

Sistemas Inteligentes - T951

Primeiro trabalho: Modelos Lineares.

Professor: Prof. Msc. Paulo Cirillo Souza Barbosa

O que fazer?

Será fornecido um conjunto de dados referente aos sinais de eletromiografia, captados nos músculos faciais: Corrugador do Supercílio (Sensor 1); Zigomático Maior (Sensor 2).

No presente conjunto de dados, tem-se 20 000 observações para os dois sensores, em classes totalmente balanceadas, ou seja, 10 000 são referentes ao gesto facial Surpreso, e as demais 10 000 amostras são referentes ao gesto Grumpy. Tais gestos podem ser visualizados na Figura 1.

Figura 1: Gestos (classes) presentes no conjunto de dados

Grumpy

O arquivo fornecido via AVA, trata-se de um .json contendo 10 rodadas de aquisições. Para cada rodada, há o indicativo (rótulo) referente aos gestos Surpreso e Grumpy. Acessando cada um destes, pode-se verificar dois vetores com os dados captados referentes aos sensores 1 e 2.

Pede-se inicialmente que faça a identificação de P (número de preditores), N(Quantidade de amostras) e C(Quantidade de classes). Em seguida, realizar o acesso ao arquivo .json e os organize conforme as matrizes que se seguem:

$$\mathbf{X} \in \mathbb{R}^{N \times P}$$
 $\mathbf{Y} \in \mathbb{R}^{N \times C}$

De modo a auxiliá-los, disponibiliza-se o algoritmo em **Python** que realiza essa organização. **OBS:** Nem sempre o autor do conjunto de dados, realizará essa organização. Estou disponibilizando esta, exclusivamente e unicamente para facilitar o primeiro trabalho.

```
import json
import numpy as np

f = open('EMG.json') #Coloque o arquivo na mesma pasta deste algoritmo
data = json.load(f)
c = 2
p = 2
X = np.empty((0,p))
```

```
10 Y = np.empty((0,c))
11
      j in data:
12
       it = 0
13
       data1= data[j]
for i in data1:
14
           #ORGANIZANDO X
17
           aux1= np.array(data1[i][0])
18
19
           aux1.shape=(len(aux1),1)
           aux2= np.array(data1[i][1])
20
21
           aux2.shape=(len(aux2),1)
           X = np.concatenate((X,np.concatenate((aux1,aux2),axis=1)),axis=0)
22
23
           #ORGANIZANDO Y
24
           y = np.zeros((len(aux2),c))
25
           y[:,it] = 1
26
           Y = np.concatenate((Y,y),axis=0)
27
28
```

1) Análise inicial dos dados.

Como o presente conjunto de dados possui apenas dois preditores, pede-se que construa o gráfico de espalhamento (scatter plot).

1) Testando os Algoritmos Implementados

Pede-se que implemente os classificadores descritos nas próximas seções, porém, para todos deve-se calcular medidas de desempenhos. Tais medidas são: **Acurácia**; **Sensibilidade**; **Especificidade**. Para uma melhor confiabilidade dos resultados, solicita-se que o treinamento e teste de cada classificador seja executado 100 vezes. Para isso, deve-se para cada rodada embaralhar os dados e dividi-los em 80% das amostras para treinamento e 20% para teste.

Ao final das 100 rodadas, para cada classificador deve-se ter 100 dados referentes a Acurácia, Sensibilidade e Especificidade. Com isto posto, deve-se calcular a média, mediana, desvio padrão, menor e maior valor, para cada uma das medidas de desempenho.

Com esta análise, é possível verificar qual modelo possui uma melhor capacidade de classificação. Pede-se então para cada classificador com os melhores hiperparâmetros definidos, que faça mais uma rodada de treinamento e teste e construa-se o gráfico da matriz de confusão.

1) OLS.

- 1. Faça a implementação do método dos mínimos quadrados ordinário.
- 2. Faça a implementação do método dos mínimos quadrados regularizado.
 - Faça o treinamento do modelo utilizando valores de $\lambda = \{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9, 1\}$
 - **Pergunta:** O que significa $\lambda = 0$??
- 3. Em sala foi realizada uma discussão sobre a adição de um vetor coluna de ${f 1s}$ no início da matriz de dados ${f X}$.
 - O que implicaria adicionar este vetor coluna para o presente trabalho?
 - Qual a interpretação geométrica?
 - O resultado obtido é melhor ou pior?

1) PS.

- 1. Faça a implementação do algoritmo do Perceptron Simples.
- 2. Demais questionamentos surgirão, a medida que avancemos no conteúdo em sala de aula.

1) ADALINE.

- $1.\ {\rm Faça}$ a implementação do algoritmo do ADALINE.
- 2. Demais questionamentos surgirão, a medida que avancemos no conteúdo em sala de aula.