

MCMC: algorithmes avancés

Langevin Dynamics

1. Dirige la suite vers les régions à haute densité en explorant l'espace

2. Si on enlève le terme du gradient, on retrouve l'étape d'exploration de Metropolis

Unadjusted Langevin Algorithm (ULA)

Interpréter cette suite. Quel est le lien avec Metropolis?

Pas d'étape de rejet: risque de non-convergence due aux erreurs de discrétisation

Metropolis Adjusted Langevin Algorithm (MALA)

Soit f une densité de probabilité et $q(y|x) \propto \exp(-\frac{1}{4\varepsilon}||y-x-\varepsilon\nabla\log f(x)||^2)$. On suppose que X_n est déja généré. X_{n+1} est défini par:

- 1. Générer $y = X_n + \varepsilon \nabla \log f(X_n) + \mathcal{N}(0, 2\varepsilon)$.
- 2. Générer $u \sim \mathcal{U}([0,1])$.
- 3. Si $u < \min(1, \frac{f(y)q(X_n|y)}{f(X_n)g(y|X_n)})$ alors $X_{n+1} = y$, sinon $X_{n+1} = X_n$.

La chaîne $(X_n)_n$ obtenue admet une distribution stationnaire donnée par la densité f.

Unadjusted Langevin Algorithm (ULA)

$$X_{n+1} = X_n + \varepsilon \nabla \log (f(X_n)) + \sqrt{2\varepsilon} \xi_n \qquad \xi_n \sim \mathcal{N}(0, 1)$$

Interpréter cette suite. Quel est le lien avec Metropolis ?

- 1. Dirige la suite vers les régions à haute densité en explorant l'espace
- 2. Si on enlève le terme du gradient, on retrouve l'étape d'exploration de Metropolis Pas d'étape de rejet: risque de non-convergence due aux erreurs de discrétisation

Metropolis Adjusted Langevin Algorithm (MALA)

Soit f une densité de probabilité et $q(y|x) \propto \exp(-\frac{1}{4\varepsilon}||y-x-\varepsilon\nabla\log f(x)||^2)$. On suppose que X_n est déja généré. X_{n+1} est défini par:

- 1. Générer $y = X_n + \varepsilon \nabla \log f(X_n) + \mathcal{N}(0, 2\varepsilon)$.
- 2. Générer $u \sim \mathcal{U}([0,1])$.
- 3. Si $u < \min(1, \frac{f(y)q(X_n|y)}{f(X_n)q(y|X_n)})$ alors $X_{n+1} = y$, sinon $X_{n+1} = X_n$.

La chaîne $(X_n)_n$ obtenue admet une distribution stationnaire donnée par la densité f.

- 1. Pourquoi Monte-Carlo ? (Exemple de modèle hiérarchique)
- 2. Introduction à la méthode Monte-Carlo (historique, PRNG)
- 3. Algorithmes de simulation i.i.d (PRNG, transformation, rejet)
- 4. Méthodes MCMC (Gibbs, Metropolis)
- 5. Diagonstics de convergence MCMC
- 6. Méthodes MCMC avancées (Langevin, HMC, NUTS)

Metropolis vs MALA

