Exact test for Hardy-Weinberg equilibrium

Exact test: calculate the probability under the null.

 H_0 : The genotype frequency follows HWE

Statistical inference is made by asking: what is the cumulative probability of obtaining a sample [with $(2n_{aa}+n_{ab})$ A alleles and $(2n_{bb}+n_{ab})$ B alleles] with a probability at least as low as that of the observed sample under the hypothesis that it was drawn from a population in Hardy-Weinberg equilibrium? This cumulative probability is obtained.

$$P_{HWE} = \sum_{n, *} Indicator(P(N_{ab} = n_{ab})) > P(N_{ab} = n_{ab}^*))[P(N_{ab} = n_{ab}^*|n_a, n_b, n)]$$

To be able to solve the above equation, we need,

- 1. Be able to find all genotype configurations.
- **2.** Be able to calculate $P(N_{ab}=n_{ab})|n_a,n_b,n)$

$$P(N_{ab} = n_{ab})|n_a, n_b, n) = P(n_{ab}, n_a, n_b)/P(n_a)$$

For numerator of the right hand side,

$$P(n_{ab},n_a,n_b) = \frac{n!}{n_{aa}!n_{ab}!n_{bb}!} (P_a)^{2n_{aa}} (2*P_a*P_b)^{n_{ab}} (P_b)^{2n_{bb}} = \frac{n!}{n_{aa}!n_{ab}!n_{bb}!} 2^{n_{ab}} (P_a)^{2n_{aa}+n_{ab}} (P_b)^{2n_{bb}+n_{ab}} = \frac{n!}{n_{aa}!n_{ab}!n_{bb}!} 2^{n_{ab}} (P_a)^{n_a} (P_b)^{n_b}$$

Denominator of right hand side,

$$P(n_a) = \frac{(2n)!}{n_a!n_b!} (P_a)^{n_a} (P_b)^{n_b}$$

Taking the ratio we got
$$P(N_{ab}=n_{ab})|n_a,n_b,n)=P(n_{ab},n_a,n_b)/P(n_a)=rac{n!}{n_{aa}!n_{ab}!n_{bb}!}2^{n_{ab}}*rac{n_a!n_b!}{(2n)!}2^{n_{ab}}$$

Relationship between score statistics, Z score and effect size.

Notation

 U_j : scaler, U score statistic for association test for variant j. See reference (Danyu Lin, 2011)

 V_i : scaler, variance of U_i

 v_j : standard deviation of U_j .

Under the H_0 , $U_j \sim N(0,V_j)$

 \hat{eta}_{1j} : estimate of effect size (the slope) $eta_1 j$ in simple linear regression for variant j.

 Y_i : Phenotype of individual/sample $\,i\,$

 X_{ij} : Genotype of individual/sample i at variant j.

Derivations

For convenience we assume that both genotype and phenotype are centered. (Can easy show that this assumption doesn't matter)

From OLS for simple linear regression, where $Y_i \perp Y_j, i \neq j$, and $Var(Y_i) = \sigma^2$ we have

$$\hat{eta}_{1j} = rac{Cov(X_j, Y)}{Var(X_j)} = rac{\sum\limits_i x_{ij} * y_i}{\sum\limits_i x_{ij}^2}$$

 $\sum_i x_{ij}^2$ can be viewed as a constant. Thus rewrite \hat{eta}_{1j} as $\hat{eta}_{1j}=\sum_i rac{x_{ij}}{\sum_i x_{ij}^2} y_i$, which is a linear combinations of y_i

Denote $k_i=rac{x_{ij}}{\sum\limits_i x_{ij}^2}$, then $\hat{eta}_{1j}=\sum\limits_i k_i y_i$, where k_i can be considered as a constant. Thus the variance of \hat{eta}_{1j} is

$$Var(\hat{eta}_{1j}) = Var(\sum_i k_i y_i) = \sum_i Var(k_i y_i) = \sum_i k_i^2 Var(y_i) = \sigma^2 \sum_i k_i^2$$

$$\sum_i k_i^2 = \sum_i (rac{x_{ij}}{\sum\limits_i x_{ij}^2})^2 = \sum rac{x_{ij}^2}{(\sum\limits_i x_{ij}^2)^2} = rac{\sum\limits_i x_{ij}^2}{(\sum\limits_i x_{ij}^2)^2} = rac{1}{\sum\limits_i x_{ij}^2}$$

Thus $Var(\hat{eta}_{1j})=rac{\sigma^2}{\sum\limits_i x_{ij}^2}=rac{\sigma^2}{N*Var(X_j)}$ where N is sample size (number of analyzed individuals).

As $\hat{\beta}_{ji}$ is normally distributed (property of OLS estimator), now we can construct the Z statistic/Z score for variant j under the null,

$$Z_j = rac{\hat{eta}_{j1}}{(Var(\hat{eta}_{j1}))^{1/2}} = rac{\hat{eta}_{j1}}{(rac{\sigma^2}{N*Var(X_i)})^{1/2}} = rac{\hat{eta}_{j1}*(N*Var(X_j))^{1/2}}{\sigma}$$

Thus we can then get $\hat{\beta}_{i1}$ as

$$\hat{eta}_{j1} = rac{Zj}{\left(N*Var(X_i)
ight)^{1/2}} * \sigma$$

Thus if we only consider the first part of the product, $\frac{Zj}{(N*Var(X_j))^{1/2}}$, then our estimate for effect size is in the unit of standard deviation of our phenotype.

Furthermore, we also know that $X_j \sim Bin(2,AF_j)$, where AF_j denotes that allele frequency of the alternative allele at site j. Thus $Var(Xj)=2*AF_j*(1-AF_j)$,

Thus, we now can comprehensively get $\hat{\beta}_{j1}$, namely effect size (in the unit of standard deviation of phenotype) of variant j from summary statistic data (e.g. association results generated by rvtest) as well as the standard deviation of $\hat{\beta}_{j1}$ as follows,

$$\hat{\beta}_{j1} = \frac{Zj}{(N*2*AF_j*(1-AF_j))^{1/2}}$$

$$Var(\hat{eta}_{j1}) = rac{1}{N*2*AF_j*(1-AF_j)}$$
 where $Z_j = rac{U_j}{v_j}$.