Support Vector Machines: Maximum Margin Classifiers

Nipun Batra

IIT Gandhinagar

July 30, 2025

Outline

The Problem with Many Decision Boundaries

Question: For linearly separable data, which line should we choose?

All lines separate the data perfectly! Which is best for new, unseen data?

Pop Quiz: Decision Boundary Selection

Quick Quiz 1

Among all possible separating lines, which criterion should we use to choose the best one?

a) The line closest to the data points

Answer: b) Maximum margin! The line farthest from both classes generalizes better.

Pop Quiz: Decision Boundary Selection

Quick Quiz 1

Among all possible separating lines, which criterion should we use to choose the best one?

- a) The line closest to the data points
- b) The line that maximizes distance to closest points

Answer: b) Maximum margin! The line farthest from both classes generalizes better.

Pop Quiz: Decision Boundary Selection

Quick Quiz 1

Among all possible separating lines, which criterion should we use to choose the best one?

- a) The line closest to the data points
- b) The line that maximizes distance to closest points
- c) Any line works equally well

Answer: b) Maximum margin! The line farthest from both classes generalizes better.

SVM Principle

Among all separating hyperplanes, choose the one that **maximizes the margin** to the nearest data points.

SVM Principle

Among all separating hyperplanes, choose the one that **maximizes the margin** to the nearest data points.

SVM Principle

Among all separating hyperplanes, choose the one that **maximizes the margin** to the nearest data points.

Key concepts:

Margin: Distance from decision boundary to closest points

SVM Principle

Among all separating hyperplanes, choose the one that **maximizes the margin** to the nearest data points.

Key concepts:

- Margin: Distance from decision boundary to closest points
- Support Vectors: The closest points that define the margin

SVM Principle

Among all separating hyperplanes, choose the one that **maximizes the margin** to the nearest data points.

Key concepts:

- Margin: Distance from decision boundary to closest points
- Support Vectors: The closest points that define the margin
- Maximum Margin: Optimal decision boundary

SVM Principle

Among all separating hyperplanes, choose the one that **maximizes the margin** to the nearest data points.

Key concepts:

- Margin: Distance from decision boundary to closest points
- Support Vectors: The closest points that define the margin
- Maximum Margin: Optimal decision boundary

SVM Principle

Among all separating hyperplanes, choose the one that **maximizes the margin** to the nearest data points.

Key concepts:

- Margin: Distance from decision boundary to closest points
- Support Vectors: The closest points that define the margin
- Maximum Margin: Optimal decision boundary

Intuition

Larger margin = More confident predictions = Better generalization to new data

Given two parallel hyperplanes:

•
$$\mathbf{w} \cdot \mathbf{x} + \mathbf{b}_1 = 0$$

Given two parallel hyperplanes:

- $\mathbf{w} \cdot \mathbf{x} + \mathbf{b}_1 = 0$
- $\mathbf{w} \cdot \mathbf{x} + \mathbf{b}_2 = 0$

Given two parallel hyperplanes:

- $\mathbf{w} \cdot \mathbf{x} + \mathbf{b}_1 = 0$
- $\mathbf{w} \cdot \mathbf{x} + \mathbf{b}_2 = 0$

Given two parallel hyperplanes:

- $\mathbf{w} \cdot \mathbf{x} + \mathbf{b}_1 = 0$
- $\mathbf{w} \cdot \mathbf{x} + \mathbf{b}_2 = 0$

Distance formula: $D = \frac{|b_1 - b_2|}{\|\mathbf{w}\|}$

Given two parallel hyperplanes:

- $\mathbf{w} \cdot \mathbf{x} + \mathbf{b}_1 = 0$
- $\mathbf{w} \cdot \mathbf{x} + \mathbf{b}_2 = 0$

Distance formula: $D = \frac{|b_1 - b_2|}{\|\mathbf{w}\|}$

Given two parallel hyperplanes:

- $\mathbf{w} \cdot \mathbf{x} + \mathbf{b}_1 = 0$
- $\mathbf{w} \cdot \mathbf{x} + \mathbf{b}_2 = 0$

Distance formula: $D = \frac{|b_1 - b_2|}{\|\mathbf{w}\|}$

Derivation Intuition

• Find point x_1 on first hyperplane

Given two parallel hyperplanes:

- $\mathbf{w} \cdot \mathbf{x} + \mathbf{b}_1 = 0$
- $\mathbf{w} \cdot \mathbf{x} + \mathbf{b}_2 = 0$

Distance formula: $D = \frac{|b_1 - b_2|}{\|\mathbf{w}\|}$

- Find point x₁ on first hyperplane
- Move perpendicular distance t in direction w:

$$\mathbf{x}_2 = \mathbf{x}_1 + t \frac{\mathbf{w}}{\|\mathbf{w}\|}$$

Given two parallel hyperplanes:

- $\mathbf{w} \cdot \mathbf{x} + \mathbf{b}_1 = 0$
- $\mathbf{w} \cdot \mathbf{x} + \mathbf{b}_2 = 0$

Distance formula: $D = \frac{|b_1 - b_2|}{\|\mathbf{w}\|}$

- Find point x₁ on first hyperplane
- Move perpendicular distance t in direction w: $\mathbf{x}_2 = \mathbf{x}_1 + t \frac{\mathbf{w}}{\|\mathbf{w}\|}$
- · Substitute into second hyperplane equation

Given two parallel hyperplanes:

- $\mathbf{w} \cdot \mathbf{x} + \mathbf{b}_1 = 0$
- $\mathbf{w} \cdot \mathbf{x} + \mathbf{b}_2 = 0$

Distance formula: $D = \frac{|b_1 - b_2|}{\|\mathbf{w}\|}$

- Find point x₁ on first hyperplane
- Move perpendicular distance t in direction w:

$$\mathbf{x}_2 = \mathbf{x}_1 + t \frac{\mathbf{w}}{\|\mathbf{w}\|}$$

- Substitute into second hyperplane equation
- Solve for t to get distance

Pop Quiz: Hyperplane Distance

Quick Quiz 2

What is the distance between hyperplanes 2x+y-3=0 and 2x+y+1=0?

a) 1 unit

Answer: c) $D = \frac{|(-3)-1|}{\sqrt{2^2+1^2}} = \frac{4}{\sqrt{5}}$ units

Pop Quiz: Hyperplane Distance

Quick Quiz 2

What is the distance between hyperplanes 2x+y-3=0 and 2x+y+1=0?

- a) 1 unit
- b) 2 units

Answer: c) $D = \frac{|(-3)-1|}{\sqrt{2^2+1^2}} = \frac{4}{\sqrt{5}}$ units

Pop Quiz: Hyperplane Distance

Quick Quiz 2

What is the distance between hyperplanes 2x+y-3=0 and 2x+y+1=0?

- a) 1 unit
- b) 2 units
- c) $\frac{4}{\sqrt{5}}$ units

Answer: c) $D = \frac{|(-3)-1|}{\sqrt{2^2+1^2}} = \frac{4}{\sqrt{5}}$ units

Goal: Find hyperplane that maximizes margin

Hard-Margin SVM Formulation

Minimize:
$$\frac{1}{2} \|\mathbf{w}\|^2$$
 (1)

Subject to:
$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 \quad \forall i$$
 (2)

Goal: Find hyperplane that maximizes margin

Hard-Margin SVM Formulation

Minimize:
$$\frac{1}{2} \|\mathbf{w}\|^2$$
 (1)

Subject to:
$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 \quad \forall i$$
 (2)

Goal: Find hyperplane that maximizes margin

Hard-Margin SVM Formulation

Minimize:
$$\frac{1}{2} \|\mathbf{w}\|^2$$
 (1)

Subject to:
$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 \quad \forall i$$
 (2)

Why this formulation?

• Minimizing $\|\mathbf{w}\|^2 \Rightarrow$ Maximizing margin $\frac{2}{\|\mathbf{w}\|}$

Goal: Find hyperplane that maximizes margin

Hard-Margin SVM Formulation

Minimize:
$$\frac{1}{2} \|\mathbf{w}\|^2$$
 (1)

Subject to:
$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 \quad \forall i$$
 (2)

Why this formulation?

- Minimizing $\|\mathbf{w}\|^2 \Rightarrow$ Maximizing margin $\frac{2}{\|\mathbf{w}\|}$
- Constraint ensures all points are correctly classified

Goal: Find hyperplane that maximizes margin

Hard-Margin SVM Formulation

Minimize:
$$\frac{1}{2} \|\mathbf{w}\|^2$$
 (1)

Subject to:
$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 \quad \forall i$$
 (2)

Why this formulation?

- Minimizing $\|\mathbf{w}\|^2 \Rightarrow$ Maximizing margin $\frac{2}{\|\mathbf{w}\|}$
- Constraint ensures all points are correctly classified
- Support vectors lie exactly on margin boundary: $y_i(\mathbf{w} \cdot \mathbf{x}_i + \mathbf{b}) = 1$

Pop Quiz: SVM Constraints

Quick Quiz 3

In the SVM constraint $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$, what does $y_i = +1$ and $\mathbf{w} \cdot \mathbf{x}_i + b = 0.5$ mean?

a) Point is correctly classified and satisfies constraint

Answer: b) Since $1 \times 0.5 = 0.5 < 1$, the constraint is violated!

Pop Quiz: SVM Constraints

Quick Quiz 3

In the SVM constraint $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$, what does $y_i = +1$ and $\mathbf{w} \cdot \mathbf{x}_i + b = 0.5$ mean?

- a) Point is correctly classified and satisfies constraint
- b) Point violates the constraint

Answer: b) Since $1 \times 0.5 = 0.5 < 1$, the constraint is violated!

Pop Quiz: SVM Constraints

Quick Quiz 3

In the SVM constraint $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$, what does $y_i = +1$ and $\mathbf{w} \cdot \mathbf{x}_i + b = 0.5$ mean?

- a) Point is correctly classified and satisfies constraint
- b) Point violates the constraint
- c) Point is a support vector

Answer: b) Since $1 \times 0.5 = 0.5 < 1$, the constraint is violated!

FORMULATION

EDRMULATION

FORMULATION

GDAL: MAXIMIZE MARGIN

=) MAXIMIZE 2

ITWI)

=) [MINIMIZE [[W]]

T. (Owne chy label paints

e. if $y_i = -1$

y; (2.7+6) 71

Q) What is $\|\mathbf{w}\|?$

Q) What is $\|\mathbf{w}\|$?

$$\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix}$$

$$\|\mathbf{w}\| = \sqrt{\mathbf{w}^{\top}\mathbf{w}}$$

$$= \sqrt{\begin{bmatrix} w_1 & w_2 & \cdots & w_n \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix}}$$

EXAMPLE (IN 10)

