k-최근접 이웃(KNN) 분류

게으른 학습기

기술적으로 예측을 만들기 위해 모델을 훈련하지 않고 가장 가까운 k 개의 샘플에서 다수의 클래스를 그 샘플의 클래스로 예 측합니다.

예:클래스가 알려지지 않은 한 샘플이 클래스 1인 샘플로 둘러싸여 있 다면 그 샘플을 클래스 1로 분류합니다.

- 지도 학습에 활용되는 가장 단순한 종류의 알고리즘
- 파란색 사각형, 빨간색 삼각형은 각각 동일한 특성을 가진 특정 그룹이라고 가정합니다.
- 파란색 사각형들과 빨간색 삼각형들은 2차원 평면에 불규칙적으로 분포되어 있습니다.
- 만약 3가지 특성으로 구분되는 것이라면 3차원 공간에 표현하며 이와 같은 공간을 특성 공간(feature space)이라 부릅니다.
- 새로운 멤버 초록색 원은 파란색 사각형 또는 빨간색 삼각형 중 하나가 되야 합니다.
- 새로운 멤버와 가장 가깝게 위치하는 멤버가 속해 있는 그룹으로 분류하는 방법을 Nearest Neighbour라고 합니다.
- 예] 빨간색 삼각형보다 파란색 사각형이 더 많이 분포하고 있고, 특히 새로운 멤버 근처에 제일 가깝게 있는 녀석은 빨간색 삼각형이지만 조금만 범위를 넓혀 보면 파란색 사각형이 더 많습니다. 새로운 멤버인 초록색 원과 4번째까지 가까운 멤버들의 분포를 보고 판단하면 파란색 사각형으로 분류할지 빨간색 삼각형으로 분류할지 판단할수 없습니다. 조금 더 범위를 확대해서 7번째까지 가까운 멤버들의 분포를 보고 판단하면 초록색 원은 파란색 사각형으로 분류해야 합니다.
- 주어진 개수만큼 가까운 멤버들과 비교하여 판단하는 방법을 k-Nearest Neighbours 알고리즘이라 부릅니다.
- 주어지는 멤버 개수를 k로 표현한 것입니다.
- <u>가까운 멤버에는 가중치를 높게, 멀리 떨어져 있는 멤버에는 가중치를 낮게 하는 것이 바람직합니다</u>.

- ▶ 샘플의 최근접 이웃 찾기
 - 샘플에서 가장 가까운 k개의 샘플(이웃) 찾기

```
from sklearn import datasets
from sklearn.neighbors import NearestNeighbors
from sklearn.preprocessing import StandardScaler
iris = datasets.load iris() # 데이터 로드
features = iris.data
standardizer = StandardScaler() # 표준화 객체 생성
features standardized = standardizer.fit transform(features) # 특성을 표준화
# k=2인 최근접 이웃 모델 생성
nearest neighbors = NearestNeighbors(n neighbors=2).fit(features standardized)
new_observation = [ 1, 1, 1, 1] #New Sample Data
# New 샘플과 가장 가까운 이웃의 인덱스와 거리를 찾습니다.
distances, indices = nearest_neighbors.kneighbors([new_observation])
features standardized[indices] # 최근접 이웃을 확인
nearestneighbors euclidean = NearestNeighbors( n neighbors=2, metric='euclidean').fit(features standardized)
distances # 거리 확인
# 유클리디안 거리를 기반으로 각 샘플에 대해 (자기 자신을 포함한) 세 개의 최근접 이웃을 찾습니다.
nearestneighbors euclidean = NearestNeighbors(n neighbors=3, metric="euclidean").fit(features standardized)
```

▶ 샘플의 최근접 이웃 찾기

```
# 각 샘플의 (자기 자신을 포함한) 3개의 최근접 이웃을 나타내는 리스트의 리스트
nearest_neighbors_with_self = nearestneighbors_euclidean.kneighbors_graph( features_standardized).toarray()
# 최근접 이웃 중에서 1로 표시된 자기 자신을 제외시킵니다.
for i, x in enumerate(nearest neighbors with self):
  x[i] = 0
# 첫 번째 샘플에 대한 두 개의 최근접 이웃을 확인합니다.
nearest neighbors with self[0]
# 이 샘플과 가장 가까운 이웃의 다섯개의 인덱스를 찾습니다.
indices = nearest neighbors.kneighbors([new observation], n neighbors=5, return distance=False)
features standardized[indices] # 최근접 이웃을 확인
# 반경 0.5 안에 있는 모든 샘플의 인덱스를 찾습니다.
indices = nearest neighbors.radius neighbors([new observation], radius=0.5, return distance=False)
features standardized[indices[0]] # 반경 내의 이웃을 확인
# 반경 내의 이웃을 나타내는 리스트의 리스트
nearest_neighbors_with_self = nearest_neighbors.radius_neighbors_graph( [new_observation], radius=0.5).toarray()
nearest neighbors with self[0] # 첫 번째 샘플에 대한 반경 내의 이웃을 확인
```

- ➤ kNN(k-Nearest Neighbors)
 - KNeighborsClassifier(n_neighbors, p, metric)의 매개변수 metric='minkowski'는 유클리드 거리(Euclidean distance) 와 맨하튼 거리(Manhattan distance)를 일반화 한 것입니다.

매개변수 p=1이면 맨하튼 거리를 나타내며, p=2 이면 유클리드 거리를 나타냅니다.

$$d = \sqrt{(a_1' - a_1)^2 + (a_2' - a_2)^2} \qquad d = (a_1' - a_1) + (a_2' - a_2)$$

- 유클리드 거리는 좌표계에 두 점이 있을 때 두 지점의 최단거리이며, 맨하튼 거리는 격자를 이루는 선이 길이라고 생각하고 그 길이를 따라 잰 거리를 말합니다.
- minkowski 거리는 이 두 거리를 하나의 식으로 나타낸 것입니다

$$d = \sqrt[p]{\sum_{k} (a'_{k} - a_{k})^{p}}$$

- ➤ K-최근접 이웃 분류기(KNeighborsClassifier)
 - 클래스를 모르는 샘플이 주어졌을 때 이웃한 샘플의 클래스를 기반으로 이 샘플의 클래스를 예측해야 합니다.

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn import datasets
iris = datasets.load iris() # 데이터 로드
X = iris.data
y = iris.target
standardizer = StandardScaler() # 표준화 객체
X std = standardizer.fit transform(X) # 특성을 표준화
# 5개의 이웃을 사용한 KNN 분류기를 훈련합니다.
knn = KNeighborsClassifier(n_neighbors=5, n_jobs=-1).fit(X_std, y)
new observations = [[0.75, 0.75, 0.75, 0.75]
             [ 1, 1, 1, 1]] # 두 개의 샘플을 만듭니다.
knn.predict(new_observations) # 두 샘플의 클래스를 예측
knn.predict proba(new observations) # 각 샘플이 세 클래스에 속할 확률을 확인
```

- ➤ K-최근접 이웃 분류기(KNeighborsClassifier)
 - metric 매개변수는 사용할 거리 측정 방법을 지정합니다.
 - n_jobs 매개변수는 컴퓨터 코어를 사용할지 결정합니다.
 - algorithm 매개변수는 가장 가까운 이웃을 계산하기 위한 방법을 지정
 - weights 매개변수를 distance로 지정하면 멀리 떨어진 샘플보다 가까운 이웃의 투표에 가중치가 더 부여됩니다

```
from sklearn.neighbors import KNeighborsRegressor from sklearn import datasets

boston = datasets.load_boston() # 데이터 로드 features = boston.data[:,0:2] #두 개의 특성만 선택 target = boston.target

knn_regressor = KNeighborsRegressor(n_neighbors=10) # 최근접 회귀 모델 객체 생성 model = knn_regressor.fit(features, target) # 모델 훈련 # 첫 번째 샘플의 타깃 값을 예측하고 1000을 곱합니다. model.predict(features[0:1])[0]*1000

import numpy as np

indices = model.kneighbors(features[0:1], return_distance=False) np.mean(target[indices]) * 1000
```

- ▶ 최선의 이웃 개수 결정
 - KNN 분류기에 각기 다른 k 값으로 5-폴드 교차검증을 수행하는 GridSearchCV를 사용

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.model selection import GridSearchCV
iris = datasets.load_iris() # 데이터 로드
features = iris.data
target = iris.target
                                             # 표준화 객체 생성
standardizer = StandardScaler()
knn = KNeighborsClassifier(n_neighbors=5, n_jobs=-1) # KNN 분류기 객체 생성
pipe = Pipeline([("standardizer", standardizer), ("knn", knn)])
                                                                # 파이프라인 생성
# 탐색 영역의 후보를 만듭니다.
search_space = [{"knn__n_neighbors": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}]
# 그리드 서치 객체 생성
classifier = GridSearchCV( pipe, search_space, cv=5, verbose=0).fit(features, target)
# 최선의 이웃 개수 (k)
classifier.best_estimator_.get_params()["knn__n_neighbors"]
```

- ➤ 반지름 기반의 최근접 이웃 분류기(RadiusNeighborsClassifier)
 - 샘플의 클래스가 주어진 반지름 r 이내에 있는 모든 샘플의 클래스로부터 예측됩니다.
 - radius 매개변수로 고정 영역의 반지름을 지정하여 이웃 샘플을 결정합니다.
 - outlier_label 매개변수는 반지름 내에 다른 샘플이 하나도 없는 샘플에 부여할 레이블을 지정합니다.

```
from sklearn.neighbors import RadiusNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn import datasets

iris = datasets.load_iris() # 데이터 로드
features = iris.data
target = iris.target
standardizer = StandardScaler() # 표준화 객체 생성
features_standardized = standardizer.fit_transform(features) # 특성을 표준화

# 반지름 이웃 분류기를 훈련합니다.
rnn = RadiusNeighborsClassifier( radius=.5, n_jobs=-1).fit(features_standardized, target)
new_observations = [[ 1, 1, 1, 1]] # 두 개의 샘플을 만듭니다.
rnn.predict(new_observations) # 두 샘플의 클래스를 예측
# 반지름 이웃 분류기를 훈련합니다.
rnn = RadiusNeighborsClassifier( radius=.5, outlier_label=-1, n_jobs=-1).fit(features_standardized, target)
rnn.predict([[100, 100, 100, 100]])
```