1. Experiment: RFDiffusion-Based Protein Design

2. Time: 2024.08.29-2024.09.28

3. Member: Xudong Tang, Yang Jin, Binxuan, Zhang, Kaiqing Zhang, Xuantong Liu

4. Method:

RFDiffusion is a cutting-edge method for de novo protein structure and function design, leveraging the capabilities of deep learning and diffusion models. It is based on the RoseTTAFold (RF) structure prediction network, fine-tuned on protein structure denoising tasks. The principle behind RFDiffusion is to generate protein backbones by iteratively refining noise-corrupted structures, eventually producing functional and structurally accurate proteins from simple molecular specifications.

(1) Core Components:

- ① Denoising Diffusion Probabilistic Models (DDPMs): These models are trained to reverse the process of adding Gaussian noise to protein structures, thereby generating new, realistic protein structures.
- ② Rotational Equivariance: RFDiffusion maintains rotational equivariance, allowing it to model three-dimensional (3D) structures in a global representation frame independent manner.
- ③ Conditioning Information: The model can be guided towards specific design objectives by providing conditioning information at each step of the generation process.

(2) The procedure of RFDiffusion:

- 1 Model Training
 - Data Preparation: Sample protein structures from the Protein Data Bank (PDB) and introduce noise to create training inputs.
 - Noise Application: Perturb Cα coordinates with 3D Gaussian noise and apply Brownian motion to residue orientations.
 - Model Training: Train the RFDiffusion model by minimizing the mean-squared error (MSE) loss between frame predictions and the true protein structure.

2 Protein Design

- Initialization: Start with random residue frames.
- Denoising Iterations: Iteratively refine the protein structure by denoising the noisy input, adding noise at each step to generate the input for the next iteration.
- Sequence Design: Use the ProteinMPNN network to design sequences encoding the generated protein structures.
- (3) Conditioning for Specific Designs
 - Unconditional Design: Generate diverse protein structures without additional input.
 - Topology-Constrained Design: Provide secondary structure and/or fold information to guide the design towards specific topologies.
 - Symmetric Oligomer Design: Specify point group symmetry to create symmetric oligomeric structures.

4 Experimental Characterization

- Expression and Purification: Express the designed proteins in a suitable host and purify them for further analysis.
- Structural Verification: Use techniques such as circular dichroism (CD) and cryo-electron microscopy (cryo-EM) to verify the structure and stability of the designed proteins.
- Functional Validation: Assess the functionality of the designed proteins through binding assays, enzymatic activity tests, or other relevant functional assays.

5. Result:

Following the identification of active sites on bait proteins, RFDiffusion was employed to design binding proteins targeting these active site regions, with the designed constructs set to 45-65 residues in length. We generated 100 such binding proteins for molecular docking to identify optimal binders for the bait proteins.

Table.1 The Sequence of IL-2 β Mimics

β Complex	Amino Acid Sequence
B0	MEEKLEELKKKLAELDGKYIYEKCYGTEEEAKKALEELKAALEELAKAEKEAAAAA
В1	SEEERRREEEERRKEERLEKMRERDEEIREEEEEEEEEEEEEEEEEEE
B2	SLEEALRAELRRRAAEECGALLREAERAAAAFRAATPSEEEAAAFLEAARAEARAACEARFAAL
В3	EELEKKLKELKEKAEEAREKAKEYSAKAVKYLADPSKKEEAEECLKKCEELIKEERKYIEEAKKL
B4	MLEELELKKKLKEKLEKEEEERKKRWEARREEAKAAALAARKAEEEARAAAEAAAAA
В5	AEELARRAAEFLARAKELDLEMAKKIEEVRKKTGNEEETEKARKELLEELRKEIKRLKEEL
В6	EEEERKKKIEEYKTKAEAHKLDAEQLEAKAAAASPEAAKLYKKLAEKEKELAAEYEKKAKELEEA
В7	SLLEELKRKLECEKRANECSEKLKKKREEEKEKKKKLEEEEEKLEEEEEELEEEEEEE
В8	SLEKILEELKKKEEEKKLEESLKKLEEEAKKFEEERKAAAEAAAKAAAE
В9	ELEEKAKKEAKEKEREERSKRLREERERRLEEEERRRREEEERRRREEEEA
B10	SLEELLKRLRELKREECLARMRAKAEEERAAEAAAAAAAAAAEELARRLAELA
B11	SLAAEKAAKIAALTAEAEKKAKELLAKAAAASPEERKKYMEEAEKYLAEIRAEIAAIL
B12	SLEELLKELEEKKKKEEEEKLKKAKENWEKYQKELAERLAAALAALAAAAAALAAALAEAAAAA
B13	SELKELEEKRKEEEEKLKEETEKRLAEEERRFLEERARREAERRAEEERRRREELERRR
B14	MSERIKTLREALELVRQGVENPATQAELIARGRALAEAATGEAGRALFERELARLEAQKAA
B15	EEEVKALLEELAKLEYEYLKAAKEDKKLAEEYLKKAEEAEKKLLEAKKALEEKKAKE
B16	EEEERKAAEEAARKAAHLKEATERFRERRRREEEEEREEEEEREEEEEREEE
B17	AAAAAAREAALKARRAAGDEDAARDRAACEALYAEDPAKGAECLAKVEAEEKAFRAEIDAALAA
B18	SLEEELRREEEERREEEERLEELWKKNKEKAEELAKKREKELEEKEEKERKEKLEELKKELE
B19	MSEEELKKLLEEQKKKIEQLRKEGEAKAAALRAAARAAAAAAAAAAA
B20	MTLEEKLANLQAGKAASLAALEALAAEAAAESPEKAALVRELARRVRAQYDKEIAAVAAELA
B21	EEKEKEEKKKKEEEEKKKKEREEKEKEYIEKVKKEVKEREEKEKAEEEAKKKA
B22	SLEEVKATYEESIEAAKKLGAERVAKAAAEGPEAAEKAAALSKEAIELLEKKKEEELAKL
B23	MEEKEKKEKEELKKKAEEAEKKAKELKEKMAKSSAEEAEKLAKEREELEKKRVELKKELE
B24	SLAAELAKKKEREKALEERKKKAEEIKEEEEERKRKAAEAAAAAAAAAAAAAAAAA
B25	AALAALLAALAAAAAAAAAAAAAAAAAEAEKRAAELRRRREEELARRLAA
B26	SLEEEKKRKEEEEKRKKRLEEARREWEERLEARRRAEEEERLEEERRR
B27	SLLEELRRALEERELEEAKKRYEEALKKLKEEKEKEEEERKRKEEE
B28	MEEERKEEERKREEEKERERRAAGRAAREAAAAAAAAAAAA
B29	SAAAKAELAALEKRAKEAAALAEEAAKKDKKKAKRYKADRDILEKEAKALKAAL
B30	AAAAEAAAAAAARRQAEREARAREMAAAIAAADGEEGKRKAALLLHYAAVVRARVEAEVAA
B31	SEEERERAEAAARAAAEAARAAARAKAKERYKEELEEIKKKREEEEKKKKEEELK
B32	SLEALAAAAAAAAAAAAAAAAAAAAEAAALEEEYRKRLEEEAEELEEELEEEEEEEEELE
B33	AEEEERRAEAAAAAAAAEAEARLARMRAEDERIRAAKREAAARAAAEAAAAEERRRAE
B34	AAEAARRAARAAFDARLTAAERKYLAAQDDPEAAAAWLAEIAAIEAERTAAERAWAA
B35	AAAAAAAEIAEAARKAEERYKELEKEAEEALKKDKEEGTKKRKEALEESLKLAKELLELRKRLEA
B36	SLAEALAAAAAAAAAAAAAARARRARIEADIAEARRRLEEEEREKEEEEKR
B37	SLLEELLRRLREEEEERRREKSREEGRRRREAERAALAAAAEAAAAEAAAREAAEREAA
B38	EEEKRKAELLKQIEEDLKKAEEALALGAATPKHDYYEGLAKSYLARAEELKAILK
B39	EEERREENRKRRKERAEKEIKESKEEEEARRRKEEEEERRRREEER
B40	EEEEKRRLEEERERAKREAEERAERIKAEIEAERARRAALEALRRELEEL

B41	EEEKREKELKELQEEAERLAKELLEHALPKLLAALLAAAAALAAAALLAALA
B42	SLLDALLEALFRALVTAHFQAAAAATDRETAVEQARAFAAALRAALAAAAAAAAAAAAAAAAAAAA
B43	SELEEELRRLEELEEESRRQDEEARRRIREREAEEEARKRLEELLRKLLES
B44	SKEEEEKLKKEKRKEELEKRLKEAEEIWKKYIELLKKAKENEENKEKYLEEAKKLKEELEK
B45	AALREALEAEEAACRAALAALIAATRAAPRAERIAALTALVKECAARRAAVLA
B46	AAEIEALLAAADAEIAELRAAGVAEARAAPREERPAIVLETDRRALELRAAARAAAAAAAAAA
B47	EEEERRRLEEERRAELERRLAEAEREREEELRRREEEEREREELERELREEEERRRREA
B48	EEEEKRKLEEERKKAEEKSKELIEKRKKEREERKRRREEEEEEEEEEEEEEEEELEEELEE
B49	SLLEELERLAAKAAEAARKAARLAAGEAALKARLAAEAAAREAEEERRRREEE
B50	AAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
B51	EEERRRQIEALKRAAAAAEYEYALAKELAAKDPAYAPLAEALKAELERLKAELAALEAA
B52	SLEDIEKKIAELKRRLKLFEESCKKIAEERLKKDPEKGKKHKEELEKLNEELRKKVEAEIAELLA
B53	PLLAALRELADRLHREAVRERERARREAERAARAAAAAAAAAAAAAAAAAAAA
B54	MSPEQKELQAQRDKYDDEALKLNELALKDPEKAEEYNAQAKKYIEKAYEIRKQIEA
B55	MEAVKKLEAKGEEYFALGKANPEKREEYERLGKLYFESAKLAKERLEKAKAEKLA
B56	EEEEEELRRLEEEREELEKRREERIAARAAEEAARRAAAAAAAAAAAAAAAAAAAAA
B57	AEEERREEEERRREEEERRRREEEERLEEERRRRIEEATKERREKLKKEKEEKKKEEEEKKEKE
B58	ALLEALREAAAAEAARLAALEAENRAKYAALTAALKALCAALAELA
B59	SLLEALKALLEALKALVEKAKKEAEEEKKKAEEKKKKEEEEKAKKELEELK
B60	EEEAARAAAAAAAAAAAAAAIAARAAEDAKRERERRKAEKERKELEEELRKK
B61	SEEEERRRREEEEERRRRSEEAGAEARAREKAELERRELEELLREL
B62	EEEERERREEEERERLEKLRREDEEIMEKLREERRREEERREREELERLR
B63	EEEEEELERERRRAAEEAAAFRAEAAARRAALEAARAAAAAAAAAA
B64	SEELRRRLEELAAAAAAAAAAAAAARKAESEKIAAERREKAKKEK
B65	KELEEEKAKREKEREKLLAEAKAEGEKRLKAEEEARRREEEEERE
B66	SEEEREREEEERARRAAEHREAVRRRAREELERRRAAAAAAAAAAAAAAA
B67	LPLLLLLLLLALALLAALLAALAEAQAAREKKLREESEKYYEELRKKKEEERRKEEEE
B68	SEKEALIAALKEKAAKALAELEEKAKEDPEAAAAAAAALKAATERLVARIKA
B69	KEKEEEEKKKEKAEEEERKRKAEELKARAAALAAERAAAAAAAAAA
B70	SAAELAAAAAAEAAARAKALAEAMRAEEEAEREREAEEEARRRREEEERLR
B71	SLLAALAALLAAAAAAAAAAAAAGEARSRALHEEKQKKVLEEKLEEEKEKLEEELEKLLE
B72	SLEELLEEERRRAAEEEERERRRREDIEEAREEALKRAEERKKKAE
B73	SPADALWEAELAAIREAVVAVGAEASKLSPEEAARRWAAATAEAAARMAAAKARRDALLAAA
B74	MEEEEEKKKEEEKAKKEKEKEIEEIKKKGLESAKKSAAEASLAASLAYCLAAAAAAA
B75	EEELERRREEAERRIAELGRACLRAPEAERPACRAALRAEDRRLREELRREEEAR
B76	SLEELLRALAAAAAEAAEAARREAEARARGAALRAEREARRAEEERRRAEEEAARRAEEEAA
B77	AALAAALAALAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
B78	DAHLARARAEAAALAAELAAAGKAACGAAAAALLAAAKALAAANAAAAAA
B79	AELEEKAAKAAAEEAAKAAALEAELKKKSEEFAKKRREEKKKEEEEKK
B80	EEELQEYRERLQALAEEAAKKGWSPEEVKEAAKKLQEELEQERKER
B81	MEEEKKKKEEEEKKRLEELKKEIAKATDEAERAKKNASDPANKAKMAEAKAKKEAAEKELK
B82	SEEEERRRLAEELAAQRAREEALKRESEALAEARRRLRELAAALAALLAELA
B83	AEEEAERAAVEREIKAKTNELDAKCTAAANEVAKTEGPEAAEKVRAECEAQRAAEAAAIRAAA
B84	SLLEELLRRLLEELERRRRLEEMEREREEAEARAAAQLAAEAAALA
B85	MAEEAAAAAAAAARAEAAAAEAAWAEERRAAAARERERAEAERRREEELLE
B86	EEEEERRRREEEARREAELRAWRERIERETAELRARNEEERRRREEEEERRRRE
B87	GLAALAAEALRRALEAEFARDRARLERLRDHYAGDPEKAARVDAALARLEAQRAEALA
B88	SLLAALAELAAAAAAAAAALRKAVREAAEEERKRRREEEERERRE
B89	SLEELLEELLEEARRAAEELERLRREREEEDERERELLRERREEEERR

B90 B91	AAKEAEEARLARANAIYAAARAARAAREAAAAAAAAAAAAAAAAAAAAAAAAAA
B92	NEEKLKELEEKAKEYKAKYEAAKAKAAEEKANGSPEEAAAWQREANLYLGKYLVAEKKAKELKEK
B93	SREELEREAREAAEAARRAAEEARRAALGAAIEAARAAAEAAAAAAAAAAAAAAAAA
B94	EEEEELRREEEAEEEERREEEERRRLLEERLREGEEEVEREREEEELREREEELEERR
B95	SLKEEAERLKEEEENLRKAAEAYEAAGNKEKAKEAKEKAEEAKKKAEEAKKKLEEA
B96	EEEEEEERRREEEERRREEAERRAREEALREERRRRSEEEARRRREERRRREERRRREEEERRR
B97	EEEEEERRRREEEERKEKEREEAEKEAKELREKADAEEAARAAAREAAAAAAEELRRALE
B98	VKEKAEKEIEELLKEARAVLKEAAATAAAADPATAAAARAEAAKRLAELAKKIREVKKKMKEELA
B99	EAEELAAAALAAAAAAAAAAAAAAARREAIDAAARAAREAAAAAAAAAAA

Table2 The Sequence of IL-2γ Mimics

γ Complex	Amino Acid Sequence
G0	ALEEEERRKAEEEAWLAEVKAKRAELTAAAEAARAAGDSEAADAAREKIRALVEEAIKRDRE
Gl	AAAEAAAREAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
G2	EEEEKEFEEIRKKTQEMQEKIRELQRLEWEAKKNGSKEKAEELRKKREEVLKELEELRKKRS
G3	DELEKEIEETEELLKKAKEEQAKTGKTEEYGKLIAELQARLEELKAALAAAKAAEAAA
G4	AEVERKVAELKALNAECAARIAAAAAEGPEAAAAAERECNEELRRLVE
G5	MTDKEKLMKELKAKAEEYKAAAAAAAAAGGDPECVATQQARADKYNELLAKLEAS
G6	EEKKREEERKEIQEYVEIADKAGKGEEFLKLLSENKESKEKAKKLAEEMKKKLKEEEEKKKKA
G7	STVEELEANIAANRAAAALTAAAFPETAAAARAEAAAREARNQALIAKEKA
G8	EEEERAKKLEEELKELEKLVEKIKEEGKKDPKAAELAEKLKKELEKLKAE
G9	SAAAKEAAKALATALRLAGTRLFTAGAVAAKIDPAAGAALFAAGAAAFAAAAALEKALA
G10	DAVAAALAEVTAQCRAIVAASEDPEAALAEATALATAFFAQFVGPEEARRLGEEHARAVLAEV
G11	AAAALAELAAAAAEAAEAAALAARRAARAAALAERERRREEEERRREEERR
G12	ELEEEEEERRRFEEEARRREEKRRREREERLRERIRRELEEELRRLLE
G13	LEAELKALLAELTALAAAAAAAAAAAAAGDAELAAIWKAQAAKLNALAAKVAAALA
G14	STLALARALRAIGRAVAAALFGLGYAALKAGNVALAALLYALGAAVLAATTAAIRALLAAA
G15	SAKLKEEYEKAKAEAEKAKALAKEAAAKHPEAGKAYQKYADRLEKLAKAIEKQI
G16	MSLAEAIRDAGVAAALASGDPAHLDAAKAAIAAAVSPEEAARWAAVLDEDYARARAAAA
G17	MIEQLENATKLAKEIYEKLKKTGTPEEAKLAKEIYEKYKEKLEEAKAKKEKEEALKKLLEEL
G18	LLLLLLALLALAAAAKVAAMRARRAAAAAAAAAAAAAAAAAAAAAAAAAAA
G19	SLAEAAALAAARAAREARAREREARLEAEREARRREEEKEEERRRELE
G20	SKQEALAKARELYEKARELIREGKFEEAEKLIEELEKTEQGKALAKALREELKKEKELLK
G21	LLEELELKAKEEEAKKEYEERKKEREEEEEEEEEEEEEEEEEEEEEE
G22	EKLKKLQELADKAKKREELAKARAAEAKAKGDAAVAAECEATAAKYKETAENLQKEIEKLK
G23	MTPEELAALRAAAIAANKARLAAEEARRAAREAAALLAEAAAALAAALAEALAA
G24	ALEELRRAAEELIREIRENGEPSKETKERLIAAARRLREELGEEGARVVEELDREIERAYEEFKA
G25	KEEEEEAEKKREELLAKLKELAERNKKLAKEGIAPEEAKKIAEELEKKRKELE
G26	SREEEMERLEEEAKREVEEALRTEGIEAAKAVAERLAAEFEALGYLRVARRVRNYAESLILKAK
G27	MKEKAEKIKKEAIALAKEKGEELAKKVEAANPAEQYRMLKKLKKEKAEEK
G28	GLLLALLALLLALLRAAAIAAKGAAARAAAAAASAAYRAAKAAA
G29	SEEERREREEKLREEEERKAKLKAEGKAKREALKKAGEEYKKEREEKKEEEERKKKEEEE
G30	SDADRCAAAAARLRARAAQTEALAAQGLSPECRAAAAAEAARLRALAAELEARRAA

G31	LEEVIDVITRITDAIAQALIAANPVVGGAIAAAIRAAVSAALLALIK
G32	EKEKAILKQEAERAKKRAAGYNALAAEQAANGNTAAAAAAKAKAAALKAKAAEYEEKAK
G33	EEEEERRKREEELRARIAALEAEAAAARALGAAIPALAAAAEGAAEAARRQAARIREYLAR
G34	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
G35	AAEEEAERLRRAAAELAERLARAALLAALRAALAARLAANALKIAAAAAALAAAAA
G36	EEEELERLREERERFKEEEEKRRAALEAEAAARRAAAERAAEEARRLAE
G37	MTPEERARALLEAALAHTQARLAELKARTAESPEYAAEAEAAAARLARLQAALAA
G38	DKLEKELAETTAEAEALAAAAAKAAAEDPEKAKEYAHRLAVAQRRRDNIEKELEKKK
G39	MEREREEERRRAEEEAERARRAAERLEEKLAARKKEREKLLKERLEKELEELKKELE
G40	SVKEAIEEAIKEIKETEELSAGLSSTERAERIEETRKRAEERIREVIEKKKKE
G41	SLEEVKQEAEARIARLRAEAERICAASSPEECAEQRAIVEAREARIKALVE
G42	YLEEAVAALKKLRDDLAAQLAKAKAAADTPEMKALAAETQALLELATKQLEKAEAKLK
G43	SLEELLKELEELKKKLLEALAALALARRAANQAPPELREKLLALADALKKLYLSLLK
G44	SLAEALRALAAAAGKALGNIAAGAAFLKALLAALAAAAAAAAAA
G45	MTEEEKEREEEKKKEAAKREAERALAELARLLAAAAAALALLAALA
G46	SEAEKLVEKMREVRKEYRELAAKKGEEEAKKVKEEMEKELKKLKEEREKVIKEKEEK
G47	ELEKKEEELKKKKAEERAAKAAALLAYALAKALAELLEALAKALA
G48	EEEEAARKKLQEEVEKLEKETKERVKELEEKAKESTPEEAEKYKKEAEEVVEETVKKIEEICKS
G49	LLALAARLAELAARRAAIEARRAEVAARRAARAAAAAAAAAAAAAAAAAAA
G50	DLLAELLRAVDAAIRAAAEALAAAAATEEEKLAVLQAGRLAIRLFRFLLALLRALLLS
G51	SPEALREACRAELEAVNKEYEKAKEEAKKLTPEEAKKVLAEQNKRLREAVERCRAAEA
G52	EEEKKAKEKELLIAALKRKAEEETARLKAEGKEAEAEAFRAECEAKIAAAK
G53	EEEELKKAIEEAKKKLAELKEERERRERAARLEEERRRREEEERRRRE
G54	MMEELKELVERLLELIDELLKNKELQPFAEELIKRFKEASKLSLEEFYKKVKELLEEAEKKLKEL
G55	SEEEKLKELAKKRKEELEAAKARREAEVARVLAEESEAAAKAKAAELTAAIVAKHKEFLKKLEE
G56	KEEKIKELEEKAKELEEFKKAAKELIEAEKAGDKEKAEKYKEKAKELLKKKKEAEKKRKELE
G57	EELARLAEELAAARREALRAELEALRREQEERLREEEEERRRREEEEK
G58	ELEEELAKKLREEREAALKARAAALRAAAEAERAARAERAAAARAAKAEAERERLA
G59	LTEEEIKKLREQALQLREEINRLKSKAALASPEEKAKLEEEIKEKEAEREELIKKIK
G60	AALAAALQAALAAAIDAAIAAAAAAAAAAAAAAEEALKKLLEELAK
G61	SLAEIAARLAANKARAALFKALAAKLAKLTTPELAKKLAAKIVAK
G62	MEKELEEKLKKKEEEKKEKEAEEERKKAKEKAKELEEKKKKEKELKELE
G63	LPLAELLALLAALAAAQLAAKAAYAAKKAAIKAAGEARKAAEAAAAAEEAELL
G64	AQAELEAKRAAAAALEAELLEKRREEEEEEEEEEEEEEEEE
G65	SSLAKKILELRKKALEGLKAGKRTPETKRFQDIVEKTLKEEAEKAAKKALEELK
G66	MELEKKIEEELAKMKELAAKGPEYRPELEKAGAKAREYREKLREEALKKEEEE
G67	ELLKKLILLILKIGRGLNELGKKLRKAGLKKLANKFFKIGRKLYEIAEKL
G68	AEALEDLARRLIAKVREEAEKRAKAGTPEEAKEAWKEAAELRARIEALRAALLAA
G69	AATIAAYAAKLAAHAAQCRALGAAHPEIKAAAEKNAAAIEAARDKALANAAA
G70	SAAEAAFEAELAAAKAAYAAERDAAAAKYKDNLEKREAALREWHRKEAETIAALKAKHAAEKAAA
G71	DVATLKALAAQYRAARAAVREEAARLAAAEPERAAEILAEGAALAAAFDAKAAAAAAAAAAAA
G72	TEEELRRELEARRAAAEEEARREAARKEQAELQAKAAALEAALKAAA
G73	EEEERRREEEEREARLAALREENERRRAERQAKIAAAALAALLAALLAA
G74	SLEENKKQWEKLQEETEKEVAKLKAEGDARRAALAAEAAARAAAEALAALAAL
G75	SEIKEEAERREREEEEERARRIAEAEAAAAAAAAAAAAAAA

SynthImmunol_NMU

Notebook

 $No\underline{2}$

G76	AEEELRAAEERAAALAEAAARKAAREARKAAEEAAKAAAEAAELERKRAE
G77	EEEEKERLKEELREKLKKLLEEASKLENPQEVSEEAKKVYEEYLAL
G78	SAKECTKLKVETHKKYQELAKKSKPEDLPELVKKKEEELKKIEEKCK
G79	EEEIRKRKEELEKKIAEAKEELEKAKSNPEMAKIAQELLEKLKAWAAEEIAKLEK
G80	AEEKEKRLEELKKEAARLEEEAARYKELAPETGLEARKKAGEAEREREKALEEIRCLEAE
G81	GYAELAKRYEEIAAKLKEQAKKNKEKGISEEKAKYLEEKAAEFEAKAKEAKAIYEA
G82	ETLAQLRAERDRAEARRAALLALPPEERAANAAAIAAAAAAAAETEAGIKKLEEEK
G83	LLEQLATLAALAAALAERAAREARRERLRREREEEERRRREEEERRREEEERRR
G84	EEEEKKRKEELEKLKAEKEAERAALKAAEEAYRAAREAARREAEERERRER
G85	LSPEELEARRAALRAAEEARRAAERAAREEARAAAAAAAEAEARARLEAELAAAA
G86	DPEELKKEAEELAKKAEIYKKLAEEAAAKYSQSAADRLKAKAAEYEAKRKAVEAKLKALE
G87	EALRAAIDALAAATDALAAASTPEAAARLRAATAAAIRALYALAE
G88	SEVERLKAEAARLTERIVELAEKAMELAKKSTPEEAKKIMEEAKKERDRLRAERERALAEAEALE
G89	SKEEIEALEKKLAELKALAEKAAAENPVLAAQYRAQALEAEAQLEKLKKEA
G90	LSDLASALAQLALGLELLADPETKEEGLKLIAEALARLAAALEQLARLLAGLAAKAAEAA
G91	AEVAKLKAEAAAAKAKAAAYAAAGNLAAADAARKKALEYEAKANKALEE
G92	EEELAKAALEAERAALKAAREAERAAREAAAAAERAAAAAEEARRAAEAEAERERAA
G93	SEEEIEKIKEEAIKKLKEVKAEAEKKKATSSPEEREKIEKEAKEKMDEILREEREKIEKLKKE
G94	EEEELEEKLKKLLEEKEKKLKKELEERKKKRKEKLEKAEKELKKKLE
G95	LDEAVAAAREAIRAAVEEAKKLYKEDPEKGKELLKAAQAALAALRAARAAAEAAAAAA
G96	SALEEELAKAKAEAEKLAAETEKTGDEETAKKTLEARAKALKLEEEL
G97	SLRELLRLLASLALRLFRALRAAAGAFMAADPALGAALLAAVEALEEAFRALVLAILLS
G98	LAELYKKQAEEKQAQAAAALAQAAADPANAAELQAQAAKLQAQAAELQKKAAEALA
G99	EEEKEVEKKIKELLEKGKKSTPEEAAKYNAKAEYLKIEAEAKKRKEEAEKAKKLKELEEKL