DEVOIR SURVEILLÉ 5

Calculatrice autorisée Lundi 5 mai 2025

EXERCICE 1 (5 POINTS)

Simplifier les expressions suivantes en les réduisant sous la forme a^n avec a le plus petit possible.

Justifications attendues.

1.
$$(-11)^2 \times (-11)^7$$
 2. $\frac{3^4}{3^{-5}}$

2.
$$\frac{3^4}{3^{-5}}$$

3.
$$(25^2)^2$$

4.
$$\frac{2 \times 2^3}{4 \times 4^2}$$

5.
$$\frac{3^7 \times 9}{3^6 \times 3^3}$$

CORRECTION

1.
$$(-11)^2 \times (-11)^7 = (-11)^{2+7} = (-11)^9$$

2.
$$\frac{3^4}{3^{-5}} = 3^{4-(-5)} = 3^{4+5} = 3^9$$

3.
$$(25^2)^2 = 25^{2 \times 2} = 25^4 = (5^2)^4 = 5^8$$

4.
$$\frac{2 \times 2^3}{4 \times 4^2} = \frac{2^1 \times 2^3}{(2^2)^1 \times (2^2)^2} = \frac{2^4}{2^2 \times 2^4} = \frac{2^4}{2^6} = 2^{-2}$$

5.
$$\frac{3^7 \times 9}{3^6 \times 3^3} = \frac{3^7 \times 3^2}{3^6 \times 3^3} = \frac{3^{7+2}}{3^{6+3}} = \frac{3^9}{3^9} = 3^0 = 1$$

EXERCICE 2 (6 POINTS)

1. Donner la définition d'une suite géométrique.

2. Donner la forme explicite d'une suite géométrique (u_n) de raison q.

3. Soit (u_n) géométrique telle que $u_4 = 3.6$ et $u_6 = 90$. Déterminer la raison q.

CORRECTION

1. Voir cours.

2. La forme explicite dune suite géométrique (u_n) de premier terme u_0 et de raison q est :

$$u_n = u_0 \times q^n$$

3. On a u_4 = 3,6 et u_6 = 90. Comme (u_n) est géométrique, on a :

$$u_6 = u_4 \times q^{6-4} = u_4 \times q^2$$

$$90 = 3.6 \times q^2 \Rightarrow q^2 = \frac{90}{3.6} = 25 \Rightarrow q = \sqrt{25} = 5 \text{ ou } q = -\sqrt{25} = -5$$

Donc la raison est q = 5ou - 5.

EXERCICE 3 (9 POINTS)

Une réserve naturelle suit l'évolution d'une population de hérissons réintroduite dans un habitat protégé. Début 2025, 10 000 individus sont recensés. On estime que cette population croît de 12% par mois, grâce à des conditions environnementales favorables.

Pour tout n, on note i_n le nombre estimé d'individus au n-ième mois.

- **1.** Donner i_0 , puis calculer i_1 et i_2 .
- **2.** Exprimer, pour tout n, i_{n+1} en fonction de i_n .
- **3.** En déduire la nature de la suite (i_n) . Préciser sa raison.
- **4.** Donner, pour tout n, une expression de i_n en fonction de n.
- **5.** La réserve naturelle s'est fixé comme objectif d'atteindre une population de 30 000 hérissons d'ici la fin de l'année 2025. Cet objectif est-il réalisable?
- **6.** Dans une autre région, une seconde réserve débute l'année 2025 avec une population de 100 000 hérissons. Grâce à un programme de réintroduction intensif, on estime que cette population croît de 17% par mois. En combien de temps cette population atteindra-t-elle le million d'individus?

CORRECTION

- 1. $i_0 = 10000$
 - $i_1 = i_0 \times 1,12 = 10\,000 \times 1,12 = 11\,200$
 - $i_2 = i_1 \times 1,12 = 11\ 200 \times 1,12 = 12\ 544$
- **2.** On a : $i_{n+1} = i_n \times 1{,}12$
- **3.** La suite (i_n) est une suite **géométrique** de raison q = 1,12
- **4.** Forme explicite:

$$i_n = i_0 \times q^n = 10\,000 \times (1,12)^n$$

5. On souhaite avoir $i_{12} \geqslant 30\,000$.

Or, on a :
$$i_{12} = 10\,000 \times (1,12)^{12} \approx 38\,860$$
.

L'objectif est atteignable avant fin décembre 2025.

6. On souhaite avoir $j_n \ge 100\,000$ où (j_n) est le nombre de hérissons dans cette autre réserve. (j_n) est géométrique de raison q=1,17 et de premier terme $j_0=100\,000$ et donc pour tout n:

$$j_n = j_0 \times q^n = 100\,000 \times 1,17^n$$
.

Par calcul ou avec la calculatrice, on a :

- $j_{12} \approx 981610$
- $j_{13} \approx 1069932$.

Il faut donc attendre 13 mois pour voir un million de hérissons.