MATH 302

CHAPTER 1

SECTION 1.1: APPLICATIONS LEADING TO DES

Contents

Little experiment	2
Newton's Law of Cooling	3
Second Version of Newton's Law of Cooling	4

CREATED BY: PIERRE-OLIVIER PARISÉ

Fall 2022

EXAMPLE 1. Poor some hot water in a teapod and take its temperature with a thermometer. Take the temperature every 5 minutes. Record your data in a table and plot them in a Times VS Temperature graph.

TABLES

	Time	Temperature
Osec.	19:00:00	181.8°F
126 sec.	19:02:06	169.8°F
200sec.	19:03:20	166.30F
280 sec.	19:04:40	163.60F
340sec.	19:05:40	160.905
443 sec.	19:07:23	154.5°F
600 Sec.	19:10:00	149.0°F
760sec.	19:12:40	43.3°F
91854.	19:15:18	138.7°F
1100 sec.	19:18:20	134.6°F
132 sec.	19:21:52	129.0°F
1450sec.	19:24:10	126.2°F
1740 50	19:29:00	121.5°F
2160 sec.	19:36:00	116.0°F

	Time	Temperature
2560Sec.	19: 42: 40	111.1°F
3026 sec.	19:50:26	107.1°F
38 63ser.	20:04:23	101. 4ºF
6396 s ec.	20:46:36	91. 305
7571sc.	21:66:14	89.1°F
9280 sec.	21:34:40	86.9°F
H,755 sec.	23: 05:55	83.2°F
41,526 sec.	6 : 32 : ما	80.2°F

$\underline{\text{Plots}}$

NEWTON'S LAW OF COOLING

EXAMPLE 2. Let T = T(t) be the temperature of a body at time t and let T_m be the temperature of its surrounding. Assuming that

- the rate of cooling of the body is directly proportial to the temperature difference of the surface area exposed
- the temperature of the surrounding does not change

deduce a model describing the evolution of the temperature T(t) of the body.

Information: rate of change of
$$T$$

-> $\frac{dT}{dt} \propto T - Tm$

$$\frac{dT}{dt}$$
 should be negative if $T > Tm$ (cooling). $\frac{dT}{dt}$ should be positive if $T < Tm$ (warming).

Thurfore
$$\frac{dT}{dt} = -k (T-Tm)$$
(*)

where k>0 is a positive constant depending on the properties of the object and the medium.

I'm remains constant, so we'll see that a function satisfying the DE (H) is

T(t) =
$$T_m + (T_0 - T_m)e^{-kt}$$
 $t \ge 0$
where T_0 is the temperature of the body at time $t = 0$ (start).

SECOND VERSION OF NEWTON'S LAW OF COOLING

Assuming that the medium (surrounding) remains at constant temperature seems reasonable if we're considering a cup of tea/coffee cooling in a room.

What if the body warms or cools its surrounding, resulting in changing drastically the surrounding temperature?

EXAMPLE 3. Let T = T(t) be the temperature of the body at time t and let $T_m = T_m(t)$ be the temperature of its surrounding. Assuming that

- the rate of cooling of the body is directly proportial to the temperature difference of the surface area exposed
- the energy is preserved

deduce a model describing the evolution of the temperature T(t) of the body.

The DE from Ex. Z is still valid:

$$T' = -k(T-T_m). \quad (*)$$

However, we have to replace Tm by something simpler. We assume further that

- change in heat of the object as its temperature increase from T_0 to T is $\alpha(T-T_0)$ (a> ω).
- . change in heat of the medium as its temperature increase from Two to Tm is am(Tm·Tmo) (am>0)

By conservation:

$$\alpha(T-T_0) + \alpha_m(T_m-T_{m0}) = 0$$

$$\Rightarrow T_m = -\frac{\alpha}{\alpha_m} (T-T_0) + T_{m0}.$$

Replace this in the DE (x):

$$T' = -k \left(1 + \frac{\alpha}{am} \right) T + k \left(T_{mo} + \frac{\alpha}{am} T_{o} \right) . (4x)$$
We'll be able to show that the functions that satisfy (**) are
$$T(t) = \frac{\alpha T_{o} + \alpha m T_{mo}}{\alpha + \alpha m} + \frac{\alpha m \left(T_{o} - T_{mo} \right)}{\alpha + \alpha m} \frac{-k(1 + \frac{\alpha}{am})t}{e}.$$