

Universidade Federal Rural de Pernambuco

Unidade Acadêmica de Belo Jardim Engenharia de Controle e Automação

UFRPE	Relatório da Simulação 1 — Circuitos Trifásicos				
Disciplina:	Circuitos Elétr	icos 2			
Professor:	Henrique Patriota				
Alunos:	Pedro Henrique de Almeida Santos				
Bancada:	Simulação	Data: 12/12/2024			

1. Introdução

No dia 12 de dezembro de 2024 foi realizada a 1° Prática simulada da disciplina de Circuitos 2, instruída pelo professor Henrique Patriota. Essa atividade consistiu em montar um circuito trifásico em diferentes formatos como Estrela-Delta, Estrela-Estrela, Delta-Estrela e Delta-Delta, para compreender com funciona relação de tensão e correte em cada um dos sistemas mencionados.

Sobre a prática, foi realizada a análise do comportamento das formas de onda de corrente e tensão sobre os circuitos descritos no guia da atividade. Para isso, foi utilizado o simulador *LTspice* para a montagem dos circuitos e também para a análise comportamental da ondas de tensão e corrente em cada caso afim de verificar a teoria apresentada na sala de aula.

2. Objetivos

2.1. Objetivo Geral

Apresentar aos alunos o uso do simulador *LTspice* e verificar o comportamento dos circuitos trifásicos com diferentes configurações.

2.2. Objetivos Específicos

- **2.2.1.** Verificar o comportamento da tensão e corrente nas configurações com estrela.
- **2.2.2.** Verificar o comportamento da tensão e corrente nas configurações com delta.

3. Metodologia

A metodologia utilizada para realização da prática contou com um guia disponibilizado pelo professor Henrique Patriota com os conceitos sobre circuitos trifásicos e suas aplicações, além disso no início da prática houve um breve momento sobre como montar o circuito trifásico na protoboard com o auxílio de um gerador de função e osciloscópio.

Nesse guia está apresentado 4 circuitos conforme as Figura 1,2,3 e 4 utilizado como base para montagem e simulação no *LTspice*.

Figura 1 - Circuito trifásico Estrela-Estrela

Figura 2 - Circuito trifásico Estrela-Delta

Figura 3 - Circuito trifásico Delta-Estrela

Figura 4 - Circuito trifásico Delta-Delta

A partir dessas 4 configurações é possível compreender o funcionamento e a importância de circuitos trifásicos para a engenharia. Vale lembrar que para circuitos trifásicos as fontes de tensão estão com o mesmo valor de amplitude, porém estão com fases diferentes respectivamente para cada fonte as fases são 0°, 120°,-120°.

3.1. Cálculos teóricos sobre circuitos trifásicos

3.1.1. Estrela-Estrela

Um dos resultados para a configuração Estrela-Estrela é que a tensão em cada linha V_L é $\sqrt{3}$ vezes a magnitude das tensões das fases V_p , ou seja:

$$X_L = 2 * \pi * j * 100 * 10^{-3} * 60$$

 $X_L = 37,7j$
 $Z_y = Z_\Delta = 100 + 37,7j$

$$V_L = \sqrt{3} * V_p$$
 $V_p = |V_{an}| = |V_{bn}| = |V_{cn}|$
 $V_L = |V_{ab}| = |V_{bc}| = |V_{ca}|$
 $V_{ab} = 381,05 \angle 0^\circ$
 $V_{bc} = 381,05 \angle - 120^\circ$
 $V_{ca} = 381,05 \angle 120^\circ$

Outro resultado importante é que nessa configuração as tensões de linha são adiantadas 30°. Ademais, para as correntes de linha nesse circuito trifásico obter-se os seguintes resultados:

$$Z_y I_a - V_{an} = 0$$

$$I_a = \frac{V_{an}}{Z_y}$$

$$I_a = \frac{220 \angle 0}{100 + 37,7j}$$

$$I_a = 2,06 \angle - 20,65 A$$

$$Z_{y}I_{b} - V_{bn} = 0$$

$$I_{b} = \frac{V_{bn}}{Z_{y}}$$

$$I_{b} = \frac{V_{an} \angle - 120^{\circ}}{Z_{y}}$$

$$I_{b} = \frac{220 \angle - 120}{100 + 37.7j}$$

$$I_{b} = 2.06 \angle - 140.65 A$$

$$Z_{y}I_{c} - V_{cn} = 0$$

$$I_{c} = \frac{V_{cn}}{Z_{y}}$$

$$I_{c} = \frac{V_{an} \angle - 240^{\circ}}{Z_{y}}$$

$$I_{c} = \frac{220 \angle - 240}{100 + 37,7j}$$

$$I_{c} = 2,06\angle 99,34 A$$

Nó n, pode-se obter o seguinte resultado:

$$I_n = 0$$

3.1.2. Estrela-Delta

Um dos resultados para a configuração Estrela-Delta é que a tensão em cada linha V_L são dadas por:

$$V_{ab} = V_{AB} = \sqrt{3} * V_p \angle 30^\circ$$
$$V_{ab} = V_{AB} = \sqrt{3} * 220 \angle 30^\circ$$

 $V_{ab} = V_{AB} = 381,05 \angle 30^{\circ} \text{ V}$

$$V_{bc} = V_{BC} = \sqrt{3} * V_p \angle -90^\circ$$

$$V_{bc} = V_{BC} = 381,05 \angle - 90^{\circ} \text{ V}$$

$$V_{ca} = V_{CA} = \sqrt{3} * V_p \angle - 210^\circ$$

$$V_{ca} = V_{CA} = 381,05 \angle - 210^{\circ} \text{ V}$$

As correntes de fase são obtidas utilizando-se Lei de Kirchhof das Tensões, então:

$$I_{ab} = \frac{V_{ab}}{Z_{\Delta}}$$

$$I_{ab} = \frac{381,05 \angle 30^{\circ}}{100 + 37,7j}$$

$$I_{ab} = 3,56 \angle 9,34^{\circ} \text{ A}$$

$$I_{bc} = \frac{V_{bc}}{Z_{\Delta}}$$

$$I_{bc} = \frac{381,05 \angle - 90^{\circ}}{100 + 37,7j}$$

$$I_{bc} = 3,56 \angle - 110,65^{\circ} \text{ A}$$

$$I_{ca} = \frac{V_{ca}}{Z_{\Delta}}$$

$$I_{ca} = \frac{381,05\angle - 210^{\circ}}{100 + 37,7j}$$

$$I_{ca} = 3,56\angle 129,34^{\circ} \text{ A}$$

As correntes de linha são obtidas utilizando-se Lei de Kirchhof das correntes, então:

• Nó A:

$$I_a + I_{ca} = I_{ab}$$

$$I_a = I_{ab} - I_{ac}$$

$$I_a = 3,56 \angle 9,34^\circ - (3,56 \angle 129,34^\circ)$$

$$I_a = 6,16 \angle - 20,66^\circ \text{ A}$$

• Nó B:

$$I_b + I_{AB} = I_{BC}$$

$$I_b = I_{BC} - I_{AB}$$

$$I_b = 3,56 \angle - 110,65^{\circ} - (3,56 \angle 9,34^{\circ})$$

$$I_b = 6,16 \angle - 140,65^{\circ} \text{ A}$$

• Nó C:

$$I_c + I_{BC} = I_{CA}$$

$$I_c = I_{CA} - I_{BC}$$

$$I_c = 3,56 \angle 129,34^\circ - (3,56 \angle - 110,65^\circ)$$

$$I_c = 6,16 \angle 99,39^\circ \text{ A}$$

Relacionando-se as equações acima, consegue-se obter o seguinte resultado:

$$I_L = \sqrt{3} * I_p$$

$$I_p = |I_{AB}| = |I_{BC}| = |I_{CA}|$$

$$I_L = |I_a| = |I_b| = |I_c|$$

3.1.3. Delta-Estrela

As tensões de Fase são as seguintes:

$$V_{ab} = V_{AB} = 220 \angle 0$$
 ° V
 $V_{bc} = V_{BC} = 220 \angle -120$ ° V
 $V_{ca} = V_{CA} = 220 \angle 120$ °V

Um dos resultados para a configuração Delta-Estrela é que as correntes de linha são dadas por:

$$I_a = \frac{\frac{V_p}{\sqrt{3}} \angle - 30^\circ}{Z_y}$$

$$I_a = \frac{\frac{220}{\sqrt{3}} \angle - 30^{\circ}}{100 + 37.7j}$$

$$I_a = 1,188 \angle - 50,65^{\circ} A$$

$$I_b = \frac{\frac{V_p}{\sqrt{3}} \angle - 150^{\circ}}{Z_y}$$

$$I_b = \frac{\frac{220}{\sqrt{3}} \angle - 150^{\circ}}{100 + 37,7j}$$

$$I_b = 1,188 \angle - 170,6^{\circ} A$$

$$I_c = \frac{\frac{V_p}{\sqrt{3}} \angle 90^\circ}{Z_y}$$

$$I_c = \frac{\frac{V_p}{\sqrt{3}} \angle 90^\circ}{Z_y}$$

$$I_c = 1,88 \angle 69,34^{\circ} A$$

3.1.4. Delta-Delta

Um dos resultados para a configuração Delta-Delta é que não se tem impedâncias de linha, então as tensões são:

$$V_{ab} = V_{AB} = 220 \angle 0$$
 ° V
 $V_{bc} = V_{BC} = 220 \angle -120$ ° V
 $V_{ca} = V_{CA} = 220 \angle 120$ °V

Consequentemente as correntes de linha são dadas por:

$$I_{AB} = \frac{V_{AB}}{Z_{\Delta}}$$

$$I_{AB} = \frac{220 \angle 0^{\circ}}{100 + 37,7J}$$

$$I_{AB} = 2,06 \angle - 20,6^{\circ} A$$

$$I_{BC} = \frac{V_{BC}}{Z_{\Delta}}$$

$$I_{BC} = \frac{220 \angle - 120^{\circ}}{100 + 37,7J}$$

$$I_{BC} = 2,06 \angle - 140,6^{\circ} A$$

$$I_{CA} = \frac{V_{CA}}{Z_{\Delta}}$$

$$I_{CA} = \frac{220 \angle 120^{\circ}}{100 + 37,7J}$$

$$I_{CA} = 2,06 \angle 99,34^{\circ} A$$

As correntes de linha são dadas por:

$$I_a = I_{AB} - I_{CA}$$

$$I_a = 2,06\angle - 20,6^{\circ} - (2,06\angle 99,34^{\circ})$$

 $I_a = 3,56\angle - 50,63^{\circ} A$

$$I_b = I_{BC} - I_{AB}$$

$$I_b = 2,06\angle - 140,6° - (2,06\angle - 20,6°)$$

$$I_b = 3,56\angle - 170,6°A$$

$$I_c = I_{CA} - I_{BC}$$

$$I_c = 2,06 \angle 99,34 \degree - (2,06 \angle - 140,6 \degree)$$

$$I_c = 3,56 \angle 69,37 \degree A$$

Além disso,

$$I_L = \sqrt{3} * I_p$$

$$I_p = |I_{AB}| = |I_{BC}| = |I_{CA}|$$

$$I_L = |I_a| = |I_b| = |I_c|$$

3.2. Ltspice

LTspice é um software de simulação de circuitos eletrônicos amplamente utilizado por estudantes, engenheiros e pesquisadores na área de eletrônica. Desenvolvido pela Analog Devices, ele permite a análise de circuitos analógicos e digitais por meio de simulações SPICE (Simulation Program with Integrated Circuit Emphasis). No contexto de circuitos trifásicos, o LTspice oferece ferramentas para modelar e simular sistemas complexos, como fontes de alimentação, inversores, motores e outros dispositivos de potência. Durante a simulação, é possível visualizar formas de onda, calcular tensões e correntes em diferentes pontos do circuito e validar o comportamento dinâmico dos componentes. Essa funcionalidade torna o LTspice um recurso essencial para projetar, otimizar e validar circuitos antes de sua implementação prática.

3.3. Montagem do circuito

Após a realização dos cálculos teóricos sobre os circuitos foi realizada a montagem dentro da plataforma de simulação de circuitos *LTspice* que contou com os seguintes materiais:

- 1. 3xFonte CA
- 2. 3x Resistor de 1 Ω
- 3. 3x Resistor de 100Ω
- 4. 3x Indutor de 100 mH

Primeiramente, foi montado os circuitos com as configurações Estrela, ou seja, os circuitos Estrela-Estrela e Estrela-Delta como apresentados nas Figuras 1 e 2 neste relatório e posteriormente foi montado os circuitos com as configurações Delta, ou seja, os circuitos Delta-Delta e Delta-Estrela. Um detalhe importante para a montagem dos circuitos com configuração Delta nas fontes é que foi necessário a criação de um circuito resistivo simples para conseguir realizar a simulação dos circuitos delta de maneira correta sem o uso de um fio terra para o circuito.

Figura 5 — Configuração Estrela-Estrela Tensões V_{ab} , $V_{bc}\,$ e V_{ca}

Figura 6 - Configuração Estrela-Estrela Correntes $I_a,\,I_b$ e I_c

Figura 7 - Configuração Estrela-Delta Tensões V_{ab} , V_{bc} e V_{ca}

Figura 8 - Configuração Estrela-Delta Correntes $I_a,\,I_b$ e I_c

Figura 9 - Configuração Delta-Estrela Tensões V_{ab} , $V_{bc}\,$ e V_{ca}

Figura 10 - Configuração Delta-Estrela Correntes ${\cal I}_a, {\cal I}_b$ e ${\cal I}_c$

Figura 11 - Configuração Delta-Delta Tensões V_{ab} , $V_{bc}\,$ e V_{ca}

Figura 12 - Configuração Delta-Delta Correntes $I_a,\,I_b$ e I_c

4. Resultados e Discussões

Com os resultados das simulações em todas as configurações, é possível preencher as respectivas tabelas presentes no guia (Tabela 1.1, Tabela 1.2, Tabela 1.3 e Tabela 1.4). Essas tabelas têm como objetivo mensurar as diferenças entre os valores teóricos e os obtidos nas simulações. Para compreender melhor essas discrepâncias, é necessário calcular o erro relativo (1ª Equação) e, em seguida, discutir os resultados de forma mais aprofundada.

$$1^{\circ}$$
Equação: Erro relativo
$$Erro (\%) = 100 \cdot \frac{|Valor\ Te\'orico - Valor\ Medido|}{Valor\ Te\'orico}$$

4.1. Configuração Estrela-Estrela

4.1.1. Cálculo da Fase da Corrente I_a

$$\theta = \Delta x * 360 * Frequência da Fonte$$

$$\theta = (-13,37 + 12,36) * 10^{-3} * 360 * 60$$

$$\theta = -21.86^{\circ}$$

4.1.2. Cálculo da Fase da Corrente I_b

$$\theta = \Delta x * 360 * Frequência da Fonte$$

$$\theta = (-6,59) * 10^{-3} * 360 * 60$$

$$\theta = -142.8^{\circ}$$

4.1.3. Cálculo da Fase da Corrente I_c

$$\theta = \Delta x * 360 * Frequência da Fonte$$

$$\theta = 4.6 * 10^{-3} * 360 * 60$$

$$\theta = 99.36^{\circ}$$

Tabela 1.1: Tabela relativa à configuração Estrela-Estrela

	V_{ab}	V_{bc}	V_{ca}	I_a	I_b	I_c
Valores	381,05	381,05	381,05	2,06∠	2,06∠	2,06
eficazes	∠0°	∠ – 120°	∠120°	- 20,65°	-140,65°	∠99,34°
(Teóricos)						
Valores	380,71	380,71	380,71	2,045∠	2,045∠	2,045
eficazes	∠0°	∠ – 120°	∠120°	– 21,816°	- 142,8°	∠99,36°
(Simulados)						

4.1.4. Erro relativo V_{ab} , V_{bc} e V_{ca}

$$V_{ab}(Erro\ (\%)) = 100 \cdot \frac{|381,05\angle 0^{\circ} - 380,71\angle 0^{\circ}|}{381,05\angle 0^{\circ}}$$

$$V_{ab}(Erro\ (\%)) = 0,09\%$$

$$V_{bc}(Erro\ (\%)) = 100 \cdot \frac{|381,05\angle - 120^{\circ} - 380,71\angle - 120^{\circ}|}{381,05\angle - 120^{\circ}}$$

$$V_{ca}(Erro~(\%)) = 100 \cdot \frac{|381,05 \angle 120^{\circ} - 380,71 \angle 120^{\circ}|}{381,05 \angle 120^{\circ}}$$
$$V_{ca}(Erro~(\%)) = 0,09\%$$

 $V_{hc}(Erro\ (\%)) = 0.09\%$

4.1.5. Erro relativo 1°Prática- I_a , I_b e I_c

$$I_a(Erro~(\%)) = 100 \cdot \frac{|2,06\angle - 20,65^\circ - 2,045\angle - 21,816^\circ|}{2,06\angle - 20,65^\circ}$$

$$I_a(Erro~(\%)) = 2,15\%$$

$$I_b(Erro\ (\%)) = 100 \cdot \frac{|2,06\angle - 140,65^\circ - 2,045\angle - 142,8^\circ|}{2.06\angle - 140,65^\circ}$$

$$I_a(Erro(\%)) = 3.80\%$$

$$I_c(Erro\ (\%)) = 100 \cdot \frac{|2,06\angle 99,34 - 2,045\angle 99,36|}{2,06\angle 99,34}$$
$$I_a(Erro\ (\%)) = 0,72\%$$

4.2. Configuração Estrela-Delta

4.2.1. Cálculo da Fase da Corrente I_a

$$\theta = \Delta x * 360 * Frequência da Fonte$$

$$\theta = -0.96 * 10^{-3} * 360 * 60$$

$$\theta = -20.736^{\circ}$$

4.2.2. Cálculo da Fase da Corrente I_b

$$\theta = \Delta x * 360 * Frequência da Fonte$$

$$\theta = (-6,45) * 10^{-3} * 360 * 60$$

$$\theta = -139,32^{\circ}$$

4.2.3. Cálculo da Fase da Corrente I_c

$$\theta = \Delta x * 360 * Frequência da Fonte$$

$$\theta = 4.6 * 10^{-3} * 360 * 60$$

$$\theta = 99.36^{\circ}$$

Tabela 1.2: Tabela relativa à configuração Estrela-Delta

	V_{ab}	V_{bc}	V_{ca}	I_a	I_b	I_c
Valores	381,05	381,05	381,05	6,16∠	6,16∠	6,16
eficazes	∠30°	∠ – 90°	∠ – 210°	- 20,66°	- 140,65°	∠99,39°
(Teóricos)						
Valores	371,58	371,58	371,58	6,026∠	6,026∠	6,026
eficazes	∠30°	∠ – 90°	∠ – 210°	– 20,736°	- 139,32°	∠99,36°
(Simulados)						

4.2.4. Erro relativo Estrela-Delta V_{ab} , V_{bc} e V_{ca}

$$V_{ab}(Erro\ (\%)) = 100 \cdot \frac{|381,05 \angle 30^{\circ} - 371,52 \angle 30^{\circ}|}{381,05 \angle 30^{\circ}}$$

 $V_{ab}(Erro\ (\%)) = 2,5\%$

$$V_{bc}(Erro\ (\%)) = 100 \cdot \frac{|381,05\angle - 90^{\circ} - 371,52\angle - 90^{\circ}|}{381,05\angle - 90^{\circ}}$$
$$V_{ab}(Erro\ (\%)) = 2,5\%$$

$$V_{ca}(Erro\ (\%)) = 100 \cdot \frac{|381,05\angle - 210^{\circ} - 371,52\angle - 210^{\circ}|}{381,05\angle - 210^{\circ}}$$

 $V_{ab}(Erro\ (\%)) = 2,5\%$

4.2.5. Erro relativo Estrela-Delta - I_a , I_b e I_c

$$I_a(Erro\ (\%)) = 100 \cdot \frac{|6,16\angle - 20,66^\circ - 6,026\angle - 20,736^\circ|}{6,16\angle - 20,66^\circ}$$
$$I_a(Erro\ (\%)) = 2,17\%$$

$$I_b(Erro\ (\%)) = 100 \cdot \frac{|6,16\angle - 140,65^\circ - 6,026\angle - 139,32^\circ|}{6,16\angle - 140,65^\circ}$$
$$I_b(Erro\ (\%)) = 3,16\%$$

$$I_c(Erro\ (\%)) = 100 \cdot \frac{|6,16\angle 99,39^\circ - 6,026\angle 99,36^\circ|}{6,16\angle 99,39^\circ}$$
$$I_c(Erro\ (\%)) = 2,17\%$$

4.3. Configuração Delta-Estrela

4.3.1. Cálculo da Fase da Corrente I_a

$$\theta = \Delta x * 360 * Frequência da Fonte$$

$$\theta = -2,36 * 10^{-3} * 360 * 60$$

$$\theta = -50,976^{\circ}$$

4.3.2. Cálculo da Fase da Corrente I_b

$$\theta = \Delta x * 360 * Frequência da Fonte$$

$$\theta = -7.9 * 10^{-3} * 360 * 60$$

$$\theta = -170,64^{\circ}$$

4.3.3. Cálculo da Fase da Corrente I_c

$$\theta = \Delta x * 360 * Frequência da Fonte$$

$$\theta = 3,22 * 10^{-3} * 360 * 60$$

$$\theta = 69,552^{\circ}$$

Tabela 1.3: Tabela relativa à configuração Delta-Estrela

	V_{ab}	V_{bc}	V_{ca}	I_a	I_b	I_c
Valores	220	220∠	220	1,188 ∠	1,188 ∠	1,188
eficazes	∠0 °	−120°	∠120°	- 50,65°	- 170,6°	∠69,34°
(Teóricos)						
Valores	220∠0°	220∠	220	1,1752∠	1,1752∠	1,1752
eficazes		−120°	∠120°	– 50,976°	- 170,64°	∠69,552°
(Simulados)						

4.3.4. Erro relativo Delta-Estrela V_{ab} , V_{bc} e V_{ca}

$$V_{ab}(Erro\ (\%)) = 100 \cdot \frac{|220 \angle 0^{\circ} - 220 \angle 0^{\circ}|}{220 \angle 0^{\circ}}$$

 $V_{ab}(Erro\ (\%)) = 0\%$

$$V_{bc}(Erro~(\%)) = 100 \cdot \frac{|220\angle - 120° - 220\angle - 120°|}{220\angle - 120°}$$

$$V_{bc}(Erro~(\%)) = 0\%$$

$$V_{ca}(Erro\ (\%)) = 100 \cdot \frac{|220 \angle 120^{\circ} - 220 \angle 120^{\circ}|}{220 \angle 120^{\circ}}$$

 $V_{ca}(Erro\ (\%)) = 0\%$

4.3.5. Erro relativo Delta-Estrela - I_a , I_b e I_c

$$I_a(Erro\ (\%)) = 100 \cdot \frac{|1,188 \angle -50,65^{\circ} -1,1752 \angle -50,976^{\circ}|}{1,188 \angle -50,65^{\circ}}$$

 $Erro\ (\%) = 1,21\%$

$$\begin{split} I_b(Erro~(\%)) = ~100 \cdot \frac{|1{,}188 \angle - 170{,}6^\circ - 1{,}1752 \angle - 170{,}64^\circ|}{1{,}188 \angle - 170{,}6^\circ} \\ Erro~(\%) = ~1{,}07\% \\ I_c(Erro~(\%)) = ~100 \cdot \frac{|~1{,}188 \angle 69{,}34^\circ - 1{,}1752 \angle 69{,}552^\circ|}{1{,}188 \angle 69{,}34^\circ} \\ Erro~(\%) = ~1{,}13\% \end{split}$$

4.4. Configuração Delta-Delta

4.4.1. Cálculo da Fase da Corrente I_a

$$\theta = \Delta x * 360 * Frequência da Fonte$$

$$\theta = -2,32 * 10^{-3} * 360 * 60$$

$$\theta = -50.11^{\circ}$$

4.4.2. Cálculo da Fase da Corrente I_b

$$\theta = \Delta x * 360 * Frequência da Fonte$$

$$\theta = -7.87 * 10^{-3} * 360 * 60$$

$$\theta = -169.9^{\circ}$$

4.4.3. Cálculo da Fase da Corrente I_c

$$\theta = \Delta x * 360 * Frequência da Fonte$$

$$\theta = 3.2 * 10^{-3} * 360 * 60$$

$$\theta = 69.12^{\circ}$$

Tabela 1.4: Tabela relativa à configuração Delta-Delta

	V_{ab}	V_{bc}	V_{ca}	I_a	I_b	I_c
Valores	220	220∠	220	3,56∠	3,56∠	3,56
eficazes	∠0 °	−120°	∠120°	- 50,63	– 170,6°	∠69,37°
(Teóricos)						
Valores	220	220∠	220	3,46∠	3,46∠	3,46
eficazes	∠0 °	−120°	∠120°	- 50,11°	– 169,9°	∠69,12°
(Simulados)						

4.4.4. Erro relativo Delta-Delta - V_{ab} , V_{bc} e V_{ca}

$$V_{ab}(Erro\ (\%)) = 100 \cdot \frac{|220\angle 0^{\circ} - 220\angle 0^{\circ}|}{220\angle 0^{\circ}}$$

$$V_{ab}(Erro\ (\%)) = 0\%$$

$$V_{bc}(Erro\ (\%)) = 100 \cdot \frac{|220\angle - 120\ ^{\circ} - 220\angle - 120\ ^{\circ}|}{220\angle - 120\ ^{\circ}}$$

$$V_{bc}(Erro\ (\%)) = 0\%$$

$$V_{ca}(Erro\ (\%)) = 100 \cdot \frac{|220\angle 120^{\circ} - 220\angle 120^{\circ}|}{220\angle 120^{\circ}}$$

 $V_{ca}(Erro\ (\%)) = 0\%$

4.4.5. Erro relativo Delta-Delta - I_a , I_b e I_c

$$I_a(Erro~(\%)) = ~100 \cdot \frac{|3,56 \angle - 50,63^{\circ} - 3,46 \angle - 50,11^{\circ}|}{3,56 \angle - 50,63^{\circ}}$$

$$I_a(Erro\ (\%)) = 2.94\%$$

$$I_b(Erro\ (\%)) = 100 \cdot \frac{|3,56\angle - 170,6\degree - 3,46\angle - 169,9\degree|}{3,56\angle - 170,6\degree}$$

$$I_h(Erro\ (\%)) = 3.05\%$$

$$I_c(Erro\ (\%)) = 100 \cdot \frac{\mid 3,56 \angle 69,37^\circ - 3,46 \angle 69,12^\circ \mid}{3,56 \angle 69,37^\circ}$$
$$I_c(Erro\ (\%)) = 2,84\%$$

Dessa forma, é possível observar que os resultados de V_{ab} , V_{bc} e V_{ca} , mostram perfeita concordância com os valores teóricos na simulação, com erro relativo abaixo de 5%, indicando que os circuitos estão montados corretamente, seguindo o padrão que foi apresentado nas aulas teóricas. Com a configuração Estrela-Estrela com uma tensão de linha aproximadamente $\sqrt{3}$ * tensão de fase. Para a configuração Estrela-Delta a tensão de linha é também uma aproximadamente $\sqrt{3}$ * tensão de fase com uma mudança na fase que agora possuem 30° a mais para cada tensão de linha. Ademais, a configuração Delta-Estrela e Delta-Delta mantém a tensão de linha em relação a tensão de fase, pois não possuem impedâncias nas linhas, o que facilita os cálculos para V_{ab} , V_{bc} e V_{ca} .

Seguindo a análise sobre as correntes de linha I_a , I_b e I_c , mostram perfeita concordância com os valores teóricos na simulação, com erro relativo abaixo de 5%, indicando que os circuitos estão montados corretamente, seguindo o padrão que foi apresentado nas aulas teóricas. É possível notar que na configuração Estrela-Estrela as correntes de linha são iguais em valor absoluto, o que diferencia cada corrente de linha é a sua fase que seguem com a mesma fase da fonte seja em 0° , - 120° ou 120° . Para a configuração Estrela-Delta as correntes de linha possuem o valor de aproximadamente $\sqrt{3}$ * corrente de fase em valor absoluto, ou seja, as correntes de linhas I_a , I_b e I_c têm o mesmo valor de módulo e se analisarmos a fase de cada linha mantém com mesma da tensão de linha na mesma configuração.

Por fim, as configurações Delta-Estrela e Delta-Delta possuem diferenças quanto a corrente linha, pois no primeiro caso a corrente de linha segue o padrão de ser aproximadamente $\sqrt{3}$ * corrente de fase em valor absoluto e a fase de corrente de linha segue a mesma fase da tensão de linha da configuração. Entretanto, a corrente de linha para a configuração Delta-Delta é aproximadamente corrente de fase dividido por $\sqrt{3}$ com uma mudança na fase da corrente de linha que agora possui - 30° para cada fase, ou seja, a corrente linha que estava segundo a fase da tensão de linha de 0° agora possui um a fase - 30° , por exemplo. Dessa forma, também acontece para os outros dois casos.

5. Conclusões

Portanto, pode-se concluir que a realização dessa prática foi essencial para entender o funcionamento de circuitos trifásicos em diversas configurações de maneira prática. Além disso, a simulação permitiu não apenas reforçar o entendimento teórico, mas também desenvolver habilidades práticas com o uso do software *Ltspice* e analisar dentro da plataforma, antes de gerar o protótipo da aplicação, o que é de extrema importância porque pode-se notar defeitos e realizar ajustes antes de

iniciar o modelo físico do circuito. Essa prática contribuiu, portanto, para melhorar a compreensão sobre circuitos trifásicos, evidenciando como funciona as correntes e tensões de linha cada configuração.