Symmetric Key Cryptography

University of Birmingham

Outline of This Lecture

- The framework and the model
- Classical Cryptography and One Time Pad
- Stream Ciphers and Block Ciphers
- Modes of Operations

Setup

Alice and Bob needs to communicate "securely"

Model

- ► Alice, Bob, and Eve are Algorithms.
- Questions: What is the computation power of Eve?
- Question: What kind of tampering could Eve do?

Modelling Eve

- Assume computation power: Million Teraflops $\approx 2^{60}$ computations per second.
- ▶ 1 common year= $3600 \times 24 \times 365$ seconds = 3153600 seconds $\approx 2^{22}$ seconds.
- ▶ Total one year of computation $\approx 2^{82}$ computations

Modelling Eve

- Assume computation power: Million Teraflops $\approx 2^{60}$ computations per second.
- ▶ 1 common year= $3600 \times 24 \times 365$ seconds = 3153600 seconds $\approx 2^{22}$ seconds.
- ▶ Total one year of computation $\approx 2^{82}$ computations
- ▶ Ballpark estimate of Eve's power $\approx 2^{100}$ computations: accepted standard for non-classified data.

Model

- Alice, Bob, and Eve are Algorithms.
- Questions: What is the computation power of Eve? 2¹⁰⁰ computations.
- Question: What kind of tampering could Eve do?

Modelling Eve: Channel Modification

Could Eve erase everything? If yes, no communication could be done.

Modelling Eve: Channel Modification

- Could Eve erase everything? If yes, no communication could be done.
- Could Eve modify small fraction of data (say 1/4)?
 - We use error correcting codes to correct errors. (beyond the scope)

Modelling Eve: Channel Modification

- Could Eve erase everything? If yes, no communication could be done.
- Could Eve modify small fraction of data (say 1/4)?
 - We use error correcting codes to correct errors. (beyond the scope)
- Cryptographic modeling: Eve could modify any fraction, we care about error detection.

Model

- Alice, Bob, and Eve are Algorithms.
- Computation power of Eve? 2¹⁰⁰ for non-classified data
- Eve could modify any part: Alice and Bob need error detection.

Question

What does Eve know?

Kerckhoffs's principle: Second Rule

System should not require secrecy. Algorithms of Alice and Bob are public information.

Model

- Alice, Bob, and Eve are Algorithms.
- Computation power of Eve? 2¹⁰⁰ for non-classified data
- Eve could modify any part: Alice and Bob need error detection.

Question

What does Eve know? Alice and Bob's algorithms.

Model

- Alice, Bob, and Eve are Algorithms.
- Computation power of Eve? 2¹⁰⁰ for non-classified data
- Eve could modify any part: Alice and Bob need error detection.

Question

What does Eve know? Alice and Bob's algorithms.

No Secrecy Yet: Eve could run Bob's algorithm on the communication!

Model: the KEY to secure communication

- Alice, Bob, and Eve are Algorithms.
- Computation power of Eve? 2¹⁰⁰ for non-classified data
- Eve could modify any part: Alice and Bob need error detection.

Question

What does Eve know? Alice and Bob's algorithms.

secret key

A secret information known to Bob; unknown to Eve.

Symmetric Key Cryptography

Setup in symmetric key cryptography

Alice and Bob <u>both</u> know the secret key. Eve does not know the secret key.

Symmetric Key Cryptography: Historic account

► SECURITY → ZLJBYPAF

Symmetric Key Cryptography: Historic account

- SECURITY → ZLJBYPAF
- Decryption requires going back 7 characters

Symmetric Key Cryptography: Historic account

- SECURITY → ZLJBYPAF
- Decryption requires going back 7 characters
- ► Could be generalised to any number between 1 to 26. The number is going to be the key.

Ceaser Cipher: Cryptanalysis

- Broken using frequency analysis: 'e' is the most frequent character, followed by 't' then 'a'
- for sufficiently long ciphertext, shift by fixed length maintains the relative frequency.
 - For +7 shift, 'I' is most frequent, followed by 'a' and 'h'

One Time Pad

- For each character a random shift is chosen.
- the sequence of shift (number) is the key

Plain text: THIS IS SECRET OTP-Key: XVHE UW NOPGDZ

Ciphertext: Q C P W C O F S R X H S In groups: QCPWC OFSRX HS

Perfect Secrecy when the key is random.

Issues with one time pad

- Key has to be as long as the text.
- Can not repeat key.

Encrypting with Smaller Keys

- ▶ **Block Cipher** Encrypt *n*-bit block via a randomly chosen permutation.
- ► Stream Cipher Generate a random looking bit-stream from a smaller key and xor the message with the stream

Encryptions are Permutations

Block Ciphers

▶ Message Space \mathcal{M} , typically $\{0,1\}^{128}$

Number of possible Permutations factorial $\left(2^{128}\right)$

Block Ciphers

- ▶ Message Space \mathcal{M} , typically $\{0,1\}^{128}$
- ▶ Key Space \mathcal{K} , say $\{0,1\}^{128}$

Number of possible Permutations

factorial (2^{128})

A block cipher over the keyspace $\{0,1\}^{128}$ is a family of 2^{128} many permutations

Block Cipher Designs:DES

Design Principle: Feistel Network

Block Cipher Designs:AES

 $\mathcal{M} = \{0,1\}^{128}$. Each domain element is 16-bytes long.

0	4	8	12
1	5	9	13
2	6	10	14
3	7	11	15

Block Cipher Designs:AES

 $\mathcal{M} = \{0,1\}^{128}$. Each domain element is 16-bytes long.

0	4	8	12
1	5	9	13
2	6	10	14
3	7	11	15

Modes of Operations

- Block ciphers encrypt fixed length strings: AES encrypts 128 bits.
- ► How to encrypt large messages? Modes of operations

Electronic Code Book: Parallel applications of block cipher

Electronic Code Book: Parallel applications of block cipher

CBC mode

Caution IV needs to be random!

Counter mode

Caution

Ciphertexts are malleable.