TD T3 – Deuxième principe

Pour tous les exercices, où l'indice « ref » renvoie à un état de référence, on donne :

ullet l'entropie d'une phase condensée de capacité thermique C:

$$S(T) = C \ln \frac{T}{T_{\text{rof}}} + S_{\text{ref}} ;$$

• l'entropie d'un gaz parfait :

$$S(T, P) = \frac{nR\gamma}{\gamma - 1} \ln \frac{T}{T_{\text{ref}}} - nR \ln \frac{P}{P_{\text{ref}}} + S_{\text{ref}};$$

$$S(T, V) = \frac{nR}{\gamma - 1} \ln \frac{T}{T_{\text{ref}}} + nR \ln \frac{V}{V_{\text{ref}}} + S_{\text{ref}};$$

$$S(P, V) = \frac{nR}{\gamma - 1} \ln \frac{P}{P_{\text{ref}}} + \frac{nR\gamma}{\gamma - 1} \ln \frac{V}{V_{\text{ref}}} + S_{\text{ref}}.$$

★★★ Exercice 1 – Contact thermique entre deux solides

Deux solides de capacités thermiques respectives C_1 et C_2 et de températures initiales T_1 et T_2 sont mis en contact. Des parois rigides calorifugées isolent l'ensemble de l'extérieur.

- 1. Déterminer la température finale T_f .
- 2. Calculer la variation d'entropie du système global et calculer l'entropie créée au cours de la transformation. Faire l'application numérique pour $C_1 = C_2 = 444 \,\mathrm{J\cdot K^{-1}}$ et $T_2 = 2T_1 = 600 \,\mathrm{K}$.

*** Exercice 2 – Mise à l'équilibre de deux gaz

Une enceinte indéformable aux parois calorifugées est séparée en deux compartiments par une cloison d'aire S étanche, diatherme et mobile sans frottement. Les deux compartiments contiennent un même gaz parfait. Dans l'état initial, la cloison est maintenue au milieu de l'enceinte. Le gaz du compartiment 1 est dans l'état (T_0, P_0, V_0) et le gaz du compartiment 2 dans l'état $(T_0, 2P_0, V_0)$. On laisse alors la cloison bouger librement jusqu'à ce que le système atteigne un état d'équilibre.

- 1. Déterminer l'état final.
- 2. Calculer l'entropie créée.

★★★ Exercice 3 – Cryogénie

On étudie les compressions et détentes successives d'un gaz parfait diatomique. On suppose les transformations mécaniquement réversibles.

- 1. Le gaz subit une compression isotherme à la température $\theta_0 = 0$ °C, de $P_0 = 1$ bar à $P_1 = 20$ bar, puis une détende adiabatique jusqu'à P_0 . Exprimer, puis calculer la température T_1 après ces deux transformations.
- 2. On recommence l'opération. Exprimer T_2 , T_3 et en déduire T_n . Calculer T_{10} .
- 3. Quelles sont les limites de cette méthode?

** ★★ Exercice 4 – Bilan entropique

Les deux compartiments contiennent le même gaz parfait de capacité thermique molaire $C_{v,m}$ et coefficient isentropique γ , initialement dans le même état (P_0, T_0, V_0) . Les parois sont calorifugées ainsi que le piston. Ce dernier se déplace sans frottement dans le cylindre.

On fait passer un courant d'intensité I dans la résistance R de telle sorte que la transformation du gaz puisse être considérée comme quasi-statique et jusqu'à ce que la pression devienne P_f . On néglige la capacité thermique de la résistance.

- 1. Déterminer l'état thermodynamique du gaz dans chaque compartiment.
- 2. Donner l'expression de l'énergie fournie par le générateur qui alimente la résistance en fonction des données.
- 3. Calculer la variation d'entropie du système complet (sans résistance).

★★★ Exercice 5 – Compression d'un gaz parfait

On considère une quantité de matière n de gaz parfait de coefficient isentropique $\gamma = C_p/C_v$, contenu dans une enceinte en contact thermique avec l'atmosphère, assimilée à un thermostat à la température T_0 . L'enceinte est fermée par un piston athermane (imperméable aux transferts thermiques), de masse négligeable et de section σ .

On dépose une masse m sur le piston de deux manières différentes :

- brutalement : toute la masse m est déposée en une seule fois (transformation 1);
- en N étapes : on ajoute un par un N grains de masse m/N (transformation 2).

Pour chacune des transformations décrites et représentées ci-dessus :

- 1. Déterminer les température, pression et volume à l'équilibre à la fin de la transformation.
- 2. Qualifier la transformation subie par le gaz.
- 3. Exprimer le travail et le transfert thermique reçus par le gaz.
- 4. À l'aide d'un bilan d'entropie, exprimer puis calculer l'entropie créée au cours de la transformation. Commenter.

Données: n = 1 mol; $\sigma = 100 \text{ cm}^2$; m = 10 kg; $P_0 = 1 \text{ bar}$; $g = 9.81 \text{ m} \cdot \text{s}^{-2}$.

*** Exercice 6 - Détente de Joule - Gay-Lussac quasi-statique

Un gaz parfait, initialement dans l'état (P_0, T_0, V_0) subit une détente dans le vide jusqu'à un volume $V_0(1+x)$. On suppose la transformation adiabatique.

- 1. Déterminer la température du gaz lorsqu'il a atteint son nouvel état d'équilibre.
- 2. Exprimer la création d'entropie due à la transformation en fonction des variables d'état du gaz dans l'état initial et de x.
- 3. Donner l'expression de cette quantité pour $x \to 0$. Interpréter : est-il possible de rendre la détente de Joule Gay-Lussac réversible en la découpant en un très grand nombre d'étapes?

★★★ Exercice 7 – Chauffage réverssible (?) d'un gaz parfait

On met un échantillon de gaz parfait initialement à la température T_0 en contact avec un thermostat à la température T_1 .

- 1. Justifier que la transformation est irréversible.
- 2. Montrer que la transformation devient réversible en découpant la transformation en une succession de transformations infinitésimales.

*** Exercice 8 – Possibilité d'un cycle

On considère une quantité de matière $n=1\,\mathrm{mol}$ de gaz parfait qui subit la succession de transformations (idéalisées) suivantes :

- $A \to B$: détente isotherme de $P_A = 2$ bar et $T_A = 300$ K jusqu'à $P_B = 1$ bar en restant en contact avec un thermostat de température $T_0 = T_A$;
- $B \to C$: évolution isobare jusqu'à $V_C = 20.5 \,\mathrm{L}$ toujours en restant en contact avec le thermostat à T_0 ;
- $C \to A$: compression adiabatique réversible jusqu'à revenir à l'état A.

Le coefficient isentropique γ est pris égal à 7/5.

- 1. Représenter ce cycle dans le diagramme de Watt (P, V).
- 2. À partir du diagramme, déterminer le signe du travail total des forces de pression au cours du cycle. En déduire s'il s'agit d'un cycle moteur ou d'un cycle récepteur.
- 3. Déterminer l'entropie créée entre A et B. Commenter.
- 4. Calculer la température en C, le travail W_{BC} et le transfert thermique Q_{BC} reçus par le gaz au cours de la transformation BC. En déduire l'entropie échangée avec le thermostat ainsi que l'entropie créée. Conclure : le cycle proposé est-il réalisable? Le cycle inverse l'est-il?

*** Exercice 9 - Résistance thermique

On considère un barreau cylindrique homogène, de longueur L et de section S, dont les deux extrémités sont mises en contact avec deux thermostats qui les maintiennent à des températures T_1 et T_2 . La paroi cylindrique est calorifugée, de telle sorte qu'aucune fuite thermique n'a lieu latéralement. Après un régime transitoire auquel nous n'allons pas nous intéresser ici, la

température en chaque point M du barreau tend vers une valeur constante, dépendant de M: un régime stationnaire mais hors équilibre est atteint. On raisonne sur une durée Δt lorsque le régime stationnaire est établi. On constate alors que la puissance thermique \mathcal{P}_{th} (transfert thermique par unité de temps) traversant toute section droite du cyclindre, orientée de la face 1 vers la face 2, s'écrit

$$\mathcal{P}_{\rm th} = \frac{Q}{\Delta t} = \frac{T_1 - T_2}{R_{\rm th}},$$

où $R_{\rm th}$ est un coefficient phénoménologique appelé résistance thermique.

1. Quelle est la dimension de $R_{\rm th}$?

On considère comme système l'ensemble du barreau cylindrique, la surface de contrôle étant constituée des deux extrémités circulaires et de la paroi cylindrique.

- 2. Quelle est la variation d'entropie ΔS du barreau cylindrique au cours de l'intervalle de temps Δt ?
- 3. Exprimer l'entropie échangée $S_{\text{éch}}$ par le cylindre pendant Δt , et le taux d'échange d'entropie $\sigma_{\text{\'ech}} = S_{\text{\'ech}}/\Delta t$.
- 4. En déduire le taux de création d'entropie σ_c . Que devient cette entropie créée?
- 5. Quelle conséquence cela impose-t-il sur le signe de $R_{\rm th}$?

Exercice 10 – Entrée de matière dans un récipient

On considère un récipient vide cylindrique de volume V_1 , dont les parois sont calorifugées. On perce un trou de manière à ce que l'air ambiant (de pression P_0 et température T_0) y pénètre de façon adiabatique (transformation rapide). On note V_0 le volume initialement occupé par l'air assimilé à un gaz parfait qui entre dans le récipient, et γ son coefficient isentropique.

- 1. Exprimer la température finale T_1 de l'air du récipient.
- 2. Déterminer l'entropie créée, ainsi que la cause de l'irréversibilité.

Coups de pouce

Ex. 1 Cf. App. 4.

Ex. 2 1. Appliquer le premier principe au gaz des deux compartiments et utiliser les conditions d'équilibres. 2. Appliquer le deuxième principe au gaz des deux compartiments.

Ex. 3 1. Adiabatique réversible : Laplace!

Ex. 4 1. Le gaz 2 subit une transformation adiabatique | Ex. 10 1. Choisir un système fermé adapté!

réversible : Laplace! 2. Quel système choisir pour simplifier le raisonnement?

Ex. 6 1. Cf. TD T2 Ex. 2. 3. L'entropie créée pour une transformation entre V_0 et V_1 réalisée en $N\gg 1$ étapes est-elle nulle?

Ex. 9 2. On ne s'intéresse qu'au régime permanent.

√ Éléments de correction

Ex. 1 1.
$$T_f = \frac{C_1 T_1 + C_2 T_2}{C_1 + C_2}$$
; 2. $S_c = \Delta S = C_1 \ln \frac{T_f}{T_1} + C_2 \ln \frac{T_f}{T_2} = 52,3 \, \mathrm{J} \cdot \mathrm{K}^{-1}$.
Ex. 2 1. $T_1 = T_2 = T_0, \ P_1 = P_2 = 3P_0/2, \ V_2 = 2V_1 = 4V_0/3$; 2. $S_c = \frac{P_0 V_0}{T_0} \ln \frac{32}{27} > 0$.
Ex. 3 1. $T_1 = T_0 \left(\frac{P_1}{P_0}\right)^{\frac{1-\gamma}{\gamma}} = 116 \, \mathrm{K}$; $T_0 \left(2\frac{P_f}{P_0} - \left(\frac{P_f}{P_0}\right)^{1-\frac{1}{\gamma}}\right)$; $P_2 = C_1 + C_2 \ln \frac{T_f}{T_1} + C_2 \ln \frac{T_f}{T_2} = 52,3 \, \mathrm{J} \cdot \mathrm{K}^{-1}$; $P_1 = P_2 + C_2 \ln \frac{T_f}{T_2} = 52 \, \mathrm{mK}$.
Ex. 4 1. $P_1 = P_f, \ V_1 = C_2 \ln \frac{T_f}{P_0} = \frac{T_0 \left(\frac{P_0}{P_f}\right)^{\frac{1}{\gamma}-1}}{2}$; 2. $W_{\text{élec}} = \frac{P_0 V_0}{P_f} \ln \frac{32}{T_0} = \frac{P_0 V_0}{T_0} \ln$

Ex. 5 1. $T_f=T_0,\ P_f=P_0+\frac{mg}{\sigma},\ V_f=nRT_0/P_f\,;$ 2. transfo 1 : monobare, monotherme, irré-

$$\Delta S = n C_{\text{v,m}} \ln \frac{T_1}{T_0} + n R \ln \frac{V_2}{V_0}, \text{ avec} \quad \left| \begin{array}{l} S_{c,1} = n R \left(\frac{mg}{\sigma P_0} - \ln \left(1 + \frac{mg}{\sigma P_0} \right) \right) \\ n = \frac{P_0 V_0}{RT}. \end{array} \right|$$

$$38 \, \text{mJ} \cdot \text{K}^{-1} > 0, \, S_{c,2} = 0.$$

Ex. 8 2.
$$W < 0$$
; 3. $S_c = \Delta S - \frac{Q}{T_0} = 0$; 4. $T_C = T_A 2^{\frac{1}{\gamma} - 1} = 246 \text{ K}$
 $W_{BC} = -P_B (V_C - V_B) = 440 \text{ J}$
 $Q_{BC} = \frac{\gamma nR}{\gamma - 1} (T_C - T_B) = -1,55 \text{ kJ}$
 $S_{\text{éch}} = \frac{Q_{BC}}{T_0} = -5,17 \text{ J} \cdot \text{K}^{-1}, S_c =$

$$\begin{vmatrix} \frac{\gamma nR}{\gamma-1} \ln \frac{T_C}{T_B} - \frac{Q_{BC}}{T_0} = -0.54 \,\mathrm{J\cdot K^{-1}} < \\ 0 : \mathrm{impossible.} \end{vmatrix}$$

$$\begin{array}{l} 38\,\mathrm{mJ}\cdot\mathrm{K}^{-1}>0,\ S_{c,2}=0.\\ \mathbf{Ex.\,6}\ 1.\ T_1=T_0\ ;\ 2.\ S_c=nR\ln(1+x)\ ;\ 3.\ S_c\sim nRx.\\ \mathbf{Ex.\,8}\ 2.\ W<0\ ;\ 3.\ S_c=\Delta S-\frac{Q}{T_0}=0\ ;\ 4.\ T_C=T_A2^{\frac{1}{\gamma}-1}=246\ \mathrm{K},\\ W_{BC}=-P_B(V_C-V_B)=440\ \mathrm{J},\\ Q_{BC}=\frac{\gamma nR}{\gamma-1}(T_C-T_B)=-1,55\ \mathrm{kJ},\\ S_{\mathrm{\acute{e}ch}}=\frac{Q_{BC}}{T_c}=-5,17\ \mathrm{J}\cdot\mathrm{K}^{-1},\ S_c=\\ \end{array} \begin{array}{l} 0:\ \mathrm{impossible}.\\ \mathbf{Ex.\,9}\ 1.\ [R_{\mathrm{th}}]=\Theta\cdot\mathrm{T}^3\cdot\mathrm{M}^{-1}\cdot\mathrm{L}^{-2},\\ 2.\ \Delta S=0\ ;\ 3.\ S_{\mathrm{\acute{e}ch}}=\frac{P_{\mathrm{th}}\Delta t}{T_1}-\frac{1}{T_2}=-\frac{P_{\mathrm{th}}\Delta t}{T_2},\\ 2.\ \Delta S=0\ ;\ 3.\ S_{\mathrm{\acute{e}ch}}=\frac{P_{\mathrm{th}}\Delta t}{T_1}-\frac{1}{T_2}=-\frac{P_{\mathrm{th}}\Delta t}{T_2}=-\frac{P_{\mathrm{th}}\Delta t}{T_2}+\frac{1}{T_2}=-\frac{P_{\mathrm{th}}\Delta t}{T_2}=-\frac{P_{\mathrm{th}}\Delta t}{T_2}+\frac{1}{T_2}=-\frac{P_{\mathrm{th}}\Delta t}{T_2}=-\frac{P_{\mathrm{th}}\Delta t}{T_2}=-\frac{P_{\mathrm{th}}\Delta$$

Exercice 11 - Expérience de Rüchardt - Oral CCP

On considère un récipient fermé par un piston M de masse m, mobile sans frottement dans le col cylindrique vertical de section S. Le récipient contient n moles d'un gaz parfait dont on cherche à déterminer l'exposant adiabatique γ (ou coefficient isentropique) constant.

À l'extérieur, l'air est à la pression P_0 = cste et à l'équilibre, le volume intérieur du récipient est V_0 . Le piston est déplacé de sa position d'équilibre, on note $P = P_e + dP$ la pression dans le récipient à un instant quelconque avec $dP \ll P_e$ et toutes les transformations adiabatiques et réversibles.

- 1. Déterminer l'équation du mouvement du piston.
- 2. En déduire une méthode pour mesurer γ .