Solutions to Section 5.1 Homework Problems

Problems 1–33 (odd) and 32.

S. F. Ellermeyer June 22, 2002

1. To determine if 2 is an eigenvalue of the matrix

$$A = \begin{bmatrix} 3 & 2 \\ 3 & 8 \end{bmatrix},$$

we must determine if the equation $A\mathbf{x} = 2\mathbf{x}$ has non–trivial solutions. To do this, we write \mathbf{x} as $I_2\mathbf{x}$, then write the equation $A\mathbf{x} = 2I_2\mathbf{x}$ as $(A - 2I_2)\mathbf{x} = \mathbf{0}$. Using the usual row reduction approach, we obtain

$$A - 2I_2 = \begin{bmatrix} 3 & 2 \\ 3 & 8 \end{bmatrix} - \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}.$$

This shows that the equation $A\mathbf{x} = 2\mathbf{x}$ does have non-trivial solutions and hence that 2 is an eigenvalue of A. We can also see that eigenvector of A

corresponding to the eigenvalue $\lambda = 2$ is $\mathbf{v} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$.

To check that this is correct, we note that

$$A\mathbf{v} = \begin{bmatrix} 3 & 2 \\ 3 & 8 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \end{bmatrix} = \begin{bmatrix} -4 \\ 2 \end{bmatrix}$$

and

$$\lambda \mathbf{v} = 2 \begin{bmatrix} -2 \\ 1 \end{bmatrix} = \begin{bmatrix} -4 \\ 2 \end{bmatrix}$$

which shows that $A\mathbf{v} = \lambda \mathbf{v}$.

3. Letting

$$A = \begin{bmatrix} -3 & 1 \\ -3 & 8 \end{bmatrix}$$

and

$$\mathbf{v} = \begin{bmatrix} 1 \\ 4 \end{bmatrix},$$

we note that

$$A\mathbf{v} = \begin{bmatrix} -3 & 1 \\ -3 & 8 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 29 \end{bmatrix}.$$

Since $A\mathbf{v}$ is not a scalar multiple of \mathbf{v} , we conclude that \mathbf{v} is not an eigenvector of A.

5. Letting

$$A = \begin{bmatrix} 3 & 7 & 9 \\ -4 & -5 & 1 \\ 2 & 4 & 4 \end{bmatrix}$$

and

$$\mathbf{v} = \begin{bmatrix} 4 \\ -3 \\ 1 \end{bmatrix},$$

we note that

$$A\mathbf{V} = \begin{bmatrix} 3 & 7 & 9 \\ -4 & -5 & 1 \\ 2 & 4 & 4 \end{bmatrix} \begin{bmatrix} 4 \\ -3 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

This shows that \mathbf{v} is an eigenvector of A with corresponding eigenvalue $\lambda = 0$ (because $A\mathbf{v} = 0\mathbf{v}$).

7. Letting

$$A = \begin{bmatrix} 3 & 0 & -1 \\ 2 & 3 & 1 \\ -3 & 4 & 5 \end{bmatrix},$$

we want to determine if the equation $(A - 4I_3)\mathbf{x} = \mathbf{0}$ has non-trivial solutions.

$$A - 4I_3 = \begin{bmatrix} -1 & 0 & -1 \\ 2 & -1 & 1 \\ -3 & 4 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

This shows that $(A - 4I_3)\mathbf{x} = \mathbf{0}$ does have non-trivial solutions and that a particular non-trivial solution is

$$\mathbf{v} = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}.$$

This vector, \mathbf{v} , is an eigenvector of A corresponding to the eigenvalue $\lambda = 4$ as can be checked:

$$A\mathbf{v} = \begin{bmatrix} 3 & 0 & -1 \\ 2 & 3 & 1 \\ -3 & 4 & 5 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -4 \\ -4 \\ 4 \end{bmatrix}$$

and

$$\lambda \mathbf{v} = 4\mathbf{v} = 4 \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -4 \\ -4 \\ 4 \end{bmatrix}$$

(shows that $A\mathbf{v} = 4\mathbf{v}$).

9. To find the eigenvectors corresponding to the eigenvalue 5, we must solve the equation $(A - 5I)\mathbf{x} = \mathbf{0}$.

$$A - 5I = \begin{bmatrix} 5 & 0 \\ 2 & 1 \end{bmatrix} - \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 2 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}$$

shows that all solutions of the equation $(A - 5I)\mathbf{x} = \mathbf{0}$ have the form

$$\mathbf{x} = \begin{bmatrix} 2x_2 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix}.$$

Thus, the vector $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is a basis for the eigenspace of A corresponding to

the eigenvalue 5.

To find the eigenvectors corresponding to the eigenvalue 1, we must solve the equation $(A - I)\mathbf{x} = \mathbf{0}$.

$$A - I = \begin{bmatrix} 5 & 0 \\ 2 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 2 & 0 \end{bmatrix} \backsim \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

shows that all solutions of the equation $(A - I)\mathbf{x} = \mathbf{0}$ have the form

$$\mathbf{x} = \begin{bmatrix} 0 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Thus, the vector $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is a basis for the eigenspace of A corresponding to

the eigenvalue 1.

11. To find the eigenvectors corresponding to the eigenvalue 10, we must solve the equation $(A - 10I)\mathbf{x} = \mathbf{0}$.

$$A - 10I = \begin{bmatrix} 4 & -2 \\ -3 & 9 \end{bmatrix} - \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix} = \begin{bmatrix} -6 & -2 \\ -3 & -1 \end{bmatrix} \backsim \begin{bmatrix} 1 & \frac{1}{3} \\ 0 & 0 \end{bmatrix}$$

shows that all solutions of the equation $(A - 10I)\mathbf{x} = \mathbf{0}$ have the form

$$\mathbf{X} = \begin{bmatrix} -\frac{1}{3}x_2 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -\frac{1}{3} \\ 1 \end{bmatrix}.$$

3

Thus, the vector
$$\begin{bmatrix} -\frac{1}{3} \\ 1 \end{bmatrix}$$
 is a basis for the eigenspace of A corresponding to the eigenvalue 10 .

13. To find the eigenvectors corresponding to the eigenvalue 1, we must solve the equation $(A - I)\mathbf{x} = \mathbf{0}$.

$$A - I = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 0 & 1 \\ -2 & 0 & 0 \\ -2 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

shows that all solutions of the equation $(A - I)\mathbf{x} = \mathbf{0}$ have the form

$$\mathbf{x} = \begin{bmatrix} 0 \\ x_2 \\ 0 \end{bmatrix} = x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

Thus, the vector $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ is a basis for the eigenspace of A corresponding to

the eigenvalue 1.

To find the eigenvectors corresponding to the eigenvalue 2, we must solve the equation $(A - 2I)\mathbf{x} = \mathbf{0}$.

$$A - 2I = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 0 & 1 \\ -2 & -1 & 0 \\ -2 & 0 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

shows that all solutions of the equation $(A - 2I)\mathbf{x} = \mathbf{0}$ have the form

$$\mathbf{X} = \begin{bmatrix} -\frac{1}{2}x_3 \\ x_3 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} -\frac{1}{2} \\ 1 \\ 1 \end{bmatrix}.$$

Thus, the vector $\begin{bmatrix} -\frac{1}{2} \\ 1 \\ 1 \end{bmatrix}$ is a basis for the eigenspace of A corresponding

to the eigenvalue 2

To find the eigenvectors corresponding to the eigenvalue 3, we must solve the equation $(A - 3I)\mathbf{x} = \mathbf{0}$.

$$A - 3I = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 1 \\ -2 & -2 & 0 \\ -2 & 0 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

shows that all solutions of the equation $(A-3I)\mathbf{x} = \mathbf{0}$ have the form

$$\mathbf{x} = \begin{bmatrix} -x_3 \\ x_3 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}.$$

Thus, the vector $\begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$ is a basis for the eigenspace of A corresponding to

the eigenvalue 3.

15. To find the eigenvectors corresponding to the eigenvalue 3, we must solve the equation $(A - 3I)\mathbf{x} = \mathbf{0}$.

$$A - 3I = \begin{bmatrix} 4 & 2 & 3 \\ -1 & 1 & -3 \\ 2 & 4 & 9 \end{bmatrix} - \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 2 & 3 \\ -1 & -2 & -3 \\ 2 & 4 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

shows that all solutions of the equation $(A - 3I)\mathbf{x} = \mathbf{0}$ have the form

$$\mathbf{x} = \begin{bmatrix} -2x_2 - 3x_3 \\ x_2 \\ x_3 \end{bmatrix} = x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}.$$

5

Thus, the pair of vectors

$$\left[\begin{array}{c} -2\\1\\0\end{array}\right], \left[\begin{array}{c} -3\\0\\1\end{array}\right]$$

forms a basis for the eigenspace of A corresponding to the eigenvalue 3.

- **17.** Since this matrix is triangular, its eigenvalues are the entries on its main diagonal. Hence its eigenvalues are 0, 2, and -1.
- **19.** Since the columns of A are clearly linearly dependent, the equation $A\mathbf{x} = \mathbf{0}$ has non–trivial solutions. This means that there is a non–zero vector \mathbf{v} such that $A\mathbf{v} = \mathbf{0}$. This means that $A\mathbf{v} = 0\mathbf{v}$ and hence that 0 is eigenvalue of A.

21.

- **a.** False. If $A\mathbf{v} = \lambda \mathbf{x}$ for some non–zero vector \mathbf{x} , then λ is an eigenvalue of A.
- **b.** True.
- **c.** True.
- d. True.
- **e.** False. To find the eigenvalue of A, we solve the *characteristic* equation of A. That is coming up in Section 5.2.

22.

- **a.** False. If $\mathbf{x} \neq \mathbf{0}$ and $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ , then \mathbf{x} is an eigenvector of A.
- **b.** False in general. However, it is true that if λ_1 and λ_2 are eigenvalues of A with $\lambda_1 \neq \lambda_2$ and \mathbf{v}_1 is an eigenvector corresponding to λ_1 and \mathbf{v}_2 is an eigenvector corresponding to λ_2 , then \mathbf{v}_1 and \mathbf{v}_2 are linearly independent.
- **c.** Not applicable (refers to material in Section 4.9 which we are not covering).
- **d.** False. This is true though if A is a triangular matrix.
- **e.** True. If λ is an eigenvalue of A, then the eigenspace of A corresponding to the eigenvalue λ is the null space of the matrix $A \lambda I$.
- 23. Eigenvectors corresponding to distinct eigenvalues are linearly independent. If a 2x2 matrix had, say, three distinct eigenvalues, then this matrix would have three linearly independent eigenvectors. However, since each eigenvector is a vector in \Re^2 , this is impossible. Any set of three vectors in \Re^2 must be linearly dependent. The same reasoning applies in explaining why an $n \times n$ matrix can have at most n distinct eigenvalues.
- **25.** We are given that λ is an eigenvalue of an invertible matrix A. Since A is invertible, we know that $\lambda \neq 0$. We also know that there is a non–zero vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$. From this, we conclude that $A^{-1}(A\mathbf{x}) = A^{-1}(\lambda \mathbf{x})$ and hence that $\mathbf{x} = \lambda(A^{-1}\mathbf{x})$. Multiplying both sides of the latter equation by λ^{-1} and writing the resulting equation in the reverse order, we obtain $A^{-1}\mathbf{x} = \lambda^{-1}\mathbf{x}$. This shows that λ^{-1} is an eigenvalue of A^{-1} .

27. Since A and A^T have the same entries on their main diagonals, we observe that $A^T - \lambda I = (A - \lambda I)^T$.

Now suppose that λ is an eigenvalue of A but not an eigenvalue of A^T . Then the equation $(A - \lambda I)\mathbf{x} = \mathbf{0}$ has non-trivial solutions but the equation $(A^T - \lambda I)\mathbf{x} = \mathbf{0}$ has only the trivial solution. This means that the matrix $A - \lambda I$ is not invertible matrix but the matrix $A^T - \lambda I$ is invertible. However, since $A^T - \lambda I = (A - \lambda I)^T$, then $A^T - \lambda I$ must not be invertible because it is the transpose of a matrix that is not invertible.

Since our original assumption (that λ is an eigenvalue of A but not an eigenvalue of A^T) has led us to a contradiction, we must admit that this assumption is not possible. We conclude that λ is an eigenvalue of A if and only if λ is an eigenvalue of A^T .

- **29.** If A is an $n \times n$ matrix whose rows all sum to s, then the rows of A sI all sum to s. This means that the zero vector is the sum of the columns of s and hence that the zero vector is a non-trivial linear combination of the columns of s and s and
- **31.** If $T: \Re^2 \to \Re^2$ defined by $T(\mathbf{x}) = A\mathbf{x}$ is a linear transformation that reflects points across some line through the origin, then any vector \mathbf{x} on that line must satisfy $T(\mathbf{x}) = A\mathbf{x} = \mathbf{x}$. This means that $\lambda = 1$ is an eigenvalue of A whose corresponding eigenspace is the line through which T reflects all points in \Re^2 .
- **32.** If $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(\mathbf{x}) = A\mathbf{x}$ is a linear transformation that rotates all points in \mathbb{R}^3 about some line through the origin, then any vector \mathbf{x} on that line must satisfy $T(\mathbf{x}) = A\mathbf{x} = \mathbf{x}$. This means that $\lambda = 1$ is an eigenvalue of A whose corresponding eigenspace is the line about which T rotates all points in \mathbb{R}^3 .
- **33.** We are given that $A\mathbf{u} = \lambda \mathbf{u}$ and that $A\mathbf{v} = \mu \mathbf{v}$, that c_1 and c_2 are scalars, and that $\mathbf{x}_k = c_1 \lambda^k \mathbf{u} + c_2 \mu^k \mathbf{v}$ for all $k = 0, 1, 2, \dots$
 - **a.** By definition, $\mathbf{x}_{k+1} = c_1 \lambda^{k+1} \mathbf{u} + c_2 \mu^{k+1} \mathbf{v}$.

b.

$$A\mathbf{x}_{k} = A(c_{1}\lambda^{k}\mathbf{u} + c_{2}\mu^{k}\mathbf{v})$$

$$= c_{1}\lambda^{k}(A\mathbf{u}) + c_{2}\mu^{k}(A\mathbf{v})$$

$$= c_{1}\lambda^{k}(\lambda\mathbf{u}) + c_{2}\mu^{k}(\mu\mathbf{v})$$

$$= c_{1}\lambda^{k+1}\mathbf{u} + c_{2}\mu^{k+1}\mathbf{v}$$

We thus see that $\mathbf{x}_{k+1} = A\mathbf{x}_k$ for all $k = 0, 1, 2, \dots$