Definition: Let F/K be an extension field. Then $\alpha \in F$ is algebraic over K if $f(\alpha) = D$ for some nonzero $f \in K[x]$, and α is called transcendental over K if α is not algebraic over K. Otherwise, F is said to be algebraic if every element of F is algebraic over K, and transcendental over K, otherwise.

Example:

- (a) i is algebraic over $\mathbb O$ because it is a root of $x^2 + 1$. Also, $\mathbb O(i)$ is algebraic over $\mathbb O$ because atbi is a root of $x^2 2ax + (a^2 + b^2) = 0$.
- (β) If $\alpha \in K$, then α is algebraic over K ($x-\alpha$), so K is an algebraic extension of itself.
- (7) IR is transcendental over \mathbb{O} . For example, \mathbb{T}_1, e , $\mathbb{Z}_{n=1}^{\infty} 2^{-n!}$ are transcendental.

Theorem: Let F/k be an extension of fields. TFAE:

- (a) a f is transcendental over K
- (b) there is an isomorphism $K(\alpha) \cong K(x)$ which is the identity on K.

Proof: (b) => (a) exercise.

(a) \Rightarrow (b) Suppose that $\alpha \in F$ is transcendental over K. Let $\phi: K[x] \rightarrow K(\alpha)$ by $\phi(f(x)) = f(\alpha)$. Then ϕ is a homomorphism and $\ker(\phi) = \{0\}$. So we

can extend to K(x) by $\phi\left(\frac{f(x)}{g(x)}\right) = \frac{f(a)}{g(a)}$ defined because $g(a) \neq 0$ for $g(x) \neq 0$. Then ϕ is an into homomorphism $K(x) \rightarrow K(a)$ which is the identity on K. But ϕ is also onto.

Theorem: Let F/K be an extension and let $\alpha \in F$ be algebraic over K.

- (i) $K(\alpha) = K[\alpha]$
- (ii) $K(\alpha) \simeq K[x]/\langle f(x) \rangle$ where f is the least degree monic polynomial with $f(\alpha) = 0$.
- (iii) $LK(\alpha): KJ = deg(f)$ where f is the minimal polynomial.
- (iv) Every element $K(\alpha)$ can be written uniquely as $C_0 + C_1 \alpha + C_2 \alpha + \cdots + C_{n-1} \alpha^{n-1}$

with $c_i \in K$ and n = deg(f), i.e. $\{1, \alpha, \dots, \alpha^{n-1}\}$ is a basis for $K(\alpha)$ over K.

Proof: (i)-(ii) Let $\phi: K[x] \rightarrow K(\alpha)$ be $\phi(g(x)) = g(\alpha)$ be a homomorphism. Because α is algebraic over K_1 ker $(\phi) \neq 203$, but K[x] is a principal ideal clomain so $\ker(\phi) = \langle f(x) \rangle$ for some $f \in K[x]$. Replace f(x) by $c^{-1}f$ to make f(x), without loss of generality, monic.

Note that $Im(\phi) = K[d]$, so by the First Isomorphism Theorem, $K[\alpha] \sim K[x]/\langle f(x) \rangle$. Now, f(x) is irreducible. because if f(x) = g(x)h(x), then f(a) = g(a)h(a) $\Rightarrow 0 = g(a)h(a)$ so either g(a) = 0 or h(a) = 0. Thus g(x) or h(x) is a multiple of f, and the other is a constant (degrees). Because f(x) is irreducible, then <f(x)> is maximal, so K[x]/<f(x)> is a field. Thus, KlaJ is a field and Kuzaf $\leq K[\alpha] \leq K(\alpha)$, so $K[\alpha] = K(\alpha)$ because $K(\alpha)$ is the smallest field. Now, (ii) follows immediately because $K[\alpha] = K(\alpha) \triangle K[x]/\langle f(x) \rangle$. Note now that $\phi: K[x]/\langle f(x)\rangle \rightarrow K(\alpha)$ is an isomorphism of fields which is the identity on K, so it also gives an isomorphism of vector spaces over K. Thus, {1, x, ..., x n-1 } form a basis for $K[x]/\langle f(x)\rangle$ as a vector space (with n=deg(f)) over K because the Coset g(x) + < f(x)> is represented uniquely by r(x) where g(x) = q(x)f(x) + r(x)and deg(r) < deg(f). Then $Im(\phi)$ is a basis for $K(\alpha)$ over K, this is {1, d, ..., and y, proving (iii)-(iv) let df F be algebraic over K, and let f(x) be

its minimal polynomial. If $f(\beta) = 0$ where β is in

Some extension), then there exists an isomorphism $\phi: K(a) \rightarrow K(\beta)$ such that (i) $\phi(a) = a$ for all $a \in K$ (ii) $\phi(\alpha) = \beta$. Indeed, $K(\alpha) \simeq K[x]/\langle f(x) \rangle \simeq K(\beta)$. Example: (a) Q($\sqrt{2}$), the minimal polynomial is $f(x) = x^2 - 2$ but also $f(-\sqrt{2}) = (-\sqrt{2})^2 - 2 = 0$, so there exists an isomorphism $\phi: Q(\sqrt{z}) \rightarrow Q(-\sqrt{z})$ such that $\phi(a) = a$ for all $a \in Q$ and $\phi(\sqrt{2}) = -\sqrt{2} \cdot So$ $\phi(a+b\sqrt{2}) = \phi(a) + \phi(b\sqrt{2}) = a-b\sqrt{2}$ (b) $\mathbb{Q}(\sqrt[3]{a})$, the minimal polynomial is x^3-2 . $x^3-2=0 \implies x^3=2 \qquad x^3=2e \implies x=\sqrt[3]{2}e^2$ $x = \sqrt[3]{2}, \quad x = \sqrt[3]{2}e^{\frac{2\pi i}{3}}, \quad x = \sqrt[3]{2}e^{\frac{4\pi i}{3}}$ Then, $\mathbb{Q}(\sqrt[3]{2}) \simeq \mathbb{Q}(\sqrt[3]{2}e^{\frac{2\pi i}{3}}) \simeq \mathbb{Q}(\sqrt[3]{2}e^{\frac{4\pi i}{3}})$ Theorem: If F/K is an extension and $LF:KJ<\infty$ then F is algebraic and finitely generated over K Proof: If [F:K]=n, and {a1,..., and is a basis for F as a vector space over K, then F = { = Cidi : Ci EK & C K (d1, ..., dn) C F

so F is generated over K as a field by &1, --, an. Now let a F. Since dimk(F)=n, we know that 21, a, ..., and g are linearly dependent over K. So there exists co,..., cnek not all O such that $C_0 + C_1 \alpha + \cdots + C_n \alpha^n = 0$ But a is a root of the nonzero polynomial, so $f(x) = C_0 + C_1 \times + \cdots + C_n \times^n$ Example: $LQ(\sqrt{2}):Q] = a$ and $LQ(\sqrt{2},\sqrt{3}):Q(\sqrt{2})] = a$ Then $[Q(\sqrt{2},\sqrt{3}):Q] = [Q(\sqrt{2},\sqrt{3}):Q(\sqrt{2})][Q(\sqrt{2}):Q] = 4$ 12+13 € Q(12,13) so √2+13 is algebraic. {1, \quad 12 + \quad \ta}, (\quad \ta + \quad \ta)^2, (\quad \ta + \quad \ta)^3) are linearly dependent over W.