

Statystyczna analiza danych SAD

Wykład 7

Ciągi zmiennych losowych

Niech $X_1, X_2, ..., X_n$ będą zmiennymi losowymi określonymi na tej samej przestrzeni zdarzeń elementarnych S.

$$F(x_1,x_2,...,x_n) = P(X_1 \le x_1,X_2 \le x_2,...,X_n \le x_n) =$$
 dystrybuanta wektora losowego $(X_1,X_2,...,X_n)$.

 $f(x_1, x_2,...,x_n)$ = funkcja prawdopodobieństwa łącznego lub funkcja gęstości łącznej wektora losowego $(X_1, X_2,...,X_n)$.

Niezależne zmienne losowe

Definicja. Zmienne losowe $X_1, X_2, ..., X_n$ są niezależne, jeśli

$$F(x_1, x_2, ..., x_n) = F_{X_1}(x_1)F_{X_2}(x_2) \cdot ... \cdot F_{X_n}(x_n),$$

gdzie
$$F_{X_i}(x_i) = P(X_i \le x_i)$$
, $i = 1,2,...,n$.

Wartość średnia kombinacji liniowej z. l.

Stwierdzenie. Dla dowolnych stałych $a_1, a_2, ..., a_n$:

$$E(a_1X_1 + a_2X_2 + ... + a_nX_n) =$$

$$a_1E(X_1) + a_2E(X_2) + ... + a_nE(X_n)$$
.

Wniosek. Niech $E(X_i) = \mu$, i = 1,2,...,n, oraz

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

Wówczas $E(\overline{X}) = \mu$.

D. W stwierdzeniu trzeba przyjąć $a_i = \frac{1}{n}$, i = 1,2,...,n.

Wariancja kombinacji liniowej niezal. z. l.

Stwierdzenie. Jeśli $X_1, X_2, ..., X_n$ są niezależnymi zmiennymi losowymi, to

$$Var(a_1X_1 + a_2X_2 + ... + a_nX_n) =$$

$$a_1^2 Var(X_1) + a_2^2 Var(X_2) + ... + a_n^2 Var(X_n).$$

W szczególności, jeśli $Var(X_i) = \sigma^2$ oraz $a_i = \frac{1}{n}$, i = 1, 2, ..., n, to

$$Var(\overline{X}) = \frac{\sigma^2}{n}.$$

Twierdzenie (o dodawaniu dla rozkładów dumianowego, Poissona, normalnego)

■Jeśli $X_1, X_2, ..., X_n$ są niezależne oraz mają rozkłady dwumianowe $Bin(k_1, p)$, $Bin(k_2, p)$,..., $Bin(k_n, p)$, odpowiednio, to

$$X_1 + X_2 + \dots + X_n \sim \text{Bin}(n, p)$$
gdzie $n = k_1 + k_2 + \dots + k_n$

Jeśli $X_1, X_2, ..., X_n$ są niezależne oraz mają rozkłady Poissona o parametrach $\lambda_1, \lambda_2, ..., \lambda_n$, odpowiednio, to

$$X_1 + X_2 + \cdots + X_n \sim P(\lambda),$$

gdzie $\lambda = \lambda_1 + \lambda_2 + \cdots + \lambda_n$.

■Jeśli $X_1, X_2, ..., X_n$ są niezależne oraz mają rozkłady normalne $N(\mu_1, \sigma_1), N(\mu_2, \sigma_2), ..., N(\mu_n, \sigma_n),$ odpowiednio, to

$$X_1 + X_2 + \cdots + X_n \sim N(\mu, \sigma),$$
 gdzie
$$\mu = \mu_1 + \mu_2 + \cdots + \mu_n,$$

$$\sigma^2 = \sigma_1^2 + \sigma_2^2 + \cdots + \sigma_n^2$$

Podstawy wnioskowania statystycznego

- Populacja = zbiorowość elementów badanych ze względu na określoną cechę.
- Rozkład populacji = rozkład prawdopodobieństwa cechy = rozkład prawdopodobieństwa zmiennej losowej X (cechy losowo wybranego elementu populacji) Losujemy n elementów niezależnie i w taki sam sposób (np. w przypadku skończonej populacji losowanie ze zwracaniem). Niech zmienna losowa X_i oznacza cechę i-go potencjalnie wylosowanego elementu, i=1,...,n. Wówczas $X_1,X_2,...,X_n$ są niezależnymi zmiennymi losowymi o rozkładzie cechy X
 - Prosta próba losowa = $X_1, X_2, ..., X_n$

Próba losowa

<u>Definicja</u>. Prostą próbą losową o liczności n nazywamy ciąg niezależnych zmiennych losowych $X_1, X_2, ..., X_n$ określonych na przestrzeni zdarzeń elementarnych S i takich, że **każda ze zmiennych ma taki sam rozkład.**

Mówimy wówczas, że $X_1, X_2, ..., X_n$ jest prostą próbą losową z rozkładu (odpowiednia nazwa rozkładu).

Konkretny ciąg wartości $x_1, x_2, ..., x_n$ (prostej) próby losowej $X_1, X_2, ..., X_n$ nazywamy **realizacją (prostej) próby losowej** lub próbką.

Wnioskowane statystyczne

Zadanie statystyki:

Badanie **własności** rozkładu cechy X na podstawie obserwacji – próbki. Np. jak ocenić μ_X na podstawie realizacji prostej próby losowej? W jakim sensie średnia próbkowa \bar{x} jest dobrą oceną μ_X ? Jaki jest rozkład pradopodobieństwa średniej prostej próby losowej?

Średnia z próby losowej

Statystykę

$$\overline{X} = \frac{X_1 + X_2 + ... + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

nazywamy średnią z próby losowej $X_1, X_2, ..., X_n$.

Średnia próbkowa \overline{x} = realizacja statystyki \overline{X} .

Twierdzenie. Niech $X_1, X_2, ..., X_n$ będzie prostą próbą losową z rozkładu zmiennej losowej X o średniej μ i wariancji σ^2 . Wówczas

(a)
$$E(\overline{X}) = \mu$$
, $Var(\overline{X}) = \frac{\sigma^2}{n}$,

(b) Jeśli
$$X \sim N(\mu, \sigma)$$
, to $\overline{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$

Zastosowanie średniej z próby losowej – przykład

Zadanie. Załóżmy, że wzrost (w cm) w pewnej populacji dorosłych jest cechą o rozkładzie normalnym o nieznanej wartości średniej μ (cm) i odchyleniu standardowym σ = 6,5 (cm). Obliczyć prawdopodobieństwo, że średnia z prostej próby losowej o liczności 100 (średni wzrost 100 losowo wybranych dorosłych) różni się od prawdziwej wartości μ o więcej niż 1,5 (cm).

$$P(\bar{X} - \mu > 1.5) + P(\bar{X} - \mu < -1.5) =$$

$$P\left(\frac{\overline{X} - \mu}{0.65} > \frac{1.5}{0.65}\right) + P\left(\frac{\overline{X} - \mu}{0.65} < \frac{-1.5}{0.65}\right) = 0$$

Zastosowanie średniej z próby losowej – przykład

$$P(|\overline{X} - \mu| > 1,5) = P(Z > 2,31) + P(Z < -2,31) = 2\Phi(-2,31) =$$

$$=2[1-\Phi(2,31)] = 0,0208$$
, gdzie $Z \sim N(0,1)$

Zauważmy, że dla pojedynczej obserwowanej zmiennej mamy

$$P(|X_1 - \mu| > 1,5) = 2P(Z < -0,231) = 0,8180.$$

 $P(|\bar{X} - \mu| \le 1.5) \cong 0.98$, $P(|X_1 - \mu| \le 1.5) \cong 0.18$ Prawdopod. że średni **wzrost** osób będzie w odległości od średniej teoretycznej nie większej niż 1.5 > prawdop. że wzrost pojedynczej osoby będzie w odległości nie większej niż 1.5.

Prawo wielkich liczb

<u>Twierdzenie</u>. (Prawo wielkich liczb). Niech $X_1, X_2, ..., X_n$ będzie prostą próbą losową z rozkładu zmiennej losowej X o średniej μ . Wówczas dla dowolnie małej liczby $\varepsilon > 0$

$$P(\overline{X} \in [\mu - \varepsilon, \mu + \varepsilon]) \to 1$$
, przy $n \to \infty$.

Stąd średnia z prostej próby losowej jest dobrym oszacowaniem średniej teoretycznej (średniej rozkładu cechy populacji): $P(|\overline{X} - \mu| \le \varepsilon)$ bliskie 1, dla dostatecznie dużego n.

Centralne twierdzenie graniczne

<u>Twierdzenie.</u> (CENTRALNE TWIERDZENIE GRANICZNE = twierdzenie Lindeberga-Levy'ego

Niech $X_1, X_2, ..., X_n$ będzie **prostą próbą losową** z rozkładu o średniej μ i wariancji σ^2 . Wówczas

$$P(a < \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \le b) \rightarrow P(a < Z \le b) = \Phi(b) - \Phi(a),$$

przy $n \to \infty$.

Równoważnie rozkład średniej \overline{X} jest bliski rozkładowi normalnemu $N(\mu,\sigma/\sqrt{n})$ dla dużych liczności próby n

Centralne twierdzenie graniczne

rozkład prawdopodobieństwa standaryzowanej sumy $S_n = X_1 + X_2 + ... + X_n$ jest w przybliżeniu rozkładem normalnym, tzn.

$$P\left(a < \frac{S_n - n\mu}{\sqrt{n\sigma}} \le b\right) \to \Phi(b) - \Phi(a), \text{ przy } n \to \infty$$

Równoważnie rozkład S_n jest bliski $N(n\mu, \sqrt{n}\sigma)$.

Uwaga. Przybliżenie na ogół można stosować gdy $n \ge 25$.

CTG dla rozkładu dwumianowego

Wniosek. (Twierdzenie Moivre'a – Laplace'a)

Jeśli $S_n \sim Bin(n, p)$, to przy $n \to \infty$

$$P\left(a < \frac{S_n - np}{\sqrt{np(1-p)}} \le b\right) \to \Phi(b) - \Phi(a).$$

 \mathbf{D}_{\cdot} $S_n = X_1 + X_2 + ... + X_n$,

gdzie $X_1, X_2, ..., X_n$ - prosta próba losowa z rozkładu

Bernoulli'ego Bin(1, p). Zatem $\mu = p, \sigma^2 = p(1-p)$.

Poprawka ciągłości

Ponieważ zmienna losowa o rozkładzie dwumianowym jest typu dyskretnego o nośniku będącym podzbiorem zbioru liczb całkowitych, to

$$P(X \le x) = P(X \le x + 1) \text{ dla } x \in \{0, 1, 2, ...n\}.$$

Jeżeli np oraz n(1 - p) są duże (zwykle wystarczy 5), to Prawdopodobieństwo $P(X \le x)$ jest dobrze przybliżane przez

$$P(Y \le x + 1/2)$$

gdzie Y ma rozkład normalny o wartości oczekiwanej *np* i wariancji *np*(1-*p*).

Dodanie 1/2 do wartości x nazywamy **korektą (poprawką) ciągłości.** Korekta (poprawka) ciągłości poprawia przybliżenie normalne i powinna być stosowana dla $n \le 100$.

CTG dla rozkładu dwumianowego

[™]®##**Ŭwaga.** Przybliżenie można stosować gdy

$$np \ge 5, n(1-p) \ge 5.$$

Przykład. Nowa szczepionka będzie testowana na 100 osobach. Producent ocenia jej skuteczność na 80 %. Znaleźć przybliżone prawdopodobieństwo, że

- pożądaną odporność uzyskają mniej niż 74 osoby
- co najmniej 74 osoby i co najwyżej 85 osób uzyska odporność po zastosowaniu szczepionki.

Niech $S_{100} = X_1 + X_2 + ... X_{100}$ będzie liczbą osób spośród 100 testowanych, które uzyskają odporność, gdzie $X_1, X_2, ..., X_{100}$ jest prostą próbą losową z rozkładu Bernoulli'ego Bin(1,0,8). Stąd $\mu = E(X_1) = 0,8$, $\sigma^2 = Var(X_1) = 0,8 \times 0,2 = 0,16$,

CTG dla rozkładu dwumianowego

$$S_{100} = X_1 + X_2 + \dots + X_{100} \sim Bin(n, p), n = 100, p = 0.8$$

 $E(S_{100}) = 100 \cdot p = 80, \quad Var(S_{100}) = 100p(1 - p) = 16$
 $P(S_{100} < 74) = P(S_{100} \le 73) = P(S_{100} \le 73.5) =$
 $= P\left(\frac{S_{100} - 80}{\sqrt{16}} \le \frac{73.5 - 80}{\sqrt{16}}\right) \approx \Phi\left(-\frac{6.5}{4}\right) =$
 $= 1 - \Phi(1.625) \cong 1 - 0.9479 = 0.0521$

Szansa, że średnio na 100 osób zaszczepionych mniej niż 74 uzyskają odporność wynosi ok. 5,2%

Uwaga. Należy jeszcze sprawdzić warunki pozwalające stosować tw. M-L: $np = 80 \ge 5, nq = 20 \ge 5$

CTG-przykład dla rozkładu ciągłego

Przykład. Załóżmy, że rozkład codziennego dojazdu do pracy jest w przybliżeniu rozkładem jednostajnym na przedziale [0,5 godz., 1 godz.] i że czasy dojazdów w różne dni są niezależne. Obliczyć przybliżone prawdopodobieństwo zdarzenia, że średni dzienny dojazd w ciągu 30 dni przekroczy 0,8 godz.

Niech X_i oznacza czas dojazdu w *i*-tym dniu , i = 1,2,...,30.

$$\mu = E(X_i) = \frac{0.5 + 1}{2} = \frac{3}{4}, \quad \sigma^2 = Var(X_i) = \frac{(1 - 0.5)^2}{12} = \frac{1}{48}.$$

$$E(\overline{X}) = \frac{3}{4}, \quad Var(\overline{X}) = \frac{1}{30 \times 48}.$$

$$P(\overline{X} > 0.8) = P(\frac{\overline{X} - 3/4}{\sqrt{1/(30 \times 48)}} > \frac{0.8 - 3/4}{\sqrt{1/(30 \times 48)}}) \approx P(Z > 1.89) = 1 - 0.9706 = 0.0294$$

CTG - przykład

<u>Przykład.</u> W pewnej populacji dorosłych 39 % ma kłopoty ze snem. Oszacować prawdopodobieństwo, że wśród 100 losowo wybranych dorosłych częstość osób mających kłopoty ze snem nie przekroczy 0,33.

Niech
$$S_{100} = X_1 + X_2 + ... + X_{100} \sim \text{Bin}(100;0,39),$$

$$\hat{p} = \frac{S_{100}}{100}$$

$$P(\hat{p} \le 0.33) = P(S_{100} \le 100 \times 0.33) = P(S_{100} \le 33.5) =$$

$$= P \left(\frac{S_{100} - 100 \times 0,39}{\sqrt{100 \times 0,39 \times 0,61}} \le \frac{33,5 - 100 \times 0,39}{\sqrt{100 \times 0,39 \times 0,61}} \right) \approx$$

$$\Phi(-1,13) = 1 - \Phi(1,13) = 0,1292.$$

Wartość dokładna = 0,129226, bez poprawki ciągłości 0,1093

Rozkład Poissona –zastosowanie CTG

Jeśli $X \sim P(\lambda)$ dla dużego λ , to rozkład standaryzowanej zmiennej $(X - \lambda)/\sqrt{\lambda}$ jest w przybliżeniu normalny, tzn. $P((X - \lambda)/\sqrt{\lambda} \le z) \approx \Phi(z)$,

dla dowolnego z. Zatem dystrybuanta zmiennej losowej X jest bliska dystrybuancie zmiennej losowej o rozkładzie

$$N(\lambda,\sqrt{\lambda})$$

a funkcje prawdopodobieństwa są bliskie gęstościom, co ilustruje rysunek:

Rozkład Poissona

Rozkład Poissona – zastosowanie CTG

Przykład. Liczba awarii sprzętu komputerowego supermarketu w ciągu miesiąca jest zmienną losową *X* o rozkładzie Poissona o średniej 36. Jakie jest prawdopodobieństwo, że w ciągu miesiąca będzie co najwyżej 30 awarii ?

$$X \sim Poisson(36)$$

Niech $X_1, X_2, ..., X_{36}$ - niezależne z.l. o rozkładach Poissona o wartości oczekiwanej 1. Zatem

$$X_i \sim Poisson(1)$$
, dla którego $\mu = 1 = \sigma$

Rozkład Poissona – zastosowanie CTG

Z twierdzenia, str. 6,

$$S_{36} = X_1 + X_2 + \dots + X_{36} \sim Poisson(36)$$

Niech $Z \sim N(0,1)$

$$P(X \le 30) = P(S_{36} \le 30) = P\left(\frac{S_{36} - 36 \cdot 1}{\sqrt{36} \cdot 1} \le \frac{30 - 36}{\sqrt{36} \cdot 1}\right)$$

$$\approx P(Z \le -1) = \Phi(-1) = 1 - \Phi(1) = 1 - 0.864334$$

$$\cong 0.1357.$$

Rozkład częstości

Niech X będzie zmienną losową o rozkładzie Bernoulli'ego, tzn.

$$P(X = 1) = p i P(X = 0) = q = 1 - p$$
.

W zastosowaniach często $p \times 100$ % oznacza procent elementów badanej populacji posiadających określoną własność. Wówczas p nazywamy proporcją lub wskaźnikiem struktury.

$$|\mu_X = 1 \times p + 0 \times (1 - p) = p|,$$

$$|\sigma_X^2 = 1^2 \times p + 0^2 \times (1-p) - p^2 = p(1-p)|$$

Rozkład częstości

Niech $X_1, X_2, ..., X_n$ będzie prostą próbą losową z rozkładu X. ($X_i = 1$ (0) jeśli i-ty wylosowany element ma (nie ma) określoną własność).

$$\hat{p} = \frac{\sum_{i=1}^{n} X_i}{n} = \frac{S_n}{n} = \overline{X}$$
 nazywamy częstością wystąpienia (elementów o danej własności) w prostej próbie losowej.

$$E(\hat{p}) = p$$
, $Var(\hat{p}) = \frac{p(1-p)}{n}$.

Uogólnienie CTG dla częstości

Z Centralnego Twierdzenia Granicznego dla średniej z próby losowej mamy:

$$P\left(a \le \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \le b\right) \to \Phi(b) - \Phi(a), \text{ gdy } n \to \infty.$$

Twierdzenie. Dla dowolnych a, b

$$P\left(a \le \frac{\hat{p} - p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \le b\right) \to \Phi(b) - \Phi(a), \text{ gdy} \quad n \to \infty$$

Estymacja punktowa

Niech $X_1, X_2, ..., X_n$ będzie prostą próbą losową z rozkładu, którego parametr θ jest nieznany.

Definicja

Statystykę $h(X_1,X_2,...,X_n)$, której realizacje dla konkretnych próbek są "rozsądnymi" ocenami θ , nazywamy **estymatorem** parametru θ i oznaczamy

$$\left| \hat{\theta} = h(X_1, X_2, ..., X_n) \right|$$

Definicja

Estymator $\hat{\theta}$ parametru θ jest nieobciążony, jeśli

$$E(\hat{\theta}) = \theta$$

Estymacja punktowa

Przykłady

Średnia z prostej próby losowej jest nieobciążonym estymatorem wartości średniej μ :

$$E(\overline{X}) = \mu$$

Wariancja z prostej próby losowej jest nieobciążonym estymatorem wariancji rozkładu cechy populacji σ^2 :

$$E(S^2) = \frac{1}{n-1} E\left(\sum_{i=1}^n (X_i - \bar{X})^2\right) = \sigma^2$$

Przykład - CTG

Niech X₁,X₂, . . .X₁₄₄ będą niezależnymi zmiennymi losowymi o tym samym rozkładzie prawdopodobieństwa z gęstością

$$f(x) = \begin{cases} x + \frac{1}{2} & dla & x \in [0,1] \\ 0 & dla & x \notin [0,1] \end{cases}$$

Korzystając z CTG oszacować prawdopodobieństwo

$$P\left(78 \le \sum_{n=1}^{144} X_n \le 90\right)$$

$$f(x) = \begin{cases} x + 0.5 & dla \ x \in [0,1] \\ 0 & dla \ x \notin [0,1] \end{cases}$$

$$E(X) = \int_{-\infty}^{\infty} xf(x)dx = \int_{0}^{1} x(x+0.5)dx =$$

$$\int_{0}^{1} x \cdot x \, dx + \int_{0}^{1} 0.5 \, x \, dx = \frac{x^{3}}{3} \Big|_{0}^{1} + 0.5 \frac{x^{2}}{2} \Big|_{0}^{1} = \frac{1}{3} + \frac{1}{4} = \frac{7}{12}$$

$$E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) dx = \int_{0}^{1} x^2 (x + 0.5) dx =$$

$$= \int_{0}^{1} x^{3} dx + \int_{0}^{1} 0.5x^{2} dx = \frac{x^{4}}{4} \Big|_{0}^{1} + 0.5 \frac{x^{3}}{3} \Big|_{0}^{1} = \frac{1}{4} + \frac{1}{6} = \frac{5}{12}$$

$$Var(X) = \frac{5}{12} - \left(\frac{7}{12}\right)^2 = \frac{11}{144}$$

$$S_{144} := X_1 + X_2 + \dots + X_{144}, \quad E(X) := \mu = \frac{7}{12}$$

$$\sigma:=\sqrt{Var(X)}=\sqrt{\frac{11}{144}}, \quad \text{Niech } Z\sim N(0,1)$$

$$P\left(78 \le \sum_{n=1}^{144} X_n \le 90\right) =$$

$$= P\left(\frac{78 - 144 \cdot \mu}{\sqrt{144} \cdot \sigma} \le \frac{S_{144} - 144 \cdot \mu}{\sqrt{144} \cdot \sigma} \le \frac{90 - 144 \cdot \mu}{\sqrt{144} \cdot \sigma}\right) \approx$$

$$= P\left(\frac{78 - 144 \cdot \frac{7}{12}}{\sqrt{144} \cdot \sqrt{11/144}} \le Z \le \frac{90 - 144 \cdot \frac{7}{12}}{\sqrt{144} \cdot \sqrt{11/144}}\right) =$$

$$= \Phi\left(\frac{6}{\sqrt{11}}\right) - \Phi\left(-\frac{6}{\sqrt{11}}\right) =$$

$$= \Phi(1,8091) - (1 - \Phi(1,8091))$$

$$= 2 \cdot 0,970621 - 1 = 0,941242.$$

Dystrybuanta $\Phi(x)$ rozkładu standardowego normalnego N(0,1)

_											
1	x	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
l	0.00	0.500000	0.503989	0.507978	0.511967	0.515953	0.519939	0.523922			
ł	0.10							0.563559			
1	0.20	0.579260	0.583166	0.587064	0.590954	0.594835	0.598706	0.602568	0.606420	0.610261	0.614092
ł	0.30	0.617911	0.621720	0.625516	0.629300	0.633072	0.636831	0.640576	0.644309	0.648027	0.651732
1	0.40	0.655422	0.659097	0.662757	0.666402	0.670031	0.673645	0.677242	0.680822	0.684386	0.687933
	0.50	0.691462	0.694974	0.698468	0.701944	0.705401	0.708840	0.712260	0.715661	0.719043	0.722405
1	0.60							0.745373			
1	0.70	0.758036	0.761148	0.764238	0.767305	0.770350	0.773373	0.776373	0.779350	0.782305	0.785236
l	0.80	0.788145	0.791030	0.793892	0.796731	0.799546	0.802337	0.805105	0.807850	0.810570	0.813267
1	0.90	0.815940	0.818589	0.821214	0.823814	0.826391	0.828944	0.831472	0.833977	0.836457	0.838913
ı	1.00	0.841345	0.843752	0.846136	0.848495	0.850830	0.853141	0.855428	0.857690	0.859929	0.862143
1	1.10							0.876976			
1	1.20							0.896165			
1	1.30							0.913085			
1	1.40	0.919243	0.920730	0.922196	0.923641	0.925066	0.926471	0.927855	0.929219	0.930563	0.931888
1	1.50							0.940620			
ı	1.60	0.945201	0.946301	0.947384	0.948449	0.949497	0.950529	0.951543	0.952540	0.953521	0.954486
	1.70	0.955435	0.956367	0.957284	0.958185	0.959071	0.959941	0.960796	0.961636	0.962462	0.963273
1	1.80	0.964070	0.964852	0.965621	0.966375	0.967116	0.967843	0.968557	0.969258	0.969946	0.970621
-	1.90	0.971283	0.971933	0.972571	0.973197	0.973810	0.974412	0.975002	0.975581	0.976148	0.976705
	2.00	0.977250	0.977784	0.978308	0.978822	0.979325	0.979818	0.980301	0.980774	0.981237	0.981691
	2.10	0.982136	0.982571	0.982997	0.983414	0.983823	0.984222	0.984614	0.984997	0.985371	0.985738
1	2.20							0.988089			
	2.30							0.990863			
l	2.40							0.993053			
ĺ	2.50	0.993790	0.993963	0.994132	0.994297	0.994457	0.994614	0.994766	0.994915	0.995060	0.995201
ı	2.60							0.996093			5 15 5 5 15 15 15 15 15 15 15 15 15 15 1
l	2.70	0.996533	0.996636	0.996736	0.996833	0.996928	0.997020	0.997110	0.997197	0.997282	0.997365
١	2.80							0.997882			
	2.90							0.998462			
	3.00							0.998893			
	3.10							0.999211			
	3.20							0.999443			
Ī	3.30							0.999610			
Į	3.40	0.999663	0.999675	0.999687	0.999698	0.999709	0.999720	0.999730	0.999749	0.999749	0.999758
L											

Kwantyle z_{α} rozkładu standardowego normalnego N(0,1)

-	α	0.000	0.010	0.020	0.030	0.040	0.050	0.060	0.070	0.075	0.080	0.090	0.095
	0.5	0.00000	0.02507	0.05015	0.07527	0.10043	0.12566	0.15097	0.17637	0.18912	0.20189	0.22754	0.24043
1	0.6	0.25335	0.27932	0.30548	0.33185	0.35846	0.38532	0.41246	0.43991	0.45376	0.46770	0.49585	0.51007
1	0.7	0.52440	0.55338	0.58284	0.61281	0.64335	0.67449	0.70630	0.73885	0.75541	0.77219	0.80642	0.82389
	0.8	0.84162	0.87790	0.91537	0.95417	0.99446	1.03643	1.08032	1.12639	1.15035	1.17499	1.22653	1.25356
	0.9	1.28155	1.34075	1.40507	1.47579	1.55477	1.64485	1.75069	1.88079	1.95996	2.05375	2.32634	2.57582