

Adatbázisok előadás 11.

Oszlopalapú adatbázisok

- Oszlopalapú adatbázisok jellemzői
- A Cassandra adatbázis
 - Jellemzők
 - □ Lekérdezések
 - □ Terminál
 - ☐ Elérés Python-ból
 - ☐ Feladatok megoldása

CORVINUS Oszlopalapú adatbázisok (Oszloptárolók)

Olyan adatbázisok, amelyek az oszlopok elemeit együtt, illetve egymás melletti helyeken (blokkokban) tárolják a lemezen

Column Oriented Database

<u>date</u>	price	size
2011-01-20	10.1	10
2011-01-21	10.3	20
2011-01-22	10.5	40
2011-01-23	10.4	5
2011-01-24	11.2	55
2011-01-25	11.4	66
2013-03-31	17.3	100

Felismerés:

Sok (elemző) lekérdezés többnyire oszlopokon dolgozik, így a soralapú szervezés felesleges I/O műveletekkel jár

CORVINUS Soralapú vs. Oszlopalapú tárolás EGYETEM

A mai relációs adatbáziskezelők egy része mindkét tárolási módot támogatja

Oszloptárolók – előnyök és hátrányok

Előnyök

- Aggregálások, projekció, szelekció gyorsabb elvégzése
- Adatok tömöríthetősége
- Az adatok akár a memóriába is beférhetnek
- Egyszerre több lekérdezés is végrehajtható – diszjunkt attribútumhalmazok esetén
- Skálázható, elosztott rendszer

Hátrányok

- Írási műveletek lassúsága
- OLTP adatbázisokhoz nem optimálisak
- Kevés sorból álló táblák lekérdezése lassú lehet
- (Inkrementális) adatbetöltés lassú

Oszloptárolók – Hol használják őket?

Adattárházak

Adatelemzések

Big data rendszerek

Párhuzamos feldolgozás

Oszloptárolók - Példák

In-memory adatbázisok

Az oszlopalapú tárolás sok esetben in-memory technikával van kombinálva

- □ Az elmúlt évtizedben a memóriák ára nagymértékben csökkent
- ☐ A kapacitás ugyanakkor nagymértékben nőtt
- □ Akár az egész adatbázis lehet memória rezidens
 - ☐ Így nincs szükség cache-re
 - □ A lekérdezések sebessége sokkal jobb lesz
 - ☐ Probléma: mi történik pl. áramszünet esetén?

https://www.oracle.com/technical-resources/articles/database/timesten-imdb.ht8ml

CORVINUS CORVINUS EGYETEM OSZloptárolók – SAP HANA

- ☐ Eredetileg relációs adatbázis
- ☐ Kombinálja az in-memory technikát az oszlop-alapú adattárolással
- ☐ Speciális hardvert igényel, elsősorban gyors SSD tárolókat
- ☐ A táblák sor-alapú, illetve oszlop-alapú tárolási modellre is épülhetnek (konfigurálható)
- □ A sorok minden esetben a memóriába kerülnek, az oszlopok igény/beállítás szerint
- ☐ A rendszer így alkalmas OLTP, illetve OLAP feladatokra egyaránt

Oszloptárolók – Vertipaq (xVelocity)

- Adatbázis motor
 - ☐ Power Pivot
 - ☐ SSAS Tabular
 - □ Power BI
- ☐ SQL Server Columnstore index
- ☐ In-memory technikával kombinált

Oszlopalapú adatbázisok - Cassandra

- ☐ Open-source, elosztott NoSQL adatbázis
- Magas rendelkezésre állás, hibatűrés,
- Lineáris skálázhatóság
- ☐ Saját lekérdező nyelv (CQL Cassandra Query Language)
- ☐ Hadoop/MapReduce integráció
- Szabályozható konzisztencia

https://www.edureka.co/blog/interview-questions/cassandra-interview-questions/

Cassandra - történet

- ☐ 2008-ban jelent meg (Facebook, inbox search)
- ☐ Az Apache projekt része lett
- □ Alapjai a Google BigTable és az Amazon DynamoDB
- ☐ Széleskörűen elterjedt (Netflix, Instagram, ebay)
- ☐ Legutolsó verzió: 4.x (2022)

Cassandra – alapfogalmak

Cluster (klaszter) – Egy rendszert alkotó node-ok gyűjteménye

Data Center (adatközpont) – Egymással kapcsolatban lévő csomópontok halmaza

Node (csomópont) – Egy számítógép (szerver) tárolási és számítási kapacitással

Keyspace (kulcstér) – Adatbázishoz hasonló konténer objektum

Column family (oszlopcsalád) – Tábláknak megfelelő objektumok, rendezett oszlopok gyűjteménye

Memtable (memória tábla) – Memória rezidens adatstruktúra, a commit log után ide kerülnek az adatok

SSTable – Fájl, ahova az adatok kerülnek, ha a Memtable megtelik

CORVINUS Cassandra – Node, Cluster, Data Center

<u>Understanding the Architecture and Data Model of Cassandra | Informatics (medium.com)</u>

Cassandra – architektúra

Cassandra – Column family példa 1.

Row key = Partition key

Cassandra – Column family példa 2.

Row key = Partition key + Clustering key

Cassandra | Mauricio Poppe

Cassandra – Memtable és SSTable

CORVINUS Timestamp (időbélyeg)

- ☐ Minden írási művelet esetén automatikusan képződik minden egyes érték esetén
- ☐ Használatával az esetleges ütközések (konfliktusok) feloldhatók
- ☐ Az időbélyeget a kliens is generálhatja

- Az adat lejárati idejét határozza meg
- ☐ Adott idő után az adat törlődik
- ☐ A felhasználó szabályoztatja a TTL-eket (retention policy)

```
cqlsh> insert into University.Student(rollno,name,dept,semester) values(3,'Guru99','CS',7) using ttl 100;
cqlsh>

specified ttl valve
in using clause
```


Cassandra – Replikációs stratégiák

A replikáció során az adatokról több node-on is másolat készül az adatvesztés elkerüléséért.

- A másolatok számát replikációs faktornak nevezzük.
- A másolatok létrehozása többféle stratégia alapján történhet.

(Apache) Cassandra – kipróbálási lehetőségek

- □ Online proba (Try It Out | Datastax)
- ☐ On-premise (<u>Download (apache.org)</u>)
 - ☐ Telepíthető Linux, Windows és Mac alá is
- Cloud
 - ☐ Azure Cosmos DB
 - DataStax Astra

CORVINUS Cassandra – Online próba

Try It Out: Cassandra Query Language (CQL):

(STEP 1 OF 7)

Create a keyspace

Let's first start learning CQL by creating a keyspace, using the CREATE KEYSPACE command.

CREATE KEYSPACE demo WITH replication = {'class': 'SimpleStrategy', 'replication_factor': 1}; ↔

A keyspace is a way to logically group a collection of database objects together, such as:

tables

CORVINUS Cassandra – Azure Cosmos DB

CORVINUS Cassandra – DataStax Astra

Aiready nave an account? Sign in DataStax **DataStax Astra Get Your Free Astra** Cassandra-as-a-Service **Database** OPEN, MULTI-CLOUD STACK FOR MODERN DATA APPS - Email Start in minutes, no credit card required, use for free. Eliminate the overhead to install, operate, and scale Cassandra clusters. Password Build faster with REST, GraphQL, CQL, and JSON/Document APIs. Built on open-source Apache Cassandra™ used by the best of the internet. Scale elastically — apps are viral ready from Day 1. How are you using DataStax Astra? Deploy multi-cloud, multi-tenant or dedicated clusters on AWS, Azure, or Select an option GCP. ☐ I agree to the DataStax MSA, including the Astra Ensure enterprise-level reliability, security, and management. Supplement. Still have questions? Check out the FAQ! Aktiválja a Window Aktiválja a Windows re Create Account

CORVINUS Cassandra – On premise – CQL Shell

R Cassa	ndra CQL Shell									_	×
[cqlsh 5 Use HELF WARNING: cqlsh> h	ed to Test Clu 5.0.1 Cassan 7 for help. 5 pyreadline d 1elp ted shell comm	dra 2.2	2.3 CQL	spec 3.3.							^
====== CAPTURE CLEAR	CLS CONSISTENCY	COPY	DESCRIBE EXIT	EXPAND HELP	LOGIN PAGING		SOURCE TRACING				
	o topics:			ABLE_TYPE SER	ES PERMI REVOK						
ALTER_AL ALTER_DF ALTER RE	ROP		DELETE	UT OLUMNS	SELEC		NFAMILY				
ALTER_US ALTER_WI APPLY			DELETE_U	SING HERE	SELEC SELEC	T_EXPR T_LIMIT T TABLE					
ASCII_OL BEGIN BLOB INF			DROP_AGG	UMNFAMILY	SELEC Y TEXT_	T_WHERE OUTPUT TAMP_IN					
BOOLEAN_ COMPOUNE			DROP_IND DROP_KEY	EX SPACE	TIMES	TAMP_OU INPUT					
_	AGGREGATE COLUMNFAMILY		DROP_ROL DROP_TAB DROP_USE	LE	TRUNC TYPES UPDAT						
_	COLUMNFAMILY_O	PTIONS	_			E_COUNT	ERS				~

Cassandra adattípusok

- ☐ Egyszerű adattípusok
 - ☐ Szöveges: ascii, varchar, inet, text, date, time
 - ☐ Numerikus: int, varint, bigint, counter, float, decimal, double
 - ☐ Logikai: boolean
 - ☐ Egyéb: timestamp, uuid, blob
- □ Összetett adattípusok
 - ☐ list elemek rendezett gyűjteménye
 - □ map kulcs-érték párok gyűjteménye
 - □ set elemek halmaza
- ☐ Felhasználó által definiált adattípusok

CORVINUS Cassandra – CQL nyelv

- Deklaratív nyelv
- □SQL nyelvhez hasonló szintaktika, de más elvekre épül (az adatmodell nem relációs!)
- ☐ A SQL-nél limitáltabb lehetőségek
 - ☐ Nincsenek tábla összekapcsolások, beágyazott lekérdezések
 - Nincs tranzakciókezelés, tárolt eljárás, trigger
 - □WHERE feltétel csak elsődleges kulcs oszlopra vagy indexelt oszlopra alkalmazható
 - ☐ Adatot módosítani (frissíteni) csak elsődleges kulcs alapján lehet

CORVINUS Cassandra – Keyspace létrehozása

CREATE KEYSPACE kulcstérnév WITH tulajdonságok;

- ☐ Tulajdonságok
 - □ replication a replikációs stratégia és a replikák számának megadása, a stratégia lehet: SimpleStrategy, NetworkTopologyStrategy
 - ☐ durable_writes a commitlog használatban legyen-e módosítások esetén?
 - Logikai változó, alapértelmezett értéke true

- □ Példa
 - □ CREATE KEYSPACE webshop WITH replication = {'class': 'SimpleStrategy', 'replication_factor': 3};

Létrehoz egy webshop nevű kulcsteret, ahol a replikák száma 3, a replikációs stratégia pedig SimpleStrategy

CORVINUS Cassandra – Keyspace kezelő parancsok

USE kulcstérnév; - az aktuális keyspace megadása

PI: USE webshop;

DESC KEYSPACES; - a létező keyspace-ek listázása

PI: DESC **KEYSPACES**;

ALTER KEYSPACE kulcstérnév WITH tulajdonságok; - kulcstér módosítása

PI: ALTER KEYSPACE webshop WITH replication = {'class': 'SimpleStrategy', 'replication factor': 1};

DROP KEYSPACE kulcstérnév; – adott keyspace törlése

PI: DROP KEYSPACES webshop;

Cassandra – Tábla létrehozása

CREATE TABLE | COLUMNFAMILY táblanév (oszlop definíciók) [WITH opciók AND opció];

- ☐ Elsődleges kulcs megadása a PRIMARY KEY kulcsszóval történik az oszlopdefiníciónál vagy a tábladefiníció végén
- ☐ Minden táblánál kötelező elsődleges kulcs létrehozása
- □ A WITH után tábla opciók adhatók meg pl. tömörítés vagy klaszter oszlopok (CLUSTERED ORDER BY (oszloplista)
- ☐ Az AND után egyéb opciók adhatók meg, pl. oszlop szerinti rendezettség
- □ Példa

CREATE TABLE Termek (ID INT PRIMARY KEY, Name VARCHAR, Price INT); Létrehozza a Termek táblát három mezővel, ahol az ID az elsődleges kulcs

Cassandra – Kulcsok

- □ PRIMARY KEY Egyedi azonosító
 - ☐ Egyszerű, ha csak egy oszlopból áll
 - ☐ Összetett (composite), ha több oszlopból áll
- ☐ PARTITION KEY Ez alapján osztódnak el az adatok a node-ok között
- □ CLUSTERING KEY A partíción belül az adatok sorrendjét határozza meg
- ☐ Egyszerű kulcs esetén PRIMARY KEY = PARTITION KEY
- Összetett kulcs esetén PRIMARY KEY első mezője a PARTITION KEY, a többi a CLUSTERING KEY, pl:
 - ☐ PRIMARY KEY (x) a PARTITION KEY x
 - □ PRIMARY KEY (x, y, z) a PARTITION KEY x, CLUSTERING KEY y, z
 - □ PRIMARY KEY ((x, y), v, w) a PARTITION KEY (x, y), CLUSTERING KEY (v, w)

corvinus Cassandra – Tábla kezelő parancsok

ALTER TABLE | COLUMNFAMILY táblanév művelet; - Módosítja az adott táblát. A művelet lehet ADD és DROP

PI: ALTER TABLE Termek ADD description TEXT;

DROP TABLE táblanév; - Törli az adott táblát

PI: DROP TABLE Termek;

TRUNCATE táblanév; - Törli a tábla tartalmát, a szerkezet megmarad

PI: TRUNCATE Termek;

CORVINUS Cassandra – INDEXEK

CREATE INDEX [IF NOT EXISTS] [indexnév] ON táblanév [KEYS] oszlopnév;

- ☐ Új indexet hoz létre az adott oszlop szerint
- ☐ Egy táblához több index is készíthető
- ☐ Az egyszerű típusok többségéhez készíthető index
- ☐ A Cassandra 2.1-től az index készülhet kollekciókhoz (map, set, list) is
- ☐ Példák:
 - ☐ CREATE INDEX i_raktar_nev ON Raktar (nev);
 - □ DESC TABLE Raktar; -- mutatja a létrehozott indexet is
 - □ DROP INDEX i_raktar_nev;

corvinus Cassandra – CRUD utasítások - INSERT

INSERT INTO táblanév (oszlopnevek) VALUES (értékek) [USING opció]

- ☐ Új értékeket szúr be a tábla adott oszlopaiba
- Az oszlopnevek megadás kötelező, vagy helyette a JSON formátum használható
- □ Példák
 - ☐ INSERT INTO Termek (id, name, price) VALUES (1, 'tej', 250);
 - □ INSERT INTO Termek JSON '{"id": 2, "name": "kakao", "price": 300}'; *

^{*} Cassandra 2.2 verziótól alkalmazható

CORVINUS Cassandra – CRUD utasítások - UPDATE

UPDATE táblanév SET értékadás(ok) WHERE feltétel(ek);

- ☐ Módosítja a tábla feltételnek megfelelő adatait
- ☐ A WHERE feltételben hivatkozni kell az elsődleges kulcs oszlopra
- ☐ Példák
 - ☐ UPDATE Termek SET price = 200 WHERE id = 1;
 - ☐ UPDATE Termek SET price = 200 WHERE id IN (1, 2);
 - ☐ UPDATE Termek SET price = 200 WHERE name = 'tej';
 - -- Ez hibás, mert nincs kulcs hivatkozás

CORVINUS Cassandra – CRUD utasítások - DELETE

DELETE FROM táblanév WHERE feltétel(ek);

- ☐ Törli a tábla feltételnek megfelelő adatait
- ☐ A WHERE feltételben itt is kell kulcsra hivatkozni
- ☐ Példák
 - □ DELETE FROM Termek WHERE id = 2;
 - □ DELETE FROM Termek WHERE price = 200;
 - -- Ez hibás, mert nincs kulcs hivatkozás

Cassandra – Map, List, Set példák

CREATE TABLE Raktar(id INT, nev VARCHAR, aruk SET<TEXT>, keszlet MAP<TEXT, INT>, dolgozok LIST<TEXT>, PRIMARY KEY(id));

```
    □ INSERT INTO raktar (id, aruk, dolgozok, keszlet, nev)
        VALUES (1, {'kifli', 'tej', 'kenyer'}, ['Kiss Bela', 'Nagy Ivett'], {'kifli':
        200, 'tej': 50, 'kenyer': 130}, 'Raktar01' );
    □ UPDATE Raktar
        SET aruk = aruk + {'zsemle'},
        dolgozok = dolgozok + ['Kozepes Jeno'],
        keszlet['kenyer'] = 500
        WHERE id = 1;
```


Cassandra - Lekérdezések

- A DISTINCT kulcsszó használható
- Az oszlopokat elnevezhetjük az AS után
- □ A WHERE utáni oszlopok lehetnek elsődleges kulcs oszlopai, indexelt oszlopok vagy clustered oszlopok
- □ Az ORDER BY után csak clustered oszlopok adhatók meg, a WHERE után ilyenkor szükséges a kulcsra hivatkozás
- □ A GROUP BY oszlopai csak az elsődleges kulcs oszlopai lehetnek megfelelő sorrendben*
- ☐ A LIMIT után megadható, hogy az eredménysorok közül hány jelenjen meg

SELECT ...
FROM ...
WHERE ...
GROUP BY ...
ORDER BY ...
LIMIT ...

*A partition key mindegyik oszlopának szerepelnie kell

Corvinus Cassandra adatmodell vs. Relációs adatmodell

A Cassandra esetén a táblák nem kapcsolhatók össze, megoldási lehetőség:

- □ Denormalizálás
- ☐ Kollekciók (map, list, set) használata

Tanulo						
tid	tnev	tszulido				
1	Kiss Béla	1999.01.01				

TanuloVizsga							
datum	tid	tnev	eredmeny				
2021.0 6.01	1	Kiss Béla	5				
2021.0 6.04	1	Kiss Béla	3				

Vizsga						
datum	tid	eredmeny				
2021.06.01	1	5				
2021.06.04	1	3				

TanuloVizsga2							
tid	tnev	tszulido	vizsga				
1	Kiss Béla	1999.01.01	{'2021.06.01':5				
			³ 2021.06.04':3}	33			

Cassandra elérés Python-ból

Köszönöm a figyelmet!