Key to Tutorial 6 Karnaugh Maps

Exercise 1

Let us consider N, a number encoded in 3 bits (C, B, A). A is the least significant bit. Using Karnaugh maps, write down the most simplified expression of S = f(N) for each of the following:

• S = 1 when $N \ge 3$

		BA						
	S	00	01	11	10			
C	0	0	0	1	0			
C	1	1	1	1	1			

$$S = C + B.A$$

• S = 1 when $2 < N \le 6$

	DA							
	S	00	01	11	10			
C	0	0	0	1	0			
C	1	1	1	0	1			

D A

$$S = C.\overline{B} + C.\overline{A} + \overline{C}.B.A$$

$$S = C.(\overline{B} + \overline{A}) + \overline{C}.B.A$$

$$S = C.(\overline{B}.\overline{A}) + \overline{C}.B.A$$

$$S = C \oplus (B.A)$$

• S = 1 when N = 1, 3 or 5

$$S = \overline{B}.A + \overline{C}.A$$

• S = 1 when N = 1, 3 or 5 and S is undefined when N = 0 or 4

		ВА						
	S	00	01	11	10			
C	0	Φ	1	1	0			
C	1	Φ	1	0	0			

$$S = \overline{B} + \overline{C}.A$$

Exercise 2

We want to design a circuit that performs the two's complement operation. This circuit has three inputs (C, B, A) and three outputs (C', B', A'). A and A' are the least significant bits.

1. Write down the truth table for the three outputs.

C	В	A	C'	В'	A'
0	0	0	0	0	0
0	0	1	1	1	1
0	1	0	1	1	0
0	1	1	1	0	1
1	0	0	1	0	0
1	0	1	0	1	1
1	1	0	0	1	0
1	1	1	0	0	1

2. Write down their most simplified expressions.

A' = A (obvious solution)

		BA						
	B'	00	01	11	10			
C	0	0	1	0	1			
C	1	0	1	0	1			

$$\mathbf{B'} = \overline{\mathbf{B}}.\mathbf{A} + \mathbf{B}.\overline{\mathbf{A}}$$
$$\mathbf{B'} = \mathbf{B} \oplus \mathbf{A}$$

$$C' = \overline{C}.B + \overline{C}.A + C.\overline{B}.\overline{A}$$

$$C' = \overline{C}.(B + A) + C.\overline{B}.\overline{A}$$

$$C' = \overline{C}.(B + A) + C.(\overline{B+A})$$

$$C' = C \oplus (B + A)$$

Key to Tutorial 6 2/5

We want to design a circuit that converts a natural binary number into a Gray code number. This circuit has three inputs (C, B, A) and three outputs (C', B', A'). A and A' are the least significant bits.

3. Write down the truth table for the three outputs.

С	В	A	C'	B'	A'
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	1
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	1	1	1
1	1	0	1	0	1
1	1	1	1	0	0

4. Write down their most simplified expressions.

		BA							
	A'	00	01	11	10				
C	0	0	1	0	1				
C	1	0	1	0	$\begin{bmatrix} 1 \end{bmatrix}$				

$$\mathbf{A'} = \overline{\mathbf{B}} \cdot \mathbf{A} + \mathbf{B} \cdot \overline{\mathbf{A}}$$
$$\mathbf{A'} = \mathbf{B} \oplus \mathbf{A}$$

		BA						
	B'	00	01	11	10			
	0	0	0	1	1			
C	1	[1	1	0	0			

$$\mathbf{B'} = \mathbf{C} \cdot \mathbf{\overline{B}} + \mathbf{\overline{C}} \cdot \mathbf{B}$$
$$\mathbf{B'} = \mathbf{C} \oplus \mathbf{B}$$

C' = C (obvious solution)

Key to Tutorial 6 3/5

Exercise 3

Let us consider N, a number encoded in 4 bits (D, C, B, A). A is the least significant bit. Using Karnaugh maps, write down the most simplified expression of S = f(N) for each of the following:

• S = 1 when $N \ge 10$

	BA						
	S	00	01	11	10		
DC	00	0	0	0	0		
	01	0	0	0	0		
	11	1	1	1	1		
	10	0	0	1	1		

S = D.C + D.B

• S = 1 when N = 0, 4, 8, 10, 12 or 14

		ВА							
	S	00	01	11	10				
	00	1	0	0	0				
DC	01	1	0	0	0				
DC	11	1	0	0	1				
	10	1	0	0	1				

 $S = D.\overline{A} + \overline{B}.\overline{A}$

• S = 1 when N = 0, 2, 5, 7, 8, 10, 13 or 15

			DA						
	S	00	01	11	10				
	00	1	0	0	1				
DC	01	0	1	1	0				
DC	11	0	1	1	0				
	10	1	0	0	1				

 $S = C.A + \overline{C}.\overline{A}$ $S = \overline{C} \oplus A$

• S = 1 when N = 2, 10, 11 or 14

		BA						
	S	00	01	11	10			
DC	00	0	0	0	1			
	01	0	0	0	0			
	11	0	0	0	1			
	10	0	0	1				

 $S = D.\overline{C}.B + D.B.\overline{A} + \overline{C}.B.\overline{A}$

Key to Tutorial 6 4/5

• S = 1 when N = 2, 10, 11 or 14 and S is undefined when N = 6, 9, 13 or 15

There are two equivalent possibilities:

BA

	S	00	01	11	10
DC	00	0	0	0	1
	01	0	0	0	Φ
	11	0	Φ	Φ	1
	10	0	Ф	1	1

 $S = D.B + B.\overline{A}$

or

BA

DC

S	00	01	11	10
00	0	0	0	1
01	0	0	0	Φ
11	0	Ф	Ф	1
10	0	Φ	1	1

$$S = D.A + B.\overline{A}$$

Key to Tutorial 6 5/5