

UNIVERSIDAD DE CONCEPCIÓN

FACULTAD DE CIENCIAS QUÍMICAS QUIMICA GENERAL

LISTADO DE EJERCICIOS Química General II (531.150)

Unidad 1 y 2. Fuerzas Intermoleculares y Equilibrio de Fases

DATOS:

R= 8.314 J/K mol (0.082 L atm		K_f (°C/m)	$K_b(^{\circ}C/m)$
$\Delta H_{\text{evaporación}} (H_2 O) = 40.8 \text{ kJ/mol /Kmol})$			
$\Delta H_{\text{fusión}} (H_2 O) = 6.0 \text{ kJ/mol}$	H_2O	1.86	0.52
Calores específicos en J/g°C :	Benceno	5.12	2.53
Agua (sólida) = 2.03			
Agua (líquida)= 4.184			
Agua (vapor) = 1.99			_

- 1. Un sólido es duro, quebradizo y no conduce a la electricidad, pero fundido sí lo hace, lo mismo que una solución acuosa del mismo. Clasifique el sólido.
- 2. Un sólido es blando y tiene punto de fusión bajo 100 °C. Ni el sólido como tal ni fundido ni la disolución conducen la electricidad. Clasifique el sólido
- **3.** Un sólido es muy duro y tiene punto de fusión muy alto. Ni el sólido ni su punto de fusión conducen la electricidad. Clasifique el sólido.
- **4.** Señale cuáles de los siguientes son sólidos covalentes reticulares y cuáles son sólidos covalentes moleculares:

Se₈, HBr, Si, CO₂, C, P₄O₆, B, SiH₄.

- **5.** Explique de cuáles de los factores siguientes depende la presión de vapor de un líquido en un recipiente cerrado.
 - a) del volumen sobre el líquido.

b) de a cantidad de líquido presente

c) de la temperatura.

- d) de la presión total sobre el líquido.
- **6.** Calcule la cantidad de calor en kilo joule que se necesita para convertir 74.6 gramos en agua a vapor a 100 °C.

R: 169 kJ

7. Calcule la cantidad de calor en kilo joule que se requiere para convertir 866 gramos de hielo a -10 °C

en vapor a 126 °C.

R: 2671 kJ

- 8. Considere el diagrama de fase del agua. Prediga que pasaría si:
 - a) Partiendo de A, se eleva la temperatura a presión constante.
 - b) partiendo de C, Se disminuye la temperatura a presión cte.
 - c) Partiendo de b, se disminuye la presión a temperatura cte.

9. En cada pares a) y b) seleccione la especie que tiene el punto de ebullición más alto. En cada caso identifique el tipo de fuerzas intermoleculares involucradas y justifique brevemente.

a) H_2S o $(CH_3)_3N$,

b) Br₂ o CH₃CH₂CH₂CH₃

- **10.** A partir de las siguientes propiedades del boro clasifíquelo como uno de los sólidos cristalinos: Punto de fusión alto (2300 °C), mal conductor del calor y electricidad, insoluble en agua, y es una especie muy dura.
- **11.** Una muestra de 1.20 g de agua se inyecta en un recipiente evacuado de 5.00 L a 65 °C ¿Qué porcentaje de agua se evaporará cuando el sistema alcance el equilibrio? Suponga un comportamiento ideal del vapor de agua y el volumen de agua líquida despreciable. La presión del vapor de agua a 65°C es 187.5 mmHg.

R: 67%

- **12.** ¿Cuál es la presión de vapor del mercurio a su temperatura normal de ebullición (357 °C). **R: 1.00 atm.**
- **13.** Se prepara una solución disolviendo 396,0 gramos de sacarosa (C₁₂H₂₂O₁₁) en 634,0 gramos de agua. Calcule la presión de vapor de la disolución a 30 °C (P vapor agua = 31,8 mmHg a 30 °C)

R: 30.8 mmHg

14. Calcule los puntos de ebullición y de congelación de una disolución 2.47 m de naftaleno en benceno. (Los puntos de ebullición y de congelación del benceno son 80.1 y 5.5 °C respectivamente).

R: 86.3 °C y -7.1 °C

15. Calcule cuantos litros del anticongelante etilenglicol CH₂(OH)CH₂(OH) tendría que agregar al radiador de un auto que contiene 6.50 Litros de agua, si la temperatura invernal más baja en la región es de -20 °C. Calcule el punto de ebullición de esta mezcla agua-etilenglicol. La densidad del etilenglicol es de 1.11 g/mL.

R: 3.9 L

16. El Análisis elemental de un sólido orgánico extraído de la goma arábica muestra que contiene 40.0 % de C, 6.7 % de H y 53.3 % de O. Una disolución de 0.650 g del sólido en 27.8 g del disolvente bifenilo dio una depresión en el punto de congelación de 1.56 °C. Calcule la masa molar y la fórmula molecular del sólido. (K_f del bifenilo = 8.00 °C/m).

R: 120, C₄H₈O₄

- 17. ¿Cuál de las siguientes dos disoluciones acuosas tiene...
 - a) el punto de ebullición más alto?
 - b) el punto de congelación más alto?
 - c) la mayor presión de vapor?

Disoluciones: CaCl₂ 0.35 m o urea 0.90 m. ¿Explique?.

18. A 25 °C la presión de vapor del agua pura es 23.76 mmHg y la del agua de mar es 22.98 mmHg. Suponiendo que el agua de mar contiene sólo NaCl, calcule su concentración expresada en molalidad.

R: 0.943

- **19.** Se encuentra que una disolución de 1.00 g de AlCl₃ en 50.0 g de agua tiene un punto de congelación de -1.11 °C. Explique lo observado
- **20.** Dos líquidos A y B tienen presiones de 76 mmHg y 132 mmHg, a 25°C respectivamente. Calcule la presión total de la disolución ideal constituida por:
 - a) 1.00 mol de A y 1.00 mol de B.
 - b) 2.00 mol de A y 5.00 mol de B.

R: a) 104 mmHg

21. A 30°C el benceno y el tolueno forman una disolución ideal. Una disolución de ambos a 30°C ejercen una presión de vapor de 64 mmHg. Calcule la composición de la fase líquida y la composición de la fase vapor.

Datos: Pobenceno=120 mmHg;

 $P_{\text{tolueno}}^{\text{o}} = 40 \text{ mmHg}$

R: (benceno) X = 0.30, X' = 0.56

22. A 50°C la presión de vapor de un líquido A puro es de 80 mmHg y la de un líquido B puro es 20 mmHg. La presión de vapor de la mezcla de ambos es 50 mmHg a 50°C. Calcule la composición del vapor.

R: (A) X = 0.80

- **23.** Los calores molares de vaporización a 80°C, medidos en kJ/mol son: 41.59; 39.16; 22.34 y 29.79 para el agua, alcohol, éter y tetracloruro de carbono respectivamente. Indique:
 - a) ¿Cuál líquido es más volátil?
 - b) ¿Cuál líquido tiene la menor temperatura de ebullición y cuál la mayor?
 - c) ¿En cuál hay mayores fuerzas intermoleculares?.

Unidad 3. Cinética Química

1. A 25 °C la constante de velocidad de la reacción de descomposición de pentóxido de dinitrógeno, N₂O₅, es 6.65×10⁻⁴ s⁻¹ ¿Qué tiempo transcurrirá para que se descomponga la mitad de dicho óxido si la cinética de la reacción es de primer orden?.

 $R: 1.04 \times 10^3 \text{ s.}$

2. Los datos de una serie de experimentos sobre la reacción que se indica del óxido nítrico con el bromo: 2NO (g) + Br₂ (g) → 2NOBr (g), a 273 °C, son los siguientes:

Experimento	[™] O] _o (mol L ⁻	[Br ₂] _o (mol L ⁻¹)	Velocidad₀ (mol L ⁻¹ s ⁻¹)
1	0.1	0.1	12
2	0.1	0.2	24
3	0.1	0.3	36
4	0.2	0.1	48
5	0.3	0.1	108

Determinar la ley de velocidad para la reacción y calcular el valor de la constante de velocidad.

$$R: v = k[NO]^2[Br_2]; k = 1.2 \times 10^4 L^2 mol^{-2} s^{-1}$$

3. Los siguientes datos se obtuvieron de la reacción siguiente entre bromuro de t-butilo, (CH₃)₃CBr, y el ion hidroxílo, a 55 °C:

$$(CH_3)_3CBr + OH^- \rightarrow (CH_3)_3COH + Br^-$$

Experimento	[(CH ₃) ₃ CBr] _o (mol L ⁻¹)	[OH⁻]₀ (mol L⁻¹)	Velocidad _o (mol L ⁻¹ s ⁻¹)	
1	0.10	0.10	0.0010	
2	0.20	0.10	0.0020	
3	0.30	0.10	0.0030	
4	0.10	0.20	0.0010	
5	0.10	0.30	0.0010	

¿Cuál es la ley de velocidad y la constante velocidad de esta reacción?.

$$R: V = k[(CH_3)_3CBr]; k = 1.0 \times 10^{-2} s^{-1}$$

4. La descomposición del agua oxigenada a 300 K según la reacción:

$$2H_2O_2(g) \rightarrow 2H_2O(g) + O_2(g)$$

es una reacción química de primer orden. El periodo de semireacción de la misma es de 654 minutos. Calcular: a) la cantidad de agua oxigenada que queda cuando han pasado 90 minutos, si la concentración inicial de agua oxigenada es 0.10 mol/L; b) la velocidad inicial de descomposición si el agua oxigenada es 0.020 mol/L.

R: a) 0.09 mol L⁻¹; b) 2.1·10⁻⁵ mol L⁻¹ min⁻¹

5. Si la ley de velocidad de la reacción: $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$ es $v \text{ (mol·h-1·L-1)} = 2.09 \times 10^{-3} \text{ [N}_2O_5]$, a la temperatura de 273 K, calcular el tiempo que ha de transcurrir hasta que la presión del sistema sea dos atmósferas, a partir de pentóxido de dinitrógeno a una atmóstera de presión.

R: 525.84 h.

6. Para una reacción A (g) → B (g) + C (g) que es de segundo orden se encuentra que a 300 K la presión total varía de 600 mm Hg a 663 mm Hg en 33 minutos. La reacción se realiza en un recipiente a volumen constante y en el que inicialmente se introduce sólo el gas A. Hallar: a) la constante de velocidad; b) la cantidad de moles/l de A que se han transformado al cabo de los 33 minutos.

$$R: k = 0.111 L mol^{-1} min^{-1}; b) 3.4 \times 10^{-3} mol/L.$$

7. A 300 °C la constante de velocidad para la reacción de obtención de H₂C=CH-CH₃ es 2.41×10⁻¹⁰ s⁻¹ y a 400 °C es 1.16·10⁻⁶ s⁻¹. ¿Cuáles son los valores de la energía de activación y del factor pre exponencial de Arrhenius para esta reacción?. Dato: R = 8,314 J/mol·K.

R: 272 kJ mol⁻¹; 1.58×10¹⁵ s⁻¹

8. Para la reacción: C₂H₅Br + OH⁻ → C₂H₅OH + Br⁻, cuyas constantes de velocidad a 300 K y a 350 K son 5×10⁻² L mol⁻¹ s⁻¹ y 6 L mol⁻¹ s⁻¹, respectivamente, calcular la constante de velocidad a 400 K. Dato: R = 1.98 cal mol⁻¹ K⁻¹

R: 2-10² L mol⁻¹ s⁻¹

9. Una sustancia que se descompone con una cinética de primer orden tiene una energía de activación de 103.93 kJ mol⁻¹, siendo el factor pre exponencial de Arrhenius (factor de frecuencia) 7.472×10⁹ horas ⁻¹. ¿A qué temperatura el tiempo de semirreacción será de 10 horas?. Dato: R = 8.314 J mol⁻¹K⁻¹.

R: 492 K

10. Se sabe que la velocidad de descomposición de un óxido de nitrógeno se hace cinco veces mayor al efectuar la reacción a 50 °C en vez de a 10 °C. ¿Cuál es la energía de activación de la reacción?. Dato: R = 1.98 cal mol⁻¹ K⁻¹.

R: 7.28 kcal mol-1

11. En el estudio de la descomposición térmica de HI se obtuvieron los siguientes resultados:

T°C	[HI]。	[t _{1/2}]
427	0.10	59.0
427	0.08	73.0
508	0.10	4.20
508	0.08	5.25

Calcular: a) orden de reacción; b) constante de velocidad a 427 °C y a 508°C; c) energía de activación en cal/mol y d) tiempo necesario, en minutos, para que se descomponga el 80% cuando la concentración inicial es 0.0500 mol/L a 427 °C.

R: a) segundo; b) 0.17 mol/Lmin; y 2.38 mol/Lmin c) 35663 Cal/mol; d) 470.6 min.

12. La reacción:

$$N_2O_5(g) \rightarrow N_2O_4(g) + 1/2 O_2(g)$$

sigue la ley de velocidad $v = k [N_2O_5]$, donde la constante específica de velocidad es 1.68x10⁻² s⁻¹ a 300 °C. Si se colocan 2.5 moles de N_2O_5 en un recipiente de 5.0 litros a esa temperatura, calcular: a) la presión del sistema cuando haya transcurrido 1.0 minuto y b) la velocidad inicial de la reacción si se lleva a cabo, a la misma temperatura, un segundo experimento en el que se duplica la concentración de pentóxido de dinitrógeno y se añade un mol de oxígeno.

R: a) 23 atm; b) 1.68×10⁻² mol L⁻¹ s⁻¹

13. A 105 °C se lleva a cabo el proceso: A + B → P, en el que a lo largo de cuatro experimentos diferentes se determinan, según las concentraciones iniciales de los reactivos, las velocidades iniciales de reacción. Los resultados son:

Experimento	[A] _o (mol L ⁻¹)	[B] _o (mol L ⁻¹)	Velocidad₀ (mol L ⁻¹ min ⁻¹)
1	1 x 10 ⁻³	0.25 x 10 ⁻³	0.260 x 10 ⁻⁹
2	1 x 10 ⁻³	0.50 x 10 ⁻³	0.520 x 10 ⁻⁹
3	1 x 10 ⁻³	1.0 x 10 ⁻³	1.04 x 10 ⁻⁹
4	2 x 10 ⁻³	1.0 x 10 ⁻³	4.16 x 10 ⁻⁹

Determinar:

- a) Órdenes de reacción individuales y total del proceso.
- b) Constante específica de velocidad del proceso a 105 °C.
- c) Energía de activación y factor de frecuencia del proceso sabiendo que la constante específica de velocidad duplica su valor a 210 °C. Dato: R = 1.98 cal mol⁻¹ K⁻¹.

R: a) orden 2 para A, orden 1 para B, orden total 3; b) 1.04 L² mol⁻² min⁻¹; c) 2.39 kcal mol⁻¹; 25.1

14. Los datos siguientes se obtuvieron para la descomposición del dióxido de nitrógeno en fase gaseosa, según:

$$2 \text{ NO}_2(g) \rightarrow 2 \text{ NO } (g) + O_2 (g)$$

T(K)	300	300	500	500
[NO ₂] _o (mol L ⁻¹)	0.010	0.040	0.010	0.040
t _{1/2} (s)	180	45	140	35

Calcular:

- a) Orden de reacción.
- b) Energía de activación.
- c) Tiempo necesario en segundos para que, a 500 °C, se descomponga el 80%, si la concentración inicial es 0.08 mol/L.

Dato: R = 1.98 cal mol⁻¹ K⁻¹.

R: a) orden 2; b) 356 cal mol-1.; 2.8 s

15. A cierta temperatura, la constante de velocidad vale 8.93·10⁻³ min⁻¹, para la reacción de primer orden:

$$N_2O_3(g) \rightarrow NO_2(g) + NO(g)$$

Si inicialmente se introduce en el recipiente una cantidad de N_2O_3 , que ejerce una presión de 100 mm de Hg, calcule:

- a) el tiempo necesario para elevar la presión total hasta 135 mm de Hg,
- b) la presión total 20 minutos después de que se inicie la reacción, y
- c) la vida media de la reacción.

R: 48.24 min.; 116.4 mm de Hg; 77.6 min.

Unidad 4. Equilibrio Químico

1. Escriba las ecuaciones químicas que corresponden a las expresiones de

constantes:

a)
$$Kc = \frac{[H_2O]^2[SO_2]^2}{[H_2S]^2[O_2]^3}$$

b)
$$Kc = \frac{[CO_2]^3 [H_2O]^4}{[C_3H_8][O_2]^5}$$

R: a)
$$2 H_2S_{(g)} + 3 O_2_{(g)} \leftrightarrows 2 H_2O_{(g)} + 2$$

 $SO_2_{(g)}$; b) $C_3H_8(g) + 5 O_2_{(g)} \leftrightarrows 4$
 $H_2O_{(g)} + 3 CO_2_{(g)}$

2. Las constantes de equilibrio para las reacciones que se indican han sido obtenidas a 500 K.

(1)
$$H_{2 (g)} + Br_{2 (g)} = 2 HBr_{(g)}$$
 $Kp = 7.9x10^{11}$

(2)
$$H_{2 (g)} \leftrightarrows 2 H_{(g)}$$
 Kp = 4.8x10⁻¹

(3)
$$Br_{2(g)} \Rightarrow 2 Br_{(g)}$$
 $Kp = 2.2x10^{-15}$

Calcule Kp para la reacción de formación de HBr a partir de los átomos de H y Br: H (g) + Br (g) ≒ HBr (g)

R: 2.7x10³³

3. Para la reacción: $N_{2 (g)} + O_{2 (g)} \leftrightarrows 2 NO_{(g)}$, Kp es $1.0x10^{-15}$ a 25 °C y es 0.050 a 2200

°C. Determine si la formación de NO gaseoso es endotérmica o exotérmica.

R: endotérmica

4. Un recipiente de reacción de 50.0 L contiene 1.00 moles de N_2 , 3.00 moles de H_2 y 0.500 moles de NH_3 . ¿Se formará más NH_3 o se disociará cuando la mezcla alcance el equilibrio? Kc es 0.500 a 400 °C.

$$N_2(g) + 3 H_2(g) = 2 NH_3(g)$$

R: el amoníaco se disociará

5. La constante de equilibrio (Kc) para la reacción: $2SO_{2 (g)} + O_{2 (g)} \leftrightarrows 2 SO_{3 (g)}$ a 900 K es 13. A esta temperatura en un reactor de 5.0 L se agregó 0.060 moles de SO_2 , 1.00 moles de O_2 y 0.80 moles de SO_3 . Indique si en estas condiciones el sistema está o no en equilibrio o si se favorece la reacción directa o inversa.

R: ←

6. En un recipiente de 1.00 L, una mezcla gaseosa contiene 0.30 moles de CO, 0.10 moles de H_2 y 0.020 moles de H_2 O. Esta mezcla está en equilibrio a 1 200 K. ¿Cuál es la concentración de CH_4 en esta mezcla? Kc = 3.92.

$$CO(g) + 3 H_2(g) \leftrightarrows CH_4(g) + H_2O(g)$$

R: 0.059 mol/L

7. Para la reacción: CO (g) + H₂O (g) ≒ H₂ (g) + CO₂ (g), Kc es 1.87 a 700 °C. Calcule cuántos moles de hidrógeno gas se forman si se calienta una mezcla de 0.30 moles de CO gas con 0.30 moles de vapor de agua a 700 °C en un recipiente de 10 L.

R: 0.17 mol

8. Para la reacción: CO $_{(g)}$ + H₂O $_{(g)}$ \leftrightarrows H₂ $_{(g)}$ + CO₂ $_{(g)}$, Kc es 1.87 a 700 °C. Calcule cuántos moles de hidrógeno gas se forman si se calienta una mezcla de 0.30 moles de CO gas con 0.30 moles de vapor de agua a 700 °C en un recipiente de 10 L.

R: 0.17 mol

9. Al calentar 0.350 moles de un gas A en un recipiente cerrado de 10.0 L de capacidad, el gas se descompone en un 40 % de acuerdo con la reacción:

$$2A(g) = B(g) + 3C(g)$$

Calcule la concentración y la fracción molar de C(g).

R: [C] =
$$2.10x10^{-2}$$
 mol/L y 0.429

10. Se colocan 6.75 g de $SO_2Cl_{2(g)}$ en un recipiente de 2.00 L a 648° C y, en el equilibrio, hay 0.0345 moles de SO_2 presentes. Calcule Kc de la reacción:

$$SO_2Cl_2(g) \Rightarrow SO_2(g) + Cl_2(g)$$

R: 0.0389

11. Se tiene el equilibrio:

$$3O_{2(g)} \leftrightarrows 2O_{3(g)} \qquad \Delta H^{\circ} = 284 \text{ kJ}$$

Prediga cómo cambia la posición del equilibrio si:

- a) Se disminuye el volumen a temperatura constante.
- b) Se agrega oxígeno gaseoso.
- c) Se disminuye la temperatura.

R: a)
$$\rightarrow$$
; b) \rightarrow ; c) \leftarrow

- 12. Indique si un aumento de presión disminuirá, aumentará o no tendrá efecto en las cantidades de producto:
 - d) $CO(g) + Cl_2(g) \leftrightarrows COCl_2(g)$
 - b) b) 2 H_2S (g) \leftrightarrows 2 H_2 (g) + S_2 (g)
 - c) c) C (grafito) + S_2 (g) \leftrightarrows CS₂ (g)

R: a) \uparrow ; b) \downarrow ; c) no tiene efecto

Unidad 5. Equilibrio ácido-base

1. Complete la siguiente tabla según corresponda:

H ⁺	OH-	рН	рОН
1.2·10 ⁻⁸			
	1.3·10 ⁻³		
		3.4	
			11.5

2. 0.80 g de LiOH se disuelven hasta llegar a 500 mL de disolución. Determinar el pHde la disolución resultante.

R: pH = 12.52

3. Calcule el pH de una disolución obtenida al mezclar 0.50 L de una disolución 0.50 mol/L de ácido clorhídrico con 700 mL de una disolución 0.5 mol/L de hidróxido de sodio. Suponer volúmenes aditivos.

R: pH = 12.92

- 4. Una cantidad de 0.0560 g de ácido acético se añade a un matraz aforado de 500 mL completando a volumen con agua destilada. Calcule la concentración del ácido y su base conjugada en el equilibrio, a 25°C. Dato: Ka (CH₃COOH) = 1.8x10⁻⁵ R (mol/L): a) [C₆H₅COOH] = 1.68x10⁻³, [C₆H₅COO⁻] = 1.83x10⁻⁴
- 5. El pH de una disolución 0.100 mol/L de un ácido débil monoprótico es 1.47. Calcular Ka del ácido.

R: 1.8x10⁻²

- 6. La concentración de [H⁺] para una disolución acuosa de ácido yódico (HIO₃) 0.10 mol/L es de 0.0335 mol/L. Calcular:
 - a) La constante de ionización del ácido.
 - b) La concentración que deberá poseer una disolución de dicho ácido, a la misma temperatura para que el pH = 2.00.
 - c) El grado de disociación en cada uno de los casos anteriores.

R: a) 1.69×10^{-2} ; b) 1.59×10^{-2} mol/L; c) 0.34×0.63

7. El pH de una disolución acuosa de amoniaco es 11.50. Calcular la concentración inicial de la disolución. Dato: Kb $(NH_3) = 1.8 \times 10^{-5}$

R: 0.57

- 8. Calcule el pH de las siguientes disoluciones a 25°C. Datos: Kb (NH₃) = 1.8×10^{-5} ; Kb (C₆H₅NH₂) = 4.6×10^{-10} ; Kb (CH₃NH₂) = 5.0×10^{-4}
 - a) Amoniaco 0.10 mol/L
 - b) Anilina (C₆H₅NH₂) 0.10 mol/L

R: a) 11.12; b) 8.83

9. Se disuelve una pastilla de ácido ascórbico ($C_6H_8O_6$) en 0.250 L de agua, resultando un pH de 3.00. ¿Cuál es la cantidad presente en la pastilla teniendo en cuenta que el ácido ascórbico es un ácido monoprótico? Dato: Ka ($C_6H_8O_6$) = 7.9x10⁻⁵

R: 0.600 g

10. El pH de un ácido monoprótico débil 0.060 mol/L es 3.44. Calcule el Ka de ese ácido:

R: 2.2x10⁻⁶

- 11. A 25°C, una disolución de 0.50 mol/L de amoniaco NH_3 tiene el mismo pH que una disolución de hidróxido de bario $Ba(OH)_2$ 1.5x10⁻³ mol/L. Determine:
 - a) El pH de las dos disoluciones.
 - b) La constante de basicidad del amoniaco.
 - c) El grado de ionización del amoniaco.

R: a) 11.5; b) 1.84x10⁻⁵; c) 0.60 %

- 12. Un ácido HA está disociado al 0.5 % en disolución 0.30 mol/L. Calcule:
 - a) La constante de disociación del ácido.
 - b) El pH de la disolución.
 - c) La concentración de iones OH⁻.

R: a) 7.5×10^{-6} ; b) 2.82; c) 6.6×10^{-12}

13. Calcule las concentraciones de todas las especies en equilibrio para una disolución de ácido carbónico 0.025 mol/L a 25°C. Datos: Ka_1 (H_2CO_3) = $4.6x10^{-7}$; Ka_2 (H_2CO_3) = $5.8x10^{-11}$

R: (mol/L): a) $[H_2CO_3] = 2.49 \times 10^{-2}$, $[HCO_3^-] = 1.07 \times 10^{-4}$, $[CO_3^{2-}] = 5.80 \times 10^{-11}$, $[H^+] = 1.07 \times 10^{-4}$, $[OH^-] = 9.44 \times 10^{-11}$

- 14. Clasifique como ácida, básica o neutra las disoluciones de las siguientes sales:
 - a) NaNO₂
 - b) KBr
 - c) Na₂HPO₄
 - d) NaNO₃

- f) NH₄CH₃COO
- g) NaH₂PO₄
- h) NaCN
- i) KI

- k) Na₃PO₄
- I) NH₄CN
- m) Na₂SO₄
- n) NH₄NO₃ o) NH₄NO₂
- 15. Calcule el pH de las siguientes disoluciones a 25°C. Datos: Kb (NH₃) = 1.8×10^{-5} ; Ka (CH₃COOH) = 1.8×10^{-5}
 - a) NaCH₃COO, 0.36 mol/L
 - b) NH₄CI, 0.42 mol/L
 - c) (NH₄)CH₃COO, 0.20 mol/L

R: a) 9.15; b) 4.81; c) 7.00

- 16. Especifique cuáles de los siguientes sistemas pueden clasificarse como sistemas amortiguadores:
 - a) KCI/HCI
 - b) $NH_3/(NH_4)NO_3$
 - c) Na₂HPO₄/NaH₂PO₄
 - d) KNO₂/HNO₂
 - e) KHSO₄/H₂SO₄
 - f) KHCOO/HCOOH

R: b, c, d, f

17. Se tienen 250 mL de una disolución amortiguadora que contiene ácido acético

0.350 mol/L y acetato de sodio 0.350 mol/L, sabiendo que Ka (CH₃COOH) = 1.8×10^{-5} . Suponiendo volúmenes aditivos, calcular la variación de pH que sufrirá si se añaden:

- a) 30.0 mL de HCl 0.100 mol/L
- b) 300 mL de HCl 0.350 mol/L

R: a) pasa de pH = 4.74 a pH = 4.72; b) pasa de pH = 4.74 a pH = 1.50

18. Calcule el pH de una disolución acuosa que es 0.15 mol/L de NH₃ y 0.075 mol/L en $(NH_4)_2SO_4$. Dato: Kb $(NH_3) = 1.8 \times 10^{-5}$

R: pH = 9.26

19. Calcular la masa de NH_4Cl que se debe añadir a 100 mL de NH_3 6.0 mol/L, para obtener una disolución de pH = 9.5. Suponer que no hay variación de volumen. Dato: $Kb (NH_3) = 1.8 \times 10^{-5}$

R: 18.78 g

- 20. Calcular el pH de la disolución al mezclar. Dato: Kb (NH₃) = 1.85×10^{-5}
 - a) 20.0 mL de amoníaco 0.10 mol/L y 10.0 mL de HCl 0.10 mol/L
 - b) 55.0 mL de amoníaco 0.10 mol/L y 45.0 mL de HCl 0.10 mol/L

R: a) 9.27; b) 8.61

- 21. Se obtiene una disolución reguladora disolviendo 68.0 g de formiato de sodio NaCOOH en 1.00 L de una disolución de ácido fórmico HCOOH 2.00 mol/L. *Dato:* Ka (HCOOH) = 1.6x10⁻⁴. Calcular:
 - a) El pH de la disolución.
 - b) El pH luego de agregar 0.500 moles de HCl.
 - c) El pH luego de agregar a la disolución a 8.0 g de NaOH.

R: a) 3.50; b) 3.10; c) 3.62

- 22. Se prepara una disolución amortiguadora a partir de 0.0500 moles de HCNO y 0.0250 moles de NaCNO en agua hasta obtener 1.00 L de disolución. Calcule el pH de la disolución. Dato: Ka (HCNO) = 1.26x10⁻⁵
 - a) Inicialmente.
 - b) Si se diluye 100 veces.

R: a) 4.60; b) 4.60

- 23. ¿Qué indicador, de entre los siguientes, considera el más adecuado para la valoración de una disolución de NH $_3$ 0.10 mol/L con HCl 0.10 mol/L? *Dato: Kb* $(NH_3) = 1.8 \cdot 10^{-5}$
 - a) Naranja de metilo (3.1 < pH < 4.4)
 - b) Rojo de metilo (4.4 < pH < 6.2)
 - c) Azul de bromotimol (6.2 < pH < 7.6)
 - d) Rojo cresol (7.2 < pH < 8.8)
 - e) fenoftaleína (8.0 < pH < 10.0)

R: rojo de metilo

Unidad 6. Equilibrio de Solubilidad

TABLA: Productos de solubilidad de algunos compuestos iónicos ligeramente solubles a 25°C.

COMPUESTO	Kps	COMPUESTO	Kps
Bromuro de cobre (I) (CuBr)	4.2.10-8	Hidróxido de hierro (III) [Fe(OH)₃	1.1.10-36
Bromuro de plata (AgBr)	7.7·10 ⁻¹³	Hidróxido de magnesio [Mg(OH) ₂]	1.2.10-11
Carbonato de bario (BaCO ₃)	8.1.10-9	Hidróxido de zinc [Zn(OH) ₂]	1.8·10 ⁻¹⁴
Carbonato de calcio (CaCO ₃)	8.7·10 ⁻⁹	Sulfato de bario (BaSO ₄)	1.1.10-11
Carbonato de estroncio (SrCO ₃)	1.6·10 ⁻⁹	Sulfato de estroncio (SrSO ₄)	3.8·10 ⁻⁷
Carbonato de magnesio (MgCO ₃)	4.0.10-5	Sulfato de plata (Ag ₂ SO ₄)	1.4·10-5
Carbonato de plata (Ag ₂ CO ₃)	8.1.10-12	Sulfuro de bismuto (Bi ₂ S ₃)	1.6·10 ⁻⁹⁶
Carbonato de plomo (II) (PbCO ₃)	3.3·10 ⁻¹⁴	Sulfuro de cadmio (CdS)	8.0.10-28
Cloruro de mercurio (I) (Hg ₂ Cl ₂)	3.5·10 ⁻¹⁸	Sulfuro de cobalto (II) (CoS)	4.0.10-21
Cloruro de plata (AgCl)	1.6·10 ⁻¹⁰	Sulfuro de cobre (II) (CuS)	6.0.10-37
Cloruro de plomo (II) (PbCl ₂)	2.4·10 ⁻⁴	Sulfuro de estaño (II) (SnS)	1.0.10-36
Cromato de plomo (II) (PbCrO ₄)	2.0.10-14	Sulfuro de hierro (II) (FeS)	6.0·10 ⁻¹⁹
Fluoruro de bario (BaF ₂)	1.7·10 ⁻⁶	Sulfuro de manganeso (II) (MnS)	3.0.10-14
Fluoruro de calcio (CaF ₂)	4.0.10-11	Sulfuro de mercurio (II) (HgS)	4.0.10-34
Fluoruro de plomo (II) (PbF ₂)	4.1.10-8	Sulfuro de níquel (II) (NiS)	1.4·10 ⁻²⁴
Fosfato de calcio [Ca ₃ (PO ₄) ₂]	1.2·10 ⁻²⁶	Sulfuro de plata (Ag ₂ S)	6.0.10-51
Hidróxido de aluminio [Al(OH) ₃]	1.8·10 ⁻³³	Sulfuro de plomo (II) (PbS)	3.4·10 ⁻²⁸
Hidróxido de calcio [Ca(OH) ₂]	8.0·10 ⁻⁶	Sulfuro de zinc (ZnS)	3.0·10 ⁻²³
Hidróxido de cobre (II) [Cu(OH) ₂]	2.2.10-20	Yoduro de cobre (I) (CuI)	5.1·10 ⁻¹²
Hidróxido de cromo (III) [Cr(OH) ₃]	3.0.10-29	Yoduro de plata (AgI)	8.3·10 ⁻¹⁷
Hidróxido de hierro (II) [Fe(OH) ₂]	1.6.10-14	Yoduro de plomo (II) (PbI ₂)	1.4.104

- 1. Escriba las ecuaciones balanceadas y las expresiones del producto de solubilidad para los equilibrios de solubilidad de los compuestos siguientes:
 - a) CuBr
 - b) ZnC₂O₄
 - c) Ag₂CrO₄
 - d) Hg_2Cl_2
 - e) AuCl₃
 - f) $Mn_3(PO_4)_2$

R: a) CuBr
$$\leftrightarrows$$
 Cu⁺ + Br⁻; K_{ps} =[Cu⁺][Br⁻]
b) ZnC₂O₄ \leftrightarrows Zn²⁺ + C₂O₄²⁻; K_{ps} = [Zn²⁺][C₂O₄²⁻]
c) Ag2CrO4 \leftrightarrows 2Ag²⁺ + CrO₄²⁻; K_{ps} =[Ag⁺]²[CrO₄²⁻]
d) Hg₂Cl₂ \leftrightarrows Hg₂⁺ + 2Cl⁻; K_{ps} =[Hg₂⁺][Cl⁻]²
e) AuCl₃ \leftrightarrows Au³⁺ + 3Cl⁻; K_{ps} =[Au³⁺][Cl⁻]³ f) Mn₃(PO₄)₂ \leftrightarrows 3Mn²⁺ + 2PO₄³⁻; K_{ps} =[Mn²⁺]³[PO₄³⁻]²

- 2. Calcule la concentración de los iones en las siguientes disolución saturadas:
 - a) [I⁻] en una disolución de AgI con [Ag⁺] = $9.1 \cdot 10^{-9}$ mol/L.
 - b) $[AI^{3+}]$ en una disolución de $AI(OH)_3$ con $[OH^-] = 2.9 \cdot 10^{-9}$ mol/L.

R: a) 9.1·10⁻⁹ mol/L; b) 7.4·10⁻⁸ mol/L

3. La solubilidad molar de un compuesto iónico MX (MM = 346 g/mol) es 4.63×10^{-3} g/L. ¿Cuál es la K_{ps} del compuesto?

R: 1.79x10⁻¹⁰

- 4. Con los datos de solubilidad que se dan, calcule los productos de solubilidad de los compuestos siguientes:
 - a) SrF_2 , $7.3x10^{-2}g/L$.
 - b) Ag_3PO4 , $6.7x10^{-3}$ g/L.

R: a) 7.9×10^{-10} ; b) 1.8×10^{-18}

5. La solubilidad molar del MnCO₃ es 4.2x10⁻⁶ mol/L. ¿Cuál es la Kps de este compuesto?

R: 1.8x10⁻¹¹

6. ¿Cuál es el pH de una disolución saturada de hidróxido de zinc?

R: 9.5

7. El pH de una disolución saturada de un hidróxido metálico MOH es 9.68. Calcule la Kps del compuesto.

R: 2.3x10⁻⁹

8. Si se añaden 20.0 mL de Ba(NO $_3$) $_2$ 0.10 mol/L a 50.0 mL de Na $_2$ CO $_3$ 0.10 mol/L,

¿precipitará el BaCO₃?

R: Sí precipita

- 9. Calcule la solubilidad molar del Fe(OH)₂a:
 - a) pH = 8.00
 - b) pH = 10.00

R: a) 0.016 mol/L; b) 1.6x10⁻⁶ mol/L

- Se añade lentamente Nal a una disolución que es 0.010 mol/L en Cu⁺ y 0.010 mol/L en Ag⁺.
 - a) ¿Cuál compuesto empezará a precipitar primero?
 - b) Calcule la [Aq⁺] en el momento justo en el que el Cul comience a precipitar.
 - c) ¿Cuál es el porcentaje de Ag+ remanente en la solución en este punto?

R: a) AgI; b)
$$1.6 \times 10^{-7}$$
 mol/L; c) 1.6×10^{-3} %

11. Si 2.50 g de CuSO₄ se disuelven en 9.0x10² mL de NH₃ 0.30 mol/L, ¿cuáles son las concentraciones de Cu²⁺, Cu(NH₃)₄²⁺ y NH₃ en el equilibrio?

R:
$$[Cu^{2+}] = 1.5 \times 10^{-5} \text{ mol/L}$$
; $[NH_3] = 0.230 \text{ mol/L}$; $[Cu(NH_3)_4^{2+}] = 0.017 \text{ mol/L}$

- 12. Explique, por medio de ecuaciones iónicas balanceadas, por qué:
 - a) el Cul₂ se disuelve en una disolución de amoniaco.
 - b) el AgBr se disuelve en una disolución de NaCN.
 - c) el HgCl₂ se disuelve en una disolución de KCl.

R: a)
$$Cu^{2+} + 4NH_3 \leftrightarrows Cu(NH_3)_4^{2+}$$
; b) $Ag^+ + CN^- \leftrightarrows Ag(CN)_2^-$; c) $Hg^{2+} + 4CI^- \leftrightarrows HgCl_4^{2-}$

Equilibrio de Complejos

TABLA: Constantes de formación de algunos iones complejos en agua a 25°C.

ION COMPLEJO FORMACION (K _f)	EXPRESION DE EQUILIBRIO	CONSTANTE DE
$Ag(NH_3)_2^+$	$Ag^+ + 2 NH_3 \leftrightarrows Ag(NH_3)_2^+$	1.5·10 ²
Ag(CN)₂⁻	$Ag^+ + 2 CN^- \leftrightarrows Ag(CN)_2^-$	$1.0 \cdot 10^{21}$
Cu(CN) ₄ ²⁻	$Cu^{2+} + 4 CN^{-} \leftrightarrows Cu(CN)_4^{2-}$	1.0.1025
$Cu(NH_3)_4^{2+}$	$Cu^{2+} + 4 NH_3 \leftrightarrows Cu(NH_3)_4^{2+}$	5.0·10 ¹³
Cd(CN) ₄ ²⁻	$Cd^{2+} + 4 CN^{-} \leftrightarrows Cd(CN)_4^{2-}$	$7.1 \cdot 10^{16}$
CdI ₄ ²⁻	$Cd^{2+} + 4 I^{-} \leftrightarrows CdI_4^{2-}$	2.0.106
HgCl ₄ ²⁻	$Hg^{2+} + 4 Cl^{-} \leftrightarrows HgCl_4^{2-}$	$1.7 \cdot 10^{16}$
HgI ₄ ²-	$Hg^{2+} + 4 I^{-} \leftrightarrows HgI_4^{2-}$	$2.0 \cdot 10^{10}$
Hg(CN) ₄ ²⁻	$Hg^{2+} + 4 CN^{-} \leftrightarrows Hg(CN)_4^{2-}$	2.5·10 ⁴¹
$Co(NH_3)_6^{3+}$	$Co^{3+} + 6 NH_3 \leftrightarrows Co(NH_3)_6^{3+}$	5.0·10 ³¹
$Zn(NH_3)_4^{2+}$	$Zn^{2+} + 4 NH_3 \leftrightarrows Zn(NH_3)_4^{2+}$	2.9.109

- 1. Complete los siguientes enunciados para el ion complejo $[Cr(C_2O_4)_2(H_2O)_2]^{-1}$.
 - a) El número de oxidación del cromo es ______.
 - b) El número de coordinación del cromo es ______
 - c) _____ es un ligando bidentado.

R: a) +3; b) 6; c)
$$C_2O_4^{2-}$$

- 2. Indique el número de coordinación del metal de transición en cada uno de los siguientes complejos.
 - a) [Au(CN)₄]
 - b) $[Co(NH_3)_4(H_2O)_2]Cl_3$
 - c) [Au(en)₂]Cl₃
 - d) $[Cr(en)_2(C_2O_4)]^+$

- 3. Determine el número de oxidación del metal de transición en cada uno de los siguientes complejos.
 - a) $K_2[Ni(CN)_4]$
 - b) $[Mo(en)_3]^{3+}$ c)

 $[Cr(C_2O_4)_3]^{3-}$

d) $[Co(NH_3)_5(NO_2)]Cl_2$

R: a)
$$+2$$
; b) $+3$; c) $+3$; d) $+2$

- 4. Considere el ion complejo [Cr(NH₃)₂Cl₂(C₂O₄)]⁻.
 - a) ¿Cuál es el estado de oxidación del átomo metálico?
 - b) ¿Cuál es el número de coordinación del átomo metálico?
 - c) ¿Cuál sería la carga del complejo si todos los ligandos fueran iones cloruro?

R: a) +3; b) 6; c) -3

5. A una solución 0.015 mol/L de nitrato de plata, AgNO₃, se le agregó una cantidad suficiente de cianuro de sodio, NaCN, para dar una solución con una concentración inicial de ion cianuro, CN⁻, de 0.100 mol/L. ¿Cuál es la concentración del ion plata, Ag⁺, en esta solución después de formado el complejo Ag(CN)₂⁻? Dato: K_f (Ag(CN)₂⁻) = 5.6x10¹⁸

R: 5.5x10⁻¹⁹ mol/L

6. Aunque el cloruro de plata es insoluble en agua, se solubiliza rápidamente al agregar amoniaco:

AgCl (s) + 2 NH3 (ac)
$$\Rightarrow$$
 Ag(NH3)2⁺ (ac) + Cl⁻⁻ (ac)

- a) ¿Cuál es la constante de equilibrio para el proceso de disolución?
- b) A una solución que contiene un exceso de AgCl(s) se le agrega amoniaco. El volumen final es de 1.00 L y la concentración de NH₃ en el equilibrio es de 0.80 mol/L. Calcule el número de moles de AgCl disueltos, la concentración mol/L del complejo y el número de moles de NH₃ agregados a la solución original.

R: a)
$$2.4 \times 10^{-8}$$
; b) 1.2×10^{-4} mol AgCl, [Ag(NH₃)₂+] = 1.2×10^{-4} mol/L, 0.80 mol

7. Los cristales de AgBr pueden ser removidos de una película fotográfica en blanco y negro haciendo reaccionar el AgBr con tiosulfato de sodio. $(K_f[Ag(S_2O_3)_2]^{3-}=1.7x10^{13})$

AgBr (s) +
$$2 S_2 O_3^2$$
 (ac) \Rightarrow [Ag(S₂O₃)₂]³ (ac) +

- a) ¿Cuál es la constante de equilibrio para el proceso de disolución?
- b) ¿Cuántos moles de Na₂S₂O₃ se deben agregar para disolver 2.5 g de AgBr en 1.0 L de disolución?

R: a) 13; b) 0.0296 mol

Unidad 7. Electroquímica

1. Considere la siguiente reacción redox balanceada:

16 H⁺ (ac) + 2 MnO4 (ac) + 10 Cl (ac)
$$\rightarrow$$
 2 Mn²⁺ (ac) + 5 Cl₂ (g) + 8 H₂O (l)

- a) ¿Cuál especie se oxida?
- b) ¿Cuál especie se reduce?
- c) ¿Cuál es el agente oxidante?
- d) ¿Cuál es el agente reductor?
- e) ¿De qué especie a qué especie ocurre la transferencia de electrones?

2. Para la reacción genérica:

A (ac) + B (ac)
$$\rightarrow$$
 A (ac) + B (ac)

para la cual E° es un número positivo, conteste las siguientes preguntas:

- a) ¿Qué es lo que se oxida y qué es lo que se reduce?
- b) Si usted hace una celda voltaica (galvánica) con esta reacción, ¿qué semirreacción ocurre en el cátodo y qué semirreacción ocurre en el ánodo?

R: a) A se reduce y B se oxida; b) ánodo: $B \rightarrow B^+ + e^-$: cátodo: $A + e^- \rightarrow A^-$

- 3. Balancee las siguientes reacciones en el medio que se le indique:
 - a) $O_{2 (g)} + NO_{(g)} \rightarrow NO_3^{-}_{(ac)}$ (ácido)

b) AsO4 (ac) +
$$\frac{2 \text{ NO2}}{4 \text{ AsO2}}$$
 (ac) + $\frac{2 \text{ NO2}}{2 \text{ NO3}}$ (ac) (básico)

R: a) 2 H2O (I) + 3 O2 (g) + 4 NO (g)
$$\rightarrow$$
 4 NO3 (ac) + 4 H⁺ (ac)

b) AsO4
$$^-$$
 (ac) + 2 NO2 $^-$ (ac) \rightarrow AsO2 $^-$ (ac) + 2 NO3 $^-$ (ac)

4. En solución básica, los iones selenuro y sulfito reaccionan espontáneamente de la siguiente forma:

$$2 \; \text{Se}_2{}^{2-}_{\text{(ac)}} + 2 \; \text{SO}_3{}^{2-}_{\text{(ac)}} + 3 \; \text{H}_2\text{O}_{\text{(I)}} \; \rightarrow \; \; 2 \; \text{Se}_{\text{(s)}} + 6 \; \text{OH}^-_{\text{(ac)}} + \text{S}_2\text{O}_3{}^{2-}_{\text{(ac)}} \quad \text{E°celda= 0.35 V}$$

a) Escriba las semirreacciones balanceadas para el proceso. b) Si E° ($SO_3^{2-}/S_2O_3^{2-}$) = -0.57 V, calcule E° (Se^{2-}/Se).

R: a)
$$Se_2^{2^-}(ac) \rightarrow 2 Se_{(s)} + 2 e^-$$

6 $H^+(ac) + 2 SO_3^{2^-}(ac) + 4 e^- \rightarrow S_2O_3^{2^-}(ac) + 3 H_2O(I); b)$
0.92 V

- 5. Se construye una celda voltaica, de la siguiente forma: un compartimiento de electrodo consta de una tira de aluminio (AI), en una disolución de AI(NO₃)₃, y la otra tiene una tira de níquel (Ni), en una disolución de NiSO₄. Asuma que AI _(s) no está recubierto con su óxido.
 - a) ¿Qué se oxida y qué se reduce?
 - b) Escriba las semirreacciones que ocurren en los dos compartimientos de los electrodos.
 - c) ¿Cuál electrodo es el ánodo y cuál es el cátodo?
 - d) Indique los signos de los electrodos.
 - e) ¿Los electrones fluyen del electrodo de aluminio hacia el electrodo de níquel o

desde el níquel hacia el aluminio?

f) ¿En qué direcciones migran tanto los aniones como los cationes a través de la disolución?

R: a) se oxida el Al; b,c y d) ánodo (—) : Al
$$_{(s)} \rightarrow$$
 Al $^{3+}_{(ac)} + 3e$ — ; cátodo (+) : Ni $^{2+}_{(ac)} \rightarrow$ Ni $_{(s)}$ e) desde el Al al Ni ; f) aniones hacia el ánodo

6. Prediga si el $Fe^{3+}_{(ac)}$ puede oxidar al ion $I^{-}_{(ac)}$ hasta I_2 en condiciones de estado estándar.

R: sí. E°=0.24

7. Indique si las siguientes reacciones serán espontáneas:

a)
$$Cu^{+}$$
 (ac) + PbO₂ (s) + SO₄²⁻ (ac) \rightarrow PbSO₄ (s) + Cu^{2+} (ac)

b)
$$H_2O_2$$
 (ac) + Ni^{2+} (ac) $\rightarrow O_2$ (g) + Ni (s)

8. Considerando las reacciones presentadas más abajo, haga un esquema de celda voltaica, indicando cual es el ánodo y el cátodo y el sentido del flujo de electrones.

d) Ag (s) + Cl₂ (g)
$$\rightarrow$$
 Ag⁺ (ac) + Cl⁻ (ac)

e)
$$Cd(s) + Cu^{2+}(ac) \rightarrow Cd^{2+}(ac) + Cu(s)$$

f) $O2(g) + Cr^{2+}(ac) \rightarrow Cr^{3+}(ac) + H2O(l)$

f) O2 (g) +
$$Cr^{2+}$$
 (ac) \rightarrow Cr^{3+} (ac) + H2O (l)

R: a) Ag (s)
$$\vdash$$
 Ag⁺ (ac) \parallel Cl₂ (g) \vdash Cl⁻ (ac) \vdash Pt (s)

b)
$$Cd(s) + Cd^{2+}(ac) + Cu^{2+}(ac) + Cu(s)$$

c) Pt(s)
$$\mid$$
 O2(g) \mid H2O(l) \parallel Cr²⁺ (ac) \mid Cr³⁺ (ac) \mid Pt(s)

9. Para las siguientes celdas determine:

(1)
$$Mn(s) + Mn^{2+}(ac) + Cr^{3+}(ac) + Cr(s) + Pt(s)$$

(2) Al(s) | Al
$$^{3+}$$
 (ac) | Fe $^{2+}$ (ac) | Fe (s)

(3)
$$Zn(s) \mid Zn^{2+}(ac) \mid NO_3(ac) \mid NO(q)$$

- a) La ecuación balanceada para la celda.
- b) E° celda
- c) ΔG°

R: a) (1)
$$3Mn_{(s)} + 2Cr^{3+}_{(ac)} \rightarrow 3Mn^{2+}_{(ac)} + 2Cr_{(s)}$$
; (2) $2Al_{(s)} + 3Fe^{2+}_{(ac)} \rightarrow 2Al^{3+}_{(ac)} + 3Fe_{(s)}$ (3) $8H^+ + 3Zn_{(s)} + 2NO_3^-$ (ac) $\rightarrow 3Zn^{2+}$ (ac) $+ NO(g) + 4H_2O$; b) (1) 0.44 V (2) 1.22 V (3) 1.72 V

V; c) (1) -255 kJ (2) -706 kJ (3) -996 kJ; d) (1) $4.1x \cdot 10^{44}$ (2) $4.0 \cdot x \cdot 10^{123}$ (3) $2.0 \cdot x \cdot 10^{174}$

- 10. Calcule la fem estándar de cada una de las siguientes reacciones:
 - a) $H_2(g) + F_2(g) \rightarrow 2 H^+(ac) + 2 F^-(ac)$
 - b) $Cu^{2+}(ac) + Ca(s) \rightarrow Cu(s) + Ca^{2+}(ac)$
 - c) $3 \text{ Fe}^{2+}(ac) \rightarrow \text{Fe}(s) + 2 \text{ Fe}^{3+}(ac)$
 - d) $Hg2^{2+}(ac) + 2 Cu^{+}(ac) \rightarrow 2 Hg(I) + 2 Cu^{2+}(ac)$

R: a) 2.87 V; b) 3.21 V; c) —1.21 V; d) 0.70V

11. Si la constante de equilibrio de una reacción redox de un electrón a 298K es 8.7x10⁴, calcule el ΔG° y E°celda correspondientes.

R: -28.2 kJ, 0.292 V

12. Una celda voltaica utiliza la siguiente reacción y funciona a 298K:

$$3 \text{ Ce}^{4+} \text{ (ac)} + \text{ Cr (s)} \rightarrow 3 \text{ Ce}^{3+} \text{ (ac)} + \text{Cr}^{3+} \text{ (ac)}$$

- g) ¿Cuál es la fem de esta celda bajo condiciones estándar?
- h) Si $[Ce^{4+}] = 3.00 \text{ mol/L}$, $[Ce^{3+}] = 0.10 \text{ mol/L}$ y $[Cr^{3+}] = 0.010 \text{ mol/L}$ ¿cuál es la fem de la celda?
- i) Si $[Ce^{4+}] = 0.10 \text{ mol/L}$, $[Ce^{3+}] = 1.75 \text{ mol/L}$ y $[Cr^{3+}] = 2.5 \text{ mol/L}$ ¿cuál es la fem de la celda?

R: a) 2.35 V; b) 2.48 V; c) 2.27 V

- 13. Utilizando la ecuación Nernst, determine el E celda:

 - a) Ag (s) | Ag⁺ (0.34 mol/L) || Fe³⁺ (0.26 mol/L) | Fe²⁺ (0.15 mol/L) b) Mg (s) | Mg²⁺ (0.021 mol/L) || Cl₂ (0.78 atm) | Cl $\overline{}$ (0.102 mol/L) || Pt (s)
 - c) Pt (s) $\mid \text{Cu}^+$ (0.023 mol/L) $\mid \text{Cu}^{2+}$ (0.045 mol/L) $\mid \text{Zn}^{2+}$ (0.12 mol/L) $\mid \text{Zn}$ (s)

R: a) 0.012 V; b) 3.84 V; c) -0.95V

- 14. En la electrólisis del NaBr fundido
 - j) ¿Qué producto se forma en el ánodo?
 - k) ¿Qué producto se forma en el cátodo?

R: a) Br_{2 (l)}; b) Na (s)

- 15. Determine cada una de las magnitudes indicadas en las siguientes electrólisis:
 - a) La masa de cobre depositada en el cátodo al hacer pasar una corriente de 1.54 A durante 35.5 min, en una disolución de Cu²⁺.
 - b) El tiempo en horas necesario para depositar 8.4 g de Zn sobre el cátodo, al pasar una corriente de 1.86 A, en una disolución de Zn²⁺.
 - c) La intensidad de corriente si se depositaron 2.33 g de Ag (s) en 1256 s, a partir de una disolución de Ag+.

R: a) 1.08 g; b) 3.7 h; c) 1.66 A

- 16. La electrólisis de una disolución de Cr³+ (ac) se lleva a cabo utilizando una corriente de 7.60 A.
 - a) ¿Qué masa de Cr (s) se habrá depositado después de 2.00 días?
 - b) ¿Qué amperaje se necesita para que se depositen 0.250 moles de $Cr_{(s)}$ a partir de una disolución de $Cr^{3+}_{(ac)}$ en un periodo de 8.00 h?

R: a) 236 g; b) 2.51 A

17. Al pasar una corriente de 0.750 A durante 25.0 min en una disolución de CuSO₄, se depositaron 0.369 g de cobre. Calcule la masa molar del cobre.

R: 63.3g/mol

Potenciales de Reducción

Condiciones estándar: 25°C, 1 atm y disoluciones acuosas 1 mol/L

Media reacción			<i>E</i> [⊕] (V)
Li ⁺ (aq) + e ⁻	\rightarrow	Li(s)	-3.05
Ca ²⁺ (aq) + 2e ⁻	\rightarrow	Ca(s)	-2.87
Na ⁺ (aq) + e ⁻	\rightarrow	Na(s)	-2.71
Mg ²⁺ (aq) + 2e ⁻	\rightarrow	Mg(s)	-2.37
$H_2 + 2e^-$	\rightarrow	2H ⁻	-2.25
Al ³⁺ (aq) + 3e ⁻	\rightarrow	Al(s)	-1.66
PbSO ₄ (s) + 2e ⁻	\rightarrow	$Pb(s) + SO_4^{-2}(ac)$	-0.31
Mn ²⁺ (aq) + 2e ⁻	\rightarrow	Mn(s)	-1.18
2 H ₂ O(I) + 2e ⁻	\rightarrow	$H_2(g) + 2 OH^-(aq)$	-0.83
Zn ²⁺ (aq) + 2e ⁻	\rightarrow	Zn(s)	-0.76
Cr ³⁺ (aq) + 3e ⁻	\rightarrow	Cr(s)	-0.74
Fe ²⁺ (aq) + 2e ⁻	\rightarrow	Fe(s)	-0.44
Cr ³⁺ (aq) + e ⁻	\rightarrow	Cr ²⁺ (aq)	-0.42
Cd ²⁺ (aq) + 2e ⁻	\rightarrow	Cd(s)	-0.40
Co ²⁺ (aq) + 2e	\rightarrow	Co(s)	-0.28
Ni ²⁺ (aq) + 2e ⁻	\rightarrow	Ni(s)	-0.25
Sn ²⁺ (aq) + 2e ⁻	\rightarrow	Sn(s)	-0.13
$O_2(g) + H^+ + e^-$	\rightarrow	HO ₂ ·(aq)	-0.13
Pb ²⁺ (aq) + 2e ⁻	\rightarrow	Pb(s)	-0.13
2H+(aq) + 2e-	\rightarrow	$H_2(g)$	0.00
Sn ⁴⁺ (aq) + 2e ⁻	\rightarrow	Sn ²⁺ (aq)	+0.13
Cu ²⁺ (aq) + e ⁻	\rightarrow	Cu ⁺ (aq)	+0.15
SO ₄ ²⁻ (aq) + 4H ⁺ + 2e ⁻	\rightarrow	$2H_2O(I) + SO_2(aq)$	+0.16
Cu ²⁺ (aq) + 2e ⁻	\rightarrow	Cu(s)	+0.34
$O_2(g) + 2H_2O(I) + 4e^-$	\rightarrow	4OH-(aq)	+0.40
SO ₂ (aq) + 4H ⁺ + 4e ⁻	\rightarrow	$S(s) + 2H_2O$	+0.50
Cu ⁺ (aq) + e ⁻	\rightarrow	Cu(s)	+0.52

1 (-) . 0		01=/	.0.50
$I_2(s) + 2e^-$	\rightarrow	2l ⁻ (aq)	+0.53
$MnO_4^-(aq) + 2H_2O(l) + 3e^-$	\rightarrow	$MnO_2(s) + 4 OH^-(aq)$	+0.59
$O_2(g) + 2H^+ + 2e^-$	\rightarrow	H ₂ O ₂ (aq)	+0.68
Fe ³⁺ (aq) + e ⁻	\rightarrow	Fe ²⁺ (aq)	+0.77
$Hg_2^{2+}(aq) + 2e^-$	\rightarrow	2Hg(I)	+0.80
Ag+(aq) + e-	\rightarrow	Ag(s)	+0.80
NO ₃ ⁻ (aq) + 2H ⁺ (aq) +e ⁻	\rightarrow	$NO_2(g) + H_2O(I)$	+0.80
Hg ²⁺ (aq) + 2e ⁻	\rightarrow	Hg(I)	+0.85
MnO ₄ ⁻ (aq) + H ⁺ + e ⁻	\rightarrow	HMnO₄⁻(aq)	+0.90
2Hg ²⁺ (aq) + 2e ⁻	\rightarrow	Hg ₂ ²⁺ (aq)	+0.92
MnO ₂ (s) + 4H ⁺ + e ⁻	\rightarrow	Mn ³⁺ (aq) + 2H ₂ O	+0.95
NO ₃ ⁻ (aq) + 4H ⁺ + 3e ⁻	\rightarrow	$NO(g) + H_2O(I)$	+0.92
Br ₂ (I) + 2e ⁻	\rightarrow	2Br ⁻ (aq)	+1.07
Br ₂ (aq) + 2e ⁻	\rightarrow	2Br ⁻ (aq)	+1.09
$O_2(g) + 4H^+ + 4e^-$	\rightarrow	2H ₂ O	+1.23
MnO ₂ (s) + 4H ⁺ + 2e ⁻	\rightarrow	Mn ²⁺ (aq) + 2H ₂ O	+1.23
Cl ₂ (g) + 2e ⁻	\rightarrow	2Cl⁻(aq)	+1.36
Cr ₂ O ₇ ²⁻ (aq) + 14H ⁺ + 6e ⁻	\rightarrow	2Cr ³⁺ (aq) + 7H ₂ O	+1.33
MnO ₄ ⁻ (aq) + 8H ⁺ + 5e ⁻	\rightarrow	Mn ²⁺ (aq) + 4H ₂ O	+1.51
Ce ⁴⁺ (aq) + 4e ⁻	\rightarrow	Ce ⁴⁺ (ac)	+1.61
Pb ⁴⁺ (aq) + 2e ⁻	\rightarrow	Pb ²⁺ (aq)	+1.69
$PbO_2(s) + 4H^+ + SO_4^{2-} + 2e^-$	\rightarrow	$PbO_2(s) + 2H_2O$	+1.70
MnO ₄ ⁻ (aq) + 4H ⁺ + 3e ⁻	\rightarrow	$MnO_2(s) + 2H_2O$	+1.70
H ₂ O ₂ (aq) + 2H ⁺ + 2e ⁻	\rightarrow	2H ₂ O	+1.76
F ₂ (g) + 2e ⁻	\rightarrow	2F ⁻ (aq)	+2.87