Matrix Completion

Lecture Notes 8: Matrix Completion

Professor: Zhihua Zhang Scribe: Yuxi Zhang, Ruotian Luo

8 Matrix Completion

8.1 Problem Background

Let $\mathbf{Z} = (z_{ij})$ denote user i rates movie j with ranking $z_{ij} \in \{1, 2, 3, 4, 5\}$. However, some movies are not rated by any people, i.e. z_{ij} is missing. Our purpose is to complete the ranking matrix. Let \mathbf{X} be the $m \times n$ complete matrix and $\mathbf{\Omega} = \{(i, j) | z_{ij} \text{ is observed}\}$. We can reasonably suppose that \mathbf{X} is a low rank matrix.

Our purpose is to minimize the error between \mathbf{Z} and \mathbf{X} with the constraint that \mathbf{X} is low rank, i.e.

$$\min_{\mathbf{X}} \frac{1}{2} \sum_{(i,j) \in \Omega} (z_{ij} - x_{ij})^2$$

s.t. X a low rank matrix

Since **X** is a low rank matrix, we cannot merely use $\mathbf{Z} \approx \mathbf{U}^T \mathbf{X}$ as an approximation of **Z**. We need to add a sparse matrix **S**, i.e. $\mathbf{Z} = \mathbf{X} + \mathbf{S}$, for a matrix can always be represented as the sum of a low rank matrix and a sparse matrix. Then our objective function is:

$$\min_{\mathbf{X}, \mathbf{S}} \frac{1}{2} \sum_{(i,j) \in \mathbf{\Omega}} (z_{ij} - x_{ij} - s_{ij})^2$$

s.t. X is a low rank matrix

S is a sparse matrix

We use convex functions *Nuclear norm* and *1-norm* to approximate the rank and the number of non-zero elements respectively. The formulation is

$$\min_{\mathbf{X}, \mathbf{S}} \ \frac{1}{2} \|\mathbf{Z} - \mathbf{X} - \mathbf{S}\|_F^2 + \lambda_1 \|\mathbf{X}\|_* + \lambda_2 \|\mathbf{S}\|_1$$
 (1)

However, this objective function is not differentiable. Therefore, we need to introduce the definition of directional derivative and subgradient.

8.2 Directional derivative

Definition 8.1. Let $f : \mathbf{E} \to \mathbf{R}$, the directional derivative of a function f at $\hat{\mathbf{x}}$ in a direction $\mathbf{d} \in \mathbf{E}$ is

$$f'(\hat{\mathbf{x}}; \mathbf{d}) = \lim_{t \downarrow 0} \frac{f(\hat{\mathbf{x}} + \mathbf{d}) - f(\hat{\mathbf{x}})}{t}$$
(2)

when the limit exists. When the directional derivative $f'(\hat{\mathbf{x}}; \mathbf{d})$ is actually linear in \mathbf{d} , that is $f'(\hat{\mathbf{x}}; \mathbf{d}) = \langle \mathbf{a}, \mathbf{d} \rangle$ for some element \mathbf{a} of \mathbf{E} . Then, we say f is (Gâteanx) differentiable at $\hat{\mathbf{x}}$ with (Gâteanx) derivative $\nabla f(\hat{\mathbf{x}}) = \mathbf{a}$. If f is differentiable at every point in \mathbf{E} , then we simply say f is differentiable (on \mathbf{E}).

Example 8.1. $f(\mathbf{X}) = \log |\mathbf{X}|, \mathbf{X} \in \mathbf{S}_{++}^n$, find $f'(\mathbf{X}; \mathbf{Y})$, where $\mathbf{Y} \in \mathbf{S}_{++}^n$.

Solution:

$$f'(\mathbf{X}, \mathbf{Y}) = \lim_{t \downarrow 0} \frac{\log |(\mathbf{X} + t\mathbf{Y})| - \log |\mathbf{X}|}{t}$$

$$= \lim_{t \downarrow 0} \frac{\log |\mathbf{X}(\mathbf{I} + t\mathbf{X}^{-1}\mathbf{Y})| - \log |\mathbf{X}|}{t}$$

$$= \lim_{t \downarrow 0} \frac{\log |\mathbf{X}| + \log |\mathbf{I} + t\mathbf{X}^{-1}\mathbf{Y}| - \log |\mathbf{X}|}{t}$$

$$= \lim_{t \downarrow 0} \frac{\log |\mathbf{I} + t\mathbf{X}^{-1}\mathbf{Y}|}{t}$$

$$= \lim_{t \downarrow 0} \frac{\sum_{i=1}^{n} \log (1 + t\lambda_{i}(\mathbf{X}^{-1}\mathbf{Y}))}{t}$$

$$= \lim_{t \downarrow 0} \sum_{i=1}^{n} \frac{\lambda_{i}(\mathbf{X}^{-1}\mathbf{Y})}{1 + t\lambda_{i}(\mathbf{X}^{-1}\mathbf{Y})}$$

$$= \sum_{i=1}^{n} \lambda_{i}(\mathbf{X}^{-1}\mathbf{Y})$$

$$= \operatorname{tr}(\mathbf{X}^{-1}\mathbf{Y})$$

$$= \langle \mathbf{X}^{-1}, \mathbf{Y} \rangle$$

where $\lambda_i(\mathbf{X}^{-1}\mathbf{Y})$ as the *i*-th eigenvalue of $\mathbf{X}^{-1}\mathbf{Y}$. It can be prove that $\lambda_i(\mathbf{X}^{-1}\mathbf{Y}) > 0$.

Proof. Since $\mathbf{X}^{-1}\mathbf{Y} = \mathbf{X}^{-\frac{1}{2}}\mathbf{X}^{-\frac{1}{2}}\mathbf{Y}\mathbf{X}^{-\frac{1}{2}}\mathbf{X}^{\frac{1}{2}}$, we have $\mathbf{X}^{-1}\mathbf{Y} \sim \mathbf{X}^{-\frac{1}{2}}\mathbf{Y}\mathbf{X}^{-\frac{1}{2}}$, i.e. $\mathbf{X}^{-1}\mathbf{Y}$ and $\mathbf{X}^{-\frac{1}{2}}\mathbf{Y}\mathbf{X}^{-\frac{1}{2}}$ have the same eigenvalues. Consider that \mathbf{X} and \mathbf{Y} are positive definite symmetric matrices, then $\mathbf{X}^{-\frac{1}{2}} = (\mathbf{X}^{-\frac{1}{2}})^T \neq \mathbf{0}$ and for any $\mathbf{z} \neq \mathbf{0}$, $\mathbf{z}^T\mathbf{Y}\mathbf{z} > \mathbf{0}$. Hence $\mathbf{z}^T\mathbf{X}^{-\frac{1}{2}}\mathbf{Y}\mathbf{X}^{-\frac{1}{2}}\mathbf{z} > 0$ and $\mathbf{X}^{-\frac{1}{2}}\mathbf{Y}\mathbf{X}^{-\frac{1}{2}}$ is positive definite.

Example 8.2. $f(\mathbf{X}) = \operatorname{tr}(\mathbf{A}^T \mathbf{X}), \mathbf{A} \in \mathbb{R}^{p \times m}, \mathbf{X} \in \mathbb{R}^{p \times n}, \text{ find } f'(\mathbf{X}; \mathbf{Y})$

Solution:

$$f'(\mathbf{X}, \mathbf{Y}) = \lim_{t \downarrow 0} \frac{\operatorname{tr}(\mathbf{A}^{T}(\mathbf{X} + t\mathbf{Y})) - \operatorname{tr}(\mathbf{A}^{T}\mathbf{X})}{t}$$
$$= \lim_{t \downarrow 0} \frac{\operatorname{tr}(\mathbf{A}^{T}\mathbf{X}) + \operatorname{tr}(t\mathbf{A}^{T}\mathbf{Y})) - \operatorname{tr}(\mathbf{A}^{T}\mathbf{X})}{t}$$
$$= \operatorname{tr}(\mathbf{A}^{T}\mathbf{Y})$$
$$= \langle \mathbf{A}, \mathbf{Y} \rangle$$

Example 8.3. $f(\mathbf{X}) = \operatorname{tr}(\mathbf{X}^{-1})$, find $f'(\mathbf{X}, \mathbf{Y})$

Solution:

$$f'(\mathbf{X}, \mathbf{Y}) = \lim_{t \downarrow 0} \frac{\operatorname{tr}((\mathbf{X} + t\mathbf{Y})^{-1}) - \operatorname{tr}(\mathbf{X}^{-1})}{t}$$

$$= \lim_{t \downarrow 0} \frac{\operatorname{tr}((\mathbf{X}(\mathbf{I} + t\mathbf{Y}))^{-1}) - \operatorname{tr}(\mathbf{X}^{-1})}{t}$$

$$= \lim_{t \downarrow 0} \frac{\operatorname{tr}((\mathbf{I} + t\mathbf{Y})^{-1}\mathbf{X}^{-1}) - \operatorname{tr}(\mathbf{X}^{-1})}{t}$$
(using the Taylor expansion $(\mathbf{I} + t\mathbf{Y})^{-1} = \mathbf{I} - t\mathbf{X}^{-1}\mathbf{Y} + t^{2}(\mathbf{X}^{-1}\mathbf{Y})^{2} - \dots)$

$$= \lim_{t \downarrow 0} \frac{\operatorname{tr}(\mathbf{X}^{-1}) - \operatorname{ttr}(\mathbf{X}^{-1}\mathbf{Y}\mathbf{X}^{-1}) + t^{2}\operatorname{tr}((\mathbf{X}^{-1}\mathbf{Y})^{2}\mathbf{X}^{-1}) - \dots - \operatorname{tr}(\mathbf{X}^{-1})}{t}$$

$$= -\operatorname{tr}(\mathbf{X}^{-1}\mathbf{Y}\mathbf{X}^{-1})$$

$$= -\operatorname{tr}(\mathbf{X}^{-2}\mathbf{Y})$$

8.3 Subgradient

Definition 8.2. If function f is convex and proper (which means $dom f = \{\mathbf{x} \in \mathbf{E} | f(\mathbf{x}) < \infty\}$ is non-empty), ϕ is said to be subgradient of $f(\mathbf{x})$ at $\hat{\mathbf{x}}$, if it satisfies $\langle \phi, \mathbf{x} - \hat{\mathbf{x}} \rangle \leq f(\mathbf{x}) - f(\hat{\mathbf{x}})$ for all $\mathbf{x} \in \mathbf{E}$.

Proposition 8.1. For any convex proper function $f : \mathbf{E} \to (-\infty, \infty)$, the point $\hat{\mathbf{x}}$ is a global minimizer of f iff the condition $0 \in \partial f(\hat{\mathbf{x}})$ holds.

Recall the definition of general matrix norms:

Definition 8.3. For $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\|\mathbf{A}\|$ is a function of \mathbf{A} which satisfies the following conditions.

1.
$$\|\mathbf{A}\| \ge 0$$

2.
$$\|\mathbf{A}\| = 0$$
 iff $\mathbf{A} = 0$

3.
$$\|\mathbf{A} + \mathbf{B}\| \le \|\mathbf{A}\| + \|\mathbf{B}\|$$

4.
$$\|\alpha \mathbf{A}\| = |\alpha| \|\mathbf{A}\|$$

According to the definition, it's easy to derive that matrix norm is convex:

$$\|\alpha \mathbf{A} + (1 - \alpha)\mathbf{B}\| \le \alpha \|\mathbf{A}\| + (1 - \alpha)\|\mathbf{B}\|$$

Addition condition:

Definition 8.4. A matrix norm $\|\cdot\|$ is called consistent if:

$$\|AB\| \le \|A\| \|B\|.$$

We here consider a kind of norm function which satisfy $\|\mathbf{U}^T \mathbf{A} \mathbf{V}\| = \|\mathbf{A}\|$, \mathbf{U}, \mathbf{V} are orthogonal matrices. $\mathbf{U}^T \mathbf{U} = \mathbf{U} \mathbf{U}^T = \mathbf{I}$ and $\mathbf{V}^T \mathbf{V} = \mathbf{V} \mathbf{V}^T = \mathbf{I}$.

 $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$, \mathbf{A} is $m \times n$ matrix, \mathbf{U} is $m \times m$ matrix; $\mathbf{\Sigma}$ is $m \times n$; \mathbf{V} is $n \times n$.

$$\|\mathbf{U}^T \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T \mathbf{V}\| = \|\mathbf{A}\|,$$
$$\|\mathbf{A}\| = \|\mathbf{\Sigma}\|.$$

Now we consider the uniqueness of SVD.

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T, \mathbf{U} \in \mathbb{R}^{m \times n}, \mathbf{\Sigma} \in \mathbb{R}^{n \times n}, \mathbf{V} \in \mathbb{R}^{n \times n},$$

where Σ is unique if we order the singular value. If all the singular values are different, then \mathbf{U}, \mathbf{V} is unique with ± 1 . In the case $\sigma_1 = \sigma_2$, we have

$$egin{aligned} oldsymbol{\Sigma} &= \left[egin{array}{cc} oldsymbol{\Sigma}_1 \mathbf{I}_2 & \mathbf{0} \\ \mathbf{0} & \mathrm{diag}(\sigma_3 \cdots \sigma_n) \end{array}
ight] \left[egin{array}{cc} \mathbf{Q} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{array}
ight] \left[egin{array}{cc} \mathbf{Q}^T & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{array}
ight] , \end{aligned}$$

where $\mathbf{Q}\mathbf{Q}^T = \mathbf{I}$. Then we have

$$\mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \mathbf{U} \left[egin{array}{cc} \mathbf{Q} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{array}
ight] \mathbf{\Sigma} \left[egin{array}{cc} \mathbf{Q}^T & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{array}
ight] \mathbf{V}^T.$$

In general, for any \mathbf{U}_i and \mathbf{V}_i that satisfy $\mathbf{A} = \mathbf{U}_i \mathbf{\Sigma} \mathbf{V}_i^T$, we can rewrite in the following form as

$$\mathbf{A} = \mathbf{U}\mathbf{Q}_i \mathbf{\Sigma} (\mathbf{V}\mathbf{Q}_i)^T.$$

where $\mathbf{Q}_i \mathbf{Q}_i^T = \mathbf{I}$.

Definition 8.5 (The Schatten *p*-norm). Let $\sigma = (\sigma_1 \cdots \sigma_n)^T$ be the vector contain singular values of \mathbf{A} , then the Schatten *p*-norm of \mathbf{A} is $\|\mathbf{A}\|_p = \|\sigma\|_p$.

There are three examples of Schatten p-norm:

- $p = 1, \|\mathbf{A}\|_* = \sum_{i=1}^n \sigma_i.$
- p = 2, $\|\mathbf{A}\|_F = \sum_{i=1}^n \sigma_i^2$.
- $p = \infty$, $\|\mathbf{A}\|_{\infty} = \sigma_1$. We call σ_1 the spectrum radius, and $\|\mathbf{A}\|_{\infty}$ is also called spectral norm.

Lemma 8.1. Let **A** and **R** be given $m \times n$ matrices, $\|\cdot\|$ is Schatten p-norm, $\phi(\cdot)$ is the corresponding norm on singular vector, then there is a SVD of **A** such that

$$\lim_{t\downarrow 0} \frac{\|\mathbf{A} + t\mathbf{R}\| - \|\mathbf{A}\|}{t} = \max_{\mathbf{d} \in \partial \phi(\boldsymbol{\sigma})} \sum_{i=1}^{n} d_i \mathbf{U}_i^T \mathbf{R} \mathbf{V}_i,$$

where

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_{i=1}^n \sigma_i \mathbf{U}_i \mathbf{V}_i^T,$$

$$\boldsymbol{\sigma} = (\sigma_1 \cdots \sigma_n)^T,$$

$$\mathbf{d} = (d_1 \cdots d_n)^T.$$

Recall the definition of subdifferential, here gives an equivalent definition:

Definition 8.6. For $\|\cdot\|$, $\mathbf{A} \in \mathbb{R}^{m \times n}$

$$\partial \|\mathbf{A}\| = \left\{ \mathbf{G} : \|\mathbf{B}\| \ge \|\mathbf{A}\| + \operatorname{tr}((\mathbf{B} - \mathbf{A})^T \mathbf{G}), \text{ for all } \mathbf{B} \in \mathbb{R}^{m \times n} \right\}.$$

Proposition 8.2. $G \in \partial ||A||$ is equivalent to the following statements:

1.
$$\|\mathbf{A}\| = \operatorname{tr}(\mathbf{G}^T \mathbf{A})$$

2.
$$\|\mathbf{G}\|^* \leq 1$$

where $\|\cdot\|^*$ is dual norm of $\|\cdot\|$, which defined as:

$$\|\mathbf{G}\|^* = \max_{\|\mathbf{B}\| \le 1} \operatorname{tr}(\mathbf{B}^T \mathbf{G}).$$

Proof.

To get the equation, the intuition is to assign different values of ${\bf B}$. Let ${\bf B}={\bf 0}$, then

$$0 \le \|\mathbf{A}\| - \operatorname{tr}(\mathbf{A}^T \mathbf{G})$$
$$\Longrightarrow \|\mathbf{A}\| < \operatorname{tr}(\mathbf{A}^T \mathbf{G}).$$

Let $\mathbf{B} = 2\mathbf{A}$, then

$$2\|\mathbf{A}\| \ge \|\mathbf{A}\| - \operatorname{tr}(\mathbf{A}^T \mathbf{G}) + 2\operatorname{tr}(\mathbf{A}^T \mathbf{G})$$
$$\Longrightarrow \|\mathbf{A}\| \ge \operatorname{tr}(\mathbf{A}^T \mathbf{G}).$$

So, we get $\|\mathbf{A}\| = tr(\mathbf{A}^T\mathbf{G})$.

Using the conclusion above, we can simplify the inequation to $\|\mathbf{B}\| \geq tr(\mathbf{B}^T\mathbf{G})$.

When $\mathbf{B} = \mathbf{0}$, $\|\mathbf{G}\|^* = \mathbf{0}$.

When $\mathbf{B} \neq \mathbf{0}$,

$$\frac{\operatorname{tr}(\mathbf{B}^T \mathbf{G})}{\|\mathbf{B}\|} \le 1.$$

This form is equivalent to

$$\max_{\|\mathbf{B}\| \le 1} \operatorname{tr}(\mathbf{B}^T \mathbf{G}) \le 1.$$

Hence $\|\mathbf{G}\|^* \leq 1$.

Theorem 8.1. Let **A** denote an $m \times n$ matrix, $\|\cdot\|$ is Schatten p-norm, and $\phi(\cdot)$ is the corresponding norm on singular values, then

$$\partial \|\mathbf{A}\| = conv\{\mathbf{U}\mathbf{D}\mathbf{V}^T, \mathbf{A} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^T, \mathbf{D} = diag(\mathbf{d}), \mathbf{d} \in \partial \phi(\boldsymbol{\sigma})\},$$

where $conv(\cdot)$ is the convex hull of a set, i.e,

If $G \in \partial ||A||$, there exists $\{\lambda_i\}, \lambda_i \geq 0, \sum_i \lambda_i = 1$, that satisfies

$$\mathbf{G} = \sum_i \lambda_i \mathbf{U}_i \mathbf{D}_i \mathbf{V}_i^T.$$

Pay attention to the \mathbf{U}_i and \mathbf{V}_i here. In previous expression, \mathbf{U}_i means the *i*th row of \mathbf{U}_i ; but here, \mathbf{U}_i and \mathbf{V}_i is an assignment that satisfy $\mathbf{A} = \mathbf{U}_i \mathbf{\Sigma} \mathbf{V}_i^T$. Now, let's see $\|\mathbf{A}\|_*$, $\phi(\boldsymbol{\sigma}) = \|\boldsymbol{\sigma}\|_1 = \sum_{i=1}^n \sigma_i$. Suppose $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$, and \mathbf{A} have q zero sigular values. Then let

$$\mathbf{U} = [\mathbf{U}^{(1)}, \mathbf{U}^{(2)}], \quad \mathbf{V} = [\mathbf{V}^{(1)}, \mathbf{V}^{(2)}],$$

where $\mathbf{U}^{(1)}$ and $\mathbf{V}^{(1)}$ have n-q columns. Then we have

$$\partial \| \boldsymbol{\sigma} \|_1 = \{ \mathbf{d} \in \mathbb{R}^n : |d_i| \le 1, d_i = 1 \text{ for } i = 1, \dots, n - q \}.$$

Let $\mathbf{G} = \partial \|\mathbf{A}\|$ and $\mathbf{G} = \sum_{i} \lambda_{i} \mathbf{U}_{i} \mathbf{D}_{i} \mathbf{V}_{i}^{T}, \lambda_{i} \geq 0, \sum_{i} \lambda_{i} = 1$. Then for each i, we have $\mathbf{d}_{i} \in \partial \|\boldsymbol{\sigma}\|_{1}, \mathbf{D}_{i} = \operatorname{diag}(\mathbf{d}_{i}), \text{ and } \mathbf{A} = \mathbf{U}_{i} \boldsymbol{\Sigma} \mathbf{V}_{i}^{T} \text{ and}$

$$\mathbf{G} = \sum_{i} \lambda_{i} \mathbf{U}_{i} \mathbf{D}_{i} \mathbf{V}_{i}^{T}$$

$$= \sum_{i} \lambda_{i} [\mathbf{U}_{i}^{(1)} \mathbf{U}_{i}^{(2)}] \begin{bmatrix} \mathbf{I}_{n-q} & 0 \\ 0 & \mathbf{W}_{i} \end{bmatrix} [\mathbf{V}_{i}^{(1)} \mathbf{V}_{i}^{(2)}]^{T}$$

$$= \sum_{i} \lambda_{i} \mathbf{U}_{i}^{(1)} \mathbf{V}_{i}^{(1)}^{T} + \sum_{i=1}^{n} \lambda_{i} \mathbf{U}_{i}^{(2)} \mathbf{V}_{i}^{(2)}^{T}.$$

 \mathbf{W}_i is diagonal and the absolute value of the elements are less than or equal to 1. According to the uniqueness of SVD decomposition, we have

$$\mathbf{U}_i = \mathbf{U}\mathbf{Q}_i, \mathbf{V}_i = \mathbf{V}\mathbf{Q}_i^T, \mathbf{Q}_i\mathbf{Q}_i^T = \mathbf{I},$$

which implies

$$\mathbf{G} = \mathbf{U}^{(1)} \mathbf{V}^{(1)^T} + \sum_{i} \lambda_i \mathbf{U}^{(2)} \mathbf{Q}_i \mathbf{W}_i \mathbf{Q}_i^T \mathbf{V}^{(2)^T}$$
$$= \mathbf{U}^{(1)} \mathbf{V}^{(1)^T} + \mathbf{U}^{(2)} \left(\sum_{i} \lambda_i \mathbf{Q}_i \mathbf{W}_i \mathbf{Q}_i^T \right) \mathbf{V}^{(2)^T}.$$

Let $\mathbf{T} = \mathbf{U}^{(2)} \left(\sum_{i} \lambda_i \mathbf{Q}_i \mathbf{W}_i \mathbf{Q}_i^T \right) \mathbf{V}^{(2)T}$. Then

$$\mathbf{G} = \mathbf{U}^{(1)} \mathbf{V}^{(1)}^T + \mathbf{U}^{(2)} \mathbf{T} \mathbf{V}^{(2)}^T.$$

By the property of \mathbf{W}_i , we have

$$\sigma_{1}(\mathbf{T}) = \sigma_{1} \left(\sum_{i} \lambda_{i} \mathbf{Q}_{i} \mathbf{W}_{i} \mathbf{Q}_{i}^{T} \right)$$

$$\leq \sum_{i} \lambda_{i} \sigma_{1} \left(\mathbf{Q}_{i} \mathbf{W}_{i} \mathbf{Q}_{i}^{T} \right)$$

$$\leq 1$$

Finally we have

$$\partial \|\mathbf{A}\|_* = \{\mathbf{U}^{(1)}\mathbf{V}^{(1)}^T + \mathbf{U}^{(2)}\mathbf{T}\mathbf{V}^{(2)}^T, \text{ for all } \mathbf{T} \in \mathbb{R}^{q \times q}, \ \sigma_1(\mathbf{T}) \le 1\}.$$