5- Funções definidas por várias sentenças e Função Modular

Funções definidas por mais de uma sentença

São funções do tipo $f: X \subset \mathbb{R} \to \mathbb{R}$ em que f é definida por mais de uma sentença aberta, cada uma das quais ligada a um domínio X_i contido em X. Desse modo, para obter o valor de f(x) usa-se uma sentença ou outra dependendo do intervalo em que o valor de x se enquadra.

Exemplos:

- (1) Considere a função definida por $f(x) = \begin{cases} 1, \text{se } x < 0 \\ x + 1, \text{se } x \ge 0 \end{cases}$
- (a) Determine os valores de f(-3), $f(-\sqrt{2})$, f(0) e f(2).
- (b) Construa o gráfico de f.

Solução:

- (a) Temos que:
- $-3 < 0 \Rightarrow f(-3) = 1$
- $-\sqrt{2} < 0 \Rightarrow f(-\sqrt{2}) = 1$
- $0 \ge 0 \Rightarrow f(0) = 0 + 1 = 1$
- $2 \ge 0 \Rightarrow f(2) = 2 + 1 = 3$

- (b) Para construir o gráfico de $f(x) = \begin{cases} 1, \text{se } x < 0 \\ x + 1, \text{se } x \ge 0 \end{cases}$, procedemos da seguinte forma:
- 1º passo: construímos o gráfico da função constante f(x) = 1, mas só consideramos o trecho em que x < 0 (fig. 1).</p>
- 2º passo: construímos o gráfico da função afim f(x) = x + 1, mas só consideramos o trecho em que x ≥ 0 (fig. 2).
- 3º passo: reunimos os dois gráficos num só (fig. 3).

(2) Construir o gráfico das seguintes funções:

(a)
$$f(x) = \begin{cases} 1 & \text{se } x < 0 \\ x + 1 & \text{se } 0 \le x < 2 \\ 3 & \text{se } x \ge 2 \end{cases}$$

(b)
$$f(x) = \begin{cases} -x & \text{se } x < -1 \\ x^2 - 1 & \text{se } x \ge -1 \end{cases}$$

Solução: Temos que:

Exercícios

(1) Seja $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = \begin{cases} 2x - 1, \text{ se } x \ge 0 \\ x^2 + 5x, \text{ se } x < 0 \end{cases}$

Calcule:

$$(\mathbf{a}) \ f(-3)$$

(a)
$$f(-3)$$
 (b) $f\left(-\frac{1}{2}\right)$

$$(\mathbf{c}) f(0)$$

(d)
$$f(2)$$

Construa o gráfico das seguintes funções e determine o conjunto imagem.

(a)
$$f(x) = \begin{cases} 2x + 1, \text{se } x \ge 1\\ 4 - x, \text{se } x < 1 \end{cases}$$

(b)
$$f(x) = \begin{cases} x^2 + 2x, \text{se } x < -1 \\ x, \text{se } -1 \le x \le 1 \\ 1, \text{se } x > 1 \end{cases}$$

Função Modular

A função $f: \mathbb{R} \to \mathbb{R}$, definida por f(x) = |x| é chamada de função modular.

Utilizando o conceito de módulo de um número real, a função modular é dada por:

$$f(x) = \begin{cases} x, \text{se } x \ge 0 \\ -x, \text{se } x < 0 \end{cases}.$$

O gráfico da função modular, mostrado ao lado, é dado pela união de duas semirretas de origem O, que são as bissetrizes do 1º e 2º quadrantes.

Observe que $Im(f) = [0, +\infty)$.

Exemplos

(1) Construa o gráfico da função real f(x) = |x + 1|.

Solução:

Observe que

$$|x+1| = \begin{cases} x+1, \text{se } x+1 \ge 0 \\ -(x+1), \text{se } x+1 < 0 \end{cases}$$
$$= \begin{cases} x+1, \text{se } x \ge -1 \\ -x-1, \text{se } x < -1 \end{cases}.$$

Logo, f é uma função definida por partes, dada por

$$f(x) = \begin{cases} x+1, \text{ se } x \ge -1\\ -x-1, \text{ se } x < -1 \end{cases}$$

cujo gráfico está representado ao lado.

(2) Construa o gráfico da função real f(x) = |2x + 1| + |x - 1|.

Solução: Observe que

$$|2x+1| = \begin{cases} 2x+1, \text{se } x \ge -\frac{1}{2} \\ -2x-1, \text{se } x < -\frac{1}{2} \end{cases} \quad \text{e} \quad |x-1| = \begin{cases} x-1, \text{se } x \ge 1 \\ -x+1, \text{se } x < 1 \end{cases}.$$

Devemos, então, considerar três casos:

 $\mathbf{1}^{\underline{o}}$) quando $x < -\frac{1}{2}$, temos:

$$f(x) = |2x + 1| + |x - 1| = -2x - 1 - x + 1 = -3x.$$

2º) quando $-\frac{1}{2} \le x < 1$, temos:

$$f(x)=|2x+1|+|x-1|=2x+1-x+1=x+2.$$

3º) quando $x \ge 1$, temos:

$$f(x)=|2x+1|+|x-1|=2x+1+x-1=3x$$
.

Logo, a função f é dada por

$$f(x) = \begin{cases} -3x, \text{se } x < -\frac{1}{2} \\ x + 2, \text{se } -\frac{1}{2} \le x < 1 \\ 3x, \text{se } x \ge 1. \end{cases}$$

e o seu gráfico é mostrado abaixo.

Construção de gráficos usando reflexão

A reflexão de um ponto (x, y) em torno do eixo Ox é o ponto (x, -y). Assim, a reflexão de um gráfico em torno do eixo Ox é:

Podemos construir o gráfico de funções modulares do tipo f(x) = |g(x)| fazendo a reflexão da parte do gráfico de g(x) cujas imagens são negativas.

Exemplo: Construa os gráficos das seguintes funções modulares usando reflexão.

- (a) f(x) = |2x|
- (b) f(x) = |x 2|
- (c) $f(x) = |4 x^2|$
- (d) $f(x) = |x^2 2x 8|$

6- Potenciação e Radiciação

Potências e Raízes

Potência de expoente natural

Dados um número real \mathbf{a} e um número natural \mathbf{n} , com $n \ge 2$, chama-se **potência de base a** e **expoente n** o número \mathbf{a}^n que é o produto de \mathbf{n} fatores iguais a \mathbf{a} .

$$a^n = \underbrace{a \cdot a \cdot a \cdot \dots \cdot a}_{\mathbf{n} \text{ fatores}}$$

Dessa definição decorre que:

$$a^2 = a \cdot a$$
, $a^3 = a \cdot a \cdot a$, $a^4 = a \cdot a \cdot a \cdot a$ etc.

Há dois casos especiais:

- Para n = 1, definimos $a^1 = a$, pois com um único fator não se define o produto.
- Para n = 0 e supondo $a \neq 0$, definimos $a^0 = 1$.

Vejamos alguns exemplos de potências:

$$\cdot 4^3 = 4 \cdot 4 \cdot 4 = 64$$

$$\cdot \left(\frac{2}{5}\right)^2 = \frac{2}{5} \cdot \frac{2}{5} = \frac{4}{25}$$

•
$$(-6)^4 = (-6) \cdot (-6) \cdot (-6) \cdot (-6) = 1296$$

•
$$3^1 = 3$$

$$\bullet \left(\frac{3}{10}\right)^0 = 1$$

•
$$(3,2)^2 = 3,2 \cdot 3,2 = 10,24$$

$$\cdot 0^5 = 0 \cdot 0 \cdot 0 \cdot 0 \cdot 0 = 0$$

•
$$(-8)^1 = -8$$

•
$$7^0 = 1$$

•
$$(1,5)^3 = 1,5 \cdot 1,5 \cdot 1,5 = 3,375$$

Propriedades da Potenciação

Sendo **a** e **b** números reais e **m** e **n** naturais, valem as seguintes propriedades:

I)
$$a^m \cdot a^n = a^{m+n}$$

III)
$$(a \cdot b)^n = a^n \cdot b^n$$

$$V) (a^{m})^{n} = a^{m \cdot n}$$

II)
$$\frac{a^m}{a^n} = a^{m-n}$$
 (a $\neq 0$ e m $\geq n$) IV) $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$ (b $\neq 0$)

IV)
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n} (b \neq 0)$$

OBSERVAÇÃO Q

Façamos m = 0, de acordo com a primeira propriedade:

$$a^0 \cdot a^n = a^{0+n} = a^n$$

Para que ocorra igualdade, devemos ter $a^0 = 1$.

Façamos m = n, de acordo com a segunda propriedade:

Por um lado, $\frac{a^n}{a^n} = 1$, que é o quociente de dois números iguais.

Por outro lado, aplicando a propriedade, temos:

$$\frac{a^n}{a^n} = a^{n-n} = a^0$$

Convenciona-se, então, $a^0 = 1$.

Potência de expoente inteiro negativo

Dado um número real a, não nulo, e um número n natural, define-se a potência $\mathbf{a}^{-\mathbf{n}}$ pela relação

$$a^{-n} = \frac{1}{a^n}$$

isto é, a potência de base real, não nula, e expoente inteiro negativo é definida como o inverso da correspondente potência de inteiro positivo.

Exemplos:

$$1^{\circ}) \quad 2^{-1} = \frac{1}{2^1} = \frac{1}{2}$$

$$2^{\circ}$$
) $2^{-3} = \frac{1}{2^3} = \frac{1}{8}$

3°)
$$(-2)^{-3} = \frac{1}{(-2)^3} = \frac{1}{-8} = -\frac{1}{8}$$

$$4^{\circ}) \quad \left(-\frac{2}{3}\right)^{-2} = \frac{1}{\left(-\frac{2}{3}\right)^2} = \frac{1}{\frac{4}{9}} = \frac{9}{4}$$

5°)
$$\left(-\frac{1}{2}\right)^{-5} = \frac{1}{\left(-\frac{1}{2}\right)^5} = \frac{1}{-\frac{1}{32}} = -32$$

Observação: As cinco propriedades enunciadas para potência de expoente natural são válidas para potência de expoente inteiro negativo, quaisquer que sejam os valores dos expoentes **m** e **n** inteiros.

Raiz enésima aritmética

Dados um número real não negativo **a** e um número natural **n**, $n \ge 1$, chama-se **raiz enésima aritmética de a** o número real e não negativo **b** tal que $b^n = a$.

O símbolo $\sqrt[n]{a}$, chamado **radical**, indica a raiz enésima aritmética de **a**. Nele, **a** é chamado **radicando**, e **n**, **índice**.

$$\sqrt[n]{a} = b \Leftrightarrow b \ge 0 \text{ e } b^n = a$$

Vejamos alguns exemplos:

•
$$\sqrt[2]{16} = \sqrt{16} = 4$$
, pois $4^2 = 16$

•
$$\sqrt[6]{0} = 0$$
, pois $0^6 = 0$

•
$$\sqrt[3]{27} = 3$$
, pois $3^3 = 27$

•
$$\sqrt[4]{16} = 2$$
, pois $2^4 = 16$

Observações:

- 1ª) Da definição decorre $(\sqrt[n]{a})^n = a$, para todo $a \ge 0$.
- 2ª) Observemos na definição dada que:

$$\sqrt{36} = 6 \text{ e não } \sqrt{36} = \pm 6$$

$$\sqrt{\frac{9}{4}} = \frac{3}{2} \text{ e não } \sqrt{\frac{9}{4}} = \pm \frac{3}{2}$$

3ª) Devemos estar atentos ao cálculo da raiz quadrada de um quadrado perfeito, pois:

$$\sqrt{a^2} = |a|$$

Exemplos:

1º)
$$\sqrt{(-5)^2} = |-5| = 5$$
 e não $\sqrt{(-5)^2} = -5$

2º)
$$\sqrt{x^2} = |x|$$
 e não $\sqrt{x^2} = x$

 4^a) No **conjunto dos números reais**, temos situações distintas conforme o índice da raiz (n) seja par ou ímpar. Em $\sqrt[n]{a}$, temos:

i) Para n par:

Se a < 0, não existe raiz n-ésima de a.

Exemplo: $\sqrt{-5}$ não existe no conjunto dos números reais.

Se a = 0, a única raiz n-ésima é zero.

Exemplo: $\sqrt{0} = 0$

Se a > 0, a única raiz n-ésima de **a** é o número positivo $\sqrt[n]{a}$.

Exemplo: $\sqrt{4} = 2$

ii) Para n ímpar:

Qualquer que seja o número real a, existe uma única raiz n-ésima de a.

Exemplos

a)
$$\sqrt[3]{-8} = -2$$

b)
$$\sqrt[5]{1} = 1$$

Propriedades da Radiciação

Sendo **a** e **b** reais não negativos, **m** inteiro e **n** e **p** naturais não nulos, valem as seguintes propriedades:

I)
$$\sqrt[n]{a^m} = \sqrt[n+p]{a^{m+p}}$$

IV)
$$(\sqrt[n]{a})^m = \sqrt[n]{a^m}$$

II)
$$\sqrt[9]{a \cdot b} = \sqrt[9]{a} \cdot \sqrt[9]{b}$$

V)
$$\sqrt[p]{\sqrt[n]{a}} = \sqrt[p \cdot \sqrt[n]{a}$$

III)
$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}} (b \neq 0)$$

Observação:

Se $b \in \mathbb{R}_+$ e $n \in \mathbb{N}^*$, temos $b.\sqrt[n]{a} = \sqrt[n]{a.b^n}$.

Exemplos

10)
$$2\sqrt[3]{5} = \sqrt[3]{5.2^3} = \sqrt[3]{40}$$

2°)
$$-3\sqrt{2} = -\sqrt{2.3^2} = -\sqrt{18}$$

Assim, o coeficiente do radical pode ser colocado no radicando com expoente igual ao índice do radical.

Potência de expoente racional

Dados um número real positivo **a**, um número inteiro **m** e um número natural **n** ($n \ge 1$), chama-se **potência de base a** e **expoente** $\frac{\mathbf{m}}{\mathbf{n}}$ a raiz enésima (n-ésima) aritmética de a^m .

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

Definição especial:

Sendo
$$\frac{m}{n} > 0$$
, define-se: $0^{\frac{m}{n}} = 0$.

Exemplos:

•
$$5^{\frac{1}{2}} = \sqrt{5}$$

• $8^{\frac{1}{3}} = \sqrt[3]{8} = 2$
• $1^{\frac{7}{5}} = \sqrt[5]{1^7} = 1$
• $5^{\frac{2}{3}} = \sqrt[3]{5^2} = \sqrt[3]{25}$

•
$$64^{-\frac{1}{3}} = \sqrt[3]{64^{-1}} = \sqrt[3]{\frac{1}{64}} = \frac{1}{4}$$

• $2^{\frac{3}{2}} = \sqrt{2^3} = \sqrt{8} = 2\sqrt{2}$
• $0^{\frac{11}{3}} = 0$
• $100^{-\frac{1}{2}} = \sqrt[2]{100^{-1}} = \sqrt{\frac{1}{100}} = \frac{1}{10}$

Propriedades

Sendo **a** e **b** reais positivos e $\frac{p}{q}$ e $\frac{r}{s}$ racionais, valem as seguintes propriedades:

I)
$$a^{\frac{p}{q}} \cdot a^{\frac{r}{s}} = a^{\frac{p}{q} + \frac{r}{s}}$$

II)
$$a^{\frac{p}{q}}$$
: $a^{\frac{r}{s}} = a^{\frac{p}{q} - \frac{r}{s}}$

III)
$$(a \cdot b)^{\frac{p}{q}} = a^{\frac{p}{q}} \cdot b^{\frac{p}{q}}$$

IV)
$$(a : b)^{\frac{p}{q}} = a^{\frac{p}{q}} : b^{\frac{p}{q}}$$

$$V) \left(a^{\frac{p}{q}}\right)^{\frac{r}{s}} = a^{\frac{p}{q} \cdot \frac{r}{s}}$$

Para facilitar cálculos, é comum eliminar raízes dos denominadores das frações, através de um processo chamado **racionalização**.

Por exemplo, ao realizarmos a divisão $\frac{1}{\sqrt{2}}$, como $\sqrt{2}$ é aproximadamente 1,41, teremos de efetuar $\frac{1}{1,41}$. Porém, se racionalizarmos a fração dada (multiplicando o numerador e denominador por $\sqrt{2}$) teremos:

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}.$$

E usando a mesma aproximação anterior, ficamos com a divisão $\frac{1,41}{2}$, que é mais simples que a primeira.

Regra Prática: De modo geral, para racionalizarmos uma fração com denominador $\sqrt[n]{a^p}$, multiplicamos o numerador e o denominador por $\sqrt[n]{a^{n-p}}$, pois

$$\sqrt[n]{a^p} \cdot \sqrt[n]{a^{n-p}} = \sqrt[n]{a^{p+n-p}} = a.$$

Exemplos

1°)
$$\frac{3}{\sqrt{5}} = \frac{3}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{\sqrt{5^2}} = \frac{3\sqrt{5}}{5}$$

$$2^{\circ}) \quad \frac{1}{\sqrt[5]{3^2}} = \frac{1}{\sqrt[5]{3^2}} \cdot \frac{\sqrt[5]{3^3}}{\sqrt[5]{3^3}} = \frac{\sqrt[5]{3^3}}{\sqrt[5]{3^5}} = \frac{\sqrt[5]{27}}{3}$$

Caso apareça no denominador de uma fração uma soma ou subtração de radicais, devemos utilizar os produtos notáveis.

Exemplo 1

Quando o denominador é do tipo a + b ou a - b, e a e / ou b são raízes quadradas, lembrando que:

$$a^2 - b^2 = (a + b)(a - b)$$

então devemos multiplicar numerador e denominador por a – b ou a + b, respectivamente. Assim:

1°)
$$\frac{2}{\sqrt{5}+1} = \frac{2}{\sqrt{5}+1} \cdot \frac{\sqrt{5}-1}{\sqrt{5}-1} = \frac{2(\sqrt{5}-1)}{(\sqrt{5})^2-1^2} = \frac{\sqrt{5}-1}{2}$$

2°)
$$\frac{1}{\sqrt{7}-\sqrt{2}} = \frac{1}{\sqrt{7}-\sqrt{2}} \cdot \frac{\sqrt{7}+\sqrt{2}}{\sqrt{7}+\sqrt{2}} = \frac{\sqrt{7}+\sqrt{2}}{5}$$

Exemplo 2

Quando o denominador é do tipo a – b ou a + b, e um dos dois é uma raiz cúbica, lembrando que:

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$

então devemos multiplicar o numerador e o denominador por $a^2 + ab + b^2$ ou $a^2 - ab + b^2$, respectivamente. Assim:

$$\frac{1}{\sqrt[3]{2}-1} = \frac{1}{\sqrt[3]{2}-1} \cdot \frac{\left[\left(\sqrt[3]{2^2} + \sqrt[3]{2} + 1^2 \right) \right]}{\left[\left(\sqrt[3]{2^2} + \sqrt[3]{2} + 1^2 \right) \right]} \Rightarrow$$

$$\frac{1}{\sqrt[3]{2}-1} = \frac{\left(\sqrt[3]{2^2} + \sqrt[3]{2} + 1\right)}{\sqrt[3]{2^3} - 1^3} \implies$$

$$\frac{1}{\sqrt[3]{2}-1} = \sqrt[3]{4} + \sqrt[3]{2} + 1$$

Exercícios

(1) Calcule:

a) $(-3)^2$

b) -3^2

c) -2^3

d) $-(-2)^3$

(2) Simplifique as expressões:

a)
$$(a^{-2} \cdot b^3)^{-2} \cdot (a^3 \cdot b^{-2})^3$$

b)
$$\frac{(a^5 \cdot b^3)^2}{(a^{-4} \cdot b)^{-3}}$$

c)
$$[(a^2 \cdot b^{-3})^2]^{-3}$$

d)
$$\left(\frac{a^3 \cdot b^{-4}}{a^{-2} \cdot b^2}\right)^3$$

Simplifique os radicais:

a)
$$\sqrt[3]{64}$$
 b) $\sqrt{576}$ c) $\sqrt{12}$

Efetue as operações indicadas com as raízes:

a)
$$\sqrt{3} \cdot \sqrt{12}$$

c)
$$\sqrt{\frac{3}{2}}:\sqrt{\frac{1}{2}}$$

c)
$$\sqrt{\frac{3}{2}} : \sqrt{\frac{1}{2}}$$
 e) $\sqrt[3]{4} : \sqrt[4]{2}$ d) $\sqrt{3} \cdot \sqrt[3]{2}$ f) $\sqrt[3]{\frac{5}{2}} : \sqrt[5]{\frac{1}{2}}$

Racionalize os denominadores:

a)
$$\frac{1}{\sqrt{3}}$$

b)
$$\frac{1}{\sqrt[3]{2}}$$

c)
$$\frac{5}{3-\sqrt{7}}$$

a)
$$\frac{1}{\sqrt{3}}$$
 b) $\frac{1}{\sqrt[3]{2}}$ c) $\frac{5}{3-\sqrt{7}}$ d) $\frac{1}{1+\sqrt{2}-\sqrt{3}}$

- (6) (UFMG) Se a = 10^{-3} , o valor de $\frac{0,01.0,001.10^{-1}}{100.0,0001}$, em função de **a**, é
 - A) 100a
 - B) 10a
 - C) a
 - D) $\frac{a}{10}$
- (7) (PUC Minas) O valor da expressão $y = 8.\sqrt[3]{10^{-3}}.5.10^{-3}$ é
 - A) 40

D) 4.10^{-3}

B) 40.10^2

E) 40.10^{-3}

C) 40^{-2}

(8) (UNIFEI-MG-2008) Sejam $A = \sqrt{\frac{x}{y}}, B = \sqrt[3]{\frac{y^2}{x}} e C = \sqrt[6]{\frac{x}{y}}.$

Então, o produto A.B.C é igual a

- A) ³√y
- B) ³√x
- C) $\sqrt[3]{x}$
- D) ³√xy
- (9) (UFPel-RS) O valor da expressão $\left(\frac{1}{4}\right)^{0,5} \div \left(\frac{1}{32}\right)^{0,2}$ é
 - A) 0,125

D) 0,75

B) 0,25

E) 1

C) 0,5

(10) (FUVEST-SP) Qual é o valor da expressão $\frac{\sqrt{3}+1}{\sqrt{3}-1} + \frac{\sqrt{3}-1}{\sqrt{3}+1}$?

- A) $\sqrt{3}$
- B) 4
- C) 3
- D) 2
- E) √2

Potência de expoente irracional

Queremos calcular potências do tipo a^x , em que $a \in \mathbb{R}_+^*$ e x é um número irracional.

Exemplos de potências com expoente irracional: $2^{\sqrt{2}}$, $4^{\sqrt{3}}$, 5^{π} , $\left(\frac{2}{3}\right)^{1-\sqrt{2}}$.

Para obter o valor aproximado de a^x , com x irracional, utilizamos potências com expoentes racionais para aproximar o número procurado por falta e excesso.

Exemplo: Calcule o valor aproximado de $2^{\sqrt{2}}$.

Como $\sqrt{2}$ é irracional, vamos considerar aproximações racionais para esse número por falta e por excesso e, com auxílio de uma calculadora científica, obter o valor das potências de expoentes racionais, como na tabela ao lado.

Note que, à medida que os expoentes se aproximam de $\sqrt{2}$ por valores racionais, tanto por falta quanto por excesso, os valores das potências tendem a um mesmo valor, definido por $2^{\sqrt{2}}$ que é aproximadamente igual a 2,665.

$$\sqrt{2} \simeq 1,41421356...$$

Por falta	Por excesso
$2^1 = 2$	$2^2 = 4$
$2^{1,4} \simeq 2,639$	$2^{1,5} = 2^{\frac{3}{2}} = \sqrt{8} = 2\sqrt{2} \approx 2,828$
$2^{1,41} \simeq 2,657$	$2^{1,42} \simeq 2,676$
$2^{1,414} \simeq 2,6647$	$2^{1,415} \simeq 2,6666$
$2^{1,4142} \simeq 2,6651$	$2^{1,4143} \simeq 2,6653$
:	:

Potência de expoente irracional

Definição especial: Se a base é zero e α é irracional positivo, então definimos

$$0^{\alpha}=0.$$

Observações:

- 1ª) Se a = 1, então 1^{α} = 1, $\forall \alpha$ irracional.
- 2^{a}) Se a < 0 e α é irracional e positivo, então o símbolo a^{α} não tem significado. Exemplos: $(-2)^{\sqrt{2}}$, $(-5)^{\sqrt{3}}$ e $(-\sqrt{2})^{\sqrt{3}}$ não têm significado.
 - 3^{a}) Se α é irracional e negativo (α < 0), então 0^{α} não tem significado.
 - 4^a) Para as potências de expoente irracional são válidas as propriedades (P).

Potência de expoente real

Seja $a \in \mathbb{R}_+^*$. Já estudamos os diferentes tipos de potências a^x com x racional ou irracional. Em qualquer caso, temos que:

(1) Toda potência de base real positiva e expoente real é um número positivo:

$$a > 0 \Rightarrow a^x > 0$$
.

(2) Para as potências de expoente real continuam válidas todas as propriedades vistas anteriormente.

$$[\mathbf{P_1}] \mathbf{a}^{\mathsf{b}} \cdot \mathbf{a}^{\mathsf{c}} = \mathbf{a}^{\mathsf{b} + \mathsf{c}} \qquad (\mathbf{a} \in \mathbb{R}^*, \mathbf{b} \in \mathbb{R} \, \mathbf{e} \, \mathbf{c} \in \mathbb{R})$$

$$[\mathbf{P_2}] \frac{\mathbf{a}^{\mathsf{b}}}{\mathbf{a}^{\mathsf{c}}} = \mathbf{a}^{\mathsf{b} - \mathsf{c}} \qquad (\mathsf{a} \in \mathbb{R}_+^*, \mathsf{b} \in \mathbb{R} \; \mathsf{e} \; \mathsf{c} \in \mathbb{R})$$

$$[\mathbf{P_3}] (\mathbf{a} \cdot \mathbf{b})^{\mathbf{c}} = \mathbf{a}^{\mathbf{c}} \cdot \mathbf{b}^{\mathbf{c}} \qquad (\mathbf{a} \in \mathbb{R}_+^*, \mathbf{b} \in \mathbb{R}_+^* \mathbf{e} \mathbf{c} \in \mathbb{R})$$

$$[\mathbf{P_4}] \left(\frac{\mathbf{a}}{\mathbf{b}}\right)^{\mathbf{c}} = \frac{\mathbf{a}^{\mathbf{c}}}{\mathbf{b}^{\mathbf{c}}} \qquad (\mathbf{a} \in \mathbb{R}_+^*, \mathbf{b} \in \mathbb{R}_+^* \mathbf{e} \mathbf{c} \in \mathbb{R})$$

$$[\mathbf{P_5}] (\mathbf{a}^{\mathbf{b}})^{\mathbf{c}} = \mathbf{a}^{\mathbf{b} \cdot \mathbf{c}} \qquad (\mathbf{a} \in \mathbb{R}^*, \mathbf{b} \in \mathbb{R} \ \mathbf{e} \ \mathbf{c} \in \mathbb{R})$$