Machine Learning: 06048203

X1		X2	Х3	X4
\$	179.43	56.784	34.6181	3.55
\$	641.87	62.054	47.7306	1.692
\$	556.30	64.13	55.596	1.559
\$	578.47	63.377	52.7121	1.679
\$	591.16	61.553	46.1315	1.984
\$	242.03	58.29	39.2952	2.942
\$	364.66	59.93	42.4628	2.494
\$	190.68	57.271	36.2725	3.419
\$	547.23	63.763	54.1971	1.634
\$	359.69	59.375	41.5105	2.128
\$	438.08	60.484	43.493	2.47
\$	637.17	62.525	49.428	1.725

Min-Max scaling Normalization

$$X' = \frac{X - X_{min}}{X_{max} - X_{min}}$$

[0;1]

Standard Scaler Normalization

$$X' = \frac{X - \mu}{\sigma}$$

Min-Max scaling Normalization

$$X' = \frac{X - X_{min}}{X_{max} - X_{min}}$$

[0;1]

1 0.444

45 yrs
44 yrs
40 yrs

Min-Max scaling Normalization

```
from sklearn.preprocessing import MinMaxScaler
import pandas as pd
data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]
scaler = MinMaxScaler()

xdata = pd.DataFrame(data, columns=['x1', 'x2'])
xdata

✓ 0.0s

x1 x2
0 -1.0 2
1 -0.5 6
2 0.0 10
3 1.0 18
```

```
xscale = scaler.fit_transform(xdata)
    xscale = pd.DataFrame(xscale, columns=['x1', 'x2'])
    xscale

v    0.0s

x1    x2
0    0.00    0.00
1    0.25    0.25
2    0.50    0.50
3    1.00    1.00
```


$$X' = \frac{X - X_{min}}{X_{max} - X_{min}}$$

$$X = X'(X_{max} - X_{min}) + X_{min}$$

Standard Scaler Normalization

$$X' = \frac{X - \mu}{\sigma}$$

$$X = \sigma X' + \mu$$

- Integer Encoding
 - Directly convert categories into integers 1,2,3...N

Country
USA
MEX
CAN
USA

- Integer Encoding
 - Possible issue is implied ordering and relationship (ordinal variable)

Country	Country
USA	1
MEX	2
CAN	3
USA	1

- Integer Encoding
 - Pros:
 - Very easy to do and understand.
 - Does not increase number of features.
 - Cons:
 - Implies ordered relationship between categories.

- One Hot Encoding (Dummy Variables)
 - Convert categories into individual features that are either 0 or 1

Country
USA
MEX
CAN
USA

- One Hot Encoding (Dummy Variables)
 - Convert categories into individual features that are either 0 or 1

Country	USA	MEX	CAN
USA	1	O	0
MEX	О	1	0
CAN	0	0	1
USA	1	0	0

- One Hot Encoding (Dummy Variables)
 - No ordered relationship is implied between categories.

Country	USA	MEX	CAN
USA	1	0	0
MEX	О	1	0
CAN	0	0	1
USA	1	0	0

- One Hot Encoding (Dummy Variables)
 - We can try to reduce this feature column expansion by creating higher level categories.
 - For example, regions or continents instead of countries.

- One Hot Encoding (Dummy Variables)
 - Consider a binary category (only two options):

- One Hot Encoding (Dummy Variables)
 - Consider a binary category (only two options):

Vertical Direction	UP	DOW N
UP	1	O
DOWN	0	1
UP	1	О
DOWN	0	1

- One Hot Encoding (Dummy Variables)
 - The new columns are duplicate information with inverted encoding.

- One Hot Encoding (Dummy Variables)
 - Easily fixed by simply dropping last column.

- One Hot Encoding (Dummy Variables)
 - This can be extended to more than 2 categories:

Country	USA	MEX
USA	1	0
MEX	0	1
CAN	0	0
USA	1	0

- One Hot Encoding (Dummy Variables)
 - Pros:
 - No ordering implied.
 - Cons:
 - Potential to create many more feature columns and coefficients.
 - Dummy variable trap consideration.
 - Not easy to add new categories.

Outliers

- Often a data set will have a few points that are extreme outliers.
- It's often better to simply remove these few points from the data set in order to have a more generalized model.

