9 性状的决定与形成

王强

November 13, 2024

南京大学生命科学学院

Outline

9.1 遗传信息解读的中心法则

9.1 遗传信息解读的中心法则

9.1.1 性状决定的分子基础 — 基因主要通过其产物决定性状

信息流是从 DNA 到 RNA 到 蛋白质

蛋白质是表型特征的分子基础

- 1909 年, A. Garrod 尿黑酸症
 - ► 黑色尿(性状) 酶 基因
- 1940 年代, George Beadle 和 Edward Taturm
 - ▶ 一个基因一个酶
 - ▶ 一个基因一条多肽

Table 1. 粗糙脉孢菌 3 种精氨酸依赖型

突变型	生长所需氨基酸
1	精氨酸或瓜氨酸或鸟氨酸
2	精氨酸或瓜氨酸
3	精氨酸

9.1.2 性状决定的分子机制 — 从基因到蛋白质的中心法则

中心法则 (central dogma)

RNA 的结构与功能

- 与 DNA 相比较, 其结构特点:
 - ▶ 单链
 - ▶ 戊糖是核糖
 - ▶ 尿嘧啶代替胸腺嘧啶
- 功能
 - ► 信使 RNA (mRNA)
 - ► 核糖体 RNA (rRNA)
 - ▶ 转运 RNA (tRNA)
 - **.**..

Figure 1. tRNA 结构

遗传密码

- 三联体密码子
- 密码是连续的
- 密码的简并性

Figure 2. 遗传密码表

Figure 3. tRNA 三级结构

(a) Base pairing of one glycine tRNA with three codons due to wobble

(b) Glycine codons and anticodons (written in the 5' → 3' direction)

Glycine mRNA codons: GGU, GGC, GGA, GGG

Glycine tRNA anticodons: ICC, CCC

Figure 4. 摆动 (Wobble)

Figure 5. 阅读框及其重要性

9.1.3 基因的转录与 RNA 的加工

转录 - 从 DNA 到 RNA

- 以 DNA 为模板, 通过 RNA 聚合酶使碱基互补配对合成 RNA 的过程.
- 过程: 转录启始, 延伸和终止.

Figure 6. 基因转录起始

Figure 7. 转录

9.1.4 蛋白质的合成

- 1. tRNA 携带氨基酸
- 2. 核糖体 "阅读" 密码子, 氨基酸连成多肽
 - ▶ 核糖体
 - ▶ 翻译的起始和连接
 - ▶ 翻译的终止

Figure 8. 核糖体

Figure 9. 核糖体中的 tRNA 结合位点

Figure 10. 转录和翻译

Figure 11. 转录和翻译

■ 朊粒与中心法则

- ► 新型克 雅氏病 (nv-CJD), 库鲁病 (Kuru), 牛海绵状脑病 (BSE), 羊摩擦症 (scrapie)
- ► 朊粒 (prion)
- ► PrP
- ► PrP^c, PrP^{sc}