Title

Subtitile

Mladen Ivkovic

17. September 2019

LASTRO

École Polytechnique Fédérale de Lausanne

Outline

Section Name

Blocks

Proof, Definitions, Lemmata, Remarks

Overlays

Two Columns

Images

Two images

Full Page Image

Math

Citations and References

Section Name

Test Frametitle

- Test
- Test 2
- Test 3

 G_3' : Text goes here.

WTF

Item Name Description

Blocks

blocks

simple block title Simple block text

example block title example block text

alert block title alert block text

Proof, Definitions, Lemmata,

Remarks

Proofs etc

Proof.Proof

Lemma (XY – A dual zu YX) Lemma

Theorem (T – after Tarski)
Theorem

Remark remark: first set

\newtheorem*{rem}{Remark}

in preamble!

• Start

- Start
- so it follows

- Start
- so it follows
- then this

- Start
- so it follows
- then this
- then that

- This is on the first only
- · This is on the first three slides

- · This is on the first three slides
- · This is on the second to fourth slides and the sixth slide

- · This is on the first three slides
- · This is on the second to fourth slides and the sixth slide

• This is on the second to fourth slides and the sixth slide

• This is on the second to fourth slides and the sixth slide

• This is on the first and all following slides

- This is on the first and all following slides
- This is on the second and all following slides

- This is on the first and all following slides
- This is on the second and all following slides
- This is on the third and all following slides
- This is the same as the last called <+->, i.e. the last +

• This is on the first and all following slides

 This is on the first and all following slides. You can override shortcuts

- This is on the first and all following slides
- This is on the second and all following slides
- This is on the first and all following slides. You can override shortcuts

- This is on the first and all following slides
- This is on the second and all following slides
- This is on the third and all following slides
- This is on the first and all following slides. You can override shortcuts

Two Columns

Two column stuff

- 1. Start
- 2. Stop

Images

Two images

I really don't

indeed I don't

Small caption for big image

Dalmas de Réotier, Pierre (2010): Introduction to muon spin rotation and relaxation. [Online]. Availible: http://inac.cea.fr/Pisp/pierre.dalmas-de-reotier/introduction_muSR.pdf

$$f(z) = \lim_{x \to \infty} \frac{\sin x}{x} = 0 \tag{1}$$

$$\int (z)dz = \frac{1}{4} \left[\int \frac{e^{ia(u+1)}}{u} du - \int \frac{e^{ia(u+1)}}{u+2} du \right]$$

$$z=1 \Rightarrow u=0 \quad \underbrace{\frac{e^{ia}}{4}}_{} \left[\underbrace{\frac{e^{iae^{i\varphi}}}{\epsilon e^{i\varphi}} i\epsilon e^{i\varphi}}_{\rightarrow i} d\varphi - \int_{\pi}^{0} \underbrace{\frac{e^{iaee^{i\varphi}}}{\epsilon e^{i\varphi}+2} \underbrace{i\epsilon e^{i\varphi}}_{\rightarrow 0}}_{\rightarrow 0} d\varphi \right]$$
(3)

2 + 2 = 4 some more space after this line please. (4)

Citations and References

Citations and References

Knollmann and Knebe 2009

(Berger and Colella 1989)

References

M. J. Berger, P. Colella, *Journal of Computational Physics* **82**, 64–84 (May 1989).

S. R. Knollmann, A. Knebe, ApJ **182**, 608–624 (June 2009).