	Page No. Date:
\Diamond	VECTOR Part = II
Vact	, the congress
	· The tog length shows the magnitude.
V	. The Arrow shows the direction.
	Tail head
→	The length of the line shows its magnitude (size) and the arrowhead paint is the Direction.
→ **	force and relocity both are rector.
-)	Addition of Vector-: The line from the tail of 9 to the head of b is the Vector q+b.
	9+b = b+9 doesn't matter which order we add them.

	Page No. Date:
٦	à Subtraction of Lector: Vector '-9' is the opposite of '+9'.
•	This means that vector 9 and vector -9 has the same magnitude in the opposite disections:
	9 -9
→ ·	So first we reverse the direction of the vector from quother
7	Then add them as rywel:
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
*	magnitude of 9 xector-: 191
.1-	$191 = \sqrt{(x^2 + y^2)}$
*	multiplying a vector by a scalar value:
	m = 2 m

	Page No. Date:
*	multiplying Vector by Vector product
	There is are two ways -:
(i)	Dot Product -: 9.6
(<i>i</i>)	9.b = 191 x 1b1 x (os(0)) Where 191 = magnitude of vector 9 1b1 = Magnitude of vector b E = Angle between 9 and b
(ii)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
36.	$ \begin{array}{l} (E_{8} - s_{5}) \\ A = 2i - 3j + 7K \\ B = -4i + 2j - 4K \\ A \cdot B = (2i - 3j + 7K) $

Page No. Date:	
9xb	
2) Gross Product -: The cross Product	
9xb of two rectory	
is another vector, that is at	_
is another vector, that is at angles to both.	
1 9xb	
M q	
A = 9i + bi + ck	
$B = 9i + bj + ck$ $B = \alpha i + 3j + 2k$	
They,	
1 - +	
$A \times B = 1$ $A \times B = 1$	
2 y Z Solv saml ag	
AXB = i(bz-cy)-j(qz-cx)+ K(qy-bx)	
	_
$\mathbf{P} \cdot \mathbf{R} = \mathbf{S}\mathbf{i} + 6\mathbf{j} + 2\mathbf{R}$	
$\vec{z} = \vec{z}i + 6\vec{j} + 2\vec{k}$ $\vec{z} = \vec{z}i + 6\vec{j} + 2\vec{k}$ $\vec{z} = \vec{z} + \vec{j} + \vec{k}$ $\vec{z} = \vec{z} + \vec{j} + \vec{k}$	
	_
$\vec{x} \times \vec{y} = i(6-2) - j(5-2) + R(5-6)$	
7x7 = 4i-3j-R	

Page No.	Page No.	
Date:		

A Vector Projection:

Projection of 5 on $\vec{q} = \frac{\vec{q} \cdot \vec{b}}{|\vec{q}|}$ Projection of \vec{q} on $\vec{b} = \frac{\vec{b} \cdot \vec{q}}{|\vec{b}|}$ Projection of \vec{q} on $\vec{b} = \frac{\vec{b} \cdot \vec{q}}{|\vec{b}|}$

Projection of 5 on 3 = (9.6) b

