Chapter 16 Review - Vector Calculus

Vector field F'assigns a vector to each point. Example: Vf, the gradient is a vector field. line integrals: $\int_{C} f(xy) ds = \int_{a}^{b} f(r(t)) \cdot |F'(t)| dt$ { (16.2) Spidi= SiF((+)) · i'(+)d+ = SiPdx+Qdy+RdZ Sof. do = f(r(b)) - f(r(a)) F'is conservative if there is f with $\nabla F = \vec{F}$ f is called a potential fruction for \vec{F} . #Thm: $\vec{F}=\langle P,Q\rangle$ Continuous Partials $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}\Rightarrow \vec{F}$ Conservative Green's Thm: & Pdx + Qdy = $\int \int \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} dA$ (16.4) $\operatorname{Curl} \vec{F} = \nabla \times \vec{F} = \begin{vmatrix} \vec{j} & \vec{k} \\ \vec{j} & \vec{j} & \vec{j} \\ \vec{j} & \vec{k} \end{vmatrix}$ $\operatorname{div} \vec{F} = \nabla \cdot \vec{F} = \frac{\partial P}{\partial x} + \frac{\partial G}{\partial y} + \frac{\partial R}{\partial z}$ (16.5)Thm: For R3 Curl F=0 then Fronze avaitive Parametric Surface: S: x = x(u,v) y = y(u,v) z = z(u,v) $(u,v) \in D$ (16.6) toget plane: $\vec{n} = (\vec{r}_u \times \vec{r}_v)$ Surface Area: $A(s) = \iint (\vec{r}_u \times \vec{r}_v) dA$ Sfds = Sf (r(un)) | ruxrildA Flux = \(\int \vec{F} \cds = \int \vec{F} \cds = \int \vec{F} \cds = \int \vec{F} \cds = \int \vec{F} \cds \

= SS -P = Q= Q= +R dA Stokes: Fidi = Marifids (16.8) Divergence Thm: MF.ds = Mdiv FdV (16.9)

Chapter 16 Practice

(1) find the equation and parametric equations of the tangent plane at $(\sqrt{\frac{1}{2}}, -\frac{\sqrt{2}}{2}, -2)$ to the parametric surface $S: 7(u,v) = \langle v(osu, vsinu, zv) \rangle$ for $-1 \le v \le 2$ and $0 \le u \le \pi$. $(\sqrt{\frac{1}{2}}, -\frac{\sqrt{2}}{2}, -2) \rightarrow v = -1$ $u = \frac{3\pi}{4}$

$$X = \frac{\sqrt{2}}{2} + \sqrt{2}t \quad Y = \frac{-\sqrt{2}}{2} - \sqrt{2}t \quad Z = -2 + t$$

$$\sqrt{2} \left(x - \frac{\sqrt{2}}{2} \right) - \sqrt{2} \left(y + \frac{\sqrt{2}}{2} \right) + \left(2 + 2 \right) = 0$$

2) Find a parametrization of

S:
$$3x + x^2 + 2y^2 - 2^2 = 3$$
 for $z \ge 0$

$$Z = \sqrt{3x + x^2 + 2y^2} - 3 \qquad X = x \qquad y = y$$

$$Z \ge 0 \qquad 3x + x^2 + 2y^2 \ge 3$$

(4) F= (y 6052, x 6052, -xy 5in2) find [F.di for any curre with initial point (0,0,0) and terminal point (1,1,0).

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{C} \nabla f \cdot d\vec{r} = f(1,1,0) - f(0,0,0) \text{ where } f(x,y,z) = xy \cos z$$

$$= 1 - 0 = []$$

Chapter 16 Practice

(5) Set up $\iint xy \, dS$ over D, where S is part of the graph of $Z^2 + 4y^2$ between the planes Z = -2 and Z = -4 and D is the region for your parameters.

 $D: X^{2}+y^{2} \ge 1 \qquad X^{2}+y^{2} \le 4 \qquad S: \vec{r}(x,y) = \sqrt{4x^{2}+4y^{2}}, x=x, y=y$ $\Gamma(r,\theta) = \frac{1}{\sqrt{2}} \langle r(x,y), x \rangle = \frac{1}{\sqrt{2$

(b) Use Stokes: $\iint \text{Curl} \vec{F} \cdot d\vec{s}$ where $\vec{F} = \{y, -x, z^2\}$ and S is purt of $2 = -x^2 - y^2$ above z = -4.

 $\iint \operatorname{Curl} \vec{F} \cdot d\vec{s} = \iint_{C} \vec{F} \cdot d\vec{r} = \iint_{D} \vec{F} (2650, 25in\theta, 74) \cdot (-25in\theta, 2650, 26in\theta) \cdot d\theta$ $= \iint_{C} -45in^{2}\theta - 465^{2}\theta d\theta$ $= \underbrace{-8\pi}$

Where $\vec{F} = \langle 2y, 2y, 3z \rangle$ and S is the surface of the solid Right Lone $z^2 = x^2 + y^2$ for $0 \le z \le Z$. $\iint_S \vec{F} \cdot d\vec{s} = \iint_S div \vec{F} dV = \iint_S 5 dV$ $= 5 \cdot \frac{1}{2} \pi (2)^2 (2) = \frac{40}{3} \pi$