UNIVERSIDADE FEDERAL FLUMINENSE DEPARTAMENTO DE ENGENHARIA ELÉTRICA ENGENHARIA ELÉTRICA

NOÉ DE LIMA BEZERRA

SUGESTÃO DE MELHORIA NO DESCARTE DE CARGA EM UNIDADE DE PRODUÇÃO DE PETRÓLEO

Niterói, RJ

NOÉ DE LIMA BEZERRA

SUGESTÃO DE MELHORIA NO DESCARTE DE CARGA EM UNIDADE DE PRODUÇÃO DE PETRÓLEO E GÁS NATURAL

Monografia submetida ao corpo docente do Curso de Graduação em Engenharia Elétrica da Universidade Federal Fluminense como requisito parcial para obtenção do grau de Engenheiro Eletricista.

Área de concentração: Sistemas Elétricos de Potência.

Orientador:

Prof. Dr. Márcio Zamboti Fortes

Niterói, RJ

2014

Ficha Catalográfica elaborada pela Biblioteca da Escola de Engenharia e Instituto de Computação da UFF

B574 Bezerra, Noé de Lima

Sugestão de melhoria no descarte de carga em unidade de produção de petróleo e gás natural / Noé de Lima Bezerra. – Niterói, RJ: [s.n.], 2014.

72 f.

Trabalho (Conclusão de Curso) – Departamento de Engenharia de Elétrica, Universidade Federal Fluminense, 2014.

Orientador: Márcio Zamboti Fortes.

1. Sistema elétrico de potência. 2. Confiabilidade (Engenharia). 3. Geração de energia. 4. MATLAB (Programa de computador) I. Título.

CDD 621.3191

NOÉ DE LIMA BEZERRA

SUGESTÃO DE MELHORIA NO DESCARTE DE CARGA EM UNIDADE DE PRODUÇÃO DE PETRÓLEO

Monografia submetida ao corpo docente do Curso de Graduação em Engenharia Elétrica da Universidade Federal Fluminense, como requisito parcial para obtenção do grau de Engenheiro Eletricista.

Área de concentração: Sistemas Elétricos de Potência.

Aprovada em 4 de dezembro de 2014.

BANCA EXAMINADORA

Prof. Dr. Márcio Zamboti Fortes Universidade Federal Fluminense

Prof. DSc. Vitor Hugo Ferreira
Universidade Federal Fluminense

MSc. Walter Tonon Júnior

Petrobras

Niterói, RJ

2014

vi	
	Ao meu filho, Miguel de Souza Lima, meus maiores agradecimentos.

AGRADECIMENTOS

Gostaria de agradecer a minha mãe, Margarida Maria de Lima, pelo imenso esforço empregado na minha criação e na minha educação. Ao meu filho, Miguel de Souza Lima, por me proporcionar uma razão mais forte para persistir. Agradeço também à minha esposa, Camila F. Borduam Chaves, pela paciência e estímulo.

Aos meus professores, que prontamente me atenderam sempre que houve necessidade. Aos meus colegas de turma e amigos que me ajudaram incontáveis vezes ao longo dessa jornada. Destaco entre meus colegas de turma meus amigos Paulo Eduardo F. Stecchini, que muitas vezes me encorajou e incentivou, e Pedro Reis S. da Costa, que me incentivou e compartilhou conhecimento inúmeras vezes.

Aos meus colegas de trabalho, que muitas vezes abriram mão de parte da minha dedicação profissional para me proporcionar tempo para me dedicar aos estudos. Agradeço em particular, ao meu amigo Walter Tonon Júnior, que muitas vezes me ajudou a formar uma compreensão mais sólida sobre as disciplinas teóricas, como também me ajudou sempre que pode com explicações e material didático.

Ao meu amigo Rogério Nascimento Macedo, que flexibilizou muitas vezes meus horários para eu me dedicar aos estudos e, ainda, me presenteou com diversos dos seus livros acadêmicos.

Finalmente, aos meus supervisores e coordenadores na Petrobras, que abriram mão diversas vezes da minha presença, alterando escala de embarque ou reprogramando férias para que eu pudesse me dedicar na reta final do curso de graduação.

"Você não pode ensinar nada a um homem; você pode apenas ajudá-lo a encontrar a resposta dentro dele mesmo."

Galileu Galilei

RESUMO

Este trabalho tem por objetivo fornecer uma proposta de descarte de carga dinâmico e adaptável para utilização em Unidades Estacionárias de Produção de Petróleo e Gás Natural (UEP), atendendo aos requisitos de segurança e confiabilidade.

Após uma análise dos conceitos de confiabilidade, este estudo apresenta um modelo matemático capaz de ordenar as cargas elétricas de uma unidade *offshore* em ordem de prioridade para descarte em caso de contingência causada pela saída de uma unidade geradora. Para tanto, essa prioridade leva em conta o cenário de operação, incluindo unidades geradoras e cargas elétricas e a contingência, bem como a possibilidade de estabelecer a prioridade operacional.

Após o desenvolvimento do modelo matemático, foi realizada uma simulação em MatLab® para demonstrar os resultados.

Palavras-chave:

Descarte de Carga, Confiabilidade, Unidade Marítima de Produção, MatLab, *Shutdown*, Geração de Energia Elétrica, Simulação.

ABSTRACT

This work aims to provide a proposal for a load shedding dynamic and adaptive for use in stationary Oil & Gas Production units, given the security and reliability requirements.

After an analysis of the reliability concepts, this study presents a mathematical model to order the offshore unit's electrical loads in priority shedding order in case of one generation unit loss. Therefore, this priority takes into account the operating scenario, including generating units status, connected electrical loads and the contingency itself, including the possibility of establishing the operational priority.

After the development of the mathematical model, a simulation was performed in MatLab® to demonstrate the results.

Keywords:

Load Shedding, Reliability, Offshore Production Unit, MatLab, Shutdown, Power Generation, Simulation.

SUMÁRIO

1. II	NTRODUÇÃO	21
1.1.	MOTIVAÇÃO	21
1.2.	OBJETIVOS	21
2. F	REVISÃO BIBLIOGRÁFICA	23
2.1.	MANUTENÇÃO	23
2.1.1	. DEFINIÇÃO	23
2.1.2	. HISTÓRICO	23
2.1.3	. CONCEITOS	24
2.1.3	.1. EFICIÊNCIA E EFICÁCIA	24
2.1.3	.2. CONFIABILIDADE	25
2.1.3	.3. DISPONIBILIDADE	27
2.1.3	.4. MANTENABILIDADE	27
2.2.	EXEMPLO DE DESCARTE DE CARGA	28
2.3.	EFEITOS DA INSTABILIDADE	29
2.4.	TECNOLOGIAS EM ESTUDO	29
3. E	DESCRIÇÃO DAS CARGAS E CENÁRIOS	31
3.1.	PRODUÇÃO	31
3.2.	GERAÇÃO	32
3.3.	FACILIDADES	32
3.4.	CARGAS LEVES	32
4. C	CARACTERIZAÇÃO DA DISTRIBUIÇÃO DE ENERGIA EM UEP's	33
4.1.	REDE ELÉTRICA	33
4.2.	DESCARTE DE CARGA	33
5. C	DESENVOLVIMENTO	37
5.1.	MÉTODO DE CÁLCULO	37
5.2.	CARACTERIZAÇÃO DAS CONTINGÊNCIAS	37

5.3.	CARACTERIZAÇÃO DAS CARGAS	38
5.4.	CARACTERIZAÇÃO DAS PRIORIDADES	39
5.4.1.	SEGURANÇA	40
5.4.2.	PRODUÇÃO	40
5.4.3.	CONFIABILIDADE	40
5.5.	CRITÉRIO DE PRIORIZAÇÃO	41
6. SI	IMULAÇÃO	43
7. C	ONCLUSÃO	61
8. R	EFERÊNCIAS	63
9. Al	NEXO	65
9.1.	CÓDIGO EM MATLAB	65

LISTA DE FIGURAS

Figura 2-1 – Gráfico Custo x Confiabilidade (3)	26
Figura 4-1 – Diagrama Unifilar Geral	34
Figura 4-2 – Tabela de Descarte de Carga (1)	35
Figura 4-3 – Tabela de Descarte de Carga (2)	36
Figura 6-1 – Aplicativo Para Simulação	46
Figura 6-2 – Exemplo de Simulação	46

LISTA DE TABELAS

Tabela 2-1 – Resumo da evolução da manutenção (2)	24
Tabela 6-1 – Tabela de Cargas	43
Tabela 6-2 – Descarte de Carga: 70%, Queda de TG x Segurança	44
Tabela 6-3 – Descarte de Carga: 40%, Queda de MD x Confiabilidade	47
Tabela 6-4 – Descarte de Carga: 40%, Queda de TG x Confiabilidade	48
Tabela 6-5 – Descarte de Carga: 40%, Queda de MD x Produção	49
Tabela 6-6 – Descarte de Carga: 40%, Queda de TG x Produção	50
Tabela 6-7 – Descarte de Carga: 80%, Queda de TG x Segurança	51
Tabela 6-8 – Descarte de Carga: 80%, Queda de MD x Segurança	52
Tabela 6-9 – Descarte de Carga: 90%, Queda de MD x Segurança	53
Tabela 6-10 – Descarte de Carga: 90%, Queda de TG x Segurança	54
Tabela 6-11 – Descarte de Carga: 100%, Queda de MD x Produção	55
Tabela 6-12 – Descarte de Carga: 100%, Queda de TG x Produção	56
Tabela 6-13 – Descarte de Carga: 20%, Queda de MD x Produção	57
Tabela 6-14 – Descarte de Carga: 20%, Queda de MD x Confiabilidade	58
Tabela 6-15 – Descarte de Carga: 20%, Queda de MD x Segurança	59
Tabela 6-16 – Descarte de Carga: 50%, Queda de MD x Segurança	60

1. INTRODUÇÃO

1.1. MOTIVAÇÃO

Atualmente, as plataformas de produção de petróleo e gás natural que operam em águas profundas na costa brasileira utilizam sistema de descarte de carga fixo, onde o operador tem autonomia para alterar, somente e se necessário, a lista de prioridades na tabela que controla a ordem em que as cargas são descartadas por ocorrência de alguma contingência no sistema elétrico.

A tabela de descarte de cargas é fixa e de livre ordenação, todavia há uma lógica na preferência usualmente adotada. Esta lógica pode não ser a mais adequada, para uma contingência específica pode surgir a necessidade de se derrubar um sistema inteiro, como por exemplo a de injeção de água, mas para outras contingências, apenas uma bomba de captação ou metade do sistema de injeção pode ser suficiente para causar o equilíbrio após o acontecimento da mesma.

Uma ação inadequada pode causar balanços excessivos no sistema elétrico e demora na estabilização da frequência da rede, bem como da tensão. Essas instabilidades podem prejudicar a vida útil dos equipamentos mais sensíveis, ocasionar falhas nos sistemas de controle, ou aumentar, atingindo limites de estabilidade de outros geradores, agravando a contingência e comprometendo a confiabilidade do sistema elétrico.

Diante deste cenário, é necessário identificar ações que possam mitigar estas possíveis falhas do sistema. Entre estas ações, um estudo mais aprofundado da confiabilidade quanto ao descarte de cargas após uma análise do carregamento se faz necessário, conforme a sexta recomendação proposta por Gates, Shipp e Vilcheck (1). Este estudo apresentará algumas análises referentes a este tópico.

1.2. OBJETIVOS

Este trabalho visa desenvolver um método baseado na confiabilidade do sistema para criar uma tabela dinâmica de descarte de carga, capaz de se adaptar e responder de forma individual para cada contingência prevista.

2. REVISÃO BIBLIOGRÁFICA

2.1. MANUTENÇÃO

2.1.1. DEFINIÇÃO

A manutenção foi, por muito tempo, definida majoritariamente como o reestabelecimento das condições originais dos equipamentos. Atualmente, a seguinte afirmativa é a mais aceita:

"Garantir a disponibilidade da função dos equipamentos e instalações de modo a atender a um processo de produção e a preservação do meio ambiente, com confiabilidade, segurança e custos adequados." (2)

2.1.2. HISTÓRICO

A evolução da manutenção pode ser dividida em três gerações distintas. Cada uma apresenta características, objetivos e situações sociais e econômicas distintas.

A primeira se passa durante a Segunda Guerra Mundial. Nesta época, as indústrias tinham grande participação humana na produção, os equipamentos eram mais simples e serviam para auxiliar o trabalho das pessoas, e havia elevado superdimensionamento nos seus projetos. Devido à não priorização da produtividade, a manutenção tinha característica puramente corretiva, não era planejada e se restringia a limpeza, lubrificação e reparo após a quebra.

A segunda geração segue até a década de 1960, quando a demanda por produtos de todos os tipos aumentou e o contingente de mão-de-obra diminuiu. Devido a essa falta de pessoas para produzir, a mecanização passou a receber mais atenção. A maior dependência que a produção passou a ter das máquinas aumentou a necessidade de mantê-las operando, forçando a manutenção a se adaptar à nova realidade. Para manter os equipamentos funcionando aplicavam-se planos de manutenção com intervenções em intervalos fixos. O aumento dos gastos com manutenção forçou a evolução dos sistemas de planejamento e controle, criando as bases do que se usa atualmente. Esta etapa introduziu o conceito de manutenção preventiva.

Na década de 1970, quando a terceira geração se iniciou, as fábricas estavam em processo acelerado de mudanças. A implementação de processos *just-in-time*,

nos quais os estoques são baixos, fez toda a produção ficar suscetível a paralisações completas por conta de falhas localizadas e a exigência de padrões de qualidade nos produtos e serviços obtidos também elevou a necessidade de equipamentos em operação plena constante. A preservação ambiental trouxe grande parte dessas preocupações. Esta etapa iniciou o conceito de manutenção preditiva.

A Tabela 2-1 resume a evolução da manutenção.

Tabela 2-1 – Resumo da evolução da manutenção (2)

Primeira Geração	Segunda Geração	Terceira Geração			
1930		2000			
1940	1970				
AUMENTO DA EXPECTATIVA EM RELAÇÃO À MANUTENÇÃO					
 Conserto após a falha 	 Disponibilidade cres- cente Maior vida útil do equipamento 	de e confiabilidade			
MUDANÇAS NAS TÉCNICAS DE MANUTENÇÃO					
Conserto após a falha	 Computadores grandes e lentos Sistemas manuais de planejamento e controle do trabalho Monitoração por tempo 	 Monitoração de condição Projetos voltados para confiablilidade e manutenção Análise de riso Computadores pequenos e rápidos Softwares potentes Análise de modos e efeitos da falha (FMEA) Grupos de trabalho multidisciplinares 			
1930		2000			
1940	1970				
Primeira Geração	Segunda Geração	Terceira Geração			

2.1.3. CONCEITOS

2.1.3.1. EFICIÊNCIA E EFICÁCIA

Embora muitos confundam estes conceitos, eles possuem diferenças e a coexistência de ambos é fundamental para uma boa manutenção.

Resumidamente, a definição de cada um é

- Eficiência: fazer certo a intervenção;
- Eficácia: fazer a intervenção certa. (2)

Das afirmações acima, entende-se que a eficiência é o conserto correto do problema que foi identificado e que a eficácia é a identificação correta do problema. Assim, verifica-se que em casos de manutenção eficiente e não eficaz ou eficaz e não eficiente, os equipamentos continuarão operando de maneira inadequada, ocasionando em deficiências no processo produtivo.

2.1.3.2. CONFIABILIDADE

Durante a vida útil de um equipamento, espera-se que este não falhe, mas isto não pode ser garantido. A forma usada para comparar e quantificar a confiabilidade de um produto é a utilização da estatística. Calcula-se um valor que representa a chance de que a operação ocorra sem falhas dentro de um tempo preestabelecido.

Este conceito tem a seguinte definição.

"Confiabilidade é a probabilidade de que um componente, equipamento ou sistema exercerá sua função sem falhas, por um período de tempo previsto, sob condições de operação especificadas." (2)

A função que deverá ser desempenhada pelo equipamento é primordial no seu projeto, pois este definirá as condições que devem ser atendidas para que tenha a confiabilidade informada. Em relação ao desempenho, conforme Gurski (2) pode-se ter os seguintes enfoques.

- Desempenho inerente: é o desempenho que o equipamento é capaz de fornecer:
- Desempenho requerido ou desejado: é o desempenho que se quer obter do equipamento.

Caso o desempenho que se espera da máquina não seja alcançado, existem duas alternativas. Deve-se modificar o equipamento ou reduzir as expectativas. Também é importante citar que a manutenção apenas pode ser aplicada para se recuperar o desempenho inerente, pois a máquina retorna às especificações estabelecidas em projeto.

Financeiramente, a confiabilidade apresenta as seguintes vantagens.

- Apesar de serem mais dispendiosas, as plantas que apresentam alta confiabilidade também têm menores custos operacionais (de manutenção; redução de produtos fora de especificação; consumo de energia; etc) pela redução de falhas em equipamentos;
- As falhas reduzem a produção e, consequentemente, os lucros;
- As falhas podem interferir na qualidade dos produtos;
- Quanto mais competitiva, maior a chance de sobrevivência da empresa.

Os aspectos citados acima têm grande importância na competitividade das empresas no mercado atual, mas este aumento da confiabilidade não pode ocorrer de maneira ilimitada. Os custos destas melhorias devem estar de acordo com o benefício que se consegue.

A Figura 2-1 apresenta as curvas de custos operacionais, de aquisição dos equipamentos, da manutenção e do lucro cessante. Este representa o lucro que se deixará de obter quando houver uma parada na produção causada por uma falha de uma ou mais máquinas. A curva de custo total é o somatório das demais. Pode-se observar que há um ponto de menor custo total e este não, necessariamente, coincide com a mais alta confiabilidade.

Figura 2-1 – Gráfico Custo x Confiabilidade (3)

2.1.3.3. DISPONIBILIDADE

"Disponibilidade é a probabilidade que um sistema esteja em condição operacional no instante determinado". (2)

Este conceito é comumente confundido com a confiabilidade. A diferença é que a confiabilidade representa a possibilidade de uma operação sem falhas, enquanto a disponibilidade é a relação entre o tempo em que o equipamento ficou disponível e o tempo em que ficou indisponível.

Equação 2-1 – Equação de disponibilidade (2)

$$DISP = \frac{TOPT}{TOPT + TRPT}$$

Onde,

- TOPT = média dos tempos de disponibilidade e/ou operação;
- TRPT = média dos tempos de indisponibilidade.

2.1.3.4. MANTENABILIDADE

Este conceito está relacionado ao tempo requerido para que o equipamento volta a funcionar na ocorrência de manutenção.

"Mantenabilidade é a probabilidade do equipamento ser recolocado em condições de operação dentro de um dado período de tempo, quando a ação de manutenção é executada de acordo com os procedimentos prescritos." (2)

Existem dois valores a serem calculados aqui, o tempo médio entre falhas e o tempo médio de reparo.

Equação 2-2 – Tempo médio entre falhas (2)

$$MTBF = \frac{TOPT}{n}$$

Equação 2-3 – Tempo médio de reparo (2)

$$MTTR = \frac{TRPT}{n}$$

Onde,

- MTBF = Tempo Médio Entre Falhas (*Mean Time Between Failures*);
- MTTR = Tempo Médio para Reparo (*Mean Time to Repair*);

- TOPT =Média dos tempos de disponibilidade e/ou operação;
- TRPT =Média dos tempos de indisponibilidade;
- n = número de intervenções.

O grau de mantenabilidade é mais elevado quando os equipamentos possuem peças padronizadas e intercambiáveis, possuem indicadores de falha para facilitar a sua localização, exigem ferramentas universais, possuem acesso fácil aos seus componentes, possuem projeto simplificado para evitar procedimentos muito complexos e existe padronização de equipamentos na planta. A atuação da equipe de manutenção também influencia na mantenabilidade. Assim, ela deve estar bem treinada e informada sobre os procedimentos para fazê-los de forma correta e rápida, devendo estes dados estarem facilmente disponibilizados pelo fabricante e que as informações de boas práticas da empresa estejam bem claras.

2.2. EXEMPLO DE DESCARTE DE CARGA

O Esquema Regional de Alívio de Carga (ERAC) é uma forma de proteger o sistema elétrico no que tange a ocorrências de sobrecargas.

O seu objetivo é manter a estabilidade para que o sistema não seja completamente desligado. Para isso, ele causa o desligamento de determinadas cargas ou gerações para que o balanço de geração e consumo volte a se estabilizar e os parâmetros fiquem dentro dos limites. Entre as principais causas de instabilidade, pode-se citar sub frequência causada por demanda excessiva e equipamentos com limites de potência excedidos, como transformadores de subestações por exemplo.

Para este fim, as grandezas medidas em campo são monitoradas e o desligamento acontece quando estas apresentam desvios acima dos permitidos, obedecendo as curvas de atuação definidas.

De forma análoga, sistemas ilhados de energia elétrica, como nas Unidades Estacionárias de Produção (UEPs), onde o estatismo do sistema é menor, são mais sensíveis às variações de carga que o Sistema Interligado Nacional, e necessitam de uma proteção mais seletiva e crítica à sub frequência, que retire algumas cargas para proteger a estabilidade da rede elétrica, aumentando a confiabilidade. O desafio encontra-se na escolha dessas cargas para não comprometer a segurança, bem como os processos industriais envolvidos. Entretanto, diferente do ERAC, as cargas em uma UEP não podem ser religadas automaticamente por questões de segurança, como no

método estudado por Arulampalam e Saha (4). Em uma sobrefrequência, outros métodos devem ser avaliados, como, por exemplo, descarte de geração.

2.3. EFEITOS DA INSTABILIDADE

Quando um gerador elétrico está conectado ao Sistema Interligado Nacional, este último atua como uma barra infinita, ajudando a manter a inércia no rotor do gerador em caso de instabilidade transitória. Entretanto, em sistemas ilhados, não há essa proteção e, assim, as máquinas de maior porte acabam funcionando como estabilizador sobre as máquinas de menor porte. Porém, no caso de um aumento ou redução súbita de carga, a frequência da rede pode ser severamente afetada, fazendo a proteção dos geradores atuarem ou excedendo o limite de estabilidade das máquinas.

Além da possibilidade de contingências de geração, a alteração na frequência compromete o funcionamento de todos os componentes elétricos projetados para trabalhar em 60Hz, pois altera os valores de impedância podendo levar à deterioração precoce da vida útil ou mesmo à queima de equipamentos como motores, que em geral tem custo elevado de aquisição e transporte até as UEPs.

2.4. TECNOLOGIAS EM ESTUDO

Conforme verificamos nas bases de dados científicos *Science Direct* e *IEEEXplore*, temos alguns métodos disponíveis para cálculo da tabela de descarte de carga onde cada um contempla vantagens e desvantagens.

O método apresentado por Hazarika e Sinha (5) inclui um modelo matemático baseado no fluxo de potência que calcula o descarte de carga através de um método iterativo. Embora eficiente, pode ser necessário uma quantidade considerável de iterações, comprometendo a utilização em tempo real.

Já Laghari, Mokhlis, Bakar e Hasmaine Mohamad (6) concluíram, após comparar diversos métodos de lógicas computacionais, que são necessários avanços que tornem viável a operação em tempo real para as lógicas comparadas.

Momoh e Kaddah (7) propuseram a utilização da técnica de otimização Everett como solução para descarte de carga em navios militares utilizando índices de probabilidade de perda de carga, procurando descartar as cargas com maior probabilidade de falha e visando economia financeira. Representa uma boa solução para navios militares que requerem alta confiabilidade nos sistemas de geração, mas não necessariamente atendem a indústria do petróleo, onde a criticidade de alguns equipamentos sob o ponto de vista do processo ou segurança é mais significativa que a confiabilidade.

Outra abordagem é proposta por Ferdinanda Ponci e Antonello Monti (8), utilizando uma combinação de potências ativa e reativa, medidas através de sincrofasores, baseia-se no fato de que a potência ativa na frequência e a reativa na tensão. Essa abordagem visa apenas a confiabilidade elétrica, sem levar em conta o processo industrial envolvido.

O método desenvolvido neste trabalho segue uma tendência mais próxima da abordagem proposta por Laghari, Mokhlis, Bakar, Karimi e Shahriari (9), pois leva em consideração as particularidades de sistemas ilhados, destacando a fragilidade da relação entre geração e carga frente à estabilidade da tensão e da frequência. Este método utiliza dois módulos eletrônicos, um para efetuar os cálculos e outro para atuar junto às cargas efetuando o descarte. Entretanto, aqui diferimos na lógica utilizada para os cálculos, pois utilizamos um algoritmo próprio baseado em índices de prioridade, confiabilidade e valores de carga, ao invés da lógica *fuzzy* de comparação de cenários pré-fixados.

Além do mais, outra tecnologia em estudo, apresentada por Hsu, Chuang e Chen (10), tem como vantagem o fato de ser adaptativa, mas carrega a desvantagem de não ser viável para operação em tempo real, pois utiliza redes neurais que demandam capacidade de processamento ainda não disponível segundo as bases de dados científicas consultadas.

3. DESCRIÇÃO DAS CARGAS E CENÁRIOS

Uma plataforma marítima de produção de petróleo e gás natural pode ser fixa, apoiada sobre uma estrutura chamada jaqueta apoiada no fundo do mar; semissubmersível, apoiada em flutuadores submarinos; e unidades flutuantes de produção, armazenamento e transferência (FPSO - floating production, storage and offloading) construídas sobre cascos de navios existentes. Com exceção das fixas, as plataformas têm sistemas de embarcação (lastro, ancoragem, etc.), além dos sistemas de produção, incluindo elevação, processamento primário e escoamento. Os sistemas de Utilidades (ou Facilidades) da planta em operação fornecem a estrutura necessária de forma a garantir o funcionamento, contendo os sistemas de facilidades, onde se inclui o fornecimento de energia elétrica, segundo descrição apresentada por Tastet, Marchais e Angays, da empresa francesa Technip (11). Não consideraremos aqui o caso apresentado por Narayanaswamy (12) por não ser utilizado ainda no Brasil, pois os métodos de recuperação suplementar de produção de petróleo e gás natural no Brasil utilizam gás lift, injeção de água e, raramente, injeção de gás, não sendo comum utilizar bombeamento submarino. Porém, a única implicação é a ênfase atribuída a importância da confiabilidade acima de qualquer outro critério.

Abaixo estão apresentados resumos dos principais equipamentos divididos por áreas, de acordo com a experiência do autor. Uma lista mais detalhada das cargas elétricas pode ser vista na Tabela 6-1 utilizada como exemplo na simulação ao longo deste trabalho.

3.1.PRODUÇÃO

- Bombas de transferência de óleo;
- Bombas booster de transferência;
- Bombas de injeção de água;
- Bombas booster de injeção de água;
- Bombas de circulação de água quente;
- Bombas do sistema de drenos oleosos:
- Bombas de reposição de água quente;
- Tratadores eletrostáticos;
- Turbo compressores de gás com motor de partida.

3.2. GERAÇÃO

- 2 turbo geradores de 6 MW;
- 4 moto geradores de 2 MW;
- 1 moto gerador de emergência;
- Banco de baterias do sistema ininterrupto de energia (UPS).

3.3. FACILIDADES

- Bombas de captação de água (bombas lift) 180.000 m3/dia;
- Motor dos guinchos do sistema de pull in;
- · Motores do sistema de ancoragem;
- Bombas de circulação de água de resfriamento;
- Painéis do sistema de automação e controle;
- Motores do sistema de ventilação e ar condicionado (VAC);
- Bombas do anel de incêndio;
- Motor de partida das turbinas;
- 2 moto compressores de ar;
- Carregadores de baterias.

3.4. CARGAS LEVES

- Cargas que atendem às acomodações (água quente, água fria, esgoto, etc.);
- Iluminação;
- Tomadas de uso geral;
- Fogões elétricos;
- Lavadoras e secadores da lavanderia;
- Motores que atendem às plantas industriais de produção e facilidades.

4. CARACTERIZAÇÃO DA DISTRIBUIÇÃO DE ENERGIA EM UEP's

4.1. REDE ELÉTRICA

A rede elétrica em uma UEP, como são chamadas as plataformas de produção de petróleo e gás natural, é composta por um sistema ilhado composto por geração e distribuição, não contemplando transmissão.

A distribuição é realizada em "camadas", por barramentos localizados em salas de painéis. No exemplo hipotético utilizado, temos o Painel 1, também chamado de painel de geração, que recebe a energia dos geradores normais, ou seja, turbo geradores (TGs) e moto geradores (MDs), e alimenta os demais painéis de distribuição. Podemos visualizar esta estrutura pelo diagrama unifilar apresentado na Figura 4-1, representando um sistema supervisório de UEP.

Como podemos observar na Figura 4-1 — Diagrama Unifilar Geral, os painéis principais alimentam as cargas mais pesadas e os painéis distribuição. Os painéis de distribuição alimentam as cargas médias e os painéis para as cargas mais leves. Assim, para simplificação nos cálculos, é suficiente considerar a atuação da tabela de descarte de carga sobre os disjuntores que aparecem neste diagrama, não havendo necessidade de atuar diretamente sobre as cargas menores, e sim tratá-las em conjunto através dos painéis de alimentação.

4.2. DESCARTE DE CARGA

O sistema de descarte de carga utilizado nas plataformas que operam na Bacia de Campos funciona através de uma tabela estática, que pode ter sua ordem alterada pelo operador através do supervisório, como exemplificado nas figuras

Figura 4-2 – Tabela de Descarte de Carga (1) e

Figura 4-3 – Tabela de Descarte de Carga (2). Através deste sistema, uma vez definida esta ordem, as cargas serão descartadas de forma independente.

Porém, como ela é fixa, independente da contingência, a queda de uma unidade geradora de porte menor, como um moto gerador a diesel pode implicar, por exemplo, na queda do sistema de injeção de água, que poderia ser evitada descartando uma carga menos significativa, reservando a queda desse sistema para o caso da saída de um turbo gerador.

Figura 4-1 – Diagrama Unifilar Geral

Figura 4-2 – Tabela de Descarte de Carga (1)

Figura 4-3 – Tabela de Descarte de Carga (2)

5. DESENVOLVIMENTO

5.1. MÉTODO DE CÁLCULO

A solução consiste em utilizar um método de classificação para as cargas permitindo ordená-las em uma planilha que irá compor a ordem de prioridade de descarte de carga. Assim, deveremos estabelecer quais fatores são significativos, estabelecendo assim os dados de entrada.

A proposta deste trabalho é adaptar a tabela de descarte de carga capaz de se adaptar aos cenários de contingência levando em consideração a prioridade definida na operação. Assim, precisamos saber o cenário de operação, as contingências possíveis, as prioridades e situação das cargas em funcionamento.

Também devemos estabelecer um método matemático que permita comparálos. A seguir, estabeleceremos um modelo numérico para cada parâmetro necessário.

5.2. CARACTERIZAÇÃO DAS CONTINGÊNCIAS

A proposta desenvolvida aqui leva em consideração o cenário anterior e o tipo da contingência. Para tanto, consideraremos o exemplo hipotético de uma Unidade Estacionária de Produção (UEP) que contenha duas unidades geradoras a gás (Turbo Gerador – TG), de 6MW cada, e quatro unidades geradoras a diesel (Moto Gerador Diesel – MD), de 2MW cada. Assim, ao ocorrer subfrequência em decorrência da saída de operação de um gerador ligado no barramento principal, a tabela proposta aqui apresenta uma ordem de prioridade para descartar cargas até o reenquadramento da frequência da rede elétrica.

Para começar, devemos atribuir um valor numérico que represente a severidade da contingência em função do cenário pré-falta. Assim, para eliminar a dependência numérica da geração, trabalharemos com valores percentuais. Logo, o somatório das capacidades geradoras em operação será representado como um número entre 0 e 1 calculado para representar linearmente a geração, sendo 0 quando nenhuma máquina estiver em funcionamento, ou 1, caso as 6 máquinas estejam em funcionamento. Como o menor valor possível é um MD na barra, que representa 10% da geração máxima, e o maior ocorre quando todas as unidades estão operando, representando 100% da capacidade. Os valores têm um passo de 10%, portanto, o fator de geração varia de 0,1 a 1, com passo de 0,1.

Sendo assim, para quantificar a contingência, basta atribuir um número que represente a máquina que saiu de operação em termos de percentual da capacidade total e dividir este número pelo número que representa o cenário antes da contingência, conforme Equação 5-1.

Equação 5-1 - Quantificação da Contingência

$$cont = \frac{Fcont}{Fgera}$$

Onde:

cont = contingência;

Fcont = Fator de contingência, em relação a geração máxima;

Fgera = Fator de geração, relação entre a geração em operação e a geração máxima.

Entretanto, considerando os possíveis valores de perda de geração, de 10% ou 30%, e de cenários de geração (10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% e 100%), podemos verificar que a variação de *cont* é entre 0,1 e 0,75. Portanto, é útil para os cálculos aplicar uma correção de escala que varie linearmente entre 0 e 1 para o intervalo de contingências. Utilizando uma conta baseada no teorema de Thales, temos a seguinte correção:

Equação 5-2 – Linearização da Contingência

$$falta = \frac{cont - 0.1}{0.75}$$

Onde:

falta = relação de contingência linearizada;

cont = contingência.

Com isso, temos um número situado entre 0 e 1 que é capaz de dimensionar a severidade da contingência frente à capacidade da geração em operação.

5.3. CARACTERIZAÇÃO DAS CARGAS

O próximo parâmetro a ser adaptado é a carga. Como estamos falando de ordenar as cargas em uma sequência de prioridades para descartar, deveremos tratar as cargas como vetores. Logo, deveremos considerar a carga máxima instalada e um fator de carregamento. O fator de carregamento é a relação entre a carga instantânea

e a total instalada, ou seja, é uma leitura que pode ser alimentada em tempo real durante a operação, informando quais cargas efetivamente estão em operação. Logo, basta multiplicar este fator de carga pela carga máxima para obter a demanda em tempo real. Esse procedimento permite eliminar dos cálculos as cargas que não estão em operação.

Entretanto, por uma questão de enquadramento, é interessante tomar este vetor de carga normalizado. Assim, todos os valores estarão entre 0 e 1. Logo, utilizaremos o seguinte modelo para quantizar as cargas:

Equação 5-3 – Cálculo do Vetor de Carga

$$demanda_i = FC_i * Lmax_i$$

Onde:

 $demanda_i$ = Demanda da i-ésima carga (ou i-ésimo elemento do vetor de demanda)

 FC_i = Fator de Carga da i-ésima carga

 $Lmax_i$ = Potência Máxima da i-ésima carga

Agora, normalizamos o vetor para criarmos o cenário de carga:

Equação 5-4 – Normalização do Vetor de Carga

$$\overline{Load} = \frac{\overline{demanda}}{|\overline{demanda}|}$$

Assim, temos o cenário de carga completamente caracterizado por um vetor de módulo unitário.

5.4. CARACTERIZAÇÃO DAS PRIORIDADES

O próximo passo é definir quais são os focos que podem ser definidos como prioridade de operação. Aqui utilizaremos para fins de exemplificação os seguintes parâmetros que podem ser utilizados em UEPs.

- Segurança
- Produção
- Confiabilidade

5.4.1. SEGURANÇA

Criaremos um vetor que chamaremos de criticidade que caracteriza a importância da carga considerada do ponto de vista da segurança. Por exemplo, uma bomba do anel de combate a incêndio tem um fator muito mais alto que um transformador de um desidratador de óleo. Este fator varia entre 0 e 1 e é disponibilizado na forma de um vetor contemplando um fator para cada carga disponível.

Assim como os parâmetros anteriores, é interessante normalizar este vetor para deixá-lo com a mesma grandeza dos outros parâmetros. Logo:

Equação 5-5 – Normalização do Vetor de Criticidade

$$\overrightarrow{criticidade} = \frac{\overrightarrow{critic}}{|\overrightarrow{critic}|}$$

Onde:

 $\overrightarrow{criticidade}$ = vetor de prioridade de segurança normalizado \overrightarrow{critic} = vetor de prioridade de segurança

5.4.2. PRODUÇÃO

Segue o mesmo raciocínio utilizado para a segurança. Um *ranking* de prioridade para a produção criado e posteriormente normalizado. Portanto:

Equação 5-6 – Normalização do Vetor de Produção

$$\overrightarrow{produç\~ao} = \frac{\overrightarrow{prod}}{|\overrightarrow{prod}|}$$

Onde:

 $\overrightarrow{produção}$ = vetor de prioridade de produção normalizado \overrightarrow{prod} = vetor de prioridade de produção

5.4.3. CONFIABILIDADE

Este tópico representa particular interesse, pois leva em consideração as condições de manutenção da UEP. Aqui aplicaremos os conceitos apresentados neste trabalho quanto à confiabilidade. Utilizaremos, ao invés do fator compreendido

entre 0 e 1 dos itens anteriores, utilizaremos o *Mean Time Between Failure* – MTBF, ou seja, o tempo médio entre falhas, que é um parâmetro que pode ser obtido através dos fabricantes, e atualizado através das estatísticas de manutenção da UEP. Ao utilizar esse parâmetro podemos definir que uma determinada carga que tenha um MTBF menor tenha preferência para ser descartado, já que tem uma probabilidade de falha maior ao permanecer.

Portanto, para utilizar o MTBF como um parâmetro, basta normalizar o vetor com os MTBFs das cargas para que se tornem um índice com a mesma grandeza dos demais fatores. Assim:

Equação 5-7 - Normalização do Vetor de Confiabilidade

$$\overrightarrow{confiabilidade} = \frac{\overrightarrow{MTBF}}{|\overrightarrow{MTBF}|}$$

Onde:

 $\overrightarrow{confiabilidade}$ = vetor de prioridade de confiabilidade normalizado \overrightarrow{MTBF} = vetor contendo os valores individuais de MTBF das cargas

5.5. CRITÉRIO DE PRIORIZAÇÃO

Aqui apresentaremos a metodologia de comparação adotada. Chamaremos de $\overrightarrow{critério}$ o fator de prioridade adotado entre as opções acima. Trabalhar com os vetores normalizados torna a função de classificação versátil, permitindo a criação de quantas funções de prioridade forem necessárias.

Como os softwares de programação e simulação numérica trabalham facilmente com funções de classificação que colocam os dados em ordem crescente, utilizaremos um índice relativo a ser calculado que tenha um valor menor para as cargas a serem descartadas, e maior para as cargas a serem preservadas.

O seguinte modelo matemático atende os requisitos descritos acima:

Equação 5-8 – Cálculo do Fator de Classificação

$$\overrightarrow{fator} = K \cdot \overrightarrow{criterio} + (\mu - falta) \cdot \overrightarrow{Load}$$

Onde:

 \overrightarrow{fator} = fator de classificação

 \vec{K} = fator de ponderação para o critério

critério = critério de priorização selecionado pela operação

 μ = constante que define a influência do tipo de contingência em relação à carga

falta = relação de contingência linearizada

 \overrightarrow{Load} = vetor de carga normalizado

Logo, falta definir apenas as duas constantes $K \in \mu$.

O fator *K* utilizado na simulação será 2. Quanto maior esse valor maior a influência do critério adotado em detrimento da influência da carga, pois trata-se de uma ponderação.

A constante μ é um fator que caracteriza a influência que a contingência tem sobre a carga. Ou seja, quando a contingência for pequena, cargas menores serão priorizadas; quando a contingência for maior, cargas maiores serão priorizadas. Considerando que a saída de um turbo gerador (TG) é uma contingência alta quando se opera com dois TGs, deve-se tirar as cargas mais pesadas primeiro, mas se a queda de um TG ocorrer durante a operação com dois TGs e dois MDs, é mais interessante priorizar a saída das cargas mais leves. Nesse limiar, o valor $\mu=0.4$ é uma fronteira razoável. Nas contingências próximas à essa fronteira, a carga terá uma influência menor em relação ao critério adotado, e nas contingências muito menores ou muito maiores, a carga demandada terá uma influência maior.

6. SIMULAÇÃO

Como demonstração do método desenvolvido, podemos utilizar o aplicativo desenvolvido em linguagem de MatLab® apresentado em anexo. Nas simulações realizadas obtivemos valores razoáveis capazes de se adaptar bem aos cenários de contingência selecionados. Assim, vamos apresentar uma simulação a título de exemplo. Para tanto, utilizaremos como entrada o cenário hipotético apresentado na Figura 4-1 – Diagrama Unifilar Geral. A Tabela 6-1 – Tabela de Cargas apresenta uma lista de cargas típicas de uma UEP, com valores de carga máxima e demais fatores necessários.

Tabela 6-1 – Tabela de Cargas

CARGAS	DESCRIÇÃO ▼	MTBF 💌	FATOR DE SEGURANCA	PRIORIDADE PARA PRODUCAO	POTÊNCIA NOMINAL (kW)	Fator de Car
MB-511101 A	LIFT – CAPTAÇÃO A	2111,63	0,30	0,30	130,00	1
MB-511101 C	LIFT – CAPTAÇÃO C	2205,22	0,30	0,30	130,00	0
MB-511101 E	LIFT – CAPTAÇÃO E	2768,27	0,30	0,30	130,00	0
MB-122302 A	BOMBA EXPORTAÇÃO A	3244,81	0,40	0,80	900,00	1
MB-122302 C	BOMBA EXPORTAÇÃO C	2425,95	0,40	0,80	900,00	1
MB-125102 A	INJEÇÃO ÁGUA PRINCIPAL A	3273,10	0,10	0,40	1100,00	0
MB-125102 C	INJEÇÃO ÁGUA PRINCIPAL C	3186,59	0,10	0,40	1100,00	0
MB-125102 E	INJEÇÃO ÁGUA PRINCIPAL E	2716,32	0,10	0,40	1100,00	1
MB-511101 B	LIFT – CAPTAÇÃO B	2501,94	0,30	0,30	130,00	1
MB-511101 D	LIFT – CAPTAÇÃO D	2295,38	0,30	0,30	130,00	1
MB-511101 F	LIFT – CAPTAÇÃO F	2830,12	0,30	0,30	130,00	1
MB-542002	BOMBA INCÊNDIO	2752,26	0,90	0,90	410,00	1
MC-UC-122302	COMPRESSOR BOOSTER	2382,51	0,10	0,40	671,00	1
MB-122302 B	BOMBA EXPORTAÇÃO B	2469,91	0,40	0,80	900,00	1
MB-122302 D	BOMBA EXPORTAÇÃO D	2142,25	0,40	0,80	900,00	1
MB-125102 B	INJEÇÃO ÁGUA PRINCIPAL B	3975,50	0,10	0,40	1100,00	1
MB-125102 D	INJEÇÃO ÁGUA PRINCIPAL D	2683,52	0,10	0,40	1100,00	1
PN-514004A	BARRA A DO PAINEL 4	2861,22	0,90	0,90	580,00	1
PN-514004B	BARRA B DO PAINEL 4	3616,79	0,90	0,90	580,00	1
PN-514005A	BARRA A DO PAINEL 5	3148,99	0,90	0,90	1460,53	1
PN-514005B	BARRA B DO BAINEL 5	2065,49	0,90	0,90	1460,53	1
PN-514006A	BARRA A DO PAINEL DE CARGAS ESSENCIAIS	3688,31	1,00	1,00	584,49	1
PN-514006B	BARRA B DO PAINEL DE CARGAS ESSENCIAIS	3547,71	1,00	1,00	584,49	1
PN-514007	PAINEL 7	2034,34	0,10	0,40	300,00	1
PN-514008	PAINEL 8	2380,40	0,10	0,40	300,00	1
PN-514009	PAINEL 9	2614,90	0,20	0,60	185,90	1
PN-514010	PAINEL 10	3298,54	0,20	0,60	151,83	1
PN-514011	PAINEL 11	2797,73	0,20	0,50	373,50	1
PN-514012	PAINEL 12	2466,05	0,20	0,70	610,15	1
PN-514013	PAINEL 13	2185,40	0,10	0,10	250,00	1
PN-514014	PAINEL 14	2201,89	0,20	0,30	180,80	1
PN-514015	PAINEL 15	3142,35	0,90	0,90	316,49	1
PN-514016	PAINEL 16	2378,85	0,90	0,90	415,47	1
PN-514022	PAINEL 22	2104,11	0,10	0,30	60,00	1
PN-514024	PAINEL 24	3198,24	0,30	0,50	80,00	1
PN-514035	PAINEL 35	3796,73	0,70	0,20	60,00	1
PN-GE-514001A-03	PAINEL DO CCM DO TURBO GERADOR A	3839,31	0,80	0,90	56,00	1
PN-GE-514001B-03	PAINEL DO CCM DO TURBO GERADOR B	2521,84	0,80	0,90	56,00	1
PN-UC-122301A-01	PAINEL DO CCM DO TURBO COMPRESSOR A	3916,57	0,30	0,90	50,00	1
PN-UC-122301B-01	PAINEL DO CCM DO TURBO COMPRESSOR B	2411,68	0,30	0,90	50,00	1
PN-UC-122301C-01	PAINEL DO CCM DO TURBO COMPRESSOR C	2239,67	0,30	0,90	50,00	1
PN-UQ-682501A	PAINEL DA UNIDADE QUÍMICA A	2028,85	0,20	0,70	120,00	1
PN-UQ-682501B	PAINEL DA UNIDADE QUÍMICA B	3611,94	0,20	0,70	120,00	1

Abaixo, na Tabela 6-2 – Descarte de Carga: 70%, Queda de TG x Segurança, apresentamos o resultado de uma simulação para um cenário onde temos dois TGs e um MD em operação (70%) e um TG (30%) sai da barra, utilizando o critério de priorização "Segurança".

Tabela 6-2 – Descarte de Carga: 70%, Queda de TG x Segurança

CARGAS	POTÊNCIA
INJEÇÃO ÁGUA PRINCIPAL E'	1100
INJEÇÃO ÁGUA PRINCIPAL B'	1100
INJEÇÃO ÁGUA PRINCIPAL D'	1100
'COMPRESSOR BOOSTER'	671
'PAINEL 12'	610,15
'PAINEL 7'	300
'PAINEL 8'	300
'PAINEL 13'	250
BOMBA EXPORTAÇÃO A'	900
BOMBA EXPORTAÇÃO C'	900
BOMBA EXPORTAÇÃO B'	900
BOMBA EXPORTAÇÃO D'	900
'PAINEL 11'	373,5
'PAINEL 22'	60
'PAINEL 9'	185,9
'PAINEL 14'	180,8
'PAINEL 10'	151,83
PAINEL DA UNIDADE QUÍMICA A'	120
PAINEL DA UNIDADE QUÍMICA B'	120
LIFT - CAPTAÇÃO A'	130
LIFT - CAPTAÇÃO B'	130
LIFT - CAPTAÇÃO D'	130
LIFT - CAPTAÇÃO F'	130
'BARRA A DO PAINEL 5'	1460,53
'BARRA B DO BAINEL 5'	1460,53
'PAINEL 24'	80
'PAINEL DO CCM DO TURBO COMPRESSOR A'	50
'PAINEL DO CCM DO TURBO COMPRESSOR B'	50
'PAINEL DO CCM DO TURBO COMPRESSOR C'	50
'BARRA A DO PAINEL 4'	580
'BARRA B DO PAINEL 4'	580
'PAINEL 35'	60
'PAINEL 16'	415,47
BOMBA INCÊNDIO'	410
'BARRA A DO PAINEL DE CARGAS ESSENCIAIS'	584,49
'BARRA B DO PAINEL DE CARGAS ESSENCIAIS'	584,49
'PAINEL 15'	316,49
'PAINEL DO CCM DO TURBO GERADOR A'	56
'PAINEL DO CCM DO TURBO GERADOR B'	56

Nas tabelas a seguir apresentamos o resultado de algumas simulações para outros cenários de geração e falta, bem como outras prioridades, permitindo uma comparação das diferenças entre cada cenário de acordo com a prioridade desejada. Junto aos valores de demanda, apresentamos também os fatores de ordenação calculados pelo critério proposto aqui.

A Figura 6-1 e a Figura 6-2 apresentam a interface do simulador utilizado, escrito com o código apresentado na seção CÓDIGO EM MATLAB, portanto, esta lógica será utilizada para apresentar os critérios de simulação na legenda como no exemplo acima.

Como as tabelas nos permitem comparar, temos características adaptativas, pois, uma queda de TG, que representa 30% da geração, prioriza cargas mais pesadas quando temos dois TGs em operação, mas não quando temos, além dos dois TGs outros 3 MDs (3 x 10%), pois neste último, cargas mais leves aparecem primeiro. Mesmo apresentando tais características, o critério de priorização escolhido ainda altera a ordem das cargas que devem ser descartadas.

Figura 6-1 – Aplicativo Para Simulação

Figura 6-2 – Exemplo de Simulação

Tabela 6-3 – Descarte de Carga: 40%, Queda de MD x Confiabilidade

CARGA	DEMANDA	FATOR
PAINEL DO CCM DO TURBO GERADOR A	56	0,214109
PAINEL 14	180,8	-
PAINEL 15	316,49	-
PAINEL 9	185,9	-
PAINEL 22	60	
PAINEL 13	250	
BOMBA EXPORTAÇÃO C	900	-
BOMBA EXPORTAÇÃO A	900	
PAINEL 24	80	0,274511
INJEÇÃO ÁGUA PRINCIPAL B	1100	-
PAINEL DO CCM DO TURBO COMPRESSOR C	50	0,284666
LIFT – CAPTAÇÃO F	130	0,292207
BARRA B DO BAINEL 5	1460,53	0,292817
PAINEL 8	300	0,314458
PAINEL 12	610,15	0,320257
BOMBA EXPORTAÇÃO D	900	0,323953
PAINEL 10	151,83	0,331976
PAINEL DO CCM DO TURBO COMPRESSOR A	50	0,332467
BARRA A DO PAINEL 4	580	0,3433
COMPRESSOR BOOSTER	671	0,349009
LIFT – CAPTAÇÃO A	130	0,354991
PAINEL 16	415,47	0,356249
LIFT – CAPTAÇÃO B	130	0,361031
PAINEL DO CCM DO TURBO GERADOR B	56	0,361401
PAINEL 11	373,5	0,364341
BARRA B DO PAINEL DE CARGAS ESSENCIAIS	584,49	0,366124
INJEÇÃO ÁGUA PRINCIPAL E	1100	0,370645
PAINEL DO CCM DO TURBO COMPRESSOR B	50	0,371955
BARRA A DO PAINEL 5	1460,53	0,382442
PAINEL DA UNIDADE QUÍMICA B	120	0,38578
INJEÇÃO ÁGUA PRINCIPAL D	1100	0,391433
LIFT – CAPTAÇÃO D	130	0,400315
PAINEL 35	60	0,401415
PAINEL 7	300	0,401993
PAINEL DA UNIDADE QUÍMICA A	120	0,403648
BOMBA INCÊNDIO	410	0,406813
BARRA B DO PAINEL 4	580	0,412837
BARRA A DO PAINEL DE CARGAS ESSENCIAIS	584,49	0,416243
BOMBA EXPORTAÇÃO B	900	0,437059

Tabela 6-4 – Descarte de Carga: 40%, Queda de TG x Confiabilidade

CARGA	DEMANDA	FATOR
BARRA B DO BAINEL 5	1460,53	-0,00374
INJEÇÃO ÁGUA PRINCIPAL B	1100	0,054587
BARRA A DO PAINEL 5	1460,53	0,085881
BOMBA EXPORTAÇÃO C	900	0,086556
BOMBA EXPORTAÇÃO A	900	0,090578
BOMBA EXPORTAÇÃO D	900	0,141208
INJEÇÃO ÁGUA PRINCIPAL E	1100	0,14729
PAINEL 15	316,49	0,158778
INJEÇÃO ÁGUA PRINCIPAL D	1100	0,168078
PAINEL 14	180,8	0,186236
PAINEL 12	610,15	0,196366
PAINEL DO CCM DO TURBO GERADOR A	56	0,202738
PAINEL 13	250	0,208084
PAINEL 9	185,9	0,208749
COMPRESSOR BOOSTER	671	0,212763
BARRA A DO PAINEL 4	580	0,225531
PAINEL 22	60	0,239982
BARRA B DO PAINEL DE CARGAS ESSENCIAIS	584,49	0,247443
PAINEL 8	300	0,253543
BOMBA EXPORTAÇÃO B	900	0,254314
PAINEL 24	80	0,258267
LIFT – CAPTAÇÃO F	130	0,265811
PAINEL 16	415,47	0,271888
PAINEL DO CCM DO TURBO COMPRESSOR C	50	0,274514
PAINEL 11	373,5	0,288501
BARRA B DO PAINEL 4	580	0,295068
BARRA A DO PAINEL DE CARGAS ESSENCIAIS	584,49	0,297563
PAINEL 10	151,83	0,301147
PAINEL DO CCM DO TURBO COMPRESSOR A	50	0,322314
BOMBA INCÊNDIO	410	0,323562
LIFT – CAPTAÇÃO A	130	0,328594
LIFT – CAPTAÇÃO B	130	0,334635
PAINEL 7	300	0,341078
PAINEL DO CCM DO TURBO GERADOR B	56	0,35003
PAINEL DA UNIDADE QUÍMICA B	120	0,361414
PAINEL DO CCM DO TURBO COMPRESSOR B	50	0,361802
LIFT – CAPTAÇÃO D	130	0,373918
PAINEL DA UNIDADE QUÍMICA A	120	0,379282
PAINEL 35	60	0,389232

Tabela 6-5 – Descarte de Carga: 40%, Queda de MD x Produção

CARGA	DEMANDA	FATOR
PAINEL 13	250	0,057642
PAINEL 35	60	0,095628
PAINEL 22	60	
LIFT – CAPTAÇÃO A	130	0,145229
LIFT – CAPTAÇÃO B	130	
LIFT – CAPTAÇÃO D	130	
LIFT – CAPTAÇÃO F	130	
PAINEL 14	180,8	0,147498
PAINEL 7	300	0,199297
PAINEL 8	300	
COMPRESSOR BOOSTER	671	0,21587
INJEÇÃO ÁGUA PRINCIPAL E	1100	0,235034
INJEÇÃO ÁGUA PRINCIPAL B	1100	0,235034
INJEÇÃO ÁGUA PRINCIPAL D	1100	0,235034
PAINEL 24	80	0,235943
PAINEL 11	373,5	0,249054
PAINEL 10	151,83	0,285626
PAINEL 9	185,9	0,287148
PAINEL DA UNIDADE QUÍMICA A	120	0,330678
PAINEL DA UNIDADE QUÍMICA B	120	0,330678
PAINEL 12	610,15	0,352574
BOMBA EXPORTAÇÃO A	900	0,411995
BOMBA EXPORTAÇÃO C	900	0,411995
BOMBA EXPORTAÇÃO B	900	0,411995
BOMBA EXPORTAÇÃO D	900	0,411995
PAINEL DO CCM DO TURBO COMPRESSOR A	50	0,420499
PAINEL DO CCM DO TURBO COMPRESSOR B	50	0,420499
PAINEL DO CCM DO TURBO COMPRESSOR C	50	0,420499
PAINEL DO CCM DO TURBO GERADOR A	56	0,420767
PAINEL DO CCM DO TURBO GERADOR B	56	0,420767
PAINEL 15	316,49	0,432403
BOMBA INCÊNDIO	410	0,436581
PAINEL 16	415,47	0,436825
BARRA A DO PAINEL 4	580	0,444175
BARRA B DO PAINEL 4	580	0,444175
BARRA A DO PAINEL 5	1460,53	0,483509
BARRA B DO BAINEL 5	1460,53	0,483509
BARRA A DO PAINEL DE CARGAS ESSENCIAIS	584,49	0,490849
BARRA B DO PAINEL DE CARGAS ESSENCIAIS	584,49	0,490849

Tabela 6-6 – Descarte de Carga: 40%, Queda de TG x Produção

CARGA	DEMANDA	FATOR
PAINEL 13	250	
INJEÇÃO ÁGUA PRINCIPAL E	1100	-
INJEÇÃO ÁGUA PRINCIPAL B	1100	-
INJEÇÃO ÁGUA PRINCIPAL D	1100	-
COMPRESSOR BOOSTER	671	0,079623
PAINEL 35	60	
PAINEL 14	180,8	
LIFT – CAPTAÇÃO A	130	
LIFT – CAPTAÇÃO B	130	0,118833
LIFT – CAPTAÇÃO D	130	0,118833
LIFT – CAPTAÇÃO F	130	
PAINEL 22	60	0,129919
PAINEL 7	300	0,138382
PAINEL 8	300	0,138382
PAINEL 11	373,5	0,173215
BARRA A DO PAINEL 5	1460,53	0,186948
BARRA B DO BAINEL 5	1460,53	0,186948
PAINEL 24	80	0,219699
PAINEL 12	610,15	0,228683
BOMBA EXPORTAÇÃO A	900	0,22925
BOMBA EXPORTAÇÃO C	900	0,22925
BOMBA EXPORTAÇÃO B	900	0,22925
BOMBA EXPORTAÇÃO D	900	0,22925
PAINEL 9	185,9	0,249401
PAINEL 10	151,83	0,254797
PAINEL DA UNIDADE QUÍMICA A	120	0,306312
PAINEL DA UNIDADE QUÍMICA B	120	0,306312
BARRA A DO PAINEL 4	580	0,326406
BARRA B DO PAINEL 4	580	0,326406
PAINEL 16	415,47	0,352464
BOMBA INCÊNDIO	410	0,35333
PAINEL 15	316,49	0,36814
BARRA A DO PAINEL DE CARGAS ESSENCIAIS	584,49	0,372168
BARRA B DO PAINEL DE CARGAS ESSENCIAIS	584,49	0,372168
PAINEL DO CCM DO TURBO GERADOR A	56	0,409396
PAINEL DO CCM DO TURBO GERADOR B	56	0,409396
PAINEL DO CCM DO TURBO COMPRESSOR A	50	0,410347
PAINEL DO CCM DO TURBO COMPRESSOR B	50	0,410347
PAINEL DO CCM DO TURBO COMPRESSOR C	50	0,410347

Tabela 6-7 – Descarte de Carga: 80%, Queda de TG x Segurança

CARGA	DEMANDA	FATOR
INJEÇÃO ÁGUA PRINCIPAL E	1100	0,053168
INJEÇÃO ÁGUA PRINCIPAL B	1100	0,053168
INJEÇÃO ÁGUA PRINCIPAL D	1100	0,053168
COMPRESSOR BOOSTER	671	0,055781
PAINEL 7	300	0,058041
PAINEL 8	300	0,058041
PAINEL 13	250	0,058346
PAINEL 22	60	0,059503
PAINEL 12	610,15	0,11602
PAINEL 11	373,5	0,117462
PAINEL 9	185,9	0,118604
PAINEL 14	180,8	0,118636
PAINEL 10	151,83	0,118812
PAINEL DA UNIDADE QUÍMICA A	120	0,119006
PAINEL DA UNIDADE QUÍMICA B	120	0,119006
LIFT – CAPTAÇÃO A	130	0,178813
LIFT – CAPTAÇÃO B	130	0,178813
LIFT – CAPTAÇÃO D	130	0,178813
LIFT – CAPTAÇÃO F	130	0,178813
PAINEL 24	80	0,179118
PAINEL DO CCM DO TURBO COMPRESSOR A	50	0,179301
PAINEL DO CCM DO TURBO COMPRESSOR B	50	0,179301
PAINEL DO CCM DO TURBO COMPRESSOR C	50	0,179301
BOMBA EXPORTAÇÃO A	900	0,233991
BOMBA EXPORTAÇÃO C	900	0,233991
BOMBA EXPORTAÇÃO B	900	0,233991
BOMBA EXPORTAÇÃO D	900	0,233991
PAINEL 35	60	0,418714
PAINEL DO CCM DO TURBO GERADOR A	56	0,478606
PAINEL DO CCM DO TURBO GERADOR B	56	0,478606
BARRA A DO PAINEL 5	1460,53	0,529919
BARRA B DO BAINEL 5	1460,53	0,529919
BARRA A DO PAINEL 4	580	0,535283
BARRA B DO PAINEL 4	580	0,535283
PAINEL 16	415,47	0,536285
BOMBA INCÊNDIO	410	0,536318
PAINEL 15	316,49	0,536888
BARRA A DO PAINEL DE CARGAS ESSENCIAIS	584,49	0,595124
BARRA B DO PAINEL DE CARGAS ESSENCIAIS	584,49	0,595124

Tabela 6-8 – Descarte de Carga: 80%, Queda de MD x Segurança

CARGA	DEMANDA	FATOR
PAINEL 22	60	0,065594
PAINEL 13	250	0,083727
PAINEL 7	300	0,088498
PAINEL 8	300	0,088498
COMPRESSOR BOOSTER	671	0,123904
PAINEL DA UNIDADE QUÍMICA A	120	0,131189
PAINEL DA UNIDADE QUÍMICA B	120	0,131189
PAINEL 10	151,83	0,134227
PAINEL 14	180,8	0,136991
PAINEL 9	185,9	0,137478
PAINEL 11	373,5	0,155381
INJEÇÃO ÁGUA PRINCIPAL E	1100	0,164845
INJEÇÃO ÁGUA PRINCIPAL B	1100	0,164845
INJEÇÃO ÁGUA PRINCIPAL D	1100	0,164845
PAINEL 12	610,15	0,177966
PAINEL DO CCM DO TURBO COMPRESSOR A	50	0,184377
PAINEL DO CCM DO TURBO COMPRESSOR B	50	0,184377
PAINEL DO CCM DO TURBO COMPRESSOR C	50	0,184377
PAINEL 24	80	0,18724
LIFT – CAPTAÇÃO A	130	0,192012
LIFT – CAPTAÇÃO B	130	0,192012
LIFT – CAPTAÇÃO D	130	0,192012
LIFT – CAPTAÇÃO F	130	0,192012
BOMBA EXPORTAÇÃO A	900	0,325364
BOMBA EXPORTAÇÃO C	900	0,325364
BOMBA EXPORTAÇÃO B	900	0,325364
BOMBA EXPORTAÇÃO D	900	0,325364
PAINEL 35	60	0,424805
PAINEL DO CCM DO TURBO GERADOR A	56	0,484292
PAINEL DO CCM DO TURBO GERADOR B	56	0,484292
PAINEL 15	316,49	0,56902
BOMBA INCÊNDIO	410	0,577944
PAINEL 16	415,47	0,578466
BARRA A DO PAINEL 4	580	0,594167
BARRA B DO PAINEL 4	580	0,594167
BARRA A DO PAINEL DE CARGAS ESSENCIAIS	584,49	0,654464
BARRA B DO PAINEL DE CARGAS ESSENCIAIS	584,49	0,654464
BARRA A DO PAINEL 5	1460,53	0,678199
BARRA B DO BAINEL 5	1460,53	0,678199

Tabela 6-9 – Descarte de Carga: 90%, Queda de MD x Segurança

CARGA	DEMANDA	FATOR
PAINEL 22	60	0,065933
PAINEL 13	250	0,085137
PAINEL 7	300	0,090191
PAINEL 8	300	0,090191
COMPRESSOR BOOSTER	671	0,127689
PAINEL DA UNIDADE QUÍMICA A	120	0,131866
PAINEL DA UNIDADE QUÍMICA B	120	0,131866
PAINEL 10	151,83	0,135083
PAINEL 14	180,8	0,138011
PAINEL 9	185,9	0,138526
PAINEL 11	373,5	0,157488
INJEÇÃO ÁGUA PRINCIPAL E	1100	0,17105
INJEÇÃO ÁGUA PRINCIPAL B	1100	0,17105
INJEÇÃO ÁGUA PRINCIPAL D	1100	0,17105
PAINEL 12	610,15	0,181407
PAINEL DO CCM DO TURBO COMPRESSOR A	50	0,184659
PAINEL DO CCM DO TURBO COMPRESSOR B	50	0,184659
PAINEL DO CCM DO TURBO COMPRESSOR C	50	0,184659
PAINEL 24	80	0,187691
LIFT – CAPTAÇÃO A	130	0,192745
LIFT – CAPTAÇÃO B	130	0,192745
LIFT – CAPTAÇÃO D	130	0,192745
LIFT – CAPTAÇÃO F	130	0,192745
BOMBA EXPORTAÇÃO A	900	0,33044
BOMBA EXPORTAÇÃO C	900	0,33044
BOMBA EXPORTAÇÃO B	900	0,33044
BOMBA EXPORTAÇÃO D	900	0,33044
PAINEL 35	60	0,425143
PAINEL DO CCM DO TURBO GERADOR A	56	0,484608
PAINEL DO CCM DO TURBO GERADOR B	56	0,484608
PAINEL 15	316,49	0,570805
BOMBA INCÊNDIO	410	0,580256
PAINEL 16	415,47	0,580809
BARRA A DO PAINEL 4	580	0,597439
BARRA B DO PAINEL 4	580	0,597439
BARRA A DO PAINEL DE CARGAS ESSENCIAIS	584,49	0,657761
BARRA B DO PAINEL DE CARGAS ESSENCIAIS	584,49	0,657761
BARRA A DO PAINEL 5	1460,53	0,686437
BARRA B DO BAINEL 5	1460,53	0,686437

Tabela 6-10 – Descarte de Carga: 90%, Queda de TG x Segurança

CARGA	DEMANDA	FATOR
PAINEL 22	60	0,060518
PAINEL 13	250	
PAINEL 7	300	-
PAINEL 8	300	-
COMPRESSOR BOOSTER	671	0,067135
INJEÇÃO ÁGUA PRINCIPAL E	1100	-
INJEÇÃO ÁGUA PRINCIPAL B	1100	
INJEÇÃO ÁGUA PRINCIPAL D	1100	0,071781
PAINEL DA UNIDADE QUÍMICA A	120	0,121036
PAINEL DA UNIDADE QUÍMICA B	120	0,121036
PAINEL 10	151,83	0,121381
PAINEL 14	180,8	0,121695
PAINEL 9	185,9	0,12175
PAINEL 11	373,5	0,123782
PAINEL 12	610,15	0,126344
PAINEL DO CCM DO TURBO COMPRESSOR A	50	0,180147
PAINEL DO CCM DO TURBO COMPRESSOR B	50	0,180147
PAINEL DO CCM DO TURBO COMPRESSOR C	50	0,180147
PAINEL 24	80	0,180472
LIFT – CAPTAÇÃO A	130	0,181013
LIFT – CAPTAÇÃO B	130	0,181013
LIFT – CAPTAÇÃO D	130	0,181013
LIFT – CAPTAÇÃO F	130	0,181013
BOMBA EXPORTAÇÃO A	900	0,24922
BOMBA EXPORTAÇÃO C	900	0,24922
BOMBA EXPORTAÇÃO B	900	0,24922
BOMBA EXPORTAÇÃO D	900	0,24922
PAINEL 35	60	0,419729
PAINEL DO CCM DO TURBO GERADOR A	56	0,479554
PAINEL DO CCM DO TURBO GERADOR B	56	0,479554
PAINEL 15	316,49	0,542243
BOMBA INCÊNDIO	410	0,543256
PAINEL 16	415,47	0,543315
BARRA A DO PAINEL 4	580	0,545097
BARRA B DO PAINEL 4	580	0,545097
BARRA A DO PAINEL 5	1460,53	0,554632
BARRA B DO BAINEL 5	1460,53	0,554632
BARRA A DO PAINEL DE CARGAS ESSENCIAIS	584,49	0,605014
BARRA B DO PAINEL DE CARGAS ESSENCIAIS	584,49	0,605014

Tabela 6-11 – Descarte de Carga: 100%, Queda de MD x Produção

CARGA	DEMANDA	FATOR
PAINEL 13	250	0,07287
PAINEL 35	60	0,099283
PAINEL 22	60	0,145757
LIFT – CAPTAÇÃO A	130	0,153148
LIFT – CAPTAÇÃO B	130	0,153148
LIFT – CAPTAÇÃO D	130	0,153148
LIFT – CAPTAÇÃO F	130	0,153148
PAINEL 14	180,8	0,158512
PAINEL 7	300	0,217572
PAINEL 8	300	0,217572
PAINEL 24	80	0,240817
COMPRESSOR BOOSTER	671	0,256744
PAINEL 11	373,5	0,271806
PAINEL 10	151,83	0,294875
PAINEL 9	185,9	0,298472
INJEÇÃO ÁGUA PRINCIPAL E	1100	0,30204
INJEÇÃO ÁGUA PRINCIPAL B	1100	0,30204
INJEÇÃO ÁGUA PRINCIPAL D	1100	0,30204
PAINEL DA UNIDADE QUÍMICA A	120	0,337988
PAINEL DA UNIDADE QUÍMICA B	120	0,337988
PAINEL 12	610,15	0,389741
PAINEL DO CCM DO TURBO COMPRESSOR A	50	0,423545
PAINEL DO CCM DO TURBO COMPRESSOR B	50	0,423545
PAINEL DO CCM DO TURBO COMPRESSOR C	50	0,423545
PAINEL DO CCM DO TURBO GERADOR A	56	0,424178
PAINEL DO CCM DO TURBO GERADOR B	56	0,424178
PAINEL 15	316,49	0,451682
BOMBA INCÊNDIO	410	0,461556
PAINEL 16	415,47	0,462133
BOMBA EXPORTAÇÃO A	900	0,466819
BOMBA EXPORTAÇÃO C	900	0,466819
BOMBA EXPORTAÇÃO B	900	0,466819
BOMBA EXPORTAÇÃO D	900	0,466819
BARRA A DO PAINEL 4	580	0,479505
BARRA B DO PAINEL 4	580	0,479505
BARRA A DO PAINEL DE CARGAS ESSENCIAIS	584,49	0,526453
BARRA B DO PAINEL DE CARGAS ESSENCIAIS	584,49	0,526453
BARRA A DO PAINEL 5	1460,53	0,572477
BARRA B DO BAINEL 5	1460,53	0,572477

Tabela 6-12 – Descarte de Carga: 100%, Queda de TG x Produção

CARGA	DEMANDA	FATOR
PAINEL 13	250	0,052565
PAINEL 35	60	0,09441
PAINEL 22	60	
LIFT – CAPTAÇÃO A	130	
LIFT – CAPTAÇÃO B	130	
LIFT – CAPTAÇÃO D	130	
LIFT – CAPTAÇÃO F	130	
PAINEL 14	180,8	
PAINEL 7	300	
PAINEL 8	300	0,193206
COMPRESSOR BOOSTER	671	0,202245
INJEÇÃO ÁGUA PRINCIPAL E	1100	0,212698
INJEÇÃO ÁGUA PRINCIPAL B	1100	0,212698
INJEÇÃO ÁGUA PRINCIPAL D	1100	0,212698
PAINEL 24	80	0,234319
PAINEL 11	373,5	0,24147
PAINEL 10	151,83	0,282543
PAINEL 9	185,9	0,283373
PAINEL DA UNIDADE QUÍMICA A	120	0,328242
PAINEL DA UNIDADE QUÍMICA B	120	0,328242
PAINEL 12	610,15	0,340185
BOMBA EXPORTAÇÃO A	900	0,393721
BOMBA EXPORTAÇÃO C	900	0,393721
BOMBA EXPORTAÇÃO B	900	0,393721
BOMBA EXPORTAÇÃO D	900	0,393721
PAINEL DO CCM DO TURBO COMPRESSOR A	50	0,419484
PAINEL DO CCM DO TURBO COMPRESSOR B	50	0,419484
PAINEL DO CCM DO TURBO COMPRESSOR C	50	0,419484
PAINEL DO CCM DO TURBO GERADOR A	56	0,41963
PAINEL DO CCM DO TURBO GERADOR B	56	0,41963
PAINEL 15	316,49	0,425977
BOMBA INCÊNDIO	410	0,428256
PAINEL 16	415,47	0,428389
BARRA A DO PAINEL 4	580	0,432398
BARRA B DO PAINEL 4	580	0,432398
BARRA A DO PAINEL 5	1460,53	0,453853
BARRA B DO BAINEL 5	1460,53	0,453853
BARRA A DO PAINEL DE CARGAS ESSENCIAIS	584,49	0,478981
BARRA B DO PAINEL DE CARGAS ESSENCIAIS	584,49	0,478981

Tabela 6-13 – Descarte de Carga: 20%, Queda de MD x Produção

CARGA	DEMANDA	FATOR
PAINEL 13	250	0,03226
PAINEL 35	60	0,089537
INJEÇÃO ÁGUA PRINCIPAL E	1100	0,123356
INJEÇÃO ÁGUA PRINCIPAL B	1100	0,123356
INJEÇÃO ÁGUA PRINCIPAL D	1100	0,123356
PAINEL 14	180,8	0,129143
LIFT – CAPTAÇÃO A	130	0,132031
LIFT – CAPTAÇÃO B	130	0,132031
LIFT – CAPTAÇÃO D	130	0,132031
LIFT – CAPTAÇÃO F	130	0,132031
PAINEL 22	60	0,136011
COMPRESSOR BOOSTER	671	0,147747
PAINEL 7	300	0,16884
PAINEL 8	300	0,16884
PAINEL 11	373,5	0,211135
PAINEL 24	80	0,227821
PAINEL 9	185,9	0,268274
PAINEL 10	151,83	0,270212
PAINEL 12	610,15	0,290628
PAINEL DA UNIDADE QUÍMICA A	120	0,318495
PAINEL DA UNIDADE QUÍMICA B	120	0,318495
BOMBA EXPORTAÇÃO A	900	0,320623
BOMBA EXPORTAÇÃO C	900	0,320623
BOMBA EXPORTAÇÃO B	900	0,320623
BOMBA EXPORTAÇÃO D	900	0,320623
BARRA A DO PAINEL 5	1460,53	0,335229
BARRA B DO BAINEL 5	1460,53	0,335229
BARRA A DO PAINEL 4	580	0,38529
BARRA B DO PAINEL 4	580	0,38529
PAINEL 16	415,47	0,394644
BOMBA INCÊNDIO	410	0,394955
PAINEL 15	316,49	0,400272
PAINEL DO CCM DO TURBO GERADOR A	56	0,415082
PAINEL DO CCM DO TURBO GERADOR B	56	0,415082
PAINEL DO CCM DO TURBO COMPRESSOR A	50	0,415423
PAINEL DO CCM DO TURBO COMPRESSOR B	50	0,415423
PAINEL DO CCM DO TURBO COMPRESSOR C	50	0,415423
BARRA A DO PAINEL DE CARGAS ESSENCIAIS	584,49	0,431509
BARRA B DO PAINEL DE CARGAS ESSENCIAIS	584,49	0,431509

Tabela 6-14 – Descarte de Carga: 20%, Queda de MD x Confiabilidade

CARGAS	DEMANDA	FATOR
BOMBA EXPORTAÇÃO B	900	0,174036
INJEÇÃO ÁGUA PRINCIPAL E	1100	-
BARRA A DO PAINEL DE CARGAS ESSENCIAIS	584,49	-
BOMBA EXPORTAÇÃO C	900	0,199696
LIFT – CAPTAÇÃO A	130	-
PAINEL 24	80	0,224317
BOMBA INCÊNDIO	410	0,226825
PAINEL 13	250	0,227803
BARRA A DO PAINEL 5	1460,53	0,227987
PAINEL DO CCM DO TURBO COMPRESSOR C	50	0,228582
BOMBA EXPORTAÇÃO D	900	0,240787
BARRA A DO PAINEL 4	580	0,242325
PAINEL 8	300	0,245773
PAINEL 9	185,9	0,245898
LIFT – CAPTAÇÃO B	130	0,256273
PAINEL 12	610,15	0,256817
PAINEL 14	180,8	0,280522
INJEÇÃO ÁGUA PRINCIPAL D	1100	0,281144
LIFT – CAPTAÇÃO F	130	0,281585
BARRA B DO PAINEL DE CARGAS ESSENCIAIS	584,49	0,283077
COMPRESSOR BOOSTER	671	0,286793
BARRA B DO PAINEL 4	580	0,302667
BOMBA EXPORTAÇÃO A	900	0,302772
PAINEL 15	316,49	0,303125
PAINEL 11	373,5	0,30859
PAINEL DO CCM DO TURBO GERADOR B	56	0,310109
PAINEL DO CCM DO TURBO COMPRESSOR B	50	0,314988
PAINEL 16	415,47	0,320145
INJEÇÃO ÁGUA PRINCIPAL B	1100	0,322111
PAINEL 10	151,83	0,32316
BARRA B DO BAINEL 5	1460,53	0,341409
PAINEL 7	300	0,370474
PAINEL 35	60	0,378997
PAINEL 22	60	0,385734
PAINEL DA UNIDADE QUÍMICA B	120	0,386251
PAINEL DA UNIDADE QUÍMICA A	120	0,386919
PAINEL DO CCM DO TURBO COMPRESSOR A	50	0,39254
PAINEL DO CCM DO TURBO GERADOR A	56	0,397903
LIFT – CAPTAÇÃO D	130	0,414239

Tabela 6-15 – Descarte de Carga: 20%, Queda de MD x Segurança

CARGAS	DEMANDA	FATOR	
INJEÇÃO ÁGUA PRINCIPAL E	1100	-0,00267	
INJEÇÃO ÁGUA PRINCIPAL B	1100	-0,00267	
INJEÇÃO ÁGUA PRINCIPAL D	1100	,	
COMPRESSOR BOOSTER	671	0,021719	
PAINEL 7	300	0,042812	
PAINEL 8	300	0,042812	
PAINEL 13	250	0,045655	
PAINEL 22	60	0,056457	
PAINEL 12	610,15	0,085047	
PAINEL 11	373,5	0,098502	
PAINEL 9	185,9	0,109168	
PAINEL 14	180,8	0,109458	
PAINEL 10	151,83	0,111105	
PAINEL DA UNIDADE QUÍMICA A	120	0,112914	
PAINEL DA UNIDADE QUÍMICA B	120	0,112914	
LIFT – CAPTAÇÃO A	130	0,172214	
LIFT – CAPTAÇÃO B	130	0,172214	
LIFT – CAPTAÇÃO D	130	0,172214	
LIFT – CAPTAÇÃO F	130	0,172214	
PAINEL 24	80	0,175057	
PAINEL DO CCM DO TURBO COMPRESSOR A	50	0,176763	
PAINEL DO CCM DO TURBO COMPRESSOR B	50	0,176763	
PAINEL DO CCM DO TURBO COMPRESSOR C	50	0,176763	
BOMBA EXPORTAÇÃO A	900	0,188305	
BOMBA EXPORTAÇÃO C	900	0,188305	
BOMBA EXPORTAÇÃO B	900	0,188305	
BOMBA EXPORTAÇÃO D	900	0,188305	
PAINEL 35	60	0,415668	
BARRA A DO PAINEL 5	1460,53	0,455779	
BARRA B DO BAINEL 5	1460,53	0,455779	
PAINEL DO CCM DO TURBO GERADOR A	56	0,475764	
PAINEL DO CCM DO TURBO GERADOR B	56	0,475764	
BARRA A DO PAINEL 4	580	0,505841	
BARRA B DO PAINEL 4	580	0,505841	
PAINEL 16	415,47	0,515195	
BOMBA INCÊNDIO	410	0,515506	
PAINEL 15	316,49	0,520822	
BARRA A DO PAINEL DE CARGAS ESSENCIAIS	584,49	0,565454	
BARRA B DO PAINEL DE CARGAS ESSENCIAIS	584,49	0,565454	

Tabela 6-16 – Descarte de Carga: 50%, Queda de MD x Segurança

CARGAS	DEMANDA	FATOR
PAINEL 22	60	0,063767
PAINEL 13	250	0,076112
PAINEL 7	300	0,079361
PAINEL 8	300	0,079361
COMPRESSOR BOOSTER	671	0,103467
PAINEL DA UNIDADE QUÍMICA A	120	0,127534
PAINEL DA UNIDADE QUÍMICA B	120	0,127534
PAINEL 10	151,83	0,129602
INJEÇÃO ÁGUA PRINCIPAL E	1100	0,131342
INJEÇÃO ÁGUA PRINCIPAL B	1100	0,131342
INJEÇÃO ÁGUA PRINCIPAL D	1100	0,131342
PAINEL 14	180,8	0,131485
PAINEL 9	185,9	-
PAINEL 11	373,5	0,144005
PAINEL 12	610,15	0,159382
PAINEL DO CCM DO TURBO COMPRESSOR A	50	0,182854
PAINEL DO CCM DO TURBO COMPRESSOR B	50	0,182854
PAINEL DO CCM DO TURBO COMPRESSOR C	50	0,182854
PAINEL 24	80	0,184803
LIFT – CAPTAÇÃO A	130	0,188052
LIFT – CAPTAÇÃO B	130	0,188052
LIFT – CAPTAÇÃO D	130	0,188052
LIFT – CAPTAÇÃO F	130	0,188052
BOMBA EXPORTAÇÃO A	900	0,297952
BOMBA EXPORTAÇÃO C	900	0,297952
BOMBA EXPORTAÇÃO B	900	0,297952
BOMBA EXPORTAÇÃO D	900	0,297952
PAINEL 35	60	0,422978
PAINEL DO CCM DO TURBO GERADOR A	56	0,482586
PAINEL DO CCM DO TURBO GERADOR B	56	0,482586
PAINEL 15	316,49	0,55938
BOMBA INCÊNDIO	410	0,565456
PAINEL 16	415,47	0,565811
BARRA A DO PAINEL 4	580	0,576502
BARRA B DO PAINEL 4	580	0,576502
BARRA A DO PAINEL 5	1460,53	0,633715
BARRA B DO BAINEL 5	1460,53	0,633715
BARRA A DO PAINEL DE CARGAS ESSENCIAIS	584,49	0,636662
BARRA B DO PAINEL DE CARGAS ESSENCIAIS	584,49	0,636662

7. CONCLUSÃO

Como podemos verificar, o modelo apresentado aqui, traz uma alternativa satisfatória para o modelo dinâmico de descarte de carga que pode ser empregado em UEPs. Além de ser versátil quanto a escolha dos parâmetros de cálculo, este modelo permite ser melhorado para incluir outros fatores em pesquisas futuras.

Outra vantagem considerável é que pode ser utilizado para operação em tempo real, já que um software pode facilmente ser alimentado com os valores de demanda em tempo real e a tabela atualizada e enviada para os relés que atuam no descarte, de forma que, havendo uma contingência, a tabela armazenada permite atuação rápida da proteção, melhorando a confiabilidade da rede evitando que outros geradores acabem saindo por conta da queda um gerador.

Em futuros trabalhos podem ser estudados os efeitos da inclusão de novos critérios de prioridade, bem como a possibilidade de mesclar critérios distintos. Outra possibilidade de estudo é a obtenção automática dos dados de Tempo Médio Entre Falhas – MTBF através do sistema supervisório. Por último, há a possibilidade de adaptar a utilização dos critérios apresentados aqui em sistema que são ilhados em caso de falta na rede elétrica de distribuição, como no caso de sistemas de cogeração.

8. REFERÊNCIAS

- 1. **Gates**, **Gary**, **Shipp**, **David D. e Vilcheck**, **William S.** Electrical Distribution System Analysis for Off-Shore Oil Production Facilities. [ed.] IEEE. *IEEE Transactions on Industry Applications*. Jan/Feb de 2000, Vol. 36, 1, pp. 222-230.
- 2. **Gurski, Carlos Alberto.** *Noções de Confiablidade e Manutenção Industrial.* Curitiba : UnicenP Petrobras, 2002.
- 3. **Lafraia, João Ricardo Barusso.** *Manual de Confiabilidade, Mantenabilidade e Disponibilidade.* 1ª. Rio de Janeiro : Qualitymark, 2001.
- 4. Fast and Adaptive under Frequency Load Shedding and Restoration Technique using Rate of Change of Frequency to Prevent Blackouts. Arulampalam, Atputharajah e Saha, Tapan Kumar. Minneapolis : IEEE, 2010. Power and Energy Society General Meeting. pp. 1-8.
- 5. Method for optimal load shedding in case of generation deficiency in a power system. **Hazarika**, **D. e Sinha**, **A. K.** 6, Great Britain: Elsevier Science Ltd., August de 1998, International Journal of Electrical Power & Energy Systems, Vol. 20, pp. 411-420.
- 6. **Laghari, J.A., et al.** Application of computational intelligence techniques for load shedding in power systems: A review. *Energy Conversion and Management*. November de 2013, Vol. 75, pp. 130-140.
- 7. **Momoh**, **J.A.**, **Zhu**, **J.Z. e Kaddah**, **S.S.** Optimal load shedding study of naval-ship power system using the Everett optimization technique. *Electric Power Systems Research*. 28 de January de 2002, Vol. 60, 6, pp. 145-152.
- 8. **Tang, Junjie, et al.** Adaptive Load Shedding Based on Combined Frequency and Voltage Stability Assessment Using Synchrophasor Measurements. *IEEE TRANSACTIONS ON POWER SYSTEMS.* maio de 2013, Vol. 28, 2, pp. 2035-2047.
- 9. An Intelligent Under Frequency Load Shedding Scheme for Islanded Distribution Network. Laghari, J.A., et al. Melaka, Malaysia: s.n., 2012. Power Engineering and Optimization Conference (PEDCO). pp. 40-45.

- 10. **Hsu, Cheng-Ting, Chuang, Hui-Jen e Chen, Chao-Shun.** Adaptive load shedding for an industrial petroleum cogeneration system. [ed.] Elsevier Science Ltd. *Expert Systems with Applications.* October de 2011, Vol. 38, 11, pp. 13967-13974.
- 11. Electrical installation on FPSO's basic rules. Tastet, Jacques, Marchais, Sylvain e Angays, P. Barcelona : IEEE, 2009. PCIC Europe, 2009. PCIC EUROPE '09. Conference Record. pp. 44-49.
- 12. **Narayanaswamy, Vedachalam.** Review of challenges in reliable electric power delivery to remote deep water enhanced oil recovery systems. *Applied Ocean Research.* October de 2013, pp. 53-67.

9. ANEXO

9.1. CÓDIGO EM MATLAB

```
function varargout = ModeloLoadShedding(varargin)
% MODELOLOADSHEDDING MATLAB code for ModeloLoadShedding.fig
      MODELOLOADSHEDDING, by itself, creates a new MODELOLOADSHEDDING or
raises the existing
      singleton*.
       H = MODELOLOADSHEDDING returns the handle to a new
MODELOLOADSHEDDING or the handle to
       the existing singleton*.
       MODELOLOADSHEDDING('CALLBACK', hObject, eventData, handles,...) calls
the local
       function named CALLBACK in MODELOLOADSHEDDING.M with the given input
arguments.
응
       MODELOLOADSHEDDING('Property', 'Value',...) creates a new
MODELOLOADSHEDDING or raises the
       existing singleton*. Starting from the left, property value pairs
are
응
       applied to the GUI before ModeloLoadShedding OpeningFcn gets called.
An
       unrecognized property name or invalid value makes property
application
       stop. All inputs are passed to ModeloLoadShedding OpeningFcn via
varargin.
       *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
       instance to run (singleton)".
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help ModeloLoadShedding
% Last Modified by GUIDE v2.5 01-Dec-2014 01:30:21
% Begin initialization code - DO NOT EDIT
gui Singleton = 1;
gui State = struct('gui Name',
                                     mfilename, ...
                   'gui_Singleton', gui_Singleton, ...
                   'gui_OpeningFcn', @ModeloLoadShedding_OpeningFcn, ...
                   'gui_OutputFcn', @ModeloLoadShedding_OutputFcn, ...
                   'gui_LayoutFcn', [] , ...
                   'gui_Callback',
                                     []);
if nargin && ischar(varargin{1})
    gui State.gui Callback = str2func(varargin{1});
end
if nargout
    [varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});
else
    gui mainfcn(gui State, varargin{:});
end
% End initialization code - DO NOT EDIT
```

```
% --- Executes just before ModeloLoadShedding is made visible.
function ModeloLoadShedding OpeningFcn(hObject, eventdata, handles,
varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to ModeloLoadShedding (see VARARGIN)
% Choose default command line output for ModeloLoadShedding
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes ModeloLoadShedding wait for user response (see UIRESUME)
% uiwait (handles.figure1);
clear all
clc
% --- Outputs from this function are returned to the command line.
function varargout = ModeloLoadShedding OutputFcn(hObject, eventdata,
handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
%Início do Programa
% --- Executes on button press in import.
function import Callback(hObject, eventdata, handles)
% hObject handle to import (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
obterdados();
% --- Executes during object creation, after setting all properties.
function Cargas CreateFcn(hObject, eventdata, handles)
% hObject handle to Cargas (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
```

```
empty - handles not created until after all CreateFcns called
% handles
% --- Executes when selected cell(s) is changed in Cargas.
function Cargas CellSelectionCallback(hObject, eventdata, handles)
% hObject
           handle to Cargas (see GCBO)
% eventdata structure with the following fields (see UITABLE)
% Indices: row and column indices of the cell(s) currently selecteds
% handles structure with handles and user data (see GUIDATA)
global cargas
set(gcbo, 'Data', cargas);
% --- Executes on button press in calcular.
function calcular Callback(hObject, eventdata, handles)
% hObject handle to calcular (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
            structure with handles and user data (see GUIDATA)
% handles
global descr MTBF crit prod Load LS cenario cont prior
if dot(Load, Load) > 0
   LS = mathmodel(descr, MTBF, crit, prod, Load, cenario, cont, prior);
end
% --- Executes when selected cell(s) is changed in loadshedding.
function loadshedding CellSelectionCallback(hObject, eventdata, handles)
% hObject
          handle to loadshedding (see GCBO)
% eventdata structure with the following fields (see UITABLE)
  Indices: row and column indices of the cell(s) currently selecteds
% handles structure with handles and user data (see GUIDATA)
global LS
interno = LS;
set(gcbo, 'Data', interno);
% --- Executes during object creation, after setting all properties.
function cenagera CreateFcn(hObject, eventdata, handles)
% hObject handle to cenagera (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: listbox controls usually have a white background on Windows.
       See ISPC and COMPUTER.
global cenario
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
```

```
set(hObject, 'BackgroundColor', 'white');
end
cenario = 0.6;
% --- Executes on selection change in cenagera.
function cenagera Callback (hObject, eventdata, handles)
% hObject handle to cenagera (see GCBO)
\mbox{\%} eventdata \mbox{\ } reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = cellstr(get(hObject,'String')) returns cenagera
contents as cell array
응
         contents{get(hObject,'Value')} returns selected item from cenagera
global cenario
cenario = get(hObject, 'Value') / 10;
% --- Executes during object creation, after setting all properties.
function contingencia_CreateFcn(hObject, eventdata, handles)
% hObject handle to contingencia (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
            empty - handles not created until after all CreateFcns called
% handles
% Hint: popupmenu controls usually have a white background on Windows.
       See ISPC and COMPUTER.
global cont
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
cont = 0.3;
% --- Executes on selection change in contingencia.
function contingencia Callback(hObject, eventdata, handles)
% hObject handle to contingencia (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = cellstr(get(hObject,'String')) returns contingencia
contents as cell array
        contents{get(hObject,'Value')} returns selected item from
contingencia
global cont
if get(hObject, 'Value') == 3
   cont = 0.1;
elseif get(hObject, 'Value') == 2
    cont = 0.3;
end
```

```
% --- Executes on selection change in prioridade.
function prioridade Callback(hObject, eventdata, handles)
% hObject
           handle to prioridade (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = cellstr(get(hObject,'String')) returns prioridade
contents as cell array
        contents{get(hObject,'Value')} returns selected item from
prioridade
global prior
prior = 1;
if get(hObject, 'Value') == 2
    prior = 1;
elseif get(hObject, 'Value') == 3
    prior = 2;
elseif get(hObject, 'Value') == 4
    prior = 3;
end
% --- Executes during object creation, after setting all properties.
function prioridade CreateFcn(hObject, eventdata, handles)
% hObject handle to prioridade (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
        See ISPC and COMPUTER.
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
global prior
prior = 1;
```

```
% --- Executes on button press in limpar.
function limpar_Callback(hObject, eventdata, handles)
% hObject handle to limpar (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global cenario cont prior
clear all
cenario = 0.6;
cont = 0.3;
prior = 1;
```

%Resetar todos os dados - é necessario refazer todas as seleções

```
%Calculo das funções internas do programa
```

```
%Leitura da Planilha de Cargas da Plataforma Utilizada
function obterdados()
global descr cargas MTBF crit prod Load cenario cont prior
[NUM, TXT] = xlsread('Tabela de Carga.xls');
%Retirando as colunas da planilha para formar vetores
%Lendo estado de carregamento
FC = NUM(:,5);
%Identificando cargas em operação
opera = find(FC > 0);
%Vetor com a descrição dos Equipamentos
descr = TXT(2:end, 2);
%Matriz de carga para apresentar na planilha
cargas(:,2:5) = NUM(:,1:4);
cargas = num2cell(cargas);
cargas(:,1) = descr;
%Matriz com os valores em operação
cargas = cargas(opera,:);
descr = descr(opera);
%Vetor contendo os valores de MTBF associados
%MTBF = Mean Time Between Fail
MTBF = NUM(opera,1);
%Vetor contendo os valores de criticidade associados
crit = NUM(opera,2);
%Vetor de priodidade para produção
prod = NUM(opera,3);
%Vetor de carga (Potência)
Load = FC .* NUM(:,4);
```

```
Load = Load(opera);
%Definindo parâmetros padronizados
cenario = 0.6;
cont = 0.3;
prior = 1;
%Modelo matemático para cálculo do Load Shedding
function LoadShed = mathmodel(descr, MTBF, crit, prod, Load, cenario, cont,
prior)
%evitar situações impossíveis onde a geração é menor que a contingência
if cont > cenario
    M = {'Cenário Impossível'};
    LoadShed = M;
elseif cont == cenario
    M = { 'ShutDown' };
    LoadShed = M;
else
    %Normalizar MTBF
    normMTBF = MTBF ./ sqrt(dot(MTBF,MTBF));
    %Normalizar o fator de segurança
    normcrit = crit ./ sqrt(dot(crit,crit));
    %Normalizar o ranking de prioridade da produção
    normprod = prod ./ sqrt(dot(prod,prod));
    %Normalizar carga para contas
    normcarga = Load ./ sqrt(dot(Load, Load));
    %Associar uma dimensão para a falta selecionada em função do cenario
    falta = cont / cenario;
    %Recalcular a falta como um percentual para o range de faltas possíveis
    %A menor falta é 0.1 e a maior é 0.75
    falta = (falta - 0.1)/0.65;
    %calculo do fator de ordenação
    %Introdução de um fator que representa uma curva que inverte o sinal do
    %fator relacionado à carga para que contingências pequenas priorizem
carqas
    %leves e contingências maiores priorizem cargas maiores
    %Esse fator pode ter seu centro deslocado alterando a constante para o
    %valor desejado. Assim, a constante escolhe o percentual de perda de
    %geração que funcionará como fronteira para que a proporção à carga se
    curva = (0.4 - falta);
```

```
%Calculo dos fatores de ordenação composto pela relação
%contingência/cenário, carga e critério de priorização
critfinal = 2 * normcrit + curva * normcarga;
prodfinal = 2 * normprod + curva * normcarga;
MTBFfinal = 2 * normMTBF + curva * normcarga;
%Associar uma matriz com os Parâmetros calculados
M(:,1) = descr;
M(:,2) = num2cell(Load);
M(:,3) = num2cell(critfinal);
M(:,4) = num2cell(prodfinal);
M(:,5) = num2cell(MTBFfinal);
%Reordenar a lista pela prioridade selecionada
M = sortrows(M, (prior+2));
%Atribuindo a saída
LoadShed(:,1:2) = M(:,1:2);
LoadShed(:,3) = M(:,(prior+2));
%Criar um arquivo do matlab com as variáveis calculadas
%save('LoadShedding');
%Exportando a planilha de LoadShedding para Excel
xlswrite('LoadShedding.xls', LoadShed);
```

end