MA302 Homework 11

WANG Duolei, SID:12012727

wangdl2020@mail.sustech.edu.cn

13.5 Solution

1. T^* is invertible and $(T^*)^{-1} = (T^{-1})^*$.

Firstly, T is invertible, which means there exists $S \in B(K, H)$ s.t. $TS = id_K$, $ST = id_H$. And note the Hilbert Adjoint of S by S^* , we know that $S^* \in B(H, K)$. Claim that $(T^*)^{-1} = S^*$.

(a) $T^*S^* = id_H$. Firstly, $T^*S^* \in B(H)$ is clearly because of the combination of two bounded linear map is also bounded linear. And

$$(T^*S^*x, y)_H = (x, (T^*S^*)^*y) = (x, STy)_H = (x, y)_H, \forall x \in H, y \in K$$

thus, $T^*S^* = id_H$.

(b) $S^*T^* = id_K$. One can prove this like (a).

Thus, $(T^*)^{-1} = S^* = (T^{-1})^*$.

2. Consider $T \in B(H)$ is self-adjoint. According to 1's conclusion, we know that $T^{-1} = (T^*)^{-1} = (T^{-1})^*$. Thus T^{-1} is also a self-adjoint operator.

14. Solution

(i) Considering that $\{\alpha_i\}_{i=1}^{\infty} \subseteq \sigma_p(D_{\alpha})$ is clearly. We consider the inverse. For every $\alpha \in \sigma_p(D_{\alpha})$, we have some nonzero x_0 such that

$$D_{\alpha}x_0 = (\alpha_1x_1, \alpha_2x_2, \ldots) = \beta x_0$$

As $x_0 \neq 0$, there must exist some coordinates be nonzero, and consider the nonzero terms as x_{i_1}, x_{i_2}, \ldots , we know that

$$\beta = \alpha_{i_1} = \alpha_{i_2} = \dots$$

thus, $\beta \in \{\alpha_i\}_i^{\infty}$

1. Considering a $\lambda \in \mathbb{C}$ and $\lambda \notin \overline{\sigma_p(D_\alpha)}$, then $|\lambda - a_i| \geq \delta$. Thus consider every coordinates, we know it's $(a_i - \lambda)x_i$, and the norm is also bigger than δ . Thus, the $D_\alpha - \lambda I$ is invertible, which has a bounded inverse. Thus $D_\alpha - \lambda I$ is also invertible. And the spectrum is closed, the two set are same is clear.

14.4 Solution

Considering the Spectral Mapping Theorem, we know that

$$\lambda \in \sigma(T) \implies \lambda^n \in \sigma(T^n)$$

thus $(r_{\sigma}(T))^n = r_{\sigma}(T^n)$. And $\sigma(T^n) \subset \{\lambda : \lambda \leq ||T^n||\}$, which means the upper bound of $r_{\sigma}(T)$ is $||T^n||^{1/n}$. Thus

$$r_{\sigma}(T) \le \underline{\lim}_{n \to \infty} ||T^n||^{1/n}$$

14.5 Solution

Consider this operator is just a special case in 11.7, we know that the bound is $||T^n||_{B(X)} \le \frac{1}{n!}$ And according to 14.4

$$r_{\sigma}(T) \leq n \underset{\text{lim inf}}{\to} \infty = 0$$

Thus, all the eigenvalues must be zero. And we know that T is not invertible, as the 0 is not an eigenvalue, which is because

$$|(T-0I)f|=0 \implies Tf=0 \implies f=0$$

This also means T is also not surjective.