Bachelorarbeit

Erzeugung von Bildern mittels Neuronalen Netzen

Stefan Berger Medieninformatik Matrikel-Nr. 854184

Berlin, 6. April 2021

Betreut von Prof. Dr. F. Gers

Zusammenfassung

Im Experiment und im Inhalt dieser Bachelorarbeit werden die	e Fragen
1	
2	

_.

beantwortet.

Inhaltsverzeichnis

ı	Eini	leitung	I
	1.1	Motivation	1
	1.2	Ziel der Arbeit	1
	1.3	Vorherige Arbeiten	1
2	Ent	wicklungsumgebung	3
	2.1	Ubuntu Linux	3
	2.2	Python	3
	2.3	Tensorflow	3
	2.4	CUDA	3
3	Neu	ıronale Netze	4
	3.1	Logistic Regression	4
	3.2	Deep Neural Networks	4
	3.3	Convolutional Neural Networks	4
	3.4	Neural Style Transfer	4
4	Dur	chführung des Experiments	5
	4.1	Vorbereitung der Eingabedaten	5
	4.2	Anwendung herkömmlicher Shader	5
	4.3	Hyperparameter	5
	4.4	Performancebeobachtungen	5
	4.5	Zusammenfassung	5
Bi	ldna	chweis	7
ΑĿ	kürz	zungs- und Symbolverzeichnis	9
Αb	bild	ungsverzeichnis	11
Ta	belle	enverzeichnis	13

1 Einleitung

1.1 Motivation

Text

1.2 Ziel der Arbeit

Text

1.3 Vorherige Arbeiten

2 Entwicklungsumgebung

- 2.1 Ubuntu Linux
- 2.2 Python
- 2.3 Tensorflow
- **2.4 CUDA**

- 3 Neuronale Netze
- 3.1 Logistic Regression
- 3.2 Deep Neural Networks
- 3.3 Convolutional Neural Networks
- 3.4 Neural Style Transfer

4 Durchführung des Experiments

- 4.1 Vorbereitung der Eingabedaten
- 4.2 Anwendung herkömmlicher Shader
- 4.3 Hyperparameter
- 4.4 Performancebeobachtungen
- 4.5 Zusammenfassung

Bildnachweis

??: The Metropolitan Museum of Art, https://www.metmuseum.org/art/collection/search/202901, (CC0 1.0)

Abkürzungs- und Symbolverzeichnis

Abkürzungen

AC Air Compressor, Luftverdichter APH Air Preheater, Luftvorwärmer

CC Combustion Chamber, Brennkammer

EXP Expander

HRSG Heat Recovery Steam Generator, Abhitzekessel

Lateinische Symbole

c Spezifische Kosten je Exergieeinheit, \in / J_{ex}

 \dot{C} Kostenstrom, \in /h

CC Kapitalgebundene Kosten, €

cf Capacity Factor, Jährliche Auslastung, –

e Spezifische Exergie, J/kg

ē Spezifisch molare Exergie, J/mol

 \dot{E} Exergiestrom, W

f Exergoökonomischer Faktor, − fc Spezifische Brennstoffkosten, €/J

FC Brennstoffkosten, €

h Spezifische Enthalpie, J/kg

 \dot{H} Enthalpiestrom, W HHV Brennwert, J/kg

Griechische Symbole

Δ Differenz

 ε Exergetischer Wirkungsgrad, – η_s Isentroper Wirkungsgrad, – Isentropenexponenten, –

 λ Luftzahl, –

Hoch- und tiefgestelle Indizes

0 Referenzpunkt, Thermodynamische Umgebung

a Avarage, Mittlere

D Destruction, Vernichtung
F Fuel, Brennstoff, Aufwand

net Netto

Abbildungsverzeichnis

Tabellenverzeichnis

Anhang