Optimum Design

Lecture 9
Implementation of Lagrange
Multiplier

Lagrange Multiplier Theorem

Consider the problem:

minimizing
$$f(\mathbf{x})$$
 subject to $h_i(\mathbf{x}) = 0$, $i = 1$ to p .

Let \mathbf{x}^* be a regular point that is a local minimum for the problem. There exist Lagrange multipliers \mathbf{v}_j^* , $\mathbf{j} = 1$ to \mathbf{p} such that

$$\frac{\partial f\left(\mathbf{x}^{*}\right)}{\partial X_{i}} + \sum_{j=1}^{p} V_{j}^{*} \frac{\partial h_{j}\left(\mathbf{x}^{*}\right)}{\partial X_{i}} = 0; \quad i = 1 \quad \text{to} \quad n$$

Lagrange function
$$L(\mathbf{x}, \mathbf{v}) = f(\mathbf{x}) + \sum_{j=1}^{p} v_j h_j(\mathbf{x}) = f(\mathbf{x}) + \mathbf{v}^T \mathbf{h}(\mathbf{x})$$

Explanation of Homework 2

- * This homework is designed to help you:
 - * Understand and implement the Lagrange Multiplier Theorem.
 - * Enhance your MATLAB programming skill to conduct optimization studies and to present your results.
- * What are we going to do?
 - * Write a general solver for up to 2nd-order equality constrained problem.

Task 1: Implement L Solver

Objective Function

Equality Constraints

L_Solver

Optimum Points

Lagrange Multipliers

Optimum Values

About L_Solver

- * function [sol] = l_solver(f,h,nvar,ncos)
 - * f: objective function
 - * h: vector of equality constraints
 - * nvar: number of design variables
 - * ncos: number of constraints

Flowchart for Your Program

$$L(\mathbf{x}, \mathbf{v}) = f(\mathbf{x}) + \mathbf{v}^T \mathbf{h}(\mathbf{x})$$

$$\nabla L = \frac{\partial L}{\partial x_i}$$

$$\nabla L = 0$$

Note:
These are all vector operations

Useful MATLAB Functions

- Creating symbolic variables and functions
 http://www.mathworks.com/help/symbolic/syms.html
- * Differentiation:
 - http://www.mathworks.com/help/symbolic/differentiation.html
- * Solve System of Linear Equations:
 - http://www.mathworks.com/help/symbolic/solve-a-system-of-linear-equations.html
- * Coefficients of polynomial:
 - http://www.mathworks.com/help/symbolic/coeffs.html

Demo

min.
$$f(\mathbf{x}) = (x_1 - 1.5)^2 + (x_2 - 1.5)^2$$

 $h(\mathbf{x}) = x_1 + x_2 - 2 = 0$

- * syms
- diff()
- * solve()

Validation

- * A test_func.m is available on Moodle for you to validate your L solver
- * There are four types of problems that your L Solver should be able to solve:
 - 1. Two-variable non-constrained problem
 - 2. Two-variable equality-constrained problem
 - 3. Three-variable non-constrained problem
 - 4. Three-variable constrained problem

Task 2: Solve a Design Problem (TBD)

Use subplot (1,2,i) http://www.mathworks.com/help/matlab/ref/subplot.html

Deliverables

- * A short memo
 - * Briefly describe the tasks and your solution
 - * Compare two methods & their results
- * MATLAB m-files
 - l_solver.m (function file)
 - * prob.m (script file)
 - * Your m-file will be first tested by the provided test_func.m
 - * Your m-file will be next tested by your prob.m

Comments on Homework 1

- * Do not zip your files
- Basic grammar requirement #1: spell check (red underlines)
- * Basic grammar requirement #2: Look at grammar suggestions (green underlines)
- * Figure quality

Use Export Tool

Windows screenshot:

- 1. unnecessary stuff
- 2. Poor quality

Use MATLAB export tool:

- 1. Pure
- 2. High quality

Pixel Graph vs. Vector Graph

Export as PNG

Export as PDF