		SEE - April - May 2019 18PH102 Explain the terms 1) Optical fiber 2) Numerical aperture and Explain the terms 1) Optical fiber? Mention the possible	6	L2	3
6.	a)		10	L2	3
		reasons to the for a fiber of cold and the for core and			
	c)	Calculate the V-number for a fiber of core diameter 40 pm and Calculate the V-number for a fiber of core diameter 40 pm and Calculate the V-number for a fiber of core diameter 40 pm and Calculate the V-number of respectively for core and refractive indices of 1.55 and 1.50 respectively for core and refractive indices of 1.55 and 1.50 respectively for core and value indices of 1.50 respectively for core and 1.50 respectively for co	4	L3	3 [
7	2)	Unit – IV Discuss the probability of occupation of various energy states by	6	L2	4L
7.	b)	On the basis of classical free electron theory, derive an expression	10	L2	4
	c)	for the electrical conditions of electrons in copper which has mability of electrons in copper which has a second to the electrons in copper which has a second to the electrons in copper which has a second to the electrons in copper which has a second to the electrons in copper which has a second to the electrons in copper which has a second to the electrons in copper which has a second to the electrons in copper which has a second to the electrons in copper which has a second to the electrons in copper which has a second to the electrons in copper which has a second to the electrons in copper which has a second to the electrons in copper which has a second to the electrons in copper which has a second to the electrons in copper which has a second to the electrons in copper which has a second to the electrons in the electrons are a second to the electrons in the electron to the electron t	4	L3	4
	-1	Mability and 3) Relaxation time.	6	L1	4
0.	a) b)	Superconductors. Explain the magnetic behaviour of Type-I and	10	L2	4
	c)	Type-II superconductors. Calculate the probability of an electron occupying an energy level 0.03 eV above Fermi level at 300 K.	4	L3	4
		Unit – V			
9.	a)	Explain the effect of temperature on the conductivity of an intrinsic	6	L2	5
	b)	for the conductivity of an extrinsic	10	L2	5
	c)	Mobilities of electrons and holes in a sample of intrinsic germanium at 300K are 0.34m ² V ⁻¹ s ⁻¹ and 0.18 m ² V ⁻¹ s ⁻¹ respectively. If the			
		resistivity of the specimen is 2.14 Ω m, compute the intrinsic carrier density.	4	L3	
10.	a)	Compare the characteristics of intrinsic and extrinsic semiconductors.	6	L2	
	b)	Explain the construction and working of a solar cell.	10	L2	
	c)	The mobility and charge carrier concentration of the specimen are 0.041 m 2 Ns and 1.7 $ imes$ 10 22 /m 3 respectively. Calculate Hall co-			
		efficient and resistivity of the specimen.	4	L3	

BT* Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome

NMAM INSTITUTE OF TECHNOLOGY, NITTE Date:

(An Autonomous Institution affiliated to VTU, Belagavi)

Second Semester B.E. (Credit System) Degree Examinations

April - May 2019

18PH102 - ENGINEERING PHYSICS

Duration: 3 Hours

3

Max. Marks: 100

Note: Answer Fi	ive full questions	s choosing One full	question from each Unit.
-----------------	--------------------	---------------------	--------------------------

List of constants:	Velocity of light, c=3x10 ⁸ ms ⁻¹ . Planck's constant, h=6.63x10 ⁻³⁴ Js, Electron mass, m=9.11x10 ⁻³¹ kg, Electron charge, e=1.6x10 ⁻¹⁹ C, Boltzmann constant, k=1.38x10 ⁻²³ J/K.
	Avogadro number, $N_A = 6.022 \times 10^{26}$ / kg mole.

3			Unit – I	Marks	BT*	CO*	PC	y*
K		a) b)	Define group velocity. Obtain an expression for the same. Solve the Schrödinger's wave equation for a particle in one dimension potential well of infinite height and discuss about energy	6	L*1	1		1
4		-	Eigen values.	10	L2	1	1,	2
4		C)	Calculate the de-Broglie wavelength associated with an electron with a kinetic energy of 2 keV.	4	L3	1	1,	2
4		a) b)	What are matter waves? Mention their characteristics. Obtain an expression for one dimensional time independent	6	L2	1	1,	2
		10	Schrodinger's wave equation.	10	L2	1	1	,2
4		C)	An electron is bound in a one dimensional potential well of width 4 A, but of infinite wall height. Find its Zero point energy.	4	L3	1	1	,2
4			Unit – II					
		a)	What is space lattice? With neat diagrams, explain any three crystal systems.	6	L2	2		1
4		b)	Define coordination number and atomic packing factor. Determine the atomic packing factor for the case of body centered cubic (BCC) lattice by calculating number of atoms/unit cell and obtaining relation between atomic radius and lattice constant.	10	L2		2	1,2
5		c)	Calculate the density of diamond, given that the cube edge of its unit cell is 3.57Å, and the atomic weight of carbon is 12.01.	4	L3		2	1,2
5			What are X-rays? With necessary diagrams, explain the origin of characteristic X-rays.	6	L	1	2	1
9			Derive Bragg's law for X-ray diffraction. Explain in detail Bragg's X-ray spectrometer.	10	L	3	2	1,2
5	0	;)	A X-ray machine has an accelerating potential of 25 kV. Find the shortest wavelength present in the X-ray spectrum. Also calculate the energy of the X-ray photon.	4	L	.3	2	1,2
5			Unit – III	6	1	2	3	1
)	Write a note on spontaneous emission and stimulated emission. Describe the construction and working of a Semiconductor laser					
0 5	b					L2	3	1
	C		with neat diagrams. The ratio of population of two energy level is 1.059x10 ⁻³⁰ . Calculate the wavelength of the emitted photon at 300 K.	4		L3	3	1,2

				4 P
c	Make up/Supplementary – July 2019 18PH10217PH102 A glass clad fiber is made with core glass of refractive index 1.5 and the cladding is doped to give a fractional index difference of and the cladding is doped to give a perture (b) the acceptance angle and			
	(c) the critical internal reflection angle.	4	L3	3
6. a)	What is attenuation in an optical fiber? Explain in brief the factors contributing to the fiber losses. With a neat diagram explain the ray propagation, angle of acceptance, and numerical aperture in an optical fiber. Derive an acceptance, and numerical aperture of an optical fiber in terms	6	L2	3
	expression for numerical aperture of all aperture	10	L3	3
c)	Find the ratio of population of the two energy states, the transition between which is responsible for the emission of photons of wavelength 694.3 nm. Assume the ambient temperature as 27 °C.	4	L3	3
	Unit – IV			
	Mention the important differences between classical free electron theory and quantum free electron theory.	6	L2	4
	Obtain an expression for the electrical conductivity of a metal based on the classical free electron theory.	10	L2	4
c)	Find the temperature at which there is 2% probability that a state with an energy 0.3 eV above Fermi energy is occupied.	4	L3	4
	Explain the effect of impurity and temperature on the electrical resistivity of metals.	6	L2	4
	Discuss critical field and Meissner effect in superconductors. Explain the magnetic behaviour of Type-I and Type-II superconductors.	10	L2	4
	Calculate the drift velocity and thermal velocity of conduction electrons in a metal of 1 mm thickness across which a potential of 1 volt is applied at a temperature of 300 K. Given the mobility of free electrons is 4 x 10 ⁻³ m ² V ⁻¹ s ⁻¹ .	4	L3	4
	II-it V			1
0 -1	Unit – V			1
	Explain the effect of temperature on the Fermi level in an extrinsic n-type semiconductor? Derive an expression for the electrical conductivity of an intrinsic	6	L2	5
s r	semiconductor in terms of carrier concentration and carrier nobilities	10	L2	5
а	An N-type semiconductor has a Hall coefficient of 3.66x10-4m ³ C-1 and its resistivity is found to be 2.12 ohm-m. Calculate charge			
	arrier concentration and electron mobility at room temperature	4	L3	5
b) W	With the help of energy level diagrams, explain the formation of a otential barrier in a p-n junction. What is Hall effect? Explain the production of Hall field and obtain	6	L2	5
c) Mo	n expression for the Hall coefficient and carrier concentration of in-type semiconductor. Obilities of electrons and holes in a sample of intrinsic germanium 300 K are 0.36 m ² V ⁻¹ s ⁻¹ and 0.17 m ² V ⁻¹ s ⁻¹ respectively. If the sistivity of the specimen is 2.12 Ωm, compute the intrinsic carrier	10) L3	51
dei	nsity.	-	4 L3	5

BT* Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome

10.

USN

ENOMAL INSTITUTE OF

NMAM INSTITUTE OF TECHNOLOGY, NITTE

(An Autonomous Institution affiliated to VTU, Belagavt)
First/Second Semester B.E. (Credit System) Degree Examinations Make up/Supplementary Examinations - July 2019

		Make up/Supplementary Examinations – July 2019	TE. KAHNATAKA 51
3		18PH102/17PH102 - ENGINEERING PHYSICS	
3		3 Hours nstants: Velocity of light, c = 3 x 10 ⁸ ms ⁻¹ , Planck's constant, h = 6.63 x 10 ⁻³⁴ Electron mass, m=9.11x10 ⁻³¹ kg, Electron charge, e=1.6x10 ⁻¹⁹ C, Boltzmann constant, k=1.38x10 ⁻²³ J/K,	Max. Marks: 100 Js,
3		Avogadro number, N _A = 6.023x 10 ²⁶ / kg mole.	
3		Note: Answer Five full questions choosing One full question from	each Unit.
•		Oille-1	arks BT* CO* PO*
4	b)	What is a wave function? Mention characteristics of wave function. Derive time independent Schrödinger's wave equation for a particle of mass m with energy E moving in one dimension. An electron is bound in a one dimensional potential well of width 1	6 L*1 1 1 10 L2 1 1,2
4		A, but of infinite wall height. Find its energy values in the ground state and also in the first two excited states.	4 L3 1 1,2
	a)	Explain the terms a) Phase velocity b) Group velocity and c) Probability density.	6 L1 1 1
4	b)	What are eigen values and eigen functions? Using Schrodinger's wave equation for a particle in one dimension potential well of infinite height discuss wave functions, energy levels and probability	10 L2 1 1,2
4	c)	densities. Calculate the momentum and de Broglie wavelength associated with an electron subjected to a potential difference of 1.5 kV	4 L3 1 1,2
4		11-24	
	a)	What is inter planar distance? Derive an expression for inter planar spacing in terms of lattice parameters and Miller indices for a cubic	6 L2 2 1,2
4	b)	what is atomic packing factor? Determine the atomic packing factor what is atomic packing factor? Determine the atomic packing factor for simple cubic and face centered cubic (FCC) lattice by calculating number of atoms/unit cell and obtaining the relation between atomic radius and lattice constant.	10 L3 2 1,2
5	c)	between atomic radius and lattice constant. In an x-ray diffraction experiment, the first order diffraction from a particular set of planes was observed at 12°. Find the angle at which the second order diffraction occurs for the same set of which the second order diffraction occurs for the same set of the same set of the second order diffraction occurs for the same set of the second order diffraction occurs for the same set of the second order diffraction occurs for the same set of the second order diffraction occurs for the second order diffraction occurs fo	4 L3 2 1,2
5		planes. Describe the crystal structure of sodium chloride. Write down the planes of all ions in the unit cell.	
5	a)	positional coordinates of the properties. With necessary diagrams	s, 10 L2 2 1,2
	b)	What are X-rays? Werthous X-rays.	nt.
5 5	c)	Given that, the atomic weight of iron is 55.85 and density of	is 4 L3 2 1,2
		Unit – III Unit – III Output lated emission, (b) Metastable state a	and 6 L1 3 1
5	a)	Explain the terms (a) Stimulated of the construction and working of a He-Ne laser very diagrams.	vith 10 L3 3
	b)	Describe the constitution	.0

P.T.O.

necessary diagrams.

temperature. For an electric field of 200 V/m along the wire compute the average drift velocity of the electrons assuming a carrier concentration of 6 x 10 ²⁸ m ⁻³ . Also calculate the mobility			
or electrons.	4	L3	3
6. a) What is superconductivity? Explain the important characteristic properties of superconductors. b) Explain in detail Type-I and Type-II superconductor. Mention the any four applications of superconductors.	6		3
c) Calculate the probability of occupation of an electron	10	L1,L2	3
an energy level 0.02 eV above the Fermi level at 200 K.	4	L3	3
7. a) Explain the affect of town			198
semiconductor?	6	L2	
semiconductor. Obtain expressions for carrier concentration and			
c) Calculate the resistivity of intrinsic germanium if the intrinsic	10	L1,L2	4
and o. to the visi respectively.	, 4	L3	4
8. a) Give any four differences between junction diodes and zener diodes.			
b) With the help of energy level diagrams, explain the formation of a potential barrier in a p-n junction. Explain the effect of forward	6	L1,L2	4
c) The electrical conductivity of an intrinsic semiconductor increases from 19.96 ohm 1m 1 to 79.44 ohm 1m 1 when the temperature is increased from 60 °C to 100 °C. Find the band gap energy of the semiconductor.	10	L1,L2	4
	4	L3	4
o. a) vvitn neat energy level diagrams authority			
spontaneous emission and stimulated emission. b) Explain the construction and working of a He-Ne laser with neat diagrams.	6	L2	5
c) A He-Ne laser emits light at a wavelength of 632.8 nm and has	10	L2	5
each second by this laser?		M28	
10. a) Explain i) Luminescence ii) population inversion and iii) optical	4	L3	5
b) Explain the different types of the			
b) Explain the different types of optical fibers. c) Calculate the numerical another.	6	L2	5
c) Calculate the numerical aperture and hence the acceptance angle for an optical fiber whose core and cladding has refractive index of 1.45 and 1.40 respectively.	10	L2	5
BT* Bloom's Tay	4	L3	5
BT* Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outco	ome		
	A CONTROLLE		

1:				MEMORI	LINSTIUTE
1,			1		To the
		USN	1	No	1 /3
1		NMAM INSTITUTE OF TECHNOLOGY, NITTE (An Autonomous Institution affiliated to VTU, Belagavi First Semester B.E. (Credit System) Degree Examina November - December 2019	tion) in the second
	. Can	3 Hours 19PH102 – ENGINEERING PHYSICS		NITTE, KAR	NATAKA 51°
118	auon.			Max. Ma	arks: 100
a.	of c	Note: Answer Five full questions choosing One full question from onstants: Velocity of light, c=3x108ms ⁻¹ , Planck's constant, h=6.63x10 ⁻⁶		n Onic.	
		Electron mass, m=9.11x10 ⁻³¹ kg, Electron charge, e=1.6x10 ⁻¹⁹ Boltzmann constant, k=1.38x10 ⁻²³ J/K. Avogadro number, $N_A =$	C,		g mole. O* PO*
4	a)	What is a wave function? Write the conditions for valid wave functions.	6	L*1	1 1,2
	b)	Derive Schrodinger's time independent one dimensional wave equation for a particle of mass m with energy E.	10	L2	1 1,2
4	c)	Find the de Broglie wavelength associated with an electron travelling with a velocity 10 ⁶ m/s.	4	L3	1 1,2
4	a) b)	Explain a) Matter waves b) Phase velocity and c) Group velocity Using Schrodinger's wave equation for a particle in one	6	L1,L2	1 1,2
5	c)	dimensional potential well of infinite height discuss wave functions, energy levels and probability densities. An electron is trapped in a one dimensional region of length 4 Å.	10	L2	1 1,2
		How much energy must be supplied to excite the electron from the ground level to the second excited state?	4	L3	1 1,2
5	a) b)	Unit – II What is a unit cell? With neat diagrams, explain any three crystal systems with lattice parameters. Define primitive unit cell, non - primitive unit cell and inter planar distance. Derive an expression for inter planar distance in terms	6	L1,L2	2 1,2
5		of lattice parameter and Miller indices for the case of a cubic	10	L1,L2	2 1,2
5	c)	Crystal. The interplanar spacing of (110) planes is 2Å for a FCC crystal. Find out the atomic radius.	4	L3	2 1,2
5	a) b)	What are x-rays? Explain the production of x-rays. Define coordination number and atomic packing factor. Determine the atomic packing factor for the case of face centered cubic the atomic packing factor for the case of atoms/unit cell and	6	L1,L2	2 1,2
	c)	(FCC) lattice by calculating humber of detrice constant. obtaining relation between atomic radius and lattice constant.	10	0 L1,L2	
		spacing of the crystal.		4 L3	2 1,2
	a)	What is a free electron? Explain the free electron concept of conductors with example on the basis of classical free electron		6 L1,L	2 3 1,2
	b)	theory. Derive an expression for the conductivity of metals on the basis of classical free electron theory.		10 L	2 3 1,2
		P.T.O.			

_4

L1