In [13]:	<pre>import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt</pre>
In [14]:	<pre>data =pd.read_csv('winequality-red.csv') data</pre>
Out[15]:	0 7.4 0.700 0.00 1.9 0.076 11.0 34.0 0.99780 3.51 0.56 9.4 5 1 7.8 0.880 0.00 2.6 0.098 25.0 67.0 0.99680 3.20 0.68 9.8 5 2 7.8 0.760 0.04 2.3 0.092 15.0 54.0 0.99700 3.26 0.65 9.8 5
	3 11.2 0.280 0.56 1.9 0.075 17.0 60.0 0.99800 3.16 0.58 9.8 6 4 7.4 0.700 0.00 1.9 0.076 11.0 34.0 0.99780 3.51 0.56 9.4 5
	1596 6.3 0.510 0.13 2.3 0.076 29.0 40.0 0.99574 3.42 0.75 11.0 6 1597 5.9 0.645 0.12 2.0 0.075 32.0 44.0 0.99547 3.57 0.71 10.2 5 1598 6.0 0.310 0.47 3.6 0.067 18.0 42.0 0.99549 3.39 0.66 11.0 6
In [16]: Out[16]:	
	citric acid 0 residual sugar 0 chlorides 0 free sulfur dioxide 0 total sulfur dioxide 0 density 0
In [17]:	pH
Out[17]:	<pre>Index(['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar',</pre>
In [18]: Out[18]:	fixed acidity float64 volatile acidity float64 citric acid float64 residual sugar float64
	chlorides float64 free sulfur dioxide float64 total sulfur dioxide float64 density float64 pH float64 sulphates float64 alcohol float64
In [19]:	<pre>quality int64 dtype: object data.describe()</pre>
Out[19]:	count 1599.000000 <th< th=""></th<>
	25% 7.100000 0.390000 0.090000 1.900000 0.070000 7.000000 0.995600 3.210000 0.550000 9.500000 5.000000 50% 7.900000 0.520000 0.260000 2.200000 0.079000 14.00000 38.00000 0.996750 3.310000 0.620000 10.200000 6.000000 75% 9.200000 0.640000 2.600000 0.090000 21.000000 62.00000 0.997835 3.400000 0.730000 11.100000 6.000000 max 15.900000 1.580000 15.500000 0.611000 72.000000 289.000000 1.003690 4.010000 2.000000 14.900000 8.000000
In [20]: In [21]:	<pre>data.quality =data['quality'].astype('float') data.dtypes</pre>
Out[21]:	fixed acidity float64 volatile acidity float64 citric acid float64 residual sugar float64 chlorides float64 free sulfur dioxide float64
	total sulfur dioxide float64 density float64 pH float64 sulphates float64 alcohol float64 quality float64 dtype: object
In [22]:	
	5.0 7.5 10.0 12.5 15.0 0.5 1.0 1.5 0.00 0.25 0.50 0.75 1.00 free sulfur dioxide
	200
	200 100 100 200 300 300 300 300 300 300 3
In [23]:	
Out[23]:	14 -
In [28]:	plt.figure(figsize=[19,10], facecolor='black')
Out[28]:	<pre>sns.heatmap(data.corr(), annot=True)</pre>
	-0.26
	0.11 0.0019 0.14 1 0.056 0.19 0.2 0.36 -0.086 0.0055 0.042 0.014 0.094 0.061 0.2 0.056 1 0.0056 0.047 0.2 -0.27 0.37 -0.22 -0.13
	-0.15 -0.011 -0.061 0.19 0.0056 1 0.67 -0.022 0.07 0.052 -0.069 -0.051 -0.11 0.076 0.036 0.2 0.047 0.67 1 0.071 -0.066 0.043 -0.21 -0.19 -0.067 0.022 0.36 0.36 0.2 -0.022 0.071 1 -0.34 0.15 -0.5 -0.17
	40.68 0.23 -0.54 -0.086 -0.27 0.07 -0.066 -0.34 1 -0.2 0.21 -0.058 0.18 -0.26 0.31 0.0055 0.37 0.052 0.043 0.15 -0.2 1 0.094 0.25
	-0.062 -0.2 0.11 0.042 -0.22 -0.069 -0.21 -0.5 0.21 0.094 1 0.48 0.12 -0.39 0.23 0.014 -0.13 -0.051 -0.19 -0.17 -0.058 0.25 0.48 1
In [61]:	data.corr()
Out[61]:	fixed acidity volatile acidity volatile acidity citric acid citric acid citric acid citric acid no.00000 citric acid citric acid no.00000 citric acid no.00000 citric acid no.00000 no.000000 no.00000 no.000000 no.000000 no.00000 no.000000 no.0000000
	residual sugar 0.114777 0.001918 0.143577 1.00000 0.055610 0.187049 0.203028 0.05528 0.005527 0.042075 0.013732 chlorides 0.093705 0.061298 0.203823 0.05561 1.00000 0.05562 0.047400 0.20632 -0.265026 0.371260 -0.21141 -0.128907 free sulfur dioxide -0.153794 -0.010504 0.085703 0.047400 0.667666 1.00000 0.071269 -0.06495 -0.05649 -0.05649 -0.056940 -0.05694
	density 0.688047 0.022026 0.364947 0.355283 0.200632 -0.021946 0.071269 1.00000 -0.341699 0.148506 -0.496180 -0.174919 pH -0.682978 0.234937 -0.541904 -0.085652 -0.265026 0.070377 -0.066495 -0.341699 1.00000 -0.196648 0.205633 -0.057731 sulphates 0.183006 -0.260987 0.312770 0.00527 0.371260 0.051658 0.042947 0.148506 -0.196648 1.00000 0.093595 0.251397 alcohol -0.061668 -0.202288 0.109903 0.042075 -0.221141 -0.069408 -0.205654 -0.496180 0.205633 0.093595 1.000000 0.476166
In [65]:	<pre>for b in range(a): if abs(data.corr().iloc[a,b]) >0.7:</pre>
In [67]:	new_uata = uata.urop(total sulfur uloxide ,axis = 1)
In [68]: In [70]:	<pre># no of categorical columns cat = new_data.select_dtypes(include='0') # create dummies of categorical columns</pre>
	data_dummies = pd.get_dummies(new_data,drop_first = True) print(data_dummies) fixed acidity volatile acidity citric acid residual sugar chlorides \ 0 7.4 0.700 0.00 1.9 0.076 1 7.8 0.880 0.00 2.6 0.098 2 7.8 0.760 0.04 2.3 0.092
	3 11.2 0.280 0.56 1.9 0.075 4 7.4 0.700 0.00 1.9 0.076 1594 6.2 0.600 0.08 2.0 0.090 1595 5.9 0.550 0.10 2.2 0.062 1596 6.3 0.510 0.13 2.3 0.076 1597 5.9 0.645 0.12 2.0 0.075
	1598 6.0 0.310 0.47 3.6 0.067 free sulfur dioxide density pH sulphates alcohol quality 0 11.0 0.99780 3.51 0.56 9.4 5.0 1 25.0 0.99680 3.20 0.68 9.8 5.0 2 15.0 0.99700 3.26 0.65 9.8 5.0
	3 17.0 0.99800 3.16 0.58 9.8 6.0 4 11.0 0.99780 3.51 0.56 9.4 5.0 1594 32.0 0.99490 3.45 0.58 10.5 5.0 1595 39.0 0.99512 3.52 0.76 11.2 6.0 1596 29.0 0.99574 3.42 0.75 11.0 6.0 1597 32.0 0.99547 3.57 0.71 10.2 5.0
In [71]:	1598
	fixed acidity volatile acidity citric acid residual sugar chlorides \ 0 7.4 0.700 0.00 1.9 0.076 1 7.8 0.880 0.00 2.6 0.098 2 7.8 0.760 0.04 2.3 0.092 3 11.2 0.280 0.56 1.9 0.075 4 7.4 0.700 0.00 1.9 0.076
	1
	free sulfur dioxide density pH sulphates alcohol quality \ 0
	1594 32.0 0.99490 3.45 0.58 10.5 5.0 1595 39.0 0.99512 3.52 0.76 11.2 6.0 1596 29.0 0.99574 3.42 0.75 11.0 6.0 1597 32.0 0.99549 3.39 0.66 11.0 6.0 1598 best quality
	$egin{array}{cccccccccccccccccccccccccccccccccccc$
	1594 0 1595 0 1596 0 1597 0 1598 0 [1599 rows x 12 columns]
In [75]:	<pre>from sklearn.model_selection import train_test_split # independent variables x = data_dummies.drop(['quality','best quality'],axis=1) # dependent variable y = data_dummies['best quality']</pre>
In [76]:	<pre>xtrain,xtest,ytrain,ytest = train_test_split(x,y,test_size=0.2,random_state=40) from sklearn.preprocessing import MinMaxScaler norm = MinMaxScaler()</pre>
	norm_fit = norm.fit(xtrain) scal_xtrain = norm_fit.transform(xtrain) scal_xtest = norm_fit.transform(xtest) print(scal_xtrain) [[0.33628319 0.41322314 0.12
In [79]:	[0.47787611 0.19008264 0.45
≟n [/9]:	<pre>from sklearn.metrics import mean_squared_error from sklearn.metrics import classification_report # create model variable rnd = RandomForestClassifier()</pre>
	<pre># fit the model fit_rnd = rnd.fit(xtrain,ytrain) # checking the accuracy score rnd_score = rnd.score(xtest,ytest) print(!score of model is : ! rnd score)</pre>
	<pre>print('score of model is : ',rnd_score) print('') print('calculating the error') score of model is : 0.909375</pre>
In [85]:	<pre>score of model is : 0.909375 calculating the error x_predict = list(rnd.predict(xtest)) df = {'predicted':x_predict,'original':ytest} pd.DataFrame(df).head(10)</pre>
Out[85]:	predicted original 1035 0 1 49 0 0
	538 1 1 660 0 0 990 0 0
	398 0 0 1068 0 1 1155 0 0 468 0 0
In []:	