МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М.В. ЛОМОНОСОВА

Механико-математический факультет Кафедра теоретической механики и мехатроники

Отчет по практикуму на ЭВМ Задача №43

Преподаватель: Самохин А.С.

Работу выполнила

студентка 422 группы

Селезнева М.О.

Содержание

1.	Постановка задачи	3
2.	Формализация	3
3.	Система необходимых условий оптимальности	4
4.	Анормальный случай	5
5.	Краевая задача	7
6.	Аналитическое решение	7
7.	Выбор вычислительной схемы	11
8.	Тест решения задачи Коши — гармонический осциллятор	11
9.	Численное решение для всех случаев	13
10	.Сравнение аналитического и численного решений	15
11	.Сравнение логарифмической нормы и максимального син-	
	гулярного числа	16
12	.Оценка погрешности (δ Коши на всей траектории)	17
13	.Список литературы	19

1. Постановка задачи

Рассматривается задача Лагранжа с фиксированным временным отрезком, без ограничений вида "меньше или равно".

$$B_{0} = \int_{0}^{1} \frac{\ddot{x}}{1 + \alpha t^{4}} dt \to inf, \quad |\ddot{x}| \leq 1$$

$$x(0) = \dot{x}(0) = 0, \quad x(1) = -\frac{11}{24},$$

$$\alpha = \{0.0; 0.1; 1.0; 11.0\}$$
(1)

Требуется формализовать задачу как задачу оптимального управления, принципом максимума Понтрягина свести задачу к краевой задаче, численно решить полученную краевую задачу методом стрельбы и обосновать точность полученных результатов, проверить полученные экстремали Понтрягина на оптимальность.

2. Формализация

Формализуем задачу как задачу оптимального управления. Для этого обозначим: $u = \ddot{x}, \quad \dot{x} = y$. Тогда исходная система (1) перепишется в виде:

$$\begin{cases} \dot{x} = y, \\ \dot{y} = u \\ u \in [-1, 1] \\ x(0) = y(0) = 0, \\ x(1) = -\frac{11}{24} \\ \int_{0}^{1} \frac{u}{1 + \alpha t^{4}} dt \to inf \\ \alpha = \{0.0; 0.1; 1.0; 11.0\} \end{cases}$$
(2)

3. Система необходимых условий

оптимальности

Выпишем функции Лагранжа и Понтрягина

$$\mathscr{L} = \int_0^1 Ldt + l,$$

лагранжиан: $L = \lambda_0 \left(\frac{u}{1 + \alpha t^4} \right) + p_x(\dot{x} - y) + p_y(\dot{y} - u)$

терминант: $l = \lambda_1 x(0) + \lambda_2 y(0) + \lambda_3 \left(x(1) + \frac{11}{24} \right)$,

$$H = p_x y + p_y u - \lambda_0 \left(\frac{u}{1 + \alpha t^4} \right)$$

Применим к задаче оптимального управления принцип максимума Понтрягина. Необходимые условия оптимальности:

а) уравнения Эйлера-Лагранжа (сопряженная система уравнений):

$$\begin{cases} \dot{p}_x = 0, \\ \dot{p}_y = -p_x; \end{cases}$$

б) условие оптимальности по управлению, $u = \underset{u \in [-1,1]}{arg \ abs \ max} \ H(u)$:

$$u = \mathop{arg\,abs\,max}_{u \in [-1,1]} \left(p_y u - \frac{\lambda_0 u}{1 + \alpha t^4} \right) = \begin{cases} 1, & \text{если } p_y - \frac{\lambda_0}{1 + \alpha t^4} > 0; \\ -1, & \text{если } p_y - \frac{\lambda_0}{1 + \alpha t^4} < 0; \\ \forall u \in [-1,1], & \text{если } p_y - \frac{\lambda_0}{1 + \alpha t^4} = 0. \end{cases}$$

в) условие трансверсальности по $\binom{x}{y}$, $p_x(t_k)=(-1)^k\frac{\partial l}{\partial x_k(t_k)}, \quad p_y(t_k)=(-1)^k\frac{\partial l}{\partial y_k(t_k)},$ где $k=0,1;\ t_0=0;\ t_1=1:$

$$p_x(0) = \lambda_1, \quad p_x(1) = -\lambda_3$$

 $p_y(0) = \lambda_2, \quad p_y(1) = 0;$

- в) условия стационарности по t_k : нет, так как в задаче t_k известные константы;
- д) условия дополняющей нежёсткости: нет, так как в задаче отсутсвуют условия вида "меньше или равно";
- е) условие неотрицательности $\lambda_0 \geqslant 0$;
- ж) условие нормировки (множители Лагранжа могут быть выбраны с точностью до положительного множителя);
- з) НЕРОН (множители лагранжа НЕ Равны Одновременно Нулю).

4. Анормальный случай

Исследуем возможность анормального случая $\lambda_0=0$. При $\lambda_0=0$ имеем

$$u = egin{cases} 1, & ext{если } p_y > 0; \ -1, & ext{если } p_y < 0; \cdot \ 0, & ext{если } p_y = 0. \end{cases}$$

Таким образом, управление зависит от знака p_y . Тогда из (2) получаем краевую задачу

$$\begin{cases} \dot{x} = y \\ \dot{y} = \begin{cases} 1, & \text{если } p_y > 0 \\ -1, & \text{если } p_y < 0 \\ 0, & \text{если } p_y = 0 \end{cases}$$

$$\dot{p}_x = 0$$

$$\dot{p}_y = -p_x$$

$$x(0) = y(0) = 0, \ x(1) = -\frac{11}{24}, \ p_y(1) = 0.$$

Проинтегрировав два последних уравнения, находим $p_x=c_1,\,p_y=-c_1t+c_2.$ Из граничного условия $p_y(1)=0$ следует, что $c_1=c_2=\lambda$ и $p_y=\lambda(1-t).$ Имеем одну точку переключения управления t=1. В зависимости от λ получаем 3 различных случая:

1) при $\lambda=0$ имеем $p_y=0$. Тогда уравнения для x и y примут вид

$$\begin{cases} \dot{x} = y \\ \dot{y} = 0 \end{cases}$$

Из начальных условий следует: $x(t)\equiv 0,\ y(t)\equiv 0,\$ что противоречит условию $x(1)=-\frac{11}{24}.$

2) при $\lambda>0$ имеем $p_y>0$ на $t\in[0,1)$ и $p_y(1)=0.$ Тогда

$$\begin{cases} \dot{x} = y \\ \dot{y} = 1 \end{cases}$$

Находим $x(t) = \frac{t^2}{2}$ и y(t) = t и получаем противоречие:

$$x(1) = -\frac{11}{24}$$
 и $x(1) = \frac{1}{2}$.

3) при $\lambda < 0$ имеем $p_y < 0$ на $t \in [0,1)$ и $p_y(1) = 0$. Тогда система имеет вид

$$\begin{cases} \dot{x} = y \\ \dot{y} = -1 \end{cases}$$

Используя начальные условия, находим $x(t)=-\frac{t^2}{2}$ и y(t)=t. В результате приходим к противоречию: $x(1)=-\frac{1}{2}\neq -\frac{11}{24}$.

Таким образом, $\lambda_0 \neq 0$. В силу однородности функции Лагранжа по множителям Лагранжа выберем следующие условие нормировки: $\lambda_0 = 1$.

Краевая задача

Таким образом, на основе принципа максимума Понтрягина задача оптимального управления сводится к краевой задаче. А именно

$$\begin{cases} \dot{x} = y \\ \dot{y} = \begin{cases} 1, & \text{если } p_y > \frac{1}{1 + \alpha t^4} \\ -1, & \text{если } p_y < \frac{1}{1 + \alpha t^4} \\ 0, & \text{если } p_y = \frac{1}{1 + \alpha t^4} \end{cases}$$

$$\dot{p}_x = 0$$

$$\dot{p}_y = -p_x$$

$$x(0) = y(0) = 0, \ x(1) = -\frac{11}{24}, \ p_y(1) = 0, \ \alpha = \{0.0; 0.1; 1.0; 11.0\}.$$

Аналитическое решение

Упростим краевую задачу (3), уменьшив количество уравнений. Из двух последних уравнений имеем $p_x=\lambda,\, p_y=\lambda(1-t),\,$ а из условия трансверсальности в) следует, что $\lambda = \lambda_1 = \lambda_2 = -\lambda_3$. Тогда вместо двух параметров пристрелки будет только один — λ .

В результате получаем следующую краевую задачу:

$$\begin{cases} \dot{x} = y \\ \dot{y} = \begin{cases} 1, & \text{если } \lambda(1-t) > \frac{1}{1+\alpha t^4} \\ -1, & \text{если } \lambda(1-t) < \frac{1}{1+\alpha t^4} \\ 0, & \text{если } \lambda(1-t) = \frac{1}{1+\alpha t^4} \\ x(0) = y(0) = 0, \ x(1) = -\frac{11}{24}, \ \alpha = \{0.0; 0.1; 1.0; 11.0\}. \end{cases}$$

Аналитически определим границы λ . Из анормального случая делаем вывод, для того чтобы выполнялось граничное условие $x(1) = -\frac{11}{24}$ необходимо существование точки переключения управления $t^* \in (0,1)$. Иначе решением системы будет $x(t) = \pm \frac{t^2}{2}$ и $y = \pm t$, что противоречит граничному условию. Точка переключения управления t^* является корнем уравнение $\lambda(1-t) = \frac{1}{1+\alpha t^4}$ (*). В зависимости от λ и α имеем разные случаи:

1) $\alpha > 0$

• в случае $\lambda > 0$ получаем, что при $\alpha = 0.1$ и $\alpha = 1$ уравнение имеет единственный корень, если $\lambda > 1$. Этот вывод можно сделать из представленных ниже графиков функций $f_1 = \lambda(1-t), f_2 = \frac{1}{1+\alpha t^4}$.

Рис. 1. $\lambda = 1$ и $\alpha = 0.1$

Рис. 2. $\lambda = 1$ и $\alpha = 1$

Видно, что если $\lambda > 1$, тогда $t^* \in (0,1)$.

При $\alpha=11$ ситуация поменяется. Графики уравнения (*) либо не пересекаются, либо имееют одну, две или три точки пересечения в зависимости от λ . Ниже представлены графики при разных λ .

Рис. 3. $\lambda=0.8$ и $\alpha=11$

Рис. 4. $\lambda=0.9$ и $\alpha=11$

Рис. 5. $\lambda = 1$ и $\alpha = 11$

Рис. 6. $\lambda = 1.4$ и $\alpha = 11$

Делаем вывод, что точка переключения управления существует при $\lambda > 0.8.$

- в случае $\lambda=0$ уравнение (*) не имеет корня, следовательно, не существует момента времени переключения управления и решением системы будет $x(t)=-\frac{t^2}{2}$ и y=-t, что нам не подходит;
- в случае $\lambda < 0$ корень уравнения (*) t^* лежит за пределами отрезка $t \in [0,1]$, а именно $t^* > 1$. В этом случае решение совпадает с ранее рассмотренным при $\lambda = 0$.

Таким образом, мы определили, что $\lambda>1$ для $\alpha=0.1,~\alpha=1$ и $\lambda>0.8$ для $\alpha=11.$

- 2) при $\alpha = 0$ имеем следующее уравнение $\lambda(1-t) = 1(**).$
 - $\lambda = 0$ не удовлетворяет уравнению (**);
 - при $\lambda < 0$ корень уравнения (**) $t^* > 1$;
 - ullet при $\lambda>0$ получаем $t^*=1-rac{1}{\lambda}.$ Отсюда делаем вывод, что $\lambda>1.$

Решим задачу аналитически при $\alpha=0$. Из предыдущего пункта получаем, что при $\lambda>1$ верно $\lambda(1-t)>1$ на $t\in[0,t^*)$ и $\lambda(1-t)<1$ на $t\in(t^*,1]$.

Таким образом, получим следующую систему:

$$\begin{cases} \dot{x} = y \\ \dot{y} = 1, \quad \text{при } t \in [0, t^*) \\ x(0) = y(0) = 0. \end{cases}$$
 (5)

Отсюда находим $x(t) = \frac{t^2}{2}$ и y = t на промежутке $t \in [0, t^*)$. В точке t^* произошло переключение управления, после чего система примет вид

$$\begin{cases} \dot{x} = y \\ \dot{y} = -1, & \text{при } t \in (t^*, 1] \\ x(t^*) = \frac{t^{*2}}{2}, \ y(t^*) = t^*. \end{cases}$$
 (6)

Проинтегрировав систему, из начальных условий получим $x(t)=-\frac{t^2}{2}+2t^*t-t^{*2},$ $y(t)=-t+2t^*$ на промежутке $t\in (t^*,1].$ Используя граничное условие $x(1)=-\frac{11}{24},$ получаем квадратное уравнение относительно t^* :

$$-\frac{1}{2} + 2t^* - t^{*2} = -\frac{11}{24}$$

. Отсюда находим 2 корня, один из которых больше 1. А второй корень:

$$t^* \approx 0.0210549896274391$$

. Тогда

$\lambda \approx 1.021507836910498.$

Найдем верхнюю границу для λ . Ранее определили, что для $\alpha=\{0.0;0.1;1.0\}$ существует одна точка переключения. Рассмотрим функцию относительно t^* $x(t,t^*)=-\frac{t^2}{2}+2t^*t-t^{*2}$. В точке t=1 имеем параболу $x(t^*)=-\frac{1}{2}+2t^*-t^{*2}$, которая возрастает при $t^*\in[0,1)$ и в точке $t^*=1$ достигает максимума. Таким образом, чем ближе t^* к 1, тем больше значение x(1). При $t^*=\frac{1}{4}$ получим

 $x=-rac{1}{16}$, следовательно, $t^*<rac{1}{4}$. Тогда из равенства: $\lambda=rac{1}{(1-t^*)(1+lpha t^{*4})}$ найдем, что $\lambda<rac{4}{3}$ при $lpha=\{0.0;0.1;1.0\}$.

В случае $\alpha=11$ при $\lambda\geqslant 1.4$ имеем одну точку переключения, которая должна удовлетворять условию: $t^*<\frac{1}{4}.$ Как видно из графиков, это условие не выполняется, значит, $\lambda<1.4.$

Итак, мы ограничили множество λ для $\forall \alpha$.

7. Выбор вычислительной схемы

Краевая задача (4) решается численно методом стрельбы. В качестве параметра пристрелки выбирается недостающее для решения задачи Коши значение λ . Ранее было получено: $\lambda \in [0.8, 1.4] \ \forall \alpha$, в результате нескольких запусков программы удалось уменьшить до $\lambda \in [0.9, 1.1]$. Для нахождения правильного λ применяем метод золотого сечения: находим нуль функции $f(\lambda) = x(\lambda, 1) + \frac{11}{24}$.

Задача Коши для системы дифференциальных уравнений (4), начальных условий в момент времени t=0 при фиксированном λ решается численно явным методом Рунге-Кутты 8-го порядка, основанным на расчетных формулах Дормана-Принса 8(7) DOPRI8 с автоматическим выбором шага (то есть с контролем относительно локальной погрешности на шаге по правилу Рунге).

8. Тест решения задачи Коши гармонический осциллятор

В таблице ниже приведены результаты численного интегрирования системы дифференциальных уравнений гармонического осциллятора $\begin{cases} \dot{x} = y \\ \dot{y} = -x, \end{cases}$

с начальными условиями $\begin{cases} x(0) = 0 \\ y(0) = 1. \end{cases}$ явным методом Рунге-Кутты с оценкой погрешности на шаге через 8-ую производную для различного конечно-

го времени T и различных значений максимально допустимой относительной погрешности на шаге интегрирования Δ_{loc} , steps — общее число сделанных шагов интегрирования (число принятых шагов); |x(T)| и $|y(T) - \cos T|$ — невязки в конце; $\Delta x(\cdot)$ и $\Delta y(\cdot)$ — максимальное отличие полученного ре-

шения от известного аналитического $\begin{cases} x = \sin t & \text{по всем шагам; } \delta_K(T) - y = \cos t, \\ \text{оценка глобальной погрешности по формуле } \delta_K(t_{i+1}) = r_i + \delta_K(t_i) \cdot e^{L_i}, \text{ где} \\ r_i - \text{главный член в оценке локальной погрешности, а } L_i = \int\limits_{t_i}^{t_{i+1}} \mu(t) \, dt; \, \mu(t) \\ - \text{логарифмическая норма матрицы Якоби исходной системы дифференци$ альных уравнений, $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, равная максимальному собственному зна-

чению матрицы $\frac{1}{2}\cdot(J+J^T)=\begin{pmatrix}0&0\\0&0\end{pmatrix}$, то есть $0\Rightarrow\delta_K(t_{i+1})=r_i+\delta_K(t_i);$ $R_x=\left|\frac{x_{10^{-8}}(T)-x_{10^{-10}}(T)}{x_{10^{-10}}(T)-x_{10^{-12}}(T)}\right|,$ $R_y=\left|\frac{y_{10^{-8}}(T)-y_{10^{-10}}(T)}{y_{10^{-10}}(T)-y_{10^{-12}}(T)}\right|$ — числа Рунге, должны быть примерно равны $100^{\frac{7}{8}}\approx 56.23$ — проверка правила Рунге.

T	Δ_{loc}	steps	x(T)	$ y(T) - \cos T $	$\Delta x(\cdot)$	$\Delta y(\cdot)$	$\delta_K(T)$	R_x	R_y
	10^{-8}	10	$5.43 \cdot 10^{-10}$	$5.26 \cdot 10^{-10}$	$7.44 \cdot 10^{-10}$	$5.26 \cdot 10^{-10}$	$1.27 \cdot 10^{-9}$		
π	10^{-10}		$1.14 \cdot 10^{-11}$	$1.46 \cdot 10^{-11}$	$1.45 \cdot 10^{-11}$	$1.46 \cdot 10^{-11}$	$3.18 \cdot 10^{-11}$	47.77	35.92
	10^{-12}	12	$2.35 \cdot 10^{-13}$	$3.06 \cdot 10^{-13}$	$3.17 \cdot 10^{-13}$	$3.06 \cdot 10^{-13}$	$6.45 \cdot 10^{-13}$		
	10^{-8}	32	$1.38 \cdot 10^{-8}$	$1.32\cdot10^{-8}$	$1.81 \cdot 10^{-8}$	$1.56 \cdot 10^{-8}$	$3.11 \cdot 10^{-8}$		
10π	10^{-10}	46	$1.83 \cdot 10^{-10}$	$2.34 \cdot 10^{-10}$	$2.88 \cdot 10^{-10}$	$2.71 \cdot 10^{-10}$	$5.11 \cdot 10^{-10}$	75.67	56.36
	10^{-12}	68	$2.98 \cdot 10^{-12}$	$3.9 \cdot 10^{-12}$	$4.79 \cdot 10^{-12}$	$4.51 \cdot 10^{-12}$	$8.23 \cdot 10^{-12}$		
	10^{-8}	251	$1.45 \cdot 10^{-7}$	$1.4\cdot 10^{-7}$	$1.94 \cdot 10^{-7}$	$1.98 \cdot 10^{-7}$	$3.27 \cdot 10^{-7}$		
$10^{2}\pi$	10^{-10}	396	$1.9 \cdot 10^{-9}$	$2.43 \cdot 10^{-9}$	$3.06 \cdot 10^{-9}$	$3.06 \cdot 10^{-9}$	$5.31 \cdot 10^{-9}$	76.89	57.24
	10^{-12}	624	$3.08 \cdot 10^{-11}$	$3.97 \cdot 10^{-11}$	$5.01 \cdot 10^{-11}$	$4.99 \cdot 10^{-11}$	$8.41 \cdot 10^{-11}$		
	10^{-8}	2439	$1.46 \cdot 10^{-6}$	$1.4\cdot 10^{-6}$	$2.02 \cdot 10^{-6}$	$2.02 \cdot 10^{-6}$	$3.28 \cdot 10^{-6}$		
$10^3\pi$			$1.9 \cdot 10^{-8}$	$2.44 \cdot 10^{-8}$	$3.1 \cdot 10^{-8}$	$3.09 \cdot 10^{-8}$			57.25
	10^{-12}	6188	$3.06 \cdot 10^{-10}$	$3.98 \cdot 10^{-10}$	$5.01 \cdot 10^{-10}$	$5.01 \cdot 10^{-10}$	$8.43 \cdot 10^{-10}$		
	10^{-8}	24324	$1.46 \cdot 10^{-5}$	$1.4\cdot10^{-5}$	$2.02 \cdot 10^{-5}$	$2.02 \cdot 10^{-5}$	$3.28 \cdot 10^{-5}$		
$10^{4}\pi$	10^{-10}	38864	$1.9 \cdot 10^{-7}$	$2.44 \cdot 10^{-7}$	$3.1 \cdot 10^{-7}$	$3.1\cdot 10^{-7}$	$5.33 \cdot 10^{-7}$	76.88	57.27
	10^{-12}	61821	$2.96 \cdot 10^{-9}$	$3.98 \cdot 10^{-9}$	$4.95 \cdot 10^{-9}$	$4.96 \cdot 10^{-9}$	$8.43 \cdot 10^{-9}$		
	10^{-8}	243171	$1.46 \cdot 10^{-4}$	$1.4\cdot 10^{-4}$	$2.02 \cdot 10^{-4}$	$2.02 \cdot 10^{-4}$	$3.29 \cdot 10^{-4}$		
$10^{5}\pi$	10^{-10}	388578	$1.91 \cdot 10^{-6}$	$2.44 \cdot 10^{-6}$	$3.1 \cdot 10^{-6}$	$3.1 \cdot 10^{-6}$	$5.33 \cdot 10^{-6}$	76.97	57.26
	10^{-12}	618158	$4.02 \cdot 10^{-8}$	$3.98 \cdot 10^{-8}$	$5.66 \cdot 10^{-8}$	$5.67 \cdot 10^{-8}$	$8.44 \cdot 10^{-8}$		
	10^{-8}	2431800	$1.46 \cdot 10^{-3}$	$1.4\cdot10^{-3}$	$2.02 \cdot 10^{-3}$	$2.02 \cdot 10^{-3}$	$3.29 \cdot 10^{-3}$		
$10^{6}\pi$	10^{-10}	3885721	$1.91 \cdot 10^{-5}$	$2.44 \cdot 10^{-5}$	$3.1 \cdot 10^{-5}$	$3.1\cdot10^{-5}$	$5.33 \cdot 10^{-5}$	76.4	57.23
	10^{-12}	6181528	$2.04 \cdot 10^{-7}$	$3.98 \cdot 10^{-7}$	$4.57 \cdot 10^{-7}$	$4.57 \cdot 10^{-7}$	$8.44 \cdot 10^{-7}$		

9. Численное решение для всех случаев

Решением в исходной задаче оптимального управления (2) являются фазовые переменные $x(\cdot)$, $y(\cdot)$, управление $u(\cdot)$ и значение исходного функционала B_0 для всех значений $\alpha=\{0.0;0.1;1.0;11.0\}$. Будем считать функционал $B_0=\int\limits_0^1\frac{u}{1+\alpha t^4}dt$ функцией от $t,\ B_0(t)=\int\limits_0^t\frac{u}{1+\alpha s^4}ds$. Исходя из формулы дифференцирования $\left(\int\limits_0^tf(s)ds\right)_t'=f(t)$ в методе численного интегрирования задачи Коши в систему дифференциальных уравнений (4) можно добавить формальное соотношение $\dot{B_0}=\frac{u}{1+\alpha t^4}$.

Ниже приведены графики фазовых переменных, управления и функционала $B_0(t)$, полученных численным интегрированием с максимально допустимой относительной локальной погрешностью на шаге $\Delta_{loc}=10^{-12}$.

1,5
1
0,5
0
0-0,5
-1
-1,5
-u(t) —8_0(t)

Рис. 7. x(t) и y(t) при $\alpha=0$

Рис. 8. u(t) и $B_0(t)$ при $\alpha=0$

Рис. 9. x(t) и y(t) при $\alpha=0.1$

Рис. 10. u(t) и $B_0(t)$ при $\alpha=0.1$

Рис. 11. x(t) и y(t) при $\alpha=1$

Рис. 12. u(t) и $B_0(t)$ при $\alpha=1$

В результате работы программы для каждого параметра α были найдены параметр пристрелки λ , значение функционала B_0 , а также моменты времени переключения управления t^* .

1,5
1
0,5
0
0
-0,5
-1
-1,5
-u(t) —B_0(t)

Рис. 13. x(t) и y(t) при $\alpha=11$

Рис. 14. u(t) и $B_0(t)$ при lpha=11

α	Δ_{loc}	λ	B_0	t^*
	10^{-8}	1.0208958162779074	-0.9577731017950065	
0	10^{-10}	1.0214900753805403	-0.9578758481441583	0.0210552063368863
	10^{-12}	1.0215078772335162	-0.9578899333909265	
	10^{-8}	1.0208957983597609	-0.9388922093235892	
0.1	10^{-10}	1.0214900553704387	-0.9389718281738545	0.0210552063368863
	10^{-12}	1.0215078571580782	-0.9389302866549807	
	10^{-8}	1.0208956370964699	-0.8249302961357949	
1	10^{-10}	1.0214898752795603	-0.8248975347061374	0.0210552063368863
	10^{-12}	1.0215076764791731	-0.8248647063155075	
	10^{-8}	0.9067212218164047	-0.5435512940420228	0.7129678922695565
11	10^{-10}	0.9067269381462523	-0.5433488502654404	
	10^{-12}	0.9067264427957120	-0.5433335640661811	0.7982067331888145

10. Сравнение аналитического и численного решений

После решения задачи численно и аналитически при $\alpha=0$, убеждаемся в том, что численное решение верно:

Параметры	Аналитическое решение	Численное решение
		при $\Delta_{loc}=10^{-12}$
момент переключения t^*	0.0210549896274391	0.0210552063368863
λ	1.021507836910498	1.0215078772335162
B_0	-0.9578900207451218	-0.9578899333909265

11. Сравнение логарифмической нормы и максимального сингулярного числа

Матрица Якоби системы дифференциальных уравнений (4) имеет вид:

$$J = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Для определения скорости распространения ошибки в оценках глобальной погрешности определяется логарифмическая норма матрицы $\mu(J)$ — максимальное собственное значение матрицы $\frac{1}{2}(J+J^T)$ и норма матрицы $\|J\|$ — максимальное сингулярное число.

$$J^T = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad \frac{1}{2}(J + J^T) = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix}.$$

Найдем собственные значения матрицы $\frac{1}{2}(J+J^T)$:

$$\begin{vmatrix} -\lambda & \frac{1}{2} \\ \frac{1}{2} & -\lambda \end{vmatrix} = \lambda^2 - \frac{1}{4} = 0 \Rightarrow \lambda_{1,2} = \pm \frac{1}{2} \Rightarrow \mu(J) = \lambda_{max} = \frac{1}{2}.$$

Теперь вычислим максимальное сингулярное число:

$$J^T \cdot J = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

$$\begin{vmatrix} -\lambda & 0 \\ 0 & 1 - \lambda \end{vmatrix} = \lambda(\lambda - 1) = 0 \Rightarrow \lambda_1 = 0, \ \lambda_2 = 1 \Rightarrow ||J|| = \sqrt{\lambda_{max}} = 1.$$

Таким образом, $\frac{1}{2} = \mu(J) < ||J|| = 1.$

12. Оценка погрешности (δ Коши на всей траектории)

Применима следующая оценка глобальной погрешности:

$$\|\vec{x}(t) - \vec{v}(t)\| \le e^{L(t)} \left(\delta_K(0) + \int_0^t e^{-L(s)} \rho(s) ds \right),$$

где $\vec{x}(t)$ – вектор точного значения фазовых переменных системы (4); $\vec{v}(t)$ – вектор фазовых переменных системы (4), вычисленных в результате решения задачи Коши, $\rho(s)$ – ошибка в вычисленных правых частях системы (4) в момент времени s; $\delta_K(t)$ – ошибка в вычисленных значениях фазовых переменных задачи (4) в момент времени t, для оценки точности решения задачи Коши мы предполагаем, что в начальный момент времени значения фазовых переменных заданы правильно, то есть $\delta_K(0)=0$; $L(t)=\int\limits_0^t \mu(s)ds$. Из предыдущего пункта для логарифмической нормы получена аналитическая формула: $\mu=\frac{1}{2}$. Следовательно, интеграл $L_i=\int\limits_{t_i}^{t_{i+1}}\mu(s)\,ds$ можно вычислить явно: $L_i=\int\limits_{t_i}^{t_{i+1}}\mu(s)\,ds=\frac{1}{2}$. Тогда величина глобальной погрешности решения задачи Коши $\delta_K(1)$ может быть оценена через C_ρ , где константа $C_\rho\geqslant \rho(s)$ оценивает сверху $\rho(s)$:

$$\delta_K(1) \leqslant e^{L(1)} \left(\delta_K(0) + \int_0^1 e^{-L(s)} \rho(s) ds \right) \leqslant e^{\frac{1}{2}} \cdot \int_0^1 e^{-\frac{s}{2}} C_\rho ds = 2C_\rho(e^{\frac{1}{2}} - 1). \quad (7)$$

Таким образом, глобальная ошибка в решении задачи Коши оценивается по формуле (7), где C_{ρ} – максимум ошибки в вычислении правых частей. В таблице ниже при разных α и Δ_{loc} представлены глобальная погрешность $\Delta_K(1)$,

вычисленная по формуле $\delta_K(t_{i+1}) = r_i + \delta_K(t_i) \cdot e^{L_i}$, где $L_i = \frac{h}{2}$ и $\left| x(1) + \frac{11}{24} \right|$ невязка в конце отрезка.

α	Δ_{loc}	$\delta_K(1)$	$\left x(1) + \frac{11}{24} \right $
	10^{-8}	$1.569004 \cdot 10^{-8}$	$1.121931 \cdot 10^{-4}$
0	10^{-10}	$2.193416 \cdot 10^{-11}$	$1.387099 \cdot 10^{-5}$
	10^{-12}	$1.575408 \cdot 10^{-17}$	$8.551495 \cdot 10^{-8}$
	10^{-8}	$1.569004 \cdot 10^{-8}$	$1.121931 \cdot 10^{-4}$
0.1	10^{-10}	$2.193416 \cdot 10^{-11}$	$1.387099 \cdot 10^{-5}$
	10^{-12}	$1.575408 \cdot 10^{-17}$	$8.551495 \cdot 10^{-8}$
	10^{-8}	$1.569004 \cdot 10^{-8}$	$1.121931 \cdot 10^{-4}$
1	10^{-10}	$2.193416 \cdot 10^{-11}$	$1.387099 \cdot 10^{-5}$
	10^{-12}	$1.575408 \cdot 10^{-17}$	$8.551495 \cdot 10^{-8}$
	10^{-8}	$6.18843 \cdot 10^{-9}$	$1.673812 \cdot 10^{-4}$
11	10^{-10}	$1.098999 \cdot 10^{-10}$	$3.293418 \cdot 10^{-6}$
	10^{-12}	$2.116235 \cdot 10^{-16}$	$8.665685 \cdot 10^{-8}$

13. Список литературы

- 1. И. С. Григорьев. Методическое пособие по численным методам решения краевых задач принципа максимума в задачах оптимального управления. М., Издательство Центра прикладных исследований при механико-математическом факультете МГУ, 2005
- 2. К. Г. Григорьев. Практикум по численным методам в задачах оптимального управления. -М., 2007
- 3. Э. Хайер, С. П. Нёрсетт, Г. Ваннер. Решение обыкновенных дифференциальных уравнений М.: Мир, 1989