

Course code	Course Name	L-T-P Credits	Year of Introduction
CS467	MACHINE LEARNING	3-0-0-3	2016

Course Objectives:

- To introduce the prominent methods for machine learning
- To study the basics of supervised and unsupervised learning
- To study the basics of connectionist and other architectures

Syllabus:

Introduction to Machine Learning, Learning in Artificial Neural Networks, Decision trees, HMM, SVM, and other Supervised and Unsupervised learning methods.

Expected Outcome:

The Students will be able to:

- i. differentiate various learning approaches, and to interpret the concepts of supervised learning
- ii. compare the different dimensionality reduction techniques
- iii. apply theoretical foundations of decision trees to identify best split and Bayesian classifier to label data points
- iv. illustrate the working of classifier models like SVM, Neural Networks and identify classifier model for typical machine learning applications
- v. identify the state sequence and evaluate a sequence emission probability from a given HMM
- vi. illustrate and apply clustering algorithms and identify its applicability in real life problems

References:

- 1. Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.
- 2. Ethem Alpaydin, *Introduction to Machine Learning* (Adaptive Computation and Machine Learning), MIT Press, 2004.
- 3. Margaret H. Dunham. Data Mining: introductory and Advanced Topics, Pearson, 2006
- 4. Mitchell. T, Machine Learning, McGraw Hill.
- 5. Ryszard S. Michalski, Jaime G. Carbonell, and Tom M. Mitchell, *Machine Learning : An Artificial Intelligence Approach*, Tioga Publishing Company.

Course Plan

Module	Contents	Hours	End Sem. Exam Marks %
I	Introduction to Machine Learning, Examples of Machine Learning applications - Learning associations, Classification, Regression, Unsupervised Learning, Reinforcement Learning. Supervised learning- Input representation, Hypothesis class, Version space, Vapnik-Chervonenkis (VC) Dimension	6	15

П	Probably Approximately Learning (PAC), Noise, Learning Multiple classes, Model Selection and Generalization, Dimensionality reduction- Subset selection, Principle Component Analysis	8	15				
	FIRST INTERNAL EXAM						
II	Classification- Cross validation and re-sampling methods- K-fold cross validation, Boot strapping, Measuring classifier performance- Precision, recall, ROC curves. Bayes Theorem, Bayesian classifier, Maximum Likelihood estimation, Density functions, Regression	8	20				
IV	Decision Trees- Entropy, Information Gain, Tree construction, ID3, Issues in Decision Tree learning- Avoiding Over-fitting, Reduced Error Pruning, The problem of Missing Attributes, Gain Ratio, Classification by Regression (CART), Neural Networks- The Perceptron, Activation Functions, Training Feed Forward Network by Back Propagation.	6	15				
SECOND INTERNAL EXAM							
V	Kernel Machines- Support Vector Machine- Optimal Separating hyper plane, Soft-margin hyperplane, Kernel trick, Kernel functions. Discrete Markov Processes, Hidden Markov models, Three basic problems of HMMs- Evaluation problem, finding state sequence, Learning model parameters. Combining multiple learners, Ways to achieve diversity, Model combination schemes, Voting, Bagging, Booting	8	20				
V	Unsupervised Learning - Clustering Methods - K-means, Expectation-Maximization Algorithm, Hierarchical Clustering Methods, Density based clustering	6	15				
END SEMESTER EXAM							

Question Paper Pattern

2014

1. There will be FOUR parts in the question paper – A, B, C, D

2. Part A

- a. Total marks: 40
- b. *TEN* questions, each have 4 marks, covering all the SIX modules (*THREE* questions from modules I & II; *THREE* questions from modules III & IV; *FOUR* questions from modules V & VI).

All the TEN questions have to be answered.

3. Part B

- a. Total marks: 18
- b. *THREE* questions, each having **9 marks**. One question is from **module I**; one question is from **module II**; one question *uniformly* covers **modules I & II**.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.

4. Part C

- a. Total marks: 18
- b. THREE questions, each having 9 marks. One question is from module III; one question is from module IV; one question uniformly covers modules III & IV.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.

5. Part D

- a. Total marks: 24
- b. THREE questions, each having 12 marks. One question is from module V; one question is from module VI; one question uniformly covers modules V & VI.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* 60% analytical/numerical questions in all possible combinations of question choices.