Guía de Problemas n⁰ 3

October 17, 2024

Problema 1

La física nuclear trabaja tradicionalmente con la "vida media" $(t_{1/2})$ en lugar de la vida media (τ) ; $(t_{1/2})$ es el tiempo que tarda en desintegrarse la mitad de los miembros de una muestra grande. Para la desintegración exponencial. Derive la fórmula para $(t_{1/2})$ como múltiplo de Γ .

Problema 2

Una panícula no relativista de masa m y energía (cinética) E se dispersa desde un potencial repulsivo fijo, $V(r) = k/r^2$, donde k es una constante.

- a) Hallar el ángulo de dispersión, θ en función del parametro de impacto b.
- b) Determine la sección eficaz diferencial $d\sigma/d\Omega$, en función de θ .
- c) Hallar la sección eficaz total.

Problema 3

Derivar la Ecuación 6.34. partiendo de la Ecuación 6.31 con $u = m_1 c$.

Problema 4

a) Deduzca la ecuación 6.41 para la dispersión de las partículas 1 y 2 en el CM. b) Obtener la fórmula correspondiente para el sistema de referencia de laboratorio (partícula 2 en reposo).

Problema 5

Considere la colisión $1+2 \rightarrow 3+4$ en el sistema de referencia de laboratorio (2 en reposo), con las partículas 3 y 4 sin masa. Obtener la fórmula de la sección eficaz diferencial.

Problema 6

- a) ¿Es $A \to B + B$ un proceso posible en la teoría ABC?
- b) Supongamos que un diagrama tiene n_A líneas A externas, n_B líneas B externas y n_C líneas C externas. Desarrolle un criterio sencillo para determinar si se trata de una reacción permitida.
- c) Suponiendo que A es suficientemente pesada, ¿cuáles son los siguientes modos de desintegración más probables, después de $A \to B + C$? Dibuje un diagrama de Feynman para cada desintegración.

Problema 7

Calcular $d\sigma/d\Omega$ para $A+A\to B+B$ en el marco CM, suponiendo $m_a=m_e=0$. Hallar la sección eficaz total σ .