Raqeebir Rab

The system of linear equation can be expressed in the matrix form as:

$$Ax = b....(1)$$

Gauss Elimination method is inefficient when equation with same coefficient [A], but with different right hand side constant {B}

- LU Factorization:
- In LU Factorization method, the coefficient matrix A of a system of linear equations can be factorized or decomposed into two triangular matrices L and U such that:

$$A = LU(2).$$

■ Rearrange equation (1): Ax - b = 0....(3)

Suppose equation (3) could be expressed as upper triangular system:

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} = > [U]\{x\} - \{c\} = 0(4)$$

Consider Lower triangular matrix with 1's on diagonal....

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \dots (5)$$

- Multiply equation (4) and (5)
- \blacksquare [L]{[U]{x} {d}} = [A]{x} {b}(6)
- ► From equation 6:
 - \blacksquare [L][U] = [A](7)
 - And [L] {d} = {b}(8)

Steps of LU decomposition Methods:

LU factorization Step: [A] is decomposed or factored in Lower[L] and Upper
 [U] triangular matrix.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

Forward Substitution Step: [L] {d} = {b} is used to generate an intermediate vector {d}

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b \end{bmatrix}$$

Backward Substitution Step: The result from forward substitution is used substitute [U]{X} = {d} to solve {x}

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$$

Multiply [L] and [U] we get:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ l_{21}u_{11} & l_{21}u_{12} + u_{22} & l_{21}u_{13} + u_{23} \\ l_{31}u_{11} & l_{31}u_{12} + l_{32}u_{22} & l_{31}u_{12} + l_{32}u_{23} + u_{33} \end{bmatrix}(9)$$

From equation (9) we can find the entries of L and U

$$u_{11} = a_{11}$$

$$u_{12} = a_{12}$$

$$u_{13} = a_{13}$$

$$l_{21} = \frac{a_{21}}{u_{11}}$$

$$u_{22} = a_{22} - l_{21}u_{12}$$

$$u_{23} = a_{23} - l_{21}u_{13}$$

$$l_{31} = \frac{a_{31}}{u_{11}}$$

$$l_{32} = \frac{a_{32} - l_{31} u_{12}}{u_{22}}$$

$$u_{33} = a_{33} - l_{31}u_{13} - l_{32}u_{23}$$

■ [L]and [U] can be:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{a_{21}}{u_{11}} & 1 & 0 \\ \frac{a_{31}}{u_{11}} & \frac{a_{32} - l_{31}u_{12}}{u_{22}} & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} - l_{21}u_{12} & a_{23} - l_{21}u_{13} \\ 0 & 0 & a_{33} - l_{31}u_{13} - l_{32}u_{23} \end{bmatrix}$$

- Now we get {d} from forward substitution
- Solve {x} from backward substitution

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 3 & 8 & 14 \\ 2 & 6 & 13 \end{bmatrix}$$
 $x = x2$ $x3$

$$\begin{array}{c}
 x1 \\
 x = x2 \\
 x3
 \end{array}$$

$$B = b2$$

$$b3$$

Suppose we have system of equation AX = B

We will find the matrix L and U where A = LU

$$\mathsf{L} = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix}$$

$$\mathsf{L} = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \qquad \qquad \mathsf{U} = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

Multiplying L and U LU and setting the answer equal to A gives:

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} \\ l_{21}u_{11} & l_{21}u_{12} + u_{22} & l_{21}u_{13} + u_{23} \\ l_{31}u_{11} & l_{31}u_{12} + l_{32}u_{22} & l_{31}u_{13} + l_{32}u_{23} + u_{33} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 4 \\ 3 & 8 & 14 \\ 2 & 6 & 13 \end{bmatrix}$$

Now we use this to find the entries in L and U. Consider 1st Row:

$$u_{11} = 1$$

$$u_{12} = 2$$

$$u_{13} = 4$$

■ Now consider the 2nd row

$$l_{21}u_{11} = 3$$
 $l_{21}*1 = 3$ $l_{21} = 3$ $l_{21}u_{12} + u_{22} = 8$ $3*2 + u_{22} = 8$ $u_{22} = 2$ $u_{23} = 2$ $u_{23} = 2$

Notice how, at each step, the equation being considered has only one unknown in it, and other quantities that we have already found. This pattern continues on the last row

Now consider the last row

$$l_{31}u_{11} = 2$$
 $l_{31}^*1 = 2$ $l_{31}u_{12} + l_{32}u_{22} = 6$ $2^*2 + l_{32}^*2 = 6$ $l_{31}u_{13} + l_{32}u_{23} + u_{33} = 13$ $(2^*4) + (1^*2) + u_{33} = 13$

$$l_{31} = 2$$

$$l_{32} = 1$$

$$u_{33} = 3$$

12

■ We have show that:

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 3 & 8 & 14 \\ 2 & 6 & 13 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$

And this is an LU decomposition of A

■ Solve the following system using LU decomposition.

$$x_1 + x_2 + x_3 = 1$$

$$4x_1 + 3x_2 - x_3 = 6$$

$$3x_1 + 5x_2 + 3x_3 = 4$$

Solution:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3 \end{bmatrix}$$

$$\begin{array}{c}
 x1 \\
 x = x2 \\
 x3
 \end{array}$$

$$b = 6$$

$$4$$

■ Step 1: Factorization Step:

$$[A] = [L][U]$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

$$=\begin{bmatrix} u_{11} & u_{12} & u_{13} \\ l_{21}u_{11} & l_{21}u_{12} + u_{22} & l_{21}u_{13} + u_{23} \\ l_{31}u_{11} & l_{31}u_{12} + l_{32}u_{22} & l_{31}u_{13} + l_{32}u_{23} + u_{33} \end{bmatrix}$$

- Now we use this to find the entries in L and U.
- Consider 1st Row:

$$u_{11} = 1$$

$$u_{12} = 1$$
 $u_{13} = 1$

Now consider the 2nd row

$$l_{21}u_{11} = 4$$
 $l_{21}^*1 = 4$ $l_{21} = 4$ $l_{21}u_{12} + u_{22} = 3$ $4^*1 + u_{22} = 3$ $u_{22} = -1$ $l_{21}u_{13} + u_{23} = -1$ $u_{23} = -5$

Now consider the last row

$$l_{31}u_{11} = 3$$
 $l_{31}*1 = 3$ $l_{31} = 3$ $l_{31}u_{12} + l_{32}u_{22} = 5$ $3*1 + l_{32}*(-1) = 5$ $l_{32} = -2$ $l_{31}u_{13} + l_{32}u_{23} + u_{33} = 3$ $(1*3)+(-5*-2) + u_{33} = 3$ $u_{33} = -10$

Now we have:

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 3 & -2 & 1 \end{bmatrix} \text{ and } U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & -5 \\ 0 & 0 & -10 \end{bmatrix}$$

Forward Substitution Step: [L] $\{d\} = \{b\}$ is used to generate an intermediate vector $\{d\}$

$$\begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 3 & -2 & 1 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 6 \\ 4 \end{bmatrix}$$

applying matrix multiplication:

$$-d_1=1$$

$$\rightarrow$$
 4 d_1 + d_2 +0 = 6

$$d_2 = 2$$

$$3d_1 - 2d_2 + d_3 = 4$$

$$d_3 = 5$$

Backward Substitution Step: The result from forward substitution is used substitute [U]{X} = {d} to solve {x}

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & -5 \\ 0 & 0 & -10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}$$

applying matrix multiplication we can solve the system:

$$-10x_3=5$$

$$\chi_3 = -\frac{1}{2}$$

$$-x_2 - 5x_3 = 2$$

$$\chi_2 = \frac{1}{2}$$

$$x_1 + x_2 + x_3 = 1$$

$$\chi_1 = 1$$

Solution of the system:

$$x_1 = 1$$
; $x_2 = \frac{1}{2}$; $x_3 = -\frac{1}{2}$

$$3x_1 + 2x_2 + x_3 = 10$$

$$2x_1 + 3x_2 + 2x_3 = 14$$

$$x_1 + 2x_2 + 3x_3 = 14$$

Solution:

$$A = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$

$$\begin{array}{c}
 x1 \\
 x = x2 \\
 x3
 \end{array}$$

$$b = 14$$
14

- We know, [A] = [L][U]
- ► From Gauss Elimination method we get:

$$U = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

$$R1: 3x_1 + 2x_2 + x_3 = 10$$

R2:
$$2x_1 + 3x_2 + 2x_3 = 14$$

R3:
$$x_1 + 2x_2 + 3x_3 = 14$$

Eliminate x_1 from R2 and R3

$$R2 - R2 + R1*(-3/2)$$

$$R3 - R3 + R1*(-1/3)$$

Modified System:

$$R1: 3x_1 + 2x_2 + x_3 = 10$$

R2':
$$5/3x_2 + 4/3x_3 = 22/3$$

R3':
$$4/3x_2 + 8/3x_3 = 32/3$$

$$R1: 3x_1 + 2x_2 + x_3 = 10$$

R2':
$$5/3x_2 + 4/3x_3 = 22/3$$

R3':
$$4/3x_2 + 8/3x_3 = 32/3$$

Eliminate x_2 from R3'

Modified System:

*R*1:
$$3x_1 + 2x_2 + x_3 = 10$$

R2':
$$5/3x_2 + 4/3x_3 = 22/3$$

R3'':
$$24/15x_3 = 72/15$$

Now we get L and U from Gauss Elimination:

► L =
$$\begin{bmatrix} 1 & 0 & 0 \\ 2/3 & 1 & 0 \\ 1/3 & 4/5 & 1 \end{bmatrix}$$
; $l_{21} = \frac{a_{21}}{a_{11}}$ $l_{31} = \frac{a_{31}}{a_{11}}$ and $l_{32} = \frac{a'_{32}}{a'_{22}}$

[L] {d} = {b} is used to generate an intermediate vector {d}

$$\begin{bmatrix} 1 & 0 & 0 \\ 2/3 & 1 & 0 \\ 1/3 & 4/5 & 1 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} = \begin{bmatrix} 10 \\ 14 \\ 14 \end{bmatrix}$$

- applying matrix multiplication:
 - $-d_1=10$
 - $-2/3d_1+d_2=14$

$$d_2 = 22/3$$

$$d_3$$
= 72/15

 $[U]{X} = {d} \text{ used to solve } {x}$

$$\begin{bmatrix} 3 & 2 & 1 \\ 0 & 5/3 & 4/3 \\ 0 & 0 & 24/15 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 10 \\ 22/3 \\ 72/15 \end{bmatrix}$$

- applying matrix multiplication:
 - $-x_3=3$
 - $-5/3x_2 + 4/3x_3 = 22/3$

$$x_2 = 2$$

$$3x_1 + 2x_2 + x_3 = 10$$
$$x_1 = 1$$

Solution of the system: $x_1=1$; $x_2=2$; $x_3=3$