Homework 1

Madilyn Simons

- 1. a We can prove the statement by induction. First, let n=1. As such, $n^2=1$. By the Division Algorithm, $n^2=8*0+1$. Thus, the statement holds for n=1. Next, assume the statement holds for 1,3,5,...,n. Since n is odd, the next consecutive odd number is n+2. Because n^2 leaves a remainder of 1 when divided by 8, let $n^2=8*k+1$ for some integer k. As such, $(n+2)^2=n^2+4*n+4=64*k^2+48*k+9=8*(8*k^2+6*k+1)+1$. Therefore, $(n+2)^2$ leaves a remainder of 1 when divided by 8. By induction, for any odd number n, n leaves a remainder of 1 when divided by 8.
 - b Let $n=2^{a_0}*p_1^{a_1}*p_2^{a_2}*\dots*p_k^{a_k}$ be the prime factorization of n such that p_i are distinct prime numbers for all i and there is no i such that $p_i=2$. As such, $n^2=2^{2a_0}*p_1^{-2a_1}*p_2^{-2a_2}*\dots*p_k^{-2a_k}$. Since p_i is odd for all i (since all p_i are primes and do not equal 2), $p_1^{a_1}*p_2^{a_2}*\dots*p_k^{a_k}$ is also odd. By 1a, $p_1^{-2a_1}*p_2^{-2a_2}*\dots*p_k^{-2a_k}$ leaves a remainder of 1 when divided by 8. Let $p_1^{-2a_1}*p_2^{-2a_2}*\dots*p_k^{-2a_k}$ leaves a remainder of 1 when divided by 8. Thus, $n^2=2^{2a_0}*(8b+1)=4^{a_0}*(8b+1)=8*(4^{a_0}b)+4^{a_0}$. Since factors of 4 can only leave a remainder of either 0 or 4 when divided by 8 and $n^2=8*(4^{a_0}b)+4^{a_0}$, n^2 can only leave a remainder or 0 or 4 when divided by 8.
- 2. If $3 \nmid n$, then, by the Division Algorithm, either n = 3k+1 or n = 3k+2 for some integer k. First, assume n = 3k+1. Thus, $n^2 1 = (3k+1)^2 1 = 3*(3k^2+2k)$. Therefore, $3 \mid (n-1)^2$ for this case. Next, assume n = 3k+2. Thus, $n^2 1 = (3k+2)^2 1 = 3*(3k^2+4k+1)$. Therefore, $3 \mid (n-1)^2$ for all n such that $3 \nmid n$.
- 3. Let $a=p_1^{x_1}*...*p_k^{x_k}$ and $b=p_1^{y_1}*...*p_k^{y_k}$ be the prime factorizations of a and b respectively such that $x_i \geq 0$ and $y_i \geq 0$ for all $i \leq k$. Let $c=q_1^{z_1}*...*q_j^{z_j}$ be the prime factorization of c given there are no m,n such that $p_m=q_n$. This holds because (a,c)=1 and (b,c)=1, meaning a and c have no common prime factors and b and c have no common prime factors. Thus, $ab=p_1^{x_1+y_1}*...*p_k^{x_k+y_k}$. Therefore, ab and c also do not have any common prime factors. This implies that (ab,c)=1.
- 4. Either (a,b)=1 or $(a,b)\neq 1$. First, suppose (a,b)=1. Since a and b do not have any common prime factors, c must be a multiple of ab in order to be divisible by both a and b. Next suppose $(a,b)\neq 1$. Let

- $a=p_1^{x_1}*...*p_k^{x_k}$ and $b=p_1^{y_1}*...*p_k^{y_k}$ be the prime factorizations of a and b respectively such that $x_i\geq 0$ and $y_i\geq 0$ for all $i\leq k$. If a and b both divide c, then $m=p_1^{\max(x_1,y_1)}*...*p_k^{\max(x_k,y_k)}$ is a factor of c. If $(a,b)=p_1^{\min(x_1,y_1)}*...*p_k^{\min(x_k,y_k)}$, then m*(a,b)=ab. Let c=m*x for some integer x. Thus, c=m*x*(a,b)=a*b*x is divisible by ab.
- 5. If (a,6)=1, then either a=6x+1 or a=6x-1 for some integer x. Similarly, either b=6y+1 or b=6y-1. Suppose a=6x+1. Consequently, $a^2=36x^2+12x+1=12x(3x+1)+1$. Either x is even or odd. First, assume x is even, so x=2k for some integer k. Therefore, $a^2=24k(6k+1)+1$, which leaves a remainder of 1 when divided by 24. If x is odd, then x=2k+1 for some integer k. As such, $a^2=24(6k^2+7k+2)+1$, which also leaves a remainder of 1 when divided by 24. Next, suppose a=6x-1. By the same logic as before, $a^2=24k(6k-1)+1$ when x is even and $a^2=24(6k^2+5k+1)+1$ when x is odd, both of which leave a remainder of 1 when divided by 24. Therefore, a^2 always leaves a remainder of 1 when divided by 24. By the same logic, b^2 also always leaves a remainder of 1 when divided by 24. Let $a^2=24m+1$ and $b^2=24n+1$ for some integers m,n<24. Therefore, $a^2-b^2=(24m+1)-(24n+1)=24(m-n)$, which is divisible by 24.
- 6. First, assume n is a square number. If $n=p_1^{a_1}*...*p_k^{a_k}$, then $\sqrt{n}=p_1^{a_1/2}*...*p_k^{a_k/2}$. By the definition of prime factorization, a_i and $a_i/2$ must be integers for all i such that $1 \le i \le k$. Thus, $a_i/2$ can only be an integer if 2 evenly divides a_i . Therefore, each a_i must be even. Next, assume each a_i is even. Let $a_i=2b_i$ for some integers b_i . Thus, $n=p_1^{2b_1}*...*p_k^{2b_k}$. Since each b_i is an integer, $\sqrt{n}=p_1^{b_1}*...*p_k^{b_k}$ is an integer and n must be a square number.
- 7. Let $a = p_1^{x_1} * ... * p_k^{x_k}$ and $b = q_1^{y_1} * ... * q_j^{y_j}$ be the prime factorizations of a and b respectively such that $p_m \neq q_n$ for all m, n. As such, $ab = p_1^{x_1} * ... * p_k^{x_k} * q_1^{y_1} * ... * q_j^{y_j}$. If ab is a square, then $x_1, ..., x_k$ and $y_1, ..., y_j$ must be even. Because $x_1, ..., x_k$ are even, a must a square. Similarly, since $y_1, ..., y_j$ are even, b must also be a square.