

证 明

本证明之附件是向本局提交的下列专利申请副本

申 请 日： 2003. 08. 13

申 请 号： 03142290. X

申 请 类 别： 发明

发明创造名称： 生物样品结构氢氘置换的证实及氘百分含量的测定方法

申 请 人： 浙江普康生物技术股份有限公司 浙江大学 浙江省医学科学院

发明人或设计人： 毛江森、刘子阳、唐彩华、贺义惠、朱家鸿、陈悦青、毛子旭、柴少爱

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

中华人民共和国
国家知识产权局局长

王景川

2004 年 8 月 27 日

权利要求书

1. 本发明是一种生物样品结构氢氘置换的证实及氘百分含量的测定方法，其特征在于选取一种基质，将制备得到的生物样品与适量的基质均匀混合后冻干，冻干混合样品被氧化剂充分燃烧氧化，混合样品中的氢被氧化为水，生成的水经分离后与锌反应生成氢气，氢气的²H/¹H比值用气体同位素质谱仪测定，再通过公式计算出生物样品中氘的百分含量。
2. 根据权利要求1所述的生物样品结构氢氘置换的证实及氘百分含量的测定方法，其特征在于生物样品为微生物或蛋白质或核酸的氘百分含量的测定。
3. 根据权利要求1所述的生物样品结构氢氘置换的证实及氘百分含量的测定方法，其特征在于采用天然已知蛋白质作为基质。
4. 根据权利要求1所述的生物样品结构氢氘置换的证实及氘百分含量的测定方法，其特征在于证实微生物和生物大分子发生氢氘置换。
5. 根据权利要求1所述的生物样品结构氢氘置换的证实及氘百分含量的测定方法，其特征在于确定生物样品最优含氘量或最优氘化条件。
6. 根据权利要求1所述的生物样品结构氢氘置换的证实及氘百分含量的测定方法，其特征在于证实微生物和生物分子的稳定性和耐热性与其氘含量密切相关。

说 明 书

生物样品结构氢氘置换的证实及氘百分含量的测定方法

技术领域

本发明涉及氢同位素分析的一种方法，特别是用于生物样品结构氢氘置换及氘百分含量的一种测定方法。

背景技术

自 1932 年 Urey 等发现氢同位素氘以来，氘被广泛地应用于生物医学领域。重水对生物的影响也被广泛研究，如重水对细菌、真菌、植物及哺乳动物等的生长发育的影响等。1965 年毛江森、黄祯祥等研究发现对热极为敏感的日本脑炎病毒（JEV）在重水处理过的细胞中繁殖其热稳定性增强，近年来，研究发现脊髓灰质炎病毒、流感病毒及甲肝病毒（HAV）用重水处理后也得到类似的结果。然而，重水对这些病毒的作用真实机理尚不清楚，而病毒结构中的氢被氘置换是其可能的合理解释，但是，至今尚无直接方法能证实病毒颗粒中的氢氘置换及测定其氘含量。因而无法优化生物样品的氘化条件和规范氘化的工艺。

氢同位素分析方法研究发展至今，已经有许多分析技术，如冰点法、折射率法、电阻率法、热电导率法、红外光谱法、中子热能谱法、气相色谱法、核磁共振法（NMR）和化学电离质谱法等。稳定同位素氘示踪质谱法是广泛用于生物医学研究领域中的分析方法，大量用于代谢产物的测定和鉴定、代谢途径的机理研究、分析生物体内药物和代谢产物的浓度测定。该法通过测量分子离子或少数特征碎片离子的强度，能确定待测物质的分子组成而了解待测物质的性质，测定待测物质的含量。它不需测出完整的质谱图，即只将感兴趣的化合物分离出来，然后使用离子监测技术，取得一部分质谱图，测定标记与不标记成分的比率。此法测定比值的精确度很低，一般为 1~10%，但是此法具有特异性及高灵敏度。最近二十多年发展起来的分离技术，如毛细管分离技术大幅度地提高了稳定同位素氘示踪质谱分析方法准确度、灵敏度、选择性及专属性，使其越来越成为在生物医学领域研究中最重要的分析方法。但是该方法也有较大的局限性：①使用的测试仪器主要为气质联用（GC-MS）和液质联用（LC-MS），

000·000·007

测试仪器价格较贵；②高纯度稳定氘同位素标记药物的获得难度大、量小、合成价格较高；③样本处理和测试分析技术操作较繁琐费时。

$^2\text{H-NMR}$ 法因具有深入物质内部、不破坏样品、提供生物分子量和分子结构等参数等优点而广泛地应用于生物化学及临床医学上。氘在自然界中的丰度低，氘的天然丰度为 150×10^{-6} 左右，它的灵敏度约为氢的 150×10^{-6} 。氘核的核磁矩较小，自旋量子数为 1，氘核的旋磁比较低，所以氘核的共振频率也低，谱线的分散度也低，因而 $^2\text{H-NMR}$ 法的灵敏度很低。因此要得到满意的信噪比信号及测定精度，需要较多的样品量和较长的分析时间，样品在测定前需纯化。

近年来，迅速发展的生命科学提出了测定生物样品的氘含量问题。在生命科学的某些领域，一般只能提供微克量级的生物富氘样品，如 JEV 及 HAV 的研究，要证实整个病毒颗粒发生氢氘置换并测定病毒颗粒中氘百分含量，现有的氢同位素分析方法均不能直接用于这些生物样品的氢同位素分析。

发明内容

本发明的目的是发明一种新的氢同位素分析方法来证实所研究生物样品发生氢氘置换反应并计算其氘百分含量。能确定出生物样品最优含氘百分量和生物样品的最优氘化条件，提高多肽等的稳定性。通过该方法检测生物样品的氘百分含量，结果表明生物样品的氘百分含量增大，其生物性状发生明显改变，主要是其耐热性发生明显改变。

本发明是选取一种基质，将制备得到的生物样品与适量的基质均匀混合再冻干，冻干混合样品被氧化剂充分燃烧氧化，混合样品中的氢被氧化为水，生成的水经分离后与锌反应生成氢气。氢气的 $^2\text{H}/^1\text{H}$ 比值用气体同位素质谱仪测定，样品 $^2\text{H}/^1\text{H}$ 比值以 δD_{SMOW} 表示，即相对于国际标准平均海洋水 (SMOW) 的氢氘比值的变化值，再通过相应的计算公式计算出生物样品中氘的百分含量。可证实微生物和生物大分子发生氢氘置换，确定生物样品最优含氘量或最优氘化条件，证实微生物和生物分子的稳定性和耐热性与其氘含量密切相关。

本发明包括选取天然已知蛋白质作为基质。各纯化后的生物样品用 PBS (磷酸盐缓冲液) 稀释至所需浓度，终体积均为 0.1ml，然后加入 0.5ml 含 5mg 牛血清白蛋白 (BSA) 溶液。再将该混合样品放入到 GEL-1 型冻干机中冻干，冻干后混合样品水份含量<3% (Karl Fischer Titrator 法测定)。冻干混合样品与氧化剂

CuO (500mg) 和 V_2O_5 (50mg) 在 100°C 温度下脱吸附水 $15 \text{ min} \sim 30\text{min}$, 再于 $800^\circ\text{C} \sim 950^\circ\text{C}$ 下燃烧氧化反应, $15\text{min} \sim 30\text{min}$ 反应完全后样品被彻底氧化成 CO_2 、 H_2O 以及 NO_2 等物质。将产物中的水分离并转移到水样品反应管中, 水与锌于 $400^\circ\text{C} \sim 450^\circ\text{C}$ 下反应 $1.5\text{h} \sim 2.5\text{h}$ 被转化为氢气, 其 ${}^2\text{H}/{}^1\text{H}$ 比值用气体同位素质谱仪 MAT-251 测定。

样品氢同位素的 δD 值通常以相对于世界通用的氢同位素标准—标准平均大洋水 (Standard Mean Ocean Water, SMOW) 表示, 定义如下:

$$\delta D_{SA-SMOW} = \frac{R_{SA} - R_{SMOW}}{R_{SMOW}} \times 10^3,$$

其中 R_{SA} 表示样品的 ${}^2\text{H}/{}^1\text{H}$ 比值; R_{SMOW} 表示国际标准 SMOW 的 ${}^2\text{H}/{}^1\text{H}$ 比值, δD 值一般只取整数。由样品的 δD 值可计算出生物样品的氘百分含量。

本发明测定方法包括如下步骤:

1. 选取天然已知蛋白质作为基质, 以磷酸缓冲液 (PBS) 配制浓度为 $10\text{mg}/\text{ml}$ 的 BSA 溶液。

2. 各生物样品纯化后以 PBS 稀释成一定浓度的样品溶液, 终体积为 0.1ml 。

3. 将 0.1ml 的生物样品溶液加入到 0.5ml 浓度为 $10\text{mg}/\text{ml}$ 的 BSA 溶液中, 该混合样品放入到 GEL-1 型冻干机中冻干。

4. 冻干混合样品与氧化剂 CuO (500mg) 和 V_2O_5 (50mg) 在 100°C 温度下脱吸附水 $15 \text{ min} \sim 30\text{min}$, 再于 $800^\circ\text{C} \sim 950^\circ\text{C}$ 下燃烧氧化反应, $15\text{min} \sim 30\text{min}$ 反应完全后样品被彻底氧化成 CO_2 、 H_2O 以及 NO_2 等物质。将产物中的水分离并转移到水样品反应管中, 水与锌于 $400^\circ\text{C} \sim 450^\circ\text{C}$ 下反应 $1.5\text{h} \sim 2.5\text{h}$ 被转化为氢气, 其 ${}^2\text{H}/{}^1\text{H}$ 比值用气体同位素质谱仪 MAT-251 测定。

5. 由样品的 δD 值计算出生物样品的氘百分含量, 具体计算公式如下:

第一步,
$$\delta D_{SA-SMOW} = \frac{R_{SA} - R_{SMOW}}{R_{SMOW}} \times 10^3 \quad (1)$$

式中 R_{SA} 表示混合样品的 ${}^2\text{H}/{}^1\text{H}$ 比值, R_{SMOW} 表示国际标准 SMOW 的 ${}^2\text{H}/{}^1\text{H}$ 比值, 且 $R_{SMOW} = (155.76 \pm 0.05) \times 10^6$ 。

第二步, $R_{SA} = {}^2\text{H}/{}^1\text{H}$ 比值, 由基质 BSA 及生物样品两部分共同构成, 各参数分别如表 1 所示。

表 1 基质 BSA 和生物样品参数

物质	表示符号	物质用量	氢百分含量	氘百分含量
牛血清白蛋白	BSA	m_{BSA}	C_{BSA}^H	C_{BSA}^D
生物样品	bio	m_{bio}	C_{bio}^H	C_{bio}^D

则,

$$\begin{aligned}
 R_{SA} &= \frac{1}{2} \left(m_{BSA} \cdot C_{BSA}^D + m_{bio} \cdot C_{bio}^D \right) \\
 &\approx \frac{1}{2} \cdot \frac{C_{bio}^D}{C_{BSA}^H} \cdot \frac{m_{bio}}{m_{BSA}} + \frac{1}{2} \cdot \frac{C_{BSA}^D}{C_{BSA}^H} \\
 &= \frac{1}{2} \cdot \frac{C_{bio}^D}{C_{BSA}^H} \cdot \frac{m_{bio}}{m_{BSA}} + R_{BSA}
 \end{aligned} \tag{2}$$

$$\begin{aligned}
 \text{第三步, } \delta D_{SA-SMOW} &= \frac{R_{SA} - R_{SMOW}}{R_{SMOW}} \times 10^3 = \frac{\frac{1}{2} \cdot \frac{C_{bio}^D}{C_{BSA}^H} \cdot \frac{m_{bio}}{m_{BSA}} + R_{BSA} - R_{SMOW}}{R_{SMOW}} \times 10^3 \\
 &= \frac{500 \cdot C_{bio}^D}{R_{SMOW} \cdot C_{BSA}^H} \cdot \frac{m_{bio}}{m_{BSA}} + \delta D_{BSA-SMOW}
 \end{aligned} \tag{3}$$

R_{SMOW} 为 $(155.76 \pm 0.05) \times 10^{-6}$, $\delta D_{BSA-SMOW}$ 可测得, C_{BSA}^H 可通过计算得出, 生物样品的 C_{bio}^D 为未知定值。第四步, 令 $K = \frac{500 \cdot C_{bio}^D}{R_{SMOW} \cdot C_{BSA}^H}$, 则公式 (3) 可变形为

$$\delta D_{SA-SMOW} = K \cdot \frac{m_{bio}}{m_{BSA}} + \delta D_{BSA-SMOW} \tag{4}$$

则 $\delta D_{SA-SMOW}$ 与 $\frac{m_{bio}}{m_{BSA}}$ 呈直线关系。

基质辅助气体同位素质谱分析法具有明显的优点, 第一, 测定准确, 重复性好; 第二, 样品用量极少; 第三, 测定简单易操作, 成本低; 第四, 样品 δD_{SMOW} 值和生物样品加入剂量呈直线关系, 由该直线斜率 K 或直接由公式 (3) 可求出 C_{bio}^D 值, 即生物样品的氘百分含量。

附图说明

图 1 不同培养环境 JEV 的热稳定性比较实验

将氘化 JEV (含 36%D₂O 培养) 及未氘化 JEV (不含 D₂O 培养) 在 50°C 加热灭活, 以 PFU 降低值对时间作图。在相同灭活时间时, 氘化 JEV 的 PFU 降低值较未氘化 JEV 小。

图 2 不同培养环境 HAV 的稳定性比较实验

氘化 HAV (HAV 颗粒重悬于 87%D₂O) 与未氘化 HAV (HAV 颗粒重悬于 H₂O) 置于 10°C, 以 CCID₅₀ 降低值对时间作图。在放置相同时间时, 氘化 HAV 的 CCID₅₀ 降低值较未氘化 HAV 小。

图 3 氘化 HAV 制得的 V_D 样品的 $\delta D_{SMOW} = m_{bio}/m_{BSA} \times 10^{-3}$ 图

图 4 氘化 HAV 的核糖核酸 (RNA) 制得的 RNA-C_D 样品的 $\delta D_{SMOW} = m_{bio}/m_{BSA} \times 10^{-3}$ 图

具体实施方式

实施例 1

JEV 全病毒颗粒氢氘置换的证实 原代鸡胚细胞 (CEC) 用于繁殖 JEV。 CEC 首先在不含重水 (D₂O) 的培养基中生长 24h, 然后在含有 36% 重水维持液中于 37°C 条件下培养 2 天。弃去含重水维持液, 加入 JEV 到细胞中并吸附 2h。吸附完毕后弃去吸附液, 用 PBS 洗涤细胞 2 次, 加入新鲜的含重水维持液, 三天后收获 (V_D 代表氘化的 JEV, V_H 代表未氘化的 JEV, C_D 代表氘化的无病毒细胞对照)。所有病毒及相应的对照样品都经过聚乙二醇 (PEG) 沉淀、0.45mm 滤器过滤、40% 蔗糖垫底超速离心等方法进行纯化。病毒样品经甲醛灭活后, 用血凝法测定其滴度 (以 HAU 表示)。

研究发现氘化 JEV 与未氘化 JEV 于 50°C 时不同灭活时间下 PFU 滴度降低值不同, 未氘化 JEV 在相同灭活时间下的 PFU 滴度降低值大于氘化 JEV, 见附图 1。这表明在 D₂O 存在条件下繁殖的 JEV 其耐热性增强了。

选取 BSA 为基质, 将氘化 JEV、未氘化 JEV 及氘化的无病毒细胞对照经纯化后用 PBS 稀释至所需浓度, 终体积均为 0.1ml, 然后加入 0.5ml 含 5mg BSA 的 PBS 液。再将该混合样品放入到 GEL-1 型冻干机中冻干, 冻干后混合样品水份含量<3%, 制得样品分别用 V_D、V_H 及 C_D 表示。冻干混合样品与氧化剂 CuO

(500mg) 和 V_2O_5 (50mg) 在 100°C 温度下脱吸附水 20min, 再于 850°C 下燃烧氧化反应, 30min 反应完全后样品被彻底氧化成二氧化碳 (CO_2)、水 (H_2O) 以及二氧化氮 (NO_2) 等物质。将产物中的水分离并转移到水样品反应管中, 水与锌于 420°C 下反应 2h 被转化为氢气, 其 $^2H/^1H$ 比值用气体同位素质谱仪 MAT-251 测定。测定 V_D 、 V_H 及 C_D 样品的 δD_{SMOW} 值见表 2。

表 2 V_D 、 V_H 及 C_D 样品的 δD_{SMOW} 值

样品	δD_{SMOW}			
	JEV 液加入体积量(μl)	7.5	15	30
V_D	-35±3	-8±4	42±3	
V_H	-72±2	-54±0	-60±0	
C_D	-75±3	-65±0	-70±7	

基质 BSA 的 δD_{SMOW} 值为一定值, 所以混合样品的 δD_{SMOW} 值反映了所加入生物样品的 $^2H/^1H$ 比值高低及其加入剂量。在相同加入剂量情况下, 混合样品的 δD_{SMOW} 值越大表明生物样品的 $^2H/^1H$ 比值越高; 所加生物样品为同一样本时, 混合样品的 δD_{SMOW} 值也越大则表明生物样品加入剂量越多。

由表 2 可知, JEV 加入量相同的条件下, V_D 样品的 δD_{SMOW} 值高于 V_H 样品; 且随着加入的病毒体积量(蛋白含量)增加, 其 δD_{SMOW} 值相应增大。 V_D 样品的 δD_{SMOW} 值增大不太可能来自于病毒样品制备中可能污染的细胞成份, 因为在不同剂量时无病毒的细胞成份对照样品 C_D 的 δD_{SMOW} 值相似, 在 -65 ~ -75 之间, 没有出现剂量正相关性, 且与基质 BSA 的 δD_{SMOW} 值较为接近, 这表明细胞成份对照样品 C_D 中的氘处于天然状态下。因此, 与不含 D_2O 的培养基中获得的 JEV 相比, 在 D_2O 存在的条件下繁殖 JEV 的 $^2H/^1H$ 比值显著增大, 即氘化 JEV 的 $^2H/^1H$ 比值高于未氘化 JEV, 表明在 D_2O 存在条件下所繁殖的 JEV 中富集了氘, 其氘含量增大, JEV 病毒颗粒中的某些氢被氘所取代。

实施例 2

HAV 全病毒颗粒氢氘置换的证实及其氘百分含量的测定 甲型肝炎病毒疫苗株 (H2 株) 在人肺二倍体细胞中繁殖获得。感染 H2 株的细胞或未感染病毒的细胞对照收获后, 用 PBS 重悬, 经三次冻—化及超声波处理后, 8000g 离心 30 分钟以去除细胞碎片。收获的上清液用氯仿抽提三次, 然后超速离心收获病

毒或其细胞对照。样品的氘化采用以下方法：样品重悬于含 87%重水的最低限度必要成分培养液 (MEM)，36°C 孵育一星期。氘化样品经超速离心弃去含重水的 MEM，沉淀物用蒸馏水充分洗涤后，再次超速离心以收获氘化样品。洗涤过程重复三次以保证氘化样品中几乎不含有游离重水。病毒样品的滴度（半数细胞培养感染量， $CCID_{50}$ ）用细胞培养的方法测定。

研究发现氘化 HAV 与未氘化 HAV 于 10°C 时不同保存时间下 $CCID_{50}$ 滴度降低值不同，未氘化 HAV 在相同保存时间下的 $CCID_{50}$ 滴度降低值大于氘化 HAV，见附图 2。这表明 D_2O 存在下孵育的 HAV 其稳定性增强了。

选取牛血清白蛋白 (BSA) 为基质，将氘化 HAV、未氘化 HAV 及氘化细胞对照用 PBS 稀释至所需浓度，终体积均为 0.1ml，然后加入 0.5ml 含 5mg BSA 的 PBS 液。再将该混合样品放入到 GEL-1 型冻干机中冻干，冻干后混合样品水份含量<3%，制得样品分别用 V_D 、 V_H 及 C_D 表示。冻干混合样品与氧化剂 CuO (500mg) 和 V_2O_5 (50mg) 在 100°C 温度下脱吸附水 20min，再于 850°C 下燃烧氧化反应，30min 反应完全后样品被彻底氧化成二氧化碳 (CO_2)、水 (H_2O) 以及二氧化氮 (NO_2) 等物质。将产物中的水分离并转移到水样品反应管中，水与锌于 420°C 下反应 2h 被转化为氢气，其 $^2H/^1H$ 比值用气体同位素质谱仪 MAT-251 测定。

测定由氘化 HAV 制得的 V_D 样品的 δD_{SMOW} 值。 V_D 样品的 δD_{SMOW} 值的显著升高，这不可能是由于氘化 HAV 颗粒中的游离水，因为其最后一次洗涤液 (SV) 和蒸馏水的 δD_{SMOW} 值相一致；也不可能是因为病毒样品中可能污染的氘化细胞成分，因为 C_D 样品的 δD_{SMOW} 值在本底水平。因此， V_D 样品的 δD_{SMOW} 值的显著升高表明 HAV 在 D_2O 中孵育后 $^2H/^1H$ 比值增大，HAV 颗粒发生氢氘置换富集氘；且随着氘化 HAV 的加入量增加， V_D 样品的 δD_{SMOW} 值线性增加，即在一定范围内，

氘化 HAV 量(m_{bio} , μg)	基质 BSA 量(m_{BSA} , mg)	$m_{bio}/m_{BSA} \times 10^{-3}$	δD_{SMOW}
0		0	-88
0.2		0.04	-51
0.5	5	0.10	22
1		0.20	55
2		0.40	291

V_D 样品的 δD_{SMOW} 值与氘化 HAV 的加入量呈正比关系。 V_D 样品的 δD_{SMOW} 值与氘化 HAV 的加入量关系如表 3 所示。

表 3 氚化 HAV 所制得样品 V_D 的 δD_{SMOW} 与氘化 HAV 加入量的关系

将 δD_{SMOW} 对 m_{bio}/m_{BSA} × 10⁻³ 作图，见附图 3。

由附图 3 可知，直线的 R²=0.9762，具有良好的线性相关性。直线斜率为

$$K = \frac{500 \cdot C_{bio}^D}{R_{SMOW} \cdot C_{BSA}^H} = 917.59 \times 10^3, \text{ 截距为 } -90.004 = \delta D_{BSA-SMOW} \text{ 与 BSA 实测值}$$

δD_{BSA-SMOW} = -88 一致。

计算氘化 HAV 的氘百分含量

(a) 由公式 (1) 可计算出 BSA 的 ²H/¹H 比值得 R_{BSA}=142.05×10⁻⁶

(b) 由 BSA 的氨基酸组成计算出 BSA 的 ¹H 理论百分含量为 C_{BSA}^H = 6.95

(c) 根据直线斜率计算得出氘化 HAV 的氘百分含量为

$$\begin{aligned} C_{bio}^D &= 917.59 \times 10^3 \times R_{SMOW} \times C_{BSA}^H \times \frac{1}{500} \\ &= 917.59 \times 10^3 \times 155.76 \times 10^{-6} \times 6.95 \times \frac{1}{500} \\ &= 1.99 \end{aligned}$$

实施例 3

氘化 HAV 病毒的核糖核酸 (RNA) 中氢氘置换的证实及其氘百分含量的测定
经充分洗涤的氘化 HAV 或细胞对照用于制备氘化的 RNA，方法参照异硫氰酸胍-酚一步抽提法。RNA 样品用分光光度法定量，并计算其 OD₂₆₀/OD₂₈₀ 比值用于表征 RNA 的纯度。

选取牛血清白蛋白 (BSA) 为基质，将氘化 HAV、未氘化 HAV 及氘化细胞对照中提取的 RNA 用 PBS 稀释至所需浓度，终体积均为 0.1ml，然后加入 0.5ml 含 5mg BSA 的 PBS 液。再将该混合样品放入到 GEL-1 型冻干机中冻干，冻干后混合样品水份含量<3%，制得样品分别用 RNA-V_D、RNA-V_H 和 RNA-C_D 表示。冻干混合样品与氧化剂 CuO (500mg) 和 V₂O₅ (50mg) 在 100°C 温度下脱吸附水 20min，再于 850°C 下燃烧氧化反应，30min 反应完全后样品被彻底氧化成二氧化碳 (CO₂)、水 (H₂O) 以及二氧化氮 (NO₂) 等物质。将产物中的水分离并转移到水样品反应管中，水与锌于 420°C 下反应 2h 被转化为氢气，其 ²H/¹H 比值用气体同位素质谱仪 MAT-251 测定。

测定样品 RNA-V_D 和 RNA-V_H 的 δD_{SMOW} 值，实验结果表明氘化 HAV 的 RNA

具有较高水平的氘含量, RNA-V_D 的 δD_{SMOW} 值随着 RNA 加入量的增加而增大, 实验结果见表 4。而对照病毒 RNA-V_H 或细胞成份 RNA-C_D 的氘含量极低, 这表明样品 RNA-V_D 的 δD_{SMOW} 值增加是因为加入的氘化 HAV 的 RNA 的 $^2H/^1H$ 比值高, 氘化 HAV 的 RNA 的 $^2H/^1H$ 比值增大由于其中的氢被氘置换。

表 4 RNA-V_D 样品的 δD_{SMOW} 与氘化 RNA 加入量的关系

氘化 RNA 量(m _{bio} , μg)	基质 BSA 量(m _{BSA} , mg)	$m_{bio}/m_{BSA} \times 10^{-3}$	δD_{SMOW}
0		0	-85
1		0.2	-60
2	5	0.4	-52
3		0.6	-36
4		0.8	-17
10		2	86

将 δD_{SMOW} 对 $m_{bio}/m_{BSA} \times 10^{-3}$ 作图, 见附图 4。

由附图 4 可知, 直线的 $R^2=0.9965$, 具有良好的线性相关性, 直线斜率为

$$K = \frac{500 \cdot C_{bio}^D}{R_{SMOW} \cdot C_{BSA}^H} = 84.211 \times 10^3, \text{ 截距为 } -83.474 = \delta D_{BSA-SMOW} \text{ 与 BSA 实测值}$$

$\delta D_{BSA-SMOW} = -85$ 一致。

计算氘化 HAV 的 RNA 的氘百分含量

(a) 由公式 (1) 可计算出 BSA 的 $^2H/^1H$ 比值得 $R_{BSA}=142.52 \times 10^{-6}$

(b) 由 BSA 的氨基酸组成计算出 BSA 的 1H 理论百分含量为 $C_{BSA}^H=6.95$

(c) 根据直线斜率计算得出氘化 HAV 的 RNA 的氘百分含量为

$$\begin{aligned} C_{bio}^D &= 84.211 \times 10^3 \times R_{SMOW} \times C_{BSA}^H \times \frac{1}{500} \\ &= 84.211 \times 10^3 \times 155.76 \times 10^{-6} \times 6.95 \times \frac{1}{500} \\ &= 0.18 \end{aligned}$$

说明书附图

图1

图 2

U.S.-08-27

15

图 3

图 4

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.