timeserieslab9-rohramehak-251524

April 29, 2024

[]: from google.colab import drive

(3.4.0)

```
drive.mount('/content/drive')
    Mounted at /content/drive
[]: !pip install pmdarima
    Requirement already satisfied: pmdarima in /usr/local/lib/python3.10/dist-
    packages (2.0.4)
    Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.10/dist-
    packages (from pmdarima) (1.4.0)
    Requirement already satisfied: Cython!=0.29.18,!=0.29.31,>=0.29 in
    /usr/local/lib/python3.10/dist-packages (from pmdarima) (3.0.10)
    Requirement already satisfied: numpy>=1.21.2 in /usr/local/lib/python3.10/dist-
    packages (from pmdarima) (1.25.2)
    Requirement already satisfied: pandas>=0.19 in /usr/local/lib/python3.10/dist-
    packages (from pmdarima) (2.0.3)
    Requirement already satisfied: scikit-learn>=0.22 in
    /usr/local/lib/python3.10/dist-packages (from pmdarima) (1.2.2)
    Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.10/dist-
    packages (from pmdarima) (1.11.4)
    Requirement already satisfied: statsmodels>=0.13.2 in
    /usr/local/lib/python3.10/dist-packages (from pmdarima) (0.14.2)
    Requirement already satisfied: urllib3 in /usr/local/lib/python3.10/dist-
    packages (from pmdarima) (2.0.7)
    Requirement already satisfied: setuptools!=50.0.0,>=38.6.0 in
    /usr/local/lib/python3.10/dist-packages (from pmdarima) (67.7.2)
    Requirement already satisfied: packaging>=17.1 in
    /usr/local/lib/python3.10/dist-packages (from pmdarima) (24.0)
    Requirement already satisfied: python-dateutil>=2.8.2 in
    /usr/local/lib/python3.10/dist-packages (from pandas>=0.19->pmdarima) (2.8.2)
    Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-
    packages (from pandas>=0.19->pmdarima) (2023.4)
    Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-
    packages (from pandas>=0.19->pmdarima) (2024.1)
    Requirement already satisfied: threadpoolctl>=2.0.0 in
    /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.22->pmdarima)
```

Requirement already satisfied: patsy>=0.5.6 in /usr/local/lib/python3.10/dist-packages (from statsmodels>=0.13.2->pmdarima) (0.5.6)

Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from patsy>=0.5.6->statsmodels>=0.13.2->pmdarima) (1.16.0)

```
[]: import pandas as pd
from matplotlib import pyplot as plt
import numpy as np
from pmdarima import auto_arima
from statsmodels.tsa.statespace.sarimax import SARIMAX
from sklearn.metrics import mean_absolute_percentage_error
from statsmodels.tsa.holtwinters import ExponentialSmoothing
import warnings
from statsmodels.tools.sm_exceptions import ConvergenceWarning
warnings.simplefilter('ignore', ConvergenceWarning)
```

[]: data = pd.read_csv('/content/drive/MyDrive/TSA_BDA_2024/Lab9/

omonthly_in_situ_co2_mlo.csv', skiprows=61)

[]: data

[]:	0	Yr	Mn	Date		Date	C02	seasonally		\
	0			Excel			r	adjusted		
	1	4050	0.4		4050	0444	[ppm]	[ppm]	[ppm]	
	2	1958	01	21200		.0411	-99.99	-99.99	-99.99	
	3	1958	02	21231		.1260	-99.99	-99.99	-99.99	
	4	1958	03	21259	1958	. 2027	315.71	314.44	316.20	
				••	•••		•••	•••		
	801	2024	80	45519	2024	.6230	-99.99	-99.99	-99.99	
	802	2024	09	45550	2024	.7077	-99.99	-99.99	-99.99	
	803	2024	10	45580	2024	.7896	-99.99	-99.99	-99.99	
	804	2024	11	45611	2024	.8743	-99.99	-99.99	-99.99	
	805	2024	12	45641	2024	.9563	-99.99	-99.99	-99.99	
		seas	sonally		C02		seasonally	Sta		
	0		ed fit		filled	adins	sted filled			
	1	aajab	[ppm]		[ppm]	aajaa	[ppm]	NaN		
	2		-99.99		-99.99		-99.99	MLO		
	3		-99.99		-99.99		-99.99	MLO		
	4		314.91		315.71		314.44	MLO		
	• •		•••							
	801		-99.99		-99.99		-99.99	MLO		
	802		-99.99		-99.99		-99.99	MLO		
	803		-99.99		-99.99		-99.99	MLO		
	804		-99.99		-99.99		-99.99	MLO		
	805		-99.99		-99.99		-99.99	MLO		

```
[806 rows x 11 columns]
```

```
[]: data.columns = data.columns.str.strip()
     data.columns
     data['Yr'] = data['Yr'].str.strip()
     data['Mn'] = data['Mn'].str.strip()
[]: data.dropna(inplace=True)
     data.drop(data.head(4).index, inplace=True)
     data.drop(data.tail(9).index, inplace=True)
     co2_data = data.loc[:,['Yr', 'Mn', 'CO2']]
     co2_data['DateCons'] = co2_data['Yr'].astype(str) + '-' + co2_data['Mn'].
      \Rightarrowastype(str) + '-01'
[]: co2_data['DatePart'] = pd.to_datetime(co2_data['DateCons'], format='%Y-%m-%d',__
      ⇔errors='coerce')
     co2_data.rename(columns = {"DatePart" : "Date"}, inplace=True)
     co2_data.set_index("Date", inplace=True)
     co2_data.drop(columns=["DateCons"], inplace=True)
[]: co2 data = co2 data.iloc[:, [3]]
     co2_data ['CO2'] = co2_data ['CO2'].astype(float)
    <ipython-input-243-74b60c3e6da4>:2: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row_indexer,col_indexer] = value instead
    See the caveats in the documentation: https://pandas.pydata.org/pandas-
    docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
      co2_data ['CO2'] = co2_data ['CO2'].astype(float)
    CO<sub>2</sub> Emissions Time series
[]: co2_data.plot(figsize=(10,8), grid=True)
     plt.ylabel("CO2 emisions")
     plt.show()
```



```
[]: co2_data.sort_index(inplace=True)

[]: co2_data.index.freq='MS'
   fcast_months = 24
   train=co2_data.iloc[:-fcast_months]
   test=co2_data.iloc[-fcast_months:]
   len(test)
```

[]: 24

using auto_arima for automatically selecting the optimal ARIMA model parameters for a given time series dataset

```
[]: auto_arima(train, seasonal=True,m=12).summary()
```

[]:

Dep. Variable:	y	No. Observations:	762
Model:	SARIMAX(1, 1, 1)x(1, 0, 1, 12)	Log Likelihood	-205.545
Date:	Sun, 28 Apr 2024	\mathbf{AIC}	421.090
Time:	15:15:56	BIC	444.263
Sample:	10-01-1958	HQIC	430.013
	- 03-01-2022		
Covariance Type:	opg		

	\mathbf{coef}	std err	${f z}$	$\mathbf{P} > \mathbf{z} $	[0.025]	0.975]
ar.L1	0.2673	0.075	3.566	0.000	0.120	0.414
ma.L1	-0.6162	0.060	-10.198	0.000	-0.735	-0.498
ar.S.L12	0.9996	0.000	2670.369	0.000	0.999	1.000
ma.S.L12	-0.8573	0.021	-41.643	0.000	-0.898	-0.817
$\mathbf{sigma2}$	0.0935	0.004	21.690	0.000	0.085	0.102
Ljung-Be	ox (L1) ((Q):	0.12 J a	rque-Ber	4.75	
$\operatorname{Prob}(\operatorname{Q})$:		0.73 P ₁	rob(JB):	0.09	
Heterosk	kedasticit	ty (H):	1.51 Sk	Skew:		0.00
$\operatorname{Prob}(\mathrm{H})$	(two-sid	$\operatorname{led})$:	0.00 K	urtosis:		3.39

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Using autoarima we see that are model to be used is a model with p=1, difference = 1 and moving avg paramter q=1

so we will move forward with traing our data on this particular model

training on entire data except last 24 months and testing on last 24 months

```
[]: model = SARIMAX(train, order=(1,1,1), seasonal_order=(1,0,1,12)).fit()
    start=len(train)
    end=start+len(test)-1
    pred_arma=model.predict(start,end).rename('SARIMAX(1, 1, 1)x(1, 0, [1], 12)')
```

```
[]: ax=test.plot(figsize=(10,8),legend=True, label="Test") pred_arma.plot(legend=True)
```

[]: <Axes: xlabel='Date'>

[]: model.plot_diagnostics();


```
[]: mape_sarima = mean_absolute_percentage_error(test, pred_arma)*100
print(f"Mean absolute percentage error : {mape_sarima}")
```

Mean absolute percentage error: 0.11208689399925485

We have no corelations in our residuals. plus our Histogram is close the Normal districution plot N(0,1) and a good accuracy

```
mape = mean_absolute_percentage_error(test, fcast.values)*100
mape_scores.append(mape)
pred_hw = pd.Series(fcast.values)
pred_hw.index = test.index
model_forecasts[fit_type] = pred_hw
```

```
[]: for index, key in enumerate(fits.keys()):
    print(f"For {key}, Mean abs % error is {mape_scores[index]}")
```

```
For Add-Add, Mean abs % error is 0.11066239131961311 For Add-Mul, Mean abs % error is 0.1165543569966312 For Mul-Add, Mean abs % error is 0.10205117760524286 For Mul-Mul, Mean abs % error is 0.10883653500227147
```

[]: <Axes: xlabel='Date'>

Means abs % error of our Sarima vs Holt Winters

[]: print(f"For SARIMA, Mean abs % error is {mape_sarima} \nFor HW lowest Means abs ∪ → werr is for model with Multiplicative trend and additive seasonal ∪ → component, with value {mape_scores[2]}")

For SARIMA, Mean abs % error is 0.11208689399925485 For HW lowest Means abs % err is for model with Multiplicative trend and additive seasonal component, with value 0.10205117760524286

Predictions comparisions -> TEST vs HW vs SARIMA

```
[]: ax=test.plot(figsize=(10,8), legend=True)
pred_arma.plot(legend=True)
model_forecasts["Mul-Add"].plot(legend=True,label="pred Holt-Winters type :□

→{Mul-Add}")
```

[]: <Axes: xlabel='Date'>


```
[]: hw_acc = 100 -mape_scores[2]
    sarima_acc = 100 - mape_sarima
    print(f"Holt Winters = {hw_acc}, SARIMA : {sarima_acc}")
```

Holt Winters = 99.89794882239475, SARIMA : 99.88791310600074

The prediction accuracy for both models is > 99% with a very bare slight edge with holt winters (additive trend and multiplicative seasonal) components model