

Génération automatique de molécules chimiques

Aix*Marseille

Encadré par M.Prcovic

• Introduction et mise en contexte

- Introduction et mise en contexte
- Première modélisation avec liaisons simples

- Introduction et mise en contexte
- Première modélisation avec liaisons simples
- Gestion des liaisons doubles et triples

- Introduction et mise en contexte
- Première modélisation avec liaisons simples
- Gestion des liaisons doubles et triples
- Plongement dans l'espace 3D : gestion des coordonnées

- Introduction et mise en contexte
- Première modélisation avec liaisons simples
- Gestion des liaisons doubles et triples
- Plongement dans l'espace 3D : gestion des coordonnées
- Détails d'implémentations

- Introduction et mise en contexte
- Première modélisation avec liaisons simples
- Gestion des liaisons doubles et triples
- Plongement dans l'espace 3D : gestion des coordonnées
- Détails d'implémentations
- Conclusion

Cadre du projet

- Encadrant : Nicolas Prcovic enseignant-chercheur
- Équipe COALA du LIS

Cadre du projet

- Encadrant : Nicolas Prcovic enseignant-chercheur
- Équipe COALA du LIS
- Sujet interdisciplinaire : chimie & informatique

Mise en contexte

- Adrien Varet, ancien doctorant
- **Sujet de thèse** : utilisation du formalisme CSP pour résoudre des problématiques liées aux benzénoïdes

Mise en contexte

- Adrien Varet, ancien doctorant
- **Sujet de thèse** : utilisation du formalisme CSP pour résoudre des problématiques liées aux benzénoïdes
 - → Création de l'application **BenzAI**

Utilisation de la PPC

Utilisation de la PPC

Utilisation de la PPC

- Graphe étiqueté :

 \rightarrow Sommet = atome

- \rightarrow Sommet = atome
- → Étiquette = type d'atome

- \rightarrow Sommet = atome
- → Étiquette = type d'atome
- → Arête = liaison entre deux atomes
 - \rightarrow Plusieurs types de liaisons

- \rightarrow Sommet = atome
- → Étiquette = type d'atome
- → Arête = liaison entre deux atomes
 - \rightarrow Plusieurs types de liaisons
- Connexité

Une formule chimique : plusieurs structures moléculaires

Une formule

Liste d'isomère

Objectif : trouver l'ensemble des isomères

Formule chimique
$$\mathcal{P}=(X,D,C)$$
 Listes des isomères $\mathrm{C_3H_4O_3}$

$$C_3H_4O_3$$
 \longrightarrow $\mathcal{P} = (X, D, C)$ \longrightarrow \bullet $X = \{G_{mol} = (V, E)\}, |V| = n$

$$C_3H_4O_3 \longrightarrow \mathcal{P} = (X, D, C)$$

- $X = \{G_{mol} = (V, E)\}, |V| = n$
- $D = d_{G_{mol}}$, où $d_{G_{mol}} = [(V, \emptyset) : K_n]$

$$C_3H_4O_3 \longrightarrow \mathcal{P} = (X, D, C)$$

- $X = \{G_{mol} = (V, E)\}, |V| = n$
- $D = d_{G_{mol}}$, où $d_{G_{mol}} = [(V, \emptyset) : K_n]$
- C l'ensemble des contraintes suivantes :

$$C_3H_4O_3 \longrightarrow \mathcal{P} = (X, D, C)$$

- $X = \{G_{mol} = (V, E)\}, |V| = n$
- $D = d_{G_{mol}}$, où $d_{G_{mol}} = [(V, \emptyset) : K_n]$
- C l'ensemble des contraintes suivantes :
 - La contrainte induite de valence : $\forall i \in V, \ degree(i) = valence(i)$

$$C_3H_4O_3 \longrightarrow \mathcal{P} = (X, D, C)$$

- $X = \{G_{mol} = (V, E)\}, |V| = n$
- $D = d_{G_{mol}}$, où $d_{G_{mol}} = [(V, \emptyset) : K_n]$
- C l'ensemble des contraintes suivantes :
 - La contrainte induite de valence : $\forall i \in V, \ degree(i) = valence(i)$
 - La contrainte de connexité.

Résultats de la modélisation initiale

Problème d'isomorphisme

Problème d'isomorphisme

- Test d'isomorphisme : algorithme VF2

• Pour les variables : $liaisions \in \mathcal{M}_{n \times n}(\mathbb{N}), \forall i \neq j$:

• Pour les variables : $liaisions \in \mathcal{M}_{n \times n}(\mathbb{N}), \forall i \neq j$:

$$liaisons(i,j) = \begin{cases} 0 & \text{si } i \text{ et } j \text{ ne sont pas en liaisons} \\ 1 & \text{si } i \text{ et } j \text{ sont reliés par une liaison } \mathbf{simple} \\ 2 & \text{si } i \text{ et } j \text{ sont reliés par une liaison } \mathbf{double} \\ 3 & \text{si } i \text{ et } j \text{ sont reliés par une liaison } \mathbf{triple} \end{cases}$$

• Pour les variables : $liaisions \in \mathcal{M}_{n \times n}(\mathbb{N}), \forall i \neq j$:

$$liaisons(i,j) = \begin{cases} 0 & \text{si } i \text{ et } j \text{ ne sont pas en liaisons} \\ 1 & \text{si } i \text{ et } j \text{ sont reliés par une liaison } \mathbf{simple} \\ 2 & \text{si } i \text{ et } j \text{ sont reliés par une liaison } \mathbf{double} \\ 3 & \text{si } i \text{ et } j \text{ sont reliés par une liaison } \mathbf{triple} \end{cases}$$

• Pour les contraintes :

• Pour les variables : $liaisions \in \mathcal{M}_{n \times n}(\mathbb{N}), \forall i \neq j$:

$$liaisons(i,j) = \begin{cases} 0 & \text{si } i \text{ et } j \text{ ne sont pas en liaisons} \\ 1 & \text{si } i \text{ et } j \text{ sont reliés par une liaison } \mathbf{simple} \\ 2 & \text{si } i \text{ et } j \text{ sont reliés par une liaison } \mathbf{double} \\ 3 & \text{si } i \text{ et } j \text{ sont reliés par une liaison } \mathbf{triple} \end{cases}$$

- Pour les contraintes :
 - Contraintes sur le nombre de liaisons de chaque atome : $\forall i \in V$,

$$\sum_{j=0}^{n-1} \text{liaisons}(i,j) = \text{valence}(i)$$

Première amélioration : doubles et triples liaisons

• Pour les variables : $liaisions \in \mathcal{M}_{n \times n}(\mathbb{N}), \forall i \neq j$:

$$liaisons(i,j) = \begin{cases} 0 & \text{si } i \text{ et } j \text{ ne sont pas en liaisons} \\ 1 & \text{si } i \text{ et } j \text{ sont reliés par une liaison } \mathbf{simple} \\ 2 & \text{si } i \text{ et } j \text{ sont reliés par une liaison } \mathbf{double} \\ 3 & \text{si } i \text{ et } j \text{ sont reliés par une liaison } \mathbf{triple} \end{cases}$$

- Pour les contraintes :
 - Contraintes sur le nombre de liaisons de chaque atome : $\forall i \in V$,

$$\sum_{j=0}^{n-1} \text{liaisons}(i,j) = \text{valence}(i)$$

- Contraintes sur les arêtes du graphe en fonctions des liaisons : $\forall i, j \in V, i \neq j$,

$$liaisons(i,j) > 0 \Rightarrow (i,j) \in E$$

- Distance de liaisons : $[d_{min}; d_{max}]$
 - → Dépend du type d'atomes et du type de liaison

- Distance de liaisons : $[d_{min}; d_{max}]$
 - → Dépend du type d'atomes et du type de liaison
- Distance de non liaisons : $> d_{max}$

- Distance de liaisons : $[d_{min}; d_{max}]$
 - → Dépend du type d'atomes et du type de liaison
- Distance de non liaisons : > d_{max}

« Existe-t'il un placement dans l'espace respectant les contraintes de distances de liaisons/non liaisons ? »

- $X = \{x_i | i \in V\} \cup \{y_i | i \in V\} \cup \{z_i | i \in V\}$ où :
 - $-x_i$ est la coordonnée 1D du sommet i
 - $-y_i$ est la coordonnée 2D dimension du sommet i
 - $-\ z_i$ est la coordonnée 3D dimension du sommet i

• $X = \{x_i | i \in V\} \cup \{y_i | i \in V\} \cup \{z_i | i \in V\}$ où :

- x_i est la coordonnée 1D du sommet i- y_i est la coordonnée 2D dimension du sommet i- z_i est la coordonnée 3D dimension du sommet i• $D = \{d_{x_i} | i \in V\} \cup \{d_{y_i} | i \in V\} \cup \{d_{z_i} | i \in V\}$ où :

- $d_{x_i} = [-300; 300], \ \forall i$ - $d_{y_i} = [-300; 300], \ \forall i$ - $d_{z_i} = [-300; 300], \ \forall i$

- $X = \{x_i | i \in V\} \cup \{y_i | i \in V\} \cup \{z_i | i \in V\}$ où :

 x_i est la coordonnée 1D du sommet i- y_i est la coordonnée 2D dimension du sommet i- z_i est la coordonnée 3D dimension du sommet i• $D = \{d_{x_i} | i \in V\} \cup \{d_{y_i} | i \in V\} \cup \{d_{z_i} | i \in V\}$ où :

 $d_{x_i} = [-300; 300], \ \forall i$ $d_{y_i} = [-300; 300], \ \forall i$ $d_{z_i} = [-300; 300], \ \forall i$
- C
- Les contraintes sur les distances minimum entre chaque atomes liés : Si $(i,j) \in E$, alors $distance(i,j) \ge dist_min(type(i))(type(j))$

- $X = \{x_i | i \in V\} \cup \{y_i | i \in V\} \cup \{z_i | i \in V\}$ où :

 x_i est la coordonnée 1D du sommet i- y_i est la coordonnée 2D dimension du sommet i- z_i est la coordonnée 3D dimension du sommet i• $D = \{d_{x_i} | i \in V\} \cup \{d_{y_i} | i \in V\} \cup \{d_{z_i} | i \in V\}$ où :

 $d_{x_i} = [-300; 300], \ \forall i$ $d_{y_i} = [-300; 300], \ \forall i$ $d_{z_i} = [-300; 300], \ \forall i$
- C
- Les contraintes sur les distances minimum entre chaque atomes liés : Si $(i,j) \in E$, alors $distance(i,j) \geq dist_min(type(i))(type(j))$
- Les contraintes sur les distances maximum entre chaque atomes liés : Si $(i,j) \in E$, alors $distance(i,j) \le dist_max(type(i))(type(j))$

- $X = \{x_i | i \in V\} \cup \{y_i | i \in V\} \cup \{z_i | i \in V\}$ où :

 x_i est la coordonnée 1D du sommet i- y_i est la coordonnée 2D dimension du sommet i- z_i est la coordonnée 3D dimension du sommet i• $D = \{d_{x_i} | i \in V\} \cup \{d_{y_i} | i \in V\} \cup \{d_{z_i} | i \in V\}$ où :

 $d_{x_i} = [-300; 300], \ \forall i$ $d_{y_i} = [-300; 300], \ \forall i$ $d_{z_i} = [-300; 300], \ \forall i$
- C
- Les contraintes sur les distances minimum entre chaque atomes liés : Si $(i,j) \in E$, alors $distance(i,j) \geq dist_min(type(i))(type(j))$
- Les contraintes sur les distances maximum entre chaque atomes liés : Si $(i,j) \in E$, alors $distance(i,j) \leq dist_max(type(i))(type(j))$
- Les contraintes sur les distances minimum entre les atomes non-liés : Si $(i,j) \notin E$, alors $distance(i,j) > dist_max(type(i))(type(j))$

- Stabilité moléculaire : limiter répulsions des éléctrons
 - → modélisation pas assez poussée

- Optimisation pour maximiser les distances

•
$$x(0) = 0$$
, $y(0) = 0$, $z(0) = 0$

•
$$x(0) = 0$$
, $y(0) = 0$, $z(0) = 0$

•
$$x(1) = 0, y(1) = 0 \text{ et } z(1) > 0$$

•
$$x(0) = 0$$
, $y(0) = 0$, $z(0) = 0$

•
$$x(1) = 0, y(1) = 0 \text{ et } z(1) > 0$$

•
$$x(2) = 0$$
 et $y(2) > 0$

•
$$x(0) = 0$$
, $y(0) = 0$, $z(0) = 0$

•
$$x(1) = 0, y(1) = 0 \text{ et } z(1) > 0$$

•
$$x(2) = 0$$
 et $y(2) > 0$

•
$$x(3) > 0$$

Détails d'implémentation

Côté code : les différentes classes

- Applications : *MainViz* et *MainSpace*
- Modelisation : *Modelisation*, *GraphModelisation*...
- Gérer les molécules : **Atom, AtomIndexer, Molecule_Utils, BondDistance...**
- Sortie et expériences : **CML_generator**, **InstanceMaker**, **ExperienceMaker**

Côté code : les différentes fonctionnalités

- Trouver tous les isomères d'une molécule
- Générer des fichiers CML
- Imposer des type de liaison
- Générer des graphes 2D

Format d'entrée

- Exécution simple :
 - → Entrée sous forme de json

```
{
   "types": [type1, ...],
   "quantities": [nb_atome_type1, ...],
   "structure": [[atome1, type_liaison, atome2], ...]
}
```

- Exécution multiple (experiences) :
 - → Entrée sous forme de dictionnaire

```
{"C:3,H:8,O:2","H:2,O:1",...}
```

Pour la visualisation 3D : logiciel JMOL

Pour la visualisation des graphes : MainViz

- Libraire *graphviz*
- Expérimentation
- Vision plus globale : pas besoin de résolution de coordonnées

Protocole d'expérimentations

Package **experiences** :

- ExperienceMaker.java
- Choix entre *MainViz* ou *MainSpace*
- **Sortie** : nombre de structure de graphe, de solution (coordonées), temps d'exécution..
 - → Démonstration

Côté implémentation : plus de détails

• Github:

https://github.com/Paulpey13/chemical_molecule_generation/

→ Javadoc & README

Résultats d'expériences : sans optimisation

Molécule	Nb isomère(s)	Nb graphe(s)	Temps total	Temps moyen par coordonnées
$\mathrm{H_{2}O}$	1	1	$406 \mathrm{\ ms}$	8 ms
$\mathrm{CH_{4}O}$	2	4	521 ms	18 ms
C_2H_4	2	6	516 ms	14 ms
$\mathrm{C_2O_2}$	4	5	$636~\mathrm{ms}$	$7~\mathrm{ms}$
$\mathrm{CH_4O_2}$	3	20	652 ms	23 ms
C_2H_6O	3	140	878 ms	71 ms
$\mathrm{CH_4O_3}$	4	120	1037 ms	80 ms
$C_2O_2H_2$	10	44	$1161 \mathrm{\ ms}$	10 ms
C_3O_2	8	42	1335 ms	57 ms
$C_2H_2O_4$	11	274	1712 ms	49 ms
C_3OH_2	10	69	$1961 \mathrm{\ ms}$	92 ms
$\mathrm{H_2O_6}$	2	720	2187 ms	$781 \mathrm{\ ms}$
$\mathrm{C_4O_2}$	29	636	$11881 \mathrm{\ ms}$	331 ms
$C_2O_2H_6$	6	1120	$14319 \; { m ms}$	1120 ms
$C_3O_2H_2$	35	543	46567 ms	1252 ms
$\mathrm{H_2O_8}$	2	40320	185232 ms	90482 ms
$C_4O_2H_2$	164	10488	522071 ms	3086 ms

Résultats d'expériences : avec optimisation

Molécule	Nb isomère(s)	Nb graphe(s)	Temps total	Temps moyen par coordonnées
$\mathrm{H_{2}O}$	1	1	$445 \mathrm{\ ms}$	$31 \mathrm{\ ms}$
CO_2	1	1	$707 \mathrm{\ ms}$	283 ms
$\mathrm{CH_{2}O}$	1	1	6988 ms	6569 ms
$\mathrm{H_{2}O_{2}}$	2	2	8787 ms	4152 ms
C_2H_2O	2	2	$11744 \mathrm{\ ms}$	5631 ms

Conclusion

- Difficultés :
 - Documentation peu fournie
 - Isomorphisme de graphe
 - Allier informatique et chimie

- Travaux futurs :
 - Diminuer la combinatoire en ajoutant des contraintes
 - Interface graphique

Conclusion: ce qu'on a appris

- Programmation par contrainte
- Solveur choco
- Respecter des objectifs d'équipe
- Connaissances en chimie

Merci de votre attention.

