1 作成したもの

SSTV(アマチュア無線の通信方式の一つ、低速度走査テレビジョン)を利用して、MATLAB で画像を音声データに変換して送信する。

使用技術: MATLAB

2 SSTV の説明

SSTV はアマチュア無線で使用される画像送信フォーマットで、今回はそのフォーマットの一つである Scottie 1 を使用した。

画像を音声に変換する手順は以下の通りで、

- 256 × 320px の画像を用意し、1ピクセル毎に RGB 値を読み取る。
- 色調の整数値0~255に周波数帯域を1500Hz(黒)~2300Hz(白)まで等間隔に割り振る。
- 画像を横一列の 320px づつに区切り、G、B、R、の順で左から 1px につき 0.432ms づつ対応 させた周波数の音を再生する。
- これを画像の最後の横列まで繰り返す。

実際には色調信号の間に同期パルスを挟む必要があり、さらに音声から画像を読み取らせるためには、通信開始を伝える VOX トーンとヘッダーとなる VIS 同期信号を再生しておく必要がある。

今回使用した Scottie 1 フォーマットでは、以下の表のように色調ラインとパルスの順番が定められている。

表 1: Scottie-1 ライン構成(1 ラインあたり)

#	説明	時間 [ms]	周波数 [Hz]
1	「開始」同期パルス(最初の行のみ)	9.0	1200
2	セパレータパルス	1.5	1500
3	緑色スキャン	約 145.6	1500~2300
4	セパレータパルス	1.5	1500
5	青色スキャン	約 145.6	1500~2300
6	同期パルス	9.0	1200
7	セパレータパルス	1.5	1500
8	赤色スキャン	約 145.6	1500~2300

また VIS 同期信号は受信側にフォーマットを伝える役割を持っており、SSTV フォーマットの共通 規格で送信側のフォーマットに対応した VIS コードを示す必要がある。

VIS コードは 7Bit+ パリティ検査用 1Bit の 8Bit で構成されていて、送信の際には 0 に 1300Hz、 1 に 1100Hz の周波数を対応させる。

Scottie 1 の VIS コードは 00111100 であるため、実際にヘッダーとして送る信号は以下の通りとなる。

表 2: Scottie 1 における VIS 同期信号の構成

信号要素	周波数 [Hz]	継続時間 [ms]
リーダートーン 1 (前半)	1900	300
リーダートーン 2(短パルス)	1200	10
リーダートーン 3(後半)	1900	300
VIS スタートビット	1200	30
VIS データビット(bit 0)	1300	30
VIS データビット(bit 1)	1300	30
VIS データビット(bit 2)	1100	30
VIS データビット(bit 3)	1100	30
VIS データビット(bit 4)	1100	30
VIS データビット(bit 5)	1100	30
VIS データビット(bit 6)	1300	30
パリティビット(偶数)	1300	30
VIS ストップビット	1200	30

最後に、VOX トーンについては通信開始を知らせ、タイミングを合わせるための信号であり、以下のように構成される。

表 3: SSTV 信号冒頭における VOX トーンの構成

トーン順序	周波数 [Hz]	継続時間 [ms]
トーン1	1900	100
トーン 2	1500	100
トーン 3	1900	100
トーン 4	1500	100
トーン 5	2300	100
トーン 6	1500	100
トーン 7	2300	100
トーン8	1500	100

これらの音声信号を、VOX トーン、VIS 同期信号、ライン信号 256 回の順で送信することで、SSTV アプリで 256 \times 320px 画像を読み取ることができる。

3 MATLAB での実装

実装の際に使用した変数と補助関数は以下の表で説明する。

表 4: Scottie 1 SSTV 符号化プログラムにおける主な変数の説明

変数名	意味・役割
fs	サンプリング周波数 [Hz]。音声波形の離散化に使用。
img	入力画像(RGB形式)。imread 関数で読み込む。
R, G, B	画像の赤・緑・青の各チャンネル(0 から 255)。
signal	出力音声信号(正規化された 1 次元ベクトル)。
phase	各トーン・ライン間の連続位相を保つための変数。
${\tt vox_freqs}$	VOX トーンの周波数列。
$tone_sig$	指定周波数・時間の単一トーン信号。
$line_sig$	1 ライン分の周波数信号。
vis	VIS コード (Scottie-1 は 00111100)。
freqs	画素値から求めた周波数。
$pixel_edges$	1 ラインの各画素に対応する時刻境界。
t	1 ライン内の時間ベクトル。長さは約 138.24ms 分。
mask	時刻ベクトル中で特定画素に該当する区間のマスク。

表 5: Scottie 1 SSTV 符号化プログラムの補助関数一覧

関数名	役割・機能
tone(freq, duration_ms, fs, phase_in)	指定された周波数 freq [Hz] の正弦波を
	duration_ms [ms] 分生成する。
	また、入力 phase_in から出発し、
	出力位相 phase_out を返すことで位相の連続性を維持。
<pre>scan_color_line(color_line, fs, phase_in)</pre>	1 ライン分(320 画素)の色チャネル値(R,G,B のいずれか)に
	対応する周波数変調信号を生成する。
	各画素値を周波数(1500~2300Hz)にマッピングし、
	合成して出力。

実行後、音声は正規化された WAV ファイルとして出力される。

4 実行例

ファイルを実行して得られた音声を PC で再生し、Android の SSTV アプリ、Robot36 にてサンプルレート 48kHz、AudioSource MicroPhone に設定してスマホのマイクから読み取らせた。

受信した画像は 256×320 に引き伸ばされており、またノイズの影響で完璧に受信できなかったが、判別が可能な画像を受信することができた。

図 1: 送信前の元画像

図 2: 受信できた画像