Notas de Análisis Matemático IV

Cristo Daniel Alvarado

12 de abril de 2024

Índice general

2.	Con	volución	2
	2.1.	Preliminares	2
	2.2.	Convolución	4
	2.3.	Convolución en \mathcal{L}_p	9
	2.4.	Convolución y diferenciación	17
	2.5.	Sucesiones de Dirac	20
		2.5.1. Convolución de sucesiones de Dirac con funciones en $\mathcal{L}_p, 1 \leq p < \infty$	21
	2.6.	Convolución de sucesiones de Dirac con funciones en \mathcal{L}_{∞}	27
	2.7.	Los espacios \mathcal{L}_p^T de funciones periódicas	30
	2.8.	Convolución de funciones periódicas	35
	2.9.	Sucesiones de Dirac de funciones periódicas	37
	2.10.	. Sistemas Trigonométricos	40

Capítulo 2

Convolución

Se sabe que el producto puntual de dos funciones integrables no necesariamente es una función integrable (por ejemplo, $f(x) = g(x) = \frac{1}{\sqrt{x}}\chi_{]0,1[}$). Sin embargo, es posible definir un auténtico producto en $L_1(\mathbb{R}^n, \mathbb{K})$ que sea compatible con la adición y el producto por escalares, con el cual $L_1(\mathbb{R}^n, \mathbb{K})$ sea un **álgebra de Banach conmutativa sin elemento identidad**. Tal operación se llama **convolución**.

2.1. Preliminares

Lema 2.1.1

Si M es un subconjunto despreciable de \mathbb{R}^n , entonces $M \times \mathbb{R}^m$ es despreciable en \mathbb{R}^{n+m} .

Demostración:

Escriba a \mathbb{R}^m como unión numerable de rectángulos acotados disjuntos. Basta probar que si Q es un rectángulo acotado en \mathbb{R}^m , entonces $M \times Q$ es despreciable en \mathbb{R}^{n+m} .

Sea $\varepsilon > 0$. Si $\operatorname{Vol}(Q) = 0$, el resultado es inmediato, pues se sigue que $\operatorname{Vol}(P \times Q) = 0$. Suponga que $\operatorname{Vol}(Q) > 0$, se tiene para $M \subseteq \mathbb{R}^n$ que por definición de medida exterior existe $\{P_{\nu}\}_{\nu=1}^{\infty}$ sucesión de rectángulos acotados disjuntos tales que $M \subseteq \bigcup_{\nu=1}^{\infty} P_{\nu}$ y:

$$\sum_{\nu=1}^{\infty} \operatorname{Vol}(P_{\nu}) < \frac{\varepsilon}{\operatorname{Vol}(Q)}$$

Entonces, $\{P_{\nu} \times Q\}_{\nu=1}^{\infty}$ es una sucesión de rectángulos acotados en \mathbb{R}^{n+m} tales que $M \times Q \subseteq \bigcup_{\nu=1}^{\infty} P_{\nu} \times Q$, y

$$\sum_{\nu=1}^{\infty} \operatorname{Vol}(P_{\nu} \times Q) = \operatorname{Vol}(Q) \cdot \sum_{\nu=1}^{\infty} \operatorname{Vol}(P_{\nu})$$

$$< \operatorname{Vol}(Q) \cdot \frac{\varepsilon}{\operatorname{Vol}(Q)}$$

$$= \varepsilon$$

luego, el conjunto $M \times Q$ es despreciable, con lo cual el conjunto $M \times \mathbb{R}^m$ también lo es.

Definición 2.1.1

Si $f: \mathbb{R}^p \to \mathbb{K}$ y $g: \mathbb{R}^q \to \mathbb{K}$ son funciones, se define el **producto tensorial de** f y g como la

función: $f \otimes g : \mathbb{R}^{p+q} \to \mathbb{K}$, dada por:

$$f \otimes g(x,y) = f(x)g(y), \quad \forall (x,y) \in \mathbb{R}^{p+q}$$

Proposición 2.1.1

Si $f: \mathbb{R}^p \to \mathbb{K}$ y $g: \mathbb{R}^q \to \mathbb{K}$ son funciones medibles, entonces $f \otimes g: \mathbb{R}^{p+q} \to \mathbb{K}$ es medible.

Demostración:

Se probarán dos casos:

1. Afirmamos que el resultado es cierto para funciones escalonadas $\varphi : \mathbb{R}^p \to \mathbb{K}$ y $\psi : \mathbb{R}^q \to \mathbb{K}$ escritas canónicamente como:

$$\varphi = \sum_{i=1}^{r} c_i \chi_{P_i} \quad \text{y} \quad \psi = \sum_{j=1}^{s} d_j \chi_{Q_j}$$

donde los P_i y Q_j son rectángulos acotados disjuntos. En efecto, en este caso:

$$\varphi \otimes \psi(x,y) = \sum_{i=1}^{r} \sum_{j=1}^{s} c_i d_j \chi_{P_i}(x) \chi_{Q_j}(y)$$
$$= \sum_{i=1}^{r} \sum_{j=1}^{s} c_i d_j \chi_{P_i \times Q_j}(x,y)$$

la cual es una función escalonada en \mathbb{R}^{p+q} , luego medible.

2. En el caso general, se sabe que existen $\{\varphi_{\nu}\}_{\nu=1}^{\infty}$ en $\mathcal{E}(\mathbb{R}^{p},\mathbb{K})$ y $\{\psi_{\nu}\}_{\nu=1}^{\infty}$ en $\mathcal{E}(\mathbb{R}^{q},\mathbb{K})$ y conjuntos despreciables $M \subseteq \mathbb{R}^{p}$, $N \subseteq \mathbb{R}^{q}$ tales que:

$$\lim_{\nu \to \infty} \varphi_{\nu}(x) = f(x), \quad \forall x \in \mathbb{R}^p \backslash M$$

y,

$$\lim_{\nu \to \infty} \psi_{\nu}(x) = g(x), \quad \forall x \in \mathbb{R}^q \backslash N$$

luego, se tiene que:

$$\lim_{\nu \to \infty} \varphi_{\nu} \otimes \psi_{\nu}(x, y) = \lim_{\nu \to \infty} \varphi_{\nu}(x)\psi_{\nu}(y)$$
$$= f(x)g(y)$$

para todo $(x,y) \in \mathbb{R}^{p+q} \setminus [M \times \mathbb{R}^q \cup \mathbb{R}^p \times N]$. Por el lema anterior se tine que $M \times \mathbb{R}^q \cup \mathbb{R}^p \times N$ es despreciable en \mathbb{R}^{p+q} . Como $\varphi_{\nu} \otimes \psi_{\nu}$ son medibles para todo $\nu \in \mathbb{N}$, entonces $f \otimes g$ es medible.

Corolario 2.1.1

Si $f: \mathbb{R}^p \to \mathbb{K}$ es medible, entonces $F: \mathbb{R}^{p+q} \to \mathbb{K}$ dada como:

$$F(x,y) = f(x), \quad \forall (x,y) \in \mathbb{R}^{p+q}$$

es medible.

Demostración:

Es inmediata de la proposición anterior tomando a f y $g = \chi_{\mathbb{R}^q}$.

Corolario 2.1.2

Si $f \in \mathcal{L}_1(\mathbb{R}^p, \mathbb{K}), g \in \mathcal{L}_1(\mathbb{R}^q, \mathbb{K}), \text{ entonces } f \otimes g \in \mathcal{L}_1(\mathbb{R}^{p+q}, \mathbb{K}) \text{ y:}$

$$\int_{\mathbb{R}^{p+q}} f \otimes g = \int_{\mathbb{R}^p} f \cdot \int_{\mathbb{R}^q} g$$

Demostración:

Es inmediato del teorema de Tonelli.

2.2. Convolución

Definición 2.2.1

Sean $f, g : \mathbb{R}^n \to \mathbb{K}$ funciones medibles. La **convolución de** f **por** g se define como la función de \mathbb{R}^n en \mathbb{K} tal que:

$$f * g(x) = \int_{\mathbb{R}^n} f(y)g(x - y)dy$$

para toda $x \in \mathbb{R}^n$ tal que la integral exista.

Ejemplo 2.2.1

Considere la función:

$$f(x) = \begin{cases} 1 & \text{si} & 0 \le x \le 1\\ 0 & \text{en caso contrario} \end{cases}$$

У

$$g(x) = \begin{cases} x & \text{si} & 0 \le x \le 1\\ 0 & \text{en caso contrario} \end{cases}$$

entonces,

$$f * g(x) = \int_{-\infty}^{\infty} f(y)g(x - y)dx = \int_{0}^{\infty} f(y)g(x - y)dx$$

se tienen dos casos, por como están dadas las funciones f y g:

$$\int_{0}^{\infty} f(y)g(x-y)dx = \begin{cases} 0 & \text{si } 0 \le x \\ \int_{0}^{x} f(y)g(x-y)dy & \text{si } x > 0 \end{cases}$$

$$= \begin{cases} 0 & \text{si } 0 \le x \\ \int_{0}^{x} f(y)g(x-y)dy & \text{si } 0 < x < 1 \\ \int_{0}^{1} f(y)g(x-y)dy & \text{si } x \ge 1 \end{cases}$$

$$= \begin{cases} 0 & \text{si } 0 \le x \\ \int_{0}^{x} g(x-y)dy & \text{si } 0 < x < 1 \\ \int_{0}^{1} g(x-y)dy & \text{si } x \ge 1 \end{cases}$$

$$= \begin{cases} 0 & \text{si } 0 \le x \\ \int_{0}^{x} g(x-y)dy & \text{si } 0 < x < 1 \\ \int_{0}^{1} g(x-y)dy & \text{si } x \ge 1 \end{cases}$$

$$= \begin{cases} 0 & \text{si } 0 \le x \\ \int_{0}^{x} g(x-y)dy & \text{si } x \ge 1 \end{cases}$$

$$= \begin{cases} 0 & \text{si } 0 \le x \\ \int_{0}^{x} g(x-y)dy & \text{si } 0 < x < 1 \\ \int_{0}^{1} g(x-y)dy & \text{si } 1 \le x \le 2 \\ \int_{0}^{1} g(x-y)dy & \text{si } 1 \le x \le 2 \end{cases}$$

$$\Rightarrow \int_{0}^{\infty} f(y)g(x-y)dx = \begin{cases} 0 & \text{si} & 0 \le x \\ \int_{0}^{x} (x-y)dy & \text{si} & 0 < x < 1 \\ \int_{x-1}^{x} g(x-y)dy & \text{si} & 1 \le x \le 2 \\ 0 & \text{si} & x > 2 \end{cases}$$

$$= \begin{cases} 0 & \text{si} & 0 \le x \\ -\frac{(x-y)^{2}}{2} \Big|_{0}^{x} & \text{si} & 0 < x < 1 \\ \int_{x-1}^{1} (x-y)dy & \text{si} & 1 \le x \le 2 \\ 0 & \text{si} & x > 2 \end{cases}$$

$$= \begin{cases} 0 & \text{si} & 0 \le x \\ \frac{x^{2}}{2} & \text{si} & 0 < x < 1 \\ -\frac{(x-y)^{2}}{2} \Big|_{x-1}^{1} & \text{si} & 1 \le x \le 2 \\ 0 & \text{si} & x > 2 \end{cases}$$

$$= \begin{cases} 0 & \text{si} & 0 \le x \\ \frac{x^{2}}{2} & \text{si} & 0 < x < 1 \\ -\frac{(x-1)^{2}}{2} + \frac{1}{2} & \text{si} & 1 \le x \le 2 \\ 0 & \text{si} & x > 2 \end{cases}$$

$$= \begin{cases} 0 & \text{si} & 0 \le x \\ \frac{x^{2}}{2} & \text{si} & 0 < x < 1 \\ -\frac{(x-1)^{2}}{2} + \frac{1}{2} & \text{si} & 1 \le x \le 2 \\ 0 & \text{si} & x > 2 \end{cases}$$

$$= \begin{cases} 0 & \text{si} & 0 \le x \\ \frac{x^{2}}{2} & \text{si} & 0 < x < 1 \\ -\frac{x^{2}}{2} + x & \text{si} & 1 \le x \le 2 \\ 0 & \text{si} & x > 2 \end{cases}$$

Observación 2.2.1

Note que la función f * g es continua. (esto servirá para ver que la convolución obtenida es correcta).

Ejemplo 2.2.2

Recuerde la fórmula de Cauchy para la *n*-ésima integral reiterada:

$$\int_0^x dx_1 \int_0^{x_1} dx_2 \cdots \int_0^{x_{n-1}} f(x_n) dx_n = \frac{1}{(n-1)!} \int_0^x \frac{f(t)}{(x-t)^{n-1}} dt$$

la igualdad anterior es la misma que la de la función:

$$\int_0^x \frac{f(t)dt}{\Gamma(n)(x-t)^{n-1}} = f * g(x)$$

donde

$$g(x) = \begin{cases} 0 & \text{si} \quad x \le 0\\ \frac{1}{\Gamma(n)x^{n-1}} & \text{si} \quad x > 0 \end{cases}$$

Si $0 < \alpha \le 1$, definimos:

$$\int_0^x \frac{f(t)dt}{\Gamma(\alpha)(x-t)^{1-\alpha}} = I_0^{\alpha}[f](x)$$

llamada la integral fraccional de orden α de f en x. Por ejemplo:

$$I_0^{1/2}[t](x) = \frac{4}{3\sqrt{\pi}}x^{3/2}$$

$$I_0^{1/2} \left[\frac{4}{3\sqrt{\pi}} t^{3/2} \right] (x) = \frac{x^2}{2}$$

que concuerda con la integral normal de t.

Ahora estudiaremos algunas propiedades de este operador.

Proposición 2.2.1 (Asociatividad y conmutatividad de la convolución)

Sean $f, g, h : \mathbb{R}^n \to \mathbb{K}$ funciones medibles.

1. Si para algún $x \in \mathbb{R}^n$ existe la convolución f * g(x), entonces también existe g * f(x), y,

$$f * q(x) = q * f(x)$$

2. Si la función |f|*|g| está definida c.t.p. en \mathbb{R}^n y, para algún $x \in \mathbb{R}^n$ existe (|f|*|g|)*|h|(x), entonces existen (f*g)*h(x), f*(g*h)(x) y,

$$(f * g) * h(x) = f * (g * h)(x)$$

Demostración:

De (1): Se tiene que:

$$f * g(x) = \int_{\mathbb{R}^n} f(y)g(x - y)dy = \int_{\mathbb{R}^n} f(x - u)g(u)du = \int_{\mathbb{R}^n} g(u)f(x - u)du = g * f(x)$$

por el cambio de variable u = x - y, de Jacobiano $\left| (-1)^n \right| = 1$. En particular, esto garantiza la existencia de g * f(x).

De (2): Se demostrará primero que la función

$$(y,z) \mapsto f(z)g(y-z)h(x-y)$$

es medible como función de $\mathbb{R}^n \times \mathbb{R}^n$ en \mathbb{K} , para un $x \in \mathbb{R}^n$ fijo. Ya se sabe que $(y, z) \mapsto f(z)$ es medible (por una proposición sobre productos tensoriales).

Se afirma que la función $(y, z) \mapsto h(x - y)$ es medible. En efecto, $u \mapsto h(u)$ es medible. Por el cambio de variable u = x - y, la función $y \mapsto h(x - y)$ también es medible (por el teorema de cambio de variable). Luego, como con f, se sigue que $(y, z) \mapsto h(x - y)$ es medible.

También $(y,z)\mapsto g(y-z)$ es medible. Por productos tensoriales:

$$G(u,v) = g(u)$$

es medible. La función $\Phi(r,s)=(r-s,s)$ es un isomorfismo C^{∞} de $\mathbb{R}^n\times\mathbb{R}^n$ sobre $\mathbb{R}^n\times\mathbb{R}^n$. Por el teorema de cambio de variable se sigue que es medible la función:

$$G \circ \Phi(y, z) = g(y - z)$$

Por lo tanto, la función inicial es medible.

Puesto que para $x \in \mathbb{R}^n$:

$$\int_{\mathbb{R}^n} \big|h(x-y)\big|dy \int_{\mathbb{R}^n} \big|f(z)\big|\big|g(y-z)\big|dz = \int_{\mathbb{R}^n} \big|h(x-y)\big|\big(\big|f\big|*\big|g\big|\big)(y)dy = (\big|f\big|*\big|g\big|)*\big|h\big|(x) < \infty$$

(para los x en que esté definida la función), entonces por Tonelli la función $(y,z)\mapsto f(z)g(y-z)h(x-y)$ es integrable y, por Fubini:

$$(f * g) * h(x) = \int_{\mathbb{R}^n} h(x - y) dy \int_{\mathbb{R}^n} f(z)g(y - z) dz$$

además,

$$\int_{\mathbb{R}^n \times \mathbb{R}^n} h(x-y)f(z)g(y-z)dydz = \int_{\mathbb{R}^n} f(z)dx \int_{\mathbb{R}^n} h(x-y)g(y-z)dy$$
$$= \int_{\mathbb{R}^n} f(z)dz \int_{\mathbb{R}^n} h((x-z)-u)g(y-z)dy$$
$$= \int_{\mathbb{R}^n} f(z)(g*h)(x-z)dz$$
$$= f*(g*h)(x)$$

En particular, existen y son iguales f * (g * h)(x) y (f * g) * h(x).

Teorema 2.2.1

Si $f, g \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{K})$, se cumplen las afirmaciones siguientes.

- 1. Para casi toda $x \in \mathbb{R}^n$, existe f * g(x).
- 2. La función f * g, definida c.t.p. en \mathbb{R}^n , es integrable en \mathbb{R}^n .
- 3. $\int_{\mathbb{D}^n} f * g = \left(\int_{\mathbb{D}^n} f \right) \left(\int_{\mathbb{D}^n} g \right)$.
- 4. $\mathcal{N}_1(f * g) \leq \mathcal{N}_1(|f| * |g|) = \mathcal{N}_1(f)\mathcal{N}_1(g)$.

Demostración:

De (1): Ya se sabe que la función $(x,y) \mapsto f(y)g(x-y)$ es medible (ver la proposición anterior). Como

$$\int_{\mathbb{R}^n} \big| f(y) \big| dy \int_{\mathbb{R}^n} \big| g(x-y) \big| dx = \left(\int_{\mathbb{R}^n} \big| f(y) \big| dy \right) \left(\int_{\mathbb{R}^n} \big| g(z) \big| dz \right) < \infty$$

haciendo el cambio de variable x=y+z y por ser f,g integrables, entonces la función $(x,y)\mapsto f(y)g(x-y)$ es integrable en $\mathbb{R}^n\times\mathbb{R}^n$. Por el teorema de Fubini, la función $y\mapsto f(y)g(x-y)$ es integrable para casi toda $x\in\mathbb{R}^n$, lo cual prueba el primer inciso.

- De (2): Además, por Fubini nuevamente, la función $x \mapsto f * g(x) = \int_{\mathbb{R}^n} f(y)g(x-y)dy$ definida c.t.p. en \mathbb{R}^n también es integrable, lo cual prueba el segundo inciso.
 - De (3): Y, por Fubini:

$$\int_{\mathbb{R}^n} (f * g)(x) dx = \int_{\mathbb{R}^n \times \mathbb{R}^n} f(y) g(x - y) dx dy$$

$$= \int_{\mathbb{R}^n} f(y) dy \int_{\mathbb{R}^n} g(x - y) dx$$

$$= \int_{\mathbb{R}^n} f(y) dy \int_{\mathbb{R}^n} g(u) du$$

$$= \left(\int_{\mathbb{R}^n} f(y) dy \right) \left(\int_{\mathbb{R}^n} g(u) du \right)$$

lo cual prueba el tercer inciso.

De (4): Aplicando (3) a |f|, |g|, resulta que:

$$\mathcal{N}_{1}(f * g) = \int_{\mathbb{R}^{n}} |f * g|(x)dx$$

$$= \int_{\mathbb{R}^{n}} |\int_{\mathbb{R}^{n}} f(y)g(x - y)|dx$$

$$\leq \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} |f(y)g(x - y)|dx$$

$$= \int_{\mathbb{R}^{n}} (|f| * |g|)(x)dx$$

$$= \mathcal{N}_{1}(|f| * |g|)$$

$$= \left(\int_{\mathbb{R}^{n}} |f|\right) \left(\int_{\mathbb{R}^{n}} |g|\right)$$

$$= \mathcal{N}_{1}(f) \mathcal{N}_{1}(g)$$

lo cual prueba el cuarto inciso.

Observación 2.2.2

Se tiene lo siguiente:

1. La existencia y el valor de la convolución dependen solamente de las clases de equivalencia de f y g, se puede pues considerar la convolución como una aplicación de $L_1(\mathbb{R}^n, \mathbb{K}) \times L_1(\mathbb{R}^n, \mathbb{K})$ en $L_1(\mathbb{R}^n, \mathbb{K})$, tal que:

$$\mathcal{N}_1\left(f*g\right) \leq \mathcal{N}_1\left(f\right)\mathcal{N}_1\left(g\right)$$

2. Es claro que:

$$(\alpha_1 f_1 + \alpha_2 f_2) * g = \alpha_1 (f_1 * g) + \alpha_2 (f_2 * g)$$

у

$$f * (\beta_1 g_1 + \beta_2 g_2) = \beta_1 (f * g_1) + \beta (f * g_2)$$

o sea, que la convolución es un aplicación bilineal y asociativa.

Definición 2.2.2

Un **Álgebra de Banach** es un espacio de Banach $(E, \|\cdot\|)$ provisto de un producto $(x, y) \mapsto x \cdot y$. Este producto es bilineal y, además,

$$||x \cdot y|| \le ||x|| ||y||$$

si el producto es conmutativo, se dice que el álgebra de Banach es conmutativa.

Ejercicio 2.2.1

En un álgebra de Banach, la función $(x,y) \mapsto x \cdot y$ es continua del espacio normado producto $E \times E$ en E.

Demostración:

Sean $\varepsilon > 0$ y $(x_0, y_0) \in E \times E$. Tomemos $\delta = \min \left\{ \frac{\varepsilon}{2(\|x_0\|+1)}, \frac{\varepsilon}{2(\|y_0\|+1)}, 1 \right\} > 0$, entonces, si $(x, y) \in E \times E$ es tal que:

$$||(x_0, y_0) - (x, y)|| < \delta$$

entonces,

$$||x_0 - x|| < \delta$$
 y $||y_0 - y|| < \delta \Rightarrow ||y|| < 1 + ||y_0||$

luego, se tiene que:

$$||x_{0} \cdot y_{0} - x \cdot y|| = ||x_{0} \cdot y_{0} - x_{0} \cdot y + x_{0} \cdot y - x \cdot y||$$

$$\leq ||x_{0} \cdot (y_{0} - y)|| + ||(x_{0} - x) \cdot y||$$

$$\leq ||x_{0}|| ||y_{0} - y|| + ||x_{0} - x|| ||y||$$

$$< ||y_{0} - y||(||x_{0}|| + 1) + ||x_{0} - x||(||y_{0}|| + 1)$$

$$< \frac{\varepsilon}{2(||x_{0}|| + 1)}(||x_{0}|| + 1) + \frac{\varepsilon}{2(||y_{0}|| + 1)}(||y_{0}|| + 1)$$

$$= \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

por tanto, $(x, y) \mapsto x \cdot y$ es continua en $(x_0, y_0) \in E \times E$. Por ser este elemento de $E \times E$ arbitrario, se sigue que es continua en todo $E \times E$.

Ejemplo 2.2.3

Considere \mathbb{K} como espacio vectorial sobre sí mismo con la norma usual y, provisto de la multiplicación usual en \mathbb{K} , es un álgebra de Banach conmutativa con elemento uno.

Ejemplo 2.2.4

Sea S un conjunto no vacío. El espacio vectorial $\mathcal{B}(S,\mathbb{K})$ de las funciones acotadas de S en \mathbb{K} , provisto de la norma uniforme $\|\cdot\|_{\infty}$ y con la multiplicación definida puntualmente, es un álgebra de Banach conmutativa con elemento uno (la función constante de valor uno).

Ejemplo 2.2.5

Sea S un espacio métrico. El subespacio $\mathcal{BC}(S,\mathbb{K})$ de las funciones continuas y acotadas de S en \mathbb{K} es una sub-álgebra de Banach del ejemplo anterior con elemento uno.

Ejemplo 2.2.6

El subespacio $\mathcal{C}(\mathbb{R}^n, \mathbb{K})$ de $\mathcal{B}(\mathbb{R}^n, \mathbb{K})$ de las funciones continuas nulas en infinito es una sub-álgebra de Banach de $\mathcal{B}(\mathbb{R}^n, \mathbb{K})$ sin elemento uno.

Ejemplo 2.2.7

Sea E un espacio de Banach. El espacio normado $\operatorname{End}(E)$ de todos los endomorfismos continuos de E provisto del producto $(A,B)\mapsto A\circ B$ es un álgebra de Banach no conmutativa con elemento uno.

Ejemplo 2.2.8

 $L_1(\mathbb{R}^n, \mathbb{K})$ provisto de la convolución también es un álgebra de Banach conmutativa (¿con elemento identidad?).

2.3. Convolución en \mathcal{L}_{n}

Teorema 2.3.1 (Desigualdad de Hölder Generalizada)

Sean $p_1, ..., p_m$ números positivos tales que:

$$\frac{1}{p_1} + \frac{1}{p_2} + \dots + \frac{1}{p_m} = 1$$

entonces, si $f_1 \in \mathcal{L}_{p_1}(\mathbb{R}^n, \mathbb{K}), f_2 \in \mathcal{L}_{p_2}(\mathbb{R}^n, \mathbb{K}), ..., f_m \in \mathcal{L}_{p_m}(\mathbb{R}^n, \mathbb{K}),$ entonces $f_1 \cdot f_2 \cdots f_m \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{K}),$ y

$$\mathcal{N}_1\left(f_1\cdot f_2\cdots f_m\right) \leq \mathcal{N}_{p_1}\left(f_1\right)\mathcal{N}_{p_2}\left(f_2\right)\cdots\mathcal{N}_{p_m}\left(f_m\right)$$

Demostración:

Procederemos por inducción sobre $m \in \mathbb{N}$, $m \geq 2$. El caso n = 2 es inmediato de la desigualdad de Hölder clásica.

Suponga que el resultado se cumple para algún $m \in \mathbb{N}$, $m \geq 2$. Veamos que se cumple para m+1. En efecto, sean $f_1 \in \mathcal{L}_{p_1}(\mathbb{R}^n, \mathbb{K}), f_2 \in \mathcal{L}_{p_2}(\mathbb{R}^n, \mathbb{K}), ..., f_{m+1} \in \mathcal{L}_{p_{m+1}}(\mathbb{R}^n, \mathbb{K})$ con $p_1, ..., p_{m+1}$ números positivos tales que:

$$\frac{1}{p_1} + \frac{1}{p_2} + \dots + \frac{1}{p_{m+1}} = 1$$

$$\Rightarrow \frac{1}{p_{m+1}^*} = 1 - \frac{1}{p_1} + \frac{1}{p_2} + \dots + \frac{1}{p_m}$$

afirmamos que $f_1 \cdots f_m \in \mathcal{L}_{p_{m+1}^*}(\mathbb{R}^n, \mathbb{K})$. En efecto, observemos que:

$$\int_{\mathbb{R}^n} ||$$

Proposición 2.3.1

Si $f: \mathbb{R}^{p+q} \to \mathbb{K}$ es medible, se cumple lo siguiente:

- 1. Para casi toda $x \in \mathbb{R}^p$, la función $f_x(y) = f(x,y)$ de \mathbb{R}^q en \mathbb{K} es medible.
- 2. Si para casi toda $x \in \mathbb{R}^p$, la función f_x es integrable en \mathbb{R}^q , entonces:

$$g(x) = \int_{\mathbb{R}^q} f_x = \int_{R^q} f(x, y) dy$$

definida c.t.p. es medible.

Teorema 2.3.2 (Teorema de Young)

Sean $p, q \in [1, \infty[$ tales que $\frac{1}{p} + \frac{1}{q} > 1$ y defina r como sigue:

$$\frac{1}{r} = \frac{1}{p} + \frac{1}{q} - 1$$

Entonces, si $f \in \mathcal{L}_p(\mathbb{R}^n, \mathbb{K})$ y $g \in \mathcal{L}_q(\mathbb{R}^n, \mathbb{K})$, se cumple lo siguiente:

1. Para casi toda $x \in \mathbb{R}^n$, existe la convolución f * g, es decir:

$$f * g(x) = \int_{\mathbb{R}^n} f(y)g(x - y)dy$$

para casi toda $x \in \mathbb{R}^n$.

- 2. $f * g \in \mathcal{L}_r(\mathbb{R}^n, \mathbb{K})$.
- 3. $\mathcal{N}_r(f * g) \leq \mathcal{N}_p(f) \mathcal{N}_q(g)$.

Observemos primero que los números p, q, r satisfacen lo siguiente:

$$r > 1$$
, $\frac{1}{p} - \frac{1}{r} \ge 0$, $\frac{1}{q} - \frac{1}{r} \ge 0$

En efecto,

$$\frac{1}{r} = \frac{1}{p} + \frac{1}{q} - 1 \le 2 - 1 = 1 \Rightarrow r \ge 1$$

las otras dos son inmediatas, ya que:

$$\frac{1}{p} - \frac{1}{r} > 1 - \frac{1}{q} \ge 0$$
 y $\frac{1}{q} - \frac{1}{r} > 1 - \frac{1}{p} \ge 0$

Se verá que para casi toda $x \in \mathbb{R}^n$, la función $y \mapsto f(y)g(x-y)$ es integrable en \mathbb{R}^n . Por un teorema anterior, ya se sabe que dicha función es medible. Escriba

$$|f(y)||g(x-y)| = (|f(y)|^p |g(x-y)|^q)^{\frac{1}{r}} (|f(y)|^p)^{\frac{1}{p} - \frac{1}{r}} (|g(x-y)|^q)^{\frac{1}{q} - \frac{1}{r}}$$

Para probar el resultado, se probarán dos casos:

1. p>1 y q>1 En este caso, $\frac{1}{p}-\frac{1}{r}>0$ y $\frac{1}{q}-\frac{1}{r}>0$. Si

$$\frac{1}{\alpha} = \frac{1}{r}, \quad \frac{1}{\beta} = \frac{1}{p} - \frac{1}{r}, \quad \frac{1}{\gamma} = \frac{1}{q} - \frac{1}{r}$$

entonces,

$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{1}{p} + \frac{1}{q} - \frac{1}{r} = 1$$

La función $y \mapsto (|f(y)|^p |g(x-y)|^q)^{\frac{1}{r}}$ está en $\mathcal{L}_{\alpha}(\mathbb{R}^n, \mathbb{K})$ (pues, existe la convolución $|f|^p * |g|^q(x)$ para casi toda $x \in \mathbb{R}^n$). También, $y \mapsto (|f(y)|^p)^{\frac{1}{p}-\frac{1}{r}}$ está en $\mathcal{L}_{\beta}(\mathbb{R}^n, \mathbb{K})$ y $y \mapsto (|g(x-y)|^q)^{\frac{1}{q}-\frac{1}{r}}$ está en $\mathcal{L}_{\gamma}(\mathbb{R}^n, \mathbb{K})$.

Por Hölder generalizado, se tiene que $y \mapsto |f(x)||g(x-y)|$ es integrable, en particular, existe la convolución f * g, lo que prueba (1). Además,

$$|f * g|(x) \le \int_{\mathbb{R}^{n}} |f(y)| |g(x-y)| dy$$

$$\le \left[\int_{\mathbb{R}^{n}} |f(y)|^{p} |g(x-y)|^{q} dy \right]^{\frac{1}{r}} \left[\int_{\mathbb{R}^{n}} |f(y)|^{p} dy \right]^{\frac{1}{p} - \frac{1}{r}} \left[\int_{\mathbb{R}^{n}} |g(x-y)|^{q} dy \right]^{\frac{1}{q} - \frac{1}{r}}$$

$$= \left[|f|^{p} * |g|^{q}(x) \right]^{\frac{1}{r}} \mathcal{N}_{p} (f)^{1 - \frac{p}{r}} \mathcal{N}_{q} (g)^{1 - \frac{q}{r}}$$

luego,

$$|f * g|^r(x) \le \mathcal{N}_p(f)^{r-p} \mathcal{N}_q(g)^{r-q} (|f|^p * |g|^q(x))$$

por el teorema anterior (el cual asegura que $|f|^p * |g|^q$ es integrable), implica que $|f| * |g| \in \mathcal{L}_3(\mathbb{R}^n, \mathbb{K})$, lo cual prueba (2).

Finalmente,

$$\mathcal{N}_{r}(f * g)^{r} = \int_{\mathbb{R}^{n}} |f * g(x)|^{r} dx$$

$$\leq \mathcal{N}_{p}(f)^{r-q} \mathcal{N}_{q}(g)^{r-p} \int_{\mathbb{R}^{n}} |f|^{p} * |g|^{q}(x) dx$$

$$= \mathcal{N}_{p}(f)^{r-q} \mathcal{N}_{q}(g)^{r-p} \left(\int_{\mathbb{R}^{n}} |f|^{p} \right) \left(\int_{\mathbb{R}^{n}} |g|^{q} \right)$$

$$= \mathcal{N}_{p}(f)^{r-q} \mathcal{N}_{q}(g)^{r-p} \mathcal{N}_{p}(f)^{p} \mathcal{N}_{q}(g)^{q}$$

$$= (\mathcal{N}_{p}(f) \mathcal{N}_{q}(g))^{r}$$

$$\Rightarrow \mathcal{N}_{r}(f * g) \leq \mathcal{N}_{p}(f) \mathcal{N}_{q}(g)$$

2. p > 1, q = 1. En este caso, r = p, luego se sigue que:

$$\frac{1}{\alpha} = \frac{1}{r} = \frac{1}{p}, \quad \frac{1}{\beta} = \frac{1}{p} - \frac{1}{r} = 0, \quad \frac{1}{\gamma} = \frac{1}{q} - \frac{1}{r} = 1 - \frac{1}{r} = \frac{1}{p^*}$$

Luego, si $x \in \mathbb{R}^n$, se tiene que:

$$|f(y)||g(x-y)| = (|f(y)|^p |g(x-y)|^q)^{\frac{1}{r}} (|f(y)|^p)^{\frac{1}{p}-\frac{1}{r}} (|g(x-y)|^q)^{\frac{1}{q}-\frac{1}{r}}$$

$$= (|f(y)|^p |g(x-y)|)^{\frac{1}{p}} (|f(y)|^p)^0 (|g(x-y)|^q)^{\frac{1}{p^*}}$$

$$= (|f(y)|^p |g(x-y)|)^{\frac{1}{p}} (|g(x-y)|^q)^{\frac{1}{p^*}}$$

Como $y \mapsto (|f(y)|^p |g(x-y)|)^{\frac{1}{p}}$ está en $\mathcal{L}_p(\mathbb{R}, \mathbb{K})$ (pues existe $|f|^p * |g|(x)$ para casi toda $x \in \mathbb{R}^n$) y $y \mapsto (|g(x-y)|^q)^{\frac{1}{p^*}}$ está en $\mathcal{L}_{p^*}(\mathbb{R}^n, \mathbb{K})$, entonces por Hölder y la ecuación anterior, se sigue que $y \mapsto |f(y)g(x-y)|$ es integrable en \mathbb{R}^n , luego existe |f| * |g|(x) para casi toda $x \in \mathbb{R}^n$, lo que prueba (1). Además,

$$|f * g|(x) \le \int_{\mathbb{R}^{n}} |f(y)| |g(x - y)| dy$$

$$\le \left[\int_{\mathbb{R}^{n}} |f(y)|^{p} |g(x - y)| dy \right]^{\frac{1}{p}} \left[\int_{\mathbb{R}^{n}} |g(x - y)| dy \right]^{\frac{1}{p^{*}}}$$

$$= \left[|f|^{p} * |g|(x) \right]^{\frac{1}{p}} \mathcal{N}_{1} (g)^{\frac{1}{p^{*}} = 1 - \frac{1}{p^{*}}}$$

$$\Rightarrow |f * g|^{p}(x) \le \left[|f|^{p} * |g|(x) \right] \mathcal{N}_{1} (g)^{1-p}$$

luego, $f * g \in \mathcal{L}_r(\mathbb{R}^n, \mathbb{K})$ (recuerde que r = p) lo cual prueba (2), y

$$\int_{\mathbb{R}^{n}} |f * g|^{p}(x) dx \leq \mathcal{N}_{1}(g)^{p-1} \left(\int_{\mathbb{R}^{n}} |f|^{p} \right) \left(\int_{\mathbb{R}^{n}} |g| \right) \\
\leq \mathcal{N}_{1}(g)^{p-1} \left(\int_{\mathbb{R}^{n}} |f|^{p} \right) \mathcal{N}_{1}(q) \\
\leq \mathcal{N}_{p}(f)^{p} \mathcal{N}_{1}(g)^{p}$$

lo cual prueba (3).

El caso p=q=1 es el teorema anterior, y por la conmutatividad de la convolución, no es necesario probar el caso q=1, p>1.

Observación 2.3.1

El caso q = 1 y r = p es importante, dice: Si $f \in \mathcal{L}_p(\mathbb{R}^n, \mathbb{K})$ y $g \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{K})$ entonces, para casi toda $x \in \mathbb{R}^n$ existe $f * g(x) \in \mathcal{L}_p(\mathbb{R}^n, \mathbb{K})$ y $\mathcal{N}_p(f * g) \leq \mathcal{N}_p(f) \mathcal{N}_1(g)$.

Teorema 2.3.3

Fije $p \in [1, \infty]$. Si $f \in \mathcal{L}_p(\mathbb{R}^n, \mathbb{K})$ y $g \in \mathcal{L}_{p^*}(\mathbb{R}^n, \mathbb{K})$ entonces, para toda $x \in \mathbb{R}^n$ (no solamente para casi toda x) existe f * g(x), f * g es medible acotada y:

$$\sup_{x \in \mathbb{R}^n} \left| f * g(x) \right| \le \mathcal{N}_p(f) \, \mathcal{N}_{p^*}(g)$$

Demostración:

La función $y \mapsto f(y)$ está en $\mathcal{L}_p(\mathbb{R}^n, \mathbb{K})$ y, para cada $x \in \mathbb{R}^n$, $y \mapsto g(x-y)$ está en $\mathcal{L}_{p^*}(\mathbb{R}^n, \mathbb{K})$. Entonces, $y \mapsto f(y)g(x-y)$ es integrable, luego existe f * g(x) y, por Hölder:

$$\begin{aligned} \left| f * g(x) \right| &= \left| \int_{\mathbb{R}^n} f(y)g(x - y) dx \right| \\ &\leq \int_{\mathbb{R}^n} \left| f(y) \right| \left| g(x - y) \right| dy \\ &= \mathcal{N}_p \left(f \right) \left(\int_{\mathbb{R}^n} \left| g(x - y) \right|^{p^*} dy \right)^{1/p^*} \\ &= \mathcal{N}_p \left(f \right) \left(\int_{\mathbb{R}^n} \left| g(z) \right|^{p^*} dz \right)^{1/p^*} \text{ por T.C.V. con } z = x - y \\ &\leq \mathcal{N}_p \left(f \right) \mathcal{N}_{p^*} \left(g \right) \end{aligned}$$

Esto prueba que f * g es acotada y, tomando supremos:

$$\sup_{x \in \mathbb{R}^n} \left| f * g(x) \right| \le \mathcal{N}_p(f) \, \mathcal{N}_{p^*}(g)$$

además, por un resultado anterior, f * q es medible.

Observación 2.3.2

Recuerde que si $f: \mathbb{R}^n \to \mathbb{K}$ entonces, para cada $h \in \mathbb{R}^n$ la función $f_h: \mathbb{R}^n \to \mathbb{K}$ dada por $f_h(x) = f(x+h)$ para todo $x \in \mathbb{R}^n$ es medible.

Lema 2.3.1

Sea $p \in [1, \infty[$, $f \in \mathcal{L}_p(\mathbb{R}^n, \mathbb{K})$. Entonces, para cada $h \in \mathbb{R}^n$, $f_h \in \mathcal{L}_p(\mathbb{R}^n, \mathbb{K})$ y $\mathcal{N}_p(f_h) = \mathcal{N}_p(f)$. Además, la aplicación $h \mapsto f_h$ de \mathbb{R}^n en $\mathcal{L}_p(\mathbb{R}^n, \mathbb{K})$ es uniformemente continua en \mathbb{R}^n .

Demostración:

Se tienen que probar varias cosas:

1. Por el teorema de cambio de variable, para todo $h \in \mathbb{R}^n$, f_h es medible y

$$\int_{\mathbb{R}^n} |f(y)|^p dy = \int_{\mathbb{R}^n} |f(x+h)|^p dy = \int_{\mathbb{R}^n} |f_h(y)|^p dy$$

por tanto, $f_h \in \mathcal{L}_p(\mathbb{R}^n, \mathbb{K})$ y, más aún, $\mathcal{N}_p(f) = \mathcal{N}_p(f_h)$.

2. Se prueba que si $g \in \mathcal{C}_c(\mathbb{R}^n, \mathbb{K})$, entonces $h \mapsto g_h$ de \mathbb{R}^n en el subespacio denso $\mathcal{C}_c(\mathbb{R}^n, \mathbb{K})$ en $\mathcal{L}_p(\mathbb{R}^n, \mathbb{K})$ es uniformemente continua.

Sea $\varepsilon > 0$ y $K = \operatorname{Spt}(K)$. Entonces, K es compacto en \mathbb{R}^n . Existe un rectángulo acotado con medida positiva $P \subseteq \mathbb{R}^n$ tal que $K \subseteq \mathring{P}$.

Sea $\|\cdot\|$ una norma de \mathbb{R}^n y d la correspondiente distancia inducida. Entonces, $d(K, \mathbb{R}^n \setminus \mathring{P}) > 0$. Como g es uniformemente continua en \mathbb{R}^n (pues es continua en un conjunto compacto, a saber, \overline{P} y fuera de este conjunto es nula) existe $0 < \delta < d(K, \mathbb{R}^n \setminus \mathring{P})$ tal que:

$$x_1, y_1 \in \mathbb{R}^n, ||x_1 - y_1|| < \delta \Rightarrow |g(x_1) - g(y_1)| < \frac{\varepsilon}{(\text{Vol}(P))^{1/p}}$$

Sean $s, t \in \mathbb{R}^n$ tales que $||s - t|| < \delta$. Entonces,

$$\mathcal{N}_{p}\left(g_{s}-g_{t}\right) = \left[\int_{\mathbb{R}^{n}}\left|g(x+s)-g(x+t)\right|^{p}dx\right]^{1/p}$$
$$= \left[\int_{\mathbb{R}^{n}}\left|g(y+s-y)-g(y)\right|^{p}dy\right]^{1/p}$$

haciendo el cambio de variable x = y - t y, como para $y \in \mathbb{R}^n \setminus \mathring{P}$ se tiene que $y + s - k \notin K$ (pues, $||s - t|| < d(K, \mathbb{R}^n \setminus \mathring{P})$) luego, el integrando se anula fuera de P. Se sigue que:

$$\mathcal{N}_{p}(g_{s} - g_{t}) = \left[\int_{P} \left| g(y + s - y) - g(y) \right|^{p} dy \right]^{1/p}$$

$$= \left[\int_{P} \left| \frac{\varepsilon}{(\text{Vol}(P))^{1/p}} \right|^{p} dy \right]^{1/p}$$

$$= \left[\int_{P} \frac{\varepsilon^{p}}{(\text{Vol}(P))} dy \right]^{1/p}$$

$$= \varepsilon$$

lo que prueba el resultado.

3. Sea $\varepsilon > 0$. Existe $g \in \mathcal{C}_c(\mathbb{R}^n, \mathbb{K})$ tal que:

$$\mathcal{N}_p\left(f-g\right)z < \frac{\varepsilon}{3}$$

Por (2), existe $\delta > 0$ tal que:

$$s, t \in \mathbb{R}^n, \|s - t\| < \delta \Rightarrow \mathcal{N}_p \left(g_s - g_t\right) < \frac{\varepsilon}{3}$$

Dados $s, t \in \mathbb{R}^n$ tales que $||s - t|| < \delta$ se tiene que:

$$\mathcal{N}_{p}\left(f_{s} - f_{t}\right) \leq \mathcal{N}_{p}\left(f_{s} - g_{s}\right) + \mathcal{N}_{p}\left(g_{s} - g_{t}\right) + \mathcal{N}_{p}\left(f_{t} - g_{t}\right)$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$$

$$= \varepsilon$$

lo cual prueba la continuidad uniforme de $h \mapsto f_h$.

Proposición 2.3.2

Fije $p \in [1, \infty]$. Si $f \in \mathcal{L}_p(\mathbb{R}^n, \mathbb{K})$ y $g \in \mathcal{L}_{p^*}(\mathbb{R}^n, \mathbb{K})$, entonces f * g es uniformemente continua en \mathbb{R}^n .

Demostración:

Se puede suponer que, por ejemplo, $p^* < \infty$. Por Hölder, para todo $s, t \in \mathbb{R}^n$:

$$\begin{aligned} \left| f * g(s) - f * g(t) \right| &= \int_{\mathbb{R}^n} \left| f(y) [g(s-y) - g(t-y)] \right| dy \\ &\leq \int_{\mathbb{R}^n} \left| f(y) \right| \left| g(s-y) - g(t-y) \right| dy \\ &\leq \mathcal{N}_p(f) \left[\int_{\mathbb{R}^n} \left| g(s-y) - g(t-y) \right|^{p^*} dy \right]^{1/p^*} \\ &\leq \mathcal{N}_p(f) \left[\int_{\mathbb{R}^n} \left| g(s+x) - g(t+x) \right|^{p^*} dx \right]^{1/p^*} \\ &= \mathcal{N}_p(f) \mathcal{N}_{p^*}(g_s - g_t) \end{aligned}$$

haciendo el cambio de variable y=-x. Por la continuidad uniforme de $h\mapsto f_h$, se tiene que f*g también debe ser uniformemente continua. En efecto, sea $\varepsilon>0$, como $h\mapsto g_h$ es uniformemente continua, (usando el teorema anterior y ya que $p^*<\infty$), existe $\delta>0$ tal que si $s,t\in\mathbb{R}^n$ son tales que:

$$\|s - t\| < \delta \Rightarrow \mathcal{N}_{p^*} (g_s - g_t) < \frac{\varepsilon}{\mathcal{N}_p(f) + 1}$$

Luego,

$$\|s - t\| < \delta \Rightarrow |f * g(s) - f * g(t)| < (\mathcal{N}_p(f) + 1) \cdot \frac{\varepsilon}{\mathcal{N}_p(f) + 1} = \varepsilon$$

lo que prueba la continuidad uniforme de f * g.

Proposición 2.3.3

Fije $p \in]1, \infty[$. Si $f \in \mathcal{L}_p(\mathbb{R}^n)$ y $g \in \mathcal{L}_{p^*}(\mathbb{R}^n, \mathbb{K})$, entonces:

$$\lim_{x \to \infty} f * g(x) = 0$$

Demostración:

Fije una norma en \mathbb{R}^n , digamos $\|\cdot\|$. Sea $\varepsilon > 0$. Para cada M > 0 se tiene lo siguiente:

$$|f * g(x)| \leq \int_{\mathbb{R}^{n}} |f(y)| |g(x-y)| dy$$

$$\leq \int_{\|y\| \leq M} |f(y)| |g(x-y)| dy + \int_{\|y\| > M} |f(y)| |g(x-y)| dy$$

$$\leq \mathcal{N}_{p}(f) \left[\int_{\|y\| \leq M} |g(x-y)|^{p^{*}} dy \right]^{1/p^{*}} + \mathcal{N}_{p^{*}}(g) \left[\int_{\|y\| > M} |f(y)|^{p} dy \right]^{1/p}$$

para todo $x \in \mathbb{R}^n$. Por Lebesgue,

$$\lim_{M \to \infty} \int_{\|y\| > M} |f(y)|^p dy = 0$$

Entonces, existe M > 0 tal que

$$\left[\int_{\|y\|>M} \left|f(y)\right|^p dy\right]^{1/p} < \frac{\varepsilon}{1 + \mathcal{N}_p\left(f\right) + \mathcal{N}_{p^*}\left(g\right)}$$

Por el cambio de variable y = x - z, resulta lo siguiente:

$$\int_{\|u\| \le M} \left| g(x - y) \right|^{p^*} dy = \int_{\|x - z\| \le M} \left| g(z) \right|^{p^*} dz$$

Se sigue también del teorema de Lebesgue que

$$\lim_{R \to \infty} \int_{\|z\| > R} \left| g(z) \right|^{p^*} dz = 0$$

Entonces, para $\varepsilon > 0$ existe R > 0 tal que si ||z|| > R, entonces:

$$\int_{\left\|z\right\|>R}\left|g(z)\right|^{p^{*}}dz < \frac{\varepsilon}{1+\mathcal{N}_{p}\left(f\right)+\mathcal{N}_{p^{*}}\left(g\right)}$$

Ahora, como

$$\left\{z\in\mathbb{R}^n\Big|\|x-z\|\leq M\right\}\subseteq \left\{z\in\mathbb{R}^n\Big|\|x\|-M\leq \|z\|\right\}$$

tomando $x \in \mathbb{R}^n$ tal que ||x|| > R + M, se sigue que:

$$\int_{\|x-z\| \le M} \left| g(z) \right|^{p^*} dz \le \int_{\|z\| > R} \left| g(z) \right|^{p^*} dz < \frac{\varepsilon}{1 + \mathcal{N}_p\left(f\right) + \mathcal{N}_{p^*}\left(g\right)}$$

Por tanto, tomando ||x|| > R + M se sigue que:

$$\left| f * g(x) \right| \leq \left[\mathcal{N}_{p} \left(f \right) + \mathcal{N}_{p^{*}} \left(g \right) \right] \cdot \frac{\varepsilon}{1 + \mathcal{N}_{p} \left(f \right) + \mathcal{N}_{p^{*}} \left(g \right)}$$

$$< \varepsilon$$

por tanto:

$$\lim_{x \to \infty} f * g(x) = 0$$

Observación 2.3.3

El resultado anterior no se generaliza al caso p > 1 y $p^* = \infty$. En efecto, si $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{K})$ con $\int_{\mathbb{R}^n} f \neq 0$ y $g = \chi_{\mathbb{R}^n}$, entonces:

$$f * g(x) = \int_{\mathbb{R}^n} f(y)g(x - y)dy = \int_{\mathbb{R}^n} f(y)dy \neq 0$$

la cual no es nula en el infinito.

Proposición 2.3.4

Si $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{K})$ y $g \in \mathcal{L}_{\infty}(\mathbb{R}^n, \mathbb{K})$ es tal que

$$\lim_{y \to \infty} g(y) = 0$$

entonces,

$$\lim_{x \to \infty} f * g(x) = 0$$

Por Hölder tenemos lo siguiente:

$$\begin{aligned} |f * g(x)| &\leq \int_{\mathbb{R}^{n}} |f(x - y)| |g(y)| dy \\ &= \int_{\|y\| \leq M} |f(x - y)| |g(y)| dy + \int_{\|y\| > M} |f(x - y)| |g(y)| dy \\ &\leq \mathcal{N}_{\infty}(g) \int_{\|y\| \leq M} |f(x - y)| dy + \mathcal{N}_{1}(f) \sup_{\|y\| > M} |g(y)| \end{aligned}$$

Sea $\varepsilon > 0$. Existe M > 0 tal que:

$$\sup_{\left\|y\right\|>M}\left|g(y)\right|<\frac{\varepsilon}{1+\mathcal{N}_{1}\left(f\right)+\mathcal{N}_{\infty}\left(g\right)}$$

lo cual sucede, ya que $\lim_{y\to\infty} g(y) = 0$. Ahora, se tiene que:

$$\int_{\|y\| \le M} \left| f(x-y) \right| dy = \int_{\|x-z\| \le M} \left| f(z) \right| dz$$

Por Lebesgue, existe R > 0 tal que:

$$\int_{\|z\|>R} |f(z)| dz < \frac{\varepsilon}{1 + \mathcal{N}_1(f) + \mathcal{N}_{\infty}(g)}$$

si ||x|| > R + M, entocnes:

$$\int_{\|y\| \le M} |f(x - y)| dy \le \int_{\|z\| > R} |f(z)| dz$$

$$< \frac{\varepsilon}{1 + \mathcal{N}_1(f) + \mathcal{N}_\infty(g)}$$

Por tanto, si ||x|| > R + M:

$$\left| f * g(x) \right| \leq \left[\mathcal{N}_1 \left(f \right) + \mathcal{N}_{\infty} \left(g \right) \right] \cdot \frac{\varepsilon}{1 + \mathcal{N}_1 \left(f \right) + \mathcal{N}_{\infty} \left(g \right)}$$

$$< \varepsilon$$

lo cual prueba el resultado.

2.4. Convolución y diferenciación

Proposición 2.4.1

Sea $f: \mathbb{R}^n \to \mathbb{K}$ es integrable (está en \mathcal{L}_1) y $g: \mathbb{R}^n \to \mathbb{K}$ es de clase C^r de tal suerte que g y todas sus derivadas parciales hasta el orden r (incluive) son acotadas, entonces f * g es de clase C^r

Además, si $D=\partial_{\alpha_1}\cdots\partial_{\alpha_k}$ con $\alpha_1,\alpha_2,...,\alpha_k\in\{1,...,n\}$ y $k\in\{1,...,r\}$, se tiene:

$$D(f*g) = f*Dg$$

Como $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{K})$ y $g \in \mathcal{L}_{\infty}(\mathbb{R}^n, \mathbb{K})$, entonces existen f * g y f * Dg (pues, tanto g como Dg son acotadas) en todo punto de \mathbb{R}^n .

Se afirma que D(f * g) = f * Dg. Procederemos por inducción sobre k, basta probar que

$$\partial_{\alpha_k}(f * g) = (f * \partial_{\alpha_k})g$$

(si se puede para una derivada parcial, se puede continuar con las demás derivadas parciales para obtener el operador D). Se tiene que:

$$f * g(x) = \int_{\mathbb{R}^n} f(y)g(x - y)dy$$

у

$$(f * \partial_{\alpha_k} g)(x) = \int_{\mathbb{R}^n} f(y) \partial_{\alpha_k} g(x - y) dy$$

Si $M = \sup_{z \in \mathbb{R}^n} |\partial_{\alpha_k} g(z)|$, entonces

$$|f(y)\partial_{\alpha_k}g(x-y)| \le M|f(y)|, \quad \forall y \in \mathbb{R}^n$$

donde la función de la derecha es integrable e independiente de x. Por el teorema de derivación de funciones definidas por integrales, existe $\partial_{\alpha_k}(f*g)$ y su valor es:

$$\partial_{\alpha_k}(f * g) = \int_{\mathbb{R}^n} f(y) \partial_{\alpha_k} g(x - y) dy = (f * \partial_{\alpha_k} g)(x)$$

para todo $x \in \mathbb{R}^n$.

Definición 2.4.1

Se dice que una función $f: \mathbb{R}^n \to \mathbb{K}$ es **localmente integrable**, si f es integrable en todo compacto de \mathbb{R}^n . Se denota por $\mathcal{L}_1^{loc}(\mathbb{R}^n, \mathbb{K})$ al espacio vectorial de estas funciones.

Observación 2.4.1

Toda función integrable es localmente integrable, pero no viceversa. En particular, $\mathcal{C}(\mathbb{R}^n, \mathbb{K}) \subseteq \mathcal{L}_1^{loc}(\mathbb{R}^n, \mathbb{K})$ y, en particular, todos los polinomios están en $\mathcal{L}_1^{loc}(\mathbb{R}^n, \mathbb{K})$.

Podemos entonces definir al espacio $\mathcal{L}_p^{loc}(\mathbb{R}^n,\mathbb{K})$ de todas las funciones tales que su módulo a la p están en $\mathcal{L}_1^{loc}(\mathbb{R}^n,\mathbb{K})$. Pero, en particular se tendría que:

$$\mathcal{L}_p^{loc}(\mathbb{R}^n,\mathbb{K})\subseteq\mathcal{L}_1^{loc}(\mathbb{R}^n,\mathbb{K})$$

para todo $p \in [1, \infty[$.

Proposición 2.4.2

Si $f \in \mathcal{L}_1^{loc}(\mathbb{R}^n, \mathbb{K})$ y $g \in \mathcal{C}_c^r(\mathbb{R}^n, \mathbb{K})$, entonces f * g existe en todo punto de \mathbb{R}^n , es de clase C^r (g es de clase C^r) y para todo $D = \partial_{\alpha_1} \cdots \partial_{\alpha_k}$, con $\alpha_1, \alpha_2, ..., \alpha_k \in \{1, ..., n\}$ y $k \in \{1, ..., r\}$, se tiene:

$$D(f * g) = f * D(g)$$

Sea $K \subseteq \mathbb{R}^n$ el soporte de g (el cual es compacto). Para cada $x \in \mathbb{R}^n$, existe la integral:

$$f * g(x) = \int_{\mathbb{D}^n} f(y)g(x - y)dy$$

Esa integral es no cero si $x - y \in K$, es decir si $y \in x - K$. Por ende:

$$f * g(x) = \int_{x-K} f(y)g(x-y)dy$$

el conjunto x-K es compacto. Como f es localmente integrable, es integrable en x-K y g es medible acotada, luego está en $\mathcal{L}^{loc}_{\infty}(x-K,\mathbb{K})$.

Sea $\|\cdot\|$ una norma en \mathbb{R}^n . Entonces:

$$f * g(x) = \int_{\mathbb{R}^n} \underbrace{f(y)\chi_{x-K}(y)}_{\in \mathcal{L}_1(\mathbb{R}^n, \mathbb{K})} g(x-y) dy = \int_{\mathbb{R}^n} f_1(y)g(x-y) dy$$

no se puede usar directamente el teorema de derivación, ya que $f_1(y) = f(y)\chi_{x-K}(y)$ depende de x. Para ello, sea R > 0 y

$$B_R' = \left\{ x \in \mathbb{R}^n \middle| ||x|| \le R \right\}$$

Para cada $x \in B'_R$, $x - K \subseteq B'_R + (-K)$ y:

$$f * g(x) = \int_{\mathbb{R}^n} f(y)g(x - y)dy$$

$$= \int_{B'_R + (-K)} f(y)g(x - y)dy$$

$$= \int_{\mathbb{R}^n} \left[f(y)\chi_{B'_R + (-K)}(y) \right] g(x - y)dy$$

$$= \int_{\mathbb{R}^n} f_1(y)g(x - y)dy$$

$$= f_1 * g(x)$$

para todo $x \in B'_R$. Por la proposición anterior, $f_1 * g$ es de clase C^r en \mathbb{R}^n , luego f * g es de clase C^r en B'_R . Además, para cada $x \in B'_R$,

$$D(f * g)(x) = D(f_1 * g)(x) = (f_1 * Dg)(x)$$

У

$$(f_1 * g)(x) = \int_{\mathbb{R}^n} f_1(y) Dg(x - y) dy$$

$$= \int_{B'_R + (-K)} f(y) Dg(x - y) dy$$

$$= \int_{x - K} f(y) Dg(x - y) dy$$

$$= f * Dg(x)$$

$$\Rightarrow D(f * g)(x) = f * Dg(x)$$

pues, Dg es nula fuera de K. Como el R > 0 fue arbitrario, se sigue que el resultado anterior es válido para todo $x \in \mathbb{R}^n$.

Definición 2.4.2

Sea $p \in [1, \infty[$ y $f : \mathbb{R}^n \to \mathbb{K}$. Se dice que $f \in \mathcal{L}_p^{loc}(\mathbb{R}^n, \mathbb{K})$ si la reestricción de f a cada compacto $C \subseteq \mathbb{R}^n$ pertenece a $\mathcal{L}_p(C, \mathbb{K})$.

Observación 2.4.2

Es claro que si $f \in \mathcal{L}_p^{loc}(\mathbb{R}^n, \mathbb{K})$, entonces $f \in \mathcal{L}_1^{loc}(\mathbb{R}^n, \mathbb{K})$ (pues, para todo compacto $C \subseteq \mathbb{R}^n$, se tiene que $\mathcal{L}_p(C, \mathbb{K}) \subseteq \mathcal{L}_1(C, \mathbb{K})$). Y $\mathcal{L}_p(\mathbb{R}^n, \mathbb{K}) \subseteq \mathcal{L}_p^{loc}(\mathbb{R}^n, \mathbb{K})$

Así pues, el último resultado es válido con la hipótesis alternativa de que $f \in \mathcal{L}_p^{loc}(\mathbb{R}^n, \mathbb{K})$, en particular, de que $f \in \mathcal{L}_p^{loc}(\mathbb{R}^n, \mathbb{K})$

2.5. Sucesiones de Dirac

El álgebra de Banach $L_1(\mathbb{R}^n, \mathbb{C})$ no posee elemento uno, es decir, no existe $\delta \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{K})$ tal que

$$f * \delta = f$$
 c.t.p. en $\mathbb{R}^n \quad \forall f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{K})$

tampoco existe $\delta \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{K})$ tal que:

$$f * \delta = f$$
 c.t.p. en $\mathbb{R}^n \quad \forall f \in \mathcal{L}_p(\mathbb{R}^n, \mathbb{K})$

Demostración:

En efecto, suponga que exista tal $\delta > 0$. Sea $P \subseteq \mathbb{R}^n$ un rectángulo acotado tal que $\mathring{P} \neq \emptyset$. Se sabe que

$$\delta * \chi_P = \chi_P$$
 c.t.p. en \mathbb{R}^n

por un resultado anterior, $\delta * \chi_P$ es una función continua en \mathbb{R}^n ($\delta \in \mathcal{L}_1$ y $\chi_P \in \mathcal{L}_{\infty}$). Entonces:

$$\delta * \chi_p = \chi_P = 1$$
 c.t.p. en \mathbb{R}^n

como ambas son cintunas, entonces:

$$\delta * \chi_P(x) = \chi_P(x) = 1, \quad \forall x \in \mathring{P}$$

У

$$\delta * \chi_P(x) = \chi_P(x) = 0, \quad \forall x \in \mathbb{R}^n \backslash \overline{P}$$

esto contradeciría la continuidad de $\delta * \chi_P$ en \mathbb{R}^n .

Las sucesiones de Dirac hacen el papel del elemento uno.

Definición 2.5.1

Una sucesión $\{\rho_{\nu}\}_{\nu=1}^{\infty}$ se dice que es una **sucesión de Dirac** si satisface lo siguiente:

- I. $\rho_{\nu} \geq 0$ para todo $\nu \in \mathbb{N}$.
- II. $\int_{\mathbb{R}^n} \rho_{\nu} = 1$, para todo $\nu \in \mathbb{N}$.
- III. Para todo $\delta > 0$, $\lim_{\nu \to \infty} \int_{\|x\| < \delta} \rho_{\nu}(x) dx = 1$.

usar (ii) y (iii), (iii) es equivalente a:

IV. Para todo $\delta > 0$, $\lim_{\nu \to \infty} \int_{\|x\| > \delta} \rho_{\nu}(x) dx = 0$.

Esta definición es independiente de la norma elegida.

Ejemplo 2.5.1

Considere la sucesión de picos (especificar). Para todo $\nu \in \mathbb{N}$, ρ_{ν} es la función cuya gráfica es triangular de base $\left[\frac{1}{\nu}, -\frac{1}{\nu}\right]$ sobre el eje x y cuyo vértice está en el punto $(0, \nu)$ sobre el eje y y que es cero fuera del intervalo.

Entonces, $\{\rho_{\nu}\}$ es una sucesión de dirac en $\mathcal{L}_1(\mathbb{R},\mathbb{R})$.

Ejemplo 2.5.2

Sea $\delta: \mathbb{R}^n \to \mathbb{R}$ una función no negativa tal que $\int_{\mathbb{R}^n} \rho_{\nu} = 1$. Para cada $\nu \in \mathbb{N}$ se define:

$$\rho_{\nu}(x) = \nu^n \rho_{\nu}(\nu x), \quad \forall x \in \mathbb{R}^n$$

Entonces, $\{\rho_{\nu}\}$ es una sucesión de Dirac en $\mathcal{L}_1(\mathbb{R}^n, \mathbb{K})$.

Claramente cumple (i). Para (ii), veamos que:

$$\int_{\mathbb{R}^n} \rho_{\nu}(x) dx = \int_{\mathbb{R}^n} \nu^n \rho(\nu x) dx = \int_{\mathbb{R}^n} \rho(y) dy = 1$$

haciendo el cambio de variable $x = \frac{y}{\nu}$ de Jacobiano $\frac{1}{\nu^n}$.

De (iii). Por el mismo cambio de variable:

$$\int_{\|x\| > \delta} \rho_{\nu}(x) dx = \nu^n \int_{\|x\| > \delta} \rho(\nu x) dx = \int_{\|y\| > \nu\delta} \rho(y) dy \longrightarrow_{\nu \to \infty} 0$$

por el Teorema de Lebesgue. Luego, $\{\rho_{\nu}\}$ es una sucesión de Dirac.

2.5.1. Convolución de sucesiones de Dirac con funciones en \mathcal{L}_p , $1 \leq p < \infty$

Teorema 2.5.1 (Desigualdad de Jensen)

Sean $E \subseteq \mathbb{R}^n$ y $\rho: E \to \mathbb{R}$ tal que $\rho \ge 0$, para todo $x \in E$, ρ integrable en E y

$$\int_{E} \rho = 1$$

Sea $I \subseteq \mathbb{R}$ un intervalo en \mathbb{R} , $f: E \to I$ una función y $\varphi: I \to \mathbb{R}$ una función convexa. Si $f \cdot \rho$ y $(\varphi \circ f)\rho$ son integrables en E, entonces

$$\int_{E} f \cdot \rho \in I$$

у

$$\varphi\left(\int_{E} f \cdot \rho\right) \leq \int_{E} (\varphi \circ f) \rho$$

Demostración:

Se probarán dos cosas:

1. Veamos que $\int_E f \cdot \rho \in I$. En efecto, analicemos por casos:

I) Suponga que para algún $\alpha \in \mathbb{R}$, $f(x) \ge \alpha$, para todo $x \in E$ (en este caso, se tiene que I es cerrado por la izquierda). Entonces, $f(x)\rho(x) \ge \alpha\rho(x)$ para todo $x \in E$, luego

$$\int_{E} f \cdot \rho \ge \int_{E} \alpha \rho = \alpha$$

Suponga ahora que $f(x) > \alpha$, para todo $x \in E$ (en este caso, se tiene que I es abierto por la izquierda). Entonces

$$\int_{E} f \cdot \rho \ge \alpha$$

si $\int_E f \cdot \rho = \alpha$, debe suceder entonces que $\int_E (f \cdot \rho - \alpha \rho) = 0$, por lo cual $f \cdot \rho - \alpha \rho = 0$ c.t.p. en E, de donde $f(x) - \alpha = 0$ para casi toda $x \in S$, donde

$$S = \left\{ y \in E \middle| \rho(y) > 0 \right\}$$

Como m(S) > 0 ya que $\int_E \rho = \int_S \rho = 1$, entonces existe $x_0 \in E$ tal que $f(x_0) = \alpha$, lo cual contradice el hecho de que $f(x) > \alpha$ para toda $x \in E$. Por tanto:

$$\int_{E} f \cdot \rho > \alpha$$

II) De forma análoga al inciso anterior, se prueba que si $f(x) \leq \beta$ para toda $x \in E$, entonces $\int_E f \cdot \rho \leq \beta$ y, si $f(x) < \beta$ para toda $x \in E$, entonces $\int_E f \cdot \rho < \beta$

por los dos incisos anteriores, se concluye que $\int_E f \cdot \rho \in I$.

- 2. Defina $c = \int_E f \cdot \rho \in I$. Se tienen dos casos:
 - I) Suponga que $c \in \mathring{I}$. Como φ es convexa en I, si $s, t \in I$ son tales que s < c < t, entonces:

$$\frac{\varphi(c) - \varphi(s)}{c - s} \le \frac{\varphi(t) - \varphi(c)}{t - c}$$

sea $\alpha = \sup \left\{ \frac{\varphi(c) - \varphi(s)}{c - s} \middle| s < c \right\}$. Entonces si $s \in I$,

$$\frac{\varphi(c) - \varphi(s)}{c - s} \le \alpha, \quad \forall s < c$$

$$\Rightarrow \varphi(c) + \alpha \cdot (s - c) \le \varphi(s), \quad \forall s \le c$$

Como $t \in I$ es tal que c < t, entonces por ser α el supremo, debe suceder que

$$\alpha \leq \frac{\varphi(t) - \varphi(c)}{t - c}, \quad \forall t > c$$

$$\Rightarrow \varphi(c) + \alpha \cdot (t - c) \leq \varphi(t), \quad \forall t \geq c$$

Por tanto, de las dos desigualdades anteriores, se sigue que:

$$\varphi(c) + \alpha \cdot (u - c) \le \varphi(u), \quad \forall u \in I$$

como $f(x) \in I$ para todo $x \in E$, se sigue que:

$$\varphi(c) + \alpha \cdot (f(x) - c) \le \varphi(f(x)), \quad \forall x \in E$$

$$\Rightarrow \varphi(c)\rho(x) + \alpha \cdot (f(x) - c)\rho(x) \le \varphi(f(x))\rho(x), \quad \forall x \in E$$

de esta forma, integrando ambos lados:

$$\begin{split} \Rightarrow \int_E \varphi(c)\rho(x)dx + \int_E \alpha \cdot (f(x) - c)\rho(x)dx &\leq \int_E \varphi(f(x))\rho(x)dx \\ \Rightarrow \varphi(c) \int_E \rho(x)dx + \alpha \int_E (f(x) - c)\rho(x)dx &\leq \int_E \varphi(f(x))\rho(x)dx \\ \Rightarrow \varphi(c) \cdot 1 + \alpha \int_E f(x)\rho(x)dx - \alpha \cdot c \int_E \rho(x)dx &\leq \int_E \varphi(f(x))\rho(x)dx \\ \Rightarrow \varphi(\int_E f(x)\rho(x))dx + \alpha \int_E f(x)\rho(x)dx - \alpha \cdot \int_E f(x)\rho(x)dx &\leq \int_E \varphi(f(x))\rho(x)dx \\ \Rightarrow \varphi(\int_E f(x)\rho(x))dx &\leq \int_E \varphi(f(x))\rho(x)dx \end{split}$$

por lo tanto:

$$\varphi\left(\int_{E} f \cdot \rho\right) \leq \int_{E} (\varphi \circ f) \rho$$

que es lo que se quería probar.

II) Suponga que $a = \int_E f \cdot \rho$ (en este caso, la integral coincide con el valor del extremo izquierdo del intervalo I), luego $a \in I$.

Se tiene entonces que $f(x) \ge a$ para todo $x \in E$. Luego, $\int_E (f-a)\rho = 0$, por ende f(x) = a para casi todo $x \in S$, donde

$$S = \left\{ x \in E \middle| \rho(x) > 0 \right\}$$

así pues

$$\int_{E} (\varphi \circ f) \rho = \int_{S} (\varphi \circ f) \rho$$

$$= \int_{S} \varphi(a) \cdot \rho$$

$$= \varphi(a) \int_{S} \rho$$

$$= \varphi(a) \int_{E} \rho$$

$$= \varphi(a)$$

$$= \varphi \left(\int_{E} f \cdot \rho \right)$$

$$\Rightarrow \int_{E} (\varphi \circ f) \rho = \varphi \left(\int_{E} f \cdot \rho \right)$$

lo que prueba el resultado.

III) El caso $b = \int_E f \cdot \rho$ es análogo al anterior.

Por los incisos anteriores, se sigue el resultado de la prueba.

Observación 2.5.1

Note que $\int_E f \cdot \rho$ representa un promedio de los valores de f, por lo cual el hecho de que $a = \int_E f \cdot \rho$ sea un extremo del intervalo I implica que f debe tomar el valor constante a c.t.p. en E.

Ejemplo 2.5.3

Suponga que $I = [0, \infty[$ en el teorema anterior, luego f debe ser no negativa en E.

1. Si $\varphi(t) = t^p$, $t \ge 0$ con $p \ge 1$, la desigualdad de Jensen dice que

$$\left(\int_E f \cdot \rho\right)^p \le \int_E f^p \cdot \rho$$

siempre que las integrales existan. La conclusión persiste si f es medible no negativa y $\int_E f \cdot \rho < \infty$ y $\int_E f^p \cdot \rho \le \infty$.

2. Si $\alpha \in \mathbb{R}$:

$$e^{\alpha \int_E f \cdot \rho} \le \int_E e^{\alpha f} \rho$$

Igual que en caso anterior, si f es medible no negativa y $\int_E f \cdot \rho$, la conclusión persiste.

3. Si m(E) = 1 y ρ es tal que $\rho(x) = 1$ para todo $x \in E$, se tiene que:

$$\varphi\left(\int_{E} f(x)dx\right) \leq \int_{E} \varphi(f(x))dx$$

Teorema 2.5.2

Sean $1 \leq p \leq \infty$ y $f \in L_p(\mathbb{R}^n, \mathbb{K})$. Si $\{\rho_{\nu}\}_{\nu=1}^{\infty}$ es una sucesión de Dirac en $L_1(\mathbb{R}^n, \mathbb{K})$ entoces, $\{\rho_{\nu} * f\}_{\nu=1}^{\infty}$ converge a f en p-promedio.

Demostración:

Como $\{\rho_{\nu}\}_{\nu=1}^{\infty}$ es una sucesión de Dirac, entonces

$$f(x) = \int_{\mathbb{R}^n} f(x)\rho_{\nu}(y)dy, \quad \forall x \in \mathbb{R}^n$$

para todo $\nu \in \mathbb{N}$. Además,

$$f * \rho_{\nu}(x) = \int_{\mathbb{R}^n} f(y)\rho_{\nu}(x - y)dy = \int_{\mathbb{R}^n} f(x - y)\rho_{\nu}(y)dy, \quad \forall x \in \mathbb{R}^n$$

para todo $\nu \in \mathbb{N}$. Por ende:

$$(f - f * \rho_{\nu})(x) = \int_{\mathbb{R}^{n}} (f(x) - f(x - y)) \rho_{\nu}(y) dy$$

$$\Rightarrow \left| (f - f * \rho_{\nu})(x) \right|^{p} = \left| \int_{\mathbb{R}^{n}} (f(x) - f(x - y)) \rho_{\nu}(y) dy \right|^{p}$$

$$\leq \left[\int_{\mathbb{R}^{n}} \left| f(x) - f(x - y) \right| \rho_{\nu}(y) dy \right]^{p}$$

$$\leq \int_{\mathbb{R}^{n}} \left| f(x) - f(x - y) \right|^{p} \rho_{\nu}(y) dy, \quad \forall x \in \mathbb{R}^{n} \ y \ \forall \nu \in \mathbb{N}$$

donde la primera desigualdad es por desigualdad del triángulo, la segunda por desigualdad de Jensen, tomando $\varphi(t) = t^p$ para todo $t \geq 0$, tratando al segundo miembro como una función medible no negativa. Integrando respecto a $x \in \mathbb{R}^n$ se tiene que:

$$\mathcal{N}_{p} (f - f * \rho_{\nu})^{p} \leq \int_{\mathbb{R}^{n}} dx \int_{\mathbb{R}^{n}} \left| f(x) - f(x - y) \right|^{p} \rho_{\nu}(y) dy$$

$$= \int_{\mathbb{R}^{n}} \rho_{\nu}(y) dy \int_{\mathbb{R}^{n}} \left| f(x) - f(x - y) \right|^{p} dx$$

$$= \int_{\mathbb{R}^{n}} \rho_{\nu}(y) \mathcal{N}_{p} (f - f_{-y})^{p} dy, \quad \forall \nu \in \mathbb{N}$$

Donde $f_{-y}(x) = f(x-y)$ para todo $x \in \mathbb{R}^n$. Como la función $y \mapsto f_{-y}$ de \mathbb{R}^n en $\mathcal{L}_p(\mathbb{R}^n, \mathbb{K})$ es continua (pues es uniformemente continua), dado $\varepsilon > 0$ existe $\delta > 0$ tal que si $||y|| < \delta$ entonces

$$\mathcal{N}_p\left(f - f_{-y}\right) < \frac{\varepsilon}{2^{1/p}}$$

Luego,

$$\mathcal{N}_{p} (f - f * \rho_{\nu})^{p} \leq \int_{\mathbb{R}^{n}} \rho_{\nu}(y) \mathcal{N}_{p} (f - f_{-y})^{p} dy
= \int_{\|y\| < \delta} \rho_{\nu}(y) \mathcal{N}_{p} (f - f_{-y})^{p} dy + \int_{\delta \leq \|y\|} \rho_{\nu}(y) \mathcal{N}_{p} (f - f_{-y})^{p} dy
\leq \int_{\|y\| < \delta} \rho_{\nu}(y) \frac{\varepsilon^{p}}{2} dy + \int_{\delta \leq \|y\|} \rho_{\nu}(y) \mathcal{N}_{p} (f - f_{-y})^{p} dy
= \frac{\varepsilon^{p}}{2} \int_{\|y\| < \delta} \rho_{\nu}(y) dy + \int_{\delta \leq \|y\|} \rho_{\nu}(y) \mathcal{N}_{p} (f - f_{-y})^{p} dy
\leq \frac{\varepsilon^{p}}{2} + \int_{\delta \leq \|y\|} \rho_{\nu}(y) \mathcal{N}_{p} (f - f_{-y})^{p} dy, \quad \forall \nu \in \mathbb{N}$$

además,

$$\int_{\delta \leq ||y||} \rho_{\nu}(y) \mathcal{N}_{p} (f - f_{-y})^{p} dy \leq \int_{\delta \leq ||y||} \rho_{\nu}(y) \left[\mathcal{N}_{p} (f) + \mathcal{N}_{p} (f_{-y}) \right]^{p} dy$$

$$= \left[2 \mathcal{N}_{p} (f) \right]^{p} \int_{\delta \leq ||y||} \rho_{\nu}(y) dy$$

$$= 2^{p} \mathcal{N}_{p} (f)^{p} \int_{\delta \leq ||y||} \rho_{\nu}(y) dy, \quad \forall \nu \in \mathbb{N}$$

Como $\{\rho_{\nu}\}_{\nu=1}^{\infty}$ es sucesión de Dirac, por (iv) se tiene que existe $\nu_0 \in \mathbb{N}$ tal que si $\nu \geq \nu_0$, entonces:

$$2^{p} \mathcal{N}_{p}(f)^{p} \int_{\delta \leq ||y||} \rho_{\nu}(y) dy < \frac{\varepsilon^{p}}{2}$$

Por tanto, si $\nu \geq \nu_0$, se tiene que:

$$\Rightarrow \mathcal{N}_{p} (f - f * \rho_{\nu})^{p} \leq \frac{\varepsilon^{p}}{2} + 2^{p} \mathcal{N}_{p} (f)^{p} \int_{\delta \leq ||y||} \rho_{\nu}(y) dy$$

$$< \frac{\varepsilon^{p}}{2} + \frac{\varepsilon^{p}}{2}$$

$$= \varepsilon^{p}$$

$$\Rightarrow \mathcal{N}_{p} (f - f * \rho_{\nu}) < \varepsilon$$

por ende,

$$\lim_{\nu \to \infty} \mathcal{N}_p \left(f - f * \rho_{\nu} \right) = 0$$

lo que prueba el resultado.

Lema 2.5.1

Si $f.g: \mathbb{R}^n \to \mathbb{K}$ son funciones medibles de soporte compacto y f*g está definida c.t.p. en \mathbb{R}^n entonces, f*g tiene soporte compacto, más precisamente, existe un compacto en \mathbb{R}^n fuera del cual f*g existe y se anula.

Notemos que f * g(x) existe para algún $x \in \mathbb{R}^n$ si y sólo si existe y se cumple:

$$f + g(x) = \int_{\mathbb{R}^n} f(y)g(x - y)dy = \int_{\text{Spt}(f)} f(y)g(x - y)dy$$

Se afirma que si $x \notin \operatorname{Spt}(f) + \operatorname{Spt}(g)$ entonces existe la convolución f * g(x) y vale cero. En efecto, sea $x \notin \operatorname{Spt}(f) + \operatorname{Spt}(g)$ entonces, $x - y \notin \operatorname{Spt}(g)$ para todo $y \in \operatorname{Spt}(f)$. De donde:

$$\int_{\operatorname{Spt}(f)} f(y)g(x-y)dy = 0, \quad \forall x \notin \operatorname{Spt}(f) + \operatorname{Spt}(g)$$

Por ende, $\operatorname{Spt}(f*g) \subseteq \operatorname{Spt}(f) + \operatorname{Spt}(g)$. Note que $\operatorname{Spt}(f*g)$ es un cerrado en un compacto (ya que la suma de dos compactos es compacto), luego compacto para el cual f*g se anula.

Teorema 2.5.3

El $\mathcal{C}_c^{\infty}(\mathbb{R}^n, \mathbb{K})$ es denso en $\mathcal{L}_p(\mathbb{R}^n, \mathbb{K})$, para $1 \leq p < \infty$.

Demostración:

Sea $\varphi: \mathbb{R} \to \mathbb{R}$ la función tal que

$$t \mapsto \begin{cases} e^{-\frac{1}{1-t}} & \text{si} \quad t < 1\\ 0 & \text{si} \quad t > 1 \end{cases}$$

 φ es continua de clase C^{∞} en \mathbb{R} . Sea $\|\cdot\|$ la norma euclideana. Se define $\rho: \mathbb{R}^n \to \mathbb{R}$ como $\rho(x) = 0$ si $\|x\| \ge 1$ y:

$$\rho(x) = \frac{e^{-\frac{1}{1-\|x\|^2}}}{\int_{\|x\|<1} e^{-\frac{1}{1-\|y\|^2}} dy} \text{ si } \|x\| < 1$$

es decir, que $\rho(x) = c\varphi(\|x\|^2)$, para todo $x \in \mathbb{R}^n$ con c constante. Es claro que ρ es de clase C^{∞} en \mathbb{R}^n , no negativa y:

$$\operatorname{Spt}(\rho) = \left\{ x \in \mathbb{R}^n \middle| ||x|| \le 1 \right\}$$

y, su integral sobre \mathbb{R}^n es igual a 1. Considere la sucesión de Dirac $\{\rho_{\nu}\}_{\nu=1}^{\infty}$ en $\mathcal{L}_1(\mathbb{R}^n,\mathbb{K})$ da
ad por:

$$\rho_{\nu}(x) = \nu^{n} \rho(\nu x), \quad \forall x \in \mathbb{R}^{n}$$

Note que $\rho_{\nu} \in \mathcal{C}_{c}^{\infty}(\mathbb{R}^{n}, \mathbb{R})$, de hecho:

$$\operatorname{Spt}(\rho_{\nu}) = \left\{ x \in \mathbb{R}^n \middle| ||x|| \le \frac{1}{\nu} \right\}, \quad \forall \nu \in \mathbb{N}$$

Sea $f \in \mathcal{L}_p(\mathbb{R}^n, \mathbb{K})$ y tomemos $\varepsilon > 0$. Por la densidad de $\mathcal{E}(\mathbb{R}^n, \mathbb{K})$, en $\mathcal{L}_p(\mathbb{R}^n, \mathbb{K})$, existe $\psi \in \mathcal{E}(\mathbb{R}^n, \mathbb{K})$ tal que:

$$\mathcal{N}_p\left(f-\psi\right) < \frac{\varepsilon}{2}$$

Por el teorema anterior,

$$\lim_{\nu \to \infty} \mathcal{N}_p \left(\psi - \psi * \rho_{\nu} \right) = 0$$

Fije $\nu \in \mathbb{N}$ tal que $\mathcal{N}_p(\psi - \psi * \rho_{\nu}) < \frac{\varepsilon}{2}$. Entonces:

$$\mathcal{N}_{p}\left(f - \psi * \rho_{\nu}\right) \leq \mathcal{N}_{p}\left(f - \psi\right) + \mathcal{N}_{p}\left(\psi - \psi * \rho_{\nu}\right) < \varepsilon$$

Como $\psi \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{K})$ y ρ_{ν} es de clase C^{∞} de soporte comapcto, entonces $\psi * \rho_{\nu}$ es de clase C^{∞} . Además, por el teorema anterior, $\psi * \rho_{\nu}$ tiene soporte compacto ya que ambas funciones, ψ y ρ_{ν} lo tienen. Luego, se tiene el resultado.

2.6. Convolución de sucesiones de Dirac con funciones en \mathcal{L}_{∞}

Teorema 2.6.1 (Teorema de Heine)

Sean X y Y espacios métricos y $f: X \to Y$ continua en todo punto de un compacto $K \subseteq X$ (no basta suponer que $f \Big|_{K}$ es función continua). Entonces, para todo $\varepsilon > 0$ existe un $\delta > 0$ tal que

$$x \in K \ y \ y \in X, d(x, y) < \delta \Rightarrow \rho(f(x), f(y)) < \varepsilon$$

Demostración:

Ejercicio.

Teorema 2.6.2

Sea $f \in \mathcal{L}_{\infty}(\mathbb{R}^n, \mathbb{R})$ y $\{\rho_{\nu}\}_{\nu=1}^{\infty}$ una sucesión de Dirac en $\mathcal{L}_1(\mathbb{R}^n, \mathbb{K})$. Si f es continua en todo punto de un compacto K, entonces:

$$\lim_{\nu \to \infty} f * \rho_{\nu} = f \text{ uniformemente en } K$$

Demostración:

Se sabe que existe la convolución $f * \rho_{\nu}(x)$ para todo $x \in \mathbb{R}^n$ y, para todo $\nu \in \mathbb{N}$.

Se tiene:

$$|f(x) - f * \rho_{\nu}(x)| \le \int_{\mathbb{R}^n} |f(x) - f(x - y)| \rho_{\nu}(y) dy$$

sea $\varepsilon > 0$. Por el teorema de Heine, existe $\delta > 0$ tal que

$$x \in K, y \in \mathbb{R}^n, ||x - y|| < \delta \Rightarrow |f(x) - f(y)| < \frac{\varepsilon}{2}$$

Para $x \in K$, con este δ se tiene lo siguiente:

$$\begin{aligned} \left| f(x) - f * \rho_{\nu}(x) \right| &\leq \int_{\|y\| < \delta} \left| f(x) - f(x - y) \right| \rho_{\nu}(y) dy + \int_{\delta \leq \|y\|} \left| f(x) - f(x - y) \right| \rho_{\nu}(y) dy \\ &< \frac{\varepsilon}{2} + \int_{\delta \leq \|y\|} \left| f(x) - f(x - y) \right| \rho_{\nu}(y) dy \\ &< \frac{\varepsilon}{2} + \int_{\delta \leq \|y\|} \left(\left| f(x) \right| + \left| f(x - y) \right| \right) \rho_{\nu}(y) dy \\ &< \frac{\varepsilon}{2} + \left(\sup_{x \in K} \left| f(x) \right| + \mathcal{N}_{\infty}(f) \right) \int_{\delta \leq \|y\|} \rho_{\nu}(y) dy \end{aligned}$$

Por la condición (iv) de sucesiones de Dirac, existe $\nu_0 \in \mathbb{N}$ tal que:

$$\nu \ge \nu_0 \Rightarrow \left[\left(\sup_{x \in K} |f(x)| + \mathcal{N}_{\infty}(f) \right) \int_{\delta \le ||y||} \rho_{\nu}(y) dy \right] < \frac{\varepsilon}{2}$$

Por tanto, si $\nu \geq \nu_0$:

$$\sup_{x \in K} |f(x) - f * \rho_{\nu}(x)| \le \varepsilon$$

Luego, se tiene la convergencia uniforme en K.

Corolario 2.6.1

Bajo las mismas condiciones del teorema, si f es continua en un punto $x \in \mathbb{R}^n$, entonces

$$\lim_{\nu \to \infty} f * \rho_{\nu}(x) = f(x)$$

Demostración:

Es inmediato del teorema anterior tomando $K = \{x\}$.

Teorema 2.6.3

Si $f: \mathbb{R}^n \to \mathbb{K}$ es acotada y uniformemente continua en \mathbb{R}^n y $\{\rho_{\nu}\}_{\nu=1}^{\infty}$ es una sucesión de Dirac en $\mathcal{L}_1(\mathbb{R}^n, \mathbb{K})$, entonces

$$\lim_{\nu \to \infty} f * \rho_{\nu} = f \text{ uniformemente en } \mathbb{R}^n$$

También, si $f \in \mathcal{L}_{\infty}(\mathbb{R}^n, \mathbb{K})$ y es continua en un abierto Ω y $\{\rho_{\nu}\}_{\nu=1}^{\infty}$ es una sucesión de Dirac en $\mathcal{L}_1(\mathbb{R}^n, \mathbb{K})$, entonces

$$\lim_{\nu \to \infty} f * \rho_{\nu} = f \text{ uniformemente en } C$$

donde C es un conjunto compacto arbitrario contenido en Ω .

Demostración:

Analicemos la prueba del teorema anterior,

Teorema 2.6.4 (Teorema de Weierestrass)

Sea $\mathcal{C}([a,b],\mathbb{K})$ el espacio vectorial de funciones continuas de [a,b] en \mathbb{K} , provisto de la norma uniforme. Si $\mathcal{P}([a,b],\mathbb{K})$ es el espacio vectorial de todas las funciones polinómicas de [a,b] en \mathbb{K} entonces, $\mathcal{P}([a,b],\mathbb{K})$ es denso en $\mathcal{C}([a,b],\mathbb{K})$.

Demostración:

Hay que hacer varias cosas:

1. Basta probar el resultado para $\mathcal{C}([0,1],\mathbb{K})$. En efecto, suponga cierto el teorema para este caso. Sea $f:[a,b]\to\mathbb{K}$ una función continua. Sea $g:[0,1]\to\mathbb{K}$ dada por:

$$g(t) = f((1-t)a + tb)$$

entonces, $g \in \mathcal{C}([0,1],\mathbb{K})$. Por tanto, dado $\varepsilon > 0$ existe una función polinómica p tal que:

$$\sup_{t \in [0,1]} \left| g(t) - p(t) \right| < \varepsilon$$

o sea:

$$\sup_{x \in [a,b]} \left| f(x) - p\left(\frac{x-a}{b-a}\right) \right| < \varepsilon$$

tomando como polinomio a $q \in \mathcal{P}([a,b],\mathbb{K})$ tal que $q(x) = p(\frac{x-a}{b-a})$. Luego, se tiene el resultado.

2. Basta probar el resultado para el subespacio vectorial $\widetilde{\mathcal{C}}([0,1],\mathbb{K})$ de todas las funciones continuas de [0,1] en \mathbb{K} nulas en 0 y 1. En efecto, suponga el resultado probado en este caso. Sea $f \in \mathcal{C}([0,1],\mathbb{K})$. Note que la función siguiente:

$$x \mapsto f(x) - f(0) - x(f(1) - f(0))$$

pertenece a $\widetilde{\mathcal{C}}([0,1],\mathbb{K})$. Dado $\varepsilon>0$ existe una función polinómica p tal que

$$\sup_{x \in [0,1]} |f(x) - f(0) - x(f(1) - f(0) - p(x))| \le \varepsilon$$

tomemos al polinomio q(x) = p(x) - x(f(1) - f(0)) - f(0) es tal que $q \in \mathcal{P}([0, 1], \mathbb{K})$.

3. Resta probar que si $f \in \widetilde{\mathcal{C}}([0,1],\mathbb{K})$ y $\varepsilon>0$, existe una función polinómica p tal que:

$$\sup_{x \in [0,1]} |f(x) - p(x)| < \varepsilon$$

Sea $\rho_{\nu}: \mathbb{R} \to \mathbb{R}$ la función siguiente:

$$\rho_{\nu}(t) = \frac{(1 - t^2)^{\nu}}{\int_{-1}^{1} (1 - \theta^2)^{\nu} d\theta} \text{ si } t \in [-1, 1]$$

y $\rho_{\nu}(t) = 0$ si $t \in [-1,1]$, para todo $\nu \in \mathbb{N}$. Esta sucesión es llamada el **Núcleo de Landau**. Se afirma que $\{\rho_{\nu}\}_{\nu=\infty}^{\infty}$ es una sucesión de Dirac en $\mathcal{L}_{1}(\mathbb{R},\mathbb{R})$.

Claramente cumplen (i) y (ii). Se verá que se cumple (iv). Usando la paridad de ρ_{ν} , basta probar que si $0 < \delta < 1$, entonces:

$$\lim_{\nu \to \infty} \frac{\int_{\delta}^{1} (1 - t^{2})^{\nu} dt}{\int_{-1}^{1} (1 - \theta^{2})^{\nu} d\theta} = 0$$

Se tiene

$$\int_{-1}^{1} (1 - \theta^{2})^{\nu} d\theta = 2 \int_{0}^{1} (1 - \theta^{2})^{\nu} d\theta = 2 \int_{0}^{1} (1 - \theta)^{\nu} (1 + \theta)^{\nu} d\theta \ge 2 \int_{0}^{1} (1 - \theta)^{\nu} d\theta = \frac{2}{\nu + 1}$$

У

$$\int_{\delta}^{1} (1 - t^2)^{\nu} dt \le (1 - \delta^2)^{\nu} \int_{\delta}^{1} dy = (1 - \delta^2)^{\nu} (1 - \delta)$$

por tanto,

$$\frac{\int_{\delta}^{1} (1 - t^{2})^{\nu} dt}{\int_{-1}^{1} (1 - \theta^{2})^{\nu} d\theta} \le \frac{\nu + 1}{2} (1 - \delta)(1 - \delta^{2})^{\nu}$$

donde el lado de la derecha tiende a cero si $\nu \to \infty$. Con ello, se tiene el resultado.

Ahora, si \widetilde{f} es la ampliación canónica de $f \in \widetilde{\mathcal{C}}([0,1],\mathbb{K})$ entonces, es uniformemente continua en \mathbb{R} y acotada. Luego, por el teorema anterior, la convolución converge a \widetilde{f} en el compacto [0,1].

Para $x \in [0, 1],$

$$\rho_{\nu} * f(x) = \int_{0}^{1} f(t)\rho_{\nu}(x-t)dt$$

como $x - t \in [-1,1]$ para todo $t \in [0,1]$, entonces:

$$\rho_{\nu} * f(x) = \int_{0}^{1} f(t) \frac{(1 - (x - t)^{2})^{\nu}}{\int_{-1}^{1} (1 - \theta^{2})^{\nu} d\theta} dt$$
$$= \int_{0}^{1} f(t) c_{\nu} (1 - (x - t)^{2})^{\nu} dt$$

donde $c_{\nu} = \frac{1}{\int_{-1}^{1} (1-\theta^2)}$. Siendo claramente dicha integral anterior un polinomio en la variable x de grado 2ν , lo cual concluye la demostración.

2.7. Los espacios \mathcal{L}_p^T de funciones periódicas

Definición 2.7.1

Se dice que una función $f: \mathbb{R} \to \mathbb{K}$ es **periódica con período** T > 0, si

$$f(x+T) = f(x), \quad \forall x \in \mathbb{R}$$

En tal caso, tal función queda completamente determinada por su reestricción a cualquier intervalo de longitud T, es decir de la forma: $[\alpha, \alpha + T]$, siendo $\alpha \in \mathbb{R}$.

Observación 2.7.1

Sea $f: \mathbb{R} \to \mathbb{K}$ una función periódica. Entonces

- 1. f es medible si y sólo si $f\chi_{[\alpha,\alpha+T]}$ para algún $\alpha \in \mathbb{R}$.
- 2. Si f es integrable en todo intervalo de la forma $[\alpha, \alpha + T]$, entonces lo es en todo intervalo de esa forma, y sus integrales son iguales en todo $[\alpha, \alpha + T]$.

Demostración:

De (2): En efecto, ya se tiene que f es integrable en todo intervalo de la forma $[\alpha, \alpha + T]$ (por traslación). Veamos que la integral es la misma. Para ello, se probará que:

$$\int_0^T f = \int_a^{a+T} f$$

en efecto, veamos que si $a \in \mathbb{R}$, entonces debe existir un entero k tal que:

$$\alpha \le kT < \alpha + T$$

Luego:

$$\int_{a}^{a+T} f(x)dx = \int_{a}^{kT} f(x)dx + \int_{kT}^{a+T} f(x)dx$$

$$= \int_{a+T}^{kT+T} f(y-T)dy + \int_{kT}^{a+T} f(x)dx$$

$$= \int_{a+T}^{(k+1)T} f(y)dy + \int_{kT}^{a+T} f(x)dx$$

$$= \int_{kT}^{(k+1)T} f(x)dx$$

$$= \int_{0}^{T} f(x)dx$$

Definición 2.7.2

Sea $1 \leq p < \infty$. Se denota por \mathcal{L}_p^T al espacio vectorial de todas las funciones periódicas $f : \mathbb{R} \to \mathbb{K}$ periódicas de período T > 0 tal que $\left| f \right|^p$ es integrable en $\left[-\frac{T}{2}, \frac{T}{2} \right[$.

Si $f \in \mathcal{L}_p^T$, se define

$$\mathcal{N}_{p}\left(f\right) = \left[\int_{-rac{T}{2}}^{rac{T}{2}} \left|f\right|^{p}\right]^{1/p}$$

Se denota por \mathcal{L}_{∞}^T al espacio vectorial de todas las funciones $f:\mathbb{R}\to\mathbb{K}$ periódicas de período

T>0 tales que f es medible y esencialmente acotada en \mathbb{R} , equivalentemente en $\left[-\frac{T}{2},\frac{T}{2}\right]$. Si $f\in\mathcal{L}_{\infty}^{T}$, se define

$$\mathcal{N}_{\infty}\left(f\right) = \operatorname{supesc}_{\left[-\frac{T}{2}, \frac{T}{2}\right]} |f|$$

Observación 2.7.2

Sea $1 \leq p < \infty$. La aplicación que a cada $f \in \mathcal{L}_p^T$ le asigna su reestricción a $\left[-\frac{T}{2}, \frac{T}{2}\right[$, es un isomorfismo de \mathcal{L}_p^T sobre $\mathcal{L}_p(\left[-\frac{T}{2}, \frac{T}{2}\right[, \mathbb{K})$. A través de este isomorfismo se verifica de inmediato que $\mathcal{N}_p(\cdot)$ es una seminorma sobre \mathcal{L}_p^T , convirtiendo a este isomorfismo en una isometría.

Sea L_p^T el espacio normado asociado a \mathcal{L}_p^T , donde $\mathcal{N}_p\left(\cdot\right)$ denota la norma correspondiente. La isometría anterior induce una isometría entre L_p^T sobre $L_p\left(\left[-\frac{T}{2},\frac{T}{2}\right[,\mathbb{K})\right)$.

Se concluye de lo anterior lo siguiente:

- 1. L_p^T es un espacio de Banach.
- 2. L_2^T es un espacio Hilbertiano.

Ya que la clase de equivalencia de una función $f \in \mathcal{L}_p^T$ depende solamente de la reestricción de f a $\left[-\frac{T}{2}, \frac{T}{2}\right[$ o $\left[-\frac{T}{2}, \frac{T}{2}\right[$ o $\left[-\frac{T}{2}, \frac{T}{2}\right]$, L_p^T se puede identificar también con $L_p(S, \mathbb{K})$, donde S es uno de los conjuntos anteriores.

Como $]-\frac{T}{2},\frac{T}{2}[$ tiene medida finita, entonces si q>p de forma inmediata se tiene que $L_q^T\subseteq L_p^T$. En particular, $L_p^T\subseteq L_1^T$, para todo $p\in[1,\infty]$.

Definición 2.7.3

Se denota por \mathcal{E}^T al espacio vectorial de todas las funciones periódicas con período T > 0 tales que su reestricción a $\left] - \frac{T}{2}, \frac{T}{2} \right[$ es escalonada en $\left] - \frac{T}{2}, \frac{T}{2} \right[$.

También, se denota por \mathcal{C}^T al espacio vectorial de funciones $f: \mathbb{R} \to \mathbb{K}$ periódicas de período T > 0 que son continuas en \mathbb{R} , equivalentemente en $\left[-\frac{T}{2}, \frac{T}{2}\right]$

Observación 2.7.3

Recuerde que una función $\varphi: \Omega \to \mathbb{K}$ donde $\Omega \subseteq \mathbb{R}^n$ es un conjunto abierto, se dice que es escalonada en el abierto Ω , si es de la forma:

$$\varphi = \sum_{k=1}^{r} \alpha_k \chi_{A_k}$$

donde $\alpha_1, ..., \alpha_r \in \mathbb{K}$ y $A_1, ..., A_r \subseteq \mathbb{R}^n$ son rectángulos acotados disjuntos tales que:

$$\overline{A_r} \subseteq \Omega, \forall k \in [1, r]$$

Lema 2.7.1

Toda función en \mathcal{C}^T es uniformemente continua en \mathbb{R} .

Demostración:

Sea $f \in \mathcal{C}^T$ es continua en [0,3T], dado $\varepsilon > 0$ existe $\delta > 0$, donde $0 < \delta < T$ con la siguiente propiedad:

$$x, y \in [0, 3T] \text{ y } |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$$

sean ahora $x, y \in \mathbb{R}$ tal que $|x - y| < \delta$, es decir que

$$x - \delta < y < x + \delta$$

de donde:

$$x - T < y < x + T$$

existe un $k \in \mathbb{Z}$ tal que:

$$kT \le x < (k+1)T$$

entonces,

$$(k-1)T < y < (k+2)T$$

Luego,

$$0 \le y - (k-1)T \le 3T$$

у

$$0 \le x - (k-1)T \le 2T < 3T$$

luego, x - (k-1)T, $y - (k-1)T \in [0, 3T]$ y, además:

$$|x - (k-1)T - (y - (k-1)T)| = |x - y| < \delta$$

Entonces,

$$|f(x) - f(y)| = |f(x - (k-1)T) - f(y - (k-1)T)| < \varepsilon$$

Por tanto, f es uniformemente continua.

Teorema 2.7.1

Sean $1 \leq p < \infty$ y $\Omega \subseteq \mathbb{R}^n$ abierto. Entonces, el espacio vectorial $\mathcal{E}(\Omega, \mathbb{K})$ (funciones escalonadas en el abierto Ω) es denso en $L_p(\Omega, \mathbb{K})$.

Demostración:

Sea $f \in \mathcal{L}_p(\Omega, \mathbb{K})$ y $\varepsilon > 0$. Como $\widetilde{f} \in \mathcal{L}_p(\mathbb{R}^n, \mathbb{K})$ y $\mathcal{E}(\mathbb{R}^n, \mathbb{K})$ es denso en $L_p(\mathbb{R}^n, \mathbb{K})$, existe $\psi \in \mathcal{E}(\mathbb{R}^n, \mathbb{K})$ tal que:

$$\mathcal{N}_p\left(\widetilde{f} - \psi\right) < \frac{\varepsilon}{2}$$

Escriba a Ω como unión a lo sumo numerable de cubos disjuntos C_{ν} tales que $\overline{C_{\nu}} \subseteq \Omega$, para toda $\nu \in \mathbb{N}$, y defina

$$Q_k = \bigcup_{\nu=1}^k C_{\nu}, \quad \forall k \in \mathbb{N}$$

Observe que Q_k es un conjunto elemental tal que $\overline{Q_k} \subseteq \Omega$. Se tiene

$$\lim_{k \to \infty} \widetilde{f} \chi_{Q_k} = \widetilde{f}$$

puntualmente en \mathbb{R}^n , y $|\widetilde{f}\xi_{Q_k}| \leq |f|$, para todo $k \in \mathbb{N}$, siendo $|\widetilde{f}| \in \mathcal{L}_p(\mathbb{R}^n, \mathbb{K})$ independiente de k. Por el teorema de Lebesgue en $L_p(\mathbb{R}^n, \mathbb{K})$

$$\lim_{k \to \infty} \mathcal{N}_p \left(\widetilde{f} - \widetilde{f} \chi_{Q_k} \right) = 0$$

Fijemos $k \in \mathbb{N}$ tal que:

$$\mathcal{N}_p\left(\widetilde{f} - \widetilde{f}\chi_{Q_k}\right) < \frac{\varepsilon}{2}$$

Como

$$\mathcal{N}_{p}\left(\widetilde{f}\chi_{Q_{k}} - \psi\chi_{Q_{k}}\right) = \left[\int_{\mathbb{R}^{n}} \chi_{Q_{k}} |\widetilde{f} - \psi|^{p}\right]^{1/p}$$

$$\leq \left[\int_{\mathbb{R}^{n}} |\widetilde{f} - \psi|^{p}\right]^{1/p}$$

$$= \mathcal{N}_{p}\left(\widetilde{f} - \psi\right)$$

$$< \frac{\varepsilon}{2}$$

Entonces,

$$\mathcal{N}_p\left(f - \psi \chi_{Q_k}\right) < \varepsilon$$

La demostración concluye porque la reestricción φ de $\psi\chi_{Q_k}$ a Ω es una función continua escalonada en el abierto Ω .

Teorema 2.7.2

Sean $1 \leq p < \infty$ y $\Omega \subseteq \mathbb{R}^n$ un abierto. Entonces, el espacio vectorial $\mathcal{C}_c^{\infty}(\Omega, \mathbb{K})$ de funciones de clase C^{∞} de Ω en \mathbb{K} de soporte compacto contenido en Ω , es denso en $L_p(\Omega, \mathbb{K})$.

Demostración:

Sea $\varphi: \mathbb{R} \to \mathbb{R}$ la función

$$\varphi(t) = \begin{cases} e^{-\frac{1}{1-t}} & \text{si} \quad t < 1\\ 0 & \text{si} \quad t \ge 1 \end{cases}$$

entonces, φ es de clase C^{∞} en \mathbb{R} . Sea $\|\cdot\|$ la norma euclideana en \mathbb{R}^n . Defina $\rho: \mathbb{R}^n \to \mathbb{R}$ como $\rho(x) = 0$ si $\|x\| \ge 1$ y

$$\rho(x) = \frac{e^{-\frac{1}{1-\|x\|^2}}}{\int_{\|x\| \le 1} e^{-\frac{1}{1-\|y\|^2}} dy}, \quad \text{si } \|x\| < 1$$

Es decir, $\rho(x) = c \cdot \varphi(\|x\|^2)$, para todo $x \in \mathbb{R}^n$ (con constante). Entonces, ρ es de clase C^{∞} en \mathbb{R}^n , no negativa, y

$$Spt(\rho) = \left\{ x \in \mathbb{R}^n \middle| ||x|| \le 1 \right\}$$

y, la integral de ρ sobre \mathbb{R}^n es 1.

Considere la sucesión de Dirac $\{\rho_{\nu}\}_{\nu=1}^{\infty}$ dada por

$$\rho_{\nu}(x) = \nu^{n} \rho(\nu x), \quad \forall x \in \mathbb{R}^{n} \ y \ \forall \nu \in \mathbb{N}$$

Note que $\rho_{\nu} \in \mathcal{C}_{c}^{\infty}(\mathbb{R}^{n}, \mathbb{R})$. De hecho,

$$\operatorname{Spt}(\rho_{\nu}) = \left\{ x \in \mathbb{R}^n \middle| ||x|| \le \frac{1}{\nu} \right\} = B_{\frac{1}{\nu}}, \quad \forall \nu \in \mathbb{N}$$

Sea $\varepsilon > 0$ y $f \in \mathcal{L}_p(\Omega, \mathbb{K})$. Por el resultado anterior, existe $\psi \in \mathcal{E}(\Omega, \mathbb{K})$ tal que

$$\mathcal{N}_p\left(f-\psi\right) < \frac{\varepsilon}{2}$$

Por un resultado anterior

$$\lim_{\nu \to \infty} \mathcal{N}_p \left(\widetilde{\psi} - \widetilde{\psi} * \rho_{\nu} \right) = 0$$

Existe $\nu_0 \in \mathbb{N}$ tal que

$$\mathcal{N}_p\left(\widetilde{\psi} - \widetilde{\psi} * \rho_{\nu}\right) < \frac{\varepsilon}{2}, \quad \forall \nu \ge \nu_0$$

Note que

$$\operatorname{Spt}\left(\widetilde{\psi} * \rho_{\nu}\right) \subseteq \operatorname{Spt}\left(\widetilde{\psi}\right) + \operatorname{Spt}\left(\rho_{\nu}\right) \subseteq \operatorname{Spt}\left(\psi\right) + B_{\frac{1}{\nu}} = \left\{x \in \mathbb{R}^{n} \middle| d(x, K) \leq \frac{1}{\nu}\right\}, \quad \forall \nu \in \mathbb{N}$$

donde $K = \operatorname{Spt}(\psi)$. Como K es compacto contenido en el abierto Ω , exsite $N \geq \nu_0$ tal que

$$\operatorname{Spt}(\psi) + B_{\frac{1}{N}} \subseteq \Omega$$

Sea φ la restricción de $\rho_n * \widetilde{\psi}$ a Ω . Entonces, φ es de clase C^{∞} de soporte compacto contenido en Ω . Además,

$$\mathcal{N}_{p}\left(f-\varphi\right) \leq \mathcal{N}_{p}\left(f-\psi\right) + \mathcal{N}_{p}\left(\psi-\varphi\right) < \frac{\varepsilon}{2} + \mathcal{N}_{p}\left(\widetilde{\psi}+\widetilde{\psi}*\rho_{N}\right) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Teorema 2.7.3

Si $1 \leq p < \infty$, entonces $R\mathcal{E}^T$ y \mathcal{C}^T son subespacios densos de \mathcal{L}_p^T .

Demostración:

1. Sean $f \in \mathcal{L}_p^T$ y $\varepsilon > 0$. Sea f_1 la reestricción de f al intervalo $\left] - \frac{T}{2}, \frac{T}{2} \right[$. Existe entonces $\varphi \in \mathcal{E}(\left] - \frac{T}{2}, \frac{T}{2} \right[, \mathbb{K})$ tal que

$$\mathcal{N}_p\left(f-\varphi\right)<\varepsilon$$

ampliando φ a \mathbb{R} de modo que sea periódica con período T>0, es decir, definiendo $\varphi(-\frac{T}{2})=0$ y, $\varphi(x+kT)=\varphi(x)$, para todo $x\in \left]-\frac{T}{2},\frac{T}{2}\right[$ y para todo $k\in\mathbb{Z}$, entonces $\varphi\in\mathcal{E}^T$ y

$$\mathcal{N}_{p}\left(f-\varphi\right) = \left[\int_{-\frac{T}{2}}^{\frac{T}{2}} \left|f-\varphi\right|^{p}\right]^{1/p} = \mathcal{N}_{p}\left(f_{1}-\varphi\right) < \varepsilon$$

2. Sean f y f_1 como en 1). Se sabe que existe una función $g \in \mathcal{C}_c^{\infty}$ de soporte compacto contenido en el abierto $\left] - \frac{T}{2}, \frac{T}{2} \right[$ tal que

$$\mathcal{N}_p\left(f-g\right) < \varepsilon$$

Ampliando g a todo \mathbb{R} del tal modo que sea periódica de período T>0, es decir

$$g\left(-\frac{T}{2}\right) = 0$$

У

$$g(x+kT) = g(x), \quad \forall x \in \left] -\frac{T}{2}, \frac{T}{2}\right[, \quad \forall k \in \mathbb{Z}$$

entonces, g es una función continua periódica y

$$\mathcal{N}_{p}\left(f-g\right) = \left[\int_{-\frac{T}{2}}^{\frac{T}{2}} \left|f-g\right|^{p}\right]^{1/p} = \mathcal{N}_{p}\left(f_{1}-g\right) < \varepsilon$$

De ambos incisos se sigue el resultado.

Proposición 2.7.1

Si $1 \leq p < \infty$ y $f \in \mathcal{L}_p^T$ entonces, la función $h \mapsto f_h$ de \mathbb{R} en \mathcal{L}_p^T es uniformemente continua en \mathbb{R} y, además

$$\mathcal{N}_{p}\left(f_{h}\right) = \mathcal{N}_{p}\left(f\right), \quad \forall h \in \mathbb{R}$$

Demostración:

Claramente esta función está bien definida, ya que $f_h \in \mathcal{L}_p^T$, para todo $h \in \mathbb{R}$ y, por un cambio de variable tenemos lo siguiente:

$$\mathcal{N}_{p}(f_{h})^{p} = \int_{-\frac{T}{2}}^{\frac{T}{2}} |f_{h}(y)|^{p} dy$$

$$= \int_{-\frac{T}{2}}^{\frac{T}{2}} |f(y+h)|^{p} dy$$

$$= \int_{-\frac{T}{2}+h}^{\frac{T}{2}+h} |f(z)|^{p} dz$$

$$= \int_{-\frac{T}{2}}^{\frac{T}{2}} |f(y)|^{p} dy$$

$$= \mathcal{N}_{p}(f)^{p}$$

$$\Rightarrow \mathcal{N}_{p}(f_{h}) = \mathcal{N}_{p}(f)$$

Para la continuidad uniforme, sea $\varepsilon > 0$. Existe $g \in \mathcal{C}^T$ tal que

$$\mathcal{N}_p\left(f-g\right) < \frac{\varepsilon}{3}$$

Por un lema anterior, g es uniformemente continua en \mathbb{R} . Luego, existe $\delta > 0$ tal que

$$x_1, x_2 \in \mathbb{R}$$
 tales que $|x_1 - x_2| < \delta \Rightarrow |g(x_1) - g(x_2)| < \frac{\varepsilon}{3T^{1/p}}$

Sean $s, t \in \mathbb{R}$ tales que $|s - t| < \delta$. Entonces

$$\mathcal{N}_{p}(g_{s} - g_{t}) = \left[\int_{-\frac{T}{2}}^{\frac{T}{2}} \left| g(s+x) - g(t+x) \right|^{p} dx \right]^{1/p}$$

$$= \left[\int_{-\frac{T}{2}}^{\frac{T}{2}} \frac{\varepsilon^{p}}{3^{p}T} dx \right]^{1/p}$$

$$= \frac{\varepsilon}{3}$$

Así pues

$$\mathcal{N}_{p}(f_{s} - g_{t}) \leq \mathcal{N}_{p}(f_{s} - g_{s}) + \mathcal{N}_{p}(g_{s} - g_{t}) + \mathcal{N}_{p}(f_{t} - g_{t})$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$$

$$= \varepsilon$$

con lo que se tiene el resultado.

2.8. Convolución de funciones periódicas

Definición 2.8.1

Sean f, g dos funciones periódicas de periodo T > 0. Se define la convolución de f y g como

$$f * g(x) = \int_{-\frac{T}{2}}^{\frac{T}{2}} f(y)g(x-y)dy$$

para toda $x \in \mathbb{R}$ tal que la integral exista.

Proposición 2.8.1

Se cumple lo siguiente:

- 1. Si existe f * g(x) en $x \in \mathbb{R}$, entonces existe g * f(x) y f * g(x) = g * f(x).
- 2. Si existe [|f|*|g|]*|h|(x) en $x \in \mathbb{R}$, entonces existen las convoluciones (f*g)*h(x), f(g*h)(x) y (f*g)*h(x) = f(g*h)(x).

Demostración:

Ejercicio.

Teorema 2.8.1

Si $f, g \in \mathcal{L}_1^T$, entonces para casi toda $x \in \mathbb{R}$ existe la convolución $f * g(x), f * g \in \mathcal{L}_1^T$ y,

$$\int_{-\frac{T}{2}}^{\frac{T}{2}} f * g(x) dx = \left(\int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) dx \right) \cdot \left(\int_{-\frac{T}{2}}^{\frac{T}{2}} g(x) dx \right)$$

además,

$$\mathcal{N}_{1}\left(f * g\right) \leq \mathcal{N}_{1}\left(\left|f\right| * \left|g\right|\right) \leq \mathcal{N}_{1}\left(f\right) \cdot \mathcal{N}_{1}\left(g\right)$$

Así pues, L_1^T provisto de la convolución es un álgebra de Banach conmutativa.

Demostración:

Ejercicio.

Teorema 2.8.2

Sean $p, q \in [1, \infty[$ tales que $\frac{1}{p} + \frac{1}{q} > 1$ y, defina

$$\frac{1}{r} = \frac{1}{p} + \frac{1}{q} - 1$$

Si $f \in \mathcal{L}_p^T$ y $g \in \mathcal{L}_q^T$, entonces para casi toda $x \in \mathbb{R}$ existe f * g(x). Además, la función $f * g \in \mathcal{L}_r^T$ v

$$\mathcal{N}_r\left(f * g\right) \le \mathcal{N}_p\left(f\right) \cdot \mathcal{N}_q\left(g\right)$$

En particular, si q=1, entonces $f*g\in\mathcal{L}_p^T$ y, además

$$\mathcal{N}_{p}\left(f*g\right) \leq \mathcal{N}_{p}\left(f\right) \cdot \mathcal{N}_{1}\left(g\right)$$

Demostración:

Ejercicio.

Teorema 2.8.3

Sea $1 \leq p \leq \infty$. Si $f \in \mathcal{L}_p^T$ y $g \in \mathcal{L}_{p^*}^T$ entonces, f * g(x) existe en todo punto $x \in \mathbb{R}$ y, además $f * g \in \mathcal{C}^T$.

Demostración:

Ejercicio.

2.9. Sucesiones de Dirac de funciones periódicas

Definición 2.9.1

Una sucesión $\{\rho_{\nu}\}_{\nu=1}^{\infty}$ se dice que es de **Dirac de periodo** T>0 si:

- 1. $\rho_{\nu} \geq 0$, para todo $\nu \in \mathbb{N}$.
- 2. $\int_{-\frac{T}{2}}^{\frac{T}{2}} \rho_{\nu}(x) dx = 1$, para todo $\nu \in \mathbb{N}$.
- 3. Para todo $0 < \delta < \frac{T}{2}$,

$$\lim_{\nu \to \infty} \int_{|x| < \delta} \rho_{\nu}(x) dx = 1$$

o sea,

$$\lim_{\nu \to \infty} \int_{\delta < |x| < -\frac{T}{2}} \rho_{\nu}(x) dx = 0$$

la sucesión $\{\rho_{\nu}\}_{\nu=1}^{\infty}$ será llamada sucesión de Dirac fuerte si $\rho_{\nu} \in \mathcal{L}_{\infty}^{T}$ para todo $\nu \in \mathbb{N}$, se cumplen (i), (ii) y

1. Se tiene que

$$\lim_{\nu \to \infty} \operatorname{supesc}_{\delta < |x| < \frac{T}{2}} \rho_{\nu}(x) = 0$$

Observación 2.9.1

Toda sucesión de Dirac fuerte es una sucesión de Dirac.

Demostración:

En efecto, veamos que

$$\int_{\delta < \left| x \right| < -\frac{T}{2}} \rho_{\nu}(x) dx \leq \int_{\delta < \left| x \right| < -\frac{T}{2}} \operatorname{supesc}_{\delta < \left| x \right| < \frac{T}{2}} \rho_{\nu}(x) dx = \left[\operatorname{supesc}_{\delta < \left| x \right| < \frac{T}{2}} \rho_{\nu}(x) \right] \cdot (T - 2\delta)$$

lo cual tiende a cero a medida que $\nu \to \infty$.

Teorema 2.9.1

Sea $\{\rho_{\nu}\}_{\nu=1}^{\infty}$ una sucesión de Dirac de periodo T>0.

1. Si $1 \leq p < \infty$ y $f \in \mathcal{L}_p^T$, entonces

$$\lim_{\nu \to \infty} \mathcal{N}_p \left(f - f * \rho_{\nu} \right) = 0$$

2. Si $f \in \mathcal{L}_{\infty}^T$ y f es continua en un punto $x \in \mathbb{R}$, entonces

$$\lim_{\nu \to \infty} \rho_{\nu} * f(x) = f(x)$$

- 3. Si $f \in \mathcal{L}_{\infty}^T$ y f es continua en un abierto $J \subseteq \mathbb{R}$, entonces $\{\rho_{\nu} * f\}_{\nu=1}^{\infty}$ converge a f uniformemente en todo compacto contenido en J.
- 4. Si $f \in \mathcal{C}^T$, entonces $\{\rho_{\nu} * f\}_{\nu=1}^{\infty}$ converge uniformemente en \mathbb{R} .

Los incisos (ii) y (iii) subsisten si $\{\rho_{\nu}\}_{\nu=1}^{\infty}$ es una sucesión de Dirac fuerte y $f \in \mathcal{L}_{1}^{T}$.

Demostración:

Solo se probará (iii) al suponer que $\{\rho_{\nu}\}_{\nu=1}^{\infty}$ es una sucesión de Dirac fuerte y $f \in \mathcal{L}_{1}^{T}$.

La convolución $\rho_{\nu} * f$ existe en todo punto de \mathbb{R} y es continua. Suponga que f es continua en un abierto J. Sea $K \subseteq J$ compacto y, defina

$$\alpha = d(K, \mathbb{R} - J) > 0$$

y, definamos $K' = \left\{x \in \mathbb{R} \left| d(x,K) < \frac{\alpha}{2} \right\} \right\}$ (K' es una vecindad cerrada de K). Se sabe que K' es un compacto en \mathbb{R} , además

$$K \subseteq K' \subseteq J$$

Sea $\varepsilon > 0$. Como f es uniformemnte continua en K', existe $0 < \delta < \min\left\{\frac{T}{2}, \frac{\alpha}{2}\right\}$ tal que

$$x - 1, x_2 \in K'$$
 y $|x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon$

Fije $x \in K$ arbitrario. Se tiene

$$\begin{aligned} |f(x) - \rho_{\nu} * f(x)| &= \int_{-\frac{T}{2}}^{\frac{T}{2}} |f(x) - f(x - y)| \rho_{\nu}(y) dy \\ &= \int_{-\delta}^{\delta} |f(x) - f(x - y)| \rho_{\nu}(y) dy + \int_{\delta < |y| < \frac{T}{2}} |f(x) - f(x - y)| \rho_{\nu}(y) dy \end{aligned}$$

Si $|y| < \delta$, entonces $x - y \in K'$, luego

$$\int_{-\delta}^{\delta} |f(x) - f(x - y)| \rho_{\nu}(y) dy \le \varepsilon \int_{-\delta}^{\delta} \rho_{\nu}(y) dy < \varepsilon$$

Sean $A = \max_{x \in K} |f(x)|$ y $M_{\nu}(\delta) = \operatorname{supesc}_{\delta < |y| < \frac{T}{2}} \rho_{\nu}(x)$. Entonces,

$$\int_{\delta < |y| < \frac{T}{2}} |f(x) - f(x - y)| \rho_{\nu}(y) dy \leq A \int_{\delta < |y| < \frac{T}{2}} \rho_{\nu}(y) dy + M_{\nu}(\delta) \int_{\delta < |y| < \frac{T}{2}} |f(x - y)| dy
\leq A \cdot M_{\nu}(\delta) (T - 2\delta) + M_{\nu}((\delta)) \cdot \mathcal{N}_{1}(f)
= M_{\nu}(\delta) (A \cdot (T - 2\delta) + \mathcal{N}_{1}(f))$$

lo cual tiende a cero conforme a $\nu \to \infty$ uniformemente en $x \in K$. Por tanto,

$$\lim_{\nu \to \infty} \rho_{\nu} * f = f \text{ uniformemente en } K$$

Proposición 2.9.1

Sea $\{\rho_{\nu}\}_{\nu=1}^{\infty}$ una sucesión de Dirac de periodo T>0. Se supone que las funciones ρ_{ν} son pares, para todo $\nu \in \mathbb{N}$. Sea $f \in \mathcal{L}_{\infty}^{T}$. Si en un punto $x \in \mathbb{R}$ existen los límites laterales $f(x^{+})$ y $f(x^{-})$ entonces,

$$\lim_{\nu \to \infty} \rho_{\nu} * f(x) = \frac{f(x^{+}) + f(x^{-})}{2}$$

la conclusión persiste si la sucesión es de Dirac fuerte y $f \in \mathcal{L}_1^T$.

Demostración:

Sólo se probará la última parte. Suponga que existen los límites laterales. Se tiene lo siguiente

$$\rho_{\nu} * f(x) = \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x - y) \rho_{\nu}(y) dy$$

$$= \int_{-\frac{T}{2}}^{0} f(x - y) \rho_{\nu}(y) dy + \int_{0}^{\frac{T}{2}} f(x - y) \rho_{\nu}(y) dy$$

$$= \int_{0}^{\frac{T}{2}} f(x + y) \rho_{\nu}(-y) dy + \int_{0}^{\frac{T}{2}} f(x - y) \rho_{\nu}(y) dy$$

$$= \int_{0}^{\frac{T}{2}} [f(x + y) + f(x - y)] \rho_{\nu}(y) dy$$

pues, ρ_{ν} es una función par. Por otra parte,

$$\int_0^{\frac{T}{2}} \rho_{\nu}(y) dy = \frac{1}{2}$$

Entonces,

$$\frac{f(x^{+}) + f(x^{-})}{2} = \int_{0}^{\frac{T}{2}} (f(x^{+}) + f(x^{-})) \rho_{\nu}(y) dy$$

de donde

$$\rho_{\nu} * f(x) - \frac{f(x^{+}) + f(x^{-})}{2} = \int_{0}^{\frac{T}{2}} \left[f(x+y) - f(x^{+}) \right] \rho_{\nu}(y) dy + \int_{0}^{\frac{T}{2}} \left[f(x-y) - f(x^{-}) \right] \rho_{\nu}(y) dy$$

Se probará que

$$\lim_{\nu \to \infty} \int_0^{\frac{T}{2}} \left[f(x+y) - f(x^+) \right] \rho_{\nu}(y) dy = 0$$

En efecto, sea $\varepsilon > 0$. Por definición de $f(x^+)$ existe $0 < \delta < \frac{T}{2}$ tal que

$$0 < h < \delta \Rightarrow |f(x+h) - f(x^+)| < \varepsilon$$

Luego, tenemos que

$$\int_{0}^{\frac{T}{2}} |f(x+y) - f(x^{+})| \rho_{\nu}(y) dy = \int_{0}^{\delta} |f(x+y) - f(x^{+})| \rho_{\nu}(y) dy + \int_{\delta}^{\frac{T}{2}} |f(x+y) - f(x^{+})| \rho_{\nu}(y) dy$$

$$< \varepsilon \int_{0}^{\delta} \rho_{\nu}(y) dy + M_{\nu}(\delta) \int_{\delta}^{\frac{T}{2}} f(x+y) dy + |f(x^{+})| \int_{\delta}^{\frac{T}{2}} \rho_{\delta}(y) dy$$

$$\leq \frac{\varepsilon}{2} + |f(x^{+})| M_{\nu}(\delta) \left(\frac{T}{2} - \delta\right) + M_{\nu}(\delta) \mathcal{N}_{1}(f)$$

$$= \frac{\varepsilon}{2} + M_{\nu}(\delta) \left(|f(x^{+})|(\delta) \left[\frac{T}{2} - \delta\right] + \mathcal{N}_{1}(f)\right)$$

donde, $M_{\nu}(\delta) = \operatorname{supesc}_{\delta < y < \frac{T}{2}} \rho_{\nu}(y)$. Por ser una sucesión de Dirac fuerte, existe $\nu_0 \in \mathbb{N}$ tal que

$$\nu \ge \nu_0 \Rightarrow \left(\left| f(x^+) \right| \left\lceil \frac{T}{2} - \delta \right\rceil + \mathcal{N}_1(f) \right) M_{\nu}(\delta) < \frac{\varepsilon}{2}$$

luego

$$\nu \ge \nu_0 \Rightarrow \int_0^{\frac{T}{2}} |f(x+y) - f(x^+)| \rho_{\nu}(y) dy < \varepsilon$$

Así,

$$\lim_{\nu \to \infty} \int_0^{\frac{T}{2}} \left[f(x+y) - f(x^+) \right] \rho_{\nu}(y) dy = 0$$

El otro límite es análogo.

2.10. Sistemas Trigonométricos

Definición 2.10.1

Sea E un espacio normado y $S \subseteq E$. Se denota por $\mathcal{L}(S)$ al **subespacio vectorial de** E **generado por** S. Se dice que el conjunto S **está completo** en E, si $\overline{\mathcal{L}(S)} = E$.

En esta parte se consideran funcoines periódicas de periodo 2π (al final se trata el caso general).

Definición 2.10.2

Se define lo siguiente

- 1. Se llama sistema trigonométrico real al sistema $\tau_{\mathbb{R}}$ formado por
 - I) $x \mapsto \cos(kx)$, con k = 0, 1, 2, ...
 - II) $x \mapsto \sin(kx)$, con k = 1, 2, 3, ...
- 2. Se llama sistema trigonométrico complejo al sistema $\tau_{\mathbb{C}}$ formado por

$$x \mapsto e^{ikx}, \quad k \in \mathbb{Z}$$

- 3. Las combinaciones lineales fintas de $\tau_{\mathbb{R}}$ de coeficientes reales se llaman **polinomios trigo-** nométricos reales.
- 4. Las combinaciones lineales de funciones en $\tau_{\mathbb{R}}$ con coeficientes complejos son las mismas que las combinaciones lineales de funciones en $\tau_{\mathbb{C}}$ con coeficientes complejos, se llaman polinomios trigonométricos complejos.

Teorema 2.10.1

Se tiene lo siguiente:

- 1. Sea $1 \le p < \infty$. Entonces
 - I) $\tau_{\mathbb{R}}$ es (está) completo en $\mathcal{L}_{p}^{2\pi}(\mathbb{R})$.
 - II) $\tau_{\mathbb{R}}$ y $\tau_{\mathbb{C}}$ son (están) completos en $\mathcal{L}_{p}^{2\pi}(\mathbb{C})$.
- 2. Se cumplen
 - I) $\tau_{\mathbb{R}}$ es (está) completo en $\mathcal{C}^{2\pi}(\mathbb{R})$ provisto de la norma uniforme.

Sea $f \in \mathcal{L}_p^{2\pi}(\mathbb{K})$. Si $\{\rho_{\nu}\}_{\nu=1}^{\infty}$ es una sucesión de Dirac fuerte periódica de periodo 2π , se sabe que

$$\lim_{\nu \to \infty} \mathcal{N}_p \left(f - \rho_\nu * f \right) = 0$$

también se sabe que si $f \in \mathcal{C}^{2\pi}(\mathbb{K})$, entonces

$$\lim_{\nu \to \infty} \rho_{\nu} * f = f \text{ uniformemente en } \mathbb{R}$$

El teorema quedará probado si se encuentra una sucesión de Dirac fuerte de periodo 2π tal que $\rho_{\nu} * f$ es un polinomio trigonométrico (real o complejo, según sea f), para todo $\nu \in \mathbb{N}$.

Se define

$$\rho_{\nu}(x) = \frac{(1 + \cos(x))^{\nu}}{\int_{-\pi}^{\pi} (1 + \cos(t))^{\nu} dy} = \frac{\cos^{2} \nu \frac{x}{2}}{\int_{-\pi}^{\pi} \cos^{2\nu} \frac{t}{2} dt}, \quad \forall x \in \mathbb{R}$$

para todo $\nu \in \mathbb{N}$. Claramente se cumplen de (i) y (ii) de sucesiones de Dirac. Se verificará que se cumple (iii').

Sea $0 < \delta < \pi$, Entonces,

$$\int_{-\pi}^{\pi} \cos^{2\nu} \frac{t}{2} dt = 2 \int_{0}^{\pi/2} \cos^{2\nu} \frac{t}{2} dt$$
$$= 4 \int_{0}^{\pi} \cos^{2\nu} u du$$
$$\geq 4 \int_{0}^{\frac{\delta}{4}} \cos^{2\nu} u du$$
$$\geq \delta \cos^{2\nu} \frac{\delta}{4}$$

pues, la función $u\mapsto\cos^{2\nu}u$ es decreciente en $\left[0,\frac{\delta}{4}\right]$. Por la misma última razón

$$\operatorname{supesc}_{\delta < x < \pi} \rho_{\nu}(x) \le \frac{\cos^{2\nu} \frac{\delta}{2}}{\cos^{2\nu} \frac{\delta}{4}}$$

lo cual tiende a cero cuando $\nu \to \infty$, pues $\cos \frac{\delta}{4} > \cos \frac{\delta}{2}$ (ya que $u \mapsto \cos u$ es estrictamente decreciente en $[0, \pi]$). Por tanto, $\{\rho_{\nu}\}_{\nu=1}^{\infty}$ es una sucesión de Dirac fuerte.

Ahora, se tiene lo siguiente

$$\rho_{\nu} * f(x) = \frac{1}{c_{\nu}} \int_{-\pi}^{\pi} f(y) \left(1 + \cos(x - y)\right)^{\nu} dy$$

donde $c_{\nu} = \int_{-\pi}^{\pi} (1 + \cos(t))^{\nu} dy$. Por la fórmula del binomio

$$(1 + \cos(x - y))^{\nu} = \sum_{k=0}^{\nu} \binom{n}{k} \cos^{k}(x - y)$$

Usando alguna identidad trigonométrica e inducción, se demuestra que $\cos^k(x-y)$ es combinación lineal con coeficientes racionales de funciones

$$x \mapsto \cos m(x-y), \quad m=0,1,2,\dots$$

A su vez,

$$\cos m(x-y) = \cos mx \cos my + \sin mx \sin my$$

así pues, $(1+\cos(x-y))^{\nu}$ aparece como combinación lineal de fucniones $x \mapsto \cos mx$ para $m=0,...,\nu$ y $x \mapsto \sin nx$ con $n=1,...,\nu$ con coeficientes que son funciones de y. Al calcular la integral de la convolución, $\rho_{\nu} * f(x)$ resulta ser un polinomio trigonométrico real o complejo (según sea f).

Definición 2.10.3

Sea $1 \leq p < \infty$. Sea \mathcal{F} una familia de funciones en $\mathcal{L}_{p^*}^T$. Se dice que la familia \mathcal{F} es **total** en \mathcal{L}_p^T si

$$f \in \mathcal{L}_p^T$$
 y $\int_{-\frac{T}{2}}^{\frac{T}{2}} f \cdot \varphi = 0 \quad \forall \varphi \in \mathcal{F} \Rightarrow f = 0 \text{ c.t.p. en } \mathbb{R}$

Teorema 2.10.2

Sea $1 \le p < \infty$. Entonces

- 1. $\tau_{\mathbb{R}}$ es total en $\mathcal{L}_{p}^{2\pi}(\mathbb{R})$.
- 2. $\tau_{\mathbb{R}}$ y $\tau_{\mathbb{C}}$ son totales en $\mathcal{L}_{p}^{2\pi}(\mathbb{C})$.

Demostración:

Basta probar el resultado para \mathcal{L}_1^T . Considere la misma sucesión de Dirac fuerte $\{\rho_{\nu}\}_{\nu=1}^{\infty}$ de la demostración anterior. Sea pues $f \in \mathcal{L}_1^{2\pi}$ tal que

$$\begin{cases} \int_{-\pi}^{\pi} f(y) \cos(ny) dy = 0 & n = 0, 1, \dots \\ \int_{-\pi}^{\pi} f(y) \sin(ny) dy = 0 & n = 1, 2, \dots \end{cases}$$

se sabe que

$$\lim_{\nu \to \infty} \mathcal{N}_p \left(f - \rho_{\nu} * f \right) = 0$$

Basta con probar que $\rho_{\nu}+f=0$ c.t.p. en \mathbb{R} . Intercambiando los papeles de x y y en la demostración anterior, se concluye que $(1+\cos(x-y))^{\nu}$ es combinación lineal de funciones $y\mapsto\cos ny$ y $y\mapsto\sin ny$ con coeficientes que dependen de x. Se sigue pues que al integrar el producto de f con cos o sin, que

$$\rho_{\nu} * f = 0$$

para todo $\nu \in \mathbb{N}$. Luego

$$\mathcal{N}_{p}\left(f\right) = 0$$

es decir, f = 0 c.t.p. en \mathbb{R} .