LES SUITES NUMÉRIQUES E04C

EXERCICE N°2 Suite géométrique et formule explicite : départ à 0

- (u_n) est la suite géométrique de premier terme $u_0 = 4$ et de raison q = 2.
- 1) Pour tout entier nature n, exprimer u_{n+1} en fonction de u_n .

Pour $n \in \mathbb{N}$, $u_{n+1} = u_n \times q$, d'où $u_{n+1} = 2u_n$

- 2) Calculer les termes u_1 , u_2 et u_3 .
- $u_1 = u_0 \times q = 4 \times 2 \quad \text{, ainsi} \quad u_1 = 8$
- $u_2 = u_1 \times q = 8 \times 2$, ainsi $u_2 = 16$
- $u_3 = u_2 \times q = 16 \times 2$, ainsi $u_3 = 32$
- 3) Pour tout entier n, exprimer u_n en fonction de n.

Pour $n \in \mathbb{N}$, $u_n = u_0 \times q^n$, d'où $u_n = 4 \times 2^n$

- 4) Donner alors les valeurs de u_{10} , u_{17} et u_{23} .
- $u_{10} = 4 \times 2^{10}$, ainsi $u_{10} = 4096$
- $u_{17} = 4 \times 2^{17}$, ainsi $u_{17} = 524288$
- $u_{23} = 4 \times 2^{23}$, ainsi $u_{23} = 33554432$