CS 215 Data Analysis and Interpretation

Probability Axioms

Suyash P. Awate

- **Set**: a collection of unique objects
 - Doesn't care about the ordering of the objects
 - Interesting examples
 - Set of natural numbers, integers, rational numbers, real numbers
 - Set of fruits, people
- Experiment: an empirical procedure
- Random Experiment: an experiment whose outcome is uncertain
 - Examples
 - Tossing a coin
 - Rolling a die
 - Measuring the lifetime of a laptop battery
 - Measuring the temperature at a specified outdoor location after 50 hours

- Sample Space Ω : Set of all possible outcomes of a random experiment
 - Countably finite sample spaces
 - For coin toss: {H,T}
 - For die roll: {1,2,3,4,5,6}
 - Countably infinite sample spaces
 - For the experiment that counts the number of coin tosses required to get a head
 - Uncountably infinite sample spaces
 - For the experiments that will report the temperature, at some location in the universe, after 50 hours:
 - Subset of real numbers in the interval from absolute zero (0 Kelvin) to Planck temperature (1.416785 x 10^{32} Kelvin)

- Event: A subset of the sample space
 - Examples
 - Event A: The die roll produces an even number
 Event B: The die roll produces 3
 - Event X: The temperature is between 298K and 300K (25°C and 30°C)
 - Event Y: Within an image, intensity at chosen pixel falls between 10 and 20

Operations on events

- Union, "or", AUB, A happens or B happens
- Intersection, "and", A∩B, A happens and B happens
- Complement, "negation", A, A doesn't happen
- Subtraction, A–B, A happens but B doesn't happen

- Event Space B: Space of all possible events (that we want to model)
 - (A subset of) power set of sample space
 - Includes empty set Ø
 - Includes sample space Ω
 - Given a sample space, the event space ß must satisfy several rules (basically, for logical consistency and to deal with sample spaces that are infinite):
 - 1. Empty set $\emptyset \in \mathcal{B}$
 - 2. Closed under Countable Unions: If events A_1 , A_2 , A_3 , \cdots belong to B, then $A_1 \cup A_2 \cup A_3 \cup \cdots \in B$
 - We can only have a union of a countably infinite number of sets here
 - 3. Closed under Complementation: If event $A \in \mathcal{B}$, then event \overline{A} (i.e., $\Omega - A$) $\in \mathcal{B}$
 - A set ß that satisfies these axioms/rules is called a σ -algebra
 - The term "algebra" is used because the theory defines an algebra on sets (union, intersection, difference, ...) analogous to the algebra on numbers

- Event Space ß
 - Example:
 - If sample space $\Omega = \{a, b, c, d\}$, then:
 - One possible design of the event space is: β = { Φ, {a,b}, {c,d}, {a,b,c,d} }
 - Another possible design of the event space is: β = power set of Ω
 - (A more useful example) If sample space is the real line, then:
 - Event space ß is the set of subsets of the real line formed by: first taking all open intervals, then adding in all countable unions, countable intersections, and relative complements, then continuing this process until the relevant closure properties are achieved
 - This construction is known as the Borel σ -algebra

- Probability Function (or Probability Measure)
 - Gives a precise notion of the "size" or "volume" of the sets (i.e., events)
 - A probability function/measure on an event space ß is a function P:ß→[0,1] such that:
 - $P(\Phi) = 0$;
 - $P(\Omega) = 1$; this needn't hold for a general (non-probability) measure
 - For pairwise disjoint sets (events) A_1 , A_2 , A_3 , ..., we have $P(A_1 \cup A_2 \cup A_3 \cup ...) = P(A_1) + P(A_2) + P(A_3) + ...$
 - We want the size of the union of disjoint sets to be the sum of their individual sizes, even for an countably infinite sequence of disjoint sets
 - In simpler words, the probability function/measure P(.) on a sample space Ω assigns every event A, a number within interval [0,1], such that:
 - $P(\Omega) = 1$, and, when A and B are disjoint events, $P(A \cup B) = P(A) + P(B)$
 - This "number" assigned to event A is the probability/chance that the event occurs

- Properties of Probability Functions/Measures
 - Complement of an event A
 - $P(\overline{A}) = 1 P(A)$
 - Union of two overlapping events
 - $P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - Difference of events
 - $P(A B) = P(A) P(A \cap B)$

- A probability space is a triplet (Ω,β,P) where:
 - Ω is the **sample space** (= space of all possible outcomes)
 - B is the event space (= space of all possible events; that we want to model)
 - P(.) is the **probability function**/measure on β with P(Ω)=1

- Examples
 - Toss fair coin: What is Ω ? What is β ? What is P?
 - Roll fair die: $P(\{1\}) = 1/6$. All outcomes equally likely.

Probability space for multiple random experiments

Two Different Kinds of Experiments

- If we do two experiments, sequentially, with sample spaces Ω_1 and Ω_2 , then we equivalently have a new experiment with (induced) sample space $\Omega' = \Omega_1 \times \Omega_2 = \{ (x,y) : x \in \Omega_1, y \in \Omega_2 \}$
- Example: First, toss a coin. Then, roll a die.
 - What is Ω' ? What is B'? What is P'?

Repeated Experiments

- If we do two runs, sequentially, of an experiment with sample space Ω , then we equivalently have a new experiment with (induced) sample space $\Omega' = \Omega \times \Omega = \{ (x,y) : x \in \Omega, y \in \Omega \}$
 - Note: element (x,y) is an ordered pair; not a set. So, order matters.
- Example: Toss two coins.
 - What is Ω' ? What is B'? What is P'?

Joint Probability

- $P(A \text{ and } B) := P(A,B) := P(A \cap B)$
 - ":=" symbol indicates definition

Joint Probability

D(A \cappa D)

Conditional Probability

Conditional probability of event A, given event B, is:
 P(A|B) := P(A∩B) / P(B)

• Example: Dice

• A = {number odd}, B ={number<4}, P(B)=P(A)=1/2, P(B|A)=2/3

- Example: Image-Generation Process
 - For a pixel,
 first choose an object label
 (e.g., sky, rock),
 then choose pixel color given object label
 - P(pixel takes specific color)
 versus
 P(pixel takes specific color | object label)

Conditional Probability

- Conditional probability of event A, given event B, is:
 P(A|B) := P(A∩B) / P(B)
 - Example: Image-Acquisition Process
 - Observed color is a randomly perturbed version of the true color, due to measurement errors
 - Larger ISO setting → larger perturbation magnitude
 - P(pixel takes specific color| true color at that pixel)
 - → perturbation model

Conditional Probability

- Conditional probability of event A, given event B, is:
 P(A|B) := P(A∩B) / P(B)
 - Example: Image-Generation Process
 - P(pixel takes specific color) usually differs from
 P(pixel takes specific color | color at adjacent pixel)
 - Former relates to the image histogram
 - Latter relates to inter-pixel color relationship

Partition

• Definition: A set of events $\{B_1, B_2, ..., B_n\}$ is a **partition** of the sample space if the events are:

• Mutually exclusive: pairwise disjoint where $B_i \cap B_j = \Phi$, for all i,j; and

• Exhaustive: $U_iB_i = \Omega$

Total Probability

Given a partition {B₁, B₂, ..., B_n},
 total probability P(A) := ∑_i P(A∩B_i) = ∑_i P(A|B_i)P(B_i)

Independence

- Definition 1:
 Two events A and B are independent iff P(A|B) := P(A)
- Definition 2:
 Two events A and B are independent iff P(A∩B) := P(A)P(B)
- Example: Roll two dice
 - Event A = get 1 on first die
 - Event B = get 1 on second die
- Example: Image
 - Event A: perturbation in observed intensity at pixel j
 - Event B: perturbation in observed intensity at pixel k

Conditional Independence

- Definitions
 - Events A and B are conditionally independent given event C iff P(A,B|C) := P(A|C)P(B|C)
 - Interpretation: Given event C, event B doesn't add any information to the probability of event A (or vice versa)
 - Events A and B are conditionally independent given event C iff P(A|B,C) := P(A|C)
- Example: consider the sequence of values $x_0 = rand()$; $x_{i+1} = x_i + 1$
 - Then, $P(x_5 | x_4, x_3, x_2, x_1, x_0) = P(x_5 | x_4)$. Given value of x_4 , value of x_5 is conditionally independent of x_3 , x_2 , x_1 , x_0 , but x_5 isn't independent of them.
- Example
 - Observed colors at pixels j and k in a constant-color object are dependent, but given true object color, colors at j and k are conditionally independent

- A software function generating random numbers generates/simulates
 a sequence of numbers or symbols that cannot be reasonably
 predicted better than by a random chance
 - **Pseudo-random-number** generating functions() generate numbers that seem random, but are actually deterministic, and can be reproduced if the "internal state" of the generator is known
 - The internal state is typically set by a "seed" value
 - e.g., commands that "set seed to 0 and then generate 10 random numbers" will always return the same sequence
 - This is greatly useful in making code reproducible, and during debugging
 - To remove the determinism, in actual code deployment where this is needed, random-number generators can set their seed/state, just before generating the random sequence, using the value of an environmental variable (e.g., date-time in milliseconds, temperature) that is difficult to predict/model

- An example (pseudo)random-number generator: Mersenne Twister
 - Invented by Makoto Matsumoto and Takuji Nishimura (alphabetical order) of Hiroshima University
 - http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/emt.html
 - Why this name ?
 - http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/ename.html
 - Uses Mersenne primes
 - Primes of the form 2^p-1, where p itself is prime
 - Building upon earlier work: Twisted Generalized Feedback Shift Register Sequence
 - Code
 - http://www.math.sci.hiroshima Makoto: Come on, let's go with MT!

```
MT was firstly named "Primitive Twisted Generalized Feedback Shift
  Register Sequence" by a historical reason.
Makoto: Prof. Knuth said in his letter "the name is mouthful."
Takuji: .....
a few days later
Makoto: Hi, Takkun, How about "Mersenne Twister?" Since it uses Mersenne
  primes, and it shows that it has its ancestor Twisted GFSR.
Takuji: Well.
Makoto: It sounds like a jet coaster, so it sounds quite fast, easy to
  remember and easy to pronounce. Moreover, although it is a secret, it
  hides in its name the initials of the inventors.
Takuji: .....
Takuji: ....well, affirmative.
Later, we got a letter from Prof. Knuth saying "it sounds a nice name." :-)
```

- Makoto Matsumoto
 - http://www.math.sci.hiroshima-u.ac.jp/m-mat/eindex.html

Profile

A professor at Department of Mathematics at Hiroshima University. He considers himself as a mathematician, but is not confident. There are so many Makoto Matsumoto's in Japan (quite a common name). The famous senior mathematician Makoto Matsumoto, who majors Finsler geometry, is another person, but in MathReview there is a confusion. Sorry.

Studies

Every Mathematics; in particular algebraic researches. Weak side is analysis. Arithmetic fundamental groups, mapping class groups, combinatorics, pseudorandom number generation, computer science, etc. are his research areas.

A dream

To be a mathematician. But it seems hard.

An R-rated profile. Warning: the below contains possibly harmful contents to serious researchers. X-profile

- "Random number generation is too important to be left to chance", Studies in Applied Math. 1969, 3:70-111.
- Robert R. Coveyou
 - American research mathematician
 - Worked at Oak Ridge National Laboratory

Monte Carlo Methods

- Random number generation is important in statistical inference, where we can get good approximations to analytically-intractable problems using simulated random experiments
- Such methods were called Monte Carlo methods
- Invented while working on nuclear weapons projects, at Los Alamos National Laboratory, by:
 - Stanislaw Ulam: mathematician, physicist
 - John von Neumann: mathematician, physicist, computer scientist, engineer
- Term coined by their colleague Nicholas Metropolis
 - Physicist working on statistical mechanics
 - Refers to the Monte Carlo Casino in Monaco,
 where Ulam's uncle would borrow money from relatives to gamble

Monte Carlo Methods

 Monte Carlo casino in Monaco, France

Population, Sample

- **Population** = a set of similar items or events which is of interest for some question or experiment
- Sample = a set of individuals or objects collected or selected from a statistical population by a defined procedure
- Elements of a sample are known as sample points, sampling units, or observations

