Family list
12 family members for:
JP5158797

Derived from 11 applications.

EXTERNAL STORAGE SUBSYSTEM

Publication Info: JP3451099B2 B2 - 2003-09-29 JP5158797 A - 1993-06-25

System having independent access paths for permitting independent access from the host and storage device to respective cache memories

Publication info: US5459856 A - 1995-10-17

- Storage subsystem having plurality of access paths permitting independent access to cache memory from host and independent access to the cache from rotating storage device Publication Info. US5689729 A 1997-11-18
- External storage subsystem having independent access paths for permitting independent access from a host and a storage device to respective cache memories

 Publication info: US5951655 A 1999-09-14
- Method for connecting caches in external storage subsystem Publication info: US2001014923 A1 2001-08-16
- External storage subsystem
 Publication info: US2004010639 A1 2004-01-15
- External storage subsystem
 Publication info: US2004010640 A1 2004-01-15
- S External storage subsystem
 Publication info: US2004010641 A1 2004-01-15
- S External storage subsystem
 Publication into US2004010642 A1 2004-01-15
- External storage subsystem
 Publication info: US2004010658 A1 2004-01-15
- External storage subsystem
 Publication info: US2004010659 A1 2004-01-15

Data supplied from the esp@cenet database - Worldwide

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-158797

(43)Date of publication of application: 25.06.1993

(51)Int.CI.

G06F 12/08 G06F 3/06

G06F 13/12 G06F 13/38

(21)Application number: 03-322965

(71)Applicant: HITACHI LTD

(22)Date of filing:

06.12.1991

(72)Inventor: INOUE YASUO

(54) EXTERNAL STORAGE SUBSYSTEM

(57)Abstract:

PURPOSE: To obtain an external storage subsystem in which an endurance against a fault can be satisfactory, and a cache function whose reliability is high can be realized.

CONSTITUTION: A disk controller 2 interposed between a central processing unit 1 and a magnetic disk device 3 is equipped with plural isolated cache units 80 and 81, and nonvolatile memory units 90 and 91. Plural channel units 60 and 61 which control the transfer of data with the central processing unit side, and plural control units 70 and 71 which control the transfer of the data with the magnetic disk device 3 side, are independently connected through data buses 60A. 60B, 61A, 61B, 70A, and 70B, and access lines 80a-80d, 81a-81d. 90a-90d, and 91a-91d to the plural cache units 80 and 81, and the nonvolatile units 90 and 91.

LEGAL STATUS

[Date of request for examination]

07.12.1998

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3451099

[Date of registration]

11.07.2003

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-158797

(43)公開日 平成5年(1993)6月25日

(51)Int.Cl. ⁵		識別記号	庁内整理番号	FΙ	技術表示箇所
G 0 6 F	12/08	3 2 0	7232-5B		
	3/06	302 A	7165-5B		
	13/12	330 T	7230-5B		
	13/38	3 4 0 C	8725-5B		

審査請求 未請求 請求項の数5(全 11 頁)

(21)出願番号	特顯平3-322965

(22)出願日 平成

平成3年(1991)12月6日

(71)出願人 000005108

株式会社日立製作所

東京都千代田区神田駿河台四丁目6番地

(72)発明者 井上 靖雄

神奈川県小田原市国府津2880番地 株式会

社日立製作所小田原工場内

(74)代理人 弁理士 筒井 大和

(54)【発明の名称】 外部記憶サプシステム

(57)【要約】

【目的】 障害に対する耐性が良好で、信頼性の高いキャッシュ機能を実現することが可能な外部記憶サブシステムを提供する。

【構成】 中央処理装置1と磁気ディスク装置3との間に介在するディスク制御装置2には、互いに独立な複数面のキャッシュ・ユニット80、81および不揮発メモリ・ユニット90、91が設けられている。中央処理装置1の側とのデータの授受を制御する複数のチャネル・ユニット60、61、および磁気ディスク装置3の側との間におけるデータの授受を制御する複数のコントロール・ユニット70、71は、各々のデータ・バス60A、60B、61A、61B、70A、70Bおよび、アクセス線80a~80d、81a~81d、90a~90d、91a~91dを介して独立に、複数のキャッシュ・ユニット80、81および不揮発メモリ・ユニット90、91に接続されている。

【特許請求の範囲】

【請求項1】 上位装置からアクセスされるデータを記 憶する回転形記憶装置と、持久性半導体メモリおよび非 持久性半導体メモリの少なくとも一方を記憶媒体として 前記回転形記憶装置と前記上位装置との間で授受される 前記データを一時的に保持することにより、前記上位装 置からの前記回転形記憶装置に対するアクセス要求に応 答するキャッシュ機構を有する外部記憶制御装置とを含 む外部記憶サブシステムであって、互いに独立な複数の キャッシュ機構と、この複数のキャッシュ機構に各々に 10 対して前記上位装置および前記回転形記憶装置からの独 立したアクセスを可能にする複数の独立なアクセス経路 とを備えたことを特徴とする外部記憶サブシステム。

【請求項2】 前記外部記憶制御装置は、前記上位装置 との間における前記データの授受を制御する複数のチャ ネル・ユニットと、前記回転形記憶装置との間における 前記データの授受を制御する複数のコントロール・ユニ ットとを備え、前記チャネル・ユニットおよび前記コン トロール・ユニットの各々は、複数の前記キャッシュ機 たことを特徴とする請求項1記載の外部記憶サブシステ ٨.

【請求項3】 前記外部記憶制御装置は、前記上位装置 との間における前記データの授受を制御する複数のチャ ネル・ユニットと、前記回転形記憶装置との間における 前記データの授受を制御する複数のコントロール・ユニ ットとを備え、複数の前記キャッシュ機構の各々が、複 数の前記チャネル・ユニットおよびコントロール・ユニ ットの各々が接続される複数の第2のアクセス経路を備 テム。

【請求項4】 前記外部記憶制御装置は、前記上位装置 との間における前記データの授受を制御する複数のチャ ネル・ユニットと、前記回転形記憶装置との間における 前記データの授受を制御する複数のコントロール・ユニ ットとを備え、前記チャネル・ユニット、コントロール ・ユニットおよび複数キャッシュ機構に対して独立な複 数の第3のアクセス経路を設け、この第3のアクセス経 路に対して、複数の前記チャネル・ユニット、コントロ ール・ユニットおよび複数の前記キャッシュ機構が個別 40 に接続されるようにしたことを特徴とする請求項1記載 の外部記憶サブシステム。

【請求項5】 前記外部記憶制御装置は、前記上位装置 との間における前記データの授受を制御する複数のチャ ネル・ユニットと、前記回転形記憶装置との間における 前記データの授受を制御する複数のコントロール・ユニ ットとを備え、個々のチャネル・ユニットおよびコント ロールの各々と、複数の前記キャッシュ機構の各々とを 直接かつ独立に接続する第4のアクセス経路を備えたこ とを特徴とする請求項1記載の外部記憶サブシステム。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、外部記憶サブシステム に関し、特に、キャッシュ機能を備えた外部記憶サブシ ステムの信頼性の向上に適用して有効な技術に関する。 [0002]

【従来の技術】たとえば、汎用の電子計算機システムな どにおいて外部記憶装置として用いられる磁気ディスク サブシステムなどにおいては、ディスク制御装置の一部 に半導体メモリなどからなる周知のキャッシュメモリを 介在させることによって、磁気ディスク装置における回 転待ちなどの機械的な要因に起因するデータ転送速度の 低下を可能な限り回避する技術が知られている。

【0003】とのような、ディスク制御装置におけるキ ャッシュ構造に関しては、A Multiport P age-memory Architecture a ndA Multiport Disk-Cache System (New Generation Com puting 2 (1984) 241-260 OHM 構が独立に接続される複数の第1のアクセス経路を備え 20 SHA. LTD. and Springer-Verl ag) において論じられているように、複数のメモリバ ンクに分割することで、キャッシュに対するアクセス性 能の向上を図る方式が検討されている。さらに、複数個 のメモリバンクとチャネルまたはディスク制御装置を結 合する方式としてInterconnection N etworkと呼ばれるスイッチ網が提案されている。 [0004]

【発明が解決しようとする課題】上記従来技術は、複数 個のメモリ・バンクとスイッチ網を装備することにより えたことを特徴とする請求項1記載の外部記憶サブシス 30 キャッシュ機能を向上させることを目的としており、デ ィスク制御装置内部のデータ・バス構造に関してはIn terconnection Networkと呼ばれ るスイッチ網方式が検討されている。しかし、複数個の メモリ・バンクと複数個のチャネル・ユニット、又は複 数個のコントロール・ユニットを結びデータ交換を行う データ・バス構成を実現する場合、スイッチ網方式はハ ードウエア設計上の制約を受け問題があった。

> 【0005】また、メモリ・バンクによって構成される キャッシュ・ユニットの多重化についてはなんら言及し ていない。

【0006】本発明の目的は、ハードウエア上のデータ 転送レートやデータ・バス幅等の制約条件を考慮して、 上位装置側の複数個のキャッシュ・ユニットと複数個の チャネル・ユニット、又は回転形記憶装置側の複数個の コントロール・ユニットを結ぶデータ・バス構造を実現 することにある。

【0007】本発明の他の目的は、障害に対する耐性が 良好で、信頼性の髙いキャッシュ機能を備えた外部記憶 サブシステムを提供することにある。

50 【0008】本発明の前記ならびにその他の目的と新規

な特徴は、本明細書の記述および添付図面から明らかに なるであろう。

[0009]

【課題を解決するための手段】本願において開示される 発明のうち、代表的なものの概要を簡単に説明すれば、 下記のとおりである。

【0010】すなわち、本発明の外部記憶サプシステム は、上位装置からアクセスされるデータを記憶する回転 形記憶装置と、持久性半導体メモリおよび非持久性半導 体メモリの少なくとも一方を記憶媒体とし、回転形記憶 10 装置と上位装置との間で授受されるデータを一時的に保 持することにより、上位装置からの回転形記憶装置に対 するアクセス要求に応答するキャッシュ機構を備えた外 部記憶制御装置とを含む外部記憶サブシステムにおい て、互いに独立な複数のキャッシュ機構と、この複数の キャッシュ機構に各々に対して上位装置および回転形記 憶装置からの独立したアクセスを可能にする複数の独立 なアクセス経路とを備えるようにしたものである。

【0011】また、本発明の外部記憶サブシステムは、 請求項1記載の外部記憶サブシステムにおいて、外部記 20 害に対する耐性および信頼性が確実に向上する。 憶制御装置は、上位装置との間におけるデータの授受を 制御する複数のチャネル・ユニットと、回転形記憶装置 との間におけるデータの授受を制御する複数のコントロ ール・ユニットとを備え、チャネル・ユニットおよびコ ントロール・ユニットの各々が、複数のキャッシュ機構 が独立に接続される複数の第1のアクセス経路を備える ようにしたものである。

【0012】また、本発明の外部記憶サブシステムは、 請求項1記載の外部記憶サブシステムにおいて、上位装 置との間におけるデータの授受を制御する複数のチャネ 30 ル・ユニットと、回転形記憶装置との間におけるデータ の授受を制御する複数のコントロール・ユニットとを備 え、複数のキャッシュ機構の各々が、複数のチャネル・ ユニットおよびコントロール・ユニットの各々が接続さ れる複数の第2のアクセス経路を備えるようにしたもの である。

【0013】また、本発明の外部記憶サブシステムは、 請求項1記載の外部記憶サブシステムにおいて、上位装 置との間におけるデータの授受を制御する複数のチャネ ル・ユニットと、回転形記憶装置との間におけるデータ 40 の授受を制御する複数のコントロール・ユニットとを備 え、チャネル・ユニット、コントロール・ユニットおよ び複数キャッシュ機構に対して独立な複数の第3のアク セス経路を設け、この第3のアクセス経路に対して、複 数のチャネル・ユニット、コントロール・ユニットおよ び複数のキャッシュ機構が個別に接続されるようにした ものである。

【0014】また、本発明の外部記憶サブシステムは、 請求項1記載の外部記憶サブシステムにおいて、上位装 ル・ユニットと、回転形記憶装置との間におけるデータ の授受を制御する複数のコントロール・ユニットとを備 え、個々のチャネル・ユニットおよびコントロールの各 々と、複数のキャッシュ機構の各々とを直接かつ独立に 接続する第4のアクセス経路を備えるようにしたもので ある。

[0015]

【作用】上記した本発明の外部記憶サブシステムによれ は、キャッシュ・ユニットが多重化されているととも に、個々のキャッシュ・ユニットに対する上位装置およ び回転形記憶装置によるアクセス経路が独立な構成であ るため、複数個のキャッシュ・ユニットと複数個のチャ ネル・ユニット、又は複数個のコントロール・ユニット を組み合わせることにより、データ転送レートやデータ ・パス幅等を最適に構成することができる。

【0016】また、キャッシュ・ユニットおよび当該キ ャッシュ・ユニットに対するアクセス経路が多重化され ているので、障害の発生に際しても、キャッシュ機能を 維持できる確率が高くなり、外部記憶サブシステムの障

[0017]

【実施例1】以下、本発明の一実施例である外部記憶サ ブシステムの一例を図面を参照して説明する。

【0018】本実施例のコンピュータ・システムは、図 1に例示されるように、中央処理装置 (CPU) 1とデ ィスク・サブシステムから構成されている。ディスク・ サブシステムは、ディスク制御装置2と磁気ディスク装 置3から構成されている。

【0019】CPU1とディスク制御装置2は複数のチ ャネル・インターフェース4を介して接続され、ディス ク制御装置2と磁気ディスク装置3は複数のコントロー ル・インターフェース5を介して接続されている。

【0020】そして、CPU1は、チャネル・インター フェース4を経由してディスク制御装置2にアクセス命 令を発行し、ディスク制御装置2がCPUlからの指令 に従ってコントロール・インターフェース5を介して磁 気ディスク装置3を制御することにより、データの読み だし又は書き込み制御を行う。

【0021】ディスク制御装置2において、チャネル・ インターフェース4の接続側には、チャネル制御プロセ ッサ110およびチャネル制御プロセッサ111の配下 で稼働する複数のチャネル・ユニット60およびチャネ ル・ユニット61が設けられており、コントロール・イ ンターフェース5の接続側には、コントロール・ユニッ ト制御プロセッサ120およびコントロール・ユニット 制御プロセッサ121の配下で稼働するコントロール・ ユニット70およびコントロール・ユニット71が設け られている。

【0022】ディスク制御装置2に対してCPU1から 置との間におけるデータの授受を制御する複数のチャネ 50 発行された命令は、チャネル・ユニット60,61で受

40

付られ、チャネル制御プロセッサ110, 111で解読 され、磁気ディスク装置3を制御するのに必要なコント ロール・ユニット制御プロセッサ120,121に渡 し、コントロール・ユニット制御プロセッサ120,1 21がコントロール・ユニット70,71を介して磁気 ディスク装置3を制御する。

【0023】ディスク制御装置2内には、図示しない半 導体メモリを記憶媒体としてデータを一時記憶する、互 いに独立な2面のキャッシュ・ユニット80、キャッシ ュ・ユニット81と、やはり互いに独立な2面の不揮発 10 メモリ・ユニット90および不揮発メモリ・ユニット9 1が装備されている。不揮発メモリ・ユニット90,9 1は、書き換え可能なメモリで外部からの電源供給の有 無に関係なく一定時間データを保持する能力を備えてい

【0024】キャッシュ・ユニット80および81の各 々の容量は、たとえば、それぞれが単独で、磁気ディス ク装置3の記憶容量にみあった充分なキャッシュ動作が 可能な値に設定されている。同様に、不揮発メモリ・ユ ニット90および91の各々の容量は、たとえば、それ 20 ぞれが単独で、磁気ディスク装置3の記憶容量にみあっ た充分なキャッシュ動作が可能な値に設定されている。 【0025】この場合、チャネル・ユニット60には、 複数の互いに独立なデータ・バス60A、データ・バス 60 Bが設けられている。データ・バス60 Aの側に は、アクセス線80aを介してキャッシュ・ユニット8 Oが接続され、アクセス線91aを介して不揮発メモリ ・ユニット91が、独立に接続されている。データ・バ ス60日の側には、アクセス線81aを介してキャッシ ュ・ユニット81が接続され、アクセス線90aを介し 30 て不揮発メモリ・ユニット90が接続されている。

【0026】同様に、チャネル・ユニット61には、複 数の互いに独立なデータ・バス61A、データ・バス6 1 Bが設けられている。データ・バス61Aには、アク セス線80cを介してキャッシュ・ユニット80が接続 され、アクセス線91cを介して不揮発メモリ・ユニッ ト91が接続されている。データ・バス61Bの側に は、アクセス線81cを介してキャッシュ・ユニット8 1が接続され、アクセス線90cを介して不揮発メモリ ・ユニット90が接続されている。

【0027】また、コントロール・ユニット70には、 複数の互いに独立なデータ・バス70A,データ・バス 70Bが設けられている。データ・バス70Aには、ア クセス線80bを介してキャッシュ・ユニット80が接 続され、アクセス線91bを介して不揮発メモリ・ユニ ット91が接続されている。データ・バス70Bの側に は、アクセス線81bを介してキャッシュ・ユニット8 1が接続され、アクセス線90bを介して不揮発メモリ ・ユニット90が接続されている。

【0028】同様に、コントロール・ユニット71に

は、複数の互いに独立なデータ・バス71A.データ・ バス71 Bが設けられている。データ・バス71 Aに は、アクセス線80dを介してキャッシュ・ユニット8 Oが接続され、アクセス線91dを介して不揮発メモリ ·ユニット91が接続されている。データ・バス71B の側には、アクセス線81dを介してキャッシュ・ユニ ット81が接続され、アクセス線90dを介して不揮発 メモリ・ユニット90が接続されている。

【0029】すなわち、本実施例の構成では、チャネル ・ユニット60,61およびコントロール・ユニット7 0,71のいずれも、互いに独立な経路によって、キャ ッシュ・ユニット80、81および不揮発メモリ・ユニ ット90、91にアクセスすることが可能になってい る。

【0030】以下、本実施例の外部記憶サブシステムの 作用の一例を説明する。

【0031】ディスク制御装置2に対してCPU1から 送られてきたライトデータは、チャネル制御プロセッサ 110または111の指示により、一時的にチャネル・ ユニット60または61及びデータ・バス60A、60 B, 61A, 61Bのいずれかを経由して2組のキャッ シュ・ユニット80または81と、不揮発メモリ・ユニ ット90または91のどちらかの組に蓄えられる。その 後、コントロール・ユニット制御プロセッサ120また は121の指示によりキャッシュ・ユニット80,81 のいずれか、又は不揮発メモリ・ユニット90,91の いずれかからデータを読みだしデータ・バス70A~7 1B及びコントロール・ユニット70または71を介し て磁気ディスク装置3にライトデータを格納する。

【0032】一方、CPU1からのデータ読みだし要求 をチャネル・ユニット60または61を介して受け取っ たチャネル制御プロセッサ110または111は、2組 のキャッシュ・ユニット80または81及び不揮発メモ リ・ユニット90または91の内容を調べCPU1が要 求したデータが有った場合、キャッシュ・ユニット80 または81又は不揮発メモリ・ユニット90または91 からリードデータをデータ・バス60A~61Bのいず れか及びチャネル・ユニット60または61を介してC PU1へ送る。

【0033】CPU1が要求したデータが2組のキャッ シュ・ユニット80または81と不揮発メモリ・ユニッ ト90または91に存在しない場合は、チャネル制御ブ ロセッサ110または111は、磁気ディスク装置3か らのデータ読みだしをコントロール・ユニット制御プロ セッサ120または121に伝える。チャネル制御プロ セッサ110または111からのデータ読みだし要求を 受けたコントロール・ユニット制御プロセッサ120ま たは121は、磁気ディスク装置3から読み出した要求 データを、コントロール・ユニット70または71及び

50 データ・バス70A~71Bを介してキャッシュ・ユニ

ット80または81のどちらかに格納する。

【0034】コントロール・ユニット制御プロセッサ1 20または121からキャッシュ・ユニット80または 81へのリードデータ格納完了報告を受けたチャネル制 御プロセッサ110または111は、CPU1にデータ 準備完了を報告し、CPU1の指示によりリードデータ をキャッシュ・ユニット80または81から、データ・ パス60A~61B及びチャネル・ユニット60または 6 1を介してCPU1へリードデータを送る。

【0035】図2は、ディスク制御装置2内におけるチ 10 ャネル・ユニット60,61又はコントロール・ユニッ ト70,71と複数個のキャッシュ・ユニット80.8 1又は不揮発メモリ・ユニット90、91間を結ぶデー タ・バス60A~71Bの信号構成を表している。本実 施例においては、チャネル・ユニット60、61又はコ ントロール・ユニット70,71は、キャッシュ・ユニ ット80,81及び不揮発メモリ・ユニット90,91 に対してマスター動作を行う。キャッシュ・ユニット8 0,81、又は不揮発メモリ・ユニット90,91は、 ット70,71に対してスレーブ動作を行う。

【0036】チャネル・ユニット60、61又はコント ロール・ユニット70,71は、SEL<0-1>信号線を駆動 することにより2面あるキャッシュ・ユニット80.8 1、又は不揮発メモリ・ユニット90、91を選択す る。チャネル・ユニット60。61、又はコントロール ・ユニット70,71は、キャッシュ・ユニット80. 81、又は不揮発メモリ・ユニット90、91を選択し た状態においてDTOUT/*DTIN 信号線とQMD/*DTIN 信号線 の、図4に例示された信号の組合せによりデータ・バス 30 60A~71Bの状態を指定する。図3に示すデータ・ バスプロトコールに従ってチャネル・ユニット60,6 1、又はコントロール・ユニット70,71と、キャッ シュ・ユニット80,81、又は不揮発メモリ・ユニッ ト90,91との間でリードデータ、ライトデータ、コ マンド、ステータスの交換を実施する。

【0037】このように、本実施例の外部記憶サブシス テムにおいては、複数のキャッシュ・ユニット80,8 1および不揮発メモリ・ユニット90、91がそれぞれ 互いに独立に設けられ、しかも、中央処理装置1の側の 40 チャネル・ユニット60,61や、磁気ディスク装置3 のコントロール・ユニット70、71の側からの、複数 のキャッシュ・ユニット80、81および不揮発メモリ ・ユニット90,91に対するアクセスが、複数のデー タ・パス60A~71B、さらにはアクセス線80a~ 80d, アクセス線81a~81d, アクセス線90a ~90d,アクセス線91a~91dを介して独立に行 うことが可能な構成であるため、各データ・バスやアク セス線におけるデータ転送速度や、データ・バスの幅な どを最適に設定できるという利点がある。

【0038】また、複数のキャッシュ・ユニット80、 81および不揮発メモリ・ユニット90、91のいずれ かに、あるいは、複数のデータ・バス60A~71B、 さらにはアクセス線80a~80d,アクセス線81a ~8ld, アクセス線90a~90d, アクセス線91 a~91dなどのいずれかに障害が発生しても、キャッ シュ機能を維持することが可能となり、障害に対する耐

[0039]

性や動作の信頼性が確実に向上する。

【実施例2】図5は、本発明の他の実施例である外部記 憶サブシステムの構成の一例を示すブロック図である。 【0040】この実施例2の場合には、複数のキャッシ コ・ユニット80,81および不揮発メモリ・ユニット 90,91の各々が、それぞれ、複数のデータ・バス8 OA, データ・バス80Bおよびデータ・バス81A, データ・バス81Bおよびデータ・バス90A,データ ·バス90B, データ・バス91A, データ・バス91 Bを備え、これらの各データ・バスに対して、チャネル ・ユニット60,61およびコントロール・ユニット7 チャネル・ユニット60,61又はコントロール・ユニ 20 0,71が、アクセス線60a~60d,アクセス線6 1a~アクセス線61d, アクセス線70a~アクセス 線70d、アクセス線71a~アクセス線71dを介し てそれぞれ独立に接続されるようにしたものである。 【0041】との場合にも、前記実施例1と同様の効果

を得ることができる。

[0042]

【実施例3】図6は、本発明のさらに他の実施例である 外部記憶サブシステムの構成の一例を示すブロック図で ある。

【0043】この実施例3の場合には、2本の共通デー タ・バス200Aおよひ200Bを設けたものである。 そして、その各々に対して、チャネル・ユニット60 は、アクセス線60e、アクセス線60fを介して接続 され、チャネル・ユニット61は、アクセス線61e, アクセス線61fを介して接続され、コントロール・ユ ニット70はアクセス線70e,アクセス線70fを介 して接続され、コントロール・ユニット71は、アクセ ス線71e,アクセス線71fを介して接続され、キャ ッシュ・ユニット80は、アクセス線80e. アクセス 線80fを介して接続され、キャッシュ・ユニット81 は、アクセス線81e,アクセス線81fを介して接続 され、不揮発メモリ・ユニット90は、アクセス線90 e、アクセス線90fを介して接続され、不揮発メモリ ·ユニット91は、アクセス線91e, アクセス線91 fを介してそれぞれ独立に接続されるようにしたもので

【0044】との場合にも、前記各実施例と同様の効果 を得ることができる。

[0045]

【実施例4】図7は、本発明のさらに他の実施例である

外部記憶サブシステムの構成の一例を示すブロック図で ある。

【0046】この実施例4の場合には、それぞれが、複 数個のキャッシュ・ユニットからなるキャッシュ・ユニ ット群800、キャッシュ・ユニット群801と、それ ぞれが複数個の不揮発メモリ・ユニットを含む不揮発メ モリ・ユニット群900、不揮発メモリ・ユニット群9 01を備え、キャッシュ・ユニット群800,801お よび不揮発メモリ・ユニット群900、901は、群単 位に、データ・バス60g~60j, データ・バス61 10 1 中央処理装置 (CPU) (上位装置) g~61j, データ・バス70g~70j, データ・バ ス71g~71jを介して、チャネル・ユニット60. チャネル・ユニット61およびコントロール・ユニット 70、コントロール・ユニット71に接続されるように 構成したものである。

【0047】との場合にも、前記各実施例と同様の効果 を得ることができる。

【0048】以上本発明者によってなされた発明を実施 例に基づき具体的に説明したが、本発明は前記実施例に 限定されるものではなく、その要旨を逸脱しない範囲で 20 61 チャネル・ユニット 種々変更可能であることはいうまでもない。

[0049]

【発明の効果】本願において開示される発明のうち、代 表的なものによって得られる効果を簡単に説明すれば、 以下のとおりである。

【0050】本発明の外部記憶サブシステムによれば、 回転形記憶装置を含む外部記憶サブシステムにおいて複 数個のキャッシュ・ユニットを、上位装置側の複数個の チャネル・ユニット、および回転形記憶装置の側の複数 個のコントロール・ユニットに対して単純な構造で結合 30 71 コントロール・ユニット できる。従って、ディスク制御装置におけるキャッシュ 機能・性能を向上させる効果がある。

【0051】また、本発明の外部記憶サブシステムによ れば、キャッシュ・ユニットおよび当該キャッシュ・ユ ニットに対するアクセス経路の双方が多重化されている ので、障害に対する耐性が良好で、信頼性の高いキャッ シュ機能を実現することができるという効果が得られ る.

【図面の簡単な説明】

【図1】本発明の一実施例である外部記憶サブシステム 40 の構成の一例を示すブロック図である。

【図2】ディスク制御装置内におけるチャネル・ユニッ ト又はコントロール・ユニットと複数個のキャッシュ・ ユニット又は不揮発メモリ・ユニット間を結ぶデータ・ バスの信号構成の一例を示す説明図である。

【図3】チャネル・ユニット又はコントロール・ユニッ トと、キャッシュ・ユニット、又は不揮発メモリ・ユニ ットとの間でリードデータ、ライトデータ、コマンド、 ステータスの交換を実施する際のデーダ・バスプロトコ ールの一例を示す概念図である。

【図4】 データ・バスの状態を指定するデータ・バスモ ードの一例を示す説明図である。

【図5】本発明の他の実施例である外部記憶サブシステ ムの構成の一例を示すブロック図である。

【図6】本発明のさらに他の実施例である外部記憶サブ システムの構成の一例を示すブロック図である。

【図7】本発明のさらに他の実施例である外部記憶サブ システムの構成の一例を示すブロック図である。

【符号の説明】

- 2 ディスク制御装置(外部記憶制御装置)
- 3 磁気ディスク装置(回転形記憶装置)
- 4 チャネル・インターフェース
- 5 コントロール・インターフェース
- 60 チャネル・ユニット
- 60a~60d アクセス線
- 60e,60f アクセス線
- 60g~60j データ・バス (第4のアクセス経路)
- 60A, 60B データ・バス (第1のアクセス経路)
- - 6la~6ld アクセス線
 - 61e,61f アクセス線
 - 61g~61h データ・バス (第4のアクセス経路)
 - 61A, 61B データ・バス (第1のアクセス経路)
 - 70 コントロール・ユニット
 - 70a~70d アクセス線
 - 70e, 70f アクセス線
 - 70g~70j データ・バス (第4のアクセス経路)
- 70A, 70B データ・バス (第1のアクセス経路)
- - 71a~71d アクセス線
 - 71e, 71f アクセス線
 - 71g~71j データ・バス (第4のアクセス経路)
 - 71A, 71B データ・バス (第1のアクセス経路)
 - 80 キャッシュ・ユニット (キャッシュ機構)
 - 80a~80d アクセス線
 - 80e, 80f アクセス線
 - 80A、80B データ・バス (第2のアクセス経路)
 - 81 キャッシュ・ユニット (キャッシュ機構)
- 81a~81d アクセス線
 - 81e, 81f アクセス線
 - 81A, 81B データ・バス (第2のアクセス経路)
 - 90 不揮発メモリ・ユニット (キャッシュ機構)
 - 90a~90d アクセス線
 - 90e, 90f アクセス線
 - 90A、90B データ・バス (第2のアクセス経路)
 - 91 不揮発メモリ・ユニット (キャッシュ機構)
 - 91a~91d アクセス線
 - 91e, 91f アクセス線
- 50 91A, 91B データ・バス (第2のアクセス経路)

11

110, 111 チャネル制御プロセッサ

*ス経路)

120, 121 コントロール・ユニット制御プロセッ

800, 801 キャッシュ・ユニット群 900, 901 不揮発メモリ・ユニット群

12

200A, 200B 共通データ・バス (第3のアクセ*

【図1】

1:中央処理装置(CPU)

2:ディスク制御装置

3:磁気ディスク装置 (DKU)

4:チャネル・インターフェース

5:コントロール・インターフェース

[図3]

図 3

データバスプロトコール

【図2】

図 2

【図4】

図 4

データバスモード

DUOUT/*DTIN	CMD/*DT	バスモード
1	1	コマンド転送
1	0	ライト・データ転送
0	1	ステータス転送
0	0	リード・データ転送

【図5】

【図6】

図 6

