	<u>lec-36</u>
Defr.	Let X and Y be random variables with conditional
	pdf fx/Y of X given Y. The conditional
	expectation of X given } 1=y s defined as
	E[X Y=y]= Jx fx/y(n/y)dx
	d, -w
	provided (x/y)dx < os
	- A
Theo:	(1) Let X, Y be discrete random variables with
	Det X, Y be discrete random variables with joint pmf f. If Y has finte mean then
	$E[Y] = \sum_{x} E[Y X=n] f_{x}(x)$
	•
2	Let X, Y be random variables with joint pdf f.

2 Let X,Y be random variables with joint pdf f.

If Y has finite mean, then $E[Y] = \int_{a}^{\infty} E[Y \mid X = \pi] f_{X}(\pi) d\pi$

Proof: (1)
$$\sum_{n} E[Y] X = n] f_{x}(n) = \sum_{n} \left(\sum_{y} y f_{Y|x}(y|x)\right) f_{y}(n)$$

$$= \sum_{n} \sum_{y} y f_{x}(n,y)$$

= Zy Zz {(x, y) = Zy fyly) = E[Y]

② HW.				
c. The above	Musrem	is called	"total ex	pe clation
Theren	It expr	we the	act that '	"the
unconditional	average	can be	obtained	by
areraging th	e condition	nal avera	ger,	<u> </u>
They can be	e ned to	calculate	the unco	nditional
expectation	E(x)	from the c	anditional	expectation
e(i); Let y pdf given	Ly be cont	innon he	in. Var.	with joint
			0 < 2 <	7<1
0.00	1			
Find E[X = x	and here	ce calculate	E[Y].
In order -	to calculate. which is	te E[Y])	(=x] we	need to
^ . .			V	-, Y
0 0 0 7	<u> </u>	*	1 7 3	42-6
£x(x	-)	12-6	11/1/	(471)
				
				×
				7
		\/	n = C (05051)
	the above The above Therem unconditional averaging to Expectation e(i): Let x pdf given find E[In order find fy x f(a,y)	The above thorem Theorem It express unconditional average averaging the condition They can be used to expectation $E(x)$ e(): Let X,Y be content pdf given by $f(x,y) = G(x)$ The above thromen Theorem is calculated.	incompany the expression the formal average can be used to calculate expectation $E(x)$ from the coefficient given by $f(z,y) = G(y-x)$; Find $E[Y X=x]$ and here $f(z,y) = f(z,y)$ find $f(z,y) = f(z,y)$ and here $f(z,y) = f(z,y) = f(z,y)$	in the above thurson is called "total extremen" It extremes the fact that inconditional average can be obtained averaging the conditional averages. They can be used to calculate the inconservational expectation $E(x)$ from the conditional e(): Let X,Y be cartinuous ran. Var . pdf given by $f(x,y) = G(y-x); O \le x \le x$ Find $E[Y X=x]$ and hence calculate In order to calculate $E[Y X=x]$ we find $f(x,y)$ which is by define equal.

Note that
$$f_{\chi}(\chi) = \int_{-\infty}^{\infty} f(x,y) dy = \int_{\chi}^{\infty} \frac{1}{2} f(x,$$

$$=\frac{2}{(2-1)^2}\left[\frac{1}{3}-\frac{\alpha}{2}+\frac{2^3}{6}\right]$$

$$=\frac{2}{(2-1)^2}\left[\frac{1}{3}-\frac{\alpha}{2}+\frac{2^3}{6}\right]$$

$$=\frac{2}{(2-1)^2}\left[\frac{1}{3}-\frac{\alpha}{2}+\frac{2^3}{6}\right]$$

$$=\frac{2}{(2-1)^2}\left[\frac{1}{3}-\frac{\alpha}{2}+\frac{2^3}{6}\right]$$

$$=\frac{2}{(2-1)^2}\left[\frac{1}{3}-\frac{\alpha}{2}+\frac{2^3}{6}\right]$$

$$=\frac{2}{(2-1)^2}\left[\frac{1}{3}-\frac{2}{2}+\frac{2^3}{6}\right]$$

$$=\frac{2}{(2-1)^2}\left[\frac{2}{3}-\frac{2}{3}+\frac{2}$$

with joint pmf f. If g is a function, then $E[g(x)|Y=y] = \sum_{x} g(x) f_{x|Y}(x|y),$ provided $\sum_{x} |g(x)| f_{x|Y}(x|y) < x$ $f_{x}(x)|Y=y| = \sum_{x} g(x) f_{x|Y}(x|y) < x$ $f_{x}(x)|Y=y| = \int_{x} g(x) f_{x|Y}(x|y) dx,$ $f_{x}(x)|Y=y| = \int_{x} g(x) f_{x|Y}(x|y) dx,$

	Alternate expression for Covariance
	By applying linearity of the expectation,
	(ov (X,Y) = E[XY - E(x)Y - & x E(Y) + E(x)E(Y
	= E(xY) - E(x)E(Y) - E(x)E(Y) + E(x)E(Y)
	+ £(x) E(x)
	- E(xY)- E(x)E(Y).
Inde	pendence & Covaniance: If X and Y are independent
	then $E(xY) = E(x)E(Y)$.
	-i. $(av(x,Y)=0$
	But the converse is NOT true in general.
Examb	(2): lot the inist brothlities of hander
	102: Let the joint probabilities of random variables X and Y are given by;
XX	-1 0 1
-1	0 4 0 Then x and y are
0	ty 0 /4 identically distributed
1	Then x and y are identically distributed of to o and x has the following pmf.
	,
	P(x=-1) = P(x=1) = 1 and P(x=0)=1

E[X] = E[Y] = 0 (Check).

furthermore, random von. XY takes value
$$\begin{cases}
-1,0,1 & \text{with the prof} \\
P(XY=1)=0=P(XY=-1) & \text{and } P(XY=0)=1 \\
\vdots & E(XY)=0 \Rightarrow (ax(X,Y)=E(XY)-E(X)E(Y) \\
=0-0x0 \\
=0
\end{cases}$$
However, X and Y are not independent since
$$P(X=-1, Y=-1)=0 \text{ for } P(X=-1) \times P(Y=-1)=\frac{1}{16}$$