

SRV310

Optimizing Relational Databases on AWS: Deep Dive on Amazon RDS

Jignesh Shah Senior Product Manager, Amazon RDS

Yoav Eilat

Senior Product Marketing Manager, Amazon Aurora

What is Amazon RDS?

Managed relational database service with a choice of six popular engines

Amazon Aurora

Microsoft SQL Server

ORACLE

Easy to administer

No need to provision infrastructure, install, and maintain DB software

Automatic Multi-AZ data replication; automated backup, snapshots, and failover

Highly scalable

Scale DB compute and storage with a few clicks; minimal downtime for your application Fast & secure

SSD storage and guaranteed provisioned I/O; data encryption at rest and in transit

Why use Amazon RDS?

Lower TCO because we manage critical administrative functions

- Automated hardware provisioning, database setup, patching, and backups
- Get more leverage from your teams
- Focus on the things that differentiate you

Built-in high availability and disaster recovery across multiple data centers

- Enabled with a single API call or click of a button in the console
- Even a small startup can leverage enterprise-level availability, durability, and scalability

Configuring your database instance in Amazon RDS

Which RDS engine should I use?

Commercial

Open source

Cloud native

Amazon EBS-based storage

MySQL-compatible PostgreSQL-compatible

Aurora storage system

Which instance type should I choose?

T2 family

- Burstable instances
- 1 vCPU/1 GB RAM > 8 vCPU
 32 GB RAM
- Moderate networking performance
- Good for smaller or variable workloads
- Monitor CPU credit metrics in Amazon CloudWatch
- T2.micro is eligible for free tier

M4 family

- · General-purpose instances
- 2 vCPU/8 GiB RAM > 64 vCPU 256 GiB RAM
- High-performance networking
- Good for running CPU intensive workloads (e.g., WordPress)

R4 family

- Memory-optimized instances
- 2 vCPU/16 GiB RAM > 64 vCPU 488 GiB RAM
- · High-performance networking
- Good for query-intensive workloads or high connection counts

Which storage type should I choose?

General purpose (GP2)

- SSD storage
- Maximum of 16 TB!
- Leverages Amazon EBS Elastic Volumes
- IOPS determined by volume size
- Minimum of 100 IOPS (below 33.33 GiB)
- Bursts to 3,000 IOPS (applicable below 1.3 TB)
- Baseline of 10,000 IOPS (at 3.3 TB and above)
- Affordable performance

Provisioned IOPS (IO1)

- · SSD storage
- Maximum of 16 TB!
- Leverages Amazon EBS Elastic Volumes
- Maximum of 40K IOPS (32K for SQL Server)
- Delivers within 10% of the IOPS performance 99.9% of the time
- High performance and consistency

Magnetic

- Magnetic storage
- Maximum of 1 TB
- Supported for legacy databases

How do I decide between GP2 and IO1?

Why am I not seeing 40K IOPS?

- GP2 is a great choice, but be aware of burst credits on volumes < 1 TB
 - Hitting credit-depletion results in IOPS drop—latency and queue depth metrics will spike until credits are replenished
 - Monitor BurstBalance to see percent of burst-bucket I/O credits available
 - Monitor read/write IOPS to see if average IOPS is greater than the baseline
- Think of GP2 burst rate and PIOPS stated rate as maximum I/O rates

How do I scale my database instance?

Why am I not seeing 40K IOPS?

- Scale compute/memory vertically up or down
 - Handle higher load to grow over time
 - Lower usage to control costs
 - New host is attached to existing storage with minimal downtime
- Scale up Amazon EBS storage (now up to 16 TB!)
 - Amazon EBS engines now support Elastic Volumes for fast scaling (now including SQL Server)
 - No downtime for storage scaling
 - Initial scaling operation may take longer, because storage is reconfigured on older instances
 - Can reprovision IOPS on the fly

Managing high availability, read replicas, and backups in Amazon RDS

How do I ensure database high availability?

Multi-AZ provides enterprisegrade fault-tolerance across multiple data centers

- Automatic failover
- Synchronous replication
- Enabled with one click

What happens during a Multi-AZ failover?

How long does it take?

- Each host manages set of Amazon EBS volumes with a full copy of the data
- Instances are monitored by an external observer to maintain consensus over quorum
- Failover initiated by automation or through the Amazon RDS API
- Redirection to the new primary instance is provided through DNS

Why would I use Read Replicas?

- Relieve pressure on your source database with additional read capacity
- Bring data close to your applications in different regions
- Promote a Read Replica to a master for faster recovery in the event of disaster
- Upgrade a Read Replica to a new engine version
- Supported for MySQL, MariaDB, and PostgreSQL

When should I use Multi-AZ as opposed to Read Replicas?

Multi-AZ

- Synchronous replication—highly durable
- Only primary instance is active at any point in time
- Backups can be taken from secondary
- Always in two Availability Zones within a Region
- Database engine version upgrades happen on primary
- Automatic failover when a problem is detected

Read Replicas

- Asynchronous replication—highly scalable
- All replicas are active and can be used for read scaling
- No backups configured by default
- Can be within an Availability Zone, cross-AZ, or cross-region
- Database engine version upgrades independently from source instance
- Can be manually promoted to a standalone database

How does Amazon RDS manage backups?

- Two options: automated backups and manual snapshots
- Amazon RDS backups use Amazon EBS snapshots stored in Amazon S3
- Transaction logs are stored every
 5 minutes in Amazon S3 to support point-in-time recovery (PITR)
- No performance penalty for backups
- Snapshots can be copied across regions or shared with other accounts

When should I use automated backups as opposed to snapshots?

Automated backups

- Specify backup retention window per instance (7-day default)
- Kept until outside of window (35-day maximum) or instance is deleted
- Supports PITR
- Good for disaster recovery

Manual snapshots

- Manually created through the AWS Management Console, AWS CLI, or Amazon RDS API
- Kept until you delete them
- Restores to saved snapshot
- Use for checkpoint before making large changes, nonproduction or test environments, final copy before deleting a database

How do I restore a backup?

Why does it take so long?

- Restoring creates an entirely new database instance
 - Define the instance configuration just like a new instance
 - Will get the default parameter, security, and option groups
- New volumes are hydrated from Amazon S3
 - While the volume is usable immediately, full performance requires the volume to warm up until fully instantiated
 - Migrate to a DB instance class with high I/O capacity
 - Maximize I/O during restore process

Securing your Amazon RDS database instance

How do I secure my Amazon RDS database?

- Amazon RDS is designed to be secure by default
- Network isolation with Amazon Virtual Private Cloud (Amazon VPC)
- AWS Identity and Access Management (IAM)-based resource-level permission controls
- Encryption at rest using AWS KMS (all engines) or Oracle/Microsoft TDE
- Use SSL protection for data in transit

What does Amazon VPC provide?

- Places your instance in a private subnet, making it secure from public routes on the internet
- Database instance IP firewall protection lets you securely control network configuration
- Turn off Public Accessibility in DB instance settings to restrict access outside Amazon VPC
- Use ClassicLink to network with non-VPC resources

VPN VPC connection peering

Internet

How do I grant access to my database?

- Use IAM to control who can perform actions on Amazon RDS resources
- Do not use AWS root credentials to manage Amazon RDS resources—you should create an IAM user for everyone, including yourself
- Can use AWS multi-factor authentication (MFA) to provide extra level of protection

How do I encrypt my database?

- Use AWS KMS-based encryption in the AWS console
- No performance penalty for encrypting data
- Centralized access and audit of key activity
- Best practices
 - Encryption cannot be removed from DB instances
 - If source is encrypted, Read Replicas must be encrypted
 - Add encryption to an unencrypted DB instance by encrypting a snapshot copy

Monitoring your Amazon RDS database instance

How do I monitor my Amazon RDS database?

Amazon CloudWatch metrics & alarms
Upload DB logs directly to CloudWatch Logs

- Amazon RDS for MySQL/MariaDB
- Enhanced Monitoring for Amazon RDS
- · Access to over 50 CPU, memory, file system, and disk I/O metrics
- · As low as 1-second intervals

Integration with third-party monitoring tools

How do I improve database performance?

- Introducing Amazon RDS Performance Insights
- DB load: average active sessions
- Identifies database bottlenecks
 - Easy
 - Powerful
 - Top SQL/most intensive queries
- Identifies source of bottlenecks
- Enables problem discovery
- Adjustable timeframe
 - · Hour, day, week, and longer
- Available now for Aurora PostgreSQL
- Coming soon for all Amazon RDS engines

Can I know when service events happen?

- Amazon RDS uses Amazon SNS to receive notification when an event occurs
- Notifications can be in any form supported by Amazon SNS (email, a text message, or a call to an HTTP endpoint)
- Six different source types (DB instance, DB parameter group, DB security group, DB snapshot, DB cluster, DB cluster snapshot)
- 17 different event categories (availability, backup, deletion, configuration change, etc.)

Can I stop my database when it's not in use?

- Stop and start a running database instance from the console or AWS CLI
- Available for single-AZ DB instances
- While instance is stopped, you only pay for storage
- Backup retention window is maintained while stopped
- Instances are restarted after 7 days
 - Pending maintenance operations are applied
 - Instances can be stopped again if wanted

AWS Database Migration Service

What are AWS DMS and AWS SCT?

AWS Database Migration Service (AWS DMS) quickly and securely migrates or replicates your databases & data warehouses to AWS

AWS Schema Conversion Tool (AWS SCT) convert your database and data warehouse schemas to open source engines or AWS-native services (Amazon Aurora and Amazon Redshift)

We have migrated over 64,000 unique databases, and counting...

64,000 Databases Migrated with DMS

Key benefits of migrating with DMS

Get off expensive commercial databases & data warehouses

Avoid high fees and restrictive licenses! Switch to open-source based, pay-as-you-go services

Keep your applications running during the migration

Load and sync the target database, then switch over at your convenience

Low cost: pay only for the migration resources you use

Free DMS is available for 6 months when migrating to Aurora, Amazon Redshift, or Amazon DynamoDB

Other migrations are as low as \$3 per terabyte

Migration in both directions avoids lock-in

Replicate your data to a target outside of AWS. Or even migrate your data out of AWS, should your needs change

Database Migration the Easier Way

Step 1: Convert or copy your schema

Migration & Replication with DMS

Homogeneous or heterogeneous

Database Migration Use Cases

Modernize

- Convert and extract data from old database engines
- Update associated application code

Migrate

- Migrate business apps to Amazon RDS
- Migrate data warehouses to Amazon Redshift
- Upgrade, consolidate &

archive your databases
© 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Replicate

- Create cross-region Read Replicas
- · Run analytics in the cloud
- Keep dev/test and production in sync

Load is table by table

What else can I do?

What else can I do?

Target

AWS DMS & AWS Snowball

Got huge migration tasks?

Skip the network. Do a physical move with Snowball.

- Migrate large databases (over 5 TB)
- Migrate many databases at once
- Avoid migrations over slow network
- Push model instead of pull model

Schema Conversion with SCT

Modernize your database tier

Amazon Aurora

Modernize and Migrate your data warehouse to Amazon Redshift

SCT Helps with Converting Tables, Views, & Code

- Sequences
- User-defined types
- Synonyms
- Packages
- Stored procedures
- Functions
- Triggers
- Schemas
- Tables
- Indexes
- Views
- Sort and distribution keys

Database migration assessment

Connect SCT to source and target databases

Run assessment report

Read executive summary

Follow detailed instructions

Jignesh Shah Sr Product Manager, Amazon RDS jkshah@amazon.com Yoav Eilat
Sr Product Marketing Manager,
Amazon RDS
yeilat@amazon.com

Please complete the session survey in the summit mobile app.

Submit Session Feedback

1. Tap the **Schedule** icon.

2. Select the session you attended.

Tap Session
 Evaluation to submit your feedback.

Thank you! aws.amazon.com/rds aws.amazon.com/dms