Data Science and Machine Learning:

Mathematical and Statistical Methods

Errata

(Last Update 7th January 2020)

- 1. Page 100, Line -8: $(1 \alpha v)$ should be $(1 \alpha)v$.
- 2. Page 162: Line 12: $\Sigma^{1/2}x$ should be $\Sigma^{-1/2}x$.
- 3. Page 162: Lines 17 and 20: $\Sigma^{1/2}(x_i \mu)$ should be $\Sigma^{-1/2}(x_i \mu)$.
- 4. Page 211, Exercise 12 (b): P_{ii} should be $(1 P_{ii})$; that is 1 minus the *i*-th leverage.
- 5. Page 247, Algorithm 6.8.1, Line 1: \mathbb{R}^p should be \mathbb{R}^n .
- 6. Page 248, Algorithm 6.8.2, Line 1: Set $\mathbf{B} \leftarrow (n\gamma \mathbf{I}_p)^{-1}$.
- 7. Page 273, 3rd line under Figure 7.9: The results are summarized in Table 7.6.
- 8. Page 331, last displayed equation:

$$\frac{\partial C}{\partial \boldsymbol{b}_{l}} = \frac{\partial z_{l}}{\partial \boldsymbol{b}_{l}} \frac{\partial C}{\partial z_{l}} = \boldsymbol{\delta}_{l}, \quad l = 1, \dots, L.$$

- 9. Page 335, Algorithm 9.4.2, Line 2: ... using $\frac{\partial C}{\partial g} = 1$...
- 10. Page 340, second displayed line:

$$[p_0, p_1, p_2, p_3] = [1, 20, 20, 1].$$

- 11. Page 341, Line 3: Remove the line S = RELU.
- 12. Page 351, Exercise 7(b): In the displayed formula, **B** should be replaced with \mathbf{B}^{-1} .
- 13. Page 414, Section B.3.4: Replace ℓ with ℓ_{τ} .
- 14. Page 456, Sentence under (C.47): Similar to the one-dimensional case (d = 1), replacing the factor 1/n with 1/(n-1) gives an unbiased estimator, called the *sample covariance matrix*.