			/	
		predicted condition		
	total population	prediction positive	prediction negative	Sensitivity
true	condition positive	True Positive (TP)	False Negative (FN) (Type II error)	Recall = $\frac{\sum TP}{\sum \text{condition positive}}$
condition	condition negative	False Positive (FP) (Type I error)	True Negative (TN)	Specificity = ΣTN / Σcondition negative
	Accuracy = $\frac{\sum TP + \sum TN}{\sum total population}$	$\frac{\text{Precision=}}{\sum \text{TP}}$ $\frac{\sum \text{prediction positive}}{\sum \text{prediction positive}}$		F1 Score = $ \frac{2}{\frac{1}{\text{Recall}} + \frac{1}{\text{Precision}}} $

Evaluation metrics

~Abhishek Kumar

Which model is better

Training

Testing

K-Fold Cross Validation

Credit Card Fraud

Model: All transactions are good.

Correct =
$$\frac{284,335}{284,807}$$
 = 99.83%

Diagnosis

		Diagnosed sick	Diagnosed Healthy
Patients	Sick	1000 True positives	200 False Negatives
	Healthy	800 False Positives	8000 True Negatives

Folder

Inbox Spam Folder E-mail Spam 100 170 True positives **False Negatives** Not spam 30 700 False Positives True Negatives

Patients

Accuracy

Diagnosis

	Diagnosed sick	Diagnosed Healthy
Sick	1000	200
Healthy	800	8000

Accuracy: Out of the all the patients, how many did we classify correctly?

Accuracy =

Accuracy

EVALUATION METRICS

False negatives **NOT** ok

Find all the sick people Ok if not all are sick

High Recall

Spam Detector

False positives **NOT** ok False negatives ok

You don't necessarily need to find all spam But they better all be spam

High Precision

Precision

Diagnosis

		Diagnosed sick	Diagnosed Healthy
Patients	Sick	1000	200 🔀
	Healthy	800	8000

Precision: Out of the patients we diagnosed with an illness, how many did we classify correctly?

Precision =
$$\frac{1,000}{1,000 + 800}$$
 = 55.7%

Precision

Folder

	Spam Folder	Inbox
Spam	100	170
Not spam	30 🔀	700

Precision: Out of the all the e-mails, sent to the spam inbox, how many were actually spam?

Precision =
$$\frac{100}{100 + 30}$$
 = 76.9%

Precision

Recall

Diagnosis

		Diagnosed Sick	Diagnosed Healthy
Patients	Sick	1000	200 🗶
	Is Healthy	800	8000

Recall: Out of the sick patients, how many did we correctly diagnose as sick?

Recall =
$$\frac{1,000}{1,000 + 200}$$
 = 83.3%

Recall

Folder

	Spam Folder	Inbox
Spam	100	170
Not spam	30 🔀	700

Recall: Out of the all the spam e-mails, how many were correctly sent to the spam folder?

Recall =
$$\frac{100}{100 + 170} = 37\%$$

Recall

Precision and Recall

Medical Model

Precision: 55.7%

Recall: 83.3%

Spam Detector

Precision: 76.9%

Recall: 37%

F1 Score

F1 Score =
$$\frac{2 \times 55.7 \times 83.3}{55.7 + 83.3} = 66.76\%$$

F1 Score

Precision = 75%

Recall = 85.7%

Average = 80.35

F1 Score =
$$\frac{2 \times 75 \times 85.7}{75 + 85.7} = 80\%$$

	predic		d condition	
	total population	prediction positive	prediction negative	Sensitivity
true	condition positive	True Positive (TP)	False Negative (FN) (Type II error)	Recall = $\frac{\sum TP}{\sum \text{condition positive}}$
condition	condition negative	False Positive (FP) (Type I error)	True Negative (TN)	Specificity = ∑TN / ∑condition negative
	Accuracy = $\frac{\sum TP + \sum TN}{\sum total population}$	$\frac{\Sigma \text{ TP}}{\Sigma \text{prediction positive}}$		F1 Score = $ \frac{2}{\frac{1}{\text{Recall}} + \frac{1}{\text{Precision}}} $

Metric	Formula	
True positive rate, recall	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$	
False positive rate	$\frac{\text{FP}}{\text{FP+TN}}$	
Precision	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}}$	
Accuracy	$\frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN}}$	
F-measure	$\frac{2 \cdot \text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$	

AUC - ROC Curve

- ROC is a probability curve and AUC represents degree or measure of separability.
- It tells how much model is capable of distinguishing between classes.

- Higher the AUC, better the model
- Values between 0 to 1

TPR (True Positive Rate) / Recall / Sensitivity

TPR /Recall / Sensitivity =
$$\frac{TP}{TP + FN}$$

Image 3

Specificity

Image 4

FPR

$$FPR = 1 - Specificity$$

$$= \frac{FP}{TN + FP}$$

Model Complexity Graph

Parameters and Hyperparameters

Algorithm	Parameters	Hyperparameters
Random Forest	ndom Forest Features Thresholds	
Logistic Regression	Coefficients of the polynomial	Degree of the polynomial
Support Vector Machines	Coefficients	Kernel Gamma C
Neural Networks	Coefficients	Number of layers Size of layers Activation function

Discussion

Thank you!