Numerical Linear Algebra: Practice Final

November 18, 2019

1. Consider $p, q \in \mathbb{R}^+$, such that $\frac{1}{p} + \frac{1}{q} = 1$. Let $A \in \mathbb{R}^{m \times n}$. Prove that

 $\left\Vert A\right\Vert _{p}=\left\Vert A^{T}\right\Vert _{q}$

Solution: Note that

$$||x||_p = \max_{||y||_q = 1} y^T x$$

Now conclude using the definition of matrix norm.

 $||A||_{2}^{2} \le ||A||_{p} ||A||_{q}$

Solution: Prove that for any vector $||y||_2^2 \le ||y||_p ||y||_q$

• for any $p \ge 1$, and if $A \in \mathbb{R}^{n \times n}$ is diagonal, then

 $||A||_p = \max\{|A_{ii}| : 1 \le i \le n\}$

Solution: Trivial

2. Let $A \in \mathbb{R}^{n \times n}$ and consider the series

$$S = \sum_{k=0}^{\infty} A^k$$

Prove that the series converges iff all the eigenvalues of A are strictly smaller than 1. Further, if the series converges, show that S is invertible with its inverse being I - A.

Solution: Use Jordan Canonical form to conclude.

3. Show that if T is a symmetric tridiagonal matrix and an eigenvalue λ has multiplicity k, then at least k-1 subdiagonal elements of T are zero.

Solution: Note that it is sufficient to show that if all the entries on the sub and super diagonal are non-zero, then the eigenvalues are distinct. Consider an eigenvalue λ and the corresponding eigenvector x. We then have, for $i \in \{1, 2, ..., N\}$,

$$A_{i,i-1}x_{i-1} + A_{i,i}x_i + A_{i,i+1}x_{i+1} = \lambda x_i$$

where $A_{1,0} = x_0 = 0 = A_{N,N+1} = x_{N+1} = 0$. Note that once we fix x_1 , we can obtain all other x_i . Hence, once the eigenvalue is fixed there is a unique eigenvector (except for scaling). Hence, the eigenvalues are distinct.

4. Given two vectors \vec{a} and \vec{b} such that ||a|| = ||b||, describe and construct a Householder transform that maps a to b, i.e., Pa = b, where P is a unitary matrix obtained using the Householder transformation.

Solution:

$$P = I - 2vv^T$$

where v is a unit vector along b-a.

5. Let A be symmetric and positive definite. Show that $|a_{ij}| < \sqrt{a_{ii}a_{jj}}$.

Solution: The diagonal submatrix $\begin{bmatrix} a_{ii} & a_{ij} \\ a_{ji} & a_{jj} \end{bmatrix}$ is also positive definite.

6. If $A = R + uv^T$, where A is an upper triangular matrix and u and v are column vectors, describe an efficient $\mathcal{O}(n^2)$ algorithm to compute the QR factorization of A. (Note that a blind QR would cost you $\mathcal{O}(n^3)$).

Solution: http://pi.math.cornell.edu/~web6140/TopTenAlgorithms/QRUpdate.html

7. Richardson iteration is a stationary method for solving Ax = b as described below:

$$x_{k+1} = x_k + \omega(b - Ax_k)$$

Prove that

• If the iteration converges, i.e., $\lim_{k\to\infty} x_k = x$, then the x is a solution of the linear system. Solution: We get $x = x + \omega (b - Ax) \implies Ax = b$

•
$$\frac{\|e_{k+1}\|}{\|e_k\|} \le \|I - \omega A\|$$
.
Solution: $e_{k+1} = x_{k+1} - x = x_k + \omega (b - Ax_k) - x = x_k + \omega (Ax - Ax_k) - x = e_k - \omega A e_k$.

- Hence, conclude that $||I \omega A|| < 1$ is a sufficient convergence of the iteration to converge.
- Hence, prove that if A is symmetric positive definite, then the method converges when $\omega \in \left(0, \frac{2}{\lambda_{max}(A)}\right)$.