Física Básica I - Prova 2 (06/10/2023)

Boa prova. Crie frases para mostrar e explicar seus procedimentos. Comente seus resultados. Preste atenção na grafia de vetores e mostre as principais passagens nos cálculos dos produtos escalar e vetorial, derivadas e integrais. Use análise dimensional sempre. Keep thinking!

Considere um objeto de massa m (constante) sujeito a duas forças: a força elástica $\vec{F}_e = -k \, x \, \hat{i}$ e a força viscosa $\vec{F}_v = -b \, \vec{v}$, onde k e b são parâmetros positivos, x é a deformação da mola e também a componente do vetor posição $\vec{r} = x \, \hat{i}$ do objeto e \vec{v} é o vetor velocidade. O movimento é ao longo do eixo X. Considere que no instante inicial (t=0) esse objeto foi solto em $x(0) = X_0 > 0$. Determine a equação horária x(t) do movimento desse objeto e faça uma análise dele. Siga os passos abaixo.

- 1. Use a segunda lei de Newton para encontrar a EDO para x(t). Reescreva essa EDO em termos dos parâmetros $\omega_0 = \sqrt{k/m}$ e $\omega_1 = b/m$.
- 2. Mostre que essa EDO é satisfeita por $x(t) = A(t) \cos \theta(t)$, com $A(t) = A_0 \exp(\alpha t)$ e $\theta(t) = \omega t + \varphi$, e determine os parâmetros α e ω em função dos parâmetros dados ω_0 e ω_1 . Os parâmetros A_0 e φ são constantes arbitrárias.
- 3. Use as condições iniciais dadas em t=0 para determinar as constantes $A_0 \in \varphi$.
- 4. Use $\omega = \omega(\omega_0, \omega_1)$ para comentar os três tipos possíveis de movimento.