MID-SEMESTER EXAMINATION, MARCH-2017 INTRODUCTORY GRAPH THEORY (CSE 1004)

Semester:2nd Time: 2 Hours

Programme: H. Tachicur & com	J,
Full Market 20	51
Full Marks: 30	V.

Subject/Course Learning Outcome	*Taxonomy Level	Ques. Nos.	Marks
Analyze graphs and graph models, connected graphs, multigraphs, digraphs and regular graphs as well as discuss the degree sequence of graphs.	13, 13, 13, 13, 13, 13	1(a),1(b), 1(c),2(a), 2(b),2(c)	2,2, 2,2, 2,2
Discuss and analyze the isomorphism of graphs.	12, 12, 13	3(n),3(b), 3(c)	2,2,
Define bridges, trees, spanning trees and study its various concepts and apply the Kruskal's and Prim's algorithms to find the minimum spanning tree of a connected weighted graph.	13, 13, 13	4(a), 4(b), 4(c)	2,2, 2
Define cut-vertices, blocks and analyze the connectivity of graphs. *Bloom's taxonomy levels: Knowledge (L1	12,13,	5(n), 5(b), (5(c)	2,2,

*Bloom's taxonomy levels: Knowledge (L1), Comprehension (L2), Application (L3), Analysis (L4), Evaluation (L5), Creation (L6)

Answer all questions. Each question carries equal mark.

- (a) Define a complete graph and determine the size of a complete 2 1. graph of order H. Draw a complete graph of order 6.
 - (b) Let R be the relation defined on the vertex set of a graph G by 2 uRv, where $u,v\in V(G)$, if u is connected to v, that is, if G contains a H-v path. Then show that R is an equivalence relation.
 - (c) A digraph Dhas a vertex set (-3, 3, 6, 12) and (i, j) ∈ Dif 2 $i \neq j$ and $i \mid j$, that is, j is a multiple of i. Draw the digraph D.

Mes 1 of 4

- [a] Shew that if G is a disconnected graph containing exactly 2
 and vertices, then these odd vertices must be in the same
 component of G.
 - (N) Show that if G and G are both r-regular for some name negative integer r, then G has odd order,
 - Determine the integer z(0≤z≤7), for which the sequence 7.6.5,4.3,2.1,x is graphical.
- (4) One an example of two different non-isomorphic graphs of 2 order 4 and size 4.
 - Let G_i and G_j be two graphs having the same degree sequence.

 If G_j contains a vertex of degree 2 that is adjacent to a vertex of degree 3 and a vertex of degree 4, while G_j contains a vertex of degree 2 that is adjacent to two vertices of degree 3,then can we conclude that G_j is not isomorphic to G_j . Explain your answer.
 - (d) Determine whether the given pair of graphs F₁ and F₂ are isomorphic or not.

- 4. M Prove that a tree of order # has one #-1.
 - (b) A tree T of order 21 has only vertices of degree 1, 3, 5 and 6. If

 Thus exactly 15 and vertices and one vertex of degree 6, then
 determine the number of vertices of T having degree 5.

Page 2 of 4

- (a) Oire a counterexample to the following statement.
 If G is a connected graph containing only even vertices, then
 G contains no cut-vertices.*
 - (b) Determine the cut-vertices, bridges and blocks of the given 2 graph.

[c] Prove that if a vortex V lies in every N - W path in a connected 2 graph G, where N and W are two vertices distinct from Vin G, then V is a cut-vertex of G.

"End of Questions"