

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника

ОТЧЕТ

по лабораторной работе № 6

Название:	Исследование асинхронных счетчиков
	<u> </u>

Дисциплина: Схемотехника

Студент	ИУ6-52Б		С.В. Астахов
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			Т.А. Ким
		(Подпись, дата)	(И.О. Фамилия)

Цель работы: изучение принципов построения счетчиков, овладение методом синтеза асинхронных счетчиков, экспериментальная оценка динамических параметров счетчиков.

Вариант 7 (модуль счета 12)

Ход работы.

Исследование четырёхразрядного асинхронного суммирующего счётчика с последовательным переносом, используя для этого D-триггеры с прямым динамическим синхронизирующим входом. Проверить работу счётчика

- от одиночных импульсов, подключив к прямым выходам разрядов световые индикаторы,
- от импульсов генератора.

Просмотреть на экране логического анализатора (осциллографа) временную диаграмму сигналов на входе и выходах счетчика, провести анализ временной диаграммы сигналов счетчика.

Измерить время задержки распространения счетчика.

Построим схему четырехразрядного счетчика (рисунок 1).

Рисунок 1 - Схема четырехразрядного счетчика.

Составим таблицу переходов состояний счетчика в статическом режиме(таблица 1).

Таблица 1 - таблица переходов счетчика.

Число	Q_4	Q_3	Q_2	Q_1
0	0	0	0	0

1	0	0	0	1		
Продолжение т	Продолжение таблицы 1					
2	0	0	1	0		
3	0	0	1	1		
4	0	1	0	0		
5	0	1	0	1		
6	0	1	1	0		
7	0	1	1	1		
8	1	0	0	0		
9	1	0	0	1		
10	1	0	1	0		
11	1	0	1	1		
12	1	1	0	0		
13	1	1	0	1		
14	1	1	1	0		
15	1	1	1	1		

Подключим к схеме логический анализатор для анализа цепи в динамическом режиме (рисунок 2).

Рисунок 2 - Анализ схемы в динамическом режиме

Построим временные диаграммы сигналов в цепи (рисунок 3). Также, на основании временных диаграмм рассчитаем задержку распространения - она равна примерно 1 мкс.

Рисунок 3 - Временная диаграмма сигналов

2. Исследование четырёхразрядного асинхронного суммирующего счётчика с последовательным переносом на JK- триггерах в статическом и динамическом режимах. Проверить его работу и построить временные диаграммы. Провести анализ временной диаграммы сигналов счетчика. Измерить время задержки распространения счетчика.

Построим счетчик, описанный в задании (рисунок 4).

Рисунок 4 - счетчик с последовательным переносом на ЈК- триггерах

Построим таблицу переходов данного счетчика.

Таблица 2 - таблица состояний счетчика

Число	Q_4	Q_3	Q_2	Q_1
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

Убедимся, что она соответствует таблице счетчика на D триггерах.

Добавим в схему логический анализатор, чтобы проанализировать ее работу в динамическом режиме (рисунок 4).

Рисунок 5 - анализ работы счетчика в динамическом режиме.

Построим временные диаграммы сигналов (рисунок 6).

Рисунок 6 - временные диаграммы сигналов

Из временных диаграмм убедимся, что задержка распространения сигнала равна примерно 1 мкс.

3. Исследование четырёхразрядного асинхронного суммирующего счётчика с параллельным переносом на ЈК-триггерах. Проверить его работу в статическом и динамическом режимах. Провести анализ временной диаграммы сигналов счетчика. Измерить время задержки распространения счетчика.

Построим схему триггера, описанного в задании (рисунок 7).

Рисунок 7 - счетчик с параллельным переносом

Составим таблицу переходов счетчика (таблица 3).

Таблица 3 - таблица переходов счетчика

Число	Q_4	\mathbf{Q}_3	\mathbf{Q}_2	Q_1
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

В результате была получена таблица, аналогичная таблицам из предыдущих пунктов.

Подключим к схеме генератор и логический анализатор для анализа ее работы в динамическом режиме (рисунок 8).

Рисунок 8 - анализ схемы в динамическом режиме

Нарисуем временные диаграммы для данной схемы (рисунок 9).

Рисунок 9 - временные диаграммы

Как видно из временных диаграмм, задержка распространения сигнала равна примерно 0.5 мкс.

4. Синтезировать безвентильный счётчик с заданным коэффициентом пересчета (в данном случае, - 12).

$$12 = 4 * (2 + 1)$$

Построим заданный безвентильный счетчик (Рисунок 10).

Рисунок 10 - безвентильный счетчик М=12

Составим таблицу переходов данного счетчика (таблица 4).

Таблица 4 - таблица переходов безвентильного счетчика

Номер	Q_4	0-	0-	Ο.
	Q 4	Q_3	\mathbf{Q}_2	\mathbf{Q}_1
состояния				
0	0	0	0	0
1	1	1	1	0
2	0	1	1	0
3	1	0	1	0
4	0	0	1	0
5	1	1	0	1
6	0	1	0	1
7	1	0	0	1
8	0	0	0	1
9	1	1	0	0
10	0	1	0	0
11	1	0	0	0

Добавим в схему функциональный генератор и логический анализатор для анализа ее работы в динамическом режиме (рисунок 11).

Рисунок 11 - Анализ схемы в динамическом режиме

Построим временные диаграммы сигналов (рисунок 12).

Рисунок 12 - Временная диаграмма сигналов

Как видно из временной диаграммы, задержка распространения сигнала равна примерно 1 мкс.

Вывод: в ходе лабораторной работы были изучены принципы работы и построения различных типов счетчиков, в том числе безвентильных счетчиков с произвольным модулем счета, а также измерены задержки распространения сигнала в счетчиках.