Análise exploratória

Importantdo módulos e pacotes

In [1]:

```
# Imports
import os
import subprocess
import stat
import numpy as np
from numpy.random import randn
import pandas as pd
from pandas import Series, DataFrame
import seaborn as sns
#sns.set(style='white')
import matplotlib.pyplot as plt
%matplotlib inline
import datetime
from datetime import datetime
from datetime import time
from datetime import date
```

Verificando os valores nulos e substituindo por zeros e 'não possui'

In [2]:

```
#df01.dtypes
#df01.isnull().sum()
#df01copy = df01.copy()
#df02 = df01copy.fillna({
# 'dt_nasc': 0,
# 'renda': 'nao possui'
#})
#df02.head()
```

In [3]:

```
df01 = pd.read_excel('Plan.xlsx')
df01.head()
```

Out[3]:

	id	qt_hit	diasnav	notlidas	visita_capa	usou_app	perfil	genero	dt_nasc	reı
0	3321	0	0	0	0	NAO	ASSINANTE	F	23.04.1981 00:00:00	4 / 8
1	1459	1	23	0	362	SIM	ASSINANTE	М	01.01.1900 00:00:00	3 / 4
2	1630	5	16	11	4	NAO	ASSINANTE	M	01.01.1900 00:00:00	pos
3	905	9	13	8	25	SIM	ASSINANTE	F	01.01.1900 00:00:00	ACI 25
4	1219	1	1	0	9	SIM	ASSINANTE	М	16.08.1977 00:00:00	4 , 8
4										•

In [4]:

df01.shape

Out[4]:

(5600, 10)

In [5]:

df01.dtypes

Out[5]:

id int64 qt_hit int64 diasnav int64 notlidas int64 visita_capa int64 usou_app object perfil object genero object dt_nasc object renda object dtype: object

```
In [6]:
```

```
df01.isnull().sum()
Out[6]:
id
qt_hit
diasnav
               0
notlidas
visita_capa
usou_app
perfil
               0
genero
               0
dt_nasc
renda
               0
dtype: int64
```

Verificação dos dados

Agrupando os dados por gênero

```
In [7]:

df01['genero'].value_counts()

Out[7]:

M     3260
F     2204
I     136
Name: genero, dtype: int64

In [8]:

genero = df01.groupby('genero')
```

Dados do público masculino

In [9]:

```
masculino = genero.get_group('M')
masculino.head()
```

Out[9]:

	id	qt_hit	diasnav	notlidas	visita_capa	usou_app	perfil	genero	dt_nasc	ren
1	1459	1	23	0	362	SIM	ASSINANTE	М	01.01.1900 00:00:00	3\$ A 4\$
2	1630	5	16	11	4	NAO	ASSINANTE	M	01.01.1900 00:00:00	n pos
4	1219	1	1	0	9	SIM	ASSINANTE	М	16.08.1977 00:00:00	4\$ A 8\$
5	2645	1	6	3	7	NAO	ASSINANTE	М	28.10.1967 00:00:00	35 A 45
6	842	11	16	10	0	NAO	ASSINANTE	М	04.12.1970 00:00:00	4\$ A 8\$
4										•

In [10]:

masculino.dtypes

Out[10]:

id int64 qt_hit int64 diasnav int64 notlidas int64 visita_capa int64 usou_app object perfil object genero object dt_nasc object renda object dtype: object

In [11]:

masculino['genero'].count()

Out[11]:

3260

In [12]:

```
# Média de dias navegados do público masculino = 13
# Média qt de anuncios público masculino = 8
# Média de notícias lidas público masculino = 18
## Média de visitas capa público masculino = 42
masculino.describe().round()
```

Out[12]:

	id	qt_hit	diasnav	notlidas	visita_capa
count	3260.0	3260.0	3260.0	3260.0	3260.0
mean	160665.0	8.0	13.0	18.0	42.0
std	118098.0	23.0	16.0	73.0	138.0
min	3.0	0.0	0.0	0.0	0.0
25%	48044.0	0.0	2.0	0.0	0.0
50%	154650.0	0.0	6.0	2.0	0.0
75%	262862.0	5.0	19.0	9.0	17.0
max	371187.0	345.0	60.0	1773.0	2963.0

In [13]:

```
masculino['nasc'] = pd.to_datetime(masculino['dt_nasc'], errors='coerce')
```

C:\Users\bruno.r\AppData\Local\Continuum\anaconda3\lib\site-packages\ipykern el_launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/s table/indexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pand as-docs/stable/indexing.html#indexing-view-versus-copy)

"""Entry point for launching an IPython kernel.

In [14]:

```
masculino['idade'] = date.today().year - masculino['nasc'].dt.year
```

C:\Users\bruno.r\AppData\Local\Continuum\anaconda3\lib\site-packages\ipykern el launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/s table/indexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pand as-docs/stable/indexing.html#indexing-view-versus-copy)

"""Entry point for launching an IPython kernel.

In [15]:

masculino.head()

Out[15]:

	id	qt_hit	diasnav	notlidas	visita_capa	usou_app	perfil	genero	dt_nasc	ren
1	1459	1	23	0	362	SIM	ASSINANTE	М	01.01.1900 00:00:00	35 A 45
2	1630	5	16	11	4	NAO	ASSINANTE	M	01.01.1900 00:00:00	n pos
4	1219	1	1	0	9	SIM	ASSINANTE	М	16.08.1977 00:00:00	4\$ A 8\$
5	2645	1	6	3	7	NAO	ASSINANTE	М	28.10.1967 00:00:00	35 A 45
6	842	11	16	10	0	NAO	ASSINANTE	М	04.12.1970 00:00:00	45 A 85
4										•

In [17]:

Dos dados que conseguimos filtrar do público masculino, 2847 estão entre 18 e 100 anos. masculino[(masculino['idade'] > 18) & (masculino['idade'] < 100)].count()

Out[17]:

id	2847
qt_hit	2847
diasnav	2847
notlidas	2847
visita_capa	2847
usou_app	2847
perfil	2847
genero	2847
dt_nasc	2847
renda	2847
nasc	2847
idade	2847
dtype: int64	

In [18]:

```
masculino1 = masculino[(masculino['idade'] > 18) & (masculino['idade'] < 100)]</pre>
```

In [19]:

masculino1.head()

Out[19]:

	id	qt_hit	diasnav	notlidas	visita_capa	usou_app	perfil	genero	dt_nasc	re
4	1219	1	1	0	9	SIM	ASSINANTE	М	16.08.1977 00:00:00	4
5	2645	1	6	3	7	NAO	ASSINANTE	М	28.10.1967 00:00:00	3
6	842	11	16	10	0	NAO	ASSINANTE	М	04.12.1970 00:00:00	4 , 8
19	1729	0	0	0	0	NAO	ASSINANTE	М	08.07.1989 00:00:00	3 /
45	9	6	51	177	0	NAO	ASSINANTE	М	16.08.1985 00:00:00	8 7 14
4										•

In [55]:

masculino1['genero'].count()

Out[55]:

2847

In [57]:

```
# Média de dias navegados do público masculino = 13
# Média qt de anuncios público masculino = 8
# Média de notícias lidas público masculino = 18
## Média de visitas capa público masculino = 42
# Média de idade = 47
masculino1.describe().round()
```

Out[57]:

	id	qt_hit	diasnav	notlidas	visita_capa	idade
count	2847.0	2847.0	2847.0	2847.0	2847.0	2847.0
mean	180900.0	8.0	13.0	18.0	42.0	47.0
std	110027.0	23.0	15.0	73.0	140.0	7.0
min	7.0	0.0	0.0	0.0	0.0	20.0
25%	86951.0	0.0	2.0	0.0	0.0	49.0
50%	179997.0	0.0	7.0	3.0	0.0	49.0
75%	274748.0	5.0	19.0	9.0	17.0	49.0
max	371187.0	345.0	60.0	1773.0	2963.0	99.0

In [20]:

```
# Média de idade do público masculino = 47
masculino1['idade'].mean()
```

Out[20]:

47.2781875658588

In [21]:

```
# média de idade masculino que usou e não usou o app
mascmediaapp = masculino1.groupby('usou_app').idade.mean()
mascmediaapp
```

Out[21]:

usou_app

NAO 47.192140 SIM 47.503817

Name: idade, dtype: float64

```
In [22]:
```

```
# média de idade masculino conforme renda
mascmediarenda = masculino1.groupby('renda').idade.mean()
mascmediarenda
```

Out[22]:

renda

ACIMA DE 25SM 48.257143 ATE 1SM 33.000000 DE 14SM ATE 25SM 44.600000 DE 2SM ATE 3SM 47.808511 DE 3SM ATE 4SM 45.961631 DE 4SM ATE 8SM 47.132898 DE 8SM ATE 14SM 45.789272 não possui 48.080340

Name: idade, dtype: float64

In [23]:

```
# Quantidade de assinantes e não assinantes dos produtos do público masculino
masculino1['perfil'].value_counts()
```

Out[23]:

PROSPECT 2782 **ASSINANTE** 65

Name: perfil, dtype: int64

In [24]:

```
masculino1['perfil'].count()
```

Out[24]:

2847

In [26]:

```
# Logo a porcentagem do público masculino assinante é:
# 97% do público masculino não é assinante
# 2% do público masculino é assinante
masculino1['perfil'].value_counts() / masculino1['perfil'].count() * 100
```

Out[26]:

PROSPECT 97.716895 **ASSINANTE** 2.283105

Name: perfil, dtype: float64

```
In [27]:
```

```
# média de idade masculino conforme perfil
mascmediaperfilidade = masculino1.groupby('perfil').idade.mean()
mascmediaperfilidade
```

Out[27]:

perfil

ASSINANTE 44.630769 PROSPECT 47.340043 Name: idade, dtype: float64

In [28]:

```
# média notlidas masculino
mascmedianotlidas = masculino1.groupby('id')['notlidas'].max().mean()
mascmedianotlidas
```

Out[28]:

17.703547593958554

In [29]:

```
# usuários masculinos com maior média de notícias lidas
mascmedianotlidas = masculino1.groupby('id').notlidas.mean().sort_values(ascending=False)
mascmedianotlidas.head()
```

Out[29]:

id 73396 1773 304968 1077 353950 1012 108301 850

Name: notlidas, dtype: int64

748

In [30]:

262033

```
# moda notlidas masculino (o valor mais frequente)
#mascmodanotlidas = masculino1.groupby('id')['notlidas'].max().mode()
#mascmodanotlidas
```

```
In [31]:
```

```
# usuários masculinos que mais visitaram a capa
mascmediacapa = masculino1.groupby('id').visita_capa.mean().sort_values(ascending=False)
mascmediacapa.head(10)
```

```
Out[31]:
```

```
id
365635
          2963
145071
          1544
204645
          1541
353950
          1390
73396
          1383
3567
          1366
241284
          1346
354808
          1299
262033
          1244
78566
          1243
Name: visita_capa, dtype: int64
```

In [32]:

```
# os usuários masculinos que mais receberam anúncio (qt_hit)
mascmediahit = masculino1.groupby('id').qt_hit.mean().sort_values(ascending=False)
mascmediahit.head(10)
```

Out[32]:

id

```
176232
           345
72665
           285
300136
           249
101290
           210
148988
           202
268168
           202
274299
           192
23120
           192
23935
           186
           172
```

Name: qt_hit, dtype: int64

Observação: ** desenvolver isso

```
In [33]:
```

```
###### ***** observação: posso analisar os usuários e suas características no sistema
# para verificar o perfil que mais lê notícias
```

```
In [34]:
```

```
#masculino.dtypes
```

```
In [35]:
```

```
#masculino['notlidas'] = masculino['notlidas'].astype(np.int64)
```

```
In [36]:
```

```
#masculino['qt_hit'] = masculino['notlidas'].astype(np.int64)
```

```
In [37]:
```

```
#masculino['diasnav'] = masculino['notlidas'].astype(np.int64)
```

In [38]:

```
#masculino['notlidas'] = masculino['notlidas'].astype(np.int64)
```

In [39]:

```
#masculino['visita_capa'] = masculino['notlidas'].astype(np.int64)
```

In [40]:

```
#masculino.dtypes
```

In [41]:

```
#masculino['idade'].unique()
# Com ométodo unique, observou-se que os valores nas colunas apresentam uma anomalias.
```

In [42]:

```
# valor único????
# masculino['coluna'].unique()
# alguma anomalia?
```

Dados do público feminino

In [43]:

```
feminino = genero.get_group('F')
feminino.head()
```

Out[43]:

	id	qt_hit	diasnav	notlidas	visita_capa	usou_app	perfil	genero	dt_nasc	re
0	3321	0	0	0	0	NAO	ASSINANTE	F	23.04.1981 00:00:00	
3	905	9	13	8	25	SIM	ASSINANTE	F	01.01.1900 00:00:00	AC 2
7	3474	0	0	0	0	NAO	ASSINANTE	F	01.01.1900 00:00:00	
8	187	0	0	0	0	NAO	ASSINANTE	F	01.01.1900 00:00:00	рc
11	2607	0	0	0	0	NAO	ASSINANTE	F	01.01.1900 00:00:00	pι
4										•

In [44]:

```
#df01['nasc'] = pd.to_datetime(df01['dt_nasc'], errors='coerce')
```

In [45]:

```
#df01['idade'] = date.today().year - df01['nasc'].dt.year
```

In [46]:

```
feminino['nasc'] = pd.to_datetime(feminino['dt_nasc'], errors='coerce')
```

C:\Users\bruno.r\AppData\Local\Continuum\anaconda3\lib\site-packages\ipykern
el_launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/s table/indexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy)

"""Entry point for launching an IPython kernel.

In [47]:

feminino['idade'] = date.today().year - feminino['nasc'].dt.year

C:\Users\bruno.r\AppData\Local\Continuum\anaconda3\lib\site-packages\ipykern
el_launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/s table/indexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy)

"""Entry point for launching an IPython kernel.

In [50]:

feminino.head()

Out[50]:

	id	qt_hit	diasnav	notlidas	visita_capa	usou_app	perfil	genero	dt_nasc	re
0	3321	0	0	0	0	NAO	ASSINANTE	F	23.04.1981 00:00:00	
3	905	9	13	8	25	SIM	ASSINANTE	F	01.01.1900 00:00:00	AC 2
7	3474	0	0	0	0	NAO	ASSINANTE	F	01.01.1900 00:00:00	
8	187	0	0	0	0	NAO	ASSINANTE	F	01.01.1900 00:00:00	рс
11	2607	0	0	0	0	NAO	ASSINANTE	F	01.01.1900 00:00:00	рс
4										•

In []:

In [51]:

feminino1 = feminino[(feminino['idade'] > 18) & (feminino['idade'] < 100)]</pre>

In [52]:

```
feminino1.head(2)
```

Out[52]:

	id	qt_hit	diasnav	notlidas	visita_capa	usou_app	perfil	genero	dt_nasc	re
0	3321	0	0	0	0	NAO	ASSINANTE	F	23.04.1981 00:00:00	4
25	2621	0	0	0	0	NAO	ASSINANTE	F	25.07.1975 00:00:00	٤ 14
4										•

In [53]:

```
# Dos dados que conseguimos filtrar do público feminino, 2045 estão entre 18 e 100 anos feminino1['perfil'].count()
```

Out[53]:

2045

In [54]:

```
# Média de dias navegados do público feminino = 9
# Média qt de anuncios público feminino = 5
# Média de notícias lidas público feminino = 16
## Média de visitas capa público feminino = 21
feminino1.describe().round()
```

Out[54]:

	id	qt_hit	diasnav	notlidas	visita_capa	idade
count	2045.0	2045.0	2045.0	2045.0	2045.0	2045.0
mean	182298.0	5.0	9.0	16.0	21.0	47.0
std	108008.0	29.0	13.0	68.0	100.0	8.0
min	5.0	0.0	0.0	0.0	0.0	19.0
25%	86322.0	0.0	2.0	1.0	0.0	49.0
50%	184872.0	0.0	4.0	3.0	0.0	49.0
75%	274666.0	1.0	10.0	8.0	1.0	49.0
max	370544.0	894.0	60.0	1102.0	2035.0	94.0

In [58]:

```
# Média de idade do público feminino = 52
feminino1['idade'].mean()
```

Out[58]:

47.30513447432763

```
In [59]:
```

```
# média de idade feminino que usou e não usou o app
femediaapp = feminino1.groupby('usou_app').idade.mean()
femediaapp
```

Out[59]:

usou_app NAO 47.093732 SIM 48.671533

Name: idade, dtype: float64

In [60]:

```
# média de idade feminino conforme renda
femediarenda = feminino1.groupby('renda').idade.mean().round()
femediarenda
```

Out[60]:

renda ACIMA DE 25SM 48.0 ATE 1SM 27.0 DE 14SM ATE 25SM 47.0 DE 2SM ATE 3SM 46.0 47.0 DE 3SM ATE 4SM DE 4SM ATE 8SM 45.0 DE 8SM ATE 14SM 47.0 não possui 48.0 Name: idade, dtype: float64

In [61]:

```
# Quantidade de assinantes e não assinantes dos produtos do público feminino feminino1['perfil'].value_counts()
```

Out[61]:

PROSPECT 2022 ASSINANTE 23

Name: perfil, dtype: int64

In [62]:

```
# Logo a porcentagem do público feminino assinante é
# 99% do público feminino não é assinante
# 1% do público feminino é assinante
feminino1['perfil'].value_counts() / feminino1['perfil'].count() * 100
```

Out[62]:

PROSPECT 98.875306 ASSINANTE 1.124694

Name: perfil, dtype: float64

```
In [63]:
```

```
# média de idade feminino conforme perfil
femediaperfilidade = feminino1.groupby('perfil').idade.mean()
femediaperfilidade
```

Out[63]:

perfil

ASSINANTE 40.000000
PROSPECT 47.388229
Name: idade, dtype: float64

In [64]:

```
# média notlidas feminino
#femedianotlidas = feminino1.groupby('id')['notlidas'].max().mean()
#femedianotlidas
```

In [65]:

```
# usuários femininos com mais noticias lidas
femedianotlidas = feminino1.groupby('id').notlidas.mean().sort_values(ascending=False)
femedianotlidas.head(10)
```

Out[65]:

Name: notlidas, dtype: int64

In [66]:

```
# moda notlidas feminino (o valor mais frequente)
#femodanotlidas = feminino1.groupby('id')['notlidas'].max().mode()
#femodanotlidas
```

```
In [67]:
```

```
# usuários femininos com mais visitas de capa)
femediacapa = feminino1.groupby('id').visita_capa.mean().sort_values(ascending=False)
femediacapa.head(10)
Out[67]:
id
182163
          2035
32732
          1391
345768
          1021
          985
110672
281951
           962
298273
           953
227507
           920
93603
           749
226029
           710
218609
           681
Name: visita_capa, dtype: int64
```

In [68]:

```
# usuários femininos que mais receberam anúncio
femediahit = feminino1.groupby('id').qt_hit.mean().sort_values(ascending=False)
femediahit.head(10)
```

Out[68]:

```
id
215101
          894
194429
          512
305146
          512
110672
          222
270723
          194
154353
          150
188476
          147
281951
          141
          141
365448
33084
          140
```

Name: qt_hit, dtype: int64

Observação: ** desenvolver isso

```
In [69]:
```

```
###### ***** observação: posso analisar os usuários e suas características no sistema # para verificar o perfil que mais lê notícias
```

Dados público indefinido

In [70]:

```
indef = genero.get_group('I')
indef.head()
```

Out[70]:

	id	qt_hit	diasnav	notlidas	visita_capa	usou_app	perfil	genero	dt_nasc
605	367566	29	47	0	124	SIM	PROSPECT	1	0
648	73118	3	17	19	4	SIM	PROSPECT	1	05.04.1991 00:00:00
764	311563	6	21	8	60	SIM	PROSPECT	1	03.01.1997 00:00:00
781	240379	0	5	6	0	NAO	PROSPECT	1	16.11.1985 00:00:00
786	63535	0	6	2	0	NAO	PROSPECT	1	24.04.1967 00:00:00
4)

In [71]:

```
indef['nasc'] = pd.to_datetime(indef['dt_nasc'], errors='coerce')
```

C:\Users\bruno.r\AppData\Local\Continuum\anaconda3\lib\site-packages\ipykern
el launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/s table/indexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy)

"""Entry point for launching an IPython kernel.

In [72]:

```
indef['idade'] = date.today().year - indef['nasc'].dt.year
```

C:\Users\bruno.r\AppData\Local\Continuum\anaconda3\lib\site-packages\ipykern
el launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/s table/indexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy)

"""Entry point for launching an IPython kernel.

In [73]:

indef.head(2)

Out[73]:

	id	qt_hit	diasnav	notlidas	visita_capa	usou_app	perfil	genero	dt_nasc
605	367566	29	47	0	124	SIM	PROSPECT	I	0
648	73118	3	17	19	4	SIM	PROSPECT	1	05.04.1991 00:00:00
4									•

In [74]:

indef1 = indef[(indef['idade'] > 18) & (indef['idade'] < 100)]</pre>

In [75]:

indef1.head(2)

Out[75]:

	id	qt_hit	diasnav	notlidas	visita_capa	usou_app	perfil	genero	dt_nasc
605	367566	29	47	0	124	SIM	PROSPECT	1	0
648	73118	3	17	19	4	SIM	PROSPECT	1	05.04.1991 00:00:00
4									•

In [78]:

Dos dados que conseguimos filtrar do público indefinido, 136 estão entre 18 e 100 anos indef1['genero'].count()

Out[78]:

136

In [82]:

```
# Média de dias navegados do público indefinido = 16
# Média qt de anuncios público indefinido = 8
# Média de notícias lidas público indefinido = 30
## Média de visitas capa público indefinido = 76
# Média idade = 48
indef1.describe().round()
```

Out[82]:

	id	qt_hit	diasnav	notlidas	visita_capa	idade
count	136.0	136.0	136.0	136.0	136.0	136.0
mean	196775.0	8.0	16.0	30.0	76.0	48.0
std	107939.0	26.0	17.0	102.0	196.0	7.0
min	5052.0	0.0	1.0	0.0	0.0	22.0
25%	105133.0	0.0	3.0	0.0	0.0	49.0
50%	183432.0	0.0	7.0	3.0	0.0	49.0
75%	300620.0	4.0	21.0	10.0	42.0	49.0
max	370463.0	184.0	60.0	922.0	1169.0	74.0

In [83]:

```
# Média de idade do público indefinino
indef1['idade'].mean()
```

Out[83]:

48.4264705882353

In [84]:

```
# média de idade indefinino que usou e não usou o app
indefmediaapp = indef1.groupby('usou_app').idade.mean()
indefmediaapp
```

Out[84]:

usou_app

NAO 48.206897 SIM 48.816327

Name: idade, dtype: float64

```
In [85]:
```

```
# média de idade indefinido conforme renda
indefmediarenda = indef1.groupby('renda').idade.mean().round()
indefmediarenda
Out[85]:
renda
ACIMA DE 25SM
                    52.0
DE 14SM ATE 25SM
                    50.0
DE 3SM ATE 4SM
                    50.0
DE 4SM ATE 8SM
                    49.0
DE 8SM ATE 14SM
                    50.0
não possui
                    48.0
Name: idade, dtype: float64
In [86]:
# Quantidade de assinantes e não assinantes dos produtos do público indefinido
indef1['perfil'].value_counts()
Out[86]:
PROSPECT
             136
Name: perfil, dtype: int64
In [87]:
# Logo a porcentagem do público indefinido assinante é:
# 100% do público indefinido não é assinante
indef1['perfil'].value_counts() / indef1['perfil'].count() * 100
Out[87]:
PROSPECT
             100.0
Name: perfil, dtype: float64
In [88]:
# média de idade indefinido conforme perfil
indefmediaperfilidade = indef1.groupby('perfil').idade.mean()
indefmediaperfilidade
Out[88]:
perfil
PROSPECT
             48.426471
Name: idade, dtype: float64
In [86]:
# média notlidas indefinido
#indefmedianotlidas = indef1.groupby('id')['notlidas'].max().mean()
#indefmedianotlidas
Out[86]:
```

29.830882352941178

```
In [89]:
```

```
# usuários indefinidos com mais noticias
indefmedianotlidas = indef1.groupby('id').notlidas.mean().sort_values(ascending=False)
indefmedianotlidas.head(10)
Out[89]:
id
217835
          922
112047
          386
365791
          377
24144
          322
23519
          278
          259
246879
229442
          224
93715
          160
341781
          111
321939
           97
Name: notlidas, dtype: int64
In [88]:
# moda notlidas indefinido (o valor mais frequente)
#indefmodanotlidas = indef1.groupby('id')['notlidas'].max().mode()
#indefmodanotlidas
Out[88]:
dtype: int64
In [90]:
# usuários indefinidos com mais visita de capa
indefmediacapa = indef1.groupby('id').visita_capa.mean().sort_values(ascending=False)
indefmediacapa.head(10)
Out[90]:
id
217835
          1169
7636
          1100
197198
           828
64814
           816
           659
24144
81972
           623
302321
           566
246879
           339
23519
           313
           297
229442
Name: visita_capa, dtype: int64
```

```
In [91]:
```

```
# usuários indefinido com mais qt_hit
indefmediahit = indef1.groupby('id').qt_hit.mean().sort_values(ascending=False)
indefmediahit.head(10)
Out[91]:
id
7636
         184
305122
         180
330755
         141
302321
         43
197198
          38
173990
          37
282337
           35
          34
258461
           33
81972
159880
Name: qt_hit, dtype: int64
```

Agrupando os dados por quem usou o app

```
In [92]:
```

```
app = df01.groupby('usou_app')
```

Público que usou o app

In [93]:

```
sim = app.get_group('SIM')
sim.head()
```

Out[93]:

	id	qt_hit	diasnav	notlidas	visita_capa	usou_app	perfil	genero	dt_nasc	rı
1	1459	1	23	0	362	SIM	ASSINANTE	М	01.01.1900 00:00:00	
3	905	9	13	8	25	SIM	ASSINANTE	F	01.01.1900 00:00:00	A(2
4	1219	1	1	0	9	SIM	ASSINANTE	М	16.08.1977 00:00:00	
13	3081	4	4	0	20	SIM	ASSINANTE	М	01.01.1900 00:00:00	
14	3561	24	49	0	295	SIM	ASSINANTE	М	01.01.1900 00:00:00	1
4										•

In [94]:

```
sim['nasc'] = pd.to_datetime(sim['dt_nasc'], errors='coerce')
```

C:\Users\bruno.r\AppData\Local\Continuum\anaconda3\lib\site-packages\ipykern
el_launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/s table/indexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy)
"""Entry point for launching an IPython kernel.

Entry point for launching an leathou kerner

In [95]:

```
sim['idade'] = date.today().year - sim['nasc'].dt.year
```

C:\Users\bruno.r\AppData\Local\Continuum\anaconda3\lib\site-packages\ipykern
el_launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/s table/indexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy)

"""Entry point for launching an IPython kernel.

```
In [96]:
```

```
sim1 = sim[(sim['idade'] > 18) & (sim['idade'] < 100)]
```

In [97]:

```
sim1.head(2)
```

Out[97]:

	id	qt_hit	diasnav	notlidas	visita_capa	usou_app	perfil	genero	dt_nasc	re
4	1219	1	1	0	9	SIM	ASSINANTE	М	16.08.1977 00:00:00	4 , 8
58	1605	20	12	0	16	SIM	ASSINANTE	М	14.01.1990 00:00:00	4 , 8
4										•

In [101]:

```
# Dos dados que conseguimos filtrar do público indefinido, 1109 estão entre 18 e 100 anos.
sim1['usou_app'].count()
```

Out[101]:

1109

In [102]:

```
# Média de dias navegados do público indefinido = 24
# Média qt de anuncios público indefinido = 15
# Média de notícias lidas público indefinido = 42
## Média de visitas capa público indefinido = 138
# Média idade = 48
sim1.describe().round()
```

Out[102]:

	id	qt_hit	diasnav	notlidas	visita_capa	idade
count	1109.0	1109.0	1109.0	1109.0	1109.0	1109.0
mean	180645.0	15.0	24.0	42.0	138.0	48.0
std	109948.0	28.0	19.0	136.0	239.0	8.0
min	92.0	0.0	1.0	0.0	0.0	19.0
25%	82295.0	1.0	7.0	0.0	14.0	49.0
50%	179523.0	5.0	19.0	0.0	48.0	49.0
75%	274299.0	16.0	39.0	10.0	157.0	49.0
max	370970.0	249.0	60.0	1773.0	2963.0	99.0

```
In [104]:
```

```
# Média de idade do público que usou o app
sim1['idade'].mean()
```

Out[104]:

47.850315599639316

In [106]:

```
# média de idade quem usou o app que usou e não usou o app
simmediaapp = sim1.groupby('usou_app').idade.mean()
simmediaapp
```

Out[106]:

usou_app

SIM 47.850316

Name: idade, dtype: float64

In [107]:

```
# média de idade quem usou o app conforme renda
simmediarenda = sim1.groupby('renda').idade.mean().round()
simmediarenda
```

Out[107]:

renda

ACIMA DE 25SM 49.0

DE 14SM ATE 25SM 44.0

DE 2SM ATE 3SM 46.0

DE 3SM ATE 4SM 46.0

DE 4SM ATE 8SM 48.0

DE 8SM ATE 14SM 48.0

não possui 48.0

Name: idade, dtype: float64

In [108]:

```
# Quantidade de assinantes e não assinantes dos produtos do público que usou o app sim1['perfil'].value_counts()
```

Out[108]:

PROSPECT 1094 ASSINANTE 15

Name: perfil, dtype: int64

In [109]:

```
sim1['perfil'].count()
```

Out[109]:

1109

```
In [111]:
```

```
# Logo a porcentagem do público indefinido assinante é:
# 99% do público que usou o app não é assinante
# 1% do público que usou o app não é assinante
sim1['perfil'].value_counts() / sim1['perfil'].count() * 100
```

Out[111]:

PROSPECT 98.64743 ASSINANTE 1.35257

Name: perfil, dtype: float64

In [112]:

```
# média de idade quem usou o app conforme perfil
simmediaperfilidade = sim1.groupby('perfil').idade.mean()
simmediaperfilidade
```

Out[112]:

perfil

ASSINANTE 40.800000
PROSPECT 47.946984
Name: idade, dtype: float64

In [113]:

```
# média notlidas quem usou o app
simmedianotlidas = sim1.groupby('id')['notlidas'].max().mean()
simmedianotlidas
```

Out[113]:

42.396753832281334

In [115]:

```
# usuários que usaram app com mais noticias lidas
simmedianotlidas = sim1.groupby('id').notlidas.mean().sort_values(ascending=False)
simmedianotlidas.head(10)
```

Out[115]:

```
id
73396
           1773
227507
           1102
304968
           1077
353950
           1012
            984
271047
217835
            922
166174
            843
66781
            790
131729
            775
262033
            748
```

Name: notlidas, dtype: int64

```
In [179]:
# moda notlidas quem usou o app (o valor mais frequente)
#simmodanotlidas = sim.groupby('id')['notlidas'].max().mode()
#simmodanotlidas
Out[179]:
     0
dtype: int64
In [116]:
# usuários que usaram app com mais visitas de capa
simmediacapa = sim1.groupby('id').visita_capa.mean().sort_values(ascending=False)
simmediacapa.head(10)
Out[116]:
id
365635
          2963
182163
          2035
          1544
145071
204645
          1541
32732
          1391
353950
          1390
73396
          1383
3567
          1366
241284
          1346
354808
          1299
Name: visita_capa, dtype: int64
In [117]:
# usuários que usaram app com mais anúncio
simmediahit = sim1.groupby('id').qt_hit.mean().sort_values(ascending=False)
simmediahit.head(10)
Out[117]:
id
300136
          249
110672
          222
268168
          202
23120
          192
274299
          192
23935
          186
          184
7636
365635
          167
          150
154353
```

Público que não usou o app

Name: qt_hit, dtype: int64

In [119]:

```
nao = app.get_group('NAO')
nao.head()
```

Out[119]:

	id	qt_hit	diasnav	notlidas	visita_capa	usou_app	perfil	genero	dt_nasc	ren
0	3321	0	0	0	0	NAO	ASSINANTE	F	23.04.1981 00:00:00	45 A 85
2	1630	5	16	11	4	NAO	ASSINANTE	M	01.01.1900 00:00:00	n pos
5	2645	1	6	3	7	NAO	ASSINANTE	М	28.10.1967 00:00:00	3 A 4
6	842	11	16	10	0	NAO	ASSINANTE	М	04.12.1970 00:00:00	45 A 85
7	3474	0	0	0	0	NAO	ASSINANTE	F	01.01.1900 00:00:00	45 A 85
4										•

In [120]:

```
nao['nasc'] = pd.to_datetime(nao['dt_nasc'], errors='coerce')
```

C:\Users\bruno.r\AppData\Local\Continuum\anaconda3\lib\site-packages\ipykern
el_launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/s table/indexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy)
"""Entry point for launching an IPython kernel.

Lift y point for faunthing an irython kern

In [121]:

```
nao['idade'] = date.today().year - nao['nasc'].dt.year
```

C:\Users\bruno.r\AppData\Local\Continuum\anaconda3\lib\site-packages\ipykern
el launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy)

"""Entry point for launching an IPython kernel.

In [122]:

```
nao1 = nao[(nao['idade'] > 18) & (nao['idade'] < 100)]</pre>
```

In [123]:

```
nao1.head(2)
```

Out[123]:

	id	qt_hit	diasnav	notlidas	visita_capa	usou_app	perfil	genero	dt_nasc	ren
0	3321	0	0	0	0	NAO	ASSINANTE	F	23.04.1981 00:00:00	1 45 A ⁻ 85
5	2645	1	6	3	7	NAO	ASSINANTE	М	28.10.1967 00:00:00	1 35 A 45
4										•

In [128]:

```
# Dos dados que conseguimos filtrar do público indefinido, 3919 estão entre 18 e 100 anos. nao1['usou_app'].count()
```

Out[128]:

3919

In [129]:

```
# Média de dias navegados do público indefinido = 8
# Média qt de anuncios público indefinido = 4
# Média de notícias lidas público indefinido = 10
## Média de visitas capa público = 5
# Média idade = 47
nao1.describe().round()
```

Out[129]:

	id	qt_hit	diasnav	notlidas	visita_capa	idade
count	3919.0	3919.0	3919.0	3919.0	3919.0	3919.0
mean	182252.0	4.0	8.0	10.0	5.0	47.0
std	108951.0	24.0	11.0	35.0	29.0	7.0
min	5.0	0.0	0.0	0.0	0.0	20.0
25%	88108.0	0.0	2.0	1.0	0.0	49.0
50%	182266.0	0.0	4.0	3.0	0.0	49.0
75%	275752.0	1.0	10.0	8.0	0.0	49.0
max	371187.0	894.0	60.0	850.0	628.0	94.0

In [133]:

```
nao1['idade'].mean()
```

Out[133]:

47.17019647869355

```
In [131]:
```

```
# média de idade quem não usou o app que usou e não usou o app
naomediaapp = nao1.groupby('usou_app').idade.mean()
naomediaapp
```

Out[131]:

usou_app

NAO 47.170196

Name: idade, dtype: float64

In [134]:

```
# média de idade quem não usou o app conforme renda
naomediarenda = nao1.groupby('renda').idade.mean().round()
naomediarenda
```

Out[134]:

renda

ACIMA DE 25SM 48.0 ATE 1SM 31.0 DE 14SM ATE 25SM 47.0 DE 2SM ATE 3SM 48.0 DE 3SM ATE 4SM 47.0 DE 4SM ATE 8SM 46.0 DE 8SM ATE 14SM 46.0 não possui 48.0 Name: idade, dtype: float64

In [135]:

Quantidade de assinantes e não assinantes dos produtos do público que não usou o app nao1['perfil'].value_counts()

Out[135]:

PROSPECT 3846 ASSINANTE 73

Name: perfil, dtype: int64

In [137]:

```
# Logo a porcentagem do público indefinido assinante é:
# 98% do público que não usou o app não é assinante
# 2% do público que não usou o app não é assinante
nao1['perfil'].value_counts() / nao1['perfil'].count() * 100
```

Out[137]:

PROSPECT 98.13728 ASSINANTE 1.86272

Name: perfil, dtype: float64

```
In [139]:
```

```
# média de idade quem não usou o app conforme perfil
naomediaperfilidade = nao1.groupby('perfil').idade.mean()
naomediaperfilidade
```

Out[139]:

perfil

ASSINANTE 43.958904 PROSPECT 47.231149 Name: idade, dtype: float64

In [140]:

```
# usuários que não usaram app com mais noticias Lidas
naomedianotlidas = nao1.groupby('id').notlidas.mean().sort_values(ascending=False)
naomedianotlidas.head(10)
```

Out[140]:

```
id
108301
           850
114455
           675
143723
           540
122220
           522
           490
106109
209602
           487
15101
           426
209045
           420
102139
           339
92800
           328
```

Name: notlidas, dtype: int64

In [141]:

```
# usuários que não usaram app com mais visitas de capa
naomediacapa = nao1.groupby('id').visita_capa.mean().sort_values(ascending=False)
naomediacapa.head(10)
```

Out[141]:

```
id
176232
           628
143723
           569
73401
           527
114455
           496
           407
305146
194429
           407
254417
           348
           339
246879
101290
           296
113822
           285
```

Name: visita_capa, dtype: int64

```
In [142]:
# usuários que não usaram app com mais anúncios
naomediahit = nao1.groupby('id').qt_hit.mean().sort_values(ascending=False)
naomediahit.head(10)
Out[142]:
id
215101
          894
194429
          512
305146
          512
176232
          345
72665
          285
101290
          210
148988
          202
270723
          194
305122
          180
24
          172
```

Agrupando os dados por renda

Name: qt_hit, dtype: int64

```
In [149]:

df01['nasc'] = pd.to_datetime(df01['dt_nasc'], errors='coerce')

In [150]:

df01['idade'] = date.today().year - df01['nasc'].dt.year

In [152]:

df011 = df01[(df01['idade'] > 18) & (df01['idade'] < 100)]

In [171]:

df011.shape

Out[171]:
(5028, 12)

In [154]:

renda = df011.groupby('renda')</pre>
```

```
In [155]:
```

```
nao_possui = renda.get_group('não possui')
nao_possui.head(2)
```

Out[155]:

		id	qt_hit	diasnav	notlidas	visita_capa	usou_app	perfil	genero	dt_nasc	re
-	27	1452	7	1	0	0	NAO	ASSINANTE	F	07.10.1966 00:00:00	ро
(65	847	4	1	0	3	SIM	ASSINANTE	М	13.05.1996 00:00:00	ро
4											•

In [156]:

```
nao_possui['renda'].count()
```

Out[156]:

2739

In [157]:

```
maior25 = renda.get_group('ACIMA DE 25SM')
maior25.head(2)
```

Out[157]:

	id	qt_hit	diasnav	notlidas	visita_capa	usou_app	perfil	genero	dt_nasc
430	1790	5	3	1	7	SIM	ASSINANTE	F	31.07.1981 00:00:00
621	363557	29	27	5	132	SIM	PROSPECT	М	0
4									>

In [158]:

```
maior25['renda'].count()
```

Out[158]:

55

In [159]:

```
de14ate25 = renda.get_group('DE 14SM ATE 25SM')
de14ate25.head(2)
```

Out[159]:

	id	qt_hit	diasnav	notlidas	visita_capa	usou_app	perfil	genero	dt_nasc	re
46	3153	0	0	0	0	NAO	ASSINANTE	М	0	14 , 25
68	3435	0	16	5	84	SIM	ASSINANTE	М	20.02.1982 00:00:00	14 7 25
4										•

In [160]:

```
de14ate25['renda'].count()
```

Out[160]:

162

In [161]:

```
de8ate14 = renda.get_group('DE 8SM ATE 14SM')
de8ate14.head(2)
```

Out[161]:

	id	qt_hit	diasnav	notlidas	visita_capa	usou_app	perfil	genero	dt_nasc	re
25	2621	0	0	0	0	NAO	ASSINANTE	F	25.07.1975 00:00:00	8 , 14
45	9	6	51	177	0	NAO	ASSINANTE	М	16.08.1985 00:00:00	8 , 14
4										•

In [162]:

```
de8ate14['renda'].count()
```

Out[162]:

435

```
In [163]:
```

```
de4ate8 = renda.get_group('DE 4SM ATE 8SM')
de4ate8.head(2)
```

Out[163]:

	id	qt_hit	diasnav	notlidas	visita_capa	usou_app	perfil	genero	dt_nasc	ren
0	3321	0	0	0	0	NAO	ASSINANTE	F	23.04.1981 00:00:00	1 45 A 85
4	1219	1	1	0	9	SIM	ASSINANTE	М	16.08.1977 00:00:00	1 45 A 85
4										•

In [164]:

```
de4ate8['renda'].count()
```

Out[164]:

807

In [165]:

```
de3ate4 = renda.get_group('DE 3SM ATE 4SM')
de3ate4.head(2)
```

Out[165]:

	id	qt_hit	diasnav	notlidas	visita_capa	usou_app	perfil	genero	dt_nasc	re
	5 2645	1	6	3	7	NAO	ASSINANTE	М	28.10.1967 00:00:00	3 / 4
1	9 1729	0	0	0	0	NAO	ASSINANTE	М	08.07.1989 00:00:00	3 / 4
4										•

In [166]:

```
de3ate4['renda'].count()
```

Out[166]:

758

In []:

In []:

In []:	
In []:	
In []:	
Ţ., [].	
In []:	
In []:	
To 1.1.	
In []:	
In []:	
In []:	
In []:	
Tn [].	
In []:	