```
CORRELAZIONE E INDIPENDENZA STOCASTICA
DEF
         siano E e H eventi, con H\neq\emptyset:
         <u>correlazione</u> di E con H: E è correlato negativamente con H se P(E/H) < P(E), positivamente se P(E/H) > P(E)
         <u>indipendenza stocastica</u> di E con H: E è stocasticamente indipendente da H se P(E/H)=P(E)
         se due eventi hanno probabilità positiva allora P(E_1/E_2)/P(E_1) = P(E_2/E_1)/P(E_2)
TEO
         se due eventi sono correlati, allora le loro negazioni sono correlate nello stesso senso e ciascuno di essi è
TEO
         correlato in senso inverso con la negazione dell'altro, cioè
         se P(E_1/E_2) > P(E) \Rightarrow P(\neg E_1/\neg E_2) > P(\neg E_1) \Rightarrow P(\neg E_1/E_2) < P(\neg E_1)
         se E_1 è stocasticamente indipendente da E_2, allora si ha :
TEO
              \neg E_1 è stocasticamente indipendente da E_2
         b) P(E_1' \wedge E_2') = P(E_1')P(E_2') per ogni scelta degli apici
                   per ipotesi è P(E_1/E_2)=P(E_1), quindi :
                   a) P(\neg E_1/E_2) = 1 - P(E_1/E_2) = 1 - P(E_1) = P(\neg E_1)
                   b) si deve provare che nella nostra ipotesi la probabilità si fattorizza sui costituenti della \mathbb{P}_G\{E_1,E_2\}
                         \Rightarrow dato che P(E_1 \land E_2) = P(E_2)P(E_1/E_2) = P(E_1)P(E_2) la prob. si fattorizza per il costituente E_1 \land E_2
                         \Rightarrow da E_1 = (E_1 \land E_2) \lor (E_1 \land \neg E_2) si ricava P(E_1) = P(E_1 \land E_2) + P(E_1 \land \neg E_2) = P(E_1)P(E_2) + P(E_1 \land \neg E_2)
                         \Rightarrow P(E_1 \land \neg E_2) = P(E_1)(1-P(E_2)) = P(E_1)P(\neg E_2)
                         \Rightarrow analogamente si prova che P(\neg E_1 \land E_2) = P(\neg E_1)P(E_2) e quindi che P(\neg E_1 \land \neg E_2) = P(\neg E_1)P(\neg E_2)
DEF
```

- Siano E_1 e E_2 due eventi logicamente indipendenti, diremo che essi sono <u>stocasticamente indipendenti</u> se E_1 è stocasticamente indipendente sia da E_2 che da $\neg E_2$ (e viceversa), se riesce cioè: $P(E_1/E_2)=P(E_1/\neg E_2)=P(E_1)$ e $P(E_2/E_1)=P(E_2/\neg E_1)=P(E_2)$, cioè l'eventuale informazione sul valore logico assunto da uno dei due eventi non ha alcuna influenza sulla valutazione della probabilità dell'altro nb: la presenza della condizione di indipendenza logica è giustificata dal fatto che se ci fosse dipendenza logica tra E_1 e E_2 si potrebbero avere scelte di probabilità estreme per i due eventi, togliendo così quella libertà di valutazione che è nello spirito della nozione di indipendenza stocastica, infatti: gli eventi E_1 e E_2 non sono logicamente indipendenti se e solo se qualche costituente della loro partizione generata è impossibile, ad esempio se $E_1 \land E_2 = \emptyset$ allora riesce $P(E_1/E_2) = P(E_1 \land E_2/E_2) = P(\emptyset/E_2) = 0$ e analogamente $P(E_2/E_1) = 0$ e quindi richiedere l'indipendenza stocastica in queste condizioni significa allora dover porre $P(E_1) = P(E_2) = 0$
- DEF siano $E_1,...,E_n$ eventi logicamente indipendenti, diremo che essi sono <u>stocasticamente indipendenti</u> se per ogni $E_1' \wedge ... \wedge E_n' \in \mathbb{P}_G(E_1,...,E_n)$ si ha $P(E_i/E_1' \wedge ... \wedge E_{i-1}' \wedge E_{i+1}' \wedge ... \wedge E_n') = P(E_i)$ nb: come nel caso di due eventi, anche qui è $P(\neg E_i/E_1' \wedge ... \wedge E_{i-1}' \wedge E_{i+1}' \wedge ... \wedge E_n') = P(\neg E_i)$ per ogni i; inoltre la nozione di indipendenza stocastica di n eventi si può esprimere dicendo che essi sono logicamente indipendenti e che ciascuno di essi è stocasticamente indip. da ogni costituente della partizione generata dai rimanenti

 DEF date $\mathbb{P}_1,...,\mathbb{P}_n$ partizioni logicamente indipendenti di cardinalità finita, diremo che esse sono <u>stocasticamente</u> indipendenti se per ogni $\omega_1 \wedge ... \wedge \omega_n \in \mathbb{P}_1 \wedge ... \wedge \mathbb{P}_n$ con $\omega_i \in \mathbb{P}_i$, si ha $P(\omega_i/\omega_1 \wedge ... \wedge \omega_{i-1} \wedge \omega_{i+1} \wedge ... \wedge \omega_n) = P(\omega_i)$

- TEO data una probabilità sugli eventi E_1 e E_2 , riesce $\Sigma^{(')}P(E_1')P(E_2')=1$ e ponendo $P(E_1' \land E_2')=P(E_1')P(E_2')$ si ottiene un'applicazione di dominio la partizione $P_G(E_1,E_2)$, non negativa e di somma 1; affinché questa valutazione (detta "per fattorizzazione"), sia una probabilità occorre che essa assegni probabilità nulla a tutti gli eventuali costituenti impossibili, in particolare la valutazione per fattorizzazione è una probabilità se gli eventi E_1 e E_2 sono logicamente indipendenti $\text{DIM} \quad I = [P(E_1) + P(\neg E_1)][P(E_2) + P(\neg E_2)] = P(E_1)P(E_2) + P(\neg E_1)P(E_2) + P(E_1)P(\neg E_2) + P(\neg E_1)P(\neg E_2)$ nb: il teorema si può estendere per n eventi e, dato che la partizione $P_G(E_1, ..., E_n)$ è la partizione prodotto delle partizioni $\{E_1, \neg E_1\}, ..., \{E_n, \neg E_n\}$, anche per un numero finito di partizioni di cardinalità finita (v, \mathcal{J}) $date P_1, ..., P_n$ partizioni di cardinalità finita $c_i, ..., c_n$ con $P_i = \{\omega_i(1), ..., \omega_i(c_i)\}$ e $P(\omega_i(1)) + ... + P(\omega_i(c_i)) = 1$, allora
- TEO $date \mathbb{P}_1,...,\mathbb{P}_n$ partizioni di cardinalità finita $c_i,...,c_n$ con $\mathbb{P}_i = \{\omega_i(1),...,\omega_i(c_i)\}$ e $P(\omega_i(1))+...+P(\omega_i(c_i))=1$, alloro si ha che $[P(\omega_l(1))+...+P(\omega_l(c_l))]...[P(\omega_n(1))+...+P(\omega_n(c_n))]=1 \Rightarrow \Sigma_{\mathbb{P}_1 \wedge ... \wedge \mathbb{P}_n} P(\omega_1)...P(\omega_n)=1$; ponendo $P(\omega_1 \wedge ... \wedge \omega_n)=P(\omega_1)...P(\omega_n)$ si ottiene un'applicazione di dominio la partizione $\mathbb{P}_1 \wedge ... \wedge \mathbb{P}_n$, non negativa e di somma 1; essa è una probabilità se assegna probabilità nulla a tutti i costituenti impossibili, in particolare se le partizioni $\mathbb{P}_1,...,\mathbb{P}_n$ sono logicamente indipendenti

- siano E_1 e E_2 eventi logicamente indipendenti : TEO a) se sono stocasticamente indipendenti, allora la probabilità si fattorizza su $\mathbb{P}_G(E_1, E_2)$ b) viceversa, se sono di probabilità non estreme (diversa da 0 e 1) e si prolunga la loro valutazione per fattorizzazione su $P_G(E_1, E_2)$, allora essi risultato stocasticamente indipendenti a) stessa dimostrazione di : $P(E_1' \land E_2') = P(E_1')P(E_2')$ per ogni scelta degli apici (v. 12) b) per ipotesi $P(E_1' \land E_2') = P(E_1')P(E_2')$ e $0 < P(E_i') < 1$ per i = 1, 2 e per ogni scelta degli apici $\Rightarrow P(E_1')=P(E_1' \land E_2')/P(E_2')=P(E_1' / E_2') \ e \ P(E_2')=P(E_1' \land E_2')/P(E_1')=P(E_2' / E_1')$ TEO siano $E_1,...,E_n$ eventi logicamente indipendenti : a) se sono stocasticamente indipendenti, allora la probabilità si fattorizza su $\mathbb{P}_G(E_1,...,E_n)$ b) viceversa, se sono di probabilità non estreme (diversa da 0 e 1) e si prolunga la loro valutazione per fattorizzazione su $\mathbb{P}_G(E_1,...,E_n)$, allora essi risultato stocasticamente indipendenti DIM a) no dim. b) $sia\ 0 < P(E_i) < 1, i = 1, ..., n, P(E_1' \land ... \land E_n') = P(E_1') ... P(E_n') per ogni E_1' \land ... \land E_n' \in \mathbb{P}(\{E_1, ..., E_n\})$ \Rightarrow allora $0 < P(E_i') < 1$, per ogni i, e quindi $P(E_1') ... P(E_n') > 0$ per ogni scelta degli apici $\Rightarrow P(E_1/E_2' \land ... \land E_n') = P(E_1' \land E_2' \land ... \land E_n')/P(E_2' \land ... \land E_n') =$ = $[P(E_1')P(E_2')...P(E_n')]/[P(E_2')...P(E_n')] = P(E_1)$ \Rightarrow per la simmetria della situazione, il risultato ora trovato per E_1 , si può provare in corrispondenza a ogni E_i da cui segue la tesi TEO siano $\mathbb{P}_1,...,\mathbb{P}_n$ partizioni logic. indip. e siano assegnate a loro probabilità marginali e su $\mathbb{P}_1 \wedge ... \wedge \mathbb{P}_n$, allora: a) se $\mathbb{P}_1,...,\mathbb{P}_n$ sono stocasticamente indipendenti, la probabilità si fattorizza su $\mathbb{P}_1 \wedge ... \wedge \mathbb{P}_n$ b) viceversa, se le probabilità marginali sono positive su ogni evento elementare e vengono prolungate per fattorizzazione su $\mathbb{P}_1 \wedge ... \wedge \mathbb{P}_n$, allora $\mathbb{P}_1, ..., \mathbb{P}_n$ risultato stocasticamente indipendenti se $_{1}\mathcal{E}$ e $_{2}\mathcal{E}$ sono sottoinsiemi disgiunti di $_{1}\mathcal{E}_{1},...,\mathcal{E}_{n}\mathcal{E}_{n}$, allora ogni evento logicamente dipendente da $\mathcal{P}_{G}(_{1}\mathcal{E})$ è TEO stocasticamente indipendente da ogni evento non impossibile logicamente dipendente da $\mathbb{P}_G(2\xi)$, e viceversa se le partizioni finite $\mathbb{P}_1,...,\mathbb{P}_n$ sono stocasticamente indipendenti, allora la probabilità si fattorizza su TEO $\mathcal{A}_L(\mathbb{P}_1) \wedge ... \wedge \mathcal{A}_L(\mathbb{P}_n)$ DEF dati $X_1,...,X_n$ numeri aleatori, diremo che essi sono stocasticamente indipendenti se sono tali le loro partizioni canoniche (cioè quelle che descrivono il numero elencando le sue determinazioni) un giudizio di simmetria su $\mathbb{P}_1 \wedge ... \wedge \mathbb{P}_n$ induce l'indipendenza stocastica di $\mathbb{P}_1, ..., \mathbb{P}_n$ TEO (nb indipendenza stocastica che si realizza assegnando distribuzioni marginali uniformi) siano $\mathbb{P}_1,...,\mathbb{P}_n$ partizioni logicamente indipendenti e di cardinalità finita $s_1,...,s_n$ rispettivamente : \Rightarrow dato che gli $s_1,...,s_n$ costituenti di $\mathbb{P}_1 \wedge ... \wedge \mathbb{P}_n$ sono tutti possibili \Rightarrow per ogni $\omega_1 \wedge ... \wedge \omega_n \in \mathbb{P}_1 \wedge ... \wedge \mathbb{P}_n$ si ha $P(\omega_1 \wedge ... \wedge \omega_n) = 1/(s_1...s_n) = (1/s_1)...(1/s_n) = P(\omega_1)...P(\omega_n) > 0$ ⇒ si applica il teorema che dice "se le probabilità marginali sono positive su ogni evento elementare e vengono prolungate per fattorizzazione su $\mathbb{P}_1 \wedge ... \wedge \mathbb{P}_n$, allora $\mathbb{P}_1, ..., \mathbb{P}_n$ risultato stoc. indip." (v. $\hat{\mathcal{U}}$) \Rightarrow la scelta della distribuzione uniforme su $\mathbb{P}_1 \land ... \land \mathbb{P}_n$ induce distribuzioni uniformi sulle singole partizioni $\mathbb{P}_1,...,\mathbb{P}_n$ e implica anche che $\mathbb{P}_1,...,\mathbb{P}_n$ siano stocasticamente indipendenti viceversa, se si suppongono $\mathbb{P}_1,...,\mathbb{P}_n$ stocasticamente indipendenti : \Rightarrow si applica il teorema che dice "se $\mathbb{P}_1,...,\mathbb{P}_n$ sono stoc. indip., la prob. si fattorizza su $\mathbb{P}_1 \wedge ... \wedge \mathbb{P}_n$ " \Rightarrow se le probabilità marginali sono uniformi, allora è uniforme anche la probabilità su $\mathbb{P}_1 \land ... \land \mathbb{P}_n$ \Rightarrow per ogni $\omega_1 \wedge ... \wedge \omega_n \in \mathbb{P}_1 \wedge ... \wedge \mathbb{P}_n$ si ha $P(\omega_1 \wedge ... \wedge \omega_n) = (1/s_1) ... (1/s_n) = 1/(s_1 ... s_n)$
 - teorema di Bayes : siano E e H eventi, P(E)>0, $H\neq\varnothing$, allora si ha P(H/E)=[1/P(E)]P(H)P(E/H)DIM si applica il teorema delle probabilità composte due volte, usando la prima come evento condizionante E e la seconda H si ricava : $P(E \land H)=P(E)P(H/E)=P(H)P(E/H)$, da cui la tesi

TEO