

ETC3555

Statistical Machine Learning

Linear models

7 August 2018

Outline

1 Linear classification

2 Linear regression

3 Logistic regression

Introduction Linear classification 2/32

A real data set

A real data set

© M Creator: Yaser Abu-Wostafa - LFD Lecture 3

Introduction Linear classification 3/32

Feature extraction

Input representation

'raw' input
$$\mathbf{x} = (x_0, x_1, x_2, \cdots, x_{256})$$

linear model:
$$(w_0, w_1, w_2, \cdots, w_{256})$$

Features: Extract useful information, e.g.,

intensity and symmetry
$$\mathbf{x} = (x_0, x_1, x_2)$$

linear model: (w_0, w_1, w_2)

(c) FM Greator: Yaser Abu-Wostafa - LFD Lecture 3

Illustration of features

Illustration of features

© M Greator: Yaser Abu-Mostafa - LFD Lecture 3

5/23

Introduction Linear classification 5/32

The perceptron learning algorithm

A simple learning algorithm - PLA

The perceptron implements

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

Given the training set:

$$(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_N, y_N)$$

pick a misclassified point:

$$sign(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n) \neq y_n$$

and update the weight vector:

$$\mathbf{w} \leftarrow \mathbf{w} + y_n \mathbf{x}_n$$

(c) (F) Greator: Yaser Abu-HVlostafa - LFD Lecture 1

12/19

Introduction Linear classification 6/32

The perceptron learning algorithm

What PLA does

Evolution of $E_{\rm in}$ and $E_{\rm out}$

Final perceptron boundary

(c) (R) Greator: Yaser Abu-HVostafa - LFD Lecture 3

6/23

Introduction Linear classification 7/32

The pocket algorithm

Introduction Linear classification 8/32

PLA versus Pocket

PLA: Pocket:

© M Greator: Yaser Abu-Wostafa - LFD Lecture 3

8/23

Introduction Linear classification 9/32

Outline

1 Linear classification

2 Linear regression

3 Logistic regression

Introduction Linear regression 10/32

Credit example

Credit again

Classification: Credit approval (yes/no)

Regression: Credit line (dollar amount)

Input: $\mathbf{x} =$

age	23 years
annual salary	\$30,000
years in residence	1 year
years in job	1 year
current debt	\$15,000

Linear regression output:
$$h(\mathbf{x}) = \sum_{i=0}^d w_i \ x_i = \mathbf{w}^\mathsf{T} \mathbf{x}$$

Error measure for regression

How to measure the error

How well does $h(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x}$ approximate $f(\mathbf{x})$?

In linear regression, we use squared error $(h(\mathbf{x}) - f(\mathbf{x}))^2$

in-sample error:
$$E_{\text{in}}(h) = \frac{1}{N} \sum_{n=1}^{N} (h(\mathbf{x}_n) - y_n)^2$$

(c) (R) Greator: Yaser Abu-Mostafa - LFD Lecture 3

Geometry of linear regression

© M Greator: Yaser Abu-Mostafa - LFD Lecture 3

13/23

Introduction Linear regression 13/32

$E_{\rm in}$ in vector form

The expression for $E_{\rm in}$

$$E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_{n} - \mathbf{y}_{n})^{2}$$
$$= \frac{1}{N} ||\mathbf{X} \mathbf{w} - \mathbf{y}||^{2}$$

where
$$\mathbf{X} = \begin{bmatrix} -\mathbf{x}_1^\mathsf{T} - \\ -\mathbf{x}_2^\mathsf{T} - \\ \vdots \\ -\mathbf{x}_N^\mathsf{T} - \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$

(C) @ Greator: Yaser Abu-Mostafa - LFD Lecture 3

Minimizing E_{in}

Minimizing E_{in}

$$\begin{split} E_{\text{in}}(\mathbf{w}) &= \frac{1}{N} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 \\ \nabla E_{\text{in}}(\mathbf{w}) &= \frac{2}{N} \mathbf{X}^{\mathsf{T}} (\mathbf{X}\mathbf{w} - \mathbf{y}) = \mathbf{0} \\ \mathbf{X}^{\mathsf{T}} \mathbf{X}\mathbf{w} &= \mathbf{X}^{\mathsf{T}} \mathbf{y} \\ \mathbf{w} &= \mathbf{X}^{\dagger} \mathbf{y} \text{ where } \mathbf{X}^{\dagger} = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \\ \mathbf{X}^{\dagger} \text{ is the 'pseudo-inverse' of X} \end{split}$$

The linear regression algorithm

The linear regression algorithm

1: Construct the matrix X and the vector \mathbf{y} from the data set $(\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_N, y_N)$ as follows

$$\mathbf{X} = \begin{bmatrix} & -\mathbf{x}_1^{\mathsf{T}} - & \\ & -\mathbf{x}_2^{\mathsf{T}} - & \\ & \vdots & \\ & -\mathbf{x}_N^{\mathsf{T}} - & \end{bmatrix}, \qquad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}.$$
 input data matrix

- ² Compute the pseudo-inverse $X^{\dagger} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}$.
- $_{3:}$ Return $\mathbf{w}=\mathrm{X}^{\dagger}\mathbf{y}.$

© M Greator: Yesen Abu-Misstafa - LFD Lecture 3 17/23

Introduction Linear regression 16/32

Linear regression for classification

Linear regression for classification

Linear regression learns a real-valued function $y = f(\mathbf{x}) \in \mathbb{R}$

Binary-valued functions are also real-valued! $\pm 1 \in \mathbb{R}$

Use linear regression to get w where $\mathbf{w}^{\mathsf{T}}\mathbf{x}_n \approx y_n = \pm 1$

In this case, $sign(\mathbf{w}^\mathsf{T}\mathbf{x}_n)$ is likely to agree with $y_n = \pm 1$

Good initial weights for classification

C M Creator: Yaser Abu-Mostafa - LFD Lecture 3

0/00

Introduction Linear regression 17/32

Linear regression boundary

Linear regression boundary

Average Intensity

© № Greator: Yaser Abu-HVostafa - LFD Lecture 3

Introduction Linear regression 18/32

Outline

1 Linear classification

- **2** Linear regression
- 3 Logistic regression

Introduction Logistic regression 19/32

Logistic regression

A third linear model

$$s = \sum_{i=0}^{d} w_i x_i$$

linear classification

$$h(\mathbf{x}) = \operatorname{sign}(s)$$

linear regression

$$h(\mathbf{x}) = s$$

logistic regression

$$h(\mathbf{x}) = \theta(s)$$

© R Greator: Yaser Abu-Mostafa - LFD Lecture 9

10/24

Introduction Logistic regression 20/32

The logistic function

The logistic function θ

The formula:

$$\theta(s) = \frac{e^s}{1 + e^s}$$

soft threshold: uncertainty

sigmoid: flattened out 's'

Creator: Yaser Abu-Mostafa - LFD Lecture 9

11/24

Probability interpretation

Probability interpretation

 $h(\mathbf{x}) = \theta(s)$ is interpreted as a probability

Example. Prediction of heart attacks

Input x: cholesterol level, age, weight, etc.

 $\theta(s)$: probability of a heart attack

The signal $s = \mathbf{w}^{\mathsf{T}} \mathbf{x}$ "risk score"

Creator: Yaser Abu-Mostafa - LFD Lecture 9

12/24

Introduction Logistic regression 22/32

Genuine probability

Genuine probability

Data (\mathbf{x}, y) with binary y, generated by a noisy target:

$$P(y \mid \mathbf{x}) = \begin{cases} f(\mathbf{x}) & \text{for } y = +1; \\ 1 - f(\mathbf{x}) & \text{for } y = -1. \end{cases}$$

The target $f:\mathbb{R}^d \to [0,1]$ is the probability

Learn
$$g(\mathbf{x}) = \theta(\mathbf{w}^{\mathsf{\scriptscriptstyle T}} \, \mathbf{x}) \approx f(\mathbf{x})$$

@ @ Greator: Yaser Abu-Mostafa - LFD Lecture 9

13/24

The data does not give us the value of f explicitly. It gives us samples generated by this probability. How do we learn from such data?

Introduction Logistic regression 23/32

Error measure

Error measure

For each (\mathbf{x}, y) , y is generated by probability $f(\mathbf{x})$

Plausible error measure based on likelihood:

If h = f, how likely to get y from \mathbf{x} ?

$$P(y\mid \mathbf{x}) = \begin{cases} h(\mathbf{x}) & \text{for } y = +1; \\ 1 - h(\mathbf{x}) & \text{for } y = -1. \end{cases}$$

(c) (R) Greator: Yaser Abu-Mostafa - LFD Lecture 9

14/24

Formula for likelihood

Since the data points are independently generated, the probability of observing all the y_n 's in the data set from the corresponding x_n is

$$\Pi_{n=1}^N P(y_n|\boldsymbol{x}_n).$$

The method of *maximum likelihood* selects the hypothesis *h* which maximizes this probability.

Introduction Logistic regression 25/32

Maximizing the likelihood

Maximize
$$\Pi_{n=1}^{N} P(y_n | \mathbf{x}_n) \equiv \text{Minimize } -\frac{1}{N} \ln \left(\Pi_{n=1}^{N} P(y_n | \mathbf{x}_n) \right)$$

$$\begin{split} &-\frac{1}{N}\ln\left(\Pi_{n=1}^{N}P(y_{n}|\boldsymbol{x}_{n})\right)\\ &=\frac{1}{N}\sum_{n=1}^{N}\ln\left(\frac{1}{P(y_{n}|\boldsymbol{x}_{n})}\right)\\ &=\frac{1}{N}\sum_{n=1}^{N}\mathbb{1}\{y_{n}=+1\}\ln\left(\frac{1}{h(\boldsymbol{x}_{n})}\right)+\mathbb{1}\{y_{n}=-1\}\ln\left(\frac{1}{1-h(\boldsymbol{x}_{n})}\right) \end{split}$$

Introduction Logistic regression 26/32

Minimizing E_{in}

For the case $h(\mathbf{x}) = \theta(\mathbf{w}^T \mathbf{x})$, with $\theta(-\mathbf{s}) = 1 - \theta(\mathbf{s})$, we have

$$\begin{split} &= \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}\{y_n = +1\} \ln \left(\frac{1}{h(\mathbf{x}_n)}\right) + \mathbb{1}\{y_n = -1\} \ln \left(\frac{1}{1 - h(\mathbf{x}_n)}\right) \\ &= \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}\{y_n = +1\} \ln \left(\frac{1}{\theta(w^T \mathbf{x}_n)}\right) + \mathbb{1}\{y_n = -1\} \ln \left(\frac{1}{1 - \theta(w^T \mathbf{x}_n)}\right) \\ &= \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}\{y_n = +1\} \ln \left(\frac{1}{\theta(w^T \mathbf{x}_n)}\right) + \mathbb{1}\{y_n = -1\} \ln \left(\frac{1}{\theta(-w^T \mathbf{x}_n)}\right) \\ &= \frac{1}{N} \sum_{n=1}^{N} \ln \left(\frac{1}{\theta(y_n w^T \mathbf{x}_n)}\right) = \frac{1}{N} \sum_{n=1}^{N} \ln \left(1 + e^{-y_n w^T \mathbf{x}_n}\right) \end{split}$$

 \rightarrow "cross-entropy" error

Introduction Logistic regression 27/32

 $E_{in}(\mathbf{w})$

Cross-entropy

For two probability distributions $\{p, 1-p\}$ and $\{q, 1-q\}$ with binary outcomes, the cross-entropy (from information theory) is

$$p \log \frac{1}{q} + (1-p) \log \frac{1}{1-q}.$$

The in-sample error above corresponds to a cross-entropy error measure on the data point $(\boldsymbol{x}_n, \boldsymbol{y}_n)$, with $p = 1\{\boldsymbol{y}_n = +1\}$ and $q = h(\boldsymbol{x}_n)$.

> Introduction Logistic regression 28/32

Formula for likelihood

Formula for likelihood

$$P(y \mid \mathbf{x}) = \begin{cases} h(\mathbf{x}) & \text{for } y = +1; \\ 1 - h(\mathbf{x}) & \text{for } y = -1. \end{cases}$$

. .

Substitute
$$h(\mathbf{x}) = \theta(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$
, noting $\theta(-s) = 1 - \theta(s)$

$$P(y \mid \mathbf{x}) = \theta(y \ \mathbf{w}^{\mathsf{T}} \mathbf{x})$$

Likelihood of
$$\mathcal{D} = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)$$
 is

$$\prod_{n=1}^{N} P(y_n \mid \mathbf{x}_n) = \prod_{n=1}^{N} \theta(y_n \mathbf{w}^\mathsf{T} \mathbf{x}_n)$$

(c) (R) Greator: Yaser Abu-Mostafa - LFD Lecture 9

15/24

Maximizing the likelihood

Maximizing the likelihood

$$-\,\frac{1}{N}\ln\,\left(\,\prod_{n=1}^{N}\,\theta(y_{n}\;\mathbf{w}^{\scriptscriptstyle\mathsf{T}}\,\mathbf{x}_{n})\,\right)$$

$$= \frac{1}{N} \sum_{n=1}^{N} \ln \left(\frac{1}{\theta(y_n \mathbf{w}^{\mathsf{T}} \mathbf{x}_n)} \right)$$

$$\left[\theta(s) = \frac{1}{1 + e^{-s}}\right]$$

$$E_{ ext{in}}(\mathbf{w}) = rac{1}{N} \sum_{n=1}^{N} \underbrace{\ln \left(1 + e^{-y_n \mathbf{w}^{\mathsf{T}}} \mathbf{x}_n
ight)}_{\mathsf{e}\left(h(\mathbf{x}_n), y_n
ight)}$$
 "cross-entropy" error

(c) R Creator: Yaser Abu-Mostafa - LFD Lecture 9

16/24

Introduction Logistic regression 30/32

How to minimize E_{in}

How to minimize $E_{\rm in}$

For logistic regression,

$$E_{\mathrm{in}}(\mathbf{w}) \ = \ \frac{1}{N} \ \sum_{n=1}^{N} \ \ln \left(1 + e^{-y_n \mathbf{w}^{\mathsf{T}} \mathbf{x}_n} \right) \qquad \ \ \longleftarrow \text{ iterative } \text{solution}$$

Compare to linear regression:

$$E_{\mathrm{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{n} - y_{n} \right)^{2}$$
 — closed-form solution

(C) @ Greator: Yaser Abu-Mostafa - LFD Lecture 9

18/24

Introduction Logistic regression 31/32

Summary

Summary of Linear Models

(c) (Treator: Yaser Abu-Mostafa - LFD Lecture 9