DLP_LAB4 309553012 黃建洲

1. Introduction

這次作業讓我們分別嘗試了resnet網路的手刻架構以及使用pytorch的內建函式 建立model。並調整hyper parameter來對兩個model分別測試出不同的結果,整 理成圖表以及分析confusion matrix。

2. Experiment Setup

a. The detail of your model(ResNet)

手刻ResNet的部分, 參照網路上的範例以及spec給予的參考資料

(1) 首先分別定義18 layers版本以及50 layers版本的block。 basic block(for 18 layers):

Bottleneck block(for 50 layers):

(2) 定義網路架構, 依照參考資料定義初始的幾層conv, activation, pooling和batch normalization層後, 根據網路參數將數個block定義為一個layer, 並且根據input output size的不同決定是否要在 residual的部分進行downsampling。

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer
conv1	112×112	7×7, 64, stride 2				
conv2_x	56×56	3×3 max pool, stride 2				
		$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$
conv3_x	28×28	$\left[\begin{array}{c} 3\times3,128\\ 3\times3,128 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,128\\ 3\times3,128 \end{array}\right]\times4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	\[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array} \] \times 23	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$
	1×1	average pool, 1000-d fc, softmax				
FLOPs		1.8×10^{9}	3.6×10^{9}	3.8×10^{9}	7.6×10^{9}	11.3×10^{9}

The overall architecture for all network

Pretrained ResNet的部分則從torchvision下載網路架構以及 pretrain好的參數後,根據api提供的layer名稱一層一層重新定義並 forward, 並且在最後的fully connected layer要重新定義output classes, 以符合我們最後要分類的種類數量。

b. The detail of your data loader Dataloader則根據test和train有不同的做法。test dataset由於不需要transform操作,因此直接根據csv給予的檔名以及路徑將圖片load進來之後,給予label值並回傳。

Train dataset則需要從torchvision中的transform函式庫 先定義好需要的data augmentation方式,我使用的為水 平與垂直翻轉的操作,總共應會讓一張圖片增強為4張 圖片的量。最後同test dataset的處理方式,將增強後的 資料與label一併回傳。

c. Describe your evaluation through the confusion matrix

3. Experiment Result

a. The highest testing accuracy

b. Comparison Figure

i. test/train accuracy plot(epoch = 0, lr = 0.0001, optimizer = SGD)

ii. confusion matrix

(1) ResNet 18 without pretrain:

(2) ResNet 50 without pretrain:

(3) ResNet 18 with pretrain:

0

3

4

- 0.2

- 0.0

0.5

0.6

2

(4) ResNet 50 with pretrain:

0

i

0.5

0.4

ó

☆ ◆ → **+** Q **=** B

4. Discussion

由於ResNet相較於上一次作業所使用的網路,在深度上增加了非常之多。因此在訓練上所需要使用的時間也大幅增加,以我們所使用的配備以及可用的時間,頂多也只能訓練到幾十個epochs,並且在batch size的使用上也有限制(因GPU的記憶體有限)。參數的配置上,我處理最久的部分是手刻ResNet的參數,在進行訓練時test accuracy都會維持一個定值,我本來推測是因為output出來的值超過crossentropy的範圍,導致在進行分類時產生錯誤。因此我嘗試對resnet的fully connected layer進行改動。但結果並沒有改變,而後我對pretrain的結果以及所有的confusion matrix觀察後發現,test accuracy會卡在同一個數字的原因應該是因為ground truth

中label為0的比率極高,因此即使網路全部都猜0也會有一定的準確率。