3. éq diff. lin. du 2nd ordre à coeff const

Ex. 3.1 Sans second membre

- 1) Passage de $C_1e^{p_1x}+C_2e^{p_2x}$ où $(C_1,C_2)\in\mathbb{C}^2$, à $e^{\alpha x}(\lambda\cos(\omega x)+\mu\sin(\omega x))$ où $(\lambda,\mu)\in\mathbb{R}^2$
- 2) Résoudre
 - a) y'' 6y' + 9y = 0; déterminer la sol tq: y(0) = 0 et $y(1) = e^3$
 - b) y'' 2y' + 5y = 0
 - c) 2y'' 5y' + 3y = 0
- 3) Résoudre
 - a) $\frac{d^2y}{dt^2}+\omega_0^2y=0$, $\omega_0^{}\in\mathbb{R}^{+^*}$. Reconnaissez-vous cette ED ?
 - b) $\frac{d^2y}{dt^2} \omega^2y = 0$, $\omega \in \mathbb{R}^{+^*}$

Ex. 3.2 Avec second membre « simple »

- 1) Résoudre
 - a) $y'' + y = x^3$
 - b) y'' y' = x
 - c) $y'' y' = \cos x$
 - d) $y'' y' = x + \cos x + e^{-2x}$

TD4 - Éléments de correction

3. ég diff. lin. du 2nd ordre à coeff const

Ex. 3.1 Second ordre sans second membre

1) Passage de $C_1e^{p_1x} + C_2e^{p_2x}$ où $(C_1, C_2) \in \mathbb{C}^2$ à $e^{\alpha x}(\lambda \cos(\omega x) + \mu \sin(\omega x))$ où $(\lambda, \mu) \in \mathbb{R}^2$

$$\underline{Cours}: a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0$$

Si $\Delta = b^2 - 4ac < 0$ alors

$$y(x) = C_{1}e^{p_{1}^{x}} + C_{2}e^{p_{2}^{x}} \text{ où } (C_{1}, C_{2}) \in \mathbb{C}^{2}, \text{ et } p_{1,2} = \frac{-b}{2a} \pm \underbrace{i\sqrt{-\Delta}}_{io}$$

$$= C_1 e^{(\alpha + i\omega)x} + C_2 e^{(\alpha - i\omega)x} = e^{\alpha x} \left[C_1 e^{i\omega x} + C_2 e^{-i\omega x} \right]$$

$$= e^{\alpha x} \left[C_1(\cos(\omega x) + i\sin(\omega x)) + C_2(\cos(\omega x) - i\sin(\omega x)) \right]$$

$$= e^{\alpha x} \left[(C_1 + C_2) \cos(\omega x) + i(C_1 - C_2) \sin(\omega x) \right]$$

$$\text{et } \begin{cases} C_1 + C_2 = \lambda \in \mathbb{R} \\ \text{i(}C_1 + C_2 \text{)} = \mu \in \mathbb{R} \end{cases} \Leftrightarrow \boxed{C_1 = C_2^*}$$

2) Résoudre

a)
$$y'' - 6y' + 9y = 0$$
; dét.la sol tq: $y(0) = 0$ et $y(1) = e^3$

• Le poly caract associé est : $p^2 - 6p + 9 = 0$

 $\Delta = 36 - 4.9 = 0 \Rightarrow \text{ il admet une racine able} : p = \frac{6}{2} = 3$

Donc la sol géné de (a) est : $y(x) = (\lambda x + \mu)e^{3x}$, $(\lambda, \mu) \in \mathbb{R}^2$

•
$$y(0) = 0 \Rightarrow \mu = 0$$

 $y(1) = e^3 \Rightarrow \lambda e^3 = e^3 \Leftrightarrow \lambda = 1$

$$y(x) = xe^{3x}$$

b)
$$y'' - 2y' + 5y = 0$$

• Le poly caract associé est : $p^2 - 2p + 5 = 0$

$$\Delta = 4 - 20 = -16 < 0$$

 \Rightarrow il admet deux racines $\mathbb{C}C$: $p_{1,2} = \frac{2 \pm i4}{2} = 1 \pm i2$

Donc la sol géné de (b) est :

$$\begin{aligned} y(x) &= e^x (\lambda \cos 2x + \mu \sin 2x) \text{ , où } \left(\lambda, \mu\right) \in \mathbb{R}^2 \\ &= C_1 e^{(1+i2)x} + C_2 e^{(1-i2)x} \text{ , où } \left(C_1, C_2\right) \in \mathbb{C}^2 \end{aligned}$$

c) 2y'' - 5y' + 3y = 0

• Le poly caract associé est : $2p^2 - 5p + 3 = 0$

 $\Delta=25-4\cdot2\cdot3=1>0$

 \Rightarrow il admet deux racines simples : $p_{1,2} = \frac{5 \pm 1}{4} = 1$ ou 3/2

Donc la sol gén de (c) est : $y(x) = \lambda e^x + \mu e^{3x/2}$, où (λ, μ)

3) Résoudre a)
$$\frac{d^2y}{dt^2} + \omega_0^2 y = 0$$
 , $\omega_0 \in \mathbb{R}^{+^*}$

• Le poly caract associé est : $p^2 + \omega_0^2 = 0 \Rightarrow p = \pm i\omega_0$ (2 racines im pures $\mathbb C$ conj.)

(ici $\Delta < 0$, mais son calcul est inutile!)

Donc la sol géné de (a) est :

$$y(t) = C_1 e^{i\omega_0 t} + C_2 e^{-i\omega_0 t}$$
 où $(C_1, C_2) \in \mathbb{C}^2$

 $=\lambda\cos(\omega_0t)+\mu\sin(\omega_0t) \text{ où } (\lambda,\mu)\in\mathbb{R}^2 \ (2)$

$$= L\cos(\omega_{_{0}} \dagger + \phi) \ \text{où } L > 0, \, \phi \in \mathbb{R} \ (3)$$

...

{ éventuellement leur montrer le passage de la forme (2) à (3)}

<u>rem</u>: $\frac{d^2y}{dt^2} + \omega_0^2 y = 0$ = éq très importante en phys

= oscill harmonique <u>libre</u> (i.e. un syst qui, une fois mis en mvt, oscille <u>indéfiniment</u> (pas phys!), à une fréq. propre $f_0 = \omega_0/2\pi$

<u>rem2</u>: oscill <u>libre</u> <u>avec frottements visqueux</u>:

$$\frac{d^2y}{dt^2} + \alpha \frac{dy}{dt} + \omega_0^2 y = 0 : \exists \text{ frott fluide.}$$

 $\underline{\text{rem3}}$: oscill $\underline{\text{forcé}}$: [h(x)] (2nd mb) = [F]/[m].

Si $h(x) = A\cos\omega t$ (ou $\sin\omega t$), $\exists \frac{r\acute{e}sonance}{}$ lorsque $\omega = \omega_0$ (très imp en pratique)

b)
$$\frac{d^2y}{dt^2} - \omega^2 y = 0$$
 , $\omega \in \mathbb{R}^{+*}$

{ idée : le signe "-" change totalement la nature des solutions !}

• Le poly caract associé est : $p^2 - \omega^2 = 0 \Rightarrow p = \pm \omega$ (2 racines réelles simples)

(ici $\Delta > 0$, mais son calcul est inutile!)

• Donc la sol géné de (b) est :

$$y(t) = Ae^{\omega t} + B^{-\omega t}$$
 où $(A,B) \in \mathbb{R}^2$

= $C \operatorname{ch}\omega t + \operatorname{Dsh}(\omega t)$ où $(C,D) \in \mathbb{R}^2$

TD4 – Éléments de Correction

Ex. 3.2 Avec second membre « simple »

1) Résoudre a) $y'' + y = x^3$

éq diff lin 2^{nd} ordre à coeff const, avec un 2^{nd} membre « simple » car de la forme : $\underbrace{\cos(kx) \cdot e^{mx}}_{ex} \cdot \underbrace{P(x)}_{ex}$

• sol de l'éq sans 2^{nd} mb : y'' + y = 0

 \rightarrow si on reconnaît un oscill harm. (avec $\,\omega_0^2$ = 1) on peut écrire directement :

 $y_0(x) = A\cos x + B\sin x$ (ou Lcos(x+ ϕ), ou...)

 \rightarrow sinon : méthode géné (poly caract. ici Δ <0, ...)

• Recherche de sol partic :

$$y_1(x) = [Q_1 \cos(kx) + Q_2 \sin(kx)]e^{mx}$$

posons z=m+ik=0. O n'est pas racine de l'éq caract (qui sont ±i). Donc cherche une sol partic sous la forme : $y_1(x)=Q_1$ avec ${}^{\circ}Q_2 = {}^{\circ}P=3$

Soit: $y_1(x) = \alpha x^3 + \beta x^2 + \gamma x + \delta$

Alors: $y_1'(x) = 3\alpha x^2 + 2\beta x + \gamma$ et $y''(x) = 6\alpha x + 2\beta$

Et y₁ sol de (a) ssi y₁ est dériv. 2 fois et vérifie (a) \Leftrightarrow y₁"+ y₁ = (6\alpha x + 2\beta) + (\alpha x^3 + \beta x^2 + \gamma x + \delta) = x^3 \Leftrightarrow \alpha x^3 + \beta x^2 + (6\alpha + \gamma)x + 2\beta + \delta = x^3

 $\mbox{Par identif.}: \begin{cases} \alpha = 1 \; ; \; \beta = 0 \\ \gamma + 6\alpha = 0 \Rightarrow \gamma = -6 \; ; \; 2\beta + \delta = 0 \Rightarrow \delta = 0 \end{cases}$

finalement:

$$y(x) = y_0 + y_1 = A\cos x + B\sin x + x^3 - 6x, \ \forall x \in \mathbb{R}, (A, B) \in \mathbb{R}^2$$

b) y'' - y' = x

éq diff lin 2^{nd} ordre à coeff const, avec un 2^{nd} mbre « simple » car de la forme : $\underbrace{\cos(kx) \cdot e^{mx}}_{} \cdot \underbrace{P(x)}_{}$

• sol de l'éq sans 2^{nd} mb : y'' - y = 0

Le poly caract associé est : $p^2 - p = 0 \Rightarrow p = 0$ ou 1 (2 racines réelles simples)

d'où: $y_0(x) = \lambda e^{p_1 x} + \mu e^{p_2 x} = \lambda + \mu e^x$ où $(\lambda, \mu) \in \mathbb{R}^2$

• Recherche de sol partic :

posons z=m+ik=0 . 0 est une racine simple de l'éq caract. Donc cherche une sol partic sous la forme : $y_1(x)=Q_1$ avec ${}^{\circ}Q_1={}^{\circ}P+1=2$

Soit: $y_1(x) = \alpha x^2 + \beta x + \gamma$

Alors: $y'_1(x) = 2\alpha x + \beta$ et $y''(x) = 2\alpha$

On arrive facilement par identification à:

$$y(x) = y_0 + y_1 = \lambda + \mu e^x - \frac{x^2}{2} - x, \ \forall x \in \mathbb{R}, \text{ où } (\lambda, \mu) \in \mathbb{R}^2$$

c) $y'' - y' = \cos x$ (seul le second mb "simple" diffère)

- sol de l'ég sans 2nd mb : cf b)!
- Recherche de sol partic :

posons $\overline{z=i}$. i n'est pas racine de l'éq caract. Donc on cherche une sol partic sous la forme: $y_1(x) = Q_1 \cos x + Q_2 \sin x$ avec ${}^{\circ}Q_1 = {}^{\circ}P = 0$

Soit: $y_1(x) = A\cos x + B\sin x$

On arrive facilement à:

$$y(x) = y_0 + y_1 = \lambda + \mu e^x - \frac{1}{2} \cos x - \frac{1}{2} \sin x, \ \forall x \in \mathbb{R}$$

d) $y'' - y' = x + \cos x + e^{-2x}$

• sol de l'éq sans 2nd mb : cf b)!

D'après le théo de superposition, la sol géné de cette éq. est la somme de la sol de y''-y'=x (vu au b), de la sol de $y''-y'=\cos x$ (vu au c)) et de la sol de $y''-y'=e^{-2x}$

• Recherche de sol partic de $y'' - y' = e^{-2x}$

posons z = -2. -2 n'est pas racine de l'éq caract. Donc on cherche une sol partic sous la forme :

$$y_1(x) = Q_1 e^{-2x}$$
 avec ${}^{\circ}Q_1 = {}^{\circ}P = 0$ Soit $y_1(x) = Ae^{-2x}$

On arrive facilement à :

$$y(x) = y_0 + \sum y_1 = \lambda + \mu e^x - x - \frac{x^2}{2} + \frac{1}{6}e^{-2x} - \frac{1}{2}\cos x - \frac{1}{2}\sin x$$

{ Probablement trop court : prévoir un exercice appliqué à la physique (avec des grandeurs dimensionnées !) mettant en jeu un oscillateur forcé (dans l'idéal, sans puis avec frottements visqueux et hors puis à la résonance ... Mais je ne sais pas si c'est raisonnable question temps ... l'année prochaine on intègrera dans le sujet celui qui aura été validé expérimentalement par les étudiants!}