Arquitetura de Computadores

PROF. ISAAC

Professor

Prof. Dr. Isaac Jesus da Silva

isaacjesus@fei.edu.br

- Técnico em Mecatrônica (SENAI Armando Arruda Pereira)
- Engenheiro Eletricista com Ênfase em Eletrônica (FEI)
- Mestre em Inteligência Artificial Aplicada à Automação (FEI)
- Doutor em Inteligência Artificial Aplicada à Automação (FEI)
- Coordenador da Categoria de Corrida de Robôs Humanoides na RoboCup Brasil.

http://www.cbrobotica.org/

• Pesquisador e Competidor em Competições internacionais de Robótica.

https://www.robocup.org/

- Desenvolvedor de robôs móveis para aplicações em empresas.
- Pesquisas com Machine Learning e Visão Computacional.

http://lattes.cnpq.br/4632647003093335

Critério de Avaliação

$$MF = (0.2*LAB + 0.3*Projeto + 0.5*Prova)$$

- LAB: Atividades em Laboratório com entrega no Moodle.
- Projeto: Projeto.
- Prova: Prova Teórica.
- MF: Média Final.

Se MF for menor que 5 o aluno tem direito a prova SUB.

A **SUB** pode substituir a nota **Projeto** ou **Prova** (apenas uma delas), substituindo a que resultar em maior nota MF.

Objetivos da Matéria

- Estudo da arquitetura interna dos processadores usuais.
- Experimentar programação em baixo nível (assembly).
- Pra que?
 - Introduzir o trabalho de um compilador;
 - Entender melhor como um computador funciona e o que uma linguagem de alto nível faz; Consequências:
 - Não reclamar mais de linguagens de programação em alto nível.

 Stallings, William. Arquitetura e organização de computadores. 8. ed. Prentice-Hall,. 2010.

 Miles J. Murdocca & Vincent P. Heuring. Introdução a Arquitetura de Computadores. 4ª Ed. Elsevier. 2014

Tanenbaum, S.A. Organização Estruturada de Computadores.
6ª Ed, Pearson, 2013

 Gimenez, Salvador P. Microcontroladores 8051 - Teoria e Prática, Editora Érica, 2010

Zelenovsky, Ricardo, and Alexandre Mendonça. Microcontroladores:
Programação e Projeto com a Família 8051. MZ Editora, 2005.

Um pouco de História

Alguns marcos no desenvolvimento do computador digital moderno:

Ano	Nome	Construído por	Comentários
1834	Máquina analítica	Babbage	Primeira tentativa de construir um computador digital
1936	Z1	Zuse	Primeira máquina de calcular com relés
1943	COLOSSUS	Governo britânico	Primeiro computador eletrônico
1944	Mark I	Aiken	Primeiro computador norte-americano de uso geral
1946	ENIAC	Eckert/Mauchley	A história moderna dos computadores começa aqui
1949	EDSAC	Wilkes	Primeiro computador com programa armazenado
1951	Whirlwind I	MIT	Primeiro computador de tempo real
1952	IAS	von Neumann	A maioria das máquinas atuais usa esse projeto
1960	PDP-1	DEC	Primeiro minicomputador (50 vendidos)
1961	1401	IBM	Máquina para pequenos negócios, com enorme popularidade

Alguns marcos no desenvolvimento do computador digital moderno:

Ano	Nome	Construído por	Comentários
1962	7094	IBM	Dominou computação científica no início da década de 1960
1963	B5000	Burroughs	Primeira máquina projetada para uma linguagem de alto nível
1964	360	IBM	Primeira linha de produto projetada como uma família
1964	6600	CDC	Primeiro supercomputador científico
1965	PDP-8	DEC	Primeiro minicomputador de mercado de massa (50 mil vendidos)
1970	PDP-11	DEC	Dominou os minicomputadores na década de 1970
1974	8080	Intel	Primeiro computador de uso geral de 8 bits em um chip
1974	CRAY-1	Cray	Primeiro supercomputador vetorial
1978	VAX	DEC	Primeiro superminicomputador de 32 bits
1981	IBM PC	IBM	Deu início à era moderna do computador pessoal

Alguns marcos no desenvolvimento do computador digital moderno:

Ano	Nome	Construído por	Comentários
1981	Osborne-1	Osborne	Primeiro computador portátil
1983	Lisa	Apple	Primeiro computador pessoal com uma GUI
1985	386	Intel	Primeiro ancestral de 32 bits da linha Pentium
1985	MIPS	MIPS	Primeira máquina comercial RISC
1985	XC2064	Xilinx	Primeiro FPGA (Field-Programmable Gate Array)
1987	SPARC	Sun	Primeira estação de trabalho RISC baseada em SPARC
1989	GridPad	Grid Systems	Primeiro computador tablet comercial
1990	RS6000	IBM	Primeira máquina superescalar
1992	Alpha	DEC	Primeiro computador pessoal de 64 bits
1992	Simon	IBM	Primeiro smartphone
1993	Newton	Apple	Primeiro computador palmtop (PDA)
2001	POWER4	IBM	Primeiro multiprocessador com chip dual core

 A primeira pessoa a construir uma máquina de calcular operacional foi o cientista francês Blaise Pascal (1623– 1662), em cuja honra a linguagem Pascal foi batizada.

 Em 1943, e Mauchley e seu aluno de pós-graduação, J. Presper Eckert, passaram a construir um computador eletrônico, ao qual deram o nome de ENIAC.

ENIAC.

 O transistor foi inventado no Bell Labs em 1948 por John Bardeen, Walter Brattain e William Shockley, pelo qual receberam o Prêmio Nobel de física de 1956.

- A invenção do circuito integrado de silício por Jack Kilby e Robert Noyce em 1958 permitiu que dezenas de transistores fossem colocados em um único chip.
- Na década de 1980, a VLSI (Very Large Scale Integration) tinha possibilitado colocar primeiro dezenas de milhares, depois centenas de milhares e, por fim, milhões de transistores em um único chip.

 Em 1989, a Grid Systems lançou o primeiro tablet, denominado GridPad. Ele consistia em uma pequena tela em que os usuários poderiam escrever com uma caneta especial, para controlar o sistema.

• Em 1976, dois jovens chamado Steve Jobs e Steve Wozniac, iniciou uma empresa chamada Apple.

Em 1977, foi lançado o Apple II com teclado integrado.

- Em 1980, a IBM percebeu que precisava entrar nesse novo mercado.
- A empresa já dominava o mercado de computadores de grande porte.

No entanto a IBM precisava de um sistema operacional para seu novo computador, então uma pequena empresa chamada Microsoft ofereceu o sistema operacional PC-DOS.

 Em 1983 e 1984 a Apple lançou os computadores Apple Lisa e Apple Macintosh.

Apple Lisa

Apple Macintoch

 No entanto, a interface gráfica e o mouse dos computadores da Apple deixavam a IBM décadas atrás.

Apple Macintoch

 O filme Pirates of Silicon Valley conta um pouco da história do surgimento da Apple e da Microsoft. Assim como diversos documentários que detalham mais essas histórias.

Exemplo

Exemplo

- Nesse exemplo, suponha que você trabalhe em uma empresa de tecnologia e seu diretor pediu para você realizar a compra de notebooks para a equipe de desenvolvimento.
- Seu diretor apresentou alguns modelos de notebooks novos e usados e ele pediu para escolher o que possua maior desempenho.
- Você resolve começar analisando os processadores.

Métricas de Desempenho

• Tempo de Resposta:

Quanto tempo demora para executar uma tarefa.

• Vazão (throughput):

Trabalho total feito por unidade de tempo.

Exemplo: transações por hora.

Qual processador possui melhor desempenho?

i3 ou **i7**

i3-8100B

i7-2620M

Qual processador possui melhor desempenho?

Model Number	Cores	Threads	Frequency	Max Turbo Frequency	Cache	TDP
17-2620M	2					
I3-8100B	4					

Qual processador possui melhor desempenho?

Model Number	Cores	Threads	Frequency	Max Turbo Frequency	Cache	TDP
17-2620M	2	4				
I3-8100B	4	4				

Qual processador possui melhor desempenho?

Model Number	Cores	Threads	Frequency	Max Turbo Frequency	Cache	TDP
17-2620M	2	4	2.7 GHz			
I3-8100B	4	4	3.6 GHz			

Qual processador possui melhor desempenho?

Model Number	Cores	Threads	Frequency	Max Turbo Frequency	Cache	TDP
17-2620M	2	4	2.7 GHz	3.4 GHz		
I3-8100B	4	4	3.6 GHz	N/A		

Qual processador possui melhor desempenho?

Model Number	Cores	Threads	Frequency	Max Turbo Frequency	Cache	TDP
17-2620M	2	4	2.7 GHz	3.4 GHz	4 MB	
I3-8100B	4	4	3.6 GHz	N/A	6 MB	

Qual processador possui melhor desempenho?

Model Number	Cores	Threads	Frequency	Max Turbo Frequency	Cache	TDP
17-2620M	2	4	2.7 GHz	3.4 GHz	4 MB	35W
I3-8100B	4	4	3.6 GHz	N/A	6 MB	65W

Modelo de processadores utilizados geralmente em Notebooks.

https://en.wikipedia.org/wiki/List_of_Intel_Core_i3_microprocessors

https://en.wikipedia.org/wiki/List_of_Intel_Core_i7_microprocessors

Qual processador possui melhor desempenho?

i5 ou **i7**

Processadores da mesma geração.

i7-8750H

i5-8500B

Qual processador possui melhor desempenho?

Model Number	Cores	Threads	Frequency	Max Turbo Frequency	Cache	TDP
I7-8750H	6					
I5-8500B	6					

Qual processador possui melhor desempenho?

Model Number	Cores	Threads	Frequency	Max Turbo Frequency	Cache	TDP
17-8750H	6	12				
15-8500B	6	6				

Qual processador possui melhor desempenho?

Model Number	Cores	Threads	Frequency	Max Turbo Frequency	Cache	TDP
17-8750H	6	12	2.2 GHz			
I5-8500B	6	6	3.0 GHz			

Qual processador possui melhor desempenho?

Model Number	Cores	Threads	Frequency	Max Turbo Frequency	Cache	TDP
17-8750H	6	12	2.2 GHz	4.10 GHz		
I5-8500B	6	6	3.0 GHz	4.10 GHz		

Qual processador possui melhor desempenho?

Model Number	Cores	Threads	Frequency	Max Turbo Frequency	Cache	TDP
17-8750H	6	12	2.2 GHz	4.10 GHz	9 MB	
15-8500B	6	6	3.0 GHz	4.10 GHz	9 MB	

Qual processador possui melhor desempenho?

Model Number	Cores	Threads	Frequency	Max Turbo Frequency	Cache	TDP
17-8750H	6	12	2.2 GHz	4.10 GHz	9 MB	45 W
I5-8500B	6	6	3.0 GHz	4.10 GHz	9 MB	65 W

Modelo de processadores utilizados geralmente em Notebooks.

https://en.wikipedia.org/wiki/List_of_Intel_Core_i5_microprocessors

https://en.wikipedia.org/wiki/List_of_Intel_Core_i7_microprocessors

Qual processador possui melhor desempenho?

i7 ou **i7**

Processadores da mesma geração.

https://www.dell.com/pt-br/shop/notebooks-dell/inspiron-15-5000/spd/inspiron-15-5590-laptop/ci5590w2053305brw

Qual processador possui melhor desempenho?

i7-10750H ou i7-10510U

Processadores da mesma geração.

https://www.dell.com/pt-br/shop/notebooks-dell/inspiron-15-5000/spd/inspiron-15-5590-laptop/ci5590w2053305brw

Qual processador possui melhor desempenho?

Model Number	Cores	Threads	Frequency	Max Turbo Frequency	Cache	TDP
I7-10750H	6					
I7-10510U	4					

Modelo de processadores utilizados geralmente em Notebooks.

https://www.dell.com/pt-br/shop/notebooks-dell/inspiron-15-5000/spd/inspiron-15-5590-laptop/ci5590w2053305brw

Qual processador possui melhor desempenho?

Model Number	Cores	Threads	Frequency	Max Turbo Frequency	Cache	TDP
I7-10750H	6	12				
I7-10510U	4	8				

Modelo de processadores utilizados geralmente em Notebooks.

https://www.dell.com/pt-br/shop/notebooks-dell/inspiron-15-5000/spd/inspiron-15-5590-laptop/ci5590w2053305brw

Qual processador possui melhor desempenho?

Model Number	Cores	Threads	Frequency	Max Turbo Frequency	Cache	TDP
I7-10750H	6	12	2.6 GHz			
I7-10510U	4	8	1.8 GHz			

Modelo de processadores utilizados geralmente em Notebooks.

 $\underline{https://www.dell.com/pt-br/shop/notebooks-dell/inspiron-15-5000/spd/inspiron-15-5590-laptop/ci5590w2053305brward (a) with the following and the following the following and the following the foll$

Qual processador possui melhor desempenho?

Model Number	Cores	Threads	Frequency	Max Turbo Frequency	l Cache	TDP
I7-10750H	6	12	2.6	5.0 GHz		
I7-10510U	4	8	1.8	4.9 GHz		

Modelo de processadores utilizados geralmente em Notebooks.

 $\underline{https://www.dell.com/pt-br/shop/notebooks-dell/inspiron-15-5000/spd/inspiron-15-5590-laptop/ci5590w2053305brw}$

Qual processador possui melhor desempenho?

Model Number	Cores	Threads	Frequency	Max Turbo Frequency	Cache	TDP
I7-10750H	6	12	2.6	5.0 GHz	12 MB	
I7-10510U	4	8	1.8	4.9 GHz	8 MB	

Modelo de processadores utilizados geralmente em Notebooks.

https://www.dell.com/pt-br/shop/notebooks-dell/inspiron-15-5000/spd/inspiron-15-5590-laptop/ci5590w2053305brw

Qual processador possui melhor desempenho?

45W
15W

Modelo de processadores utilizados geralmente em Notebooks.

https://ark.intel.com/content/www/br/pt/ark/products/201837/intel-core-i7-10750h-processor-12m-cache-up-to-5-00-ghz.html https://ark.intel.com/content/www/br/pt/ark/products/196449/intel-core-i7-10510u-processor-8m-cache-up-to-4-90-ghz.html

Qual processador possui melhor desempenho?

Conclusão:

O desempenho de um processador varia de acordo com sua arquitetura.

Processadores

Portas e álgebra booleana

- Minúsculos dispositivos eletrônicos, denominados portas (gates), podem calcular várias funções dos sinais.
- Inversor de transistor. Porta NAND. Porta NOR.

Portas e álgebra booleana

Portas e álgebra booleana

 Símbolos e comportamento funcional das cinco portas básicas.

Α	X
0	1
1	0

Α	В	X
0	0	1
0	1	1
1	0	1
1	1	0

Α	В	Х
0	0	1
0	1	0
1	0	0
1	1	0

Α	В	X
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	X
0	0	0
0	1	1
1	0	1
1	1	1

Circuitos

Exemplo:

• Um circuito para calcular o bit de soma e o de transporte é

conhecido como um meio-somador.

Α	В	Soma	Transporte
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Circuitos integrados

- Portas lógicas ou circuitos são fabricadas e vendidas em unidades denominadas circuitos integrados, muitas vezes denominados ICs ou chips.
- Um IC é um pedaço quadrado de silício de tamanho variado.
- ICs costumam ser montados em pacotes retangulares de plástico ou cerâmica.

Circuitos integrados

 Tipos comuns de pacotes de circuito integrado, incluindo um pacote dual-in-line, ou DIP, PGA e LGA.

Circuitos integrados

Exemplo de encapsulamento do CI.

Circuitos aritméticos

ULA de 1 bit.

Microprocessador (CPU)

• <u>Microprocessador</u> é um circuito integrado responsável pela execução dos cálculos e operações através das instruções solicitadas por um programa em um computador (tomada de decisão).

Microprocessador 8086

Microprocessador (CPU)

<u>Microprocessador</u> geralmente chamado apenas de <u>processador ou</u>
<u>CPU</u> (do inglês Central Processing Unit - Unidade Central de Processamento)

Evolução da arquitetura Intel x86

- As propostas dos x86 atuais representam os resultados de décadas de esforço de projeto em computadores com conjunto complexo de instruções (CISC — do inglês, Complex Instruction Set Computers).
- Uma técnica alternativa para o projeto do processador é o computador com conjunto de instruções reduzido (RISC do inglês, Reduced Instruction Set Computers). A arquitetura ARM é usada em uma grande variedade de sistemas embarcados e é um dos sistemas baseados em RISC mais poderosos e bem projetados no mercado.

Evolução da arquitetura Intel x86

Microprocessadores (CPU)

Lei de Moore

 A lei de Moore prevê um aumento anual de 60% no número de transistores que podem ser colocados em um chip.

Lei de Moore

Essa figura reflete a famosa lei de Moore, que foi proposta por Gordon Moore, cofundador da Intel, em 1965 (MOOR, 1965).

	(a) Processadores da década de 1970				
	4004	8008	8080	8086	8088
Introduzido	1971	1972	1974	1978	1979
Velocidade de clock	108 kHz	108 kHz	2 MHz	5 MHz, 8 MHz, 10 MHz	5 MHz, 8 MHz
Largura do barramento	4 bits	8 bits	8 bits	16 bits	8 bits
Número de transistores	2.300	3.500	6.000	29.000	29.000
Dimensão da tecnologia de fabricação (µm)	10	8	6	3	6
Memória endereçável	640 bytes	16 kB	64 kB	1 MB	1 MB

	(b) Processadores da década de 1980			
	80286	386TM DX	386TM SX	486TM DX CPU
Introduzido	1982	1985	1988	1989
Velocidade de clock	6–12,5 MHz	16–33 MHz	16–33 MHz	25-50 MHz
Largura do barramento	16 bits	32 bits	16 bits	32 bits
Número de transistores	134.000	275.000	275.000	1,2 milhão
Dimensão da tecnologia de fabricação (µm)	1,5	1	1	0,8–1
Memória endereçável	16 MB	4 GB	16 MB	4 GB
Memória virtual	1 GB	64 TB	64 TB	64 TB
Cache	_	_	_	8 kB

	(c) Processadores da década de 1990			
	486TM SX	Pentium	Pentium Pro	Pentium II
Introduzido	1991	1993	1995	1997
Velocidade de clock	16–33 MHz	60–166 MHz,	150-200 MHz	200–300 MHz
Largura do barramento	32 bits	32 bits	64 bits	64 bits
Número de transistores	1,185 milhão	3,1 milhões	5,5 milhões	7,5 milhões
Dimensão da tecnologia de fabricação (µm)	1	0,8	0,6	0,35
Memória endereçável	4 GB	4 GB	64 GB	64 GB
Memória virtual	64 TB	64 TB	64 TB	64 TB
Cache	8 kB	8 kB	512 kB L1 e 1 MB L2	512 kB L2

	(d) Processadores recentes				
	Pentium III	Pentium 4	Core 2 Duo	Core i7 EE 4960X	
Introduzido	1999	2000	2006	2013	
Velocidade de clock	450–660 MHz	1,3–1,8 GHz	1,06–1,2 GHz	4 GHz	
Largura do barramento	64 bits	64 bits	64 bits	64 bits	
Número de transistores	9,5 milhões	42 milhões	167 milhões	1,86 bilhão	
Dimensão da tecnologia de fabricação (nm)	250	180	65	22	
Memória endereçável	64 GB	64 GB	64 GB	64 GB	
Memória virtual	64 TB	64 TB	64 TB	64 TB	
Cache	512 kB L2	256 kB L2	2 MB L2	1,5 MB L2/15 MB L3	
Número de cores	1	1	2	6	

Arquitetura de Computadores

Arquitetura x86

Principais membros da família de CPUs da Intel.

Chip	Data	MHz	Trans.	Memória	Notas
4004	4/1971	0,108	2.300	640	Primeiro microprocessador em um chip
8008	4/1972	0,108	3.500	16 KB	Primeiro microprocessador de 8 bits
8080	4/1974	2	6.000	64 KB	Primeira CPU de uso geral em um chip
8086	6/1978	5–10	29.000	1 MB	Primeira CPU de 16 bits em um chip
8088	6/1979	5–8	29.000	1 MB	Usada no IBM PC
80286	2/1982	8–12	134.000	16 MB	Com proteção de memória
80386	10/1985	16–33	275.000	4 GB	Primeira CPU de 32 bits
80486	4/1989	25–100	1,2M	4 GB	Memória cache de 8 KB embutida
Pentium	3/1993	60–233	3,1M	4 GB	Dois pipelines; modelos posteriores tinham MMX
Pentium Pro	3/1995	150–200	5,5M	4 GB	Dois níveis de cache embutidos
Pentium II	5/1997	233–450	7,5M	4 GB	Pentium Pro mais instruções MMX
Pentium III	2/1999	650-1.400	9,5M	4 GB	Instruções SSE para gráficos em 3D
Pentium 4	11/2000	1.300-3.800	42M	4 GB	Hyperthreading; mais instruções SSE
Core Duo	1/2006	1.600-3.200	152M	2 GB	Dual cores em um único substrato
Core	7/2006	1.200-3.200	410M	64 GB	Arquitetura <i>quad</i> core de 64 bits
Core i7	1/2011	1.100-3.300	1.160M	24 GB	Processador gráfico integrado

Lei de Moore

Arquitetura x86

Lei de Moore para chips de CPU (Intel).

Microprocessador (CPU)

O chip Intel Core i7-3960X. O substrato tem 21 × 21 mm e 2,27 bilhões de transistores. Direitos da fotografia da Intel Corporation, 2011, reprodução permitida.

Processadores - CPU

 A CPU (Central Processing Unit – unidade central de processamento) é o "cérebro" do computador.

Organização da CPU

 O caminho de dados de uma típica máquina de von Neumann.

CPU

Componentes básico de um computador

Componentes Básicos de um Computador

Arquitetura de Computadores

Componentes Básicos de uma placa mãe

Componentes Básicos de um notebook

Dentro de um notebook

Componentes Básicos de uma placa-mãe

Placa mãe de um Desktop

Componentes Básicos de um Computador

Componentes da Placa-Mãe

- 1. Soquete do Processador
- 2. Chipset
- 3. Soquetes de memória RAM
- 4. Conector de alimentação
- 5. Conector do drive de disquete
- Conectores IDE
- 7. Chip de memória ROM
- 8. Chipset
- 9. Controladora Multi I/O
- 10. Conector da Porta Serial
- 11. Conector do Joystick
- 12. Conector para infra-vermelho
- 13. Conectores do gabinete
- 14. Conector SMBus

Componentes da Placa-Mãe

- 15. Conector USB
- 16. Chip de monitoramento
- 17. Conectores SATA
- 18. Chip controlador SATA
- 19. LED indicador de alimentação
- 20. Slots PCI
- 21. Conector de áudio p/ modem
- 22. Chip controlador IEEE 1394a
- 23. Conectores IEEE 1394a
- 24. Conector S/PDIF
- 25. Chip de áudio
- 26. Conectores CD/AUX
- 27. Conectores de áudio p/ gab.

Componentes da Placa-Mãe

- 28. Chip de rede
- 29. LED para placa AGP
- 30. Chip de rede
- 31. Slot AGP
- 32. Conectores Externos
- 33. Gerador de clock
- 34. Regulador de voltagem
- 35. Conectores do cooler
- 36. Bateria
- 37. Cristal

Bibliografia

Stallings, Willian. Arquitetura e Organização de Computadores. 10^a Ed, Pearson, 2017.

Murdocca, Miles J., and Vincent P. Heuring. Introdução à arquitetura de computadores. Elsevier, 2001.

David A.Patterson & John Hennessy. Organização e projeto de computadores: A interface de Hardware e Software. 4ª Ed. Elsevier. 2014.