## 5.5: The Substitution Rule

The antiderivative of  $f'(g(x)) \cdot g'(x)$  is  $\int f'(g(x)) \cdot g'(x) dx = f(g(x))$  since, by the chain rule,  $\frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x)$ . We can use this fact to evaluate integrals such as

$$\int 2x\sqrt{1+x^2}\ dx$$

by performing a substitution. That is, if we let  $u = 1 + x^2$ , the the differential du is du = 2xdx, so the integral can be rewritten in terms of u and evaluated

$$\int 2x\sqrt{1+x^2} \ dx = \int \sqrt{1+x^2} \ 2xdx = \int \sqrt{u} \ du$$
$$= \frac{2}{3}u^{3/2} + C = \frac{2}{3}(1+x^2)^{2/3} + C.$$

The Substitution Rule: If u = g(x) is differentiable and f is continuous on the range of u, then

$$\int f(g(x)) \cdot g'(x) \ dx = \int f(u) \ du.$$

Example 1. Find  $\int x^3 \cos(x^4 + 2) dx$ .

Example 2. Evaluate  $\int \sqrt{2x+1} \ dx$ .

Example 3. Find  $\int \frac{x}{1-4x^2} dx$ 

Example 4. Calculate  $\int e^{5x} dx$ 

Example 5. Find  $\int \sqrt{1+x^2} \ x^5 \ dx$ .

Example 6. Calculate  $\int \tan x \ dx$ .

## **Definite Integrals**

The Substitution Rule for Definite Integrals: If u = g(x) is differentiable on [a, b] and f is continuous on the range of u, then

$$\int_{a}^{b} f(g(x)) \cdot g'(x) \ dx = \int_{g(a)}^{g(b)} f(u) \ du$$

Example 7. Evaluate  $\int_0^4 \sqrt{2x+1} \ dx$ .

Example 8. Evaluate  $\int_1^2 \frac{dx}{(3-5x)^2}$ .

Example 9. Calculate  $\int_1^3 \frac{\ln x}{x} dx$ .

## Symmetry

Integrals of Symmetric Functions: If f is continuous on [-a, a], then

(a) If f is even, i.e. f(-x) = f(x), then  $\int_{-a}^{a} f(x) = 2 \int_{0}^{a} f(x) dx$ .

(b) If f is odd, i.e. f(-x) = -f(x), then  $\int_{-a}^{a} f(x) = 0$ .





**Example 10.** Evaluate  $\int_{-2}^{2} (x^6 + 1) dx$  using the fact the  $f(x) = x^6 + 1$  is even.

**Example 11.** Evaluate  $\int_{-1}^{1} \frac{\tan x}{1 + x^2 + x^4} dx$  using the fact the  $f(x) = \frac{\tan x}{1 + x^2 + x^4}$  is odd.