$12a_{0248} (K12a_{0248})$

 $I_6^u = \langle b+1, a, u^2+u+1 \rangle$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle u^{20} + u^{19} + \dots - 3u^2 + 2b, \ u^{20} + u^{19} + \dots + 2a - 1, \ u^{22} + u^{21} + \dots + u + 1 \rangle \\ I_2^u &= \langle 3.68754 \times 10^{30} u^{61} + 8.39103 \times 10^{30} u^{60} + \dots + 2.19146 \times 10^{31} b - 4.54412 \times 10^{30}, \\ & 5.62366 \times 10^{30} u^{61} + 9.32012 \times 10^{29} u^{60} + \dots + 6.57438 \times 10^{31} a + 1.25939 \times 10^{32}, \ u^{62} + 2u^{61} + \dots + 7u + 3 \\ I_3^u &= \langle -au + b - u, \ a^2 - 2u, \ u^2 - u + 1 \rangle \\ I_4^u &= \langle b + u, \ a, \ u^2 + u + 1 \rangle \\ I_5^u &= \langle -au + b + 1, \ a^2 - 2u, \ u^2 - u + 1 \rangle \end{split}$$

* 6 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 96 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{20} + u^{19} + \dots - 3u^2 + 2b, \ u^{20} + u^{19} + \dots + 2a - 1, \ u^{22} + u^{21} + \dots + u + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{2}u^{20} - \frac{1}{2}u^{19} + \dots - \frac{1}{2}u + \frac{1}{2} \\ -\frac{1}{2}u^{20} - \frac{1}{2}u^{19} + \dots - \frac{1}{2}u^{3} + \frac{3}{2}u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{1}{2}u^{21} + \frac{1}{2}u^{20} + \dots + \frac{1}{2}u^{4} - \frac{5}{2}u^{3} \\ -\frac{1}{2}u^{19} - \frac{1}{2}u^{18} + \dots - \frac{1}{2}u^{2} + \frac{1}{2}u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{1}{2}u^{20} - \frac{1}{2}u^{19} + \dots - \frac{1}{2}u + \frac{1}{2} \\ -\frac{1}{2}u^{20} - \frac{1}{2}u^{19} + \dots - \frac{1}{2}u^{2} + \frac{1}{2}u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1}{2}u^{19} - \frac{1}{2}u^{18} + \dots - \frac{1}{2}u^{2} + \frac{1}{2}u \\ -\frac{1}{2}u^{21} - \frac{1}{2}u^{20} + \dots - \frac{1}{2}u^{2} + \frac{1}{2}u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{2}u^{20} - u^{19} + \dots - 2u - \frac{1}{2} \\ -u^{21} - \frac{3}{2}u^{20} + \dots - 2u^{2} - \frac{1}{2}u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{2}u^{20} - \frac{1}{2}u^{19} + \dots - \frac{1}{2}u + \frac{1}{2} \\ -\frac{1}{2}u^{20} - \frac{1}{2}u^{19} + \dots + \frac{1}{2}u + \frac{1}{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$5u^{21} + u^{20} + 29u^{19} + u^{18} + 79u^{17} - 5u^{16} + 115u^{15} - 19u^{14} + 79u^{13} - 18u^{12} - 5u^{11} - 30u^9 + 8u^8 + 15u^7 - 18u^6 + 37u^5 - 17u^4 + 11u^3 + 1$$

Crossings	u-Polynomials at each crossing
c_1,c_{11}	$u^{22} + 13u^{21} + \dots + 3u + 1$
c_2, c_6, c_8 c_{12}	$u^{22} - u^{21} + \dots - u + 1$
c_3, c_7	$u^{22} + u^{21} + \dots + u + 1$
c_4, c_5, c_9 c_{10}	$u^{22} - 5u^{21} + \dots - 24u + 4$

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$y^{22} - 3y^{21} + \dots + 11y + 1$
c_2, c_6, c_8 c_{12}	$y^{22} + 13y^{21} + \dots + 3y + 1$
c_{3}, c_{7}	$y^{22} - 19y^{21} + \dots + 3y + 1$
c_4, c_5, c_9 c_{10}	$y^{22} + 25y^{21} + \dots - 32y + 16$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.277173 + 1.020170I		
a = -1.65615 - 0.40699I	-7.08694 + 3.87705I	-7.21377 - 4.81561I
b = 0.13433 - 1.51680I		
u = 0.277173 - 1.020170I		
a = -1.65615 + 0.40699I	-7.08694 - 3.87705I	-7.21377 + 4.81561I
b = 0.13433 + 1.51680I		
u = -0.121456 + 0.889759I		
a = -1.029430 - 0.242749I	-2.07127 - 1.48890I	-2.67809 + 4.69847I
b = -0.505192 + 0.384473I		
u = -0.121456 - 0.889759I		
a = -1.029430 + 0.242749I	-2.07127 + 1.48890I	-2.67809 - 4.69847I
b = -0.505192 - 0.384473I		
u = -0.848934 + 0.255974I		
a = 1.72949 - 0.07214I	-8.20167 + 4.95433I	1.91829 - 2.01188I
b = 1.176080 - 0.436448I		
u = -0.848934 - 0.255974I		
a = 1.72949 + 0.07214I	-8.20167 - 4.95433I	1.91829 + 2.01188I
b = 1.176080 + 0.436448I		
u = 0.403077 + 1.151660I		
a = -0.87654 - 1.38792I	-7.80702 + 4.05683I	-5.44929 - 3.62162I
b = 1.59601 - 1.51481I		
u = 0.403077 - 1.151660I		
a = -0.87654 + 1.38792I	-7.80702 - 4.05683I	-5.44929 + 3.62162I
b = 1.59601 + 1.51481I		
u = 0.716845 + 0.261797I		
a = 1.67749 + 0.17960I	-0.28086 - 2.78084I	4.54791 + 3.72037I
b = 0.911783 + 0.513874I		
u = 0.716845 - 0.261797I		
a = 1.67749 - 0.17960I	-0.28086 + 2.78084I	4.54791 - 3.72037I
b = 0.911783 - 0.513874I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.498272 + 1.142550I		
a = -0.43520 + 1.93340I	-3.73649 - 7.94900I	-0.13573 + 6.16396I
b = 2.28341 + 1.52363I		
u = -0.498272 - 1.142550I		
a = -0.43520 - 1.93340I	-3.73649 + 7.94900I	-0.13573 - 6.16396I
b = 2.28341 - 1.52363I		
u = 0.444842 + 0.593309I		
a = 1.42127 + 1.52607I	-4.25955 + 2.40332I	2.42276 - 1.87700I
b = -0.44921 + 1.51322I		
u = 0.444842 - 0.593309I		
a = 1.42127 - 1.52607I	-4.25955 - 2.40332I	2.42276 + 1.87700I
b = -0.44921 - 1.51322I		
u = 0.551692 + 1.163780I		
a = -0.01034 - 1.91326I	-5.50564 + 12.55900I	-1.64021 - 10.10675I
b = 2.50735 - 1.20167I		
u = 0.551692 - 1.163780I		
a = -0.01034 + 1.91326I	-5.50564 - 12.55900I	-1.64021 + 10.10675I
b = 2.50735 + 1.20167I		
u = -0.335392 + 1.264210I		
a = -0.530073 + 0.859819I	-17.5375 - 2.7555I	-7.01676 + 2.91273I
b = 1.47236 + 0.87987I		
u = -0.335392 - 1.264210I		
a = -0.530073 - 0.859819I	-17.5375 + 2.7555I	-7.01676 - 2.91273I
b = 1.47236 - 0.87987I		
u = -0.591533 + 1.189200I		
a = 0.24537 + 1.77352I	-13.6900 - 15.6170I	-3.36409 + 8.79372I
b = 2.54369 + 0.94767I		
u = -0.591533 - 1.189200I		
a = 0.24537 - 1.77352I	-13.6900 + 15.6170I	-3.36409 - 8.79372I
b = 2.54369 - 0.94767I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.498042 + 0.364034I		
a = 1.46412 - 0.51940I	1.089740 - 0.536721I	8.60899 + 3.28109I
b = 0.329394 - 0.747695I		
u = -0.498042 - 0.364034I		
a = 1.46412 + 0.51940I	1.089740 + 0.536721I	8.60899 - 3.28109I
b = 0.329394 + 0.747695I		

$$\begin{matrix} \text{II.} \\ I_2^u = \langle 3.69 \times 10^{30} u^{61} + 8.39 \times 10^{30} u^{60} + \dots + 2.19 \times 10^{31} b - 4.54 \times 10^{30}, \ 5.62 \times 10^{30} u^{61} + 9.32 \times 10^{29} u^{60} + \dots + 6.57 \times 10^{31} a + 1.26 \times 10^{32}, \ u^{62} + 2u^{61} + \dots + 7u + 3 \rangle \end{matrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.0855391u^{61} - 0.0141764u^{60} + \cdots - 4.70351u - 1.91561 \\ -0.168269u^{61} - 0.382897u^{60} + \cdots - 2.55324u + 0.207356 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.784652u^{61} - 1.03466u^{60} + \cdots - 6.06002u - 3.97213 \\ -0.416695u^{61} + 0.167342u^{60} + \cdots + 4.79125u + 3.54242 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.0402708u^{61} + 0.447531u^{60} + \cdots - 3.91890u - 2.58902 \\ -0.267323u^{61} - 0.161926u^{60} + \cdots - 2.65084u + 0.351084 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.291785u^{61} - 0.157841u^{60} + \cdots - 2.92917u - 3.12929 \\ 0.0849651u^{61} + 0.650458u^{60} + \cdots + 0.142039u + 0.688054 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.890090u^{61} - 2.38676u^{60} + \cdots - 9.65587u - 6.58484 \\ 0.381623u^{61} - 0.451639u^{60} + \cdots + 1.38007u + 0.627994 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.223944u^{61} + 0.335268u^{60} + \cdots - 2.74033u - 3.36849 \\ -0.480269u^{61} - 0.308145u^{60} + \cdots - 1.68366u - 0.00366767 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $2.13514u^{61} + 3.90356u^{60} + \cdots + 2.88438u 1.52833$

Crossings	u-Polynomials at each crossing
c_1,c_{11}	$u^{62} + 30u^{61} + \dots + 35u + 9$
c_2, c_6, c_8 c_{12}	$u^{62} - 2u^{61} + \dots - 7u + 3$
c_3, c_7	$u^{62} + 2u^{61} + \dots - 10747u + 14583$
c_4, c_5, c_9 c_{10}	$(u^{31} + 2u^{30} + \dots - 8u - 2)^2$

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$y^{62} + 6y^{61} + \dots - 1009y + 81$
c_2, c_6, c_8 c_{12}	$y^{62} + 30y^{61} + \dots + 35y + 9$
c_3, c_7	$y^{62} - 18y^{61} + \dots + 711358091y + 212663889$
c_4, c_5, c_9 c_{10}	$(y^{31} + 38y^{30} + \dots - 48y - 4)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.666104 + 0.730543I		
a = 0.087322 + 0.584354I	-0.36232 - 5.51796I	0.77837 + 9.61169I
b = 0.496094 - 0.738057I		
u = -0.666104 - 0.730543I		
a = 0.087322 - 0.584354I	-0.36232 + 5.51796I	0.77837 - 9.61169I
b = 0.496094 + 0.738057I		
u = 0.686447 + 0.784394I		
a = 0.440237 + 0.732627I	-5.20347 + 2.59275I	2.06256 - 3.16265I
b = -0.108205 + 0.403174I		
u = 0.686447 - 0.784394I		
a = 0.440237 - 0.732627I	-5.20347 - 2.59275I	2.06256 + 3.16265I
b = -0.108205 - 0.403174I		
u = -0.896489 + 0.288317I		
a = -2.09267 - 0.04312I	-10.9647 + 10.1676I	-0.91392 - 5.40901I
b = -1.76964 + 0.85544I		
u = -0.896489 - 0.288317I		
a = -2.09267 + 0.04312I	-10.9647 - 10.1676I	-0.91392 + 5.40901I
b = -1.76964 - 0.85544I		
u = -0.629178 + 0.873889I		
a = -0.199672 - 0.056127I	-0.779034 + 0.507247I	0 2.93446I
b = -1.082620 - 0.085481I		
u = -0.629178 - 0.873889I		
a = -0.199672 + 0.056127I	-0.779034 - 0.507247I	0. + 2.93446I
b = -1.082620 + 0.085481I		
u = 0.449825 + 0.996232I		
a = -0.050283 - 0.198043I	-0.779034 + 0.507247I	0
b = -1.082620 - 0.085481I		
u = 0.449825 - 0.996232I		
a = -0.050283 + 0.198043I	-0.779034 - 0.507247I	0
b = -1.082620 + 0.085481I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.890494 + 0.168471I		
a = -1.321460 - 0.466064I	-12.95390 + 1.38125I	-3.10767 + 0.27219I
b = -1.36135 - 0.59633I		
u = -0.890494 - 0.168471I		
a = -1.321460 + 0.466064I	-12.95390 - 1.38125I	-3.10767 - 0.27219I
b = -1.36135 + 0.59633I		
u = 0.788781 + 0.767503I		
a = 0.238484 - 0.701341I	-7.97068 + 6.77480I	0 6.34396I
b = 0.558659 + 0.646395I		
u = 0.788781 - 0.767503I		
a = 0.238484 + 0.701341I	-7.97068 - 6.77480I	0. + 6.34396I
b = 0.558659 - 0.646395I		
u = -0.563357 + 0.949810I		
a = 0.400448 - 0.334162I	0.38775 - 3.17615I	0
b = 0.360204 - 0.897228I		
u = -0.563357 - 0.949810I		
a = 0.400448 + 0.334162I	0.38775 + 3.17615I	0
b = 0.360204 + 0.897228I		
u = 0.550433 + 0.959763I		
a = 1.297360 + 0.482083I	-5.29982 + 1.79874I	0
b = 0.29971 + 1.71948I		
u = 0.550433 - 0.959763I		
a = 1.297360 - 0.482083I	-5.29982 - 1.79874I	0
b = 0.29971 - 1.71948I		
u = -0.586824 + 0.636146I		
a = 0.495132 - 0.651002I	1.31051 - 1.39768I	6.56379 + 5.41262I
b = -0.374983 - 0.161852I		
u = -0.586824 - 0.636146I		
a = 0.495132 + 0.651002I	1.31051 + 1.39768I	6.56379 - 5.41262I
b = -0.374983 + 0.161852I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.491654 + 1.034130I		
a = 0.074800 + 0.504612I	-0.36232 + 5.51796I	0
b = 0.496094 + 0.738057I		
u = 0.491654 - 1.034130I		
a = 0.074800 - 0.504612I	-0.36232 - 5.51796I	0
b = 0.496094 - 0.738057I		
u = 0.801270 + 0.256679I		
a = -2.23504 - 0.16817I	-2.82013 - 7.52476I	1.18698 + 6.99451I
b = -1.66877 - 0.97408I		
u = 0.801270 - 0.256679I		
a = -2.23504 + 0.16817I	-2.82013 + 7.52476I	1.18698 - 6.99451I
b = -1.66877 + 0.97408I		
u = 0.323535 + 1.114360I		
a = 0.075800 + 1.078080I	-4.23586 + 0.27259I	0
b = -1.27158 + 0.73117I		
u = 0.323535 - 1.114360I		
a = 0.075800 - 1.078080I	-4.23586 - 0.27259I	0
b = -1.27158 - 0.73117I		
u = 0.750659 + 0.887428I		
a = -0.358620 + 0.042820I	-8.32783 - 1.04707I	0
b = -1.162170 + 0.126258I		
u = 0.750659 - 0.887428I		
a = -0.358620 - 0.042820I	-8.32783 + 1.04707I	0
b = -1.162170 - 0.126258I		
u = -0.472572 + 1.082310I		
a = 0.148446 - 1.393170I	-0.99698 - 3.48995I	0
b = -1.41819 - 1.05546I		
u = -0.472572 - 1.082310I		
a = 0.148446 + 1.393170I	-0.99698 + 3.48995I	0
b = -1.41819 + 1.05546I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.387583 + 1.137140I		
a = 0.60373 + 1.77130I	-4.52090	0
b = 1.90030		
u = -0.387583 - 1.137140I		
a = 0.60373 - 1.77130I	-4.52090	0
b = 1.90030		
u = -0.426409 + 1.129220I		
a = -0.131838 + 0.321832I	-8.32783 - 1.04707I	0
b = -1.162170 + 0.126258I		
u = -0.426409 - 1.129220I		
a = -0.131838 - 0.321832I	-8.32783 + 1.04707I	0
b = -1.162170 - 0.126258I		
u = 0.291515 + 1.180250I		
a = 0.23307 - 1.67452I	-7.28291 - 4.17154I	0
b = 1.65227 - 0.33136I		
u = 0.291515 - 1.180250I		
a = 0.23307 + 1.67452I	-7.28291 + 4.17154I	0
b = 1.65227 + 0.33136I		
u = -0.475171 + 1.135050I		
a = 0.049532 - 0.660701I	-7.97068 - 6.77480I	0
b = 0.558659 - 0.646395I		
u = -0.475171 - 1.135050I		
a = 0.049532 + 0.660701I	-7.97068 + 6.77480I	0
b = 0.558659 + 0.646395I		
u = 0.418242 + 0.627505I		
a = -0.559898 - 0.519466I	0.38775 + 3.17615I	4.19909 + 0.89025I
b = 0.360204 + 0.897228I		
u = 0.418242 - 0.627505I		
a = -0.559898 + 0.519466I	0.38775 - 3.17615I	4.19909 - 0.89025I
b = 0.360204 - 0.897228I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.530235 + 1.136730I		
a = -0.07716 + 1.50150I	-2.82013 + 7.52476I	0
b = -1.66877 + 0.97408I		
u = 0.530235 - 1.136730I		
a = -0.07716 - 1.50150I	-2.82013 - 7.52476I	0
b = -1.66877 - 0.97408I		
u = 0.477297 + 1.164540I		
a = 0.77266 - 1.43879I	-7.28291 + 4.17154I	0
b = 1.65227 + 0.33136I		
u = 0.477297 - 1.164540I		
a = 0.77266 + 1.43879I	-7.28291 - 4.17154I	0
b = 1.65227 - 0.33136I		
u = -0.278446 + 1.228190I		
a = -0.071389 - 1.005860I	-12.95390 + 1.38125I	0
b = -1.36135 - 0.59633I		
u = -0.278446 - 1.228190I		
a = -0.071389 + 1.005860I	-12.95390 - 1.38125I	0
b = -1.36135 + 0.59633I		
u = 0.722560 + 0.106633I		
a = -1.50741 + 0.82209I	-4.23586 + 0.27259I	-1.68227 + 0.33399I
b = -1.27158 + 0.73117I		
u = 0.722560 - 0.106633I		
a = -1.50741 - 0.82209I	-4.23586 - 0.27259I	-1.68227 - 0.33399I
b = -1.27158 - 0.73117I		
u = -0.240118 + 1.264390I		
a = 0.15678 + 1.45730I	-16.1317 + 6.5577I	0
b = 1.40042 + 0.34149I		
u = -0.240118 - 1.264390I		
a = 0.15678 - 1.45730I	-16.1317 - 6.5577I	0
b = 1.40042 - 0.34149I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.566003 + 1.180140I		
a = -0.23494 - 1.48755I	-10.9647 - 10.1676I	0
b = -1.76964 - 0.85544I		
u = -0.566003 - 1.180140I		
a = -0.23494 + 1.48755I	-10.9647 + 10.1676I	0
b = -1.76964 + 0.85544I		
u = -0.664612 + 0.170734I		
a = -2.32627 + 0.63475I	-0.99698 + 3.48995I	4.01270 - 2.89115I
b = -1.41819 + 1.05546I		
u = -0.664612 - 0.170734I		
a = -2.32627 - 0.63475I	-0.99698 - 3.48995I	4.01270 + 2.89115I
b = -1.41819 - 1.05546I		
u = 0.501484 + 0.456925I		
a = 0.826582 + 0.636737I	1.31051 - 1.39768I	6.56379 + 5.41262I
b = -0.374983 - 0.161852I		
u = 0.501484 - 0.456925I		
a = 0.826582 - 0.636737I	1.31051 + 1.39768I	6.56379 - 5.41262I
b = -0.374983 + 0.161852I		
u = -0.536448 + 1.217100I		
a = 0.67450 + 1.24755I	-16.1317 - 6.5577I	0
b = 1.40042 - 0.34149I		
u = -0.536448 - 1.217100I		
a = 0.67450 - 1.24755I	-16.1317 + 6.5577I	0
b = 1.40042 + 0.34149I		
u = 0.078963 + 0.630242I		
a = -2.31047 - 0.68841I	-5.29982 - 1.79874I	-2.21614 + 3.31862I
b = 0.29971 - 1.71948I		
u = 0.078963 - 0.630242I		
a = -2.31047 + 0.68841I	-5.29982 + 1.79874I	-2.21614 - 3.31862I
b = 0.29971 + 1.71948I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.583093 + 0.120029I		
a = 0.73556 - 1.30329I	-5.20347 + 2.59275I	2.06256 - 3.16265I
b = -0.108205 + 0.403174I		
u = -0.583093 - 0.120029I		
a = 0.73556 + 1.30329I	-5.20347 - 2.59275I	2.06256 + 3.16265I
b = -0.108205 - 0.403174I		

III.
$$I_3^u=\langle -au+b-u,\ a^2-2u,\ u^2-u+1\rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a \\ au + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} au - a + u \\ -a + u - 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a + 1 \\ au + 2u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -a \\ -au - u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -au + 2 \\ -au + a + u + 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a \\ 2au - a + u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -8u + 4

Crossings	u-Polynomials at each crossing
c_1, c_2, c_8 c_{11}	$(u^2 - u + 1)^2$
c_3, c_6, c_7 c_{12}	$(u^2 + u + 1)^2$
c_4, c_5, c_9 c_{10}	$(u^2+2)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_3 \\ c_6, c_7, c_8 \\ c_{11}, c_{12}$	$(y^2 + y + 1)^2$
c_4, c_5, c_9 c_{10}	$(y+2)^4$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.500000 + 0.866025I		
a = 1.224740 + 0.707110I	-4.93480 + 4.05977I	0 6.92820I
b = 0.50000 + 2.28024I		
u = 0.500000 + 0.866025I		
a = -1.224740 - 0.707110I	-4.93480 + 4.05977I	0 6.92820I
b = 0.500000 - 0.548188I		
u = 0.500000 - 0.866025I		
a = 1.224740 - 0.707110I	-4.93480 - 4.05977I	0. + 6.92820I
b = 0.50000 - 2.28024I		
u = 0.500000 - 0.866025I		
a = -1.224740 + 0.707110I	-4.93480 - 4.05977I	0. + 6.92820I
b = 0.500000 + 0.548188I		

IV.
$$I_4^u = \langle b+u,\ a,\ u^2+u+1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u + 2 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -u \\ -u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -2u \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 8u + 4

Crossings	u-Polynomials at each crossing
c_1, c_3, c_6 c_7, c_{11}, c_{12}	$u^2 - u + 1$
c_{2}, c_{8}	$u^2 + u + 1$
c_4, c_5, c_9 c_{10}	u^2

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_6, c_7, c_8 c_{11}, c_{12}	$y^2 + y + 1$
c_4, c_5, c_9 c_{10}	y^2

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = 0	-4.05977I	0. + 6.92820I
b = 0.500000 - 0.866025I		
u = -0.500000 - 0.866025I		
a = 0	4.05977I	0 6.92820I
b = 0.500000 + 0.866025I		

V.
$$I_5^u = \langle -au + b + 1, \ a^2 - 2u, \ u^2 - u + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a \\ au - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -au + u \\ -au + a + 2u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a \\ u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -a \\ -au + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -a \\ -au + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} a \\ u + u + 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a \\ 2au - a - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_2, c_8 c_{11}	$(u^2 - u + 1)^2$
c_3, c_6, c_7 c_{12}	$(u^2 + u + 1)^2$
c_4, c_5, c_9 c_{10}	$(u^2+2)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_3 \\ c_6, c_7, c_8 \\ c_{11}, c_{12}$	$(y^2 + y + 1)^2$
c_4, c_5, c_9 c_{10}	$(y+2)^4$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.500000 + 0.866025I		
a = 1.224740 + 0.707110I	-4.93480	0
b = -1.00000 + 1.41421I		
u = 0.500000 + 0.866025I		
a = -1.224740 - 0.707110I	-4.93480	0
b = -1.00000 - 1.41421I		
u = 0.500000 - 0.866025I		
a = 1.224740 - 0.707110I	-4.93480	0
b = -1.00000 - 1.41421I		
u = 0.500000 - 0.866025I		
a = -1.224740 + 0.707110I	-4.93480	0
b = -1.00000 + 1.41421I		

VI.
$$I_6^u = \langle b+1, \ a, \ u^2+u+1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ 2u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ -u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u - 1 \\ -2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- $a_5 = \begin{pmatrix} 0 \\ u \end{pmatrix}$
- $a_{10} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$
- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 6

Crossings	u-Polynomials at each crossing
c_1, c_3, c_6 c_7, c_{11}, c_{12}	$u^2 - u + 1$
c_{2}, c_{8}	$u^2 + u + 1$
c_4, c_5, c_9 c_{10}	u^2

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_3 \\ c_6, c_7, c_8 \\ c_{11}, c_{12}$	$y^2 + y + 1$
c_4, c_5, c_9 c_{10}	y^2

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = 0	0	6.00000
$\frac{b = -1.00000}{u = -0.500000 - 0.866025I}$		
a = -0.500000 - 0.8000251 $a = 0$	0	6.00000
b = -1.00000	Ŭ	0.00000

VII. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_{11}	$((u^{2} - u + 1)^{6})(u^{22} + 13u^{21} + \dots + 3u + 1)(u^{62} + 30u^{61} + \dots + 35u + 9)$
c_{2}, c_{8}	$((u^{2} - u + 1)^{4})(u^{2} + u + 1)^{2}(u^{22} - u^{21} + \dots - u + 1)$ $\cdot (u^{62} - 2u^{61} + \dots - 7u + 3)$
c_3, c_7	$((u^{2} - u + 1)^{2})(u^{2} + u + 1)^{4}(u^{22} + u^{21} + \dots + u + 1)$ $\cdot (u^{62} + 2u^{61} + \dots - 10747u + 14583)$
c_4, c_5, c_9 c_{10}	$u^{4}(u^{2}+2)^{4}(u^{22}-5u^{21}+\cdots-24u+4)(u^{31}+2u^{30}+\cdots-8u-2)^{2}$
c_6, c_{12}	$((u^{2} - u + 1)^{2})(u^{2} + u + 1)^{4}(u^{22} - u^{21} + \dots - u + 1)$ $\cdot (u^{62} - 2u^{61} + \dots - 7u + 3)$

VIII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_{11}	$((y^{2} + y + 1)^{6})(y^{22} - 3y^{21} + \dots + 11y + 1)$ $\cdot (y^{62} + 6y^{61} + \dots - 1009y + 81)$
c_2, c_6, c_8 c_{12}	$((y^2 + y + 1)^6)(y^{22} + 13y^{21} + \dots + 3y + 1)(y^{62} + 30y^{61} + \dots + 35y + 9)$
c_3, c_7	$((y^{2} + y + 1)^{6})(y^{22} - 19y^{21} + \dots + 3y + 1)$ $\cdot (y^{62} - 18y^{61} + \dots + 711358091y + 212663889)$
c_4, c_5, c_9 c_{10}	$y^{4}(y+2)^{8}(y^{22}+25y^{21}+\cdots-32y+16)$ $\cdot (y^{31}+38y^{30}+\cdots-48y-4)^{2}$