Diffusion models

Artem Ryzhikov¹, Denis Derkach¹, Sergey Popov¹

¹National Research University Higher School of Economics

Introduction and motivation

Introduction

Motivation

- ▶ Unstable training process of GANs
- ▶ Blured and not realistic results of VAEs
- ► GANs and VAEs are overcomplicated (at least one extra network is used during the training process)
- ▶ Normalizing flows are limited due to fast Jacobian computation and invertibility

Diffusion models

Solution

Forward process

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \mathbf{I}) \quad q(\mathbf{x}_{1:T}|\mathbf{x}_0) = \prod_{t=1}^{T} q(\mathbf{x}_t|\mathbf{x}_{t-1})$$
(1)

Here, q is called forward process (like in NFs), or just diffusion, β 's are predefined on some grid (variance schedule). x_t is more noised than x_{t-1}

$$\mathbf{x}_{t} = \sqrt{\alpha_{t}}\mathbf{x}_{t-1} + \sqrt{1 - \alpha_{t}}\boldsymbol{\epsilon}_{t-1} \qquad \text{;where } \boldsymbol{\epsilon}_{t-1}, \boldsymbol{\epsilon}_{t-2}, \dots \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

$$= \sqrt{\alpha_{t}\alpha_{t-1}}\mathbf{x}_{t-2} + \sqrt{1 - \alpha_{t}\alpha_{t-1}}\bar{\boldsymbol{\epsilon}}_{t-2} \qquad \text{;where } \bar{\boldsymbol{\epsilon}}_{t-2} \text{ merges two Gaussians (*)}.$$

$$= \dots$$

$$= \sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}}\boldsymbol{\epsilon}$$

$$q(\mathbf{x}_{t}|\mathbf{x}_{0}) = \mathcal{N}(\mathbf{x}_{t}; \sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0}, (1 - \bar{\alpha}_{t})\mathbf{I})$$

Inverse process. Approximation

Problem: However, the inverse process $q(x_{t-1}|x_t)$ is unknown.

$$q(x_{t-1}|x_t) = \frac{q(x_t|x_{t-1}) * q(x_{t-1})}{\int q(x_t|x_{t-1}) * q(x_{t-1}) dx}$$
(3)

All we know that $q(x_t)$ and $q(x_t|x_{t-1})$ are Gaussian for all t (these distributions are called by Bayesians *conjugate*). Hence, $q(x_{t-1}|x_t)$ is also Gaussian!

Let's approximate then our uknown Gaussian denoising process $q(x_{t-1}|x_t)$ with neural network $p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}|\mu_{\theta}(x_t), \sigma_{\theta}(x_t))$

$$p_{\theta}(\mathbf{x}_{0:T}) = p(\mathbf{x}_T) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) \quad p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t))$$
(4)

Inverse process. Variational Lower Bound

Problem: How to train p_{θ} ? Absolutely the same as with VAE!

$$-\log p_{\theta}(\mathbf{x}_{0}) \leq -\log p_{\theta}(\mathbf{x}_{0}) + D_{\mathrm{KL}}(q(\mathbf{x}_{1:T}|\mathbf{x}_{0})||p_{\theta}(\mathbf{x}_{1:T}|\mathbf{x}_{0}))$$

$$= -\log p_{\theta}(\mathbf{x}_{0}) + \mathbb{E}_{\mathbf{x}_{1:T} \sim q(\mathbf{x}_{1:T}|\mathbf{x}_{0})} \left[\log \frac{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0:T})/p_{\theta}(\mathbf{x}_{0})} \right]$$

$$= -\log p_{\theta}(\mathbf{x}_{0}) + \mathbb{E}_{q} \left[\log \frac{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0:T})} + \log p_{\theta}(\mathbf{x}_{0}) \right]$$

$$= \mathbb{E}_{q} \left[\log \frac{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0:T})} \right]$$

$$= \mathbb{E}_{q(\mathbf{x}_{0:T})} \left[\log \frac{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0:T})} \right] \geq -\mathbb{E}_{q(\mathbf{x}_{0})} \log p_{\theta}(\mathbf{x}_{0})$$

$$(5)$$
Let $L_{\mathrm{VLB}} = \mathbb{E}_{q(\mathbf{x}_{0:T})} \left[\log \frac{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0:T})} \right] \geq -\mathbb{E}_{q(\mathbf{x}_{0})} \log p_{\theta}(\mathbf{x}_{0})$

Inverse process. Variational Lower Bound

Problem: How to train p_{θ} ? Absolutely the same as with VAE!

$$\begin{split} L_{\text{VLB}} &= \mathbb{E}_{q(\mathbf{x}_0, \tau)} \left[\log \frac{q(\mathbf{x}_1, \tau | \mathbf{x}_0)}{p_{\theta}(\mathbf{x}_0, \tau)} \right] \\ &= \mathbb{E}_{q} \left[\log \frac{\prod_{t=1}^{T} q(\mathbf{x}_{t} | \mathbf{x}_{t-1})}{p_{\theta}(\mathbf{x}_T) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t})} \right] \\ &= \mathbb{E}_{q} \left[-\log p_{\theta}(\mathbf{x}_T) + \sum_{t=1}^{T} \log \frac{q(\mathbf{x}_{t} | \mathbf{x}_{t-1})}{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t})} \right] \\ &= \mathbb{E}_{q} \left[-\log p_{\theta}(\mathbf{x}_T) + \sum_{t=2}^{T} \log \frac{q(\mathbf{x}_{t} | \mathbf{x}_{t-1})}{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t})} + \log \frac{q(\mathbf{x}_{1} | \mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0} | \mathbf{x}_{1})} \right] \\ &= \mathbb{E}_{q} \left[-\log p_{\theta}(\mathbf{x}_T) + \sum_{t=2}^{T} \log \frac{q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t})} \cdot \frac{q(\mathbf{x}_{1} | \mathbf{x}_{0})}{q(\mathbf{x}_{t-1} | \mathbf{x}_{0})} + \log \frac{q(\mathbf{x}_{1} | \mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0} | \mathbf{x}_{1})} \right] \\ &= \mathbb{E}_{q} \left[-\log p_{\theta}(\mathbf{x}_T) + \sum_{t=2}^{T} \log \frac{q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{0})} + \sum_{t=2}^{T} \log \frac{q(\mathbf{x}_{1} | \mathbf{x}_{0})}{q(\mathbf{x}_{1} | \mathbf{x}_{0})} + \log \frac{q(\mathbf{x}_{1} | \mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0} | \mathbf{x}_{1})} \right] \\ &= \mathbb{E}_{q} \left[\log p_{\theta}(\mathbf{x}_T) + \sum_{t=2}^{T} \log \frac{q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{0})} + \log \frac{q(\mathbf{x}_{1} | \mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0} | \mathbf{x}_{1})} \right] \\ &= \mathbb{E}_{q} \left[\log \frac{q(\mathbf{x}_{T} | \mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0})} + \sum_{t=2}^{T} \log \frac{q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{0})} - \log p_{\theta}(\mathbf{x}_{0} | \mathbf{x}_{1}) \right] \\ &= \mathbb{E}_{q} \left[\log \frac{p(\mathbf{x}_{0} | \mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0} | \mathbf{x}_{0})} + \sum_{t=2}^{T} \log \frac{p(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{0})} - \log p_{\theta}(\mathbf{x}_{0} | \mathbf{x}_{1}) \right] \\ &= \mathbb{E}_{q} \left[\log \frac{p(\mathbf{x}_{0} | \mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0} | \mathbf{x}_{0})} + \sum_{t=2}^{T} \log \frac{p(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})} \right] \\ &= \mathbb{E}_{q} \left[\log \frac{p(\mathbf{x}_{0} | \mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0} | \mathbf{x}_{0})} + \sum_{t=2}^{T} \log \frac{p(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})} \right] \\ &= \mathbb{E}_{q} \left[\log \frac{p(\mathbf{x}_{0} | \mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0} | \mathbf{x}_{0})} + \sum_{t=2}^{T} \log \frac{p(\mathbf{x}_{0} | \mathbf{x}_{0} | \mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0} | \mathbf{x}_{0})} \right] \\ &= \mathbb{E}_{q} \left[\log \frac{p(\mathbf{x}_{0} | \mathbf$$

Inverse process. Variational lower bound

$$L_{\text{VLB}} = \mathbb{E}_q \underbrace{\left[D_{\text{KL}} \left(q(\mathbf{x}_T | \mathbf{x}_0) \parallel p_{\theta}(\mathbf{x}_T) \right) + \sum_{t=2}^{T} \underbrace{D_{\text{KL}} \left(q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0) \parallel p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t) \right)}_{L_{t-1}} \underbrace{-\log p_{\theta}(\mathbf{x}_0 | \mathbf{x}_1) \right]}_{L_0}$$

$$(7)$$

 L_T is constant w.t. θ , $L_0 = \log \mathcal{N}(\mathbf{x}_0; \boldsymbol{\mu}_{\theta}(\mathbf{x}_1, 1), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_1, 1))$

Problem: $q(x_{t-1}|x_t, x_0)$ is unkown. Really?

Inverse process. Variational lower bound

$$q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}) = q(\mathbf{x}_{t}|\mathbf{x}_{t-1},\mathbf{x}_{0}) \frac{q(\mathbf{x}_{t-1}|\mathbf{x}_{0})}{q(\mathbf{x}_{t}|\mathbf{x}_{0})}$$

$$\propto \exp\left(-\frac{1}{2}\left(\frac{(\mathbf{x}_{t}-\sqrt{\alpha_{t}}\mathbf{x}_{t-1})^{2}}{\beta_{t}} + \frac{(\mathbf{x}_{t-1}-\sqrt{\bar{\alpha}_{t-1}}\mathbf{x}_{0})^{2}}{1-\bar{\alpha}_{t-1}} - \frac{(\mathbf{x}_{t}-\sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0})^{2}}{1-\bar{\alpha}_{t}}\right)\right)$$

$$= \exp\left(-\frac{1}{2}\left(\frac{\alpha_{t}}{\beta_{t}} + \frac{1}{1-\bar{\alpha}_{t-1}}\right)\mathbf{x}_{t-1}^{2} - \left(\frac{2\sqrt{\alpha_{t}}}{\beta_{t}}\mathbf{x}_{t} + \frac{2\sqrt{\bar{\alpha}_{t-1}}}{1-\bar{\alpha}_{t-1}}\mathbf{x}_{0}\right)\mathbf{x}_{t-1} + C(\mathbf{x}_{t},\mathbf{x}_{0})\right)\right)$$

$$= \mathcal{N}(x_{t-1}|\tilde{\mu}_{t}(\mathbf{x}_{t},\mathbf{x}_{0}),\tilde{\beta}_{t})$$

$$\tilde{\beta}_{t} = \frac{1-\bar{\alpha}_{t-1}}{1-\bar{\alpha}_{t-1}} \cdot \beta_{t}$$
(8)

 $\tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0) = \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1 - \bar{\alpha}_t} \mathbf{x}_0$

(9)

Inverse process. Variational lower bound

Then,

$$L_{\text{VLB}} = C + \sum_{t=2}^{T} KL(\mathcal{N}(x_t; \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1 - \bar{\alpha}_t} \mathbf{x}_0, \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \cdot \beta_t)||$$

$$N(\mathbf{x}_t; \boldsymbol{\mu}_{\theta}(x_t), \beta_{\theta}(x_t))) + \log \mathcal{N}(\mathbf{x}_0; \boldsymbol{\mu}_{\theta}(\mathbf{x}_1, 1), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_1, 1))(10)$$

According to (2),

$$q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1-\bar{\alpha}_t)\mathbf{I})$$

, or, equivalently,

$$\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + (1 - \bar{\alpha}_t) \mathbf{I}) * \epsilon_t | \epsilon_t \sim \mathcal{N}(0, 1)$$
(12)

Then, in (9)

$$\tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0) = \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1 - \bar{\alpha}_t} \mathbf{x}_0 = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon}_t \right)$$
(13)

Moreover, let β_t be some constants

(11)

... Then,

$$L_{t} = \mathbb{E}_{\mathbf{x}_{0},\epsilon} \left[\frac{1}{2\|\mathbf{\Sigma}_{\theta}(\mathbf{x}_{t},t)\|_{2}^{2}} \|\tilde{\boldsymbol{\mu}}_{t}(\mathbf{x}_{t},\mathbf{x}_{0}) - \boldsymbol{\mu}_{\theta}(\mathbf{x}_{t},t)\|^{2} \right]$$

$$= \mathbb{E}_{\mathbf{x}_{0},\epsilon} \left[\frac{1}{2\|\mathbf{\Sigma}_{\theta}\|_{2}^{2}} \|\frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \boldsymbol{\epsilon}_{t}\right) - \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t},t)\right) \|^{2} \right]$$

$$= \mathbb{E}_{\mathbf{x}_{0},\epsilon} \left[\frac{(1 - \alpha_{t})^{2}}{2\alpha_{t}(1 - \bar{\alpha}_{t})\|\mathbf{\Sigma}_{\theta}\|_{2}^{2}} \|\boldsymbol{\epsilon}_{t} - \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t},t)\|^{2} \right]$$

$$= \mathbb{E}_{\mathbf{x}_{0},\epsilon} \left[\frac{(1 - \alpha_{t})^{2}}{2\alpha_{t}(1 - \bar{\alpha}_{t})\|\mathbf{\Sigma}_{\theta}\|_{2}^{2}} \|\boldsymbol{\epsilon}_{t} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}}\boldsymbol{\epsilon}_{t},t)\|^{2} \right]$$

$$(14)$$

We can ignore the constant Σ , and then ...

 \dots all the training and inference processes become squeezed to

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \left\ \epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t) \right\ ^2$ 6: until converged	1: $\mathbf{x}_{T} \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T, \dots, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0

Diffusion models now

Performance tricks. Variance scheduling

Set $\beta_t = \text{clip}(1 - \frac{\bar{\alpha}_t}{\bar{\alpha}_{t-1}}, 0.999)$ $\bar{\alpha}_t = \frac{f(t)}{f(0)}$ where $f(t) = \cos\left(\frac{t/T + s}{1 + s} \cdot \frac{\pi}{2}\right)^2$ instead of gradually increasing β_t from 10^{-4} to 0.02

Performance tricks

- Learn the variance. Set $\Sigma_{\theta}(\mathbf{x}_t, t) = \exp(\mathbf{v} \log \beta_t + (1 \mathbf{v}) \log \tilde{\beta}_t)$ instead of $\Sigma_{\theta}(\mathbf{x}_t, t) = \sigma_t^2 \mathbf{I}$ in DDPM
- Sample every S steps (strided sampling) $q_{\sigma,\tau}(\mathbf{x}_{\tau_{i-1}}|\mathbf{x}_{\tau_t},\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{\tau_{i-1}};\sqrt{\bar{\alpha}_{t-1}}\mathbf{x}_0 + \sqrt{1-\bar{\alpha}_{t-1}}-\sigma_t^2\frac{\mathbf{x}_{\tau_i}-\sqrt{\bar{\alpha}_t}\mathbf{x}_0}{\sqrt{1-\bar{\alpha}_t}},\sigma_t^2\mathbf{I})$

Latent Diffusion

Attention(
$$\mathbf{Q}, \mathbf{K}, \mathbf{V}$$
) = softmax($\frac{\mathbf{Q}\mathbf{K}^{\top}}{\sqrt{d}}$) $\cdot \mathbf{V}$
where $\mathbf{Q} = \mathbf{W}_{Q}^{(i)} \cdot \varphi_{i}(\mathbf{z}_{i}), \ \mathbf{K} = \mathbf{W}_{K}^{(i)} \cdot \tau_{\theta}(y), \ \mathbf{V} = \mathbf{W}_{V}^{(i)} \cdot \tau_{\theta}(y)$
and $\mathbf{W}_{Q}^{(i)} \in \mathbb{R}^{d \times d_{\epsilon}^{i}}, \ \mathbf{W}_{K}^{(i)}, \mathbf{W}_{V}^{(i)} \in \mathbb{R}^{d \times d_{\tau}}, \ \varphi_{i}(\mathbf{z}_{i}) \in \mathbb{R}^{N \times d_{\epsilon}^{i}}, \ \tau_{\theta}(y) \in \mathbb{R}^{M \times d_{\tau}}$

$$(15)$$

Classifier guidance

$$\nabla_{\mathbf{x}_{t}} \log q(\mathbf{x}_{t}, y) = \nabla_{\mathbf{x}_{t}} \log q(\mathbf{x}_{t}) + \nabla_{\mathbf{x}_{t}} \log q(y|\mathbf{x}_{t})$$

$$\approx -\frac{1}{\sqrt{1 - \bar{\alpha}_{t}}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t) + \nabla_{\mathbf{x}_{t}} \log f_{\phi}(y|\mathbf{x}_{t})$$

$$= -\frac{1}{\sqrt{1 - \bar{\alpha}_{t}}} (\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t) - \sqrt{1 - \bar{\alpha}_{t}} \nabla_{\mathbf{x}_{t}} \log f_{\phi}(y|\mathbf{x}_{t}))$$
(16)

Classifier-Free Guidance

$$\nabla_{\mathbf{x}_{t}} \log p(y|\mathbf{x}_{t}) = \nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t}|y) - \nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t})$$

$$= -\frac{1}{\sqrt{1 - \bar{\alpha}_{t}}} \left(\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t, y) - \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t) \right)$$

$$\bar{\boldsymbol{\epsilon}}_{\theta}(\mathbf{x}_{t}, t, y) = \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t, y) - \sqrt{1 - \bar{\alpha}_{t}} \ w \nabla_{\mathbf{x}_{t}} \log p(y|\mathbf{x}_{t})$$

$$= \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t, y) + w \left(\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t, y) - \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t) \right)$$

$$= (w + 1)\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t, y) - w \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t)$$

$$(17)$$

Cascaded diffusion

Thank you for your attention!

Artem Ryzhikov aryzhikov@hse.ru