Zadanie: GWI Gwiazdy

XXVI OI, etap II, dzień pierwszy. Plik źródłowy gwi.* Dostępna pamięć: 256 MB.

13.02.2019

W doskonale geometrycznej galaktyce znajduje się n gwiazd, położonych wzdłuż linii prostej i ponumerowanych od lewej do prawej liczbami od 1 do n. Podróżowanie między gwiazdami jest dość łatwe, gdyż większość mieszkańców galaktyki posiada teleportery, które są w stanie przenieść ich w mgnieniu oka z dowolnej gwiazdy do dowolnej innej.

Bajtalina mieszka na gwieździe o numerze s i właśnie kupiła swój własny teleporter. Planuje wykonać ciąg n-1 teleportacji, aby odwiedzić każdą gwiazdę w galaktyce dokładnie raz (gwiazdę s uznajemy za już odwiedzoną). Chciałaby to zrobić w sposób minimalizujący zużycie energii, ponieważ ładowanie baterii teleportera jest bardzo drogie.

Niestety, zużycie energii zmienia się w dość chaotyczny sposób w zależności od kierunku teleportacji (w lewo, jeśli teleportujemy się do gwiazdy o niższym numerze, lub w prawo do gwiazdy o wyższym numerze) oraz liczby dotychczas wykonanych teleportacji. W instrukcji obsługi teleportera Bajtalina znalazła dokładną specyfikację zużycia energii. Wynika z niej, że koszt i-tej teleportacji (dla $1 \le i \le n-1$) wynosi l_i , jeśli jest to teleportacja w lewo, lub r_i , jeśli jest to teleportacja w prawo.

Twoim zadaniem jest pomóc Bajtalinie znaleźć najtańszy sposób odwiedzenia wszystkich gwiazd.

Wejście

W pierwszym wierszu standardowego wejścia znajdują się dwie liczby całkowite n i s ($n \geq 2, 1 \leq s \leq n$), oddzielone pojedynczym odstępem i oznaczające odpowiednio liczbę gwiazd w galaktyce i numer gwiazdy, na której mieszka Bajtalina.

W kolejnych n-1 wierszach znajdują się opisy kosztów teleportacji; i-ty z nich zawiera dwie liczby całkowite l_i , r_i ($0 \le l_i$, $r_i \le 10^6$) oddzielone pojedynczym odstępem i opisujące koszt i-tej teleportacji w zależności od jej kierunku.

Wyjście

W pierwszym wierszu standardowego wyjścia należy wypisać jedną liczbę całkowitą, oznaczającą minimalny koszt wykonania wszystkich teleportacji. W drugim wierszu należy wypisać ciąg n parami różnych liczb całkowitych z przedziału [1,n], oddzielonych pojedynczymi odstępami i opisujących numery kolejno odwiedzanych gwiazd (pierwszą liczbą ciągu musi być s). Jeśli jest więcej niż jeden poprawny ciąg, Twój program może wypisać dowolny z nich.

Przykład

Dla danych wejściowych: poprawnym wynikiem jest:

4 2

5 3 2 4 1 3

4 6

2 2

Wyjaśnienie przykładu: Bajtalina rozpoczyna podróż na gwieździe o numerze 2. Pierwsza teleportacja jest w prawo (do gwiazdy numer 4), co ma koszt $r_1 = 3$. Druga teleportacja jest w lewo (do gwiazdy numer 1) z kosztem $l_2 = 4$. Finalnie, ostatnia teleportacja jest do gwiazdy numer 3 z kosztem $r_3 = 2$. (Zauważmy, że $l_3 = r_3$, więc koszt ostatniej teleportacji byłby 2 niezależnie od jej kierunku.)

Sumaryczny koszt to 3+4+2=9 i jest to optymalne rozwiązanie.

Testy "ocen":

```
locen: n = 10, s = 1; l_i = 1, r_i = 2 \text{ dla każdego } i;
```

20cen: n = 18, s = 7; $l_i = i$, $r_i = i + 1$ dla i nieparzystych; $l_i = i + 1$, $r_i = i$ dla i parzystych;

3ocen: n = 500, s = 250; $l_i = 0$, $r_i = 1$ dla i nieparzystych; $l_i = 1$, $r_i = 0$ dla i parzystych;

4ocen: n = 3000, s = 1000; $l_i = r_i = i$ dla każdego i;

5ocen: $n = 500\,000$, s = 1; $l_i = i$, $r_i = 500\,000 - i$ dla każdego i.

Ocenianie

Zestaw testów dzieli się na następujące podzadania. Testy do każdego podzadania składają się z jednej lub większej liczby osobnych grup testów.

Limity czasowe obowiązujące w poszczególnych podzadaniach są opublikowane w SIO.

Podzadanie	Warunki	Liczba punktów
1	$n \le 10$	8
2	$n \le 18$	8
3	$n \le 500$	10
4	$n \le 3000$	16
5	$n \leq 500000$; dla każdego i zachodzi $l_i \leq r_i$	10
6	$n \leq 500000;$ optymalny koszt wynosi 0 i dla każdego	10
	i dokładnie jedna z wartości l_i , r_i jest równa 0	
7	$n \le 500000; \ s = 1$	18
8	$n \le 500000$	20

W podzadaniach 1, 2, 3, 4, 5, 7 oraz 8, jeżeli poprawny będzie jedynie optymalny łączny koszt, otrzymasz za ten test 50% punktów.