



| Schletter, Inc. |                                         | 15° Tilt w/o Seismic Design |
|-----------------|-----------------------------------------|-----------------------------|
| HCV             | Standard PVMini Racking System          |                             |
|                 | Representative Calculations - ASCE 7-05 |                             |

#### 1. INTRODUCTION



#### 1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

#### 1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

|             | <u>Maximum</u> |             | <u>Minimum</u> |
|-------------|----------------|-------------|----------------|
| Height =    | 1700 mm        | Height =    | 1550 mm        |
| Width =     | 1050 mm        | Width =     | 970 mm         |
| Dead Load = | 3.00 psf       | Dead Load = | 1.75 psf       |

Modules Per Row = 1 Module Tilt = 15°

Maximum Height Above Grade = 3 ft

#### 1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005



Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

#### 2. LOAD ACTIONS

#### 2.1 Permanent Loads

| $g_{MAX} =$        | 3.00 psf |
|--------------------|----------|
| g <sub>MIN</sub> = | 1.75 psf |

## 2.2 Snow Loads

Ground Snow Load, 
$$P_g =$$
 30.00 psf Sloped Roof Snow Load,  $P_s =$  22.68 psf (ASCE 7-05, Eq. 7-2) 
$$I_s = 1.00$$
 
$$C_s = 1.00$$
 
$$C_e = 0.90$$

1.20

#### 2.3 Wind Loads

| Design Wind Speed, V =                   | 130 mph   | Exposure Category = C                                    |
|------------------------------------------|-----------|----------------------------------------------------------|
| Height ≤                                 | 15 ft     | Importance Category = II                                 |
| Peak Velocity Pressure, q <sub>z</sub> = | 26.53 psf | Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15) |

## Pressure Coefficients

| Cf+ TOP    | = | 1 (Draggura)    | Provided pressure coefficients are the result of wind tunnel |
|------------|---|-----------------|--------------------------------------------------------------|
| Cf+ BOTTOM | = | 1.6 (Pressure)  | testing done by Ruscheweyh Consult. Coefficients are         |
| Cf- TOP    | = | -2.04 (Suction) | located in test report # 1127/0611-1e. Negative forces are   |
| Cf- BOTTOM | = | -1 (Suction)    | applied away from the surface.                               |

## 2.4 Seismic Loads - N/A

| S <sub>S</sub> = | 0.00 | R = 1.25        | ASCE 7, Section 12.8.1.3: A maximum $S_s$ of 1.5         |
|------------------|------|-----------------|----------------------------------------------------------|
| $S_{DS} =$       | 0.00 | $C_S = 0$       | may be used to calculate the base shear, $C_s$ , of      |
| $S_1 =$          | 0.00 | $\rho = 1.3$    | structures under five stories and with a period, T,      |
| $S_{D1} =$       | 0.00 | $\Omega = 1.25$ | of 0.5 or less. Therefore, a $S_{ds}$ of 1.0 was used to |
| T <sub>a</sub> = | 0.00 | $C_{d} = 1.25$  | calculate C <sub>s</sub> .                               |



#### 2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

### Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W <sup>M</sup> 1.54D + 1.3E + 0.2S <sup>R</sup> (ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2) 0.56D + 1.3E <sup>R</sup> 1.54D + 1.25E + 0.2S <sup>O</sup> 0.56D + 1.25E O

### Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W <sup>M</sup> (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E <sup>O</sup> 1.1785D + 0.65625E + 0.75S <sup>O</sup> 0.362D + 0.875E <sup>O</sup>

#### 3. STRUCTURAL ANALYSIS

#### 3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

#### 3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

| <u>Location</u> | <u>Diagonal Struts</u>                                       | <u>Location</u>                                                                                                                                                                                                                                                                           | Front Reactions                                                                                                                                                                                                                                                                                                                                         | <u>Location</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Тор             | M3                                                           | Outer                                                                                                                                                                                                                                                                                     | N7                                                                                                                                                                                                                                                                                                                                                      | Outer                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Bottom          | M7                                                           | Inner                                                                                                                                                                                                                                                                                     | N15                                                                                                                                                                                                                                                                                                                                                     | Inner                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                 | M11                                                          | Outer                                                                                                                                                                                                                                                                                     | N23                                                                                                                                                                                                                                                                                                                                                     | Outer                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Location        | Rear Struts                                                  | Location                                                                                                                                                                                                                                                                                  | Rear Reactions                                                                                                                                                                                                                                                                                                                                          | Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Outer           | M2                                                           | Outer                                                                                                                                                                                                                                                                                     | N8                                                                                                                                                                                                                                                                                                                                                      | Outer                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Inner           | M6                                                           | Inner                                                                                                                                                                                                                                                                                     | N16                                                                                                                                                                                                                                                                                                                                                     | Inner                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Outer           | M10                                                          | Outer                                                                                                                                                                                                                                                                                     | N24                                                                                                                                                                                                                                                                                                                                                     | Outer                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <u>Location</u> | Bracing                                                      | <u>g</u>                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Outer           | M15                                                          | 5                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Inner           | M16A                                                         | 4                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Outer           |                                                              |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 | Top Bottom  Location Outer Inner Outer  Location Outer Inner | Top         M3           Bottom         M7           M11         M11           Location         Rear Struts           Outer         M2           Inner         M6           Outer         M10           Location         Bracing           Outer         M1:           Inner         M16/ | Top         M3         Outer           Bottom         M7         Inner           M11         Outer         M11         Outer           Location         M2         Outer           Inner         M6         Inner           Outer         M10         Outer           Location         Bracing           Outer         M15           Inner         M16A | Top         M3         Outer         N7           Bottom         M7         Inner         N15           M11         Outer         N23           Location         Rear Struts         Location         Rear Reactions           Outer         M2         Outer         N8           Inner         M6         Inner         N16           Outer         M10         Outer         N24           Location         Bracing           Outer         M15           Inner         M16A |

<sup>&</sup>lt;sup>M</sup> Uses the minimum allowable module dead load.

<sup>&</sup>lt;sup>R</sup> Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.





#### 4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).



#### 4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).





#### 4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).



### 4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).





#### 4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).



#### 4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

| Brace Type = Aluminum Type = | 1.5x0.25<br>6061-T6 |                 |
|------------------------------|---------------------|-----------------|
| $F_{ty} =$                   | 35                  | ksi             |
| Φ =                          | 0.90                |                 |
| $S_y =$                      | 0.02                | in <sup>3</sup> |
| E =                          | 10100               | ksi             |
| I <sub>y</sub> =             | 33.25               | in <sup>4</sup> |
| A =                          | 0.38                | in <sup>2</sup> |
| g =                          | 0.45                | lbs/ft          |
| $M_y =$                      | 0.001               | k-ft            |
| P <sub>n</sub> =             | 0.079               | k               |
| $M_{y \text{ allowable}} =$  | 0.046               | k-ft            |
| P <sub>n allowable</sub> =   | 11.813              | k               |
| Utilization =                | <u>3%</u>           |                 |



A cross brace kit is required every 69 bays and is to be installed in centermost bays.

## 5. FOUNDATION DESIGN CALCULATIONS

## 5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

| <u>Maximum</u>       | Front         | Rear           |   |
|----------------------|---------------|----------------|---|
| Tensile Load =       | <u>514.21</u> | <u>1469.96</u> | k |
| Compressive Load =   | 1332.11       | 949.61         | k |
| Lateral Load =       | <u>1.22</u>   | <u>532.81</u>  | k |
| Moment (Weak Axis) = | 0.00          | 0.00           | k |



### 5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).



Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check  $M_0 =$ 21613.5 in-lbs Resisting Force Required = 720.45 lbs A minimum 60in long x 21in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1200.75 lbs to resist overturning. Minimum Width = Weight Provided = 1903.13 lbs Sliding Force = 128.09 lbs Use a 60in long x 21in wide x 18in tall Friction = 0.4 Weight Required = 320.23 lbs ballast foundation to resist sliding. Resisting Weight = 1903.13 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 128.09 lbs Cohesion = 130 psf Use a 60in long x 21in wide x 18in tall 8.75 ft<sup>2</sup> Area = ballast foundation. Cohesion is OK. Resisting = 951.56 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

|                                                                                | Ballast Width |          |          |          |  |
|--------------------------------------------------------------------------------|---------------|----------|----------|----------|--|
|                                                                                | 21 in         | 22 in    | 23 in    | 24 in    |  |
| $P_{ftg} = (145 \text{ pcf})(5 \text{ ft})(1.5 \text{ ft})(1.75 \text{ ft}) =$ | 1903 lbs      | 1994 lbs | 2084 lbs | 2175 lbs |  |

| ASD LC             |            | 1.0D       | DD + 1.0S 1.0D + 1.0W |            |            | 1.0D + 0.75L + 0.75W + 0.75S |            |            | 0.6D + 1.0W |            |            |            |            |            |            |            |
|--------------------|------------|------------|-----------------------|------------|------------|------------------------------|------------|------------|-------------|------------|------------|------------|------------|------------|------------|------------|
| Width              | 21 in      | 22 in      | 23 in                 | 24 in      | 21 in      | 22 in                        | 23 in      | 24 in      | 21 in       | 22 in      | 23 in      | 24 in      | 21 in      | 22 in      | 23 in      | 24 in      |
| FA                 | 391 lbs    | 391 lbs    | 391 lbs               | 391 lbs    | 550 lbs    | 550 lbs                      | 550 lbs    | 550 lbs    | 678 lbs     | 678 lbs    | 678 lbs    | 678 lbs    | -246 lbs   | -246 lbs   | -246 lbs   | -246 lbs   |
| FB                 | 278 lbs    | 278 lbs    | 278 lbs               | 278 lbs    | 393 lbs    | 393 lbs                      | 393 lbs    | 393 lbs    | 482 lbs     | 482 lbs    | 482 lbs    | 482 lbs    | -706 lbs   | -706 lbs   | -706 lbs   | -706 lbs   |
| $F_V$              | 16 lbs     | 16 lbs     | 16 lbs                | 16 lbs     | 221 lbs    | 221 lbs                      | 221 lbs    | 221 lbs    | 177 lbs     | 177 lbs    | 177 lbs    | 177 lbs    | -256 lbs   | -256 lbs   | -256 lbs   | -256 lbs   |
| P <sub>total</sub> | 2572 lbs   | 2662 lbs   | 2753 lbs              | 2844 lbs   | 2846 lbs   | 2936 lbs                     | 3027 lbs   | 3118 lbs   | 3063 lbs    | 3154 lbs   | 3244 lbs   | 3335 lbs   | 190 lbs    | 245 lbs    | 299 lbs    | 353 lbs    |
| M                  | 236 lbs-ft | 236 lbs-ft | 236 lbs-ft            | 236 lbs-ft | 626 lbs-ft | 626 lbs-ft                   | 626 lbs-ft | 626 lbs-ft | 632 lbs-ft  | 632 lbs-ft | 632 lbs-ft | 632 lbs-ft | 455 lbs-ft | 455 lbs-ft | 455 lbs-ft | 455 lbs-ft |
| е                  | 0.09 ft    | 0.09 ft    | 0.09 ft               | 0.08 ft    | 0.22 ft    | 0.21 ft                      | 0.21 ft    | 0.20 ft    | 0.21 ft     | 0.20 ft    | 0.19 ft    | 0.19 ft    | 2.39 ft    | 1.86 ft    | 1.52 ft    | 1.29 ft    |
| L/6                | 0.83 ft    | 0.83 ft    | 0.83 ft               | 0.83 ft    | 0.83 ft    | 0.83 ft                      | 0.83 ft    | 0.83 ft    | 0.83 ft     | 0.83 ft    | 0.83 ft    | 0.83 ft    | 0.83 ft    | 0.83 ft    | 0.83 ft    | 0.83 ft    |
| f <sub>min</sub>   | 261.6 psf  | 259.6 psf  | 257.8 psf             | 256.1 psf  | 239.4 psf  | 238.4 psf                    | 237.5 psf  | 236.6 psf  | 263.5 psf   | 261.4 psf  | 259.5 psf  | 257.7 psf  | 0.0 psf    | 0.0 psf    | 0.0 psf    | 0.0 psf    |
| f <sub>max</sub>   | 326.2 psf  | 321.3 psf  | 316.8 psf             | 312.6 psf  | 411.1 psf  | 402.3 psf                    | 394.3 psf  | 386.9 psf  | 436.7 psf   | 426.7 psf  | 417.6 psf  | 409.3 psf  | 657.3 psf  | 138.7 psf  | 106.2 psf  | 97.1 psf   |

Maximum Bearing Pressure = 657 psf Allowable Bearing Pressure = 1500 psf Use a 60in long  $\times$  21in wide  $\times$  18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure



#### Weak Side Design

### Overturning Check

 $M_O = 0.0 \text{ ft-lbs}$ 

Resisting Force Required = 0.00 lbs S.F. = 1.67

Weight Required = 0.00 lbs Minimum Width = 21 in in Weight Provided = 1903.13 lbs A minimum 60in long x 21in wide x 18in tall ballast foundation is required to resist overturning.

#### Bearing Pressure

| ASD LC             | 1          | .238D + 0.875 | 5E         | 1.1785     | D+0.65625E | + 0.75S    | 0.362D + 0.875E |           |           |  |  |
|--------------------|------------|---------------|------------|------------|------------|------------|-----------------|-----------|-----------|--|--|
| Width              |            | 21 in         |            | 21 in      |            |            |                 | 21 in     |           |  |  |
| Support            | Outer      | Inner         | Outer      | Outer      | Inner      | Outer      | Outer           | Inner     | Outer     |  |  |
| F <sub>Y</sub>     | 49 lbs     | 120 lbs       | 46 lbs     | 188 lbs    | 543 lbs    | 185 lbs    | 14 lbs          | 35 lbs    | 14 lbs    |  |  |
| F <sub>V</sub>     | 0 lbs      | 0 lbs         | 0 lbs      | 0 lbs      | 0 lbs      | 0 lbs      | 0 lbs           | 0 lbs     | 0 lbs     |  |  |
| P <sub>total</sub> | 2405 lbs   | 2476 lbs      | 2402 lbs   | 2431 lbs   | 2786 lbs   | 2428 lbs   | 703 lbs         | 724 lbs   | 702 lbs   |  |  |
| М                  | 0 lbs-ft   | 0 lbs-ft      | 0 lbs-ft   | 0 lbs-ft   | 0 lbs-ft   | 0 lbs-ft   | 0 lbs-ft        | 0 lbs-ft  | 0 lbs-ft  |  |  |
| е                  | 0.00 ft    | 0.00 ft       | 0.00 ft    | 0.00 ft    | 0.00 ft    | 0.00 ft    | 0.00 ft         | 0.00 ft   | 0.00 ft   |  |  |
| L/6                | 0.29 ft    | 1.75 ft       | 1.75 ft    | 1.75 ft    | 1.75 ft    | 1.75 ft    | 1.75 ft         | 1.75 ft   | 1.75 ft   |  |  |
| f <sub>min</sub>   | 274.8 sqft | 283.0 sqft    | 274.5 sqft | 277.6 sqft | 318.3 sqft | 277.4 sqft | 80.4 sqft       | 82.7 sqft | 80.3 sqft |  |  |
| f <sub>max</sub>   | 274.9 psf  | 283.0 psf     | 274.6 psf  | 278.0 psf  | 318.5 psf  | 277.6 psf  | 80.4 psf        | 82.8 psf  | 80.3 psf  |  |  |



Maximum Bearing Pressure = 318 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 21in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 21in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

### 5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

#### 6. DESIGN OF JOINTS AND CONNECTIONS



#### 6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.





#### **6.2 Bolted Connections**

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

| Front Strut              |            | Rear Strut               |            |
|--------------------------|------------|--------------------------|------------|
| Maximum Axial Load =     | 1.025 k    | Maximum Axial Load =     | 1.106 k    |
| M8 Bolt Capacity =       | 5.692 k    | M8 Bolt Capacity =       | 5.692 k    |
| Strut Bearing Capacity = | 7.952 k    | Strut Bearing Capacity = | 7.952 k    |
| Utilization =            | <u>18%</u> | Utilization =            | <u>19%</u> |
| Diagonal Strut           |            | Bracing                  |            |
| Maximum Axial Load =     | 0.181 k    | Maximum Axial Load =     | 0.079 k    |
| M8 Bolt Shear Capacity = | 5.692 k    | M10 Bolt Capacity =      | 8.894 k    |
| Strut Bearing Capacity = | 7.952 k    | Strut Bearing Capacity = | 7.952 k    |
| Utilization =            | <u>3%</u>  | Utilization =            | <u>1%</u>  |
| <i>b</i> ~               |            |                          |            |



Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

## 7. SEISMIC DESIGN

#### 7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 28.39 \text{ in} \\ \text{Allowable Story Drift for All Other} & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta = \{ & 0.568 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.002 \text{ in} \\ \hline \frac{N\!/\!A}{} \end{array}$ 

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

### **APPENDIX A**



### A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

### Purlin = **ProfiPlus XT**

### Strong Axis:

#### 3.4.14

$$L_b = 45.00 \text{ in}$$

$$J = 0.427$$

$$93.8539$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{c}\right)^2$$

30.2 ksi

$$\begin{split} S2 &= \left(\frac{C_c}{1.6}\right)^2\\ S2 &= 1701.56\\ \phi F_L &= \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}] \end{split}$$

#### 3.4.16

 $\phi F_L =$ 

$$b/t = 6.6$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F c y$$

$$\varphi F_L = 33.3 \text{ ksi}$$

## 3.4.16.1

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2 \\ \text{S1} &= & 1.1 \\ S2 &= & C_t \\ \text{S2} &= & 141.0 \\ \phi \text{F}_{\text{L}} &= & 1.17 \phi \text{yFcy} \end{aligned}$$

 $\phi F_L = 38.9 \text{ ksi}$ 

### Weak Axis:

#### 3.4.14

4.14
$$L_{b} = 45.00 \text{ in}$$

$$J = 0.427$$

$$101.986$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b[Bc - 1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 30.1$$

#### 3.4.16

b/t = 37.95  

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 22.7 \text{ ksi}$$

#### 3.4.16.1

N/A for Weak Direction

# SCHLETTER

#### 3.4.18

h/t = 37.95  

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 38.1$$

$$m = 0.63$$

$$C_0 = 40.784$$

$$Cc = 39.216$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 79.7$$

$$\begin{array}{rcl} m = & 0.63 \\ C_0 = & 40.784 \\ Cc = & 39.216 \\ S2 = & \frac{k_1 Bbr}{mDbr} \\ S2 = & 79.7 \\ \phi F_L = & 1.3 \phi y F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \\ \phi F_L St = & 30.2 \text{ ksi} \\ k = & 498305 \text{ mm}^4 \\ & & 1.197 \text{ in}^4 \\ y = & 40.784 \text{ mm} \\ Sx = & 0.746 \text{ in}^3 \\ M_{max} St = & 1.879 \text{ k-ft} \\ \\ \hline \\ \underline{Compression} \end{array}$$

#### 3.4.18

$$h/t = 6.6$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 20.5$$

$$Cc = 20.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 22.7 \text{ ksi}$$

$$ly = 148662 \text{ mm}^4$$

$$0.357 \text{ in}^4$$

$$x = 20.5 \text{ mm}$$

$$Sy = 0.443 \text{ in}^3$$

$$M_{max} Wk = 0.838 \text{ k-ft}$$

## 3.4.9

b/t =6.6 S1 = 12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula)  $\phi F_L = \phi y F c y$  $\phi F_L =$ 33.3 ksi b/t =37.95 S1 = 12.21 S2 = 32.70  $\phi F_L = (\phi ck2*\sqrt{(BpE)})/(1.6b/t)$  $\phi F_L =$ 21.4 ksi

#### 3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.42 \text{ ksi}$$

$$A = 620.02 \text{ mm}^2$$

$$0.96 \text{ in}^2$$

$$P_{\text{max}} = 20.59 \text{ kips}$$

0.0

## A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition



### Girder = Flex Profi

#### Strong Axis:

#### 3.4.11

$$\begin{array}{ll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.45 \\ & 20.4426 \end{array}$$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$
$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

$$S2 = 79.2$$

$$\varphi F_L = \varphi b[Bc-Dc*Lb/(1.2*ry*\sqrt{(Cb)})]$$

$$\varphi F_L = 29.9 \text{ ksi}$$

#### 3.4.15

N/A for Strong Direction

#### Weak Axis:

#### 3.4.11

$$L_{b} = 33.78 \text{ in}$$

$$ry = 1.374$$

$$Cb = 1.45$$

$$24.5845$$

$$S1 = \frac{1.2(Bc - \frac{\theta_{y}}{\theta_{b}}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_{c}$$

$$S2 = 79.2$$

$$\phi F_{L} = \phi b [Bc-Dc^{*}Lb/(1.2^{*}ry^{*}\sqrt{(Cb)})]$$

#### 3.4.15

b/t = 24.46  

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{LIT} = 9.4 \text{ ksi}$$

 $\phi F_1 = 29.9 \text{ ksi}$ 

#### 3.4.16

b/t = 4.29  

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

### 3.4.16

N/A for Strong Direction

 $\phi F_L = 33.3 \text{ ksi}$ 

### 3.4.16

N/A for Weak Direction

### 3.4.16

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$



$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$ 

#### 3.4.16.1

N/A for Weak Direction

#### 3.4.16.2

N/A for Strong Direction

## 3.4.16.2

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 9.37 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 13.5 \text{ ksi} \end{array}$$

#### 3.4.18

h/t = 24.46  

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$m = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.9 \text{ ksi}$$

$$lx = 364470 \text{ mm}^4$$

$$0.876 \text{ in}^4$$

$$y = 37.77 \text{ mm}$$

0.589 in<sup>3</sup>

1.469 k-ft

#### 3.4.18

h/t = 4.29  

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 13.5 \text{ ksi}$$

$$by = 217168 \text{ mm}^4$$

x =

Sy =

 $M_{max}Wk =$ 

0.522 in<sup>4</sup>

0.457 in<sup>3</sup>

0.513 k-ft

29 mm

### Compression

 $M_{max}St =$ 

Sx=

#### 3.4.7

$$\lambda = 0.46067$$

$$r = 1.374 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.90326$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 30.1251 \text{ ksi}$$



### 3.4.8

 $\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))/(5.1b/t)} \\ \phi F_L = & 10.4 \text{ ksi} \end{array}$ 

# 3.4.9

b/t = 4.29 S1 = 12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula)  $\phi F_L = \phi y F c y$   $\phi F_L = 33.3 \text{ ksi}$ b/t = 24.46 S1 = 12.21 S2 = 32.70

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$  $\phi F_L = 28.2 \text{ ksi}$ 

### 3.4.9.1

b/t =24.46 2.6 t = ds = 6.05 rs = 3.49 S = 21.70 pst = 0.22 10.43  $F_{UT} =$  $F_{ST}=$ 28.24  $\phi F_L = Fut + (Fst - Fut)\rho st < Fst$  $\phi F_L =$ 14.3 ksi

## 3.4.10

Rb/t = 0.0  $S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$  S1 = 6.87 S2 = 131.3  $\phi F_L = \phi y Fcy$   $\phi F_L = 33.25 \text{ ksi}$   $\phi F_L = 14.29 \text{ ksi}$ 

 $A = 576.21 \text{ mm}^2$   $0.89 \text{ in}^2$   $P_{\text{max}} = 12.76 \text{ kips}$ 

## A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition



Strut = 30x30x3

#### Strong Axis:

#### 3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ 

## Weak Axis: 3.4.14

$$\begin{split} L_b &= & 18.00 \text{ in} \\ J &= & 0.16 \\ & 47.2194 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.2 \end{split}$$

#### 3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

 $\phi F_L = 31.2 \text{ ksi}$ 

#### 3.4.16

b/t = 7.75  

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

#### 3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

7.75

### 3.4.16.1

N/A for Weak Direction

### 3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 31.2 \text{ ksi}$$

$$\phi F_L$$

## 3.4.18

h/t =

$$m = 0.65$$

$$C_0 = 15$$

$$C_0 = 15$$

$$C_0 = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 31.2 \text{ ksi}$$

$$\phi F_L W k = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$x = 15 \text{ mm}$$

$$Sy = 0.163 \text{ in}^3$$

$$M_{max} W k = 0.423 \text{ k-ft}$$

7.75

mDbr

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$ 

# SCHLETTER

### Compression

## 3.4.7

$$\lambda = 0.77182$$

$$r = 0.437 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.83792$$

$$\phi cc = 0.83792$$

$$\phi cc = 0.83792$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 24.5226 \text{ ksi}$$

### 3.4.9

$$b/t = 7.75$$
 S1 = 12.21 (See 3.4.16 above for formula)  
 S2 = 32.70 (See 3.4.16 above for formula)  
 
$$\phi F_L = \phi y F c y$$
 
$$\phi F_L = 33.3 \text{ ksi}$$

b/t = 7.75  
S1 = 12.21  
S2 = 32.70  
$$\varphi F_L = \varphi y F_C y$$

33.3 ksi

### 3.4.10

 $\phi F_L =$ 

Rb/t = 0.0  

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87  
S2 = 131.3  

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$
 $A = 323.87 \text{ mm}^2$ 
 $0.50 \text{ in}^2$ 
 $P_{max} = 12.31 \text{ kips}$ 

## A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition



#### Strut = 30x30x3

## Strong Axis: 3.4.14

$$L_{b} = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{16Dc}\right)^{2}$$

$$S1 = \left(\frac{b}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
S2 = 1701.56  
 $\varphi F_1 = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(JyJ)/2})}]$ 

$$\phi F_{L} = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})]}$$

$$\phi F_L = 29.8 \text{ ksi}$$

## 3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

## 3.4.16.1 Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$ 

7.75

#### 3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$

$$\phi F_L St = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

15 mm

0.163 in<sup>3</sup>

0.404 k-ft

## Weak Axis:

### 3.4.14

$$\begin{array}{lll} L_b = & 46.38 \text{ in} \\ J = & 0.16 \\ 121.663 \\ S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 = & 0.51461 \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ S2 = & 1701.56 \\ \phi F_L = & \phi b [Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \\ \phi F_L = & 29.8 \end{array}$$

#### 3.4.16

b/t = 7.75  

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

#### 3.4.16.1

N/A for Weak Direction

h/t = 7.75

S1 =

#### 3.4.18

$$\begin{array}{rcl} m = & 0.65 \\ C_0 = & 15 \\ Cc = & 15 \\ S2 = \frac{k_1 Bbr}{mDbr} \\ S2 = & 77.3 \\ \phi F_L = & 1.3 \phi y F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \\ \phi F_L Wk = & 33.3 \text{ ksi} \\ ly = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ x = & 15 \text{ mm} \\ Sy = & 0.163 \text{ in}^3 \\ M_{max} Wk = & 0.450 \text{ k-ft} \\ \end{array}$$

y =

Sx =

 $M_{max}St =$ 

# SCHLETTER

## Compression

## 3.4.7

$$\lambda = 1.98863$$
  
 $r = 0.437$  in  
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$   
 $S1^* = 0.33515$ 

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.85841$$

$$\phi F_L = (\phi cc F cy)/(\lambda^2)$$

$$\phi F_L = 7.59722 \text{ ksi}$$

### 3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$b/t = 7.75$$

$$S2 = 32.70$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

#### 3.4.10

Rb/t = 0.0  

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)$$

$$S1 = 6.87$$

$$\phi F_L {= \phi y F c y}$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 3.81 \text{ kips}$$

## A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition



#### Strut = 30x30x3

## Strong Axis:

3.4.14  

$$L_{b} = 29.96 \text{ in}$$

$$J = 0.16$$

$$78.5957$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = \left(\frac{Bc - \frac{c_y}{\theta_b}Fcy}{1.6Dc}\right)$$
$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))]}$$

$$\phi F_L = 30.5 \text{ ksi}$$

## 3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_1 = 33.3 \text{ ksi}$$

#### 3.4.16.1 Not Used Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$ 

7.75

### 3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$C_0 = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L St = 30.5 \text{ ksi}$$

 $lx = 39958.2 \text{ mm}^4$ 

0.096 in<sup>4</sup>

0.163 in<sup>3</sup>

0.413 k-ft

15 mm

## Weak Axis:

#### 3.4.14

$$\begin{split} \mathsf{L_b} &= & 29.96 \text{ in} \\ \mathsf{J} &= & 0.16 \\ & 78.5957 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \varphi \mathsf{F_L} &= & \varphi \mathsf{b}[\mathsf{Bc-1.6Dc^*}\sqrt{(\mathsf{LbSc})/(\mathsf{Cb^*}\sqrt{(\mathsf{lyJ})/2}))}] \\ \varphi \mathsf{F_L} &= & 30.5 \end{split}$$

#### 3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi F Cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

#### 3.4.16.1

N/A for Weak Direction

## 3.4.18

h/t =

S1 =

m =

 $C_0 =$ 

Cc =

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$ 

7.75

0.65

$$S2 = \frac{k_1 B b r}{m D b r}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 33.3 \text{ ksi}$$

$$ly = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$x = 15 \text{ mm}$$

$$Sy = 0.163 \text{ in}^3$$

$$M_{max} W k = 0.450 \text{ k-ft}$$

 $M_{max}St =$ 

y = Sx =

# SCHLETTER

#### Compression

3.4.7 
$$\lambda = 1.28467$$

$$r = 0.437 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.75985$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 16.1143 \text{ ksi}$$

## 3.4.9

$$\begin{array}{lll} b/t = & 7.75 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \\ b/t = & 7.75 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$$

#### 3.4.10

Rb/t = 0.0  

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87  
S2 = 131.3  
 $\phi F_L = \phi y Fcy$   
 $\phi F_L = 33.25 \text{ ksi}$   
 $\phi F_L = 16.11 \text{ ksi}$   
 $\phi F_L = 323.87 \text{ mm}^2$   
0.50 in<sup>2</sup>  
 $\phi F_L = 8.09 \text{ kips}$ 

## **APPENDIX B**

### **B.1**

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.



Model Name

Schletter, Inc.HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:\_\_\_\_

## **Basic Load Cases**

|   | BLC Description      | Category | X Gravity | Y Gravity | Z Gravity | Joint | Point | Distribut | .Area(Me | Surface( |
|---|----------------------|----------|-----------|-----------|-----------|-------|-------|-----------|----------|----------|
| 1 | Dead Load, Max       | DĽ       | _         | -1        | •         |       |       | 2         | ,        | ,        |
| 2 | Dead Load, Min       | DL       |           | -1        |           |       |       | 2         |          |          |
| 3 | Snow Load            | SL       |           |           |           |       |       | 2         |          |          |
| 4 | Wind Load - Pressure | WL       |           |           |           |       |       | 2         |          |          |
| 5 | Wind Load - Suction  | WL       |           |           |           |       |       | 2         |          |          |
| 6 | Seismic - Lateral    | EL       |           |           |           |       |       |           |          |          |

## Member Distributed Loads (BLC 1 : Dead Load, Max)

|   | Member Label | Direction | Start Magnitude[lb/ft,F | End Magnitude[lb/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|-------------------------|------------------------|----------------------|--------------------|
| 1 | M13          | Υ         | -8.366                  | -8.366                 | 0                    | 0                  |
| 2 | M16          | Υ         | -8.366                  | -8.366                 | 0                    | 0                  |

## Member Distributed Loads (BLC 2 : Dead Load, Min)

|   | Member Label | Direction | Start Magnitude[lb/ft,F | End Magnitude[lb/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|-------------------------|------------------------|----------------------|--------------------|
| 1 | M13          | Υ         | -4.45                   | -4.45                  | 0                    | 0                  |
| 2 | M16          | Υ         | -4.45                   | -4.45                  | 0                    | 0                  |

## Member Distributed Loads (BLC 3: Snow Load)

|   | Member Label | Direction | Start Magnitude[lb/ft,F | End Magnitude[lb/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|-------------------------|------------------------|----------------------|--------------------|
| 1 | M13          | Υ         | -63.248                 | -63.248                | 0                    | 0                  |
| 2 | M16          | Υ         | -63.248                 | -63.248                | 0                    | 0                  |

## Member Distributed Loads (BLC 4: Wind Load - Pressure)

|   | Member Label | Direction | Start Magnitude[lb/ft,F | End Magnitude[lb/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|-------------------------|------------------------|----------------------|--------------------|
| 1 | M13          | V         | -73.997                 | -73.997                | 0                    | 0                  |
| 2 | M16          | V         | -118.396                | -118.396               | 0                    | 0                  |

## Member Distributed Loads (BLC 5: Wind Load - Suction)

|   | Member Label | Direction | Start Magnitude[lb/ft,F | ] End Magnitude[lb/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|-------------------------|--------------------------|----------------------|--------------------|
| 1 | M13          | V         | 150.955                 | 150.955                  | 0                    | 0                  |
| 2 | M16          | V         | 73.997                  | 73.997                   | 0                    | 0                  |

## **Load Combinations**

|    | Description                   | S    | P | S | В | Fa   | В | Fa  | В | Fa  | В | Fa   | В | Fa | В | Fa | В | Fa | В | Fa | В | Fa | В | Fa |
|----|-------------------------------|------|---|---|---|------|---|-----|---|-----|---|------|---|----|---|----|---|----|---|----|---|----|---|----|
| 1  | LRFD 1.2D + 1.6S + 0.8W       | Yes  | Υ |   | 1 | 1.2  | 3 | 1.6 | 4 | .8  |   |      |   |    |   |    |   |    |   |    |   |    |   |    |
| 2  | LRFD 1.2D + 1.6W + 0.5S       | Yes  | Υ |   | 1 | 1.2  | 3 | .5  | 4 | 1.6 |   |      |   |    |   |    |   |    |   |    |   |    |   |    |
| 3  | LRFD 0.9D + 1.6W              | Yes  | Υ |   | 2 | .9   |   |     |   |     | 5 | 1.6  |   |    |   |    |   |    |   |    |   |    |   |    |
| 4  | LATERAL - LRFD 1.54D + 1.3E   | Yes  | Υ |   | 1 | 1.54 | 3 | .2  |   |     | 6 | 1.3  |   |    |   |    |   |    |   |    |   |    |   |    |
| 5  | LATERAL - LRFD 0.56D + 1.3E   | Yes  | Υ |   | 1 | .56  |   |     |   |     | 6 | 1.3  |   |    |   |    |   |    |   |    |   |    |   |    |
| 6  | LATERAL - LRFD 1.54D + 1.25   | Yes  | Υ |   | 1 | 1.54 | 3 | .2  |   |     | 6 | 1.25 |   |    |   |    |   |    |   |    |   |    |   |    |
| 7  | LATERAL - LRFD 0.56D + 1.25E  | Yes  | Υ |   | 1 | .56  |   |     |   |     | 6 | 1.25 |   |    |   |    |   |    |   |    |   |    |   |    |
| 8  |                               |      |   |   |   |      |   |     |   |     |   |      |   |    |   |    |   |    |   |    |   |    |   |    |
| 9  | ASD 1.0D + 1.0S               | Yes  | Υ |   | 1 | 1    | 3 | 1   |   |     |   |      |   |    |   |    |   |    |   |    |   |    |   |    |
| 10 | ASD 1.0D + 1.0W               | Yes  | Υ |   | 1 | 1    |   |     | 4 | 1   |   |      |   |    |   |    |   |    |   |    |   |    |   |    |
| 11 | ASD 1.0D + 0.75L + 0.75W + 0  | Yes  | Υ |   | 1 | 1    | 3 | .75 | 4 | .75 |   |      |   |    |   |    |   |    |   |    |   |    |   |    |
| 12 | ASD 0.6D + 1.0W               | Yes  | Υ |   | 2 | .6   |   |     |   |     | 5 | 1    |   |    |   |    |   |    |   |    |   |    |   |    |
| 13 | LATERAL - ASD 1.238D + 0.875E | Yes  | Υ |   | 1 | 1.2  |   |     |   |     | 6 | .875 |   |    |   |    |   |    |   |    |   |    |   |    |
| 14 | LATERAL - ASD 1.1785D + 0.65. | .Yes | Υ |   | 1 | 1.1  | 3 | .75 |   |     | 6 | .656 |   |    |   |    |   |    |   |    |   |    |   |    |
| 15 | LATERAL - ASD 0.362D + 0.875E | Yes  | Υ |   | 1 | .362 |   |     |   |     | 6 | .875 |   |    |   |    |   |    |   |    |   |    |   |    |



Company Designer Job Number Model Name : Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:\_\_\_\_

## **Envelope Joint Reactions**

|    | Joint   |     | X [lb]   | LC | Y [lb]    | LC | Z [lb]  | LC | MX [k-ft] | LC | MY [k-ft] | LC | MZ [k-ft] | LC |
|----|---------|-----|----------|----|-----------|----|---------|----|-----------|----|-----------|----|-----------|----|
| 1  | N8      | max | 119.135  | 2  | 240.89    | 2  | .004    | 10 | 0         | 10 | 0         | 1  | 0         | 1  |
| 2  |         | min | -144.054 | 3  | -369.833  | 3  | 192     | 3  | 0         | 3  | 0         | 1  | 0         | 1  |
| 3  | N7      | max | 0        | 15 | 339.446   | 1  | .029    | 10 | 0         | 10 | 0         | 1  | 0         | 1  |
| 4  |         | min | 124      | 2  | -119.582  | 3  | 337     | 1  | 0         | 1  | 0         | 1  | 0         | 1  |
| 5  | N15     | max | 0        | 15 | 1024.702  | 2  | .056    | 9  | 0         | 9  | 0         | 1  | 0         | 1  |
| 6  |         | min | 942      | 2  | -395.549  | 3  | 446     | 3  | 0         | 3  | 0         | 1  | 0         | 1  |
| 7  | N16     | max | 360.459  | 2  | 730.467   | 2  | 0       | 11 | 0         | 9  | 0         | 1  | 0         | 1  |
| 8  |         | min | -409.857 | 3  | -1130.739 | 3  | -64.689 | 3  | 0         | 3  | 0         | 1  | 0         | 1  |
| 9  | N23     | max | 0        | 15 | 339.689   | 1  | .337    | 1  | 0         | 1  | 0         | 1  | 0         | 1  |
| 10 |         | min | 124      | 2  | -119.201  | 3  | 028     | 10 | 0         | 10 | 0         | 1  | 0         | 1  |
| 11 | N24     | max | 119.135  | 2  | 243.082   | 2  | 65.221  | 3  | 0         | 9  | 0         | 1  | 0         | 1  |
| 12 |         | min | -144.41  | 3  | -368.972  | 3  | 004     | 10 | 0         | 3  | 0         | 1  | 0         | 1  |
| 13 | Totals: | max | 597.54   | 2  | 2912.982  | 2  | 0       | 3  |           |    |           |    |           |    |
| 14 |         | min | -698.662 | 3  | -2503.876 | 3  | 0       | 9  |           |    |           |    |           |    |

## **Envelope Member Section Forces**

|    | Member | Sec |     | Axial[lb] | LC | y Shear[lb] | LC | z Shear[lb] | LC | Torque[k-ft] | LC | y-y Mome |   | z-z Mome | . LC |
|----|--------|-----|-----|-----------|----|-------------|----|-------------|----|--------------|----|----------|---|----------|------|
| 1  | M2     | 1   | max | 244.634   | 1  | .669        | 4  | .079        | 9  | 0            | 10 | 0        | 3 | 0        | 1    |
| 2  |        |     | min | -371.209  | 3  | .158        | 15 | 135         | 3  | 0            | 3  | 0        | 2 | 0        | 1    |
| 3  |        | 2   | max | 244.73    | 1  | .632        | 4  | .079        | 9  | 0            | 10 | 0        | 9 | 0        | 15   |
| 4  |        |     | min | -371.137  | 3  | .149        | 15 | 135         | 3  | 0            | 3  | 0        | 3 | 0        | 4    |
| 5  |        | 3   | max | 244.827   | 1  | .594        | 4  | .079        | 9  | 0            | 10 | 0        | 9 | 0        | 15   |
| 6  |        |     | min | -371.064  | 3  | .14         | 15 | 135         | 3  | 0            | 3  | 0        | 3 | 0        | 4    |
| 7  |        | 4   | max | 244.923   | 1  | .556        | 4  | .079        | 9  | 0            | 10 | 0        | 9 | 0        | 15   |
| 8  |        |     | min | -370.992  | 3  | .131        | 15 | 135         | 3  | 0            | 3  | 0        | 3 | 0        | 4    |
| 9  |        | 5   | max | 245.02    | 1  | .518        | 4  | .079        | 9  | 0            | 10 | 0        | 9 | 0        | 15   |
| 10 |        |     | min | -370.92   | 3  | .123        | 15 | 135         | 3  | 0            | 3  | 0        | 3 | 0        | 4    |
| 11 |        | 6   | max | 245.116   | 1  | .48         | 4  | .079        | 9  | 0            | 10 | 0        | 9 | 0        | 15   |
| 12 |        |     | min | -370.848  | 3  | .114        | 15 | 135         | 3  | 0            | 3  | 0        | 3 | 0        | 4    |
| 13 |        | 7   | max | 245.212   | 1  | .442        | 4  | .079        | 9  | 0            | 10 | 0        | 9 | 0        | 15   |
| 14 |        |     | min | -370.775  | 3  | .105        | 15 | 135         | 3  | 0            | 3  | 0        | 3 | 0        | 4    |
| 15 |        | 8   | max | 245.309   | 1  | .405        | 4  | .079        | 9  | 0            | 10 | 0        | 9 | 0        | 15   |
| 16 |        |     | min | -370.703  | 3  | .096        | 15 | 135         | 3  | 0            | 3  | 0        | 3 | 0        | 4    |
| 17 |        | 9   | max | 245.405   | 1  | .367        | 4  | .079        | 9  | 0            | 10 | 0        | 9 | 0        | 15   |
| 18 |        |     | min | -370.631  | 3  | .087        | 15 | 135         | 3  | 0            | 3  | 0        | 3 | 0        | 4    |
| 19 |        | 10  | max | 245.501   | 1  | .329        | 4  | .079        | 9  | 0            | 10 | 0        | 9 | 0        | 15   |
| 20 |        |     | min | -370.558  | 3  | .078        | 15 | 135         | 3  | 0            | 3  | 0        | 3 | 0        | 4    |
| 21 |        | 11  | max | 245.598   | 1  | .291        | 4  | .079        | 9  | 0            | 10 | 0        | 9 | 0        | 15   |
| 22 |        |     | min | -370.486  | 3  | .069        | 15 | 135         | 3  | 0            | 3  | 0        | 3 | 0        | 4    |
| 23 |        | 12  | max | 245.694   | 1  | .253        | 4  | .079        | 9  | 0            | 10 | 0        | 9 | 0        | 15   |
| 24 |        |     | min | -370.414  | 3  | .06         | 15 | 135         | 3  | 0            | 3  | 0        | 3 | 0        | 4    |
| 25 |        | 13  | max | 245.79    | 1  | .215        | 4  | .079        | 9  | 0            | 10 | 0        | 9 | 0        | 15   |
| 26 |        |     | min | -370.342  | 3  | .051        | 15 | 135         | 3  | 0            | 3  | 0        | 3 | 0        | 4    |
| 27 |        | 14  | max | 245.887   | 1  | .178        | 4  | .079        | 9  | 0            | 10 | 0        | 9 | 0        | 15   |
| 28 |        |     | min | -370.269  | 3  | .042        | 15 | 135         | 3  | 0            | 3  | 0        | 3 | 0        | 4    |
| 29 |        | 15  | max | 245.983   | 1  | .14         | 4  | .079        | 9  | 0            | 10 | 0        | 9 | 0        | 15   |
| 30 |        |     | min | -370.197  | 3  | .034        | 15 | 135         | 3  | 0            | 3  | 0        | 3 | 0        | 4    |
| 31 |        | 16  | max | 246.08    | 1  | .102        | 4  | .079        | 9  | 0            | 10 | 0        | 9 | 0        | 15   |
| 32 |        |     | min | -370.125  | 3  | .025        | 15 | 135         | 3  | 0            | 3  | 0        | 3 | 0        | 4    |
| 33 |        | 17  | max | 246.176   | 1  | .068        | 2  | .079        | 9  | 0            | 10 | 0        | 9 | 0        | 15   |
| 34 |        |     | min | -370.053  | 3  | .016        | 15 | 135         | 3  | 0            | 3  | 0        | 3 | 0        | 4    |
| 35 |        | 18  | max |           | 1  | .039        | 2  | .079        | 9  | 0            | 10 | 0        | 9 | 0        | 15   |
| 36 |        |     | min | -369.98   | 3  | .004        | 9  | 135         | 3  | 0            | 3  | 0        | 3 | 0        | 4    |
| 37 |        | 19  | max | 246.369   | 1  | .009        | 10 | .079        | 9  | 0            | 10 | 0        | 9 | 0        | 15   |



Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:\_\_\_\_

|    | Member | Sec |         | Axial[lb]         | LC        | y Shear[lb]  | LC | z Shear[lb] | LC | Torque[k-f | t] LC | y-y Mome | LC | z-z Mome        | . LC |
|----|--------|-----|---------|-------------------|-----------|--------------|----|-------------|----|------------|-------|----------|----|-----------------|------|
| 38 |        |     | min     | -369.908          | 3         | 021          | 9  | 135         | 3  | 0          | 3     | 0        | 3  | 0               | 4    |
| 39 | M3     | 1   | max     | 60.643            | 2         | 1.817        | 4  | .008        | 10 | 0          | 10    | 0        | 1  | 0               | 4    |
| 40 |        |     | min     | -43.879           | 9         | .428         | 15 | 111         | 1  | 0          | 1     | 0        | 10 | 0               | 15   |
| 41 |        | 2   | max     | 60.576            | 2         | 1.639        | 4  | .008        | 10 | 0          | 10    | 0        | 1  | 0               | 4    |
| 42 |        |     | min     | -43.935           | 9         | .386         | 15 | 111         | 1  | 0          | 1     | 0        | 10 | 0               | 15   |
| 43 |        | 3   | max     | 60.509            | 2         | 1.461        | 4  | .008        | 10 | 0          | 10    | 0        | 1  | 0               | 2    |
| 44 |        |     | min     | -43.991           | 9         | .344         | 15 | 111         | 1  | 0          | 1     | 0        | 10 | 0               | 15   |
| 45 |        | 4   | max     | 60.442            | 2         | 1.283        | 4  | .008        | 10 | 0          | 10    | 0        | 1  | 0               | 15   |
| 46 |        |     | min     | -44.047           | 9         | .302         | 15 | 111         | 1  | 0          | 1     | 0        | 10 | 0               | 4    |
| 47 |        | 5   | max     | 60.375            | 2         | 1.105        | 4  | .008        | 10 | 0          | 10    | 0        | 1  | 0               | 15   |
| 48 |        |     | min     | -44.103           | 9         | .26          | 15 | 111         | 1  | 0          | 1     | 0        | 10 | 0               | 4    |
| 49 |        | 6   | max     | 60.308            | 2         | .927         | 4  | .008        | 10 | 0          | 10    | 0        | 1  | 0               | 15   |
| 50 |        |     | min     | -44.159           | 9         | .218         | 15 | 111         | 1  | 0          | 1     | 0        | 10 | 0               | 4    |
| 51 |        | 7   | max     | 60.241            | 2         | .749         | 4  | .008        | 10 | 0          | 10    | 0        | 1  | 0               | 15   |
| 52 |        |     | min     | -44.215           | 9         | .177         | 15 | 111         | 1  | 0          | 1     | 0        | 10 | 0               | 4    |
| 53 |        | 8   | max     | 60.173            | 2         | .571         | 4  | .008        | 10 | 0          | 10    | 0        | 1  | 0               | 15   |
| 54 |        |     | min     | -44.271           | 9         | .135         | 15 | 111         | 1  | 0          | 1     | 0        | 10 | 0               | 4    |
| 55 |        | 9   | max     | 60.106            | 2         | .393         | 4  | .008        | 10 | 0          | 10    | 0        | 1  | 0               | 15   |
| 56 |        | 1 3 | min     | -44.327           | 9         | .093         | 15 | 111         | 1  | 0          | 1     | 0        | 10 | 001             | 4    |
| 57 |        | 10  |         | 60.039            | 2         |              | 4  |             | 10 | 0          | 10    | 0        | 1  | <u>001</u><br>0 |      |
| 58 |        | 10  | max     | -44.382           | 9         | .215<br>.051 | 15 | .008<br>111 | 1  | 0          | 1     | 0        | 10 | 001             | 15   |
|    |        | 11  | min     |                   | 2         |              | 2  |             |    |            | -     |          | 1  |                 | _    |
| 59 |        | 11  | max     | 59.972<br>-44.438 |           | .041         |    | .008        | 10 | 0          | 10    | 0        |    | 0               | 15   |
| 60 |        | 40  | min     |                   | 9         | .009         | 15 | 111         | 1  | 0          | 1     | 0        | 10 | 001             | 4    |
| 61 |        | 12  | max     | 59.905            | 2         | 033          | 15 | .008        | 10 | 0          | 10    | 0        | 1  | 0               | 15   |
| 62 |        | 40  | min     | -44.494           | 9         | 141          | 4  | 111         | 1  | 0          | 1     | 0        | 10 | 001             | 4    |
| 63 |        | 13  | max     | 59.838            | 2         | 074          | 15 | .008        | 10 | 0          | 10    | 0        | 9  | 0               | 15   |
| 64 |        |     | min     | -44.55            | 9         | 319          | 4  | <u>111</u>  | 1  | 0          | 1     | 0        | 10 | <u>001</u>      | 4    |
| 65 |        | 14  | max     | 59.771            | 2         | 116          | 15 | .008        | 10 | 0          | 10    | 0        | 3  | 0               | 15   |
| 66 |        |     | min     | -44.606           | 9         | 497          | 4  | 111         | 1  | 0          | 1     | 0        | 1  | 001             | 4    |
| 67 |        | 15  | max     | 59.704            | 2         | 158          | 15 | .008        | 10 | 0          | 10    | 0        | 10 | 0               | 15   |
| 68 |        |     | min     | -44.662           | 9         | 675          | 4  | 111         | 1  | 0          | 1     | 0        | 1  | 0               | 4    |
| 69 |        | 16  | max     | 59.637            | 2         | 2            | 15 | .008        | 10 | 0          | 10    | 00       | 10 | 0               | 15   |
| 70 |        |     | min     | -44.718           | 9         | 853          | 4  | 111         | 1  | 0          | 1     | 0        | 1  | 0               | 4    |
| 71 |        | 17  | max     | 59.57             | 2         | 242          | 15 | .008        | 10 | 0          | 10    | 0        | 10 | 0               | 15   |
| 72 |        |     | min     | -44.774           | 9         | -1.031       | 4  | 111         | 1  | 0          | 1     | 0        | 1  | 0               | 4    |
| 73 |        | 18  | max     | 59.502            | 2         | 284          | 15 | .008        | 10 | 0          | 10    | 0        | 10 | 0               | 15   |
| 74 |        |     | min     | -44.83            | 9         | -1.209       | 4  | 111         | 1  | 0          | 1     | 0        | 1  | 0               | 4    |
| 75 |        | 19  | max     | 59.435            | 2         | 326          | 15 | .008        | 10 | 0          | 10    | 0        | 10 | 0               | 1    |
| 76 |        |     | min     | -44.886           | 9         | -1.387       | 4  | 111         | 1  | 0          | 1     | 0        | 1  | 0               | 1    |
| 77 | M4     | 1   | max     |                   | 1         | 0            | 1  | .03         | 10 | 0          | 1     | 0        | 3  | 0               | 1    |
| 78 |        |     | min     | -120.456          | 3         | 0            | 1  | 357         | 1  | 0          | 1     | 0        | 2  | 0               | 1    |
| 79 |        | 2   | max     | 338.346           | 1         | 0            | 1  | .03         | 10 | 0          | 1     | 0        | 10 | 0               | 1    |
| 80 |        |     | min     | -120.407          | 3         | 0            | 1  | 357         | 1  | 0          | 1     | 0        | 1  | 0               | 1    |
| 81 |        | 3   |         | 338.41            | 1         | 0            | 1  | .03         | 10 | 0          | 1     | 0        | 10 | 0               | 1    |
| 82 |        |     |         | -120.359          | 3         | 0            | 1  | 357         | 1  | 0          | 1     | 0        | 1  | 0               | 1    |
| 83 |        | 4   |         | 338.475           | 1         | 0            | 1  | .03         | 10 | 0          | 1     | 0        | 10 | 0               | 1    |
| 84 |        |     | min     | -120.31           | 3         | 0            | 1  | 357         | 1  | 0          | 1     | 0        | 1  | 0               | 1    |
| 85 |        | 5   |         | 338.54            | 1         | 0            | 1  | .03         | 10 | 0          | 1     | 0        | 10 | 0               | 1    |
| 86 |        |     |         | -120.262          | 3         | 0            | 1  | 357         | 1  | 0          | 1     | 0        | 1  | 0               | 1    |
| 87 |        | 6   |         | 338.605           | 1         | 0            | 1  | .03         | 10 | 0          | 1     | 0        | 10 | 0               | 1    |
| 88 |        | Ť   |         | -120.213          | 3         | 0            | 1  | 357         | 1  | 0          | 1     | 0        | 1  | 0               | 1    |
| 89 |        | 7   |         | 338.669           | 1         | 0            | 1  | .03         | 10 | 0          | 1     | 0        | 10 | 0               | 1    |
| 90 |        | Ľ   |         | -120.165          | 3         | 0            | 1  | 357         | 1  | 0          | 1     | 0        | 1  | 0               | 1    |
| 91 |        | 8   |         | 338.734           | 1         | 0            | 1  | .03         | 10 | 0          | 1     | 0        | 10 | 0               | 1    |
| 92 |        |     |         | -120.116          | 3         | 0            | 1  | 357         | 1  | 0          | 1     | 0        | 1  | 0               | 1    |
| 93 |        | 9   |         | 338.799           | _ <u></u> | 0            | 1  | .03         | 10 | 0          | 1     | 0        | 10 | 0               | 1    |
| 94 |        | -   |         | -120.068          | 3         | 0            | 1  | 357         | 1  | 0          | 1     | 0        | 1  | 0               | 1    |
| 34 |        |     | 1111111 | -120.000          | J         | U            |    | 557         |    | U          |       | U        |    | U               |      |



Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:\_\_\_\_

|            | Member | Sec |            | Axial[lb]            | LC            | y Shear[lb] | LC         | z Shear[lb] | LC | Torque[k-ft] | LC | y-y Mome | LC | z-z Mome | LC         |
|------------|--------|-----|------------|----------------------|---------------|-------------|------------|-------------|----|--------------|----|----------|----|----------|------------|
| 95         |        | 10  | max        | 338.863              | 1             | 0           | 1          | .03         | 10 | 0            | 1  | 0        | 10 | 0        | 1          |
| 96         |        |     | min        | -120.019             | 3             | 0           | 1          | 357         | 1  | 0            | 1  | 0        | 1_ | 0        | 1          |
| 97         |        | 11  | max        |                      | 1             | 0           | 1          | .03         | 10 | 0            | 1  | 0        | 10 | 0        | 1          |
| 98         |        |     | min        | -119.971             | 3             | 0           | 1          | 357         | 1  | 0            | 1  | 0        | 1  | 0        | 1          |
| 99         |        | 12  | max        | 338.993              | 1             | 0           | 1          | .03         | 10 | 0            | 1  | 0        | 10 | 0        | 1          |
| 100        |        | 10  | min        | -119.922             | 3             | 0           | 1          | 357         | 1  | 0            | 1  | 0        | 1  | 0        | 1          |
| 101        |        | 13  | max        |                      | 1             | 0           | 1          | .03         | 10 | 0            | 1  | 0        | 10 | 0        | 1          |
| 102        |        | 4.  | min        | -119.874             | 3             | 0           | 1          | 357         | 1  | 0            | 1  | 0        | 1  | 0        | 1          |
| 103        |        | 14  | max        |                      | 1             | 0           | 1          | .03         | 10 | 0            | 1  | 0        | 10 | 0        | 1          |
| 104        |        | 4.5 | min        | -119.825             | 3             | 0           | 1          | 357         | 1  | 0            | 1  | 0        | 1  | 0        | 1          |
| 105        |        | 15  | max        | 339.187              | 1             | 0           | 1          | .03         | 10 | 0            | 1  | 0        | 10 | 0        | 1          |
| 106        |        | 4.0 | min        | -119.777             | 3             | 0           | 1          | 357         | 1  | 0            | 1  | 0        | 1  | 0        | 1          |
| 107<br>108 |        | 16  | max        | 339.252              | 1             | 0           | 1          | .03<br>357  | 10 | 0            | 1  | 0        | 10 | 0        | 1          |
| 109        |        | 17  |            | -119.728<br>339.316  | <u>3</u>      | 0           | 1          | .03         | 10 | 0            | 1  | 0        | 10 | 0        | 1          |
| 110        |        | 17  | max<br>min | -119.68              | 3             | 0           | 1          | 357         | 1  | 0            | 1  | 0        | 1  | 0        | 1          |
| 111        |        | 18  | max        |                      | 1             | 0           | 1          | .03         | 10 | 0            | 1  | 0        | 10 | 0        | 1          |
| 112        |        | 10  | min        | -119.631             | 3             | 0           | 1          | 357         | 1  | 0            | 1  | 0        | 1  | 0        | 1          |
| 113        |        | 19  | max        |                      | 1             | 0           | 1          | .03         | 10 | 0            | 1  | 0        | 10 | 0        | 1          |
| 114        |        | 13  | min        | -119.582             | 3             | 0           | 1          | 357         | 1  | 0            | 1  | 0        | 1  | 0        | 1          |
| 115        | M6     | 1   | max        | 746.373              | 1             | .658        | 4          | .016        | 9  | 0            | 3  | 0        | 3  | 0        | 1          |
| 116        | 1010   |     | min        | -1105.77             | 3             | .156        | 15         | 291         | 3  | 0            | 1  | 0        | 9  | 0        | 1          |
| 117        |        | 2   | max        | 746.469              | 1             | .62         | 4          | .016        | 9  | 0            | 3  | 0        | 3  | 0        | 15         |
| 118        |        |     | min        | -1105.698            | 3             | .148        | 15         | 291         | 3  | 0            | 1  | 0        | 1  | 0        | 4          |
| 119        |        | 3   | max        | 746.565              | 1             | .583        | 4          | .016        | 9  | 0            | 3  | 0        | 3  | 0        | 15         |
| 120        |        |     | min        | -1105.626            | 3             | .139        | 15         | 291         | 3  | 0            | 1  | 0        | 1  | 0        | 4          |
| 121        |        | 4   | max        | 746.662              | 1             | .545        | 4          | .016        | 9  | 0            | 3  | 0        | 3  | 0        | 15         |
| 122        |        |     | min        | -1105.553            | 3             | .13         | 15         | 291         | 3  | 0            | 1  | 0        | 1  | 0        | 4          |
| 123        |        | 5   | max        | 746.758              | 1             | .507        | 4          | .016        | 9  | 0            | 3  | 0        | 9  | 0        | 15         |
| 124        |        |     | min        | -1105.481            | 3             | .121        | 15         | 291         | 3  | 0            | 1  | 0        | 3  | 0        | 4          |
| 125        |        | 6   | max        |                      | 1             | .469        | 4          | .016        | 9  | 0            | 3  | 0        | 9  | 0        | 15         |
| 126        |        |     | min        | -1105.409            | 3             | .112        | 15         | 291         | 3  | 0            | 1  | 0        | 3  | 0        | 4          |
| 127        |        | 7   | max        | 746.951              | 1             | .431        | 4          | .016        | 9  | 0            | 3  | 0        | 9  | 0        | 15         |
| 128        |        |     | min        | -1105.337            | 3             | .103        | 15         | 291         | 3  | 0            | 1  | 0        | 3  | 0        | 4          |
| 129        |        | 8   | max        | 747.047              | 1             | .393        | 4          | .016        | 9  | 0            | 3  | 0        | 9  | 0        | 15         |
| 130        |        |     | min        | -1105.264            | 3             | .094        | 15         | 291         | 3  | 0            | 1  | 0        | 3  | 0        | 4          |
| 131        |        | 9   | max        |                      | 1             | .356        | 4          | .016        | 9  | 0            | 3  | 0        | 9  | 0        | 15         |
| 132        |        | 40  | min        | -1105.192            | 3             | .085        | 15         | 291         | 3  | 0            | 1  | 0        | 3  | 0        | 4          |
| 133        |        | 10  | max        | 747.24               | 1             | .318        | 4          | .016        | 9  | 0            | 3  | 0        | 9  | 0        | 15         |
| 134        |        | 4.4 | min        | -1105.12             | 3             | .076        | 15         | 291         | 3  | 0            | 1  | 0        | 3  | 0        | 4          |
| 135        |        | 11  |            | 747.336              |               | .28         | 4          | .016        | 9  | 0            | 3  | 0        | 9  | 0        | 15         |
| 136        |        | 12  | min        |                      | 3             | .067        | 15         | 291         | 3  | 0            | 1  | 0        | 3  | 0        | 4          |
| 137        |        | 12  |            | 747.433<br>-1104.975 | 1             | .242        | 4          | .016        | 9  | 0            | 3  | 0        | 9  | 0        | 15         |
| 138        |        | 12  | min        |                      | <u>3</u><br>1 | .059        | 1 <u>5</u> | 291<br>.016 | 9  | 0            |    | 0        | 3  | 0        | 15         |
| 139<br>140 |        | 13  | max<br>min | 747.529<br>-1104.903 | 3             | .21<br>.05  | 15         | 291         | 3  | 0            | 3  | 0        | 9  | 0        | 1 <u>5</u> |
| 141        |        | 11  |            | 747.625              | 1             | .181        | 2          | .016        | 9  | 0            | 3  | 0        | 9  | 0        | 15         |
| 142        |        | 14  | min        | -1104.831            | 3             | .041        | 15         | 291         | 3  | 0            | 1  | 0        | 3  | 0        | 4          |
| 143        |        | 15  |            | 747.722              | 1             | .151        | 2          | .016        | 9  | 0            | 3  | 0        | 9  | 0        | 15         |
| 144        |        | 13  | min        | -1104.758            | 3             | .032        | 15         | 291         | 3  | 0            | 1  | 0        | 3  | 0        | 4          |
| 145        |        | 16  |            | 747.818              | 1             | .122        | 2          | .016        | 9  | 0            | 3  | 0        | 9  | 0        | 15         |
| 146        |        | 10  | min        | -1104.686            | 3             | .023        | 15         | 291         | 3  | 0            | 1  | 0        | 3  | 0        | 4          |
| 147        |        | 17  | max        |                      | 1             | .092        | 2          | .016        | 9  | 0            | 3  | 0        | 9  | 0        | 15         |
| 148        |        |     | min        | -1104.614            | 3             | .003        | 9          | 291         | 3  | 0            | 1  | 0        | 3  | 0        | 4          |
| 149        |        | 18  | max        |                      | 1             | .063        | 2          | .016        | 9  | 0            | 3  | 0        | 9  | 0        | 15         |
| 150        |        |     | min        | -1104.542            | 3             | 022         | 9          | 291         | 3  | 0            | 1  | 0        | 3  | 0        | 4          |
| 151        |        | 19  |            | 748.107              | 1             | .033        | 2          | .016        | 9  | 0            | 3  | 0        | 9  | 0        | 15         |
|            |        |     |            |                      |               |             |            |             |    |              | _  |          |    |          |            |



Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:\_\_

|            | Member    | Sec |     | Axial[lb] | LC | y Shear[lb] | LC | z Shear[lb] |   | Torque[k-ft] | LC            | y-y Mome | LC | z-z Mome | LC_ |
|------------|-----------|-----|-----|-----------|----|-------------|----|-------------|---|--------------|---------------|----------|----|----------|-----|
| 152        |           |     | min | -1104.469 | 3  | 046         | 9  | 291         | 3 | 0            | 1             | 0        | 3  | 0        | 4   |
| 153        | M7        | 1   | max | 180.976   | 2  | 1.813       | 4  | .007        | 3 | 0            | 9             | 0        | 9  | 0        | 4   |
| 154        |           |     | min | -88.521   | 9  | .427        | 15 | 006         | 9 | 0            | 3             | 0        | 3  | 0        | 15  |
| 155        |           | 2   | max | 180.909   | 2  | 1.635       | 4  | .007        | 3 | 0            | 9             | 0        | 9  | 0        | 2   |
| 156        |           |     | min | -88.577   | 9  | .385        | 15 | 006         | 9 | 0            | 3             | 0        | 3  | 0        | 15  |
| 157        |           | 3   | max | 180.842   | 2  | 1.457       | 4  | .007        | 3 | 0            | 9             | 0        | 9  | 0        | 2   |
| 158        |           |     | min | -88.633   | 9  | .344        | 15 | 006         | 9 | 0            | 3             | 0        | 3  | 0        | 9   |
| 159        |           | 4   | max | 180.775   | 2  | 1.279       | 4  | .007        | 3 | 0            | 9             | 0        | 9  | 0        | 10  |
| 160        |           |     | min | -88.688   | 9  | .302        | 15 | 006         | 9 | 0            | 3             | 0        | 3  | 0        | 1   |
| 161        |           | 5   | max | 180.707   | 2  | 1.101       | 4  | .007        | 3 | 0            | 9             | 0        | 9  | 0        | 15  |
| 162        |           |     | min | -88.744   | 9  | .26         | 15 | 006         | 9 | 0            | 3             | 0        | 3  | 0        | 4   |
| 163        |           | 6   | max | 180.64    | 2  | .923        | 4  | .007        | 3 | 0            | 9             | 0        | 9  | 0        | 15  |
| 164        |           |     | min | -88.8     | 9  | .218        | 15 | 006         | 9 | 0            | 3             | 0        | 3  | 0        | 4   |
| 165        |           | 7   | max | 180.573   | 2  | .745        | 4  | .007        | 3 | 0            | 9             | 0        | 9  | 0        | 15  |
| 166        |           |     | min | -88.856   | 9  | .176        | 15 | 006         | 9 | 0            | 3             | 0        | 3  | 0        | 4   |
| 167        |           | 8   | max | 180.506   | 2  | .567        | 4  | .007        | 3 | 0            | 9             | 0        | 9  | 0        | 15  |
| 168        |           |     | min | -88.912   | 9  | .134        | 15 | 006         | 9 | 0            | 3             | 0        | 3  | 0        | 4   |
| 169        |           | 9   | max | 180.439   | 2  | .389        | 4  | .007        | 3 | 0            | 9             | 0        | 9  | 0        | 15  |
| 170        |           |     | min | -88.968   | 9  | .092        | 15 | 006         | 9 | 0            | 3             | 0        | 3  | 001      | 4   |
| 171        |           | 10  | max | 180.372   | 2  | .211        | 4  | .007        | 3 | 0            | 9             | 0        | 9  | 0        | 15  |
| 172        |           | 10  | min | -89.024   | 9  | .051        | 15 | 006         | 9 | 0            | 3             | 0        | 3  | 001      | 4   |
| 173        |           | 11  | max | 180.305   | 2  | .057        | 2  | .007        | 3 | 0            | 9             | 0        | 9  | 0        | 15  |
| 174        |           |     | min | -89.08    | 9  | .003        | 9  | 006         | 9 | 0            | 3             | 0        | 3  | 001      | 4   |
| 175        |           | 12  | max | 180.238   | 2  | 033         | 15 | .007        | 3 | 0            | 9             | 0        | 9  | 0        | 15  |
| 176        |           | 12  | min | -89.136   | 9  | 145         | 4  | 006         | 9 | 0            | 3             | 0        | 3  | 001      | 4   |
| 177        |           | 13  | max | 180.171   | 2  | 075         | 15 | .007        | 3 | 0            | 9             | 0        | 9  | 0        | 15  |
| 178        |           | 13  | min | -89.192   | 9  | 323         | 4  | 006         | 9 | 0            | 3             | 0        | 3  | 001      | 4   |
| 179        |           | 14  |     | 180.104   | 2  | 323<br>117  | 15 | .007        | 3 | 0            | 9             | 0        | 9  | 0        | 15  |
|            |           | 14  | max |           |    |             |    |             | 9 | 0            | 3             | 0        | 3  |          |     |
| 180        |           | 4.5 | min | -89.248   | 9  | 501         | 4  | 006         |   | _            |               |          |    | 001      | 4   |
| 181<br>182 |           | 15  | max | 180.036   | 2  | 159         | 15 | .007        | 3 | 0            | <u>9</u><br>3 | 0        | 9  | 0        | 15  |
|            |           | 16  | min | -89.303   | 9  | 679<br>2    | 4  | 006         | 9 |              |               |          | 3  | _        | 4   |
| 183        |           | 10  | max |           | 2  |             | 15 | .007        | 3 | 0            | 9             | 0        | 9  | 0        | 15  |
| 184        |           | 47  | min | -89.359   | 9_ | 857         | 4  | 006         | 9 | 0            | 3             | 0        | 3  | 0        | 4   |
| 185        |           | 17  | max | 179.902   | 2  | 242         | 15 | .007        | 3 | 0            | 9             | 0        | 9  | 0        | 15  |
| 186        |           | 40  | min | -89.415   | 9  | -1.035      | 4  | 006         | 9 | 0            | 3             | 0        | 3  | 0        | 4   |
| 187        |           | 18  | max | 179.835   | 2  | 284         | 15 | .007        | 3 | 0            | 9             | 0        | 9  | 0        | 15  |
| 188        |           | 40  | min | -89.471   | 9  | -1.213      | 4  | 006         | 9 | 0            | 3             | 0        | 3  | 0        | 4   |
| 189        |           | 19  | max | 179.768   | 2  | 326         | 15 | .007        | 3 | 0            | 9             | 0        | 9  | 0        | 1   |
| 190        |           |     | min | -89.527   | 9  | -1.391      | 4  | 006         | 9 | 0            | 3             | 0        | 3  | 0        | 1   |
| 191        | <u>M8</u> | 1   |     | 1023.537  | 2  | 0           | 1  | .06         | 9 | 0            | 1             | 0        | 1  | 0        | 1   |
| 192        |           |     |     | -396.423  |    | 0           | 1  | 419         | 3 | 0            | 1             | 0        | 3  | 0        | 1   |
| 193        |           | 2   |     | 1023.602  | 2  | 0           | 1  | .06         | 9 | 0            | 1_            | 0        | 9  | 0        | 1   |
| 194        |           |     | _   | -396.374  | 3  | 0           | 1  | 419         | 3 | 0            | _1_           | 0        | 3  | 0        | 1   |
| 195        |           | 3   |     | 1023.667  | 2  | 0           | 1  | .06         | 9 | 0            | _1_           | 0        | 9  | 0        | 1   |
| 196        |           |     |     | -396.326  | 3_ | 0           | 1  | 419         | 3 | 0            | 1_            | 0        | 3  | 0        | 1   |
| 197        |           | 4   |     | 1023.732  | 2  | 0           | 1  | .06         | 9 | 0            | _1_           | 0        | 9  | 0        | 1   |
| 198        |           |     |     | -396.277  | 3  | 0           | 1  | 419         | 3 | 0            | 1_            | 0        | 3  | 0        | 1   |
| 199        |           | 5   |     | 1023.796  | 2  | 0           | 1  | .06         | 9 | 0            | _1_           | 0        | 9  | 0        | 1   |
| 200        |           |     | min | -396.228  | 3  | 0           | 1  | 419         | 3 | 0            | 1             | 0        | 3  | 0        | 1   |
| 201        |           | 6   | max | 1023.861  | 2  | 0           | 1  | .06         | 9 | 0            | 1             | 0        | 9  | 0        | 1   |
| 202        |           |     | min | -396.18   | 3  | 0           | 1  | 419         | 3 | 0            | 1             | 0        | 3  | 0        | 1   |
| 203        |           | 7   | max | 1023.926  | 2  | 0           | 1  | .06         | 9 | 0            | 1             | 0        | 9  | 0        | 1   |
| 204        |           |     |     | -396.131  | 3  | 0           | 1  | 419         | 3 | 0            | 1             | 0        | 3  | 0        | 1   |
| 205        |           | 8   |     | 1023.99   | 2  | 0           | 1  | .06         | 9 | 0            | 1             | 0        | 9  | 0        | 1   |
| 206        |           |     |     | -396.083  | 3  | 0           | 1  | 419         | 3 | 0            | 1             | 0        | 3  | 0        | 1   |
| 207        |           | 9   |     | 1024.055  | 2  | 0           | 1  | .06         | 9 | 0            | 1             | 0        | 9  | 0        | 1   |
| 208        |           |     |     | -396.034  | 3  | 0           | 1  | 419         | 3 | 0            | 1             | 0        | 3  | 0        | 1   |
|            |           |     |     |           | _  |             |    |             | _ | _            |               |          |    | _        |     |



Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:\_\_\_\_

|     | Member | Sec |     | Axial[lb] | LC            | y Shear[lb] | LC | z Shear[lb] |    | Torque[k-ft] | LC | y-y Mome | LC | z-z Mome | LC_ |
|-----|--------|-----|-----|-----------|---------------|-------------|----|-------------|----|--------------|----|----------|----|----------|-----|
| 209 |        | 10  | max | 1024.12   | 2             | 0           | 1  | .06         | 9  | 0            | 1  | 0        | 9  | 0        | 1   |
| 210 |        |     | min | -395.986  | 3             | 0           | 1  | 419         | 3  | 0            | 1  | 0        | 3  | 0        | 1   |
| 211 |        | 11  | max | 1024.184  | 2             | 0           | 1  | .06         | 9  | 0            | 1  | 0        | 9  | 0        | 1   |
| 212 |        |     | min | -395.937  | 3             | 0           | 1  | 419         | 3  | 0            | 1  | 0        | 3  | 0        | 1   |
| 213 |        | 12  | max | 1024.249  | 2             | 0           | 1  | .06         | 9  | 0            | 1  | 0        | 9  | 0        | 1   |
| 214 |        |     | min | -395.889  | 3             | 0           | 1  | 419         | 3  | 0            | 1  | 0        | 3  | 0        | 1   |
| 215 |        | 13  | max | 1024.314  | 2             | 0           | 1  | .06         | 9  | 0            | 1  | 0        | 9  | 0        | 1   |
| 216 |        |     | min | -395.84   | 3             | 0           | 1  | 419         | 3  | 0            | 1  | 0        | 3  | 0        | 1   |
| 217 |        | 14  | max | 1024.379  | 2             | 0           | 1  | .06         | 9  | 0            | 1  | 0        | 9  | 0        | 1   |
| 218 |        |     | min | -395.792  | 3             | 0           | 1  | 419         | 3  | 0            | 1  | 0        | 3  | 0        | 1   |
| 219 |        | 15  | max | 1024.443  | 2             | 0           | 1  | .06         | 9  | 0            | 1  | 0        | 9  | 0        | 1   |
| 220 |        |     | min | -395.743  | 3             | 0           | 1  | 419         | 3  | 0            | 1  | 0        | 3  | 0        | 1   |
| 221 |        | 16  | max | 1024.508  | 2             | 0           | 1  | .06         | 9  | 0            | 1  | 0        | 9  | 0        | 1   |
| 222 |        |     |     | -395.695  | 3             | 0           | 1  | 419         | 3  | 0            | 1  | 0        | 3  | 0        | 1   |
| 223 |        | 17  |     | 1024.573  | 2             | 0           | 1  | .06         | 9  | 0            | 1  | 0        | 9  | 0        | 1   |
| 224 |        |     |     | -395.646  | 3             | 0           | 1  | 419         | 3  | 0            | 1  | 0        | 3  | 0        | 1   |
| 225 |        | 18  |     | 1024.637  | 2             | 0           | 1  | .06         | 9  | 0            | 1  | 0        | 9  | 0        | 1   |
| 226 |        |     |     | -395.598  | 3             | 0           | 1  | 419         | 3  | 0            | 1  | 0        | 3  | 0        | 1   |
| 227 |        | 19  |     | 1024.702  | 2             | 0           | 1  | .06         | 9  | 0            | 1  | 0        | 9  | 0        | 1   |
| 228 |        |     | min | -395.549  | 3             | 0           | 1  | 419         | 3  | 0            | 1  | 0        | 3  | 0        | 1   |
| 229 | M10    | 1   | max | 245.83    | 1             | .669        | 4  | .003        | 10 | 0            | 1  | 0        | 9  | 0        | 1   |
| 230 |        |     |     | -327.243  | 3             | .158        | 15 | 089         | 3  | 0            | 3  | 0        | 3  | 0        | 1   |
| 231 |        | 2   | max |           | 1             | .631        | 4  | .003        | 10 | 0            | 1  | 0        | 9  | 0        | 15  |
| 232 |        |     |     | -327.171  | 3             | .149        | 15 | 089         | 3  | 0            | 3  | 0        | 3  | 0        | 4   |
| 233 |        | 3   | max | 246.022   | 1             | .594        | 4  | .003        | 10 | 0            | 1  | 0        | 9  | 0        | 15  |
| 234 |        |     |     | -327.098  | 3             | .14         | 15 | 089         | 3  | 0            | 3  | 0        | 3  | 0        | 4   |
| 235 |        | 4   | max |           | 1             | .556        | 4  | .003        | 10 | 0            | 1  | 0        | 10 | 0        | 15  |
| 236 |        |     |     | -327.026  | 3             | .131        | 15 | 089         | 3  | 0            | 3  | 0        | 3  | 0        | 4   |
| 237 |        | 5   |     | 246.215   | 1             | .518        | 4  | .003        | 10 | 0            | 1  | 0        | 10 | 0        | 15  |
| 238 |        |     | min | -326.954  | 3             | .122        | 15 | 089         | 3  | 0            | 3  | 0        | 3  | 0        | 4   |
| 239 |        | 6   |     | 246.312   | 1             | .48         | 4  | .003        | 10 | 0            | 1  | 0        | 10 | 0        | 15  |
| 240 |        |     |     | -326.882  | 3             | .114        | 15 | 089         | 3  | 0            | 3  | 0        | 3  | 0        | 4   |
| 241 |        | 7   | max |           | 1             | .442        | 4  | .003        | 10 | 0            | 1  | 0        | 10 | 0        | 15  |
| 242 |        |     |     | -326.809  | 3             | .105        | 15 | 089         | 3  | 0            | 3  | 0        | 3  | 0        | 4   |
| 243 |        | 8   | max | 246.504   | 1             | .404        | 4  | .003        | 10 | 0            | 1  | 0        | 10 | 0        | 15  |
| 244 |        |     |     | -326.737  | 3             | .096        | 15 | 089         | 3  | 0            | 3  | 0        | 3  | 0        | 4   |
| 245 |        | 9   | max |           | 1             | .367        | 4  | .003        | 10 | 0            | 1  | 0        | 10 | 0        | 15  |
| 246 |        | 3   |     | -326.665  | 3             | .087        | 15 | 089         | 3  | 0            | 3  | 0        | 3  | 0        | 4   |
| 247 |        | 10  |     |           | 1             | .329        | 4  | .003        | 10 | 0            | 1  | 0        | 10 | 0        | 15  |
| 248 |        | 10  | min | -326.593  | 3             | .078        | 15 | 089         | 3  | 0            | 3  | 0        | 3  | 0        | 4   |
| 249 |        | 11  |     | 246.793   | 1             | .291        | 4  | .003        | 10 | 0            | 1  | 0        | 10 | 0        | 15  |
| 250 |        |     |     | -326.52   | 3             | .069        | 15 | 089         | 3  | 0            | 3  | 0        | 3  | 0        | 4   |
| 251 |        | 12  | max |           | <u> </u>      | .253        | 4  | .003        | 10 | 0            | 1  | 0        | 10 | 0        | 15  |
| 252 |        | 12  |     | -326.448  | 3             | .06         | 15 | 089         | 3  | 0            | 3  | 0        | 3  | 0        | 4   |
| 253 |        | 13  |     | 246.986   | <u></u>       | .215        | 4  | .003        | 10 | 0            | 1  | 0        | 10 | 0        | 15  |
| 254 |        | 13  |     | -326.376  | 3             | .051        | 15 | 089         | 3  | 0            | 3  | 0        | 3  | 0        | 4   |
| 255 |        | 14  |     | 247.082   | 1             | .177        | 4  | .003        | 10 | 0            | 1  | 0        | 10 | 0        | 15  |
| 256 |        | 14  |     | -326.303  | 3             | .042        | 15 | 089         | 3  | 0            | 3  | 0        | 3  | 0        | 4   |
| 257 |        | 15  |     | 247.179   | -             | .042        | 4  | .003        | 10 | 0            | 1  | 0        | 10 | 0        | 15  |
| 258 |        | 10  |     | -326.231  | <u>1</u><br>3 | .034        | 15 | 089         | 3  | 0            | 3  | 0        | 3  | 0        | 4   |
| 259 |        | 16  | min | 247.275   | <u>ာ</u><br>1 | .102        | 4  | .003        | 10 | 0            | 1  | 0        | 10 | 0        | 15  |
|     |        | 10  |     |           |               |             | 15 |             |    |              |    | 0        | 3  |          |     |
| 260 |        | 17  |     | -326.159  | 3             | .025        | 2  | 089         | 3  | 0            | 3  |          |    | 0        | 4   |
| 261 |        | 17  |     | 247.372   | 1             | .068        | 1  | .003        | 10 | 0            | 1  | 0        | 10 | 0        | 15  |
| 262 |        | 10  |     | -326.087  | 3             | .016        | 15 | 089         | 3  | 0            | 3  | 0        | 3  | 0        | 4   |
| 263 |        | 18  |     | 247.468   | 1             | .043        | 3  | .003        | 10 | 0            | 1  | 0        | 10 | 0        | 15  |
| 264 |        | 10  |     | -326.014  | 3             | .003        | 9  | 089         | 3  | 0            | 3  | 0        | 3  | 0        | 4   |
| 265 |        | 19  | max | 247.564   | 1             | .021        | 3  | .003        | 10 | 0            | 1  | 0        | 10 | 0        | 15  |



Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:\_\_

|     | Member | Sec |         | Axial[lb] |   | y Shear[lb] |    |      |    | Torque[k-ft] |    | y-y Mome | LC | z-z Mome | <u>. LC</u> |
|-----|--------|-----|---------|-----------|---|-------------|----|------|----|--------------|----|----------|----|----------|-------------|
| 266 |        |     | min     | -325.942  | 3 | 021         | 9  | 089  | 3  | 0            | 3  | 0        | 3  | 0        | 4           |
| 267 | M11    | 1   | max     | 60.255    | 2 | 1.817       | 4  | .111 | 1  | 0            | 3  | 0        | 3  | 0        | 4           |
| 268 |        |     | min     | -44.053   | 9 | .428        | 15 | 029  | 3  | 0            | 10 | 0        | 1  | 0        | 15          |
| 269 |        | 2   | max     | 60.188    | 2 | 1.639       | 4  | .111 | 1  | 0            | 3  | 0        | 3  | 0        | 4           |
| 270 |        |     | min     | -44.108   | 9 | .386        | 15 | 029  | 3  | 0            | 10 | 0        | 1  | 0        | 15          |
| 271 |        | 3   | max     | 60.121    | 2 | 1.461       | 4  | .111 | 1  | 0            | 3  | 0        | 3  | 0        | 2           |
| 272 |        |     | min     | -44.164   | 9 | .344        | 15 | 029  | 3  | 0            | 10 | 0        | 1  | 0        | 12          |
| 273 |        | 4   | max     | 60.054    | 2 | 1.283       | 4  | .111 | 1  | 0            | 3  | 0        | 3  | 0        | 15          |
| 274 |        |     | min     | -44.22    | 9 | .302        | 15 | 029  | 3  | 0            | 10 | 0        | 1  | 0        | 4           |
| 275 |        | 5   | max     | 59.987    | 2 | 1.105       | 4  | .111 | 1  | 0            | 3  | 0        | 3  | 0        | 15          |
| 276 |        |     | min     | -44.276   | 9 | .26         | 15 | 029  | 3  | 0            | 10 | 0        | 1  | 0        | 4           |
| 277 |        | 6   | max     | 59.92     | 2 | .927        | 4  | .111 | 1  | 0            | 3  | 0        | 3  | 0        | 15          |
| 278 |        |     | min     | -44.332   | 9 | .218        | 15 | 029  | 3  | 0            | 10 | 0        | 1  | 0        | 4           |
| 279 |        | 7   | max     | 59.853    | 2 | .749        | 4  | .111 | 1  | 0            | 3  | 0        | 3  | 0        | 15          |
| 280 |        |     | min     | -44.388   | 9 | .177        | 15 | 029  | 3  | 0            | 10 | 0        | 1  | 0        | 4           |
| 281 |        | 8   | max     | 59.786    | 2 | .571        | 4  | .111 | 1  | 0            | 3  | 0        | 3  | 0        | 15          |
| 282 |        |     | min     | -44.444   | 9 | .135        | 15 | 029  | 3  | 0            | 10 | 0        | 1  | 0        | 4           |
| 283 |        | 9   | max     | 59.719    | 2 | .393        | 4  | .111 | 1  | 0            | 3  | 0        | 3  | 0        | 15          |
| 284 |        |     | min     | -44.5     | 9 | .093        | 15 | 029  | 3  | 0            | 10 | 0        | 1  | 001      | 4           |
| 285 |        | 10  | max     | 59.652    | 2 | .215        | 4  | .111 | 1  | 0            | 3  | 0        | 3  | 0        | 15          |
| 286 |        |     | min     | -44.556   | 9 | .051        | 15 | 029  | 3  | 0            | 10 | 0        | 1  | 001      | 4           |
| 287 |        | 11  | max     | 59.585    | 2 | .041        | 2  | .111 | 1  | 0            | 3  | 0        | 3  | 0        | 15          |
| 288 |        |     | min     | -44.612   | 9 | .005        | 12 | 029  | 3  | 0            | 10 | 0        | 1  | 001      | 4           |
| 289 |        | 12  | max     | 59.517    | 2 | 033         | 15 | .111 | 1  | 0            | 3  | 0        | 3  | 0        | 15          |
| 290 |        |     | min     | -44.668   | 9 | 141         | 4  | 029  | 3  | 0            | 10 | 0        | 1  | 001      | 4           |
| 291 |        | 13  | max     | 59.45     | 2 | 075         | 15 | .111 | 1  | 0            | 3  | 0        | 3  | 0        | 15          |
| 292 |        |     | min     | -44.723   | 9 | 319         | 4  | 029  | 3  | 0            | 10 | 0        | 1  | 001      | 4           |
| 293 |        | 14  | max     | 59.383    | 2 | 116         | 15 | .111 | 1  | 0            | 3  | 0        | 3  | 0        | 15          |
| 294 |        |     | min     | -44.779   | 9 | 497         | 4  | 029  | 3  | 0            | 10 | 0        | 10 | 001      | 4           |
| 295 |        | 15  | max     | 59.316    | 2 | 158         | 15 | .111 | 1  | 0            | 3  | 0        | 3  | 0        | 15          |
| 296 |        |     | min     | -44.835   | 9 | 675         | 4  | 029  | 3  | 0            | 10 | 0        | 10 | 0        | 4           |
| 297 |        | 16  | max     |           | 2 | 2           | 15 | .111 | 1  | 0            | 3  | 0        | 3  | 0        | 15          |
| 298 |        |     | min     | -44.891   | 9 | 853         | 4  | 029  | 3  | 0            | 10 | 0        | 10 | 0        | 4           |
| 299 |        | 17  | max     | 59.182    | 2 | 242         | 15 | .111 | 1  | 0            | 3  | 0        | 3  | 0        | 15          |
| 300 |        |     | min     | -44.947   | 9 | -1.031      | 4  | 029  | 3  | 0            | 10 | 0        | 10 | 0        | 4           |
| 301 |        | 18  | max     | 59.115    | 2 | 284         | 15 | .111 | 1  | 0            | 3  | 0        | 3  | 0        | 15          |
| 302 |        |     | min     | -45.003   | 9 | -1.209      | 4  | 029  | 3  | 0            | 10 | 0        | 10 | 0        | 4           |
| 303 |        | 19  | max     | 59.048    | 2 | 326         | 15 | .111 | 1  | 0            | 3  | 0        | 3  | 0        | 1           |
| 304 |        |     | min     | -45.059   | 9 | -1.387      | 4  | 029  | 3  | 0            | 10 | 0        | 10 | 0        | 1           |
| 305 | M12    | 1   | max     | 338.525   | 1 | 0           | 1  | .357 | 1  | 0            | 1  | 0        | 2  | 0        | 1           |
| 306 |        |     |         | -120.074  | 3 | 0           | 1  | 029  | 10 |              | 1  | 0        | 3  | 0        | 1           |
| 307 |        | 2   |         | 338.589   | 1 | 0           | 1  | .357 | 1  | 0            | 1  | 0        | 1  | 0        | 1           |
| 308 |        |     | min     |           | 3 | 0           | 1  | 029  | 10 | 0            | 1  | 0        | 10 | 0        | 1           |
| 309 |        | 3   | max     | 338.654   | 1 | 0           | 1  | .357 | 1  | 0            | 1  | 0        | 1  | 0        | 1           |
| 310 |        |     | min     | -119.977  | 3 | 0           | 1  | 029  | 10 | 0            | 1  | 0        | 10 | 0        | 1           |
| 311 |        | 4   |         | 338.719   | 1 | 0           | 1  | .357 | 1  | 0            | 1  | 0        | 1  | 0        | 1           |
| 312 |        |     | min     |           | 3 | 0           | 1  | 029  | 10 | 0            | 1  | 0        | 10 | 0        | 1           |
| 313 |        | 5   | max     |           | 1 | 0           | 1  | .357 | 1  | 0            | 1  | 0        | 1  | 0        | 1           |
| 314 |        |     | min     |           | 3 | 0           | 1  | 029  | 10 | 0            | 1  | 0        | 10 | 0        | 1           |
| 315 |        | 6   | max     |           | 1 | 0           | 1  | .357 | 1  | 0            | 1  | 0        | 1  | 0        | 1           |
| 316 |        | Ĭ   | min     |           | 3 | 0           | 1  | 029  | 10 | 0            | 1  | 0        | 10 | 0        | 1           |
| 317 |        | 7   |         | 338.913   | 1 | 0           | 1  | .357 | 1  | 0            | 1  | 0        | 1  | 0        | 1           |
| 318 |        |     | min     |           | 3 | 0           | 1  | 029  | 10 | 0            | 1  | 0        | 10 | 0        | 1           |
| 319 |        | 8   |         | 338.978   | 1 | 0           | 1  | .357 | 1  | 0            | 1  | 0        | 1  | 0        | 1           |
| 320 |        |     | min     | -119.735  | 3 | 0           | 1  | 029  | 10 | 0            | 1  | 0        | 10 | 0        | 1           |
| 321 |        | 9   | max     |           | 1 | 0           | 1  | .357 | 1  | 0            | 1  | 0        | 1  | 0        | 1           |
| 322 |        |     |         | -119.686  | 3 | 0           | 1  | 029  | 10 | 0            | 1  | 0        | 10 | 0        | 1           |
| ULL |        |     | 1111111 | 110.000   | U | U           |    | .020 | 10 | U            |    |          | 10 | U        |             |



Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:\_\_\_\_

|     | Member | Sec |     | Axial[lb] | LC | y Shear[lb] | LC | z Shear[lb] | LC  | Torque[k-ft] | LC | y-y Mome | LC  | z-z Mome | LC |
|-----|--------|-----|-----|-----------|----|-------------|----|-------------|-----|--------------|----|----------|-----|----------|----|
| 323 |        | 10  | max | 339.107   | 1  | 0           | 1  | .357        | 1   | 0            | 1  | 0        | 1   | 0        | 1  |
| 324 |        |     | min | -119.637  | 3  | 0           | 1  | 029         | 10  | 0            | 1  | 0        | 10  | 0        | 1  |
| 325 |        | 11  | max | 339.172   | 1  | 0           | 1  | .357        | 1   | 0            | 1  | 0        | 1   | 0        | 1  |
| 326 |        |     | min | -119.589  | 3  | 0           | 1  | 029         | 10  | 0            | 1  | 0        | 10  | 0        | 1  |
| 327 |        | 12  | max | 339.236   | 1  | 0           | 1  | .357        | 1   | 0            | 1  | 0        | 1   | 0        | 1  |
| 328 |        |     | min | -119.54   | 3  | 0           | 1  | 029         | 10  | 0            | 1  | 0        | 10  | 0        | 1  |
| 329 |        | 13  | max | 339.301   | 1  | 0           | 1  | .357        | 1   | 0            | 1  | 0        | 1   | 0        | 1  |
| 330 |        | 1.0 | min | -119.492  | 3  | 0           | 1  | 029         | 10  | 0            | 1  | 0        | 10  | 0        | 1  |
| 331 |        | 14  | max | 339.366   | 1  | 0           | 1  | .357        | 1   | 0            | 1  | 0        | 1   | 0        | 1  |
| 332 |        | 17  | min | -119.443  | 3  | 0           | 1  | 029         | 10  | 0            | 1  | 0        | 10  | 0        | 1  |
| 333 |        | 15  | max | 339.431   | 1  | 0           | 1  | .357        | 1   | 0            | 1  | 0        | 1   | 0        | 1  |
| 334 |        | 10  | min | -119.395  | 3  | 0           | 1  | 029         | 10  | 0            | 1  | 0        | 10  | 0        | 1  |
| 335 |        | 16  | max | 339.495   | 1  | 0           | 1  | .357        | 1   | 0            | 1  | 0        | 1   | 0        | 1  |
| 336 |        | 10  | min | -119.346  | 3  | 0           | 1  | 029         | 10  | 0            | 1  | 0        | 10  | 0        | 1  |
| 337 |        | 17  | max | 339.56    | 1  | 0           | 1  | .357        | 1   | 0            | 1  | 0        | 1   | 0        | 1  |
| 338 |        | 17  | min | -119.298  | 3  | 0           | 1  | 029         | 10  | 0            | 1  | 0        | 10  | 0        | 1  |
|     |        | 18  |     |           | 1  |             | 1  |             | 1   |              | 1  |          | 1   | 0        | 1  |
| 339 |        | 10  | max | 339.625   | _  | 0           | 1  | .357<br>029 | 10  | 0            | 1  | 0        | 10  | 0        | 1  |
| 340 |        | 40  | min | -119.249  | 3  |             | -  |             |     |              |    |          |     | 1        |    |
| 341 |        | 19  | max | 339.689   | 1  | 0           | 1  | .357        | 1   | 0            | 1  | 0        | 1   | 0        | 1  |
| 342 | N 4 4  |     | min | -119.201  | 3  | 0           | 1  | 029         | 10  | 0            | 1  | 0        | 10  | 0        | 1  |
| 343 | M1     | 1   | max | 47.91     | 1  | 347.945     | 3  | .652        | 10  | 0            | 1  | .019     | 1   | .016     | 2  |
| 344 |        |     | min | 1.513     | 15 | -248.727    | 1  | -9.718      | 1   | 0            | 3  | 001      | 10  | 018      | 3  |
| 345 |        | 2   | max | 47.982    | 1  | 347.743     | 3  | .652        | 10  | 0            | 1  | .017     | 1   | .069     | 1  |
| 346 |        |     | min | 1.535     | 15 | -248.997    | 1  | -9.718      | 1   | 0            | 3  | 001      | 10  | 094      | 3  |
| 347 |        | 3   | max | 57.1      | 1  | 3.885       | 9  | .649        | 10  | 0            | 3  | .015     | 1   | .122     | 1  |
| 348 |        |     | min | -5.572    | 3  | -23.482     | 3  | -9.666      | 1   | 0            | 1  | 0        | 10  | 167      | 3  |
| 349 |        | 4   | max | 57.172    | 1  | 3.66        | 9  | .649        | 10  | 0            | 3  | .013     | 1_  | .123     | 1  |
| 350 |        |     | min | -5.517    | 3  | -23.684     | 3  | -9.666      | 1   | 0            | 1  | 0        | 10  | 162      | 3  |
| 351 |        | 5   | max | 57.244    | 1  | 3.435       | 9  | .649        | 10  | 0            | 3  | .011     | 1_  | .125     | 2  |
| 352 |        |     | min | -5.463    | 3  | -23.887     | 3  | -9.666      | 1   | 0            | 1  | 0        | 10  | 157      | 3  |
| 353 |        | 6   | max | 57.317    | 1  | 3.21        | 9  | .649        | 10  | 0            | 3  | .009     | 1_  | .129     | 2  |
| 354 |        |     | min | -5.409    | 3  | -24.089     | 3  | -9.666      | 1   | 0            | 1  | 0        | 10  | 152      | 3  |
| 355 |        | 7   | max | 57.389    | 1  | 2.986       | 9  | .649        | 10  | 0            | 3  | .006     | 1_  | .133     | 2  |
| 356 |        |     | min | -5.355    | 3  | -24.291     | 3  | -9.666      | 1   | 0            | 1  | 0        | 10  | 147      | 3  |
| 357 |        | 8   | max | 57.461    | 1  | 2.761       | 9  | .649        | 10  | 0            | 3  | .004     | _1_ | .137     | 2  |
| 358 |        |     | min | -5.301    | 3  | -24.494     | 3  | -9.666      | 1   | 0            | 1  | 0        | 10  | 141      | 3  |
| 359 |        | 9   | max | 57.533    | 1  | 2.536       | 9  | .649        | 10  | 0            | 3  | .002     | _1_ | .141     | 2  |
| 360 |        |     | min | -5.246    | 3  | -24.696     | 3  | -9.666      | 1   | 0            | 1  | 0        | 10  | 136      | 3  |
| 361 |        | 10  | max | 57.606    | 1  | 2.311       | 9  | .649        | 10  | 0            | 3  | .001     | 3   | .145     | 2  |
| 362 |        |     | min | -5.192    | 3  | -24.898     | 3  | -9.666      | 1   | 0            | 1  | 0        | 15  | 131      | 3  |
| 363 |        | 11  | max | 57.678    | 1  | 2.087       | 9  | .649        | 10  | 0            | 3  | 0        | 3   | .149     | 2  |
| 364 |        |     | min | -5.138    | 3  | -25.1       | 3  | -9.666      | 1   | 0            | 1  | 002      | 1   | 125      | 3  |
| 365 |        | 12  | max | 57.75     | 1  | 1.862       | 9  | .649        | 10  | 0            | 3  | 0        | 10  | .153     | 2  |
| 366 |        |     | min | -5.084    | 3  | -25.303     | 3  | -9.666      | 1   | 0            | 1  | 004      | 1   | 12       | 3  |
| 367 |        | 13  | max | 57.823    | 1  | 1.637       | 9  | .649        | 10  | 0            | 3  | 0        | 10  | .157     | 2  |
| 368 |        |     | min | -5.03     | 3  | -25.505     | 3  | -9.666      | 1   | 0            | 1  | 006      | 1   | 114      | 3  |
| 369 |        | 14  | max | 57.895    | 1  | 1.412       | 9  | .649        | 10  | 0            | 3  | 0        | 10  | .162     | 2  |
| 370 |        |     | min | -4.975    | 3  | -25.707     | 3  | -9.666      | 1   | 0            | 1  | 008      | 1   | 109      | 3  |
| 371 |        | 15  | max |           | 1  | 1.188       | 9  | .649        | 10  | 0            | 3  | 0        | 10  | .166     | 2  |
| 372 |        |     | min | -4.921    | 3  | -25.91      | 3  | -9.666      | 1   | 0            | 1  | 01       | 1   | 103      | 3  |
| 373 |        | 16  | max |           | 2  | 17.956      | 2  | .656        | 10  | 0            | 1  | 0        | 10  | .17      | 2  |
| 374 |        |     | min | -34.722   | 3  | -52.863     | 3  | -9.77       | 1   | 0            | 10 |          | 1   | 097      | 3  |
| 375 |        | 17  | max | 70.988    | 2  | 17.686      | 2  | .656        | 10  | 0            | 1  | .001     | 10  | .166     | 2  |
| 376 |        |     | min | -34.668   | 3  | -53.065     | 3  | -9.77       | 1   | 0            | 10 |          | 1   | 086      | 3  |
| 377 |        | 18  |     |           | 15 | 341.259     | 2  | .685        | 10  | 0            | 3  | .001     | 10  | .093     | 2  |
| 378 |        |     | min |           | 1  | -169.712    | 3  | -10.121     | 1   | 0            | 2  | 017      | 1   | 049      | 3  |
| 379 |        | 19  |     |           | 15 | 340.989     | 2  | .685        | 10  | 0            | 3  | .001     | 10  | .019     | 2  |
|     |        |     |     |           |    |             | •  |             | • - |              |    |          |     |          |    |



Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:\_\_

|     | Member    | Sec |     | Axial[lb] | LC | y Shear[lb] |   | z Shear[lb] | LC | Torque[k-ft] | LC | y-y Mome | LC | z-z Mome | <u>LC</u> |
|-----|-----------|-----|-----|-----------|----|-------------|---|-------------|----|--------------|----|----------|----|----------|-----------|
| 380 |           |     | min | -47.841   | 1  | -169.914    | 3 | -10.121     | 1  | 0            | 2  | 019      | 1  | 013      | 3         |
| 381 | <u>M5</u> | 1   | max | 122.793   | 1  | 1079.1      | 3 | 0           | 1  | 0            | 9  | .01      | 3  | .036     | 3         |
| 382 |           |     | min | -3.483    | 3  | -763.803    | 1 | -58.847     | 3  | 0            | 3  | 0        | 11 | 031      | 2         |
| 383 |           | 2   | max | 122.866   | 1  | 1078.897    | 3 | 0           | 1  | 0            | 9  | 0        | 9  | .135     | 1         |
| 384 |           |     | min | -3.429    | 3  | -764.072    | 1 | -58.847     | 3  | 0            | 3  | 003      | 3  | 198      | 3         |
| 385 |           | 3   | max | 149.632   | 1  | 6.036       | 9 | 6.041       | 3  | 0            | 3  | 0        | 9  | .298     | 1         |
| 386 |           |     | min | -43.327   | 3  | -70.904     | 3 | 064         | 9  | 0            | 9  | 015      | 3  | 427      | 3         |
| 387 |           | 4   | max | 149.705   | 1  | 5.812       | 9 | 6.041       | 3  | 0            | 3  | 0        | 9  | .302     | 1         |
| 388 |           |     | min | -43.273   | 3  | -71.106     | 3 | 064         | 9  | 0            | 9  | 014      | 3  | 411      | 3         |
| 389 |           | 5   | max | 149.777   | 1  | 5.587       | 9 | 6.041       | 3  | 0            | 3  | 0        | 9  | .306     | 1         |
| 390 |           |     | min | -43.219   | 3  | -71.309     | 3 | 064         | 9  | 0            | 9  | 012      | 3  | 396      | 3         |
| 391 |           | 6   | max | 149.849   | 1  | 5.362       | 9 | 6.041       | 3  | 0            | 3  | 0        | 9  | .314     | 2         |
| 392 |           |     | min | -43.165   | 3  | -71.511     | 3 | 064         | 9  | 0            | 9  | 011      | 3  | 38       | 3         |
| 393 |           | 7   | max | 149.921   | 1  | 5.137       | တ | 6.041       | 3  | 0            | 3  | 0        | 9  | .325     | 2         |
| 394 |           |     | min | -43.11    | 3  | -71.713     | 3 | 064         | 9  | 0            | 9  | 01       | 3  | 365      | 3         |
| 395 |           | 8   | max | 149.994   | 1  | 4.913       | 9 | 6.041       | 3  | 0            | 3  | 0        | 9  | .336     | 2         |
| 396 |           |     | min | -43.056   | 3  | -71.915     | 3 | 064         | 9  | 0            | 9  | 009      | 3  | 349      | 3         |
| 397 |           | 9   | max | 150.066   | 1  | 4.688       | 9 | 6.041       | 3  | 0            | 3  | 0        | 9  | .348     | 2         |
| 398 |           |     | min | -43.002   | 3  | -72.118     | 3 | 064         | 9  | 0            | 9  | 007      | 3  | 334      | 3         |
| 399 |           | 10  | max | 150.138   | 1  | 4.463       | 9 | 6.041       | 3  | 0            | 3  | 0        | 1  | .359     | 2         |
| 400 |           |     | min | -42.948   | 3  | -72.32      | 3 | 064         | 9  | 0            | 9  | 006      | 3  | 318      | 3         |
| 401 |           | 11  | max | 150.21    | 1  | 4.238       | 9 | 6.041       | 3  | 0            | 3  | 0        | 1  | .37      | 2         |
| 402 |           |     | min | -42.894   | 3  | -72.522     | 3 | 064         | 9  | 0            | 9  | 005      | 3  | 302      | 3         |
| 403 |           | 12  | max | 150.283   | 1  | 4.014       | တ | 6.041       | 3  | 0            | 3  | 0        | 1  | .382     | 2         |
| 404 |           |     | min | -42.839   | 3  | -72.725     | 3 | 064         | 9  | 0            | 9  | 003      | 3  | 287      | 3         |
| 405 |           | 13  | max | 150.355   | 1  | 3.789       | 9 | 6.041       | 3  | 0            | 3  | 0        | 1  | .393     | 2         |
| 406 |           |     | min | -42.785   | 3  | -72.927     | 3 | 064         | 9  | 0            | 9  | 002      | 3  | 271      | 3         |
| 407 |           | 14  | max | 150.427   | 1  | 3.564       | 9 | 6.041       | 3  | 0            | 3  | 0        | 1  | .405     | 2         |
| 408 |           |     | min | -42.731   | 3  | -73.129     | 3 | 064         | 9  | 0            | 9  | 0        | 3  | 255      | 3         |
| 409 |           | 15  | max | 150.5     | 1  | 3.339       | 9 | 6.041       | 3  | 0            | 3  | 0        | З  | .416     | 2         |
| 410 |           |     | min | -42.677   | 3  | -73.332     | 3 | 064         | 9  | 0            | 9  | 0        | 9  | 239      | 3         |
| 411 |           | 16  | max | 213.753   | 2  | 64.79       | 2 | 6.027       | 3  | 0            | 3  | .001     | 3  | .427     | 2         |
| 412 |           |     | min | -104.506  | 3  | -127.305    | 3 | 07          | 9  | 0            | 1  | 0        | 9  | 223      | 3         |
| 413 |           | 17  | max | 213.825   | 2  | 64.52       | 2 | 6.027       | 3  | 0            | 3  | .003     | 3  | .413     | 2         |
| 414 |           |     | min | -104.452  | 3  | -127.507    | 3 | 07          | 9  | 0            | 1  | 0        | 9  | 195      | 3         |
| 415 |           | 18  | max | -1.509    | 12 | 1050.201    | 2 | 5.602       | 3  | 0            | 3  | .004     | 3  | .189     | 2         |
| 416 |           |     | min | -123.002  | 1  | -511.358    | 3 | 013         | 9  | 0            | 9  | 0        | 9  | 086      | 3         |
| 417 |           | 19  | max | -1.472    | 12 | 1049.931    | 2 | 5.602       | 3  | 0            | 3  | .005     | 3  | .025     | 3         |
| 418 |           |     | min | -122.93   | 1  | -511.561    | 3 | 013         | 9  | 0            | 9  | 0        | 9  | 039      | 2         |
| 419 | M9        | 1   | max | 47.909    | 1  | 347.893     | 3 | 61.294      | 3  | 0            | 3  | .001     | 10 | .016     | 2         |
| 420 |           |     | min | 1.511     | 15 | -248.727    | 1 | 652         | 10 | 0            | 1  | 019      | 1  | 018      | 3         |
| 421 |           | 2   | max | 47.982    | 1  | 347.691     | 3 | 61.294      | 3  | 0            | 3  | .001     | 10 | .069     | 1         |
| 422 |           |     | min | 1.533     | 15 | -248.997    | 1 | 652         | 10 | 0            | 1  | 017      | 1  | 094      | 3         |
| 423 |           | 3   | max |           | 1  | 3.872       | 9 | 9.665       | 1  | 0            | 1  | .012     | 3  | .122     | 1         |
| 424 |           |     | min | -5.932    | 3  | -23.403     | 3 | -3.046      | 3  | 0            | 10 | 015      | 1  | 167      | 3         |
| 425 |           | 4   | max | 57.529    | 1  | 3.647       | 9 | 9.665       | 1  | 0            | 1  | .012     | 3  | .123     | 1         |
| 426 |           |     | min | -5.878    | 3  | -23.605     | 3 | -3.046      | 3  | 0            | 10 | 013      | 1  | 162      | 3         |
| 427 |           | 5   | max | 57.601    | 1  | 3.422       | 9 | 9.665       | 1  | 0            | 1  | .011     | 3  | .125     | 2         |
| 428 |           |     | min | -5.824    | 3  | -23.807     | 3 | -3.046      | 3  | 0            | 10 | 011      | 1  | 157      | 3         |
| 429 |           | 6   | max | 57.673    | 1  | 3.198       | 9 | 9.665       | 1  | 0            | 1  | .01      | 3  | .129     | 2         |
| 430 |           |     | min | -5.77     | 3  | -24.01      | 3 | -3.046      | 3  | 0            | 10 | 009      | 1  | 152      | 3         |
| 431 |           | 7   | max |           | 1  | 2.973       | 9 | 9.665       | 1  | 0            | 1  | .01      | 3  | .133     | 2         |
| 432 |           |     | min | -5.715    | 3  | -24.212     | 3 | -3.046      | 3  | 0            | 10 | 006      | 1  | 147      | 3         |
| 433 |           | 8   | max | 57.818    | 1  | 2.748       | 9 | 9.665       | 1  | 0            | 1  | .009     | 3  | .137     | 2         |
| 434 |           |     | min | -5.661    | 3  | -24.414     | 3 | -3.046      | 3  | 0            | 10 | 004      | 1  | 141      | 3         |
| 435 |           | 9   | max | 57.89     | 1  | 2.523       | 9 | 9.665       | 1  | 0            | 1  | .008     | 3  | .141     | 2         |
| 436 |           |     | min | -5.607    | 3  | -24.617     | 3 | -3.046      | 3  | 0            | 10 | 002      | 1  | 136      | 3         |
|     |           |     |     |           |    |             |   |             |    |              |    |          |    |          |           |



Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:\_\_\_\_

| 1438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | Member | Sec   |     | Axial[lb] | LC | y Shear[lb] |   |         | LC | Torque[k-ft] | LC          |      |   | z-z Mome |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|-------|-----|-----------|----|-------------|---|---------|----|--------------|-------------|------|---|----------|---|
| 11 max   58.035   1   2.074   9   9.665   1   0   1   0.07   3   1.49   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 437 |        | 10    | max | 57.962    | _  | 2.298       | 9 | 9.665   |    | 0            | <del></del> | .008 | 3 | .145     | 2 |
| 4440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |        |       | min |           | 3  |             |   |         | 3  | 0            | 10          |      | _ |          |   |
| 1441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |        | 11    |     |           | 1_ |             |   |         |    |              |             | .007 |   |          |   |
| 442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        |       |     |           |    |             |   |         |    |              |             |      |   |          |   |
| Heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |        | 12    |     |           |    |             |   |         |    |              |             |      |   |          |   |
| Heat   Min   S.39   3   -25.426   3   -3.046   3   0   10   0   -114   14   144   144   15   15   13   15   13   15   13   15   13   14   15   15   15   15   15   15   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |        | 40    |     |           |    |             |   |         |    |              |             |      |   |          |   |
| 446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        | 13    |     |           |    |             |   |         |    |              |             |      |   |          |   |
| 446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        | 1.1   |     |           |    |             |   |         |    |              |             |      |   |          |   |
| Heart   Hear |     |        | 14    |     |           |    |             |   |         |    |              |             |      |   |          |   |
| 448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        | 15    |     |           |    |             |   |         |    |              |             |      |   |          |   |
| 449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        | 10    |     |           |    |             |   |         |    |              |             |      |   |          |   |
| 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        | 16    |     |           |    |             |   |         |    |              |             |      |   |          |   |
| 451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        | 10    |     |           |    |             |   |         |    |              |             |      |   |          |   |
| 452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        | 17    |     |           |    |             |   |         |    |              |             |      |   |          |   |
| 453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        | - ' ' |     |           |    |             |   |         |    |              |             |      | - |          |   |
| 455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        | 18    |     |           |    |             |   |         |    |              |             |      |   |          |   |
| 455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        |       |     |           |    |             |   |         |    |              |             |      |   |          |   |
| M13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        | 19    |     |           |    |             |   |         |    |              |             |      |   |          |   |
| 458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        |       |     |           |    |             |   |         |    |              |             |      |   |          |   |
| 458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | M13    | 1     |     | 61.292    | _  |             |   |         |    |              |             |      |   |          |   |
| 459                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        |       |     |           |    |             |   |         |    |              |             |      |   |          | 3 |
| Mathematical Property                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |        | 2     |     |           |    |             |   |         |    |              |             |      |   |          |   |
| 461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        |       |     |           | 10 |             | 3 |         |    |              |             | 002  | 2 |          |   |
| 463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        | 3     | max |           | 3  | 108.581     | 1 | 272     | 10 | .016         | 2           | .009 | 3 | .208     | 3 |
| 464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 462 |        |       |     |           | 10 |             | 3 | -23.618 | 1  | 018          | 3           | 011  | 1 | 149      | 1 |
| 465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 463 |        | 4     | max | 61.292    | 3  | 38.589      | 1 | .754    | 10 | .016         | 2           | .007 | 3 | .25      | 3 |
| Max   61.292   3   145.115   3   12.818   1   1.016   2   .003   3   .211   3   .469   7   max   61.292   3   243.721   3   24.963   1   .016   2   .002   3   .13   3   .470   min   -652   10   -101.395   1   -3.564   3   -0.18   3   -0.09   1   -0.96   1   .471   8   max   61.292   3   243.721   3   24.963   1   .016   2   .002   3   .13   3   .470   min   -652   10   -171.387   1   -3.021   3   -0.018   3   -0.09   1   -0.96   1   .471   8   max   61.292   3   342.328   3   37.108   1   .016   2   .004   2   .008   3   .472   min   -652   10   -241.379   1   -2.477   3   -0.18   3   0   15   -0.12   2   .473   9   max   61.292   3   440.935   3   49.253   1   .016   2   .021   1   .105   1   .474   min   -652   10   -311.371   1   -1.933   3   -0.18   3   0   3   -1.55   3   .475   10   max   61.292   3   -7.569   15   61.398   1   .016   2   .044   1   .249   1   .476   min   -652   10   -539.541   3   1.205   12   .018   3   .011   3   -3.59   3   .477   11   max   9.73   1   311.371   1   2.649   3   .018   3   .021   1   .105   1   .478   min   -652   10   -342.328   3   -37.108   1   .016   2   .004   1   .005   1   .478   min   -652   10   -342.328   3   -37.108   1   .016   2   .008   3   .011   3   -3.559   3   .480   min   -652   10   -342.328   3   -37.108   1   .016   2   .008   3   .012   2   .481   13   max   9.73   1   241.379   1   3.193   3   .018   3   .004   2   .008   3   .480   min   -652   10   -342.328   3   -37.108   1   .016   2   .008   3   .012   2   .481   13   max   9.73   1   171.387   1   3.737   3   .018   3   .004   2   .008   3   .482   min   -652   10   -342.328   3   -37.108   1   .016   2   .008   3   .012   2   .014   .133   3   .482   min   -652   10   -342.328   3   -37.108   1   .016   2   .007   1   .153   1   .485   .15   max   9.73   1   171.387   1   3.1403   1   4.825   3   .018   3   .004   2   .008   3   .012   2   .014   .006   .006   .006   .006   .006   .006   .006   .006   .006   .006   .006   .006   .006   .006   .006   .006   .006   .006   .006   .006   . | 464 |        |       | min |           | 10 | -52.098     | 3 |         | 1  | 018          |             | 018  | 1 | 179      | _ |
| 467         6         max         61.292         3         145.115         3         12.818         1         .016         2         .003         3         .211         3           468         min         .652         10         -101.395         1         -3.564         3        018         3        017         1        153         1           469         7         max         61.292         3         243.721         3         24.963         1         .016         2         .002         3         .13         3           470         min         .652         10         -171.387         1         -3.021         3        018         3        009         1        096         1           471         8         max         61.292         3         342.328         3         37.108         1         .016         2         .004         2         .008         3           472         min         .652         10         -241.379         1         -2.477         3        018         3         0         15         .012         2           473         9         max         61.292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |        | 5     |     |           |    |             | 3 |         |    |              |             |      | 3 |          | 3 |
| 468         min        652         10         -101.395         1         -3.564         3        018         3        017         1        153         1           469         7         max         61.292         3         243.721         3         24.963         1         .016         2         .002         3         .13         3           470         min        652         10         -171.387         1         -3.021         3        018         3        009         1        096         1           471         8         max         61.292         3         342.328         3         7.108         1         .016         2         .004         2         .008         3           472         min        652         10         -241.379         1         -2.477         3        018         3         0         15        012         2           473         9         max         61.292         3         440.935         3         49.253         1         .016         2         .021         1         .105         1           475         10         max         65.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |        |       |     |           |    |             | _ |         |    |              |             |      |   |          | _ |
| 469         7         max         61.292         3         243.721         3         24.963         1         .016         2         .002         3         .13         3           470         min        652         10         -171.387         1         -3.021         3        018         3        009         1        096         1           471         8         max         61.292         3         342.328         3         37.108         1         .016         2         .004         2         .008         3           472         min        652         10         -241.379         1         -2.477         3        018         3         0         15        012         2           473         9         max         61.292         3         440.935         3         49.253         1         .016         2         .021         1         .105         1           474         min        652         10         -39.541         3         1.016         2         .024         1         .105         1           475         11         max         9.73         1         311.371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |        | 6     |     |           |    |             |   |         |    |              |             |      |   |          |   |
| 470         min        652         10         -171.387         1         -3.021         3        018         3        009         1        096         1           471         8         max         61.292         3         342.328         3         37.108         1         .016         2         .004         2         .008         3           472         min        652         10         -241.379         1         -2.477         3        018         3         0         15        012         2           473         9         max         61.292         3         440.935         3         49.253         1         .016         2         .021         1         .055         1           474         min        652         10         -311.371         1         -1.933         3        018         3        011         3        155         3           475         10         max         61.292         3         -7.569         15         61.398         1         .016         2         .044         1         .249         1           476         min        652         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |        |       |     |           |    |             |   |         |    |              |             |      |   |          |   |
| 471         8         max         61.292         3         342.328         3         37.108         1         .016         2         .004         2         .008         3           472         min        652         10         -241.379         1         -2.477         3        018         3         0         15        012         2           473         9         max         61.292         3         440.935         3         49.253         1         .016         2         .021         1         .155         3           474         min        652         10         -311.371         1         -1.933         3        018         3         0         3        155         3           475         10         max         61.292         3         -7.569         15         61.398         1         .016         2         .044         1         .249         1           476         min        652         10         -539.541         3         1.205         12        018         3         .021         1         .105         1           477         11         max         9.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        | 7     |     |           |    |             |   |         |    |              |             |      |   |          |   |
| 472         min        652         10         -241.379         1         -2.477         3        018         3         0         15        012         2           473         9         max         61.292         3         440.935         3         49.253         1         .016         2         .021         1         .105         1           474         min        652         10         -311.371         1         -1.933         3        018         3         0         3        155         3           475         10         max         61.292         3         -7.569         15         61.398         1         .016         2         .044         1         .249         1           476         min        652         10         -539.541         3         1.205         12        018         3        011         3        359         3           477         11         max         9.73         1         311.371         1         2.649         3         .018         3         .021         1         .105         1           478         min        652         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |        |       |     |           |    |             |   |         |    |              |             |      |   |          | _ |
| 473         9         max         61.292         3         440.935         3         49.253         1         .016         2         .021         1         .105         1           474         min        652         10         -311.371         1         -1.933         3        018         3         0         3        155         3           475         10         max         61.292         3         -7.569         15         61.398         1         .016         2         .044         1         .249         1           476         min        652         10         -539.541         3         1.205         12        018         3        011         3        359         3           477         11         max         9.73         1         311.371         1         2.649         3         .018         3         .021         1         .105         1           478         min        652         10         -440.935         3         -49.253         1        016         2        01         3         .155         3           479         12         max         9.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |        | 8     |     |           |    |             |   |         |    |              |             |      |   |          |   |
| 474         min        652         10         -311.371         1         -1.933         3        018         3         0         3        155         3           475         10         max         61.292         3         -7.569         15         61.398         1         .016         2         .044         1         .249         1           476         min        652         10         -539.541         3         1.205         12        018         3        011         3        359         3           477         11         max         9.73         1         311.371         1         2.649         3         .018         3         .021         1         .105         1           478         min        652         10         -440.935         3         -49.253         1        016         2        01         3        155         3           479         12         max         9.73         1         241.379         1         3.193         3         .018         3         .004         2         .008         3        012         2           480         min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |        |       |     |           |    |             |   |         |    |              |             |      |   |          |   |
| 475         10         max         61.292         3         -7.569         15         61.398         1         .016         2         .044         1         .249         1           476         min        652         10         -539.541         3         1.205         12        018         3        011         3        359         3           477         11         max         9.73         1         311.371         1         2.649         3         .018         3         .021         1         .105         1           478         min        652         10         -440.935         3         -49.253         1        016         2        01         3        155         3           479         12         max         9.73         1         241.379         1         3.193         3         .018         3         .004         2         .008         3           480         min        652         10         -342.328         3         -37.108         1        016         2        008         3        012         2           481         13         max         9.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |        | 9     |     |           |    |             |   |         |    |              |             |      |   |          |   |
| 476         min        652         10         -539.541         3         1.205         12        018         3        011         3        359         3           477         11         max         9.73         1         311.371         1         2.649         3         .018         3         .021         1         .105         1           478         min        652         10         -440.935         3         -49.253         1        016         2        01         3        155         3           479         12         max         9.73         1         241.379         1         3.193         3         .018         3         .004         2         .008         3           480         min        652         10         -342.328         3         -37.108         1        016         2        008         3        012         2           481         13         max         9.73         1         171.387         1         3.737         3         .018         3         0         10         .13         3           482         min        652         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |        | 40    |     |           |    |             |   |         |    |              |             |      |   |          |   |
| 477         11         max         9.73         1         311.371         1         2.649         3         .018         3         .021         1         .105         1           478         min        652         10         -440.935         3         -49.253         1        016         2        01         3        155         3           479         12         max         9.73         1         241.379         1         3.193         3         .018         3         .004         2         .008         3           480         min        652         10         -342.328         3         -37.108         1        016         2        008         3        012         2           481         13         max         9.73         1         171.387         1         3.737         3         .018         3         0         10         .13         3           482         min        652         10         -243.721         3         -24.963         1        016         2        009         1        096         1           483         14         max         9.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |        | 10    |     |           |    |             |   |         | -  |              |             |      |   |          |   |
| 478         min        652         10         -440.935         3         -49.253         1        016         2        01         3        155         3           479         12         max         9.73         1         241.379         1         3.193         3         .018         3         .004         2         .008         3           480         min        652         10         -342.328         3         -37.108         1        016         2        008         3        012         2           481         13         max         9.73         1         171.387         1         3.737         3         .018         3         0         10         .13         3           482         min        652         10         -243.721         3         -24.963         1        016         2        009         1        096         1           483         14         max         9.73         1         101.395         1         4.281         3         .018         3         0         15         .211         3           484         min        652         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |        | 11    |     |           |    | 211 271     | 3 |         |    |              |             |      |   |          |   |
| 479       12       max       9.73       1       241.379       1       3.193       3       .018       3       .004       2       .008       3         480       min      652       10       -342.328       3       -37.108       1      016       2      008       3      012       2         481       13       max       9.73       1       171.387       1       3.737       3       .018       3       0       10       .13       3         482       min      652       10       -243.721       3       -24.963       1      016       2      009       1      096       1         483       14       max       9.73       1       101.395       1       4.281       3       .018       3       0       15       .211       3         484       min      652       10       -145.115       3       -12.817       1      016       2      017       1      153       1         485       15       max       9.73       1       31.403       1       4.825       3       .018       3       0       15       .2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |        |       | _   |           |    | 440.025     | 2 |         |    |              |             |      |   |          |   |
| 480         min        652         10         -342.328         3         -37.108         1        016         2        008         3        012         2           481         13         max         9.73         1         171.387         1         3.737         3         .018         3         0         10         .13         3           482         min        652         10         -243.721         3         -24.963         1        016         2        009         1        096         1           483         14         max         9.73         1         101.395         1         4.281         3         .018         3         0         15         .211         3           484         min        652         10         -145.115         3         -12.817         1        016         2        017         1        153         1           485         15         max         9.73         1         31.403         1         4.825         3         .018         3         0         15         .251         3           486         min        652         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |        | 12    |     |           |    |             |   |         |    |              |             |      |   |          |   |
| 481         13         max         9.73         1         171.387         1         3.737         3         .018         3         0         10         .13         3           482         min        652         10         -243.721         3         -24.963         1        016         2        009         1        096         1           483         14         max         9.73         1         101.395         1         4.281         3         .018         3         0         15         .211         3           484         min        652         10         -145.115         3         -12.817         1        016         2        017         1        153         1           485         15         max         9.73         1         31.403         1         4.825         3         .018         3         0         15         .251         3           486         min        652         10         -46.508         3         -2.655         2        016         2        02         1        181         1           487         16         max         9.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |        | 12    |     |           |    |             |   |         |    |              |             |      |   |          |   |
| 482         min        652         10         -243.721         3         -24.963         1        016         2        009         1        096         1           483         14         max         9.73         1         101.395         1         4.281         3         .018         3         0         15         .211         3           484         min        652         10         -145.115         3         -12.817         1        016         2        017         1        153         1           485         15         max         9.73         1         31.403         1         4.825         3         .018         3         0         15         .251         3           486         min        652         10         -46.508         3         -2.655         2        016         2        02         1        181         1           487         16         max         9.73         1         52.098         3         11.473         1         .018         3         0         15         .25         3           488         min        652         10 <th< td=""><td></td><td></td><td>13</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        | 13    |     |           |    |             |   |         |    |              |             |      |   |          |   |
| 483         14 max         9.73         1 101.395         1 4.281         3 .018         3 0 15         .211         3           484         min        652         10 -145.115         3 -12.817         1016         2017         1153         1           485         15 max         9.73         1 31.403         1 4.825         3 .018         3 0 15         .251         3           486         min        652         10 -46.508         3 -2.655         2016         202         1181         1           487         16 max         9.73         1 52.098         3 11.473         1 .018         3 0 15         .25         3           488         min        652         10 -38.589         1754         10016         2018         1179         1           489         17 max         9.73         1 150.705         3 23.618         1 .018         3 .001         3 .208         3           490         min        652         10 -108.581         1 .273         10016         2011         1149         1           491         18 max         9.73         1 249.312         3 35.763         1 .018         3 .004         3 .124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |        | 13    |     |           |    |             |   |         |    |              |             |      |   |          |   |
| 484         min        652         10         -145.115         3         -12.817         1        016         2        017         1        153         1           485         15         max         9.73         1         31.403         1         4.825         3         .018         3         0         15         .251         3           486         min        652         10         -46.508         3         -2.655         2        016         2        02         1        181         1           487         16         max         9.73         1         52.098         3         11.473         1         .018         3         0         15         .25         3           488         min        652         10         -38.589         1        754         10        016         2        018         1        179         1           489         17         max         9.73         1         150.705         3         23.618         1         .018         3         .001         3         .208         3           490         min        652         10 <t< td=""><td></td><td></td><td>14</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |        | 14    |     |           |    |             |   |         |    |              |             |      |   |          | _ |
| 485       15 max       9.73       1 31.403       1 4.825       3 .018       3 0 15       .251       3         486       min      652       10 -46.508       3 -2.655       2016       202       1181       1         487       16 max       9.73       1 52.098       3 11.473       1 .018       3 0 15       .25 3         488       min652       10 -38.589       1754       10016       2018       1179       1         489       17 max       9.73       1 150.705       3 23.618       1 .018       3 .001       3 .208       3         490       min652       10 -108.581       1 .273       10016       2011       1149       1         491       18 max       9.73       1 249.312       3 35.763       1 .018       3 .004       3 .124       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |        | 17    |     |           |    |             |   |         |    |              |             |      |   |          |   |
| 486         min        652         10         -46.508         3         -2.655         2        016         2        02         1        181         1           487         16         max         9.73         1         52.098         3         11.473         1         .018         3         0         15         .25         3           488         min        652         10         -38.589         1        754         10        016         2        018         1        179         1           489         17         max         9.73         1         150.705         3         23.618         1         .018         3         .001         3         .208         3           490         min        652         10         -108.581         1         .273         10        016         2        011         1        149         1           491         18         max         9.73         1         249.312         3         35.763         1         .018         3         .004         3         .124         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |        | 15    |     |           |    |             |   |         |    |              |             |      |   |          | _ |
| 487     16 max     9.73     1 52.098     3 11.473     1 .018     3 0 15 .25     3       488     min    652     10 -38.589     1754     10016     2018     1179     1       489     17 max     9.73     1 150.705     3 23.618     1 .018     3 .001     3 .208     3       490     min    652     10 -108.581     1 .273     10016     2011     1149     1       491     18 max     9.73     1 249.312     3 35.763     1 .018     3 .004     3 .124     3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |        |       |     |           |    |             |   |         |    |              |             |      |   |          |   |
| 488         min        652         10         -38.589         1        754         10        016         2        018         1        179         1           489         17         max         9.73         1         150.705         3         23.618         1         .018         3         .001         3         .208         3           490         min        652         10         -108.581         1         .273         10        016         2        011         1        149         1           491         18         max         9.73         1         249.312         3         35.763         1         .018         3         .004         3         .124         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |        | 16    |     |           |    |             |   |         |    |              |             |      | _ |          |   |
| 489     17 max     9.73     1 150.705     3 23.618     1 .018     3 .001     3 .208     3       490     min    652     10 -108.581     1 .273     10016     2011     1149     1       491     18 max     9.73     1 249.312     3 35.763     1 .018     3 .004     3 .124     3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |        |       |     |           |    |             |   |         |    |              |             |      |   |          |   |
| 490         min        652         10         -108.581         1         .273         10        016         2        011         1        149         1           491         18         max         9.73         1         249.312         3         35.763         1         .018         3         .004         3         .124         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |        | 17    |     |           |    |             |   |         |    |              |             |      |   |          |   |
| 491 18 max 9.73 1 249.312 3 35.763 1 .018 3 .004 3 .124 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |        |       |     |           |    |             |   |         |    |              |             |      |   |          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |        | 18    |     |           |    |             | 3 |         |    |              |             |      | 3 |          | 3 |
| 1000   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 492 |        |       | min | 652       | 10 | -178.573    | 1 | 1.141   | 15 | 016          | 2           | 002  | 2 | 089      | 1 |
| 493 19 max 9.73 1 347.918 3 47.908 1 .018 3 .019 1 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 493 |        | 19    | max | 9.73      | 1  | 347.918     | 3 | 47.908  | 1  | .018         | 3           | .019 | 1 | 0        | 1 |



Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:\_\_\_\_

|     | Member | Sec |     | Axial[lb] | LC | y Shear[lb] | LC | z Shear[lb] |    | Torque[k-ft] | LC | y-y Mome | . LC | z-z Mome |   |
|-----|--------|-----|-----|-----------|----|-------------|----|-------------|----|--------------|----|----------|------|----------|---|
| 494 |        |     | min | 652       | 10 | -248.565    | 1  | 1.513       | 15 | 016          | 2  | 001      | 10   | 0        | 3 |
| 495 | M16    | 1_  | max | 2.767     | 3  | 341.057     | 2  | -1.509      | 15 | .013         | 3  | .019     | 1_   | 0        | 2 |
| 496 |        |     | min | -10.11    | 1  | -169.923    | 3  | -47.843     | 1  | 019          | 2  | 001      | 10   | 0        | 3 |
| 497 |        | 2   | max | 2.767     | 3  | 244.801     | 2  | -1.138      | 15 | .013         | 3  | .002     | 9    | .061     | 3 |
| 498 |        |     | min | -10.11    | 1  | -122.622    | 3  | -35.698     | 1  | 019          | 2  | 002      | 2    | 122      | 2 |
| 499 |        | 3   | max | 2.767     | 3  | 148.545     | 2  | 243         | 10 | .013         | 3  | 0        | 15   | .102     | 3 |
| 500 |        |     | min | -10.11    | 1  | -75.321     | 3  | -23.552     | 1  | 019          | 2  | 011      | 1    | 204      | 2 |
| 501 |        | 4   | max | 2.767     | 3  | 52.288      | 2  | .784        | 10 | .013         | 3  | 0        | 15   | .124     | 3 |
| 502 |        |     | min | -10.11    | 1  | -28.02      | 3  | -11.407     | 1  | 019          | 2  | 018      | 1    | 246      | 2 |
| 503 |        | 5   | max | 2.767     | 3  | 19.282      | 3  | 2.713       | 2  | .013         | 3  | 0        | 15   | .126     | 3 |
| 504 |        |     | min | -10.11    | 1  | -43.968     | 2  | -2.196      | 3  | 019          | 2  | 02       | 1    | 248      | 2 |
| 505 |        | 6   | max | 2.767     | 3  | 66.583      | 3  | 12.883      | 1  | .013         | 3  | 0        | 15   | .108     | 3 |
| 506 |        |     | min | -10.11    | 1  | -140.224    | 2  | -1.652      | 3  | 019          | 2  | 017      | 1    | 209      | 2 |
| 507 |        | 7   | max | 2.767     | 3  | 113.884     | 3  | 25.028      | 1  | .013         | 3  | 0        | 10   | .07      | 3 |
| 508 |        |     | min | -10.11    | 1  | -236.481    | 2  | -1.108      | 3  | 019          | 2  | 009      | 1    | 131      | 2 |
| 509 |        | 8   | max | 2.767     | 3  | 161.185     | 3  | 37.173      | 1  | .013         | 3  | .004     | 2    | .013     | 3 |
| 510 |        |     | min | -10.11    | 1  | -332.737    | 2  | 564         | 3  | 019          | 2  | 005      | 3    | 012      | 2 |
| 511 |        | 9   | max | 2.767     | 3  | 208.487     | 3  | 49.318      | 1  | .013         | 3  | .022     | 1    | .147     | 2 |
| 512 |        |     | min | -10.11    | 1  | -428.993    | 2  | 02          | 3  | 019          | 2  | 005      | 3    | 064      | 3 |
| 513 |        | 10  | max | .685      | 10 | -7.571      | 15 | 61.464      | 1  | 0            | 15 | .045     | 1    | .345     | 2 |
| 514 |        |     | min | -10.11    | 1  | -525.25     | 2  | -1.479      | 3  | 019          | 2  | 005      | 3    | 161      | 3 |
| 515 |        | 11  | max | .685      | 10 | 428.993     | 2  | 671         | 12 | .019         | 2  | .022     | 1    | .147     | 2 |
| 516 |        |     | min | -10.11    | 1  | -208.487    | 3  | -49.318     | 1  | 013          | 3  | 0        | 3    | 064      | 3 |
| 517 |        | 12  | max | .685      | 10 | 332.737     | 2  | 308         | 12 | .019         | 2  | .004     | 2    | .013     | 3 |
| 518 |        |     | min | -10.11    | 1  | -161.185    | 3  | -37.173     | 1  | 013          | 3  | 0        | 3    | 012      | 2 |
| 519 |        | 13  | max | .685      | 10 | 236.481     | 2  | .153        | 3  | .019         | 2  | 0        | 10   | .07      | 3 |
| 520 |        |     | min | -10.11    | 1  | -113.884    | 3  | -25.028     | 1  | 013          | 3  | 009      | 1    | 131      | 2 |
| 521 |        | 14  | max | .685      | 10 | 140.224     | 2  | .697        | 3  | .019         | 2  | 0        | 12   | .108     | 3 |
| 522 |        |     | min | -10.11    | 1  | -66.583     | 3  | -12.883     | 1  | 013          | 3  | 017      | 1    | 209      | 2 |
| 523 |        | 15  | max | .685      | 10 | 43.968      | 2  | 1.241       | 3  | .019         | 2  | 0        | 3    | .126     | 3 |
| 524 |        |     | min | -10.11    | 1  | -19.282     | 3  | -2.713      | 2  | 013          | 3  | 02       | 1    | 248      | 2 |
| 525 |        | 16  | max | .685      | 10 | 28.02       | 3  | 11.408      | 1  | .019         | 2  | 0        | 3    | .124     | 3 |
| 526 |        |     | min | -10.11    | 1  | -52.288     | 2  | 783         | 10 | 013          | 3  | 018      | 1    | 246      | 2 |
| 527 |        | 17  | max | .685      | 10 | 75.321      | 3  | 23.553      | 1  | .019         | 2  | .002     | 3    | .102     | 3 |
| 528 |        |     | min | -10.11    | 1  | -148.545    | 2  | .243        | 10 | 013          | 3  | 011      | 1    | 204      | 2 |
| 529 |        | 18  | max | .685      | 10 | 122.622     | 3  | 35.698      | 1  | .019         | 2  | .003     | 3    | .061     | 3 |
| 530 |        |     | min | -10.11    | 1  | -244.801    | 2  | 1.14        | 15 | 013          | 3  | 002      | 2    | 122      | 2 |
| 531 |        | 19  | max | .685      | 10 | 169.923     | 3  | 47.843      | 1  | .019         | 2  | .019     | 1    | 0        | 2 |
| 532 |        |     | min | -10.11    | 1  | -341.057    | 2  | 1.511       | 15 | 013          | 3  | 001      | 10   | 0        | 3 |
| 533 | M15    | 1   | max | 0         | 1  | .774        | 3  | .141        | 3  | 0            | 1  | 0        | 1    | 0        | 1 |
| 534 |        |     | min | -78.093   | 3  | 0           | 1  | 0           | 1  | 0            | 3  | 0        | 3    | 0        | 1 |
| 535 |        | 2   | max | 0         | 1  | .688        | 3  | .141        | 3  | 0            | 1  | 0        | 1    | 0        | 1 |
| 536 |        |     | min | -78.147   | 3  | 0           | 1  | 0           | 1  | 0            | 3  | 0        | 3    | 0        | 3 |
| 537 |        | 3   | max | 0         | 1  | .602        | 3  | .141        | 3  | 0            | 1  | 0        | 1    | 0        | 1 |
| 538 |        |     | min | -78.201   | 3  | 0           | 1  | 0           | 1  | 0            | 3  | 0        | 3    | 0        | 3 |
| 539 |        | 4   | max | 0         | 1  | .516        | 3  | .141        | 3  | 0            | 1  | 0        | 1    | 0        | 1 |
| 540 |        |     | min | -78.255   | 3  | 0           | 1  | 0           | 1  | 0            | 3  | 0        | 3    | 0        | 3 |
| 541 |        | 5   | max |           | 1  | .43         | 3  | .141        | 3  | 0            | 1  | 0        | 1    | 0        | 1 |
| 542 |        |     | min | -78.309   | 3  | 0           | 1  | 0           | 1  | 0            | 3  | 0        | 3    | 0        | 3 |
| 543 |        | 6   | max | 0         | 1  | .344        | 3  | .141        | 3  | 0            | 1  | 0        | 1    | 0        | 1 |
| 544 |        |     | min | -78.363   | 3  | 0           | 1  | 0           | 1  | Ö            | 3  | 0        | 3    | 0        | 3 |
| 545 |        | 7   | max |           | 1  | .258        | 3  | .141        | 3  | 0            | 1  | 0        | 3    | 0        | 1 |
| 546 |        |     | min | -78.417   | 3  | 0           | 1  | 0           | 1  | 0            | 3  | 0        | 1    | 0        | 3 |
| 547 |        | 8   | max | 0         | 1  | .172        | 3  | .141        | 3  | 0            | 1  | 0        | 3    | 0        | 1 |
| 548 |        |     | min | -78.471   | 3  | 0           | 1  | 0           | 1  | 0            | 3  | 0        | 1    | 0        | 3 |
| 549 |        | 9   | max | 0         | 1  | .086        | 3  | .141        | 3  | 0            | 1  | 0        | 3    | 0        | 1 |
| 550 |        | Ť   | min |           | 3  | 0           | 1  | 0           | 1  | 0            | 3  | 0        | 1    | 0        | 3 |
|     |        |     |     | 10.020    |    |             |    |             |    | •            | _  |          |      | •        |   |



Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:\_\_\_\_

|            | Member | Sec |            | Axial[lb]              | LC       | y Shear[lb] | LC |             |   | Torque[k-ft] | LC       | y-y Mome |   | z-z Mome | LC |
|------------|--------|-----|------------|------------------------|----------|-------------|----|-------------|---|--------------|----------|----------|---|----------|----|
| 551        |        | 10  | max        | 0                      | 1        | 0           | 1  | .141        | 3 | 0            | 1        | 0        | 3 | 0        | 1  |
| 552        |        |     | min        | -78.579                | 3        | 0           | 1  | 0           | 1 | 0            | 3        | 0        | 1 | 0        | 3  |
| 553        |        | 11  | max        | 0                      | 1        | 0           | 1  | .141        | 3 | 0            | 1        | 0        | 3 | 0        | 1  |
| 554        |        |     | min        | -78.633                | 3        | 086         | 3  | 0           | 1 | 0            | 3        | 0        | 1 | 0        | 3  |
| 555        |        | 12  | max        | 0                      | 1        | 0           | 1  | .141        | 3 | 0            | 1        | 0        | 3 | 0        | 1  |
| 556        |        | 40  | min        | <u>-78.687</u>         | 3        | 172         | 3  | 0           | 1 | 0            | 3        | 0        | 1 | 0        | 3  |
| 557        |        | 13  | max        | 0                      | 1        | 0           | 1  | .141        | 3 | 0            | 1        | 0        | 3 | 0        | 1  |
| 558        |        | 4.4 | min        | <u>-78.741</u>         | 3        | 258         | 3  | 0           | 1 | 0            | 3        | 0        | 1 | 0        | 3  |
| 559        |        | 14  | max        | 0 70 705               | 1        | 0           | 1  | .141        | 3 | 0            | 1        | 0        | 3 | 0        | 1  |
| 560        |        | 4.5 | min        | <u>-78.795</u>         | 3        | 344         | 3  | 0           | 1 | 0            | 1        | 0        | 1 | 0        | 1  |
| 561        |        | 15  | max        | 0<br>-78.849           | 3        | 0           | 1  | .141        | 3 | 0            | <u> </u> | 0        | 3 | 0        |    |
| 562        |        | 16  | min        |                        |          | 43          | 3  | .141        | 3 | 0            | 3        | 0        | 3 |          | 3  |
| 563        |        | 16  | max        | -78.903                | 3        | 516         | 3  | .141        | 1 | 0            | 3        | 0        | 1 | 0        | 3  |
| 564<br>565 |        | 17  | min        |                        | <u> </u> | 516<br>0    | 1  | .141        | 3 | 0            | 1        | 0        | 3 | 0        | 1  |
| 566        |        | 17  | max        | 0<br>-78.957           | 3        | 602         | 3  | 0           | 1 | 0            | 3        | 0        | 1 | 0        | 3  |
| 567        |        | 18  | max        | <u>-70.957</u><br>0    | 1        | 0           | 1  | .141        | 3 | 0            | 1        | 0        | 3 | 0        | 1  |
| 568        |        | 10  | min        | -79.011                | 3        | 688         | 3  | 0           | 1 | 0            | 3        | 0        | 1 | 0        | 3  |
| 569        |        | 19  | max        | 0                      | 1        | 0           | 1  | .141        | 3 | 0            | 1        | 0        | 3 | 0        | 1  |
| 570        |        | 13  | min        | -79.065                | 3        | 774         | 3  | 0           | 1 | 0            | 3        | 0        | 1 | 0        | 1  |
| 571        | M16A   | 1   | max        | 0                      | 1        | 1.324       | 4  | .021        | 9 | 0            | 3        | 0        | 3 | 0        | 1  |
| 572        | WITOT  |     | min        | -77.771                | 3        | 0           | 1  | 066         | 3 | 0            | 9        | 0        | 9 | 0        | 1  |
| 573        |        | 2   | max        | 0                      | 1        | 1.177       | 4  | .021        | 9 | 0            | 3        | 0        | 3 | 0        | 1  |
| 574        |        | _   | min        | -77.717                | 3        | 0           | 1  | 066         | 3 | 0            | 9        | 0        | 9 | 0        | 4  |
| 575        |        | 3   | max        | 0                      | 1        | 1.03        | 4  | .021        | 9 | 0            | 3        | 0        | 3 | 0        | 1  |
| 576        |        |     | min        | -77.663                | 3        | 0           | 1  | 066         | 3 | 0            | 9        | 0        | 9 | 0        | 4  |
| 577        |        | 4   | max        | 0                      | 1        | .883        | 4  | .021        | 9 | 0            | 3        | 0        | 3 | 0        | 1  |
| 578        |        |     | min        | -77.609                | 3        | 0           | 1  | 066         | 3 | 0            | 9        | 0        | 9 | 0        | 4  |
| 579        |        | 5   | max        | 0                      | 1        | .736        | 4  | .021        | 9 | 0            | 3        | 0        | 3 | 0        | 1  |
| 580        |        |     | min        | -77.555                | 3        | 0           | 1  | 066         | 3 | 0            | 9        | 0        | 9 | 001      | 4  |
| 581        |        | 6   | max        | 0                      | 1        | .588        | 4  | .021        | 9 | 0            | 3        | 0        | 3 | 0        | 1  |
| 582        |        |     | min        | -77.501                | 3        | 0           | 1  | 066         | 3 | 0            | 9        | 0        | 9 | 001      | 4  |
| 583        |        | 7   | max        | 0                      | 1        | .441        | 4  | .021        | 9 | 0            | 3        | 0        | 3 | 0        | 1  |
| 584        |        |     | min        | -77.447                | 3        | 0           | 1  | 066         | 3 | 0            | 9        | 0        | 9 | 001      | 4  |
| 585        |        | 8   | max        | 0                      | _1_      | .294        | 4  | .021        | 9 | 0            | 3        | 0        | 3 | 0        | 1  |
| 586        |        |     | min        | -77.393                | 3        | 0           | 1  | 066         | 3 | 0            | 9        | 0        | 9 | 001      | 4  |
| 587        |        | 9   | max        | 0                      | 1        | .147        | 4  | .021        | 9 | 0            | 3        | 0        | 3 | 0        | 1  |
| 588        |        |     | min        | -77.339                | 3        | 0           | 1  | 066         | 3 | 0            | 9        | 0        | 9 | 001      | 4  |
| 589        |        | 10  | max        | 0                      | _1_      | 0           | 1  | .021        | 9 | 0            | 3        | 0        | 3 | 0        | 1  |
| 590        |        | 4.4 | min        | <u>-77.285</u>         | 3        | 0           | 1  | 066         | 3 | 0            | 9        | 0        | 9 | 001      | 4  |
| 591        |        | 11  | max        |                        | 13       | 0           | 1  | .021        | 9 | 0            | 3        | 0        | 3 | 0        | 1  |
| 592        |        | 40  | min        | <u>-77.231</u>         | 3        | 147         | 4  | 066         | 3 | 0            | 9        | 0        | 9 | 001      | 4  |
| 593        |        | 12  | max        | .12                    | 13       | 0           | 1  | .021        | 9 | 0            | 3        | 0        | 3 | 0        | 1  |
| 594        |        | 40  | min        | <u>-77.177</u>         | 3        | 294         | 4  | 066         | 3 | 0            | 9        | 0        | 9 | 001      | 4  |
| 595        |        | 13  | max        | .194<br>-77.123        | 13       | 0<br>441    | 1  | .021<br>066 | 9 | 0            | 9        | 0        | 3 | 001      | 1  |
| 596        |        | 14  | min        |                        | 3        |             | 4  | .021        |   | _            |          | 0        | _ | 001<br>0 | 1  |
| 597<br>598 |        | 14  | max        | .283                   | 3        | 588         | 4  |             | 9 | 0            | 3        | 0        | 9 | 001      | 4  |
|            |        | 15  | min        | <u>-77.069</u><br>.376 |          |             | 1  | 066<br>.021 | 9 | 0            | 3        | 0        | 9 |          | 1  |
| 599        |        | 15  | max        | -77.015                | 3        | 736         | 4  | 066         | 3 | 0            | 9        | 0        | 3 | 001      | 4  |
| 600<br>601 |        | 16  | min<br>max | .468                   | 4        | /36<br>0    | 1  | .021        | 9 | 0            | 3        | 0        | 9 | 001<br>0 | 1  |
| 602        |        | 10  | min        | -76.962                | 3        | 883         | 4  | 066         | 3 | 0            | 9        | 0        | 3 | 0        | 4  |
| 603        |        | 17  | max        | .56                    | 4        | 0           | 1  | .021        | 9 | 0            | 3        | 0        | 9 | 0        | 1  |
| 604        |        | 17  | min        | -76.908                | 3        | -1.03       | 4  | 066         | 3 | 0            | 9        | 0        | 3 | 0        | 4  |
| 605        |        | 18  | max        | .653                   | 4        | 0           | 1  | .021        | 9 | 0            | 3        | 0        | 9 | 0        | 1  |
| 606        |        | 10  | min        | -76.854                | 3        | -1.177      | 4  | 066         | 3 | 0            | 9        | 0        | 3 | 0        | 4  |
| 607        |        | 19  | max        | .745                   | 4        | 0           | 1  | .021        | 9 | 0            | 3        | 0        | 9 | 0        | 1  |
|            |        | 13  | παλ        | .1+0                   |          | U           |    | .021        | J |              | J        |          | J | U        |    |



Model Name

Schletter, Inc.HCV

1101

: Standard PVMini Racking System

Dec 11, 2015

Checked By:\_\_\_\_

## **Envelope Member Section Forces (Continued)**

|     | Member | Sec |     | Axial[lb] | LC | y Shear[lb] | LC | z Shear[lb] | LC | Torque[k-ft] | LC | y-y Mome | LC | z-z Mome | LC |
|-----|--------|-----|-----|-----------|----|-------------|----|-------------|----|--------------|----|----------|----|----------|----|
| 608 |        |     | min | -76.8     | 3  | -1 324      | 4  | - 066       | 3  | 0            | 9  | 0        | 3  | 0        | 1  |

Envelope Member Section Deflections

|    | siope ivicini | <del></del> |     | on Dene |    |                 |    |        |    |             |           |               |              |               |    |
|----|---------------|-------------|-----|---------|----|-----------------|----|--------|----|-------------|-----------|---------------|--------------|---------------|----|
|    | Member        | Sec         |     | x [in]  | LC | y [in]          | LC | z [in] | LC | x Rotate [r | LC        | (n) L/y Ratio | LC           | (n) L/z Ratio | LC |
| 1  | M2            | 1           | max | .002    | 1  | .006            | 2  | .001   | 1  | 8.802e-6    | 10        | NC            | 3            | NC            | 1  |
| 2  |               |             | min | 003     | 3  | 005             | 3  | 001    | 3  | -1.459e-4   | 1         | 4764.458      | 2            | NC            | 1  |
| 3  |               | 2           | max | .002    | 1  | .006            | 2  | .001   | 1  | 8.392e-6    | 10        | NC            | 3            | NC            | 1  |
| 4  |               |             | min | 003     | 3  | 005             | 3  | 001    | 3  | -1.393e-4   | 1         | 5159.125      | 2            | NC            | 1  |
| 5  |               | 3           | max | .002    | 1  | .005            | 2  | .001   | 1  | 7.982e-6    | 10        | NC            | 3            | NC            | 1  |
| 6  |               |             | min | 002     | 3  | 005             | 3  | 001    | 3  | -1.328e-4   | 1         | 5621.764      | 2            | NC            | 1  |
| 7  |               | 4           | max | .002    | 1  | .005            | 2  | 0      | 1  | 7.571e-6    | 10        | NC            | 3            | NC            | 1  |
| 8  |               |             | min | 002     | 3  | 005             | 3  | 001    | 3  | -1.263e-4   | 1         | 6167.765      | 2            | NC            | 1  |
| 9  |               | 5           |     | .002    | 1  | .004            | 2  |        | 1  |             | 10        | NC            | 1            | NC            | 1  |
|    |               | 5           | max |         | 1  |                 | 3  | 0      |    | 7.161e-6    |           |               | 2            |               | 4  |
| 10 |               |             | min | 002     | 3  | 004             |    | 0      | 3  | -1.198e-4   | 1_        | 6817.356      |              | NC<br>NC      | 4  |
| 11 |               | 6           | max | .001    | 1  | .004            | 2  | 0      | 1  | 6.75e-6     | 10        | NC<br>7507.50 | 1_           | NC            | 1  |
| 12 |               |             | min | 002     | 3  | 004             | 3  | 0      | 3  | -1.133e-4   | 1_        | 7597.56       | 2            | NC            | 1  |
| 13 |               | 7           | max | .001    | 1  | .004            | 2  | 0      | 1  | 6.34e-6     | 10        | NC            | 1            | NC            | 1  |
| 14 |               |             | min | 002     | 3  | 004             | 3  | 0      | 3  | -1.067e-4   | 1_        | 8545.157      | 2            | NC            | 1  |
| 15 |               | 8           | max | .001    | 1  | .003            | 2  | 0      | 1  | 5.93e-6     | 10        | NC            | _1_          | NC            | 1  |
| 16 |               |             | min | 002     | 3  | 004             | 3  | 0      | 3  | -1.002e-4   | 1_        | 9711.317      | 2            | NC            | 1  |
| 17 |               | 9           | max | .001    | 1  | .003            | 2  | 0      | 1  | 5.519e-6    | 10        | NC            | _1_          | NC            | 1  |
| 18 |               |             | min | 002     | 3  | 003             | 3  | 0      | 3  | -9.371e-5   | 1         | NC            | 1            | NC            | 1  |
| 19 |               | 10          | max | 0       | 1  | .002            | 2  | 0      | 1  | 5.109e-6    | 10        | NC            | 1            | NC            | 1  |
| 20 |               |             | min | 001     | 3  | 003             | 3  | 0      | 3  | -8.719e-5   | 1         | NC            | 1            | NC            | 1  |
| 21 |               | 11          | max | 0       | 1  | .002            | 2  | 0      | 1  | 4.698e-6    | 10        | NC            | 1            | NC            | 1  |
| 22 |               |             | min | 001     | 3  | 003             | 3  | 0      | 3  | -8.066e-5   | 1         | NC            | 1            | NC            | 1  |
| 23 |               | 12          | max | 0       | 1  | .002            | 2  | 0      | 1  | 4.288e-6    | 10        | NC            | 1            | NC            | 1  |
| 24 |               |             | min | 001     | 3  | 003             | 3  | 0      | 3  | -7.414e-5   | 1         | NC            | 1            | NC            | 1  |
| 25 |               | 13          | max | 0       | 1  | .001            | 2  | 0      | 1  | 3.878e-6    | 10        | NC            | 1            | NC            | 1  |
| 26 |               | 13          | min | 0       | 3  | 002             | 3  | 0      | 3  | -6.762e-5   | 1         | NC            | 1            | NC            | 1  |
| 27 |               | 14          | max | 0       | 1  | .002            | 2  | 0      | 1  | 3.467e-6    | 10        | NC            | 1            | NC            | 1  |
| 28 |               | 14          |     | 0       | 3  | 002             | 3  | 0      | 3  | -6.11e-5    | 1         | NC            | <del>+</del> | NC            | 1  |
|    |               | 4.5         | min |         | 1  | 002<br>0        |    |        |    |             |           | NC<br>NC      | +            | NC<br>NC      |    |
| 29 |               | 15          | max | 0       |    |                 | 2  | 0      | 1  | 3.057e-6    | <u>10</u> |               |              |               | 1  |
| 30 |               | 4.0         | min | 0       | 3  | 002             | 3  | 0      | 3  | -5.458e-5   | 1_        | NC            | 1_           | NC            | 1  |
| 31 |               | 16          | max | 0       | 1  | 0               | 2  | 0      | 1  | 2.647e-6    | <u>10</u> | NC            | 1            | NC            | 1  |
| 32 |               |             | min | 0       | 3  | 001             | 3  | 0      | 3  | -4.806e-5   | _1_       | NC            | 1            | NC            | 1  |
| 33 |               | 17          | max | 0       | 1  | 0               | 2  | 0      | 1  | 2.236e-6    | 10        | NC            | 1            | NC            | 1  |
| 34 |               |             | min | 0       | 3  | 0               | 3  | 0      | 3  | -4.154e-5   | <u>1</u>  | NC            | <u>1</u>     | NC            | 1  |
| 35 |               | 18          | max | 0       | 1  | 0               | 2  | 0      | 1  | 1.826e-6    | 10        | NC            | _1_          | NC            | 1  |
| 36 |               |             | min | 0       | 3  | 0               | 3  | 0      | 3  | -3.502e-5   | 1         | NC            | 1            | NC            | 1  |
| 37 |               | 19          | max | 0       | 1  | 0               | 1  | 0      | 1  | 1.415e-6    | 10        | NC            | 1            | NC            | 1  |
| 38 |               |             | min | 0       | 1  | 0               | 1  | 0      | 1  | -2.85e-5    | 1         | NC            | 1            | NC            | 1  |
| 39 | M3            | 1           | max | 0       | 1  | 0               | 1  | 0      | 1  | 1.304e-5    | 1         | NC            | 1            | NC            | 1  |
| 40 |               |             | min | 0       | 1  | 0               | 1  | 0      | 1  | -6.497e-7   | 10        | NC            | 1            | NC            | 1  |
| 41 |               | 2           | max | 0       | 9  | 0               | 2  | 0      |    | 1.918e-5    | 1         | NC            | 1            | NC            | 1  |
| 42 |               |             | min | 0       | 2  | 0               | 3  | 0      | 1  | -1.122e-6   | 10        | NC            | 1            | NC            | 1  |
| 43 |               | 3           | max | 0       | 9  | 0               | 2  | 0      | 10 |             | 1         | NC            | 1            | NC            | 1  |
| 44 |               |             | min | 0       | 2  | 001             | 3  | 0      | 9  | -1.594e-6   |           | NC            | 1            | NC            | 1  |
| 45 |               | 4           | max | 0       | 9  | 0               | 2  | 0      | 10 | 3.145e-5    | 1         | NC            | 1            | NC            | 1  |
| 46 |               | 7           | min | 0       | 2  | 002             | 3  | 0      | 9  | -2.066e-6   | 10        | NC            | 1            | NC<br>NC      | 1  |
| 47 |               | 5           | 1   | 0       | 9  | <u>002</u><br>0 | 2  | 0      | 3  | 3.759e-5    | 10<br>1   | NC<br>NC      | 1            | NC<br>NC      | 1  |
|    |               | J           | max |         | 2  |                 |    |        |    |             |           |               |              |               | _  |
| 48 |               | _           | min | 0       |    | 003             | 3  | 0      | 9  | -2.539e-6   | <u>10</u> | NC<br>NC      | 1            | NC<br>NC      | 1  |
| 49 |               | 6           | max | 0       | 9  | 0               | 2  | 0      | 3  | 4.373e-5    | 1         | NC<br>NC      | 1            | NC<br>NC      | 1  |
| 50 |               |             | min | 0       | 2  | 004             | 3  | 0      | 9  | -3.011e-6   |           | NC            | 1_           | NC            | 1  |
| 51 |               | 7           | max | 0       | 9  | 0               | 2  | 0      | 1  | 4.987e-5    | 1_        | NC            | 1_           | NC            | 1  |



Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:\_\_\_\_

## **Envelope Member Section Deflections (Continued)**

|     | Member | Sec |         | x [in] | LC | y [in] | LC | z [in] |    | x Rotate [r |     |          | LC       |          |   |
|-----|--------|-----|---------|--------|----|--------|----|--------|----|-------------|-----|----------|----------|----------|---|
| 52  |        |     | min     | 0      | 2  | 004    | 3  | 0      | 9  | -3.483e-6   | 10  | NC       | 1_       | NC       | 1 |
| 53  |        | 8   | max     | 0      | 9  | .001   | 2  | 0      | 1  | 5.601e-5    | _1_ | NC       | <u>1</u> | NC       | 1 |
| 54  |        |     | min     | 0      | 2  | 005    | 3  | 0      | 10 | -3.955e-6   | 10  | NC       | 1_       | NC       | 1 |
| 55  |        | 9   | max     | 0      | 9  | .001   | 2  | 0      | 1  | 6.214e-5    | 1_  | NC       | 1_       | NC       | 1 |
| 56  |        |     | min     | 0      | 2  | 005    | 3  | 0      | 10 | -4.428e-6   | 10  | NC       | 1        | NC       | 1 |
| 57  |        | 10  | max     | 0      | 9  | .002   | 2  | 0      | 1  | 6.828e-5    | 1_  | NC       | 1        | NC       | 1 |
| 58  |        |     | min     | 0      | 2  | 006    | 3  | 0      | 10 | -4.9e-6     | 10  | NC       | 1        | NC       | 1 |
| 59  |        | 11  | max     | 0      | 9  | .002   | 2  | 0      | 1  | 7.442e-5    | 1   | NC       | 1        | NC       | 1 |
| 60  |        |     | min     | 0      | 2  | 006    | 3  | 0      | 10 | -5.372e-6   | 10  | NC       | 1        | NC       | 1 |
| 61  |        | 12  | max     | 0      | 9  | .003   | 2  | 0      | 1  | 8.056e-5    | 1_  | NC       | 1        | NC       | 1 |
| 62  |        |     | min     | 0      | 2  | 007    | 3  | 0      | 10 | -5.844e-6   | 10  | NC       | 1        | NC       | 1 |
| 63  |        | 13  | max     | 0      | 9  | .004   | 2  | 0      | 1  | 8.67e-5     | 1   | NC       | 1_       | NC       | 1 |
| 64  |        |     | min     | 0      | 2  | 007    | 3  | 0      | 10 | -6.317e-6   | 10  | NC       | 1_       | NC       | 1 |
| 65  |        | 14  | max     | 0      | 9  | .004   | 2  | 0      | 1  | 9.283e-5    | 1   | NC       | 1        | NC       | 1 |
| 66  |        |     | min     | 0      | 2  | 007    | 3  | 0      | 10 | -6.789e-6   | 10  | NC       | 1        | NC       | 1 |
| 67  |        | 15  | max     | 0      | 9  | .005   | 2  | 0      | 1  | 9.897e-5    | 1   | NC       | 1        | NC       | 1 |
| 68  |        |     | min     | 0      | 2  | 007    | 3  | 0      | 10 | -7.261e-6   | 10  | 8821.207 | 2        | NC       | 1 |
| 69  |        | 16  | max     | 0      | 9  | .006   | 2  | .001   | 1  | 1.051e-4    | 1   | NC       | 1        | NC       | 1 |
| 70  |        |     | min     | 0      | 2  | 008    | 3  | 0      | 10 | -7.733e-6   | 10  | 7518.467 | 2        | NC       | 1 |
| 71  |        | 17  | max     | 0      | 9  | .007   | 2  | .001   | 1  | 1.112e-4    | 1   | NC       | 3        | NC       | 1 |
| 72  |        |     | min     | 0      | 2  | 008    | 3  | 0      | 10 | -8.205e-6   | 10  | 6499.597 | 2        | NC       | 1 |
| 73  |        | 18  | max     | 0      | 9  | .008   | 2  | .001   | 1  | 1.174e-4    | 1   | NC       | 3        | NC       | 1 |
| 74  |        |     | min     | 0      | 2  | 008    | 3  | 0      | 10 | -8.678e-6   | 10  | 5695.615 | 2        | NC       | 1 |
| 75  |        | 19  | max     | 0      | 9  | .009   | 2  | .001   | 1  | 1.235e-4    | 1   | NC       | 3        | NC       | 1 |
| 76  |        |     | min     | 0      | 2  | 008    | 3  | 0      | 10 | -9.15e-6    | 10  | 5056.749 | 2        | NC       | 1 |
| 77  | M4     | 1   | max     | .002   | 1  | .007   | 2  | 0      | 10 | 8.897e-6    | 10  | NC       | 1        | NC       | 1 |
| 78  |        |     | min     | 0      | 3  | 006    | 3  | 001    | 1  | -1.2e-4     | 1   | NC       | 1        | NC       | 1 |
| 79  |        | 2   | max     | .002   | 1  | .007   | 2  | 0      | 10 | 8.897e-6    | 10  | NC       | 1        | NC       | 1 |
| 80  |        |     | min     | 0      | 3  | 005    | 3  | 001    | 1  | -1.2e-4     | 1   | NC       | 1        | NC       | 1 |
| 81  |        | 3   | max     | .001   | 1  | .006   | 2  | 0      | 10 | 8.897e-6    | 10  | NC       | 1        | NC       | 1 |
| 82  |        |     | min     | 0      | 3  | 005    | 3  | 0      | 1  | -1.2e-4     | 1   | NC       | 1        | NC       | 1 |
| 83  |        | 4   | max     | .001   | 1  | .006   | 2  | 0      | 10 | 8.897e-6    | 10  | NC       | 1        | NC       | 1 |
| 84  |        |     | min     | 0      | 3  | 005    | 3  | 0      | 1  | -1.2e-4     | 1   | NC       | 1        | NC       | 1 |
| 85  |        | 5   | max     | .001   | 1  | .006   | 2  | 0      | 10 | 8.897e-6    | 10  | NC       | 1        | NC       | 1 |
| 86  |        |     | min     | 0      | 3  | 004    | 3  | 0      | 1  | -1.2e-4     | 1   | NC       | 1        | NC       | 1 |
| 87  |        | 6   | max     | .001   | 1  | .005   | 2  | 0      | 10 | 8.897e-6    | 10  | NC       | 1        | NC       | 1 |
| 88  |        |     | min     | 0      | 3  | 004    | 3  | 0      | 1  | -1.2e-4     | 1   | NC       | 1        | NC       | 1 |
| 89  |        | 7   | max     | .001   | 1  | .005   | 2  | 0      | 10 | 8.897e-6    | 10  | NC       | 1        | NC       | 1 |
| 90  |        |     | min     | 0      | 3  | 004    | 3  | 0      | 1  | -1.2e-4     | 1   | NC       | 1        | NC       | 1 |
| 91  |        | 8   | max     | 0      | 1  | .004   | 2  | 0      | 10 | 8.897e-6    | 10  | NC       | 1        | NC       | 1 |
| 92  |        |     | min     | 0      | 3  | 003    | 3  | 0      |    | -1.2e-4     | 1   | NC       | 1        | NC       | 1 |
| 93  |        | 9   | max     | 0      | 1  | .004   | 2  | 0      |    | 8.897e-6    | 10  | NC       | 1        | NC       | 1 |
| 94  |        |     | min     | 0      | 3  | 003    | 3  | 0      | 1  | -1.2e-4     | 1   | NC       | 1        | NC       | 1 |
| 95  |        | 10  | max     | 0      | 1  | .004   | 2  | 0      | 10 |             | 10  | NC       | 1        | NC       | 1 |
| 96  |        | 10  | min     | 0      | 3  | 003    | 3  | 0      | 1  | -1.2e-4     | 1   | NC       | 1        | NC       | 1 |
| 97  |        | 11  | max     | 0      | 1  | .003   | 2  | 0      | 10 | 8.897e-6    | 10  | NC       | 1        | NC       | 1 |
| 98  |        |     | min     | 0      | 3  | 003    | 3  | 0      | 1  | -1.2e-4     | 1   | NC       | 1        | NC       | 1 |
| 99  |        | 12  | max     | 0      | 1  | .003   | 2  | 0      | 10 | 8.897e-6    | 10  | NC       | 1        | NC       | 1 |
| 100 |        | 12  | min     | 0      | 3  | 002    | 3  | 0      | 1  | -1.2e-4     | 1   | NC       | 1        | NC       | 1 |
| 101 |        | 13  | max     | 0      | 1  | .002   | 2  | 0      | 10 | 8.897e-6    | 10  | NC       | 1        | NC       | 1 |
| 102 |        | 10  | min     | 0      | 3  | 002    | 3  | 0      | 1  | -1.2e-4     | 1   | NC       | 1        | NC       | 1 |
| 103 |        | 14  | max     | 0      | 1  | .002   | 2  | 0      | 10 |             | 10  | NC       | 1        | NC       | 1 |
| 104 |        | 17  | min     | 0      | 3  | 002    | 3  | 0      | 1  | -1.2e-4     | 1   | NC       | 1        | NC       | 1 |
| 105 |        | 15  | max     | 0      | 1  | .002   | 2  | 0      | 10 | 8.897e-6    | 10  | NC       | 1        | NC       | 1 |
| 106 |        | 13  | min     | 0      | 3  | 001    | 3  | 0      | 1  | -1.2e-4     | 1   | NC<br>NC | 1        | NC<br>NC | 1 |
| 107 |        | 16  | max     | 0      | 1  | .001   | 2  | 0      | 10 | 8.897e-6    | 10  | NC<br>NC | 1        | NC<br>NC | 1 |
| 108 |        | 10  | min     | 0      | 3  | 0      | 3  | 0      | 1  | -1.2e-4     | 1   | NC       | 1        | NC<br>NC | 1 |
| 100 |        |     | 1111111 | U      | J  | U      | J  | U      |    | -1.26-4     |     | INC      |          | INC      |   |



Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:\_\_\_\_

## **Envelope Member Section Deflections (Continued)**

|     | Member | Sec |     | x [in] | LC | y [in] | LC | z [in]      |    |           |    | (n) L/y Ratio  | LC       |          | LC |
|-----|--------|-----|-----|--------|----|--------|----|-------------|----|-----------|----|----------------|----------|----------|----|
| 109 |        | 17  | max | 0      | 1  | 0      | 2  | 0           | 10 | 8.897e-6  | 10 | NC             | _1_      | NC       | 1_ |
| 110 |        |     | min | 0      | 3  | 0      | 3  | 0           | 1  | -1.2e-4   | 1_ | NC             | 1_       | NC       | 1  |
| 111 |        | 18  | max | 0      | 1  | 0      | 2  | 0           | 10 | 8.897e-6  | 10 | NC             | 1_       | NC       | 1  |
| 112 |        |     | min | 0      | 3  | 0      | 3  | 0           | 1  | -1.2e-4   | 1  | NC             | 1        | NC       | 1  |
| 113 |        | 19  | max | 0      | 1  | 0      | 1  | 0           | 1  | 8.897e-6  | 10 | NC             | 1_       | NC       | 1  |
| 114 |        |     | min | 0      | 1  | 0      | 1  | 0           | 1  | -1.2e-4   | 1  | NC             | 1_       | NC       | 1  |
| 115 | M6     | 1   | max | .006   | 1  | .015   | 2  | 0           | 9  | 2.942e-4  | 3  | NC             | 3        | NC       | 1  |
| 116 |        |     | min | 008    | 3  | 012    | 3  | 004         | 3  | -9.223e-8 | 1  | 1956.62        | 2        | 7284.908 | 3  |
| 117 |        | 2   | max | .005   | 1  | .014   | 2  | 0           | 9  | 2.879e-4  | 3  | NC             | 3        | NC       | 1  |
| 118 |        |     | min | 008    | 3  | 011    | S  | 004         | 3  | -8.731e-8 | 1  | 2091.9         | 2        | 7799.947 | 3  |
| 119 |        | 3   | max | .005   | 1  | .013   | 2  | 0           | 9  | 2.816e-4  | 3  | NC             | 3        | NC       | 1  |
| 120 |        |     | min | 007    | 3  | 011    | 3  | 004         | 3  | -8.239e-8 | 1  | 2246.722       | 2        | 8403.374 | 3  |
| 121 |        | 4   | max | .005   | 1  | .012   | 2  | 0           | 9  | 2.753e-4  | 3  | NC             | 3        | NC       | 1  |
| 122 |        |     | min | 007    | 3  | 01     | 3  | 003         | 3  | -7.747e-8 | 1  | 2425.032       | 2        | 9114.949 | 3  |
| 123 |        | 5   | max | .004   | 1  | .011   | 2  | <u>.003</u> | 9  | 2.691e-4  | 3  | NC             | 3        | NC       | 1  |
| 124 |        | -   | min | 006    | 3  | 009    | 3  | 003         | 3  | -9.859e-7 | 9  | 2631.919       | 2        | 9960.698 | 3  |
| 125 |        | 6   | max | .004   | 1  | .01    | 2  | <u>003</u>  | 9  | 2.628e-4  | 3  | NC             | 3        | NC       | 1  |
|     |        | 10  |     |        | 3  | -      | 3  | 003         |    |           |    | 2874.048       |          | NC       | 1  |
| 126 |        | 7   | min | 006    |    | 009    |    |             | 3  | -1.908e-6 |    |                | 2        |          |    |
| 127 |        | 7   | max | .004   | 1  | .01    | 2  | 0           | 9  | 2.565e-4  | 3_ | NC<br>0400 000 | 3        | NC       | 1  |
| 128 |        |     | min | 005    | 3  | 008    | 3  | 002         | 3  | -2.83e-6  | 9  | 3160.322       | 2        | NC<br>NC | 1  |
| 129 |        | 8   | max | .003   | 1  | .009   | 2  | 0           | 9  | 2.502e-4  | 3  | NC             | 3        | NC       | 1  |
| 130 |        |     | min | 005    | 3  | 008    | 3  | 002         | 3  | -3.752e-6 |    | 3502.899       | 2        | NC       | 1  |
| 131 |        | 9   | max | .003   | 1  | .008   | 2  | 0           | 9  | 2.439e-4  | 3_ | NC             | 3        | NC       | 1_ |
| 132 |        |     | min | 005    | 3  | 007    | 3  | 002         | 3  | -4.673e-6 | 9  | 3918.813       | 2        | NC       | 1  |
| 133 |        | 10  | max | .003   | 1  | .007   | 2  | 0           | 9  | 2.377e-4  | 3  | NC             | 3        | NC       | 1  |
| 134 |        |     | min | 004    | 3  | 006    | 3  | 002         | 3  | -5.595e-6 | 9  | 4432.687       | 2        | NC       | 1  |
| 135 |        | 11  | max | .002   | 1  | .006   | 2  | 0           | 9  | 2.314e-4  | 3  | NC             | 3        | NC       | 1  |
| 136 |        |     | min | 004    | 3  | 006    | 3  | 001         | 3  | -6.517e-6 | 9  | 5081.479       | 2        | NC       | 1  |
| 137 |        | 12  | max | .002   | 1  | .005   | 2  | 0           | 9  | 2.251e-4  | 3  | NC             | 3        | NC       | 1  |
| 138 |        |     | min | 003    | 3  | 005    | 3  | 001         | 3  | -7.439e-6 | 9  | 5923.283       | 2        | NC       | 1  |
| 139 |        | 13  | max | .002   | 1  | .004   | 2  | 0           | 9  | 2.188e-4  | 3  | NC             | 1        | NC       | 1  |
| 140 |        | 1.0 | min | 003    | 3  | 004    | 3  | 0           | 3  | -8.361e-6 |    | 7054.951       | 2        | NC       | 1  |
| 141 |        | 14  | max | .002   | 1  | .003   | 2  | 0           | 9  | 2.125e-4  | 3  | NC             | 1        | NC       | 1  |
| 142 |        | 17  | min | 002    | 3  | 004    | 3  | 0           | 3  | -9.283e-6 | 9  | 8650.842       | 2        | NC       | 1  |
| 143 |        | 15  | max | .002   | 1  | .003   | 2  | 0           | 9  | 2.062e-4  | 3  | NC             | 1        | NC       | 1  |
| 144 |        | 13  | min | 002    | 3  | 003    | 3  | 0           | 3  | -1.02e-5  | 9  | NC<br>NC       | 1        | NC<br>NC | 1  |
|     |        | 16  |     |        |    |        |    |             |    |           |    |                | •        |          | •  |
| 145 |        | 16  | max | 0      | 1  | .002   | 2  | 0           | 9  | 2.e-4     | 3  | NC             | 1        | NC       | 1  |
| 146 |        | 4-  | min | 001    | 3  | 002    | 3  | 0           | 3  | -1.113e-5 |    | NC<br>NC       | 1_       | NC       | 1  |
| 147 |        | 17  | max | 0      | 1  | .001   | 2  | 0           | 9  | 1.937e-4  | 3  | NC             | 1        | NC       | 1  |
| 148 |        |     | min | 0      | 3  | 002    | 3  | 0           | 3  | -1.205e-5 |    | NC             | 1_       | NC       | 1  |
| 149 |        | 18  | max | 0      | 1  | 0      | 2  | 0           | 9  | 1.874e-4  | 3  | NC             | 1        | NC       | 1  |
| 150 |        |     | min | 0      | 3  | 0      | 3  | 0           | 3  | -1.297e-5 |    | NC             | 1_       | NC       | 1  |
| 151 |        | 19  | max | 0      | 1  | 0      | 1  | 0           | 1  | 1.811e-4  | 3_ | NC             | 1_       | NC       | 1_ |
| 152 |        |     | min | 0      | 1  | 0      | 1  | 0           | 1  | -1.389e-5 | 9  | NC             | 1        | NC       | 1  |
| 153 | M7     | 1   | max | 0      | 1  | 0      | 1  | 0           | 1  | 6.301e-6  | 9  | NC             | 1        | NC       | 1  |
| 154 |        |     | min | 0      | 1  | 0      | 1  | 0           | 1  | -8.205e-5 | 3  | NC             | 1        | NC       | 1  |
| 155 |        | 2   | max | 0      | 9  | 0      | 2  | 0           | 3  | 5.855e-6  | 9  | NC             | 1        | NC       | 1  |
| 156 |        |     | min | 0      | 2  | 001    | 3  | 0           | 9  | -6.507e-5 | 3  | NC             | 1        | NC       | 1  |
| 157 |        | 3   | max | 0      | 9  | .002   | 2  | 0           | 3  | 5.409e-6  | 9  | NC             | 1        | NC       | 1  |
| 158 |        | Ĭ   | min | 0      | 2  | 003    | 3  | 0           | 9  | -4.808e-5 | 3  | NC             | 1        | NC       | 1  |
| 159 |        | 4   | max | 0      | 9  | .003   | 2  | .001        | 3  | 4.963e-6  | 9  | NC             | 1        | NC       | 1  |
| 160 |        | +-  | min | 0      | 2  | 004    | 3  | 0           | 9  | -3.11e-5  | 3  | NC             | 1        | NC       | 1  |
| 161 |        | 5   |     | 0      | 9  | .003   | 2  | .001        | 3  | 4.517e-6  | 9  | NC             | +        | NC       | 1  |
|     |        | 10  | max | 0      | 2  |        | 3  |             |    |           |    | NC<br>NC       | 1        | NC<br>NC | 1  |
| 162 |        | _   | min |        | _  | 005    |    | 0           | 9  | -1.412e-5 |    |                | •        |          |    |
| 163 |        | 6   | max | 0      | 9  | .004   | 2  | .002        | 3  | 4.071e-6  | 9  | NC<br>NC       | 1_       | NC<br>NC | 1  |
| 164 |        | -   | min | 0      | 2  | 006    | 3  | 0           | 9  | 0         | 1_ | NC<br>NC       | 1        | NC<br>NC | 1  |
| 165 |        | 7   | max | 0      | 9  | .005   | 2  | .002        | 3  | 1.984e-5  | 3  | NC             | <u>1</u> | NC       | 1_ |



Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:\_\_\_\_

## **Envelope Member Section Deflections (Continued)**

|     | Member | Sec  |         | x [in] | LC | y [in] | LC | z [in]     | LC | x Rotate [r | LC        |          | LC  | (n) L/z Ratio | LC |
|-----|--------|------|---------|--------|----|--------|----|------------|----|-------------|-----------|----------|-----|---------------|----|
| 166 |        |      | min     | 0      | 2  | 008    | 3  | 0          | 9  | 0           | 1         | 8774.248 | 2   | NC            | 1  |
| 167 |        | 8    | max     | 0      | 9  | .006   | 2  | .002       | 3  | 3.682e-5    | 3         | NC       | 1_  | NC            | 1  |
| 168 |        |      | min     | 0      | 2  | 009    | 3  | 0          | 9  | 0           | 10        | 7404.3   | 2   | NC            | 1  |
| 169 |        | 9    | max     | 0      | 9  | .007   | 2  | .002       | 3  | 5.381e-5    | 3         | NC       | 3   | NC            | 1  |
| 170 |        |      | min     | 0      | 2  | 01     | 3  | 0          | 9  | 0           | 10        | 6343.694 | 2   | NC            | 1  |
| 171 |        | 10   | max     | 0      | 9  | .008   | 2  | .002       | 3  | 7.079e-5    | 3         | NC       | 3   | NC            | 1  |
| 172 |        |      | min     | 001    | 2  | 011    | 3  | 0          | 9  | 3.497e-8    | 10        | 5497.53  | 2   | NC            | 1  |
| 173 |        | 11   | max     | 0      | 9  | .01    | 2  | .003       | 3  | 8.777e-5    | 3         | NC       | 3   | NC            | 1  |
| 174 |        |      | min     | 001    | 2  | 012    | 3  | 0          | 9  | 3.859e-8    | 10        | 4808.388 | 2   | NC            | 1  |
| 175 |        | 12   | max     | 0      | 9  | .011   | 2  | .003       | 3  | 1.048e-4    | 3         | NC       | 3   | NC            | 1  |
| 176 |        |      | min     | 001    | 2  | 013    | 3  | 0          | 9  | 0           | 15        | 4238.975 | 2   | NC            | 1  |
| 177 |        | 13   | max     | 0      | 9  | .012   | 2  | .003       | 3  | 1.217e-4    | 3         | NC       | 3   | NC            | 1  |
| 178 |        |      | min     | 001    | 2  | 014    | 3  | 0          | 9  | 0           | 5         | 3763.608 | 2   | NC            | 1  |
| 179 |        | 14   | max     | 0      | 9  | .014   | 2  | .003       | 3  | 1.387e-4    | 3         | NC       | 3   | NC            | 1  |
| 180 |        |      | min     | 001    | 2  | 014    | 3  | 0          | 9  | 0           | 5         | 3363.743 | 2   | NC            | 1  |
| 181 |        | 15   | max     | 0      | 9  | .015   | 2  | .002       | 3  | 1.557e-4    | 3         | NC       | 3   | NC            | 1  |
| 182 |        |      | min     | 002    | 2  | 015    | 3  | 0          | 9  | 0           | 4         | 3025.48  | 2   | NC            | 1  |
| 183 |        | 16   | max     | 0      | 9  | .017   | 2  | .002       | 3  | 1.727e-4    | 3         | NC       | 3   | NC            | 1  |
| 184 |        | 1.0  | min     | 002    | 2  | 016    | 3  | 0          | 9  | -3.888e-7   | 9         | 2738.109 | 2   | NC            | 1  |
| 185 |        | 17   | max     | 0      | 9  | .018   | 2  | .002       | 3  | 1.897e-4    | 3         | NC       | 3   | NC            | 1  |
| 186 |        | 1 '' | min     | 002    | 2  | 016    | 3  | 0          | 9  | -8.348e-7   | 9         | 2493.206 | 2   | NC            | 1  |
| 187 |        | 18   | max     | 0      | 9  | .02    | 2  | .002       | 3  | 2.066e-4    | 3         | NC       | 3   | NC            | 1  |
| 188 |        | 10   | min     | 002    | 2  | 017    | 3  | 0          | 9  | -1.281e-6   | 9         | 2284.056 | 2   | NC            | 1  |
| 189 |        | 19   | max     | .002   | 9  | .022   | 2  | .002       | 3  | 2.236e-4    | 3         | NC       | 3   | NC            | 1  |
| 190 |        | 19   | min     | 002    | 2  | 018    | 3  | 0          | 9  | -1.727e-6   | 9         | 2105.255 | 2   | NC            | 1  |
| 191 | M8     | 1    | max     | .005   | 2  | .018   | 2  | 0          | 9  | -7.59e-8    | 15        | NC       | 1   | NC            | 1  |
| 192 | IVIO   | +-   | min     | 002    | 3  | 013    | 3  | 001        | 3  | -1.771e-4   | 3         | NC       | 1   | NC            |    |
|     |        | 2    |         |        | 2  |        |    |            |    |             |           |          | 1   |               | 1  |
| 193 |        | 2    | max     | .005   |    | .017   | 2  | 0          | 9  | -7.59e-8    | <u>15</u> | NC<br>NC | 1   | NC<br>NC      | 1  |
| 194 |        | -    | min     | 002    | 3  | 012    | 3  | <u>001</u> | 3  | -1.771e-4   | 3         |          | •   | NC<br>NC      | -  |
| 195 |        | 3    | max     | .004   | 3  | .016   | 3  | 0          | 9  | -7.59e-8    | <u>15</u> | NC<br>NC | 1   | NC<br>NC      | 1  |
| 196 |        | 4    | min     | 002    |    | 012    |    | 001        |    | -1.771e-4   | 3         | NC<br>NC |     | NC<br>NC      | _  |
| 197 |        | 4    | max     | .004   | 2  | .015   | 2  | 0          | 9  | -7.59e-8    | <u>15</u> | NC       | 1   | NC            | 1  |
| 198 |        | +-   | min     | 002    | 3  | 011    | 3  | 0          | 3  | -1.771e-4   | 3         | NC       | 1_  | NC            | 1  |
| 199 |        | 5    | max     | .004   | 2  | .014   | 2  | 0          | 9  | -7.59e-8    | <u>15</u> | NC       |     | NC            | 1  |
| 200 |        |      | min     | 001    | 3  | 01     | 3  | 0          | 3  | -1.771e-4   | 3         | NC       | 1_  | NC<br>NC      | 1  |
| 201 |        | 6    | max     | .004   | 2  | .013   | 2  | 0          | 9  | -7.59e-8    | <u>15</u> | NC       | 1   | NC            | 1  |
| 202 |        | _    | min     | 001    | 3  | 01     | 3  | 0          | 3  | -1.771e-4   | 3_        | NC       | _1_ | NC            | 1  |
| 203 |        | 7    | max     | .003   | 2  | .012   | 2  | 0          | 9  | -7.59e-8    | <u>15</u> | NC       | 1   | NC            | 1  |
| 204 |        |      | min     | 001    | 3  | 009    | 3  | 0          | 3  | -1.771e-4   | 3         | NC       | 1_  | NC            | 1  |
| 205 |        | 8    | max     | .003   | 2  | .011   | 2  | 0          | 9  | -7.59e-8    | <u>15</u> | NC       | _1_ | NC            | 1  |
| 206 |        |      | min     |        | 3  | 008    | 3  | 0          | 3  | -1.771e-4   |           | NC       | 1_  | NC            | 1  |
| 207 |        | 9    | max     | .003   | 2  | .01    | 2  | 0          | 9  | -7.59e-8    | <u>15</u> | NC       | _1_ | NC            | 1  |
| 208 |        |      | min     | 001    | 3  | 007    | 3  | 0          | 3  | -1.771e-4   | 3         | NC       | 1_  | NC            | 1  |
| 209 |        | 10   | max     | .002   | 2  | .009   | 2  | 0          | 9  | -7.59e-8    | 15        | NC       | 1_  | NC            | 1  |
| 210 |        |      | min     | 0      | 3  | 007    | 3  | 0          | 3  | -1.771e-4   | 3         | NC       | 1_  | NC            | 1  |
| 211 |        | 11   | max     | .002   | 2  | .008   | 2  | 0          | 9  | -7.59e-8    | 15        | NC       | _1_ | NC            | 1  |
| 212 |        |      | min     | 0      | 3  | 006    | 3  | 0          | 3  | -1.771e-4   | 3         | NC       | 1   | NC            | 1  |
| 213 |        | 12   | max     | .002   | 2  | .007   | 2  | 0          | 9  | -7.59e-8    | 15        | NC       | 1   | NC            | 1  |
| 214 |        |      | min     | 0      | 3  | 005    | 3  | 0          | 3  | -1.771e-4   | 3         | NC       | 1   | NC            | 1  |
| 215 |        | 13   | max     | .002   | 2  | .006   | 2  | 0          | 9  | -7.59e-8    | 15        | NC       | 1   | NC            | 1  |
| 216 |        |      | min     | 0      | 3  | 004    | 3  | 0          | 3  | -1.771e-4   | 3         | NC       | 1   | NC            | 1  |
| 217 |        | 14   | max     | .001   | 2  | .005   | 2  | 0          | 9  | -7.59e-8    | 15        | NC       | 1   | NC            | 1  |
| 218 |        |      | min     | 0      | 3  | 004    | 3  | 0          | 3  | -1.771e-4   | 3         | NC       | 1   | NC            | 1  |
| 219 |        | 15   | max     | .001   | 2  | .004   | 2  | 0          | 9  | -7.59e-8    | 15        | NC       | 1   | NC            | 1  |
| 220 |        | l .  | min     | 0      | 3  | 003    | 3  | 0          | 3  | -1.771e-4   | 3         | NC       | 1   | NC            | 1  |
| 221 |        | 16   | max     | 0      | 2  | .003   | 2  | 0          | 9  | -7.59e-8    | 15        | NC       | 1   | NC            | 1  |
| 222 |        | 10   | min     | 0      | 3  | 002    | 3  | 0          | 3  | -1.771e-4   | 3         | NC       | 1   | NC            | 1  |
|     |        |      | 1111111 |        | J  | .002   | J  | J          |    | 1.77 10 4   | U         | 110      |     |               |    |



Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:\_\_\_\_

|     | Member | Sec |            | x [in]       | LC | y [in]      | LC | z [in]     | LC |                       |               | (n) L/y Ratio  | LC  |          | LC |
|-----|--------|-----|------------|--------------|----|-------------|----|------------|----|-----------------------|---------------|----------------|-----|----------|----|
| 223 |        | 17  | max        | 0            | 2  | .002        | 2  | 0          | 9  | -7.59e-8              | <u>15</u>     | NC             | _1_ | NC       | 1  |
| 224 |        |     | min        | 0            | 3  | 001         | 3  | 0          | 3  | -1.771e-4             | 3             | NC             | 1_  | NC       | 1  |
| 225 |        | 18  | max        | 0            | 2  | 00          | 2  | 0          | 9  | -7.59e-8              | <u>15</u>     | NC             | _1_ | NC       | 1  |
| 226 |        |     | min        | 0            | 3  | 0           | 3  | 0          | 3  | -1.771e-4             | 3             | NC             | 1_  | NC       | 1  |
| 227 |        | 19  | max        | 0            | 1  | 0           | 1  | 0          | 1  | -7.59e-8              | <u>15</u>     | NC             | _1_ | NC       | 1  |
| 228 |        |     | min        | 0            | 1  | 0           | 1  | 0          | 1  | -1.771e-4             | 3             | NC             | 1   | NC       | 1  |
| 229 | M10    | 1   | max        | .002         | 1  | .006        | 2  | 0          | 3  | 1.457e-4              | 1             | NC             | 3   | NC<br>NC | 1  |
| 230 |        |     | min        | 002          | 3  | 005         | 3  | 001        | 1  | -4.036e-4             |               | 4771.535       | 2   | NC<br>NC | 1  |
| 231 |        | 2   | max        | .002         | 1  | .006        | 2  | 0          | 3  | 1.392e-4              | 1             | NC<br>5400.044 | 3_  | NC<br>NC | 1  |
| 232 |        | 2   | min        | 002          | 3  | 00 <u>5</u> | 3  | <u>001</u> | 1  | -3.919e-4             | 3             | 5166.914       | 2   | NC<br>NC | 1  |
| 233 |        | 3   | max        | .002         | 1  | .005        | 2  | 0          | 3  | 1.327e-4              | 1             | NC<br>FCCC 44  | 3   | NC<br>NC | 1  |
| 234 |        | 4   | min        | 002          | 3  | 005         | 3  | 001        | 1  | -3.802e-4             | 3             | 5630.41        | 2   | NC<br>NC | 1  |
| 235 |        | 4   | max        | .002         | 1  | .005        | 2  | 0          | 3  | 1.262e-4              | 1             | NC             | 3   | NC<br>NC | 1  |
| 236 |        | _   | min        | 002          | 3  | 005         | 3  | 0          | 1  | -3.686e-4             | 3             | 6177.448       | 2   | NC<br>NC |    |
| 237 |        | 5   | max        | .001         | 3  | .004        | 3  | <u> </u>   | 3  | 1.196e-4              | 1             | NC<br>6828.306 | 2   | NC<br>NC | 1  |
| 238 |        | 6   | min        | 002          |    | 004         |    | 0          |    | -3.569e-4<br>1.131e-4 | 3             | NC             | 1   |          | 1  |
|     |        | 6   | max        | .001         | 3  | .004<br>004 | 3  | 0          | 3  | -3.452e-4             | <u>1</u><br>3 | 7610.075       | 2   | NC<br>NC | 1  |
| 240 |        | 7   | min        | 002<br>.001  | 1  | 004<br>.004 | 2  |            | 3  |                       | <u>ာ</u><br>1 | NC             | 1   | NC<br>NC | 1  |
| 241 |        |     | max<br>min | 002          | 3  | 004<br>004  | 3  | 0          | 1  | 1.066e-4<br>-3.335e-4 | 3             | 8559.63        | 2   | NC<br>NC | 1  |
| 243 |        | 8   |            | .002<br>.001 | 1  | .003        | 2  | 0          | 3  | 1.001e-4              | <u> </u>      | NC             | 1   | NC<br>NC | 1  |
| 244 |        | 0   | max        | 001          | 3  | 004         | 3  | 0          | 1  | -3.218e-4             | 3             | 9728.272       | 2   | NC       | 1  |
| 245 |        | 9   | max        | .001         | 1  | .003        | 2  | 0          | 3  | 9.36e-5               | <u> </u>      | NC             | 1   | NC       | 1  |
| 246 |        | 9   | min        | 001          | 3  | 004         | 3  | 0          | 1  | -3.101e-4             | 3             | NC             | 1   | NC       | 1  |
| 247 |        | 10  | max        | 0            | 1  | .002        | 2  | 0          | 3  | 8.709e-5              | 1             | NC             | 1   | NC       | 1  |
| 248 |        | 10  | min        | 001          | 3  | 003         | 3  | 0          | 1  | -2.984e-4             | 3             | NC             | 1   | NC       | 1  |
| 249 |        | 11  | max        | 0            | 1  | .002        | 2  | 0          | 3  | 8.058e-5              | 1             | NC             | 1   | NC       | 1  |
| 250 |        |     | min        | 001          | 3  | 003         | 3  | 0          | 1  | -2.867e-4             |               | NC             | 1   | NC       | 1  |
| 251 |        | 12  | max        | 0            | 1  | .002        | 2  | 0          | 3  | 7.407e-5              | 1             | NC             | 1   | NC       | 1  |
| 252 |        | 12  | min        | 0            | 3  | 003         | 3  | 0          | 1  | -2.75e-4              | 3             | NC             | 1   | NC       | 1  |
| 253 |        | 13  | max        | 0            | 1  | .001        | 2  | 0          | 3  | 6.756e-5              | 1             | NC             | 1   | NC       | 1  |
| 254 |        |     | min        | 0            | 3  | 002         | 3  | 0          | 1  | -2.633e-4             | 3             | NC             | 1   | NC       | 1  |
| 255 |        | 14  | max        | 0            | 1  | .001        | 2  | 0          | 3  | 6.105e-5              | 1             | NC             | 1   | NC       | 1  |
| 256 |        |     | min        | 0            | 3  | 002         | 3  | 0          | 1  | -2.517e-4             | 3             | NC             | 1   | NC       | 1  |
| 257 |        | 15  | max        | 0            | 1  | 0           | 2  | 0          | 3  | 5.454e-5              | 1             | NC             | 1   | NC       | 1  |
| 258 |        |     | min        | 0            | 3  | 002         | 3  | 0          | 1  | -2.4e-4               | 3             | NC             | 1   | NC       | 1  |
| 259 |        | 16  | max        | 0            | 1  | 0           | 2  | 0          | 3  | 4.803e-5              | 1             | NC             | 1   | NC       | 1  |
| 260 |        |     | min        | 0            | 3  | 001         | 3  | 0          | 1  | -2.283e-4             | 3             | NC             | 1   | NC       | 1  |
| 261 |        | 17  | max        | 0            | 1  | 0           | 2  | 0          | 3  | 4.152e-5              | 1             | NC             | 1   | NC       | 1  |
| 262 |        |     | min        | 0            | 3  | 0           | 3  | 0          | 1  | -2.166e-4             | 3             | NC             | 1   | NC       | 1  |
| 263 |        | 18  | max        | 0            | 1  | 0           | 2  | 0          | 3  | 3.501e-5              |               | NC             | 1   | NC       | 1  |
| 264 |        |     | min        | 0            | 3  | 0           | 3  | 0          | 1  | -2.049e-4             |               | NC             | 1   | NC       | 1  |
| 265 |        | 19  | max        | 0            | 1  | 0           | 1  | 0          | 1  | 2.85e-5               | 1             | NC             | 1   | NC       | 1  |
| 266 |        |     | min        | 0            | 1  | 0           | 1  | 0          | 1  | -1.932e-4             | 3             | NC             | 1   | NC       | 1  |
| 267 | M11    | 1   | max        | 0            | 1  | 0           | 1  | 0          | 1  | 8.819e-5              | 3             | NC             | 1   | NC       | 1  |
| 268 |        |     | min        | 0            | 1  | 0           | 1  | 0          | 1  | -1.304e-5             | 1             | NC             | 1   | NC       | 1  |
| 269 |        | 2   | max        | 0            | 9  | 0           | 2  | 0          | 1  | 7.145e-5              | 3             | NC             | 1   | NC       | 1  |
| 270 |        |     | min        | 0            | 2  | 0           | 3  | 0          | 3  | -1.916e-5             | 1             | NC             | 1_  | NC       | 1  |
| 271 |        | 3   | max        | 0            | 9  | 0           | 2  | 0          | 1  | 5.47e-5               | 3             | NC             | 1   | NC       | 1  |
| 272 |        |     | min        | 0            | 2  | 001         | 3  | 0          | 3  | -2.529e-5             | 1             | NC             | 1   | NC       | 1  |
| 273 |        | 4   | max        | 0            | 9  | 0           | 2  | 0          | 1  | 3.796e-5              | 3             | NC             | 1_  | NC       | 1  |
| 274 |        |     | min        | 0            | 2  | 002         | 3  | 001        | 3  | -3.142e-5             | 1             | NC             | 1   | NC       | 1  |
| 275 |        | 5   | max        | 0            | 9  | 0           | 2  | 0          | 1  | 2.121e-5              | 3             | NC             | 1   | NC       | 1  |
| 276 |        |     | min        | 0            | 2  | 003         | 3  | 001        | 3  | -3.755e-5             | 1             | NC             | 1   | NC       | 1  |
| 277 |        | 6   | max        | 0            | 9  | 0           | 2  | 0          | 2  | 4.465e-6              | 3             | NC             | 1   | NC       | 1  |
| 278 |        |     | min        | 0            | 2  | 004         | 3  | 002        | 3  | -4.368e-5             | 1             | NC             | 1   | NC       | 1  |
| 279 |        | 7   | max        | 0            | 9  | 0           | 2  | 0          | 10 | 3.531e-6              | 10            | NC             | 1   | NC       | 1  |



Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:\_\_\_\_

|     | Member | Sec |     | x [in] | LC | y [in]     | LC | z [in] | LC |           | LC        | (n) L/y Ratio | LC  | (n) L/z Ratio | ) LC |
|-----|--------|-----|-----|--------|----|------------|----|--------|----|-----------|-----------|---------------|-----|---------------|------|
| 280 |        |     | min | 0      | 2  | 004        | 3  | 002    | 3  | -4.981e-5 | 1         | NC            | 1   | NC            | 1    |
| 281 |        | 8   | max | 0      | 9  | .001       | 2  | 0      | 10 | 4.01e-6   | 10        | NC            | 1_  | NC            | 1    |
| 282 |        |     | min | 0      | 2  | 005        | 3  | 002    | 3  | -5.594e-5 | 1         | NC            | 1   | NC            | 1    |
| 283 |        | 9   | max | 0      | 9  | .001       | 2  | 0      | 10 | 4.49e-6   | 10        | NC            | 1_  | NC            | 1    |
| 284 |        |     | min | 0      | 2  | 006        | 3  | 002    | 3  | -6.207e-5 | 1         | NC            | 1   | NC            | 1    |
| 285 |        | 10  | max | 0      | 9  | .002       | 2  | 0      | 10 | 4.97e-6   | 10        | NC            | _1_ | NC            | 1    |
| 286 |        |     | min | 0      | 2  | 006        | 3  | 002    | 3  | -6.82e-5  | 1         | NC            | 1   | NC            | 1    |
| 287 |        | 11  | max | 0      | 9  | .002       | 2  | 0      | 10 | 5.449e-6  | 10        | NC            | _1_ | NC            | 1    |
| 288 |        |     | min | 0      | 2  | 006        | 3  | 002    | 3  | -7.926e-5 | 3         | NC            | 1   | NC            | 1    |
| 289 |        | 12  | max | 0      | 9  | .003       | 2  | 0      | 10 | 5.929e-6  | 10        | NC            | 1_  | NC            | 1    |
| 290 |        |     | min | 0      | 2  | 007        | 3  | 002    | 3  | -9.601e-5 | 3         | NC            | 1   | NC            | 1    |
| 291 |        | 13  | max | 0      | 9  | .004       | 2  | 0      | 10 | 6.408e-6  | 10        | NC            | _1_ | NC            | 1    |
| 292 |        |     | min | 0      | 2  | 007        | 3  | 002    | 3  | -1.128e-4 | 3         | NC            | 1   | NC            | 1    |
| 293 |        | 14  | max | 0      | 9  | .004       | 2  | 0      | 10 | 6.888e-6  | 10        | NC            | 1_  | NC            | 1    |
| 294 |        |     | min | 0      | 2  | 007        | 3  | 002    | 3  | -1.295e-4 | 3         | NC            | 1   | NC            | 1    |
| 295 |        | 15  | max | 0      | 9  | .005       | 2  | 0      | 10 | 7.367e-6  | 10        | NC            | _1_ | NC            | 1    |
| 296 |        |     | min | 0      | 2  | 007        | 3  | 002    | 3  | -1.462e-4 | 3         | 8830.872      | 2   | NC            | 1    |
| 297 |        | 16  | max | 0      | 9  | .006       | 2  | 0      | 10 | 7.847e-6  | 10        | NC            | _1_ | NC            | 1    |
| 298 |        |     | min | 0      | 2  | 008        | 3  | 002    | 3  | -1.63e-4  | 3         | 7525.807      | 2   | NC            | 1    |
| 299 |        | 17  | max | 0      | 9  | .007       | 2  | 0      | 10 | 8.326e-6  | 10        | NC            | 3   | NC            | 1    |
| 300 |        |     | min | 0      | 2  | 008        | 3  | 002    | 3  | -1.797e-4 | 3         | 6505.314      | 2   | NC            | 1    |
| 301 |        | 18  | max | 00     | 9  | .008       | 2  | 0      | 10 | 8.806e-6  | 10        | NC            | 3   | NC            | 1    |
| 302 |        |     | min | 0      | 2  | 008        | 3  | 002    | 3  | -1.965e-4 | 3         | 5700.181      | 2   | NC            | 1    |
| 303 |        | 19  | max | 0      | 9  | .009       | 2  | 0      | 10 | 9.285e-6  | 10        | NC            | 3   | NC            | 1    |
| 304 |        |     | min | 0      | 2  | 008        | 3  | 002    | 3  | -2.132e-4 | 3         | 5060.484      | 2   | NC            | 1    |
| 305 | M12    | 1   | max | .002   | 1  | .007       | 2  | .001   | 1  | 2.286e-4  | 3         | NC            | _1_ | NC            | 1    |
| 306 |        |     | min | 0      | 3  | 006        | 3  | 0      | 10 | -9.052e-6 | 10        | NC            | 1_  | NC            | 1    |
| 307 |        | 2   | max | .002   | 1  | .007       | 2  | .001   | 1  | 2.286e-4  | 3         | NC            | _1_ | NC            | 1    |
| 308 |        |     | min | 0      | 3  | 005        | 3  | 0      | 10 | -9.052e-6 | 10        | NC            | 1   | NC            | 1    |
| 309 |        | 3   | max | .001   | 1  | .006       | 2  | 0      | 1  | 2.286e-4  | 3         | NC            | _1_ | NC            | 1    |
| 310 |        |     | min | 0      | 3  | 005        | 3  | 0      | 10 | -9.052e-6 | 10        | NC            | 1_  | NC            | 1    |
| 311 |        | 4   | max | .001   | 1  | .006       | 2  | 0      | 1  | 2.286e-4  | 3         | NC            | _1_ | NC            | 1    |
| 312 |        |     | min | 0      | 3  | 005        | 3  | 0      | 10 | -9.052e-6 | 10        | NC            | _1_ | NC            | 1    |
| 313 |        | 5   | max | .001   | 1  | .006       | 2  | 0      | 1  | 2.286e-4  | 3         | NC            | _1_ | NC            | 1    |
| 314 |        |     | min | 0      | 3  | 004        | 3  | 0      | 10 | -9.052e-6 | 10        | NC            | 1_  | NC            | 1    |
| 315 |        | 6   | max | .001   | 1  | .005       | 2  | 0      | 1  | 2.286e-4  | 3         | NC            | _1_ | NC            | 1    |
| 316 |        |     | min | 0      | 3  | <u>004</u> | 3  | 0      | 10 | -9.052e-6 | <u>10</u> | NC            | _1_ | NC            | 1    |
| 317 |        | 7   | max | .001   | 1  | .005       | 2  | 0      | 1  | 2.286e-4  | 3         | NC            | 1_  | NC            | 1    |
| 318 |        |     | min | 0      | 3  | 004        | 3  | 0      | 10 | -9.052e-6 | 10        | NC            | 1_  | NC            | 1    |
| 319 |        | 8   | max | 0      | 1  | .004       | 2  | 0      | 1  | 2.286e-4  | 3_        | NC            | 1   | NC            | 1    |
| 320 |        |     | min | 0      | 3  | 003        | 3  | 0      |    | -9.052e-6 |           | NC            | 1   | NC<br>NC      | 1    |
| 321 |        | 9   | max | 0      | 1  | .004       | 2  | 0      | 1  | 2.286e-4  | 3_        | NC            | 1   | NC            | 1    |
| 322 |        | 40  | min | 0      | 3  | 003        | 3  | 0      | 10 | -9.052e-6 | <u>10</u> | NC<br>NC      | 1_  | NC<br>NC      | 1    |
| 323 |        | 10  | max | 0      | 1  | .004       | 2  | 0      | 1  | 2.286e-4  | 3         | NC            | 1   | NC            | 1    |
| 324 |        | 4.4 | min | 0      | 3  | 003        | 3  | 0      | 10 | -9.052e-6 | 10        | NC<br>NC      | 1_  | NC<br>NC      | 1    |
| 325 |        | 11  | max | 0      | 1  | .003       | 2  | 0      | 1  | 2.286e-4  | 3         | NC            | 1   | NC            | 1    |
| 326 |        | 10  | min | 0      | 3  | 003        | 3  | 0      | 10 | -9.052e-6 | 10        | NC            | 1_  | NC            | 1    |
| 327 |        | 12  | max | 0      | 1  | .003       | 2  | 0      | 1  | 2.286e-4  | 3         | NC            | 1   | NC            | 1    |
| 328 |        | 40  | min | 0      | 3  | 002        | 3  | 0      | 10 | -9.052e-6 | 10        | NC<br>NC      | 1_  | NC<br>NC      | 1    |
| 329 |        | 13  | max | 0      | 1  | .002       | 2  | 0      | 1  | 2.286e-4  | 3         | NC<br>NC      | 1   | NC<br>NC      | 1    |
| 330 |        | 4.4 | min | 0      | 3  | 002        | 3  | 0      | 10 | -9.052e-6 | 10        | NC<br>NC      | 1_  | NC<br>NC      | 1    |
| 331 |        | 14  | max | 0      | 1  | .002       | 2  | 0      | 1  | 2.286e-4  | 3         | NC            | 1   | NC            | 1    |
| 332 |        | 4-  | min | 0      | 3  | 002        | 3  | 0      | 10 | -9.052e-6 | <u>10</u> | NC<br>NC      | 1_  | NC<br>NC      | 1    |
| 333 |        | 15  | max | 0      | 1  | .002       | 2  | 0      | 1  | 2.286e-4  | 3         | NC            | 1   | NC            | 1    |
| 334 |        | 10  | min | 0      | 3  | 001        | 3  | 0      | 10 | -9.052e-6 | 10        | NC<br>NC      | 1_  | NC<br>NC      | 1    |
| 335 |        | 16  | max | 0      | 1  | .001       | 2  | 0      | 1  | 2.286e-4  | 3         | NC            | 1   | NC            | 1    |
| 336 |        |     | min | 0      | 3  | 0          | 3  | 0      | 10 | -9.052e-6 | 10        | NC            | 1_  | NC            | 1    |



Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:\_\_\_\_

|     | Member    | Sec |     | x [in] | LC_ | y [in]      | LC | z [in] | LC |           | LC       | (n) L/y Ratio | LC  | (n) L/z Ratio | ა LC |
|-----|-----------|-----|-----|--------|-----|-------------|----|--------|----|-----------|----------|---------------|-----|---------------|------|
| 337 |           | 17  | max | 0      | 1   | 0           | 2  | 0      | 1  | 2.286e-4  | 3        | NC            | 1_  | NC            | 1    |
| 338 |           |     | min | 0      | 3   | 0           | 3  | 0      | 10 | -9.052e-6 | 10       | NC            | 1   | NC            | 1    |
| 339 |           | 18  | max | 0      | 1   | 0           | 2  | 0      | 1  | 2.286e-4  | 3        | NC            | 1   | NC            | 1    |
| 340 |           |     | min | 0      | 3   | 0           | 3  | 0      | 10 | -9.052e-6 | 10       | NC            | 1   | NC            | 1    |
| 341 |           | 19  | max | 0      | 1   | 0           | 1  | 0      | 1  | 2.286e-4  | 3        | NC            | 1   | NC            | 1    |
| 342 |           |     | min | 0      | 1   | 0           | 1  | 0      | 1  | -9.052e-6 | 10       | NC            | 1   | NC            | 1    |
| 343 | M1        | 1   | max | .005   | 3   | .024        | 3  | .002   | 3  | 3.224e-3  | 1        | NC            | 1   | NC            | 1    |
| 344 | 1411      |     | min | 006    | 2   | 02          | 2  | 0      | 9  | -4.348e-3 |          | NC            | 1   | NC            | 1    |
| 345 |           | 2   | max | .005   | 3   | .013        | 3  | .002   | 3  | 1.571e-3  | 1        | NC            | 4   | NC            | 1    |
| 346 |           |     | min | 006    | 2   | 01          | 2  | 0      | 9  | -2.115e-3 | 3        | 4362.51       | 3   | NC            | 1    |
| 347 |           | 3   |     | .005   | 3   | .002        | 3  | .001   | 3  | 7.571e-5  | 3        | NC            | 4   | NC            | 1    |
|     |           | 3   | max |        |     |             |    |        |    |           |          |               |     |               |      |
| 348 |           |     | min | 006    | 2   | 002         | 1  | 001    | 1  | -5.123e-5 |          | 2272.905      | 3   | NC<br>NC      | 1    |
| 349 |           | 4   | max | .005   | 3   | .007        | 2  | .001   | 3  | 7.291e-5  | 3        | NC            | 4_  | NC            | 1    |
| 350 |           |     | min | 006    | 2   | 006         | 3  | 001    | 1  | -4.11e-5  | 9        | 1627.581      | 3   | NC            | 1    |
| 351 |           | 5   | max | .005   | 3   | .014        | 2  | 0      | 3  | 7.01e-5   | 3        | NC            | _4_ | NC            | 1    |
| 352 |           |     | min | 006    | 2   | 013         | 3  | 002    | 1  | -3.098e-5 | 9        | 1320.965      | 3   | NC            | 1    |
| 353 |           | 6   | max | .005   | 3   | .02         | 2  | 0      | 3  | 6.73e-5   | 3        | NC            | 5   | NC            | 1    |
| 354 |           |     | min | 006    | 2   | 019         | 3  | 001    | 1  | -2.085e-5 | 9        | 1131.06       | 2   | NC            | 1    |
| 355 |           | 7   | max | .005   | 3   | .024        | 2  | 0      | 3  | 6.45e-5   | 3        | NC            | 5   | NC            | 1    |
| 356 |           |     | min | 006    | 2   | 023         | 3  | 001    | 1  | -1.072e-5 | 9        | 1011.137      | 2   | NC            | 1    |
| 357 |           | 8   | max | .005   | 3   | .027        | 2  | 0      | 3  | 6.17e-5   | 3        | NC            | 5   | NC            | 1    |
| 358 |           |     | min | 006    | 2   | 026         | 3  | 0      | 9  | -1.026e-6 |          | 936.518       | 2   | NC            | 1    |
| 359 |           | 9   | max | .005   | 3   | .03         | 2  | 0      | 3  | 5.889e-5  | 3        | NC            | 5   | NC            | 1    |
| 360 |           | J   | min | 006    | 2   | 027         | 3  | 0      | 9  | -1.953e-6 | 10       | 893.051       | 2   | NC            | 1    |
| 361 |           | 10  |     | .005   | 3   | .03         | 2  | 0      | 3  | 5.609e-5  | 3        | NC            | 5   | NC            | 1    |
|     |           | 10  | max |        | 2   |             |    |        | 9  | -2.88e-6  |          |               | 2   |               | 1    |
| 362 |           | 44  | min | 006    |     | 027         | 3  | 0      |    |           | 10       | 874.033       |     | NC<br>NC      | -    |
| 363 |           | 11  | max | .005   | 3   | .03         | 2  | 0      | 3  | 5.333e-5  | 1_       | NC<br>077.404 | 5_  | NC<br>NC      | 1    |
| 364 |           |     | min | 006    | 2   | 026         | 3  | 0      | 10 | -3.807e-6 |          | 877.124       | 2   | NC            | 1    |
| 365 |           | 12  | max | .005   | 3   | .028        | 2  | 0      | 1  | 6.623e-5  | _1_      | NC            | 5   | NC            | 1    |
| 366 |           |     | min | 006    | 2   | 024         | 3  | 0      | 10 | -4.733e-6 | 10       | 903.46        | 2   | NC            | 1    |
| 367 |           | 13  | max | .005   | 3   | .025        | 2  | .001   | 1  | 7.914e-5  | <u>1</u> | NC            | 5_  | NC            | 1    |
| 368 |           |     | min | 006    | 2   | 021         | 3  | 0      | 10 | -5.66e-6  | 10       | 958.213       | 2   | NC            | 1    |
| 369 |           | 14  | max | .005   | 3   | .02         | 2  | .001   | 1  | 9.204e-5  | 1        | NC            | 5   | NC            | 1    |
| 370 |           |     | min | 006    | 2   | 017         | 3  | 0      | 10 | -6.587e-6 | 10       | 1053.16       | 2   | NC            | 1    |
| 371 |           | 15  | max | .005   | 3   | .014        | 2  | .001   | 1  | 1.049e-4  | 1        | NC            | 4   | NC            | 1    |
| 372 |           |     | min | 006    | 2   | 011         | 3  | 0      | 10 | -7.514e-6 | 10       | 1213.943      | 2   | NC            | 1    |
| 373 |           | 16  | max | .005   | 3   | .006        | 2  | .001   | 1  | 1.149e-4  | 1        | NC            | 4   | NC            | 1    |
| 374 |           |     | min | 006    | 2   | 005         | 3  | 0      | 10 | -8.219e-6 |          | 1502.581      | 2   | NC            | 1    |
| 375 |           | 17  | max | .005   | 3   | .002        | 3  | .001   | 1  | 5.543e-5  | 1        | NC            | 4   | NC            | 1    |
| 376 |           | 11/ | min | 006    | 2   | 003         | 2  | 0      | 10 | -3.661e-6 |          | 2111.71       | 2   | NC            | 1    |
| 377 |           | 18  |     | .005   | 3   | .01         | 3  | 0      | 1  | 2.168e-3  |          | NC            | 4   | NC            | 1    |
|     |           | 10  | max |        |     |             |    |        |    |           |          |               |     |               | 1    |
| 378 |           | 40  | min | 006    | 2   | <u>014</u>  | 2  | 0      |    | -1.139e-3 |          | 4065.519      | 2   | NC<br>NC      |      |
| 379 |           | 19  | max | .005   | 3   | .018        | 3  | 0      | 3  | 4.368e-3  | 2        | NC            | 1   | NC            | 1    |
| 380 |           |     | min | 006    | 2   | 026         | 2  | 0      | 9  | -2.341e-3 |          | NC            | 1_  | NC            | 1    |
| 381 | <u>M5</u> | 1   | max | .012   | 3   | .06         | 3  | .002   | 3  | 4.281e-6  | 3        | NC            | 1   | NC            | 1    |
| 382 |           |     | min | 016    | 2   | 051         | 2  | 0      | 9  | 0         | 15       | NC            | 1_  | NC            | 1    |
| 383 |           | 2   | max | .012   | 3   | .033        | 3  | .003   | 3  | 7.823e-5  | 3_       | NC            | 4   | NC            | 1    |
| 384 |           |     | min | 016    | 2   | 027         | 2  | 0      | 9  | -6.79e-6  | 9        | 1776.389      | 3   | NC            | 1    |
| 385 |           | 3   | max | .012   | 3   | .007        | 3  | .004   | 3  | 1.508e-4  | 3        | NC            | 5   | NC            | 1    |
| 386 |           |     | min | 016    | 2   | 005         | 1  | 0      | 9  | -1.347e-5 | 9        | 920.278       | 3   | NC            | 1    |
| 387 |           | 4   | max | .012   | 3   | .016        | 2  | .005   | 3  | 1.479e-4  | 3        | NC            | 5   | NC            | 1    |
| 388 |           |     | min | 016    | 2   | 014         | 3  | 0      | 9  | -1.245e-5 |          | 659.692       | 3   | NC            | 1    |
| 389 |           | 5   | max | .012   | 3   | .033        | 2  | .005   | 3  | 1.45e-4   | 3        | NC            | 5   | NC            | 1    |
| 390 |           |     | min | 016    | 2   | 031         | 3  | 0      | 9  | -1.142e-5 | 9        | 536.365       | 3   | NC            | 1    |
| 391 |           | 6   |     | .012   | 3   | 031<br>.047 | 2  | .006   |    | 1.421e-4  |          | NC            | 5   | NC<br>NC      | 1    |
|     |           | 0   | max |        | 2   |             |    |        | 9  |           | 3        |               | 2   |               | 1    |
| 392 |           | -   | min | 016    |     | 045         | 3  | 0      |    | -1.039e-5 |          | 460.311       |     | NC<br>NC      |      |
| 393 |           | 7   | max | .012   | 3   | .058        | 2  | .006   | 3  | 1.393e-4  | 3        | NC            | 5   | NC            | 1    |



Model Name

Schletter, Inc.HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:\_\_\_\_

| 394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | Member | Sec |     | x [in] | LC | y [in] | LC | z [in] |    | x Rotate [r | LC |          |    |    |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|-----|-----|--------|----|--------|----|--------|----|-------------|----|----------|----|----|---|
| 396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 394 |        |     | min | 016    | 2  | 055    | 3  |        | 9  | -9.362e-6   | 9  | 410.873  | 2  | NC | 1 |
| 1997   9 max   0.012   3   0.072   2   0.005   3   1.3356-4   3   NC   5   NC   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |        | 8   | max |        |    |        |    | .006   | 3  |             | 3  |          | 5_ | NC | 1 |
| 399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 396 |        |     | min |        |    |        | 3  | 0      | 9  |             | 9  |          | 2  |    | 1 |
| 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |        | 9   | max | .012   |    | .072   |    | .005   |    |             | 3  |          | 5  |    | 1 |
| A00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        |     | min | 016    |    | 065    |    |        |    |             | 9  |          | 2  |    | 1 |
| A01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 399 |        | 10  | max | .012   | 3  | .074   | 2  | .005   | 3  | 1.307e-4    | 3  |          | 5  | NC | 1 |
| A02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 400 |        |     | min | 016    | 2  | 065    | 3  | 0      | 9  | -6.278e-6   | 9  | 353.786  | 2  | NC | 1 |
| 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 401 |        | 11  | max | .012   | 3  | .073   | 2  | .005   | 3  | 1.278e-4    | 3  | NC       | 5  | NC | 1 |
| 12 max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 402 |        |     | min | 016    | 2  | 063    | 3  | 0      | 9  | -5.25e-6    | 9  | 354.656  | 2  | NC | 1 |
| 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 403 |        | 12  | max | .012   | 3  | .069   | 2  | .004   | 3  | 1.249e-4    | 3  | NC       | 5  | NC | 1 |
| A06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 404 |        |     | min | 016    | 2  | 058    | 3  | 0      | 9  | -4.222e-6   | 9  | 364.954  | 2  | NC | 1 |
| More   Max   Max   More   Mo | 405 |        | 13  | max | .012   | 3  | .061   | 2  | .004   | 3  | 1.221e-4    | 3  | NC       | 5  | NC | 1 |
| Max   Max  | 406 |        |     | min | 016    | 2  | 05     | 3  | 0      | 9  | -3.194e-6   | 9  | 386.752  | 2  | NC | 1 |
| A08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        | 14  |     |        |    |        |    | .003   | 3  |             | 3  |          | 5  |    | 1 |
| A09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 408 |        |     | min | 016    | 2  | 04     | 3  |        | 9  |             | 9  |          | 2  | NC | 1 |
| Hard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |        | 15  |     |        |    |        |    | .002   |    |             |    |          |    |    | 1 |
| 411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        |     |     |        |    |        |    | _      |    |             |    |          |    |    | 1 |
| Heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |        | 16  |     |        |    |        |    | .002   |    |             | 3  |          |    |    | 1 |
| 413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        | 1   |     |        |    |        |    |        |    |             |    |          |    |    |   |
| 414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        | 17  |     |        |    |        |    | 001    |    |             |    |          |    |    | 1 |
| 415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        |     |     |        |    |        |    |        |    | -1 43e-5    |    |          |    |    |   |
| Heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |        | 18  |     |        |    |        |    |        |    |             | _  |          |    |    |   |
| Heat    |     |        | 1.0 |     |        |    |        |    | -      | 1  |             |    |          |    |    |   |
| Heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |        | 19  |     |        |    |        |    |        |    |             |    |          |    |    |   |
| Heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |        | 10  |     |        |    |        |    |        |    | _           |    |          |    |    | _ |
| 420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | MO     | 1   |     |        |    |        |    |        |    |             |    |          |    |    |   |
| 421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | IVIO   |     |     |        |    |        |    | _      |    |             | -  |          | _  |    |   |
| 422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        | 2   |     |        |    |        |    |        |    |             |    |          | •  |    |   |
| 423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        |     |     |        |    |        |    |        |    |             |    |          |    |    | _ |
| 424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        | 3   |     |        |    |        |    |        |    |             |    |          | _  |    |   |
| 425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        | - 3 |     |        |    |        |    |        |    |             |    |          |    |    | _ |
| 426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        | 1   |     |        |    |        | _  |        |    | 2 7220 5    |    |          |    |    | _ |
| 427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        | -   |     |        |    |        |    |        |    |             |    |          |    |    |   |
| 428         min        006         2        013         3        002         3         -1.59e-6         10         1321.619         3         NC         1           429         6         max         .005         3         .019         2         .001         1         1.14e-5         1         NC         5         NC         1           430         min        006         2        019         3        003         3         -6.825e-6         9         1131.228         2         NC         1           431         7         max         .005         3         .024         2         .001         1         2.467e-7         10         NC         5         NC         1           432         min        006         2        026         3        003         3         -1.546e-5         9         1011.295         2         NC         1           433         8         max         .005         3         .032         2         0         1         1.165e-6         10         NC         5         NC         1           4344         min        006         2        027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |        | -   |     |        |    |        |    |        |    |             |    |          | _  |    |   |
| 429         6         max         .005         3         .019         2         .001         1         1.14e-5         1         NC         5         NC         1           430         min        006         2        019         3        003         3         -6.825e-6         9         1131.228         2         NC         1           431         7         max         .005         3         .024         2         .001         1         2.467e-7         10         NC         5         NC         1           432         min        006         2        023         3        003         3         -1.546e-5         9         1011.295         2         NC         1           433         8         max         .005         3         .027         2         0         1         1.165e-6         10         NC         5         NC         1           434         min        006         2        026         3        003         3         -2.409e-5         9         936.67         2         9895.452         3           435         9         max         .005         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |        | 5   |     |        |    |        |    |        |    |             |    |          |    |    |   |
| 430         min        006         2        019         3        003         3         -6.825e-6         9         1131.228         2         NC         1           431         7         max         .005         3         .024         2         .001         1         2.467e-7         10         NC         5         NC         1           432         min        006         2        023         3        003         3         -1.546e-5         9         1011.295         2         NC         1           433         8         max         .005         3         .027         2         0         1         1.165e-6         10         NC         5         NC         1           434         min        006         2        026         3        003         3         -2.409e-5         9         936.67         2         9895.452         3           435         9         max         .005         3         .03         2         0         1         2.083e-6         10         NC         5         NC         1           436         min        006         2        027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |        | 6   |     |        |    |        |    |        |    |             |    |          |    |    |   |
| 431         7         max         .005         3         .024         2         .001         1         2.467e-7         10         NC         5         NC         1           432         min        006         2        023         3        003         3         -1.546e-5         9         1011.295         2         NC         1           433         8         max         .005         3         .027         2         0         1         1.165e-6         10         NC         5         NC         1           434         min        006         2        026         3        003         3         -2.409e-5         9         936.67         2         9895.452         3           435         9         max         .005         3         .03         2         0         1         2.083e-6         10         NC         5         NC         1           436         min        006         2        027         3        004         3         -3.272e-5         9         893.202         2         9764.899         3           437         10         max         .005         3 <td></td> <td></td> <td>- 6</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |        | - 6 |     |        |    |        |    |        |    |             |    |          |    |    |   |
| 432         min        006         2        023         3        003         3         -1.546e-5         9         1011.295         2         NC         1           433         8         max         .005         3         .027         2         0         1         1.165e-6         10         NC         5         NC         1           434         min        006         2        026         3        003         3         -2.409e-5         9         936.67         2         9895.452         3           435         9         max         .005         3         .03         2         0         1         2.083e-6         10         NC         5         NC         1           436         min        006         2        027         3        004         3         -3.272e-5         9         893.202         2         9764.899         3           437         10         max         .005         3         .03         2         0         1         3.001e-6         10         NC         5         NC         1           438         min        006         2        027 <td></td> <td></td> <td>7</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |        | 7   |     |        |    |        |    |        |    |             |    |          |    |    |   |
| 433         8         max         .005         3         .027         2         0         1         1.165e-6         10         NC         5         NC         1           434         min        006         2        026         3        003         3         -2.409e-5         9         936.67         2         9895.452         3           435         9         max         .005         3         .03         2         0         1         2.083e-6         10         NC         5         NC         1           436         min        006         2        027         3        004         3         -3.272e-5         9         893.202         2         9764.899         3           437         10         max         .005         3         .03         2         0         1         3.001e-6         10         NC         5         NC         1           438         min        006         2        027         3        004         3         -4.135e-5         9         874.186         2         9899.849         3           439         11         max         .005         3 </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |        |     |     |        |    |        |    |        |    |             |    |          |    |    |   |
| 434         min        006         2        026         3        003         3         -2.409e-5         9         936.67         2         9895.452         3           435         9         max         .005         3         .03         2         0         1         2.083e-6         10         NC         5         NC         1           436         min        006         2        027         3        004         3         -3.272e-5         9         893.202         2         9764.899         3           437         10         max         .005         3         .03         2         0         1         3.001e-6         10         NC         5         NC         1           438         min        006         2        027         3        004         3         -4.135e-5         9         874.186         2         9899.849         3           439         11         max         .005         3         .03         2         0         10         3.92e-6         10         NC         5         NC         1           440         min        006         2        0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |        | _   |     |        |    |        |    |        |    |             |    |          |    |    |   |
| 435         9         max         .005         3         .03         2         0         1         2.083e-6         10         NC         5         NC         1           436         min        006         2        027         3        004         3         -3.272e-5         9         893.202         2         9764.899         3           437         10         max         .005         3         .03         2         0         1         3.001e-6         10         NC         5         NC         1           438         min        006         2        027         3        004         3         -4.135e-5         9         874.186         2         9899.849         3           439         11         max         .005         3         .03         2         0         10         3.92e-6         10         NC         5         NC         1           440         min        006         2        026         3        003         3         -5.318e-5         1         877.283         2         NC         1           441         max         .005         3         .028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |        | 8   |     |        |    |        |    |        |    |             |    |          | 5_ |    |   |
| 436         min        006         2        027         3        004         3         -3.272e-5         9         893.202         2         9764.899         3           437         10         max         .005         3         .03         2         0         1         3.001e-6         10         NC         5         NC         1           438         min        006         2        027         3        004         3         -4.135e-5         9         874.186         2         9899.849         3           439         11         max         .005         3         .03         2         0         10         3.92e-6         10         NC         5         NC         1           440         min        006         2        026         3        003         3         -5.318e-5         1         877.283         2         NC         1           441         12         max         .005         3         .028         2         0         10         4.838e-6         10         NC         5         NC         1           442         min        006         2        024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |        | _   |     |        |    |        |    |        |    |             |    |          |    |    |   |
| 437         10         max         .005         3         .03         2         0         1         3.001e-6         10         NC         5         NC         1           438         min        006         2        027         3        004         3         -4.135e-5         9         874.186         2         9899.849         3           439         11         max         .005         3         .03         2         0         10         3.92e-6         10         NC         5         NC         1           440         min        006         2        026         3        003         3         -5.318e-5         1         877.283         2         NC         1           441         12         max         .005         3         .028         2         0         10         4.838e-6         10         NC         5         NC         1           442         min        006         2        024         3        003         3         -6.61e-5         1         903.628         2         NC         1           443         13         max         .005         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |        | 9   |     |        |    |        |    |        |    |             |    |          |    |    | _ |
| 438         min        006         2        027         3        004         3         -4.135e-5         9         874.186         2         9899.849         3           439         11         max         .005         3         .03         2         0         10         3.92e-6         10         NC         5         NC         1           440         min        006         2        026         3        003         3         -5.318e-5         1         877.283         2         NC         1           441         12         max         .005         3         .028         2         0         10         4.838e-6         10         NC         5         NC         1           442         min        006         2        024         3        003         3         -6.61e-5         1         903.628         2         NC         1           443         13         max         .005         3         .025         2         0         10         5.756e-6         10         NC         5         NC         1           444         min        006         2        021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |        | 10  |     |        |    |        |    |        |    |             |    |          |    |    |   |
| 439         11         max         .005         3         .03         2         0         10         3.92e-6         10         NC         5         NC         1           440         min        006         2        026         3        003         3         -5.318e-5         1         877.283         2         NC         1           441         12         max         .005         3         .028         2         0         10         4.838e-6         10         NC         5         NC         1           442         min        006         2        024         3        003         3         -6.61e-5         1         903.628         2         NC         1           443         13         max         .005         3         .025         2         0         10         5.756e-6         10         NC         5         NC         1           444         min        006         2        021         3        003         3         -7.902e-5         1         958.395         2         NC         1           445         14         max         .005         3         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |        | 10  |     |        |    |        |    |        |    |             |    |          |    |    | _ |
| 440         min        006         2        026         3        003         3         -5.318e-5         1         877.283         2         NC         1           441         12         max         .005         3         .028         2         0         10         4.838e-6         10         NC         5         NC         1           442         min        006         2        024         3        003         3         -6.61e-5         1         903.628         2         NC         1           443         13         max         .005         3         .025         2         0         10         5.756e-6         10         NC         5         NC         1           444         min        006         2        021         3        003         3         -7.902e-5         1         958.395         2         NC         1           445         14         max         .005         3         .02         2         0         10         6.674e-6         10         NC         5         NC         1           446         min        006         2        017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        |     |     |        |    |        |    |        |    |             |    |          |    |    |   |
| 441         12         max         .005         3         .028         2         0         10         4.838e-6         10         NC         5         NC         1           442         min        006         2        024         3        003         3         -6.61e-5         1         903.628         2         NC         1           443         13         max         .005         3         .025         2         0         10         5.756e-6         10         NC         5         NC         1           444         min        006         2        021         3        003         3         -7.902e-5         1         958.395         2         NC         1           445         14         max         .005         3         .02         2         0         10         6.674e-6         10         NC         5         NC         1           446         min        006         2        017         3        003         3         -9.193e-5         1         1053.364         2         NC         1           447         15         max         .005         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |        | 11  |     |        |    |        |    |        |    |             |    |          |    |    |   |
| 442         min        006         2        024         3        003         3         -6.61e-5         1         903.628         2         NC         1           443         13         max         .005         3         .025         2         0         10         5.756e-6         10         NC         5         NC         1           444         min        006         2        021         3        003         3         -7.902e-5         1         958.395         2         NC         1           445         14         max         .005         3         .02         2         0         10         6.674e-6         10         NC         5         NC         1           446         min        006         2        017         3        003         3         -9.193e-5         1         1053.364         2         NC         1           447         15         max         .005         3         .014         2         0         10         7.593e-6         10         NC         4         NC         1           448         min        006         2        011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |        |     |     |        |    |        |    |        |    |             |    |          |    |    |   |
| 443     13     max     .005     3     .025     2     0     10     5.756e-6     10     NC     5     NC     1       444     min    006     2    021     3    003     3     -7.902e-5     1     958.395     2     NC     1       445     14     max     .005     3     .02     2     0     10     6.674e-6     10     NC     5     NC     1       446     min    006     2    017     3    003     3     -9.193e-5     1     1053.364     2     NC     1       447     15     max     .005     3     .014     2     0     10     7.593e-6     10     NC     4     NC     1       448     min    006     2    011     3    002     3     -1.048e-4     1     1214.18     2     NC     1       449     16     max     .005     3     .006     2     0     10     8.283e-6     10     NC     4     NC     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |        | 12  |     |        |    |        |    |        |    |             | 10 |          |    |    |   |
| 444         min        006         2        021         3        003         3         -7.902e-5         1         958.395         2         NC         1           445         14         max         .005         3         .02         2         0         10         6.674e-6         10         NC         5         NC         1           446         min        006         2        017         3        003         3         -9.193e-5         1         1053.364         2         NC         1           447         15         max         .005         3         .014         2         0         10         7.593e-6         10         NC         4         NC         1           448         min        006         2        011         3        002         3         -1.048e-4         1         1214.18         2         NC         1           449         16         max         .005         3         .006         2         0         10         8.283e-6         10         NC         4         NC         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |        |     |     |        |    |        |    |        |    |             |    |          |    |    |   |
| 445     14 max     .005     3     .02     2     0     10 6.674e-6     10 NC     5 NC     1       446     min    006     2    017     3    003     3 -9.193e-5     1 1053.364     2 NC     1       447     15 max     .005     3     .014     2     0     10 7.593e-6     10 NC     4 NC     1       448     min    006     2    011     3    002     3 -1.048e-4     1 1214.18     2 NC     1       449     16 max     .005     3     .006     2     0     10 8.283e-6     10 NC     4 NC     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |        | 13  |     |        |    |        |    |        |    |             |    |          |    |    |   |
| 446     min    006     2    017     3    003     3     -9.193e-5     1     1053.364     2     NC     1       447     15     max     .005     3     .014     2     0     10     7.593e-6     10     NC     4     NC     1       448     min    006     2    011     3    002     3     -1.048e-4     1     1214.18     2     NC     1       449     16     max     .005     3     .006     2     0     10     8.283e-6     10     NC     4     NC     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |        |     | min | 006    |    | 021    |    | 003    | 3  |             | 1  |          |    |    | 1 |
| 447     15 max     .005     3     .014     2     0     10 7.593e-6     10 NC     4 NC     1       448     min    006     2    011     3    002     3     -1.048e-4     1     1214.18     2     NC     1       449     16 max     .005     3     .006     2     0     10     8.283e-6     10     NC     4     NC     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |        | 14  |     |        |    | -      |    |        | 10 |             | 10 |          |    |    | 1 |
| 447     15 max     .005     3     .014     2     0     10 7.593e-6     10 NC     4 NC     1       448     min    006     2    011     3    002     3 -1.048e-4     1 1214.18     2 NC     1       449     16 max     .005     3     .006     2     0     10 8.283e-6     10 NC     4 NC     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 446 |        |     | min | 006    |    | 017    | 3  | 003    | 3  | -9.193e-5   | 1  | 1053.364 | 2  |    | 1 |
| 448         min        006         2        011         3        002         3         -1.048e-4         1         1214.18         2         NC         1           449         16         max         .005         3         .006         2         0         10         8.283e-6         10         NC         4         NC         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 447 |        | 15  | max |        |    | .014   |    |        | 10 |             | 10 | NC       | 4  | NC | 1 |
| 449 16 max .005 3 .006 2 0 10 8.283e-6 10 NC 4 NC 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 448 |        |     |     |        |    |        |    | 002    | 3  |             |    |          | 2  |    | 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |        | 16  | 1   |        |    |        |    |        |    |             | 10 |          |    |    | 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |        |     |     |        |    |        |    | 002    |    |             |    |          |    |    |   |



Model Name

Schletter, Inc.HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:\_\_\_\_

|     | Member | Sec |     | x [in] | LC | y [in]              | LC | z [in] | LC |           | LC | (n) L/y Ratio  | LC  | (n) L/z Ratio | LC  |
|-----|--------|-----|-----|--------|----|---------------------|----|--------|----|-----------|----|----------------|-----|---------------|-----|
| 451 |        | 17  | max | .005   | 3  | .002                | 3  | 0      | 10 | 3.541e-6  | 10 | NC             | 4   | NC            | 1   |
| 452 |        |     | min | 006    | 2  | 003                 | 2  | 001    | 1  | -5.557e-5 | 1  | 2112.082       | 2   | NC            | 1   |
| 453 |        | 18  | max | .005   | 3  | .01                 | 3  | 0      | 10 | 1.154e-3  | 3  | NC             | 4   | NC            | 1   |
| 454 |        |     | min | 006    | 2  | 014                 | 2  | 0      | 9  | -2.168e-3 | 2  | 4066.202       | 2   | NC            | 1   |
| 455 |        | 19  | max | .005   | 3  | .018                | 3  | 0      | 3  | 2.34e-3   | 3  | NC             | 1   | NC            | 1   |
| 456 |        |     | min | 006    | 2  | 026                 | 2  | 0      | 9  | -4.368e-3 | 2  | NC             | 1   | NC            | 1   |
| 457 | M13    | 1   | max | 0      | 9  | .023                | 3  | .005   | 3  | 4.203e-3  | 3  | NC             | 1   | NC            | 1   |
| 458 |        |     | min | 002    | 3  | 02                  | 2  | 006    | 2  | -3.771e-3 | 2  | NC             | 1   | NC            | 1   |
| 459 |        | 2   | max | 0      | 9  | .044                | 3  | .004   | 3  | 4.874e-3  | 3  | NC             | 4   | NC            | 1   |
| 460 |        |     | min | 002    | 3  | 035                 | 2  | 006    | 2  | -4.349e-3 | 2  | 4270.923       | 3   | NC            | 1   |
| 461 |        | 3   | max | 0      | 9  | .062                | 3  | .003   | 3  | 5.545e-3  | 3  | NC             | 4   | NC            | 1   |
| 462 |        | - 3 | min | 002    | 3  | 049                 | 1  | 006    | 2  | -4.928e-3 | 2  | 2298.816       | 3   | NC            | 1   |
|     |        | 1   |     | _      |    |                     |    |        |    |           |    |                | _   |               |     |
| 463 |        | 4   | max | 0      | 9  | .075                | 3  | .004   | 9  | 6.216e-3  | 3_ | NC             | 4_  | NC<br>NC      | 1   |
| 464 |        | -   | min | 002    | 3  | 059                 | 1  | 006    | 2  | -5.506e-3 | 2  | 1725.103       | 3   | NC            | 1   |
| 465 |        | 5   | max | 0      | 9  | .082                | 3  | .005   | 9  | 6.887e-3  | 3  | NC<br>1700 101 | 4   | NC            | 1   |
| 466 |        |     | min | 002    | 3  | 064                 | 1  | 007    | 2  | -6.084e-3 | 2  | 1523.164       | 3   | NC            | 1   |
| 467 |        | 6   | max | 0      | 9  | .083                | 3  | .006   | 3  | 7.558e-3  | 3  | NC             | _4_ | NC            | 1   |
| 468 |        |     | min | 002    | 3  | 065                 | 1  | 009    | 2  | -6.662e-3 | 2  | 1503.207       | 3   | NC            | 1   |
| 469 |        | 7   | max | 0      | 9  | .079                | 3  | .007   | 3  | 8.229e-3  | 3  | NC             | 4   | NC            | 1   |
| 470 |        |     | min | 002    | 3  | 063                 | 1  | 011    | 2  | -7.241e-3 | 2  | 1621.263       | 3   | NC            | 1   |
| 471 |        | 8   | max | 0      | 9  | .071                | 3  | .009   | 3  | 8.9e-3    | 3  | NC             | 4   | NC            | 1   |
| 472 |        |     | min | 002    | 3  | 058                 | 2  | 013    | 2  | -7.819e-3 | 2  | 1874.469       | 3   | NC            | 1   |
| 473 |        | 9   | max | 0      | 9  | .064                | 3  | .01    | 3  | 9.571e-3  | 3  | NC             | 4   | NC            | 1   |
| 474 |        |     | min | 002    | 3  | 053                 | 2  | 015    | 2  | -8.397e-3 | 2  | 2227.831       | 3   | NC            | 1   |
| 475 |        | 10  | max | 0      | 9  | .06                 | 3  | .012   | 3  | 1.024e-2  | 3  | NC             | 4   | NC            | 1   |
| 476 |        | 10  | min | 002    | 3  | 051                 | 2  | 016    | 2  | -8.975e-3 | 2  | 2452.002       | 3   | 9822.393      | -   |
| 477 |        | 11  | max | 0      | 9  | .064                | 3  | .013   | 3  | 9.572e-3  | 3  | NC             | 4   | NC            | 1   |
| 478 |        |     | min | 002    | 3  | 053                 | 2  | 015    | 2  | -8.397e-3 | 2  | 2227.83        | 3   | NC            | 1   |
| 479 |        | 12  | max | 0      | 9  | <u>.035</u><br>.071 | 3  | .014   | 3  | 8.903e-3  | 3  | NC             | 4   | NC            | 1   |
| 480 |        | 12  | min | 002    | 3  | 058                 | 2  | 013    | 2  | -7.819e-3 | 2  | 1874.468       | 3   | NC            | 1   |
| 481 |        | 13  |     | 0      | 9  | .079                | 3  | .013   | 3  | 8.233e-3  | 3  | NC             | 4   | NC            | 1   |
|     |        | 13  | max |        |    |                     |    |        |    |           |    |                |     |               | 1   |
| 482 |        | 4.4 | min | 002    | 3  | 063                 | 1  | 011    | 2  | -7.241e-3 | 2  | 1621.262       | 3_  | NC<br>NC      | 4   |
| 483 |        | 14  | max | 0      | 9  | .083                | 3  | .013   | 3  | 7.563e-3  | 3_ | NC<br>4500.007 | 4_  | NC<br>NC      | 1   |
| 484 |        |     | min | 002    | 3  | 065                 | 1  | 009    | 2  | -6.662e-3 | 2  | 1503.207       | 3   | NC            | 1   |
| 485 |        | 15  | max | 0      | 9  | .083                | 3  | .011   | 3  | 6.893e-3  | 3  | NC             | 4_  | NC            | 1   |
| 486 |        |     | min | 002    | 3  | 064                 | 1  | 007    | 2  | -6.084e-3 | 2  | 1523.164       | 3   | NC            | 1   |
| 487 |        | 16  | max | 0      | 9  | .076                | 3  | .01    | 3  | 6.223e-3  | 3  | NC             | _4_ | NC            | 1   |
| 488 |        |     | min | 002    | 3  | 059                 | 1  | 006    | 2  | -5.506e-3 | 2  | 1725.103       | 3   | NC            | 1   |
| 489 |        | 17  | max | 0      | 9  | .063                | 3  | .008   | 3  | 5.553e-3  | 3  | NC             | 4   | NC            | 1   |
| 490 |        |     | min | 002    | 3  | 049                 | 1  | 006    | 2  | -4.928e-3 | 2  | 2298.816       | 3   | NC            | 1   |
| 491 |        | 18  | max | 0      | 9  | .045                | 3  | .007   | 3  | 4.883e-3  | 3  | NC             | 4   | NC            | 1   |
| 492 |        |     | min | 002    | 3  | 035                 | 2  | 006    | 2  | -4.349e-3 | 2  | 4270.924       | 3   | NC            | 1   |
| 493 |        | 19  | max | 0      | 9  | .024                | 3  | .005   | 3  | 4.214e-3  | 3  | NC             | 1   | NC            | 1   |
| 494 |        |     | min | 002    | 3  | 02                  | 2  | 006    | 2  | -3.771e-3 | 2  | NC             | 1   | NC            | 1   |
| 495 | M16    | 1   | max | 0      | 9  | .018                | 3  | .005   | 3  | 4.524e-3  | 2  | NC             | 1   | NC            | 1   |
| 496 | 10110  |     | min | 0      | 3  | 026                 | 2  | 006    | 2  | -3.234e-3 | 3  | NC             | 1   | NC            | 1   |
| 497 |        | 2   | max | 0      | 9  | .03                 | 3  | .007   | 3  | 5.24e-3   | 2  | NC             | 4   | NC            | 1   |
| 498 |        |     | min | 0      | 3  | 047                 | 2  | 006    | 2  | -3.702e-3 | 3  | 4251.707       | 2   | NC            | 1   |
| 499 |        | 3   |     | 0      | 9  | .04                 | 3  | .008   | 3  | 5.956e-3  | 2  | NC             | 4   | NC            | 1   |
|     |        | ٦   | max | -      | 3  |                     | 2  |        |    | -4.169e-3 |    | 2284.398       |     | NC<br>NC      | 1   |
| 500 |        | 1   | min | 0      |    | 065                 |    | 006    | 2  |           | 3  |                | 2   |               | •   |
| 501 |        | 4   | max | 0      | 9  | .047                | 3  | .01    | 3  | 6.672e-3  | 2  | NC             | 4   | NC<br>NC      | 1   |
| 502 |        | -   | min | 0      | 3  | 079                 | 2  | 006    | 2  | -4.636e-3 | 3  | 1709.052       | 2   | NC<br>NC      | 1   |
| 503 |        | 5   | max | 0      | 9  | <u>.051</u>         | 3  | .011   | 3  | 7.388e-3  | 2  | NC             | 4_  | NC            | 1   |
| 504 |        |     | min | 0      | 3  | 086                 | 2  | 007    | 2  | -5.104e-3 | 3  | 1501.963       | 2   | NC            | 1   |
| 505 |        | 6   | max | 0      | 9  | .053                | 3  | .012   | 3  | 8.104e-3  | 2  | NC             | 4   | NC            | 1   |
| 506 |        |     | min | 0      | 3  | 087                 | 2  | 009    | 2  | -5.571e-3 | 3  | 1472.099       | 2   | NC            | 1   |
| 507 |        | 7   | max | 0      | 9  | .051                | 3  | .013   | 3  | 8.82e-3   | 2  | NC             | 4   | NC            | _1_ |



Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:\_\_\_\_

|     | Member | Sec   |     | x [in]          | LC | y [in]    | LC | z [in] | LC | x Rotate [r |    |                | LC       |                  |    |
|-----|--------|-------|-----|-----------------|----|-----------|----|--------|----|-------------|----|----------------|----------|------------------|----|
| 508 |        |       | min | 0               | 3  | 083       | 2  | 011    | 2  | -6.038e-3   | 3  | 1571.848       | 2        | NC               | 1  |
| 509 |        | 8     | max | 0               | 9  | .048      | 3  | .013   | 3  | 9.536e-3    | 2  | NC             | 4_       | NC               | 1  |
| 510 |        |       | min | 0               | 3  | 076       | 2  | 013    | 2  | -6.506e-3   | 3  | 1791.939       | 2        | NC               | 1  |
| 511 |        | 9     | max | 0               | 9  | .045      | 3  | .013   | 3  | 1.025e-2    | 2  | NC             | 4        | NC               | 1_ |
| 512 |        |       | min | 0               | 3  | 069       | 2  | 015    | 2  | -6.973e-3   | 3  | 2094.243       | 2        | NC               | 1  |
| 513 |        | 10    | max | 0               | 9  | .044      | 3  | .012   | 3  | 1.097e-2    | 2  | NC             | 4        | NC               | 1  |
| 514 |        |       | min | 0               | 3  | 065       | 2  | 016    | 2  | -7.44e-3    | 3  | 2282.202       | 2        | 9574.792         | 2  |
| 515 |        | 11    | max | 0               | 9  | .045      | 3  | .011   | 3  | 1.025e-2    | 2  | NC             | 4        | NC               | 1  |
| 516 |        |       | min | 0               | 3  | 069       | 2  | 015    | 2  | -6.972e-3   | 3  | 2094.243       | 2        | NC               | 1  |
| 517 |        | 12    | max | 0               | 9  | .048      | 3  | .011   | 3  | 9.536e-3    | 2  | NC             | 4        | NC               | 1  |
| 518 |        |       | min | 0               | 3  | 076       | 2  | 013    | 2  | -6.504e-3   | 3  | 1791.939       | 2        | NC               | 1  |
| 519 |        | 13    | max | 0               | 9  | .051      | 3  | .01    | 3  | 8.82e-3     | 2  | NC             | 4        | NC               | 1  |
| 520 |        |       | min | 0               | 3  | 083       | 2  | 011    | 2  | -6.035e-3   | 3  | 1571.848       | 2        | NC               | 1  |
| 521 |        | 14    | max | 0               | 9  | .053      | 3  | .009   | 3  | 8.104e-3    | 2  | NC             | 4        | NC               | 1  |
| 522 |        |       | min | 0               | 3  | 087       | 2  | 009    | 2  | -5.567e-3   | 3  | 1472.099       | 2        | NC               | 1  |
| 523 |        | 15    | max | 0               | 9  | .051      | 3  | .008   | 3  | 7.389e-3    | 2  | NC             | 4        | NC               | 1  |
| 524 |        |       | min | 0               | 3  | 086       | 2  | 007    | 2  | -5.099e-3   | 3  | 1501.963       | 2        | NC               | 1  |
| 525 |        | 16    | max | 0               | 9  | .047      | 3  | .007   | 3  | 6.673e-3    | 2  | NC             | 4        | NC               | 1  |
| 526 |        |       | min | 0               | 3  | 079       | 2  | 006    | 2  | -4.631e-3   | 3  | 1709.052       | 2        | NC               | 1  |
| 527 |        | 17    | max | 0               | 9  | .04       | 3  | .007   | 3  | 5.957e-3    | 2  | NC             | 4        | NC               | 1  |
| 528 |        |       | min | 0               | 3  | 065       | 2  | 006    | 2  | -4.162e-3   | 3  | 2284.398       | 2        | NC               | 1  |
| 529 |        | 18    | max | 0               | 9  | .03       | 3  | .006   | 3  | 5.241e-3    | 2  | NC             | 4        | NC               | 1  |
| 530 |        |       | min | 0               | 3  | 047       | 2  | 006    | 2  | -3.694e-3   | 3  | 4251.707       | 2        | NC               | 1  |
| 531 |        | 19    | max | 0               | 9  | .018      | 3  | .005   | 3  | 4.526e-3    | 2  | NC             | 1        | NC               | 1  |
| 532 |        |       | min | 0               | 3  | 026       | 2  | 006    | 2  | -3.226e-3   | 3  | NC             | 1        | NC               | 1  |
| 533 | M15    | 1     | max | 0               | 1  | 0         | 1  | 0      | 1  | 3.405e-4    | 3  | NC             | 1        | NC               | 1  |
| 534 |        |       | min | 0               | 1  | 0         | 1  | 0      | 1  | -6.65e-5    | 2  | NC             | 1        | NC               | 1  |
| 535 |        | 2     | max | 0               | 3  | 0         | 15 | 0      | 1  | 7.222e-4    | 3  | NC             | 1        | NC               | 1  |
| 536 |        |       | min | 0               | 1  | 002       | 4  | 0      | 3  | -4.37e-4    | 2  | NC             | 1        | NC               | 1  |
| 537 |        | 3     | max | 0               | 3  | 0         | 15 | .002   | 1  | 1.104e-3    | 3  | NC             | 1        | NC               | 1  |
| 538 |        | 1     | min | 0               | 1  | 003       | 4  | 003    | 3  | -8.074e-4   | 2  | NC             | 1        | NC               | 1  |
| 539 |        | 4     | max | 0               | 3  | 001       | 15 | .004   | 1  | 1.486e-3    | 3  | NC             | 1        | NC               | 4  |
| 540 |        |       | min | 0               | 1  | 005       | 4  | 005    | 3  | -1.178e-3   | 2  | NC             | 1        | 7098.22          | 3  |
| 541 |        | 5     | max | 0               | 3  | 001       | 15 | .007   | 1  | 1.867e-3    | 3  | NC             | 1        | NC               | 4  |
| 542 |        | 1     | min | 0               | 1  | 006       | 4  | 009    | 3  | -1.548e-3   | 2  | 8666.515       | 4        | 4603.127         | 3  |
| 543 |        | 6     | max | 0               | 3  | 002       | 15 | .01    | 1  | 2.249e-3    | 3  | NC             | 3        | NC               | 4  |
| 544 |        | +     | min | 0               | 1  | 008       | 4  | 012    | 3  | -1.919e-3   | 2  | 7293.788       | 4        | 3324.229         | _  |
| 545 |        | 7     | max | 0               | 3  | 002       | 15 | .013   | 1  | 2.631e-3    | 3  | NC             | 3        | NC               | 4  |
| 546 |        |       | min | 001             | 1  | 002       | 4  | 016    | 3  | -2.289e-3   | 2  | 6468.274       | 4        | 2583.162         | 3  |
| 547 |        | 8     | max | 0               | 3  | 003       | 15 | .017   | 1  | 3.013e-3    | 3  | NC             | 3        | NC               | 4  |
| 548 |        | 10    | min | 001             | 1  | 002       | 4  | 02     | 3  | -2.66e-3    | 2  | 5972.842       | 4        | 2120.199         |    |
| 549 |        | 9     | max | 0               | 3  | 003       | 15 | .019   | 1  | 3.394e-3    | 3  | NC             | 5        | NC               | 4  |
| 550 |        |       | min | 001             | 1  | 01        | 4  | 023    | 3  | -3.03e-3    | 2  | 5706.171       | 4        | 1818.433         | _  |
| 551 |        | 10    | max | <u>001</u><br>0 | 3  | 002       | 15 | .023   | 1  | 3.776e-3    | 3  | NC             | 5        | NC               | 4  |
| 552 |        | 10    | min | 002             | 1  | 002<br>01 | 4  | 026    | 3  | -3.401e-3   | 2  | 5621.809       | 4        | 1619.589         |    |
| 553 |        | 11    |     | <u>002</u><br>0 | 3  | 002       | 12 | .024   | 1  | 4.158e-3    | 3  | NC             | 5        | NC               | 4  |
|     |        | + ' ' | max |                 |    |           |    |        |    |             |    |                |          |                  |    |
| 554 |        | 40    | min | 002             | 1  | <u>01</u> | 4  | 028    | 3  | -3.771e-3   | 2  | 5706.171       | 4        | 1493.179         |    |
| 555 |        | 12    | max | 0               | 3  | 002       | 12 | .024   | 1  | 4.54e-3     | 3  | NC             | 3        | NC<br>4404 000   | 4  |
| 556 |        | 40    | min | 002             | 1  | 009       | 4  | 029    | 3  | -4.142e-3   | 2  | 5972.842       | 4        | 1424.003         |    |
| 557 |        | 13    | max | 0               | 3  | 001       | 12 | .024   | 1  | 4.921e-3    | 3  | NC<br>C4C0 074 | 3        | NC<br>4.407.00   | 4  |
| 558 |        |       | min | 002             | 1  | 009       | 4  | 029    | 3  | -4.512e-3   | 2  | 6468.274       | 4        | 1407.36          | 3  |
| 559 |        | 14    | max | 0               | 3  | 0         | 12 | .023   | 1  | 5.303e-3    | 3_ | NC             | 3_       | NC<br>4.4.40.007 | 4  |
| 560 |        |       | min | 002             | 1  | 008       | 4  | 027    | 3  | -4.882e-3   | 2  | 7293.788       | 4_       | 1448.997         | 3  |
| 561 |        | 15    | max | 0               | 3  | 0         | 3  | .02    | 1  | 5.685e-3    | 3  | NC             | _1_      | NC               | 4  |
| 562 |        |       | min | 002             | 1  | 007       | 4  | 023    | 3  | -5.253e-3   | 2  | 8666.515       | 4_       | 1571.088         |    |
| 563 |        | 16    | max | 0               | 3  | 0         | 3  | .015   | 1  | 6.067e-3    | 3  | NC             | _1_      | NC               | 4  |
| 564 |        |       | min | 003             | 1  | 005       | 4  | 018    | 3  | -5.623e-3   | 2  | NC             | <u>1</u> | 1834.307         | 3  |



Company Designer Job Number Model Name : Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:\_\_

|     | Member | Sec |     | x [in] | LC | y [in] | LC | z [in] | LC | x Rotate [r | LC | (n) L/y Ratio | LC  | (n) L/z Ratio | LC |
|-----|--------|-----|-----|--------|----|--------|----|--------|----|-------------|----|---------------|-----|---------------|----|
| 565 |        | 17  | max | Ō      | 3  | .002   | 3  | .008   | 1  | 6.448e-3    | 3  | NC            | 1   | NC            | 4  |
| 566 |        |     | min | 003    | 1  | 004    | 4  | 01     | 3  | -5.994e-3   | 2  | NC            | 1   | 2429.364      | 3  |
| 567 |        | 18  | max | .001   | 3  | .003   | 3  | .001   | 9  | 6.83e-3     | 3  | NC            | 1   | NC            | 4  |
| 568 |        |     | min | 003    | 1  | 002    | 9  | 004    | 2  | -6.364e-3   | 2  | NC            | 1   | 4321.407      | 3  |
| 569 |        | 19  | max | .001   | 3  | .004   | 3  | .014   | 3  | 7.212e-3    | 3  | NC            | 1   | NC            | 1  |
| 570 |        |     | min | 003    | 1  | 001    | 9  | 016    | 2  | -6.735e-3   | 2  | NC            | 1   | NC            | 1  |
| 571 | M16A   | 1   | max | 0      | 2  | 0      | 2  | .006   | 3  | 2.729e-3    | 3  | NC            | 1   | NC            | 1  |
| 572 |        |     | min | 001    | 3  | 0      | 9  | 006    | 2  | -2.733e-3   | 2  | NC            | 1   | NC            | 1  |
| 573 |        | 2   | max | 0      | 2  | 0      | 15 | 0      | 9  | 2.605e-3    | 3  | NC            | 1   | NC            | 1  |
| 574 |        |     | min | 001    | 3  | 002    | 4  | 002    | 2  | -2.598e-3   | 2  | NC            | 1   | 9811.451      | 3  |
| 575 |        | 3   | max | 0      | 2  | 0      | 15 | .004   | 1  | 2.482e-3    | 3  | NC            | 1   | NC            | 4  |
| 576 |        |     | min | 0      | 3  | 004    | 4  | 005    | 3  | -2.463e-3   | 2  | NC            | 1   | 5535.891      | 3  |
| 577 |        | 4   | max | 0      | 2  | 001    | 15 | .007   | 1  | 2.358e-3    | 3  | NC            | 1   | NC            | 4  |
| 578 |        |     | min | 0      | 3  | 005    | 4  | 008    | 3  | -2.328e-3   | 2  | NC            | 1   | 4197.174      | 3  |
| 579 |        | 5   | max | 0      | 2  | 002    | 15 | .008   | 1  | 2.235e-3    | 3  | NC            | 1_  | NC            | 4  |
| 580 |        |     | min | 0      | 3  | 006    | 4  | 011    | 3  | -2.193e-3   | 2  | 8666.515      | 4   | 3611.769      | 3  |
| 581 |        | 6   | max | 0      | 2  | 002    | 15 | .01    | 1  | 2.111e-3    | 3  | NC            | 3   | NC            | 4  |
| 582 |        |     | min | 0      | 3  | 008    | 4  | 012    | 3  | -2.059e-3   | 2  | 7293.788      | 4   | 3349.039      | 3  |
| 583 |        | 7   | max | 0      | 2  | 002    | 15 | .01    | 1  | 1.988e-3    | 3  | NC            | 3   | NC            | 4  |
| 584 |        |     | min | 0      | 3  | 009    | 4  | 013    | 3  | -1.924e-3   | 2  | 6468.274      | 4   | 3273.114      | 3  |
| 585 |        | 8   | max | 0      | 2  | 002    | 15 | .01    | 1  | 1.864e-3    | 3  | NC            | 3   | NC            | 4  |
| 586 |        |     | min | 0      | 3  | 009    | 4  | 013    | 3  | -1.789e-3   | 2  | 5972.842      | 4   | 3336.066      | 3  |
| 587 |        | 9   | max | 0      | 2  | 002    | 15 | .01    | 1  | 1.74e-3     | 3  | NC            | 5   | NC            | 4  |
| 588 |        |     | min | 0      | 3  | 01     | 4  | 012    | 3  | -1.654e-3   | 2  | 5706.171      | 4   | 3528.583      | 3  |
| 589 |        | 10  | max | 0      | 2  | 002    | 15 | .009   | 1  | 1.617e-3    | 3  | NC            | 5   | NC            | 4  |
| 590 |        |     | min | 0      | 3  | 01     | 4  | 011    | 3  | -1.519e-3   | 2  | 5621.809      | 4   | 3867.591      | 3  |
| 591 |        | 11  | max | 0      | 2  | 002    | 15 | .008   | 1  | 1.493e-3    | 3  | NC            | 5   | NC            | 4  |
| 592 |        |     | min | 0      | 3  | 01     | 4  | 01     | 3  | -1.385e-3   | 2  | 5706.171      | 4   | 4398.82       | 3  |
| 593 |        | 12  | max | 0      | 2  | 002    | 15 | .006   | 1  | 1.37e-3     | 3  | NC            | 3   | NC            | 4  |
| 594 |        |     | min | 0      | 3  | 009    | 4  | 008    | 3  | -1.25e-3    | 2  | 5972.842      | 4   | 5213.036      | 3  |
| 595 |        | 13  | max | 0      | 2  | 002    | 15 | .005   | 1  | 1.246e-3    | 3  | NC            | 3   | NC            | 4  |
| 596 |        |     | min | 0      | 3  | 008    | 4  | 006    | 3  | -1.115e-3   | 2  | 6468.274      | 4   | 6487.578      | 3  |
| 597 |        | 14  | max | 0      | 2  | 002    | 15 | .003   | 1  | 1.122e-3    | 3  | NC            | 3   | NC            | 1  |
| 598 |        |     | min | 0      | 3  | 008    | 4  | 005    | 3  | -9.801e-4   | 2  | 7293.788      | 4   | 8592.695      | 3  |
| 599 |        | 15  | max | 0      | 2  | 001    | 15 | .002   | 1  | 9.988e-4    | 3  | NC            | 1_  | NC            | 1  |
| 600 |        |     | min | 0      | 3  | 006    | 4  | 003    | 3  | -8.453e-4   | 2  | 8666.515      | 4   | NC            | 1  |
| 601 |        | 16  | max | 0      | 2  | 001    | 15 | .001   | 1  | 8.752e-4    | 3  | NC            | _1_ | NC            | 1  |
| 602 |        |     | min | 0      | 3  | 005    | 4  | 002    | 3  | -7.105e-4   | 2  | NC            | 1   | NC            | 1  |
| 603 |        | 17  | max | 0      | 2  | 0      | 15 | 0      | 4  | 7.516e-4    | 3  | NC            | _1_ | NC            | 1  |
| 604 |        |     | min | 0      | 3  | 003    | 4  | 0      | 3  | -5.757e-4   | 2  | NC            | 1   | NC            | 1  |
| 605 |        | 18  | max | 0      | 2  | 0      | 15 | 0      | 4  | 6.28e-4     | 3  | NC            | _1_ | NC            | 1  |
| 606 |        |     | min | 0      | 3  | 002    | 4  | 0      | 2  | -4.409e-4   | 2  | NC            | 1   | NC            | 1  |
| 607 |        | 19  | max | 0      | 1  | 0      | 1  | 0      | 1  | 5.044e-4    | 3  | NC            | 1   | NC            | 1  |
| 608 |        |     | min | 0      | 1  | 0      | 1  | 0      | 1  | -3.061e-4   | 2  | NC            | 1   | NC            | 1  |



| Company:  | Schletter, Inc.              | Date: | 12/10/2015 |
|-----------|------------------------------|-------|------------|
| Engineer: | HCV                          | Page: | 1/5        |
| Project:  | Standard PVMini - Worst Case |       |            |
| Address:  |                              |       |            |
| Phone:    |                              |       |            |
| E-mail:   |                              |       |            |

#### 1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

#### 2. Input Data & Anchor Parameters

#### General

Design method:ACI 318-05 Units: Imperial units

#### **Anchor Information:**

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

# **Base Material**

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$ 

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

#### **Load and Geometry**

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

# **Base Plate**

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28





| Company:  | Schletter, Inc.              | Date: | 12/10/2015 |
|-----------|------------------------------|-------|------------|
| Engineer: | HCV                          | Page: | 2/5        |
| Project:  | Standard PVMini - Worst Case |       |            |
| Address:  |                              |       |            |
| Phone:    |                              |       |            |
| E-mail:   |                              |       |            |

<Figure 2>



#### **Recommended Anchor**

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263





| Company:  | Schletter, Inc.              | Date: | 12/10/2015 |
|-----------|------------------------------|-------|------------|
| Engineer: | HCV                          | Page: | 3/5        |
| Project:  | Standard PVMini - Worst Case |       |            |
| Address:  |                              |       |            |
| Phone:    |                              |       |            |
| E-mail:   |                              |       |            |

#### 3. Resulting Anchor Forces

| Anchor | Tension load,<br>N <sub>ua</sub> (lb) | Shear load x,<br>V <sub>uax</sub> (lb) | Shear load y,<br>V <sub>uay</sub> (lb) | Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb) |   |
|--------|---------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------------------------|---|
| 1      | 405.0                                 | 6.0                                    | 101.0                                  | 101.2                                                      |   |
| Sum    | 405.0                                 | 6.0                                    | 101.0                                  | 101.2                                                      | _ |

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 405

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'<sub>Nx</sub> (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'<sub>Ny</sub> (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'<sub>vx</sub> (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'<sub>vy</sub> (inch): 0.00



#### 4. Steel Strength of Anchor in Tension(Sec. D.5.1)

| $N_{sa}$ (lb) | $\phi$ | $\phi N_{sa}$ (lb) |
|---------------|--------|--------------------|
| 8095          | 0.75   | 6071               |

### 5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$  (Eq. D-7)

| Kc                          | λ                                                | f'c (psi)                      | h <sub>ef</sub> (in) | N <sub>b</sub> (lb) |            |        |                    |
|-----------------------------|--------------------------------------------------|--------------------------------|----------------------|---------------------|------------|--------|--------------------|
| 17.0                        | 1.00                                             | 2500                           | 5.333                | 10469               |            |        |                    |
| $\phi N_{cb} = \phi (A_N)$  | $_{Nc}$ / $A_{Nco}$ ) $\Psi_{ed,N}$ $\Psi_{c,n}$ | $_{N}\Psi_{cp,N}N_{b}$ (Sec. I | D.4.1 & Eq. D-4      | )                   |            |        |                    |
| $A_{Nc}$ (in <sup>2</sup> ) | $A_{Nco}$ (in <sup>2</sup> )                     | $\Psi_{ed,N}$                  | $arPsi_{c,N}$        | $arPsi_{cp,N}$      | $N_b$ (lb) | $\phi$ | $\phi N_{cb}$ (lb) |
| 253.92                      | 256.00                                           | 0.995                          | 1.00                 | 1.000               | 10469      | 0.65   | 6717               |

### 6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $K_{sat}$ 

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$ 

f<sub>short-term</sub>

 $\tau_{k,cr}$  (psi)

| 1035                           | 1.00                                                    | 1.00                 | 1035                      |                      |        |                 |
|--------------------------------|---------------------------------------------------------|----------------------|---------------------------|----------------------|--------|-----------------|
| $N_{a0} = \tau_{k,cr} \pi d_a$ | h <sub>ef</sub> (Eq. D-16f)                             |                      |                           |                      |        |                 |
| τ <sub>k,cr</sub> (psi)        | d <sub>a</sub> (in)                                     | h <sub>ef</sub> (in) | N <sub>a0</sub> (lb)      |                      |        |                 |
| 1035                           | 0.50                                                    | 6.000                | 9755                      |                      |        |                 |
| $\phi N_a = \phi (A_{Na})$     | / A <sub>Na0</sub> ) Ψ <sub>ed,Na</sub> Ψ <sub>p,</sub> | NaNa0 (Sec. D.4      | 1.1 & Eq. D-16a)          | )                    |        |                 |
| $A_{Na}$ (in <sup>2</sup> )    | $A_{Na0}$ (in <sup>2</sup> )                            | $\Psi_{\sf ed,Na}$   | $arPsi_{ m 	extsf{p},Na}$ | N <sub>a0</sub> (lb) | $\phi$ | $\phi N_a$ (lb) |
| 109.66                         | 109.66                                                  | 1.000                | 1.000                     | 9755                 | 0.55   | 5365            |

 $\tau_{k,cr}$  (psi)



| Company:  | Schletter, Inc.              | Date: | 12/10/2015 |
|-----------|------------------------------|-------|------------|
| Engineer: | HCV                          | Page: | 4/5        |
| Project:  | Standard PVMini - Worst Case |       |            |
| Address:  |                              |       |            |
| Phone:    |                              |       |            |
| E-mail:   |                              |       |            |

#### 8. Steel Strength of Anchor in Shear (Sec. D.6.1)

| $V_{sa}$ (lb) | $\phi_{	extit{grout}}$ | $\phi$ | $\phi_{	extit{grout}} \phi V_{	ext{sa}}$ (lb) |  |
|---------------|------------------------|--------|-----------------------------------------------|--|
| 4855          | 1.0                    | 0.65   | 3156                                          |  |

#### 9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

### Shear perpendicular to edge in y-direction:

| le (in)                    | d <sub>a</sub> (in)                   | λ                            | f'c (psi)       | Ca1 (in)     | V <sub>by</sub> (lb) |        |
|----------------------------|---------------------------------------|------------------------------|-----------------|--------------|----------------------|--------|
| 4.00                       | 0.50                                  | 1.00                         | 2500            | 8.00         | 8488                 |        |
| $\phi V_{cby} = \phi (A_V$ | $_{/c}/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$ | $_{V}\Psi_{h,V}V_{by}$ (Sec. | D.4.1 & Eq. D-2 | 1)           |                      |        |
| Avc (in <sup>2</sup> )     | Avco (in <sup>2</sup> )               | $\Psi_{ed,V}$                | $\Psi_{c,V}$    | $\Psi_{h,V}$ | $V_{by}$ (lb)        | $\phi$ |
| 238.44                     | 288.00                                | 0.897                        | 1.000           | 1.000        | 8488                 | 0.70   |

#### Shear perpendicular to edge in x-direction:

| V <sub>bv</sub> = ' | 7(1,/  | $d_{a})^{0.2}$ | Vd-22  | f'cCa1 1.5 | (Fa  | D-24) |
|---------------------|--------|----------------|--------|------------|------|-------|
| <b>v</b> bx -       | / Vie/ | uai            | VUaz V | I cLai     | ıLu. | D-241 |

| I <sub>e</sub> (in)         | d <sub>a</sub> (in)                              | λ                            | $f'_c$ (psi)    | <i>c</i> <sub>a1</sub> (in) | $V_{bx}$ (lb) |        |                     |
|-----------------------------|--------------------------------------------------|------------------------------|-----------------|-----------------------------|---------------|--------|---------------------|
| 4.00                        | 0.50                                             | 1.00                         | 2500            | 7.87                        | 8282          |        |                     |
| $\phi V_{cbx} = \phi (A_1)$ | $_{Vc}$ / $A_{Vco}$ ) $\Psi_{ed,V}$ $\Psi_{c,v}$ | $_{V}\Psi_{h,V}V_{bx}$ (Sec. | D.4.1 & Eq. D-2 | 1)                          |               |        |                     |
| $A_{Vc}$ (in <sup>2</sup> ) | $A_{Vco}$ (in <sup>2</sup> )                     | $\Psi_{\sf ed,V}$            | $\Psi_{c,V}$    | $\Psi_{h,V}$                | $V_{bx}$ (lb) | $\phi$ | $\phi V_{cbx}$ (lb) |
| 188.88                      | 278.72                                           | 0.903                        | 1.000           | 1.000                       | 8282          | 0.70   | 3549                |

#### Shear parallel to edge in x-direction:

| l <sub>e</sub> (in)         | da (in)                      | λ                                                | $f'_c$ (psi)      | <i>c</i> <sub>a1</sub> (in) | $V_{by}$ (lb) |        |                     |
|-----------------------------|------------------------------|--------------------------------------------------|-------------------|-----------------------------|---------------|--------|---------------------|
| 4.00                        | 0.50                         | 1.00                                             | 2500              | 8.00                        | 8488          |        |                     |
| $\phi V_{cbx} = \phi (2)$   | (Avc/Avco) Yed, v            | $\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{by}$ (Se | c. D.4.1, D.6.2.1 | (c) & Eq. D-21)             |               |        |                     |
| $A_{Vc}$ (in <sup>2</sup> ) | $A_{Vco}$ (in <sup>2</sup> ) | $\Psi_{ed,V}$                                    | $arPsi_{c,V}$     | $\Psi_{h,V}$                | $V_{by}$ (lb) | $\phi$ | $\phi V_{cbx}$ (lb) |
| 238.44                      | 288.00                       | 1.000                                            | 1.000             | 1.000                       | 8488          | 0.70   | 9838                |

## Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$  (Eq. D-24)

| - 2/ - (-0                   | ,                            | (-4)                             |                   |                 |                      |        |                     |  |
|------------------------------|------------------------------|----------------------------------|-------------------|-----------------|----------------------|--------|---------------------|--|
| le (in)                      | da (in)                      | λ                                | f'c (psi)         | Ca1 (in)        | $V_{bx}$ (lb)        |        |                     |  |
| 4.00                         | 0.50                         | 1.00                             | 2500              | 7.87            | 8282                 |        |                     |  |
| $\phi V_{cby} = \phi (2)(2)$ | $A_{Vc}/A_{Vco})\Psi_{ed,V}$ | $\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se | c. D.4.1, D.6.2.1 | (c) & Eq. D-21) |                      |        |                     |  |
| Avc (in <sup>2</sup> )       | $A_{Vco}$ (in <sup>2</sup> ) | $\Psi_{ed,V}$                    | $\Psi_{c,V}$      | $\Psi_{h,V}$    | V <sub>bx</sub> (lb) | $\phi$ | $\phi V_{cby}$ (lb) |  |
| 188.88                       | 278.72                       | 1.000                            | 1.000             | 1.000           | 8282                 | 0.70   | 7858                |  |

#### 10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\mathit{CP}} = \phi \min |k_{\mathit{CP}} N_{\mathit{a}} \; ; \; k_{\mathit{CP}} N_{\mathit{Cb}}| = \phi \min |k_{\mathit{CP}} (A_{\mathit{Na}} / A_{\mathit{NaO}}) \, \Psi_{\mathit{ed},\mathit{Na}} \, \Psi_{\mathit{P},\mathit{Na}} N_{\mathit{aO}} \; ; \; k_{\mathit{CP}} (A_{\mathit{Nc}} / A_{\mathit{NcO}}) \, \Psi_{\mathit{ed},\mathit{N}} \, \Psi_{\mathit{CP},\mathit{N}} N_{\mathit{b}}| \; (\text{Eq. D-30a})$ 

| Kcp                                | $A_{Na}$ (in <sup>2</sup> ) | A <sub>Na0</sub> (in <sup>2</sup> ) | $\Psi_{\sf ed,Na}$ | $arPsi_{ m p,Na}$ | N <sub>a0</sub> (lb) | N <sub>a</sub> (lb)  |        |                    |
|------------------------------------|-----------------------------|-------------------------------------|--------------------|-------------------|----------------------|----------------------|--------|--------------------|
| 2.0                                | 109.66                      | 109.66                              | 1.000              | 1.000             | 9755                 | 9755                 |        |                    |
| A <sub>Nc</sub> (in <sup>2</sup> ) | A <sub>Nco</sub> (in²)      | $\Psi_{\sf ed,N}$                   | $\Psi_{c,N}$       | $\Psi_{cp,N}$     | $N_b$ (lb)           | N <sub>cb</sub> (lb) | $\phi$ | $\phi V_{cp}$ (lb) |
| 253.92                             | 256.00                      | 0.995                               | 1.000              | 1.000             | 10469                | 10334                | 0.70   | 13657              |



| Company:  | Schletter, Inc.              | Date: | 12/10/2015 |
|-----------|------------------------------|-------|------------|
| Engineer: | HCV                          | Page: | 5/5        |
| Project:  | Standard PVMini - Worst Case |       |            |
| Address:  |                              |       |            |
| Phone:    |                              |       |            |
| E-mail:   |                              |       |            |

### 11. Results

### Interaction of Tensile and Shear Forces (Sec. D.7)

| Tension                     | Factored Load, Nua (lb)             | Design Strength, øNn (lb) | Ratio         | Status         |
|-----------------------------|-------------------------------------|---------------------------|---------------|----------------|
| Steel                       | 405                                 | 6071                      | 0.07          | Pass           |
| Concrete breakout           | 405                                 | 6717                      | 0.06          | Pass           |
| Adhesive                    | 405                                 | 5365                      | 0.08          | Pass (Governs) |
| Shear                       | Factored Load, V <sub>ua</sub> (lb) | Design Strength, øVn (lb) | Ratio         | Status         |
| Steel                       | 101                                 | 3156                      | 0.03          | Pass (Governs) |
| T Concrete breakout y+      | 101                                 | 4411                      | 0.02          | Pass           |
| T Concrete breakout x+      | 6                                   | 3549                      | 0.00          | Pass           |
| Concrete breakout y+        | 6                                   | 9838                      | 0.00          | Pass           |
| Concrete breakout x+        | 101                                 | 7858                      | 0.01          | Pass           |
| Concrete breakout, combined | -                                   | -                         | 0.02          | Pass           |
| Pryout                      | 101                                 | 13657                     | 0.01          | Pass           |
| Interaction check Nua       | $/\phi N_n$ $V_{ua}/\phi V_n$       | Combined Rati             | o Permissible | Status         |
| Sec. D.7.1 0.0              | 8 0.00                              | 7.5 %                     | 1.0           | Pass           |

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

#### 12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.



| Company:  | Schletter, Inc.              | Date: | 12/10/2015 |
|-----------|------------------------------|-------|------------|
| Engineer: | HCV                          | Page: | 1/5        |
| Project:  | Standard PVMini - Worst Case |       |            |
| Address:  |                              |       |            |
| Phone:    |                              |       |            |
| E-mail:   |                              |       |            |

#### 1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Fastening description:

**Base Material** 

State: Cracked

 $\Psi_{c,V}$ : 1.0

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

Compressive strength, f'c (psi): 2500

Reinforcement provided at corners: No

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable

Do not evaluate concrete breakout in tension: No

Do not evaluate concrete breakout in shear: No

Location:

Project description:

#### 2. Input Data & Anchor Parameters

#### General

Design method:ACI 318-05 Units: Imperial units

#### **Anchor Information:**

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h<sub>min</sub> (inch): 8.50 c<sub>ac</sub> (inch): 9.67 C<sub>min</sub> (inch): 1.75 S<sub>min</sub> (inch): 3.00

#### **Load and Geometry**

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Hole condition: Dry concrete Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

#### **Base Plate**

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28





| Company:  | Schletter, Inc.              | Date: | 12/10/2015 |
|-----------|------------------------------|-------|------------|
| Engineer: | HCV                          | Page: | 2/5        |
| Project:  | Standard PVMini - Worst Case |       |            |
| Address:  |                              |       |            |
| Phone:    |                              |       |            |
| E-mail:   |                              |       |            |

<Figure 2>



#### **Recommended Anchor**

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263





| Company:  | Schletter, Inc.              | Date: | 12/10/2015 |
|-----------|------------------------------|-------|------------|
| Engineer: | HCV                          | Page: | 3/5        |
| Project:  | Standard PVMini - Worst Case |       |            |
| Address:  |                              |       |            |
| Phone:    |                              |       |            |
| E-mail:   |                              |       |            |

#### 3. Resulting Anchor Forces

| Anchor | Tension load,<br>N <sub>ua</sub> (lb) | Shear load x,<br>V <sub>uax</sub> (lb) | Shear load y,<br>V <sub>uay</sub> (lb) | Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb) |  |
|--------|---------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------------------------|--|
| 1      | 732.5                                 | 499.5                                  | 0.0                                    | 499.5                                                      |  |
| 2      | 732.5                                 | 499.5                                  | 0.0                                    | 499.5                                                      |  |
| Sum    | 1465.0                                | 999.0                                  | 0.0                                    | 999.0                                                      |  |

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'<sub>Nx</sub> (inch): 0.00

Eccentricity of resultant tension forces in y-axis,  $e'_{Ny}$  (inch): 0.00 Eccentricity of resultant shear forces in x-axis,  $e'_{Vx}$  (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00





### 4. Steel Strength of Anchor in Tension(Sec. D.5.1)

| N <sub>sa</sub> (lb) | $\phi$ | $\phi N_{sa}$ (lb) |
|----------------------|--------|--------------------|
| 8095                 | 0.75   | 6071               |

### 5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}} \text{ (Eq. D-7)}$ 

| Kc                                                                                                               | λ    | ř <sub>c</sub> (psi) | n <sub>ef</sub> (in) | $N_b$ (ID) |
|------------------------------------------------------------------------------------------------------------------|------|----------------------|----------------------|------------|
| 17.0                                                                                                             | 1.00 | 2500                 | 5.333                | 10469      |
| $\phi N_{cbg} = \phi (A_{Nc}/A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq. D-5) |      |                      |                      |            |

| $A_{Nc}$ (in <sup>2</sup> ) | $A_{Nco}$ (in <sup>2</sup> ) | $\Psi_{ec,N}$ | $\Psi_{ed,N}$ | $\Psi_{c,N}$ | $arPsi_{cp,N}$ | $N_b$ (lb) | $\phi$ | $\phi N_{cbg}$ (lb) |
|-----------------------------|------------------------------|---------------|---------------|--------------|----------------|------------|--------|---------------------|
| 314.72                      | 256.00                       | 1.000         | 0.865         | 1.00         | 1.000          | 10469      | 0.65   | 7233                |

#### 6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$ 

| τ <sub>k,cr</sub> (psi)        | <b>f</b> <sub>short-term</sub>                | K <sub>sat</sub>               | τ <sub>k,cr</sub> (psi)       |                |                           |              |        |                    |
|--------------------------------|-----------------------------------------------|--------------------------------|-------------------------------|----------------|---------------------------|--------------|--------|--------------------|
| 1035                           | 1.00                                          | 1.00                           | 1035                          |                |                           |              |        |                    |
| $N_{a0} = \tau_{k,cr} \pi d_a$ | hef (Eq. D-16f)                               |                                |                               |                |                           |              |        |                    |
| $\tau_{k,cr}$ (psi)            | d <sub>a</sub> (in)                           | h <sub>ef</sub> (in)           | N <sub>a0</sub> (lb)          |                |                           |              |        |                    |
| 1035                           | 0.50                                          | 6.000                          | 9755                          |                |                           |              |        |                    |
| $\phi N_{ag} = \phi (A_{Na})$  | $_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ $\Psi_{g}$ | ,Na $\Psi_{ec,Na}\Psi_{p,Na}N$ | l <sub>a0</sub> (Sec. D.4.1 & | Eq. D-16b)     |                           |              |        |                    |
| $A_{Na}$ (in <sup>2</sup> )    | $A_{Na0}$ (in <sup>2</sup> )                  | $\Psi_{\sf ed,Na}$             | $arPsi_{g,Na}$                | $\Psi_{ec,Na}$ | $arPsi_{ m 	extsf{p},Na}$ | $N_{a0}(lb)$ | $\phi$ | $\phi N_{ag}$ (lb) |
| 177.03                         | 109.66                                        | 0.952                          | 1.021                         | 1.000          | 1.000                     | 9755         | 0.55   | 8418               |



| Company:  | Schletter, Inc.              | Date: | 12/10/2015 |
|-----------|------------------------------|-------|------------|
| Engineer: | HCV                          | Page: | 4/5        |
| Project:  | Standard PVMini - Worst Case |       |            |
| Address:  |                              |       |            |
| Phone:    |                              |       |            |
| E-mail:   |                              |       |            |

### 8. Steel Strength of Anchor in Shear (Sec. D.6.1)

| $V_{sa}$ (lb) | $\phi_{	extit{grout}}$ | $\phi$ | $\phi_{	extit{grout}} \phi V_{	ext{sa}}$ (lb) |  |
|---------------|------------------------|--------|-----------------------------------------------|--|
| 4855          | 1.0                    | 0.65   | 3156                                          |  |

### 9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

### Shear perpendicular to edge in x-direction:

| $V_{bx} = 7(I_e/a$          | $(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}C_{a1}^{1.5}$ | <sup>5</sup> (Eq. D-24)      |                 |              |               |        |                     |
|-----------------------------|-----------------------------------------------------|------------------------------|-----------------|--------------|---------------|--------|---------------------|
| le (in)                     | da (in)                                             | λ                            | f'c (psi)       | Ca1 (in)     | $V_{bx}$ (lb) |        |                     |
| 4.00                        | 0.50                                                | 1.00                         | 2500            | 12.00        | 15593         |        |                     |
| $\phi V_{cbx} = \phi (A_1)$ | $_{/c}$ / A $_{Vco}$ ) $\Psi_{ed,V}$ $\Psi_{c,}$    | $_{V}\Psi_{h,V}V_{bx}$ (Sec. | D.4.1 & Eq. D-2 | 1)           |               |        |                     |
| Avc (in <sup>2</sup> )      | Avco (in <sup>2</sup> )                             | $\Psi_{ed,V}$                | $\Psi_{c,V}$    | $\Psi_{h,V}$ | $V_{bx}$ (lb) | $\phi$ | $\phi V_{cbx}$ (lb) |
| 288.00                      | 648.00                                              | 0.833                        | 1.000           | 1.000        | 15593         | 0.70   | 4043                |

#### Shear parallel to edge in x-direction:

| •                           | -                                                         |                                          |                                |                      |               |               |        |                      |
|-----------------------------|-----------------------------------------------------------|------------------------------------------|--------------------------------|----------------------|---------------|---------------|--------|----------------------|
| $V_{by} = 7(I_e/a$          | $(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$ | <sup>5</sup> (Eq. D-24)                  |                                |                      |               |               |        |                      |
| I <sub>e</sub> (in)         | d <sub>a</sub> (in)                                       | λ                                        | $f_c'$ (psi)                   | c <sub>a1</sub> (in) | $V_{by}$ (lb) |               |        |                      |
| 4.00                        | 0.50                                                      | 1.00                                     | 2500                           | 8.00                 | 8488          |               |        |                      |
| $\phi V_{cbgx} = \phi (2$   | $2)(A_{Vc}/A_{Vco})\Psi_{ec}$                             | v $\Psi_{ed, V} \Psi_{c, V} \Psi_{h, V}$ | V <sub>by</sub> (Sec. D.4.1, [ | D.6.2.1(c) & Eq.     | D-22)         |               |        |                      |
| $A_{Vc}$ (in <sup>2</sup> ) | $A_{Vco}$ (in <sup>2</sup> )                              | $\Psi_{ec,V}$                            | $\Psi_{ed,V}$                  | $\Psi_{c,V}$         | $arPsi_{h,V}$ | $V_{by}$ (lb) | $\phi$ | $\phi V_{cbgx}$ (lb) |
| 284.04                      | 288.00                                                    | 1.000                                    | 1.000                          | 1.000                | 1.000         | 8488          | 0.70   | 11720                |

#### 10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

| $\phi V_{\textit{cpg}} = \phi \min  k_{\textit{cp}} N_{\textit{ag}} \; ; \; k_{\textit{cp}} N_{\textit{cbg}}  = \phi \min  k_{\textit{cp}} (A_{\textit{Na}} / A_{\textit{Na0}}) \; \Psi_{\textit{ed},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; N_{\textit{a0}} \; ; \; k_{\textit{cp}} (A_{\textit{Nc}} / A_{\textit{Nco}}) \; \Psi_{\textit{ed},\textit{N}} \; \Psi_{\textit{cp},\textit{N}} N_{\textit{b}}  \; (\text{Eq. D-30b})$ |                             |                              |                    |                  |                |                     |                      |         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------|--------------------|------------------|----------------|---------------------|----------------------|---------|
| Kcp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $A_{Na}$ (in <sup>2</sup> ) | $A_{Na0}$ (in <sup>2</sup> ) | $\Psi_{\sf ed,Na}$ | $\varPsi_{g,Na}$ | $\Psi_{ec,Na}$ | $\Psi_{ m p,Na}$    | N <sub>a0</sub> (lb) | Na (lb) |
| 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 177.03                      | 109.66                       | 0.952              | 1.021            | 1.000          | 1.000               | 9755                 | 15305   |
| Anc (in²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Anco (in²)                  | $\Psi_{ec,N}$                | $\Psi_{ed,N}$      | $\Psi_{c,N}$     | $arPsi_{cp,N}$ | N <sub>b</sub> (lb) | Ncb (lb)             | $\phi$  |
| 314.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 256.00                      | 1.000                        | 0.865              | 1.000            | 1.000          | 10469               | 11128                | 0.70    |

φV<sub>cpg</sub> (lb) 15580

# 11. Results

#### Interaction of Tensile and Shear Forces (Sec. D.7)

| Tension                | Factored Load, N <sub>ua</sub> (lb) | Design Strength, øNn (lb) | Ratio         | Status         |
|------------------------|-------------------------------------|---------------------------|---------------|----------------|
| Steel                  | 733                                 | 6071                      | 0.12          | Pass           |
| Concrete breakout      | 1465                                | 7233                      | 0.20          | Pass (Governs) |
| Adhesive               | 1465                                | 8418                      | 0.17          | Pass           |
| Shear                  | Factored Load, V <sub>ua</sub> (lb) | Design Strength, øVn (lb) | Ratio         | Status         |
| Steel                  | 500                                 | 3156                      | 0.16          | Pass           |
| T Concrete breakout x+ | 999                                 | 4043                      | 0.25          | Pass (Governs) |
| Concrete breakout y-   | 999                                 | 11720                     | 0.09          | Pass (Governs) |
| Pryout                 | 999                                 | 15580                     | 0.06          | Pass           |
| Interaction check Nua/ | φNn Vua/φVn                         | Combined Rati             | o Permissible | Status         |



| Company:  | Schletter, Inc.              | Date: | 12/10/2015 |
|-----------|------------------------------|-------|------------|
| Engineer: | HCV                          | Page: | 5/5        |
| Project:  | Standard PVMini - Worst Case |       |            |
| Address:  |                              |       |            |
| Phone:    |                              |       |            |
| E-mail:   |                              |       |            |

Sec. D.7.3 0.20 0.25 45.0 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

#### 12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.