1 Определения

1.1 Упорядоченная пара

Для некоторого множества X и I - множество "индексов", тогда $(x_{\alpha})_{\alpha \in I}$ - семейство элементов X. ($\forall \alpha \in I \ x_{\alpha} \in X$)

Упорядоченная пара — семейство из двух элементов, построенная при $I=\{1,2\}$. Обозначается (a,b).

Кроме того,

$$(a,b) = (c,d) \Leftrightarrow a = c, b = d$$

1.2 Декартово произведение

Декартово произведение двух множеств — множество всех упорядоченных пар элементов этих множеств. $A \times B = \{(a,b) : a \in A, b \in B\}$

Кроме того, декартово произведение можно обобщить для произвольного числа множеств. $A_1 \times A_2 \times \ldots \times A_n = \{(a_1, a_2 \ldots a_n) : a_1 \in A_1, a_2 \in A_2 \ldots a_n \in A_n\}$

1.3 Аксиомы вещественных чисел

1.3.1 Аксиомы поля

В множестве $\mathbb R$ определены две операции, называемые сложением и умножением, действующие из $\mathbb R \times \mathbb R$ в $\mathbb R$ ($+, \cdot : \mathbb R \times \mathbb R \to \mathbb R$), удовлетворяющие следующим свойствам: Аксоимы сложения (здесь и далее $\forall a \in \mathbb R, b \in \mathbb R, c \in \mathbb R$):

- 1. a + b = b + a коммутативность
- 2. (a+b)+c=a+(b+c) ассоциативность
- 3. \exists **0** : **0** + a = a
- 4. $\exists a' : a + a' = \mathbf{0}$

Аксиомы умножения:

- 1. ab = ba коммутативность
- 2. (ab)c = a(bc) ассоциативность
- 3. $\exists \mathbf{1} \neq \mathbf{0} : \forall a \in \mathbb{R} : a \cdot \mathbf{1} = a$
- 4. $\forall a \neq \mathbf{0} : \exists \tilde{a} : a \cdot \tilde{a} = \mathbf{1}$

Аксоима комбинации сложения и умножения:

1. (a+b)c = ac + bc — дистрибутивность

Поле — множество, в котором определены операции $+,\cdot$, удовлетворяющие группе аксиом І. Например, $\mathbb{R},\mathbb{Q},\mathbb{F}_3$

1.3.2 Аксиомы порядка

- 1. $\forall x, y \in \mathbb{R} : x \leq y$ или $y \leq x$
- 2. $x \le y; y \le x \Rightarrow x = y$
- 3. $x \le y; y \le z \Rightarrow x \le z$ транзитивность
- 4. $x \le y \Rightarrow \forall z \in \mathbb{R} : x + z \le y + z$
- 5. $0 \le x$; $0 \le y \Rightarrow 0 \le xy$

Упорядоченное поле — множество, для которого выполняются аксиомы групп I и II.

 \mathbb{F}_3,\mathbb{C} - не упорядоченные поля

 $\mathbb{R},\mathbb{Q},\mathcal{R}$ - упорядоченные поля

1.4 Аксиома Кантора, аксиома Архимеда

1.4.1 Аксиома Архимеда

$$\forall x, y > 0 : \exists n \in \mathbb{N} : nx > y$$

Следствие: существуют сколько угодно большие натуральные числа:

$$\forall y \in \mathbb{R} : \exists n \in \mathbb{N} : n > y$$

Архимедовы поля — упорядоченные поля, в которых выполняется Аксиома Архимеда.

 \mathcal{R} - не архимедово поле

 \mathbb{R},\mathbb{Q} - архимедовы поля

1.4.2 Аксиома Кантора

Для последовательности вложенных отрезков $\{[a_n,b_n]\}_{n=1}^{\infty}$ ($\forall n\in\mathbb{N}a_n\leq a_{n+1}\leq b_{n+1}\leq b_n$)

$$\bigcap_{n=1}^{\infty} [a_n, b_n] \neq \emptyset$$

 $\mathbb Q$ не удволетворяет этой аксиоме, в отличие от $\mathbb R$.

1.5 Пополненное множество вещественных чисел, операции и порядок в нем

 $\overline{\mathbb{R}}=\mathbb{R}\cup\{-\infty,+\infty\}$ — пополненное множество вещественных чисел. Свойства ($\forall x\in\mathbb{R}$):

- $-\infty < +\infty$
- $\pm \infty \cdot \pm \infty = +\infty$
- $\pm \infty \cdot \mp \infty = -\infty$
- $-\infty < x < +\infty$
- $x \pm \infty = \pm \infty$
- $\pm \infty \pm \infty = \pm \infty$

• $\pm \infty \mp \infty$ — не определено

Для $\forall x \in \mathbb{R}, x > 0$

• $x \cdot \pm \infty = \pm \infty$

1.6 Максимальный элемент множества

 $M \in A$ называется максимальным элементом множества A, если $\forall a \in A \ a \leq M$

1.7 Последовательность

 $x: \mathbb{N} \to Y$ — последовательность

1.8 Образ и прообраз множества при отображении

Для $A\subset X, f:X\to Y$ образ — множество $\{f(x),x\in A\}\subset Y$ — обозначается f(A) Для $B\subset Y$ прообраз — $\{x\in X:f(x)\in B\}$ — обозначается $f^{-1}(B)$

1.9 Инъекция, сюръекция, биекция

Сюръекция — такое отображение $f: X \to Y$, что f(X) = Y, т.е. $\forall y \in Y \ f(x) = y$ имеет решение относительно x.

Инъекция — такое отображение $f: X \to Y$, что $\forall x_1, x_2 \in X, x_1 \neq x_2$ $f(x_1) \neq f(x_2)$, т.е. $\forall y \in Y \ f(x) = y$ имеет не более одного решения относительно x.

Биекция — отображение, являющееся одновременно сюръекцией и инъекцией, т.е. $\forall y \in Y \ f(x) = y$ имеет ровно одно решение относительно x.

1.10 Векторнозначаная функция, ее координатные функции

Если $F:X\to \mathbb{R}^m;x\mapsto F(x)=(F_1(x),...,F_m(x)),$ то F — векторнозначная функция (значения функции - вектора)

 $F_1(x)..F_m(x)$ - координатные функции отображения F

1.11 График отображения

$$\Gamma_f = \{(x, y) \in X \times Y : y = f(x)\}$$

1.12 Композиция отображений

f:X o Y,g:Y o Z, тогда композиция f и g (обозначается $g\circ f$) — такое отображение, что $g\circ f:X o Z,x\mapsto g(f(x)).$

Также возможно определение, которое допускает $g: Y_1 \to Z, Y_1 \supset Y$

1.13 Сужение и продолжение отображений

Для $g: X \to Y$ f — сужение g на множество A, если $f: A \to Y, A \subset X$. g называется продолжением f.

1.14 Предел последовательности (эпсилон-дельта определение)

Если для $(x_n), a \in \mathbb{R}$ выполняется $\forall \varepsilon > 0 \ \exists N \ \forall n > N \ |x_n - a| < \varepsilon$, то a — предел последовательности (x_n) , обозначается $x_n \to a$ или $\lim_{n \to \infty} x_n = a$

1.15 Окрестность точки, проколотая окрестность

Окрестность точки $a=\{x\in\mathbb{R}:|x-a|<\varepsilon\}$, обозначается $U_{\varepsilon}(a)$ Проколотая окрестность точки $a=U_{\varepsilon}(a)\setminus\{a\}$, обозначается $\dot{U}_{\varepsilon}(a)$

1.16 Предел последовательности (определение на языке окрестностей)

$$\forall U(a) \ \exists N \ \forall n > N \ x_n \in U(a)$$

1.17 Метрика, метрическое пространство, подпространство

На множестве X отображение $\rho: X \times X \to \mathbb{R}$ называется **метрикой**, если выполняются свойства 1-3:

- 1. $\forall x, y \ \rho(x, y) \ge 0; \rho(x, y) = 0 \Leftrightarrow x = y$
- 2. $\forall x, y \ \rho(x, y) = \rho(y, x)$
- 3. Неравенство треугольника: $\forall x,y,z\in X \ \rho(x,y)\leq \rho(x,z)+\rho(z,y)$

Метрическое пространство — упорядоченная пара (X, ρ) , где X — множество, ρ — метрика на X.

Подпространством метрического пространства (X, ρ) называется $(A, \rho|_{A \times A})$, если $A \subset X$

1.18 Шар, замкнутый шар, окрестность точки в метрическом пространстве

Шар (открытый шар) $B(a,r)=\{x\in X: \rho(a,x)< r\}$ Замкнутый шар $B(a,r)=\{x\in X: \rho(a,x)\leq r\}$ Окрестность точки a в метрическом пространстве: $B(a,\varepsilon)\Leftrightarrow U(a)$.

1.19 Линейное пространство

Если K — поле ($K = \mathbb{R}$ uли \mathbb{C}), X — множество, то X называется линейным пространством над полем K (и тогда K называется полем скаляр), если определены следующие две операции:

- 1. $+: X \times X \to X$ сложение векторов
- 2. $\cdot: K \times X \to X$ умножение векторов на скаляры

Для этих операций выполняются соответствующие аксиомы (здесь $A, B, C \in X$; $a, b \in K$):

1.19.1 Аксиомы сложения векторов

1.
$$A + B = B + A$$

2.
$$A + (B + C) = (A + B) + C$$

3.
$$\exists 0 \in X : A + 0 = A$$

4.
$$\exists -A \in X : A + (-A) = 0$$
 — обратный элемент

1.19.2 Аксиомы умножения векторов на скаляры

1.
$$(A+B) \cdot a = A \cdot a + B \cdot a$$

$$2. A \cdot (a+b) = A \cdot a + A \cdot b$$

3.
$$(ab) \cdot A = a(b \cdot A)$$

4.
$$\exists$$
1 \in *K* : **1** \cdot *A* = *A*

1.20 Норма, нормированное пространство

Норма - отображение $X \to \mathbb{R}, x \mapsto ||x||$, если X - линейное пространство (над \mathbb{R} или \mathbb{C}) и выполняется следующее:

1.
$$\forall x \mid |x| \ge 0, ||x|| = 0 \Leftrightarrow x = 0$$

2.
$$\forall x \in X \ \forall \lambda \in \mathbb{R}(\mathbb{C}) \ ||\lambda x|| = |\lambda| \cdot ||x||$$

3. Неравенство треугольника: $\forall x, y \in X \ ||x + y|| \le ||x|| + ||y||$

Нормированное пространство — упорядоченная пара $(X, ||\cdot||)$, где |||| - норма

1.21 Ограниченное множество в метрическом пространстве

 $A \subset X$ — ограничено, если $\exists x_0 \in X \ \exists R > 0 \ A \subset B(x_0, R)$, т.е. если A содержится в некотором шаре в X.

1.22 Внутренняя точка множества, открытое множество, внутренность

a — внутренняя точка множества D, если $\exists U(a): U(a) \subset D$, т.е. $\exists r>0: B(a,r) \subset D$ D — открытое множество, если $\forall a \in D: a$ — внутренняя точка D Внутренностью множества D называется $Int(D) = \{x \in D: x$ — внутр. точка $D\}$

1.23 Предельная точка множества

a — предельная точка множества D, если

$$\forall \dot{U}(a) \ \dot{U}(a) \cap D \neq \emptyset$$

1.24 Замкнутое множество, замыкание, граница

D — замкнутое множество, если оно содержит все свои предельные точки.

 $D = D \cup$ (множество предельных точек D) — замыкание.

Граница множества — множество его граничных точек. Обозначается ∂D

1.25 Изолированная точка, граничная точка

a — изолированная точка D, если $a \in D$ и a — не предельная, то есть:

$$\exists U(a) \quad U(a) \cap D = \{a\}$$

a — граничная точка D, если $\forall U(a) \quad U(a)$ содержит точки как из D, так и из D^c

1.26 Описание внутренности множества

- 1. IntD откр. множество
- 2. $IntD = \bigcup\limits_{\substack{D \supset G \\ G \text{ открыт}}}$ максимальное открытое множество, содержащееся в D
- 3. D откр. в $X \Leftrightarrow D = IntD$

1.27 Описание замыкания множества в терминах пересечений

$$\overline{D} = \bigcap_{\substack{D \subset F \\ F-\text{ замкн.}}} F-$$
мин. (по вкл.) замкн. множество, содержащее $D.$

1.28 Верхняя, нижняя границы; супремум, инфимум

 $E\subset\mathbb{R}.\ E$ — огр. сверху, если $\exists M\in\mathbb{R}\ \forall x\in E\ x\leq M.$ Кроме того, всякие такие M называются верхними границами E.

Аналогично ограничение снизу.

$$E \subset \mathbb{R}, E \neq \emptyset$$
.

Для E — огр. сверху супремум (sup E)— наименьшая из верхних границ E.

Для E — огр. снизу **инфимум** (inf E) — наибольшая из нижних границ E.

1.29 Техническое описание супремума

Техническое описание супремума:
$$b = \sup E \Leftrightarrow \begin{cases} \forall x \in E \ x \leq b \\ \forall \varepsilon > 0 \ \exists x \in E \ b - \varepsilon < x \end{cases}$$

1.30 Последовательность, стремящаяся к бесконечности

 $B \mathbb{R}$:

1.
$$x_n \to +\infty \quad \forall E > 0 \ \exists N \ \forall n > N \ x_n > E$$

2.
$$x_n \to -\infty \quad \forall E \ \exists N \ \forall n > N \ x_n < E$$

3.
$$x_n \to \infty \Leftrightarrow |x_n| \to +\infty$$

1.31 Компактное множество

 $K\subset X$ — компактное, если для любого открытого покрытия этого множества \exists конечное подпокрытие $\Leftrightarrow \exists \alpha_1\dots\alpha_n \quad K\subset \bigcup_{i=1}^n G_{\alpha_i}$

1.32 Секвенциальная компактность

Секвенциально компактным называется множество $A \subset X : \forall$ посл. (x_n) точек $A \equiv \text{подпосл. } x_{n_k}$, которая сходится к точке из A

1.33 Определения предела отображения (3 шт)

$$(X, \rho^x), (Y, \rho^y)$$
 $D\subset X$ $f:D\to Y$ $a\in X, a$ — пред. точка множества $D,A\in Y$ Тогда $\lim_{x\to a}f(x)=A$ — предел отображения, если:

1. По Коши:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D : 0 < \rho^X(a, x) < \delta \quad \rho^Y(f(x), A) < \varepsilon$$

2. На языке окрестностей:

$$\forall U(A) \ \exists V(a) \ \forall x \in \dot{V}(a) \ f(x) \in U(A)$$

- 3. По Гейне: $\forall (x_n)$ посл. в X:
 - (a) $x_n \to a$
 - (b) $x_n \in D$
 - (c) $x_n \neq a$

$$f(x_n) \to A$$

1.34 Определения пределов в $\overline{\mathbb{R}}$

Для $Y = \overline{\mathbb{R}}, -\infty < x < +\infty$:

1.
$$\lim_{x \to a} f(x) = +\infty$$
: $\forall E \ \exists \delta > 0 \ \forall x \in X : 0 < |x - a| < \delta \ f(x) > E$

2.
$$\lim_{x \to a} f(x) = -\infty$$
: $\forall E \ \exists \delta > 0 \ \forall x \in X : 0 < |x - a| < \delta \ f(x) < E$

3.
$$\lim_{x \to +\infty} f(x) = c \in \mathbb{R} \quad \forall \varepsilon > 0 \ \exists \delta \ \forall x \in X : x > \delta \ |f(x) - c| < \varepsilon$$

4.
$$\lim_{x \to -\infty} f(x) = c \in \mathbb{R} \quad \forall \varepsilon > 0 \ \exists \delta \ \forall x \in X : x < \delta \ |f(x) - c| < \varepsilon$$

1.35 Предел по множеству

$$f:D\subset X o Y, D_1\subset D, x_0$$
 — пред. точка D_1 Тогда предел по множеству D_1 в точке x_0 — это $\lim_{x o x_0}f|_{D_1}(x)$

1.36 Односторонние пределы

В $\mathbb R$ одностор. = $\{$ левостор., правостор. $\}$ Левосторонний предел $\lim_{x\to x_0-0}f(x)=L$ - это $\lim f|_{D\cap(-\infty,x_0)}$

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in (x_0 - \delta, x_0) \cap D \ |f(x) - L| < \varepsilon$$

Аналогично правосторонний.

1.37 Непрерывное отображение

$$f: D \subset X \to Y \quad x_0 \in D$$

 f — **непрерывное** в точке x_0 , если:

- 1. $\lim_{x \to x_0} f(x) = f(x_0)$, либо x_0 изолированная точка D
- 2. $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D \ \rho(x, x_0) < \delta \ \rho(f(x), f(x_0)) < \varepsilon$
- 3. $\forall U(f(x_0)) \ \exists V(x_0) \ \forall x \in V(x_0) \cap D \ f(x) \in U(f(x_0))$
- 4. По Гейне $\forall (x_n): x_n \to x_0; x_n \in D \ f(x_n) \xrightarrow[n \to +\infty]{} f(x_0)$

1.38 Непрерывность слева

f — непр. слева в x_0 , если $f|_{(-\infty,x_0]\cap D}$ — непрерывно в x_0

1.39 Разрыв, разрывы первого и второго рода

Если Д $\lim_{x \to x_0} f(x)$, либо Д $\lim_{x \to x_0} f(x) \neq f(x_0)$ — точка разрыва.

Пусть $\exists f(x_0-0), f(x_0+0)$ и не все 3 числа равны: $f(x_0-0), f(x_0), f(x_0+0)$. Это разрыв I рода *(скачок)*.

Остальные точки разрыва — разрыв II рода.

Примечание.

$$f(x_0 - 0) \Leftrightarrow \lim_{x \to x_0 - 0} f(x)$$

1.40 О большое, о маленькое

$$f,g:D\subset X o\mathbb{R}$$
 x_0 — пр. точка D Если $\exists V(x_0)\ \exists \varphi:V(x_0)\cap D o\mathbb{R}$ $f(x)=g(x)\varphi(x)$ при $x\in V(x_0)\cap D$

- 1. φ ограничена. Тогда говорят f=O(g) при $x\to x_0$ "f ограничена по сравнению с g при $x\to x_0$ "
- 2. $\, \varphi(x) \xrightarrow[x \to x_0]{} 0 \quad f$ беск. малая по отношению кg при $x \to x_0$, f = o(g)
- 3. $\varphi(x) \xrightarrow[x \to x_0]{} 1$ f и g экв. при $x \to x_0$ $f \underset{x \to x_0}{\sim} g$

Примечание. О большое и о малое — разные вопросы в табличке.

1.41 Эквивалентные функции, таблица эквивалентных

Эквивалентные функции даны выше.

Таблица эквивалентных для $x \to 0$:

$$\sin x \sim x$$

$$\sinh x \sim x$$

$$\tan x \sim x$$

$$\arctan x \sim x$$

$$1 - \cos x \sim \frac{x^2}{2}$$

$$\cosh x - 1 \sim \frac{x^2}{2}$$

$$e^x - 1 \sim x$$

$$\ln(1+x) \sim x$$

$$(1+x)^{\alpha} - 1 \sim \alpha x$$

$$a^x - 1 \sim x \ln a$$

1.42 Асимптотически равные (сравнимые) функции

В условиях прошлых определений $f = O(g), g = O(f) \Leftrightarrow f \asymp g$ — асимптотически сравнимы на множестве D, "величины одного порядка".

1.43 Асимптотическое разложение

$$g_n: D\subset X o \mathbb{R}$$
 x_0 — пред. точка D $\forall n$ $g_{n+1}(x)=o(g_n), x o x_0$ Пример. $g_n(x)=x^n, n=0,1,2\dots$ $x o 0$ $g_{n+1}=xg_n, x o 0$ (g_n) называется шкала асимптотического разложения. $f:D o \mathbb{R}$ Если $f(x)=c_0g_0(x)+c_1g_1(x)+\dots+c_ng_n(x)+o(g_n)$, то это асимптотическое разложение f по шкале (g_n)

1.44 Наклонная асимптота графика

Пусть
$$f(x)=Ax+B+o(1), x\to +\infty$$
 Прямая $y=Ax+B$ — наклонная асимптота к графику f при $x\to +\infty$

1.45 Путь в метрическом пространстве

$$Y$$
 — метр. пр-во $\gamma:[a,b] o Y$ — непр. на $[a,b]$ = путь в пространстве Y

1.46 Линейно связное множество

$$E \subset Y$$

E — линейно связное, если $\forall A, B \in E \; \exists$ путь $\gamma: [a,b] \to E$ такой, что:

- $\gamma(a) = A$
- $\gamma(b) = B$

1.47 Функция, дифференцируемая в точке и производная

$$f:\langle a,b
angle
ightarrow\mathbb{R}\quad x_0\in\langle a,b
angle$$
 f — дифференцируема. в точке x_0 , если $\exists A\in\mathbb{R}$

$$f(x) = f(x_0) + A \cdot (x - x_0) + o(x - x_0), x \to x_0$$

При этом A называется производной f в точке x_0

Примечание. Это два разных билета.

1.48 Счётное множество

A — **счётное множество** \Leftrightarrow равномощно \mathbb{N}

1.49 Мощность континуума

A равномощно $[0,1]\Rightarrow A$ имеет мощность континуума.

1.50 Фундаментальная последовательность

 x_n — фундаментальная, последовательность Коши, сходящаяся в себе, если:

$$\forall \varepsilon > 0 \ \exists N \ \forall m, n > N \ \rho(x_m, x_n) < \varepsilon$$

1.51 Полное метрическое пространство

X — метрическое пространство называется **полным**, если в нём любая фундаментальная последовательность — сходящаяся.

1.52 Классы функций $C^n([a,b])$

?

1.53 Производная n-го порядка

?

1.54 Многочлен Тейлора n-го порядка

Многочленом Тейлора n-той степени (nоряdкa) функции f в точке a называется:

$$T_n(f,a)(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

1.55 Разложения Тейлора основных элементарных функций

Некоторые разложения по Тейлору:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1})$$

$$\cos x = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + o(x^{2n})$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots + (-1)^{n+1} \frac{x^{n}}{n} + o(x^{n})$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^{2} + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^{3} + \dots + \binom{\alpha}{n} x^{n} + o(x^{n})$$

2 Теоремы

2.1 Законы де Моргана

Пусть $(X_{\alpha})_{\alpha \in A}$ - семейство множеств, Y - множество. Тогда:

1.
$$Y \setminus (\bigcup_{\alpha \in A} X_{\alpha}) = \bigcap_{\alpha \in A} (Y \setminus X_{\alpha})$$
 ①

2.
$$Y \setminus (\bigcap_{\alpha \in A} X_{\alpha}) = \bigcup_{\alpha \in A} (Y \setminus X_{\alpha})$$
 ②

Вариант 2:

1.
$$Y \cap (\bigcup_{\alpha \in A} X_{\alpha}) = \bigcup_{\alpha \in A} (Y \cap X_{\alpha})$$

2.
$$Y \cup (\bigcap_{\alpha \in A} X_{\alpha}) = \bigcap_{\alpha \in A} (Y \cup X_{\alpha})$$

Доказательство. Чтобы доказать, что A=B, можно доказать, что $A\subset B, B\subset A$. Воспользуемся этим методом, чтобы доказать (1)

 $\triangleleft x \in$ левая часть ①

$$x \in Y; x \notin \bigcup X_{\alpha}$$

$$x \in Y; x \notin \{y : \exists \alpha : y \in X_{\alpha}\}$$

$$x \in Y; \forall \alpha \in A : x \notin X_{\alpha}$$

 $\triangleleft x \in$ правая часть ①

$$\forall \alpha : x \notin Y \setminus X_{\alpha}$$

Из чего левая и правая части эквивалентны. Аналогично доказывается ②

2.2 Неравенство Коши-Буняковского, евклидова норма в \mathbb{R}^m

2.2.1 Неравенство Коши-Буняковского

$$(\sum a_i b_i)^2 \le (\sum a_i^2)(\sum b_k^2)$$

2.2.2 Евклидова норма в \mathbb{R}^m

$$||x|| = \sqrt{\sum_{i=1}^{m} x_i^2}$$

Неравенство Коши-Буняковского следует из тождества Лагранжа. Докажем его:

Доказательство.

$$\frac{1}{2} \sum_{(i,k) \in A \times B} (a_i b_k - a_k b_i)^2 =$$

$$\frac{1}{2} \sum_{(i,k) \in A \times B} (a_i^2 b_k^2 + a_k^2 b_i^2 - 2a_i a_k b_i b_k) =$$

$$\frac{1}{2} \sum_{(i,k) \in A \times B} a_i^2 b_k^2 + \frac{1}{2} \sum_{(i,k) \in A \times B} a_k^2 b_i^2 - \sum_{(i,k) \in A \times B} a_i b_i a_k b_k =$$

$$\frac{1}{2} \sum_{(i,k) \in A \times B} a_i^2 \sum_{(i,k) \in A \times B} b_k^2 + \frac{1}{2} \sum_{(i,k) \in A \times B} a_i^2 \sum_{(i,k) \in A \times B} b_k^2 -$$

$$\sum_{(i,k) \in A \times B} a_i b_i \sum_{(i,k) \in A \times B} a_k b_k =$$

$$\sum_{(i,k) \in A \times B} a_i^2 \sum_{(i,k) \in A \times B} b_k^2 - \sum_{(i,k) \in A \times B} (a_i b_i)^2$$

Таким образом,

$$\sum_{(i,k) \in A \times B} (a_i b_i)^2 = \sum_{(i,k) \in A \times B} a_i^2 \sum_{(i,k) \in A \times B} b_k^2 + \frac{1}{2} \sum_{(i,k) \in A \times B} (a_i b_k - a_k b_i)^2 \ge \sum_{(i,k) \in A \times B} a_i^2 \sum_{(i,k) \in A \times B} b_k^2$$

2.3 Аксиома Архимеда. Плотность множества рациональных чисел в $\mathbb R$

2.3.1 Аксиома Архимеда

$$\forall x, y > 0 : \exists n \in \mathbb{R} : nx > y$$

2.3.2 Плотность множества \mathbb{Q} в \mathbb{R}

$$\mathbb{Q}$$
 плотно в $\mathbb{R} \stackrel{def}{\Longleftrightarrow} \forall a,b \in \mathbb{R}, a < b \ (a,b) \cap \mathbb{Q} \neq \emptyset$

В любом интервале в \mathbb{R} содержится число $\in \mathbb{Q}$.

Доказательство.
$$\mathbb Q$$
 плотно в $\mathbb R$, т.е. $\forall a,b \in \mathbb R, a < b \quad (a,b) \cap \mathbb Q \neq \emptyset$ Возьмем $n \in \mathbb N: n > \frac{1}{b-a}$. Тогда $\frac{1}{n} < b-a$
$$q:=\frac{[na]+1}{n} \in \mathbb Q$$

$$q \leq \frac{na+1}{n} = a + \frac{1}{n} < a + ba < b \Rightarrow q < b$$
 $q > \frac{na}{n} = a \Rightarrow q > a$

2.4 Неравенство Бернулли

$$(1+x)^n \ge 1 + nx \quad x \ge -1, n \in \mathbb{N}$$

$$(1+x)^n \geq 1+nx+rac{n(n-1)}{2}x^2 \quad x>0, n\in \mathbb{N}$$
 — более сложная версия

Доказательство. База: $n = 1: (1+x)^1 \ge 1+x$

Переход: Дано неравенство $(1+x)^n \geq 1+nx$, оно верно при каком-то n. Докажем, что $(1+x)^{n+1} \geq 1+(n+1)x$

$$(1+x)^{n+1} = (1+x)(1+x)^n \ge (1+x)(1+nx) = 1 + (n+1)x + nx^2 \ge 1 + (n+1)x$$

2.5 Единственность предела и ограниченность сходящейся последовательности

 (X,ρ) — метрическое пр-во, $a,b\in X$, (x_n) — послед. в X, $x_n\xrightarrow[n\to+\infty]{}a$, $x_n\xrightarrow[n\to+\infty]{}b$, тогда a=b

Доказательство.

Докажем от противного — пусть $a \neq b$. Возьмем $0 < \varepsilon < \frac{1}{2} \rho(a,b)$

$$\exists N(\varepsilon) \ \forall n > N(\varepsilon) \ \rho(x_n, a) < \varepsilon$$

$$\exists K(\varepsilon) \ \forall n > K(\varepsilon) \ \rho(x_n, b) < \varepsilon$$

2.6 Теорема о предельном переходе в неравенствах для последовательностей и для функций

2.6.1 Для последовательностей

Если $(x_n), (y_n)$ — вещественные последовательности $x_n \to a, y_n \to b, \exists N \ \forall n > N \ x_n \le y_n,$ тогда $a \le b$.

2.6.2 Для функций

Если $f,g:X\to\mathbb{R},$ a — предельная точка X, и $\forall x\in X$ $f(x)\leq g(x).$ Тогда $\lim_{x\to a}f(x)\leq \lim_{x\to a}g(x)$

Доказательство.

Докажем от противного. Пусть
$$a>b, 0<\varepsilon<\frac{a-b}{2}$$
.

$$\exists N(\varepsilon) \ \forall n > N \ a - \varepsilon < x_n < a + \varepsilon$$

$$\exists K(\varepsilon) \ \forall n > K \ b - \varepsilon < y_n < b + \varepsilon$$

При $n > \max(N, K)$ $y_n < b + \varepsilon < a - \varepsilon < x_n$ — противоречие

Доказательство. По Гейне.

$$\forall (x_n) \to a, x_n \in X, x_n \neq a$$
:

$$f(x_n) \to A, g(x_n) \to B, \forall x \ f(x) \le g(x) \Rightarrow f(x_n) \le g(x_n) \Rightarrow A \le B$$

2.7 Теорема о двух городовых

Если $(x_n), (y_n), (z_n)$ - вещ. посл., $\forall n \ x_n \leq y_n \leq z_n, \lim x_n = \lim z_n = a$, тогда $\exists \lim y_n = a$. Доказательство.

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N \ a - \varepsilon < x_n < a + \varepsilon$$

$$\forall \varepsilon > 0 \ \exists K \ \forall n > K \ a - \varepsilon < z_n < a + \varepsilon$$

$$\forall \varepsilon > 0 \ \exists N_0 = max(N, K) \ \forall n > N_0 \ a - \varepsilon < x_n \le y_n \le z_n < a + \varepsilon$$

По определению $\lim y_n = a$

2.8 Бесконечно малая последовательность

Произведение бесконечно малой последовательности на ограниченную — бесконечная последовательность, т.е. (x_n) — беск. малая, (y_n) — ограничена $\Rightarrow x_n y_n$ — беск. малая

Доказательство. Возьмём K такое, что $\forall n \mid y_n \mid \leq K$.

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N \ |x_n| \le \frac{\varepsilon}{K}$$

$$|x_n y_n| \le \frac{\varepsilon}{K} K = \varepsilon \Rightarrow x_n y_n \to 0$$

M3137y2019

2.9 Теорема об арифметических свойствах предела последовательности в нормированном пространстве и в ${\cal R}$

Об арифметических свойствах предела в нормированном пространстве.

Если $(X,||\cdot||)$ — норм. пр-во, $(x_n),(y_n)$ — посл. в X,λ_n — посл. скаляров, и $x_n\to x_0,y_n\to y_0,\lambda_n\to\lambda_0$, тогда:

1.
$$x_n \pm y_n \rightarrow x_0 \pm y_0$$

2.
$$\lambda_n x_n \to \lambda_0 x_0$$

3.
$$||x_n|| \to ||x_0||$$

Доказательство. Это доказательство написано не по лекциям.

1.
$$\forall \varepsilon \ \exists N_2 \ \forall n > N_1 \ ||x_n - x_0|| < \varepsilon$$

$$\forall \varepsilon \ \exists N_2 \ \forall n > N_2 \ ||y_n - y_0|| < \varepsilon$$

$$N := \max(N_1, N_2)$$

$$\forall \varepsilon \ \forall n > N \ ||(x_n + y_n) - (x_0 + y_0)|| \le ||x_n - x_0|| + ||y_n - y_0|| \le 2\varepsilon$$

2.
$$||\lambda_n x_n - \lambda_0 x_0|| = ||\lambda_n x_n - \lambda_0 x_0 + \lambda_0 x_n - \lambda_0 x_n|| = ||(\lambda_n - \lambda_0) x_n + (x_n - x_0) \lambda_0|| \le ||(\lambda_n - \lambda_0) x_n|| + ||(x_n - x_0) \lambda_0|| = ||x_n|||\lambda_n - \lambda_0| + ||x_n - x_0|||\lambda_0||$$

 $|\lambda_n - \lambda_0|$ и $||x_n - x_0||$ — бесконечно малые, $||x_n||$ и $|\lambda_n|$ — ограниченные $\Rightarrow ||x_n|||\lambda_n - \lambda_0| + ||x_n - x_0|||\lambda_0|$ — бесконечно малая

3.
$$|||x_n|| - ||x_0||| \le ||x_n - x_0||$$

Об арифметических свойствах пределов в \mathbb{R} .

Для $(x_n), (y_n)$ — вещ.посл., $\forall n \ y_n \neq 0, y_0 \neq 0$:

$$4. \ \frac{x_n}{y_n} \to \frac{x_0}{y_0}$$

2.10 Неравенство Коши-Буняковского в линейном пространстве, норма, порожденная скалярным произведением

Для X — линейного пространства (над \mathbb{R}, \mathbb{C})

$$\forall x, y \in X \quad |\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle$$

Доказательство. Возьмём $\lambda \in \mathbb{R}(\mathbb{C})$

При y=0 тривиально, пусть $y\neq 0$

$$0 \leq \langle x + \lambda y, x + \lambda y \rangle = \langle x, x \rangle + \lambda \langle y, x \rangle + \overline{\lambda} \langle x, y \rangle + \lambda \overline{\lambda} \langle y, y \rangle$$

$$\lambda := -\frac{\langle x, y \rangle}{\langle y, y \rangle}, \overline{\lambda} = -\frac{\langle y, x \rangle}{\langle y, y \rangle}$$

$$0 \le \langle x, x \rangle - \frac{\langle x, y \rangle}{\langle y, y \rangle} \langle y, x \rangle - \frac{\langle y, x \rangle}{\langle y, y \rangle} \langle x, y \rangle + \frac{\langle x, y \rangle \langle y, x \rangle}{\langle y, y \rangle}$$

$$0 \le \langle x, x \rangle - \frac{\langle x, y \rangle}{\langle y, y \rangle} \langle y, x \rangle$$
$$\frac{\langle x, y \rangle}{\langle y, y \rangle} \langle y, x \rangle \le \langle x, x \rangle$$
$$\langle x, y \rangle \langle y, x \rangle \le \langle x, x \rangle \langle y, y \rangle$$
$$|\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle$$

Если $(X,||\cdot||)$ — норм. пр-во, тогда $\rho(x,y):=||x-y||$ — метрика, порожденная нормой. Не все метрики порождены нормами, например $\rho=\frac{|x-y|}{1+|x-y|}.$

2.11 Леммы о непрерывности скалярного произведения и покоординатной сходимости в \mathbb{R}^n

2.11.1 О покоординатной сходимости в \mathbb{R}^m

О покоординатной сходимости в \mathbb{R}^m $(x^{(n)})$ — последовательность векторов в \mathbb{R}^m в \mathbb{R}^m задано евклидово скалярное пространство и норма. Тогда $(x^{(n)}) \to x \Leftrightarrow \forall i \in \{1,2,\dots m\}$ $x_i^{(n)} \underset{n \to +\infty}{\to} x_i$

Доказательство. Модуль координаты \leq нормы всего вектора:

$$|x_i^{(n)} - x_i| \le ||x^{(n)} - x|| \le \sqrt{m} \max_{1 \le i \le m} |x_i^n - x_i|$$

Первое неравенство доказывает \Rightarrow , второе неравенство доказывает \Leftarrow

2.11.2 О непрерывности скалярного произведения

X - лин. пространство со скалярным произведением, $||\cdot||$ — норма, порожденная скалярным произведением.

Тогда
$$\forall (x_n)x_n \to x, \forall (y_n)y_n \to y, \quad \langle x_n, y_m \rangle \to \langle x, y \rangle$$

Доказательство.

$$\begin{aligned} |\langle x_n, y_m \rangle - \langle x, y \rangle| &= |\langle x_n, y_n \rangle - \langle x_n, y \rangle + \langle x_n, y \rangle - \langle x, y \rangle| \le |\langle x_n, y_n \rangle - \langle x_n, y \rangle| + |\langle x_n, y \rangle - \langle x, y \rangle \le \\ &\le |\langle x_n, y_n - y \rangle| + |\langle x_n - x, y \rangle| \le ||x_n|| \cdot ||y_n - y|| + ||x_n - x|| \cdot ||y|| \to 0 \end{aligned}$$

По теореме о двух городовых чтд.

2.12 Открытость открытого шара

$$B(a,r) = \{x \in X : \rho(a,x) < r\}$$
 — открыт

Доказательство. $x_0 \in B(a,r)$

Докажем, что x_0 — внутренняя, т.е. $\exists U(x_0) \subset B(a,r)$

$$k := r - \rho(a, x_0)$$

Докажем, что $B(x_0,k) \subset B(a,r)$

$$\forall x \in B(x_0, k) \quad \rho(x, x_0) < k$$

$$\rho(a, x_0) + \rho(x, x_0) < r$$

$$\rho(x, a) \le \rho(a, x_0) + \rho(x, x_0) < r$$

2.13 Теорема о свойствах открытых множеств

- 1. $(G_{\alpha})_{\alpha \in A}$ семейство открытых множеств в (X, ρ) Тогда $\bigcup G_{\alpha}$ открыто в X.
- 2. $G_1, G_2, \dots G_n$ открыто в X. Тогда $\bigcap_{i=1}^n G_i$ открыто в X.

Доказательство. 1. $x_0 \in \bigcup_{\alpha \in A} G_\alpha$

$$\exists \alpha_0 : x_0 \in G_{\alpha_0}$$

$$G_{\alpha_0}$$
 — открыто $\Rightarrow \exists U(x_0) \subset G_{\alpha_0} \subset \bigcup_{\alpha \in A} G_\alpha \Rightarrow x_0$ — внтуренняя точка $\bigcup_{\alpha \in A} G_\alpha \Rightarrow \bigcup_{\alpha \in A} G_\alpha$ — открыто, т.к. в нём все точки внутренние.

 $2. \ x_0 \in \bigcap_{\alpha \in A} G_\alpha$

$$\forall \alpha \in A : x_0 \in G_\alpha$$

$$\forall \alpha \in A \ G_{\alpha}$$
 — открыто $\Rightarrow \exists B_{\alpha}(x_0, r_{\alpha}) \subset G_{\alpha}$

 $\forall x_0: \exists U(x_0) = B(x_0, \min_{\alpha} r_{\alpha}) \subset \bigcap_{\alpha \in A} G_{\alpha} \Rightarrow x_0 - \text{внутренняя точка} \bigcap_{\alpha \in A} G_{\alpha} \Rightarrow \bigcap_{\alpha \in A} G_{\alpha}$

— открыто, т.к. в нём все точки внутренние.

2.14 Теорема о связи открытых и замкнутых множеств, свойства замкнутых множеств

D — замкнуто $\Leftrightarrow D^c = X \setminus D$ (дополнение) — открыто. Свойства:

- 1. $(F_{\alpha})_{\alpha \in A}$ замкн. в X Тогда $\bigcap F_{\alpha}$ замкн. в X
- 2. $F_1 \dots F_n$ замкн. в X Тогда $\bigcup F_i$ замкн. в X

Доказательство. Докажем \Rightarrow : D — замкн. \Rightarrow ? $X \setminus D$ $x \in X \setminus D \Rightarrow x$ — не пред. точка D, т.к. D содержит все свои пред. точки и $x \notin D$ $\Rightarrow \exists r : B(x,r) \subset X \setminus D$ Докажем \Leftarrow : $X \setminus D$ — откр., D — замкн.?, т.е. $\forall x \in \{$ пр.точки $D\}$ $?x \in D$ Если $x \in D$ — тривиально. $x \notin D$ $x \in X \setminus D$

$$\exists U(x)\subset X\setminus D\Rightarrow x$$
 - не пред. точка

Доказательство. 1. $(\bigcap F_{\alpha})^c = X \setminus (\bigcap F_{\alpha}) = \bigcup (X \setminus F_{\alpha})$

$$F_\alpha-\text{закрыто}\Rightarrow X\setminus F_\alpha-\text{открыто}\Rightarrow\bigcup(X\setminus F_\alpha)-\text{открыто}$$
 $(\bigcap F_\alpha)^c-\text{открыто}\Rightarrow\bigcap F_\alpha-\text{закрыто}$

2.
$$(\bigcup F_i)^c = \bigcap (F_i)^c$$

$$\bigcap (F_i)^c - \text{открыто, т.к. } F_i^c - \text{открыто} \Rightarrow (\bigcup F_i)^c - \text{открыто} \Rightarrow \bigcup F_i - \text{закрыто}$$

2.15 Теорема об арифметических свойствах предела последовательности (в $\overline{\mathbb{R}}$). Неопределенности

2.15.1 Теорема об арифметических свойствах предела последовательности (в $\overline{\mathbb{R}}$)

$$(x_n),(y_n)$$
 — вещ., $x_n \to a, y_n \to b, \quad a,b \in \overline{\mathbb{R}}$ Тогда:

- 1. $x_n \pm y_n \rightarrow a \pm b$
- 2. $x_n y_n o ab$, если $\forall n \;\; y_n
 eq 0; b
 eq 0$
- 3. $\frac{x_n}{y_n} \rightarrow \frac{a}{b}$

При условии, что выражения в правых частях имеют смысл.

2.15.2 Неопределенности

•
$$\begin{cases} x_n \to +\infty \\ y_n \to -\infty \end{cases} \Rightarrow x_n + y_n \to ?$$

•
$$\begin{cases} x_n \to n + \sin n \\ y_n \to -n \end{cases} \Rightarrow x_n + y_n = \sin n, \not\exists \lim$$

•
$$\begin{cases} x_n \to n \\ y_n \to -\sqrt{n} \end{cases} \Rightarrow x_n + y_n = n - \sqrt{n} \to +\infty$$

$$\bullet \begin{cases} x_n \to 0 \\ y_n \to a \neq 0 \end{cases} \Rightarrow \frac{x_n}{y_n} \to \infty$$

2.16 Теорема Кантора о стягивающихся отрезках

Дана последовательность отрезков $[a_1,b_1]\supset [a_2,b_2]\supset\dots$ Длины отрезков $\to 0$, т.е. $(b_n-a_n)\to_{n\to+\infty}0$

Доказательство. Берем из аксиомы Кантора $c\in \bigcap_{k=1}^{+\infty} [a_k,b_k]$

$$\begin{cases} 0 \le b_n - c \le b_n - a_n \\ 0 \le c - a_n \le b_n - a_n \end{cases} \Rightarrow \begin{cases} b_n - c \to 0 \\ c - a_n \to 0 \end{cases} \Rightarrow \begin{cases} b_n \to c \\ a_n \to c \end{cases}$$

По теореме об единственности предела c однозначно определено.

2.17 Теорема о существовании супремума

 $E\subset\mathbb{R}, E
eq\varnothing, E$ — огр. сверху. Тогда $\exists \sup E\in\mathbb{R}$

Доказательство. Строим систему вложенных отрезков $[a_k,b_k]$ со свойствами:

- 1. b_k верхняя граница E
- 2. $[a_k, b_k]$ содержит точки E.

 a_1 — берём любую точку E, b_1 — любая верхняя граница.

Границы следующего отрезка найдём бинпоиском (математики это называют полоивнное деление).

Если $\frac{a_1+b_1}{2}$ — верхняя граница E, $[a_2,b_2]:=[a_1,\frac{a_1+b_1}{2}].$

Иначе на $[\frac{a_1+b_1}{2},b_1]$ есть элементы $E,[a_2,b_2]:=[\frac{a_1+b_1}{2},b_1]$

Длина
$$[a_k,b_k] = b_k - a_k = \frac{b_1 - a_1}{2^{k-1}} \rightarrow 0$$

$$\exists! c \in \prod [a_k, b_k]$$

Проверим: $c = \sup E$

1.
$$\forall x \in E \ \forall n \ x < b_n$$

2. $\forall \varepsilon > 0$ $c - \varepsilon$ — не верхн. гран.

Доказательство 1: $x \to x, b_n \to c \Rightarrow x \le b_n$ Доказательство 2: $\forall \varepsilon > 0$ возьмём $n: \frac{b_1-a_1}{2^n} < \varepsilon.$ $c-\varepsilon < a_n \Leftrightarrow c-a_n < \varepsilon \Leftrightarrow c-a_n < b_n-an < \varepsilon$

2.18 Лемма о свойствах супремума

O свойствах sup, inf

- 1. $\emptyset \neq D \subset E \subset \mathbb{R}$ $\sup D \leq \sup E$
- 2. $\lambda \in \mathbb{R} \quad (\lambda E = \{\lambda x, x \in E\})$ Пусть $\lambda > 0$, тогда $\sup \lambda E = \lambda \sup E$
- $3. \, \sup(-E) = -\inf E$

Доказательство. 1. Множество верхних границ $E \subset \text{множество верхних границ } D$.

- 2. λ · Множество верхних границ E= множество верхних границ λE
- 3. Множество верхних границ -E=- множество верхних границ E

2.19 Теорема о пределе монотонной последовательности

- 1. x_n вещ. посл., огр. сверху, возрастает. $\Rightarrow \exists \lim x_n \in \mathbb{R}$
- 2. x_n убывает, огр. снизу. $\Rightarrow \exists \lim x_n \in \mathbb{R}$
- 3. x_n монотонна, огр. $\Rightarrow \exists \lim x_n \in \mathbb{R}$

Доказательство. Достаточно доказать 1.

Проверяем $\lim x_n = \sup x_n = M \in \mathbb{R}$

По определению sup:

$$\forall \varepsilon \; \exists N \; M - \varepsilon < x_N$$

$$x_N \le x_{N+1} \le x_{N+2} \le x_{n+3} \dots \le M$$

$$\forall \varepsilon \exists N \forall n > N M_{\varepsilon} < x_n \leq M < M + \varepsilon$$

По определению $M = \lim x_n$

2.20 Определение числа e, соответствующий замечательный предел

$$e = \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n$$

2.21 Теорема об открытых и замкнутых множествах в пространстве и в подпространстве

$$Y\subset X, X$$
 — метр.п., Y — подпространство, $D\subset Y\subset X$

1.
$$D$$
 — откр. в $Y \Leftrightarrow \exists G$ — откр. в X $D = G \cap Y$

2.
$$D$$
 — замкн. в $Y \Leftrightarrow \exists F$ — замкн. в X — $D = F \cap Y$

Докажем 1.

Доказательство. Докажем "⇒".

 \forall точка D внутр. в Y

$$\forall x \in D \ \exists r_x \ B^Y(x, 2x) \subset D$$

Очевидно
$$D=\bigcup_{x\in D}B^Y(x,2x)$$
 $G:=\bigcup_{X\in D}B^X(x,r_x)$ — откр. в $X.$

$$G \cap Y = (\bigcup_{x \in D} B^X(r, r_x)) \cap Y = \bigcup_{x \in D} B^Y(x, 2x) = D$$

Докажем "⇐".

$$G$$
 — откр. в X — $D:=G\cap Y$ — ? D — откр. в Y

$$x \in D$$
 ? x — внутр. точка D (в Y)

$$x \in D \Rightarrow \exists B^X(x,r) \subset G \Rightarrow B^X(x,r) \cap Y = B^Y(x,r) \subset G \cap Y = D$$

Докажем 2.

Доказательство. Докажем "⇒"

$$D$$
 — замкн. в $Y\Rightarrow D^c=Y\setminus D$ — откр. в Y

$$\exists G$$
 — откр. в X , такое что $D^c = G \cap Y$

Тогда $G^c = X \setminus G$ — замкнуто в X, кроме того $D = G^c \cap Y$, т.к. $D^c = G \cap Y$

Возьмём в качестве F G^c .

Докажем "⇐".

$$F$$
 — замкн. в X

$$F \cap Y$$
 — замкн. в Y ?

$$F^c = X \setminus F$$
 — откр. в X

$$F^c \cap Y$$
 — откр. в Y

$$Y \setminus (F^c \cap Y)$$
 — замкн. в Y

$$Y \setminus (F^c \cap Y) = ^? F \cap Y$$

$$Y \setminus ((X \setminus F) \cap Y) = ^{?} F \cap Y$$

Докажем это.

$$Y \cdot \overline{F \cdot Y} = Y \cdot (\overline{\overline{F}} + \overline{Y}) = YF + Y\overline{Y} = F \cap Y$$

2.22 Теорема о компактности в пространстве и в подпространстве

 (X, ρ) — метрич. пространство, $Y \subset X$ — подпространство, $K \subset Y$ Тогда K — комп. в $Y \Leftrightarrow K$ — компактно в X.

Доказательство. Докажем "⇒"

$$K$$
 — комп. в $X \Leftrightarrow K \subset \bigcup_{\alpha \in A} G_{\alpha}, G_{\alpha}$ — откр. в X

Доказать: \exists кон. $\alpha_1 \dots \alpha_n \quad K \subset \bigcup_{i=1}^n G_{\alpha_i}$

$$K \subset \bigcup_{\alpha \in A} (G_{\alpha} \cap Y) \Rightarrow \exists$$
 кон. $\alpha_1 \dots \alpha_n : K \subset \bigcup_{i=1}^n (G_{\alpha_i} \cap Y)$

Тогда $K\subset\bigcup_{i=1}^n G_{\alpha_i}$ Докажем " \Leftarrow "

Дано: K — комп. в X, доказать: K — комп. в Y.

$$K \in \bigcup_{lpha \in A} O_lpha, O_lpha$$
 — откр. в Y

$$\exists G_{\alpha}: O_{\alpha} = G_{\alpha} \cap Y (G_{\alpha} - \mathit{omkp.}\ \mathit{b}\ Y)$$

По двум выражениям выше:

$$\exists K \subset \bigcup_{\alpha \in A} G_{\alpha}$$

Надо дописать доказательство

2.23 Лемма о вложенных параллелепипедах

 $[a,b]=\{x\in\mathbb{R}^m: \forall i=1\dots m \ a_i\leq x_i\leq b_i\}$ — параллеленинед. $[a^{1},b^{1}]\supset [a^{2},b^{2}]\supset\ldots$ — бесконечная последовательность параллелепипедов.

Тогда
$$\bigcap_{i=1}^{+\infty} [a^i,b^i] \neq \emptyset$$

Если $diam[a^n,b^n]=||b^n-a^n||\to 0,$ тогда $\exists!c\in\bigcap\limits_{i=1}^{\infty}[a^i,b^i]$

Доказательство. $\forall i=1\dots m \quad [a_i^1,b_i^1]\supset [a_i^2,b_i^2]\supset \dots \quad \exists c_i\in \bigcap_{n=1}^{+\infty} [a_i^n,b_i^n]. \ c=(c_1\dots c_m)$ общая точка всех параллелепипедов.

$$|a_i^n - b_i^n| \le ||a^n - b^n|| \to 0 \Rightarrow_{\mathsf{T. Kahtopa}} \exists ! c_i \in \bigcap_{n=1}^{+\infty} [a_i^n, b_i^n] \Rightarrow \exists ! c = (c_1 \dots c_m)$$

2.24 Компактность замкнутого параллелепипеда в \mathbb{R}^m

[a,b] — компактное множество в \mathbb{R}^m

Доказательство. Докажем, что \exists кон. $\alpha=(\alpha_1\dots\alpha_n):[a,b]\subset\bigcup\limits_{i=1}^nG_{\alpha_i}$

Допустим, что не ∃

 $[a^{1},b^{1}]:=[a,b]\Rightarrow [a^{1},b^{1}]$ нельзя покрыть кон. набором

 $[a^2,b^2]:=$ делим $[a^1,b^1]$ на 2^m частей, берем любую "часть", которую нельзя покрыть конечным набором G_α

:

$$diam=[a^n,b^n]=rac{1}{2}diam[a^{n-1},b^{n-1}]=rac{1}{2^{n-1}}diam[a^1,b^1]$$

$$\exists c\in \bigcap_{n=1}^{+\infty}[a^n,b^n]$$

$$c\in [a,b]\subset \bigcup_{\alpha\in A}G_{\alpha}$$

$$\exists \alpha_0\quad c\in G_{\alpha_0}- ext{otkp.}$$

$$\exists U_{arepsilon}(c)\subset G_{\alpha_0}$$

$$\exists n\quad diam[a^n,b^n]\ll arepsilon$$
 и тогда $[a^n,b^n]\subset U_{arepsilon}(c)\subset G_{\alpha_0}$

2.25 Теорема о характеристике компактов в \mathbb{R}^m

 $K \subset \mathbb{R}^m$. Эквивалентны следующие утверждения:

- 1. K замкнуто и ограничено
- 2. K компактно
- 3. K секвенциально компактно

Доказательство. Докажем $1 \Rightarrow 2$

K — огр. $\Rightarrow K$ содержится в [a, b]

K — замкн. в $\mathbb{R}^m \Rightarrow K$ — замкн. в [a,b]

Т.к. [a, b] — комп., по простейшему свойству компактов K — комп.

Доказательство. Докажем $2 \Rightarrow 3$

 $\forall (x_n)$ — точки из K.

?сходящаяся последовательность

Если множество значений $D = \{x_n, n \in \mathbb{N}\}$ — конечно, то \exists сход. подпосл. очевидно.

Пусть D — бесконечно

Если D имеет предельную точку, то $x_{m_k} \to a$

M3137y2019

Если D — бесконечно и не имеет предельных точек, $K \subset \bigcup_{x \in K} B(x, \varepsilon_x)$, радиус такой, что в этом шаре нет точек D, кроме x (его может тоже не быть)

Доказательство. Продолжим доказательство из прошлой лекции, докажем, $3 \Rightarrow 1$.

Рассмотрим секвенциально компактное K и пусть K — не ограничено. (случай ограниченного множества тривиален)

$$\exists x_n: ||x_n|| \to +\infty$$

Тогда в этой последовательности нет сходящейся последовательности, т.к. любая $x_{n_k} \to x_0 \in \mathbb{R}$ ограничена. Противоречие $\Rightarrow K$ — не компактно.

Таким образом, если K — секвенциально компактно, то K ограничено.

Докажем замкнутость K.

Пусть \exists предельная точка $x_0 \notin K$

$$\exists x_n \to x_0$$

По секвенциальности \exists подпоследовательность $x_{n_k} \to a \in K$.

2.26 Эквивалентность определений Гейне и Коши

Определение Коши ⇔ определение Гейне.

Доказательство. Докажем "⇒".

Если дана (x_n) , удовл. определению Коши, доказать

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N \ 0 < \rho(f(x_n), A) < \varepsilon$$

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D \ 0 < \rho(x, a) < \delta \ \rho(f(x), A) < \varepsilon$$

Для этого
$$\delta \exists N \ \forall n > N \rho(x_n, a) < \delta$$

, где
$$x_n \in D, x_n \neq a$$
 $\Rightarrow \rho(f(x_n), A) < \varepsilon$

Доказательство. Докажем "←"

Пусть определение Коши не выполняется.

$$\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x \in D \ 0 < \rho(x, a) < \delta \ \rho(f(x), A) \ge \varepsilon$$

$$\delta := \frac{1}{n} \exists x_n \in D \ 0 < \rho(x, a) < \frac{1}{\delta} \ \rho(f(x_n), A) \le \varepsilon$$

Построена последовательность $(x_n): x_n \in D \ x_n \neq a \ \rho(x_n,a) < \frac{1}{n} \Rightarrow \rho(x_n,a) \to 0 \Rightarrow x_n \to a$. Кроме того, $\rho(f(x_n),A) \geq \varepsilon$ — противоречит утверждению Гейне, что $x_n \to A$. \square

2.27 Единственность предела, локальная ограниченность отображения, имеющего предел, теорема о стабилизации знака

2.27.1 Единственность предела

оединственностипредела

Доказательство. По Гейне. $\forall (x_n)$:

- $x_n \to a$
- $x_n \in D$
- $x_n \neq a$

$$f(x_n) \to A, f(x_n) \to B \xrightarrow[\text{теор. o ед. предела посл.}]{} A = B$$

2.27.2 Локальная ограниченность отображения, имеющего предел

О локальной ограниченности отображения, имеющего предел.

$$f:D\subset X o Y,$$
 a — пред. точка D , $\exists\lim_{x\to a}f(x)=A$

Тогда $\exists V(a): f$ — огр. на $V(a) \cap D$, т.е. $f(V(a) \cap D)$ содержится в некотором шаре.

Доказательство. Для
$$\varepsilon=1$$
 $\exists V(a) \ \forall x\in \dot{V}(a)\cap D \ f(x)\in U_{\varepsilon}(A)$ Для $x\in V(a)\cap D \ f(x)\in U_{\tilde{\varepsilon}}(A)$, где $\tilde{\varepsilon}=\max(\varepsilon,\rho(A,f(a))+1)$

2.27.3 Теорема о стабилизации знака

О стабилизации знака.

$$f:D\subset X o Y,$$
 a — пред. точка $D,$ $\exists\lim_{x o a}f(x)=A$

Пусть $B \in Y, B \neq A$

Тогда
$$\exists V(a) \ \forall x \in \dot{V}(a) \cap D \ f(x) \neq B$$

Доказательство. Для

$$0 < \varepsilon < \rho(A, B) \ \exists V(a) \ \forall x \in \dot{V}(a) \cap D \ f(x) \in U_{\varepsilon}(A)$$

$$U_{\varepsilon}(A)$$
 не содержит B .

2.28 Арифметические свойства пределов отображений. Формулировка для $\overline{\mathbb{R}}$

 $f,g:D\subset X\to Y, X$ — метрич. пространство, Y— норм. пространство над $\mathbb{R},$ a— пред. точка D

$$\lim_{x \to a} f(x) = A, \lim_{x \to a} g(x) = B$$

$$\lambda : D \to \mathbb{R}, \lim_{x \to a} \lambda(x) = \lambda_0$$

Тогда:

1.
$$\exists \lim_{x \to a} f(x) \pm g(x)$$
 и $\lim_{x \to a} f(x) \pm g(x) = A \pm B$

2.
$$\lim_{x \to a} \lambda(x) f(x) = \lambda_0 A$$

- 3. $\lim_{x \to a} ||f(x)|| = ||A||$
- 4. Для случая $Y=\mathbb{R}$ и для $B\neq 0$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{A}{B}$$

 $\frac{f}{g}$ задано на множестве $D'=D\setminus\{x:g(x)=0\}$

a — пр. точка D' по теореме о стабилизации знака $\exists V(a) \ \forall x \in V(a) \cap D \ g(x)$ — того же знака, что и B , т.е. $g(x) \neq 0$

$$\dot{V}(a)\cap D'=\dot{V}(a)\cap D\Rightarrow a$$
 — пред. точка для D'

Доказательство. По Гейне. $\forall (x_n)$:

- $x_n \to a$
- $x_n \in D$
- $x_n \neq a$

 $f(x_n) + g(x_n) \rightarrow^? A + B$ верно по теореме последовательности.

Аналогично прочие пункты, кроме 4.

$$f(x_n) o A$$
 $g(x_n) o B \neq 0 \Rightarrow \exists n_0 \ \, \forall n > n_0 \ \, g(x_n) \neq 0$ $\frac{f(x_n)}{g(x_n)}$ корректно задано при $n > n_0$.

Если $Y=\overline{\mathbb{R}}$, можно "разрешить" случай $A,B=\pm\infty$ Тогда 3. тривиально, 1., 2. и 4. верно, если выражения $A\pm B,\,\lambda_0A,\,\frac{A}{B}$ корректны.

Докажем 1. как в теореме об арифметических свойствах последовательности.

$$\lim_{\substack{x \to a \\ 0 \ \forall x \in D \cap V_{\delta_2}(a) \ g(x) = +\infty}} g(x) = +\infty \Leftrightarrow \forall E_1 \ \exists \delta_1 > 0 \ \forall x \in D \cap V_{\delta_1}(a) \ f(x) > E_1 \ \forall E_2 \ \exists \delta_2 > 0 \ \forall x \in D \cap V_{\delta_2}(a) \ g(x) > E_2$$

2.29 Принцип выбора Больцано-Вейерштрасса

Если в $\mathbb{R}^m(x_n)$ — ограниченная последовательность, то у неё существует сходящаяся подпоследовательность.

Доказательство. x_n — огр. $\Rightarrow x_n$ содержится в замкнутом кубе. Так как куб секвенциально компактен, x_{n_k} сходится.

2.30 Сходимость в себе и ее свойства

 x_n — фундаментальная, последовательность Коши, сходящаяся в себе, если:

$$\forall \varepsilon > 0 \ \exists N \ \forall m, n > N \ \rho(x_m, x_n) < \varepsilon$$

- 1. $x_n \phi$ унд. $\Rightarrow x_n \sigma$ ограничена
- 2. $x_n \phi y H д$; $\exists x_{n_k} c x o д я Ш$. Тогда $x_n c x o д и T c я$.

Доказательство. 1.
$$\varepsilon := 1 \ \exists N \ \forall m, n := N+1 > N \ \rho(x_m, x_{N+1}) < 1$$

$$R := \max(1; \rho(x_1, x_{N+1}), \dots, \rho(x_N, x_{N+1}))$$

 $\forall n \ x_n \in B(x_{N+1}, R) \Rightarrow x_n$ сходится.

2.
$$\begin{cases} \varepsilon > 0 \; \exists K \; \forall k > K \; \rho(x_{n_k}, a) < \varepsilon \\ \varepsilon > 0 \; \exists N \; \forall m, n > N \; \rho(x_m, x_n) < \varepsilon \end{cases} \stackrel{?}{\Rightarrow} x_n \to a$$

orall arepsilon>0 $\exists \tilde{N}:=\max(N,K)$ при $k>\tilde{N}$ выполняется k>K, значит $n_k\geq k>K\Rightarrow
ho(x_{n_k},a)<arepsilon.$

При
$$n>\tilde{N}\geq N$$
 $m:=n_k>\tilde{N}\geq N\Rightarrow
ho(x_n,x_{n_k})$

Итого
$$\forall n > \tilde{N} \ \rho(x_n, a) \ge \rho(x_n, x_{n_k}) < 2\varepsilon$$

2.31 Критерий Коши для последовательностей и отображений

2.31.1 Для последовательностей

- 1. В любом метрическом пространстве x_n сходящ. $\Rightarrow x_n$ фунд.
- 2. В $\mathbb{R}^m x_n \phi$ унд. $\Rightarrow x_n c$ ходящ.

Доказательство. 1. $x_n \to a \quad \forall \varepsilon > 0 \ \exists N \ \forall n > N \ \rho(x_n,a) < \varepsilon$ $x_n \to a \quad \forall \varepsilon > 0 \ \exists N \ \forall n,m > N \rho(x_m,x_n) \geq \rho(x_n,a) + \rho(x_m,a) < 2\varepsilon$

2.
$$x_n - \phi$$
унд. $\Rightarrow x_n - \mathrm{orp.} \xrightarrow{\mathrm{E-B.}} \exists x_{n_k} - \mathrm{cxoдящ.}$

$$\begin{cases} \exists x_{n_k} - \text{сходящ.} \\ x_n - \text{фунд.} \end{cases} \Rightarrow x_n - \text{сходящ.}$$

2.31.2 Для отображений

 $f:D\subset X\to Y,$ a — пр. точка D, Y — полное метрическое пространство. Тогда

$$\exists \lim_{x \to a} f(x) \in Y \Leftrightarrow \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x_1, x_2 \in D \ \rho(x_1, a) < \delta; \rho(x_2, a) < \delta \ \rho(f(x_1), f(x_2)) < \varepsilon$$

Доказательство. "⇒" как для последовательностей.

Докажем "⇐" по Гейне.

Заметим, что последовательность $f(x_n)$ — фундаментальная, т.е.

$$\forall \varepsilon > 0 \ \exists N \ \forall m, n > N \ \rho(f(x_m), f(x_n)) < \varepsilon$$

$$x_n \to a \Rightarrow \exists N \ \forall n > N \ \rho(x_n, a) < \delta$$

$$\forall m, n > N \ \rho(x_n, a) < \delta; \rho(x_m, a) < \delta \xrightarrow{\text{Фунд.}} \rho(f(x_n), f(x_m)) < \varepsilon$$

2.32 Теорема о пределе монотонной функции

 $f:D\subset\mathbb{R} o\mathbb{R}$, монотонная, $a\in\overline{\mathbb{R}}$ $D_1:=D\cap(-\infty,a),a$ пред. точка $D_1.$ Тогда:

- 1. f возрастает, огр. сверху D_1 . Тогда \exists конечный предел $\lim_{x \to a-0} f(x)$
- 2. f убывает, огр. снизу D_1 . Тогда \exists конечный предел $\lim_{x \to a = 0} f(x)$

Доказательство. 1. $L:=\sup_{D_1}f$ $L\stackrel{?}{=}\lim_{x\to a-0}f(x)$

 $\forall \varepsilon > 0 \;\; L - \varepsilon$ — не верхн. граница для $\{f(x) : x \in D_1\} \;\; \exists x_1 : L_\varepsilon < f(x_1).$

Тогда при $x \in (x_1,a) \cap D_1 \ L - \varepsilon < f(x_1) \le f(x) \le L$

$$\exists \delta := |x_1 - a| \ \forall x : x \in (x_1, a) \ L_{\varepsilon} \le f(x) < L + \varepsilon$$

Аналогично доказывается пункт 2.

2.33 Свойства непрерывных отображений: арифметические, стабилизация знака, композиция

2.33.1 Арифметические

1. $f,g:D\subset X\to Y$ $x_0\in D$ (Y — норм. пространство)

$$f,g$$
 — непр. в $D;\lambda:D o\mathbb{R}(\mathbb{C})$ — непр. x_0

Тогда $f\pm g, ||f||, \lambda f$ — непр. x_0

2. $f, g: D \subset X \to \mathbb{R}$ $x_0 \in D$

$$f, q$$
 — непр. в x_0

Тогда $f \pm g, |f|, fg$ — непр. в x_0

$$g(x_0) \neq 0$$
, тогда $\frac{f}{g}$ — непр. x_0

Доказательство отсутствует

2.33.2 Стабилизация знака

Если функция $f:D \to \mathbb{R}$ непрерывна в точке x_0 и $f(x_0) \neq 0$, то:

$$\exists V(x_0): \forall x \in V(x_0) \cap D \quad \operatorname{sign} f(x) = \operatorname{sign} f(x_0)$$

Доказательство. Докажем для $f(x_0) > 0$.

Докажем от противного:

$$\forall n \in \mathbb{N} \ \exists x_n \in U_{x_0}\left(\frac{1}{n}\right) \cap D : g(x_n) \le 0$$

Противоречие.

П

2.33.3 Непрерывность композиции непрерывных отображений

$$f:D\subset X o Y$$
 $g:E\subset Y o Z$ $f(D)\subset E$ f — непр. в $x_0\in D,$ g — непр. в $f(x_0)$ Тогда $g\circ f$ непр. в x_0

Доказательство. По Гейне.

Проверяем, что
$$\forall (x_n): x_n \in D, x_n \to x_0 \quad g(f(x_n)) \xrightarrow{?} g(f(x_0))$$
 $y_n := f(x_n) \xrightarrow[n \to +\infty]{} f(x_0)$ $y_n \in E$ $\Rightarrow g(y_n) \to g(y_0)$

2.34 Непрерывность композиции и соответствующая теорема для пределов

2.34.1 Непрерывность композиции

Дана выше.

2.34.2 Соответствующая теорема для пределов

$$\begin{array}{ll} f:D\subset X\to Y & g:E\subset Y\to Z & f(D)\subset E\\ a-\text{предельн. точка }D & f(x)\xrightarrow[x\to a]{}A\\ A-\text{предельн. точка }E & g(y)\xrightarrow[y\to A]{}B\\ \exists V(a) & \forall x\in \dot{V}(a)\cap D & f(x)\neq A & (*)\\ \text{Тогда }g(f(x))\xrightarrow[x\to a]{}B \end{array}$$

Доказательство. По Гейне.

Проверяем, что
$$\forall (x_n): \frac{x_n \in D}{x_n \to a} \quad g(f(x_n)) \xrightarrow{?} B$$
 $y_n := f(x_n) \xrightarrow[n \to +\infty]{} A$ $y_n \in E$ При больших $N \quad y_n \in V(a) \Rightarrow y_n \neq A$ $\Rightarrow g(y_n) \to B$

2.35 Теорема о замене на эквивалентную при вычислении пределов. Таблица эквивалентных

2.35.1 Теорема о замене на эквивалентную при вычислении пределов

$$f, ilde{f},g, ilde{g}:D\subset X o\mathbb{R}$$
 x_0 — предельная точка D $f\sim ilde{f},g\sim ilde{g}$ при $x o x_0$ Тогда

$$\lim_{x \to x_0} f(x)g(x) = \lim_{x \to x_0} \tilde{f}(x)\tilde{g}(x)$$

, т.е. если \exists один из пределов, то \exists и второй и имеет место равенство

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{\tilde{f}(x)}{\tilde{g}(x)}$$

, если x_0 лежит в области определения $\frac{f}{g}$

Доказательство.

$$f(x)g(x) = \tilde{f}(x)\tilde{g}(x)\frac{f}{\tilde{f}}\frac{g}{\tilde{g}} \to \tilde{f}(x)\tilde{g}(x)\cdot 1\cdot 1$$

2.35.2 Таблица эквивалентных

Дана выше. (1.41, стр. 8)

2.36 Теорема единственности асимптотического разложения

$$f,g_n:D\subset X o\mathbb{R}$$
 x_0 — предельная точка D $orall n\ g_{n+1}=o(g_n),x o x_0$ $\exists U(x_0)\ orall x\in U(x_0)\cap D\ orall i\ g_i(x)
eq 0$ Если $f(x)=c_0g_0(x)+\ldots+c_ng_n(x)+o(g_n(x))$ $f(x)=d_0g_0(x)+\ldots+d_mg_m(x)+o(g_m(x))$ $]n\le m$ Тогда $orall i\ c_i=d_i$

Доказательство. $k := min\{i : c_i \neq d_i\}$

$$f(x) = c_0 g_0 + \dots + c_{k-1} g_{k-1} + c_k g_k + o(g_k)$$

$$f(x) = c_0 g_0 + \dots + c_{k-1} g_{k-1} + d_k g_k + o(g_k)$$

$$0 = (c_k - d_k) g_k + o(g_k)$$

$$d_k - c_k = \frac{o(g_k)}{g_k(x)} \xrightarrow[x \to x_0]{} 0$$

2.37 Теорема о топологическом определении непрерывности

$$f:X o Y$$
 — непр. на $X\Leftrightarrow \forall G\subset Y$, откр. $f^{-1}(G)$ — откр. в X .

Доказательство. "
$$\Rightarrow$$
" $x_0 \in f^{-1}(G)$? $\exists V(x_0) \subset f^{-1}(G)$ f — непр. В x_0 $\forall U(f(x_0))$ $W(x_0)$ $\forall x \in W$ $f(x) \in U$ $f(x_0) \in G$ — откр. $\Rightarrow \exists U_1(f(x_0)) \subset G$ Для U_1 $\exists W(x_0) : x \in W$ $f(x) \in U_1 \subset G$ $W(x_0) \subset f^{-1}(G)$ " \Leftarrow " $x_0 \in X$? непр. f в x_0 $\forall U(f(x_0))$ $\exists W(x_0)$ $\forall x \in W$ $\forall f(x) \in U$ — надо проверить $U(f(x_0))$ — откр. $\Rightarrow f^{-1}(U(f(x_0)))$ — откр., а $x_0 \in f^{-1}(U(f(x_0)))$, значит $\exists W(x_0) \subset f^{-1}(U(f(x_0)))$ Для любого $x \in W(x_0)$ будет выполняться $f(x) \in U(f(x_0))$

2.38 Теорема Вейерштрасса о непрерывном образе компакта. Следствия

$$f:X \to Y$$
 — непр. на X Если X — комп., то $f(X)$ — комп.

Доказательство. ?f(X) — комп.

$$f(X)\subset\bigcup G_{lpha}\quad G_{lpha}$$
 — откр. в Y .

$$X \subset \bigcup f^{-1}(G_{\alpha})$$
 — откр. т.к. f — непр. $\xrightarrow{X - \text{комп}}$

$$\exists \alpha_1 \dots \alpha_n \quad X \subset \bigcup_{i=1}^n f^{-1}(G_{\alpha_i}) \Rightarrow f(X) \subset \bigcup_{i=1}^n G_{\alpha_i}$$

Следствие. Непрерывный образ компакта замкнут и ограничен.

Следствие. (1-я теорема Вейерштрасса)

$$f:[a,b] \to \mathbb{R}$$
 — непр.

Тогда f — огр.

Следствие. $f:X\to\mathbb{R}$

X — комп., f — непр. на X

Тогда
$$\exists \max_X f, \min_X f$$
 $\exists x_0, x_1: \forall x \in X \quad f(x_0) \leq f(x) \leq f(x_1)$

Следствие. $f:[a,b] \to \mathbb{R}$ — непр.

 $\exists \max f, \min f$

2.39 Лемма о связности отрезка

Промежуток $\langle a, b \rangle$ (границы могут входить, могут не входить) — не представим в виде объединения двух непересекающихся непустых открытых множеств T.e. $\not\exists G_1, G_2 \subset \mathbb{R}$ — откр.:

- $G_1 \cap G_2 = \emptyset$
- $\langle a, b \rangle \cap G_1 \neq \emptyset$ $\langle a, b \rangle \cap G_2 \neq \emptyset$
- $\langle a, b \rangle \subset G_1 \cup G_2$

Доказательство. От противного: $\alpha \in \langle a,b \rangle \cap G_1$ $\beta \in \langle a,b \rangle \cap G_2$, пусть $\alpha < \beta$

$$t := \sup\{x : [\alpha, x] \subset G_1\} \quad \alpha \le t \le \beta$$

 $t \in G_1$? нет, т.к. если да, то $t \neq \beta$ и $\exists U(t) = (t - \varepsilon, t + \varepsilon) \subset G_1 \cap [\alpha, \beta]$, это противоречит определению t:

$$\left[\alpha, t - \frac{\varepsilon}{2}\right] \subset G_1$$

$$(t-\varepsilon,\bar{t}+\varepsilon)\subset G_1$$

$$[\alpha, t + \frac{\varepsilon}{2}] \subset G_1$$

$$t\in G_2$$
? нет, т.к. если лежит, то $t
eq lpha \quad \exists (t-arepsilon,t+arepsilon)\subset G_2\cap [lpha,eta)$

 $\sup\{x: [\alpha, x] \subset G_1\} \le t - \varepsilon$

2.40 Теорема Больцано-Коши о промежуточном значении

 $f:[a,b] o \mathbb{R}$, непр. на [a,b]. Тогда

$$\forall t$$
 между $f(a)$ и $f(b)$ $\exists x \in [a,b]: f(x) = t$

Традиционное доказательство — бинпоиск.

Доказательство. Сразу следует из леммы о связности отрезка и топологического определения

непрерывности.

Если нашлось t, для которого доказуемое утверждение неверно, то

$$[a,b] = f^{-1}(-\infty,t) \cup f^{-1}(t,+\infty)$$

Оба множества открыты, т.к. они — прообразы открытых множеств. Кроме того, они непусты, т.к. одно из них содержит a, другое содержит b. Итого, мы представили отрезок [a,b] в виде двух непересекающихся непустых открытых множеств, противоречие по предыдущей лемме. \Box

2.41 Теорема о сохранении промежутка

 $f:\langle a,b\rangle \to \mathbb{R}$, непр.

Тогда $f(\langle a,b\rangle)$ — промежуток. Доказательство отсутствует.

2.42 Теорема Больцано-Коши о сохранении линейной связности

X, Y — метрические пространства, $f: X \to Y$ — непрерывное и сюръекция X — линейно связное множество. Тогда Y — линейно связное множество.

Доказательство. Надо доказать, что \exists путь $[a,b] \rightarrow [A,B]$

$$f(a) = A; f(b) = B$$

X — линейно связное $\Rightarrow \exists \gamma: [lpha, eta] o X, \gamma(lpha) = a, \gamma(eta) = b, \gamma$ — непрерывное

$$f\circ\gamma[a,b]\to Y; f\circ\gamma(\alpha)=A, f\circ\gamma(\beta)=B$$

Т.к. композиция непрерывных функций непрерывна, $f \circ \gamma$ — непрерывна.

2.43 Описание линейно связных множеств в $\mathbb R$

В $\mathbb R$ линейно связанными множествами являются только промежутки.

Доказательство. 1. Промежуток линейно связен.

$$\forall A,B \in \langle a,b \rangle \quad \exists$$
 путь: $\gamma:[A,B] \Rightarrow \langle a,b \rangle; t \mapsto t$

2. $E \subset \mathbb{R}$ — линейно связное $\stackrel{?}{\Rightarrow} E$ — промежуток

Пусть E — не промежуток

$$\exists a, b, t : a, b \in E; a < b \quad a < t < b; t \neq E$$

Линейная связность: $\gamma: [\alpha, \beta] \to E$

$$\gamma(\alpha) = a \quad \gamma(\beta) = b \quad \gamma - \text{непр.}$$

2.44 Теорема о бутерброде

Кусок хлеба и кусок колбасы, лежащие на столе, можно разрезать прямой на две равные по площади части каждый.

Доказательство. Рассмотрим угол φ и разделим прямой под углом φ колбасу на две равные по площади части.

$$S(arphi) = S_{\pi} - S_{\pi}$$
 (для хлеба) $S-$ непр.

$$|S(\varphi + h) - S(\varphi)| \le 2ab\sin h \le 2d^2\sin h$$

Берём произвольный угол $\varphi_0; \varphi_0 + \pi$

$$\varphi_0: S_{\pi} - S_{\pi}$$

$$\varphi_0 + \pi: S_{\pi} - S_{\pi}$$

$$\exists \varphi \ S(\varphi) = 0$$

2.45 Теорема о вписанном n-угольнике максимальной площади

Вписанный n-угольник максимальной площади — правильный.

Доказательство. Чего-то геометрическое

2.46 Теорема о непрерывности монотонной функции. Следствие о множестве точек разрыва

2.46.1 Теорема о непрерывности монотонной функции

 $f:\langle a,b
angle
ightarrow\mathbb{R}$, монотонна. Тогда

- 1. Точки разрыва f (если есть) І рода
- 2. f непр. на $\langle a,b \rangle \Leftrightarrow f(\langle a,b \rangle)$ промежуток

Доказательство. Рассмотрим $f \uparrow$

1.
$$x_1 < x < x_2$$
 $f(x_1) \le f(x) \le f(x_2)$

$$x \to x_1$$
 $f(x_1) \le f(x_1 + 0) \le f(x_2) \Rightarrow \exists \lim_{x \to x_1 + 0} f(x)$

, аналогично для $x_1 - 0$

2. " \Rightarrow " следует из теоремы о сохранении промежутка.

"
$$\Leftarrow$$
" $x_0 \in \langle a, b \rangle$? f — непр. в x_0 ?

$$f(x_0 - 0) \le f(x_0) \le f(x_0 + 0)$$

2.46.2 Следствие о множестве точек разрыва

У монотонной функции, заданной на промежутке, имеется не более чем счётное (НБЧС) множество точек разрыва.

Доказательство.
$$f(x-0) < f(x+0)$$
 $(f(x-0), f(x+0)) \leadsto q_x$ т. разрыва $\to \mathbb{Q}$

$$|x < t_0 < y|$$

$$f(x) \le f(t_0) \le f(y)$$

$$f(x) \le f(x+0) \le f(t_0) \le f(y-0) \le f(y)$$

Таким образом, (f(x-0), f(x+0)) не имеет общих точек, тогда q_x все разные \Rightarrow взятие q_x — инъекция.

2.47 Теорема о существовании и непрерывности обратной функции

$$f:\langle a,b \rangle o \mathbb{R}$$
 — непр., строго монот. $m:=\inf_{\langle a,b \rangle} f(x), M:=\sup_{\langle a,b \rangle} f(x).$ Тогда:

- 1. f обратимая и $f^{-1}:\langle m,M\rangle \to \langle a,b\rangle$
- 2. f^{-1} строго монотонна и того же типа (возрастает или убывает)
- 3. f^{-1} непрерывна

Доказательство. Пусть $f \uparrow f(\langle a,b \rangle)$ — промежуток $\langle m,M \rangle$ (типы скобок совпадают) f — строго монот. $\Rightarrow f$ — инъекция. Тогда $f:\langle a,b \rangle \to \langle m,M \rangle$ — биекция $\forall x_1 < x_2 \ f(x_1) < f(x_2)$ $\forall y_1 < y_2 \ f^{-1}(y_1) < f^{-1}(y_2)$

2.48 Счетность множества рациональных чисел

 \mathbb{Q} — счётное

Доказательство.

$$\begin{split} \mathbb{Q}_+ := \{x \in \mathbb{Q} : x > 0\}, \quad \mathbb{Q}_- := \{x \in \mathbb{Q} : x < 0\} \\ \forall q \in \mathbb{N} \quad Q_p = \left\{\frac{1}{q}, \frac{2}{q} \dots\right\} - \text{счётно} \\ \mathbb{Q}_+ = \bigcup_{q=1}^\infty Q_p - \text{счётно} \\ \mathbb{Q}_- \sim \mathbb{Q}_+ \Rightarrow \mathbb{Q}_- - \text{счётно} \\ \mathbb{Q} = \mathbb{Q}_+ \cup \mathbb{Q}_- \cup \{0\} - \text{счётно} \end{split}$$

2.49 Несчетность отрезка

[0,1] — несчётно

Доказательство. Пусть $\exists \varphi: \mathbb{N} \to [0,1]$ — биекция $[a_1,b_1]$ — любая из частей, где нет $\varphi(1)$ $[a_2,b_2]$ — любая из частей, где нет $\varphi(2)$ $\bigcap [a_k,b_k] \supset \{x\}$ — не имеет номера $\forall k \ x \in [a_k,b_k] \Rightarrow x \neq \varphi(k)$

2.50 Континуальность множества бинарных последовательностей

Bin = множество бинарных последовательностей Bin имеет мощность континуума

Доказательство. $\varphi: Bin \to [0,1] \cap Bin_{\text{кон.}}$ 0101 \mapsto 0.0101 \mapsto 0.011 \mapsto 0.011 \mapsto 0.011 . . . \mapsto 0.012 . . . \mapsto 0.013 . . . \mapsto 0.013 . . . \mapsto 0.014 . . . \mapsto 0.015 . . . \mapsto 0.015 . . . \mapsto 0.015 . . . \mapsto 0.016 . . . \mapsto 0.016 . . . \mapsto 0.017 . . . \mapsto 0.019 . . . \mapsto 0.0

2.51 Равносильность двух определений производной. Правила дифференцирования.

Определение 1 ⇔ определению 2, т.е.

$$f(x) = f(x_0) + A \cdot (x - x_0) + o(x - x_0), x \to x_0$$

$$\exists \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = B \in \mathbb{R}$$

$$A = B$$

Доказательство. Докажем "

—".

$$f(x) = f(x_0) + A \cdot (x - x_0) + o(x - x_0), x \to x_0$$
$$A = \frac{f(x) - f(x_0)}{x - x_0} - \frac{o(x - x_0)}{x - x_0}$$

Докажем "⇒".

$$\frac{f(x) - f(x_0)}{x - x_0} = A + \alpha(x) \quad \alpha(x) \xrightarrow[x \to x_0]{} 0$$

2.52 Дифференцирование композиции и обратной функции

2.52.1 Дифференцирование композиции

 $f:\langle a,b \rangle o \langle c,d \rangle \quad x \in \langle a,b \rangle \quad f$ — дифф. в x $g:\langle c,d \rangle o \mathbb{R} \quad g$ — дифф. y=f(x) Тогда $g\circ f$ — дифф. в $x;(g(f(x)))'=g'(f(x))\cdot f'(x)$

Доказательство.

$$f(x+h) = f(x) + f'(x)h + \alpha(h)h, \alpha(h) \xrightarrow[h \to 0]{} 0$$

$$g(y+k) = g(y) + g'(y)k + \beta(k)k$$

$$|f'(x)h + \alpha(h)h = k; \quad k \xrightarrow[h \to 0]{} 0$$

$$g(f(x+h)) = g(f(x) + f'(x)h + \alpha(h)h) =$$

$$= g(f(x)) + g'(f(x))(f'(x)h + \alpha(h)h) + \beta(k)(f'(x)h + \alpha(h)h) =$$

$$= g(f(x)) + g'(f(x))f'(x)h + g'(f(x))\alpha(h)h + \beta(k)f'(x)h + \beta(k)\alpha(h)h$$

$$|g'(f(x))\alpha(h)h + \beta(k)f'(x)h + \beta(k)\alpha(h)h = \gamma(h) \cdot h; \quad \gamma(h) \xrightarrow[h \to 0]{} 0$$

2.52.2 Дифференцирование обратной функции

 $f:\langle a,b
angle o\mathbb{R}$ — непр., строго монот. $x\in\langle a,b
angle$ f — дифф. в $x;\,f'(x)\neq0$ По определению f — $\exists f^{-1}$ Тогда f^{-1} — дифф. в y=f(x) и

$$(f^{-1})'(y) = \frac{1}{f'(x)}$$

Доказательство. $\forall k \ \exists h : f(x+h) = y+k$

$$h = (x+h) - x = f^{-1}(y+k) - f^{-1}(y) = \tau(k)$$

$$\frac{f^{-1}(y+k)-f^{-1}(y)}{k} = \frac{\tau(k)}{f(x+\tau(k))-f(x)} = \frac{1}{\frac{f(x+\tau(k))-f(x)}{(x+\tau(k))-x}} \xrightarrow[\tau(k)\to 0]{\text{1fo t.o Herd. odg. } } \frac{1}{f'(x)}$$

2.53 Теорема Ферма (с леммой)

2.53.1 Лемма

 $f:\langle a,b \rangle \to \mathbb{R}$ — дифф. в $x_0 \in (a,b); f'(x_0) > 0$ Тогда $\exists \varepsilon > 0 \ \forall x: x \in (x_0,x_0+\varepsilon) \ f(x_0) < f(x)$ и $\forall x: x \in (x_0-\varepsilon,x_0) \ f(x_0) > f(x)$

Примечание. Это не монотонность.

Доказательство.

$$\frac{f(x) - f(x_0)}{x - x_0} \xrightarrow[x \to x_0]{} f'(x_0) > 0$$

 $x o x_0 + 0$ $x - x_0 > 0 \Rightarrow f(x) - f(x_0) > 0$ вблизи x_0 (по теор. о стабилизации знака)

$$x
ightarrow x_0 - 0 \quad x - x_0 < 0 \Rightarrow f(x) - f(x_0) < 0$$
 вблизи x_0

2.53.2 Теорема Ферма

 $f:\langle a,b
angle o\mathbb{R}$ $x_0\in(a,b)$ — точка максимума f — дифференцируема в x_0 Тогда $f'(x_0)=0$

Доказательство. Из леммы.

Если
$$f'(x_0) > 0$$
, то справа от x_0 есть $x : f(x) > f(x_0)$
Если $f'(x_0) < 0$, то слева от x_0 есть $x : f(x) > f(x_0)$

2.54 Теорема Ролля. Вещественность корней многочлена Лежандра

2.54.1 Теорема Ролля

$$f:[a,b] o\mathbb{R}$$
 — непр. на $[a,b]$, дифф. на (a,b) $f(a)=f(b)$. Тогда $\exists c\in(a,b):f'(c)=0$

Доказательство. По теореме Вейерштрасса.

$$x_0=\max f(x); x_1=\min f(x)$$
 $\{x_0,x_1\}=\{a,b\}\Rightarrow f=const; f'\equiv 0$ Иначе: пусть $x_0\in(a,b)\xrightarrow[\tau.\Phiepma]{r.\Phiepma} f'(x_0)=0$

2.54.2 Вещественность корней многочлена Лежандра

 $n \in \mathbb{N}$

 ${\rm Ln}(x)=((x^2-1)^n)^{(n)}-$ полиномы Лежандра (с точностью до умножения на константу) $\deg {\rm Ln}=n$

Утверждение: Ln имеет n различных вещественных корней.

Доказательство. Чего-то про получение корней кратности

M3137y2019

2.55 Теоремы Лагранжа и Коши. Следствия об оценке приращения и о пределе производной

2.55.1 Теорема Лагранжа

 $f:[a,b] o\mathbb{R}$ — непр., дифф. в (a,b). Тогда $\exists c\in(a,b)$, такое что:

$$f(b) - f(a) = f'(c)(b - a)$$

Примечание. Теорему Лагранжа можно интерпретировать как следующее: $\frac{f(b)-f(a)}{b-a}$ — тангенс угла между хордой графика и горизонталью, а f'(c) — касательная. Таким образом, если провести хорду графика, то можно найти точку между точками пересечения графика и хорды такую, что касательная к графику будет параллельна этой хорде.

Доказательство. Следует из теоремы Коши при g(x) = x

2.55.2 Теорема Коши

 $f,g:[a,b] o\mathbb{R}$ f,g-дифф. в $(a,b);g'\neq 0$ на (a,b). Тогда $\exists c\in(a,b)$, такое что:

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

Доказательство. Теоремы Коши.

F(x) := f(x) - kg(x)

Подберем k такое, что F(b) = F(a)

$$f(b) - kg(b) = f(a) - kg(a)$$
$$k = \frac{f(b) - f(a)}{g(b) - g(a)}$$

По т. Ролля $\exists c: F'(c) = 0$

$$f'(c) - kg'(c) = 0$$
$$k = \frac{f'(c)}{g'(c)}$$

2.55.3 Следствия об оценке приращения и о пределе производной

1. f непр. на [a, b], дифф. в (a, b) $\exists M : \forall x \ |f'(x)| \leq M$

Тогда $\forall x, x + h \in [a, b]$

$$|f(x+h) - f(x)| \le M|h|$$

2.
$$f$$
 — непр. на $[a,b
angle$, дифф. на $(a,b
angle$ $\exists \lim_{x \to a+0} f'(x) = k \in \overline{\mathbb{R}}$ Тогда $f'_+(a) = k$

Доказательство. Следствия 2.

 $\exists a < c < a + h$, такой что:

$$\frac{f(a+h) - f(a)}{h} = f'(c) \xrightarrow[h \to 0]{} k$$

2.56 Теорема Дарбу. Следствия

2.56.1 Теорема Дарбу

 $f:[a,b] o \mathbb{R}$ — дифф. на [a,b] Тогда $\forall C$ лежащего между f'(a),f'(b)

$$\exists c \in (a,b) : f'(c) = C$$

Доказательство. $F(x):=f(x)-C\cdot x$ — у неё $\exists \max_{[a,b]}$ (в силу непрерывности) F'(x)=f'(x)-C — F'(a) и F'(b) разных знаков.

1. F'(a) > 0 F'(b) < 0

По лемме при x>a, близких к a $f(x)>f(a)\Rightarrow\max f$ достигается в $c\in(a,b)$

2.56.2 Следствия

Следствие. 1. Функция f' обладает свойством "сохранять промежуток"

2. f' не может иметь разрывов вида "скачок"

2.57 Теорема о свойствах показательной функции

f — показ. ф-ция

Тогда:

1.
$$\forall x \ f(x) > 0; f(0) = 1$$

2.
$$\forall r \in \mathbb{Q}$$
 $f(rx) = (f(x))^r$

- 4. Множество значений $f(0,+\infty)$

5.
$$\tilde{f}(1) = f(1)$$
, тогда $f = \tilde{f}$

Доказательство. 1.
$$f \not\equiv 0 \ \exists f(x_0) \neq 0$$

1.
$$f \not\equiv 0 \ \exists f(x_0) \neq 0$$

$$x = x_0, y = 0$$
 $f(x_0 + 0) = f(x_0) \cdot f(0) \Rightarrow f(0) = 1$

Если $f(x_1) = 0$, тогда

$$\forall x \quad f(x) = f(x - x_1) \cdot f(x_1) = 0$$
$$f(x) = f\left(\frac{x}{2}\right) \cdot f\left(\frac{x}{2}\right) > 0$$

- 2. Как в опр. ст. с рациональным показателем
 - (a) r = 1
 - (b) $r \in \mathbb{N}$

$$f(2x) = f(x+x) = f(x) \cdot f(x) = f(x^2)$$
$$f((n+1)x) = f(nx+x) = f(nx) \cdot f(x) = (f(x))^n f(x) = (f(x))^{n+1}$$

(c) $r \in "-\mathbb{N}"$

$$1 = f(0) = f(nx + (-n)x) = f(nx) \cdot f(-nx) = (f(x))^n f(-nx)$$

(d) r = 0

$$f(rx) = f(0) = 1 = (f(x))^0$$

(e) $r = \frac{1}{r}$

$$f(x) = f(n \cdot \frac{x}{n}) = (f(\frac{x}{n}))^n$$
$$f(\frac{1}{n}x) = (f(x))^{\frac{1}{n}}$$

(f) $r = \frac{m}{n}$ $m \in \mathbb{Z}, n \in \mathbb{N}$

$$f(\frac{m}{n}x) = f(m \cdot (\frac{1}{n}x)) = (f(\frac{1}{n}x))^m = (f(x)^{\frac{1}{n}})^m$$

3. a = 1 f(1) = 1 $\forall r \in \mathbb{Q}$ $f(r) = 1^r = 1$

$$f$$
 — непр. и $f(x)=1$ при $x\in\mathbb{Q}\Rightarrow f\equiv 1$

a > 1. Тогда $\forall x > 0$ f(x) > 1

$$r\in\mathbb{Q}, r>0 \quad f(r)=r(r\cdot 1)=(f(1))^r=a^r>1$$

Значит $\forall x \in \mathbb{R}, x > 0$ берем $r_k \to x (r_k \in \mathbb{Q})$

$$f(r_k) \to f(x)$$
, значит $f(x) \ge 1$

$$f(x) = f((x-r) + r) = f(x-r) \cdot f(r) > 1$$

$$\exists r \in \mathbb{Q} : 0 < r < x$$

возр.
$$x \in \mathbb{R}, h > 0$$

$$f(x+h) = f(x) \cdot f(h)$$

$$f(h) > 1 \Rightarrow f(x+h) > f(x)$$

$$a < 1$$
 — аналогично.

4.
$$f(\mathbb{R}) = (\inf f, \sup f)$$

 $\inf f = 0 \quad \sup f = +\infty$
 $f(1) = a > 1$
 $a^n, n \in \mathbb{Z}$

5.
$$\tilde{f}(1) = f(1) \Rightarrow \forall r \quad \tilde{f}(r) = f(r)$$

$$\forall x \quad r_k \to x$$

$$\tilde{f}(r_k) = f(r_k)$$

$$\tilde{f}(r_k) \to \tilde{f}(x); f(r_k) \to f(x) \Rightarrow f(x) = \tilde{f}(x)$$

2.58 Выражение произвольной показательной функции через экспоненту. Два следствия

2.59 Показательная функция от произведения

Дана выше. (2.57, стр. 39)

2.60 Формула Тейлора с остатком в форме Пеано

2.61 Формула Тейлора с остатком в форме Лагранжа

2.62 Метод Ньютона

$$f:\langle a,b
angle o\mathbb{R}$$
 — дважды дифф. $m:=\inf_{\langle a,b
angle}|f'|>0$ $M:=\sup|f''|$ $\xi\in(a,b):f(\xi)=0$ $x_1\in(a,b):|x_1-\xi|rac{M}{2m}<1$

Рассмотрим последовательность $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Тогда $\exists \lim x_n = \xi$ и при этом !. Кроме того, оно очень быстро сходится.

$$|x_n - \xi| \le \left(\frac{M}{2m}|x_1 - \xi|\right)^{2n}$$

2.63 Иррациональность числа e^2

$$e^2$$
 — ирр.

Доказательство. Предположим обратное: e^2 — рационально. Тогда e^2 представимо следующим образом:

$$e^2 = \frac{2k}{n}$$

$$ne = 2ke^{-1}$$

$$n(2k-1)!e = (2k)!e^{-1}$$

$$n(2k-1)!e = n(2k-1)! \left(1+1+\frac{1}{2}+\ldots+\frac{1}{(2k-1)!}+\frac{e^c}{(2k)!}\right) = \text{целое число}+\frac{me^c}{2k}$$

$$\frac{me^c}{2k} \leq \frac{me}{2k} = e \cdot e^{-2} = e^{-1} \leq \frac{1}{2}$$

$$(2k)!e^{-1} = (2k)! \left(1-1+\frac{1}{2}+\ldots+\frac{1}{(2k)!}-\frac{e^d}{(2k+1)!}\right) = \text{целое число}-\frac{e^d}{2k+1}$$

$$\frac{e^d}{2k+1} \leq \frac{1}{2k+1} \leq \frac{1}{3}e^d \leq 1$$

2.64 Следствие об оценке сходимости многочленов Тейлора к функции. Примеры

2.65 Теорема о разложении рациональной функции на простейшие дроби

$$P(x),Q(x)$$
 — многочлен $\deg P<\deg Q=n$ $Q(x)=(x-a_1)^{k_1}\dots(x-a_m)^{k_m}\quad (k_1+\dots+k_m=n;a_i\neq a_j)$ Тогда \exists

$$\frac{P(x)}{Q(x)} = \left(\frac{A_1}{(x-a_1)} + \frac{A_2}{(x-a_1)^2} + \dots + \frac{A_{k_1}}{(x-a_1)^{k_1}}\right) + \left(\frac{B_1}{(x-a_2)} + \frac{B_2}{(x-a_2)^2} + \dots + \frac{B_{k_2}}{(x-a_2)^{k_2}}\right) + \dots + \left(\frac{C_1}{(x-a_m)} + \frac{C_2}{(x-a_m)^2} + \dots + \frac{C_{k_m}}{(x-a_m)^{k_m}}\right)$$

Доказательство.

$$\frac{P(x)}{(x-a_1)^{k_1}\dots(x-a_m)^{k_m}} = \frac{1}{(x-a_1)^{k_1}}\frac{P(x)}{(x-a_2)^{k_2}\dots(x-a_m)^{k_m}} =$$

$$= \frac{1}{(x-a_1)^{k_1}}(A_{k_1}+A_{k_1+1}(x-a_1)+A_{k_1-2}(x-a_1)^2+\dots+A_1(x-a_1)^{k_1}+o((x-a_1)^{k_1}))$$

$$\frac{P}{Q}-\left(\frac{A_1}{x-a_1}+\dots+\frac{A_{k_1}}{(x-a_1)^{k_1}}\right) = \frac{o((x-a_1)^{k_1})}{(x-a_1)^{k_1}}$$

$$\frac{P}{Q}-\text{ (Пр. часть)} = \text{ знам. сократится} \Rightarrow \text{ многочлен} \equiv 0$$