Learning Outcomes – Part 1

At the end of this module you should be able to....

- Represent 3D molecules using appropriate 2D representations
- Determine the energetically favourable conformation of butanes, cyclohexane derivatives, decalins.
- Explain the effect of conformational equilibrium on reactivity.

Reading assignment: Revision of CIP rules, R/S and E/Z descriptors.

Part 2: MO Theory Applications to Pericyclic Reactions and Photochemistry

Who are these chemists?

Hint – you will hear about them in the next few lectures.

Learning Outcomes – Part 2

At the end of this module you should be able to....

- Construct π—molecular orbitals for conjugated polyenes
- Explain the reactivity of molecules and reaction outcomes based on MO Theory
- Predict the stereochemical outcome of the pericyclic reaction under the given reaction condition

Molecular Orbital Theory

Molecular Bonds – formed when two atoms are brought from infinity close to each other

Molecular orbitals - obtained by combining the atomic orbitals (AO) on the atoms

How do the AOs combine?

Think of the wave nature of electrons

Types of Orbital Mixing

Column A

Constructive
Bonding MO

Column B

Destructive
Antibonding MO

More on σ Orbitals

- No nodes along the internuclear axis (Ignore AO nodes e.g. of p orbital)
- Symmetric along the axis

Types of Orbitals – Ethylene (C=C)

Huckel – The sigma framework can be neglected!!

Ethylene – Simplified MO picture

The σ – framework neglected as it is in the nodal plane of the p atomic orbitals

Qualitative Picture – Hückel's MO

Applying to Larger Conjugated Systems

Molecular Orbital Picture

Let us look at the π -bonding interactions closely The σ – framework neglected as it is in the nodal plane

Qualitative Picture – Hückel's MO

MO Construction Acyclic Conjugated Polyenes

When n is even – n/2 bonding and n/2 antibonding MOs exist When n is odd – (n-1)/2 bonding, 1 non-bonding and (n-1)/2 antibonding MOs exist

Activity Draw the MOs for butadiene

Butadiene MOs

HOMO

Write the wave equation for each MO

$$\Psi_4 = c_1 \varphi_1 - c_2 \varphi_2 + c_3 \varphi_3 - c_4 \varphi_4$$

$$--$$
 Ψ₃ = c₁φ₁ - c₂φ₂ - c₃φ₃ + c₄φ₄
LUMO

$$\Psi_2 = c_1 \phi_1 + c_2 \phi_2 - c_3 \phi_3 - c_4 \phi_4$$

$$\Psi_1 = c_1 \phi_1 + c_2 \phi_2 + c_3 \phi_3 + c_4 \phi_4$$

MOs of Larger Conjugated Polyenes

- The lowest energy orbital is always symmetric with respect to the principal mirror plane
- The energy of the MO increases as the no: of nodes increases

```
Eg. \psi_1 - 0 nodes \psi_2 - 1 node \psi_n - n-1 nodes Again: Remember to ignore the nodes of the AO
```

When you draw MOs place the nodes symmetrically