Package 'rflsgen'

May 21, 2024

Type Package

```
Title Neutral Landscape Generator with Targets on Landscape Indices
Version 1.2.2
Author Dimitri Justeau-Allaire, Grégoire Blanchard, Thomas Ibanez, Xavier Lorca, Ghislain Vieille-
     dent, Philippe Birnbaum
Maintainer Dimitri Justeau-Allaire <dimitri.justeau@gmail.com>
Description Interface to the 'flsgen' neutral landscape generator <a href="https:">https:</a>
     //github.com/dimitri-justeau/flsgen>. It allows to
     - Generate fractal terrain;
     - Generate landscape structures satisfying user targets over landscape indices;
     - Generate landscape raster from landscape structures.
License GPL-3
Encoding UTF-8
Depends rJava, terra (>= 1.5-12), jsonlite
Imports checkmate, utils
SystemRequirements Java (>= 8)
RoxygenNote 7.2.3
Suggests testthat (>= 3.0.0), knitr, rmarkdown, landscapemetrics
VignetteBuilder knitr
URL https://dimitri-justeau.github.io/rflsgen/,
     https://dimitri-justeau.github.io/rflsgen/
BugReports https://github.com/dimitri-justeau/rflsgen/issues
NeedsCompilation no
Repository CRAN
Date/Publication 2024-05-21 14:30:02 UTC
```

R topics documented:

	CLASS_LEVEL_TARGETS	
	flsgen_create_class_structure	
	flsgen_create_class_targets	3
	flsgen_create_landscape_structure	5
	flsgen_create_landscape_targets	6
	flsgen_create_target_series	7
	flsgen_extract_structure_from_raster	8
	flsgen_generate	8
	flsgen_structure	10
	flsgen_terrain	12
Index		13

Description

Vector of available class targets

Usage

CLASS_LEVEL_TARGETS

Format

An object of class character of length 16.

flsgen_create_class_structure

Creates a predefined landscape class structure that can be converted as JSON input for flsgen generate.

Description

Creates a predefined landscape class structure that can be converted as JSON input for flsgen generate.

Usage

flsgen_create_class_structure(class_name, patch_areas, is_square = FALSE)

Arguments

```
class_name Name of the class

patch_areas Vector of patch areas

is_square If true, all patches are required to be squares
```

Value

A landscape class structure

Examples

```
## Not run:
    cls_1 <- flsgen_class_structure("class 1", c(10, 100, 1000))
## End(Not run)</pre>
```

```
flsgen_create_class_targets
```

Creates a set of targets for a landscape class

Description

Creates a set of targets for a landscape class, which can be converted into JSON for flsgen.

Usage

```
flsgen_create_class_targets(
  class_name,
 NP = NULL
 AREA = NULL,
  AREA_MN = NULL
 CA = NULL,
 PLAND = NULL,
 PD = NULL
  SPI = NULL,
  LPI = NULL,
 MESH = NULL,
  SPLI = NULL,
 NPRO = NULL,
  SDEN = NULL,
 COHE = NULL,
 DIVI = NULL,
  IS_SQUARE = FALSE,
  ALL_DIFFERENT = FALSE
)
```

Arguments

class_name	Name of the class
NP	number of patches target (must be a vector of length 2)
AREA	patch area target (must be a vector of length 2)
AREA_MN	mean patch area target (must be a vector of length 2)
CA	total class area target (must be a vector of length 2)
PLAND	proportion of landscape target (must be a vector of length 2)
PD	patch density target (must be a vector of length 2)
SPI	smallest patch index target (must be a vector of length 2)
LPI	largest patch index target (must be a vector of length 2)
MESH	effective mesh size target (must be a vector of length 2)
SPLI	splitting index target (must be a vector of length 2)
NPRO	net product target (must be a vector of length 2)
SDEN	splitting density target (must be a vector of length 2)
COHE	degree of coherence target (must be a vector of length 2)
DIVI	degree of landscape division target (must be a vector of length 2)
IS_SQUARE	if TRUE, the class is required to only produce square patches
ALL_DIFFERENT	if TRUE, the class is required to have differently sized patches

Details

Note that NP and AREA targets can be set as NULL, if the class targets is used within the 'generate_series' function to generate landscape series with varying NP and/or AREA. However, flsgen won't run is NP and AREA are not set elsewhere.

Value

A class targets object which can be converted to JSON for flsgen

```
## Not run:
    cls_1 <- flsgen_create_class_targets("class 1", NP=c(1, 10), AREA=c(0, 1000))
## End(Not run)</pre>
```

```
flsgen_create_landscape_structure
```

Creates a predefined landscape structure that can be converted as JSON Input for flsgen generate

Description

Creates a predefined landscape structure that can be converted as JSON converted as JSON Input for flsgen generate.

Usage

```
flsgen_create_landscape_structure(
  nb_rows,
  nb_cols,
  classes,
  mask_raster = NULL
)
```

Arguments

```
nb_rows Number of rows
nb_cols Number of columns
classes list of class structures
mask_raster mask raster (path or terra::rast object)
```

Details

The class structures must be created prior to the call to this function

Either nb_rows and nb_cols, or mask_raster must be specified. The dimensions of the landscape are deduced from the mask raster if it is used.

Value

A landscape structure object which can be converted to JSON for flsgen generate

```
## Not run:
    cls_1 <- flsgen_class_structure("class 1", c(10, 100, 1000))
    cls_2 <- flsgen_class_structure("class 2", c(20, 200, 2000))
    ls_struct <- flsgen_landscape_structure(200, 200, list(cls_1, cls_2))
## End(Not run)</pre>
```

```
flsgen_create_landscape_targets
```

Creates a set of targets for a landscape

Description

Creates a set of targets for a landscape, which can be converted into JSON for flsgen.

Usage

```
flsgen_create_landscape_targets(
  nb_rows,
  nb_cols,
  classes,
  mask_raster = NULL,
  NON_FOCAL_PLAND = NULL
)
```

Arguments

```
nb_rows Number of rows
nb_cols Number of columns
classes list of class targets
mask_raster mask raster (path or terra::rast object)
NON_FOCAL_PLAND
```

PLAND (proportion of landscape) target on the non-focal land-use class

Details

The class targets must be created prior to the call to this function

Either nb_rows and nb_cols, or mask_raster must be specified. The dimensions of the landscape are deduced from the mask raster if it is used.

Value

A landscape targets object which can be converted to JSON for flsgen

```
## Not run:
    cls_1 <- flsgen_create_class_targets("class 1", NP=c(1, 10), AREA=c(0, 1000))
    cls_2 <- flsgen_create_class_targets("class 2", NP=c(1, 10), AREA=c(0, 1000))
    ls_targets <- flsgen_create_landscape_targets(200, 200, list(cls_1, cls_2))
## End(Not run)</pre>
```

```
flsgen_create_target_series
```

From a base landscape target object, create a series of landscape targets, with one target for one class varying according to a specified sequence.

Description

Create a series of landscape targets, with one target for one class varying according to a specified sequence.

Usage

```
flsgen_create_target_series(
  landscape_targets,
  class_name = NULL,
  class_id = NULL,
  target_key,
  sequence
)
```

Arguments

landscape_targets

Number of rows

class_name Name of the class for the varying target class_id Index of the class for the varying target

target_key Varying target key

sequence (list) of targets for the varying target

Details

Either the class name of id must be given to identify the class to use for generating the series.

Value

A list of landscape targets

8 flsgen_generate

```
{\it Extracts~a~landscape~structure~from~an~existing~raster}
```

Description

Extracts a landscape structure from an existing raster

Usage

```
flsgen_extract_structure_from_raster(
  raster_file,
  focal_classes,
  connectivity = 4
)
```

Arguments

```
raster_file terra::rast object or path of the raster

focal_classes vector of integers representing the raster values of the focal classes to extract the structure from

connectivity Connectivity definition in the regular square grid (4 or 8)."
```

Value

A JSON landscape structure that can be used with flsgen generate

Examples

```
## Not run:
    ls_struct <- flsgen_extract_structure_from_raster(raster_path, c(0, 1, 2))
## End(Not run)</pre>
```

 $flsgen_generate$

Landscape raster generator

Description

Generate landscape raster from landscape structure

flsgen_generate 9

Usage

```
flsgen_generate(
  structure_str,
  structure_file,
  terrain_file = NULL,
  roughness = 0.5,
  terrain_dependency = 0.5,
  min_distance = 2,
 min_max_distance = NULL,
  connectivity = 4,
  x = 0,
  y = 0,
  resolution_x = 1e-04,
  resolution_y = NULL,
  epsg = "EPSG: 4326",
 max_try = 2,
 max_try_patch = 10,
  verbose = TRUE
)
```

Arguments

structure_str

structure_file JSON file containing the landscape structure to generate Path of input terrain raster file, or terra::rast object. If NULL a terrain is generterrain_file ated with the diamond-square algorithm Roughness factor (or H), between 0 and 1 (only need when terrain_file is NULL) roughness terrain_dependency Terrain dependency factor for landscape generation, between 0 and 1 Minimum distance between patches of a same class min_distance min_max_distance If defined, the minimum distance beween patches of a same class is defined by a variable buffer of width between min_distance and min_max_distance Connectivity definition in the regular square grid (4 or 8)." connectivity X position (geographical coordinates) of the top-left output raster pixel Х Y position (geographical coordinates) of the top-left output raster pixel resolution_x x spatial resolution (geographical units) of the output raster (i.e. pixel width) resolution_y y-spatial resolution (geographical units) of the output raster (i.e. pixel height), if null, resolution x is used EPSG identifier of the output projection epsg Maximum number of trials for landscape generation max_try Maximum number of trials for patch generation max_try_patch verbose if TRUE print information about generation

JSON-formatted string describing the landscape structure to generate

10 flsgen_structure

Details

The input landscape structure must be either specified as a JSON-formatted string (structure_str parameter) or as a JSON file (structure_file parameter)

Value

A terra::rast object

Examples

```
## Not run:
    json <- "{
      \"nbRows\" : 200,
      \"nbCols\" : 200,
      \"classes" : [
        {
          \"name\": \"Class A\",
          "NP" : [1, 10],
          \"AREA\" : [300, 4000],
          \"CA\" : [1000, 5000],
          \"MESH\" : [225, 225]
        },
        {
          \"name\": \"Class \B\",
          "NP" : [2, 8],
          \"AREA\" : [200, 4000],
          \"PLAND\" : [40, 40]
        },
        {
          \"name\" : \"Class \C\",
           "NP" : [5, 7],
           \"AREA\" : [800, 1200]
        }
     ]
    }"
    structure <- flsgen_structure(targets_str = json)</pre>
    landscape <- flsgen_generate(structure_str = structure)</pre>
## End(Not run)
```

flsgen_structure

Landscape structure solver

Description

Find landscape structures satisfying user targets

flsgen_structure 11

Usage

```
flsgen_structure(
  targets_str,
  targets_file,
  nb_solutions = 1,
  time_limit = 60,
  search_strategy = "DEFAULT"
)
```

Arguments

```
targets_str JSON-formatted string describing user targets
targets_file JSON file describing user targets
nb_solutions Number of solutions to generate
time_limit Time limit in seconds (if time_limit = 0, no time limit is set)
search_strategy
```

Choco solver search strategy (for more details refer to Choco solver documentation: https://choco-solver.org/docs/)

Details

The input user targets must be either specified as a JSON-formatted string (targets_str parameter) or as a JSON file (target_file parameter).

Value

A vector of JSON-formatted landscape structures satisfying user targets.

```
## Not run:
  json <- "{
    \"nbRows\" : 200,
    \"nbCols\" : 200,
        "name" : "Class A\",
        "NP" : [1, 10],
        \"AREA\" : [300, 4000],
        \"CA\" : [1000, 5000],
        \"MESH\" : [225, 225]
      },
      {
        \"name\" : \"Class B\",
        "NP" : [2, 8],
        \"AREA\" : [200, 4000],
        \"PLAND\" : [40, 40]
      },
        \"name\" : \"Class C\",
```

12 flsgen_terrain

```
\"NP\" : [5, 7],
\"AREA\" : [800, 1200]
}
]
}"
structure <- flsgen_structure(targets_str = json)
## End(Not run)
```

flsgen_terrain

Fractal terrain generator

Description

Fractal terrain generation with the diamond-square algorithm

Usage

```
flsgen_terrain(
  width,
  height,
  roughness = 0.5,
  x = 0,
  y = 0,
  resolution = 1e-04,
  epsg = "EPSG:4326"
)
```

Arguments

width Width (in pixels) of output raster height Height (in pixels) of output raster

roughness Roughness factor (or H), between 0 and 1

X position (geographical coordinates) of the top-left output raster pixel
 Y position (geographical coordinates) of the top-left output raster pixel

resolution Spatial resolution (geographical units) of the output raster (i.e. pixel dimension)

epsg EPSG identifier of the output projection

Value

A terra::rast object

```
## Not run:
    terrain <- flsgen_terrain(200, 200)
## End(Not run)</pre>
```

Index