МФТИ

Алгоритмы и структуры данных, осень 2022 Домашнее задание №11. Теория чисел

Везде, где не сказано иное, предполагается, что используемые числа помещаются в стандартные типы данных; погрешностями округления пренебречь.

- **1.** (1 балл) За O(n) найдите количество делителей у всех чисел среди $1,2,\ldots$
- **2.** (1 балл) В этой задаче можно пользоваться фактом, что $\sum_{\substack{p\leqslant n\\p \text{ простое}}}\frac{1}{p}=O(\log\log n)$. За $O(n\log\log n)$

найдите все простые числа, лежащие в отрезке $[n^2, n^2 + n]$.

- **3.** (5 баллов) По данным a,b,n,m найдите $\sum_{k=0}^{n} \left\lfloor \frac{ka}{b} \right\rfloor$ по модулю m за $O(\log a + \log b)$. Указание: воспользуйтесь алгоритмом Евклида.
- **4.** (2 балла) Найдите число решений уравнения $x^n + y^n = z^n$ в кольце вычетов \mathbb{Z}_m . Асимптотика: $O(N \log N)$, где $N = \max\{n, m\}$.
- **5.** (3 балла) Пусть n чётно. Номер трамвайного билета это строка из n допустимых цифр (допустимыми являются некоторые десятичные цифры d_1, \ldots, d_k , то есть не обязательно все цифры от 0 до 9). За $O(n \log n)$ найдите число счастливых билетов, то есть таких билетов, в которых сумма первых n/2 цифр равна сумме остальных.
- **6.** (5 баллов) Пусть даны два набора чисел: a_0, \dots, a_{k-1} и b_0, \dots, b_{k-1} , где $k = 2^n$ для некоторого n. Определим $c_z = \sum_{i \oplus j = z} a_i \cdot b_j$ и $d_z = \sum_{i \vee j = z} a_i \cdot b_j$. Найдите массивы c и d за $O(k \log k)$. Указание: рассмотрите

многочлены от n переменных, каждая из которых входит в каждый моном не более чем в первой степени; перемножьте их и поймите, как нужно избавиться от получившихся квадратов (какие x нужно подставить); выполните многомерное преобразование Фурье.

7. (3 балла) Даны строки $s=s_0\dots s_{n-1}$ и $p=p_0\dots p_{m-1}$, а также число k. Говорим, что p входит в s на позиции i со степенью смешения k, если для каждого $j \in [0, m-1]$ существует такое ℓ , отличающееся от i+j не более чем на k, что $p_i=s_\ell$. Найдите число таких вхождений за $O(|\Sigma|\cdot n\log n)$.