强化学习及其应用

Reinforcement Learning and Its Applications

第三章 值估计 Value Evaluation

授课人: 周晓飞 zhouxiaofei@iie.ac.cn 2023-6-13

第三章 值估计

- 3.1 随机逼近
- 3.2 蒙特卡洛值估计
- 3.3 时序差分值估计
- 3.4 算法总结

第三章 值估计

- 3.1 随机逼近
- 3.2 蒙特卡洛值估计
- 3.3 时序差分值估计
- 3.4 算法总结

随机逼近

累计平均逼近 E(x)

对于随机变量 x , 概率分布 P(x)未知 , 估计期望 E(x):

For time
$$k$$
:
 $S \leftarrow S + x_k$;
 $N \leftarrow N + 1$;

$$N \to \infty$$
, $u \to E(x)$

 $u_k \leftarrow S/N$;

随机逼近

增量均值逼近 E(x)

For time k:

$$N \leftarrow N+1;$$

 $u_k \leftarrow u_{k-1}+(1/N)(x_k-u_{k-1});$

相当于均值的更新:

$$\mu_k = \frac{1}{k} \sum_{j=1}^k x_j$$

$$= \frac{1}{k} \left(x_k + \sum_{j=1}^{k-1} x_j \right)$$

$$= \frac{1}{k} \left(x_k + (k-1)\mu_{k-1} \right)$$

$$= \mu_{k-1} + \frac{1}{k} \left(x_k - \mu_{k-1} \right)$$

随机逼近

Robbins-Monro 逼近 E(x)

For time k:

$$N \leftarrow N+1;$$

$$u_k \leftarrow u_{k-1}+a(x_k-u_{k-1});$$

相当于权重比例更新:

$$u_k \leftarrow (1 - a)u_{k-1} + a x_k$$

本课程常用 Robbins-Monro 随机逼近公式。

第三章 值估计

- 3.1 随机逼近
- 3.2 蒙特卡洛值估计
- 3.3 时序差分值估计
- 3.4 算法总结

问题描述

■ Goal: learn v_{π} from episodes of experience under policy π

$$S_1, A_1, R_2, ..., S_k \sim \pi$$

Recall that the return is the total discounted reward:

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

Recall that the value function is the expected return:

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[G_t \mid S_t = s \right]$$

 Monte-Carlo policy evaluation uses empirical mean return instead of expected return

First-Visit MC Evaluation

- To evaluate state s
- The first time-step t that state s is visited in an episode,
- Increment counter $N(s) \leftarrow N(s) + 1$
- Increment total return $S(s) \leftarrow S(s) + G_t$
- Value is estimated by mean return V(s) = S(s)/N(s)
- By law of large numbers, $V(s) \rightarrow v_{\pi}(s)$ as $N(s) \rightarrow \infty$

只对 episode 的起始状态进行统计。

Every-Visit MC Evaluation

- To evaluate state s
- Every time-step t that state s is visited in an episode,
- Increment counter $N(s) \leftarrow N(s) + 1$
- Increment total return $S(s) \leftarrow S(s) + G_t$
- Value is estimated by mean return V(s) = S(s)/N(s)
- Again, $V(s) \rightarrow v_{\pi}(s)$ as $N(s) \rightarrow \infty$

episode 的每个状态进行统计。

Incremental MC Evaluation

- Update V(s) incrementally after episode $S_1, A_1, R_2, ..., S_T$
- For each state S_t with return G_t

$$N(S_t) \leftarrow N(S_t) + 1$$

$$V(S_t) \leftarrow V(S_t) + \frac{1}{N(S_t)} (G_t - V(S_t))$$

Incremental MC Evaluation

- Update V(s) incrementally after episode $S_1, A_1, R_2, ..., S_T$
- For each state S_t with return G_t

$$N(S_t) \leftarrow N(S_t) + 1$$

$$V(S_t) \leftarrow V(S_t) + \frac{1}{N(S_t)} (G_t - V(S_t))$$

In non-stationary problems, it can be useful to track a running mean, i.e. forget old episodes.

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t - V(S_t) \right)$$

第三章 值估计

- 3.1 随机逼近
- 3.2 蒙特卡洛值估计
- 3.3 时序差分值估计
- 3.4 算法总结

问题描述

采用不完整的 episodes, 估计 V值。

- TD methods learn directly from episodes of experience
- TD is *model-free*: no knowledge of MDP transitions / rewards
- TD learns from *incomplete* episodes, by *bootstrapping*
- TD updates a guess towards a guess

TD (0)

Update value $V(S_t)$ toward estimated return $R_{t+1} + \gamma V(S_{t+1})$ $V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t)\right)$ Bellman 迭代的随机形式

- \blacksquare $R_{t+1} + \gamma V(S_{t+1})$ is called the *TD target*
- $\delta_t = R_{t+1} + \gamma V(S_{t+1}) V(S_t)$ is called the *TD error*

- V.S. MC
 - Incremental every-visit Monte-Carlo
 - Update value $V(S_t)$ toward actual return G_t

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t - V(S_t) \right)$$

- TD can learn *before* knowing the final outcome
 - TD can learn online after every step
 - MC must wait until end of episode before return is known
- TD can learn without the final outcome
 - TD can learn from incomplete sequences
 - MC can only learn from complete sequences
 - TD works in continuing (non-terminating) environments
 - MC only works for episodic (terminating) environments

- TD exploits Markov property
 - Usually more efficient in Markov environments
- MC does not exploit Markov property
 - Usually more effective in non-Markov environments

TD (0)

TD Backup

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

TD (0)

V.S. MC

$$V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$$

TD (0)

V.S. DP

$$V(S_t) \leftarrow \mathbb{E}_{\pi} \left[R_{t+1} + \gamma V(S_{t+1}) \right]$$

- Bootstrapping and Sampling
 - Bootstrapping: update involves an estimate
 - MC does not bootstrap
 - DP bootstraps
 - TD bootstraps
 - Sampling: update samples an expectation
 - MC samples
 - DP does not sample
 - TD samples

Have a break!

$TD(\lambda)$

- n-step TD
 - Let TD target look *n* steps into the future

$TD(\lambda)$

■ Consider the following *n*-step returns for $n = 1, 2, \infty$:

$$n = 1 (TD) G_t^{(1)} = R_{t+1} + \gamma V(S_{t+1})$$

$$n = 2 G_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 V(S_{t+2})$$

$$\vdots \vdots$$

$$n = \infty (MC) G_t^{(\infty)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

■ Define the *n*-step return

$$G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$$

n-step temporal-difference learning

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{(n)} - V(S_t) \right)$$

$TD(\lambda)$

Forward-view TD(λ)

- The λ -return G_t^{λ} combines all n-step returns $G_t^{(n)}$
- Using weight $(1 \lambda)\lambda^{n-1}$

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$

Forward-view $TD(\lambda)$

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{\lambda} - V(S_t)\right)$$

$TD(\lambda)$

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$

$TD(\lambda)$

$$\alpha \left(G_k^{\lambda} - V(S_k) \right) = \alpha \sum_{t=k}^{T} (\gamma \lambda)^{t-k} \delta_t$$

$$\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$$

(等式推导见 David 的 PPT)

$$V(s) \leftarrow V(s) + \alpha \sum_{t=k}^{T} (\gamma \lambda)^{t-k} \delta_t$$

$$\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$$

$TD(\lambda)$

- Update value function towards the λ -return
- Forward-view looks into the future to compute G_t^{λ}
- Like MC, can only be computed from complete episodes

$TD(\lambda)$

Backward view TD(λ)

分别对之前每个时刻的状态进行修正

$$V(s) \leftarrow V(s) + \alpha(\gamma \lambda)^{t-k} \delta_t$$

$TD(\lambda)$

Backward view TD(λ)

分别对之前每个时刻的状态进行修正

$$V(s) \leftarrow V(s) + \alpha(\gamma \lambda)^{t-k} \delta_t$$

更好的简化办法:引入资格迹 E(S),对每个状态出现的时刻统计,并对每个状态值修正

$TD(\lambda)$

Backward view TD(λ)

对所有状态进行更新

$$E_t(s) = \gamma \lambda E_{t-1}(s) + \mathbf{1}(S_t = s)$$

$$V(s) \leftarrow V(s) + \alpha \delta_t E_t(s)$$

$$\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$$

$TD(\lambda)$

Backward view TD(λ)

资格迹:每个状态的资格迹,随时间更新,记录了状态出现的位置。

$$E_t(s) = \gamma \lambda E_{t-1}(s) + \mathbf{1}(S_t = s)$$

例子: S = {S₁, S₂}; Episodes: S₁, S₂, S₂, S₁, S₁; 当前时刻 t 之前 出现状态的标定:

t= 0 :		$E_0(S_1)=0;$	$E_0(S_2)=0$
t=1:	S ₁	$E_1(S_1)=r\lambda E_0(S_1)+1=1$	$E_1(S_2) = r\lambda E_0(S_2) = 0$
t= 2:	S ₁ , S ₂ ,	$E_2(S_1)=r\lambda E_1(S_1)=r\lambda$	$E_2(S_2) = r\lambda E_1(S_2) + 1 = 1$
t=3:	S ₁ , S ₂ , S ₂ ,	$E_3(S_1)=r\lambda E_2(S_1)=(r\lambda)^2$	$E_3(S_2)=r\lambda E_2(S_2)+1=(r\lambda)+1$
t= 4:	$S_1, S_2, S_2, S_1,$	$E_4(S_1)=r\lambda E_3(S_1)+1=(r\lambda)^3+1;$	$E_4(S_2)=r\lambda E_3(S_2)=(r\lambda)^2+(r\lambda)$
t= 5 :	S_1, S_2, S_2, S_1, S_1	$E_5(S_1)=r\lambda E_4(S_1)+1=(r\lambda)^4+r\lambda+1$	$E_5(S_2)=r\lambda E_4(S_2)=(r\lambda)^3+(r\lambda)^2$

$TD(\lambda)$

Backward view TD(λ)

如何在资格迹中观察到当前时刻之前,各个状态的位置?

t=4:
$$S_1$$
, S_2 , S_2 , S_1 , $E_4(S_1)=r\lambda E_3(S_1)+1=(r\lambda)^3+1$; $E_4(S_2)=r\lambda E_3(S_2)=(r\lambda)^2+(r\lambda)$
= $(r\lambda)^3+(r\lambda)^0$ = $(r\lambda)^2+(r\lambda)^1$;

;

TD(λ)

$TD(\lambda)$

 $\lambda \in [0, 1]$: TD(0), TD(λ), TD(1)

TD(0)

$$E_t(s) = \mathbf{1}(S_t = s)$$
$$V(s) \leftarrow V(s) + \alpha \delta_t E_t(s)$$

This is exactly equivalent to TD(0) update

$$V(S_t) \leftarrow V(S_t) + \alpha \delta_t$$

例如:	$E_t(s) = \gamma \lambda E_{t-1}(s) + 1(S_t = s) = 1(S_t = s)$			
t= 0 :		$E_0(S_1)=0;$	$E_0(S_2)=0$	
t=1:	S ₁	$E_1(S_1) = 1$	$E_1(S_2) = 0$	
t= 2:	S ₁ , S ₂ ,	$E_2(S_1)=0$	$E_2(S_2) = 1$	
t= 3:	S ₁ , S ₂ , S ₂ ,	$E_3(S_1)=0$	$E_3(S_2) = 1$	
t= 4 :	$S_1, S_2, S_2, S_1,$	$E_4(S_1) = 1$	$E_4(S_2)=0$	
t= 5 :	S ₁ , S ₂ , S ₂ , S ₁ , S ₁	$E_5(S_1) = 1$	E ₅ (S ₂)=0	

$TD(\lambda)$

TD(λ)

$$E_t(s) = \gamma \lambda E_{t-1}(s) + \mathbf{1}(S_t = s)$$
$$V(s) \leftarrow V(s) + \alpha \delta_t E_t(s)$$

TD(1)

TD(1) eligibility trace discounts time since visit,

$$E_t(s) = \gamma E_{t-1}(s) + \mathbf{1}(S_t = s)$$

When $\lambda = 1$, sum of TD errors telescopes into MC error

TD(λ)

证明: TD(1) 等价于 MC

$$\alpha \left(G_k^{\lambda} - V(S_k) \right) = \alpha \sum_{t=k}^{T} (\gamma \lambda)^{t-k} \delta_t = \alpha \sum_{t=k}^{T-1} \gamma^{t-k} \delta_t \quad \Box \rangle$$

$$\left(\delta_T = 0 \right)$$

$$\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$$

$$\lambda = 1$$

$$\delta_{k} + \gamma \delta_{k+1} + \gamma^{2} \delta_{k+2} + \dots + \gamma^{T-1-k} \delta_{T-1}$$

$$= R_{k+1} + \gamma V(S_{k+1}) - V(S_{k})$$

$$+ \gamma R_{k+2} + \gamma^{2} V(S_{k+2}) - \gamma V(S_{k+1})$$

$$+ \gamma^{2} R_{k+3} + \gamma^{3} V(S_{k+3}) - \gamma^{2} V(S_{k+2})$$

$$\vdots$$

$$+ \gamma^{T-1-k} R_{T} + \gamma^{T-k} V(S_{T}) - \gamma^{T-1-k} V(S_{T-1})$$

$$= R_{k+1} + \gamma R_{k+2} + \gamma^{2} R_{k+3} \dots + \gamma^{T-1-k} R_{T} - V(S_{k})$$

$$= G_{k} - V(S_{k})$$

第三章 值估计

- 3.1 随机逼近
- 3.2 蒙特卡洛值估计
- 3.3 时序差分值估计
- 3.4 算法总结

算法总结

Offline updates	$\lambda = 0$	$\lambda \in (0,1)$	$\lambda = 1$
Backward view	TD(0)	$TD(\lambda)$	TD(1)
			II
Forward view	TD(0)	Forward $TD(\lambda)$	MC
Online updates	$\lambda = 0$	$\lambda \in (0,1)$	$\lambda = 1$
Backward view	TD(0)	$TD(\lambda)$	TD(1)
		*	*
Forward view	TD(0)	Forward $TD(\lambda)$	MC
			II
Exact Online	TD(0)	Exact Online $TD(\lambda)$	Exact Online TD(1)

本讲参考文献

- 1. Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. (Second edition, in progress, draft.
- 2. David Silver, Slides@ «Reinforcement Learning: An Introduction», 2016.
- 3. Simon Haykin, 申富饶等译,神经网络与学习机器,第三版。