Redes Neuronales Convolucionales

Estructura de una ConvNet

Francisco Cervantes

Septiembre, 2019

NOS QUEDAMOS EN ...

- ☐ Segmentación de imágenes
- ☐ Convolución
 - Convolución con Padding
 - Convolución con Stride

HOY ...

- ☐ Estructura de una ConvNet
 - Convolución sobre N canales
 - Una capa convolucional
 - o Ejemplo de una ConvNet
 - Tipos de capas

Convolución sobre 1 canal (Escala de grises)

Convolución sobre N canales (RGB)

Convolución sobre N canales (RGB)

Múltiples filtros

*

*

Bordes horizontales

4 x 4 x 2

7

Una capa convolucional

$$z^{[1]} = W^{[1]}a^{[0]} + b^{[1]}$$

$$a^{[1]} = g(z^{[1]})$$

Número de parámetros en una capa convolucional

Si tenemos 10 filtros de dimensiones 3x3x3 en una capa de una red neuronal, ¿cuántos parámetros tiene la capa?

Veamos un poco de notación

Si \boldsymbol{l} es una capa convolucional:

f	r[l]	Tamaño	del	filtro

 $p^{[l]}$ Padding

 $s^{[l]}$ Stride

 $oldsymbol{n_C^{[l]}}$ Número de filtros

Entrada de la capa l:

$$n_H^{[l-1]} x n_W^{[l-1]} x n_C^{[l-1]}$$

Salida de la capa \boldsymbol{l} :

$$n_H^{[l]} x n_W^{[l]} x n_C^{[l]}$$

$$n_H^{[l]} = \left| \frac{n_H^{[l-1]} + 2p^{[l]} - f^{[l]}}{s^{[l]}} + 1 \right|$$

$$m{n}_W^{[l]} = \left| rac{m{n}_W^{[l-1]} + 2m{p}^{[l]} - m{f}^{[l]}}{m{s}^{[l]}} + m{1}
ight|$$

Veamos un poco de notación

Cada filtro es: $f^{[l]} x f^{[l]} x n_c^{[l-1]}$

Pesos: $f^{[l]} x f^{[l]} x n_c^{[l-1]} x n_c^{[l]}$

Bias: $(1, 1, 1, n_c^{[l]})$

Activación: $a^{[l]} = n_H^{[l]} x n_W^{[l]} x n_C^{[l]}$

Ejemplo de una ConvNet simple

Tipos de capas en ConvNets

☐ Convolucional CONV

☐ Pooling POOL

☐ Fully connected FC

1	2	3	1				
1	1	9	2			2	9
3	2	3	1			3	6
2	1	6	5	$f^{[l]} = s^{[l]} = s^{[l]} = s^{[l]} = s^{[l]} = s^{[l]}$		2 :	x 2
	4 <i>x</i>	¢ 4	ı	J	_		

¡No hay parámetros que aprender!

1	2	3	1	
1	1	9	2	
3	2	3	1	
2	1	6	5	

x 4

1	5	10	90	33	90
10	7	5	9	90	2
10	4	10	90	90	90
12	32	6	1	10	7
23	43	9	2	5	8
32	12	8	3	4	9

x 6 x 2

	1	_	10	90	22	90		
1	5	10	90		90	ا کا		
10	7	5	9	90	2	2		
10	4	10	90	90	90) 7		7
12	32	6	1	10	7	7		•
23	43	9	2	5	8	0	$f^{[l]} = 3$	
32	12	8	3	4	9	9	$s^{[l]} = 1$	

Capa POOL (Average pooling)

1	2	3	1			
1	1	9	2			
3	2	3	1			
2	1	6	5	$f^{[l]} = 2$ $s^{[l]} = 2$	2 2	c Z
	4 x	: 4	L	5 – 2		

¡No hay parámetros que aprender!