OpenBrain: Massiveley Asynchronous Neurocomputation

William H. Guss

Machine Learning at Berkeley 2650 Durant Ave, Berkeley CA, 94720 wguss@ml.berkeley.edu

Phillip Kuznetsov

Machine Learning at Berkeley Berkeley CA, 94720 philkuz@ml.berkeley.edu

We can add footnotes clarifying

Machine Learning at Berkeley Address email

Mike Zhong

Machine Learning at Berkeley Berkeley CA, 94720 lol@gmail.com

Instert yourself

Machine Learning at Berkeley Address email

equal contributions to the work

(if needed)
Machine Learning at Berkeley
Address
email

Todo list

Produce a 4-6 sentence abstract about the paper	1
Argue against the current state of ML's approach to the problem of AGI by surveying field	1
Establish Conwaynian philosophy on emergent neurocomputation	2
Motivate asynchrynous neurocomputation	2

Abstract

The OpenBrain white paper.

Produce a 4-6 sentence abstract about the paper.

Note: Most of the sections for this document are included as submodules using the following command.

\input{section} %imports section.tex

The main file should not be modified, except to change the abstract, add new sections, or modify packages!

1 Introduction

Note: We need to motivate substantially the proposal of a drastically different framework of neuro-computation. This motivation should be given according to the latest neuroscience, and a general problem in the field.

Argue against the current state of ML's approach to the problem of AGI by surveying field.

1.1 Intelligence as an Emergence Phenomenon

Establish Conwaynian philosophy on emergent neurocomputation.

Motivate asynchrynous neurocomputation.

2 Asynchronous Neurocomputation

Note: This section will essentially lay out our model minus learning rules. This means we must give theoretical, biological justifications for the algorithm.

- 2.1 The Core Framework
- 2.2 Continuous Time Universal Intelligence Measure
- 2.3 Universal Approximation
- 2.4 (optional) Multiprocess Turing Completeness

If we decide to go down this route, we'll add it's own TeXfile.

- 3 Conwaynian Learning Rules
- 4 Experimentation
- 4.1 Implementation
- 4.2 Results
- 5 Conclusion
- 5.1 Future Work