TP: Analyse descriptive univariée et bivariée - Correction

Analyse des données

Master ISEFAR - M1

1 Durée de vie de piles

1.1 Données et caractéristiques

```
piles = read.table("piles.txt",header = TRUE,sep = "\t")
knitr::kable(head(piles))
```

MarqueA	MarqueB	MarqueC
65.1	64.4	62.8
58.4	69.1	58.6
64.9	66.9	63.3
76.0	67.5	65.3
67.8	65.8	78.8
75.1	70.4	63.1

str(piles)

```
## 'data.frame': 20 obs. of 3 variables:
## $ MarqueA: num 65.1 58.4 64.9 76 67.8 75.1 76.7 64.2 74.9 77.6 ...
## $ MarqueB: num 64.4 69.1 66.9 67.5 65.8 70.4 67.8 61.8 68.7 65.3 ...
## $ MarqueC: num 62.8 58.6 63.3 65.3 78.8 63.1 76.3 64.2 61.8 73.9 ...
```

summary(piles)

```
##
       MarqueA
                       MarqueB
                                       MarqueC
   Min.
          :58.10
                          :61.80
                                           :58.60
  1st Qu.:65.05
                    1st Qu.:64.78
                                    1st Qu.:63.25
   Median :74.00
                    Median :67.20
                                    Median :67.30
                                           :68.83
  Mean
           :70.45
                    Mean
                           :66.97
                                    Mean
   3rd Qu.:76.00
                    3rd Qu.:68.80
                                    3rd Qu.:74.03
           :81.30
                           :72.00
                                           :78.80
   Max.
                    Max.
                                    Max.
```

1.2 On réorganise le jeu de données

On veut avoir deux colonnes: une pour la marque et une pour la durée.

```
piles.G <- piles %>% gather(key='Marque', value='duree')
head(piles.G)
##
     Marque duree
## 1 MarqueA 65.1
## 2 MarqueA 58.4
## 3 MarqueA 64.9
## 4 MarqueA 76.0
## 5 MarqueA 67.8
## 6 MarqueA 75.1
str(piles.G)
## 'data.frame':
                  60 obs. of 2 variables:
## $ Marque: chr "MarqueA" "MarqueA" "MarqueA" ...
## $ duree : num 65.1 58.4 64.9 76 67.8 75.1 76.7 64.2 74.9 77.6 ...
piles.G$Marque <- as.factor(piles.G$Marque)</pre>
```

1.3 Moyenne et écart-type par marque

```
piles.G %>% group_by(Marque) %>% summarise(meanD=mean(duree),stD=sd(duree)) %>% knitr::kable()
## 'summarise()' ungrouping output (override with '.groups' argument)
```

meanD	stD
70.45	7.092657
66.97 68.83	2.856221 6.445080
	70.45 66.97

1.3.1 Représentations graphiques

```
# Histogramme
piles.G %>% ggplot(aes(x=duree,fill=Marque))+geom_histogram(binwidth=3)
```


Boxplot
piles.G %>% ggplot(aes(x=Marque,y=duree,fill=Marque))+geom_boxplot()

2 Les iris

2.1 Données et caractéristiques des variables

```
data(iris)
knitr::kable(head(iris))
```

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa

dim(iris)

```
## [1] 150
           5
str(iris)
## 'data.frame':
                   150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa", "versicolor", ...: 1 1 1 1 1 1 1 1 1 1 ...
2.2
     Variable Species
levels(iris$Species)
                   "versicolor" "virginica"
## [1] "setosa"
# Effectif par modalité
iris %>% group_by(Species) %>% count()
## # A tibble: 3 x 2
## # Groups: Species [3]
    Species
    <fct>
               <int>
## 1 setosa
                  50
## 2 versicolor
                  50
## 3 virginica
# diagramme en bâtons
ggplot(iris,aes(x = Species,fill=Species)) +geom_bar()
```



```
# camenbert
#pie(table(iris$Species))
ggplot(iris, aes(x="", fill=Species))+geom_bar(width = 2)+coord_polar("y")
```


2.2.1 Variables quantitatives

Quelques statistiques simples et boxplot

```
iris %>% summarise_if(is.numeric,mean)
```

```
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1 5.843333 3.057333 3.758 1.199333
```

```
iris %>% summarise_if(is.numeric,sd)
     Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1
        0.8280661
                    0.4358663
                                  1.765298
                                              0.7622377
iris %>% select(is.numeric) %>% boxplot()
## Warning: Predicate functions must be wrapped in 'where()'.
##
     # Bad
##
     data %>% select(is.numeric)
##
##
##
     # Good
     data %>% select(where(is.numeric))
##
##
## i Please update your code.
## This message is displayed once per session.
```


En fonction de l'espèce

```
iris %>% group_by(Species) %>% summarise_if(is.numeric,mean)
```

```
## # A tibble: 3 x 5
##
     Species
                Sepal.Length Sepal.Width Petal.Length Petal.Width
##
     <fct>
                        <dbl>
                                    <dbl>
                                                  <dbl>
                                                               <dbl>
## 1 setosa
                         5.01
                                     3.43
                                                   1.46
                                                               0.246
## 2 versicolor
                         5.94
                                     2.77
                                                   4.26
                                                               1.33
## 3 virginica
                         6.59
                                     2.97
                                                   5.55
                                                               2.03
```

iris %>% group_by(Species) %>% summarise_if(is.numeric,sd)

```
## # A tibble: 3 x 5
##
     Species
                Sepal.Length Sepal.Width Petal.Length Petal.Width
##
     <fct>
                       <dbl>
                                    <dbl>
                                                 <dbl>
                       0.352
                                                             0.105
## 1 setosa
                                    0.379
                                                 0.174
## 2 versicolor
                       0.516
                                    0.314
                                                 0.470
                                                             0.198
                       0.636
                                    0.322
                                                 0.552
                                                             0.275
## 3 virginica
```

ggplot(iris, aes(x=Species, y=Sepal.Length, fill=Species)) +geom_boxplot()

ggplot(iris, aes(x=Species, y=Sepal.Width, fill=Species)) +geom_boxplot()

ggplot(iris, aes(x=Species, y=Petal.Length, fill=Species)) +geom_boxplot()

ggplot(iris, aes(x=Species, y=Petal.Width, fill=Species)) +geom_boxplot()

2.2.2 Lien entre variables quantitatives

Corrélations

```
correlation <- iris %>% select_if(is.numeric) %>% cor()
kable(correlation,digits=3)
```

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
Sepal.Length	1.000	-0.118	0.872	0.818
Sepal.Width	-0.118	1.000	-0.428	-0.366
Petal.Length	0.872	-0.428	1.000	0.963
Petal.Width	0.818	-0.366	0.963	1.000

corrplot(correlation)

Lien entre variables 2 à 2

ggplot(iris,aes(x=Petal.Width,y=Petal.Length))+geom_point()

Si on veut colorier selon l'espèce
ggplot(iris,aes(x=Petal.Width,y=Petal.Length,color=Species))+geom_point()

${\bf 2.2.3} \quad {\bf Graphe\ entre\ toutes\ les\ variables\ quantitatives\ avec\ coloration\ des\ points\ selon\ l'espèce}$

```
PairPlot(iris, colnames(iris)[1:4],"Les iris", group_var = "Species")
```


3 Couleur des cheveux et des yeux

3.0.1 Données

```
data(HairEyeColor)
dim(HairEyeColor)
```

[1] 4 4 2

is.array(HairEyeColor)

[1] TRUE

knitr::kable(HairEyeColor[1,,])

	Male	Female
Brown	32	36
Blue	11	9
Hazel	10	5
Green	3	2

3.0.2 Contruction du jeu de données d'intérêt et graphe

HEC = HairEyeColor[,,1] +HairEyeColor[,,2]
knitr::kable(HEC)

	Brown	Blue	Hazel	Green
Black	68	20	15	5
Brown	119	84	54	29
Red	26	17	14	14
Blond	7	94	10	16

HEC %>% as.data.frame() %>% ggplot(aes(x=Hair,fill=Eye))+geom_bar(aes(y=Freq),stat="identity")

3.0.3 Fréquences coinjointes

F=HEC/sum(HEC) knitr::kable(F,digits=2)

	Brown	Blue	Hazel	Green
Black	0.11	0.03	0.03	0.01
Brown	0.20	0.14	0.09	0.05
Red	0.04	0.03	0.02	0.02
Blond	0.01	0.16	0.02	0.03

F %>% as.data.frame() %>% ggplot(aes(x=Hair,fill=Eye))+geom_bar(aes(y=Freq),stat="identity")

3.0.4 Fréquences marginales

```
# En ligne
FM_L = margin.table(F,1)
knitr::kable(FM_L,digits=2)
```

Hair	Freq
Black	0.18
Brown	0.48
Red	0.12
Blond	0.21

```
FM_L %>% barplot()
```


En colonne FM_C =margin.table(F,2) knitr::kable(FM_C,digits=2)

Eye	Free
Brown	0.3'
Blue	0.36
Hazel	0.16
Green	0.1

FM_C %>% barplot()

3.0.5 Fréquences conditionnelles

Profil ligne

Profil.Ligne =rprop(HEC,digits = 2)

knitr::kable(Profil.Ligne)

	Brown	Blue	Hazel	Green	Total
Black	62.962963	18.51852	13.888889	4.62963	100
Brown	41.608392	29.37063	18.881119	10.13986	100
Red	36.619718	23.94366	19.718310	19.71831	100
Blond	5.511811	74.01575	7.874016	12.59843	100
Ensemble	37.162162	36.31757	15.709459	10.81081	100

rprop(HEC,total=FALSE) %>% as.data.frame() %>% ggplot(aes(x=Hair,fill=Eye))+geom_bar(aes(y=Freq), stat=

Profil colonne

Profil.Colonne =cprop(HEC,digits = 2)

knitr::kable(Profil.Colonne)

	Brown	Blue	Hazel	Green	Ensemble
Black	30.909091	9.302326	16.12903	7.8125	18.24324
Brown	54.090909	39.069767	58.06452	45.3125	48.31081
Red	11.818182	7.906977	15.05376	21.8750	11.99324
Blond	3.181818	43.720930	10.75269	25.0000	21.45270
Total	100.000000	100.000000	100.00000	100.0000	100.00000

cprop(HEC,total=FALSE) %>% as.data.frame() %>% ggplot(aes(x=Eye,fill=Hair))+geom_bar(aes(y=Freq), stat=

3.0.6 Mosaic

mosaicplot(HEC, main = "Relation between hair and eye color")

Relation between hair and eye color

mosaicplot(t(HEC), main = "Relation between hair and eye color")

Relation between hair and eye color

Pour le graphique 1 (HEC)

- * Chaque rectangle représente une case du tableau
- * la largeur des barres = fréquences marginales par ligne

FM_L

```
## Hair
## Black Brown Red Blond
## 0.1824324 0.4831081 0.1199324 0.2145270
```

* la longueur au sein de chaque barre = fréquences conditionnelles par ligne

Profil.Ligne

```
##
            Eye
## Hair
            Brown Blue
                         Hazel Green Total
                                 4.63 100.00
    Black
             62.96 18.52 13.89
    Brown
             41.61 29.37 18.88 10.14 100.00
##
##
    Red
              36.62 23.94 19.72 19.72 100.00
              5.51 74.02
##
    Blond
                           7.87
                                 12.60 100.00
##
    Ensemble 37.16 36.32 15.71 10.81 100.00
```

* la proportion d'individus ayant les cheveux bruns?

FM_L

```
## Hair
## Black Brown Red Blond
## 0.1824324 0.4831081 0.1199324 0.2145270
```

```
# donc 0.48

* la proportion d'individus ayant les yeux verts?
```

```
## Eye
## Brown Blue Hazel Green
## 0.3716216 0.3631757 0.1570946 0.1081081
```

```
# donc 0.11
```

 FM_C

* Parmi les individus ayant les cheveux bruns, quelle est la proportion d'individus ayant les yeux vert

Profil.Ligne

```
##
           Eye
## Hair
            Brown Blue Hazel Green Total
             62.96 18.52 13.89
##
    Black
                                 4.63 100.00
##
             41.61 29.37 18.88 10.14 100.00
    Brown
##
    Red
             36.62 23.94 19.72 19.72 100.00
             5.51 74.02
##
    Blond
                          7.87 12.60 100.00
    Ensemble 37.16 36.32 15.71 10.81 100.00
```

donc 0.1

* Parmi les individus ayant les yeux verts, quelle est la proportion d'individus ayant les cheveux brun

Profil.Colonne

```
##
         Eye
## Hair
         Brown Blue Hazel Green Ensemble
##
    Black 30.91
                9.30 16.13
                             7.81 18.24
##
    Brown 54.09 39.07 58.06 45.31 48.31
                             21.88 11.99
##
    Red
          11.82
                7.91 15.05
##
    Blond 3.18 43.72 10.75 25.00 21.45
    Total 100.00 100.00 100.00 100.00 100.00
```

donc 0.45

3.0.7 Test de l'indépendance entre Eye et Hair

```
h.chi = chisq.test(HEC)
h.chi

##
## Pearson's Chi-squared test
##
## data: HEC
## X-squared = 138.29, df = 9, p-value < 2.2e-16</pre>
```