Кантонистова Елена Олеговна Математика для анализа данных

Содержание

1	Лек	ция 1
	1.1	Как устроен курс
	1.2	Практика
	1.3	SymPy
	1.4	Рисуем графики
		1.4.1 Подключаем библиотеку
		1.4.2 Рисуем график функции f(x)
		1.4.3 Изменяем размер картинки и граничные значения по осям
		1.4.4 Добавим названия осей и подпись к графику
		1.4.5 Добавим оси и подпишем под картинкой информацию об экстремумах и точках пе-
		региба
	1.5	Метод градиентного спуска
	1.0	1.5.1 Теорема о градиенте
		1.5.2 Применение в машинном обучении
		1.5.3 Идея применения градиентного спуска
		1.5.4 Метод градиентного спуска на пальцах
		1.5.5 Метод градиентного спуска (одномерный случай)
		1.5.6 Метод градиентного спуска (одномерный случай)
		1.5.7 Параметр learning rate
	1.0	1.5.8 Теорема о поиске в выпуклой гладкой функции
	1.6	Реализация градиентного спуска на python
2	Пот	ция 2
4	2.1	Динейная регрессия
	$\frac{2.1}{2.2}$	• •
		Функция ошибок MSE
	2.3	Матричное представление MSE
	2.4	Как решать задачу минимизации MSE
		2.4.1 Аналитическое решение
	0 -	2.4.2 Приближённое решение
	2.5	Производная по вектору
		2.5.1 Пример 1. Подсчёт градиента скалярного произведения
		2.5.2 Пример 2. Подсчёт градиента от матрицы
	2.6	Минимизация MSE с помощью градиента
	2.7	Градиент функции потерь
	2.8	Реализация на питоне
		2.8.1 Генерирование данных для задачи регрессии
		2.8.2 Функция подсчёта ошибки
		2.8.3 Реализация градиентного спуска
		2.8.4 Функция предсказания модели
		2.8.5 Применение градиентного спуска
3	Лек	ция 3
		3.0.1 Один из недостатков градиентного спуска
	3.1	Стохастический градиентный спуск
	3.2	Mini-Batch Gradient Descent
	3.3	Ещё один недостаток градиентного спуска
	3.4	Метод моментов (Momentum)
	3.5	Преимущества метода моментов
	3.6	Градиентный шаг
	3.7	AdaGrad (Adaptive Gradient)
	3.8	RMSPROP (Root Mean Square Propagation)
	3.9	Практикум на питоне
		3.9.1 Генерируем данные
		3.9.2 Библиотечное решение

1. Лекция 1

1.1. Как устроен курс

- 1 модуль матан и линал
- 2 модуль дискра, тервер
- 3/4 модуль статистика

1.2. Практика

Исследовать функцию

$$f(x) = x^3 - 3x^2 + 4$$

Найдём

1.3. SymPy

В Питоне есть библиотека SymPy, которая предоставляет интерфейс для вычисления производных ! pip install sympy

Далее в питоне зададим переменную и производную:

```
import sympy as sp
x = sp.Symbol('x')
sp.diff(x**6)
```

Теперь будем анализировать функцию из практики:

```
def f(x):

return x**3 - 3*x**2 + 4
```

Чтобы найти нули функции, надо решить уравнение f(x) = 0. В SymPy для этого есть функция solve:

$$\operatorname{sp.solve}(f(x), x)$$
 [-1, 2]

Теперь найдём производную функции f(x) и затем её нули, чтобы найти экстремумы

```
\begin{array}{l} {\rm df}_{\_} {\rm x} \, = \, {\rm sp.\,diff} \, (\, {\rm f} \, (\, {\rm x} \, )\, ) \\ \# df_{\_} \, x \, = = \, 3x \, \hat{\,} \, 2 \\ \\ {\rm sp.\,solve} \, (\, {\rm df}_{\_} {\rm x} \, , \, \, \, {\rm x} \, ) \\ \# \, \left[ 0 \, , \, \, 2 \right] \\ \\ {\rm f} \, (0) \, , \, \, {\rm f} \, (2) \\ \# \, \left( 4 \, , \, \, 0 \right) \end{array}
```

Точно также очень просто можем находить втору производную и находить точки перегиба функции

```
d2f_x = sp.diff(df_x) \\ d2f_x \\ # 6x - 6
sp.solve(d2f_x, x) \\ #[1]
f(1)
#2
```

1.4. Рисуем графики

Что нам нужно будет сделать?

- Нарисовать график f(x), подписать оси
- Н Апечатать под графиком при помощи Markdown экстремумы, точки перегиба и значения функции $\mathbf{f}(\mathbf{x})$ в этих точках

1.4.1. Подключаем библиотеку

```
import matplotlib.pyplot as plt
%matplotlib inline # -
```

1.4.2. Рисуем график функции f(x)

```
import numpy as np

x_values = [x 	ext{ for } x 	ext{ in } np.arange(-5, 5, 0.1)]
# or = np.linspace(-5, 5, 100)

f_values = [f(x)] for x in x_values]

plt.plot(x_values, f_values)
```

Вставить график

1.4.3. Изменяем размер картинки и граничные значения по осям

```
\begin{array}{l} & \text{plt.figure} \, (\, \text{figsize} \, = \! (10, \ 10)) \\ \\ & \text{plt.plot} \, (\, \text{x\_values} \, , \ \text{y\_values} \, ) \\ \\ & \text{plt.xlim} \, ([-3, \ 5]) \\ \\ & \text{plt.ylim} \, ([-5, \ 7]) \end{array}
```

Вставить график

1.4.4. Добавим названия осей и подпись к графику

```
plt.title('Graph_of_fucntion_f(x)_with_extremum_and_dots_of_...')
plt.xlabel('x')
plt.ylabel('f(x)')
```

Вставить график

1.4.5. Добавим оси и подпишем под картинкой информацию об экстремумах и точках перегиба

```
import numpy as np

x_values = [x for x in np.arange(-5, 5, 0.1)]
f_values = [f(x) for x in x_values]

plt.figure(figsize=(10,10))

plt.axvline(x=0, c = 'black')
plt.axhline(y=0, c = 'black')

plt.plot(x_values, f_values)

plt.ylim([-3, 5])
plt.ylim([-5, 7])

plt.title('Graph_of_fucntion_f(x)_with_extremum_and_dots_of_...')

plt.xlabel('x')
plt.ylabel('f(x)')

plt.show()
```

Вставить график

1.5. Метод градиентного спуска

1.5.1. Теорема о градиенте

Градиент - это вектор, в направлении которого функция растёт быстрее всего.

Антиградиент (вектор противоположный градиенту) - вектор, в направлении которого функция быстрее всего убывает.

1.5.2. Применение в машинном обучении

Для чего нам это нужно? В машинном обучении мы минимизируем значение функции, которая показывает ошибку модели. Иными словами: наша задача при обучении модели - найти такие веса w, на которых достигается минимум функции ошибок.

В простейшем случае, если ошибка среднеквадратическая, то её график - парабола.

1.5.3. Идея применения градиентного спуска

На каждом шаге (на каждой итерации метода) движемся в сторону антиградиента функции потерь! То есть на каждом шаге движемся в направлении уменьшении ошибки.

Вектор градиента функции потерь обозначают $\operatorname{\mathbf{grad}} \mathbf{Q}$ или ∇Q

1.5.4. Метод градиентного спуска на пальцах

- Встаём в некоторую точку функции
- Вычисляем градиент
- Переходим в новую точку в направлении антиградиента
- Повторяем процесс из новой точки

Метод градиентного спуска (одномерный случай)

Пусть у нас только один вес - w.

Тогда при добавлении к весу w слагаемоего $-\frac{\partial Q}{\partial w}$ функция Q(w) убывает.

Тогда алгоритм выглядит следующим образом:

- Инициализируем вес $w^{(0)}$
- На каждом следующем шаге обновляем вес, добавляя $-\frac{\partial Q}{\partial w}(w^{(k-1)})$:

$$w^{(k)} = w^{(k-1)} - \frac{\partial Q}{\partial w}(w^{(k-1)})$$

Метод градиентного спуска (общий случай)

Пусть $w_0,\ w_1,\ \dots,\ w_n$ - веса, которые мы ищем. Тогда $\nabla Q(w)=\{\frac{\partial Q}{\partial w_0},\ \frac{\partial Q}{\partial w_1},\ \dots,\ \frac{\partial Q}{\partial w_n}\}$ Тогда алгоритм выглядит так:

Тогда
$$\nabla Q(w) = \{ \frac{\partial Q}{\partial w_0}, \frac{\partial Q}{\partial w_1}, \dots, \frac{\partial Q}{\partial w} \}$$

- Инициализируем веса $w^{(0)}$ (заметим, что это вектор весов)
- На каждом шаге обновляем веса по формуле:

$$w^{(k)} = w^{(k-1)} - \nabla Q(w^{(k-1)})$$

Параметр learning rate 1.5.7.

В формулу обычно добавляют параметр η - величина градиентного спуска (learning rate). Он отвечает за скорость движения в сторону антиградиента:

- Инициализируем веса $w^{(0)}$ (заметим, что это вектор весов)
- На каждом шаге обновляем веса по формуле:

$$w^{(k)} = w^{(k-1)} - \eta \nabla Q(w^{(k-1)})$$

1.5.8. Теорема о поиске в выпуклой гладкой функции

Если функция Q(w) выпуклая и гладкая, а также имеет минимум в точке w^* , то метод градиентного спуска при аккуратно подобранному η через некоторое число шагов гарантированно попадает в малую окрестность точки w^* .

1.6. Реализация градиентного спуска на python

```
def gradient_descent(x_start, learning_rate, epsilon, num_iterations):
    x_curr = x_start
    df_x = sp.diff(f(x))

trace = []
    trace.append(x_curr)

for i in range(num_iterations):
    x_new = c_curr + df_x.subs(x, x_curr)
    trace.append(x_new)

if abs(x_new - x_curr) < epsilon:
    return x_curr, trace

return x_curr, trace</pre>
```

2. Лекция 2

2.1. Линейная регрессия

Линейная регрессия - функция $a(x) = \omega_0 + \omega_1 x_1 + \omega_2 x_2 + \cdots + \omega_l x_l$, где x - вектор признаков Также есть целевая переменная, которую мы предсказываем - y w - веса линейной регрессии

Запишем в другой форме: $a(x) = \omega_0 + \sum_{i=1}^l \omega_i x_i$

Также мы это можем записать в другой форме: давайте добавим ещё один признак у всех обектов, который будет равен единице: $x = (1, x_1, x_2, \dots, x_n)$, и тогда всё записывается ещё красивее:

$$a(x) = \sum_{i=0}^{l} \omega_i x_i = (\overrightarrow{\omega}, \overrightarrow{x})$$

Где $a(x)=(\overrightarrow{\omega},\overrightarrow{x})$ - предсказание модели на объекте x. Но это предсказание для одного объекта. Мы можем записать предсказания в матричном виде для нескольких объектов. Возьмём X - матрицу объект-признак. В каждом строке описан один объект, а кол-во строк - это кол-во объектов. В матричном виде предсказание выглядит как $a(X)=X\cdot w$

2.2. Функция ошибок MSE

MSE (Mean Squared Error) = $\frac{1}{d} \sum_{i=1}^{d} (a(x_i) - y_i)^2$, где d - количество данных. При этом в задаче обучения мы хотим $MSE \to \min_{\overrightarrow{\omega}}$. Мы уже научились и можем делать минимизацию функции с помощью Градиентного спуска.

2.3. Матричное представление МSE

$$MSE = \frac{1}{d}||X\omega - y||^2$$

Где
$$||\overrightarrow{a}|| = \sqrt{a_1^2 + a_2^2 + \cdots + a_n^2}$$
 Соостветственно $||\overrightarrow{a}||^2 = a_1^2 + a_2^2 + \cdots + a_n^2$

2.4. Как решать задачу минимизации МSE

2.4.1. Аналитическое решение

Это решение, которое даёт точное решение Решаем уравнение $\nabla_{\omega}Q(\omega)=0$

2.4.2. Приближённое решение

С помощью GD шагаем $\omega = \omega - \eta \nabla_{\omega} Q(\omega)$

2.5. Производная по вектору

Пусть у нас есть $\overrightarrow{x} = (x_1, \dots, x_n)$ Градиент функции f(x) рассчитывается как $\nabla_x f(x) = (\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n})$

2.5.1. Пример 1. Подсчёт градиента скалярного произведения

Пусть у нас есть вектор весов $\overrightarrow{\omega}$ и вектор \overrightarrow{x} . Есть скалярное произведение $(\overrightarrow{\omega}, \overrightarrow{x})$. Мы хотим посчитать $\nabla_x(\overrightarrow{\omega}, \overrightarrow{x})$.

6

Мы знаем, что
$$\frac{\partial}{\partial x_i}(\overrightarrow{\omega}, \overrightarrow{x}) = \frac{\partial}{\partial x_i}(\omega_1 x_1 + \dots + \omega_n x_n) = \omega_i$$

Тогда $\nabla_x(\overrightarrow{\omega}, \overrightarrow{x}) = (\frac{\partial}{\partial x_1}(\overrightarrow{\omega}, \overrightarrow{x}), \frac{\partial}{\partial x_2}(\overrightarrow{\omega}, \overrightarrow{x}), \dots, \frac{\partial}{\partial x_n}(\overrightarrow{\omega}, \overrightarrow{x})) = (\omega_1, \omega_2, \dots, \omega_n) = \overrightarrow{\omega}$

Пример 2. Подсчёт градиента от матрицы

Пусть есть матрица $A_{n \times n}$ и вектор $\overrightarrow{x} \in \mathbb{R}^n$.

Функция $x^T A x$ - это число (давайте посмотрим на размерности)

$$(1 \times n)(n \times n)(n \times 1) = (1 \times n)(n \times 1) = (1 \times 1)$$

Теперь мы хотим от этой функции находить градиент:

Теперь мы хотим от этой функции находить градиент: Давайте попробуем посчитать
$$\frac{\partial}{\partial x_i} x^T A x = \frac{\partial}{\partial x} \sum_{j=1}^n x_j (Ax)_j = \frac{\partial}{\partial x_i} \sum_{j=1}^n x_j (\sum_{k=1}^n a_{jk} x_k) = \frac{\partial}{\partial x_i} \sum_{j=1}^n \sum_{k=1}^n a_{jk} x_j x_k = \sum_{j=1, j \neq i}^n a_{ji} x_j + \sum_{k=1, k \neq i}^n a_{ik} x_i + 2a_{ii} x_i = \sum_{i=1}^n \sum_{j=1}^n (a_{ij} + a_{ji}) x_j$$
 - і-я производная.

$$\sum_{j=1,j\neq i}^n a_{ji}x_j + \sum_{k=1,k\neq i}^n a_{ik}x_i + 2a_{ii}x_i = \sum_{i=1}^n \sum_{j=1}^n (a_{ij}+a_{ji})x_j$$
 - і-я производная

Тогда
$$\nabla_x(x^TAx) = (A + A^T)x$$

2.6. Минимизация MSE с помощью градиента

Вспоминаем, что MSE выглядит как $||y-X\omega||^2$. Но это можно переписать в явном виде без квадрата: $||y - X\omega||^2 = (y - X\omega)^T (y - X\omega) \to \min$

Раскрываем скобки для поиска градиента: $\nabla_{\omega}((y^Ty)^{=0} - \omega^TX^Ty - y^TX\omega + \omega^TX^TX\omega) = 0$ $\nabla_{\omega}(-\omega^TX^Ty - y^TX\omega + \omega^TX^TX\omega) = -X^Ty - X^Ty + 2X^TX\omega = 0$ (для последнего слагаемого смотрим

Перекинем слагаемые в разные стороны: $2X^TX\omega = 2X^Ty$. Сократим на двойку. Мы бы могли сократить матрицы, но обратной может не быть. Зато мы можем с каждой из сторон умножить на обратную матрицу к X^TX :

$$X^T X \omega = X^T y \to (X^T X)^{-1} (X^T X) \omega = (X^T X)^{-1} X^T y \to \omega = (X^T X)^{-1} X^T y$$

Градиент функции потерь

Из подсчитанного можем сказать, что градиент функции потерь для MSE будет выглядеть как

$$\nabla Q(\omega) = 2X^T (X\omega - y)$$

Но давайте будем находить ω с помощью GD:

- На шаге обновления точки, у нас $\omega_{next} = \omega_{prev} \eta \nabla Q(\omega)$
- Запишем зная, чему равно $\nabla Q(\omega)$: $\omega_{next} = \omega_{prev} 2\eta X^T (X\omega_{prev} y)$

2.8. Реализация на питоне

Генерирование данных для задачи регрессии

Давайте сгенирируем данные и визиализируем их:

import random

import matplotlib.pyplot as plt

import numpy as np

%matplotlib inline

X = np.linspace(-10, 10, 100)

print(X.shape)

 $y = X * (np.random.random_sample(len(X)) + 0.5)$

X = X. reshape(len(X), 1)

print(X.shape)

plt.scatter(X, y)

Функция подсчёта ошибки 2.8.2.

Также давайте напишем свой MSE:

```
\label{eq:mass} \begin{split} \textbf{def MSE}(X, \ y, \ theta): \\ m = & \ \textbf{len}(y) \\ \\ & \ \text{error} = (1./m) \ * \ (np.linalg.norm(X @ theta - y) \ ** \ 2) \\ & \ \textbf{return} \ \text{error} \end{split}
```

2.8.3. Реализация градиентного спуска

Теперь у нас есть всё, чтобы реализовать свой градиентный спуск:

```
def gradient_descent(X, y, learning_rate, iterations):
    X = np.hstack((np.ones((X.shape[0], 1)), X)) # add column of ones
    params = np.random.rand(X.shape[1])

m = X.shape[0]

cost_track = np.zeros((iterations, 1))

for i in range(iterations):
    params = params - 2./m * learning_rate * (X.T @ ((X @ params) - y))
    cost_track[i] = MSE(X, y, params)

return cost track, params
```

2.8.4. Функция предсказания модели

Записать предсказание модели можно очень просто:

```
\begin{array}{ll} \textbf{def} \ \ predict\left(X, \ params\right): \\ X = np.\,hstack\left(\left(np.\,ones\left(\left(X.\,shape\left[0\right], \ 1\right)\right), \ X\right)\right) \\ \textbf{return} \ X \ @ \ params \end{array}
```

2.8.5. Применение градиентного спуска

Применяем градиентный спуск:

```
 \begin{array}{lll} track \; , \; \; weights \; = \; stochastic\_gradient\_descent \left( X, \; \; y \; , \; \; 0.01 \; , \; \; 100 \right) \\ plt \; . \; plot \left( \; track \; \right) \; \# \; visualize \; \; errors \end{array}
```

Теперь сделаем предсказание и посмотрим на визуализацию этого предсказания:

```
\begin{array}{lll} pred = predict(X, weights) \\ plt.scatter(X, y) \\ plt.plot(X, pred, '-', c = 'r') \end{array}
```

3. Лекция 3

3.0.1. Один из недостатков градиентного спуска

С точки зрения реализации есть следующий недостаток:

На каждом шаге вычисления $\nabla Q(w)$ мы вычисляем производную по каждому весу от каждого объекта. То есть мы вычисляем целую матрицу производных - это затратно и по времени, и по памяти

3.1. Стохастический градиентный спуск

Stochastic Gradient Descent

На каждом шаге мы выбираем **один случайный объект** и сдвигаемся в сторону антиградиента по этому объекту:

 $\omega^{(k)} = \omega^{(k-1)} - \eta_k \cdot \nabla q_{ik}(\omega^{(k-1)})$

где $\nabla q_{i_k}(\omega)$ - градиент функции, вычисленный только по объекту с номером i_k (а не по всей обучающей выборке)

Если функция $q(\omega)$ выпуклая и гладкая, а также имеет минимум в точке ω^* , то метод стохастического градиентного спуска при аккуратно подобраном η (LR) через некоторое число шагов гарантированно попадает в малую окрестность точки ω^* . Однако сходится метод медленнее, чем обычный градиентный спуск.

3.2. Mini-Batch Gradient Descent

Промежуточное решение между классическим градиентным спуском и стохастическим вариантом

- Выбираем batch size (например, 32, 64, и т.д.). Разбиваем все пары объект-ответ на группы размера batch size
- На i-й итерации градиентного спуска вычисляем $\nabla Q(\omega)$ только по объектам i-го батча:

$$\omega^{(k)} = \omega^{(k-1)} - \eta_k \nabla Q_i(\omega^{(k-1)})$$

где $\nabla Q_i(\omega^{(k-1)})$ - градиент функции потерь, вычисленный по объектам из i-го батча

3.3. Ещё один недостаток градиентного спуска

Мы можем застрять в локальном минимуме и не дойти до глобального минимума

3.4. Метод моментов (Momentum)

Будем добавлять какие-то предыдущие значения шагов, которые будут аналогом инерции из физики: Вектор инерции (усреднение градиента по предыдущим шагам):

$$h_0 = 0$$

$$h_k = \alpha h_{k-1} + \eta \nabla Q(w^{k-1})$$

Формула метода моментов:

$$w^{(k)} = w^{(k-1)} - h_k$$

Подробнее:

$$w^{(k)} = w^{(k-1)} - \eta \nabla Q(w^{(k-1)}) - \alpha h_{k-1}$$

3.5. Преимущества метода моментов

Проще подбирать параметр α , чем делать несколько запусков обычного градиентного спуска, потому что в многомерном случае сложнее генерировать эти данные и сложнее так находить глобальный минимум

Также иногда, когда у нас данных много, GD может работать неделю, и нам непозволительно делать много запусков

3.6. Градиентный шаг

В общем случае градиентный шаг может зависеть от номера итерации, тогда мы будем писать не η , а η_k

- $\eta_k = c$ это то что было у нас раньше постоянный LR
- $\eta_k = \frac{1}{k}$ здесь проблема в том, что мы можем на первом шаге стоять очень близко от глобального минимума и пролететь его
- $\eta_k = \lambda \left(\frac{s}{s_0 + k}\right)^p$, λ, s_0, p параметры

3.7. AdaGrad (Adaptive Gradient)

Сумма квадратов обновлений

$$g_{k-1,j} = (\nabla Q(\omega^{(k-1)}))^2$$

Формула метода AdaGrad:

$$G_{k,j} = G_{k-1,j} + g_{k-1,j} = G_{k-1,j} + (\nabla Q(\omega^{(k-1)}))^2$$
$$\omega_j^{(k)} = \omega_j^{(k-1)} - \frac{\eta}{\sqrt{G_{k,j} + \varepsilon}} \cdot (\nabla Q(\omega^{(k-1)}))_j$$

Этот метод использует адаптивный шаг обучения по каждой из координат веса - тем самым мы регулируем скорость сходимости метода.

Плюсы метода: происходит затухание величины шага

Минусы метода: $G_{k,j}$ монотонно возрастает, поэтому шаги укорачиваются и мы можем не успеть дойти до минимума

3.8. RMSPROP (Root Mean Square Propagation)

Метод реализует экспоненциальное затухание градиентов

Формулы метода RMSprop (усреднённый по истории квадрат градиента):

$$\begin{aligned} G_{k,j} &= \alpha \cdot G_{k-1,j} + (1-\alpha) \cdot g_{k-1,j} \\ w_j^{(k)} &= \omega_j^{k-1} - \frac{\eta}{\sqrt{G_{k,j} + \varepsilon}} \cdot (\nabla Q(\omega^{(k-1)}))_j \end{aligned}$$

Если мы быстро сдвигались на последних шагах - то следующие будут маленькие Если мы сдвигались медленно - то шаги будут большие

3.9. Практикум на питоне

3.9.1. Генерируем данные

import numpy as np
from matplotlib import pylab as plt
%pylab inline

 ${\bf from} \ \ {\bf sklearn.datasets} \ \ {\bf import} \ \ {\bf make_regression}$

3.9.2. Библиотечное решение

У нас 10000 объектов и 100 признаков. Для начала решим задачу аналитически "из коробки". Решим сначала аналитически с помощью LinearRegression

```
from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error
lr = LinearRegression()
lr.fit(X, y)

print(mean_squared_error(y, lr.predict(X)))
Посмотрим на свободный член модели (intercept_) и веса (соеf_)

print(lr.intercept_, lr.coef_[:5])

Смотрим всего 5 весов, так как в реале их там 100.
Теперь решим с помощью градиентного спуска:
from sklearn.linear_model import SGDRegressor
sgd = SGDRegressor(alpha=0.00000001)
sgd.fit(X, y)

print(mean_squared_error(y, sgd.predict(X)))
И теперь точно также посмотрим свободный член и веса
print(sgd.intercept_, sgd.coef_[:5])
```