Trabajo práctico N°3 Filtro de Kalman

Enunciado

Considere un vehículo que se desplaza definiendo una trayectoria, como la de la Figura 1, tal que la posición en cada instante resulta p(t), con una velocidad v(t) y una aceleración a(t), definidas en un plano de coordenadas [x,y] de acuerdo a:

$$oldsymbol{p} = \left[egin{array}{c} p_x \\ p_y \end{array}
ight] \qquad oldsymbol{v} = \left[egin{array}{c} v_x \\ v_y \end{array}
ight] \qquad oldsymbol{a} = \left[egin{array}{c} a_x \\ a_y \end{array}
ight]$$

Figura 1: Trayectoria

Se desea estimar la trayectoria y las variables de estado (posición, velocidad y aceleración) que rigen la dinámica del vehículo para distintos parámetros y condiciones mediante un filtrado de Kalman. El sistema se discretiza con un período de muestreo de $h=1\ s$ y se asume que tanto los ruidos de proceso como de medición son blancos y gaussianos.

Ejercicio 1

- (a) A partir del modelo que surge de las ecuaciones de movimiento relacionadas con $\dot{\boldsymbol{p}}(t)$, $\dot{\boldsymbol{v}}(t)$ y $\dot{\boldsymbol{a}}(t)$, determine las ecuaciones de estado de tiempo continuo y exprese las matrices de estado A y covarianza del ruido de proceso Q. Para ello, suponga que en principio se asume que la aceleración $\boldsymbol{a}(t)$ es constante, es decir que $\dot{\boldsymbol{a}}(t)=0$, pero que al hacer esa simplificación se comete un error tal que las componentes \dot{a}_x y \dot{a}_y (descorrelacionadas) se pueden modelar como una variable aleatoria $\sim N(0,10^{-2})$.
- (b) Defina la ecuación de estados de tiempo discreto y exprese su matriz de estados A_d y covarianza de ruido de proceso discreto Q_d .
- (c) Implemente en Matlab las matrices A_d , Q_d y el algoritmo de Kalman.

Ejercicio 2

Utilice el archivo "tp3_kalman.mat" para extraer las muestras de posición, velocidad y aceleración "reales" (sin ruido), correspondientes al movimiento del vehículo. Dado el vector de estados $\boldsymbol{x} = [p_x \ p_y \ v_x \ v_y \ a_x \ a_y]^t$, considere los estados iniciales $\boldsymbol{x}_{0/0} = [40 \ -200 \ 0 \ 0 \ 0]^t$ y matriz de covarianza de los estados inicial $P_{0/0} = \text{diag}([10^4 \ 10^4 \ 10^2 \ 10^2 \ 10 \ 10])$. Defina

para cada uno de los siguientes ítems las matrices C y de covarianza del ruido de medición R. Luego estime las variables de estado mediante Kalman, grafique los puntos $\mathbf{p} = [p_x, p_y]^t$ de la trayectoria (real y estimada) y los estados p_x , p_y , v_x , v_y , a_x y a_y en función del tiempo. Verifique la validez del algoritmo de Kalman mediante la autocorrelación de las innovaciones. También determine cuántos estados no observables tiene el sistema.

- (a) **Mediendo posición:** utilice los datos suministrados para generar mediciones de posición agregando a las posiciones reales ruido gaussiano aditivo con una varianza $\sigma_p^2 = 100 \ m^2$ (en este caso incluya también estas mediciones en el gráfico de la trayectoria para compararlas con las trayectorias real y estimada).
- (b) **Mediendo velocidad:** utilice los datos suministrados para generar mediciones de velocidad agregando a las velocidades reales ruido aditivo con una varianza $\sigma_v^2 = 10 \ m^2/s^2$.
- (c) Mediendo aceleración: utilice los datos suministrados para generar mediciones de aceleración agregando a las aceleraciones reales ruido aditivo con una varianza $\sigma_a^2 = 1 \ m^2/s^4$.

Ejercicio 3

Suponiendo que se mide la posición afectada por ruido blanco gaussiano con unavarianza $\sigma_p^2 = 100 \ m^2$ y la covarianza inicial de los estados $P_{0/0} = \text{diag}([10^4 \ 10^4 \ 10^2 \ 10^2 \ 10 \ 10])$. Grafique la trayectoria $\boldsymbol{p} = [p_x, p_y]^t$ y el error de cada estado en función del tiempo, observando la convergencia de la trayectoria estimada y verificando la autocorrelación de las innovaciones, para cada una de las siguientes condiciones iniciales:

- (a) $\mathbf{x}_0 = [40 100 \ 0 \ 0 \ 0]^t$
 - $P'_{0/0} = P_{0/0}$
- (b) $\mathbf{x}_0 = [500 1000 \ 0 \ 0 \ 0]^t$
 - $P'_{0/0} = P_{0/0}$
- (c) $\mathbf{x}_0 = [40 100 \ 0 \ 0 \ 0]^t$
 - $P'_{0/0} = 10^{-5} P_{0/0}$
- (d) $\mathbf{x}_0 = [500 1000 \ 0 \ 0 \ 0]^t$
 - $P'_{0/0} = 10^{-5} P_{0/0}$

Ejercicio 4

Se toman mediciones de la posición afectadas por ruido gaussiano aditivo con una varianza $\sigma_p^2 = 100 \ m^2$, asumiendo condiciones iniciales $\boldsymbol{x}_{0/0} = [40 \ -200 \ 0 \ 0 \ 0]^t \ y \ P_{0/0} = {\rm diag}([10^4 \ 10^4 \ 10^2 \ 10^2 \ 10 \ 10])$. Estime el filtrado de las posiciones $\boldsymbol{p} = [p_x, p_y]^t$ suponiendo que el algoritmo utiliza una covarianza de ruido de medición R' equivocada en lugar de aquella que se corresponde con el verdadero ruido, R. Grafique la trayectoria (real, estimada y medida) y analice la autocorrelación de las innovaciones, para los siguientes dos casos:

- (a) Aumentando la matriz de covarianza de medición respecto de la real, tal que $R' = 10^3 R$.
- (b) Disminuyendo la matriz de covarianza de medición respecto de la real, tal que $R'=10^{-3}R$.