Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2010

Klau num							
Name:							
Vorname:							
MatrNr.:							
Aufgabe	1	2	3	4	5	6	
max. Punkte	6	6	7	7	8	11	
tats. Punkte							
Gesamtpunkt	zahl:				Note:		

Aufgabe 1 (2+2+2=6 Punkte)

In dieser Aufgabe geht es um Abbildungen; für $n \in \mathbb{N}_+$ gelte wie in der Vorlesung: $\mathbb{G}_n = \{0, 1, \dots, n-1\}.$

- a) Sei $n \ge 1$. Wie viele Abbildungen gibt es von einer n-elementigen Menge in eine 2-elementige Menge, die **nicht** surjektiv sind?
- b) Geben Sie zwei Zahlen $n, m \in \mathbb{N}_+$ an, für die gilt: Es gibt mehr injektive Abbildungen von \mathbb{G}_n nach \mathbb{G}_m als surjektive Abbildungen von \mathbb{G}_m nach \mathbb{G}_n .

Hinweis: Achten Sie auf die Indizes!

c) Geben Sie zwei Zahlen $n, m \in \mathbb{N}_+$ an, für die gilt: Es gibt mehr surjektive Abbildungen von \mathbb{G}_n nach \mathbb{G}_m als injektive Abbildungen von \mathbb{G}_m nach \mathbb{G}_n .

Hinweis: Achten Sie auf die Indizes!

Name:

Matr.-Nr.:

Aufgabe 2 (2+2+2=6 Punkte)

In dieser Aufgabe geht es um Huffman-Codierungen.

Gegeben sei ein Wort über dem Alphabet $A = \{a, b, c, d\}$ mit folgenden **relativen** Häufigkeiten:

wobei $0 \le x \le \frac{1}{4}$ gilt.

- a) Erstellen Sie den Huffman-Baum für $x=\frac{1}{16}.$
- b) Welche Struktur muss der Huffman-Baum haben, damit die Huffman-Codierung eines Wortes $w \in A^+$ mit den in der Tabelle angegebenen relativen Häufigkeiten echt kürzer als 2|w| sein kann?
- c) Für welche $x \in \mathbb{R}$ mit $0 \le x \le \frac{1}{4}$ werden Wörter mit den angegebenen relativen Häufigkeiten auf genau doppelt so lange Wörter über $\{0,1\}$ abgebildet?

Weiterer Platz für Antworten zu Aufgabe 2:

Name: Matr.-Nr.:

Aufgabe 3 (2+2+3 = 7 Punkte)

In dieser Aufgabe geht es um Mealy-Automaten.

a) Sei $X = \{0, 1, 2, 3\}$ und $w = 2103 \in X^*$. Geben Sie ein Wort $w' \in \{0, 1\}^*$ an, so dass $Num_2(w') = Num_4(w)$ gilt.

- b) Geben Sie einen Mealy-Automaten $A=(Z,z_0,X,f,Y,g)$ mit $|Z|\leq 3,X=\{0,1,2,3\}$ und $Y=\{0,1\}$ an, so dass für alle Wörter $w\in X^*$ gilt: $Num_4(w)=Num_2(g^{**}(z_0,w)).$
- c) Geben Sie einen Mealy-Automaten $A=(Z,z_0,X,f,Y,g)$ mit $|Z|\leq 3,X=\{0,1\}$ und $Y=\{0,1,2,3\}$ an, so dass für alle Wörter $w\in X^*$ mit gerader Länge gilt: $Num_2(w)=Num_4(g^{**}(z_0,w))$.

Hinweis 1: $g^{**}(z_0, w)$ ist die Konkatenation aller Ausgaben, die A bei Eingabe von w erzeugt.

Hinweis 2: Wenn Ihre Automaten mehr als drei Zustände haben, bekommen Sie weniger Punkte.

Weiterer Platz für Antworten zu Aufgabe 3:

Name:

Matr.-Nr.:

Aufgabe 4 (4+2+1 = 7 Punkte)

Es sei die kontextfreie Grammatik $G=(\{S\},\{\mathtt{a},\mathtt{b}\},S,\{S\to\mathtt{a} S\mathtt{a}\mid\mathtt{a} S\mid\mathtt{b}\})$ gegeben.

- a) Zeigen Sie durch vollständige Induktion, dass für alle $k \in \mathbb{N}_0$ gilt: Wenn $S \Rightarrow^k w$ gilt, dann auch $\exists n, m \in \mathbb{N}_0 : n \geq m \land w \in \{a^n S a^m, a^n b a^m\}$.
- b) Seien $n,m\in\mathbb{N}_0$ mit $n\geq m$ gegeben. Erklären Sie, wie man das Wort a n ba m aus S ableiten kann.
- c) Geben Sie eine mathematische Beschreibung von L(G) an. **Hinweis:** Abwandlungen von $L(G)=\{w\in X^*\mid S\Rightarrow^*w\}$ geben **keine** Punkte!

Weiterer Platz für Antworten zu Aufgabe 4:

Name: Matr.-Nr.:

Aufgabe 5 (2+3+1+2 = 8 Punkte)

Sei G = (V, E) ein gerichteter Graph.

Die Relation $S \subseteq V \times V$ sei gegeben durch $\forall x, y \in V : xSy \iff$ es gibt in Geinen Pfad von x nach y und es gibt in G einen Pfad von y nach x.

Die Relation $R \subseteq V \times V$ sei gegeben durch $\forall x, y \in V : xRy \iff$ es gibt in Geinen Pfad von x nach y.

a) Geben Sie die Relation S für folgenden Graphen G an:

- b) Zeigen Sie, dass S für beliebige gerichtete Graphen G eine Äquivalenzrelation ist.
- c) Für welche Graphen G gibt es nur eine Äquivalenzklasse bezüglich S?
- d) Zeigen Sie: Für alle $x_1, x_2, y_1, y_2 \in V$ gilt: $x_1Sx_2 \wedge y_1Sy_2 \wedge x_1Ry_1 \Rightarrow x_2Ry_2$.

Weiterer Platz für Antworten zu Aufgabe 5:

Name: Matr.-Nr.:

Aufgabe 6 (1+1+1+2+2+2+2 = 11 Punkte)

Gegeben sei die folgende Turingmaschine *T*:

- Zustandsmenge ist $Z = \{z_0, z_1, z_2, z_3, z_4, z_5\}.$
- Anfangszustand ist z_0 .
- Bandalphabet ist $X = \{\Box, a, b\}$.
- Die Arbeitsweise ist wie folgt festgelegt:

	z_0	z_1	z_2	z_3	z_4	z_5
a	$(z_1,\square,1)$	$(z_1,\mathtt{a},1)$	$(z_3,\mathtt{a},-1)$	-	$(z_4,\mathtt{a},-1)$	$(z_5,\mathtt{b},1)$
b	$(z_5,\mathtt{a},1)$	$(z_2,\mathtt{b},1)$	$(z_2,\mathtt{b},1)$	$(z_4,\mathtt{a},-1)$	$(z_4,\mathtt{b},-1)$	$(z_5,\mathtt{a},1)$
	-	-	$(z_3,\square,-1)$	-	$(z_0, \square, 1)$	$(z_5, \mathtt{b}, 1) \ (z_5, \mathtt{a}, 1) \ (z_4, \square, -1)$

(Darstellung als Graph auf der nächsten Seite)

Die Turingmaschine wird im folgenden für Eingaben $w \in \{a^nb^m \mid n, m \in \mathbb{N}_0\}$ verwendet, wobei der Kopf der Turingmaschine anfangs auf dem ersten Zeichen von w stehe (sofern w nicht das leere Wort ist).

- a) Geben Sie die Endkonfiguration der Turingmaschine für die Eingabe $w=\mathtt{aaabb}$ an.
- b) Die Eingabe sei w = aaabbbbb. Geben Sie die Bandbeschriftung an, wenn T das erste Mal von Zustand z_5 in den Zustand z_4 übergeht.
- c) Beschreiben Sie, was T macht, wenn T sich im Zustand z_4 befindet (bis sich der Zustand von T ändert).
- d) Seien $n, m \in \mathbb{N}_0$ mit $n \ge m$ und die Eingabe $w = a^n b^m$. Welches Wort steht am Ende der Berechnung auf dem Band?
- e) Seien $n, m \in \mathbb{N}_0$ mit n < m und die Eingabe $w = \mathtt{a}^n \mathtt{b}^m$. Welches Wort steht auf dem Band zu dem Zeitpunkt, an dem T zum ersten Mal von Zustand z_5 in den Zustand z_4 wechselt?
- f) Seien $n, m \in \mathbb{N}_+$ mit n < m. Geben Sie Zahlen $n', m' \in \mathbb{N}_0$ mit n' + m' < n + m an, so dass gilt:
 - Bei Eingabe von $a^n b^m$ ist am Ende der Berechnung das Band leer \iff Bei Eingabe von $a^{n'} b^{m'}$ ist am Ende der Berechnung das Band leer.
- g) Geben Sie vier verschiedene Paare $(n,m) \in \mathbb{N}_+ \times \mathbb{N}_+$ an, für die gilt: Bei Eingabe von a^nb^m ist am Ende der Berechnung das Band leer.

Weiterer Platz für Antworten zu Aufgabe 6:

Darstellung der Turingmaschine als Graph:

Name: MatrNr.:

Weiterer Platz für Antworten zu Aufgabe 6: