AB5 - Lotfußpunkt-Verfahren zur Abstandsbestimmung

Unter dem Abstand eines Punktes P von einer Ebene E versteht man die **Länge d** der **Lotstrecke** \overrightarrow{PF} , die senkrecht auf der Ebene steht. Der Punkt **F heißt Lotfuß-** punkt.

Mit Hilfe des **Normalenvektors** \vec{n} der **Ebene** kann man eine **Hilfsgeraden** aufstellen und damit den Abstand eines Punktes zu einer Ebene ermitteln.

Erinnerung zum Kreuzprodukt: $\vec{n} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$

Teil 1: Abstandsbestimmung von Punkt und Ebene (Parameterform):

- 1) Hilfsgerade h konstruieren, die durch Punkt P geht und die Ebene E im Punkt F senkrecht schneidet (F nennt man Lotfußpunkt). Dabei ist der Richtungsvektor r der Geraden kollinear zum Normalenvektor n der Ebene.
- 2) Geradengleichung von h aufstellen, dabei entspricht der Stützvektor den Koordinaten des Punktes P in Parameterform und der Richtungsvektor ist gleich dem Normalenvektor der Ebene:

$$h \colon \vec{x} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

3) Ermittlung des Lotfußpunktes F: **Geradengleichung entweder in die Koordinatengleichung der Ebene einsetzen** oder mit der Parametergleichung der Ebene gleichsetzen und das LGS lösen, um r, s, t zu bestimmen und t in die Geradengleichung einzusetzen:

$$\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \Leftrightarrow r = 1,5, s = 1, t = 0,5,$$

Ergibt F (1,5|1|1,5) und damit lässt sich der **Abstand d** bestimmen zu: $d = |\overrightarrow{PF}| = 0,707 \text{ LE}.$

Teil 2: Abstandsbestimmung von Gerade und Ebene (koordinatenform):

- Hilfsgerade h konstruieren, die durch Punkt P geht und die Ebene E im Punkt F senkrecht schneidet. Dabei ist der Richtungsvektor r der Geraden parallel zum Normalenvektor n der Ebene.
- 2) Geradengleichung von h aufstellen, dabei entspricht der Stützvektor den Koordinaten des Stützpunktes P der Geraden in Parameterform und der Richtungsvektor ist gleich dem Normalenvektor der Ebene:

$$h: \vec{x} = \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix} + t \cdot \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$$

3) Ermittlung des Schnittpunktes F: Geradengleichung entweder in die Koordinatengleichung der Ebene einsetzen oder mit der Parametergleichung der Ebene gleichsetzen und das LGS lösen, um r, s, t zu bestimmen und t in die Geradengleichung einzusetzen:

h in E: $4t + 6 + 4t + 2 + t = 4 \Leftrightarrow t = -\frac{4}{9}$, eine eindeutige Lösung

Einsetzen von t in die Parametergleichung der Geraden h ergibt: F $(-\frac{8}{9} \left| \frac{19}{9} \right| \frac{5}{9})$ und den Abstand d: $d = |\overrightarrow{PF}| = 1,915$ LE.

Aufgaben:

1) Bestimmen Sie den Abstand des Punktes P von der Ebene E:

a) E: 4x - 4y + 2z = 16; P(5|-5|6) [Lösung: d = 6 LE]

b) E: -4x + 5y + z = 10; P(-3|7|5) [Lösung: d = 6,48 LE]

2) [Lösung: $d = \sqrt{20} LE$]

Auf dem Hang E, der durch die Punkte A(12|0|5), B(12|10|0), C(0|10|0) und D(0|0|5) definiert wird, steht im Punkt P(4|8|1) eine Antenne. Im Punkt S(4|8|6) soll ein Stützstab angebracht werden, der senkrecht im Punkt F auf den Hang trifft. Berechnen Sie die Länge des Stützstabes.

3) **Bestimmen** Sie den Abstand zwischen einer Gerade/Ebene und einer dazu parallelen Ebene:

a) E: 4x + 2y - 4z = 16; G: -2x - y + 2z = -26 [Lösung: d = 6 LE]

b) $E: 6x - 2y + 3z = 7; g: \vec{x} = \begin{pmatrix} 7 \\ -1 \\ 4 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 6 \\ 2 \end{pmatrix}$ [Lösung: d = 7 LE]

16. Einparkhilfe

Bei der Entwicklung der KFZ-Einparkhilfe haben Bionikforscher das Ortungssystem der Fledermaus kopiert und entsprechende Sensoren in die hintere Stoßstange integriert. Die Sensoren sind so eingestellt, dass sie eine Abstandsunterschreitung von 0,3 m anzeigen.

Ein Autofahrer fährt geradlinig rück-

wärts auf eine schräge Ebene zu, die durch E: 6x + 2y + 3z = 49 beschrieben wird.

- a) Der der Ebene nächste Sensor befindet sich zunächst im Punkt P(6|3|1). Zeigen Sie, dass der Sensor noch keinen Alarm gegeben hat. Wenig später ist der Sensor im Punkt Q(6|4|1) angelangt. Ist inzwischen ein Alarm erfolgt?
- b) An welchem Punkt R zwischen P und Q muss der Sensor Alarm geben?

17. Echolot (Tiefenmessung)

Ein Motorboot bewegt sich in einem Gewässer mit ebenem, aber leicht ansteigendem Grund. P(0|0|-20), Q(50|50|-15) und R(0|50|-15) sind Punkte der Grundebene. Das Boot besitzt einen Echolotsensor in Höhe der Wasseroberfläche.

- a) Erstellen Sie eine Koordinatengleichung der Grundebene.
- b) Welcher Abstand zur Grundebene wird gemessen, wenn der Sensor sich im Punkt A(50|50|0) befindet?
- c) Wie tief ist das Wasser senkrecht unter dem Sensor im Punkt B (75|75|0)?
- d) Welcher Abstand zur Grundebene wird gemessen, wenn sich der Sensor im Punkt C(50|99|0) befindet?

18. Radar (Höhenmessung)

Ein Helikopter fliegt bei schlechter Sicht auf ein eben ansteigendes Bergmassiv zu, welches durch die Punkte P(0|5|0), Q(5|10|2), R(10|10|2) beschrieben wird. Der Helikopter durchfliegt die Punkte A(1|6|1) und B(2|7|1) (Angaben in km).

- a) Erstellen Sie eine Parameter- und eine Koordinatengleichung des Berghangs.
- b) In welchem Punkt würde der Hubschrauber auf den Berghang stoßen, wenn er seine Flugrichtung beibehält?
- c) Um einen Unfall zu vermeiden, geht der Pilot im Punkt B unter Beibehaltung seiner x-y-Richtung in einen Steigflug über, der parallel zum Berghang verläuft. Wie lautet der neue Kurs?
- d) Um welchen Winkel hat der Pilot im Punkt B seinen Kurs geändert?

16. a) g:
$$\vec{x} = \begin{pmatrix} 6 \\ 3 \\ 1 \end{pmatrix} + r \begin{pmatrix} 6 \\ 2 \\ 3 \end{pmatrix}$$
 in E: $r = \frac{4}{49}$, $d(P) = \frac{4}{7} \approx 0,57... > 0,3$; kein Alarm bis zum Punkt P.
g: $\vec{x} = \begin{pmatrix} 6 \\ 4 \\ 1 \end{pmatrix} + r \begin{pmatrix} 6 \\ 2 \\ 3 \end{pmatrix}$ in E: $r = \frac{2}{49}$, $d(Q) = \frac{2}{7} \approx 0,28... < 0,3$; Alarmauslösung zwischen

P und Q.

b) g:
$$\vec{x} = {6 \choose y} + r {6 \choose 2 \choose 3} \text{in E}$$
: $6(6+6r) + 2(y+2r) + 3(1+3r) = 49$
 $r = \frac{49 - (39 + 2y)}{49}$, $d = |{6 \choose 2 \choose 3}| \cdot \frac{10 - 2y}{49} = \frac{10 - 2y}{7} = 0,3 \Rightarrow y = 3,95$, $R(6|3,95|1)$

17. a) G:
$$\vec{x} = \begin{pmatrix} 0 \\ 0 \\ -20 \end{pmatrix} + r \begin{pmatrix} 50 \\ 50 \\ 5 \end{pmatrix} + s \begin{pmatrix} 0 \\ 50 \\ 5 \end{pmatrix}$$
, $\vec{n} = \begin{pmatrix} 0 \\ -1 \\ 10 \end{pmatrix}$, $(\vec{x} - \begin{pmatrix} 0 \\ 0 \\ -20 \end{pmatrix}) \cdot \begin{pmatrix} 0 \\ -1 \\ 10 \end{pmatrix} = 0$, $-y + 10z = -200$

b)
$$g_A$$
: $\vec{x} = \begin{pmatrix} 50 \\ 50 \\ 0 \end{pmatrix} + r \begin{pmatrix} 0 \\ -1 \\ 10 \end{pmatrix}$; in G: $-50 + 101r = -200$, $r = -\frac{150}{101}$, $d = \frac{150}{\sqrt{101}} \approx 14,93$

c)
$$g_B: \vec{x} = \begin{pmatrix} 75 \\ 75 \\ 0 \end{pmatrix} + r \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$$
; in $G: -75 - 10r = -200$, $r = 12, 5$

F_B(75|75|-12,5), Wassertiefe bei B: 12,5m

d)
$$g_C$$
: $\vec{x} = \begin{pmatrix} 50 \\ 99 \\ 0 \end{pmatrix} + r \begin{pmatrix} 0 \\ -1 \\ 10 \end{pmatrix}$; in $G: -99 + 101r = -200$, $r = -\frac{101}{101} = -1$, $d = \sqrt{101} \approx 10,05$

18. a)
$$E_{\text{Berg}}$$
: $\vec{x} = \begin{pmatrix} 0 \\ 5 \\ 0 \end{pmatrix} + r \begin{pmatrix} 5 \\ 5 \\ 2 \end{pmatrix} + s \begin{pmatrix} 10 \\ 5 \\ 2 \end{pmatrix}$; $\vec{n} = \begin{pmatrix} 0 \\ -2 \\ 5 \end{pmatrix}$, $E: (\vec{x} - \begin{pmatrix} 0 \\ 5 \\ 0 \end{pmatrix}) \cdot \begin{pmatrix} 0 \\ -2 \\ 5 \end{pmatrix} = 0$, $-2y + 5z = -10$

b) g:
$$\vec{x} = \begin{pmatrix} 1 \\ 6 \\ 1 \end{pmatrix} + r \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
; in E: $r = \frac{3}{2}$, S(2,517,511)

c) g:
$$\vec{x} = \begin{pmatrix} 2 \\ 7 \\ 1 \end{pmatrix} + r \begin{pmatrix} 1 \\ 1 \\ z \end{pmatrix} mit \begin{pmatrix} 1 \\ 1 \\ z \end{pmatrix} \cdot \begin{pmatrix} 0 \\ -2 \\ 5 \end{pmatrix} = 0$$
, $z = 0, 4$ neuer Kurs: $\begin{pmatrix} 1 \\ 1 \\ 0, 4 \end{pmatrix}$

d)
$$\cos \alpha = \frac{\begin{pmatrix} 1\\1\\0\end{pmatrix}\begin{pmatrix} 1\\1\\0,4 \end{pmatrix}}{\begin{pmatrix} 1\\1\\1\\0\end{pmatrix}\begin{pmatrix} 1\\0,4 \end{pmatrix}}, \quad \alpha \approx 15,8^{\circ}$$