EECS 488 Class Project (Security Camera System)

Outline

- 1. Event Switching
- 2. Specification
- 3. Software System Design
- 4. Hardware System
- 5. Progress

Event Switching

- Event level raises when a target is first detected/approaching
- Event level lowers when the target is confirmed leaving for 3 seconds/
 72 frames
- Event level triggers the system action
- Can be configured by the users

Specification

Output Video Format	MPEG Encoded (XVID in OpenCV)	Alarm Waiting Time	5 minutes
Output Video Frame Rate	24 fps	Alarm Triggered Level	Event 3
Output Video Resolution	1280*720, 144 ppi		Immediately if switches to Event 1
Output Picture Format	PNG formatted	Alarm Release Time	
Output Picture Resolution (Low)	640*480	Event Lowering Time	5 seconds
Output Picture Resolution (High)	1280*720	Event Raising Time	Immediately when the condition meets

Software System Design

- The software system is developed with Python 3
- Camera operation/Human detection/Image output will be handled by OpenCV
- The system is multiprocessing to alleviate the pressure on buffer and improve runtime efficiency

- Each camera has 3 processes
- Inter-process-communication is handled by queue
- Queues send tagged images, as well as the signals

- Camera Handler processes stream the images to the human detection processes
- Human Detection
 processes identify the
 human in the image, tag
 the frames and send to
 Video Exporter processes
- Video Exporter processes write images/videos to the storage, but are usually idle

No suspicious

nop

- User Configuration
 - Users are able to configure some of the values in specification
 - Some can be changed in runtime

Alarm Silence	Runtime	True/False	
Alarm Waiting Time	Runtime	2-10 minutes	
Disable Exporting	Runtime True or False		
Event 2 Capture Rate	Runtime 2-7 fps		
Event 3 Capture Rate	Runtime	2-7 fps	
Event 4 Video Frame Rate	Before Running	12, 23.976, 24 fps	
Event 4 Video Resolution	Before Running	1280*720 or 640*480	

- Generator Mode
 - To save memory spaces
 - All frames are captured on-demand so that no one needs buffer (Video Exporter may need for video writing)
- Resource-Safe
 - All OpenCV interfaces are wrapped so that when GC recycles the wrappers, the OpenCV resources will guaranteed to be safely released
- Easy-to-Extend
 - Any new features can be wrapped in Process and launched

Hardware System

- Split into three major sections
- Raspberry Pi has most of the computation modules
- Camera connection can be changed to wireless

Introduction to the Security Camera Market

- Market Growing Rapidly
 - The domestic market was estimated to be \$73 billion during 2011, and was expected to reach \$86 billion by 2014
 - Video surveillance system is one of the fastest growing part
 - Need for a home surveillance system due to heightened perceived threat of theft, criminal activity and terrorism

Introduction to the Security Camera Market (Cont'd)

- Our features
 - High-Quality Resolution (can be up to 1080p)
 - Wired Camera: For better security (can be changed to wireless)
 - Energy Saving
 - Low Price

Preliminary Cost Estimation

Raspberry Pi Model 2B	Memory & Processor	\$16	Miuzei
Security AHD Camera 1080P	Camera	\$20*8 = \$160	Kadymay/OEM
7-inch LCD LED Monitor	Display	\$46	ZGYNK
WS-C3560-8PC Network Switches	Network Switch	\$120	Cisco
Cat5e Network Cable	Network Cable	\$62	HY Cable
2.5" USB Portable 2TB Externel HDD	Hard Drive	\$43	Tasnme
Waterproof Mouse/ Keyboard Combo	Peripheral Devices	\$3	Lordway

Preliminary Cost Estimation (Cont'd)

- The total cost from the table above is \$348
- However, this is price for the prototype, the price for massive production can be down to \$280
- Sale Price:
 - The price for competitors is around \$400 (on Amazon)
 - If we sale it for \$400, the benefit will be \$120