Ejemplo de Division:

Buscar el padrón de los alumnos que aprobaron **todas las materias**. (Aclaración: en la tabla notas están solo los alumnos que aprobaron). Si un alumno esta en la tabla Notas, es porque aprobó esa materia.

Para resolver la división debemos encontrar:

- El numerador: Conjunto A -> Alumnos
- El denominador: Conjunto B -> Materias
- El vínculo que los relaciona -> del alumno que aprobó la materia

Haciendo esta división, me va a quedar solo el padrón, porque el depto y código son comunes a A y B (como que se cancelan). **Para ello, deben estar ordenados según el orden de las columnas**

Los marcados son los padrones que cumplen con la condición de que están relacionados con todas las materias.

Ejercicios del taller:

- b) Mostrar el nombre y apellido de directores catalogados cono de 'Sci-Fi' (ciencia ficcion) con una probabilidad mayor igual a 0.5.
- ID_DIRECTORES_SCIFI = π director_id, directors_genres.prob (σ (directors_genres.genre= 'Sci-Fi' \wedge directors_genres.prob \geq 0.5)directors_genres)

 π directors.first_name, directors.last_name, directors_genres.prob(ID_DIRECTORES_SCIFI \bowtie director_id=directors.id directors)

directors.first_name	directors.last_name	directors_genres.prob
'James (I)'	'Cameron'	0.5
'Richard (II)'	'Kelly'	0.5

c) Mostrar los nombres de las películas filmadas por James(I) Cameron que figuren en la base.

ID_JAMES_CAM = π id (σ (directors.first_name='James (I)' \wedge directors.last_name = 'Cameron')directors)

 $J_M_MOVIES_ID = \pi movie_id(ID_JAMES_CAM \bowtie directors.id=movies_directors.director_id movies_directors)$

 $J_M_MOVIES_NAMES = \pi name(J_M_MOVIES_ID \bowtie movies_directors.movie_id = movies.id movies)$

J_M_MOVIES_NAMES

'Terminator 2: Judgment Day'

d) mostrar los nombres y apellidos de las actrices que trabajaron en la película 'Judgment at Nuremberg'

MOVIE ID = πid , name(σ (movies.name='Judgment at Nuremberg')movies)

ACTORS_ID_MOVIE = (MOVIE_ID ⋈ movies.id = roles.movie id roles)

ACTORS_NAMES = π first_name,last_name(σ actors.gender='F'(ACTORS_ID_MOVIE \bowtie roles.actor_id = actors.id actors))

ACTORS NAMES

actors.first_name	actors.last_name
'Sheila'	'Bromley'
'Virginia'	'Christine'
'Marlene'	'Dietrich'
'Olga'	'Fabian'
'Bess'	'Flowers'
'Judy (I)'	'Garland'
'Jana'	'Taylor'

- e) Muestre los actores que trabajaron en todas las películas de Woody Allen de la base.
- f) Directores que abarcaron, al menos, los mismos géneros que Welles (géneros en directores).
- g) Actores que filmaron más de una película en algún año a partir de 1999.
- h) Listar las películas del último año.
- i) Películas del director Spielberg en las que actuó Harrison (I) Ford.
- j) Películas del director Spielberg en las que no actuó Harrison (I) Ford.
- k) Películas en las que actuó Harrison (I) Ford que no dirigió Spielberg.
- I) Directores que filmaron películas de más de tres géneros distintos, uno de los cuales sea 'Film-Noir

ver clase aprox 1h 50 para saber como obtener el mayor con un autojoin, y una resta.

Para hacer el autojoin en relax hay que cambiarle los nombres a los esquemas.

"mas de 3 generos" autojoin de 3 elementos

Ejercicios de parcial

A)

Utilizando la siguiente notación para representar las operaciones del álgebra relacional: π , σ , ρ ,×,U,-, \cap ,× \times ,÷,resuelva la siguiente consulta:

Obtener el nombre del hotel (u hoteles) de 4 estrellas o más que ofrece (u ofrecen) habitaciones con todos los tipos de equipamiento registrados.

```
hoteles(cod hotel, nombre, estrellas, direccion, ciudad, provincia)
// (1, 'Horizontes del Pasador', 4, 'Av. Rivadavia 500', 'La Falda', 'Córdoba')
habitaciones(cod hotel, numero, max huespedes)
// (1, 100, 3)
equipamientos(cod hotel, numero, tipo equipamiento, cantidad)
// (1, 100, 'AIRE ACOND', 1)
```

- reservas(cod hotel, numero, fecha, tipo doc, nro doc, nombre) // (1, 100, '2022-01-01', 'DNI', 28900555, 'Juan Bandiola')
- 1. Saco todos los tipos de equipamientos que hay, de la columna tipo_equipamiento de la tabla equipamientos

Antes de hacer la división, conviene hacer la selección, porque conviene achicar lo mas posible antes de hacer una división/join, etc.

- 2. Busco los hoteles los de 4 estrellas o mas haciendo una selección de la tabla de hoteles, de la columna estrellas mayor o igual a 4
- 3. Hago una proyección de esa selección y me quedo con el nombre y el código de hotel
- 4. Me quedo con lsa habitaciones de los hoteles de 4 o mas estrellas haciendo un join de hoteles de 4 estrellas y habitaciones
- 5. Hago una división de las habitaciones con los tipos de equipamiento que proyecté. Porque necesito las habitaciones que estén relacionados con **todos** los elementos de esa columna, osea que cuenten con todos los tipos de equipamiento.

```
HOTEL_4_MAS <- \pi nombre, cod_hotel (\sigma estrellas \geq 4 (hoteles))

HABITACIONES_4_MAS <- \pi nombre, cod_hotel, numero (HOTEL_4_MAS \bowtie habitaciones)

EQ_TODOS <- \pi tipo_equipamiento (equipamientos)

FIN <- \pi nombre, cod_hotel, numero, tipo_equipamiento (HABITACIONES_4_MAS \bowtie equipamientos) \div EQ_TODOS \pi nombre (FIN)
```

B)

Utilizando la siguiente notación para representar las operaciones del álgebra relacional: π , σ , ρ ,×, \cup ,-, \cap , \times | \times , \div , resuelva la siguiente consulta:

Obtener el nombre y fecha de reserva de aquellos huéspedes que hayan hecho reservas que hayan sido durante el 2022 y sean en habitaciones de capacidad máxima. (Con la capacidad máxima nos referimos a las habitaciones de máxima capacidad entre todos los hoteles, no en cada uno en particular)

```
CAP_NO_MAX <- π 1.max_huespedes (habitaciones ⋈ 1.max_huespedes < 2.max_huespedes habitaciones)

CAP_MAX <- π max_huespedes (habitaciones) - CAP_NO_MAX

HAB_CAP_MAX <- CAP_MAX ⋈ max_huespedes habitaciones

RESERVAS_2022 <- σ fecha<="31/12/2022" and fecha>="01/01/2022" (reservas)

RESERVAS_2022_MAX <- HAB_CAP_MAX ⋈ RESERVAS_2022

π nombre, fecha (RESERVAS_2022_MAX)
```

C)

Utilizando la siguiente notación para representar las operaciones del álgebra relacional: π , σ , ρ ,×, \cup ,–, \cap , $\rtimes \ltimes$,÷, resuelva la siguiente consulta:

Para aquellas reservas de 2022 que fueron en alguna de las habitaciones (en el mismo hotel) que ocupó 'Messi' durante 2021, devuelva los siguientes atributos: cod hotel, nombre hotel, numero habitación, ciudad hotel, DNI, nombre huésped

```
R2022 <- \sigma fecha >= '2022-01-01' ^ fecha <= '2022-12-31' (reservas)

M2021 <- \pi cod_hotel, numero (\sigma fecha >= '2021-01-01' ^ fecha <= '2021-12-31' ^ nombre = 'Lionel Messi' (reservas))

MISMAS <- R2022 \bowtie cod_hotel, numero M2021

FINAL <- hoteles \bowtie cod_hotel MISMAS

\pi cod_hotel, nombre_hotel, numero, ciudad, nro_doc, nombre FINAL
```

D)

Obtener para cada hotel, la fecha de reserva y nombre de aquellos huéspedes que hayan ocupado la/s habitacion/es de número máximo.

NUMS <- cod_hotel, numero(habitaciones)</pre>

NOT_MAX <- π 1.cod_hotel,1.numero(NUMS \bowtie 1.cod_hotel 2.cod_hotel <- 1.numero < 2.numero NUMS)

MAX_NUMS <- NUMS - NOT_MAX

fecha,nombre,cod_hotel,numero(reservas ⋈cod_hotel numero MAX_NUMS)