$\widehat{\Xi}$
hium
=======================================
6.94
Ą.=

NCE STATE	
REFERE	

	Linnapy we	ference Te	Enthalpy Reference Temperature	= 7, = 298.15 K		tandard S	Standard State Pressure = p^* k I-mol ⁻¹	,* = 0.1 MPa
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	7.K			-H'(T,)]T	H*-H*(T,)	₽.H.		log K,
6.491 8.370 45.859 -4.021 -4.021 -4.021 -4.021 -4.021 -4.021 -4.021 -4.021 -4.021 -4.021 -4.021 -4.021 -4.021 -4.021 -4.022 -4.	001	0. 13.360	0.	INFINITE 48.615	-4.622 -4.127	o o	ರರ	00
21,573 19,826 31,235 -2286 0. 24,623 29,083 0.0 0. 25,387 40,288 31,080 4178 0. 20,374 40,283 31,080 4178 0. 20,375 40,283 31,080 4178 0. 20,374 40,283 31,080 4178 0. 20,375 40,297 31,680 11,570 0. 22,337 61,661 41,931 11,572 0. 28,375 61,664 44,539 20,173 0. 28,376 44,539 20,173 0. 0. 28,376 44,539 20,173 0. 0. 28,376 17,281 20,173 11,487 0. 28,451 18,417 26,441 10,174 0. 28,418 18,417 26,441 11,486 0. 28,418 18,441 0. 0. 0. 28,418 11,486 11	107.250	16.491	8.370	45.859	-4.021	<u>.</u>	HUMP MAXIMUM TRANSITION	
24653 29.085 29.085 0.0 0. 24669 36.688 30.083 2646 0. 29.387 46.922 31080 24.18 0. 29.387 46.922 31080 21.88 0. 29.392 46.922 31080 21.88 0. 29.392 52.383 31080 41.78 0. 29.392 52.383 36.013 11.562 0. 28.376 51.664 44.339 20.275 0. 28.386 70.107 46.349 20.275 0. 28.376 77.833 49.179 20.015 0. 28.451 81.257 20.02 0. 0. 28.451 81.289 58.64 0. 0. 28.451 81.289 58.64 0. 0. 28.451 81.289 58.441 0. 0. 28.451 81.289 58.441 0. 0. 28.451 81.289	200	21.573	19.826	31.255	-2286		ó	
24,669 29,237 20,068 0.046 0. 20,397 46,992 31,089 4178 0. 20,397 46,992 31,089 4178 0. 20,397 46,992 31,089 4178 0. 22,387 46,992 31,089 4178 0. 22,397 46,391 11,262 0. 0. 22,397 44,391 11,243 0. 0. 22,378 77,283 44,391 11,243 0. 22,376 72,355 51,257 21,516 0. 22,376 72,353 44,391 11,248 0. 28,431 71,344 0. 0. 0. 28,431 81,750 56,741 37,514 0. 28,431 81,356 38,678 14,636 0. 28,431 81,356 56,741 37,514 0. 28,431 81,348 38,678 14,636 0. 28,431 <td< td=""><td>298.15</td><td>24.623</td><td>29.085</td><td>29.085</td><td>ó</td><td>ó</td><td>ó</td><td>oʻ</td></td<>	298.15	24.623	29.085	29.085	ó	ó	ó	oʻ
29.387 40.288 31.080 41/8 CRYSTI 30.155 46.962 31.080 7.178 7.178 30.155 55.283 36.013 11.562 0. 25.397 55.664 44.539 11.562 0. 28.376 51.066 44.539 20.275 0. 28.376 77.855 51.277 28.918 0. 28.776 77.855 51.277 28.918 0. 28.776 77.855 51.277 28.918 0. 28.776 77.879 55.024 37.514 0. 28.451 81.580 56.441 0. 0. 28.451 81.580 56.441 0. 0. 28.451 81.580 56.441 0. 0. 28.451 81.580 56.441 0. 0. 28.451 81.287 40.359 0. 0. 28.451 81.287 40.359 0. 0. 28.451	88	24.669 27.610	29.237 36.698	29.085 30.083	0.046 2.646	o o	ರ ರ	
30,125 49,845 31,548 8779 0. 28,379 65,661 41,531 11,552 0. 28,377 65,661 41,531 11,552 0. 28,377 65,661 41,531 11,552 0. 28,376 70,107 46,946 23,1157 0. 28,776 71,253 51,257 28,118 0. 28,776 77,255 51,257 28,918 0. 28,777 77,257 55,024 31,790 0. 28,713 81,379 38,678 0. 0. 28,413 83,589 88,678 0. 0. 28,413 83,589 88,678 40,365 0. 28,413 83,589 88,678 40,365 0. 28,413 83,589 88,678 40,365 0. 28,411 83,589 88,678 40,365 0. 28,411 83,589 88,678 40,365 0. 28,411<	453.690	29.387	40.288	31,080	4.178	8	STAL <> LIQI	9
28.379 \$5.283 \$6013 11.562 0. 28.987 \$5.744 \$9.977 11.487 0. 28.987 \$6.566 \$4.359 11.284 0. 28.886 \$7.0107 \$45.34 \$2.0175 0. 28.776 \$7.285 \$1.257 \$2.918 0. 28.776 \$7.285 \$3.207 \$2.818 0. 28.717 \$7.285 \$3.207 \$3.909 0. 28.718 \$7.285 \$3.207 \$3.909 0. 28.718 \$7.285 \$3.207 \$3.909 0. 28.411 \$8.386 \$40.365 0. 0. 28.411 \$8.386 \$40.365 0. 0. 28.411 \$8.386 \$40.365 0. 0. 28.411 \$8.387 \$40.365 0. 0. 28.428 \$1.0340 \$8.646 196.360 0. 28.429 \$1.8877 \$40.365 0. 0. 28.429 <td>200</td> <td>30.125</td> <td>49.843</td> <td>32.684</td> <td>8.579</td> <td>ó</td> <td>0</td> <td>ö</td>	200	30.125	49.843	32.684	8.579	ó	0	ö
28.387 63.664 41931 11384 0. 28.386 61066 44539 117384 0. 28.386 77.883 49.179 26.042 28.386 77.883 49.179 26.042 28.397 77.883 49.179 26.042 28.451 81.789 55.024 34.666 0. 28.451 81.789 55.024 34.666 0. 28.451 81.789 55.024 34.666 0. 28.451 81.789 55.024 40.36 0. 28.451 81.789 55.024 40.36 0. 28.451 81.789 56.741 40.05 20.399 117.281 75.911 192.633 0. 20.399 117.281 75.911 192.633 0. 20.382 179.367 85.666 196.773 0. 20.382 179.367 85.666 196.773 0. 20.382 179.367 85.666 196.773 0. 20.382 179.367 85.666 196.773 0. 20.383 173.31 93.837 104.131 207.287 0. 21.347 183.457 104.131 207.287 0. 21.348 186.193 112.502 213.712 0. 21.349 183.457 104.131 207.287 0. 21.349 185.349 119.543 200.389 0. 21.349 110.40 173.40 20.341 0. 21.340 191.014 173.11 229.331 0. 21.340 191.014 173.11 229.331 0. 21.340 191.014 173.11 229.331 0. 21.340 191.014 173.13 20.341 0. 21.340 191.014 173.13 20.341 0. 21.340 190.321 133.877 23.4013 0. 21.340 190.321 133.877 23.4013 0. 22.340 199.323 144.152 25.3387 0. 22.340 199.323 144.152 25.3387 0. 22.340 199.323 144.152 25.3387 0. 22.340 199.323 144.152 25.3387 0. 22.340 199.323 144.152 25.3387 0. 22.341 199.323 146.336 25.6389 0. 22.342 197.641 136.679 25.5389 0. 22.343 197.621 143.08 25.6389 0. 22.343 197.621 143.08 25.6389 0. 22.343 197.621 143.08 25.6389 0. 22.343 197.621 143.08 25.6389 0. 22.343 197.621 143.08 25.6389 0. 22.343 197.621 143.08 25.6389 0. 22.343 197.621 143.08 25.6389 0. 22.343 197.621 143.08 25.6389 0. 22.343 197.621 143.08 25.6389 0. 22.343 197.621 143.08 25.6389 0. 22.343 197.621 143.08 25.6389 0. 22.343 197.621 143.08 25.6389 0. 22.343 193.34 145.35 26.339 0. 22.343 193.34 145.36 26.339 0. 22.343 193.34 145.36 26.339 0. 22.343 193.34 145.36 26.339 0. 22.343 193.34 145.36 26.339 0. 22.343 193.34 145.36 26.339 0. 22.343 193.34 145.36 26.339 0. 22.343 193.34 145.36 26.339 0. 22.343 193.34 145.36 26.339 0. 22.343 193.34 145.36 26.339 0. 22.343 193.34 145.36 26.339 0. 22.343 193.34 145.36 26.239 0. 22.343 193.34 145.36 0. 22.343 193.34 145.36 0. 22.343 193.34 145.36 0. 22.343 193	8	29.539	55.283	36.013	11.562	ó	ď	ö
2.8.36	88	28.987	59.794	39.097	14.487	oʻ oʻ	ď	oʻ c
28.785 72.83 49.179 26.010 0. 28.786 72.83 49.179 26.010 0. 28.535 81.780 55.724 34.56 0. 28.451 81.780 55.724 34.56 0. 28.451 81.780 55.724 34.56 0. 28.451 81.780 55.724 34.56 0. 28.451 81.780 55.724 34.56 0. 28.451 81.780 55.724 34.56 0. 28.451 81.780 56.4118 188.41 0. 20.879 17.281 75.911 192.633 0. 20.882 179.26 64.118 188.41 0. 20.882 179.26 64.118 188.421 0. 20.882 179.26 64.118 188.43 0. 20.882 179.26 64.118 188.43 0. 20.882 179.26 64.118 188.43 0. 20.882 179.26 64.118 188.43 0. 20.882 179.26 65.66 196.773 0. 20.893 18.2165 97.557 203.06 0. 21.291 183.267 104.131 207.287 0. 21.291 185.291 112.50 213.20 0. 21.291 185.291 112.50 213.20 0. 21.391 185.291 112.50 213.20 0. 21.391 189.315 112.50 213.31 0. 21.392 187.281 133.877 224.757 0. 22.393 187.281 133.877 224.757 0. 22.403 12.289 132.284 26.393 0. 22.403 12.289 132.284 26.393 0. 22.403 12.289 132.284 26.393 0. 22.403 12.289 132.284 26.393 0. 22.403 12.289 132.284 26.393 0. 22.403 12.289 132.284 26.393 0. 22.403 12.289 132.284 26.393 0. 22.403 12.289 132.284 26.393 0. 22.403 12.289 132.284 26.393 0. 22.509 194.115 135.271 241.263 0. 22.669 196.470 14.827 254.399 0. 22.881 199.213 146.336 264.393 0. 22.891 199.213 146.336 264.393 0. 22.891 199.213 146.336 264.393 0. 22.991 199.213 146.336 264.393 0. 22.991 12.394 13.295.890 0. 22.139 139.344 15.56.88 0. 22.139 139.344 15.56.88 0. 22.139 139.344 15.56.48 20. 22.139 139.344 15.56.48 20. 22.139 139.344 15.56.48 20. 22.139 139.344 15.56.48 20. 22.139 139.344 15.56.48 20. 22.139 139.344 15.56.48 20. 22.139 139.344 15.56.48 20. 22.139 139.344 15.56.48 20. 22.139 139.344 15.56.48 20. 22.139 139.344 15.56.48 20. 22.139 139.344 15.56.48 0. 22.139 139.344 15.56.48 20. 22.139 139.344 15.56.48 20. 22.139 139.344 15.56.48 20. 22.139 139.344 15.56.48 20. 22.139 139.344 15.56.48 20. 22.139 139.344 15.56.48 20. 22.139 139.344 15.26.88 0. 22.139 139.344 15.26.88 0. 22.139 139.344 15.26.88 0. 22.134 139.344 15.56.48 20. 22.139 139.344 15.56.48 20. 22.139 139.344 15.26.48 20. 22.139 139.344 15.26.48 20. 22.139 139.344 15.26.	38	28.886	67.066	44.539	20.275	င် ဝ	ာ် ငံ င	d d d
28.776 75.255 51.277 26.047 0. 28.772 75.555 51.277 28.918 0. 28.673 81.750 55.041 31.790 0. 28.673 81.750 55.041 37.514 0. 28.451 83.545 88.573 40.363 0. 28.451 83.545 88.573 40.363 0. 28.451 83.545 88.573 40.363 0. 20.794 173.565 88.678 186.779 0. 20.816 177.281 75.911 192.563 0. 20.825 177.281 75.911 192.563 0. 20.826 177.281 88.947 0.0.959 0. 20.827 177.281 88.947 10.0.959 0. 20.828 187.240 10.982 20.169 0. 21.347 183.265 10.0.983 211.556 0. 21.347 183.265 10.0.983 211.556 0. 21.347 183.267 10.0.983 20.169 0. 21.347 187.649 117.30 215.883 0. 21.347 187.649 117.30 215.883 0. 21.347 187.649 117.30 215.883 0. 21.347 187.649 117.30 215.883 0. 21.347 187.649 117.30 215.883 0. 21.347 187.649 117.30 215.883 0. 21.347 187.649 117.30 215.883 0. 21.347 187.649 117.30 215.883 0. 22.652 189.70 12.560 227.301 0. 23.400 19.249 12.280 12.284 0. 23.400 19.249 12.280 12.284 0. 25.669 19.64.71 136.679 244.374 0. 25.669 19.64.71 136.679 244.374 0. 25.699 19.411 136.679 244.374 0. 25.699 19.411 136.679 244.380 0. 25.699 19.411 136.679 244.380 0. 25.699 19.411 136.679 244.380 0. 25.699 19.411 136.679 244.380 0. 25.699 19.411 136.679 244.380 0. 25.699 19.411 136.679 244.380 0. 25.699 19.411 136.679 244.380 0. 25.699 19.411 136.679 244.380 0. 25.699 19.411 136.679 244.380 0. 25.699 19.411 136.679 244.380 0. 25.699 19.411 136.699 244.390 0. 26.833 19.511 13.804 244.380 0. 26.833 19.521 14.027 259.387 0. 26.831 19.521 14.027 259.387 0. 27.291 19.90.31 14.132 26.433 0. 27.291 19.304 14.132 26.433 0. 27.291 19.304 14.132 26.433 0. 27.291 19.304 14.132 26.433 0. 27.291 19.304 14.132 26.433 0. 27.291 19.304 14.132 26.433 0. 27.291 19.304 14.132 26.433 0. 27.291 19.304 14.132 26.433 0. 27.291 19.304 14.132 26.433 0. 27.291 19.304 14.132 26.433 0. 27.291 19.304 14.132 26.433 0. 27.291 19.204 14.132 26.433 0. 27.207 12.401 14.132 26.433 0. 27.207 12.401 13.504 12.504 12.004	000	28.830	70.107	40.940	23.161	. .	ರ (. .
28.707 7.655 313.201 317.790 0. 28.451 813.89 58.3221 315.66 28.451 813.89 58.342 40.345 0. 28.451 813.89 58.342 40.345 0. 20.794 173.965 88.678 40.345 0. 20.794 173.965 88.678 188.441 0. 20.794 174.966 117.891 192.603 0. 20.2849 177.281 75.911 192.603 0. 20.285 177.281 75.911 192.603 0. 20.286 177.281 75.911 192.603 0. 20.286 177.281 75.911 192.603 0. 20.286 187.349 89.947 198.853 0. 21.347 188.367 100.399 205.169 0. 21.348 186.391 114.970 215.883 0. 21.347 187.649 117.303 216.893 0. 21.347 187.649 117.303 218.83 0. 22.622 189.707 123.602 224.737 0. 23.406 191.624 125.301 229.331 0. 23.406 191.624 123.281 229.331 0. 23.406 191.624 123.897 234.314 0. 25.699 194.115 133.897 234.315 0. 25.699 194.115 133.897 234.315 0. 25.699 194.115 133.897 234.315 0. 25.699 194.115 135.291 234.345 0. 25.699 194.115 135.291 244.35 244.355 0. 25.699 194.115 135.291 244.35 244.355 0. 25.699 194.115 136.699 244.356 0. 25.699 194.115 135.291 244.351 244.351 133.877 244.313 0. 25.699 194.115 135.291 225.393 0. 25.699 194.115 135.291 225.393 0. 25.699 194.115 135.291 244.355 0. 25.699 194.115 135.291 244.355 0. 25.699 194.115 135.691 244.355 0. 25.699 194.115 135.691 244.355 0. 25.699 194.115 135.691 244.355 0. 25.699 194.115 135.691 244.355 0. 25.699 194.115 135.691 244.355 0. 25.699 194.115 135.691 244.355 0. 25.699 194.115 135.691 244.356 0. 25.699 194.115 135.691 244.356 0. 25.699 194.115 135.691 244.356 0. 25.699 194.115 135.691 244.356 0. 25.699 194.115 135.691 244.356 0. 25.699 194.115 135.691 244.356 0. 25.699 194.115 135.691 244.356 0. 25.699 194.115 135.691 244.356 0. 25.699 194.115 135.691 244.356 0. 25.699 194.115 135.691 244.356 0. 25.699 194.115 135.691 244.356 0. 25.699 194.115 135.691 244.356 0. 25.699 194.115 135.691 244.356 0. 25.690 194.115 135.691 244.356 0. 25.690 194.115 135.691 244.356 0. 26.691 196.691 196.691 244.356 0. 26.691 196.691 196.691 244.356 0. 26.691 196.691 196.691 244.356 0. 26.691 196.691 196.691 244.356 0. 26.691 196.691 196.691 244.356 0. 26.691 196.691 196.691 244.356 0. 26.691 196.691 196.691	2021	28.786	72.853	51.257	26.042 28.918	o o	j	ರ ರ
28.515 81.776 55.024 346.56 0. 28.451 83.589 58.362 40.363 0. 28.451 83.545 88.678 40.363 0. 28.451 83.545 88.678 40.363 0. 20.794 173.965 88.678 186.779 — LQUID. 20.799 174.966 64.118 188.441 0. 20.882 172.319 192.633 0. 20.882 172.34 173.31 192.633 0. 20.882 172.34 183.06 192.83 0. 21.134 183.676 107.099 209.38 0. 21.134 183.67 104.131 207.287 0. 21.231 183.87 104.131 207.287 0. 21.231 183.87 104.131 207.287 0. 21.231 183.87 104.131 207.287 0. 22.391 189.035 114.590 215.602 213.712 0. 22.391 189.035 121.602 222.66 0. 22.391 189.035 121.602 222.66 0. 23.405 191.623 120.641 222.66 0. 23.406 194.714 135.672 224.757 0. 24.638 194.714 135.679 244.754 0. 25.695 194.714 135.679 244.754 0. 25.695 194.714 135.679 244.754 0. 25.697 194.714 135.679 244.754 0. 25.698 194.714 135.679 244.754 0. 25.699 194.714 135.679 244.754 0. 25.699 194.714 135.679 244.754 0. 25.699 194.714 135.679 244.754 0. 25.699 194.714 135.679 244.754 0. 25.699 194.714 135.679 244.754 0. 25.699 194.714 135.679 244.754 0. 25.699 194.714 135.679 244.754 0. 25.699 194.714 135.679 244.754 0. 25.699 194.714 135.679 244.754 0. 25.699 194.714 135.679 244.754 0. 25.699 194.714 135.271 244.253 0. 25.699 194.714 135.679 244.754 0. 25.699 194.714 135.679 244.754 0. 25.699 194.714 135.679 244.754 0. 25.699 194.714 135.679 244.754 0. 25.699 194.714 135.679 244.754 0. 25.699 194.714 135.679 244.754 0. 25.699 194.714 135.679 244.754 0. 25.699 194.714 135.679 245.756 0. 25.699 194.714 135.679 245.756 0. 25.699 194.714 135.679 259.387 0. 25.699 194.714 135.679 245.756 0. 25.699 194.714 135.679 259.387 0. 25.699 194.714 135.679 259.387 0. 25.699 194.714 135.679 259.387 0. 25.699 194.714 135.679 259.387 0. 25.699 194.714 135.649 1.0 25.699 194.714 135.649 1.0 25.990 194.714 135.649 1.0 25.990 194.714 135.649 1.0 25.990 194.714 135.649 1.0 25.990 194.714 135.649 1.0 25.990 194.714 135.649 1.0 25.990 194.714 135.649 1.0 25.990 194.714 135.649 1.0 25.990 194.714 135.649 1.0 25.990 194.714 135.649 1.0 25.990 194.714 135.649 1.0 25.990 194.714 135.649 1.0 25.990 194.714 1	1300	28.702	77.655	53.201	31.790	ö	ď	ö
28.41 83.58 88.56 40.363 0. 28.41 83.945 88.678 40.363 0. 20.794 173.65 86.78 40.363 0. 20.810 176.155 70.310 190.521 0. 20.826 177.281 186.773 0. 0. 20.882 178.349 81.006 194.687 0. 20.882 178.349 81.006 194.687 0. 20.980 181.271 79.388 20.038 0. 20.980 181.271 79.388 20.038 0. 21.131 183.87 104.131 20.038 0. 21.134 183.87 104.131 20.038 0. 21.134 183.87 104.131 20.038 0. 21.137 185.49 107.089 20.418 0. 21.137 185.49 107.089 20.418 0. 21.24 185.49 107.089 20.418 0.	85	28.619	81.750	55.024	34.656	ೆ ರ	ತ ರ	ರ ರ
28.431 83.945 8.678 40.936 LIQUID. 20.734 17.9655 8.678 40.936 LIQUID. 20.739 17.4566 64.118 184.41 0 20.826 176.155 70.310 190.521 0 20.836 178.349 81.006 194.687 0 20.836 178.349 81.006 196.773 0 20.980 181.271 93.897 190.883 0 21.049 181.216 97.537 20.006 0 21.134 183.857 104.131 207.287 0 21.134 183.466 107.099 209.415 0 21.134 183.466 107.099 209.415 0 21.134 183.491 107.099 209.415 0 21.134 183.496 107.099 209.415 0 21.247 185.491 114.970 213.871 0 21.248 186.931 114.970 213.871 0	0091	28.451	83.589	58.362	40.363	o'	ó	Ö
20.794 17.396.5 38.678 186.779 17.396.5 20.816 17.315 70.310 186.779 1.02.00 20.826 17.3281 70.310 190.221 0. 20.826 17.3281 70.310 190.221 0. 20.826 18.736 19.4687 0. 0. 20.826 18.716 93.897 190.838 0. 20.926 18.171 93.893 200.938 0. 21.049 18.2165 100.939 205.169 0. 21.131 18.387 104.131 207.287 0. 21.479 18.4660 100.939 205.169 0. 21.471 18.4660 107.099 207.415 0. 21.471 18.4660 107.099 209.415 0. 21.471 18.4660 107.099 209.415 0. 21.471 18.4660 107.099 209.415 0. 21.571 18.8330 114.570 21.833 <	1620.120	28.431	83.945	58.678	40.936	inon —	<> IDEAL	CAS
20.779 174500 76.118 188.441 0. 20.826 17.281 75.911 192.633 0. 20.826 17.281 19.2463 0. 20.827 18.349 81.006 19.2433 0. 20.828 17.281 83.947 20.0358 0. 20.929 181.271 93.889 200.938 0. 20.920 181.271 93.893 200.938 0. 21.131 183.057 104.131 207.877 0. 21.134 183.857 104.131 207.877 0. 21.137 183.857 104.131 207.877 0. 21.137 185.939 109.833 211.556 0. 21.158 186.193 112.502 213.717 0. 21.174 188.330 119.513 220.278 0. 21.177 188.330 114.470 215.566 0. 21.291 189.335 115.692 221.311 0.	1620.120	20.794	173.965	58.678	186.779			, 5
20.825. 17.281 5.911 197.503 0. 20.825 17.281 5.911 197.503 0. 20.825 17.281 5.911 198.503 0. 20.825 187.349 81.006 196.877 0. 20.890 181.211 53.897 20.0358 0. 21.049 181.216 20.938 20.0358 0. 21.131 183.857 104.131 207.287 20.1569 0. 21.347 183.857 104.131 207.287 0. 21.347 185.493 109.833 211.556 0. 21.577 185.931 114.970 21.1535 0. 21.577 185.931 114.970 21.1538 0. 21.277 185.931 114.970 21.1538 0. 21.257 21.077 185.931 114.970 21.2576 0. 21.252 189.070 121.602 22.4757 0. 21.262 189.070 121.602 22.4757 0. 21.262 189.070 121.602 22.4757 0. 21.262 190.286 122.800 122.807 123.807 23.4013 0. 21.260 122.807 123.807 23.4013 0. 21.260 190.241 136.672 24.402 24.415 24.415 24.426 0. 21.260 190.247 14.1827 22.433 0. 21.260 22.433 193.511 138.072 24.432 24.432 24.415	882	20.799	176.155	70310	190.521	၁ဝ	ರ ರ ೧	ರ ರ ೧
20.882 19.347 85.666 196.773 0 20.995 180.340 89.947 198.863 0 20.996 181.271 95.894 198.863 0 21.049 181.216 97.557 203.060 0 21.131 183.057 100.938 205.169 0 21.479 185.499 109.883 205.115 0 21.673 185.939 119.883 211.556 0 21.77 187.649 117.302 218.712 0 21.77 187.649 117.302 218.712 0 21.77 187.649 117.302 218.717 0 22.31 189.035 121.699 222.506 0 22.31 189.037 121.602 227.506 0 23.40 191.641 177.11 227.506 0 23.40 191.642 127.507 224.656 0 24.00 191.657 124.013 0 0	8 8 8 8 8 8	20.826 20.849	178.349	81.006	192.603	o o	ာ်ဝံ	ತ ರ
20.595 181.715 59.595 159.505 50.505 51.705 5	2100	20.882	179.367	85.666	196.773	ď	Ö	o c
21,049 182,165 915,216 0.0 21,134 183,056 100,959 205,169 0.0 21,347 183,457 104,131 207,287 0.0 21,439 185,459 109,833 211,556 0.0 21,537 185,493 109,833 211,556 0.0 21,537 187,649 117,302 218,317 0.0 21,577 187,649 117,303 218,837 0.0 21,577 187,649 117,303 218,671 0.0 22,517 189,035 121,609 222,506 0.0 22,528 189,077 121,609 222,506 0.0 23,130 191,014 177,11 222,506 0.0 23,140 191,627 124,013 0.0 0.0 24,037 122,504 224,331 0.0 0.0 24,037 123,807 124,013 0.0 0.0 24,037 123,807 124,013 0.0 0.0	38	20.980	181271	93.898	200.958	်ဝံ	်ဝံ	ó
21,231 183.857 104.131 207.287 0. 21,347 184.660 107.099 209.415 0. 21,347 184.660 107.099 209.415 0. 21,528 186.195 115.502 213.712 0. 21,977 187.649 117.302 218.833 0. 21,977 187.649 117.303 218.807 0. 22,917 189.035 121.669 272.506 0. 22,918 189.037 123.602 227.475 0. 23,130 191.014 177.311 220.246 0. 24,003 191.652 129.041 224.077 0. 23,130 191.014 177.311 229.331 0. 24,003 191.652 120.047 234.338 0. 24,003 192.529 132.844 234.348 0. 24,003 194.714 136.679 243.245 0. 25,604 195.314 146.336 243.36	7400 7200 7200	21.049	182.165	97.557 100.959	203.060 205.169	ರ ರ	o o	ರ ರ
21,347 18,4660 10,099 209,415 0. 21,528 18,549 109,883 211,556 0. 21,628 18,6391 114,970 215,371 0. 21,977 187,649 117,303 218,371 0. 21,977 187,649 117,303 218,071 0. 22,528 19,513 220,256 0. 222,506 0. 22,528 190,366 125,500 224,757 0. 0. 23,407 0. 0. 224,031 0. 0. 23,408 0. 0. 23,409 0. 0. 0. 24,003 0. <t< td=""><td>2600</td><td>21.231</td><td>183.857</td><td>104.131</td><td>207.287</td><td>o</td><td>Ö</td><td>o</td></t<>	2600	21.231	183.857	104.131	207.287	o	Ö	o
21,628 186,195 112,502 213,712 0 21,774 186,391 112,502 213,712 0 21,777 187,649 117,303 218,671 0 22,531 187,649 173,03 218,071 0 22,528 189,035 115,699 222,506 0 22,588 190,366 125,500 227,506 0 23,130 191,014 177,311 229,331 0 23,667 192,280 122,284 236,338 0 24,003 192,280 132,284 236,338 0 24,003 192,280 132,284 236,338 0 24,003 192,511 133,877 243,381 0 24,003 193,511 133,877 243,348 0 25,009 194,114 136,679 245,365 0 26,699 196,470 140,877 243,366 0 26,699 196,470 140,877 243,369 0	27.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	21347	184.660	107,099	209.415	o' c	o c	ರ ರ
21.974 186.931 114.970 215.883 0. 22.177 186.931 114.970 215.883 0. 22.177 188.350 119.513 220.278 0. 22.627 189.035 115.609 224.576 0. 22.688 190.366 125.500 227.031 0. 23.406 191.014 127.311 229.331 0. 24.003 192.280 122.84 23.403 0. 24.003 192.289 132.84 23.433 0. 24.033 193.511 133.877 23.4313 0. 24.033 193.511 133.877 243.381 0. 25.009 194.114 136.679 245.38 0. 25.009 194.114 136.679 245.365 0. 26.69 196.470 140.607 251.386 0. 26.69 196.470 140.607 251.386 0. 26.873 197.621 141.827 259.387 <td< td=""><td>2300</td><td>21.628</td><td>186.195</td><td>112.502</td><td>213.712</td><td>ó</td><td>6</td><td>ó</td></td<>	2300	21.628	186.195	112.502	213.712	ó	6	ó
21.977 1887.649 1173.03 218.071 0.0 22.371 188.350 119.513 220.278 0.0 22.381 19.045 125.602 222.506 0.0 22.882 190.366 125.600 227.031 0.0 23.150 191.014 127.311 229.331 0.0 23.150 191.014 127.311 229.331 0.0 23.677 122.892 130.697 234.013 0.0 24.033 192.289 130.284 236.388 0.0 24.332 193.511 133.877 234.318 0.0 25.309 194.714 135.679 243.746 0.0 25.509 195.892 139.344 248.800 0.0 25.664 197 0.0 140.697 251.386 0.0 25.687 197.027 144.182 256.579 0.0 25.687 197.027 144.182 256.579 0.0 25.873 197.027 144.182 256.579 0.0 25.873 197.027 144.182 256.579 0.0 25.873 197.024 144.152 255.387 0.0 25.873 197.024 144.152 255.387 0.0 28.191 199.323 145.356 256.579 0.0 28.191 199.323 145.356 256.379 0.0 28.191 199.323 145.356 256.379 0.0 28.191 199.323 145.356 256.389 0.0 30.132 201.564 155.544 276.588 0.0 31.237 201.564 155.554 259.881 0.0	3000	21.794	186.931	114.970	215.883	oʻ (o o	o' o
22.391 189.035 131.669 222.556 0 22.662 189.707 12.662 224.577 0 22.868 190.366 155.600 224.577 0 23.130 191.014 127.311 229.331 0 23.677 192.280 130.697 234.013 0 24.033 192.289 12.284 234.313 0 24.533 193.511 133.877 234.318 0 25.079 194.115 135.771 244.263 0 25.375 195.377 138.6579 244.265 0 25.466 195.889 193.44 244.800 0 25.666 195.889 193.44 244.800 0 26.873 197.07 141.827 245.012 0 26.873 197.04 144.057 251.386 0 27.736 187.51 144.152 253.387 0 27.737 187.93 145.356 264.935 0 </td <td>3100</td> <td>21.977</td> <td>183,549</td> <td>117,303</td> <td>218.071</td> <td>o c</td> <td>ರ ರ</td> <td>o o</td>	3100	21.977	183,549	117,303	218.071	o c	ರ ರ	o o
22.662 1983/107 123.602 224.537 0. 224.682 190.566 155.602 224.537 0. 224.682 190.566 155.602 224.537 0. 223.466 191.662 192.697 123.643 0. 24.603 192.289 190.697 224.013 0. 24.638 192.289 132.284 226.398 0. 24.638 193.511 133.807 236.314 0. 25.509 194.714 135.677 244.746 0. 25.575 195.397 138.667 244.263 0. 25.575 195.397 138.667 244.263 0. 25.575 195.397 138.294 248.800 0. 25.664 197.047 141.827 224.012 0. 25.667 197.047 141.827 224.012 0. 25.837 197.297 144.182 225.8387 0. 25.837 197.297 144.182 225.8387 0. 25.837 197.297 144.182 225.8387 0. 25.837 199.323 145.316 225.3387 0. 25.837 199.323 145.316 225.8387 0. 25.837 207.464 155.644 275.648 0. 25.837 207.464 155.644 275.648 0. 25.837 207.464 155.644 275.648 0. 25.837 207.464 155.644 275.648 0. 25.837 207.464 155.644 275.648 0. 25.837 207.464 155.644 275.648 0. 25.837 207.464 155.644 275.648 0. 25.837 207.464 155.644 275.648 0. 25.837 207.464 155.644 275.648 0. 25.837 207.464 155.644 275.648 0. 25.837 207.464 275.648 275.648 0. 25.837 207.464 275.648 0. 25.837 207.464 275.648 0. 25.837 207.464 275.648 0. 25.837 207.464 275.648 0. 25.837 207.464 275.648 0. 25.837 207.464	3300	22.391	189.035	121.609	222.506	Ö	d	ó
23.130 191.014 127.311 229.331 0. 23.456 19.622 13.0547 234.638 0. 23.697 19.2180 13.0677 234.013 0. 24.003 192.289 13.2284 234.013 0. 24.658 194.115 135.271 245.38 0. 25.099 194.116 135.271 241.263 0. 25.696 195.397 138.036 245.166 0. 25.608 195.397 138.036 245.166 0. 26.644 197.621 140.667 241.86 0. 26.645 195.397 144.627 251.386 0. 26.873 197.621 140.667 251.387 0. 27.775 187.871 144.152 255.387 0. 27.776 187.973 145.336 264.935 0. 28.191 199.323 146.336 276.493 0. 30.132 207.646 150.344 276.548	888	22.622	189.707	123.602	224.757	ರ ರ	ರ ರ	ತ ರ
23.405 191.652 130.047 231.658 0. 23.697 192.289 130.287 234.013 0. 24.003 192.289 132.284 234.013 0. 24.003 192.289 132.284 234.013 0. 24.658 194.115 135.677 243.746 0. 25.009 194.714 136.679 243.746 0. 25.009 194.714 136.679 243.746 0. 25.609 194.714 136.679 243.746 0. 26.6873 197.621 140.607 243.800 0. 26.6873 197.621 140.607 243.800 0. 26.873 197.621 140.607 243.800 0. 26.873 197.621 140.607 243.800 0. 26.873 197.291 144.152 259.387 0. 27.736 195.233 145.261 264.935 0. 24.319 199.323 146.336 276.641 0. 30.132 207.648 0. 30.132 207.648 150.344 276.548 0. 37.373 207.649 155.644 235.648 0. 37.373 207.649 155.644 235.648 0. 37.373 207.746 235.648 0. 37.373 207.746 275.648 0. 37.373 207.746	3600	23.130	191.014	127.311	229.331	o	o	ó
24,003 192,899 132,234 236,338 0.24,333 192,599 132,234 236,338 0.24,333 193,511 133,897 236,338 0.24,658 194,114 136,679 243,746 0.25,375 195,397 136,797 243,746 0.25,696 196,470 140,697 251,346 0.26,873 197,621 140,887 254,387 0.26,873 197,621 140,887 254,337 0.26,873 144,152 259,387 0.27,736 199,323 144,152 259,387 0.27,736 199,323 146,336 264,933 0.26,933 207,661 0.26,933	3700	23.406	191.652	129.041	231.658	oʻ c	oʻ c	o' c
24638 193511 133807 238814 0. 24638 194115 133271 241,263 0. 25,009 194714 136,679 243,746 0. 25,699 195,899 139,344 248,800 0. 26,699 196,470 140,607 251,336 0. 26,837 197,621 143,008 25,6679 0. 27,297 187,621 143,008 25,6679 0. 27,727 188,191 144,152 259,387 0. 27,736 188,191 144,152 259,387 0. 27,736 188,191 144,152 259,387 0. 28,191 199,213 146,336 264,935 0. 30,152 201,564 150,344 276,588 0. 31,233 207,680 153,193 282,776 0. 33,377 207,796 153,954 289,086 0. 33,377 207,796 153,954 289,086 0.	380	24.003	192.899	132.284	236.398	ó	ó	ö
24.668 194.115 135.271 241.253 0. 25.079 194.714 136.679 243.746 0. 25.669 195.879 139.344 248.800 0. 26.669 196.470 140.607 251.386 0. 26.873 197.621 141.827 254.012 0. 26.873 197.621 144.152 259.387 0. 27.297 198.191 144.152 259.387 0. 27.297 198.191 144.152 259.387 0. 27.297 198.191 144.152 264.393 0. 28.191 199.323 146.336 264.933 0. 28.191 199.323 146.336 256.888 0. 30.152 207.646 153.193 282.776 0. 31.233 207.646 153.544 289.086 0. 31.333 204.914 155.654 295.681 0.	4000	24.323	193.511	133.807	238.814	ď (oʻ (o o
25.375 195.307 138.036 246.265 0. 26.669 196.470 140.607 251.386 0. 26.644 197.621 140.607 251.386 0. 26.873 197.621 141.827 254.012 0. 27.297 198.191 144.152 259.387 0. 27.736 198.738 145.261 262.139 0. 29.134 200.446 148.396 20. 0. 29.134 200.446 148.396 20. 0. 30.132 201.564 150.344 276.548 0. 31.233 202.690 157.193 282.776 0. 32.377 203.796 153.594 289.086 0. 33.581 204.914 155.634 295.681 0.	654 600 700	24.658	194.115	135.271	243.746	o' o	ರ ರ	ತ ರ
25.6% 195.889 193.44 248.800 0. 26.6% 196.470 140.697 251.386 0. 26.464 197.621 141.827 254.012 0. 27.297 198.191 144.152 259.387 0. 27.726 198.191 144.152 259.387 0. 27.726 198.738 145.261 262.139 0. 28.191 195.323 145.36 264.335 0. 29.134 20.0446 148.396 270.661 0. 30.132 201.564 150.344 276.588 0. 31.233 20.6% 153.193 282.776 0. 31.337 203.796 153.954 295.681 0.	4300	25.375	195,307	138.036	246.265	ö	; oʻ	6
26.464 197 047 141.827 254.012 0. 26.873 189.191 144.152 256.599 0. 27.297 188.191 144.152 259.387 0. 27.756 198.738 145.261 262.139 0. 28.191 195.323 145.336 264.335 0. 29.134 200.446 148.396 270.661 0. 30.132 201.564 150.344 276.538 0. 31.233 20.569 153.193 282.776 0. 31.337 20.3796 153.594 295.681 0.	65 65 65 65 65 65 65 65 65 65 65 65 65 6	25.696 26.069	195.889	139.344	248.800	o o	ರ ರ	ರ ರ
26.873 1976.21 143.08 256.679 0. 27.297 198.191 144.152 259.387 0. 27.756 198.191 144.152 259.387 0. 28.191 195.323 145.261 264.135 0. 29.134 20.0446 148.396 270.661 0. 30.132 201.564 150.344 276.588 0. 32.377 203.796 153.593 282.776 0. 33.237 203.796 153.563 289.086 0. 33.581 204.914 155.634 295.681 0.	4600	26 464	197 047	141.827	254.012	o	ó	ó
28.191 199.378 145.261 262.139 0. 28.191 199.323 146.336 264.335 0. 29.134 20.0446 148.396 270.661 0. 30.132 201.564 150.344 276.538 0. 31.237 20.2680 153.193 282.776 0. 31.377 203.796 153.593 289.086 0. 31.581 204.914 155.634 295.681 0.	4700 600 600 600 600	26.873	197.621	143.008	256.679	oʻ c	o c	<i>o</i> c
29.134 200.446 148.396 26.4353 0. 29.134 200.446 148.396 270.661 0. 30.132 201.564 150.344 276.518 0. 31.233 202.680 153.193 282.776 0. 31.337 203.796 153.954 289.086 0. 31.381 204.914 155.634 295.681 0.	8	27.736	198.758	145.261	262.139	ó	00	ď
20.124 20.440 145.270 2.70001 0. 20.132 201.564 150.344 276.588 0. 31.233 20.2660 152.193 282.776 0. 31.237 203.796 153.954 289.686 0. 33.581 204.914 155.634 295.681 0.	2000	28.191	200.44	146.336	204.935	5 6	o' c	jc
32.37 202.680 152.193 282.726 0. 32.377 203.796 153.954 289.086 0. 33.581 204.914 155.654 295.681 0.	2200	30.152	201.564	150.344	276.588	ံဝဲ	óo	် ဝ
33.581 204.914 155.634 295.681 0.	200	31.233	202.680	152 193	282.726	o o	o c	00
	0009	33 581	204 914	155.634	295.681	်ဝ	ာ်ဝ	်ဝံ

Lithium (Li)	
$A_r = 6.941$	
STAL	

CRYSTAL

Lithium (Li)

 $\Delta_t H^{\circ}(0 \text{ K}) = 0 \text{ kJ} \cdot \text{mol}^{-}$ Δ_tH°(298.15 K) = 0 kJ mol

 $\Delta_{\text{fus}}H^{\circ} = 3.000 \pm 0.015 \text{ kJ·mol}^{-}$

S°(298.15 K) = 29.085 J·K⁻¹·mol⁻¹ Trus = 453.69 K

Enthalpy of Formation Zero by definition.

Heat Capacity and Entropy

series of determinations, found that C, depended on the thermal history of the sample, a peak at roughly 107 K was axcribed to a martensitic transformation. There is excellent continuty between the results of Roberts¹ and of Martin³ while those of Martin³ and Douglas et al.⁴ differ Heat capacities have been reported by the following authors for the temperature ranges indicated. Roberts, 1.5 to 20 K (L.1 99.5% pure) Simon and Swain² 15 to 300 K; Martin³ 22 to 300 K(Li 99 95% pure); Douglas et al. ² 289.15 K to 1200 K (Li 99.98% pure). Martin³ in a by 1% at 300 K and have been smoothly joined. The values of Simon and Swain2 were not used as they were 5% lower than Martin's and did not show the peak at 107 K; also their values for Al₂O₃, reported at the same time, are lower than recent measurements. Heat capacities between 1200 K and the normal boiling point were obtained from the enthalpy equation given by Douglas et al.4 between 420-900°C.

Fusion Data

Douglas et al. report the triple point to be 180.54°C, which is here adopted as the melting point since the densities of solid and liquid lithium at 180°C are not available for calculating dT_{tw}/dP. The same authors* give the enthalpy of melting as 432.3 ± 2.2 J·g⁻¹

Sublimation Data

Effusion measurements by Lewis* and Bogros* have been disregarded. Mancherat' considers them to be inaccurate because of impurities in the Inthium used, and Lewis* used a doubtful calibration method. Enthalpy of sublimation to monatomic vapor calculated from the vapor Mancherat's? pressures are calculated on the assumption of monatomic vapor and have been recalculated to fine the true total pressure. pressures of Hartmann and Schneider^e and of Mancherar² agree to within 2% and the average value has been adopted The enthalpy of Luthium vapor contains an appreciable amount of dimer, whose enthalpy of dissociation has been selected by Evans, from spectroscopic and molecular beam measuresments to be 25 76 ± 0 10 kcal-mol⁻¹ at 0 K. This enthalpy of dissociation, together with the thermodynamic functions calculated in this work, has been used to find the partial pressures of Life) and Life) from the measured total vapor pressures reports effusion measurements from 735 to 915 K. Hartmann and Schneider,6 report values from 1204 to 1353 K; while Mancherat7 sublimation of the dimer was then calculated using this value.

M. Roberts, Proc. Phys. Soc. 70, 744 (1957).
 F. Simon and R. C. Swain, Z. phys. Chem. B28, 189 (1935).
 D. L. Martin, Proc. Roy. Soc. A254, 444 (1960).
 T. B. Douglas, L. F. Epstein, J. L. Dever, and W. H. Howland, J. Am. Chem. Soc. 77, 2144 (1955).
 W. H. Evans, R. Jacobson, T. R. Munson, and D. D. Wagman, J. Res. Natl Bur. of Stand. 55, 83 (1955).

 T. C. Caras, N. Jacosson, T. N. Ivulison, and D. D. Wagnan, J. Res. Nat.
 H. Hatmann and R. Schneider, Z. anorg. allgem. Chem. 180, 275 (1929).
 M. Mancherat, C. Rendus 208, 499 (1939).
 L. C. Lewis, Z. Physik 69, 786 (1931).
 A Bogros, C. Rendus 191, 560 (1930), Ann. Phys. 17, 199 (1932). Bogros, C. Rendus 191, 560 (1930), Ann. Phys 17, 199 (1932).

7 7	Enthalpy Re	eference To	emperature	Enthalpy Reference Temperature = T, = 298.15 K	*	Standard Sta	te Pressure =	Standard State Pressure = p = 0.1 MPa
. 7	74		יישייאין. מייאין.			_K-mol-1		
	•	3		-[CH_(L)]II	$H^*-H^*(T_s)$	$\Delta_c H$	Φ.	log K,
	0	oʻ	oʻ	INFINITE	-4.622	o	c	•
	8	13,360	7.342	48.615	-4.127	ó	ó	ó
	107.250	16.491	8.370	45.859	-4.021	C HI	C. HUMP MAXIMUM	_
	107.250	16.494	8.370	45.859	-4.021		RANSTITION	
	200	21.573	19.826	31.255	-2286	ó	c	c
<u></u>	250	23.406	24.854	29.484	-1.157	ó	ö	ód
(4)	298.15	24.623	29.085	29.085	oʻ	ó	ó	Ö
	30	24.669	29.237	29.085	0.046	c	ح :	; c
	350	25.930	33.128	29.390	308	o	ċ	j c
٠.	9	27.610	36,698	30.083	2.646	ď	d	ic
	450	29.280	40.049	31.006	4.069	o	Ö	Ö
S.	453.690	29.387	40.288	31.080	4.178	CRYSTAL <	VL <> LIOUID	CID
_	200	30.217	43.188	32.069	5.559	-3.020	_	-0.032
	8	30,380	48 714	34396	8 591	-1977	0.000	7800
-	90	30.384	53.397	36.785	11.629	-2859	1619	-0.03
	800	30,384	57.455	39.121	14.667	-2.716	2.249	910
=	8	30.384	61.033	41,360	17.706	-2569	2.860	9
-	000	30,384	64.235	43.491	20.744	-2.417	3.456	-0.180
00%1%664								

Lithium (Li)

PREVIOUS

Li₁(cr)

CURRENT: June 1962

Lithium (Li)	רוסחום	Ar = 6.941	A _r = 6.941 Lithium (Li)							רוי(ו)
S'(298.15 K) = [33.938] J·K ⁻¹ ·mol ⁻¹ T _{in} = 1843 K	°H³∇	$\Delta_{\text{fu}}H^{\circ}(298.15 \text{ K}) = [2.380] \text{ kJ·mol}^{-1}$ $\Delta_{\text{fu}}H^{\circ} = 3.000 \pm 0.015 \text{ kJ·mol}^{-1}$	Enthalpy Reference Temperature = T, = 298.15 K J·K ⁻¹ mol ⁻¹ Trk	ference Tem	:mperature = T, = 298.1 J·K ⁻¹ mol ⁻¹ c°	= 298.15 K	S 1.00	Standard State Pressure	Pressure = p	= p° = 0.1 MPa
Enthalpy of Formation AH*(Li, 1, 298.15 K) is calculated from that o H*(298.15 K), between the crystal and liquid.	nthalpy of Formation A.H.*(Li.1, 298.15 K) is calculated from that of the crystal by adding the enthalpy of fusion and the difference in enthalpy, H°(453.69 K)- "(298.15 K), between the crystal and liquid.	nce in enthalpy, H°(453.69 K)-	0000			Mer	(a) n- n	E 14	3	ž 2
Heat Capacity and Entropy The liquid heat capacity values are derived fro to 298.15 K and 2000 K in a reasonable manner The entropy is calculated in a manner analog.	Heat Capacity and Entropy The liquid heat capacity values are derived from the enthalpy measurements of Douglas et al. The heat capacity curve was extrapolated to 298.15 K and 2000 K in a reasonable manner. The entropy is calculated in a manner analogous to that used for the enthalpy of formation.	apacity curve was extrapolated	!	31.300 31.284 31.000 30.711		33.938 33.938 34.318 35.159	0. 0.058 1.615 3.158 4.686	2.380 2.392 2.886 2.891 2.996		-0.163 -0.064 -0.046 -0.0046
Fusion Data The enthalpy of fusion and the melting point were measured by Douglas et al.	were measured by Douglas et al.			30.392 30.125 29.539 28.987		36.335 37.444 39.979 47.497	6.199 9.182	CRYSTAL 0. 0.	V	
Vaporization Data Lithium vaporizes to a mixture of monatomic the monatomic gas reaches I atm at 1638 K and	Vaporization Data Lithium vaporizes to a mixture of monatomic and diatomic gas. The total vapor pressure reaches 1 atm at 1620 K; the vapor pressure of the monatomic gas reaches 1 atm at 1638 K and the enthalpy of vaporization to monatomic gas is 35.16 kcal-mol ⁻¹ .	1620 K; the vapor pressure of al-mol ⁻¹ .		28.937 28.886 28.836 28.786 28.736		44.906 47.183 49.326 51.342 53.240	17.895 17.895 20.781 25.538	ೆರೆದಿದೆ ಎದ	್ರಿಕರಿ	್ರಿಂಧ ರರ
Reference ¹ T. B. Douglas, L. F. Epstem, J. L. Dever, and W. H. Howland, J Am. Chem. Soc. 77,	W. H. Howland, J Am. Chem. Soc. 77, 2144 (1955),			28.702 28.619 28.535 28.451		55.031 56.724 58.327 59.850	29.410 32.276 35.134 37.983		ರರರ ರ	ರಧರ ರ
			120 120 180 180 180 180 180 180 180 180 180 18	28.336 28.336 28.336 28.336	88.831 88.831 88.831 91.238 92.615 92.615	0.274 0.294 0.294 0.21 0.621		- 145.23 - 145.23 - 142.83 - 142.83 - 142.33 - 141.495	117 117 117 117 117 117 117 117 117 117	-0.220 -0.468 -0.885 -1.062 -1.223
			PREVIOUS:						CURRE	CURRENT: June 1962
			Lithium (L1)							ריי

JID 0.000.000.000.000.000.000.000.000.000.	CURRENT. June 1962
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	CURREN
CRYSTA CR	
2.656 4.056 4.178 4.178 -4.178 11.552	:
30.083 31.086 31.086 31.086 31.086 31.087 31.084 44.539 44.539 55.220 55.220 55.220 55.231 55	
36.688 40.288 40.288 46.302 46.303 55.283 55.283 57.535 67.666 67.666 67.666 67.665 67.703 68.531 88.531 88.531 89.916 89.916 89.916 89.916 89.916 89.916	
27,510 29,280 29,387 30,392 30,392 30,392 28,393 28,393 28,318 28,318 28,318 28,318 28,318 28,318 28,318 28,318 28,318 28,318 38	
450 450 451 650 451 650 500 600 600 1100 1100 1100 1100 1100	PREVIOUS:
453.4 453.4	

CRYSTAL-LIQUID

Refer to the individual tables for details.

0 to 453 69 K crystal above 453 69 K liquid

Lithium (Li)

December 1983 (1 bar)

CURRENT

June 1962 (1)

PREVIOUS

Lithium (Li)

dodo ddddd doodo ddddd ddooo ddddo ooddd ddddo ddddo

171.561 172.095 172.618 173.130 173.632

21.97 22.17 22.139 22.868 23.130 23.406 23.697 24.003

29.141 13.1221 13.3386 13.3386 13.4338 13.431 13.431 14.658 14.65

165.401 166.099 166.776 167.433 168.690 169.294 169.882 170.455

186.195

187.649 189.707 191.014 191.652 192.280 192.899

94.712 97.379 100.087 102.839 105.635

197.621 198.191 198.758 199.323

26.464 26.873 27.297 27.736 28.191

199,885

174.125 174.608 175.082 175.087 176.007 176.902 177.71 178.196

196.470

194,115

24.658 25.009 25.375 25.696 26.069

193,511

108.472 111.361 114.299 117.288 120.330

178.616 179.030 179.440 179.844 180.244

28.650 29 134 29.635 30.152 30.684

180.640

	2	
	٠	
:	j	i
Ī		

Standard State Pressure = p = 0.1 MPa

kJ-mol-₽.H.

 $H^{\bullet}-H^{\circ}(T_r)$

 $-[G^{\bullet}-H^{\circ}(T_{t})]T$

ů

ئ

ĸ

NAINITE
-77.538
-35.889
-27.557
-22.179
-22.007
-18.047
-12.781

159.457

138.781

138.781

20.786

98.15

20.786

138.781 139.034 139.596 140.323 141.136

20.786 20.786 20.786

-8287 -6377 -4952 -3.849 -2.972

142.860 144.589 146.258 147.845 149.346

20.786 20.786 20.786 20.786 20.786

43424.3

53317

63,935

-2258 -1.666 -1.168 -0.744 -0.378

47.556 38.285 29.080 19.936 10.848

149.925 149.128 148.334 147.547 146.768 145.998

16.667 18.746 20.825 22.903 24.982

150.764 152.103 153.370 154.570 155.709

69.389 170.929 17.363 173.705 173.965

20.786 20.786 20.786 20.787 20.789 20.793 20.794

FUGACITY - 1 bar

27.479 1907.2

156.792

157.824 158.810 159.753 160.656

161.523 162.356 163.159 163.932 164.679

182.165 183.026 183.857

20.882 20.925 20.980 21.049 21.131 21.231 21.479 21.628

1.812

Ar = 6.941 Lithium (Li)

Enthalpy Reference Temperature = T, = 298.15 K

 $S^{\circ}(298.15 \text{ K}) = 138.781 \pm 0.025 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ $IP(Li, g) = 43487.150 \pm 0.005 \text{ cm}^{-1}$

IDEAL GAS

Lithium (Li)

15 K) = $157.7 \pm 1.0 \text{ kJ·mol}^{-1}$ 15 K) = $159.3 \pm 1.0 \text{ kJ·mol}^{-1}$

			Δ _t H°(298.1)
lectronic	Electronic Levels and Quantum Weights	Weights	
State	£,, CIII	8	
2,S1,2	0	7	
P _{1/2}	14903.66	7	
Pyz	14904.00	4	
27.S.12	27206.12	2	
		•	

2,S_{1,2} Puz Py

Enthalpy of Formation

The entitation of formation of lithium gas is chosen to be the value recommended by CODATA.¹ This value was obtained from 2nd and 3rd law treatments of vapor pressure data. The reported vapor pressures were corrected for the effects of Li₂(g), using D₀² = 101.02 kJ·mol⁻¹. As stated by CODATA,² the selected value is the weighted average of the 3rd law values of Δ_{uu} +7(298.15 K) calculated from the following

Source	Δ _{mb} H°(298.15 K), kJ·mol ⁻¹
Hartmann and Sckneider ³	159.04 ± 1.56
Bohdansky and Schins	159.54 ± 1.85
Schins et al.5	159.22 ± 1.81
Rigney et al.	159.34 ± 1.85
Anisimov and Volyak ⁷	159.60 ± 1.58
Shpilrain and Belova	159.06 ± 1.99

The weighted average is $\Delta_{ab}H^{\circ}(298.15 \text{ K}) = 159.3 \pm 1.0 \text{ kJ·mol}^{-1}$.

The 2nd law values calculated from the above sources lead to more positive values. 3nd law values in reasonable agreement with the selected value were calculated from the data of Bogros, Maucherat, ¹⁰ Achener, ¹¹ Wu, ¹² and Bonilla. ¹³

Heat Capacity and Entropy

evels are included in the partition function calculation, using an ionization potential lowering (IP-kT) technique as the cutoff procedure in The thermal functions for the five alkali metal monatomic gases are calculated by the same procedure. Oberved and estimated atomic energy the energy level summation.

The lowest lying levels for these metals [14904 cm⁻¹ (L1), 16956 cm⁻¹ (Na), 12985 cm⁻¹ (K), 12578 cm⁻¹ (Cs)] do not contribute to the ionization potentials vary from $43487.29 \,\mathrm{cm}^{-1}$ for Li to $31406.1 \,\mathrm{cm}^{-1}$ for Cs. In calculating the thermal functions with the inclusion of missing thermal functions below \sim 1000 K; there is only a translational contribution below this temperature. Above this approximate temperature, the thermal functions become increasingly sensitive to the partition function cutoff procedure used, due to the combined effect of the observation of atomic energy levels of high principal quantum number and a low ionization potential. Energy levels have been observed up to n = 42 (Li), 59(Na), 79(K), 77(Rb), and 73(Cs). However, not all predicted levels have been observed for each of these principal quantum numbers. The evels up to the high principal quantum numbers just mentioned, the Gibbs energy functions show significant differences (depending on the cutoff procedure) above 3000 K.16

The atomic energy levels have been taken from the compilation of Moore. 1415 Our calculated values for the thermal functions are similar o those recommended by CODATA. They do differ for two reasons, however. First, the entropy differs by 0.1094 J·K⁻¹·mol⁻¹ because this table uses a reference pressure of 1 bar, whereas the CODATA recommendations are based on 1 atm. Second, the entropies at 298.15 K for alkalı metal gases differs by ~0.004 J·K⁻¹ mol⁻¹, presumably due to the use of slightly different values for auxiliary data.

- D. Cox, chairman, CODATA Task Group on Key Values for Thermodynamics, J. Chem. Thermodyn. 10, 903 (1978). D. Cox, chairman, CODATA Task Group on Key Values for Thermodynamics, CODATA Special Report No. 8, (1980).
 - Hartmann and R Schneider, Z. anorg aligem Chem. 180, 275 (1929).
- Bohdansky and H. E. J. Schins, J. Appl. Phys. 36, 3683 (1965), J. Phys. Chem. 71, 215 (1967), E. J. Schins, R. W. M. van Wijk and B. Dorpima, Z. Metallkundı 62, 330 (1971).

Continued on page 1527

CURRENT: December 1983 (1 bar)

IDEAL GAS

 $\text{IP(Li^*, g)} = 610079.0 \pm 0.1 \text{ cm}^{-1}$

Lithium, Ion (LI')

M. = 6.94045 Lithium, Ion (Li*)

 $\Delta_{\rm e}H^{*}(0~{\rm K}) = 677.947 \pm 0.002~{\rm kJ \cdot mol^{-1}}$ Enthalpy Refe Δ_tH°(298.15 K) = [685.719] kJ·mx

kJ·mol⁻¹) from Moore. The ionization limit is converted from cm⁻¹ to kJ·mol⁻¹ using the factor, 1 cm⁻¹ = 0.01196266 kJ·mol⁻¹, which derived from the 1973 CODATA fundamental constants. Rosenstock et al. * and Levin and Lias* have summarized additional ionization a $\Delta H'(LI^*, g, 0 \text{ K})$ is calculated from $\Delta_H'(LI, g, 0 \text{ K})^1$ using the spectroscopic value of IP(LI) = 43487.150 \pm 0.005 cm⁻¹ (520.222 \pm 0.005 cm⁻¹) Electronic Level and Quantum Weight £, cm_ $S^{\circ}(298.15 \text{ K}) = 133.017 \pm 0.02 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

 $\Delta H^{*}(Li^{*}, g, 298.15 \, K)$ is calculated from $\Delta H^{*}(Li, g, 0 \, K)$ by using IP(Li) with JANAF' enthalpies, $H^{*}(0 \, K) - H^{*}(298.15 \, K)$, for Li(c), and e (ref). $\Delta H^{*}(Li) \to Li^{*} + e^{-}$, 298.15 K) differs from a room temperature threshold energy due to inclusion of these enthalpiand to threshold effects discussed by Rosenstock et al. $^{4}\Delta H^{*}(298.15 \, K)$ should be changed by -6 197 kJ mol⁻lif it is to be used in the i convention that excludes the enthalpy of the electron. appearance potential data.

Heat Capacity and Entropy

levels have not been observed. Our calculations indicate that any reasonable method of filling in these missing levels and cutting off the summation in the partition function? has no effect on the thermodynamic functions to 6000 K. This is a result of the high energy of all leve other than the ground state, the first excited state is approximately 476046 cm⁻¹ above the ground state. Since inclusion of these excited stat has no effect on the thermodynamic functions (to 6000 K), we list only the ground state. The reported uncertainty in \$7(298.15 K) is due The information on electronic energy levels and quantum weights, given by Moore, 6 is incomplete because many theoretically predict uncertainties in the relative ionic mass and the fundamental constants. Extension of these calculations above 6000 K may require considerati of the excited states and use of different fill and cutoff procedures.

JAMPET Themochemical Tables: Li(g), 6-30-62; e '(ref), 3-31-82.
 C. E. Moore, U. S. Nat. Bur. Stand., NSRDS-NBS-34, (1970).
 E. R. Cohen and B. N. Taylor, J. Phys. Chem. Ref. Data 2, 663 (1973).
 H. M. Rosenstock, K. Draxl et al., J. Phys. Chem. Ref. Data 6, Supp. 1 (1977).
 R. D. Levin and S. G. Lias, U. S. Nat. Bur. Stand., NSRDS-NBS-71, (1982).
 C. E. Moore, U. S. Nat. Bur. Stand., NSRDS-NBS-35, Volume 1, (1970) [Reprint of NBS Circular 467, Volume 1, 1949].
 J. R. Downey, Jr., The Dow Chemical Company, AFOSR-TR-78-0960, Contract No. F44620-75-1-0048, (1978).

	Enthalpy I	Reference T	emperature	Enthalpy Reference Temperature = T, = 298.15 K		Standard State Pressure = p = 0.1 MPa	e Pressure = ,	p = 0.1 MPa
	7.1	ប	S -[G	$-[G^{\bullet}-H^{\bullet}(T_{*})]T$	$H^{\bullet}-H^{\circ}(T_{r})$	Δ,Η*	Φ'C•	log K,
	250 52 250 52	0. 20.786 20.786 20.786	0 110.309 124.717 129.356	INFINITE 151.497 134.918 133.359	-6.197 -4.119 -2.040 -1.001	671.947		
	298.15	20.786	133.017	133,017	oʻ	685.719	648.477	-113.611
	888	20.78 20.78 28.78 28.05	135.145	133.017	0.038	685.751 686.566	648.246	-112.870 -95.803
St ft	88	20.786	141.573	134.559	3.156 4.198	687.963 685.532	628.986 622.709	-82.988 -73.011 -65.054
and	88	20.786	147.553	137.096	6274	686.706	610 035	-53.108
(g	388	20.786	153.533	138.825	8.353 10.431	687.938 689.199	597.160 584.105	-44.561 -38.138
pies.	88	20.786	155.981	142.081	12510 14589	690.465 691.736	570.893 557.539	-33.134
<u>g</u>	8 2 2 3 3 3 3 3	20.786 20.786	160.152 161.961	145,000 146,339	16.667	693.012	544 057	-25.835
	888	20.786 20.786	56.63 58.163 58.163	147.606	20.824	695.578 696.869	516.755	-20.763
cted	96	20.786	66001	149.945	24.982	698.169	489.054	-17.030
t)	200	20.786	169.201	152.060	29.139	555.556	475.070	-15.509
vels	888	20.786	171.513	153.988	33.2%	559.709	462.981	-13.435 -12.582
e to	2100	20.786	505 571	154.891	35,375	261.782	452.242	-11.811
tion	250	20.786	174560	156.591	39.532	565.920 565.920	446.714	-11.111
	7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	20.786	176.369	158.165	41.610	567.982 570.038	435.367	-9.887 -9.349
	852	20.786	117/11	158.910	45.768	572.086	423.661	-8.852
	2700	20.786	178.817	160.326	47.840	574.125	417.684	-8.391 -7.963
	888	20.786	180,302	161.653	54.082	578.170 580.172	399.296	-7.565 -7.192
	3100	20.786	181 688	162.201	50.101	207.138	393.025	-6.843
	3200	20.786	182,348	163.499	60318	586.077	380.288	6208
	3400	20.786	183.608	164.645	6443	589 913	367.308	-5.917
	3600	20.786	184 707	65.733	68 633	591.795	360.733	-5.384
	3700	20.786	185,366	166.255	70.70	595.483	347.426	-5 138 -4.905
	4 4 9 9 9 9 9 9 9	20.786	186.460 186.987	167.263 167.263	74.868	599.058 599.058 600.799	333.922	4.683
	418 418 418	20.786	187.500	168.225	20067	602.507	320.238	-4.080
	430	20.786	188.490	169.145	83.183	605.819	306.388	-3.897
	\$ 50	20.786	189.435	170.026	85261 87.340	607.441 609.013	299.405 292.386	-3.554 -3.394
	84 60 60 60 60 60 60 60 60 60 60 60 60 60	20.786 20.786	189.892	170.453	89.418	610.544	285.333	-3.240
	88	20.786	190.776	171.281	93.576	613.483	271.129	-2.950
	2000	20.786	191.625	172.078	97.733	616.250	256.807	-2.814
	2200	20.786	192.036	172.466	99,811	617.570	249.605	-2.556
******************	5300 5400	20.786	192.836	173.219	103.969	620.057	235.126	-2317
	2500	20.786	193.606	173.947	108.126	622.341	220.557	-2095
	250 250 250 250 250 250 250 250 250 250	20.786	193.981	174.301	110,204	623.402 624.408	213.242 205.909	-1.989
	888	20.786	195.065	175,330	114,362	625.357 626.246	198.558 191.192	-1.788
	9009	70.786	195.415	175.661	118.519	627.076	183.811	-1.600

PREVIOUS March 1965 (1 atm)

Enthalpy of Formation

-0.947 -1.065 -1.178 -1.278 -1.374 -1.550 -1.550 -1.781

-103.298 -105.388 -107.483 -109.584

72.913 80.135 87.436 94.814 102.266

-113.811 -115.940 -118.081 -120.236 -122.407

Lithium, Ion (LI⁻)

CURRENT: December 1983 (1 bar)

195.611 198.878 202.206

-189251

Enthalpy Reference Temperature = Tr = 298.15 K

Li₁(g)

Standard State Pressure = $p^* = 0.1$ MPa

log Kr

δ

kJ-mol $\Delta_c H$

 H^{-H}

 $S^{\bullet} - [G^{\bullet} - H'(T_{\bullet})]T$

760.86

133.019

133,019

43.765

8888 충용

20.786 20.786 20.786 20.786

IDEAL GAS

Lithium, Ion (Li⁻)

EA(Li, g) = 0.6180 ± 0.0005 eV S°(298.15 K) = 133.019 ± 0.005 J·K⁻¹·mol⁻¹

 $\Delta_t H^{\circ}(0 \text{ K}) = 98.10 \pm 0.1 \text{ kJ} \cdot \text{mol}^{-1}$ Δ_tH°(298.15 K) = [93.475] kJ·mol⁻¹

Electonic Level and Quantum Weight
State 0.0

Enthalpy of Formation

icchnique. 2 Additional discussion on Li⁻(g) may be obtained in the critical discussions of Hotop and Lineberger, ¹⁴ Rosenstock et al., ³ and The enthalpy of formation, at 0 K, for Li⁻(g) is calculated from the adopted electron affinity, EA(Li, g) = 0.6180 ± 0.0005 eV (59.627 ± 0.048 kJ·mol⁻¹). This value, recommended by Hotop and Lineberger, was measured by a tunable laser photodetachment threshold Massev

 $\Delta_H^{A'}(Li^-, g. 298.15 \text{ K})$ is obtained from $\Delta_H^{A'}(Li, g. 0 \text{ K})$ by using EA(Li, g) with JANAF² enthalpies, $H^0(0 \text{ K})$ - $H^0(298.15 \text{ K})$, for Li⁻(g), and e⁻(ref). $\Delta_H^{A'}(Li^- \to Li + e^-, 298.15 \text{ K})$ differs from a room–temperature threshold energy due to inclusion of these enthalpies and to threshold effects discussed by Rosenstock et al. $^3\Delta_H^{A'}(298.15 \text{ K})$ should be changed by 46.197 kJ-mol⁻¹ if it is to be used in the ion convention which excludes the enthalpy of the electron

-12043 -111.942 -7.9533 -7.9533 -7.9533 -7.9533 -7.9533 -7.9533 -7.9533 -0.553

24.328 20.536 16.984 13.653

67.433 64.557 61.685 58.819 55.961

7.591 12.009 18.361 24.829 31.407 38.090

53.112 -94.965 -97.046 -99.128 -101.211

17.515 172.581 173.595

20.786 20.786 20.786 20.786 20.786

16.667 18.746 20.824 22.903 24.982 27.060 29.139 33.296 33.296 35.375

145.002 146.341 147.608 148.808 149.947 151.030 152.062 153.048 153.990 154.893

165.167

20.786 20.786 20.786 20.786 20.786

Heat Capacity and Entropy

The ground state configuration for Li⁻(g) is given by Hotop and Lineberger^{1 *} and Rosenstock et al. ³ Lacking any experimental evidence as to the stability of any excited states, we assume that no stable excited states exist.

References

14. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data, 14, 731 (1985).

²D. Feldman, Z. Physik A 277, 19 (1976).

³Y. K. Bae and J. R. Peterson, Phys. Rev. A, to be published.

M. Rosenstock, K. Draxl et al., J. Phys. Chem. Ref. Data 6, Supp. 1 (1977). ⁴H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data 4, 539 (1975).

⁵H. M. Rosenstock, K. Draxl et al., J. Phys. Chem. Ref. Data 6, Supp. 1 (

⁶H. S. W. Massey, "Negative Ions," 3rd ed., Cambridge University Press, Cambridge, (1976).
⁷JANAF Thermochemical Tables: Lı(g), 3-31-82, e⁻(ref), 3-31-82.

PREVIOUS:

2617 21636 21636 2733 2733 2733 2838 2838 2838 2838 2839 2837 2837

273.712 282.524 291.393 300.317 309.298

174.297 177.186 180.124

11866

92.038

172.848 172.848 173.221 173.588 173.949

230.496 239.026 247.612 256.256 264.956

160.537 163.204 165.912 168.664 171.460

89.418 91.497 93.576 95.654 97.733

170.455 170.873 171.283 171.686 172.080

20.786 20.786 20.786 20.786 20.786

188.722 196.959 205.256 213.611 222.024

-152.790 -155.325 -157.910

88.492 88.970 89.437 89.894

20.786 20.786 20.786 20.786 20.786

-147.788

-1.850 -1.916 -1.916 -2.040 -2.05 -2.154 -2.259 -2.309 -2.404 -2.404 -2.450 -2.450 -2.245 -2.

-135.856 -138.183 -140.538 -142.922 -145.339

185.368 185.922 186.462 186.989 187.502

172.428 180.544

109.791 117.387 125.053 132.786 140.586

-124.596 -126.803 -129.031 -131.282 -133.556

33,453 39,532 44,680 45,768 45,768 46,768 57,004 58,709 66,318 66,317 66,537 66,537 66,537 66,537 77,790 77,700 77

155.76 155.79 15

181.690 182.350 182.990

183.610

184.799

20.786 20.786 20.786 20.786 20.786 20.786 20.786 20.786

180.304 181.009

77.219 178,034

20.786 20.786 20.786 20.786 20.786 20.786 20.786 20.786

CURRENT December 1966 (1 bar)

PREVIOUS December 1966 (1 atm)

1000		m/Legelm in ch/lol
Lí,N ₁ (9)	= p = 0.1 MPa log Kr	107734 153278
	Pressure = p	334 678 315 866 317 36 866 309 868 309 713 305 573 301 573 301 573 301 573 301 573 301 563 301
	Standard State Pressure Ly-mol-1 A,H* A,G*	334.678 334.678 335.639 335.63
	H*-H*(T,)	-8.999 -1.000 -1
	Enthalpy Reference Temperature = T, = 298.15 K Tr C; S - [G"-H'(T,)]T	NEINTHILLIAN NEINT
Ñ.	J·K-'mol-'- S° -{G°-	15.5034 105.534 105.537 105.537 105.537 125.535 125.53
itride (L	eference Te	0 90 (57) 11,833 11,833 13,535 13
Lithium Nitride (LiN)	Enthalpy R.	28, 15, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20
$M_t = 20.9477$	$\Delta_H^{\circ}(0 \text{ K}) = 334.7 \pm 167 \text{ kJ mol}^{-1}$ $\Delta_H^{\circ}(298.15 \text{ K}) = 334.7 \pm 167 \text{ kJ mol}^{-1}$	eight $ \sigma = 1 $ $ r_e = [1.71] \text{ Å} $ ng estimates: $ \Delta_e H^0(298.15K) $ $ D_o^a kcal·mol^{-1} kcal·mol^{-1} $ $ A_0 = 100 $ $ 110 - 50 $ $ 20 - 60 $ $ 130 - 90 $ 1-178 kcal·mol ⁻¹ based on approximate ionic binding of CN, BN, CO, BO and LiO The values of α_e and B_e to be $^{1}\Sigma$ by analogy with NH and OH $^{-}$.
IDEAL GAS		Quantum Weight —1 [3] 1cm ⁻¹ 0183] cm ⁻¹ 0183] cm ⁻¹ 08, kc C ₀ Much LiO(g) 10 With those of CN 11 12 13 14 15 15 16 17 16 17 18 18 19 19 10 10 10 10 10 10 10 10
Lithium Nitride (LiN)	$S^{\circ}(298 \text{ 15 K}) = [208.245] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$	Electronic Level and State θ_{\star} , $\alpha_{\star} = [700] \mathrm{cm}^{-1}$ $\alpha_{\star} = [7]$ $\theta_{\star} = [7] \mathrm{cm}$ The adopted $\Delta_{H}^{4}(298 15 \mathrm{K}) = 80 \pm 40 \mathrm{kcal \cdot mol}^{-1}$ is calculated from $\Omega_{\star}^{2} = [7] \mathrm{cm}^{-1}$ $\Omega_{\star}^{2} = [7] \mathrm{cm}^{-1}$ Estimate from D_{δ}^{2} for series $N_{+}(g)$, $CN(g)$, $BN(g)$, and BN Estimate from D_{δ}^{2} for series $N_{+}(g)$, $CN(g)$, $BN(g)$, and BN Estimate from D_{δ}^{2} for series $N_{+}(g)$, $CN(g)$, $BN(g)$, $BN(g)$, and $BN(g)$ and D_{δ}^{2} and D_{δ}^{2} for series D_{δ}^{2} and D_{δ}^{2} are estimated from the above constants. The ground state configuration are calculated from the above constants. The ground state configuration D_{δ}^{2} for the D_{δ}^{2} for D_{δ}^{2

-5278 -5263 -5249 -5237 -5237

262.695 2772.036 281.383 290.737

-5.214 -5.205 -5.195 -5.187 -5.179

127.374 133.147 144.702 150.484 150.265 167.844 173.62

57.855 57.895 57.895 57.929 57.929 57.937 57.937 57.931

379.515 381 103 382.649 384.155 385.623

387.055

58.002

309 467 318.845 328.232 337.629 347.037

286.3153 286.3153 286.3153 286.3153 286.3153 286.3163 286.3163 286.3163 286.3163 301.455 301.4

362.871 364.972 367.000 368.960 370.857 372.694 374.475 376.204 377.883

57.713 57.747 57.779 57.807 57.832

360.693

-5.374 -5.351 -5.311 -5.311

216.060 225.380 234.703 244.029 253.360

98.574 104.323 110.079 115.839 121.604

351.066 353.625 356.076 358.430

57 461 57.525 57.581 57.630 57.674

348 392

-5.172 -5.165 -5.165 -5.184 -5.144 -5.139 -5.136 -5.136

375.331 384.788 394.258 403.744 413.244 422.761 432.292 441.841

-5.126 -5.123 -5.121 -5.119 -5.118

243.219 249.023 254.829 260.634 266.441

58.010 58.020 58.028 58.035 58.042 58.042 58.045 58.055 58.067

346.340 347.378 349.399 350.384 351.353 352.306 352.306 352.306 352.306 352.306 352.306

CURRENT: September 1966 (1 bar)

PREVIOUS: September 1966 (1 atm)

=
(LION)
ynitride (LiON)
Oxynitride
Lithlum Oxynitride (LION)

M _r = 36.9471 Lithium Oxynitride (LiON)	Δ _t H ^o (0 K) = [181.91 ± 41.8] kJ·mol ⁻¹ Enthalpy Reference Temperature = T _t = [298.15 K) = [179.91 ± 41.8] kJ·mol ⁻¹
M _r = 36.9471	$\Delta_t H^0(0 \text{ K}) = [181.91 \pm 41.8] \text{ kJ·mol}^{-1}$ $\Delta_t H^0(298.15 \text{ K}) = [179.91 \pm 41.8] \text{ kJ·mol}^{-1}$
IDEAL GAS	
Lithium Oxynitride (LiON)	$S^{(298.15 \text{ K})} = 245.332 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Li,N,O,(g)

Standard State Pressure = p * * 0.1 MPa

= 298.15 K

-30.392 -25.923 -22.580 -19.987 -17.950

NFINITE -93.506 -46.102 -36.665 -30.586

174.584

179.912

245.332

245.333 245.881 247.117 248.741 250.584

log Kr

 $H^{\bullet}-H^{\bullet}(T_{t})$

 $-[G^{\bullet}-H^{\bullet}(T_t)]H$

-14.913 -12.755 -11.144 -9.896 -8.902

254.566 258.645 262.653 266.521 270.224

170.927

-6.372 -6.372 -5.955

41.731 47.322 52.946 58.595 64.265 69.953 75.656 81.371 87.097

332.829 336.286

55.085 56.085 56.085 56.097 56.957 56.957 57.092 57.092 57.304 57.308

170.419 170 479 170.601 170.779 171.010 178.795 188.110 197.425 206.742

01-1	Δη"(298.15 K) = [181.91 ± 4] Δηθ"(298.15 K) = [179.91 ± 4]
Vibrational Frequencies and Degeneracies	
1350(1) 330(1) 650(1)	
Ground State Quantum Weight: [1]	G = 1
Bond Distances: O-Li = 1.63 ± 0.07 Å O-N = 1.30 ± 0.05 Å Bond Angle: Li-O-N = 100 ± 10°	·¥
Product of the Moments of Inertia: $I_A I_B I_C = 2.65370 \times 10^{-116} \text{ g}^3 \cdot \text{cm}^6$	g ³ .cm°

Enthalpy of Formation

This was estimated from bond energies using D(Li-O) = 88 kcal mol⁻¹, the average value in Li₂O(g), and D(O-H) = 111 kcal·mol⁻¹, the average value in Li₂O(g), and D(O-H) = 111 kcal·mol⁻¹, this average value in H₂O(g), which yields an estimated $\Delta_t H^*$ (LiOH, g, 298.15 K) = -49 kcal·mol⁻¹ from Ciference of -10 kcal·mol⁻¹. Using D(N-O) = 69 kcal·mol⁻¹ from Li₂O(g), the estimated $\Delta_t H^*$ (298.15 K) = 53 kcal·mol⁻¹ of LiON(g) was obtained (equation 2). Thus adding the -10 kcal mol⁻¹ correction from the above comparison a In order to estimate the $\Delta_t H^{\gamma}(298.15 \text{ K})$ of LiON(g) a comparison with the known $\Delta_t H^{\gamma}(\text{LiOH}, \text{g, } 298.15 \text{ K}) = -59 \text{ kcal·mol}^{-1} \text{ was made.}$

Apr (298.15 K) = 43 kcal-mol⁻¹ for LiON(g) was obtained.

The justification for using a N=O bond energy is from the 17 bond order reported by Andrews and Pimentel¹ and a comparison of bond

Heat Capacity and Entropy

The vibration frequencies, bond distances and bond angle were obtained from Andrews and Pimentel. The principal moments of inertia are. $I_A = 1.2707 \times 10^{-39}$, $I_B = 3.9785 \times 10^{-39}$ and $I_C = 5.2492 \times 10^{-39}$ g·cm.²

Reference ^IW. L. S. Andrews and G. C. Pimentel, J. Chem. Phys. 44, 2361 (1966).

CURRENT, June 1961 (1 bar)

PREVIOUS. June 1961 (1 atm)

Lithium Sodium Oxide (LIONa) IDEAL GAS	IS M,= 45.93017 Lithium Sodium Oxide (LiONa)	Lithium So	O mnip	xide (Li	ONa)			J	Li,Na,O,(g)	_
\$'7298 [5 K) = [756 459] J·K ⁻¹ -mol ⁻¹	$\Delta_t H^0(0 \text{ K}) = [-100 \ 16 \pm 125.5] \text{ kJ·mol}^{-1}$	Enthalpy Re	ference Ter	mperature	Enthalpy Reference Temperature = T, = 298.15 K		Standard State Pressure	le Pressure = 1	= p = 0.1 MPa	_
1011 V = [CD::07] = (V ::07) C	100 (C.C.) - 100-101 - 1 - 100 - 101	7/K	25		S -[G*-H*(T,)]/T	H*-H*(T,)	1	₽ ′C•	log K,	
Vibrational Frequencies and Degeneracies	racies	° 200	0. 34.139 38.470	0. 1 215.303 240.232	1NFINITE 291.557 260.252	-10.966 -7.625 -4.004	-100.156 -100.102 -102.233	-100.156 -109.851 -118.826	57.380 31.034	
[400](1)		250 250 250	40.849		257.156	-2021	-103,432	-122.836	25.665	
(1)[006] (1)[006]		320	43.161	256.726 263.540	256,993	0.080	-104,645	-126.604	22.044 19.426	
Ground State Quantum Weight: [1]	i b	\$ 2 2 2	48.652 48.652 49.952	275.348 275.348 280.543	258.203 259.799 261.617	6 997 9.463	-109.831 -111.180 -115.534	-133,340 -136,198 -138,598	17.412 15.809 14.479	
Point Group C, Bond Distances: O-Li = [1.82] A O-Na = [2.21] A Rand A nale: 1: O. Na = 11057		009 008 008	51.941 53.334 54.331	289.837 297.955 305.145	265.564 269.624 273.623	14.564 19.831 25.217	-118,012 -120,249 -122,337	-142.973 -146.954 -150.625	12.447 10.966 9.835	
Product of the Moments of Inertia: $I_A I_B I_C = [3.182324]$	4 × 10 ⁻¹¹⁵] g³·cm ⁶	<u>88</u>	55.060 55.607	311.589 317.419	277.490 281.196	30.689 36.223	-124,346 -126,316	- 154.040 - 157.234	8.940 8.213	
Enthalpy of Formation Estimated from bond energies derived from enthalpies of formation used in the JANAF Thermochemical Tables	VAF Thermochemical Tables.	88888 88888 88888	56.026 56.353 56.613 56.822 56.993	322.740 327.629 332.151 336.354	284.734 281.08 291.324 294.392	41.806 47.425 53.074 58.746	-128,278 -227,019 -228,112 -229,192	-160.230 -160.608 -155.029 -149.367	7.609 6.991 6.229 5.573	
Heat Capacity and Entropy The molecular constants have been estimated by comparison of similar mol $I_A = 1.9618 \times 10^{-39}$, $I_B = 11.7930 \times 10^{-39}$, and $I_C = 13.7548 \times 10^{-39}$ g·cm ² .	olecules. The principal moments of inertia are:	266 260 260 260 260 260 260 260 260 260	57.134 57.252 57.352 57.437 57.510	347.431 347.431 350.706 353.809 356.757	300.123 302.805 305.376 307.844	70.144 75.863 81.594 87.333	-231,313 -377,595 -377,882 -378,174 -378,471	-137.818 -124.767 -109.886 -94.990	3.834 3.834 3.189 2.611	
		25252 2500 2500 2500 2500 2500 2500 250	57.573 57.628 57.676 57.718	359.565 362.244 364.807 367.262	312.500 314.701 316.824 318.875	98.835 104.595 110.360 116.130	- 378,777 - 379,094 - 379,423 - 379,768	-65.151 -50.208 -35.252 -20.281	1.192 0.801 0.441	
		2800 2800 2800 2800 2800	57.788 57.818 57.844 57.868 57.808	371.885 374.067 376.170 378.200	322.777 324.637 326.440 328.190	137.681 133.461 139.244 145.030	-380,515 -380,922 -381,356 -381,819 -382,314	9.706 24.723 39.755 54.802 69.866	-0.195 -0.478 -0.742 -0.987	
		3200 3400 3400 3400 3400	57.910 57.927 57.943 57.958	382.061 383.900 385.683 387.413	331,542 333,150 334,715 336,240	156.608 162.400 168.193 173.988	-382,845 -383,414 -384,024 -384,680	84.948 100.047 115.164 130.301	-1.431 -1.633 -1.823 -2.002	
		3800 3800 4000 4000	57.996 57.996 58.006 58.016 58.025	390.726 392.315 393.862 395.369 396.838	339.175 340.590 341.972 343.322 344.641	185.583 191.382 197.182 202.983	-386.138 -386.947 -387.814 -388.743 -389.738	160.635 175.834 191.056 206.301 221.571	-2.331 -2.482 -2.626 -2.763	
		4100 4200 4400 4500	58.034 58.041 58.049 58.056 58.062	398.271 399 669 401.035 402.369 403.674	345.932 347.195 348.431 349.642 350.828	214.588 220.392 226.196 232.002 237.807	-390.802 -391.937 -393.151 -394.384 -395.733	236.867 152.189 267.540 282.914 298.322	-3.018 -3.136 -3.250 -3.359 -3.463	
		4600 4700 800 8000 8000	58.068 58.073 58.079 58.084 58.088	404.950 406 199 407 422 408.620 409.793	353.131 353.131 355.249 355.347	243.614 249.421 255.229 261.037 266.845	-397.179 -398.715 -400.344 -402.073 -403.897	313.761 329.232 344.738 360.278 375.854	-3.563 -3.659 -3.752 -3.841	
		\$100 \$200 \$400 \$500	58.093 58.097 58.101 58.104 58.108	410.943 412.072 413.178 414.264 415.330	357.482 358.521 359.542 360.545 361.531	272.654 278.464 284.274 290.084 295.895	-405.828 -407.876 -410.040 -412.325 -414.735	391.468 407.120 422.814 438.549 454.328	-4.009 -4.009 -4.167 -4.242 -4.315	
		\$600 \$700 \$800 \$900 6000	58.111 58.114 58.117 58.120 58.123	416.378 417.406 418.417 419.410 420.387	362.502 363.456 364.395 365.219 366.228	301.705 307.517 313.328 319.140 324.952	-417 <i>2</i> 75 -419.949 -422.762 -425.716 -428.659	470.153 486.023 501.942 517.909 533.911	-4385 -4454 -4520 -4585	

CURRENT March 1964 (1 bar)

PREVIOUS: March 1964 (1 atm)

							NIST-J	ANAF	THERN	NOCHE	MICAL	. TABL	ES			
Li ₁ O ₁ (g)	- p - 0.1 MPa	log K,	-40.051 -40.051 -17.854	-10.591	-10.500 -8.413 -6.855 -5.649	-3.349 -2.380 -1.663 -1.111 -0.675	-0.322 -0.032 0.210 0.416 0.591	0.743 0.655 0.524 0.406 0.300	0.204 0.036 0.037 0.037	-0.168 -0.226 -0.280 -0.331	-0.423 -0.464 -0.504 -0.541	-0.610 -0.642 -0.672 -0.701 -0.729	-0.755 -0.781 -0.805 -0.829	-0.873 -0.894 -0.915 -0.934	-0.972 -0.990 -1.008 -1.025 -1.041	-1.058 -1.073 -1.089 -1.104 -1.119
	te Pressure = p	δ. Δ.G.	84.118 76 676 68.359	60.454	56.307 56.372 52.490 48.662	38.466 31.898 25.462 19.140	6.787 0.738 -5.237 -11.142 -16.983	-22.766 -21.317 -18.049 -14.774 -11.492	-8.204 -4.909 -1.607 1.702 5.017	8.340 11.671 15.010 18.356 21.711	25.075 28.448 31.831 35.224 38.627	42.042 45.467 48.906 52.356 55.819	59.295 62.785 66.290 69.808 73.342	76.891 80.458 84.041 87.642 91.260	94.897 98.552 102.228 105.924 109.640	113.379 117.139 120.922 124.728
	Standard State Pressure		84.118 85.076 84.737	84.098	84.086 83.729 83.330 82.867	78.323 77.384 76.476 75.571	73.766 72.867 71.968 71.073	69.300 -76.815 -76.936 -77.061 -77.192	-71,329 -71,674 -71,628 -71,792	-78 156 -78.359 -78.579 -78.815	-79.347 -79.645 -79.966 -80.311 -80.682	-81.080 -81.506 -81.962 -82.448 -82.966	-83.517 -84.103 -84.725 -85.364 -86.052	-86.781 -87.551 -88.364 -89.219	-91.062 -92.058 -93.104 -94.203 -95.357	-96.567 -97.835 -90.165 -100.557 -102.013
	3 K	H*-H*(T,)	-8.945 -6.039 -3.080	6	0.060 1.705 3.391 5.109	10.408 14.022 17.679 21.368 25.082	28.816 32.567 36.332 40.109 43.898	47.697 51.506 55.324 59.150 62.984	66.826 70.675 74.532 78.396 82.266	86.144 90.028 93.919 97.816 101.720	105.630 109.547 113.469 117.398 121.334	125.275 129.223 133.176 137.136 141.102	145.074 149.052 153.036 157.026 161.022	165.024 169.031 173.045 177.065	185.123 189.160 193.204 197.253 201.309	205.370 209.437 213.510 217.589 221.674
	. T. = 298.19	S -[G-H'(T,)]T	138.387 238.387 213.861	210.963	210.963 211.362 212.257 213.427	217.589 220.474 223.290 225.991 228.564	231.008 233.329 235.534 237.632 239.630	241.536 243.358 245.103 246.775 248.381	249.926 251.414 252.848 254.233 255.571	256.866 258.120 259.337 260.517 261.664	262.778 263.862 264.918 265.947 266.950	267.928 268.883 269.816 270.728 271.620	272.492 273.346 274.182 275.002 275.805	276.592 277.365 278.123 278.867 279.598	280.316 281.022 281.715 282.397 283.068	283.728 284.378 285.018 285.648 286.268
<u>(</u> 0	Enthalpy Reference Temperature = T, = 298.15 K	2 -[C	0. 178.000 198.459 205.343	210.963	211.163 216.233 220.733 224.782	234.936 240.506 245.389 249.733 253.646	257.205 260.468 263.482 266.281 268.895	271.347 273.656 275.838 277.907 279.874	281.748 283.539 285.253 286.897 288.477	289.998 291.464 292.879 294.247 295.570	296.852 298.096 299.303 300.476 301.616	302.727 303.808 304.863 305.891 306.895	307.876 308.835 309.772 310.689 311.587	312.467 313.329 314.174 315.003 315.816	316.615 317.399 318.169 318.926 319.670	320.402 321.122 321.830 322.527 323.214
)xide (L	Reference T	 	0. 29.147 30.343	32.406	32.442 33.332 34.067	35.376 36.376 36.344 37.024 37.246	37.428 37.582 37.716 37.834 37.942	38.133 38.133 38.219 38.302 38.381	38.457 38.530 38.602 38.672 38.741	38.808 38.875 38.941 39.005	39.133 39.196 39.259 39.321	39.445 39.506 39.567 39.628	39.749 39.810 39.870 39.930 39.990	40.049 40.169 40.238 40.238	40.347 40.465 40.465 40.524 40.583	40.642 40.701 40.760 40.819 40.878
M,= 22.9404 Lithium Oxide (LIO)	Enthalpy F	ΤÆ	°888	298.15	88888	88888	250 250 250 250 250 250 250 250 250 250	2000 2000 2000 2000 2000	2200 2300 2400 2500 2500	2600 2700 2800 3000	3200 3200 3400 3500	3600 3700 3900 4000	24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	\$200 \$400 \$200 \$200 \$200 \$200	\$600 \$700 \$800 6000
M _r = 22.	$\Delta_H^0(0 \text{ K}) = 84.12 \pm 20.9 \text{ kJ} \cdot \text{mol}^{-1}$	LA 5.03 - 01.40 = (20.057)		. 4	σ-1 r _e -[1.62] Å	o different methods.	+ LiO(g) They obtained (a) $\Delta_t H^o$ (298 15 k) = 18.3 the two methods for the enthalpy of formation of me way using their data and the present tables i.e.	hite $\it etal^{-1}$ The ground state configuration, $^2\Pi$, was	Phys. 39, 2463 (1963). Thermodynamic Data for Combustion Prod							
IDEAL GAS			Electronic Level and Quantum Weight State e., cm ⁻¹ 8.	0	$\omega_{e} x_{e} = [4.835] \text{ cm}^{-1}$ $\alpha_{e} = [0.01288] \text{ cm}^{-1}$	rom their mass spectral data by tw of the log Π vs 1/T curve for LiO b) they assumed a cross section σ Li	ant for the reaction Li ₂ O(g) → Li(g), and used the average value from kcal·mol ⁻¹ , was obtained in the sa 98 15 K) = 18.3 kcal mol ⁻¹ .	lated from ω_e and r_e , reported by Wite et al. "	un, and M. J. Linevsky, J. Chem. fotor Division, Denville, NJ., "7	99 (1963).						
Lithium Oxide (LiO)	1-10m-1-471 (520 0167 = 74 51 800%)	1011. V. (506:017) = (V. C1:067) C	Electr	[II ₂]	$\omega_c = 745 \text{ cm}^{-1}$ $B_c = [1.333] \text{ cm}^{-1}$	Enthalpy of Formation White et al.¹ calculated the enthalpy of formation from their mass spectral data by two different methods. For the first calculation (a) they combined the slope of the log IT vs 1/T curve for LiO⁺ with the slopes for Li⁻ and Li₂O⁺ for the reaction Li₂O(g) → Li(g) + LiO(g). For the second calculation (b) they assumed a cross section σ Li₂Oγ Li₂O = 1 and from this they calculated a partial	pressure for LiO(g) at 1500 K and an equilibrium constant for the reaction Li ₂ O(g) \rightarrow Li(g) + LiO(g) They obtained (a) $\Delta_H^{a/2}$ 298 15 k) = 18.3 kcal·mol ⁻¹ and (b) $\Delta_H^{a/2}$ 298.15 K) = 16.3 kcal·mol ⁻¹ , and used the average value from the two methods for the enthalpy of formation of LiO(g). The JANAF enthalpy of formation, 20.1 \pm 5 kcal·mol ⁻¹ , was obtained in the same way using their data and the present tables i.e. (a) $\Delta_H^{a/2}$ 298.15 K) = 22.0 kcal·mol ⁻¹ and (b) $\Delta_H^{a/2}$ 298.15 K) = 18.3 kcal mol ⁻¹ .	Heat Capacity and Entropy The molecular constants, $\omega_{\mathcal{K}_n}$, B_n and α_n were calculated from ω_n and r_n , reported by White estimated by Gordon, ² Buchler and Stauffer ² and Whute <i>et al.</i> ¹	References ¹ D. White, K. S. Seshadri, D. F. Dever, and D. E. Mann, and M. J. Linevsky, J. Chem. Phys. 39, 2463 (1963). ² J. S. Gordon, Thiokol Chemical Corp., Reaction Motor Division, Denville, NJ., "Thermodynamic Data for Combustion Products,"	(Janaury 1960). ³ A. Buchler and J. L. Stauffer, J. Chem. Phys. 39, 2299 (1963).						

LI,07(g)

Standard State Pressure = p* = 0.1 MPa

log Kr

PG.

K-mol-ΨV -60.722

-6033 -13076 -13076 -13076 -1033 -10395 -10400

199.241

••
⋖
Ø
٠.
◂
ω̈
\Box
_

S

kJ·mol-1	kJ·mol ⁻¹
607±628J	[-66.944]
)K)=[-	298 15 K) •
$\nabla^{\mu}H_{\alpha}$	$\Delta_t H^{\circ}(298$

Enthalpy Reference Temperature * T, = 298.15 K

J-K-'mol-'

M_r = 22.94095 Lithium Oxide, Ion (LiO⁻)

S -[G-H(L)]/T

ئ

7.

$\Delta_t H''(0 \text{ K}) = [-60.7 \pm 62 \text{ A} H''(298 15 \text{ K}) = [-66.94]$		
	1	44

- 6 Ξ

re=[1.6] À Electronic Level and Quantum Weight ω_cx_e = [4.5] cm⁻¹ α_e = [0.0121] cm⁻¹ £, an, 0 State 12 $\omega_e = [750] \text{ cm}^{-1}$ $B_e = [1360] \text{ cm}^{-1}$

Enthalpy of Formation

the enthalpy change $\Delta H^0(0,K)$ of the reaction (1) Lo⁷(g) = Li(g) + O⁷(g) is close to the average of the $\Delta H^0(0,K)$ values for the reactions (2) LiO(g) = Li(g) + O(g) and (3) LiF(g) = Li(g) + F(g). The atom F(g) is isoelectronic with O⁷(g). In other words, the $\Delta H^0(0,K)$ for reaction (1) is approximately 1/2(76 91 + 135.84) = 106.4 kcal·mol⁻¹. Then we compare the $\Delta H^0(0,K)$ values for the reactions (4) HO(g) = H(g) + O(g), (5) HO⁷(g) + H(g) + F(g), and find that $\Delta H^0(0,K)$ for reaction (5) is experimentally determined as 109.7 kcal·mol⁻¹ which is about 8 kcal·mol⁻¹ more negative than the average of $\Delta H^0(0,K)$ values for reactions (4) and (6). Based on this fact we estimate $\Delta H^0(0,K) = 96.4$ kcal·mol⁻¹ for reaction (1), yielding $\Delta H^0(0,K) = 98.15K) = -15.5$ kcal·mol⁻¹. Data on the electron affinity of LiO(g) are unavailable, therefore the value of $\Delta H^0(\text{LiO}^-, g, 298 15 \, \text{K})$ is estimated. We first assume that

Applying the difference in electron affinity between H(g) and Li(g) to OH(g) gives an approximate value, EA = 1.7 eV (39.2 kcal·mol⁻¹) for LiO(g). The values of EA for H(g), Li(g) and OH(g) are taken from. Based on $\Delta_i H'(0 \text{K}) = 39.2$ kcal mol⁻¹ for the reaction LiO⁻(g) = LiO(g) + e⁻(g), we derive $\Delta_i H'(298.15 \text{ K}) = -19.1$ kcal·mol⁻¹ for LiO⁻(g), which is in reasonable agreement with the above estimated value.

The value of $\Delta_t H^0(298.15 \text{ K})$ for LiO⁻(g) is tentatively adopted as $-16 \pm 15 \text{ kcal mol}^{-1}$. Using this $\Delta_t H^0(298.15 \text{ K})$ value, we derive EA = 1.6 ± 0.7 eV for LiO(g). The electron affinity of OH(g) is 1.8 ± 0.1 eV.

Heat Capacity and Entropy

The ground state configuration is assumed to be the same as that of LiF(g) which is isoelectronic with LiO (g). The values of ω_c , $\omega_c \pm$ and ω_c are estimated by comparation with the observed data for LiF(g). The values of B_c and α_c are calculated from r_c , ω_c and $\omega_c \pm$ by use of the method suggested by Herzberg.

References

¹U. S. Nat. Bur. Stand. Report 8628, (1965).
²G. Herzberg, "Spectra of Diatomic Molecules," D. Van Nostrand Co., Inc., New York, (1950).

100 17.25 199-44 199-45 199-46 1703 -66.995 -66.99		202	1000						
400 34,079 208,939 200,344 3136 -685 3100 3 5100 3 5100 2 13104 201703 5100 5100 2 1713 5100 3 5100 3 5100 2 13104 201703 5100 5100 3 5100 2 13104 201703 5100 2 1713 5100 3 5100 3 5100 2 13104 201703 5100 2 1713 5100 3 5100 3 5100 2 1713 5100 2 1713 5100 3 5100 3 5707 2 1315 2 11500 3 172		35	CK 2.5	199 442	199.242	90	-66.995	-80.925	14.090
450 34.619 211.0.41 201.703 5.102 -17.5 500 35.166 211.6.715 201.023 6.846 -17.5 600 35.833 223.118 205.839 11.52.7 14.005 -17.5 800 36.836 271.962 211.522 11.403 -17.6 800 36.836 271.962 211.522 11.403 -17.6 100 37.341 248.689 221.381 25.034 -90.9 1100 37.341 24.482 221.3783 26.01 -90.9 1100 37.781 25.44.89 221.3783 40.06 -10.29 1200 37.781 25.44.89 221.3783 40.06 -10.29 1500 37.891 26.146 27.2373 43.84 -10.6 -10.29 1600 37.782 25.44.95 221.3783 40.06 -10.29 -10.29 1700 38.842 27.106 27.2784 40.06 -10.29 -10.29 <t< th=""><th></th><th>\$\$</th><th>34,020</th><th>208.998</th><th>200.534</th><th>3.386</th><th>-69.834</th><th>-85.137</th><th>12,407</th></t<>		\$\$	34,020	208.998	200.534	3.386	-69.834	-85.137	12,407
600 35.100 212.1184 103.829 103.95 -75.90 80.0 35.100 212.1184 103.02 103.95 80.0 35.100 212.1184 103.829 103.95 80.0 35.00 35.100 213.1184 105.829 117.532 117.532 -82.0 80.0 35.00 37.00 37.302 213.1187 117.532 117.533 -82.0 110.00 37.207 241.874 216.821 22.503 17.302 224.492 221.381 32.230 37.789 224.492 221.381 32.230 37.789 224.492 221.381 32.230 37.789 224.492 221.381 32.000 37.789 224.492 221.381 32.000 37.789 224.492 221.381 32.000 38.244 22.230 38.04 22.230 39.0		450	34.619	213.041	201.703	5.102	-71.339	-86.969	10.095
600 35.83.9 223.144 205.859 10.395 -790 700 36.396 27.37 23.84.23 22.14.24 -170 800 36.707 23.84.25 211.522 11.682 -17.00 900 36.707 23.13.65 211.252 11.682 -17.20 100 37.207 24.87.49 19.222 23.73 -17.34 -99.9 1200 37.781 24.495 212.38 25.35 -99.9 19.20 -99.9 1500 37.782 25.445 25.28.78 40.064 -10.29 -99.9 1500 37.891 259.555 227.78 47.643 -10.84 -10.84 -10.29 1500 37.891 259.555 227.78 47.643 -10.84 -10.29 1500 37.891 259.555 227.78 47.643 -10.29 -27.14 1500 37.891 25.618 27.144 25.218 -27.14 -27.14 -27.14 1500		200	35.106	216.715	203.023	6.846	-75915	-88.315	9.226
800 36707 213625 111532 11568 – 820 1000 37207 213625 111532 11568 – 820 1000 37207 213625 212733 25204 – 939 1300 37573 224495 212378 36291 – 939 1300 37573 224495 212378 36291 – 939 1300 37789 224495 212378 36291 – 939 1500 37789 224495 212378 36291 – 939 1500 37789 224495 212378 40164 – 1023 1500 38.162 22409 212615 215615 6120 1500 38.24 26616 213341 55259 – 2521 1500 38.24 26616 213341 55259 – 2521 1500 38.24 26616 213341 55259 – 2521 1500 38.24 26616 213341 7445 – 2521 1500 38.24 26639 216417 7443 – 2621 1500 38.24 26639 216417 7443 – 2621 1500 38.24 26639 21641 76449 72744 – 2021 1500 38.24 26639 21641 76449 7778 – 2221 1500 38.24 26639 21641 76449 7778 – 2221 1500 38.24 26639 21642 22673 110270 – 2221 1500 39.14 28625 252073 110270 – 2221 1500 39.14 26625 252073 110270 – 2221 1500 39.14 26625 252073 110270 – 2221 1500 39.27 269070 254156 110270 – 2221 1500 40.20 39.27 269.28 260.18 260.27 110270 – 2221 1500 40.20 39.21 269.21 262.27 110270 – 3221 1500 40.20 39.21 269.20 269.28 269.28 269.20 126.27 110270 – 3221 1500 40.20 39.21 269.20 269.28 269.28 269.20 126.27 110270 – 3221 1500 40.20 39.21 269.20 269.28 269.28 269.20 126.27 110270 – 3221 1500 40.20 39.21 269.20 269.28 269.28 269.20 126.27 110270 – 3221 1500 40.20 39.21 269.20 269.28 269.28 269.20 126.28 290 160 40.20 39.21 269.20	;	88	35.833	223.184	205.859	10.395	-79.008	-90.504	7.879
900 36.396 237.956 211.250 213.43 - 98.00 10.00 37.38 24.459 219.252 213.51 - 99.00 10.00 37.38 24.459 219.252 213.51 10.00 37.38 24.459 219.252 213.78 35.29 1 - 99.90 13.00 37.672 214.695 212.13.81 35.29 1 - 99.90 13.00 37.672 21.689 212.13.81 35.29 1 - 99.90 15.00 37.672 21.689 212.13.81 35.29 1 - 99.90 15.00 37.691 25.615 25.6	4	8	36 707	233.625	211.557	17.658	-85.029	-93.180 -93.436	6.100
1000 57.207 241.874 216.821 25.054 -9509 1000 57.007 241.874 216.821 25.054 -9509 1200 37.789 254.452 211.581 25.259 -9509 1200 37.789 254.452 211.581 25.259 -9509 1200 37.789 254.452 211.581 25.259 -9509 1200 37.789 25.4452 271.881 25.259 -9509 25.259	2 9	006	36.986	237.965	214250	21.343	-88.006	-94.297	5.473
100 37348 245,429 219,262 215,814 -9359 1100 37544 215,878 245,979 215,878 40,054 -100,054 215,000 377,819 25,4465 215,878 40,054 -100,054 215,000 37,894 257,106 215,878 40,054 -100,054 215,000 37,894 257,106 215,878 40,054 -100,054 215,000 38,054 257,106 215,000	Ę (000	37.207	241.874	216.821	25.054	-90.991	-94.836	4.954
1300 31,571 251,699 213,783 36,291 -99,995 1500 37,789 254,445 251,587 40,664 -10,295 1500 37,891 254,445 251,587 40,664 -10,624 -10,625 1500 37,891 254,445 251,518 41,645 -10,624 -10,625 1500 38,244 266,166 253,511 352,523 -251,520 38,244 266,166 253,511 352,523 -251,520 38,244 266,166 253,511 352,523 -251,520 38,244 266,166 256,161 37,344 -261,435 -26		862	37.388	245.429	219.262	28.784	-93.976	-95.076	4515
1400 37.789 254.445 255.878 40.054 -10.05 1500 37.894 257.106 257.105 257.106 257.10	٠.	1300	37.672	251.699	223.783	36291	-99.940	-94.765	3.808
1500 51894 257,106 21884 41848 -11058 1500 31894 257,106 213948 41444 -11058 1500 38,249 254,040 213148 41,444 -1254 2250 2		1400	37.789	254.495	225.878	40.064	-102.918	-94.255	3.517
1600 37991 259555 229778 47643 - 1088 1500 37891 259555 229778 47643 - 1088 1500 38.086	-	1500	37.894	257.106	227.874	43.848	-105.890	-93.532	3.257
1800 38,244 26,6106 213,548 51,545 5	_	<u>0</u>	37.991	259.555	229.778	47.643	-108.858	-92.611	3.023
1900 38.244 266.105 255.011 55.079 255.44 2000 38.244 266.105 255.615 66.296 256.615 2000 38.245 2713.440 241.075 77.245 2200 38.465 2713.440 241.075 77.245 2200 38.465 2713.440 241.075 77.243 2200 38.668 275.681 242.435 77.245 2200 38.668 275.681 242.435 77.245 2200 38.668 275.681 242.435 77.245 2200 38.252 273.781 245.285 86.027 7.274 2200 38.252 273.785 245.342 89.027 7.274 2200 38.252 283.785 245.342 89.027 7.274 2200 38.252 283.785 245.342 89.027 7.274 2200 38.252 283.785 245.285 101.570 7.284 2200 38.252 283.785 252.035 101.570 7.284 2200 39.244 250.825 252.035 101.570 7.284 2200 39.244 250.825 252.035 101.570 7.284 2200 39.244 250.825 252.035 101.570 7.284 2200 39.244 250.825 252.035 101.570 7.284 2200 39.244 250.825 252.035 101.270 7.284 2200 39.244 250.825 252.035 101.270 7.284 2200 39.244 250.825 252.035 102.245 7.284 2200 39.244 250.825 252.035 102.245 7.284 2200 39.244 250.825 252.035 102.245 7.284 2200 39.244 250.825 252.035 102.245 7.284 2200 39.244 250.825 252.035 102.245 7.284 2200 39.244 250.825 252.035 102.245 7.284 2200 39.244 250.825 252.035 102.245 7.284 2200 39.244 250.825 252.035 102.245 7.284 2200 39.244 250.825 252.035 102.245 7.284 2200 39.245 250.825 252.745 102.245 7.284 2200 39.245 250.825 252.745 102.245 7.284 2200 20.244 20.244 20.245 20.245 20.245 2200 20.244 20.245 20.245 20.245 20.245 2200 20.244 20.245 20.245 20.245 20.245 2200 20.244 20.245 20.245 20.245 20.245 2200 20.244 20.245 20.245 20.245 20.245 2200 20.244 20.245 20.245 20.245 20.245 2200 20.244 20.245 20.245 20.2	<u>-</u>	38	38 165	109 107	251.298	55.150	- 250,056	-84.329	55.
2000 38.371 268.099 236.615 62.908 -265.55 2100 38.394 299.941 238.188 66.743 -265.55 2200 38.658 277.6081 240.70 74.435 -277.3 2400 38.668 277.6081 243.796 74.435 -277.3 2400 38.668 277.6081 245.329 86.077 -277.4 2500 38.668 277.6289 86.077 -277.4 2500 38.795 281.051 245.329 86.077 -277.4 2500 38.795 281.051 247.559 86.077 -277.4 2500 38.795 281.051 246.342 89.993 -277.4 2500 38.791 282.056 260.993 101.570 -286.7 2500 38.792 281.056 252.075 109.379 -286.7 310 39.141 286.76 252.175 111.221 -286.7 320 39.164 287.46 257.156	ě	200	38.244	266.106	235.011	29079	-261.470	-63.759	1 753
1100 38.394 269.94 138.158 66.744 -265.5 2200 38.455 2717.728 239.644 70.285 -288.1 2300 38.645 2717.728 24.459 74.456 74.445 2400 38.662 275.681 24.459 86.027 -277.4 2500 38.795 278.176 24.589 86.027 -277.4 2500 38.795 278.176 24.589 86.027 -277.4 2500 38.879 278.176 24.589 86.027 -277.4 2500 38.879 278.176 24.589 86.027 -277.4 2500 38.871 27.456 24.458 86.027 -277.4 2500 38.871 27.456 24.589 86.027 -277.4 2500 38.871 27.456 24.458 93.786 -284.1 2500 39.043 28.5016 25.093 105.471 -285.4 2500 39.164 25.08.25 25.2075 103.77 -286.4 2500 39.144 25.08.76 25.1156 117.211 -286.4 2500 39.414 25.08.76 25.1156 117.211 -286.4 2500 39.414 25.08.76 25.1156 117.211 -286.4 2500 39.414 25.08.76 25.1156 117.211 -286.4 2500 39.414 25.08.76 25.1156 117.211 -286.4 2500 39.414 20.92 25.1156 117.211 -286.4 2500 39.414 20.30.28 25.4156 114.811 -311.8 2500 40.013 30.228 25.4136 12.006 -33.41 2500 40.013 30.228 25.4136 116.669 -33.61 2500 40.020 39.414 30.92 25.1156 117.269 -33.61 2500 40.425 30.410 25.02 26.4136 116.818 -33.61 2500 40.425 30.410 25.02 26.4136 116.818 -33.61 2500 40.425 30.410 25.02 26.4136 116.818 -33.61 2500 40.425 30.410 25.02 26.4136 116.818 -33.61 2500 40.425 30.410 27.1136 -36.816 -36.816 2500 40.425 30.401 27.1136 -36.816 -36.816 2500 40.425 30.401 27.1136 -36.816 -36.816 2500 40.425 30.401 27.1136 -36.816 -36.816 2500 40.425 30.401 27.1136 -36.816 -36.816 2500 40.425 30.401 27.1136 -36.816 -36.816 2500 40.425 30.401 27.1136 -36.816 -36.816 2500 40.425 30.401 27.1136 -36.816 -36.816 2500 40.426 30.9210 27.1136		2000	38.321	268.069	236.615	62.908	-263.685	-53.296	1.392
2200 38.445 271778 239.644 70.386 - 278.1 2400 38.534 2717.08 230.0 38.534 2717.08 230.0 38.534 2717.08 230.0 38.534 2717.08 241.076 270.0 38.534 2717.08 241.076 2717.09 250.0 38.735 2717.08 241.076 2717.0 280.0 38.735 2717.0 2717.0 280.0 38.231 282.416 248.735 917.07 2717.0 280.0 38.231 282.416 248.735 917.07 2717.0 280.0 38.231 282.416 248.735 917.07 281.01 280.0 39.144 282.0 282.0 105.77 - 282.1 280.0 39.144 282.0 282.0 105.77 - 282.1 280.0 39.144 282.0 282.0 105.77 - 282.1 280.0 39.144 282.0 282.0 105.77 - 282.1 280.0 39.144 282.0 282.0 271.137 - 282.1 280.0 39.242 282.0 271.137 - 282.1 280.0 39.242 282.0 271.137 - 282.1 280.0 39.242 282.0 271.137 - 282.1 280.0 39.242 282.0 282	ě	2100	38.394	269.941	238.158	66 743	-265.907	-42.721	1.063
2400 38.534 213.440 2410.06 174.35 210.210.3 2400 38.668 76.668 243.796 82.157 - 274.8 2500 38.668 76.668 243.796 82.157 - 274.8 2500 38.668 76.668 243.796 82.157 - 274.8 2500 38.875 278.176 245.389 86.027 - 274.8 2500 38.875 28.245.8 245.349 86.027 - 274.1 2500 38.875 28.245.8 245.349 86.027 - 278.1 2500 39.043 28.245.2 248.735 97.65 - 228.4 2500 39.104 28.24.5 249.2 250.2 2		2200	38.465	271.728	239.64	70.586	-268.137	-32.041	.761
2500 38.668 27.0581 2.27.59 82.157 2.71.05 25.00 38.668 27.0589 86.027 2.717 2.00 38.759 38.759 82.157 2.717 2.00 38.759 38.759 2.2840 2.2840 2.2840 38.759 2.2840 2.2840 38.759 2.2840 2.2840 39.00 38.751 2.28416 2.48.735 97.157 2.2840 2.2840 39.00 38.751 2.28416 2.48.735 97.157 2.2841 2.2840 39.00 39.164 28.246 2.2842 2.2842 37.00 39.164 2.285.26 2.23429 113.292 2.2943 39.00 39.243 2.285.26 2.23415 113.292 2.2943 39.00 39.243 2.289.768 2.284156 113.292 2.2943 39.00 39.243 2.289.768 2.284156 113.292 2.2943 39.00 39.243 2.289.768 2.284156 113.292 2.2943 39.00 39.243 2.289.768 2.284156 113.292 2.2943 39.00 39.243 2.289.20 2.289.70 12.2946 2.3044 44.00 39.243 2.29431 2.289.20 113.294 2.3043 44.00 39.243 2.289.20 12.2948 2.3043 44.00 39.244 2.2949 2.294	_	2007	38,334	275.040	241.076	76.20	270.376	-21.260	.83
260 38 732 278.176 245.089 86.027 -277.17 2700 38.796 279.639 246.347 89.903 -277.4 2800 38.829 281.031 247.556 92.736 -287.4 2800 38.821 282.416 248.735 93.786 -287.6 300 38.921 282.416 248.735 101.570 -286.4 310 39.043 28.516 113.27 -286.7 330 39.164 286.256 252.05 113.20 -281.1 340 39.144 289.788 251.156 117.211 -286.7 360 39.448 299.06 254.18 112.01 -286.4 370 39.59 291.54 257.08 112.04 -306.6 380 39.448 299.00 136.83 -306.8 -306.8 -306.8 400 39.473 258.03 258.03 136.83 -306.8 -306.8 -306.8 -306.8 -306.4 -306.8 </th <th></th> <th>2500</th> <th>38.668</th> <th>276.658</th> <th>243.796</th> <th>82.157</th> <th>-274.887</th> <th>- 10.380</th> <th>012</th>		2500	38.668	276.658	243.796	82.157	-274.887	- 10.380	012
2800 38.359 27.05.59 246.342 88.903 - 279.4 280.0 38.859 280.0 38.851 282.416 248.735 99.766 - 281.1 2000 38.892 282.756 249.880 101.570 - 286.4 3100 38.921 282.416 248.735 99.766 - 281.1 2000 38.921 282.416 248.735 99.766 - 281.1 2000 39.144 282.406 252.139 113.272 - 289.21 230.0 39.144 287.460 254.156 117.211 - 280.4 250.0 39.282 289.768 255.138 113.272 - 289.4 250.0 39.282 289.768 255.138 113.272 - 289.4 200.0 39.282 289.768 255.138 113.298 - 300.0 39.248 29.19.54 257.088 113.298 - 300.0 39.248 29.19.54 257.088 113.298 - 300.0 39.248 29.19.54 257.088 113.298 - 300.0 39.248 29.19.54 257.088 113.298 - 300.0 39.248 29.20.0 258.930 115.20.8 - 300.0 39.248 29.20.0 258.930 115.20.8 - 300.0 39.248 29.20.0 258.930 115.20.8 - 300.0 39.248 29.20.0 258.930 115.20.8 - 300.0 39.248 29.20.0 259.710 250.298 116.20.0 - 311.2 40.0 39.248 29.20.20 259.710 250.398 116.20.9 - 312.4 40.0 39.249 20.248 25.20.2 - 312.2 40.0 39.248 29.20.20 250.248 25.20.2 - 312.2 40.0 39.248 29.20.20 250.248 25.20.2 - 312.2 40.0 39.248 29.20.20 25.20.2 - 312.2 40.0 39.248 29.20.20 250.248 25.20.2 - 312.2 40.0 40.20 39.242 20.243 112.20.2 - 312.2 20.20.2 250.20 20.20.2 25	멎	2600	38 732	278.176	245.089	86.027	-277 162	11.657	234
247.356 93.786 -228.17 249.880 101.570 -286.4 250.993 100.570 -286.4 253.179 112.11 -289.4 253.179 112.11 -299.4 254.156 117.211 -299.4 256.13 12.068 -300.5 256.030 132.98 -300.5 258.030 132.98 -300.5 258.030 136.98 -300.5 258.030 148.81 -311.2 266.543 148.71 -316.5 265.544 168.79 -314.7 265.544 168.99 -324.7 266.511 17.269 -334.7 266.514 17.269 -334.7 266.518 17.269 -334.7 266.519 17.269 -336.2 277.78 18.777 -342.2 277.78 18.777 -342.2 277.78 19.2779 -342.2 277.78 19.2779 -342.2 277.78 19.2779 -343.2 277.78 19.2779 -343.2 277.78 19.2779 -343.2 277.78 19.2779 -343.2 277.78 19.2779 -343.2 277.78 19.2779 -343.2 277.78 19.2779 -343.2 277.189 -351.779 -343.2	မှ	2700	38.796	279.639	246.342	89.903	-279.452	22.809	- 441
249.80 91.50 2.844 250.993 105.471 2.88.7 251.093 105.471 2.88.7 251.159 113.292 2.291.1 251.158 113.292 2.291.2 256.138 12.108 3.00.4 256.138 12.108 3.00.4 256.030 13.298 3.00.6 258.930 13.298 3.00.6 258.930 13.298 3.00.6 258.930 13.298 3.00.6 258.930 13.298 3.00.6 258.930 13.298 3.00.6 258.931 12.50.6 259.931 12.50.931 3.00.6 259.932 11.293 13.332 250.733 16.693 3.304 250.733 18.770 3.343 250.733 16.693 3.304 250.733 16.693 3.304 250.733 16.693 3.304 250.733 16.693 3.304 250.733 16.693 3.304 250.733 17.693 3.303 271.294 20.4588 3.351 271.294 20.4588 3.351 271.294 20.4588 3.351 271.294 20.4588 3.351 271.298 3.313 271.298 3.313		2800	38.859	281.051	247.556	93.786	-281.758	34.046	635
250.993 105.471 - 288.71.28.71.29.71.29.71.29.72.71.29.72.72.72.72.72.72.72.72.72.72.72.72.72.	_	88	38.982	283.736	249.880	075 101	-286.424	56.762	181
252.075 199.379 – 291.2 253.139 11.327 – 293.2 253.138 12.11.37 – 293.2 253.138 12.11.37 – 293.2 253.030 135.98 – 300.9 253.030 135.98 – 305.0 253.030 135.98 – 305.0 259.030 140.871 – 311.2 250.531 163.79 – 311.2 250.531 163.79 – 312.3 250.534 166.69 – 324.3 250.534 166.69 – 324.3 250.534 166.69 – 324.3 250.534 166.69 – 324.3 250.534 166.69 – 334.3 250.534 166.69 – 334.3 250.534 166.69 – 334.3 250.534 166.69 – 334.3 250.534 166.69 – 334.3 250.534 166.69 – 334.3 250.534 166.69 – 334.3 250.534 166.69 – 334.3 250.534 166.69 – 334.3 250.534 166.69 – 335.3 250.538 163.70 – 345.3 250.538 163.70 – 345.3 271.394 204.898 – 335.3 271.345 200.833 – 351.3	_	3100	39.043	285.016	250 003	105 471	-288 788	SAC 89	2511-
255.179 113.212 -229.3 255.158 117.211 -226.0 255.158 12.1037 -228.4 255.030 13.29.8 -300.5 255.030 13.29.8 -300.5 255.030 13.29.8 -306.5 255.030 13.29.8 -306.5 255.031 148.711 -311.8 265.543 148.711 -311.8 265.543 167.709 -312.7 265.544 165.709 -327.5 265.544 165.709 -327.5 265.544 165.709 -327.5 265.544 165.709 -327.5 265.544 165.709 -327.5 265.544 165.709 -327.5 265.544 165.709 -327.5 265.545 165.709 -327.5 265.547 165.709 -327.5 265.547 165.709 -327.5 265.547 165.709 -327.5 265.547 165.709 -327.5 265.547 165.709 -327.5 265.547 165.709 -327.5 265.547 165.709 -327.5 277.547 17.299 -345.5 277.548 177.7 -345.5 277.548 177.7 -345.5 277.549 -345.5 277.709 -345.7		3200	39.104	286.256	252.075	9379	-291.173	79.799	-1303
254.156 117.211 -226.0 255.158 121.037 -226.0 255.158 121.037 -226.0 255.070 132.948 -306.0 255.070 132.948 -306.0 255.070 132.948 -306.0 255.070 144.811 -311.2 266.591 144.877 -316.2 263.378 152.776 -316.2 263.378 152.776 -316.2 263.378 166.776 -316.2 265.554 168.693 -336.2 267.783 166.693 -336.2 267.783 166.99 -336.2 267.783 18.770 -339.2 267.783 18.770 -342.3 266.203 18.750 -342.3 266.203 18.750 -342.3 267.784 168.693 -336.2 277.784 168.693 -336.2 277.784 168.693 -336.2 277.784 168.693 -336.2 277.784 168.693 -336.2 277.784 168.693 -336.2 277.784 168.693 -336.2 277.784 168.693 -336.2 277.784 168.693 -336.2 277.784 168.693 -336.2 277.784 168.785 -345.2 277.784 168.785 -345.2 277.784 170.88 -361.2 277.784 170.88 -361.2 277.784 170.88 -361.2 277.788 -361.2 277.788 -361.2 277.788 -361.2 277.788 -361.2 277.788 -361.2 277.788 -361.2 277.788 -361.2 277.788 -361.2 277.788 -361.2 277.788 -361.2 277.788 -361.2 277.788 -361.2 277.788 -361.2 277.788 -361.2 277.788 -361.2 277.788 -361.2		3300	39.164	287.460	253.129	113.292	-293.582	91.429	-1.447
256.135 12.008 3.009 256.135 12.008 3.009 258.020 13.298 3.009 258.020 13.298 3.009 258.020 13.298 3.009 258.020 144.811 311.6 266.591 144.811 316.3 265.198 156.726 3.109 265.198 166.709 3.343 265.198 166.709 3.343 265.34 168.693 3.344 265.033 176.693 3.343 265.033 176.693 3.392 267.733 18.770 3.333 265.033 176.893 3.343 267.733 18.770 3.343 267.733 18.770 3.343 271.243 200.833 3.343 271.244 204.838 3.343 271.244 204.838 3.343 271.245 200.833 3.343 271.245 200.833 3.343 271.247 271.004 271.008 3.363 271.348 271.108 3.363	_	505	39.22	288.630	254.156	17211	-296.016	103.133	-1.584
257.088 129.005 -303.5 258.070 136.896 -306.5 258.030 136.896 -306.5 258.030 144.811 -311.8 266.543 148.777 -316.5 265.196 156.756 -319.5 265.197 165.709 -324.7 265.196 166.709 -324.7 265.554 166.698 -324.7 265.554 176.698 -324.7 265.554 176.698 -334.5 267.733 166.699 -334.5 267.733 187.77 -342.3 267.733 187.77 -342.3 267.734 187.77 -342.3 267.735 176.698 -336.5 271.245 200.833 -336.5 271.345 200.833 -336.3 271.348 201.335 -366.5 277.348 201.335 -366.5 277.348 217.068 -366.5 277.348 217.068 -366.5 277.348 221.135 -372.1	_	3,00	39 141	290.876	256 135	125.068	- 300 063	126.754	-1 830
28,020 132,936 -306.0 28,930 136,936 -306.0 25,930 140,831 -311.2 26,543 148,777 -316.2 26,134 15,779 -319.2 26,134 16,779 -319.2 26,134 16,779 -321.3 26,554 16,698 -327.3 26,554 16,698 -327.3 26,554 16,699 -327.3 26,573 16,699 -327.3 26,573 16,699 -327.3 26,599 18,777 -342.3 26,399 18,777 -342.3 26,399 18,777 -342.3 271,249 204,898 -386.2 271,249 204,898 -386.2 271,349 21,008 -361.5 271,349 21,108 -361.5 271,349 21,108 -361.3		3700	39,399	291.954	257.088	129.005	-303.477	138.670	-1.958
258,390 1,36,386 -3,385 256,691 14,811 -313,8 26,533 14,777 -316,2 26,378 15,779 -31,2 26,354 16,877 -31,2 26,378 16,699 -324,7 26,554 16,699 -324,7 26,554 16,699 -324,7 26,554 16,699 -330,4 26,578 18,071 -342,3 26,578 18,071 -342,3 26,578 18,770 -344,2 26,599 19,217 -342,3 26,599 19,217 -342,3 26,599 19,217 -342,3 271,249 20,883 -344,5 271,249 20,883 -344,5 271,349 21,306 -366,5 273,190 21,306 -366,5 273,190 21,306 -366,5 273,190 21,306 -366,5 273,190 21,306 -366,5 273,190 21,306 -366,5 273,190 21,306 -366,5 273,190 21,306 -366,5 273,190 21,306 -366,5 273,190 21,306 -366,5		3800	39.458	293.006	258.020	132.948	-306.022	150.654	-2.071
260.691 144.811 -313.8 263.738 163.77 -316.2 263.196 156.726 -311.9 263.197 166.796 -324.7 264.783 164.698 -326.4 265.554 168.693 -330.4 265.783 164.699 -330.4 267.783 180.710 -339.2 267.783 180.710 -339.2 267.783 180.710 -342.3 269.203 183.750 -345.4 269.203 183.750 -345.4 271.245 200.883 -345.3 271.245 200.883 -341.3 271.504 204.898 -361.6 271.190 213.005 -361.6 271.108 -361.6 271.108 -361.6 271.108 -361.6	_	88	39.573	295.033	259.820	136.896	-308.598	162.706	-2.179
261543 148.777 - 316.2 262.778 152.749 - 319.2 263.196 156.776 - 319.2 263.197 160.709 - 334.7 265.554 166.693 - 334.5 265.554 166.693 - 334.5 265.554 176.693 - 339.2 267.733 180.710 - 339.2 267.733 180.710 - 339.2 268.399 184.770 - 342.3 268.399 184.770 - 342.3 268.399 183.790 - 342.3 268.399 183.790 - 342.3 271.345 200.853 - 351.7 271.345 200.853 - 351.7 271.348 204.858 - 356.5 277.1904 204.858 - 356.5 277.1904 204.858 - 356.5 277.1904 204.858 - 356.5 277.1904 204.858 - 356.5 277.1904 204.858 - 356.5 277.1904 204.858 - 356.5 277.1904 204.858 - 356.5 277.1904 204.858 - 356.5 277.1904 204.858 - 356.5 277.1904 204.858 - 356.5 277.1108 - 366.5 277.1108 - 366.5		4100	10 631	296.011	260,601	144 811	-313 649	200 201	-1 303
263.196 153.749 -319.2 263.196 156.709 -324.7 264.733 166.698 -324.5 264.574 166.698 -324.5 264.574 166.699 -324.5 264.574 166.699 -324.5 267.733 166.699 -336.5 267.733 166.699 -336.5 267.733 160.710 -336.5 269.599 188.770 -342.5 269.599 188.770 -342.5 269.599 188.770 -342.5 271.294 204.598 -351.5 271.294 204.598 -351.5 271.294 204.598 -351.5 271.594 204.598 -351.5 271.599 211.008 -365.5 271.199 211.008 -365.5 271.199 211.008 -365.5 271.199 211.008 -365.5 271.199 211.008 -365.5 271.199 211.108 -365.5 271.1199 -365.5 271.1199 -365.5 271.1199 -365.5 271.1199 -365.5 271.1199 -372.1 37		4200	39.689	296.966	261.543	148.777	-316.524	199.255	-2.478
263.196 156.776 - 331.9 263.196 156.776 - 334.7 264.783 164.698 - 330.4 265.311 176.699 - 336.7 265.311 176.699 - 336.2 267.783 180.710 - 339.2 267.783 187.70 - 342.3 269.203 187.70 - 342.3 269.203 187.70 - 342.3 271.245 200.853 - 345.9 271.245 200.853 - 354.9 271.245 200.853 - 354.9 271.248 204.89 - 362.0 273.190 211.008 - 362.0 273.190 211.008 - 362.0 273.190 211.008 - 362.0 273.190 211.008 - 362.0 273.190 211.008 - 362.0		4300	39.746	297.901	262.378	152.749	-319.237	211.568	-2.570
264.783 164.698 -377.2 265.314 168.693 -330.3 267.053 166.699 -330.3 267.053 176.699 -330.3 267.783 180.710 -339.3 267.783 180.710 -342.3 269.203 187.779 -345.3 270.576 196.813 -34.7 271.245 200.853 -34.9 271.572 208.899 -361.6 273.190 217.068 -362.6 273.190 217.068 -362.6 273.190 217.068 -362.6 273.190 217.068 -362.6 273.190 217.068 -362.6	_	8.83 8.83 8.83	39.860	298.815	263.196	156.726	-321.967	223.942	-2.659
265.554 168.693 -350.2 265.311 172.693 -330.3 267.783 180.710 -339.2 267.783 180.710 -339.2 268.203 18.770 -345.3 269.203 18.770 -345.3 269.203 192.770 -345.3 271.245 200.833 -345.3 271.504 204.898 -341.2 271.504 204.898 -361.6 271.190 213.005 -361.6 271.190 213.005 -361.6 271.190 213.005 -361.6 271.190 213.005 -361.6 271.190 213.005 -361.6 271.190 217.068 -361.6 271.190 217.068 -361.6 271.110 217.068 -361.6		4600	39 917	300 587	264 783	164 609	- 177 569	000 876	-2 876
265.311 172.693 - 333.3 267.783 176.699 - 3-55.2 267.783 180.710 - 339.2 268.203 18.770 - 342.3 269.203 18.770 - 3-45.3 270.576 196.813 - 3-51.7 271.245 200.853 - 351.7 271.594 204.898 - 351.2 271.594 204.898 - 351.2 271.594 213.699 - 361.6 273.190 213.605 - 365.6 273.190 213.605 - 365.6 273.819 217.068 - 365.5 274.438 221.135 - 372.1		4100	39.974	301.446	265.554	168.693	-330.430	261.442	-2.906
267.783 176.89 - 256.2 268.499 184.727 - 342.3 268.499 184.727 - 342.3 269.2835 192.779 - 345.3 270.576 196.813 - 351.7 271.245 200.853 - 351.7 271.245 200.853 - 351.7 271.245 200.853 - 351.7 271.349 211.068 - 361.5 273.190 211.068 - 366.5 273.191 211.068 - 366.5 274.438 221.135 - 372.1	_	4800	40 031	302.288	266.311	172.693	-333,334	274.066	-2.982
268.499 184.777 -342.3 268.395 183.750 -345.4 268.395 192.779 -345.5 270.576 196.813 -351.3 271.245 200.833 -354.9 271.245 200.833 -354.9 272.552 208.949 -361.6 273.190 213.005 -365.0 273.190 213.005 -365.0 273.191 217.068 -365.0 274.438 221.135 -372.1		\$005 0005	40.14	303.925	267.783	180.710	-339.276	299.496	-3.057
269.203 188.750 –3454 269.895 192.779 –348.2 270.576 196.813 –351.7 271.245 200.853 –354.9 271.504 204.898 –384.9 272.552 208.949 –361.6 273.190 211.008 –365.0 273.191 211.008 –365.0 273.819 217.008 –365.0		2100	40.200	304.720	268.499	184.727	-342,311	312,301	-3.199
265.395 192.779 -345.2 271.245 200.853 -354.9 271.249 200.853 -354.9 277.572 208.949 -361.6 273.190 211.008 -365.0 273.190 217.008 -365.0 273.190 217.008 -365.0 274.438 221.135 -372.1		2200	40.257	305.501	269.203	188.750	-345.400	325.166	-3.266
271,245 19543 - 331,7 271,594 204,858 - 354,5 271,594 204,858 - 358,2 273,572 208,959 - 361,6 273,190 213,005 - 365,5 273,819 217,008 - 365,5 274,438 221,135 - 372,1		2300	40.313	306.269	269.895	192.779	-348.540	338.092	-3.332
271.904 204.898 -3.82 272.532 208.949 -361.6 273.190 213.005 -365.0 273.819 217.068 -365.5 274.438 221.135 -372.1		2500	40.425	307.764	271.245	200.853	-354.981	364.122	-3.458
272.552 208.949 –361.6 273.190 213.005 –365.0 273.819 217.068 –365.2 274.438 221.135 –372.1		2000	40.482	308.493	271.904	204.898	-358.286	377.226	-3.519
273,190 213,005 – 355,007 – 355,007 – 355,007 – 355,007 – 357,007 – 372,107		5700	40.538	309.210	272.552	208.949	-361.649	390.390	-3.578
274 438 221.135 – 202.7		000	40.094	303313	33.130	213.005	- 363.073	403.614	-3.635
		009	40 706	311.294	274 438	221.135	-372.113	410.896	-3.091
	_	PREVIOUS-	December 1	967 (1 atm)			[8:15]	PENT: December	r 1967 (1 har)
	-						3		(100)

Lithlum Oxide, Ion (LIO⁻)

 $S^{(298.15 \text{ K})} = [199.241 \pm 1.3] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

Lithium Oxide, Ion (LIO⁻)

CURRENT: December 1983 (1 bar)

PREVIOUS: June 1962 (1 atm)

Lithlum (Li₂)

Lithium (Li,)

IDEAL GAS

 $D_0^0 = 99.833 \pm 0.096 \text{ kJ·mol}^{-1} \text{ (natural abundance)}$ $S_0^0(298.15 \text{ K)} = 196.998 \pm 0.030 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

 $\Delta_{\rm f}H^{\circ}(0~{\rm K}) = 215.5 \pm 3.0~{\rm kJ \cdot mol^{-1}}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = 215.9 \pm 3.0 \text{ kJ} \cdot \text{mol}^{-1}$

M_r = 13.882 Lithium (Li₂)

	ω _ε ω _ε τ _ε 351.39 2.5779* 61.0 3.2	B _c 0.67257	10³a. 7.0173 117.351	10 ⁶ D _e 9.8478 ^e	r., Å Re	References
0 8346,45 351.39 8229.5 8346,45 61.0		0.67257	7.0173 ^b	9.8478	2 6730	
8229.5 8346.45 61.0		70070	117.351	F207 0C1		;(D),
		0.2020		3	4.234	2
11942.5 23250.4 339.0		0.69368	[7.65]	[11.618] ^d	2.632	2
14068.3 23250.4 255.47		0.4975	5.4	7.54	3.107	•
16614.5 23250.4 245.0		0.50134	[6.74]	[8.385]	3.096	2

Enthalpy of Formation

(d) These values of \(\alpha_e\) and \(D_e\) were approximated: equations III,118 and III,123.

(b) $-3.6071 \times 10^{-5} (v + 1/2)^2 - 4.2570 \times 10^{-7} (v + 1/2)^3$

(c) $+5.672 \times 10^{-8}$ (v + 1/2) $- 1.9002 \times 10^{-9}$ (v + 1/2).

We adopt the $\Delta_t H^0(Li_2, g_1 298.15 \text{ K})$ of 21.5 9 kJ·mol⁻¹ as recommended by NBS.¹² The value adopted for $\Delta_t H^0(Li_2, g_1 0 \text{ K})$ was obtained using the values of $H^0(298.15 \text{ K}) + H^0(0 \text{ K})$ for Li₂(g) and Li(cr), from JANAF and NBS.¹² respectively. This results in $\Delta_t H^0(Li_2, g_1 0 \text{ K}) = 215.474 \text{ kJ·mol}^{-1}$. Note that this adoption of the NBS value results in a minor inconsistency in the value of D_0^0 for the ground state. In the calculation of C_0^0 and S^0 described below, we used $D_0^0 = 99.846 \text{ kJ·mol}^{-1}$ (for Li₂) whereas the above procedure results in $D_0^0 = 100.125 \text{ kJ·mol}^{-1}$ at $D_0^0 = D_0^0 = D_0^0 = D_0^0 = D_0^0$. 6000 K

Heat Capacity and Entropy

levels above D° that owe their existence to rotational barriers. A detailed study of the effects of the quasi-bound levels on the thermodynamic The thermal functions were calculated using a direct summation technique Included in the calculation were the ground state plus the four lowest lying excited electronic states. Of these excited states, only the 12th been observed spectroscopically. All spectroscopic data for 7Li2 Calculation of the *Li2 and *Li1Li species were carried out by adjusting the spectroscopic constants for *Li2 using a standard reduced mass scaling routine. The summation was extended to the dissociation limit of each state, and thus did not include any of the so-called quasi-bound used in this calculation are those recommended by Stwalley. ¹ Separate calculations were performed for each of the three isotopic species properties of diatomic molecules has been recently performed by Mies and Julienne. "According to their approach, the metastable and "free" contribution to the Gibbs energy function for Ligg) at 6000 K is only ca. 4 J·K⁻¹·mol^{-1,13} Li, Li, and Li'Li and the results were combined according to the natural abundances of the atoms, 'Li: 92.3191%, 'Li: 7.6809%.

known to higher order than used here,3 the neglect of these data leads to small errors in the computed functions as follows: S'(6000 K) is -1-mol-1 larger than the nontruncated ro- vibrational constant calculation (based on a ground state calculation). The roxational levels less, only 0.5 J·K⁻¹ mol⁻¹ larger than the ground state contribution at 6000 K. The ground state and ¹∑* excited state rotational levels were even J weight = 0.667, odd J weight = 0.333 for the 6Li₂ species. Note also that although the Dunham coefficients for the ground state are were extrapolated to high J values according to the method of Khachkuruzov⁶ who proposed a simpler form of Wooley's method.⁷ Spluting of the rotational levels in the ½ and ¾I states due to rotational-electronic coupling was taken into account only insofar as the electronic The excited states contribute significantly to the heat capacity above 2000 K but the affect on the Gibbs energy function is considerably weighted in accordance with the nuclear spin-rotation interaction as follows: even J weight = 0.625, odd J weight = 0.375 for the TLi₂ species; degeneracy of these states was increased accordingly. The errors invoked by this approximation are much less than the other uncertainties. The adopted value of \$7(298.15 K) is only 0.013 J·K⁻¹·mol⁻¹ lower than that adopted by NBS.¹² 0.4 J.K

References

W. C. Stwalley, Director, Iowa Laser Facility and Professor of Chemistry and Physics, University of Iowa, personal communication, (1982). ²Y. C. Chan and W. C. Stwalley, to be published in J. Chem. Thermodyn., (1983). Pure Appl. Chem. 47, 75 (1976).

Herzberg, "Spectra of Diatomic Molecules," 2nd Ed., D. Van Nostrand Co., Inc., New York, Chapter V, (1950).
 M. Hessel and C. R. Vidal, J. Chem. Phys. 70, 4439 (1979).
 A. Khachkuntzov, Opt. Spectrosk. 30, 455 (1971).
 A. Khachkuntzov, Opt. Scott and E. G. Brickwedde, J. Res. Nat Bur. Stand. 41, 379 (1948).
 R. P. Huber and G. Herzberg, "Constants of Diatomic Molecules," Van Nostrand Reinhold Co., New York, (1979).
 R. K. Verma, M. E. Koch, and W. C. Stwalley, J. Chem. Phys., 78, 3614 (1983).
 M. L. Olson and D. D. Konowalow, Chem. Phys. 21, 393 (1977); 22, 29 (1977).

H. Mies and P. S. Julienne, J. Chem. Phys. 77, 6162 (1982).

M. Mies and P. S. Jultenne, U.S. Nat. Bur. Stand., personal communication, (1982) D. Wagman, et al., J. Phys. Chem. Ref. Data 11, Supp. 2 (1982). FF CO FF

Standard State Pressure = p° = 0.1 MPa -3.266 -3.300 -3.334 -3.365 -3.365 -3.547 -3.569 -3.610 -3.610 -49.192 -37.869 -30.340 -24.978 -20.972 -17.868 -11.890 -4.902 -3.975 -3.209 -2.568 -2.024 -1.557 -1.152 -1.240 -1.425 -1.590 -1.740 -1.877 -2117 -2222 -2321 -2412 -2497 -2576 -2650 -2720 -2.785 -2.847 -2.959 -3.059 -3.105 -3.149 -3.190 -3.229 -3.423 -3.451 -3.476 NFINITE - 105.955 -30.573 6.046 93.843 83.700 73.727 63.910 54.239 49.095 57 850 66.637 36.580 35,300 75 457 02.114 147.130 156.202 165.289 210 845 219 957 229.062 256.320 274.428 283.459 292.477 301 483 53.935 20.041 29.047 38.077 46.360 74.508 74.251 67.368 60.595 -116.423 -115.460 -114314 -113673 -113063 -111.475 -111.083 -110.789 -114.849 107.689 108.217 108.799 109.431 -113.762 -114.455 -115.102 -117.206 -117.336 -117.358 204,000 98.186 94310 88.658 86.734 10.107 -112.2% -115.689 -110.599 -110,640 84.777 -117.272 -112 484 -111.903 110,818 -116.634 k.I-mol ₽.H. H*-H*(T,) 53.292 56.926 66.507 64.042 67.539 71.009 71 125.490 130.332 135.328 140.472 145.755 179.640 185.510 103.608 107.686 111.907 116.278 120.805 151.165 156.691 162.317 168.028 173.808 191.400 197.295 203.181 114.875 114.875 120.659 126.388 22.729 26.608 30.494 34.375 38.238 42.071 Enthalpy Reference Temperature = T, = 298.15 K $-[G^{\bullet}-H^{\bullet}(T_{i})]T$ 245.131 246.366 247.560 248.717 249.840 260.683 261.577 262.460 263.333 264.196 265.049 265.894 266.729 267.555 268.373 218.539 220.992 223.316 225.520 227.612 238.209 241.145 242.525 243.853 250.933 251.997 253.037 254.053 255.049 256.026 256.986 257.931 258.861 258.861 269.181 269.980 270.770 271.551 272.323 273.085 273.838 274.582 275.316 276.041 213.216 229.599 231.490 233.290 235.006 236.644 196.998 04.225 J-K-1mol-1 300.208 301.521 302.820 304.102 305.364 306.604 307.820 310.170 266.851 276.412 281.763 284,355 288.253 289.565 290.884 292.211 293.543 294.879 294.877 97.553 313.475 196.998 212.118 22.933 242.557 246.261 249.638 252.731 260.602 264.915 170,371 280.457 47.640 49.201 50.713 52.149 53.485 38.714 38.859 38.744 38.438 38.133 35.569 34.814 34.653 35.350 35.970 36.765 37.728 44.483 54.702 55.781 56.711 57.483 58.092 58.537 36.103 37.274 37.902 40.103 42.948 8.487 37.155 16.607 14.547 ů 98.15

-840.103 -835.590 -831.036 -826.447

136.143 139.207 142.195 145.109 147.954

216.852 220.884 224.799 228.604 232.306

-84457;

6.981 5.901 5.901 3.227 2.486 1.805 1.179 0.660 0.064 0.434

-861.924 -857.673 -853.361 -848.993

119.502 123.024 126.443 129.766 132.997

208.397

22100 22200 22300 22400 22400 22400 32800 32800

CINOID <-->

-- CRYSTAL

131.649

181.370

99.914 100.542 102.287 103.143 103.988 104.821 105.642

843,000

2000

184.423 189,603 194.572

-297.541 -267.290 237.244 -207.396 -177.740 -148.270 -118.981 -89.867

-874.280 -870.230

137.363 147.461 157.646

112.127

-866.11

-385.961 -358.681 -328.002

-882.118 -878.247

107 691 117.473 127.363

100.127 104.262 108.260 109.938

-593,899

CURRENT March 1964

Standard State Pressure = p = 0.1 MPa

K-mol

Enthalpy Reference Temperature = T, = 298.15 K

M_r = 29.8814 Lithium Oxide (LI₂O)

J.K. mol.

 $H^{\bullet}-H^{\bullet}(T_t)$

 $S^{\bullet} - [G^{\bullet} - H^{*}(T_{i})]H$

ť

7,8

13.417 42.362 37.890 37.891 40.156 44.714

37.890

54.087

28.15

70,232

\$4,379 64,003 69,580

97.831 71.753 56.024

-598.748 -599.472 -606.172

-606.553 -606.464 -606.026

19.924 27.490 35.390 43.589 52.073

50.077 55.668 61.246 66.705 72.001

73.822 77.404 80.563 83.429 86.211

115.137

88.805 91.211 93.199 94.872 96.232

305.465 149.892 98.478

> 562.102 -561.875 -549.465 -536.272 -522.248 -508.198 -494.187 -480.247

598.730

log Kr

45.466 37.267 32.267 27.873 24.362 21.495 19.112 17.100 15.381 13.895 11.020 11.021 9.518

-452.666 -439.054 -425.574 -412.230 -399.026

601.621 -603.094

60.827

-598.066

69.826 79.049 88.455 98.013

77.118 82.055 86.818 91.413 95.847

147.625 154.595 161.189

167 434 173,364 179,017

97.320 98.332 99.454

-466.401

60433

S°(298.15 K) = 37.890 J·K⁻¹·mol⁻¹

CRYSTAL

Lithium Oxide (Li₂O)

Enthalpy of Formation

Fes. = 1843 K

The selected enthalpy of formation was calculated as follows:

ê

 $\Delta_t H^{\circ}(0 \text{ K}) = -592.39 \pm 2.1 \text{ kJ·mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = -598.73 \pm 2.1 \text{ kJ·mol}^{-1}$ Δ_{ftp}H° = [58.576] kJ·mol⁻¹ Source -31.74 ± 0.08 -121.572 ± 0.019 1,H°(298.15K) -143.1 ± 0.5 kcal mol⁻¹ -68,3174 * Reaction (D) is the sum of -(A) + 2(B) - (C). Li(cr) + 1/2 O₂(g) = LıOH(aq, ∞) (A) Li O(c₂r) + H O(₂) = 2 LiOH(aq, (C) $H_2(g) + 1/2 O_2(g) = H_2O(l)$ (D) $2 Li(cr) + 1/2 O_2(g) = Li_2O(cr)^*$ Reaction

Kolesov et al.¹ measured the enthalpy of the reaction of L₁/O with water at 20° in 5 experiments. The mean Δ,H° was – 31.41 ± 0.08 kcal mol⁻¹ This was brought to 298.15 K by Kolesov using enthalpy data of Johnston and Bauer⁴ for Li₂O, Osborne et al.³ for H₂O, Gucker and Schminke⁵ for C_p of LiOH(aq) and Rossini et al.³ for aqueous LiOH. In addition to the above, Beketov² and Forcrand³ have reported experimental enthalpies for LizO Rossini et al. and Johnston and Bauer have reported enthalpies of formation for LizO recalculated from older data. Fasolino seported a A.H. (298 15 K) of -141.1 ± 4.2 kcal mol 1. He measured the enthalpy of combustion of Li(cr) in O (g) in a Parr bomb.

Heat Capacity and Entropy

The low temperature C_ρ^a data of Johnston and Bauer* from [179-298 K] was joined graphically to the high temperature C_ρ^a data of Shomate and Cohen, ¹⁰ (425-1045 K) and Rodigina and Gomelskii, ¹¹ (370-1125 K). S^o (298.15 K) was reported by Johnston and Bauer using S^o (16 K) = 0.003 cal K⁻¹·mol⁻¹ (extrap.).

Fusion Data

The melting point of Li₂O is uncertain. The selected melting point, 1843 K, was measured by van Arkel et al. ¹² Brewer and Margrave¹³ reported the melting point 1700 K. They also stated that van Kooster and Jaeger¹⁴ had reported 1700 (1973 K) as the melting point. The heat of melting, [14] kcal-mol⁻¹, was estimated by Glassner.¹³

Sublimation Data

Li₂O(cr) vaporizes to Li₂O(g), Li₂O₂(g) and O₂(g), $^{16-20}$ The major species (0–1700 K) are reported to be Li₂O(g), Li₂O; and Li₂O₂(g) with lesser amounts of Li₂O₂ and Li₂O₂(g). Hildenbrand et al., 11 U-2298, have reported about equal amounts of Li₂O² and Li² (1300 to 1550 K) and about 1/30th of this amount of LiO². White et al., 17 calculated $\Delta_{ab}H^a$ from their mass spectra data. They made two different calculations (I) for Li₂O(cr) \rightarrow Li₂O(g), and (II) for Li₂O(g) \rightarrow 2 Li(g) + 1/2 O₂(g), and found. (a) 102.5 kcal·mol⁻¹ and (b) 99 0 kcal·mol⁻¹. Knudson-effusion data of White et al., corrected for dissociation gave 3rd law heats at 298 K of 101 9 kcal·mol-1 and a 2nd law heat of 94 kcal·mol-1. Recalculation of Hildenbrand's dissociation pressure with JANAF values give Li₂O pressures slightly different than those reported. The recalculated pressures give a 3rd law $\Delta_{nb}H'(298\ 15\ K)$ of 101.7 kcal·mol-1 for both cells. The corresponding 2nd law values They used a weighted average of (a) and (b) and obtained 101.6 kcal-mol⁻¹ at 0 K. The selected $\Delta_{acb}H^2(298~15~K)$ of 102.3 ± 3 kcal-mol⁻¹ are 85 and 95.5 kcal mol for cell 7 and 8. The 3rd law treatment of both sets of data show relatively large trends of AmH with T which was obtained in the same manner using their data and the present JANAF functions, i.e., (a) 104.2 kcal·mol⁻¹ and (b) 100.3 kcal·mol⁻¹ are probably too large to be only due to errors in the function.

by X-ray diffraction. A reasonable assumption from this is that Δμ² (2000 K) = 0 for 2LiA(O₁(cr) = Al₂O₃(cr) + Li₂O(g). From this Δμ° α Δ_{μω}μ² (298.15 K) for Li₂O of 50 kcal·mol⁻¹ was calculated. A vapor pressure study of the molecular species over the decomposing LIAlO₂ A sample of LiAlO₂ was melted 7 times in argon in an arc-image furnace, Prophet. ²¹ The sample decomposed on fusion and successive melting points approached that of Al.O., The residue was found to be 95% Al.O. and 5% LiAlsO. The sample and residue were characterized might help resolve the discrepancies in lithium oxide Aush" values.

References

V. P. Kolesov, S. M. Skuratov, and I. D. Zaikin, Russian J. Inorganic Chemistry 4, 558 (1959)

²S. R. Gunn and L. G. Green, J. Amer. Chem. Soc. 80, 4782 (1958).

Osborne, J. F. Stimson, and D. C. Ginnings, J. Res. Nat. Bur. Stand. A 23, 197 (1939). ³U. S. Nat. Bur Stand, Circ. 500, (1952).

⁴H. L. Johnston and T. W. Bauer, J. Amer. Chem. Soc. 73, 1119 (1951).

⁵N. S. Osborne, J. F. Stimson, and D. C. Ginnings, J. Res. Nat. Bur. Star

Lithium Oxide (Li₂O)

PREVIOUS December 1960

Li₂O₁(I)

					NIS	T-JANA	FT	HERM	OCHEN	IICAL	TABLES		1
Li ₂ O ₁ (I)	° = 0.1 MPa	bg Kı	91 407 90.810 66.711 52.170	Í	30.243 26.218 23.014 20.404 18.239 16.416		8230	6.104 6.104 3.610 3.610	2.284 1.699 1.158 0.658 0.192	-0.241 -0.645 -1.377 -1.377	-2022 -2316 -2593 -2856 -3.104		CURRENT: March 1964
	te Pressure = p°	•9 ~	-521.744 -521.549 -510.857 -499.380	> LIQUID TRANSITION -474.941	-463.180 -451.741 -440.585 -419.010 -408.547		-299.352 -272.280	-245.407 -218.722 -192.218 -165.884	-113.696 -87.827 -62.099 -36.506	14.299 39.523 64.634 89.638	139.342 164.051 188.672 213.207 237.660		CURREN
	l is l	ν.Η.	- 553.247 - 553.265 - 553.999 - 560.704	S	-555.924 -553.368 -550.829 -545.789 -543.284	- 540.781 - 538.275 - 535.766 - 823.725 - 819.702	CK131AL -815.694 -811.701	-807.725 -803.768 -799.832 -795.919	-784.350 -784.350 -780.559 -776.807 -773.096	-769.429 -765.809 -762.239 -758.722	-751.859 -748.518 -745.240 -742.029 -738.888		
		H*-H*(T,)	0. 0.100 6.053 12.743	19.925 19.925 29.966	40.008 50.049 60.091 70.133 80.174	100257 110299 120341 130,382 140,424	150.465	170.549 180.590 190.632 200.673	220.757 230.798 240.840 250.881 260.923	270.965 281.006 291.048 301.089	321.173 331.214 341.256 351.297 361.339		,
	Enthalpy Reference Temperature = T, = 298.15 K J·K-'mol'	-[G*-H*(T,)]/T	55.083 55.084 57.344 61.896	67.256 67.256 73.134	79.342 85.569 91.668 97.573 103.255	113.934 118.942 123.742 128.347 132.769	137.019	145.048 148.847 152.513 156.056 159.483	162.801 166.017 169.135 172.162 175.103	177.962 180.744 183.452 186.090	191.171 193.619 196.011 198.347 200.631		
LI ₂ O)	Temperature	ي د	55.083 55.419 72.477 87.383		129.352 141.179 151.759 161.330 170.067								0961
$M_r = 29.8814$ Lithium Oxide (Li ₂ O)	y Reference	ប	15 54.087 0 54.379 0 64.003 0 69.580		100.416 100.416 100.416 100.416								PREVIOUS December 1960
Lithium	<u></u>		28. 58. 58. 58. 58. 58. 58. 58. 58. 58. 5	9 8 8 1 8 8 8	8888	50 25 25	1900	22222	32222	3300	3600 3700 3800 3900 4000	T.,	PREVIOU
M, = 29.8	$\Delta_t H^o(298.15 \text{ K}) = [-553.247] \text{ kJ·mol}^{-1}$ $\Delta_{hu} H^o = [58.576] \text{ kJ·mol}^{-1}$	nthalpy of fusion, $\Delta_{\mathrm{fas}}H^{lpha}$, and the difference in enth	compounds and from Kopp's rule. $S^{o}(Li_{2}O, I, 298.)$), and Li ₂ O ₂ (g). Thus a boiling point becomes alugacity of Li ₂ O(g) reaches one atm. Brewer' estin								
Lithium Oxide (Li ₂ O)	$S^{\circ}(298.15 \text{ K}) = [55.083] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ $T_{\text{ta}} = 1843 \text{ K}$	Enthalpy of Formation $\Delta_H^{*}(L_1^2Q, cr, 298.15 \text{ K})$ by adding the enthalpy of fusion, $\Delta_{los}H^{*}$, and the difference in enthalpy, $H^{*}(1843 \text{ K}) \rightarrow H^{*}(298.15 \text{ K})$, between the crystal and lumid.	Heat Capacity and Entropy The heat capacity was estimated at 8 cal·K ⁻¹ ·mol ⁻¹ from comparisons with similar compounds and from Kopp's rule. S'(Li ₂ O, 1, 298.15 K) is calculated in a manner analogous to that used for the enthalpy of formation.	Fusion Data Refer to the crystal table for details.	Vaporization Data The vapor over Li ₂ O(cr) at 1700 K is composed of Li ₂ O(g), Li(g), O ₂ (g), LiO(g), and Li ₂ O ₂ (g). Thus a boiling point becomes almost meaningless. The value, T _{4p} = 2836 K, listed above is the temperature at which the fugacity of Li ₂ O(g) reaches one atm. Brewer' estimated a boiling point of 2600 K.	Reference ¹L Brewer, Chem. Rev. 52, (1953).							

١	
	J
-	=
-	÷
L	ı
_	9
_	1

Lithium Oxide (Li₂O)

Enthalpy Re	eference T	emperature	Enthalpy Reference Temperature = T, = 298.15 F	×	Standard State Pressure		p° = 0.1 MPa
7.TK	ប	S - [G	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_i)$	A.H.	$\Delta_i G$	log Kr
°88	0.	3.632	INFINITE 73.417	-7.248 -6.979	-592.392	-592.392	INFINITE 305.465
298 15	54,087	37.890	37.890	-4336	-597.282	-573919 -562.102	98.478
888	54,379 64,003	38.226 55.315	37.891 40.156	0.100 6.064	-598.748	-561.875	97.831
8 8	73.822	83.284	50.077	19.924	-606.553	-522.248	45.466
<u>6</u> 8	77.404 80.563	94.940	55.668	35.390	-606.464	-508.198	37.922
86	83.429	115.137	66.705	43.589 52.073	-605.311	-480.247	24.362
82	88.805	132.415	77.118	60.827	-603.094	-452.666	21 495
88	93 199	147.625	86.818	79.049	-599.934	-425.574	12 100
1200	94.812	154,595	91.413 95.847	88.455 98.013	- 598.066 - 596.045	-412.230 -399.026	13.895
8 5 8 8 8 8	97,320 98,332 99,454	167.434	100.127	107.691	-593.899 -882.118 -878.247	-385.961 -358.681 -328.002	12.600
1843 000	-	181.370	109.938	131.649		rat <> Liquid Transtition	
1900 2000		216.212 221.362	113.081	195.949	-815.694	-299.352	8.230
2200	100.416	226.262	123.389	216.032	-807.725	-245.407	6.104
7300 7400 7500	100.416	235.397	132.738	236.115	-799.832 -795.919	-192.218 -165.884	4.365
962	100,416	247 708	145.308	266.198	- 782,033	-139,712	2.919
2700	100.416	255.150	149.171	276.282	-784.350	128.18-	669:1
3000 3000	100.416	258.673 262.077	156.478	296.365 306.406	-776.807	-36.506	0.192
3100 0055	100.416	265.370	163.290	316.448	-769.429	14.299	-0.241
3300	100.416	271.648	69,691	336531	-762.239	64.634	-1.023
3200	100.416	277.557	175.667	356.614	-755.261	114,539	-1.709
3780 3700	100.416	280.386	178.537	366.656 376.698	-751.859	139,342	-2.022
3800	100.416	285.815	184.041	386.739	-745.240	188.672	-2.593
4000	100 416	290.965	189.260	406.822	-738,888	237.660	-3.104
ppEVICTO.						Ę	Ammunit. Mant 1966
						1	

 $M_r = 29.8814$ Lithium Oxide (Li₂O)

Lithium Oxide (Li₂O)

CRYSTAL-LIQUID

Refer to the individual tables for details.

J. Phys. Chem. Ref. Data, Monograph 9

23.25.83 22.47 22.28.00 22.28.00 22.28.00 22.28.00 23.28.

-165.700 -150.519 -135.343 -120.170 -104.999

-211.278 -196.078 -180.886

484.930 484.792 484.664 -484.547 -484.358 -484.292 -484.249

238,076

\$2,085 \$8,182 \$4,298 70,429 76,573 82,778 88,891 95,062 101,239

-89.830 -74.660 -59.490

484.232 484.245 484.371 484.371

107.421 113.608 119.800 125.995 132.193 138.394 144.598 150.804 157.012

62.060 77.296 92.547 107.813 123.094

484.655 484.864 485.121 485.430 485.794

169.433 175.646 181.861 188.076 194.293

486.215 486.697 487.241 487.852 488.531

∼	
Ñ	
Ħ	
έ	
2	

Lithium Oxide (Li₂O)

Oxide (Li ₂ O)	
ithium Oxide	
M _r = 29.8814 Lithium	

Li₂O₁(g)

Standard State Pressure = $p^* = 0.1$ MPa

C-mod

 $H^{\bullet}-H^{\bullet}(T_{\bullet})$

log K,

90.220 47.106 32.818

-165.840 -172.721 -180.364 -183.975 -187.325 -187.451

166.942

190.808 194.056 197.198 199.618

-212.139 -215.863 -219.417

-180.036 -181.615 -183.147 -184.646

16.344 22.130 28.012 33.964 39.968 46.012

-178344

7.945

222.822 226.095 229.247

-186.120 -187.573 -189.012 -190.435 -191.840 -193.228 -485.074

$M_r = 29.8814$ Lithium Oxide (Li ₂ O)	
IDEAL GAS	

L	1 22	'														
Enthalpy Reference Temperature = T, = 29&15 K	nol-' -[G*-H*(T,)]/T	INFINITE 270.575 233.532	229.108	229.109 229.723 231.107	232,923	239.428 243.971 248.423 252.710 256.805	260.705 264.414 267.942 271.303 274.507	277.567 280.493 283.295 285.983 288.565	291 047 293.439 295.744 297.970 300.120	302.201 304.216 306.170 308.065 309.905	311.693 313.432 315.124 316.772 318.379	319.945 321.474 322.966 324.424 325.848	327.241 328.604 329.938 331.245 332.524	333.778 335.008 336.214 337.397 338.558	339.698 340.818 342.999	345.107 346.135 347.146 348.141 349.121
mperature =	J·K *mol*.	0. I 179 969 210.079		229.416 237.236 244.235	250.578 256.378	266.669 275.584 283.438 290.448	302.533 307.818 312.698 317.230	325.425 329.156 332.679 336.016 339.184	342.200 345.079 347.831 350.467	355.430 357.771 360.028 362.207 364.312	366.349 368.321 370.233 372.089 373.891	375.643 377.346 379.005 380.621 382.196	385.232 385.232 386.696 388.127 389.526	390.894 392.233 393.544 394.827 396.085	397.318 398.528 399.714 400.878	403.143 404.245 405.329 406.394 407.441
eference Te	೮	0 41.106 45.797	49.758	49 829 51.633 53.190	55.590 55.590	57.243 58.393 59.211 59.808 60.254	60.595 60.861 61.072 61.242 61.380	61.495 61.591 61.740 61.740	61.850 61.895 61.933 61.968 61.998	62.025 62.049 62.070 62.089 62.107	22 22 22 22 22 22 22 22 22 22 22 22 22	62.20 62.20 62.20 62.20 62.20	62223 62229 62235 62241 62246	62.25 62.25 62.25 62.263	62.271 62.274 62.277 62.280	62.285 62.288 62.290 62.293 62.293
Enthalpy R	7/K	0 00 00	298.15	300 350 400	2 8	86888 <u>8</u>	1200 1200 1400 1400	2000 2000 2000 2000	2200 2300 2400 2500	2600 2700 2800 3000	3200 3200 3400 3500	3,800 3,800 3,800 4,000 4,000	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4400 4400 5000 5000	\$100 \$300 \$400	6000000 6000000
	S° (298.15 K) = 229.108 J·K ⁻¹ ·mol ⁻¹ $\Delta_1 H$ (298.15 K) = -166.94 ± 1.5 kJ·mol ⁻¹	Vibrational Frequencies and Degeneracies ν , cm ⁻¹	[1/60](1)	[140](2) 987 (1)	Ground State Quantum Weight: [1]	Point Group: D _m Bond Distance: Li-O = [1.59] Å Bond Angle: Li-O-Li = 180° Rotational Constant: B _i = 0.480342 cm ⁻¹	Enthalpy of Formation The enthalpy of formation was calculated from the enthalpy of formation of the crystal and the enthalpy of sublimation.	Heat Capacity and Entropy White et al. 1 made an estimate of the bond distance Li-O = 1.59 Å based on an analysis of their vibrational spectra. They found that Li ₂ O was a linear molecule. Buchler and Stauffer have shown from electric deflection experiments that Li ₂ O is very probably linear. They also report from the results of an effision experiment evidence that the electron diffraction data and Li-O bond distance. 1.82 Å reported by	Akshin and Rambidi' are for Mo-O in Li ₂ MoO ₄ rather than for Li-O in Li ₂ O. Buchler and Stauffer ² estimate an Li-O distance of 1.55 Å. White, et al., have estimated the vibrational frequencies $v_1 = [760] \text{cm}^{-1}$ and $v_2 = [140] \text{cm}^{-1}$ and assigned $v_3 = 987 \text{cm}^{-1}$ from their infrared matrix spectra.	References D. White, K. S. Seshadri, D F Dever, D. E. Mann, and M. J. Linevsky, J. Chem. Phys. 39, 2463 (1963). A. Buchler and J. L. Stauffer, J. Chem. Phys. 39, 2299 (1963). P A. Akixhin and N. G Rambidi, Dokl. Akad. Nauk. SSSR 118, 973 (1958) [English Translation, Proc. Acad. Sci. USSR, Phys. Chem. Sect.	118, 83 (1958)].					

Enthalpy of Formation

Heat Capacity and Entropy

References

CURRENT: March 1964 (1 bar) 345.107 346.135 347.146 348.141 349.121 PREVIOUS: March 1964 (1 atm)

Lithium Oxide (Li₂O)

-510.701

215.201 230.634 246.094 261.583 277.100

-494.125 -495.345 -496.653 -498.054 -499.550

293.862 300.090 306.317

-489.281 -490.105 -491.007 -491.947

200.511 206.730 212.549 213.170 221.613 231.633 256.507 266.50

1510)					MALCOLM W. CHASE	
Li ₂ O ₂ (cr)	= p = 0.1 MPa	% K.	100.029 99.345 71.796	55.194 44.064 36.121 30.176 25.564	11.887 16.409 14.320 12.541 11.011 9.684 8.082 6.566	4.024	CURRENT: September 1963
	18	94	-570.954 -570.571 -549.799	- 528.332 - 506.147 - 484.063 - 462.154 - 440.462	-419.017 -397.844 -376.961 -356.385 -336.129 -316.205 -26.208	- 189.947	CURRENI: 3
		. PαHP	-632.621 -632.635 -633.098	-639.337 -639.045 -638.104 -636.605 -634.617	-632.144 -629.184 -625.740 -621.818 -617.419 -617.190 -891.841 -884.052	- 873.872 - 867.160	
		нн(т.	0. 0131 7.841	16.527 25.944 35.991 46.618 57.794	99.502 81.733 94.478 107.727 121.472 135.706 150.423 181.285	197.417	
	Enthalpy Reference Temperature = T, = 298.15 K	n('1).uol-	56.484 56.485 59.419	65.316 72.280 79.580 86.905 94.120	101.184 108.017 114.674 121.141 127.426 133.540 139.492 145.295	156.488	
e (Li ₂ O ₂)	Temperature	2		98.369 115.520 130.995 145.178 158.336			
Peroxid	Reference	5	70.626 70.919 82.676			163.628	PREVIOUS: June 1963
Lithium Peroxide (Li ₂ O ₂)	Enthalpy	0002	298.15 300 400	8 8888	1200 1200 1200 1200 1200 1200 1200 1200	2000	rkeviou
$M_{\rm r} = 45.8808$	$\Delta_t H^{\circ}(0 \text{ K}) = \text{Unknown}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = [632.62 \pm 8.4] \text{ kJ·mol}^{-1}$	ns of Li ₂ O ₂ (cr) with HCl(aq) and LiOH(aq) with	spectively.	K, was reported by ³ obtained from Centnerzwer	aration of Air into O ₂ and N ₂ Components," C.", (June 1949).		
CRYSTAL	i-mol1	nthalpy of Formation $\Delta_d H^*$ (298.15 K) was reported by Forcrand, based on the measured enthalpres of the reactions of Li ₂ O ₂ (cr) with HCl(aq) and LiOH(aq) with O_2 (aq).	sat Capacity and Entropy Both C_p^p and S^p (298.15 K) were estimated by comparison with those of the Na ₂ O ₂ (cr), respectively.	ccomposition Data $T_{\rm cm}$ was reported to be about 300°C by Wiederhom et. al. 2 The value adopted, $T_{\rm cm}$ = 468 K, w d Blumenthal.	References R. de Forctand, Compt Rend. 130, 1465 (1900). R. de Forctand, Compt Rend. 130, 1465 (1900). R. de Forctand, Compt Rend. 130, 1465 (1900). R. M. Wiederhorn, N. F. Surprenant, and A. J. Lefflet, "Research on New Methods of Separation of Air into O ₂ and N ₂ Components," C 43825, First Quarterly Progress Report, September 1961, Arthur D. Little, Inc. Bulletin of the National Research Council, No. 118, "Data on Chemicals for Ceramic Use", (June 1949). M. Centnerzwer and M. Blementhal, Bull. Intern. Acad. Polonaise, Classe. Sci. Math. Nat., A 499 (1933).		
Lithium Peroxide (Li ₂ O ₂)	$S^{\circ}(298 \ 15 \ \text{K}) = [56.484 \pm 4.2] \ \text{J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$	Enthalpy of Formation $\Delta_t H^o(298.15 \text{ K})$ was reported by F $H_2O_2(aq)$.	Heat Capacity and Entropy Both C _p and S'(298.15 K) were	Decomposition Data T _{dem} was reported to be about 300 and Blumenthal.	References 'R. de Forcrand, Compt Rend. 130 'N. M. Wiederhom, N. F. Surprena 63825, First Quarterly Progress Re 'Bulletin of the National Research ('M. Centnerzwer and M. Blementh		

Lithium Peroxide (Li₂O₂)

54231

341.882 345.597 345.59

465.244 467.799 470.278 472.686

83.029 83.036 83.048 83.048 83.053 83.063 83.063 83.067 83.071

462.608

-551.162 -551.038 -550.959 -550.926 -550.943

451.140 454 158 457.071 459.886

82.980 82.992 83.003 83.012

448.008

-230.496 -214.126 -194.157 -174.209 -154.280

-262.236 -553.809 -553.028 -553.028

01135 7.656 7.657

-134.369 -114.472 -94.589 -74.717 -54.854

-552.343 -552.041 -551.769 -551.531

407.775 412.791 422.001 426.250 436.250 434.151 437.837 441.367

82.893 82.915 82.935 82.952 82.967

82.713 82.762 82.803 82.838 82.838

0.703 -0.038 -0.044 -0.742 -0.743 -1.107 -1.

-560 069 -561.316 -562.659 -564.100 -565.643

354.409 362.719 371.028 379.338

497.177 498.926 500.639 502.318

83.092 83.094 83.096 83.098

83.078 83.081 83.084 83.087

567.281 569.038 570.907

395.958 404.268 412.578 420.889 429.199

426.325 427.834 429.316 430.772 432.609 434.993 436.334 437.693 436.334 437.693

-551.013 -551.139 -551.139 -551.139 -551.136 -551.874 -552.247 -552.688 -552.688 -552.688 -552.688 -553.785 -555.004 -556.004 -55

229.810 226.417 226.417 254.722 263.027 279.638 287.948 312.867 321.175 331.175 331.773 34.509

475.026 477.301 479.517 481.674 483.778

CURRENT March 1964 (1 bar)

((LIO) ₂)
Oxide (
Lithium

PREVIOUS: March 1964 (1 atm)

Li ₂ O ₂ (g)	Standard State Pressure = $p^* = 0.1 \text{ MPa}$	
$M_t = 45.8808$ Lithium Oxide ((LIO) ₂)	$\Delta_i H'(0 \text{ K}) = [-240.60 \pm 25.1] \text{ kJ·mol}^{-1}$ Enthalpy Reference Temperature = $T_i = 298.15 \text{ K}$ Standard	1.1. 1.1.
M; = 45.8808 Li	$\Delta_l H^{\circ}(0 \text{ K}) = [-240.60 \pm 25.1] \text{ kJ·mol}^{-1}$	
IDEAL GAS		
Lithium Oxide ((LiO) ₂)		100 1000 0000 0000

то!-'		Δ'n	$\Delta_l H^{\circ}(298.15 \text{ K}) = [-242.67 \pm 25.1]$
Vibrational Freq v, cm ⁻¹	uencies and	Degeneracies v, cm ⁻¹	
[400](1)	8	[270](1)	
(1)[006]	<u>26</u>	530 (1)	
Ground State Quantum Weight: [1]	ıt: [1]		0=4
Point Group: [D ₂₆] Bond Distance: Li-O = [1.90] Å	۰۷		
Bond Angle: O-Li-O = [116] ^T Product of the Moments of Inertia: $I_A I_B I_C = [5.200811 \times 10^{-115}] g^3 cm^6$	ertia: IABIc = [5	.200811 × 10 ⁻¹¹⁵] g³·cm²

NEINITE 126,926 63.884 51.233 43.050 42.788 36.748 32.212 28.678 25.780

-245.727

-242.672 242.683

273.562 74.012

72.730 75.233 75.223 76.893 78.098 78.993

245 746 246 233 246 674 247.062 246.774 245.925

273.563 274.460 276.478 279.117 282.098

285.431 295.591 304.720 312.998

288.491 294.975 301.288 307.332 313.078

327.516 339.940 350.784 360.399

80.201 80.955 81 454 81.801 82.052

-242.404

-256.799 -257.868 -258.952 -260.044 -261.138

376.861 384.023 390.622 396.739 402.439

82.239 82.381 82.493 82.582 82.654

log Kr

H*-H*(T,)

 $-[G^{\bullet}-H^{\circ}(T_{i})]T$

Enthalpy of Formation

−58 kcal·mol $^{-1}$, was calculated from an equilibrium constant for the reaction 1/2 O₂(g) + Li₂O₂(g) → Li₂O₂(g) and the current JANAF functions. The equilibrium constant, 0.39, was estimated by White et al., from their mass spectrometric data. The enthalpy of formation,

model calculations of Berkowitz' as a guide. They proposed a planar rhombic structure of D_{2a} symmetry, similar to the alkali halide dimers, for the previously undetected Li₂O₂ molecule, and estimated the angle, 116°, and bond distance, 1.90 Å, from their matrix spectra. The principal moments calculated from these molecular constants are $I_A = 2.3369 \times 10^{-29}$, $I_B = 13.7955 \times 10^{-39}$, and $I_C = 16.1324 \times 10^{-39}$ White, et al., from their spectral data have assigned two observed frequencies and estimated the remaining frequencies using the tonic Heat Capacity and Entropy g.cm².

References

White, K. S. Seshadri, D. F. Dever, and D. E. Mann, and M. J. Linevsky, J. Chem. Phys. 39, 2463 (1963).
 Berkowitz, J. Chem. Phys. 29, 1386 (1958); 32, 1519 (1960).

Standard State Pressure = p = 0.1 MPa

 $H^{\bullet}-H^{\bullet}(T_{\epsilon})$

 $S^* - [G^* - H^*(T_t)]T$

J.K-'mol-'

INFINITE 844.463 414.816 273.085 271.303 199.483 156.315

1638.567 1616.673 1588.278 -1558.739

-1558.176 -1527.594 -1496.277

-1649.524 -1650.237 -1656.617

80.297 84.499 92.946

80.295 80.919 112.628 140.155

101,010 118,826 127,809 100.567

-1649,500

ď

80.295

28.15

127.470 106.870 91.427 79.423 69.828

-1464.203 -1432.175 -1400.249 -1368.455 -1336.808

-1656.584 -1656.061 -1655.158 -1653.958 -1652.487

102.850 113.129 123.338 133.288 142.900

134.306 139.649 144.432 148.565 152.302

300 400 500 600 700 800 900 1100 1200 1400 1400

164.049

0.186 11.252 23.604 36.720 64.632 79.285 94.331 199.738 125.434 161.431 167.694

61.985 55.456 49.938 45.215

-- CRYSTAL <--> LIQUID ----1305,321 -1274,001 -1242,850 -1211,870

-1646.703 -1644.375

152.151 161.040 169.578 177.783

265.571 278.371 290.422 298.915 301.821 312.649

506.122

155.576 158.574 161.293 165.856 166.523 69.034 71.502 76.188 178.406

1650.773 1648.837 -1181.064

-1641.853

174217

185.676 193.276 200.604 207.678 214.517 221.135

500

183.653

41.128 33.558 33.558 30.587 27.579 22.442 20.233 18.222 16.384 14.698

-802.241 -852.168 -802.351 -752.786 -703.467

-1950.940 -1945.238

190.996 208.023 225.293 242.798 260.528 278.476 296.633 314.991 333.543

227.548

360.155

80.537 84.565 86.461 88.280

-1150.432 -1105.177 -1054.038 -1003.172 -952.574

- 1639.140 - 1976.890 - 1972.074 - 1967.061 - 1961.862

M_r = 89.9657 Lithium Silicate (Li₂SiO₃)

Enthalpy Reference Temperature = T, = 298.15 K

 $\Delta_t H^{\circ}(0 \text{ K}) = -1638.57 \pm 4.2 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = -1649.50 \pm 4.2 \text{ kJ} \cdot \text{mol}^{-1}$ Δ_{fus}H° = 28.033 ± 2.1 kJ·mol⁻¹

changes, $\Delta H'(298.15 \text{ K})$, for the reaction Li₂O(cr) + SiO₂(quartz) = Li₂SiO₃(cr) are derived as - 33.08 and - 34.17 kcal mol⁻¹. Adopting the weighted average $\Delta H'(298.15 \text{ K}) = -33.44$ kcal·mol⁻¹ with $\Delta H'(Li₂O, cr, 298.15 \text{ K}) = -143.1$ kcal·mol⁻¹ and $\Delta H''(SiO_3, quartz, 298.15 \text{ K}) = -217.7$ kcal·mol⁻¹, we obtain $\Delta H''(298.15 \text{ K}) = -394.24$ kcal·mol⁻¹ for Li₂SiO₃(cr). This $\Delta H''(Li₂SiO_3, cr, 298.15 \text{ K})$ value The enthalpies of solution of LiCl(cr), Li₂SO₄(cr), SiO₄(quartz) and Li₂SO₄(cr) in 20 percent hydrofluoric acid at 74.7°C were measured by Kracek. The authors derived two values of $\Delta_{ab}H^{\circ}$ of Li₂O(cr) from those of LiCI(cr) and Li₂SO₄(cr), presumably employing auxiliary data nally -60.86), using recent AH"(298.15 K) values for LiCl(cr), Li,SO,(cr), HCl(aq), H,SO,(aq) and Li,O(cr). The corresponding enthalpy from.² We recalculate $\Delta_{ab}H^o$ of Li₂O(cr) as -58.74 (chloride scheme, originally -59.36) and -59.83 kcal moi⁻¹ (sulfate scheme, originally -59.36). is independent of future changes in AH (298.15 K) of Li,O(cr) but the values of Auth and AH are not independent. **Enthalpy of Formation**

The enthalpies of solution of LiOH(cr) and Li2SiO3(cr) in 20 percent HF(aq) at 50°C were measured by Hattonet al. 2 The Li2SiO3 sample was prepared from lubium carbonate and silica by fusion under vacuum at 1500 K. Analysis gave 66 74 percent SiO₂and 15.12 percent Li. The corresponding calculated values are 66.79 and 15.43. Also present were 0.5 percent K and 0.06 percent Na. Corrections were made for impurities in the enthalpy of formation measurements. The results are given as follows:

	Δ _t H°(298.15 K) kcal·mol ⁻¹
2 LiOH(cr, 25°C) + 2HF(sol, 50°C) + 2 LiF(sol, 50°C) + 2 H ₂ O(sol, 50°C) SiO ₂ (cr, 25°C) + 6 HF(sol, 50°C) \rightarrow H ₂ SiF ₆ (sol, 50°C) + 2 H ₂ O(sol, 50°C) 3 H ₂ O(sol, 50°C) + 2 LiF(sol, 50°C) + H ₂ SiF ₆ (sol, 50°C) \rightarrow Li ₂ SiO ₃ (cr, 25°C) + 8 HF(sol, 50°C) H ₂ O(sol, 50°C) \rightarrow H ₂ O(1, 25°C)	-38.728 -32.810 +58.850 -0.450
$2 \operatorname{LiOH}(\operatorname{cr,} 25 ^{\circ}\text{C}) + \operatorname{SiO_2}(\operatorname{cr,} 25 ^{\circ}\text{C}) \rightarrow \operatorname{Li_2SO_3}(\operatorname{cr,} 25 ^{\circ}\text{C}) + \operatorname{H_2O(1,} 25 ^{\circ}\text{C})$	-13.14 ± 0.70

The $\Delta_t H^o$ (298 15 K) for the second reaction was determined by Torgeon and Sahama. Based on the calculated enthalpy change for the overall reaction, $\Delta_t H^o$ (298.15 K) = -13.14 kcal·mol⁻¹ and $\Delta_t H^o$ (298.15 K) = -115.84, -217.7 and -68.33 kcal·mol⁻¹ for LiOH(cr), $510\chi(10\text{ w quartz})$, and $H_2O(1)$, respectively, we derived $\Delta_1H^0(\text{Li}_3\text{SO})$, cr, 298.15 K) = -394.21 ± 1.0 kcal·mol⁻¹, which is in agreement with the adopted value.

781 K. The enthalpy change $\Delta H'(298.15 \, \text{K})$ of the reaction $\text{Li}_2\text{CO}_3(\text{cr}) + \text{SiO}_4(\text{cr}) \rightarrow \text{Li}_3\text{SiO}_4(\text{cr}) + \text{CO}_4(g)$ is evaluated by the second and third law methods to be 30.94 and 29.47 kcal-mol⁻¹, respectively. Using $\Delta_4 H'(298.15 \, \text{K}) = -290.64$, -217.7 and -94.05 kcal-mol⁻¹ for $\text{Li}_2\text{CO}_3(\text{cr})$, SiO₂(cr), and CO₂(g), respectively, and 3rd law $\Delta_4 H'(298.15 \, \text{K})$, we obtain $\Delta_4 H'(\text{Li}_2\text{SiO}_3, \text{ cr}, 298.15 \, \text{K}) = -384.82 \pm 5$ Kroger and Fingas measured the equilibrium pressure of CO2 over a mixture of L12CO3(cr), SiO2(quartz) and Li5SiO3(cr) from 585 to kcal·mol-', which is not used.

Heat Capacity and Entropy

The low temperature heat capacities, 25-340 K, were measured by Hattonet al. with an adiabatic vacuum calorimeter, using a nickel plated copper sample container. During the filling and sealing of the calorimeter, the compound was handled in an anhydrous, CO, free atmosphere so as to avoid contamination. The purity of the sample is not well established. The high temperature heat capacities are estimated by summation of the C,'s of the constituent oxides, Li,O and SiOs, and a subsequent correction based upon a comparison of the heat capacities of Na₂SiO₃(cr) and its constituent oxides. These estimated C^o_p values are plotted and the resulting curve is joined smoothly with the low temperature C, curve at 298 K. The entropy, S'(298.15 K), is derived using the measured low temperature heat capacities, based on S°(25 K) = 0.023 cal·K⁻¹·mol⁻¹.

Fusion Data

Refer to the liquid table for details.

References

F. C. Kracek, Ann. Rept. Director of the Geophysical Laboratory, No. 1215, 69 (1953).

²U. S. Nat. Bur. Stand. Circ. 500, (1952).

³W. E. Hatton, D. L. Hildenbrand, G. C. Sinke and D. R. Stull, unpublished work, The Dow Chemical Co., Midland, Michigan, (1959).
⁴D. R. Torgeson and T. G. Salanna, J. Amer. Chem. Soc. 70, 2156 (1948).

⁵C. Kroger and E. Fingas, Z. anorg. allg. Chem. 213, 12 (1933).

Lithium Silicate (Li₂SiO₃)

PREVIOUS: March 1964

CURRENT: June 1967

Li₂O₃Si₄(cr)

 $S^{\circ}(298.15 \text{ K}) = 80.295 \pm 1.3 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

Fas = 1474 ± 1 K

Lithium Silicate (Li₂SiO₃)

CURRENT: June 1967

PREVIOUS: March 1964

-	-	
2:0	į	
0.000		

Lithium

LIQUID

Li₂O₃Si₁(I)

M_r = 89.9657 Lithium Silicate (Li₂SiO₃)

 $S^{\circ}(298.15 \text{ K}) = [96.064] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ Flus = 1474 ± 1 K

Enthalpy of Formation

 $\Delta_H^a(L_1,S_1O_3,1,298.15 \text{ K})$ is calculated from $\Delta_H^a(L_1,S_1O_3,\alpha_1,298.15 \text{ K})$ by adding the enthalpy of fusion, $\Delta_{nu}H^a$, and the difference in

enthalpy, H?(1474 K)-H°(298.15 K), between the crystal and liquid.

Tschemobaeff' measured the enthalpy of reaction between SiO₂ and Li₂CO₃ in a bomb calonimeter, using carbon as the auxiliary combustible material. Based on the derived A₂H°(298.15 K) = 24.99 kcal mol⁻¹ for the reaction Li₂CO₃(cr) + SiO₂(cr) → Li₂SiO₃(g) + CO₂(g), the enthalpy of formation for Li₂SiO₃(g) is evaluated as -389 30 kcal-mol⁻¹, which is in fair agreement with the adopted

Heat Capacity and Entropy

The hear capacity is estimated by comparison with those for Na₂SiO₃(I), Na₂O(I) and Li₂O(I) A glass transition is assumed at 1000 K; i.e., the heat capacities below 1000 K are taken to be the same as those for Li₂SiO₁(cr).

S'(Li₂SiO₃, I, 298.15 K) is calculated in a manner analogous to that used for the enthalpy of formation.

Fusion Data

The melting point has been reported as 1474 ± 1 and 1461 K by Fracek² and Van Klooster,³ respectively. The value reported by Kracek

E(Li,SiO,)/E(NaCl) = 0.261/0.402, where e = heat of fusion in keal-g and heat of fusion of NaCl(cr), the value DusH" = 6.7 keal-mol is Schwartz and Sturm* used a cooling-curve method to compare the heats of fusion of Li,SiO₃(cr) and NaCl(cr) From the reported ratio, is adopted.

30). 135 (1911). 1914).

References	² F. C. Kracek, J. Phys. Chem. 34 , 2641 (1931).	³ H. S. Van Klooster, Z. Anorg. Chem. 69, 13 ⁴ R. Schwarz and H. Sturm, Ber. 47, 1730 (19)
------------	--	---

Li,O₂Si₃(cr,I)

_
-
ပ

ဟွ
•
0
~

<u>(</u> 2
te (Li ₂ SiC
m Silica
Lithiun

_
SiO
Ę
Silicate
Lithium
89.9657
M.=

Ω
=
≂
\simeq
Ļ
۲.
7
₽
Ω
>
α
()

Lithium Silicate (Li₂SiO₃)

0 to 1474 K crystal above 1474 K liquid	Refer to the individual tables for details.
--	---

p* = 0.1 MPa	; ;	ž 20	ENFINITE 844.463 414.816	273.085	199.483	127.470	106.870	79.423	61.985	49.938 49.938	•	41.146	37.636	30.76	25.134	22.728	18.558	16.739 15.069	13.531	10.792	9.569 8.429	7.364	5.434 5.434	3.731	2801	1,078	0.284	CURRENT: June 1967
	150	ş	- 1638.567 - 1616.673 - 1588.278	-1558.739	-1558 176 -1527.594 -1496 777	-1464.203	-1432.175	-1368.455	-1305.321	-1242.850	T. <> LIQUID	-1181,559	-1152.831	- 1060.199	-1011.166 -962.356	-913.755	-803,330	-769.094 -721.220	-673.505	-578.518	-531,233	-437.041	-343,318 -343,318	-296.616 -250.015	-193.048	-135.678 -78.403	-21.221 35.871	CURRE
Standard State Pressure	L. KJ-mol-'		- 1643.293 - 1643.293 - 1647.428	-1649,500	-1649.524 -1650.237 -1656.617			-1653.958	-1650.773	- 1646.703 - 1644.375		- 1613.789	- 1611.119	- 1944.879	- 1940.635 - 1936.429	-1932.264	- 1924.060				-1900.623 -1896.915	-1893.268	-1886.174	-1882.730 -1879.358	-2260.212	-2253.020	-2249.546 -2246.155	
×	HH		-14554 -13667 -8573	0	0.186	36.720	\$0. 4 54.632	79.285	109.728	141.431	968'691	202.281	219.017	252.489	269,225 285,961	302.697	336.169	352.905 369.641	386.377	419.849	436.585	470.057	503.529	520.265 537.001	553.737	587.209	603.945 620.681	
= T, = 298.15 K	-[G*-#*(T.)]T	100	148.950 88.665	80.295	80.297 84.499 92.946	102 850	123,338	133,288	152 151	865.00 875.00 875.00	183.653	186,006	194.775	211 102	218.725 226.026	233.030	246.236	252 476 258.495	264.309	275.372	280.645 285.758	290.721	300.231	304.793 309.235	313.562	321.898	325.916 329.841	
emperature	ا-اسا-X-ل المال- الا		0 12.276 45.798	80.295	80 919 112.628 140.155	164.049	204 128	221.382	251.903	278.371	298.915	320,860	331.661	351.373	360.422 369.006	377.172	392.397	399.519 406.351	412915	425.318	431.191	442.352	452.816	457.812	467.378	476.427	480.774 485 011	
eference To	او	, '	0. 27.669 72.036	100.567	101 010 118.826 127.809	134,306	144.432	148.565	155.576	161.293			167.360	167.360	167.360	092 291	167.360	167.360 167.360	167.360	167.360	167.360 167.360	092 293	167.360	167.360 167.360	092.191	167.360	167.360 167.360	
Enthalpy Reference Temperature = T,	7.6		°88	298.15	888	88	38	<u>88</u>	821	96	1474,000	1500	0091	88	88	2100	2300	2,50	2800	2800	900 300 300	3100	3300	3500	3600	380	86.4 800 800	PREVIOUS:

CURRENT March 1964

PREVIOUS: June 1961

M _r = 109.7602 Lit	
(g-B)	
) CRYSTAL(α	
.i ₂ TiO ₃)	
Ē	
Oxide (L	
hium Titanium	
Ē	

Li2O3Ti4(cr)

Enthalpy Reference Temperature = T, = 298.19	T/K C_r^* $S^* - [G^* - H^*(T_r)]/T$	THEN O O O
$\Delta_1 H^0(0 \text{ K}) = -1660.065 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_1 H^0 / 208 \text{ 15 K}) = -1670 \text{ 671 kJ} \cdot \text{mol}^{-1}$	$\Delta_{\rm tr}H = 11.506 \rm kJ \cdot mol^{-1}$	$\Delta_{\text{fus}}H^{\circ} = 110.165 \text{ kJ} \cdot \text{mol}^{-1}$
1-10m-1-X-1 + 0 + 125 + 0 - (X 51 80 C)	T _{rr} = 1485 K	$T_{\text{tus}} = 1820 \text{ K}$
	$\Delta_i H^0(0 K) = -1660.065 \text{ kJ·mol}^{-1}$ Enthalpy R $\Delta_i H^0/08 \text{ kJ·mol}^{-1}$	= 91.755 \pm 0.4 J·K ⁻¹ ·mol ⁻¹

Fusion Data

E.																
p* = 0.1 ME	bo K.	INFINITE	855.655 420.355	276.769 274.964 202.231	129.326	60,700	80.702 10.991	80.702 70.991 63.051 56.434 50.830 46.032		Į.		ļ !	! !	Į į		ļ ļ
Standard State Pressure = p = 0.1 MPa	₹9	-1660.065	-1638.099 -1609.488	- 1579.767 - 1579.203 - 1548.635					žμ	- 1422.030 - 1302.488 - 1350.471 - 1377.783 - 1265.032 - 1265.032	- 1422.030 - 1350.488 - 1350.478 - 1357.783 - 1256.471 - 1266.471 - 1266.772 - 1266.022 - 1266.022 - 1267.712 - 1202.712 - 1172.500 - 1172.500 - 1172.500	- (422.030 - 1390.488 - 1390.488 - 1397.783 - 1235.671 - 1256.052 - 1233.763 - 1233.763 - 1233.763 - 1233.763 - 1232.712 - 1202.712 - 1172.500 - 1172.500 - 1172.500 - 1173.500 - 1173.500	- (422.03) - (139.048) - (139.048) - (139.048) - (132.04) - (123.043) - (123.0	- (422.03) - (135.048) - (135.048) - (135.048) - (135.071) - (126.02) - (126.	- (422.03) - (139.048) - (139.048) - (139.048) - (139.047) - (136.05) - (136.	- (472.03) - (139.048) - (139.048) - (139.048) - (139.047) - (120.047) - (120.047) - (120.047) - (100.048) - (100.
Standard St	LK HOOL	-1660.065	-1664.977 -1669.132	- 1670.671 - 1670.687 - 1671.038	- 1676.706 - 1675.949 - 1674.920	107.77	-1672.570	-1672 <i>5</i> 70 -1671.422 -1674.331 -1672.635 -1670.942	-1672.570 -1671.422 -1674.331 -1672.635 -1670.942	-1672.570 -1671.422 -1674.331 -1672.635 -1670.942 -1657.529 -1657.529	-1672.570 -1671.432 -1674.331 -1670.942 -1670.942 -1657.529 -1657.1066 -1941.066	- 1672570 - 1671372 - 1674331 - 1672633 - 1672633 - 1673634 - 1657529 - 1654 160 - 1941066 - 1933811	- 1672.70 - 1674.31 - 1674.33 - 1672.53 - 1672.94 - 1657.29 - 1637.81 - 1637.81 - 1938.81 - 1938.81 - 1939.44 - 1939.44	- 1672.570 - 1674.31 - 1674.31 - 1674.31 - 1670.545 - 1670.942 - 1654.160 - 1941.066 - 1930.404 - 1939.405 - 1939.405	- 1672.570 - 1674.31 - 1674.33 - 1676.535 - 1670.942 - 1654.160 - 1941.066 - 1935.811 1930.404 - 1939.402 - 1939.402 - 1939.402 - 1939.402 - 1931.899	- 1672.570 - 1671.312 - 1671.313 - 1671.313 - 1671.313 - 1671.314 - 1637.319 - 1637.319 - 1933.811 - 1939.444 - 1939.548 - 1939.548
×	HH.CT.)	-16.493	- 15.498 9.686	0. 0.204 12.124	39.182 53.559 68.311	98 628		129 718 145 574 161 478	129 778 145.574 161 478 175.067 186.573	129 778 145.574 161 478 175.067 186.573 189.218	129 778 145.574 161 478 175.067 186.573 189.218 207.042 225.200 243.693	125 778 164 574 164 6774 115 067 186 573 189 218 207 042 225 200 243 693 247 432	125 778 161 478 161 478 175.067 175.067 186.573 186.573 187.042 275.200 243.693 247.432 267.43	125 778 161 478 161 478 175 067 185 273 207 042 207 042 247 432 247 432 247 432 247 432 341 188 361 188 361 188 361 188	125 778 161 478 161 478 175 067 185 273 207 042 245 280 247 430 247 430 247 430 247 430 247 430 247 430 341 181 341 181 341 181 341 181 341 181 341 181	125 778 165 574 178 178 185 573 186 573 189 218 207 504 247 505 241 684 301 182 301 18
Enthalpy Reference Temperature = T, = 298.15 K		NFINITE	169.105 101.316	91.755	115.979 126.924 137.741	158.307	177 174 185.985	194.410	194.410 201.284 201.284	194.410 201.284 201.284 202.549 210.795	194,410 201,284 201,284 202,549 210,795 218,733 226,388	194.410 201.284 201.284 202.549 210.795 218.733 226.388 227.887	194.410 201.284 201.284 202.549 210.795 210.795 210.733 226.388 227.887 23.783 240.939	194.410 201.284 201.284 202.49 218.733 226.388 227.887 240.399 247.873 246.039 247.873 246.039 247.873 247.873 247.873 247.873 247.873	194.410 201.284 202.49 202.49 218.733 226.388 227.887 240.339 240.339 24.633 26.633 26	194.410 201.284 201.284 201.284 202.488 2110.795 2110.795 2110.795 247.873 240.395 247.873 240.395 261.143 261
mperature	DE 4	, o		91.755 92.437 126.619	181.283 203.436 223 130	256.936	285.322 297.965 309.751		319 174 326.922	319 174 326.922 328.694 340.196	319 174 326,922 328,694 340,196 351,204 361,773	319 174 326,922 328,694 340,196 351,204 361,773 363,839 371,952	319 174 326,922 328,694 340,196 351,204 361,773 363,839 371,952 381,781	319 174 326,922 328,694 340,196 351,204 361,73 361,73 361,73 371,952 381,781 391,293 400,518	319 174 326,922 328,694 340,196 351,204 361,773 361,732 371,952 371,952 371,952 371,952 400,518 400,518 418,207 426,712	319 174 326,922 328,694 340,196 351,204 361,773 361,773 361,773 371,925 371,925 409,482 418,207 418,207 418,207 418,712 435,015
eference Te	٠	, o	31.142 82.663	109.855 110.750 127.361	145.854 149.034 15.670	153.888	157.318 158.490 159.494									.,,,,,
Enthalpy R	7.7	٥	85	298.15 300 400 60 60 60	8898	88	25.54 20.88		1485.000 1485.000	1485.000 1485.000 1500 1600	1485.000 1485.000 1500 1600 1700 1800	1485.000 1485.000 1500 11700 11700 1800 1900	1485,000 1485,000 1500 1500 1700 1820,000 1900 2000 2100	1485,000 1485,000 1500 1500 1700 1800 1820,000 1800 2000 2200 2200 2200 2300 2400	1485,000 1485,000 1500 1600 1700 1800 1800 1800 2000 2000 2200 2200 2300 2400 2500	1485,000 1485,000 1500 1600 1700 1870,000 1900 2000 2200 2300 2300 2500 2500 2500 25
$\Delta_i H^0(0 \text{ K}) = -1660.065 \text{ kJ·mol}^{-1}$	$\Delta_i H^{*}(298.15 \text{ K}) = -1670.671 \text{ kJ·mol}^{-1}$	Δ _{tus} H" = 110.165 kJ·mol ⁻¹		Δ_H (298.15 K) was calculated from measurements of solution calorimetry by Todd and Kelley' according to the following equation: TiO ₂ (cr) + Li ₂ SO ₄ (cr)	eat Capacity and Entropy The low temperature heat capacities were taken from King. ³ These low temperature heat capacities were fit to the high temperature	hear capacities and the extrapolated S°(51 K) value.	Tansition Data Christmen at al. 4 monetal that Inhimm metativance understone a transition from the a form at 1.485 K with an absorption of 2.750									
$H^{\circ}(0 \text{ K}) = -166$	78.15 K) = -167	$\Delta_{\text{fu}}H^{\circ}=1$		ding to the follo 04 kcal·mol ⁻¹ obtained from. ²	ere fit to the h	he extrapolated	25 K with an abo									
$\Delta_i \Delta_j$	∆ _i H*(29)		•	Kelley' accord 8.15 K) = 27.0 values were o	capacities we	pacities and th	8 form at 1.48									
				y Todd and K 3)	perature heat	sured heat cap	office of the flower office of							(1960).	(1960).	(1960).
				Δ _t H*(298.15 K) was calculated from measurements of solution calorimetry by Tox TiO ₂ (cr) + Li ₂ SO ₄ (cr) + 13.312 H ₂ O(f) = Li ₂ TiO ₃ (cr) + H ₂ SO ₄ (aq, 12.312 H ₂ O) 4 298 15 K) value for rutile was obtained from the JANAF tables and the other Δ _t H(29	se low temp	that pies from Christensen et al. $^{\circ}$ C298.15 K) = 21.9 cal·K ⁻¹ mol ⁻¹ was obtained from King ³ based on the measured	sition from							Fusion Data The T _{ins} and $\Delta_{ins}H^{\circ}$ were obtained from Christensen et al.* References 1s. S. Todd and K. K. Kelley, U. S. Bur. RI 5193, (1956). 2d. S. Nat. Bur. Stand. Circ. 500, (1952). 2e. G. King. J. Amer. Chem. Soc. 77, 2150 (1955). 4a. U. Christensen, K. C. Conway and K. K. Kelley, U. S. Bur. Mines RI 5565, (1960).	.s RI 5565,	s RI 5565,
				olution cale 2SO4(aq, 1 ibles and th	ing.³ Thes	ng³ based c	dent e secon	3000)	, <u>*</u>	o * .) <u>*</u> .) <u>*</u>	r.* Bur. Mine:	r.4 Bur. Mine	i.* Bur. Mine
				ments of soio, iO ₃ (cr) + H. JANAF ta	en from K	ed from Ku	reban escac	the contract		1	al-mol ⁻¹ . usion Data The $T_{\rm las}$ and $\Delta_{\rm las}H^\circ$ were obtained from Christensen et al. 4	tensen <i>et al</i> 33, (1956).	tensen <i>et al</i> 33, (1956).	tensen <i>et al</i> 33, (1956). 55).	tensen <i>et al</i> 73, (1956). 55).	tensen <i>et al</i> 73, (1956). 55). :iley, U. S.
	. [0			m measure 3(1) = Li ₂ Ti d from the	ss were tak	was obtain	riteria di				from Cluris	from Chrisi 3ur. RI 515	from Christ Bur. RI 515 52).	from Christ 3ar. RI 519 52). , 2150 (195 d K. K. Ke	from Christ 3ur. RI 519 52). , 2150 (195 d K. K. Ke	from Christ 3ur. RI 519 52). , 2150 (195 d K. K. Ke
	4 J·K - 'm			sulated from 3.312 H ₂ C as obtaine	opy u capacitie	. et al	4 th 2 Lith:				obtained f	obtained f	obtained f ey, U. S. E c. 500, (19	obtained f ey, U. S. F .: 500, (19 n. Soc. 77,	obtained f ey, U. S E .: 500, (19 n. Soc. 77,	obtained f ey, U. S E :: 500, (19: n. Soc. 77, Sonway an
	1.755 ± 0.		rmation) was calc O ₄ (cr) + I. or rutile w	and Entre	hristensen 21.9 cal-K	1 1	3	•		usH" were	_{fa} H° were K. K. Kell _i	hah" were K. K. Kelle Stand. Circ	i _{le} H° were K. K Kelle Stand. Circ .mer. Chen	k. K Kelk Stand. Circ mer. Chen	LaH" were K. K Kelle Stand. Circ mer. Chen m, K. C. C
	$S'(298.15 \text{ K}) = 91.755 \pm 0.4 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$	820 K	Enthalpy of Formation	$^{(298.15 \text{ K})}_{(cr)} + L_{12}^{(cr)}_{(cr)}$ K) value f	Heat Capacity and Entropy The low temperature heat ca	enthalpies from Christensen et al. S°(298.15 K) = 21.9 cal·K ⁻¹ mol	Transition Data		. lol-1.	kcal·mol ⁻¹ . Fusion Data	ol ⁻¹ . n Data T _{fus} and Δ _t	kcal·mol ⁻¹ . Fusion Data The T _{tis} and Δ _t References 'S S Todd and K	ol ⁻¹ . n Data T _{rus} and Δ _r ences Todd and F Nat. Bur. 5	ol ⁻¹ . n Data T _{tas} and A _{fr} ences Todd and F Nat. Bur. 5 King, J. A	ol ⁻¹ . n Data T _{tas} and A _{fr} ences Todd and k Nat. Bur. § King, J. A Christense	ol ⁻¹ . n Data T _{rs} and Δ _r ences Todd and F Nat. Bur. S King, J. A [*] Christense
	5°(298.15 K) T = 1485 V	T _{fus} = 1450 K	Entha	Δ _i H' TiO ₂ 298 15	Heat C	enthalp S°(2)	Transi		kcal·mol ⁻¹	ccal·m Fusion	Ccal·m Fusior	Ccal·mccal·mc Fusion The Reference S.	Ccal·mo Fusion The Tefer S S. T	Call-moccal-mocc	cal maccal macca	Call-moccal-mocc

L12O3114(1)	9° * 0.1 MPa		251 484 259 791 191.582 150.588 123.200	88.984 77.591 68.483		49.580 45.097 41.226 37.851	<u>.</u>	23.758 21.701 19.829 18.118	15.103 13.770 12.535 11.388	9.326 8.395 7.524 6.706 5.936	2.12 4.418 3.620 2.150	 	CURRENT March 1964
	Standard State Pressure = p° * 0.1 MPa A.H° A.H° A.G. box K.	ĝ	- 1492.523 - 1492.062 - 1467.084 - 1441.460 - 1415.149	-1362.840 -136.887 -1311.066	- 1259.641 S <> LIQUID TRANSITION	-1233.940 -1208.691 -1183.859 -1159.406		-955.162 -914.012 -873.112 -832.447	-751.773 -711.744 -671.908 -632.257 -592.780	-553.470 -514.321 -475.325 -436.474	-359.186 -312.949 -263.371 -213.942 -164.655		CURREN
			- 1566.760 - 1566.775 - 1567.127 - 1573.138 - 1572.795	- 1571 009 - 1569.852 - 1568.659	-1570.420 -1570.420 GLASS	- 1565.044 - 1559.172 - 1553.416 - 1547.787 - 1832.769	BETA -1819262 -1877.63	- 1821.974 - 1816.507 - 1811.084 - 1805.706	-1795.098 -1789.872 -1784.701 -1779.588	-1769.547 -1764.623 -1759.766 -1754.979	-1745.624 -2150.157 -2144.436 -2138.850 -2133.402		
	K H°-H°T)		0. 0204 12 124 25 307 39 182	83.349 83.349 88.628	131.982	149.253 169.336 189.420 209.503 229.586	253.716	309 919 330,002 350,085 370,168	410.335 430.418 450.501 470.584 490.668	510.751 530.834 550.917 571.000	611.167 631.250 651.333 671.416 691.500		
L ₂ 1 (3)	Enthalpy Reference Temperature = T, = 298.15 K Trk C		147.656 147.658 152.209 161.289 171.880	193.642 204.130 214.208	23.075 234.333 234.333	241.984 250.723 259.254 267.556 275.620	284.965	305.528 312.450 319.167 325.689	338.180 344.166 349.991 355.661 361.184	366.567 371.816 376.937 381.935	391.587 396.250 400.811 405.273		
) apixo ii	Temperature	2			341.223 343.049 343.049								-
<i>M</i> ₁ = 109.7602 Litnium 11tanium Oxide (Li21103)	y Reference	000			0 157,318 000 157,569 000 200,832								PREVIOUS: June 1961
	Enthalp	°882°	298.15 300 500 500 500 500	2888	1214 000	200 24 20 200 25 20 20 20 20 20 20 20 20 20 20 20 20 20 2	1820.000	252222 252222 252222 252222 252222 25222 25222 25222 25222 25222 252 2522 2522 2522 2522 2522 2522 2522 2522 2522 2522 2522 2522 252 2522 2522 2522 2522 2522 2522 2522 2522 2522 2522 2522 2522 252 2522 2522 2522 2522 2522 2522 2522 2522 2522 2522 2522 2522 252 2522 2522 2522 2522 2522 2522 2522 2522 2522 2522 2522 2522 252 2522 2522 2522 2522 2522 2522 2522 2522 2522 2522 2522 2522 252 2522 252	928888	28888	3500 3500 3500 3500 400 400 400 400 400 400 400 400 400	 	PREVIO
בועטום	$\Delta_i H^{\circ}(298.15 \text{ K}) = [-1566.760] \text{ kJ mol}^{-1}$ $\Delta_{lm} H^{\circ} = 110.165 \text{ kJ} \cdot \text{mol}^{-1}$	the crystal by adding the enthalpy of fusion, $\Delta_{los}H^{\circ}$, and the difference in enthalpy, iid.	Heat Capacity and Entropy The heat capacities were reported by Christensen et al. ¹ The measured heat capacity is extrapolated to an assumed glass transition temperature of 1214 K, below which the heat capacity is taken to be equal to that of the crystal. S?(Li ₃ TO ₃ , I, 298.15 K) is calculated in a manner analogous to that used for the enthalpy of formation.	eral.'	. S. Bur. Mines RI 5565, (1960).								
	$S^{\circ}(298 \text{ 15 K}) = [147.656] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ $T_{\text{ins}} = 1820 \text{ K}$	Enthalpy of Formation $\Delta_H^{\mu}(L_1,TrO_3,1,298.15K)$ is calculated from that of the crystal by adding the enthalpy $H^{\rho}(1820K)$ — $H^{\rho}(298.15K)$, between the crystal and liquid.	Heat Capacity and Entropy The heat capacities were reported by Christensen et temperature of 1214 K. below which the heat capacity is S*(Li ₂ TO), 1, 298.15 K) is calculated in a manner and	usion Data The T_{in} and $\Delta_{lu}H^{\circ}$ were obtained from Christensen et al.	Reference ¹ A. U. Christensen, K. C. Conway and K. K. Kelley, U. S. Bur. Mines RI 5565, (1960).								

=
=
\mathbf{c}
\Box
I
8
Т
ਲ
ب
•
H
Ø
=
Œ
O
_

Lithium Titanium Oxide (Li₂TiO₃)

M_r = 109.7602 Lithium Titanium Oxide (Li₂TiO₃)

Li₂O₃Ti₁(cr,l)

=
_
~
U
•
$\overline{}$
Ф.
÷
.0.
·
~
_
-
ĹΛ
٧,
>-
~
ш.
1
•

K crystal, alpha K crystal, beta K liquid	
to 1485 to 1820 1820	
0 1485 above	

Refer to the individual tables for details.

77K C; 100 11.142 200 11.042 200 200 200 200 200 200 200 200 200	2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	-[G*-H*(T,)]/T	H°-H°(T _s)	1 1	Δ _G *	log Kr
	0. 14.129 52.886 91.755		- 16.493	- 1660.065	- 1660 065	
	91.755	INFINITE 169.105	-15.498	-1664.977	-1638.099	INFINITE 855.655
		101.316	-9.686	-1669.132	-1609.488	420.355
		757 19	0,00	- 1670 687	107.6751-	274 964
	126.619	96,309	12.124	-1671 038	-1548.635	202 231
		115 970	30 187	- 1676 706	-1485 520	120 326
		126.924	53.559	-1675.949	-1453.710	108.477
		137.741	68.311	-1674.920	-1422.030	92.849
	256.936	158.307	98.628	-1672.570	-1359.077	70.991
		167.954	114.117	-1671.422	-1327.783	63.051
	285.322	177.174	129.778	-1674.331	-12964/1	20.434 20.835
		194.410	161.478		-1233.763	
	319.174	201.284	175.067	ALPHA	HA <> BETA	, ×
		202.549	189.218	- 1657.529	-1202.712	41.882
		210.795	207.042	-1654.160	-1172,500	38.278
	351.204	218.733 226.388	225.200	-1941.066	-1128.152	34.664
		727.887	247.432		diuou <>	- [
		136.122	146.166		I KANSI I ON	
	443.310	246.436	393.747	-1827.482	-1031.311	26.028
2100 200.832		256.046	413.830	-1821.974	-955.162	23.758
		273.989	453.996	-1811.084	-873.112	19.829
	479.926	282.392	474.080	- 1805.706	-832,447	18.118
		298.214	514.246	-1795.098	-751.773	15.103
2700 200.832	503.580	305.681	534,329	-1789.872	-711.744	13.770
		319.830	574.496	-1779.588	-632.257	11,388
		326.547	594.579	-1774536	- 592.780	10,321
	531,325	333.047	614.662	-1769547	-553.470	9.326
3300 200.832		345.449	654.828	-1759.766	-475.325	7.524
3400 200.832	549.877	351.373	674.912	-1754.979	-436 474	6,706 5,936
		267 635	715.078	ACA 2451-	-350 186	\$213
		368.166	735.161	-2150157	-312.949	4.418
		373.466	755.244	-2144.436	-263.371	3.620
4000 200.832	582.516	383.663	795.411	-2133.402	-113,942	2.150
0.00					i de	A TABABATA

Standard State Pressure = $p^* = 0.1 \text{ MPa}$

K-mol-

 $H^{\circ}-H^{\circ}(T_t)$ Δ_tH°

S -{G*-H"(T,)]T

J-K-'mol-'

229.901 167.349 129.682 104.497 86.520 73.062

-1320.395 -1281 517 -1241.336

-1439.218 -1446.434 -1444,320

-1321.111

-1436.367 -1436.391

o

113.947 113.949 118.850

> 114.676 151.679 184.409 213 812 240.827 266.069 277.686 289 957 312.760 334 692 355.903

118.026 139.244 154.473 168.469 182.360 196.062

888 888

0. 28.932 73.028 113.947

43 869 86.872

200 200 298.15

117 608

0.218

---- ALPHA <--> BETA

90.008 100.732 122.387 145.408 169.796

171.544 178.033 190.373 202.502 214.406

202.732 209.702 223.384

848 000

-1159.466

-1200,315

-1446156

13 131 27 827 43.975 61.518 80 437

140.519 152.943 165.522

-1077.896 -1032.517

-1489.633 -1482.531 -1474.161 -1464.510

-987 910 -944.121

NFINITE 728 733 354 854 231.453

-1423.980 -1395.114 -1358.693

-1423 980 -1429.603 -1434 139

-18 636 -16.769 -10.159

Enthalpy Reference Temperature = T, = 298.15 K $\Delta_t H^0(0 \text{ K}) = -1423.980 \pm 1.7 \text{ kJ mol}^{-1}$ $\Delta_t H^0(298.15 \text{ K}) = -1436.367 \pm 1.7 \text{ kJ} \cdot \text{mol}^{-1}$

T.K $\Delta_{\rm tr}H^{\circ}(\alpha \rightarrow \beta) = 28.451 \pm 1.7 \text{ kJ·mol}^{-1}$

Rabinovich. Adopting the results from 45 we have $\Delta_{ab}H^{9}(298 15 \, K) = -7300 \pm 0.1$ kcal mol⁻¹ for the enthalpy of solution at infinite dilutton. We have used data from Thompson et. al. 6 to correct the enthalpy of solution data to infinite dilution. When this result is combined The enthalpy of solution of Li₂SO_ε(ατ, α) has been measured by Ueda, 'Thomsen,' Prckering,' Romanova and Samoilov* and Tsverkov and $S^{\circ}(298 \ 15 \ K) = 113.947 \pm 0.4 \ J \cdot K^{-1} \cdot mol^{-1}$ **Enthalpy of Formation** $_{\rm rs}(\alpha \rightarrow \beta) = 848 \pm 1 \, {\rm K}$

Lithium sulfate was studied by hydrochlone acid solution calorimetry by Barany and Adami who obtained $\Delta H^0(298.15\,\mathrm{K}) = -16\,020\pm0.120$ kcal-mol⁻¹ for the reaction 2 LiCI(cr) + H₂SO₄ 7068 H₂O(l) + 18.394 H₂O(l) = Li₂SO₄(cr) + 2 HCL · 12.731 H₂O(l). When this result is combined with auxiliary data from 910 we obtain $\Delta H^0(Li_2SO_4$, cr, 298.15 K) = -343.30 \pm 0 kcal mol⁻¹. Auxiliary data used in the analysis are (in kcal-mol⁻¹) $\Delta_t H^0(H_2 S Q_4 7 668 H_2 Q)$, 298.15 K) = -209.566 \pm 0.10 and $\Delta_t H^{\circ}(HCI \cdot 12.731 \text{ H}_2O, 298.15 \text{ K}) = 38.792 \pm 0.010.$

with enthalpies of formation of the infinitely dilute ions from CODATA⁷ we obtain Δ_H °(Li₂SO₄, aq, ∞ , 298 15 K) = 350.504 ± 0.2

kcal·mol⁻¹ and $\Delta_i H^0(\text{Li}_2 \text{SO}_4, \text{ cr, } 298.15 \text{ K}) = -343.20 \pm 0.3 \text{ kcal·mol}^{-1}$.

Ueda' measured the emf of the cell Li (amalgam, 0.035%)[Li₂SO₄·H₂O (sat soln.), Hg₂SO₄[Hg at 298 K as E_{ent} = 2 67489 volts. Kelley¹⁷ used this value along with other data to determine $\Delta_H^0(298.15 \, \text{K})$ for Li₂SO₄(cr) Adopting results given in Kelley, "we calculate $\Delta_4 G^0(298.15 \, \text{K}) = -165.780$ kcal·mol⁻¹ for the reaction 2 Li(cr) + Hg₂SO₄(cr) = 2 Hg(1) + Li₂SO₄(cr). Taking $\Delta_1 G^0(\text{Hg}_2\text{SO}_4, \text{cr}, 298.15 \, \text{K}) = -149.658$ kcal mol⁻¹ and reference entropies from," we calculate $\Delta_1 G^0(\text{Li}_2\text{SO}_4, \text{cr}, 298.15 \, \text{K}) = -315.438$ and $\Delta_4 H^0(\text{Li}_2\text{SO}_4, \text{cr}, 298.15 \, \text{K}) = -315.438$ and $\Delta_4 H^0(\text{Li}_2\text{SO}_4, \text{cr}, 298.15 \, \text{K}) = -315.438$ and $\Delta_4 H^0(\text{Li}_2\text{SO}_4, \text{cr}, 298.15 \, \text{K}) = -315.438$ and $\Delta_4 H^0(\text{Li}_2\text{SO}_4, \text{cr}, 298.15 \, \text{K}) = -315.438$ and $\Delta_4 H^0(\text{Li}_2\text{SO}_4, \text{cr}, 298.15 \, \text{K}) = -315.438$ and $\Delta_4 H^0(\text{Li}_2\text{SO}_4, \text{cr}, 298.15 \, \text{K}) = -315.438$ and $\Delta_4 H^0(\text{Li}_2\text{SO}_4, \text{cr}, 298.15 \, \text{K}) = -315.438$ and $\Delta_4 H^0(\text{Li}_2\text{SO}_4, \text{cr}, 298.15 \, \text{K}) = -315.438$ and $\Delta_4 H^0(\text{Li}_2\text{SO}_4, \text{cr}, 298.15 \, \text{K}) = -315.438$ and $\Delta_4 H^0(\text{Li}_2\text{SO}_4, \text{cr}, 298.15 \, \text{K}) = -315.438$ and $\Delta_4 H^0(\text{Li}_2\text{SO}_4, \text{cr}, 298.15 \, \text{K}) = -315.438$ and $\Delta_4 H^0(\text{Li}_2\text{SO}_4, \text{cr}, 298.15 \, \text{K}) = -315.438$ and $\Delta_4 H^0(\text{Li}_2\text{SO}_4, \text{cr}, 298.15 \, \text{K}) = -315.438$ and $\Delta_4 H^0(\text{Li}_2\text{SO}_4, \text{cr}, 298.15 \, \text{K}) = -315.438$ and $\Delta_4 H^0(\text{Li}_2\text{SO}_4, \text{cr}, 298.15 \, \text{K}) = -315.438$ and $\Delta_4 H^0(\text{Li}_2\text{SO}_4, \text{cr}, 298.15 \, \text{K}) = -315.438$ and $\Delta_4 H^0(\text{Li}_2\text{SO}_4, \text{cr}, 298.15 \, \text{K}) = -315.438$ and $\Delta_4 H^0(\text{Li}_2\text{SO}_4, \text{cr}, 298.15 \, \text{K}) = -315.438$ and $\Delta_4 H^0(\text{Li}_2\text{SO}_4, \text{cr}, 298.15 \, \text{K}) = -315.438$ and $\Delta_4 H^0(\text{Li}_2\text{SO}_4, \text{cr}, 298.15 \, \text{K}) = -315.438$ 298.15 K) = $-343.0 \pm 0.5 \text{ kcal·mol}^{-1}$

We adopt a value for the enthalpy of reaction based on the solution work of Barany and Adami.

Heat Capacity and Entropy

Low temperature heat capacities of Li₂SO₄(cr, α) have been measured by Paukov¹¹ in an adiabatic calorimeter from 12.00-311.11 K. We have smoothed the experimental C_p^* data by fitting to orthogonal polynomials over selected temperature intervals. Our adopted value of $S^{\circ}(298 15 \text{ K}) = 27.234 \pm 0.10 \text{ kcal·mol}^{-1} \text{ is based on } S^{\circ}(14 \text{ K}) = 0.051 \text{ kcal·mol}^{-1} \text{ and } H^{\circ}(14,0) = 0.540 \text{ cal·K}^{-1} \cdot \text{mol}^{-1} \text{ derived from a}$ Debye T3 law extrapolation.

addition, drop calorimetric enthalpy measurements have been performed by Denielou et al., 14 (400-848 K), by Clark, 18 (488.0-848 TK) and by Voskresenskaya and Banashek, 16 (360-859 K). The data of Clark is systematically low by 15% while the data from Spoblom is too high by 10%. There is good agreement among the other three studies. 1214 We adopt heat capacities above 300 K based on a smooth fit to the combined data from. 11 1214 and 16 Heat capacity data measured by adiabatic calorimetry have been reported by Shmidt, 12 (298.5-774.3) and by Sjoblom, 13 (430-845 K). In

Transition Data

Li₂SO₄(cr, a) is the low-temperature form of lithium sulfate (sometimes denoted Li₂SO₄(II). The crystals are monoclinic (space group C₂, P2₂(c). The transformation to the high-temperature β phase (cubic form) occurs at 848 ± 1 K.^{14 15} The enthalpy of transition is determined by the transformation to the high-temperature β phase (cubic form) occurs at 848 ± 1 K.^{14 15} The enthalpy of transition is determined by the difference between the adopted enthalpy curves of α and β Li₂SO₄ extrapolated to 848 K (see the discussion on the Li₂SO₄(cr, contact the property of the discussion on the Li₂SO₄(cr, contact the discussion on the Li₂SO₄(cr, contact the discussion of the li₂SO₄(cr, contact the discussion on the Li₂SO₄(cr, contact the discussion of the li₂SO₄(cr, contact the discussion of the li₂SO₄(cr, contact the discussion of the li₂SO₄(cr, contact the li₂SO₄(cr, contac β) table

References

Y. Ueda, Science Repts. Tohuku Imp Univ., First Ser. 22, 879 (1933), see Chem. Abstr. 28, 954 (1934) and also J. Chem. Soc. Japan 53, 559 (1932) and Chem. Abstr. 26, 5249 (1932).

"Thermochemische Untersuchungen," Vol. III, p. 189, J. Barth (Leipzig) (1883). ³S U. Pickering, J. Chem. Soc. 47, 98 (1885), J. Chem. Soc. 49, 260 (1886). ²J. Thomsen,

⁴1. I. Romanova and O. Ya. Samoilov, Russ. J. Inorg. Chem. 14, 131 (1969)

P. T. Thompson, D E. Smith and R. H Wood, J. Chem. Eng. Data 19, 386 (1974). ⁵V. G Tsvetkov and I. B Rabinovich, Russ. J. Phys. Chem. 43, 675 (1969)

ICSU CODATA Task Group on Key Values for Thermodynamics, J Chem. Thermodyn 10, 903 (1978). Rarany and L. H Adami, U. S. Bur. Mines RI 6873 (1966).
 U. S. Nat. Bur. Stand. Tech. Note 270 3, (1968).
 I'V. B. Parker, D. D. Wagman and D Garvin, U. S. Nat. Bur. Stand. Interim Report 75–968, (1976).

¹¹I. E. Paukov, Russ. J. Phys. Chem. 43, 1134 (1969)

¹N. E. Shmidt, Russ. J. Inorg. Chem. 12, 929 (1967).
¹C. A. Sjoblom, High Temp. – High Pressures 8, 499 (1976).
¹L. Denielou, Y. Fournier, J. P. Petttet, and C. Tequt, Rev. Int. Hautes Temp. 8, 119 (1971).
¹R. P. Clark, J. Chem. Eng. Data 20, 17 (1975).

¹⁶N. K. Voskresenskaya and E. I. Banashek, Izv Sekt. Fiz. Khim. Anal., Akad. Nauk SSSR 25, 150 (1954).
¹⁷K. K. Kelley, U. S. Bur. Mines Bull. 406, (1937).

¹⁸JANAF Thermochemical Tables: Li₂SO₄(cr, β), 12-31-78.

Lithium Sulfate, Alpha (Li₂SO₄)

PREVIOUS

CURRENT December 1978

_i204S1(cr)

CURRENT: December 1978

_	_
,	₹
•	Ž
(Q.
	÷
-	Ļ
	Ţ
9	П
1	_
- 1	υ
- 7	6
3	Ξ
3	3
Ċ	ñ
1	F

Li,0,S,(cr)

M_r = 109.9396 Lithium Sulfate, Beta (Li₂SO₄)

 $\Delta_f H^{\circ}(298.15 \text{ K}) = [-1425.373] \text{ kJ} \cdot \Delta_{tr} H^{\circ}(\alpha \to \beta) = 28.451 \pm \text{kJ} \cdot \text{kJ} \cdot \beta$ CRYSTAL(B) $S^{(298.15 \text{ K})} = [113.802] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ $T_{rs}(\alpha \rightarrow \beta) = 848 \pm 1 \text{ K}$ Lithiun

Enthalpy of Formation

 $\Gamma_{los}(\beta \rightarrow 1) = 1132 \pm 1 \text{ K}$

 $\Delta_t H^{\alpha}(L_i)SO_4$, cr, β , 298.15 K) is calculated from $\Delta_t H^{\alpha}(L_i)SO_4$, cr, α , 298.15 K) by adding the enthalpy of transition ($\alpha \to \beta$), $\Delta_{uv} H^{\alpha}$ the difference in enthalpy, $H^{\alpha}(848 \text{ K}) - H^{\alpha}(298.15 \text{ K})$, between the alpha and beta crystalline forms.

 $\Delta_{lm}H^{\circ}(\beta \to l) = 8.577 \pm 0.8 \text{ kJ}$

Heat Capacity and Entropy

and by Voskresenskaya and Banashek.* (859–1133 K). In addition, heat capacities have been measured in an adiabatic calorimete Sjoblom,⁵ (873–1073 K). All of the data indicate that C° is nearly constant over the temperature interval 848–1132 K. The data of C is systematically low by 15% while the other studies^{24,5} are in substantial agreement. We have adopted enthalpies from Denielou et al. our curve fits, but have neglected points near $T_{\rm tr}$ and $T_{\rm tr}$ where the data shows pronounced curvature. This leads to a constant heat cap of 51.0 cal·K⁻¹ mol⁻¹ over the range 909-1119 K. Our adopted enthalpies are 1.5% higher than those from Dentelou *et al.*² at 848 K and High temperature enthalpy measurements by drop calorimetry were carried out by Denielou et al., (860-1110 K), by Clark, 874-110 higher at 1132 K. We have extrapolated a constant heat capacity below $T_{\rm tr}$ to 700 K at which point we slowly bend $C_{
m e}^{
m o}$ until 1t is onl higher than C's for the α-form at 298 15 K. We also extrapolate a constant heat capacity above T_{tas}.

Transition Data

The high temperature β -modification of lithium sulfate (sometimes denoted Li₂SO₄ I) is of cubic structure, space group T_{ac} . The order transition, taking some of the curvature in the enthalpy data (see above) and lumping it into the heat of transition. Reasonable C_p^a are obtained by omitting from the curve fits those enthalpy data in the vicinity of T_{tra} = 848 K is selected as the peak of the trans transition at 848 K is somewhat gradual and shows a second order rather than first order behavior. We have treated the transition as $\Delta_{uv}H^{\circ}$ is calculated as the difference in the enthalpy curve fits at T_{uv} .

Fusion Data

The adopted melting point, $T_{nu} = 1132 \pm 1$ K, was determined from the work of Denielou *et al.*, 2 (1130 \pm 3 K), Voskresenskaya and Banashek, 4 (1133 \pm 1 K), and Rea, 7 (1132 K). The heat of fusion, $\Delta_{lu}H^{\circ} = 2.050 \pm 0.2$ kcal·mol⁻¹, is calculated from the difference between the smoothed relative enthalpy of the liquid and the adopted enthalpy value for the β -crystalline form at T_{lus} .

References

JANAF Thermochemical Tables: Li₂SO₄(cr, α), 12-31-78.

Denelou, Y Fournier, J. P. Petitet, and C. Tequi, Rev Int. Hautes Temp. 8, 119 (1971).
 R. P. Clark, J. Chem. Eng Data 20, 17 (1975).
 N. K. Voskresenskaya and E. I. Banashek, Izv. Sekt. Fiz. Khim. Anal., Akad. Nauk SSSR 25, 150 (1954).
 A. Sjoblom, High Temp. – High Pressures 8, 499 (1976).
 T. Forland and J. Krogh-Moe. Acta. Chem. Scand. 11, 565 (1957).
 R. F. Rea, J. Amer. Ceram. Soc. 21, 98 (1938).

-lom-	Enthalpy R	eference T	emperature	Enthalpy Reference Temperature = T, = 298.15 K	<u>×</u>	Standard Sta	Standard State Pressure = p = 0.1 MPa	. = 0.1 MPa
lom.	7/K	ប		-[G*-H*(T,)]/T	H*-H*(T,)	Δ'mol-'	δ.	log Kr
	°8							
f°, and	200	400	200	200	d	. 405		013 000
	C1.867	129.704	113.802	113.807	.	-1425.3/3	-1310.073	615.627
	900	132.214	114.612	113.804	0.242	-1425.373	-1309.358	227.979
	\$	176.565	159.302	119.593	15.883	-1425.472	-1270.820	165.952
103 K)	88	190.048	6701.07	131.788	34.621	-1478.040	-1231.839	178.691
,	89	207.526	237.933	146,469	54.878	-1424.259	-1192.891	103.850
֓֞֜֜֜֜֜֜֜֜֟֝֟֓֟֝֟֝֟֓֟֝֟֓֟֝֟֓֟֓֟֓֟֓֟֓֟֓֟֓֟֓	92	212,547	270,354	161.901	75.917	-1418.927	-1154.743	86.168
Clark	800	213,384	298.803	177.274	97.223	-1413.298	-1117.386	72.958
al.2 for	848.000	213,384	311,237	184.509	107.465	ALP!	ALPHA <> BETA	V
apacity	006	213,384	323.936	192.201	118.561	-1460.810	-1079.654	62.661
d0.5%	1000	213,384	346.418	206.518	139 900	-1454.024	-1037.668	54.202
alv 5%	0011	213,384	366.756	220.176	161 238	-1447.337	-996.357	47.313
2.	1132 000	213 .384	372.875	224.406	168.066	BETA	A <> LIQUID	D
	1200	213,384	385,323	233.176	182.576	-1440.735	-955.650	41.598
	1300	213,384	402.402	245.545	203 915	-1434210	-915.492	36.785
	1400	213,384	418.216	257,321	225.253	-1427.749	-875.833	32.678
ne α-β	1500	213,384	432.938	268.543	246.592	-1421.342	-836.635	29.134
a first	0091	213,384	446 709	279.253	267.930	-1414.985	-797.862	26.048
Savara	1700	213,384	459 646	289 488	289.268	-1699.147	-745.133	22.895
	1800	213.384	471 842	299.283	310.607	- 1691.378	-689.240	20.001
HODISE	0061	213.384	483.379	308.671	331.945	- 1683.671	-633 776	17.424
	2000	213.384	494.325	317,683	353.284	-1676.027	-578.716	15.115

PREVIOUS:

-528.613 -474.513 -420.718 -367.210 -313.972

- 1667 968 - 1661 285 - 1654 667 - 1648 115 - 1641 630

340.941 348.714 356.216 363.465 370.476

507.142 516.679 525.792 534.518 542.887

-260.993 -208.258 -155.758 -103.482 -51.417

451.530 472.031 492.533 513.034 533.536

550.928 558.665 566.121 573.315 580.266

205.016 205.016 205.016 205.016 205.016

-800.692 -748.405 -692.905 -637.788 -583.031

-1695.323 -1688.391 -1681.521 -1674.713

246.514 267.015 287.57.015 308.018 328.520 349.022 369.523 369.523 410.526 431.028

475.538 486.623 497.139

205 016 205.016 205.016 205.016 205.016 205.016 205.016 205.016 205.016 205.016

-1410.324

85.864 72.764 62.547 54.146 47.301

-1150.671 -1114.416 -1077.682 -1036.601

-1406.767 -1401.943 -1450.291 -1444.342

275.966 275.966 281.909 309.285 333.432 355.033

179.619 205.016 205.016 205.016 205.016 205.016 205.016

---> LIQUID

-996.110

-1438.492

57.899 57.899 61.999 82.501 123.504 144.006 150.566 150.566 164.507 185.009 205.510

-956.149 -877.617 -838.970

-1432.727 -1427.039 -1421.414

190.820 190.820 190.833 200.835 218.95 21.525 247.443 255.372 265.57 265.57 276.25 277.22 277

380.452 392.412

205.016

374.573

424.015

205.016 205.016 205.016 205.016

451.391

S <--> LIQUID . TRANSITION

GLASS

-1187 475

-1409.085

227.068 225.556 164.617 127.918 103.379

-1399.296 -1399.320 -1402.147 -1409.362

0. 0218 13.131 27.827 43.975

155.061 192.064 224.794 254.196

118.026 139.244 154.473 168.469

Li₂O₄S₁(I)

Standard State Pressure = p° = 0.1 MPa

Enthalpy Reference Temperature = T, = 298.15 K

L-K-'mol-

log Kr

δç

kind.

 $H^{\bullet}-H^{\bullet}(T_r)$ Δ_rH^{\bullet}

 $S^* - [G^* - H^*(T_*)]T$

ڻ

7.K

 $\Delta_t H^{\circ}(298.15 \text{ K}) = [-1399 296] \text{ kJ mol}^{-1}$ $\Delta_t H^{\circ}(\beta \to l) = \pm 0.8 \text{ kJ mol}^{-1}$

CURRENT. December 1978

PREVIOUS:

M_r = 109.9396 Lithium Sulfate (Li₂SO₄) LIQUID Lithium Sulfate (Li₂SO₄)

Enthalpy of Formation

S°(298.15 K) = [154 332] J·K⁻¹ mol⁻¹

f_{tes}(β → 1) = 1132 ± 1 K

 $\Delta_H^{*}(L_1SO_4, 1, 298.15 \text{ K})$ is calculated from $\Delta_H^{*}(L_1SO_4, \beta, 298.15 \text{ K})$ by adding the enthalpy of fusion, $\Delta_{las}H^{\circ}$, and the difference in enthalpy, $H^{*}(1132 \text{ K})$ – $H^{*}(298.15 \text{ K})$, between the β crystal and liquid.

Enthalpies for Li₂SO₄(l) have been measured by Clark,² (1145–1179 K), by Voskresenskaya and Banashek,³ (1133–1270 K), and by Denielou *et al.*, 4 (1138–1530 K). The data of Clark is systematically low by 15% while the other two studies,³ are in substantial agreement. We adopt enthalpies based on the work of Denielou *et al.*, 4We adopt a constant heat capacity of 49 00 cal·K⁻¹·mol⁻¹ at temperatures above a hypothetical glass transition at 680 K. Below the glass transition, the heat capacity is taken as that of the alpha phase. 5°(298.15 K) is calculated in a manner analogous to that used for the enthalpy of formation. leat Capacity and Entropy

Fusion Data

Refer to the \(\theta\)-crystal table for details.

Vaporization and Decomposition Data

Thus is in substantial agreement with JANAF thermodynamic data which indicates $\Delta_{con}H^{\gamma}(1080 \, \text{K}) = 332.3 \, \text{kcal·mol⁻¹}$. Effusion and transpiration results of Jagannathan and Wyatt^a also indicate that decomposition to the oxide is less important then decomposition to the metal. $T_{con} = \sim 2466 \, \text{K}$ is the temperature at which the Gibbs energy change is zero for the reaction Li₂SO₄(I) = Li₂O(I) + SO₂(g) + I/2 O₂(g) and $T_{con} = 2800 \, \text{K}$ for the reaction Li₂SO₄(I) = 2 Li(g) + SO₂(g) + O₂(g). Li₂SO₄(l) can vaporize to the gaseous monomer, Li₂SO₄(g), or decompose according to Li₂SO₄(l) = Li₂O(cr) + SO₂(g) + I/2 O₂(g) or according to Li₂SO₄(l) = 2 Li(g) + SO₂(g) + O₂(g). Ficalora et al.³ did not observe ions from Li₂O or Li₂O₄ in their effusion mass—spectrometric experiments, indicating decomposition occurs to the metal. They determined $\Delta_{nm}H^{*}(1080 \text{ K}) = 324 \pm 12 \text{ kcal mol}^{-1}$

Denielou, Y. Fournier, J. P. Petitet, and C. Tequi, Rev. Int. Hautes Temp. 8, 119 (1971).
 J. Ficalora, O. M. Uy, D. W. Muenow, and J. L. Margrave, J. Amer. Ceram. Soc. 51, 574 (1968).

JANAF Thermochemical Tables: Li₂SO₄(cr, β), 12-31-78.

P. Clark, J. Chem. Eng. Data 20, 17 (1975).
 K. Voskresenskaya and E. I. Banashek, Izv. Sekt. Fiz. Khim. Anal., Akad. Nauk SSSR. 25, 150 (1974).

⁶G. V. Jagannathan and P. A. H. Wyatt, J. Chem. Res. (M) 2744 (1978)

•	v
C	j
ũ	2
=	3
3	Ų
3	ā
ü	3
	5
į	Ē
_	i

09.9396	M _r = 109.9396 Lithium Sulfate (Ll ₂ SO ₄) Enthalpy Reference Temperatur	ulfate (l	Li ₂ SO ₄)	thium Sulfate (Ll ₂ SO ₄) Enthalpy Reference Temperature = T ₁ = 298.15 K		Standard State Pressure KJ-mol ⁻¹		Li ₂ O ₄ S ₁ (cr,l)
	τÆ	ះ	S -[G	-[G*-H'(T,)]/T	$H^{\bullet}-H^{\bullet}(T_i)$	l	$\Delta_i G^*$	log K.
	9850	0. 43 869 86.872	0. 28.932 73.028	INFINITE 196.627 123.821	-18.636 -16.769 -10.159	-1423.980 -1429.603 -1434.139	-1423.980 -1395.114 -1358.693	INFINITE 728.733 354.854
	298.15	117.608		113.947	ó	-1436.367	-1321.111	231.453
	888	118.026 139.244 154.473	114.676 151.679 184.409	113.949 118.850 128.754	0.218 13.131 27.827	-1436.391 -1439.218 -1446.434	-1320.395 -1281.517 -1241.336	229.901 167.349 129.682
	98	168.469	213.812 240.827	140.519	43.975	-1446.156 -1444.320	-1200.315	104.497
	848.000		200.069	165.522 171.544 1544	80.437	77	-1118.979 4A <> BETA TP ANSTION	
	88		323.936	179.985	129.555	-1460.810 -1454.024	-1079.654	62.661
	1100		366.756	210.181	172.33	-1447.337	-996.357	
	1132,000	213.384 205.016	380.452	214.694 214.694	179.060	HET/	BETA <> LIQUID TRANSTITON	
	92.53	205.016 205.016 205.016	392.412 408.822 424.015	224.429 237.991 250.742	201.579 222.080 242.582	-1432.727 -1427.039 -1421.414	-956.149 -916.665 -877.617	41.620 36.832 32.744
	0091	205.016	458 139	274.150	283 585	-1415,844	-800.691	26.140
	888	205.016	463.820	284.945	304.087	-1695.323	-748.405	22.8
	200	205.016 205.016 205.016	486.623 497 139	304.997	345.090	- 1681.521 - 1681.521 - 1674.713	-637.788 -637.788 -583.031	17.534
	2100	205.016	507.142	323.288	386.093	-1667.968	-528.613	13.149
	300	205.016	525.792	340.098	427.096	-1654.667	-420.718	9.555
	7400 7200	205.016 205.016	534.518 542.887	348.019 355.647	447.598 468.100	-1648.115 -1641.630	-367210 -313.972	7.992 6.560
	2600	205.016	550.928	363.004	488.601	-1635.212	-260.993	5.243 4 mo
	2808	205.016	566.121	376.977	529.604	-1622.589	-155.758	730
	300	205.016 205.016	573.315 580.266	383.624 390.063	550.106 570.608	-1616.386 -1610.259	-103.482 -51.417	1.864 0.895
	PREVIOUS						CIRPENT:	CIRPENT: December 1978

CRYSTAL(α-β)-LIQUID

Refer to the individual tables for details.

0 to 848 K crystal, alpha 848 to 1132 K crystal, beta above 1132 K liquid

Lithium Sulfate (Li₂SO₄)

340,825 372,141 387,813 403,493 419,181 434,876 450,577 466,283 481,995

495.279 500.244 505.061 509.740 514.286 523.012 527.204 531.289

653.928

56.915 157.038 157.092 157.141

-0.262 -0.989 -1.672 -2.314 -2.919 -3.489 -4.029 -4.029 -5.025 -5.025

150.602

15.555 60.604 105.618

-1381.586 -1380.422 -1379.331 -1378.317

658.911 663.742 668.431 672.986

677.413 681 721 685.914 690.000 693.983

Hill Control of the c

240.485 285.390 330.279 375 149 420 003

-1376.528 -1375.757 -1375.072 -1374.475 -1373.968

497.711 513.432 529.157 544.885 560.617

539.160 542.955 546.662 550.285 553.828

157 186 157,228 157,266 157,302 157,335

-5.922 -6.339 -6.736 -7.115

464 847 509.682 554.512 599.332 644.153

-1373.236 -1373.236 -1373.017 -1372.828 -1372.826

576.352 592.090 607.831 623.574 639.320

697.868 701.660 705.364 708.984 712.522

157.366 157.394 157.421 157.445 157.448

-7.824 -8.155 -8.473 -8.778

688 974 733.801 778.631 823.470 868 318

-1372 904 -1373.092 -1373.391

557.294 560.687 564.008 567.262 570.451 573.577 576.643 579.651 582.604 582.502

715 983

157,490

-9.353 -9.624 -9.885 -10.136 -10.378

913 177 958.048 1002.940 1047.848

-1375.781 -1376.701 -1377.761 -1378.962

-1374.993

655.068 670.818 686.570 702.324 718.079 733.837 749.595 765.356 781.117

722.687 725.935 729.118 732.239 735.299 738.301

57.510 157.529 157.547 157.564 157.580 157.595 157.609 157.622 157.635 CURRENT December 1978 (1 bar)

-11.057 -11.268 -11.473

-1381.815 -1383.476 -1385.299 -1387.292

10.612

137.731

-1380.312

December 1978 (1 atm)

PREVIOUS

ithium Sulfate (Li ₂ SO ₄)	IDEAL GAS M _r = 109.9396 Lithium Sulfate (Li ₂ SO ₄)	Lithium S	ulfate (L	,i ₂ SO ₄)					Li ₂ O ₄ S ₁ (g)	_
%298 15 K) = [322 820 + 41 8] 1.K ⁻¹ .mol ⁻¹	$\Delta_t H^0(0 \mathbb{K}) = [-1030 445 \pm 83 7] \mathbb{k}^{1} \cdot \text{mol}^{-1}$ $\Delta_t H^0/08 15 \mathbb{K}) = [-1041 816 + 83 71 \mathbb{k}^{1} \cdot \text{mol}^{-1}]$	Enthalpy R	eference Te	mperature	Enthalpy Reference Temperature = T, = 293.15 K		Standard Sta	Standard State Pressure * p° = 0.1 MPa k l·mol ⁻¹	,* = 0.1 MPa	г—
		7/K	ູ	S -[G	S* -[G*-If(T,)]/T	$H^{\circ}-H^{\circ}(T_{r})$		δ. Δ.G•	log K,	
- Constant	Constraint Commence and Description	0	oʻ	ó	NFINITE	-19.652	-1030 445	-1030,445	INFINITE	
v, cm ⁻¹	Viorational frequencies, symmetries, and Degeneracies v, cm ⁻¹ v, cm ⁻¹ v, cm ⁻¹	88	51 737 79.551	242 404 286.652	397 499 331.470	-15.509 -8.963	-1033 791 -1038 393	-1020 650 -1005.671	533.133 262.654	
A LICOURT	B. (4601(1) F	82	91.859	305 764	324.443	-4.670	-1040.290	-997.264	208.367	
(1)[0701] IV	12 (1)(0)(1)	298 15	101.804	322.820	322.820	o.	-1041.816	-988.835	173 240	_
(1)[oc] (1)[oc]		88	102.151	323 451 339 858	322.822	0 189 5.516	-1041.869	-988.506	172.114	
(a)Tana'i	[420](1)	90	117.688	355.110	327.033	11.231	-1046.568	-970.239	126.700	
		\$ \$	123.463	369.316 382.578	330.951 335.458	23.560	-1048.340	-960.600 -950.137	99.260	
Ground State Quantum Weight: [1]	Veight: [1] $\sigma = [4]$	009	135.407	406.631	345.359	36 763	-1058.817	-928.668	80.848	
Point Group. [D _{2d}]	•	002	140 417	427.903	355.661	50.569	-1060 718	-906.818	67.668	
Bond Distances: S-O = [1.48] Å L+O = [1.90] Å	1.48] Å LI-O = [1.90] Å	38	145.621	464.019	375.867	79 337	-1062.165	-884.730	49.994	
Bond Angles: O-S-O = [1	Bond Angles: O-S-O = [109.47] O-LO = [79.0]	0001	148.589	479.574	385.472	94.102	-1116.264	-833 064	43.515	
Product of the Moments of	Product of the Moments of Inertia. $I_A/_B/_C = [1.210866 \times 10^{-1.1}]$ g ³ ·cm ⁸	001	150 099	493.810	394.683	109.040	-1115 979	-804 757	38.215	
to the state of the second of		308	152.216	519.070	411.926	139.287	-1115.644	-748.230	30.064	
unually of roundum. Vaporization experiments on Li-SO, have been carried of	undalpy of Tourisation. **Marging representations of the Property of the Finance of the Payler and Dmitriewskaya 2 (73–1223 K) and by the Property of the Payler and Payler	9	152 972	530.379	419.987	154.548	-1114.897	-720.009	26.864	
agannathan and Wyatt. 3 (1227–137) K). Ficalora et al. di	geamathan and Wysti. 7 (1277–137) K. Fizaloz et al. did no observe the Li-SO; on nor ions from Li-O in their Knidsen effusion	8 9	167 10	550.884	447.703	118,501	-1114.499	18,160-	150.42	
hass—spectrometric experiments. Decomposition to L1(g) v	ass-spectrometric experiments. Decomposition to Lu(g) was the dominant process observed. Vasiley and Dmitrievskaya2 carried out	1700	154,530	560.239	442 184	200.695	-1404.164	-621.159	19.086	
angmuir method experiments on solid and liquid lithium su	angmuir method experiments on solid and liquid lithium sulfate. Their experimental pressures are less than JANAF calculated dissociation	88	154.891	569.083	448 990	216 166	-1402.261	-575.156	16.691	
ressures from the two reactions $Li_2SO_4(1) = Li_2O(cr) + SO_2$	ressures from the two reactions Li ₂ SO ₄ (f) = Li ₂ O(cr) + SO ₄ (g) + 1/2 O ₄ (g) and Li ₂ SO ₄ (f) = 2 Li(g) + SO ₂ (g) + O ₄ (g). We have discounted	2002	155.463	585.433	461.831	247.205	-1398.549	-483 455	12.627	
beir results.		2100	155.692	593.024	467.899	262.763	-1396.747	-437.744	10.888	
Jagannathan and Wyatt carried out Knudsen effusion we	Jagannathan and Wyatt' carried out Knudsen effusion weight-loss experiments and transpiration experiments (in N ₂) on molten lithuum	2200	155.891	600.271	473.752	278.342	-1394.987	-392.118	9.310	
ulfate. Their transpiration experiments identified high lithiu	ulfate. Their transpiration experiments identified high lithium concentrations in the vapor, so that Li ₂ O(cr) formation cannot be the major	865	156.218	613.850	484.869	309.554	-1391.607	-301.100	6.553	
eaction. The effusion experiments yield apparent Li ₂ SO ₄ (g	eaction. The effusion experiments yield apparent Li ₂ SO ₄ (g) pressures of the same order of magnitude as our calculated decomposition	2500	156.354	620.230	490.157	325.183	-1389.995	-255.696	5.342	
ressures (to L ₁₂ O(cr). The data from' leads to $\Delta_1 H^0(1300 \text{ K}) = 58 \pm 20 \text{ kcal mol}^{-1}$ for) = 58 ± 20 kcal mol ⁻¹ for molecular vaporization. When this result is combined	2600	156 474	626.365	495.279	340,825	-1388.438	-210.355	4.226	
anth auxiliary JANAF data, we obtain $\Delta_i H^0(\text{Li}_2 \text{SO}_4$, g, 298.15 K) = -266 ± 20 kcal·mol ⁻¹	$8.15 \text{ K}) = -266 \pm 20 \text{ kcal·mol}^{-1}$	2700	156.582	632.272	500.244	356 477	-1386.939	-165.072	3.194	
From trends in the enthalpies and entropies of sublimation $\frac{1}{2}$ and $\frac{1}{2}$ \frac		7800	156.765	643.468	509.740	387.813	-1384.128	-74.667	34.	
Cal find $\Delta M = \Delta M + \Delta M = \Delta M = \Delta M + \Delta M = \Delta$	ca mot and the cause of the cau	9000	156.843	648 784	514.286	403.493	-1382.822	-29.535	0.514	_

Enthalpy of Formation

From trends in the enthalpies and entropies of sublimation for the other alkali sulfates we would estimate $\Delta H^{q}(1200 \text{ K}) = 75 \pm 15$ kcal mol⁻¹ and $\Delta S^{q}(1200 \text{ K}) = 35 \pm 5$ cal·K⁻¹-mol⁻¹ for Li₂SO₄(g). This estimate leads to $\Delta_1 H^{q}(\text{Li}_2SO_4) = 298.15 \text{ K} = -249 \pm 28 \text{ kcal mol}^{-1}$. We adopt this estimate for this tabulation.

Heat Capacity and Entropy

The adopted structure (D₂₈ symmetry) is based on the similar symmetry assigned to Cs₂SO₄(g) and K₂SO₄(g) in the high-temperature electron diffraction studies of Ugavov *et al.*³ and Spindonov and Lutoshkin. The internuclear distance of 1 48 Å for S-O is taken from data on other sulfates⁷ while Li-O = 1.90 Å is an estimate based on trends among lithium and sodium compounds. The Li-O distance of 1 96 Å found by Alcock *et al.*³ seems a bit long. The principal moments of inertia are $I_A = 15.5185 \times 10^{-39}$ g cm² and $I_B = I_C = 27.9333 \times 10^{-39}$ B-CIII

Estimates of the eleven fundamental frequencies of Li₅SO₄ are based on comparisons with Na₅SO₄(g) and K₅SO₄(g),⁷ data on crystalline L₁SO₄,⁸ and on a normal coordinate analysis of Devlin. ¹⁰ Uncertainties in the estimates of the molecular constants and gas-phase frequencies may contribute 10 cal·K⁻¹·mol⁻¹ to S°(298.15 K).

References

J. Ficalora, O. M. Uy, D. W. Muenow, and J. L. Maggrave, J. Amer. Ceram. Soc. 51, 574 (1968).
 G. Vasilev and E. V. Dmitrievskaya, Russ. J Phys. Chem. 48, 1696 (1974).

³G. V Jagamathan and P. A. H. Wyatt, J. Chem. Res. (M) 2744 (1978).

⁴K. H. Lau, D. Cubicctotti, and D. L. Hildenbrand, J. Electrochem. Soc. 126, 490 (1979).

⁵V. V. Ugarov, Yu. S. Ezhov, and N. G. Rambidt, J. Molec. Struct. 25, 277 (1975).

⁴V. P. Spiridonov and B. I. Lutoshkin, Vestn. Mosk. Univ. Khim. 11, 509 (1970).
³IANAF Thermochemical Tables K₃SO₄(g), Na₃SO₄(g), 6–30–78; Li₂SO₄(l), 12–31–78.
⁴N. W. Alcock, D. A. Evans, and H. D. B. Jenkins, Acta. Cryst. B29, 360 (1973).

H. Takahashi, S. Meshitsuka, and K. Higasi, Spectrochim. Acta. 31A, 1617 (1975)

Devlin, Oklahoma State University, personal communication, (July, 1979).

Ξ S

CURRENT June 1967

Lithium Silicate (Li-Si,O₅)

CRYSTAL (I-II)

M_r = 150.0500 Lithium Silicate (Li₂Si₂O₅)

Li₂O₅Si₂(cr)

Δ_tH°(0 K) = Unknown Δ_{trs}H° = 0.941 kJ·mol⁻¹ $\Delta_t H^{\circ}(298.15 \text{ K}) = -2560.90 \pm 4.2 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_{l_m}H^{\circ} = \{53.8061 \text{ kJ} \cdot \text{mol}^{-1}$

nally -60.86), using recent $4_1H^2(298.15K)$ values for LLC((cr), LL₂SO₄(cr), HCl(aq), H₂SO₄(aq), and L₂O(cr). The corresponding enthalpy changes, $\Delta_1H^2(298.15K)$, for the reaction Li₂O(cr) + 2SiO₄(quartz) = L₂Si₂O₅(cr) are derived as -33.21 and -34.30 kcal·mol⁻¹. Adopting the weighted average $\Delta_1H^2(298.15K) = -33.57$ kcal·mol⁻¹ with $\Delta_1H^2(Li_2O, cr, 298.15K) = -143.1$ kcal·mol⁻¹ and $\Delta_1H^2(SiO_2, quartz, 298.15K) = -217.7$ kcal·mol⁻¹, we obtain $\Delta_1H^2(298.15K) = -612.07$ kcal·mol⁻¹ for Li₂Si₂O₅(cr). This value is independent of future The entialpies of solution of LiCI(cr), Li₂SO₄(cr), SiO₄(quartz) and Li₂Sr₂O₃(cr) in 20 per cent hydrofluoric acid at 74.7°C were measured by Kracek ¹ The authors derived two values of Δ₂₆₆H of Li₂O(cr) from those of LiCI(cr) and Li₂SO₄(cr), presumably employing auxiliary data from. ² We recalculate Δ₂₆₆H of Li₂O(cr) as –58.74 (chloride scheme, originally –59.36) and –59 83 kcal mol⁻¹ (sulfate scheme, originally $S^{(298.15 \text{ K})} = [125.520] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ **Enthalpy of Formation** Thus = 1307 ± 1 K

The enthalpies of solution of LiOH(cr) and Li,Si,Oo(cr) in 20 per cent HF(aq) at 50°C were measured by Hatton et al 3 By use of a reaction scheme similar to that described on the Li₂SiO₃(α) table, the enthalpy change at 298.15 K for the reaction 2L₁OH(α) + 2SiO₂(α) \rightarrow Li₂Si₂O₃(cr) + H₂O(l) was calculated to be -13.44 kcal mol⁻¹. Incorporating this value with Δ_1H^2 (298 I5 K) = -115.84, -217.7 and -68.315 kcal mol⁻¹ for LiOH(cr), SiO₂(cr), and H₂O(l), respectively, we obtain Δ_1H^2 (Li₂Si₂O₃, cr, 298.15 K) = -612.20 ± 2.0 changes in $\Delta_t H^0$ (298.15 K) of Lt₂O(cr) but the values of $\Delta_{sob} H$ and $\Delta_t H^0$ are not independent. ccal mol-', which is in excellent agreement with the adopted value.

Heat Capacity and Entropy

Both heat capacities and S'(298 15 K) are estimated by comparison with those for Na₂Si₂O₃(cr), Na₂O(cr) and Li₂O(cr).

Fransition Data

The transition temperature, Tm = 1209 K, is taken from Kracek. The author estimated a enthalpy of transition of 1 to 2 cal·K⁻¹·mol⁻¹ based on the arrest in the cooling and heating curves. The value of \$\Delta_{tr}H^{\circ}\$ is calculated assuming the enthalpy of transition at 1209 K is 1.5 :al·K - l·mol -

Fusion Data

composition 19.92 per cent Li₂O and 80.08 per cent SiO₂, reported by Kracek, ⁴ is adopted as T_{ns}. The enthalpy of melting is evaluated such that Δ_{ns}H'(298.15 K) + Δ_{ns}H'(298.15 K) = 11.43 kcal·mol⁻¹, where the value 11.43 kcal·mol⁻¹ is the difference between Δ_H'(298.15 K) for Li₂Si₂O₃(cr) and Li₂Si₂O₃(f). The latter were determined by solution calorimetry by Kracek (refer to the Enthalpy of Formation sections in Incongruent melting of Li,Si,O₃(cr) at 1033°C has been reported by Kracek³ and Kracek.⁴ The liquidus temperature of 1034°C at the crystal and Inquid tables).

References

¹R. C. Kracek, Ann. Rept. Director of the Geophysical Laboratory, No. 1215, 69 (1953).
²U. S. Nat. Bur. Stand. Circ. 500, (1952).
³W. E. Hatton, G. C. Sinke, D. L. Hildenbrand, and D. R. Stull, The Dow Chemical Co., Midland, Michigan, (1959).
⁴F. C. Kracek, J. Amer Chem. Soc 61, 2863 (1939).
⁵F. C. Kracek, J. Phys. Chem. 34, 2641 (1930).

Standard State Pressure = p = 0.1 MPa 58 445 48.164 43.733 39.755 36.164 32.908 229.943 27.231 420.655 309.151 242.178 197.481 165.576 141.671 123.099 108.261 log K <--> LIOUID I <--> II -2268.388 -2218.898 -2169.759 -2120.990 -2072.599 -1790.223 -1729.121 -1659.740 -1590.756 -1522.153 -1453.912 -1386.012 -1318.439 -1251.174 -1184.202 -2024.585 -1976.947 -1882.902 -1836.398 -2415.954 -2367.401 -2318.171 -1929.746 -2416.848 δĀ -2536.318 -2531.474 -2526 436 -2912.119 -2904 970 -2897.761 -2890.530 -2560 946 -2561 976 -2567.627 -256.295 -2564.136 -2561.408 -2558.215 -2554.617 -2550.660 -2540 956 -2883.319 -2560.901 K-mod Δ_{cH} $H^{\bullet}-H^{\bullet}(T_t)$ 216 960 241 929 267,239 292 876 318 747 344 786 370.946 397.190 193.556 194.497 218.698 16.098 34.516 54.466 75.507 97.387 120.000 143.248 167.052 423.477 Enthalpy Reference Temperature = T, = 29&15 K $S^{\bullet} - [G^{\bullet} - H^{\bullet}(T_{i})]T$ 247.358 158.287 173.613 188.951 203.978 218.552 232.618 246.164 259.253 260.150 271.841 283.949 295.606 306.839 317.672 328.129 338.230 347.995 357.441 366.586 375.447 384.038 J·K-'mol-' 407 454 408 233 426.145 444.648 462.109 549.650 561.889 573.591 584.802 595.560 384.483 478.653 509.220 523.364 536.825 249 062 427.478 248.195 205 685 214.890 222.589 229.492 235.350 240.617 245.182 248.417 251.207 259.617 262.978 263.174 ů 300 400 500 600 700 800 900 1100 1200 1200 1200 1200 1200 307,000 298.15 300

PREVIOUS

LI₂O₅SI₂(I)

M_r = 150.0500 Lithium Silicate (Li₂Si₂O₅)

 $\Delta_t H^{\circ}(298.15 \text{ K}) = [-2513 068] \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_{\text{tus}} H^{\circ} = [53 806] \text{ kJ} \cdot \text{mol}^{-1}$

Lithium Silicate (Li₂Si₂O₅)

PREVIOUS:

CURRENT: June 1967

_
Si205
ate (Li
Silici
Lithium

LIQUID

 $S^{(298 15 \text{ K})} = [160.243] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ Tha = 1307 ± 1 K

reaction Li₂O(cr), +2SiO₄(quartz) = Li₂Si₂O₅(g) as -21.78 and -22.87 kcal mol⁻¹. Adopting the vicibited average $\Delta_4 H^9$ (298.15 K) = -22.14 kcal-mol⁻¹ with $\Delta_1 H^9$ (Li₂O, cr, 298.15 K) = -143.1 kcal-mol⁻¹ and $\Delta_1 H^9$ (SiO₂, quartz, 298.15 K) = -21.77 kcal-mol⁻¹, we obtain $\Delta_1 H^9$ (298.15 K) = -600.640 kcal-mol⁻¹ for Li₂Si₂O₅(g)). This ΔH^9 (Li₂Si₂O₃, gl, 298.15 K) value is independent of future changes in $\Delta_1 H^9$ (298.15 K) of Li₂O(cr) but the values of $\Delta_2 H^9$ and $\Delta_1 H^9$ are not independent. The enthalpies of solution of LiCI(cr), Li₂SO₄(cr), SiO₂(quartz) and Li₂Si₂O₃(gl) in 20 per cent hydrofluoric acid at 74 T°C were measured by Kracek. Following the same procedure as described in Li2Si2OS(cr) table, we derived the enthalpy changes, A₄H°(298 15 K), for the **Enthalpy of Formation**

Heat Capacity and Entropy

The heat capacity is estimated by comparison with those for Na₂Si₂O₃(I), Na₂SiO₃(I) and Li₂SiO₃(I). A glass transition temperature at 800 K is assumed, i.e. the heat capacities below 800 K are taken from those for Li₂Si₂O₃(cr) and above 800 K are assumed to be constant.

S'CLi₂Si₂O₃, I, 298 15 K) is calculated from S'CLi₂Si₂O₃, cr, 298.15 K) by adding the entropy of fusion, Δ_{Iu₂S'}(1307 K), and the fidderence in entropy, S'(1307 K)–S'298.15 K), between the crystal and liquid.

Refer to the crystal table for details. Fusion Data

References ¹F. C. Kracek, Ann. Rept. Director of the Geophysical Laboratory, No. 1215, 69, (1953).

5
Liss
e (1
ig
SIII
E
ij
0
920
20.0
Ï
×

Li ₂ O ₅ Si ₂ (cr,l)	• = 0.1 MPa	log Kr		423.422	420.655 309.151 247.178	197.481	165.576	123.099	96.140 86.054		77.538	ŀ	70.395 64.226	58.838 53.624	48.748	40.485	36.955 33.752 30.835	28.166	23.458	19.439	o)ASC
Ľį.	ite Pressure = p*	₽G•		-2416.848	-2415.954 -2367.401 -2318.171	-2268.388	-2218.898	-2120.990	-2024.585 -1976.947	I <> II	-1929.746	TRANSITION	-1886.737	-1802.273	-1679.849 -1614.814	-1550.102	-1485.694 -1421.569 -1357.717	-1294.119 -1230.763	-1167.635	-1042.020	-917.194
	Standard State Pressure	_		-2560.901	-2560.946 -2561.976 -2567.677	-2566.295	-2564.136	-2558.215	-2550.660			¥."	-2482.396	-2473.253 -2859.704	-2853.489 -2847.336	-2841.245	-2835.217 -2829.253 -2823.356	-2817.526	-2806.078	-2794.925 -2789.465	-7784.083
	×	H*-H*(T,)		Ö	0.256 16.098 34.516	54.466	75.507	120,000	167.052	193.556	216.960	218.698	295.851 320.955	346.059	396.267 421.371	446.475	471.579 496.683 521.787	546.891 571.995	597.099	647.307	697.515
	. T, = 298.15 K	-[G*-H*(T,)]/T		125.520	131.457	158.287	173.613	203.978	232.618	247.358	259.253	260.150 260.150	274.580	303.137	328.844 340.791	352.204	363.129 373.603 383.664	393.341	411.652	428.729	444.725
(Li ₂ Si ₂ O ₅)	Enthalpy Reference Temperature = T.	S -[G		125.520	126.377	249.062	281.479	337.312	384.483	407.454	426.145	427.478 468.646	485,902	519.424	548.992 562.565	575.442	587.690 599.368 610.527	621.212	641.306	659.910	677.230
llicate (eference I	ಚ		138.072	138.909	205.685	214.890	229.492	240.617			248.417 251.040	251.040	251.040	251.040 251.040	251.040	22.22 22.22 25.040 26.040 26.040	25.05 040.12	251.040	25 86 86 86 86 86 86 86 86 86 86 86 86 86	251,040
Lithium Silicate (Ll ₂ Sl ₂ O ₃)	Enthalpy Re	7/K	0 8 8	298.15	888	8 8	55	888	882	1209.000	1300	1307,000	1400	1200	006 81	2000	2200 2300 2300	2400 2500	2600	2800 2800 2800	3000

CRYSTAL(I-II)-LIQUID

Refer to the individual tables for details.

0 to 1209 K crystal, I 1209 to 1307 K crystal, II above 1307 K liquid

Lithium Silicate (LI₂Si₂O₅)

Li₃N₁(cr)

CURRENT. March 1978

こくというこく	7
ï	•
=	=
	¢
:	
-	
4	ľ
٦	Э

M_r = 34.8297 Lithium Nitride (Li₃N) $\Delta_t H^o(0 \text{ K}) = -157.57 \pm 1.3 \text{ kJ·mol}^{-1}$ $\Delta_t H^o(298.15 \text{ K}) = -164.56 \pm 1.1 \text{ kJ·mol}^{-1}$ $S^{\circ}(298.15 \text{ K}) = 62.593 \pm 0.13 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ Lithium Nitride (Li₃N) T_{fus} = 1086 K

Enthalpy of Formation

The adopted enthalpy of formation for LisN(cr) is derived from the solution calorimetric study of O'Hare and Johnson. 1 The reported value have been revised by Osbome and Flotow² to correct for the current atomic weight of Inhium to give $\Delta_1 H^3$ (298 15 K) = -39.33 ± 0.2

Previous studies on the measurement of the enthalpy of reaction of lithium with nitrogen and the enthalpy of solution of Li₁N in water are currently thought to be less reliable. Both these studies 47 kuccirckal mol⁻¹ kcal mol⁻¹ at 900 K. These are suspect since L_bN₂Cl₃ may be involved in the reaction 6 A 2nd and 3rd law analysis of this latter data suggest a $S^{\circ}(298\ 15\ K)$ value which is $1.8\ \text{cal·K}^{-1} \cdot \text{mol}^{-1}$ smaller than our adopted value and a 3rd law $\Delta_{1}H^{\circ}(298\ 15\ K)$ value which is $1.8\ \text{cal·K}^{-1} \cdot \text{mol}^{-1}$ smaller than our adopted value and a 3rd law $\Delta_{1}H^{\circ}(298\ 15\ K)$ value which is $1.8\ \text{cal·K}^{-1} \cdot \text{mol}^{-1}$ smaller than our adopted value and a 3rd law $\Delta_{1}H^{\circ}(298\ 15\ K)$ value which is $1.8\ \text{cal·K}^{-1} \cdot \text{mol}^{-1}$ smaller than our adopted value and $1.8\ \text{cal·K}^{-1} \cdot \text{mol}^{-1}$ smaller than our adopted value and $1.8\ \text{cal·K}^{-1} \cdot \text{mol}^{-1}$ smaller than our adopted value and $1.8\ \text{cal·K}^{-1} \cdot \text{mol}^{-1}$ smaller than our adopted value and $1.8\ \text{cal·K}^{-1} \cdot \text{mol}^{-1}$ smaller than our adopted value $1.8\ \text{cal·K}^{-1} \cdot \text{mol}^{-1}$ smaller than our adopted value $1.8\ \text{cal·K}^{-1} \cdot \text{mol}^{-1}$ smaller than our adopted value $1.8\ \text{cal·K}^{-1} \cdot \text{mol}^{-1}$ smaller than $1.8\ \text$ by 2 kcal·mol-1 than our adopted value The 5°(298 15 K) discrepancy is very difficult to reconcile without a unreasonable change in the teat capacity values. Yonco et al. studied the solubility of nitrogen in liquid lithium (468-714 K) and the equilibrium pressure of nitrogen over solid List (933-1051 K). A 2nd and 3rd law analysis of their reported $\Delta_i G^*(T)$ values supports our adopted $S^*(298.15 \, \mathrm{K})$ value, to within Ω_i cal·K⁻¹ mol⁻¹, but suggests a 3rd law Δ_H (298.15 k) value which is more positive by roughly 1.5 kcal·mol⁻¹ than our adopted value. En measurements (823-973 K) of Bonomi et al. 6 gave $\Delta_i G^o(T)$ values which are also more positive than our adopted values by roughly kcal·mol-1. This uncertainty is derived from the experimental studies

Heat Capacity and Entropy

characterized sample of L_{IJ}N between 5 and 350 K. They used the results of Satoh,⁷ ice calorimetric data from 273 to 773 K, to extend the heat capacity results to 773 K and then extrapolate to 1086 K, the melting point of L_{IJ}N.¹⁵ The thermal functions adopted are those tabulated by Osborne and Flotow. These authors determined the heat capacity of a we

As a check, the low temperature experimental heat capacity values are smoothed by fitting the data with orthogonal polynomials ove selected overlapping temperature intervals. This fitting procedure gave an \$7(298 15 K) identical to that reported by Osborne and Flotow. The ice calorimetric data of Satoh⁷ are not extensive enough to reliably define the enture heat capacity dependence from 350 to 1086 K however the three data prints at 373 K, 578 K, and 773 K are sufficent to define a reasonable temperature dependence

References

A. G. O'Hare and G. K. Johnson, J. Chem. Thermodyn. 7, 13 (1975).
 W. Osborne and H. E. Flotow, J. Chem. Thermodyn. 10, 675 (1978).

³A. Guntz, Compt. Rend. 123, 995 (1896).

A. Bonomi, M. Hadate, and C Gentaz, "Proceedings of the International Symposium on Molten Salts," J P Pemsler, ed , Electrochemica Neumann, C. Kroger, and H. Z. Haebler, Anorg. Allg. Chem. 204, 81 (1932).
 M. Yonco, E. Veleckis, and V. A. Marom, Nucl. Mat. 57, 317 (1975).

⁷S. Satoh, Inst. Phys. Chem. Res Sci. Papers (Toyko) 35, 182 (1939) Society, Princeton, N.J., May, pp. 78-92, (1961).

77K C; S - (-C'-H'CT))T H'-H'CT, 0 0, 0 0 INFINITE - 11.212 200 52.204 10.114 114.995 - 10.488 200 75.44 63.059 62.593 0.0 300 75.44 63.059 62.593 0.139 400 85.400 107.004 71.561 17.201 600 106.430 125.522 79.367 77.511 600 115.800 125.522 79.367 77.693 600 124.380 125.522 79.367 77.693 1100 148.693 20.1939 118.293 77.333 1100 148.693 20.1939 118.293 77.333 1100 148.693 20.1939 118.393 77.333 1100 148.693 20.1939 118.393 77.333 1100 148.693 20.1939 118.393 77.333 1100 148.693 20.1939 118.393 77.333	7 7	Enthalpy F	Reference Te	emperature	Enthalpy Reference Temperature = T, = 298.15 K		Standard State	Standard State Pressure = $p^* = 0.1 \text{ MPa}$ k1-mol ⁻¹	, - 0.1 MPa
0		ТЖ	ಚ)- s	H'(T,)]/T	H*-H*(T,)	Δ.H.	δ,Ο,Φ	log Kr
298.15 75.266 62.593 62.593 0 -164.557 -128.60 300 75.44 60.059 62.543 6.134 1.84.71 -16.128.47 -16.128.47 -16.128.47 -16.128.41 -16.128.41 -16.128.41 -16.128.41 -16.128.41 -16.128.41 -16.128.41 -16.128.41 -16.128.41 -16.128.41 -16.128.41 -16.128.41 -16.128.41 -16.128.41 -16.128.41 -16.128.41 -16.128.41 -16.128.41 -17.139 -16.128.41 -17.139		0000	0. 22.204 55.417	0. 10.114 36.403	INFINITE 114.995 68.917	-11.212 -10.488 -6.503	-157.567 -159.779 -162.774	-157.567 -150.597 -140.160	1NF1NTTE 78.664 36.606
300 75,544 6,0159 -164.58 -18.417 3 400 81,100 66,254 6,5118 8,116 -164.58 -167.81 500 96,940 107,004 71,961 715,21 -175,226 -115,98 600 106,450 125,222 95,467 27,693 -175,236 -18,148 700 115,380 142,520 87,197 38,796 -175,439 -18,148 800 124,380 145,252 87,197 38,796 -175,434 -59,146 800 124,380 134,773 103,039 63,661 -170,434 -45,146 900 140,950 188 192 110,839 77,351 -167,418 -13,233 1100 148,693 20,995 118,430 13,243 -16,222 -17,779 1100 148,693 20,995 133,375 123,661 -132,633 -17,799 120 130 133,375 123,661 -132,623 -17,779 130<	و	298.15	75.266	62.593	62.593	0	-164.557	-128.640	22.537
800 96.940 107,004 71.961 17.331 -17.738 -102.781 70 700 115.540 12.322 73.947 27.693 -173.998 -181.48 700 115.340 18.622 93.135 50.797 -173.49 -73.456 900 124.380 188.192 110.839 77.333 -167.418 -73.456 100 140.950 188.192 110.839 77.333 -167.418 -31.031 1100 148.693 201.995 118.503 91.841 -167.418 -17.779 1200 163.177 228.030 133.375 123.651 -152.628 7.799 130 131.77 228.030 133.375 123.651 -152.628 7.799	٦	Š Š	75.544 87.100	63.059	62.594	0.139	-165.664	-128.417	22.359
600 106.450 125.22 79.567 27.693 -1715 998 -78.148 700 115.309 142.620 87.137 38.796 -1715 191 -771556 800 124.300 186.52 95.135 87.097 -1715 191 -771556 800 124.300 187.293 110.039 63.145 -17174 -59.146 900 115.840 17777 110.039 77.333 -167.478 -31.203 1100 186.693 201.595 118.203 125.203 126.016 107.084 -167.278 -17779 1100 186.693 201.525 126.016 107.084 -167.278 -1779 120.00 163.177 228.030 133.375 123.051 -152.628 77.799 -7		200	96.940	107.004	19611	17.521	-175.728	-102 781	10 737
800 124380 184622 95.1135 95.759 -1713.44 -591480	· z	96	106.430	125.522	79.367	27.693	-175 998	-88.148	7.674
900 132.840 (73.773 103.039 63.661 - 170.832 - 45.008	_	8	174 380	158 637	95 135	50.797	-173 434	- 59 146	3.862
1100 146.593 101.995 111.503 111.00 146.593 101.995 111.00 146.593 111	· 'E	88	132.840	173.773	103.039	63.661	-170.832	-45.008	2,612
1300 163.177 228.030 133.375 123.051 -132.028 -1779 1300 163.177 228.030 133.375 123.051 -152.028 -1779	7	89	140.930	761 091	110.659	1,333	-10/.418	-51.203	0.00
	S S	388 388 388 388 388 388 388 388 388 388	148.693 156.108 163.177	201.595 215.253 228.030	133.375 133.375	91.841 107.084 123.051	-163.222 -158.281 -152.628	-4.769 -4.769 7.799	0.844 0.208 -0.313
	2								
	= 1								
	<u> </u>								
	5								
	7 · V								
=	;								
7									
7									
7									
7									
	দ্ৰ								

PREVIOUS: September 1966

Continued from page 1497

⁶D. V. Rigney, S. M. Kapelner, and R. E. Cleary, U. S. AEC Report TIM-844, (1965). ⁷V. M. Anisimov and L. D. Volyak, Teplofiz. Vussh Temp. 7, 317 (1969).

E. E. Shpil'rain and A. M Belova, Teplofiz. Vyssh. Temp. 6. 342 (1968).

E. Suppi faut and A. Ivi Decova, repont. 7 year, 1019.
 A. Bogros, Ann. Phys. [10] 17, 199 (1929); Compt. rend. 191, 322 (1930).
 M. Maucherat, Compt. rend. 208, 499 (1939); J. Phys. Radium 10, 441 (1939).
 P. Y. Achener and D. L. Fisher, U. S. AEC Report AGN-8191, Volume 2, (1967).
 P. Y. Achener and D. L. Fisher, U. S. AEC Report AGN-8191, Volume 2, (1967).
 P. C. H. J. Wu, J. Chem. Phys. 65, 3181 (1976).
 P. C. E. Bonilla, U. S. DOE Report COO-3027-30, (1977).
 P. C. E. Moore, U. S. Nat. Bur. Stand., NSRDS-NBS 35, Volume 1, 1970 (Reprint of NBS Circular 467, Volume 1, 1949).
 R. Downey, Jr., The Dow Chemical company, Rept. AFOSR-TR-78-0960, Contract No. F44620-75-1-6048,

Continued from page 1506

F. T Gucker and K. N. Schmmke, J Amer. Chem. Soc. 55, 1013 (1933).
N. N Beketov, Bull. Acad. Sci. Russ. 32, 186 (1888).
H. R. Forcrand, Compt. Rend. 144, 1403 (1907).
L. G. Fasolino, in a Nat. Research Corp. Quarterly Report, July 1 to (September 30, 1962).
G. Fasolino, in a Nat. Research Corp. Quarterly Report, July 1 to (September 30, 1962).
G. R. Shodigina and K. A. Gomelskii, Russian J. Phys. Chem. 35, 898 (1961).
L. B. N. Rodigina and K. A. Gomelskii, Russian J. Phys. Chem. 31, 1009 (1953).
L. Brewer and J. L. Margrave, J. Phys. Chem. 59, 421 (1955).
H. van Kooster and F. Jæger, Proc. Roy Acad. Sco., Amsterdam 16, 857 (1914).
A. Glassner, Argonne National Laboratory, AlL.-5750, (1957).
Berkowitz, W. A. Chupka, G. D. Blue and J. L. Margrave, J. Phys. Chem. Phys. 39, 296 (1963).
D. White, K. S. Seshadri, D. F. Dever, D. E. Mann and M. J. Linevsky, J. Chem. Phys. 39, 296 (1963).
D. L. Hildenbrand, W. F. Hall and N. D. Potter, J. Chem. Phys. 39, 296 (1963).
D. L. Hildenbrand, L. P. Theard, W. F. Hall and N. D. Potter, Fifth Quarterly Technical Report, U-2289, Aeronu-

²⁰L. P. Firsova and A. N. Nesmeyanov, Russian J. Phys. Chem. 34, 1232 (1960). tronic Division of Philco Corporation, (September 15, 1963).

¹¹H. Prophet, Dow Chemical Co., ARPA-1-150, (March 9, 1961).

J. Phys. Chem. Ref. Data, Monograph 9