(Munkres §24)		<u>Ex</u>	in an intro analysis course, we define R from scratch
<u>Q</u>	is R connected in the analytic topology? why is this tricky?		n shows that R has the LUBP oes not: e.g. {x in Q x^2 < 2} has no LUB
last time, showed: Q as a subspace of R is disconnected, even though it is dense in R (i.e. Cl_R(Q) = R)		the LUBP is not enough to prove R is connected: why?	
any proof that R is connected must use some fact about R that fails for Q		<u>Ex</u>	if X sub R finite and $ X \ge 2$ then X disconnected but has the LUBP
<u>Df</u>	given a set X with a total order < it has the least upper bound property iff every subset of X bounded above has a least upper bound (= sup)	<u>Df</u> 1) 2)	a set X with a total order < is called a linear continuum iff it has the LUBP for all x < y in X, there is z s.t. x < z < y

thus R is a linear continuum

Thm R is connected in the analytic topology

Pf suppose U, V form a separation of R pick a in U and b in V

WLOG we can assume a < b

let A = [a, b] cap U and B = [a, b] cap V
then A, B form a separation of [a, b]
 in its subspace top

but A is bounded above by b so by the LUBP, sup A exists and is in [a, b]

remains to show 1) sup A notin B 2) sup A notin A

1) assume sup A in B then sup A > a: else A = \emptyset

but B is open in [a, b], so (sup A $-\delta$, sup A] sub B for some $\delta > 0$

but then, sup A – ϵ is a smaller upper bound for A whenever 0 < ϵ ≤ δ

2) assume sup A in A then sup A < b: else, B = \emptyset

but A is open in [a, b], so [sup A, sup + δ) sub A for some $\delta > 0$

but then sup A + ϵ is an elt of A above sup A whenever 0 < ϵ < δ \square

Rem thm generalizes to any linear continuum in its <u>order topology</u> (we did not define)

for this course, just note:		
the proof still works if we replace R with		
(a, b), (a, b], [a, b), [a, b]		
$(-\infty, b), (-\infty, b], (a, \infty), [a, \infty)$		

Pf of Thm suppose no c in X s.t. $f(c) = \alpha$

then f(X) has a separation: $\{f(x) < \alpha \mid x \text{ in } X\},\$ $\{f(x) > \alpha \mid x \text{ in } X\}$

Thm (Intermediate Value)

but X is connected, so contradiction with lemma

suppose X connected and f : X to R cts wrt the analytic top on R if a, b in X and $f(a) \le \alpha \le f(b)$ then there is some c in X s.t. $f(c) = \alpha$ Moral the connectedness of intervals in R is very well-understood

Idea study connectedness in other spaces by comparing them to intervals in R

Lem if X is connected, f : X to Y cts, then f(X) sub Y is connected

Df for any X and x, y in X a path from x to y is a cts map y : [a, b] to X s.t. y(a) = x and y(b) = y

Pf preimage of separation is a separation

we say X is <u>path-connected</u> iff there is a path between every pair of pts in X

Rem we require a ≤ bbut otherwise a, b can be any numbers

Lem if X is path-connected then X is connected

Pf if $X = \emptyset$, then done else, can fix x in X

for all y in X, pick a path γ_y from x to y then X = bigcup_y $\gamma_y([0, 1])$ each $\gamma_y([0, 1])$ is connected and contains x so X is connected [famous non-example:]

Ex in analytic R^2: consider

S =
$$\{(x, \sin(1/x)) \text{ in } R^2 \mid 0 < x \le 1\}$$

$$A = \{(0, y) \mid -1 \le y \le 1\}$$

$$\dot{S} = S \text{ cup } A = \text{the closure of } S \text{ in } R^2$$

the topologist's sine curve: Š in its subspace top.

not hard: S, A are path-connected

claim: Š is not

sketch: fix a in A and s in S suppose γ : [0, 1] to Š a path from a to s

claim there is a largest t_0 in [0, 1] s.t. $\gamma(t_0)$ in A: A is closed in R, hence in Š so $\gamma^{-1}(A)$ is closed in [0, 1] so $\gamma^{-1}(A)$ is its own closure so it contains its sup

so for all t in (t_0, 1], have $\gamma(t)$ in S let (t_n)_n be a decreasing seq converging to t_0 for all n: pick $0 < x_n < x\text{-coord}(\gamma(t_n))$ s.t. $\sin(1/x_n) = (-1)^n$ by IVT: $x\text{-coord}(\gamma(t_0)) < x_n < x\text{-coord}(\gamma(t_n))$ means there is t'_n in [t_0, t_n] s.t. $\gamma(t'_n) = x_n$

(Munkres §25)

Lem for any X, the following are equiv. rel's:
1) x ~ y iff there is a connected subspace of X that contains both x and y
2) x ↔ y iff there is a path between x and y in X

Pf transitivity for 1): if x, y in A & y, z in B, then A cap B ni y transitivity for 2): [Munkres 18.3:]

Pasting Lem let $Y = Y_1 \text{ cup } Y_2$ f i: Y i to X for i = 1, 2

if f_1 , f_2 cts and $f_1(x) = f_2(x)$ on Y_1 cap Y_2 then f: Y to X def by $f|_{Y_i} = f_i$ is cts

<u>Pf</u> boring

Df the connected components of X are the equiv. classes under ~ the path components of X are the equiv. classes under ↔

Ex with some work, we can show:

S and A are the conn. components of Š, and also, its path components