sxr_190067_Code

February 27, 2021

1	decision_tree.py
2	
3	Licensing Information: You are free to use or extend these projects for
4	personal and educational purposes provided that (1) you do not distribute
5	or publish solutions, (2) you retain this notice, and (3) you provide clear
6	attribution to UT Dallas, including a link to http://cs.utdallas.edu.
7	
8	This file is part of Homework for CS6375: Machine Learning.
9	Gautam Kunapuli (gautam.kunapuli@utdallas.edu)
10	Sriraam Natarajan (sriraam.natarajan@utdallas.edu),
11	Anjum Chida (anjum.chida@utdallas.edu)
12	
13	
14	INSTRUCTIONS:
15	
16	1. This file contains a skeleton for implementing the ID3 algorithm for
17	Decision Trees. Insert your code into the various functions that have the $\ensuremath{^{2}}$

18 comment "INSERT YOUR CODE HERE".

```
[13]: import numpy as np
import os
import graphviz

import math
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
import pandas as pd
from sklearn import tree
import pydotplus
from IPython.display import Image

from sklearn.model_selection import train_test_split
```

```
[14]: def partition(x):
           HHHH
           Partition the column vector x into subsets indexed by its unique values (v1, __
        \rightarrow \dots vk)
           Returns a dictionary of the form
           \{ v1: indices of x == v1, \}
             v2: indices of x == v2,
             vk: indices of x == vk }, where [v1, ... vk] are all the unique values in_{\perp}
        \rightarrow the vector z.
           11 11 11
           # INSERT YOUR CODE HERE
           #raise Exception('Function not yet implemented!')
           dictionary={}
           xLen = len(x)
           for i in range(0,xLen):
               item=x[i]
               if item in dictionary:
                   dictionary[x[i]].append(i);
               else:
                   dictionary[x[i]]=[]
                   dictionary[x[i]].append(i)
           return dictionary
```

```
[15]: def entropy(y):

"""

Compute the entropy of a vector y by considering the counts of the unique

\Rightarrowvalues (v1, ... vk), in z
```

```
Returns the entropy of z: H(z) = p(z=v1) log2(p(z=v1)) + ... + p(z=vk)_\
\[
\] \log2(p(z=vk))
\[
\] """

# INSERT YOUR CODE HERE

# raise Exception('Function not yet implemented!')
entropy=0
count=0
y = np.array(y)
yLen = len(y)
for i in set(y):
P = (y == i).sum()/yLen
entropy = entropy + P*math.log2(P)
return -entropy
```

```
[16]: def mutual_information(x, y):
           Compute the mutual information between a data column (x) and the labels (y)_{\cdot, \cdot}
       \rightarrow The data column is a single attribute
           over all the examples (n x 1). Mutual information is the difference between \Box
       \rightarrowthe entropy BEFORE the split set, and
           the weighted-average entropy of EACH possible split.
           Returns the mutual information: I(x, y) = H(y) - H(y \mid x)
           11 11 11
           # INSERT YOUR CODE HERE
           # raise Exception('Function not yet implemented!')
           yEnt = entropy(y)
           yx_Ent=0
           X = partition(x)
           for v in X:
               y_temp=[]
               for i in X[v]:
                   y_temp.append(y[i])
               P=x.count(v)/len(x)
               yx_Ent= yx_Ent + P*entropy(y_temp)
           H = yEnt-yx_Ent
           return H
```

```
[17]: def id3(x, y, attribute_value_pairs=None, depth=0, max_depth=5):

"""

Implements the classical ID3 algorithm given training data (x), training \Box

\Box abels (y) and an array of
```

attribute-value pairs to consider. This is a recursive algorithm that \sqcup \rightarrow depends on three termination conditions 1. If the entire set of labels (y) is pure (all y = only 0 or only $1)_{, \sqcup}$ \rightarrow then return that label 2. If the set of attribute-value pairs is empty (there is nothing to $_{\sqcup}$ \rightarrow split on), then return the most common value of y (majority label) 3. If the max_depth is reached (pre-pruning bias), then return the most $_{\sqcup}$ \rightarrow common value of y (majority label) Otherwise the algorithm selects the next best attribute-value pair using, \hookrightarrow INFORMATION GAIN as the splitting criterion and partitions the data set based on the values of that attribute before the \rightarrow next recursive call to ID3. The tree we learn is a BINARY tree, which means that every node has only two. \hookrightarrow branches. The splitting criterion has to be chosen from among all possible attribute-value pairs. That is, for a_{\sqcup} \rightarrow problem with two features/attributes x1 (taking values a, b, c) and x2 (taking values d, e), the initial attribute \Box →value pair list is a list of all pairs of attributes with their corresponding values: [(x1, a),(x1, b),(x1, c),(x2, d),(x2, e)]If we select (x2, d) as the best attribute-value pair, then the new \Box \rightarrow decision node becomes: [(x2 == d)?] and the attribute-value pair (x2, d) is removed from the list of \rightarrow attribute_value_pairs. The tree is stored as a nested dictionary, where each entry is of the form (attribute_index, attribute_value, True/False): subtree * The (attribute_index, attribute_value) determines the splitting criterion \Box \rightarrow of the current node. For example, (4, 2) indicates that we test if (x4 == 2) at the current node. * The subtree itself can be nested dictionary, or a single label (leaf node). * Leaf nodes are (majority) class labels Returns a decision tree represented as a nested dictionary, for example {(4, 1, False): {(0, 1, False): {(1, 1, False): 1, (1, 1, True): 0},

(0, 1, True):

{(1, 1, False): 0,

```
(1, 1, True): 1}},
(4, 1, True): 1}
# INSERT YOUR CODE HERE. NOTE: THIS IS A RECURSIVE FUNCTION.
# raise Exception('Function not yet implemented!')
if attribute_value_pairs == None:
    attribute_value_pairs=[]
    for i in range(0,x.shape[1]):
        for v in set(x[:,i]):
            attribute_value_pairs.append((i,v))
if len(attribute_value_pairs) == 0 or depth == max_depth:
    frequency = np.bincount(np.array(y))
    return np.argmax(frequency)
elif all(z==y[0] for z in y):
    return y[0]
else:
    maximum=0
    xLen = len(x)
    for attr in attribute_value_pairs:
        x_temp = []
        i = attr[0]
        for j in range(0,xLen):
            val = x[j][i]
            if val==attr[1]:
                x_temp.append(1)
            else:
                x_temp.append(0)
        InfoG = mutual_information(x_temp,y)
        if InfoG >= maximum:
            maximum = InfoG
            bestsplit = attr
    val = bestsplit[1]
    i = bestsplit[0]
    x_temp=[]
    for j in range(0,xLen):
        x_temp.append(x[j][i])
    X=partition(x_temp)
    bestlist=X[val]
    true_X=[]
```

```
false X=[]
              true_Y=[]
              false Y=[]
              for i in range(0,len(x)):
                  temp_array = np.asarray(x[i])
                  if i in bestlist:
                      true_X.append(temp_array)
                      true_Y.append(y[i])
                  else:
                      false_X.append(temp_array)
                      false_Y.append(y[i])
              true_AVP = attribute_value_pairs.copy()
              false_AVP = attribute_value_pairs.copy()
              true_AVP.remove(bestsplit)
              false_AVP.remove(bestsplit)
              tree = {(bestsplit[0], bestsplit[1], True):
       →id3(true_X,true_Y,true_AVP,depth+1,max_depth),(bestsplit[0],bestsplit[1],False):
       →id3(false_X,false_Y,false_AVP,depth+1,max_depth)}
              return tree
[18]: def predict_example(x, tree):
          Predicts the classification label for a single example x using tree by
       \rightarrowrecursively descending the tree until
          a label/leaf node is reached.
          Returns the predicted label of x according to tree
          # INSERT YOUR CODE HERE. NOTE: THIS IS A RECURSIVE FUNCTION.
          # raise Exception('Function not yet implemented!')
          try:
              len(tree.keys())
          except Exception as e:
              return tree
          item = list(tree.keys())[0]
          if x[item[0]] == item[1]:
              return predict_example(x, tree[item[0],item[1],True])
          else:
```

```
return predict_example(x, tree[item[0],item[1],False])

[19]: def compute_error(y_true, y_pred):
    """
    Computes the average error between the true labels (y_true) and the_
    →predicted labels (y_pred)

Returns the error = (1/n) * sum(y_true != y_pred)
    """

# INSERT YOUR CODE HERE
# raise Exception('Function not yet implemented!')
```

errorCount=0

yLen = len(y_true)

for i in range(0, yLen):

return errorCount/yLen

if y_true[i] != y_pred[i]:
 errorCount+=1

```
[20]: def pretty_print(tree, depth=0):
          Pretty prints the decision tree to the console. Use print(tree) to print the
       →raw nested dictionary representation
          DO NOT MODIFY THIS FUNCTION!
          11 11 11
          if depth == 0:
              print('TREE')
          for index, split_criterion in enumerate(tree):
              sub_trees = tree[split_criterion]
              # Print the current node: split criterion
              print('|\t' * depth, end='')
              print('+-- [SPLIT: x{0} = {1} {2}]'.format(split_criterion[0],__
       →split_criterion[1], split_criterion[2]))
              # Print the children
              if type(sub_trees) is dict:
                  pretty_print(sub_trees, depth + 1)
              else:
                  print('|\t' * (depth + 1), end='')
                  print('+-- [LABEL = {0}]'.format(sub_trees))
```

```
[21]: def render_dot_file(dot_string, save_file, image_format='png'):
          Uses GraphViz to render a dot file. The dot file can be generated using
              * sklearn.tree.export\_graphviz()' for decision trees produced by
       \rightarrow scikit-learn
              * to\_graphviz() (function is in this file) for decision trees produced \sqcup
       \hookrightarrow by your code.
          DO NOT MODIFY THIS FUNCTION!
          if type(dot_string).__name__ != 'str':
              raise TypeError('visualize() requires a string representation of au
       →decision tree.\nUse tree.export_graphviz()'
                              →to_graphviz() for decision trees produced by'
                              'your code.\n')
          # Set path to your GraphViz executable here
          os.environ["PATH"] += os.pathsep + 'C:/Program Files (x86)/Graphviz2.38/bin/'
          graph = graphviz.Source(dot_string)
          graph.format = image_format
          graph.render(save_file, view=True)
[22]: def to_graphviz(tree, dot_string='', uid=-1, depth=0):
          Converts a tree to DOT format for use with visualize/GraphViz
          DO NOT MODIFY THIS FUNCTION!
          .....
          uid += 1
                       # Running index of node ids across recursion
          node_id = uid # Node id of this node
          if depth == 0:
              dot_string += 'digraph TREE {\n'
          for split_criterion in tree:
              sub_trees = tree[split_criterion]
              attribute_index = split_criterion[0]
              attribute_value = split_criterion[1]
              split_decision = split_criterion[2]
              if not split_decision:
                  # Alphabetically, False comes first
                  dot_string += ' node{0} [label="x{1} = {2}?"]; \n'.format(node_id,__
       →attribute_index, attribute_value)
              if type(sub_trees) is dict:
```

if not split_decision:

```
dot_string, right_child, uid = to_graphviz(sub_trees,_
 →dot_string=dot_string, uid=uid, depth=depth + 1)
               dot_string += ' node{0} -> node{1} [label="False"];\n'.
 →format(node_id, right_child)
           else:
               dot_string, left_child, uid = to_graphviz(sub_trees,__
 →dot_string=dot_string, uid=uid, depth=depth + 1)
               dot_string += ' node{0} -> node{1} [label="True"];\n'.
 →format(node_id, left_child)
       else:
           uid += 1
           dot_string += ' node{0} [label="y = {1}"];\n'.format(uid,__
 →sub_trees)
           if not split_decision:
               dot_string += ' node{0} -> node{1} [label="False"];\n'.
 →format(node_id, uid)
           else:
               dot_string += ' node{0} -> node{1} [label="True"];\n'.
 →format(node_id, uid)
   if depth == 0:
       dot_string += '}\n'
       return dot_string
   else:
       return dot_string, node_id, uid
if __name__ == '__main__':
   #b.Learning Curves
   for i in range(1,4):
       testingdatapath = "./monks_data/monks-"+str(i)+".test"
       trainingdatapath = "./monks_data/monks-"+str(i)+".train"
        # Load the training data
       M = np.genfromtxt(trainingdatapath, missing_values=0, skip_header=0,__
 →delimiter=',', dtype=int)
       ytrn = M[:, 0]
       Xtrn = M[:, 1:]
       # Load the test data
       M = np.genfromtxt(testingdatapath, missing_values=0, skip_header=0,_
 →delimiter=',', dtype=int)
       ytst = M[:, 0]
```

```
Xtst = M[:, 1:]
      trnError = {}
      tstError = {}
      for d in range(1, 11):
           # Determine the decision tree of depth d
          decision_tree = id3(Xtrn, ytrn, max_depth=d)
           # Calculating the training error
          trainy_pred = [predict_example(x, decision_tree) for x in Xtrn]
          trn_err = compute_error(ytrn, trainy_pred)
          # Calculating the testing error
          testy_pred = [predict_example(x, decision_tree) for x in Xtst]
          tst_err = compute_error(ytst, testy_pred)
          trnError[d] = trn_err
          tstError[d] = tst err
       # Below we plot the testing and training error for all the depths
      plt.figure()
      plt.plot(trnError.keys(), trnError.values(), marker='o', linewidth=3,__
→markersize=12)
      plt.plot(tstError.keys(), tstError.values(), marker='s', linewidth=3,__
→markersize=12)
      plt.xlabel('Depth', fontsize=16)
      plt.ylabel('Training/Test Error', fontsize=16)
      plt.xticks(list(trnError.keys()), fontsize=12)
      plt.legend(['Training Error', 'Test Error'], fontsize=16)
      plt.xscale('log')
      plt.yscale('log')
      plt.title("MONKS-"+str(i))
  #c.Weak Learners
  # Load the training data
  M = np.genfromtxt('./monks_data/monks-1.train', missing_values=0,__
→skip_header=0, delimiter=',', dtype=int)
  ytrn = M[:, 0]
  Xtrn = M[:, 1:]
  # loading the testing data
  M = np.genfromtxt('./monks_data/monks-1.test', missing_values=0,__
→skip_header=0, delimiter=',', dtype=int)
  ytst = M[:, 0]
  Xtst = M[:, 1:]
```

```
tst_err = {}
  for i in range(1, 6, 2):
       # Learn a decision tree of depth 3
       decision_tree = id3(Xtrn, ytrn, max_depth=i)
       # Pretty print it to console
       pretty_print(decision_tree)
       # Visualize the tree and save it as a PNG image
       dot_str = to_graphviz(decision_tree)
       render_dot_file(dot_str, './monks1learn-'+str(i))
       # Compute the test error
       y_pred = [predict_example(x, decision_tree) for x in Xtst]
       tst_err[i] = compute_error(ytst, y_pred)
       print('\nTest\ Error = \{0:4.2f\}\%.'.format(tst\_err[i] * 100))
       print("MONKS Dataset: Confusion matrix for depth ",i )
       print(pd.DataFrame(confusion_matrix(ytst, y_pred), columns=['Predicted

∪
→Positives', 'Predicted Negatives'],
                          index=['True Positives', 'True Negatives']))
   #d.scikit-learn
  for i in range(1,6,2):
       Data_names = ['X1','X2','X3','X4','X5','X6']
       decision tree = tree.
→DecisionTreeClassifier(criterion='entropy', max_depth=i)
       decision_tree.fit(Xtrn, ytrn)
       dot_data = tree.export_graphviz(decision_tree, out_file=None,__
→feature_names=Data_names,
                               filled=True, rounded=True,
⇔special_characters=True)
       graph = pydotplus.graph_from_dot_data(dot_data)
       graph.write_png('monks1sklearn-'+str(i)+'.png')
       Image(filename='monks1sklearn-'+str(i)+'.png')
       y_pred = decision_tree.predict(Xtst)
       tst_err[i] = compute_error(ytst, y_pred)
       print('\nTest\ Error = \{0:4.2f\}\%.'.format(tst\_err[i] * 100))
       print("MONKS Dataset: Confusion matrix for depth ",i )
       print(pd.DataFrame(confusion_matrix(ytst, y_pred),columns=['Predicted

∪
→Positives', 'Predicted Negatives'],
                          index=['True Positives', 'True Negatives']))
   #e.Other Data Sets
```

```
IUData = np.genfromtxt('./DishonestIUData.txt',skip_header=0,delimiter=' ',__
 →dtype=int)
    X=IUData[:,0:4]
    y=IUData[:,4]
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33,__
 →random_state=42)
    #e.1.new data set id3
    for i in range(1, 4, 2):
        decision_tree = id3(X_train, y_train, max_depth=i)
        pretty_print(decision_tree)
        dot_str = to_graphviz(decision_tree)
        render_dot_file(dot_str, './IUDataImg-'+str(i))
        y_pred = [predict_example(x, decision_tree) for x in X_test]
        print("Dishonest Internet Users Dataset: Confusion matrix for depth ",i )
        print(pd.DataFrame(confusion_matrix(y_test, y_pred),columns=['Predicted_u
 →Positives', 'Predicted Negatives'],
                            index=['True Positives', 'True Negatives']
                            ))
    #e.1.new data set scikit-learn
    for i in range(1, 4, 2):
        Data_names = ['X1', 'X2', 'X3', 'X4']
        decision_tree = tree.DecisionTreeClassifier(criterion='entropy',___
 →max_depth=i)
        decision_tree.fit(X_train, y_train)
        dot_data = tree.export_graphviz(decision_tree, out_file=None,__
 →feature_names=Data_names,
                                 filled=True, rounded=True,
 →special_characters=True)
        graph = pydotplus.graph_from_dot_data(dot_data)
        graph.write_png('IUDatasklearn-'+str(i)+'.png')
        Image(filename='IUDatasklearn-'+str(i)+'.png')
        y_pred = decision_tree.predict(X_test)
        print("Dishonest Internet Users Dataset: Confusion matrix for depth ",iu
 \hookrightarrow)
        print(pd.DataFrame(confusion_matrix(y_test, y_pred),columns=['Predicted_u
 →Positives', 'Predicted Negatives'],
                            index=['True Positives', 'True Negatives']))
TREE
+-- [SPLIT: x4 = 1 True]
       +-- [LABEL = 1]
+-- [SPLIT: x4 = 1 False]
```

+-- [LABEL = O]

```
Test Error = 25.00%.
MONKS Dataset: Confusion matrix for depth 1
                Predicted Positives Predicted Negatives
True Positives
                                216
True Negatives
                                                      108
                                 108
TREE
+-- [SPLIT: x4 = 1 True]
        +-- [LABEL = 1]
+-- [SPLIT: x4 = 1 False]
        +-- [SPLIT: x0 = 1 True]
                +-- [SPLIT: x1 = 1 True]
                        +-- [LABEL = 1]
                +-- [SPLIT: x1 = 1 False]
                        +-- [LABEL = 0]
        +-- [SPLIT: x0 = 1 False]
                +-- [SPLIT: x1 = 1 True]
                        +-- [LABEL = 0]
                +-- [SPLIT: x1 = 1 False]
                        +-- [LABEL = 1]
Test Error = 16.67%.
MONKS Dataset: Confusion matrix for depth 3
                Predicted Positives Predicted Negatives
True Positives
                                 144
                                                       72
                                  0
                                                      216
True Negatives
TREE
+-- [SPLIT: x4 = 1 True]
        +-- [LABEL = 1]
+-- [SPLIT: x4 = 1 False]
        +-- [SPLIT: x0 = 1 True]
                +-- [SPLIT: x1 = 1 True]
                +-- [LABEL = 1]
                +-- [SPLIT: x1 = 1 False]
                        +-- [LABEL = 0]
        +-- [SPLIT: x0 = 1 False]
                +-- [SPLIT: x1 = 1 True]
                        +-- [LABEL = 0]
                +-- [SPLIT: x1 = 1 False]
                        +-- [SPLIT: x4 = 3 True]
                                +-- [SPLIT: x1 = 3 True]
                                        +-- [LABEL = 0]
                                 +-- [SPLIT: x1 = 3 False]
                                        +-- [LABEL = 1]
                                 +-- [SPLIT: x4 = 3 False]
                        +-- [SPLIT: x3 = 1 True]
                                +-- [LABEL = 1]
                                +-- [SPLIT: x3 = 1 False]
```

```
| | | +-- [LABEL = 1]
Test Error = 16.67%.
MONKS Dataset: Confusion matrix for depth 5
                Predicted Positives Predicted Negatives
True Positives
                                156
True Negatives
                                 12
                                                     204
Test Error = 25.00%.
MONKS Dataset: Confusion matrix for depth 1
                Predicted Positives Predicted Negatives
True Positives
                                216
                                                     108
True Negatives
                                108
Test Error = 16.67%.
MONKS Dataset: Confusion matrix for depth 3
                Predicted Positives Predicted Negatives
True Positives
                                144
                                                      72
                                  0
                                                     216
True Negatives
Test Error = 16.67%.
MONKS Dataset: Confusion matrix for depth 5
                Predicted Positives Predicted Negatives
True Positives
                                168
True Negatives
                                 24
                                                     192
TREE
+-- [SPLIT: x3 = 3 True]
        +-- [LABEL = 0]
+-- [SPLIT: x3 = 3 False]
        +-- [LABEL = 1]
Dishonest Internet Users Dataset: Confusion matrix for depth 1
                Predicted Positives Predicted Negatives
True Positives
                                 11
                                                      21
True Negatives
                                  0
                                                      75
TREE
+-- [SPLIT: x3 = 3 True]
        +-- [LABEL = 0]
+-- [SPLIT: x3 = 3 False]
        +-- [SPLIT: x2 = 2 True]
                +-- [SPLIT: x3 = 4 True]
                       +-- [LABEL = 0]
                +-- [SPLIT: x3 = 4 False]
                        +-- [LABEL = 1]
        +-- [SPLIT: x2 = 2 False]
                +-- [SPLIT: x0 = 4 True]
                       +-- [LABEL = 1]
                +-- [SPLIT: x0 = 4 False]
```

+-- [LABEL = 1]

Dishonest Internet Users Dataset: Confusion matrix for depth 3 Predicted Positives Predicted Negatives True Positives 23 9 True Negatives 0 75 Dishonest Internet Users Dataset: Confusion matrix for depth 1 Predicted Positives Predicted Negatives True Positives True Negatives 75 Dishonest Internet Users Dataset: Confusion matrix for depth 3 Predicted Positives Predicted Negatives True Positives 23 True Negatives 0 75 output_10_1.png output_10_2.png output_10_3.png

[]: