HAS101X — Révisions d'analyse réelle

Sacha Cardonna

Faculté des Sciences, Université de Montpellier

Octobre 2024

Fonctions usuelles

Définition d'une fonction

Une fonction associe à chaque élément d'un ensemble de départ un unique élément d'un ensemble d'arrivée. Soit f une fonction telle qu'elle possède :

- Un ensemble de départ : \mathcal{D}_f (exemple : $\mathcal{D}_f = \mathbb{R}$, $\mathbb{N}...$)
- Un ensemble d'arrivée : \mathcal{A} (exemple : $\mathcal{A} = \mathbb{R}^+$, $[0,\pi]$, $\mathbb{Z}...$)

On note alors

$$f: \mathcal{D}_f \to \mathcal{A}$$

 $x \mapsto f(x).$

Fonction affine

Fonctions usuelles

Forme : f(x) = ax + b**Propriétés**

- a est le coefficient directeur (pente)
- b est l'ordonnée à l'origine
- Représentation graphique : droite

$$f(x) = 2x + 1$$

Fonction carré

Forme : $f(x) = x^2$

Propriétés

- Symétrie par rapport à l'axe des ordonnées
- Minimum en x = 0

Fonction exponentielle

Fonctions usuelles

Forme :
$$f(x) = e^x$$

Propriétés

- Croissante sur $\mathbb R$ et toujours positive
- f(0) = 1

Fonction logarithme népérien

Forme : $f(x) = \ln(x)$ Propriétés

- Définie pour x > 0
- Croissante sur $]0, +\infty[$

Fonctions usuelles Polynômes Limites Dérivation Intégration Trigonométrie

Liens entre ln(x) et e^x

Relation fondamentale

- ln(x) est l'inverse de la fonction exponentielle e^x .
- Cela signifie que :

$$e^{\ln(x)} = x$$
, pour tout $x > 0$
 $\ln(e^x) = x$, pour tout $x \in \mathbb{R}$

Propriétés graphiques

- Les graphiques de e^x et ln(x) sont symétriques par rapport à la droite y = x.
- e^x est définie et croissante sur \mathbb{R} .
- ln(x) est définie pour x > 0 et croissante sur $(0, +\infty)$.

Liens entre ln(x) et e^x

Formules importantes : In et e^x

Logarithme népérien

- ln(1) = 0
- ln(e) = 1
- ln(ab) = ln(a) + ln(b)
- $\ln\left(\frac{a}{b}\right) = \ln(a) \ln(b)$
- $\ln(a^n) = n \cdot \ln(a)$

Exponentielle

- $e^0 = 1$
- $e^1 = e$
- $e^{a+b} = e^a \cdot e^b$
- $e^{a-b} = \frac{e^a}{e^b}$
- $e^{n \cdot a} = (e^a)^n$

Polynômes

Définition d'un polynôme du second degré

Forme générale :

$$P(x) = ax^2 + bx + c$$
, $a \neq 0$

Caractéristiques

- a, b, c sont des coefficients réels $(a, b, c \in \mathbb{R})$.
- Le graphe d'un polynôme du second degré est une parabole.
- Si a > 0, la parabole est tournée vers le haut (minimum).
- Si a < 0, la parabole est tournée vers le bas (maximum).

Exemples: Comparaison entre a > 0 et a < 0

Cas 1 : a > 0

Exemple : $P(x) = x^2 - 4x + 3$

- $\Delta = 4$, deux racines réelles $x_1 = 1$, $x_2 = 3$
- Parabole tournée vers le haut

$$P(x) = x^2 - 4x + 3$$

Exemples : Comparaison entre a > 0 et a < 0

Cas 2 : a < 0

Exemple :
$$P(x) = -x^2 + 4x - 3$$

- $\Delta = 4$, deux racines réelles $x_1 = 1$, $x_2 = 3$
- Parabole tournée vers le bas

$$P(x) = -x^2 + 4x - 3$$

Résolution d'une équation quadratique

(E):
$$ax^2 + bx + c = 0$$

Pour résoudre l'équation (E), on utilise le discriminant

$$\Delta = b^2 - 4ac$$

Cas possibles

• Si $\Delta > 0$, l'équation a deux solutions réelles distinctes :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}, \quad x_2 = \frac{-b - \sqrt{\Delta}}{2a}$$

• Si $\Delta = 0$, l'équation a une solution réelle double :

$$x_1 = x_2 = \frac{-b}{2a}$$

• Si $\Delta < 0$, l'équation n'a pas de solution réelle (deux solutions complexes).

onctions usuelles **Polynômes** Limites Dérivation Intégration Trigonométric

Factorisation à partir des racines

Lorsque le discriminant Δ est positif ou nul, on peut factoriser le polynôme à partir de ses racines.

Forme factorisée

• Si $\Delta > 0$ (deux racines distinctes) :

$$P(x) = a(x - x_1)(x - x_2)$$

• Si $\Delta = 0$ (racine double) :

$$P(x) = a(x - x_1)^2$$

Exemple : Si $P(x) = 2x^2 - 4x + 2$, alors $\Delta = 0$ et $x_1 = x_2 = 1$, donc :

$$P(x) = 2(x-1)^2$$

nctions usuelles **Polynômes** Limites Dérivation Intégration Trigonométric

Qu'est-ce qu'un tableau de signes ?

Définition

- Un tableau de signes est un outil graphique qui permet de représenter les variations du signe d'un polynôme ou d'une fonction sur un intervalle donné.
- Il est particulièrement utile pour déterminer où un polynôme est positif, négatif ou nul.

Exemple

- On représente les racines du polynôme et on observe les variations de signe entre ces racines.
- Pour un polynôme du second degré, on identifie ses racines et le comportement du signe entre celles-ci.

Tableau de signes d'un polynôme du second degré

Exemple : $P(x) = x^2 - 4x + 3$

Étape 1 : Trouver les racines

- Résolvons P(x) = 0.
- $x^2 4x + 3 = 0$ a pour racines x = 1 et x = 3.

Etape 2 : Tableau de signes (dsl j'arrivais pas à faire un tableau)

- P(x) > 0 sur $]-\infty, 1[$ et $]3, +\infty[$
- P(x) = 0 en x = 1 et x = 3
- P(x) < 0 sur [1,3[

Tableau de signes d'un polynôme factorisé

Exemple : P(x) = (x - 1)(x - 3) donc P(x) = 0 pour x = 1 ou 3.

Signe de chaque facteur et du polynôme

- Pour x = 1
 - x 1 < 0 si x < 1
 - x 1 = 0 si x = 1
 - x 1 > 0 si x > 1
- Pour x 3:
 - x = 3 < 0 si x < 3
 - x 3 = 0 si x = 3
 - x 3 > 0 si x > 3
- Pour P(x) = (x-1)(x-3):
 - $P(x) > 0 \text{ pour } x \in]-\infty, 1[\cup]3, +\infty[$
 - P(x) = 0 pour x = 1 et x = 3
 - $P(x) < 0 \text{ pour } x \in]1,3[$

Fonctions usuelles

Limites

onctions usuelles Polynômes **Limites** Dérivation Intégration Trigonométri

Définition intuitive d'une limite

Limite d'une fonction

Soit f(x) une fonction définie au voisinage d'un point a. On dit que f(x) tend vers une limite $L \in \mathbb{R}$ lorsque x tend vers a si, pour les valeurs de x proches de a, les valeurs de f(x) se rapprochent de L.

Notation

$$\lim_{x\to a}f(x)=L$$

 Si f(x) se rapproche de L lorsque x → a, alors L est la limite de f(x) en a. onctions usuelles Polynômes **Limites** Dérivation Intégration Trigonométri

Définition formelle d'une limite

Définition formelle

$$\lim_{x\to a} f(x) = L$$

signifie que pour tout $\epsilon > 0$, il existe $\delta > 0$ tel que, pour tout x vérifiant $0 < |x - a| < \delta$, on ait $|f(x) - L| < \epsilon$.

Interprétation

Cela signifie que l'on peut rendre f(x) aussi proche de L que l'on souhaite en choisissant x suffisamment proche de a.

Notation : $\lim_{x\to a^+}$ pour limite à droite et $\lim_{x\to a^-}$ pour limite à gauche.

ctions usuelles Polynômes **Limites** Dérivation Intégration Trigonométrie

Limites à l'infini

Limite à l'infini

$$\lim_{x\to +\infty} f(x) = L$$

signifie que, lorsque x tend vers $+\infty$, les valeurs de f(x) se rapprochent de L.

Limite à moins l'infini

$$\lim_{x\to -\infty} f(x) = L$$

signifie que, lorsque x tend vers $-\infty$, les valeurs de f(x) se rapprochent de L.

Limite infinie

$$\lim_{x \to a} f(x) = +\infty$$
 ou $\lim_{x \to a} f(x) = -\infty$

signifie que f(x) devient aussi grand (ou petit) que l'on veut lorsque x se rapproche de a.

Limites fondamentales et usuelles

Limites fondamentales et usuelles

- $\lim_{x\to 0} \frac{\sin x}{x} = 1$
- $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$
- $\lim_{x\to+\infty}\frac{1}{x}=0$
- $\lim_{x\to+\infty} e^{-x} = 0$
- $\lim_{x\to +\infty} \ln(x) = +\infty$
- $\lim_{x\to 0^+} \ln(x) = -\infty$
- $\lim_{x\to +\infty} \frac{1}{x^n} = 0$ pour tout n > 0

Exemples de calcul de limites

Exemple 1: Calcul de $\lim_{x\to 2} \frac{x^2-4}{x^2-2}$

$$\frac{x^2 - 4}{x - 2} = \frac{(x - 2)(x + 2)}{x - 2} = x + 2$$
$$\lim_{x \to 2} (x + 2) = 4$$

Exemple 2 : Calcul de $\lim_{x\to+\infty} \frac{2x^2+3x}{x^2-5}$

$$\lim_{x \to +\infty} \frac{2x^2 + 3x}{x^2 - 5x} = \lim_{x \to +\infty} \frac{2 + \frac{3}{x}}{1 - \frac{5}{x}} = 2$$

Formules et règles importantes

Règle de limite

- $\lim_{x\to a} (f(x) + g(x)) = \lim_{x\to a} f(x) + \lim_{x\to a} g(x)$
- $\lim_{x\to a} (f(x) \cdot g(x)) = \lim_{x\to a} f(x) \cdot \lim_{x\to a} g(x)$
- $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{\lim_{x\to a} f(x)}{\lim_{x\to a} g(x)}$ si $\lim_{x\to a} g(x) \neq 0$

Règle de L'Hôpital

Si $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$ ou $\pm \infty$, alors :

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

à condition que la limite du quotient des dérivées existe.

Formes indéterminées

Certaines limites mènent à des expressions du type 0/0, ∞/∞ , $0\cdot\infty$, etc...

Ces expressions sont appelées **formes indéterminées**, car elles ne permettent pas de conclure directement sur la limite. Par exemple :

$$\lim_{x\to 0}\frac{\sin(x)}{x}$$

En effet, lorsque $x \to 0$, $\sin(x) \to 0$ et $x \to 0$, donc on a une forme indéterminée du type $\frac{0}{0}$.

Résolution avec la règle de L'Hôpital

$$\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \frac{\cos(x)}{1} = 1$$

Limites de la fonction tangente sur $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$

Fonction : $f(x) = \tan(x)$

- $\lim_{x \to \frac{\pi}{2}^-} \tan(x) = +\infty$
- $\lim_{x \to \frac{\pi}{2}^+} \tan(x) = -\infty$
- $\lim_{x\to 0} \tan(x) = 0$

Limites

Limites de la fonction tangente sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Interprétation

- La fonction tangente a des asymptotes verticales en $x = \pm \frac{\pi}{2}$.
- Elle tend vers l'infini en approchant ces points : $+\infty$ à gauche et $-\infty$ à droite.

Sacha Cardonna Faculté des Sciences, Université de Montpellier

Dérivation

onctions usuelles Polynômes Limites **Dérivation** Intégration Trigonométri

Définition de la dérivée

Dérivée d'une fonction

- La dérivée d'une fonction f en un point x = a représente le taux de variation instantané de la fonction en ce point.
- Géométriquement, cela correspond à la pente de la tangente à la courbe de f en ce point.

Définition formelle

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Notation

- f'(x) ou $\frac{df}{dx}$ ou $\frac{d}{dx}f(x)$
- La dérivée est définie pour tout x où la limite existe.

onctions usuelles Polynômes Limites **Dérivation** Intégration Trigonométric

Interprétation géométrique

Dérivée et tangente

- La dérivée d'une fonction en un point x = a est la pente de la tangente à la courbe en ce point.
- Si f'(a) > 0, la fonction est croissante en a.
- Si f'(a) < 0, la fonction est décroissante en a.
- Si f'(a) = 0, le point a peut être un extremum (maximum ou minimum).

Formules de dérivation

Principales formules de dérivation

- Dérivée d'une constante : (c)' = 0
- Dérivée de x^n : $(x^n)' = n \cdot x^{n-1}$
- Dérivée de e^x : $(e^x)' = e^x$
- Dérivée de ln(x): $(ln(x))' = \frac{1}{x}$, x > 0
- Dérivée de sin(x): (sin(x))' = cos(x)
- Dérivée de cos(x): (cos(x))' = -sin(x)

Formules de dérivation : produits, quotients, puissances

Formules dans les cas où u et v sont des fonctions

• Dérivée d'un produit :

$$(uv)' = u'v + uv'$$

• Dérivée d'un quotient :

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

• Dérivée d'une puissance :

$$(u^n)' = n \cdot u^{n-1} \cdot u'$$

• Dérivée d'une composée (règle de la chaîne) :

$$(f(g(x)))' = f'(g(x)) \cdot g'(x)$$

Exemple de calcul de dérivées

Exemple 1: Dérivée de $f(x) = x^3 - 3x^2 + 2x$

$$f'(x) = 3x^2 - 6x + 2$$

Exemple 2 : Dérivée de $f(x) = \frac{e^x}{x^2}$ (règle du quotient)

$$f'(x) = \frac{e^x \cdot x^2 - e^x \cdot 2x}{x^4} = \frac{e^x(x-2)}{x^3}$$

Exemple 3 : Dérivée de $f(x) = \ln(x^2 + 1)$ (règle de la chaîne)

$$f'(x) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

Polynômes Limites **Dérivation** Intégration Trigonométrie

Lien entre dérivée et tableau de signes

Rôle de la dérivée

- La dérivée f'(x) permet de déterminer si une fonction f(x) est croissante ou décroissante sur un intervalle.
- Le signe de f'(x) donne des informations sur les variations de f(x) :
 - Si f'(x) > 0, la fonction f(x) est croissante.
 - Si f'(x) < 0, la fonction f(x) est décroissante.
 - Si f'(x) = 0, cela peut indiquer un extremum (maximum ou minimum).

Méthodologie

- **1** Calculer f'(x) et déterminer son signe sur les différents intervalles.
- 2 Utiliser le tableau de signes de f'(x) pour déduire les variations de f(x).

Tableau de signes et variations de la fonction

Exemple : $f(x) = x^3 - 3x^2 + 2$

Étape 1 : Calcul de la dérivée

•
$$f'(x) = 3x^2 - 6x = 3x(x-2)$$

Étape 2 : Signe de f'(x)

- f'(x) > 0 pour $x \in]-\infty, 0[$ et x > 2
- $f'(x) < 0 \text{ pour } x \in]0, 2[$
- f'(x) = 0 pour x = 0 et x = 2

Tableau de variation simplifié

Étape 3 : Tableau de variation de f(x)

Signe de f'(x):

- f'(x) > 0 sur $]-\infty,0[$ et $]2,+\infty[$ (croissance)
- f'(x) < 0 sur]0,2[(décroissance)
- f'(x) = 0 pour x = 0 et x = 2 (extrema locaux)

Variations de f(x):

- f(x) est croissante sur $]-\infty,0[$ et $]2,+\infty[$
- f(x) est décroissante sur]0,2[
- f(x) atteint un maximum local en x = 0 et un minimum local en x = 2

Méthodologie pour construire un tableau de variation de f

- **1 Calcul de la dérivée** : Trouver f'(x).
- **2 Trouver les racines de** f'(x) : Résoudre f'(x) = 0 pour trouver les valeurs critiques de x où la fonction change de comportement (ou pas).
- **3** Faire le tableau de signes de f'(x): Analyser les signes de f'(x) dans les différents intervalles.
- **4** En déduire les variations de f(x): Utiliser le tableau de signes pour déterminer si f(x) est croissante ou décroissante dans chaque intervalle.
- **6** Construire le tableau de variation : Résumer les variations de f(x) et identifier les extrema locaux.

Intégration

onctions usuelles Polynômes Limites Dérivation **Intégration** Trigonométri

Lien entre dérivée et intégration

Lien : théorème fondamental de l'analyse

• Si F(x) est une primitive de f(x), c'est-à-dire F'(x) = f(x), alors :

$$\int f(x)\,dx=F(x)+C$$

où C est une constante d'intégration.

 Cela signifie que l'intégration est l'opération inverse de la dérivation.

Exemple

$$\frac{d}{dx}\left(\frac{1}{3}x^3\right) = x^2 \quad \Rightarrow \quad \int x^2 \, dx = \frac{1}{3}x^3 + C$$

onctions usuelles Polynômes Limites Dérivation **Intégration** Trigonométri

Définition de l'intégrale indéfinie

Intégrale indéfinie

$$\int f(x)\,dx$$

L'intégrale indéfinie d'une fonction f(x) est l'ensemble de toutes ses primitives. Elle représente une fonction dont la dérivée est égale à f(x).

Forme générale

$$\int f(x)\,dx=F(x)+C$$

où F(x) est une primitive de f(x) et C est une constante d'intégration.

Exemple

$$\int 3x^2 dx = x^3 + C$$

onctions usuelles Polynômes Limites Dérivation **Intégration** Trigonométri

Définition de l'intégrale définie

Intégrale définie

$$\int_{a}^{b} f(x) \, dx$$

L'intégrale définie de f(x) entre les bornes a et b est une mesure de l'aire sous la courbe y = f(x) entre x = a et x = b.

Formule

$$\int_a^b f(x) \, dx = F(b) - F(a)$$

où F(x) est une primitive de f(x).

Exemple

$$\int_{1}^{2} x^{2} dx = \left[\frac{1}{3} x^{3} \right]_{1}^{2} = \left(\frac{1}{3} \cdot 2^{3} - \frac{1}{3} \cdot 1^{3} \right) = \frac{8}{3} - \frac{1}{3} = \frac{7}{3}$$

Formules usuelles d'intégration

Principales formules:

- $\int x^n dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1)$
- $\int \frac{1}{x} dx = \ln |x| + C$
- $\int e^{x} dx = e^{x} + C$
- $\int a^x dx = \frac{a^x}{\ln(a)} + C \quad (a > 0, a \neq 1)$
- $\int \sin(x) dx = -\cos(x) + C$
- $\int \cos(x) dx = \sin(x) + C$
- $\int \sec^2(x) dx = \tan(x) + C$
- $\int \frac{1}{1+x^2} dx = \arctan(x) + C$

Formules d'intégration avec u et v des fonctions

Formules importantes

• Intégration d'un quotient (règle de la fraction) :

$$\int \frac{u'}{u} dx = \ln|u(x)| + C$$

Intégrale d'une composée (substitution) :

$$\int f(g(x)) \cdot g'(x) \, dx = \int f(u) \, du$$

où u = g(x).

Intégrale d'une fonction puissance :

$$\int u^n \cdot u' \, dx = \frac{u^{n+1}}{n+1} + C \quad (n \neq -1)$$

Propriétés des intégrales

Propriétés de l'intégrale définie :

• Linéarité :

$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$
$$\int_{a}^{b} k \cdot f(x) dx = k \cdot \int_{a}^{b} f(x) dx$$

Changement de bornes :

$$\int_a^b f(x) \, dx = -\int_b^a f(x) \, dx$$

Additivité :

$$\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx$$

Exemple d'intégration avec un graphe

Exemple : Calcul de l'aire sous la courbe $y = x^2$ entre x = 0 et x = 2.

$$\int_0^2 x^2 \, dx = \left[\frac{1}{3} x^3 \right]_0^2 = \frac{8}{3}$$

Trigonométrie

Fonctions usuelles Polynômes Limites Dérivation Intégration **Trigonométrie**

Propriétés des fonctions trigonométriques

Fonction cosinus

- Périodicité : $cos(x + 2\pi) = cos(x)$
- Symétrie paire : cos(-x) = cos(x)
- Valeurs particulières : cos(0) = 1, $cos(\frac{\pi}{2}) = 0$, $cos(\pi) = -1$

Fonction sinus

- Périodicité : $sin(x + 2\pi) = sin(x)$
- Symétrie impaire : sin(-x) = -sin(x)
- Valeurs particulières : $\sin(0) = 0$, $\sin(\frac{\pi}{2}) = 1$, $\sin(\pi) = 0$

Fonction tangente

- Lien cos/sin : $tan(x) = \frac{sin(x)}{cos(x)}$
- Périodicité : $tan(x + \pi) = tan(x)$
- Symétrie impaire : tan(-x) = -tan(x)
- Valeurs particulières : tan(0) = 0, $tan(\frac{\pi}{4}) = 1$

Formules importantes de trigonométrie

Formules d'addition et de soustraction :

- sin(a + b) = sin(a)cos(b) + cos(a)sin(b)
- sin(a b) = sin(a)cos(b) cos(a)sin(b)
- $tan(a+b) = \frac{tan(a)+tan(b)}{1-tan(a)tan(b)}$ (si $tan(a)tan(b) \neq 1$)
- $tan(a-b) = \frac{tan(a)-tan(b)}{1+tan(a)tan(b)}$ (si $tan(a)tan(b) \neq -1$)

Formules d'angle double :

- $cos(2a) = cos^2(a) sin^2(a)$
- $cos(2a) = 2 cos^2(a) 1 = 1 2 sin^2(a)$
- $\sin(2a) = 2\sin(a)\cos(a)$
- $tan(2a) = \frac{2 tan(a)}{1 tan^2(a)}$ (si $tan(a) \neq \pm 1$)

Fonctions usuelles

Trigonométrie

ons usuelles Polynômes Limites Dérivation Intégration **Trigonométrie**

Cercle trigonométrique

- Le cosinus correspond à l'axe des abscisses (x).
- Le sinus correspond à l'axe des ordonnées (y).
- Période 2π pour le cosinus et le sinus.

onctions usuelles Polynômes Limites Dérivation Intégration **Trigonométrie**

Cercle trigonométrique

Propriétés du cercle trigonométrique

- Le cercle trigonométrique est un cercle de rayon 1, centré à l'origine (0,0) du plan.
- Les angles sont mesurés en radians dans le sens anti-horaire à partir de l'axe des abscisses positif.
- Un angle θ sur le cercle est associé à un point $(\cos(\theta), \sin(\theta))$ sur le cercle.
- **Périodicité**: Les fonctions $cos(\theta)$ et $sin(\theta)$ sont périodiques de période 2π , car $\cos(\theta + 2\pi) = \cos(\theta)$ et $\sin(\theta + 2\pi) = \sin(\theta)$.
- Symétrie :
 - $cos(-\theta) = cos(\theta)$ (fonction paire).
 - $\sin(-\theta) = -\sin(\theta)$ (fonction impaire).

nctions usuelles Polynômes Limites Dérivation Intégration **Trigonométrie**

Propriétés du cercle trigonométrique

Quadrants:

- Dans le premier quadrant $(0 \le \theta \le \frac{\pi}{2})$, $\sin(\theta) > 0$ et $\cos(\theta) > 0$.
- Dans le deuxième quadrant $(\frac{\pi}{2} \le \theta \le \pi)$, $\sin(\theta) > 0$ et $\cos(\theta) < 0$.
- Dans le **troisième quadrant** $(\pi \le \theta \le \frac{3\pi}{2})$, $\sin(\theta) < 0$ et $\cos(\theta) < 0$.
- Dans le quatrième quadrant $(\frac{3\pi}{2} \le \theta \le 2\pi)$, $\sin(\theta) < 0$ et $\cos(\theta) > 0$.

Identité fondamentale :

$$\cos^2(\theta) + \sin^2(\theta) = 1$$

nctions usuelles Polynômes Limites Dérivation Intégration **Trigonométrie**

Résolution d'équations trigonométriques : cos(x) et sin(x)

Avec le cosinus

- cos(x) = a admet des solutions si $-1 \le a \le 1$.
- Sur ℝ, les solutions sont :

$$x = \pm \arccos(a) + 2k\pi, \quad k \in \mathbb{Z}$$

• Exemple : $\cos(x) = \frac{1}{2} \Rightarrow x = \frac{\pi}{3} + 2k\pi$ ou $x = -\frac{\pi}{3} + 2k\pi$

Avec le sinus :

- sin(x) = a admet des solutions si $-1 \le a \le 1$.
- Sur \mathbb{R} , les solutions sont :

$$x = \arcsin(a) + 2k\pi$$
 ou $x = \pi - \arcsin(a) + 2k\pi$, $k \in \mathbb{Z}$

• Exemple : $\sin(x) = \frac{1}{2} \Rightarrow x = \frac{\pi}{6} + 2k\pi$ ou $x = \pi - \frac{\pi}{6} + 2k\pi$

Résolution sur un intervalle restreint et sur $\mathbb R$

Sur un intervalle restreint :

• Résoudre $cos(x) = \frac{1}{2} sur [0, 2\pi]$:

$$x = \frac{\pi}{3}$$
 ou $x = 2\pi - \frac{\pi}{3} = \frac{5\pi}{3}$

Sur \mathbb{R} :

• Résoudre $cos(x) = \frac{1}{2} sur \mathbb{R}$:

$$x = \pm \frac{\pi}{3} + 2k\pi, \quad k \in \mathbb{Z}$$

• Cela couvre toutes les solutions avec les multiples de 2π (on rajoute tous les tours possible).

Exemples de résolution d'équations trigonométriques

Exemple 1 : Résolution de cos(x) = 0 **sur** $[0, 2\pi]$

$$cos(x) = 0$$
 \Rightarrow $x = \frac{\pi}{2}$ ou $x = \frac{3\pi}{2}$

Exemple 2 : Résolution de $sin(x) = \frac{1}{2}$ **sur** \mathbb{R}

$$\sin(x) = \frac{1}{2}$$
 \Rightarrow $x = \frac{\pi}{6} + 2k\pi$ ou $x = \frac{5\pi}{6} + 2k\pi$, $k \in \mathbb{Z}$

Exemple 3 : Résolution de tan(x) = 1 **sur** $[0, 2\pi]$

$$tan(x) = 1$$
 \Rightarrow $x = \frac{\pi}{4}$ ou $\frac{5\pi}{4}$

Résolution de l'équation $cos(2x) = \frac{1}{2}$

Étape 1 : Simplification de l'équation

- On a $\cos(2x) = \frac{1}{2}$.
- La solution de $cos(\theta) = \frac{1}{2}$ est $\theta = \pm \frac{\pi}{3} + 2k\pi$, avec $k \in \mathbb{Z}$.
- Ici, $\theta = 2x$, donc $2x = \pm \frac{\pi}{3} + 2k\pi$.

Étape 2 : Résolution pour x

• Diviser par 2 pour isoler x :

$$x = \pm \frac{\pi}{6} + k\pi, \quad k \in \mathbb{Z}$$

• C'est la solution générale sur R.

Résolution de l'équation $cos(2x) = \frac{1}{2}$

Étape 3 : Solutions sur un intervalle restreint

- Si on veut les solutions sur l'intervalle $[0, 2\pi]$, on doit chercher les valeurs de x dans cet intervalle.
- L'équation générale est $x = \pm \frac{\pi}{6} + k\pi$.
- On vérifie les valeurs de k qui permettent d'obtenir des solutions dans [0, 2π] :

Pour
$$k = 0$$
: $x = \frac{\pi}{6}$, $x = -\frac{\pi}{6} + \pi = \frac{5\pi}{6}$

Pour
$$k = 1$$
: $x = \frac{\pi}{6} + \pi = \frac{7\pi}{6}$, $x = \frac{5\pi}{6} + \pi = \frac{11\pi}{6}$

• Donc les solutions dans $[0, 2\pi]$ sont :

$$x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$$

Fonctions usuelles

Résolution de l'équation cos(2x) = cos(x)

Étape 1 : Utilisation de la formule de double angle

- Rappel : $\cos(2x) = 2\cos^2(x) 1$
- Substituer dans l'équation :

$$2\cos^2(x) - 1 = \cos(x)$$

Étape 2 : Réarranger l'équation pour obtenir une forme quadratique

• Réarranger l'équation :

$$2\cos^2(x) - \cos(x) - 1 = 0$$

• Il s'agit maintenant d'une équation quadratique en cos(x).

nctions usuelles Polynômes Limites Dérivation Intégration **Trigonométrie**

Résolution de l'équation cos(2x) = cos(x)

Etape 3 : Résolution de l'équation quadratique

- On résout l'équation $2y^2 y 1 = 0$, où $y = \cos(x)$.
- Utiliser la formule du discriminant :

$$\Delta = (-1)^2 - 4(2)(-1) = 1 + 8 = 9$$

• Les solutions sont :

$$y_1 = \frac{1+3}{4} = 1$$
, $y_2 = \frac{1-3}{4} = -\frac{1}{2}$

• Donc $\cos(x) = 1$ ou $\cos(x) = -\frac{1}{2}$.

Étape 4 : Solutions finales

- Si cos(x) = 1, alors $x = 2k\pi$, $k \in \mathbb{Z}$.
- Si $cos(x) = -\frac{1}{2}$, alors :

$$x = \frac{2\pi}{3} + 2k\pi$$
 ou $x = \frac{4\pi}{3} + 2k\pi$, $k \in \mathbb{Z}$

Des questions ?

