Machine Learning Algorithms And Models

♦ 1. Decision Tree

Definition: A Decision Tree splits data into smaller subsets based on feature conditions, forming a tree structure. It uses impurity measures (like **Entropy** or **Gini**) to decide the best splits.

Key Terms:

Root Node: First node; contains the full dataset.

Internal Node: Splits based on a feature.

Leaf Node: Final output (class or value).

Equations:

Entropy:

$$H(S) = -\sum_{i=1}^{C} p_i \log_2(p_i)$$

Gini Index:

Gini = 1 -
$$\sum_{i=1}^{c} p_i^2$$

% Steps:

Choose the best feature (using Gini/Entropy).

Split dataset.

Repeat until stopping criteria (max depth, min samples).

Example (Python):

```
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import load_iris

X, y = load_iris(return_X_y=True)
model = DecisionTreeClassifier(max_depth=3)
model.fit(X, y)
print(model.predict([X[0]]))
```

Advantages:

Easy to interpret & visualize.

Handles numeric & categorical data.

X Disadvantages:

Prone to overfitting.

Sensitive to small changes in data.

6 Use Cases:

Fraud detection, medical diagnosis.

2. Random Forest

Definition: An **ensemble method** that builds multiple Decision Trees on random subsets of data & features, then averages predictions to improve accuracy.

Equation:

For classification:

$$\dot{y}^{\wedge} = \text{mode}(\{h_1(x), h_2(x), ..., h_T(x)\})$$

For regression:

$$\dot{y}^{\wedge} = 1/T \sum_{t=1}^{T} h_t(x)$$

Draw bootstrap samples from dataset.

Train a Decision Tree on each sample.

Use random subset of features at each split.

Aggregate predictions (majority vote or mean).

Example (Python):

```
from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier(n_estimators=100)
model.fit(X, y)
print(model.predict([X[0]]))
```

Advantages:

Robust to overfitting.

Handles missing data well.

X Disadvantages:

Slower for large datasets.

Less interpretable than a single tree.

Output Use Cases:

Loan default prediction, stock trend analysis.

3. Support Vector Machine (SVM)

Definition: SVM finds a **hyperplane** that maximizes the margin between classes. For non-linear problems, it uses **kernel trick**.

Equation:

Hyperplane equation:

$$f(x) = w^T x + b$$

Optimization problem:

% Steps:

Find hyperplane that maximizes margin.

Use **support vectors** to define boundary.

Apply kernels if data is not linearly separable.

Example (Python):

```
from sklearn.svm import SVC

model = SVC(kernel='rbf')
model.fit(X, y)
print(model.predict([X[0]]))
```

Advantages:

Effective in high dimensions.

Works with non-linear data using kernels.

X Disadvantages:

Slow with large datasets.

Needs parameter tuning (C, gamma).

Output Use Cases:

Face recognition, text classification.

♦ 4. K-Nearest Neighbors (KNN)

Definition: Instance-based algorithm. Predicts labels based on **k nearest neighbors**.

Equation (Euclidean Distance):

 $d(x,y) = \sqrt{(\sum_{i=1}^{n} (x_i - y_i)^2)}$

Choose k.

Find nearest neighbors.

Classification: majority vote.

Regression: average value.

Example (Python):

```
from sklearn.neighbors import KNeighborsClassifier

model = KNeighborsClassifier(n_neighbors=3)
model.fit(X, y)
print(model.predict([X[0]]))
```

Advantages:

Simple, no training needed.

Works for multi-class problems.

X Disadvantages:

Slow for large datasets.

Sensitive to irrelevant features.

@ Use Cases:

Recommendation systems, image recognition.

♦ 5. Naïve Bayes

Definition: Probabilistic classifier based on **Bayes' Theorem**, assuming features are independent.

Equation:

P(Y|X) = (P(X|Y)P(Y))/P(X)

Types:

Gaussian NB: Continuous features.

Multinomial NB: Text classification.

Bernoulli NB: Binary features.

Example (Python):

```
from sklearn.naive_bayes import GaussianNB

model = GaussianNB()
model.fit(X, y)
print(model.predict([X[0]]))
```

Advantages:

Fast and efficient.

Works well for text data.

X Disadvantages:

Strong independence assumption.

Poor if features are correlated.

6 Use Cases:

Spam detection, sentiment analysis.

♦ 6. Gradient Boosting

Definition: An ensemble technique that builds models sequentially, each correcting errors of the previous one.

Equation:

$$F_{m}(x) = F_{m-1}(x) + \eta h_{m}(x)$$

η: learning rate

h_m(x): weak learner (small tree)

% Steps:

Train weak learner.

Compute residuals.

Fit next learner on residuals.

Combine predictions.

Example (Python):

```
from sklearn.ensemble import GradientBoostingClassifier
model = GradientBoostingClassifier()
model.fit(X, y)
print(model.predict([X[0]]))
```

Advantages:

High accuracy.

Works well for mixed data types.

X Disadvantages:

Requires careful tuning.

Slower to train.

③ Use Cases:

Credit scoring, Kaggle competitions.

Quick Comparison Table

Algorithm	Туре	Strengths	Weaknesses
Decision Tree	Single model	Easy to interpret	Overfitting
Random Forest	Ensemble	Robust, high accuracy	Slower
SVM	Linear/Kernel	Works in high dimensions	Expensive on large data
KNN	Instance- based	Simple, non-parametric	Slow, sensitive to noise
Naïve Bayes	Probabilistic	Fast, good for text	Independence assumption
Gradient Boosting	Ensemble	High accuracy, flexible	Overfitting, slow