### PROJECT REPORT ON

# ANALYTICS FOR HOSPITAL'S HEALTH CARE DATA

### **DATA ANALYTICS**

# Submitted By,

JESWIN W - 917719IT040 JEYA GANESH A V - 917719IT041 RAHUL HARIESH B - 917719IT074 SANJAYKUMAR S - 917719IT082

**TEAM ID:** PNT2022TMID21545

**Department Of Information Technology** 

Thiagarajar College Of Engineering, Madurai - 625014.

**INSTITUTION MENTOR:** Dr.S.Sridevi

INDUSTRIAL MENTOR: Shivam Shivare, Hari Prabu

| S.NO | CONTENT                               | PAGE NO. |
|------|---------------------------------------|----------|
| 1.   | Abstract                              | 3        |
| 2.   | Introduction                          | 4        |
| 3.   | Literature Survey                     | 5        |
| 4.   | Ideation and Proposed Solution        | 7        |
| 5.   | Requirement Analysis                  | 14       |
| 6.   | Project Design                        | 16       |
| 7.   | Project Planning and Scheduling       | 22       |
| 8.   | Implementation And Output Screenshots | 27       |
| 9.   | Testing                               | 37       |
| 10.  | Results                               | 40       |
| 11.  | Benefits                              | 41       |
| 12.  | Conclusion                            | 42       |
| 13.  | Future Scope                          | 42       |
| 14.  | References                            | 43       |

#### 1. ABSTARCT

The purpose of Analytics for Hospital Healthcare data is to provide the information to patients about the average length of hospital stays. Patient duration of stay is one crucial statistic to monitor and forecast if one wishes to increase the effectiveness of health care management in a hospital. Data science has several applications in the field of health care management. At the time of admission, this metric aids hospitals in identifying patients who are at high LOS-risk (patients who will stay longer). Once identified, patients at high risk for LOS can have their treatment plans improved to reduce LOS and reduce the risk of nfection in staff or visitors. Additionally, prior awareness of LOS might help with planning logistics like room and bed allotment.

#### **Keywords:**

LOS - Length of Stay
Data Analytics
Severity of illness
Bed Allotment

#### 2. INTRODUCTION

The Analytics for Hospital Health care data is to make the patients to know about the length of stay in the hospital. The healthcare management has various use cases for using data science, patient length of stay is one critical parameter to observe and predict if one wants to improve the efficiency of the healthcare management in a hospital. This parameter helps hospitals to identify patients of high LOS-risk (patients who will stay longer) at the time of admission. Once identified, patients with high LOS risk can have their treatment plan optimized to minimize LOS and lower the chance of staff/visitor infection. Also, prior knowledge of LOS can aid in logistics such as room and bed allocation planning. To accurately predict the Length of Stay for each patient on a case by case basis so that the Hospitals can use this information for optimal resource allocation and better functioning. The length of stay is divided into 11 different classes ranging from 0-10 days to more than 100 days. By predicting LOS we can plan the required beds, checking the future availability of beds in hospitals, monitoring length of stay of patients. If we can predict the length of stay the hospital management can prepare the requirements for the patient. The patients can easily get the things and clothes required for the stay. The hospital management can increase the beds available with the data.

# 3. LITERATURE SURVEY

# 3.1 Research Paper:

| Journal            | IEEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Title              | Big data analytics in healthcare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Authors            | Sohail Imran, Tariq Mahmood, Ashan Morshed, Timos Sellis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Volume/ Issue Year | Volume: 8, Issue: 1, January 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Description        | Big data analytics (BDA) in healthcare can, for instance, help determine causes of diseases, generate effective diagnoses, enhance QoS guarantees by increasing efficiency of the healthcare delivery and effectiveness and viability of treatments, generate accurate predictions of read missions, enhance clinical care, and pinpoint opportunities for cost savings. We initially determine big data characteristics for healthcare and then review BDA applications to healthcare in academic research focusing particularly on NoSQL databases.  Big Data  Public Health Data  Big Data Analytics  Lower Costs  Lower Costs |  |  |  |  |

# 3.2 Patent:

| Title       | Facilitating artificial intelligence integration into systems using a distributed learning platform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Patent no   | US10957442B2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Inventor    | John Kalafut, Keith Dreyer, Mark Michalski, Stuart<br>Pomerantz, Sean Doyle, Neil Tenenholtz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Description | Techniques are described that facilitate integrating artificial intelligence informatics in healthcare systems using a distributed learning platform. In one embodiment, a computer-implemented is provided that comprises interfacing, by a system operative coupled to a processor, with a medical imaging application that provides for viewing medical image data. The method further comprises, facilitating, by the system, generation of structured diagnostic data according to a defined ontology in association with usage of the imaging application to perform a evaluation of the medical image data. |  |  |

#### 4. IDEATION AND PROPOSED SOLUTION

### 4.1 Empathy Map



### 4.2 Brainstorming & Idea Prioritization

Step-1: Team Gathering, Collaboration and Problem statement Selection



# **Step-2: Brainstorming**



### **Step-3: Grouping Ideas**



# **Step-4: Idea Prioritization**



#### Prioritize

Your team should all be on the same page about what's important moving forward. Place your ideas on this grid to determine which ideas are important and which are feasible.

① 20 minutes



# 4.3 Proposed Solution

| S.No | Parameter                      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.   | Problem Statement              | <ul> <li>While healthcare management has various use cases for using data science, patient length of stay is one critical parameter to observe and predict if one wants to improve the efficiency of the healthcare management in a hospital.</li> <li>This parameter helps hospitals to identify patients of high LOS-risk (patients who will stay longer) at the time of admission. Once identified, patients with high LOS risk can have their treatment plan optimized to minimize LOS and lower the chance of staff/visitor infection. Also, prior knowledge of LOS can aid in logistics such as room and bed allocation planning</li> </ul> |
| 2.   | Idea / Solution<br>description | <ul> <li>To accurately predict the Length of Stay for each patient on a case by case basis so that the Hospitals can use this information for optimal resource allocation and better functioning.</li> <li>The length of stay is divided into 11 different classes ranging from 0-10 days to more than 100 days.</li> </ul>                                                                                                                                                                                                                                                                                                                       |
| 3.   | Novelty /<br>Uniqueness        | <ul> <li>Predicting the Length Of Stay; based on disease diagnosed lets the hospital reduce the LOS by optimizing treatment</li> <li>Classifying patients LOS used to plan the bed availability accordingly.</li> <li>Predicting LOS using disease severity, disease type, hospital department etc.</li> <li>LOS can be used to book beds in hospitals.</li> </ul>                                                                                                                                                                                                                                                                                |

| 4. | Social Impact /<br>Customer<br>satisfaction | <ul> <li>If we can predict the length of stay the hospital management can prepare the requirements for the patient.</li> <li>The patients can easily get the things and clothes required for the stay</li> <li>The hospital management can increase the beds available with the data</li> </ul> |
|----|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5. | Business Model                              | Customer selection:  • Hospital management.  • Patients/Public  • Government  • Insurance  Value proposition: By predicting LOS we can plan the required beds, checking the future availability of beds in hospitals, monitoring length of stay of patients.                                    |
| 6. | Scalability of the<br>Solution              | The solution can be used in every hospital and by patients and can take required measures for the length of stay.                                                                                                                                                                               |

### **4.4 Solution Architecture**



#### 4.5 Solution Fit





# **5. REQUIREMENT ANALYSIS**

# **5.1 Functional Requirement**

Following are the functional requirements of the proposed solution.

| FR No. | Functional                                                | Sub Requirement (Story / Sub-Task)                                                                                                                                                                                                                                      |  |  |  |  |
|--------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|        | Requirement (Epic)                                        |                                                                                                                                                                                                                                                                         |  |  |  |  |
| FR-1   | Analyzing and<br>Visualizing Hospital<br>health care data | <ul> <li>Visualizing Analysis result on application dashboard.</li> <li>Analyze the relationship between various attributes in the dataset and Length of stay.</li> <li>Interactive dashboard that users can easily understand the insights.</li> </ul>                 |  |  |  |  |
| FR-2   | Prediction of LOS                                         | <ul> <li>Predict the Length of Stay using the user's hospital data like Severity of disease, hospital type, hospital location, hospital name, emergency or not, etc.</li> <li>System should predict the LOS with any number of given attributes.</li> </ul>             |  |  |  |  |
| FR-3   | Obtaining User<br>Response for<br>prediction              | <ul> <li>Get the user's response after the prediction.</li> <li>This helps us to find how accurate our prediction is from the user's point of view.</li> <li>Bad user experience can be noted by doing this. So that we can improve the prediction accuracy.</li> </ul> |  |  |  |  |
| FR-4   | Monitoring user response and satisfaction                 | <ul> <li>Real Time monitoring of user response.</li> <li>Monitoring user satisfaction through various visualizations like barchart, pie chart etc</li> </ul>                                                                                                            |  |  |  |  |
| FR-5   | Monitoring System accuracy                                | <ul> <li>The accuracy of the prediction should be monitored every time there is a change in dataset.</li> <li>If the accuracy becomes low the model should be redesigned for higher accuracy.</li> <li>This way the predictions will be up to date.</li> </ul>          |  |  |  |  |

# **5.2 Non-Functional Requirement**

Following are the non-functifonal requirements of the proposed solution.

| FR No | Non-Functional Requirement | Description                                                                                                                   |
|-------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| NFR-1 | Usability                  | The goals of the users are easily accomplished quickly by interactive design and less error.                                  |
| NFR-2 | Security                   | The dataset is accessed only by the administrators and the user's input is encrypted and it is protected.                     |
| NFR-3 | Reliability                | It works without a failure at the prediction time because of less bugs in the code it is because of using good trained data.  |
| NFR-4 | Performance                | It supports at most 1000 patients queries at a time and after prediction is done it will be fastly communicated to the users. |
| NFR-5 | Availability               | The application is 99% available 24/7                                                                                         |
| NFR-6 | Scalability                | The application should support all browser types and it can handle maximum users.                                             |

#### 6. PROJECT DESIGN

# **6.1 Data Flow Diagrams**



# 6.2 Solution and Technology Architecture

#### **Technical Architecture:**



### Architectural Diagram:



|      | 1. Component and Technologies |                                            |                           |  |  |  |  |
|------|-------------------------------|--------------------------------------------|---------------------------|--|--|--|--|
| S.No | Component                     | Description                                | Technology                |  |  |  |  |
| 1.   |                               | user interacts with                        | HTML, CSS, JavaScript /   |  |  |  |  |
|      | User Interface                | application in                             | Angular Js etc.           |  |  |  |  |
|      |                               | Web UI.                                    |                           |  |  |  |  |
| 2.   | Data Visualization            | Data is visualized so that                 | IBM Watson                |  |  |  |  |
|      |                               | the users can understand                   |                           |  |  |  |  |
|      |                               | the important patterns in                  |                           |  |  |  |  |
|      |                               | data.                                      |                           |  |  |  |  |
| 3.   | Data Classification           | Data is classified using                   | IBM Watson , colab        |  |  |  |  |
|      |                               | classification algorithms to               |                           |  |  |  |  |
|      |                               | classify the data into 10                  |                           |  |  |  |  |
|      |                               | classifications                            |                           |  |  |  |  |
| 4.   | Data Prediction               | Logic for a process in the                 | IBM Watson                |  |  |  |  |
|      |                               | application colab,                         |                           |  |  |  |  |
| 5.   | Database                      | All the datasets of the                    | MySQL, etc.               |  |  |  |  |
|      |                               | patients and the hospital                  |                           |  |  |  |  |
| 6.   | File Storage                  | File storage requirements                  | Local Filesystem          |  |  |  |  |
| 7.   | External API-1                | Build models and helps in predict the data | IBM Watson api            |  |  |  |  |
|      |                               | •                                          |                           |  |  |  |  |
| 8.   | Machine Learning              | Helps in developing the                    | Classification algorithms |  |  |  |  |
|      | Model                         | model                                      |                           |  |  |  |  |
| 9.   | Infrastructure                | The application is deployed                | IBM cloud                 |  |  |  |  |
|      |                               | in cloud                                   |                           |  |  |  |  |

| 2.Application Characteristics |                             |                                                                       |                                                                                                                       |  |  |  |
|-------------------------------|-----------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|
| S.No                          | Characteristics             | Description                                                           | Technology                                                                                                            |  |  |  |
| 1                             | Open-Source<br>Frameworks   | The data prediction is done in open-<br>source framework              | Colab ,python                                                                                                         |  |  |  |
| 2                             | Security<br>Implementations | The login and sign in purpose are implemented with security concerns  | Salt hashing                                                                                                          |  |  |  |
| 3                             | Scalable<br>Architecture    | The application is done 3 tier architecture                           | Presentation layer-<br>HTML/CSS javascript<br>Business Logic Layer-<br>colab, IBM cognos<br>Database layer-IBM<br>db2 |  |  |  |
| 4                             | Availability                | The application is available for all the users at anytime             | IBM Cognos                                                                                                            |  |  |  |
| 5                             | Performance                 | The application provides various visualization types in the dashboard | IBM Cognos                                                                                                            |  |  |  |

# 6.3 User Story

| User    | Functional    | User   | User Story / Task | Acceptance      | Priority | Release  |
|---------|---------------|--------|-------------------|-----------------|----------|----------|
| Туре    | Requirement   | Story  |                   | criteria        |          |          |
|         | (Epic)        | Number |                   |                 |          |          |
| Patient | Analyzing and | USN-1  | As a patient, I   | I can visualize | Medium   | Sprint 2 |
|         | Visualizing   |        | want to visualize | health care     |          |          |
|         | Hospital      |        | the hospital      | data.           |          |          |
|         | health care   |        | health care data  |                 |          |          |
|         | data          |        |                   |                 |          |          |
| Patient |               | USN-2  | As a patient, I   | I can           | Medium   | Sprint 2 |
|         |               |        | want the          | understand      |          |          |
|         |               |        | relationship      | the             |          |          |
|         |               |        | between various   | relationships   |          |          |
|         |               |        | attributes in     | between         |          |          |
|         |               |        | dataset           | various         |          |          |

|                                                      |                                                    |       |                                                                                                      | attributes                                                  |      |          |
|------------------------------------------------------|----------------------------------------------------|-------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------|----------|
| Patient                                              | Prediction of LOS                                  | USN-3 | As a patient, I want to predict length of stay so that I can plan accordingly                        | I can get the predicted LOS                                 | High | Sprint 1 |
| Hospit<br>al<br>Room<br>allotme<br>nt<br>Manag<br>er |                                                    | USN-4 | As a manager, I want to predict the length of stay so that I can allot the hospital room accordingly | I can get the predicted LOS.                                | High | Sprint 1 |
| Admin                                                | Obtaining User<br>Response for<br>prediction       | USN-5 | As a admin, I want to obtain user response for prediction, so that I can improve the accuracy        | I can obtain<br>response data<br>from the user.             | Low  | Sprint 3 |
| Patient                                              |                                                    | USN-6 | As a patient, I want to send my suggestions so that admin can improve the application accuracy.      | I can send<br>response to<br>the admin                      | Low  | Sprint 3 |
| Admin                                                | Monitoring<br>user response<br>and<br>satisfaction | USN-7 | As a admin, I want to monitor user response and satisfaction so that I can improve application       | I can monitor<br>the user<br>responses and<br>satisfaction. | Low  | Sprint 3 |

|         |                                 |       | experience.                                                                                  |                                                     |        |          |
|---------|---------------------------------|-------|----------------------------------------------------------------------------------------------|-----------------------------------------------------|--------|----------|
| Patient | Monitoring<br>Model<br>accuracy | USN-8 | As a Patient, I want to monitor system accuracy so that I can believe prediction is correct. | I can check<br>the prediction<br>model<br>accuracy. | Medium | Sprint 3 |
| Admin   |                                 | USN-9 | As a Admin, I want to monitor system accuracy so that I can improve the prediction model.    | I can check<br>the prediction<br>model<br>accuracy  | Medium | Sprint 3 |

### **6.3 Customer Journey**



# 7. PROJECT PLANNING AND SCHEDULING

# 7.1 Sprint Delivery Schedule

| Sprint   | Functional<br>Requirement<br>(Epic)                          | User<br>Story<br>Number | User Story/ Task                                                                                              | Story<br>Points | Priority | Team<br>members             |
|----------|--------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------|-----------------|----------|-----------------------------|
| Sprint 1 | Analysing and<br>Visualizing<br>Hospital health<br>care data | USN-1                   | As a patient, I<br>want to visualize<br>the hospital<br>health care data                                      | 10              | Medium   | Sanjaykumar,<br>Jeya Ganesh |
| Sprint-1 |                                                              | USN-2                   | As a patient, I want the relationship between various attributes in the dataset                               | 5               | Medium   | Jeswin, Rahul<br>Hariesh    |
| Sprint-2 | Prediction of<br>LOS                                         | USN-3                   | As a patient, I want to predict length of stay in different hospitals so that I can plan accordingly          | 7               | High     | Jeswin,<br>Sanjaykumar      |
| Sprint-2 |                                                              | USN-4                   | As a Hospital manager, I want to predict the length of stay so that I can allot the hospital room accordingly | 3               | Medium   | Jeya Ganesh                 |

| Sprint-2 |                                                      | USN-5  | As a user, I want<br>a easily<br>understandable<br>UI to get my<br>prediction                | 2 | Low    | Rahul Hariesh |
|----------|------------------------------------------------------|--------|----------------------------------------------------------------------------------------------|---|--------|---------------|
| Sprint-3 | Dashboard                                            | USN-6  | As a user, I want<br>an interactive<br>dashboard to<br>understand the<br>data easily         | 5 | High   | Sanjaykumar   |
| Sprint-3 |                                                      | USN-7  | As a patient, I<br>want to find the<br>available rooms<br>in each hospital                   | 3 | Medium | Jeswin        |
| Sprint-3 |                                                      | USN-8  | As a user, I want<br>to see be able to<br>change the<br>visualizations to<br>my convenience  | 2 | Low    | Jeya Ganesh   |
| Sprint-4 | Monitoring<br>user response<br>and Model<br>Accuracy | USN-9  | As a Patient, I want to know the system accuracy so that I can believe prediction is correct | 5 | Medium | Rahul Hariesh |
| Sprint-4 |                                                      | USN-10 | As a Patient, I<br>want to give user<br>response                                             | 2 | Medium | Sanjaykumar   |
| Sprint-4 | Admin Login                                          | USN-11 | As the admin,I want to login to the admin dashboard.                                         | 3 |        | Jeswin        |
| Sprint-4 | Admin<br>Dashboard                                   | USN-12 | As the admin ,I<br>need to be able to<br>monitor the user                                    | 2 | Medium | Sanjaykumar   |

|          |        | responses.         |   |      |             |
|----------|--------|--------------------|---|------|-------------|
| Sprint-4 | USN-13 | As an admin , I    | 3 | High | Jeya Ganesh |
|          |        | want to be able to |   |      |             |
|          |        | update the         |   |      |             |
|          |        | dataset for the    |   |      |             |
|          |        | model training     |   |      |             |
|          |        | and monitor the    |   |      |             |
|          |        | accuracy.          |   |      |             |

# 7.2 Project Tracker

| Sprint   | Total Story Points | Duration | Sprint<br>Start Date | Sprint End<br>Date<br>(Planned) | Story Points Completed (as on Planned End Date) | Sprint<br>Release<br>Date<br>(Actual) |
|----------|--------------------|----------|----------------------|---------------------------------|-------------------------------------------------|---------------------------------------|
| Sprint-1 | 15                 | 6 Days   | 24 Oct<br>2022       | 29 Oct<br>2022                  | 15                                              | 29 Oct<br>2022                        |
| Sprint-2 | 10                 | 6 Days   | 31 Oct<br>2022       | 05 Nov<br>2022                  | 10                                              | 05 Nov<br>2022                        |
| Sprint-3 | 13                 | 6 Days   | 07 Nov<br>2022       | 12 Nov<br>2022                  | 13                                              | 12 Nov<br>2022                        |
| Sprint-4 | 15                 | 6 Days   | 14 Nov<br>2022       | 19 Nov<br>2022                  | 15                                              | 19 Nov<br>2022                        |

# 7.3 Velocity:

| Sprint    | Total Story points | Sprint duration | Average velocity |
|-----------|--------------------|-----------------|------------------|
| Sprint -1 | 15                 | 6 days          | 15/6=2.5         |
| Sprint -2 | 10                 | 6 days          | 10/6=1.67        |
| Sprint -3 | 13                 | 6 days          | 13/6=2.16        |
| Sprint -4 | 15                 | 6 days          | 15/6=2.5         |

### 7.4 Burndown Charts



# 7.5 Reports from JIRA



### **8. IMPLEMENTATION AND OUTPUT SCREENSHOTS**

# **Data Cleaning and Preprocessing**





#### Dropping unnecessary attributes

```
df.drop(['case_id', 'patientid'], axis=1, inplace=True)
```

#### **Correlations in Dataset**





#### **Data Transformation**



```
le.fit(df["Age"])
      0
     * LabelEncoder
     LabelEncoder()
     age_transformed = le.transform(df["Age"])
     df["Age"] = age_transformed
      0
le.fit(df["Hospital_region_code"])
hrc_transformed = le.transform(df["Hospital_region_code"])
df["Hospital_region_code"] = hrc_transformed
 0
le.fit(df["Department"])
dept_transformed = le.transform(df["Department"])
df["Department"] = dept_transformed
 0
le.fit(df["Ward_Type"])
wt_transformed = le.transform(df["Ward_Type"])
df["Ward_Type"] = wt_transformed
 0
le.fit(df["Ward_Facility_Code"])
wfc_transformed = le.transform(df["Ward_Facility_Code"])
df["Ward_Facility_Code"] = wfc_transformed
 0
```

#### **Transformed Data**



### **Prediction Using Models**

### **Algorithm Used**

#### 1.Random Forest

- Random Forest is a popular machine learning algorithm that belongs to the supervised learning technique.
- It can be used for both Classification and Regression problems in ML.
- It is based on the concept of ensemble learning, which is a process of combining multiple classifiers to solve a complex problem and to improve the performance of the model.

### **Code and Accuracy**

```
from sklearn. ensemble import RandomForestClassifier
from sklearn .metrics import accuracy_score
rfc = RandomForestClassifier(n_estimators=150)
rfc. fit(x, y)
y_test_preds = rfc. predict(test_data[features])
accuracy = accuracy_score(y_test_preds, test_data["Stay"])
accuracy
0.8512443727792086
```

The accuracy for prediction of length of stay using the algorithm Random forest is 85.12%

#### 2.Random Forest

- Random Forest is a popular machine learning algorithm that belongs to the supervised learning technique.
- It can be used for both Classification and Regression problems in ML.
- It is based on the concept of ensemble learning, which is a process of combining multiple classifiers to solve a complex problem and to improve the performance of the model.

#### **Code and Accuracy**

```
from sklearn. ensemble import RandomForestClassifier
from sklearn .metrics import accuracy_score
rfc = RandomForestClassifier(n_estimators=150)
rfc. fit(x, y)
y_test_preds = rfc. predict(test_data[features])
accuracy = accuracy_score(y_test_preds, test_data["Stay"])
accuracy
0.8512443727792086
```

The accuracy for prediction of length of stay using the algorithm Random forest is 85.12%

#### 3.MLP Classifier

- MLPClassifier stands for Multi-layer Perceptron classifier which in the name itself connects to a Neural Network.
- Unlike other classification algorithms such as Support Vectors or Naive Bayes Classifier, MLPClassifier relies on an underlying Neural Network to perform the task of classification.
- MLP classifier is a very powerful neural network model that enables the learning of non-linear functions for complex data.

### **Code and Accuracy**



The accuracy for prediction of length of stay using the algorithm MLP classifier is 57.44%

#### 4. Gaussian NB

- Naïve Bayes is a probabilistic machine learning algorithm used for many classification functions and is based on the Bayes theorem.
- Gaussian Naïve Bayes is the extension of naïve Bayes.
- While other functions are used to estimate data distribution, Gaussian or normal distribution is the simplest to implement as you will need to calculate the mean and standard deviation for the training data.

#### **Code and Accuracy**

```
from sklearn.naive_bayes import GaussianNB
gnb=GaussianNB()
gnbmodel=gnb.fit(x,y)
gnbpred=gnb.predict(test_data[features])
accuracy=accuracy_score(gnbpred,test_data["Stay"])
accuracy

0.48643265210824693
```

The accuracy for prediction of length of stay using the algorithm Gaussian NB is 48 64%

#### **DASHBOARD**

### **Tools Used - DASH - Python Framework**

- Dash is an open-source Python framework used for building analytical web applications.
- It is a powerful library that simplifies the development of data-driven applications.
- It's especially useful for Python data scientists who aren't very familiar with web development.
- Users can create amazing dashboards in their browser using dash.

### **Description**

This is the home page of our dashboard. It has navigation s like Dashboard, Insights and the Classification. It depicts the number of cases, number of hospitals, and the number of departments there are in that region. Here we can select the hospital id to look into more insights about the hospital. There are several graphs which show the patient's stay, and their particular department, severity of the particular patient, age wise category and finally the mean length of stay.

#### **DASHBOARD PAGE:**





#### PREDICTION OF LENGTH OF STAY PAGE:



#### **ADMIN DASHBOARD**

### **Tools Used**

#### **Firebase**

- Firebase is a set of hosting services for any type of application.
- It offers NoSQL and real-time hosting of databases, content, social authentication, and notifications, or services, such as a real-time communication server
- Firebase helps you develop high-quality apps, grow your user base, and earn more money. Each feature works independently, and they work even better

together.

### SATISFIED WITH THE PREDICTION PAGE



### **ADMIN LOGIN**

| Health Care Data Analysis                                  | Dashboard Insights Classification Admin |
|------------------------------------------------------------|-----------------------------------------|
| Admin Login                                                |                                         |
| Enter Email: admin@gmail.com Enter Password: Login Login!! |                                         |
|                                                            |                                         |
|                                                            |                                         |
|                                                            |                                         |

# **ADMIN DASHBOARD - FEEDBACK OF THE PATIENTS ABOUT PREDICTION**

| Health Care Data Analysis |                                           | Dashboard Insights Classification Admin |
|---------------------------|-------------------------------------------|-----------------------------------------|
|                           | <b>Admin Dashboard</b>                    |                                         |
|                           |                                           |                                         |
| Total feedback            | Total positive feedback                   | Total negative feedback                 |
| 6                         | 4                                         | 2                                       |
|                           | Feedback:                                 |                                         |
|                           | The Prediction is accurate                |                                         |
|                           | Was able to find the right length of stay |                                         |
|                           | Not accurate                              |                                         |
|                           | I got an accurate prediction              |                                         |

### 9. TESTING

### **User Acceptance Testing**

### Purpose

- The purpose of this document is to briefly explain the test coverage and open issues of the Analytics for Hospitals Health-Care data project at the time of the release to User Acceptance Testing (UAT).
- This document mainly covers the severity of each resolution in the system and contains the severity score of the resolution mentioned below in the table.

### **Defect Analysis**

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved,

| Section            | Total Cases | Not Tested | Fail | Pass |
|--------------------|-------------|------------|------|------|
| Model              | 50          | 0          | 3    | 47   |
| Client Application | 37          | 0          | 3    | 34   |

| Resolution     | Severity 1 | Severity 2 | Severity 3 | Severity 4 | Subtotal |
|----------------|------------|------------|------------|------------|----------|
| By Design      | 5          | 1          | 2          | 3          | 11       |
| Duplicate      | 0          | 0          | 3          | 0          | 3        |
| External       | 0          | 3          | 0          | 1          | 4        |
| Fixed          | 7          | 2          | 4          | 2          | 15       |
| Not Reproduced | 0          | 0          | 1          | 0          | 1        |
| Skipped        | 0          | 0          | 0          | 3          | 3        |
| Won't Fix      | 0          | 1          | 0          | 1          | 2        |
| Totals         | 12         | 7          | 10         | 10         | 39       |

### **Test Case Analysis**

This report shows the number of test cases that have passed, failed, and untested

| Homepage       | 4 | 0 | 0 | 1 |
|----------------|---|---|---|---|
|                | Т | 0 | - |   |
| Insights       | 2 | 0 | 0 | 2 |
| Classification | 3 | 0 | 0 | 3 |
| Login          | 2 | 0 | 0 | 2 |
| Admin page     | 4 | 0 | 0 | 4 |

# **Performance Testing**

Project team shall fill the following information in the model performance testing template.

| S.No | Parameter | Values                                     |
|------|-----------|--------------------------------------------|
| 1.   | Metrics   | Regression Model: Random Forest            |
|      |           | Accuracy: 85.12%                           |
| 2.   | Tune the  | Hyperparameter Tuning                      |
|      | Model     | 1) Learning Rate: [0.01, 0.03, 0.05, 0.07] |
|      |           | 2) Max features: ['auto','sqrt']           |
|      |           | 3) Number of Estimators: [10,20,30,50]     |
|      |           | 4) min_samples_leaf : [2,4,6] Validation   |
|      |           | Method: Grid Search Cross Validation       |
|      |           | Best Parameters: Learning Rate – 0.07      |
|      |           | Number of Estimators - 300                 |
|      |           |                                            |

# **Load Testing**

### No.Of Users:1

| Get Method status is  | 200 |
|-----------------------|-----|
| Post Method status is | 200 |
| Get Method status is  | 200 |
| Post Method status is | 200 |
| Get Method status is  | 200 |
| Post Method status is | 200 |
| Get Method status is  | 200 |
| Post Method status is | 200 |
| Get Method status is  | 200 |
| Post Method status is | 200 |
| Get Method status is  | 200 |
| Post Method status is | 200 |
| Get Method status is  | 200 |

| Statistics  | Charts Failures  | Exceptions | Download Data |         |             |            |              |          |          |                      |             |                    |
|-------------|------------------|------------|---------------|---------|-------------|------------|--------------|----------|----------|----------------------|-------------|--------------------|
| The same of |                  |            |               |         |             |            |              |          |          |                      |             |                    |
| Туре        | Name             |            | # Requests    | # Falls | Median (ms) | 90%He (ms) | Average (ms) | Min (ms) | Max (ms) | Average size (bytes) | Current RPS | Current Failures/s |
| GET         |                  |            |               |         |             | 330        | 85           | 28       | 336      | 1256                 |             |                    |
| POST        | /7status=success |            |               |         | 120         | 290        | 143          |          | 410      | 1256                 |             |                    |
|             | Appregated       |            | 34            |         | 110         | 290        | 114          | 28       | 410      | 1256                 | 0.9         |                    |
|             |                  |            |               |         |             |            |              |          |          |                      |             |                    |

### No.Of Users:20

| Туре | Name                    | # Requests | # Falls | Median (ms) | 90%/de (ms) | Average (ms) | Min (ms) | Max (ms) | Average size (bytes) | Current RPS | <b>Current Failures/s</b> |
|------|-------------------------|------------|---------|-------------|-------------|--------------|----------|----------|----------------------|-------------|---------------------------|
| GET  | Homepage                |            |         | 140         |             |              |          |          |                      |             |                           |
| GET  | Homepage - Search       |            |         | 150         | 300         | 192          | 138      |          | 5119                 |             |                           |
|      | Classification          |            |         |             |             |              |          | 280      | 4108                 |             |                           |
| POST | Classification data     |            |         | 290         | 630         | 399          |          | 1210     | 4790                 |             |                           |
| эет  | feedback                |            |         | 140         |             |              |          |          | 3391                 |             |                           |
| GET  | Admin login             |            |         | 140         | 140         |              | 140      |          | 3367                 |             |                           |
| эет  | Admin homepage          |            |         | 140         | 140         |              | 140      | 140      | 3907                 |             |                           |
| ЭET  | Hompage - visualization |            |         |             | 1200        | 667          |          | 1192     | 3663                 |             |                           |
| эет  | Insights                |            |         |             |             | 234          |          |          | 3393                 |             |                           |
| ET   | Insights - select box   |            |         | 280         | 490         | 345          |          | 661      | 4503                 |             |                           |
|      | Appregated              | 92         |         | 160         | 420         | 259          | 104      | 1210     | 3794                 | 0.7         |                           |

# 10. RESULTS

Using the different prediction models, Random Forest Algorithm has highest accuracy, so we chose this for our prediction of length of stay.

```
from sklearn. ensemble import RandomForestClassifier
from sklearn .metrics import accuracy_score
rfc = RandomForestClassifier(n_estimators=150)
rfc. fit(x, y)
y_test_preds = rfc. predict(test_data[features])
accuracy = accuracy_score(y_test_preds, test_data["Stay"])
accuracy

0.8512443727792086
```

The accuracy for prediction of length of stay using the algorithm Random forest is 85.12%

### Github Repo Link: <a href="https://github.com/IBM-EPBL/IBM-Project-31564-1660202873.git">https://github.com/IBM-EPBL/IBM-Project-31564-1660202873.git</a>



#### 11. BENEFITS

- Accurate prediction of patient LOS may aid the healthcare specialists to take medical decisions and allocate medical team and resources.
- The patient and insurance companies may use this prediction to manage their budget.
- Patients with high LOS risk can have their treatment plan optimized to minimize LOS and lower the chance of getting a hospital-acquired condition such as staph infection.
- Prior knowledge of LOS can aid in logistics such as room and bed allocation planning.

#### 12. CONCLUSION

Thus this project of Analytics for hospital health care data helps the patients in making plans of staying in the hospital and also it helps the other patients to know the capacity of bed available in hospitals during the pandemic times. This study uses data visualization and analytics to show analytics for hospital and healthcare data. This data is acquired from various health information systems and other technical tools used by government agencies, insurance providers, and healthcare professionals. Real-time analysis of the data being gathered allows for a better understanding of the virus's effects and the forecasting of future trends, which will help us contain the spread and stop further outbreaks. If used appropriately, health care data management could result in better treatment. The collection and analysis of data from the healthcare industry with the aim of gaining insights and influencing decision-making can be referred to as healthcare analytics.

#### 13. FUTURE SCOPE

The data analytics market in the healthcare space has only increased over the last few years. Decision-making is improved since guessing and manual duties are eliminated by data analytics. whether it be selecting the appropriate content, organizing marketing initiatives, or creating products.

Organizations can use the data analytics insights they uncover to make wise decisions. resulting in improved results and customer satisfaction. After the Affordable Act was passed, the necessity for data analytics to meet business goals of pharmaceutical firms, payers, insurance companies, physicians, hospitals, medical equipment companies, sales reps, and other players in the healthcare industry only grew.

#### 14. REFERENCE

- [1] R. Vargheese, "Dynamic Protection for Critical Health Care Systems Using Cisco CWS: Unleashing the Power of Big Data Analytics," 2014 Fifth International Conference on Computing for Geospatial Research and Application, 2014, pp. 77-81, doi: 10.1109/COM.Geo.2014.28.
- [2] M. Panda, S. M. Ali and S. K. Panda, "Big data in health care: A mobile based solution," 2017 International Conference on Big Data Analytics and Computational Intelligence (ICBDAC), 2017, pp. 149-152, doi: 10.1109/ICBDACI.2017.8070826.
- [3] S. Balaji and V. Prasathkumar, "Dynamic Changes by Big Data in Health Care," 2020 International Conference on Computer Communication and Informatics (ICCCI), 2020, pp. 1-4, doi: 10.1109/ICCCI48352.2020.9104168.
- [4] A. Alahmar and R. Benlamri, "Optimizing Hospital Resources using Big Data Analytics with Standardized e-Clinical Pathways," 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), 2020, pp. 650-657, doi: 10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00112.
- [5] Z. Yu et al., "Health Service Decision Toolbox (HSDT): Delivering the Right Treatment to the Right Patient with Health Information Technology and Data Analytics," 2018 15th International Conference on Service Systems and Service Management (ICSSSM), 2018, pp. 1-6, doi: 10.1109/ICSSSM.2018.8465110.