Feuille d'exercices nº 5

Exercice 1. Pour chacune des matrices A suivantes, trouver, à l'aide d'opérations sur les lignes, une matrice inversible Q telle que la matrice QA est échelonnée. En déduire le rang de A.

(1)
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}$$
 (2) $A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \end{pmatrix}$

Exercice 2. À l'aide d'opérations sur les lignes, échelonner la matrice suivante et en déduire son rang en fonction des paramètres $a, b \in \mathbb{R}$.

$$A = \begin{pmatrix} 1 & 1 & a & 0 \\ 1 & 0 & 1 & b \\ 2 & -1 & 0 & 3 \end{pmatrix}$$

Exercice 3. Résoudre, à l'aide d'opérations sur les lignes, les systèmes suivants :

$$(S_1)$$
 $\begin{cases} 3x + y = 2 \\ x + 2y = 1 \end{cases}$ (S_2) $\begin{cases} 2x + 3y = 1 \\ 5x + 7y = 3 \end{cases}$

Exercice 4. Écrire les systèmes d'équations linéaires suivants sous forme matricielle AX = b et déterminer, à l'aide d'opérations sur les lignes, leur rang (c'est-à-dire le rang de la matrice A) et l'ensemble de leurs solutions. Comparer ces ensembles.

1.
$$(S_1)$$
 $\begin{cases} -x + y + z = 0 \\ x + y - z = 0 \end{cases}$ (S_2) $\begin{cases} -x + y + z = 1 \\ x + y - z = -1 \end{cases}$
2. (T_1) $\begin{cases} x + z = 0 \\ x + y + z = 0 \\ -x + 2y + z = 0 \end{cases}$ (T_2) $\begin{cases} x + z = 1 \\ x + y + z = 1 \\ -x + 2y + z = -1 \end{cases}$ (T_3) $\begin{cases} x + z = 1 \\ x + y + z = -1 \\ -x + z = 0 \end{cases}$

Exercice 5. Déterminer, en fonction des valeurs du paramètre $a \in \mathbb{R}$, l'ensemble des solutions des systèmes suivants :

$$(S_1) \begin{cases} x - 2y = 2 \\ x - ay = a \end{cases}$$

$$(S_2) \begin{cases} x + y = 3 \\ ax + y = a. \end{cases}$$

$$(S_3) \begin{cases} x + ay = 2 \\ ax + y = 2 \\ ax + (1 - a)y = 1 \end{cases}$$

$$(S_4) \begin{cases} ax - y + z = 0 \\ -x + y + z = 0 \\ x + y + az = 0 \end{cases}$$

Exercice 6. Résoudre les questions suivantes en se ramenant à la résolution d'un système linéaire.

- 1. Montrer que $(3, 1, -1) \in \text{Vect}((5, 7, 1), (3, 5, 1))$ dans \mathbb{R}^3 .
- 2. Déterminer l'intersection $\text{Vect}((3,4,2),(0,1,-1)) \cap \text{Vect}((-1,2,1),(-4,2,0))$ dans \mathbb{R}^3 .
- 3. Montrer que les deux plans affines de \mathbb{R}^3 d'équation x + y z = 1 et 2x y + z = -1 s'intersectent en une droite affine dont on déterminera un point et un vecteur directeur.

Exercice 7. Soient $A \in M_{m,n}(\mathbb{R})$ et $b \in \mathbb{R}^m$. On considère le système linéaire (S): AX = b et son système homogène associé $(S_h): AX = 0$. Montrer les propriétés suivantes :

- 1. Si $X_0 \in \mathbb{R}^n$ est une solution de (S) et $X \in \mathbb{R}^n$ est une solution de (S_h) , alors $X_0 + X$ est une solution de (S).
- 2. Si $X_0, X_1 \in \mathbb{R}^n$ sont des solutions de (S), alors $X_1 X_0$ est une solution de (S_h) .
- 3. Si $X_0 \in \mathbb{R}^n$ est une solution de (S), alors l'ensemble des solutions de (S) est formé des éléments de \mathbb{R}^n de la forme $X_0 + X$, où X est une solution (quelconque) de (S).

Exercice 8. Méthode du pivot de Gauss et erreurs informatiques

Dans un ordinateur, la norme IEEE 754 simple précision (32 bits) permet de coder des nombres entre environ 10^{-45} et 10^{38} avec une précision de 8 à 9 chiffres significatifs en base 10. Cela veut dire que si on considère le nombre $\varepsilon = 10^{-10}$, alors $1 + \varepsilon$ sera tronqué à 1 par l'ordinateur. De même, le calcul $1 + 1/\varepsilon$ donnera $1/\varepsilon = 10^{10}$ comme résultat.

On considère le système linéaire

(S)
$$\begin{cases} \varepsilon x + y = 1\\ x + 2y = 3 \end{cases}$$

On va regarder sur cet exemple comment le choix du pivot peut radicalement changer la pertinence d'un calcul fait par un ordinateur.

- 1. Résoudre (S) à la main de façon exacte.
- 2. On considère maintenant que le calcul est fait par un ordinateur avec les erreurs de troncature du type « $1 + \varepsilon = 1$ ». Éliminer x dans la deuxième ligne en utilisant la première ligne. Finir la résolution et comparer le résultat avec la solution exacte.
- 3. Même question si on utilise maintenant le terme x de la deuxième ligne pour éliminer la variable x dans la première ligne.

Exercice 9. Le système d'équations linéaires suivant :

$$\begin{cases} x + y = 0 & (L_1) \\ x + z = 0 & (L_2) \\ y + z = 0 & (L_3) \end{cases}$$

est-il équivalent au système d'équations linéaires formé des équations suivantes?

$$\begin{cases}
(L_1 - L_2) \\
(L_2 - L_3) \\
(L_3 - L_1)
\end{cases}$$