Custom Memory Cube

Yu Zou, Vinayak Deshpande, Herman Lam, Alan George

MOTIVATION & GOAL

Motivation

- Memory bottleneck critical for memory-intensive Big Data apps
- Promise of CMC for computational ram & processor-in-memory processing

PHASE 1: Prototype Platform

- Observability
- Instrument Merlin infrastructure with hardware performance monitors (C', D', M1, M2, M3, M4, M5, and E')
- Usability & Flexibility
- Implemented & measured kernels and apps using HT (Convey's tool & language)
- Vector Addition (emulates DRE* fill operation)
- DRE app: SpMV

*DRE: Data Reordering/Rearrangement Engine from LLNL

CMC platform on Merlin board Arria 10 GX1150 (extended logic layer) 2-link x16 4GB HMC

PHASE1: Initial Results

Measured performance: simple read/write (µs) (Averaged over 100,000 iterations)

Oper.	A' (μs)	C'	D'	M1	M2	M3	M4	M5	E'
Read	1095.6	1.03	1.006	0.923	0.725	0.519	-	_	-
Write	1104.0	1.071	1.011	0.991	0.793	0.577	-	-	-

Measured performance: Vector Addition in ms (100,000 iterations of 2 reads & 1 write)

1658.67 1580.14 1559.65 1460.57 1122.42 839.84

A' (ms)	C'	D'	M1	M2	M3	M4	M5	E'
282.55	281.72	278.72	258.96	199.68	151.31	-	-	-
Measured performance: SpMV – DRE app in seconds (2 ²⁴ X 2 ²⁴ matrix)								

PLANS FOR 2017

Task 1: Platform development

- Develop library for customization of notional CMC architecture under study
- Explore CMC apps using HT

Task 2: Case studies to explore picocomputing is now with cron

 Characteristics of CMC-amenable apps

Members e.g.

APPROACH

Phase 1: Prototype Platform

 Create CMC emulation platform using Convey's FPGA-HMC platform (Merlin board)

Phase 2: Case Study

- Select model of CMC
- Develop mapping from measured parameters to model parameters
- Perform design space exploration of CMC arch & CMC operations/apps

PHASE 2: Case Study

Model of notional CMC

- Selected notional CMC model from published work
- ☐ Identified hardware parameters required by performance model
- Mapped measurement points to model parameters as required

PHASE2: Initial Results

Model of notional CMC

CMC platform on Merlin board

Latency A = latency C + transfer time B

Transfer time B: time to transfer result data to host (e.g. VB to host in DRE)

Latency C = latency C' - delay D'minusE' + delay TSV *

Delay D'minusE' = latency D' - latency E'

Latency $E' = latency M_5 - delay TX **$

- * delay TSV = time to transfer request + time to transfer response
- ** delay TX = time to transfer request to HMC switch logic + time to transfer response