1. Collect Pfam "seed" entry:

Select the Pfam entry of your protein of interest. Go to the "Alignment" tab, and from "Available alignments" select the "seed" alignment. Download the seed alignment in clustal2 format.

2. Use the "Visual" sequence specific selection pairwise sequencing code:

To find the pairwise sequence alignment between 2 homologous sequences of the neurotransmitter membrane channel, a stockholm file from Pfam was input into a biopython code using the pairwise 2 package. This step was repeated with 2 homologous sequences of the protein of interest: Legumain. This was also done using a stockholm file of the protein of interest found on Pfam. This was done using the code below:

```
from Bio import AlignIO, pairwise2

sto_file = r"C:\Users\Tania\Downloads\PF01650.alignment.seed\PF01650.alignment.seed" #Insert your .seed stockholm/clustal2 filepath here

alignment = AlignIO.read(r"C:\Users\Tania\Downloads\PF01650.alignment.seed\PF01650.alignment.seed", "stockholm") #Insert your .seed stockholm/clustal2 filepath again

seq1 = alignment[0].seq

seq2 = alignment[1].seq

alignments = pairwise2.align.globalxx(seq1, seq2)

for alignment in alignments:

print(pairwise2.format_alignment(*alignment))
```

You should receive an output like this:

```
NAMI WASSE GOMMRHADWICHAYO, LLUX GOLDGHLIVFHYOD TAHLE - EMPROYLT TISSPH. 6. D. DOVYK G. - MODY GOTHA-. VTA HISE LAN T. GOMBA. ALS. - GOSGOVES-SCRIPDINFTFYSDHGGP-G. - VLOMP - S - G. PYLYADD-LIDV - LKR. KHASCTYKSLUF - YTEACESGSTFEG-L-UPG-LIDV - LYG. - DO LS-L - Y. BGT - LYG. - LYG. - LYG. - DO LS-L - Y. BGT - LYG. - LYG. - LYG. - DO LS-L - Y. BGT - LYG. - LYG. - LYG. - LYG. - DO LS-L - Y. BGT - LYG. - LYG.
```

Complete pairwise sequencing code:

WARNING, PLEASE READ: You can use the code below to conduct a sequence alignment between each sequence in the SEED file; however, this will take up a lot of memory, a lot of computer processing power, and it may even crash your computer. Running the code on VS studio may give you a bunch of random numbers in the terminal. You can simply exit VS studio, and you should still have some, if not all pairwise sequences, analyzed on the output .txt file.