

Machine Learning: Yoshinari Fujinuma University of Colorado Boulder

Slides adapted from Chenhao Tan, Jordan Boyd-Graber, Chris Ketelsen

Logistics

- Please check whether your final project team is in the shared spreadsheet
- Homework 4 is due on Wednesday

Learning objects

- Learn about Adaboost
- Understand the math behind boosting

Overview

Recap of Boosting Intuition

Adaboost

(Bonus) The underlying math

Outline

Recap of Boosting Intuition

Adaboost

(Bonus) The underlying math

Boosting intuition

Boosting is an ensemble method, but with a different twist. Idea:

- Build a sequence of dumb models
- Modify training data along the way to focus on difficult to classify examples
- Predict based on weighted majority vote of all the models

Challenges:

- What do we mean by dumb?
- How do we promote difficult examples?
- Which models get more say in vote?

Outline

Recap of Boosting Intuition

Adaboost

(Bonus) The underlying math

- Training set $\{(\mathbf{x}_i, y_i)\}_{i=1}^m$: m training example
- Feature vector $\mathbf{x} \in \mathbb{R}^d$: d-dimensional feature vector
- Labels are $y_i \in \{-1, 1\}$
- α_k : Weights associcated to the kth weak classifier
- w_i: Weights associcated to the *i*th training example

- 1 . Initialize data weights to $w_i = \frac{1}{m}, i = 1, \dots, m$
- 2 . For k = 1 to K:
 - (a) Fit classifier $h_k(\mathbf{x})$ to training data with weights w_i
 - (b) Compute weighted error $\operatorname{err}_k = \frac{\sum_{i=1}^m w_i I(y_i \neq h_k(\mathbf{x}_i))}{\sum_{i=1}^m w_i}$
 - (c) Compute $\alpha_k = \frac{1}{2} \log((1 \operatorname{err}_k)/\operatorname{err}_k)$
 - (d) Set $w_i \leftarrow \frac{w_i}{Z_k} \cdot \exp[-\alpha_k y_i h_k(\mathbf{x}_i)], i = 1, \dots, m$
- 3. Output $H(\mathbf{x}) = \operatorname{sign}\left[\sum_{k=1}^{K} \alpha_k h_k(\mathbf{x})\right]$

1 . Initialize data weights to $w_i = \frac{1}{m}, i = 1, \dots, m$ Weights are initialized to equal weights. Every training example counts equally on first iteration.

2a. Fit classifier $h_k(\mathbf{x})$ to training data D where each examples are weighted by w_i Decide split based on information gain IG with weighted entropy H(D) with respect to feature f:

$$H(D) = -p \log_2 p - (1 - p) \log_2 (1 - p)$$

$$IG(D, f) = H(D) - \frac{|D_{f, \text{left}}|}{|D|} H(D_{\text{left}}) - \frac{|D_{f, \text{right}}|}{|D|} H(D_{\text{right}})$$

Note: p is the fraction of examples in positive class i.e., $p = \frac{\sum_{i=1}^{m} w_i \cdot I(y_i = 1)}{m}$

2b. Compute weighted error

$$\operatorname{err}_{k} = \frac{\sum_{i=1}^{m} w_{i} I(y_{i} \neq h_{k}(\mathbf{x}_{i}))}{\sum_{i=1}^{m} w_{i}}$$

2b. Compute weighted error

$$\operatorname{err}_{k} = \frac{\sum_{i=1}^{m} w_{i} I(y_{i} \neq h_{k}(\mathbf{x}_{i}))}{\sum_{i=1}^{m} w_{i}}$$

Still gives error rate in [0, 1]

2c. Compute $\alpha_k = \frac{1}{2} \log((1 - \text{err}_k)/\text{err}_k)$ Models with small err get promoted (exponentially) Models with large err get demoted (exponentially)

2d. Set
$$w_i \leftarrow \frac{w_i}{Z_k} \cdot \exp[-\alpha_k y_i h_k(\mathbf{x}_i)], i = 1, \dots, m$$

- If example was misclassified weight w_i goes up
- If example was classified correctly weight w_i goes down

How big of a jump depends on accuracy of model Z_k is just a normalizing constant to ensure that w_i is probability

3. Output $H(\mathbf{x}) = \operatorname{sign}\left[\sum_{k=1}^K \alpha_k h_k(\mathbf{x})\right]$ Sum up weighted votes from each model Classify y=1 if positive and y=-1 if negative

Suppose we have the following training data and train Adaboost with K=3 weak learners

First decision stump

First decision stump, $err_1 = 0.3$, $\alpha_1 = 0.42$ (recall $\alpha_k = \frac{1}{2} \log((1 - err_k)/err_k)$)

Second decision stump

Second decision stump , $err_2 = 0.21, \alpha_2 = 0.65$

Third decision stump

Third decision stump , $err_3 = 0.14, \alpha_3 = 0.92$

Generalization performance

Recall the standard experiment of measuring test and training error vs. model complexity

Once overfitting begins, test error goes up

Generalization performance

Boosting has remarkably uncommon effect

Happens much slower with boosting

(Bonus) The underlying math

Outline

Recap of Boosting Intuition

Adaboost

(Bonus) The underlying math

(Bonus) The underlying math

The underlying math

So far this looks like a reasonable thing that just worked out But is there math behind it?

Formulate the problem as finding a classifier $H(\mathbf{x})$ such that

$$H^* = \arg\min_{H} \sum_{i=1}^{m} L(y_i, H(\mathbf{x}_i))$$

where here we take the loss function L to be the following exponential function

$$L(y, H(\mathbf{x})) = \exp[-y H(\mathbf{x})]$$

Notice if $y \neq H(\mathbf{x})$ we get a positive exponent and a large loss.

Since we're doing this in an iterative way, we're going to assume a form of $H(\mathbf{x})$ that is amenable to iterative improvement. Specifically

$$H(\mathbf{x}) = \sum_{k=1}^{K} \alpha_k h_k(\mathbf{x})$$

So the problem becomes to choose the optimal weights, α , and optimal functions h_k .

For everything I will assume that we've already computed a good H_{k-1} and attempt to build a better H_k .

At step k we have loss L_k

$$L_k = \sum_{i=1}^m \exp\left[-y_i \left(H_{k-1}(\mathbf{x}_i) + \alpha h_k(\mathbf{x}_i)\right)\right]$$

Taking the things we know out of the exponent gives

$$L_k = \sum_{i=1}^{m} w_{i,k} \exp[-\alpha y_i h_k(\mathbf{x_i})], \quad w_{i,k} = \exp[-y_i H_{k-1}(\mathbf{x}_i)]$$

Want to choose good α and h to reduce loss

Can rewrite as

$$L_k = e^{\alpha} \sum_{y_i \neq h(\mathbf{x}_i)} w_{i,k} + e^{-\alpha} \sum_{y_i = h_k(\mathbf{x}_i)} w_{i,k}$$

Add zero in a fancy way

$$L_k = (e^{\alpha} - e^{-\alpha}) \sum_{i=1}^m w_{i,k} I(y_i \neq h_k(\mathbf{x}_i)) + e^{-\alpha} \sum_{i=1}^m w_{i,k}$$

Choose h and α separately.

A good h would be one that minimizes weighted misclassifications

$$h_k = \arg\min_h w_{i,k} I(y_i \neq h(\mathbf{x}_i))$$

That's what our weak learner h_k is for

Plugging that into our Loss function gives

$$L_k = (e^{\alpha} - e^{-\alpha}) \sum_{i=1}^m w_{i,k} I(y_i \neq h_k(\mathbf{x}_i)) + e^{-\alpha} \sum_{i=1}^m w_{i,k}$$

Now we want to minimize w.r.t. α . Take derivative, set equal to zero

$$0 = \frac{dL_k}{d\alpha} = (e^{\alpha} + e^{-\alpha}) \sum_{i=1}^m w_{i,k} I(y_i \neq h_k(\mathbf{x}_i)) - e^{-\alpha} \sum_{i=1}^m w_{i,k}$$

which gives
$$e^{2\alpha} = \frac{\sum_i w_{i,k}}{\sum_i w_{i,k} I(y_i \neq h_k(\mathbf{x}))} - 1 = \frac{1}{\text{err}_k} - 1 = \frac{1 - \text{err}_k}{\text{err}_k}$$

And finally $\alpha_k = \frac{1}{2} \log \left(\frac{1 - \text{err}_k}{\text{err}_k} \right)$

What about the weight update? Remember we got the weights by pulling the already computed function out of L. For the new weights, we have

$$w_{i,k+1} = \exp[-y_i H_k(\mathbf{x}_i)] = \exp[-y_i H_{k-1}(\mathbf{x}_i) - \alpha_k y_i h_k(\mathbf{x}_i)] = w_{i,k} \exp[-\alpha_k y_i h_k(\mathbf{x}_i)]$$

which gives the update

$$w_i \leftarrow w_i \exp[-\alpha_k y_i h_k(\mathbf{x}_i)]$$

And finally,
$$H_K(\mathbf{x}) = \operatorname{sign} \left[\sum_{k=1}^K \alpha_k h_k(\mathbf{x}) \right]$$

This is exactly Adaboost