Supplemental

References

- [1] D. M. Anderson and P. Guba. Convective phenomena in mushy layers. *Ann. Rev. Fluid Mech.*, 52:93–119, 2020.
- [2] S. A. Arcone, A. J Gow, and S. McGrew. Structure and dielectric properties at 4.8 and 9.5 GHz of saline ice. J. Geophys. Res., 91(C12):14281–14303, 1986.
- [3] M. G. Asplin, R. Galley, D. G. Barber, and S. Prinsenberg. Fracture of summer perennial sea ice by ocean swell as a result of Arctic storms. *J. Geophys. Res.*, 117:C06025, 2012.
- [4] M. Avellaneda and A. Majda. Stieltjes integral representation and effective diffusivity bounds for turbulent transport. *Phys. Rev. Lett.*, 62:753–755, 1989.
- [5] A. Aydoğdu, A. Carrassi, C. T. Guider, K. R. T. Jones, and P. Rampal. Data assimilation using adaptive, non-conservative, moving mesh models. *Nonlinear Proc. Geophys.*, 26(3), 2019.
- [6] A. W. Bateson, D. L. Feltham, D. Schröder, L. Hosekova, J. K. Ridley, and Y. Aksenov. Impact of sea ice floe size distribution on seasonal fragmentation and melt of Arctic sea ice. *The Cryosphere*, 14(2):403–428, 2020.
- [7] L. G. Bennetts and T. D. Williams. Wave scattering by ice floes and polynyas of arbitrary shape. *J. Fluid Mech.*, 662:5–35, 2010.
- [8] L. G. Bennetts and T. D. Williams. Water wave transmission by an array of floating discs. Proc, Roy. Soc. A: Mathematical, Physical and Engineering Sciences, 471(2173):20140698, 2015.
- [9] D. J. Bergman. Exactly solvable microscopic geometries and rigorous bounds for the complex dielectric constant of a two-component composite material. *Phys. Rev. Lett.*, 44:1285–1287, 1980.
- [10] C. Bonifasi-Lista and E. Cherkaev. Analytical relations between effective material properties and microporosity: Application to bone mechanics. *Intl. J. Eng. Sci.*, 46(12):1239–1252, 2008.
- [11] B. Bowen, C. Strong, and K. M. Golden. Modeling the fractal geometry of Arctic melt ponds using the level sets of random surfaces. *J. Fractal Geometry*, 5:121–142, 2018.
- [12] M. I. Budyko. The effect of solar radiation variations on the climate of the earth. *Tellus*, 21:611–619, 1969.
- [13] E. Cherkaev. Inverse homogenization for evaluation of effective properties of a mixture. *Inverse Problems*, 17(4):1203–1218, 2001.
- [14] E. Cherkaev. Internal friction and the Stieltjes analytic representation of the effective properties of two-dimensional viscoelastic composites. *Arch. Appl. Mech.*, 89(3):591–607, 2019.
- [15] E. Cherkaev and C. Bonifasi-Lista. Characterization of structure and properties of bone by spectral measure method. *J. Biomech.*, 44(2):345–351, 2011.

- [16] E. Cherkaev and K. M. Golden. Inverse bounds for microstructural parameters of composite media derived from complex permittivity measurements. Waves in Random Media, 8(4):437– 450, 1998.
- [17] M. D. Coon, R. Kwok, G. Levy, M. Pruis, H. Schreyer, and D. Sulsky. Arctic Ice Dynamics Joint Experiment (AIDJEX) assumptions revisited and found inadequate. *J. Geophys. Res.*, 112(C11):C11S90, 2007.
- [18] M. D. Coon, G. A. Maykut, R. S. Pritchard, D. A. Rothrock, and A. S. Thorndike. Modeling the pack ice as an elastic-plastic material. *AIDJEX Bulletin*, 24:1–105, 1974.
- [19] K. Croasdale, T. Brown, G. Li, W. Spring, M. Fuglem, and J. Thijssen. The action of long multi-year ridges on upward sloping conical structures. *Cold Regs. Sci. and Tech.*, 154:166– 180, 2018.
- [20] V. Dansereau, J. Weiss, P. Saramito, and P. Lattes. A Maxwell elasto-brittle rheology for sea ice modelling. *The Cryosphere*, 10:1339–1359, 2016.
- [21] P. Deift and D. Gioev. Random Matrix Theory: Invariant Ensembles and Universality. Courant Lecture Notes. Courant Institute of Mathematical Sciences, 2009.
- [22] J. P. Dempsey. Research trends in ice mechanics. Int. J. of Solids and Structures, 37:131–153, 2000.
- [23] D. Dumont, A. Kohout, and L. Bertino. A wave-based model for the marginal ice zone including a floe breaking parameterization. *J. Geophys. Res.*, 116(4):C04001, 2011.
- [24] D. L. Feltham, N. Untersteiner, J. S. Wettlaufer, and M. G. Worster. Sea ice is a mushy layer. *Geophys. Res. Lett.*, 33(14):L14501, 2006.
- [25] D. Flocco and D. L. Feltham. A continuum model of melt pond evolution on Arctic sea ice. J. Geophys. Res., 112:C08016, 2007.
- [26] D. Flocco, D. L. Feltham, and A. K. Turner. Incorporation of a physically based melt pond scheme into the sea ice component of a climate model. J. Geophys. Res., 115(C8):C08012, 2010.
- [27] D. Flocco, D. Schroeder, D. L. Feltham, and E. C. Hunke. Impact of melt ponds on Arctic sea ice simulations from 1990 to 2007. *Journal of Geophysical Research*, 117(C9):C09032, 2012.
- [28] K. Golden. Bounds on the complex permittivity of a multicomponent material. *J. Mech. Phys. Solids*, 34(4):333–358, 1986.
- [29] K. Golden and G. Papanicolaou. Bounds for effective parameters of heterogeneous media by analytic continuation. *Comm. Math. Phys.*, 90:473–491, 1983.
- [30] K. Golden and G. Papanicolaou. Bounds for effective parameters of multicomponent media by analytic continuation. J. Stat. Phys., 40(5/6):655–667, 1985.
- [31] K. M. Golden and S. F. Ackley. Modeling of anisotropic electromagnetic reflection from sea ice. J. Geophys. Res. (Oceans), 86(C9):8107–8116, 1981.

- [32] K. M. Golden, D. Borup, M. Cheney, E. Cherkaeva, M. S. Dawson, K. H. Ding, A. K. Fung, D. Isaacson, S. A. Johnson, A. K. Jordan, J. A. Kong, R. Kwok, S. V. Nghiem, R. G. Onstott, J. Sylvester, D. P. Winebrenner, and I. Zabel. Inverse electromagnetic scattering models for sea ice. *IEEE Trans. Geosci. Rem. Sens.*, 36(5):1675–1704, 1998.
- [33] K. M. Golden, M. Cheney, K. H. Ding, A. K. Fung, T. C. Grenfell, D. Isaacson, J. A. Kong, S. V. Nghiem, J. Sylvester, and D. P. Winebrenner. Forward electromagnetic scattering models for sea ice. *IEEE Trans. Geosci. Rem. Sens.*, 36(5):1655–1674, 1998.
- [34] K. M. Golden, H. Eicken, A. L. Heaton, J. Miner, D. Pringle, and J. Zhu. Thermal evolution of permeability and microstructure in sea ice. *Geophys. Res. Lett.*, 34:L16501 (6 pages and issue cover), doi:10.1029/2007GL030447, 2007.
- [35] K. M. Golden, C. S. Sampson, A. Gully, D. J. Lubbers, and J.-L. Tison. Percolation threshold for fluid permeability in Antarctic granular sea ice. In preparation, 2020.
- [36] K. M. Golden, C. Strong Y.-P. Ma, and I. Sudakov. From magnets to melt ponds. To appear in SIAM News, 2020.
- [37] T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller. Random-matrix theories in quantum physics: Common concepts. *Phys. Rep.*, 299(4–6):189–425, 1998.
- [38] A. Gully, L. G. E. Backstrom, H. Eicken, and K. M. Golden. Complex bounds and microstructural recovery from measurements of sea ice permittivity. *Physica B*, 394:357–362, 2007.
- [39] A. Herman. Sea-ice floe-size distribution in the context of spontaneous scaling emergence in stochastic systems. *Phys. Rev. E Statistical, Nonlinear, and Soft Matter Physics*, 81(6):066123, 2010.
- [40] A. Herman. Numerical modeling of force and contact networks in fragmented sea ice. *Ann. Glaciol.*, 54(62):114–120, 2013.
- [41] W. D. Hibler. Sea ice fracturing on the larger scale. *Eng. Fracture Mech.*, 68:2013–2043, 2001.
- [42] C. Hohenegger, B. Alali, K. R. Steffen, D. K. Perovich, and K. M. Golden. Transition in the fractal geometry of Arctic melt ponds. *The Cryosphere*, 6(5):1157–1162, 2012.
- [43] C. Horvat and L. Roach. A hybrid super-parameterization-machine learning approach to wave-ice interactions. *In Preparation for Geophys. Model Devel.*, 2020.
- [44] C. Horvat, L. A. Roach, R. Tilling, C. M. Bitz, B. Fox-Kemper, C. Guider, K. Hill, A. Ridout, and A. Shepherd. Estimating the sea ice floe size distribution using satellite altimetry: theory, climatology, and model comparison. *The Cryosphere*, 13(11):2869–2885, 2019.
- [45] C. Horvat and E. Tziperman. The evolution of scaling laws in the sea ice floe size distribution. J. Geophys. Res. Oceans, 122(9):7630–7650, 2017.
- [46] C. Horvat, E. Tziperman, and J.-M. Campin. Interaction of sea ice floe size, ocean eddies, and sea ice melting. *Geophys. Res. Lett.*, 43(15):8083–8090, 2016.
- [47] E. C. Hunke, D. Notz, A. K. Turner, and M. Vancoppenolle. The multiphase physics of sea ice: a review for model developers. *The Cryosphere*, 5(4):989–1009, 2011.

- [48] Y. Kantor and D. J. Bergman. Elastostatic resonances- a new approach to the calculation of the effective elastic constants of composites. J. Mech. Phys. Solids, 30:335–376, 1982.
- [49] H. Kaper and H. Engler. Mathematics and Climate. SIAM, Philadelphia, 2013.
- [50] J. B. Keller. Gravity waves on ice-covered water. J. Geophys. Res.: Oceans, 103(C4):7663–7669, 1998.
- [51] N. Kraitzman, R. Hardenbrook, H. Dinh, N. B. Murphy, E. Cherkaev, J. Zhu, and K. M. Golden. Bounds on convection enhanced thermal transport in sea ice. In preparation, 2020.
- [52] R. Kwok. Satellite remote sensing of sea-ice thickness and kinematics: a review. *J. Glaciol.*, 56(200):1129–1140, 2010.
- [53] R. Kwok, E. C. Hunke, W. Maslowski, D. Menemenlis, and J. Zhang. Variability of sea ice simulations assessed with RGPS kinematics. *J. Geophys. Res.: Oceans*, 113:C11012, 2008.
- [54] P. J. Langhorne. Crystal anisotropy in sea ice in the Beaufort Sea. In J. R. Rossiter and D. P. Bazely, editors, Proceedings of the International Workshop on Remote Estimation of Sea Ice Thickness, Memorial University of Newfoundland, St. John's, pages 189–224, 1980.
- [55] M. Lepparanta, M. Lensu, P. Kosloff, and B. Veitch. The life story of a first-year sea ice ridge. *Cold Reg. Sci. Technol.*, 23(3):279–290, 1995.
- [56] S. Marcq and J. Weiss. Influence of sea ice lead-width distribution on turbulent heat transfer between the ocean and the atmosphere. *The Cryosphere*, 6:143–156, 2012.
- [57] R. A. Massom, T. A. Scambos, L. G. Bennetts, P. Reid, V. A. Squire, and S. E. Stammerjohn. Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell. *Nature*, 558(7710):383–389, 2018.
- [58] R. C. McPhedran, D. R. McKenzie, and G. W. Milton. Extraction of structural information from measured transport properties of composites. *Appl. Phys. A*, 29:19–27, 1982.
- [59] M. H. Meylan. Wave response of an ice floe of arbitrary geometry. J. Geophys. Res., 107(C1):5-1-5-11, 2002.
- [60] M. H. Meylan, L. G. Bennetts, and A. L. Kohout. In situ measurements and analysis of ocean waves in the Antarctic marginal ice zone. *Geophys. Res. Lett.*, 41(14):5046–5051, 2014.
- [61] M. H. Meylan, L. G. Bennetts, J. E. M. Mosig, W. E. Rogers, M. J. Doble, and M. A. Peter. Dispersion relations, power laws, and energy loss for waves in the marginal ice zone. J. Geophys. Res.: Oceans, 123(5):3322–3335, 2018.
- [62] G. W. Milton. Bounds on the complex dielectric constant of a composite material. *Appl. Phys. Lett.*, 37:300–302, 1980.
- [63] G. W. Milton. Theory of Composites. Cambridge University Press, Cambridge, 2002.
- [64] N. B. Murphy, E. Cherkaev, and K. M. Golden. Anderson transition for classical transport in composite materials. *Phys. Rev. Lett.*, 118:036401, 5 pp., 2017.
- [65] N. B. Murphy, E. Cherkaev, C. Hohenegger, and K. M. Golden. Spectral measure computations for composite materials. *Comm. Math. Sci.*, 13(4):825–862, 2015.

- [66] N. B. Murphy, E. Cherkaev, J. Zhu, J. Xin, and K. M. Golden. Spectral analysis and computation for homogenization of advection diffusion processes in steady flows. *J. Math. Phys.*, 61:013102, 34 pp., 2020.
- [67] F. Nelli, L. G. Bennetts, D. M. Skene, and A. Toffoli. Water wave transmission and energy dissipation by a floating plate in the presence of overwash. J. Fluid Mech., 889:A19–1 – A19–20, 2020.
- [68] G. R. North. Multiple solutions in energy-balance climate models. *Global Planet. Change*, 82(3-4):225–235, 1990.
- [69] C. Orum, E. Cherkaev, and K. M. Golden. Recovery of inclusion separations in strongly heterogeneous composites from effective property measurements. *Proc. Roy. Soc. London A*, 468(2139):784–809, 2012.
- [70] M. Ou. Two-parameter integral representation formula for the effective elastic moduli. Complex Var. Elliptic Eqs., 57(2-4):411-424, 2012.
- [71] M. Ou and E. Cherkaev. On the integral representation formula for a two-component composite. *Math. Meth. Appl. Sci.*, 29(6):655–664, 2006.
- [72] C. Parkinson. A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. *Proc. Natl. Acad. Sci.*, 116(29):14414– 14423, 2019.
- [73] R. R. Parmerter and M. D. Coon. Model of pressure ridge formation. *J. Geophys. Res.*, 77(33):6565–6575, 1972.
- [74] C. Petrich and H. Eicken. Overview of sea ice growth and properties. In D. N. Thomas, editor, Sea Ice, Third Edition, pages 1–41. Wiley, New York, 2016.
- [75] C. Polashenski, K. M. Golden, D. K. Perovich, E. Skyllingstad, A. Arnsten, C. Stwertka, and N. Wright. Percolation blockage: A process that enables melt pond formation on first year Arctic sea ice. J. Geophys. Res.: Oceans, 122(1):413–440, 2017.
- [76] P. Ponte-Castañeda. Fully optimized second-order variational estimates for the macroscopic response and field statistics in viscoplastic crystalline composites. *Proc. R. Soc. Lond. A*, 471:20150665, 2015.
- [77] P. Popović, B. B. Cael, M. Silber, and D. S. Abbot. Simple rules govern the patterns of Arctic sea ice melt ponds. *Phys. Rev. Lett.*, 120(14):148701, 2018.
- [78] P. Rampal, S. Bouillon, E. Ólason, and M. Morlighem. neXtSIM: a new Lagrangian sea ice model. *The Cryosphere*, 10:1055–1073, 2016.
- [79] D. Rees Jones and M. G. Worster. Fluxes through steady chimneys in a mushy layer during binary alloy solidification. *J. Fluid Mech.*, 714:127–151, 2013.
- [80] L. A. Roach, C. Horvat, S. M. Dean, and Cecilia C. M. Bitz. An emergent sea ice floe size distribution in a global coupled ocean—sea ice model. J. Geophys. Res.: Oceans, 123(6):4322— 4337, 2018.
- [81] L. A. Roach, M. M. Smith, and S. M. Dean. Quantifying growth of pancake sea ice floes using images from drifting buoys. *J. Geophys. Res.: Oceans*, 123(4):2851–2866, 2018.

- [82] D. A. Rothrock. The energetics of the plastic deformation of pack ice by ridging. *J. Geophys. Res.*, 80(33):4514–4519, 1975.
- [83] D. A. Rothrock and A. S. Thorndike. Measuring the sea ice floe size distribution. *Journal of Geophysical Research*, 89(C4):6477–6486, 1984.
- [84] C. S. Sampson, N. B. Murphy, E. Cherkaev, and K. M. Golden. Integral representation and bounds for the complex viscoelasticity for ocean wave propagation in the marginal ice zone. In preparation, 2020.
- [85] H. L. Schreyer, D. L. Sulsky, L. B. Munday, M. D. Coon, and R. Kwok. Elastic-decohesive constitutive model for sea ice. *Journal of Geophysical Research*, 111:C11S26, 2006.
- [86] E. M. Schulson. Compressive shear faults within Arctic ice: fracture on scales large and small. J. Geophys. Res., 109(C7):C07016, 2004.
- [87] T. P. Schulze and M. G. Worster. A numerical investigation of steady convection in mushy layers during the directional solidification of binary alloys. J. Fluid Mech., 356:199–220, 1998.
- [88] F. Scott and D. L. Feltham. A model of the three-dimensional evolution of Arctic melt ponds on first-year and multiyear sea ice. *J. Geophys. Res.*, 115(C12):C12064, 2010.
- [89] M. Scott. Understanding climate: Antarctic sea ice extent. NOAA, www.climate.gov/news-features/understanding-climate/understanding-climate-antarctic-sea-ice-extent, 2020.
- [90] W. D. Sellers. A global climate model based on the energy balance of the earth-atmosphere system. J. Appl. Meteor., 8:392–400, 1969.
- [91] D. M. Skene, L. G. Bennetts, M. H. Meylan, and A. Toffoli. Modelling water wave overwash of a thin floating plate. *J. Fluid Mech.*, 777, 2015.
- [92] D. Song and P. Ponte Castañeda. A multi-scale homogenization model for fine-grained porous viscoplastic polycrystals: I-finite-strain theory. J. Mech. Phys. Solids, 115:102–122, 2018.
- [93] V. A. Squire. Ocean wave interactions with sea ice: A reappraisal. *Annu. Rev. Fluid Mech.*, 52(1):37–60, 2020.
- [94] H. L. Stern, A. J. Schweiger, J. Zhang, and M. Steele. On reconciling disparate studies of the sea-ice floe size distribution. *Elementa*, 6(1):49–1 49–16, 2018.
- [95] C. Strong, D. Foster, E. Cherkaev, I. Eisenman, and K. M. Golden. On the definition of marginal ice zone width. *J. Atmos. Oceanic Tech.*, 34(7):1565–1584, 2017.
- [96] C. Strong and I. G. Rigor. Arctic marginal ice zone trending wider in summer and narrower in winter. *Geophys. Res. Lett.*, 40(18):4864–4868, 2013.
- [97] L. Strub-Klein and D. Sudom. A comprehensive analysis of the morphology of first-year sea ice ridges. *Cold Reg. Sci. Technol.*, 82:94–109, 2012.
- [98] D. Sulsky and K. Peterson. Toward a new elastic–decohesive model of Arctic sea ice. *Physica D: Nonlinear Phenomena*, 240(20):1674–1683, 2011.
- [99] P. D. Taylor and D. L. Feltham. A model of melt pond evolution on sea ice. *J. Geophys. Res.*, 109(C12):C12007, 2004.

- [100] J. Thomson, S. Ackley, F. Girard-Ardhuin, F. Ardhuin, A. Babanin, G. Boutin, J. Brozena, S. Cheng, C. Collins, M. Doble, C. Fairall, P. Guest, C. Gebhardt, J. Gemmrich, H. C. Graber, B. Holt, S. Lehner, B. Lund, M. H. Meylan, T. Maksym, F. Montiel, W. Perrie, O. Persson, L. Rainville, W. E. Rogers, H. Shen, H. Shen, V. Squire, S. Stammerjohn, J. Stopa, M. M. Smith, P. Sutherland, and P. Wadhams. Overview of the Arctic Sea State and Boundary Layer Physics Program. J. Geophys. Res.: Oceans, 123(12):8674–8687, 2018.
- [101] J. Thomson and W. E. Rogers. Swell and sea in the emerging Arctic Ocean. *Geophys. Res. Lett.*, 41(9):3136–3140, 2014.
- [102] G.W. Timco and R.P. Burden. An analysis of the shape of sea ice ridges. *Cold Reg. Sci. Technol.*, 25(1):65–77, 1997.
- [103] S. Toppaladoddi and J. S. Wettlaufer. Theory of the sea ice thickness distribution. *Phys. Rev. Lett.*, 115:148501, 2015.
- [104] T. Toyota, C. Haas, and T. Tamura. Size distribution and shape properties of relatively small sea-ice floes in the Antarctic marginal ice zone in late winter. *Deep Sea Res. II*, 58(9-10):1182–1193, doi:10.1016/j.dsr2.2010.10.034, 2011.
- [105] T. Toyota and N. Kimura. An examination of the sea ice rheology for seasonal ice zones based on ice drift and thickness observations. *J. Geophys. Res.: Oceans*, 123(2):1406–1428, 2018.
- [106] T. Toyota, S. Takatsuji, and M. Nakayama. Characteristics of sea ice floe size distribution in the seasonal ice zone. *Geophys. Res. Lett.*, 33:L02616, doi:10.1029/2005GL024556, 2006.
- [107] L. B. Tremblay and L. A. Mysak. Modelling sea ice as a granular material, including the dilatancy effect. *J. Phys. Oceanogr.*, 27:2342–2360, 1997.
- [108] M. Tsamados, D. L. Feltham, and A. V. Wilchinsky. Impact of a new anisotropic rheology on simulations of Arctic sea ice. *J. Geophys. Res.*, 118:91–107, 2013.
- [109] J. Tuhkuri and M. Lensu. Laboratory tests on ridging and rafting of ice sheets. *J. Geophys. Res. Oceans*, 107(C9):8–1 8–14, 2002.
- [110] A. K. Turner, K. J. Peterson, D. Bolintineanu, A. Roberts, P. Kuberry, D. Ibanez, T. Davis, and M. Wang. Demsi: Discrete element model for sea ice. Technical report, 2019.
- [111] M. Vancoppenolle, K. Meiners, C. Michel, L. Bopp, F. Brabant, G. Carnat, B. Delille, D. Lannuzel, G. Madec, S. Moreau, J.-L. Tison, and P. van der Merwe. Role of sea ice in global biogeochemical cycles: emerging views and challenges. *Quat. Sci. Rev.*, 79:207–230, 2013.
- [112] P. Wadhams. Arctic sea ice extent and thickness. *Phil. Trans. of the Royal Soc. of London Ser. A*, 352:301–319, 1995.
- [113] P. Wadhams, V. A. Squire, D. J. Goodman, A. M. Cowan, and S. C. Moore. The attenuation rates of ocean waves in the marginal ice zone. *J. Geophys. Res.: Oceans*, 93(C6):6799–6818, 1988.
- [114] R. Wang and H. H. Shen. Gravity waves propagating into an ice-covered ocean: A viscoelastic model. *J. Geophys. Res.*, 115(C6), 2010.
- [115] J. E. Weber. Wave attenuation and wave drift in the marginal ice zone. J. Phys. Ocean., 17:2351–2361, 1986.

- [116] W. F. Weeks and S. F. Ackley. The growth, structure and properties of sea ice. In N. Untersteiner, editor, *The Geophysics of Sea Ice*, pages 9–164. Plenum Press, New York, 1986.
- [117] W. F. Weeks and A. J. Gow. Crystal alignments in the fast ice of Arctic Alaska. *J. Geophys. Res.*, 85(C2):1137–1146, 1980.
- [118] A. J. Wells, J. S. Wettlaufer, and S. A. Orszag. Maximal potential energy transport: A variational principle for solidification problems. *Phys. Rev. Lett.*, 105(25):1–4, 2010.
- [119] A. J. Wells, J. S. Wettlaufer, and S. A. Orszag. Brine fluxes from growing sea ice. *Geophys. Res. Lett.*, 38:L04501, 2011.
- [120] A. J. Wells, J. S. Wettlaufer, and S. A. Orszag. Nonlinear mushy-layer convection with chimneys: stability and optimal solute fluxes. *J. Fluid Mech.*, 716:203–227, 2013.
- [121] T. D. Williams, L. G. Bennetts, V. A. Squire, D. Dumont, and L. Bertino. Wave-ice interactions in the marginal ice zone. Part 2: Model sensitivity studies along a 1-D section of the Fram Strait. *Ocean Modelling*, 71:92–101, 2013.
- [122] M. G. Worster. Convection in mushy layers. Ann. Rev. Fluid Mech., 29:91–122, 1997.
- [123] M. G. Worster and D. W. Rees Jones. Sea-ice thermodynamics and brine drainage. Phil. Trans. Roy. Soc. A: Mathematical, Physical and Engineering Sciences, 373(2045):13 pp., 2015.
- [124] J. Zhang, A. Schweiger, M. Steele, and H. Stern. Sea ice floe size distribution in the marginal ice zone: Theory and numerical experiments. *J. Geophys. Res. Oceans*, 120(5):3484–3498, 2015.
- [125] J. Zhang, H. Stern, B. Hwang, A. Schweiger, M. Steele, M. Stark, and H. C. Graber. Modeling the seasonal evolution of the Arctic sea ice floe size distribution. *Elementa*, 4(1):000126, 2016.
- [126] J.-Q. Zhong, A. T. Fragoso, A. J. Wells, and J. S. Wettlaufer. Finite-sample-size effects on convection in mushy layers. *J. Fluid Mech.*, 704(2):89–108, 2012.