Packet 2

Part 2: Sections 14.4-14.6

14.4 Tangent Planes and Linear Approximations

Definition 1. A **normal vector** to a surface is a vector normal to any vector tangent to a curve on the surface.

Theorem 2. Let f(x, y) be a function of two variables with continuous partial derivatives, and let (a, b) be a point in the interior of f's domain. Then $\langle f_x(a, b), f_y(a, b), -1 \rangle$ is normal to the surface at the point (a, b, f(a, b)).

Problem 3. OPTIONAL. Prove the previous theorem by using the curves $\vec{\mathbf{r}}(t) = \langle t, b, f(t, b) \rangle$ and $\vec{\mathbf{q}}(t) = \langle a, t, f(a, t) \rangle$ to yield the tangent vectors $\langle 1, 0, f_x(a, b) \rangle$ and $\langle 0, 1, f_y(a, b) \rangle$.

Solution. \Diamond

Definition 4. The **tangent plane** to a surface at a point is the plane passing through that point sharing the same normal vectors as the surface.

Theorem 5. The tangent plane to the surface z = f(x, y) above the point (a, b) is given by the equation

$$z = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

Problem 6. Prove the previous theorem.

Solution.

Problem 7. Find an equation for the plane tangent to the surface $z = 4x^2 + y^2$ above the point (1, -1).

Solution.

Definition 8. The linearization L(x, y) of a function f(x, y) at the point (a, b) is given by the formula:

$$L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

Definition 9. A function f is **differentiable** at a point if its linearization at that point approximates the value of the function nearby.

Remark 10. Basically, a differentiable function is one which looks similar to its tangent planes when zoomed in sufficiently far.

Problem 11. Approximate the value of the differentiable function $f(x,y) = 4xy + 3y^2$ at (1.1, -2.05) by using its linearization at the point (1, -2). Then use a calculator to approximate f(1.1, -2.05).

Solution.