Keegan D. Korthauer

Contact ESB 3108

2207 Main Mall

Vancouver, BC V6T 1Z4, Canada

phone: 604-822-5535

EDUCATION

2015 **Ph.D., Statistics**, University of Wisconsin, Madison, Wisconsin USA

Emphasis in Biostatistics

Advisor: Christina Kendziorski, Ph.D.

Dissertation: Bayesian hierarchical modeling of high-throughput genomic data with applications to cancer bioinformatics and stem cell differentiation

email: keegan@stat.ubc.ca

twitter: @keegankorthauer

website: kkorthauer.org

github: kdkorthauer

2009 M.S., Biostatistics, University of Minnesota, Minneapolis, Minnesota USA

Advisor: David Nelson, Ph.D.

Thesis: The impact of missing confounders on propensity stratification in observa-

 $tional\ studies$

2007 B.S., Biology, University of Minnesota, Minneapolis, Minnesota USA

Summa cum laude

Professional

Positions

2019- Assistant Professor

Department of Statistics, University of British Columbia, Vancouver, BC, Canada

2019- Investigator

BC Children's Hospital Research Institute, Vancouver, BC, Canada

2015-2019 Postdoctoral Research Fellow

Department of Biostatistics & Computational Biology, Dana-Farber Cancer Institute Department of Biostatistics, Harvard T.H. Chan School of Public Health

Mentor: Rafael Irizarry, Ph.D.

Publications

Peer-Reviewed Journal Articles

- [1] P.C. Lee, S. Klaeger[†], P.M. Le[†], **K. Korthauer**[†], J. Cheng[†], V. Ananthapadmanabhan , T.C. Frost, J.D. Stevens, A.Y. Wong, J.B. Iorgulescu, A. Tarren, V.A. Chea , I.P. Carulli, C.K. Lemvigh, C.B. Pedersen, A.K. Gartin, S. Sarkizova, K.T. Wright, L.W. Li, J. Nomburg, S. Li, T. Huang, X. Liu, L. Pomerance, L.M. Doherty, A. Apffel, L. Wallace, S. Rachimi, K.D. Felt, J. Wolff, E. Witten, W. Zhang, D. Neuberg, W.J. Lane, G. Zhang, L.R. Olsen, M. Thakuria , S.J. Rodig, K.R. Clauser, G.J. Starrett, J.G. Doench, S.J. Buhrlage, S.A. Carr, J.A. DeCaprio[‡], C.J. Wu[‡], D.B. Keskin[‡]. Reversal of viral and epigenetic HLA class I repression in Merkel cell carcinoma. *Journal of Clinical Investigation*, 132(13):e151666, 2022.
- [2] J.E. Berchuck[†], S. C. Baca[†], H.M. McClure[†], **K. Korthauer**, H. K. Tsai, P. V. Nuzzo, K. M. Kelleher, M. He, J. A. Steinharter, S. Zacharia, S. Spisak, J.-H. Seo, V. Conteduca,

Updated 2022-07-11 1 of 9

- O. Elemento, J. Auh, M. Sigouros, E. Corey, M. S. Hirsch, M.-E. Taplin, T. K. Choueiri, M. M. Pomerantz, H. Beltran, M. L. Freedman. Detecting neuroendocrine prostate cancer through tissue-informed cell-free DNA methylation analysis. *Clinical Cancer Research*. 28 (5): 928938, 2022.
- [3] H. Guo, Y. Wu, M. Nouri, S. Spisak, J. W. Russo, A. G. Sowalsky, M. M. Pomerantz, Z. Wei, K. Korthauer, J. H. Seo, L. Wang, Seiji Arai, M. L. Freedman, H. H. He, S. Chen, S. P. Balk. Androgen receptor and MYC equilibration centralizes on developmental super-enhancer. *Nature Communications*. Dec 15;12(1):1-8, 2021.
- [4] X. Ma, **K. Korthauer**, C. Kendziorski, M. A. Newton. A compositional model to assess expression changes from single-cell RNA-seq data. *Annals of Applied Statistics*, 15 (2): 880-901, 2021.
- [5] M. A. Keibler, W. Dong, K. D. Korthauer, A. M. Hosios, S. J. Moon, L. B. Sullivan, N. Liu, K. L. Abbott, O. D. Arevalo, K. Ho, J. Lee, A. S. Phanse, J. K. Kelleher, O. Iliopoulos, J. L. Coloff, M. G. Vander Heiden, G. Stephanopoulos. Differential Substrate Use in EGFand Oncogenic KRASStimulated Human Mammary Epithelial Cells. *The FEBS Journal*, 288 (19): 5629-5649, 2021.
- [6] A. C. Watt, P. Cejas, M. J. DeCristo, O. Metzger-Filho, E. Y. N. Lam, X. Qiu, H. BrinJones, N. Kesten, R. Coulson, A. Font-Tello, K. Lim, R. Vadhi, V. W. Daniels, J. Montero, L. Taing, C. A. Meyer, O. Gilan, C.C. Bell, K. Korthauer, C. Giambartolomei, B. Pasaniuc, J.-H. Seo, M. L. Freedman, C. Ma, M. J. Ellis, I. Krop, E. Winer, A. Letai, M. Brown, M. A. Dawson, H. W. Long, J. J. Zhao, S. Goel. CDK4/6 inhibition reprograms the breast cancer enhancer landscape by stimulating AP-1 transcriptional activity. Nature Cancer, 2:3448, 2021.
- [7] S. C. Baca, D. Y. Takeda, J.-H. Seo, J. Hwang, S. Y. Ku, R. Arafeh, T. Arnoff, S. Agarwal, C. Bell, E. OConnor, X. Qiu, S. A. Alaiwi, R. I. Corona, M. A. S. Fonseca, C. Giambartolomei, P. Cejas, K. Lim, M. He, A. Sheahan, A. Nassar, J. E. Berchuck, L. Brown, H. M. Nguyen, I. M. Coleman, A. Kaipainen, N. De Sarkar, P.S. Nelson, C. Morrissey, K. Korthauer, M. M. Pomerantz, L. Ellis, B. Pasaniuc, K. Lawrenson, K. Kelly, A. Zoubeidi, W. C. Hahn, H. Beltran, H. W. Long, M. Brown, E. Corey, M. L. Freedman. Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer. Nature Communications, 12:1979, 2021.
- [8] P. V. Nuzzo[†], J. E. Berchuck[†], K. Korthauer[†], S. Spisak[†], A H. Nassar, S. A. Alaiwi, A. Chakravarthy, S. Y. Shen, Z. Bakouny, F. Boccardo, J. Steinharter, G. Bouchard, C. R. Curran, W Pan, S. C. Baca, J.-H. Seo, G.-S. M. Lee, M. D. Michaelson, S. L. Chang, S. S. Waikar, G. Sonpavde, R. A. Irizarry, M. Pomerantz, D. D. De Carvalho[‡], T. K. Choueiri[‡], M. L. Freedman[‡]. Detection of renal cell carcinoma using plasma and urine cell-free DNA methylomes. Nature Medicine, 26:1041-1043, 2020.
- [9] M. M. Pomerantz[†], X. Qiu[†], Y. Zhu[†], D. Y. Takeda, W. Pan, S. C. Baca, A. Gusev, K. D. Korthauer, T. M. Severson, G. Ha, S. R. Viswanathan, J.-H. Seo, H.M. Nguyen, B. Zhang, B. Pasaniuc, C. Giambartolomei, S. A. Alaiwi, C. A. Bell, E. P. O'Connor, M. S. Chabot, D. R. Stillman, R. Lis, A. Font-Tello, L. Li, P. Cejas, A. M. Bergman, J. Sanders, H. G. van der Poel, S. A. Gayther, K. Lawrenson, M. A. S. Fonseca, J. Reddy, R. I. Corona, G. Martovetsky, B. Egan, T. Choueiri, L. Ellis, I. P. Garraway, G.-S. M. Lee, E. Corey, H. W. Long, W. Zwart, M. L. Freedman. Prostate cancer reactivates developmental epigenomic programs during metastatic progression. Nature Genetics, 52:790-799, 2020.

- [10] K. Lasseter[†], A. H. Nassar[†], L. Hamieh[†], J. E. Berchuck[†], P. Vitale Nuzzo[†], K. Korthauer, A. B. Shinagare, B. Ogorek, R. McKay, A. R. Thorner, G.-S. Mary Lee, D. A. Braun, R. S. Bhatt, M. Freedman[†], T. K. Choueiri[‡], D. J. Kwiatkowski[‡], Plasma cell-free DNA variant analysis compared with methylated DNA analysis in renal cell carcinoma. Genetics in Medicine, 22:13661373, 2020.
- [11] K. Korthauer[†], P. K. Kimes[†], C. Duvallet[‡], A. Reyes[‡], A. Subramanian[‡], M. Teng, Chinmay Shukla, E. J. Alm, S. C. Hicks. A practical guide to methods controlling false discovery rates. *Genome Biology*, 20:118, 2019.
- [12] **K. Korthauer**, S. Chakraborty, Y. Benjamini, R. A. Irizarry. Detection and accurate False Discovery Rate control of differentially methylated regions from Whole Genome Bisulfite Sequencing. *Biostatistics*, 20(3):367-383, 2019.
- [13] D. Y. Takeda[†], S. Spisák[†], J.-H. Seo, C. Bell, E. O'Connor, K. Korthauer, D. Ribli, I. Csabai, N. Solymosi, Z. Szállási, P. Cejas, X. Qiu, H. Long, V. Tisza, P. V. Nuzzo, M. Rohanizadegan, M. M. Pomerantz, W. C. Hahn, M. L. Freedman. A somatically acquired enhancer of the androgen receptor is a noncoding driver in advanced prostate cancer. Cell, 174(2):422-432, 2018.
- [14] C. J. Shukla, A. L. McCorkindale, C. Gerhardinger, K. Korthauer, M. N. Cabili, D. M. Shechner, R. A. Irizarry, P. G. Maass, J. L. Rinn. High-throughput identification of RNA nuclear enrichment sequences. *The EMBO Journal*, 37:e98452, 2018
- [15] J. Choi, S. Ye, K. Eng, **K. Korthauer**, W. H. Bradley, J. S. Rader, C. Kendziorski. IPI59: an actionable biomarker to improve treatment response in serous ovarian carcinoma patients. *Statistics in Biosciences*, 9(1):1-12, 2017.
- [16] K. Korthauer, L.-F. Chu, M. A. Newton, Y. Li, J. Thomson, R. Stewart and C. Kendziorski. A statistical approach for identifying differential distributions in single-cell RNA-seq experiments. *Genome Biology*, 17:222, 2016.
- [17] C. Bodelon, M. Horswill, A. K. Chaturvedi, N. Wentzensen, S. Vinokurova, K. Korthauer, S. T. Dunn, J. N. Sampson, M. Schiffman, M. A. Newton, J. den Boon, M. E. Sherman, P. Ahlquist, J. L. Walker, R. E. Zuna, S. S. Wang. Copy number alterations and HPV integration in cervical precancer and invasive cancer. *Carcinogenesis*, 37(2):188-196, 2016.
- [18] **K. Korthauer**, C. Kendziorski. MADGiC: a model-based approach for identifying driver genes in cancer. *Bioinformatics*, 31(10): 15261535, 2015.
- [19] Y. J. Sung, K. Korthauer, M. Swartz, C. Engelman. Methods for Collapsing Multiple Rare Variants in Whole Genome Sequencing Data. Genetic Epidemiology, 38(S1):S13-S20, 2014.
- [20] M. Wuthrich, K. Ersland, J. C. Pick-Jacobs, B. H. Gern, C. A. Frye, T. D. Sullivan, M. B. Brennan, H. I. Filutowicz, K. O'Brien, K. Korthauer, S. Schultz-Cherry, B. S. Klein. Limited model antigen expression by transgenic fungi induces disparate fates during differentiation of adoptively transferred T cell receptor transgenic CD4+ T cells: robust activation and proliferation with weak effector function during recall. *Infection and immunity*, 80(2): 787-797, 2012.
- [21] D. Z. Bliss, J. Lewis, K. Hasselmann (now Korthauer), K. Savik, A. Lowry, R. White-bird. Use and evaluation of disposable absorbent products for managing fecal incontinence by community-living people. *Journal of wound, ostomy, and continence nursing*, 38(3):289, 2011.

[22] L. Wang, R. M. Mitra, K. Hasselmann (now Korthauer), M. Sato, L. Lenarz-Wyatt, J. D. Cohen, F. Katagiri, J. Glazebrook. The genetic network controlling the Arabidopsis transcriptional response to Pseudomonas syringae pv. maculicola: roles of major regulators and the phytotoxin coronatine. *Molecular plant-microbe interactions*, 21(11): 1408-1420, 2008.

Peer-Reviewed Correspondence

[1] B. Haibe-Kains, G.A. Adam, A. Hosny, F. Khodakarami, L. Waldron, B. Wang, C. McIntosh, A. Goldenberg, A. Kundaje, C.S. Greene, T. Broderick, M.M. Hoffman, J.T. Leek, K. Korthauer, W. Huber, A. Brazma, J. Pineau, R. Tibshirani, T. Hastie, J.P.A. Ioannidis, J. Quackenbush, H.J.W.L. Aerts. Transparency and reproducibility in artificial intelligence. Nature, 586(7829): E14-E16, 2020.

Pre-prints

- [1] J. R. Albert, T. Kobayashi, A. Inoue, A. Monteagudo-Snchez, S. Kumamoto, T. Takashima, A. Miura, M. Oikawa, F. Miura, S. Takada, M. Hirabayashi, K. Korthauer, K. Kurimoto, M. Greenberg, M. Lorincz, H. Kobayashi. Conservation and divergence of canonical and non-canonical imprinting in murids. bioRxiv, https://doi.org/10.1101/2022.04.21.488764, 2022
- [2] **K. Korthauer**, R. A. Irizarry. Genome-wide repressive capacity of promoter DNA methylation is revealed through epigenomic manipulation. *bioRxiv*, https://doi.org/10.1101/381145, 2018.

Book Chapters

[1] **K. Korthauer**, J. Dawson, C. Kendziorski. Predicting cancer subtypes using survival-supervised latent Dirichlet allocation models. In *Advances in Statistical Bioinformatics: Models and Integrative Inference for High-Throughput Data*, K.-A. Do, Z. S. Qin and M. Vannucci (Eds). Cambridge University Press, 2013.

Conference Proceedings

- [1] J. Delgado, E. A. Jacobs, N. E. Adler, **K. Korthauer**, A. Fernandez. The relation between subjective socioeconomic status, depression and self-rated health in a population of African Americans, Hispanics and non-Hispanic whites with diabetes, *Journal of General Internal Medicine*, 28: S209, 2013.
- [2] J. Delgado, A. Fernandez, N. E. Adler, **K. Korthauer**, E. Jacobs. Subjective and objective socioeconomic status and control of hypertension and diabetes. *Journal of General Internal Medicine*, 27:S312-S312, 2012.

Ph.D. Dissertation

[1] **K. Korthauer**. Bayesian hierarchical modeling of high-throughput genomic data with applications to cancer bioinformatics and stem cell differentiation, Ph.D. Thesis, University of Wisconsin, 2015.

† and ‡ Denote equal contribution subsets

Honors & Awards

2017	Travel award for the Ascona Workshop 2017 on Statistical Challenges in Single-Cell Biology in Ascona, Switzerland
2016	Travel award from the Biometrics Section of the American Statistical Association to attend the Joint Statistical Meetings in Chicago, Illinois
2015	Poster award from the Regional Advisory Board of the International Biometric Society at the Eastern North American Region Meeting in Miami, Florida
2014	Travel grant from the Vilas Conference Presentation Trust
2013	Travel award from the Howard Hughes Medical Institute/NIGMS to attend the Jackson Laboratory short course on Systems Genetics in Bar Harbor, Maine
2012	Travel award for the Genetic Analysis Workshop in Stevenson, Washington
2008	Outstanding Teaching Assistant Award at the University of Minnesota
2007	Phi Beta Kappa Society
5	

FELLOWSHIPS & SCHOLAR-SHIPS

2010-2013 NIH/NIGMS Predoctoral Training Grant in Biostatistics, University of Wisconsin

2006 Undergraduate Research Opportunities Program project grant, University of Minnesota

2003-2007 National Merit James E. Casey Scholarship (\$24,000 USD)

Presentations

Invited Talks

- [1] Methods for sparse and high-dimensional measurements of DNA methylation. Computation and Informatics in Biology and Medicine Retreat, University of Wisconsin. 3 June 2022. Madison, WI.
- [2] Methods for sparse and high-dimensional measurements of DNA methylation. Department of Statistics Seminar, University of Washington. 13 May 2022. Seattle, WA. [Virtual due to COVID-19]
- [3] Plugging the leaky pipeline in statistics. UBC-SFU Joint Statistics Seminar. University of British Columbia and Simon Fraser University. 12 March 2022. Vancouver, BC. [Virtual due to COVID-19]
- [4] Mining the epigenome: Computational tools to interpret DNA methylation data. *Next-Generation Genomics Meeting*. New York University. 27 September 2021. New York, NY. [Virtual due to COVID-19]
- [5] Mining the epigenome: Computational tools to interpret DNA methylation data. *Keck Seminar, The Gulf Coast Consortia for Quantitative Biomedical Sciences*. Rice University. 20 November 2020. Houston, TX. [Virtual due to COVID-19]

- [6] Accurate inference of DNA methylation data: statistical challenges lead to biological insights. Biostatistics Seminar, Department of Biostatistics & Medical Informatics and the Waisman Center, University of Wisconsin. 13 March 2019. Madison, WI.
- [7] Accurate inference of DNA methylation data: statistical challenges lead to biological insights. Program in Quantitative Genomics Working Group Series, Harvard T.H. Chan School of Public Health. 9 April 2019. Boston, Massachusetts.
- [8] Accurate inference of DNA methylation data: statistical challenges lead to biological insights. Dana-Farber Cancer Institute Center for Functional Cancer Epigenetics Seminar. 15 February 2019. Boston, Massachusetts.
- [9] Accurate inference of DNA methylation data: statistical challenges lead to biological insights. Statistics Seminar, Department of Statistics, Penn State University. 31 January 2019. State College, PA.
- [10] Accurate inference of DNA methylation data: statistical challenges lead to biological insights. Seminar, National Library of Medicine, National Institutes of Health. 28 January 2019. Bethesda, MD.
- [11] Accurate inference of DNA methylation data: statistical challenges lead to biological insights. Biostatistics Seminar, Department of Biostatistics & Informatics, Colorado School of Public Health, University of Colorado Denver. 23 January 2019. Denver, CO.
- [12] Accurate inference of DNA methylation data: statistical challenges lead to biological insights. Statistics Seminar, Department of Statistics, University of British Columbia. 17 January 2019. Vancouver, BC, Canada.
- [13] Accurate inference of DNA methylation data: statistical challenges lead to biological insights. Biostatistics Seminar, Department of Biostatistics & Epidemiology, UMass Amherst. 10 January 2019. Amherst, MA.
- [14] Accurate inference of DNA methylation data: statistical challenges lead to biological insights. Biostatistics Seminar, Department of Biostatistics, University of Michigan. 8 January 2019. Ann Arbor, MI.
- [15] Accurate inference of DNA methylation data: statistical challenges lead to biological insights. Biostatistics Seminar, Department of Biostatistics, Harvard T.H. Chan School of Public Health. 3 January 2019. Boston, MA.
- [16] Accurate inference of DNA methylation data: statistical challenges lead to biological insights. Seminar, Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory. 19 December 2018. Cold Spring Harbor, NY.
- [17] Practical recommendations for controlling false discoveries in computational biology. *European Bioconductor Meeting*. 6-7 December 2018. Munich, Germany.
- [18] Genome-wide repressive capacity of DNA methylation is revealed through accurate inference. EMBL-EBI, Wellcome Trust Genome Campus. 28 November 2018. Hinxton, UK.
- [19] Detection and inference of differentially methylated regions from bisulfite sequencing. *International Conference on Advances in Interdisciplinary Statistics and Combinatorics*. 5-7 October 2018. Greensboro, NC.
- [20] Detection and inference of differentially methylated regions from bisulfite sequencing. Bioconductor Conference. 26-28 July 2017. Boston, MA, USA.

- [21] Exploiting heterogeneity in single-cell transcriptomic analyses: how to move beyond comparisons of averages. Festival of Genomics California. 19-21 September 2016. San Diego, California.
- [22] A statistical approach for identifying differential distributions in single-cell RNA-seq. *iB-RIGHT*. 1-3 November 2015. M. D. Anderson Cancer Center, Houston, Texas.

Selected Contributed Talks

- [1] De novo detection and accurate inference of differentially methylated regions. Joint Statistical Meetings. 29 July 2 August 2018. Vancouver, British Columbia, Canada.
- [2] scDD: A Statistical Approach for Identifying Differential Distributions in Single-Cell RNA-Seq Experiments. *Joint Statistical Meetings*. 30 July 4 August 2016. Chicago, Illinois.
- [3] Identifying driver genes from somatic mutations: an integrative model-based approach. *International Biometric Society Eastern North American Region (ENAR) Annual Meeting*. 16-19 March 2014. Baltimore Maryland.

Selected Poster Presentations

- [1] **K. Korthauer**, S. Chakraborty, Y. Benjamini, R.A. Irizarry. Detection and accurate False Discovery Rate control of differentially methylated regions from Whole Genome Bisulfite Sequencing. *ENCODE Consortium Meeting*. 3-7 February 2018. Palo Alto, California.
- [2] **K. Korthauer**. Exploiting heterogeneity in single-cell transcriptomic analyses: how to move past comparisons of averages. *Ascona Workshop on Statistical Challenges in Single-Cell Biology*. 30 April 5 May 2017. Ascona, Switzerland.
- [3] **K. Korthauer**, R.A. Irizarry. Assessing Statistical Significance of Differentially Methylated Regions in Whole-Genome Bisulfite Sequencing Experiments. *ENCODE Consortium Meeting*. 15-16 June 2016. La Jolla, California.
- [4] **K. Korthauer**, C.K. Kendziorski. Differential Dynamics in Single-Cell RNA-Seq Experiments. *International Biometric Society Eastern North American Region (ENAR) Spring Meeting.* 15-18 March 2015. Miami, Florida.
- [5] **K. Korthauer**, C.K. Kendziorski. An integrative approach for the identification of somatic mutations that drive cancer. *Genomic Sciences Training Program Retreat*. 14 June 2013. Madison, Wisconsin.

EDITORIAL ACTIVITIES

Journal Referee

Annals of Applied Statistics, Bioinformatics, Biometrics, Biostatistics, BMC Bioinformatics, Cell Systems, Epigenetics & Chromatin, F1000 Research, Genome Biology, Genome Research, Giga-Science, Nucleic Acids Research, Science, Wiley Interdisciplinary Reviews: Computational Statistics, Nature Communications Biology

Professional Societies

2012-present Member, American Statistical Association

Software

Developer

- [1] dmrseq: An R package for inference for differentially methylated regions (DMRs) from bisulfite sequencing, available on Bioconductor.
- [2] scDD: An R package for the identification of differentially distributed genes in single-cell RNA-seq, available on Bioconductor
- [3] MADGiC: An R package for the identification of cancer driver genes by integrating somatic mutation, expression, replication timing, and functional impact, available on GitHub

Contributor

[1] oligoGames: An R package for the analysis of tiled massively parallel reporter assays (MPRAs), available on GitHub.

EDUCATIONAL ACTIVITIES

Masters of Biostatistics (MS) Advisees

2018 Eunice Ye, Biostatistics Academic co-advisor

Teaching

Classroom Instruction

- 2022 Instructor, Statistical Methods for High-Dimensional Biology (STAT/BIOF/GSAT 540).
 - Department of Statistics, University of British Columbia, Vancouver, BC, Canada
- 2021 Instructor, Statistical Methods for High-Dimensional Biology (STAT/BIOF/GSAT 540).

Department of Statistics, University of British Columbia, Vancouver, BC, Canada

2020 **Instructor**, Statistical Methods for High-Dimensional Biology (STAT/BIOF/GSAT 540).

Department of Statistics, University of British Columbia, Vancouver, BC, Canada

- 2017 **Teaching Assistant**, Introduction to Data Science (BST 260).

 Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston,
 - MA
- 2014 Instructor, Applied Introductory Statistics for Engineers (STAT 324).

 Department of Statistics, University of Wisconsin, Madison, Wisconsin
- 2007-2008 **Teaching Assistant**, Introduction to Biostatistical Methods I (PubH 6414).

 Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota

Shortcourses & Workshops

- 2020 Instructor, Short Course: Statistical Methods for Functional Genomics.
 26 June-9 July 2020. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
 [Canceled due to COVID-19]
- 2019 **Associate Instructor**, Short Course: Statistical Methods for Functional Genomics. 28 June-11 July 2019. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- 2017 **Co-organizer and instructor** for the Healthcare Innovation Replication. 24-25 March 2017. University of Puerto Rico, San Juan, Puerto Rico.
- 2016-2017 Teaching Assistant, Short Course: Statistical Methods for Functional Genomics.
 23 June-6 July 2016 and 30 June-13 July 2017. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- 2016 Co-organizer and instructor of Workshop on Dismantling the bulk: examining neuronal heterogeneity using single-cell techniques. 19 September 2016. Festival of Genomics California, San Diego, California.