

# Denial of Service - DoS

CATALIN BOJA

CATALIN.BOJA@IE.ASE.RO

### Disclaimer

- It is illegal to perform these activities on resources (servers, Web-sites, computers, network services, etc) on which you don't have permission
- All examples and tools are shown for academic purposes
- The use of any presented software or script is your responsibility

## Course

- Terminology & Definitions
- Characteristics
- Common DDoS attacks
- DoS prevention

### Resources

- Kaufman, Perlman, and Speciner. Network Security: Private Communication in a Public World, Second Edition, Prentice Hall PTR, 2002, ISBN 0130460192.
- Cheswick, Bellovin, and Rubin. Firewalls and Internet Security: Repelling the Wily Hacker, Second Edition, Addison-Wesley Professional, 2003, ISBN 020163466X.
- Incapsula online documentation, <a href="https://www.incapsula.com/ddos/">https://www.incapsula.com/ddos/</a>
- Wikipedia, <a href="https://en.wikipedia.org">https://en.wikipedia.org</a>

- Attack vector: request or use more resources than the service provider can handle
- Objective: Affects or disrupts the business or the service as valid users are not able to use it at all or in "normal" conditions
- Usually generates traffic around 100 Gbps limit (near the target) but overall can exceed this limit (since 2016 there are more attacks near or over the limit)
- ▶ Uses infected devices or 'zombie machines' in coordinated attacks
- Attacker 'unlimited' ability to generate requests vs. defender 'limited' resources (bandwith, processor power, memory) to respond

- Targeted resources
  - ▶ The connection limited by the maximum bandwidth
  - The processor limited by the number of messages that it can process
  - The memory limited
  - Logic resources as number of available connections limited
- It's cheaper to create and send a message vs processing the message
- The first recorded attack in 1974 courtesy <u>David Dennis</u>, a <u>13-year-old</u> <u>student at University High School</u>

- Easy to implement on your home computer
- Requires few technical skills perfect for script kiddies
- Can be automatized with dedicated software and scripts
- Can be rented as a service DDoS-forhire services (booters or stresser)
- Difficult to mitigate



https://www.incapsula.com/ddos/booters-stressers-ddosers.html











#### Based on Akamai research (2015):

- average DDoS attack duration: 19-22 hours
- ► Targeted services:
  - ▶ 50% gaming industry services (game servers mostly)
  - ▶ 25% software and technology companies
  - Less than 5% Telco industry

## Terminology & Definitions

- DoS Denial of Service
- DDoS Distributed Denial of Service: a coordinated DoS attack conducted from multiple sources
- Botnet "zombie army" / a group of hijacked Internet-connected devices
- Booter/Stresser DDoS-for-hire business (not so legal)
- ▶ **IP spoofing** change the source IP value of a network packet

### DDoS – Distributed Denial of Service

- Is a DoS attack conducted from multiple devices/machines
  - "zombie army"/botnets infected by malware
  - Legit clients which are forced to connect to the DoS target by exploiting protocols vulnerabilities – amplify and reflect techniques
- Requires coordination from a C&C (Command and Control) center
- Can use malware to infect and control the botnets
- Implements a wide range of different DoS attacks



Source: <a href="https://www.realnets.com/our-blog/massive-ddos-attacks-lizardstresser/">https://www.realnets.com/our-blog/massive-ddos-attacks-lizardstresser/</a>

## Scope

- ► **Hacktivism** to make a public statement
- Cyber vandalism mostly script-kiddies
- Extortion for the money
- Business competition to disrupt competition services
- Personal rivalry just personal (mostly gamers stuff)
- Cyberwarfare state backed attacks

## Scope



## Recent history of DDoS attacks

- 2013 Largest DDoS attack that exceeded the 100 Gbps limit
  - ▶ hit the CloudFlare network, which hosts <u>SpamHaus.org</u>
  - Upstream providers have seen traffic > 350 Gbps
  - Affected Internet connections in Europe
  - ▶ Until then a common DDoS were peaking around 20 40 Gbps

## Recent history of DDoS attacks

- 2016 Mirai botnet DDoS
  - the Mirai malware infected Internet of Things (IoT) devices between 100,000 150,000 devices, mostly CCTV and IP Cameras (which were using default admin accounts)
  - generated more than 500 Gbps on the target
  - targeted DNS provider Dyn affecting Twitter, GitHub, Amazon, Netflix, Pinterest, Etsy, Reddit, PayPal, and AirBnb services
  - ▶ hit French Internet service and hosting provider OVH traffic <u>peaked at 1.1 Tbps</u>
  - were able to isolate Liberia from the rest of the Internet (they have only 1 underwater cable connection)
  - https://thehackernews.com/2016/09/ddos-attack-iot.html
  - Why and how it started <a href="https://www.wired.com/story/mirai-botnet-minecraft-scam-brought-down-the-internet/">https://www.wired.com/story/mirai-botnet-minecraft-scam-brought-down-the-internet/</a>
  - https://github.com/jgamblin/Mirai-Source-Code

## Recent history of DDoS attacks

- March 2018 GitHub DDoS
  - The largest recorded DDoS with a peak of 1.35Tbps ~ 126.9 million requests per second (RPS)
  - https://githubengineering.com/ddosincident-report/
  - Uses a new Memcached UDP Reflection and Amplification attack
  - https://blog.cloudflare.com/memcrash ed-major-amplification-attacks-fromport-11211/



Source: https://githubengineering.com/ddos-incident-report/

### Classification

#### Volume-based attacks

- generate too much traffic than the server/service can process
- Protocol/Network attacks
  - exploits server resources and protocol vulnerabilities
  - Ping of Death or Sync Flood

#### Application attacks

- targets the disruption of a particular application (mostly Web applications) and not the entire host
- HTTP Flood
- Multi-Vector attacks
  - a combination of tools and strategies

## Spoofing

- ► **To spoof** to fool by a hoax; play a trick on, especially one intended to deceive (<a href="http://www.dictionary.com/browse/spoofing">http://www.dictionary.com/browse/spoofing</a>)
- ► Technique used to impersonate a user or device
- DNS server spoofing control DNS response to redirect clients to other addresses.
- ARP spoofing associate the attacker device MAC to the target IP by manipulating <u>ARP</u> packets
- ▶ IP address spoofing change the source IP address to hide the attacker identity or to conduct reflect attacks

## IP Spoofing

| Offsets | Octet | 0                    |                        |   |   |   |     |     | 1 |          |    |    |    |    |              |    | 2               |                 |    |    |    |    |    |    | 3  |    |    |    |    |    |    |    |
|---------|-------|----------------------|------------------------|---|---|---|-----|-----|---|----------|----|----|----|----|--------------|----|-----------------|-----------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Octet   | Bit   | 0                    | 1                      | 2 | 3 | 4 | 5 6 | 5 7 | 8 | 9        | 10 | 11 | 12 | 13 | 14           | 15 | 16              | 17              | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
| 0       | 0     | Version IHL DSCP ECN |                        |   |   |   |     |     |   |          |    |    |    | CN | Total Length |    |                 |                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 4       | 32    | Identification       |                        |   |   |   |     |     |   |          |    |    |    | F  | -lag         | S  | Fragment Offset |                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 8       | 64    | Time To Live         |                        |   |   |   |     |     |   | Protocol |    |    |    |    |              |    |                 | Header Checksum |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 12      | 96    |                      | Source IP Address      |   |   |   |     |     |   |          |    |    |    |    |              |    |                 |                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 16      | 128   |                      | Destination IP Address |   |   |   |     |     |   |          |    |    |    |    |              |    |                 |                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 20      | 160   |                      |                        |   |   |   |     |     |   |          |    |    |    |    |              |    |                 |                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 24      | 192   |                      | Options                |   |   |   |     |     |   |          |    |    |    |    |              |    |                 |                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 28      | 224   |                      |                        |   |   |   |     |     |   |          |    |    |    |    |              |    | O               | Juoi            | 15 |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 32      | 256   |                      |                        |   |   |   |     |     |   |          |    |    |    |    |              |    |                 |                 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

https://en.wikipedia.org/wiki/IPv4

## IP Spoofing

#### Used in DDoS to:

- Hide the attacker identity
- Amplify and reflect the attack
- Conceal botnet devices
- Avoid mitigation measures based on blacklisting IP addresses

## DoS attacks – Amplify & Reflect

- A technique that exploits protocols vulnerabilities
- Tricks legit client to connect in the same time to the DoS target
- A single broadcast message generates an amplified response (the amplification factor = no of clients that get the request)
- Changes different protocol packages (SNMP, ICMP) by spoofing the target IP
- Examples: Smurf, SNMP reflection/amplification, DNS Amplification, SNMP reflection



https://blog.sflow.com/2013/10/dns-amplification-attacks.html

## DoS attacks – Amplify

- A technique that exploits protocols vulnerabilities
- Tricks legit client to connect in the same time to the DoS target
- A single request message triggers a response with a bigger size (amplification factor)
- Examples: DNS amplification, Memcache amplification

### DoS attacks – Reflect

- Tricks legit clients to connect in the same time to the DoS target by forging the request source identity – spoofing
- Changes different protocol packages (SNMP, ICMP) by spoofing the target IP
- A single broadcast message generates an amplified response (the amplification factor = no of clients that get the request)
- Examples: Smurf, SNMP reflection, UDP Spoofing, IP Spoofing
- Can exploit applications vulnerabilities <u>P2P File-sharing in Hell: Exploiting</u> BitTorrent Vulnerabilities to Launch Distributed Reflective DoS Attacks

### DoS attacks

- SYN Flood
- UDP Flood
- HTTP Flood
- Ping of Death
- Smurf Attack
- Amplify & Reflect Attack

- Nuke
- ▶ DNS or NTP Amplification
- Slowloris
- Advanced Persistent DoS (APDos)
- Zero-Day DDoS attacks

Server

### DoS attacks – SYN Flood

- exploits the TCP "three-way handshake" protocol (<a href="https://support.microsoft.com/en-us/help/172983/explanation-of-the-three-way-handshake-via-tcp-ip">https://support.microsoft.com/en-us/help/172983/explanation-of-the-three-way-handshake-via-tcp-ip</a>)
- Opens multiple valid TCP connections without closing them connections are closed only after the time-out expires
- The server resources are exhausted because a lot of connections are opened but not used (eats up memory and processor)

### DoS attacks – HTTP Flood

- Floods the Web server with valid POST and GET requests
- Can replay real requests
- Efficient from the bandwidth volume values can be conducted from low speed networks
- Forces the Web server to process the requests it will generate processor and memory spikes

### DoS attacks – UDP Flood

- Floods the target with valid UDP packets on different ports
- Efficient from the attacker needed resources perspective: fire and forget (UDP is a sessionless protocol)
- Can use broadcast UDP packets to flood the entire network (in closed environments)
- ► Forces the target to check if there are applications listening on those ports

## DoS attacks – Ping of Death

- Floods the target with a high number of pings (IP protocol)
- Send ping packets larger than the maximum byte size (for <u>IPv4</u> is 65,535 bytes)
- It is possible because large ping packets are divided by default in fragments and reassembled at the destination; at the destination the huge packet can generate errors (buffer-overflow) and force the server to crash
- Popular at the beginning of DoS but now is ineffective (routers and servers can be configured to drop ping packets)

## DoS attacks – Ping of Death

- Just for academic purpose. On Windows you can use the command line ping utility with some options
  - -I size for buffer size
  - -w for waiting time
  - n for number of echoes to send
- You can create a bash file (test.bat)

```
:loop
ping <IP Address> -1 65500 -w 1 -n 1
goto :loop
```

### DoS attacks – Slowloris

- a complex tool used to generate DoS attack
- Reduces greatly the resources needed by the attacker by reducing requests size and increase the time the connection is kept up
- Generates a large number of HTTP connections which are kept opened for a long time
- Used in the 2009 Iranian presidential election DoS
- Difficult to mitigate
- https://github.com/llaera/slowloris.pl

### DoS attacks – Others

- Zero-Day DoS attack
  - an attack method that to date has no patches
- Advanced Persistent DoS (APDos)
  - Uses multiple attack techniques
  - Very complex
  - Difficult to mitigate
- DNS or NTP Amplification
  - Exploits Network Time Protocol (NTP) or Domain Name Servers (DNS) servers by tricking them to send large responses (for small requests) to the target (using IP Spoofing)

## DoS protection

- Reserve bandwidth for spikes
- Implement technical measures that can partially mitigate the effect of an attack (in early stages)
- Stay close to your ISP or Hosting Provider
- use a specialist DDoS mitigation company (if you are a large company) they have the infrastructure to reroute and dissipate the DDoS attack; Akamai, CloudFlare, Incapsula, etc.
- ▶ .... or disconnect from the network ©

## DoS protection

- Overprovisioning reserve more bandwidth and processing power, expecting the worst (DDoS)
- Black-hole routing disconnect the target in order to save the others
- Filter anomalies drop packets based on filters (most DoS packets are 'strange')
- Replication replicate resources to multiple nodes and switch between them when one is attacked
- Pushback recursively go upstream and instruct nodes to reduce the rate at which they route intended for the DoS target

You can't hide something connected to the Internet

### DoS Tools

#### Scripts:

- HTTP Unbearable Load King (HULK) http://www.sectorix.com/2012/05/17/hulk-web-server-dos-tool/
- R.U.D.Y. (R-U-Dead-Yet?) <a href="https://github.com/loganhasson/r-u-dead-yet">https://github.com/loganhasson/r-u-dead-yet</a>
- Slowloris <a href="https://github.com/llaera/slowloris.pl">https://github.com/llaera/slowloris.pl</a>
- High Orbit Ion Cannon (HOIC)
- Low Orbit Ion Cannon (LOIC)

#### **Toolkits:**

Complex tools used to create and control botnets for DDoS

These tools are meant for educational purposes only, and should not be used for malicious activity of any kind.

### DoS Tools

- hping 3 Linux tool
  - https://tools.kali.org/information-gathering/hping3
  - Can be used to simulate different flood attacks
  - ▶ hping3 -i u100 -S -p <IP address>
    - ▶ 100 packets per second
    - SYN flag
- nmap
  - https://nmap.org/nsedoc/categories/dos.html
  - ▶ nmap --script http-slowloris --max-parallelism 400 <IP address> -vv

### More Dos

- Major problem for the Internet as we know it (and will be)
- Not a simple problem for now mitigation solutions are based on filtering and on re-routing the DDoS traffic
- IoT development (around 7-8 billion devices) will fuel up more DDoS attacks
- DDoS and crypto currencies DDoSCoin https://www.usenix.org/conference/woot16/workshopprogram/presentation/wustrow
- Still an undeveloped area in matter of protection