# Investigation of structure and transport in Li-doped ionic liquid electrolytes

[pyr14][TFSI], [pyr13][FSI], and [EMIM][ $BF_4$ ]



Justin B. Haskins,<sup>1</sup> William R. Bennett,<sup>2</sup> James J. Wu,<sup>2</sup> Dionne M. Hernández,<sup>2</sup> Oleg Borodin,<sup>3</sup> Joshua D. Monk,<sup>1</sup> Charles W. Bauschlicher Jr.,<sup>4</sup> John W. Lawson<sup>5</sup>

<sup>1</sup>ERC, Inc., NASA Ames Research Center, Moffett Field, CA 94035

<sup>2</sup>Electrochemistry Branch, NASA Glenn Research Center, Cleveland, OH 44135

<sup>3</sup>Electrochemistry Branch, U.S. Army Research Laboratory, Adelphi, MD 20783

<sup>4</sup>Entry Systems and Technology Division, NASA Ames Research Center, Moffett Field, CA 94035

<sup>5</sup>Thermal Protection Materials Branch, NASA Ames Research Center, Moffett Field, CA 94035

#### **Outline**



- Li-doped ionic liquids for electrochemical applications
- Atomistic computational modeling of ionic liquids
- Influence of Li<sup>+</sup> on ionic liquid structure
  - -Li<sup>+</sup>/Anion binding and solvation
  - -Li+ ... Li+ network statistics
- Transport properties of Li-doped ionic liquids
- Kinetics of Li<sup>+</sup> transport in ionic liquids
  - -Li<sup>+</sup>/Anion residence times
  - -contribution of anion exchange to diffusion

#### Ionic liquids for electrochemical applications



- **Li-ion batteries**: possible safer alternative to organic electrolytes
- Advanced electrodes: helps stabilize cycling against Li-metal
- **Supercapacitors:** double layer capacitor electrolyte
- Electrodeposition: wide electrochemical window solvent
- **Biofuel cells**: replace water as more stable solvent





F. Orsini et al., J. Power Sources 76, 19-29 (1998)

#### Computational models and molecular dynamics (MD)



Newton's law F=ma for atoms

$$F = -\nabla U$$

 Atomistic polarizable potential for liquids, electrolytes and polymers (APPLE&P)

$$U^{RD} = \sum_{i < j} \left( A_{ij} \exp(-B_{ij} r_{ij}) - C_{ij} r_{ij}^{-6} \right)$$

$$U^{ES} = \sum_{i < j} \left( \frac{q_i q_j}{4\pi \varepsilon_0 r_{ij}} \right) - \frac{1}{2} \sum_i \vec{\mu} \cdot \vec{E}_i^0$$

- Includes many body polarization
- System sizes: ~10<sup>4</sup> atoms
- Time scales: 50-200 ns



- O. Borodin, J. Phys. Chem. B 113, 11463 (2009)
- O. Borodin, et al., J. Phys. Chem. B 110, 6279-6292 (2006)
- O. Borodin, et al., J. Phys. Chem. B 110, 6293-6299 (2006)

## **lonic liquids of interest**





#### Influence of Li<sup>+</sup>-doping on anion distributions



#### Small anion separation around Li+



#### Li<sup>+</sup>-Li<sup>+</sup> distributions



#### Li<sup>+</sup> .... Li<sup>+</sup> clustering at low-r and high doping levels



#### Li<sup>+</sup>/Anion bonding structures





- Li-[TFSI] bonding dependence on Li-doping level
- More monodentate at high doping levels

#### Li<sup>+</sup>/Anion solvation shells





- 4-5 anion neighbors in Li<sup>+</sup> solvation shell: [TFSI] (3-4), [BF<sub>4</sub>] (4), [FSI] (3-5)
- [Li(TFSI)<sub>2</sub>]<sup>-</sup> and [Li(FSI)<sub>3</sub>]<sup>-2</sup> from experiment (J.C. Lassegues, et al., *J. Phys. Chem. A* **113**, 305 (2009) and K. Fujii, et al., *J. Phys. Chem. C* **117**, 19314 (2013))

#### Li<sup>+</sup> ... Li<sup>+</sup> networks







- Networks at all levels of Lidoping
- 5-6 Li-ions in largest networks
- Structural impact on anions



#### Influence of Li<sup>+</sup> ... Li<sup>+</sup> networks on structure







- cis-[TFSI] and cis-[FSI] conformers in Li<sup>+</sup> solvation shell
- Monodentate binding in [TFSI] networks

#### Computational measures of thermodynamics and transport



Density:  $\rho$  (kg/m<sup>3</sup>) | Diffusion: D (1e-10 m<sup>2</sup>/s) | Viscosity:  $\mu$  (cP) | Conductivity:  $\lambda$  (mS/cm)

|                 | [pyr14][TFSI] | [pyr13][FSI] | [EMIM][BF <sub>4</sub> ] |
|-----------------|---------------|--------------|--------------------------|
| ρ               | 1421.5        | 1367.9       | 1296.9                   |
| D <sup>+</sup>  | 0.097         | 0.118        | 0.326                    |
| D-              | 0.081         | 0.121        | 0.228                    |
| D <sup>Li</sup> | 0.046         | 0.069        | 0.101                    |
| μ               | 150           | 89           | 107                      |
| λ               | 1.67          | 3.35         | 11.45                    |

- Greater ion mobility with decreasing density and ion size
- High accuracy of predicted properties:

  - density within ~1% diffusion within 10-25%
  - conductivity within 10-20%

#### **Comparison of room-T Li transport**





- T = 298 K properties computationally expensive (~200 ns)
- Li<sup>+</sup> ionic conduction order of magnitude lower in [pyr14][TFSI]
- Plateau in ionic conduction at high Li-doping

# Experimental comparison of ionic conductivity to that of Li-ion battery organic electrolytes





Mid-T ion conductivity comparable to conventional electrolytes

# **Exchange of anions in the Li solvation shell**





#### Li<sup>+</sup>/Anion residence times





- Longer residence times at higher Li-doping levels
- Times follow [TFSI] > [BF<sub>4</sub>] > [FSI]

## Contribution of anion exchange to diffusion



|                    | [pyr14][TFSI]                                 |                         | [pyr13][FSI]                          |                         | [EMIM][BF <sub>4</sub> ]           |                                  |
|--------------------|-----------------------------------------------|-------------------------|---------------------------------------|-------------------------|------------------------------------|----------------------------------|
| $x_{Li}$ +         | $\overline{\mathrm{D_{bax}^{Li^+}/D^{Li^+}}}$ | $N^{\langle R \rangle}$ | $D_{\rm bax}^{\rm Li^+}/D^{\rm Li^+}$ | $N^{\langle R \rangle}$ | $\mathrm{D_{bax}^{Li^+}/D^{Li^+}}$ | $N^{\langle \mathrm{R} \rangle}$ |
| 0.05 $0.10$ $0.33$ | 0.69<br>0.66<br>0.59                          | 4.4<br>4.2<br>3.5       | 0.81<br>0.85<br>0.73                  | 3.7<br>2.4<br>2.0       | 0.89<br>1.07<br>0.91               | 6.1<br>5.8<br>3.9                |

- Anion exchange a secondary factor in Li<sup>+</sup> diffusion
- Anion exchange more important with larger anions and higher Li-doping



#### **Conclusions**



- Lithium networks present at all levels of doping
- Li/anion binding tends to prefer monodentate at all high levels of doping
- Transport properties in good agreement with experiment
  - -density follows [BF₄] < [FSI] < [TFSI]
  - -lithium diffusion follows  $[BF_4] > [FSI] > [TFSI]$
- Anion exchange secondary to net motion of lithium with the solvation shell

## **Acknowledgements**





## Miscellaneous slides



## **Density**





## **Viscosity**









#### **Diffusion**





248th ACS National Meeting | August 10-14, 2014 | San Francisco, CA

## **lonic conductivity**







