(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-297985

(43)公開日 平成6年(1994)10月25日

(51) Int.Cl.	5	識別記号	庁内整理番号	FΙ		技術表示箇所
B60K	41/20	r	8920-3D		¥*	
B 6 2 D	6/00		9034-3D			**
// B62D	113:00					
	133: 00					

審査請求 未請求 請求項の数1 OL (全 7 頁)

		田丘明小	AMA MANAVIXI OL	(主) 段/
(21)出願番号	特願平5-91613	(71)出願人	000003207	
			トヨタ自動車株式会社	
(22)出願日	平成5年(1993)4月19日		愛知県豊田市トヨタ町1番地	
		(72)発明者	大山 網造	:
			愛知県豊田市トヨタ町1番地	トヨタ自動
			車株式会社内	
		(74)代理人	井理士 伊東 忠彦	

(54)【発明の名称】 車両の制御装置

(57)【要約】

【目的】 車両の横転可能性の誤判定を低減して車両の 適切な制御を行なうことができる車両の制御装置を提供 することを目的とする。

【構成】 車両の重心高データを生成する重心高データ 生成手段10と、車両のロール角を算出するロール角算 出手段20と、重心高データ生成手段10による生成値 とロール角算出手段20による算出値とに基づいて車両 の横転判断の基準となる横転判断基準値を算出する横転 判断基準値算出手段30とを股ける。そして車両の運転 状態、例えば横加速度が横転判断基準値を超えた時に、 該車両が減速制御される。

【特許請求の範囲】

【請求項1】 車両の重心高データを生成する重心高デ ータ生成手段と、

車両のロール角を算出するロール角算出手段と、

前記重心高データ生成手段による生成値と前記ロール角 算出手段による算出値とに基づいて車両の横転判断の基 準となる横転判断基準値を算出する横転判断基準値算出 手段と、

を備え、

車両の運転状態が前記横転判断基準値算出手段によって 10 算出される横転判断基準値を超えた時に、該車両を減速 制御することを特徴とする車両の制御装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は車両の制御装置に係り、 特に急旋回時における車両の横転を防止するための車両 の制御装置に関する。

[0002]

【従来の技術】車両の急旋回時等には車両の横加速度が 大きくなると共に、車両のロール角も大きくなるため、 これらに起因して車両が横転するのを防止するための制 御装置が従来より提案されている(特開平1-1685 55号公報)。

【0003】上記公報の従来装置は、車輪のホイールス トロークと舵角と車体速とから内輪の浮上状態を検出 し、急旋回時において内輪が浮上した場合に、ブレーキ によるトラクション制御を停止すると共に、エンジン出 力を所定量だけ低下させて車両を減速させることによっ て車両の横転を防止するものである。

[0004]

【発明が解決しようとする課題】ところで、車両の横転 の可能性を判断するための車両のロール角は、車両の重 心位置によって変動する。従って、上記従来装置のよう に車輪のホイールストローク等のみより車両の横転の可 能性を判断するのでは誤判定を生じる虞があるといった 問題があった。

【0005】また、従来装置においては車輪のホイール ストロークを検出するためのホイールストロークセンサ 等の多くのセンサを使用しなければならず、このため部 品点数がかなり増えてしまうといった問題もあった。

【0006】更に、車両のロール角が大きくなってから では横転を防ぐのは困難であるため、ロール角が大きく なる前に横転判定をしなくてはならず、このため車両の 旋回性能等が悪くなってしまうといった問題もあった。

【0007】本発明は上配の点に鑑みなされたものであ り、部品点数を余り増やさずに車両のロール角を算出す ると共に重心高データを生成し、これら算出値及び生成 値に基づいて車両の横転判断基準値を算出することによ って、車両の横転可能性の誤判定を低減して車両の適切 な制御を行なうことができると共に、車両の旋回性能を 50

良好に維持しながら車両の適切な制御を行なうことがで きる車両の制御装置を提供することを目的とする。

[8000]

【課題を解決するための手段】図1は本発明の原理構成 図である。

【0009】同図に示すように本発明では、車両の重心 高データを生成する重心高データ生成手段10と車両の ロール角を算出するロール角算出手段20と、前記重心 高データ生成手段10による生成値と前記ロール角算出 手段20による算出値とに基づいて車両の横転判断の基 準となる横転判断基準値を算出する横転判断基準値算出 手段30と、を備え、車両の運転状態が前記機転判断基 準値算出手段によって算出される横転判断基準値を超え た時に、該車両を減速制御することを特徴とするもので ある。

[0010]

【作用】重心高データ生成手段によって車両の重心高デ 一夕が生成されると共に、ロール角算出手段によって車 両のロール角が算出され、これら生成値及び算出値に基 づいて横転判断基準値算出手段によって横転判断基準値 が算出される。

【0011】そして、車両の運転状態例えば横加速度が 前記横転判断基準値を超えた時に、該車両が減速制御さ れる。

【0012】従って、車両の横転可能性の誤判定を低減 して車両の適切な制御を行なうことができると共に、車 両の旋回性能を良好に維持しながら車両の適切な制御を 行なうことができる。

[0013]

【実施例】以下、本発明の一実施例について説明する。 図2は本発明に係る車両の制御装置を搭載した一例の車 両の概観斜視図であり、図3は本発明の要部の構成を示 す要部構成図である。

【0014】図2中1は、本発明に係る車両の制御装置 を搭載した車両であり、この車両1には三つの対地変位 計21~23と横加速度センサ24とが設けられてい る。そして、これら対地変位計21~23及び横加速度 センサ24は、夫々図3に示すようにECU(電子制御 装置) 35に接続されている。

【0015】また前配車両1には、図3に示すようにE CU35に接続されていると共に、該ECU35よりの 制御信号によって開閉動作する緊急プレーキハルブ41 と、この緊急プレーキバルブ41が開成されたときにブ レーキ機構42に所定のプレーキ圧を印加するためのエ アーを供給するエアータンク43とが設けられている。

【0016】前記対地変位計21~23は、図2に示す ように車両1の任意の点例えば0点を原点とすると共 に、X, Y, Zの三軸より成るホデー座標系において、 夫々例えば (X21, Y21, Z21)、 (X22, Y22,

222)、(x23, y23, Z23)の位置に取り付けられて

10

いる。そして、これら対地変位計21~23は図2及び 図4に示すように、夫々該対地変位計と対応する地表面 G上の点A, B, Cまでの距離L21, L22, 及びL23を 検出する機能を有するものである。尚、図2中、点CG は車両1のボデー座標系における重心であり、この重心 CGのポデー座標系における座標は例えばCG (C Gi, CG, CGi) となっている。

【0017】また前記横加速度センサ24は、車両1の 旋回時等に該車両1に生じる横加速度α ε検出する機 能を有するものである。

【0018】前記ECU35はマイクロコンピュータよ り成り、このマイクロコンピュータ35は前記対地変位 計21~23と共に前記した重心高データ生成手段10 をソフトウェア処理により実現すると共に、前配したロ ール角算出手段20及び横転判断基準値算出手段30を ソフトウェア処理により実現する制御装置であり、図5 に示す如き公知のハードウェア構成を有している。図5 において、マイクロコンピュータ35は中央処理装置 (CPU) 50、処理プログラムを格納したリード・オ ンリ・メモリ (ROM) 51、作業領域として使用され 20 るランダム・アクセス・メモリ (RAM) 52、エンジ ン停止後もデータを保持するバックアップRAM53、 マルチプレクサ付き入力インタフェース回路54、A/ Dコンパータ56及び入出力インタフェース回路55等 から構成されており、それらはバス57を介して接続さ れている。

【0019】前記入力インタフェース回路54には前記 対地変位計21~23及び横加速度センサ24からの検 出信号等を順次切換えて時系列的に合成された直列信号 とし、これを単一のA/Dコンパータ56へ供給してア 30 ナログ・ディジタル変換させた後、パス57へ順次送出 させる。

【0020】前記入出力インタフェース回路55はパス 57から入力された各信号を前記緊急プレーキバルブ4 1等に選択的に送出して該緊急プレーキパルブ41等を 制御する。

【0021】上記の構成のマイクロコンピュータ35の CPU50はROM51内に格納されたプログラムに従*

$$H_{CC} = |\mathbf{a} \cdot \mathbf{CG}_{1}| + \mathbf{b} \cdot \mathbf{CG}_{1}| + \mathbf{c} \cdot \mathbf{CG}_{2}| + 1|$$

 $/(a^2 + b^2 + C^2)^{1/2}$

次に、ステップ104で車両1のロール角αιの算出を 行なう。ここでロール角α, の算出方法について述べ る。尚、ロール角とは、地表面Gとボデー座標系のYZ 平面との交線がY軸をなす角、具体的には後述する図7 にαιで示す角を言う。

【0029】従って、上記(1)式で示した平面の式で 得ることによってロール角αx がαx =-b/cとして 求めることができる。ここで、b及びcは前記ステップ 102で既に一義的に求められているので、ロール角α 50

*い、以下に説明するフローチャートの処理を実行する。 【0022】図6は、本発明の要部の一実施例の動作説 明用のフローチャートである。

【0023】図6のステップ102で、先ず車両1の重 心高Hccのデータ生成を行なう。ここで、重心高Hccの データ生成方法について詳述する。先ず、前記対地変位 計21~23の夫々と対応する地表面上の点A、B、C のボデー座標系における座標A(X₄, Y₄, Z₄)、 B (X_B , Y_B , Z_B) 、C (X_C , Y_C , Z_C) を求 める。

【0024】ここでA点のX座標値(X。)及びY座標 値(Y_A)は、夫々ポデー座標系を基準としているため 対地変位計21のX座標値(x zi)及びY座標値 (y21) と同一の値となり、またA点の2座標値 (Z₁) は対地変位計21のZ座標値(Z₂₁)と該対地 変位計21によって計測される前記距離しま」とより一義 的に求めることができ、また同様にしてB点のX座標値 (X_B), Y座標値(Y_B), Z座標値(Z_B)、及び C点のX座標値(Xc), Y座標値(Yc), 2座標値 (Zc)も一義的に求めることができる。

【0025】次いで、下記の(1)式で示す平面の式に 前記A,B,Cの各点の座標値を代入して下記の(2) 式~(4)式で示す地表面の方程式を立て、これら (2) 式~(4) 式を連立させて係数 a, b及び c を求 める。

[0026]

 $\mathbf{a} \cdot \mathbf{X} + \mathbf{b} \, \mathbf{Y} + \mathbf{c} \, \mathbf{Z} + \mathbf{1} = \mathbf{0}$... (1)

 $a \cdot X_{\lambda} + bY_{\lambda} + cZ_{\lambda} + 1 = 0$... (2)

 $a \cdot X_B + bY_B + cZ_B + 1$... (3)

 $a \cdot X_c + bY_c + cZ_c + 1$... (4)

ここで、既述のとおりXx, Yx, Zx、Xx, Yx, Z_B 、及びX_C , Y_C , Z_C は既知の値であるので、 a, b, cは一義的に求めることができる。

【0027】そして、これらa、b及びcと、前記重心 CGの座標CG (CGr, CGr, CGr) とより下記 の(5)式により重心高Hcc (重心CGから地表面Gま での最短距離) を生成する。

[0028]

1 は一義的に求めることができる。

【0030】更に、ステップ106で車両1の横転判断 基準値Kの算出を行なう。ここで横転判断基準値Kの算 出方法について図7 (a) 及び(b) を参照しながら述 べる。尚、図7 (a) 中7は車輪72及び73の上部に 車体71が取り付けられている車両であり、この車両7 は説明の便宜上剛体であるものとすると共に、車両7の 質量をmとする。また図7 (a) 中CG7 は車両7の重 心である。

【0031】図7(a)において前記車両7に横加速度

απ, が生じると、図7 (b) に示すように重心CG, に 該横加速度 απ に基づく外力m・απ が生じて、車体7 1が同図(b)に示すように外力が作用する方向に傾 く。尚、このときの重心CG7の重心高はHcc7 である とする。ところで、この車体71には該車体71の質量 mに基づいた重力m・gが作用している。尚、gは重力 加速度である。そして、この場合に車両7が横転するか 否かを判断するには、車輪73の地表面Gとの接地中心 であるD点における前記外力m・αιτに基づくモーメン トと前記重力m・gに基づくモーメントを比較すればよ 10 い。即ちD点における外力m・αμτに基づくモーメント*

横転判断基準値K=f(ロール角α1)/重心高Hcc

再び図6の説明に戻り、ステップ108で車両1の横加 速度 α ェ がステップ 106で算出された横転判断基準値 Kより大きいか否か、即ち横加速度αx >f(ロール角 $\alpha_{\rm I}$) /重心高Hcs であるか否かが判定され、 $\alpha_{\rm I}$ > f (ロール角 α₁) /重心高Hccであると判定されたとき は、ステップ110で緊急プレーギバルブ41を開成し て処理は終了するが、この緊急プレーキバルブ41の閉 成によってブレーキ機構42に所定のブレーキ圧が印加 され、更に該プレーキ機構42によって車両1の図示し ない車輪がロックされて該車両1が停止される。

【0033】一方、ステップ108で横加速度 ax > f (ロール角αι) /重心高Hccでないと判定されたとき は、処理はステップ102にループする。

【0034】以上のような実施例によれば、車両1の重 小高Ηι, のデータを生成すると共に、ロール角α, を算 出し、これら生成値及び算出値に基づいて車両1の横転 判断基準値Kを算出し、この横転判断基準値Kに基づい て車両1の横転可能性を判断し、横加速度が該横転判断 基準値Kを超えた時に、該車両1が減速制御されるの で、車両1の横転可能性の誤判定を低減して該車両1の 制御を行なうことができると共に、車両1の旋回性能を 良好に維持しながら車両1の制御を行なうことができ る.

【0035】また、従来装置のように車両1の横転可能 性を判断するのに各車輪毎にホイールストロークセンサ を設ける場合や、重心高Hccを計測するのに例えば車速 センサを使用すると共に、ロール角αι を計測するのに 例えばレートジャイロを使用する場合等と比較して、本 40 実施例によれば僅か3個の対地変位計21~23のみに よって車両1の重心高Ηα 及びロール角α を検出する ことができるので、車両1の部品点数を低減させること ができる。

*m・αx1・Hcc1 と、前記重力m・gに基づくモーメン トm·g·tとを比較すればよい。

【0032】そして車両7が横転するのはm・ an ・ H ccr >m·g·tのとき、即ち、an>t·g/Hccr のときである。ところで、απ は、横加速度センサ24 によって検出され、またHccr は既述した (5) 式によ って算出され、更に食は定数であるので、tを求めるこ とによって車両7の横転可能性を判断することができる が、この t は図7 (b) に示したロール角 α の関数と して求めることができる。従って、横転判断基準値Kは 下記の(6)式によって算出することができる。

[0036]

【発明の効果】本発明によれば、車両の重心高データを 生成すると共にロール角を算出し、これら生成値及び算 出値に基づいて車両の横転判断基準値を算出し、この機 転判断基準値に基づいて車両の横転可能性を判断してい るので、車両の横転可能性の誤判定を低減して車両の適 切な制御を行なうことができると共に、車両の旋回性能 を良好に維持しながら車両の適切な制御を行なうことが できる。

【図面の簡単な説明】

【図1】本発明の原理構成図である。

【図2】本発明に係る車両の制御装置を搭載した一例の 車両の概観斜視図である。

- 【図3】本発明の要部の構成を示す要部構成図である。
- 【図4】対地変位計の機能を説明するための図である。
- 【図5】マイクロコンピュータのハードウェアの一例の 構成図である。
- 【図6】本発明の要部の一実施例の動作説明用のフロー チャートである。

【図7】横転判断基準値の算出方法を説明するための図 である。

【符号の説明】

- 1 車両
- 21, 22, 23 対地変位計
- 24 横加速度センサ
- 35 ECU (マイクロコンピュータ)
- 4.1 緊急プレーキバルブ
- 42 ブレーキ機構
 - 43 エアータンク
 - ロール角 αı
 - CG 重心
 - Hcc 重心高

[図1]

[図2]

CG(CGx, CGx, CGz)

23(x25,y25,Z25)

C(Xc, Yc, Zc)

24

(x25,y25,Z25)

A(Xa,Ya,Za)

B(Xs,Ys,Zs)

[図3]

【図7】

