KAMBALA SCHOOL

YEAR 12

MATHEMATICS

3 UNIT (ADDITIONAL)

HALF-YEARLY EXAMINATION

March 2001

Time Allowed: 2 hours plus 5 minutes reading time

DIRECTIONS TO CANDIDATES

- 1. This paper contains 6 questions.
- 2. All questions may be attempted.
- 3. All questions are of equal value.
- 4. All necessary working should be shown in every question.
- 5. Marks may not be awarded for careless or badly arranged work.
- 6. Board-approved calculators may be used.
- 7. Start each question on a separate page.

Question 1 (Start a new page.)

- a) Differentiate with respect to x:
 - (i) $\tan^2(5x)$
 - (ii) $\log_{10} x$
- b) Find the primitive function of $\frac{7}{1-3x}$.
- c) Evaluate
 - (i) $\lim_{x \to 0} \frac{\sin 3x}{4x}$
 - (ii) $\lim_{x \to \infty} \frac{x^2 x 12}{3x^2 + 2}$
- d) Evaluate $\int_{0}^{1} \frac{e^{x}}{e^{x}+1} dx$. Leave your answer in exact form.

Question 2 (Start a new page.)

- a) Solve $\frac{1}{x-5} \le 1$
- b) Simplify $\cos(A+B)\cos B + \sin(A+B)\sin B$.
- Given that $\frac{dy}{dx} = x \sin x$ and y = 2 when x = 0, find y in terms of x.
- d) A(2,4) and B(6,1) are two points. Find the co-ordinates of the point P(x,y) that divides the interval AB externally in the ratio 3:5.

Question 3 (Start a new page.)

- a) If $f(x) = 8x^3$, find the inverse function $f^{-1}(x)$.
- b) Sketch $y = |x^2 3x 4|$ showing all relevant features.
- On the same diagram, sketch the curves $y = \sin \theta$ and $y = \frac{\theta}{2}$ for $0 \le \theta \le \pi$ and hence state the number of solutions to the equation $\sin \theta = \frac{\theta}{2}$ in this domain.
- d) Solve for x the equation $2\sin 2x = 1$ for $0 \le x \le 2\pi$.

Question 4 (Start a new page.)

- An arc AB of a sector of a circle is of length $\frac{\pi}{4}$ metres and subtends an angle of 30° at the centre, O, of the circle. Find
 - (i) the length of the radius
 - (ii) the area of sector AOB (in exact form).
 - b) (i) State the period, amplitude and range of the curve $y = 3 + 3\cos 2x$.
 - (ii) Sketch the curve in the domain $-\pi \le x \le \pi$.
 - A rectangle is inscribed under a curve $y = \frac{10}{x^2 + 2}$ such that the rectangle is symmetrical about the y-axis. Find the maximum area of the rectangle.

Question 5 (Start a new page.)

- a) Find, to the nearest minute, the acute angle between the lines 2x + y + 5 = 0 and x 3y + 6 = 0.
- b) Find the volume (in exact form) of the solid of revolution when the area between the curve $y = \log_e x$ and the y-axis from y = 1 to y = 5 is rotated about the y-axis.
- c) An electrical condenser discharges at a rate proportional to the charge such that $Q = Q_0 e^{-kt}$, where Q is the charge at time t minutes. It takes 8 minutes for the original charge of 1 unit to reduce to half.
 - (i) State the value of Q_0 .
 - (ii) Find the value of k.
 - (iii) At what rate is the condenser discharging when the charge has been reduced to a quarter (to 4 significant figures)?
- d) An urn contains 3 white balls, 4 red balls and 5 black balls. Two balls are drawn without replacement. Find the probability that both are of a different colour.

Question 6 (Start a new page.)

- a) Without using a calculator show that $\frac{\cos 40^{\circ} + \sin 50^{\circ}}{\sqrt{1 \sin^2 140^{\circ}}} = 2$
- b) Prove by mathematical induction that:

$$\frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots + \frac{1}{(3n-2)(3n+1)} = \frac{n}{3n+1}$$

for all positive integers n.

Hence find
$$\sum_{r=1}^{\infty} \frac{1}{(3r-2)(3r+1)}.$$

Question 6 continued

- A tangent is drawn to the curve $y = e^{3x}$ at the point $P(1, e^3)$. The tangent cuts the x-axis at Q. QR is drawn perpendicular to the x-axis as shown.
 - (i) Show that the equation of the tangent at P is $y = 3e^3x 2e^3$.
 - (ii) Find the co-ordinates of Q.
 - (iii) Show that the shaded region QRP has area $\frac{e^2}{6}(e-2)$ square units.

