MA 523: Homework 6

Carlos Salinas

October 24, 2016

Problem 6.1

For n=2 find Green's function for the quadrant $U:=\{x_1,x_2>0\}$ by repeated reflection.

Solution. Taking the hit, set $x' := (x_1, -x_2), x'' := (-x_1, x_2), x''' := (-x_1, -x_2),$ and define

$$\varphi^{x}(y) := \Phi(y - x') + \Phi(y - x'') - \Phi(y - x'''). \tag{6.1}$$

We claim that φ^x , as defined above, solves

$$\begin{cases} \Delta \varphi^x = 0 & \text{in } U, \\ \varphi^x(y) = \Phi(y - x) & \text{on } \partial U. \end{cases}$$

It is clear that $\Delta \varphi^x = 0$ since it is built up from the fundamental solutions on \mathbb{R}^n (this follows from the linearity of the Laplace operator). To see that $\varphi^x(y) = \Phi(x-y)$ on ∂U , we do a case by case analysis.

Note that on $\{x_1 = 0\} \subset \partial U$, we have

$$\varphi^{x}(y_1,0) = \Phi(-x_1, y_2 + x_2) + \Phi(-x_1, y_2 - x_2) - \Phi(x_1, y_2 + x_2),$$

where, since the fundamental solution is radial, we have $\Phi(-x_1, y_2 + x_2) = \Phi(x_1, y_2 + x_2)$, and hence the above equals

$$= \Phi(-x_1, y_2 - x_2)$$
$$= \Phi(y - x)$$

and on $\{x_2 = 0\} \subset \partial U$, we have

$$\varphi^x(0, y_2) = \Phi(y_1 - x_1, x_2) + \Phi(y_1 + x_1, -x_2) - \Phi(y_1 + x_1, x_2)$$

where, again because Φ is radial, $\Phi(y_1 + x_1, -x_2) = \Phi(y_1 + x_1, x_2)$, thus the above equals

$$= \Phi(y_1 - x_1, x_2)$$

= $\Phi(y - x)$.

Thus, $\phi^x(y) = \Phi(y - x)$ on ∂U .

Therefore, Green's function on U is

$$G(x,y) = \Phi(y-x) - \varphi^{x}(y) = \Phi(y-x) - \Phi(y-x') - \Phi(y-x'') + \Phi(y-x''').$$

Problem 6.2

(Precise form of Harnack's inequality) Use Poisson's formula for the ball to prove

$$\frac{r^{n-2}(r-|x|)}{(r+|x|)^{n-1}}u(0) \le u(x) \le \frac{r^{n-2}(r+|x|)}{(r-|x|)^{n-1}}u(0)$$

whenever u is positive and harmonic in $B(0,r) = \{ x \in \mathbb{R}^n : |x| < r \}.$

SOLUTION. Recall Poisson's formula for the ball

$$u(x) = \frac{r^2 - |x|^2}{n\alpha_n r} \int_{\partial B(0,r)} \frac{g(y)}{|x - y|^n} dS(y), \tag{6.2}$$

where $x \in B(0,r)$ and u solves the boundary-value problem

$$\begin{cases} \Delta u = 0 & \text{in } B(0, r), \\ u = g & \text{on } \partial B(0, r). \end{cases}$$

For fixed $x \in B(0, r)$, write

$$u(x) = r^{n-2}(r+|x|)(r-|x|) \left[\frac{1}{n\alpha_n r^{n-1}} \int_{\partial B(0,r)} \frac{g(y)}{|x-y|^n} dS(y) \right].$$

Now, since $r + |x| \ge |x - y| \ge r - |x|$ for all $y \in \partial B(0, r)$, we have

$$\frac{r^{n-2}(r-|x|)}{(r+|x|)^{n-1}} \int_{\partial B(0,r)} g(y) \, dS(y) \le u(x) \le \frac{r^{n-2}(r+|x|)}{(r-|x|)^{n-1}} \int_{\partial B(0,r)} g(y) \, dS(y). \tag{6.3}$$

Since u = g on the boundary $\partial B(0, r)$, by applying the mean-value proper on (6.3) we have

$$\frac{r^{n-2}(r-|x|)}{(r+|x|)^{n-1}}u(0) \le u(x) \le \frac{r^{n-2}(r+|x|)}{(r-|x|)^{n-1}}u(0),$$

as desired.

Problem 6.3

Let $P_k(x)$ and $P_m(x)$ be homogeneous harmonic polynomials in \mathbb{R}^n of degrees k and m respectively; i.e.,

$$\begin{cases} P_k(\lambda x) = \lambda^k P_k(x), & P_m(\lambda x) = \lambda^m P_m(x) & \text{for every } x \in \mathbb{R}^n, \ \lambda > 0, \\ \Delta P_k = 0, & \Delta P_m = 0 & \text{in } \mathbb{R}^n. \end{cases}$$

(a) Show that

$$\begin{cases} \frac{\partial P_k}{\partial \nu} = k P_k(x), & \frac{\partial P_m}{\partial \nu} = m P_m(x) & \text{on } \partial B(0, 1), \end{cases}$$

where $B(0,1) = \{ x \in \mathbb{R}^n : |x| < 1 \}$ and ν is the outward normal on $\partial B(0,1)$.

(b) Use (a) and Green's formula to prove that

$$\int_{\partial B(0,1)} P_k(x) P_m(x) d\sigma = 0, \quad \text{if } k \neq m.$$

SOLUTION. For part (a), let

$$P_k(x) = \sum_{|\alpha|=k} a_{\alpha} x^{\alpha}.$$

Then, since $\nu = (x_1, \dots, x_n)$, the derivative along ν is given by

$$\frac{\partial P_k(x)}{\partial \nu} = \sum_{i=1}^n (P_k)_{x_i} x_i$$

$$= \sum_{i=1}^n \left(\sum_{|\alpha|=k} a_{\alpha} x^{\alpha} \right)_{x_i} x_i$$

$$= \sum_{i=1}^n \left(\sum_{j=1}^m a_{\alpha} x_1^{\alpha_1^j} \cdots x_{\alpha_i^j}^{\alpha_i^j} \cdots x_n^{\alpha_n^j} \right)_{x_i} x_i$$

where $\sum_{i=1}^{n} \alpha_i^j = k$ and $1 \le j \le \binom{n+k-1}{n} =: m$ (by the stars and bars theorem)

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \left(\alpha_i^j a_{\alpha} x_1^{\alpha_1^j} \cdots x_{\alpha_i^{j-1}}^{\alpha_i^j} \cdots x_{\alpha_n^{j}}^{\alpha_n^j} \right) x_i$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i^j a_{\alpha} x_1^{\alpha_1^j} \cdots x_{\alpha_i^{j}}^{\alpha_i^j} \cdots x_{\alpha_n^{j}}^{\alpha_n^j}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i^j a_{\alpha} x_1^{\alpha_n^j}$$

switching the order of summation, we have

$$= \sum_{j=1}^{m} \sum_{i=1}^{n} \alpha_i^j a_{\alpha} x^{\alpha}$$

$$= \sum_{j=1}^{m} k a_{\alpha} x^{\alpha}$$

$$= k \sum_{j=1}^{m} a_{\alpha} x^{\alpha}$$

$$= k P_k(x).$$

This argument, of course, applies to every $k \in \mathbb{N}$. For part (b), by Green's theorem, we have

$$\begin{split} \int_{B(0,r)} P_k(x) \Delta P_m(x) - (\Delta P_k(x)) P_m(x) \, dx &= \int_{\partial B(0,r)} P_k(x) \frac{\partial}{\partial \nu} P_m(x) - \frac{\partial}{\partial \nu} P_k(x) P_m(x) \, dS(x) \\ &= \int_{\partial B(0,r)} (m-k) P_k(x) P_m(x) \, dS(x), \end{split}$$

where the left-hand side is equal to 0 since both ΔP_k and ΔP_m are 0. Since $m \neq k$, it must be the case that

$$\int_{\partial B(0,r)} P_k(x) P_m(x) dS(x) = 0.$$

MA 523: Homework 6