Распределенные системы

Безопасность

Types of Threats

- Interception
- Interruption
- Modification
- Fabrication

Security Mechanisms

- Encryption
- Authentication
- Authorization
- Auditing

Example: Globus Security Architecture

 Diagram of Globus security architecture.

Focus of Control

wrong or invalid operations

State
Object
Invocation Method
(a)

Data is protected against

Data is protected against unauthorized invocations

- Three approaches for protection against security threats
- a) Protection against invalid operations
- b) Protection against unauthorized invocations
- c) Protection against unauthorized users

Layering of Security Mechanisms (1)

Layering of Security Mechanisms (2)

Distribution of Security Mechanisms

Cryptography (1)

Cryptography (2)

Notation used in this chapter.

Notation	Description
K _{A, B}	Secret key shared by A and B
K_A^+	Public key of A
K_A^-	Private key of A

Symmetric Cryptosystems: DES

(1)

- a) The principle of DES
- b) Outline of one encryption round

Symmetric Cryptosystems: DES (2)

Public-Key Cryptosystems: RSA

- Generating the private and public key requires four steps:
- 1. Choose two very large prime numbers, *p* and *q*
- Compute $n = p \times q$ and $z = (p 1) \times (q 1)$
- 3. Choose a number d that is relatively prime to z
- 4. Compute the number e such that $e \times d = 1 \mod z$

Hash Functions: MD5 (1)

Hash Functions: MD5 (2)

Iterations 1-8	Iterations 9-16
$p \leftarrow (p + F(q,r,s) + b_0 + C_1) \ll 7$	$p \leftarrow (p + F(q,r,s) + b_8 + C_9) \ll 7$
$s \leftarrow (s + F(p,q,r) + b_1 + C_2) \ll 12$	$s \leftarrow (s + F(p,q,r) + b_9 + C_{10}) \ll 12$
$r \leftarrow (r + F(s, p, q) + b_2 + C_3) \ll 17$	$r \leftarrow (r + F(s, p, q) + b_{10} + C_{11}) \ll 17$
$q \leftarrow (q + F(r,s,p) + b_3 + C_4) \ll 22$	$q \leftarrow (q + F(r,s,p) + b_{11} + C_{12}) \ll 22$
$p \leftarrow (p + F(q,r,s) + b_4 + C_5) \ll 7$	$p \leftarrow (p + F(q, r, s) + b_{12} + C_{13}) \ll 7$
$s \leftarrow (s + F(p,q,r) + b_5 + C_6) \ll 12$	$s \leftarrow (s + F(p,q,r) + b_{13} + C_{14}) \ll 12$
$r \leftarrow (r + F(s, p, q) + b_6 + C_7) \ll 17$	$r \leftarrow (r + F(s, p, q) + b_{14} + C_{15}) \ll 17$
$q \leftarrow (q + F(r,s,p) + b_7 + C_8) \ll 22$	$q \leftarrow (q + F(r, s, p) + b_{15} + C_{16}) \ll 22$

Authentication (1)

Autl

Authentication (2)

Authentication (3)

Authentication Using a Key Distribution Center (1)

Authentication Using a Key Distribution Center (2)

Authentication Using a Key Distribution Center (3)

Authentication Using a Key Distribution Center (4)

Authentication Using Public-Key Cryptography

Digital Signatures (1)

Digital signing a message using public-key cryptography.

Digital Signatures (2)

Digitally signing a message using a message digest.

Secure Replicated Services

General Issues in Access Control

General model of controlling access to objects.

Access Control Matrix

- Comparison
 between ACLs and
 capabilities for
 protecting objects.
- a) Using an ACL
- b) Using capabilities.

Protection Domains

The hierarchical organization of protection domains as groups of users.

Firewalls

Protecting the Target (1)

Protecting the Target (2)

Protecting the Target (3)

Protecting the Target (4)

Key Establishment

Key Distribution (1)

Key Distribution (2)

Secure Group Management

Capabilities and Attribute Certificates (1)

48 bits	24 bits	8 bits	48 bits
Server port	Object	Rights	Check

A capability in Amoeba.

Capabilities and Attribute Certificates (2)

Delegation (1)

The general structure of a proxy as used for delegation.

Delegation (2)

Example: Kerberos (1)

Authentication in Kerberos.

Example: Kerberos (2)

SESAME Components

Privilege Attribute Certificates (PACs)

Field	Description			
Issuer domain	Name the security domain of the issuer			
Issuer identity	Name the PAS in the issuer's domain			
Serial number	A unique number for this PAC, generated by the PAS			
Creation time	UTC time when this PAC was created			
Validity	Time interval when this PAC is valid			
Time periods	Additional time periods outside which the PAC is invalid			
Algorithm The organization of allowed Attribute Certificate.				
Signature value	The signature placed on the PAC			
Privileges	A list of (attribute, value)-pairs describing privileges			
Certificate information	Additional information to be used by the PVF			
Miscellaneous	Currently used for auditing purposes only			
Protection methods	Fields to control how the PAC i s used			

Electronic Payment Systems (1)

 Payment systems based on direct payment between customer and merchant.

a) Paying in cash.

b) Using a check.

c) Using a credit card.

Electronic Payment Systems (2)

- Payment systems based on money transfer between banks.
- Payment by money order.
 - Payment through debit order.

Privacy (1)

	Merchant	Customer	Date	Amount	Item
Merchant	Full	Partial	Full	Full	Full
Customer	Full	Full	Full	Full	Full
Bank	None	None	None	None	None
Observer	Full	Partial	Full	Full	Full

Information hiding in a traditional cash payment.

Privacy (2)

Information hiding in a traditional credit-card system (see also [camp.lj96a]) Information

	Merchant	Customer	Date	Amount	Item
Merchant	Full	Full	Full	Full	Full
Customer	Full	Full	Full	Full	Full
Bank	Full	Full	Full	Full	None
Observer	Full	Partial	Full	Full	Full

Party

E-cash

Secure Electronic Transactions (SET)

