

PROGRAMA DE CURSO

Código	Nombre				
MA4401	Proces	Procesos de Markov			
Nombre en	Inglés				
Markov pro	cesses				
SCT		Unidades	Horas de	Horas Docencia	Horas de Trabajo
301		Docentes	Cátedra	Auxiliar	Personal
6		10	3	2	5
Requisitos			Carácter del Curso		
MA3401 Probabilidades, (MA3802 Teoría de la			Obligatorio Licenciatura		
Medida/Autor)					
Resultados de Aprendizaje					

El alumno conoce y aplica los conceptos básicos de la teoría de cadenas de Markov y la teoría de renovación, la clasificación de cadenas, los teoremas límites y los modelos básicos: procesos de nacimiento y muerte, procesos de ramificación y modelos de la teoría de colas. El estudiante sabe usar tiempos aleatorios y puede modelar fenómenos en telecomunicaciones, genética, procesos de origen industrial, entre otros.

Metodología Docente	Evaluación General
Clases de cátedra expositivas.	2 ó 3 controles parciales y un examen final.
Clases auxiliares: exposición de problemas y	Es deseable que existan tareas para
resolución de problemas guiados.	complementar la evaluación.

Resumen de Unidades Temáticas

Número	Nombre de la Unidad	Duración en
		Semanas
1	Cadenas de Markov tiempo discreto	6,5
2	Procesos de Renovación	3,0
3	Acoplamiento	1,5
4	Cadenas de Markov tiempo continuo	4,0
	TOTAL	15,0

Unidades Temáticas

Número	Nombre de la Unidad Dura		Dura	Ouración en Semanas	
1	Cadenas de Marl	kov en tiempo discreto.	6,5		
Contenidos		Resultados de Aprendizajes de la Unidad		Referencias a la Bibliografía	
Contenidos Cadenas de Markov en tiempo discreto. Definiciones. Matriz de transición. Representación canónica. Tiempos de parada y propiedad markoviana fuerte.		El estudiante conoce la propied Markoviana y la estudia con tiempos de parada, la clasificad de cadenas, los teoremas límit los principales ejemplos: nacimiento y muerte, ramificad	ción es y	Capítulos 2 y 3 S. Karlin, H. Taylor, Capítulo 4 S. Ross, Capítulo I de S. Asmussen Capítulo XV y XVI W. Feller.	

Número	Nombre de la Unidad		Duración en Semanas	
2	Procesos	de Renovación	3,0	
Contenidos		Resultados de Aprendizajes de la		Referencias a
,	Contenidos	Unidad		la Bibliografía
Procesos de P	oisson.	El estudiante conoce los mod	elos	Capítulo 3 de
Procesos de R	enovación. Ecuaciones	básicos la teoría de renovación, la		S. Ross,
de renovación. Procesos		ecuación tipo renovación, y	su	Capítulo 5 de
de Renovaciór	n en equilibrio. Teorema	conducta asintótica y model	los	S. Karlin y H.
clave de la renovación y		básicos		Taylor
distribuciones asintóticas. Paradoja				Capítulo XIII
del tiempo de parada. Ejemplo:				W. Feller.
Procesos de renovación con				
recompensa				

Número	Nombre de la Unidad Dura		Dura	Duración en Semanas	
3	Acoplamiento			1,5	
Contenidos		Resultados de Aprendizajes de la		Referencias a	
	20.11.01.11.00	Unidad		la Bibliografía	
Acoplamient	o. Convergencia	El estudiante conoce técnicas		Capítulo 8 de	
geométrica de cadenas finitas.		de acoplamiento. Desarrolla		S. Ross.	
Teorema clave de la renovación caso		ideas intuitivas sobre esta			
discreto		técnica y las aplicaciones en			
		cadenas de Markov			

Número			ración en Semanas	
4	Cadenas de Markov a tiempo continuo		4,0	
	Contenidos	Resultados de Aprendizajes de la		Referencias a
•	Contenidos	Unidad		la Bibliografía
Cadenas de M	arkov a tiempo	El estudiante conoce la modela	ación	Capítulos 5 de
continuo. Gen	erador. Ecuaciones	en tiempo continuo: el rol de la		S. Ross,
backward y forward.		distribución exponencial, el		Capítulo 4 de
Construcción	y condiciones de no-	fenómeno de explosión, los		S. Karlin y H.
explosión. Procesos de nacimiento y		principales ejemplos; y modela	1	Taylor,
muerte y		teoría de colas.		Capítulo 2 de
procesos de ramificación.				S. Asumssen,
Ejemplos: teoría de colas M/M/s,				Capítulo XVII
M/G/1, G/M/1.				W. Feller.

Bibliografía

- Asmussen S., Applied Probability and Queues. Wiley (1987).
- Brémaud P., Markov Chains, Gibbs Fields, Monte Carlo Simulation, and Queues. Springer-Verlag (1999).
- Chow S. y Teicher H., Probability Theory. Independence, Interchangeability, Martingales. Springer-Verlag (1978).
- Chung K., Markow Chains with Stationary Transition Probabilities. Springer-Verlag (1980).
- Feller W., An Introduction to Probability Theory and its Applications. Wiley. Vol. 1 (1966), Vol 2 (1971).
- Karlin S. y Taylor H., A First Course in Stochastic Processes. Academic Press (1975).
- Norris J. R., Markov Chains. Cambridge University Press (1997).
- Ross S., Stochastic Processes, Wiley (1983).

Vigencia desde:	Otoño 2019
Revisado por:	Daniel Remenik (Jefe Docente)