§ 22.

Lineare Systeme

In diesem Paragraphen sei $I \subseteq \mathbb{R}$ ein Intervall, $x_0 \in I, y_0 \in \mathbb{R}^n, D := I \times \mathbb{R}^n, b : I \to \mathbb{R}^n$ stetig und $A : I \to \mathbb{R}^{n \times n}$ ebenfalls stetig (d.h. für $A(x) = (a_{jk}(x))$ sind alle $a_{jk} : I \to \mathbb{R}$ stetig). Hier ist für alle $x \in I$ und $y = (y_1, \dots, y_n) \in \mathbb{R}^n$:

$$f(x,y) := A(x)y + b(x)$$

Definition

Das System von Differentialgleichungen:

$$y' = A(x)y + b(x) \tag{S}$$

heißt ein **lineares System**. (Fall n = 1 siehe §19.)

Ist $b \equiv 0$, so heißt (S) homogen, anderenfalls inhomogen.

Neben (S) betrachten wir auch noch das zu (S) gehörige homogene System

$$y' = A(x)y \tag{H}$$

und das \mathbf{AwP}

$$\begin{cases} y' = A(x)y + b(x) \\ y(x_0) = y_0 \end{cases}$$
 (A)

Satz 22.1 (Lösungen)

- (1) (A) hat auf *I* genau eine Lösung.
- (2) Das System (S) hat Lösungen auf I.
- (3) Ist $J \subseteq I$ ein Intervall und $\hat{y}: J \to \mathbb{R}^n$ eine Lösung von (S), so gibt es eine Lösung $y: I \to \mathbb{R}^n$ von (S) mit $\hat{y} = y$ auf J.
- (4) Sei $y_s: I \to \mathbb{R}^n$ eine spezielle Lösung von (S), dann ist $y: I \to \mathbb{R}^n$ genau dann eine Lösung von (S) auf I, wenn eine Lösung $y_h: I \to \mathbb{R}^n$ von (H) existiert mit:

$$y = y_h + y_s$$

Bemerkung 22.2

Wegen 22.1(3) gehen wir immer davon aus, dass Lösungen von (S) auf ganz I definiert sind.

Beweis

(1) **Fall 1:** I = [a, b]

Es ist f(x,y) = A(x)y + b(x). Sei $L := \max\{||A(x)|| : x \in I\}$. Für alle $(x,y), (x,\overline{y}) \in D$ gilt:

$$||f(x,y) - f(x,\overline{y})|| = ||A(x)(y - \overline{y})||$$

$$\stackrel{\$1}{\leq} ||A(x)|| \cdot ||y - \overline{y}||$$

$$\leq L||y - \overline{y}||$$

Die Behauptung folgt aus 21.3.

Fall 2: I beliebig.

Sei $\mathfrak{M} := \{K \subseteq I : K \text{ ist kompaktes Intervall, } x_0 \in K\}$. Dann ist $I = \bigcup_{K \in \mathfrak{M}} K$. Ist $x \in I$, so existiert ein $K \in \mathfrak{M}$ mit $x \in K$. Nach Fall 1. hat das AwP auf K genau eine Lösung $y_K : K \to \mathbb{R}^n$. Definiere nun $y : I \to \mathbb{R}^n$ wie folgt:

$$y(x) \coloneqq y_K(x) \tag{*}$$

Sei $\tilde{K} \in \mathfrak{M}$ mit $x \in \tilde{K}$ und sei $y_{\tilde{K}}$ die eindeutig bestimmte Lösung von (A) auf \tilde{K} . Dann ist $y_K = y_{\tilde{K}}$ auf $K \cap \tilde{K}$, also:

$$y_K(x) = y_{\tilde{K}}(x)$$

D.h. y ist durch (*) wohldefiniert.

Leichte Übung: y ist auf I db und löst das AwP auf I.

Sei $\tilde{y}: I \to \mathbb{R}^n$ eine weitere Lösung von (A) auf I und sei $x \in I$. Dann existiert ein $K \in \mathfrak{M}$ mit $x \in K$ und nach Definition gilt $y(x) = y_K(x)$. Da \tilde{y}_K eine Lösung des AwPs (A) auf K ist, gilt nach Fall 1.: $\tilde{y} \mid_{K} = y_K$ Dann gilt also:

$$\tilde{y}(x) = \tilde{y} \mid_K (x) = y_K(x) = y(x)$$

- (2) Folgt aus (1).
- (3) Sei $\xi \in J, \eta := \hat{y}(\xi)$. Dann ist \hat{y} eine Lösung auf J des AwPs

$$\begin{cases} y' = A(x) + b(x) \\ y(\xi) = \eta \end{cases} \tag{+}$$

Aus (1) folgt, dass das AwP auf I eine eindeutig bestimmte Lösung $y:I\to\mathbb{R}^n$ hat. Sei $x\in J$.

Fall $x = \xi$:

In diesem Fall gilt:

$$\hat{y}(x) = \hat{y}(\xi) = \eta = y(\xi) = y(x)$$

Fall $x > \xi$:

Sei $K := [\xi, x]$. Da \hat{y} und y Lösungen des AwPs (+) auf $[\xi, x]$ sind folgt aus (1), dass $y = \hat{y}$ auf K, also:

$$\hat{y}(x) = y(x)$$

Fall $x < \xi$:

Sei $K := [x, \xi]$. Da \hat{y} und y Lösungen des AwPs (+) auf $[x, \xi]$ sind folgt aus (1), dass $y = \hat{y}$ auf K, also:

$$\hat{y}(x) = y(x)$$

(4) Leichte Übung!

Definition

Setze $\mathbb{L} := \{ y : I \to \mathbb{R}^n : y \text{ ist eine Lösung von (H) auf } I \}$ $(y \equiv 0 \text{ liegt in } \mathbb{L})$

Satz 22.3 (Lösungsmenge als Vektorraum)

- (1) Sind $y^{(1)}, y^{(2)} \in \mathbb{L}$ und $\alpha \in \mathbb{R}$, so sind $y^{(1)} + y^{(2)} \in \mathbb{L}$ und $\alpha y^{(1)} \in \mathbb{L}$. \mathbb{L} ist also ein reeller Vektorraum.
- (2) Seien $y^{(1)},...,y^{(k)} \in \mathbb{L}$. Dann sind äquivalent:
 - (i) $y^{(1)}, ..., y^{(k)}$ sind in \mathbb{L} linear unabhängig.
 - (ii) $\forall x \in I \text{ sind } y^{(1)}(x), ..., y^{(k)}(x) \text{ linear unabhängig im } \mathbb{R}^n.$
 - (iii) $\exists \xi \in I : y^{(1)}(\xi), ..., y^{(k)}(\xi)$ sind linear unabhängig im \mathbb{R}^n .
- (3) dim $\mathbb{L} = n$.

Beweis

- (1) Nachrechnen
- (2) Der Beweis erfolgt durch Ringschluss:
- (i) \Longrightarrow (ii) Sei $x_1 \in I$. Seien $\alpha_1, ..., \alpha_k \in \mathbb{R}$ und

$$0 = \alpha_1 y^{(1)}(x_1) + \dots + \alpha_k y^{(k)}(x_1)$$
$$\tilde{y} := \alpha_1 y^{(1)} + \dots + \alpha_k y^{(k)}$$

Aus (1) folgt: $\tilde{y} \in \mathbb{L}$. Weiter ist \tilde{y} eine Lösung des AwPs

$$\begin{cases} y' = A(x)y\\ y(x_1) = 0 \end{cases}$$

Da $y \equiv 0$ dieses AwP ebenfalls löst und aus 22.1 folgt, dass das AwP eindeutig lösbar ist, muss gelten:

$$0 = \tilde{y} = \alpha_1 y^{(1)} + \dots + \alpha_k y^{(k)}$$

Aus der Voraussetzung folgt dann:

$$\alpha_1 = \alpha_2 = \cdots = \alpha_k = 0$$

Also sind $y^{(1)}(x_1),...,y^{(k)}(x_1)$ sind linear unabhängig im \mathbb{R}^n .

- (ii) ⇒ (iii) Klar ✓
- (iii) \implies (i) Seien $\alpha_1,...,\alpha_k \in \mathbb{R}$ und $0 = \alpha_1 y^{(1)} + \cdots + \alpha_k y^{(k)}$, dann folgt:

$$0 = \alpha_1 y^{(1)}(\xi) + \dots + \alpha_k y^{(k)}(\xi)$$

Aus der Voraussetzung folgt dann: $\alpha_1 = \alpha_2 = \cdots = \alpha_k = 0$ Also sind $y^{(1)}, ..., y^{(k)}$ linear unabhängig in \mathbb{L} .

(3) Aus (2) folgt, dass dim $\mathbb{L} \leq n$ ist.

Für j = 1, ..., n sei $y^{(j)}$ die eindeutig bestimmte Lösung des AwPs

$$\begin{cases} y' = A(x)y \\ y(x_0) = e_j \end{cases} \quad (e_j = \text{ j-ter Einheitsvektor im } \mathbb{R}^n).$$

Dann sind $y^{(1)}(x_0),...,y^{(n)}(x_0)$ linear unabhängig im \mathbb{R}^n . Aus (2) folgt, dass $y^{(1)},...,y^{(k)}$ linear unabhängig in \mathbb{L} sind, also ist dim $\mathbb{L} \geq n$.

Definition

Sei $B: I \to \mathbb{R}^{n \times n}, B(x) = (b_{jk}(x))$ für alle $x \in I$.

B heißt differenzierbar auf I, genau dann wenn $b_{jk}: I \to \mathbb{R}$ auf I differenzierbar sind $(j, k = 1, \ldots, n)$.

In diesem Fall ist

$$B'(x) := (b'_{ik}(x)) \quad (x \in I)$$

Definition

(1) Seien $y^{(1)},...,y^{(n)} \in \mathbb{L}$. $y^{(1)},...,y^{(n)}$ heißt ein **Lösungssystem** (LS) von (H).

$$Y(x) := (y^{(1)}(x), ..., y^{(n)}(x))$$

(j-te Spalte von $Y = y^{(j)}$) heißt **Lösungsmatrix** (LM) von (H).

$$W(x) := \det Y(x)$$

heißt Wronskideterminante.

- (2) Sei $y^{(1)},...,y^{(n)}$ ein Lösungssystem von (H). Sind $y^{(1)},...,y^{(n)}$ linear unabhängig in \mathbb{L} , so heißt $y^{(1)},...,y^{(n)}$ ein **Fundamentalsystem** (FS) und $Y=(y^{(1)},...,y^{(n)})$ eine **Fundamentalmatrix** (FM).
- (3) Ist $y^{(1)},...,y^{(n)}$ ein FS von (H), so lautet die allgemeine Lösung von (H):

$$y(x) = c_1 y^{(1)}(x) + \dots + c_n y^{(n)}(x) \quad (c_1, \dots, c_n \in \mathbb{R})$$

Satz 22.4 (Zusammenhang FS, FM und Wronskideterminante) $y^{(1)},...,y^{(n)}$ sei ein LS von (H). Y und W seien definiert wie oben. Dann:

- $(1) Y'(x) = A(x)Y(x) \quad \forall x \in I.$
- (2) $y^{(1)}, ..., y^{(n)}$ ist ein Fundamentalsystem von (H)

 $\iff \forall x \in I : Y(x) \text{ invertierbar}$

 $\iff \exists \xi \in I : Y(\xi) \text{ ist invertierbar}$

 $\iff \forall x \in I : W(x) \neq 0$

 $\iff \exists \xi \in I : W(\xi) \neq 0.$

Beweis

(1) Nachrechnen

(2) folgt aus 22.3.

Spezialfall: n = 2. $A(x) = \begin{pmatrix} a_1(x) & -a_2(x) \\ a_2(x) & a_1(x) \end{pmatrix}$; $a_1, a_2 : I \to \mathbb{R}$ stetig. Sei $y^{(1)} = (y_1, y_2)$ eine Lösung von

$$y' = A(x)y \tag{*}$$

auf I und $y^{(1)} \not\equiv 0$. Das heißt:

$$\begin{cases} y_1' = a_1(x)y_1 - a_2(x)y_2 \\ y_2' = a_2(x)y_1 + a_1(x)y_2 \end{cases}$$

Setze $y^{(2)} := (-y_2, y_1)$. Dann ist:

$$A(x)y^{(2)} = \begin{pmatrix} -a_1(x)y_2 - a_2(x)y_1 \\ -a_2(x)y_2 + a_1(x)y_1 \end{pmatrix} = \begin{pmatrix} -y_2' \\ y_1' \end{pmatrix} = \begin{pmatrix} y^{(2)} \end{pmatrix}'$$

Das heißt: $y^{(2)}$ löst ebenfalls (*) auf I, oder: $y^{(1)}, y^{(2)}$ ist ein Lösungssystem von (*).

$$Y(x) = \begin{pmatrix} y_1(x) & -y_2(x) \\ y_2(x) & y_1(x) \end{pmatrix}, W(x) = \det Y(x) = y_1(x)^2 + y_2(x)^2 \neq 0$$

Mit 22.4 folgt: $y^{(1)}, y^{(2)}$ ist ein Fundamentalsystem von (*).

Beispiel
$$(n=2), A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix};$$

$$y' = Ay \tag{*}$$

und $y = (y_1, y_2)$. Also: $\begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = \begin{pmatrix} -y_2 \\ y_1 \end{pmatrix}$.

 $y^{(1)}(x) \coloneqq \begin{pmatrix} \cos(x) \\ \sin(x) \end{pmatrix} \text{ ist eine L\"osung von } (*) \text{ auf } \mathbb{R}. \ y^{(2)}(x) \coloneqq \begin{pmatrix} -\sin(x) \\ \cos(x) \end{pmatrix} \text{ ist eine weitere L\"osung von } (*) \text{ auf } \mathbb{R}. \ y^{(1)}, y^{(2)} \text{ ist ein Fundamental system von } (*). \text{ All gemeine L\"osung von } (*) \text{:} \\ y(x) = \begin{pmatrix} c_1 \cos(x) - c_2 \sin(x) \\ c_1 \sin(x) + c_2 \cos(x) \end{pmatrix} \quad (c_1, c_2 \in \mathbb{R}).$

Ohne Beweis:

Satz 22.5 (Spezielle Lösung)

Sei $y^{(1)},...,y^{(n)}$ ein Fundamentalsystem von (H), Y(x) sei definiert wie oben. Setze

$$y_s(x) := Y(x) \int Y(x)^{-1} b(x) dx \quad (x \in I).$$

Dann ist y_s eine spezielle Lösung von (S) auf I.

$$W_k(x) := \det \left(y^{(1)}(x), ..., y^{(k-1)}(x), b(x), y^{(k+1)}(x), ..., y^{(n)}(x) \right) \quad (k = 1, ..., n)$$

Dann gilt: $y_s(x) = \sum_{k=1}^n \left(\int \frac{W_k(x)}{W(x)} dx \right) y^{(k)}(x)$.

Beispiel

Bestimme die allgemeine Lösung von

$$y' = Ay + \begin{pmatrix} -\sin(x) \\ \cos(x) \end{pmatrix},\tag{+}$$

wobei

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Bekannt: Fundamentalsystem der homogenen Gleichung y' = Ay:

$$y^{(1)}(x) = \begin{pmatrix} \cos(x) \\ \sin(x) \end{pmatrix}, y^{(2)}(x) = \begin{pmatrix} -\sin(x) \\ \cos(x) \end{pmatrix}.$$

$$W(x) = \begin{vmatrix} \cos(x) & -\sin(x) \\ \sin(x) & \cos(x) \end{vmatrix} = \cos^{2}(x) + \sin^{2}(x) = 1.$$

$$W_{1}(x) = \begin{vmatrix} -\sin(x) & -\sin(x) \\ \cos(x) & \cos(x) \end{vmatrix} = 0.$$

$$W_{2}(x) = \begin{vmatrix} \cos(x) & -\sin(x) \\ \sin(x) & \cos(x) \end{vmatrix} = 1.$$

$$y_{s}(x) := \left(\int 1 \, dx \right) y^{(2)}(x) = xy^{(2)}(x) = \begin{pmatrix} -x\sin(x) \\ x\cos(x) \end{pmatrix} \text{ ist eine spezielle Lösung von } (+).$$

Allgemeine Lösung von (+):

$$y(x) = \underbrace{c_1 \begin{pmatrix} \cos(x) \\ \sin(x) \end{pmatrix} + c_2 \begin{pmatrix} -\sin(x) \\ \cos(x) \end{pmatrix}}_{\text{allg. Lsg. der hom. Glg.}} + \underbrace{\begin{pmatrix} -x\sin(x) \\ x\cos(x) \end{pmatrix}}_{\text{spez. Lsg.}} = \underbrace{\begin{pmatrix} c_1 \cos(x) - c_2 \sin(x) - x\sin(x) \\ c_1 \sin(x) + c_2 \cos(x) + x\cos(x) \end{pmatrix}}_{\text{cos}(x) + x\cos(x)} (c_1, c_2 \in \mathbb{R})$$

Löse das AwP
$$\begin{cases} y' = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} y + \begin{pmatrix} -\sin(x) \\ \cos(x) \end{pmatrix} \\ y(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{cases}$$

Es gilt:

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = y(0) = \begin{pmatrix} c_1 \cos(0) - c_2 \sin(0) - 0 \cdot \sin(0) \\ c_1 \sin(0) + c_2 \cos(0) + 0 \cdot \cos(0) \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}.$$

Also: $c_1 = c_2 = 0$, d.h.: **die** Lösung des AwP ist: $y(x) = \begin{pmatrix} -x\sin(x) \\ x\cos(x) \end{pmatrix}$.