Disclaimer

Содержание

1.	Билет 1															3																		
	1.1.	тор реч пер ТЕ	омо нно реч СМ. ект	ого ой но И ри	П ВО ГО М	от лн в пе,	ен Ов Ол да	ци юй нс нс	ал й (эвс на и м	1а. фу эго я иал	Д тни се сн	Ци кц чи зя: ит	фо ии сл зь	фе га. м	ере //(/ Е тех	ен 7 <u>1</u> 3ь кд	ці ір цу ле	ла I ах г	лн То ке ю и	ьн ня ени пе	ое ят: ия ре	у ия д чт	'Ра 1 І 1Л 1НЬ	- аві ір я ім	не од по и	ни ол ко ке	iе іы ей ом ре	Д. НО ПО ЧЕ	ля ГО ГЕ ЭНО	: п : и : : : : п	юп Т] та во	1e- IO- М, ит		3
2.	Би л 2.1.	Γр		1Ч1	ΗЫ		yc.	ЛО	ВИ	R	ДЈ	RI	П	OΓ	ер	ре	ЧЕ	ΙЫ	ΙX	В	ОЛ	Н	ЭΒ	ЫΣ	ζ (þу								6
	ческая формулировка задачи описания волн ТЕ, ТМ, ТЕМ ти															ТИ:	ИПС	в.	6															
3.	Би л 3.1.	МІ ЛІ		<mark>ИМ</mark> Хр	<mark>ЛУ</mark> ит	У <u>№</u> 'ИЧ	[] ec	Ц и КИ	:сп 1е	ep чғ	оси аст	101 [O]	нн ГЫ	O€ []	; 1 Д	/р цл	ав ин	н НЬ	ЭН I Е	иє 30,) ДН	ĮЛ [.	я За	BC lBI	лі 1С	Н .	В 100	ид СТ	цеа и ,	алі ДЛ	ЬН [ИН	ΗЫ		8
			ЮЩ																															8
4.	Бил 4.1. 4.2.	ПУ чес МІ суї	/С7 ски	М <mark>И</mark> СТВ	сл <mark>ИУ</mark> ов	oe: У <mark>М</mark> ван	м [Г	ен 'л ғ ı Т	нь авн ГЕ	је ны ¦М	вс :-:	олі (Т ол	ны • `Е]	I, I М	на) в Т	л] во. Е.	ра лн М	ВЈ IЫ В	IЯ В ОЛ	ем л	IЫ ин а і	е ни в 1	ПЈ ЯХ КО	ю(: п ак	ск ep	им ред	I Д цач	ЦИ: • Ч. НС	эл Уо й	ек сл. ли	тр ов ин	 ие ии	•	131313
5 .	Бил	ет	5		•		•												•				•				•						٠	17
6.	Бил	ет	6	•			•					•				•	•	•		•		•	•		•	٠		•	•				•	17
7.	Бил	ет	7				•	•	•			•	•		•	•				•		·	•					•	•	•				17
8.	Бил	ет	8	•					•	•		•	•				•	•		•		•	•		•	•	•	•	•	•			•	17
9.	Бил	ет	9				•	•	•			•	•		•	•				•		·	•					•	•	•				17
10	Бил	ет	10	•																		•				•		•	•				•	17
11.	Бил	ет	11				•															•											•	17

12.Билет 12		•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	17
13.Билет 13		•			•						•							•						•	17

1. Билет 1

1.1. Гармонические волны в линиях передачи. Выражение для векторного потенциала. Дифференциальное уравнение для поперечной волновой функции $\psi(\vec{r_{\perp}})$. Понятия продольного и поперечного волнового числа. Выражения для полей ТЕ, ТМ, ТЕМ. Импедансная связь между поперечными компонентаит электрического и магнитного полей и понятие поперечного волнового сопротивления

Линия передач - это любая цилиндрическая система. В них различают продольное z и поперечное $\vec{r_\perp} = r_\perp(r,\theta)$ направление. При описании таких систем проще использовать векторный потенциал \vec{A} , который должен удовлетворять уравнению Гельмгольца (для амплитуд):

$$\Delta \vec{A}^e + k^2 \vec{A}^e = -\frac{4\pi\mu}{c} \vec{j}^e = 0$$
$$\vec{B} = rot \vec{A}^e$$

0 потому что случай, где нет сторонних источников. Запишем поля в ЛП, когда волна бежит вдоль оси Oz:

$$\vec{E}(\vec{r}_{\perp}, z, \theta) = \vec{E}_0(\vec{r}_{\perp})e^{i(wt-hz)},$$

где h - **продольное волновое число** (постоянная распространения). Реальное поля в таком случае записывается как:

$$E_{R_x} = \operatorname{Re}\{E_x\} = |E_x(\vec{r}_\perp)|\cos(wt - hz + \varphi(\vec{r}_\perp))$$

Запишем веторный потенциал в следующем виде:

$$\vec{A}^e = \psi^e(\vec{r}_\perp)e^{-ihz}\vec{z_0},$$

где $\psi^e(\vec{r}_\perp)$ - **поперечная волновая функция**. Запишем теперь поля \vec{E} и \vec{H} через $\psi^e(\vec{r}_\perp)$. Вспомним выражение полей через векторный потенциал:

$$\begin{split} \vec{H} &= \frac{1}{\mu} rot \vec{A^e} \\ \vec{E} &= -\nabla \varphi - \frac{1}{c} \frac{\partial \vec{A^e}}{\partial t} = \frac{1}{i k_0 \varepsilon \mu} (\nabla div + k^2) \vec{A^e}, \end{split}$$

где $k = \frac{w}{c}\sqrt{\varepsilon\mu}, k_0 = \frac{w}{c}$. При подстановке выражения для $\vec{A^e}$, для компонент векторов в случае TM - волны получим (надо расписать такие вещи как $\operatorname{div} \vec{A^e}, \ \nabla \operatorname{div} \vec{A^e}, \ \operatorname{rot} \vec{A^e}$):

$$E_{z} = \frac{\varkappa^{2}}{ik_{0}\varepsilon\mu}\psi^{e}(\vec{r}_{\perp}) \cdot e^{i(wt-hz)}$$

$$\vec{E}_{\perp} = -\frac{h}{k_{0}\varepsilon\mu}\nabla_{\perp}\psi^{e}(\vec{r}_{\perp}) \cdot e^{i(wt-hz)}$$

$$\vec{H}_{\perp} = \frac{1}{\mu}[\nabla_{\perp}\psi^{e}(\vec{r}_{\perp}) \times \vec{z_{0}}] \cdot e^{i(wt-hz)}$$

$$H_{z} = 0$$

 ${f TM}$ -волна - поперечная магнитная волна (Магнитное поле имеет только поперечную компоненту. Поле ec E имеет и поперечное и продольное направление).

Потенциал $\vec{A^e}$, при любой зависимости от времени, должен удовлетворять волновому уравнению:

$$\Delta \vec{A^e} - \frac{\varepsilon \mu}{c^2} \frac{\partial^2 \vec{A^e}}{\partial t^2} = 0$$

В нашем случае, когда векторный потенциал имеет вид $\vec{A^e} = \psi^e(\vec{r_\perp})e^{-ihz}\vec{z_0}$, для гармонических полей справедливы следующие переходы:

$$\frac{\partial}{\partial t} \Rightarrow iw, \ \Delta \vec{A}^e + k^2 \vec{A}^e = 0, \ k^2 = \frac{w^2}{c^2} \varepsilon \mu$$

Рассмотри для *z*-компоненты:

$$\Delta A_z^e + k^2 A_z^e = 0, \ \Delta = \Delta_\perp + \frac{\partial^2}{\partial z^2}$$

$$\frac{\partial^2}{\partial z^2} \Rightarrow -h^2, \ \text{t.k.} A_z^e = \psi^e(\vec{r}_\perp) e^{-ihz}$$

$$\Delta_\perp \psi^e + \underbrace{(k^2 - h^2)}_{\varkappa^2} \psi^e = 0$$

$$\Delta_\perp \psi^e + \varkappa^2 \psi^e = 0$$

 \varkappa^2 - поперечное волновое число. Если поле удовлетворяет уравнению выше, то такое поле удоветворяет уравнениям Максвелла.

Аналогично сделаем для ТЕ - волны.

ТЕ-волна - поперечная электрическая волна (Электрическое поле имеет только поперечную компоненту. Магнитное поле имеет и поперечное и

продольное направление). По принципу двойственности производим замены:

$$\vec{E} \to \vec{H}, \ \vec{H} \to -\vec{E}, \ \varepsilon \leftrightarrow \mu$$

$$\begin{split} H_z &= \frac{\varkappa^2}{ik_0\varepsilon\mu}\psi^m(\vec{r}_\perp)\cdot e^{i(wt-hz)}\\ \vec{H_\perp} &= -\frac{h}{k_0\varepsilon\mu}\nabla_\perp\psi^m(\vec{r}_\perp)\cdot e^{i(wt-hz)}\\ \vec{E_\perp} &= -\frac{1}{\mu}[\nabla_\perp\psi^m(\vec{r}_\perp)\times\vec{z_0}]\cdot e^{i(wt-hz)}\\ E_z &= 0 \end{split}$$

Вообще говоря, ψ^e и ψ^m могут быть различными, поэтому выше вместо ψ^e записано ψ^m . Аналогично для ψ^m требуется выполнение:

$$\Delta_{\perp}\psi^m + \varkappa^2\psi^m = 0$$

 ${
m TE}, {
m TM}$ волны - это решения уравнений Максвелла. однак может быть еще один тип решений - ${
m TEM}$ - волны. Рассмотрим случай $\varkappa=0,\ h=k$:

$$H_z = E_z = 0$$

$$\vec{E_\perp} = -\frac{1}{\sqrt{\varepsilon\mu}} \nabla_\perp \psi \cdot e^{i(wt - kz)}$$

$$\vec{H_\perp} = \frac{1}{\mu} [\nabla_\perp \psi \times \vec{z_0}] \cdot e^{i(wt - kz)}$$

$$\Delta_\perp \psi = 0$$

ТЕМ-волна - чисто поперечная волна (Электрическое поле имеет только поперечную компоненту, как и магнитное).

Что имеем в итоге:

- Поля выражаются через поперечную волновую функцию
- ullet Продольные компоненты полей пропорциональны ψ
- ullet Поперечные компоненты полей пропорциональны $abla_{\perp}\psi$

Т.е. если заданы ψ^e, ψ^m , то можно полностью найти поля. Из формул также видно следующее соотношение:

$$\vec{E}_{\perp} = \eta_{\perp \text{\tiny B}} [\vec{H}_{\perp} \times \vec{z_0}],$$

где $\eta_{\perp \rm B}$ - поперечное волновое сопротивление - отношение между поперечными компонентами полей в бегущей волне $\eta_{\perp \rm B}=\frac{E_\perp}{H_\perp}$. Для различных

типов волн записывается как:

$$ext{TE}(+), ext{TM}(-)$$
 - волны: $\eta_{\perp ext{B}} = \sqrt{rac{\mu}{arepsilon}} \left(rac{k}{h}
ight)^{\pm 1}$
 $ext{TEM}$ - волны: $\eta_{\perp ext{B}} = \sqrt{rac{\mu}{arepsilon}}$

Заметим, что в бегущей волне поля зависят от координат, а их отношение - $\eta_{\perp \rm B}$ - нет. В стоячей волне это не так.

2. Билет 2

2.1. Граничные условия для поперечных волновых функций волн ТЕ, ТМ, ТЕМ типов в идеальной линии передачи. Математическая формулировка задачи описания волн ТЕ, ТМ, ТЕМ типов.

Рассмотрим случай идеального проводника, $\sigma \to \infty$ (Вообще говоря, идеальных проводников не бывает, однако условие идеальной проводимости можно записать в виде: $\sigma \gg w$ ($\delta \ll L$)). Вспомним граничные условия для полей на поверхности идеального проводника:

$$E_{\tau}|_{S} = 0, \ H_{n}|_{S} = 0,$$

а также условие на поперечную волновую функцию:

$$\Delta_{\perp}\psi^{e,m} + \varkappa^2\psi^{e,m} = 0$$

Найдем граничные условия для $\psi^{e,m}$ для идеальной $\Pi\Pi$.

ТМ-волна:

т.к.
$$E_z \sim \psi^e, \ \vec{E}_{\perp \tau} \sim \frac{\partial \psi^e}{\partial \tau}$$
 и $E_z = 0, \ E_{\perp \tau} = 0$ то $\psi^e(\vec{r}_\perp)|_S = 0$

- это граничное условие Дирихле

ТЕ-волна:

т.к.
$$\vec{E}_{\perp au} \sim [
abla_{\perp} \psi^m(\vec{r}_{\perp}) imes \vec{z_0}]_{ au}$$
 и $E_{\perp au} = 0$ то $\frac{\partial \psi^m}{\partial n}|_S = 0$

ТЕМ-волна:

T.K.
$$\vec{E}_{\perp au} \sim
abla_{\perp} \psi^m(\vec{r}_{\perp})$$

TO
$$\frac{\partial \psi}{\partial \tau}|_S = 0 \Rightarrow \psi|_S = const = C_i$$

Отметим, что на разных поверхностях проводников постоянная C_i может быть разной.

Математическая формулировка задач для описания волн. ТМ. Необходимо решить:

$$\Delta_{\perp}\psi^e + \varkappa^2\psi^e = 0$$

 $\psi^e|_L = 0, L$ - граничный контур

ТЕ. Необходимо решить:

$$\frac{\Delta_{\perp}\psi^m + \varkappa^2\psi^m = 0}{\frac{\partial\psi^m}{\partial n}|_L = 0}$$

ТЕМ. Необходимо решить:

$$\Delta_{\perp}\psi^m = 0$$
$$\psi|_{L_i} = C_i$$

Задачи ТЕ, ТМ волн - аналогичны задачам с мембраной, где граница мембраны закреплена неподвижно, а ТЕМ задачу можно назвать «электростатической». Это задачи на нахождение собственных функций

$$\psi_1^{e,m}(\vec{r}_\perp), \psi_2^{e,m}(\vec{r}_\perp), \dots, \psi_i^{e,m}(\vec{r}_\perp)$$

и собственных чисел

$$\mathcal{X}_1, \mathcal{X}_2, \ldots, \mathcal{X}_i$$

Если ЛП идеальна, то спектр сбственных значений и функций бесконечен.

3. Билет 3

3.1. МИНИМУМ Дисперсионное уравнение для волн в идеальной ЛП. Критические частоты и длины волн. Зависимости длины волны, фазовой и групповой скорости от частоты. Распространяющиеся и нераспространяющиеся волны.

Дисперсионное соотношение

$$\varkappa^2 = k^2 - h^2 = \frac{\omega^2}{c^2} \varepsilon \mu - h^2$$

Рис. 1. Зависимость реальной части поперечного волнового числа от частоты

Где \varkappa – поперечное волновое число, а h - продольное волновое число.

Любая мода в линии передачи характеризуется поперечным волновым числом, а поперечное волновое число определяет продольное.

Можем ввести критическую длину волны (продольное волновое число h равно нулю):

$$\varkappa^{2} = \frac{\omega^{2}}{c} \varepsilon \mu$$

$$\omega_{cr} = \frac{\varkappa c}{\sqrt{\varepsilon \mu}}$$

$$\lambda = \frac{2\pi c}{\omega_{cr}} = \frac{2\pi}{\varkappa \sqrt{\varepsilon \mu}}$$

 $\omega < \omega_{cr}$ дисперсионное уравнения не имеет действительных решений – режим нераспространяющейся волны.

При $\omega > \omega_{cr}$ – режим распространяющейся волны. Если волна бежит вправо, то h > 0; если бежит влево, то h < 0

$$Re\vec{E}, Re\vec{H} \sim \cos(\omega t - hz)$$

Рис. 2. Распространение волны (h > 0)

При $\omega < \omega_{cr}$

$$h = \pm i|h|$$

$$ReE_x \sim \cos(\omega t + \phi_0) \exp\{\mp |h|z\}$$

Бегучести нет. Зависимость экспонентальная

Рис. 3. Режим нераспространения (h < 0)

Картинка зависит от способа создания волны, то есть у экспоненты « +» или «-». В зависимости от того, где источник можем сказать, куда бежит волна. То есть определить знак.

Источник может порождать несколько мод, но не все, а какие-то конкретные. Изобразим числовую ось. Пусть задана ω , а то есть $k=\frac{\omega}{c}\sqrt{\varepsilon\mu}$

Если $k < \varkappa_1$ - все моды нераспространяющиеся.

Когда k перейдёт через \varkappa_1 появится низшая мода.

Когда перейдём через \varkappa_2 появится ещё одна критическая частота.

!!Можно дополнить описание числовой прямой!!

Рис. 4. Экспоненциальное нарастание амплитуды (при h < 0)

Рис. 5. Моды в линии передачи с источником

Кинематические соотношения - определяют кинематические параметры волны.

1) Временной период

$$T = \frac{2\pi}{\omega}$$

2) Длина волны в волноводе (подразумевают линию передачи или трубу, когда говорят волновод)

$$\lambda_v = \frac{2\pi}{h} = \frac{2\pi}{\sqrt{k^2 - \varkappa^2}} = \frac{2\pi}{k} \frac{1}{\sqrt{1 - \frac{\varkappa^2}{k^2}}} = \frac{\lambda_0}{\sqrt{1 - \frac{\omega_c r^2}{\omega}}} > \lambda_0$$

Когда $\omega \to \omega_{cr} \ \lambda_v \to \infty$

 λ_0 - длина волны в пространстве без волновода в той же среде.

 λ_v - пространственный период.

3) Фазовая скорость - скорость перемещения плоскости постоянной фазы. Поверхность постоянной фазы - это когда фаза константа.

$$\Phi = \omega t - hz + \phi_0 = \text{const}$$

При данном времени можно найти выражение для поверхности постоянной фазы:

$$z = \frac{\omega t + \phi_0}{h}$$

Координата будет перемещаться со скоростью:

$$v_f = \frac{\omega}{h}$$

$$v_f = \frac{\omega}{\sqrt{k^2 - \varkappa^2}} = \frac{\omega}{k} \frac{1}{\sqrt{1 - \frac{k^2}{\varkappa}}} = \frac{\omega}{k} \frac{1}{\sqrt{1 - \frac{\omega_{cr}^2}{\omega}^2}} > v_f^{(0)}$$

$$v_f^{(0)} = \frac{c}{\varepsilon \mu} = \frac{\omega}{k}$$

Фазовая скорость может быть больше скорости света.

4) Групповая скорость - скорость перемещения квазимонохроматического волнового пакета.

Рис. 6. Квазимонохроматический волновой пакет

Сигнал характеризуется высокочастотным заполнением и огибающей.

По сути это радиоимпульс.

Пакет движется со скоростью $v_{gr} = \frac{\partial \omega}{\partial k}|_{\omega=\omega_0}$ - это при малом или отсутствующем поглощении. (Это в пространстве, а не в линии передачи). При большом поглощении это понятие теряет смысл. По мере перемещения по волноводу форма сигнала будет меняться.

 $v_{gr} = \frac{\partial \omega}{\partial h}|_{\omega = \omega_0}$ - формула для волновода.

$$k^2 = h^2 + \varkappa^2$$
$$k = \frac{\omega}{c} \sqrt{\varepsilon \mu}$$

Берём дифференциал от правой и левой части. \varkappa не зависит от частоты.

$$2kdk = 2hdh$$

$$\frac{\partial \omega}{\partial h} = \frac{c}{\sqrt{\varepsilon \mu}} \frac{h}{k}$$

$$h = +\sqrt{\frac{\omega^2}{c^2} \varepsilon \mu - \varkappa_n^2}$$

$$\frac{\partial \omega}{\partial h} = \frac{c}{\sqrt{\varepsilon \mu}} \frac{c}{\omega \sqrt{\varepsilon \mu}} \sqrt{\frac{\omega^2}{c^2} \varepsilon \mu - \varkappa_n^2} = \frac{v_f^{(0)^2}}{v_f}$$

$$v_f = \frac{\omega}{h}$$

$$v_f^{(0)} = \frac{c}{\omega \sqrt{\varepsilon \mu}}$$

$$v_f v_{gr} = v_f^{(0)^2}$$

$$v_{gr} = v_f^{(0)} \sqrt{1 - \frac{\omega_{cr}^2}{\omega}}$$

Всё это справедливо для сред без временной дисперсии.

$$\varepsilon \neq f(\omega), \mu \neq f(\omega)$$

 $v_{gr} < c$ - она несёт информацию.

Рис. 7. Распространение волнового пакета

4. Билет 4

- 4.1. ПУСТО Медленные волны, направляемые плоским диэлектрическим слоем...
- 4.2. МИНИМУМ Главные (TEM) волны в линиях передач. Условие существования TEM волны. TEM волна в коаксиальной линии (Картинка силовых линий, зависимость полей от координат).

Главные (TEM) волны в линиях передачи с идеальными границами У TEM-волн поперечное волновое число $\varkappa=0$:

$$\varkappa = 0 \Rightarrow h = k = \frac{\omega}{c} \sqrt{\varepsilon \mu}$$

Поля таких воли выражаются следующим образом через функцию φ :

$$\vec{E}_{\perp} = -\frac{1}{\sqrt{\varepsilon\mu}} \nabla_{\perp} \varphi$$

$$ec{H}_{\perp} = -rac{1}{\mu} [
abla_{\perp} arphi, ec{z}_0]$$

При этом выполняются **граничные условия**: на каждом из проводников (допустим, есть набор проводников, вдоль которых распространяется волна)

$$\varphi|_{l_i} = C_i,$$

причем константа не обязана быть одна для всех проводников.

Внутренняя задача

Пусть у нас есть только один проводник, в котором есть цилиндрическая полость (рис. 9). Рассмотрим внутреннюю задачу, т.е. распространение

Рис. 8. Набор проводников в задаче

Рис. 9. Случай одного проводника

волны внутри цилиндрической полости. Оказывается, для граничного условия $\varphi_{\perp}|_{l}=C_{1}$ существует только тривиальное решение $\varphi_{\perp}=C_{1}$. Для доказательства необходимо воспользоваться теоремой и минимуме и максимуме для гармонической функции.

Внешняя задача

Зададимся вопросом о решении той же задачи:

$$\Delta_{\perp}\varphi = 0, \quad \varphi|_l = \text{const}$$

Только теперь будем рассматривать её в области вне проводника

Для начала рассмотрим задачу попроще, поле нити (рис. 10). Её решение известно:

$$\Delta_{\perp}\varphi = 0 \quad \Rightarrow \quad \varphi \sim \ln r$$

Характер убывания полей здесь $E_r \sim \frac{1}{r}$, а для магнитного поля в силу импедансного соотношения $\frac{E_r}{H_\phi} = \eta_{\perp \rm B} = 1, \quad H_\varphi \sim \frac{1}{r}$:

$$E_r = H_\phi \sim \frac{1}{r}$$

Посмотрим на поведение полей при $r \to \infty$. Говорят, нужно поставить граничные условия (или закон убывания) на бесконечности. Чем плох закон $\frac{1}{r}$?

Посчитаем средний по времени поток энергии через поперечное сечение, в котором распространяется волна. Сечение бесконечно, за исключением ко-

Рис. 10. Поле бесконечной проводящей нити

нечной площади проводника.

Сначала вычислим вектор Пойнтинга (средний по времени и в проекции на z):

$$\overline{S}_z = \frac{c}{8\pi} \operatorname{Re}(E_r \cdot H_\phi^*) \sim \frac{1}{r^2}$$

$$\Pi = \iint_{\Sigma} \overline{S}_z ds \sim \iint_{\Sigma} \frac{1}{r^2} (2\pi r \, dr) \sim \int_a^{\infty} = \ln \frac{\infty}{a} = \infty$$

Интеграл расходится на бесконечности. Говорят, что расходимость носит логарифмический характер. Получили бесконечную мощность волны: такую волну невозможно создать реальным источником — волна не удовлетворяет критерию энергетической реализуемости.

Можно сделать важный вывод: **вдоль одиночного проводника ТЕМ-волна с конечной энергией распространятся не может**. Распространение возможно, если количество проводников будет больше одного. Например, в линии из двух проводников (рис. 11) ТЕМ-волна уже возможна.

Рис. 11. Закрытая линия из двух проводников

Можно модифицировать задачу с нитью (рис. 12): В поперечном разрезе это поле диполя, а оно спадает быстрее, $\sim \frac{1}{r^2}$.

Рис. 12. Поле двухпроводной линии

Тогда

$$E_{\perp} \sim H_{\perp} \sim \frac{1}{r^2} \quad \Rightarrow \quad \overline{S}_z \sim \frac{1}{r^4}, \quad \Pi \sim \int_{L_{\text{xapakt}}}^{\infty} \frac{1}{r^3} \, \mathrm{d}r$$

Мощность волны конечна, значит, в модифицированной задаче ТЕМволна энергетически реализуема.

Конечный вывод: ТЕМ-волна в идеальной линии передачи возможна, если число проводников ≥ 2 .

Например, в коаксиальной линии (рис. 13) ТЕМ-волна возможна.

Рис. 13. Поле в коаксиальном кабеле

Зададимся вопросом: возможны ли в такой линии ТЕ и ТМ волны? Сформулируем утверждение, пока без доказательства: в открытых линиях передачи ТЕ и ТМ волны не существуют.

- 5. Билет 5
- 6. Билет 6
- 7. Билет 7
- 8. Билет 8
- 9. Билет 9
- 10. Билет 10
- 11. Билет 11
- 12. Билет 12
- 13. Билет 13