Instituto Federal de Educação, Ciência e Tecnologia do Piauí-IFPI

Curso de Tecnologia em Análise e Desenvolvimento de Sistemas

Disciplina: Introdução à Computação

Professor: Ricardo Martins Ramos

Aluno: Vinícius Gomes Araújo Costa

ARMAZENAMENTO DE DADOS

Teresina, 10 de Março, 2020.

Contexto:

Nesta disciplina, o **armazenamento de dados** é feito, inicialmente, por **Sistemas de Numeração** que envolvem a comunicação do **homem** com a **máquina**. A linguagem do mundo digital/computacional é frequente para recorrer-se a diferentes **Sistemas de Numeração** como representação da **informação digital**.

Eles são importantes pois **o computador** se comunica de maneira diferente do uso convencional, que nós usamos no dia a dia. Isto é: **os dígitos binários**, popularmente chamados de **0 e 1**. São eles que irão caracterizar **quatro** (4) diferentes tipos de sistemas em **Linguagens de Máquina**: **Binário** (base 2), **Decimal** (base 10), **Octal** (base 08) e **Hexadecimal** (base 16).

Deste modo, **o computador** utiliza, por **convenção**, **valores** baseados em níveis de voltagem ou pulsos elétricos. O zero significaria desligado e o um ligado. Quando os primeiros computadores foram criados, enormes válvulas de circulação de ar interligavam **os comandos principais**, **registradores** e **os sistemas de memória**. Eram denominados "**mainframs**", usados para pesquisa militar e acadêmica das universidades no mundo todo. Porém, ainda eram lentos em velocidade de processamento, visualizador de imagens e disco rígido (com pouca capacidade de espaço).

Com isso, para aprimorar essa interação homem máquina, foram criados mais de **dez** (10) **tipos de representação** para armazenamento de dados. Será exposto mais adiante a pesquisa sobre esse assunto. O método é simples: o programador digita um algarismo (bit) no periférico de entrada, manda a resposta para a ALU (central), o computador calcula automaticamente os dados pela Tabela ASCII e decodifica a mensagem; exibindo-a na tela.

Representação de Dados:

bit: Deriva do inglês *binary digit* (*dígito binário*), é a menor unidade de um dado. Pode representar dois valores quaisquer e é representado pela letra minúscula b. A sua importância em **Introdução à Computação** e matérias afins seria como o observador geraria valores desconhecidos para uma variável. Valor falso, verdade, desligado e ligado, assim por diante.

Unidade	Símbolo	Valor Equivalente	Múltiplo	
Bit	b*			
Byte	B*	8 bits	10°	
Kilobyte	KB	1024 B	10 ³	
Megabyte	MB	1024 KB	10 ⁶	
Gigabyte	GB	1024 MB	10 ⁹	
Terabyte	TB	1024 GB	1012	
Petabyte	PB	1024 TB	1015	
Exabyte	EB	1024 PB	10 ¹⁸	
Zettabyte	ZB	1024 EB	1021	
Yottabyte	YB	1024 ZB	1024	

Na imagem acima, têm-se a classificação de bits na computação e a ideia de **Banco de Dados na computação**.

Nibble:

- São 4 dígitos binários;
- Pode representar até 16 valores;
- 1 nibble equivale a 1 dígito hexadecimal.

Byte:

- Representado pela letra B maiúscula;
- O menor item de dados que pode ser acessado;
- São 8 bits, logo permite 256 combinações $(2^8 = 256)$
 - 1 **Byte** = 1 caractere de 8 bits
 - -1 **kiloByte** (KB) = 1024 Bytes ou 2^{10}
 - 1 MegaByte (MB) = 1024 kiloBytes ou 2^{20}
 - -1 **GibaByte** (GB) = 1024 MegaBytes ou 2^{30}
 - -1 **TeraByte** (TB) = 1024 GigaBytes ou 2^{40}

Tabela ASCII:

Assim como **o observador** precisou olhar uma **tabela** para estabelecer parâmetros de medida, esta tabela mostra **o espelho** do nosso **alfabeto** e traduz uma determinada quantidade de bits em **caracteres** do nosso alfabeto.

A **Tabela ASCII** (do inglês "Standard Code of Informaton Interchange", significa **Código Padrão Americano para Intercâmbio de Informação**) é usada pela maioria da indústria de computadores para a troca de informações. Cada caractere é representado por **um código de 8 bits** que inclui os caracteres acentuados.

Representa 128 sinais, 95 sinais gráficos (letras do alfabeto latino, sinais de pontuação e sinais matemáticos) e 33 sinais de controle, utilizando portanto apenas 7 bits para representar todos os seus símbolos. A codificação ASCII é usada para representar textos em computadores, equipamentos de comunicação, entre outros dispositivos que trabalham com texto. Desenvolvida a partir de 1960, grande parte das codificações de caracteres modernas a herdaram como base.

Trata-se de uma **tabela-base de conversão** de **números/caracteres binários** em letras do alfabeto maiúsculas e minúsculas, armazenando a quantidade de bits por arquivos de demonstração.

Dec Hx Oct Char	Dec Hx Oct	Html Chr	Dec Hx Oct Htm	ıl Chr Dec	Hx Oct Html Chr
0 0 000 NUL (null)	32 20 040	Space	64 40 100 6#6	4; 🛭 96	60 140 ` `
l 1 001 SOH (start of heading)	33 21 041	۵#33 ; !	65 41 101 4#6	5; A 97	61 141 @#97; a
2 2 002 STX (start of text)	34 22 042	۵#3 4; "	66 42 102 4#6	6; B 98	62 142 @#98; b
3 3 003 ETX (end of text)	35 23 043	# #	67 43 103 4#6	7; C 99	63 143 c 🕻
4 4 004 EOT (end of transmission)	36 24 044	\$; €	68 44 104 4#6	8; D 100	64 144 @#100; <mark>d</mark>
5 5 005 <mark>ENQ</mark> (enquiry)	37 25 045		69 45 105 4#6	.	65 145 @#101; e
6 6 006 <mark>ACK</mark> (acknowledge)		& ; <u>&</u>	70 46 106 4#7		66 146 @#102; f
7 7 007 BEL (bell)		@#39; <mark>'</mark>	71 47 107 4#7		67 147 @#103; g
8 8 010 <mark>BS</mark> (back <i>s</i> pace)		((72 48 110 6#7	.	68 150 @#104; h
9 9 011 TAB (horizontal tab)))	73 49 111 6#7		69 151 @#105; i
10 A 012 LF (NL line feed, new line		@#42; *	74 4A 112 6#7		6A 152 @#106; j
ll B 013 VT (vertical tab)	43 2B 053		75 4B 113 6#7	.	6B 153 @#107; k
12 C 014 FF (NP form feed, new page	'		76 4C 114 	.	6C 154 @#108; l
13 D 015 CR (carriage return)	45 2D 055		77 4D 115 6#7	.	6D 155 @#109; ╨
14 E 016 <mark>SO</mark> (shift out)	46 2E 056		78 4E 116 	.	6E 156 @#110; n
15 F 017 SI (shift in)		6#47; /	79 4F 117 @#7	.	6F 157 @#111; º
16 10 020 DLE (data link escape)	48 30 060		80 50 120 G#8	.	70 160 @#112; p
17 11 021 DC1 (device control 1)	49 31 061		81 51 121 6#8		71 161 @#113; <mark>q</mark>
18 12 022 DC2 (device control 2)	50 32 062		82 52 122 6#8	.	72 162 @#114; <mark>r</mark>
19 13 023 DC3 (device control 3)	51 33 063		83 53 123 4#8	.	73 163 @#115; 3
20 14 024 DC4 (device control 4)	52 34 064		84 54 124 6#8	.	74 164 @#116; ^t
21 15 025 NAK (negative acknowledge)	53 35 065		85 55 125 6#8	1	75 165 @#117; <mark>u</mark>
22 16 026 SYN (synchronous idle)	54 36 066		86 56 126 4#8		76 166 @#118; V
23 17 027 ETB (end of trans. block)	55 37 067		87 57 127 6#8	I .	77 167 @#119; ₩
24 18 030 CAN (cancel)	56 38 070		88 58 130 6# 8	.	78 170 @#120; X
25 19 031 EM (end of medium)		9 9	89 59 131 4#8	.	79 171 y Y
26 1A 032 <mark>SUB</mark> (substitute)	58 3A 072		90 5A 132 @#9	.	7A 172 @#122; Z
27 1B 033 ESC (escape)	59 3B 073		91 5B 133		7B 173 { {
28 1C 034 FS (file separator)	60 3C 074		92 5C 134 @#9		7C 174 @#124;
29 1D 035 <mark>GS</mark> (group separator)		= =	93 5D 135 @#9		7D 175 @#125; }
30 lE 036 RS (record separator)		>>	94 5E 136		7E 176 @#126; ~
31 1F 037 <mark>US</mark> (unit separator)	63 3F 077	? ?	95 5F 137	5; _ 127	7F 177 DEL

Source: www.LookupTables.com

Processamento de imagens:

Em jogos, imagens são muito utilizadas em formato de sprites, imagens de cenários e na composição da visualização de objetos, sendo utilizadas na forma de texturas (mapeamento de texturas).

A partir de **dados vetoriais**, **as informações** descrevem **primitivas gráficas** para formar **desenhos**, ou seja, **pontos**, **curvas**, **linhas** ou **formas geométricas** quaisquer. Um programa que manipula este tipo de dado deve interpretar esta informação primitiva e transformá-la numa imagem.

Dados tipo bitmap:

- Dado gráfico é descrito como uma array de valores, aonde cada valor representa uma cor;
- Chamamos cada elemento da imagem de pixel;
- O pixel é uma estrutura de dados que contém múltiplos bits para representação de cores;
- A quantidade de bits determina a quantidade de cores possível de se representar numa imagem.

E mais um conjunto de formação de códigos processuais que envolvem Geometria Euclidiana, Programação Orientada a Objetos e Conjuntos Numéricos.

Exemplos: raster scan-lines, pixel-depth, gráficos de imagem, entre outros.

Quando se navega na **Internet** e em **redes sociais**, nos deparamos com imagens de diversos formatos e que se apresentam os arquivos. Salvá-las em pastas fica a gosto dos usuários.

Vemos com facilidade o **JPG**, **GIF**, **PNG** (mais comuns atualmente) e **BMP**. Mas além desses, existe uma grande quantidade de formatos para diversos tipos de uso. Cada um possui uma especificação técnica diferente, pois são **compressão de pixels diferentes**.

JPEG:

Joint Pictures Expert Group é o melhor formato para quem deseja enviar imagens por email. Surgiu em 1983 e acabou virando um dos padrões mais populares da Internet. Conhecido também como **JPG**.

GIF:

Graphics Interchange Format é outro formato muito comum na Internet. É um arquivo leve e famoso pelas fotografias em movimento, os gif's animados. Só trabalha com 256 cores (8 bits), por isso não é muito comum em fotografias. Criado em 1987, o GIF foi projetado pela CompuServe nos primeiros dias de vídeo dos computadores de 8 bits, antes mesmo JPG, para visualização em velocidade de conexão para modem dial-up (discado).

PNG:

Portable Network Graphics, ao contrário do GIF, o PNG suporta mais cores. É um concorrente do **GIF**. Surgiu em 1996 e possui características que tornaram o GIF tão bem aceito: **animação**, **fundo transparente** e **compressão sem perda de qualidade**, mesmo com salvamentos constantes do arquivo. Suporta milhões de cores, uma ótima opção para fotos. E **transparência por 24 imagens de bit RGB**.

Outros formatos:

-TIFF, TIFF LZW, RAW, EXIF, PPM, PGM, PNM, SVG, CDR, WebP, Ilustrator, Photoshop entre outros recursos...

Processamento de vídeos:

Em **fundamentos da edição de um vídeo**, precisamos saber alguns conceitos. Um vídeo nada mais é do que a **sequência de "fotogramas" por segundo**. Ou seja, uma sucessão de imagens estáticas que alteram a percepção de tempo e visão do ser humano. O que engana o cérebro e dar a sensação de movimento.

FPS OU QPS:

Fotogramas, ou quadros, por segundo é a unidade de medida da cadência de um dispositivo audiovisual qualquer, como uma câmera, um projetor, um televisor, etc. Significa o número de imagens que tal dispositivo registra, processa ou exibe por segundo.

• Eadweard Muybridge:

Foi um fotógrafo inglês conhecido por seus experimentos com o uso de **múltiplas câmeras** para **captar o movimento**. Em 1872, convenceu o governador da Califórnia Leland Stanford que o "galope" dos cavalos não deixava terra dos cascos nos mesmos locais durante suas corridas. Através de um esquema de captação de imagens instantâneas demonstrou a teoria "*The Horse in Motion*".

Essa **série de fotos**, tiradas onde hoje é a **Universidade Stanford**, foram chamadas "*The Horse in Motion*", e mostra que todos os cascos ficam fora da terra - embora não com as patas completamente estendidas, como os ilustradores contemporâneos tenderam a imaginar, mas um pouco dobradas sob o cavalo, "**puxando**" as patas dianteiras e "**empurrando**" as traseiras.

Formato de exibição

01:00:00:00

HH: MM: SS: FF

Cadências exibição padrão:

24p é a cadência padrão do cinema desde 1929

25p derivação do sistema de vídeo PAL/SECAM (Europa)

30i (29.97 fps) NTSC sistema de televisão analógico (América)

50i sistema de PAL/SECAM (Europa)

60i (59.94 fps) NTSC sistema de televisão digital (América)

***Youtube**: 24p, 25p, 30p, 48p, 50p, 60p ...

Fields:

De acordo com os "frams" de imagem, a tela de exibição é composta de várias linhas entrelaçadas e de varredura progressiva. Isso gera o movimento, que poder ser do tipo "fast motion" ou "slow motion". Vai depender da quebra de quadros em uma gravação SIC de vídeo. Originando, assim, a distorção de tempo e imagem.

Codec:

CoDec ou Codificador/Decodificador é um hardware ou software que tem como objetivo a compactação de dados para armazenagem e descompactação para visualização. São usados na codificação de arquivos de áudio e vídeo digital.

· Bit Rate:

A taxa de bits, ou *BitRate*, é usada para definir a qualidade e o peso de um arquivo comprimido. A taxa de bits representa a quantidade de dados digitais para cada segundo do arquivo e, normalmente, é apresentada como Mbps (mil bits por segundo).

Processamento de áudio:

Em computação, arquivo de som (ou arquivo sonoro) é um formato de arquivo que permite o armazenamento digital de áudio. Em geral, esse arquivo armazena intervalos regulares de amostras de som, que representam a posição em que a membrana da caixa de som deve estar no momento da gravação.

Há três propriedades destes arquivos que determinam a qualidade do som armazenado e o seu tamanho. São eles: a resolução, ou seja, quantos bits são usados para representar cada amostra, a taxa de amostragem, ou seja, quantas amostras são tomadas do som por segundo e por último, o codec que pode proporcionar formas mais ou menos eficientes para armazenar estas informações.

Observações:

- Em contrapartida, o formato **MIDI** não segue esses princípios;
- Ele não armazena áudio propriamente dito, mas sim uma sequência de notas musicais que podem ser executadas por sintetizadores;

- Não se deve confundir o codec com o formato do arquivo;
- O formato especifica a disposição dos dados dentro do arquivo e o codec a forma como a informação sobre o som é tratada. Há formatos de arquivo que proporcionam a possibilidade de usar vários codec's para codificar o som no arquivo.

Formatos:

WAV (criado pela Microsoft), AIFF (criado pela Apple Inc.), MP3, MP4, compressão Ogg-Vorbis, RA (Real Player), M4P ...

• A **possibilidade de compressão** do formato **MP3** foi responsável por parte da popularização do mesmo, pois possibilitou o armazenamento de uma quantidade muito superior de **músicas** em um mesmo espaço de armazenamento.