C# Assignment 2

By: Christine Bittle

This assignment is worth 20% of your final grade in the course

For each question, accomplish the following tasks:

- (Quantitative: 2 Marks) Create ASP.NET Core Web API Controllers that implement the desired functionality. If you have trouble, describe your approach using code comments.
- (Qualitative: 2 Marks) Use descriptive variable names, and a <summary> block above each method, with the following:
 - A general <summary> of what the endpoint does
 - A description of what the endpoint <returns>
 - A description of each input <param>eter
 - At least one <example>
- (Testing: 2 Marks) Include evidence of thoroughly testing your work using cURL

RUBRIC

	0 Marks	1 Mark	2 Marks
Quantitative	Method not implemented	Method partially implemented / implemented with room for improvements	Method implemented, no improvements required
Qualitative	Documentation not included	Documentation partially included / included with room for improvements	Documentation included, no improvements required
Testing	Testing not included	Testing partially included / included with room for improvements	Testing included, no improvements required

How to submit

- 1. Use Visual Studio / git to push your work to a remote repository
- 2. Verify the repository:
 - a. contains the work you wish to submit (i.e. the files are there)
 - b. is public (if it is set to private, change it to public!)
- 3. Include repository github link as part of your assignment submission (Do not share the link or your work with anyone else)
- 4. Include evidence of your testing as a PDF with screenshots of your cURL commands

The Canadian Computing Competition (CCC) is a yearly competition hosted by the University of Waterloo. The past contests are available through the link below.

https://cemc.uwaterloo.ca/resources/past-contests#ccc?grade=19&academic_year=All&contest _category=29

Question 1

Solve the below J1 problem "Deliv-e-droid"

Question 2

Solve a different J1 problem than Question 1 from a previous contest year.

Question 3

Solve the below J2 problem "Chili Peppers"

Question 4

Solve a different J2 problem than Question 3 from a previous contest year.

Question 5

Solve a J3 problem from a previous contest year.

Note on Inputs:

The questions on the CCC assume that the program input works through a terminal. Below are two questions which have been modified to work with a single HTTP request, rather than multiple rounds of input from the user. Read the original question linked, and observe how the question context is changed.

Adapted J1 - Deliv-e-droid

Source: https://cemc.uwaterloo.ca/sites/default/files/documents/2023/juniorEF.pdf

In the game, Deliv-e-droid, a robot droid has to deliver packages while avoiding obstacles. At the end of the game, the final score is calculated based on the following point system:

- Gain 50 points for every package delivered.
- Lose 10 points for every collision with an obstacle.
- Earn a bonus 500 points if the number of packages delivered is greater than the number of collisions with obstacles.

Your job is to determine the final score at the end of a game.

Request	Response
POST : localhost:xx/api/J1/Delivedroid Content-Type: application/x-www-form-urlencoded Request Body: Collisions=2&Deliveries=5	730
POST : localhost:xx/api/J1/Delivedroid Content-Type: application/x-www-form-urlencoded Request Body: Collisions=10&Deliveries=0	-100
POST : localhost:xx/api/J1/Delivedroid Content-Type: application/x-www-form-urlencoded Request Body: Collisions=3&Deliveries=2	70

Adapted J2 - Chili Peppers

Source: https://cemc.uwaterloo.ca/sites/default/files/documents/2023/juniorEF.pdf

Ron is cooking chili using an assortment of peppers.

The spiciness of a pepper is measured in Scolville Heat Units (SHU). Ron's chili is currently not spicy at all, but each time Ron adds a pepper, the total spiciness of the chili increases by the SHU value of that pepper.

The SHU values of the peppers available to Ron are shown in the following table:

Pepper Name	Scolville Heat Units	
Poblano	1500	
Mirasol	6000	
Serrano	15500	
Cayenne	40000	
Thai	75000	
Habanero	125000	

Request	Response
GET : localhost:xx/api/J2/ChiliPeppers&Ingredients=Poblano, Cayenne,Thai,Poblano	118000
GET : localhost:xx/api/J2/ChiliPeppers&Ingredients=Habanero ,Habanero,Habanero,Habanero	625000
GET : localhost:xx/api/J2/ChiliPeppers&Ingredients=Poblano, Mirasol,Serrano,Cayenne,Thai,Habanero,Serrano	278500

Hint: String.Split