

Evolución del Coste Total por Trabajador Conclusiones

Descripción de la serie

- · La serie va del primer trimestre de 2000 al segundo trimestre de 2023 con un ciclo trimestral.
- · Muestra · **3 ciclos de tendencia distintos** (2000-2009, 2009-2020, 2020-2023).
- · Para sacar conclusiones de la situación actual, centramos el estudio en el último periodo (Qrt3/2020 Qrt2/2023).

Mejor Modelo de Predicción

Modelo de Regresión + C.E. $X_t = 2285.72 + 28.52t + C_E$ $t \ge 0$

c_1	C_2	C_3	C_4	
-87.277	56.283	-47.483	78.587	

Predicciones

Trimestre	2023-Qtr3	2023-Qtr4
Predicción	2618.127	2774.127
YoY	0.0556 (5.56%)	0.557 (5.57%)
ТоТ	-0.0347 (-3.47%)	0.0596 (5.96%)

Conclusiones de la predicción

- El modelo compuesto por una regresión lineal + las Componentes Estacionarias es el que mejor ajusta nuestros datos, por lo tanto lo escogemos para llevar a cabo la predicción.
- 2. De la predicción concluimos que la evolución del coste total por trabajador seguirá aumentando con respecto al año anterior, maneteniendo la estacionalidad repetida a lo largo de los años (se aprecia por ejemplo al ver la similitud de los YoY).

Evolución del Coste Total por Trabajador Descripción

1

Predeciremos el coste de los últimos trimestres de 2023 tomando solamente los datos de la última tendencia, con tal de conseguir una mejor predicción.

Comparativa con los datos nacionales: Comportamiento muy similar.

- 1. La tendencia y estacionalidad son prácticamente iguales:
 - i. La tendencia es creciente.
 - ii. La estacionalidad es trimestral
- 2. La única diferencia es la media y variación globales de coste nacional son superior a las de Andalucía
 - i. Media Global: 2788.4 vs 2471.1 (Andalucía).
 - i. Variación Global: 20.28% vs 19.26% (Andalucía).

La gràfica muestra una TENDENCIA creciente en el periodo.

La componente no estacional
(Tendencia + Ruido) se ajusta a la
Regresión (indicando dicha tendencia).
Hay un aumento del coste laboral a lo largo del periodo.

La gráfica muestra una

ESTACIONALIDAD trimestral con un ciclo que se repite anualmente.

- · Picos superiores: 4º trimestre.
- •Picos inferiores: 1º trimestre, (2º en algún caso).

Variación Porcentual entre el pico más bajo y el más alto:

Ocurren en el mismo periodo en la CCAA que a nivel Nacional

	Variación	Variación Porcentual	Trimestre Inicio	Trimestre Final	Nº
	Porcentual CCAA	Nacional	(pico más bajo)	(pico más alto)	Trimestres
7	19.26%.	20.28%	Qrt3 /20	Qrt2 /23	12

Variación Porcentual del mayor descenso entre trimestres:

Ocurren en el mismo periodo en la CCAA que a nivel Nacional

Variación	Descenso	Variación Porcentual	Descenso	Periodo
Porcentual CCAA	(CCAA)	Nacional	(Nacional)	(Inicio – Final)
-7.59%	172.46€	-5.63%	146.65€	Qrt4-/20 – Qrt1/21

Evolución del Coste Total por Trabajador Modelo de regresión + Componentes estacionales

Modelo de Regresión + C.E.

$$X_t = 2276.52 + 29.93t + C_E + \epsilon_t$$

 $\epsilon_t \sim N(0, \sigma^2) \quad \sigma = 15.713 \quad t \ge 0$

Componentes Estacionales

c_1	C_2	C_3	<i>C</i> ₄
-87.277	56.283	-47.483	78.587

Predicciones

2023 – Qtr 3	2023 – Qtr 4
2618.127	2774.127

Ajuste de Modelo

 $R^2 = 0.9843$

RMSE = 17.212

Evolución del Coste Total por Trabajador Suavizado Exponencial de Holt-Winters

Predicción con Suavización Exponencial de HW de los dos últimos trimestres

Coeficientes del Suavizado Exponencial de Holt-Winters

Coef.	Valor	Coef.	Valor	
α	0.9646179	S_1	-37.71219	3.10
γ	0.0596589	S_2	80.58781	
δ	0	S_3	-98.00469	
L_1	2654.4563	S_4	55.12906	
T_1	30.74129	p	4	UNIA P.
ELECT.	6 22	100	W 22 84	

Fórmula del Suavizado Exponencial de Holt-Winters

1. $L_t = 0.9646179(X_t - S_{t-p}) + 0.035382\overline{1[L_{t-1} + T_{t-1}]}$ 3. $S_t = S_{t-p}$ 2. $T_t = 0.0596589(L_t - L_{t-1}) + 0.9403411T_{t-1}$ 4. $\widehat{Y_t} = L_{t-1} + T_{t-1} + S_{t-p}$

Predicciones

DOMESTICATION OF THE PERSON	Trim.	Predicción	Límite inf.	Límite sup.
	Qrt3	2647.46	2595.60	2699.37
PARTY BELLEVILLE	Qrt4	2796.53	2722.39	2870.72

Ajuste de Modelo

 $R^2 = 0.9554939$ RMSE = 26.762

El modelo se ajusta bien a nuestros datos como podíamos apreciar en la gráfica. No obstante, es un ajuste peor que el que nos da la regresión lineal más estacionalidad.

Evolución del Coste Total por Trabajador Modelo ARIMA

Resultado ARIMA(0,1,0)(0,1,0)[4]

Predicción con el modelo ARIMA(0,1,0)(0,1,0)[4] dos últimos trimestres 2023

Prueba de diferentes modelos ARIMA(p,d,q)(P,D,Q)[I]

Modelo	AIC	BIC	Modelo	AIC	BIC
ARIMA(0,0,0)(0,1,0)[4]	77.96	75.72	ARIMA(0,1,1)(0,1,0)[4]	66.28	68.17
ARIMA(0,1,0)(0,1,0)[4]	64.56	66.51	ARIMA(1,1,0)(0,1,0)[4]	66.34	68.23
ARIMA(0,1,0)(1,1,0)[4]	65.67	67.577	ARIMA(1,1,0)	126.26	129.06
ARIMA(0,1,0)(0,1,1)[4]	65.67	67.576	ARIMA(0,1,1)	137.58	140.37

Modelo de predicción: ARIMA(0,1,0)(0,1,0)[4]

Es el modelo que mejor aproxima los datos siguiendo el ctierio AIC/BIC és el ARIMA(0,1,0)(0,1,0)[4]

Equació del
model

$$\Delta(\Delta_s^4 \, (X_t) = e_t$$

Predicciones

Trim.	Predicción	Límite inf.	Límite sup.
Qrt3	2633.74	2586.001	2681.479
Qrt4	2781.19	2713.667	2848.703

$$\begin{aligned} (\mathbf{1} - B)^5(X_t) &= e_t\,, & t \geq & \mathbf{0} \\ e_t &\in WN\left(\mathbf{0}, \left(24.35^2\right)\right) \end{aligned}$$

Ajuste de Modelo

RMSE = 18.659

El modelo también se ajusta bastante bien a nuestros datos como podíamos apreciar en la gráfica. No obstante, aunque es un ajuste mejor que el que obtenemos con el Suavizado de HW, el modelo de regresión sigue ajustando mejor nuestros datos, por tanto lo escogemos para predecir.