CS2023 - Aula de Ejercicios $N^{\underline{o}}$ 6 Heider Sanchez

ACL: Juan Diego Castro Semestre 2024-1

- Para este laboratorio ser formarán grupos de dos integrantes, pero se sugiere que cada estudiante intente primero resolver los ejercicios de forma individual.
- Queda totalmente prohibido el uso de foros de internet, ChatGTP, repositorios de GitHub, etc.
- Cualquier pequeño indicio de plagio será calificado con 0 (ya no habrá clemencia).
- Entregar los archivos **ejercicio1.cpp**, **ejercicio2.cpp** y **ejercicio3.cpp** sin comprimir. Cualquier otro archivo **no será revisado**.

Ejercicios

1. (7 pts) Dado el root de un árbol binario, invierta los nodos que se encuentran en cada uno de los **niveles impares** de la estructura. El **nivel** de un nodo se define como el número de aristas en el camino entre el nodo y el root.

■ Ejemplo 1:

Input: root = [2,3,5,8,13,21,34]

Output: [2,5,3,8,13,21,34]

Explicación: El árbol solo tiene un nivel impar. Los nodos al nivel 1 (3 y 5) son intercambiados

para convertirse en 5 y 3 (en ese orden).

■ Ejemplo 2:

Input: root = [7,13,11] Output: [7,11,13]

Restricciones:

- El root es un árbol perfecto (todos los padres tienen exactamente 2 hijos y todas las hojas están al mismo nivel).
- La cantidad de nodos en el árbol está entre $[1, 2^{14}]$

2. (7 pts) Dado el root de un árbol binario, se dice que un nodo \mathcal{X} es **bueno** si en el camino entre el root y \mathcal{X} no existen nodos con valores estrictamente mayores a \mathcal{X} .

Diseñe un algoritmo que cuente la cantidad de nodos buenos en root.

■ Ejemplo 1:

Input: root = [3,1,4,3,null,1,5]

Output: 4

Explicación: Los nodos celestes son buenos.

Root (3) Siempre es un nodo bueno.

Node $4 \rightarrow (3,4)$ es el valor máximo en el camino.

Node $5 \rightarrow (3,4,5)$ es el valor máximo en el camino.

Node $3 \rightarrow (3,1,3)$ es el valor máximo en el camino.

■ Ejemplo 2:

Input: root = [3,3,null,4,2]

Output: 3 Explicación:

Node $2 \rightarrow (3, 3, 2)$ no es **bueno**, porque 3 es mayor que él.

Restricciones:

- La cantidad de nodos en el árbol está entre [1, 10⁵]
- \blacksquare Cada nodo $\mathcal X$ puede tomar valores entre $[-10^4,10^4]$

3. (6 pts) Dado un entero n, retornar todos los BST's (árboles binarios de búsqueda) estructuralmente diferentes, los cuales tienen exactamente n nodos con valores no repetidos de 1 a n. Devuelva el resultado en cualquier orden.

■ Ejemplo 1:

Input: n = 3

Output: [[1,null,2,null,3],[1,null,3,2],[2,1,3],[3,1,null,null,2],[3,2,null,1]]

Restricciones:

■ $1 \le n \le 8$