Beyond Food Delivery

Revolutionizing the future of delivery services

Product Owner: Patricia Paulo

Background

Why Are We Here?

- Reduce operating cost
- Facilitate automation across deliveries within short distances.
- Ensure the best experience for Dashers, merchants, and customers.

"Affordable and quicker automated delivery services."

Business Case

Initial Focus

Where are we starting?

Our team has been tasked with **building a tool** for the **operations team**-- to view the status of deliveries and remotely take control of robots that need intervention (ie: rerouting).

- \$1.9B yearly delivery fees
- if 30% of those deliveries are within 2 miles.
- Then, \$580M/year is spent on deliveries within 2 miles.

Goal: Reduce the costs for deliveries within 2 miles.

Opportunity

Total Addressable Market

\$1603B

6.2 M Canadians use food delivery apps

frequency 1/week

(6.2M Canadians that use delivery apps) x

TAM = (1/week) x (\$32 average rate per order) x (52 weeks/year)

\$32 average delivery per order

Opportunity

- The Canadian food delivery market is projected to reach \$98 billion by 2027.
- Consistent growth in the food delivery industry.
- The Canadian food industry has committed more than \$12 billion to investments in online platforms.

Canadian Market but currency are in USD

Proposal

What's Our Solution?

Doordash NAVI tool

This tool will help operators manage the fleet of robots.

Features:

- View the status of deliveries
- Alerts when delivery is running behind ETA
- Navigate self-driving robots
- Remote access to the camera when navigating
- Track fleet
- Track Queue
- Manual Assignment of deliveries
- Command to send all the fleets back to their parking spaces.

Overall, the goal is to help operators navigate the robots seamlessly, should a manual intervention is required.

Return On Investment

What can we do?

Costs: \$4M - \$4.4M

Duration: 7-12 months

Manpower	Qty	Salary	7 months	12 months
Developer	5	\$80,720.00	\$235,433.33	\$403,600.00
PM	1	\$138,841.00	\$80,990.58	\$138,841.00
UX designer	2	\$79,486.00	\$92,733.67	\$158,972.00
		Development costs:	\$409,157.58	\$701,413.00
		Estimated cost for robots:	\$3,703,630.00	\$3,703,630.00
		Total cost:	\$4,112,787.58	\$4,405,043.00

Estimated cost for robots				
Starships/ unit	\$7,407.26			
cities available	50			
units/cities	10			
Total amount	\$3,703,630.00			

pricing are in Canadian dollars

• Estimated cost for robots: \$3,7M

• Cost of development: \$409k - \$701k

Total Estimated Cost: \$4M - \$4.4M

(Basing from TAM)	
Canadians who order once a week	6,200,000
frequency (once a week)	1
average dasher rate per order	\$6.00
total in a year	52
	\$1.9B

Supposed <u>30%</u> of those orders are within 2 miles

$$ROI = \frac{(amount \; gained - amount \; spent)}{amount \; spent}$$

\$580M - are being spent for orders within 2 miles

Duration	7 months	12 months
amount gained:	\$576,207,212.42	\$575,914,957.00
amount spent:	\$4,112,787.58	\$4,405,043.00
ROI:	13,910.14	12,973.99

ROI: 13,910% - 12,973%

Measurement

How will we know if we're successful?

37% to 50% increase in our CSAT score for deliveries made within 2 mile.

10% increase in the average order within 2 miles monthly.

10% decrease in average delivery time monthly.

Competitors

• 16,000 restaurant partners throughout Canada, Available in 100 cities

- highest satisfaction rate at 89%
- The Skip Rewards Program: Earn points on every order and use your points to get more of what you love: free food. Rewards vary on your tier which is based on the frequency of app usage.
- can't find any data on them planning to use self-driving robots.

- Available in 30 cities and has 8,000 restaurant partners throughout Canada,
- Uber One a monthly subscription for \$9.99 also gets you: Get 5% off on Uber rides
- Fastest delivery, uber cash
- Huge Cashflow
- <u>Has already launched Self-driving robots</u> in Miami In partnership w/ Cartken Uber Eats is piloting delivery bots with Serve Robotics

Our Advantages

Why are we better?

- Not exclusive to food delivery we aim to become the **go-to delivery platform**. Customers can also dash from **Superstore**, **Shoppers**, **Sephora**, and other stores to lighten the load of their errands.
- Store Loyalty Rewards unlocks the ability for merchants to build a loyalty program.
- DoorDash Labs: DoorDash's Robotics and Automation Arm focuses on robotics, automation, and their potential to improve how we work and live from the very beginning.
- Strong Partnerships with the ff.: Starship Technologies, ground-delivery robot maker Marble, and General Motors' Cruise Automation. Acquired Scotty Labs in 2019 and Chowbotics in 2021, and filed two patents for AVs in 2019.

Roadmap and Vision

Roadmap Pillars

Where do we go from here?

develop new and advanced ways to get orders delivered as easily, quickly, and efficiently as possible.

Themes:

- Seemless management of self-driving robots.
- Improve the speed of deliveries
- Lessen manual intervention for self-driving robots

Seemless management of self-driving robots.

[Theme 1]

- Remotely navigate robots & camera access when there is road interference.
- Fleet management feature for human operators to view queues and oversee the robots and track them when they are not being used.
- Manual Assignment of deliveries & command for the fleets to go back to their parking spaces

Improve the speed of deliveries

[Theme 2]

- View the status of deliveries.
- Notifications when delivery is running behind the ETA.

Lessen manual intervention for self-driving robots

[Theme 3]

- high-resolution maps for autonomous driving integration with sidewalks included for tracking and navigation.
- improve the automation of order assignments based on distance.

Where do we go from here?

Widening the scope

- Market Penetration from 1 city to another. Ideally, start with 3 cities per month and the increase rate will be based on the adoption and problems that will arise during the testing stage.
- Look for another operation cost we can mitigate e.g. solar-powered self-driving robots, or solar charging stations that can be used at night.
- Once, we have established the use of self-driving robots, start exploring other robots such as drones.

Thankyou

Product Owner: Patricia Paulo

