Animation and Simulation

He Wang (王鹤)

- Collision Detection
 - Contact, interpenetration
 - Many types (support, sliding, etc.)
 - Collidable entities
 - Collision representation vs visual representation
 - Favour simple geometries (spheres, boxes, capsules, convex hulls, etc.)

- Collision Detection
 - Collidable entities
 - Collision representation vs visual representation
 - Favour simple geometries (spheres, boxes, capsules, convex hulls, etc.)
 - Roughly define the form of the object
 - Transformed with the object
 - Can be complex
 - Collision world
 - Group and maintain all collidable objects
 - Usually separate from simulation engine

- Collision Detection
 - Collision Primitives
 - Spheres
 - Capsules

- Collision Detection
 - Collision Primitives
 - Spheres
 - Capsules
 - Axis-aligned Bounding Boxes (AABBs)
 - Oriented Bounding Boxes (OBBs)

- Collision Detection
 - Collision Primitives
 - Spheres
 - Capsules
 - Axis-aligned Bounding Boxes (AABBs)
 - Oriented Bounding Boxes (OBBs)
 - Discrete Oriented Polytope (DOP)

- Collision Detection
 - Collision Primitives
 - Spheres
 - Capsules
 - Axis-aligned Bounding Boxes (AABBs)
 - Oriented Bounding Boxes (OBBs)
 - Discrete Oriented Polytope (DOP)
 - Arbitrary Convex Volumes

- Collision Detection
 - Collision Primitives
 - Spheres
 - Capsules
 - Axis-aligned Bounding Boxes (AABBs)
 - Oriented Bounding Boxes (OBBs)
 - Discrete Oriented Polytope (DOP)
 - Arbitrary Convex Volumes
 - Compound shapes

- Collision Detection
 - Collision Testing
 - Point-sphere
 - Sphere-sphere
 - Separating Axis Theorem
 - If an axis can be found where projections are **convex** shapes do not overlap

- Collision Detection
 - Collision Testing
 - Point-sphere
 - Sphere-sphere
 - Separating Axis Theorem
 - AABB-AABB

- Collision Detection
 - Collision Testing
 - Moving objects (swept volume)

- Collision Detection
 - Performance Optimisation
 - Non-trivial to determine for two objects
 - Large number of objects
 - Temporal coherency (reuse previous information)
 - Spatial Partitioning (BSP, Kd-tree, sphere-tree, etc.)
 - Phasing (Broad, mid and narrow)
 - First AABB
 - Course bounding volumes
 - Individual primitives

- Rigid Body Dynamics
 - Collision Response
 - Basics

E = V + T T is Kinetic Energy and V is Potential Energy

$$T_{\text{linear}} = \frac{1}{2} \mathbf{p} \cdot \mathbf{v}$$
 $T_{\text{angular}} = \frac{1}{2} \mathbf{L} \cdot \boldsymbol{\omega}$.

• Energy conservation

- Rigid Body Dynamics
 - Impulses
 - Collision in instantaneous moment
 - No friction
 - Can be approximated by a coefficient of restitution

- Rigid Body Dynamics
 - Impulses
 - Collision in instantaneous moment
 - No friction
 - Can be approximated by a coefficient of restitution

- Rigid Body Dynamics
 - Impulses

$$\mathbf{p}'_{1} = \mathbf{p}_{1} + \hat{\mathbf{p}}; \qquad \mathbf{p}'_{2} = \mathbf{p}_{2} - \hat{\mathbf{p}};$$

$$m_{1}\mathbf{v}'_{1} = m_{1}\mathbf{v}_{1} + \hat{\mathbf{p}}; \qquad m_{2}\mathbf{v}'_{2} = m_{2}\mathbf{v}_{2} - \hat{\mathbf{p}};$$

$$\mathbf{v}'_{1} = \mathbf{v}_{1} + \frac{\hat{p}}{m_{1}}\mathbf{n}; \qquad \mathbf{v}'_{2} = \mathbf{v}_{2} - \frac{\hat{p}}{m_{2}}\mathbf{n}. \qquad (\mathbf{v}'_{2} - \mathbf{v}'_{1}) = \varepsilon(\mathbf{v}_{2} - \mathbf{v}_{1}).$$

$$\hat{\mathbf{p}} = \hat{p}\,\mathbf{n} = \frac{(\varepsilon + 1)(\mathbf{v}_{2} \cdot \mathbf{n} - \mathbf{v}_{1} \cdot \mathbf{n})}{\frac{1}{m_{1}} + \frac{1}{m_{2}}}\,\mathbf{n}.$$

Body 1

- Rigid Body Dynamics
 - Impulses

What if hit a wall? Coefficient = 1 for body 2

$$\hat{\mathbf{p}} = \hat{p} \,\mathbf{n} = \frac{(\varepsilon + 1)(\mathbf{v}_2 \cdot \mathbf{n} - \mathbf{v}_1 \cdot \mathbf{n})}{\frac{1}{m_1} + \frac{1}{m_2}} \,\mathbf{n}.$$

$$\hat{\mathbf{p}} = -2m_1(\mathbf{v}_1 \cdot \mathbf{n}) \mathbf{n};$$

$$\mathbf{v}'_1 = \frac{\mathbf{p}_1 + \hat{\mathbf{p}}}{m_1} = \frac{m_1 \mathbf{v}_1 - 2m_1(\mathbf{v}_1 \cdot \mathbf{n}) \mathbf{n}}{m_1}$$

$$= \mathbf{v}_1 - 2(\mathbf{v}_1 \cdot \mathbf{n}) \mathbf{n}.$$

- Rigid body simulation
 - Collision
 - Resting contact

$$d_i(t) = (p_A(t) - p_B(t)) \cdot N_i$$

d > 0, moving

d = 0, stay

d < 0, no!!!!

- Rigid body simulation
 - Collision
 - Resting contact

$$\begin{split} d_{i}(t_{0}) &= \dot{d}_{i}(t_{0}) = 0, \quad \dot{d}_{i}(t) \geq 0 \\ \dot{d}_{i}(t) &= \dot{\mathbf{N}}_{i}(t) \cdot (\mathbf{p}_{A}(t) - \mathbf{p}_{B}(t)) + \mathbf{N}_{i} \cdot (\dot{\mathbf{p}}_{A}(t) - \dot{\mathbf{p}}_{B}(t)) \\ \ddot{d}_{i}(t) &= (\mathbf{p}_{A}(t) - \mathbf{p}_{B}(t)) \cdot \ddot{\mathbf{N}}_{i} + 2(\dot{\mathbf{p}}_{A}(t) - \dot{\mathbf{p}}_{B}(t)) \cdot \dot{\mathbf{N}}_{i} + (\ddot{\mathbf{p}}_{A}(t) - \ddot{\mathbf{p}}_{B}(t)) \cdot \mathbf{N}_{i} \\ \ddot{d}_{i}(t) &= 2(\dot{\mathbf{p}}_{A}(t_{0}) - \dot{\mathbf{p}}_{B}(t_{0})) \cdot \dot{\mathbf{N}}_{i} + (\ddot{\mathbf{p}}_{A}(t_{0}) - \ddot{\mathbf{p}}_{B}(t_{0})) \cdot \mathbf{N}_{i} \end{split}$$

Not dependent on force f

dependent on force f

 $d_i(t) \ge 0$ the forces must prevent penetration

 $f_i \ge 0$ the forces must push objects apart, not together

 $\ddot{d}_i(t)f_i = 0$ either the objects are not separating or, if the objects are separating, then the contact force is zero

- Rigid body simulation
 - Collision
 - Resting contact

$$\ddot{d}_i(t) = (\mathbf{p}_A(t) - \mathbf{p}_B(t)) \cdot \ddot{\mathbf{N}}_i + 2(\dot{\mathbf{p}}_A(t) - \dot{\mathbf{p}}_B(t)) \cdot \dot{\mathbf{N}}_i + (\ddot{\mathbf{p}}_A(t) - \ddot{\mathbf{p}}_B(t)) \cdot \mathbf{N}_i$$

$$\ddot{d}_i(t) = 2(\dot{\mathbf{p}}_A(t_0) - \dot{\mathbf{p}}_B(t_0)) \cdot \dot{\mathbf{N}}_i + (\ddot{\mathbf{p}}_A(t_0) - \ddot{\mathbf{p}}_B(t_0)) \cdot \mathbf{N}_i$$
 Not dependent on force f dependent on force f Relative acceleration
$$\ddot{d}_i(t) = b_i + \sum_{j=1}^n (a_{ij}f_j)$$
 Unknowns, f

- Rigid body simulation
 - Collision

Resting contact

$$\ddot{d}_{i}(t) = (p_{A}(t) - p_{B}(t)) \cdot \ddot{N}_{i} + 2(\dot{p}_{A}(t) - \dot{p}_{B}(t)) \cdot \dot{N}_{i} + (\ddot{p}_{A}(t) - \ddot{p}_{B}(t)) \cdot N_{i}$$

Relative acceleration

Solve for f
$$\ddot{d}_i(t) = b_i + \sum_{j=1}^n (a_{ij}f_j)$$
 $d_i(t) = (p_A(t) - p_B(t)) \cdot N_i$

Linear velocity

$$\dot{\mathbf{p}}_{A}(t) = \mathbf{v}_{A}(t) + \mathbf{\omega}_{A}(t) \times \mathbf{r}_{A}(t)$$
$$\dot{\mathbf{p}}_{B}(t) = \mathbf{v}_{B}(t) + \mathbf{\omega}_{B}(t) \times \mathbf{r}_{B}(t)$$

$$\omega(t) = I(t)^{-1}L(t)$$

Angular velocity

linear acceleration A force f_j acting in direction $n_j(t_0)$ produces $f_j / m_A \cdot n_j(t_0)$

$$\ddot{\mathbf{p}}_{A}(t) = \dot{\mathbf{v}}_{A} + \dot{\omega}_{A}(t) \times \mathbf{r}_{A}(t) + \mathbf{\omega}_{A}(t) \times (\boldsymbol{\omega}_{A}(t) \times \boldsymbol{\tau}_{A}(t))$$

$$\dot{\omega}_A(t) = I_A^{-1}(t) \tau_A(t) + I^{-1}(t)(L_t)$$

Force related

$$(p_j - x_A(t_0)) \times f_j \, n_j(t_0)$$

$$\mathbf{N} = \mathbf{I}\alpha(t) = \mathbf{I}\frac{d\mathbf{\omega}(t)}{dt} = \frac{d}{dt}(\mathbf{I}\omega(t)) = \frac{d\mathbf{L}(t)}{dt}$$

orce unrelated

 $N = r \times F$.

Vector from the Centre of Mass to the contact point

- Rigid body simulation
 - Collision
 - Resting contact

$$\ddot{d}_i(t) = (\mathbf{p}_A(t) - \mathbf{p}_B(t)) \cdot \ddot{\mathbf{N}}_i + 2(\dot{\mathbf{p}}_A(t) - \dot{\mathbf{p}}_B(t)) \cdot \dot{\mathbf{N}}_i + (\ddot{\mathbf{p}}_A(t) - \ddot{\mathbf{p}}_B(t)) \cdot \mathbf{N}_i$$

Relative acceleration

Solve for f
$$\ddot{d}_i(t) = b_i + \sum_{j=1}^n (a_{ij}f_j)$$
 $d_i(t) = (p_A(t) - p_B(t)) \cdot N_i$

Linear velocity

$$\dot{\mathbf{p}}_{A}(t) = \mathbf{v}_{A}(t) + \mathbf{\omega}_{A}(t) \times \mathbf{r}_{A}(t)$$
$$\dot{\mathbf{p}}_{B}(t) = \mathbf{v}_{B}(t) + \mathbf{\omega}_{B}(t) \times \mathbf{r}_{B}(t)$$

$$\omega(t) = I(t)^{-1}L(t)$$

Angular velocity

linear acceleration A force f_j acting in direction $n_j(t_0)$ produces $f_j / m_A \cdot n_j(t_0)$

$$\ddot{\mathbf{p}}_{A}(t) = \dot{\mathbf{v}}_{A} + \dot{\mathbf{\omega}}_{A}(t) \times \mathbf{r}_{A}(t) + \mathbf{\omega}_{A}(t) \times (\mathbf{\omega}_{A}(t) \times \mathbf{r}_{A}(t))$$

$$\dot{\omega}_A(t) = I_A^{-1}(t) \tau_A(t) + I^{-1}(t) (L_A(t) \times \omega_A(t))$$
 Angular acceleration

Force related

Force unrelated

Vector from the Centre of Mass to the contact point

$$(p_j - x_A(t_0)) \times f_j \, n_j(t_0)$$

- Rigid body simulation
 - Collision
 - Resting contact

Force independent Force dependent
$$f_i \geq 0$$
 Solve for f $\ddot{d}_i(t) = b_i + \sum_{j=1}^n (a_{ij}f_j)$ $\ddot{d}_i(t) = 2(\dot{\mathbf{p}}_A(t_0) - \dot{\mathbf{p}}_B(t_0)) \cdot \dot{\mathbf{N}}_i + (\ddot{\mathbf{p}}_A(t_0) - \ddot{\mathbf{p}}_B(t_0)) \cdot \mathbf{N}_i$ $\ddot{d}_i(t)f_i = 0$ $\ddot{d}_i(t) = \dot{\mathbf{v}}_A + \dot{\omega}_A(t) \times \mathbf{r}_A(t) + \omega_A(t) \times (\omega_A(t) \times \mathbf{r}_A(t))$

Can be decomposed into force dependent/independent terms, the same as $\ddot{p}_B(t)$

Force dependent
$$f_j \left(\frac{N_j(t_0)}{m_A} + (I_A^{-1}(t_0)(p_j - x_A(t_0) \times N_j(t_0)) \times r_A \right)$$
 Force independent
$$\underbrace{\frac{F_A(t_0)}{m_A} + I_A^{-1}(t)\tau_A(t) + \omega_A(t) \times \left(\omega_A(t) \times r_A\right) + \left(I_A^{-1}(t)(L_A(t) \times \omega_A(t))\right) \times r_A}_{\text{Net external force}}$$
 Net external torque

- Rigid body simulation
 - Collision
 - Resting contact

Solve for f
$$\ddot{d}_i(t) = b_i + \sum_{j=1}^n (a_{ij}f_j)$$

Subject to $f_i \geq 0$
 $\ddot{d}_i(t)f_i = 0$

Quadratic Programing to handle
$$\ddot{d}_i(t) = 0$$
 minimize $\frac{1}{2}\mathbf{x}^{\mathrm{T}}Q\mathbf{x} + \mathbf{c}^{\mathrm{T}}\mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$,