Deskriptive Statistik

Merkmalsträger

Qualitativ/Kategoriell

Nominal: Parteien

Ordinal: Prüfungresultat schlecht, mittel, gut

Quantitativ/Metrisch

• Diskret: Würfel 1-6, Anzahl (es gibt Lücken)

• Stetig: Geschwindigkeit

Verteilungsfunktionen

PMF distrekte Merkmale

PDF stetige Merkmale

CDF kumulative Verteilungsfunktion

Klasse	[100,200[[200,400[
hi	5 15		
fi	5/20	15/20	
PDF	5/20/100	15/20/200	
CDF	5/20	20/20	

Durchschnitt

= \bar{x} , arithmetisches Mittel, Mittelwert, Erwartungswert = fi * klassenmitte_i

q-Quantil mit n Stichproben

lst $n \cdot q$ ganze Zahl dann $R_q = rac{1}{2}(x_{n \cdot q} + x_{n \cdot q + 1})$

Sonst $R_q = x_{\lceil n \cdot q \rceil}$

0.5-Quantil = 2. Quantil, Medianwert, Zentralwert, $x_{\rm med}$

Quantile aus CDF: $\frac{a+b}{2}$

$$R_{q}=\frac{b-a}{F\left(a\right)-F\left(b\right)}\cdot\left(q-F\left(a-1\right)\right)+a$$

$$q = F\left(a - 1\right) + rac{R_q \cdot \left(F\left(a\right) - F\left(a - 1
ight)
ight)}{b - a}$$

Boxplot

Box: 1., 2. und 3. Quantil

Whisker: Maximal 1.5 x Interquartilsabstand entwernt von Q1/Q3

Ausreisser: alle Ausserhalb Whisker

Modalwert / Modus / $x_{ m mod}$

= Der Wert der am häufigsten vorkommt

Varianz

x=stichproben, a=merkmalwerte

$$ilde{s}^2 = rac{1}{n} \sum_{i=1}^n \left(x_i - ar{x}
ight)^2 = rac{1}{n} \sum_{i=1}^m h_i \cdot \left(a_i - ar{x}
ight)^2 = \left(rac{1}{n} \sum_{i=1}^n x_i^2
ight) - ar{x}^2 = \left(rac{1}{n} \sum_{i=1}^m a_i^2 \cdot h_i
ight) - ar{x}^2 = \left(\sum_{i=1}^m a_i^2 \cdot f_i
ight) - ar{x}^2 = ar{x}^2 - ar{x}^2$$

$$s^2 = rac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2 = rac{n}{1-n} ilde{s}^2$$

Standardabweichung

$$\tilde{s} = \sqrt{\tilde{s}^2}$$

Form der Verteilung

• Rechtsschief: $x_{
m mod} < x_{
m med} < ilde{x}$ = Maximum auf linker Seite

ullet Linksschief: $x_{
m mod}>x_{
m med}> ilde{x}$

• Symmetrisch: $x_{ ext{mod}} = x_{ ext{med}} = ilde{x}$

unimodal = 1 Maximum, bimodal = 2 Maxima etc.

Bivariate Daten

· Zwei Kategorien: Mosaikplot

• 1 Kategorie, 1 Metrisch: Boxplot

2 Metrisch: Scatterplot

Pearson-Korrelationskoeffizient

$$ilde{s}_{xy} = rac{1}{n} \sum_{i=1}^{n} \left(x_i - ar{x}
ight) \left(y_i - ar{y}
ight) = ar{xy} - ar{x} \cdot ar{y}$$

$$r_{xy} = \frac{\tilde{s}_{xy}}{\tilde{s}_x \cdot \tilde{s}_y} = \frac{\bar{xy} - \bar{x} \cdot \bar{y}}{\sqrt{\bar{x^2} - \bar{x}^2} \cdot \sqrt{\bar{y^2} - \bar{y}^2}}$$

Nahe bei 1 = hohe Korrelation

Х	1	2	1.5
у	4	-1	1.5

X	1	2	1.5
x2	1	4	2.25
y2	16	1	2.25
ху	4	-2	2.25

Spearman-Rangkorrelationskoeffizient

Х	5	2	
у	9	11	
rgx	2	1	1.5
rgy	1	2	1.5
rgx - avg rgx	0.5	-0.5	
rgy - avg rgy	-0.5	0.5	

$$R_{\mathrm{Sp}} = \frac{\sum_{i=1}^{n} \left(rg\left(x_{i}\right) - rg\bar{\left(}x\right)\right) \left(rg\left(y_{i}\right) - rg\bar{\left(}y\right)\right)}{\sqrt{\sum_{i=1}^{n} \left(rg\left(x_{i}\right) - rg\bar{\left(}x\right)\right)^{2}} \cdot \sqrt{\sum_{i=1}^{n} \left(rg\left(y_{i}\right) - rg\bar{\left(}y\right)\right)^{2}}}$$

Kombinatorik

$$\binom{n}{k} = \frac{n!}{(n-k)! \cdot k!}$$

$$\binom{n}{0} = 1$$

Variation (mit Reihenfolge)		Kombination (ohne Reihenfolge)		
Mit Wiederholung Ohne Wiederholung		Mit Wiederholung Ohne Wiederholung		
n^k	$\frac{n!}{(n-k)!}$	$\binom{n+k-1}{k}$	$\binom{n}{k}$	

- 1. Nummerncode
- 2. Platzierung Wettkampf
- 3. x objekte aus y schalen
- 4. x zahlen im lotto ziehen

k	Teilmengen mit k Elementen	Anzahl
0	{} «leere Menge»	$\binom{4}{0} = 1$
1	{1},{2},{3},{4}	$\binom{4}{1} = 4$
2	{1,2},{1,3}, {1,4} {2,3},{2,4},{3,4}	$\binom{4}{2} = 6$
3	{1,2,3},{1,2,4},{1,3,4},{2,3,4}	$\binom{4}{3} = 4$
4	{1,2,3,4}	$\binom{4}{4} = 1$

Elementare Wahrscheinlichkeit

- $E(X) = \mu$ (Lagemass)
- $V(X) = \sigma^2$ (Streumass)
- $S(X) = \sigma$

Bedingte Wahrscheinlichkeit

	Χ	Υ	Summe
Α	2	4	6
В	3	1	4
Summe	5	5	10

Ereignisbaum

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

2 Ereignisse sind stochastisch unabhängig wenn gilt:

$$P(X = x \wedge Y = y) = P(X = x) \cdot P(Y = y)$$

Bei 3 Ereignissen müssen alle Teilmengen unabhängig sein. Für stochastisch unabhängige Ereignisse gilt:

$$E(X \cdot Y) = E(X) \cdot E(Y)$$

und

$$V\left(X+Y\right)=V\left(X\right)+V\left(Y\right)$$

Z.b. P(X&A) = 2/10. P(X) = 1/2. P(A) = 6/10. nein.

Verteilungen

	diskrete Zufallsvariablen	stetige Zufallsvariablen	
Dichtefunktion / PMF bzw. PDF	f(x) = P(X = x)	$f(x) = F'(x) \neq P(X = x)!!!$	
Kumulative Vertei- lungsfunktion/ CDF	$F(x) = P(X \le x) = \sum_{x \le X} f(x)$	$F(x) = P(X \le x) = \int_{-\infty}^{x} f(u) du$	
Wahrscheinlichkeiten	$P(a \le X \le b) = \sum_{a \le x \le b} f(x)$	$P(a \le X \le b) = \int_{a}^{b} f(x)dx$	
Graphische Darstellung von f	Stabdiagramm	Graph	
Erwartungswert	$E(X) = \sum_{x \in \mathbb{R}} f(x) \cdot x$	$E(X) = \int_{-\infty}^{\infty} f(x) \cdot x dx$	
Varianz	$V(X) = \sum_{x \in \mathbb{R}} f(x) \cdot (x - E(X))^2$	$V(X) = \int_{-\infty}^{\infty} f(x) \cdot (x - E(X))^2 dx$	

Für diskrete und stetige Zufallsvariablen X und Y gelten die folgenden Regeln:

(1) Linearität des Erwartungswertes:

$$E(X + Y) = E(X) + E(Y)$$
 und $E(\alpha X) = \alpha E(X)$ mit $\alpha \in \mathbb{R}$.

- (2) Verschiebungssatz für die Varianz: $V(X) = E(X^2) (E(X))^2$ mit $E(X^2) = \int_{-\infty}^{\infty} f(x) \cdot x^2 dx$
- (3) $V(\alpha X + \beta) = \alpha^2 \cdot V(X) \text{ mit } \alpha, \beta \in \mathbb{R}.$
- (4) Sind X und Y unkorreliert (COV(X, Y) = 0), so gilt: V(X + Y) = V(X) + V(Y).

$$E(Z) = 2E(X) + E(Y), Z = 2X+YV(Z) = 4V(X) +$$

V(Y)

Hypergeometrische Verteilung

Es gibt M Merkmalsträger in N, x Merkmalsträger in n Stichproben ohne zurücklegen

$$P\left(X=x
ight)=rac{inom{M}{x}\cdotinom{N-M}{n-x}}{inom{N}{n}}$$

$$E\left(X
ight) =n\cdot rac{M}{N}$$

$$VAR\left(X
ight) = n\cdotrac{M}{N}\cdot\left(1-rac{M}{N}
ight)\cdotrac{N-n}{N-1}$$

Bernoulliverteilung

•
$$P(X = 1) = p, P(X = 0) = q$$

•
$$E(X^2) = p1 + q0 = p$$

•
$$V(X) = pq$$

Binomialverteilung

P(X = 1) tritt x-Mal ein bei n Wiederholungen mit zurücklegen. zb 3x Kopf

$$\binom{n}{x} \cdot p^x \cdot q^{n-x}$$

Poissonverteilung

Wahrscheinlichkeit dass Ereignis in einem Intervall i x-Mal vorkommt. Einheit von λ ist in Ereignisse/i

$$P\left(X=x
ight)=rac{\lambda^{x}}{x!}\cdot e^{-\lambda}, \lambda>0$$

Annäherung der Binominalverteilung: $\lambda = n \cdot p$

$$E(X) = VAR(X) = Iambda$$

Gaussverteilung

$$arphi\left(\mu,\sigma
ight)=rac{1}{2\pi\cdot\sigma}\cdot e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^{2}}$$

$$E(X) = \mu$$

$$V(X) = \sigma^2$$

Normalverteilung

$$=\varphi(0,1)$$

Bei der Normalverteilung liegen:

- ca. 68% zwischen $\mu \sigma$ und $\mu + \sigma$
- ca. 95% zwischen $\mu-2\sigma$ und $\mu+2\sigma$
- ca. 99.7% zwischen $\mu 3\sigma$ und $\mu + 3\sigma$

$$U = \frac{X - \mu}{\sigma}$$

$$P(X \leqslant x) = P(U \leqslant u)$$

$$P\left(\mu-e\leqslant X\leqslant \mu+e
ight)=2*\phi\left(rac{e}{\sigma}
ight)-1$$

Zentraler Grenzwertsatz

Eine Grösse ist näherungsweise normalverteilt, wenn sie von einer Überlagerung von vielen unabhängigen zufälligen Einflüssen abhängt.

Annäherung der Binominalverteilung: $\mu=np$ und $\sigma^2=npq$ wenn npq>9

Stetigkeitskorrektur: P(5 < X <= 10) = P(5.5 <= X <= 10.5)

Annäherung der Poissonverteilung: $\mu = \lambda$ und $\sigma^2 = \lambda$

Methode der kleinsten Quadrate

Zusammenfassung Regressionsgerade:

Die Regressionsgerade g(x)=mx+d mit den Parametern m und d ist die Gerade, für die die Residualvarianz $\tilde{s}_\epsilon^{\ 2}$ minimal ist.

Die Regressionsgerade hat die Steigung

$$m = \frac{\tilde{s}_{xy}}{\tilde{s}_{x}^{2}}$$

und den y-Achsenabschnitt

$$d = \bar{y} - m\bar{x}$$

Für die zugehörige (minimale) Residualvarianz gilt:

$$\tilde{s}_{\epsilon}^{2} = \tilde{s}_{y}^{2} - \frac{\tilde{s}_{xy}^{2}}{\tilde{s}_{x}^{2}}$$

mit:

 $Varianz der x_i$ -Werte

$$\tilde{s}_{x}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}\right) - \overline{x}^{2}$$

Varianz. der y_i -Werte

$$\tilde{s}_y^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \overline{y})^2 = \left(\frac{1}{n} \sum_{i=1}^n {y_i}^2\right) - \overline{y}^2$$

Kovarianz

$$\tilde{s}_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y}) = \left(\frac{1}{n} \sum_{i=1}^{n} x_i y_i\right) - \overline{x} \cdot \overline{y}$$

arithmetische Mittelwerte

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \text{ und } \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

(in y richtung)

Nichtlineares Verhalten

Statt mit den originalen Werten kann z.B. mit dem Logarithmus der Werte gerechnet werden:

Ausgangsfunktion	Transformation		
$y = q \cdot x^m$	$\log(y) = \log(q) + m \cdot \log(x)$		
$y = q \cdot m^x$	$\log(y) = \log(q) + \log(m) \cdot x$		
$y = q \cdot e^{m \cdot x}$	$\ln(y) = \ln(q) + m \cdot x$		
$y = \frac{1}{q + m \cdot x}$	$V = q + m \cdot x; V = \frac{1}{y}$		
$y = q + m \cdot \ln(x)$	$y = q + m \cdot U; U = \ln(x)$		
$y = \frac{1}{q \cdot m^x}$	$\log\left(\frac{1}{y}\right) = \log(q) + \log(m) \cdot x$		

Residuenplot

$$\epsilon_i = y_i - \hat{y}_i$$

$$\hat{y}_i = g\left(x_i\right) = mx_i + d$$

Bestimmtheitsmass

Zusammenfassung Bestimmtheitsmass:

Die Totale Varianz setzt sich zusammen aus der Residualvarianz und der Varianz der prognostizierten Werte:

$$\tilde{s}_y^2 = \tilde{s}_\epsilon^2 + \tilde{s}_y^2$$
 bzw. $s_y^2 = s_\epsilon^2 + s_{\hat{y}}^2$

Das Bestimmtheitsmass R^2 beurteilt die globale Anpassungsgüte einer Regression über den Anteil der prognostizierten (erklärten) Varianz $s_{\hat{y}}^2$ an der totalen Varianz s_y^2 :

$$R^2 = \frac{\tilde{s}_{\hat{y}}^2}{\tilde{s}_y^2}$$
 bzw. $R^2 = \frac{s_{\hat{y}}^2}{s_y^2}$

Das Bestimmtheitsmass \mathbb{R}^2 stimmt überein mit dem Quadrat des Korrelationskoeffizienten (nach Bravais-Pearson)

$$R^2 = \frac{\tilde{s}_{xy}^2}{\tilde{s}_x^2 \tilde{s}_y^2} = r_{xy}^2$$
 bzw. $R^2 = \frac{s_{xy}^2}{s_x^2 s_y^2} = r_{xy}^2$

R^2 % der Gesamtvarianz in den y-Daten kann durch die Regressionsgerade erklärt werden

Mehrere Variablen

Gegeben sind:

Messwerte der Kategorie C:
$$y = \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix}$$

Andere Kategorien:
$$X = egin{pmatrix} A_1 & B_1 & 1 \ \dots & \dots & 1 \ A_n & B_n & 1 \end{pmatrix}$$

Lösbar mit
$$p = \left(X^TX\right)^{-1}X^Ty$$
 für $y = Xp + \epsilon$

$$\hat{y} = b_1 x_1 + b_2 x_2 + a$$

$$R^2 = rac{\Sigmaig(\hat{y}_i - ar{y}ig)^2}{\Sigmaig(y_i - ar{y}ig)^2}$$

Parameter- und Intervallschätzung

Schätzungen für $\hat{\theta}$

$$\hat{\mu} = ar{x}$$
 oder $x_{
m med}$

$$\hat{\sigma}^2 = s^2$$

$$\hat{p}=fi=rac{M}{N}$$
 bei M Merkmalsträgern in M

Maximum-Likelihood-Schätzung

Für Normalverteilung: $\hat{\mu} = \bar{x}$ und $\hat{\sigma}^2 = \tilde{s}^2$

Für Poissonverteilung: $\lambda = \frac{1}{\bar{x}}$

Vertrauensintervalle

Für Vertrauensintervall $P(\Theta_u \leqslant \theta \leqslant \Theta_o) = y$

$$\phi\left(c
ight)=rac{1+y}{2}$$

$$e = c \cdot \frac{\sigma}{\sqrt{n}}$$

$$\Theta_u = ar{X} - e$$
 und $\Theta_o = ar{X} + e$

 $P(\bar{x} \text{ max um a abweicht})$

$$X \sim N\left(\mu,\sigma
ight)
ightarrow ar{X} \sim N\left(\mu,rac{\sigma}{\sqrt{n}}
ight) P\left(-a \leqslant ar{x} - \mu \leqslant +a
ight) = P\left(-rac{a}{rac{\sigma}{\sqrt{n}}} \leqslant rac{ar{x} - \mu}{rac{\sigma}{\sqrt{n}}} \leqslant rac{a}{rac{\sigma}{\sqrt{n}}}
ight) = \phi\left(?
ight) - \phi\left(-?
ight) = ?? - (1 - ??)$$

Weitere Verteilungen

t-verteilung: bei unbekannter varianz → s^2 der stichprobe

- E(T) = 0
- Var(t) = n / (n 2)
- t(n, a) = -t(n, 1-a)

 χ 2-Verteilung: σ schätzen

- chi(n) n = anzahl frei veränderbarer parameter
- n zufallsvars → summe der quadrierten zsv

Die χ 2-Verteilung findet Anwendung, wenn man die *empirische Varianz bestimmt* hat und die Schätzung des Vertrauensintervalls ermitteln möchte, das den (unbekannten) Wert der Varianz der Grundgesamtheit mit einer gewissen Wahrscheinlichkeit einschliesst.

Übersicht über verschiedene Vertrauensintervalle zum Niveau γ

	(1) Verteilung der Grundgesamtheit	(2) Param.	(3) Schätzfunktionen	(4) zugehörige standardisierte Zufallsvariable	(5) Verteilung und benötigte Quantile	(6) Zufallsvariablen für Intervallgrenzen
1	Normalverteilung (Varianz σ^2 bekannt)	μ	$\bar{X} = \frac{1}{n} \cdot \sum_{i=1}^{n} X_i$	$U = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$	Standardnormalverteilung (Tabelle 2) $c = u_p \text{ mit } p = \frac{1+\gamma}{2}$	$\Theta_u = \bar{X} - c \cdot \frac{\sigma}{\sqrt{n}}$ $\Theta_o = \bar{X} + c \cdot \frac{\sigma}{\sqrt{n}}$
2	Normalverteilung (Varianz σ^2 unbekannt und $n \leq 30$; sonst Fall 1 mit s als Schätzwert für σ)	μ	$\bar{X} = \frac{1}{n} \cdot \sum_{i=1}^{n} X_{i}$ $S^{2} = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$	$T = \frac{\bar{X} - \mu}{S/\sqrt{n}}$	t-Verteilung (Tabelle 4) mit $f = n - 1$ $c = t_{(p;f)}$ mit $p = \frac{1+\gamma}{2}$	$\Theta_u = \bar{X} - c \cdot \frac{S}{\sqrt{n}}$ $\Theta_o = \bar{X} + c \cdot \frac{S}{\sqrt{n}}$
3	Normalverteilung	σ^2	$\bar{X} = \frac{1}{1} \cdot \sum_{i} X_{i}$	$Z = (n-1)\frac{S^2}{\sigma^2}$	Chi-Quadrat-Verteilung (Tabelle 3) mit $f = n - 1$ $c_1 = z_{(p_1;f)} \text{ mit } p_1 = \frac{1-\gamma}{2}$ $c_2 = z_{(p_2;f)} \text{ mit } p_2 = \frac{1+\gamma}{2}$	$\Theta_u = \frac{(n-1) \cdot S^2}{c_2}$ $\Theta_o = \frac{(n-1) \cdot S^2}{c_1}$
4	Bernoulli- Verteilung Anteilsschätzung (mit $n\hat{p}(1-\hat{p}) >$ 9)	р	n		Standardnormalverteilung (näherungsweise), Tabelle 2	$\Theta_{u} = \bar{X} - c \cdot \sqrt{\frac{\bar{X} \cdot (1 - \bar{X})}{n}}$ $\Theta_{o} = \bar{X} + c \cdot \sqrt{\frac{\bar{X} \cdot (1 - \bar{X})}{n}}$
5	beliebig mit $n > 30$	μ, σ^2	wie im Fall 1 (gegebenenfalls mit s als Schätzwert für σ) bzw. im Fall 3			