1)$
- n = 0 için $h(0) 3h(-1) 4h(-2) = \delta(0) + 2\delta(-1)$
 - \bullet $h(0) = 1 = C_5 + C_6$
- n=1 için

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ise h(n) = ?
- $y_d(n) = C_1(-1)^n + C_2(4)^n$
- $h(n) = C_5(-1)^n + C_6(4)^n$
- $h(n) 3h(n-1) 4h(n-2) = \delta(n) + 2\delta(n-1)$
- n = 0 için $h(0) 3h(-1) 4h(-2) = \delta(0) + 2\delta(-1)$
 - \bullet $h(0) = 1 = C_5 + C_6$
- n = 1 için $h(1) 3h(0) 4h(-1) = \delta(1) + 2\delta(0)$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ise h(n) = ?
- $y_d(n) = C_1(-1)^n + C_2(4)^n$
- $h(n) = C_5(-1)^n + C_6(4)^n$
- $h(n) 3h(n-1) 4h(n-2) = \delta(n) + 2\delta(n-1)$
- n = 0 için $h(0) 3h(-1) 4h(-2) = \delta(0) + 2\delta(-1)$
 - \bullet $h(0) = 1 = C_5 + C_6$
- $n = 1 \text{ için } h(1) 3h(0) 4h(-1) = \delta(1) + 2\delta(0)$
 - $h(1) = 2 + 3 \times 1 = 5$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ise h(n) = ?
- $y_d(n) = C_1(-1)^n + C_2(4)^n$
- $h(n) = C_5(-1)^n + C_6(4)^n$
- $h(n) 3h(n-1) 4h(n-2) = \delta(n) + 2\delta(n-1)$
- n = 0 için $h(0) 3h(-1) 4h(-2) = \delta(0) + 2\delta(-1)$
 - \bullet $h(0) = 1 = C_5 + C_6$
- $n = 1 \text{ için } h(1) 3h(0) 4h(-1) = \delta(1) + 2\delta(0)$
 - $h(1) = 5 = -C_5 + 4C_6$

•
$$y(n) - 3y(n-1) - 4y(n-2) = x(n) + 2x(n-1)$$
 ise

- $h(0) = 1 = C_5 + C_6$
- $h(1) = 5 = -C_5 + 4C_6$

•
$$y(n) - 3y(n-1) - 4y(n-2) = x(n) + 2x(n-1)$$
 ise

- $h(0) = 1 = C_5 + C_6$
- $h(1) = 5 = -C_5 + 4C_6$

$$\bullet \ C_6 = \frac{6}{5}, C_5 = -\frac{1}{5}$$

•
$$y(n) - 3y(n-1) - 4y(n-2) = x(n) + 2x(n-1)$$
 ise

- $h(0) = 1 = C_5 + C_6$
- $h(1) = 5 = -C_5 + 4C_6$
 - $\bullet \ C_6 = \frac{6}{5}, C_5 = -\frac{1}{5}$
- $h(n) = \left(-\frac{1}{5}(-1)^n + \frac{6}{5}(4)^n\right)u(n)$