

UNIVERSIDAD NACIONAL DE COLOMBIA MÉCÁNICA CUÁNTICA • FÓRMULAS RELEVANTES

4 de septiembre de 2023

Angel Almonacid

1. FUNCIÓN DE ONDA

- Ecuación de Schrödinger: $i\hbar \frac{\partial}{\partial t} \psi = -\frac{\hbar^2}{2m} \nabla^2 \psi$
- Función de onda: $\psi(\vec{x},t)=\int e^{\frac{i}{\hbar}\left(\vec{p}\cdot\vec{x}-\frac{p^2}{2m}t\right)}\varphi(p)\frac{d^3p}{(2\pi\hbar)^3}$
- Densidad de Probabilidad: $\rho(\vec{x},t) = |\psi(\vec{x},t)|^2$
- Valor esperado de la posición: $\langle x \rangle = \int_{-\infty}^{\infty} |\psi|^2 x dx$
- Desviación cuadrática media: $(\Delta x^2) = \langle (x \langle x \rangle)^2 \rangle$

2. ESPACIO DE MOMENTOS

- Delta de Dirac: $\delta(\mathbf{p} a) = \frac{1}{(2\pi\hbar)^3} \int d^3x e^{\frac{i}{\hbar}\mathbf{k}\cdot(\mathbf{x} a)}$
- Transformación a espacio de momentos: $\psi(\mathbf{x},t) = \int \frac{d^3p}{(2\pi\hbar)^3} \varphi(\mathbf{p},t) e^{\frac{i}{\hbar}(\mathbf{p}\cdot\mathbf{x})}$
- Transformación inversa a espacio de coordenadas: $\varphi(\mathbf{p},t)=\int d^3x \psi(\mathbf{x},t)e^{-\frac{i}{\hbar}(\mathbf{p}\cdot\mathbf{x})}$
- ullet Operador momento en el espacio de las coordenadas: ${f p}
 ightarrow rac{h}{i}
 abla$