

Winning Space Race with Data Science

Naol Teshome 12/23/2023

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- In a market where there is very little amount of competition space X has revolutionized space exploration with their reusable rockets
- Falcon9 booster successful recovery depends on features such as:
 - o orbit
 - o payload mass
 - booster versions
 - Launching sites
- Many different machine learning algorithms are used to predict the likely hood of Falcon9 booster recovery.
- Based on these features, the best Machine Learning supervised classification model developed in this report, predicted booster recovery outcome with an accuracy close to 94%.

Introduction

- In the 1970s and 1980s, non-military commercial satellites began to be launched in large numbers.
- From 2000 to 2017, Ariane 5 (ESA Arianespace) dominated the market with: lower cost, high payload mass, reliability.
- In terms of cost, China, India, Russia are tough competitors with less reliable classic launchers like LongMarch, Proton, Soyuz-2, PSLV. New players like BlueHorizon are still in early stage.
- Since 2017, SpaceX Falcon9/Falcon9 Heavt is increasingly dominating the market with better cost per kg thanks to the reusable booster concept.
- Competition may heat up again with the advent of Ariane 6 and SpaceX Starship.

Introduction

Falcon 9/Falcon9 heavy v. Ariane 6

- Falcon9 / Falcon 9 Heavy can easily compete with new Ariane 6 (2 or 4 boosters) in terms of:
 - Cost per kg
 - Payload mass
- SpaceX Starship will further crush the competition in both domains.
- Falcon9 and Starship costs are way lower due to reuse of boosters
- Ariane-6 will be a classic launcher for reliability purposes
- Falcon9 reliability can't compete with Ariane-5G record
- Falcon9 booster recovery success rate is still an issue.

Introduction

Methodology

Executive Summary

- 1. Data collection from open Data base and Wikipedia (Falcon9, Ariane-5).
- 2. Data wrangling.
- 3. Exploratory data analysis using SQL query and visualization of correlation between parameters.
- 4. Visual analytics: launch sites with Folium, success rates with Plotly Dash.
- 5. Classification Models development and validations. Selection of best predictive model

Data Collection

Data was collected from:

- open source SpaceX REST API
- webscraping Falcon9 launch data in Wikipedia

https://github.com/Nana8182/Falcon9-success-rate-analysisproject/blob/main/Data%20Collection/data%20collection%20using%20api.ipynb

Data Collection Scraping

Preliminary Stage

We defined a series of functions helping the use the API to extract information

- getBoosterVersion(data)
- getLaunchSite(data)
- getPayloadData(data)
- getCoreData(data)

https://github.com/Nana8182/Falcon9-success-rate-analysis-project/blob/main/Data%20Collection/webscraping.ipynb

Data Wrangling

https://github.com/Nana8182/Falcon9-success-rate-analysis-project/blob/main/Data%20wrangling.ipynb

EDA with Data Visualization

Scatter Plots

Flight Number VS. Payload Mass

- Flight Number VS. Launch Site
- Payload VS. Launch Site
- Orbit VS. Flight Number
- Payload VS. Orbit Type
- Orbit VS. Payload

Bar Graphs

Mean VS. Orbit

Line Graphs

Success Rate VS. Year

https://github.com/Nana8182/Falcon9-success-rate-analysis-project/blob/main/Explanatory%20Data%20Analysis/eda%20data%20visualization.ipynb

Performed SQL queries to gather information about the dataset. Some of the questions we were asked about the data is

- Displaying the names of the unique launch sites in the space mission
- Displaying 5 records where launch sites begin with the string 'CCA'
- Displaying the total payload mass carried by boosters launched by NASA (CRS)
- Displaying average payload mass carried by booster version F9 v1.1
- Listing the date where the successful landing outcome in drone ship was achieved.
- Listing the names of the boosters which have success in ground pad and have payload mass greater than 4000 but less than 6000
- Listing the total number of successful and failure mission outcomes
- Listing the names of the booster versions which have carried the maximum payload mass.
- Listing the records which will display the month names, successful landing outcomes in ground pad ,booster versions, launch site for the months in year 2017
- Ranking the count of successful landing outcomes between the date 2010-06-04 and 2023-03-20 in descending order.

https://github.com/Nana8182/Falcon9-success-rate-analysis-project/blob/main/Explanatory%20Data%20Analysis/eda%20sql%20sqllite.ipynb

Build an Interactive Map with Folium

- Launch success rate may depend on the location and proximity of a launch site.
- Folium Interactive Map was used for visualizing and analyzing SpaceX Launch Sites.
- Used Interactive mapping library called Folium, Identified all SpaceX launch sites on a map: Florida, California, Included longitude and latitude info.
- Identified successful/failed launches for each site on map Calculated the distance between a launch site (CCAFS_SLC40 in Cape Canaveral, FL) and:
 - Closest coastline
 - Closest high traffic density railway:
 - Florida East Coast Railway
 - Closest high traffic density highway: Interstate 195
 - Closest high density urban area: Orlando (FL)

Build a Dashboard with Plotly Dash

We built an interactive dashboard with Plotly including:

- Dropdown menu for selecting launch sites
- Pie charts displaying success rate.
- Scatter chart displaying launch site, payload mass, success/failure
- Range slider for selecting range of payload mass (kg).

For analyzing SpaceX launch records features:

- site with largest successful launches.
- site with highest launch success rate
- payload range(s) with highest launch success rate
- payload range(s) with lowest launch success rate
- F9 Booster version (v1.0, v1.1, FT, B4, B5, etc.) with highest launch success rate.

https://github.com/Nana8182/Falcon9-success-rate-analysisproject/blob/main/Interactive%20visual%20Analysis%20and%20Dashboard/spacex_dash_app.py

Predictive Analysis (Classification)

https://github.com/Nana8182/Falcon9-success-rate-analysis-project/blob/main/Machine%20Learning%20Prediction.ipynb

Flight Number vs. Launch Site

- CCAFS-SLC 40 is the most used launch site.
- CCAFS-SLC 40 has most of failures, particularly in the early stage of Falcon9 project

Payload vs. Launch Site

- Given Falcon9 specifications, heavy payloads are sent to low/medium orbits
- It looks like the percentage of failures is lower for heavy payload.
- More information is needed for extracting some correlation: success rate v. payload/orbit

Success Rate vs. Orbit Type

- GTO sees the lowest success rate.
- SSO (polar low orbit) the highest one.
- Success rate may strongly depend on both: payload mass and orbit.

Flight Number vs. Orbit Type

- The number of flights for: GEO, SO, HEO, ESL-1, MEO is not significant for concluding about success rate.
- It looks like GTO are higher risk missions, low orbits are lower risk.

Payload vs. Orbit Type

- Maximum success rate with: low orbit except (ISS) and low payload mass
- Between 2000 and 7500 kg, success rate seems to be evenly distributed for GTO.
- Independently of payload mass, GTO is a risky "orbit" affecting missions success rate. Falcon 9 reliability improves over time, but there are still recent failed booster recovery after GTO launches

Launch Success Yearly Trend

- Falcon 9 reliability significantly improves over time .
- Falcon9 average booster recovery success rate si 66%.
- Success rate currently sufficient for SpaceX financial viability.

All Launch Site Names

```
[8]: %sql SELECT DISTINCT LAUNCH_SITE as "Launch_Sites" FROM SPACEXTBL;
      * sqlite:///my_datal.db
     Done.
[8]: Launch_Sites
      CCAFS LC-40
      VAFB SLC-4E
       KSC LC-39A
     CCAFS SLC-40
```

Launch Site Names Begin with 'CCA'

[10]:	%sql SEL l	ECT * FRO	OM SPACEXTBL WHE	RE LAUNCH_SI	TE LIKE 'CCA%' LIMIT 5;				•	↑ ↓ ± 〒 i
	* sqlite:///my_data1.db Done.									
[10]:	Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
	2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
	2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
	2012- 05-22	7:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
	2012- 10-08	0:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
	2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

```
[11]: %sql SELECT SUM(PAYLOAD_MASS__KG_) AS "Total Payload Mass by NASA (CRS)" FROM SPACEXTBL WHERE CUSTOMER = 'NASA (CRS)';

* sqlite:///my_datal.db
Done.

[11]: Total Payload Mass by NASA (CRS)

45596
```

Average Payload Mass by F9 v1.1

First Successful Ground Landing Date

```
[13]: %sql SELECT MIN(DATE) AS "First Successful Mission Outcome" FROM SPACEXTBL WHERE MISSION_OUTCOME = 'Success';

* sqlite://my_datal.db
Done.
[13]: First Successful Mission Outcome

2010-06-04
```

Successful Drone Ship Landing with Payload between 4000 and 6000

```
[14]: %sql SELECT BOOSTER_VERSION FROM SPACEXTBL WHERE MISSION_OUTCOME = 'Success' \
      AND PAYLOAD MASS KG > 4000 AND PAYLOAD MASS KG < 6000;
       * sqlite:///my_datal.db
      Done.
[14]: Booster Version
               F9 v1.1
         F9 v1.1 B1011
         F9 v1.1 B1014
         F9 v1.1 B1016
          F9 FT B1020
          F9 FT B1022
          F9 FT B1026
          F9 FT B1030
         F9 FT B1021.2
         F9 FT B1032.1
         F9 B4 B1040.1
         F9 FT B1031.2
         F9 FT B1032.2
         F9 B4 B1040.2
         F9 B5 B1046.2
         F9 B5 B1047.2
```

Total Number of Successful and Failure Mission Outcomes

Boosters Carried Maximum Payload

```
[18]: %sql SELECT DISTINCT BOOSTER_VERSION AS "Booster Versions which carried the Maximum Payload Mass" FROM SPACEXTBL \
      WHERE PAYLOAD MASS KG = (SELECT MAX (PAYLOAD MASS KG ) FROM SPACEXTBL);
       * sqlite:///my datal.db
      Done.
[18]: Booster Versions which carried the Maximum Payload Mass
                                             F9 B5 B1048.4
                                             F9 B5 B1049.4
                                             F9 B5 B1051.3
                                             F9 B5 B1056.4
                                             F9 B5 B1048.5
                                             F9 B5 B1051.4
                                             F9 B5 B1049.5
                                             F9 B5 B1060.2
                                             F9 B5 B1058.3
                                             F9 B5 B1051.6
                                             F9 B5 B1060.3
                                             F9 B5 B1049.7
```

2015 Launch Records

```
[19]: %sql SELECT (DATE,6,2) as "Month", BOOSTER_VERSION, LAUNCH_SITE FROM SPACEXTBL WHERE (DATE,0,5) = '2015' AND \

* sqlite://my_datal.db
(sqlite3.OperationalError) row value misused
[SQL: SELECT (DATE,6,2) as "Month", BOOSTER_VERSION, LAUNCH_SITE FROM SPACEXTBL WHERE (DATE,0,5) = '2015' AND MISSION_OUTCOME = 'Failure';]
(Background on this error at: http://sqlalche.me/e/13/e3q8)
```

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

```
[20]: %sql SELECT MISSION_OUTCOME as "Landing Outcome", COUNT(MISSION_OUTCOME ) AS "Total Count" FROM SPACEXTBL \
WHERE DATE BETWEEN '2010-06-04' AND '2017-03-20' \
GROUP BY_MISSION_OUTCOME \
ORDER BY_COUNT(MISSION_OUTCOME) DESC :

* sqlite://my_datal.db
Done.

[20]: Landing Outcome Total Count

Success 30

Failure (in flight) 1
```


SpaceX: All launch sites

success/failed launches for each site on the map

Distances between a launch site to its proximities

Total success launch by all sites

SpaceX Falcon9 Launch site with highest launch success ratio

Launch outcome v. Payload mass

Classification Accuracy

 As we can see Decision trees have the highest accuracy out of the four Algorithms used

Confusion Matrix

_ - - - - - -

Conclusions

- We defined success as a successful recovery process of Falcon9 booster.
- From Falcon 9 and Wiki we imported data and developed tools for investigating factors driving successful booster recovery: Payload, Orbit, Booster version, Launching sites...
- Based on these features, we selected a supervised classification model capable of predicting launch outcome with a 94% accuracy. Falcon9 booster recovery process is more risky than a classic launcher, but its success rate: increases overtime and at 66%, it is sufficient for maintaining a competitive cost per kg compared with classic Ariane5 /Ariane 6.
- SpaceX GEO/GTO flights are more risky.
- Failure could be linked to energy deployed at lift-off, vibrations damaging of electronics, control systems of the booster.
- ESA/ArianeEspace, Soyuz have an advantage in terms of launch site, on the equator: less energy is required for GTO/GEO flights.
- SpaceX could improve GEO/GTO flights success with a concept like "Sea Launch" close to the equator. Recent successes with FT boosters landing on "drone ship", bodes well for such a solution.
- Even with recent recovery failure for GTO/GEO, SpaceX will maintain a sufficient lead in terms of cost per kg. vs Ariane5 and the new Ariane 6. Starship may well crush further the competition if similar success rate is achieved

References and Jupyter Notebooks

- https://github.com/Nana8182/Falcon9-success-rate-analysis-project/tree/main
- https://github.com/Nana8182/Falcon9-success-rate-analysis-project/blob/main/Data%20Collection/data%20collection%20using%20api.ipynb
- https://github.com/Nana8182/Falcon9-success-rate-analysis-project/blob/main/Data%20Collection/webscraping.ipynb
- https://github.com/Nana8182/Falcon9-success-rate-analysis-project/blob/main/Data%20wrangling.ipynb
- https://github.com/Nana8182/Falcon9-success-rate-analysis-project/blob/main/Explanatory%20Data%20Analysis/eda%20data%20visualization.ipynb
- https://github.com/Nana8182/Falcon9-success-rate-analysis-project/blob/main/Explanatory%20Data%20Analysis/eda%20sql%20sqllite.ipynb
- https://github.com/Nana8182/Falcon9-success-rate-analysis-project/blob/main/Interactive%20visual%20Analysis%20and%20Dashboard/launch%20%20site%20location%20with%20Folium.ipynb.
- https://github.com/Nana8182/Falcon9-success-rate-analysisproject/blob/main/Interactive%20visual%20Analysis%20and%20Dashboard/spacex_dash_app.py
- https://github.com/Nana8182/Falcon9-success-rate-analysis-project/blob/main/Machine%20Learning%20Prediction.ipynb

