

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: (11) International Publication Number: WO 00/08015 **A2** C07D 405/00 17 February 2000 (17.02.00) (43) International Publication Date: PCT/US99/17755 (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, (21) International Application Number: 5 August 1999 (05.08.99) (22) International Filing Date:

US

60/095,712

7 August 1998 (07.08.98)

(71) Applicant (for all designated States except US): APPLIED RESEARCH SYSTEMS ARS HOLDING N.V. [NL/NL]; 14 John B. Gorsiraweg, Curacao (AN).

(72) Inventors; and (75) Inventors/Applicants (for US only): EL TAYER, Nabil [IN/US]; 143 Gerald Road, Milton, MA 02186 (US). REDDY, Adulla [CH/US]; 2702 Village Road West, Norwood, MA 02062 (US). BUCKLER, David [US/US]; 11 Conifer Drive, Mendham, NJ 07945 (US). MAGAR, Sharad [IN/US]; 20 Harrison Road, Caton, MA 02021

(74) Agent: GREENFIELD, Michael, S.; McDonnell Boehnen Hulbert & Beerghoff, 300 South Wacker Drive, Chicago, IL 60606 (US).

BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: FSH MIMETICS FOR THE TREATMENT OF INFERTILITY

(57) Abstract

(30) Priority Data:

(US).

The present invention provides non-peptidic amino derivatives, their therapeutic use as well as pharmaceutical compositions that possess activity as Follicle Stimulating Hormone (FSH) agonists and are useful in the treatment of infertility. In particular, the invention provides cyclic and acyclic alpha- and beta-aminocarboxamides, more particularly tetrahydroisoquinolinecarboxamides, piperidinecarboxamides, pyrrolidinecarboxamides, and 2-amino-3-carboxamidopyridine derivatives.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France .	LÜ	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
СМ	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		
l							
1							

WO 00/08015 PCT/US99/17755

FSH Mimetics for the Treatment of Infertility

BACKGROUND OF THE INVENTION

This application claims the benefit of U.S. Provisional Application No. 60/095,712, filed August 7, 1998.

5 Field of the Invention

10

15

20

25

The present invention relates to non-peptidic amino derivatives, their therapeutic use, as well as pharmaceutical compositions comprising these derivatives. In particular, the invention relates to cyclic and acyclic alpha- and beta-aminocarboxamides, more particularly to tetrahydroisoquinolinecarboxamides, piperidinecarboxamides, pyrrolidinecarboxamides, and 2-amino-3-carboxamidopyridine derivatives. The compounds of the invention possess activity as Follicle Stimulating Hormone (FSH) agonists and are useful in the treatment of infertility.

Summary of the Related Art

Annually in the U.S. there are 2.4 million couples experiencing infertility that are potential candidates for treatment. Follicle stimulating hormone, either extracted from urine or produced by recombinant DNA technology, is a parenterally-administered protein product used by specialists for ovulation induction (OI) and for controlled ovarial hyperstimulation (COH). Whereas OI is directed at achieving a single follicle to ovulate, COH is directed at harvesting multiple oocytes for use in various *in vitro* assisted reproductive technologies (e.g., for *in vitro* fertilization). Clinical use of preparations containing FSH began in the 1960's.

Follicle stimulating hormone (FSH) is a pituitary-derived heterodimeric glycoprotein hormone that shares structural similarities with luteinizing hormone (LH) and thyroid stimulating hormone (TSH), both of which are also produced in the pituitary gland, and chorionic gonadotropin (CG), which is produced in the placenta. The hormones are relatively large (28-38 kilodaltons) and are composed of a common α subunit non-covalently bound to a distinct β subunit that confers receptor binding specificity.

The cellular receptors for these hormones are known to be members of the G protein-coupled class of membrane-bound receptors, which when activated stimulate an increase in the activity of adenylyl cyclase. This results in an increase in the level of the intracellular second messenger adenosine 3′, 5′-monophosphate (cAMP), which in turn causes increased steroid synthesis and secretion. Hydropathicity plots of the amino acid sequences of these receptors reveal three general domains: (1) a hydrophilic amino-terminal region, considered to be the amino-terminal extracellular domain, (2) seven hydrophobic segments of membrane-

10

15

20

30

ò

PCT/US99/17755

spanning length, considered to be the transmembrane domain, and (3) a carboxy-terminal region that contains potential phosphorylation sites (serine, threonine, and tyrosine residues), considered to be the carboxy-terminal intracellular or cytoplasmic domain. The glycoprotein hormone receptor family is distinguished from other G protein-coupled receptors, such as the β 2-adrenergic, rhodopsin, and substance K receptors, by the large size of the hydrophilic amino-terminal domain, which is involved in hormone binding.

The FSH receptor is expressed on testicular Sertoli cells and ovarian granulosa cells. While there has been a recognized need for providing essentially pure human FSH receptor, purification of naturally derived preparations is not practical and would likely be insufficient to permit determination of the amino acid sequence. Recently, one group has cloned the cDNA encoding the rat FSH receptor, deduced the amino acid sequence, and expressed it in mammalian cells (Sprengel, *Mol. Endocrinol.* 4: 525 (1990)). Another group, attempting to clone the TSH receptor, apparently also cloned and identified a portion of the transmembrane region of the human FSH receptor (Parmentier, *Science* 246: 1620 (1989)).

Use of FSH is limited by its high cost, lack of oral dosing, and need of extensive monitoring by specialist physicians. Hence, identification of a non-peptidic small molecule substitute for FSH that could potentially be developed for oral administration is desirable.

SUMMARY OF THE INVENTION

We have now found non-peptidic compounds for the treatment of infertility that mimic the action of FSH. Such compounds have superior convenience of use compared to FSH due to their oral bioavailability. They are suitable for prescription by a Ob/Gyn, require minimal supervision, and have substantially lower costs compared to FSH treatment.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 depicts the scheme for the synthesis of the compounds of Formula XVI and Formula XVII.

Figure 2 depicts the scheme for the synthesis of the compound of Formula XVIII.

Figure 3 depicts the scheme for the synthesis of the compound of Formula XIX.

Figure 4 depicts the scheme for the synthesis of the compound of Formula XXV.

Figure 5 depicts the scheme for the synthesis of the compound of Formula XXVI.

Figure 6 displays the results of LDR analysis of compounds XVI, XVII, and XIX, compared to FSH.

ò

Figure 7 displays the results of the primary rat granulosa cell bioassay for compounds XVI and XVII, compared to FSH.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a non-peptidic amino derivative having the general structure of Formula I,

$$\begin{array}{c|c}
R^4 & R^3 \\
Y & X \\
Y & X
\end{array}$$

$$\begin{array}{c|c}
R^5 & Z & R^1 & R^2
\end{array}$$

wherein,

20

25

R¹, R³, R⁴ and R⁵ are each independently hydrogen, C₁-C₁₀ alkyl, C₁-C₁₀ alkyl substituted with one or more substituents, C₂-C₁₀ alkenyl, C₂-C₁₀ alkenyl substituted with one or more substituents, C₁-C₈ alkoxy, C₁-C₈ alkoxy substituted with one or more substituents, C₂-C₈ alkoxycarbonyl, C₂-C₈ alkoxycarbonyl substituted with one or more substituents, C₁-C₈ thioalkyl, C₁-C₈ thioalkyl substituted with one or more substituents, C₂-C₈ acyl substituted with one or more substituents, C₂-C₈ acyl substituted with one or more substituents, aryloxy, aryl, aryl substituted with one or more substituents, C₃-C₇ cycloalkyl substituted with one or more substituents, C₃-C₇ heterocycle, or C₃-C₇ heterocycle substituted with one or more substituents, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic or aromatic ring;

R² is hydrogen, straight or branched C₁-C₆ alkyl or C₃-C₇ cycloalkyl or C₃-C₇ cycloalkyl substituted with one or more substituents, C₃-C₇ heterocycle, C₃-C₇ heterocycle substituted with one or more substituents, aryl, aryl substituted with one or more substituents, heteroaryl, heteroaryl substituted with one or more substituents, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic or aromatic ring; or R² together with R¹ forms a C₂-C₇ heterocycle, C₂-C₇ heterocycle substituted with one or more substituents;

W is carbonyl (C=O), amido (NH(C=O)), amidoalkyl (NH(C=O)CH₂-), imino (C=NH), thiocarbonyl (C=S), sulfonyl (SO₂), methylene (CH₂), or methylene substituted with one or more substituents;

X is CH or N;

5

10

15

Y is CH or N; and

Z is carbonyl (C=O), amino (NH), imino (C=N), sulfonyl (SO₂), or (C=O)NH; or

Z, together with R^1 , N, W, X, and Y, forms a C_5 - C_7 heterocyclic ring in which R^1 is a direct bond or a C_1 - C_2 alkylene.

With reference to Formula I, preferred FSH agonists are cyclic compounds wherein Z together with R^1 , N, W, X, and Y form a C_5 - C_7 heterocyclic ring in which R^1 is a direct bond or a C_1 - C_2 alkylene and which is substituted with one or more substituents,

П

Also with reference to Formula I, additional preferred FSH agonists are cyclic compounds wherein R^2 and R^3 form a C_5 - C_7 heterocycle substituted with one or more substituents:

$$\begin{array}{c|c}
R^3 & R^2 \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

Ш

Additional preferred FSH agonists are compounds of Formula IV-A,

IV-A

wherein R1, R2, R4, R5, W, Y, and Z are as defined for Formula I; and

20 R³ and R⁹ are each independently hydrogen, halogen, cyano, oxo, carboxy, formyl, nitro, amino, amidino, guanidino, C₁-C₅ alkyl or alkenyl or arylalkyl imino, azido, mercapto, carboxamido, hydroxy, hydroxyalkyl, alkylaryl, arylalkyl, C₁-C₈ alkyl, C₁-C₈ alkenyl, C₁-

 C_8 alkoxy, C_1 - C_8 alkoxycarbonyl, C_2 - C_8 acyl, C_1 - C_8 alkylthio, arylalkylthio, arylalkylsulfinyl, arylalkylsulfinyl, C_1 - C_8 alkylsulfonyl, arylalkylsulfonyl, arylalkylsulfonyl, C_1 - C_6 N-alkyl carbamoyl, C_2 - C_{15} N,N-dialkylcarbamoyl, C_1 - C_5 alkyl or alkenyl or arylalkyl ester, C_1 - C_7 cycloalkyl, aroyl, aryloxy, benzyloxy, benzyloxy substituted with one or more substituents, aryl, aryl substituted with one or more substituents, C_3 - C_7 heterocycle, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic or aromatic ring, -NR 6 R 7 where R 6 and R 7 are as defined for Formula I, or - $(CH_2)_s$ NR 6 R 7 where s is 1-6 and R 6 and R 7 are as defined for Formula I.

Additional preferred FSH agonists are compounds in which R³ and R⁹ of Formula IV-A together form a substituted or unsubstituted C₃-C₇ cycloalkyl or C₃-C₇ heterocycle spiroring, or such a ring fused to a cycloalkyl, heterocyclic or aromatic ring:

$$\begin{array}{c|c}
R^4 & & & W \\
\downarrow & & & \downarrow \\
R^5 & Z & & & N \\
R^5 & & & & & R^4
\end{array}$$

IV-B

Additional preferred FSH agonists are compounds of Formula V,

$$\begin{array}{c|c}
R^3 \\
R^4 \\
Y \\
R^5 \\
Z \\
R^1 \\
N \\
R^2 \\
V
\end{array}$$

15

5

10

wherein R³ and R⁴ together with the C and Y to which they are bound, respectively, form a substituted or unsubstituted aryl, substituted or unsubstituted C₃-C₇ cycloalkyl or C₃-C₇ heterocycle, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic or aromatic ring, and R¹, R², R³, R⁵, R⁹, W, Y, and Z are as defined for Formula I.

20

Also with reference to Formula I, additional preferred FSH agonists are cyclic α -aminocarboxamides wherein X = CH, Y = N, and R^3 and R^4 together with the carbon and nitrogen atoms to which they are attached form a heterocyclic or heteroaromatic ring,

wherein R^1 , R^2 , R^5 , W and Z are as defined for Formula I; n = 0 or 1; and

- A and B are each independently -CH₂-, -CH(R¹⁰)-, -O-, -S-, -NH-, or -NR¹⁰-, where R¹⁰ is hydrogen, hydroxy, amino, amino substituted with one or more substituents, C₁-C₆ alkoxy, C₁-C₆ alkyl, C₁-C₆ alkyl substituted with one or more substituents, C₁-C₆ alkoxycarbonyl, cyano, C₁-C₆ aminoalkyl, or -(CH₂)₅NR⁶R⁷, where s, R⁶, and R⁷ are as defined for Formula I.
- 10 Additional preferred FSH agonists are compounds of Formula VII,

$$\begin{array}{c|c}
R^{4} & & \\
X & & \\
X & & \\
X & & \\
R^{5} & & R^{1} & \\
\end{array}$$
VII

wherein R³ and W form a substituted or unsubstituted aryl, substituted or unsubstituted C₃-C₇ cycloalkyl, C₃-C₇ heterocycle, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic or aromatic ring, and R¹, R², R⁴, R⁵, X, Y, and Z are as defined for Formula I.

With reference to Formulae III and V, or V and VII, preferred FSH agonists are compounds wherein rings are combined to form fused bicyclic rings,

$$R^3 - R^2$$
 $R^4 - X - W$
 $R^5 - Z$
 $R^5 - Z$

wherein the rings in VIII-A and VIII-B are defined the same way as the corresponding rings in Formulae III, V, and VII.

With reference to Formulae I and V, additional preferred FSH agonists include compounds wherein Y = N and R^3 and R^4 together with the carbon and nitrogen atoms to which they are attached form a heterocyclic or heteroaromatic ring,

$$R^{11} \xrightarrow{R^{12}} R^{13}$$

$$R^{11} \xrightarrow{N} L \qquad R^{9}$$

$$R^{5} \xrightarrow{Z} R^{1} \xrightarrow{N} R^{2}$$

$$IX$$

wherein R¹, R², R⁵, R⁹, W, and Z are as defined for Formula I;

R¹¹, R¹² and R¹³ are defined the same way as R⁹, and additionally, each of R⁹, R¹¹, R¹², and R¹³ either independently or in combination are capable of forming a spiro or fused or bridged ring;

10 n = 0 or 1; and

5

L and M are independently CH, N, O, or S, provided L and M are not both heteroatoms and when L is O or S there is no R^{13} and when M is O or S there is no R^{12} .

With reference to Formulae I and IV, preferred FSH agonists also include acyclic α -aminocarboxamides and spiro-ring containing α -aminocarboxamides of Formula X,

wherein R¹, R², R³, R⁴, R⁵, R⁹, Z and the spiro ring are as defined for Formulae I and IV.

With reference to Formulae I and VII, preferred FSH agonists also include 2,3-diamino aryl or heteroaryl groups substituted with one or more substituents that are optionally fused to a cycloalkyl, heterocyclic, or aryl ring substituted with one or more substituents,

wherein E = Y = C or N;

 R^1 , R^2 , R^4 , R^5 , R^6 , R^{11} , R^{12} , R^{13} , B, Y and Z are as defined for Formulae I and IX; and n=0 or 1.

Especially preferred FSH agonists are cyclic alpha-amino carboxamides that contain a heterocyclic or heteroaromatic ring,

wherein R¹, R², R⁵, n, A, and B are as defined for Formala VI.

Especially preferred FSH agonists based on Formula IX are cyclic alpha-amino carboxamides that contain a heterocyclic or heteroaromatic ring,

XIII

wherein R¹, R², R⁵, R⁹, R¹¹, R¹², R¹³, n, L, and M are as defined for Formula IX, and additionally, R¹¹ and R¹² together may form a fused substituted or unsubstituted aromatic ring.

Additional especially preferred FSH agonists based on Formula IX are cyclic compounds wherein W is amido rather than carbonyl (Formula XIII-A):

$$\begin{array}{c|c}
R^{12} & R^{12} \\
R^{13} & R^{13} \\
R^{5} & O \\
R^{5} & O
\end{array}$$

XIII-A

Especially preferred FSH agonists based on Formula XIII-A are compounds of Formula XIII-B,

XIII-B

wherein R^{14} and R^{15} are defined the same way as R^9 in Formula IV-A and R^{16} is defined the same way as R^2 in Formula I.

Especially preferred FSH agonists related to compounds of Formula XIII-B are compounds of Formula XIII-C,

$$R^{11}$$
 R^{12}
 R^{13}
 R^{9}
 R^{17}
 R^{14}
 R^{16}

XIII-C

wherein R¹⁴ and R¹⁶ are as defined for Formula XIII-B and R¹⁷ is defined the same way as R² in Formula I.

10

15

Especially preferred FSH agonists based on Formula X are acyclic alpha-amino carboxamides or spiro-ring substituted alpha-amino-carboxamides, wherein either R³ or R⁹ is not hydrogen,

wherein R^1 , R^2 , R^4 , R^5 , and Z are as defined for Formulae X-A and X-B, and R^{11} , R^{12} , R^{13} , and M are as defined for Formula IX.

Especially preferred FSH agonists based on Formula XI are 2-amino-3-carboxamido pyridines or the bicyclic analogs thereof,

wherein R^1 , R^2 , R^4 , R^5 , R^6 , R^{11} , R^{12} , R^{13} , and B are as defined for Formulae XI-A and XI-B.

Specific examples of compounds of Formula IX include the following:

1-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]-3-hydroxypyrrolidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;

1-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]-3-acetoxypyrrolidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;

1-[(2-Oxo-6-isopropyl-2H-pyran)-3-carbonyl]-piperidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;

1-[(2-Oxo-6-n-propyl-2H-pyran)-3-carbonyl]-piperidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;

1-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]-piperidine-2-carboxylic acid-2-(3-indolyl)ethylamide;

10

20

25

- 3-[(2-Oxo-6-pentyl-2H-pyran)-3-carbonyl]-2, 2-dimethylthiazolidine-4-carboxylic acid-3-(9-ethylcarbazolyl) amide;
- 3-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]-5,5-dimethylthiazolidine-4-carboxylic acid-3-(9-ethylcarbazolyl)amide;
- 1-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]-4-methylpiperizine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;
- 2-[1-Carboxamido-2-(3*H*-imidazol-4-yl)ethylcarbamoyl]-N-(2-ethyl-n-hexylamino) tetrahydroisoquinoline;
- 1-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]-2-methylpyrrolidine-2-carboxylic acid-3-(9-ethylcarbazolyl) amide;
 - 1-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]-4-hydroxypyrrolidine-2-carboxylic acid-3-(9-ethylcarbazolyl) amide;
 - 1-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]-4-acetoxypyrrolidine-2-carboxylic acid-3-(9-ethylcarbazolyl) amide;
- 3-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]thiazolidine-4-carboxylic acid-3-(9-ethylcarbazolyl) amide;
 - 3-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]-1,1-dioxo-thiazolidine-4-carboxylic acid-3-(9-ethylcarbazolyl) amide;
 - 3-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]thiazolidine-2-carboxylic acid-3-(9-ethylcarbazolyl) amide;
 - 1-(Benzofuran-2-yl)carbonyl- pyrrolidine-2-carboxylic acid-3-(9-ethyl carbazolyl)amide;
 - 1-[(2-Oxo-6-methyl-2*H*-pyran)-3-carbonyl]-trans-3-azabicyclo(3.1.0)hexane-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;
 - l-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]4-oxopyrrolidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;
 - 2-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]7-hydroxytetrahydroisoquinoline-3-carboxylic acid-3-(9-ethylcarbazolyl)amide;
- 2-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]tetrahydroisoquinoline-3-carboxylicacid-3-30 (9-ethylcarbazolyl)amide;
 - 1-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]azetidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;

10

20

- l-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]3,4-dehydropyrrolidine-2-carboxylic-acid-3-(9-ethylcarbazolyl)amide;
- 1-(2-Oxo-2*H*-chromene-3-carbonyl)-pyrrolidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;
- 1-(1,3-Dioxo-2-isoindolineacetyl)- piperidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;
- 1-(2-Fluoro-4-trifluoromethylbenzoyl)-piperidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;
 - 1-(4-n-Pentylbenzoyl)-pyrrolidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;
 - 1-(4-n-butoxybenzoyl)-pyrrolidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;
- l-(4-n-Pentylbenzoylmethyl)-piperidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;
- 1-[(2-Oxo-6-pentyl-2H-pyran)-3-carbonyl]-2-oxo-imidazolidine-5-carboxylic acid-3-(9-ethylcarbazolyl)amide;
- 15 1-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]-2-[(9-ethylcarbazolyl)aminomethyl] pyrrolidine;
 - 1-[(2-Oxo-6-phenyl-2*H*-pyran)-3-carbonyl]-pyrrolidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;
 - 1-[(2-Oxo-6-methyl-2*H*-pyran)-3-carbonyl]-pyrrolidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;
 - 1-[(2-Oxo-6-phenyl-2*H*-pyran)-3-carbonyl]-piperidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide; and
 - 1-[(2-Oxo-6-methyl-2H-pyran)-3-carbonyl]-piperidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;
- or a pharmaceutically acceptable addition salt thereof.
 - Specific examples of compounds of Formula XII include the following:
 - $2\hbox{-}[1\hbox{-}Carboxamido-2\hbox{-}(3H\hbox{-}imidazol\hbox{-}4-yl)ethylcarbamoyl]-2\hbox{-}(2\hbox{-}ethyl\hbox{-}n-hexylamino) tetraline; }$
 - $\hbox{$2$-(2-Ethyl-n-hexyl)-$N$-[(1-carboxamido-2-terazolyl)ethyl]-3-}$
- 30 isoquinolinecarboxamide;
 - 1-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]pyrrolidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide; and

1-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]piperidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;

or a pharmaceutically acceptable addition salt thereof.

Specific examples of compounds represented by Formula XIII include the following:

1-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]pyrrolidine-2-carboxylic acid-3-(9-ethylcarbazolyl) amide (Formula XVI),

XVI

which can exist in two enantiomeric forms (the asterisk denotes the chiral center);

1-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]piperidine-2-carboxylic acid-3-(9-ethyl carbazolyl)amide (Formula XVII),

XVII

which can exist in two enantiomeric forms (the asterisk denotes the chiral center);

2-(2-Ethyl-n-hexyl)-*N*-[(1-carboxamido-2-terazolyl)ethyl]-3-isoquinolinecarboxamide (Formula XVIII),

XVIII

1-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]-4-hydroxypyrrolidine-2-carboxylic acid-3-(9-ethylcarbazolyl) amide (Formula XIX),

XIX

1-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]-2-methylpyrrolidine-2-carboxylicacid-3-(9-ethylcarbazolyl) amide (Formula XX),

XX

1-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]-2-[3-(9-ethylcarbazolyl)aminomethyl]
10 pyrrolidine Formula XXI),

XXI

2-[1-Carboxamido-2-(3*H*-imidazol-4-yl)ethylcarbamoyl]-N-(2-ethyl-n-hexylamino) tetrahydroisoquinoline (Formula XXII),

XXII

5 or a pharmaceutically acceptable addition salt thereof.

Specific examples of compounds represented by Formula XIV include the following: 1-[3-(9-Ethylcarbazolyl)carbamoyl]ethylamino-N-methyl-(2-oxo-6-pentyl-2H-pyran-3-carboxamide) (Formula XXIII) and 1-Methyl-1-[3-(9-ethylcarbazolyl)carbamoyl]ethylamino-N-methyl-(2-oxo-6-pentyl-2H-pyran-3-carboxamide) (Formula XXIV),

10

XXIII
$$(R^{12} = H)$$
; XXIV $(R^{12} = CH_3)$

2-[(1-Carboxamido-2-terazolyl)ethylcarbamoyl]-(D,L)-2-(2-ethyl-n-hexylamino)tetraline (Formula XXV),

15

2-[(1-Carboxamido-2-terazolyl)ethylcarbamoyl]-2-(2-ethyl-n-hexylamino)tetraline; 1-[3-(9-Ethylcarbazolyl)carbamoyl]ethylamino-*N*-methyl-(2-oxo-6-pentyl-2*H*-pyran-3-carboxamide);

10

15

20

25

1-Methyl-1-[3-(9-ethylcarbazolyl)carbamoyl]-ethylamino-N-methyl-(2-oxo-6-pentyl-2H-pyran-3-carboxamide);

1-[3-(9-Ethylcarbazolyl)carbamoyl]isoamylamino-*N*-methyl-(2-oxo-6-pentyl-2*H*-pyran-3-carboxamide);

1-[3-(9-Ethylcarbazolyl)carbamoyl]isobutylamino-N-methyl-(2-oxo-6-pentyl-2*H*-pyran-3-carboxamide);

1-[3-(9-Ethylcarbazolyl)carbamoyl]phenylethylamino-*N*-methyl-(2-oxo-6-pentyl-2*H*-pyran-3-carboxamide);

1-[3-(9-Ethylcarbazolyl)carbamoyl]2-hydroxyethylamino-*N*-methyl-(2-oxo-6-pentyl-2*H*-pyran-3-carboxamide);

1-[3-(9-Ethylcarbazolyl)carbamoyl]methylamino-*N*-methyl-(2-oxo-6-pentyl-2*H*-pyran-3-carboxamide);

1-[3-(9-Ethylcarbazolyl)carbamoyl]methylamino-N-ethyl-(2-oxo-6-pentyl-2H-pyran-3-carboxamide); and

1-Methyl-1-[3-(9-ethylcarbazolyl)carbamoyl]-ethylamino-(2-oxo-6-pentyl-2*H*-pyran-3-carboxamide);

or a pharmaceutically acceptable addition salt thereof.

Specific examples of compounds represented by Formula XV include the following:

3-(9-ethylcarbazolyl)amino-pyridin-2-yl-3-(2-oxo-6-pentyl-2*H*-pyran-3-carboxamide) (Formula XXVI) and 3-(9-ethylcarbazolyl)amino-pyridin-2-yl-3-(*N*-methyl-2-oxo-6-pentyl-2*H*-pyran-3-carboxamide) (Formula XXVII),

XXVI (
$$R^{12} = H$$
); XXVII ($R^{12} = CH_3$)

or a pharmaceutically acceptable addition salt thereof.

It will be appreciated by those skilled in the art that compounds of the invention may contain a chiral center, and thus will exist in two enantiomeric forms. The present invention includes the use of the individual enantiomers and mixtures of the enantiomers. The enantiomers may be resolved by methods known to those skilled in the art, for example by

10

15

20

25

30

formation of diastereomeric complexes or derivatives which may be separated, for example, by crystallization or chromatographic separation. Alternatively, specific enantiomers may be synthesized by asymmetric synthesis using optically active reagents, substrates, catalysts or solvents, or by converting one enantiomer to the other by asymmetric transformation.

The non-peptidic amino derivatives of the present invention represent small molecule substitutes for FSH for the treatment of infertility. The invention therefore comprises a pharmaceutical composition comprising a compound of any of Formulas I-XXVII and a pharmaceutically acceptable carrier, diluent, or excipient thereof.

The invention further comprises a pharmaceutical composition comprising a compound of any of Formulas I-XXVII and a pharmaceutically acceptable carrier, diluent, or excipient thereof in combination with FSH.

The invention further comprises a pharmaceutical composition comprising a compound of any of Formulas I-XXVII and a pharmaceutically acceptable carrier, diluent, or excipient thereof in combination with the anti-estrogen compound Clomiphene citrate (Cassidenti et al. (1992) Hum. Reprod., 7: 344-348).

The invention further comprises a pharmaceutical composition comprising a compound of any of Formulas I-XXVII and a pharmaceutically acceptable carrier, diluent, or excipient thereof in combination with human chorionic gonadotropin (hCG) or human pituitary leutenizing hormone (LH) (Breckwoldt et al. (1971) Fert. Steril., 22: 451-455; Diedrich et al. (1988) Hum. Reprod., 3: 39-44).

The invention further comprises use of a compound of Formulas I to XXIX for the preparation of a medicament.

The invention further comprises a method for treating infertility comprising administering an effective FSH agonistic amount of any of said pharmaceutical compositions.

As FSH agonists, the compounds of the invention are also useful research tools to study the role of FSH and the FSH receptor in biological processes in vitro.

Chemical Syntheses

The invention provides such processes for the preparation of the compounds of Formula I, which are described hereinafter, which processes comprise reacting a compound of Formula XXVIII,

10

15

20

25

with a compound of Formula XXIX,

$$\begin{array}{c|c}
R^{4} & R^{3} \\
X & X \\
X & E
\end{array}$$

XXIX

wherein R^1 , R^2 , R^3 , R^4 , R^5 , X, Y, and Z are defined as for Formula I and E represents a functional group such as SO₂Cl, CHO, COOH, COCl, NCO, CN, N = C-Cl, CH₂Cl, or CH₂O-tosylate.

The compounds of the invention may be prepared by the methods described below and in Examples 1-5. The synthetic schemes displayed in Figures 1-5 illustrate how compounds according to the invention can be made. Those skilled in the art will be able to routinely modify and/or adapt the methods and schemes presented herein to synthesize any compound of the invention.

Pharmaceutical Preparations

Pharmaceutical compositions comprising a compound of Formulas I to XXIX and a pharmaceutically acceptable carrier, diluent or excipient therefore are also within the scope of the present invention. Thus, the present invention also provides compounds for use as a medicament. In particular, the invention provides the compounds of Formulas I to XXIX for use as FSH agonists, for the treatment of infertility, either alone or in combination with other medicaments. In *in vitro* assays these compounds were found to mimic the actions of FSH since they exhibit positive log dose response in the screening assay (CHO luciferase FSHR) and are negative in the control assay (CHO luciferase). Accordingly, the compounds of the invention are useful research tools for studying the role of FSH in biological processes.

The representative compounds also show activity in the primary rat granulosa cell bioassay, which is used to detect the conversion of testosterone to estradiol in the presence of FSH or an FSH agonist. The CHO luciferase assay and the rat granulosa cell bioassay are described in detail hereinafter.

The compounds of the invention, together with a conventional adjuvant, carrier, diluent or excipient may be placed into the form of pharmaceutical compositions and unit dosages thereof, and in such form may be employed as solids, such as tablets or filled capsules, or liquids such as solutions, suspensions, emulsions, elixirs, or capsules filled with the same, all for oral use, or in the form of sterile injectable solutions for parenteral (including subcutaneous use). Such pharmaceutical compositions and unit dosage forms thereof may comprise ingredients in conventional proportions, with or without additional active compounds or principles, and such unit dosage forms may contain any suitable effective amount of the active ingredient commensurate with the intended daily dosage range to be employed. Tablets containing 10 milligrams of active ingredient or, more broadly, 0.1 to 100 milligrams, per tablet, are accordingly suitable representative unit dosage forms.

Definitions

5

10

15

20

25

30

The following paragraphs provide definitions of the various chemical moieties that make up the compounds of the invention and are intended to apply uniformly throughout the specification and claims unless expressly stated otherwise.

The term "substituent" refers to

- (a) halogen, cyano, oxo, carboxy, formyl, nitro, amino, amidino, guanidino, C₁-C₅ alkyl or alkenyl or arylalkyl imino, carbamoyl, azido, carboxamido, mercapto, hydroxy, hydroxyalkyl, alkylaryl, arylalkyl, C₁-C₈ alkyl, C₁-C₈ alkenyl, C₁-C₈ alkoxy, C₁-C₈ alkoxycarbonyl, aryloxycarbonyl, C₂-C₈ acyl, C₁-C₈ alkylthio, arylalkylthio, arylthio, C₁-C₈ alkylsulfinyl, arylalkylsulfinyl, arylsulfinyl, C₁-C₈ alkylsulfonyl, arylalkylsulfonyl, arylsulfonyl, C₂-C₁₅ N,N-dialkylcarbamoyl, C₃-C₇ cycloalkyl, aroyl, aryloxy, arylalkyl ether, aryl, aryl fused to a cycloalkyl or heterocycle or another aryl ring, C₃-C₇ heterocycle, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic, or aromatic ring; or
- (b) NR^6R^7 , where R^6 and R^7 are each independently hydrogen, cyano, oxo, carboxamido, amidino, C_1 - C_8 hydroxyalkyl, C_1 - C_3 alkylaryl, aryl- C_1 - C_3 alkyl, C_1 - C_8 alkyl, C_1 - C_8 alkoxycarbonyl, aryloxycarbonyl, aryl- C_1 - C_3 alkoxycarbonyl, C_2 - C_8 acyl, C_1 - C_8 alkylsulfonyl, arylalkylsulfonyl, arylsulfonyl, aroll, aryl, aryl fused to a cycloalkyl or heterocyclic or another aryl ring, C_3 - C_7 cycloalkyl, C_3 - C_7 heterocycle, or any of these rings fused or spiro-fused to a cycloalkyl or heterocyclic or aromatic ring;

15

20

25

30

or where R^6 and R^7 are taken together to form $-(CH_2)_mB(CH_2)_n$ where B is $-C(H)(R^8)$ -, -O-, $-N(R^8)$ -, or $-S(O)_r$ -, where m and n are independently 1 to 3, r is 0 to 2, and R^8 is defined the same way as R^6 ; or

(c) -(CH₂)_sNR⁶R⁷ where s is 1-6 and R⁶ and R⁷ are defined as in section (b) of the definition of substituent, above.

The term "substituted" refers to the moiety substituted with one or more substituents.

The term "alkyl" refers to a univalent C₁ to C₈ saturated straight, branched, or cyclic alkane moiety and specifically includes methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, cyclopentyl, isopentyl, neopentyl, hexyl, isohexyl, cyclohexyl, 3-methylpentyl, 2,2-dimethylbutyl, and 2,3-dimethylbutyl. The alkyl group can be optionally substituted with any appropriate group, including but not limited to one or more moieties selected from the group consisting of halo, hydroxyl, amino, alkylamino, arylamino, alkoxy, aryloxy, nitro, cyano, sulfonic acid, sulfate, phosphonic acid, phosphate, or phosphonate, either unprotected, or protected as necessary, as known to those skilled in the art or as taught, for example, in Greene, et al., "Protective Groups in Organic Synthesis," John Wiley and Sons, Second Edition, 1991.

The term "cycloalkyl" refers to a monocyclic C₃-C₇ ring.

The terms "arylalkyl" and "alkylaryl" refer to groups in which the alkyl consists of between 1 and 3 carbons.

The term "alkoxy" refers to an alkyl moiety having a terminal -O- with free a valence, e.g., CH₃CH₂-O-.

The term "alkenyl" refers to a univalent C₂-C₆ straight, branched, or in the case of C₅. 6, cyclic hydrocarbon with at least one double bond, optionally substituted as described above.

The term "alkynyl" refers to a univalent C_2 to C_6 straight or branched hydrocarbon with at least one triple bond (optionally substituted as described above) and specifically includes acetylenyl, propynyl, and $-C = C - CH_2(alkyl)$, including $-C = C - CH_2(CH_3)$.

The term "aryl" refers to a mono- or bi- or tri-cyclic aromatic ring system that may optionally be substituted with one or more substituents.

The term "heteroatom" means N, O, or S.

The term "heterocycle" refers to a cyclic alkyl, alkenyl, or alkynyl moiety wherein one or more ring carbon atoms is replaced with a heteroatom; a Cm-Cn heterocycle is a ring that contains m to n members wherein one or more of the members is a heteroatom.

5

10

15

20

30

The term "heteroaryl" refers to a aryl moiety wherein one or more ring carbon atoms is replaced with a heteroatom.

The term "halo" refers to chloro, fluoro, iodo, or bromo.

When a substituent defined as a monovalent radical becomes incorporated into a ring $(e.g., R^2 \text{ and } R^3 \text{ on Formula III})$, it is understood that the substituents become the corresponding divalent radicals.

The term "pharmaceutically acceptable salts or complexes" refers to salts or complexes that retain the desired biological activity of the above-identified compounds and exhibit minimal or no undesired toxicological effects. Examples of such salts include, but are not limited to acid addition salts formed with inorganic acids (for example, hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid, and the like), and salts formed with organic acids such as acetic acid, oxalic acid, tartaric acid, succinic acid, malic acid, ascorbic acid, benzoic acid, tannic acid, pamoic acid, alginic acid, polyglutamic acid, methanesulfonic acid, naphthalenesulfonic acid, naphthalenedisulfonic acid, The compounds can also be administered as pharmaceutically polygalacturonic acid. acceptable quaternary salts known by those skilled in the art, which specifically include the quaternary ammonium salt of the formula -NR + Z-, wherein R is hydrogen, alkyl, or benzyl, and Z is a counterion, including chloride, bromide, iodide, -O-alkyl, toluenesulfonate, methylsulfonate, sulfonate, phosphate, or carboxylate (such as benzoate, succinate, acetate, glycolate, maleate, malate, citrate, tartrate, ascorbate, benzoate, cinnamoate, mandeloate, benzyloate, and diphenylacetate).

The term "pharmaceutically active derivative" refers to any compound that upon administration to the recipient, is capable of providing directly or indirectly, the compounds disclosed herein.

25 Examples

The following Examples further illustrate specific aspects of the present invention. It is to be understood, however, that these examples are included for illustrative purposes only and are not intended to limit the scope of the invention in any respect and should not be so construed.

Example 1: Synthesis of 1-[(2-Oxo-6-pentyl-2H-pyran)-3-carbonyl]-pyrrolidine-2-carboxylic acid-3-(9-ethyl carbazolyl)amide (Formula XVI) (Figure 1; Scheme 1)

Step A. Synthesis of 1-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]-pyrrolidine-2-carboxylic acid-t-butylester:

5

10

15

20

25

30

To a solution of Boc-L-Proline (5 mmol, Advanced ChemTech, Louisville, USA) in dichloromethane (20 mL) cooled to 0 °C were added dropwise a solution of di-isopropyl carbodiimide (DIC, 2.5 mmol). After the solution had been stirred at 0 °C for 30 min, the solid by-product (DIC urea) was filtered out. To the filtrate were added 3-amino-9-ethylcarbazole (5 mmol, Aldrich Chemical Company, Milwaukee, USA) in DMF and triethyl amine (5 mmol) and the solution was stirred at room temperature for 16 h. The reaction was monitored by TLC for completion. The solution was evaporated to dryness under vacuum. The residue was dissolved in ethyl acetate (250 mL) and washed successively with 10% aqueous sodium carbonate, 10% aqueous citric acid, water, and saturated brine. The organic layer was dried on anhydrous sodium sulfate, filtered and ethyl acetate was evaporated to give an oily product 1-(t-Butoxycarbonyl)-N-[3-(9-ethylcarbazolyl)]-2-pyrrolidinecarboxamide (75% yield); HPLC purity: 90%; Mass: desired M+H found (Perceptive Biosystem's Voyager-Maldi TOF). This compound was used in the next step without further purification.

Step B. Formation of 1-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]-pyrrolidine-2-carboxylic acid-3-(9-ethyl carbazolyl)amide (Formula XVI):

The N-Boc-pyrrolidine carboxamide obtained from step A was dissolved in 50% trifluoroacetic acid/dichloromethane (25 mL) and stirred for 30 min at room temperature. The TFA solution was evaporated under vacuum. The dry residue was dissolved in DMF and two equivalents of triethyl amine was added, followed by one equivalent of a symmetrical anhydride (generated *in situ* from 2-oxo-6-pentyl-2H-pyran-3-carboxylic acid and diisopropylcarbodi-imide) and the solution was stirred for 14 h. DMF was evaporated under high vacuum. The residue was dissolved in ethyl acetate. This organic layer was washed with 10% aqueous sodium carbonate, 10% aqueous citric acid, water and saturated brine. The organic layer was dried on anhydrous magnesium sulphate. The organic layer was decolorized with charcoal evaporated under vacuum to result in light brown gummy material. This crude material was purified on preparative reverse phase HPLC using 1% TFA-acetonitrile and water as the mobile phase. HPLC purity > 95%. %; Mass: calculated for $C_{30}H_{33}N_3O_4$: 499.6; found: 500.6 (M+H) (Perceptive Biosystem's Voyager-Maldi TOF).

Synthesis of 1-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]-piperidine-2-carboxylic acid-3-(9-ethyl carbazolyl)amide (Formula XVII) was achieved using the same procedure as above by using N-boc-pipecolinic acid made from dl-pipecolinic acid (Aldrich Chemical Company, Milwaukee, USA) in place of Boc-L-proline.

5

10

15

20

25

30

Example 2: Synthesis of 2-(2-Ethyl-n-hexyl)-N-[(1-carboxamido-2-terazolyl)ethyl]-3-isoquinolinecarboxamide (Formula XVIII) (Figure 2; Scheme 2)

Step A. Synthesis of amide of Rink amide resin and N-Fmoc-D-histidine:

Fmoc-amino Rink Amide resin (1.0 g, 0.45 mmol/g substitution), available from NovaBiochem (San Diego, USA), was swollen with dichloromethane for 10 min. The resin was further washed with dimethyl formamide three times. The Fmoc- group was removed with 20% piperidine in DMF for 30 min. Further repeated washings were done with DMF (3 x 2 min), dichloromethane (DCM, 3 x 2 min), DMF (1 x 1 min). Then N-Fmoc-D-histidine (available from Advanced ChemTech, Louisville, USA) in DMF [10 mL, 2.0 mmol (4 equivalents with respect to the resin loading)], 2 mmol of O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HATU) and 4 mmol of diisopropylethylamine (DIEA, 640 μ L) were added to the resin to make a slurry. This slurry was stirred at room temperature for 2 h. The small resin sample was subjected to Sarin-Kaiser test for the completion of reaction. The resin was then filtered and washed with DMF (3 x 2 min), MeOH(2 x 2 min), dichloromethane (2 x 2 min) and DMF (2 x 2 min).

Step B. Synthesis of N-[(1-Carboxamido-2-tetrazoyl)ethyl]-3-isoquinoline-carboxamide bound to Rink amide resin:

The compound obtained from step A was deprotected by removal of the Fmoc-group with 20% piperidine in DMF for 30 min. Further resin washings were done with DMF (3 x 2 min), dichloromethane (DCM, 3 x 2min), DMF (1 x 1 min). Then (S)-(-)-1,2,3,4-tetrahydro-3-isoquinolinecarboxylic acid (available from Advanced ChemTech, Louisville, USA) in DMF [10 mL, 2.0 mmol (4 equivalents with respect to the resin loading)], 2 mmol of HATU and 4 mmol of diisopropylethylamine (DIEA, 640 µL) were added to the resin to make a slurry. This slurry was stirred at room temperature for 2 h. The small resin sample was subjected to Sarin-Kaiser test for the completion of reaction. The resin was then filtered and washed with DMF (3 x 2 min), MeOH (2 x 2 min), dichloromethane (2 x 2 min) and DMF (2 x 2 min).

Step C. Synthesis of 2-(2-Ethyl-n-hexyl)-N-[(1-carboxamido-2-terazolyl)ethyl]-3-isoquinolinecarboxamide bound to resin:

The Fmoc- group on the tetrahydroisoquinoline nitrogen was removed by treatment with 20% piperidine in DMF for 30 min. The resin was then washed with DMF (3 x 2 min), dichloromethane (3 x 2 min), and DMF (1 x 1 min). Then a 0.2 M stock solution of 2-ethylhexanal (Aldrich Chemical Company, Milwaukee, USA) in 2% Acetic acid in trimethyl

10

15

25

30

ortho formate (TMOF) (10 mL/g of resin) was added and reaction was carried out for 2 h to form an imine derivative *in situ*. Then a 0.2 M stock solution of sodium cyanoborohydride (NaCNBH₃) in TMOF was added to the above reaction mixture to get the final concentration to 0.1 M and the reaction was continued at room temperature for 14 h. The resin was washed with TMOF (3 x 2 min), DMF (3 x 2 min), MeOH (3 x 2 min), dichloromethane (2 x 2 min) and dried under vacuum for 4 h.

Step D. Formation of 2-(2-Ethyl-n-hexyl)-N-[(1-carboxamido-2-terazolyl)ethyl]-3-isoquinoline carboxamide (Formula XVIII):

Pre-cooled cleavage reagent (trifluoroacetic acid: dimethylsulfide: triisopropylsilane: H_2O ; 90:2.5:2.5:5; v/v) was added (10 mL/g) to the dried resin and allowed to stir for 2 h at room temperature. The TFA cocktail was filtered into a 20 mL vial and TFA was evaporated on a rotavapor under vacuum. Diethyl ether was added to precipitate the compound along with trityl alcohol. The mixture was dissolved in 20% acetonitrile before purification on reverse phase HPLC.

Step E. Purification of compound XVIII:

The crude compound from step D was dissolved in 10% aqueous acetonitrile and loaded onto the C18 column on Delta preparative HPLC. A linear gradient with 1% TFA acetonitrile and water was used as mobile phase. HPLC purity > 95%; Mass (Perceptive Biosystem's Voyager-Maldi TOF): calculated for $C_{24}H_{35}N_5O_2$: 425.6; found: 426.6 (M+H).

20 Example 3: Synthesis of 1-[(2-Oxo-6-pentyl-2H-pyran)-3-carbonyl]-4-hydroxypyrrolidine-2-carboxylic acid-[3-(9-ethyl carbazolyl)] amide (Formula XIX) (Figure 3: Scheme 3)

Step A. Synthesis of 1-t-butoxycarbonyl-4-hydroxypyrrolidine-2-carboxylic acid-[3-(9-ethyl carbazolyl)] amide:

To a solution of N-Boc-trans-hydroxy-L-proline (5 mmol, Sigma Chemical Company, St. Louis, USA) in dichloromethane (20 mL) at ambient temperature were added at 5 min intervals 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU, 5 mmol), diisopropyl ethyl amine (DIEA, 10 mmol) followed by 3-amino-9-ethylcarbazole (5 mmol, Aldrich Chemical Company, Milwaukee, USA). After stirring for 1 h, the solution was evaporated to dryness under vacuum. The residue was dissolved in ethyl acetate (250 mL) and washed successively with 10% aqueous sodium carbonate, 10% aqueous citric acid, water, and saturated brine. The organic layer was dried on anhydrous sodium sulfate, filtered and ethyl acetate was evaporated to give an oily product 1-(t-butoxycarbonyl)- 4-

5

10

15

20

25

30

hydroxypyrrolidine-2-[3-(9-ethyl carbazolyl)] carboxamide (85% yield); HPLC purity: 90%. This compound was used in the next step without further purification.

Step B. Formation of 1-[3-(2-Oxo-6-pentylpyran)carbonyl]-4-hydroxypyrrolidine-2-carboxylic acid-3-(9-ethyl carbazolyl)amide:

4-hydroxypyrrolidine-2-[3-(9-ethyl carbazolyl)] 1-(t-butoxycarbonyl)-The carboxamide obtained from step A was dissolved in 50 % trifluoro acetic acid/dichloromethane (25 mL) and stirred for 30 min at room temperature. The TFA solution was evaporated under vacuum. The dry residue was dissolved in dichloromethane and added to the activated ester of 2-oxo-6-pentyl-2H-pyran-3-carboxylic acid (generated in situ from 5 mmol 2-oxo-6-pentyl-2H-pyran-3-carboxylic acid, 5 mmol HBTU and 10 mmol diisopropylethylamine) and the solution was stirred for 1 h. The solvent was evaporated under vacuum and the residue was dissolved in ethyl acetate. This organic layer was washed with 10% aqueous sodium carbonate, 10% aqueous citric acid, water and saturated brine. The organic layer was dried on anhydrous magnesium sulphate and then evaporated in vacuo to result in light brown gummy material. This crude material was purified on preparative reverse phase HPLC using 1% TFA-acetonitrile and water as the mobile phase. HPLC purity > 95%. %; Mass: calculated for C₃₀H₃₃N₃O₅: 415.6; found: 516 (Perceptive Biosystem's Voyager-Maldi TOF).

Example 4: Synthesis of 2-[(1-Carboxamido-2-terazolyl)ethylcarbamoyl]-(D,L)-2-(2-ethyl-n-hexylamino)tetraline (Formula XXV) (Figure 4; Scheme 4)

Step A. Synthesis of amide of Rink amide resin and N-Fmoc-D-histidine:

Fmoc-amino Rink Amide resin (1.0 g, 0.45 mmol/g substitution), available from NovaBiochem (San Diego, USA), was swollen with dichloromethane for 10 min. The resin was further washed with dimethyl formamide three times. The Fmoc group was removed with 20% piperidine in DMF for 30 min. Further repeated washings were done with DMF (3 x 2 min), dichloromethane (DCM, 3 x 2 min), DMF (1 x 1 min). Then N-Fmoc-D-histidine (available from Advanced ChemTech, Louisville, USA) in DMF [10 mL, 2.0 mmol (4 equivalents with respect to the resin loading)], 2 mmol of O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HATU) and 4 mmol of diisopropylethylamine (DIEA, 640 uL) were added to the resin to make a slurry. This slurry was stirred at room temperature for 2 h. The small resin sample was subjected to Sarin-Kaiser test for the completion of reaction. The resin was then filtered and washed with DMF (3 x 2 min), MeOH (2 x 2 min), dichloromethane (2 x 2 min) and DMF (2 x 2 min).

5

10

15

20

25

30

Step B. Synthesis of 2-[(1-Carboxamido-2-tetrazoyl)ethylcarbamoyl]-(D,L)-2-aminotetraline bound to Rink amide resin:

The compound obtained from step A was deprotected by removal of the Fmoc group with 20% piperidine in DMF for 30 min. Further resin washings were done with DMF (3 x 2 min), dichloromethane (DCM, 3 x 2 min), DMF (1 x 1 min). Then Fmoc-(D,L)-2-Aminotetraline-2-carboxylic acid (available from Acros) in DMF [10 mL, 2.0 mmol (4 equivalents with respect to the resin loading)], 2 mmol of HATU and 4 mmol of diisopropylethylamine (DIEA, 640 μ L) were added to the resin to make a slurry. This slurry was stirred at room temperature for 2 h. The small resin sample was subjected to Sarin-Kaiser test for the completion of reaction. The resin was then filtered and washed with DMF (3 x 2 min), MeOH (2 x 2 min), dichloromethane (2 x 2 min) and DMF (2 x 2 min).

Step C. Synthesis of 2-[(1-Carboxamido-2-terazolyl)ethylcarbamoyl]-(D,L)-2-(2-ethyl-n-hexylamino)tetraline bound to resin:

The Fmoc group on the aminotetraline nitrogen was removed by treatment with 20% piperidine in DMF for 30 min. The resin was then washed with DMF (3 x 2 min), dichloromethane (3 x 2 min), and DMF (1 x 1 min). Then a 0.2 M stock solution of 2-ethylhexanal (Aldrich Chemical Company, Milwaukee, USA) in 2% Acetic acid in trimethyl ortho formate (TMOF) (10 mL/g of resin) was added and the reaction was carried out for 2 h to form an imine derivative in situ. Then a 0.2 M stock solution of sodium cyanoborohydride (NaCNBH₃) in TMOF was added to the above reaction mixture to get the final concentration to 0.1 M and the reaction was continued at room temperature for 14 h. The resin was washed with TMOF (3 x 2 min), DMF (3 x 2 min), MeOH (3 x 2 min), dichloromethane (2 x 2 min) and dried under vacuum for 4 h.

Step D. Formation of 2-[(1-Carboxamido-2-terazolyl)ethylcarbamoyl]-(D,L)-2-(2-ethyl-n-hexylamino)tetraline (Formula XXV):

Pre-cooled cleavage reagent (trifluoroacetic acid: dimethylsulfide:triisopropylsilane: H_2O ; 90:2.5:2.5:5; v/v) was added (10 mL/g) to the dried resin and allowed to stir for 2 h at room temperature. The TFA cocktail was filtered into a 20 mL vial and TFA was evaporated on a rotavapor under vacuum. Diethyl ether was added to precipitate the compound along with trityl alcohol. The mixture was dissolved in 20% acetonitrile before purification on reverse phase HPLC.

Step E. Purification of compound XXV:

15

20

25

30

The crude compound from step D was dissolved in 10% aqueous acetonitrile and loaded onto the C18 column on Delta preparative HPLC. A linear gradient with 1% TFA acetonitrile and water was used as mobile phase. HPLC purity > 95%; Mass (Perceptive Biosystem's Voyager-Maldi TOF): calculated for C₂₅H₃₇N₅O₂: 439.6; found: 440.6 (M+H).

5 Example 5: Synthesis of 3-(9-ethylcarbazolyl)amino-pyridin-2-yl-3-(2-oxo-6-pentyl-2H-pyran-3-carboxamide) (Formula XXVI) (Figure 5; Scheme 5)

Step A. Synthesis of 2-[3-(9-ethylcarbazolyl)amino]-3-nitropyridine:

To a solution of 2-chloro-3-nitropyridine (5 mmol, Aldrich Chemical Company, Milwaukee, USA) in toluene (10 mL) at ambient temperature were added 3-amino-9-ethylcarbazole (5 mmol, Aldrich Chemical Company, Milwaukee, USA). The mixture was heated to reflux for a period of 16 h. After cooling to room temperature, the mixture was diluted with ethyl acetate and washed successively with saturated sodium bicarbonate and brine. The organic layer was collected, dried over anhydrous sodium sulphate and concentrated *in vacuo* to give an oily product. This product was purified by chromatography over silica gel (eluent: 1:1 ethyl acetate:hexane) to give 2-[3-(9-ethylcarbazolyl)amino]-3-nitropyridine (68% yield); HPLC purity: >95%. This compound was then used in the next step.

Step B. Synthesis of 2-[3-(9-ethylcarbazolyl)amino]-3-aminopyridine:

To a methanolic solution of 2-[3-(9-ethylcarbazolyl)]amino-3-nitropyridine obtained from step A were added 10% palladium over carbon (10% w/w), and the mixture was subjected to hydrogenation using a Parr hydrogenator at 40 psi for a period of 12 h. Then the slurry was filtered over Celite to remove the catalyst and the methanolic filtrate was evaporated to dryness to afford an oily product, 2-[3-(9-ethylcarbazolyl)amino]-3-aminopyridine. This was used as such in the next step.

Step C. Formation of 3-(9-ethylcarbazolyl)amino-pyridin-2-yl-3-(2-oxo-6-pentyl-2*H*-pyran-3-carboxamide) (Formula XXVI):

To a solution of 2-oxo-6-pentyl-2*H*-pyran-3carboxylic acid (3mM, Aldrich Chemical Company, Milwaukee, USA) in 10 mL dichloromethane at ambient temperature were added 2-1*H*-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU; 3 mM; Advanced ChemTech, Louisville, USA) followed by 6 mM of diisopropylethylamine (DIEA; Aldrich Chemical Company, Milwaukee, USA). After 10 minutes, a solution of 3 mM of 2-[3-(9-ethylcarbazolyl)]amino-3-aminopyridine (obtained from step B) in 10 mL dichloromethane was added dropwise, and the resulting mixture was stirred at room

temperature for 2 h. The crude product mixture was washed with brine, dried over anhydrous sodium sulphate and chromatographed over silica gel (eluent: 1:1 ethyl acetate:hexane to 100% ethyl acetate) to afford 71% of pure compound XXVI. HPLC purity > 95%. %; Mass: calculated for $C_{30}H_{30}N_4O_3$: 495; found: 496 (M+H) (Finnigan LCQ).

Example 6: FSH Assay Method

General Overview

5

10

15

20

25

30

All compounds were stored in 96-well deepwell plates in DMSO at a nominal concentration of 10 mM (assuming perfect synthesis and yields). Compounds were screened for agonist activity at the FSH receptor using the recombinant FSH receptor stably transfected and expressed in Chinese Hamster Ovary cells (CHO cells) essentially as described in the work by Kelton, et al. (Molecular and Cellular Endocrinology, 1992, 89, 141-151). Since the FSH receptor is known to act via a G-protein (Gs) to activate adenylyl cyclase and hence raise intracellular levels of cAMP, the high throughput screening (HTS) assay used a gene reporter system consisting of the cAMP response element coupled upstream to the reporter gene, which in this case encoded the enzyme luciferase. An agonist at the FSH receptor increases cAMP in the cell, which results in activation of CREB (cAMP response element binding protein). This molecule interacts with the CRE element upstream of the gene and results in increased transcription of the genes downstream of the element. The substrate for luciferase (Packard Instrument Company, Meriden, CT, USA) was added to the cells after appropriate incubation with the compounds of the invention or FSH (used as a positive control). The amount of luciferase expressed was measured by quantitating the luminescence produced by the enzyme using a TopCount scintillation/luminescence counter running in single photon counting mode. A compound that acts as an agonist at the receptor should produce light from the treated cells in proportion to its concentration within the incubation. Luminescence should be saturable at high concentrations of the compound.

HTS Primary Assay in detail.

The compounds of the invention, in deepwell plates (Master plates) were loaded on the robotic deck along with the appropriate number of assay plates and daughter plates. A 10 μ l aliquot from each master plate was transferred to the corresponding daughter plate and 90 μ l of DME/F12 was added and mixed within each well. 20 μ l was then removed from the daughter plate and dispensed into the assay plate. After addition of an aliquot of FSH (equivalent to an EC₁₀₀ response for this hormone [Final concentration of 5e-11 M]) to each of three wells on the plate, 80 μ l of media (DME/F12 + 2% serum) and 100 μ l aliquot of cells

5

10

15

20

25

30

(4 x 10⁵/mL in the same media) were added and the plate incubated at 37 °C for 3 h 30 min. At this time the plate was removed from the incubator and media in each well was aspirated and the cells adhering to the bottom of the plate washed with 300 μl PBS containing 1 mM Ca²⁺ and 1 mM Mg²⁺. The PBS was aspirated and 100 μl PBS added to each well. 100 μl of Luclite (prepared as described by the manufacturer) was added to each well and the plate was shaken gently for 40 s prior to placement in the Topcount plate reader. After allowing 3.5 min for the plate to dark-adapt within the machine, the amount of luminescence generated was quantitated using Single Photon Counting mode. The data was transmitted electronically from the Topcount to the robot processing computer terminal and was renamed with an ID corresponding to the original master plate ID. Data were evaluated using an Excel macro and compounds showing activity comparable to that produced by an EC₁₀₀ of FSH itself were further analyzed in the same assay at differing concentrations. LDR (log-dose-response) curves were generated for these compounds in CHO cells containing the FSH receptor and these curves were also compared with those in either cells expressing a different Gs-linked receptor or in cells lacking any transfected receptor (to confirm receptor specificity).

Compounds that showed receptor specificity and activity at low concentrations were progressed to secondary assays that included dose-response curves in Y1 cells co-expressing the human FSH receptor or in isolated rat granulosa cells.

Figure 6 displays results of the FSH assay for compounds XVI, XVII and XIX. For comparison, results for FSH are also shown. Dose-response curves for each compound were generated and are displayed. From the graph, FSH has a EC₅₀ of 1.47 pM, compound XVI has a EC₅₀ of 38.8 nM, compound XVII has a EC₅₀ of 3.9 nM, and compound XIX has a EC₅₀ of 1.12 μ M. A best-fit line is drawn for FSH. Results of the assay using media only and forskolin are also shown. The assay was performed using duplicate samples of each compound.

Example 7: Rat Granulosa Cell assay

The primary rat granulosa cell bioassay for FSH was performed essentially as described (Dahl et al. (1989) Methods Enzymol., 168: 414-423). Conversion of testosterone to estradiol in the presence of low nanomolar concentrations of FSH was detected using this assay. In this in vitro assay, conversion of androstendione to estrogen by granulosa cells in the presence of FSH was measured for compounds XVI and XVII. For comparison, FSH was also tested in the assay.

5

10

15

Cells were plated at 5000, 8000, 10,000 and 20,000 cells/ well/ 200 μl of GAB medium on poly-D-lysine-coated 96-well tissue culture plates. Plates were incubated at 37 °C in a 5% CO₂/95% air incubator for 3 days. Cultures were washed prior to stimulation with FSH or LH. 50 μl of 4X concentrations of rhFSH, rhLH or forskolin was added to the cultures. To define the range of the dose response curve the rhFSH was diluted so that the final concentration on the cells was between 10⁻⁷ to 10⁻¹⁵ M with three doses per log at 1, 2 and 5. Forskolin was diluted so that the final concentration on the cells was 1 μM. Cells were incubated @ 37 °C in 5% CO₂. Three days later, cell supernatants were collected and diluted 1:100 in GAB medium for measurement of estradiol by RIA. The RIA was performed according to manufacturer's directions except that an estradiol standard was prepared in absolute ethanol at 100 ng/mL and then further diluted in GAB medium, instead of kit buffer. The concentration of hormone was plotted on the X-axis against the amount of estradiol produced by the cells on the Y-axis using Origin graphics software.

As displayed in Figure 7, compounds XVI and XVII show increasing estradiol production with increasing dose at concentrations between 200 nM and 5 μ M. Above this concentration the compound showed a decrease in production—presumably since it caused a desensitization of the FSH receptors to further stimulation. The results show that compounds XVI and XVII stimulated estradiol production with EC₅₀ of 1.4 μ M and 1.2 μ M, respectively. Results of the assay using media only are also shown.

15

20

CLAIMS

1. A compound of Formula I,

5 and pharmaceutically acceptable addition salts thereof, wherein

R¹, R³, R⁴ and R⁵ are each independently hydrogen, C₁-C₁₀ alkyl, C₁-C₁₀ alkyl substituted with one or more substituents, C₂-C₁₀ alkenyl, C₂-C₁₀ alkenyl substituted with one or more substituents, C₁-C₈ alkoxy, C₁-C₈ alkoxy substituted with one or more substituents. C₂-C₈ alkoxycarbonyl, C₂-C₈ alkoxycarbonyl substituted with one or more substituents, C₁-C₈ thioalkyl substituted with one or more substituents, C₂-C₈ acyl substituted with one or more substituents, C₂-C₈ acyl substituted with one or more substituents, C₂-C₈ acyloxy substituted with one or more substituents, aryloxy, aryl, aryl substituted with one or more substituents, C₃-C₇ cycloalkyl substituted with one or more substituents, C₃-C₇ heterocycle, or C₃-C₇ heterocycle substituted with one or more substituents, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic or aromatic ring;

R² is hydrogen, straight or branched C₁-C₆ alkyl or C₃-C₇ cycloalkyl or C₃-C₇ cycloalkyl substituted with one or more substituents, C₃-C₇ heterocycle, C₃-C₇ heterocycle substituted with one or more substituents, aryl, aryl substituted with one or more substituents, heteroaryl, heteroaryl substituted with one or more substituents, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic or aromatic ring; or R² together with R¹ forms a C₂-C₇ heterocycle, C₂-C₇ heterocycle substituted with one or more substituents, heteroaryl, or heteroaryl substituted with one or more substituents;

W is carbonyl (C=O), amido (NH(C=O)), amidoalkyl (NH(C=O)CH₂-), imino (C=NH), thiocarbonyl (C=S), sulfonyl (SO₂), methylene (CH₂), or methylene substituted with one or more substituents;

X is CH or N;

Y is CH or N;

Z is carbonyl (C=O), amino (NH), imino (C=N), sulfonyl (SO₂), or (C=O)NH; or

10

15

20

25

Z, together with R^1 , N, W, X, and Y, forms a C_5 - C_7 heterocyclic ring in which R^1 is a direct bond or C_1 - C_2 alkylene; and

the substituents independently are

- (a) halogen, cyano, oxo, carboxy, formyl, nitro, amino, amidino, guanidino, C₁-C₅ alkyl or alkenyl or arylalkyl imino, carbamoyl, azido, carboxamido, mercapto, hydroxy, hydroxyalkyl, alkylaryl, arylalkyl, C₁-C₈ alkyl, C₁-C₈ alkenyl, C₁-C₈ alkoxy, C₁-C₈ alkoxycarbonyl, aryloxycarbonyl, C₂-C₈ acyl, C₁-C₈ alkylthio, arylalkylthio, arylalkylsulfinyl, arylalkylsulfinyl, arylalkylsulfinyl, C₁-C₈ alkylsulfonyl, arylalkylsulfonyl, arylalkylsulfonyl, arylalkylsulfonyl, C₂-C₁₅ N₂N-dialkylcarbamoyl, C₃-C₇ cycloalkyl, aroyl, aryloxy, arylalkyl ether, aryl, aryl fused to a cycloalkyl or heterocycle or another aryl ring, C₃-C₇ heterocycle, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic, or aromatic ring; or
- (b) NR⁶R⁷, where R⁶ and R⁷ are each independently hydrogen, cyano, oxo, carboxamido, amidino, C₁-C₈ hydroxyalkyl, C₁-C₃ alkylaryl, aryl-C₁-C₃ alkyl, C₁-C₈ alkyl, C₁-C₈ alkoxycarbonyl, aryloxycarbonyl, aryl-C₁-C₃ alkoxycarbonyl, C₂-C₈ acyl, C₁-C₈ alkylsulfonyl, arylalkylsulfonyl, arylsulfonyl, aroyl, aryl fused to a cycloalkyl or heterocyclic or another aryl ring, C₃-C₇ cycloalkyl, C₃-C₇ heterocycle, or any of these rings fused or spiro-fused to a cycloalkyl or heterocyclic or aromatic ring;

or R^6 and R^7 are taken together to form $-(CH_2)_mB(CH_2)_n$ where B is $-C(H)(R^8)$ -, -O-, $-N(R^8)$ -, or $-S(O)_r$ -, where m and n are independently 1 to 3, r is 0 to 2, and R^8 is defined the same way as R^6 ; or

- (c) -(CH₂)_sNR⁶R⁷ where s is 1-6 and R⁶ and R⁷ are defined as in section (b) of the definition of substituent, above.
- 2. A compound according to Claim 1, of Formula II:

25

3. A compound of Formula IV-A,

$$R^{4} \xrightarrow{R^{3}} R^{9}$$

$$W$$

$$R^{5} \xrightarrow{Z} R^{1} \xrightarrow{N} R^{2}$$

IV-A

and pharmaceutically acceptable addition salts thereof, wherein

- R³ and R⁹ are each independently hydrogen, halogen, cyano, oxo, carboxy, formyl, nitro, amino, amidino, guanidino, C₁-C₅ alkyl or alkenyl or arylalkyl imino, azido, mercapto, carboxamido, hydroxy, hydroxyalkyl, alkylaryl, arylalkyl, C₁-C₈ alkyl, C₁-C₈ alkenyl, C₁-C₈ alkoxy, C₁-C₈ alkoxycarbonyl, C₂-C₈ acyl, C₁-C₈ alkylthio, arylalkylthio, arylthio, C₁-C₈ alkylsulfinyl, arylalkylsulfinyl, arylsulfinyl, C₁-C₈ alkylsulfonyl, arylalkylsulfonyl, arylsulfonyl, C₁-C₆ N-alkyl carbamoyl, C₂-C₁₅ N,N-dialkylcarbamoyl, C₁-C₅ alkyl or alkenyl or arylalkyl ester, C₁-C₇ cycloalkyl, aroyl, aryloxy, benzyloxy, benzyloxy substituted with one or more substituents, aryl, aryl substituted with one or more substituents, C₃-C₇ heterocycle, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic or aromatic ring; or
- 15 R³ and R⁹ are each independently -NR⁶R⁷ or -(CH₂)_sNR⁶R⁷ where s is 1-6 and R⁶ and R⁷ are as defined in section (b) of the definition of substituent, below; or
 - R³ and R⁹ together form a substituted or unsubstituted C₃-C₇ cycloalkyl or C₃-C₇ heterocycle spiro ring, or such a ring fused to a cycloalkyl, heterocyclic or aromatic ring, to make a compound of Formula IV-B,

IV-E

R¹, R⁴, and R⁵ are each independently hydrogen, C₁-C₁₀ alkyl, C₁-C₁₀ alkyl substituted with one or more substituents, C₂-C₁₀ alkenyl, C₂-C₁₀ alkenyl substituted with one or more substituents, C₂-C₁₀ alkynyl, C₂-C₁₀ alkynyl substituted with one or more substituents, C₁-C₈ alkoxy, C₁-C₈ alkoxy substituted with one or more substituents, C₂-C₈ alkoxycarbonyl, C₂-C₈ alkoxycarbonyl substituted with one or more substituents, C₁-C₈ thioalkyl, C₁-C₈ thioalkyl substituted with one or more substituents, C₂-C₈ acyl substituted

10

15

25

with one or more substituents, C_2 - C_8 acyloxy, C_2 - C_8 acyloxy substituted with one or more substituents, aryloxy, aryl, aryl substituted with one or more substituents, C_3 - C_7 cycloalkyl substituted with one or more substituents, C_3 - C_7 heterocycle, or C_3 - C_7 heterocycle substituted with one or more substituents, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic or aromatic ring;

R² is hydrogen, straight or branched C₁-C₆ alkyl or C₃-C₇ cycloalkyl or C₃-C₇ cycloalkyl substituted with one or more substituents, C₃-C₇ heterocycle, C₃-C₇ heterocycle substituted with one or more substituents, aryl, aryl substituted with one or more substituents, heteroaryl, heteroaryl substituted with one or more substituents, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic or aromatic ring; or R² together with R¹ forms a C₂-C₇ heterocycle, C₂-C₇ heterocycle substituted with one or more substituents, heteroaryl, or heteroaryl substituted with one or more substituents;

W is carbonyl (C=O), amido (NH(C=O)), amidoalkyl (NH(C=O)CH₂-), imino (C=NH), thiocarbonyl (C=S), sulfonyl (SO₂), methylene (CH₂), or methylene substituted with one or more substituents;

Y is CH or N;

Z is carbonyl (C=O), amino (NH), imino (C=N), sulfonyl (SO₂), or (C=O)NH; or

Z, together with R^1 , N, W, X, and Y, forms a C_5 - C_7 heterocyclic ring in which R^1 is a direct bond or C_1 - C_2 alkylene; and

20 the substituents are independently

- halogen, cyano, oxo, carboxy, formyl, nitro, amino, amidino, guanidino, C₁-C₅ alkyl or alkenyl or arylalkyl imino, carbamoyl, azido, carboxamido, mercapto, hydroxy, hydroxyalkyl, alkylaryl, arylalkyl, C₁-C₈ alkyl, C₁-C₈ alkenyl, C₁-C₈ alkoxy, C₁-C₈ alkoxycarbonyl, aryloxycarbonyl, C₂-C₈ acyl, C₁-C₈ alkylthio, arylalkylthio, arylalkylsulfinyl, arylalkylsulfinyl, arylalkylsulfinyl, C₁-C₈ alkylsulfonyl, arylalkylsulfonyl, arylalkylsulfonyl, C₁-C₆ N-alkyl carbamoyl, C₂-C₁₅ N,N-dialkylcarbamoyl, C₃-C₇ cycloalkyl, aroyl, aryloxy, arylalkyl ether, aryl, aryl fused to a cycloalkyl or heterocycle or another aryl ring, C₃-C₇ heterocycle, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic, or aromatic ring; or
- 30 (b) NR⁶R⁷, where R⁶ and R⁷ are each independently hydrogen, cyano, oxo, carboxamido, amidino, C₁-C₈ hydroxyalkyl, C₁-C₃ alkylaryl, aryl-C₁-C₃ alkyl, C₁-C₈ alkoxy, C₁-C₈ alkoxycarbonyl, aryloxycarbonyl, aryl-C₁-C₃ alkoxycarbonyl, C₂-C₈ acyl, C₁-C₈ alkylsulfonyl, arylalkylsulfonyl, arylsulfonyl,

aroyl, aryl, aryl fused to a cycloalkyl or heterocyclic or another aryl ring, C3-C7 cycloalkyl, C3-C7 heterocycle, or any of these rings fused or spiro-fused to a cycloalkyl or heterocyclic or aromatic ring;

or R⁶ and R⁷ are taken together to form -(CH₂)_mB(CH₂)_n where B is -C(H)(R⁸)-, -O-, -N(R8)-, or -S(O)r-, where m and n are independently 1 to 3, r is 0 to 2, and R8 is defined the same way as R⁶; or

- -(CH_{2)s}NR⁶R⁷ where s is 1-6 and R⁶ and R⁷ are as defined in section (b) of the definition of substituent, above.
- A compound of Formula VI, 10 4.

$$\begin{array}{c|c}
B & R^2 \\
\downarrow & \downarrow \\
N & W & N \\
\downarrow & Z \\
R^5 & Z
\end{array}$$

VI

and pharmaceutically acceptable addition salts thereof, wherein n = 0 or 1;

- A and B are each independently -CH₂-, -CH(R¹⁰)-, -O-, -S-, -NH-, or -NR¹⁰-, where R¹⁰ is 15 hydrogen, hydroxy, amino, amino substituted with one or more substituents, C1-C6 alkoxy, C₁-C₆ alkyl, C₁-C₆ alkyl substituted with one or more substituents, C₁-C₆ alkoxycarbonyl, cyano, C1-C6 aminoalkyl, or -(CH2)sNR6R7, where s is 1-6 and R6 and R7 are as defined in section (b) of the definition of substituent, below;
- R1 and R5 are each independently hydrogen, C1-C10 alkyl, C1-C10 alkyl substituted with one or 20 more substituents, C2-C10 alkenyl, C2-C10 alkenyl substituted with one or more substituents, C2-C10 alkynyl, C2-C10 alkynyl substituted with one or more substituents, C1-C₈ alkoxy, C₁-C₈ alkoxy substituted with one or more substituents, C₂-C₈ alkoxycarbonyl, C_2 - C_8 alkoxycarbonyl substituted with one or more substituents, C_1 - C_8 thioalkyl, C_1 - C_8 thioalkyl substituted with one or more substituents, C2-C8 acyl, C2-C8 acyl substituted 25 with one or more substituents, C2-C8 acyloxy, C2-C8 acyloxy substituted with one or more substituents, aryloxy, aryl, aryl substituted with one or more substituents, C3-C7 cycloalkyl, C₃-C₇ cycloalkyl substituted with one or more substituents, C₃-C₇ heterocycle, or C₃-C₇ heterocycle substituted with one or more substituents, or any of these rings fused 30

10

15

20

25

30

R² is hydrogen, straight or branched C₁-C₆ alkyl or C₃-C₇ cycloalkyl or C₃-C₇ cycloalkyl substituted with one or more substituents, C₃-C₇ heterocycle, C₃-C₇ heterocycle substituted with one or more substituents, aryl, aryl substituted with one or more substituents, heteroaryl, heteroaryl substituted with one or more substituents, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic or aromatic ring; or R² together with R¹ forms a C₂-C₇ heterocycle, C₂-C₇ heterocycle substituted with one or more substituents, heteroaryl, or heteroaryl substituted with one or more substituents;

W is carbonyl (C=O), amido (NH(C=O)), amidoalkyl (NH(C=O)CH₂-), imino (C=NH), thiocarbonyl (C=S), sulfonyl (SO₂), methylene (CH₂), or methylene substituted with one or more substituents;

Z is carbonyl (C=O), amino (NH), imino (C=N), sulfonyl (SO₂), or (C=O)NH; or

Z, together with R¹, N, W, X, and Y, forms a C₅-C₇ heterocyclic ring in which R¹ is a direct bond or C₁-C₂ alkylene; and

the substituents are independently

- (a) halogen, cyano, oxo, carboxy, formyl, nitro, amino, amidino, guanidino, C₁-C₅ alkyl or alkenyl or arylalkyl imino, carbamoyl, azido, carboxamido, mercapto, hydroxy, hydroxyalkyl, alkylaryl, arylalkyl, C₁-C₈ alkyl, C₁-C₈ alkenyl, C₁-C₈ alkoxy, C₁-C₈ alkoxycarbonyl, aryloxycarbonyl, C₂-C₈ acyl, C₁-C₈ alkylthio, arylalkylthio, arylalkylsulfinyl, arylalkylsulfinyl, arylalkylsulfinyl, C₁-C₈ alkylsulfonyl, arylalkylsulfonyl, arylalkylsulfonyl, C₁-C₆ N-alkyl carbamoyl, C₂-C₁₅ N,N-dialkylcarbamoyl, C₃-C₇ cycloalkyl, aroyl, aryloxy, arylalkyl ether, aryl, aryl fused to a cycloalkyl or heterocycle or another aryl ring, C₃-C₇ heterocycle, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic, or aromatic ring; or
 - (b) NR⁶R⁷, where R⁶ and R⁷ are each independently hydrogen, cyano, oxo, carboxamido, amidino, C_1 - C_8 hydroxyalkyl, C_1 - C_3 alkylaryl, aryl- C_1 - C_3 alkyl, C_1 - C_8 alkoxy, C_1 - C_8 alkoxycarbonyl, aryloxycarbonyl, aryl- C_1 - C_3 alkoxycarbonyl, C_2 - C_8 acyl, C_1 - C_8 alkylsulfonyl, arylalkylsulfonyl, arylsulfonyl, aroyl, aryl fused to a cycloalkyl or heterocyclic or another aryl ring, C_3 - C_7 cycloalkyl, C_3 - C_7 heterocycle, or any of these rings fused or spiro-fused to a cycloalkyl or heterocyclic or aromatic ring;

or R^6 and R^7 are taken together to form $-(CH_2)_mB(CH_2)_n$ where B is $-C(H)(R^8)$ -, -O-, $-N(R^8)$ -, or $-S(O)_r$ -, where m and n are independently 1 to 3, r is 0 to 2, and R^8 is defined the same way as R^6 ; or

10

15

20

25

- (c) -(CH₂)_sNR⁶R⁷ where s is 1-6 and R⁶ and R⁷ are as defined in section (b) of the definition of substituent, above.
- 5. A compound of Formula VII,

and pharmaceutically acceptable addition salts thereof, wherein

R³ and W form a substituted or unsubstituted aryl, substituted or unsubstituted C₃-C₇ cycloalkyl, C₃-C₇ heterocycle, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic or aromatic ring;

R¹, R⁴ and R⁵ are each independently hydrogen, C₁-C₁₀ alkyl, C₁-C₁₀ alkyl substituted with one or more substituents, C₂-C₁₀ alkenyl, C₂-C₁₀ alkenyl substituted with one or more substituents, C₁-C₈ alkoxy, C₁-C₈ alkoxy substituted with one or more substituents, C₂-C₈ alkoxycarbonyl, C₂-C₈ alkoxycarbonyl substituted with one or more substituents, C₁-C₈ thioalkyl substituted with one or more substituents, C₂-C₈ acyl substituted with one or more substituents, C₂-C₈ acyl substituted with one or more substituents, C₂-C₈ acyloxy substituted with one or more substituents, aryloxy, aryl, aryl substituted with one or more substituents, C₃-C₇ cycloalkyl substituted with one or more substituents, C₃-C₇ heterocycle, or C₃-C₇ heterocycle substituted with one or more substituents, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic or aromatic ring;

R² is hydrogen, straight or branched C₁-C₆ alkyl or C₃-C₇ cycloalkyl or C₃-C₇ cycloalkyl substituted with one or more substituents, C₃-C₇ heterocycle, C₃-C₇ heterocycle substituted with one or more substituents, aryl, aryl substituted with one or more substituents, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic or aromatic ring; or R² together with R¹ forms a C₂-C₇ heterocycle, C₂-C₇ heterocycle substituted with one or more substituents, heteroaryl, or heteroaryl substituted with one or more substituents;

W is carbonyl (C=O), amido (NH(C=O)), amidoalkyl (NH(C=O)CH₂-), imino (C=NH), thiocarbonyl (C=S), sulfonyl (SO₂), methylene (CH₂), or methylene substituted with one or more substituents;

X is CH or N;

5 Y is CH or N;

10

15

20

25

30

Z is carbonyl (C=O), amino (NH), imino (C=N), sulfonyl (SO2), or (C=O)NH; or

Z, together with R^1 , N, W, X, and Y, forms a C_5 - C_7 heterocyclic ring in which R^1 is a direct bond or C_1 - C_2 alkylene; and

the substituents are independently

- (a) halogen, cyano, oxo, carboxy, formyl, nitro, amino, amidino, guanidino, C₁-C₅ alkyl or alkenyl or arylalkyl imino, carbamoyl, azido, carboxamido, mercapto, hydroxy, hydroxyalkyl, alkylaryl, arylalkyl, C₁-C₈ alkyl, C₁-C₈ alkenyl, C₁-C₈ alkoxy, C₁-C₈ alkoxycarbonyl, aryloxycarbonyl, C₂-C₈ acyl, C₁-C₈ alkylthio, arylalkylthio, arylalkylsulfinyl, arylalkylsulfinyl, arylalkylsulfinyl, C₁-C₈ alkylsulfonyl, arylalkylsulfonyl, arylalkylsulfonyl, arylalkylsulfonyl, C₁-C₆ N-alkyl carbamoyl, C₂-C₁₅ N,N-dialkylcarbamoyl, C₃-C₇ cycloalkyl, aroyl, aryloxy, arylalkyl ether, aryl, aryl fused to a cycloalkyl or heterocycle or another aryl ring, C₃-C₇ heterocycle, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic, or aromatic ring; or
 - (b) NR⁶R⁷, where R⁶ and R⁷ are each independently hydrogen, cyano, oxo, carboxamido, amidino, C₁-C₈ hydroxyalkyl, C₁-C₃ alkylaryl, aryl-C₁-C₃ alkyl, C₁-C₈ alkoxy, C₁-C₈ alkoxycarbonyl, aryloxycarbonyl, aryl-C₁-C₃ alkoxycarbonyl, C₂-C₈ acyl, C₁-C₈ alkylsulfonyl, arylalkylsulfonyl, arylsulfonyl, aroyl, aryl fused to a cycloalkyl or heterocyclic or another aryl ring, C₃-C₇ cycloalkyl, C₃-C₇ heterocycle, or any of these rings fused or spiro-fused to a cycloalkyl or heterocyclic or aromatic ring;

or R^6 and R^7 are taken together to form $-(CH_2)_mB(CH_2)_n$ where B is $-C(H)(R^8)$ -, -O-, $-N(R^8)$ -, or $-S(O)_r$ -, where m and n are independently 1 to 3, r is 0 to 2, and R^8 is defined the same way as R^6 ; or

(c) $-(CH_2)_sNR^6R^7$ where s is 1-6 and R^6 and R^7 are defined as in section (b) of the definition of substituent, above.

15

6. A compound of Formula V,

$$\begin{array}{c|c}
R^{3} & R^{9} \\
 & W \\
 & W \\
 & R^{5} & Z \\
 & R^{1} & N \\
 & V
\end{array}$$

and pharmaceutically acceptable addition salts thereof, wherein

- R³ and R⁴ together with the C and Y to which they are bound, respectively, form a substituted or unsubstituted aryl, substituted or unsubstituted C₃-C₇ cycloalkyl or C₃-C₇ heterocycle, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic or aromatic ring;
 - R¹ and R⁵ are each independently hydrogen, C₁-C₁₀ alkyl, C₁-C₁₀ alkyl substituted with one or more substituents, C₂-C₁₀ alkenyl, C₂-C₁₀ alkenyl substituted with one or more substituents, C₁-C₈ alkoxy, C₁-C₈ alkoxy substituted with one or more substituents, C₂-C₈ alkoxycarbonyl, C₂-C₈ alkoxycarbonyl substituted with one or more substituents, C₁-C₈ thioalkyl substituted with one or more substituents, C₁-C₈ acyl, C₂-C₈ acyl substituted with one or more substituents, C₂-C₈ acyl substituted with one or more substituents, C₂-C₈ acyloxy substituted with one or more substituents, aryloxy, aryl, aryl substituted with one or more substituents, C₃-C₇ cycloalkyl substituted with one or more substituents, C₃-C₇ heterocycle, or C₃-C₇ heterocycle substituted with one or more substituents, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic or aromatic ring;
- R² is hydrogen, straight or branched C₁-C₆ alkyl or C₃-C₇ cycloalkyl or C₃-C₇ cycloalkyl substituted with one or more substituents, C₃-C₇ heterocycle, C₃-C₇ heterocycle substituted with one or more substituents, aryl, aryl substituted with one or more substituents, heteroaryl, heteroaryl substituted with one or more substituents, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic or aromatic ring; or R² together with R¹ forms a C₂-C₇ heterocycle, C₂-C₇ heterocycle substituted with one or more substituents;
 - R⁹ is hydrogen, halogen, cyano, oxo, carboxy, formyl, nitro, amino, amidino, guanidino, C₁-C₅ alkyl or alkenyl or arylalkyl imino, azido, mercapto, carboxamido, hydroxy, hydroxyalkyl, alkylaryl, arylalkyl, C₁-C₈ alkyl, C₁-C₈ alkenyl, C₁-C₈ alkoxy, C₁-C₈ alkoxycarbonyl, C₂-C₈ acyl, C₁-C₈ alkylthio, arylalkylthio, arylthio, C₁-C₈ alkylsulfinyl,

arylalkylsulfinyl, arylsulfinyl, C_1 - C_8 alkylsulfonyl, arylalkylsulfonyl, arylsulfonyl, C_1 - C_6 N-alkyl carbamoyl, C_2 - C_{15} N,N-dialkylcarbamoyl, C_1 - C_5 alkyl or alkenyl or arylalkyl ester, C_1 - C_7 cycloalkyl, aroyl, aryloxy, benzyloxy, benzyloxy substituted with one or more substituents, aryl, aryl substituted with one or more substituents, C_3 - C_7 heterocycle, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic or aromatic ring; or

- R⁹ is -NR⁶R⁷ or -(CH₂)_sNR⁶R⁷ where s is 1-6 and R⁶ and R⁷ are as defined in section (b) of the definition of substituent, below;
- W is carbonyl (C=O), amido (NH(C=O)), amidoalkyl (NH(C=O)CH₂-), imino (C=NH), thiocarbonyl (C=S), sulfonyl (SO₂), methylene (CH₂), or methylene substituted with one or more substituents;

Y is CH or N;

5

10

20

- Z is carbonyl (C=O), amino (NH), imino (C=N), sulfonyl (SO2), or (C=O)NH; or
- Z, together with R¹, N, W, X, and Y, forms a C₅-C₇ heterocyclic ring in which R¹ is a direct bond or C₁-C₂ alkylene; and
- 15 the substituents are independently
 - (a) halogen, cyano, oxo, carboxy, formyl, nitro, amino, amidino, guanidino, C₁-C₅ alkyl or alkenyl or arylalkyl imino, carbamoyl, azido, carboxamido, mercapto, hydroxy, hydroxyalkyl, alkylaryl, arylalkyl, C₁-C₈ alkyl, C₁-C₈ alkenyl, C₁-C₈ alkoxy, C₁-C₈ alkoxycarbonyl, aryloxycarbonyl, C₂-C₈ acyl, C₁-C₈ alkylthio, arylalkylthio, arylalkylsulfinyl, arylalkylsulfinyl, arylalkylsulfinyl, C₁-C₈ alkylsulfonyl, arylalkylsulfonyl, arylalkylsulfonyl, C₁-C₆ N-alkyl carbamoyl, C₂-C₁₅ N,N-dialkylcarbamoyl, C₃-C₇ cycloalkyl, aroyl, aryloxy, arylalkyl ether, aryl, aryl fused to a cycloalkyl or heterocycle or another aryl ring, C₃-C₇ heterocycle, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic, or aromatic ring; or
- (b) NR⁶R⁷, where R⁶ and R⁷ are each independently hydrogen, cyano, oxo, carboxamido, amidino, C₁-C₈ hydroxyalkyl, C₁-C₃ alkylaryl, aryl-C₁-C₃ alkyl, C₁-C₈ alkoxy, C₁-C₈ alkoxycarbonyl, aryloxycarbonyl, aryl-C₁-C₃ alkoxycarbonyl, C₂-C₈ acyl, C₁-C₈ alkylsulfonyl, arylalkylsulfonyl, arylsulfonyl, aroyl, aryl fused to a cycloalkyl or heterocyclic or another aryl ring, C₃-C₇ cycloalkyl, C₃-C₇ heterocycle, or any of these rings fused or spiro-fused to a cycloalkyl or heterocyclic or aromatic ring;

15

20

or R^6 and R^7 are taken together to form -(CH₂)_mB(CH₂)_n where B is -C(H)(R^8)-, -O-, -N(R^8)-, or -S(O)_r-, where m and n are independently 1 to 3, r is 0 to 2, and R^8 is defined the same way as R^6 ; or

- (c) -(CH₂)_sNR⁶R⁷ where s is 1-6 and R⁶ and R⁷ are as defined in section (b) of the definition of substituent, above.
- 7. A compound of Formula IX,

$$R^{11} \xrightarrow{R^{12}} R^{13}$$

$$R^{11} \xrightarrow{M} L$$

$$R^{9} \xrightarrow{N} W$$

$$R^{5} \xrightarrow{Z} R^{1} \xrightarrow{N} R^{2}$$

$$IX$$

and pharmaceutically acceptable addition salts thereof, wherein n = 0 or 1;

L and M are independently CH, N, O, or S, provided L and M are not both heteroatoms and when L is O or S there is no R¹³ and when M is O or S there is no R¹²;

R⁹, R¹¹, R¹² and R¹³ are each independently hydrogen, halogen, cyano, oxo, carboxy, formyl, nitro, amino, amidino, guanidino, C₁-C₅ alkyl or alkenyl or arylalkyl imino, azido, mercapto, carboxamido, hydroxy, hydroxyalkyl, alkylaryl, arylalkyl, C₁-C₈ alkyl, C₁-C₈ alkenyl, C₁-C₈ alkoxy, C₁-C₈ alkoxycarbonyl, C₂-C₈ acyl, C₁-C₈ alkylthio, arylalkylthio, arylalkylsulfinyl, arylalkylsulfinyl, arylalkylsulfinyl, arylalkylsulfinyl, C₁-C₈ alkylsulfonyl, arylalkylsulfonyl, arylalkylsulfonyl, C₂-C₁₅ N,N-dialkylcarbamoyl, C₁-C₅ alkyl or alkenyl or arylalkyl ester, C₁-C₇ cycloalkyl, aroyl, aryloxy, benzyloxy, benzyloxy substituted with one or more substituents, aryl, aryl substituted with one or more substituents, C₃-C₇ heterocycle, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic or aromatic ring, or -NR⁶R⁷ or -(CH₂)₈NR⁶R⁷ where s is 1-6 and R⁶ and R⁷ are as defined in section (b) of the definition of substituent, below; or

25 R⁹, R¹¹, R¹², and R¹³ each independently or in combination are a spiro or fused or bridged ring:

R¹ and R⁵ are each independently hydrogen, C₁-C₁₀ alkyl, C₁-C₁₀ alkyl substituted with one or more substituents, C₂-C₁₀ alkenyl, C₂-C₁₀ alkenyl substituted with one or more substituents, C₂-C₁₀ alkynyl, C₂-C₁₀ alkynyl substituted with one or more substituents, C₁-

10

15

25

30

 C_8 alkoxy, C_1 - C_8 alkoxy substituted with one or more substituents, C_2 - C_8 alkoxycarbonyl, C_2 - C_8 alkoxycarbonyl substituted with one or more substituents, C_1 - C_8 thioalkyl, C_1 - C_8 thioalkyl substituted with one or more substituents, C_2 - C_8 acyl, C_2 - C_8 acyl substituted with one or more substituents, C_2 - C_8 acyloxy, C_2 - C_8 acyloxy substituted with one or more substituents, aryloxy, aryl, aryl substituted with one or more substituents, C_3 - C_7 cycloalkyl substituted with one or more substituents, C_3 - C_7 heterocycle, or C_3 - C_7 heterocycle substituted with one or more substituents, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic or aromatic ring;

R² is hydrogen, straight or branched C₁-C₆ alkyl or C₃-C₇ cycloalkyl or C₃-C₇ cycloalkyl substituted with one or more substituents, C₃-C₇ heterocycle, C₃-C₇ heterocycle substituted with one or more substituted with one or more substituted with one or more substitutents, heteroaryl, heteroaryl substituted with one or more substituents, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic or aromatic ring; or R² together with R¹ forms a C₂-C₇ heterocycle, C₂-C₇ heterocycle substituted with one or more substituents, heteroaryl, or heteroaryl substituted with one or more substituents;

W is carbonyl (C=O), amido (NH(C=O)), amidoalkyl (NH(C=O)CH₂-), imino (C=NH), thiocarbonyl (C=S), sulfonyl (SO₂), methylene (CH₂), or methylene substituted with one or more substituents;

Z is carbonyl (C=O), amino (NH), imino (C=N), sulfonyl (SO2), or (C=O)NH; or

Z, together with R¹, N, W, X, and Y, forms a C₅-C₇ heterocyclic ring in which R¹ is a direct bond or C₁-C₂ alkylene; and

the substituents are independently

- (a) halogen, cyano, oxo, carboxy, formyl, nitro, amino, amidino, guanidino, C₁-C₅ alkyl or alkenyl or arylalkyl imino, carbamoyl, azido, carboxamido, mercapto, hydroxy, hydroxyalkyl, alkylaryl, arylalkyl, C₁-C₈ alkyl, C₁-C₈ alkenyl, C₁-C₈ alkoxy, C₁-C₈ alkoxycarbonyl, aryloxycarbonyl, C₂-C₈ acyl, C₁-C₈ alkylthio, arylalkylthio, arylalkylsulfinyl, arylalkylsulfinyl, arylalkylsulfinyl, C₁-C₈ alkylsulfonyl, arylalkylsulfonyl, arylalkylsulfonyl, arylalkylsulfonyl, C₂-C₁₅ N,N-dialkylcarbamoyl, C₃-C₇ cycloalkyl, aroyl, aryloxy, arylalkyl ether, aryl, aryl fused to a cycloalkyl or heterocycle or another aryl ring, C₃-C₇ heterocycle, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic, or aromatic ring; or
 - (b) NR^6R^7 , where R^6 and R^7 are each independently hydrogen, cyano, oxo, carboxamido, amidino, C_1 - C_8 hydroxyalkyl, C_1 - C_3 alkylaryl, aryl- C_1 - C_3 alkyl, C_1 - C_8

alkyl, C_1 - C_8 alkenyl, C_1 - C_8 alkoxy, C_1 - C_8 alkoxycarbonyl, aryloxycarbonyl, aryl- C_1 - C_3 alkoxycarbonyl, C_2 - C_8 acyl, C_1 - C_8 alkylsulfonyl, arylalkylsulfonyl, arylsulfonyl, aroyl, aryl fused to a cycloalkyl or heterocyclic or another aryl ring, C_3 - C_7 cycloalkyl, C_3 - C_7 heterocycle, or any of these rings fused or spiro-fused to a cycloalkyl or heterocyclic or aromatic ring;

or R^6 and R^7 are taken together to form $-(CH_2)_mB(CH_2)_n$ where B is $-C(H)(R^8)$ -, -O-, $-N(R^8)$ -, or $-S(O)_r$ -, where m and n are independently 1 to 3, r is 0 to 2, and R^8 is defined the same way as R^6 ; or

- (c) $-(CH_2)_sNR^6R^7$ where s is 1-6 and R^6 and R^7 are as defined in section (b) of the definition of substituent, above.
- 8. A compound according to Claim 4 of Formula XII:

XII

15

5

10

9. A compound according to Claim 3 of Formula XIV-A or Formula XIV-B,

XIV-A

XIV-B

wherein

M is CH, N, O, or S, provided when M is O or S there is no R^{12} ;

R¹¹, R¹², and R¹³ are each independently hydrogen, halogen, cyano, oxo, carboxy, formyl, nitro, amino, amidino, guanidino, C₁-C₅ alkyl or alkenyl or arylalkyl imino, azido, mercapto, carboxamido, hydroxy, hydroxyalkyl, alkylaryl, arylalkyl, C₁-C₈ alkyl, C₁-C₈ alkoxy, C₁-C₈ alkoxycarbonyl, C₂-C₈ acyl, C₁-C₈ alkylthio, arylalkylthio, arylalkylsulfinyl, arylsulfinyl, C₁-C₈ alkylsulfonyl,

arylalkylsulfonyl, arylsulfonyl, C_1 - C_6 N-alkyl carbamoyl, C_2 - C_{15} N,N-dialkylcarbamoyl, C_1 - C_5 alkyl or alkenyl or arylalkyl ester, C_1 - C_7 cycloalkyl, aroyl, aryloxy, benzyloxy, benzyloxy substituted with one or more substituents, aryl, aryl substituted with one or more substituents, C_3 - C_7 heterocycle, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic or aromatic ring, or - NR^6R^7 or - $(CH_2)_sNR^6R^7$ where s is 1-6 and R^6 and R^7 are as defined in section (b) of the definition of substituent; or

R¹¹, R¹², and R¹³ each either independently or in combination are a spiro, fused, or bridged ring.

10 10. A compound according to Claim 5 of Formula XV-A or XV-B,

wherein

15

20

R⁶ is as defined in section (b) of the definition of substituent;

M is CH, N, O, or S, provided when M is O or S there is no R¹²;

R¹¹, R¹² and R¹³ are each independently hydrogen, halogen, cyano, oxo, carboxy, formyl, nitro, amino, amidino, guanidino, C₁-C₅ alkyl or alkenyl or arylalkyl imino, azido, mercapto, carboxamido, hydroxy, hydroxyalkyl, alkylaryl, arylalkyl, C₁-C₈ alkyl, C₁-C₈ alkenyl, C₁-C₈ alkoxy, C₁-C₈ alkoxycarbonyl, C₂-C₈ acyl, C₁-C₈ alkylthio, arylalkylthio, arylalkylsulfinyl, arylalkylsulfinyl, arylalkylsulfinyl, arylalkylsulfonyl, arylalkylsulfonyl, arylalkylsulfonyl, arylalkylsulfonyl, c₁-C₆ N-alkyl carbamoyl, C₂-C₁₅ N,N-dialkylcarbamoyl, C₁-C₅ alkyl or alkenyl or arylalkyl ester, C₁-C₇ cycloalkyl, aroyl, aryloxy, benzyloxy, benzyloxy substituted with one or more substituents, aryl, aryl substituted with one or more substituents, C₃-C₇ heterocycle, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic or aromatic ring, or -NR⁶R⁷ or -(CH₂)₈NR⁶R⁷ where s is 1-6 and R⁶ and R⁷ are as defined in section (b) of the definition of substituent; or

25 R¹¹, R¹², and R¹³ each either independently or in combination are a spiro or fused or bridged ring;

11. A compound according to Claim 7 of Formula XIII-B,

XIII-B

wherein

20

R¹⁴ and R¹⁵ are each independently hydrogen, halogen, cyano, oxo, carboxy, formyl, nitro, amino, amidino, guanidino, C₁-C₅ alkyl or alkenyl or arylalkyl imino, azido, mercapto, carboxamido, hydroxy, hydroxyalkyl, alkylaryl, arylalkyl, C₁-C₈ alkyl, C₁-C₈ alkenyl, C₁-C₈ alkoxy, C₁-C₈ alkoxycarbonyl, C₂-C₈ acyl, C₁-C₈ alkylthio, arylalkylthio, arylthio, C₁-C₈ alkylsulfinyl, arylalkylsulfinyl, arylsulfinyl, C₁-C₈ alkylsulfonyl, arylalkylsulfonyl, arylsulfonyl, C₁-C₆ N-alkyl carbamoyl, C₂-C₁₅ N,N-dialkylcarbamoyl, C₁-C₅ alkyl or alkenyl or arylalkyl ester, C₁-C₇ cycloalkyl, aroyl, aryloxy, benzyloxy, benzyloxy substituted with one or more substituents, aryl, aryl substituted with one or more substituents, C₃-C₇ heterocycle, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic or aromatic ring; or

15 R¹⁴ and R¹⁵ are each independently -NR⁶R⁷ or -(CH₂)_sNR⁶R⁷ where s is 1-6 and R⁶ and R⁷ are as defined in section (b) of the definition of substituent; and

R¹⁶ is hydrogen, straight or branched C₁-C₆ alkyl or C₃-C₇ cycloalkyl or C₃-C₇ cycloalkyl substituted with one or more substituents, C₃-C₇ heterocycle, C₃-C₇ heterocycle substituted with one or more substituents, aryl, aryl substituted with one or more substituents, heteroaryl, heteroaryl substituted with one or more substituents, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic or aromatic ring; or R² together with R¹ forms a C₂-C₇ heterocycle, C₂-C₇ heterocycle substituted with one or more substituents, heteroaryl, or heteroaryl substituted with one or more substituents.

12. A compound of Formula XIII-C,

XIII-C

and pharmaceutically acceptable addition salts thereof, wherein

5 n = 0 or 1;

10

15

20

25

L and M are independently CH, N, O, or S, provided L and M are not both heteroatoms and when L is O or S there is no R¹³ and when M is O or S there is no R¹²;

R⁹, R¹¹, R¹², and R¹³ are each independently hydrogen, halogen, cyano, oxo, carboxy, formyl, nitro, amino, amidino, guanidino, C₁-C₅ alkyl or alkenyl or arylalkyl imino, azido, mercapto, carboxamido, hydroxy, hydroxyalkyl, alkylaryl, arylalkyl, C₁-C₈ alkyl, C₁-C₈ alkenyl, C₁-C₈ alkoxy, C₁-C₈ alkoxycarbonyl, C₂-C₈ acyl, C₁-C₈ alkylthio, arylalkylthio, arylalkylsulfinyl, arylalkylsulfinyl, arylalkylsulfinyl, C₁-C₈ alkylsulfonyl, arylalkylsulfonyl, arylalkylsulfonyl, C₁-C₆ N-alkyl carbamoyl, C₂-C₁₅ N,N-dialkylcarbamoyl, C₁-C₅ alkyl or alkenyl or arylalkyl ester, C₁-C₇ cycloalkyl, aroyl, aryloxy, benzyloxy, benzyloxy substituted with one or more substituents, aryl, aryl substituted with one or more substituents, C₃-C₇ heterocycle, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic or aromatic ring, or -NR⁶R⁷ or -(CH₂)₈NR⁶R⁷ where s is 1-6 and R⁶ and R⁷ are as defined in section (b) of the definition of substituent, below; or

R⁹, R¹¹, R¹², and R¹³ each either independently or in combination are a spiro or fused or bridged ring;

R⁵ is hydrogen, C₁-C₁₀ alkyl, C₁-C₁₀ alkyl substituted with one or more substituents, C₂-C₁₀ alkenyl, C₂-C₁₀ alkenyl substituted with one or more substituents, C₁-C₈ alkoxy, C₁-C₈ alkoxy substituted with one or more substituents, C₂-C₈ alkoxycarbonyl substituted with one or more substituents, C₁-C₈ thioalkyl, C₁-C₈ thioalkyl substituted with one or more substituents, C₂-C₈ acyl, C₂-C₈ acyl substituted with one or more substituents, C₂-C₈ acyloxy, C₂-C₈ acyloxy substituted with one or more substituents, aryloxy, aryl, aryl substituted with one or more substituted with one or more substituted substituted with substituted substituted.

10

15

20

25

30

with one or more substituents, C_3 - C_7 heterocycle, or C_3 - C_7 heterocycle substituted with one or more substituents, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic or aromatic ring;

R¹⁴ is hydrogen, halogen, cyano, oxo, carboxy, formyl, nitro, amino, amidino, guanidino, C₁-C₅ alkyl or alkenyl or arylalkyl imino, azido, mercapto, carboxamido, hydroxy, hydroxyalkyl, alkylaryl, arylalkyl, C₁-C₈ alkyl, C₁-C₈ alkenyl, C₁-C₈ alkoxy, C₁-C₈ alkoxycarbonyl, C₂-C₈ acyl, C₁-C₈ alkylthio, arylalkylthio, arylthio, C₁-C₈ alkylsulfinyl, arylalkylsulfinyl, arylsulfinyl, C₁-C₈ alkylsulfonyl, arylalkylsulfonyl, arylsulfonyl, C₁-C₆ N-alkyl carbamoyl, C₂-C₁₅ N,N-dialkylcarbamoyl, C₁-C₅ alkyl or alkenyl or arylalkyl ester, C₁-C₇ cycloalkyl, aroyl, aryloxy, benzyloxy, benzyloxy substituted with one or more substituents, aryl, aryl substituted with one or more substituents, C₃-C₇ heterocycle, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic or aromatic ring; or

R¹⁴ is -NR⁶R⁷ or -(CH₂)_sNR⁶R⁷ where s is 1-6 and R⁶ and R⁷ are as defined in section (b) of the definition of substituent, below;

R¹⁶ and R¹⁷ are each independently hydrogen, straight or branched C₁-C₆ alkyl or C₃-C₇ cycloalkyl or C₃-C₇ cycloalkyl substituted with one or more substituents, C₃-C₇ heterocycle, C₃-C₇ heterocycle substituted with one or more substituents, aryl, aryl substituted with one or more substituents, heteroaryl, heteroaryl substituted with one or more substituents, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic or aromatic ring; or R² together with R¹ forms a C₂-C₇ heterocycle, C₂-C₇ heterocycle substituted with one or more substituents, heteroaryl, or heteroaryl substituted with one or more substituents; and

the substituents are independently

(a) halogen, cyano, oxo, carboxy, formyl, nitro, amino, amidino, guanidino, C₁-C₅ alkyl or alkenyl or arylalkyl imino, carbamoyl, azido, carboxamido, mercapto, hydroxy, hydroxyalkyl, alkylaryl, arylalkyl, C₁-C₈ alkyl, C₁-C₈ alkenyl, C₁-C₈ alkoxy, C₁-C₈ alkoxycarbonyl, aryloxycarbonyl, C₂-C₈ acyl, C₁-C₈ alkylthio, arylalkylthio, arylalkylsulfinyl, arylalkylsulfinyl, arylalkylsulfinyl, C₁-C₈ alkylsulfonyl, arylalkylsulfonyl, arylalkylsulfonyl, arylalkylsulfonyl, C₁-C₆ N-alkyl carbamoyl, C₂-C₁₅ N,N-dialkylcarbamoyl, C₃-C₇ cycloalkyl, aroyl, aryloxy, arylalkyl ether, aryl, aryl fused to a cycloalkyl or heterocycle or another aryl ring, C₃-C₇ heterocycle, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclic, or aromatic ring; or

10

15

20

25

30

(b) NR⁶R⁷, where R⁶ and R⁷ are each independently hydrogen, cyano, oxo, carboxamido, amidino, C₁-C₈ hydroxyalkyl, C₁-C₃ alkylaryl, aryl-C₁-C₃ alkyl, C₁-C₈ alkoxy, C₁-C₈ alkoxycarbonyl, aryloxycarbonyl, aryl-C₁-C₃ alkoxycarbonyl, C₂-C₈ acyl, C₁-C₈ alkylsulfonyl, arylalkylsulfonyl, arylsulfonyl, aroyl, aryl fused to a cycloalkyl or heterocyclic or another aryl ring, C₃-C₇ cycloalkyl, C₃-C₇ heterocycle, or any of these rings fused or spiro-fused to a cycloalkyl or heterocyclic or aromatic ring;

or R^6 and R^7 are taken together to form $-(CH_2)_mB(CH_2)_n$ where B is $-C(H)(R^8)$ -, -O-, $-N(R^8)$ -, or $-S(O)_r$ -, where m and n are independently 1 to 3, r is 0 to 2, and R^8 is defined the same way as R^6 ; or

- (c) $-(CH_2)_sNR^6R^7$ where s is 1-6 and R^6 and R^7 are as defined in section (b) of the definition of substituent, above.
- 13. A compound according to Claim 7 selected from the group consisting of:

 1-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]-3-hydroxypyrrolidine-2-carboxylic acid-3-

(9-ethylcarbazolyl)amide;

- 1-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]-3-acetoxypyrrolidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;
- 1-[(2-Oxo-6-*iso*propyl-2*H*-pyran)-3-carbonyl]-piperidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;
- 1-[(2-Oxo-6-*n*-propyl-2*H*-pyran)-3-carbonyl]-piperidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;
- 1-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]-piperidine-2-carboxylic acid-2-(3-indolyl)ethylamide;
- 3-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]-2,2-dimethylthiazolidine-4-carboxylic acid-3-(9-ethylcarbazolyl)amide;
 - 3-[(2-Oxo-6-pentyl-2H-pyran)-3-carbonyl]-5,5-dimethylthiazolidine-4-carboxylic acid-3-(9-ethylcarbazolyl)amide;
- 1-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]-4-methylpiperizine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;
 - 2-[1-Carboxamido-2-(3*H*-imidazol-4-yl)ethylcarbamoyl]-N-(2-ethyl-n-hexylamino) tetrahydroisoquinoline;

20

25

30

- 1-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]-2-methylpyrrolidine-2-carboxylic acid-3-(9-ethylcarbazolyl) amide;
- 1-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]-4-hydroxypyrrolidine-2-carboxylic acid-3-(9-ethylcarbazolyl) amide;
- 1-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]-4-acetoxypyrrolidine-2-carboxylic acid-3-(9-ethylcarbazolyl) amide;
- 3-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]thiazolidine-4-carboxylic acid-3-(9-ethylcarbazolyl) amide;
- 3-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]-1,1-dioxo-thiazolidine-4-carboxylic acid-10 3-(9-ethylcarbazolyl) amide;
 - 3-[(2-Oxo-6-pentyl-2H-pyran)-3-carbonyl]thiazolidine-2-carboxylic acid-3-(9-ethylcarbazolyl) amide;
 - 1-(Benzofuran-2-yl)carbonyl- pyrrolidine-2-carboxylic acid-3-(9-ethyl carbazolyl)amide;
- 15 l-[(2-Oxo-6-methyl-2*H*-pyran)-3-carbonyl]-trans-3-azabicyclo(3.1.0)hexane-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;
 - l-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]4-oxopyrrolidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;
 - 2-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]7-hydroxytetrahydroisoquinoline-3-carboxylic acid-3-(9-ethylcarbazolyl)amide;
 - 2-[(2-Oxo-6-pentyl-2H-pyran)-3-carbonyl] tetrahydroisoquinoline-3-carboxylicacid-3-(9-ethylcarbazolyl) amide;
 - 1-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]azetidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;
 - 1-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]3,4-dehydropyrrolidine-2-carboxylic-acid-3-(9-ethylcarbazolyl)amide;
 - 1-(2-Oxo-2*H*-chromene-3-carbonyl)-pyrrolidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;
 - 1-(1,3-Dioxo-2-isoindolineacetyl)- piperidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;
 - 1-(2-Fluoro-4-trifluoromethylbenzoyl)-piperidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;
 - 1-(4-n-Pentylbenzoyl)-pyrrolidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;

- 1-(4-n-butoxybenzoyl)-pyrrolidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;
- 1-(4-n-Pentylbenzoylmethyl)-piperidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;
- 1-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]-2-oxo-imidazolidine-5-carboxylic acid-3-5 (9-ethylcarbazolyl)amide;
 - 1-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]-2-[(9-ethylcarbazolyl)aminomethyl] pyrrolidine;
 - l-[(2-Oxo-6-phenyl-2*H*-pyran)-3-carbonyl]-pyrrolidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;
- 1-[(2-Oxo-6-methyl-2*H*-pyran)-3-carbonyl]-pyrrolidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide;
 - 1-[(2-Oxo-6-phenyl-2*H*-pyran)-3-carbonyl]-piperidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide; and
- 1-[(2-Oxo-6-methyl-2*H*-pyran)-3-carbonyl]-piperidine-2-carboxylic acid-3-(9ethylcarbazolyl)amide; or a pharmaceutically acceptable addition salt thereof.
 - 14. A compound according to Claim 8 selected from the group consisting of: 2-[1-Carboxamido-2-(3*H*-imidazol-4-yl)ethylcarbamoyl]-2-(2-ethyl-n-hexylamino)tetraline;
 - $\label{eq:continuous} 2\text{-}(2\text{-Ethyl-n-hexyl})\text{-}N\text{-}[(1\text{-carboxamido-}2\text{-terazolyl})\text{ethyl}]\text{-}3\text{-}isoquinolinecarboxamide};$
 - 1-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]pyrrolidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide; and
- 25 l-[(2-Oxo-6-pentyl-2*H*-pyran)-3-carbonyl]piperidine-2-carboxylic acid-3-(9-ethylcarbazolyl)amide; or a pharmaceutically acceptable addition salt thereof.
- 15. A compound according to Claim 9 selected from the group consisting of:

 2-[(1-Carboxamido-2-terazolyl)ethylcarbamoyl]-2-(2-ethyl-n-hexylamino)tetraline;

 1-[3-(9-Ethylcarbazolyl)carbamoyl]ethylamino-N-methyl-(2-oxo-6-pentyl-2H-pyran-3-carboxamide);

10

- 1-Methyl-1-[3-(9-ethylcarbazolyl)carbamoyl]-ethylamino-*N*-methyl-(2-oxo-6-pentyl-2*H*-pyran-3-carboxamide);
- 1-[3-(9-Ethylcarbazolyl)carbamoyl]isoamylamino-N-methyl-(2-oxo-6-pentyl-2H-pyran-3-carboxamide);
- l-[3-(9-Ethylcarbazolyl)carbamoyl]isobutylamino-N-methyl-(2-oxo-6-pentyl-2H-pyran-3-carboxamide);
- 1-[3-(9-Ethylcarbazolyl)carbamoyl]phenylethylamino-N-methyl-(2-oxo-6-pentyl-2H-pyran-3-carboxamide);
- 1-[3-(9-Ethylcarbazolyl)carbamoyl]2-hydroxyethylamino-N-methyl-(2-oxo-6-pentyl-2H-pyran-3-carboxamide);
- 1-[3-(9-Ethylcarbazolyl)carbamoyl]methylamino-*N*-methyl-(2-oxo-6-pentyl-2*H*-pyran-3-carboxamide);
- 1-[3-(9-Ethylcarbazolyl)carbamoyl]methylamino-N-ethyl-(2-oxo-6-pentyl-2H-pyran-3-carboxamide); and
- 15 1-Methyl-1-[3-(9-ethylcarbazolyl)carbamoyl]-ethylamino-(2-oxo-6-pentyl-2*H*-pyran-3-carboxamide);
 - or a pharmaceutically acceptable addition salt thereof.
- 16. A compound according to Claim 10 selected from the group consisting of:
 3-(9-ethylcarbazolyl)amino-pyridin-2-yl-3-(2-oxo-6-pentyl-2H-pyran-3-carboxamide) and
 3-(9-ethylcarbazolyl)amino-pyridin-2-yl-3-(N-methyl-2-oxo-6-pentyl-2H-pyran-3-carboxamide);
 - or a pharmaceutically acceptable addition salt thereof.
- 25 17. A process for the preparation of the compound of Claim 1, the process comprising reacting a compound of Formula XXVIII,

with a compound of Formula XXIX,

wherein R1, R2, R3, R4, R5, X, Y, and Z are defined in Claim I and E represents a functional group SO₂Cl, CHO, COOH, COCl, NCO, CN, N = C-Cl, CH₂Cl, or CH₂O-tosylate.

5

A compound from any one of Claims 1-16 for use as a medicament. 18.

Use of a compound from any one of Claims 1-16 in the manufacture of a medicament 19. for the treatment of infertility.

10

Use according to Claim 19, wherein the medicament exerts an FSH agonistic activity. 20.

A pharmaceutical composition comprising a compound according to any one of 21. Claims 1-16 and a pharmaceutically acceptable carrier, diluent or excipient thereof.

15

A pharmaceutical composition comprising a compound as claimed in any one of 22. Claims 1-16 and a pharmaceutically acceptable carrier, diluent or excipient thereof, in combination with FSH.

20

A pharmaceutical composition comprising a compound as claimed in any one of 23. Claims 1-16 and a pharmaceutically acceptable carrier, diluent or excipient thereof, in combination with Clomiphene citrate.

25

A pharmaceutical composition comprising a compound as claimed in any one of 24. Claims 1-16 and a pharmaceutically acceptable carrier, diluent or excipient thereof, in combination with human chorionic gonadotropin (hCG) or human pituitary leutenizing hormone (LH).

25. A method for treating infertility comprising administering an effective FSH agonistic amount of a composition according to claims 21-24.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: C07D 401/12, A61K 31/445, 31/40, C07D 405/14, 405/12, C07K 5/06, C07D 471/04, A61P 5/24

A3

(11) International Publication Number:

WO 00/08015

(43) International Publication Date:

17 February 2000 (17.02.00)

(21) International Application Number:

PCT/US99/17755

(22) International Filing Date:

5 August 1999 (05.08.99)

(30) Priority Data:

60/095,712

7 August 1998 (07.08.98)

US

(71) Applicant (for all designated States except US): APPLIED RESEARCH SYSTEMS ARS HOLDING N.V. [NL/NL]; 14 John B. Gorsiraweg, Curacao (AN).

(72) Inventors; and

- (75) Inventors Applicants (for US only): EL TAYER, Nabil [IN/US]; 143 Gerald Road, Milton, MA 02186 (US). REDDY, Adulla [CH/US]; 2702 Village Road West, Norwood, MA 02062 (US). BUCKLER, David [US/US]; 11 Conifer Drive, Mendham, NJ 07945 (US). MAGAR, Sharad [IN/US]; 20 Harrison Road, Caton, MA 02021 (US).
- (74) Agent: GREENFIELD, Michael, S.; McDonnell Boehnen Hulbert & Beerghoff, 300 South Wacker Drive, Chicago, IL 60606 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report:

11 May 2000 (11.05.00)

(54) Title: FSH MIMETICS FOR THE TREATMENT OF INFERTILITY

(57) Abstract

The present invention provides non-peptidic amino derivatives, their therapeutic use as well as pharmaceutical compositions that possess activity as Follicle Stimulating Hormone (FSH) agonists and are useful in the treatment of infertility. In particular, the invention provides cyclic and acyclic alpha- and beta-aminocarboxamides, more particularly tetrahydroisoquinolinecarboxamides, piperidinecarboxamides, pyrrolidinecarboxamides, and 2-amino-3-carboxamidopyridine derivatives.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan .	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C07D401/12 A61k A61K31/445 A61K31/40 C07D405/14 C07D405/12 C07K5/06 C07D471/04 A61P5/24 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 CO7D CO7K A61K A61P Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Category ^a Relevant to claim No. US 5 071 836 A (KOLAR CENEK ET AL) 1,19 10 December 1991 (1991-12-10) column 1, line 25 -column 2, line 25 Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 13 March 2000 22/03/2000 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Alfaro Faus, I

0,

Fax: (+31-70) 340-3016

Internation application No.

PCT/US 99/17755

Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet) This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: 1. X 19 and 25 Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claims 19 and 25 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition. none because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: see FURTHER INFORMATION sheet PCT/ISA/210 Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a). Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet) This International Searching Authority found multiple inventions in this international application, as follows: As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.: No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

International Application No. PCT/US 99 /17755

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: none

Present claims 1 to 25 relate to an extremely large number of possible compounds. Support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT is to be found, however, for only a very small proportion of the compounds claimed. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Consequently, the search has been carried out for those parts of the claims which appear to be supported and disclosed, namely those parts relating to the compounds described in the examples on pages 13 to 16, 21 to 27 and figures 1 to 5.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

INTERNAZIONAL SEARCH REPORT

ernational atlon No PCT/US 99/17755

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
US 5071836	Α	10-12-1991	DE	3842010 A	21-06-1990
			AT	101622 T	15-03-1994
			AU	620184 B	13-02-1992
			AU	4611389 A	21-06-1990
			CA	2005420 A	14-06-1990
			DE	58906995 D	24-03-1994
			DK	630289 A	15-06-1990
		•	EP	0373545 A	20-06-1990
			ES	2061908 T	16-12-1994
			· IE	62873 B	08-03-1995
			IL	92661 A	30-05-1994
			JP	2258798 A	19-10-1990
			KR	142195 B	01-07-1998
			NZ	231716 A	23-12-1991
			PT	92557 A,B	29-06-1990
			ZA	8909509 A	29-08-1990