4.6 Παράγωγος κατά κατεύθυνση και κλίση

Είδαμε ότι οι μερικές παράγωγοι $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ εκφράζουν ρυθμό μεταβολής/κλίση εφαπτομένης στην κατεύθυνση του x ή y. Θέλουμε να γενικεύσουμε σε τυχαία κατεύθυνση.

Η κατεύθυνση στο xy-επίπεδο ορίζεται από ένα μοναδιαίο διάνυσμα $\vec{u}=u_1i+u_2j$ με αρχή το σημείο (x_0,y_0) . Η ευθεία που είναι παράλληλη στο \vec{u} και διέρχεται από το (x_0,y_0) έχει παραμετρικές εξισώσεις

$$L: x = x_0 + tu_1, y = y_0 + tu_2.$$

Αν περιορίσουμε την f στην ευθεία L παίρνουμε την συνάρτηση $f(x_0+tu_1,y_0+tu_2)$.

Ορισμός

Έστω f(x,y) συνάρτηση και $\vec{u}=u_1i+u_2j$ μοναδιαίο διάνυσμα. Η παράγωγος της f στην κατεύθυνση του \vec{u} στο (x_0,y_0) συμβολίζεται με $D_{\vec{u}}f(x_0,y_0)$ και ορίζεται ως η παρακάτω παράγωγος, αν υπάρχει:

$$D_{\vec{u}}f(x_0,y_0) = \frac{d}{dt}[f(x_0 + tu_1, y_0 + tu_2)]_{t=0}$$

Αντίστοιχος ορισμός δίνεται και για συναρτήσεις τριών μεταβλητών.

Ορισμός

Έστω f(x,y,z) συνάρτηση και $\vec{u}=u_1i+u_2j+u_3k$ μοναδιαίο διάνσυμα. Η παράγωγος της f στην κατεύθυνση του \vec{u} στο (x_0,y_0,z_0) συμβολίζεται με $D_{\vec{u}}f(x_0,y_0,z_0)$ και ορίζεται ως η παρακάτω παράγωγος, αν υπάρχει:

$$D_{\vec{u}}f(x_0, y_0, z_0) = \frac{d}{dt}[f(x_0 + tu_1, y_0 + tu_2, z_0 + tu_3)]_{t=0}$$

Χρησιμοποιώντας τον κανόνα αλυσίδας μπορούμε να βρούμε απλούστερο τρόπο υπολογισμού.

$$\frac{d}{dt}[f(x_0 + tu_1, y_0 + tu_2)]_{t=0} = \left[\frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}\right]_{t=0}$$
$$= f_x(x_0, y_0)u_1 + f_y(x_0, y_0)u_2$$

Θεώρημα

• Αν z = f(x, y) παραγωγίσιμη στο (x_0, y_0) και $\vec{u} = u_1 i + u_2 j$ μοναδιαίο διάνυσμα, τότε η $D_{\vec{u}} f(x_0, y_0)$ υπάρχει και

$$D_{\vec{u}}f(x_0,y_0)=f_x(x_0,y_0)u_1+f_y(x_0,y_0)u_2.$$

• Αν w=f(x,y,z) παραγωγίσιμη στο (x_0,y_0,z_0) και $\vec{u}=u_1i+u_2j+u_3k$ μοναδιαίο διάνυσμα, τότε η $D_{\vec{u}}f(x_0,y_0,z_0)$ υπάρχει και

$$D_{\vec{u}}f(x_0,y_0,z_0)=f_x(x_0,y_0,z_0)u_1+f_y(x_0,y_0,z_0)u_2+f_z(x_0,y_0,z_0)u_3.$$

Παράδειγμα

Να βρεθεί η παράγωγος της $f(x,y)=e^{xy}$ στο (-2,0) στην κατεύθυνση του μοναδιαίου διανύσματος που σχηματίζει γωνία $\pi/3$ με τον θετικό άξονα των x.

Παράδειγμα

Να βρεθεί η κατευθυνόμενη παράγωγος της $f(x,y,z)=x^2y-yz^3+z$ στο (1,-2,0) στην κατεύθυνση του $\vec{a}=2i+j-2k$.

$$D_{\vec{u}}f(x_0, y_0) = f_x(x_0, y_0)u_1 + f_y(x_0, y_0)u_2$$

= $(f_x(x_0, y_0), f_y(x_0, y_0)) \cdot (u_1, u_2)$

Ορισμός

• Αν f(x,y) συνάρτηση, η **κλίση** της f συμβολίζεται με ∇f ή grad f ορίζεται ως

$$\nabla f = f_{x}(x, y)i + f_{y}(x, y)j$$

• Αν f(x,y,z) συνάρτηση, η **κλίση** της f συμβολίζεται με ∇f ή grad f ορίζεται ως

$$\nabla f = f_X(x, y, z)i + f_V(x, y, z)j + f_Z(x, y, z)k$$

Ιδιότητες της κλίσης - Ι

Θεώρημα

Στο σημείο (x_0,y_0) , εάν $\nabla f(x_0,y_0) \neq \vec{0}$, η z=f(x,y) έχει

- μέγιστη κλίση εφαπτομένης/ρυθμό μεταβολής στην κατεύθυνση $\nabla f(x_0,y_0)$ η οποία είναι ίση με $||\nabla f(x_0,y_0)||$ και
- ελάχιστη κλίση εφαπτομένης/ρυθμό μεταβολής στην κατεύθυνση $-\nabla f(x_0,y_0) \ \eta \ \text{οποία είναι ίση με} -||\nabla f(x_0,y_0)||.$

(Το ίδιο και για τρεις μεταβλητές)

Παράδειγμα

Έστω $f(x,y)=x^2e^y$. Να βρεθεί η μέγιστη τιμή της κατευθυνόμενης παραγώγου στο (-2,0) και το μοναδιαίο διάνυσμα που δείχνει αυτήν την κατεύθυνση.

Ιδιότητες της κλίσης - ΙΙ

Θεώρημα

Έστω f(x,y) με συνεχείς μερικές παραγώγους σε ανοικτό δίσκο με κέντρο (x_0,y_0) και $\nabla f(x_0,y_0)\neq \vec{0}$. Τότε το διάνυσμα $\nabla f(x_0,y_0)$ είναι κάθετο στην καμπύλη στάθμης της f που διέρχεται από το (x_0,y_0) .

(Το ίδιο και για τρεις μεταβλητές) Απόδειξη: