# Jogo da Vida





O Jogo da Vida de Conway é um processo de simulação (conhecido como *autômato celular*) criado pelo matemático britânico John Conway para reproduzir, por meio de uma matriz, processos de mudança em grupos de seres vivos. As regras do jogo indicam como a matriz é modificada a cada passo. Os valores da matriz em um determinado passo são coletivamente chamados de *estado* do jogo.

Mais especificamente, o jogo acontece em uma matriz quadrada  $N \times N$  (ou seja, com N linhas e N colunas) no qual cada célula está viva (representada pelo número 1) ou morta (representada pelo número 0). Para simular o próximo estado do autômato, para cada célula calculamos o seu número de vizinhos vivos (duas células são consideradas vizinhas se elas são adjacentes diagonalmente, horizontalmente ou verticalmente – ou seja, uma célula pode ter até 8 vizinhas), e decidimos se a célula estará viva ou morta no próximo estado de acordo com as seguintes regras:

- se uma célula morta possui exatamente três vizinhas vivas, ela vira uma célula viva;
- se uma célula morta possui uma quantidade de vizinhas vivas diferente de três, ela continua morta;
- se uma célula viva possui duas ou três vizinhas vivas, ela continua viva;
- se uma célula viva possui menos que duas vizinhas vivas, ela morre;
- se uma célula viva possui mais que três vizinhas vivas, ela morre.

Toda célula fora da matriz é considerada morta, ou seja, células fora da matriz nunca afetam a quantidade de vizinhos vivos de alguma célula. Observe que as regras são aplicadas em todas as células simultaneamente, uma vez a cada passo.

Dada uma matriz que representa o estado inicial do jogo e um inteiro positivo Q, sua tarefa é determinar o Q-ésimo estado do jogo de acordo com as regras descritas acima, ou seja, o valor de cada célula da matriz após Q passos do jogo.

A figura abaixo mostra um exemplo de jogo em uma matriz  $5 \times 5$  e seus estados para diferentes valores de Q. Células vivas são representadas com a cor preta e células mortas são representadas com a cor branca.



#### Entrada

A primeira linha contém dois números inteiros, N e Q, representando, respectivamente, o número de linhas/colunas da matriz e o número de passos a serem simulados.

As próximas N linhas contém N caracteres cada. O j-ésimo caractere da i-ésima linha representa o estado inicial da célula na linha i e coluna j. Caso o caractere seja '0', a célula naquela posição inicia o jogo morta; caso o caractere seja '1', a célula inicia o jogo viva.

#### Saída

O seu programa deverá imprimir N linhas, cada uma contendo N caracteres. Na i-ésima linha, o j-ésimo caractere deve representar o Q-ésimo estado da célula na linha i e coluna j. Caso a célula esteja morta, o caractere deve ser '0'; se ela estiver viva, o caractere deve ser '1'.

## Restrições

- $1 \le N \le 50$
- $1 \le Q \le 100$

## Informações sobre a pontuação

A tarefa vale 100 pontos. Estes pontos estão distribuídos em subtarefas, cada uma com suas restrições adicionais às definidas acima.

- Subtarefa 1 (0 pontos): Esta subtarefa é composta apenas pelos exemplos mostrados abaixo. Ela não vale pontos, serve apenas para que você verifique se o seu programa imprime o resultado correto para os exemplos.
- Subtarefa 2 (30 pontos): Q = 1.
- Subtarefa 3 (70 pontos): Sem restrições adicionais.

Seu programa pode resolver corretamente todas ou algumas das subtarefas acima (elas não precisam ser resolvidas em ordem). Sua pontuação final na tarefa é a soma dos pontos de todas as subtarefas resolvidas corretamente por qualquer uma das suas submissões.

### Exemplos

| Exemplo de entrada 1 | Exemplo de saída 1 |
|----------------------|--------------------|
| 5 3                  | 01100              |
| 00000                | 11000              |
| 01110                | 00100              |
| 01000                | 00000              |
| 00100                | 00000              |
| 00000                |                    |
|                      |                    |

Explicação do exemplo 1: Este exemplo corresponde ao mostrado nas imagens do enunciado.

| Exemplo de entrada 2 | Exemplo de saída 2 |
|----------------------|--------------------|
| 15 1                 | 0000000000000      |
| 000010000010000      | 000110000011000    |
| 000010000010000      | 000011000110000    |
| 000011000110000      | 010010101010010    |
| 00000000000000       | 011101101101110    |
| 111001101100111      | 001010101010100    |
| 001010101010100      | 000111000111000    |
| 000011000110000      | 0000000000000      |
| 00000000000000       | 000111000111000    |
| 000011000110000      | 001010101010100    |
| 001010101010100      | 011101101101110    |
| 111001101100111      | 010010101010010    |
| 00000000000000       | 000011000110000    |
| 000011000110000      | 000110000011000    |
| 000010000010000      | 00000000000000     |
| 000010000010000      |                    |
|                      |                    |

| Exemplo de entrada 3 | Exemplo de saída 3 |
|----------------------|--------------------|
| 45.0                 | 00004000040000     |
| 15 3                 | 000010000010000    |
| 000010000010000      | 000010000010000    |
| 000010000010000      | 000011000110000    |
| 000011000110000      | 0000000000000      |
| 00000000000000       | 111001101100111    |
| 111001101100111      | 001010101010100    |
| 001010101010100      | 000011000110000    |
| 000011000110000      | 00000000000000     |
| 00000000000000       | 000011000110000    |
| 000011000110000      | 001010101010100    |
| 001010101010100      | 111001101100111    |
| 111001101100111      | 00000000000000     |
| 00000000000000       | 000011000110000    |
| 000011000110000      | 000010000010000    |
| 000010000010000      | 000010000010000    |
| 000010000010000      |                    |
|                      |                    |