Podstawowe funkcje logiczne.

Podstawowymi funkcjami logicznymi są:

- AND koniunkcja, iloczyn logiczny, I,
- OR alternatywa, suma logiczna, LUB,
- **NOT** negacja, zaprzeczenie, NIE.

Na rys. 1 zdefiniowano dwuargumentową funkcję logiczną **AND**, podając jej tablicę wartości (tablicę funkcji) oraz wykres czasowy. Przyjmuje ona stan logiczny 1, jeżeli wszystkie jej wejścia są również w stanie 1.

Funkcja logiczna **OR** (alternatywa) przyjmuje wartość logiczną 1, jeżeli co najmniej jedno z jej wejść będzie miało również wartość 1 (rys. 2).

Rys.2 Funkcja OR (LUB, alternatywa, suma logiczna)

Wyróżnia się jeszcze funkcję alternatywy zwaną wykluczającą (wyłączającą) **XOR** (ang. *eXclusive* **OR**), która przyjmuje wartość logiczną 1, jeżeli tylko i wyłącznie jedno z jej wejść będzie miało również wartość 1 (rys. 3).

Rys. 3. Funkcja XOR (ALBO, alternatywa wykluczająca)

Przy programowaniu funkcji logicznych, których argumentami są sygnały binarne pochodzące z sensorów, należy uwzględnić następujące informacje:

- sensory wyposażone są na ogół w dwa wyjścia, jedno stanowiące negację drugiego. Oznacza to, że wystąpienie stanu, który ma być sygnalizowany przez sensor, objawia się pojawieniem sygnału 1 na jednym z wyjść (wyjście powtarzające), natomiast sygnału 0 na drugim (wyjście zanegowane),
- jeżeli sygnał z sensora skojarzony zostanie zestykiem normalnie otwartym (**NO**, ang. *Normally-Open*), to gdy sensor wygeneruje sygnał 1, zestyk ten zostanie zamknięty, natomiast jeżeli wygeneruje sygnał 0, zestyk pozostanie otwarty. W analogicznych sytuacjach zestyk normalnie zamknięty (**NC**, *Normally-Closed*) zachowa się dokładnie przeciwnie. Zatem zestyk NC stanowi negację zestyku NO (funkcja NOT, rys. 4).

Rys. 4. Funkcja NOT (NIE, negacja, zaprzeczenie).

Wymienione powyżej funkcje AND, OR i NOT stanowią **system funkcjonalnie pełny**, gdyż z ich pomocą można zbudować każdy układ logiczny (kombinacyjny lub sekwencyjny – z pamięcią). Jest to system nieminimalny, bowiem podobny cel można osiągnąć, stosując wyłącznie funkcje **NAND** (ang. *Not AND*), na bazie których można zrealizować wszystkie funkcje podstawowe (AND, OR, NOT). Tak, więc funkcja NAND stanowi **system funkcjonalnie pełny minimalny**. Podobnie jest w przypadku funkcji **NOR** (ang. *Not OR*).

Przykład wykorzystania funkcji AND w programie sterującym:

Siłownik dwustronnego działania powinien wysunąć jeden przedmiot z komory magazynu opadowego po naciśnięciu przycisku łącznika S1. Jeżeli liczba przedmiotów w magazynie osiągnie stan rezerwy, magazyn jest traktowany jako pusty (rys. 2) i proces wysuwania kolejnych przedmiotów powinien zostać zatrzymany. Poziom rezerwy sygnalizuje wyłącznik krańcowy S2.

Rozwiązanie zadania zostało przedstawione na rys. 2 w postaci programów napisanych w języku listy instrukcji (IL), języku drabinkowym (LD) oraz w języku bloków funkcyjnych (FBD).

Przykład wykorzystania funkcji NOT w programie sterującym:

W algorytmie sterowania magazynem opadowym, rozważanym na poprzedniej stronie, należy zapewnić prawidłową współpracę z transporterem taśmowym, tak aby uniemożliwić wysuwanie kolejnego przedmiotu, gdy poprzedni znajduje się jeszcze na taśmie. Obecność przedmiotu na taśmie wykrywa sensor stykowy (NO) B3 (rys. 4).

Przykład wykorzystania funkcji OR w programie sterującym:

Wysuwanie tłoczyska siłownika dwustronnego działania następuje w trakcie wciskania dowolnego z przycisków: ręcznego lub nożnego. Po zwolnieniu przycisku tłoczysko siłownika powinno się wycofać do pozycji startowej.

Rozwiązanie zadania zostało przedstawione na rys. 3.

Symbol		Adres	Typ danych	Komentarz	
Przycisk	nożny (S1)		I 0.0 BOOL		
Przycisk	ręczny (S2)		I 0.1 BOOL		
Wysuwa	nie tłoczyska	(Y1)	Q 0.0	BOOL	
IL: A A =	I 0.0 I 0.1 Q 0.0		FBD: I 0.0- I 0.1-	≥1	Q 0.0
LD:	I 0.0 		Q 0.0 —()	4	

Rys. 3. Przykład wykorzystania funkcji OR w językach FBD, IL, LD

Przykład kombinacyjnego układu sterowania chwytakiem robota:

Chwytak robota jest wyposażony w szesnaście sensorów dotykowych ułożonych w matrycy 4x4 **(rys. 2)**. Uchwycenie detalu sygnalizowane jest przez jeden z szesnastu sensorów – w idealnym przypadku powinien to być jeden z czterech środkowych sensorów **(rys. 3)**. Uchwycenie nieprawidłowe, sygnalizowane przez sensory skrajne, powinno być powtórzone. Robot powinien zainicjować zmianę położenia chwytaka za pomocą sygnału W=1, przesuwając go o jedno pole sensora, odpowiednio: na lewo (L=1), na prawo (R=1), w górę (O=1) lub w dół (U=1).

Sensory zostały tak zakodowane, że dotknięcie dwóch górnych poziomych rzędów wywołuje sygnał a=1, dwóch rzędów pionowych z lewej strony – sygnał b=1, dwóch rzędów pionowych środkowych – sygnał c=1 oraz dwóch rzędów poziomych środkowych – sygnał d=1 (rys. 3).

Zadania:

- a) zbudować tablicę zawierającą wszystkie możliwe kombinacje wartości sygnałów a, b, c, d i następnie przyporządkować im poszczególne sensory. Przykładowo, sensor 7 należy do obszarów a, c i d (a=c=d=1), natomiast nie należy do obszaru b (b=0),
- b) uzupełnić tablicę z p. a) wartościami sygnałów W, R, L, O, U, korygującymi położenie chwytaka. Przykładowo, w przypadku trafienia na sensor 1 chwytak należy uruchomić (W=1) oraz przesunąć w lewo (L=1) i do góry (O=1), ponadto należy zablokować ruch w prawo (R=0) i w dół (U=0),

Rys. 2. Chwytak robota z sensorami dotykowymi w matrycy 4x4

Rys. 3. Ułożenie pól sensorów dotykowych

- c) podać normalną postać koniunkcyjną funkcji określającej wartość sygnału W i następnie uprościć ją za pomocą tablicy Karnaugha¹,
- d) podać normalne postacie alternatywne funkcji określających wartość sygnałów R, L, O i U i następnie uprościć je za pomocą tablicy Karnaugha. Przykładowo, przesuwanie w lewo (L=1) powinno nastąpić, jeżeli zainicjowany sensor należy do obszaru b (powtórzenie b) i jednocześnie nie należy do obszaru a (negacja a),
- e) napisać program w języku listy instrukcji (IL) dla sterownika PLC sterującego procesem chwytania za pomocą sygnałów W, R, L, O i U.

Rozwiązanie:

- Ad a) i b) Tab. 1
- Ad c) Tab. 2 i Tab. 3
- Ad d) Tab. 2 i Tab. 4
- Ad e) Tab. 2

Tab. 3. Tablica Karnaugha dla sygnatu W

CC	1			
ab	00	01	11	10
00	1	1	0	1
01	1	1	0	1
11	1	1	0	1
10	1	1	0	1

$$W = (a+b+\bar{c}+\bar{d})(a+\bar{b}+\bar{c}+\bar{d})(\bar{a}+\bar{b}+\bar{c}+\bar{d})(\bar{a}+b+\bar{c}+\bar{d}) = \bar{c}+\bar{d}$$

$$W = \bar{c} \vee \bar{d}$$

 $W = \overline{\overline{c} + \overline{d}} = \overline{c} \overline{d}$; z użyciem funkcji NAND

Tab. 4. Tablica Karnaugha dla sygnału R

CC	1			
ab	00	01	11	10
00	1	1	0	0
01	0	0	0	0
11	0	0	0	0
10	1	1	0	0

$$R = \overline{abcd} + \overline{abcd} + \overline{abcd} + \overline{abcd} = \overline{b} \ \overline{c}$$

$$R = \bar{b} \wedge \bar{c}$$

$$R = \overline{\overline{b} \ \overline{c}} = \overline{b + c}$$
; z użyciem funkcji NOR

Tab. 1. Rozwiązanie zadania a) i b)									
а	ь	С	d	sensor nr.	W	R	L	0	U
0	0	0	0	16	1	1	0	0 *	1
0	0	0	1	12	1	1	0	0	0
0	0	1	0	15	1	0	0	0	1
0	0	1	1	11	0	0	0	0	0
0	1	0	0	13	1	0	1	0	1
0	1	0	1	9	1	0	1	0	0
0	1	1	0	14	1	0	0	0	1
0	1	1	1	10	0	0	0	0	0
1	0	0	0	4	1	1	0	1	0
1	0	0	1	8	1	1	0	0	0
1	0	1	0	3	1	0	0	1	0
1	0	1	1	7	0	0	0	0	0
1	1	0	0	1	-1	0	1	1	0
1	1	0	1	5	1	0	1	0	0
1	1	1	0	2	1	0	0	1	0
1	1	1	1	6	0	0	0	0	0

Tab. 2.	Rozwia	zanie	zadania	c), d) i e)

tablica funkcji	IL
$W = \overline{c} \vee \overline{d}$	ON C
	ON d
	= W
$\overline{W} = c \wedge d$	A c
	A d
	$=$ \overline{W}
$R = \overline{b} \wedge \overline{c}$	AN b
	AN c
	= R
$L = b \wedge \overline{c}$	A b
	AN c
	= L
$O = a \wedge \overline{d}$	A a
	AN d
	= 0
$U = a \wedge d$	AN a
	AN d
	= U
	xxx