一阶线性递推数列通项公式的推导

丁保华

致慧星空工作室

2025年5月3日

一阶线性递推关系式定义

一阶线性递推关系式形如 $a_{n+1} = pa_n + q$ ($p \neq 1, p$ 和 q 是常数)

"一阶":相邻两项间有关联, a_{n+1} 和 a_n

"线性": a_n 的次数为 1

推导通项公式的步骤 - 构造归零形式

构造新数列: $a_{n+1}-k=p(a_n-k)$,确定常数 k 展开并代入原递推式,比较常数项得 $k=\frac{q}{1-p}(p\neq 1)$

推导通项公式的步骤 - 构造等比数列

得到
$$\{a_n - \frac{q}{1-p}\}$$
 是公比为 p 的等比数列
首项为 $a_1 - \frac{q}{1-p}$,通项为 $\left(a_1 - \frac{q}{1-p}\right)p^{n-1}$

推导通项公式的步骤 - 求出原数列通项

$$a_n = \left(a_1 - \frac{q}{1-p}\right) p^{n-1} + \frac{q}{1-p}$$
 以 $a_{n+1} = 2a_n + 1$ 为例, $p = 2$, $q = 1$, $k = -1$ $\{a_n + 1\}$ 是公比为 2 的等比数列,首项为 $a_1 + 1$ 通项公式为 $a_n = (a_1 + 1) \cdot 2^{n-1} - 1$

举例验证

已知 $a_1=1$,代入通项公式得 $a_n=2^n-1$ 验证 n=1, $a_1=2^1-1=1$,符合已知条件 验证 n=2,按递推关系式 $a_2=3$,按通项公式 $a_2=3$,正确

总结

通过构造新数列,将一阶线性递推数列转化为等比数列来求通项公式 掌握这种方法可以解决类似的一阶线性递推数列问题