Systematic Staleness (JoE 2024)

Federico M. Bandi Davide Pirino Roberto Renò

Antônio Schwanke

São Paulo School of Economics - FGV

February 17, 2024

Introduction

- Prices do not update as often as one would assume given traditional modeling in continuous time.
- Definition of $systematic \times idiosyncratic$ staleness.
- Systematic staleness is defined as lack of (large) price updates across many assets.
- Propose estimators for staleness and provide asymptotic results.
- Descriptive analysis and structural estimation of a market microstructure model.

Some Notation

- Let $X_t^{(q)}$ be the q-th component of the vector \mathbf{X}_t .
- A smoother is an integrable function $S : \mathbb{R}^+ \to (0,1]$ with a bounded first derivative and such that S(0) = 1.
- $\Theta_{t,n}^{(q,N)}$ is a threshold for price changes.

Staleness Estimators

• The *univariate* staleness estimator of the qth process at frequency Δ_n is defined as:

$$\mathbb{U}_n^{(q)} := \Delta_n \sum_{j=1}^n \mathcal{S} \left(\frac{\left| X_{j\Delta_n}^{(q)} - X_{(j-1)\Delta_n}^{(q)} \right|}{\Theta_{\Delta_n,n}^{(q,N)}} \right)$$

- All of the price adjustments below the threshold (a case of extreme staleness), then $\mathbb{U}_n^{(q)}$ would be exactly 1.
- Intermediate cases of sluggish price adjustments: $\mathbb{U}_n^{(q)} \in (0,1)$.

Staleness Estimators

• The N-multivariate staleness estimator at frequency Δ_n is defined as:

$$\mathbb{M}_n^{(N)} := \Delta_n \sum_{j=1}^n \prod_{q=1}^N \mathcal{S}\left(\frac{\left|X_{j\Delta_n}^{(q)} - X_{(j-1)\Delta_n}^{(q)}\right|}{\Theta_{\Delta_n,n}^{(q,N)}}\right)^{1/N}$$

- The estimator measures the joint probability of stale price updates.
- $\mathbb{M}_n^{(N)}$ directly identifies systematic staleness.

• Assumption 1: There exist N real-valued (logarithmic) efficient price processes each of which is a Brownian semimartingale

$$d\tilde{X}_t^{(q)} = \mu_t^{(q)} dt + \sigma_t^{(q)} dW_t^{(q)}$$

• + some technical conditions.

• \mathcal{H}_0 : only idiosyncratic staleness is allowed. More formally, the collection

$$\left\{X_{j\Delta_n}^{(q)}: j=0,\ldots,n; q=1,\ldots,N\right\}$$

on the time grid $t_{j,n} = j\Delta_n$ is such that $X_0^{(q)} = \tilde{X}_0^{(q)}$ and for $j = 1, \ldots, n$:

$$X_{j\Delta_n}^{(q)} = \tilde{X}_{j\Delta_n}^{(q)} \left(1 - B_{j,n}^{(q)}\right) + X_{(j-1)\Delta_n}^{(q)} B_{j,n}^{(q)}$$

• Where $B_{j,n}^{(q)}$ are N triangular arrays of Bernoulli variables such that:¹

$$p_n^{(q)} := \mathbb{P}\left[B_{j,n}^{(q)} = 1\right] \underset{n \to \infty}{\longrightarrow} p_{\infty}^{(q)} \in (0,1).$$

¹With q = 1, ..., N.

• \mathcal{H}_A : systematic staleness is also allowed. Prices may repeat themselves due to systematic effects or asset-specific idiosyncratic effects.

$$X_{j\Delta_n}^{(q)} = \left(1 - C_{j,n}^{(S)}\right) \left[\tilde{X}_{j\Delta_n}^{(q)} \left(1 - B_{j,n}^{(q)}\right) + X_{(j-1)\Delta_n}^{(q)} B_{j,n}^{(q)} \right] + C_{j,n}^{(S)} X_{(j-1)\Delta_n}^{(q)}$$

- Hierarchical structure → prices may repeat themselves due to systematic effects. Otherwise: asset-specific likelihood of repeated prices due to idiosyncratic effects.
- Denote by $p_n^{(S)}$ the probability of systematic staleness.

• Under **Assumption 1**:

$$\mathbb{U}_n^{(q)} \xrightarrow{p} \begin{cases} p_{\infty}^{(q)} & \text{under } \mathcal{H}_0 \\ p_{\infty}^{(S)} + (1 - p_{\infty}^{(S)}) p_{\infty}^{(q)} & \text{under } \mathcal{H}_A \end{cases}$$

• Under some additional technical assumptions, we have:

$$\mathbb{M}_n^{(q)} \xrightarrow{p} \begin{cases} 0 & \text{under } \mathcal{H}_0 \\ p_{\infty}^{(S)} & \text{under } \mathcal{H}_A \end{cases}$$

• $\mathbb{M}_n^{(q)}$ is a consistent estimator of the probability of systematic staleness under both the null (in which it is zero) and the alternative.

- Dataset: 250 most liquid NYSE-listed stocks. Trades from January 2006 to December 2014.
- Universe of stocks which should be affected by staleness the least
 → conservative implications.
- Idiosyncratic and systematic staleness are computed for each day.

Figure: Systematic Staleness

Figure: Systematic Staleness

Figure: Systematic Staleness

Micro-founding Staleness

- N-variate price formation process in which private information plays a key role in driving transaction prices.
- If the value of the information signal > execution costs, informed traders will act on it and trade.
- Otherwise, they will choose not to trade, thereby leading to price staleness.
- Measured (systematic and idiosyncratic) staleness from the data can help identify key features of the assumed price formation process.

The Model

- Three sets of N-variate prices: unobserved efficient prices, mid-quotes and transaction prices.
- Latent efficient prices evolve as

$$\mathbf{e}_{q,t} = \mathbf{e}_{q,t-1} + \beta_q \sigma_M \sqrt{\Delta} \varepsilon_{M,t} + \sigma_q^{(\mathbf{e})} \sqrt{\Delta} \varepsilon_{q,t}^{(\mathbf{e})}$$

• $\varepsilon_{q,t}^{(\mathfrak{e})}$ ($\varepsilon_{M,t}$) are zero mean, unit variance, white noise shocks independent (resp. common) across stocks.

The Model

• Mid-quotes evolve as:

$$\mathfrak{m}_{q,t} = \mathfrak{m}_{q,t-1} + \delta_q(\mathfrak{e}_{q,t} - \mathfrak{m}_{q,t-1}) + (1 - \delta_q)\sigma_q^{\mathfrak{m}}\sqrt{\Delta}\varepsilon_{q,t}^{\mathfrak{m}}$$

- The market maker reacts to the order flow, with learning speed δ_q .
- When $\delta_q = 0$, mid-quotes are random walks independent of the efficient prices.
- If $|\mathfrak{e}_{q,t} \mathfrak{m}_{q,t}| \leq c_q := s_q + f$, informed traders do not trade and prices are stale.
- Cost of immediacy (half spread) s_q and cost of funding f.

Structural Estimation

• Estimate $\beta_q, \sigma_q^{(\mathfrak{e})}, \sigma_q^{(\mathfrak{m})}, \delta_q$ and s_q for $q = 1, \ldots, N$ plus σ_M, f and PAIT.

Figure: Systematic Component of Execution Costs

Structural Estimation

Figure: Systematic Component of Execution Costs

Structural Estimation

Figure: Probability of Arrival of Informed Traders

Conclusion

- Define notions of (market-wide) systematic staleness and (asset-specific) idiosyncratic staleness.
- Theory of inference based on asymptotics.
- Descriptive analysis.
- Structural estimation of a microstructure model.

More Details

- Compute staleness for each day using 10-second returns. The number n of 10-second returns is 2340 and the number of days $N_D = 2265$. Thresholds are $\Theta_{t,n}^{(q,N)} = \Theta_n^{(q)} = \alpha \sigma^{(q)}/n^{1/2}$, where $\alpha = 0.1$ and $\sigma^{(q)}$ is the estimated volatility over the day for the stock indexed by q.²
- The smoother $S(\cdot) = \exp(-|\cdot|)$ is employed.
- For each day $d=1,\ldots,N_D$ in the sample, let $t_{j,n}=j\Delta_n=j/n$ be the 10-second partition.

²The square root of 5-minute daily realized variance $\square \rightarrow \langle \square \rangle \rightarrow \langle \square \rangle \rightarrow \langle \square \rangle$

21 / 22

EESP-FGV Systematic Staleness February 17, 2024

More Details

• At each instant $t_{j,n}$, compute:

$$\zeta_{d,j} = \prod_{q=1}^{N_{d,j}} \exp\left(-\frac{|X_{j/n} - X_{(j-1)/n}|}{N_{d,j}\Theta_n^{(q)}}\right)$$

where $N_{d,j}$ is the number of stocks available in the time interval $[t_{j-1,n}, t_{j,n}]$ of day d.

• Estimate systematic staleness for day d by computing

$$\hat{p}_d^{(S)} := \frac{1}{n_d} \sum_{j=1}^{n_d} \zeta_{d,j} \mathbb{I}_{\{N_{d,j} \ge 60\}} \quad \text{and} \quad n_d := \sum_{j=1}^n \mathbb{I}_{\{N_{d,j} \ge 60\}}.$$