實驗單元(7-8)電路模擬

[壹].一階 RC 暫態電路

◎【R1、C1 充電的波形】

電路圖:R1,C1充電波形

SOURCE 元件庫-ORCAD 軟體 VPWL 輸入波形文字設定

●VPWL(電壓源設定)---分段電壓值設定。

A點(V1,T1)=(0V,0S)

B 點(V2,T2)=(5V, 0.001ms)

C點(V3,T3)=(5V,1S)

◆模擬輸出:電容充電

◎【R1、C1 充電後經 R3、W1 放電路徑的輸出波形】

電路圖:R3, C1 放電波形

◆模擬輸出:電容經 R3、W1 放電

[貳].RLC 並聯暫態電路

1. 製作電感 L1~L3

將線材依著磁蕊環繞而成。在繞線時,應該特別小心眼睛,尤其是線頭部分。繞線方式為;一手拿著磁蕊,一手握住線頭,由內往外拉緊環繞而成,線頭焊接處,使用刀片將漆包線表面的漆刮除乾淨,以利焊接。長度取 90cm 共 3 條。電感量的大小,可以經由 RLC meter 量測得知,並記錄下電感量。

表(四)

電感	電感量的大小
L1	
L2	
L3	

2.電路模擬注意事項

- ◎模擬電容充電狀態及考慮元件之等效電路,需設定下列特定值:
- a.電容設定初始值電壓可設定為 IC=5V。
- b.考慮電容及電感之等效電路(使用 RLC Meter 測量元件等效電路的數值), 畫出下列各元件模擬電路圖。
- ◎ 參閱實驗單元(二)P.18, Time Domain 時域分析項目中,圖(二十六): Transient 參數設定,其中 Run to time 時間設定,請參閱本說明各模擬結果中的時間長度。

3.RLC 並聯 $\xi_P < 1$ 【R5=1K Ω ,C3=0.1uF】

- a.電容 C3 設定初始值電壓 IC=5V。
- b.考慮電容及電感之等效電路,畫出下列電路圖。

電路圖:RLC並聯電路

◆模擬輸出:RLC 並聯(ξ_P < 1)輸出振幅曲線

4.RLC 並聯 $\xi_P > 1$ 【R6=5.1Ω,C4=0.56uF】

- a.電容 C4 設定初始值電壓 IC=5V。
- b.考慮電容及電感之等效電路,畫出下列電路圖。

◆模擬輸出:RLC 並聯 $\xi_P > 1$ 輸出振幅曲線

5.RLC 串聯 $\xi_s > 1$ 【R8=1K Ω ,C5=0.68uF】

- a.電容 C5 設定初始值電壓 IC=5V。
- b.考慮電容及電感之等效電路,畫出下列電路圖。

電路圖:RLC串聯電路

◆模擬輸出:RLC 串聯 ξ_s >1輸出振幅曲線

6. RLC 串聯 ξ_s <1 【R9=10 Ω ,C6=0.0068uF】

- a. 電容 C6 設定初始值電壓 IC=5V。
- b.考慮電容及電感之等效電路,畫出下列電路圖。

電路圖:RLC串聯電路

◆模擬輸出:RLC 串聯 ξ_s <1輸出振幅曲線

7.LC 並聯暫態電路【開關 ON】

- a.電容 C7 設定初始值電壓 IC=0V。
- b.考慮電容及電感之等效電路,畫出下列電路圖。
- c.VPWL 分段電壓波形的設定及波形如下。

	New Apply Display D	elete Property	/ Filt	er	PS	pice	:									_	-		Help						
		Reference	Value	AC	DC	T1	T10	T2	Т3	T4	T5	T6	T7	T8	T9	V1	V10	V2	V3	٧4	V5	٧6	٧7	V8	V9
1	■ SCHEMATIC1 : PAGE1 : V4	V4	VPWL			0S		0.001us	1s							07		57	57						

ORCAD 軟體 VPWL 波形之文字設定

VPWL 模擬之輸出波形

電路圖:LC並聯暫態電路

◆模擬輸出:LC 並聯(開關 ON)暫態輸出振幅曲線

8.LC 並聯暫態電路【開關 OFF】

◎電路模擬設定:

a.電容 C7 設定初始值電壓 IC=5V。

b.考慮電容及電感之等效電路,畫出下列電路圖。

電路圖:LC並聯暫態電路

◆模擬輸出:LC 並聯(開關 OFF)暫態輸出振幅曲線

[叁].穩態電路

9.一階 RC 穩態電路

◎電路模擬設定:

a.ORCAD 模擬時, VS1 需設定 AC=1V。 b.AC SWEEP 掃描分析。

電路圖:R1//R2, C1穩態波形

◆模擬輸出:RC 穩態電路輸出振幅曲線(Db 值)

◆模擬輸出:RC 穩態電路輸出相位曲線

10.二階 RLC 串聯諧振電路

由 ORCAD 軟體模擬 RLC 串聯諧振電路,AC SWEEP 掃描方式,此電路的頻率響應圖如下所示,模擬電路使用不同探棒測試,並與下列實驗結果相比較之。

◎電路模擬設定:

a.V5 VSIN 波形之文字設定

	New Apply Display D	elete Property	r Filt	er	PS	pic	е					¥
		Reference	Value	AC	DC	DF	FREQ	PHASE	TD	VAMPL	VOFF	
1	■ SCHEMATIC1 : PAGE1 : V5	V5	VSIN	17	0٧	9	10KHz	0	0	0.25mV	07	

b.實驗模擬電路圖

電路圖:RLC串聯諧振電路

◆模擬輸出: RLC 串聯諧振電路輸出振幅曲線(使用 DB 探棒)