Package 'GGMncv'

November 15, 2020

```
Type Package
Title Gaussian Graphical Models with Nonconvex Regularization
Version 2.0.0
Date 2020-11-15
Description
      Estimate Gaussian graphical models with nonconvex penalties <doi:10.31234/osf.io/ad57p>,
      including the atan Wang and Zhu (2016) <doi:10.1155/2016/6495417>,
      seamless L0 Dicker, Huang, and Lin (2013) <doi:10.5705/ss.2011.074>,
      exponential Wang, Fan, and Zhu <doi:10.1007/s10463-016-0588-3>,
      smooth integration of counting and absolute deviation Lv and Fan (2009) <doi:10.1214/09-
      AOS683>.
      logarithm Mazumder, Friedman, and Hastie (2011) <doi:10.1198/jasa.2011.tm09738>,
      Lq, smoothly clipped absolute deviation Fan and Li (2001) <doi:10.1198/016214501753382273>,
      and minimax concave penalty Zhang (2010) <doi:10.1214/09-
      AOS729>. There are also extensions
      for computing variable inclusion probabilities, multiple regression coefficients, and
      statistical inference <doi:10.1214/15-EJS1031>.
License GPL-2
Depends R (>= 4.0.0)
Imports Rcpp (>= 1.0.4.6),
      Rdpack (>= 0.11-1),
      reshape,
      ggplot2 (>= 3.3.0),
      glassoFast (\geq 1.0),
      numDeriv (>= 2016.8-1.1),
      mathjaxr (>= 1.0-1),
      MASS (>= 7.3-51.5),
      methods,
      stats.
      utils
Suggests qgraph (>= 1.6.5)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
LinkingTo Rcpp,
      RcppArmadillo
```

2 boot_eip

```
RdMacros Rdpack,
     mathjaxr
```

BugReports https://github.com/donaldRwilliams/GGMncv/issues

R topics documented:

	boot_eip	2
		3
	constrained	4
	desparsify	5
	ggmncv	6
	ggm_compare	0
	inference	
	penalty_derivative	2
	penalty_function	2
	plot.eip	3
	plot.ggmncv	4
	plot.penalty_derivative	
	plot.penalty_function	
	predict.ggmncv	
	print.eip	
	print.ggmncv	
	ptsd	
	Sachs	
Index	2	20
		_
boot	Poststvannad Edge Inclusion 'Puobabilities'	

boot_eip

Bootstrapped Edge Inclusion 'Probabilities

Description

Compute edge inclusion 'probabilities' with a non-parametric bootstrap.

```
boot_eip(
 Υ,
 method = "pearson",
 samples = 50,
 penalty = "atan",
 ic = "bic",
 gamma = NULL,
 lambda = NULL,
 n_1 = 50,
 n_{gamma} = 50,
 unreg = FALSE,
 progress = TRUE,
```

coef.ggmncv 3

Arguments

Υ	Matrix. A matrix of dimensions n by p .
method	Character string. Which correlation coefficient (or covariance) is to be computed. One of "pearson" (default), "kendall", or "spearman." Defaults to pearson.
samples	Numeric. How many boostrap samples (defaults to 500).
penalty	Character string. Which penalty should be used (defaults to "atan")?
ic	Character string. Which information criterion should be used (defaults to "bic")? The options include aic, ebic (ebic_gamma defaults to 0.5; see details), ric, or any of the generalized information criteria provided in section 5 of Kim et al. (2012). The options are gic_1 (i.e., bic) to gic_6.
gamma	Numeric. Hyperparameter for the penalty function. Defaults to 3.7 (SCAD), 2 (MCP), 0.5 (adapt), and 0.01 otherwise with select = "lambda".
lambda	Numeric vector. Regularization parameter. Defaults to NULL that provides default values with select = "lambda" and $sqrt(log(p)/n)$ with $select = "gamma"$.
n_lambda	Numeric. The number of λ 's to be evaluated. Defaults to 50. This is disregarded if custom values are provided in lambda.
n_gamma	Numeric. The number of γ 's to be evaluated. Defaults to 50. This is disregarded if custom values are provided in lambda.
unreg	Logical. Should the models be refitted (or unregularized) with maximum likelihood (defaults to FALSE)? Setting to TRUE results in the approach of Foygel and Drton (2010), but with the regularization path obtained from nonconvex regularization, as opposed to the ℓ_1 -penalty.
progress	Logical. Should a progress bar be included (defaults to TRUE) ?
•••	Additional arguments. Currently gamma in EBIC (ic = "ebic") can be set with ebic_gamma = 1.
	method samples penalty ic gamma lambda n_lambda n_gamma unreg

Value

An object of class eip

Examples

```
# data
Y <- GGMncv::ptsd[,1:10]
# compute eip's
boot_samps <- boot_eip(Y, samples = 10)</pre>
```

coef.ggmncv

Regression Coefficients from ggmncv Objects

Description

Regression Coefficients from ggmncv Objects

```
## S3 method for class 'ggmncv'
coef(object, ...)
```

4 constrained

Arguments

object An Object of classs ggmncv
... Currently ignored

Value

A matrix of regression coefficients

Note

The matrix of coefficients can be accessed by removing the class from the returned object (e.g., unclass(coefs)).

Examples

```
# data
Y <- GGMncv::ptsd

# correlations
S <- cor(Y)

# fit model
fit <- ggmncv(S, n = nrow(Y))

coefs <- coef(fit)</pre>
```

constrained

Constrained Precision Matrix

Description

Compute the maximum likelihood estimate, given certain elements are constrained to zero (e.g., an adjacency matrix). This approach is described in Hastie et al. (2015).

Usage

```
constrained(Sigma, adj)
```

Arguments

Sigma	Covariance matrix
adj	Matrix with contraints. A zero indicates that element should be constrained to
	zero.

Value

A list containing the inverse covariance matrix and the covariance matrix.

desparsify 5

Note

The algorithm is written in c++.

Examples

```
# data
Y <- GGMncv::ptsd[,1:5]

# columns
p <- ncol(Y)

# contstraint matrix
constraints <- matrix(0,p,p)

# set one value to zero
constraints[2,3] <- 1
constraints[3,2] <-1

# estimate, given constraints
fit <- constrained(cor(Y), adj = constraints)
Theta <- fit$Theta</pre>
```

desparsify

De-Sparsified Graphical Lasso Estimator

Description

Compute the de-sparsified glasso estimator with the approach described in Equation 7 of Jankova and Van De Geer (2015).

Usage

```
desparsify(object, ...)
```

Arguments

object An object of class ggmncv
... Currently ignored

Details

According to Jankova and Van De Geer (2015), the de-sparisifed estimator, $\hat{\mathbf{T}}$, is defined as

```
\hat{\mathbf{T}} = 2\hat{\mathbf{\Theta}} - \hat{\mathbf{\Theta}}\hat{\mathbf{R}}\hat{\mathbf{\Theta}},
```

where $\hat{\Theta}$ denotes the graphical lasso estimator of the precision matrix and $\hat{\mathbf{R}}$ is the sample correlation matrix. Further details can be found in section 2 ("Main Results") of Jankova and Van De Geer (2015).

Value

The de-sparsified estimates, including

- Theta: De-sparsified precision matrix
- P: De-sparsified partial correlation matrix

Note

This assumes (reasonably) Gaussian data.

References

Jankova J, Van De Geer S (2015). "Confidence intervals for high-dimensional inverse covariance estimation." *Electronic Journal of Statistics*, **9**(1), 1205–1229.

Examples

```
# data
Y <- GGMncv::Sachs
# fit model
fit <- ggmncv(cor(Y), n = nrow(Y))
# remove (some) bias and sparsity
That <- desparsify(fit)
# de-sparsified partial correlations
That$P</pre>
```

ggmncv

GGMncv

Description

Gaussian graphical models with nonconvex regularization. A survey of these approaches is provided in Williams (2020).

```
ggmncv(
   R,
   n,
   penalty = "atan",
   ic = "bic",
   select = "lambda",
   gamma = NULL,
   lambda = NULL,
   n_lambda = 50,
   n_gamma = 50,
   initial = NULL,
   LLA = FALSE,
   unreg = FALSE,
```

```
maxit = 10000,
thr = 1e-04,
store = TRUE,
progress = TRUE,
...
)
```

Arguments

R Matrix. A correlation matrix of dimensions p by p.

n Numeric. The sample size used to compute the information criterion.

penalty Character string. Which penalty should be used (defaults to "atan")?

ic Character string. Which information criterion should be used (defaults to "bic")? The options include aic, ebic (ebic_gamma defaults to 0.5; see details), ric,

or any of the generalized information criteria provided in section 5 of Kim et al.

(2012). The options are gic_1 (i.e., bic) to gic_6.

select Character string. Which tuning parameter should be selected (defaults to "lambda")?.

The options include "lambda" (the regularization parameter), "gamma" (governs

the 'shape'), and "both". See details.

gamma Numeric vector. Hyperparameter for the penalty function. Defaults to 3.7

(SCAD), 2 (MCP), 0.5 (adapt), and 0.01 otherwise with select = "lambda".

lambda Numeric vector. Regularization parameter. Defaults to NULL that provides de-

fault values with select = "lambda" and sqrt(log(p)/n) with select = "gamma".

n_lambda Numeric. The number of λ 's to be evaluated. Defaults to 50. This is disregarded

if custom values are provided in lambda.

n_gamma Numeric. The number of γ 's to be evaluated. Defaults to 50. This is disregarded

if custom values are provided in lambda.

initial Matrix. The initial inverse correlation matrix for computing the penalty deriva-

tive. Defaults to NULL which uses the inverse of R.

LLA Logical. Should the local linear approximation be used (default to FALSE)?

unreg Logical. Should the models be refitted (or unregularized) with maximum likeli-

hood (defaults to FALSE)? Setting to TRUE results in the approach of Foygel and Drton (2010), but with the regularization path obtained from nonconvex regu-

larization, as opposed to the ℓ_1 -penalty.

maxit Numeric. The maximum number of iterations for determining convergence of

the LLA algorithm (defaults to 1e4). Note this can be changed to, say, 2 or 3, which will provide two and three-step estimators without convergence check.

thr Numeric. Threshold for determining convergence of the LLA algorithm (de-

faults to 1.0e-4).

store Logical. Should all of the fitted models be saved (defaults to TRUE)?.

progress Logical. Should a progress bar be included (defaults to TRUE)?

.. Additional arguments. Currently gamma in EBIC (ic = "ebic") can be set with

ebic_gamma = 1.

Details

Several of the penalties are (continuous) approximations to the ℓ_0 penalty, that is, best subset selection. However, the solution does not require enumerating all possible models which results in a computationally efficient solution.

L0 Approximations

- Atan: penalty = "atan" (Wang and Zhu 2016). This is currently the default.
- Seamless ℓ_0 : penalty = "selo" (Dicker et al. 2013).
- Exponential: penalty = "exp" (Wang et al. 2018)
- Log: penalty = "log" (Mazumder et al. 2011).
- Sica: penalty = "sica" (Lv and Fan 2009)

Additional penalties:

- SCAD: penalty = "scad" (Fan and Li 2001).
- MCP: penalty = "mcp" (Zhang 2010).
- Adaptive lasso (penalty = "adapt"): Defaults to $\gamma=0.5$ (Zou 2006). Note that for consistency with the other penalties, $\gamma\to 0$ provides more penalization and $\gamma=1$ results in ℓ_1 regularization.
- Lasso: penalty = "lasso" (Tibshirani 1996).

Gamma (γ) :

The gamma argument corresponds to additional hyperparameter for each penalty. The defaults are set to the recommended values from the respective papers.

LLA

The local linear approximate is noncovex penalties was described in (Fan et al. 2009). This is essentially a iteratively reweighted (g)lasso. Note that by default LLA = FALSE. This is due to the work of Zou and Li (2008), which suggested that, so long as the starting values are good enough, then a one-step estimator is sufficient. In the case of low-dimensional data, the sample based inverse covariance matrix is used to compute the penalty. This is expected to work well, assuming that n is sufficiently larger than p.

EBIC

When setting ic = "ebic" the hyperparameter that determines the additional penalty to BIC is passed via the ... argument. This must be specified as $ebic_gamma = 1$. The default is 0.5.

Value

An object of class ggmncv, including:

- Theta Inverse covariance matrix
- Sigma Covariance matrix
- P Weighted adjacency matrix
- adj Adjacency matrix
- lambda Tuning parameter
- fit glasso fitted model (a list)

References

Dicker L, Huang B, Lin X (2013). "Variable selection and estimation with the seamless-L 0 penalty." *Statistica Sinica*, 929–962.

Fan J, Feng Y, Wu Y (2009). "Network exploration via the adaptive LASSO and SCAD penalties." *The annals of applied statistics*, **3**(2), 521.

Fan J, Li R (2001). "Variable selection via nonconcave penalized likelihood and its oracle properties." *Journal of the American statistical Association*, **96**(456), 1348–1360.

Foygel R, Drton M (2010). "Extended Bayesian Information Criteria for Gaussian Graphical Models." *Advances in Neural Information Processing Systems*, 604–612. 1011.6640.

Kim Y, Kwon S, Choi H (2012). "Consistent model selection criteria on high dimensions." *The Journal of Machine Learning Research*, **13**, 1037–1057.

Lv J, Fan Y (2009). "A unified approach to model selection and sparse recovery using regularized least squares." *The Annals of Statistics*, **37**(6A), 3498–3528.

Mazumder R, Friedman JH, Hastie T (2011). "Sparsenet: Coordinate descent with nonconvex penalties." *Journal of the American Statistical Association*, **106**(495), 1125–1138.

Tibshirani R (1996). "Regression shrinkage and selection via the lasso." *Journal of the Royal Statistical Society: Series B (Methodological)*, **58**(1), 267–288.

Wang Y, Fan Q, Zhu L (2018). "Variable selection and estimation using a continuous approximation to the L0 penalty." *Annals of the Institute of Statistical Mathematics*, **70**(1), 191–214.

Wang Y, Zhu L (2016). "Variable selection and parameter estimation with the Atan regularization method." *Journal of Probability and Statistics*.

Williams DR (2020). "Beyond Lasso: A Survey of Nonconvex Regularization in Gaussian Graphical Models." *PsyArXiv*.

Zhang C (2010). "Nearly unbiased variable selection under minimax concave penalty." *The Annals of statistics*, **38**(2), 894–942.

Zou H (2006). "The adaptive lasso and its oracle properties." *Journal of the American statistical association*, **101**(476), 1418–1429.

Zou H, Li R (2008). "One-step sparse estimates in nonconcave penalized likelihood models." *Annals of statistics*, **36**(4), 1509.

```
# data
Y <- GGMncv::ptsd[,1:10]
S <- cor(Y)
# fit model
fit <- ggmncv(S, n = nrow(Y))</pre>
```

10 ggm_compare

```
# plot
qgraph::qgraph(fit$P)
```

ggm_compare

Compare Gaussian Graphical Models

Description

Compare Gaussian graphical models with the de-sparsified estimator of (Jankova and Van De Geer 2015).

Usage

```
ggm_compare(object_1, object_2, method = "fdr", alpha = 0.05, ...)
```

Arguments

object_1	An object of class ggmncv
object_2	An object of class ggmncv
method	Character string. A correction method for multiple comparison (defaults to fdr). Can be abbreviated. See p.adjust.
alpha	Numeric. Significance level (defaults to 0.05).
• • •	Currently ignored.

Value

- P_diff De-sparsified partial correlation matrix differences
- adj Adjacency matrix based on the p-values.
- uncorrected Uncorrected p-values
- corrected Corected p-values
- method The approach used for multiple comparisons
- alpha Significance level

```
# data
Y1 <- MASS::mvrnorm(250, rep(0, 10), Sigma = diag(10))
Y2 <- MASS::mvrnorm(250, rep(0, 10), Sigma = diag(10))
# fit models
fit1 <- ggmncv(cor(Y1), n = nrow(Y1))
fit2 <- ggmncv(cor(Y2), n = nrow(Y2))
# compare
compare_ggms <- ggm_compare(fit1, fit2)</pre>
```

inference 11

inference	Statistical Inference for Gaussian Graphical Models

Description

Compute p-values for each relation based on the de-sparsified precision matrix (Jankova and Van De Geer 2015).

Usage

```
inference(object, method = "fdr", alpha = 0.05, ...)
```

Arguments

object An object of class ggmncv

method Character string. A correction method for multiple comparison (defaults to fdr).

Can be abbreviated. See p.adjust.

Numeric. Significance level (defaults to 0.05).

Currently ignored.

Value

- Theta De-sparsified precision matrix
- adj Adjacency matrix based on the p-values.
- uncorrected Uncorrected p-values
- corrected Corected p-values
- method The approach used for multiple comparisons
- alpha Significance level

Note

This assumes the Gaussian data.

References

Jankova J, Van De Geer S (2015). "Confidence intervals for high-dimensional inverse covariance estimation." *Electronic Journal of Statistics*, **9**(1), 1205–1229.

```
# data
Y <- GGMncv::ptsd

# fit model
fit <- ggmncv(cor(Y), n = nrow(Y))

# statistical inference
inference(fit)</pre>
```

12 penalty_function

penalty_derivative

Penalty Derivative

Description

Compute the derivative for a nonconvex penalty.

Usage

```
penalty_derivative(
  theta = seq(-5, 5, length.out = 1e+05),
  penalty = "atan",
  lambda = 1,
  gamma = c(0.01, 0.05)
)
```

Arguments

theta Numeric vector. Values for which the derivative is computed.

penalty Character string. Character string. Which penalty should be used (defaults to

"atan")? See ggmncv for the available penalties.

lambda Numeric. Regularization parameter (defaults to 1).

gamma Numeric vector. Hyperparameter(s) for the penalty function.

Value

A list of class penalty_derivative

Examples

```
deriv <- penalty_derivative(theta = seq(-5,5,length.out = 10000),

lambda = 1,

gamma = c(0.01, 0.05, 0.1))
```

penalty_function

Penalty Function

Description

Compute the penalty function for nonconvex penalties.

```
penalty_function(
  theta = seq(-5, 5, length.out = 1e+05),
  penalty = "atan",
  lambda = 1,
  gamma = c(0.01, 0.05)
)
```

plot.eip 13

Arguments

theta Numeric vector. Values for which the derivative is computed.

penalty Character string. Character string. Which penalty should be used (defaults to

"atan")? See ggmncv for the available penalties.

lambda Numeric. Regularization parameter (defaults to 1).

gamma Numeric vector. Hyperparameter(s) for the penalty function.

Value

An object of class penalty_function

Examples

```
func <- penalty_function(theta = seq(-5,5,length.out = 10000), lambda = 1, gamma = c(0.01, 0.05, 0.1))
```

plot.eip

Plot Edge Inclusion 'Probabilities'

Description

Plot Edge Inclusion 'Probabilities'

Usage

```
## S3 method for class 'eip'
plot(x, color = "black", size = 1, ...)
```

Arguments

x An object of class eipcolor Character string. Color for geom_point.size Numeric. Size of geom_point.

... Currently ignored.

Value

An object of class ggplot

```
# data
Y <- GGMncv::ptsd[,1:10]
# compute eip's
boot_samps <- boot_eip(Y, B = 10)
plot(boot_samps)</pre>
```

plot.ggmncv

Plot ggmncv Objects

Description

Plot the solution path for the partial correlations.

Usage

```
## S3 method for class 'ggmncv'
plot(x, size = 1, alpha = 0.5, ...)
```

Arguments

```
    x An object of class ggmncv
    size Numeric. The size of the points (eip).
    alpha Numeric. The transparency of the lines. Only for the solution path options.
    ... Currently ignored.
```

Value

A ggplot object

Examples

```
# data
Y <- GGMncv::ptsd[,1:10]

# correlations
S <- cor(Y, method = "spearman")

# fit model
fit <- ggmncv(R = S, n = nrow(Y))

# plot
plot(fit)</pre>
```

plot.penalty_derivative

Plot penalty_derivative Objects

Description

Plot penalty_derivative Objects

```
## S3 method for class 'penalty_derivative'
plot(x, size = 1, ...)
```

plot.penalty_function 15

Arguments

x An object of class penalty_derivative.size Numeric. Line size in geom_line.... Currently ignored.

Value

An object of class ggplot

Examples

plot.penalty_function *Plot* penalty_function *Objects*

Description

Plot penalty_function Objects

Usage

```
## S3 method for class 'penalty_function'
plot(x, size = 1, ...)
```

Arguments

x An object of class penalty_function.size Numeric. Line size in geom_line.... Currently ignored.

Value

An object of class ggplot

```
func <- penalty_function(theta = seq(-5,5,length.out = 10000), lambda = 1, gamma = c(0.01, 0.05, 0.1)) plot(func)
```

16 predict.ggmncv

predict.ggmncv

Predict method for ggmncv Objects

Description

Predicted values based on a ggmncv object

Usage

```
## S3 method for class 'ggmncv'
predict(object, train_data, newdata = NULL, ...)
```

Arguments

object An object of class ggmncv train_data Data used for model fitting.

newdata An optional data frame in which to look for variables with which to predict. If

omitted, the fitted values are used.

... Currently ignored

Value

A matrix of predicted values

print.eip 17

print.eip

Print eip Objects

Description

Print eip Objects

Usage

```
## S3 method for class 'eip'
print(x, ...)
```

Arguments

x An object of class eip... Currently ignored.

print.ggmncv

Print ggmncv Objects

Description

Print ggmncv Objects

Usage

```
## S3 method for class 'ggmncv'
print(x, ...)
```

Arguments

x An object of class ggmncv

... Currently ignored

ptsd

Data: Post-Traumatic Stress Disorder

Description

A dataset containing items that measure Post-traumatic stress disorder symptoms (Armour et al. 2017). There are 20 variables (p) and 221 observations (n).

```
data("ptsd")
```

18 Sachs

Format

A dataframe with 221 rows and 20 variables

Details

- Intrusive Thoughts
- Nightmares
- · Flashbacks
- · Emotional cue reactivity
- · Psychological cue reactivity
- Avoidance of thoughts
- Avoidance of reminders
- Trauma-related amnesia
- Negative beliefs
- Negative trauma-related emotions
- · Loss of interest
- · Detachment
- · Restricted affect
- Irritability/anger
- · Self-destructive/reckless behavior
- Hypervigilance
- Exaggerated startle response
- · Difficulty concentrating
- · Sleep disturbance

References

Armour C, Fried EI, Deserno MK, Tsai J, Pietrzak RH (2017). "A network analysis of DSM-5 posttraumatic stress disorder symptoms and correlates in US military veterans." *Journal of anxiety disorders*, **45**, 49–59.

Sachs Data: Sachs Network

Description

Protein expression in human immune system cells

Usage

data("Sachs")

Format

A data frame containing 7466 cells (n = 7466) and flow cytometry measurements of 11 (p = 11) phosphorylated proteins and phospholipids (Sachs et al. 2002)

Sachs 19

References

Sachs K, Gifford D, Jaakkola T, Sorger P, Lauffenburger DA (2002). "Bayesian network approach to cell signaling pathway modeling." *Science's STKE*, **2002**(148), pe38–pe38.

Examples

data("Sachs")

Index

```
* datasets
     ptsd, 17
     Sachs, 18
\verb|boot_eip|, 2
coef.ggmncv, 3
constrained, 4
desparsify, 5
ggm_compare, 10
ggmncv, 6, 12, 13
inference, 11
p.adjust, 10, 11
{\tt penalty\_derivative}, \textcolor{red}{12}
{\tt penalty\_function}, \\ \frac{12}{}
plot.eip, 13
plot.ggmncv, 14
\verb|plot.penalty_derivative|, 14|
\verb|plot.penalty_function|, 15|
predict.ggmncv, 16
print.eip, 17
print.ggmncv, 17
ptsd, 17
Sachs, 18
```