Student Name:	
Student Number:	

GE 213.3 - Mechanics of Materials

FINAL EXAMINATION

April 26, 2003

Professor: B. Sparling Time Allowed: 3 Hours

Notes: • Closed book examination; Calculators may be used

• The value of each question is provided along the left margin

• Supplemental material is provided at the end of the exam (formulas)

• Show all your work, including all formulas, calculations and units

• Write your work in the space provided on the examination sheet. (The backs of the examination sheets may also be used if required)

Quest. 1:
Quest. 2:
Quest. 3:
Quest. 4:
Quest. 5:
Quest. 6:

MARKS

15 **QUESTION 1:** The shaft consisting of steel and aluminum segments is subjected to torques of T and 2.5T, in the locations and directions shown below.

a) Given the allowable shear stresses τ_{all} in the two materials as indicated on the sketch, determine the maximum allowable magnitude of the torque T.

b) If, instead of the value calculated in Part a), the torque $T = 250 \text{ N} \cdot \text{m}$, calculate the angle of

twist at Point A on top of the shaft.

- 17 **QUESTION 2:** A timber beam is constructed from four boards and is supported and loaded as shown. Section a-a is located 0.5 m to the right of the support at Point B.
 - a) Determine the maximum **tensile** normal stress at Section a-a.
 - **b)** If each nail can safely support a shear force of 300 N, determine the maximum allowable spacing "s" of nails **on the top** of the beam at Section a-a.

- OUESTION 3: The state of stress at a given point on the surface of an object is illustrated below. Using the Mohr's circle approach, determine the following stresses and indicate their orientations on a sketch:

 50 MPa
 - a) The principal normal stresses; and
 - **b)** The normal and shear stresses on Section a-a.

19 **QUESTION 4:** A 50 mm long aluminum block is attached to the perfectly rigid Link *ABCD* at Point *D*; when the system is unloaded, a 0.1 mm gap exists between this block and the rigid support on its right end. If a 7.5 kN vertical load is applied at Point *A* as shown, calculate the resulting force in the 200 mm long vertical steel wire attached at Point *B*. [Hint: The aluminium block comes into contact with the rigid support at its right end after the load is applied.]

- QUESTION 5: A solid rectangular post supports a platform loaded by a 10 kN vertical force and a 5 kN horizontal force, both of which lie in the *x-y* plane. A cable pre-tensioned to a tension of 15 kN lies in the *x-z* plane and is attached to a bracket on the post. Determine the following:
 - a) The vertical normal stress at Point A; and
 - **b**) The horizontal shear stress at Point B.

Post Cross-Section (Looking downward) **QUESTION 6:** Provide brief answers to the following questions – answers in point form are acceptable. Diagrams should be used to supplement your responses where appropriate.

4 **a)** Describe and explain the effect that the lateral normal stresses σ_{lat} applied to the vertical sides of the block shown below will have on the vertical deformations due to the axial normal force P.

5 **b**) Compare the relative torsional resistance capacities of the two cross-sectional shapes shown below and explain the differences in terms of the physical mechanisms contributing to the torsional resistance. Assume that both shapes possess similar cross-sectional areas.

6 c) In qualitative terms (i.e., without the use of equations), list and explain the possible states of static equilibrium for the axially loaded bar shown below.

Student Name:

• Normal Stress: $\sigma_{avg} = \frac{P}{A}$ $P = \int_{A} \sigma \, dA$ • Bearing Stress: $\sigma_{b} = \frac{P}{t \, d}$

• **Direct Shear:** $\tau_{avg} = \frac{V}{A}$ (Single) or $\tau_{avg} = \frac{V}{2A}$ (Double) • **Hooke's Law:** $\sigma = E \varepsilon$

• Allowable Stress: $F.S. = \frac{P_U}{P_D}$ or $F.S. = \frac{\sigma_U}{\sigma_D}$; $\sigma_{all} = \frac{\sigma_U}{F.S.}$ $P_{all} = \sigma_{all} A$ $A_{req} = \frac{P_D}{\sigma_{all}}$

• Stresses on Oblique Planes: $\sigma_{\theta} = \frac{P \cos \theta}{A_{\alpha}/\cos \theta} = \frac{P}{A_{\alpha}} \cos^2 \theta$; $\tau_{\theta} = \frac{P \sin \theta}{A_{\alpha}/\cos \theta} = \frac{P}{A_{\alpha}} \sin \theta \cos \theta$

• Average Normal Strain: $\varepsilon = \frac{\delta}{L_o} = \frac{L^* - L}{L}$ • Poisson's Ratio: $\varepsilon_y = \varepsilon_z = -v \varepsilon_x$

• Axial Deformations: $\delta = \frac{P L_o}{A_o E}; \quad \delta_{tot} = \sum_i \frac{P_i L_i}{A_i E_i}; \quad \delta = \int_0^L \frac{P(x)}{A(x) E(x)} dx$

• General Hooke's Law: $\varepsilon_x = \frac{\sigma_x}{E} - v \frac{\sigma_y}{E} - v \frac{\sigma_z}{E}$; $\varepsilon_y = -v \frac{\sigma_x}{E} + \frac{\sigma_y}{E} - v \frac{\sigma_z}{E}$; $\varepsilon_z = -v \frac{\sigma_x}{E} - v \frac{\sigma_y}{E} + \frac{\sigma_z}{E}$

• Shearing Strain & Stress: $\theta^* = \frac{\pi}{2} - \gamma_{xy}$; $\gamma_{xy} = \frac{\tau_{xy}}{G}$; $\gamma_{yz} = \frac{\tau_{yz}}{G}$; $\gamma_{zx} = \frac{\tau_{zx}}{G}$; $G = \frac{E}{2(1+v)}$

• Thermal Deformations: $\delta_T = \alpha \left(\Delta T \right) L_o$; $\epsilon_T = \frac{\delta_T}{L_o}$ • Resultant Torque: $T = \int_A \rho \, \tau \, dA$

• Torsional Strains: $\gamma = \frac{\rho \phi}{L}$; $\gamma_{\text{max}} = \frac{c \phi}{L}$; $\gamma = \left(\frac{\rho}{c}\right) \gamma_{\text{max}}$

• Torsional Stresses: $\tau = \left(\frac{\rho}{c}\right)\tau_{\text{max}}$ $\tau_{\text{max}} = \frac{T c}{J}$ $\tau = \frac{T \rho}{J}$ $J = \int_{A} \rho^{2} dA = \frac{\pi}{2} c^{4}$

• Torsional Angle of Twist: $\phi = \frac{T L}{J G}$ • Torsion - Gear Compatibility: $\phi_1 \rho_1 = \phi_1 \rho_2$

• Pure Bending - Normal Strain: $\varepsilon_x = -\frac{y}{\rho}$ $\varepsilon_{max} = c/\rho$ $\varepsilon_x = -\frac{y}{c}\varepsilon_m$

• Pure Bending - Normal Stress: $\sigma_x = -\frac{y}{c}\sigma_m$ $\sigma_x(y) = -\frac{My}{I}$ $\sigma_{max} = \frac{Mc}{I}$

• Section Properties: $I = \int_A y^2 dA$; $I = \sum_i (I_i + A_i d_i^2)$; Centroid: $\int_A y dA = 0$; $\overline{y} A = \sum_i y_i A_i$

• Biaxial Bending: $\sigma_x = -\frac{M_z y}{I_z} + \frac{M_y z}{I_y}$; $\tan \phi = \frac{I_z}{I_y} \tan \theta$; $M_z = M \cos \theta$; $M_y = M \sin \theta$

• Eccentric Axial Loading: $\sigma_x = \frac{P}{A} - \frac{M y}{I}$; • Shear Flow: q = V Q/I

• Flexural Shear Stress: $\tau_{\text{ave}} = \frac{V Q}{I t}$; $Q = \int_{A} y \, dA = A \overline{y}$ • Discrete Fasteners: $F_N = q \times s$

• Plane Stress Transformations: $\sigma_{x'} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos(2\theta) + \tau_{xy} \sin(2\theta)$ $\sigma_{y'} = \frac{\sigma_x + \sigma_y}{2} - \frac{\sigma_x - \sigma_y}{2} \cos(2\theta) - \tau_{xy} \sin(2\theta) ; \quad \tau_{x'y'} = -\frac{\sigma_x - \sigma_y}{2} \sin(2\theta) + \tau_{xy} \cos(2\theta)$