1. An inhibitor against human chymase activity containing a benzimidazole derivative expressed by the following formula (1) or its salt as an active ingredient,

$$\begin{array}{c|c}
X^1 \\
A \\
N \\
N \\
M-B-E
\end{array}$$
(1)

[in the formula (1), the ring marked with A expresses a pyridine ring or a benzene ring;

 X^1 and X^2 are each at the same time or independently a hydrogen atom, a halogen atom, a trihalomethyl group, a hydroxyl group, a nitro group, a cyano group, $\cdot CH_2NH_2$, $\cdot CH=NR^1$, $\cdot CH=NOR^1$ or $\cdot CONR^1R^2$ (here, R^1 and R^2 are each a hydrogen atom or a $C_{1\cdot 4}$ alkyl group), $\cdot COOR^3$ (here, R^3 is a hydrogen atom or a $C_{1\cdot 4}$ alkyl group), a substituted or unsubstituted $C_{1\cdot 6}$ normal, cyclic or branched alkyl group, a substituted or unsubstituted $C_{1\cdot 6}$ normal or branched alkoxyl group, a substituted or unsubstituted $C_{1\cdot 6}$ normal or branched alkylthio group, a substituted or unsubstituted $C_{1\cdot 6}$ normal or branched alkylsulfonyl group or a substituted or unsubstituted $C_{1\cdot 6}$ normal or branched alkylsulfinyl group (the substituent permissible to the groups is a halogen atom, a hydroxyl group, a nitro group, a cyano group, an acyl group, a trihalomethyl group, a trihalomethoxy group, a phenyl group, an oxo group or a phenoxy group optionally substituted with one or more halogen atoms, and the substituent may substitute singly or plurally independently at arbitrary position(s));

B is a substituted or unsubstituted $C_{1\cdot 6}$ normal, cyclic or branched alkylene group or a substituted or unsubstituted $C_{2\cdot 6}$ normal or branched alkenylene group {the substituent permissible to the groups is a halogen atom, a hydroxyl group, a nitro group, a cyano group, a $C_{1\cdot 6}$ normal or branched alkoxyl

15

20

25

group (including the case where adjacent two groups form an acetal bonding), a $C_{1\cdot6}$ normal or branched alkylthio group, a $C_{1\cdot6}$ normal or branched alkylsulfonyl group, a $C_{1\cdot6}$ normal or branched acylamino group, a trihalomethyl group, a trihalomethoxy group, a phenyl group, an oxo group or a phenoxy group optionally substituted with one or more halogen atoms, and the substituent may substitute singly or plurally independently at arbitrary position(s) of the alkylene group or an alkenylene group; between atoms, the alkylene group or alkenylene group optionally contains one or more of $\cdot O \cdot$, $\cdot S \cdot$, $\cdot S \cdot O_2 \cdot$ or $\cdot NR^4 \cdot$, but this atom or atomic group does not bond directly to the M, and here R^4 is a hydrogen atom or a $C_{1\cdot6}$ normal or branched alkyl group};

E expresses COOR⁴, SO₃R⁴, CONHR⁵, SO₂NHR⁴, PO(OR⁶)₂, a tetrazol-5-yl group, a 5-oxo-1,2,4-oxadiazol-3-yl group or a 5-oxo-1,2,4-thiadiazol-3-yl group (here, R⁴ is similarly defined as above; R⁵ is a hydrogen atom, a cyano group, or a C₁₋₆ normal or branched alkyl group; R⁶ is a hydrogen atom, a C₁₋₆ normal or branched alkyl group, or trifluoromethylsulfonyl group, or its pharmaceutically permissible salt);

G is a substituted or unsubstituted $C_{1\cdot6}$ normal or branched alkylene group (between atoms, the alkylene group optionally contains one or more of $\cdot O_{\cdot}$, $\cdot S_{\cdot} \cdot SO_{2}$ or $\cdot NR^{4\cdot}$, but this atom or atomic group does not bond directly to the nitrogen atom of the imidazole ring (R^{4} is similarly defined as above), and the substituent is a halogen atom, a hydroxyl group, a nitro group, a cyano group, a $C_{1\cdot6}$ normal or branched alkoxyl group (including the case where adjacent two groups form an acetal bonding), a trihalomethyl group, a trihalomethoxy group, a phenyl group or an oxo group);

J is a substituted or unsubstituted C₁₋₆ normal, cyclic or branched alkyl group, a substituted or unsubstituted C₁₋₁₀ aryl group {the substituent permissible to the groups is a halogen atom, a hydroxyl group, a nitro group, a cyano group, COOR⁷ (here, R⁷ is a hydrogen atom or a C₁₋₄ alkyl group), a C₁₋₆ normal, cyclic or branched alkyl group, a C₁₋₆ normal or branched alkoxyl group (including the case where adjacent two groups form an acetal bonding), a C₁₋₆ normal or branched alkylthio group, a C₁₋₆ normal or branched alkylsulfonyl group, a C₁₋₆ normal or branched alkylsulfinyl group, a C₁₋₆ acyl group, a C₁₋₆ normal or branched acylamino group, a trihalomethyl group, a trihalomethoxy

5

10

15

20

SUB

10

15

20

25

group, a phenyl group, an oxo group, or a phenoxy group optionally substituted with one or more halogen atoms; the substituent may substitute singly or plurally independently at arbitrary position(s) of the alkyl group or aryl group; and the substituent is further optionally substituted with a halogen atom, a hydroxyl group, a nitro group, a cyano group, an acyl group, a trihalomethyl group, a phenyl group, an oxo group or a phenoxy group optionally substituted with a halogen atom); and

M is a sulfur atom, a sulfinyl group, a sulfonyl group, a single bond or ${}^{\circ}CR^8R^{9\circ}$ (here, R^8 and R^9 are each at the same time or independently a hydrogen atom or a $C_{1\cdot 4}$ alkyl group)].

- 2. An inhibitor against human chymase activity set forth in Claim 1 wherein the ring marked with A in the above formula (1) is a benzene ring.
- 3. An inhibitor against human chymase activity set forth in Claim 1 wherein the ring marked with A in the above formula (1) is a pyridine ring.
- 4. An inhibitor against human chymase activity set forth in one out of Claims 1 to 3 wherein X^1 and X^2 in the above formula (1) are each at the same time or independently a hydrogen atom, a halogen atom, a trihalomethyl group, a cyano group, a substituted or unsubstituted $C_{1\cdot 3}$ normal or branched alkoxyl group, or a substituted or unsubstituted $C_{1\cdot 3}$ normal or branched alkoxyl group, or a substituted or unsubstituted $C_{1\cdot 3}$ normal or branched alkylthio group.
- 5. An inhibitor against human chymase activity set forth in one out of Claims 1 to 4 wherein J in the above formula (1) is a group described in the following formula (2) or (3),

[here, X³, X⁴ and X⁵ are each at the same time or independently a hydrogen atom, a halogen atom, a hydroxyl group, a nitro group, a cyano group, a trihalomethyl group, a trihalomethoxy group, COOR7 (here, R7 is a hydrogen atom or a C₁ 4 alkyl group), a substituted or unsubstituted C₁ 3 normal or branched alkyl group, a substituted or unsubstituted O₁ 3 normal or branched

5

10

20

25

alkoxyl group, a substituted or unsubstituted $C_{1\cdot3}$ normal or branched alkylthio group, a substituted or unsubstituted $C_{1\cdot3}$ normal or branched alkylsulfonyl group, or a substituted or unsubstituted $C_{1\cdot3}$ normal or branched alkylsulfinyl group; there is no limitation regarding the substitution positions of X^3 , X^4 and X^5 on the beazene ring or the naphthalene ring].

- 6. An inhibitor against human chymase activity set forth in one out of Claims 1 to 5 wherein M in the above-mentioned formula (1) is a sulfur atom.
- 7. An inhibitor against human chymase activity set forth in one out of Claims 1 to 6 wherein B in the above mentioned formula (1) is a substituted or unsubstituted Che normal, cyclic or branched alkylene group.
- 8. An inhibitor against human chymase activity set forth in one out of Claims 1 to 7 wherein G in the above mentioned formula (1) is •CH₂·, •CH₂CH₂·, •CH₂CO·, •CH₂CO·
- 9. An inhibitor against human chymase activity set forth in one out of Claims 1 to 8 wherein E in the above mentioned formula (1) is COOH.
- 10. A benzimidazole derivative expressed by the following formula (4) or its pharmaceutically permissible salt,

[in the formula (4), the definitions of the ring marked with A, and X^1 , X^2 , B, E, G, J and M are same as those in the above formula (1); however, excepting the case where at least one of X^1 and X^2 is a cyano group, $-CH_2NH_2$, $-CH=NR^1$, $-CH=NOR^1$ or $-CONR^1R^2$ (here, R^1 and R^2 are each a hydrogen atom or a C_{1-4} alkyl group), J expresses only a substituted naphthalene ring].

11. A benzimidazole derivative or its pharmaceutically permissible salt set forth in Claim 10 wherein X¹ and X² in the above formula (4) are each a hydrogen atom, a cyano group, ·CH₂NH₂, ·CH=NR¹, ·CH=NOR¹ or ·CONR¹R² (here, R¹ and R² are each a hydrogen atom or a C_{1·4} alkyl group; X¹ and X² are not hydrogen at the same time).

- 10 SWS 15 O T T T T 20
- 12. A benkimidazole derivative or its pharmaceutically permissible salt set forth in Claim 10 wherein X1 and X2 in the above formula (4) are each at the same time or independently a hydrogen atom, a halogen atom, a trihalomethyl group, a hydroxyl group,\a nitro group, -CH=NR1 (here, R1 is a hydrogen atom or a C₁₋₄ alkyl group), -COOR3 (here, R3 is a hydrogen atom or a C₁₋₄ alkyl group), a substituted or unsubstituted C16 normal, cyclic or branched alkyl group, a substituted or unsubstituted C₃₋₇ cycloalkyl, a substituted or unsubstituted C₁₋₆ normal or branched alkoxyl group, a substituted or unsubstituted C₁₋₆ normal or branched alkylthio group, a substituted or unsubstituted C₁₋₆ normal or branched alkylsulfonyl group or a substituted or unsubstituted C₁₋₆ normal or branched alkylsulfinyl group {the substituent permissible to the groups is a halogen atom, a hydroxyl group, a nitro group, a cyano group, an acyl group, a trihalomethyl group, a trihalomethoxy group, a phenyl group, an oxo group or a phenoxy group optionally substituted with one or more halogen atoms, and the substituent may substitute singly\ or plurally independently at arbitrary position(s)}.
- 13. A benzimidazole derivative or its pharmaceutically permissible salt set forth in Claim 10 wherein X¹ and X² in the above formula (4) are each a hydrogen atom or a cyano group (here, X) and X² can not be hydrogen toms at the same time).
- 14. A benzimidazole derivative or its pharmaceutically permissible salt set forth in one out of Claims 10 to 13 wherein M in the above formula (4) is a sulfur atom.
- 15. A benzimidazole derivative or its pharmaceutically permissible salt set forth in one out of Claims 10 to 14 wherein B in the above formula (4) is a substituted or unsubstituted C_{1.6} normal, cyclic or branched alkylene group.
- 16. A benzimidazole derivative or its pharmaceutically permissible salt set forth in one out of Claims 10 to 15 wherein J in the above formula (4) is a group expressed by the following formula (2) or (3),

[here, X^3 , X^4 and X^5 are each at the same time or independently a hydrogen atom, a halogen atom, a hydroxyl group, a nitro group, a cyano group, a trihalomethyl group, a trihalomethoxy group, $COOR^7$ (here, R^7 is a hydrogen atom or a $C_{1\cdot4}$ alkyl group), a substituted or unsubstituted $C_{1\cdot3}$ normal or branched alkyl group, a substituted or unsubstituted $C_{1\cdot3}$ normal or branched alkylthio group, a substituted or unsubstituted $C_{1\cdot3}$ normal or branched alkylthio group, or a substituted or unsubstituted $C_{1\cdot3}$ normal or branched alkylsulfonyl group, or a substituted or unsubstituted $C_{1\cdot3}$ normal or branched alkylsulfinyl group; there is no limitation regarding the substitution positions of X^3 , X^4 and X^5 on the benzene ring or the naphthalene ring].

- 17. A benzimidazole derivative or its pharmaceutically permissible salt set forth in one out of Claims 10 to 16 wherein G in the above formula (4) is -CH₂·, -CH₂CH₂·, -CH₂CO·, -CH₂CH₂O·, -CH₂CONH·, -CO·, ·SO₂·, -CH₂SO₂·, -CH₂S· or -CH₂CH₂S· (J bonds to the right side of said group).
- 18. A benzimidazole derivative or its pharmaceutically permissible salt set forth in one out of Claims 10 to 17 wherein E in the above formula (4) is COOH.
- 19. A pharmaceutical composition consisting of a benzimidazole derivative and/or its pharmaceutically permissible salt set forth in one out of Claims 10 to 18, and a pharmaceutically permissible carrier.
- 20. A chymase activity inhibitor set forth in one out of Claims 1 to 9 whose targeting disease is an inflammatory disease, an allergy disease, a respiratory disease, a cardiovascular disease or a bone/cartridge metabolic disease.
- 21. A human chymase activity inhibitor set forth in Claim 20 which is a preventing agent or a treating agent of a disease.

15

20