π^3 : Permutation-Equivariant Visual Geometry Learning

Yifan Wang^{1*} Jianjun Zhou^{123*} Haoyi Zhu¹ Wenzheng Chang¹ Yang Zhou¹ Zizun Li¹ Junyi Chen¹ Jiangmiao Pang¹ Chunhua Shen² Tong He^{13†}

¹Shanghai AI Lab ²ZJU ³SII

*Equal Contribution [†]Corresponding Author

- Problem / objective
 - Task: Visual Geometry Reconstruction
 - Problem: Previous research's over-reliance on fixed reference view, where its inductive bias leads to instability and failures if the reference is suboptimal.
- Contribution / Key idea
 - \circ π 3: Fully permutation-equivariant architecture that eliminates reference-view based bias
 - i. Predict affine-invariant camera poses
 - ii. Predict scale-invariant pointmaps

Overview

Figure 3. Unlike prior methods that designate a *reference view* by concatenating a special token (Type A) or adding a learnable embedding (Type B), π^3 achieves permutation equivariance by eliminating this requirement altogether. Instead, it employs relative supervision, making our approach inherently robust to the order of input views.

• Permutation-Equivariant Architecture

- 1. Model Input $S = (\mathbf{I}_1, \dots, \mathbf{I}_N)$
- 2. Model Output $\phi(S) = ((\mathbf{T}_1, \dots, \mathbf{T}_N), (\mathbf{X}_1, \dots, \mathbf{X}_N), (\mathbf{C}_1, \dots, \mathbf{C}_N))$
- 3. Permutation-Equivariance

$$\phi(P_{\pi}(S)) = P_{\pi}(\phi(S)) \tag{2}$$

$$P_{\pi}(\phi(S)) = ((\mathbf{T}_{\pi(1)}, \dots, \mathbf{T}_{\pi(N)}),$$

$$(\mathbf{X}_{\pi(1)}, \dots, \mathbf{X}_{\pi(N)}),$$

$$(\mathbf{C}_{\pi(1)}, \dots, \mathbf{C}_{\pi(N)}))$$
(3)

• Scale-Invariant Local Geometry

- 1. Point cloud reconstruction loss
 - a. Problem: Inherent scale ambiguity challenge in monocular reconstruction
 - b. Solution: Find a single optimal scale factor minimizing depth-weighted L1 distance loss

$$s^* = \arg\min_{s} \sum_{i=1}^{N} \sum_{j=1}^{H \times W} \frac{1}{z_{i,j}} \|s\hat{\mathbf{x}}_{i,j} - \mathbf{x}_{i,j}\|_1$$
 (4)

$$\mathcal{L}_{\text{points}} = \frac{1}{3NHW} \sum_{i=1}^{N} \sum_{j=1}^{H \times W} \frac{1}{z_{i,j}} \|s^* \hat{\mathbf{x}}_{i,j} - \mathbf{x}_{i,j}\|_1 \quad (5)$$

- 2. Normal loss
 - a. Objective: Reconstruction of locally smooth surface

$$\mathcal{L}_{\text{normal}} = \sum_{i=1}^{N} \sum_{j=1}^{H \times W} \arccos(\hat{\mathbf{n}}_{i,j} \cdot \mathbf{n}_{i,j})$$
 (6)

• Affine-Invariant Camera Pose

1. Camera loss = Rotation Loss + Translation loss

$$\mathcal{L}_{cam} = \frac{1}{N(N-1)} \sum_{i \neq j} (\mathcal{L}_{rot}(i,j) + \lambda_{trans} \mathcal{L}_{trans}(i,j))$$
(8)

$$\mathcal{L}_{\text{rot}}(i,j) = \arccos\left(\frac{\text{Tr}\left((\mathbf{R}_{i \leftarrow j})^{\top} \hat{\mathbf{R}}_{i \leftarrow j}\right) - 1}{2}\right)$$
(9)

$$\mathcal{L}_{\text{trans}}(i,j) = \mathcal{H}_{\delta}(s^* \hat{\mathbf{t}}_{i \leftarrow j} - \mathbf{t}_{i \leftarrow j})$$
 (10)

• Model Training

1. Final loss = Point reconstruction loss + Confidence loss + Camera pose loss

$$\mathcal{L} = \mathcal{L}_{points} + \lambda_{normal} \mathcal{L}_{normal} + \lambda_{conf} \mathcal{L}_{conf} + \lambda_{cam} \mathcal{L}_{cam}$$
 (11)

Experiments

Figure 5. Qualitative comparison of multi-view 3D reconstruction. Compared to other multi-frame feed-forward reconstruction methods, π^3 produces cleaner, more accurate and more complete reconstructions with fewer artifacts.