Final Exam, Econ 520 (Fall 2017)

December 14

Instructions: This is a closed book exam. You have 120 minutes for the exam. Answer as many questions as possible. Partial answers get partial credit. Please write legibly. *Good luck!*

Problem 1.[35pt] Suppose that X is distributed as a Gamma(2, θ) random variable, i.e.,

$$f_X(x|\theta) = \frac{1}{\Gamma(2)\theta^2} x e^{-x/\theta}$$

for x > 0 and $\theta > 0$. We have a sample of n independent identically distributed (iid) observations, X_1, \ldots, X_n . The mean of a Gamma (α, β) distribution is $\alpha\beta$ and variance is $\alpha\beta^2$.

- (a) (5 pt) Find the method of moments estimator $\hat{\theta}_{MM}$ (based on the first moment) for θ .
- (b) (5 pt) Is $\hat{\theta}_{MM}$ an unbiased estimator of θ ?
- (c) (5 pt) Find the MLE $\hat{\theta}_{MLE}$ for θ .
- (d) (5 pt) Is $\hat{\theta}_{MLE}$ an unbiased estimator of θ ?
- (e) (10 pt) Compare the variance of $\hat{\theta}_{MLE}$ and $\hat{\theta}_{MM}$ with the Cramer-Rao lower bound and comment on the efficiency of your estimators.
 - (f) (5 pt) Are the estimators (weakly) consistent? [Hint: Use Chebyshev's inequality.] $\Pr(|x| > \mathcal{E}) \leq \frac{F(x)^2}{\mathcal{E}^2}$

Problem 2.[15 pt] Suppose $f_n(x;\theta)$ is such that the following interchange of integration and differentiation is justified: $\frac{d^2}{d\theta d\theta^{\dagger}} \int_{\mathbb{R}^n} \frac{\partial}{\partial \theta} f_n(x;\theta) dx = \int_{\mathbb{R}^n} \frac{\partial^2}{\partial \theta \partial \theta^{\dagger}} f_n(x;\theta) dx$. Prove that the Fisher information matrix satisfies—

 $H_n(\theta) = -\mathrm{E}_{\theta} \left(\frac{d^2}{d\theta d\theta^{\top}} \ell_n(\theta) \right).$

Sold Hot Hot

Problem 3.[30pt] Let X_1, \ldots, X_n be a random sample from a continuous distribution

$$f_X(x|\theta) = \frac{1}{\sqrt{\pi\theta}}x^{-1}\exp\left[-\frac{1}{\theta}(\log x)^2\right]1(x>0),$$

where $\theta \in \Theta = (0, \infty)$ is an unknown parameter, and $1(\cdot)$ is the indicator function.

- (a) (5 pt) Use the fact that $E_{\theta}(X_i) = \exp(\theta/4)$ to derive a method of moments estimator $\hat{\theta}_{MM}$ of θ .
 - (b) (5 pt) Is $\hat{\theta}_{MM}$ an unbiased estimator of θ ?
- (c) (5 pt) Find the log likelihood function and show that the maximum likelihood estimator of θ is given by

$$\hat{\theta}_{MLE} = \frac{2}{n} \sum_{i=1}^{n} (\log X_i)^2.$$

(d) (5 pt) Show that $\hat{\theta}_{MLE}$ is a sufficient statistic for θ .

(e) (5 pt) Find a best unbiased estimator (i.e., uniform minimum variance unbiased estimator) of θ and compute its variance. [Hint: Use the facts that $Y = \log X \sim N(0, \theta/2)$ and (about the normal distribution) that

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} r^4 \exp\left(-\frac{1}{2\sigma^2} r^2\right) dr = 3\sigma^4 \qquad 2\sigma^2 = 0$$

for any $\sigma^2 > 0$.

(f)'(5 pt) Compute the Cramér-Rao lower bound (on the variance of unbiased estimators of θ) Is this bound attained by the estimator from (e)?

Problem 4.[20 pt] Suppose that $X_i \sim N(\theta, 1)$. We have a random sample of n observations of X_{i} .

- (a) (5 pt) Provide an asymptotic 95% confidence interval for θ . [Hint: $\hat{\theta}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} x_i$.]
- (b) (10 pt) Suppose that we reparameterize the model so that $\omega = e^{\theta}$. Let $\hat{\omega}$ be the MLE for ω . Derive its large sample distribution and obtain an asymptotic 95% confidence interval.
- (c) (5 pt) Now suppose n=2000 and $\hat{\theta}=17$. Provide an exact 95% confidence interval for θ and ω .

