	-		
Mechatronics Systems Design			
Laboratory ECE 491			
Igor Paprotny			
	J		
	1		
Upcoming Checkout			
• This week:			
 FRDM-KL25Z lab 2 (GPIO and ADC) Next week: 			
– PWM (Lab 3) – Altium Tutorial (Lab 4)			
• BB up			
 Project proposal due next Friday (project proposal guidelines on BB soon) 			
]		
DC Motors and Motor			
Controllers			

 DC Motors 	•	DC Motors
-------------------------------	---	-----------

- FET review
- Motor controllers

DC Motors

Use to provide a torque to a shaft, capable of spinning the shaft to some velocity under the application of a DC current

 $\vec{F} = i\vec{l} \times \vec{B}$ $\tau = \vec{r_1} \times \vec{F_1} + \vec{r_2} \times \vec{F_2}$

DC Motors: commutator

DC Motors: commutator

Motor: Electrical Equivalent Circuit

Motor: Electrical Equivalent Circuit

An equivalent circuit can be constructed to model the operation of the motor from an electrical perspective.

Summary: DC Motors

- DC Motors provide actuation for many mechatronic systems such as electric cars
 A commutator ensures that the torque spins the shaft in one direction for a certain
- Back EMF generates a voltage across the winding, limiting the motor current, as a function of the angular velocity of the shaft (and winding)
- Two important implications of back EMF:
- It will limit the ultimate angular velocity of the shaft (if it didn't all unloaded DC motors would likely disintegrate: ω → ∞)

 Can be used for velocity sensing
- Highest motor current at stall (ω = 0). Motor controllers must be designed to handle stall currents
- Snubber diodes help to remove voltage spikes due to switching current through the

Motor Controllers

- Motor controller is an amplifier which converts the weak signals from microcontroller GPIO ports to high current that drive the motor.
- Solid-state using Power FET technology (e.g. NDP7060L)
- Fast switching time Large currents

Field Effect Transistor: A Review

- Can be n-channel or p-channel - Most common n-chanel
- Fabricated on a doped silicon substrate
- Has four terminals: Source, Drain,

FET Operation (n-channel) • source/body is usually connected to ground • drain is connected to V_{ad} • Initially source and drain isolated through a dual PN junction

FET Operation (n-channel) • To switch transistor on, gate is connected to positive voltage • Accumulation of positive charges on the gate electrode attracts negative charges just underneath the gate, in the channel region

FET Operation (n-channel) • As drain to source voltage (V_{ds}) increases, the channel gets pinched off at the drain, limiting the drain to source current (I_{ds}) • FET is now operating in the saturation region

Field Effect Transistor: A Review The Region Saturation Region Sequence of the Sequence of th

Summary: Field Effect Transistors

- Power FETs are used as solid state switches in a motor controller
- In an n-channel FET, positive charges on the gate form a n-type channel between the source and the drain
- Once on, a FET operates in either linear or saturated region

Motor Controllers: FETS as switches

- Switch is now replaced with a FET
 Single FET motor controller
 Only turn in one direction
- Motor and battery resistance in series
 - Analyze for maximum (i.e. stall) current

Motor Controllers: FETS as switches

- $\bullet \quad \text{Modify electric diagram for stall $(\omega=0)$} \\ \quad \text{No back EMF} \\ \quad \text{No inductive component}$
- Load-line analysis

Motor Controllers: FETS as switches

- $\quad \text{V}_{\text{b,ini}} = 5 \text{ V, R}_{\text{m}} = 0.4 \, \Omega, \text{R}_{\text{b}} = 0.1 \, \Omega \\ \quad \text{V}_{\text{gs}} \text{ provided by the MCU}$

Motor Controllers: the need for FET drivers

- To reduce the power dissipation in ON state, V_{gs} must be as high as possible (up to gate voltage breakdown) V_{gs} may be above V_{dd}
- 3.3 V output from GPIO not high enough
- Solution: FET Drivers

 - Solution: FEI Drivers

 Solid-state circuits that elevate ON output voltage to a higher ON level.

 In some cases much higher than V_{6d}

 E.g. MAX 62 televates ON output voltage by 11 V above V_{6d}.

Motor Controllers: FETS as switches $- V_{b,ini} = 5 \text{ V}, R_m = 0.06 \Omega, R_b = 0.01 \Omega$ $- V_{gs} \text{ provided by the MCU}$ $_{R_{m}}\ {\mbox{\Large ξ}}$ V_{gs} = 14.3 V ON FET driver MCU > I/V characteristics for a NDP7060L Power FET

Summary: Motor Controllers

- $\mbox{\ }$ Motor controllers are used to control the actuation of a motor using one or more FETs
- Load-line analysis is used to determine power dissipated in a FET in a motor controller
- \bullet $\;$ To lower dissipated power in FET, $\,{\rm V_{gs}}$ needs to be as high as possible
- $\bullet \quad \text{A FET driver is used to elevate V}_{gs} \, \text{above V}_{dd} \text{ensuring proper switching} \\$

Mechatronics Systems Design Laboratory ECE 491

Motor Control, PWM and Servo Control

- Motor controller topologies
- PWM for motor (velocity) control
- Review of servo operationPWM for servo (steering) control

Motor Controllers Topologies

- Single FET motor controllers have the simplest topology
 Can only accelerate, and coast to stop
- Other topologies allow for:

- Breaking
 Backwards motion Most common, full H-bridge
 Possible to use a half-bridge to simplify the controller design

Motor Controllers	Topology: Single FET
MOTOL COLLLONERS	Topology: Single FET

FET ON

Motor Controllers Topology: Single FET

FET OFF

Motor Controllers Topology: Half-Bridge

- It is possible to accelerate breaking by use the concept of **dynamic breaking**
- The V_{emf}generated by the motor is used to drive current through armature to cause breaking of the motor
- Required additional FET

Motor Controllers Topology: Half-Bridge

Accelerate:
 A ON, B OFF

Motor Controllers Topology: Half-Bridge

Dynamic Breaking:
 A OFF, B ON

Motor Controllers Topology – H-Bridge

- The most versatile motor controller topology is an H-bridge
- Requires four (4) FETs per motor

Motor Controllers Topology – H-Bridge

- The most versatile motor controller topology
- Requires four (4) FETs per motor
- Supports:
- Motion forward

Motor Controllers Topology – H-Bridge

- The most versatile motor controller topology
- Requires four (4) FETs per motor
- Supports:

 Motion forward

 Motion backward

13

Motor Controllers Topology – H-Bridge

- The most versatile motor controller topology
- Requires four (4) FETs per
- Supports:
 Motion forward
 Motion backward

 - Breaking

Motor Controllers Topology – H-Bridge

- The most versatile motor controller topology
- Requires four (4) FETs per motor
- Supports:
 - Motion forward
 Motion backward
- Breaking
 Caution H-bridge can short \mathbf{V}_{dd} and ground

Motor Controllers Topology – H-Bridge

- The most versatile motor controller topology
- Requires four (4) FETs per motor
- Supports:
- Motion forward
 - Motion backward Breaking
- Caution H-bridge can short V_{dd} and ground
- Kick-back snubber diodes

Summary: Motor Controller Topology

- Single FET controller allows for acceleration (ON) or coasting (OFF)
 Half-bridge allows for acceleration, breaking, and coasting
- The most versatile motor controller configuration is an H-bridge
- H-bridge allows for
 - Motor actuation both back and forth
 Dynamic breaking
- Careful not to short battery terminals in H-bridge !

Control for Autonomous Car Actuation

- Autonomous car contains two main actuators
 - DC Motors: provide forward propulsion
 Servos: provide steering
- Pulse-width modulation (PWM) allows for control of both

Pulse-Width Modulation (PWM): DC Motors

Pulse-Width Modulation (PWM) is used to vary torque produced by a motor while still using a driver FET only in either completely off or completely on states.

- Alternative (Bad approach):
 Use the FET as a variable resistor
 Large power dissipation by the FET
- Recall that: $\tau = k_t i_m$
- Pulse i_m by switching it fast on and
 - Solid-state switch

Pulse-Width Modulation (PWM): DC Motors

Pulse-Width Modulation (PWM) is used to vary torque produced by a motor while still using a driver FET only in either completely off or completely on states.

- Alternative (Bad approach):
 - Use the FET as a variable resistor
 Large power dissipation by the FET
- Recall that: $\tau = k_i i_m$
- Duty cycle: $d = \frac{t_{on}}{T}$

$$\overline{i_m} = d \cdot i_m$$
 $\overline{\tau} = k_t \cdot \overline{i_m}$

RC Servo: Introduction

- RC servos
 - Initially developed for position control in radio-controlled RC applications
 Low precision combination of DC motor and position feedback.

 - Currently used for other than RC applications in robotics, mechatronics

 $\label{limits} https://www.hackmeister.dk/2010/07/controlling-an-rc-servo-with-an-fpga/$

RC Servo: Control

- Servo operation:
 - rvo operation:

 Most RC servo has three wires, almost
 universally color coded accordingly

 » RED supply voltage (Vin),
 5 V.

 » BLACK Ground (GND)

 » WHITE Signal (S)
- Servo can typically rotate +/- ១០ ۵८៦.
 Signal (S) causes the output shaft to rotate to a set position.

 Position encoded in a pulse train provided.
 - Position encoded in a pulse train provided to S
 - Period of 20 30 ms (typical) - Pulse 0.5 - 3 ms (typical)

PWM using MCU

- Usually MCUs have ability to configure
 - PWM for use with the GPIOs

 Using timers to provide output PWM signal to both motors and servo

 - Independent channels per timer
 Must be configured to assign timer and channel to a desired GPIO for output

Summary: PWM Motor and Servo Control

- Pulse-width modulation (PWM) is an efficient way of controlling power, and thus torque, of the motors
 - Can be used for velocity control
 - Avoids power drop over the FETs
 PWM duty-cycle control the power
- Servos use an input pulse-train to control the direction of the output shaft
 - Can use PWM for control the direction of the servo
 PWM pulse duration controls the direction
 Must be calibrated