Логические операции над битами

8

Обзор главы

В разделе	Вы найдете	на стр.
8.1	Обзор	8–2
8.2	Замыкающий контакт	8–3
8.3	Размыкающий контакт	8–4
8.4	Катушка реле, выход	8–5
8.5	Коннектор	8–6
8.6	Инвертирование результата логической операции	8–7
8.7	Загрузка результата логической операции в регистр ВІЕ	8–8
8.8	Установка выхода	8–9
8.9	Сброс выхода	8-10
8.10	Установка начального значения счетчика	8-11
8.11	Прямой счет	8–12
8.12	Обратный счет	8–13
8.13	Запуск таймера как формирователя импульса	8–14
8.14	Запуск таймера как формирователя удлиненного импульса	8–15
8.15	Запуск таймера как формирователя задержки включения	8–16
8.16	Запуск таймера как формирователя задержки включения с запоминанием	8–17
8.17	Запуск таймера как формирователя задержки выключения	8–18
8.18	Опрос фронта $0 \rightarrow 1$	8–19
8.19	Опрос фронта $1 \rightarrow 0$	8–20
8.20	Опрос фронта сигнала $0 \rightarrow 1$	8–21
8.21	Опрос фронта сигнала 1 \rightarrow 0	8–22
8.22	Триггер "установка-сброс"	8–23
8.23	Триггер "сброс-установка"	8–24

8.1. Обзор

Объяснение

Логические операции над битами работают с двумя числами: "1" и "0". Эти два числа образуют основание системы счисления, которую называют "двоичной системой", и называются "двоичными цифрами" или, кратко, "битами". В связи с контактами и катушками "1" сопоставляется состоянию "активизировано" или "проводит ток", а "0" - состоянию "не активизировано" или "не проводит ток".

Логические операции над битами интерпретируют состояния сигналов "1" и "0" и сопрягают их в соответствии с булевой логикой. Такие сопряжения дают результат "1" или "0", так называемый результат логической операции (VKE, см. главу 6.3). Логические операции, которые порождаются логическими операциями над битами, выполняют ряд функций.

Функции

В Вашем распоряжении имеются логические операции над битами для следующих функций:

- Замыкающий контакт и размыкающий контакт: оба опрашивают состояние сигнала контакта и создают результат, который либо копируется в VKE-бит, либо сопрягается с ним. Если эти контакты включены последовательно, то они сопрягают результат своего опроса состояния сигнала в соответствии с таблицей истинности операции И (см. таблицу 6–3). Если они включены параллельно, то сопряжение происходит в соответствии с таблицей истинности операции ИЛИ (см. таблицу 6–4).
- Катушка реле, выход и коннектор: Они присваивают VKE или временно запоминают его.
- Следующие операции реагируют на VKE, равный "1":
 - установка выхода и сброс выхода
 - установка/сброс триггера и сброс/установка триггера
- Некоторые операции реагируют на нарастающий или падающий фронт, так что Вы можете тем самым выполнить одну из следующих функций:
 - увеличение и уменьшение значения счетчика
 - запуск таймера
 - создание выхода, равного "1".
- Остальные операции воздействуют на VKE непосредственно через:
 - отрицание (обращение) VKE
 - сохранение VKE в бите двоичного результата слова состояния.

В данной главе катушки счетчиков и таймеров представляются в формате SIMATIC и международном (английском) формате.

8.2. Замыкающий контакт

Описание

С помощью операции Замыкающий контакт Вы можете опрашивать состояние сигнала контакта на заданном операнде. Если состояние сигнала контакта на этом заданном операнде равно "1", то контакт замкнут и операция дает результат "1". Если состояние сигнала контакта на заданном операнде равно "0", то контакт разомкнут и операция создает результат "0".

Если операция 3амыкающий контакт является первой операцией в цепи логического сопряжения, то она сохраняет результат своего опроса состояния сигнала в VKE—бите.

Каждая операция Замыкающий контакт, которая не является первой операцией в цепи логического сопряжения, сопрягает результат своего опроса состояния сигнала со значением, сохраненным в VKE-бите. Такое сопряжение выполняется одним из двух следующих способов:

- В последовательном соединении операция сопрягает результат своего опроса состояния сигнала в соответствии с таблицей истинности операции И.
- В параллельном соединении операция сопрягает результат своего опроса состояния сигнала в соответствии с таблицей истинности операции ИЛИ.

Элемент КОР	Параметр	Тип данных	Область памяти	Описание
<операнд>	<операнд>	BOOL TIMER COUNTER		Операнд указывает бит, состояние сигнала которого опрашивается

Рис. 8-1. Элемент "Замыкающий контакт" и параметр

Рис. 8-2. Замыкающий контакт

8.3. Размыкающий контакт

Описание

С помощью операции *Размыкающий контактв* Вы можете опрашивать состояние сигнала контакта на заданном операнде. Если состояние сигнала контакта на этом заданном операнде равно "0", то контакт замкнут и операция дает результат "1". Если состояние сигнала контакта на заданном операнде равно "1", то контакт разомкнут и операция создает результат "0".

Если операция *Размыкающий контакт* является первой операцией в цепи логического сопряжения, то она сохраняет результат своего опроса состояния сигнала в VKE-бите.

Каждая операция *Размыкающий контакт*, которая не является первой операцией в цепи логического сопряжения, сопрягает результат своего опроса состояния сигнала со значением, сохраненным в VKE-бите. Операция выполняет такое сопряжение выполняется одним из двух следующих способов:

- В последовательном соединении операция сопрягает результат своего опроса состояния сигнала в соответствии с таблицей истинности операции И.
- В параллельном соединении операция сопрягает результат своего опроса состояния сигнала в соответствии с таблицей истинности операции ИЛИ.

Элемент КОР	Параметр	Тип данных	Область памяти	Описание
<операнд>	<операнд>	BOOL TIMER COUNTER		Операнд указывает бит, состояние сигнала которого опрашивается.

Рис. 8-3. Элемент "Размыкающий контакт" и параметр

Рис. 8-4. Размыкающий контакт

8.4. Катушка реле, выход

Описание

Операция *Катушка реле, Выход* функционирует как катушка в релейной схеме. Катушка в конце цепи проводит или не проводит ток в соответствии со следующими критериями:

- Если ток может протекать через цепь вплоть до катушки (состояние сигнала цепи равно "1"), то катушка проводит ток.
- Если ток не может протекать через всю цепь до катушки (состояние сигнала цепи равно "0"), то катушка не проводит ток.

Цепь КОР представляет цепь тока. Операция *Катушка реле, Выход* присваивает состояние сигнала цепи КОР катушке, к которой происходит обращение со стороны операции (чтобы вызвать подобное, можно также присваивать операнду состояние сигнала VKE-бита). Если ток может протекать через цепь логического сопряжения, то состояние сигнала цепи равно "1". В противном случае состояние сигнала цепи равно "0".

Операция *Катушка реле, Выход* испытывает воздействие со стороны Master Control Relay (MCR). Более подробная информация о принципе действия MCR приведена в главе 20.5.

Вы можете располагать элемент *Катушка реле, Выход* только на правом конце цепи логического сопряжения. Конечно, Вы можете использовать несколько элементов *Катушка реле, Выход*. Вы не можете располагать элемент *Катушка реле, Выход* в пустой сети. Катушка должна иметь предшествующее соединение.

Вы создаете выход с отрицанием посредством операции Инвертирование результата логической операции.

Элемент КОР	Параметр	Тип данных	Область памяти	Описание
<operand>()</operand>	<operand></operand>	BOOL	2, 11, 111, 2, 2	Операнд указывает, какому биту присваивается состояние сигнала цепи сопряжений.

Рис. 8-5. Элемент "Катушка реле, выход" и параметр

Рис. 8-6. Катушка реле, выход

8.5. Коннектор

Описание

Операция Коннектор является промежуточно включаемым элементом присваивания, который запоминает VKE. Более точно говоря, этот элемент присваивания запоминает логическое сопряжение битов последней открытой ветви перед элементом присваивания. В последовательной цепи с другими контактами элемент Коннектор воспринимается как обычный контакт.

Операция *Коннектор* испытывает воздействие со стороны Master Control Relay (MCR). Более подробную информацию о принципе действия MCR можно найти в главе 20.5.

Если Вы используете коннекторы, то Вы должны соблюдать определенные ограничения. В частности, коннектор никогда нельзя располагать в конце сети или в конце открытой ветви (см. также главу 6.1).

Вы создаете выход с отрицанием посредством операции Инвертирование результата логической операции.

Элемент КОР	Параметр	Тип данных	Область памяти	Описание
<операнд> ——(#)	<операнд>	BOOL	E, A, M, D, L ¹	Операнд указывает, какому биту присваивается VKE.

Рис. 8-7. Элемент "Коннектор" и параметр

¹ Вы можете использовать операнд из области памяти L в операции коннектор только тогда, когда Вы его опишете в VAR_TEMP. С помощью этой операции Вы не можете использовать область памяти L для абсолютных адресов.

Рис. 8-8. Коннектор

8.6. Инвертирование результата логической операции

Описание

Операция $\mathit{Инвертирование}$ результата логической операции выполняет отрицание VK F.

Элемент КОР	Параметр	Тип данных	Область памяти	Описание
—— NOT	Отсутствует	-	-	-

Рис. 8-9. Элемент "Инвертирование результата логической операции" и параметр

Рис. 8-10. Инвертирование результата логической операции

8.7. Загрузка результата логической операции в регистр ВІЕ

Описание

Операция Загрузка результата логической операции в регистр ВІЕ сохраняет VKE в ВІЕ-бите слова состояния.

Элемент КОР	Параметр	Тип данных	Область памяти	Описание
—(SAVE)	Отсутствует	-	-	Z

Рис. 8-11. Загрузка результата логической операции в ВІЕ-регистр и параметр

Рис. 8-12. Загрузка результата логической операции в регистр ВІЕ

8.8. Установка выхода

Описание

Операция Vстановка выхода выполняется только тогда, когда VKE = 1. Если VKE = 1, то заданный операнд устанавливается операцией в "1". Если VKE = 0, то операция не влияет на заданный операнд. Операнд остается неизменным.

Операция Установка выхода испытывает воздействие со стороны Master Control Relay (MCR). Более подробную информацию о принципе действия MCR можно найти в главе 20.5.

Элемент КОР	Параметр	Тип данных	Область памяти	Описание
<операнд> ——(S)	<операнд>	BOOL	E, A, M, D, L	Операнд указывает, какой бит должен быть установлен.

Рис. 8-13. Элемент "Установка выхода" и параметр

Рис. 8-14. Установка выхода

8.9. Сброс выхода

Описание

Операция $Car{o}poc\ выхода$ выполняется только тогда, когда VKE = 1. Если VKE = 1, то заданный операнд устанавливается операцией в "0". Если VKE = 0, то операция не влияет на заданный операнд. Операнд остается неизменным.

Операция *Сброс выхода* испытывает воздействие со стороны Master Control Relay (MCR). Более подробную информацию о принципе действия MCR можно найти в главе 20.5.

Элемент КОР	Параметр	Тип данных	Область памяти	Описание
<операнд> (R	<операнд>	BOOL TIMER COUNTER	E, A, M, T, Z, D, L	Операнд указывает, какой бит должен быть сброшен.

Рис. 8-15. Элемент "Сброс выхода" и параметр

Рис. 8-16. Сброс выхода

8.10. Установка начального значения счетчика

Описание

С помощью операции *Установка начального значения счетчика* Вы присваиваете определенному Вами счетчику предварительное значение. Эта операция выполняется только тогда, когда VKE указывает на нарастающий фронт (смена VKE с "0" на "1").

Элемент КОР	Параметр	Тип данных	Область памяти	Описание
<операнд>, значение ——(SZ)	Номер счетчика	COUNTER	Z	Операнд указывает номер счетчика, который должен быть предустановлен.
——(SC) <предустановленное значение>	Предуста- новленное значение	-	E, A, M, D, L	Значение для предварительной установки может находиться в диапазоне от 0 до 999. Перед значением, задающим ВСД-формат атеж полуой С#, тато., С#100.

Рис. 8-17. Элемент "Установка начального значения счетчика" и параметры, с использованием мнемоники SIMATIC и международной мнемоники

Рис. 8-18. Установка начального значения счетчика

8.11. Прямой счет

Описание

Операция *Прямой счет* увеличивает значение заданного счетчика на "1", когда VKE указывает на нарастающий фронт (смена VKE с "0" на "1") и значение счетчика меньше 999. Если в VKE нет нарастающего фронта или счетчик уже имеет значение 999, то он не увеличивается.

Операция Установка начального значения счетчика устанавливает значение счетчика (см. главу 8.10).

Элемент КОР	Параметр	Тип данных	Область памяти	Описание
<операнд> ——(zv) ——(cu)	Номер счетчика	COUNTER	Z	Операнд указывает номер счетчика, значение которого должно быть увеличено.

Рис. 8-19. Элемент "Прямой счет" и параметр, с использованием мнемоники SIMATIC и международной мнемоники

Рис. 8-20. Прямой счет

8.12. Обратный счет

Описание

Операция *Обратный счет* уменьшает значение заданного счетчика на "1", когда VKE указывает на нарастающий фронт (смена VKE с "0" на "1") и значение счетчика больше, чем "0". Если в VKE нет нарастающего фронта или счетчик уже имеет значение "0", то он не уменьшается.

Операция Установка начального значения счетчика устанавливает значение счетчика (см. главу 8.10).

Элемент КОР	Параметр	Тип данных	Область памяти	Описание
<операнд> ——(ZR) ——(CD)	Номер счетчика	COUNTER		Операнд указывает номер счетчика, значение которого должно быть уменьшено.

Рис. 8-21. Элемент "Обратный счет" и параметр, с использованием мнемоники SIMATIC и международной мнемоники

Рис. 8-22. Обратный счет

8.13. Запуск таймера как формирователя импульса

Описание

Операция Запуск таймера как формирователя импульса запускает таймер с заданным значением, когда VKE указывает на нарастающий фронт (смена VKE с "0" на "1"). Пока VKE является положительным, таймер работает с заданным значением дальше. Опрос состояния сигнала на равенство "1" дает "1", пока таймер работает. Если до истечения времени VKE сменяется с "1" на "0", то таймер останавливается. В этом случае опрос состояния сигнала на равенство "1" создает результат "0".

Единицами времени являются t (дни), h (часы), m (минуты), s (секунды) и ms (миллисекунды). Более подробную информацию об области памяти и компонентах таймера Вы найдете в главе 9.1.

Элемент КОР	Параметры	Тип данных	Область памяти	Описание
<операнд> ————————————————————————————————————	номер таймера	TIMER	Т	Операнд указывает номер тай- мера, который должен быть запущен.
—(_{SP})	значение времени	S5TIME	E, A, M, D, L	Значение времени ? формат S5TIME)
<значение времени>				

Рис. 8-23. Элемент "Запуск таймера как формирователя импульса" и параметры, с использованием мнемоники SIMATIC и международной мнемоники

Рис. 8-24. Запуск таймера как формирователя импульса

8.14. Запуск таймера как формирователя удлиненного импульса

Описание

Операция Запуск таймера как формирователя удлиненного импульса запускает таймер с заданным значением, когда VKE указывает на нарастающий фронт (смена VKE с "0" на "1"). Этот таймер работает с заданным значением дальше также и тогда, когда VKE сменяется на "0" до истечения времени. Опрос состояния сигнала на равенство "1" дает "1", пока таймер работает. Таймер запускается снова (перезапускается) с заданным значением времени, если в то время, когда таймер еще работает, VKE сменяется с "0" на "1". Более подробную информацию об области памяти и компонентах таймера Вы найдете в главе 9.1.

Элемент КОР	Параметр	Тип данных	Область памяти	Описание
<операнд> ——(SV)	номер таймера	TIMER	Т	Операнд указывает номер тай- мера, который должен быть запущен.
——(SE) <значение времени>	значение времени	S5TIME		Значение времени (формат S5TIME)

Рис. 8-25. Запуск таймера как формирователя удлиненного импульса и параметры, с использованием мнемоники SIMATIC и международной мнемоники

Рис. 8-26. Запуск таймера как формирователя удлиненного импульса

8.15. Запуск таймера как формирователя задержки включения

Описание

Операция Запуск таймера как формирователя задержки включения запускает заданный таймер, когда VKE указывает на нарастающий фронт (смена VKE с "0" на "1"). Опрос состояния сигнала на равенство "1" дает "1", если заданный таймер отработал без ошибки и VKE все еще равен "1". Если VKE сменяется с "1" на "0" в то время, когда таймер еще работает, то он сбрасывается. В этом случае опрос состояния сигнала на равенство "1" всегда доставляет результат "0". Более подробную информацию об адресе таймера в памяти и компонентах таймера Вы найдете в главе 9.1.

Элемент КОР	Параметр	Тип данных	Область памяти	Описание
<опреанд> ——(SE)	номер таймера	TIMER	Т	Операнд указывает номер тай- мера, который должен быть запущен.
——(SD) <значение времени>	значение времени	S5TIME		Значение времни (формат S5TIME)

Рис. 8-27. Элемент "Запуск таймера как формирователя задержки включения" и параметры, с использованием мнемоники SIMATIC и международной мнемоники

Рис. 8-28. Запуск таймера как формирователя задержки включения

8.16. Запуск таймера как формирователя задержки включения с запоминанием

Описание

Операция SS Запуск таймера как формирователя задержки включения с запоминанием запускает заданный таймер, когда VKE указывает на нарастающий фронт (смена VKE с "0" на "1"). Таймер работает с заданным значением времени дальше также и тогда, когда VKE сменяется на "0" до истечения времени. Опрос состояния сигнала на равенство "1" дает результат "1", независимо от VKE, если время истекло. Если VKE сменяется с "0" на "1" в то время, когда таймер еще работает, то он вновь запускается с заданным значением (перезапускается). Более подробную информацию об адресе таймера в памяти и компонентах таймера Вы найдете в главе 9.1.

Элемент КОР	Параметры	Тип данных	Область памяті	Описание
<операнд> SS	номер таймера	TIMER	Т	Операнд указывает номер тай- мера, который должен быть запущен.
значение времени	значение времени	S5TIME	E, A, M, D, L	Значение времени (формат S5TIME)

Рис. 8-29. Элемент "Запуск таймера как формирователя задержки включения с запоминанием" и параметры

Рис. 8-30. Запуск таймера как формирователя задержки включения с запоминанием

8.17. Запуск таймера как формирователя задержки выключения

Описание

Операция Запуск таймера как формирователя задержки выключения запускает заданный таймер, когда VKE указывает на спадающий фронт (смена VKE с "1" на "0"). Опрос состояния сигнала на равенство "1" дает" 1", когда VKE = 1 или когда таймер работает. Таймер сбрасывается, когда VKE сменяется с "0" на "1" в то время, когда таймер работает. Таймер запускается снова лишь тогда, когда VKE сменяется с "1" на "0".

Более подробную информацию об адресе таймера в памяти и компонентах таймера Вы найдете в главе 9.1.

Элемент КОР	Параметры	Тип данных	Область памяти	Описание
<операнд> ——(SA)	номер таймера	TIMER	Т	Операнд указывает номер тай- мера который должен быть запущен.
——(SF) значение времени	значение времени	S5TIME		Значение времени (формат S5TIME)

Рис. 8-31. Элемент "Запуск таймера как формирователя задержки выключения" и параметры, с использованием мнемоники SIMATIC и международной мнемоники

Рис. 8-32. Запуск таймера как формирователя задержки выключения

8.18. Опрос фронта $0 \rightarrow 1$

Описание

Операция Опрос фронта $0 \to I$ распознает изменение заданного операнда с "0" на "1" (нарастающий фронт) и показывает это после операции через VKE = 1. Текущее состояние сигнала VKE сравнивается с состоянием сигнала операнда, меркером фронта. Если состояние сигнала операнда равно "0" и VKE перед операцией равен "1", то VKE после операции равен "1" (импульс), во всех остальных случаях равен "0". VKE перед операцией запоминается в операнде.

При размещении элемента *Опрос фронта* $0 \rightarrow 1$ Вы должны соблюдать определенные ограничения (смотрите главу 6.1).

Элемент КОР	Параметр	Тип данных	Область памяти	Описание
<операнд> ——(р)	<операнд>	BOOL	, , ,	Операнд указывает, какой меркер фронта хранит преды- дущий VKE.

Рис. 8-33. Элемент "Опрос фронта $0 \to 1$ " и параметр

Рис. 8-34. Опрос фронта $0 \rightarrow 1$

8.19. Опрос фронта $1 \rightarrow 0$

Описание

Операция Опрос фронта $1 \to 0$ распознает изменение заданного операнда с "1" на "0" (спадающий фронт) и показывает это после операции через VKE = 1. Текущее состояние сигнала VKE сравнивается с состоянием сигнала операнда, меркером фронта. Если состояние сигнала операнда равно "1" и VKE перед операцией равен "0", то VKE после операции равен "0" (импульс), во всех остальных случаях равен "1". VKE перед операцией запоминается в операнде.

При размещении элемента *Опрос фронта 1* \rightarrow 0 Вы должны соблюдать определенные ограничения (см. главу 6.1).

Элемент КОР	Параметр	Тип данных	Область памяти	Описание
<операнд> ——(N)	<операнд>	BOOL	, ,	Операнд указывает, какой меркер фронта хранит преды- дущий VKE.

Рис. 8-35. Элемент "Опрос фронта $1 \to 0$ " и параметр

Рис. 8-36. Опрос фронта $1 \rightarrow 0$

8.20. Опрос фронта сигнала $0 \rightarrow 1$

Описание

Операция Опрос фронта сигнала $0 \to 1$ сравнивает состояние сигнала <onepaнд1> с состоянием сигнала предыдущего опроса, сохраненным в <onepaнд2>. Если произошла смена с "0" на "1", то выход Q = 1, во всех остальных случаях "0".

При размещении элемента *Опрос фронта сигнала* $0 \to 1$ Вы должны соблюдать определенные ограничения (см. главу 6.1).

Элемент КОР	Параметры	Тип данных	Область прамяти	Описание
<операнд1> РОS	<операнд1>	BOOL	E, A, M, D, L	Сигнал, подлежащий опросу на наличие положительного фронта
<операнд2> - М_ВІТ	M_BIT	BOOL	A, M, D	Операнд М_ВІТ указывает, в каком меркере фронта хранится предыдущее состояние сигнала РОЅ. Используйте область отображения процесса на входах Е для М_Віт только тогда, когда ни один модуль ввода не занимает этот операнд.
	Q	BOOL	E, A. M, D, L	Выход с однократным zмпульсом

Рис. 8-37. Элемент "Опрос фронта сигнала $0 \to 1$ " и параметры

Рис. 8-38. Опрос фронта сигнала $0 \rightarrow 1$

8.21. Опрос фронта сигнала $1 \rightarrow 0$

Описание

Операция Опрос фронта сигнала $1 \to 0$ сравнивает состояние сигнала <onepaнд1> с состоянием сигнала предыдущего опроса, сохраненным в <onepaнд2>. Если произошла смена с "1" на "0", то выход Q = 1, во всех остальных случаях "0".

При размещении элемента *Опрос фронта сигнала* $1 \to 0$ Вы должны соблюдать определенные ограничения (см. главу 6.1).

Элемент КОР	Параметры	Тип данных	Область памяти	Описание
<операнд1> NEG	<операнд1>	BOOL	E, A, M, D, L	Сигнал, подлежащий опросу на наличие отрицательного фронта
<операнд2> — М_ВІТ	M_BIT	BOOL	A, M, D	Опреанд М_ВІТ указывает, в каком меркере фронта хранится предыдущее состояние NEG. Используйте область отображения про- Sie цесса на входах Е для М_Віт только тогда, когда ни один из модулей ввода не занимает этот операнд.
	Q	BOOL	E, A, M, D, L	Выход с однократным импульсом

Рис. 8-39. Опрос фронта сигнала $1 \to 0$ и параметры

Рис. 8-40. Опрос фронта сигнала $1 \to 0$

8.22. Триггер "установка-сброс"

Описание

Операция *Триггер* "установка-сброс" выполняет такие операции, как установка (S) или сброс (R) только тогда, когда VKE = 1. VKE, равный "0", на эти операции не влияет; заданный в операции операнд не изменяется.

Триггер "установка-сброс" устанавливается, когда состояние сигнала на входе S=1 и на входе R=0. Если вход S=0 и вход R=1, то триггер сбрасывается. Если VKE на обоих входах равен "1", то триггер сбрасывается.

Операция *Триггер* "у*становка-сброс*" испытывает воздействие со стороны Master Control Relay (MCR). Более подробную информацию о принципе действия MCR можно найти в главе 20.5.

При размещении операции *Триггер* "установка-сброс" Вы должны соблюдать определенные ограничения (см. главу 6.1).

Элемент КОР	Параметры	Тип данных	Область памяти	Описание
SR S O	<операнд>	BOOL	E, A, M, D, L	Операнд указывает, какой бит должен быть установлен или сброшен.
	S	BOOL	E, A, M, D, L	Операция установки разрешена
R	R	BOOL	E, A, M, D, L	Операция сброса разрешена
	Q	BOOL	E, A, M, D, L	Состояние сигнала <операнда>

Рис. 8-41. Блок "Триггер установка - сброс" и параметры

Рис. 8-42. Тригер "Установка - сброс"

8.23. Триггер "сброс-установка"

Описание

Операция *Триггер* "*cброс-установка*" выполняет такие операции, как установка (S) или сброс (R) только тогда, когда VKE = 1. VKE, равный "0", на эти операции не влияет; заданный в операции операнд не изменяется.

Триггер "сброс-установка" сбрасывается, когда состояние сигнала на входе R=1 и на входе S=0. Если вход R=0 и вход S=1, то триггер устанавливается. Если VKE на обоих входах равен "1", то триггер устанавливается.

Операция *Триггер* "сброс-установка" испытывает воздействие со стороны Master Control Relay (MCR). Более подробную информацию о принципе действия MCR можно найти в главе 20.5.

При размещении операции *Триггер* "*сброс-установка*" Вы должны соблюдать определенные ограничения (смотрите главу 6.1).

Элемент КОР	Параметры	Тип данных	Область памяти	Описание
SR S O	<операнд>	BOOL	E, A, M, D, L	Операнд указывает, какой бит должен быть установлен или сброшен.
$\left \begin{array}{c} \\ \\ \\ \\ \end{array} \right _{R}$	S	BOOL	E, A, M, D, L	Операция сброса разрешена
	R	BOOL	E, A, M, D, L	Операция установки разреш.
	Q	BOOL	E, A, M, D, L	Состояние сигнала <операнда>

Рис. 8-43. Блок "Триггер сброс - установка" и параметры

Рис. 8-44. Триггер "сброс - установка"