| 2                                                                                                  |  |
|----------------------------------------------------------------------------------------------------|--|
| domenica 9 ottobre 2022 19:13                                                                      |  |
|                                                                                                    |  |
|                                                                                                    |  |
| Problema 2                                                                                         |  |
|                                                                                                    |  |
| Un condensatore piano di superficie quadrata S=200 cm² e distanza tra le armature                  |  |
| h=5mm viene caricato fino a raggiungere una differenza di potenziale tra le due                    |  |
| armature di $V_0$ =1000V, e quindi isolato. Successivamente viene introdotto un blocco             |  |
| a forma di parallelepipedo con la superficie della stessa forma e dimensione di                    |  |
| quella del condensatore. Il blocco è costituito da due strati entrambi di altezza h <sub>1</sub> = |  |
| 1mm, ma di materiale dielettrico con costante dielettrica k=3 il primo dal basso, e di             |  |
| materiale conduttore il secondo. Si chiede in tali condizioni:                                     |  |
|                                                                                                    |  |
| La carica depositata sulle armature del condensatore                                               |  |
| 2. La capacità del condensatore                                                                    |  |
| 3. Il lavoro necessario ad estrarre il blocco                                                      |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |

6.3 Un fascio di protoni, accelerato da una d.d.p. V = 7 MV, deve essere curvato di 90°, per ottenere un fascio di protoni orizzontale. Se la curvatura deve avvenire in un tratto di lunghezza l = 1.5 m, calcolare il valore del campo magnetico B necessario.



6.8 In uno spettrometro di Dempster gli ioni, ionizzati con carica e, dei due isotopi del potassio  $A_1 = 39$  e  $A_2 = 41$ , vengono accelerati da una d.d.p.  $V = 10^3$  V e fatti circolare in una camera a vuoto in cui agisce perpendicolarmente un campo magnetico B = 0.1 T. Calcolare: a) l'energia cinetica  $E_i$  dei due isotopi, b) la velocità  $v_i$  degli stessi e c) la differenza  $\Delta d$  del punto d'impatto sulla lastra fotografica che li rivela.



6.19 Un filo metallico rigido di forma qualunque ha i due estremi C e D che possono scorrere senz'attrito su due rotaie orizzontali distanti d = 20 cm. Le rotaie sono posate in un campo magnetico B = 0.5 T uniforme e verticale. Il circuito è percorso da una corrente i = 2 A costante, fornita dal generatore G. Se la massa del filo è m = 2g, calcolare: a) la velocità v del filo e b) lo spazio x percorso dopo un tempo t = 0.1 s, nell'ipotesi che all'istante t = 0 il filo sia fermo.

nb: assumere che C e D abbiano la stessa coordinata X



6.23 Una spira quadrata di lato a = 20 cm è posta nel piano xy ed è percorsa dalla corrente i = 5 A nel verso indicato in figura. Essa risente di un campo magnetico  $\mathbf{B} = \alpha x \mathbf{u}_z \operatorname{con} \alpha = 0.2$  T/m. Calcolare la forza  $\mathbf{F}$  che agisce sulla spira.



6.25 Una bobina composta da N = 100 spire di raggio R = 10 cm, giace nel piano xy ed è percorsa dalla corrente i = 8 A, in senso antiorario. Essa è sottoposta all'azione di un campo magnetico  $\mathbf{B} = 0.6\mathbf{u}_x - 0.4\mathbf{u}_y + 0.2\mathbf{u}_z$  T. Calcolare: a) il momento magnetico  $\mathbf{m}$  della bobina, b) il momento meccanico  $\mathbf{M}$  che agisce sulla spira e c) l'energia potenziale magnetica  $U_m$ .

6.27 Una spira rigida, di lati PQ = RS = a = 20 cm e QR = SP = b = 10 cm, ha una massa per unità di lunghezza  $\delta = 5 \cdot 10^{-2}$  g/cm ed è percorsa dalla corrente *i*. Essa può ruotare senza attrito intorno all'asse PQ che è parallelo all'asse x. Quando sulla spira agisce un campo magnetico  $\mathbf{B} = B\mathbf{u}_z$ , con B = 0.02 T, essa ruota di un angolo  $\theta = 30^\circ$ . Calcolare: a) il valore della corrente i e b) il lavoro W fatto dalle forze magnetiche durante la rotazione.

