

QUANTRONICS LABORATORY

Department of Applied Physics

Superconducting Whispering Gallery Mode Resonators

Zlatko Minev

Ioan Pop Dominic Kwok

Michel Devoret Chris Pang

Thanks to: Kurtis Geerlings Nick Masluk Matt Reagor

Leonid Glazman Luigi Frunzio Rob Schoelkopf

Motivation

- I. Marry wafer scalability & 3D quality?
 - Coupled resonators & large number of qubits
 - Flux bias lines
- II. Test materials at the single photon level
 - Thin films
 - Dielectrics

Towards 'Wafer-Scalable' cQED architecture

There are **2 rings** in this picture!

Differential Mode

Not To Scale!

98 % of field energy is in vacuum

Common Mode

Not To Scale!

44% of field energy is in dielectric.

Modular Cavity & Experimental Sample Holder

Non Magnetic SMA Pin Coupler

Technical Parameters:

Al film thickness 300 nm

Sapphire wafer thickness 450 μ m

Wafer spacing 200 μm

Wafer diameter 2.0 in

Identifying Modes (S₂₁)

 Differential modes contain > 98% of mode energy in between the rings

Total Q vs Power (S₂₁)

- Undercoupled differential perpendicular mode
- Aluminum sample holder

Energy Relaxation (T_1)

- Heterodyne Measurement
- $T_2 \cong 2 T_1$

Aluminum

Differential perpendicular mode -10 -20 -30 -40 -Measurement Theory 0.1 0.2 0.3 0.4 0.5 0.6 0.7

• Extracted upper bound of the surface square resistance of thin film aluminum:

$$R_{\square} \le 250 \text{ n}\Omega$$

 $Q_s > 5000$

Temperature (K)

Sapphire

Common perpendicular mode

- HFSS participation ratio: 44%
- Extracted sapphire properties at the single photon level:

Q =
$$2.1 \cdot 10^6$$
 tan $\delta < 1 \cdot 10^{-6}$

Sapphire

Differential perpendicular mode

ton #:

10 100

Extracted upper be surface square resist film aluminum:

 $R_{\square} \leq 250 \text{ n}\Omega$ $Q_s > 5000$ pation ratio: 44% sapphire properties at photon level:

72 2.495074

ncy (GHz)

2.495076

Q =
$$2.1 \cdot 10^6$$
 tan $\delta < 1 \cdot 10^{-6}$

Future Directions of `2.5D` Resonators

 Integration with multiple qubits and resonators

Quantum Bus

 Study of cryogenic material properties

Galvanic cavity-qubit coupling

