By subtracting Equation (3) from Equation (1) we get

$$v^*K_S u = A - iB.$$

Then

$$u^*K_S^*v = \overline{v^*K_Su} = \overline{A - iB} = A + iB = u^*K_Sv,$$

for all $u, v \in \mathbb{C}^*$, which implies $K_S^* = K_S$.

If the map $\kappa \colon X \times X \to \mathbb{R}$ is real-valued, then we have the following criterion for κ to be a positive definite kernel that only involves real vectors.

Proposition 53.3. If $\kappa: X \times X \to \mathbb{R}$, then κ is a positive definite kernel iff for any finite subset $S = \{x_1, \ldots, x_p\}$ of X, the $p \times p$ real matrix K_S given by

$$K_S = (\kappa(x_k, x_j))_{1 \le j, k \le p}$$

is symmetric, that is, $K_S^{\top} = K_S$, and

$$u^{\top} K_S u = \sum_{i,k=1}^p \kappa(x_j, x_k) u_j u_k \ge 0, \quad \text{for all } u \in \mathbb{R}^p.$$

Proof. If κ is a real-valued positive definite kernel, then the proposition is a trivial consequence of Proposition 53.2.

For the converse assume that κ is symmetric and that it satisfies the second condition of the proposition. We need to show that κ is a positive definite kernel with respect to complex vectors. If we write $u_k = a_k + ib_k$, then

$$u^*K_S u = \sum_{j,k=1}^p \kappa(x_j, x_k)(a_j + ib_j)(a_k - ib_k)$$

$$= \sum_{j,k=1}^p (a_j a_k + b_j b_k)\kappa(x_j, x_k) + i \sum_{j,k=1}^p (b_j a_k - a_j b_k)\kappa(x_j, x_k)$$

$$= \sum_{j,k=1}^p (a_j a_k + b_j b_k)\kappa(x_j, x_k) + i \sum_{1 \le j < k \le p} b_j a_k(\kappa(x_j, x_k) - \kappa(x_k, x_j)).$$

Thus u^*K_Su is real iff K_S is symmetric.

Consequently we make the following definition.

Definition 53.3. Let X be a nonempty set. A function $\kappa \colon X \times X \to \mathbb{R}$ is a *(real) positive definite kernel* if $\kappa(x,y) = \kappa(y,x)$ for all $x,y \in X$, and for every finite subset $S = \{x_1,\ldots,x_p\}$ of X, if K_S is the $p \times p$ real symmetric matrix

$$K_S = (\kappa(x_i, x_j))_{1 \le i, j \le p},$$