Morley's theorem

Advanced model theory

May 12, 2022

References: Sections 10.2, 10.4, 18.6 in Poizat's Course in Model Theory.

1 Prime models in totally transcendental theories

Definition 1.1. $M \models T$ is *prime* if for every model $N \models T$, there is an elementary embedding $M \to N$.

Warning 1.2. There are theories without prime models. There are theories with multiple non-isomorphic prime models.

Definition 1.3. A model $M \leq \mathbb{M}$ is *prime over* a subset $A \subseteq M$ if for any model $N \leq \mathbb{M}$ with $N \supseteq A$, there is an elementary embedding $M \to N$ extending id_A , or equivalently, an automorphism $\sigma \in \mathrm{Aut}(\mathbb{M}/A)$ with $\sigma(M) \subseteq N$.

Equivalently, M is prime over $A \subseteq M$ if M is prime as an L(A)-structure.

Example 1.4. If $acl(A) \leq M$, then acl(A) is a prime model over A. This happens for any A in ACF.

Remark 1.5. Suppose $|L| = \aleph_0$ and models of T are infinite. If M is prime over A, then $|M| = |A| + \aleph_0 = \max(|A|, \aleph_0)$. First, $|M| \ge \aleph_0$ by assumption and $|M| \ge |A|$ because $M \supseteq A$. In the other direction, take $N \preceq \mathbb{M}$ with $N \supseteq A$. By Löwenheim-Skolem, we may assume $|N| \le |A| + \aleph_0$. There is an elementary embedding $M \to N$, so $|M| \le |N| \le |A| + \aleph_0$.

Definition 1.6. B is constructible over A if there is an enumeration $(b_{\alpha} : \alpha < \beta)$ of B such that for each $\alpha < \beta$, $\operatorname{tp}(b_{\alpha}/B_{<\alpha}A)$ is isolated, where $B_{<\alpha} = \{b_{\gamma} : \gamma < \alpha\}$. The enumeration $(b_{\alpha} : \alpha < \beta)$ is called a construction of B over A.

Lemma 1.7. If B_0 is constructible over A, and B_1 is constructible over AB_0 , then B_0B_1 is constructible over A. More generally, if $(B_{\alpha} : \alpha < \beta)$ is a sequence of sets and B_{α} is constructible over $A \cup \bigcup_{\gamma < \alpha} B_{\gamma}$ for each α , then $\bigcup_{\alpha < \beta} B_{\alpha}$ is constructible over A.

Proof. Concatenate the constructions.

Lemma 1.8. Suppose $\operatorname{tp}(c/A)$ is isolated. If $M \leq \mathbb{M}$ and $f : A \to B \subseteq M$ is a partial elementary map, then there is $c' \in M$ such that $f \cup \{(c,c')\}$ is a partial elementary map.

Proof. Moving A, c by an automorphism, we may assume A = B and $f = id_A$. Take $\varphi(x) \in L(A)$ isolating $\operatorname{tp}(c/A)$. Then

$$\mathbb{M} \models \varphi(c) \implies \mathbb{M} \models \exists x \ \varphi(x) \implies M \models \exists x \ \varphi(x)$$

since $A \subseteq M$. Take $c' \in M$ with $M \models \varphi(c')$. Then $c' \equiv_A c$ because $\varphi(x)$ isolates $\operatorname{tp}(c/A)$. The fact that $c' \equiv_A c$ means $\operatorname{id}_A \cup \{(c,c')\}$ is a partial elementary map.

Theorem 1.9. If $A \subseteq M \preceq M$ and M is constructible over A, then M is prime over A.

Proof. Let $N \supseteq A$ be another model. Let $(b_{\alpha} : \alpha < \beta)$ be a construction of M over A. By induction using Lemma 1.8, we can find $c_{\alpha} \in N$ such that $f = \mathrm{id}_A \cup \{(b_0, c_0), (b_1, c_1), \ldots\}$ is a partial elementary map. Then f is a partial elementary embedding of M into N over A.

Fact 1.10. Suppose T is totally trascendental. If $D \subseteq \mathbb{M}^n$ is non-empty and A-definable, then there is $\bar{b} \in D$ such that $\operatorname{tp}(\bar{b}/A)$ is isolated.

Fact 1.10 was Theorem 9.2 in the May 7 notes.

Lemma 1.11. Suppose T is totally transcendental. Given $A \subseteq \mathbb{M}$, there is $B \subseteq \mathbb{M}$ constructible over A such that $D \cap B \neq \emptyset$ for every non-empty A-definable $D \subseteq \mathbb{M}$.

Proof. Let $\{D_{\alpha} : \alpha < \kappa\}$ enumerate the non-empty A-definable subsets of M. By Fact 1.10, recursively choose b_{α} for $\alpha < \kappa$ such that $b_{\alpha} \in D_{\alpha}$ and

$$tp(b_{\alpha}/A \cup \{b_{\beta} : \beta < \alpha\})$$

is isolated. Then $B = \{b_{\alpha} : \alpha < \kappa\}$ is constructible over A and has the desired property. \square

Theorem 1.12. If T is totally transcendental and $A \subseteq M$, then there is a model $M \preceq M$ that is constructible and prime over A.

Proof. By Lemma 1.11, build a sequence B_0, B_1, B_2, \ldots of length ω such that

- B_i is constructible over $AB_{< i}$, where $B_{< i} = \bigcup_{j < i} B_j$.
- $B_i \cap D \neq \emptyset$ for every D definable over $AB_{< i}$.

(Note that $\{a\}$ is A-definable for $a \in A$, so $A \subseteq B_i$ for each i.) Let $M = \bigcup_{i < \omega} B_i \supseteq A$. Then M is constructible over A by Lemma 1.7, and $M \preceq M$ by the Tarski-Vaught criterion. \square

Fact 1.13. The prime model in Theorem 1.12 is unique up to isomorphism.

We won't use Fact 1.13, which is proved in Section 10.4 and 18.1 of the textbook.

2 Vaught pairs

Definition 2.1. A Vaught pair is a proper elementary extension $M \prec N$ (with $N \neq M$) and an L(M)-formula such that

- $\varphi(M) = \varphi(N)$ (even though $M \subsetneq N$)
- $\varphi(M)$ is infinite.

Remark 2.2. If $\varphi(M)$ is finite, then $\varphi(M) = \varphi(N)$ always holds for any $N \succeq M$. Indeed, if $\varphi(M) = \{c_1, \ldots, c_n\}$, then $M \models \forall x \ (\varphi(x) \to \bigvee_{i=1}^n (x = c_i))$ so the same holds in N.

Remark 2.3. For any formula $\varphi(\bar{x}; \bar{y})$, there is a theory T_{φ} such that a model of T_{φ} is a triple (M, P, \bar{b}) where $M \models T, P \leq M, P \neq M, \bar{b} \in P$, and $\varphi(P; \bar{b}) = \varphi(M; \bar{b})$.

Theorem 2.4 (Morley, Baldwin, Lachlan). Let T be a complete theory in a countable language, with infinite models. The following are equivalent:

- 1. T is κ -categorical for some $\kappa > \aleph_0$.
- 2. T is totally transcendental and has no Vaught pairs.
- 3. T is κ -categorical for all $\kappa > \aleph_0$.

In the rest of these notes, we will prove $(1) \Longrightarrow (2) \Longrightarrow (3) \Longrightarrow (1)$. $(3) \Longrightarrow (1)$ is obvious. We prove $(2) \Longrightarrow (3)$ in this section, and $(1) \Longrightarrow (2)$ in later sections.

Assume in this section that the language is countable, models are infinite, and T is totally transcendental with no Vaugtian pairs.

Lemma 2.5. \exists^{∞} is eliminated.

Proof. Fix a formula $\varphi(\bar{x}; \bar{y})$. It suffices to prove the claim below, which implies

$$\exists^{\infty} \bar{x} \ \varphi(\bar{x}; \bar{y}) \iff \exists^{>N_{\varphi}} \bar{x} \ \varphi(\bar{x}; \bar{y}).$$

Claim. There is an integer N_{φ} such that for any $\bar{b} \in \mathbb{M}$,

$$|\varphi(\mathbb{M}; \bar{b})| = \infty \text{ or } |\varphi(\mathbb{M}; \bar{b})| \leq N_{\varphi}.$$

Suppose the claim fails. Then for every n there is \bar{b}_n such that

$$n < |\varphi(\mathbb{M}; \bar{b}_n)| < \infty.$$

Let M_n be a small model containing \bar{b}_n . Then $\varphi(M_n;\bar{b}) = \varphi(\mathbb{M};\bar{b}_n)$ (see Remark 2.2). With T_{φ} as in Remark 2.3 we get a model $(\mathbb{M}, M_n, \bar{b}_n) \models T_{\varphi}$ with $n < |\varphi(\mathbb{M};\bar{b}_n)|$ for each n. By compactness, there is a model $(M, P, \bar{b}) \models T_{\varphi}$ with $|\varphi(M; \bar{b})| = \infty$, which is a Vaught pair.

Definition 2.6. An M-definable set $D \subseteq \mathbb{M}^n$ is minimal (with respect to M) if D is infinite and for every M-definable set $D' \subseteq D$, either D' is finite or $D \setminus D'$ is finite. D is strongly minimal if it is minimal with respect to \mathbb{M} .

Lemma 2.7. Let M be a model.

- 1. There is an M-definable minimal set $D \subseteq M$.
- 2. If D is minimal then D is strongly minimal.
- Proof. 1. Let R(-) denote Cantor-Bendixson rank over M. It's easy to see that for M-definable D, R(D) > 0 iff D is infinite. Let $E_{\alpha} = \{p \in S_1(M) : R(p) \geq \alpha\}$. Then $R(S_1(M)) = R([M]) > 0$ because M is infinite, so $E_1 \neq \emptyset$. If $E_1 = E_2$, then E_1 is perfect, contradicting the fact that $S_1(M)$ is scattered because T is totally transcendental (see Lemma 7.1 in the May 5–7 notes). Therefore $E_1 \supsetneq E_2$. Take $p \in E_1 \setminus E_2$. Then p is an isolated point of E_1 . Take a clopen set $[D] \subseteq S_1(M)$ with $[D] \cap E_1 = \{p\}$. Then R([D]) = 1 > 0, so D is infinite. For M-definable $D' \subseteq D$, we have $[D] = [D'] \sqcup [D \setminus D']$. If $p \in [D']$ then $[D \setminus D'] \cap E_1 = \emptyset$ so $R(D \setminus D') \leq 0$ and $|D \setminus D'| < \infty$. Similarly, if $p \in [D \setminus D']$, then $|D'| < \infty$. Thus D is minimal.
 - 2. Suppose D is not strongly minimal, witnessed by \mathbb{M} -definable $D' \subseteq D$ such that D' and $D \setminus D'$ are infinite. Write D and D' as $\varphi(\mathbb{M}; \bar{b})$ and $\psi(\mathbb{M}; \bar{c})$ for $\bar{b} \in M$ and $\bar{c} \in \mathbb{M}$. Then

$$\mathbb{M} \models \exists^{\infty} \bar{x} \ (\varphi(\bar{x}; \bar{b}) \ \land \ \psi(\bar{x}; \bar{c}))$$
$$\mathbb{M} \models \exists^{\infty} \bar{x} \ (\varphi(\bar{x}; \bar{b}) \ \land \ \neg \psi(\bar{x}; \bar{c})).$$

By Lemma 2.5 the right hand sides are first-order. The fact that $M \leq M$ implies we can change \bar{c} and take $\bar{c} \in M$. Then D' is M-definable, and D isn't minimal.

By Theorem 1.12, T has a prime model M_0 . By Lemma 2.7 there is an M_0 -definable strongly minimal set $D \subseteq \mathbb{M}$. Let $p \in S_1(M_0)$ be the transcendental type of D, the type generated by

$$\{x \in D\} \cup \{x \notin D' : D' \subseteq D, D' \text{ is } M_0\text{-definable}, |D'| < \infty\}.$$

As in Section 2 of the May 5 notes, this is a complete type. Let $\hat{p} \in S_1(\mathbb{M})$ be the analogous global transcendental type in D. Then \hat{p} is M_0 -invariant hence M_0 -definable, and $\hat{p} \supseteq p$, implying that p is stationary and \hat{p} is its global non-forking extension.

Remark 2.8. Let $I = (b_{\alpha} : \alpha < \kappa)$ be a sequence of realizations of p. The following are equivalent:

- 1. I is independent over M_0 .
- 2. *I* is a Morley sequence of \hat{p} over M_0 , meaning $b_{\alpha} \models \hat{p} \upharpoonright (M_0\{b_{\beta} : \beta < \alpha\})$ for each $\alpha < \kappa$.

3. $b_{\alpha} \notin \operatorname{acl}(M_0 \cup \{b_{\beta} : \beta < \alpha\})$ for each $\alpha < \kappa$.

The proof is similar to the case of strongly minimal theories (see §2 in the May 5 notes).

For each small cardinal κ , let I_{κ} be a Morley sequence of \hat{p} over M_0 of length κ . Let $M_{\kappa} \leq \mathbb{M}$ be prime over $M_0 \cup I_{\kappa}$. Note $|M_{\kappa}| = \kappa + \aleph_0$ by Remark 1.5.

Lemma 2.9. If M is a small model, then $M \cong M_{\kappa}$ for some κ .

Proof. Because M_0 is prime, there is an elementary embedding $M_0 \to M$. Moving M by an automorphism, we may assume $M_0 \subseteq M$. Let I be a maximal independent set of realizations of p in M. Let $\kappa = |I|$. Let $f: I \to I_{\kappa}$ be any bijection. Then f is a partial elementary map over M_0 , by the proof of Lemma 2.4 in the May 5 notes. So $f \cup \mathrm{id}_{M_0} : (M_0 \cup I) \to (M_0 \cup I_{\kappa})$ is a partial elementary map. Moving M and I by an automorphism, we may assume $I = I_{\kappa}$. As M_{κ} is prime over $M_0 \cup I_{\kappa}$, there is an elementary embedding $M_{\kappa} \to M$ over $M_0 \cup I_{\kappa}$. Moving M by an automorphism over $M_0 \cup I_{\kappa}$, we may assume $M_{\kappa} \subseteq M$. We claim $M_{\kappa} = M$. Suppose $M_{\kappa} \subseteq M$. Then $D(M_{\kappa}) \subseteq D(M)$, or else (M_{κ}, M, D) is a Vaught pair. Take $b \in D(M) \setminus D(M_{\kappa})$. Note $\mathrm{acl}(M_0 I_{\kappa}) \subseteq \mathrm{acl}(M_{\kappa}) = M_{\kappa}$. $(\mathrm{acl}(M_{\kappa}) = M_{\kappa}$ by Proposition 18 in the April 7 notes.) Therefore $b \notin \mathrm{acl}(M_0 I_{\kappa})$. Then $b \models \hat{p} \upharpoonright M_0 I_{\kappa}$, and $I_{\kappa} \cup \{b\}$ is a larger independent set of realizations of p in M, contradicting the maximality of I.

Since the cardinality of M_{κ} is $\max(\aleph_0, \kappa)$, we see that for $\kappa > \aleph_0$, the only model of size κ is M_{κ} .

Corollary 2.10. T is κ -categorical for $\kappa > \aleph_0$.

This completes the proof of $(2) \Longrightarrow (3)$ in Theorem 2.4.

3 Constructible models are atomic

Definition 3.1. B is atomic over A if for every finite tuple $\bar{b} \in B$, $\operatorname{tp}(\bar{b}/A)$ is isolated.

Remark 3.2. A is atomic over A: if $\bar{b} \in A$, then $\operatorname{tp}(\bar{b}/A)$ is isolated by the formula $\bar{x} = \bar{b}$.

Remark 3.3. If $\operatorname{tp}(b/A)$ is isolated, then Ab is atomic over A. Indeed, if $\varphi(y) \in L(A)$ isolates $\operatorname{tp}(b/A)$, and if \bar{a} is a tuple in A, then $\operatorname{tp}(\bar{a}, b/A)$ is isolated by the formula $(\bar{x} = \bar{a}) \wedge \varphi(y)$.

Lemma 3.4. Suppose $A \subseteq B \subseteq C$. If C is atomic over B and B is atomic over A, then C is atomic over A.

Proof. For $\bar{c} \in C$, take a formula $\varphi(\bar{x}; \bar{b})$ isolating $\operatorname{tp}(\bar{c}/B)$, with $\bar{b} \in B$. Take an L(A)-formula $\psi(\bar{y})$ isolating $\operatorname{tp}(\bar{b}/A)$. Let $\theta(\bar{x}) \in L(A)$ be

$$\exists \bar{y} \ (\varphi(\bar{x}; \bar{y}) \ \land \ \psi(\bar{y})).$$

Then $\mathbb{M} \models \theta(\bar{c})$ because we can take $\bar{y} = \bar{b}$. We claim $\theta(\bar{x})$ isolates $\operatorname{tp}(\bar{c}/A)$. Suppose $\mathbb{M} \models \theta(\bar{c}_0)$. Take \bar{b}_0 such that $\mathbb{M} \models \varphi(\bar{c}_0; \bar{b}_0) \wedge \psi(\bar{b}_0)$. Then $\psi(\bar{b}_0)$ ensures \bar{b}_0 realizes $\operatorname{tp}(\bar{b}/A)$. Moving (\bar{b}_0, \bar{c}_0) by an automorphism over A, we may assume $\bar{b}_0 = \bar{b}$. Then $\varphi(\bar{c}_0; \bar{b})$ ensures \bar{c}_0 realizes $\operatorname{tp}(\bar{c}/B)$. In particular, it realizes $\operatorname{tp}(\bar{c}/A)$.

Proposition 3.5. If $M \leq M$ is constructible over $A \subseteq M$, then M is atomic over A.

Proof. Take $(b_{\alpha} : \alpha < \beta)$ a construction of M over A. For $\alpha \leq \beta$, let $B_{<\alpha} = \{b_{\gamma} : \gamma < \alpha\}$. We prove by induction on α that $AB_{<\alpha}$ is atomic over A.

- $\alpha = 0$ is handled by Remark 3.2
- If α is a limit ordinal, then any finite tuple in $AB_{<\alpha}$ comes from $AB_{<\gamma}$ for some $\gamma < \alpha$, so things work by induction.
- Consider $\alpha + 1$. By induction, $AB_{<\alpha}$ is atomic over A. We know $\operatorname{tp}(b_{\alpha}/AB_{<\alpha})$ is isolated. By Remark 3.3, $AB_{<\alpha+1} = AB_{<\alpha}b_{\alpha}$ is atomic over $AB_{<\alpha}$. By Lemma 3.4, $AB_{<\alpha+1}$ is atomic over A.

This completes the induction. Taking $\alpha = \beta$, we see that AM is atomic over A, which implies M is atomic over A.

4 Orthogonality

Assume T is totally transcendental.

Definition 4.1. Let M be a model. Suppose $p \in S_n(M)$ and $\varphi(\bar{x}) \in L(M)$. Say that p is *orthogonal* to $\varphi(\bar{x})$ if there is a model $N \succeq M$ containing a realization $b \models p$, and $\varphi(N) = \varphi(M)$.

Remark 4.2. In Definition 4.1, N contains a copy of a prime model over $M \cup \{b\}$. Without loss of generality, N is a prime model over $M \cup \{b\}$.

Lemma 4.3. If $p \in S_1(M)$ and $\varphi(\bar{x}) \in L(M)$, then p is non-orthogonal to $\varphi(\bar{x})$ if and only if there is an L-formula $\psi(\bar{x}; y, \bar{z})$ and a tuple $\bar{c} \in M$ such that

- The formula $(\exists \bar{x})(\varphi(\bar{x}) \land \psi(\bar{x}; y; \bar{c}))$ is in p(y).
- For each $\bar{a} \in M$, the formula $\neg \psi(\bar{a}; y; \bar{c})$ is in p(y).

Proof. First suppose ψ, \bar{c} exist. Suppose $N \succeq M$ contains a realization $b \models p$. Then

$$N \models (\exists \bar{x})(\varphi(\bar{x}) \land \psi(\bar{x}; b; \bar{c}))$$

but for each $\bar{a} \in M$,

$$N \models \neg \psi(\bar{a}; b; \bar{c}). \tag{*}$$

Take $\bar{a}_0 \in N$ satisfying $\varphi(\bar{x}) \wedge \psi(\bar{x}; b, \bar{c})$. By $(*), \bar{a}_0 \notin M$. Then $\bar{a}_0 \in \varphi(N) \setminus \varphi(M)$, showing non-orthogonality.

Conversely, suppose p is non-orthogonal to $\varphi(\bar{x})$. Take $b \in \mathbb{M}$ realizing p and take $N \leq \mathbb{M}$ constructible over Mb. By non-orthogonality, $\varphi(N) \supseteq \varphi(M)$. Take $\bar{a}_0 \in \varphi(N) \setminus \varphi(M)$. By

Proposition 3.5, N is atomic over Mb. Then $\operatorname{tp}(\bar{a}_0/Mb)$ is isolated by some formula $\psi(\bar{x};b;\bar{c})$ with $\bar{c} \in M$. The element \bar{a}_0 shows

$$\mathbb{M} \models (\exists \bar{x})(\varphi(\bar{x}) \land \psi(\bar{x}; b; \bar{c})). \tag{1}$$

Note that if $\psi(\bar{a}; b; \bar{c})$ holds, then $\bar{a} \equiv_{Mb} \bar{a}_0$, and so $\bar{a} \notin M$. Taking contrapositives, we see that

$$\mathbb{M} \models \neg \psi(\bar{a}; b; \bar{c}) \qquad \text{for any } \bar{a} \in M. \tag{2}$$

Using the fact that $p = \operatorname{tp}(b/M)$, equations (1)–(2) turn into the two desired conditions. \square

Lemma 4.4. Suppose $M \leq M' \leq M$, $p \in S_1(M)$, $p' \in S_1(M)$, p' is the heir of p, and $\varphi(\bar{x}) \in M$. Then p is orthogonal to $\varphi(\bar{x})$ iff p' is orthogonal to $\varphi(\bar{x})$.

Proof. The conditions of Lemma 4.3 can be expressed as first-order sentences in the structures (M, dp) and (M', dp'). From the proof of Propositions 15–16 in the February 24 notes, one can see that $(M, dp) \leq (M', dp')$, so things transfer between (M, dp) and (M', dp').

In the following, $M \prec N$ and $N \succ M$ mean $M \preceq N$ and $M \neq N$. (This notation is slightly non-standard; many authors use $M \prec N$ to mean $M \preceq N$.)

Proposition 4.5 (Stretching Vaught pairs). Suppose there is a Vaught pair: suppose that $M \prec N$ and suppose $\varphi(M) = \varphi(N)$ for some L(M)-formula $\varphi(\bar{x})$.

- 1. For every $M' \succeq M$, there is $N' \succ M'$ with $\varphi(N') = \varphi(M')$. We may take $|N'| \leq |M'| + |L|$.
- 2. For every $\kappa \geq |M| + |L|$, there is an elementary extension $N \succeq M$ with $|N| = \kappa$ and $\varphi(N) = \varphi(M)$.
- Proof. 1. Take $b \in N \setminus M$. Then $p := \operatorname{tp}(b/M)$ is orthogonal to $\varphi(\bar{x})$. Let $p' \in S_1(M')$ be the heir of p. By Lemma 4.4, p' is orthogonal to $\varphi(\bar{x})$. So there is $N' \succeq M'$ containing a realization $b' \models p'$, with $\varphi(N') = \varphi(M')$. The fact that p is non-constant implies that its heir p' is non-constant, so $b' \notin M'$ and $N' \succ M'$. By downward Löwenheim-Skolem we may assume $|N'| \leq |M'| + |L|$.
 - 2. Iterating part (1), build an increasing elementary chain $(M_{\alpha}: \alpha < \kappa)$ where...
 - $M_0 = M$.
 - $M_{\alpha+1} \succ M_{\alpha}$ with $\varphi(M_{\alpha+1}) = \varphi(M_{\alpha})$ and $|M_{\alpha+1}| \leq |M_{\alpha}| + |L|$.
 - If β is a limit ordinal, then $M_{\beta} = \bigcup_{\alpha < \beta} M_{\alpha}$.

Take $N = \bigcup_{\alpha} M_{\alpha}$. Then $N \succeq M$ with $\varphi(N) = \varphi(M)$. Note $|M_{\alpha}| \leq |\alpha| + |L| + |M|$ by induction on α , so $|N| \leq \kappa + |L| + |M| = \kappa$. On the other hand, $\kappa \leq |N|$ because there were at least κ strict inclusions in the chain.

5 The end of the proof

Say that an elementary extension $N \succeq M$ enlarges infinite sets if $D(N) \supsetneq D(M)$ for every infinite M-definable set $D \subseteq \mathbb{M}^n$.

Lemma 5.1. If $M \leq M$, then there is $N \succeq M$ such that $|N| \leq |M| + |L|$ and the extension N enlarges infinite sets.

Proof. Let $\kappa = |L(M)| = |L| + |M|$. Let $\{D_{\alpha} : \alpha < \kappa\}$ enumerate all infinite M-definable sets. For each α , the set $D_{\alpha} = D_{\alpha}(\mathbb{M})$ is large(r than $D_{\alpha}(M)$), by saturation. Take $\bar{b}_{\alpha} \in D_{\alpha}(\mathbb{M}) \setminus D_{\alpha}(M)$. By downward Löwenheim-Skolem there is a small model N containing $M \cup \{\bar{b}_{\alpha} : \alpha < \kappa\}$ with $|N| \leq |M| + \kappa = |M| + |L|$.

Proposition 5.2. Suppose models of T are infinite. If $\kappa \geq |L|$, then there is a model $M \leq \mathbb{M}$ such that $|M| = \kappa$ and $|D(M)| = \kappa$ for every infinite M-definable set.

Proof. Recursively define an increasing elementary chain $(M_{\alpha}: \alpha < \kappa)$ as follows:

- M_0 is a model of size |L|, which exists by Löwenheim-Skolem.
- If β is a limit ordinal, then $M_{\beta} = \bigcup_{\alpha < \beta} M_{\alpha}$.
- $M_{\alpha+1} \succeq M_{\alpha}$ is an extension which enlarges infinite sets, with $|M_{\alpha+1}| \leq |L| + |M_{\alpha}|$.

Let $N = \bigcup_{\alpha < \kappa} M_{\alpha}$. As in the proof of Proposition 4.5(2), $|N| \le \kappa$. It remains to show that $|D(N)| \ge \kappa$ for infinite N-definable sets D. The set D is M_{α} -definable for some $\alpha < \kappa$. For all β with $\alpha < \beta < \kappa$, we have $D(M_{\beta+1}) \supseteq D(M_{\beta})$. The number of such β is κ , so $|D(N)| \ge \kappa$.

Theorem 5.3. Let T be a complete theory with infinite models in a countable language. If T is κ -categorical for some $\kappa > \aleph_0$, then T is totally transcendental and T has no Vaught pairs.

Proof. T is ω -stable by Theorem 32 in the March 24th notes. By Theorem 7.2 in the May 7 notes, " ω -stable" is equivalent to "totally transcendental" since the language is countable.

Assume for the sake of contradiction that T has a Vaught pair $(M, N, \varphi(\bar{x}; \bar{b}))$. Then (N, M, \bar{b}) is a model of the theory T_{φ} of Remark 2.3. Applying downward Löwenheim-Skolem, we may assume N, M are countable. By Proposition 4.5(2), there is an elementary extension $N_1 \succeq M$ with $|N_1| = \kappa$, such that $\varphi(N_1; \bar{b}) = \varphi(M; \bar{b})$. In particular, $|\varphi(N_1; \bar{b})| = \aleph_0 < \kappa$.

By Proposition 5.2, there is also a model N_2 of cardinality κ such that $D(N_2) = \kappa$ for every infinite N_2 -definable set. There is an infinite N_1 -definable set D such that $D(N_1) \neq \kappa$, namely $D = \varphi(\mathbb{M}; \bar{b})$. Therefore $N_1 \ncong N_2$, and κ -categoricity fails.

This completes the proof of Morley's theorem plus the Baldin-Lachlan characterization of uncountable categoricity (which is: totally transcendental plus no Vaught pairs).