Lecture 16 sequence statistics

Course: Practical Bioinformatics (BIOL 4220)

Instructor: Michael Landis

Email: <u>michael.landis@wustl.edu</u>

Lecture 16 outline

Last time: Python series

This time: sequence statistics

- base frequencies
- GC richness
- genetic code
- amino acid properties

Sequence variation

```
Felis_cattus_cytB tccgttattcattcaatc
Mus_musculus_cytB tccgttatccacacaatc
Homo_sapiens_cytB tccgttattctctaatc
Bos taurus cytB tctgttattcactcaatc
```

gene samples across species

Nucleotide composition

The four nucleotides (A, C, G, T) do not occur in equal proportions across every gene for every species.

Reasons include:

- mutational bias
- repair bias
- synthesis costs
- limited resources
- selection on thermal tolerance
- selection on amino acids
- genetic code biases
- transcription factor motifs
- etc.

Nucleotide composition

Do A, C, G, and T occur in equal proportions across sites? across species?

```
sp1_gnAACCTGTsp1_gnBTCGGGCsp2_gnAACTTGTsp2_gnBGCAGCCsp3_gnAACCTGAsp3_gnBGCACCTgene Agene B
```

Composition per site (across sequences)

123456

sp1_gnA ACCTGT
sp2_gnA ACTTGT

sp3_gnA ACCTGA

Site	Α	С	G	Т
1	3/3	-	-	-
2	-	3/3		
3	-	2/3	-	1/3
4	-	-	_	3/3
5	-	-	3/3	_
6	1/3	_	_	2/3
Total	4	5	3	6

Composition per site (across sequences)

123456
sp1_gnB TCGGGC
sp2_gnB GCAGCC
sp3 gnB GCACCT

Site	А	С	G	Т
1	-	-	2/3	1/3
2	-	3/3	-	-
3	2/3	-	1/3	-
4	-	1/3	2/3	_
5	-	2/3	1/3	_
6	-	2/3	-	1/3
Total	2	8	6	2

Composition per sequence (across sites)

123456

sp1_gnA ACCTGT
sp2_gnA ACTTGT

sp3_gnA ACCTGA

Species	Α	С	G	Т
sp1	1/6	2/6	1/6	2/6
sp2	1/6	1/6	1/6	3/6
sp3	2/6	2/6	1/6	1/6
Total	4	5	3	6

Composition per sequence (across sites)

123456
sp1_gnB TCGGGC
sp2_gnB GCAGCC
sp3 gnB GCACCT

Species	Α	С	G	Т
sp1	_	2/6	3/6	1/6
sp2	1/6	3/6	2/6	-
sp3	1/6	3/6	1/6	1/6
Total	2	8	6	2

GC-content bias

Do G and C occur in equal proportion to A and T?

- G-C pairs have greater thermostability
- G-C pairs require more nitrogen than A-T
- G-C pairs have higher synthesis cost
- AT-bias in spontaneous mutation
- GC-biased gene conversion (mismatch repair)
- CpG islands and cytosine-methylation in vertebrates
- High-GC % recombination rates

GC-content bias

Do G and C occur in equal proportion to A and T?

computed as
$$(C+G) / (A+T+C+G)$$

GC content in gene A
$$8/18 = 44\%$$

GC content in gene B
$$14/18 = 78\%$$

```
spW_gnC GCCT
spX_gnC GCTG
spY_gnC GACT
spZ_gnC GACC
gene C
```

A site is *phylogenetically informative* if it can be used to estimate common ancestry

A phylogenetically informative site contains two variants, with at least two samples per variant

W: T

Y:T

Y:T

Genetic code

The *genetic code* (largely) determines how nucleotide triplets (*codons*) are translated into amino acids

```
123 123 123 123

sp1_gnD ATG TGT ATC GTC ..

sp2_gnD ATG TGT CTA GTC ..

sp3_gnD ATG TGC CTC GTC ..

codons
```

Genetic code

The *genetic code* (largely) determines how nucleotide triplets (*codons*) are translated into amino acids

```
sp1_gnD Met Cys Ile Val ..
sp2_gnD Met Cys Leu Val ..
sp3_gnD Met Cys Leu Val ..
amino acids
```

Genetic code

(standard table; different species and genomes may use different codes)

Reading frame

The *reading frame* determines the identity of each codon, and therefore (largely) determines amino acid identity

```
123 123 123 123
sp1_gnD ATG TGT ATC GTC ...
sp2_gnD ATG TGT CTA GTC ...
sp3_gnD ATG TGC CTC GTC ...
begin reading frame
```

Reading frame

The *reading frame* determines the identity of each codon, and therefore (largely) determines amino acid identity

```
3 123 123 123 12

sp1_gnD A TGT GTA TCG TC ...

sp2_gnD A TGT GTC TAG TC ...

sp3_gnD A TGT GCC TCG TC ...

begin reading frame
```

Reading frame

The *reading frame* determines the identity of each codon, and therefore (largely) determines amino acid identity

```
23 123 123 1 1 sp1_gnD AT GTG TAT CGT C ... sp2_gnD AT GTG TCT AGT C ... sp3_gnD AT GTG CCT CGT C ... begin reading frame
```

Amino acid translation differs due to frame shift

Amino acid physicochemical properties

Physicochemical properties of amino acids influence protein structure and function

Amino acid frequencies

```
sp1_gnD .. Val Tyr Arg ...
sp2_gnD .. Val Ser Ser ...
sp3_gnD .. Val Pro Arg ...
```

How common are different properties? And where do they occur in the sequence?

Arg: positive, polar, charged

Ser: small, tiny, hydroloxic, polar Tyr: aromatic, hydrophobic, polar

Pro: small

Val: small, hydrophobic, aliphatic

Amino acid frequencies

```
sp1_gnD .. <u>Val</u> Tyr Arg ...
sp2_gnD .. <u>Val</u> <u>Ser Ser</u> ...
sp3_gnD .. <u>Val</u> <u>Pro</u> Arg ...
```

~66% of AA in this window are **small**

Arg: positive, polar, charged

Ser: <u>small</u>, tiny, hydroloxic, polar Tyr: aromatic, hydrophobic, polar

Pro: small

Val: **small**, hydrophobic, aliphatic

Amino acid frequencies

```
sp1_gnD .. <u>Val</u> <u>Tyr</u> Arg ...
sp2_gnD .. <u>Val</u> Ser Ser ...
sp3_gnD .. <u>Val</u> Pro Arg ...
```

~44% of AA in this window are **hydrophobic**

Arg: positive, polar, charged

Ser: small, tiny, hydroloxic, polar Tyr: aromatic, **hydrophobic**, polar

Pro: small

Val: small, **hydrophobic**, aliphatic

Codon usage bias

Some codons may be used significantly more often than others to encode the same amino acid; this is called **codon usage bias**

```
sp1_gnE GTT GTT GTT GTT
sp1_gnE GTA GTT GTT GTT
sp1_gnE GTT GTT GTT GTC

GTT GTT GTC

GTT overrepresented
for Valine

sp1_gnE Val Val Val
sp2_gnE Val Val Val
sp3 gnE Val Val Val
```

Overview for Lab 16