The following table shows the values-

d	x	у
1	1	1
$1 + inc_2 = -5$	2	2
$-5 + inc_2 = 3$	3	2
$3 + inc_2 = -3$	4	3
$-3 + inc_2 = 5$	5	3
$5 + inc_2 = -1$	6	4
$-1 + inc_1 = 7$	7	4
$7 + inc_2 = 1$	8	5

Example 6. Consider a line from (0, 0) to (6, 7). Use Bresenham's algorithm to rasterize the line.

Solution. Given: $(x_1, y_1) = (0, 0)$ $(x_2, y_2) = (6, 7)$ $\therefore \Delta x = |x_2 - x_1| = 6$ $\Delta y = |y_2 - y_1| = 7$ $\therefore \Delta y > \Delta x$, hence exchange $\Delta x \& \Delta y$ Now $\Delta x = 7$ [After exchange] $\Delta y = 6$ Plot (0, 0) $e = 2 \Delta y - \Delta x$ = 2(6) - 7= 12 - 7e = 5if e > 0 then $x = x + S_1$ [S₁ = 1, S₂ = 1] = 0 + 1 = 1and $e = e - 2 * \Delta x$ = 5 - 2 * 7 = 5 - 14

= -9

 $\therefore e < 0$, so exit while-loop.

```
Here exchange is made i.e, \Delta x and \Delta y are exchanged. So,
                                = 0 + 1 = 1
                           \therefore y = 1
                              e = e + 2\Delta y = -9 + 2 (6) = -9 + 12 = 3
   and
                           \therefore e = 3
Now plot (x, y) i.e., (1, 1)
                           e = 3 \ge 0
                           x = x + S_1 = 1 + 1 = 2
                             e = e - 2 \Delta x = 3 - 2 (7) = 3 - 14 = -11
                             y = y + S_2 = 1 + 1 = 2
                             e = e + 2 * \Delta y
                             = -11 + 2 (6)
                                = -11 + 12 = 1
                           \therefore e = 1
Plot (x, y) i.e., (2, 2)
                       Now e = 1 \ge 0
                         x = 2 + 1 = 3
                              e = e - 2 (\Delta x)
                                = 1 - 2 (7)
                                = 1 - 14
                                = -13
                             y = 2 + 1 = 3
                             e = e + 2 (\Delta y)
                                = -13 + 2(6)
                                = -13 + 12
                                = -1
                          \therefore e = -1
Plot (x, y) i.e, (3, 3)
  Now
                             e = -1 < 0
                          \therefore y = y + S_2
                               = 3 + 1 = 4
                                                         8
                             e = e + 2 (\Delta y)
                                                         7
                               = -1 + 2 (6)
                                                         6
Plot(x, y) i.e., (3, 4)
                               = 11
                                                         5
  N_{\text{ow}}
                             e = 11 \ i.e., \ e \ge 0
                                                         4
                             x = 3 + 1 = 4
                                                        3
                             e = e - 2 * \Delta x
                                                        2
                               = 11-2 * 7 = -3
                                                         1
                             y = 4 + 1 = 5
                             e = e + 2 * \Delta y
                                                        0
                                                                                   5
                                                                          3
                               = -3 + 2*6 = 9
```

Now

$$e = 9 i.e. e \ge 0$$

 $x = 4 + 1 = 5$
 $e = e - 2 \cdot \Delta x = 9 - 2 \cdot 7 = -5$
 $y = 5 + 1 = 6$
 $e = e + 2 \cdot \Delta y = -5 + 2 \cdot 6 = 7$

Plot (x, y) i.e., (5, 6)

$$e = 7 i.e., e \ge 0$$

 $x = 5 + 1 = 6$
 $e = e - 2 \cdot \Delta x = 7 - 2 \cdot 7 = -7$
 $y = 6 + 1 = 7$
 $e = e + 2 \cdot \Delta y = -7 + 2 \cdot 6 = 5$

Plot (6, 7)

Thus the pixels to be plotted are (0, 0) (1, 1) (2, 2) (3, 3) (3, 4) (4, 5) (5, 6) (6, 7).

Example 7. Consider a line from (5,5) to (13,9). Use Bresenham's aigorithm to materia

Solution. Given:
$$(x_1, y_1) = (5, 5)$$

 $(x_2, y_2) = (13, 9)$

$$\Delta x = 13-5 = 8$$

 $\Delta y = 9-5 = 4$

$$|m| = \frac{4}{8} = \frac{1}{2} = 0.5 < 1$$

$$p_0 = 2\Delta y - \Delta x = 2*4 - 8 = 0$$

The next point is (6, 6) and

$$\begin{aligned} p_1 &= p_0 + 2\Delta y - 2\Delta x \\ &= 0 + 2 * 4 - 2 * 8 \\ &= 8 - 16 = -8 \end{aligned}$$

: $p_1 < 0$ so the next point to plot is (7, 6)

$$p_2 = p_1 + 2\Delta y = -8 + 2 \times 4 = 0$$

So, the next point to plot is (8, 7) and

$$p_3 = p_2 + 2\Delta y - 2\Delta x$$

= 0 + 2 \times 4 - 2 \times 8
= 8 - 16 = -8

: $p_3 < 0$ so the next point to plot is (9, 7) and

$$p_4 = p_3 + 2\Delta y = -8 + 2 \times 4 = 0$$

and the next point to plot is (10, 8) and

$$P_5 = P_4 + 2\Delta y - 2\Delta x$$

= 0 + 2 × 4 - 2 × 8 = -8

 $p_5 < 0$, so the next point to plot is (11, 8) and

$$P_6 = P_5 + 2\Delta y$$

= -8 + 2 × 4 = 0

and the next point to plot is (12, 9) and The results are plotted as shown in figure below $p_1 < 0$ so, the next point to plot is (13, 9) $p_7 = p_6 + 2\Delta y - 2\Delta x$ = 8 - 16 = -8 $= 0 + 2 \times 4 - 2 \times 8$

IJ

တ

Φ

9

Example 2. Plot a circle at origin having centre as (0,0) and radius = 8.

[GGSIPU, BCA-5th sem., Dec 2001]

x=0

v = r = 8

$$d = 3 - 2 * r$$

$$= 3 - 2 * 8 = -13$$

If we plot the points in 2nd octant, we will get-

٠.

	Point	x	у	d_i+1
+	1	0	8	
	2	1	8	-13+4x+6=-13+4 (0)+6=7
	3	2	8	-7 + 4x + 6 = -7 + 4(1) + 6 = 3
	1	3	7	3 + 4(x - y) + 10 = -11
	5	4	7	-11+4x+6=7
	6	5	6	-1 + 4(x - y) + 10 = 5
	7	6	5	
	1	1	1	

Working:

Step 3.

Step 1. Let
$$(h, k) = (0, 0) = \text{center of circle}$$

Set
$$x = 0$$
 & $y = r = 8$

We check if x > y i.e, 0 > 8, which is false. So, do not stop and goto step 2. Step 2. We will now point 8 points

= -13

i.e,
$$(x + h, y + k) = (0, 8)$$

 $(y + h, x + k) = (8, 0)$
 $(-y + h, x + k) = (-8, 0)$
 $(-x + y, y + k) = (0, 8)$
 $(-x + y, -y + k) = (0, -8)$
 $(-y + h, -x + k) = (-8, 0)$
 $(y + h, -x + k) = (8, 0)$
 $(x + h, -y + k) = (0, -8)$
 $d = 3 - 2r$
 $= 3 - 2*8$
 $= 3 - 16$

$$d = -13 < 0$$

$$d_{i+1} = d + 4n + 6$$

$$= -13 + 4 (0) + 6$$

$$= -7$$

$$x = x + 1$$

$$= 0 + 1 = 1$$
Again check if $x > y$ or $1 > 8$, which is false. So, we again plot 8-points while taking $x = 1$

$$\Rightarrow x = 1, h = 0, k = 0, y = 8$$

$$\therefore \text{ Points to be plotted are as follows} - (1, 8)$$

$$(-8, 1)$$

$$(-1, 8)$$

$$(-1, -8)$$

$$(-8, -1)$$

$$(8, -1)$$

$$(1, -8)$$

$$(-8, -1)$$

$$(1, -8)$$

$$(-8, -1)$$

$$(1, -8)$$

$$(-8, -1)$$

$$(3, -1)$$

$$(1, -8)$$

$$(-8, -1)$$

$$(3, -1)$$

$$(1, -8)$$

$$(-8, -1)$$

$$(3, -1)$$

$$(1, -8)$$

$$(-8, -1)$$

$$(3, -1)$$

$$(3, -1)$$

$$(3, -1)$$

$$(4, -1)$$

$$(3, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4, -1)$$

$$(4,$$

:.

and

(1, 8)

(8,1)

(-8, 1)(-1, 8)(-1, -8)(-8, -1)

(8, -1)

(1, -8)

(-8,2)(-2,8)

(-2, -8)(-8,-2)

(8,-2)

(2,-8)

 N_{0W} , $d \ge 0$ i.e. $3 \ge 0$

 $N_{0W, x} > y$, No.

and

⇒ Again plotting 8 points,
$$x = 3$$
, $y = 7$, $h = 0$, $k = 0$

(3,7)

(7,3)

(-7,3)

(-3,-7)

(-1,-3)

(3,-7)

$$d = -11 < 0$$

$$d_{i+1} = d + 4x + 6$$

$$= -11 + 12 + 6 = 7$$

$$x = x + 1 = 3 + 1 = 4$$

Check: If $x > y$ →which is false

So, again computing 8 points. With $x = 4$, $y = 7$, $h = 0$, $k = 0$

⇒ (4,7)

(7,3)

(-7,4)

(-4,-7)

(-7,-4)

(4,-7)

Now, $d \ge 0$ i.e, $7 > 0$

∴ $d_{i+1} = d + 4$ ($x - y$) + 10
$$= 7 + 4$$
 (4-8) + 10
$$= 7 + 4$$
 (4-4) + 10
$$= 7 - 16 + 10 = 1$$
and $x = x + 1$

$$= 4 + 1$$

$$= 5$$

$$y = y - 1$$

$$= 7 - 1$$

$$= 6$$

Check now if $x > y$ i.e, $5 > 6$, which is false
∴ again plot 8 points with $x = 5$, $y = 6$,

(5,6)

(6,5)

(-6,5)

(-6,5)

(-5,6)

Now $d \ge 0$ i.e, d = 1

and

$$x = x + 1 = 5 + 1 = 6$$

 $y = y - 1 = 6 - 1 = 5$

Now, check if x > y i.e, 6 > 5, which is true.

So, we stop now and the points to plot are -

(5, 6)

(-5, 6)

(6, -5)

(6, 5)

(-5, -6)

(5, -6)

(-6, 5)

(-6, -5)

Circle at (0, 0) with r = 8

Example 1. Plot a circle using mid point algorithm whose radius=3 and center (0,0).

Solution. Given:

$$r = 3$$
$$x = 0$$
$$y = 0$$

Plot first point as (0,r) i.e, y = r i.e, Plot (0,3).

Now, find out other points from (0,3) using symmetry property i.e,

Plot
$$(0,-3)$$

Plot
$$(-3, 0)$$

Find

$$d = 1 - r$$
$$= 1 - 3$$

Till x < y, we perform the following –

if
$$d < 0$$

$$x = x + 1 = 0 + 1 = 1$$

$$d = d + 2x + 1$$

$$= -2 + 2(1) + 1$$

$$= -2 + 2 + 1 = 1$$

Continuing in this way, we get these Coordinates to plot-

X	у
0	3
1	3
2	2
3	1

Please note that by plotting above table we get an arc only. So, to get a complete circle we use symmetry property as explained earlier to get all other points.

Example 2. Plot a circle using mid point circle method whose radius = 8 and center is at (0,0)

Solution.

$$x = 0$$
 (given)

$$y = r = 8$$
 (given)

$$d = 1 - r = 1 - 8 = -7$$

Now, the next decision parameter and the corresponding points are shown in tabular form-

Point	x	у	d_{i+1}
1	0	8	
2	1	8	-7 + 2x + 3 = -4
3	2	8	-4+2x+3=1
4	3	7	1 + 2(x-y) + 5 = -6
5	4	7	-6 + 2x + 3 = 3
6	5	6	3 + 2(x-y) + 5 = 2
7	6	5	

Please plot these points yourself.

Example 3. Plot a circle using mid point circle algorithm where radius = 10 units.

Solution. Given:

$$r = 10$$

Initial point (x, y) = (0, 10):

$$d = p = 1 - r = 1 - 10 = -9$$

$$p = -9 < 0$$

Firstly, we plot (0, 10)

$$p < 0$$
 so $x = 0 + 1 = 1$
 $y = 10$

and

or

$$p = -9 + 2 * 1 + 1$$

= $-9 + 3 = -6$

Now
$$p = -6 < 0$$
, so $x = 1 + 1 = 2$ $y = 10$ and $p = -6 + 2*2+1$ $p = -6+5$ $p = -6+5$ $p = -6+5$ $p = -6+5$ $p = -1 < 0$, so $p = -1 < 0$,

Example 1. The input ellipse parameters are $r_x = 8$ and $r_y = 6$. Using midpoint ellipse method, rasterize this ellipse.

Solution. Given:
$$r_x = 8$$

 $r_y = 6$

We will start with region - I

The initial point for the ellipse

centered on the origin is $(x_0, y_0) = (0, r_v)$

i.e,
$$(x_0, y_0) = (0, 6)$$

or $x_0 = 0$
 $y_0 = 6$

Calculating the initial decision parameter,

$$p1_0 = r_y^2 - r_x^2 + \frac{1}{4} r_x^2$$

$$= (6)^2 - (8)^2 \cdot 6 + \frac{1}{4} (8)^2$$

$$= 36 - 64.6 + \frac{1}{4} \cdot 64$$

$$= 36 - 384 + 16$$

$$= 52 - 384$$

$$= -332$$

Now check for $p1_k$ i.e., $p1_k < 0$ Next point to plot is (x_k+1, y_k) i.e. (1, 6)and

$$p1_{k+1} = p1_k + 2r_y^2 \cdot x_{k+1} + r_y^2$$
$$= -332 + 2(36) \cdot 1 + 36$$
$$= -224$$

Now again we check, -224< 0
∴ Next point to plot is (2, 6)

$$p1_{k+1} = -224 + 2 (36). 2 + 36$$

= $-224 + 144 + 36$
= -44

Now, -44 < 0

.. Next point is (3, 6)

and

$$p1_{k+1} = -44 + 2(36).3 + 36$$
$$= 208$$

Now,
$$208 > 0$$

$$\therefore \text{ Next point to plot is } (x_{k+1}, y_{k-1}) = (4.5) \text{ any } x - 2 \text{ sext } y_k + 150$$

$$= 208 + 2(36) \cdot 4 - 2(64) \cdot 5 + 64$$

$$= 208 + 288 - 640 + 36$$

$$= -108$$

Again,

$$-108 < 0$$

 \Rightarrow Next point is (5, 5)

$$p1_{k+1} = -108 + 2 (36). 5 + 36$$

= -108 + 360 + 36 = 288

Again

 \Rightarrow Next point to plot is (6, 4)

$$\Rightarrow$$
 Next point to plot is (0, 4) and $p1_{k+}$

$$p1_{k+1} = 288 + 432 + 36 - 512$$
$$= 244 > 0$$

 \Rightarrow Next point to plot is (7, 3)

$$p1_{k+1} = 244 + 504 - 384 + 36$$
$$= 400$$

But here see that

value of
$$2 r_y^2 x_{k+1} = 504$$

and

$$2 r_x^2 y_{k+1} = 384$$

$$2 r_y^2 x_{k+1} > 2 r_x^2 y_{k+1}$$

Hence we move out of region 1,

Now calculating for region 2,

For region 2,

$$(x_0, y_0) = (7, 3)$$

$$\Rightarrow x_0 = 7, y_0 = 3$$

For region 2,

$$P2_0 = r_y^2 \left(x_0 + \frac{1}{2} \right)^2 + r_x^2 (y_0 - 1)^2 - r_x^2 r_y^2$$

$$= 36 \left(7 + \frac{1}{2} \right)^2 + 64 (3 - 1)^2 - 64.36$$

$$= 36 \left(\frac{15}{2} \right)^2 + 64 (4) - 64.36$$

$$= 36. \frac{225}{4} + 64.4 - 64.36$$

$$= 9.225 + 64.4 - 64.36$$

$$= 2025 + 256 - 2304$$

$$= -23$$

Now check

-23 < 0

 \Rightarrow Next point to plot is (x_k+1, y_k-1)

i.e (8

and

$$P_{2k+1} = p_{2k} + 2 r_y^2 x_{k+1} - 2 r_x^2 y_{k+1} + r_x^2$$

$$= -23 + 2(36) \cdot 8 - 2(64) \cdot 2 + 64$$

$$= -23 + 16(36) - 4(64) + 64$$

$$= -23 + 576 - 256 + 64$$

$$= -279 + 640$$

$$= 361$$

Now, 361 > 0

 \therefore Next point is $(x_k, y_k - 1)$ i.e., (8, 1)

and
$$P_{2k+1} = P_{2k} - 2 r_y^2 x_{k+1} + r_x^2$$

= $361 - 2 (36).8 + 64$
= $361 - 16 (36) + 64$
= $361 - 576 + 64$
= -151

So, we get the following points to plot -

- (0, 6)
- (1, 6)
- (3, 6)
- (5, 5)
- (6, 4)
- (7, 3)
- (8, 1)

The entire ellipse can be obtained by replicating this arc.

Step 4. Repeat step-3 until Alexandra a circle having radius = 5 and center as ().

Q.2. Calculate the points to draw a circle having radius = 5 and center as ().

Ans. We follow the following stepsr = 5

$$X = 0$$

 $Y = r = 5$
 $p = 3 - 2 * r$
 $= 3 - 2 * 5 = -7$

Step 2.
$$p < 0$$
 i.e., $-7 < 0$

$$X = x + 1$$
$$= 0 + 1$$
$$= 1$$

and

$$Y = Y$$

= 5
Point is $(X, Y) = (1, 5)$
 $p = p + 4 * x + 6$
= -7 + 4 * 1 + 6 = 3

Step 3. p > 0 i.e., 3 > 0

$$X = X + 1$$

= 1 + 1 = 2
 $Y = Y - 1$
= 5 -1 = 4

Point is
$$(X, Y) = (2, 4)$$

$$p = p + 4 * (X - Y) + 10$$

= 3 + 4 * (2 - 4) + 10 = 5

Step 4.
$$p > 0$$
 i.e., $5 > 0$

$$X = X + 1$$

= 2 + 1 = 3
 $Y = Y - 1$
= 4 - 1 = 3
Point is $(X, Y) = (3, 3)$

As
$$X = Y Stop$$

Now using 8-point symmetry we get all the points on the circle as below:

**	or an tile points on the circle as below.			
X, Y	0,5			
X, - Y	0,-5	1,5	2,4	3,3
-X,-Y		1,-5	2,-4	3, -3
-X, Y	0, -5	-1,-5	-2,-4	-3, -3
Y, X	0,5	-1,5	-2,4	-3,3
	5,0	5,1		3,3
Y, - X	5,0		4,2	3,-3
-Y, -X	-5,0	5, -1	4, –2	
- Y, X	-5,0	-5, -1	-4, -2	-3, -3
	3,0	-5,1	-4.2	-3,3

Q.7. Execute Bresenham's straight line algorithm to produce a line from (0,0) to (17, 2) Use hand sketch]. Ans. Bresenham's Straight line algo to produce a line from (0,0) to (17, 12) Y X D 0 0 7 1 $7 + \operatorname{inc} 2 = -3$ 1 1 -3 + inc 1 = 212 2 21 + inc 2 = 113 3 11 + inc 2 = 14 1+inc 2=-95 4 -9 + inc1 = 156 4 5 15 + inc 2 = 57 5 + inc 2 = -56 8 6 9 -5 + inc 1 = 197 19 + inc 2 = 910 8 9 + inc 2 = -111 8 -1 + inc1 = 2312

[UPTU, B.Tech (CSE/IT)-6th sem:, 2005-06]

s a crecified ellipse into solid colour.

x1 = 0 x2 = 17 y1 = 0 y2 = 12 $dx = 17 \ dy = 12$ decision factor d = 2 * dy - dx = 7inc 1 = 2 * dy = 24inc 2 = 2 * dy - 2 * dx = -10

13

14

15

16

17

23 + inc 2 = 13

13 + inc 2 = 3

3 + inc 2 = -7

-7 + inc1 = 17

17 + inc 2 = 7

9

10

11

11

12