SHRI MATA VAISHNO DEVI UNIVERSITY, KATRA

School of Electronics & Communication Engineering B. Tech. 4th Minor-I Examination (Even) 2018-19

Entry No:

Date:

BEC

Total Number of Pages: [01]

Total Number of Questions: [06] Course Title: Digital System Design using VERILOG

Course Code: ECL 2073

Time Allowed: 1.5 Hours

Max Marks: [20]

Instructions / NOTE

- i. Attempt All Questions.
- ii. Support your answer with neat freehand sketches/diagrams, wherever appropriate.
- Assume an appropriate data / information, wherever necessary / missing. iii.
- Use of IS Code (Mention Number) is permissible in examination. iv.

2 permanente in examination.					
Section - A					
-Ø1.	Verilog HDL is a programming Language (TRUE/ FALSE) (b) Verilog HDL is case-insensitive (TRUE/ FALSE)	[03]	CO1		
1	Default data-type of port names is				
1390	(d) Object names must be started with				
	(E) An object of REG data-type can assigned a value in				
	(1) Name the two Verilog primitives which has more than one output.				
Q2.	(a) Name the value sets used in Verilog HDL, and describe in one line how	[02]	CO2		
1	they are used in Verilog.				
1 4	What values are assigned to left hand side object on its execution if				
	$B = 'b \ 0101_1101_1011 \text{ and } C = 'h \ ABCD$?	[03]	CO2		
1	A = -& (B); $A = & (-B);$ $A = B & (-C);$				
23.	Describe the capabilities of Verilog-HDL (write point-wise)	[03]	CO1		
Section – B					
94.	Design a Verilog-HDL module for 3:8 Decoder using data-flow modeling.	[03]	CO2		
05/	Write a Verilog Test-Bench code to apply inputs to a 2-bit full adder	[02]	CO4		
	circuit. (module name is fa_2bit with ports in this sequence (sum, cout,				
	x_in, b_in, c_in)	FO43	CO3		
Q6.	Design a Verilog module for 2:1 mux using gate-level modeling. Then use	[04]	003		
	that 2:1 mux to design a module for 8:1 mux. (Must be supported with				
	Block/circuit diagrams)				

Course Outcomes

CO 1: Describe Verilog hardware description languages (HDL).

CO 2: Design Digital Circuits and Write behavioral models of digital circuits.

CO 3: Write Register Transfer Level (RTL) models of digital circuits.

CO 4: Verify behavioral and RTL models.

CO	Questions Mapping	Total Marks	Total Number of Students (to be appeared in Exam)
001	01 03	06	61
COI	Q1, Q3	08	61
CO2	Q2, Q4	04	61
CO3	Q6	02	61
CO4	05		