Disertación: Uso de LATEX en la creación de documentos académicos

Innovación Docente e Iniciación a la Investigación Educativa. Especialización en Ingeniería y Enseñanzas Técnicas

Marzo de 2025

¿Qué es LATEX?

¿Qué es LATEX? Ventajas de usar LATEX

Técnicas básicas

Técnicas avanzadas

Técnicas complejas

Caso de uso: TFM

Bibliografía

¿Qué es LATEX?

Según «LaTeX - Wikipedia, la enciclopedia libre» (2002), LATEX es:

- Sistema de composición de textos orientado a la creación de documentos escritos que presenten una alta calidad tipográfica.
- Por sus características y posibilidades, se usa de forma especialmente intensa en:
 - Generación de artículos.
 - Libros científicos.
 - Expresiones matemáticas.

¿Qué es LATEX? Ventajas de usar LATEX

- Separar diseño, del contenido. P.ej.:
 - Numeración de referencias internas.
 - Separación silábica.
 - Creación de pies de página y bibliografías.
 - Posicionamiento de flotantes.¹
 - Generación de índices y tablas de figuras. Incluso de marcadores en el PDF final.
- Uso de código abierto. El software no va a desaparecer o volverse de pago de la noche a la mañana.
- Existen opciones gráficas que facilitan su uso:
 - TeXworks: Se integra muy bien con el entorno de desarrollo en Windows.
 - LyX: Editor WYSIWYG.²
 - Overleaf: Editor web WYSIWYG con opciones de edición colaborativa. Tiene opción gratuita y descuentos para estudiantes.

¹Imágenes, tablas, diagramas, etc.

²Lo que ves, es lo que hay. Del Inglés What You See, Is What You Get. ←□▶←②▶←②▶←③▶♠③▶ ◆③◆

¿Qué es LATEX?

Técnicas básicas

Documento básico
Formato básico de texto
Lista de items
Lista numerada
Lista numerada de otra manera
Otras técnicas básicas

Técnicas avanzadas

Técnicas complejas

Caso de uso: TFN

Documento básico

Índice general

	documento muy seucillo
1.1.	Mi primera sección
	1.1.1. Mi primera subsección
1.2.	Mi seguada sección

Capítulo 1

Un documento muy sencillo

Esto es un documento escrito en Latex.

1.1. Mi primera sección

Se puede dividir en varios secciones.

1.1.1. Mi primera subsección

Y puede tener subsecciones.

1.2. Mi segunda sección

E incluso múltiples secviones.

2

Documento básico

```
Código
```

```
documentclass [a4paper, 12 pt] { report }
    usepackage[latin 1]{inputenc}
    usepackage[spanish]{babel}
4
    begin { document }
5
6
    \ tableofcontents
7
8
    \chapter{Un documento muy sencillo}
    Esto es un documento escrito en Latex.
11
    \section { Mi primera sección }
12
   Se puede dividir en varias secciones.
13
14
    subsection{Mi primera subsección}
15
   Y puede tener subsecciones.
17
    section { Mi segunda sección }
18
   E incluso múltiples secciones.
19
20
    end { document }
21
```

Formato básico de texto

Resultado

Como siempre, es posible escribir en **negrita**, *cursiva*, **con colores**, <u>y subrayado</u>. Además, es posible separar los párrafos por líneas. Esto permite que el párrafo quede más ordenado y legible. Así, lograremos ordenar las ideas, y será más fácil su edición.

```
Como siempre, es posible escribir en \textbf{negrita}, \textit{cursiva}, \textcolor{red}{con colores}, \underline{y subrayado}.

Además, es posible separar los párrafos por líneas.

Esto permite que el párrafo quede más ordenado y legible.

Así, lograremos ordenar las ideas, y será más fácil su edición.
```

Lista de items

Resultado

- Item 1
- Item 2
 - Item 2.1
 - Item 2.2
- Item 3

Lista numerada

Resultado

- 1. Item 1
- 2. Item 2
 - 1) Item 2.1
 - 2) Item 2.2
- 3. Item 3

Lista numerada de otra manera

Resultado

- 1. Item 1
- 2. Item 2
- 2.1. Item 2.1
- 2.2. Item 2.2
- 3. Item 3

```
% Usando el paquete \usepackage[sharp]{ easylist}
begin{easylist}
# Item 1
# Item 2
## Item 2.1
## Item 2.2
# Item 3
| \end{easylist}
```

Otras técnicas básicas

Además, de las técnicas anteriores, hay algunas que también son consideradas básicas.

- 1. Incluir imágenes.
- 1.1. Se colocarán donde sea más apropiado.
- 1.2. Tendrán su propio índice.
- 2. Pies de página.
- 3. Dividir documentos en múltiples ficheros.
- 3.1. Mejor organización a la hora de editar.
- 4. Uso de Bibliografía.
- 4.1. En especial, facilidad al usar las normas APA.
- 5. Enlaces Web.
- 6. Referencias internas en el documento.

Todo esto, se puede ver en: https://en.wikibooks.org/wiki/LaTeX

¿Qué es LATEX?

Técnicas básicas

Técnicas avanzadas
Ecuaciones matemáticas
Código fuente
Tablas

Técnicas complejas

Caso de uso: TFN

Bibliografía

Ecuaciones matemáticas

Resultado

La solución del polinomio $ax^2 + bx + c = 0$ es:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{1}$$

```
La solución del polinomio \( ax^2 + bx + c = 0 \) es: \\ begin \{ equation \} \\ x = \frac \{-b \pm \sqrt \{b^2 - 4ac\} \} \{ 2a \} \\ end \{ equation \} \}
```

Código fuente

Resultado

```
Listing: Ejemplo de Hola mundo en Java

class - Hello World - {

public - static - void - main (String [] - args) - {

System . out . println ("Hello , - World!");

}
```

```
begin { Istlisting } [
        language=java,
2
        showspaces=true,
3
        showtabs=true,
4
        caption=Ejemplo de Hola mundo en Java]
5
   class HelloWorld {
        public static void main(String[] args) {
7
            System.out.println("Hello, World!");
8
9
10
    end{lstlisting}
11
```

Tablas

Resultado

resurtado			
7C0	hexadecimal		
3700	octal		
11111000000	binary		
1984	decimal		

```
begin{tabular}{|r||}

hline

7C0 & hexadecimal \\
3700 & octal \\ cline{2-2}

11111000000 & binary \\
hline \hline

1984 & decimal \\
hline
end{tabular}
```

¿Qué es LATEX?

Técnicas básicas

Técnicas avanzadas

Técnicas complejas

Circuitos eléctricos

Presentaciones

Exámenes

Gráficas

Caso de uso: TFM

Bibliografía

Circuitos eléctricos


```
begin{circuitikz}[european voltages]
       \ draw
2
            (0, 0) to [battery1=$V_1$]
3
            (6, 0) to [switch]
4
            (6, 4) - (4, 4) -
5
            (4, 3) to [resistor=R_1]
6
            (2, 3) —
            (2, 4) to [resistor=$R_2$]
            (0, 4) to [lamp]
            (0, 0);
10
       \ draw
11
12
            (4, 5) to [resistor=$R_3$]
13
14
15
    end{circuitikz}
```

Presentaciones

- Toda esta presentación está escrita en LATEX.
- Este tipo de documento se llama Beamer.
- Esto permite reutilizar trozos de otros trabajos, como: tablas, código fuente, diagramas, etc.

Presentaciones

- Toda esta presentación está escrita en LATEX.
- Este tipo de documento se llama *Beamer*.
- Esto permite reutilizar trozos de otros trabajos, como: tablas, código fuente, diagramas, etc.

Presentaciones

- Toda esta presentación está escrita en LATEX.
- Este tipo de documento se llama *Beamer*.
- Esto permite reutilizar trozos de otros trabajos, como: tablas, código fuente, diagramas, etc.

Presentaciones

- Toda esta presentación está escrita en LATEX.
- Este tipo de documento se llama *Beamer*.
- Esto permite reutilizar trozos de otros trabajos, como: tablas, código fuente, diagramas, etc.

Presentaciones

- Toda esta presentación está escrita en LATEX.
- Este tipo de documento se llama *Beamer*.
- Esto permite reutilizar trozos de otros trabajos, como: tablas, código fuente, diagramas, etc.

Exámenes

Usando la clase *exam*, podemos crear exámenes.

- LaTeX es ideal para escribir fórmulas matemáticas, e incluir distintos diagramas.
- Capacidad de crear espaciados entre preguntas.
- Posibilidad de crear soluciones a los exámenes. El espacio usado en la solución, se puede usar para crear el espacio de respuesta.
- Facilidad de crear exámenes tipo test o de opción múltiple.
- Posibilidad de añadir puntos a las preguntas (y sus partes), e incluso crear una rúbrica que poder añadir al final del examen.
- Con unos ajustes, se puede usar en castellano.

Ejemplo: Overleaf: Typesetting exams in LaTeX

Gráficas

Gráficas

```
Código
```

```
documentclass{article}
                          usepackage[margin=0.25in]{geometry}
  2
                          usepackage { pgfplots }
                     \pgfplotsset { width=10cm, compat=1.9}
                     \begin { document }
                          begin { tikzpicture }
                                              \left( axis \right) = \left( 
                                                                     xtick = \{0, 1, 2, 4, 8, 16\},\
                                                                      xticklabels = \$0\$, \$ frac \{1\}\{2\} tau\$, \$1 tau\$, \$2 tau\$, \$4 tau\$, \$8 tau\$},
                                                                     ytick = \{0, 0.25, 0.5, 0.75, 1\},
10
                                                                      vticklabels = \{\$0\$, \$\frac\{1\}\{4\}Q\$, \$\frac\{1\}\{2\}Q\$, \$\frac\{3\}\{4\}Q\$, \$Q\$\},
11
12
                                                                         \addplot[domain=0:16, samples=100, color=red,]
13
                                                                                            \{(1 - e^{-(-x/2)})\}:
14
                                                                      \addlegendentry \{ (q(t)=Q(1-e^{-\tau t} + tau) \}) ) \}
15
16
                                                                     \addplot[domain=0:16, samples=100, color=blue,]
17
                                                                                             \{e^{(-x/2)}\}:
18
                                                                           addlegendentry \{ (q(t)=Q*e^{-\frac{t}{t}} \{ tau \} \} ) \}
19
                                                  end{axis}
20
                           end{ tikzpicture }
21
                           end{document}
22
```

Gráficas

Las gráficas se *plotean* automáticamente. Es posible crear distintos tipos de gráficas, como 3D y fractales.

Para más ejemplos de gráficas, visitar https://pgfplots.net/

Caso de uso: TFM

¿Qué es LATEX?

Técnicas básicas

Técnicas avanzadas

Técnicas complejas

Caso de uso: TFM

Bibliografía

Caso de uso: TFM

Una vez que conocemos distintas técnicas, podemos usarlas juntas para crear documentos académicos, que presentan un estilo cuidado y profesional. Esto nos permite escribir un TFM con una apariencia que respeta las normas definidas, tales de estilo como de referencias bibliográficas, centrándonos solo en el contenido.

Bibliografía

¿Qué es LATEX?

Técnicas básicas

Técnicas avanzadas

Técnicas complejas

Caso de uso: TFM

Bibliografía

Bibliografía

LaTeX - Wikipedia, la enciclopedia libre [[Online; accessed 2025-02-10]]. (2002, junio). *Colaboradores de los proyectos Wikimedia*. https://es.wikipedia.org/wiki/LaTeX