2

2.1

Since the group is finite, we can generate the powers of an element $s \in S$ infinetly. However there a only a finite amount of elements in S. Thus, there exists an integer x such that $s^x = s$. If x = z we are done, else we multiply both sides with s^{x-2} .

$$s^{2} \cdot s^{x-2} = s \cdot s^{x-2}$$
$$(s^{x} \cdot s^{-1}) \cdot (s^{x} \cdot s^{-1}) = s^{x-1}$$
$$s^{x-1} \cdot s^{x-1} = s^{x-1}$$
$$(s^{x-1})^{2} = s^{x-1}$$

2.2

First we proof $g, g' \in G, g \sim_H g'$ if g = hg' is an equivalence relation by showing it is reflexive, simmetric and transitive.

Reflexivity: Assume $g \sim_H g'$ then we always can choose the neutral element as h with hg' = g'. Thus g = g' and $g \sim_H g$.

Symmetry: Assume $g \sim_H g'$ with g = hg'. Then we can add in inverse element h^{-1} , which is also in H because it is a group, resulting in $h^{-1}g' = g$. Hence, $g' \sim_H g$ is also true.

Transitivity: Assume $g \sim_H g'$ and $g' \sim_H g''$ with $g'' \in G$ and $h_1, h_2 \in H : g = h_1 g'$, $g' = h_2 g''$. We can substitute g' resulting in $g = h_1 h_2 g''$. Since H is closed $h_1 h_2$ is also in H. Hence, $g \sim_H g''$ is also true.

Since we proofed that \sim_H is a equivalence relation, G/H is partition induced by \sim_H . \square

2.3

We proof if G is a permutation group on Q then G acts on Q. Therefore we show that G fullfills the two conditions

$$\forall q \in Q, g_1, g_2 \in G : q(g_1g_2) = (qg_1)g_2 \tag{1}$$

$$g_1, g_2 \in G$$
: if $qg_1 = qg_2$ for all $q \in Q$ then $g_1 = g_2$ (2)

Hence, G is a group by Lemma 2.89 it is associative and satisfies (1). Also permutations are bijective which satisfies (2). \Box

2.4

f is a monoid morphismus as you can first can combine two words of $\sigma*$ and count the length or count first the length and then add them up. For a given word $w \in \sigma*$ its equivalence class is [|w|] with all other words with the same length. Since the words of $\sigma*$ can be arbitrary long, the order of the quotion set is infinte.