	import matplotlib.pyplot as plt1. Numerical Hydrodynamics - Part 1	
	1.1. Advection in 1D (12 pts) We solve the linear transport equation in 1D for some quantity $q(x,t)$, governed by the relation $\frac{\partial q(x,t)}{\partial t} + v \frac{\partial q(x,t)}{\partial x} = 0,$ and where v is some positive constant. We discretize this partial differential equation using three different stencils for approximation the spatial derivative. First we use the symmetric scheme $q_i^{(n+1)} = q_i^{(n)} - v \frac{q_{i+1}^{(n)} - q_{i-1}^{(n)}}{2\Delta x} \Delta t$	
	where Δx and Δt are the cell size and time step size respectivley. Note that the index i refers to spatially different cells, while index refers to the stepping in time. Then we also use the $upwind$ scheme as per $q_i^{(n+1)} = q_i^{(n)} - v \frac{q_i^{(n)} - q_{i-1}^{(n)}}{\Delta x} \Delta t,$ as well as the corresponding $downwind$ scheme	$(2 \times n)$
	$q_i^{(n+1)}=q_i^{(n)}-v\frac{q_{i+1}^{(n)}-q_i^{(n)}}{\Delta x}\Delta t.$ We let the inital conditions on the domain $x\in[-L/2,L/2]$ be set to $q(x,0)=\begin{cases} 1 & \text{for} x<0\\ 0 & \text{for} x\geq0 \end{cases}$ with the Dirichlet boundary conditions $q(-L/2,t)=1\\ q(L/2,t)=0.$	(4 (5 (6 (7
	For a domain discretized into N equally sized cells with index $i\in\{0,\ldots,N-1\}$, we choose to implement the boundary condition using one ghost cell at each end of the domain, thus yielding a total of $N+2$ cells. To reflect the Dirichlet boundary conditions, we update the value in these two ghost cells after each integration time step as per $q_{i=-1}^{(n)}=2\cdot q(-L/2,t)-q_{i=0}^{(n)}$ $q_{i=N}^{(n)}=2\cdot q(L/2,t)-q_{i=N-1}^{(n)}$ such that the boundary conditions are correctly represented. We integrate in time from $t=0$ to $t=3$, using $N_steps=100$ equalized time steps.	ons (8 (9
In [2]:	<pre># Parameters N = 100 # Number of cells. L = 10 # Length of 1D domain. v = 1 # Advection coefficient. T = 3 # Integration time. N_steps = 100 # Number of timesteps. plot_freq = 5 # Plot result every n:th iteration. # Initial conditions. threshold = 0 q_init_left = 1 # q(x,0) = q_init_left for x < threshold q_init_right = 0 # q(x,0) = q_init_right for x >= threshold</pre>	
	<pre># Dirichlet boundary conditions at x = ±L/2. q_left = 1 q_right = 0 # Numerical methods to use. methods = ['Symmetric', 'Upwind', 'Downwind'] #</pre>	
	<pre># Position vector (Excluding ghost cells). x = np.linspace(-(L-dx)/2, (L-dx)/2, N) # Create subplot. fig, ax = plt.subplots(len(methods), 1, figsize=(7,5*len(methods))) # For each of the methods. for i, method in enumerate(methods): # Pre-allocate q (Including ghost cells). q = np.zeros(N+2) # Assign inital conditions.</pre>	
	<pre>q[1:-1][x < threshold] = q_init_left q[1:-1][x >= threshold] = q_init_right # Apply boundary conditions. q[0] = 2*q_left - q[1] q[-1] = 2*q_right - q[-2] # Main simulation loop. t = 0 while t < T: # Step in time. if method == 'Symmetric':</pre>	
	<pre>q[1:-1] = q[1:-1] - v*dt/dx*(q[2:] - q[:-2])/2 elif method == 'Upwind': q[1:-1] = q[1:-1] - v*dt/dx*(q[1:-1] - q[:-2]) elif method == 'Downwind': q[1:-1] = q[1:-1] - v*dt/dx*(q[2:] - q[1:-1]) # Apply boundary conditions. q[0] = 2*q_left - q[1] q[-1] = 2*q_right - q[-2] # Plot results. if int(t/dt) % plot_freq == 0: ax[i].plot(x,q[1:-1])</pre>	
	# Update time. t += dt # Plot settings. ax[i].set_title(method) ax[i].set_xlabel('\$x\$') ax[i].set_ylabel('\$q\$') plt.show() Symmetric	
	8 - 6 - 4 - 2 4 4 4	
	-6 -	
	0.4 - 0.2 - 0.04 -2 0 2 4 le18 Downwind 3 -	
	2 - 1 - 6 0 - -1 - -2 - -3 -	
	As we can see in the figure above, the only stable method is the <i>upwind</i> scheme, where only values of <i>q</i> in the negative direction in used in discrete integration. Both the <i>symmetric</i> and the <i>downwind</i> schemes are very unstable, and yield solutions that oscillate will One should note however that the differentiation between the upwind and downwind schemes are determined by the sign of the constant parameter <i>v</i> , i.e. the direction of transport of the quantity <i>q</i> . Thus, if the sign of <i>v</i> were switched, the numerical schemes at corresponding up <i>upwind</i> and <i>downwind</i> , have to be interchanged. The reason for the stability of the upwind methods is that the scheme correctly reflects that 'information' is strictly flowing in only one prince to the stability of the upwind methods is that the scheme correctly reflects that 'information' is strictly flowing in only one prince to the stability of the upwind methods is that the scheme correctly reflects that 'information' is strictly flowing in only one prince to the stability of the upwind methods is that the scheme correctly reflects that 'information' is strictly flowing in only one prince to the stability of the upwind methods is that the scheme correctly reflects that 'information' is strictly flowing in only one prince to the scheme and the scheme and the scheme are	dly. bove
	orientation, i.e. to the right in the figure, and thus all cells are updated using only values at its own position and to the left of the cell itself. On the other hand, both the downwind and the symmetric methods use information cells to the right of their positions, which breaks the supposedly strict flow of information to the right. Thus, as a result, both of these methods become unstable. We can also note the numerical diffusion in the upwind scheme, where the discontinuous initial state gets smoothed out over time. We investigate this further, from now on only using the upwind scheme. We leave everything as in the previous simulation, but charthe boundary condition on the left side to $q(-L/2,t)=0.5,$	
In [3]:	<pre>and plot the result. # Parameters N = 100 # Number of cells. L = 10 # Length of 1D domain. v = 1 # Advection coefficient. T = 3 # Integration time. N_steps = 100 # Number of timesteps. plot_freq = 5 # Plot every n:th iteration. # Initial conditions. threshold = 0</pre>	
	<pre>threshold = 0 q_init_left = 1 # q(x,0) = q_init_left for x < threshold q_init_right = 0 # q(x,0) = q_init_right for x >= threshold # Dirichlet boundary conditions at x = ±L/2. q_left = 0.5 q_right = 0 #</pre>	
	<pre># Position vector (Excluding ghost cells). x = np.linspace(-(L-dx)/2, (L-dx)/2, N) # Create plot. plt.figure(figsize=(7,5)) # Pre-allocate q (Including ghost cells). q = np.zeros(N+2) # Assign inital conditions. q[1:-1][x < threshold] = q_init_left q[1:-1][x >= threshold] = q_init_right</pre>	
	<pre># Apply boundary conditions. q[0] = 2*q_left - q[1] q[-1] = 2*q_right - q[-2] # Main simulation loop. t = 0 while t < T: # Step in time. q[1:-1] = q[1:-1] - v*dt/dx*(q[1:-1] - q[:-2]) # Apply boundary conditions. q[0] = 2*q_left - q[1] q[-1] = 2*q_right - q[-2]</pre>	
	<pre># Plot results. if int(t/dt) % plot_freq == 0: plt.plot(x,q[1:-1]) # Update time. t += dt # Plot settings. plt.title('Upwind, BC: \$q(-L/2, t) = 0.5\$') plt.xlabel('\$x\$') plt.ylabel('\$q\$')</pre>	
	Upwind, BC: q(-L/2, t) = 0.5 10	
	Here we can clearly see the rightward 'flow' of the left boundary condition into the domain, showcasing the linear transport equation	ı's
In [4]:	main property. We reset the simulation to the original parameters, and instead set the right boundary condition to $q(L/2,t)=0.5,$ and plot the result.	(11
	T = 3 # Integration time. N_steps = 100 # Number of timesteps. plot_freq = 5 # Plot every n:th iteration. # Initial conditions. threshold = 0 q_init_left = 1 # $q(x, 0) = q_i$ nit_left for $x < t$ hreshold q_init_right = 0 # $q(x, 0) = q_i$ nit_right for $x > t$ hreshold # Dirichlet boundary conditions at $x = \pm L/2$. q_left = 1 q_right = 0.5	
	<pre># Timestep size and cell size. dt = T/N_steps dx = L/N # Position vector (Excluding ghost cells). x = np.linspace(-(L-dx)/2, (L-dx)/2, N) # Create plot. plt.figure(figsize=(7,5)) # Pre-allocate q (Including ghost cells).</pre>	
	<pre>q = np.zeros(N+2) # Assign inital conditions. q[1:-1][x < threshold] = q_init_left q[1:-1][x >= threshold] = q_init_right # Apply boundary conditions. q[0] = 2*q_left - q[1] q[-1] = 2*q_right - q[-2] # Main simulation loop. t = 0 while t < T:</pre>	
	<pre># Step in time. q[1:-1] = q[1:-1] - v*dt/dx*(q[1:-1] - q[:-2]) # Apply boundary conditions. q[0] = 2*q_left - q[1] q[-1] = 2*q_right - q[-2] # Plot results. if int(t/dt) % plot_freq == 0: plt.plot(x,q[1:-1]) # Update time. t += dt</pre>	
	# Plot settings. plt.title('Upwind, BC: \$q(L/2, t) = 0.5\$') plt.xlabel('\$x\$') plt.ylabel('\$q\$') plt.show() Upwind, BC: q(L/2,t) = 0.5	
	0.6 - Grand Control of the control o	
	Here we see no difference in results compared to the original simulation setup, even though the right boundary condition has been changed. Clearly, the simulation is indepedent of the right boundary condition, since we have a constant and strict transport of the quantity q to the right in the picture. We reset the simulation to the original parameters again, and now choose a 10 times smaller time step, i.e. by setting the number of time steps N_steps to 1000 .	
In [5]:	N = 100 # Number of cells. L = 10 # Length of 1D domain. V = 1 # Advection coefficient. T = 3 # Integration time. N_steps = 1000 # Number of timesteps. plot_freq = 50 # Plot every n :th iteration. # Initial conditions. threshold = 0 q_init_left = 1 # $q(x,0) = q$ _init_left for $x < threshold$	
	q_init_right = 0 # $q(x,0) = q_init_right$ for $x >= threshold$ # Dirichlet boundary conditions at $x = \pm L/2$. q_left = 1 q_right = 0 #	
	<pre>x = np.linspace(-(L-dx)/2, (L-dx)/2, N) # Create plot. plt.figure(figsize=(7,5)) # Pre-allocate q (Including ghost cells). q = np.zeros(N+2) # Assign inital conditions. q[1:-1][x < threshold] = q_init_left q[1:-1][x >= threshold] = q_init_right</pre>	
	<pre># Apply boundary conditions. q[0] = 2*q_left - q[1] q[-1] = 2*q_right - q[-2] # Main simulation loop. t = 0 while t < T: # Step in time. q[1:-1] = q[1:-1] - v*dt/dx*(q[1:-1] - q[:-2]) # Apply boundary conditions. q[0] = 2*q_left - q[1] q[-1] = 2*q_right - q[-2]</pre>	
	<pre># Plot results. if int(t/dt) % plot_freq == 0: plt.plot(x,q[1:-1]) # Update time. t += dt # Plot settings. plt.title('Upwind, \$N_steps = 1000\$') plt.xlabel('\$x\$') plt.ylabel('\$q\$')</pre>	
	Upwind, N_steps = 1000 10	
	Here we can see that there is no real difference in these results compared to the original simulation, with the exception being that the obtained reuslt is much smoother.	he
In [6]:	We reset the simulation and do the opposite instead, by setting the time step size to 10 times larger than the original value, i.e. by changing the number of time steps N_steps to 10 . # Parameters N = 100 # Number of cells. L = 10 # Length of 1D domain. V = 1 # Advection coefficient. T = 3 # Integration time. N_steps = 10 # Number of timesteps. plot_freq = 1 # Plot every n :th iteration.	
	<pre># Initial conditions. threshold = 0 q_init_left = 1 # q(x,0) = q_init_left for x < threshold q_init_right = 0 # q(x,0) = q_init_right for x >= threshold # Dirichlet boundary conditions at x = ±L/2. q_left = 1 q_right = 0 #</pre>	
	<pre># Position vector (Excluding ghost cells). x = np.linspace(-(L-dx)/2, (L-dx)/2, N) # Create plot. plt.figure(figsize=(7,5)) # Pre-allocate q (Including ghost cells). q = np.zeros(N+2) # Assign inital conditions. q[1:-1][x < threshold] = q_init_left</pre>	
	<pre>q[1:-1][x >= threshold] = q_init_right # Apply boundary conditions. q[0] = 2*q_left - q[1] q[-1] = 2*q_right - q[-2] # Main simulation loop. t = 0 while t < T: # Step in time. q[1:-1] = q[1:-1] - v*dt/dx*(q[1:-1] - q[:-2]) # Apply boundary conditions.</pre>	
	<pre># Apply boundary conditions. q[0] = 2*q_left - q[1] q[-1] = 2*q_right - q[-2] # Plot results. if int(t/dt) % plot_freq == 0: plt.plot(x,q[1:-1]) # Update time. t += dt # Plot settings. plt.title('Upwind, \$N_steps = 10\$')</pre>	
	plt.xlabel('\$x\$') plt.ylabel('\$q\$') plt.show() Upwind, N_steps = 10 4000000 -	
	2000000 - -2000000 - -4000000 - -6000000 - -4 -2 0 2 4	
	Here we see that the simulation becomes unstable again. Thus, using the upwind scheme is not sufficient for a stable simulation, be we also need to choose an appropriate size of the time step Δt , given the spatial resolution Δx and the speed of transport v . The requirements are described by the CFL-condition, which dictates that a time step must necessarily fullfill $\Delta t \leq \frac{\Delta x}{v},$ for the simulation to be stable. In this specific form, the condition can be interpreted as the requirement for the time step to be small than the time it takes for the transport of the medium q to cross one cell of size Δx .	se (12
	1.2. General-purpose 1D advection subroutine (8 pts) The advection problem at hand can be written as a general scalar conservation law $\frac{\partial q}{\partial t} + \nabla \cdot f(q) = 0,$ in multiple dimensions, where the vector valued function f is called a <i>flux function</i> , and is in general a non-linear function of q . Taking this equation to the 1D case, it simply becomes	(13 ng
	$\frac{\partial q}{\partial t} + \frac{\partial f(q)}{\partial x} = 0,$ in conservative form, or $\frac{\partial q}{\partial t} + \frac{\partial f(q)}{\partial q} \frac{\partial q}{\partial x} = 0,$ in primitive form. In order to match this equation to the orginal formulation of the advection problem at the start of this exercise sheet	(14 (15
	we can easily see that the flux function in question is $f(q)=vq,$ where $v=v(x)$ is the bulk motion in the domain and $q=q(x,t)$ is the density of the quantity of interest. Using the finite volume approach of integrating the conservative differential form over a discrete cell and a discrete time step, we obtain the numerical update scheme $q_i^{n+1}=q_i^n-\frac{\Delta t}{\Delta x}\left(F_{i+1/2}^n-F_{i-1/2}^n\right),$	(16 ate
	in integral form, where the cell averages at position x_i and time t_n are defined as $q_i^n \approx \frac{1}{\Delta x} \int_{x_i-1/2}^{x_{i+1/2}} q\left(x,t_n\right) dx,$ and the numerical flux functions at the cell interfaces are defined as $F_{i\pm 1/2}^n \approx \frac{1}{\Delta t} \int_{t_n}^{t_{n+1}} f\left(q\left(x_{i\pm 1/2},t\right)\right) dt.$	(18
	In order to complete the numerical scheme obtained above, we need a way to estimate the numerical fluxes. We can recognize that upwind scheme is in this formulation defined as $F_{i+1/2}^n = \begin{cases} f\left(q_i^n\right) & \text{if } f'>0\\ f\left(q_{i+1}^n\right) & \text{if } f'<0, \end{cases}$ which will give moderate numerical accuracy and is relatively easy to implement. Noting that the derivative of the flux function is $f'(q) = \frac{\partial}{\partial q}(vq) = v,$	(20
	we then have the flux function estimates $F_{i+1/2}^n = \begin{cases} v_{i+1/2}q_i^n & \text{if } v_{i+1/2}>0\\ v_{i+1/2}q_{i+1}^n & \text{if } v_{i+1/2}<0, \end{cases}$ with the velocities $v_{i\pm 1/2}$ at the cell interfaces, which we use to numerically solve the problem.	(22 ity
In [7]:	<pre>def advect(q, v, dx, dt):</pre>	
	<pre>ghost cells. The first and last elements corresponds to the ghost cells at each end of the domain. v: np.array shape=(N+1,) Array of transport velocites at each cell interface. dx: double Size of cell. dt: double Size of time step. Returns: np.array shape=(N,) Solution q, propagated one step dt in time.</pre>	
	<pre># Quantity q, vectors of shape=(N,). qm = q[1:-1] # center adjusted, q_i qr = q[2:] # right adjusted, q_i+1 ql = q[:-2] # left adjusted, q_i-1 # Velocities v, vectors of shape=(N,). vr = v[1:] # right velocity, v_i+1/2 vl = v[:-1] # left velcocity, v_i-1/2 # Numerical flux functions, vectors of shape=(N,). # Using upwind scheme, determined by sign of local derivative. Fr = vr * (qm*(vr>=0) + qr*(vr<0)) # Right cell interface, i+1/2</pre>	
In [8]:	<pre>#</pre>	
	# Initial conditions. threshold = 0 $q_{init_left} = 1 # q(x,0) = q_{init_left} for x < threshold$ $q_{init_right} = 0 # q(x,0) = q_{init_right} for x >= threshold$ # Dirichlet boundary conditions at $x = \pm L/2$. $q_{left} = 1$ $q_{right} = 0$ # Timestep size and cell size.	
	<pre>dt = T/N_steps dx = L/N # Position vector (Excluding ghost cells). x = np.linspace(-(L-dx)/2, (L-dx)/2, N) # Transport velocity at cell interfaces. v = np.ones(N+1) # Create plot. plt.figure(figsize=(7,5)) # Pre-allocate g (Including ghost cells).</pre>	
	<pre># Pre-allocate q (Including ghost cells). q = np.zeros(N+2) # Assign inital conditions. q[1:-1][x < threshold] = q_init_left q[1:-1][x >= threshold] = q_init_right # Apply boundary conditions. q[0] = 2*q_left - q[1] q[-1] = 2*q_right - q[-2] # Main simulation loop. t = 0</pre>	
	<pre># Update time. t += dt # Plot settings. plt.title('Upwind, general implementation') plt.xlabel('\$x\$') plt.ylabel('\$q\$') plt.show()</pre> Upwind, general implementation	
	10 -	
	We seemingly get the same result as obtained previously, so our implementation should reasonably be correct. Now we instead choose a velocity profile as $v(x) = -\frac{2x}{L},$	(°
	and set the initial conditions to $q(x,0)=\begin{cases} 1 & \text{if } x \leq \frac{L}{4}\\ 0 & \text{otherwise} \ , \end{cases}$ with boundary conditions $q(-L/2,t)=q(L/2,t)=0,$	(23) (24)
In [9]:	and solve the problem from time $t=0$ to $t=3$ with 100 equally sized timesteps.	
	<pre>x = np.linspace(-(L-dx)/2, (L-dx)/2, N) # Transport velocity at cell interfaces. x_interface = np.linspace(-L/2, L/2, N+1) v = -2*x_interface/L # Create plot. plt.figure(figsize=(7,5)) # Pre-allocate q (Including ghost cells). q = np.zeros(N+2) # Assign inital conditions.</pre>	
	<pre># Assign inital conditions. q[1:-1][np.abs(x) <= threshold] = q_init_mid q[1:-1][np.abs(x) > threshold] = q_init_sides # Apply boundary conditions. q[0] = 2*q_left - q[1] q[-1] = 2*q_right - q[-2] # Main simulation loop. t = 0</pre>	
	<pre>while t < T: # Step in time. q[1:-1] = advect(q, v, dx, dt)</pre>	
	<pre>q[1:-1][np.abs(x) <= threshold] = q_init_mid q[1:-1][np.abs(x) > threshold] = q_init_sides # Apply boundary conditions. q[0] = 2*q_left - q[1] q[-1] = 2*q_right - q[-2] # Main simulation loop.</pre>	

