Grundbegriffe der Informatik Einheit 16: Turingmaschinen

Prof. Dr. Tanja Schultz

Karlsruher Institut für Technologie, Fakultät für Informatik

Wintersemester 2012/2013

Überblick

Eine technische Vorbemerkung

Turingmaschinen

Berechnungen Eingaben für Turingmaschinen Ergebnisse von Turingmaschinen

Berechnungskomplexität

Komplexitätsmaße Komplexitätsklassen

Unentscheidbare Probleme

Codierungen von Turingmaschinen Das Halteproblem Die Busy-Beaver-Funktion

Überblick 2/78

Überblick

Eine technische Vorbemerkung

Turingmaschinen

Berechnungen Eingaben für Turingmaschinen

Ergebnisse von Turingmaschinen

Berechnungskomplexität

Komplexitätsmaße Komplexitätsklassen

Unentscheidbare Probleme

Codierungen von Turingmaschinen

Das Halteproblem

Die Busy-Beaver-Funktion

Erinnerung: Partielle Funktionen

- partielle Funktion von A nach B
- ▶ rechtseindeutige Relation $f \subseteq A \times B$
- ▶ d. h.: für jedes a gibt es höchstens ein $b \in B$ mit $(a, b) \in f$
- ▶ ggf. wieder b = f(a) geschrieben
- andernfalls ist "f(a) undefiniert"
- ▶ Notation $f: A \longrightarrow B$ um anzudeuten, dass f partiell ist
- ▶ beachte: totale Funktionen sind spezielle partielle Funktionen

Überblick

Eine technische Vorbemerkung

Turingmaschinen

Berechnungen Eingaben für Turingmaschinen Ergebnisse von Turingmaschinen

Berechnungskomplexität

Komplexitätsmaße Komplexitätsklassen

Unentscheidbare Probleme

Codierungen von Turingmaschinen Das Halteproblem Die Busy-Beaver-Funktion

Turingmaschinen: Ursprung

- eingeführt von Alan Turing (1912 1954) http://www.turing.org.uk/turing/index.html
- "On computable numbers, with an application to the Entscheidungsproblem"
 Proceedings of the London Mathematical Society 42, 1936, S. 230–265.
- ▶ "The informal arguments [...] are as lucid and convincing now as they were then. [...] the best introduction to the subject [...] superior piece of expository writing."

 http://www.scholarpedia.org/article/Turing_machine

▶ Steuereinheit: endliche Zustandsmenge Z

- endliche Zustandsmenge Z
- Band, in Felder unterteilt: beschriftet mit Symbolen aus Bandalphabet X

- endliche Zustandsmenge Z
- ▶ Bandalphabet X
- ► Schritt:
 - neue Feldbeschriftung g(z, a)
 - neuer Zustand f(z, a)
 - Kopfbewegung m(z, a)

- endliche Zustandsmenge Z
- Bandalphabet X
- Schritt:
 - neue Feldbeschriftung g(z, a) = c
 - neuer Zustand f(z, a) = z'
 - Kopfbewegung m(z, a) = +1

Turingmaschinen: Formalisierung

$$T = (Z, z_0, X, f, g, m)$$
 festgelegt durch

- eine Zustandsmenge Z
- einen Anfangszustand $z_0 \in Z$
- ▶ ein Bandalphabet X
 - ▶ meist mit Blanksymbol □
- ▶ eine partielle Zustandsüberführungsfunktion
 f: Z × X --→ Z
- ▶ eine partielle Ausgabefunktion g: Z × X --→ X und
- eine partielle Bewegungsfunktion $m: Z \times X \dashrightarrow \{-1, 0, 1\}$ oder $\{L, 0, R\}$
- ▶ f, g, m für die gleichen Paare $(z,x) \in Z \times X$ definiert bzw. nicht definiert

Turingmaschinen: Darstellung der Arbeitsweise (TM BB3)

	Α	В	С	Н
	B, 1, R	C, \square, R	C, 1, L	
1	H, 1, R	B, 1, R	A, 1, L	

Turingmaschinen

	Α	В	С	Н
	B, 1, R	C, \square, R	C, 1, L	
1	H, 1, R	B, 1, R	A, 1, L	

	Α	В	С	Н
	B, 1, R	C, \square, R	C, 1, L	
_1	H, 1, R	B, 1, R	A, 1, L	

Turingmaschinen: Konfigurationen

- ► Konfiguration: "Gesamtzustand" einer Turingmaschine
- $c = (z, b, p) \in Z \times X^{\mathbb{Z}} \times \mathbb{Z}$
 - ▶ aktueller Zustand $z \in Z$ der Steuereinheit,
 - ▶ aktuelle Beschriftung des gesamten Bandes: totale Abbildung $b : \mathbb{Z} \to X$
 - ▶ aktuelle Position $p \in \mathbb{Z}$ des Kopfes
- $ightharpoonup {\cal C}_{\cal T}$: Menge aller Konfigurationen von ${\cal T}$

Turingmaschinen: "überschaubare" Bandbeschriftungen

- Bandbeschriftung: ein "potenziell unendliches Gebilde"
- ▶ In weiten Teilen der Informatik interessieren
 - endliche Berechnungen, die
 - aus endlichen Eingaben
 - endliche Ausgaben

berechnen.

- "Fast" das ganze Band ist immer "leer":
 - ► Bandalphabet enthält das sogenannte Blanksymbol
 - ▶ \Box ∈ X geschrieben
 - hier: Bei allen vorkommenden Bandbeschriftungen sind nur endlich viele Felder nicht mit

 beschriftet.

Überblick

Eine technische Vorbemerkung

Turingmaschinen

Berechnungen

Eingaben für Turingmaschinen Ergebnisse von Turingmaschinen

Berechnungskomplexität

Komplexitätsmaße Komplexitätsklassen

Unentscheidbare Probleme

Codierungen von Turingmaschiner Das Halteproblem Die Busy-Beaver-Funktion

Ein Schritt einer Turingmaschine

- ▶ Sei c = (z, b, p) die aktuelle Konfiguration einer TM T.
- Wenn für das Paar (z, b(p)) die Funktionen f, g und m definiert sind,
- dann kann die TM einen Schritt machen.
- ▶ Nachfolgekonfiguration c' = (z', b', p') ist wie folgt definiert:

$$z' = f(z, b(p))$$

$$\forall i \in \mathbb{Z} : b'(i) = \begin{cases} b(i) & \text{falls } i \neq p \\ g(z, b(p)) & \text{falls } i = p \end{cases}$$

$$p' = p + m(z, b(p))$$

- schreiben $c' = \Delta_1(c)$, also

Längere Beispielberechnung von BB3

Berechnungen und Endkonfigurationen

- c ist Endkonfiguration, falls $\Delta_1(c)$ nicht definiert ist.
- endliche Berechnung:
 - endliche Folge von Konfigurationen $(c_0, c_1, c_2, \dots, c_t)$, wobei für alle $0 < i \le t$ gilt $c_i = \Delta_1(c_{i-1})$
- haltende Berechnung:
 - endliche Berechnung,
 - deren letzte Konfiguration eine Endkonfiguration ist
- unendliche Berechnung:
 - ▶ unendliche Folge von Konfigurationen $(c_0, c_1, c_2, ...)$, wobei für alle 0 < i gilt $c_i = \Delta_1(c_{i-1})$
 - ▶ heißt auch *nicht haltend*
 - simples Beispiel
 - f(z,x) = z,
 - g(z,x) = x und
 - m(z,x) = 1
 - Kann man so etwas nicht einfach "wegkonstruieren"? . . .

Rechnen bis zur Endkonfiguration

lacktriangle analog zu Δ_1 allgemein für $t\in\mathbb{N}_0$ Abbildung $\Delta_t:\mathcal{C}_\mathcal{T}\dashrightarrow\mathcal{C}_\mathcal{T}$

$$\Delta_0 = I$$

$$\Delta_{t+1} = \Delta_1 \circ \Delta_1$$

- ➤ Zu jeder Konfiguration c gibt es genau eine Berechnung, die mit c startet und möglichst lange dauert.
- ► Wenn diese Berechnung hält, dann ist der Zeitpunkt zu dem das geschieht natürlich auch eindeutig.
- ▶ Wir schreiben Δ_* für die partielle Abbildung $\mathcal{C}_{\mathcal{T}} \dashrightarrow \mathcal{C}_{\mathcal{T}}$ mit

$$\Delta_*(c) = \begin{cases} \Delta_t(c) & \text{falls } \Delta_t(c) \text{ definiert und} \\ & \text{Endkonfiguration ist} \\ & \text{undefiniert} & \text{falls } \Delta_t(c) \text{ für alle } t \in \mathbb{N}_0 \text{ definiert ist} \end{cases}$$

Turingmaschinen Berechnungen 25/78

Überblick

Eine technische Vorbemerkung

Turingmaschinen

Berechnungen

Eingaben für Turingmaschinen

Ergebnisse von Turingmaschinen

Berechnungskomplexität

Komplexitätsmaße Komplexitätsklassen

Unentscheidbare Probleme

Codierungen von Turingmaschiner Das Halteproblem Die Busy-Beaver-Funktion

zwei Arten von Turingmaschinen

analog zu endlichen Automaten

- Berechung von Funktionen
- Erkennung formaler Sprachen
 - Turingmaschinenakzeptoren
 - Entscheidungsprobleme

Eingaben und Anfangskonfigurationen

- ▶ *Eingabealphabet* $A \subset X \setminus \{\Box\}$ spezifiziert ist.
 - Blanksymbol nicht dabei
- ▶ Anfangskonfiguration $c_0(w) = (z, b, p)$ für Eingabe $w \in A^*$
 - $\triangleright z = z_0$
 - $b = b_w : \mathbb{Z} \to X$

$$b_w(i) = \begin{cases} \Box & \text{falls } i < 0 \lor i \ge |w| \\ w(i) & \text{falls } 0 \le i \land i < |w| \end{cases}$$

- p = 0
 - ▶ Kopf auf dem ersten Eingabesymbol (falls $w \neq \varepsilon$)
- ► Anfangskonfiguration bei Eingabe evtl. mehrerer Zahlen
 - geeignet harmlos, z. B.
 - ▶ □□□1011□□ oder
 - ▶ □□□[1011][101]□□ oder
 - ▶ □□□[1011,101]□□ oder
 - **.** . . .

Überblick

Eine technische Vorbemerkung

Turingmaschinen

Berechnungen
Eingaben für Turingmaschinen

Ergebnisse von Turingmaschinen

Berechnungskomplexität

Komplexitätsmaße Komplexitätsklassen

Unentscheidbare Probleme

Codierungen von Turingmaschinen Das Halteproblem Die Busy-Beaver-Funktion

Ausgaben

analog zu endlichen Automaten

- Berechung von Funktionen: ein Ausgabewort
- Erkennung formaler Sprachen: ein Bit akzeptiert/abgelehnt
- ▶ Turingmaschinenakzeptor T:
 - ▶ Teilmenge $F \subset Z$ akzeptierender Zustände
 - ▶ T akzeptiert w, wenn
 - ▶ T für Eingabe w hält und
 - der Zustand der Endkonfiguration $\Delta_*(c_0(w))$ akzeptierend ist.
 - L(T): Menge der akzeptierten Wörter die von der Turingmaschine akzeptierte Sprache

Aufzählbare und entscheidbare Sprachen

- ▶ zwei Möglichkeiten, wenn w von T nicht akzeptiert wird:
 - T hält für Eingabe w, aber Endzustand ist nicht akzeptierend.
 - 2. T hält für Eingabe w nicht.
- ▶ Was weiß man?
 - 1. T ist fertig und lehnt die Eingabe ab.
 - T ist noch nicht fertig.
 Ob T irgendwann w noch akzeptiert oder ablehnt, ist unklar.
- zwei Definitionen
 - 1. *L* heißt *aufzählbare Sprache*, wenn es eine Turingmaschine gibt, die *L* akzeptiert.
 - 2. *L* heißt *entscheidbare Sprache*, wenn es eine Turingmaschine gibt, *die immer hält* und *L* akzeptiert.
- ► Entscheidbarkeit ist eine stärkere Forderung

Palindromerkennung: Beispielberechnung

	r a	b	b				/	b	b		
		ra b	b					r b	b		
		ъ	r _a b						^r b b		
		ъ	b	r _a					b	r _b □	
		b	b		ra □				/ _b		
		b	b					/			
		b	/ b						r		
		/ b	b							f_+	

Palindromerkennung: Beispielberechnung

	r a	b	b	a				<i>I</i> □	b	b		
		r _a b	b	a		•			r b	b		
		b	r _a b	a		•				r _b		
		b	b	r _a a		•				b	<i>r</i> _b □	
		b	b	a	r _a □	•				Љ b		
		b	b	l _a a		•			<i>I</i>			
		b	/ b			•				r		
		/ b	b								<i>f</i> ₊	

Palindromerkennung: Beispielturingmaschine

Palindromerkennung: Beispielturingmaschine

Was ist wichtig

Das sollten Sie mitnehmen:

- Turingmaschinen
 - Steuereinheit endlich
 - Band
 - unendlich, aber
 - nur endlich viel nicht leer
- alles endlich beschreibbar
- die klassische Formalisierung des Algorithmusbegriffs
- Berechnungen
 - haltende
 - nicht haltende

Das sollten Sie üben:

- ► Beispielturingmaschinen konstruieren
- ► Beispielturingmaschinen verstehen

Überblick

Eine technische Vorbemerkung

Turingmaschinen

Berechnungen Eingaben für Turingmaschinen Ergebnisse von Turingmaschinen

Berechnungskomplexität

Komplexitätsmaße Komplexitätsklassen

Unentscheidbare Probleme

Codierungen von Turingmaschinen Das Halteproblem Die Busy-Beaver-Funktion

Achtung

- Annahme in diesem Abschnitt: alle Turingmaschinen halten für jede Eingabe.
- Versprechen: Für die Fragestellungen in diesem Abschnitt (Komplexitätstheorie) ist das in Ordnung
- Vorsicht: Für die Fragestellungen im Abschnitt über unentscheidbare Probleme ist das nicht mehr in Ordnung.

Überblick

Eine technische Vorbemerkung

Turingmaschinen

Berechnungen Eingaben für Turingmaschinen Ergebnisse von Turingmaschinen

Berechnungskomplexität

Komplexitätsmaße

Komplexitätsklassen

Unentscheidbare Probleme

Codierungen von Turingmaschinen
Das Halteproblem
Die Berger Fernletier

Zeitkomplexität

- Beurteilung des Zeitbedarfs einer Turingmaschine
- definiere

$$\begin{aligned} \operatorname{time}_{\mathcal{T}}: A^+ \to \mathbb{N}_+ \\ \operatorname{Time}_{\mathcal{T}}: \mathbb{N}_+ \to \mathbb{N}_+ \end{aligned}$$

wie folgt:

$$\operatorname{time}_{\mathcal{T}}(w) = \operatorname{\mathsf{dasjenige}}\ t\ \operatorname{\mathsf{mit}}\ \Delta_t(c_0(w)) = \Delta_*(c_0(w))$$
 $\operatorname{\mathsf{Time}}_{\mathcal{T}}(n) = \operatorname{\mathsf{max}}\{\operatorname{\mathsf{time}}_{\mathcal{T}}(w) \mid w \in A^n\}$

- ► Time_T heißt Zeitkomplexität der Turingmaschine
 - der schlimmste Fall in Abhängigkeit von der Länge der Eingabe
- ▶ Zeitkomplexität einer Turingmaschine *polynomiell*, wenn es ein Polynom p(n) gibt mit $\text{Time}_{\mathcal{T}}(n) \in O(p(n))$.

Zeitkomplexität der Beispielturingmaschine für Palindromerkennung

- ▶ Für Eingabe der Länge $n \ge 2$ schlimmstenfalls
 - 1. erstes und letztes Symbol miteinander vergleichen, und weil übereinstimmend, zurücklaufen und anschließend
 - 2. für Teilwort der Länge n-2 ohne Randsymbole wieder ein Palindromtest
- Zeitbedarf:
 - 1. 2n + 1 Schritte
 - 2. O(Time(n-2))

insgesamt also

$$\mathrm{Time}(n) \leq 2n + 1 + \mathrm{Time}(n-2)$$

- ightharpoonup Zeitaufwand für Wörter der Länge n=1 auch gerade 2n+1
- also

$$\operatorname{Time}(n) \in \operatorname{O}(n^2)$$

d. h. polynomielle, genauer quadratische, Zeitkomplexität

Raumkomplexität

- ▶ Beurteilung des Speicherplatzbedarfs einer Turingmaschine
- definiere

$$\operatorname{space}_{\mathcal{T}}(w): A^{+} \to \mathbb{N}_{+}$$

 $\operatorname{Space}_{\mathcal{T}}(n): \mathbb{N}_{+} \to \mathbb{N}_{+}$

wie folgt

$$\operatorname{space}_{\mathcal{T}}(w) = \operatorname{die} \operatorname{Anzahl} \operatorname{der} \operatorname{Felder}, \operatorname{die} \operatorname{während} \operatorname{der}$$

$$\operatorname{Berechnung} \operatorname{für} \operatorname{Eingabe} w \operatorname{benötigt} \operatorname{werden}$$

$$\operatorname{Space}_{\mathcal{T}}(n) = \max \{ \operatorname{space}_{\mathcal{T}}(w) \mid w \in \mathcal{A}^n \}$$

- ► Ein Feld wird "benötigt", wenn es anfangs ein Eingabesymbol enthält oder einmal vom Kopf der TM besucht wird.
- Space_T heißt die Raumkomplexität oder Platzkomplexität der Turingmaschine

Raumkomplexität der Beispielturingmaschine für Palindromerkennung

- benötigte Felder:
 - n Felder mit den Eingabesymbolen
 - ein weiteres Feld rechts davon
- polynomieller, nämlich linearer, Platzbedarf

$$\operatorname{Space}(n) = n + 1 \in \Theta(n)$$

Zusammenhänge zwischen Zeit- und Raumkomplexität (1)

- ▶ Wenn T für Eingabe w genau time(w) Schritte macht,
- ▶ dann kann T höchstens 1 + time(w) Felder besuchen.
- Folglich immer

$$\operatorname{space}(w) \le \max(|w|, 1 + \operatorname{time}(w)).$$

Jede Turingmaschine mit polynomieller Laufzeit hat auch nur polynomiellen Platzbedarf.

Zusammenhänge zwischen Zeit- und Raumkomplexität (2)

umgekehrt von Raum- zu Zeitkomplexität:

- ▶ Auf k Feldern können $(|X|-1)^k$ "interessante" verschiedene Inschriften stehen.
- Es gibt Turingmaschinen mit
 - polynomieller Raumkomplexität aber
 - exponentieller Zeitkomplexität.

Überblick

Eine technische Vorbemerkung

Turingmaschinen

Berechnungen Eingaben für Turingmaschinen Ergebnisse von Turingmaschinen

Berechnungskomplexität

Komplexitätsmaße

Komplexitätsklassen

Unentscheidbare Probleme

Codierungen von Turingmaschinen Das Halteproblem Die Busy-Beaver-Funktion

Komplexitätsklassen

- ▶ Eine Komplexitätsklasse ist eine Menge von Problemen.
 - hier nur formale Sprachen (Entscheidungsprobleme)
- Charakterisierung durch Beschränkung der zur Verfügung stehenden Ressourcen, also z. B. Schranken für Zeitkomplexität oder Raumkomplexität (oder beides)
- ▶ Beispiel: alle formalen Sprachen, die von Turingmaschinen entschieden werden können, bei denen gleichzeitig
 - ▶ Zeitkomplexität in $O(n^3)$ und
 - ▶ Raumkomplexität in $O(n^{3/2} \log n)$ ist

wobei n die Länge des Eingabewortes ist.

Zwei wichtige Komplexitätsklassen

- P ist die Menge aller formaler Sprachen, die von Turingmaschinen entschieden werden können, deren Zeitkomplexität polynomiell ist.
- ► PSPACE ist die Menge aller formaler Sprachen, die von Turingmaschinen entschieden werden können, deren Raumkomplexität polynomiell ist.

Beispiele

- "Palindromerkennung" bzw. die formale Sprache aller Palindrome ist in P
- "Äquivalenz regulärer Ausdrücke" ist in PSPACE

- polynomielle Laufzeit impliziert polynomiellen Platzbedarf
- Also

$P \subseteq PSPACE$.

- ▶ Und umgekehrt? Vorsicht!
 - ► Eine Turingmaschine mit polynomiellem Platzbedarf kann exponentiell viele Schritte machen.
 - ► Solche Turingmaschinen gibt es.
 - ► Es könnte aber sein, dass es immer eine äquivalente Turingmaschine gibt, die viel schneller ist.
- ▶ Bei **P** und **PSPACE** geht es um formale Sprachen, nicht um Turingmaschinen.
- großes offenes wissenschaftliches Problem:

$$P = PSPACE oder P \neq PSPACE$$
?

- polynomielle Laufzeit impliziert polynomiellen Platzbedarf
- Also

$$P \subseteq PSPACE$$
.

- ► Und umgekehrt? Vorsicht!
 - Eine Turingmaschine mit polynomiellem Platzbedarf kann exponentiell viele Schritte machen.
 - ► Solche Turingmaschinen gibt es.
 - ► Es könnte aber sein, dass es immer eine äquivalente Turingmaschine gibt, die viel schneller ist.
- ▶ Bei **P** und **PSPACE** geht es um formale Sprachen, nicht um Turingmaschinen.
- großes offenes wissenschaftliches Problem:

```
P = PSPACE oder P \neq PSPACE ?
```

- polynomielle Laufzeit impliziert polynomiellen Platzbedarf
- Also

$$P \subseteq PSPACE$$
.

- Und umgekehrt? Vorsicht!
 - ► Eine Turingmaschine mit polynomiellem Platzbedarf kann exponentiell viele Schritte machen.
 - Solche Turingmaschinen gibt es.
 - ► Es könnte aber sein, dass es immer eine äquivalente Turingmaschine gibt, die viel schneller ist.
- ▶ Bei P und PSPACE geht es um formale Sprachen, nicht um Turingmaschinen.
- großes offenes wissenschaftliches Problem:

```
P = PSPACE oder P \neq PSPACE?
```

- polynomielle Laufzeit impliziert polynomiellen Platzbedarf
- Also

$$P \subset PSPACE$$
.

- Und umgekehrt? Vorsicht!
 - ► Eine Turingmaschine mit polynomiellem Platzbedarf kann exponentiell viele Schritte machen.
 - Solche Turingmaschinen gibt es.
 - ► Es könnte aber sein, dass es immer eine äquivalente Turingmaschine gibt, die viel schneller ist.
- ▶ Bei P und PSPACE geht es um formale Sprachen, nicht um Turingmaschinen.
- großes offenes wissenschaftliches Problem:
 - $P = PSPACE oder P \neq PSPACE ?$

Was ist wichtig

Das sollten Sie mitnehmen:

- Zeit und Speicherplatz als wertvolle Ressourcen
- Zeitkomplexität und Raumkomplexität
 - üblicherweise in Abhängigkeit von Eingabegröße der schlimmste Fall
 - evtl. nur obere Schranke
- Komplexitätsklassen
 - durch Beschränkung der zur Verfügung stehen Ressourcen, also
 - z. B. Schranken für Zeitkomplexität oder/und Raumkomplexität
 - ▶ wichtig (neben anderen wie **NP**, ...)
 - ▶ P
 - ▶ PSPACE

Das sollten Sie üben:

Abschätzung der Zeit- und Raumkomplexität von TM

Überblick

Eine technische Vorbemerkung

Turingmaschinen

Berechnungen Eingaben für Turingmaschinen Ergebnisse von Turingmaschinen

Berechnungskomplexität

Komplexitätsmaße Komplexitätsklassen

Unentscheidbare Probleme

Codierungen von Turingmaschinen Das Halteproblem Die Busy-Beaver-Funktion

Achtung

Ab sofort ist es wieder von Bedeutung, dass Turingmaschinen in "Endlosschleifen" laufen können.

Überblick

Eine technische Vorbemerkung

Turingmaschinen

Berechnungen Eingaben für Turingmaschinen Ergebnisse von Turingmaschinen

Berechnungskomplexität

Komplexitätsmaße Komplexitätsklassen

Unentscheidbare Probleme

Codierungen von Turingmaschinen

Das Halteproblem
Die Busy-Beaver-Funktior

Codierungen von Turingmaschinen

- ▶ Ziel: beschreibe jede Turingmaschine durch ein Wort
- im folgenden beispielhaft eine Möglichkeit, das zu tun
- ▶ für Beschreibungen Alphabet $A = \{ [,],0,1 \}$
 - es reicht aber auch $A = \{0, 1\}$
 - oder sogar $A = \{1\}$
- sogenannte Gödelisierung nach Kurt Gödel (1906-1978)
 - wesentliche Arbeit:
 Kurt Gödel (1931): Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I,
 Monatshefte für Mathematik und Physik, 38, S. 173-198.
 www.springerlink.com/content/p03501kn35215860/

Codierungen von Turingmaschinen

- ▶ Ziel: beschreibe jede Turingmaschine durch ein Wort
- ▶ im folgenden beispielhaft eine Möglichkeit, das zu tun
- für Beschreibungen Alphabet $A = \{[,],0,1\}$
 - es reicht aber auch $A = \{0, 1\}$
 - oder sogar $A = \{1\}$
- sogenannte Gödelisierung nach Kurt Gödel (1906-1978)
 - wesentliche Arbeit: Kurt Gödel (1931): Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, Monatshefte für Mathematik und Physik, 38, S. 173-198. www.springerlink.com/content/p03501kn35215860/

Beispielcodierung (1)

Turingmaschine
$$T = (Z, z_0, X, \square, f, g, m)$$

Codierung der Zustände:

- ▶ Die Zustände von *T* werden ab 0 durchnummeriert.
- ▶ Der Anfangszustand bekommt Nummer 0.
- ► Alle Zustände werden durch gleich lange Binärdarstellungen ihrer Nummern, umgeben von einfachen eckigen Klammern, repräsentiert.
- ▶ Wir schreiben $cod_Z(z)$ für die Codierung von Zustand z.
- Beispiele:
 - $ightharpoonup \operatorname{cod}_{Z}(z_0) = [0000]$
 - $ightharpoonup \operatorname{cod}_{Z}(z_1) = [0001]$
 - **.** . . .

Beispielcodierung (2)

Turingmaschine $T = (Z, z_0, X, \Box, f, g, m)$

Codierung der Symbole:

- Bandsymbole ab 0 durchnummeriert.
- ▶ Blanksymbol bekommt Nummer 0.
- Alle Bandsymbole durch gleich lange Binärdarstellungen ihrer Nummern, umgeben von einfachen eckigen Klammern, repräsentiert.
- Wir schreiben $cod_X(x)$ für die Codierung von Bandsymbol x.
- ▶ Beispiele:
 - ▶ $cod_X(\Box) = [0000]$

 - **.** . . .

Beispielcodierung (3)

Turingmaschine $T = (Z, z_0, X, \Box, f, g, m)$

Codierung der Kopfbewegungen:

- mögliche Bewegungsrichtungen des Kopfes durch die Wörter [10], [00] und [01] repräsentiert.
- ▶ Wir schreiben $cod_M(r)$ für die Codierung der Bewegungsrichtung r.
- also
 - $ightharpoonup cod_M(-1) = [10]$
 - $ightharpoonup {\rm cod}_M(0) = [00]$
 - ▶ $cod_M(1) = [01]$

Beispielcodierung (4)

Turingmaschine $T = (Z, z_0, X, \square, f, g, m)$

Codierung einzelner Funktionswerte von f, g und m

- wenn für Argumentpaar (z, x) nicht definiert, Codierung $\operatorname{cod}_{fgm}(z, x) = [\operatorname{cod}_{Z}(z)\operatorname{cod}_{X}(x)[][][]].$
- wenn für Argumentpaar (z,x) definiert, Codierung $\operatorname{cod}_{fgm}(z,x) = [\operatorname{cod}_{Z}(z)\operatorname{cod}_{X}(x)\operatorname{cod}_{Z}(f(z,x))\operatorname{cod}_{X}(g(z,x))\operatorname{cod}_{M}(m(z,x))].$
- Beispiel (siehe BB3):
 - ▶ wenn $(f, g, m)(A, \Box) = (B, 1, R)$ dann $cod_{fgm}(A, \Box) = [[00][0][01][1][01]]$
 - wenn (f,g,m)(C,1) undefiniert dann cod_{fgm}(C,1) = [[10][1][][]]]

Beispielcodierung (5)

Turingmaschine $T = (Z, z_0, X, \square, f, g, m)$

- ► Codierung der gesamten Funktionen: Konkatenation aller $cod_{fgm}(z, x)$ für alle $z \in Z$, $x \in X$.
- Codierung der gesamten Turingmaschine: Konkatenation von
 - ▶ Codierung des Zustands mit der größten Nummer,
 - Codierung des Bandsymbols mit der größten Nummer und
 - ► Codierung der gesamten Funktionen f, g und m.
- Schreibe T_w für die Turingmaschine mit Codierung w.

Eigenschaften dieser und ähnlicher Codierungen

- einfache Syntaxanalyse ist möglich
 - ► man kann Turingmaschine konstruieren, die für w ∈ A* feststellt, ob es die Codierung einer Turingmaschine ist oder nicht.
 - ▶ Mehr brauchen wir im folgenden nicht.
- ▶ universelle Turingmaschine *U* existiert
 - erhält als Eingabe zwei Argumente, etwa als Wort $[w_1][w_2]$,
 - ightharpoonup prüft, ob w_1 Codierung einer Turingmaschine T ist,
 - ▶ falls nein: diese Mitteilung und halt.
 - ► falls ja:
 - U simuliert Schritt für Schritt die Arbeit, die T für Eingabe
 w₂ durchführen würde,
 - und falls T endet, liefert U am Ende als Ergebnis das, was T liefern würde.

Überblick

Eine technische Vorbemerkung

Turingmaschinen

Berechnungen Eingaben für Turingmaschinen Ergebnisse von Turingmaschinen

Berechnungskomplexität

Komplexitätsmaße Komplexitätsklassen

Unentscheidbare Probleme

Codierungen von Turingmaschinen

Das Halteproblem

Die Busy-Beaver-Funktior

Das Halteproblem ist unentscheidbar

Das *Halteproblem* ist die formale Sprache

$$H = \{ w \in A^* \mid w \text{ ist eine TM-Codierung und } T_w(w) \text{ hält.} \}$$

Satz

Das Halteproblem ist unentscheidbar, d. h. es gibt keine Turingmaschine, die H entscheidet.

Es gibt Probleme, die man **NICHT** mit dem Rechner, also algorithmisch, lösen kann!

Es gibt Probleme, die

NICHT

algorithmisch

gelöst werden können!

Diagonalisierung

- Beweis der Unentscheidbarkeit von H benutzt Diagonalisierung.
- ▶ Idee von Georg Ferdinand Ludwig Philipp Cantor (1845–1918)
 - ► für Überabzählbarkeit von ℝ benutzt
- betrachten erst die Kernidee, danach die Anwendung auf Halteproblem

Diagonalisierung: Kernidee (1)

"zweidimensionale unendliche Tabelle"

- ▶ Zeilen mit Funktionen f_i ($i \in \mathbb{N}_0$) indiziert
- ▶ Spalten mit Argumenten x_j $(j \in \mathbb{N}_0)$ indiziert
- ▶ Eintrag in Zeile *i* und Spalte *j*: Funktionswert $f_i(x_j)$

	<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	
f_0	$f_0(x_0)$	$f_0(x_1)$	$f_0(x_2)$	$f_0(x_3)$	$f_0(x_4)$	
f_1	$f_1(x_0)$	$f_1(x_1)$	$f_1(x_2)$	$f_1(x_3)$	$f_1(x_4)$	
f_2	$f_2(x_0)$	$f_2(x_1)$	$f_2(x_2)$	$f_2(x_3)$	$f_2(x_4)$	• • •
f_3	$f_3(x_0)$	$f_3(x_1)$	$f_3(x_2)$	$f_3(x_3)$	$f_3(x_4)$	• • •
f_4	$f_4(x_0)$	$f_4(x_1)$	$f_4(x_2)$	$f_4(x_3)$	$f_4(x_4)$	• • •
<u>:</u>	:	:	:	:	:	٠.

	<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	
f_0	$f_0(x_0)$	$f_0(x_1)$	$f_0(x_2)$	$f_0(x_3)$	$f_0(x_4)$	
f_1	$f_1(x_0)$	$f_1(x_1)$	$f_1(x_2)$	$f_1(x_3)$	$f_1(x_4)$	
f_2	$f_2(x_0)$	$f_2(x_1)$	$f_2(x_2)$	$f_2(x_3)$	$f_2(x_4)$	• • •
f_3	$f_3(x_0)$	$f_3(x_1)$	$f_3(x_2)$	$f_3(x_3)$	$f_3(x_4)$	• • •
f_4	$f_4(x_0)$	$f_4(x_1)$	$f_4(x_2)$	$f_4(x_3)$	$f_4(x_4)$	• • •
:	÷	÷	÷	÷	÷	٠.

	<i>x</i> ₀	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> 4	
f_0	$f_0(x_0)$	$f_0(x_1)$	$f_0(x_2)$	$f_0(x_3)$	$f_0(x_4)$	
f_1	$f_1(x_0)$	$f_1(x_1)$	$f_1(x_2)$	$f_1(x_3)$	$f_1(x_4)$	
f_2	$f_2(x_0)$	$f_2(x_1)$	$f_2(x_2)$	$f_2(x_3)$	$f_2(x_4)$	
f_3	$f_3(x_0)$	$f_3(x_1)$	$f_3(x_2)$	$f_3(x_3)$	$f_3(x_4)$	
f_4	$f_4(x_0)$	$f_4(x_1)$	$f_4(x_2)$	$f_4(x_3)$	$f_4(x_4)$	
:	:	÷	÷	÷	÷	100
d	$f_0(x_0)$	$f_1(x_1)$	$f_2(x_2)$	$f_3(x_3)$	$f_4(x_4)$	

	<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	
f_0	$f_0(x_0)$	$f_0(x_1)$	$f_0(x_2)$	$f_0(x_3)$	$f_0(x_4)$	
f_1	$f_1(x_0)$	$f_1(x_1)$	$f_1(x_2)$	$f_1(x_3)$	$f_1(x_4)$	
f_2	$f_2(x_0)$	$f_2(x_1)$	$f_2(x_2)$	$f_2(x_3)$	$f_2(x_4)$	
f_3	$f_3(x_0)$	$f_3(x_1)$	$f_3(x_2)$	$f_3(x_3)$	$f_3(x_4)$	
f_4	$f_4(x_0)$	$f_4(x_1)$	$f_4(x_2)$	$f_4(x_3)$	$f_4(x_4)$	
:	:	:	÷	÷	:	100
d	$f_0(x_0)$	$f_1(x_1)$	$f_2(x_2)$	$f_3(x_3)$	$f_4(x_4)$	
d	$\overline{f_0(x_0)}$	$\overline{f_1(x_1)}$	$\overline{f_2(x_2)}$	$\overline{f_3(x_3)}$	$\overline{f_4(x_4)}$	

$$\overline{d}(x_i) = \overline{f_i(x_i)} = \begin{cases} 1 & \text{ falls } f_i(x_i) = 0 \\ 0 & \text{ sonst} \end{cases}$$

	<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	
f_0	$f_0(x_0)$	$f_0(x_1)$	$f_0(x_2)$	$f_0(x_3)$	$f_0(x_4)$	
f_1	$f_1(x_0)$	$f_1(x_1)$	$f_1(x_2)$	$f_1(x_3)$	$f_1(x_4)$	
f_2	$f_2(x_0)$	$f_2(x_1)$	$f_2(x_2)$	$f_2(x_3)$	$f_2(x_4)$	
f_3	$f_3(x_0)$	$f_3(x_1)$	$f_3(x_2)$	$f_3(x_3)$	$f_3(x_4)$	
f_4	$f_4(x_0)$	$f_4(x_1)$	$f_4(x_2)$	$f_4(x_3)$	$f_4(x_4)$	
:	:	:	÷	÷	:	100
d	$f_0(x_0)$	$f_1(x_1)$	$f_2(x_2)$	$f_3(x_3)$	$f_4(x_4)$	
d	$\overline{f_0(x_0)}$	$\overline{f_1(x_1)}$	$\overline{f_2(x_2)}$	$\overline{f_3(x_3)}$	$\overline{f_4(x_4)}$	

 \overline{d} unterscheidet sich von jeder Zeile f_i der Tabelle.

Das Halteproblem

Satz

Es gibt keine Turingmaschine, die

$$H = \{ w \in A^* \mid w \text{ ist eine TM-Codierung und } T_w(w) \text{ hält.} \}$$
 entscheidet.

Beachte:

- Es geht um "entscheidet", nicht nur um "erkennt".
- Es geht um Turingmaschinen, die *immer* halten.

Beweis des Halteproblems (1)

- benutze (eine Variante der) Diagonalisierung
- ▶ in der Tabelle
 - ► x_i: alle Codierungen von Turingmaschinen
 - f_i : die Funktion, die von Turingmaschine T_{x_i} berechnet wird.
- ▶ beliebige Turingmaschinen: manche der $f_i(x_i)$ nicht definiert
- da x_i alle Codierungen von Turingmaschinen sind, in der Tabelle für jede Turingmaschine eine Zeile
- ▶ indirekter Beweis: Annahme es gibt Turingmaschine T_h, die das Halteproblem entscheidet
 - ▶ d. h. für jede Eingabe x_i hält und
 - ightharpoonup als Ergebnis mitteilt, ob T_{x_i} für Eingabe x_i hält oder nicht.
- ▶ Widerspruch durch "verdorbene Diagonale" \overline{d} :
 - ▶ Einerseits unterscheidet sich \overline{d} von jeder Zeile der Tabelle, also von jeder von einer Turingmaschine berechneten Funktion.
 - Andererseits kann auch \overline{d} von einer Turingmaschine berechnet werden.

Beweis des Halteproblems (1)

- benutze (eine Variante der) Diagonalisierung
- ▶ in der Tabelle
 - ► x_i: alle Codierungen von Turingmaschinen
 - f_i : die Funktion, die von Turingmaschine T_{x_i} berechnet wird.
- ▶ beliebige Turingmaschinen: manche der $f_i(x_j)$ nicht definiert
- da x_i alle Codierungen von Turingmaschinen sind, in der Tabelle für jede Turingmaschine eine Zeile
- ▶ indirekter Beweis: Annahme es gibt Turingmaschine T_h , die das Halteproblem entscheidet
 - ▶ d. h. für jede Eingabe x_i hält und
 - ▶ als Ergebnis mitteilt, ob T_{x_i} für Eingabe x_i hält oder nicht.
- ▶ Widerspruch durch "verdorbene Diagonale" \overline{d} :
 - \blacktriangleright Einerseits unterscheidet sich \overline{d} von jeder Zeile der Tabelle, also von jeder von einer Turingmaschine berechneten Funktion.
 - Andererseits kann auch \overline{d} von einer Turingmaschine berechnet werden.

Beweis des Halteproblems (1)

- benutze (eine Variante der) Diagonalisierung
- ▶ in der Tabelle
 - ► *x_i*: alle Codierungen von Turingmaschinen
 - ▶ f_i : die Funktion, die von Turingmaschine T_{x_i} berechnet wird.
- **b** beliebige Turingmaschinen: manche der $f_i(x_i)$ nicht definiert
- da x_i alle Codierungen von Turingmaschinen sind, in der Tabelle für jede Turingmaschine eine Zeile
- ▶ indirekter Beweis: Annahme es gibt Turingmaschine T_h , die das Halteproblem entscheidet
 - ▶ d. h. für jede Eingabe x_i hält und
 - ▶ als Ergebnis mitteilt, ob T_{x_i} für Eingabe x_i hält oder nicht.
- ▶ Widerspruch durch "verdorbene Diagonale" \overline{d} :
 - ▶ Einerseits unterscheidet sich \overline{d} von jeder Zeile der Tabelle, also von jeder von einer Turingmaschine berechneten Funktion.
 - ▶ Andererseits kann auch \overline{d} von einer Turingmaschine berechnet werden.

Beweis des Halteproblems (2)

- \blacktriangleright Wenn die Turingmaschine T_h existieren würde,
- dann könnte man "die verdorbene Diagonale" als Turingmaschine bauen, d. h.
- ▶ es gäbe eine Turingmaschine $T_{\overline{d}}$, deren Arbeitsweise sich von der jeder Turingmaschine T_{x_i} unterscheiden würde !?!?!?

```
genauer . . .
```

Beweis des Halteproblems (3)

- ightharpoonup Wenn es Turingmaschine T_h gäbe,
- ▶ dann auch folgende Turingmaschine $T_{\overline{d}}$:
 - Für Eingabe x_i berechnet $T_{\overline{d}}$ zunächst, welches Ergebnis T_h für diese Eingabe liefern würde.
 - Dann:
 - ▶ Wenn T_h mitteilt, dass $T_{x_i}(x_i)$ hält, dann geht $T_{\overline{d}}$ in eine Endlosschleife.
 - ▶ Wenn T_h mitteilt, dass $T_{x_i}(x_i)$ nicht hält, dann hält $T_{\overline{d}}$ (und liefert irgendein Ergebnis, etwa 0).
 - ▶ in beiden Fällen verhält sich $T_{\overline{d}}$ für Eingabe x_i anders als T_{x_i}
- ▶ Wenn TM T_h existiert, dann auch TM $T_{\overline{d}}$,
- ▶ aber jede TM T_{x_i} verhält sich für Eingabe x_i anders als $T_{\overline{d}}$.
- Widerspruch
- ightharpoonup Also gibt es keine TM T_h , die H entscheidet.

Beweis des Halteproblems (3)

- ightharpoonup Wenn es Turingmaschine T_h gäbe,
- ▶ dann auch folgende Turingmaschine $T_{\overline{d}}$:
 - ► Für Eingabe x_i berechnet T_d zunächst, welches Ergebnis T_h für diese Eingabe liefern würde.
 - Dann:
 - ▶ Wenn T_h mitteilt, dass $T_{x_i}(x_i)$ hält, dann geht $T_{\overline{d}}$ in eine Endlosschleife.
 - ▶ Wenn T_h mitteilt, dass $T_{x_i}(x_i)$ nicht hält, dann hält $T_{\overline{d}}$ (und liefert irgendein Ergebnis, etwa 0).
 - ▶ in beiden Fällen verhält sich $T_{\overline{d}}$ für Eingabe x_i anders als T_{x_i}
- ▶ Wenn TM T_h existiert, dann auch TM $T_{\overline{d}}$,
- ▶ aber jede TM T_{x_i} verhält sich für Eingabe x_i anders als $T_{\overline{d}}$.
- Widerspruch
- ▶ Also gibt es keine TM T_h , die H entscheidet.

Beweis des Halteproblems (3)

- ightharpoonup Wenn es Turingmaschine T_h gäbe,
- ▶ dann auch folgende Turingmaschine $T_{\overline{d}}$:
 - Für Eingabe x_i berechnet T_d zunächst, welches Ergebnis T_h für diese Eingabe liefern würde.
 - Dann:
 - ▶ Wenn T_h mitteilt, dass $T_{x_i}(x_i)$ hält, dann geht $T_{\overline{d}}$ in eine Endlosschleife.
 - ▶ Wenn T_h mitteilt, dass $T_{x_i}(x_i)$ nicht hält, dann hält $T_{\overline{d}}$ (und liefert irgendein Ergebnis, etwa 0).
 - ▶ in beiden Fällen verhält sich $T_{\overline{d}}$ für Eingabe x_i anders als T_{x_i}
- ▶ Wenn TM T_h existiert, dann auch TM $T_{\overline{d}}$,
- ▶ aber jede TM T_{x_i} verhält sich für Eingabe x_i anders als $T_{\overline{d}}$.
- Widerspruch
- ▶ Also gibt es keine TM *T_h*, die *H* entscheidet.

Weitere unentscheidbare Probleme

- Varianten des Halteproblems
 - Beispiel: Hält gegebene TM, wenn das Band zu Beginn völlig leer ist?
- Äquivalenzproblem:
 Liefern zwei TM für jede Eingabe die gleiche Ausgabe?
 automatischer Vergleich mit "Musterlösungen" unmöglich
- Wird ein bestimmter Zustand einer Turingmaschine jemals gebraucht?
 - ► Erreichbarkeit von Codestücken unentscheidbar
- vieles vieles vieles vieles vieles vieles mehr
- Beachte: statt Turingmaschine kann man immer Java-Programm einsetzen

Überblick

Eine technische Vorbemerkung

Turingmaschinen

Berechnungen Eingaben für Turingmaschinen Ergebnisse von Turingmaschinen

Berechnungskomplexität

Komplexitätsmaße Komplexitätsklassen

Unentscheidbare Probleme

Codierungen von Turingmaschinen Das Halteproblem

Die Busy-Beaver-Funktion

Erinnerung: BB3

- ▶ Bandalphabet ist $X = \{\Box, 1\}$.
- ► Turingmaschine hat 3 + 1 Zustände
 - ▶ in 3 Zuständen für jedes Bandsymbol Fortsetzung definiert
 - einer dieser 3 Zustände ist Anfangszustand
 - in Zustand 4 für kein Bandsymbol Fortsetzung ("Haltezustand").
- Wenn man die Turingmaschine auf dem leeren Band startet, dann hält sie nach endlich vielen Schritten.

Bibermaschinen

n-Bibermaschine:

- ▶ Bandalphabet ist $X = \{\Box, 1\}$.
- ▶ Turingmaschine hat n+1 Zustände
 - ▶ in *n* Zuständen für jedes Bandsymbol Fortsetzung definiert
 - einer dieser *n* Zustände ist Anfangszustand
 - ▶ in Zustand n + 1 für kein Bandsymbol Fortsetzung ("Haltezustand").
- Wenn man die Turingmaschine auf dem leeren Band startet, dann hält sie nach endlich vielen Schritten.
- im folgenden zu Beginn immer vollständig leeres Band

Fleißige Biber und die Busy-Beaver-Funktion

- ▶ *n*-Bibermaschine heißt *fleißiger Biber*,
- ▶ wenn sie am Ende die maximale Anzahl Einsen auf dem Band hinterlässt unter allen *n*-Bibermaschinen.
- Busy-Beaver-Funktion (oder Radó-Funktion)

```
\mathrm{bb}: \mathbb{N}_+ \to \mathbb{N}_+ \mathrm{bb}(\mathit{n}) = \mathrm{die} \; \mathrm{Anzahl} \; \mathrm{von} \; \mathrm{Einsen}, \; \mathrm{die} \; \mathrm{eine} \; \mathrm{fleißige} \mathit{n}\text{-}\mathrm{Bibermaschine} \; \mathrm{am} \; \mathrm{Ende} \; \mathrm{auf} \; \mathrm{dem} \; \mathrm{Band} \; \mathrm{hinterlässt}
```

n	bb(n)	
1	1	
2		
3		
4		
5		
6		
<u>:</u>		

n	bb(n)	
1	1	
2	4	Radó (1963)
3		
4		
5		
6		
<u>:</u>		

n	bb(n)		
1	1		
2	4	Radó (1963)	
3	6	Radó (1963)	
4			
5			
6			
:			

n	bb(n)		
1	1		
2	4	Radó (1963)	
3	6	Radó (1963)	
4	13	Brady (1974(?))	
5			
6			
÷			

n	bb(n)	
1	1	
2	4	Radó (1963)
3	6	Radó (1963)
4	13	Brady (1974(?))
5	≥ 4098	Marxen/Buntrock (1990)
6		, , ,
:		

n	bb(<i>n</i>)	
1	1	
2	4	Radó (1963)
3	6	Radó (1963)
4	13	Brady (1974(?))
5	≥ 4098	Marxen/Buntrock (1990)
6	$> 3.514 \cdot 10^{18276}$	Kropitz (2010)
:	:	

Die Busy-Beaver-Funktion: nicht berechenbar

Satz

Für jede totale berechenbare Funktion $f: \mathbb{N}_+ \to \mathbb{N}_+$ gibt es ein n_0 , so dass für alle $n \ge n_0$ gilt: $\mathrm{bb}(n) > f(n)$.

Korollar

Die Busy-Beaver-Funktion bb(n) ist nicht berechenbar.

Was ist wichtig

Das sollten Sie mitnehmen:

- Das Halteproblem ist unentscheidbar.
- viele andere interessierende Probleme auch
- Die Busy-Beaver-Funktion wächst schneller als jede berechenbare Funktion.

Das sollten Sie üben:

 sich klar machen, dass informelle algorithmische Beschreibungen in Turingmaschinen überführt werden können

Zusammenfassung

- Turingmaschinen sind eine formale Präzisierung des Algorithmusbegriffs.
- Komplexitätsmaße und Komplexitätsklassen
 - insbesondere P und PSPACE
 - ▶ im 3. Semester: $P \subseteq NP \subseteq PSPACE$
- Es gibt Probleme, die anscheinend großen algorithmischen Aufwand erfordern.
- ► Es gibt Probleme, die beweisbar sehr großen algorithmischen Aufwand erfordern.
- Es gibt Probleme, die algorithmisch überhaupt nicht lösbar sind.