Recursion, Part 1

Agenda

- Basic Algorithms
- Graphical Algorithms
- Summary
- Exercises

Basic Algorithms

- <u>Factorial</u>
- Fibonacci numbers
- Rod Cutting
- Tower of Hanoi

Factorial

```
0! = 1N! = N × (N - 1)!
```

```
Integer: Factorial(Integer: n)
    If (n == 0) Then Return 1
    Return n * Factorial(n - 1)
End Factorial
```

Fibonacci Numbers

- Fibonacci(0) = 0
- Fibonacci(1) = 1
- Fibonacci(n) = Fibonacci(n 1) + Fibonacci(n 2) for n > 1

```
Integer: Fibonacci(Integer: n)
    If (n <= 1) Then Return n
    Return Fibonacci(n - 1) + Fibonacci(n - 2);
End Fibonacci</pre>
```

Fibonacci Performance

Lots of duplicated values

Rod Cutting

Tower of Hanoi

Tower of Hanoi Recursion

Tower of Hanoi Full Example

Graphical Algorithms

- Koch Curves
- Hilbert Curve
- Sierpiński Curve
- Gaskets
- The Skyline Problem

Koch Curves

 Each part of the larger curve is a copy of the smaller curve suitably scaled and rotated

Koch Levels 0 - 5

Koch Snowflake

Hilbert Curve

 Each part of the larger curve is a copy of the smaller curve suitably scaled and rotated

Sierpiński Curve

 Each part of the larger curve is a copy of the smaller curve suitably scaled and rotated

Sierpiński Curve Levels 0 - 3

Gaskets

- Divide an area into shapes
- Recursively color some of the shapes

Sierpiński Gasket (or sieve or triangle)

Sierpiński Carpet

The Skyline Problem

- List
- Divide and Conquer

Summary

- Basic Algorithms
 - Factorial
 - Fibonacci numbers
 - Rod Cutting
 - Tower of Hanoi

- Graphical Algorithms
 - Koch Curves
 - Hilbert Curve
 - Sierpiński Curve
 - Gaskets
 - The Skyline Problem

Exercises

- Chapter 9 Exercises 1 − 3, 5, 7, 8, 10, 11.
- Do one of Chapter 9 Exercises 4, 6.
- Do <u>one</u> of Chapter 9 Exercises 7, 9.
- Read Essential Algorithms, 2e Chapter 9 pages
 252 284. (The rest of Chapter 9.)