PATENT SPECIFICATION

(11) **1 415 295**

(21) Application Nos. 47926/71 and 47927/71 (23) Complete Specification filed 16 Oct. 1972

(44) Complete Specification published 26 Nov. 1975

(51) INT CL² C07C 59/26; A61K 31/19, 31/215, 31/395; C07C 103/178, 131/00, 69/67; C07D 295/18

(52) Index at acceptance

5

10

15

20

25

C2C 1175 1341 1530 1532 1562 1626 1731 215 21X 220 221 225 226 227 22Y 246 250 251 252 255 25Y 280 281 282 28X 290 29X 29Y 30Y 311 313 314 31Y 323 327 32Y 338 339 342 345 346 34Y 351 354 355 35X 35Y 360 361 362 364 365 366 367 368 36Y 371 373 37Y 388 389 396 401 40Y 464 491 496 500 50Y 574 583 584 588 58X 593 596 612 613 620 623 624 625 628 62X 634 635 638 63X 650 657 658 65X 662 665 668 66X 675 694 699 701 718 719 740 776 790 79Y BG BT KN KR KW LQ LZ MF MV QT RE RV UJ UL UQ UR

5

10

15

20

25

(72) Inventor ANDRE MIEVILLE

(54) SUBSTITUTED PHENOXY-ALKYL-CARBOXYLIC ACIDS AND DERIVATIVES THEREOF

(71) We, ORCHIMED S.A., a Swiss Body corporate of c/o Me. Gumy, 8 Bd. de Perolles, 1700 Fribourg, Switzerland, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be substantially described in and by the following statement:—

This invention concerns p-carbonyl-phenoxy-carboxylic acids and derivatives thereof which result from transforming the p-oxo radical into oxime, acid, ester and amide radicals and from transforming the carboxylic acid radical into ester and amide radicals.

Our copending Patent Application Number 3085/70 (1 268 321) claims compounds having the formula

where Y is —OH, —OCH₃, —OC₂H₅, —OC₃H₇, NHOH, NR₁R₂, A represents a single bond or a divalent straight- or branched-chain C_{1-3} hydrocarbon radical, R' is a hydrogen atom or a phenyl group, and either X is = O or = NOH and R is a hydrogen atom or a phenyl, halophenyl, C_{1-3} alkyl, C_{1-3} ω -haloalkyl, and if X = O, R is hydroxyl, methoxy, ethoxy, propoxy, —NHOH or —NR₁R₂ group or R—CX represents a cyano group, each of R₁ and R₂ being a hydrogen atom or an alkyl or diethylamino alkyl group or R₁ and R₂ forming, together with the nitrogen atom to which they are attached, a substituted or unsubstituted heterocyclic group.

The present invention provides compounds having the general formula

but excluding those claimed in the said copending application, in which R^v and R" are identical or different and each represents H, CH₃, C₂H₃, C₆H₃, p—F—C₆H₄, p—Cl—C₄H₄, —R"" and R"", which may be identical or different, represent H, a halogen atom, preferably F, Cl or Br, a C₁₋₅ alkyl group, CF₃, SCH₃, SOCH₃, SO₂CH₃, OCH₃, OH or C₄H₅; R^{vi} represents H, a C₁₋₅ alkyl group, an aryl group, an aryl group the aromatic residue of which is substituted by one or more CH₃, CF₅ or halogen atoms, a cycloalkyl group, OH, a C₁₋₆ alkoxy group, an aryloxy

distinguished:

- 1) the p-carbonyl-phenoxy-alkyl-carboxylic acids and derivatives thereof which result
- a) from transforming the p-oxo group into oxime $X = NOR_0$, b) from transforming the carboxylic acid group into ester and amide groups, and,

60

c) from transforming the carboxylic acid group into exter and anide groups into exter and amide groups; and,

10

20

25

5

10

20

25

Among the compounds of the "p-carbonyl" type, R⁷¹ represents H, C₁—C₅ alkyl, aryl preferably C₅H₅, p—Cl—C₅H₄ and p—F—C₅H₄.

Among the "diacid" type R⁷¹ represents OH, C₁—C₅ alkoxy, aryloxy preferably phenoxy and p-chlorophenoxy, cycloalkyloxy preferably cyclopentyloxy, cyclohexyloxy, A^{1,2}-cyclohexenyloxy, NR₃R₄, NHCH₂CH₂NR₃R₄, or O-alkylene-NR₃R₄.

The type-cyclonyl compounds of formula L in which Y' is an oversea and Y'.

The para-carbonyl compounds of formula I in which X' is an oxygen atom and Y' is a hydroxy group or a \hat{C}_{1-3} alkoxy group may be prepared by reacting a parahydroxybenzoyl compound of the formula

in which Rvi, R'" and R'" are defined as above with a halogen compound of the formula

in which Hal represents a halogen atom, Y" is a hydroxy group or a C1-3 alkoxy group and R' and R" are as defined above, in an alkaline medium.

The carbonyl function >C=O may be converted into an oxime function or an ester or other ester or an amide function respectively, using a method known per-se for converting a carbonyl function to an oxime function or for converting a carboxylic or C_{1-3} alkoxy ester function to an ester, other ester or amide function.

The following procedures may be used to prepare the compounds of formula I:

PROCEDURE A.

Preparation of acids, esters and amides of formula I, in which R" is a hydrogen atom and X' is an oxygen atom

a) A p-hydroxybenzoyl derivative having the formula

in which R₅ is a hydrogen atom or an alkyl or aryl group, particularly a p-chlorophenyl group, is reacted with an α -halogenated acid for the formula

$$R^{*}-CH(Cl)-CO_{2}H$$
(IIIa)

or an a-halogenated ester of the formula

$$R^{\nu}$$
— $CH(Br)$ — CO_2Et (IIIb)

in order to obtain respectively a compound of the formula

$$R_{5}-C \longrightarrow CH-CO_{2}H \qquad R_{5}-C \longrightarrow CH-CO_{2}E$$

$$R_{7}-CH-CO_{2}E \longrightarrow CH-CO_{2}E$$

$$R_{7}-CH-CO_{2}E \longrightarrow CH-CO_{2}E$$

10

15

b) When R_s represents a hydrogen atom or an alkyl group, compound IVa may be esterefied using methyl or ethyl alcohol; the ester obtained may be condensed with an appropriate amine to produce a desired amide of formula I, or transesterified to synthesize an ester of formula I other than those already mentioned in procedures A (a) and A (b).

5

c) When R₅ represents an aryl radical, compound IVa may be converted by means of SOCl2 or PCl3 into the corresponding acid chloride which may be reacted with an appropriate amine, alcohol or amino alcohol, in accordance with a method known per se, in order to obtain respectively a desired amide, ester or amino ester of formula I.

10

d) Compound IVb may be condensed with an appropriate amine in accordance with a method known per se to produce a desired amide of formula I or compound IVb may be transesterified to prepare other esters of formula I.

PROCEDURE A_i Preparation of acids, esters and amides of formula I in which $R^v = R'' = CH_s$ and X' = O

15

a) An acetone-chloroform mixture or an a-halogenated ester of the formula Br—C(CH₃)₂—CO₂Et (V), is reacted with compound IIa in an alkaline medium, in order to obtain respectively a compound of the formula

$$R_{5}-C \longrightarrow CH_{3}$$

$$CH_{3}$$

20

25

30

35

b) Compound VIa can be esterified by means of a lower alcohol, for instance to give methyl, ethyl or iso-propyl ester, particularly when R₅ is an alkyl group.

20

c) Ester VIb can be amidified or transesterified, in accordance with methods known per se to produce respectively an amide or other ester of the formula I.

d) When R_s is an aryl group, compound VIa may be converted into the corresponding acid chloride by means of SOCI2 or PCI3 and then, if desired, the acid chloride may be reacted with an appropriate amine, alcohol or amino-alcohol to produce an amide, ester or amino ester respectively of the formula I.

25

PROCEDURE B.

Preparation of aldoximes and ketoximes of formula I, i.e. compounds of formula I in which X' = NOH or NOR_0 .

30

a) The compounds of formula I in which X' = NOH may be prepared by treating corresponding compounds of the formula I in which X' = O with hydroxylamine hydrochloride in a basic medium, preferably a pyridinic medium.

b) The compounds of the formula I in which $X' = NOR_0$ may be prepared: by condensing corresponding compounds of the formula I in which X' = O in a basic (pyridine) medium, with a substituted hydroxylamine hydrochloride, such as:

35

from the compound of the formula I, in which X' = NOH, by the following reactions:

$$-\text{NOH} \xrightarrow{\text{t.Bu OK}} -\text{NOK} \xrightarrow{\text{X R}_{\circ}} -\text{NOR}_{\circ}$$

40

The following examples are given to illustrate the invention and analogous methods of preparing compounds in accordance with the invention.

10

15

20

25

35

40

5

10

15

EXAMPLE 1.

4-(p-chlorobenzoyl)-phenoxy-acetic acid

a) Preparation of 4-hydroxy-4'-chlorobenzophenone

Phenol and p-chlorobenzoyl chloride are successively added at 0°C to a solution of AlCl₃ in nitrobenzene (or a suspension of AlCl₃ in ligroine or dichloroethylene); the resulting mixture is kept warm to 25°C for 17 hours, and hydrolysed; 4-hydroxy-4'chlorobenzophenone is then isolated by extraction using dilute sodium hydroxide and washing with hexane.

b) 4-(p-chlorobenzoyl)-phenoxyacetic acid
A mixture of 1 mole of 4-hydroxy-4'-chlorobenzophenone, 2.2 moles of NaOH, 1.2
moles of CICH₂—CO₂H and 1300 cc of water, is refluxed for 7 hours.

After acidification and extraction with NaHCO₂ have been conducted and followed by a second acidification, 4-(p-chlorobenzoyl)-phenoxyacetic acid is isolated. Its melting point is 152°C.

EXAMPLE 2.

IV are obtained.

40

45

N-(p-propionyl-phenoxyacetyl)-morpholine.

This example illustrates the procedures A(b) and A(d) described above.

a) Methyl p-propionyl-phenoxyacetate 1 mole of p-propionyl-phenoxyacetic acid is refluxed during 10 hours, with 100 cc 20 of MeOH and 300 cc of CHCl₃ or CH₂Cl₂ in the presence of sulfuric acid. The resulting mixture is poured into water. The desired ester remains in the organic phase. It is washed once with dilute NaOH, then twice with water. Pure methyl p-propionylphenoxyacetate is thus isolated, with a yield of about 90%. MP: 59°C.

25 1 mole of the ester obtained in step (a) is refluxed for 8 hours with 2.5 moles of morpholine. Then, 1 volume of water is added, and the product is left to crystallize in the cold state. The morpholinic amide is filtered off and recrystallized from alcohol (yield: 85%; melting point: 88°C).

By using the procedure described in example 2, original compounds listed in table 30 III are prepared. 30

EXAMPLE 3.

N-(p-benzoylphenoxyacetyl)-piperidine This example illustrates procedure A (c) described above

35 The piperidinoamide of p-benzoylphenoxy acetic acid is obtained by treating 1 mole of p-benzoylphenoxy acetic acid chloride with 2 moles of piperidine in benzene. By using the procedure described in example 3, original compounds listed in table

EXAMPLE 4.

Para-propionhydroximoyl- phenoxy-acetyl-1-piperidine

1 mole of p-propionylphenoxyacetyl-1-piperidine is refluxed for 5 hours with 1.1 mole of NH₂OH.HCl and 1.05 mole of pyridine. The desired oxime is precipitated in water and recrystallized from alcohol. Its melting point is 144°C.

By using the procedure described in example 4, original compounds listed in table 45 V are obtained.

10

15

20

25

30

35

40

45

5

10

20

25

30

35

40

45

EXAMPLE 5. Preparation of para-(4-chlorobenzoyl)-phenoxy-isobutyric acid

1 mole of 4-hydroxy-4'-chlorobenzophenone is dissolved in anhydrous acetone and then 5 moles of powdered sodium hydroxide is added. The corresponding sodium phenate precipitates. Refluxing is effected, and then, 1,5 mole of CHCl₃ diluted with anhydrous acetone is added and the resulting mixture is refluxed for 10 hours. After cooling, water is added, the acetone is evaporated, the aqueous phase is washed with ether and acidified and the organic phase is re-dissolved in ether and extracted into a solution of bicarbonate. The bicarbonate solution is then acidified to obtain the desired acid, having a melting point of 185°C, with a yield of 75%.

By using the procedure described in example 5, original compounds listed in table

VI are prepared.

Esters and amides of the phenoxy-isobutyric acids prepared in accordance with the procedure of example 5 are produced in accordance with procedure A₁ described above. Esters and amides prepared in this manner are listed in table VII.

The compounds listed in table VII can be prepared in a manner similar to that described in the following example.

EXAMPLE 6.
Iso-propyl p-(4-chlorobenzoyl)-phenoxy-isobutyrate

cl-Co-Ch3 CH3 CH3

(Code No. 178)

1 mole of the acid obtained in example 6 is converted into its acid chloride using thionyl chloride (2,5 moles). 1 mole of the acid chloride is then condensed with 1,05 mole of isopropyl alcohol in the presence of 0,98 mole of pyridine in an inert solvent such as benzene.

Since traces of SO₂ (which has a bad smell) may be obtained from the thionyl chloride; it is preferable to avoid this disadvantage by carrying out the esterification directly.

Using procedure B described above, isobutyric acids, and esters and amides thereof prepared in example 5 are connected to the corresponding oxime compounds listed in table VIII.

The compounds of formula I in which R^{vi} and Y' are both hydroxy groups may be prepared in accordance with the invention by a) reacting p-hydroxybenzoic acid which has the formula

HO-COOH

with a halogeno carboxylic acid having the formula

in which Hal represents a halogen atom in an aqueous alkaline medium under reflux, and b) precipitating the resulting diacid in an acidic medium.

It is preferred to use one mole of p-hydroxy benzoic acid per mole of the halogeno carboxylic acid.

The compounds of formula I in which at least one of \mathbb{R}^{v_1} and Y' is other than hydroxyl can be prepared in accordance with the invention by converting at least one

of the acid functions of the diacid into an ester or amide function by a method known per-se for converting carboxylic acid groups to ester or amide groups.

20

5

10

15

20

25

The diacid, which has the formula

can be used directly:

- a) for the synthesis of a diester of the invention in which $R^{vi} = Y'$, b) to prepare an intermediary acid dichloride for which a diester or a diamide of the invention in which $R^{vi} = Y'$ can be synthesized, or
- c) for the synthesis of a monoester of the invention; in this case the acid function carried by the oxyacetic chain, i.e. the group OCR'R"COOH, is esterified through the acid monochloride prepared with PCl₅ in C₆H₆ at 0°C.

10 The monoesters of the formula

HO-C-C-COO-C2H5

can be synthesized in accordance with method c) or else by the action of ethyl bromo-acetate:

on a para-carboxy-hydroxyphenone of the formula

HO COOH

in a heterogenous alkaline medium.

From the monoesters of the invention, particularly those of formula VIII above, there can be obtained, by using a method known per-se, monoamides of the invention, e.g. of the formula

HOOC- RI RA

or acid monochlorides, e.g. of the formula

The acid monochlorides can in turn be converted into symmetrical and asymmetrical diesters and amide-esters of the invention, e.g. of the formula

10

Finally, a symmetrical or asymmetrical diester of the invention, e.g. of the formula

can be converted to an amide ester of the invention, e.g. of the formula

By a simple modification of the reaction sequences described above it is possible to obtain the compounds of the invention in which one of R¹ CO— and —COY is an amino-ester group and the other of R¹ CO— and —COY is an amide group, any substituents on the nitrogen atom of the amino-ester group being identical to or different from those on the nitrogen atom of the amide group. This is illustrated in the following reaction scheme in which

10

5

represent non-identical amino groups.

$$\begin{array}{c} R^{NN} \\ R^{NN} \\ Cl - CH_2 - CH_2 - O_2 C \\ R^{NN} \\ Cl - CH_2 - CH_2 - O_2 C \\ R^{NN} \\ R^{NN$$

The following examples are given to illustrate the invention.

EXAMPLE 8. N-(p-carboxyphenoxy-acetyl)piperidine

A mixture of 1 mole of ethyl p-carboxy-phenoxy-acetate and 2,5 moles of piperidine is refluxed for 7 hours. Water is then added, and 1-p-carboxy-phenoxy-acetyl piperidine precipitates.

20

15

15

20

25

30

5

10

20

25

30

EXAMPLE 9.

Ethyl para-piperidinocarbonyl-phenoxy-acetate Operation is in accordance with the following reaction scheme:

5 The amide ester product can be reacted with any amine, in accordance with the procedure described in Example 8, to produce a diamide.

The substances indicated in Tables I and II are prepared in accordance with the

procedure described in Example 8 or Example 9.

The substances listed in Table I bis have been found to possess anti-tussive and analgesic properties.

The following Examples illustrate particular procedures for preparing the compounds number 96 and 99 appearing in Tables I and II respectively.

EXAMPLE 10.

N-(p-carboxyphenoxy-acetyl)-piperidine 15 coded as No. 96

15

a) Ethyl p-carboxyphenoxy-acetate

1 mole of ethyl bromoacetate is reacted with 1 mole of p-hydroxybenzoic acid in the presence of 2 moles of K2CO3 in acetone, methyl-ethylketone, dioxan or tetra-hydrofuran, for 48 hours, at the reflux temperature of the organic solvent to obtain ethyl pcarboxyphenoxy-acetate.

b) N-(p-carboxy-phenoxy-acetyl)piperidine

The preceding ester (1 mole) is heated under reflux with piperidine (3 moles) in a chlorinated solvent, for 6 hours. Water is added to precipitate N-(p-carboxyphenoxy-acetyl) piperidine after condensation is complete.

EXAMPLE 11.

N-(p-ethoxycarbonyl-phenoxy-acetyl) piperidine coded as No. 99

Ethyl p-carboxy-phenoxy-acetate is esterified in ethanol and chloroform in the presence of sulphuric acid. N-(p-ethoxycarbonyl-phenoxy-acetyl)piperidine is obtained by condensation of 1 mole of the resulting diester (ethyl p-ethoxycarbonyl-phenoxy-acetate) with 3 moles of piperidine in an inert solvent for 7 hours at the boiling temperature of said solvent.

						I.R. cm-1	n-1	U.V.		
Code	, ivi	Α.	Α,	, X	M.P.	ν-C-R ^{vi} 	V-C-Y	л Мах.(mµ)	v	Activity
100	-NH2	Ξ	田		168	1630	1660	209	19 000 16 000	Anti-inflammatory Anti-tussive
96	НО	н	Ξ	Ç	190	1700	1640	210 249	18 000 17 000	.
106	-NH ₂	Ħ	H	-NH ₂	265	1640	1690	208 251	12 000 15 000	
112	НО-	Ħ	Œ	Q	183	1700	1640	209 248	17 000 16 000	:
116	Ç	五	Ħ	-0C ₂ H ₅	06	1630	1760	207	14 000 11 000	:
138	-NH,	Ξ	Ξ	\mathbb{Q}	181	1630	1660	208 249	20 000	÷
145		Ħ	H	-0C,H,	116	1620	1760	207 241	15 000 12 000	£

	Activity found	Anti-tussive, analgesic, cardiovascular	:	ž.	•	:	:
		27 000 19 000	16 000 20 000	17 500 20 000	18 000 19 000	36 000 22 000	34 000 17 000
V.U	λ Max.(mμ)	210 253	208 255	208	207 254	213 252	217 256
cm ⁻¹	ν-C-Υ' 0	1760	1760	1760	1760	1770	1760
I.R.	ν-C-R ^{vi} 0	1710	1710	1710	1710	1710	1710
	M.P. °C	75	108	182	169	190	140
	Υ'	-0C2Hs	-0C ₂ H ₅	-0C ₂ H ₅	-0C ₂ H ₅	o-orp-cr	-0-012-012-N
	Β",	Н	H	I	н	H	H
	R	н	H	Ξ	н	H	Ή
	R ^{vi}	-0-012-012-H	-0-CH ₂ -CH ₂ -N , HCI	-0-CH-CHP-N 0, NCZ	0-CH2-CH2-H 0, HCl	o-Org-Chz-M	-0-012-012-012-013
	Code No.	199	200	201	225	293	294
	I.R. cm ⁻¹ U.V.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

TABLE I (Continued)

	Activity found	Antitussive, cardiovascular, normolipemiant	:	:
	v	15 000 19 000	l	15 000 15 000
U.V.	λ Max.(mμ)	210 253	ı	209 253
n ⁻¹	ν-C-Υ΄ 	1700	1760	1730
I.R. cm ⁻¹	ν-C-R ^{vi} ν-C-Y'	1690	1710	1710
	M.P.	175		136
	γ,	Н0-	СН, СН, -0-СН	CH ₃ CH ₃ -o-cn ₂ -cn ₂ -n , axalate
	R.,	CH,	Ġ,	СН
	RV	сн,	CH,	. Н
	R ^{vi}	но	CH,	-0-04-04-1
	Code No.	310		

		Activity found	Antitussive	:	:	2 -	Antitussive, analgesic. cardiovascular	
			13 000 18 000	19 000 19 000	20 000 20 000	19 000 20 000	37 000 23 000	23 000 21 000
	U.V.	λ Max.(mμ)	216 267	210 253	209 252	209	210 255	209 256
	cm-1	, r-C-Y, □ 0	1650	1650	1660	1660	1660	1660
E II	I.R. cm ⁻¹	0=C-R ^{vi}	1720	1710	1700	1710	1710	1720
TABL		M.P.	61	104	72	110	162	85
-2-MA-C-	-	, λ	Qu-	Ç	Q)	Ç	Ç	
		Rvi	-0C,Hs	-0CH,	-0C ₂ H ₅	-0CH,	o-Oly-Chy-N	-0-CH ₂ -CH ₂ -N HCI
		Code No.	66	105	120	139	205	204

ed)
ontinu
<u>ت</u>
LE]
AB

							Į.
	Activity found	Antitussive, analgesic, cardiovascular		2	:	:	6
	ę	30 000 20 000	36 000 23 000	32 000 16 000	34 000 21 600	27 000 30 000	32 000 18 000
U.V.	λ Μαχ.(πμ)	210 254	210 255	207	209	211	212 250
n-i	ν-C-Υ'.	1660	1660	1660	1660	1660	1660
I.R. cm-1	v-C-Rvi	1710	1710	1710	1710	1710	1710
	.M. O. O.	160	139	100	138	162	168
	, λ	Q ₁ -	Ç			Ç	NH-CH ₂ -CH ₂ -N Et
	R ^{vi}	o-che-che-A	0-CHp-CHp-H	0-CHp-CHp-H	$0-CH_2-CH_2-H$ $fumatate$	10H3	o-che-che-H
-	Code No.	221	222	228	235	249	311

		Activity found	Antitussive, analgesic, cardiovascular	:	:	•
		ę	31 000 22 000	30 000 22 000	30 000 23 000	30 000 20 000
	U.V.	λ Мах.(mμ)	212 253	211	211 252	212 252
	m-1	ν-C-Υ΄ 	1660	1660	1660	1660
TABLE II (Continued)	I.R. cm-1	v-C-Rvi	1710	1710	1710	1710
BLE II (.°. C. D.	134	150	134	142
TA		, χ		Ç	Ç	
		R ^{vi}	o-Ore-Ore-H	-0 - CH - CH_2 - A CH_3 , fumataix	$-O-CH-CH_2-h$ CH_3 , fumarate	o-CHz-CHz-H
•		Code No.	312	313	314	

							I.R. cm ⁻¹	-1	U.V	, ,	
Code No.	R ^v i	R"	R""	RV	Υ,	M.P.	ν-C- O ketone	v-C- 0 amide	λ Мах.	و	Activity discovered
124	CH,-(CH,),	н	н	Н	Q-	82	1680	1650	213 267	18 000 18 000	Antitussive and psychotropic
126	CH,-(CH,),	H	н	Ξ	()	76	1680	1650	214	18 000 18 000	
184	CH,	Ħ	н	H		130	1700	1665	210 263	18 000 24 000	
134	CH, CH,	I	Ξ.	ш	Ç	107	1680	1660	214 266	17 500 17 500	:
136	CH3-CH3	Ξ	田	Ħ	\$	88	1670 enl	enlarged peak	214 265	18 000 17 000	:
148	H,COH	æ	Ξ	Ξ		80	1660 enl	enlarged peak	214 267	18 500 18 000	:

TABLE III (Continued)

•								
		Activity discovered	Antitussive and psychotropic	:	=	£	î	
	Α.	v	19 000 18 000	19 000 18 500	19.000 18 000	18 000 18 000	19 000 15 000	22 000 15 000
	U.V.	λ Мах.	214	214	214	213 267	211 257	214 266
	.m_1	ν-C- 0 amide	1650	1650	enlarged peak	1650	1660	1640
.	I.R. cm ⁻¹	ν-C- 0 ketone	1670	1670	1660 enl	1665	1680	1670
		M.P.	94	75	. 73	86	66	134
		, λ		Ç		Ç	Ç	
		Rv	Н	Н	Ξ	I	Ξ	Ξ
		R ""	Н	Ħ	=	Ħ.	H	Ħ
		R."	Н	н	Ħ	Ξ	н	H
		R ^{vi}	H,C CH	CH,-(CH,),	н,с сн-сн,	н,с сн-сн, н,с	CH³-(CH³)³	BrCH2
		Code No.	149	151	154	157	159	164

<u>~</u>
inue
Conti
)
ILE.
TAB

.:

Activity discovered	Antitussive, psychotropic and analgesic	:	÷ .	:	: .	:	
·	14 000 18 500	14 000 18 500	24 000 18 500	14 000 17 500	14 000 16 000	19 000 16 000	
λ Мах.	214	215 268	212	215	212	210	
ν-C- Ο amidc	arged peak	1640	1640	1630	1645	1650	
ν-C- ∥ Ο ketone	1660 en	1680	1670	1680	1670	1670	
M.P.	106	66	170	167	125	117	137
Υ, Υ	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	NH MH	min Chy Chy	NH-NH2	Ų	\bigcirc	
RV	I	Ξ	Ξ	Ξ	Ħ	Ξ	H
R ""	Н	H	Ξ	Ξ	Ħ	Ħ	工
	Н .	ш	Ξ	· .	Ħ	3-сн,	3—осн,
R ^{vi}	CH,	CH,	CH,	CH,	CH,	CH,	CH,
Code No.	202	203	216	218	219	223	
	Rvi R'' R' χ' χ' χ' χ' χ' χ' χ' χ'	Ryi R''' R''' R''' Y' ο'C	e Rvi R mm R v V oc ν C oc ν C oc ν C oc ν Max. ε CH, H	e Rvi R." R. V V. C. O ketone ν. C.	CH, H H H M MM-CH 1660 enlarged peak 214 14 000 CH, H H H MM-CH 99 1680 1640 215 14 000 CH, H H H H MM-CH 170 1670 1640 215 14 000 CH, H H H H MM-CH 1670 1670 1640 215 14 000 CH, H H H H MM-NH, 167 1680 1630 215 14 000 215 14 000 215 14 000 215 14 000 215 14 000 215 14 000 215 14 000 215 14 000 215 14 000 215 14 000 215 14 000 215 14 000 215 14 000 215 14 000 215 14 000 215 14 000 215 14 000 215 14 000 215 17 500 2	CH, H H H M M M 106 close clarged peak 214 14 000 CH, H H H M M M 106 close clarged peak 214 14 000 CH, H H H M M M 106 close clarged peak 214 14 000 CH, H H M M M 107 1670 1640 215 14 000 CH, H H H M M M 107 1670 1640 215 14 000 CH, H H H M M M M 107 1670 1640 215 14 000 CH, H H H M M M M 107 1670 1640 215 14 000 CH, H H H M M M M M 107 1670 1640 215 14 000 215 14 000 215 14 000 215 14 000 215 14 000 215 14 000 215 14 000 215 14 000 215 14 000 215 14 000 215 14 000 215 14 000 215 14 000 215 14 000 215 14 000 215 215 21 21 21 21 21 21 21 21 21 21 21 21 21	CH, H H H M M 170 1600 enlarged peak 266 18 500 CH, H H H M M M 170 1670 1640 215 14 000 CH, H H H M M M 170 1670 1640 215 14 000 CH, H H H M M M M 170 1670 1640 215 14 000 CH, H H H M M M M M 170 1670 1640 215 14 000 CH, H H H M M M M M 180 1650 1650 1630 215 14 000 CH, H H H M M M M 180 1650 1650 1650 268 18 500 CH, H H H M M M M 180 1650 1650 1650 268 18 500 268 18 500 269 16 000 269 16 000 269 16 000 269 16 000 269 16 000 269 16 000 269 16 000 269 16 000 269 16 000 269 16 000 269 16 000 269 16 000 269 16 000 269 16 000 269 16 000 269 16 000 269 16 000 269 269 16 000 269 269 269 269 269 269 269 269 269 269

		Activity discovered	Antitussive, psychotropic and analgesic	:	:	•	<u>:</u>	:	ž
	U.V.	v	15 000 17 000	29 000 17 000	27 000 16 000	22 000 13 000	23 000 13 000	25 000 15 000	23 000 15 000
	n	у Мах.	210	245 273	244 270	214 267	214 267	213 268	214 268
	7	ν-C- 0 amide	1665	1660	1660	1650	1660	1660	1660
TABLE III (Continued)	I.R. cm	ν-C- Ο ketone	1705	1660	1660	1670	1680	1680	1660
3 III (C		M.P. °C	104	86	109	64	119	82	88
TABLE		γ,							
		RV	Н	Н	H	Ξ	Ξ	Ξ	H
		R""	Н	H	H	–3 СН,	-3 CH,	-5 СН,	–5 CH ₃
		R."	н		-s	-2 CH ₃	–2 CH,	-2 CH ₃	-2 СН,
		Rvi	СН,	СН,	CH,	CH,	CH,	CH,	СН,
	Ŀ	Code No.	256	246	263	287	254	260	286

Antitussive, psychotropic and analgesic Activity discovered : : : : : : 20 000 17 000 19 000 16 000 15 000 9 000 40 000 16 000 ſ ł 1 U.V. λ Max. 217 269 264 302 249 276 209 268 ı 1 l O amide 1650 1660 1650 1660 1660 1660 1660 cm-1 V-C-O ketone I.R. 1670 1670 1660 1660 1680 1680 1680 M.P. 128 130 95 96 125 107 29 λ **Κ** Ή H H Ξ I I Ξ -5 CH3 -5 CH3 R "" I Ξ Ξ I Ξ -3 OCH, --3 SCH3 -2 C₂H₅ -2 C,Hs -3 SCH₃ -2 CH₃ -2 CH₃ R " Rvi CH, CH, GH, CH, CH, ĊH, CH, Code No. 318 264 275 306 309 261 271

TABLE III (Continued)

TABLE III (Continued)

							I.R. cm-1		D	U.V.		
							ν-C-	ν-C-				
æ	R ^{vi}	R‴	R"" R	R	γ,	M.P.	 O ketone	O amide λ Max.	Л Мах.	w	Activity discovered	
CH,		н	Н	н	NH-CH-CH,SH	SH 64	1660	1660	215 265	13 000 17 000	Antitussive, psychotropic	
СН,		–2 Br	Ξ	Œ		06	ı	ı	1	ł		

TABLE IV	0 -4 -5 -00% -C->
<u>-</u>	ς'=ο .

	Activity discovered	Antitussive and psychotropic	•	:	:	:	:
U.V.	ų	22 000 18 000	20 000 16 000	41 000 40 000	22 000 19 000	14 000 15 000	16 000 17 500
U.	Л Мах.	211 283	211 283	211 255	245 280	210	210
m ⁻¹	ν-C- Ο amide	1650	1650		1650	1660	1650 —
I.R. cm ⁻¹	ν-C- ∭ O ketone	1670	1675	1650	1680	1690	16
	M.P.	104	129	140	130	116	130
	γ,	Q	Ç		₩ _N	₩ HIII	\
	R'''	н	Ħ	н		Ħ	E
	R"	Н	н	Œ	Н	ж	I
	R ^{vi}	\Diamond	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Code No.	128	129	131	168	167	174

TABLE IV (Continued)

					I.R. o	m-1	D	>.		
_										
					7-C-	7-C-				
R ^{vi}	R."	R ""	λ,	M.P.	 O ketone	 O amide	λ Мах.	U	Activity discovered	
	H	Н	Q ₁ -	140	1665	1645	208	25 000 18 000	Antitussive and psychotropic	
	Ξ	Ħ	Q	130	1665	1645	207 286	26 000 19 000	:	
	IYY	m Q Q	R ^{V1} R ""	R ^{V1} R"" R"" H H H H H H H H H H H H H H H H	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

1 ABLE V
ABLE 15

	Activity discovered	Sedative, antiinflam- matory, analgesic and anti- tussive	:	:	:	:
U.V.	v	45 000 40 500	22 000 18 000	26 000 16 000	19 500 16 000	22 000 18 000
Ü	А Мах.	211 255	212 257	212 240	212 258	211 257
I.R. cm-1	ν-C- 0 amide	1640	1645	1650	1645	1660
I.R.	ν OH oxime	3250	3250	3250	3250	3300
	M.P.	172	147	136	159	144
	Υ,		Ç	Q	Ç	Ç
	R	H	Ξ	ж	H	Н
	R'''	Œ	E	=	=	н
	R."	E	Œ	н	æ	Н
	R	æ	H	Ħ	æ	Ж
	R ^{vi}	0	127 СН,-СН,-СН,	\Diamond	сн,-сн,-сн,	сн,сн,
	Code No.	125	127	130	132	135

		Activity discovered	Sedative, antiinflam-	matory, 19 000 analgesic 15 000 and anti- tussive	:	:	:	:
	U.V.	Ų		19 000			18 000 10 000	21 000 21 000
	1	λ Мах.		212 268	·		212 243	213
	I.R. cm ⁻¹	ν-C- 0 amide	1635	1650	1635	1640	1635	1640
	I.R	ν OH oxime	3300	3350	3300	3300	3150	3200
		M.P.	150	144	124	147	142	132
TABLE V (Continued)		γ,		Ç				Q
TAE		۵,	I	Ξ	H	Ξ	I	E
		R ""	E	E	Ħ	Ξ	Ξ	н
		R	E	=	н	н	æ.	н
		æ°	Ħ	==	æ	Ξ	Ŧ	Ψ
		R ^{vi}	CH,-CH,	CH,-(CH,),	н,с сн-сн,	H,C CH-CH,	н,с	CH1-(CH1)1
		Code No.	147	152	155	156	160	161

		Activity discovered	Sedative, antiinflam- matory, analgesic and anti- tussive	Analgesic, antitussive and anti- inflammatory	:	:	:	Active on the CNS
	U.V.	ę	18 000 10 000	29 000 16 000	27 000 19 000	25 000 18 000	15 000 15 000	29 000 17 500
	n.	λ Мах.	210 242	215 259	212 238	210 264	240 263	209 254
	I.R. cm ⁻¹	ν-C- 0 amide	1660	1630	1630	1640	1640	1660
	I.R.	ν OH oxime	3350	3350	3350	3200	3250	3250
		M.P.	170	182	184	200	194	216
TABLE V CContinued)		بذ		Q	Ç	₩ _{III}	VHH HH	min chia
TABL		R	Ξ	Ħ	I	I	н	五
		R""		Ħ	Ξ	Œ	エ	H
		π,"	E	I	Ħ	Œ	Œ	Ŧ
		_ద ం	ш	н	Æ	ш	#	ш .
•		R ^v i	н,с	Br-CH,	\Diamond	\bigcirc	\bigcirc	CH,
٠		Code No.	177	179	181	183	185	214

-		Activity	discovered	Antitussive and psycho- tropic	•	•	:	:		:
	U.V.		v	24 000 9 000	23 000 21 000	21 000 19 000	25 000 17 000	22 000	40 000 15 000	30 000 30 000
•	ر		А Мах.	210	210	210 257	211 241	211	212 255	208 242
	cm ⁻¹	-S-4	 O amide	1650	1620	1640	1640	1640	1630	1640
	I.R.	ν OH	oxime	3300	3200	3300	3300	3300	3250	3200
		2	°C.	142	130	162	202	133	164	153
TABLE V (Continued)			λ,		Q		Ų.			
BLE			R	Н	Ή	Ħ	Ή	Æ	Ħ	Н
TA		:	R ""	н	Ξ	I	ш	Ξ	−6 CH,	н
			R."	–3 CH,	I	Ξ	I	–3 CH,	–2 CH,	\bigcirc
		·	Ro		· #	x	五 .	æ	×	н
			R ^{vi}	CH,	н	СН,	\Diamond	CH,	CH,	сн,
			Sog Sog	220	236	279	295	258	245	247
									*	

		Activity discovered	Antitussive and psycho- tropic	=	:	:	:	:	2	:
	U.V.		27 000 29 500	28 000	24 000	27 000 17 000	25 000 17 000	25 000	23 000	11 000 4 000
	٦	λ Мах.	211 242	212	212	212 258	213	225	223	245 282
	cm ⁻¹	v-C- 0 amide	1640	1640	1640	1640	1630	1640	1640	1630
	I.R.	ν OH oxime	3200	3250	3250	3250	3250	3200	3250	3250
		M.P. °C	166	149	166	200	188	163	167	154
TABLE V (Continued)		χ,	\bigcirc	Ç	Ç	Ç	Q	Ç	\[\text{\tin}\text{\tett{\text{\tetx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\texi}\text{\text{\text{\texi}\text{\text{\texi}\text{\texi}\text{\text{\text{\text{\tet{\text{\text{\texi}\text{\text{\texi}\text{\texit{\text{\texi}\t	Ç
TABL		R	II.	Ξ	Ξ	Ħ	Ħ	H	H	H
			_	3 CH,	Œ	. #	Ħ	H	H	=
		~	#	13	3					
		R""		-2 CH ₃ -3	–2 CH ₃ –3	-2 СН,	–2 CH ₃	-3 SCH ₃	-3 SCH ₃	-3 OCH,
			H H		<u>13</u>					н –3 осн,
		R."	Q	-2 CH ₃	-2 CH ₃ -3	-2 СН,	-2 CH ₃	-3 SCH ₃	-3 SCH,	

		-							
	Activity	uiscoveieu	Antitussive and psycho- tropic	:	2		:	ĉ	:
.V.	,	٠	11 000 4 000	26 000	26 000	36 000	24 000 20 000	23 000 20 000	35 000 20 000
n			245	213	213	213	213 263	210 260	21.1 262
. cm ⁻¹	2	-	1640	1630	1640	1620	1640	1640	1630
I.R	7		3300	3250	3250	!	ŧ	ţ	ı
	M.P.	ر	153	140	146	125	130	110	125
	. }	1		Ç		Q	Ç		\bigcirc
	ر >	4	н	H	Ξ	斑	Ξ	I	Ξ
	<u> </u>	4	Ξ	-5 CH ₃	−5 CH,	Ξ	Ħ	Ħ	Н
	6	4	-3 осн,	–2 CH,	–2 CH,	–3 CH ₃	x	Œ	Н
	.	νo	E	Ħ	н	$(CH_{\mathcal{O}})_{\mathcal{Z}} - h$	(cHp)2-A	СН2-СНОН-СН20Н	(CHP)2-M
			CH,	CH,	CH,	CH,	CH,	CH,	CH,
	Code	iyo:	283	300	292	281	251	717	280
	I.R. cm ⁻¹ U.V.	I.R. cm ⁻¹ U.V. VOH	I.R. cm ⁻¹ \(\nu C\) ime \(\text{0 amide} \time \text{Max}\)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ryi Ro R'' R'' R'' R'' R'' R' Y' $\frac{1}{^{4}}$ CH, $\frac{1}{^{4}}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Ę
(Danni
Cont
<u>ر</u>
Œ
ā

	Activity discovered	Antitussive and psycho- tropic	î	:
U.V.	v			
n	А Мах.			
I.R. cm ⁻¹	ν-C- αmide λ Max.	1630	1660	1620
I.R	ν OH oxime	3300	ı	3250
	M.P.	195	126	126
	γ,			E E
	RV	Ħ	Ξ	Ξ
	R""	–5 СН, Н	Έ	Ξ
	R"	–2 C ₂ H ₅	æ	. Д
	R _o .	н	CH,	Ħ
	R vi	*HO	СН,	CH,
	Code No.	317	320	

	6,43
ILE VI	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TABL	PM-C-42

_									
			•		I.R. cm ⁻¹		D.	U.V.	-
	R ^{vi}	R."	R ^V	M.P.	v-C- O ketone	v-C- 0 acid	λ Мах.	¥	Activity discovered
£	CH,-CH,-CH,	Н	CH,	62	1670	1720	215	13 000 19 000	Normolipemiant
		H	CH,	184	1640	1710	259 294	13 000 17 000	:
	СН,	–3 CH,	CH3	86	1640	1735	222 271	15 000 17 000	:
	CH,	O _i	Сн,	106	1660	1710	ı	l	Ξ
	\bigcirc	н	C,H,	140	1630	1740	258	13 000 16 000	:

ABLE VII	13 - C-13 - C-13 - C-143 - C-1
IABL	7-0
	- - - - - -

					I.R. cm-1) 			
						=O	U.V.	۷.	
Rvi	i.	R"	Υ,	B.P. or M.P.	ketone	ester or amide	λ Мах.	Ę	Activity discovered
CH,		н	0-сн,	M.P. = 62	1670	1730	215 267	12 000 17 000	Normolipemiant
	\wedge	н	0-сн,	M.P. = 89	1660	1740	207 284	13 000 12 000	•
		H	0-C,H,	M.P. = 79	1665	1735	208 285	19 000 18 000	£
		Ħ	Ç	M.P. = 160	1650	1620	208	24 000 .18 000	s
\searrow	\cap	I	Q	M.P. = 148	1650	1640	210 285	25 000 20 000	£
	\cap	Ξ	CH, CH, CH,	M.P. = 84	1660	1730	207 284	18 500 18 000	£

Continued)	
) 	
BLE	
TA	

33	1,415,295								
•		Activity discovered	Normolipemiant and cardio- vascular	Normolipemiant	Normolipemiant and cardio- vascular	Normolipemiant	· ·	:	
	U.V.	,	44 000 20 000	32 000 12 000	33 000 17 000	35 000 18 000	. 1	33 000 16-000	
	Ü.	λ Мах.	282	212 265	208 184	209	I	207 285	
	∪ ∪ 2	ester or amide	1740	1740	1740	1740	1760	1745	
	I.R. cm ⁻¹	ketone	1655	1670	1650	1660	1645	1650	
TABLE VII (Continued)		B.P. or M.P.	M.P 118	M.P. = 134	M.P. = 115	M.P. = 62	M.P. = 135	M.P 120	
TABI		, λ	0 -CH2-CH2-H \bigcirc b , fumalate	0 - CH_2 - CH_2 - N $fumatate$	o-chg-chg-H	O-CH ₂ -CH ₂ -N , maleate	p o	o-che-che-H	
		R ""	Н	Ħ	Ξ	I	Ή	ж.	
		Rvi		CH,	\bigcirc	0		Ç.	
	-	Code No.	<u> </u>	210	211	212	217	229	
			•	-					

eg)
(Continue
· AII
TABLE

		Activity discovered	Normolipemiant	.	:	:	:	:
	۸.	•	22 000 17 500	26 000 14 000	12 000 16 000	12 500 16 000	20 000 19 000	20 000 16 000
	U.V.	λ Мах.	206 286	208	214	212 267	259 285	208 286
7)=0	ester or amide	1730	1730	1740	1740	1740	1740
	I.K. cm	ketone	1650	1645	1675	1675	1660	1645
		B.P. or M.P.	M.P. = 104	M.P. = 116	M.P. = 72	M.P. = 118	M.P. = 144	M.P. = 145
		Υ,	O-CH ₂ -CH ₂ -N, Et	o-ch ₂ -ch ₂ -N	0-CH ₂ -CH ₂ -N, HCl	0-042-049-11	0-0H2	0-CH2-CH2-N 0; HCl
,		R"	н	E	н	H	, H	H
		R ^{vi}		\bigcirc_{p}	CH ₃ -(CH ₂),	CH3-(CH2),	\bigcirc_{g}	
		Code No.	230	231	232	233	238	239

		Activity discovered	Normolipemiant	:	:	•	. :	:
	۷.	Ę	17 000 15 500	16 000 16 200	17 000 16 200	22 700 18 000	17 000 16 500	1
	U.V.	А Мах.	208 267	208 267	208	211 257	207	1
	ე 	ester or amide	1745.	1740	1730	1730	1740	1720
	I.R. cm-1	ketone	1680	1680	1680	1660	1640	1650
TABLE VII (Continued)		M.P. or B.P.	B.P. _{0.03} = 132	B.P. 0.05 = 136	B.P. o. os = 139		M.P. = 80	BP ₁ = 198
TABL		Υ,	0-CH,	0-C ₂ H ₅	O-CH, CH,	O-CH,	CH, 0-CH,-0,C-C-CH, CH,	O-CH CH,
		Ά,"	3 CH,	–3 CH,	–3 CH,	-3 CH ₃	ж	-3 SCH,
		R ^{vi}	GH,	.	CH,	\Diamond_{a}		СН3
		Code No.	240	241	242	253	297	

TABLE VII (Continued)

	Activity discovered	Normolipemiant	:
٧.	w	1	١
U.V.	λ Мах.	l	ı
o 	ester or amide	1720	1710
I.R. cm 1 2-C-	ketone	1690	1660
	M.P. or B.P.	M.P. = 86	M.P. = 95
	λ,	O-CH CH,	O-CH
	R."	–3 SO,CH,	\bigcirc
	R ^{vi}	CH,	CH,
	Code No.		

TABLE VIII

.v.v.	v		•	32 000 20 000	31 000 20 000	l
	А Мах.			210	211 246	į
I.R. cm ⁻¹	-C- ester or O amide	1730	1730	1620	1620	1740
I.R.	ν OH oxime	3200	3200	3260	3280	3300
	M.P.	106	102	184	17.5	139
	Υ.	0-C ₂ H _{5.}	0-СН,	Ç		O -CH2-CH3-W
	R ^{vi}	CH,	CH,		\bigcirc_{a}	\bigcirc
	Code No.	122	146	172	173	289

5

10

15

20

25

30

35

40

45

50

55

chlorine or bromine atom.

We make no claim to the compounds claimed in the specification of our prior copending Application No. 3085/70 (1,268,321), which are defined at the beginning of the specification. Subject to this disclaimer,

WHAT WE CLAIM IS:—
1. A phenoxy-alkyl-carboxylic compound of the general formula:

in which each of R" and R', which may be identical or different, is a hydrogen atom or a methyl, ethyl, phenyl, p-chlorophenyl or p-fluorophenyl group; each of R" and R"", which may be identical or different, is a hydrogen or halogen atom or a C1_3 alkyl, CF₃, SCH₃, SOCH₃, SO₂CH₃, OCH₃, OH, C₄H₅ or substituted phenyl group; R^{ri} is a hydrogen atom, a C₁₋₅ alkyl group, an aryl group optionally containing one or more 10 nuclear substituents selected from methyl and trifluoromethyl groups and halogen atoms, a cycloalkyl, hydroxyl or C1-, alkoxy group, an aryloxy group optionally containing one or more nuclear substituents, or a cycloalkoxy, cycloalkenyloxy, NR₃R₆ NHCH₂CH₂NR₃R₄ or O-alkylene-NR₃R₄ group; Y' is a hydroxy, C₁₋₄ alkoxy, —NR₃R₄, —NHCH₂CH₂NR₃R₄ or O-alkylene-NR₃R₄ group; X' represents O or NOR₆; R₆ is a hydrogen atom or a C₁₋₅ alkyl, —CH₂CH₂NR₃R₄ or —CH₂CHOHCH₂OH group; and each of R₃ and R₄, which may be identical or different is a hydrogen atom or C₁₋₆ alkyl group or a part group. 15 different, is a hydrogen atom, a C1-3 alkyl or C3-7 cycloalkyl group or an aryl group optionally containing one or more nuclear substituents selected from halogen atoms and 20 methyl and trifluoromethyl groups, or R₃ and R₄ together with the nitrogen atom to which they are attached represent an optionally substituted 5- to 7-membered heterocyclic ring which may contain a second heteroatom selected from O, S and N, or radical of formula —NH(CH₂)₄CH(NH₂)COOH or —NH—CH(COOH)—CH₂SH, with the provisos that if R''' and R''' are not both hydrogen, then R'' is methyl or p-chloro-25 phenyl, and that if Y' is hydroxy or alkoxy, R' is hydrogen or C₁₋₅ alkyl and one of R" and R' is hydrogen, the other of R" and R' is methyl or ethyl.

2. A compound according to Claim 1, in which each of R" and R' is a hydrogen atom or a methyl or phenyl group, each of R" and R" is a hydrogen or chlorine atom or a methyl, trifluoromethyl or methoxy group, R" is a straight- or branched-chain 30 C1-4 alkoxy group or a hydroxyl, amino, monoalkylamino, di(C1-5 alkyl)amino, piperi-C₁₋₄ alkoxy group or a nydroxyl, amino, monoalkylamino, dl(C₁₋₅ alkyl)amino, piperidino, morpholino, azepino, pyrrolidino, piperazino, N'-p-chlorophenylpiperazino, aminoalkoxy, mono- or dialkylaminoalkoxy, piperidino alkoxy, morpholinoalkoxy, azepinoalkoxy, piperazinoalkoxy, aryloxy, p-chlorophenoxyl cyclohexyloxy, Δ¹-cyclohexenyloxy, or NHCH₂CH₂NR₃R₄ group; Y' is a hydroxyl, C₁₋₄ alkoxy, NR₃R₄, —NHCH₂CH₂NR₃R₄, O—C₁₋₆ alkylene-NR₃R₄ or cycloalkylamino group or an arylamino group optionally containing one or more nuclear substituents selected from chloring atoms and methyl and trifluoromethyl groups. Y' represents O and either 35 chlorine atoms and methyl and trifluoromethyl groups; X' represents O, and either each of R_3 and R_4 is a hydrogen atom or a C_{1-5} alkyl group, or R_5 and R_4 , together with the nitrogen atom to which they are attached, represent an optionally substituted 40 5- to 7- membered heterocyclic ring, which may contain a second heteroatom selected from O, S and N, or radical of formula NH(CH₂)₄CH(NH₂)COOH or —NH—CH(COOH)—CH₂SH. 3. A compound according to Claim 2, in which Rr is a phenoxy group. 4. A compound according to Claim 1, in which each of R" and R' is a hydrogen atom or a methyl or phenyl group, each of R" and R" is a hydrogen 45 or chlorine atom or a methyl, trifluoromethyl or methoxy group, R¹¹ is a hydrogen atom, a straight- or branched-chain C₁₋₅ alkyl group, or an aryl, p-chlorophenyl, cyclohexyl or Δ¹-cyclohexenyl group, Y' is a hydrogen atom, —NR₅R₄, —NHCH₂CR₂R₃R₄, O—C₁₋₄ alkylene-NR₃R₄ or cycloalkylamino group or an aryl-50 amino group optionally containing one or more nuclear substituents selected from chlorine atoms and methyl and trifluoromethyl groups, Ro is a hydrogen atom or a C1-s alkyl or CH2CH2NR3R4 group, and R3 and R4 are as defined in Claim 2, with the provisos set forth in Claim 1. 5. A compound according to claim 4, in which R" is a phenyl group.
6. A compound according to claim 1, in which each of R" and R"" is a fluorine, 55

7. A compound according to Claim 1 or 6, in which Y' is a C1-4 alkoxy group.

	8. A compound according to claim 1, 6 or 7, in which R _o is a C ₁₋₃ alkyl group. 9. A compound according to claim 1, 6, 7 or 8, in which NR ₃ R ₄ is amino, monoor dialkylamino, morpholino, thiomorpholino, pyrrolidino, piperidino, azepino, piperazino, N-p-chlorophenyl-piperazino, N-methylpiperazino, 4-methylpiperidino, anilino,	
5	2,3-dimethylanilino, p-chloroanilino, O-trifluoromethylanilino, p-trifluoromethylanilino,	5
	cyclohexylamino, cyclopentylamino or N-methylanilino.	
	10. N-(p-propionyl-phenoxyacetyl)-morpholine.	
	11. N-(p-benzoyl-phenoxyacetyl)-piperidine.	
	 N-(p-propionhydroximoyl-phenoxyacetyl)-piperidine. 	
10	13. Isopropyl p-(4-chlorobenzoyl)-phenoxy-isobutyrate.	10
	14. p-(4-chlorobenzoyl)-phenoxy-isobutyric acid.	
	15. N-(p-carboxyphenoxy-acetyl)-piperidine.	
	16. Ethyl ρ-piperidinocarbonyl-phenoxy-acetate.	
	17. N-(p-ethoxycarbonyl-phenoxy-acetyl)-piperidine.	
15	18. An acid addition salt of a compound according to any one of claims 1—9.	15
	 A compound according to claim 1 or 18 substantially as hereinbefore described. 	
	20. A therapeutical composition comprising a pharmaceutically effective amount	
	of at least one compound according to any one of claims 1, 6—9, 18 and 19.	
	21. A therapeutical composition comprising a pharmaceutically effective amount	
20	of at least one compound according to any one of claims 2, 3 and 15-17.	20
	22. A therapeutical composition comprising a pharmaceutically effective amount	
	of at least one compound according to any one of claims 4, 5 and 10-14.	

For the Applicants, D. YOUNG & CO., Chartered Patent Agents, 9 & 10 Staple Inn, London WCIV 7RD.

Printed for Her Majesty's Stationery Office by the Courier Press, Learnington Spa, 1975. Published by the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.