Cryptography Lecture 7

Arkady Yerukhimovich

September 18, 2024

Outline

- 1 Lecture 6 Review
- 2 Pseudorandom Function (PRF) (Chapter 3.5.1)
- 3 Constructing CPA-Secure Encryption (Chapter 3.5.2)
- 4 Security of PRF+OTP (Chapter 3.5.2)

Lecture 6 Review

- Reductions, reductions, reductions
- Security of PRG+OTP
- CPA-Secure Encryption

Defining CPA-Secure Encryption

Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ be an encryption scheme. Consider the following game between an adversary \mathcal{A} and a challenger:

$\mathsf{PrivK}^{cpa}_{\mathcal{A},\Pi}(n)$

- The challenger chooses $k \leftarrow \mathsf{Gen}(1^n)$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}(1^n)$ outputs m_0, m_1 such that $|m_0| = |m_1|$.
- The challenger chooses $b \leftarrow \{0,1\}$, computes $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to $\mathcal A$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}$ outputs a guess bit b'
- We say that $\operatorname{PrivK}_{\mathcal{A},\Pi}^{cpa}(n)=1$ (i.e., \mathcal{A} wins) if b'=b.

Definition: An encryption scheme $\Pi=$ (Gen, Enc, Dec) with message space $\mathcal M$ is CPA-secure if for all PPT $\mathcal A$ it holds that

$$\Pr[\mathsf{PrivK}^{\mathit{cpa}}_{\mathcal{A},\Pi}(n) = 1] \leq 1/2 + \mathsf{negl}(n)$$

4/32

How to Construct CPA-Secure Encryption

- Recall that PRG+OTP encryption allowed us to encrypt long messages.
- But, it still revealed if same message was encrypted many times.

How to Construct CPA-Secure Encryption

- Recall that PRG+OTP encryption allowed us to encrypt long messages.
- But, it still revealed if same message was encrypted many times.

Key Idea

What if encryption (and decryption) could generate a different OTP for each ciphertext?

How to Construct CPA-Secure Encryption

- Recall that PRG+OTP encryption allowed us to encrypt long messages.
- But, it still revealed if same message was encrypted many times.

Key Idea

What if encryption (and decryption) could generate a different OTP for each ciphertext?

Note: We need to produce enough OTP's for as many encryptions as \mathcal{A} wants. So, can't just pre-generate them all.

Outline

- Lecture 6 Review
- 2 Pseudorandom Function (PRF) (Chapter 3.5.1)
- 3 Constructing CPA-Secure Encryption (Chapter 3.5.2)
- 4 Security of PRF+OTP (Chapter 3.5.2)

Consider a function $f:\{0,1\}^n \to \{0,1\}^n$

Х	f(x)
0000	
0001	
:	
1111	

Consider a function $f:\{0,1\}^n \to \{0,1\}^n$

X	f(x)
0000	
0001	
:	
1111	

Choosing a random function:

Consider a function $f:\{0,1\}^n \to \{0,1\}^n$

×	f(x)
0000	1010
0001	
:	
1111	

Choosing a random function:

Consider a function $f:\{0,1\}^n \to \{0,1\}^n$

×	f(x)
0000	1010
0001	0001
:	
1111	

Choosing a random function:

Consider a function $f: \{0,1\}^n \to \{0,1\}^n$

×	f(x)
0000	1010
0001	0001
:	:
1111	1101

Choosing a random function:

Consider a function $f: \{0,1\}^n \to \{0,1\}^n$

X	f(x)
0000	1010
0001	0001
:	:
1111	1101

Choosing a random function:

- Choose each value f(x) independently and uniformly at random from $\{0,1\}^n$
- This is the same as choosing a uniformly random function from the set of all *n*-bit to *n*-bit functions

Key feature

- Key feature
 - If haven't queried value of f at x, f(x) is uniformly random.

- Key feature
 - If haven't queried value of f at x, f(x) is uniformly random.
 - Informally, this gives you 2ⁿ OTPs

- Key feature
 - If haven't queried value of f at x, f(x) is uniformly random.
 - Informally, this gives you 2ⁿ OTPs
- Just one problem

- Key feature
 - If haven't queried value of f at x, f(x) is uniformly random.
 - Informally, this gives you 2ⁿ OTPs
- Just one problem
 - Evaluating random functions is terribly inefficient

- Key feature
 - If haven't queried value of f at x, f(x) is uniformly random.
 - Informally, this gives you 2ⁿ OTPs
- Just one problem
 - Evaluating random functions is terribly inefficient
 - Can't even efficiently specify a random function

- Key feature
 - If haven't queried value of f at x, f(x) is uniformly random.
 - Informally, this gives you 2ⁿ OTPs
- Just one problem
 - Evaluating random functions is terribly inefficient
 - Can't even efficiently specify a random function
 - Each cell in function table has 2ⁿ possibilities

- Key feature
 - If haven't queried value of f at x, f(x) is uniformly random.
 - Informally, this gives you 2ⁿ OTPs
- Just one problem
 - Evaluating random functions is terribly inefficient
 - Can't even efficiently specify a random function
 - Each cell in function table has 2ⁿ possibilities
 - There are 2ⁿ cells

- Key feature
 - If haven't queried value of f at x, f(x) is uniformly random.
 - Informally, this gives you 2ⁿ OTPs
- Just one problem
 - Evaluating random functions is terribly inefficient
 - Can't even efficiently specify a random function
 - Each cell in function table has 2ⁿ possibilities
 - There are 2ⁿ cells
 - Thus, there are $|\mathcal{F}_n|=(2^n)^{(2^n)}=2^{n2^n}$ possible functions

- Key feature
 - If haven't queried value of f at x, f(x) is uniformly random.
 - Informally, this gives you 2ⁿ OTPs
- Just one problem
 - Evaluating random functions is terribly inefficient
 - Can't even efficiently specify a random function
 - Each cell in function table has 2ⁿ possibilities
 - There are 2ⁿ cells
 - Thus, there are $|\mathcal{F}_n| = (2^n)^{(2^n)} = 2^{n2^n}$ possible functions
 - Writing down a random f from \mathcal{F}_n requires $\log |\mathcal{F}_n| = n2^n$ bits

- Key feature
 - If haven't queried value of f at x, f(x) is uniformly random.
 - Informally, this gives you 2ⁿ OTPs
- Just one problem
 - Evaluating random functions is terribly inefficient
 - Can't even efficiently specify a random function
 - Each cell in function table has 2ⁿ possibilities
 - There are 2ⁿ cells
 - Thus, there are $|\mathcal{F}_n| = (2^n)^{(2^n)} = 2^{n2^n}$ possible functions
 - Writing down a random f from \mathcal{F}_n requires $\log |\mathcal{F}_n| = n2^n$ bits

Question:

How can we get the benefits of a random function without paying the overhead?

PRF Goals

Construct an efficient, keyed function $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ such that:

PRF Goals

Construct an efficient, keyed function $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ such that:

• $F_k(\cdot)$ is efficiently computable

Arkady Yerukhimovich

PRF Goals

Construct an efficient, keyed function $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ such that:

- $F_k(\cdot)$ is efficiently computable
- For a random key $k \leftarrow \{0,1\}^n$, $F_k(\cdot)$ looks like a random function from n bits to n bits (to someone who doesn't know k).

Let $F:\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a deterministic, keyed, poly-time function.

Let $F:\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a deterministic, keyed, poly-time function.

$PRF_{\mathcal{D},F}(n)$

• The challenger chooses $b \leftarrow \{0,1\}$.

Let $F:\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a deterministic, keyed, poly-time function.

$PRF_{\mathcal{D},F}(n)$

• The challenger chooses $b \leftarrow \{0,1\}$. If b=0, he chooses $f \leftarrow \mathcal{F}_n$ and gives \mathcal{D} an oracle $\mathcal{O}=f$.

Let $F:\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a deterministic, keyed, poly-time function.

$PRF_{\mathcal{D},F}(n)$

• The challenger chooses $b \leftarrow \{0,1\}$.

If b = 0, he chooses $f \leftarrow \mathcal{F}_n$ and gives \mathcal{D} an oracle $\mathcal{O} = f$.

if b=1, he chooses $k \leftarrow \{0,1\}^n$, and gives $\mathcal D$ an oracle $\mathcal O = \mathcal F_k$.

Let $F:\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a deterministic, keyed, poly-time function.

$PRF_{\mathcal{D},F}(n)$

- The challenger chooses $b \leftarrow \{0, 1\}$. If b = 0, he chooses $f \leftarrow \mathcal{F}_n$ and gives \mathcal{D} an oracle $\mathcal{O} = f$. if b = 1, he chooses $k \leftarrow \{0, 1\}^n$, and gives \mathcal{D} an oracle $\mathcal{O} = \mathcal{F}_k$.
- With access to oracle \mathcal{O} , the distinguisher \mathcal{D} outputs a bit b'

Let $F:\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a deterministic, keyed, poly-time function.

$PRF_{\mathcal{D},F}(n)$

- The challenger chooses $b \leftarrow \{0, 1\}$. If b = 0, he chooses $f \leftarrow \mathcal{F}_n$ and gives \mathcal{D} an oracle $\mathcal{O} = f$. if b = 1, he chooses $k \leftarrow \{0, 1\}^n$, and gives \mathcal{D} an oracle $\mathcal{O} = \mathcal{F}_k$.
- With access to oracle \mathcal{O} , the distinguisher \mathcal{D} outputs a bit b'
- $PRF_{\mathcal{D},F}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

Let $F:\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a deterministic, keyed, poly-time function.

$PRF_{\mathcal{D},F}(n)$

- The challenger chooses $b \leftarrow \{0,1\}$. If b=0, he chooses $f \leftarrow \mathcal{F}_n$ and gives \mathcal{D} an oracle $\mathcal{O}=f$. if b=1, he chooses $k \leftarrow \{0,1\}^n$, and gives \mathcal{D} an oracle $\mathcal{O}=F_k$.
- With access to oracle \mathcal{O} , the distinguisher \mathcal{D} outputs a bit b'
- $PRF_{\mathcal{D},F}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

Definition: F is a secure PRF if for all PPT distinguishers \mathcal{D} , it holds that

$$\Pr[PRF_{\mathcal{D},F}(n)=1] \leq 1/2 + \operatorname{negl}(n)$$

Let $F:\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a deterministic, keyed, poly-time function.

$PRF_{\mathcal{D},F}(n)$

- The challenger chooses $b \leftarrow \{0, 1\}$. If b = 0, he chooses $f \leftarrow \mathcal{F}_n$ and gives \mathcal{D} an oracle $\mathcal{O} = f$. if b = 1, he chooses $k \leftarrow \{0, 1\}^n$, and gives \mathcal{D} an oracle $\mathcal{O} = \mathcal{F}_k$.
- With access to oracle \mathcal{O} , the distinguisher \mathcal{D} outputs a bit b'
- $PRF_{\mathcal{D},F}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

Definition: F is a secure PRF if for all PPT distinguishers \mathcal{D} , it holds that

$$\Pr[PRF_{\mathcal{D},F}(n)=1] \leq 1/2 + \operatorname{negl}(n)$$

 \mathcal{D} cannot distinguish between oracle access to a random function and oracle access to a PRF (for a key k he doesn't know).

10 / 32

Observations

Observations:

ullet ${\mathcal D}$ can make polynomially many queries to ${\mathcal O}$

Observations

Observations:

- ullet ${\cal D}$ can make polynomially many queries to ${\cal O}$
- ullet ${\cal D}$ can choose its queries adaptively based on results of earlier queries

Observations

Observations:

- ullet ${\cal D}$ can make polynomially many queries to ${\cal O}$
- $oldsymbol{ ilde{\mathcal{D}}}$ can choose its queries adaptively based on results of earlier queries
- The set of polynomially many evaluations of $F_k(\cdot)$ must look random

Observations:

- ullet ${\cal D}$ can make polynomially many queries to ${\cal O}$
- $\,\bullet\,\, \mathcal{D}$ can choose its queries adaptively based on results of earlier queries
- ullet The set of polynomially many evaluations of $F_k(\cdot)$ must look random
- Clearly, this is not possible if \mathcal{D} knows k

I Compute
$$-F_{\kappa}(o^{n})=y_{1}$$
 $2)$ $\Theta(o^{n})=y_{2}$

i) if $y_{1}=y_{2}$ output PRF

Arkady Yerukhimovich Cryptography September 18, 2024 11/32

Example: Is the following F a secure PRF?

$$F_k(x) = k \oplus x$$

Example: Is the following F a secure PRF?

$$F_k(x) = k \oplus x$$

Pseudorandomness:

Example: Is the following F a secure PRF?

$$F_k(x) = k \oplus x$$

Pseudorandomness:

• If k is random, $F_k(x) = k \oplus x$ is random when evaluated once

Example: Is the following F a secure PRF?

$$F_k(x) = k \oplus x$$

Pseudorandomness:

- If k is random, $F_k(x) = k \oplus x$ is random when evaluated once
- But, consider $F_k(x_1) = k \oplus x_1$ and $F_k(x_2) = k \oplus x_2$:

Example: Is the following F a secure PRF?

$$F_k(x) = k \oplus x$$

Pseudorandomness:

- If k is random, $F_k(x) = k \oplus x$ is random when evaluated once
- But, consider $F_k(x_1) = k \oplus x_1$ and $F_k(x_2) = k \oplus x_2$:

$$F_k(x_1) \oplus F_k(x_2) = (k \oplus x_1) \oplus (k \oplus x_2) = (x_1 \oplus x_2)$$

Example: Is the following F a secure PRF?

$$F_k(x) = k \oplus x$$

Pseudorandomness:

- If k is random, $F_k(x) = k \oplus x$ is random when evaluated once
- But, consider $F_k(x_1) = k \oplus x_1$ and $F_k(x_2) = k \oplus x_2$:

$$F_k(x_1) \oplus F_k(x_2) = (k \oplus x_1) \oplus (k \oplus x_2) = (x_1 \oplus x_2)$$

• Given oracle \mathcal{O} (either f or F_k), \mathcal{D} evaluates $y_1 = \mathcal{O}(x_1)$ and $y_2 = \mathcal{O}(x_2)$ and outputs 1 (PRF) if $(y_1 \oplus y_2) = (x_1 \oplus x_2)$ and 0 if not.

Example: Is the following F a secure PRF?

$$F_k(x) = k \oplus x$$

Pseudorandomness:

- If k is random, $F_k(x) = k \oplus x$ is random when evaluated once
- But, consider $F_k(x_1) = k \oplus x_1$ and $F_k(x_2) = k \oplus x_2$:

$$F_k(x_1) \oplus F_k(x_2) = (k \oplus x_1) \oplus (k \oplus x_2) = (x_1 \oplus x_2)$$

- Given oracle \mathcal{O} (either f or F_k), \mathcal{D} evaluates $y_1 = \mathcal{O}(x_1)$ and $y_2 = \mathcal{O}(x_2)$ and outputs 1 (PRF) if $(y_1 \oplus y_2) = (x_1 \oplus x_2)$ and 0 if not.
 - If $\mathcal{O} = F_k$, then $(y_1 \oplus y_2) = (x_1 \oplus x_2)$ with probability 1

Example: Is the following F a secure PRF?

$$F_k(x) = k \oplus x$$

Pseudorandomness:

- If k is random, $F_k(x) = k \oplus x$ is random when evaluated once
- But, consider $F_k(x_1) = k \oplus x_1$ and $F_k(x_2) = k \oplus x_2$:

$$F_k(x_1) \oplus F_k(x_2) = (k \oplus x_1) \oplus (k \oplus x_2) = (x_1 \oplus x_2)$$

- Given oracle \mathcal{O} (either f or F_k), \mathcal{D} evaluates $y_1 = \mathcal{O}(x_1)$ and $y_2 = \mathcal{O}(x_2)$ and outputs 1 (PRF) if $(y_1 \oplus y_2) = (x_1 \oplus x_2)$ and 0 if not.
 - If $\mathcal{O} = F_k$, then $(y_1 \oplus y_2) = (x_1 \oplus x_2)$ with probability 1
 - If $\mathcal{O} = f$, then $(y_1 \oplus y_2) = (x_1 \oplus x_2)$ with probability $1/2^n$

Example: Is the following F a secure PRF?

$$F_k(x) = k \oplus x$$

Pseudorandomness:

- If k is random, $F_k(x) = k \oplus x$ is random when evaluated once
- But, consider $F_k(x_1) = k \oplus x_1$ and $F_k(x_2) = k \oplus x_2$:

$$F_k(x_1) \oplus F_k(x_2) = (k \oplus x_1) \oplus (k \oplus x_2) = (x_1 \oplus x_2)$$

- Given oracle \mathcal{O} (either f or F_k), \mathcal{D} evaluates $y_1 = \mathcal{O}(x_1)$ and $y_2 = \mathcal{O}(x_2)$ and outputs 1 (PRF) if $(y_1 \oplus y_2) = (x_1 \oplus x_2)$ and 0 if not.
 - If $\mathcal{O} = F_k$, then $(y_1 \oplus y_2) = (x_1 \oplus x_2)$ with probability 1
 - If $\mathcal{O}=f$, then $(y_1\oplus y_2)=(x_1\oplus x_2)$ with probability $1/2^n$
- So, \mathcal{D} always outputs 1 when $\mathcal{O} = F_k$ and outputs 1 with probability $1/2^n$ when $\mathcal{O} = f$.

$$Pr[D \text{ WINS}] = Pr[b = 1] \cdot 1 + Pr[b = 0] \cdot (1 - 1/2^n) > 1/2$$

Arkady Yerukhimovich Cryptography September 18, 2024 12 / 32

• Pseudorandom permutation (PRP)

- Pseudorandom permutation (PRP)
 - Recall that a permutation is a function that is one-to-one and onto with same domain and range (it shuffles the domain)

- Pseudorandom permutation (PRP)
 - Recall that a permutation is a function that is one-to-one and onto with same domain and range (it shuffles the domain)
 - A PRP is a PRF where F_k is a permutation, and for security we compare to the case where f is a random permutation

- Pseudorandom permutation (PRP)
 - Recall that a permutation is a function that is one-to-one and onto with same domain and range (it shuffles the domain)
 - A PRP is a PRF where F_k is a permutation, and for security we compare to the case where f is a random permutation
- Strong PRP

- Pseudorandom permutation (PRP)
 - Recall that a permutation is a function that is one-to-one and onto with same domain and range (it shuffles the domain)
 - A PRP is a PRF where F_k is a permutation, and for security we compare to the case where f is a random permutation
- Strong PRP
 - Note that a permutation is always *invertible*. For every permutation f, there is a permutation f^{-1} .

- Pseudorandom permutation (PRP)
 - Recall that a permutation is a function that is one-to-one and onto with same domain and range (it shuffles the domain)
 - A PRP is a PRF where F_k is a permutation, and for security we compare to the case where f is a random permutation
- Strong PRP
 - Note that a permutation is always *invertible*. For every permutation f, there is a permutation f^{-1} .
 - In a strong PRP, we give \mathcal{D} access to oracles for both f and f^{-1} . \mathcal{D} still should not be able to distinguish from a PRP from a random permutation even using both oracles.

- Pseudorandom permutation (PRP)
 - Recall that a *permutation* is a function that is one-to-one and onto with same domain and range (it shuffles the domain)
 - A PRP is a PRF where F_k is a permutation, and for security we compare to the case where f is a random permutation

Strong PRP

- Note that a permutation is always *invertible*. For every permutation f, there is a permutation f^{-1} .
- In a strong PRP, we give \mathcal{D} access to oracles for both f and f^{-1} . \mathcal{D} still should not be able to distinguish from a PRP from a random permutation even using both oracles.
- In applied crypto, this is often called a blockcipher.

Relationship Between PRG and PRF

Goals:

- Clearly, PRG and PRF have similar goals
- Both construct random-looking objects
- Both use this to "create randomness"

Relationship Between PRG and PRF

Goals:

- Clearly, PRG and PRF have similar goals
- Both construct random-looking objects
- Both use this to "create randomness"

Relationships:

- Not hard to show that a PRF can be used to build a PRG
- In fact, PRG can also be used to build a PRF
- But, important to remember the differences in functionalities and security definitions

Outline

- 1 Lecture 6 Review
- 2 Pseudorandom Function (PRF) (Chapter 3.5.1)
- 3 Constructing CPA-Secure Encryption (Chapter 3.5.2)
- 4 Security of PRF+OTP (Chapter 3.5.2)

PRF+OTP Encryption

• $Gen(1^n)$: $k \leftarrow \{0,1\}^n$

PRF+OTP Encryption

- $Gen(1^n)$: $k \leftarrow \{0,1\}^n$
- Enc(k, m): Choose $r \leftarrow \{0,1\}^n$, output $c = (r, F_k(r) \oplus m)$

Arkady Yerukhimovich Cryptography September 18, 2024 16 / 32

PRF+OTP Encryption

- $Gen(1^n)$: $k \leftarrow \{0,1\}^n$
- Enc(k, m): Choose $r \leftarrow \{0,1\}^n$, output $c = (r, F_k(r) \oplus m)$
- Dec(k, c): Parse c as (r, c'), compute $m = F_k(r) \oplus c'$

PRF+OTP Encryption

- $Gen(1^n)$: $k \leftarrow \{0,1\}^n$
- Enc(k, m): Choose $r \leftarrow \{0,1\}^n$, output $c = (r, F_k(r) \oplus m)$
- Dec(k, c): Parse c as (r, c'), compute $m = F_k(r) \oplus c'$

Intuition:

• $F_k(r)$ serves as a per-ciphertext OTP

PRF+OTP Encryption

- $Gen(1^n)$: $k \leftarrow \{0,1\}^n$
- Enc(k, m): Choose $r \leftarrow \{0,1\}^n$, output $c = (r, F_k(r) \oplus m)$
- Dec(k, c): Parse c as (r, c'), compute $m = F_k(r) \oplus c'$

Intuition:

- $F_k(r)$ serves as a per-ciphertext OTP
- Need to include r in c to enable decryption, but this is ok since r doesn't reveal anything about m

PRF+OTP Encryption

- $Gen(1^n)$: $k \leftarrow \{0,1\}^n$
- Enc(k, m): Choose $r \leftarrow \{0,1\}^n$, output $c = (r, F_k(r) \oplus m)$
- Dec(k, c): Parse c as (r, c'), compute $m = F_k(r) \oplus c'$

Intuition:

- $F_k(r)$ serves as a per-ciphertext OTP
- Need to include r in c to enable decryption, but this is ok since r doesn't reveal anything about m
- Only get computational security due to the use of a PRF

PRF+OTP Encryption

- $Gen(1^n)$: $k \leftarrow \{0,1\}^n$
- Enc(k, m): Choose $r \leftarrow \{0,1\}^n$, output $c = (r, F_k(r) \oplus m)$
- Dec(k, c): Parse c as (r, c'), compute $m = F_k(r) \oplus c'$

Intuition:

- $F_k(r)$ serves as a per-ciphertext OTP
- Need to include r in c to enable decryption, but this is ok since r doesn't reveal anything about m
- Only get computational security due to the use of a PRF

Why Is This Secure?

Consider what happens if we use a random function instead of F_k

Arkady Yerukhimovich Cryptography September 18, 2024 16 / 32

Outline

- 1 Lecture 6 Review
- 2 Pseudorandom Function (PRF) (Chapter 3.5.1)
- 3 Constructing CPA-Secure Encryption (Chapter 3.5.2)
- 4 Security of PRF+OTP (Chapter 3.5.2)

PRF+OTP Encryption (Π)

- $Gen(1^n)$: $k \leftarrow \{0,1\}^n$
- Enc(k, m): Choose $r \leftarrow \{0,1\}^n$, output $c = (r, F_k(r) \oplus m)$
- Dec(k, c): Parse c as (r, c'), compute $m = F_k(r) \oplus c'$

Theorem

If F is a secure PRF, then PRF+OTP is CPA-secure

To prove security from a PRF, we often do the following:

To prove security from a PRF, we often do the following:

① Consider the scheme where F_k is replaced by a random function f

To prove security from a PRF, we often do the following:

- **①** Consider the scheme where F_k is replaced by a random function f
 - ullet Show by reduction to security of PRF, that ${\cal A}$ can't tell we made this change.

To prove security from a PRF, we often do the following:

- **①** Consider the scheme where F_k is replaced by a random function f
 - Show by reduction to security of PRF, that ${\cal A}$ can't tell we made this change.
 - So, A's success probability must be (essentially) the same in this and original variant.

Proof Technique

To prove security from a PRF, we often do the following:

- **①** Consider the scheme where F_k is replaced by a random function f
 - ullet Show by reduction to security of PRF, that ${\cal A}$ can't tell we made this change.
 - ullet So, \mathcal{A} 's success probability must be (essentially) the same in this and original variant.
- ② Use a probabilistic argument to prove that scheme is unconditionally secure when using a random function f.

Proof Technique

To prove security from a PRF, we often do the following:

- **①** Consider the scheme where F_k is replaced by a random function f
 - Show by reduction to security of PRF, that ${\cal A}$ can't tell we made this change.
 - ullet So, \mathcal{A} 's success probability must be (essentially) the same in this and original variant.
- ② Use a probabilistic argument to prove that scheme is unconditionally secure when using a random function f.
 - Random function is essentially a collection of 2^n OTPs

Proof Technique

To prove security from a PRF, we often do the following:

- **①** Consider the scheme where F_k is replaced by a random function f
 - Show by reduction to security of PRF, that ${\cal A}$ can't tell we made this change.
 - ullet So, \mathcal{A} 's success probability must be (essentially) the same in this and original variant.
- ② Use a probabilistic argument to prove that scheme is unconditionally secure when using a random function f.
 - Random function is essentially a collection of 2^n OTPs
 - Proof is similar to proof of OTP, but need to account for probability of collision in r

Security of PRF+OTP: Step 1

Define the following encryption scheme $\tilde{\Pi}$:

Π Encryption Scheme

- $\widetilde{\mathsf{Gen}}(1^n)$: $f \leftarrow \mathcal{F}_n$ (the set of functions $\{0,1\}^n \to \{0,1\}^n$)
- Enc(k, m): Choose $r \leftarrow \{0,1\}^n$, output $c = (r, f(r) \oplus m)$
- $\widetilde{\mathsf{Dec}}(k,c)$: Parse c as (r,c'), compute $m=f(r)\oplus c'$

Security of PRF+OTP: Step 1

Define the following encryption scheme $\tilde{\Pi}$:

Π Encryption Scheme

- $\widetilde{\mathsf{Gen}}(1^n)$: $f \leftarrow \mathcal{F}_n$ (the set of functions $\{0,1\}^n \to \{0,1\}^n$)
- Enc(k, m): Choose $r \leftarrow \{0,1\}^n$, output $c = (r, f(r) \oplus m)$
- $\widetilde{\mathsf{Dec}}(k,c)$: Parse c as (r,c'), compute $m=f(r)\oplus c'$
- Observe that this is exactly PRF+OTP with F_k replaced by f
- This encryption is not efficient as we cannot evaluate a random function
- But, it is useful as a "thought experiment" in the proof as it gives us a target for security

Security of PRF+OTP: Step 1

Π Encryption Scheme

- Gen(1ⁿ): $f \leftarrow \mathcal{F}_n$ (the set of functions $\{0,1\}^n \rightarrow \{0,1\}^n$)
- $\operatorname{Enc}(k, m)$: Choose $r \leftarrow \{0, 1\}^n$, output $c = (r, f(r) \oplus m)$
- $\widetilde{\mathrm{Dec}}(k,c)$: Parse c as (r,c'), compute $m=f(r)\oplus c'$

Lemma: For any PPT A asking at most q(n) encryption queries

$$\left| \mathsf{Pr}[\mathit{PrivK}^{\mathit{cpa}}_{\mathcal{A},\Pi}(n) = 1] - \mathsf{Pr}[\mathit{PrivK}^{\mathit{cpa}}_{\mathcal{A},\tilde{\Pi}}(n) = 1] \right| \leq \mathsf{negl}(n)$$

Lemma

For any PPT A asking at most q(n) encryption queries

$$\left| \mathsf{Pr}[\mathit{PrivK}^{\mathit{cpa}}_{\mathcal{A},\Pi}(\mathit{n}) = 1] - \mathsf{Pr}[\mathit{PrivK}^{\mathit{cpa}}_{\mathcal{A},\tilde{\Pi}}(\mathit{n}) = 1] \right| \leq \mathsf{negl}(\mathit{n})$$

Lemma

For any PPT \mathcal{A} asking at most q(n) encryption queries

$$\left| \mathsf{Pr}[\mathit{Priv} \mathcal{K}^{\mathit{cpa}}_{\mathcal{A},\Pi}(n) = 1] - \mathsf{Pr}[\mathit{Priv} \mathcal{K}^{\mathit{cpa}}_{\mathcal{A}, ilde{\Pi}}(n) = 1] \right| \leq \mathsf{negl}(n)$$

We prove this lemma by reduction:

Lemma

For any PPT A asking at most q(n) encryption queries

$$\left| \mathsf{Pr}[\mathit{PrivK}^{\mathit{cpa}}_{\mathcal{A},\Pi}(\mathit{n}) = 1] - \mathsf{Pr}[\mathit{PrivK}^{\mathit{cpa}}_{\mathcal{A},\tilde{\Pi}}(\mathit{n}) = 1] \right| \leq \mathsf{negl}(\mathit{n})$$

We prove this lemma by reduction:

• Assume there is a PPT \mathcal{A}_c making q(n) queries that distinguishes between Π and $\tilde{\Pi}$

Lemma

For any PPT \mathcal{A} asking at most q(n) encryption queries

$$\left| \mathsf{Pr}[\mathit{PrivK}^{\mathit{cpa}}_{\mathcal{A},\Pi}(\mathit{n}) = 1] - \mathsf{Pr}[\mathit{PrivK}^{\mathit{cpa}}_{\mathcal{A},\tilde{\Pi}}(\mathit{n}) = 1] \right| \leq \mathsf{negl}(\mathit{n})$$

We prove this lemma by reduction:

- Assume there is a PPT \mathcal{A}_c making q(n) queries that distinguishes between Π and $\tilde{\Pi}$
 - A_c is a CPA-security adversary
 - What we care about is the difference in probability that \mathcal{A}_c wins the CPA-security game when playing with Π vs. $\tilde{\Pi}$.

Lemma

For any PPT A asking at most q(n) encryption queries

$$\left| \mathsf{Pr}[\mathit{PrivK}^{\mathit{cpa}}_{\mathcal{A},\Pi}(\mathit{n}) = 1] - \mathsf{Pr}[\mathit{PrivK}^{\mathit{cpa}}_{\mathcal{A},\tilde{\Pi}}(\mathit{n}) = 1] \right| \leq \mathsf{negl}(\mathit{n})$$

We prove this lemma by reduction:

- Assume there is a PPT \mathcal{A}_c making q(n) queries that distinguishes between Π and $\tilde{\Pi}$
 - A_c is a CPA-security adversary
 - What we care about is the difference in probability that \mathcal{A}_c wins the CPA-security game when playing with Π vs. $\tilde{\Pi}$.
- Use this to construct A_r that breaks PRF security of F_k

$PRF_{\mathcal{D},F}(n)$

- The challenger chooses $b \leftarrow \{0,1\}$. If b=0, he chooses $f \leftarrow \mathcal{F}_n$ and gives \mathcal{D} an oracle $\mathcal{O}=f$.
- if b=1, he chooses $k \leftarrow \{0,1\}^n$, and gives $\mathcal D$ an oracle $\mathcal O=F_k$.

 With access to oracle $\mathcal O$, the distinguisher $\mathcal D$ outputs a bit b'
- $PRF_{D,F}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

$\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n)$

- The challenger chooses $k \leftarrow \text{Gen}(1^n)$
- $A^{\text{Enc}_k(\cdot)}(1^n)$ outputs m_0, m_1 such that $|m_0| = |m_1|$.
- The challenger chooses $b \leftarrow \{0,1\}$, computes $c \leftarrow \mathsf{Enc}_k(m_b)$ and gives c to $\mathcal A$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}$ outputs a guess bit b'
- ullet We say that $\operatorname{PrivK}_{\mathcal{A},\Pi}^{\mathit{cpa}}(\mathit{n})=1$ (i.e., \mathcal{A} wins) if $\mathit{b}'=\mathit{b}$.

$PRF_{D,F}(n)$

- The challenger chooses $b \leftarrow \{0,1\}$.
- If b = 0, he chooses $f \leftarrow \mathcal{F}_n$ and gives \mathcal{D} an oracle $\mathcal{O} = f$. if b = 1, he chooses $k \leftarrow \{0, 1\}^n$, and gives \mathcal{D} an oracle $\mathcal{O} = F_{\nu}$.
- ullet With access to oracle $\mathcal O$, the distinguisher $\mathcal D$ outputs a bit b'
- $PRF_{\mathcal{D},F}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

$\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n)$

- The challenger chooses k ← Gen(1ⁿ)
- A^{Enck(·)}(1ⁿ) outputs m₀, m₁ such that |m₀| = |m₁|.
- The challenger chooses $b \leftarrow \{0,1\}$, computes $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to $\mathcal A$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}$ outputs a guess bit b'
- We say that $PrivK_{A,\Pi}^{cps}(n) = 1$ (i.e., A wins) if b' = b.

We have to consider two adversaries, \mathcal{A}_r and \mathcal{A}_c

$PRF_{D,F}(n)$

- $$\begin{split} \bullet \ \ \text{The challenger chooses } b \leftarrow \{0,1\}. \\ \text{If } b = 0, \text{ he chooses } f \leftarrow \mathcal{F}_n \text{ and gives } \mathcal{D} \text{ an oracle } \mathcal{O} = f. \\ \text{if } b = 1, \text{ he chooses } k \leftarrow \{0,1\}^n, \text{ and gives } \mathcal{D} \text{ an oracle } \mathcal{O} = F_k. \end{split}$$
- \bullet With access to oracle $\mathcal{O},$ the distinguisher \mathcal{D} outputs a bit b'
- $PRF_{D,F}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

$\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n)$

- The challenger chooses $k \leftarrow \mathsf{Gen}(1^n)$
- A^{Enc_k(·)}(1ⁿ) outputs m₀, m₁ such that |m₀| = |m₁|.
 - The challenger chooses $b \leftarrow \{0,1\}$, computes $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to $\mathcal A$
 - $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}$ outputs a guess bit b'
- We say that $PrivK_{A}^{cpa}(n) = 1$ (i.e., A wins) if b' = b.

We have to consider two adversaries, A_r and A_c

• The PRF adversary A_r :

$PRF_{D,F}(n)$

- The challenger chooses b ← {0,1}.
 If b = 0, he chooses f ← F_n and gives D an oracle O = f.
 if b = 1, he chooses k ← {0,1}ⁿ, and gives D an oracle O = F_k.
- \bullet With access to oracle \mathcal{O}_{\circ} the distinguisher \mathcal{D} outputs a bit b'
- $PRF_{D,F}(n) = 1$ (i.e., D wins) if b' = b

$\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n)$

- The challenger chooses k ← Gen(1ⁿ)
- A^{Enc_k(·)}(1ⁿ) outputs m₀, m₁ such that |m₀| = |m₁|.
 - The challenger chooses $b \leftarrow \{0,1\}$, computes $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to $\mathcal A$
 - ullet $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}$ outputs a guess bit b'
- We say that PrivK^{cpa}_{A II}(n) = 1 (i.e., A wins) if b' = b.

- The PRF adversary A_r :
 - A_r is playing the PRF security game

$PRF_{D,F}(n)$

- The challenger chooses $b \leftarrow \{0,1\}$. If b=0, he chooses $f \leftarrow \mathcal{F}_n$ and gives \mathcal{D} an oracle $\mathcal{O}=f$. if b=1, he chooses $k \leftarrow \{0,1\}^n$, and gives \mathcal{D} an oracle $\mathcal{O}=F_k$.
- ullet With access to oracle ${\mathcal O}$, the distinguisher ${\mathcal D}$ outputs a bit b'
- $PRF_{D,F}(n) = 1$ (i.e., D wins) if b' = b

$\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n)$

- The challenger chooses k ← Gen(1ⁿ)
- $A^{\mathsf{Enc}_k(\cdot)}(1^n)$ outputs m_0, m_1 such that $|m_0| = |m_1|$.
- The challenger chooses b ← {0,1}, computes c ← Enc_k(m_b) and gives c to A
- ullet $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}$ outputs a guess bit b'
- We say that $PrivK_{A,\Pi}^{cpa}(n) = 1$ (i.e., A wins) if b' = b.

- The PRF adversary A_r :
 - A_r is playing the PRF security game
 - \mathcal{A}_r is given oracle $\mathcal{O}: \{0,1\}^n \to \{0,1\}^n$ where either $\mathcal{O} = F_k(\cdot)$ (a PRF), or $\mathcal{O} = f(\cdot)$ (a random function)

$PRF_{D,F}(n)$

- The challenger chooses b ← {0,1}. If b = 0, he chooses $f \leftarrow \mathcal{F}_n$ and gives \mathcal{D} an oracle $\mathcal{O} = f$. if b = 1, he chooses $k \leftarrow \{0,1\}^n$, and gives \mathcal{D} an oracle $\mathcal{O} = F_{\nu}$.
- ullet With access to oracle \mathcal{O} , the distinguisher \mathcal{D} outputs a bit b'
- $PRF_{\mathcal{D},F}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

- The challenger chooses k ← Gen(1ⁿ)
- A^{Enck(·)}(1ⁿ) outputs m₀, m₁ such that |m₀| = |m₁|.
- The challenger chooses $b \leftarrow \{0,1\}$, computes $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to A
- A^{Enc_k(·)} outputs a guess bit b'
- We say that PrivK^{cpa}_{A,D}(n) = 1 (i.e., A wins) if b' = b.

- The PRF adversary A_r :
 - A_r is playing the PRF security game
 - \mathcal{A}_r is given oracle $\mathcal{O}: \{0,1\}^n \to \{0,1\}^n$ where either $\mathcal{O} = \mathcal{F}_k(\cdot)$ (a PRF), or $\mathcal{O} = f(\cdot)$ (a random function)
- The CPA-security adversary A_c :

$PRF_{D,F}(n)$

- The challenger chooses $b \leftarrow \{0,1\}$. If b=0, he chooses $f \leftarrow \mathcal{F}_n$ and gives \mathcal{D} an oracle $\mathcal{O}=f$. if b=1, he chooses $k \leftarrow \{0,1\}^n$, and gives \mathcal{D} an oracle $\mathcal{O}=F_k$.
- ullet With access to oracle $\mathcal O$, the distinguisher $\mathcal D$ outputs a bit b'
- $PRF_{D,F}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

$PrivK_{A,\Pi}^{cpa}(n)$

- The challenger chooses $k \leftarrow \mathsf{Gen}(1^n)$
- A^{Enc_k(·)}(1ⁿ) outputs m₀, m₁ such that |m₀| = |m₁|.
- The challenger chooses b ← {0,1}, computes c ← Enc_k(m_b) and gives c to A
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}$ outputs a guess bit b'
- We say that $PrivK_{A,\Pi}^{cpa}(n) = 1$ (i.e., A wins) if b' = b.

- The PRF adversary A_r :
 - A_r is playing the PRF security game
 - \mathcal{A}_r is given oracle $\mathcal{O}: \{0,1\}^n \to \{0,1\}^n$ where either $\mathcal{O} = F_k(\cdot)$ (a PRF), or $\mathcal{O} = f(\cdot)$ (a random function)
- The CPA-security adversary A_c :
 - \mathcal{A}_c plays the CPA-security game against either Π or $\tilde{\Pi}$

$PRF_{D,F}(n)$

- The challenger chooses b ← {0,1}. If b = 0, he chooses $f \leftarrow \mathcal{F}_n$ and gives \mathcal{D} an oracle $\mathcal{O} = f$. if b = 1, he chooses $k \leftarrow \{0,1\}^n$, and gives D an oracle $O = F_k$.
- ullet With access to oracle \mathcal{O} , the distinguisher \mathcal{D} outputs a bit b'
- $PRF_{\mathcal{D},F}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

- The challenger chooses k ← Gen(1ⁿ)
- A^{Enck(·)}(1ⁿ) outputs m₀, m₁ such that |m₀| = |m₁|.
- The challenger chooses $b \leftarrow \{0,1\}$, computes $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to A
- A^{Enck(·)} outputs a guess bit b'
- We say that PrivK^{cpa}_{A,D}(n) = 1 (i.e., A wins) if b' = b.

- The PRF adversary A_r :
 - A_r is playing the PRF security game
 - \mathcal{A}_r is given oracle $\mathcal{O}: \{0,1\}^n \to \{0,1\}^n$ where either $\mathcal{O} = F_k(\cdot)$ (a PRF), or $\mathcal{O} = f(\cdot)$ (a random function)
- The CPA-security adversary A_c :
 - A_c plays the CPA-security game against either Π or Π
 - to answer encryption queries The Enc(·) oracle given to A_c in Π uses F_k and the oracle in Π uses f

$PRF_{D,F}(n)$

- The challenger chooses b ← {0,1}. If b = 0, he chooses $f \leftarrow \mathcal{F}_n$ and gives \mathcal{D} an oracle $\mathcal{O} = f$. if b = 1, he chooses $k \leftarrow \{0,1\}^n$, and gives D an oracle $O = F_k$.
- With access to oracle O, the distinguisher D outputs a bit b'
- $PRF_{\mathcal{D},F}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

- The challenger chooses k ← Gen(1ⁿ)
- A^{Enck(·)}(1ⁿ) outputs m₀, m₁ such that |m₀| = |m₁|.
- The challenger chooses $b \leftarrow \{0,1\}$, computes $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to A
- A^{Enck(·)} outputs a guess bit b'
- We say that PrivK^{cpa}_{A,D}(n) = 1 (i.e., A wins) if b' = b.

- The PRF adversary A_r :
 - A_r is playing the PRF security game
 - \mathcal{A}_r is given oracle $\mathcal{O}: \{0,1\}^n \to \{0,1\}^n$ where either $\mathcal{O} = F_k(\cdot)$ (a PRF), or $\mathcal{O} = f(\cdot)$ (a random function)
- The CPA-security adversary A_c :
 - A_c plays the CPA-security game against either Π or Π
 - to answer encryption queries The Enc(·) oracle given to A_c in Π uses F_k and the oracle in $\tilde{\Pi}$ uses f
 - We care about the difference in A_c 's WIN probability

Constructing $\mathcal{A}_r^{\mathcal{O}}$: Intuition

ullet \mathcal{A}_r needs to use \mathcal{A}_c to win PRF game

Constructing $\mathcal{A}_r^{\mathcal{O}}$: Intuition

- A_r needs to use A_c to win PRF game
- ullet \mathcal{A}_r acts as the challenger for \mathcal{A}_c in CPA-security game

Constructing $\mathcal{A}_r^{\mathcal{O}}$: Intuition

- A_r needs to use A_c to win PRF game
- ullet \mathcal{A}_r acts as the challenger for \mathcal{A}_c in CPA-security game
 - A_r must answer A_c 's Enc (\cdot) queries (i.e., simulate the Enc oracle)
 - A_r must produce the challenge ciphertext c

Constructing $A_r^{\mathcal{O}}$: Intuition

- A_r needs to use A_c to win PRF game
- ullet \mathcal{A}_r acts as the challenger for \mathcal{A}_c in CPA-security game
 - A_r must answer A_c 's Enc(·) queries (i.e., simulate the Enc oracle)
 - ullet \mathcal{A}_r must produce the challenge ciphertext c
- ullet If \mathcal{A}_c WINS, \mathcal{A}_r must use that to win the game against his challenger

Constructing $\mathcal{A}_r^{\mathcal{O}^{\mathsf{I}}}$

- Run $A_c(1^n)$ and when A_c asks $\operatorname{Enc}(m)$ query
 - Choose $r \leftarrow \{0,1\}^n$, query $y = \mathcal{O}(r)$, return $c = (r, y \oplus m)$ to \mathcal{A}_c

Constructing $\mathcal{A}_r^{\mathcal{O}}$

- Run $A_c(1^n)$ and when A_c asks Enc(m) query
 - Choose $r \leftarrow \{0,1\}^n$, query $y = \mathcal{O}(r)$, return $c = (r, y \oplus m)$ to \mathcal{A}_c
- ullet When \mathcal{A}_c outputs (m_0,m_1)
 - Choose $b \leftarrow \{0,1\}$
 - Choose $r \leftarrow \{0,1\}^n$, query $y = \mathcal{O}(r)$, return $c = (r,y \oplus m_b)$ as the challenge

Constructing $\mathcal{A}_r^{\mathcal{O}}$

- Run $A_c(1^n)$ and when A_c asks Enc(m) query
 - Choose $r \leftarrow \{0,1\}^n$, query $y = \mathcal{O}(r)$, return $c = (r, y \oplus m)$ to \mathcal{A}_c
- When A_c outputs (m_0, m_1)
 - Choose $b \leftarrow \{0,1\}$
 - Choose $r \leftarrow \{0,1\}^n$, query $y = \mathcal{O}(r)$, return $c = (r,y \oplus m_b)$ as the challenge
- ullet Continue answering Enc queries until \mathcal{A}_c outputs guess b'
 - Output 1 ("PRF") if b = b', and 0 otherwise.

There are two cases to analyze:

• Case 1: $\mathcal{O} = F_k$ (i.e., b = 1 in PRF game)

- Case 1: $\mathcal{O} = F_k$ (i.e., b = 1 in PRF game)
 - A_r answers all Enc queries and produces c with $F_k(r) \oplus m$

- Case 1: $\mathcal{O} = F_k$ (i.e., b = 1 in PRF game)
 - A_r answers all Enc queries and produces c with $F_k(r) \oplus m$
 - \bullet This is exactly the CPA-security game vs. Π

- Case 1: $\mathcal{O} = F_k$ (i.e., b = 1 in PRF game)
 - A_r answers all Enc queries and produces c with $F_k(r) \oplus m$
 - ullet This is exactly the CPA-security game vs. Π
 - Since A_r output 1 when A_c WINS, we have

$$\Pr_{k \leftarrow \{0,1\}^n}[\mathcal{A}^{F_k(\cdot)}_r(1^n) = 1] = \Pr[Priv\mathcal{K}^{\textit{cpa}}_{\mathcal{A}_c,\Pi}(n) = 1]$$

There are two cases to analyze:

- Case 1: $\mathcal{O} = F_k$ (i.e., b = 1 in PRF game)
 - A_r answers all Enc queries and produces c with $F_k(r) \oplus m$
 - ullet This is exactly the CPA-security game vs. Π
 - Since A_r output 1 when A_c WINS, we have

$$\Pr_{k \leftarrow \{0,1\}^n}[\mathcal{A}^{F_k(\cdot)}_r(1^n) = 1] = \Pr[Priv\mathcal{K}^{cpa}_{\mathcal{A}_c,\Pi}(n) = 1]$$

• Case 2: $\mathcal{O} = f$ (i.e., b = 0 in PRF game)

- Case 1: $\mathcal{O} = F_k$ (i.e., b = 1 in PRF game)
 - A_r answers all Enc queries and produces c with $F_k(r) \oplus m$
 - ullet This is exactly the CPA-security game vs. Π
 - Since A_r output 1 when A_c WINS, we have

$$\Pr_{k \leftarrow \{0,1\}^n}[\mathcal{A}^{F_k(\cdot)}_r(1^n) = 1] = \Pr[\textit{PrivK}^{\textit{cpa}}_{\mathcal{A}_c,\Pi}(n) = 1]$$

- Case 2: $\mathcal{O} = f$ (i.e., b = 0 in PRF game)
 - \mathcal{A}_r answers all Enc queries and produces c with $f(r) \oplus m$

- Case 1: $\mathcal{O} = F_k$ (i.e., b = 1 in PRF game)
 - A_r answers all Enc queries and produces c with $F_k(r) \oplus m$
 - ullet This is exactly the CPA-security game vs. Π
 - Since A_r output 1 when A_c WINS, we have

$$\Pr_{k \leftarrow \{0,1\}^n}[\mathcal{A}^{F_k(\cdot)}_r(1^n) = 1] = \Pr[Priv\mathcal{K}^{cpa}_{\mathcal{A}_c,\Pi}(n) = 1]$$

- Case 2: $\mathcal{O} = f$ (i.e., b = 0 in PRF game)
 - \mathcal{A}_r answers all Enc queries and produces c with $f(r) \oplus m$
 - \bullet This is exactly the CPA-security game vs. $\tilde{\Pi}$

- Case 1: $\mathcal{O} = F_k$ (i.e., b = 1 in PRF game)
 - A_r answers all Enc queries and produces c with $F_k(r) \oplus m$
 - ullet This is exactly the CPA-security game vs. Π
 - Since A_r output 1 when A_c WINS, we have

$$\Pr_{k \leftarrow \{0,1\}^n}[\mathcal{A}^{F_k(\cdot)}_r(1^n) = 1] = \Pr[\textit{PrivK}^\textit{cpa}_{\mathcal{A}_c,\Pi}(n) = 1]$$

- Case 2: $\mathcal{O} = f$ (i.e., b = 0 in PRF game)
 - \mathcal{A}_r answers all Enc queries and produces c with $f(r) \oplus m$
 - ullet This is exactly the CPA-security game vs. $\tilde{\Pi}$
 - Since A_r output 1 when A_c WINS, we have

$$\Pr_{f \leftarrow \mathcal{F}_n}[\mathcal{A}_r^{f(\cdot)}(1^n) = 1] = \Pr[PrivK_{\mathcal{A}_c,\tilde{\Pi}}^{cpa}(n) = 1]$$

Analysis of A_r 's success

• We assumed that A_c distinguishes between Π and $\tilde{\Pi}$

$$\left| \mathsf{Pr}[\textit{PrivK}^{\textit{cpa}}_{\mathcal{A}_{\textit{c}},\Pi}(\textit{n}) = 1] - \mathsf{Pr}[\textit{PrivK}^{\textit{cpa}}_{\mathcal{A}_{\textit{c}},\tilde{\Pi}}(\textit{n}) = 1] \right| > 1/\mathsf{poly}(\textit{n})$$

Analysis of A_r 's success

• We assumed that \mathcal{A}_c distinguishes between Π and $\tilde{\Pi}$

$$\left| \mathsf{Pr}[\mathit{Priv} \mathsf{K}^{\mathit{cpa}}_{\mathcal{A}_c,\Pi}(\mathit{n}) = 1] - \mathsf{Pr}[\mathit{Priv} \mathsf{K}^{\mathit{cpa}}_{\mathcal{A}_c,\tilde{\Pi}}(\mathit{n}) = 1] \right| > 1/\mathsf{poly}(\mathit{n})$$

By the last slide, this implies that

$$\left|\Pr_{k\leftarrow\{0,1\}^n}[\mathcal{A}_r^{F_k(\cdot)}(1^n)=1]-\Pr_{f\leftarrow\mathcal{F}_n}[\mathcal{A}_r^{f(\cdot)}(1^n)=1]\right|>1/\mathsf{poly}(n)$$

Analysis of A_r 's success

• We assumed that \mathcal{A}_c distinguishes between Π and $\tilde{\Pi}$

$$\left| \mathsf{Pr}[\textit{PrivK}^{\textit{cpa}}_{\mathcal{A}_{\textit{c}},\Pi}(\textit{n}) = 1] - \mathsf{Pr}[\textit{PrivK}^{\textit{cpa}}_{\mathcal{A}_{\textit{c}},\tilde{\Pi}}(\textit{n}) = 1] \right| > 1/\mathsf{poly}(\textit{n})$$

• By the last slide, this implies that

$$\left| \Pr_{k \leftarrow \{0,1\}^n} [\mathcal{A}_r^{F_k(\cdot)}(1^n) = 1] - \Pr_{f \leftarrow \mathcal{F}_n} [\mathcal{A}_r^{f(\cdot)}(1^n) = 1] \right| > 1/\mathsf{poly}(n)$$

• That is, A_r is able to distinguish between $F_k(\cdot)$ and $f(\cdot)$. But, we know that F_k is a PRF.

Contradiction!

Proof Technique

To prove security from a PRF, we often do the following:

- \checkmark Consider the scheme where F_k is replaced by a random function f
 - Show by reduction to security of PRF, that ${\cal A}$ can't tell we made this change.
 - ullet So, \mathcal{A} 's success probability must be (essentially) the same in this and original variant.
- ② Use a probabilistic argument to prove that scheme is unconditionally secure when using a random function f.
 - Random function is essentially a collection of 2^n OTPs
 - Proof is similar to proof of OTP, but need to account for probability of collision in r

Lemma

For any $\mathcal A$ making at most q(n) queries to $\mathsf{Enc}(\cdot)$

$$\Pr[PrivK_{\mathcal{A},\tilde{\Pi}}^{cpa}(n)=1] \leq 1/2 + rac{q(n)}{2^n}$$

Lemma

For any ${\mathcal A}$ making at most q(n) queries to ${\sf Enc}(\cdot)$

$$\Pr[PrivK_{\mathcal{A},\tilde{\Pi}}^{cpa}(n)=1] \leq 1/2 + rac{q(n)}{2^n}$$

• Recall that $\tilde{\Pi}$ encrypts as $c=(r,f(r)\oplus m)$

Lemma

For any $\mathcal A$ making at most q(n) queries to $\mathsf{Enc}(\cdot)$

$$\Pr[PrivK_{\mathcal{A},\widetilde{\Pi}}^{cpa}(n)=1] \leq 1/2 + \frac{q(n)}{2^n}$$

- Recall that $\tilde{\Pi}$ encrypts as $c = (r, f(r) \oplus m)$
- Let r^* be the randomness used to encrypt the challenge

Lemma

For any $\mathcal A$ making at most q(n) queries to $\mathsf{Enc}(\cdot)$

$$\Pr[PrivK_{\mathcal{A}, ilde{\mathsf{N}}}^{cpa}(n)=1] \leq 1/2 + rac{q(n)}{2^n}$$

- Recall that $\tilde{\Pi}$ encrypts as $c = (r, f(r) \oplus m)$
- Let r^* be the randomness used to encrypt the challenge
- Case 1: r^* is never used when answering \mathcal{A} 's Enc queries

Lemma

For any ${\mathcal A}$ making at most q(n) queries to ${\sf Enc}(\cdot)$

$$\Pr[PrivK_{\mathcal{A},\tilde{\Pi}}^{cpa}(n)=1] \leq 1/2 + rac{q(n)}{2^n}$$

- Recall that $\tilde{\Pi}$ encrypts as $c = (r, f(r) \oplus m)$
- ullet Let r^* be the randomness used to encrypt the challenge
- Case 1: r^* is never used when answering \mathcal{A} 's Enc queries
 - A knows nothing about $f(r^*)$, so $f(r^*)$ is random (good OTP)
 - $\Pr[\mathcal{A} \text{ outputs } b = b'] = 1/2$

Lemma

For any ${\mathcal A}$ making at most q(n) queries to ${\sf Enc}(\cdot)$

$$\Pr[PrivK_{\mathcal{A},\tilde{\Pi}}^{cpa}(n)=1] \leq 1/2 + rac{q(n)}{2^n}$$

- Recall that $\tilde{\Pi}$ encrypts as $c = (r, f(r) \oplus m)$
- Let r^* be the randomness used to encrypt the challenge
- Case 1: r^* is never used when answering \mathcal{A} 's Enc queries
 - A knows nothing about $f(r^*)$, so $f(r^*)$ is random (good OTP)
 - Pr[A outputs b = b'] = 1/2
- Case 2: r^* is used when answering one of \mathcal{A} 's Enc queries

Lemma

For any $\mathcal A$ making at most q(n) queries to $\mathsf{Enc}(\cdot)$

$$\Pr[PrivK_{\mathcal{A},\tilde{\Pi}}^{cpa}(n)=1] \leq 1/2 + rac{q(n)}{2^n}$$

- Recall that $\tilde{\Pi}$ encrypts as $c = (r, f(r) \oplus m)$
- Let r^* be the randomness used to encrypt the challenge
- Case 1: r^* is never used when answering \mathcal{A} 's Enc queries
 - A knows nothing about $f(r^*)$, so $f(r^*)$ is random (good OTP)
 - Pr[A outputs b = b'] = 1/2
- Case 2: r^* is used when answering one of A's Enc queries
 - $\mathcal A$ learns value of $f(r^*)$ (he sees $c=(r^*,c')$, computes $f(r^*)=c'\oplus m$)
 - ullet Pr[${\cal A}$ outputs b=b']=1

- Case 1: r^* is never used when answering \mathcal{A} 's Enc queries
 - Pr[A outputs b = b'] = 1/2
- Case 2: r^* is used when answering one of A's Enc queries
 - $\Pr[\mathcal{A} \text{ outputs } b = b'] = 1$

- Case 1: r^* is never used when answering A's Enc queries
 - Pr[A outputs b = b'] = 1/2
- Case 2: r^* is used when answering one of A's Enc queries
 - $\Pr[A \text{ outputs } b = b'] = 1$

Claim: $Pr[Case 2] \leq negl(n)$

- Case 1: r^* is never used when answering \mathcal{A} 's Enc queries
 - Pr[A outputs b = b'] = 1/2
- Case 2: r^* is used when answering one of A's Enc queries
 - Pr[A outputs b = b'] = 1

Claim: $Pr[Case 2] \leq negl(n)$

• We said that \mathcal{A} makes at most q(n) = poly(n) Enc queries

- Case 1: r^* is never used when answering \mathcal{A} 's Enc queries
 - Pr[A outputs b = b'] = 1/2
- Case 2: r^* is used when answering one of A's Enc queries
 - $\Pr[A \text{ outputs } b = b'] = 1$

Claim: $Pr[Case 2] \le negl(n)$

- We said that A makes at most q(n) = poly(n) Enc queries
- ullet On each Enc query, randomness $r_i \leftarrow \{0,1\}^n$

- Case 1: r^* is never used when answering \mathcal{A} 's Enc queries
 - Pr[A outputs b = b'] = 1/2
- Case 2: r^* is used when answering one of A's Enc queries
 - Pr[A outputs b = b'] = 1

Claim: $Pr[Case 2] \leq negl(n)$

- We said that \mathcal{A} makes at most q(n) = poly(n) Enc queries
- ullet On each Enc query, randomness $r_i \leftarrow \{0,1\}^n$
- In encrypting challenge, $r^* \leftarrow \{0,1\}^n$

- ullet Case 1: r^* is never used when answering \mathcal{A} 's Enc queries
 - Pr[A outputs b = b'] = 1/2
- Case 2: r^* is used when answering one of A's Enc queries
 - Pr[A outputs b = b'] = 1

Claim: $Pr[Case 2] \leq negl(n)$

- We said that \mathcal{A} makes at most q(n) = poly(n) Enc queries
- ullet On each Enc query, randomness $r_i \leftarrow \{0,1\}^n$
- In encrypting challenge, $r^* \leftarrow \{0,1\}^n$
- So,

$$\Pr[r^* \in \{r_1, \dots, r_{q(n)}\}] \le \sum_{i=1}^{q(n)} \Pr[r^* = r_i] = \frac{q(n)}{2^n} \le \operatorname{negl}(n)$$

Proving CPA-security of Π: Putting It Together

- Case 1: r^* is never used when answering \mathcal{A} 's Enc queries
 - Pr[A outputs b = b'] = 1/2
- Case 2: r^* is used when answering one of \mathcal{A} 's Enc queries
 - $\Pr[A \text{ outputs } b = b'] = 1$
 - Occurs with probability at most $q(n)/2^n$

Proving CPA-security of $\tilde{\Pi}$: Putting It Together

- Case 1: r^* is never used when answering \mathcal{A} 's Enc queries
 - Pr[A outputs b = b'] = 1/2
- Case 2: r^* is used when answering one of \mathcal{A} 's Enc queries
 - Pr[A outputs b = b'] = 1
 - Occurs with probability at most $q(n)/2^n$

$$\Pr[\textit{PrivK}^\textit{cpa}_{\mathcal{A},\tilde{\Pi}}(\textit{n}) = 1] \ = \ \Pr[\mathcal{A} \ \text{WINS} \ \land \ \mathsf{Case} \ 1] + \Pr[\mathcal{A} \ \mathsf{WINS} \ \land \ \mathsf{Case} \ 2]$$

Proving CPA-security of $\tilde{\Pi}$: Putting It Together

- Case 1: r^* is never used when answering \mathcal{A} 's Enc queries
 - Pr[A outputs b = b'] = 1/2
- Case 2: r^* is used when answering one of A's Enc queries
 - $\Pr[\mathcal{A} \text{ outputs } b = b'] = 1$
 - Occurs with probability at most $q(n)/2^n$

$$\begin{split} \Pr[\textit{PrivK}^{\textit{cpa}}_{\mathcal{A},\tilde{\Pi}}(\textit{n}) = 1] &= \Pr[\mathcal{A} \; \text{WINS} \; \wedge \; \text{Case} \; 1] + \Pr[\mathcal{A} \; \text{WINS} \; \wedge \; \text{Case} \; 2] \\ &\leq \; \Pr[\mathcal{A} \; \text{WINS} \; | \; \text{Case} \; 1] \cdot \Pr[\text{Case} \; 1] + \Pr[\text{Case} \; 2] \end{split}$$

Proving CPA-security of $\tilde{\Pi}$: Putting It Together

- Case 1: r^* is never used when answering \mathcal{A} 's Enc queries
 - Pr[A outputs b = b'] = 1/2
- Case 2: r^* is used when answering one of A's Enc queries
 - Pr[A outputs b = b'] = 1
 - Occurs with probability at most $q(n)/2^n$

$$\begin{split} \Pr[\textit{PrivK}^{\textit{cpa}}_{\mathcal{A},\tilde{\Pi}}(\textit{n}) = 1] &= \Pr[\mathcal{A} \; \text{WINS} \; \land \; \text{Case} \; 1] + \Pr[\mathcal{A} \; \text{WINS} \; \land \; \text{Case} \; 2] \\ &\leq \; \Pr[\mathcal{A} \; \text{WINS} \; | \; \text{Case} \; 1] + \Pr[\text{Case} \; 2] \\ &\leq \; \Pr[\mathcal{A} \; \text{WINS} \; | \; \text{Case} \; 1] + \Pr[\text{Case} \; 2] \end{split}$$

Proving CPA-security of Π: Putting It Together

- Case 1: r^* is never used when answering A's Enc queries
 - Pr[A outputs b = b'] = 1/2
- Case 2: r^* is used when answering one of \mathcal{A} 's Enc queries
 - Pr[A outputs b = b'] = 1
 - Occurs with probability at most $q(n)/2^n$

$$\begin{split} \Pr[\textit{PrivK}^\textit{cpa}_{\mathcal{A},\tilde{\Pi}}(\textit{n}) = 1] &= \Pr[\mathcal{A} \; \text{WINS} \; \wedge \; \text{Case} \; 1] + \Pr[\mathcal{A} \; \text{WINS} \; \wedge \; \text{Case} \; 2] \\ &\leq \; \Pr[\mathcal{A} \; \text{WINS} \; | \; \text{Case} \; 1] + \Pr[\text{Case} \; 1] + \Pr[\text{Case} \; 2] \\ &\leq \; \Pr[\mathcal{A} \; \text{WINS} \; | \; \text{Case} \; 1] + \Pr[\text{Case} \; 2] \\ &\leq \; 1/2 + \frac{q(\textit{n})}{2^\textit{n}} \end{split}$$

Finishing Proof of CPA-security of PRF+OTP

- \checkmark Consider the scheme where F_k is replaced by a random function f
 - We showed that any PPT \mathcal{A} has only a negl(n) advantage in distinguishing the two games
- \checkmark Use a probabilistic argument to prove that scheme is unconditionally secure when using a random function f.
 - We showed that PPT \mathcal{A} WINS with probability $\leq 1/2 + q(n)/2^n$

Finishing Proof of CPA-security of PRF+OTP

- \checkmark Consider the scheme where F_k is replaced by a random function f
 - We showed that any PPT \mathcal{A} has only a negl(n) advantage in distinguishing the two games
- \checkmark Use a probabilistic argument to prove that scheme is unconditionally secure when using a random function f.
 - We showed that PPT ${\cal A}$ WINS with probability $\leq 1/2 + q(n)/2^n$

Combining these two statements, we get that for any PPT \mathcal{A} ,

$$\Pr[PrivK_{\mathcal{A},\mathsf{PRF}+\mathsf{OTP}}^{cpa}(n)=1] \leq 1/2 + \frac{q(n)}{2^n} + \mathsf{negl}(n)$$