1:250 000 Scale Colour RasterTM Free OS OpenData

Get the regional view of towns and villages, roads and places of interest.

Coverage: All of Great Britain Data structure: Raster Supply format: TIFF-LZW Version Date: 2022-06

2. raster2pgsql.exe -x 3763 -N -32767 -t 100x100 -I -C -M -d D:\SQL_code\ras250_gb\data*.tif uk_250k | psql -d lab7 -h localhost -U postgres -p 5432

CREATE INDEX idx_rast_gist ON uk_250k USING gist (ST_ConvexHull(rast));
SELECT AddRasterConstraints('public'::name,'uk_250k'::name,'rast'::name);
SELECT st_union(rast) FROM uk_250k

 Λ

SQL Error [53200]: ERROR: out of memory

Detail: Failed on request of size 20000 in memory context "ExprContext".

Error position:

4.

← OS OpenData downloads

OS Open Zoomstack Free OS OpenData

A comprehensive basemap of Great Britain showing coverage from national level right down to street detail.

Coverage: All of Great Britain Data structure: Vector

Supply format: GeoPackage, and Vector Tiles

Version Date: 2022-12

Product information

Download OS Open Zoomstack

All OS OpenData can be freely downloaded under the Open Government Licence.

ogr2ogr.exe D:\SQL_Code D:\SQL_code\OS_Open_Zoomstack.gpkg

shp2pgsql -s 27700 D:\SQL_code\gb\national_parks.shp national_parks | psql -U postgres -h localhost -p 5432 -d lab7

6.

```
SELECT UpdateGeometrySRID('national_parks', 'geom', 3763);
```

```
CREATE TABLE uk_lake_district AS
SELECT uk.rid,ST_Clip(a.rast, b.geom,true) AS rast FROM uk_250k AS uk,
national_parks AS np WHERE np.gid = 1 AND ST_Intersects(np.geom,uk.rast);
7.
```

```
CREATE TABLE tmp_out AS
SELECT lo_from_bytea(0, ST_AsGDALRaster(ST_Union(rast),
'GTiff',ARRAY['COMPRESS=DEFLATE', 'PREDICTOR=2', 'PZLEVEL=9'])) AS loid
FROM uk_lake_district;

SELECT lo_export(loid, 'D:\SQL_code\gb\raster.tiff') FROM tmp_out;

SELECT lo_unlink(loid) FROM tmp_out;
```


9. raster2pgsql.exe -s 3763 -N -32767 -t 100x100 -I -C -M -d D:\SQL_code\sentinel2\S2B_MSIL1C_20221213T113449_N0509_R080_T30UVF_20221213T121423. SAFE\GRANULE\L1C_T30UVF_A030136_20221213T113448\IMG_DATA\T30UVF_20221213T113449 _B07.jp2 sentinel| psql -d lab7 -h localhost -U postgres -p 5432

```
sentinel 1 × 🕒 Output
   rast
    11 01000001000000000000344000000000034C00000000EDA1194100000000D4557410000000000000000000000000000B30E00006400
   CREATE INDEX idx_rast_gist ON sentinel USING gist (ST_ConvexHull(rast));
SELECT AddRasterConstraints('public'::name,'sentinel'::name,'rast'::name);
10.
CREATE OR REPLACE FUNCTION ndvi(value double precision [] [] [],
pos INTEGER [][], VARIADIC userargs text [])
RETURNS DOUBLE PRECISION AS
$$
BEGIN
RETURN (value [2][1][1] - value [1][1][1])/(value [2][1][1]+value [1][1][1]);
END;
$$
LANGUAGE 'plpgsql' IMMUTABLE COST 1000;
CREATE TABLE ndvi AS WITH n AS (SELECT *FROM sentinel)
SELECT n.rid,ST_MapAlgebra(n.rast, ARRAY[1,4],
'ndvi(double precision[], integer[],text[])'::regprocedure,'32BF'::text ) AS rast
FROM n;
```


CREATE TABLE uk_lake_district_sentinel AS
SELECT a.rid,ST_Clip(a.rast, b.geom,TRUE) AS rast FROM ndvi AS a, np AS b WHERE
b.gid = 1 AND ST_Intersects(b.geom,a.rast);


```
CREATE TABLE tmp_out AS
SELECT lo_from_bytea(0,ST_AsGDALRaster(ST_Union(rast), 'GTiff',
ARRAY['COMPRESS=DEFLATE', 'PREDICTOR=2', 'PZLEVEL=9'])) AS 1
FROM uk_lake_district_sentinel;
SELECT lo_export(1, 'D:\SQL_code\sentinel-2\raster.tiff') FROM tmp_out;
SELECT lo_unlink(1) FROM tmp_out;
```