Tic-Tac-Toe CNN Model Supervised By Dr.Mohamed Yousef

Gehad Omar

CS Department

February 1, 2025

Model Architecture

Convolutional Neural Network (CNN):

- 4 convolutional layers with increasing filter sizes (32, 64, 128, 256).
- Batch Normalization and ReLU activation after each convolutional layer.

Dropout:

• Dropout layer with a rate of 0.5 to prevent overfitting.

• Fully Connected Layers:

Two fully connected layers to map features to 9 possible moves.

Regularization Techniques

Model Architecture

Convolutional Neural Network (CNN):

- 4 convolutional layers with increasing filter sizes (32, 64, 128, 256).
- Batch Normalization and ReLU activation after each convolutional layer.

Dropout:

• Dropout layer with a rate of 0.5 to prevent overfitting.

• Fully Connected Layers:

Two fully connected layers to map features to 9 possible moves.

Kernel Size Comparison Study

Key Findings:

- Kernel=3 shows lower initial loss
- Kernel=6 exhibits higher training volatility
- Both converge but K=3 more stable

Implications:

- Smaller kernel better suited for Tic-Tac-Toe patterns
- More efficient training process

Data Preprocessing

Board State Encoding:

• Convert board into 3 channels: current player, opponent, and empty spaces.

Data Cleaning:

Remove duplicate board states to avoid redundancy.

Training Techniques

- Minibatch Training:
 - Dataset split into minibatches of size 128.
- Loss Function:
 - CrossEntropyLoss for multi-class classification.
- Optimizer:
 - AdamW optimizer with learning rate 0.0001 and weight decay 1e-4.
- Learning Rate Scheduling:
 - StepLR scheduler reduces learning rate by 0.1 every 10 epochs.
- Early Stopping:
 - Stops training if validation loss does not improve for 10 epochs.

Model Performance Comparison

CNN Model:

- Achieved accuracy: 81%
- Superior spatial pattern recognition

FCN Model:

- Achieved accuracy: 69%
- 12% lower performance

Evaluation Techniques

- Validation Set:
 - Dataset split into training (80%) and validation (20%).
- Confusion Matrix:
 - Evaluate model performance on validation set.
- Classification Report:
 - Provides precision, recall, and F1-score for each class.

Visualization Techniques

- Learning Curves:
 - Plot training and validation loss over epochs.
- Bias-Variance Tradeoff:
 - Plot bias, variance, and total error.

Interactive Gameplay

- Human vs. Model:
 - Allows human player to play against the trained model.
- Win/Draw Detection:
 - Functions to check game state for win or draw.

Regularization Techniques

- Dropout:
 - Used in fully connected layer to prevent overfitting.
- Weight Decay (L2 Regularization):
 - Applied in AdamW optimizer to penalize large weights.

Model Saving and Loading

- Model Checkpointing:
 - Save the best model based on validation loss.
- Loading Pre-trained Models:
 - Load saved model for evaluation or gameplay.

Training Techniques

- Minibatch Training:
 - Dataset split into minibatches of size 128.
- Loss Function:
 - CrossEntropyLoss for multi-class classification.
- Optimizer:
 - AdamW optimizer with learning rate 0.0001 and weight decay 1e-4.
- Learning Rate Scheduling:
 - StepLR scheduler reduces learning rate by 0.1 every 10 epochs.
- Early Stopping:
 - Stops training if validation loss does not improve for 10 epochs.

Learning Rate Analysis

Learning	Train	Val
Rate	Acc (%)	Acc (%)
0.1	23.98	21.27
0.01	95.66	84.31
0.001	99.81	81.00
0.0001	94.30	78.73

- Optimal Rate: 0.01
- Best balance of training and validation accuracy
- Higher rates lead to instability
- Lower rates show overfitting signs

Dataset Handling

- Combining Datasets:
 - Concatenate multiple datasets (e.g., minimax, MCTS).
- Dynamic Player Encoding:
 - Preprocessing function encodes board based on current player.

Miscellaneous Techniques

- Move Validation:
 - Ensure only valid moves are predicted.
- Early Stopping:
 - Stop training if validation loss does not improve.

Model Comparison

Model	Dataset	Accuracy
Model 1	Minimax	66%
Model 2	MCTS	67%
Model 3	Combined Rules	80%

Table: Comparison of Models with Different Datasets

Confusion Matrix

```
Confusion Matrix:
[[ 83
                     0
                         11
                                     0
                                                2]
                                                2]
                3
                     0
                                0
                                          0
     1
         50
                          0
     3
          0
              83
                     0
                                     3
                                          0
                                0
                                                0]
     0
                    42
                          0
                                          0
     6
                5
                     0
                       104
                                1
                                    10
                                          0
                                              11]
          0
          0
                     1
                              30
                                     3
                                          0
                                                0]
     8
                5
                     0
                          6
                                0
                                    55
                                          0
                                                6]
     0
          2
                0
                     0
                          0
                                0
                                     0
                                         22
          0
                2
                     4
                          6
                                0
                                     3
                                          0
```

Bias-Variance Tradeoff

Learning Curves

Conclusion

- The CNN model achieved 81% accuracy in predicting Tic-Tac-Toe moves.
- Smaller kernel sizes (e.g., 3x3) were more effective for this task.
- Explore the full project on Google Colab: https://colab.research.google.com/drive/10sUM5DhCCEcu_utApdhz_bIMLE6_Yr8S#scrollTo=FRYzH1tn3jyr