Intro to Machine Learning for Data Science

charles nainan

generative vs. discriminative

- Generative model joint density $p_{XY}(x,y)$
 - Ex: Naive Bayes, Bayesian Nets, Hidden Markov Models(HMM)
 - Allows us to sample data from joint: very powerful!
 - Allows for inference on parameters, predictions, etc.
- Discriminative models decision boundary or y = f(x) directly
 - Ex: Logistic Regression, CRF, SVM, Decision Trees
 - Conditional models p(y|x)
 - Y can still be sampled form p(y|x)
 - Allows partial inference
 - Purely discriminative models y as f(x), probabilistic inference is difficult

regression

data

feature	label
3.44	16.79
1.47	-4.07
1.38	7.96
1.09	-1.17
1.28	-1.66
2.43	10.52
3.16	14.3
2.11	12.08

plot

regression

models

classification

data

feature1	feature2	label
3.44	2.66	Α
1.47	-1.26	Α
1.38	2.24	В
1.09	5.8	В
1.28	-3.22	В
2.43	6.72	Α
3.16	0.04	Α
•		
•		
2.13	-0.22	В

classification

model

clustering

data plot

feature1	feature2
3.44	2.66
1.47	-1.26
1.38	2.24
1.09	5.8
1.28	-3.22
2.43	6.72
3.16	0.04
-	
-	
-	
2.13	-0.22

clustering

model

framework

data – transform data into a matrix of numerical feature vectors

optimization – transform problem into an optimization of a loss function over data

generalization – finding models that generalize to unseen data

Optimization framework

optimization

Find a function that minimizes the error on the data

same as

Find a function that maximizes the fit on the data

Transform machine learning into a mathematical optimization problem

supervised learning: function approximation

$$f(X) \approx y$$

unsupervised learning: function approximation

$$X \approx f(X) = U V$$

Loss

- Also known as: error, likelihood, risk, cost
- Loss function is chosen to:
 - Represent goals
 - Make optimization more tractable

Likelihood, ℓ, of the data is the most common choice. For a given model and independent identically distributed data (i.i.d):

$$\ell(data|model) = p(data|model) = \prod_{x_i \in data} p(x_i \mid model)$$

minimizing loss

surrogate loss

- Notice the 0-1 loss has lots of small flat places. Its is not convex, so using an general purpose optimizer will be very difficult.
- Logistic loss on the other hand is smooth and convex. Gradient based optimizers work well with logistic loss!
- When we do the lab on gradient descent this will make more sense.
- Because of this we use a "surrogate loss" for 0-1loss i.e even though we may be interested in 0-1 loss, we use a smooth convex loss like logistic because it can be solved with existing techniques.

loss functions

model	loss function
linear regression	Quadratic loss: $\sum (f(x) - y)^2$
logistic regression	logistic loss: $\sum \log (1 + e^{-f(x) \cdot y})$
SVM	Hinge loss: $\sum \max(0, 1-f(x)\cdot y)$
decision tree(CART)	Information gain :
boosting	exponential loss : $\sum e^{-\mathrm{f(x)\cdot y}}$

loss functions

All using $y \in \{-1,+1\}$

Perceptron

$$\mathbf{w} = \underset{w}{\operatorname{argmin}} \sum_{i} \operatorname{Max}(0, -y_{i} < \mathbf{w}, \mathbf{x}_{i} >)$$

$$gradient = \sum_{misclassified} y_i x_i$$

Boosting

$$\mathbf{w} = \underset{w}{\operatorname{argmin}} \sum_{i} \exp(-y_{i} \langle \mathbf{w}, \mathbf{x}_{i} \rangle)$$

Logistic regression

$$\mathbf{w} = \underset{w}{\operatorname{argmin}} \sum_{i} log(1 + exp(-y_i < \mathbf{w}, \mathbf{x}_i >))$$

gradient =
$$\sum_{i} \frac{y_i w}{(1 + exp(-y_i < w, x_i >))}$$

Svm: hinge loss

$$\mathbf{w} = \underset{w}{\operatorname{argmin}} \sum_{i} \max(0, 1 - y_i < \mathbf{w}, \mathbf{x}_i >)$$

Quadratic loss

$$\mathbf{w} = \underset{w}{\operatorname{argmin}} \sum_{i} (y_{i} - \langle \mathbf{w}, \mathbf{x}_{i} \rangle)^{2}$$

optimization

Closed form solution (rare)
 Linear regression, Naive Bayes

- Iterative gradient based (most common)
 linear regression, logistic regression, perceptron svm, neural networks
- Expectation maximization kmeans, gmm, hmm, bayesian networks
- Heuristic i.e greedy algorithms
 classification and regression trees, association rules

Generalization Framework

generalization

Two practical ways to help learn models that generalize to new data

Regularization – add regularization to control over-fitting.

Split the data = Train data + Test data. Generalization error will be overestimate of true error if it is based solely on training data

- Fit model on Train, use test to estimate true error rate
- In practice use cross validation or bootstrapping
- With hyper-parameters often we introduce a 3 way split:

data = Train + Validate + Test

regularization

$$w_{min} = arg_{w}^{min} \sum_{i=1}^{n} Loss(y_i, f_{w}(x_i)) + \Omega(w)$$

In practice, we add a term to the loss function To penalize complex models!

regularization for linear models

• ℓ_2 regularization is the most common: ridge

$$\Omega(w) = \frac{1}{2} \| w \|^2 = \frac{1}{2} w \cdot w$$

• ℓ_1 regularization provides sparse solutions : *lasso*

$$\Omega(w) = \sum |w_{i}|$$

Both ℓ_1 and ℓ_2 control complexity by penalizing large values of W

• Also possible to combine ℓ_1 and ℓ_2 : *elastic net*

$$\Omega(w) = \lambda_1 \ell_1 + \lambda_2 \ell_2$$

regularization in nonlinear models

Anything that limits the complexity of the hypothesis space is Also a form of regularization i.e:

- Degree for polynomial expansions
- Number of hidden neurons in neural networks
- Number of latent factors in Matrix factorizations
- Number of neighbors in neighborhood models
- Tree depth in decision trees
- Number of clusters in clustering models

representer thm

If w can be written as function of margin:

$$w_{min} = \underset{w}{\operatorname{argmin}} \sum_{i=1}^{n} Loss(m_{i}) + \frac{1}{2} \|w\|^{2}$$

Then:

$$w_{min} = \sum_{i} \alpha_{i} x_{i}$$

If Loss is differentiable:

$$w_{min} = \frac{1}{\lambda} \sum_{i=1}^{n} -y_i \left(\frac{dLoss}{dm} \right) x_i$$

Supervised Learning:Linear Models

linear models

- Most fundamental of ml supervised models
- Continues to be in useful in practice even if in the presence of significant nonlinearity
 - Many nonlinear methods are based on linear models, so its important to really understand them
- With Big Data
 - Linear methods are still the fastest and sometimes the only choice
 - With high dimensional data, often linear models can be on par with nonlinear models

linear models

• Predictions are based on the dot product of weight vector \boldsymbol{w} and feature vector \boldsymbol{x} :

linear models

 Regression: we can use this directly as estimate of the predicted label

$$f(x) = w x$$

Classification: we need to threshold it

$$f(x) = sign(wx) = \begin{cases} 1 & \text{if } wx > 0 \\ 0 & \text{if } wx <= 0 \end{cases}$$

Regression problem where we want to predict a continuous label:

We want to find a line that fits our data...

But there are lots of lines that "fit". How do we choose?

One way is to measure the errors e_i between the line and the points:

$$\varepsilon_{i} = w \times i - y_{i}$$

Define a loss function as the sum of squared errors:

$$loss(w) = \sum_{i=1}^{N} (\varepsilon_i = w \times (i - y_i)^2)$$

Now add the regularization term!

$$loss(w) = \sum_{i=1}^{N} (w x_i - y_i)^2 + \lambda ||w||^2$$

Find least squares estimate of w Over the training data

Regularization term
Parameter 'λ' needs to be estimated!

Rewrite cost/loss in Matrix form:

$$loss = \mathbf{L}(w) = (\mathbf{X} \times w - y)^2 + \lambda ||w||^2$$

Calculate gradient:

$$\nabla \mathbf{L}(\mathbf{w}) = 2(\mathbf{X}^{\mathsf{t}}(\mathbf{X}\mathbf{w} - \mathbf{y}) + \lambda \mathbf{w})$$

closed form solution

Set the gradient equal to zero and solve:

$$\nabla \mathbf{L}(w) = 2(\mathbf{X}^{\mathsf{t}}(\mathbf{X} \times w - y) + \lambda w) = 0$$

$$w = (X^{t}X + \lambda I_{K})^{-1}X^{t}y$$

Ridge regression

$$w = (X^{t}X + \lambda I_{K})^{-1}X^{t}y$$

- This called the ridge regression solution
- The diagonal term ensures the matrix has full rank and is invertible.
- But to actually compute this we normally don't compute the inverse as it is costly and unstable. Instead solve it using a convenient matrix factorization:
 - QR
 - Cholesky
 - SVD

Iterative solution

- The closed form solution works well and is used in practice, but we will present iterative solution based on gradient descent optimization.
- Advantages of gradient descent over closed form ridge solution:
 - Scales better
 - Can be used in online fashion
 - Introduce a technique that can be used in other ml scenarios

Gradient Descent

gradient descent

Basic idea is simple:

- Start somewhere --it could be random or all 0s
- Start "climbing down" the cost function i.e update the weight vector in a direction *against* the gradient of the function at that point
- Stop optionally when either: function values are converging gradient is close to zero

gradient descent

gd pseudo-code

η is a learning rate
Step size parameter

$$\eta = \eta_0$$

$$w = w_0$$

for (1 to N) do:

$$w = w - \eta \times \nabla f(w)$$

gradient update step

gradient descent

gradient decent gotchas!

 The learning rate can be problematic. Too small a rate and progress will be very slow:

gradient decent gotchas!

 But too large a rate and the iterations may never even converge!

Speeding up gradient descent

- Adaptive step sizes do a line search to find suitable step size. Armijo backtracking is a used in our lab exercises
- Nesterov acceleration (see lab notes) has been found to be a very practical speedup as well.
- Even with good step sizes, vanilla gradient descent will waste a lot of time "zig-zagging". Two solutions to this:
 - Adding a "momentum" term that averages in previous search direction
 - Conjugate-gradient method is standard fix for this. (see lab notes)

Speeding up gradient descent

- Newton's method is a gradient descent method that uses the curvature information in the *hessian*, $H = \nabla^2 f$, to eliminate the need for a step-size parameter as well as converging in a single step for quadratics!
- The update rule is: $w = w H^{-1}\nabla f(x)$
- The big problem is that it does not scale well. To find a happy medium, quasi newton methods exist which approximate the hessian (See L-BFGS in the lab exercises)

Back to linear regression...

 Now we can use gradient descent to estimate the model weights:

$$w = w - \eta \left(X^{t}(\hat{y} - y) + \lambda w \right)$$
learning rate predicted values = Xw