Corso di Logica 5.3 – Formule

Docenti: Alessandro Andretta, Luca Motto Ros, Matteo Viale

Dipartimento di Matematica Università di Torino

Andretta, Motto Ros, Viale (Torino)

Formule

AA 2022-2023

1/12

Formule atomiche

Fissiamo un linguaggio del prim'ordine L.

Definizione

Una formula atomica (nel linguaggio L) è una stringa della forma

$$(R(t_1 \dots t_n))$$

dove R è un simbolo di predicato n-ario in L e t_1, \ldots, t_n sono termini (nel linguaggio L), oppure della forma

$$(t_1 = t_2)$$

dove t_1, t_2 sono termini (nel linguaggio L).

Attenzione! Anche in questo caso le virgole per separare i termini non sono necessarie, ma possono aiutare nella lettura della formula. Spesso scriveremo quindi $(R(t_1, \ldots, t_n))$ al posto di $(R(t_1, \ldots, t_n))$.

Formule atomiche, equazioni e disequazioni

Consideriamo il linguaggio $L=\{<,+,\cdot,1,0\}$ dove < è un simbolo di relazione binario, + e \cdot sono simboli di funzione binari, e 1,0 sono simboli di costante. Abbiamo visto che il termine t

$$+(\cdot(x,x),1)$$

corrisponde (utilizzando la notazione infissa) al polinomio

$$x^2 + 1$$

La formula atomica

$$(+(\cdot(x,x),1)=0)$$

eprime allora nel linguaggio L l'equazione

$$x^2 + 1 = 0$$
,

mentre

$$(<(+(\cdot(x,x),1),0))$$

esprime, utilizzando la notazione infissa per <, la disequazione $x^2+1<0$.

Andretta, Motto Ros, Viale (Torino)

Formule

AA 2022-2023

3/12

Per riconoscere se una data stringa è una formula atomica, si procede come segue:

Algoritmo per il riconoscimento di formule atomiche

- Il primo e l'ultimo simbolo della stringa devono essere una parentesi sinistra e una parentesi destra, rispettivamente.
- Se il secondo simbolo della stringa è un simbolo di relazione n-ario $R \in L$, allora la formula atomica deve essere del tipo $(R(t_1 \dots t_n))$, dove $n = \operatorname{ar}(R)$: quindi si controlla che il terzo simbolo sia una parentesi sinistra e il penultimo simbolo sia una parentesi destra, si analizza la stringa compresa tra queste parentesi per individuare i termini t_1, \dots, t_n (l'algoritmo è lo stesso di quello utilizzato nel caso dei termini), e infine se ne costruisce l'albero sintattico per controllare che siano termini ben formati.
- Se il secondo simbolo della stringa è una variabile, una costante o un simbolo di funzione, allora la formula deve essere del tipo $(t_1=t_2)$: si cerca allora il simbolo di uguaglianza (ce ne deve essere solo uno!), si individuano i termini t_1 e t_2 , e se ne costruisce l'albero sintattico per controllare che siano termini ben formati.

Nei restanti casi, la stringa data non era una formula atomica.

Sia $L=\{P,f,c\}$ con P simbolo di relazione binario, f simbolo di funzione unario e c simbolo di costante. Verifichiamo se la stringa

è una formula atomica oppure no.

Andretta, Motto Ros, Viale (Torino)

Formule

AA 2022-2023

5/12

Esempio

Sia $L=\{P,f,c\}$ con P simbolo di relazione binario, f simbolo di funzione unario e c simbolo di costante. Verifichiamo se la stringa

Sia $L=\{P,f,c\}$ con P simbolo di relazione binario, f simbolo di funzione unario e c simbolo di costante. Verifichiamo se la stringa

è una formula atomica oppure no.

Andretta, Motto Ros, Viale (Torino)

Formule

AA 2022-2023

5/12

Esempio

Sia $L=\{P,f,c\}$ con P simbolo di relazione binario, f simbolo di funzione unario e c simbolo di costante. Verifichiamo se la stringa

Sia $L=\{P,f,c\}$ con P simbolo di relazione binario, f simbolo di funzione unario e c simbolo di costante. Verifichiamo se la stringa

è una formula atomica oppure no.

Andretta, Motto Ros, Viale (Torino)

Formule

AA 2022-2023

5/12

Esempio

Sia $L=\{P,f,c\}$ con P simbolo di relazione binario, f simbolo di funzione unario e c simbolo di costante. Verifichiamo se la stringa

Sia $L = \{P, f, c\}$ con P simbolo di relazione binario, f simbolo di funzione unario e c simbolo di costante. Verifichiamo se la stringa

è una formula atomica oppure no.

Andretta, Motto Ros, Viale (Torino)

Formule

AA 2022-2023

5/12

Esempio

Sia $L=\{P,f,c\}$ con P simbolo di relazione binario, f simbolo di funzione unario e c simbolo di costante. Verifichiamo se la stringa

è una formula atomica oppure no.

Dall'analisi fatta, risulta che la stringa è del tipo $(P(t_1t_2))$, dove t_1 è f(x) e t_2 è c: poiché questi ultimo sono termini ben formati, la stringa è una formula atomica. Introducendo le virgole per aiutare la lettura, tale formula atomica si può anche scrivere come

Sia $L=\{P,f,c\}$ con P simbolo di relazione binario, f simbolo di funzione unario e c simbolo di costante. Verifichiamo se la stringa

$$(f(f(x)) = f(c))$$

è una formula atomica oppure no.

Andretta, Motto Ros, Viale (Torino)

Formule

AA 2022-2023

6/12

Esempio

Sia $L=\{P,f,c\}$ con P simbolo di relazione binario, f simbolo di funzione unario e c simbolo di costante. Verifichiamo se la stringa

$$(f(f(x)) = f(c))$$

Sia $L=\{P,f,c\}$ con P simbolo di relazione binario, f simbolo di funzione unario e c simbolo di costante. Verifichiamo se la stringa

$$(f(f(x)) = f(c))$$

è una formula atomica oppure no.

Andretta, Motto Ros, Viale (Torino)

Formule

AA 2022-2023

6/12

Esempio

Sia $L=\{P,f,c\}$ con P simbolo di relazione binario, f simbolo di funzione unario e c simbolo di costante. Verifichiamo se la stringa

$$(f(f(x)) = f(c))$$

Sia $L = \{P, f, c\}$ con P simbolo di relazione binario, f simbolo di funzione unario e c simbolo di costante. Verifichiamo se la stringa

$$(f(f(x)) = f(c))$$

è una formula atomica oppure no.

Andretta, Motto Ros, Viale (Torino)

Formule

AA 2022-2023

6/12

Esempio

Sia $L=\{P,f,c\}$ con P simbolo di relazione binario, f simbolo di funzione unario e c simbolo di costante. Verifichiamo se la stringa

$$(f(f(x)) = f(c))$$

è una formula atomica oppure no.

Dall'analisi fatta, risulta che la stringa è del tipo $(t_1=t_2)$, dove t_1 è f(f(x)) e t_2 è f(c): poiché questi ultimo sono termini ben formati, la stringa è una formula atomica.

Formule del prim'ordine

L'insieme delle **formule** del linguaggio L (o, più brevemente, L-**formule**) è definito *ricorsivamente* dalle clausole:

- una formula atomica è una formula;
- se φ è una formula, allora anche $(\neg \varphi)$ è una formula,
- se ϕ e ψ sono formule, allora anche $(\phi \wedge \psi)$, $(\phi \vee \psi)$, $(\phi \to \psi)$ e $(\phi \leftrightarrow \psi)$ sono formule;
- se φ è una formula e x è una variabile, allora anche $(\exists x \varphi)$ e $(\forall x \varphi)$ sono formule. In questo caso, φ viene detta **raggio d'azione** del quantificatore $\exists x \text{ o } \forall x$.

Useremo le lettere greche φ , ψ , e χ , variamente decorate, per le formule.

Tecnicamente, bisognerebbe di nuovo dare una definizione per ricorsione degli insiemi Fml_n per $n \in \mathbb{N}$: Fml_0 è l'insieme delle formule atomiche e Fml_{n+1} è l'unione di Fml_n con l'insieme delle formule che si ottengono applicando una delle regole qui sopra a formule in Fml_n . L'insieme delle formule è allora $\mathrm{Fml} = \bigcup_{n \in \mathbb{N}} \mathrm{Fml}_n$. L'altezza $\mathrm{ht}(\phi)$ di una formula $\phi \in \mathrm{Fml}$ è definita nella maniera usuale.

Andretta, Motto Ros, Viale (Torino)

Formule

AA 2022-2023

7/12

La **costante logica principale** di una L-formula (non atomica) φ è l'ultima costante logica introdotta per creare φ in accordo con la definizione ricorsiva data. Più precisamente:

- se φ è della forma $(\neg \psi)$, allora \neg è la costante logica principale di φ , mentre ψ viene detta sottoformula principale di φ ;
- 2 se φ è della forma $(\psi \square \chi)$, dove \square è uno dei connettivi binari \wedge , \vee , \rightarrow , \leftrightarrow , allora \square è la costante logica principale di φ , mentre ψ e χ sono le sottoformule principali di φ ;
- 3 infine, se φ è della forma $(\exists x \psi)$ oppure della forma $(\forall x \psi)$, allora \exists e \forall sono, rispettivamente, la costante logica principale di φ , mentre ψ viene detta sottoformula principale di φ .

Nei casi ① e ② parliamo anche di **connettivo principale** di φ , nel caso ③ parliamo invece di **quantificatore principale** di φ .

Diciamo che una formula ϕ è una **negazione**, **congiunzione**, **disgiunzione**, **implicazione**, **bi-implicazione**, **formula esistenziale** oppure **formula universale** quando la sua costante logica principale è \neg , \land , \lor , \rightarrow , \leftrightarrow , \exists o \forall , rispettivamente.

Per individuare la costante logica principale di una L-formula φ si usa (l'ovvia variante del)l'algoritmo visto per la logica proposizionale.

Il primo e l'ultimo simbolo della stringa devono essere una parentesi sinistra e una parentesi destra, rispettivamente. Consideriamo il secondo simbolo della stringa.

- Se il secondo simbolo è ¬ oppure una parentesi sinistra (, allora si procede come visto per la logica proposizionale: nel primo caso la costante logica principale è proprio ¬, mentre nel secondo caso la costante logica principale è uno dei connettivi binari ∧, ∨, →, ↔, e precisamente quello che segue la parentesi destra che chiude la parentesi sinistra in esame.
- Altrimenti, il secondo simbolo è ∃ oppure ∀: in questo caso, tale quantificatore è proprio la costante logica principale di φ. Esso dovrà necessariamente essere seguito da una variabile, e ciò che segue tale variabile (esclusa l'ultima parentesi di chiusura) è la sottoformula principale di φ.

Andretta, Motto Ros, Viale (Torino)

Formule

AA 2022-2023

9/12

Albero sintattico di una formula

Costruzione dell'albero sintattico di una formula del prim'ordine

- 1 Si etichetta la radice con la formula data.
- 2 Sia φ la formula che compare nell'etichetta di un nodo:
 - se φ è una formula atomica (ben formata) non si aggiunge alcun successore al nodo, che diventerà una foglia dell'albero;
 - se ϕ è una negazione, ovvero è del tipo $(\neg \psi)$, si aggiunge un solo successore al nodo e lo si etichetta con ψ ;
 - se la costante logica principale di φ è un connettivo binario $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}, \text{ ovvero } \varphi \text{ è del tipo } (\psi \square \chi) \text{ con } \square \text{ connettivo binario, allora si aggiungono due successori al nodo etichettandoli con } \psi \text{ e } \chi, \text{ rispettivamente;}$
 - se la costante logica principale di φ è un quantificatore, ovvero φ è del tipo $(\exists x \, \psi)$ oppure $(\forall x \, \psi)$, allora si aggiunge un solo successore al nodo etichettandolo con ψ .

Sia $L=\{R,P,f,c\}$ con R simbolo di relazione binario, P simbolo di relazione unario, f simbolo di funzione unario e c simbolo di costante. L'albero sintattico di $(\exists x((\neg(R(x,c))) \land ((P(x)) \rightarrow (f(x)=c))))$ è

$$(\exists x((\neg(R(x,c))) \land ((P(x)) \rightarrow (f(x)=c))))$$

$$((\neg(R(x,c))) \land ((P(x)) \rightarrow (f(x)=c)))$$

$$((P(x)) \rightarrow (f(x)=c))$$

$$(R(x,c)) \qquad (P(x)) \qquad (f(x)=c)$$

Andretta, Motto Ros, Viale (Torino)

Formule

AA 2022-2023

11 / 12

Esempio

Sia $L=\{R,P,f,c\}$ con R simbolo di relazione binario, P simbolo di relazione unario, f simbolo di funzione unario e c simbolo di costante. L'albero sintattico di $(\exists x((\neg(R(x,c))) \land ((P(x)) \rightarrow (f(x)=c))))$ è

$$(\exists x((\neg(R(x,c))) \land ((P(x)) \rightarrow (f(x)=c))))$$

$$((\neg(R(x,c))) \land ((P(x)) \rightarrow (f(x)=c)))$$

$$((P(x)) \rightarrow (f(x)=c))$$

$$(R(x,c))$$

$$((P(x)) \rightarrow (f(x)=c))$$

Sia $L=\{R,P,f,c\}$ con R simbolo di relazione binario, P simbolo di relazione unario, f simbolo di funzione unario e c simbolo di costante. L'albero sintattico di $(\exists x((\neg(R(x,c))) \land (P(x)) \rightarrow (f(x)=c))))$ è

$$(\exists x ((\neg(R(x,c))) \land ((P(x)) \rightarrow (f(x)=c))))$$

$$((\neg(R(x,c))) \land ((P(x)) \rightarrow (f(x)=c)))$$

$$((P(x)) \rightarrow (f(x)=c))$$

$$(R(x,c)) \qquad ((P(x))) \qquad (f(x)=c)$$

Andretta, Motto Ros, Viale (Torino)

Formule

AA 2022-2023

11 / 12

Esempio

Sia $L=\{R,P,f,c\}$ con R simbolo di relazione binario, P simbolo di relazione unario, f simbolo di funzione unario e c simbolo di costante. L'albero sintattico di $(\exists x((\neg(R(x,c))) \land ((P(x)) \rightarrow (f(x)=c))))$ è

$$(\exists x((\neg(R(x,c))) \land ((P(x)) \rightarrow (f(x)=c))))$$

$$((\neg(R(x,c))) \land ((P(x)) \rightarrow (f(x)=c)))$$

$$((P(x)) \rightarrow (f(x)=c))$$

$$(R(x,c))$$

$$((P(x)) \rightarrow (f(x)=c))$$

Sia $L=\{R,P,f,c\}$ con R simbolo di relazione binario, P simbolo di relazione unario, f simbolo di funzione unario e c simbolo di costante. L'albero sintattico di $(\exists x((\neg(R(x,c))) \land ((P(x)) \rightarrow (f(x)=c))))$ è

$$(\exists x((\neg(R(x,c))) \land ((P(x)) \rightarrow (f(x)=c))))$$

$$((\neg(R(x,c))) \land ((P(x)) \rightarrow (f(x)=c)))$$

$$((P(x)) \rightarrow (f(x)=c))$$

$$(R(x,c))$$

$$(P(x)) \land (f(x)=c)$$

Andretta, Motto Ros, Viale (Torino)

Formule

AA 2022-2023

11 / 12

Esempio

Sia $L=\{R,P,f,c\}$ con R simbolo di relazione binario, P simbolo di relazione unario, f simbolo di funzione unario e c simbolo di costante. L'albero sintattico di $(\exists x((\lnot(R(x,c)))\land((P(x))\rightarrow(f(x)=c))))$ è

$$(\exists x((\neg(R(x,c))) \land ((P(x)) \rightarrow (f(x)=c))))$$

$$((\neg(R(x,c))) \land ((P(x)) \rightarrow (f(x)=c)))$$

$$((P(x)) \rightarrow (f(x)=c))$$

$$(R(x,c)) \qquad (P(x)) \qquad (f(x)=c)$$

Sia $L=\{R,P,f,c\}$ con R simbolo di relazione binario, P simbolo di relazione unario, f simbolo di funzione unario e c simbolo di costante. L'albero sintattico di $(\exists x((\neg(R(x,c))) \land ((P(x)) \rightarrow (f(x)=c))))$ è

$$(\exists x((\neg(R(x,c))) \land ((P(x)) \rightarrow (f(x)=c))))$$

$$((\neg(R(x,c))) \land ((P(x)) \rightarrow (f(x)=c)))$$

$$((P(x)) \rightarrow (f(x)=c))$$

$$(R(x,c))$$

$$(P(x))$$

$$(f(x)=c)$$

Andretta, Motto Ros, Viale (Torino)

Formule

AA 2022-2023

11 / 12

Esempio

Sia $L=\{R,P,f,c\}$ con R simbolo di relazione binario, P simbolo di relazione unario, f simbolo di funzione unario e c simbolo di costante. L'albero sintattico di $(\exists x((\lnot(R(x,c)))\land((P(x))\rightarrow(f(x)=c))))$ è

$$(\exists x((\neg(R(x,c))) \land ((P(x)) \rightarrow (f(x)=c))))$$

$$((\neg(R(x,c))) \land ((P(x)) \rightarrow (f(x)=c)))$$

$$((P(x)) \rightarrow (f(x)=c))$$

$$(R(x,c)) \qquad (P(x)) \qquad (f(x)=c)$$

Sia $L=\{R,P,f,c\}$ con R simbolo di relazione binario, P simbolo di relazione unario, f simbolo di funzione unario e c simbolo di costante. L'albero sintattico di $(\exists x((\neg(R(x,c))) \land ((P(x)) \rightarrow (f(x)=c))))$ è

$$(\exists x((\neg(R(x,c))) \land ((P(x)) \rightarrow (f(x)=c))))$$

$$((\neg(R(x,c))) \land ((P(x)) \rightarrow (f(x)=c)))$$

$$((P(x)) \rightarrow (f(x)=c))$$

$$(R(x,c)) \qquad (P(x)) \qquad (f(x)=c)$$

Le formula che compaiono nei nodi dell'albero sintattico si chiamano **sottoformule** della formula data.

Anche per le formule del prim'ordine vale la regola che l'altezza della formula è uguale all'altezza dell'albero diminuita di una unità.

Andretta, Motto Ros, Viale (Torino)

Formule

AA 2022-2023

11 / 12

Esempio

Sia $L=\{R,P,f,c\}$ con R simbolo di relazione binario, P simbolo di relazione unario, f simbolo di funzione unario e c simbolo di costante. L'albero sintattico di $(\exists x((\neg(R(x,c))) \land ((P(x)) \rightarrow (f(x)=c))))$ è

Le formula che compaiono nei nodi dell'albero sintattico si chiamano **sottoformule** della formula data.

Anche per le formule del prim'ordine vale la regola che l'altezza della formula è uguale all'altezza dell'albero diminuita di una unità.

Esercizio

Sia $L = \{P, Q, R, S\}$ con P simbolo di relazione binario e Q, R, S simboli di relazione unari. Calcolare l'albero sintattico della L-formula

$$((\exists x(\forall y\,((P(x,y))\to(Q(x)))))\to((\forall z(R(z)))\vee(S(z)))).$$

$$((\exists x (\forall y ((P(x,y)) \to (Q(x))))) \to ((\forall z (R(z))) \lor (S(z))))$$

$$((\exists x (\forall y ((P(x,y)) \to (Q(x)))))$$

$$((\forall y ((P(x,y)) \to (Q(x))))$$

$$((\forall z (R(z))) \lor (S(z)))$$

$$((\forall z (R(z)))$$

$$((B(z)))$$

$$((P(x,y)) \to (Q(x)))$$

$$((R(z)))$$

Andretta, Motto Ros, Viale (Torino)

Formule

AA 2022-2023

12 / 12