

planetmath.org

Math for the people, by the people.

arithmetical ring

Canonical name ArithmeticalRing
Date of creation 2013-03-22 15:23:58
Last modified on 2013-03-22 15:23:58
Owner PrimeFan (13766)
Last modified by PrimeFan (13766)

Numerical id 8

Author PrimeFan (13766)

Entry type Theorem Classification msc 13A99

Related topic QuotientOfIdeals

Theorem. If R is a commutative ring, then the following three conditions are equivalent:

- For all ideals \mathfrak{a} , \mathfrak{b} and \mathfrak{c} of R, one has $\mathfrak{a} \cap (\mathfrak{b} + \mathfrak{c}) = (\mathfrak{a} \cap \mathfrak{b}) + (\mathfrak{a} \cap \mathfrak{c})$.
- For all ideals \mathfrak{a} , \mathfrak{b} and \mathfrak{c} of R, one has $\mathfrak{a} + (\mathfrak{b} \cap \mathfrak{c}) = (\mathfrak{a} + \mathfrak{b}) \cap (\mathfrak{a} + \mathfrak{c})$.
- For each maximal ideal \mathfrak{p} of R the set of all ideals of $R_{\mathfrak{p}}$, the http://planetmath.org/Localiz of R at $R \setminus \mathfrak{p}$, is totally ordered by set inclusion.

The ring R satisfying the conditions of the theorem is called an $arith-metical\ ring$.