

Regresja

Weronika Piotrowska Golem 2023

Agenda

- I. Część teoretyczna
 - 1. Wprowadzenie
 - 2. Regresja czy klasyfikacja?
 - 3. Prosty przykład
 - 4. Mean Squared Error
 - 5. Spadek gradientu
 - 6. Trochę mniej prosty przykład
 - 7. Regularyzacja
 - 8. Czekaj, dlaczego my to w ogóle robimy?
 - 9. Regresja wielomianowa
- II. Część praktyczna

Przypomnienie

Na podstawie tego

Chcemy przewidzieć to

No	X1 transaction date	X2 house age	X3 distance to the nearest MRT station	X4 number of convenience stores	X5 latitude	X6 longitude	Y house price of unit area
1	2012.917	32	84.87882	10	24.98298	121.54024	37.9
2	2012.917	19.5	306.5947	9	24.98034	121.53951	42.2
3	2013.583	13.3	561.9845	5	24.98746	121.54391	47.3
4	2013.5	13.3	561.9845	5	24.98746	121.54391	54.8
5	2012.833	5	390.5684	5	24.97937	121.54245	43.1
6	2012.667	7.1	2175.03	3	24.96305	121.51254	32.1
7	2012.667	34.5	623.4731	7	24.97933	121.53642	40.3
8	2013.417	20.3	287.6025	6	24.98042	121.54228	46.7
9	2013.5	31.7	5512.038	1	24.95095	121.48458	18.8
10	2013.417	17.9	1783.18	3	24.96731	121.51486	22.1
11	2013.083	34.8	405.2134	1	24.97349	121.53372	41.4
12	2013.333	6.3	90.45606	9	24.97433	121.5431	58.1
13	2012.917	13	492.2313	5	24.96515	121.53737	39.3
14	2012.667	20.4	2469.645	4	24.96108	121.51046	23.8
15	2013.5	13.2	1164.838	4	24.99156	121.53406	34.3

Przypomnienie

features							target / label
							V
No	X1 transaction date	X2 house age	X3 distance to the nearest MRT station	X4 number of convenience stores	X5 latitude	X6 longitude	Y house price of unit area
1	2012.917	32	84.87882	10	24.98298	121.54024	37.9
2	2012.917	19.5	306.5947	9	24.98034	121.53951	42.2
3	2013.583	13.3	561.9845	5	24.98746	121.54391	47.3
4	2013.5	13.3	561.9845	5	24.98746	121.54391	54.8
5	2012.833	5	390.5684	5	24.97937	121.54245	43.1
6	2012.667	7.1	2175.03	3	24.96305	121.51254	32.1
7	2012.667	34.5	623.4731	7	24.97933	121.53642	40.3
8	2013.417	20.3	287.6025	6	24.98042	121.54228	46.7
9	2013.5	31.7	5512.038	1	24.95095	121.48458	18.8
10	2013.417	17.9	1783.18	3	24.96731	121.51486	22.1
11	2013.083	34.8	405.2134	1	24.97349	121.53372	41.4
12	2013.333	6.3	90.45606	9	24.97433	121.5431	58.1
13	2012.917	13	492.2313	5	24.96515	121.53737	39.3
14	2012.667	20.4	2469.645	4	24.96108	121.51046	23.8
15	2013.5	13.2	1164.838	4	24.99156	121.53406	34.3

Regresja vs klasyfikacja

Regresja - liczby

- wartości funkcji
- cena
- ilość ludzi
- jakość (np w skali 1-5)

Klasyfikacja - kategorie

- tak/nie
- rasy psów
- grupa krwi
- jaki obiekt?

Najprostszy przypadek

Najprostszy przypadek

Czego tak właściwie szukamy?

Najlepszego β_1 , β_0 dla

$$y = \beta_1 x + \beta_0$$

Mean Squared Error

$$MSE = \frac{1}{n} \sum_{i=0}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$

MSE jako funkcja

Znaleźć takie β_1 , β_0 żeby MSE było najmniejsze

Pochodne!

$$\frac{\partial MSE}{\partial \beta_0} = \frac{-2}{n} \sum_{i=0}^{n} (y_i - (\beta_0 + \beta_1 x_i))$$

$$\frac{\partial MSE}{\partial \beta_1} = \frac{-2}{n} \sum_{i=0}^{n} x_i (y_i - (\beta_0 + \beta_1 x_i))$$

Spadek gradientu (gradient descent)

Gradient = wektor wszystkich pochodnych cząstkowych

- Wskazuje nam kierunek
 w którym funkcja rośnie
- Możemy poruszać się w kierunku przeciwnym, aby znaleźć minimum

Przesuwamy się do minimum

$$\beta_0 = \beta_0 - \frac{\partial MSE}{\partial \beta_0} \cdot \alpha$$

$$\beta_1 = \beta_1 - \frac{\partial MSE}{\partial \beta_1} \cdot \alpha$$

Współczynnik uczenia (learning rate) α

Więcej zmiennych

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n$$

No	X1 transaction date	X2 house age	X3 distance to the nearest MRT station	X4 number of convenience stores	X5 latitude	X6 longitude	Y house price of unit area
1	2012.917	32	84.87882	10	24.98298	121.54024	37.9
2	2012.917	19.5	306.5947	9	24.98034	121.53951	42.2
3	2013.583	13.3	561.9845	5	24.98746	121.54391	47.3
4	2013.5	13.3	561.9845	5	24.98746	121.54391	54.8
5	2012.833	5	390.5684	5	24.97937	121.54245	43.1
6	2012.667	7.1	2175.03	3	24.96305	121.51254	32.1
7	2012.667	34.5	623.4731	7	24.97933	121.53642	40.3
8	2013.417	20.3	287.6025	6	24.98042	121.54228	46.7
9	2013.5	31.7	5512.038	1	24.95095	121.48458	18.8
10	2013.417	17.9	1783.18	3	24.96731	121.51486	22.1
11	2013.083	34.8	405.2134	1	24.97349	121.53372	41.4
12	2013.333	6.3	90.45606	9	24.97433	121.5431	58.1
13	2012.917	13	492.2313	5	24.96515	121.53737	39.3
14	2012.667	20.4	2469.645	4	24.96108	121.51046	23.8
15	2013.5	13.2	1164.838	4	24.99156	121.53406	34.3

Algorytm spadku gradientu

- 1. Oblicz pochodne cząstkowe funkcji celu
- 2. Przemnóż pochodne przez współczynnik uczenia
- 3. Zaaktualizuj parametry
- 4. Powtarzaj dopóki wszystkie pochodne w punkcie nie będą ujemne

Regularyzacja

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n$$

Jeśli na przykład β_0 = 0.05, β_1 =2 , β_2 =500, to wynik zależy tylko od x_2

Regularyzacja

Zmieniamy troche funkcję straty

Ridge
$$MSE = \frac{1}{n} \sum_{i=0}^{n} (y_i - pred_i)^2 + \lambda \sum_{j=0}^{m} \beta_j^2$$

Lasso
$$MSE = \frac{1}{n} \sum_{i=0}^{n} (y_i - pred_i)^2 + \lambda \sum_{j=0}^{m} |\beta_j|$$

Po co i dlaczego?

$$F(x) = w_1 \cdot x_1 + w_2 \cdot x_2 + 1 \cdot b$$

Inne modele regresyjne

Regresja wielomianowa

Bierzemy pod uwagę wszystkie możliwe iloczyny

$$y = \beta_0 + \beta_1 x_1 \longrightarrow y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$
 ????

Regresja wielomianowa

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2$$
 $x_2 = x_1^2$ $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$

Przykład – regresja kwadrawtowa

x1	x2	У
2	3	17
5	2	19
7	1	15

Koniec części teoretycznej

