Examenul național de bacalaureat 2021 Proba E. c)

Matematică M_mate-info

Testul 7

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Determinați numărul elementelor mulțimii $M = \{n \in \mathbb{N} | 2n + 1 < 10\}$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 10x + m$, unde m este număr real. Determinați numărul real m pentru care vârful parabolei asociate funcției f este situat pe axa Ox.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $x + \sqrt{x-5} = 7$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de trei cifre, acesta să **nu** fie multiplu de 5.
- 5p 5. În reperul cartezian xOy se consideră punctele A(3,4) și B(-1,3). Determinați coordonatele punctului C astfel încât $\overrightarrow{AB} + 2\overrightarrow{BC} = \overrightarrow{0}$.
- **5p 6.** Se consideră triunghiul ascuțitunghic ABC cu AB = 4, AC = 5 și aria egală cu 6. Calculați cosinusul unghiului A.

SUBIECTUL al II-lea (30 de puncte)

1. Se consideră matricea $A(a) = \begin{pmatrix} 1 & a+1 & a \\ 1 & 1 & a+1 \\ 2 & a & 1 \end{pmatrix}$ și sistemul de ecuații $\begin{cases} x + (a+1)y + az = 6a + 3 \\ x + y + (a+1)z = 4a + 7 \\ 2x + ay + z = 2a + 6 \end{cases}$

unde *a* este număr real.

- **5p** a) Arătați că $\det(A(a)) = 2(a^2 + 1)$, pentru orice număr real a.
- **5p b)** Determinați numărul real a pentru care $A(a) \cdot A(0) = A(0) \cdot A(a)$.
- **5p** c) Demonstrați că, dacă (x_0, y_0, z_0) este soluția sistemului de ecuații, atunci x_0 , y_0 și z_0 sunt termeni consecutivi ai unei progresii geometrice.
 - **2.** Pe mulțimea $M = [0, +\infty)$ se definește legea de compoziție $x * y = \frac{2(x+y)}{xy+2}$.
- **5p** a) Arătați că x * 0 = x, pentru orice $x \in M$.
- **5p b)** Arătați că x * y < 2, pentru orice $x, y \in [1, +\infty)$.
- **5p** c) Determinați perechile (m,n) de numere naturale nenule pentru care m*n este număr natural.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x \left(x^{2} 4x + 5\right)$.
- **5p** a) Arătați că $f'(x) = e^x(x-1)^2$, $x \in \mathbb{R}$.
- **5p b)** Calculați $\lim_{x \to +\infty} f(-x)$.
- **5p** c) Demonstrați că graficul funcției f intersectează orice dreaptă paralelă cu axa Ox în cel mult un punct.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 4x^3 + 1$.
- **5p** a) Arătați că $\int_{0}^{1} f(x) dx = 2$.

- 5p | b) Calculați $\int_{0}^{1} x^{2} (f(x))^{3} dx$.

 5p | c) Demonstrați că $\lim_{x \to +\infty} \int_{1}^{x} \ln(f(t)) dt = +\infty$.