$$A = \begin{cases} ia_{11} & ia_{12} & ia_{13} & ia_{1n} \\ ita_{21} & ia_{22} & ia_{23} & ia_{2n} \\ ia_{21} & ia_{22} & ia_{23} & ia_{2n} \\ ia_{2n} & ia_{2n} ia_{2n}$$

$$\bar{a}_{j} = \begin{bmatrix} a_{ij} \\ a_{2i} \end{bmatrix} \in \mathbb{R}^{M}, j = 1, 2, ..., n$$

$$- j. sum vektori$$

Bu durinda;

bi =
$$\begin{bmatrix} a_{i1} & a_{i2} & a_{i3} & \dots & a_{in} \end{bmatrix}_{1\times n} \in \mathbb{R}^n$$

$$A = \begin{bmatrix} -\overline{b}_1 \\ -\overline{b}_2 \\ -\overline{b}_m \end{bmatrix}$$
 olorak yazılabilir.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 2 & 8 & 9 \end{bmatrix}$$

$$\overline{b}_{3} = \begin{bmatrix} 2 & 8 & 9 \end{bmatrix}$$

$$\overline{b}_{3} = \begin{bmatrix} 2 & 8 & 9 \end{bmatrix}$$

MATLAB

$$a_2 = A(1,2)$$
 $B = A(2:3, 2:3)$
 $b_3 = A(3,1)$ $a_2 = A(3,2:3)$

Birm Matris

$$\mathcal{I}_{n\times n} = \begin{bmatrix} 1 & 0 \\ 0 & \ddots & 1 \end{bmatrix}$$

$$\bar{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
 $\hat{e}_{\hat{j}} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$
 \uparrow J. elevon

$$P_{n\times n} =$$
 $I.A=P.I=A$

Birin Elemon Mathst

E natrisi mxn bayutlu bir montis bu matriste yalnızca tek bir elevan deger 1 , diger elemonton O'dir.

Shara and S

$$E_{3,2} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}_{4x4}$$

$$E_{2,3} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}_{yxy}$$

MATLAB

$$E(3,2) = 1;$$

Matris Garpini

A'nın i satırı ile ā vektönő Gorpilir. Giton sonuq X vektörünün i elemonidir.

2)
$$\overline{b}^T \cdot A = \begin{bmatrix} & & & \\ & & \\ & & \\ & & \end{bmatrix} = \begin{bmatrix} & & \\ & & \\ & & \\ & & \end{bmatrix} = \overline{1}_{XN}$$

* b satir vektöri ile Ann j. sütur aappiir. Gitan sonua y satir vektörinin jelemonder. 3) amxi sutur vekt. ile bixn satur vektirinin carpumi

a bixn (a) [b, b2 ... bn]

mxi lixn (a) [b, b2 ... bn]

mxi

Grnek

$$\bar{a} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\bar{b}^{\dagger} = \begin{bmatrix} 4 & 5 \end{bmatrix}$

$$\begin{bmatrix} i \end{bmatrix} \overline{0} \cdot \overline{b}^{T} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \\ 10 \\ 12 \\ 15 \end{bmatrix}$$

$$= \begin{pmatrix} 4 \cdot 4 + 5 \cdot 5 \\ 8 \cdot 4 + 10 \cdot 5 \\ 12 \cdot 4 + 15 \cdot 5 \end{pmatrix} = \begin{pmatrix} 41 \\ 82 \\ 123 \end{pmatrix}$$

$$3 \times 1$$

$$= 41 \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 41 \\ 82 \\ 123 \end{bmatrix}$$

$$\vec{b}_{lxm}$$
 $\vec{a}_{mx1} = \begin{bmatrix} J_{lxm} \\ Mx1 \end{bmatrix} = \begin{bmatrix} J_{lx1} \\ Mx1 \end{bmatrix}$

Supplied the Skaler

$$1) \qquad \begin{bmatrix} & & & \\ & & &$$

3)
$$\left[\begin{array}{c} 1 \\ 1 \end{array}\right] = \left[\begin{array}{c} 1 \\ 1 \end{array}\right]$$

Aman , Eris +mam reatir depict

brack

a) E ile soqdar aarpin (sütun A. Es,2 = Byxy degistime)

2. suturu A'nın 3. suturu olorak kopyolonir.

b) E ile soldon cappin; (satr yer degistime)

* B'nin 3. satia, A'nin 2. satiri

Ornex
$$I_{3x3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

gradulation A D= [0 1 0] - I'min disature

[0 0 1] - yer degistionis 1 suter 1k 25th

yer degistionis.

$$\Theta = \begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{bmatrix}$$

$$\begin{array}{lll}
A \cdot D &= & \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 2 & 8 & 9 \end{bmatrix} \begin{bmatrix} 0 & 1 & 9 \\ 4 & 0 & 9 \\ 0 & 9 & 1 \end{bmatrix}$$

D.
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Jer Degistirme Matrisi ile appun

Dar: mxm boyutuda birin matrisin s. sutunu ile r. sutunumum yer degistismis olon bir mathstir.

a)

$$A_{mxm} \cdot D_{SF} = B =) B(:,s) = A(:,r)$$

b)
$$B(s, t) = A(r, t)$$
 | sater wer degistions)

Terrel Matris Islanter

1) Tronspose

$$C = A^T \in \mathbb{R}^{n \times m}$$

$$C_{ij} = D_{ji}$$

$$C_{ij} = A_{j} \dots A_{j-1} \dots A_{j$$

$$C = A + B =$$
 $C_{ij} = a_{ij} + b_{ij}$ $i = 1, ..., m, j = 1, ..., n$

3) Skaler-matris Gerpini

$$C = \alpha \cdot \beta_{min} = Cij = \alpha \cdot \alpha ij$$

$$C = 1, 2, ..., n$$

$$f = 1, 2, ..., n$$

4) natris - matris corpini

$$P_{mxp}$$
 , P_{pxn} $C_{ij} = \sum_{k=1}^{p} a_{ik} \cdot b_{kj}$

a e e,
$$\bar{x} \in \mathbb{R}^n$$
, $\gamma \in \mathbb{R}^n$, $\bar{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$

1) Skalerle clarpm:
$$\widehat{\Xi}=\emptyset.\overline{X}=)$$
 $\widehat{\Xi}_{i}=\emptyset.\overline{X}_{i}$
 $i=1,...,n$

x, q ₹	2 , C= XT. 4									
matlab	c=0;	Karnasiklik Analizi								
	for (E=1:0)	A corpha 2 01								
	c= c+x(i).y(i)	ordin ordin								
	end									
Algoritma	a (saxpy)									
2,9 €	20, a e 2									
Matlab:	7=02+7	Komasiklik Analizi								
	for (in)	n corema 3 OU								
	$y(i) = \alpha \cdot X(i) + \gamma(i)$	1 toplon								
	ad									

-																														_
+																														
	4																													
1																														
T																										-				
t																											-			
t																										-				
+		-																												
+-	+	-						-						-																
+	+	-																											Ш	
+	-	-	-	-	-																									
-																														
ļ.																														
	1	_																												
																													\exists	
	T			-																	+						- 1	-	-	
							1													-		-		-	-	-1			-	
	t																	-	+	-	-	-						4	-	
	+								-	-	-			-		-	+	-	-		+	-	-	-	- 1		-	1	_	
	+	+	+		-	-	-	-	-	-	-					-	-	-	+	-	\perp	-	_		-				_	
	+	+	-	+	-		-	Н	-		-					-	4	-				4								
	+	+	+	-	-	-	-	-	-		-	-			_	-														
	+	+		*	-	-	4		-																					
	+	1	4	ū																										1
		1																										П	1	
																								1						
																								1						
																		1				1		1						
											1	1	1							+			1					+		1
				1						1	1		1								+		+	+	1	-	+	+	+	
			1										+	1	+	+	+		+	+	+	+	+	+	+			-	-	
	t	1	1	1					1		+		-	-	+	+	+	-		+	-	-	-	1				+	4	
	H	1	1	+	+		+		-	+	+		-	-	+	-	+		-	-	+	+	+			-			1	1
	+	+	+	+	-	+	+	-	+	-	+	+	-	-	+	4	+						1							1
-	+	+	+	+	-	+	+	-	-		+																			Į
	-	+	+	-	-	-	-	-	1		1	-																		1
	-		+	+		-		1																					1	П
																1												+		