COMPUTATIONAL PHYSICS

Representing numbers and their precision

Numbers representation: integer, reals

Computer storage precision

Round-off and discretization errors

Introduction

- In computational physics, is the numerical precision involved in the calculation made is very important.
- Inaccurate inputs can propagate severely to our final result on some algorithms.
- Frequently, some approximations to our physical problem are made or some simplification/truncation is assumed in the algorithms → one has to be aware of the implications.
- Computers have finite memory and standardized way of representing numbers or characters → one must not assume infinite precision while representing a number!
- Understanding numerical precision is key to understand when a "hard limit" has been reached → maybe rethink the algorithm...

Numerical representation: integer

- In computers information is stored as a sequence of 0's and 1's: binary system
 - Byte: sequence of 8 bits
 - **KByte**: 2¹⁰ *Bytes* = 1024 Bytes
 - MByte: 2^{10} KBytes = 1024 KBytes
- A m bits integer number N in binary representation:

$$b_{m-1} 2^{m-1} + b_{m-2} 2^{m-2} + \cdots + b_0 2^0$$

 The sign of the number is is stored in one bit (usually the most significant bit - MSB)

 A 32 bits signed integer (4 bytes) uses 31 bits (0...30) for storing the number max value of a signed 32bits integer: $2^{31} - 1 = \pm 2 147 483 647$

How to convert to binary

→Repeatedly divide by 2 (saving) integer part) and stash the remainder at each division...

Example:
$$125$$
 $125/2 = 62 (+1)$
 $62/2 = 31 (+0)$
 $31/2 = 15 (+1)$
 $15/2 = 7 (+1)$
 $7/2 = 3 (+1)$
 $3/2 = 1 (+1)$
 $1/2 = 0 (+0)$
 $0x2^6$

$$(125)_{10} = (000..111101)_2$$

Numerical representation: reals

 Consider a 32-bit real. How to use the 32. bits?

s	exponent		mantissa				
31	30	23	22	0			

- Integral part and decimal part each converted into binary!
- Stored as a sequence of of 3 bit field:

$$(-1)^s x m x 2^e$$

$$s = sign(0,1)$$
 $m = mantissa (drop 1.)$
 $p = exponent (with p=e+bias=e+127)$

For the real 7.281 on has

 $(111.010001111...)_2=1.11010001111...\times 100$

Convert decimal part to binary

→Repeatedly *multiply* by 2 (saving) integer part) and stash the remainder at each multiplication.

```
Example: 0.281
0.281*2 = 0.562
                          0x2^{-1}
                 (+0)
0.562*2 = 1.124
                 (+1)
                 (+0)
0.124*2 = 0.248
0.248*2 = 0.496
                 (+0)
0.496*2 = 0.992
                 (+0)
0.992*2 = 1.984
                 (+1)
0.984*2 = 1.986
                 (+1)
0.986*2 = 1.936
                 (+1)
0.936*2 = 1.872
```

2²

Stop when 0 decimal part or out of bits...

$$(0.281)_{10}$$
= $(.010001111...)_2$

Numerical representation: reals

Whereas a 32-bit real is represented as

S	exponent		mantissa					
31	30	23	22	0				

For a 64 bit real, substantially better...

S	exponent		mantissa				
63	62	52	51	0			

Stored again as (-1)^s x m x 2^e

$$s = sign(0,1)$$
 $m = mantissa (drop 1.)$
 $p = exponent (with p=e+bias=e+1023)$

4 Bytes for a single8 Bytes for a double

Special cases

- NaN: p=255 (single) or 2047 (double) and m≠0
- ±Inf: p=255 (single) or 2047 (double) and m=0 (s-signal)
- 0: p=0 and m=0 (+0 and -0 are the same)
- p=0 and m≠0 give

$$(-1)^s \times 2^{-126} \times 0.m$$
 (single)

$$(-1)^s \times 2^{-1022} \times 0.m$$
 (double)

Mantissa = 1.f = 1 +
$$m_{22} \times 2^{-1}$$
 + $m_{21} \times 2^{-2}$ +...
...+ $m_0 \times 2^{-23}$

Computer storage precision

- Representation (-1)^s \times m \times 2^e \rightarrow how does it affects reals' accuracy?
 - □ For single precision : $2^{-23} \sim 10^{-7}$
 - □ For double precison: $2^{-52} \sim 10^{-16}$ mantissa 0.00000...1 (last bit set to 1)
- Extreme values e.g. single precision -----> Min = $2^{-23-127}$ ~10⁻⁴⁵, Max= 2^{127} ~10³⁸

Round-off errors

 We have a round-off whener the number is not represented exactly by the precision chosen e.g.

```
0.281 = (.010001111...)_2 = 0 01111101 00001111110111110011101... (round-off)
```

$$5.75 = 0.10000001 \ 0.000001 \ (precise) \rightarrow 4 \times (1 + 0.25 + 0.125 + 0.0625)$$

Overflow and Underflow

The exponent is too large/small to be represented in the exponent field (e)

Round-off and discretization errors

Programmer's worst nightmare with errors :

Am i discretizing/oversimplifying or Limited by rounding-off errors

- Approximation/discretizing errors, occur when we simplify our problem to be solved by the computer code e.g.
 - truncating a Taylor Series (taking first N terms only)
 - using analytical approximations to complex functions
 - Discretizing a continuous function
- Round-off errors, arise when the limited number of digits (thus precison) that are
 used to represent a number prevent us from accurately representing them (no
 exact cancellation in some cases)
 - Subtractive cancellationlet's ckeck it out!

Round-off – subtractive cancellation

We know a real number X might not have an exact representation(X_c):

$$x_c = x(1 + \varepsilon_x)$$
 $\left| \varepsilon_x \right| \le \varepsilon_{precision} \longleftarrow 10^{-7} \text{ or } 10^{-16}$

• Suppose we wish to calculate the subtraction a = b - c where b and c are large and possibly close to each other.

$$a_c = b_c - c_c = (b - c) + b\varepsilon_b - c\varepsilon_c$$

$$\frac{a_c - a}{a} \cong \frac{b}{a} (\varepsilon_b - \varepsilon_c)$$

$$\varepsilon_a \cong \frac{b}{a} \varepsilon_{precision}$$

Since the "errors" have unknown sign, caution dictates we take the worst case scenario i.e.

$$\varepsilon_b - \varepsilon_c \approx \left| \varepsilon_{precision} \right|$$

- Since b and c are close....a is as small as we wish → its' relative imprecision is as high as we may think of !!!
- Classical example: calculating the derivative of a function....let's analyse it...

Round-off vs discretization

• Consider the Taylor series expansion of a function at x_0 :

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + \dots$$

• If we approximate the derivative by
$$f'(x_0) \cong \frac{f(x_0 + h) - f(x_0)}{h}$$

$$\varepsilon_D = \frac{h}{2} f''(x_0)$$

Discretization error

- > For high h, the approximation clearly deviates from the true value...
- \rightarrow Also, as h \rightarrow 0 the finite difference Δf decreases, possibly reaching machine precision...

Round-off vs discretization

Not surprisingly, the error first decreases with h and then increases back again!

$$\varepsilon_D = \frac{h}{2} f''(x_0)$$

Discretization error

$$\varepsilon_{R} = \frac{Error[f(x_{0} + h) - f(x_{0})]}{h}$$

$$= \frac{f(x_{0})\varepsilon_{precision}}{h} \sim \frac{10^{-7}}{h}$$

Round-off error

• Best compromise :
$$\varepsilon_{\rm D} \sim \varepsilon_{\rm R} \rightarrow h \sim \sqrt{\varepsilon_{precision}} \sim 3 \times 10^{-4}$$

Recall
$$a_c = b_c - c_c$$

$$a_c - a \cong b\varepsilon_M$$

139

Round-off revisited

Round-off plagues also calculations with big numbers...

$$a_c = b_c - c_c = (b - c) + b\varepsilon_b - c\varepsilon_c$$

$$\frac{a_c - a}{a} \cong \frac{b}{a} (\varepsilon_b - \varepsilon_c)$$

$$\varepsilon_a \cong \frac{b}{a} \varepsilon_{precision}$$

- What happens if **b** and **c** become increasingly big (assume constant difference between them or order unity...)?
- As soon as $b \sim 1/\epsilon_{precision}$ the two numbers **b** and **c** become so large that we loose precision is assessing the difference \rightarrow b-c yields 0 (*check*!)
- Upgrading the calculations to double precision is always helpful (*RAM memory is cheap*). Consider that C++ has already many double precision defined macros e.g. M_PI (π), M_E (Neper number), M_LN2 (ln(2)),... all courtesy of <math.h>

Representation of Chars

- Characters are represented using 8 bits (1 byte)
- Depending on the convention, either 7 bits (ASCII format) or 8 bits (Extended ASCII) are used.
- In both cases numerical values i.e. 0..127 or 0..255 are used to code characters.

ASCII control characters		ASCII printable characters						
00	NULL	(Null character)	32	space	64	@	96	`
01	SOH	(Start of Header)	33	!	65	Α	97	а
02	STX	(Start of Text)	34	"	66	В	98	b
03	ETX	(End of Text)	35	#	67	С	99	С
04	EOT	(End of Trans.)	36	\$	68	D	100	d
05	ENQ	(Enquiry)	37	%	69	E	101	е
06	ACK	(Acknowledgement)	38	&	70	F	102	f
07	BEL	(Bell)	39	•	71	G	103	g
08	BS	(Backspace)	40	(72	Н	104	h
09	HT	(Horizontal Tab)	41)	73	ı	105	i
10	LF	(Line feed)	42	*	74	J	106	j
11	VT	(Vertical Tab)	43	+	75	K	107	k
12	FF	(Form feed)	44	,	76	L	108	- 1
13	CR	(Carriage return)	45	-	77	M	109	m
14	SO	(Shift Out)	46		78	N	110	n
15	SI	(Shift In)	47	1	79	0	111	0

Curiosity:

- → Though obvious to detect, a simple "encryption" can be made
- → Simply shift all your password characters by adding and integer "key"!