CÔNG NGHỆ NANO NANOPHOTONICS AND PLASMONICS

Nội dung bài giảng

- Tinh thể quang tử (Ph.C.): Trong thiên nhiên, trong khoa học & công nghiệp.
- Thực hành: Tính toán các vùng cấm quang của Ph.C. sử dụng phần mềm OptiFDTD.
- 3. Các kiểu sai hỏng trong Ph.C.: Nguyên lý giam giữ và truyền dẫn ánh sáng.
- 4. Thực hành: Xác định các mode sai hỏng bằng tính toán.
 - Mô phỏng truyền dẫn ánh sáng trong Ph.C.: Tách dòng ánh sáng.

I. Tinh thể quang tử - Photonic Crystals

Các cấu trúc tuần hoàn trong không gian

Trong thiên nhiên

Trong nghiên cứu khoa học

Công nghệ chế tạo

Tính chất quang học: có vùng cấm quang (Photonic Band Gaps)

II. Thực hành: Tính toán các vùng cấm quang của Ph.C. sử dụng OptiFDTD

III. Các sai hỏng trong Ph.C. Nguyên lý giam giữ và truyền dẫn ánh sáng

Nguyên lý

Các dạng sai hỏng trong Ph.C.

Sai hỏng điểm (Point defect)

Sai hỏng đường (Line defect)

So sánh các kết quả nghiên cứu lý thuyết và ứng dụng

IV. Thực hành:

- Xác định các mode sai hỏng bằng tính toán.
- Mô phỏng truyền dẫn ánh sáng trong Ph.C.

Homework

- 1. Tìm hiểu về các mode truyền dẫn TE và TM.
- 2. Tìm hiểu về thuật toán FDTD trong các trường hợp 2 và 3 chiều.
- 3. Phương pháp khai triển sóng phẳng (PWE method).
- 4. Điều kiện biên PML (Perfectly Matched Layer).
- 5. Tạo trường đầu vào (Input fields) trong OptiFDTD.

