Dati e algoritmi

Indice

- 1. Indice
- 2. Problema computazionale
 - 1. Osservazione
 - 2. Esempi
 - 3. <u>Osservazioni</u>
 - 4. Esercizi
- 3. <u>Algoritmo e modello di calcolo</u>
 - 1. Definizione
 - 2. Modello di calcolo RAM (Random Access Machine)

[Lezione 01]

Problema computazionale

Un problema computazionale è costituito da

- ullet un insieme I di istanze (i possibili input)
- ullet un insieme S di soluzioni (i possibili output)
- ullet una relazione Π che a ogni istanza $i\in I$ associa *una o più* soluzioni $s\in S$

Osservazione

 Π è un sottoinsieme del prodotto cartesiano I imes S

Esempi

```
Somma di Interi (\mathbb{Z})

• \mathcal{I} = \{(x,y) : x,y \in \mathbb{Z}\};

• \mathcal{S} = \mathbb{Z};

• \Pi = \{((x,y),s) : (x,y) \in \mathcal{I}, s \in \mathcal{S}, s = x + y\}.

Ad es: ((1,9),10) \in \Pi; \quad ((23,6),29) \in \Pi \quad ((13,45),31) \notin \Pi
```



```
Ordinamento di array di interi (ver.2)

• \mathcal{I} = \{A : A = \text{array di interi}\};

• \mathcal{S} = \{P : P = \text{permutazioni}\};

• \Pi = \{(A, P) : A \in \mathcal{I}, P \in \mathcal{S}, P \text{ ordina gli interi di } A\}.

Ad es.

(< 43, 16, 75, 2 >, < 4, 2, 1, 3 >) \in \Pi
(< 7, 1, 7, 3, 3, 5 >, < 2, 4, 5, 6, 1, 3 >) \in \Pi
(< 7, 1, 7, 3, 3, 5 >, < 2, 5, 4, 6, 1, 3 >) \in \Pi
(< 13, 4, 25, 17 >, < 1, 2, 4, 3 >)
```

Osservazioni

- Istanze diverse possono avere la stessa soluzione (come la somma)
- Un'istanza può avere diverse soluzioni (come l'ordinamento ver.
 2)

Esercizi

```
Esercizio  \begin{array}{l} \textbf{Esercizio} \\ \textbf{Specificare come problema computazionale } & \textbf{\Pi} \text{ la verifica se due insiem} \\ \textbf{finiti di oggetti da un universo } & \textbf{U} \text{ sono disgiunti oppure no.} \\ I & \equiv \{(A,B):A,B\subseteq U,\ A,B \text{ finiti}\} \\ S & \equiv \{true,\ false\} \\ \textbf{\Pi} & \equiv \{((A,B),s) \text{ se } A\cap B=\emptyset \text{ allora } s=true, \text{ se } A\cap B\neq\emptyset \text{ allora } s=false\} \\ \textbf{II} & \equiv \{(A,B),s) \text{ se } A\cap B=\emptyset \text{ allora } s=true, \text{ se } A\cap B\neq\emptyset \text{ allora } s=false\} \\ \textbf{Esercizio} & \textbf{Esercizio} \\ \end{array}
```

```
Esercizio Specificare come problema computazionale \Pi la ricerca dell'inizio e della lunghezza del più lungo segmento di 1 consecutivi in una stringa binaria. I \equiv \{A: A \text{ è una stringa binaria}\} S \equiv \{(i,l): i,l \in \mathbb{N}_0\} \{(A,(i,l)): i \text{ la casella di inizio del segmento di <math>1 consecutivi più numeroso, l la lunghezza del segmento di 1 consecutivi più lungo)
```

Algoritmo e modello di calcolo

Definizione

Un algoritmo procedura computazionale ben definita che trasforma un dato input in un output eseguendo una sequenza finita di operazioni

elementari.

L'algoritmo fa riferimento a un *modello di calcolo*, ovvero un'astrazione di computer che definisce l'insieme di operazioni elementari.

Le operazioni elementari sono: assegnamento, operazioni logiche, operazioni aritmetiche, indicizzazione di array, return di un valore da parte di un metodo, ecc.

Modello di calcolo RAM (Random Access Machine)

In questo modello input, output, dati intermedi (e il programma) si trovano in memoria.

Un algoritmo A risolve un problema computazionale $\Pi \subseteq I \times S$ se:

- 1. A calcola una funzione da I a S e quindi,
 - ullet riceve come input istanze $i\in I$
 - ullet produce come output soluzioni $s\in S$
- 2. Dato $i\in I$, A produce in output sinS tale che $(i,s)\in\Pi$. Se Π associa più soluzioni a una istanza i, per tale istanza A ne calcola una (quale, dipende da come è stato progettato).

[Lezione 02]