Prof. Dr. Leandro Alves Neves

Pós-graduação em Ciência da Computação

Processamento Digital de Imagens

Aula 12

^E Sumário

- Padrões
- Espaço de Características e Modelos para Reconhecimento de Padrões
- Classificação, Métricas, Matriz de Confusão e Espaço ROC
- Generalização: Modelos de Amostragem
- Dimensionalidade e Redução de Dimensionalidade

Etapas

Reconhecimento e Interpretação?

- Descrição:
 - Definir características fundamentais do objeto

- Reconhecimento:
 - Atribuir rótulos a cada um dos objetos descritos (rotular)
- Interpretação:
 - Atribuir sentido à imagem

Reconhecimento e Interpretação?

Refeição (Padrão)

^E Padrões

- Descritores de propriedades de objetos ou imagem:
 - Processo nomeado de Extração de Características/features
- Padrão: formado por um ou mais descritores/features/atributos
- Classe de Padrões
 - Família de padrões que compartilham propriedades comuns
 - □ Denotadas como w_1 , w_2 , w_3 , w_M , onde M é o número de classes

^E Padrões

Arranjos de Padrões

- Cadeias e Árvores (descrições estruturais)
- Vetores (descrições quantitativas)

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 x_i é um descritor/atributo

$$n \text{ é o número de descritores/}$$
 características/atributos

	Caract. 1	Caract. 2	Caract. 3	 Caract. m
Imagem 1	10	15	98	 45
Imagem 2	54	26	54	 56
Imagem 3	32	98	98	 48
Imagem n	54	98	2	 54

- ☐ Busca por classes de Padrões
 - □Obter propriedades comuns e definir as classes:
 - $\square w_1$, w_2 , w_3 , w_M , em que $M \in O$ número de classes

- Vetores (descrições quantitativas): Exemplo
- Descrever três tipos de flores: Iris setosa, virginia (virginica) e versicolor

3 classes W_1, W_2, W_3

- Características:
 - largura e comprimento de suas pétalas $\longrightarrow x = \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} = \begin{cases} x_1 : \text{largura} \\ x_2 : \text{comprimento} \end{cases}$
 - Dado o conjunto de medidas
 - Vetor de características torna-se a representação completa de cada amostra física

- Vetores (descrições quantitativas):
- Cada flor do conjunto de amostras de flores é um ponto no espaço euclidiano bidimensional

Referência

$$x = \begin{vmatrix} x_1 & x_1 \\ x_2 & x_2 \end{vmatrix}$$
: largura
$$x_2$$
: comprimento

Espaço de Características: Classificação

Espaço de Características: Classificação

Relevância dos descritores

E Classificação

Classificação requer:

Descritores

Característica (s) de um objeto a ser classificado

Atributo Classe/Categoria

Atributo alvo da Predição

Exemplos (Treinamento e Teste)

- Atributos que descrevem um objeto de interesse + classe do exemplo
 - Dados de um paciente e indicação da doença

Classificação

- Método de aprendizado
 - Algoritmo que adquire conhecimento a partir de um conjunto de exemplos

E Classificação

Diversidade de algoritmos de aprendizado

Exemplos

- Aprendizado Baseado em Instâncias
- Árvores de Decisão e Regras
- Redes Neurais Artificiais
- Máquinas de Vetores Suporte
- Aprendizado Bayesiano

Métricas para Avaliação de um Classificador

Visualização do Desempenho de um classificador
 Matriz de Confusão

Positivo Negativo Positivo Verdadeiro + Falso (TP) (FN) Negativo Falso + Verdadeiro (FP) (TN).

Métricas para Avaliação de um Classificador

Visualização do Desempenho de um classificador

Classe

Positivo Negativo
Positivo 24 6
Negativo 2 18

Amostras:50

Acertos

30

20

Métricas para Avaliação de um Classificador

Visualização do Desempenho de um classificador

Matriz de Confusão: Exemplos

Precisão =
$$73 / (73 + 27) = 0.73$$

Revocação =
$$73 / (73 + 28) = 0,7227$$

F-score =
$$2 \times (0.73 \times 0.7227) / (0.73 + 0.7227) = 0.7263$$

Especificidade =
$$73 / (73 + 27) = 0.73$$

$$Precisão = 24 / (24 + 2) = 0,9231$$

Revocação =
$$24 / (24 + 6) = 0.8$$

F-score =
$$2 \times (0.9231 \times 0.8) / (0.9231 + 0.8)$$

= 0.8572

Especificidade =
$$18 / (18 + 2) = 0.9$$

Acurácia (Taxa de Acerto)

 Indica quanto o modelo acertou das previsões possíveis

$$accurary = \frac{TP + TN}{TP + FP + TN + FN} = \frac{predições\ corretas}{todas\ as\ predições}$$

Exemplo: Acurácia = (42 / 50) * 100 = 84%

Sensibilidade (S) ou Revocação/Recall (R)

Taxa de acerto na classe positiva: $recall = \frac{TP}{TP + FN}$

Medida que permite responder:

- Qual a proporção de positivos que foi identificada corretamente?
 Exemplo: Revocação = 24 / (24 + 6) = 0,8
- Quão bom meu modelo é para prever positivos, sendo positivo entendido como a classe verdadeira (real)
- Quanto mais sensível é um teste, maior sua capacidade de detectar o caso (doença, por exemplo)

Especificidade (E)

■ Taxa de acerto na classe negativa: $E = \frac{TN}{TN + FP}$

Permite responder:

Qual a capacidade do sistema em predizer corretamente a ausência da condição em casos negativos (real)?

Exemplo: Especificidade =
$$18 / (18 + 2) = 0.9$$

- Testes específicos são úteis para:
 - Confirmar a ausência da condição (doença, por exemplo)
 - Evitar tratamento desnecessário, no exemplo da doença

Precisão (Pr)

 Proporção de exemplos positivos classificados corretamente entre todos aqueles preditos como positivos

$$precision = \frac{TP}{TP + FP}$$

Exemplo: Precisão = 24 / (24 + 2) = 0,9231

- Permite responder (exatidão do modelo):
 - Qual a proporção de identificações positivas que está realmente correta?

Medida F₁ ou F-score

Média harmônica entre precisão e revocação

$$Medida-F = 2 * \frac{precision * recall}{precision + recall}$$

Exemplo: F-score =
$$2 \times (0.9231 \times 0.8) / (0.9231 + 0.8) = 0.8572$$

Precisão =
$$24 / (24 + 2) = 0.9231$$
: Revocação = $24 / (24 + 6) = 0.8$

- Medida de confiabilidade da Acurácia
 - □ Valor alto de Medida F₁ indica que a acurácia é relevante
 - Valores de TP, TN, FP e FN não apresentam distorções significativas

PDI

Espaço ROC ou Curva ROC (Receiver

Operator Characteristic Curve)

 Permite representar graficamente a relação entre falso positivos e verdadeiros positivos

Dada por:

Figura 9.4 Exemplos de curva ROC.

- Eixo X: Taxa de falsos positivos (TFP ou 1-Especificidade)
- Eixo Y: Taxa de verdadeiros positivos (TVP ou Sensibilidade)

Espaço ROC ou Curva ROC (Receiver

Operator Characteristic Curve)

Ponto de corte

- Pode ser selecionado arbitrariamente pelo analista
- Para cada ponto escolhido, calcular TVP e TFP
- AUC evita a escolha de um ponto específico

Melhor Ponto de corte: Maiores Taxas de verdadeiros e falsos positivos

Modelos Preditivos

Algoritmo de Aprendizado de máquina preditivo:

Função que considera um conjunto de

dados rotulados

Produz um estimador

- Domínio com valores nominais: Problema de Classificação
- Figura 3.1 Gráfico ilustrativo das tarefas.

- Estimador é um classificador
- Domínio é um conjunto infinito e ordenado de valores: Problema de regressão
 - Induz um regressor

Modelos Preditivos

Algoritmo de Aprendizado de máquina preditivo:

• Classificação:
$$y_i = f(x_i) \in \{c_1,...,c_m\}$$

 Assume valores em um conjunto discreto

• Regressão: $y_i = f(x_i) \in \Re$

 Assume valores em um conjunto infinito e ordenado de valores

Tabela 3.12 Exemplo de conjunto de dados para problema de classificação

Tamanho (P)	Largura (P)	Tamanho (S)	Largura (S)	Espécie
5,1	3,5	1,4	0,2	Setosa
4,9	3,0	1,4	0,2	Setosa
7,0	3,2	4,7	1,4	Versicolor
6,4	3,2	4,5	1,5	Versicolor
6,3	3,3	6,0	2,5	Virgínica
5,8	2,7	5,1	1,9	Virgínica

Tabela 3.13 Exemplo de conjunto de dados para problema de regressão

Fertilidade	Agricultura	Educação	Renda	Mortalidade
80,2	17,0	12	9,9	22,2
83,1	45,1	9	84,8	22,2
92,5	39,7	5	93,4	20,2
85,8	36,5	7	33,7	20,3
76,9	43,5	15	5,2	20,6

Generalização e Overfitting

- Objetivo da Classificação: definir corretamente novos casos
 - Casos diferentes dos utilizados no treinamento
 - Problemas: Baixa capacidade Generalização (hipóteses)

- Overfitting aos dados de treinamento, alta taxa de acerto
- Underfitting baixa taxa de acerto, mesmo no subconjunto de treinamento

Generalização e Overfitting

- Modelo construído via memorização de exemplos
 - Logo, processo que busca
 - Overfitting controlado: Alguns modelos mais do que outros
- Dilema:
 - Usar um procedimento que não realiza overfitting?
 - Todos utilizam
 - Complexidade do Modelo x Possibilidade de Overfitting

PDI

Generalização e Overfitting

Estratégias

- Permite aferir a qualidade do classificador e do espaço de características
 - Hold-out
 - Repeated Hold-out
 - Validação Cruzada k-folds (cross-validation k-folds) e Validação Cruzada Estratificada
 - Leave-one-out

Divisão Treino e Teste simples (Hold-out)

Distribuições:

- •80/20
- •70/30

Otimizar hiperparâmetros de um modelo Comparar diferentes modelos

Divisão Treino e Teste simples (Hold-out)

Validação Cruzada (K-fold Validation)

Comparação de Modelos

^{*} Validação Cruzada Estratificada, mantém em cada partição a proporção de exemplos de cada classe semelhante à proporção do conjunto original

K-fold Validation com K = n, em que n representa o número de amostras

Generalização e Overfitting

Número de Descritores

Quanto mais, melhor?

 O desempenho começa melhorando, entretanto, piora conforme o número de características cresce

Limitar o espaço de características

Generalização e Overfitting

- Amostragem dos Dados: Cuidados
 - Dados desbalanceados
 - Problemas com a Indução do Modelo para uma classe
 - Limpeza de Dados
 - Dados Inconsistentes, Incompletos, com Ruídos ou Redundantes
 - Normalização
 - Dimensionalidade

Normalização

Normalização dos Dados:

 Limites de valores de atributos distintos são muito diferentes

- Magnitude maior
 - Pode ocorrer preponderância na classificação
- Quando recomendada, normalizar:

- Amplitude
 - □ Reescala e padronização

Normalização

 v_{atual} , valor a ser normalizado

Amplitude: Reescala ou min-max

$$v_{novo} = min + \frac{v_{atual} - menor}{maior - menor} (max - min)$$

em que, *menor*, menor valor do atributo; *maior*, maior valor do atributo; *min*, menor valor da nova escala; *max*, maior valor da nova escala;

1001 Considerando 0.11, temos =-1+(0,11-0,07)/(0,99-0,07)*(1-1) -1.00000.3333 1005 0.12 -1.0000 -0.33331003 0.071004 0.090.3333 Considerando min=-1 e max=1, temos: $M_{norm}=$ 1005 1.0000 -1.00001001 0.9665 1.0000 0.97 1007 0.9348 0 0.96 1004 0.9783 0.6667 1006 0.98 -0.666741002 0.95

Amplitude: Padronização (zscore)

□ Considera uma medida de localização (μ) e uma medida de escala (σ): $v_{novo} = \frac{v_{atual} - \mu}{-}$

em que, μ é a média; σ é o desvio padrão; v_{atual} é o valor a ser normalizado.

	0.11	1001	Considerando 0.11, temos (0.11-0,534)/0,459	-0.9220	-1.3699
M =	0.12	1005		-0.9002	0.5871
	0.07	1003		-1.0089	-0.3914
	0.09	1004		-0.9655	0.0978
	0.10	1005	Feature 1 Considerando 4-0.5246 - 0.4509 temas: M =	-0.9437	0.5871
	0.99	1001	Considerando μ =0,534e σ =0,4598, temos: M_{norm} =	0.9916	-1.3699
	0.97	1007	Considerando μ =1003,8 e σ =2,043, temos:	0.9481	1.5656
	0.96	1004	Feature 2	0.9263	0.0978
	0.98	1006		0.9698	1.0763
	0.95	1002		0.9046	-0.8806

- Dimensionalidade
 - Se cada descritor é uma coordenada em um espaço d-dimensional ⇒ d é o número de atributos
 - Pode ocorrer um espaço de característica altamente complexo
 - Maldição da Dimensionalidade

- Considere um conjunto de Dados
 - Cada objeto do conjunto tem um atributo
 - O atributo pode assumir um dentre 10 valores
 - Logo, 10¹ Conjunto pode ter 10 objetos diferentes (número de amostras)
 - E se o número de atributos for igual a 5? Aumento exponencial: 10⁵
 - É necessário garantir modelos representativos:
 - Número de amostras deve crescer exponencialmente

- Problema:
 - Teorema do "patinho feito"
 - Watanabe, 1985:
 - "...dois padrões arbitrários podem ficar similares se esses forem codificados com um número suficientemente grande de características similares."

 Número de exemplos não aumenta na mesma proporção que aumenta o número de características

Chamado de "Fenômeno de Máximo"

"...a maioria dos classificadores paramétricos geralmente estima parâmetros não conhecidos e liga-os com parâmetros verdadeiros nas densidades de classe-condicional. Em uma amostra de tamanho fixo, quando o número de características cresce (à medida que aumenta o número de parâmetros desconhecidos) a confiança dos parâmetros estimados decresce. Consequentemente, o desempenho dos classificadores, para uma amostra de tamanho fixo, pode degradar com o aumento do número de características..."

SUNG, K.-K.; POGGIO, Tomaso. Example-based learning for view-based human face detection. **IEEE Transactions on pattern analysis and machine intelligence**, v. 20, n. 1, p. 39-51, 1998.

- □ Jain et al., 2000:
 - "No mínimo, deve-se utilizar um número de exemplos de treinamento por classe dez vezes maior que a dimensionalidade"

Jain, A. K., Duin, R. P. W., and Mao, J. (2000). Statistical pattern recognition: A review. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 22(1):4-37.

Aumentar o número de exemplos é uma tarefa fácil?

Quais os problemas?

- Outro problema: Relevância do descritor
 - Um conjunto descrito por 20 atributos
 - Apenas 2 atributos são relevantes
 - Os demais são atributos ruins ou correlacionados
 - Resultado: a classificação é afetada

Redução do número de atributos

Aumento do número de exemplos

- Espera-se que todos os atributos sejam relevantes
 - Mas, nem sempre é possível garantir isso
- Alguns atributos são redundantes e podem ser eliminados

- Objetivo:
 - Definir conjunto de atributos que sejam relevantes e não-redundantes

- Abordagens
 - Avaliação (Seleção) X Agregação
- Seleção de atributos:
 - Escolha de um subconjunto de atributos relevantes dentre os atributos disponíveis
 - Abordagens Embutidas (Embedded), Filtros e Wrappers
- Agregação:
 - Combinação dos atributos existentes por meio de funções lineares ou não lineares
 - Eliminação de redundâncias
 - Exemplo, Análise de Componentes Principais
 - Levam à perda dos valores originais

- Métodos Embutidos (Embedded)
 - Subconjunto de atributos é selecionado no próprio processo de construção do modelo de classificação
 - Ocorre durante a etapa de treinamento

Geralmente são específicos para um dado algoritmo de

classificação

Exemplo:

- indução de árvores de decisão

 http://repositorio.utfpr.edu.br/jspui/bitstream/1/3334/1/PG_PPGCC_M_Almeida%2C% 20Thissiany%20Beatriz_2018.pdf

Filtros

 Atributos são ordenados com base em métricas de relevância e redundância

Técnica de seleção de atributos: Filtro

Retorna os atributos mais relevantes

Não depende do classificador

ranking: subconjunto de buscas aleatórias atributos conjunto de métodos estatísticos treinamento filtro conjunto de treinamento remover reduzido indutor atributos conjunto de teste conjunto de teste reduzido estimativa de desempenho classificador

Exemplos: Relief, Information Gain Attribute
 Ranking e Correlation-based Feature Selection

Fonte: Adaptado de Galvão (2007)

http://repositorio.utfpr.edu.br/jspui/bitstream/1/3334/1/PG_PPGCC_M_Almeida%2C% 20Thissiany%20Beatriz_2018.pdf

- Filtros de atributos: baixo custo computacional
- Porém, apresenta dificuldades:
 - Nem sempre é fácil definir quantos atributos devem ser descartados
 - Na prática, isso é definido por tentativa-e-erro ou heurística
 - Não considera o classificador

Wrappers

- O desempenho (uso de uma métrica, por exemplo acurácia) do algoritmo é avaliado para diferentes sub-conjuntos de atributos
- O melhor subconjunto encontrado é retornado
 - Depende do Classificador

Elevado custo computacional

Expert Systems with Applications
Volume 120, 15 April 2019, Pages 262-278

0.940

0.920

0.880

0.820

0.800 0.780 0.760 0.740

0.720

0.700

0.860 0,840

Classification of colorectal cancer based on the association of multidimensional and

multiresolution features

Matheus Gonçalves Ribeiro ^a ⊠, Leandro Alves Neves A^a ⊠, Marcelo Zanchetta do Nasciment Roberto ^b, Alessandro Santana Martins ^c, Thaína Aparecida Azevedo Tosta ^d

Show more

https://doi.org/10.1016/j.eswa.2018.11.034

Existe um número máximo de características a partir do qual o desempenho do classificador irá degradar

Fig. 9. Average rates for AUC calculated from the folds and applying the methods DT, SVM, NB, RaF, K* and PL. The values were obtained with subsets of 1 to 100 features, limits applied to each fold.

Number of features per fold

Expert Systems with Applications
Volume 120, 15 April 2019, Pages 262-278

Classification of colorectal cancer based on the association of multidimensional and multiresolution features

Matheus Gonçalves Ribeiro ^a ⊠, Leandro Alves Neves Å ^a ⊠, Marcelo Zanchetta do Nascimento ^b, Guilherme Freire Roberto ^b, Alessandro Santana Martins ^c, Thaína Aparecida Azevedo Tosta ^d

Show more

https://doi.org/10.1016/j.eswa.2018.11.034

Get rights and content

Exemplo de Estratégia de Validação: Generalização

Expert Systems with Applications
Volume 120, 15 April 2019, Pages 262-278

Classification of colorectal cancer based on the association of multidimensional and multiresolution features

Matheus Gonçalves Ribeiro ® ☑, Leandro Alves Neves 🐣 ☑, Marcelo Zanchetta do Nascimento b, Guilherme Freire

Roberto ^b, Alessandro Santana Martins ^c, Thaína Aparecida Azevedo Tosta ^d

Show more

https://doi.org/10.1016/j.eswa.2018.11.034

Get rights an

Exemplo de Estratégia de Validação: Generalização

Expert Systems with Applications Volume 120, 15 April 2019, Pages 262-278

Classification of colorectal cancer based on the association of multidimensional and multiresolution features

Matheus Goncalves Ribeiro ® M. Leandro Alves Neves A® M. Marcelo Zanchetta do Nascimento B. Guilherme Freire

Roberto b. Alessandro Santana Martins c. Thaína Aparecida Azevedo Tosta d

Show more

https://doi.org/10.1016/j.eswa.2018.11.034

Get rights an

Exemplo de Estratégia de Validação: Generalização

Referências

- Pedrini, H., Schwartz, W. R. Análise de Imagens Digitais: Princípios Algoritmos e Aplicações. São Paulo: Thomson Learning, 2008.
- Helio Fedrid
 William Robom Schwartz

 Análise de Imagens
 Digitais

 Principios, Agortmon e Aplicyces
- Conci, A., Azevedo, E., Leta, F. R. Computação Gráfica: Teoria e Prática. Rio de Janeiro: Elsevier, vol. 2, 2008.

Backes, A. R., Sá Junior, J. J. De M. Introdução à Visão Computacional Usando MatLab. Rio de Janeiro: Alta Books, 2016.

Faceli, K., Lorena, A. C., Gama, J., de Carvalho, A. C. P. L. F. Inteligência Artificial: Uma abordagem de Aprendizado de Máquina. Rio de Janeiro: LTC, 2017.

Anexo: Exemplos Código Matlab

Exemplo de Estratégia de Validação: Generalização

Features (comp e larg. sépala, comp. e larg. pétala)

	1	2	3	4				
1	5.1000	3.5000	1.4000	0.2000				
2	4.9000	3	1.4000	0.2000				
3	4.7000	3.2000	1.3000	0.2000				
4	4.6000	3.1000	1.5000	0.2000				
5	5	3.6000	1.4000	0.2000				
6	5.4000	3.9000	1.7000	0.4000				
7	4.6000	3.4000	1.4000	0.3000				
8	5	3.4000	1.5000	0.2000				
9	4.4000	2.9000	1.4000	0.2000				
10	4.9000	3.1000	1.5000	0.1000				
11	5.4000	3.7000	1.5000	0.2000				
12	4.8000	3.4000	1.6000	0.2000				
13	4.8000	3	1.4000	0.1000				

fisheriris dataset (150 amostras)

Anexo: Códigos Matlab

```
classify_kfold.m* X
      function classify kfold()
       clear
       load fisheriris;
       %classes=[ones(1,50); 2*ones(1,50); 3*ones(1,50)]; %Três classes
       classes=[ones(1,50); 2*ones(1,50)]; Duas classes
       k=5;
       indices=crossvalind('Kfold', 100,k);
       vet acuracia=zeros(1,k);
10
11 -
     for i=1:k
12 -
           ind train=find(indices~=i);
13 -
           ind test=find(indices==1);
14 -
           base train=meas(ind train,:);
15 -
           base test=meas(ind test,:);
16 -
           classes train=classes(ind train);
           classes test=classes(ind test);
17 -
18 -
            class=classify(base test, base train, classes train, 'linear');
19
20 -
           vet acuracia(i)=sum(class==classes test)/length(class);
21
22 -
       end
      fprintf('Acurácia média - %f\n', mean(vet acuracia));
23 -
```

K-folds

Anexo: Códigos Matlab

```
classify holdout.m X
      function classify holdout()
       clear
       load fisheriris;
       [train, test]=crossvalind('HoldOut', 150,0.25);
      classes=[ones(1,50); 2*ones(1,50); 3*ones(1,50)];
       ind train=find(train==1);
       ind test=find(test==1);
       base train=meas(ind train,:);
       base test=meas(ind test,:);
       classes train=classes(ind train);
10 -
       classes test=classes(ind test);
11 -
       class=classify(base test, base train, classes train, 'linear');
12 -
13 -
       acuracia=sum(class==classes test)/length(class);
14 -
       fprintf('Acurácia - %f\n',acuracia);
15 -
       end
```

Holdout

Anexo: Códigos Matlab

```
knn exemplo.m ×
      function knn exemplo()
        clear
        %amostras para teste
       Teste=[2.2 4.4
              -4.2 2.31;
       %amostras para treinamento
       Treino=[ 1.0 2.0; 1.1 2.4; 1.3 2.1 %classe 1
               -4.0 5.0; -4.1 4.6; -4.2 4.2 %classe 2
               -3.0 -4.1; -3.1 -4.4; -3.3 -4.2]; %classe 3
10
11 -
       hold on:
       %plot das amostras de teste
12
13
14 -
       plot(Teste(:,1) ,Teste(:,2), 'k^');
15
       %plot das amostras de treinamento
16 -
       plot(Treino(1:3,1) , Treino(1:3,2), 'go'); %classe 1
       plot(Treino(1:3,1) , Treino(1:3,2), 'rx'); % classe 2
       plot(Treino(4:6,1) , Treino(7:9,2), 'bd');%classe 2
18 -
19 -
       axis([-6 5 -6 6]);
20
21
       %grupos de cada uma das amostras de treinamento
       Grupo=[1; 1; 1; 2; 2; 2; 3; 3; 3];
23 -
       K=2;%número de viznhos mais próximos
24
       %clusterização
       Classes=knnclassify(Teste, Treino, Grupo, K);
26 -
       disp(Classes);
```

Knn