```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from google.colab import drive
drive.mount('/content/drive')
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force\_remount=True).

## Data Collection

```
path = r'/content/drive/MyDrive/DATASET/Suicide_Records_INDIA.csv'
df = pd.read_csv(path)
```

## Data Analysis

df.describe

```
<bound method NDFrame.describe of</pre>
                                         State Year
                                                                 Type_code \
                           {\tt Means\_adopted}
     HARYANA 2011
1
     HARYANA 2011
                           Means_adopted
2
     HARYANA 2011
                    Professional_Profile
     HARYANA 2011
4
    HARYANA
             2011
                    Professional_Profile
224
    HARYANA
             2003
                                  Causes
    HARYANA
225
             2003
                                  Causes
226
    HARYANA
              2003
                                  Causes
    HARYANA
             2003
                                  Causes
227
228 HARYANA 2003
                                  Causes
                                         Type Gender Age_group
0
                                   Harassment Female
1
                           By Over Alcoholism
                                                Male
                                                          30-44
2
                                Self employed
                                               Female
                                                          45-59
                  Forcing For Honour Killing
                                                          15-29
3
                                               Female
4
                        Professional Activity Female
                       Illegitimate Pregnancy Female
                                                           0-14
224
                       Illegitimate Pregnancy
                                                           0-14
225
                                                Male
                      Insanity/Mental Illness
                                                 Male
                                                          15-29
226
    Not having Children(Barrenness/Impotency Female
                                                          15-29
227
                Other Causes (Please Specity) Female
                                                          30-44
[229 rows x 6 columns]>
```

df.head()

|   | State   | Year | Type_code            | Туре                       | Gender | Age_group |
|---|---------|------|----------------------|----------------------------|--------|-----------|
| 0 | HARYANA | 2011 | Means_adopted        | Harassment                 | Female | 30-44     |
| 1 | HARYANA | 2011 | Means_adopted        | By Over Alcoholism         | Male   | 30-44     |
| 2 | HARYANA | 2011 | Professional_Profile | Self employed              | Female | 45-59     |
| 3 | HARYANA | 2011 | Causes               | Forcing For Honour Killing | Female | 15-29     |
| 4 | HARYANA | 2011 | Professional Profile | Professional Activity      | Female | 45-59     |

df.tail()

| Age_group | Gender | Туре                                     | Type_code | Year | State   |     |
|-----------|--------|------------------------------------------|-----------|------|---------|-----|
| 0-14      | Female | Illegitimate Pregnancy                   | Causes    | 2003 | HARYANA | 224 |
| 0-14      | Male   | Illegitimate Pregnancy                   | Causes    | 2003 | HARYANA | 225 |
| 15-29     | Male   | Insanity/Mental Illness                  | Causes    | 2003 | HARYANA | 226 |
| 15-29     | Female | Not having Children(Barrenness/Impotency | Causes    | 2003 | HARYANA | 227 |
| 30-44     | Female | Other Causes (Please Specity)            | Causes    | 2003 | HARYANA | 228 |

```
03/03/2024, 12:13
   df.shape
         (229, 6)
   df.Age_group
         0
                30-44
                30-44
         1
                45-59
         2
         3
                15-29
         4
                45-59
         224
                 0-14
                0-14
         226
                15-29
         227
                15-29
         228
                30-44
```

Name: Age\_group, Length: 229, dtype: object

# Data Cleaning

```
df.isnull().sum()
     State
     Year
     Type_code
     Type
     Gender
     Age_group
dtype: int64
df.duplicated()
            False
     0
     1
            False
     2
            False
            False
     4
            False
            False
     224
     225
            False
     226
            False
     227
            False
     228
            False
     Length: 229, dtype: bool
```

df.drop\_duplicates()

|                      | State   | Year | Type_code            | Туре                                     | Gender | Age_group |  |  |
|----------------------|---------|------|----------------------|------------------------------------------|--------|-----------|--|--|
| 0                    | HARYANA | 2011 | Means_adopted        | Harassment                               | Female | 30-44     |  |  |
| 1                    | HARYANA | 2011 | Means_adopted        | By Over Alcoholism                       | Male   | 30-44     |  |  |
| 2                    | HARYANA | 2011 | Professional_Profile | Self employed                            | Female | 45-59     |  |  |
| 3                    | HARYANA | 2011 | Causes               | Forcing For Honour Killing               | Female | 15-29     |  |  |
| 4                    | HARYANA | 2011 | Professional_Profile | Professional Activity                    | Female | 45-59     |  |  |
|                      |         |      |                      |                                          |        |           |  |  |
| 224                  | HARYANA | 2003 | Causes               | Illegitimate Pregnancy                   | Female | 0-14      |  |  |
| 225                  | HARYANA | 2003 | Causes               | Illegitimate Pregnancy                   | Male   | 0-14      |  |  |
| 226                  | HARYANA | 2003 | Causes               | Insanity/Mental Illness                  | Male   | 15-29     |  |  |
| 227                  | HARYANA | 2003 | Causes               | Not having Children(Barrenness/Impotency | Female | 15-29     |  |  |
| 228                  | HARYANA | 2003 | Causes               | Other Causes (Please Specity)            | Female | 30-44     |  |  |
| 228 rows × 6 columns |         |      |                      |                                          |        |           |  |  |

## Data Visualization

#### Suicide Cases



```
suicide_gender=df[["Gender"]].sum().rename_axis('Gender').reset_index()
suicide_gender=suicide_gender.rename(columns ={0:"Gender"})
suicide_gender=suicide_gender.replace({"Total Male":"Male"},regex=True)
suicide_gender=suicide_gender.replace({"Total Female":"Female"},regex=True)
suicide_gender.head()
```

Gender Gender

 ${\bf 0} \quad {\sf Gender} \quad {\sf FemaleMaleFemaleFemaleFemaleMaleMaleFemaleFemal}...$ 

```
df.size
```

1374

 $\ensuremath{\mathtt{\#}}$  To know the diffarent number of unique in data df.nunique()

State 3
Year 7
Type\_code 5
Type 65
Gender 2
Age\_group 6
dtype: int64

df\_year=df.groupby("Year")["Year"].count()
df\_year.sort\_values(ascending = True)

Year 2005

```
2004
     2011
             24
     2003
             39
     2012
             39
     2002
             50
     2001
             60
     Name: Year, dtype: int64
fig, ax=plt.subplots(figsize=(10,4))
plt.plot(df_year, color="r", marker="s")
# Axis labels
ax.set_title ("Total Suicide Cases Each Year")
ax.set_xlabel ("Year")
ax.set_ylabel ("Count");
```



```
fig, ax=plt.subplots(figsize=(10,4))
sns.barplot(
    x = df_year.index,
    y = df_year,
    color= "r"
)
ax.set_title ("Total Suicide Cases Each Year")
ax.set_xlabel ("Year")
ax.set_ylabel ("Count");
```



```
Physical Abuse (Rape/Incest Etc.)
    House Wife
    Not having Children(Barrenness/Impotency
                                                   1
    Harassment
     Not having Children (Barrenness/Impotency
                                                   1
    By Overdose of sleeping pills
                                                   1
     Seperated
                                                   1
     Name: Type, Length: 65, dtype: int64
top_ten_most_appering_type = df["Type"].value_counts().sort_values(ascending= False).head(10)
top_ten_most_appering_type
     Others (Please Specify)
                                                 15
     Student
                                                  8
     Physical Abuse (Rape/Incest Etc.)
    House Wife
     Not having Children(Barrenness/Impotency
    By Fire-Arms
                                                  6
    Public Sector Undertaking
    Self-employed (Business activity)
                                                  6
     Fall in Social Reputation
                                                  6
     Farming/Agriculture Activity
    Name: Type, dtype: int64
# Graph
fig, ax=plt.subplots(figsize=(14,6))
color_palette = sns.color_palette("gist_rainbow")
sns.barplot(
   x = top_ten_most_appering_type.index,
   y = top_ten_most_appering_type,
   color= "r",
   palette = color_palette
)
ax.set_title ("Top ten Types", color="r")
ax.set xlabel ("Types")
ax.set_ylabel ("Frequency")
```

#### Text(0, 0.5, 'Frequency')



```
bottom_ten_least_appering_type = df["Type"].value_counts().sort_values(ascending= False).tail(10)
bottom_ten_least_appering_type
```

```
Forcing For Honour Killing 1
BlackMailing 1
Hr. Secondary/Intermediate/Pre-Universit 1
Service (Private) 1
Primary 1
Married 1
Harassment 1
Not having Children (Barrenness/Impotency 1
By Overdose of sleeping pills 1
```

ax.set\_ylabel ("Frequency")

```
Seperated
Name: Type, dtype: int64

# Graph
fig, ax=plt.subplots(figsize=(14,6))
color_palette = sns.color_palette()
sns.barplot(
    x = bottom_ten_least_appering_type.index,
    y = bottom_ten_least_appering_type,
    color= "r",
    palette=color_palette
)
ax.set_title ("Least Types")
ax.set_xlabel ("Types")
```



```
df_number_state_apearence = df["State"].value_counts().sort_values(ascending= False)
df_number_state_apearence.head()
     HARYANA
                         133
    HIMACHAL PRADESH
                          55
     GUJARAT
                          41
    Name: State, dtype: int64
top_10_appearing_state = df_number_state_apearence.head(10)
top_10_appearing_state
    HARYANA
                         133
    HIMACHAL PRADESH
                         55
     GUJARAT
    Name: State, dtype: int64
top_10_appearing_state.plot(
   kind = 'barh',
   xlabel = "State",
    title = "Top ten State Highest Causes"
);
```





```
female = (df["Gender"] == "Female").sum()
female
```

122

```
male = (df["Gender"] == "Male").sum()
male
     107
proportion_female = ((female.sum() / len(df["Gender"])) * 100).round(2)
proportion_female
     53.28
proportion_male = ((male.sum() / len(df["Gender"])) * 100).round(2)
proportion_male
     46.72
df1=df["Gender"].value_counts()
df1
     Female
               122
     Male
              107
     Name: Gender, dtype: int64
fig = px.pie(
   df,
   names = df["Gender"],
    values = df["Gender"].index
)
# fig.update_traces to label each portion with name and percentage inside
fig.update_traces(textinfo = "label+percent", insidetextfont = dict(color = "white"))
# {"itemclick":False} to ensure that when you click at the legend item will not disapear
fig.update_layout(legend = {"itemclick":False})
fig.show()
```



```
# Graphs comparisson using type code
fig, (ax1) =plt.subplots(1, figsize=(10,5))

type_code.plot(
    kind = 'bar',
    xlabel = "Type Code",
    #title = "Sucide cases by Type code",
    color=['violet', 'lightgreen','cyan',"yellow","orange"]
);
```



## Sucide cases by Type code



```
# Trend of suicide cases over time
plt.figure(figsize=(12, 6))
time_series = df.groupby('Year')['Type'].count()
time_series.plot(marker='o')
plt.title("Trend of Suicide Cases Over Years")
plt.xlabel("Year")
plt.ylabel("Count")
plt.grid(True)
plt.show()
```



```
# Distribution of Suicide Cases by Age Group
plt.figure(figsize=(10, 6))
sns.countplot(y='Age_group', data=df, order=df['Age_group'].value_counts().index)
plt.title('Distribution of Suicide Cases by Age Group')
plt.show()

plt.figure(figsize=(10, 6))
sns.boxplot(data=df, x='Age_group', y='Year')
plt.title("Distribution of Suicide Cases by Age Group and Year")
plt.xticks(rotation=45)
plt.xlabel("Age Group")
plt.ylabel("Year")
plt.show()
```







# Distribution of suicide cases by 'Type\_code' and 'Gender

plt.figure(figsize=(10, 6))

sns.countplot(data=df, x='Type\_code', hue='Gender', order=df['Type\_code'].value\_counts().index)

plt.title("Distribution of Suicide Cases by Type Code and Gender")

plt.xticks(rotation=45)

plt.xlabel("Type Code")
plt.ylabel("Count")

plt.legend(title="Gender")

plt.show()

## Distribution of Suicide Cases by Type Code and Gender



```
# Distribution of Suicide Cases by State, Age Group, and Year
plt.figure(figsize=(14, 8))
sns.boxplot(data=df, x='State', y='Year', hue='Age_group')
plt.title("Distribution of Suicide Cases by State, Age Group, and Year")
plt.xticks(rotation=90)
plt.xlabel("State")
plt.ylabel("Year")
plt.legend(title="Age Group")
plt.show()
```



```
# Group the data and calculate the count of each combination
grouped_data = df.groupby(['Year', 'Gender', 'Age_group', 'Type']).size().reset_index(name='Count')

# Create the sunburst chart
fig = px.sunburst(grouped_data, path=['Year', 'Gender', 'Age_group', 'Type'], values='Count')
fig.update_layout(title="Sunburst Chart of Suicide Cases")
fig.show()
```

## Sunburst Chart of Suicide Cases



# Import necessary libraries
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt

!pip install fuzzywuzzy

Collecting fuzzywuzzy
Downloading fuzzywuzzy-0.18.0-py2.py3-none-any.whl (18 kB)
Installing collected packages: fuzzywuzzy
Successfully installed fuzzywuzzy-0.18.0

- # Extract features using TF-IDF
- # Term Frequency-Inverse Document Frequency (TF-IDF) representation
- # Each string becomes a vector, and then you can apply traditional clustering algorithms like K-means or hierarchical clustering. from sklearn.feature\_extraction.text import TfidfVectorizer from sklearn.cluster import KMeans

from sklearn.cluster import KMe from fuzzywuzzy import fuzz