MultiSage: Empowering GCN with Contextualized Multi-Embeddings on Web-Scale

Алексей Медведев

Multipartite Networks

Graph Neural Networks?

$$\begin{aligned} \mathbf{h}_{\mathcal{N}(v)}^{k} \leftarrow \text{AGGREGATE}_{k}(\{\mathbf{h}_{u}^{k-1}, \forall u \in \mathcal{N}(v)\}) \\ \mathbf{h}_{v}^{k} \leftarrow \sigma\left(\mathbf{W}^{k} \cdot \text{Concat}(\mathbf{h}_{v}^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^{k})\right) \end{aligned}$$

Target and Context Nodes

Dataset	Target	Context	Other context
IMDB [40]	movie	genre	director, actor
TCGA [43]	gene	pathway	disease, species
OAG [27]	paper	venue	author, keyword
Pinterest [6]	pin	board	user, session

Contextual Graph Embeddings

Architecture

Raw feature transformation:

$$\mathbf{z}_{t} = \text{ReLU}(\mathbf{W}_{t}^{(K)} \dots \text{ReLU}(\mathbf{W}_{t}^{(1)} \mathbf{x}_{t} + \mathbf{b}_{t}^{(1)}) \dots + \mathbf{b}_{t}^{(K)})$$

$$\mathbf{z}_{c} = \text{ReLU}(\mathbf{W}_{c}^{(K)} \dots \text{ReLU}(\mathbf{W}_{c}^{(1)} \mathbf{x}_{c} + \mathbf{b}_{c}^{(1)}) \dots + \mathbf{b}_{c}^{(K)})$$

Contextual masking:

$$\mathbf{z}_{t|c} = \mathbf{z}_t \otimes \mathbf{z}_c$$

Contextual attention:

$$\alpha(v, o, u) = \frac{\exp\left(\tau\left(\mathbf{a}^{T}\left[\mathbf{W}_{at}\mathbf{z}_{t}(v) \odot \mathbf{W}_{ac}\mathbf{z}_{c}(o) \odot \mathbf{W}_{at}\mathbf{z}_{t}(u)\right]\right)\right)}{\sum_{u' \in \mathcal{N}_{v}, o' \sim (v, u')} \exp\left(\tau\left(\mathbf{a}^{T}\left[\mathbf{W}_{at}\mathbf{z}_{t}(v) \odot \mathbf{W}_{ac}\mathbf{z}_{t}(o') \odot \mathbf{W}_{at}\mathbf{z}_{t}(u')\right]\right)\right)}$$
$$\mathbf{z}_{\mathcal{N}_{v}}(x) = \sigma\left(\frac{1}{D}\sum_{d=1}^{D}\sum_{u \in \mathcal{N}_{v}, o \sim (v, u)} \alpha^{(d)}(v, o, u) \ \mathbf{z}_{t|c}(x, o)\right)$$

Architecture

Learning pipeline

Loss: $\mathcal{J}(v_q, v_p, v_n) = \max\{0, \mathbf{h}_{v_q}^T \mathbf{h}_{v_n} - \mathbf{h}_{v_q}^T \mathbf{h}_{v_p}^L + \delta\}$

Negative sampling with PersPageRank

Query

Positive Example

Random Negative

Hard Negative

Personalized PageRank

$$egin{aligned} oldsymbol{\pi_{ ext{pr}}} &= oldsymbol{A_{ ext{rw}}} oldsymbol{\pi_{ ext{pr}}}, \ oldsymbol{A_{ ext{rw}}} &= oldsymbol{A} oldsymbol{D}^{-1} \end{aligned}$$

$$egin{align} oldsymbol{\pi}_{ ext{ppr}}(oldsymbol{i}_x) &= (1\!-\!lpha)oldsymbol{\hat{A}}oldsymbol{\pi}_{ ext{ppr}}(oldsymbol{i}_x) + lpha oldsymbol{i}_x \ oldsymbol{\pi}_{ ext{ppr}}(oldsymbol{i}_x) &= lpha \left(oldsymbol{I}_n - (1-lpha)oldsymbol{\hat{A}}
ight)^{-1} oldsymbol{i}_x \ oldsymbol{\Pi}_{ ext{ppr}} &= lpha (oldsymbol{I}_n - (1-lpha)oldsymbol{\hat{A}})^{-1} \ oldsymbol{A} &\in \mathbb{R}^{n imes n}. \ oldsymbol{ ilde{A}} &= oldsymbol{A} + oldsymbol{I}_n \ oldsymbol{\hat{A}} &= oldsymbol{A} + oldsymbol{I}_n \ oldsymbol{\hat{A}} &= oldsymbol{A} + oldsymbol{I}_n \ oldsymbol{\hat{A}} &= oldsymbol{A} - oldsymbol{1} - oldsymbol{1}_2 \ oldsymbol{\hat{A}} &= oldsymbol{A} - oldsymbol{1}_2 \ oldsymbol{A} - oldsymbol{1}_2 \ oldsymbol{1}_2 \ oldsymbol{A} - oldsymbol{1}_2 \ oldsymbol{A} - oldsymbol{1}_2 \ oldsymbol{A} - oldsymbol{1}_2 \ oldsymbol{A} - oldsymbol{1}_2 \ oldsymbol{1}_2 \ oldsymbol{A} - oldsymbol{1}_2 \ oldsymbo$$

$$egin{aligned} oldsymbol{Z}^{(0)} &= oldsymbol{H} = f_{ heta}(oldsymbol{X}), \ oldsymbol{Z}^{(k+1)} &= (1-lpha) oldsymbol{\hat{A}} oldsymbol{Z}^{(k)} + lpha oldsymbol{H}, \ oldsymbol{Z}^{(K)} &= \operatorname{softmax} \left((1-lpha) oldsymbol{\hat{A}} oldsymbol{Z}^{(K-1)} + lpha oldsymbol{H}
ight) \end{aligned}$$

Neighborhood Sampling

- vis[v] visiting count
- ctx[v] dominant context
- dom[v] 'dominance' of the context
- path[1] the first context node
- path[- 1] the last target node

Algorithm 2 Parallel Contextualized Random Walk

```
Input: graph G = \{T, C, \mathcal{E}\}, walk length \zeta, number of walks
     \kappa, number of threads \xi, number of neighbors to keep s
    Output: sampled contextualized neighbor lists S = \{\{v : v \in S \mid v \in S \} \}
     \{(c, u), \forall u \in \mathcal{N}_v, c \sim (v, u)\}, \forall v \in \mathcal{T}\}
 1: \forall v \in \mathcal{T}, \mathcal{S}[v] \leftarrow \emptyset, \text{vis}[v], \text{ctx}[v], \text{dom}[v] \leftarrow \text{defaultdict(int)}
 2: Start a pool \Omega of \xi threads in parallel
 3: for v in |\mathcal{T}| do
         with \omega = \operatorname{rand}(\Omega)
         for i in \kappa do
               path \leftarrow rand walk(v, \zeta)
               vis[v][path[-1]] ++
 7:
               if ctx[v][path[-1]] == path[1] then
                    dom[v][path[-1]] ++
 9:
               else
10:
                    if dom[v][path[-1]] > 0 then
11:
                          dom[path[-1]] - -
12:
                    else
13:
                          dom[v][path[-1]] ++
14:
                          \operatorname{ctx}[v][\operatorname{path}[-1]] = \operatorname{path}[1]
15:
                    end if
16:
               end if
17:
          end for
18:
          S[v] \leftarrow \text{top s target-context pairs } w.r.t. \text{ vis}[v] \& \text{ctx}[v]
20: end for
```

Results

Pinterest	MRR	REC@1	REC@10	DC+	DC*	DE+	DE*	INT	UNI	JAC
Visual	0.4406	0.1710	0.3606	0.4194	0.6337	0.9101	1.1255	23.32	174.67	0.1506
Textual	0.5741	0.1888	0.4965	0.3414	0.7614	0.7549	1.2050	31.78	166.21	0.1917
Combined	0.4438	0.1731	0.3635	0.4190	0.6340	0.9096	1.1258	23.44	174.53	0.1512
Pixie	0.3093	0.0418	0.2169	N/A	N/A	N/A	N/A	21.32	176.65	0.1351
PinSage	0.8759	0.4928	0.8234	0.2655	0.9279	0.7161	1.3593	47.30	150.69	0.3302
GAT	0.8880	0.5357	0.8665	0.2532	0.9343	0.7060	1.3618	48.70	149.24	0.3572
HAN	0.9013	0.5653	0.8838	0.2501	0.9415	0.6907	1.3558	50.29	148.83	0.3672
MultiSage-2	0.9569	0.6215	0.9326	0.2316	0.9655	0.6660	1.3871	53.95	144.04	0.3906
OAG	MRR	REC@1	REC@10	DC+	DC*	DE+	DE*	INT	UNI	JAC
Textual	0.1418	0.0273	0.0399	0.1081	0.4788	0.2814	1.0557	33.10	164.87	0.2193
Pixie	0.3126	0.1054	0.2642	N/A	N/A	N/A	N/A	36.58	160.76	0.2517
PinSage	0.5682	0.1845	0.5193	0.1238	0.6381	0.3179	1.1577	41.13	156.80	0.2935
GAT	0.6059	0.2355	0.5498	0.1104	0.6416	0.2908	1.2022	43.02	155.70	0.3144
HAN	0.6214	0.2641	0.5749	0.1005	0.6543	0.2869	1.2383	44.96	154.49	0.3200
MultiSage-2	0.6874	0.3270	0.6455	0.0836	0.6989	0.2542	1.2769	48.63	148.97	0.3602
MultiSage-3	0.7026	0.3614	0.6875	0.0814	0.7127	0.2583	1.3058	51.63	145.40	0.3891

Table 2: Performance of state-of-the-art large-scale embedding methods for general recommendation.

Method		Home Decoration	1	Women's Fashion			
	MRR	REC@1	REC@10	MRR	REC@1	REC@10	
PinSage	0.8021/0.8067	0.4195/0.4257	0.7439/0.7460	0.7537/0.7545	0.3754/0.3759	0.6838/0.6976	
MULTISAGE	0.8407/0.8488	0.4899/0.5160	0.7954/0.8146	0.8058/0.8294	0.4363/0.4711	0.7533/0.7806	

Table 3: Off-task utility of embeddings produced by PinSage and MULTISAGE in shopping recommendation.

Context impact

