

Mikrovezérlők Raspberry Pi Pico

Dr. Hidvégi Timót egyetemi docens

Tartalomjegyzék

- Alapok
- Példák

RP2040 főbb tulajdonságai

- Dual ARM Cortex-M0+ @ 133 MHz
- Memória
 - 264kB on-chip SRAM in six independent
- Architektúra
 - DMA controller
- Interfész
 - 30 GPIO, ebből 4 analóg bemenet is lehet
- Periféria
 - 2 × UART
 - 2 × SPI controller
 - 2 × I2C controller
 - 16 × PWM channel
 - 1 × USB

Órajel előállítása

ROSC

- Gyűrűs belső oszcillátor, nem pontos
- Indításkor kb 6 MHz, a teljes tartomány
 1.2 MHz 12 MHz
- Külső órajelforrás használatánál a ROSC letiltható -> energiatakarékosság

Memória

- Az RP2040 beágyazott ROM és SRAM memóriával rendelkezik.
- ROM
 - A 16 kB-os csak olvasható memória (ROM) a 0x000000000 címtől található. A ROM tartalma a szilícium gyártásakor rögzített.
 - Tartalmazza a következőket:
 - Kezdeti indítási kód
 - Flash boot szekvencia
 - Flash programozási rutinok
 - UF2 támogatással rendelkező USB eszköz
 - Segédprogram könyvtárak
 - A ROM-ba való írás kísérlete nem generál hibát.

SRAM

- A chipen összesen 264 kB SRAM található.
 - Fizikailag ez hat bankra van felosztva, ez jelentősen javítja a memória sávszélességét több master esetén, de a szoftver egyetlen 264 kB-os memóriarégióként is kezelheti.
 - Nincs korlátozás arra vonatkozóan, hogy mi tárolódik az egyes bankokban
 - · processzorkód, adatpufferek vagy ezek keveréke.
 - Négy 16k x 32 bites bank (egyenként 64kB) és két 1k x 32 bites bank (egyenként 4kB) van.
 - A bankolás az SRAM fizikai particionálása, amely a teljesítményt javítja azáltal, hogy több egyidejű hozzáférést tesz lehetővé.
 - Logikailag egyetlen 264kB összefüggő memória van. Minden egyes SRAM bankhoz egy dedikált AHB-Lite arbiteren keresztül lehet hozzáférni. Ez azt jelenti, hogy különböző buszmesterek párhuzamosan hozzáférhetnek különböző SRAM-bankokhoz, így minden rendszerórajel-ciklusban akár négy 32 bites SRAM-hozzáférés is történhet (mesterenként egy).
 - Az SRAM a 0x20000000 címen kezdődik.

Jelölés, RP 2040, RP 2350

RP2350A 30 GPIO 7×7 QFN 60 pin

RP2350B 48 GPIO 10×10 QFN 80 pin

RP2354A 30 GPIO 7×7 QFN 60 pin Stacked 2MB flash

RP2354B 48 GPIO 10×10 QFN 80 pin Stacked 2MB flash

Alapok

- Raspberry Pi Pico a Raspberry Pi Foundation által kifejlesztett mikrokontrollerboard
 - o RP2040 mikrovezérlőre épül
 - o A Raspberry Pi Pico 2-n az RP2350-es eszköz található
- A Raspberry Pi Pico hasonló funkciókkal rendelkezik, mint az Arduino és az esp32-es eszközök
- A Raspberry Pi Pico jellemzően elektronikai projektekhez, IoT alkalmazásokhoz stb. használható.
- Programozásához jellemzően MicroPython alkalmazható, amely a Python lekicsinyített/egyszerűsített változata.

Raspberry Pi Pico fajtái

- Raspberry Pi Pico
- Raspberry Pi Pico H
- Raspberry Pi Pico W
- Raspberry Pi Pico WH

Egyéb implementációk

Lábkiosztás

ADC_VREF

ADC1 I2C1 SCL

SPI0 TX I2C1 SCL

I2C0 SCL

I2CO SDA

SPIO RX I2CO SDA UARTO TX

Összehasonlítás

	Raspberry Pi RP2040	Nordic nRF51822	Microchip SAM D21	NXP KL1x	STMicro STM32G0
Processor	Cortex-M0+	Cortex-M0	Cortex-M0+	Cortex-M0+	Cortex-M0+
Cores	2	1	1	1	1
Clock	133MHz	16MHz	48MHz	48MHz	64MHz
RAM	264KB	16 or 32KB	4 to 32 KB	4 to 32 KB	8 to 144 KB
Flash	Up to 16 MB ¹	128 or 256KB	16 to 256 KB	32 to 256 KB	16 to 512KB
PIO	Yes	// -	-	-,	-
GPIO	30	31 or 32	26 to 52	26 to 70 ^{5,13}	up to 94 13
UART	2 + 4 ³	1	up to 6 11,13	2 to 4 ^{5,13}	up to 6 13
I2C	2 + 8 4	2 8	up to 6 11,13	up to 3 13	up to 3 13
128	8 ²	8-	1 5	1 5	up to 2 13
SPI	2 + 8 2	2 + 1 9	up to 6 11,13	up to 3 13	up to 3 13
PWM	16 + 8 ²	via Timers	via Timers	up to 11 13	via Timers
ADC	4 channels	8 channels	up to 20 channels ¹³	up to 20 channels ¹³	up to 16 channels ¹³
	12-bit	10-bit	12-bit	12-bit or 16-bit ⁵	12-bit
RTC 10	Yes	Yes	Yes	Yes	Yes
USB	Host + Device ⁶	-	Host + Device 5,7	-	Host + Device 7

Fejlesztőkörnyezet

- "C", C++ nyelv
- Python
 - Thonny
 - Egyszerű és felhasználóbarát Python-szerkesztő, működik Windows, macOS és Linux platformokon. Beépített támogatással rendelkezik a Raspberry Pi Pico hardver/MicroPython firmware számára is.
 - https://thonny.org
- Assembly

Operation	Description	Assembler	Cycles
Move	8-bit immediate	MOVS Rd, # <imm></imm>	1
	Lo to Lo	MOVS Rd, Rm	1
	Any to Any	MOV Rd, Rm	1
	Any to PC	MOV PC, Rm	2
Add	3-bit immediate	ADDS Rd, Rn, # <imm></imm>	1
	All registers Lo	ADDS Rd, Rn, Rm	1
	Any to Any	ADD Rd, Rd, Rm	1
	Any to PC	ADD PC, PC, Rm	2
	8-bit immediate	ADDS Rd, Rd, # <imm></imm>	1
	With carry	ADCS Rd, Rd, Rm	1
	+		_

Micropython

- A MicroPython a Python "lekicsinyített" változata
- Tipikusan a mikrokontrollerekhez és a korlátozott rendszerekhez használják.
- Firmware
 - https://micropython.org/download/RPI PICO/
 - https://www.raspberrypi.com/documentation/microcontrollers/?version=E0C9125B0D9B
- Könyvtárak
 - https://docs.micropython.org/en/v1.16/library/
 - machine könyvtár
- class Pin control I/O pins
- · class Signal control and sense external I/O devices
- · class ADC analog to digital conversion
- · class PWM pulse width modulation
- · class UART duplex serial communication bus
- class SPI a Serial Peripheral Interface bus protocol (master side)
- class I2C a two-wire serial protocol
- · class RTC real time clock
- · class Timer control hardware timers
- class WDT watchdog timer
- class SD secure digital memory card (cc3200 port only)
- INDUSTRIAL AND RESEARCH LAB FOR C1 class SDCard secure digital memory card

Telepítés

- Bootsel-t megnyomni
- Csatlakoztatás a laptophoz
- Bootsel elengedése
- Index.html-re kattintani -> navigálás (https://www.raspberrypi.com/documentation/microcontrollers/?version=E0C9125B0D9B)
 - Letöltés: RPI_PICO_W-20241129-v1.24.1.uf2
- Átmásolni a letöltött uf2 file-t
- Thonny jobb alsó sarkában kiválasztani a MicroPython-t

MicroPython

Getting started with MicroPython

Download the correct MicroPython UF2 file for your board:

- Pico
- Pico W
- Pico 2
- Pico 2 W

□ > Ez a gép > RPI-RP2 (H:)

INDEX

INFO UF2

🗸 🕎 Ez a gép

> Helyi lemez (C:)

> 📥 Új kötet (D:)

Új kötet (E:)
 Új kötet (F:)

> RPI-RP2 (H:)

↑↓ Rendezés

Keresés: RPI-RP2 (H:)

Próba

Fejlesztőpanelek

CYBERSECLAB A felhasznált tesztpanel

https://malnapc.hu/raspberry-pi-pico-wh

https://malnapc.hu/maker-pi-pico-base-pico-panel-nelkul (a képen a fejlesztőpanel tartalmaz Pico board-ot)

Mi az a ThingSpeak? Vagy inkább saját felhő?

- Egy IoT-felhőplatform, ahol az érzékelők adatai a felhőbe küldhetők.
 - A regisztrációhoz új MathWorks-fiókot kell létrehozni (vagy a meglévőbe bejelentkezni).
 - A ThingSpeak szolgáltatást a MathWorks üzemelteti.
 - A ThingSpeak ingyenes a kisebb, nem kereskedelmi projektek számára.
 - A ThingSpeak tartalmaz egy webes szolgáltatást (REST API).

teszt

Channel ID: Author: mwa00 Channel Settings Sharing API Keys Data Import / Export

- Saját VPS állandó IP címmel
 - Egyedi fejlesztés

CYBERSECLAB Első program

Eszköz adatai

Eszközinformációk kiolvasása

import sys
print(sys.implementation)
print(sys.implementation.name)
print(sys.implementation[0])

```
Shell ×

>>> %Run -c $EDITOR_CONTENT

MPY: soft reboot
  (name='micropython', version=(1, 24, 1, ''), _machine='Raspberry Pi Pico with RP2040', _mpy=4870)
  micropython
  micropython

>>>

MicroPython (Raspberry Pi Pico) • Board CDC @ COM6 =
```


Példák (portkezelés)

```
import machine
                                                                     import machine
import time
                                                                     import time
pin = 8
                                                                     pin = 7
led = machine.Pin(pin, machine.Pin.OUT)
                                                                     led = machine.Pin(pin, machine.Pin.OUT)
while True:
                                                                     while True:
  led.value(1)
                                                                       led.toggle()
                                                                       time.sleep(1)
  time.sleep(2)
  led.value(0)
  time.sleep(2)
```

https://docs.micropython.org/en/latest/library/machine.html

https://docs.micropython.org/en/latest/library/machine.Pin.html

https://docs.micropython.org/en/latest/library/time.html

Működési frekvencia

- machine.freq
 - o Visszaadja a CPU frekvenciáját Hz-ben
 - machine.freq(MCU_frequency[, peripheral_frequency=48_000_000])

import machine

print("CPU frekvencia:" + str(machine.freq()))
machine.freq(240000000)

CPU és az UART frekvenciája machine.freq(125000000, 125000000) print("CPU frekvencia:" + str(machine.freq()))

https://docs.micropython.org/en/v1.16/library/machine.html

Példák (adatbevitel)

```
import machine
import time
pin = 20
button = machine.Pin(pin, machine.Pin.IN, machine.Pin.PULL_UP)
while True:
if button.value() == 1:
    print("Nyomd meg a gombot")
else:
    print("A nyomógomb lenyomva")
time.sleep(1)

if not button.value():
    print("A nyomógomb lenyomva")
else:
    print("A nyomógomb lenyomva")
else:
    print("A nyomógomb lenyomva")
else:
    print("Nyomd meg a gombot")
```

time.sleep(1)

Shell

Hőmérsékletmérés

- A hőmérséklet-érzékelő egy előfeszített dióda, amely a Vbe feszültséget méri.
 - AINSEL=4 csatorna
 - Jellemzően Vbe = 0,706V 27 C fokon, -1,721mV/fok meredekséggel
 - T = 27 (ADC voltage 0.706)/0.001721
 - Mivel a Vbe és a Vbe meredeksége a hőmérséklet-tartományban és eszközönként változhat, pontos méréshez kalibráni kell

Timer

- A MicroPython jelenlegi verziója a Pi Pico számára nem teszi lehetővé a hardveres időzítők különkülön történő használatát.
 - Ehelyett szinte korlátlan számú "szoftveres" időzítő létrehozására van lehetőség, amelyek mindegyike egyetlen hardveres időzítőre támaszkodik.

```
Projektváz
```

```
from machine import Timer

def interruptionHandler(timer):
    ...

if __name__ == "__main__":
    soft_timer = Timer(mode=Timer.PERIODIC, period=1000, callback=interruptionHandler)

mode=Timer., period=1000,

deinit(
    init(
    mro(
    ONE_SHOT
    " + str(coupeRIODIC)

" + str(coupeRIODIC)
```


Portkezelés Timer-rel

from machine import Pin, Timer

```
pin = 6
led = Pin(pin, Pin.OUT)
timer = Timer()

def blink(timer):
    led.toggle()
```

timer.init(freq=1, mode=Timer.PERIODIC, callback=blink)

- A rendszer újraindítása a feladata, ha az alkalmazás összeomlik.
- Elindulása után nem lehet leállítani vagy átkonfigurálni. Az engedélyezés után az alkalmazásnak rendszeresen törölni (feet() függvény) kell a watchdogot, hogy megakadályozza a rendszer visszaállítását.
- Alkalmazás
 - o WDT objektum létrehozása és elindítása.
 - o Az időkorlátot milliszekundumban kell megadni.
 - Ha egyszer már fut, az időkorlát nem módosítható és a WDT-t sem lehet leállítani.
 - o Az rp2040 eszközökön a maximális időkorlát 8388 ms.

https://docs.micropython.org/en/latest/library/machine.WDT.html

```
from machine import WDT
import time

print("WDT indul")
wdt = WDT(timeout=5000)
wdt.feed()
print("WDT beállításra került")

while True:
    print("időzítés")
    time.sleep(1)
```


 RTC.datetime(év,hónap,nap, ,óra, perc, másodperc, ,)

```
from machine import RTC
import time

rtc = RTC()
rtc.datetime((2025, 4, 11, 0, 1, 30, 0, 0))
print(rtc.datetime())

now = time.localtime()
print(now)

print("Date: {}/{}/{}".format(now[1], now[2], now[0]))
print("Time: {}:{}".format(now[3], now[4]))
```

https://docs.micropython.org/en/v1.16/library/machine.RTC.html

Szálkezelés

```
from time import sleep
import thread
# mind a két függvényben végtelen ciklus található
def core0Thread():
  szam0 = 0
  while True:
     szam0 += 2
     sleep(2)
     print("Core0: " + str(szam0))
def core1Thread():
  szam1 = 1
  while True:
     szam1 += 2
     sleep(2)
     print("Core1: " + str(szam1))
second_thread = _thread.start_new_thread(core1Thread, ())
coreOThread()
```

- Két processzor van az RP 2040 mikrovezérlőben
- A két függvényben egy-egy végtelen ciklus van
- Könyvtár
 - https://docs.python.org/3/library/ thread.html

- "network" csomag alkalmazása
 - Access Point (AP)
 - Működik a Pico AP-ként, de Internethez nem tud csatlakozni.
 - Station (STA)
 - Állomásként tud az Internethez csatlakozni egy routeren keresztül.

import network

```
staIf = network.WLAN(network.STA_IF)
print(staIf.active())
```

apIf = network.WLAN(network.AP_IF)
print(apIf.active())

import network import requests

```
# Wi-Fi credentials
ssid = 'XXXXXX'
password = 'XXXXX'
```

Connect to network
wlan = network.WLAN(network.STA_IF)
wlan.active(True)

wlan.connect(ssid, password)

https://docs.micropython.org/en/v1.16/library/network.WLAN.html

WiFi példa, HTTP kérés - válasz

import network import requests

Wi-Fi credentials ssid = 'XXXXXX' password = 'XXXXXX'

Connect to network wlan = network.WLAN(network.STA_IF) wlan.active(True)

wlan.connect(ssid, password)

GET request
response = requests.get("https://cyberseclab.eu")
responseCode = response.status_code
responseContent = response.content

print('Response HTTP code: ', responseCode)
print('Response content:', responseContent)

MPY: soft reboot
Response HTTP code: 200
Response content: b'\r\n\r\n<!doctype html>\r\n<html lang="zxx">\r ...
\\x91.</h1>\r\n<div class="banner-btn wow animate_animated animate_fa ...
s 2023-ban hivatalosan is megalakult a Gépészmérn ...

Megszakításkezelés

- A megszakításkérés egy sürgős beavatkozáskérés, amelyet a processzornak küldenek azért, hogy egy adott feladatot azonnal prioritásként kezeljen és hajtson végre. Ez megállítja azt a programrészletet, amelyet a processzor végrehajt.
- A megszakításkéréseket különböző események például külső események (él-szintváltozások) vagy belső perifériák okozhatják. Segítségükkel olyan feladatokat lehet végrehajtani, amelyek nem részei a főprogramnak, és a program többi részének a futásával egyidejűleg végezhetők (aszinkron végrehajtás).

Megszakításkezelés

Függvények

- irq.init(): A megszakítás újbóli inicializálása. Automatikusan újra aktiválódik.
- irq.enable(): A megszakítás engedélyezése.
- irq.disable(): A megszakítás letiltása.
- irq(): Kézzel indítja a megszakítási rutin hívását.
- irq.flags() a megszakítást kiváltó esemény típusának megismeréséhez. Csak az isr-ben használható.

Típusok

- Amikor a jel 0 V, a Pin.IRQ_LOW_LEVEL megszakítás lép működésbe.
- Amikor a jel 3.3 V, a Pin.IRQ_HIGH_LEVEL megszakítás lép működésbe.
- Amikor egy bemeneti jel LOW-ról (0 V) HIGH-ra (3,3 V) változik, a Pin.IRQ_RISING megszakítás aktiválódik.
- Amikor egy bemeneti jel HIGH-ról (3.3 V) LOW-ra (0 V) változik, a Pin.IRQ_Falling megszakítás aktiválódik.

https://docs.micropython.org/en/latest/library/machine.Pin.html#machine.Pin.irq

Megszakításkezelés

Megszakításkezelés váza

```
from machine import Pin

pinButton = Pin(20, mode=Pin.IN, pull=Pin.PULL_UP)

def interruptionHandler(pin):
    ...

pinButton.irq(trigger=Pin.IRQ_FALLING,handler=interruptionHandler)

while True:
```


Linkek

- Adatlap
 - https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
- MicroPython
 - https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-python-sdk.pdf
- Példák
 - https://github.com/cyberseclabor/Mikrovezerlo/tree/main/RaspberryPiPICO/Eloadas 01
 - https://webelektronika.com/tagcloud/rpi pico

Industrial and Research Lab for Cybersecurity

- Web
 - https://cyberseclab.eu
- Facebook
 - https://www.facebook.com/IndustrialandResearchLab
- Github
 - https://github.com/cyberseclabor
- Linkedin
 - https://www.linkedin.com/company/industrial-and-research-lab-for-cybersecurity

Industrial and Research Lab for Cybersecurity

enumeration ISO21434 MiTM Artificial_Intelligence network hacking education OT/ICS Android spoofing S7 forensics CyberSecLab Purdue vehicle OWASP pentest Security NIS2 CAI cyber exploit linux AI OT nmap Unit WiFi scada sniffing kali online unit modbus malware ethical SDR Machine_Learning metasploit vulnerability head Pentesting