

Machine Learning for Uncertainty Quantification: Trusting the Black Box

Team: Jim Warner, Geoffrey Bomarito, Patrick Leser, William Leser (+ too many collaborators to list)

NASA Langley Research Center

Quantification of Uncertainty Across Disciplines Seminar Series January 25th, 2022

Motivation: Modeling & Simulation

Motivation: Modeling & Simulation

95% confidence landing ellipse

6

UQ with high-fidelity, physics-based models can be computationally intractable

O(hours-days)

O(mins-hours)

Modeling for UQ

Physics-Based Modeling

Interpretable predictions
Theoretically rigorous
Historically-proven legacy codes
Computationally intensive
Slow development &
deployment

Data-Driven Modeling

Efficient predictions
Fast deployment
Widely accessible libraries
Lack interpretability
Ineffective for extrapolation/
sparse datasets

^{*}Surrogate model, response surface, reduced-order model, kriging, metamodel,

The Best of Both Modeling Worlds

Exploiting the synergy between physics-based & data-driven modeling

- Fuse predictions from ML and physics-based models
- 1. Multilevel Monte Carlo, Giles et al. 2015
- 2. Multifidelity Monte Carlo. Peherstorfer et al. 2016
- 3. Approximate Control Variates. Gorodetsky et al. 2019

Physics-informed deep learning

- Integrate physical laws into the training of ML models
- 4. Physics-informed neural networks. Raissi et al. 2019.
- 5. Physics-informed generative adversarial networks Yang et. al. 2018

Active Learning

- Guide physics-based training data generation using ML Model
 - 6. Active learning in practice. Settles 2011.
 - 7. Active learning for reliability analysis. Bichon et al. 2008.

Outline

- Surrogate modeling for UQ
- Combining physics-based modeling & machine learning for UQ
 - Multi-model Monte Carlo simulation
 - > Application: Trajectory simulation for EDL
 - Physics-informed generative adversarial networks (PI-GANs)
 - ➤ Application: Material identification
 - Active learning with Gaussian Process models
 - ➤ Application: Reliability analysis
- Summary

Surrogate Modeling

Surrogate Model Validation

- Always create a separate dataset for testing that is not used for training
- A third validation dataset is often used during training to tune machine learning hyperparameters (e.g., # layers, nodes in neural network)
- If surrogate model error is non-negligible, it can be factored into total uncertainty when making probabilistic predictions

Surrogate Modeling Pitfalls & Challenges

- 1) Not validating the effectiveness of surrogate prior to utilization
 - Or validating the model using the training data!
- Not accounting for (or correcting) surrogate errors when they are non-negligible
 - Surrogate models yield biased estimators
- 3) Using surrogate to extrapolate outside the range of training data
- 4) Training surrogate models from sparse training data
 - Common when high-fidelity model is expensive to run

Multi-Model Monte Carlo for Trajectory Simulation

- Motivation: high-precision guidance software for entry vehicles
- Challenge: uncertainty propagation with expensive trajectory simulation models
- Approach: Use multi-model Monte Carlo to estimate trajectory state statistics (e.g., expected landing location)
- Collaborators: Anthony Williams (NASA), Som Dutta (NASA), Justin Green (NASA), Luke Morrill (NASA), Sam Nieomoeller (UCLA)

Hi-Fi vs. Lo-Fi Monte Carlo (MC) Estimators

- 1) Draw N random inputs
- 2) Evaluate model

3) Form estimator

Hi-Fi MC:

$$\mathbb{E}[Y] \approx \hat{Y} = \frac{1}{N} \sum_{i=1}^{N} Y^{(i)}$$

Unbiased: $\mathbb{E}[\hat{Y}] = \mathbb{E}[Y]$

Model cost

Lo-Fi MC:

$$\mathbb{E}[Y] \approx \hat{\widetilde{Y}} = \frac{1}{N} \sum_{i=1}^{N} \widetilde{Y}^{(i)}$$

Solution Time: $N \times C$ Surrogate cost

Biased: $\mathbb{E}[ilde{Y}]
eq \mathbb{E}[Y]$

Surrogate cost << Model cost

Mean Squared Error = bias + variance bias → irreducible error!

Multi-Model MC (1/2)

1) Draw & allocate random inputs

2) Evaluate models

3) Form estimator

$$\mathbb{E}[Y] \approx f\left(\{Y^i\}, \{\widetilde{Y}^i\}, N, \widetilde{N}\right)$$

Constructed to be **Unbiased** and **Fast!**

➤ Main idea: estimate with a surrogate and correct with high-fidelity model

$$\hat{Y}_{\text{MLMC}} = \mathbb{E}[\widetilde{Y}] + \mathbb{E}[Y - \widetilde{Y}]$$

$$\approx \frac{1}{\widetilde{N}} \sum_{i=1}^{\widetilde{N}} \widetilde{Y}^i + \frac{1}{N} \sum_{i=1}^{N} (Y^i - \widetilde{Y}^i)$$

Unbiased

 $\mathbb{E}[\hat{Y}_{\text{\tiny MLMC}}] = E[Y]$

Solution Time: $NC + (N + \widetilde{N})\widetilde{C}$

^{*} Giles, M B. Operations Research (2008)

Multi-Model MC (2/2)

- 1) Draw & allocate random inputs
- 2) Evaluate models

3) Form estimator [3]

- Lo-fi models are useful if they are correlated to hi-fi model and faster to evaluate
- **Key challenge**: solve sample allocation optimization to find find X_0, X_i^*, X_i such that estimator variance (MSE) is minimal and cost is under budget
- Existing methods differ on optimization strategy:
 - [1] Multilevel Monte Carlo (MLMC). Giles, 2008.
 - [2] Multifidelity Monte Carlo (MFMC). Peherstorfer, 2016.
 - [3] Approximate Control Variates (ACV). Gorodetsky, 2020.
 - [4] Parametrically-defined ACV. Bomarito, 2020.

Multi-Model Monte Carlo with Python (MXMCPy)

https://github.com/nasa/mxmcpy

Application: Trajectory Simulation

Analysis of the Adaptable Deployable Entry & Placement Technology (ADEPT) Sounding Rocket 1 (SR-1) test flight

ADEPT SR-1 Test Flight Schematic

Computational Models Considered

Model	Description	Speedup
High Fidelity	POST2* w/ fine timestep	1X
Machine learning	POST2 surrogate model	~10000X
Coarse Time Step	100X larger timestep	~100X
Reduced Physics	Simplified atmosphere	~4X

^{*} Program to Optimize Trajectories II (POST2). Langley Research Center.

➤ **Goal:** assess estimator accuracy for trajectory state quantities using multi-model MC versus both high & low fidelity MC

Mean Squared Error (MSE) = bias + variance

Estimator Accuracy vs. Run Time

• The MSE was calculated for high-, low-, and multi-model MC estimators versus a reference solution using high-fidelity MC with 100,000 samples

- Significant accuracy improvements for predictions of landing location, roll rate, and altitude
- Negligible improvements for predictions of angle of attack
 - Cause: ineffective low-fidelity models

Multi-model MC: Summary & Future Work

- Combining hi-fi & lo-fi model predictions with multi-model MC has the potential to substantially improve accuracy for trajectory simulation
- Limitations & challenges:
 - Effectiveness is critically tied to development/selection of lo-fi models
 - Standard approaches are limited to statistical estimators (e.g., mean, variance)

Future work:

- Automating lo-fi model tuning & selection through collaboration with Sandia
- Extending approach for higher-order statistics (e.g., confidence ellipses)
- Embedding multi-model MC within robust trajectory optimization

Physics-Informed ML for Materials Identification

- Motivation: Materials characterization from limited tests
- **Challenge**: solving high-dimensional, probabilistic inverse problems
- Approach: Implement physics-informed generative adversarial network (PIGAN) capable of learning physically-admissible, random material property fields from data
- Collaborators: Julian Cuevas (U. Puerto Rico), Ted Lewitt (USC), Sean Lai (Portland State U.) – student interns at NASA

Physics-Informed Neural Networks (PINNs)

- Neural network trained to produce solution u(x) to a partial differential equation
- Trained using two-part objective:
 - 1. Minimize mean squared error with respect to data
 - 2. Output physically admissible solutions throughout the problem domain

Generative Adversarial Networks (GANs)

- Two neural networks compete in a zero-sum game
- Training objective: discriminator network tries to discern real from fake while generator network tries to fool the discriminator
- GANs are capable of learning/generating samples from complex probability distributions

Physics-Informed GANS (PIGANs)

- Combination of PINNs and GANs
- Enables learning of physically admissible, probabilistic solution, u(x)

Physics-Informed GANS (PIGANs)

- Add generators for additional parameters, θ
- Enables solving complex, probabilistic inverse problems (no direct θ observations)

Example – 2D Plate in Tension with Synthetic Data

- 2D plate in tension with random, spatially-varying elastic modulus, E(x)
- Measurements of $\vec{u}(x)$ generated using Python finite element package FEniCS
- PIGAN learned both the \vec{u} and \vec{E} random fields

Randomly Generated Reference Fields (Data Snapshots)

Example – Random Sample Comparison

Example – Statistics Estimates

PIGANs: Summary & Future Work

- Demonstrated PIGANs as potential tool for solving high-dimensional, probabilistic inverse problems for material identification
- Limitations & challenges:
 - Case studies limited to simulated 2D problems with many measurements
 - Training can be computationally intensive and can exhibit instabilities
- Future work:
 - Training PIGANs in the presence of measurement noise
 - Solving for 3D displacement/property fields
 - Adaptively/automatically balancing training loss terms

Active Learning for Reliability Analysis

Outputs

Physics Simulation

Learning

- Motivation: reliability analysis of the xEMU spacesuit
- Challenge: predicting small failure probabilities with expensive damage simulations
- Approach: use active learning to strategically select training data near failure regions for surrogate modeling
- Collaborators: Robert Gramacy, Austin Cole, Annie Sauer (Virginia Tech)

Gaussian Processes (GPs)

- Assume **N** training data, (\mathbf{X}_N, Y_N)
- A GP surrogate model, S_N , provides a probabilistic prediction for a new input, $\mathbf{x'}$, as the Gaussian distribution:

$$p(\mathbf{x}') = \mathcal{N}(\mu_N(\mathbf{x}'), \sigma_N^2(\mathbf{x}'))$$

- $\circ \mu_N(\mathbf{x}')$: predictive mean
- $\circ \sigma_N^2(\mathbf{x}')$: predictive variance

• Strengths:

- Interpolates observations of complex surfaces
- Can compute pointwise confidence intervals

Active Learning

Active learning systems aim to make machine learning more economical, since they can
participate in the acquisition of their own training data*

• Ex: integrated mean-squared error (IMSE) acquisition function minimizes future global variance:

IMSE
$$(\mathbf{x}_{N+1}) = \int_{\mathbf{x} \in \mathcal{X}} \sigma_{N+1}^2(\mathbf{x}) d\mathbf{x}$$

$$\mathbf{x}_{N+1} = \operatorname{argmin}_{\mathbf{x} \in \mathcal{X}} \operatorname{IMSE}(\mathbf{x} \mid \mathcal{S}_N)$$

Acquisition function:

IMSE
$$(\mathbf{x}_{N+1}) = \int_{\mathbf{x} \in \mathcal{X}} \sigma_{N+1}^2(\mathbf{x}) d\mathbf{x}$$

Select next sample:

$$\mathbf{x}_{N+1} = \operatorname{argmin}_{\mathbf{x} \in \mathcal{X}} \operatorname{IMSE}(\mathbf{x} \mid \mathcal{S}_N)$$

Acquisition function:

IMSE
$$(\mathbf{x}_{N+1}) = \int_{\mathbf{x} \in \mathcal{X}} \sigma_{N+1}^2(\mathbf{x}) d\mathbf{x}$$

Select next sample:

$$\mathbf{x}_{N+1} = \operatorname{argmin}_{\mathbf{x} \in \mathcal{X}} \operatorname{IMSE}(\mathbf{x} \mid \mathcal{S}_N)$$

Acquisition function:

IMSE
$$(\mathbf{x}_{N+1}) = \int_{\mathbf{x} \in \mathcal{X}} \sigma_{N+1}^2(\mathbf{x}) d\mathbf{x}$$

Select next sample:

$$\mathbf{x}_{N+1} = \operatorname{argmin}_{\mathbf{x} \in \mathcal{X}} \operatorname{IMSE}(\mathbf{x} \mid \mathcal{S}_N)$$

Acquisition function:

IMSE
$$(\mathbf{x}_{N+1}) = \int_{\mathbf{x} \in \mathcal{X}} \sigma_{N+1}^2(\mathbf{x}) d\mathbf{x}$$

Select next sample:

$$\mathbf{x}_{N+1} = \operatorname{argmin}_{\mathbf{x} \in \mathcal{X}} \operatorname{IMSE}(\mathbf{x} \mid \mathcal{S}_N)$$

After six sequentially selected training data:

Active Learning for Identifying Failure Contours

- Introduced Entropy Contour Locator (ECL)* acquisition function to concentrate training data near failure contours
 - Select locations of highest pass/fail uncertainty (maximum entropy)
- Resulting GP surrogate model will be tailored for accurate reliability analysis

^{*}D. A. Cole, R. B. Gramacy, J. E. Warner, G. F. Bomarito, P. E. Leser, W. P. Leser. *Entropy-Based Adaptive Design for Contour Finding and Estimating Reliability*. Journal of Quality Technology. 2021

Spacesuit Impact Reliability

- Goal: estimate the probability of impact failure (contact force > 2800lbf) in the spacesuit under material/impact velocity uncertainty
- Compare surrogate-based solutions from:
 - LHS GP trained from random Latin Hypercube samples
 - **ECL GP** trained from sequentially selected points targeting failure region

Aeroelastic Flutter Reliability

- Goal: estimate the probability of aeroelastic flutter under wing geometry & material uncertainties
- **Approach:** extend the ECL GP reliability method to use gradient observations produced by the transonic aero solver
 - Used only 20 total model evaluations to make predictions

Model Run Time: ~3 minutes

Training Data Selection

Probability of Failure Predictions

Summary

- Trusting black box models for UQ:
 - Use surrogate models responsibly:
 - 1. Always validate using a separate testing dataset
 - 2. Avoid extrapolation outside training data range
 - 3. Account for non-negligible surrogate errors in analysis
 - Combine physics-based & data-driven approaches:
 - Multi-model Monte Carlo: fuse predictions from ML with physics-based models for unbiased trajectory simulation estimators
 - **2. Physics-informed machine learning**: integrate physical laws into the training of ML models for *materials identification*
 - 3. Active learning: guide physics-based training data generation using ML models for reliability analysis

References

Multi-model Monte Carlo

Physics-informed Deep Learning

Active Learning

- J. E. Warner, G. F. Bomarito, L. Morrill, P. E. Leser,
 W. P. Leser, R. A. Williams, S. Dutta, S. Nieomoeller.
 Multi-Model Monte Carlo Estimators for Trajectory
 Simulation. 2021 AIAA SciTech Conference.
- G. F. Bomarito, P. E. Leser, J. E. Warner, W. P. Leser. On the Optimization of Approximate Control Variates with Parametrically Defined Estimators. Journal Paper. Journal of Computational Physics. February 2022.
- G. F. Bomarito, J. E. Warner, P. E. Leser, W. P. Leser, L. Morrill. Multi Model Monte Carlo with Python (MXMCPy). NASA TM 2020-220585. May 2020.

- J. E. Warner, J. Cuevas, P. E. Leser, G. F. Bomarito, W. P. Leser. Inverse Estimation of Elastic Modulus Using Physics-Informed Adversarial Networks. NASA TM 2020-5001300. May 2020.
- D. A. Cole, R. B. Gramacy, J. E. Warner, G. F.
 Bomarito, P. E. Leser, W. P. Leser. Entropy-Based
 Adaptive Design for Contour Finding and
 Estimating Reliability. Journal of Quality
 Technology. In Review (Preprint available).
- B. K. Stanford, K. E. Jacobson, A. Sauer, J. E. Warner. Gradient-Enhanced Reliability Analysis of Transonic Aeroelastic Flutter. 2022 AIAA Scitech Proceedings.