Fonctions de plusieurs variables

Philippe Briand

https://www.lama.univ-savoie.fr/~briand/

DUT Génie Civil 1^{re} année

IUT de Chambéry, 1er semestre 2017

Généralités Dérivées partielles Recherche d'extrema locaux

Fonctions de deux variables

Généralités

Dérivées partielles

Recherche d'extrema locaux

Fonctions de deux variables

Sommaire

Généralités

Généralités Recherche d'extrema locaux

Définition

• Une fonction de 2 variables réelles est une application f de \mathbb{R}^2 dans \mathbb{R} :

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}, \qquad (x,y) \longrightarrow f(x,y).$$

- Exemples :

 - $f(x,y) = x^2 + y^2$; $f(x,y) = \ln(x 3y^2) x$; $f(x,y,z) = ye^{x-z}$
- Le domaine de définition, noté D_f , est l'ensemble des points $(x,y) \in \mathbb{R}^2$ pour lesquels f(x, y) existe.
- Exemples :
 - $f(x,y) = x^2 y : D_f = \mathbb{R}^2$
 - $f(x,y) = \frac{1}{x-y}$: D_f est le plan privé de la première bissectrice
 - $f(x,y) = \ln(x-3y^2) x : D_f = \{(x,y) \in \mathbb{R}^2 : x > 3y^2\}$

Exemple : $f(x, y) = \ln(x - 3y^2) - x$

FIGURE – Domaine de définition de $f(x, y) = \ln(x - 3y^2) - x$

Généralités Dérivées partielles Recherche d'extrema locaux

Représentation graphique

- L'espace est muni d'un repère orthonormal direct $(0, \vec{i}, \vec{j}, \vec{k})$
- Lorsque (x, y) décrit D_f , le point de l'espace M de coordonnées (x, y, f(x, y)) décrit la surface S_f d'équation z = f(x, y)
- C'est la représentation graphique de f

FIGURE
$$- f(x, y) = (3x + 4y)e^{-x^2 - y^2}$$

Lignes de niveau

- f fonction de 2 variables; c un réel
- On appelle ligne de niveau c de f la courbe suivante

$$L_f(c) = \{(x, y) \in D_f : f(x, y) = c\}$$

• Isobares:

Généralités

Dérivées partielles

Recherche d'extrema locaux

Exemple

- $f(x,y) = \frac{4}{x^2 + y^2 + 2}$
- On a $0 < f(x,y) \le 2$ donc $L_f(c) = \emptyset$ si $c \le 0$ et c > 2.
- Pour $0 < c \le 2$, les lignes de niveau sont des cercles

FIGURE – Lignes de niveau pour c = 1/2, c = 1, c = 3/2

Fonctions de deux variables

Sommaire

Généralités

Dérivées partielles

Recherche d'extrema locaux

Généralités Dérivées partielles Recherche d'extrema locau

Définition

• f définie sur l'ouvert $U \subset D_f$, $(x_0, y_0) \in U$

Définition

La dérivée partielle de f par rapport à x au point (x_0, y_0) , notée $\frac{\partial f}{\partial x}(x_0, y_0)$, est la limite, lorsqu'elle existe, suivante :

$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{x \to x_0} \frac{f(x, y_0) - f(x_0, y_0)}{x - x_0}.$$

La dérivée partielle de f par rapport à y au point (x_0, y_0) , notée $\frac{\partial f}{\partial y}(x_0, y_0)$, est la limite, lorsqu'elle existe, suivante :

$$\frac{\partial f}{\partial y}(x_0, y_0) = \lim_{y \to y_0} \frac{f(x_0, y) - f(x_0, y_0)}{y - y_0}.$$

• Quand on calcule $\frac{\partial f}{\partial x}(x_0,y_0)$, x bouge autour de x_0 mais y est fixé à y_0

En pratique

- Pour calculer $\frac{\partial f}{\partial x}(x,y)$, on dérive la fonction f(x,y) par rapport à x en considérant que y est une constante
- Pour calculer $\frac{\partial f}{\partial v}(x,y)$, on dérive la fonction f(x,y) par rapport à y en considérant que x est une constante
- Toutes les règles de dérivation que vous connaissez demeurent valables
- Exemples :

 - $f(x,y) = x^2 + y^3$; $f(x,y) = \sin(x^2y^3)$;
 - $f(x,y) = \frac{\dot{x}y}{x^2 2v^4}$;
- Vocabulaire : f est de classe C^1 sur l'ouvert U si $\frac{\partial f}{\partial x}(x,y)$ et $\frac{\partial f}{\partial y}(x,y)$ sont continues sur U.

Dérivées partielles

Dérivées d'ordre supérieur

- On peut itérer la construction :
 - 1. En calculant les dérivées partielles, on obtient les deux fonctions $(x,y) \longmapsto \frac{\partial f}{\partial x}(x,y) \text{ et } (x,y) \longmapsto \frac{\partial f}{\partial y}(x,y)$
 - 2. On peut calculer les dérivées partielles de $\frac{\partial f}{\partial x}(x,y)$ et $\frac{\partial f}{\partial v}(x,y)$ par rapport à x et à y
- On obtient les dérivées partielles secondes ou dérivées partielles d'ordre 2 :

$$\frac{\partial^2 f}{\partial x^2}(x, y) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x}\right)(x, y), \quad \frac{\partial^2 f}{\partial y \partial x}(x, y) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x}\right)(x, y),$$
$$\frac{\partial^2 f}{\partial x \partial y}(x, y) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y}\right)(x, y), \quad \frac{\partial^2 f}{\partial y^2}(x, y) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y}\right)(x, y)$$

• Exemple : $f(x, y) = 4x^5 - 2x^3y^4 + 6y^2$

Théorème de Schwarz

• Vocabulaire : f est de classe C^2 sur l'ouvert U si les dérivées partielles secondes de f sont continues sur U.

Théorème (Schwarz)

Si f est de classe C^2 sur U, alors

$$\forall (x,y) \in U, \qquad \frac{\partial^2 f}{\partial y \partial x}(x,y) = \frac{\partial^2 f}{\partial x \partial y}(x,y)$$

- Exemple : $f(x, y) = \ln(x^2 + y^4)$.
- On peut considérer des fonctions de plus de 2 variables :

$$f(x, y, z) = \sin(xy^2z^3).$$

• Un autre exemple : $f(x,y) = e^{x^2+3y}$.

Généralités Dérivées partielles Recherche d'extrema locaux

Fonctions de deux variables

Sommaire

Généralités

Dérivées partielles

Recherche d'extrema locaux

Cas des fonctions d'une variable

- $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction de classe C^2 ; x_0 un réel
- Comment savoir si f possède au point x_0 un extremum local?
- Sans faire le tableau de variation de f!
- Peut on dire si c'est un maximum ou un minimum local?

La réponse est globalement OUI

- 1. On vérifie si x_0 est un point critique i.e. $f'(x_0) = 0$
- 2. On calcule $f''(x_0)$:
 - Si $f''(x_0) > 0$, minimum local (pensez à x^2);
 - Si $f''(x_0) < 0$, maximum local (pensez à $-x^2$);
 - Si $f''(x_0) = 0$, on ne peut rien dire! Voir $f(x) = x^3$ et $f(x) = x^4$.

Généralités Dérivées partielles Recherche d'extrema locaux

Fonctions de deux variables

- Soit $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ une fonction de classe \mathcal{C}^2 ;
- $p_0 = (x_0, y_0)$ un point de \mathbb{R}^2 (ou du domaine de définition de f).
- Le gradient de f au point (x_0, y_0) est le vecteur de \mathbb{R}^2

$$\nabla f(x_0, y_0) = \begin{pmatrix} \frac{\partial f}{\partial x}(x_0, y_0) \\ \frac{\partial f}{\partial y}(x_0, y_0) \end{pmatrix}$$

• On dit que le point (x_0, y_0) est un point critique de f si

$$abla f(x_0,y_0)=egin{pmatrix} 0 \ 0 \end{pmatrix} \quad \text{ soit } \quad rac{\partial f}{\partial x}(x_0,y_0)=0 \quad \text{ ET } \quad rac{\partial f}{\partial y}(x_0,y_0)=0$$

• On appelle matrice hessienne de f au point (x_0, y_0) la matrice

$$H_f(x_0, y_0) = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2}(x_0, y_0) & \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) \\ \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) & \frac{\partial^2 f}{\partial y^2}(x_0, y_0) \end{pmatrix}$$

Extrema locaux des fonctions de deux variables

• Notation :

$$r = \frac{\partial^2 f}{\partial x^2}(x_0, y_0), \quad t = \frac{\partial^2 f}{\partial y^2}(x_0, y_0), \quad s = \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0).$$

Théorème

Soit (x_0, y_0) un point critique de f c'est à dire tel que

$$\frac{\partial f}{\partial x}(x_0, y_0) = 0$$
 ET $\frac{\partial f}{\partial y}(x_0, y_0) = 0$.

Alors.

1. Si $rt - s^2 > 0$ et r > 0, f possède au point (x_0, y_0) un minimum local

2. Si $rt - s^2 > 0$ et r < 0, f possède au point (x_0, y_0) un maximum local

3. Si rt $-s^2 < 0$, pas d'extremum local : le point (x_0, y_0) est un point selle

4. Si $rt - s^2 = 0$, on ne peut rien dire.

Recherche d'extrema locaux

Exemples

- Deux étapes pour rechercher les extrema locaux :
 - 1. On cherche les points critiques de f
 - 2. On applique le critère précédent.
- Nature des points critiques des fonctions suivantes :
 - 1. $f(x,y) = x^2 + xy + y^2$; 2. $f(x,y) = x^4 y^2$;

 - 3. $f(x, y) = x^3 + 3x^2y 15x 12y$.