Functional Analysis

Fall 2025

Hui Sun

September 17, 2025

Chapter 1

Preliminary

1.1 9/3 lecture

Definition 1.1 (orthonormal basis). Let S be an orthonormal set in the Hilbert space such that no other orthonormal set contains S as a proper subset. Then S is called an orthonormal basis.

Proposition 1.1. Every Hilbert space admits an orthonormal basis.

Proof. Zorn's lemma.

Remark: if H is separable, i.e., H has a countable dense subset, then the proof does not require Zorn's lemma. For example, L^2 is separable.

Proposition 1.2 (II.6, Parsevel's formula). Let \mathcal{H} be a Hilbert space, and $S = \{x_n\}$ be an orthonormal basis, then for each $y \in \mathcal{H}$,

$$y = \sum_{\alpha \in A} (x_{\alpha}, y) x_{\alpha}, \quad ||y||^2 = \sum |(x_n, y)|^2$$

where A is an index set.

Proof. Bessel's inequality states that for any $A' \subset A$ finite, we have

$$\sum_{\alpha \in \mathcal{A}'} |(x_{\alpha}, y)|^2 \le ||y||^2 < \infty$$

It follows that $|(x_{\alpha},y)| > \frac{1}{n}$ for at most finitely many α 's, and $|(x_{\alpha},y)| \neq 0$ for at most countably many α 's. Let $\{\alpha_i\}_{i=1}^{\infty}$ be an enumeration of such α 's. Then

$$\sum_{i=1}^{N} |(x_{\alpha_i}, y)|^2 \le ||y||^2 < \infty$$

which implies

$$\sum_{i=1}^{\infty} |(x_{\alpha_i}, y)|^2 < \infty$$

Let

$$y_n = \sum_{i=1}^n (x_{\alpha_i}, y) x_{\alpha_i},$$

1.2. 9/8 LECTURE 3

we would like to show that the sequence $\{y_n\}$ is cauchy,

$$\|y_n - y_m\|^2 = \left\|\sum_{i=m+1}^n (x_{\alpha_i}, y) x_{\alpha_i}\right\|^2 \to 0 \text{ as } m \to \infty$$

Thus $\{y_n\}$ is Cauchy. In other words,

$$y_n \to y = \sum_{i=1}^{\infty} (x_{\alpha_i}, y) x_{\alpha_i}$$

Definition 1.2. A metric space is separable if it has a countable dense subset.

Proposition 1.3 (II.7). Let \mathcal{H} be a Hilbert space, then it is separable iff it has a countable orthonormal basis.

Proof. Suppose \mathcal{H} is separable, let $\{x_n\}$ be a countable dense set, then we throw out terms in $\{x_n\}$ until we get a linearly indepedent dense subset $\{u_n\} \subset \{x_n\}$. Applying Gram-Schmidt, we can assume $\{u_n\}$ to be countable and orthonormal. Conversely, if $\{u_n\}$ is a countable orthonormal basis, then the set of linear combinations of $\{u_n\}$ with rational coefficients forms a countable dense subset of \mathcal{H} .

Definition 1.3 (Fourier Coefficient). The *n*th Fourier coefficient of a 2π -periodic function f is

$$c_n = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} e^{-inx} f(x) dx$$

The Fourier series of f is

$$\tilde{f}(x) = \lim_{M \to \infty} \sum_{M=-N}^{N} \frac{1}{\sqrt{2\pi}} c_n e^{inx}$$

Proposition 1.4. The Fourier series $\sum_k c_k$ converges if $f \in L^2$. Moreover, the series converges uniformly to a continuous function if $\sum |c_k| < \infty$

I am too lazzy to type it up, but it uses the fun lemma below:

Lemma 1.1. Suppose f is 2π -periodic, and $(f, e^{inx}) = 0$ for all n, then $f \equiv 0$. (In other words, if all the Fourier coefficients are 0, then the function must be identically zero).

1.2 9/8 Lecture

Definition 1.4 (Banach space). A complete normed linear space is called a Banach space.

Example 1.1. 1. $L^{\infty}(\mathbb{R}) = \{f : f(x) \leq M \text{ a.e. } \}$, where $||f||_{\infty}$ is the smallest such M, is a Banach space.

- 2. Let $C(\mathbb{R})$ be the bounded continuous functions on \mathbb{R} . Let $C(\mathbb{R}) \subset L^{\infty}(\mathbb{R})$ and equip it with the same norm. Moreover, $C(\mathbb{R})$ is also a Banach space (due to the uniform convergence of continuous functions is still continuous).
- 3. Let $C_c(\mathbb{R})$ be the space of continuous functions with compact support, and this is not a Banach space under $\|\cdot\|_{\infty}$.
- 4. L^p is complete for all $1 \le p < \infty$.
- 5. Let $a = \{a_n\}$ be a sequence of complex numbers, ad

$$||a|| = \sup_{n} |a_n| < \infty$$

let $c_0 = \{\lim_{n \to \infty} a_n = 0\}$, $s = \{\lim_{n \to \infty} n^N a_n = 0 \forall N\}$, and $l_p = \{\|a\|_p^p = \sum_{n=1}^{\infty} |a_n|^p < \infty\}$. Note that the space

$$f = \{a_n = 0 \text{ for al but finitely many } n\}$$

is not complete! However, it is a dense subset in l^p . Morever, the set of elements in f with rational coefficients, and the closure of f in s, l^p , c_0 are exactly the whole spaces, i.e., s, l^p , c_0 are separable.

6. Let L(X,Y) be bounded linear operators from X,Y, with the operator norm, and L(X,Y) is a Banach psace.

Proposition 1.5. Let $L^p(\mathbb{R})$, where $1 \leq p < \infty$ be the space of functions with the norm

$$||f||_p = \left(\int_{\mathbb{R}} |f(x)|^p dx\right)^p$$

then

- 1. (Minkowski's inequality) $||f||_p \le ||f||_p + ||g||_p$.
- 2. (Riesz-Fischer) L^p is complete.
- 3. (Holder) Given $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$, we have

$$||fg||_r \le ||f||_p ||g||_q$$

if $f \in L^p$, $g \in L^q$.

Proposition 1.6. If *Y* is complete, then L(X,Y) is a Banach space.

Proof. Suppose $\{A_n\}$ is Cauchy, now we construct the limit: for each x, $A_n x = y_n$ is a Cauchy sequence:

$$||y_n - y_m|| \le ||A_n - Am|| \cdot ||x||$$

Now since Y is complete, we know that $A_n x \to y$. Let Ax = y. (This is our limit)! Now $||A_n|| \le C$ for all n, which implies $||A|| \le C$. Thus L(X,Y) is complete!

1.2.1 **Duals**

1.3. 9/10 LECTURE 5

Definition 1.5 (dual space). The space of bounded linear functionals $L(X,\mathbb{C})$, where X is Banach, is called the dual space to X, denoted by X^* . Let $f \in X^*$, then define the norm

$$||f|| = \sup_{x \in X, ||x|| \le 1} |f(x)|$$

Example 1.2. 1. Suppose that $1 , <math>\frac{1}{p} + \frac{1}{q} = 1$, and let $g \in L^q$, then

$$G(f) = \int_{-\infty}^{\infty} \bar{g}(x)f(x)dx$$

Then G is in $(L^p)^*$. Moreover, any such linear functional on L^p can be written in this way for some $g \in L^q$. And

$$|G(f)| \le ||f||_p ||g||_q$$

by Holder. Moreover,

$$L^{q}(\mathbb{R})^{*} = L^{p}, (L^{q}(\mathbb{R})^{*})^{*} = L^{q}$$

because L^q is reflexive! In particular, L^2 is its own dual space.

2. Suppose $\{\lambda_k\} \subset l^q$, then

$$\Lambda(\{a_k\}) = \sum_k \lambda_k a_k$$

is a bounded linear functional on l^p . Thus

$$l_q \subset (l^p)^*$$

for $1 \le p \le \infty$. It turns out every linear functional on l^p can be written in this form.

Example 1.3. Let p = 1, we have

$$L^1(\mathbb{R})^* = L^{\infty}$$
, but $L^{\infty}(\mathbb{R})^* \neq L^1(\mathbb{R})$

in fact $L^{\infty}(\mathbb{R})^*$ is bigger.

1.3 9/10 Lecture

Proposition 1.7 (Geometric Hahn-Banach). Let V_1 be a subspace of V, $x \in V \setminus V_1$, then one can find a hyperplane (codim 1) V_2 such that $V_1 \subset V_2$, and $x \notin V_2$.

Proof. If V_1 has $\operatorname{codim} V_1 = 1$, then we are done. Suppose that $\operatorname{codim} V_1 > 1$, we would like to find V_2 such that $x \notin V_2$, where $V_2 \neq V_1$ such that $\dim(V/V_1) > 1$. Note that we define

$$\dim(V/V_1) = \{ [z] : [z] = [w] \iff z + w \in V_1 \}$$

(For any banach space, we can write $B=W\oplus (B/W)$). This implies that we can find $y=[y]\in V/V_1$ such that $y\not 0$, and $y\ne x$ (by codim > 1). Set

$$V_2 = \{z + ty; z \in V_1, t \in \mathbb{R}\}\$$

Then we can continue this process, and using Zorn's lemma, we can have V_2 to have codim 1.

Definition 1.6. A subset $A \subset V$ is called if for any $x, y \in V$, the line connecting them is contained in A. If the set is also open, then we call A convex linearly open.

Proposition 1.8 (Geometric HB for Convex sets). Let $A \subset V$ be convex linearly open, and let V_1 be a linear subspace which does not intersect A. Then there is a hyperplane V_2 such that $V_1 \subset V_2$ and $V_2 \cap A = \emptyset$.

(Essentially proof by picture).

Proposition 1.9 (Hahn-Banach). Let X be a real vector space, for all $x, y \in X$, and $\alpha \in [0, 1]$, with sublinear functional p(x) satisfying

$$P(\alpha x + (1 - \alpha)y) < \alpha p(x) + (1 - \alpha)p(y)$$

Suppose that λ is a linear functional defined on a subspace on Y such that $\lambda(y) \leq p(y)$ for all $y \in Y$. Then there is a linear functional Λ on X such that $\Lambda = \lambda$ on Y, and

$$\Lambda(x) \le p(x)$$

Proof. Let $x \in Y \setminus Y$, we will first show that we can extend λ to the subspace spanned by Y and z, following the same bound. Define

$$\tilde{\lambda}(az + y) = a\tilde{\lambda}(z) + \lambda(y)$$

Suppose that $y_1, y_2 \in Y$, and $\alpha, \beta > 0$, and

$$\beta\lambda(y_1) + \alpha\lambda(y_2) = \lambda(\alpha y_1 + \beta y_2) = (\alpha + \beta)\lambda\left(\frac{\beta}{\alpha + \beta}y_1 + \frac{\alpha}{\alpha + \beta}y_2\right)$$

$$\leq (\alpha + \beta)p(\dots)$$

$$\leq \beta p(y_1 - \alpha z) + \alpha(y_2 + \beta z)$$

deviding both sides by α , β , taking the sup over $\alpha > 0$, y, we see that

$$\tilde{\lambda}(x) \leq p(x)$$

for all *x* in this subspace. Using Zorn's lemma, we extend one subspace at a time, then we are done.

1.4 9/15 Lecture

Proposition 1.10 (Geometric Hahn-Banach). Let A be complex and linearly open, and $A \subset V$ be a vector space over \mathbb{R} . Let V_1 be a subspace of V, $V_1 \cap A = \emptyset$. Then there exists a hyperplane V_2 such that $V_2 \cap A = \emptyset$, $V_1 \subset V_2$.

Definition 1.7. A seminorm p is such that $p(x) \ge 0$, p(x+y) = p(x) + p(y), and $p(\alpha x) = |\alpha| p(x)$.

And we have the following analytic version of Hahn-Banach.

Proposition 1.11 (Analytic Hahn-Banach). Let W be a subspace of V, and f linear form on W such that $|f(x)| \le p(x)$, for all $x \in W$. Then there is a linear form f_1 such that $f_1(x) = f(x)$ on W, and $|f_1(x)| \le p(x)$ for all x.

I am too lazy to follow the proof.

1.5. 9/17 LECTURE 7

1.5 9/17 Lecture

Proposition 1.12. Let $T: X \to Y$ be a linear map, T is bounded iff

$$T^{-1}(\{y: ||y|| \le 1\})$$

has nonempty interior.

Proof. Suppose that it has a nonempty interior, then

$$\{x: ||x - x_0|| \le \varepsilon\} \subset T^{-1}(\{y: ||y|| \le 1\})$$

Then if $||x|| \le \varepsilon$, then

$$||Tx|| \le ||T(x - x_0)|| + ||Tx_0|| \le 1 + ||Tx_0||$$

then

$$T\left(\frac{\varepsilon x}{\|x\|}\right) = \frac{\varepsilon}{\|x\|}T(x) \Rightarrow \|T(x)\| \le (1 + \|Tx_0\|)\frac{1}{\varepsilon}\|x\|$$

Definition 1.8 (nowhere dense). A set S is called nowhere dense if \overline{S} has empty interior.

Proposition 1.13 (Baire category theorem). A complete metric space M is never a union of a countable number of nowhere dense sets.

Proof. Suppose $M=\bigcup_{n=1}^{\infty}A_n$, where A_n is nowhere dense. We will construct $\{x_n\}$ that stays away from each A_n so the limit x is in any A_n , which gives a contradiction. Take $x_1\in \bar{A}_1$, and $B_1\cap A_1=\varnothing$, and $B_1=B(x_1,r_1)=\{d(x,x_1)<\varepsilon\}$, let $x_2\in B_1\setminus A_1$, and let $B_2=B(x_2,r_2)$, and so on, $\{x_n\}$ is a Cauchy sequence, $x_n\to x$ as $n\to\infty$. We have $x_n\in B_N, n\ge N$, but $\bar{B}_N\subset B_{N-1}$, thus $x\in B_{N-1}$ for any N, and $x\not\in A_{N-1}$ for any N. This gives our contradiction.

Proposition 1.14 (UBP). Let X be a Banach space, let \mathcal{F} be a family of bounded linear maps $T: X \to Y$. Suppose that for each $x \in X$,

$$\{\|Tx\|: T \in \mathcal{F}\}$$

is bounded, then

$$\sup_{T\in\mathcal{F}}\|T\|<\infty$$

Proof. Key ingredient: Baire category theorem. Let $B_n = \{x : ||Tx|| \le n, T \in \mathcal{F}\}$, each x is in some B_n , and $X = \bigcup_{n=1}^{\infty} B_n$, where B_n is closed. Baire category theorem, some B_n has nonempty interior.

$$B_n\{x : ||Tx|| \le n\} \Rightarrow \{|x : ||Tx|| \le 1\}$$

And

$$||Tx|| \le (1 + ||Tx_0||)||x|| \Rightarrow ||T|| \le 1 + ||T(x_0)||$$