Passive Photonic Circuit Design, Measurement and Analysis

Vijay Srinivasan, Intel Corporation

EdX Username: SJTOL

Photonic Circuit Structure: TE polarized unbalanced MZI

Design Flow:

Step 1: Define waveguide parameters

Wavelength of interest: 1550nm

Geometry (width, thickness): 500nm, 220nm

Step 2: Simulate waveguide using ANSYS Lumerical Mode to extract and model group index

Step 3: Derive compact model for waveguide using 2nd order polynomial fit TE mode, neff(lambda)=2.443-1.12919(lambda-1.55)-0.0416916(lambda-1.55)^2

Step 4: Perform 5-point corner analysis

Coordinate	Group Index (ng)	
Nominal	4.17694	
LL	4.2302	
LR	4.15984	
TR	4.17104	
TL	4.24234	

Step 5: Define length imbalance values for TE MZI

Lengths (micron): 25, 50, 100, 150

Step 6: Compute theoretical TE MZI free spectral range (FSR)

TE MZI ΔL (μm)	FSR** (nm)	
25	22.915	
50	11.457	
100	5.728	
150	3.819	

^{**} ng=4.17694 (nominal)

Step 7: Create TE MZI layout using KLayout

TE_MZIO (25 μ m), TE_MZIO (50 μ m), TE_MZIO (100 μ m), TE_MZIO (150 μ m)

Step 8: Simulate FSR using KLayout interface to ANSYS Lumerical Interconnect

Step 9: Apply ACF based grating coupler bias correction [MATLAB processing]

Auto Correlation based baseline (bias) correction parameters:

Reference wavelength: 1553.50nm

Group Index: 4.1890

FSR: 3.84nm

Step 9: Extract group index (ng) and FSR from measurement data

Auto Correlation based baseline (bias) correction parameters:

MZI length imbalance: 150µm (selected for comparison with simulation)

Reference wavelength: 1555.0nm

Group Index: 4.1872

FSR: 3.84nm

Conclusion:

Measured values for group index (ng) and MZI free spectral range for the structure with length imbalance of $150\mu m$ falls within estimates from waveguide model and corner analysis simulation.

Wavelength: 1550nm

Waveguide geometry: 500nm (width), 220nm (Thickness)

Waveguide polarization: TE

Waveguide material (simulation): Silicon – Dispersive & lossless

Passive photonic circuit structure: Mach-Zehnder Interferometer (MZI)

Layout instance used for analysis: **TE_MZI_3** (ΔL=150nm)

Parameter		Simulated		Measured
		Min	Max	
Group Index (ng)		4.1598	4.24234	4.1872
Compact model	n1	2.443		2.4317
	n2	-1.12919		-1.1450
	n3	-0.04169		-0.0299
Free Spectral Range (nm)		3.876	3.8	3.84

Future Work:

Extend analysis to include:

- (a) Accurate representation of waveguide loss from simulation vs measured from calibration structure
- (b) TM MZI structure

References:

- 1. EdX: Silicon Photonics Design, Fabrication and Data Analysis course materials
- 2. SiEPIC EBeam libraries and documentation
- 3. ANSYS suite of tools for photonics modeling and simulation (Mode, Interconnect)
- 4. KLayout tool for photonics layout and design rule checking
- 5. Silicon Photonics Design: From Devices to Systems, L. Chrostowski & M. Hochberg, Cambridge University Press