SUPSI

Esercizi di verifica Capitolo 2 Algebra lineare 2

- 1) È data la matrice di Jacobi A_{3x3} definita da: $a_{ij} = \frac{1}{i+j-1}$.
 - a) Scrivere la matrice A e calcolare ||A|| e k(A) (approximazione a 3 cifre decimali).
 - b) Sia $\vec{b} = \begin{pmatrix} 2,9290 \\ 2,0199 \\ 1,6032 \end{pmatrix}$. Determinare la soluzione \vec{x} del sistema $\vec{A} \cdot \vec{x} = \vec{b}$. Si consideri quindi

una perturbazione sui dati dovuta ad un'approssimazione a 2 cifre decimali. Calcolare l'errore relativo sulla soluzione e quello sui dati, interpretando i risultati ottenuti mediante la condizione della matrice *A*.

- 2) È data la matrice $F = \begin{pmatrix} 2 & -a \\ a & -2 \end{pmatrix}$, a > 0.
 - a) Calcolare ||F|| e k(F) in funzione del parametro reale a.
 - b) Stabilire per quali valori del parametro reale a > 0 si ha che k(F) = 5.
 - c) Determinare per tali valori di a i vettori \vec{x} che realizzano $\|F\| = \max_{\vec{x} \neq \vec{0}} \frac{\|F \cdot \vec{x}\|}{\|\vec{x}\|}$.
 - d) Si consideri, nelle stesse ipotesi del punto b), il sistema $F \cdot \vec{x} = \vec{b}$. A fronte di un errore relativo sui dati dello 0.2%, stabilire il valore percentuale massimo che può raggiungere l'errore relativo sulla soluzione.
- 3) Sia data la matrice $F = \begin{pmatrix} 3 & 0 & 2 \\ 0 & a & 0 \\ 2 & 0 & 0 \end{pmatrix}$ dove a è un parametro reale, $a \ge 0$.
 - a) Determinare la condizione k(F) al variare del parametro reale $a \ge 0$.
 - b) Stabilire quindi per quali valori del parametro $a \ge 0$ la condizione k(F) risulta minima.
- 4) È data la matrice $A = \frac{1}{16} \begin{pmatrix} 5 & 3 & -3 \\ 2 & 6 & -2 \\ -1 & 1 & 3 \end{pmatrix}$.

Risolvere il sistema di ED $\vec{u}(t) = A\vec{u}(t)$, $\vec{u}(0) = \vec{u}_0 = \begin{pmatrix} 2 \\ 2 \\ k \end{pmatrix}$ noto che $\vec{u}(8) = \begin{pmatrix} e^4 + e \\ e^4 + e^2 \\ e^2 + e \end{pmatrix}$.

- 5) Sia data la matrice $A = \begin{pmatrix} -1 & -2 & -2 \\ 1 & 2 & 2 \\ 0 & -1 & -1 \end{pmatrix}$.
 - a) Risolvere il sistema di ED $\vec{u}(t) = A\vec{u}(t)$, $\vec{u}(0) = \vec{u}_0 = \begin{pmatrix} 0 \\ k \\ 1 \end{pmatrix}$ in modo che il vettore soluzione $\vec{u}(t)$ abbia come componenti solo delle sinusoidi.
 - b) Calcolare quindi in forma esatta $\vec{u}\left(\frac{\pi}{2}\right)$.