$$U = \begin{pmatrix} d_1 & u_{12} & u_{13} & u_{14} & u_{15} \\ 0 & d_2 & u_{23} & u_{24} & u_{25} \\ 0 & 0 & d_3 & u_{34} & u_{35} \end{pmatrix}$$
 (2.7.1)

mientras que una matriz U de 5×3 que satisface esta condición tiene la forma

$$U = \begin{pmatrix} d_1 & u_{12} & u_{13} \\ 0 & d_2 & u_{23} \\ 0 & 0 & d_3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 (2.7.2)

La prueba de este teorema no se presenta aquí; en su lugar se muestran dos ejemplos.

EJEMPLO 2.7.7 Factorización LU de una matriz 4×3

Encuentre la factorización LU de

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & -4 & 5 \\ 6 & -3 & 2 \\ 4 & 1 & -12 \end{pmatrix}$$

SOLUCIÓN ► Procediendo como en el ejemplo 2.7.5 se establece

$$\begin{pmatrix} 1 & 2 & 3 \\ -1 & -4 & 5 \\ 6 & -3 & 2 \\ 4 & 1 & -12 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ a & 1 & 0 & 0 \\ b & c & 1 & 0 \\ d & e & f & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 0 & u & v \\ 0 & 0 & w \\ 0 & 0 & 0 \end{pmatrix} = LU$$

Debe verificar que esto lleva de inmediato a

$$L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 6 & \frac{15}{2} & 1 & 0 \\ 4 & \frac{7}{2} & \frac{13}{19} & 1 \end{pmatrix} \quad \mathbf{y} \quad U = \begin{pmatrix} 1 & 2 & 3 \\ 0 & -2 & 8 \\ 0 & 0 & -76 \\ 0 & 0 & 0 \end{pmatrix}$$

EJEMPLO 2.7.8 Factorización *LU* de una matriz 3 × 4

Encuentre la factorización LU de

$$A = \begin{pmatrix} 3 & -1 & 4 & 2 \\ 1 & 2 & -3 & 5 \\ 2 & 4 & 1 & 5 \end{pmatrix}$$

SOLUCIÓN ► Se escribe

$$\begin{pmatrix} 3 & -1 & 4 & 2 \\ 1 & 2 & -3 & 5 \\ 2 & 4 & 1 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{pmatrix} \begin{pmatrix} 3 & -1 & 4 & 2 \\ 0 & u & v & w \\ 0 & 0 & x & y \end{pmatrix}$$