数学基础

指数

$$ullet$$
 $X^aX^b=X^{a+b}$

$$ullet$$
 $rac{X^a}{X^b}=X^{a-b}$

$$\bullet \ (X^a)^b = X^{ab}$$

$$\bullet \ X^a + X^a = 2X^a$$

•
$$2^a + 2^a = 2^{a+1}$$

对数

一般,以2为底数

定义: $X^a = B$,则当且仅当 $log_x B = a$

• $log_A B = \frac{log_c B}{log_c A}$

证明:

$$C^{x} = B, C^{y} = A, A^{z} = B$$
 $=> C^{x} = B = A^{z} = (C^{y})^{z}$
 $=> C^{x} = (C^{y})^{z}$
 $=> log_{A}B = z = x/y = \frac{log_{C}B}{log_{C}A}$

•
$$logAB = logA + logB$$

•
$$logA/B = logA - logB$$

•
$$log(A^B) = B log A$$

•
$$logX < X($$
对所有的 $X > 0$ 成立)

$$ullet \ log1=0, log2=1, log1024=10, log1048576=20$$

级数

$$ullet \sum_{i=0}^{N} 2^i = 2^{N+1} - 1$$

•
$$\sum_{i=0}^N A^i = rac{A^{N+1}-1}{A-1}$$
,若 $0 < A < 1$,则 $\sum_{i=0}^N A^i \leq rac{1}{1-A}$ 证明:

$$S=\sum_{i=1}^{+\infty}A^i, (0 < A < 1)$$
 $S=1+A+A^2+A^3+\dots$ $AS=A+A^2+A^3+A^4+\dots$ 将两式相减, $S-AS=1+(A^{+\infty}->0)$ 当 $S->+\infty, S=rac{1}{1-A},$ 因 $N\leq +\infty,$ 故 $\sum_{i=0}^{N}A^i=S_N\leq S=rac{1}{1-A},$

• $\sum_{i=1}^{+\infty}i/2^i$ = 2证明:

$$S=rac{1}{2}+rac{2}{2^2}+rac{3}{2^3}+rac{4}{2^4}+\dots$$
 $2*S$, 得 $2S=1+rac{2}{2^1}+rac{3}{2^2}+rac{4}{2^3}+\dots$ 两式相减, $S=1+rac{1}{2}+rac{1}{2^2}+rac{1}{2^3}+rac{1}{2^4}+\dots$ 等差数列, $S=2$