## One-way Random Effects Model

Tirthankar Dasgupta

## Pulp Experiment Revisited

Reflectance data in pulp experiment: each of four operators made five pulp sheets; reflectance was read for each sheet using a brightness tester.

**Randomization:** assignment of 20 containers of pulp to operators and order of reading.

Table: Reflectance Data, Pulp Experiment

| А    | Operator<br>A B C D |      |      |  |  |
|------|---------------------|------|------|--|--|
| 59.8 | 59.8                | 60.7 | 61.0 |  |  |
| 60.0 | 60.2                | 60.7 | 60.8 |  |  |
| 60.8 | 60.4                | 60.5 | 60.6 |  |  |
| 60.8 | 59.9                | 60.9 | 60.5 |  |  |
| 59.8 | 60.0                | 60.3 | 60.5 |  |  |

**Objective:** determine if there are differences among operators in making sheets and reading brightness.

#### Fixed versus Random Effects

- In the pulp experiment the effects τ<sub>i</sub> are called fixed effects because the interest was in comparing the four specific operators in the study.
- ▶ If these four operators were chosen randomly from the population of operators in the plant, the interest would usually be in the variation among all operators in the population.
- ▶ Because the observed data are from operators randomly selected from the population, the variation among operators in the *population* is referred to as *random* effects.

# One-way Random Effects Model

Model:

$$y_{ij} = \mu + \tau_i + \epsilon_{ij},$$

 $\epsilon_{ij}$ 's are independent error terms with  $N(0, \sigma^2)$ ,  $\tau_i$  are independent  $N(0, \sigma_{\tau}^2)$ , and  $\tau_i$  and  $\epsilon_{ij}$  are independent.

• Here  $\sigma^2$  and  $\sigma_{\tau}^2$  are the two *variance* components of the model. The variance among operators in the population is measured by  $\sigma_{\tau}^2$ .

# ANOVA decomposition and hypothesis testing

▶ The null hypothesis for the fixed effects model:  $\tau_1 = \cdots = \tau_k$  should be replaced by

$$H_0: \sigma_\tau^2=0.$$

Under  $H_0$ , the F test and the ANOVA decomposition described earlier in the context of fixed effects model will still hold.

Reason: under  $H_0$ ,  $SSTr \sim \sigma^2 \chi^2_{k-1}$  and  $SSE \sim \sigma^2 \chi^2_{N-k}$ . Therefore the F-test has the distribution  $F_{k-1,N-k}$  under  $H_0$ .



# ANOVA decomposition and hypothesis testing (contd.)

|          | Degrees of     | Sum of  | Mean    |      |
|----------|----------------|---------|---------|------|
| Source   | Freedom $(df)$ | Squares | Squares | F    |
| operator | 3              | 1.34    | 0.447   | 4.20 |
| residual | 16             | 1.70    | 0.106   |      |
| total    | 19             | 3.04    |         |      |

We can apply the same ANOVA and F test in the fixed effects case for analyzing data. However, we need to compute the expected mean squares under the alternative of  $\sigma_{\tau}^2 > 0$  to estimate the variance components.

#### **Expected Mean Squares**

▶ Equation (1) holds independent of  $\sigma_{\tau}^2$ ,

$$E(MSE) = E\left(\frac{SSE}{N-k}\right) = \sigma^2.$$
 (1)

▶ Under the alternative:  $\sigma_{\tau}^2 > 0$ , and for  $n_i = n$ ,

$$E(MSTr) = E\left(\frac{SST}{k-1}\right) = \sigma^2 + n\sigma_{\tau}^2.$$
 (2)

For unequal  $n_i$ 's, n in (2) is replaced by

$$n' = \frac{1}{k-1} \left[ \sum_{i=1}^{k} n_i - \frac{\sum_{i=1}^{k} n_i^2}{\sum_{i=1}^{k} n_i} \right].$$

# ANOVA Tables $(n_i = n)$

| Source    | d.f. | SS   | MS                        | E(MS)                         |
|-----------|------|------|---------------------------|-------------------------------|
| treatment | k-1  | SSTr | $MSTr = \frac{SSTr}{k-1}$ | $\sigma^2 + n\sigma_{\tau}^2$ |
| residual  | N-k  | SSE  | $MSE = \frac{SSE}{N-k}$   | $\sigma^2$                    |
| total     | N-1  |      |                           |                               |

#### Pulp Experiment

| Source    | d.f. | SS   | MS    | E(MS)                        |
|-----------|------|------|-------|------------------------------|
| treatment | 3    | 1.34 | 0.447 | $\sigma^2 + 5\sigma_{	au}^2$ |
| residual  | 16   | 1.70 | 0.106 | $\sigma^2$                   |
| total     | 19   | 3.04 |       |                              |

# Estimation of $\sigma^2$ and $\sigma_{\tau}^2$

► From equations (1) and (2), we obtain the following unbiased estimates of the variance components:

$$\hat{\sigma}^2 = MSE$$
 and  $\hat{\sigma}_{\tau}^2 = \frac{MSTr - MSE}{n}$ .

Note that  $\hat{\sigma}_{\tau}^2 \geq 0$  if and only if  $MSTr \geq MSE$ , which is equivalent to  $F \geq 1$ . Therefore a negative variance estimate  $\hat{\sigma}_{\tau}^2$  occurs only if the value of the F statistic is less than 1. Obviously the null hypothesis  $H_0$  is not rejected when  $F \leq 1$ . Since variance cannot be negative, a negative variance estimate is replaced by 0. This does not mean that  $\sigma_{\tau}^2$  is zero. It simply means that there is not enough information in the data to get a good estimate of  $\sigma_{\tau}^2$ .

# Estimation of $\sigma^2$ and $\sigma_{\tau}^2$

- For the pulp experiment, n = 5,  $\hat{\sigma}^2 = 0.106$ ,  $\hat{\sigma}_{\tau}^2 = (0.447 0.106)/5 = 0.068$ , i.e., sheet-to-sheet variance (within same operator) is 0.106, which is about 50% higher than operator-to-operator variance 0.068.
- Implications on process improvement: try to reduce the two sources of variation, also considering costs.

## Estimation of Overall Mean $\mu$

- ▶ In random effects model,  $\mu$ , the population mean, is often of interest. From  $E(y_{ij}) = \mu$ , we use the estimate  $\hat{\mu} = \bar{y}_{..}$ .
- $extstyle Var(\hat{\mu}) = Var(\bar{\tau} + \bar{\epsilon}_{..}) = \frac{\sigma_{\tau}^2}{k} + \frac{\sigma^2}{N}$ , where  $N = \sum_{i=1}^k n_i$ .
- ► For  $n_i = n$ ,  $Var(\hat{\mu}) = \frac{\sigma_{\tau}^2}{k} + \frac{\sigma^2}{nk} = \frac{1}{nk} \left(\sigma^2 + n\sigma_{\tau}^2\right)$ .
- Using (2),  $\frac{MSTr}{nk}$  is an unbiased estimate of  $Var(\hat{\mu})$ .



# Confidence Interval for $\mu$

▶ A  $100(1-\alpha)$ % Confidence interval for  $\mu$ :

$$\hat{\mu} \pm t_{k-1,rac{lpha}{2}}\sqrt{rac{ extit{MSTr}}{ extit{nk}}}$$

In the pulp experiment,  $\hat{\mu}=60.40$ , MSTr=0.447, and the 95% confidence interval for  $\mu$  is

$$60.40 \pm 3.182 \sqrt{\frac{0.447}{5 \times 4}} = [59.92, 60.88].$$

