WATER SCARCITY IN REMOTE COMMUNITIES

Novia C. Joshua C. Minh H. Joshua S. Marko S. Huanqing W. Yon Z.

TABLE OF CONTENTS

PROJECT CONTEXT

Developing a Rain Water Harvesting (RWH) system to provide adequate clean water to satisfy a pilot household of two people.

This RWH system will:

DESIGN RECOMMENDATION

Comprised of the following components:

- Two solar panels
- Three filters (1μm, 5μm, and 200μm)
- **Chlorine** treatment system
- 50 watt **UV** system
- Pump
- Storage to house filter location
- Ground-level Storage tank
- Catchment tank

STAKEHOLDERS

- Members of RES'EAU WaterNET
- Remote communities
 of coastal British Columbia
- Equipment Manufacturers
- R2 Design Team
- Health Authorities
- Consultants

- Independent power system
- Sustainable
- Sufficient clean water
- Resilient system
- Cost-efficient
- Simple, easily maintained
- Compliant with regulations

KEY ASSUMPTIONS

DECISION MAKING PROCESS

- 1. Analyzing main components in our design solution
- Rainwater collection
- Storage
- Pump
- Filtration
- Disinfection
- Power System
- Prototyping: (physical and virtual)
- 1. Analyzing risk

SOLUTIONS CONSIDERED

PHYSICAL PROTOTYPING

Using prototypes of RWH components to:

- Calculate C_f, K, f
- Observe flow rate behaviour through varying lengths of tubes

COMPREHENSIVE VIRTUAL PROTOTYPING

Optimizing Satisfaction for Satisfaction Criteria

DESIGN DECISIONS

RISK

Identified Risk:

- Variations in future rainfall
- Amount of GHG Emissions

Reducing Risk:

- Larger storage tank
 - During times of low rainfall, the household can draw from the stored water reserves
 - Provides a safety net, ensuring that the household stays supplied with water even in periods of drought
- Solar instead of Diesel

SUSTAINABILITY

Societal:

- Provides clean water for the residents
- Lowers economic burden of shipping in water bottles, allowing residents to spend money on themselves and have a higher standard of living

Economic:

- Gives back economic agency to Van Anda
- Removes cost of shipping in water bottles
- Simple maintenance and low costs for effectiveness in perpetuity

Environmental:

- Solar powered, low GHG emissions
- Reusable system, low landfill production

DESIGN JUSTIFICATION

- Optimal solution for the project context
- Tested with real weather data
- Takes into account interloping factors and risks/tradeoffs
- Achieves high degree of stakeholder satisfaction

CONCLUSION

Environmentally Conscious

Impeccable Reliability

Minimal Maintenance

Optimized Costs

Overall Satisfaction

84.7%

APPENDIX

- A. Upper and Lower Water Limits
- A. Physical Prototyping
- A. Physical Prototyping Results (2)
- A. Virtual prototyping (2)
- A. Pump vs. System Analysis
- A. Preliminary Storage Tank Model
- B. Final Satisfactions
- C. Satisfaction Curves (2)
- D. Health and Environmental Risk

Appendix A: Upper and Lower Water Limits

Lower Justification

Estimate for total litres/day:

122.0

Key Assumptions (per person):

- Washroom: once a day
- Showering once a week
- Wash dishes 2 times a week
- Drinking 946.353mL of water a day
- No other indoor uses.

They would be satisfied. We took minimum usage as the definition for the lowest amount used for the two people. This would result in a high satisfaction level as they would be efficient, conservant and sustainable.

Upper Justification

Estimate for total litres/day:

478.4

Key Assumptions (per person):

- Washroom seven times a day
- Drinking 1892.71ml of water
- Two showers per day
- Indoor uses of water occur, including watering potted plants, feeding pets, etc.

They would be satisfied. We took a very high maximum amount for usage. Some of these assumptions are unreasonable to expect a single person to use, which means that it would go above and beyond their usage.

Appendix B: Physical Prototyping

Appendix C: Physical Prototyping Results (1)

Lab A

Experiment	pgh	(1/2)pv^2	p (losses)	f	K	Cf
Base Case —	2383.83	463.52	667.08		1.44	
	1716.75	406.53	007.08		1.64	
					1.54	
Dining Losses	2187.63	119.59	431.64	0.01	1.54	
Piping Losses	1755.99	78.95		0.01	1.54	
Class Eilten	2491.74	105.11	725.75		1.54	1251.67
Clean Filter	1755.99	46.71	735.75		1.54	2171.72
Fouled Filter	2491.74	112.23	755.37		1.54	1229.55
	1736.37	78.95			1.54	1595.00

Appendix C: Physical Prototyping Results (2)

Base Case - Nozzle Only

Piping Losses - 1 Metre Tubing

Clean Filter

Fouled Filter

Friction and filter losses are negligible

 H_1 : K = 1.439

 H_2 : K = 1.641

K_{avg} = 1.54 (constant for all other experiments)

Filter Losses are negligible

 H_1 : f = 0.00985

 H_2 : f = 0.00985

Friction is negligible

 H_1 : $C_f = 1251.674272$

 H_2 : $C_f = 2171.7$

Friction is negligible

 H_1 : $C_f = 1229.553064$

 H_2 : $C_f = 1595.002909$

Loss Coefficient Calculations: since losses due to friction is negligible for the clean and fouled filter cases, the formula for pressure losses is:

$$p_{losses} pprox \overline{K}_1 \frac{\rho v^2}{2} + C_f v$$
 H₁=When water tank is full

H₁=When water tank is full
H₂=When water tank at 180mL

Hence, Filter loss coefficient $C_f = (Pressure loss - Kpv^2/2)$

The trend we noticed is the flow rate decreases as the stock water decreases in quantity. In addition, as the **length of tubing** the water needs to flow through is **increased**, the **flow rate is decreased**.

Appendix D: Virtual prototyping (1)

Appendix D: Virtual prototyping (2)

Total Cost:	39,385\$	Total Maintenance/year:	29.0937649	
Rainwater				
Collection Cost	Catchment whole roof	Additional catchment	400L catchment tank	Piping cost
	350\$	0\$	900\$	0.00\$
Storage Cost	Storage Piping Cost(to and back):	Tower	Storage tank	
	2,785\$	0\$	13,750\$	
Collection & Storage Total Cost:	17784.55113			
Pump Cost	Pump B			
	1,400\$			
Filtration Cost	Bag Filte	er	Cartridge	e Filter
T III COST	100\$	50\$ replacement	125\$	75\$ replacement
Filtration total cost(5 years)	8550	est replacement	.200	7 of replacement
Disinfection Costs	Chlorine Cost per year	Maintenance:		
	1540.733333	UV	1\$	times/year
Disinfection Cost Total(5 years)	7703.666667	Chlorine	16	times/year
Power system cost(initial)	3759	Filtration	8	times/year
Cost to ship in water(5 years times average for one year):	188\$	Pump	0\$	times/year
		Solar Panel	4	times/year

Appendix E: Pump vs. System Analysis

Pump A is eliminated due to low flow rate.

Pump C is eliminated due to high initial cost.

Pump B is chosen due to highest efficiency and reasonable flow rate (27.8 L/min) and cost.

Appendix F: Preliminary Storage Tank Model

Tank Volume Recommendations:

	Volume of tank for ~1% Satisfaction	Volume of tank for ~50% Satisfaction	Volume of tank for ~100% Satisfaction
Station 1 – 2014	5.861 [m ³]	16.624 [m ³]	44.02 [m ³]
Station 1 – 2015	7.523 [m ³]	28.67 [m ³]	55.35 [m ³]
Station 2 – 2015	8.342 [m ³]	0 [m ³]	0 [m³]
Station 3 – 2013	5.012 [m ³]	0 [m ³]	0 [m ³]

 Analysis shows that there will always be a day that the tank volume in station 2 and station 3 goes to 0 (rainfall cannot compensate the water consumption) for 50% and 100% satisfactions.

Appendix G: Final Satisfactions

	Raw values	Weight	Min	Max	Satisfaction
Consumption	530.0	20%	135	600	94.5%
Relative cost	49.2	25%	25	125	86.2%
Health & environmental risk exposure	16.2	10%	0	35	55.9%
Power system GHG emission	43.5	10%	20	100	80.2%
Maintenance Occurrences	29.0	10%	15	75	87.2%
On demand flow rate	29.8	10%	15	35	84.1%
Reliability(days consumption met	331.8	15%	200	365	90.3%
				Total Satisfaction:	84.7%

^{*}based off reference cost of \$80,000

Appendix H: Satisfaction Curves (1)

Appendix H: Satisfaction Curves (2)

Appendix I: Health and Environmental Risk

			Minor injury- No medical Attention		Permanent injury or death
		1	2	3	4
Daily risk exposure	4	4	8	12	16
Weekly risk exposure	3	3	6	9	12
Monthly Risk exposure	2	2	4	6	8
Yearly risk exposure	1	1	2	3	4

		Begin Contamination	Trace Contamination	•	Widespread irreversible damage
		1	2	3	4
Daily risk exposure	4	4	8	12	16
Weekly risk exposure	3	3	6	9	12
Monthly Risk exposure	2	2	4	6	8
Yearly risk exposure	1	1	2	3	4