পাইথনে ডেটা স্ট্রাকচার ও অ্যালগরিদম

পাইথনে ডেটা স্ট্রাকচার ও অ্যালগরিদম

জাকির হোসাইন

উৎসর্গ

আবদুল মান্নান স্যারকে

সূচি

ভূমিকা	77	
সংক্ষেপে পাইথন পরিচিতি	20	
পাইথন ইঙ্গটল এবং ব্যবহার	১৩	
কমেন্ট	১৩	
ইন্ডেনটেশন	\$8	
ভ্যারিয়েবল	15	
কাস্টিং	১৬	
ডেটা ইনপুট	১৬	
অ্যারিথমেটিক অপারেটর	٥٤	
কম্পারিজন অপারেটর	\$ b	
লজিক্যাল অপারেটর	১৯	
If স্টেটমেন্ট	২১	
while লুপ	২১	
for লুপ	২২	
লিস্ট 	২২	
ফাংশন	২ 8	
পাইথন স্ট্যান্ডার্ড লাইব্রেরি	২৫	
অ্যালগরিদম, কমপ্লেক্সিটি অ্যানালাইসিস ও নোটেশন	২৬	
অ্যালগরিদম কি	২৬	
সুডোকোড	২৮	

কমপ্লেক্সিটি অ্যানালাইসিস	२४
ইসট্রাকশন কাউন্টিং	২৯
Best-case analysis	೨೦
Worst-case analysis	೨೦
Asymptotic Notation	৩১
Tight Bound	৩২
Big O Notation	৩২
বিভিন্ন ধরনের কমপ্লেক্সিটি	৩২
ডেটা স্ট্র্যাকচার পরিচিতি	৩৫
ডেটা স্ট্রাকচার	৩৫
লিনিয়ার ডেটা স্ট্রাকচার	৩৫
নন-লিনিয়ার ডেটা স্ট্রাকচার	৩ ৭
ডেটা স্ট্রাকচারের অপারেশনগুলো	৩৮
স্ট্যাক	80
স্ট্যাক কী	40
পাইথন ইমপ্লিমেন্টেশন	8\$
কিউ	8¢
কিউ	8¢
কিউয়ের অপারেশন	8&
পাইথনে ইমপ্লিমেন্টেশন	8৬
লিঙ্কড লিস্ট	8৯
লিঙ্কড লিস্ট ইমপ্লিমেন্টেশন	৫০
সिঙ্গলি निक्ष७ निञ्छे	99
ডাবলি লিঙ্কড লিস্ট	00
সার্কুলার লিঙ্কড লিস্ট	৫ ٩

গ্রাফ	ሮ ৮
গ্রাফ	৫ ৮
গ্রাফের প্রকারভেদ	৫৯
গ্রাফ রিপ্রেজেন্টেশন	৬১
গ্রাফ ট্রাভার্সাল	৬৭
ব্ৰেডথ ফার্স্ট সার্চ	৬৭
ডেপথ ফার্স্ট সার্চ	૧૨
ট্রি	ዓ ৮
ট্রি ডেটা স্ট্রাকচার	৭৮
ট্রি-এর টারমিনলজি	৭৯
বাইনারি ট্রি	৮৬
ট্রি ট্রার্ভাসাল	b b
প্রি অর্ডার ট্রি ট্রাভার্সাল	৮৮
ইন অর্ডার ট্রি ট্রাভার্সাল	৮৯
পোস্ট অর্ডার ট্রি ট্রাভার্সাল	৯১
গ্রাফ এবং ট্রি-এর মধ্যে পার্থক্য	৯৪
निनिय़ात সার্চ	ን ሬ
লিনিয়ার সার্চের টাইম কমপ্লেক্সিটি	৯৬
পাইথনে লিনিয়ার সার্চ	৯৭
বাইনারি সার্চ	৯৯
পাইথনে বাইনারি সার্চ	১০২
বাইনারি সার্চের টাইম কমপ্লেক্সিটি	५०७
বাবল সর্ট	\$08
বাবল সর্টের টাইম কমপ্লেক্সিটি	১০৬
পাইথনে বাবল সর্ট	४०४

সিলেকশন সর্ট	3 0b
পাইথনে সিলেকশন সর্ট	223
সিলেকশন সর্টের টাইম কমপ্লেক্সিটি	275
রিকারশন	378
রিকার্সিভ অ্যালগরিদম	326
ডিভাইড ও কনকার স্ট্রেটেজি	322
ডিভাইড এবং কনকার স্ট্রেটেজি	۶۷۲
মার্জ সর্ট	> >0
পাইথনে মার্জ সর্ট	355
কুইক সৰ্ট	250
পাইথনে কুইক সর্ট	203
গ্রিডি অ্যালগরিদম	306
কয়েন সমস্যা	306
গ্রিডি এপ্রোচের সুবিধা	200
গ্রিডি এপ্রোচের অসুবিধে	200
ডাইনামিক প্রোগ্রামিং	১৩৮
ডাইনামিক প্রোগ্রামিংয়ের বটম আপ পদ্ধতি	\$8\$
রিকার্শন ও ডাইনামিক প্রোগ্রামিং	384

ভূমিকা

কম্পিউটারের হচ্ছে এমন একটি মানব সৃষ্ট আবিষ্কার যার কাজ সংগৃহীত তথ্যকে প্রক্রিয়াকরণ করে তা আউটপুট হিসেবে প্রদর্শন করা। কম্পিউটার একটি যুগান্তকারী আবিষ্কার হলেও এর নেই কোনো নিজস্ব জ্ঞান। ফলাফল স্বরূপ কম্পিউটারকে সঠিকভাবে পরিচালনা করার জন্য অর্থাৎ তথ্যকে আশানুরূপভাবে প্রক্রিয়াকরণের জন্য পূর্বনির্ধারিত নির্দেশনার প্রয়োজন হয়। পূর্বনির্ধারিত নির্দেশাবলি অনুসরণ করে সংগৃহীত তথ্যের উপর গাণিতিক এবং লজিক্যাল অপারেশন সম্পাদনের মাধ্যমে কম্পিউটার যেকোনো সমস্যা খুব কম সময়ে এবং নির্ভুলভাবে সমাধান করতে সক্ষম। কোনো একটি সমস্যা সমাধানের জন্য পূর্বনির্ধারিত নির্দেশাবলিকেই কম্পিউটার জগতের ভাষায় অ্যালগরিদম বলে। একটি সমস্যার সমধান অনেকগুলো হতে পারে। অর্থাৎ যেকোনো সমস্যা সমাধানের জন্য ভিন্ন ভিন্ন অ্যালগরিদম তৈরি করা সম্ভব। কিন্তু কোন অ্যালগরিদম খুব কম সময় এবং কম মেমরি স্পেইস ব্যবহার করে সমস্যা সমাধান করতে সক্ষম তা নির্নয় করা অত্যন্ত গুরুত্বপূর্ন। কারণ কম্পিউটারে অসীম মেমরি স্পেইস থাকে না। একই সাথে কোনো সমাধান সম্পাদনের জন্য কম্পিউটার যদি অতিরিক্ত সময় ব্যায় করে তাহলে তা কখনো উপযুক্ত সমাধান হিসেবে বিবেচনা করা যায় না। অন্যদিকে অ্যালগরিদম অনুসারে যেহেতু তথ্য প্রক্রিয়াকরণ করা হয় সেহতু তথ্যকে সুশৃঙ্খল ভাবে সাজিয়ে রাখাও খুবই গুরুত্বপূর্ণ। অন্যথায় কম্পিউটার অ্যালগরিদম অনুযায়ি সঠিক সময় সঠিক তথ্য প্রক্রিয়াকরণ করতে ব্যর্থ হবে। তথ্যকে সুশৃঙ্খলভাবে সাজিয়ে রাখার পদ্বতিসমূহ ডেটা স্ট্র্যাকচারে মূল আলোচনা বিষয়।

প্রোগ্রামিংয়ের পাশাপাশি ডেটা স্ট্র্যাকচার এবং অ্যালগরিদমে স্কিল অর্জন করা অনেকটা অবশ্যক। প্রোগ্রামিং সমস্যার সমাধান শিখায় অন্যদিকে

एउ खुराकात वर ब्यानगतिनम्, समस्यात उपयुक्त समाधान निर्नारात সহায়তা করে। ছোট বা বড যেকোনো সফটওয়ার কোম্পানির ইন্টার্ভিউতে ডেটা স্ট্র্যাকচার এবং অ্যালগরিদমের জ্ঞান, প্রোগ্রামিংয়ের স্কিলের তুলোনায় বেশি প্রাধান্য দিয়ে থাকে। আমাদের দৈনন্দিন জীবনের কথাই চিন্তা করি, আমরা সে সকল ব্যাক্তিকেই বেশি প্রাধান্য দিয়ে থাকি যারা কম সময়ে, কম রিসোর্স ব্যবহার করে সেবা প্রদান করতে সক্ষম। ঠিক তেমনি সফটওয়ার কোম্পানিগুলো আবশ্যই এমন কাউকে নিয়োগ করতে চাইবে যে কি না যেকোনো সমস্যার, এমন একটি সমাধান খুঁজে নিতে পারবে যেটির সম্পাদন সময় খুবই কম এবং একই সাথে স্বল্প রিসোর্স ব্যবহার করে। ডেটা স্ট্র্যাকচার এবং অ্যালগরিদমের স্কিল অর্জনের जन्य कारना निर्मिष्ठ প্রোগ্রামিং न्यान्नुस्यरजन প্রয়োজন হয় ना। যেকোনো প্রোগ্রামিং ল্যাঙ্গুয়েজে ব্যাবহার করে ডেটা স্ট্র্যাকচার এবং অ্যালগরিদম স্কিল ডেভেলপ করা সম্ভব। উক্ত বইটিতে পাইথন ল্যাঙ্গুয়েজ ব্যবহার করে ডেটা স্ট্র্যাকচার এবং অ্যালগরিদমের যাবতীয় সকল খুঁটিনাটি উদাহরণসহ বর্ণনা করা হয়েছে। তবে যে কেউ চাইলে অন্যান্যা প্রোগ্রামিং ল্যাঙ্গুয়েজ ব্যবহার করে খুব সহজেই উক্ত বইয়ের উদাহরণগুলো ব্যবহার করে ডেটা স্ট্র্যাকচার এবং অ্যালগরিদম সম্পর্কে পর্যাপ্ত জ্ঞান অর্জন করতে পারবে।

মোঃ শরীফ উদ্দিন

প্রভাষক কম্পিউটার সায়েন্স অ্যান্ড ইঞ্জিনিয়ারিং ইউনিভার্সিটি অব ক্রিয়েটিভ টেকনোলজি চট্টগ্রাম।

অধ্যায় ১

সংক্ষেপে পাইথন পরিচিতি

পাইথন ইন্সটল এবং ব্যবহার

পাইথন প্রোগ্রাম কম্পিউটারে রান করার জন্য পাইথন ইসটল করে নিতে হয়। ইসটলার পাওয়া যাবে python.org/downloads ঠিকানায়। ইসটল করে নেওয়ার পর যেকোনো কোড এডিটর অথবা আইডিই ব্যবহার করে পাইথন প্রোগ্রাম লেখা এবং রান করা যাবে। পাইথন প্রোগ্রাম লেখা এবং রান করার জন্য জনপ্রিয় পাইথন আইডিই হচ্ছে PyCharm। পাইচার্ম পাওয়া যাবে jetbrains.com/pycharm ঠিকানায়।

এছাড়া পাইথন কম্পিউটারে ইন্সটল না করেও অনলাইনে পাইথন প্রোগ্রাম লেখা এবং রান করা যাবে। অনেকগুলো অপশনই রয়েছে। আমি সাজেস্ট করব গুগলের কোল্যাব। colab.research.google.com ঠিকানায় গিয়ে একটা জুপিটার নোট বুক তৈরি করে পাইথন প্রোগ্রাম রান লেখা এবং রান করা যাবে।

কমেন্ট

কোন কোড কী কারণে লেখা হয়েছে, তা লিখে রাখার জন্য প্রোগ্রামিংয়ে কমেন্ট ব্যবহার করা হয়।

পাইথনে এক লাইনের কমেন্ট লেখার জন্য হ্যাস (#) ব্যবহার করা হয়। যেমন:

printing hello world!
print("Hello World!")

একের অধিক লাইনের কমেন্ট লিখতে চাইলে তিনটা ডাবল কোটেশনের মধ্যে কমেন্ট লিখতে হয়।

যেমন:

11 11 11

This is our first Python program.

In this program, we will print Hello World! in the console.

.....

print("Hello World!")

ইভেনটেশন

ইন্ডেন্টেশন হচ্ছে হোয়াইট স্পেস। পাইথনে কোড লেখার সময় এই ইন্ডেন্টেশনগুলো মেনে কোড লিখতে হয়। কিছু কিছু প্রোগ্রামিং ল্যাঙ্গুয়েজে ইন্ডেন্টেশন না মানলেও প্রোগ্রাম ঠিকমতো কাজ করে। কিন্তু পাইথনে ইন্ডেন্টেশন ঠিকমতো না দেওয়া হলে প্রোগ্রামে এরর দিবে। যে আউটপুট পেতে চাচ্ছি, তেমন আউটপুটও পাওয়া যাবে না।

যেমন নিচের কোডগুলো দেখি:

```
5
x = 21
y = 19
if x > y:
    print "x is greater than y"
```

এখানে print "x is grater then y" স্টেটমেন্টের আগে পাঁচটা স্পেস রয়েছে। আমরা যদি এই স্পেসগুলো না দিয়ে প্রোগ্রামটি লিখে রান করি, তাহলে প্রোগ্রামে এরর দিবে। কিন্তু স্পেসগুলো দেওয়ার পর যদি রান করি, তাহলে সুন্দর মতো প্রোগ্রামটা রান হবে।

১৪ ● সংক্ষেপে পাইথন পরিচিতি

ভ্যারিয়েবল

প্রোগ্রামে কোন ডেটা সংরক্ষণ করে রাখার জন্য ভ্যারিয়েবল ব্যবহার করা হয়। যেমন:

```
price = 550
g = 9.8
book_name = 'Data Structure and Algorithms in
Python'
is_leap_year = False
```

উপরের উদাহরণে

- price হচ্ছে একটা ইন্টিজার ভ্যারিয়েবল। ইন্টিজার বলতে পূর্ণসংখ্যাকে বুঝায়। যে সংখ্যায় দশমিক থাকবে না।
- g হচ্ছে ফ্লোটিং পয়েন্ট ভ্যারিয়েবল (দশমিক যুক্ত সংখ্যা)
- book_name হচ্ছে স্ট্রিং ভারিয়েবল (a sequence of characters)। স্ট্রিং ডাবল কোট অথবা সিঙ্গেল কোটের ভেতর লিখতে হয়।
- is_leap_year হচ্ছে বুলিয়ান ভ্যারিয়েবল। বুলিয়ানের ভ্যালু True
 অথবা False হবে।

ভ্যারিয়েবলে মাল্টিপল অ্যাসাইনমেন্ট

এক লাইনে একাদিক ভ্যারিয়েবল কোন ভ্যালু অ্যাসাইন করার জন্য মাল্টিপল অ্যাসাইনমেন্ট ব্যবহার করা হয়।

এখানে:

```
g = 9.8
name = Python
এবং price = 550 অ্যাসাইন হবে।
```

কাস্টিং

এক টাইপের ডেটা অন্য টাইপে পরিবর্তন করাকে বলে কাস্টিং। যেমন:

```
g = 9.8
y = float(11)
print(type(g))
print(type(y))
```

উপরের প্রোগ্রাম রান করলে আউটপুট দিবে:

```
<class 'float'> <class 'float'>
```

এখানে g তে একটা ফ্লোটিং পয়েন্ট ডেটা রেখেছি, তাই ভ্যারিয়েবলটি ফ্লোট ক্লাসে রেখেছে। কিন্তু y-এর মধ্যে একটা ইন্টিজার রেখেছি। ইন্টিজার রাখার পর তাকে কাস্টিং করে বলে দিয়েছি এটিকে ফ্লোটিং পয়েন্ট হিসেবে রাখতে। তাই এটি ফ্লোট হিসেবে রেখেছে।

ডেটা ইনপুট

পাইথনে কোনো ডেটা ইনপুট নেওয়ার জন্য input() ফাংশন ব্যবহার করা হয়। যেমন:

```
name = input('Enter your name:' )
print(name)
```

পাইথনে যে কোন কিছু স্ট্রিং আকারে ইনপুট নেয়। যদি অন্য কোন ডেটা টাইপে ডেটা ইনপুট নিতে হয়, তাহলে তাকে কাস্ট করতে হয়। যেমন:

```
age = int(input('Enter your age:'))
print(age)
```

এখানে আমরা একটা নাম্বার ইনপুট নিব। এ জন্য ইনপুট নেওয়ার পরে ইন্টিজারে এ কাস্ট করে নিতে হয়েছে।

অ্যারিথমেটিক অপারেটর

পাটি গণিতে আমরা যেসব অপারেটর ব্যবহার করেছি যেমন: যোগ, গুন, ভাগ ইত্যাদি। সেগুলোই হচ্ছে অ্যারিথম্যাটিক অপারেটর (Arithmatic Oparetors)। পাইথনের অ্যারিথমেটিক অপারেটরগুলো হচ্ছে:

অপারেটর	ব্যাবহার
+	যোগ
-	বিয়োগ
*	গুণ
/	ভাগ
%	মডুলাস বা রিমাইভার
** (x ** y = x ^y)	এক্সপোনেন্ট বা পাওয়ার।
//	ফ্লোর ডিভিশন

নিচের প্রোগ্রামটি দেখি:

```
x = 15
y = 4
print(x + y)
print(x - y)
print(x * y)
print(x / y)
print(x % y)
print(x * * y)
print(x ** y)
print(x // y)
```

যা আউটপুট দিবে:

3

কম্পারিজন অপারেটর

কোনো কিছুর তুলনা করার জন্য কম্পারিজন (Comparison) অপারেটর ব্যবহার করা হয়। এটাকে রিলেশনাল (Relational) অপারেটরও বলা হয়।

সাধারণত দুইটা ভ্যারিয়েবলের মধ্যে এই তুলনা করা হয়। পাইথন প্রোগ্রামিংয়ের কম্পারিজন অপারেটরগুলো:

অপারেটর	অৰ্থ
==	সমান কি না, যাচাই করা।
!=	অসমান কি না, তা যাচাই করা
<	প্রথমটি ছোট কি না
<=	প্রথমটি ছোট অথবা সমান কি না
>	প্রথমটি বড় কি না
>=	প্রথমটি বড় অথবা সমান কি না

তুলনাগুলো যদি সত্য হয়, থালে True রিটার্ন করবে। যদি সত্য না হয়, তাহলে False রিটার্ন করবে। যেমন:

```
x = 15
y = 4
print(x == 5)
print(x != y)
print(x < y)
print(x <= 15)
print(x > y)
print(x >= y)
```