- Truth tables, Boolean algebra, and combinational circuits all represent the same thing
- What does it mean for a particular truth table to be equivalent to a particular Boolean expression?

A	В	Y
0	0	0
0	1	1
1	0	0
1	1	1

Matches:

$$A'B + AB$$

$$B(A+A')$$

В

Not matches:

A' B

AB

B + (AB')

A	В	Y
0	0	0
0	1	1
1	0	0
1	1	1

Matches:

- Converting to a truth table is "easy" just plug in all inputs
 - Downside: there can be a lot of inputs
- What about converting between Boolean expressions and circuits?

((A xor B) Y)'

(A + B)' + AB

- What about converting between Boolean expressions and circuits?
 - Also straightforward, just "reading them off"
 - Need to be careful about order of operations and groupings
 - Unlike converting to truth tables, there is no one correct answer