МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ТАРАСА ШЕВЧЕНКА

Мельницька А.Р.

3BIT

ОПЕРАЦІЙНІ ПІДСИЛЮВАЧІ З НЕГАТИВНИМ ЗВОРОТНИМ ЗВ'ЯЗКОМ

Київ. КНУ ім. Т. Шевченка, 2021

УДК 001.002 (008.21)

Укладачі: Мельницька А.Р.

I-72 Звіт. Операційні підсилювачі зі зворотним негативним зворотним зв'язком./ укл. А.Р. Мельницька.. – К. : КНУ ім. Т. Шевченка, 2021.-12 с. (Укр. мов.)

Наведено загальний звіт виконання роботи з моделювання електронних ${\sf cxem}$ у програмі NI Multisim ${\sf TM}$.

УДК 001.008 (002.21)

ББК 73Ц

© Київський Національний Університет імені Тараса Шевченка, 2021

РЕФЕРАТ

Звіт про дослідження операційних підсилювачів зі зворотним негативним зворотним зв'язком: 12 с., 18 рис.

Об'єкт дослідження: операційні підсилювачі зі зворотним негативним зворотним зв'язком.

Мета роботи: ознайомитися з властивостями операційних підсилювачів, опанувати способи підсилення електричних сигналів схемами з ОП, охопленим негативним зворотним зв'язком та способи виконання математичних операцій за допомогою схем з ОП.

Метод вимірювання: метод співставлення — одночасне спостереження вхідного та вихідного сигналів на екрані двоканального осцилографа із наступним вимірюванням і порівнянням їх параметрів.

В роботі використано програмне забезпечення для моделювання електронних схем NI Multisim $^{\text{TM}}$.

Ключові слова: ІМ – інтегральна мікросхема; НЗЗ – негативний зворотній зв'язок; ПЗЗ – позитивний зворотній зв'язок

3MICT

ВСТУП. ТЕОРЕТИЧНІ ВІДОМОСТІ		
ПРАК	СТИЧНА ЧАСТИНА	6
1.	Неінвертувальний підсилювач	6
2.	Інвертувальний підсилювач	7
3.	Інтегратор на базі інвертувального підсилювача	9
4.	Диференціатор	10
ВИСН	НОВКИ	12
СПИС	СОК ВИКОРИСТАНИХ ДЖЕРЕЛ	12

ВСТУП. ТЕОРЕТИЧНІ ВІДОМОСТІ

Операційний підсилювач (англ. operational *amplifier*) це диференціальний підсилювач постійного струму, який в ідеалі має нескінченний коефіцієнт підсилення за напругою і нульову вихідну напругу за відсутності сигналу на вході, великий вхідний опір і малий вихідний, а також необмежену смугу частот підсилюваних сигналів. Раніше такі високоякісні підсилювачі використовувалися виключно в аналогових обчислювальних пристроях для виконання математичних операцій, наприклад, складання та інтегрування. Звідси і походить їх назва – операційні підсилювачі (ОП). Створення зворотного зв'язку полягає в тому, що частина вихідного сигналу підсилювача повертається через ланку зворотного зв'язку (33) на його вхід. Якщо сигнал зворотного зв'язку подається на вхід у протифазі до вхідного

сигналу (різниця фаз $\Phi = 180^\circ$), то зворотний зв'язок називають *негативним* (Н33). Якщо ж він подається на вхід у фазі до вхідного сигналу ($\Phi = 0^\circ$), то такий зворотний зв'язок називають *позитивним* (П33)

ПРАКТИЧНА ЧАСТИНА

Уся інформація і дані наведені на рисунках та графіках.

1. Неінвертувальний підсилювач

Рисунок 1.1. Схема

Рисунок 1.2. Параметри генератора

Рисунок 1.3. Параметри осцилографа

Рисунок 1.4. Дані спостережень для гармонічного сигналу

2. Інвертувальний підсилювач

Рисунок 2.1. Схема інвертувального підсилювача

Рисунок 2.2. Параметри генератора

Рисунок 2.3. Параметри осцилографа

Рисунок 2.4. Дані досліджень інвертувального підилювача

3. Інтегратор на базі інвертувального підсилювача

Рисунок 3.1. Схема інтегратора на базі інвертуючого підсилювача

Рисунок 3.2. Параметри генератора

Рисунок 3.3. Дані з осцилографа та його та його параметри

Рисунок 3.4. Дані дослідження інтегратора.

Рисунок 4.1. Схема диференціатора на базі інвертувального підсилювача

Рисунок 4.2. Параметри генератора

T1 • • Time T2 • • T2-T1	Channel_A Char	nnel_B	Reverse Save Ext. trigger
Timebase	Channel A	Channel B	Trigger
Scale: 50 us/Div	Scale: 100 mV/Div	Scale: 100 mV/Div	Edge: F & A B Ext
X pos.(Div): 0	Y pos.(Div): 0	Y pos.(Div): 0	Level: 0 V
Y/T Add B/A A/B	AC 0 DC	AC 0 DC -	Single Normal Auto None

Рисунок 4.3. Параметри осцилографа

Рисунок 4.4. Дія диференціатору на гармонічний сигнал

Рисунок 4.5. Дія диференціатору на трикутні сигнали

Рисунок 4.6. Дія диференціатору на послідовність прямокутних імпульсів

ВИСНОВКИ

В ході роботи ми провели дослідження операційних підсилювачів зі зворотним негативним зворотним зв'язком, оцінили характер поведінки сигналу після проходження крізь них. В ході роботи був використаний метод співставлення — метод одночасного спостереження вхідного та вихідного сигналів на екрані двоканального осцилографа із наступним вимірюванням і порівнянням їх параметрів.

Як результат, ми наочно пересвідчились у дії інтегратора та диференціатора, результати схожі до описаних теоретично.

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

- 1. Методичні вказівки до практикуму «Основи радіоелектроніки» для студентів фізичного факультету / Упоряд. О.В.Слободянюк,
- 2. Ю.О.Мягченко, В.М.Кравченко.- К.: Поліграфічний центр «Принт лайн», 2007.- 120 с.
- 3. Ю.О. Мягченко, Ю.М. Дулич, А.В.Хачатрян "Вивчення радіоелектронних схем методом комп'ютерного моделювання": Методичне видання. К.: 2006.- с.