Introduction to Machine Learning

Regularization for Underdetermined Problems

Learning goals

- Understand that regularization is used to make ill-posed problems well defined
 - Know that regularization can guarantee convergence for logistic regression on a linearly separable dataset

Regularization can also be motivated from a numerical perspective:

- Regularization can sometimes be necessary to make certain ill-posed problems well defined. Linear models such as (linear) regression and PCA depend "inverting" / solving a linear system, which not always works.
- When we solve linear systems like $\mathbf{X}\theta = \mathbf{y}$, there are 3 cases:
 - X is of square form and has full rank. This is normal linear system solving and irrelevant for us here, now.
 - **2 X** has more rows than columns. The system is "overdetermined". We now try to solve $\mathbf{X}\boldsymbol{\theta} \approx \mathbf{y}$, by minimizing $||\mathbf{X}\boldsymbol{\theta} \mathbf{y}||$. Ideally, this difference would be zero, but due to the too many rows this is often not possible. This is equivalent to linear regression!
 - X has more columns than rows / linear dependence between columns exists. Now there are usually an infinite number of solutions. We have to define a "preference" for them to make the problem well-defined (sounds familiar?). Such problems are called "underdetermined".

- A very old and well-known approach in underdetermined cases is to still reduce the problem to optimization by minimizing $||\mathbf{X}\theta \mathbf{y}||$, but adding a small positiv constant to the diagonal of $\mathbf{X}^T\mathbf{X}$.
- In optimization / numerical analysis this is known as **Tikhonov** regularization.
- But as you should be able to see now: This is completely equivalent to Ridge regression!

We now study not the normal LM (which we could), but logistic regression applied to a linearly separable dataset for a more subtle example:

First, we take a look at logistic regression for an almost linearly separable dataset consisting of the observations $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(8)}$.

Note: WLOG we estimate the model without intercept, s.t. we can visualize the regression coefficient θ in 2D. Also, the symmetry of the data does not influence the generality of our conclusions.

Because of the symmetry of the data, the direction of θ is $\tilde{\theta} := (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})^{\top}$.

To find $\overline{\theta}:=||\boldsymbol{\theta}||_2$, we consider the empirical risk \mathcal{R}_{emp} along $\tilde{\boldsymbol{\theta}}$:

$$\begin{split} \mathcal{R}_{\text{emp}} &= \sum_{i=1}^{8} \log \left[1 + \exp \left(- y^{(i)} \boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} \right) \right] \\ &= \sum_{i=1}^{6} \log \left[1 + \exp \left(- \overline{\boldsymbol{\theta}} \left| \tilde{\boldsymbol{\theta}}^{\top} \mathbf{x}^{(i)} \right| \right) \right] + \sum_{i=7}^{8} \log \left[1 + \exp \left(\overline{\boldsymbol{\theta}} \left| \tilde{\boldsymbol{\theta}}^{\top} \mathbf{x}^{(i)} \right| \right) \right] \\ &= : \ell_{\text{cor}(\overline{\boldsymbol{\theta}})} \text{ (correctly classified)} \end{split}$$

Clearly, f_{cor} / f_{incor} are monotonically decreasing/increasing with rising length of θ :

 $^{^{1}\}theta$ is perpendicular to the decision boundary and points to the "1"-space.

UNDERCONSTRAINED PROBLEMS

- By removing the 7th and 8th observation, we get a linearly separable dataset.
- This also means that we lose our "counterweight", i.e., if a parameter vector θ is able to classify the samples perfectly, the vector 2θ also classifies the samples perfectly, with decreased risk.
- Therefore, an iterative optimizer such as stochastic gradient descent (SGD) will continually increase θ and never halt (in theory).
- In such cases, regularization can guarantee convergence:

