Calcul différentiel

Feuille d'exercices #18

⊗ Partie A – Premiers pas différentiels

Exercice 1 — Les fonctions suivantes sont-elles prolongeables par continuité?

$$(x,y) \mapsto \frac{x^2y}{x^2 + y^2}; \quad (x,y) \mapsto \frac{xy(x+y)}{x^2 + y^2}; \quad (x,y) \mapsto \frac{xy}{x^2 + y^2}; \quad (x,y) \mapsto \frac{1 - \cos(xy)}{xy^2}$$

Exercice 2 — Soit *f* définie sur
$$\mathbb{R}^2 \setminus \{(0,0)\}$$
 par $f(x,y) = \frac{1 - \cos(x^2 + y^2)}{(x^2 + y^2)^2}$.

Montrer que f est prolongeable par continuité en (0,0). Ce prolongement admet-il des dérivées partielles en (0,0)? Est-il de classe \mathcal{C}^1 sur \mathbb{R}^2 ?

Exercice 3 — Soit f définie sur \mathbb{R}^2 par $f(x, y) = \cos(x - y)$. Donner une équation du plan tangent à la surface représentative de f au point $(\pi/2, 0, f(\pi/2, 0))$.

Exercice 4 — Soit $f \in \mathcal{C}^1(\mathbb{R}^2, \mathbb{R})$ telle que f(x+t, y+t) = f(x, y) pour tous $x, y, t \in \mathbb{R}$. De quelle équation aux dérivées partielles f est-elle solution?

Exercice 5 — Soit $\varphi : \mathbb{R} \to \mathbb{R}$, $f : \mathbb{R} \to \mathbb{R}$ deux fonctions de classe \mathscr{C}^2 sur \mathbb{R} et la fonction $F : \mathbb{R}^2 \to \mathbb{R}$ définie par $F(x, y) = f(x + \varphi(y))$.

Vérifier que F est de classe \mathscr{C}^2 sur \mathbb{R}^2 et établir l'égalité $\frac{\partial^2 F}{\partial x^2} \frac{\partial F}{\partial y} - \frac{\partial^2 F}{\partial x \partial y} \frac{\partial F}{\partial x} = 0$.

Exercice 6 — Déterminer toutes les fonctions f de classe \mathscr{C}^2 sur $\mathbb R$ telles que :

$$\Delta F(x, y) = \frac{y}{x^3}$$
 où $F: \left| \mathbb{R}^* \times \mathbb{R} \longrightarrow \mathbb{R} \right|$ $(x, y) \longmapsto f\left(\frac{y}{x}\right)$

Exercice 7 — Polynômes homogènes

Trouver tous les polynômes $P(x, y) = \sum_{k=0}^{n} a_k x^{n-k} y^k$ tels que $\frac{\partial^2 P}{\partial x^2} - \frac{\partial^2 P}{\partial y^2} = 0$.

Exercice 8 — Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction de classe \mathscr{C}^1 sur \mathbb{R} .

On considère la fonction F définie sur $\mathscr{U} = \mathbb{R}^* \times \mathbb{R}$ par $F(x, y) = \frac{f(xy)}{x}$.

- 1. On suppose f(0) = 0. Peut-on prolonger F par continuité à \mathbb{R}^2 ?
- 2. Calculer les dérivées partielles de F sur \mathcal{U} .

Exercice 9 — Fonctions harmoniques et propriété de la moyenne

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe \mathscr{C}^2 vérifiant :

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$

On pose, pour tout $(r,\theta) \in \mathbb{R}_+^* \times [0,2\pi[,F(r,\theta)=f(r\cos(\theta),r\sin(\theta)).$

- 1. Montrer que $\frac{\partial^2 F}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 F}{\partial \theta^2} + \frac{1}{r} \frac{\partial F}{\partial r} = 0$.
- 2. On pose, pour tout r > 0, $\varphi(r) = \frac{1}{2\pi} \int_0^{2\pi} f(r\cos(\theta), r\sin(\theta)) d\theta$.
 - a) Montrer que φ est de classe \mathscr{C}^2 puis que $r\varphi''(r) + \varphi'(r) = 0$.
 - b) En déduire que φ est constante.

Exercice 10 — Montrer que $(x, y) \mapsto \sum_{n=1}^{+\infty} \frac{e^{-n(x^2+y^2)}}{n^2}$ est de classe \mathscr{C}^1 sur \mathbb{R}^2 .

⊗ Partie B – Équations aux dérivées partielles

Exercice 11 — Déterminer toutes les fonctions f de classe \mathscr{C}^1 sur \mathbb{R}^2 telles que :

$$\forall (x, y) \in \mathbb{R}^2, \quad \frac{\partial f}{\partial x}(x, y) = 0 \quad \text{ et } \quad \frac{\partial f}{\partial y}(x, y) = 2y$$

Exercice 12 — À l'aide d'un changement de variable linéaire, déterminer toutes les fonctions de classe \mathscr{C}^1 sur \mathbb{R}^2 qui vérifient :

$$\forall (x, y) \in \mathbb{R}^2, \quad 2\frac{\partial f}{\partial x}(x, y) - \frac{\partial f}{\partial y}(x, y) = 0$$

Exercice 13 — Donner les fonctions $f \in \mathcal{C}^1(\mathcal{U}, \mathbb{R})$ vérifiant pour tout $(x, y) \in \mathcal{U}$:

1.
$$x \frac{\partial f}{\partial x}(x, y) + y \frac{\partial f}{\partial y}(x, y) = \frac{y}{x}$$
, $\mathcal{U} = \mathbb{R}^* \times \mathbb{R}$, en posant $u = x$ et $v = \frac{y}{x}$.

2.
$$f(x,y) + x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) + x^2 + y^2 = 0$$
, $\mathcal{U} = \mathbb{R}^2 \setminus \mathbb{R}^- \times \{0\}$.

Exercice 14 — Donner les fonctions $f \in \mathcal{C}^2(\mathcal{U}, \mathbb{R})$ vérifiant pour tout $(x, y) \in \mathcal{U}$:

1.
$$\frac{\partial^2 f}{\partial x^2}(x, y) - 2\frac{\partial^2 f}{\partial x \partial y}(x, y) + \frac{\partial^2 f}{\partial y^2}(x, y) = 0$$
, $\mathcal{U} = \mathbb{R}^2$, en posant $v = y$ et $u = x + y$.

2.
$$x^2 \frac{\partial^2 f}{\partial x^2}(x, y) - y^2 \frac{\partial^2 f}{\partial y^2}(x, y) = 0$$
, $\mathcal{U} = (\mathbb{R}_+^*)^2$, en posant $u = xy$ et $v = \frac{y}{x}$.

m **Exercice 15** — Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe \mathscr{C}^1 . On dit que f est homogène de degré $\alpha \in \mathbb{R}$ si, et seulement si,

$$\forall t > 0, \quad \forall (x, y) \in \mathbb{R}^2, \quad f(tx, ty) = t^{\alpha} f(x, y)$$

Montrer que pour tout $(x, y) \in \mathbb{R}^2$, $x \frac{\partial f}{\partial x}(x, y) + y \frac{\partial f}{\partial y}(x, y) = \alpha f(x, y)$ puis établir la réciproque.

⊗ Partie C – Différentielle, gradient et vecteurs tangents

Exercice 16 — Établir la différentiabilité de l'application $z \mapsto \frac{1}{z}$ définie sur \mathbb{C}^* et expliciter sa différentielle.

Exercice 17 — Établir la différentiabilité et donner les différentielles des applications définies sur $\mathcal{M}_n(\mathbb{R})$ par $f(M) = M^2$ et $g(M) = \text{Tr}(M^3)$.

Service 18 — On note $\|\cdot\|$ une norme de $\mathcal{M}_n(\mathbb{R})$ vérifiant :

$$\forall M, N \in \mathcal{M}_n(\mathbb{R}), \quad ||MN|| \leq ||M|| \cdot ||N||$$

1. Soit $M \in \mathcal{M}_n(\mathbb{R})$ telle que ||M|| < 1. Montrer que $I_n - M$ est inversible, d'inverse $\sum_{k=0}^{+\infty} M^k$. 2. Justifier la différentiabilité et calculer la différentielle de l'application définie sur $GL_n(\mathbb{R})$ par $f(M) = M^{-1}$.

On commencera par établir la différentiabilité en I_n .

Exercice 19 — Déterminer la différentielle en 0 de exp : $\mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$.

Exercice 20 — Déterminer le gradient de l'application définie sur $\mathbb{R}^n \setminus \{0\}$ par $f(x) = ||x||^{\alpha}$ avec $\alpha > 0$.

Exercice 21 — On munit \mathbb{R}^n de sa structure euclidienne canonique et on considère $f \in \mathcal{C}^1(\mathbb{R}_+;\mathbb{R})$ vérifiant f(0) = 1 et f'(0) = 0. On pose :

$$\forall x \in \mathbb{R}^n, \quad F(x) = f(||x||)x$$

- 1. Montrer que $N: x \mapsto ||x||$ est de classe \mathscr{C}^1 sur $\mathbb{R}^n \setminus \{0\}$ et exprimer sa différentielle à l'aide d'un produit scalaire.
- 2. Montrer que F est de classe \mathscr{C}^1 sur \mathbb{R}^n et déterminer sa différentielle.

Exercice 22 — *Une nouvelle preuve du théorème spectral* Soient $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien et $u \in \mathcal{S}(E)$. Pour $\Omega = E \setminus \{0\}$, on pose :

$$\forall x \in \Omega, \quad f(x) = \frac{\langle u(x), x \rangle}{\|x\|^2}$$

- 1. Montrer que f est bornée sur Ω et atteint un maximum en un point x_0 de la sphère unité.
- 2. Montrer que f est de classe \mathscr{C}^1 sur Ω et calculer sa différentielle en $x \in \Omega$.
- 3. En déduire que x_0 est un vecteur propre de u.
- 4. Montrer qu'il existe une base orthonormale de vecteurs propres de $\it u$.

Exercice 23 — Soient $J = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix} \in \mathcal{M}_{2n}(\mathbb{R}) \text{ et } \mathcal{S} = \{M \in \mathcal{M}_{2n}(\mathbb{R}) \mid M^\top J M = J\}.$

- 1. Montrer que \mathscr{S} est un groupe.
- 2. Montrer que $T_{I_{2n}}\mathcal{S} = \{M \in \mathcal{M}_{2n}(\mathbb{R}) \mid M^{\top}J + JM = 0\}.$
- 3. Montrer que $T_{I_{2n}}\mathscr{S}$ est un espace vectoriel et déterminer sa dimension.

5 **Exercice 24** — Fonctions convexes de classe \mathscr{C}^1

Soient Ω un ouvert convexe de \mathbb{R}^n et $f: \Omega \to \mathbb{R}$.

- 1. Montrer que f est convexe sur Ω si et seulement pour tout $(x, y) \in \Omega^2$, $\phi_{x,y}: t \mapsto f(x+t(y-x))$ est convexe sur [0,1].
- 2. On suppose f différentiable sur Ω .
 - a) Soit $(x, y) \in \Omega^2$. Justifier que $\phi_{x,y}$ est dérivable sur [0,1] et exprimer sa dérivée en fonction de ∇f .
 - b) En déduire que f est convexe si et seulement si,

$$\forall (x, y) \in \Omega^2, \quad f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$$

c) Montrer que cette dernière condition est équivalente à :

$$\forall (x, y) \in \Omega^2, \quad \langle \nabla f(y) - \nabla f(x), y - x \rangle \ge 0$$

3. Soient f convexe et différentiable sur Ω ainsi que $x^* \in \Omega$ tel que $\nabla f(x^*) = 0$. Montrer que f admet un minimum global en x^* .

Exercice 25 — Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction de classe \mathscr{C}^2 .

- 1. On suppose la hessienne de f nulle en tout point. Prouver l'existence de $a \in \mathbb{R}^n$ et $b \in \mathbb{R}$ tels que pour tout $x \in \mathbb{R}^n$, $f(x) = \langle a, x \rangle + b$.
- 2. On suppose la hessienne de f constante sur \mathbb{R}^n . Prouver l'existence de $u \in \mathcal{S}(\mathbb{R}^n)$, $a \in \mathbb{R}^n$ et $b \in \mathbb{R}$ tels que pour tout $x \in \mathbb{R}^n$,

$$f(x) = \frac{1}{2} \langle u(x), x \rangle + \langle a, x \rangle + b$$

⊗ Partie D – Extrema locaux, multiplicateurs de Lagrange

Exercice 26 — Étudier les extrema des fonctions suivantes :

$$(x, y) \mapsto x^3 + y^3 - 3xy \operatorname{sur} \mathbb{R}^2; \quad (x, y) \mapsto (x - y)e^{xy} \operatorname{sur} \mathbb{R}^2;$$

$$(x, y) \mapsto x \ln(x^2) + y^2 \operatorname{sur} \mathbb{R}^* \times \mathbb{R}; \quad (x, y) \mapsto \frac{xy}{(1+x)(1+y)(x+y)} \operatorname{sur} (\mathbb{R}_+^*)^2$$

Exercice 27 — On note f la fonction définie sur $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 16\}$ par $f(x, y) = \sqrt{x^2 + y^2} + x^2 - y^2$. Déterminer ses extrema.

Exercice 28 — Étudier les extrema de $(x, y) \mapsto ae^{-x} + be^{-y} + ce^{x+y}$ où a, b, c > 0.

Exercice 29 — Déterminer $\sup_{(x,y)\in[0,\pi/2]^2}\sin(x)\cdot\sin(y)\cdot\sin(x+y)$.

Exercice 30 — On pose $\mathcal{D} = \{(x, y) \in \mathbb{R}^2 \mid x \ge 0, y \ge 0, x + y \le 1\}.$

- 1. Montrer que \mathcal{D} est une partie fermée bornée de \mathbb{R}^2 .
- 2. Soient a > 0, b > 0, c > 0 et $f: \mathcal{D} \to \mathbb{R}$ définie par $f(x, y) = x^a y^b (1 x y)^c$. Montrer que f est continue sur \mathcal{D} puis déterminer $\sup_{(x,y) \in \mathcal{D}} f(x,y)$.

Exercice 31 — Soit *E* un espace vectoriel euclidien et *u* un vecteur non nul de *E*. Étudier les extrema de la fonction $f: x \mapsto ||x||^4 - \langle x, u \rangle$.

Soient $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien, $a \in \mathcal{S}^{++}(E)$ et $b \in E$. On note φ l'application définie sur E par $\varphi(x) = \langle a(x), x \rangle - 2\langle b, x \rangle$.

- 1. Montrer que φ est coercive, c'est-à-dire que $\lim_{\|x\|\to +\infty} \varphi(x) = +\infty$. En déduire que φ admet un minimum sur E.
- 2. Montrer que ce minimum est atteint en l'unique solution de a(x) = b.

Exercice 33 — On munit l'espace $\mathscr{E} = \mathbb{R}^n$ de sa structure euclidienne canonique. Soient $(\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n \setminus \{0\}$ et $\beta \in \mathbb{R}$.

- 1. Déterminer la distance d'un point $M_0 \in \mathcal{E}$ à l'hyperplan affine d'équation $\alpha_1 x_1 + \cdots + \alpha_n x_n = \beta$ à l'aide d'une minimisation sous contrainte.
- 2. Retrouver ce résultat à l'aide d'un raisonnement géométrique élémentaire.

Exercice 34 — Soient un entier $n \ge 2$ et $a_1, ..., a_n$ des réels strictement positifs de somme égale à 1. Montrer l'inégalité :

$$\prod_{i=1}^{n} a_i (1 - a_i) \le \frac{(n-1)^n}{n^{2n}}$$