Odevzdání: 22.9.2014

Vypracoval(a):

UČO:

Skupina:

2. [2 body] Mějme abecedu $\Sigma = \{a, b\}$.

Každý z následujících jazyků popište pomocí jednoprvkových jazyků $\{a\}$ a $\{b\}$ s využitím konečného počtu operací sjednocení (\cup) , průniku (\cap) , rozdílu (\cdot) , doplňku $(\operatorname{co-})$, zřetězení (\cdot) , mocniny $(^0, ^2, ^3, \ldots)$, iterace $(^*)$ a pozitivní iterace $(^+)$, mimo operací, které jsou zakázány u konkrétního jazyka. Navíc můžete používat pomocné jazyky rovněž zadefinované tímto způsobem.

- a) $\{a,b\}^+$ bez použití pozitivní iterace
- b) co
– $(\{aa\}^*)$ bez použití doplňku a rozdílu
- c) $\{\varepsilon\}$ bez použití mocniny a rozdílu
- d) co
– $\{a\}$ · co– $\{b\}$ bez použití doplňku a rozdílu

Nejdříve si pro lepší srozumitelnost zápisu řešení zadefinujeme pomocné jazyky:

- $L_{ab} = \{a, b\} = \{a\} \cup \{b\}$
- $L_{empty} = \emptyset = \{a\} \cap \{b\}$
- $L_{aa} = \{aa\} = \{a\} \cdot \{a\}$

Nyní můžeme pomocí povolených operací a pomocných jazyků zapsat jednotlivá řešení:

a) $\{a,b\}^+ = L_{ab} \cdot L_{ab}^*$

Je zřejmé, že pomocí L_{ab}^* vygenerujeme všechna slova nad abecedou Σ . Přiřetězením jazyka L_{ab} se zbavíme prázdného slova, které požadovaný jazyk $\{a,b\}^+$ neobsahuje, zároveň však všechna ostatní slova zachováme.

Další možné řešení je například $\{a,b\}^+ = L_{ab}^* \setminus L_{empty}^*$.

b) co- $(\{aa\}^*) = (L_{ab}^* \cdot \{b\} \cdot L_{ab}^*) \cup (\{a\} \cdot L_{aa}^*)$

První závorka vygeneruje všechna slova obsahující alespoň jedno b a druhá závorka vygeneruje právě slova obsahující lichý počet písmen a a žádné b.

c) $\{\varepsilon\} = L_{empty}^*$

Řešení plyne přímo z definice.

d) co-{a}·co-{b} = L_{ab}^*

Jedná se o jazyk obsahující všechna slova nad abecedou Σ . Je potřeba si dobře uvědomit, že jazyk co $-\{a\}$ skutečně obsahuje všechna slova nad Σ (včetně ε) kromě slova a. Obdobně pro jazyk co $-\{b\}$.

Definice zřetězení aplikovaná na naše jazyky vypadá následovně:

$$co-\{a\} \cdot co-\{b\} = \{u \cdot v \mid u \in co-\{a\} \land v \in co-\{b\}\}\$$

Nyní je zřejmě vidět, že pro $u = \varepsilon \in \text{co}-\{a\}$ se do výsledku vygeneruje co $-\{b\}$, tedy všechna slova až na b. To ovšem dostaneme pro $u = b \in \text{co}-\{a\} \land v = \varepsilon \in \text{co}-\{b\}$. Celkově tedy dostáváme L_{ab}^* .