Uebungsblatt 06

Truong (Hoang Tung Truong, 3080216), Testfran (Minh Kien Nguyen, 3157116), Hamdash

Aufgabe 1

a. Seien $K = \{L_1, L_2, A_1, ..., A_n\}$, $K' = \{\neg L_1, \neg L_2, B_1, ..., B_m\}$ \lor -Klauseln $(A_1, ..., A_n, B_1, ..., B_m \text{ sind Literalen})$

Eine beliebige Resolvente R von K und K' enthält stets darin die Literalen L_i , $\neg L_i$ wobei $i \in \{1, 2\}$

Da $L_i \vee \neg L_i \equiv T$ und R eine \vee -Klausel ist, folgt daraus, R ist stets allgemeingültig (1)

Die Resolventenmethode soll die Nichterfüllbarkeit zeigen. Die Ausgangformel $F = K \wedge K'$ ist nicht erfüllbar, falls leere Klausel in der Resolventenmethode erzeugt wird. (2)

Aus (1) und (2) \Rightarrow Die Resolventenmethode braucht nie K und K' zu resolvieren, denn es ist nutzlos. \square

b. Nein, man kann K oder K' nicht entfernen.

 $F = \{K, K'\}$ erfüllt genau dann wenn jede Klausel K, K' erfüllt. Wenn man K oder K' entfernt, dann ändert sich die Erfüllbarkeit von F.

Gegenbeispiel: Wenn man K entfernt, sei F' die entstandene Formel (F' = K'). Für die Belegung α mit $\alpha(A_1) = \ldots = \alpha(A_n) = \alpha(L_1) = \alpha(L_2) = 0$ gilt $\alpha(F') = \alpha(K') = 1$, aber $\alpha(F) = \alpha(K \wedge K') = \alpha(K)$ & $\alpha(K') = 0$ & 1 = 0, d.h F' erfüllt, aber die ursprüngliche Formel F erfüllt nicht.

Aufgabe 2

 $M = \{K_1, K_2, ..., K_n\}$ erfüllt, wenn jede Klausel $K_1, K_2, ..., K_n$ erfüllt. Da K_2 eine \vee -Klausel ist und K_1 die Klausel K_2 subsummiert, gilt es, wenn K_1 erfüllt, dann erfüllt auch K_2 . Also M erfüllt wenn $K_1, K_3, ..., K_n$ (ohne K_2) erfüllen. D.h man kann K_2 aus M entfernen, ohne die Erfüllbarkeit von M zu verändern.

Aufgabe 5

Behauptung: $\mathcal{F} = \{F_1, F_2, F_3, ...\}$ ist erfüllbar genau dann wenn $\forall n \geq 1 : (\wedge_{i=1}^n F_i)$ ist erfüllbar.

- " \Rightarrow "-Beweis: $\mathcal{F} = \{F_1, F_2, F_3, ...\}$ ist erfüllbar
- $\Rightarrow \mathcal{F}$ besitzt ein Modell $\alpha \ (\alpha \models \mathcal{F})$
- $\Rightarrow \forall n \geq 1 : \alpha(F_n) = 1 \ (\forall n \geq 1 : \alpha \models F_n)$ //Definition von einem Modell eine Formelmenge
- $\Rightarrow \forall n \geq 1 : \alpha(\wedge_{i=1}^n F_i) = 1 / \alpha(F_1) = 1 \& \alpha(F_2) = 1 \Rightarrow \alpha(F_1 \wedge F_2) = 1$
- $\Rightarrow \forall n \geq 1 : (\wedge_{i=1}^n F_i)$ hat ein Modell α , ist also erfüllbar.
- "\(=\)"-Beweis: $\forall n \geq 1 : (\wedge_{i=1}^n F_i)$ ist erfüllbar
- $\Rightarrow \forall n \geq 1 : \exists \alpha_n : \alpha_n(\wedge_{i=1}^n F_i) = 1$ (*)
- Für n = 1: $\exists \alpha_1 : \alpha_1(F_1) = 1 \Rightarrow F_1$ ist erfüllbar
- Für n = 2: $\exists \alpha_2 : \alpha_2(F_1 \land F_2) = 1 \Rightarrow \alpha_2(F_1) \& \alpha_2(F_2) = 1 \Rightarrow \{F_1\}, \{F_2\}, \{F_1, F_2\} \text{ sind erfüllbar.}$
- Für n = 3: $\exists \alpha_3 : \alpha_3(F_1 \land F_2 \land F_3) = 1$
- $\Rightarrow \alpha_3(F_1) = 1 \& \alpha_3(F_2) = 1 \& \alpha_3(F_3) = 1$

 $\Rightarrow \alpha_3(F_1 \wedge F_3) = 1 \& \alpha_3(F_2 \wedge F_3) = 1 \& \alpha_3(F_1 \wedge F_2) = 1$

 $\Rightarrow \{F_1\}, \{F_2\}, \{F_3\}, \{F_1, F_2\}, \{F_1, F_3\}, \{F_2, F_3\}, \{F_1, F_2, F_3\}$ sind erfüllbar

Allgemein gilt es:

Sei $F_k = \{F_1, F_2, F_3, ..., F_k\} \ (k \in \mathbb{N})$

Für n = k: $\exists \alpha_k : \alpha_k (\wedge_{i=1}^k F_i) = 1$,

 $\Rightarrow \forall f \in \mathcal{P}(F_k) \setminus \emptyset$ (Potenzmenge von F_k ohne die Leeremenge) gilt $\alpha_k(f) = 1$ (Jede endliche Teilmenge von F_k ist erfüllbar)

D.h aus (*) folgt: Jede endliche Teilmenge von $\mathcal F$ ist erfüllbar.

Nach dem Kompaktheissatz $\Rightarrow \mathcal{F}$ ist erfüllbar. \square