## 7.4 Isomorfismos

En esta sección se introduce una terminología importante y después se demuestra un teorema que muestra que todos los espacios vectoriales de n dimensiones son "en esencia" el mismo.



## **Definición 7.4.1**

#### Transformación uno a uno

Sea  $T: V \to W$  una transformación lineal; entonces T es uno a uno (escrito 1-1) si

## Nota

Una transformación 1-1 se llama también **inyectiva**.

$$T\mathbf{v}_1 = T\mathbf{v}_2$$
 implica que  $\mathbf{v}_1 = \mathbf{v}_2$  (7.4.1)

Es decir, T es 1-1 si y sólo si todo vector  $\mathbf{w}$  en la imagen de T es la imagen de exactamente un vector de V.

## Teorema 7.4.1

Sea  $T: V \to W$  una transformación lineal. Entonces T es 1-1 si y sólo si nu  $T = \{0\}$ .



### Demostración

Suponga que nu  $T = \{0\}$  y  $T\mathbf{v}_1 = T\mathbf{v}_2$ . Entonces  $T\mathbf{v}_1 - T\mathbf{v}_2 = T(\mathbf{v}_1 - \mathbf{v}_2) = \mathbf{0}$ , lo que significa que  $(\mathbf{v}_1 - \mathbf{v}_2) \in \text{nu } T = \{\mathbf{0}\}$ . Así,  $\mathbf{v}_1 - \mathbf{v}_2 = \mathbf{0}$ ; por tanto,  $\mathbf{v}_1 = \mathbf{v}_2$ , lo que muestra que T es 1-1. Ahora se probará que si T es 1-1, entonces nu  $T = \{\mathbf{0}\}$ . Suponga que T es 1-1 y  $\mathbf{v} \in \text{nu } T$ . Entonces  $T\mathbf{v} = \mathbf{0}$ . Pero también T  $\mathbf{0} = \mathbf{0}$ . Así, como T es 1-1,  $\mathbf{v} = \mathbf{0}$ . Esto completa la prueba.

# **EJEMPLO 7.4.1** Una transformación 1-1 de $\mathbb{R}^2$ en $\mathbb{R}^2$

Defina 
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 por  $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x - y \\ 2x - y \end{pmatrix}$ . Es sencillo encontrar  $A_T = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$  y  $\rho(A_T) = 2$ ; así,  $\nu(A_T) = 0$  y  $N_{A_T} = \text{nu } T = \{\mathbf{0}\}$ . Por tanto,  $T$  es 1-1.

# **EJEMPLO 7.4.2** Una transformación de $\mathbb{R}^2$ en $\mathbb{R}^2$ que no es 1-1

Defina 
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 por  $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x - y \\ 2x - 2y \end{pmatrix}$ . Entonces  $A_T = \begin{pmatrix} 1 & -1 \\ 2 & -2 \end{pmatrix}$ ,  $\rho(A_T) = 1$  y  $\nu(A_T) = 1$ ; por tanto,  $\nu(T) = 1$  y  $T$  no es 1-1. Observe, por ejemplo, que  $T \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 0 = T \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ .



### Definición 7.4.2

### Nota

Una transformación sobre se denomina también suprayectiva.

#### Transformación sobre

Sea  $T: V \to W$  una transformación lineal. Entonces se dice que T es sobre W o simplemente **sobre** si para todo  $\mathbf{w} \in W$  existe cuando menos una  $\mathbf{v} \in V$  tal que  $T\mathbf{v} = \mathbf{w}$ . Es decir, T es sobre W si y sólo si im T = W.