CSCE 5563

Introduction to Deep Learning Homework 0: 0 pts (no grading)

1. Find a, b, T in the such as:

$$ax + by + T > 0 \text{ if } (x,y) = (1,1)$$

 $ax + by + T < 0 \text{ if } (x,y) = (0,1) \text{ or } (1,0) \text{ or } (0,0)$

2. Find a, b, T in the such as:

$$ax + by + T > 0 \text{ if } (x,y) = (1,1) \text{ or } (0,1) \text{ or } (1,0)$$

 $ax + by + T < 0 \text{ if } (x,y) = (0,0)$

3. Find a, b, T in the such as:

$$ax + by + T > 0 \text{ if } (x,y) = (1,0) \text{ or } (0,1)$$

 $ax + by + T < 0 \text{ if } (x,y) = (1,1) \text{ or } (0,0)$

- 4. Given an image 3x3 f = $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$ and a kernel g = $\begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 91 \end{bmatrix}$.
- a. What is the convolution of f and g
- b. What is the correlation of f and g
- 5. Given two vector: $\mathbf{v} = [1,0,5]$ and $\mathbf{w} = [0, 2, 4]$. What is the distance between \mathbf{v} and \mathbf{w} using following metrics
 - a. L2 norm
 - b. L1 norm
 - c. L0 norm
- 6. Compute the derivative of the following functions:

a.
$$f(x) = 3x$$

b.
$$f(x) = x^3$$

c.
$$f(x) + g(x)$$
 where $f(x) = x^2 + 3x$

d.
$$f(x)g(x)$$
 where $f(x) = x^2$ and $g(x) = x$

e.
$$f(g(x))$$
 where $f(x) = In(x)$ and $g(x) = x^2$

7. What is partial derivatives $\frac{\partial f(x,y)}{\partial x}$ and $\frac{\partial f(x,y)}{\partial y}$ of the following function:

a.
$$f(x,y) = 3x^2y$$
.

b.
$$f(x,y) = 2x + y^8$$
.

- 8. Compute Jacobian matrix of $f(x,y) = 3x^2y$ and $g(x,y) = 2x + y^8$
- 9. Given $f(x,y) = x^3 2xy y^6$. Compute Hessian at point (1,2)
- 10. Given $f(x) = 25\sin(x) x^2$ which looks like the following graph. Imagine that this is a mountain landscape and you are climbers, trying to reach the valley

- a. For any point x, y on the function, what is the slop defined?
- b. For any point x, y on the function, what is the tangent defined?
- c. If you start at x_0 = -5.0, which direction you should go to reach the valley in 2 cases: slope is increasing and slope is decreasing.
- d. Choose any y, draw tangle and slop at x_0