Calculus 3 week 1 problem set

(편미분, 합성함수의 미분, 방향미분,최대최소 찾기, 라그랑쥬 승수법)

*학습지원장학금의 수여 대상이 되려면 각 문제에 대한 풀이를 상세하게 작성하여 12월 26일 밤 11시까지 제출. Blind copy한 풀이는 받지 않습니다.

1. 다음 함수의 편미분
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$ 을 구하시오.

(a)
$$f(x,y) = x^2 - xy + y^2$$

(b)
$$f(x,y) = \sqrt{x^2 + y^2}$$

(c)
$$f(x,y) = \frac{x}{x^2 + y^2}$$

(d)
$$f(x,y) = e^{-x}\sin(x+y)$$

(e)
$$f(x,y) = \ln(x^2 + 5y^2)$$

2. Express $\frac{dw}{dt}$ as a function of t using chain rule

(a)
$$w = x^2 + y^2$$
, $x = \cos t$, $y = \sin t$

(b)
$$w = \ln(x^2 + y^2 + z^2)$$
, $x = e^{t}$, $y = \cosh t$, $z = \sinh t$

- 3. Express $\frac{\partial z}{\partial u}$, $\frac{\partial z}{\partial v}$ as a function of u and v and evaluate at $(u,v) = (2,\pi/4)$ $z = e^x \ln y$, $x = u \cos v$, $y = u \sin v$.
- 4. For $f(x,y,z) = x^2 y^2 + 5z^2$ find gradient ∇f at (1,1,1).
- 5. Find the directional derivative of given function at P in the direction of v.

(a)
$$f(x,y) = xy - y^2$$
, $P=(1,1)$, $v = 4i + 3j$

(b)
$$f(x,y,z) = e^x \cos yz$$
, $P=(0,\pi,0.5)$, $v=2i+j-3k$

- 6. Find local max, local min and saddle point of given functions $f(x,y) = x^2 + 2xy$
- 7. Find the absolute max and min of $f(x,y) = x^2 xy + y^2$ over the triangle in the first quadrant bounded by the lines x = 0, y = 4, y = x.
- 8. Find the points on the ellipse $x^2 + 2y^2 = 1$ where f(x,y) = xy has its extreme

values. (Use Lagrange multiplier method)

9. Find the max and min of f(x,y,z)=x-2y+5z on the sphere $x^2+y^2+z^2=16$ (Use Lagrange multiplier method)

1. 다음 함수의 편미분
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$ 을 구하시오.

(a)
$$f(x,y) = x^2 - xy + y^2$$

(b)
$$f(x,y) = \sqrt{x^2 + y^2}$$

(c)
$$f(x,y) = \frac{x}{x^2 + y^2}$$

(d)
$$f(x,y) = e^{-x}\sin(x+y)$$

(e)
$$f(x,y) = \ln(x^2 + 5y^2)$$

(a)
$$\frac{df}{dx} = 2x - y$$
, $\frac{df}{dy} = -2x + 2y$
(b) $\frac{df}{dx} = \frac{dx}{2[x^2 + y^2]}$, $\frac{df}{d\theta} = \frac{dy}{2[x^2 + y^2]}$

$$\frac{df}{dy} = \frac{fuy}{g0y} - f(x)g(x) - f(x)g(x) - g(2x)$$

$$\frac{df}{dy} = \frac{0.064y}{(x^2+y^2)^2} - x(2y) = \frac{y^2-x^2}{(x^2+y^2)^2}$$

$$\frac{df}{dy} = \frac{0.024y^{2} - x(2y)}{(x^{2}+y^{2})^{2}} = \frac{y^{2}-x}{(x^{2}+y^{2})^{2}}$$

$$= \frac{-2xy}{(x^{2}+y^{2})^{2}}$$

$$\frac{df}{dx} = f(xyx) + f(xyx)$$

$$= -e^{-x}f(xxy) + e^{-x}f(xxy)$$

(e)
$$\ln(x^{2}+5y^{2}) \sim \frac{df}{dx} = \frac{2x}{x^{2}+5y^{2}}$$

$$\frac{df}{dy} = \frac{5y}{x^{2}+5y^{2}}$$