

Table of Contents

Results

Analysis of each model's accuracy and comparison of their effectiveness in classifying plant diseases.

Evaluation & Insight
Insights on potential

Insights on potential improvements, shortcomings, and areas for future research.

Motivation

Agricultural Impact

Need for Rapid Diagnosis: Early and accurate identification of plant diseases is important to prevent widespread crop damage.

Sustainability in Agriculture:

Efficient disease management helps maintain ecological balance.

Technological Advancement

Leveraging Machine Learning: Use advanced algorithms to process and analyze image data to speed up the diagnosis process compared to traditional methods.

Deep Learning Potential: Exploring the capabilities of Convolutional Neural Networks (CNNs) to enhance classification accuracy.

Approach

- Develop and evaluate traditional machine learning models for plant disease classification.
- Implement deep learning models using CNNs for high-accuracy disease classification from plant images.
- Compare the performance of traditional machine learning techniques with transfer learning models to determine the most effective methods for plant disease classification.
 - Simple CNN vs transfer learning models

Methodological Framework

Metrics: Accuracy

Identified the highest accuracy model

Data Acquisition

About Dataset

The "Plant Pathogen Dataset" is a comprehensive collection of labeled images depicting various types of pathogens affecting plant species. This dataset is curated to facilitate research and development in the field of plant pathology, enabling the development of machine learning models for automated disease diagnosis and monitoring.

Image Categories: The dataset contains images representing different types of plant diseases, including bacterial infections, fungal diseases, pest infestations, and viral infections.

Data Sources

The images in this dataset were sourced from various sources, including research institutions, agricultural organizations, and open-access repositories. Care was taken to ensure high-quality images with accurate disease

Usability ①

8.13

License

Apache 2.0

Expected update frequency

Quarterly

Tags

Biology

Data Preparation

```
base_path = '/Users/dbstj0426/Desktop/pathogen'
# Load the data
datagen = ImageDataGenerator(rescale=1./255, validation_split=0.2)
train_generator = datagen.flow_from_directory(base_path,
                                               target size=(128, 128),
                                               batch_size=32,
                                               class mode='categorical',
                                               subset='training')
val_generator = datagen.flow_from_directory(base_path,
                                             target size=(128, 128),
                                             batch_size=32,
                                             class_mode='categorical',
                                             subset='validation')
```

Building a Simple CNN Model

```
# Implement the CNN
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(128, 128, 3)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(GlobalAveragePooling2D())
model.add(Dense(5, activation='softmax'))
# Compile the model
model.compile(optimizer=Adam(), loss='categorical crossentropy', metrics=['accuracy'])
# Train the model
history = model.fit(train generator, validation data=val generator, epochs=10)
```

Result

Pre-Trained Models

Search Keras documentation...

Q

► Keras 3 API documentation / Keras Applications

About Keras

Getting started

Developer guides

Keras 3 API documentation

Models API

Layers API

Callbacks API

Ops API

Optimizers

Metrics

Losses

Data loading

Built-in small datasets

Keras Applications

Xception

EfficientNet B0 to B7

EfficientNetV2 B0 to B3 and S, M, L $\,$

ConvNeXt Tiny, Small, Base, Large, XLarge

Keras Applications

Keras Applications are deep learning models that are made available alongside pre-trained weights. These models can be used for prediction, feature extraction, and fine-tuning.

Weights are downloaded automatically when instantiating a model. They are stored at \sim /.keras/models/.

Upon instantiation, the models will be built according to the image data format set in your Keras configuration file at ~/.keras/keras.json. For instance, if you have set image_data_format=channels_last, then any model loaded from this repository will get built according to the data format convention "Height-Width-Depth".

Available models

Model	Size (MB)	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth	Time (ms) per inference step (CPU)	Time (ms) per inference step (GPU)
Xception	88	79.0%	94.5%	22.9M	81	109.4	8.1
VGG16	528	71.3%	90.1%	138.4M	16	69.5	4.2
VGG19	549	71.3%	90.0%	143.7M	19	84.8	4.4
ResNet50	98	74.9%	92.1%	25.6M	107	58.2	4.6
ResNet50V2	98	76.0%	93.0%	25.6M	103	45.6	4.4
ResNet101	171	76.4%	92.8%	44.7M	209	89.6	5.2
ResNet101V2	171	77.2%	93.8%	44.7M	205	72.7	5.4

Keras Applications

- Available models
- Usage examples for image classification models

Extract features with VGG16
Extract features from an arbitrary
intermediate layer with VGG19
Fine-tune InceptionV3 on a new set of

Classify ImageNet classes with ResNet50

Build InceptionV3 over a custom input tensor

Using Pre-trained Models- MobileNetV2

Train

0.5428

Validation

0.5226

Using Pre-trained Models- EfficientNetV2B0

Using Pre-trained Models- InceptionV3

Using Pre-trained Models- NASNetMobile

Using Pre-trained Models- DenseNet121

The Best Model

```
# Implement the CNN
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(128, 128, 3)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(GlobalAveragePooling2D())
model.add(Dense(5, activation='softmax'))
# Compile the model
model.compile(optimizer=Adam(), loss='categorical crossentropy', metrics=['accuracy'])
# Train the model
history = model.fit(train generator, validation data=val generator, epochs=10)
```

Evaluation

Possible Shortcomings

- Mismatch between pre-trained models' domain and Kaggle dataset
- Insufficient fine-tuning
- Overfitting or Underfitting
- Number of epochs

Areas for Future Research

- Exploring Other Model Architectures
- Fine-tuning
- Unsupervised and Semi-supervised Learning

8