Assignment 4

1. Use the definition of Taylor series to find the Taylor series, centered at c, for the function.

$$f(x) = \ln x$$
 , $c = 1$

2. Find all points (if any) of horizontal and vertical tangency to the curve.

$$x = \cos \theta$$
, $y = 2\sin 2\theta$

3. Determine the open t-intervals on which the curve is concave downward or concave upward.

$$x = 4\cos t$$
, $y = 2\sin t$, $0 < t < 2\pi$

4. Find the area of the surface generated by revolving the curve about each given axis.

$$x = \frac{t^3}{3}$$
, $y = t + 1$, $1 \le t \le 2$, y-axis

sol:

1.

For
$$c=1$$
, you have,
 $f(x)=\ln x$, $f(1)=0$
 $f'(x)=\frac{1}{x}$, $f'(1)=1$
 $f''(x)=-\frac{1}{x^2}$, $f''(1)=-1$
 $f'''(x)=\frac{2}{x^3}$, $f'''(1)=2$
 $f^{(4)}(x)=-\frac{6}{x^4}$, $f^{(4)}(1)=-6$
 $f^{(5)}(x)=\frac{24}{x^5}$, $f^{(5)}(1)=24$

and so on. Therefore, you have:

$$\ln x = \sum_{n=0}^{\infty} \frac{f^{(n)}(1)(x-1)^n}{n!}$$

$$= 0 + (x-1) - \frac{(x-1)^2}{2!} + \frac{2(x-1)^3}{3!} - \frac{6(x-1)^4}{4!} + \frac{24(x-1)^5}{5!} - \cdots$$

$$= (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \frac{(x-1)^5}{5} - \cdots$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{(x-1)^{n+1}}{n+1}$$

2.

$$x = \cos \theta, y = 2\sin 2\theta$$

Horizontal tangents: $\frac{dy}{d\theta} = 4\cos 2\theta = 0$ when $\theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$.

Points:
$$\left(\frac{\sqrt{2}}{2}, 2\right)$$
, $\left(-\frac{\sqrt{2}}{2}, -2\right)$, $\left(-\frac{\sqrt{2}}{2}, 2\right)$, $\left(\frac{\sqrt{2}}{2}, -2\right)$

Vertical tangents: $\frac{dx}{d\theta} = -\sin\theta = 0$ when $\theta = 0, \pi$

Points: (1,0)(-1,0)

3.

$$x = 4\cos t, y = 2\sin t, 0 < t < 2\pi$$

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2\cos t}{-4\sin t} = -\frac{1}{2}\cot t$$

$$\frac{d^2y}{dx^2} = \frac{d/dt[-1/2\cot t]}{dx/dt} = \frac{1/2\csc^2 t}{-4\sin t} = \frac{-1}{8\sin^3 t}$$

Concave upward on $\pi < t < 2\pi$

Concave downward on $0 < t < \pi$

4.

$$x = \frac{1}{3}t^{3}, y = t + 1, 1 \le t \le 2, \text{y-axis}$$

$$\frac{dx}{dt} = t^{2}, \frac{dy}{dt} = 1$$

$$S = 2\pi \int_{1}^{2} \frac{1}{3}t^{3}\sqrt{t^{4} + 1} dt$$

$$= \frac{\pi}{9} \left[(x^{4} + 1)^{3/2} \right]_{1}^{2}$$

$$= \frac{\pi}{9} (17^{3/2} - 2^{3/2})$$

$$\approx 23.48$$