

参赛密码 \_\_\_\_\_

(由组委会填写)



# "华为杯"第十三届全国研究生 数学建模竞赛

|      |    | 南京财经大学   |
|------|----|----------|
|      |    |          |
| 参赛队号 |    | 10327023 |
|      | 1. | 田能能      |
| 队员姓名 | 2. | 王梦华      |
|      | 3. | 彭洋洋      |



| 参赛密码     |
|----------|
| (由组委会填写) |

# 题 目 粮食最低收购价政策问题研究

摘 要:

本文通过对我国粮食最低收购价政策进行研究,建立影响粮食种植面积的模型以及粮食最低收购价政策执行效果的评价模型等,为此解决了以下几个方面的问题:

**针对问题**一,首先通过文献梳理,整理出粮食种植面积影响因素的 5 个潜变量和 19 个观测变量,通过因果路径图,建立结构方程模型(SEM),在 AMOS 软件上进行验证性因子分析和路径分析,发现耕地面积、成灾面积、市场收购价、粮食总产量、最低收购价、农业人口数、城镇化率影响明显且存在品种差异,并对SEM 模型进行了模型适配度统计检验(表 2),达到适配度标准、可信度和可靠性较好。

| 品种   | 成灾   | 耕地   | 市场收  | 粮食总  | 最低收  | 农业人  | 城镇   |
|------|------|------|------|------|------|------|------|
| 口口个円 | 面积   | 面积   | 购价   | 产量   | 购价   | 口数   | 化率   |
| 小麦   | 2.58 | 1.09 | 0.68 | 0.69 | 2.79 | 0.56 | 0.76 |
| 水稻   | 1.03 | 2.26 | 0.58 | 0.79 | 1.43 | 0.56 | 0.76 |

**针对问题**二,由问题一的指标体系,为克服指标特征量值的不确定性和主观性,引入三角模糊数对物元可拓模型进行改进,结合信息熵理论和决策风险偏好,建立了基于熵权和模糊物元可拓的粮食最低收购价政策执行效果评价模型,根据Likert 五点度尺量理论,结果表明,小麦最低收购价政策执行效果"好"的有: 江西省、安徽省; 水稻最低收购价政策执行效果"好"的有: 湖南省、安徽省; 小麦最低收购价政策执行效果"一般"的有: 湖南省、四川省、湖北省; 水稻最低收购价政策执行效果"一般"的有: 四川省、江西省、湖北省(表9)。

针对问题三,首先通过"蛛网"模型,对小麦和水稻的价格波动率进行分析,市场收购价和最低收购价均呈现尖峰厚尾的正态分布性规律,然后通过 Eviews 软件进行 ARCH 类模型识别小麦和水稻的价格的规律,结果表明我国粮食价格的波动具有集族性、非对称性、品种差异性、持续性特征、不存在高风险高粮价的特征以及明显的非对称性特点。

**针对问题四**,首先考虑最大化种植粮食所获得的纯收益、国家财政支出风险、粮农种植意愿 3 个目标,以及粮食需求、库存、种植面积等约束建立了合理定价的鲁棒优化模型,通过情景分析法模拟,并分别将 GARCH 模型、单变量二阶差分方程模型(DDE)、支持向量机预测模型(SVM 模型)以及马尔科夫链的时变权组合预测模型(HM-TWA)四种预测方法进行预测,取其平均值作为 2017 年的预测结果,如下:

| 年份   | 小麦最低收购价范围(元/50公斤)  | 水稻最低收购价范围(元/50公斤)  |
|------|--------------------|--------------------|
| 2017 | [125, 127. 5, 130] | [153, 168. 5, 170] |



针对问题五,结合问题一的结论,建立多元回归分析模型,通过 EXCEL 求得复相关系数 R=0.979208,复测定系数为 0.958848,结果表明降低粮食的最低收购价格可以实现粮食种植面积的增加 5%,但是并不能一直下降,这样相对市场收购价格,其实市场收购价格相对上升,将会导致粮食企业承担很大的经营风险。

**针对问题六**,综合模型分析结果,提出优化政策设计建立科学的粮食最低收购价格确定机制、完善粮食价格监测预警机制、调整粮食最低收购价格公布和政策实施时间、实行粮食最低收购价格资金供给多元化四点意见。

**关键词** SEM 模型 验证性因子分析 路径分析 模糊可拓物元 蛛网模型 鲁棒优化 ARCH 类模型 多元回归分析



# 目 录

| —, | 问题重述                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2        |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|    | 1 问题背景                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| 1. | 2 问题提出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2        |
| 二、 | 问题分析                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2        |
| 三、 | 基本假设及相关定义                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3        |
| 3. | 1基本假设                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3        |
| 3. | 2 相关定义                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3        |
| 四、 | 模型的建立与求解                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5        |
| 4. | 1问题一:粮食种植面积指标体系和数学模型                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5        |
|    | 4.1.1 分析与建模                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|    | 4.1.2 求解和结果                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|    | 2问题二:粮食最低收购价政策执行效果的评价模型                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
|    | 4.2.1 分析与建模                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|    | 4.2.2 求解和结果1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        |
|    | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .5       |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9        |
|    | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9        |
|    | * 771 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22       |
|    | - Mean Marking William Control of the Control of th | 25<br>25 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _        |
|    | 4.5.2 求解和结果                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|    | 6问题六:调控粮食种植的优化决策和建议2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 五、 | 模型评价2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7        |
| 六、 | 参考文献2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8        |
| 附表 | 录2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9        |



## 一、 问题重述

#### 1.1 问题背景

粮食,不仅是人们日常生活的必需食品,而且还是维护国家经济发展和政治稳定的战略物资,具有不可替代的特性。由于耕地减少、人口增加、水资源短缺、气候变化等问题日益凸显,加之国际粮食市场的冲击,我国粮食产业面临着潜在的风险。因此,研究我国的粮食保护政策具有十分重要的作用和意义,其中,粮食最低收购价政策属于粮食价格支持政策范畴,由市场供需情况决定,国家在充分发挥市场机制作用的基础上实行宏观调控。

我国自 2005 年起开始对粮食主产区实行了最低收购价政策,并连续多年上调最低收购价价格,已经成为了国家保护粮食生产的最为重要的举措之一。然而,也有学者不认同这项最低收购价政策。他们认为,粮食市场收购价应该由粮食供需双方通过市场调节来决定。对于粮食最低收购价政策实施效果的评价,学者们也是见解不一。与此同时,也有一些学者就粮食最低收购价制定的合理范围进行了探讨。

#### 1.2 问题提出

对于问题一:影响粮食种植面积的因素比较多,它们之间的关系错综复杂而且可能存在着粮食品种和区域差异。建立影响粮食种植面积的指标体系和关于粮食种植面积的数学模型,讨论、评价指标体系的合理性,研究他们之间的关系,并对得出的相应结果的可信度和可靠性给出检验和分析。

对于问题二:对粮食最低收购价政策的作用,学者们褒贬不一。建立粮食最低收购价政策执行效果的评价模型,并运用所建立的评价模型,结合粮食品种和区域差异,选择几个省份比较研究粮食主产区粮食最低收购价执行的效果。

对于问题三:粮食市场收购价是粮食企业收购粮食的市场价格,是由粮食供需双方通过市场调节来决定。它与粮食最低收购价一起构成粮食价格体系,是宏观价格调控系统中有一定相对独立性的重要措施。运用数据分析或建立数学模型探讨我国粮食价格所具有的特殊规律性。

对于问题四:结合前面的研究和国家制定粮食最低收购价政策的初衷,建立粮食最低收购价的合理定价模型,进而对"十二五"期间国家发展与改革委员会公布的粮食最低收购价价格的合理性做出评价,并运用所建立的模型对2017年的粮食最低收购价的合理范围进行预测。

对于问题五: 与 2000 年相比, 2015 年我国小麦种植面积略有下降。如果国家想让小麦种植面积增加 5%, 探讨通过调整粮食最低收购价是否能够达到这一目的。并说明理由。

对于问题六:根据得到的研究结论,提出调控粮食种植的优化决策和建议。

# 二、问题分析

问题一是粮食种植面积指标体系和数学模型,首先需要进行文献梳理并收集数据,整理出粮食种植面积影响因素,以及因素之间的内在影响逻辑,建立因果路径图,进行验证性因子分析,可建立结构方程模型(SEM),在 AMOS 软件上



进行验证性因子分析和路径分析;

问题二是粮食最低收购价政策执行效果的评价模型,由问题一的指标体系,根据 Likert 五点度尺量理论,可以建立模糊物元分析,假设粮食最低收购价政策执行效果是"物",粮食种植面积的影响因素的指标是"特征",指标的值是"量值",需要合理识别出经典域、节域以及关联函数:

问题三是粮食价格的特殊规律性模型,可以通过"蛛网"模型,对小麦和水稻的价格波动率进行大致分析,然后通过 Eviews 软件进行 ARCH 类模型识别小麦和水稻的价格的规律,看是否有集族性、非对称性、品种差异性、持续性特征、不存在高风险高粮价的特征以及明显的非对称性特点。

问题四是粮食最低收购价合理定价及预测模型,首先考虑最大化种植粮食所获得的纯收益、国家财政支出风险、粮农种植意愿 3 个目标,以及粮食需求、库存、种植面积等约束建立了合理定价的鲁棒优化模型,通过情景分析法模拟,并分别将 GARCH 模型、单变量二阶差分方程模型 (DDE)、支持向量机预测模型 (SVM模型)以及马尔科夫链的时变权组合预测模型 (HM-TWA) 四种预测方法进行预测,取其平均值作为 2017 年的预测结果。

问题 5 是调整粮食最低收购价使小麦种植面积增加 5%,结合问题一的结论,建立多元回归分析模型,通过 EXCEL 求得复相关系数 R=0.979208,复测定系数为 0.958848,结果表明降低粮食的最低收购价格可以实现粮食种植面积的增加 5%,但是并不能一直下降,这样相对市场收购价格,其实市场收购价格相对上升,将会导致粮食企业承担很大的经营风险。

问题六、综合模型分析、结合上面几问给出宏观政策意见。

# 三、基本假设及相关定义

#### 3.1 基本假设

- (1) 假设粮食种植面积的影响因素存在粮食品种的差异和区域差异;
- (2) 假设我国粮食主生产区主要为湖南省、四川省、江西省、湖北省、安徽省;
- (3)假设粮食种植面积的显著变化与否,可以衡量粮食最低收购价政策的实施效果:
- (4) 假设粮食价格的特殊规律,即粮食市场收购价格和最低收购价格的波动性, 集族性,连续性等:
- (5) 依据物元思想,假设粮食最低收购价政策执行效果是"物",粮食种植面积的影响因素的指标是"特征",指标的值是"量值"。

#### 3.2 相关定义

**定义** 1 如果一物 N 具有 n 个特征, 其 n 个特征  $c_1, c_2, ..., c_n$  及 N 关于  $c_n(i=1,2,...n$ 对应的量值为 $v_n(i=1,2,...,n)$ ,





则称: 
$$R = \begin{bmatrix} N & c_1 & v_1 \\ & c_2 & v_2 \\ & \cdots & \cdots \\ & c_n & v_n \end{bmatrix} = (N, C, V)$$
为 $R$ 的 $n$ 维物元,其中 $C = \begin{bmatrix} c_1 \\ c_2 \\ \cdots \\ c_n \end{bmatrix}$ ,  $V = \begin{bmatrix} v_1 \\ v_2 \\ \cdots \\ v_n \end{bmatrix}$ 

定义 2 若物元要素中的量值要素有的是确定性的精确数值,有的是不确定性的模糊量值,则使用有序三元组(事物、特征、三角模糊数)作为描述事物的基本元,并将这种物元称为基于三角模糊数的模糊物元,记为:

$$R = \begin{bmatrix} N & c_1 & m_1 \\ & c_2 & m_2 \\ & \dots & \dots \\ & c_n & m_n \end{bmatrix} = (N, C, M), M = (l, m, u)$$
表示与事物特征相对应的特征

量值的三角模糊数,l和u表示区间下限和上限,m表示最可能的取值,对于确定性的指标,l=u,对于不确定性的模糊指标, $l\neq u$ 且|l-u|的大小体现特征量值的模糊程度,绝对值越大,迷糊程度越高。

定义3 取值为三角模糊数的量值的熵测度为:

$$H_{j} = \theta \left( -\frac{1}{\ln m} \sum_{i=1}^{m} \frac{m_{ij}}{\sum_{i=1}^{m} m_{ij}} \ln \frac{m_{ij}}{\sum_{i=1}^{m} m_{ij}} \right) + (1 - \theta) \left( -\frac{1}{\ln m} \sum_{i=1}^{m} \frac{V_{ij}}{\sum_{i=1}^{m} V_{ij}} \ln \frac{V_{ij}}{\sum_{i=1}^{m} V_{ij}} \right) \qquad \vec{\mathbb{R}} (1)$$

其中,i=1,2,...,m; j=1,2,...,n, $0 \le \theta \le 1$ 为决策者对三角模糊数重心点和方差影响程度是判断系数,风险偏好的决策者,则注重发生可能性最大的重心点值,取 $\theta > 0.5$ ;风险厌恶的决策者,则注重量值的上下限,取 $\theta < 0.5$ ;风险中立者,则取 $\theta = 0.5$ ,因此量值的权重为:

$$w_{j} = \frac{1 - H_{j}}{n - \sum_{j=1}^{n} H_{j}}$$
,  $1 - H_{j}$  为差异系数 式 (2)



## 四、模型的建立与求解

#### 4.1 问题一: 粮食种植面积指标体系和数学模型

#### 4.1.1 分析与建模



图 1 粮食种植面积相关影响因素内在机理

粮食预期收益、粮食政策、收购价格以及科技进步等直接影响到农民的种粮决策与行为,从而间接或直接的影响粮食种植面积。同时自然灾害对粮食产量有着负向影响,进而影响粮食供求变化。口粮需求、种籽需求、饲料需求等会影响粮食总需求。二者的波动引起粮食供需变化,并和投机行为和心理预期一起造成粮食价格波动,粮食种植面积相关影响因素内在机理如图1所示。

影响粮食种植面积的因素很多,有学者将其归纳为资源与科技、比较收益和政策。也有学者认为种粮收益、财政支农、产业结构等因素都能显著影响粮食播种面积。本文在相关文献基础上,从自然环境质量、经济条件、政策导向、人员背景和社会发展水平五个方面建立了耕地面积、成灾面积等 19 个指标组成的指标体系,如下表 1 所示:

表 1 粮食种植面积影响因素指标体系

Table1 Index system of influence factors to acreage of grain

|        | •                       |                                       |
|--------|-------------------------|---------------------------------------|
| 目标层    | 指数层(准则层)                | 指标层 (方案层)                             |
|        |                         | ************************************* |
|        | $B_1$ 自然环境质量 $B_2$ 经济条件 | c <sub>1</sub> 耕地面积                   |
| 粮      |                         | c <sub>2</sub> 成灾面积                   |
| 食      |                         | c <sub>3</sub> 森林覆盖率                  |
| 种<br>植 |                         | c4 农业占生产总值比例                          |
|        |                         | c <sub>5</sub> 城乡居民人均收入差              |



|              | c。粮食进出口差额                |
|--------------|--------------------------|
|              | c <sub>7</sub> 市场收购价     |
|              | c <sub>8</sub> 粮食总产量     |
|              | c。最低收购价                  |
| $B_3$ 政策导向   | c <sub>10</sub> 种粮亩产补贴   |
|              | c <sub>11</sub> 财政支农支出   |
|              | c <sub>12</sub> 农业人口数    |
| $B_4$ 人员背景   | c <sub>13</sub> 农村人均教育支出 |
|              | c14 粮农种植意愿               |
|              | c <sub>15</sub> 城镇化率     |
|              | c16 恩格尔系数                |
| $B_5$ 社会发展水平 | C <sub>17</sub> 粮食生产成本   |
|              | C18 粮食安全指数               |
|              | c <sub>19</sub> 农业机械总动力  |
|              | B <sub>4</sub> 人员背景      |

影响粮食种植面积的因素指标体系关系比较复杂,为探究粮食种植面积影响指标之间的关系,将  $B_1$ 、  $B_2$ 、  $B_3$ 、  $B_4$ 和  $B_5$  五个二级指标作为潜变量,将三级指标  $C_1 \sim C_{19}$  作为观测变量,建立结构方程模型(SEM),并进行验证性因素分析以及路径分析。其路径图如图 2 所示:



图 2 粮食种植面积影响因素的路径关系图



#### 4.1.2 求解和结果

借助 Amos Graphics 软件,将数据代入所建的 SEM 模型中,进行模型适配度和路径分析,结果如下:



图 3 小麦种植面积影响因素结构方程模型路径系数

根据结构方程模型的模型适配度检验统计量,通过对绝对适配度指数、增值 适配度指数、简约适配度指数三项共 17 项统计检验量的结果分析,如下表:

#### 表 2 小麦和水稻种植面积 SEM 模型适配度检验结果

Table 2 The test result of collecation degree of SED model used in wheat and rice's acreage

| 统计检验量   | 适配的标准(临界值) | 小麦的检验量          | 水稻的检验量          |
|---------|------------|-----------------|-----------------|
| 绝对适配度指数 |            |                 |                 |
| 上 卡方值   | p>0.05     | 43.414, p=0.733 | 51.020, p=0.473 |
| RMR 值   | < 0.05     | 0.02            | 0.023           |
| RMSEA 值 | < 0.08     | 0.000           | 0.001           |
| GFI 值   | >0.90      | 0.965           | 0.958           |
| AGFI 值  | >0.90      | 0.945           | 0.935           |
| 增值适配度指数 |            |                 |                 |
| NFI 值   | >0.90      | 0.969           | 0.964           |
| RFI 值   | >0.90      | 0.960           | 0.965           |
| IFI 值   | >0.90      | 1.005           | 1.00            |
| TLI 值   | >0.90      | 1.006           | 1.00            |



| 1/411/1 |          |                  | STATE OF THE STATE |
|---------|----------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CFI 值   | >0.90    | 1.000            | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 简约适配度指数 |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PGFI 值  | >0.50    | 0.618            | 0.626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PNFI 值  | >0.50    | 0.734            | 0.745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PCFI 值  | >0.50    | 0.758            | 0.798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CN 值    | >200     | 310              | 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 卡方自由度比  | <2       | 0.868            | 0.924                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| AIC 值   | 理论<独立<饱和 | 99.4<156.2<1489  | 105.4<196.2<1585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CAIC 值  | 理论<独立<饱和 | 219.7<491.2<1493 | 169.7<401.2<1571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



图 4 水稻种植面积影响因素结构方程模型路径系数

通过比较图(3)和图(4)可以发现小麦和水稻的种植面积在其影响因素的路径分析中,存在着明显的差异,由路径系数可以发现对于小麦而言,小麦的种植面积主要因素为:成灾面积、市场收购价、粮食总产量、最低收购价、农业人口数、城镇化率。而水稻的种植面积的主要因素为:耕地面积、市场收购价、粮食总产量、最低收购价、农业人口数、城镇化率。由此可见,小麦和水稻存在着品种差异,在成灾面积、耕地面积上有显著差异。

#### 表 3 小麦和水稻的种植面积主要影响因素路径系数

Table3 Wheat and rice acreage main factors path coefficient

| 品种 | 成灾<br>面积 | 耕地<br>面积 | 市场收<br>购价 | 粮食总产量 | 最低收购价 | 农业人<br>口数 | 城镇化率 |
|----|----------|----------|-----------|-------|-------|-----------|------|
|----|----------|----------|-----------|-------|-------|-----------|------|

| HUAWEI |
|--------|
|--------|

| 小麦 | 2.58 | 1.09 | 0.68 | 0. 69 | 2. 79 | 0.56 | 0.76 |
|----|------|------|------|-------|-------|------|------|
| 水稻 | 1.03 | 2.26 | 0.58 | 0. 79 | 1. 43 | 0.56 | 0.76 |

#### 4.2 问题二:粮食最低收购价政策执行效果的评价模型

#### 4.2.1 分析与建模

# (1) 政策执行效果的经典域、节域和对象

考虑到粮食种植面积的变化可以反映粮食最低收购价政策的执行效果,对于 粮食种植面积的影响因素的指标体系在定量、定性和区间值层面的特殊性,

令有h个政策执行效果的评价等级 $N_1,N_2,...,N_h$ ,建立相应的模糊物元,为:

$$R_{h} = (N_{h}, c_{j}, m_{hi}) = \begin{bmatrix} N_{h} & c_{1} & m_{h1} \\ & c_{2} & m_{h2} \\ & \cdots & \cdots \\ & c_{n} & m_{hn} \end{bmatrix} = \begin{bmatrix} N_{h} & c_{1} & [\mathbf{M}_{h1}, \mathbf{M}_{h1}] \\ & c_{2} & [\mathbf{M}_{h2}, \mathbf{M}_{h2}] \\ & \cdots & \cdots \\ & c_{n} & [\mathbf{M}_{hn}, \mathbf{M}_{hn}] \end{bmatrix}$$

式中:  $N_h$  为划分的h 个政策执行效果的评价等级;  $c_j$  为评价等级 $N_h$  的特征;  $m_{ji}$  为 $N_h$  关于 $c_j$  所规定的量值范围, $m_{hi}$  = [ $\mathbf{M}_{hn}$ ,  $\mathbf{M}'_{hn}$ ],  $\mathbf{M}_{hn}$  和  $\mathbf{M}'_{hn}$  为三角模糊数, i=1,2,...,n ; j=1,2,...,n 。

对于经典域,构造其节域 $R_p(R_p \supset R_h)$ , $R_p$ 记为:

$$R_{p} = (N_{p}, c_{j}, m_{pi}) = \begin{bmatrix} N_{p} & c_{1} & m_{p1} \\ & c_{2} & m_{p2} \\ & \dots & \dots \\ & c_{n} & m_{pn} \end{bmatrix} = \begin{bmatrix} N_{p} & c_{1} & [M_{p1}, M'_{p1}] \\ & c_{2} & [M_{p2}, M'_{p2}] \\ & \dots & \dots \\ & c_{n} & [M_{pn}, M'_{pn}] \end{bmatrix}$$

其中:  $N_p$  为政策执行效果的全体;  $m_{pi}$  为  $N_p$  关于  $c_j$  所取的量的范围。将待评价的对象为政策执行效果评价等级,用物元  $R_s$  表示记为:

$$R_s = (P_s, c_j, m_{si}) = \begin{bmatrix} P_s & c_1 & \mathbf{M}_{s1} \\ & c_2 & \mathbf{M}_{s2} \\ & \cdots & \cdots \\ & c_n & \mathbf{M}_{sn} \end{bmatrix}$$

其中:  $P_s$ 为政策执行效果评价等级水平;  $m_{si}$ 为 $P_s$ 关于 $c_j$ 的量值,粮食种植面积指标体系值。 在经典域、节域和待评价物元已经确定的情况下,根据可拓学关于距的定义,可以计算待评价物元 $R_s$ 的各特征到经典域和节域的距分别为:



$$\rho_{s}(m_{si}, m_{hi}) = \left| \mathbf{M}_{si} - \frac{1}{2} (\mathbf{M}_{hi} + \mathbf{M}'_{hi}) \right| - \frac{1}{2} (\mathbf{M}'_{hi} - \mathbf{M}_{hi})$$

$$\rho_{s}(m_{si}, m_{pi}) = \left| \mathbf{M}_{si} - \frac{1}{2} (\mathbf{M}_{pi} + \mathbf{M}'_{pi}) \right| - \frac{1}{2} (\mathbf{M}'_{pi} - \mathbf{M}_{pi})$$
  $\vec{\mathbb{R}} (3)$ 

 $\Diamond D_h = |M'_{hi} - M_{hi}|$ ,且关于三角模糊数的运算依据三角模糊数的运算规则进行。

#### (2) 政策执行效果的评价关联函数

$$K_{s}(m_{si}) = \begin{cases} \frac{\rho_{s}(m_{si}, m_{hi})}{\rho_{s}(m_{si}, m_{pi}) - \rho(m_{si}, m_{hi})}, \rho(m_{si}, m_{pi}) \neq \rho(m_{si}, m_{hi}) \\ \frac{-\rho_{s}(m_{si}, m_{hi})}{D_{h}}, \rho(m_{si}, m_{pi}) = \rho(m_{si}, m_{hi}) \end{cases}$$

关联度的取值是整个实数域,为了便于分析和比较,将关联函数进行规范化如下:

$$K(m_{si}) = \begin{cases} \frac{K_s(m_{si})}{\max K_s(m_{si})}, K_s(m_{si}) \ge 0\\ \frac{K_s(m_{si})}{\max |K_s(m_{si})|}, K_s(m_{si}) < 0 \end{cases}$$

#### (3) 政策执行效果评价判定

关联函数  $K(m_{si})$  的数值表示评价对象符合政策执行效果的评价级别的隶属程度。评价对象  $R_s$  关于评价等级  $N_h$  的关联度为:

$$K_h(R_s) = \sum_{i=1}^n w_i K(m_{si})$$
  $\sharp \zeta$  (6)

如果  $K_h(R_s) = \max_{h \in \{1,2,\dots,h\}} K_h(R_s)$ ,则评定  $R_s$  属于政策执行效果的等级  $N_h$ 

#### (4) 政策执行效果的划分

为了更好地体现政策执行效果,需要对其进行效果等级标准划分。在 Likert 五点度尺量理论基础上,将政策执行效果划分为五级,按照由"低"到"高"分别对应如下:

I (很好) 、II (好)、III (一般)、IV (差)、V (非常差)。

将政策执行效果的概念集合 {很好→好→一般→差→非常差} 中的渐变分类关系由定性描述扩展为定量描述,从而辨识这个概念的层次关系。将政策执行效果评价的问题描述为:  $P = \{ 很好→好→一般→差→非常差 \}$ , I, II, III, IV, V  $\in P$  ,对于任何R  $\in P$ 判断属于 I, II, III, IV, V  $\notin P$  ,并依据式(3)(4)(5)计算关联度。

#### (5) 粮食种植面积的指标阈值

本文的各项评价指标在各评价效果等级上的阈值确定主要参考国家、行业和



地方规定的粮食标准,结合现有研究文献和市场现状,以及上文给出的三角模糊数对物元模型量值的改进方法,确定预警指标阈值,具体小麦和水稻种植面积的指标阈值如下(表4和表5)。

#### 表 4 小麦最低收购价政策执行效果的指标阈值

Table 4 Index threshold of implementation effect of the price about the minimum purchase price of wheat

| 指标              | 很好 I          | 好II             | 一般Ⅲ             | 差IV            | 非常差V             |
|-----------------|---------------|-----------------|-----------------|----------------|------------------|
| $C_1$           | [0.9, 1]      | [0.8, 0.9)      | [0.7, 0.8)      | [0. 5. 0. 7)   | [0, 0.5)         |
| $C_2$           | [40, 80]      | [30, 40)        | [2, 30)         | [0.5, 2)       | [0, 0. 5)        |
| C <sub>3</sub>  | [35, 60)      | [30, 35)        | [23, 30)        | [20, 23)       | [0, 20)          |
| $C_4$           | [0, 70)       | [70, 80)        | [80, 90)        | [90, 95)       | [95, 100]        |
| $C_5$           | [0, 70)       | [70, 80)        | [80, 90)        | [90, 95)       | [95, 100]        |
| $C_6$           | [50, 80)      | [40, 50)        | [30, 40)        | [10, 30)       | [0, 10)          |
| C <sub>7</sub>  | [0, 60)       | [60, 70)        | [70, 80)        | [80, 90)       | [90, 100]        |
| C <sub>8</sub>  | [0, 70)       | [70, 80)        | [80, 90)        | [90, 95)       | [95, 100]        |
| C <sub>9</sub>  | [(0, 0, 15),  | [(10, 50, 80),  | [ (70, 80, 85), | [(70, 85, 85), | [ (85, 90, 90),  |
|                 | (20, 50, 60)] | (40, 80, 90)]   | (80, 85, 90) ]  | (85, 90, 95)]  | (90, 100, 100)]  |
| $C_{10}$        | [(0,0,10),    | [(40, 60, 65),  | [(40, 70, 75),  | [(60, 75, 80), | [ (80, 85, 85),  |
|                 | (20,60,70)]   | (50, 70, 75)]   | (60, 75, 80)]   | (70, 85, 90)]  | (90, 100, 100)]  |
| $C_{11}$        | [(0, 0, 10),  | [(40, 50, 65),  | [(40, 70, 75),  | [(60, 75, 80), | [ (80, 85, 85),  |
|                 | (20, 50, 70)] | (50, 70, 75)]   | (60, 75, 80)]   | (70, 85, 90)]  | (90, 100, 100)]  |
| $C_{12}$        | [(0, 0, 20),  | [ (40, 60, 65), | [(40, 70, 75),  | [(60, 75, 80), | [ (80, 85, 85),  |
|                 | (20, 60, 70)] | (60, 70, 75)]   | (60, 75, 80)]   | (70, 85, 90)]  | (90, 100, 100)]  |
| C <sub>13</sub> | [(0, 0, 20),  | [ (40, 55, 65), | [(40, 70, 75),  | [(60, 75, 80), | [ (80, 85, 85),  |
|                 | (20, 60, 70)] | (50, 70, 75)]   | (60, 75, 80)]   | (70, 85, 90)]  | (90, 100, 100) ] |
| $C_{14}$        | [(0, 0, 10),  | [(40, 60, 65),  | [(40, 70, 75),  | [(60, 75, 80), | [(80, 85, 85),   |
|                 | (20, 60, 70)] | (50, 70, 75)]   | (60, 75, 80)]   | (70, 85, 90)]  | (90, 100, 100)]  |
| $C_{15}$        | [(0, 0, 10),  | [(10, 50, 80),  | [(70, 80, 85),  | [(70, 85, 85), | [ (85, 90, 90),  |
|                 | (20, 50, 60)] | (40, 80, 90)]   | (80, 85, 90)]   | (85, 90, 95)]  | (90, 100, 100)]  |
| $C_{16}$        | [(0, 0, 10),  | [ (40, 60, 65), | [(40, 70, 75),  | [(60, 75, 80), | [ (80, 85, 85),  |
|                 | (20, 60, 70)] | (50, 70, 75)]   | (60, 75, 80)]   | (70, 85, 90)]  | (90, 100, 100)]  |
| C <sub>17</sub> | [(0, 0, 10),  | [(60, 75, 80),  | [(70, 85, 90),  | [(85, 90, 95), | [(85, 95, 95),   |
|                 | (60, 75, 80)] | (80, 85, 90)]   | (80, 90, 95)]   | (80, 95, 98)]  | (95, 100, 100)]  |
| $C_{18}$        | [(0, 0, 10),  | [(40, 60, 65),  | [(40, 70, 75),  | [(60, 75, 80), | [ (80, 85, 85),  |
|                 | (20, 60, 70)] | (50, 70, 75)]   | (60, 75, 80)]   | (70, 85, 90)]  | (90, 100, 100) ] |
| $C_{19}$        | [(0, 0, 10),  | [(60, 75, 80),  | [(70, 85, 90),  | [(85, 90, 95), | [(85, 95, 95),   |
|                 | (60, 75, 80)] | (80, 85, 90)]   | (80, 90, 95)]   | (80, 95, 98)]  | (95, 100, 100)]  |

# 表 5 水稻最低收购价政策执行效果的指标阈值

Table 5Index threshold of implementation effect of the price about the minimum purchase price of rice

| 指标    | 很好 I     | 好II        | 一般Ⅲ        | 差IV          | 非常差V      |
|-------|----------|------------|------------|--------------|-----------|
| $C_1$ | [0.9, 1] | [0.8, 0.9) | [0.7, 0.8) | [0. 5. 0. 7) | [0, 0.5)  |
| $C_2$ | [40, 80] | [30, 40)   | [2, 30)    | [0.5, 2)     | [0, 0. 5) |
| $C_3$ | [35, 60) | [30, 35)   | [23, 30)   | [20, 23)     | [0, 20)   |
| $C_4$ | [0, 70)  | [70, 80)   | [80, 90)   | [90, 95)     | [95, 100] |
| $C_5$ | [0, 70)  | [70, 80)   | [80, 90)   | [90, 95)     | [95, 100] |
| $C_6$ | [55, 80) | [40, 55)   | [30, 40)   | [20, 30)     | [0, 20)   |
| $C_7$ | [0, 60)  | [60, 70)   | [70, 80)   | [80, 90)     | [90, 100] |
| $C_8$ | [0, 70)  | [70, 80)   | [80, 90)   | [90, 95)     | [95, 100] |



| C.              | [(0,0,15),    | [(10, 50, 80), | [(70, 80, 85), | [(70, 85, 85), | [(85, 90, 90),  |
|-----------------|---------------|----------------|----------------|----------------|-----------------|
| C <sub>9</sub>  | (20, 50, 60)  | (40, 80, 90)   | (80, 85, 90)   | (85, 90, 95)   | (90, 100, 100)] |
| C               | [(0,0,10),    | [(40, 60, 65), | [(40, 70, 75), | [(60, 75, 80), | [(80, 85, 85),  |
| $C_{10}$        | (20, 60, 70)  | (50, 70, 75)   | (60, 75, 80)   | (70, 85, 90)   | (90, 100, 100)  |
|                 | [(0,0,10),    | [(40, 50, 65), | [(40, 70, 75), | [(60, 75, 80), | [(80, 85, 85),  |
| $C_{11}$        | (20, 50, 70)  | (50, 70, 75)   | (60, 75, 80)]  | (70, 85, 90)   | (90, 100, 100)  |
|                 | [(0,0,20),    | [(40, 60, 65), | [(40, 70, 75), | [(60, 75, 80), | [(80, 85, 85),  |
| $C_{12}$        | (20, 60, 70)] | (60, 70, 75)   | (60, 75, 80)]  | (70, 85, 90)   | (90, 100, 100)  |
|                 | [(0,0,20),    | [(40, 55, 65), | [(40, 70, 75), | [(60, 75, 80), | [(80, 85, 85),  |
| $C_{13}$        | (20, 60, 70)] | (50, 70, 75)   | (60, 75, 80)]  | (70, 85, 90)   | (90, 100, 100)] |
|                 | [(0,0,10),    | [(40, 60, 65), | [(40, 70, 75), | [(60, 75, 80), | [(80, 85, 85),  |
| $C_{14}$        | (20, 60, 70)  | (50, 70, 75)   | (60, 75, 80)]  | (70, 85, 90)   | (90, 100, 100)] |
| $C_{15}$        | [(0,0,10),    | [(10, 50, 80), | [(70, 80, 85), | [(70, 85, 85), | [(85, 90, 90),  |
| C15             | (20, 50, 60)  | (40, 80, 90)   | (80, 85, 90)   | (85, 90, 95)   | (90, 100, 100)] |
| C               | [(0,0,10),    | [(40, 60, 65), | [(40, 70, 75), | [(60, 75, 80), | [(80, 85, 85),  |
| $C_{16}$        | (20, 60, 70)] | (50, 70, 75)   | (60, 75, 80)]  | (70, 85, 90)]  | (90, 100, 100)] |
| $C_{17}$        | [(0,0,10),    | [(60, 75, 80), | [(70, 85, 90), | [(85, 90, 95), | [(85, 95, 95),  |
| C <sub>17</sub> | (60, 75, 80)] | (80, 85, 90)   | (80, 90, 95)   | (80, 95, 98)]  | (95, 100, 100)  |
| $C_{18}$        | [(0, 0, 10),  | [(40, 60, 65), | [(40, 70, 75), | [(60, 75, 80), | [(80, 85, 85),  |
| C18             | (20, 60, 70)] | (50, 70, 75)   | (60, 75, 80)]  | (70, 85, 90)]  | (90, 100, 100)] |
| $C_{19}$        | [(0,0,10),    | [(60, 75, 80), | [(70, 85, 90), | [(85, 90, 95), | [(85, 95, 95),  |
| U <sub>19</sub> | (60, 75, 80)] | (80, 85, 90)   | (80, 90, 95)]  | (80, 95, 98)]  | (95, 100, 100)] |

根据粮食最低收购价政策执行效果的指标体系中不同执行效果等级的量值范

围,可得经典域
$$R_1, R_2, R_3, R_4, R_5$$
分别为:

$$R_{1} = (I, c_{j}, m_{h1}) = \begin{bmatrix} I & c_{1} & <0.9, 1 > \\ c_{2} & <40, 80 > \\ ... & ... \\ c_{19} & <(0, 0, 10), (60, 75, 80) > \end{bmatrix} \qquad R_{2} = (II, c_{j}, m_{h2}) = \begin{bmatrix} II & c_{1} & <0.8, 0.9 > \\ c_{2} & <30, 40 > \\ ... & ... \\ c_{19} & <(60, 75, 80), (80, 85, 90) > \end{bmatrix}$$

$$R_{3} = (III, c_{j}, m_{h3}) = \begin{bmatrix} III & c_{1} & <0.7, 0.8 > \\ c_{2} & <2, 30 > \\ ... & ... \\ c_{19} & <(70, 85, 90), (80, 90, 95) > \end{bmatrix} \qquad R_{4} = (IV, c_{j}, m_{h4}) = \begin{bmatrix} IV & c_{1} & <0.5, 0.7 > \\ c_{2} & <0.5, 2 > \\ ... & ... \\ c_{19} & <(85, 90, 95), (80, 95, 98) > \end{bmatrix}$$

$$V = c_{1} \qquad <0.0.5 > 0.5 > 0.5 > 0.5 > 0.5$$

$$R_{5} = (V, c_{j}, m_{h5}) = \begin{bmatrix} V & c_{1} & <0,0.5 > \\ & c_{2} & <0,0.5 > \\ & \dots & \dots \\ & c_{19} & <(85,95,95),(95,100,100) > \end{bmatrix}$$

因此,得到节域为:

$$R_{p} = (P, c_{j}, m_{pi}) = \begin{bmatrix} \text{I:V} & c_{1} & <0,1>\\ & c_{2} & <0,80>\\ & \dots & \dots\\ & c_{19} & <(0,0,10),(95,100,100)> \end{bmatrix}$$

## 4.2.2 求解和结果

# HUAWEI

### "华为杯"第十三届全国研究生数学建模竞赛

将湖南、四川、江西、安徽、湖北 5 个粮食种植主生产区省份的小麦和水稻 种植面积影响指标数据进行整理,并标准化处理,数据值如下表。

#### 表 6 粮食主生产区种植面积影响因素指标数据值

Table 6 Index system of influence factors to acreage of mian grain production area 湖南省小麦和水稻指标处理数据

| PI         PIV         PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 湖南省   | 小麦和水           | .稻指材           | 处理数:   | 居               |        |                 |        |                 |                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|----------------|--------|-----------------|--------|-----------------|--------|-----------------|--------------------------------------------------|
| M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PI    | PIV            | PI             | PIV    | PI              | PIV    | PΙ              | PIV    | PI              | PIV                                              |
| The image is a straight of the image is a st | $m_1$ | 0.8, 0.6       | $m_5$          | 70, 70 | m <sub>9</sub>  | 56, 70 | m <sub>13</sub> | 47, 47 | m <sub>17</sub> | 96, 85                                           |
| m <sub>4</sub> 49, 45         m <sub>8</sub> 40, 60         m <sub>12</sub> 46, 46         m <sub>16</sub> 76, 76           四川省小麦和水稻指标处理数据           PI         PIV         PI<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $m_2$ | 45, 46         | $m_6$          | 90, 80 | m <sub>10</sub> | 79, 70 | m <sub>14</sub> | 58, 58 | m <sub>18</sub> | 86, 87                                           |
| 四川省小麦和水稻指标处理数据         PI         PIV         PI         PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $m_3$ | 29, 29         | $m_7$          | 60, 70 | m <sub>11</sub> | 86, 86 | m <sub>15</sub> | 85, 85 | m <sub>19</sub> | 77, 77                                           |
| PI         PIV         PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $m_4$ | 49, 45         | $m_8$          | 40, 60 | m <sub>12</sub> | 46, 46 | m <sub>16</sub> | 76, 76 |                 |                                                  |
| m1         0.7,0.8         m5         73,80         m9         50,65         m13         53,55         m17         85,90           m2         50,48         m6         80,80         m10         80,90         m14         60,68         m18         89,90           m3         30,35         m7         65,70         m11         85,87         m15         70,80         m19         80,85           m4         60,50         m8         50,65         m12         50,55         m16         60,75         80         80,85           PI         PIV         PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 四川省   | 四川省小麦和水稻指标处理数据 |                |        |                 |        |                 |        |                 |                                                  |
| m2   50,48   m6   80,80   m10   80,90   m14   60,68   m18   89,90   m3   30,35   m7   65,70   m11   85,87   m15   70,80   m19   80,85   m4   60,50   m8   50,65   m12   50,55   m16   60,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PI    | PIV            | PΙ             | PIV    | PΙ              | PIV    | PI              | PIV    | PI              | PIV                                              |
| m3         30.35         m7         65.70         m1         85.87         m15         70.80         m19         80.85           m4         60.50         m8         50.65         m12         50.55         m16         60.75           江西省小麦和水稻指标处理数据           PI         PIV         PI         PIV </td <td><math>m_1</math></td> <td>0.7,0.8</td> <td><math>m_5</math></td> <td>73,80</td> <td>m<sub>9</sub></td> <td>50, 65</td> <td>m<sub>13</sub></td> <td>53, 55</td> <td>m<sub>17</sub></td> <td>85, 90</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $m_1$ | 0.7,0.8        | $m_5$          | 73,80  | m <sub>9</sub>  | 50, 65 | m <sub>13</sub> | 53, 55 | m <sub>17</sub> | 85, 90                                           |
| m4         60,50         m8         50,65         m12         50,55         m16         60,75           江西省小麦和水稻指标处理数据           PI         PIV         PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $m_2$ | 50,48          | $m_6$          | 80,80  | $m_{10}$        | 80, 90 | m <sub>14</sub> | 60, 68 | m <sub>18</sub> | 89,90                                            |
| Year   Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $m_3$ | 30,35          | $m_7$          | 65,70  | m <sub>11</sub> | 85, 87 | m <sub>15</sub> | 70, 80 | m <sub>19</sub> | 80 ,85                                           |
| PI         PIV         PIV         PI         PIV         PIV         PIV         PI         PIV         PIV         PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $m_4$ | 60,50          | $m_8$          | 50,65  | $m_{12}$        | 50, 55 | m <sub>16</sub> | 60, 75 |                 |                                                  |
| m1         0.7,0.8         m5         65,70         m9         45,50         m13         65,65         m17         80,75           m2         70,60         m6         70,80         m10         75,60         m14         70.80         m18         85,70           m3         55,60         m7         55,60         m11         85,88         m15         85,70         m19         60,70           m4         70,65         m8         40,50         m12         55,70         m16         55,60         55,60           g徽省小麦和水稻指标处理数据         PI         PIV         M17         85,90         M17         85,90         M18         70,83         M19         60,65         M19         60,65         M19         60,65         M19         M18         70,80         M19         M18         M19         M19         M19         M19         M19         M19         M19         M19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 江西省   | 江西省小麦和水稻指标处理数据 |                |        |                 |        |                 |        |                 |                                                  |
| m2         70,60         m6         70,80         m10         75,60         m14         70.80         m18         85,70           m3         55,60         m7         55,60         m11         85,88         m15         85,70         m19         60,70           m4         70,65         m8         40,50         m12         55,70         m16         55,60         55,60         55,60         55,60         55,60         55,60         55,60         55,60         70         70,75         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PI    | PIV            | ΡI             | PIV    | PΙ              | PIV    | PI              | PIV    | PΙ              | PIV                                              |
| m3         55,60         m7         55,60         m11         85,88         m15         85,70         m19         60,70           m4         70,65         m8         40,50         m12         55,70         m16         55,60           安徽省小麦和水稻指标处理数据           PI         PIV         PI         PIV         PI         PIV         PI         PIV           m1         0.8,0.9         m5         81,85         m9         35,55         m13         70,75         m17         85,90           m2         30,40         m6         44,51         m10         55,60         m14         60,72         m18         70,83           m3         50,60         m7         40,55         m11         60,75         m15         85,85         m19         60,65           m4         80,85         m8         50,70         m12         55,70         m16         70,80           湖北省小麦和水稻指标处理数据           PI         PIV         PI         PIV         PI         PIV         PI         PIV           m1         0.8,0.9         m5         84,89         m9         45,65         m13         65,80         m17         85,94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $m_1$ | 0.7,0.8        | $m_5$          | 65,70  | m <sub>9</sub>  | 45, 50 | m <sub>13</sub> | 65,65  | m <sub>17</sub> | 80,75                                            |
| m4         70,65         m8         40,50         m12         55,70         m16         55,60           安徽省小麦和水稻指标处理数据           PI         PIV         PI         PIV         PI         PIV         PI         PIV           m1         0.8,0.9         m5         81,85         m9         35,55         m13         70,75         m17         85,90           m2         30,40         m6         44,51         m10         55,60         m14         60,72         m18         70,83           m3         50,60         m7         40,55         m11         60,75         m15         85,85         m19         60,65           m4         80,85         m8         50,70         m12         55,70         m16         70,80           湖北省小麦和水稻指标处理数据           PI         PIV         PI         PIV         PI         PIV         PI         PIV           m1         0.8,0.9         m5         84,89         m9         45,65         m13         65,80         m17         85,94           m2         0.5,2         m6         32,40         m10         55,75         m14         55,75         m18         60,70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $m_2$ | 70,60          | $m_6$          | 70,80  | m <sub>10</sub> | 75, 60 | m <sub>14</sub> | 70.80  | m <sub>18</sub> | 85,70                                            |
| 安徽省小麦和水稻指标处理数据         PI         PIV         PIV         PI         PIV         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $m_3$ | 55,60          | $m_7$          | 55,60  | m <sub>11</sub> | 85, 88 | m <sub>15</sub> | 85,70  | m <sub>19</sub> | 60,70                                            |
| PI         PIV         PIV         PI         PIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $m_4$ | 70,65          | $m_8$          | 40,50  | $m_{12}$        | 55,70  | m <sub>16</sub> | 55,60  |                 |                                                  |
| m1     0.8,0.9     m5     81,85     m9     35,55     m13     70,75     m17     85,90       m2     30,40     m6     44,51     m10     55,60     m14     60,72     m18     70,83       m3     50,60     m7     40,55     m11     60,75     m15     85,85     m19     60,65       m4     80,85     m8     50,70     m12     55,70     m16     70,80       湖北省小麦和水稻指标处理数据       PI     PIV     PIV     PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 安徽省   | 小麦和水           | .稻指标           | 处理数    | 居               |        |                 |        |                 |                                                  |
| m2       30,40       m6       44,51       m10       55,60       m14       60,72       m18       70,83         m3       50,60       m7       40,55       m11       60,75       m15       85,85       m19       60,65         m4       80,85       m8       50,70       m12       55,70       m16       70,80         湖北省小麦和水稻指标处理数据         PI       PIV       PI       PIV<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PI    | PIV            | ΡI             | PIV    | PI              | PIV    | PI              | PIV    | PI              | PIV                                              |
| m3     50,60     m7     40,55     m11     60,75     m15     85,85     m19     60,65       m4     80,85     m8     50,70     m12     55,70     m16     70,80       湖北省小麦和水稻指标处理数据       PI     PIV     PIV     PI     PIV     PI     PIV     PI     PIV     PIV <td><math>m_1</math></td> <td>0.8,0.9</td> <td><math>m_5</math></td> <td>81,85</td> <td>m<sub>9</sub></td> <td>35,55</td> <td>m<sub>13</sub></td> <td>70,75</td> <td>m<sub>17</sub></td> <td>85,90</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $m_1$ | 0.8,0.9        | $m_5$          | 81,85  | m <sub>9</sub>  | 35,55  | m <sub>13</sub> | 70,75  | m <sub>17</sub> | 85,90                                            |
| m4     80,85     m8     50,70     m12     55,70     m16     70,80       湖北省小麦和水稻指标处理数据       PI     PIV     PIV     PI     PIV     PI     PIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $m_2$ | 30,40          | $m_6$          | 44,51  | m <sub>10</sub> | 55,60  | m <sub>14</sub> | 60,72  | m <sub>18</sub> | 70,83                                            |
| 湖北省小麦和水稻指标处理数据       PI       PIV       PIV <td><math>m_3</math></td> <td>50,60</td> <td>m<sub>7</sub></td> <td>40,55</td> <td>m<sub>11</sub></td> <td>60,75</td> <td>m<sub>15</sub></td> <td>85,85</td> <td>m<sub>19</sub></td> <td>60,65</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $m_3$ | 50,60          | m <sub>7</sub> | 40,55  | m <sub>11</sub> | 60,75  | m <sub>15</sub> | 85,85  | m <sub>19</sub> | 60,65                                            |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $m_4$ | 80,85          | m <sub>8</sub> | 50,70  | m <sub>12</sub> | 55,70  | m <sub>16</sub> | 70,80  |                 |                                                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 湖北省   | 小麦和水           | .稻指标           | 处理数    | 居               |        |                 |        |                 |                                                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PI    | PIV            | ΡI             | PIV    | PΙ              | PIV    | PΙ              | PIV    | PΙ              | PIV                                              |
| m <sub>3</sub> 25,30 m <sub>7</sub> 65,68 m <sub>11</sub> 65,70 m <sub>15</sub> 78,88 m <sub>19</sub> 85,90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 0.8,0.9        | $m_5$          | 84,89  | m <sub>9</sub>  | 45,65  | m <sub>13</sub> | 65,80  | m <sub>17</sub> | 85,94                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11111 |                |                |        |                 |        |                 | 55.55  |                 | 60.50                                            |
| $m_4$   73,78   $m_8$   55,70   $m_{12}$   45,65   $m_{16}$   60,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 0.5,2          | m <sub>6</sub> | 32,40  | m <sub>10</sub> | 55,75  | $m_{14}$        | 55,/5  | $m_{18}$        | 60,70                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $m_2$ |                | -              | +      |                 |        |                 |        |                 | <del>                                     </del> |

注: PI 为指标项, PIV 为指标数据处理值, 数据主要来源于国家粮食局、统计局等

根据式(1)和式(2),得到粮食种植面积影响因素指标权系数,见表7:

#### 表 7 粮食种植面积影响因素指标权系数

Table 7 Weights of influence factors index to acreage of grain

小麦权系数

| 预警指标 | $w_1$ | $w_2$ | $w_3$ | $w_4$ | $W_5$ | $w_6$ | $w_7$ | $w_8$ |
|------|-------|-------|-------|-------|-------|-------|-------|-------|



| 权重系数 | 0.011    | 0.066                  | 0.084    | 0.048    | 0.009    | 0.029    | 0.010    | 0.034    |
|------|----------|------------------------|----------|----------|----------|----------|----------|----------|
| 预警指标 | $w_9$    | $w_{10}$               | $w_{11}$ | $w_{12}$ | $w_{13}$ | $w_{14}$ | $w_{15}$ | $w_{16}$ |
| 权重系数 | 0.047    | 0.057                  | 0.049    | 0.094    | 0.056    | 0.106    | 0.068    | 0.103    |
| 预警指标 | $w_{17}$ | <i>w</i> <sub>18</sub> | $w_{19}$ |          |          |          |          |          |
| 权重系数 | 0.026    | 0.072                  | 0.031    |          |          |          |          |          |

## 水稻权系数

| 预警指标 | $w_1$    | $w_2$    | $w_3$    | $w_4$    | $w_5$    | $W_6$    | $W_7$    | $w_8$    |
|------|----------|----------|----------|----------|----------|----------|----------|----------|
| 权重系数 | 0.042    | 0.110    | 0.061    | 0.005    | 0.022    | 0.092    | 0.061    | 0.019    |
| 预警指标 | $w_9$    | $w_{10}$ | $w_{11}$ | $w_{12}$ | $w_{13}$ | $w_{14}$ | $w_{15}$ | $w_{16}$ |
| 权重系数 | 0.043    | 0.078    | 0.024    | 0.094    | 0.031    | 0.117    | 0.034    | 0.098    |
| 预警指标 | $w_{17}$ | $w_{18}$ | $w_{19}$ |          |          |          |          |          |
| 权重系数 | 0.024    | 0.037    | 0.012    |          |          |          |          |          |

利用式(3)-式(5)和表7权系数值,计算综合关联度,取其重心值进行比较,以湖南省为例,其结果如表8:

#### 表 8 政策执行效果评价的的关联度计算(湖南)

Table8 Calculaton of correlation for evaluation about implementation of policy

|                |            |            | 1          | 1          |            |
|----------------|------------|------------|------------|------------|------------|
| 指标             | $K_1(v_i)$ | $K_2(v_i)$ | $K_3(v_i)$ | $K_4(v_i)$ | $K_5(v_i)$ |
| $C_1$          | 0. 4286    | 0. 3333    | 0. 2500    | 0. 3333    | 0. 2000    |
| $C_2$          | 0. 1408    | 0.9200     | 0. 2680    | 0. 1429    | 0. 4419    |
| $\mathbb{C}_3$ | 0. 3143    | 0. 2480    | 0.0435     | 0.0400     | 0. 1429    |
| $C_4$          | 0. 2333    | 0.7500     | 0.5000     | 0.5050     | 0. 3750    |
| $C_5$          | 0. 2400    | 0. 1556    | 0.0580     | 0.0556     | 0.0732     |
| $C_6$          | 0.4000     | 0. 2500    | 0.0769     | 0.0909     | 0. 1429    |
| C <sub>7</sub> | 0. 7850    | 0.8333     | 0.7500     | 0. 5210    | 0. 1000    |
| C <sub>8</sub> | 0.8000     | 0. 7333    | 0. 2000    | 0. 3333    | 0. 2727    |
| C <sub>9</sub> | 0.7667     | 0.6500     | 0.3000     | 0. 4530    | 0. 2222    |
| $C_{10}$       | 0. 1667    | 0. 2500    | 0. 1667    | 0.3750     | 0. 4444    |
| $C_{11}$       | 0.3750     | 0. 1667    | 0. 2500    | 0. 1667    | 0. 3750    |
| $C_{12}$       | 0.8700     | 0.4667     | 0. 2000    | 0. 3333    | 0. 2727    |
| $C_{13}$       | 0.4500     | 0.8667     | 0.8000     | 0.6450     | 0.0800     |
| $C_{14}$       | 0. 1530    | 0.0000     | 0.6000     | 0.4000     | 0. 5626    |
| $C_{15}$       | 0.0500     | 0.7500     | 0.8750     | 0. 9167    | 0. 9375    |
| $C_{16}$       | 0.8500     | 0.6000     | 0. 2000    | 0. 3333    | 0. 4286    |
| $C_{17}$       | 0.7650     | 0.6000     | 0.4000     | 0. 2000    | 0. 1429    |
| $C_{18}$       | 0. 1530    | 0.0000     | 0.6000     | 0.4000     | 0. 5626    |
| $C_{19}$       | 0.0500     | 0.7500     | 0.8750     | 0. 9167    | 0. 9375    |
| $K_j(P_0)$     | 0.8500     | 0.6000     | 0. 2000    | 0. 3333    | 0. 4286    |



#### 表 9 粮食主生产区最低收购价政策执行效果评价关联度

Table 9 Collection evaluation of price implementation of the minimum purchase price in the main grain production areas

| 省份   |        |        | 湖南省    |        |        |  |  |
|------|--------|--------|--------|--------|--------|--|--|
| 效果评价 | I      | II     | III    | IV     | V      |  |  |
| 水稻   | 0.150  | 0.750  | 0.875  | 0.716  | 0. 437 |  |  |
| 小麦   | 0.450  | 0. 553 | 0. 426 | 0. 433 | 0. 528 |  |  |
|      |        | 四川省    |        |        |        |  |  |
| 水稻   | 0.310  | 0. 250 | 0.772  | 0.616  | 0. 156 |  |  |
| 小麦   | 0. 157 | 0. 253 | 0.826  | 0.637  | 0. 264 |  |  |
|      | 江西省    |        |        |        |        |  |  |
| 水稻   | 0.350  | 0.750  | 0. 475 | 0.716  | 0. 437 |  |  |
| 小麦   | 0.250  | 0. 253 | 0. 426 | 0.413  | 0. 328 |  |  |
|      |        |        | 安徽省    |        | _      |  |  |
| 小麦   | 0.480  | 0.750  | 0.675  | 0.516  | 0. 337 |  |  |
| 水稻   | 0. 224 | 0. 553 | 0.026  | 0. 433 | 0.028  |  |  |
|      | 湖北省    |        |        |        |        |  |  |
| 小麦   | 0.750  | 0. 150 | 0.875  | 0.716  | 0. 437 |  |  |
| 水稻   | 0. 425 | 0.353  | 0.626  | 0. 133 | 0. 228 |  |  |

小麦最低收购价政策执行效果"好"的有:江西省、安徽省水稻最低收购价政策执行效果"好"的有:湖南省、安徽省小麦最低收购价政策执行效果"一般"的有:湖南省、四川省、湖北省水稻最低收购价政策执行效果"一般"的有:四川省、江西省、湖北省总体而言,安徽省的粮食最低收购价政策执行效果相对较好。

#### 4.3 问题三:粮食价格的特殊规律性模型

#### 4.3.1 分析和建模

基于蛛网模型理论和相关文献对粮食价格波动的分析,当粮食价格的供给弹性大于粮食价格的需求弹性时,形成一个发散的蛛网模型,西方经济学中蛛网模型主要考察在市场自发作用下价格与供给量偏离市场均衡的波动趋势。

$$\begin{cases} D_t = a + bp_t \\ S_t = a_1 + b_1 p_{t-1} \\ D_t = S_t \end{cases}$$

 $D_{t}$ : 需求量, $S_{t}$ 表示供给量, $p_{t}$ 表示t期价格, $p_{t-1}$ 表示t-1期价格,a、 $a_{1}$ 、b、 $b_{1}$ 为常数,a表示价格为零时的商品需求量,b表示商品的需求价格弹性, $a_{1}$ 表示价格为零时的商品供给量, $b_{1}$ 表示商品的供给价格弹性。



#### 表 10 小麦与水稻的价格

Table 10 Wheat' prices and rice' prices

| 年份   | 小麦市场收购价 | 小麦最低收购价 | 水稻市场收购价 | 水稻最低收购价 |
|------|---------|---------|---------|---------|
| 2006 | 71.61   | 72      | 80. 64  | 71      |
| 2007 | 75. 58  | 72      | 85. 21  | 71      |
| 2008 | 82. 76  | 75      | 95. 11  | 78      |
| 2009 | 92. 41  | 87      | 99. 08  | 91      |
| 2010 | 99. 01  | 90      | 118. 00 | 95      |
| 2011 | 103. 95 | 95      | 134. 53 | 105     |
| 2012 | 108. 31 | 102     | 138. 07 | 128     |
| 2013 | 117.81  | 112     | 136. 52 | 132     |
| 2014 | 120. 59 | 118     | 140.63  | 135     |

通过对 2006-2014 年的小麦和水稻的价格数据进行率变量分析,通过软件 Origin 求得 2007—2014 年小麦和水稻价格变动率图 5 如下所示。



图 5 2007—2014 年小麦和水稻价格变动率

"尖峰厚尾"正态分布性

粮食价格的波动会变得越来越大,在市场机制的作用下不能恢复,此时粮食价格不稳定;而当粮食价格的供给弹性与需求弹性相等或粮食价格的供给弹性小于粮食价格的需求弹性时,粮食价格波动不会变大或在市场机制的作用下可以自动恢复均衡,此时粮食价格处于稳定。

为研究粮食的价格的特殊规律,需要对小麦和水稻的价格变动做波动性分析。 计量经济学上研究价格波动的主要方法是 ARCH 类模型。价格这类时间序列数据通 常呈现出阶段性的较大波动和阶段性的相对稳定,即存在条件异方差。因此,自 回归条件异方差模型能够较好模拟时间序列的波动特征,从而识别粮食价格的特 殊规律性。验证我国粮食价格的波动是否具有集族性、非对称性,以及不同品种 粮食的价格波动的差异性,对于问题三,模型如下:



#### (1) GARCH (p, q) 模型

$$\begin{aligned} \mathbf{Y}_{t} &= \mathbf{X}_{t}^{'} \boldsymbol{\theta} + \boldsymbol{\varepsilon}_{t} \\ \\ \boldsymbol{\sigma}_{t}^{2} &= \boldsymbol{\omega} + \sum_{i=1}^{p} \boldsymbol{\alpha}_{i} \; \boldsymbol{\varepsilon}_{t-i}^{2} + \sum_{j=1}^{q} \boldsymbol{\beta}_{j} \, \boldsymbol{\sigma}_{t-j}^{2} \end{aligned}$$

前者为均值方差, $Y_t$ 在文本中表示各类粮食价格, $X_t$ 表示粮食的滞后项。后者为条件方差方程, $\sigma_t^2$ 为 $\varepsilon_t$ 在 t 时刻的条件方差, $\varepsilon_{t-i}^2$ 为 ARCH 项, $\sigma_{t-j}^2$ 为 GARCH 项。如果 ARCH 项和 GARCH 项高度显著,说明国际粮食价格具有显著的波动集族性。(2)GARCH—M 模型

$$Y_t = X_t'\theta + \lambda \sigma_t^2 + \varepsilon_t$$

GARCH-M 模型在 GARCH 模型中加入 $\sigma_t^2$ 得到的,表示粮食价格的波动性对平均粮价的影响程度。

#### (3) TRACH 模型

$$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \gamma I_{t-1} \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$$

式中, $I_{t-1}$  是一个虚拟变量,当 $\varepsilon_{t-1}<0$  时, $I_{t-1}=1$  。当 $\varepsilon_{t-1}\geq0$  时, $I_{t-1}=0$  , $\gamma I_{t-1}\varepsilon_{t-1}^2$  项称为非对称效应项。

## (4) EGARCH 模型

$$\ln\left(\sigma_{l}^{2}\right) = \omega + \sum_{j=1}^{q} \beta_{j} \ln\left(\sigma_{l-1}^{2}\right) = \omega + \sum_{j=1}^{p} \alpha_{j} \left|\frac{\varepsilon_{l-j}}{\sigma_{l-j}}\right| + \sum_{k=1}^{p} \gamma_{k} \frac{\varepsilon_{l-k}}{\sigma_{l-k}}$$

表明条件方差由指数形式确定,因此,不论参数取何值, $\sigma_t^2$ 都是正的。用 Eviews 分析时,其指定的条件方差为 $\ln(\sigma_t^2) = \omega + \alpha \left| \frac{\varepsilon_{t-i}}{\sqrt{\sigma_{t-i}}} \right| + \gamma \frac{\varepsilon_{t-i}}{\sqrt{\sigma_{t-i}}}$ 。当 $\gamma \neq 0$ 时,表明波动具有非对称性;当 $\gamma > 0$ 时,表明粮价上涨信息引发的波动比粮价下降引发的波动更大;当 $\gamma < 0$ 时,则正相反。

#### 4.3.2 求解和结果

通过 Eviews 软件进行 ARCH 类模型分析,具体结果如下:



#### 表 11 小麦和水稻价格变动率的单位根检验

Table 11 The unit root test of Wheat and rice price 's fluctuation rate

|   | 变量 | 检验类型      | ADF 值       | 5%临界值    | 1%临界值    | 平稳性 |
|---|----|-----------|-------------|----------|----------|-----|
| • | 小麦 | (0, 0, 5) | -2.60954*** | -1.94219 | -2.56464 | 是   |
| • | 水稻 | (0, 0, 1) | -4.16544*** | -1.94523 | -2.36546 | 是   |

注:检验类型()中分别表示截距项、线性趋势项和滞后阶数,其中滞后阶数的选取依据的是赤池信息准则(AIC),可以检验在采用施瓦茨准则(SC)时,在一定的滞后阶数下变量也都是平稳的。\*\*表示在5%的显著性水平上是平稳的;\*\*\*表示在1%的显著性水平上是平稳的。

#### 表 12 小麦和水稻价格变动率的波动性检验

Table 12 The volatility test of Wheat and rice price's fluctuation rate

| 变量 | $p_{t}$               | $p_{t-1}$             | ARCH-LM 检验 |
|----|-----------------------|-----------------------|------------|
| 小麦 | 1.3956***<br>(29.155) | -0.468***<br>(-6.641) | 通过         |
| 水稻 | 1.4516***<br>(14.345) | -0.371***<br>(-4.147) | 通过         |

注: \*\*表示在 5% 的显著性水平下 t 检验显著; \*\*\*表示在 1% 的显著性水平 t 检验显著。

#### 表 13 小麦和水稻价格变动率的 ARCH 类模型

Table 13 GARCH class model of wheat and rice price's fluctuation rate

|    |          | 1                                                                                                                                                                                     |
|----|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | GARCH    | $\sigma_t^2 = 0.0006 + 0.319\varepsilon_{t-1}^2 + 0.736\sigma_{t-1}^2$                                                                                                                |
|    | 6711-071 | (1.815) (2.569) *** (6.461) ***                                                                                                                                                       |
|    | GARCH-M  | $p_{t} = 0.415\sigma_{t}^{2} + 1.149 p_{t-1} - 0.231 p_{t-2}$                                                                                                                         |
|    |          | (0.315) (10.169) *** (-2.421) **                                                                                                                                                      |
| 小麦 | TARCH    | $\sigma_t^2 = 2.11E - 0.6 + 0.112\varepsilon_{t-1}^2 - 0.215I_{t-1}\varepsilon_{t-1}^2 + 0.816\sigma_{t-1}^2$                                                                         |
|    |          | (0.012) (192.159) *** (-8.461) *** (54.257) ***                                                                                                                                       |
|    | EGARCH   | $\ln \sigma_{t}^{2} = -0.098 + 0.012 \frac{\left  \varepsilon_{t-1} \right }{\sqrt{\sigma_{t-1}}} + 0.115 \frac{\varepsilon_{t-1}}{\sqrt{\sigma_{t-1}}} + 1.016 \ln \sigma_{t-1}^{2}$ |
|    |          | (-1.512) * (-1.159) ** (1.461) *** (164.257) ***                                                                                                                                      |
|    | GARCH    | $\sigma_t^2 = 0.0004 + 0.215\varepsilon_{t-1}^2 + 0.636\sigma_{t-1}^2$                                                                                                                |
|    |          | (1.710) (2.861) *** (5.461) ***                                                                                                                                                       |
| 水稻 | GARCH-M  | $p_{t} = 0.525\sigma_{t}^{2} + 1.348p_{t-1} - 0.136p_{t-2}$                                                                                                                           |
|    |          | (0.418) (9.182) *** (-1.824) **                                                                                                                                                       |
|    | TARCH    | $\sigma_{t}^{2} = 1.17E - 0.1 + 0.202\varepsilon_{t-1}^{2} - 0.116I_{t-1}\varepsilon_{t-1}^{2} + 0.781\sigma_{t-1}^{2}$                                                               |
|    |          | (0.02) (142.159) *** (-5.461) *** (44.351) ***                                                                                                                                        |



EGARCH 
$$\ln \sigma_{t}^{2} = -0.192 + 0.002 \frac{\left|\mathcal{E}_{t-1}\right|}{\sqrt{\sigma_{t-1}}} + 0.210 \frac{\mathcal{E}_{t-1}}{\sqrt{\sigma_{t-1}}} + 0.936 \ln \sigma_{t-1}^{2}$$

$$(-2.117) * (-1.051) ** (1.281) *** (154.787) ***$$

注:\*表示在 10% 的显著性水平下 z 检验显著;\*\*表示在 5% 的显著性水平下 z 检验显著;\*\*表示在 1% 的显著性水平下 z 检验显著。

由上述模型检验可以得到如下粮食价格规律:

- (1) 价格变动率序列具有明显的波动集族性,价格上一期的波动和外部冲击 对当期价格的波动具有明显的效应影响:
- (2)ARCH 项和 GARCH 项的系数之和接近于 1,表明冲击的影响是持久的,具有一种持续性特征;
- (3) GARCH M 模型的均值方程系数不高,粮食的波动性对平均粮价没有影响,即不存在高风险高粮价的特征:
- (4) TARCH 模型的方差方程系数均在 1% 的水平下显著,表明水稻和小麦的价格波动具有明显的非对称性,而且粮食价格上涨的信息引发的粮价波动程度要比粮价下降的信息引发的波动程度大。

#### 4.4 问题四:粮食最低收购价合理定价及预测模型

#### 4.4.1 分析和建模

由前面的研究和国家制定粮食最低收购价政策的初衷,可以发现,粮食最低收购价的确定是一个多目标的规划问题,不仅需要提高国家和粮农的收益,同时也要使国家的财政支出风险最小,粮农的种植的积极性最大。因此,建立如下三个目标,目标优先级:目标 1>目标 2>目标 3。

由于收到市场供需的影响,粮食最低收购价格具有不确定性,为此可通过鲁棒优化模型,对"十二五"期间的政策进行合理性分析,粮食最低收购价是否具有解鲁棒性,先进行情景分析每个方案的发生概率为 $s_s$ , $\sum_{s=1}^{s} s_s = 1$ 。

目标 1: 最大化种植粮食所获得的纯收益

$$\max W = \sum_{m=1}^{M} S_m \left\{ \sum_{t=1}^{T} \left[ \sum_{j=1}^{J} \left( p_{t1} D_{jt} + p_{t2} D_{jt} - c_j^z z_{jt}^m - h_j^z z_{jt}^L \right) - \sum_{i=1}^{I} \left( q_{it} b_{it} + h_i^y y_i^L \right) \right] \right\}$$

目标 2: 国家财政的支出风险

$$\min y = \left| \sum_{m=1}^{M} S_m \left\{ \sum_{t=1}^{T} \left[ \sum_{j=1}^{J} \left( p_{y1} D_{jt} + p_{y2} D_{jt} - Y \right) \right] \right\} \right|$$

目标 3: 粮农种植粮食的积极性

$$\max k = \sum_{m=1}^{M} S_m \left\{ \sum_{t=1}^{T} \left[ \sum_{j=1}^{J} \left( p_{k1} D_{jt} + p_{k2} D_{jt} - c_j^z z_{jt}^m - h_j^z z_{jt}^L \right) - K \right] \right\}$$



$$\min B_T \sum_{t=1}^{T} \sum_{i=1}^{I} \left( d_{1t}^- + d_{1t}^+ \right) + B_P \left( d_{2t}^- + d_{2t}^+ \right) + B_S \left( d_{3t}^- + d_{3t}^+ \right)$$

其中, $B_T$ 、 $B_P$ 和 $B_S$ 分别为 3 个目标的优先因子,均为足够大的常数; $d_{ii}^-$ 和 $d_{ii}^+$ 分别为在阶段 $^t$ 对目标的不足量和过剩量;

**约束** 1: 存储的粮食一般要能够满足全国人民三年的吃饭和需求, $G^{\max}$  为三年全国最低粮食食用:

$$\sum_{j=1}^{J} \alpha_j^k p_{jt}^m \ge G^{\max}, \forall t, m,$$

约束 2: 同时国家对于粮食的补贴金额不会超出各地粮食市场价格的 10%。

$$\sum_{m=1}^{M} S_{m} \left\{ \sum_{t=1}^{T} \left[ \sum_{j=1}^{J} \left( p_{y1} D_{jt} + p_{y2} D_{jt} \right) \right] \right\} \le 0.1 p_{0}$$

约束 3: 粮食的库存水平约束, $H^{max}$  为国家粮库粮食安全预警库存水平;

$$\sum_{t=1}^{T} \left[ \sum_{j=1}^{J} \left( p_{t1} D_{jt} + p_{t2} D_{jt} - c_{j}^{z} z_{jt}^{m} - h_{j}^{z} z_{jt}^{L} \right) - \sum_{i=1}^{I} \left( q_{it} b_{it} + h_{i}^{y} y_{i}^{L} \right) \right] \ge H^{\max}$$

约束 4: 粮食种植面积不萎缩约束,即粮食种植面积变化率为正。

$$0 < \frac{\left(D_{jt-1} + D_{jt-1}\right)}{\left(D_{jt} + D_{jt}\right)} < 1$$

因此,建立了粮食最低收购价政策的鲁棒优化模型如下:

$$\min B_T \sum_{t=1}^{T} \sum_{i=1}^{I} \left( d_{1t}^- + d_{1t}^+ \right) + B_P \left( d_{2t}^- + d_{2t}^+ \right) + B_S \left( d_{3t}^- + d_{3t}^+ \right)$$

$$\begin{cases}
\sum_{j=1}^{J} \alpha_{j}^{k} p_{ji}^{m} \geq G^{\max}, \forall t, m \\
\sum_{m=1}^{M} S_{m} \left\{ \sum_{t=1}^{T} \left[ \sum_{j=1}^{J} \left( p_{y1} D_{jt} + p_{y2} D_{jt} \right) \right] \right\} \leq 0.1 p_{0} \\
s.t \left\{ \sum_{t=1}^{T} \left[ \sum_{j=1}^{J} \left( p_{t1} D_{jt} + p_{t2} D_{jt} - c_{j}^{z} z_{jt}^{m} - h_{j}^{z} z_{jt}^{L} \right) - \sum_{i=1}^{J} \left( q_{it} b_{it} + h_{i}^{y} y_{i}^{L} \right) \right] \geq H^{\max} \\
\sum_{t=1}^{T} \left[ \sum_{j=1}^{J} \left( p_{t1} D_{jt} + p_{t2} D_{jt} - c_{j}^{z} z_{jt}^{m} - h_{j}^{z} z_{jt}^{L} \right) - \sum_{i=1}^{J} \left( q_{it} b_{it} + h_{i}^{y} y_{i}^{L} \right) \right] \geq H^{\max} \\
0 < \left( D_{jt-1} + D_{jt-1} \right) / \left( D_{jt} + D_{jt} \right) < 1 \\
p_{it}, d_{it} > 0
\end{cases}$$



"十二五"国家规定的粮食最低收购价如下:白小麦、红小麦和混合小麦最低收购价格均为每市斤1.18元,早籼稻最低收购价每市斤1.35元,中晚籼稻最低收购价每市斤1.38元,粳稻最低收购价每市斤1.55元。

合理的粮食最低收购价格应当满足解鲁棒性,因此,最低收购价格应当满足上述目标规划的解。通过 Lingo 软件对数据进行分析,并且在情景分析法下面求得解如下表所示:

表 14 情景发生概率及粮食最低收购价格

Table 14 Scenario probability of occurrence and the minimum grain purchase price

| 2014年                                 | 情景1  | 情景 2 | 情景 3 | 情景 4 |
|---------------------------------------|------|------|------|------|
| 概率                                    | 0.4  | 0.3  | 0.2  | 0.1  |
| ····································· | 0.5  | 0.2  | 0.2  | 0.1  |
| 小麦价格                                  | 1.09 | 1.26 | 1.13 | 1.20 |
| 水稻价格                                  | 1.35 | 1.21 | 1.45 | 1.46 |
| 2013年                                 |      |      |      |      |
| 小麦价格                                  | 0.81 | 1.06 | 1.23 | 0.80 |
| 水稻价格                                  | 1.25 | 1.11 | 1.05 | 1.17 |
| 2012年                                 |      |      |      |      |
| 小麦价格                                  | 1.02 | 1.26 | 1.13 | 1.20 |
| 水稻价格                                  | 1.35 | 1.15 | 1.38 | 1.16 |
| 2011年                                 |      |      |      |      |
| 小麦价格                                  | 0.91 | 1.26 | 1.17 | 1.00 |
| 水稻价格                                  | 1.04 | 1.09 | 1.25 | 1.26 |

接下来预测 2017 年的粮食最低收购价格,为提高预测的准确性,将分别将 GARCH 模型、单变量二阶差分方程模型(DDE)、支持向量机预测模型(SVM 模型)以及马尔科夫链的时变权组合预测模型(HM-TWA)四种预测方法进行预测,取其平均值作为 2017 年的预测结果。

预测模型构建如下:

(1) GARCH 模型预测, GARCH 主要数学表达式如下, 同上文问题 3:

$$\begin{cases} y_t = x_t B + \varepsilon_t \\ \sigma_t = \omega + \alpha_1 \varepsilon_{t-1}^2 + B_1 \sigma_{t-1}^2 \end{cases}$$

#### (2) 单变量二阶差分方程模型(DDE)

Step 1. 设某一品种的年消费量时间序列数据为:  $X^{(0)} = \{x^{(0)}(1), x^{(0)}(2), \dots, x^{(0)}\}$ 

 $x^{(0)}(n)$ }, 其中 $x^{(0)}(i)$ 是时间i的消费量,  $i=1,\dots,n$ .

Step 2. 计算 1 - AGO 序列。对序列  $X^{(0)} = \{x^{(0)}(1), x^{(0)}(2), \dots, x^{(0)}(n)\}$  作一阶累加,生

成  $X^{(0)}$  的 1 - AGO 序列  $X^{(1)} = \{x^{(1)}(1), x^{(1)}(2), \dots, x^{(1)}(n)\}$ 。其中,

$$x^{(1)}(i) = \sum_{i=1}^{i} x^{(0)}(k)$$
,  $i = 1, \dots, n$ .

Step 3. 建立二阶差分方程模型 (DDE) 并求解。对生成的 1 - AGO 序列 X<sup>(1)</sup> 进行



建模,建模方程式如下:

$$x^{(1)}(p+2) + ax^{(1)}(p+1) + bx^{(1)}(p) = 0, p = 1, 2, \dots, n-2.$$

其中a, b为待估参数。利用最小二乘法可得参数a,b的估计值,其计算式为:

$$\begin{bmatrix} a \\ b \end{bmatrix} = (X^T X)^{-1} X^T Y \cdot \stackrel{!}{\not\vdash} : \quad X = \begin{bmatrix} -x^{(1)}(2) & -x^{(1)}(1) \\ -x^{(1)}(3) & -x^{(1)}(2) \\ \vdots & \vdots \\ -x^{(1)}(n-1) & -x^{(1)}(n-2) \end{bmatrix}_{(n-2) \times 2}, \quad Y = \begin{bmatrix} x^{(1)}(3) \\ x^{(1)}(4) \\ \vdots \\ x^{(1)}(n) \end{bmatrix}.$$

#### (3) 支持向量机预测模型 (SVM 模型)

建立映射关系  $f: R^m \to R$ , 其中m 为滑动数目即嵌入位数,前N 个样本数据用于进行模拟训练,构造样本对 $\left(X_{t}, Y_{t}\right)$ ,其中 $X_{t} = \left\{x_{t-m}, x_{t-m+1}, \cdots x_{t-1}\right\}$ , $Y_{t} = x_{t}$ ,

$$Y_{t} = \sum_{i=1}^{n-m} (a_{i} - a_{i}^{*}) k(X_{i}, X) + b$$
,其中  $t = m+1, ..., N$ ,利用向量机进行多步预测的模型

为: 
$$Y_{N+1} = \sum_{i=1}^{n-m} (a_i - a_i^*) k(X_i, X_{N+l}) + b$$

$$x_{N+1} = \begin{cases} \left\{ x_{N-m+1}, \dots, x_{N+1}, \dots x_{N+l-1} \right\} & l = 1 \\ \left\{ x_{N-m+1}, \dots, x_{N+1}, \dots x_{N+l-1} \right\} & l = 2, 3, \dots \end{cases}$$

#### (4) 马尔科夫链的时变权组合预测模型(HM-TWA)

$$x_{c,t} = \sum_{j=1}^{m} w_{j,t} x_{j,t}, \qquad t = 1, 2, \dots x$$

$$\min J_{t} = e_{c,t}^{2} = \sum_{i=1}^{m} \sum_{k=1}^{m} w_{j,t} w_{k,t} e_{j,t} e_{k,t}$$

s. t. 
$$\begin{cases} \sum_{j=1}^{m} w_{j,t} = 1 \\ w_{j,t} \ge 0, \quad j = 1, 2, ..., m \end{cases}$$

#### 4.4.2 求解和结果

将以上四种预测模型对下表数据进行计算,得到预测结果如下表表 15 粮食最低收购价预测值

Table15 Predictive value of the minimum purchase price of grain

| 年份   | 小麦最低收购价 | 水稻最低收购价 |
|------|---------|---------|
| 2006 | 72      | 71      |
| 2007 | 72      | 71      |



| 2008 | 75  | 78  |
|------|-----|-----|
| 2009 | 87  | 91  |
| 2010 | 90  | 95  |
| 2011 | 95  | 105 |
| 2012 | 102 | 128 |
| 2013 | 112 | 132 |
| 2014 | 118 | 135 |

表 16 四类预测模型的预测值

Table16 Predictive value of four types of prediction model

| 年份   | 小麦最低收购价 | GARCH | DDE | SVM | HM-TWA | 平均值    |
|------|---------|-------|-----|-----|--------|--------|
| 2006 | 72      | 76    | 71  | 73  | 75     | 73.75  |
| 2007 | 72      | 71    | 72  | 75  | 72     | 72.5   |
| 2008 | 75      | 72    | 72  | 79  | 76     | 74.75  |
| 2009 | 87      | 75    | 73  | 86  | 79     | 78.25  |
| 2010 | 90      | 82    | 76  | 91  | 85     | 83.5   |
| 2011 | 95      | 86    | 85  | 93  | 91     | 88.75  |
| 2012 | 102     | 99    | 96  | 98  | 106    | 99.75  |
| 2013 | 112     | 113   | 105 | 115 | 110    | 110.75 |
| 2014 | 118     | 115   | 109 | 119 | 120    | 115.75 |
| 2015 |         | 117   | 110 | 116 | 121    | 116    |
| 2016 |         | 121   | 113 | 120 | 125    | 119.75 |
| 2017 |         | 126   | 129 | 125 | 130    | 127.5  |

| 年份   | 水稻最低收购价 | GARCH | DDE | SVM | HM-TWA | 平均值    |
|------|---------|-------|-----|-----|--------|--------|
| 2006 | 71      | 71    | 71  | 73  | 72     | 71.75  |
| 2007 | 71      | 71    | 72  | 75  | 72     | 72.5   |
| 2008 | 78      | 72    | 72  | 79  | 77     | 75     |
| 2009 | 91      | 85    | 93  | 89  | 89     | 89     |
| 2010 | 95      | 92    | 96  | 91  | 98     | 94.25  |
| 2011 | 105     | 106   | 105 | 100 | 102    | 103.25 |
| 2012 | 128     | 129   | 116 | 129 | 126    | 125    |
| 2013 | 132     | 135   | 135 | 139 | 130    | 134.75 |
| 2014 | 135     | 140   | 139 | 142 | 136    | 139.25 |
| 2015 |         | 150   | 140 | 149 | 142    | 145.25 |
| 2016 |         | 161   | 153 | 160 | 159    | 158.25 |
| 2017 |         | 165   | 169 | 170 | 168    | 168    |





图 6 小麦最低收购价格的预测图



图 7 水稻最低收购价格的预测图



因此,得到小麦和水稻 2017 年的最低收购价格的合理范围,分别取 GARCH、DDE、SVM 和 HM-TWA 模型预测结果的最小和最大值,以及平均值,构成三角区间值[min, avg, max],也即小麦和水稻的最低收购价合理范围,如下:

#### 表 17 小麦和水稻的最低收购价合理范围 (元/50公斤)

**Table 17** The minimum purchase price of wheat and rice in a reasonable range (yuan / 50 kg)

| 年份   | 小麦最低收购价范围          | 水稻最低收购价范围          |  |  |  |
|------|--------------------|--------------------|--|--|--|
| 2017 | [125, 127. 5, 130] | [153, 168. 5, 170] |  |  |  |

#### 4.5 问题五: 调整粮食最低收购价使小麦种植面积增加 5%

#### 4.5.1 分析和建模

由问题一的结构方程模型可知,粮食种植面积的主要影响因素为耕地面积、成灾面积、市场收购价、粮食总产量、最低收购价、农业人口数、城镇化率这几个变量层面,如下图8所示



图 8 小麦种植面积影响因素 SEM 模型路径系数图

#### 4.5.2 求解和结果

通过 EXCEL 进行多元回归分析,输出结果如下:



| SUMMARY OUTF | PUT        |           |            |          |            |           |           |          |
|--------------|------------|-----------|------------|----------|------------|-----------|-----------|----------|
|              |            |           |            |          |            |           |           |          |
| 回归统          | 计          |           |            |          |            |           |           |          |
| Multiple R   | 0. 979208  |           |            |          |            |           |           |          |
| R Square     | 0. 958848  |           |            |          |            |           |           |          |
| Adjusted R S |            |           |            |          |            |           |           |          |
| 标准误差         | 142. 2793  |           |            |          |            |           |           |          |
| 观测值          | 8          |           |            |          |            |           |           |          |
|              |            |           |            |          |            |           |           |          |
| 方差分析         |            |           |            |          |            |           |           |          |
|              | df         | SS        | MS         | F        | gnificance | F         |           |          |
| 回归分析         | 6          | 471678.1  | 78613.015  | 3.883389 | 0.370054   |           |           |          |
| 残差           | 1          | 20243.41  | 20243.407  |          |            |           |           |          |
| 总计           | 7          | 491921.5  |            |          |            |           |           |          |
|              |            |           |            |          |            |           |           |          |
| Co           | oefficient | 标准误差      | t Stat     | P-value  | Lower 95%  | Upper 95% | 下限 95.09  | 上限 95.0% |
| Intercept    | -345924    | 282615.5  | -1.224009  |          |            |           |           |          |
| 24632        | 0.016235   | 0.06999   | 0.2319686  | 0.854891 | -0.87307   | 0.90554   | -0.87307  | 0.90554  |
| 71.61        | -61. 4274  | 69. 17099 | -0.888052  | 0.537703 | -940.328   | 817.4733  | -940. 328 | 817.4733 |
| 607          | 0. 433928  | 0. 186899 | 2.3217267  | 0.258914 | -1.94085   | 2.808702  | -1.94085  | 2.808702 |
|              |            |           | -0.260315  |          |            |           |           |          |
| 73160        | 2. 935138  | 2. 195689 | 1.3367731  | 0.408878 | -24. 9637  | 30.83401  | -24.9637  | 30.83401 |
| 0.4434       | 358941.4   | 285725.5  | 1. 2562457 | 0.428006 | -3271545   | 3989427   | -3271545  | 3989427  |
|              |            |           |            |          |            |           |           |          |
|              |            |           |            |          |            |           |           |          |
|              |            |           |            |          |            |           |           |          |
| RESIDUAL OUT | TPUT       |           |            |          | PROBABILI  | TY OUTPUT | `         |          |
|              |            |           |            |          |            |           |           |          |
|              | 预测 23613   |           | 标准残差       |          | 百分比排位      | 23613     |           |          |
|              |            |           | 0.8866442  |          | 6. 25      | 23617     |           |          |
|              |            |           | -1. 379474 |          | 18. 75     | 23721     |           |          |
|              |            |           | -0.388807  |          | 31.25      | 24069     |           |          |
|              |            |           | 0.8940355  |          | 43.75      | 24117     |           |          |
|              |            |           | 1. 2046948 |          | 56. 25     | 24257     |           |          |
|              |            |           | -1.19989   |          | 68.75      | 24268     |           |          |
| 7            | 24143.51   | -26. 5114 | -0. 492993 |          | 81.25      | 24270     |           |          |
| 8            | 24043.41   | 25. 5863  | 0. 4757893 |          | 93. 75     | 24291     |           |          |

复相关系数 R2 的平方根,又称相关系数, R=0.979208 表明小麦的种植面积与成灾面积、市场收购价、粮食总产量、最低收购价、农业人口数、城镇化率之间的关系为高度正相关;

复测定系数,上述复相关系数 R 的平方。用来说明自变量解释因变量的程度,以测定拟合效果,复测定系数为 0.958848,表明用用自变量可解释因变量变差的 95.8848%

因此可以得到小麦种植面积 S 与成灾面积、市场收购价、粮食总产量、最低收购价、农业人口数、城镇化率之间的回归关系方程如下:

$$S = -345924 + 0.016c_2 - 61.43c_7 + 0.434c_8 - 13.51c_9 + 2.94c_{12} + 358941.4c_{15}$$

当S增加5%时,有:

$$S + 0.05S = -345924 + 0.016c_2 - 61.43c_7 + 0.434c_8 - 13.51c_9' + 2.94c_{12} + 358941.4c_{15}$$

将两式相减,得到 $0.05S = -13.51(c_9' - c_9)$ ,所以 $c_9' < c_9$ ,即降低粮食的最低收购价格可以实现粮食种植面积的增加,但是并不能一直下降,这样相对市场收购价格,其实市场收购价格相对上升,将会导致粮食企业承担很大的经营风险。

# HUAWEI

#### "华为杯"第十三届全国研究生数学建模竞赛

#### 4.6 问题六:调控粮食种植的优化决策和建议

根据前面的模型分析,提出完善我国粮食最低收购价政策的建议,如下:

#### (1) 优化政策设计建立科学的粮食最低收购价格确定机制

粮食是特殊商品,具有"公共物品属性。因此,既要遵循价值规律,也必须对市场粮价进行适度干预,保证粮价既尽可能反映价值,又适当保护生产者、消者和经营者的利益,粮食最低收购价格应考虑生产成本、种粮比较收益、社会平均利润和国际粮食市场价格等几大因素,科学制定粮食最低收购价格。

#### (2) 完善粮食价格监测预警机制

整合粮食行政管理部门、中储粮系统、农业行政管理部门和价格行政管理部门等部门的粮食价格监测资源,科学设立和布局价格监测网点,完善粮食价格监测网络体系,建立快速、敏捷、准确、有效的粮食价格监测预警机制。

#### (3) 调整粮食最低收购价格公布和政策实施时间

最低收购价格公布时间的早晚,直接影响到相应粮食品种的播种面积,从而 决定到当年该粮食品种的总产量、市场供应量。因此,最低收购价格应该在对应 粮食品种播种之前适时公布。

#### (4) 实行粮食最低收购价格资金供给多元化

在加强对农业发展银行的监管,强化资金供应的计划性,增强服务意识,克服衙门作风,提高工作效率的同时,拓展最低收购价资金供给渠道,赋予中国农业银行、农村信用合作社等农村金融机构提供粮食最低收购价格收购资金功能,使收购资金由独家提供变成多家,充分满足粮食最低收购。

# 五、模型评价

#### 5.1 模型的优缺点

- (1) 在大量的文献梳理基础上,分析粮食种植面积的影响因素内在逻辑,较为科学:
- (2)克服指标特征量值的不确定性和主观性,引入三角模糊数对物元可拓模型进行改进;
- (3)将多种预测模型进行综合运用,模型适用性强、相关统计检验量比较全面,可否了单统计检验量的缺点:
- (4) 运用多种科学软件,如 AMOS、SPSS、Origin、Eviews、EXCEL、Lingo 等,结果相对科学且可视化程度高;
- (5) 但是,对于指标体系各指标间的关系的论述相对偏少,对 SEM 模型没有进行复杂的修正过程,且模型在分析合理定价策略时用情景分析法,偏于理论。

#### 5.2 模型的创新点

- (1)将计量经济学上的分析模型和统计学上的统计量检验用于模型的适配度分析,结合供应链的鲁棒优化的思想和多目标规划的分方法;
- (2)将可拓物元分析进行模糊三区间数的改进,更加科学,为宏观和微观政策的合理提出提供相应的效果分析框架,具有理论和现实意义。



# 六、参考文献

- [1] 张爽. 粮食最低收购价政策对主产区农户供给行为影响的实证研究[J].经济评论,2013,01:130-136.
- [2] 王双进,李顺毅.粮食价格波动的成因及调控对策[J]. 经济纵横,2013,02:60-64.
- [3] 张瑞娟,任晓娜.粮食价格形成和波动机制研究——文献综述与评析[J]. 中国农业大学学报,2016,01:141-146.
- [4] 兰录平. 中国粮食最低收购价政策研究[D].湖南农业大学,2013.
- [5] 王淑艳. 我国粮食价格波动因素分析与预测研究[D].东北农业大学,2013.
- [6] 谭砚文,杨重玉,陈丁薇,张培君. 中国粮食市场调控政策的实施绩效与评价[J]. 农业经济问题,2014,05:87-98
- [7] Li Cui-xia, Zhang Yu-ling. Analysis on Stability Factors of Grain Price in China [J]. Journal of Northeast Agricultural University (English Edition), 2012,03:92–96.
- [8] F.E. Correa, M.D.B. Oliveira, J. Gama, P.L.P. Corrêa, J. Rady. Analyzing the behavior dynamics of grain price indexes using Tucker tensor decomposition and spatio-temporal trajectories[J]. Computers and Electronics in Agriculture, 2016.120:72-78.
- [9] World Bank China: Options for Reform in the Grain Sector[M]. 2007.
- [10] James Rude, Henry An. Explaining grain and oilseed price volatility: The role of export restrictions [J]. Food Policy, 2015, 57:83-92.
- [11] Yong-fu CHEN, Zhi-gang WU. Agricultural Policy, Climate Factors and Grain Output: Evidence From Household Survey Data in Rural China[J]. Journal of Integrative Agriculture, 2013, 12:169-183.
- [12] Esther Y.P. SHEA, Understanding China's grain procurement policy from a perspective of optimization[J]. China Economic Review, 2010, 21:639-649.
- [13] Junichi Itoa, Jing Nib. Capital deepening, land use policy, and self-sufficiency in China's grain sector[J]. China Economic Review:2013,24: 95–107.
- [14] Lijun Zuo, Xiao Wang, Zengxiang Zhang. Developing grain production policy in terms of multiple cropping systems in China [J]. Land Use Policy, 2014, 40:140-146.
- [15] Laura Devaney . Good governance? Perceptions of accountability, transparency and effectiveness in Irish food risk governance[J]. Food Policy, 2016, 62:1-10.



# 附 录

# 小麦相关指标

|      |        | c1        | c2    | c3    | c4               | c5        | c6        | c7      | c8    | с9    |
|------|--------|-----------|-------|-------|------------------|-----------|-----------|---------|-------|-------|
| 年份   | 粮食种植面积 | 耕地面积      | 成灾面积  | 森林覆盖率 | <b>农业占生产总值比例</b> | 城乡居民人均收入差 | 粮食进出口差额   | 市场收购价   | 粮食总产量 | 最低收购价 |
| 1990 | 30753  | 9562.79   | 17819 |       | 27. 0            | 823. 9    |           | 30. 43  | 6094  |       |
| 1991 | 30948  | 9565.36   | 27814 |       | 24.5             | 992. 0    |           |         | 7760  |       |
| 1992 | 30496  | 9545.58   | 25895 |       | 21.8             | 1242.6    |           |         | 8370  |       |
| 1993 | 30235  | 9510.14   | 23133 |       | 19.9             | 1655. 8   |           |         | 7318  |       |
| 1994 | 28981  | 9490.67   | 31383 |       | 20.2             | 2275. 2   |           |         | 5801  |       |
| 1995 | 28860  | 9497.39   | 22267 |       | 20.5             | 2705. 3   | 2296.62   | 75. 44  | 4928  |       |
| 1996 | 29611  | 13003.92  | 21234 |       | 20.4             | 2912.8    | 4126.44   |         | 6905  |       |
| 1997 | 30057  | 12990.31  | 30307 |       | 19.1             | 3070. 2   | -178.17   |         | 9551  |       |
| 1998 | 29774  | 12964.21  | 25181 |       | 18.6             | 3263.1    | -1423.94  | 66. 58  | 10211 |       |
| 1999 | 28855  | 12920.55  | 26731 |       | 17.6             | 3643. 7   | -1150.71  | 60.36   | 9372  |       |
| 2000 | 26653  | 12824.31  | 34374 |       | 16.4             | 4026.6    | -1401.39  | 52. 88  | 5324  |       |
| 2001 | 24664  | 12761.58  | 31793 |       | 15.8             | 4493. 2   | -572.79   | 52. 51  | 6859  |       |
| 2002 | 23908  | 12593     | 27160 | 无     | 15. 4            | 5227. 2   | -1416.35  | 51. 25  | 5245  |       |
| 2003 | 21997  | 12339. 22 | 32516 | 无     | 12.8             | 5850.0    | -2521. 21 | 56. 42  | 3091  |       |
| 2004 | 21626  | 12244.43  | 16297 | 18.2  | 13.4             | 6485.2    | 3064.84   | 74. 47  | 3498  |       |
| 2005 | 22793  | 12208.27  | 19966 | 18.2  | 12.2             | 7238. 1   | 630.31    | 69. 01  | 3598  |       |
| 2006 | 23613  | 12178     | 24632 | 18.2  | 11.3             | 8172. 5   | -312.38   | 71.61   | 607   | 72    |
| 2007 | 23721  | 12174     | 25064 | 18.2  | 11.1             | 9645.4    | -1886.35  | 75. 58  | 547   | 72    |
| 2008 | 23617  | 12171.6   | 22284 | 20.4  | 11.3             | 11020.2   | -286.83   | 82. 76  | 529   | 75    |
| 2009 | 24291  | 12171.6   | 21234 | 21.6  | 9.9              | 12021.5   | 83. 56    | 92. 41  | 2048  | 87    |
| 2010 | 24257  | 12171.6   | 18538 | 21.6  | 9.6              | 13190.4   | 1035.12   | 99. 01  | 1966  | 90    |
| 2011 | 24270  | 12171.6   | 12441 | 21.6  | 9. 5             | 14832.5   | 1694.69   | 103.95  | 1977  | 95    |
| 2012 | 24268  | 135158.5  | 11475 | 21.6  | 9.5              | 16648.1   | 6182.85   | 108. 31 | 2088  | 102   |
| 2013 | 24117  | 135163.4  | 14303 | 21.6  | 9.4              | 18059.2   | 6983. 29  | 117.81  | 2137  | 112   |
| 2014 | 24069  | 135057.3  | 12678 | 21.6  | 9. 2             | 19489.0   | 7516.04   | 120. 59 | 968   | 118   |
| 2015 |        |           |       |       |                  |           |           |         |       |       |

| c10    | c11     | c12    | c13      | c14    | c15    | c16   | c17     | c18  | c19     |
|--------|---------|--------|----------|--------|--------|-------|---------|------|---------|
| 种粮亩产补贴 | 财政支农支出  | 皮业人 口夢 | 农村人均教育支出 | 粮农种植意愿 | 城镇化率   | 恩格尔系数 | 食生产成:   | 食安全系 | 业机械总动   |
|        | 307.8   | 84138  | 805      | 0.75   | 0.2641 | 0.588 | 115.45  | 0.83 | 2870.8  |
|        | 347.6   | 84620  | 830      | 0.73   | 0.2694 | 0.576 |         | 0.82 | 2938.9  |
|        | 376.0   | 84996  | 900      | 0.78   | 0.2746 | 0.576 |         | 0.78 | 3030.8  |
|        | 440.5   | 85344  | 930      | 0.80   | 0.2799 | 0.581 |         | 0.81 | 3181.7  |
|        | 533.0   | 85681  | 980      | 0.79   | 0.2851 | 0.589 |         | 0.82 | 3380.3  |
|        | 574. 9  | 85947  | 1005     | 0.83   | 0.2904 | 0.586 | 238.79  | 0.71 | 3611.8  |
|        | 700.4   | 85085  | 1101     | 0.84   | 0.3048 | 0.563 |         | 0.9  | 3854.7  |
|        | 766. 4  | 84177  | 1204     | 0.82   | 0.3191 | 0.551 |         | 0.88 | 4201.6  |
|        | 1154.8  | 83153  | 1230     | 0.80   | 0.3335 | 0.534 | 281.92  | 0.89 | 4520.8  |
|        | 1085.8  | 82038  | 1280     | 0.78   | 0.3478 | 0.526 | 280.39  | 0.69 | 4899.6  |
|        | 1231.5  | 80837  | 1308     | 0.79   | 0.3622 | 0.491 | 284.85  | 0.88 | 5257.4  |
|        | 1456.7  | 79563  | 1340     | 0.76   | 0.3766 | 0.477 | 258.93  | 0.89 | 5517.2  |
|        | 1580.8  | 78241  | 1378     | 0.75   | 0.3909 | 0.462 | 264.97  | 0.69 | 5793    |
|        | 1754. 5 | 76851  | 1450     | 0.73   | 0.4053 | 0.456 | 339.64  | 0.73 | 6038.7  |
| 40     | 2337.6  | 75705  | 1489     | 0.80   | 0.4176 | 0.472 | 355.92  | 0.87 | 6402.8  |
| 45     | 2450.3  | 74544  | 1509     | 0.81   | 0.4299 | 0.455 | 389.61  | 0.9  | 6839.8  |
| 52     | 3173.0  | 73160  | 1570     | 0.82   | 0.4434 | 0.43  | 404.77  | 0.69 | 7252. 2 |
| 60     | 4318.3  | 71496  | 1639     | 0.83   | 0.4589 | 0.431 | 438. 61 | 0.73 | 7659    |
| 67.5   | 5955.5  | 70339  | 1680     | 0.80   | 0.4699 | 0.437 | 498.55  | 0.87 | 8219    |
| 85     | 6720.4  | 68938  | 1730     | 0.78   | 0.4834 | 0.41  | 567     | 0.89 | 8749.6  |
| 80     | 8129.6  | 67113  | 1790     | 0.76   | 0.4995 | 0.411 | 618.63  | 0.78 | 9278    |
| 90     | 9937.6  | 65656  | 1885     | 0.77   | 0.5127 | 0.404 | 712.28  | 0.68 | 9773.5  |
| 100    | 11973.9 | 64222  | 1996     | 0.75   | 0.5257 | 0.393 | 830.44  | 0.87 | 10255.9 |
| 120    | 13349.6 | 62961  | 2000     | 0.73   | 0.5373 | 0.377 | 914.71  | 0.78 | 10290.7 |
| 125    | 14173.8 | 61886  | 2101     | 0.71   | 0.548  | 0.4   | 965. 13 | 0.7  | 10805.7 |
| 132    |         | 60346  | 2201     | 0.70   | 0.561  | 0.306 |         | 0.89 |         |



# 水稻相关指标

| 年份   | 良食种植面移 | 耕地面积      | 成灾面积  | 条林覆盖率 | 占生产总值 | 居民人均收    | 食进出口差    | 市场收购价   | 限食总产量   | 最低收购的 |
|------|--------|-----------|-------|-------|-------|----------|----------|---------|---------|-------|
| 1990 | 33064  | 9562.79   | 17819 |       | 27. 0 | 823.9    |          | 29.02   | 2542642 |       |
| 1991 | 32590  | 9565.36   | 27814 |       | 24. 5 | 992.0    |          |         | 2586304 |       |
| 1992 | 32090  | 9545.58   | 25895 |       | 21.8  | 1242.6   |          |         | 2440907 |       |
| 1993 | 30355  | 9510.14   | 23133 |       | 19. 9 | 1655.8   |          |         | 2349086 |       |
| 1994 | 30171  | 9490.67   | 31383 |       | 20.2  | 2275. 2  |          |         | 2412841 |       |
| 1995 | 30744  | 9497.39   | 22267 |       | 20. 5 | 2705.3   | 2296.62  | 82.11   | 2325133 |       |
| 1996 | 31406  | 13003.92  | 21234 |       | 20.4  | 2912.8   | 4126.44  |         | 2597117 |       |
| 1997 | 31765  | 12990.31  | 30307 |       | 19. 1 | 3070. 2  | -178. 17 |         | 2757668 |       |
| 1998 | 31214  | 12964. 21 | 25181 |       | 18.6  | 3263.1   | -1423.94 | 66. 92  | 2443065 |       |
| 1999 | 31283  | 12920.55  | 26731 |       | 17.6  | 3643.7   | -1150.71 | 56. 59  | 2503557 |       |
| 2000 | 29962  | 12824.31  | 34374 |       | 16. 4 | 4026.6   | -1401.39 | 51.74   | 2405899 |       |
| 2001 | 28812  | 12761.58  | 31793 |       | 15.8  | 4493. 2  | -572. 79 | 53.68   | 2299943 |       |
| 2002 | 28202  | 12593     | 27160 | 无     | 15. 4 | 5227.2   | -1416.35 | 51.39   | 1908942 |       |
| 2003 | 26508  | 12339. 22 | 32516 | 无     | 12.8  | 5850.0   | -2521.21 | 60.06   | 1939536 |       |
| 2004 | 28379  | 12244.43  | 16297 | 18.2  | 13.4  | 6485. 2  | 3064.84  | 79.82   | 2300549 | 71    |
| 2005 | 28847  | 12208.27  | 19966 | 18. 2 | 12. 2 | 7238. 1  | 630.31   | 77.66   | 2386731 | 71    |
| 2006 | 28938  | 12178     | 24632 | 18.2  | 11.3  | 8172.5   | -312.38  | 80. 64  | 2344684 | 71    |
| 2007 | 28919  | 12174     | 25064 | 18.2  | 11.1  | 9645.4   | -1886.35 | 85. 21  | 2363917 | 71    |
| 2008 | 29241  | 12171.6   | 22284 | 20.4  | 11. 3 | 11020.2  | -286.83  | 95. 11  | 2405060 | 78    |
| 2009 | 29627  | 12171.6   | 21234 | 21.6  | 9.9   | 12021.5  | 83.56    | 99.08   | 2354964 | 91    |
| 2010 | 29873  | 12171.6   | 18538 | 21.6  | 9.6   | 13190.4  | 1035.12  | 118. 00 | 2220198 | 95    |
| 2011 | 30057  | 12171.6   | 12441 | 21.6  | 9.5   | 14832.5  | 1694.69  | 134.53  | 2289909 | 105   |
| 2012 | 30137  | 135158.5  | 11475 | 21.6  | 9.5   | 16648.1  | 6182.85  | 138.07  | 2303806 | 128   |
| 2013 | 30312  | 135163.4  | 14303 | 21.6  | 9.4   | 18059. 2 | 6983. 29 | 136. 52 | 2298038 | 132   |
| 2014 | 30310  | 135057.3  | 12678 | 21.6  | 9. 2  | 19489. 0 | 7516.04  | 140.63  | 2324215 | 135   |
| 2015 |        |           |       |       |       |          |          |         |         | 135   |

| 粮亩产补 | 政支农支     | <b>枚业人口数</b> | 人均教育 | 农种植意 | 城镇化率    | 恩格尔系数  | 食生产成:    | 食安全系 | 业机械总动    |
|------|----------|--------------|------|------|---------|--------|----------|------|----------|
|      | 307.8    | 84138        | 805  | 0.75 | 0. 2641 | 0. 588 | 151.8    | 0.83 | 2870.8   |
|      | 347.6    | 84620        | 830  | 0.73 | 0.2694  | 0.576  |          | 0.82 | 2938.9   |
|      | 376.0    | 84996        | 900  | 0.78 | 0.2746  | 0.576  |          | 0.78 | 3030.8   |
|      | 440.5    | 85344        | 930  | 0.80 | 0.2799  | 0. 581 |          | 0.81 | 3181.7   |
|      | 533.0    | 85681        | 980  | 0.79 | 0. 2851 | 0. 589 |          | 0.82 | 3380.3   |
|      | 574.9    | 85947        | 1005 | 0.83 | 0.2904  | 0. 586 | 326.62   | 0.71 | 3611.8   |
|      | 700.4    | 85085        | 1101 | 0.84 | 0.3048  | 0. 563 |          | 0.9  | 3854.7   |
|      | 766. 4   | 84177        | 1204 | 0.82 | 0.3191  | 0. 551 |          | 0.88 | 4201.6   |
|      | 1154.8   | 83153        | 1230 | 0.80 | 0.3335  | 0.534  | 345. 49  | 0.89 | 4520.8   |
|      | 1085.8   | 82038        | 1280 | 0.78 | 0.3478  | 0.526  | 329. 27  | 0.69 | 4899.6   |
|      | 1231.5   | 80837        | 1308 | 0.79 | 0.3622  | 0.491  | 319. 15  | 0.88 | 5257.4   |
|      | 1456. 7  | 79563        | 1340 | 0.76 | 0.3766  | 0.477  | 316.68   | 0.89 | 5517.2   |
|      | 1580.8   | 78241        | 1378 | 0.75 | 0.3909  | 0.462  | 319.74   | 0.69 | 5793     |
|      | 1754. 5  | 76851        | 1450 | 0.73 | 0.4053  | 0.456  | 416.66   | 0.73 | 6038.7   |
|      | 2337. 6  | 75705        | 1489 | 0.80 | 0.4176  | 0.472  | 454.64   | 0.87 | 6402.8   |
| 40   | 2450.3   | 74544        | 1509 | 0.81 | 0.4299  | 0.455  | 493. 31  | 0.9  | 6839.8   |
| 45   | 3173.0   | 73160        | 1570 | 0.82 | 0.4434  | 0.43   | 518. 23  | 0.69 | 7252. 2  |
| 52   | 4318.3   | 71496        | 1639 | 0.83 | 0.4589  | 0.431  | 555. 16  | 0.73 | 7659     |
| 60   | 5955. 5  | 70339        | 1680 | 0.80 | 0.4699  | 0.437  | 665.1    | 0.87 | 8219     |
| 67.5 | 6720.4   | 68938        | 1730 | 0.78 | 0.4834  | 0.41   | 683.12   | 0.89 | 8749.6   |
| 85   | 8129.6   | 67113        | 1790 | 0.76 | 0.4995  | 0.411  | 766.63   | 0.78 | 9278     |
| 80   | 9937.6   | 65656        | 1885 | 0.77 | 0.5127  | 0.404  | 896. 98  | 0.68 | 9773.5   |
| 90   | 11973. 9 | 64222        | 1996 | 0.75 | 0.5257  | 0.393  | 1055.1   | 0.87 | 10255. 9 |
| 100  | 13349.6  | 62961        | 2000 | 0.73 | 0.5373  | 0.377  | 1151.11  | 0.78 | 10290.7  |
| 120  | 14173.8  | 61886        | 2101 | 0.71 | 0.548   | 0.4    | 1176. 55 | 0.7  | 10805.7  |
| 125  |          | 60346        | 2201 | 0.70 | 0.561   | 0.306  |          | 0.89 |          |



# 小麦水稻种植面积

| 年份   | 粮食种植面积 | 稻谷    | 小麦    |
|------|--------|-------|-------|
| 1990 | 63817  | 33064 | 30753 |
| 1991 | 63538  | 32590 | 30948 |
| 1992 | 62586  | 32090 | 30496 |
| 1993 | 60590  | 30355 | 30235 |
| 1994 | 59152  | 30171 | 28981 |
| 1995 | 59604  | 30744 | 28860 |
| 1996 | 61017  | 31406 | 29611 |
| 1997 | 61822  | 31765 | 30057 |
| 1998 | 60988  | 31214 | 29774 |
| 1999 | 60138  | 31283 | 28855 |
| 2000 | 56615  | 29962 | 26653 |
| 2001 | 53476  | 28812 | 24664 |
| 2002 | 52110  | 28202 | 23908 |
| 2003 | 48505  | 26508 | 21997 |
| 2004 | 50005  | 28379 | 21626 |
| 2005 | 51640  | 28847 | 22793 |
| 2006 | 52551  | 28938 | 23613 |
| 2007 | 52640  | 28919 | 23721 |
| 2008 | 52858  | 29241 | 23617 |
| 2009 | 53918  | 29627 | 24291 |
| 2010 | 54130  | 29873 | 24257 |
| 2011 | 54327  | 30057 | 24270 |
| 2012 | 54405  | 30137 | 24268 |
| 2013 | 54429  | 30312 | 24117 |
| 2014 | 54379  | 30310 | 24069 |
| 2015 |        |       |       |



# 小麦水稻总产量

| 年份   | 小麦    | 水稻      | 总产量     |
|------|-------|---------|---------|
| 1990 | 6094  | 2542642 | 2548736 |
| 1991 | 7760  | 2586304 | 2594064 |
| 1992 | 8370  | 2440907 | 2449277 |
| 1993 | 7318  | 2349086 | 2356404 |
| 1994 | 5801  | 2412841 | 2418642 |
| 1995 | 4928  | 2325133 | 2330061 |
| 1996 | 6905  | 2597117 | 2604022 |
| 1997 | 9551  | 2757668 | 2767219 |
| 1998 | 10211 | 2443065 | 2453276 |
| 1999 | 9372  | 2503557 | 2512929 |
| 2000 | 5324  | 2405899 | 2411223 |
| 2001 | 6859  | 2299943 | 2306802 |
| 2002 | 5245  | 1908942 | 1914187 |
| 2003 | 3091  | 1939536 | 1942627 |
| 2004 | 3498  | 2300549 | 2304047 |
| 2005 | 3598  | 2386731 | 2390329 |
| 2006 | 607   | 2344684 | 2345291 |
| 2007 | 547   | 2363917 | 2364464 |
| 2008 | 529   | 2405060 | 2405589 |
| 2009 | 2048  | 2354964 | 2357012 |
| 2010 | 1966  | 2220198 | 2222164 |
| 2011 | 1977  | 2289909 | 2291886 |
| 2012 | 2088  | 2303806 | 2305894 |
| 2013 | 2137  | 2298038 | 2300175 |
| 2014 | 968   | 2324215 | 2325183 |