Machine Learning: A Starter Kit

Aditya Sonpal

CHE 596

What the heck is this?

- AI: any technology which appears to do something smart, or mimics Human behavior.
- ML: a specific kind of AI but rather than a rule-based approach, the system learns how to do something by finding patterns in examples

- Why? Abundance of data and computational power.
- image generated by AI

- Why? Abundance of data and computational power.
- Molecules generated by Al
 - newly discovered crystals by Google's GNoME tool

- Why? Abundance of data and computational power.
- Molecules generated by Al
 - newly discovered crystals by Google's GNoME tool

- Why? Abundance of data and computational power.
- Molecules generated by Al
 - newly discovered crystals by Google's GNoME tool
 - Insilico's new Al generated drug to treat Idiopathic pulmonary fibrosis

Source: https://www.nature.com/articles/s41587-024-02143-0

https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00107

Applications of ML in Chem

- Mapping molecular structure to target property
 - predict properties
 - categorize and cluster molecules
 - design new molecules

Invaluable in drug and materials discovery and design!

Applications of ML in Chem

- Mapping molecular structure to target property
- Accelerating computational chemistry
 - predicting forcefield parameters
 - predicting DFT level energies

https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00107

Applications of ML in Chem

- Mapping molecular structure to target property
- Accelerating computational chemistry
- With experiments:
 - analyze spectroscopic data
 - predict phase maps
 - predict reaction pathways
 - select experimental candidates
 - retrosynthesis: viable synthetic routes for organic compounds

https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00107

Applications of ML in Chem

- Mapping molecular structure to target property
- Accelerating computational chemistry
- With experiments:
- Crazy ones:
 - language models to search literature for experimental parameters
 - robots to perform experiments
 - robots to enhance decision making in experiments

This is not an exhaustive list!

https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00107

Breathe?

ML Workflow

 $g:M\to X$

Model Training

& Evaluation

$$f_i: X \to Y$$

$$Y_{pred} = f_i(X)$$
 $min|Y - Y_{pred}| \quad \forall f_i$

Model Explanation

$$f_i(X) \approx \sum_{i=1}^n R_{X_i}$$

ML Workflow

Feature Representation

Model Explanation

$$f_i(X) \approx \sum_{i=1}^n R_{X_i}$$

 $f_i: X \to Y$ $Y_{pred} = f_i$

Model Training

& Evaluation

Black box ML models

 $Y_{pred} = f_i(X)$ $min|Y - Y_{pred}| \quad \forall f_i$

Data Collection & Curation

 $g: M \to X$

ML Workflow

Feature Representation

Data Collection & Curation

$$f_i: X \to Y$$

$$Y_{pred} = f_i(X)$$

 $min|Y - Y_{pred}| \quad \forall f_i$

 $\{M,Y\}$

Model Explanation

Data

& Ev

Feature Representation

 $g: M \to X$

Data Collection & Curation

Classification	Name	Content	URL
Chemical reaction databases	SciFinder	Information on chemical compounds, bibliographic data, and chemical reactions (commercial database)	https://scifinder.cas.org/
	Reaxys	Chemical reaction and bibliographic information (commercial database)	https://www.reaxys.com/
	USPTO	Chemical structure and reaction	https://www.repository.cam.ac.uk/handle/ 1810/244727
	ORD	Organic chemical reaction data	https://github.com/open-reaction-database
	NextMove	Chemical reaction data	https://www.nextmovesoftware.com/about. html
Chemical property databases	PubChem	Chemical and physical properties, biological activities, and toxicity of substances	https://pubchem.ncbi.nlm.nih.gov/
	NIST	Standard physicochemical properties of compounds	https://webbook.nist.gov/chemistry/
	ChemSpider	Structure and property of compounds	https://www.chemspider.com
	ChemBL.	Drug-like properties of bioactive molecules	https://www.ebi.ac.uk/chembl/
	DrugBank	Properties of drug molecules	https://go.drugbank.com/releases/latest
	Tox21	Toxic effects of substances	https://ntp.niehs.nih.gov/whatwestudy/tox21 index.html
	ESOL	Water solubility of compounds	https://doi.org/10.1021/ci034243x
	FreeSolv	Water solubility of small neutral molecules	https://github.com/MobleyLab/FreeSolv
	Lipophilicity	Lipid solubility of organic compounds	https://doi.org/10.1002/cem.2718
Material databases	CSD	Organic and metal-organic crystal structures	https://www.ccdc.cam.ac.uk/
matcha datavases	ICSD	Inorganic and metal-organic crystal structures	https://icsd.products.fiz-karlsruhe.de/
	PDF	Diffraction data of inorganic and organic compounds	https://www.icdd.com/pdfsearch/
	MatWeb	The thermoplastic and thermoset of polymers, metals, and other engineering materials	https://matweb.com/
	Li-ion Battery Aging	Charge and discharge curves of lithium batteries	https://data.nasa.gov/dataset/Li-ion-Battery-
	Datasets	charge and discharge curves of intinum batteries	Aging-Datasets/ui5r-zidb
	HTEM	Experimental information of inorganic thin-film	https://htem.nrel.gov/
	******	materials	inteps.//internation.gov/
Computational chemistry	GDB-17	Structures of organic molecules up to 17 atoms	https://www.gdb.unibe.ch/downloads/
databases	OM9	Quantum chemical properties of organic molecules	https://quantum-machine.org/datasets/
	ANI-1	Energy and force of non-equilibrium molecules	https://github.com/isayev/ANI1_dataset
	Materials Project	DFT relaxed material structures and their thermal, electronic, and elastic properties	https://next-gen.materialsproject.org/
	OQMD	DFT relaxed material structures and their thermal, electronic, and elastic properties	https://oqmd.org/
	Aflowlib	DFT relaxed material structures and their thermal, electronic, and elastic properties	https://aflowlib.org/
	MD17/ISO-17	Energy and force of non-equilibrium molecules	https://guantum-machine.org/datasets/
	LASP	Global PES dataset of molecules/materials	https://www.lasphub.com
	OC20	Adsorption energy of molecules in catalysts	https://opencatalystproject.org/
	Atom3D	3D structure of molecules, RNA, and proteins	https://www.atom3d.ai/

Quantum Materials Database; OC20: Open Catalyst 2020; DFT: density functional theory; PES: potential energy surface.

Demo

notebooks: get_data.ipynb, clean_data.ipynb

Data Collection & Curation

Essential practices:

- identify & document source, context, and limitations of data (biases, domain of applicability)
- data cleaning duplicates, missing values, identifying unphysical values, unit conversion, homogenization, normalization
- document data cleaning steps comprehensively
- adhering to Findable Accessible Interoperable and Reusable (FAIR) principles of scientific data management

Data is King! Your model is only as good as the data you provide it!

Features

& Evaluation

Model Training

Feature Representation

 $g: M \to X$

Model Explanation

$$f_i(X) \approx \sum_{i=1}^{N} R_{X_i}$$

$$f_i: X \to Y$$

$$Y_{pred} = f_i(X)$$
 $min|Y - Y_{pred}| \quad \forall f_i$

Data Collection

& Curation

Feature Representation

- function g: $M \to X$ converts a chemical representation $m \in M$ to a feature input $x \in X$
- m can be SMILES, InChI, XYZ, CIF, PDB, etc.
- x is a numeric or vector representation of m (descriptors, fingerprints, coulomb matrices, learned features, text-based, etc.)

Demo

notebook: generate_features.ipynb

Feature Representation

- qualities of a good feature representation:
 comprehensiveness, feasibility, costeffectiveness, performance, interpretability
- multiple correct ways to represent different molecules
- systematic comparison & benchmarking strategies to choose the right featurization method → essential practice
 - cost vs benefit
 - feasibility analysis
 - comprehensiveness vs interpretability

Model

Model Training & Evaluation

Feature Representation

 $g: M \to X$

$$f_i: X \to Y$$

$$Y_{pred} = f_i(X)$$
 $min|Y - Y_{pred}| \quad \forall f_i$

$$f_i(X) \approx \sum_{i=1}^n R_{X_i}$$

Data Collection

Model Training & Evaluation

- Mapping feature space to target space, algorithm learns patterns from training examples, calculates loss, updates its parameters, and repeats until loss is minimized
- Model training
 - model selection (no free lunch theory, various algorithms exist, more than 1 may work for a problem, usually try a bunch of them, see which one works)
 - hyperparameter tuning, this determines starting point of the optimization problems, the steps it takes towards the optimized solution, etc.
- The above steps are done during cross validation

Demo

notebook: train_model.ipynb

Model Training & Evaluation

- multiple ML algorithms may work, comprehensive selection process based on performance, cost & interpretability
- balanced splits for training, validation, & test sets, reporting & optimizing hyperparameters, learning curves, etc., common yet essential steps
- comprehensive set of error metrics, error bars
 & uncertainty
- documentation

NC STATE UNIVERSITY

Feature Representation

Data Collection & Curation

 $g: M \to X$

Model Training & Evaluation

Black box ML models

$$f_i: X \to Y$$

$$Y_{pred} = f_i(X)$$

 $min|Y - Y_{pred}| \quad \forall f_i$

Model Explanation

$$f_i(X) \approx \sum_{i=1}^n R_{X_i}$$

Model Explanation

Black box ML models

- ML approaches (esp. powerful deep learning techniques) are blackbox models, : low trust
- new field of eXplainable Artificial Intelligence (XAI) creates visibility in AI/ML models
- explains rationale behind model's predictions, helps ensure scientific basis

helps understand intricate structure-property relationships – identifies important features

Model Explanation

 Layer-wise Relevance Propagation: propagates the values of the outputs back to the input layer. The portion of the value that reaches each input feature is the relevance of that feature for the particular prediction. This relevance is then aggregated in various ways to assign a 'global' relevance score to each feature.

Demo

notebook: with_chemml.ipynb

Summary

- Data is King!
- Features are what your model actually sees, make sure that they hold sufficient information and do not prove to be a computational bottleneck
- A problem may have multiple solutions, so try different models, do cross validation, never compares apples to oranges, when comparing 2 models, do not change anything else but the ML algorithm
- Different metrics are like pieces of a puzzle, individually they may not convey everything, but together they can tell the entire story.
- To convince an experimentalist... explain your model using XAI, remember they may still not be convinced.

Data sources

Table 1

A list of popular chemical databases commonly used in ML.

Classification	Name	Content	URL
Chemical reaction databases	SciFinder	Information on chemical compounds, bibliographic data, and chemical reactions (commercial database)	https://scifinder.cas.org/
	Reaxys	Chemical reaction and bibliographic information (commercial database)	https://www.reaxys.com/
	USPTO	Chemical structure and reaction	https://www.repository.cam.ac.uk/handle/ 1810/244727
	ORD	Organic chemical reaction data	https://github.com/open-reaction-database
	NextMove	Chemical reaction data	https://www.nextmovesoftware.com/about. html
Chemical property databases	PubChem	Chemical and physical properties, biological activities, and toxicity of substances	https://pubchem.ncbi.nlm.nih.gov/
	NIST	Standard physicochemical properties of compounds	https://webbook.nist.gov/chemistry/
	ChemSpider	Structure and property of compounds	https://www.chemspider.com
	ChemBL	Drug-like properties of bioactive molecules	https://www.ebi.ac.uk/chembl/
	DrugBank	Properties of drug molecules	https://go.drugbank.com/releases/latest
	Tox21	Toxic effects of substances	https://ntp.niehs.nih.gov/whatwestudy/tox21 index.html
	ESOL	Water solubility of compounds	https://doi.org/10.1021/ci034243x
	FreeSolv	Water solubility of small neutral molecules	https://github.com/MobleyLab/FreeSolv
	Lipophilicity	Lipid solubility of organic compounds	https://doi.org/10.1002/cem.2718
Material databases	CSD	Organic and metal-organic crystal structures	https://www.ccdc.cam.ac.uk/
	ICSD	Inorganic and metal-organic crystal structures	https://icsd.products.fiz-karlsruhe.de/
	PDF	Diffraction data of inorganic and organic compounds	https://www.icdd.com/pdfsearch/
	MatWeb	The thermoplastic and thermoset of polymers, metals, and other engineering materials	https://matweb.com/
	Li-ion Battery Aging	Charge and discharge curves of lithium batteries	https://data.nasa.gov/dataset/Li-ion-Battery-
	Datasets		Aging-Datasets/uj5r-zjdb
	HTEM	Experimental information of inorganic thin-film materials	https://htem.nrel.gov/
Computational chemistry	GDB-17	Structures of organic molecules up to 17 atoms	https://www.gdb.unibe.ch/downloads/
databases	QM9	Quantum chemical properties of organic molecules	https://quantum-machine.org/datasets/
	ANI-1	Energy and force of non-equilibrium molecules	https://github.com/isayev/ANI1_dataset
	Materials Project	DFT relaxed material structures and their thermal, electronic, and elastic properties	https://next-gen.materialsproject.org/
	OQMD	DFT relaxed material structures and their thermal, electronic, and elastic properties	https://oqmd.org/
	Aflowlib	DFT relaxed material structures and their thermal, electronic, and elastic properties	https://aflowlib.org/
	MD17/ISO-17	Energy and force of non-equilibrium molecules	https://quantum-machine.org/datasets/
	LASP	Global PES dataset of molecules/materials	https://www.lasphub.com
	OC20	Adsorption energy of molecules in catalysts	https://opencatalystproject.org/
	Atom3D	3D structure of molecules, RNA, and proteins	https://www.atom3d.ai/

URL: uniform resource locator; USPTO: United States Patent and Trademark Office; ORD: Open Reaction Database; NIST: National Institute of Standards and Technology; CSD: Cambridge Structural Database; (ISD: Inorganic Crystal Structure Database; PDF: Powder Diffraction File; HTEM: High-Throughput Experimental Materials; OQMD: Open Causatum Materials Database; OCO: Open Catalyst 2020; DFT: density functional theory. PES: potential energy surface.

- Data sources
- A good introductory book written by Chemists (only 18 pages)

Read Now

Machine Learning in Chemistry

Author(s): Jon Paul Janet, Heather J. Kulik

Publication Date: May 29, 2020

Copyright © 2020 American Chemical Society

Subscribed

Cite This: Machine Learning in Chemistry, American Chemical Society, 2020. DOI:

10.1021/acs.infocus.7e4001

elSBN: 9780841299009 DOI: 10.1021/acs.info

DOI: 10.1021/acs.infocus.7e4001

Subjects: Algorithms, Chemical engineering and industrial chemistry, Computational modeling,

Machine learning, Neural networks, Theoretical and computational chemistry

Read Time: five to six hours

Collection: Inaugural

Publisher: American Chemical Society

Recent advances in machine learning or artificial intelligence for vision and natural language processing

- Data sources
- A good introductory book written by Chemists (only 18 pages)
- A great github repository for practical cheminformatics

- Data sources
- A good introductory book written by Chemists (only 18 pages)
- A great github repository for practical cheminformatics
- Plugging a review article I co-authored about metrics

ighlights	Highlights
эywords	As machine learning (ML) is gaining an increasingly prominent role in chemical research, so is
eferences	the need to assess the quality and applicability of ML models, compare different ML models, and
lossary	develop best-practice guidelines for their design and utilization. Statistical loss function metrics
	and uncertainty quantification techniques are key issues in this context.
ticle info	Different analyses highlight different facets of a model's performance, and a compilation of
elated	metrics, as opposed to a single metric, allows for a well-rounded understanding of what can be
ticles	expected from a model. They also allow us to identify unexplored regions of chemical space and
	nursue their survey

- Data sources
- A good introductory book written by Chemists (only 18 pages)
- A great github repository for practical cheminformatics
- Plugging a review article I co-authored about metrics
- Plugging a software I co-wrote for ML, esp. XAI

- Data sources
- A good introductory book written by Chemists (only 18 pages)
- A great github repository for practical cheminformatics
- Plugging a review article I co-authored about metrics
- Plugging a software I co-wrote for ML, esp. XAI
- GitHub repository to all the code I demonstrated

List of Tools & Libraries

- Data Collection & curation: Pandas, numpy, scipy, and a gazillion others
- Feature representation: rdkit, openbabel, etc.
- ML algorithm: Scikit-learn, pytorch, tensorflow, LightGBM
- Plotting and visualization: Matplotlib, seaborn, pandas
- XAI: ChemML