CAT OR DOG: PREDICTIVE MODELING STAT GU4243 - APPLIED DATA SCIENCE

Group 6

Columbia University

March 5, 2018

- 1 OUTLINE
- 2 Introduction
 - Us
 - Motivation
 - Scope
- METHOD
 - Exploratory analysis
 - Feature extraction
 - Statistical machine learning models
 - Tuning and training
- 4 Results
- **5** Discussion

GROUP MEMBERS

Wanting Cheng, Mingkai Deng, Jiongjiong Li, Kai Li, Daniel Parker

Why do this?—Motivation

WHY DO THIS?—MOTIVATION

SPEC & SCOPE

[C] arry out model evaluation and selection for predictive analytics on image data ... [using] a set of 4387 labeled images of cats and dogs ... creat[e] a mobile AI program that accurately distinguishes between [them] ... balance between the complexity of variables/features/models used and the predictive performance.

SPEC & SCOPE

EXPLORATORY ANALYSIS

What makes one animal different from another? [Intuition] What approaches did previous semesters' groups employ? [Research]

 \bullet SIFT = scale-invariant feature transformation.

- SIFT = scale-invariant feature transformation.
- **2** HOG = histogram of oriented gradients.

- SIFT = scale-invariant feature transformation.
- **2** HOG = histogram of oriented gradients.
- **3** LBP = local binary patterns.

- SIFT = scale-invariant feature transformation.
- **2** HOG = histogram of oriented gradients.
- **3** LBP = local binary patterns.
- \bullet HSV = hue, saturation, value.

- SIFT = scale-invariant feature transformation.
- **2** HOG = histogram of oriented gradients.
- \bullet LBP = local binary patterns.
- \bullet HSV = hue, saturation, value.
- \bullet RGB = red, green, blue.

• Gradient boosting machine—the baseline.

- Gradient boosting machine—the baseline.
- 2 Random forests.

- Gradient boosting machine—the baseline.
- 2 Random forests.
- 3 TensorFlow/Keras neural network.

- Gradient boosting machine—the baseline.
- 2 Random forests.
- **3** TensorFlow/Keras neural network.
- Support vector machine.

- Gradient boosting machine—the baseline.
- 2 Random forests.
- TensorFlow/Keras neural network.
- Support vector machine.
- Adaptive boosting ("AdaBoost").

- Gradient boosting machine—the baseline.
- 2 Random forests.
- TensorFlow/Keras neural network.
- Support vector machine.
- Adaptive boosting ("AdaBoost").
- Extreme gradient boosting ("XGBoost").

TUNING AND TRAINING

Simplifying heuristic: use all features, rather than subsets. Preference for built-in package functions, rather than a generalized syntax.

HOW WE FINALIZED MODELS—FLOWCHART

RESULTS

FEATURE EXTRACTION TIME

	Feature type	Color	HOG	LBP
_	Time (m)	7	5	20

Table: Image processing time by feature, in minutes

TRAINING TIMES—COMPUTATIONAL COST

Model	SIFT	Color	HOG	LBP
GBM	13.452	89.036	116.964	2.74
RF	174.1	905.883	1999.23	24.842
NN	31	65.81	61.58	28.12
SVM	3.484		33.099	0.805
XGBoost	3.829	16.851	27.005	1.67
AdaBoost	16.34	103.61	142.45	3.25

Table: Training time per model, in seconds

PREDICTION ACCURACY

Model	SIFT	Color	HOG	LBP
GBM	73.25	69.5	75.25	69.
RF	72.25	73.	74.25	69.
NN	75.75	64.5	76.75	69.
SVM	77.5		77.5	69.75
XGBoost	72	72	77.25	66.5
AdaBoost	72.75	69.5	71.75	69.75

Table: Prediction accuracy by model, in percentage

• Other extractions and combinations thereof.

- Other extractions and combinations thereof.
- ② Dataset manipulation to "grow" more training data for free.

- Other extractions and combinations thereof.
- ② Dataset manipulation to "grow" more training data for free.
- Other models.

- Other extractions and combinations thereof.
- ② Dataset manipulation to "grow" more training data for free.
- **3** Other models.
- Ensembling.

- Other extractions and combinations thereof.
- ② Dataset manipulation to "grow" more training data for free.
- Other models.
- Ensembling.
- **⑤** ...

Thank you!