Time Series HW 3

106070020 2021-03-25

Question 3.6

```
#Question 3.6

z<-c(1,0,0.9) # Find the roots of the autoregressive polynomial polyroot(z)
```

```
## [1] 0+1.054093i 0-1.054093i
```

```
par(mfrow=c(1,2))
# ACF plot

ACF=ARMAacf(ar=c(0,-0.9), ma=0,50)
plot(ACF, type='h', xlab="lag", main="ACF of AR(2) model")
abline(h=0)
#correlation plot
P=ARMAacf(ar=c(0,-0.9),lag.max=100)
plot(P, type='l', xlab="lag", main="Correlation of AR(2)model")
```

ACF of AR(2) model

Correlation of AR(2)model

Qusetion 3.7

(a)

```
#(a) x_t + 1.6x_t-1 + .64x_t-2 = w_t
z1<-c(1,1.6,0.64)
polyroot(z1)
```

```
## [1] -1.25-0i -1.25+0i
```

```
# In z1, the roots are real and equal(Z1=Z2=Z0), then rho(h)=Z0^-h*(c1+c2h)
```

Solve for constant

```
#solve for constant

A<-matrix(c(1,0,-1.25,-1.25),2,2,T)

B<-matrix(c(1,-1.6/1.64),2,1)

solve(A,B)
```

```
## [,1]
## [1,] 1.0000000
## [2,] -0.2195122
```

```
# The answer is c1 and c2(constant)
```

plot ACF

```
#plot ACF
ACF1=ARMAacf(ar=c(-1.6,-.64), lag.max=10)
plot(ACF1, type='h', xlab="lag", main="ACF of AR(2)(a) model")
abline(h=0)
```

ACF of AR(2)(a) model

(b)

```
#(b) x_t - .40x_t-1 - .45x_t-2 = w_t
z2<-c(1,-.4,-.45)
polyroot(z2)
```

```
## [1] 1.111111-0i -2.000000+0i
```

```
# In z2, the roots (Z1 and Z2) are real and distinct, so the rho(h)=c1*Z1^-h+c2*Z2^-h
```

solve for constant

```
A<-matrix(c(1.11,-2,1,1),2,2,T)
B<-matrix(c(0.4/0.55,1),2,1)
solve(A,B)
```

```
## [,1]
## [1,] 0.8769366
## [2,] 0.1230634
```

```
# The answer is c1 and c2(constant)
```

plot ACF

```
ACF2=ARMAacf(ar=c(.4,-.45), lag.max=10)
plot(ACF2, type='h', xlab="lag", main="ACF of AR(2)(b) model")
abline(h=0)
```

ACF of AR(2)(b) model

(c)

```
#(c) x_t - 1.2x_t-1 + .85x_t-2 = w_t
z3<-c(1,-1.2,.85)
polyroot(z3)
```

[1] 0.7058824+0.8235294i 0.7058824-0.8235294i

In z3, the two roots (Z1 and Z2) are a complex and conjugate pair, Z1=Z2_bar, then c2=c1_bar(because the rho(h) is real), and $rou(h)=c1*Z1^h+c1_bar^21_bar^h$.

solve for constant

```
Z1<-polyroot(z3)[1]
Z2<-polyroot(z3)[2]
A<-matrix(c(1,1,Z1,Z2),2,2,T)
B<-matrix(c(1,1.2/1.85),2,1)
solve(A,B)</pre>
```

```
## [,1]
## [1,] 0.5+0.034749i
## [2,] 0.5-0.034749i
```

The answer is c1 and c2(constant)

plot ACF

```
ACF3=ARMAacf(ar=c(1.2,.85), lag.max=10)
plot(ACF3, type='h', xlab="lag", main="ACF of AR(2)(c) model")
abline(h=0)
```

ACF of AR(2)(c) model

Qusetion 3.9

lines(ARMA11acf\$lag,acf11)

```
# Generate 100 observation for three models: ARMA(1,1), ARMA(0,1),ARMA(1,0); theta = .9, phi = .6

ARMA11 <- arima.sim(model=list(ar=.6,ma=.9),n=100)

ARMA01 <- arima.sim(model=list(ma=.9),n=100)

# compute sample ACF for all three simulations

ARMA10acf <- acf(ARMA11,plot=F)

ARMA01acf <- acf(ARMA10,plot=F)

ARMA10acf <- acf(ARMA10,plot=F)

# compute theoretical ACFs for all models

# acf11 <- ARMAacf(ar=.6,ma=.9,lag.max=20)

acf01 <- ARMAacf(ma=.9,lag.max=20)

acf10 <- ARMAacf(ar=.6,lag.max=20)

# plot and compare each other

plot(ARMA11acf, main="ARMA 11 ACF comparison")
```

ARMA 11 ACF comparison

Comparison: In the graph1, the theoretical ACF gradually converge to 0, while the sample ARMA 11 ACF still larger th an 0 after the theoretical ACF become near to 0.

plot(ARMA01acf, main="ARMA 01 ACF comparison")
lines(ARMA01acf\$lag,acf01)

ARMA 01 ACF comparison

Comparison: In the graph2, the theoretical ACF quickly converge to 0, while the sample ARMA 01 ACF still larger than 0 after the theoretical ACF become near to 0.

plot(ARMA10acf, main="ARMA 10 ACF comparison")
lines(ARMA10acf\$lag,acf10)

ARMA 10 ACF comparison

Comparison: In the graph3, the theoretical ACF gradually converge to 0, while the sample ARMA 10 ACF still larger th an 0 after the theoretical ACF become near to 0.

```
# compute sample PACF and plot against sample ACF

ARMA11pacf <- pacf(ARMA11,plot=F)

ARMA01pacf <- pacf(ARMA01,plot=F)

ARMA10pacf <- pacf(ARMA10,plot=F)</pre>
```

ACF vs PACF for ARMA11

ACF vs PACF for ARMA01

ACF vs PACF for ARMA10

We can see that the sample PACF for the ARMA11 and MA1 'tail off' around lag 2, where the sample PACF for AR1 cuts of ffafter lag p=1. Similarly, the sample ACF for the ARMA11 and appear to tail off slightly while the MA1 cutts off after lag1. Note however, for AR1/MA1, the tailing off happens early (lag1-2), which makes sense since we had set p=1; q=1.