Analisis Regresi Kuliah-7

Muhammad Firlan Maulana

2024-03-05

Packages

```
library(readxl)
library(lmtest)
## Warning: package 'lmtest' was built under R version 4.3.3
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 4.3.2
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
      as.Date, as.Date.numeric
library(car)
## Loading required package: carData
library(randtests)
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.3.2
## Warning: package 'lubridate' was built under R version 4.3.2
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr 1.1.3 v readr
                                  2.1.4
## v forcats 1.0.0 v stringr 1.5.1
## v ggplot2 3.4.4 v tibble 3.2.1
## v lubridate 1.9.3
                    v tidyr
                                 1.3.0
## v purrr 1.0.2
```

```
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
                     masks stats::lag()
## x dplyr::lag()
## x dplyr::recode() masks car::recode()
## x purrr::some()
                     masks car::some()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(plotly)
## Warning: package 'plotly' was built under R version 4.3.2
##
## Attaching package: 'plotly'
##
## The following object is masked from 'package:ggplot2':
##
##
       last_plot
##
## The following object is masked from 'package:stats':
##
##
       filter
##
## The following object is masked from 'package:graphics':
##
##
       layout
library(nortest)
```

Data

```
data7 = read_xlsx("D:/firlan/Documents/College/Semester 4/Analisis Regeresi/Kuliah 7/Anreg Individu.xls.
head(data7)
```

```
## # A tibble: 6 x 2
##
         Х
     <dbl> <dbl>
##
## 1
         2
## 2
         5
              50
## 3
         7
              45
## 4
              37
        10
## 5
        14
              35
## 6
        19
              25
```

Model Regresi Awal

```
model = lm(formula = Y ~., data=data7)
summary(model)
```

```
##
## Call:
## lm(formula = Y ~ ., data = data7)
##
## Residuals:
##
      Min
               1Q Median
                                ЗQ
                                      Max
## -7.1628 -4.7313 -0.9253 3.7386
                                  9.0446
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 46.46041
                           2.76218
                                     16.82 3.33e-10 ***
## X
              -0.75251
                           0.07502 -10.03 1.74e-07 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 5.891 on 13 degrees of freedom
## Multiple R-squared: 0.8856, Adjusted R-squared: 0.8768
## F-statistic: 100.6 on 1 and 13 DF, p-value: 1.736e-07
```

Didapati bahwa model regresi awal sebagai berikut.

$$\hat{Y} = 46.46041 - 0.75251X + e$$

Masih belum diketahui apakah model regresi tersebut merupakan model regresi terbaik. Oleh karena itu, diperlukan eksplorasi kondisi termasuk pengujian asumsi Gauss-Marcov dan normalitas agar dapat diketahui model regresi terbaik.

Eksplorasi Kondisi

Scatter Plot Hubungan X dan Y

```
plot(x=data7$X, y=data7$Y)
```


Dari scatter plot hubungan X dan Y di atas, dapat dilihat bahwa tidak terbentuk pola garis lurus namun berbentuk parabola.

Pemeriksaan Asumsi

Plot sisaan VS Y duga

plot(model,1)

Plot sisaan VS Urutan

```
plot(x = 1:dim(data7)[1],
    y = model$residuals,
    type = 'b',
    ylab = "Residuals",
    xlab = "Observation")
```


Dari plot sisaan v
s urutan di atas terlihat bahwa sisaan menyebar tidak berpola. Sehingga asumsi kondisi Gauss-Marcov mengenai sisaan saling bebas/tidak ada korelasi terpenuhi.

Eksplorasi Normalitas Sisaan dengan QQ-plot

plot(model,2)

Terlihat pada QQ-plot tersebut bahwa sisaan menyebar Normal sehingga memenuhi asumsi e(i~N).

Uji Formal Kondisi Gauss-Marcov

1. Nilai harapan/rataan sisaan sama dengan nol

H0: Nilai harapan sisaan sama dengan 0 H1: Nilai harapan sisaan tidak sama dengan 0

```
t.test(model$residuals,mu = 0,conf.level = 0.95)
```

```
##
## One Sample t-test
##
## data: model$residuals
## t = -4.9493e-16, df = 14, p-value = 1
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -3.143811 3.143811
## sample estimates:
## mean of x
## -7.254614e-16
```

p-value = 1 > alpha = 0.05, sehingga tak tolak H0. Belum terdapat cukup bukti untuk menyatakan bahwa nilai harapan sisaan tidak sama dengan 0.

2. Ragam sisaan homogen

H0: Ragam sisaan homogen H1: Ragam sisaan tidak homogen

```
apakah.homogen = lm(formula = abs(model$residuals) ~ X, # y: abs residual
   data = data7)
summary(apakah.homogen)
##
## Call:
## lm(formula = abs(model$residuals) ~ X, data = data7)
## Residuals:
##
               1Q Median
                               3Q
      Min
                                      Max
## -4.2525 -1.7525 0.0235 2.0168 4.2681
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.45041 1.27241
                                    4.284 0.00089 ***
                          0.03456 -0.564 0.58266
## X
              -0.01948
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 2.714 on 13 degrees of freedom
## Multiple R-squared: 0.02385,
                                   Adjusted R-squared:
                                                        -0.05124
## F-statistic: 0.3176 on 1 and 13 DF, p-value: 0.5827
bptest(model)
##
##
   studentized Breusch-Pagan test
##
## data: model
## BP = 0.52819, df = 1, p-value = 0.4674
ncvTest(model)
## Non-constant Variance Score Test
## Variance formula: ~ fitted.values
## Chisquare = 0.1962841, Df = 1, p = 0.65774
```

Didapati bahwa p-value = 0.4674 > alpha = 0.05, sehingga tak tolak H0. Belum cukup bukti untuk menyatakan bahwa ragam sisaan tidak homogen.

3. Sisaan saling bebas/tidak ada autokorelasi

H0: Sisaan saling bebas/tidak ada autokorelasi H1: Sisaan tidak saling bebas/ada autokorelasi

```
runs.test(model$residuals)
```

```
##
##
    Runs Test
##
## data: model$residuals
## statistic = -2.7817, runs = 3, n1 = 7, n2 = 7, n = 14, p-value =
## 0.005407
## alternative hypothesis: nonrandomness
dwtest(model)
##
##
    Durbin-Watson test
##
## data: model
## DW = 0.48462, p-value = 1.333e-05
## alternative hypothesis: true autocorrelation is greater than 0
```

Didapati dari Durbin-Watson bahwa p-value = 0.00001333 < alpha = 0.05, maka tolak H0. Pada taraf nyata 5%, cukup bukti untuk menyatakan bahwa sisaan tidak saling bebas. Asumsi tidak terpenuhi.

```
acf(model$residuals)
```

Series model\$residuals

Hasil uji Durbin-Watson selaras dengan eksplorasi sisaan di atas bahwa nilai autokorelasi pada lag 1 bernilai 0.5 dan lag 2 bernilai 0.4 yang mana berada di luar batas kepercayaan 95%, terdapat autokorelasi.

Uji Formal Normalitas Sisaan

H0: Sisaan menyebar Normal H1: Sisaan tidak menyebar Normal

```
ks.test(model$residuals, "pnorm", mean=mean(model$residuals), sd=sd(model$residuals))
##
##
    Exact one-sample Kolmogorov-Smirnov test
##
## data: model$residuals
## D = 0.12432, p-value = 0.9521
## alternative hypothesis: two-sided
Didapati bahwa p-value = 0.9521 > \text{alpha} = 0.05, tak tolak H0.
shapiro.test(model$residuals)
##
##
    Shapiro-Wilk normality test
##
## data: model$residuals
## W = 0.92457, p-value = 0.226
```

Didapati bahwa p-value = 0.226 > alpha = 0.05, tak tolak H0.

Dari uji Kolmogorov-Smirnov dan Shapiro-Wilk, keduanya didapati tak tolak H0. Pada taraf nyata 5%, belum cukup bukti untuk menyatakan sisaan tidak menyebar normal.

Weighted Least Squares

```
resid_abs <- abs(model$residuals)</pre>
fitted_val <- model$fitted.values</pre>
fit <- lm(resid_abs ~ fitted_val, data7)</pre>
data.weights <- 1 / fit$fitted.values^2</pre>
data.weights
                                                             5
##
             1
                         2
                                     3
                                                 4
                                                                         6
## 0.03414849 0.03489798 0.03541143 0.03620311 0.03730067 0.03874425 0.04091034
                                    10
                                                            12
## 0.04257072 0.04361593 0.04507050 0.04779711 0.05077885 0.05122749 0.05454132
##
## 0.05710924
plot(data.weights)
```


Model Regresi yang Terboboti:

```
modelweight = lm(Y~X, data = data7, weights = data.weights)
plot(modelweight)
```


summary(modelweight)

```
##
  lm(formula = Y ~ X, data = data7, weights = data.weights)
##
##
##
  Weighted Residuals:
##
                  1Q
                       Median
                                     3Q
                                             Max
  -1.46776 -1.09054 -0.06587
                               0.77203
                                         1.85309
##
##
##
   Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
   (Intercept) 45.41058
                           2.90674
                                    15.623 8.35e-10 ***
##
## X
               -0.71925
                           0.07313
                                    -9.835 2.18e-07 ***
##
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
                   0
##
## Residual standard error: 1.204 on 13 degrees of freedom
## Multiple R-squared: 0.8815, Adjusted R-squared: 0.8724
## F-statistic: 96.73 on 1 and 13 DF, p-value: 2.182e-07
```

Transformasi WLS di atas menunjukan bahwa WLS belum efektif dalam mentransformasukan model regresi. Hal tersebut dikatakan demikian karena berdasarkan eksplorasi di atas, asumsi Gauss-Marcov belum terpenuhi.

Didapati model sebagai berikut.

```
\hat{Y} = 45.41058 - 0.71925X + e
```

OLS vs WLS

```
par(mfrow=c(1,2))
plot(y = rstandard(model),
    x = model$fitted.values,
    main="OLS")
abline(h=0, col="red")
plot(y = rstandard(modelweight),
    x = modelweight$fitted.values,
    main="WLS")
abline(h=0, col="red")
```


Penyesuasian pada Data

Transformasi Akar pada X, Y, atau X dan Y

```
dataakar = data7 %>% mutate(Yakar = sqrt(Y)) %>% mutate(Xakar = sqrt(X))
dataakar
```

```
## # A tibble: 15 x 4
##
          Х
                Y Yakar Xakar
##
      <dbl> <dbl> <dbl> <dbl> <
##
    1
          2
               54
                    7.35
                         1.41
    2
          5
               50
                    7.07
                          2.24
##
                    6.71 2.65
##
    3
          7
               45
                    6.08
                          3.16
##
    4
         10
               37
               35
                   5.92
                          3.74
##
    5
         14
##
    6
         19
               25
                   5
                          4.36
##
    7
         26
               20
                   4.47
                          5.10
##
    8
         31
                16
                   4
                          5.57
##
    9
         34
                18
                   4.24
                          5.83
## 10
         38
                13
                   3.61
                          6.16
                   2.83
## 11
         45
                8
                         6.71
## 12
         52
                11
                   3.32 7.21
                   2.83
## 13
                8
                          7.28
         53
## 14
         60
                 4 2
                          7.75
## 15
                 6 2.45 8.06
         65
```

```
plot(x = dataakar$Yakar)
```



```
plot(x = dataakar$Xakar, y = dataakar$Y)
```


plot(x = dataakar\$Xakar, y = dataakar\$Yakar)


```
data.sqrt = data.frame(dataakar$Xakar, dataakar$Yakar)
```

Diketahui di awal bahwa hubungan antara X dan Y cenderung membentuk pola parabola dan nilai $\mathrm{B1}<0$, sehingga diperlukan transformasi data dengan mengecilkan nilai X dan/atau Y. Transformasi mengecilkan tersebut dapat dilakukan dengan membentuk X dan/atau Y menjadi akar atau pangkat setengah dari data asli.

Uji nonformal dilakukan melalui plot hubungan Xakar dengan Y, X dengan Yakar, dan Xakar dengan Yakar. Terlihat perbedaan dari masing-masing plot, sehingga dirasa perlu untuk diadakan uji lebih lanjut dalam rangka memperoleh model terbaik. Pemeriksaan asumsi dilakukan pada data dengan sisaan paling bebas.

Model Asumsi dan Pemeriksaannya

Xakar dengan Y

```
modelXakar = lm(formula = dataakar$Y ~ dataakar$Xakar)
summary(modelXakar)

##
## Call:
## lm(formula = dataakar$Y ~ dataakar$Xakar)
##
```

```
## Residuals:
##
       Min
                1Q Median
                                 30
                                        Max
  -4.4518 -2.8559 0.7657 2.0035
                                    5.2422
##
## Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
##
                   63.2250
                                2.2712
                                         27.84 5.67e-13 ***
## (Intercept)
                                0.4097 -18.91 7.68e-11 ***
## dataakar$Xakar -7.7481
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 3.262 on 13 degrees of freedom
## Multiple R-squared: 0.9649, Adjusted R-squared: 0.9622
## F-statistic: 357.7 on 1 and 13 DF, p-value: 7.684e-11
Didapati model sebagai berikut.
                                  \hat{Y} = 63.2250 - 7.7481X^{\frac{1}{2}} + e
```

Dilakukan Durbin-Watson test

```
dwtest(modelXakar)
```

```
##
## Durbin-Watson test
##
## data: modelXakar
## DW = 1.1236, p-value = 0.01422
## alternative hypothesis: true autocorrelation is greater than 0
```

Estimate Std. Error t value Pr(>|t|)

0.201677

Diperoleh nilai p-value = 0.01422 < alpha = 0.05, sehingga tolak H0. Pada taraf 5% terdapat cukup bukti untuk menyatakan bahwa sisaan tidak saling bebas. Hal ini mengakibatkan asumsi tidak terpenuhi sehingga model tersebut bukanlah model terbaik.

X dengan Yakar

(Intercept) 7.015455

dataakar\$X -0.081045

##

```
modelYakar = lm(formula = dataakar$Yakar ~ dataakar$X)
summary(modelYakar)
##
## Call:
## lm(formula = dataakar$Yakar ~ dataakar$X)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                     3Q
                                             Max
  -0.53998 -0.38316 -0.01727 0.36045 0.70199
##
## Coefficients:
```

0.005477 -14.80 1.63e-09 ***

34.79 3.24e-14 ***

```
## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 0.4301 on 13 degrees of freedom ## Multiple R-squared: 0.9439, Adjusted R-squared: 0.9396 ## F-statistic: 218.9 on 1 and 13 DF, p-value: 1.634e-09 Didapati model sebagai berikut. \hat{Y}^{\frac{1}{2}} = 7.015455 - 0.081045X + e
```

Dilakukan Durbin-Watson test

```
dwtest(modelYakar)
```

```
##
## Durbin-Watson test
##
## data: modelYakar
## DW = 1.2206, p-value = 0.02493
## alternative hypothesis: true autocorrelation is greater than 0
```

Dari uji Durbin-Watson didapati bahwa p-value = 0.02493 < alpha = 0.05, tolak H0. Pada taraf 5% terdapat cukup bukti menyatakan bahwa sisaan tidak saling bebas. Hal ini mengakibatkan asumsi tidak terpenuhi sehingga model tersebut bukanlah model terbaik.

Xakar dengan Yakar

```
modelXYakar = lm(formula = dataakar$Yakar ~ dataakar$Xakar)
summary(modelXYakar)
```

```
##
## Call:
## lm(formula = dataakar$Yakar ~ dataakar$Xakar)
## Residuals:
                 1Q
                     Median
## -0.42765 -0.17534 -0.05753 0.21223 0.46960
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                  8.71245
                             0.19101
                                      45.61 9.83e-16 ***
## dataakar$Xakar -0.81339
                             0.03445 -23.61 4.64e-12 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.2743 on 13 degrees of freedom
## Multiple R-squared: 0.9772, Adjusted R-squared: 0.9755
## F-statistic: 557.3 on 1 and 13 DF, p-value: 4.643e-12
```

Didapati model sebagai berikut.

$$\hat{Y}^{\frac{1}{2}} = 8.71245 - 0.81339X^{\frac{1}{2}} + e$$

Dilakukan Durbin-Watson test

dwtest(modelXYakar)

```
##
## Durbin-Watson test
##
## data: modelXYakar
## DW = 2.6803, p-value = 0.8629
## alternative hypothesis: true autocorrelation is greater than 0
```

Dari Durbin-Watson test didapati bahwa p-value = 0.8629 > alpha = 0.05, tak tolak H0. Pada taraf nyata 5%, belum cukup bukti untuk menyatakan bahwa sisaan tidak saling bebas. Berdasarkan uji autokorelasi tersebut (Durbin-Watson test) diperoleh hasil bahwa sisaan saling bebas. Namun masih perlu diperiksa dengan uji asumsi lain untuk memastikan bahwa model tersebut merupakan model terbaik.

plot(modelXYakar)

1. Harapan sisaan sama dengan nol

p-value = 1 > alpha = 0.05, tak tolak H0. Pada taraf nyata 5%, belum terdapat cukup bukti untuk menyatakan bahwa nilai harapan sisaan tidak sama dengan 0.

2. Ragam sisaan homogen

ncvTest(modelXYakar)

```
## Non-constant Variance Score Test
## Variance formula: ~ fitted.values
## Chisquare = 2.160411, Df = 1, p = 0.14161
```

p-value = 0.14161 > alpha = 0.05, tak tolak H0. Pada taraf nyata 5%, belum terdapat cukup bukti untuk menyatakan bahwa ragam sisaan tidak homogen.

3. Sisaan saling bebas

```
sisaan.modelXYakar = resid(modelXYakar)
(norm.modelXYakar = lillie.test(sisaan.modelXYakar))
```

```
##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: sisaan.modelXYakar
## D = 0.11948, p-value = 0.817
```

p-value = 0.817 > alpha = 0.05, tak tolak H0. Pada taraf nyata 5%, belum terdapat cukup bukti untuk menyatakan bahwa sisaan tidak saling bebas.

Karena ketiga asumsi di atas terpenuhi, maka asumsi Gauss-Marcov terpenuhi.

Kesimpulan dan Transformasi Balik

Setelah melalui berbagai transformasi, didapati bahwa model terbaik dipenuhi ketika variabel X dan Y keduanya ditransformasi ke dalam bentuk akar atau pangkat 1/2. Dikatakan demikian karena semua asumsi dalam analisis regresi linear sederhana dapat terpenuhi. Model terbaik untuk data ini adalah

$$\hat{Y}^{\frac{1}{2}} = 8.71245 - 0.81339X^{\frac{1}{2}} + e$$

Perlu dilakukan transformasi balik pada model tersebut agar model tersebut dapat digunakan untuk menjelaskan peubah respons sebelum transformasi. Transformasi balik dilakukan dengan proses matematika yaitu dengan melakukan pemangkatan 2 pada model tersebut dengan mengutamakan pengubahan peubah respons terlebih dahulu.

$$\hat{Y} = (8.71245 - 0.81339X^{\frac{1}{2}} + e)^2$$

Interpretasi: model tersebut menunjukkan hubungan terbalik antara \hat{Y} dengan $X^{\frac{1}{2}}$ sebagai hubungan kuadratik. Nilai $X^{\frac{1}{2}}$ yang semakin besar akan mengakibatkan semakin kecilnya nilai rata-rata \hat{Y} . Jika 0 berada dalam selang amatan dan $X^{\frac{1}{2}}$ bernilai 0, akan mengakibatkan nilai rata-rata \hat{Y} sebesar 8.71245. Kenaikan satu satuan $X^{\frac{1}{2}}$ akan menurunkan nilai rata-rata \hat{Y} sebesar 0.81339.