5.3 Зв'язність графів

5.3.1 Зв'язність простих графів

Дві вершини v і w графа називаються **зв'язними**, якщо у графі існує маршрут із кінцями v та w. В цьому випадку також говорять, що вершина v досяжна з вершини w.

За означенням кожна вершина зв'язна сама з собою маршрутом довжиною нуль.

Граф називається **зв'язним**, якщо будь-яка пара його вершин ϵ зв'язною.

Граф називають **незв'язним**, якщо він не є зв'язним. Незв'язний граф складається з двох або більше зв'язних підграфів, кожна пара з яких не має спільних вершин. Ці зв'язні підграфи називають **компонентами зв'язності** чи просто **компонентами** графа.

Зв'язність — це бінарне відношення на множині вершин. Воно рефлексивне (кожна вершина зв'язана сама із собою за означенням), симетричне (для кожного маршруту ϵ обернений маршрут) та транзитивне. Транзитивність означа ϵ , що якщо ϵ маршрут з v до w та маршрут з w до u, то ϵ маршрут з v до u. Це очевидно: щоб отримати такий маршрут, достатньо до послідовності ребер, які ведуть з v до w, дописати справа послідовність ребер, яка веде з w до u.

Таким чином, відношення зв'язності ϵ відношенням еквівалентності на множині вершин графу G і розбива ϵ цю множину на підмножини, що не перетинаються — класи еквівалентності. Всі вершини одного класу зв'язні між собою, вершини різних класів між собою не зв'язні. Підграф, утворений всіма вершинами одного класу, називається компонентною зв'язності графу G.

Приклад. Граф G на рис. 1 зв'язний; граф H — незв'язний, оскільки не існує маршруту (y, v). Граф H має дві компоненти.

Справедлива наступна лема.

Лема 1. Нехай G=(V,E) — граф із p компонентами зв'язності $G_1=(V_1,E_1),\ \ldots,\ G_p=(V_p,E_p).$ Тоді

$$V=V_1\cup\ldots\cup V_p,\quad E=E_1\cup\ldots\cup E_p;\quad V_i\cap V_j=\varnothing,\quad E_i\cap E_j=\varnothing$$
 при $i\neq j;$ $n(G_1)+\ldots+n(G_p)=n(G);\quad m(G_1)+\ldots+m(G_p)=m(G).$

Розглянемо неорієнтовані графи K_n (повний граф з n вершинами) та C_n (граф, який складається з простого циклу з n вершинам):

Рис. 2 — Повний граф K_5

Рис. 3 — Граф-цикл (циклічний граф) довжини 5: C_5

Обидва ці графи зв'язні, проте інтуїтивно зрозуміло, що для n>3 граф K_n «сильніше зв'язний», ніж граф C_n .

Розглянемо два поняття, які характеризують міру зв'язності простого графу.

Числом вершинної зв'язності (або просто **числом зв'язності**) $\kappa(G)$ (читається «каппа від G») простого графу G називають найменшу кількість вершин, вилучення яких утворює незв'язний або одновершинний граф. Зазначимо, що вершину вилучають разом із інцидентними їй ребрами.

Наприклад,
$$\kappa(K_1) = 0$$
, $\kappa(K_n) = n-1$, $\kappa(C_n) = 2$.

Приклад. Граф, зображений на рис. 4, зв'язний, але його зв'язність можна порушити вилученням вершини u. Отже, $\kappa(G)=1$. Якщо ж спробувати порушити зв'язність цього графа вилученням ребер (а не вершин), то потрібно вилучити не менше ніж три ребра.

Рис. 4

Нехай G — простий граф з n>1 вершинами. **Числом реберної зв'язності** $\lambda(G)$ (читається «лямбда від G») графу G називають найменшу кількість ребер,

вилучення яких дає незв'язаний граф. Число реберної зв'язності одновершинного графу вважають рівним 0.

Приклад. Для графу, зображеного на рис. 4, число реберної зв'язності $\lambda(G) = 3$.

Вершину u простого графу G називають **точкою** з'єднання, якщо граф G в разі її вилучення матиме більше компонент, ніж даний граф G. Тобто кількість компонент зв'язності при вилученні цієї вершини у графу G збільшується. Множина ребер графу називається **розрізом**, якщо вилучення цих ребер з графу G приводить до збільшення кількості компонент зв'язності. Якщо розріз містить одне ребро, то його називають **мостом**.

Граф називається **роздільним**, якщо він містить хоча б одну точку з'єднання, та **нероздільним** в іншому випадку. Максимальні нероздільні підграфи графу називаються **блоками**.

Отже, точки з'єднання й мости — це своєрідні «вузькі місця» простого графу.

Приклад. Граф, зображений на рис. 5 має три точки з'єднання v_4 , v_5 та v_7 та один міст (v_4, v_5) .

Позначимо як $\delta(G)$ мінімальний степінь вершин графу G. Можна довести, що $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Простий граф називається t-зв'язним, якщо $\kappa(G) \ge t$, тобто, якщо вилучаючи будь-яку його t-1 вершину, не можна порушити його зв'язність, а при вилученні деяких t вершин зв'язність може порушитися.

Граф називається *t***-ребернозв'язним**, якщо $\lambda(G)$ ≥*t*, тобто якщо t — максимальне з таких p, що при вилученні будь-яких p–1 ребер зв'язність графу не порушується.

Приклад. Граф, зображений на рис. 4, однозв'язний і реберно 3-зв'язний.

5.3.2 Зв'язність орієнтованих графів

В орієнтованих графах розрізняють декілька понять зв'язності.

Орієнтований граф називається **сильно-зв'язним**, якщо для будь-яких двох його вершин v та w існує шлях в обох напрямках.

Орієнтований граф називається **однобічно-зв'язним**, якщо для будь-яких двох його вершин v та w існує шлях хоча б в одному напрямку.

Орієнтований граф називається **слабко-зв'язним**, якщо зв'язним є неорієнтований граф, отриманий з нього заміною орієнтованих ребер на неорієнтовані.

Якщо граф (орієнтований граф) не ϵ зв'язним (слабко-зв'язним), то він називається **незв'язним**.

Приклад. На рисунку 6 зображено орграфи, що мають різні типи зв'язності. Граф на рис. 6, а) ϵ сильно-зв'язним, на рис. 6, б) — однобічно-зв'язним, на рис. 6, в) — слабко-зв'язним, на рис. 6, г) — незв'язним.

Перевірка сильної, слабкої або однобічної зв'язності шляхом безпосереднього перебору може виявитись дуже трудомісткою, оскільки в орграфі з n вершинами ϵ n(n-1)/2 пар вершин, тобто дуг. Наведемо деякі теореми, які дозволяють віднести орграф до одного з трьох класів.

У сильно-зв'язному орграфі довільна вершина v входить принаймні в один цикл, утворений шляхами з v до деякої іншої u та назад з u до v. Цикли, які проходять через v та інші вершини графу, не обов'язково всі різні. Так, сильно-зв'язний граф, який містить n вершин, може представляти собою один простий цикл, який проходить скрізь всі вершини.

Теорема 1. Орграф ϵ сильно-зв'язним тоді й тільки тоді, коли в ньому ϵ повний цикл, тобто цикл, який проходить через всі вершини.

Теорема 2. Орграф ϵ однобічно-зв'язним тоді й тільки тоді, коли в ньому ϵ повний шлях.

Для введення критеріїв слабкої зв'язності нам буде потрібне наступне означення.

Півшлях в орієнтованому графі — це послідовність дуг, така, що будьякі дві сусідні дуги різні й мають спільну інцидентну їм вершину. Іншими словами, півшлях — це шлях без урахування орієнтації дуг.

Теорема 3. Орграф ϵ слабко-зв'язаним тоді й тільки тоді, коли в ньому ϵ повний півшлях.

5.3.3 Властивості матриць графів

Багато інформації відносно графу G можна представити в зручній формі, використовуючи матриці, відповідні графу G. Матрицю суміжності $\Delta(G)$ графу G можна використовувати для підрахування кількості різних маршрутів (шляхів для орграфів) у G. Сама матриця Δ задає ребра G, тобто маршрути довжиною 1. Виявляється, що матриця Δ^k (k-степінь Δ) задає число маршрутів довжини k.

Теорема 4. Нехай G — граф (орієнтований або неорієнтований; можуть бути також кратні ребра й петлі), $\Delta(G)$ — матриця суміжності графу G, яка відповідає заданій нумерації вершин $v_1, v_2, ..., v_n$. Тоді кількість різних шляхів довжиною k (k — натуральне) з вершини v_i у вершину v_j дорівнює (i, j)—му елементу матриці Δ^k .

<u>Доведення.</u> Методом математичної індукції по довжині k. Для k=1 твердження теореми очевидне: кількість шляхів від v_i до v_j довжиною 1 дорівнює (i,j)—му елементу матриці Δ , оскільки цей елемент дорівнює кількості ребер (дуг), які з'єднують v_i та v_j .

Нехай для деякого k теорема вірна, тобто (i,j)—ий елемент матриці Δ^k дорівнює кількості різних маршрутів довжиною k від вершини від v_i до вершини v_j . Це індуктивна гіпотеза.

Доведемо теорему для k+1. Оскільки $\Delta^{k+1} = \Delta^k \Delta$, то (i,j)—ий елемент матриці Δ^{k+1} дорівнює $\sum_{k=1}^n \delta_{ik}^{(k)} \delta_{kj}$, де $\delta_{ik}^{(k)}$ — (i,k)—ий елемент матриці Δ^k , δ_{kj} — (k,j)—ий елемент матриці суміжності Δ .

За індуктивною гіпотезою $\delta_{ik}^{(k)}$ дорівнює кількості маршрутів довжиною k із вершини v_i у вершину v_k . Маршрут довжиною k+1 із v_i у v_j складається з маршруту довжиною k із вершини v_i до якоїсь проміжної вершини v_k та ребра

з v_k до v_j . За правилом добутку з комбінаторики кількість таких маршрутів дорівнює добутку кількості $\delta_{ik}^{(k)}$ маршрутів довжиною k із v_i до v_k та кількості δ_{kj} ребер із v_k до v_j , тобто $\delta_{ik}^{(k)}\delta_{kj}$. Якщо ці добутки підсумувати для всіх можливих проміжних вершин v_k , то потрібний результат випливає з комбінаторного правила суми.

Приклад. На рис. 7 наведено орграф та його матриці суміжності Δ , Δ^2 , Δ^3 та Δ^4 .

Корисною виявляється нова матриця — **матриця відстаней** $D = ||d_{ij}||$, де $d_{ij} = d(i,j)$ — відстань від v_i до v_j , яка визначається як довжина найкоротшого маршруту з v_i у v_j . Величина d_{ij} не визначена, якщо маршрут з v_i у v_j не існує.

Теорема 5. Нехай граф G має матрицю суміжності Δ та матрицю відстаней D. Тоді, якщо величина d_{ij} , $i\neq j$, визначена, то вона дорівнює найменшому k, для якого елемент (i,j) в Δ^k , тобто $\delta_{ij}^{(k)}$, не дорівнює 0.

За теоремою 5 можна побудувати матрицю відстаней, послідовно підносячи у степінь матрицю суміжності графу.

Побудуємо матрицю відстаней для графу з рис. 7.

- 1. Матриця відстаней має нулі на головній діагоналі та спочатку співпадає з матрицею суміжності, тобто вона містить всі маршрути довжиною 1. Інші елементи матриці відстаней поки що не визначені.
- 2. Матриця Δ^2 вказує на всі маршруті довжиною 2. Невизначеним елементам матриці відстаней $||d_{ij}||$ присвоюється значення 2, якщо $\delta_{ij}^{(2)} \neq 0$.

3. Тим елементам $||d_{ij}||$, які ще не визначені, присвоюємо значення 3, якщо елементи $\delta_{ri}{}^{(3)} \neq 0$ в матриці Δ^3 .

Тепер матриця відстаней повністю визначена.

1)
$$D(G) = \begin{pmatrix} 0 & 1 & \infty & \infty \\ 1 & 0 & 1 & \infty \\ \infty & \infty & 0 & 1 \\ 1 & \infty & \infty & 0 \end{pmatrix}$$
 2) $D(G) = \begin{pmatrix} 0 & 1 & 2 & \infty \\ 1 & 0 & 1 & 2 \\ 2 & \infty & 0 & 1 \\ 1 & 2 & \infty & 0 \end{pmatrix}$ 3) $D(G) = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & 2 & 3 & 0 \end{pmatrix}$

Отже, матриця відстаней для графу з рис. 7 має вигляд

$$D(G) = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & 2 & 3 & 0 \end{pmatrix}.$$

Теорема 6. Для того, щоб n-вершиний граф з матрицею суміжності Δ мав хоча б один цикл, необхідно й достатньо, щоб матриця $K = \Delta^2 + ... + \Delta^k$ мала хоча б один ненульовий діагональний елемент.

Матриця досяжності $R(G) = ||r_{ij}||$ визначається наступним чином:

 $r_{ij} = 1$, якщо v_i є досяжною з v_i , і

 $r_{ij} = 0$ в протилежному випадку.

Довільна вершина досяжна сама із себе, тому $r_{ii} = 1$ для всіх i.

Матриця досяжності може бути отримана за допомогою матриці суміжності.

Теорема 7. Нехай Δ — матриця суміжності і R — матриці досяжності графу G з n вершинами. Тоді

$$R = B(I + \Delta + \Delta^{2} + ... + \Delta^{n-1}) = B[(I + \Delta)^{n-1}],$$

де B — булеве перетворення

 $(B: N \to \{0, 1\}; B(x) = 0, якщо x = 0, та <math>B(x) = 1, якщо x > 0),$

а I — одинична матриця.

<u>Доведення.</u> Дійсно, якщо v_j є досяжною з v_i , то існує простий ланцюг з v_i у v_j . Довжина цього маршруту не перебільшує n–1, оскільки у простому ланцюгу вершини не повторюються. Відповідно, елемент матриці

$$I + \Delta + \Delta^2 + \ldots + \Delta^{n-1}$$

буде ненульовим, звідки й випливає теорема. ▶

У наступній теоремі показано застосування матриці досяжності як методу визначення зв'язності орграфів.

Теорема 8. Нехай орграф G має матрицю досяжності R та матрицю суміжності Δ . Тоді:

- 1) G сильно-зв'язний тоді й тільки тоді, коли R = J, де J матриця, елементами якої є тільки 1.
- 2) G однобічно-зв'язний тоді й тільки тоді, коли $B(R+R^{\mathrm{T}})=J$, де R^{T} транспонована матриця R;
- 3) G слабко-зв'язний тоді й тільки тоді, коли $B[(I+\Delta+\Delta^{\rm T})^{n-1}]=J$, де $\Delta^{\rm T}$ транспонована матриця Δ .