Teoreau de Green:

F=(P,Q) campo 6 definido en mabrerto SI SIRZ y 6 mo curra en RZ cenada, Simple, orientada positiramente y diferencialde a toros que encierra mo región D SIZ de H/20 III. Entonas,

Int. de Campo sobre

Integral sobre región "plana" D

$$= \int_{e^{+}}^{F} ds = \int_{a}^{b} \langle F(o(t)), o'(t) \rangle dt$$

Cálculo de áreas

Teoreua:

Sea R C 12 ma región donde vale el Teorema de Green y 6^t su frontera orientada positivamente. Entracos,

Area
$$(R) = \frac{1}{2} \int_{8+}^{8+} -y dx + x dy$$
.

Observación:

Para colculor áreas, bodunas usor Green con

wal quier campo F=(P,Q) / 2Q -2P sea

constante.

debe ser constante

Rotor

Formas rectoriales del Teoremo de Green.

Definición: Seo F = (P, Q, R) un campo rectorial diferenciable definido en R^3 . El robor de F es el campo rectorial definido como:

Formula
$$rot(F) = det \begin{pmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{pmatrix}$$

$$\Rightarrow$$
 rot $(F) = \nabla \times F$

2 producto vectorial

Rotor es calar

$$\nabla \times F = \begin{pmatrix} 0 & 0 & \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \end{pmatrix}$$

prece erabirlo como

$$= \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}$$

Sea Fu campo 6 en 123 que es m
campo gradiente, ie:
$$\frac{1}{2}$$
 f: $R^3 \rightarrow R$ 6^2

Definicion: Sea F=(P,Q,R) un campo redorcal diferenciable definido en 123. La dirergencia de F de five como:

Note aion
$$div(F) = \langle \nabla, F \rangle$$
Producto interno
$$= \nabla \cdot F$$

. Si
$$F = (P, Q)$$
 campo on \mathbb{R}^2

$$\Rightarrow div(F) = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y}$$

Proposición:
Seo F un campo rectivial de clase
$$6^2$$
 definido
en 12^3 . Entraces,
 $dir(rof(F)) = \nabla.(\nabla x F) = 0$.

les der l'es des

Teorema: (forma rectornal du Teorema du Green)
Sea
$$R \subseteq \mathbb{R}^Z$$
 ma región donde valu Green, y
Jea $F = (P,Q)$ m campo S^1 . Entonas,
 $\int \operatorname{ref}(F) = \int \int \nabla x F \cdot [o_i o_i 1) \, dg = \int (P_i Q) \, ds$.
 R R R R

rot
$$(F) = (0, 0, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y})$$
 Por que ?

puedo passer de

Teorema: (de la divergencia en el plano)

Sea RSIR mo región donde rale Green y

Sea y la mormal exterior a R. Si F=P.Q)

es un campo rectornal &; entonces

: R-R

I F. y ds = S dir(F) dxdy

2R

Compo normal

al borde de la curva : R2-R

Otro

Campo: TR2-R

Dem: Sea T: [a,b] -> R²

ma parame teitación de

DR, T(t) = (x(t), y(t)) que

Orienta DR positiramente

=> 3i p=T(t), m(p) = (y'(t), -x(t)) = (y'(t), -x(t))

Solve de que $\sigma'(t) = (x'(t), 5'(t))$

es el vector tengente en cada p entonces

$$V = (x'(t), g'(t))$$
 $N = (x'(t), g'(t))$
 $N = (x'(t), g'(t))$