

b) ad valorem tax 2% #1) Rationality assumptions (1.0z.4)b+C=40 1 Completeness 1.02 = 10 = 9.8 · Ve can compare any two bundles c) Quantity tax \$0.50 2 Transitivity 4.5 b +c=40 · Preferences are "consistent Price per 5: 4+0.50 · X>Y and Y>Z then X>Z (3) Reflexivity · We are indifferent between identical copies of bundles $(X \sim X)$

Well-behaved assumptions	If these pref. were
(D Monotonicity)	transitive:
. More is better	
2 Convexity	WEX3 WEY
- Mixtures are preferred	
to extremes	WYYZWZZ N~ZSWZZ
#5) W >×	
X>Y	-> not transitive
Y~ Z	-> not rasional
2 > \\	#6) Find MRS
, , ,	$a) u(x_1, x_2) = x x_2$
Are these rational	MRS = MUL OU(x 1,1xz)
preferences?	$Mu_2 O^{\chi_1}$
	Du(X1)X2)
	70/2

$$MU_{1} = |x_{1}^{1}| x_{2}$$

$$= x_{1}^{0} \cdot x_{2}$$

$$= x_{1}^{0} \cdot x_{2}$$

$$= x_{2}^{0} \cdot x_{2}$$

$$= x_{2}^{0}$$

$$MRS = \frac{1}{3} x_{2}^{0} = \frac{1}{2} x_{1}^{0}$$

$$MRS = \frac{1}{2} x_{1}^{0} = \frac{1}{2} x_{1}^{0}$$

$$MRS = \frac{1}{2} x_{1}^{0} = \frac{1}{2} x_{2}^{0}$$

$$MRS = \frac{1}{2} x_{2}^{0} = \frac{1}{2} x_{2}^{0}$$

$$MRS = \frac{1}{2} x_{2}^{0} = \frac{1}{2} x_{1}^{0}$$

$$MRS = \frac{1}{2} x_{1}^{0} = \frac{1}{2} x_{1}^{0}$$

$$MRS = \frac{1}{2} x_{1}^{0} = \frac{1}{2} x_{1}^{0}$$

$$MU_{1} = \frac{1}{2} x_{1}^{0} x_{2}^{0} = \frac{1}{2} x_{1}^{0}$$

$$MRS = \frac{1}{2} x_{1}^{0} x_{1}^{0} = \frac{1}{2} x_{1}^{0}$$

$$MRS = \frac{1}{2} x_{1}^{0} = \frac{1}{2} x_$$