BASIC NUMBER THEORY: LECTURE 7

WENHAN DAI

1. Proof of the cubic reciprocity (continued)

We resume on referring to the textbook [IR82] by Ireland and Rosen.¹

Proposition 1 ([Prop 8.3.4, IR82]). Let $p \equiv 1 \mod 3$ be a prime and χ be a cubic character, i.e. $\chi^3 = \epsilon$. Assume $J(\chi, \chi) = a + b\omega$, then

$$b \equiv 0 \mod 3$$
, $a \equiv -1 \mod 3$.

Proof. By taking n=3 in Proposition 8 of Lecture 6,

$$g(\chi)^3 = pJ(\chi, \chi) = p(a + b\omega).$$

Since $p \equiv 1 \mod 3$,

$$a+b\omega \equiv g(\chi)^3 \equiv \sum_{t \in \mathbb{F}_p^\times} \chi(t)^3 \zeta^{3t} = \sum_{t \in \mathbb{F}_p^\times} \zeta^{3t} = -1 \bmod 3.$$

Similarly, $a + b\overline{\omega} \equiv g(\overline{\chi})^3 \equiv -1 \mod 3$. Then $a \equiv -1 \mod 3$ and $b \equiv 0 \mod 3$.

For a prime $\pi \in \mathbb{Z}[\omega]$, define (with $p = N(\pi)$) that

$$\chi_{\pi} = \left(\frac{\cdot}{\pi}\right)_3 : \mathbb{F}_p^{\times} \to \{1, \omega, \omega^2\} \subseteq \mathbb{C}^{\times}.$$

Lemma 2. For any prime $\pi \in \mathbb{Z}[\omega]$,

$$J(\chi_{\pi},\chi_{\pi})=\pi.$$

Proof. Apply Proposition 6 of Lecture 6 to get $J(\chi_{\pi}, \chi_{\pi}) = \sqrt{p}$. By Proposition 1, $J(\chi_{\pi}, \chi_{\pi})$ is primary. As $p = \pi \overline{\pi}$, one must choose a square root of p. Hence $J(\chi_{\pi}, \chi_{\pi}) = \pi$ or $\overline{\pi}$. On the other hand,

$$J(\chi_{\pi}, \chi_{\pi}) = \sum_{t \in \mathbb{F}_p^{\times}} \chi_{\pi}(t) \chi_{\pi}(1 - t)$$
$$\equiv \sum_{x \in \mathbb{F}_p} x^{\frac{p-1}{3}} (1 - x)^{\frac{p-1}{3}} \equiv 0 \bmod \pi.$$

This forces $J(\chi_{\pi}, \chi_{\pi})$ to equal π .

Using the character theory, the cubic reciprocity can be computed explicitly.

Theorem 3 (Reformulated cubic reciprocity). Let $q \equiv 2 \mod 3$ be a rational prime. Take another prime $\pi \in \mathbb{Z}[\omega]$. Then

$$\chi_q(\pi) = \chi_\pi(q).$$

Date: October 23, 2020.

 $^{^1\}mathrm{K}.$ Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, Berlin, Heidelberg, and New York, 1982.

WENHAN DAI

Proof. A priori we have $g(\chi_{\pi})^3 = pJ(\chi_{\pi}, \chi_{\pi}) = p\pi$ due to Lemma 2, for some $p \equiv 1 \mod 3$. Recall that for $q \equiv 2 \mod 3$, it keeps inert in $\mathbb{Z}[\omega]$, and the diagram commutes:

$$\mathbb{Z}/q\mathbb{Z} \hookrightarrow \mathbb{Z}[\omega]/q\mathbb{Z}[\omega]$$

$$\downarrow \sim \qquad \qquad \downarrow \sim$$

$$\mathbb{F}_q \hookrightarrow \mathbb{F}_{q^2}.$$

It is natural to consider the power $q^2 - 1$, say

$$g(\chi_{\pi})^{q^2-1} = (p\pi)^{\frac{q^2-1}{3}} \equiv \chi_q(p\pi) \bmod q.$$

As $3 \mid N(q) - 1$, we obtain $\chi_q(p) = 1$. Thus,

$$\chi_q(p\pi) = \chi_q(p)\chi_q(\pi) = \chi_q(\pi).$$

Also,

$$g(\chi_{\pi})^{q^2} = \left(\sum_{t \in \mathbb{F}_p} \chi_{\pi}(t) \zeta^t\right)^{q^2}$$
$$\equiv \sum_{t \in \mathbb{F}_p} \chi_{\pi}(t)^{q^2} \zeta^{q^2 t} \bmod q$$
$$= \sum_{t \in \mathbb{F}_p} \chi_{\pi}(t) \zeta^{q^2 t} = g_{q^2}(\chi_{\pi}).$$

Furthermore, $g_{q^2}(\chi_{\pi}) = \chi_{\pi}(q^{-2})g(\chi_{\pi}) = \chi_{\pi}(q)g(\chi_{\pi})$. Then

$$\chi_{\pi}(q) = g(\chi_{\pi})^{q^2 - 1} \equiv \chi_q(\pi) \bmod q.$$

This is sufficient to show that $\chi_{\pi}(q) = \chi_{q}(\pi)$. Hence the cubic reciprocity holds.

2. Story on number fields

Recall that a number field K is a finite extension of \mathbb{Q} . Denote $d = [K : \mathbb{Q}]$ the degree of K. Note that K/\mathbb{Q} is always separable yet not necessarily Galois. (This is essentially because \mathbb{Q} is a perfect field.)

Definition 4. The *ring of integers of* K, denoted by \mathcal{O}_K , is the integral closure of \mathbb{Z} in K; equivalently, it consists of the elements of K whose minimal polynomial is monic and lies in $\mathbb{Z}[X]$.

Proposition 5. (1) \mathcal{O}_K is a subring of K such that $\operatorname{Frac}(\mathcal{O}_K) = K$.

(2) \mathcal{O}_K is a free \mathbb{Z} -module of rank d.

Proof. (1) is apparent by definition. We prove (2) as follows. Since K/\mathbb{Q} is separable, there is a non-degenerate trace pairing

$$\operatorname{Tr}: K \times K \longrightarrow \mathbb{Q}$$
$$(a,b) \longmapsto \operatorname{Tr}_{K/\mathbb{Q}}(ab).$$

Choose a basis e_1, \ldots, e_d of K/\mathbb{Q} . With respect to this (perfect) trace pairing, one can take the dual basis e_1^*, \ldots, e_d^* . Fix a sufficiently divisible integer n such that $\{ne_1, \ldots, ne_d\} \subseteq \mathcal{O}_K$ and replace e_1, \ldots, e_d by ne_1, \ldots, ne_d . Correspondingly, the dual basis is also replaced with

 $n^{-1}e_1^*, \ldots, n^{-1}e_d^*$. Thanks to this argument, one may assume without loss of generality that $e_i \in \mathcal{O}_K$ for all i. Then

$$\bigoplus_{i=1}^{d} \mathbb{Z} e_i \subseteq \mathcal{O}_K.$$

Conversely, for each $a \in \mathcal{O}_K$, there is another \mathbb{Q} -linear combination with respect to the dual basis: $a = \sum_{i=1}^d a_i e_i^*$ for $a_i \in \mathbb{Q}$. Then $\text{Tr}(a, e_j) = \text{Tr}_{K/\mathbb{Q}}(ae_j) = a_j \in \mathbb{Z}$ by definition of the trace. Hence

$$\bigoplus_{i=1}^d \mathbb{Z} e_i \supseteq \mathcal{O}_K.$$

So \mathcal{O}_K is a free abelian group, namely a free \mathbb{Z} -module, of rank d.

Definition 6. A ring R is a Dedekind domain if

- (1) R is a noetherian domain,
- (2) R is integrally closed, and
- (3) every nonzero prime ideal of R is maximal.²

The following theorems explain the motivation to introduce the definition of Dedekind domains. A priori the unique decomposition of elements into primes as that in \mathbb{Z} cannot be generalized to a similar statement for free \mathbb{Z} -modules of finite rank. Hence we only require the unique decomposition to hold for prime ideals in \mathcal{O}_K .

Theorem 7. If R is a Dedekind domain, then every nonzero ideal $\mathfrak{a} \subseteq R$ can be written as $\mathfrak{a} = \mathfrak{p}_1 \dots \mathfrak{p}_r$, where $\mathfrak{p}_1, \dots, \mathfrak{p}_r$ are prime ideals and the decomposition is unique up to order.

Theorem 8. Let K be a number field. Then

- (1) \mathcal{O}_K is a Dedekind domain.
- (2) For each nonzero prime ideal \mathfrak{p} , the quotient $\mathcal{O}_K/\mathfrak{p}$ is a finite field.

Proof. Recall that a finite integral domain is always a field. Also note that (2) implies (1). So it suffices to show that for any nonzero ideal I of \mathcal{O}_K , $|\mathcal{O}_K/I| < \infty$. Choose $0 \neq a \in I$ with its monic minimal polynomial $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$ of \mathbb{Q} -coefficients. It turns out that $a_0 \in \mathbb{Z}$ for $a \in \mathcal{O}_K$. And

$$a_0 = -(a^n + a_{n-1}a^{n-1} + \dots + a_1a) \in I.$$

We deduce that $0 \neq a_0 \in I \cap \mathbb{Z}$. Hence $(a_0) \subseteq I$ and $|\mathcal{O}_K/(a_0)| < \infty$ (more precisely, there is a basis of $\mathcal{O}_K/(a_0)$ consisting of at most n-2 elements). In particular, $|\mathcal{O}_K/I| < \infty$. \square

3. Ramification theory

Setup. Suppose L/K is a finite extension (again, not necessarily Galois) of number fields. Let $\mathfrak{p} \subseteq \mathcal{O}_K$ be a prime ideal. By Theorem 7, \mathfrak{p} admits a unique decomposition in L, written as $\mathfrak{p}\mathcal{O}_L = \mathfrak{q}_1^{e_1} \cdots \mathfrak{q}_g^{e_g}$ with $\mathfrak{q}_i \cap \mathcal{O}_K = \mathfrak{p}$, where \mathfrak{q}_i 's are mutually distinct prime ideals. Hence $\mathcal{O}_K/\mathfrak{p} \to \mathcal{O}_K/\mathfrak{q}_i$ is a finite extension of finite fields.

²In commutative algebra, this condition is written as Krull dim R = 1.

³This is because a_0 equals the norm of a, which will be discussed later.

Definition 9. In the decomposition $\mathfrak{p}\mathcal{O}_L = \mathfrak{q}_1^{e_1} \cdots \mathfrak{q}_g^{e_g}$ above, define $e_i = e(\mathfrak{q}_i|\mathfrak{p})$ to be the ramification index of \mathfrak{q}_i over \mathfrak{p} . Also define $f_i = f(\mathfrak{q}_i|\mathfrak{p}) = [\mathcal{O}_K/\mathfrak{q}_i : \mathcal{O}_K/\mathfrak{p}]$ to be the inertia degree of \mathfrak{q}_i over \mathfrak{p} .

Theorem 10. We always obtain the relation

$$\sum_{i=1}^{g} e_i f_i = d.$$

Proof. By assumption, $\mathcal{O}_L/\mathfrak{p}\mathcal{O}_L$ is a free $\mathcal{O}_K/\mathfrak{p}$ -module of rank d, and by the Chinese remainder theorem,

$$\mathcal{O}_L/\mathfrak{p}\mathcal{O}_L\simeq igoplus_{i=1}^g \mathcal{O}_L/\mathfrak{q}_i^{e_i}\mathcal{O}_L,\quad \mathfrak{q}_i^{e_i}+\mathfrak{q}_j^{e_j}=\mathcal{O}_L ext{ for } i
eq j.$$

Thus,

$$|\mathcal{O}_L/\mathfrak{q}_i^{e_i}\mathcal{O}_L| = |\mathcal{O}_L/\mathfrak{q}_i\mathcal{O}_L|^{e_i} = |\mathcal{O}_K/\mathfrak{p}\mathcal{O}_K|^{f_ie_i} = N(\mathfrak{p})^{f_ie_i}.$$

On the other hand,

$$|\mathcal{O}_L/\mathfrak{p}\mathcal{O}_L| = |\mathcal{O}_K/\mathfrak{p}\mathcal{O}_K|^d = N(\mathfrak{p})^d.$$

So the equality holds by comparison.

Theorem 11. Assume that L/K is finite Galois of degree d. Then

- (1) The group Gal(L/K) acts on the set $\{\mathfrak{q}_1,\ldots,\mathfrak{q}_q\}$ transitively.
- (2) There are integers e, f such that

$$e(\mathfrak{q}_i \mid \mathfrak{p}) = e, \quad f(\mathfrak{q}_i \mid \mathfrak{p}) = f, \quad i = 1, \dots, g.$$

Moreover, by Theorem 10,

$$efq = d$$
.

Proof. Note immediately that (2) is implied by (1). So we tackle with (1) only. Suppose the Galois action is not transitive. Then there exists $\mathfrak{q}_1, \mathfrak{q}_2$ such that for all $\sigma \in \operatorname{Gal}(L/K), \sigma(\mathfrak{q}_1) \neq \mathfrak{q}_2$. Choose $a \in \mathfrak{q}_2 \setminus \bigcup_{\sigma \in \operatorname{Gal}(L/K)} \sigma(\mathfrak{q}_1)$. Then

$$N_{L/K}(a) = \prod_{\sigma \in \operatorname{Gal}(L/K)} \sigma(a) = \prod_{\sigma \in \operatorname{Gal}(L/K)} \sigma^{-1}(a) \notin \mathfrak{q}_1.$$

This forces $N_{L/K}(a) \in \mathfrak{q}_2$, contradicting with $N_{L/K}(a) \in \mathfrak{q}_2 \cap \mathcal{O}_K = \mathfrak{p} = \mathfrak{q}_1 \cap \mathcal{O}_K$.

School of Mathematical Sciences, Peking University, 100871, Beijing, China $Email\ address$: daiwenhan@pku.edu.cn