CENTRE NATIONAL D'ETUDES SPATIALES

MSLIB Fortran 90

CS SI

Nomenclature: M-MU-0-121-CIS

Edition: 01 Date: 01/02/2000 Révision: 00 Date: 01/02/2000

Volume M

Manœuvres et transferts orbitaux

Rédigé par : Sylvain VRESK	le : CS SI	
Validé par : Guylaine PRAT	le : CS SI	
Pour application : Eric LE DÉ	le : Cnes (DTS/MPI/MS/MN)	

C.N.E.S.

MSLIB Fortran 90

Nomenclature : **M-MU-0-121-CIS**Edition : 01 Date: 01/02/2000
Révision : 00 Date: 01/02/2000

Page: i.1

DIFFUSION INTERNE CNES

Observations

Voir la note nomenclaturée M-NT-0-18-CN: "Liste de diffusion de la documentation utilisateur MSLIB".

DIFFUSION EXTERNE CNES

Observations

Voir la note nomenclaturée M-NT-0-18-CN: "Liste de diffusion de la documentation utilisateur MSLIB".

C.N.E.S.

MSLIB Fortran 90

Nomenclature : **M-MU-0-121-CIS**Edition : 01 Date: 01/02/2000
Révision : 00 Date: 01/02/2000

Page: i.2

BORDEREAU D'INDEXATION

CONFIDENTIALITI	E:NC		MOTS-CLES:	MOTS-CLES:	
TITRE : Volume M	- Manœuvres et	transferts orbitaux			
AUTEUR : Sylvain	VRESK				
RESUME: Ce document rasse	mble les notices	d'utilisation des rou	tines du thème "Mai	nœuvres et transferts orbi-	
taux".	more les notices	a uninsumon des roc	times du theme Tylus	neavies et transferts 6767	
SITUATION DU DOCUMENT : Création					
VOLUME:	PAGES: 16	PLANCHES:	FIGURES:	LANGUES: F	
CONTRAT : Marche	£ 870/96/Cnes/07	720 BC150 L23			
SYSTEME HOTE: Frame5/MSLIB					

C.N.E.S.

MSLIB Fortran 90

Nomenclature : **M-MU-0-121-CIS**Edition : 01 Date: 01/02/2000
Révision : 00 Date: 01/02/2000

Page: i.3

MODIFICATION

	ETAT DOCUMENT				PAGES REVISEES
ED.	REV.	DATE	REFERENCE ORIGINE (pour chaque édition)	ETAT PAGE *	NUMERO DES PAGES
01	00	01/02/00	M-MU-0-121-CIS Rédacteur : S. Vresk avec la participation de G. Prat		Création

^{*} I = Inséré

Sommaire

Présentation du	thème M	:	 	 . page 1
Notations			 	 . page 2
Index			 	 . page 3

Liste des routines du thème M : voir pages suivantes du sommaire.

Liste des routines du thème M:

mm_impul_car:	page 4
"Pour un satellite, calcul du bulletin d'orbite en coordonnées cartésiennes, suite à la réalisation d'une manœuvre orbitale modélisée par une mono-	
impulsion quelconque".	
mm_impul_kep :	page 7
"Pour un satellite, calcul du bulletin d'orbite en paramètres képlériens suite	
à la réalisation d'une manœuvre orbitale modélisée par une mono-	
impulsion quelconque".	

Présentation du thème M

Le thème "*Manœuvres et transferts orbitaux*" regroupe une série de routines de calculs de manœuvres et de transferts orbitaux.

Notations

Sans objet.

Index

Sans objet.

Routine mm_impul_car

Identification

"Pour un satellite, calcul du bulletin d'orbite en coordonnées <u>car</u>tésiennes, suite à la réalisation d'une manœuvre orbitale modélisée par une mono-<u>impul</u>sion quelconque".

Rôle

Calcule le bulletin d'orbite d'un satellite après la réalisation d'une manœuvre orbitale modélisée par une mono-impulsion quelconque. L'utilisateur choisit le repère dans lequel il veut donner les composantes de l'impulsion : repère géocentrique inertiel, repère (t, n, w) ou repère (q, s, w). Nota : par définition, la position d'un satellite est constante avant et après impulsion.

Séquence d'appel

(voir explications dans le volume 3)

call mm_impul_car (pos_car, vit_car_avant, rep, impul, vit_car_apres, code_retour)

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

pm_reel(3)	pos_car	position \overrightarrow{P} , du satellite, au moment de l'impulsion (coordonnées cartésiennes dans le repère géocentrique inertiel)(m)
pm_reel(3)	vit_car_avant	vitesse $\overrightarrow{V}_{avant}$, du satellite, avant l'impulsion (coordonnées cartésiennes dans le repère géocentrique inertiel) (m.s ⁻¹)
integer	rep	indicateur du repère dans lequel est défini le vecteur impulsion.
pm_reel(3)	impul	vecteur impulsion $\overrightarrow{\Delta V}$ (m.s ⁻¹)

• Sorties obligatoires

pm_reel(3)	vit_car_apres	vitesse $\overrightarrow{V}_{apres}$, du satellite, après l'impulsion (coordonnées cartésiennes dans le repère géocentrique inertiel)(m.s ⁻¹)
tm_code_retour	code_retour	

Conditions sur les arguments

Sans objet.

Notes d'utilisation

Selon le calcul souhaité, l'argument **rep** sera initialisé par l'appelant à la valeur de l'un des paramètres suivants de la MSLIB : **pm_rep_geo** si le vecteur impulsion <u>est donné en repère géocentrique</u> inertiel, **pm_rep_qsw** si le vecteur impulsion <u>est donné en repère</u> (q, s, w) ou **pm_rep_tnw** si le vecteur impulsion est donné en repère (t, t, t, t).

Références documentaires

• Algorithmes des routines du thème "Manœuvres et transferts orbitaux" de la MSLIB; S. Vresk (CS SI); référence MSLIB: M-NT-0-343-CIS.

Code retour

(voir explications dans le volume 3)

```
pm_OK (0) : Retour normal.

pm_err_pos_nul (-1501) : La norme du vecteur position est proche de 0 .

pm_err_vit_nul (-1502) : La norme du vecteur vitesse est proche de 0 .

pm_err_pos_vit_colineaire (-1503) : Le produit vectoriel position-vitesse est pratiquement nul (ce qui signifie: position nulle ou vitesse nulle ou vecteurs position et vitesse colinéaires).

pm_err_ind_rep (-1808) : La valeur donnée pour l'indicateur du repère est incorrecte.
```

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

```
program MANOEUVRES
  use mslib

real(pm_reel), dimension(3) :: POS_CAR
  real(pm_reel), dimension(3) :: VIT_CAR_AVANT
  integer :: REP
  real(pm_reel), dimension(3) :: IMPUL
  real(pm_reel), dimension(3) :: VIT_CAR_APRES
```

```
type(tm_code_retour)
                                 :: CODE_RETOUR
POS CAR(1)
              = 22930599.568_pm_reel
POS_CAR(2)
                = -28611399.924_pm_reel
                = -1574752.970_pm_reel
POS_CAR(3)
VIT_CAR_AVANT(1) = 2321.066_pm_reel
VIT_CAR_AVANT(2) = 21.253_pm_reel
VIT_CAR_AVANT(3) = 146.840_pm_reel
REP
                = pm_rep_tnw
IMPUL(1)
                = -4._pm_reel
                = 1.2_pm_reel
IMPUL(2)
                = 0._pm_reel
IMPUL(3)
call mm_impul_car ( POS_CAR, VIT_CAR_AVANT, REP, IMPUL,
                                                              &
                   VIT_CAR_APRES, CODE_RETOUR )
! appel a la routine utilisateur d'ecriture des resultats
call WRITE_RESULTATS (VIT_CAR_APRES, CODE_RETOUR)
```

end program MANOEUVRES

Résultats attendus:

 $VIT_CAR_APRES(1)$ = .232 10^4 $VIT_CAR_APRES(2)$ = .224 10^2 $VIT_CAR_APRES(3)$ = .147 10^3

CODE_RETOUR% valeur = 0 CODE_RETOUR% routine = 1095

Routine mm_impul_kep

Identification

"Pour un satellite, calcul du bulletin d'orbite en paramètres **kép**lériens suite à la réalisation d'une manœuvre orbitale modélisée par une mono-**impul**sion quelconque".

Rôle

Calcule le bulletin képlérien d'un satellite après la réalisation d'une manœuvre orbitale modélisée par une mono-impulsion quelconque. L'utilisateur choisit le repère dans lequel il veut donner les composantes de l'impulsion : repère géocentrique inertiel, repère (t, n, w) ou repère (t, n, w).

Nota: par définition, la position d'un satellite est constante avant et après impulsion.

Séquence d'appel

(voir explications dans le volume 3)

call mm_impul_kep (mu, kep_avant, rep, impul, kep_apres, code_retour)

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

pm_reel	mu	constante gravitationnelle μ (m ³ .s ⁻²)
tm_orb_kep	kep_avant	bulletin képlérien (a, e, i ω,Ω,M) $_{avant}$ du satellite avant impulsion (m, rad)
integer	rep	indicateur du repère dans lequel est défini le vecteur impulsion
pm_reel(3)	impul	vecteur impulsion $\overrightarrow{\Delta V}$ (m.s ⁻¹)

• Sorties obligatoires

tm_orb_kep	kep_apres	bulletin képlérien (a, e, i, ω , Ω , M) _{apres} du satellite après impulsion (m, rad)
tm_code_retour	code_retour	

Conditions sur les arguments

Sans objet.

Notes d'utilisation

Selon le calcul souhaité, l'argument **rep** sera initialisé par l'appelant à la valeur de l'un des paramètres suivants de la MSLIB : **pm_rep_geo** si le vecteur impulsion <u>est donné en repère géocentrique</u> inertiel, **pm_rep_qsw** si le vecteur impulsion <u>est donné en repère</u> (q, s, w) ou **pm_rep_tnw** si le vecteur impulsion est donné en repère (t, t, t, t).

Références documentaires

• Algorithmes des routines du thème "Manœuvres et transferts orbitaux" de la MSLIB; S. Vresk (CS SI); référence MSLIB: M-NT-0-343-CIS.

Code retour

(voir explications dans le volume 3)

pm_OK	(0): Retour normal.
pm_err_mu_negatif	(-1001) : La constante gravitationnelle est négative.
pm_err_mu_nul	(-1002): La constante gravitationnelle est proche de 0.
pm_err_a_negatif	(-1101) : Le demi-grand axe (a) ou le paramètre (p) de la parabole est négatif.
pm_err_a_nul	(-1102) : Le demi-grand axe (a) ou le paramètre (p) de la parabole est proche de 0 .
pm_err_a_infini	(-1103): L'inverse du demi-grand axe (1/a) est proche de 0 (le demi-grand axe est donc infini).
pm_err_e_negatif	(-1201) : L'excentricité (e) est négative.
pm_err_e_circul	(-1202) : L'excentricité (e) est proche de 0 ; l'orbite est circulaire.
pm_err_i_negatif	(-1301): L'inclinaison (i) est négative.
pm_err_i_equa	(-1302) : $sin(i)$ est proche de 0 ; l'orbite est équatoriale (i =0 ou i = pi).
pm_err_i_sup_pi	(-1305) : L'inclinaison (i) est supérieure à pi.
pm_err_pos_nul	(-1501): La norme du vecteur position est proche de 0 .
pm_err_vit_nul	(-1502): La norme du vecteur vitesse est proche de 0 .
pm_err_pos_vit_colineaire	(-1503): Le produit vectoriel position-vitesse est pratiquement nul (ce qui signifie: position nulle ou vitesse nulle ou vect-

eurs position et vitesse colinéaires).

&

pm_err_ind_rep	(-1808) : La valeur donnée pour l'indicateur du repère est incorrecte.
pm_err_conv_kepler_ellip	(-1902) : L'algorithme itératif utilisé pour la résolution de l'équation de Kepler (orbite elliptique) n'a pas réussi à converger vers la bonne solution. Contacter l'assistance utilisateur MSLIB.
pm_err_conv_kepler_hyperb	(-1903) : L'algorithme itératif utilisé pour la résolution de l'équation de Kepler (orbite hyperbolique) n'a pas réussi à converger vers la bonne solution. Contacter l'assistance utilisateur MSLIB.
pm_err_cni	(-1999) : Problème numérique. Contacter l'assistance utilisateur MSLIB.
pm_warn_e_parab	(+1206) : L'excentricité (e) est proche de 1 : les calculs ont été faits en considérant que l'orbite était parabolique.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

```
program MANOEUVRES
  use mslib
  real(pm_reel)
                                   :: MU
  type(tm_orb_kep)
                                   :: KEP_AVANT
  integer
                                   :: REP
  real(pm_reel), dimension(3)
                                   :: IMPUL
  type(tm_orb_kep)
                                   :: KEP_APRES
  type(tm_code_retour)
                                   :: CODE_RETOUR
  MU
                   = 398600.64e+09_pm_reel
  KEP_AVANT%a
                  = .24435100e + 8_pm_reel
  KEP_AVANT%e
                  = .73054_{pm}reel
  KEP_AVANT%i
                  = .121468_{pm_reel}
  KEP_AVANT%pom
                  = .3116285E+1_pm_reel
  KEP_AVANT%gom
                  = .5747544e+1_pm_reel
  KEP_AVANT%M
                   = .179748e+1_pm_reel
                  = pm_rep_tnw
  IMPUL(1)
                   = -4._{pm\_reel}
  IMPUL(2)
                  = 1.2_{pm}reel
  IMPUL(3)
                   = 0._pm_reel
  call mm_impul_kep ( MU, KEP_AVANT, REP, IMPUL, KEP_APRES,
                      CODE_RETOUR )
```

! appel a la routine utilisateur d'ecriture des resultats

call WRITE_RESULTATS (KEP_APRES, CODE_RETOUR)

end program MANOEUVRES

Résultats attendus:

CODE_RETOUR%valeur = 0 CODE_RETOUR%routine = 1096