

IMS: Modelovanie a simulácia

2. Teplárenství

Obsah

1	Úv	Úvod		. 3
	1.1	Zdro	oj údajov	. 3
2	Fak	cty		. 3
3	Koı	ncepci	a modelu	. 3
	3.1	OZE	– obnoviteľné zdroje energie	. 3
	3.1	.1	Spotreba	. 3
	3.1	.2	Cena	. 4
	3.2	Zem	ný plyn	. 4
	3.2	.1	Spotreba	. 4
	3.2	.2	Cena	. 4
	3.3	Uhli	e	. 4
	3.3	.1	Spotreba	. 4
	3.3	.2	Cena	. 5
4	Sin	Simulácia		. 5
	4.1	Pou	žité nástroje	. 5
	4.2	Spúš	śťanie simulácie	. 5
5	Exp	Experimenty		
	5.1	OZE		. 6
	5.1	.1	Spotreba	. 6
	5.1.2		Cena	. 7
	5.2	Zem	ný plyn	. 8
	5.2	.1	Spotreba	. 8
	5.2.2		Cena	. 9
5	5.3	Uhli	e	10
	5.3	.1	Spotreba	10
	5.3	.2	Cena	11
6 Záver			11	
7	Použité zdroje			12

1 Úvod

V tomto projekte sme sa zaoberali problematikou spotreby konečnej tepelnej energie v sektore domácnosti z troch rôznych zdrojov (biomasa a iné OZE, zemný plyn, uhlie) a jej vplyvu na priemernú cenu z týchto zdrojov s ohľadom na prudký náraz cien v období 2020-2022 a očakávaným ustálením v roku 2023. Zemný plyn bol modelovaný z dôvodu najviac používaného typu vytápania v domácnostiach ČR. Uhlie bolo modelované na ukážku kontrastu k biomase a iným OZE, kde je snaha o zvýšenie používania biomasy a iných OZE namiesto uhlia ako hlavného zdroja vytápania v domácnostiach ČR. Cieľom simulačných experimentov je odhadnúť správanie systému v nasledujúcich rokoch s ohľadom na prudký nárast cien energie a v pokračovaní trendu z predchádzajúcich rokov.

1.1 Zdroj údajov

Ako hlavný zdroj dát bola využitá Zpráva o vývoji energetiky v oblasti tepla za rok 2020 [1] z portálu Ministerstva průmyslu a obchodu ČR a Elektřina - podrobný graf 3 roky vývoje ceny komodity Elektřina [4] z portálu Kurzy.cz. Na práci nespolupracoval odborný konzultant.

2 Fakty

V ČR sa k výrobe tepelnej energie využíva prevažne uhlie, ktorého spotreba zostáva v klesajúcom trende. Výroba tepla zo zemného plynu, ktorý je prevažujúcim palivom pre domácnosti medziročne stagnuje. Množstvo vyrobeného tepla z obnoviteľných zdrojov narastá. Skokový nárast cien medzi rokmi 2020-2022 súvisí s postupným zvyšovaním cien energií na svetových trhoch, k nemu v Európe začalo dochádzať v priebehu roku 2021 [1].

3 Koncepcia modelu

Na riešenie projektu boli využité numerické metódy pre spojitú simuláciu – konkrétne viackroková metóda *Adams-Bashforth* a na získanie prvých štyroch koeficientov metóda *Runge-Kutta 4.rádu* [3]. Jednotlivé funkcie pre simuláciu boli získané z reálnych údajov za použitia kalkulátora pre exponenciálne rovnice [2], odhadom pre sínus rovnicu a následnom ladení.

3.1 OZE – obnoviteľné zdroje energie

3.1.1 Spotreba

Pre konečnú spotrebu energie v sektoru domácností na vytápanie z biomasy a ostatných OZE [TJ/rok] ([1], str. 21) bola použitá rovnica:

y = 71288.3358 e ^ 0.0376x y'= 2677.7325 e ^ 0.0376x

3.1.2 Cena

Pre priemernú cenu tepelnej energie z biomasy a iných OZE pre konečných spotrebiteľov (Kč/GJ bez DPH) ([1], str. 18) boli použité dve rovnice kvôli prudkému nárastu a odhadovaného ustálenia okolo roku 2023 [4].

1) Pre roky 2012-2020 a 2023-2030

2) Pre roky 2020-2023

3.2 Zemný plyn

3.2.1 Spotreba

Pre konečnú spotrebu energie v sektoru domácností na vytápanie zo zemného plynu [TJ/rok] ([1], str. 21) bola použitá rovnica:

$$y = 5000 \sin(0.0129x + 150) + 52000$$

 $y' = 64.5 \cos(0.0129x + 150)$

3.2.2 Cena

Pre priemernú cenu tepelnej energie zo zemného plynu pre konečných spotrebiteľov (Kč/GJ bez DPH) ([1], str. 18) boli použité dve rovnice kvôli prudkému nárastu cien a odhadovaného ustálenia okolo roku 2023 [4].

1) Pre roky 2012-2020 a 2023-2030

2) Pre roky 2020-2023

3.3 Uhlie

3.3.1 Spotreba

Pre konečnú spotrebu energie v sektoru domácností na vytápanie z uhlia [TJ/rok] ([1], str. 21) bola použitá rovnica:

3.3.2 Cena

Pre priemernú cenu tepelnej energie z uhlia pre konečných spotrebiteľov (Kč/GJ bez DPH) ([1], str. 18) boli použité dve rovnice kvôli prudkému nárastu cien a odhadovaného ustálenia okolo roku 2023 [4].

3) Pre roky 2012-2020 a 2023-2030

4) Pre roky 2020-2023

4 Simulácia

4.1 Použité nástroje

Na vygenerovanie odhadu exponenciálnych rovníc použitých pri simulácii bol použitý online kalkulátor - *Curve Fitting Of Exponential Curve* [2]. Samotná simulácia bola písana v jayzku *C*, kde boli využité nasledujúce knižnice: *stdio.h*, *math.h*, *getopt.h*. Pre preklad bol použitý *GCC -std=c99*.

4.2 Spúšťanie simulácie

Preklad zahájime príkazom make.

- Príkazom make run sa spustí simulácia konečnej spotreby tepelnej energie z biomasy a iných OZE [TJ/rok].
- Príkazom *make run_price* sa spustí simulácia priemernej ceny tepelnej energie z biomasy a iných OZE (Kč/GJ bez DPH).
- Príkazom *make run_natural* sa spustí simulácia konečnej spotreby tepelnej energie zo zemného plynu [TJ/rok].
- Príkazom *make run_natural_price* sa spustí simulácia priemernej ceny tepelnej energie zo zemného plynu (Kč/GJ bez DPH).
- Príkazom make run_coal sa spustí simulácia konečnej spotreby tepelnej energie z uhlia [TJ/rok].
- Príkazom *make run_coal_price* sa spustí simulácia priemernej ceny tepelnej energie z uhlia (Kč/GJ bez DPH).

5 Experimenty

5.1 OZE

5.1.1 Spotreba

V tomto experimente simulujeme konečnú spotrebu tepelnej energie z biomasy a iných OZE v domácnostiach [TJ/rok] do roku 2030. Ako počiatočnú hodnotu sme zvolili reálnu hodnotu 72 890 [TJ/rok] za rok 2015.

Z výsledkov experimentu vidíme mierny nárast v konečnej spotrebe tepelnej energie z biomasy a iných OZE v domácnostiach [TJ/rok] v nasledujúcich rokoch. Odhadovaná spotreba v roku 2030 je 127 038 [TJ/rok].

5.1.2 Cena

V tomto experimente simulujeme priemernú cenu tepelnej energie z biomasy a iných OZE v domácnostiach(Kč/GJ bez DPH) do roku 2030 s predpokladom ustálenia ceny v roku 2023. Ako počiatočnú hodnotu sme zvolili reálnu hodnotu 434,09 (Kč/GJ bez DPH) za rok 2012.

Z výsledkov experimentu vidíme nárast priemernej ceny tepelnej energie z biomasy a iných OZE v domácnostiach (Kč/GJ bez DPH) v nasledujúcich rokoch. Odhadovaná spotreba v roku 2030 je 758,86 (Kč/GJ bez DPH).

5.2 Zemný plyn

5.2.1 Spotreba

V tomto experimente simulujeme konečnú spotrebu tepelnej energie zo zemného plynu v domácnostiach [TJ/rok] do roku 2030. Ako počiatočnú hodnotu sme zvolili reálnu hodnotu 47 627 [TJ/rok] za rok 2015.

Z výsledkov experimentu vidíme stagnujúcu spotrebu tepelnej energie zo zemného plynu v domácnostiach [TJ/rok] v nasledujúcich rokoch. Odhadovaná spotreba v roku 2030 je 56 497 [TJ/rok].

5.2.2 Cena

V tomto experimente simulujeme priemernú cenu tepelnej energie zo zemného plynu v domácnostiach (Kč/GJ bez DPH) do roku 2030 s predpokladom ustálenia ceny v roku 2023. Ako počiatočnú hodnotu sme zvolili reálnu hodnotu 551,13 (Kč/GJ bez DPH) za rok 2012.

Z výsledkov experimentu vidíme pokles priemernej ceny tepelnej energie zo zemného plynu v domácnostiach (Kč/GJ bez DPH) v nasledujúcich rokoch. Odhadovaná spotreba v roku 2030 je 1316,59 (Kč/GJ bez DPH).

5.3 Uhlie

5.3.1 Spotreba

V tomto experimente simulujeme konečnú spotrebu tepelnej energie uhlia v domácnostiach [TJ/rok] do roku 2030. Ako počiatočnú hodnotu sme zvolili reálnu hodnotu 37 823 [TJ/rok] za rok 2015.

Z výsledkov experimentu klesajúcu spotrebu tepelnej energie z uhlia v domácnostiach [TJ/rok] v nasledujúcich rokoch. Odhadovaná spotreba v roku 2030 je 16 145 [TJ/rok].

5.3.2 Cena

V tomto experimente simulujeme priemernú cenu tepelnej energie z uhlia v domácnostiach (Kč/GJ bez DPH) do roku 2030 s predpokladom ustálenia ceny v roku 2023. Ako počiatočnú hodnotu sme zvolili reálnu hodnotu 448,88 (Kč/GJ bez DPH) za rok 2012.

Z výsledkov experimentu vidíme nárast priemernej ceny tepelnej energie z uhlia v domácnostiach (Kč/GJ bez DPH) v nasledujúcich rokoch. Odhadovaná spotreba v roku 2030 je 1061,63 (Kč/GJ bez DPH).

6 Záver

Simulačnými experimentami bola overená validita modelu, pretože odpovedá reálnym získaným údajom. Na základe experimentov sa zistilo, že spotreba tepelnej energie z biomasy a iných OZE sa má do roku 2030 skoro zdvojnásobiť a bude väčšia ako spotreba tepelnej energie zo zemného plynu a uhlia. Napriek tomu bude za tepelnú energiu z biomasy a iných OZE priemerná cena najnižšia. Uhlie na druhú stranu má pokles v spotrebe, ale priemerná cena stále stúpa.

7 Použité zdroje

- [1] Ministerstvo průmyslu a obchodu ČR Zpráva o vývoji energetiky v oblasti tepla za rok 2020, https://www.mpo.cz/cz/energetika/statistika/elektrina-a-teplo/zprava-o-vyvoji-energetiky-v-oblasti-tepla-za-rok-2020--270246/
- [2] Curve Fitting Of Exponential Curve online calculator, https://www.stepbystepsolutioncreator.com/st/ex
- [3] IMS Modelování a simulace, https://www.fit.vutbr.cz/study/courses/IMS/public/prednasky/IMS.pdf
- [4] Elektřina podrobný graf 3 roky vývoje ceny komodity Elektřina, https://www.kurzy.cz/komodity/cena-elektriny-graf-vyvoje-ceny/1MWh-eur-3-roky