

Representation of Signed Numbers

- Positive number representation same in most systems
- Major differences are in how negative numbers are represented
- · Three major schemes:
 - sign and magnitude
 - ones complement
 - twos complement

Negative Number Representation

Assumptions:

- we'll assume a 4 bit machine word
- 16 different values can be represented
- roughly half are positive, half are negative
- sign bit is the MSB; 0 = plus, 1 = minus

Representation of Negative Numbers

(a) Unsigned number

Sign-Magnitude Representation

High order bit is sign: 0 = positive (or zero), 1 = negative

Three low order bits is the magnitude: 0 (000) thru 7 (111)

Number range for n bits = $\pm 2^{n-1}$ - 1

Two representations for 0

The major disadvantage is that we need separate circuits to both add and subtract

Number magnitudes need to be compared to get the right result


```
Example:
```

Subtract 1 from 1000 (binary sys.)

- 1000 (8)
- 1 (1)
- 1- Complete the subtrahend by zeros to be the same digits like the minuend $1 \rightarrow 0001\,$
- 2 Get the ones complement for the subtrahend $0001 \rightarrow 1110\,$
- 3 Add the ones complement to minuend

1110

1000

10110

ightharpoonupIf there is a carry then add 1 and neglect the carry ...then 10110 ightharpoonup 0111(7) If there is no carry then get the 1's complement and add (-) it will be negative

Another Example:

```
1010100 (84)
```

```
1000011 (67)
```

- Get the ones complement for the subtrahend $1000011 \rightarrow 0111100$

- Add the ones complement to minuend

1010100

0111100

1 0 0 1 0 0 0 0

- If there is a carry then add 1 and neglect the carry
- •then $001000 \rightarrow 001001 (17)$

Another Example:

```
010011 ( 19 )
```

010101 (21)

– Get the ones complement for the subtrahend $010101 \rightarrow 101010$

- Add the ones complement to minuend

010011

101010

111101

• No carry ... then get the 1's complement and put (-) $111101 \rightarrow 000010 \rightarrow -000010$ (-2)

Another Example:

```
1000011 (67)
```

```
1010100 (84)
```

- Get the ones complement for the subtrahend $1010100 \rightarrow 0101011$

- Add the ones complement to minuend

1000011

0101011

1101110

• No carry ... then get the 1's complement and put (-) 1101110 \rightarrow 0010001 \rightarrow - 0010001 (- 17)

Twos Complement

- Most common scheme of representing negative numbers in computers
- Affords natural arithmetic (no special rules!)
- To represent a negative number in 2's complement notation...
 - 1. Decide upon the number of bits (n)
 - 2. Find the binary representation of the +ve value in *n*-bits
 - 3. Flip all the bits (change 1's to 0's and vice versa)
 - 4. Add 1

Shortcut ...start from right put each zero the same and the first one then change each zero by one and each one by zero

 $0110100 \rightarrow 1001100$

Twos Complement Example

- Represent -5 in binary using 2's complement notation
 - 1. Decide on the number of bits

6 (for example)

+5

2. Find the binary representation of the +ve value in 6 bits

000101

3. Flip all the bits

111010

010

4. Add 1

Sign Bit

- In 2's complement notation, the MSB is the sign bit (as with sign-magnitude notation)
 - 0 = positive value
 - 1 = negative value

"Complementary" Notation

- Conversions between positive and negative numbers are easy
- For binary (base 2)...

Example

Exercise - 2's C conversions

- Answer:

 1100011 is a 7-bit binary number in 2's complement notation. What is the decimal value?

- Answer:____

Skip answer

Answer

Exercise - 2's C conversions

Answer

- What is -20 expressed as an 8-bit binary number in 2's complement notation?
 - Answer: 11101100
- 1100011 is a 7-bit binary number in 2's complement notation. What is the decimal value?
 - Answer: -29

Range for 2's Complement

 For example, 6-bit 2's complement notation

Negative, sign bit = 1

Zero or positive, sign bit = 0

One's Complement subtraction

01010 (10)

-

00111 (7)

One's complement for subtrahend then add 01010

+

11000

100010

Neglect carry and add 1 00011 (+3)

Two's Complement subtraction 01010 (10)

-

00111 (7)

Two's complement for subtrahend then add

01010

+

11001

100011

Neglect carry 00011 (+3)

One's Complement subtraction

00111 (7)

_

01010 (10)

One's complement for subtrahend then add

00111

+

10101

11100

N0 carry and get one's complement again...put - -00011 (-3)

Two's Complement subtraction

00111 (7)

-

01010 (10)

Two's complement for subtrahend then add

auu 00111

0011

+

10110

11101

No carry Two's complement again

- 00011 (-3)

Ranges (revisited)

	Binary							
No. of bits	Unsigned		Sign-magnitude		2's complement			
	Min	Max	Min	Max	Min	Max		
1	0	1						
2	0	3	-1	1	-2	1		
3	0	7	-3	3	-4	3		
4	0	15	-7	7	-8	7		
5	0	31	-15	15	-16	15		
6	0	63	-31	31	-32	31		
Etc.								

In General (revisited)

No. of bits	Binary							
	Unsigned		Sign-mag	nitude	2's complement			
	Min	Max	Min	Max	Min	Max		
n	0	2^n - 1	$-(2^{n-1}-1)$	2^{n-1} -1	-2^{n-1}	$2^{n-1} - 1$		

2's Complement Addition

- Easy
- No special rules
- · Just add

What is -5 plus +5?

· Zero, of course, but let's see

Sign-magnitude

Twos-complement

```
-5: 11111011
+5: +00000101
00000000
```


2's Complement Subtraction

- Easy
- No special rules
- Just subtract, well ... actually ... just add!

What is 10 subtract 3?

- 7, of course, but...
- Let's do it (we'll use 6-bit values)

What is 10 subtract -3?

$$(-(-3)) = 3$$

- 13, of course, but...
- Let's do it (we'll use 6-bit values)

$$10 - (-3) = 10 + (-(-3)) = 13$$

-3: 111101

Thank You

