How to reproduce

This document is meant to guide anyone who wishes to reproduce the entirety or a part of the scripts used in Wiersma et al. (2022). I have done my best to keep it somewhat structured, but I should give a disclaimer that I'm a scientist, not a programmer, and this is without doubt reflected in the quality of the code. Following this guide alone is probably complicated, so I strongly encourage anyone wishing to work with this script to contact me beforehand.

Different scripts and files

Script	What does it do	
1_GHMGGM_preprocessing.py	Helps to select GRDC stations and to create subbasins and clonemaps based on	
	their location	
	rasterizes and resamples GloGEM data	
	prevents their spilling into other basins	
	saves the result in a NetCDF file	
2_GHMGGM_Modelruns.py	Loads the NetCDF-files of (1/3): Preprocessing and couples them to PCR-GLOBWB	
	Loads and adjusts the PCRGLOB inifile	
	Calls the PCRGLOB docker and initializes the model	
	Has a setting for doing only spinup	
	Runs PRCGLOB coupled or uncoupled for one basin	
	Saves modeled discharge at gauging station	
	Saves daily parameter fields into netcdf (optional)	
	Can be made into a function and run together with eval_inputs.py	
	for job arrays	
3_GHMGGM_Hydrographs.py	Loads the modelled hydrographs and plots them	
	Single basin all years	
	One year with a selection of basins	
	Calculates the objective functions which can be plotted in the next script	
	• ND	
	Ratio	
	• RRD	
	Benchmark efficiency	
	Flow duration curve efficiency	
	Mass balance efficiency	
	Standalone GHM evaluation	
	o NSE	
	o Calendar benchmark efficiency (Schaefli&Gupta2007)	
4_GHMGGM_ObjectiveFunctionPlots.py	Loads the objective functions (from script 3) and plots them	
5_GHMGGM_MassImbalance.py	Calculates the annual runoff difference between the coupled model and the	
	benchmark and the contribution of	
	Snow towers	
	Glacier mass loss Spilling appropriate	
	Spilling prevention to this approal runoff difference for the basins Alsak, Columbia, Colfusa and Bhone	
aux Adjust PCPGLOP	to this annual runoff difference for the basins Alsek, Columbia, Oelfusa and Rhone	
aux_Adjust_PCRGLOB_ landcover_fractions.py	Takes the PCRGLOB grassland (short vegetation) landcover fraction map	
aux_Plot_Worlmap.py	and subtracts the RGI glacier cover fraction from it. This script loads the basin shapefiles and plots them on a world map	
aux_riot_woriiiap.py	with the glacierization degree in blue hue	

Files needed at the start

- External files

PCR-GLOBWB 2 datasets	https://github.com/UU-Hydro/PCR-GLOBWB model
	https://doi.org/10.5194/gmd-11-2429-2018
GloGEM outputs	On request from Huss and Hock (2018), a more recent
	version is now available
	https://doi.org/10.1038/s41558-017-0049-x
ERA-Interim T & P	Through eWaterCycle or manual download, future
	studies ought better work with ERA5
Hydrosheds (Ivl 12)	https://www.hydrosheds.org/page/hydrobasins
GRDC metadata & runoff data	https://www.bafg.de/GRDC/EN
Hydrobanque Rhone discharge	https://www.hydro.eaufrance.fr/
Randolph Glacier Inventory	https://doi.org/10.7265/N5-RGI-60
	https://www.glims.org/RGI/
River vectors from Yan et al. 2019 (optional)	https://doi.org/10.6084/m9.figshare.8044184.v5

- Custom files (at Zenodo)
 - o GHMGGM_basin_info.csv
 - Yml files to create the conda environments with the necessary packages
 - GHMGGM_ewc.yml for the eWaterCycle runs on Linux
 - GHMGGM.yml for all other scripts
 - Glob_glac_fac_shp
 - global_masked_vectorgrid.shp
 - Clonemaps
 - o Basin and subbasin shapefiles
 - Adjusted landcover fractions (to skip the aux_Adjust_PCRGLOB_landcover_fractions.py)
 - PCR-GLOBWB 2 ini file (setup_05min_non-natural.ini)

Folder structure

- Code
 - o Files
 - basin_geojsons
 - subbasin_geojsons
 - isout
 - isglac
 - isbasin
 - clones
 - globglacfrac
 - Containing glob_glac_frac.shp and global_masked_vectorgrid.shp
 - HH2018_validation
 - Containing per basin Discharge_catchment, Overview and Annual_balance
 - GG_rasterized_monthly (auxiliary)
 - GG_resampled_daily (auxiliary)
 - GG_spilling_prevented (auxiliary)
 - GG_final (auxiliary)

- ERA_Interim
- glaciers nc
- Hydrosheds
- Yan2019rivers
- grassf_adjusted_landcover_PCRGLOB
- GRDC_Stations.csv
- GHMGGM_basin_info.csv
- Setup_05min_non-natural.ini
- o Figures
 - Basin_maps
 - Ensembleplots
 - Main_plots
- o Output

eWaterCycle version

This study was done with an old version of eWaterCycle, with the following package versions

- Ewatercycle-parametersetdb = 1.0.0
- Grpcio 1.27.2
- Grpc4bmi 0.3

This older version was installed with the following (outdated) instructions https://github.com/jeromaerts/external user guide/tree/pcrglobwb install instructions.

Any future runs ought better use the newer eWaterCycle package (https://ewatercycle.readthedocs.io/en/latest/system_setup.html). The necessary changes in the script should be minor. Keep in mind that eWaterCycle should be run on Linux, the GHMGGM_ewc.yml file contains a conda environment that should support the eWaterCycle model runs.