INTRODUCTION À L'AÉRONAUTIQUE AER600

EXERCICES

Module 03 CONCEPTION ET APPLICATIONS

CRITÈRES DE PERFORMANCE

12.1 La vitesse de sortie des gaz d'un *turbojet* est de $u_e = 660$ m/s en configuration statique. Si le débit massique du moteur est de 75 kg/s, quelle serait la poussée totale développée ? Vous pouvez faire l'hypothèse que le jet est à pression atmosphérique et que f est aussi négligeable. Quelle serait la poussée spécifique correspondante ?

Rép. : 49.5 kN, 0.660 kN·s/kg (= 660 N·s/kg)

12.2 On considère le même moteur qu'au no 7.1) mais cette fois en configuration de vol à une vitesse u = 220 m/s. Quelle serait alors la poussée développée, en faisant toujours l'hypothèse que $P_e \approx P_a$ et que f est négligeable ?

Rép.: 33.0 kN

- 12.3 On considère un *turbojet* en configuration statique. Le moteur fonctionne à son régime « maximal » avec un débit massique d'air de 55 kg/s et un ratio de carburant/air de f = 0.021. Dans ces conditions, on sait qu'en sortie de la tuyère l'écoulement est bloqué avec une vitesse de $u_c = 583$ m/s et une pression du jet de $P_c = 236.6$ kPa. On vous demande alors d'évaluer :
 - a) La poussée totale développé si la pression atmosphérique est de P_a = 101.3 kPa et la surface de sortie du jet est de A_7 = 0.1033 m²;
 - b) La poussée spécifique ainsi que la consommation spécifique TSFC du moteur dans ces conditions;
 - c) Le rendement thermique si le pouvoir calorifique du carburant est de $Q_R = 43\,400$ kJ/kg.

Rép.: a) 46.7 kN b) 0.849 kN·s/kg et 0.0247 kg/kN·s c) $\eta_{th} = 0.272$