XOR-SAT

Задача:

XORSAT (англ. XOR-satisfiability) выполнимость функции — задача распределения аргументов в булевой $KH\Phi$ функции, записанной в виде XOR- $KH\Phi$, таким образом, чтобы результат данной функции был равен 1.

Содержание

- 1 Описание
- 2 Пример решения XORSAT
 - 2.1 Пример
 - 2.2 Решение
- 3 Вычислительная сложность
- 4 См. также
- 5 Примечания
- 6 Источники информации

Описание

Одним из особых случаев SAT является класс задач, где каждый конъюнкт содержит операции \oplus (т. е. исключающее или), а не (обычные) \vee операторы. Формально, обобщенная КНФ с тернарным булевым оператором R работает только если 1 или 3 переменные дают true в своих аргументах. Конъюнкты, имеющие более 3 переменных могут быть преобразованы в сочетании с формулой преобразования с сохранением выполнимости булевой функции, т. е. XOR-SAT может быть снижена до XOR-SAT[1]

Это задача P-класса, так как XOR-SAT формулу можно рассматривать как систему линейных уравнений по модулю 2, которая, в свою очередь, может быть решена за $O(n^3)$ методом Гаусса $^{[2]}$. Такое представление возможно на основе связи между Булевой алгеброй и Булевым кольцом $^{[3]}$ и том факте, что арифметика по модулю 2 образует конечное поле $^{[4]}$.

Пример решения XORSAT

Пример

Красные пункты могут быть добавлены для возможности представления КНФ-функции в виде XOR-SAT.

$$ig|(a\oplus b\oplus c)\wedge(b\oplus \lnot c\oplus d)\wedge(a\oplus b\oplus \lnot d)\wedge(a\oplus \lnot b\oplus \lnot c)ig|\wedge(\lnot a\oplus b\oplus c)$$

Решение XOR-SAT задачи методом Гаусса

Система уравнений						
Переменные	Значение					
$a\oplus c\oplus d$	= 1					
$b \oplus \neg c \oplus d$	= 1					
$a \oplus b \oplus \neg d$	= 1					
$ eg a \oplus \neg b \oplus \neg c $	= 1					
$ eg a \oplus b \oplus c$	= 1					

(«1» означает «true», «0» означает «false») Каждый конъюнкт ведет к одному уравнению.

Нормированная система уравнений					
Переменные	Значение				
$a\oplus c\oplus d$	= 1				
$b\oplus c\oplus d$	= 0				
$a\oplus b\oplus d$	= 0				
$a\oplus b\oplus c$	= 1				
$a\oplus b\oplus c$	= 0				

Используя свойства Булевых колец

 $(\neg x=1\oplus x, x\oplus x=1),$ избавимся от отрицаний в нашей системе

Матрица соответствующих коэффициентов							
a	b	c	d		Строка		
1	0	1	1	1	A		
0	1	1	1	0	В		
1	1	0	1	0	C		
1	1	1	0	1	D		

Составим матрицу по следующему правилу:

Если переменная присутствовала в данном коньюнкте ставим в ячейку 1, иначе 0

Преобразования, чтобы сформировать верхнюю треугольную матрицу								
a	b	c	d		Операция			
1	0	1	1	1	A			
1	1	0	1	0	C			
1	1	1	0	1	D			
0	1	1	1	0	В			

Поменяем местами строки $B,\ C,\ D,$ чтобы упростить получение верхней треугольной матрицы.

1	0	1	1	1	A
0	1	1	0	1	$E = C \oplus A$
0	1	0	1	0	$F=D\oplus A$
0	1	1	1	0	В

Т.к. операция \oplus даёт 0 при одинаковых аргументах, применим её для строк $A,\ C=E$ и $A,\ D=F,$ чтобы получить 0 в 1-м столбце.

1	0	1	1	1	A
0	1	1	0	1	E
0	0	1	1	1	$G=F\oplus E$
0	0	0	1	1	$H=B\oplus E$

Теперь применим \oplus для строк $E,\ F=G$ и $B,\ E=H,$ чтобы получить 0 в 2-м и 3-м столбцах.

Преобразования, чтобы сформировать диагональную матрицу bdcОперация a $I = A \oplus H$ 1 0 1 0 0 E0 1 1 0 1 $J=G\oplus H$ 0 0 0 1 0 H1 1 0 0 0

Чтобы получить основную диагональную матрицу, $\text{сделаем} \oplus A, \ H = I \text{ и } G, \ H = J,$ чтобы получить 0 в 4-м столбце выше диагонали.

1	0	0	0	0	$K = I \oplus J$
0	1	0	0	1	$L=E\oplus J$
0	0	1	0	0	J
0	0	0	1	1	H

Осталось сделать $\oplus \, I, \,\, J = K$ и $E, \,\, J = L,$ потому что они отличаются в 1-м и 2-м столбцах.

Решение

Если **красный пункт** присутствует: *Решений нет* Иначе:

$$a=0=\mathtt{false}$$

 $b=1=\mathtt{true}$ $c=0=\mathtt{false}$ $d=1=\mathtt{true}$

Вычислительная сложность

Поскольку $a\oplus b\oplus c$ принимает значение **true**, если и только если 1 из 3 переменных $\{a, b, c\}$ принимает значение **true**, каждое решение в 1-in-3-SAT задачи для данной КНФ-формулы является также решением XOR-3-SAT задачи, и, в свою очередь, обратное также верно.

Как следствие, для каждой КНФ-формулы, можно решить XOR-3-SAT-задачу и на основании результатов сделать вывод, что либо 3-SAT задача решаема или, что 1-in-3-SAT-задача нерешаема. При условии, что P- и NP-классы не равны, ни 2-, ни Хорн-, ни XOR-SAT не являются задачи NP-класса, в отличии от SAT.

См. также

- Специальные формы КНФ
- 2SAT
- № NP-полнота задачи о выполнимости булевой формулы в форме 3-КНФ

Формула с 2-мя дизьюнктами может быть неудовлетворена(красный), 3-SAT (зелёный), XOR-3-SAT (синий), или/и 1-in-3-SAT, в зависимости от количества переменных со значением true в 1-м (горизонтальном) и втором (вертикальном) конъюнкте.

Примечания

- 1. Alfred V. Aho; John E. Hopcroft; Jeffrey D. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley.; здесь: Thm.10.4, 1974.
- 2. Метод Гаусса (https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D0%9 3%D0%B0%D1%83%D1%81%D1%81%D0%B0)
- 3. Связь между Булевой алгеброй и Булевым кольцом (https://en.wikipedia.org/wiki/Boolean_algebra_(s tructure)#Boolean_rings)
- 4. Конечное поле (https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%D0%B5%D1%87%D0%BD%D0%B5_%D0%BF%D0%BE%D0%BB%D0%B5)

Источники информации

- Википедия Boolean satisfiability problem (https://en.wikipedia.org/wiki/Boolean_satisfiability_problem)
- Cook, Stephen A. Proceedings of the 3rd Annual ACM Symposium on Theory of Computing: 151–158, 1971.

Источник — «http://neerc.ifmo.ru/wiki/index.php?title=XOR-SAT&oldid=85875»

■ Эта страница последний раз была отредактирована 4 сентября 2022 в 19:42.