# Lab 0 CS 135

By: your friendly CAs :p

#### Scheme Lab Rules

#### 01

No copying/ sharing code.



#### 02

Make sure your code compiles before submitting! Otherwise that's a big fat 0.



#### 03

Only work on extra credit after all regular functions are finished!



#### 04

Make sure to participate while we go over practice problems.

## Practice Problems

Don't just wait for the solution, try them out yourself!

| р | q | ¬q | p∨q | p∧q | $p \rightarrow q$ | p⊕q | $p \leftrightarrow q$ |
|---|---|----|-----|-----|-------------------|-----|-----------------------|
| Т | Т |    |     |     |                   |     |                       |
| Т | F |    |     |     |                   |     |                       |
| F | Т |    |     |     |                   |     |                       |
| F | F |    |     |     |                   |     |                       |

| р | q | ¬q | p∨q | p∧q | $p \rightarrow q$ | p⊕q | $p \leftrightarrow q$ |
|---|---|----|-----|-----|-------------------|-----|-----------------------|
| Т | Т | F  | T   | Т   | T                 | F   | Т                     |
| Т | F | Т  | Т   | F   | F                 | Т   | F                     |
| F | Т | F  | Т   | F   | Т                 | Т   | F                     |
| F | F | Т  | F   | F   | Т                 | F   | Т                     |

| р | q | ¬q | p∨q | p∧¬q | $\neg p \rightarrow q$ | (b ∧ d)→(b∨ d) | (b∨ _ d) → (b ∧ d) |
|---|---|----|-----|------|------------------------|----------------|--------------------|
| Т | Т |    |     |      |                        |                |                    |
| Т | F |    |     |      |                        |                |                    |
| F | Т |    |     |      |                        |                |                    |
| F | F |    |     |      |                        |                |                    |

| р | q | ¬q | p∨q | p∧¬q | $\neg p \rightarrow q$ | (b ∧ d)→(b∨ d) | (b∨ _ d) → (b ∧ d) |
|---|---|----|-----|------|------------------------|----------------|--------------------|
| Т | Т | F  |     | F    | Т                      | F              | Т                  |
| Т | F | Т  | Т   | Т    | Т                      | Т              | Т                  |
| F | Т | F  | Т   | F    | Т                      | F              | Т                  |
| F | F | Т  | F   | F    | F                      | Т              | T                  |

How many rows appear in a truth table for each of these compound propositions?

- a.  $(p \lor q) \land (r \lor \neg t)$
- b.  $a \lor b \lor c \lor d \lor e \lor f$

Challenge: can you provide the truth table for the following compound propositions?

- a.  $\neg (a \lor \neg (b \lor \neg (c \land d)))$
- b.  $((\neg a \lor (a \land b)) \rightarrow (c \land b)$

How many rows appear in a truth table for each of these compound propositions?

- a.  $(p \lor q) \land (r \lor \neg t)$  4 variables so  $2^4 = 16$  rows
- b.  $a \lor b \lor c \lor d \lor e \lor f$  6 variable so  $2^6 = 64$  rows

Challenge: can you provide the truth table for the following compound propositions?

- a. ¬(a∀¬(b∀¬(c∧d)))
- b.  $(\neg a \lor (a \land b)) \rightarrow (c \land b)$

Challenge: can you provide the truth table for the following compound propositions?

\*final answer provided but table should include intermediate steps like c\d, ~(c\d), etc

| а | b | С | d | ¬(a∀¬(b∀¬(c∧d))) |
|---|---|---|---|------------------|
| F | F | F | F | Т                |
| F | F | F | Т | Т                |
| F | F | Т | F | Т                |
| F | F | Т | Т | F                |
| F | Т | F | F | Т                |
| F | Т | F | Т | Т                |
| F | Т | Т | F | Т                |
| F | Τ | Т | Т | Т                |
| Т | F | F | F | F                |
| Т | F | F | Т | F                |
| Т | F | Т | F | F                |
| Т | F | Т | Т | F                |
| Т | Т | F | F | F                |
| Т | Т | F | Т | F                |
| Т | Т | Т | F | F                |
| Т | Т | Т | Т | F                |

Challenge: can you provide the truth table for the following compound propositions?

b.  $((\neg a \lor (a \land b)) \rightarrow (c \land b)$ 

| а | b | С | ((¬a∀(a∧b))→(c∧b) |
|---|---|---|-------------------|
| Т | Т | Т | Т                 |
| Т | Т | F | F                 |
| Т | F | Т | т                 |
| Т | F | F | Т                 |
| F | Т | Т | Т                 |
| F | Т | F | F                 |
| F | F | Т | F                 |
| F | F | F | F                 |

## Logic Translate this argument to propositions using logical connectives. Then solve to see if they're equivalent.

If I attend lectures then I will do well in CS 135 or if I do my homework then I will do well in CS 135.

If I attend lectures and do my homework then I will do well in CS 135.

### Logic

Translate this argument to propositions using logical connectives. Then solve to see if they're equivalent.

(If I attend lectures, then I will do well in CS 135), or (if I do my homework, then I will do well in CS 135).

$$(A \rightarrow W) \vee (H \rightarrow W)$$

Key: attend lectures = A do well in 135 = W do my HW = H (If I attend lectures and do my homework), then I will do well in CS 135.

$$(A \land H) \rightarrow W$$

## Logic

Translate this argument to propositions using logical connectives. Then solve to see if they're equivalent.

```
\equiv (A \wedge H) \Rightarrow W
```

Conditional Identity Law (applied to Commutative Law
Associative Law
Associative Law
Idempotent Law
Associative Law
Commutative Law
Associative Law
De Morgan's Law
Conditional Identity

Key: attend lectures = A do well in 135 = W do my HW = H

## Intro to Racket

No need to understand everything right now, more practice to come in the following weeks!

# Download Dr Racket



https://download.racket-lang.org

Documentation:

https://docs.racket-lang.org/eopl/index.html

## Evaluating List of Expressions

Given the list

 $(f \times y z)$ 

The interpreter will:

- Check if the first atom is a function.
  - $\circ$  (x + y) or (x y z) will throw an error
- Evaluate the remaining atoms in the list
  - If any of the arguments are undefined the interpreter will throw an error
- Apply the function "f" to the values passed through it

## How can we replicate a function?

Given the mathematical function

$$f(x,y) = (x^2 + y^2)/2$$

We can define the function in Racket as



To test your function with x = y = 3 pass in (f 3 3)

#### 5 Laws The Little Schemer

- 1. The Law of Car
  - a. The primitive car is defined only for non-empty lists.
- 2. The Law of Cdr
  - a. The primitive *cdr* is defined only for non-empty lists. The *cdr* of any non-empty list is always another list
- 3. The Law of Cons
  - a. The primitive cons takes two arguments. The second argument to cons must be a list. The result is a list.
- 4. The Law of Null?
  - a. The primitive *null?* Is defined only for lists.
- 5. The Law of Eq?
  - a. The primitive eq? takes two arguments and checks if they are the same object.

## LOGIC Solve the following.

- 1. Show that  $p\rightarrow q$  is equivalent to  $\neg q\rightarrow \neg p$
- 2. Use De Morgan's law to find the negation of each of these statement.
  - a. Elon is rich and happy.
  - b. Attila runs or walks around campus.
  - c. You will not eat that cookie and walk away.

## LOGIC Solve the following.

1. Show that  $p\rightarrow q$  is equivalent to  $\neg q\rightarrow \neg p$ 

```
p \rightarrow q
\neg p \ V \ q conditional identity law
q \ V \ \neg p commutative law
\neg \neg q \ V \ \neg p double negation
\neg q \rightarrow \neg p conditional identity
```

### LOGIC Solve the following.

- 1. Use De Morgan's law to find the negation of each of these statement.
  - a. Elon is rich and happy.

```
Key: is rich = R is happy = H so sentence is R \land F \lnot (R \land H) \equiv \lnotR \lor \lnotH \equiv elon is not rich or not happy
```

b. Attila runs or walks around campus.

```
Key: runs = R walks = W so R \vee W \neg (R \vee W) \equiv \neg R \wedge \neg W \equiv Attila doesn't run and doesn't walk around campus
```

c. You will not eat that cookie and walk away.

```
Key: eat cookie = C walk away = W \neg C \land W

\neg (\neg C \land W) \equiv \neg \neg C \lor \neg W \equiv C \lor \neg W \equiv You will eat

that cookie or you won't walk away
```