

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of

Docket No: Q76559

Pierre SILLARD, et al.

Appln. No.: 10/620,356

Group Art Unit: 2874

Confirmation No.: 8909

Examiner: Not Assigned

Filed: July 17, 2003

For:

A DISPERSION MANAGED OPTICAL FILTER

SUBMISSION OF PRIORITY DOCUMENT

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Submitted herewith is a certified copy of the priority document on which a claim to priority was made under 35 U.S.C. § 119. The Examiner is respectfully requested to acknowledge receipt of said priority document.

Respectfully submitted,

Registration No. 28,703

David J. Cushing

SUGHRUE MION, PLLC

Telephone: (202) 293-7060

Facsimile: (202) 293-7860

WASHINGTON OFFICE 23373

CUSTOMER NUMBER

Enclosures:

France 0209136

Date: October 10, 2003

جست المساو			
	•		\$ 5.
			· ·
			ن
Į.			
			*
			s.
			•
			•
•			
		,	

Q74559

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION

COPIE OFFICIELLE

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

Fait à Paris, le 0 3 JUIL 2003

Pour le Directeur général de l'Institut national de la propriété industrielle Le Chef du Département des brevets

Martine PLANCHE

INSTITUT
NATIONAL DE
LA PROPRIETE
INDUSTRIELLE

SIEGE
26 bis, rue de Saint Petersbourg
75800 PARIS cedex 08
Téléphone : 33 (0)1 53 04 53 04
Télécopie : 33 (0)1 53 04 45 23
www.inpi.fr

	,			
				79
				ė.
				7
				•
				9
				(#)
			·	-
				÷
				•
				*
				•
				•
				•
		•	×	•
	•			

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ

Code de la propriété intellectuelle - Livre VI

REQUÊTE EN DÉLIVRANCE 1/2

elephone : 01 55 04 55 04 Telecopie : 01 42 57 00 0	Cet imprimé est à remplir lisiblement à l'encre noire 155 5 50 W /25039/5										
RÉSEIVÉ à l'INPI	I NOM ET ADRESSE DU DEMANDEUR OU DU MANDATAIRE										
DATE	À QUI LA CORRESPONDANCE DOIT ÊTRE ADRESSÉE										
usu 18 JUIL 2002	" COMPAGNIE FINANCIERE ALCATEL										
75 INPI PARIS	Département PI										
NATIONAL ATTRIBUE PAR L'INPE 0209136	Régis VIGAND										
DATE DE DÉPÔT ATTRIBUÉE	30 avenue Kléber										
PAR LINPI 18 JUIL, 20	_										
Vos références pour ce dossier (facultatif) 104269/RV/OOFD/TPM	عُرِّح اللهِ										
Confirmation d'un dépôt par télécopie	N° attribué par l'INPI à la télécopie										
2 NATURE DE LA DEMANDE	Cochez l'une des 4 cases suivantes										
Demande de brevet	X										
Demande de certificat d'utilité											
Demande divisionnaire											
Demande de brevet initiale	N° Date										
	N° Date										
on demande de certificat d'utilité initiale Transformation d'une demande de											
brevet européen Demande de brevet initiale	N° Date/										
S TITRE DE L'INVENTION (200 caractères ou	espaces maximum)										
FIBRE OPTIQUE A GESTION DE	DISPERSION										
	·										
@ DÉCLARATION DE PRIORITÉ	Pays ou organisation Date/ N°										
OU REQUÊTE DU BÉNÉFICE DE	Pays ou organisation										
LA DATE DE DÉPÔT D'UNE	Date N°										
DEMANDE ANTÉRIEURE FRANÇAISE	Pays ou organisation										
DEMINISTE MANAGEMENT	Date N°										
	S'il y a d'autres priorités, cochez la case et utilisez l'imprimé «Suite»										
5 DEMANDEUR	S'il y a d'autres demandeurs, cochez la case et utilisez l'imprimé «Suite»										
Nom ou dénomination sociale	ALCATEL										
Prénoms	Société Anonyme										
Forme juridique	5.4.2.0.1.9.0.9.6										
N° SIREN	3.4.2.0.1.3.0.5										
Code APE-NAF											
Rue Adresse	54, rue La Boétie										
Code postal et ville	75008 PARIS										
Pays	FRANCE										
Nationalité	Française										
N° de téléphone (facultatif)											
N° de télécopie (facultatif)											
Adresse électronique (facultatif)											

BREVET D'INVENTION CERTIFICAT D'UTILITÉ

REQUÊTE EN DÉLIVRANCE 2/2

DATE LIEU Nº 0	12 11 1	0200126				; C3 540 W /250393
	s références p cultatif)	our ce dossier :	104269/RV	/OOF)/TPM	2.8
6	MANDATAIRI	Ē				
	Nom		VIGAND	,		
	Prénom		Régis			
	Cabinet ou So	ciété		nie Fi	nancière Alcatel	
	N °de pouvoir de lien contra	permanent et/ou ctuel	PG 922	22		ı.
	Adresse	Rue	30 Aven	ue Klé	éber	
		Code postal et ville	75116	P/	ARIS	
	N° de télépho					
	N° de télécopi					
<u> </u>	Adresse électr	onique (facultatif)				
7	INVENTEUR ((S)				
	Les inventeurs	sont les demandeurs	Oui X Non D	ans ce	cas fournir une désign	ation d'inventeur(s) séparée
8	RAPPORT DE	RECHERCHE	Uniqueme	nt pour	une demande de breve	et (y compris division et transformation)
		Établissement immédiat ou établissement différé				
	Paiement éche	elonné de la redevance	Palement Oui Non	en troi:	s versements, uniqueme	ent pour les personnes physiques
9	RÉDUCTION	DU TAUX	Uniqueme	nt pour	les personnes physique	es
	DES REDEVA	NCES	Requise	pour la	première fois pour cette i	invention (joindre un avis de non-imposition)
					urement à ce dépôt (joine tion ou indiquer sa référenc	dre une copie de la décision d'admission ve);
		utilisé l'imprimé «Suite», ombre de pages jointes				
						
10	SIGNATURE D	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Régis VIO	S V VID	/ I C 40 B	VISA DE LA PRÉFECTURE
		ité du signataire)	itegis vit	, WIND	7 EC 40 B	OU DE L'INPI
		7	/	·.		
			Ĺ			
						L. MARIELLO
_						

La loi n°78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

10

15

20

25

FIBRE OPTIQUE A GESTION DE DISPERSION

L'invention concerne le domaine des fibres optiques pour réseau de transmission à multiplexage en longueur d'onde.

L'augmentation des débits d'information sur ce type de réseau impose une compensation de la dispersion chromatique et de la pente de dispersion sur une bande spectrale de plus en plus large. La bande dite S correspond à une bande spectrale allant approximativement de 1460nm à 1530nm. La bande dite C correspond à une bande spectrale allant approximativement de 1530nm à 1565nm. La bande dite L correspond à une bande spectrale allant approximativement de 1565nm à 1625nm. La bande dite U correspond à une bande spectrale allant approximativement de 1625nm à 1675nm. La bande spectrale la plus couramment utilisée est la bande C. De plus en plus, apparaît une tendance à vouloir, en plus de la bande C, utiliser les bandes S et L, voire même la bande U.

Pour cela, selon un premier art antérieur, il est connu d'utiliser une fibre optique à gestion de dispersion (« Dispersion Managed Fiber" en terminologie anglo-saxonne correspondant au sigle DMF) présentant une alternance longitudinale de portions de fibre optique à dispersion chromatique positive et de portions de fibre optique à dispersion chromatique négative. La dispersion chromatique pour l'ensemble de la fibre optique à gestion de dispersion est ainsi aisément compensée pour une longueur d'onde donnée. Par contre, lorsque la plage spectrale d'utilisation de la fibre optique à gestion de dispersion augmente, la dispersion chromatique doit être compensée sur une plage spectrale importante, c'est-à-dire que la pente de dispersion chromatique doit également être compensée, cette compension de pente de dispersion chromatique étant en pratique nettement plus difficile à réaliser et s'accompagnant souvent d'une dégradation de certains autres paramètres de la fibre optique à gestion de dispersion comme notamment sa surface effective.

10

15

20

25

30

Selon un deuxième art antérieur, il est connu d'associer certains types de fibres optiques à dispersion décalée réduisant les effets non-linéaires croisés (« non-zero dispersion shifted fiber » en terminologie anglo-saxonne correspondant à l'abbréviation NZ-DSF) à des fibres de compensation de dispersion (« dispersion compensating fiber » en terminologie anglo-saxonne correspondant à l'abbréviation DCF), ce qui permet d'obtenir une ligne de transmission dont la dispersion est nulle sur un grand intervalle spectral. Un inconvénient de cette association de fibres à disperstion décalée et de fibres de compensation de dispersion réside dans les fortes pertes que présente la fibre de compensation de dispersion, notamment l'atténuation linéique et les pertes par courbure, ainsi que la présence d'une PMD (« polarization mode dispersion » en terminologie anglo-saxonne) importante, ce qui limite l'augmentation du débit d'information.

La solution proposée par l'invention comprend l'utilisation d'une fibre à gestion de dispersion, la pente de dispersion des différentes portions de fibre optique étant suffisamment faible pour que, même en l'absence d'une inversion rigoureuse de pente de dispersion chromatique entre les portions de fibre optique à dispersion chromatique positive et les portions de fibre optique à dispersion chromatique négative, la dispersion moyenne de la fibre optique à gestion de dispersion ainsi obtenue soit très faible voire presque nulle sur une plage spectrale importante englobant les bandes S, C, L et de préférence U. On obtient ainsi ce qu'on peut appeler une fibre optique à gestion de dispersion « à dispersion plate ». Le fait de ne pas être obligé d'inverser rigoureusement la pente de dispersion chromatique a l'avantage supplémentaire de ne pas entraîner d'effondrement de la valeur de la surface effective le long de la fibre optique à gestion de dispersion ainsi obtenue. Par ailleurs, l'alternance entre portions de fibre optique à dispersion chromatique positive et portions de fibre optique à dispersion chromatique négative peut, compte tenu des faibles pentes de dispersion chromatique des différentes portions, avantageusement être obtenue par une homothétie radiale du profil d'indice du cœur, la valeur du rapport

10

15

20

25

30

16

ľ

d'homothétie restant relativement faible et n'entraînant pas de dégradation notable des propriétés de la fibre optique à gestion de dispersion ainsi obtenue, et notamment pas de dégradation notable de la surface effective lors du passage d'une portion de fibre optique à dispersion chromatique positive à une fibre optique à dispersion chromatique négative.

Selon l'invention, il est prévu une fibre optique à gestion de dispersion, pour réseau de transmission à multiplexage en longueur d'onde, comportant des portions de fibre optique à dispersion chromatique positive alternant longitudinalement avec des portions de fibre optique à dispersion chromatique négative, comportant successivement du centre vers la périphérie un cœur présentant un profil d'indice variable puis une gaine d'indice constant, le rayon extérieur du profil d'indice du cœur, limite entre le cœur et la gaine, étant suffisamment faible pour que la fibre optique soit monomode en câble, chaque portion de fibre optique présentant à la longueur d'onde de 1550nm, une dispersion chromatique dont la valeur absolue est comprise entre 1ps/nm.km et 10ps/nm.km, une pente de dispersion chromatique dont la valeur absolue est inférieure à 0,015ps/nm².km et une surface effective supérieure à 35µm², la différence relative de surface effective, à la longueur d'onde de 1550nm, entre les portions de fibre optique à dispersion chromatique positive et les portions de fibre optique à dispersion chromatique négative, étant inférieure à 7%, chaque portion de fibre optique, pour une longueur d'onde de 1625 nm, présentant des pertes par courbure pour 100 tours pour un diamètre de 60mm inférieures à 0,1dB.

Dans une fibre optique à gestion de dispersion « à dispersion plate » selon l'art antérieur, entre une portion de fibre optique à dispersion chromatique positive et une portion de fibre optique à dispersion chromatique négative, la pente de dispersion chromatique est inversée, cette inversion étant réalisée par une homothétie du profil d'indice avec un rapport important, ce qui entraîne alors une réduction importante de la surface effective, ce qui est un inconvénient. Pour conserver une surface effective élevée, on utilise un rapport moins important pour l'homothétie du profil d'indice, la pente n'étant alors pas rigoureusement

10

15

20

25

30

inversée, la fibre optique à gestion de dispersion n'est alors pas « à dispersion plate». Tandis que dans une fibre optique à gestion de dispersion selon l'invention, comme la pente de la portion de fibre optique à dispersion positive est déjà relativement faible, d'une part l'inversion de pente est plus facile à réaliser, et d'autre part même si l'inversion de pente n'est pas rigoureuse, ladite pente étant faible, la dispersion chromatique de la fibre optique à gestion de dispersion obtenue par alternance de portions de fibre optique à disperstion chromatique positive et de portions de fibre optique à dispersion chromatique négative est quant à elle relativement « plate ». Deux avantages concernant la surface effective en découlent, d'une part la surface effective des portions de fibre optique à dispersion chromatique négative est relativement élevée, et d'autre part la surface effective des portions de fibre optique à dispersion chromatique négative est relativement proche de la surface effective des portions de fibre optique à dispersion chromatique positive. Une telle fibre optique « à dispersion plate » est déjà comprise dans l'art antérieur, elle est en effet décrite dans la demande de brevet WO 00/63732, mais le rayon extérieur du profil d'indice de cœur est élevé ce qui rend ladite fibre optique multimode en câble.

Les fibres optiques à gestion de dispersion selon l'invention présentent un rayon extérieur du profil d'indice du cœur, lequel rayon extérieur est la limite entre le cœur et la gaine, qui est suffisamment faible pour que lesdites fibres optiques soient monomodes en câble. Pour les exemples considérés ultérieurement, correspondant tous à des profils d'indice de cœur à trois ou quatre tranches, le majorant, pour les portions de fibre optiques à dispersion positive et pour les portions de fibre optique à disperstion négative, de ce rayon extérieur est choisi inférieur à 16μ m pour un profil à quatre tranches et inférieur à $10,5\mu$ m pour un profil à trois tranches, ce qui assure un comportement monomode en câble des fibres optiques de gestion de dispersion « à dispersion plate » selon l'invention correspondantes.

De préférence, la différence relative de rayon extérieur, entre les portions de fibre optique à dispersion chromatique positive et les portions de fibre optique

10

15

20

25

à dispersion chromatique négative, est choisie inférieure à 11%, de façon à minimiser la variation de surface effective entre les portions de fibre optique à dispersion chromatique positive et les portions de fibre optique à dispersion chromatique négative.

Dans un premier mode de réalisation préférentiel de l'invention, la fibre optique à gestion de dispersion selon l'invention comprend un premier type de profil d'indice variable du cœur à trois tranches. Le premier type de profil d'indice variable du cœur est successivement constitué, du centre vers la périphérie, d'une tranche centrale d'indice maximum supérieur à l'indice de la gaine, d'une tranche enterrée d'indice minimum inférieur à l'indice de la gaine, d'une tranche annulaire d'indice maximum supérieur à l'indice de la gaine et inférieur à l'indice maximum de la tranche centrale. La tranche centrale est de préférence en forme de trapèze, mais elle peut aussi être en forme de rectangle ou de triangle ou en alpha.

Afin d'améliorer la platitude spectrale de la dispersion chromatique de la fibre optique à gestion de dispersion selon l'invention ainsi que ses autres propriétés, un certain nombre des plages ou de relations préférentielles pour les indices et les rayons du premier type de profil d'indice du cœur vont maintenant être données.

De préférence, la moyenne, sur l'ensemble des portions de fibre optique, de la différence Δn_1 entre l'indice maximum de la tranche centrale et l'indice de la gaine, est comprise entre $7,00.10^{-3}$ et $11,0.10^{-3}$, et la moyenne, sur l'ensemble des portions de fibre optique, du rayon r_1 de la partie de la tranche centrale présentant un indice supérieur à l'indice de la gaine, est comprise entre $2,65\mu m$ et $3,70\mu m$.

De préférence, pour une portion moyenne de fibre optique dont les valeurs de rayon du profil d'indice correspondraient aux moyennes des valeurs de rayon des profils d'indice de l'ensemble des portions de fibre optique, la valeur de l'intégrale, $S_{01} = \int\limits_0^r \Delta n(r) dr$, entre un rayon nul et le rayon r_1 de la partie de la

10

15

20

25

tranche centrale présentant un indice supérieur à l'indice de la gaine, de la différence d'indice par rapport à l'indice de la gaine, est supérieure à 23,0.10⁻³ μ m.

De préférence, pour une portion moyenne de fibre optique dont les valeurs de rayon du profil d'indice correspondraient aux moyennes des valeurs de rayon des profils d'indice de l'ensemble des portions de fibre optique, la valeur du double de l'intégrale, $S_1 = 2.\int\limits_0^1 \Delta n(r) r \, dr$, entre un rayon nul et le rayon r_1 de la partie de la tranche centrale présentant un indice supérieur à l'indice de la gaine, du produit du rayon par la différence d'indice par rapport à la gaine, est comprise entre 58.10^{-3} et $99.10^{-3} \, \mu m^2$.

De préférence, pour une portion moyenne de fibre optique dont les valeurs de rayon du profil d'indice correspondraient aux moyennes des valeurs de rayon des profils d'indice de l'ensemble des portions de fibre optique, la valeur du triple de l'intégrale, $S_{11} = 3.\int\limits_0^{r_1} \Delta n(r) r^2 .dr$, entre un rayon nul et le rayon (r_1) de la partie de la tranche centrale présentant un indice supérieur à l'indice de la gaine, du produit du carré du rayon par la différence d'indice par rapport à l'indice de la gaine, est comprise entre $150.10^{-3} \, \mu \text{m}^3$ et $335.10^{-3} \, \mu \text{m}^3$.

De préférence, la moyenne, sur l'ensemble des portions de fibre optique, de la différence Δn_2 entre l'indice minimum de la tranche enterrée et l'indice de la gaine, est comprise entre $-9,0.10^{-3}$ et $-2,5.10^{-3}$, et la moyenne, sur l'ensemble des portions de fibre optique, du rayon extérieur r_2 de la tranche enterrée, est comprise entre $4,00\mu m$ et $8,10\mu m$.

De préférence, pour une portion moyenne de fibre optique dont les valeurs de rayon du profil d'indice correspondraient aux moyennes des valeurs de rayon des profils d'indice de l'ensemble des portions de fibre optique, la valeur de l'intégrale, $S_{02} = \int\limits_{r!}^{r_2} \Delta n(r) . dr$, entre le rayon r_1 de la partie de la tranche centrale présentant un indice supérieur à l'indice de la gaine et le rayon extérieur r_2 de la

10

15

20

25

tranche enterrée, de la différence d'indice par rapport à l'indice de la gaine, est comprise entre -22,0.10⁻³ μ m et -8,0.10⁻³ μ m.

De préférence, la moyenne, sur l'ensemble des portions de fibre optique, de la différence Δn_3 entre l'indice maximum de la tranche annulaire et l'indice de la gaine, est comprise entre $0.50.10^{-3}$ et $7.5.10^{-3}$, et la moyenne, sur l'ensemble des portions de fibre optique, du rayon extérieur r_3 de la tranche annulaire, est comprise entre $6.70\mu m$ et $10.50\mu m$.

De préférence, pour une portion moyenne de fibre optique dont les valeurs de rayon du profil d'indice correspondraient aux moyennes des valeurs de rayon des profils d'indice de l'ensemble des portions de fibre optique, la valeur de l'intégrale, $S_{03} = \int\limits_{r_2}^{r_3} \Delta n(r) dr$, entre le rayon extérieur r_2 de la tranche enterrée et le rayon extérieur r_3 de la tranche annulaire, de la différence d'indice par rapport à l'indice de la gaine, est comprise entre $1,0.10^{-3}\,\mu\mathrm{m}$ et $15.10^{-3}\,\mu\mathrm{m}$.

Dans un deuxième mode de réalisation préférentiel de l'invention, la fibre optique à gestion de dispersion selon l'invention comprend un deuxième type de profil d'indice variable du cœur à quatre tranches. Le deuxième type de profil d'indice variable du cœur est successivement constitué, du centre vers la périphérie, d'une tranche centrale d'indice maximum supérieur à l'indice de la gaine, d'une première tranche enterrée d'indice minimum inférieur à l'indice de la gaine, d'une tranche annulaire d'indice maximum supérieur à l'indice de la gaine et inférieur à l'indice maximum de la tranche centrale, d'une deuxième tranche enterrée d'indice minimum inférieur à l'indice de la gaine. La tranche centrale est de préférence en forme de rectangle, mais elle peut aussi être en forme de trapèze ou de triangle ou en alpha.

Afin d'améliorer la platitude spectrale de la dispersion chromatique de la fibre optique à gestion de dispersion selon l'invention ainsi que ses autres propriétés, un certain nombre des plages ou de relations préférentielles pour les indices et les rayons du deuxième type de profil d'indice du cœur vont maintenant être données.

10

15

20

25

30

De préférence, la moyenne, sur l'ensemble des portions de fibre optique, de la différence Δn_1 entre l'indice maximum de la tranche centrale et l'indice de la gaine, est comprise entre $7,0.10^{-3}$ et $10,0.10^{-3}$, et la moyenne, sur l'ensemble des portions de fibre optique, du rayon r_1 de la partie de la tranche centrale présentant un indice supérieur à l'indice de la gaine, est comprise entre $2,5\mu m$ et $3,5\mu m$.

De préférence, la moyenne, sur l'ensemble des portions de fibre optique, de la différence Δn_2 entre l'indice minimum de la première tranche enterrée et l'indice de la gaine, est comprise entre $-9,0.10^{-3}$ et $-2,5.10^{-3}$, et la moyenne, sur l'ensemble des portions de fibre optique, du rayon extérieur r_2 de la tranche enterrée, est comprise entre $4,1\mu m$ et $7,0\mu m$.

De préférence, la moyenne, sur l'ensemble des portions de fibre optique, de la différence Δn_3 entre l'indice maximum de la tranche annulaire et l'indice de la gaine, est comprise entre $0.5.10^{-3}$ et $5.0.10^{-3}$, et la moyenne, sur l'ensemble des portions de fibre optique, du rayon extérieur r_3 de la tranche annulaire, est comprise entre $9.0\mu m$ et $13.0\mu m$.

De préférence, la moyenne, sur l'ensemble des portions de fibre optique, de la différence Δn_4 entre l'indice minimum de la deuxième tranche enterrée et l'indice de la gaine, est comprise entre $-9,0.10^{-3}$ et $-2,0.10^{-3}$, et la moyenne, sur l'ensemble des portions de fibre optique, du rayon extérieur r_4 de la deuxième tranche enterrée, est comprise entre $12,0\mu m$ et $16,0\mu m$.

Le long de la fibre optique à gestion de dispersion selon l'invention, le passage d'une portion de fibre optique à dispersion chromatique positive à une portion de fibre optique à dispersion chromatique négative s'effectue par une homothétie du profil d'indice du cœur, et vice-versa. Cette homothétie peut être réalisée de plusieurs manières. D'une manière préférentielle, la fibre optique à gestion de dispersion selon l'invention est obtenue, par tirage, à partir de la modification des propriétés d'une seule et même préforme. Cette modification peut par exemple être obtenue soit par étirage variable de la préforme suivie d'un fibrage à diamètre constant soit par fibrage à diamètre variable. La fibre optique

10

15

20

25

à gestion de dispersion peut aussi être obtenue par exemple par concaténation de tronçons de fibre optique, alternant les tronçons à dispersion chromatique positive et les tronçons à dispersion chromatique négative.

L'invention sera mieux comprise et d'autres particularités et avantages apparaîtront à l'aide de la description ci-après et des dessins joints, donnés à titre d'exemples, où :

- la figure 1 représente schématiquement une fibre optique à gestion de dispersion ;
- la figure 2 représente schématiquement un premier type de profil à trois tranches d'une fibre optique à gestion de dispersion selon l'invention ;
- la figure 3 représente un tableau comprenant les valeurs moyennes de rayons et de différences d'indice pour une dizaine d'exemples de profils du premier type de fibre optique à gestion de dispersion selon l'invention ;
- la figure 4 représente un tableau comprenant les variations relatives extrêmes des rayons par rapport à leurs valeurs moyennes de la figure 3 et certaines propriétés des profils correspondants de fibre optique à gestion de dispersion selon l'invention;
- la figure 5 représente un tableau comprenant les valeurs moyennes de rayons et de différences d'indice pour cinq exemples supplémentaires de profils du premier type de fibre optique à gestion de dispersion selon l'invention ;
- la figure 6 représente un tableau comprenant les variations relatives extrêmes des rayons par rapport à leurs valeurs moyennes de la figure 5 et certaines propriétés des profils correspondants de fibre optique à gestion de dispersion selon l'invention;
- la figure 7 représente un tableau comprenant d'autres propriétés des profils de fibre optique à gestion de dispersion selon l'invention définis à la figure 4;

10

15

20

- la figure 8 représente un tableau comprenant d'autres propriétés des profils de fibre optique à gestion de dispersion selon l'invention définis à la figure 6;
- la figure 9 représente un tableau comprenant des moyennes des propriétés des profils de fibre optique à gestion de dispersion selon l'invention définis aux figures 7 et 8;
 - la figure 10 représente schématiquement un deuxième type de profil à quatre tranches d'une fibre optique à gestion de dispersion selon l'invention ;
- la figure 11 représente un tableau comprenant les valeurs moyennes de rayons et de différences d'indice pour une dizaine d'exemples de profils du deuxième type de fibre optique à gestion de dispersion selon l'invention;
- la figure 12 représente un tableau comprenant les variations relatives extrêmes des rayons par rapport à leurs valeurs moyennes de la figure 11 et certaines propriétés des profils correspondants de fibre optique à gestion de dispersion selon l'invention ;
- la figure 13 représente un tableau comprenant d'autres propriétés des profils de fibre optique à gestion de dispersion selon l'invention définis à la figure 12;
- la figure 14 représente un tableau comprenant des moyennes des propriétés des profils de fibre optique à gestion de dispersion selon l'invention définis à la figure 13;
 - la figure 15 représente schématiquement, sur une large plage spectrale, les variations de dispersion chormatique, positive, moyenne et négative, de l'exemple n°4 défini aux figures 3 et 4 ;
- la figure 16 représente schématiquement, sur une plage spectrale plus étroite, un agrandissement de la figure 15 ;
 - la figure 17 représente schématiquement, sur une large plage spectrale, les variations de dispersion chormatique, positive, moyenne et négative, de l'exemple n°5 défini aux figures 3 et 4 ;

10

15

20

25

30

- la figure 18 représente schématiquement, sur une plage spectrale plus étroite, un agrandissement d'une partie de la figure 17 ;
- la figure 19 représente schématiquement, sur une large plage spectrale, les variations de dispersion chormatique, positive, moyenne et négative, de l'exemple n°7 défini aux figures 3 et 4 ;
- la figure 20 représente schématiquement, sur une plage spectrale plus étroite, un agrandissement d'une partie de la figure 19 ;
- la figure 21 représente schématiquement, sur une large plage spectrale, les variations de dispersion chormatique, positive, moyenne et négative, de l'exemple n°10 défini aux figures 3 et 4 ;
- la figure 22 représente schématiquement, sur une plage spectrale plus étroite, un agrandissement d'une partie de la figure 21 ;
- la figure 23 représente schématiquement, sur une large plage spectrale, les variations de dispersion chormatique, positive, moyenne et négative, de l'exemple n°20 défini aux figures 11 et 12 ;
- la figure 24 représente schématiquement, sur une plage spectrale plus étroite, un agrandissement d'une partie de la figure 23.

La figure 1 représente schématiquement une fibre optique à gestion de dispersion. La fibre optique 1 à gestion de dispersion comprend une alternance de portions T+ de fibre optique à dispersion chromatique positive et de portions T- de fibre optique à dispersion chromatique négative. Seules quatre portions sont représentées sur la figure 1 pour des raisons de simplicité, mais la fibre optique 1 peut en comporter beaucoup plus. Entre deux portions T+ 11 et 13 se trouve une portion T- 12. Entre deux portions T- 12 et 14 se trouve une portions T+ 13. Les portions T+ et T- sont par exemple de la même longueur.

La figure 2 représente schématiquement un premier type de profil à trois tranches d'une fibre optique à gestion de dispersion selon l'invention. La première tranche appelée tranche centrale présente une différence maximale d'indice $\Delta n1$ avec l'indice constant de la gaine et un rayon extérieur r1b. La différence d'indice

.10

15

20

25

30

maximale Δn1 est positive. De préférence, entre un rayon nul et le rayon r1a, l'indice est constant et maximum, il devient égal à celui de la gaine pour une valeur r1 du rayon et atteint celui de la deuxième tranche pour une valeur r1b. Dans le cas où r1a n'est pas nul et où r1a est différent de r1b, la première tranche est en forme de trapèze. Dans le cas où r1a n'est pas nul et où r1a est égal à r1b, la première tranche est en forme de rectangle. Dans le cas où r1a est nul et où r1b n'est pas nul, la première tranche est en forme de triangle. La deuxième tranche appelée tranche enterrée présente une différence maximale d'indice Δn2 avec l'indice constant de la gaine et un rayon extérieur r2. La différence d'indice maximale Δn2 est négative. De préférence, entre le rayon r1b et le rayon r2, l'indice est constant. La troisième tranche appelée tranche annulaire présente une différence maximale d'indice Δn3 avec l'indice constant de la gaine et un rayon extérieur r3. La différence d'indice maximale Δn3 est positive. De préférence, entre le rayon r2 et le rayon r3, l'indice est constant. Au delà du rayon r3 se trouve la gaine d'indice constant.

La figure 3 représente un tableau comprenant les valeurs moyennes de rayons et de différences d'indice pour une dizaine d'exemples de profils du premier type de fibre optique à gestion de dispersion selon l'invention. La colonne de gauche comprend la dénomination des exemples du n°1 au n°10. L'indice i pour initial indique que les valeurs de rayon données le sont pour une moyenne entre les rayons des portions T+ et les rayons des portions T-. Les quatre colonnes suivantes expriment en μ m des rayons du profil d'indice variable de cœur. Les trois dernières colonnes expriment mille fois des différences d'indice (sans unité).

La figure 4 représente un tableau comprenant les variations relatives extrêmes des rayons par rapport à leurs valeurs moyennes de la figure 3 et certaines propriétés des profils correspondants de fibre optique à gestion de dispersion selon l'invention. La colonne de gauche comprend la dénomination des exemples du n°1 au n°10. L'indice a correspond à une portion T+ obtenue à partir des valeurs de l'indice i correspondant après application d'une homothétie dont le rapport est la somme de l'unité et du paramètre VarRay exprimée en %;

10

15

20

25

30

par exemple avec VarRay valant 0.91%, le rapport de l'homothétie vaut 1,0091. L'indice b correspond à une portion T- obtenue à partir des valeurs de l'indice i correspondant après application d'une homothétie dont le rapport est la somme de l'unité et du paramètre VarRay exprimée en %; par exemple avec VarRay valant -0.91%, le rapport de l'homothétie vaut 0,9909. Le paramètre VarRay est situé dans la deuxième colonne. Pour chaque exemple considéré, les autres colonnes représentent des propriétés de la portion de fibre optique correspondant à l'exemple considéré. La colonne suivante représente la longueur de coupure théorique λ_{cth} exprimée en nm. La colonne suivante représente le diamètre de mode $2W_{02}$, à la longueur d'onde de 1550nm, exprimé en μ m. La colonne suivante représente la surface effective exprimée en μm^2 . La colonne suivante représente la longueur d'onde λ₀ d'annulation de la dispersion chromatique exprimée en nm. La colonne suivante représente la dispersion chromatique C exprimée en ps/nm.km à une longueur d'onde valant 1550nm. La colonne suivante représente la pente de dispersion chromatique C' exprimée en ps/nm².km à une longueur d'onde valant 1550nm. La colonne suivante représente des seuils maximum de pertes par courbure PC pour 100 tours pour un diamètre de 60mm à une longueur d'onde de 1625nm exprimés en dB. Par exemple, pour l'exemple 1a, lesdites pertes par courbure sont inférieures à 3.10-4 dB.La dernière colonne représente la sensibilité aux microcourbures, à une longueur d'onde de 1550nm, donnée en proportion par rapport à la fibre G652 commercialisée par la demanderesse sous cette référence.

La figure 5 représente un tableau comprenant les valeurs moyennes de rayons et de différences d'indice pour cinq exemples supplémentaires de profils du premier type de fibre optique à gestion de dispersion selon l'invention. Sa description est analogue à celle de la figure 3.

La figure 6 représente un tableau comprenant les variations relatives extrêmes des rayons par rapport à leurs valeurs moyennes de la figure 5 et certaines propriétés des profils correspondants de fibre optique à gestion de dispersion selon l'invention. Sa description est analogue à celle de la figure 4.

10

15

20

25

30

La figure 7 représente un tableau comprenant d'autres propriétés des profils de fibre optique à gestion de dispersion selon l'invention définis à la figure 4. La colonne de gauche comprend la dénomination des exemples déjà expliquée ci-dessus. Pour chaque exemple considéré, les autres colonnes représentent des propriétés de la portion de fibre optique correspondant à l'exemple considéré. Les quatre colonnes suivantes représentent des surfaces effectives S_{eff} exprimées en μ m 2 respectivement aux longueurs d'onde de 1460nm, 1500nm, 1625nm et 1675nm. Les quatre colonnes suivantes représentent des dispersions chromatiques C exprimées en ps/nm.km respectivement aux longueurs d'onde de 1460nm, 1500nm, 1625nm et 1675nm. Les trois colonnes suivantes représentent des seuils maximum de pertes par courbure exprimées en dB/m pour un rayon de 10mm respectivement aux longueurs d'onde de 1500nm, 1625nm et 1675nm. Par exemple, pour l'exemple 1a, lesdites pertes par courbure sont inférieures à 5dB/m. Les trois colonnes suivantes représentent des seuils maximum de pertes par courbure exprimées en dB/m pour un rayon de 30mm respectivement aux longueurs d'onde de 1500nm, 1625nm et 1675nm.

La figure 8 représente un tableau comprenant d'autres propriétés des profils de fibre optique à gestion de dispersion selon l'invention définis à la figure 6. Sa description est analogue à celle de la figure 7.

La figure 9 représente un tableau comprenant des moyennes des propriétés des profils de fibre optique à gestion de dispersion selon l'invention définis aux figures 7 et 8. La colonne de gauche représente les exemples du n°1 au n°15. L'indice m signifie que les propriétés représentées dans les autres colonnes correspondent à des moyennes réalisées entre les portions T+ et T- ayant le même numéro d'exemple mais avec des indices a et b. Par exemple les propriétés de l'exemple 1m sont la moyenne des propriétés des exemples 1m et 1m b. Pour chaque exemple considéré, les autres colonnes représentent des propriétés de la portion de fibre optique correspondant à l'exemple considéré. Les quatre colonnes suivantes représentent des surfaces effectives $S_{\rm eff}$ exprimées en μm^2 respectivement aux longueurs d'onde de 1460nm, 1500nm, 1625nm et

10

15

20

25

30

1675nm. La colonne suivante représente la différence de surface effective $\Delta S_{\rm eff}$ exprimée en $\mu {\rm m}^2$ entre les longueurs d'onde 1460nm et 1625nm. Les quatre colonnes suivantes représentent des dispersions chromatiques C exprimées en ps/nm.km respectivement aux longueurs d'onde de 1460nm, 1500nm, 1625nm et 1675nm. La dernière colonne représente la différence de dispersion chromatique ΔC exprimée en ps/nm.km entre les longueurs d'onde 1460nm et 1625nm.

La figure 10 représente schématiquement un deuxième type de profil à quatre tranches d'une fibre optique à gestion de dispersion selon l'invention. La première tranche appelée tranche centrale présente une différence maximale d'indice $\Delta n1$ avec l'indice constant de la gaine et un rayon extérieur r1. La différence d'indice maximale $\Delta n1$ est positive. De préférence, entre un rayon nul et le rayon r1, l'indice est constant. La deuxième tranche appelée première tranche enterrée présente une différence maximale d'indice An2 avec l'indice constant de la gaine et un rayon extérieur r2. La différence d'indice maximale Δn2 est négative. De préférence, entre le rayon r1 et le rayon r2, l'indice est constant. La troisième tranche appelée tranche annulaire présente une différence maximale d'indice An3 avec l'indice constant de la gaine et un rayon extérieur r3. La différence d'indice maximale An3 est positive. De préférence, entre le rayon r2 et le rayon r3, l'indice est constant. La quatrième tranche appelée deuxième tranche enterrée présente une différence maximale d'indice Δn4 avec l'indice constant de la gaine et un rayon extérieur r4. La différence d'indice maximale Δn4 est négative. De préférence, entre le rayon r3 et le rayon r4, l'indice est constant. Au delà du rayon r4 se trouve la gaine d'indice constant.

La figure 11 représente un tableau comprenant les valeurs moyennes de rayons et de différences d'indice pour une dizaine d'exemples de profils du deuxième type de fibre optique à gestion de dispersion selon l'invention. Sa description est analogue à celle de la figure 3.

La figure 12 représente un tableau comprenant les variations relatives extrêmes des rayons par rapport à leurs valeurs moyennes de la figure 11 et

10

15

20

25

certaines propriétés des profils correspondants de fibre optique à gestion de dispersion selon l'invention. Sa description est analogue à celle de la figure 4.

La figure 13 représente un tableau comprenant d'autres propriétés des profils de fibre optique à gestion de dispersion selon l'invention définis à la figure 12. Sa description est analogue à celle de la figure 7.

La figure 14 représente un tableau comprenant des moyennes des propriétés des profils de fibre optique à gestion de dispersion selon l'invention définis à la figure 13. Sa description est analogue à celle de la figure 9.

La figure 15 représente schématiquement, sur une large plage spectrale, les variations de dispersion chormatique, positive, moyenne et négative, de l'exemple n°4 défini aux figures 3 et 4. Les courbes a, m et b représentent les disperstions chromatiques exprimées en ps/nm.km sur une plage spectrale de longueurs d'onde allant de 1200nm à 1700nm, respectivement pour les portions T+, pour les portions T- et pour la moyenne entre les portions T+ et T-correspondant à la dispersion chromatique globale de la fibre optique 1 comprenant une alternance de portions T+ et T-. L'exemple considéré sur la figure 15 est l'exemple n°4.

La figure 16 représente schématiquement, sur une plage spectrale plus étroite, un agrandissement de la figure 15. Les mêmes courbes que sur la figure 15 sont représentées sur une plage spectrale plus étroite comprise entre 1450nm et 1675nm. On constate que la pente de la dispersion chromatique de la fibre optique à gestion de dispersion obtenue est « plate » (courbe m) ; la dispersion chromatique reste en effet confinée sur la figure 16 entre 0.5ps/nm.km et –1ps/nm.km.

La figure 17 représente schématiquement, sur une large plage spectrale, les variations de dispersion chormatique, positive, moyenne et négative, de l'exemple n°5 défini aux figures 3 et 4. Sa description est analogue à celle de la figure 15.

10

15

20

25

La figure 18 représente schématiquement, sur une plage spectrale plus étroite, un agrandissement d'une partie de la figure 17. Sa description est analogue à celle de la figure 16.

La figure 19 représente schématiquement, sur une large plage spectrale, les variations de dispersion chormatique, positive, moyenne et négative, de l'exemple n°7 défini aux figures 3 et 4. Sa description est analogue à celle de la figure 15.

La figure 20 représente schématiquement, sur une plage spectrale plus étroite, un agrandissement d'une partie de la figure 19. Sa description est analogue à celle de la figure 16.

La figure 21 représente schématiquement, sur une large plage spectrale, les variations de dispersion chormatique, positive, moyenne et négative, de l'exemple n°10 défini aux figures 3 et 4. Sa description est analogue à celle de la figure 15.

La figure 22 représente schématiquement, sur une plage spectrale plus étroite, un agrandissement d'une partie de la figure 21. Sa description est analogue à celle de la figure 16.

La figure 23 représente schématiquement, sur une large plage spectrale, les variations de dispersion chormatique, positive, moyenne et négative, de l'exemple n°20 défini aux figures 11 et 12. Sa description est analogue à celle de la figure 15.

La figure 24 représente schématiquement, sur une plage spectrale plus étroite, un agrandissement d'une partie de la figure 23. Sa description est analogue à celle de la figure 16.

De préférence la fibre optique à gestion de dispersion selon l'invention présente, à une longueur d'onde de 1550nm, une atténuation inférieure ou égale à 0,35dB/km.

De préférence la fibre optique à gestion de dispersion selon l'invention présente, à une longueur d'onde de 1550nm, une dispersion modale de

polarisation inférieure ou égale à $0.2 \, \text{ps/km}^{1/2}$, et de préférence inférieure ou égale à $0.1 \, \text{ps/km}^{1/2}$, voire inférieure ou égale à $0.05 \, \text{ps/km}^{1/2}$.

De préférence la fibre optique à gestion de dispersion selon l'invention présente, à une longueur d'onde de 1625nm, des pertes par courbure mesurées pour un rayon de 10mm inférieures à 400dB/m pour l'une des quelconques portions constituant ladite fibre optique.

REVENDICATIONS

1. Fibre optique à gestion de dispersion, pour réseau de transmission à multiplexage en longueur d'onde,

comportant des portions (T+) de fibre optique à dispersion chromatique positive alternant longitudinalement avec des portions (T-) de fibre optique à dispersion chromatique négative,

comportant successivement du centre vers la périphérie un cœur présentant un profil d'indice variable puis une gaine d'indice constant,

le rayon extérieur du profil d'indice du cœur, limite entre le cœur et la gaine, étant suffisamment faible pour que la fibre optique soit monomode en câble,

chaque portion (T+, T-) de fibre optique présentant à la longueur d'onde de 1550nm, une dispersion chromatique dont la valeur absolue est comprise entre 1ps/nm.km et 10ps/nm.km, une pente de dispersion chromatique dont la valeur absolue est inférieure à 0.015ps/nm².km et une surface effective supérieure à 35μ m²,

la différence relative de surface effective, à la longueur d'onde de 1550nm, entre les portions (T+) de fibre optique à dispersion chromatique positive et les portions (T-) de fibre optique à dispersion chromatique négative, étant inférieure à 7%,

chaque portion (T+, T-) de fibre optique, pour une longueur d'onde de 1625nm, présentant des pertes par courbure pour 100 tours pour un diamètre de 60mm inférieures à 0,1dB.

25

30

20

5

10

15

2. Fibre optique à gestion de dispersion selon la revendication 1, caractérisée en ce que la moyenne, sur l'ensemble des portions (T+,T-) de fibre optique, du rayon extérieur (r_3) du profil d'indice du cœur, limite entre le cœur et la gaine, est inférieur à $10,5\mu m$ et en ce que le profil d'indice du cœur est constitué de trois tranches.

10

15

20

25

3. Fibre optique à gestion de dispersion selon la revendication 2, caractérisée en ce que le profil d'indice variable du cœur est successivement constitué, du centre vers la périphérie,

d'une tranche centrale d'indice maximum supérieur à l'indice de la gaine, d'une tranche enterrée d'indice minimum inférieur à l'indice de la gaine, d'une tranche annulaire d'indice maximum supérieur à l'indice de la gaine et inférieur à l'indice maximum de la tranche centrale.

- **4.** Fibre optique à gestion de dispersion selon la revendication 3, caractérisée en ce que la tranche centrale est en forme de trapèze ou en alpha.
 - **5.** Fibre optique à gestion de dispersion selon l'une quelconque des revendications 3 à 4,

caractérisée en ce que la moyenne, sur l'ensemble des portions (T+, T-) de fibre optique, de la différence (Δn_1) entre l'indice maximum de la tranche centrale et l'indice de la gaine, est comprise entre 7,00.10⁻³ et 11,0.10⁻³,

et en ce que la moyenne, sur l'ensemble des portions (T+, T-) de fibre optique, du rayon (r_1) de la partie de la tranche centrale présentant un indice supérieur à l'indice de la gaine, est comprise entre $2,65\mu m$ et $3,70\mu m$.

6. Fibre optique à gestion de dispersion selon la revendication 5, caractérisée en ce que, pour une portion moyenne de fibre optique dont les valeurs de rayon du profil d'indice correspondraient aux moyennes des valeurs de rayon des profils d'indice de l'ensemble des portions (T+, T-) de fibre optique, la valeur de l'intégrale ($S_{01} = \int\limits_0^{r_1} \Delta n(r) dr$), entre un rayon nul et le rayon (r_1) de la partie de la tranche centrale présentant un indice supérieur à l'indice de la gaine, de la différence d'indice par rapport à l'indice de la gaine, est supérieure à 23,0.10⁻³ μ m.

7. Fibre optique à gestion de dispersion selon l'une quelconque des revendications 5 à 6, caractérisée en ce que, pour une portion moyenne de fibre optique dont les valeurs de rayon du profil d'indice correspondraient aux moyennes des valeurs de rayon des profils d'indice de l'ensemble des portions (T+, T-) de fibre optique, la valeur du double de l'intégrale $(S_1 = 2 \int_0^1 \Delta n(r) r. dr)$, entre un rayon nul et le rayon (r_1) de la partie de la tranche centrale présentant un indice supérieur à l'indice de la gaine, du produit du rayon par la différence d'indice par rapport à la gaine, est comprise entre 58.10^{-3} et $99.10^{-3} \mu m^2$.

10

5

8. Fibre optique à gestion de dispersion selon l'une quelconque des revendications 5 à 7, caractérisée en ce que, pour une portion moyenne de fibre optique dont les valeurs de rayon du profil d'indice correspondraient aux moyennes des valeurs de rayon des profils d'indice de l'ensemble des portions (T+, T-) de fibre optique, la valeur du triple de l'intégrale ($S_{11} = 3.\int\limits_0^1 \Delta n(r) r^2 dr$), entre un rayon nul et le rayon (r_1) de la partie de la tranche centrale présentant un indice supérieur à l'indice de la gaine, du produit du carré du rayon par la différence d'indice par rapport à l'indice de la gaine, est comprise entre 150.10⁻³ μm^3 et 335.10⁻³ μm^3 .

20

15

9. Fibre optique à gestion de dispersion selon l'une quelconque des revendications 3 à 8,

caractérisée en ce que la moyenne, sur l'ensemble des portions (T+, T-) de fibre optique, de la différence (Δn_2) entre l'indice minimum de la tranche enterrée et l'indice de la gaine, est comprise entre $-9,0.10^{-3}$ et $-2,5.10^{-3}$,

25

et en ce que la moyenne, sur l'ensemble des portions (T+, T-) de fibre optique, du rayon extérieur (r_2) de la tranche enterrée, est comprise entre 4,00 μ m et 8,10 μ m.

15

- **10.** Fibre optique à gestion de dispersion selon la revendication 9, caractérisée en ce que, pour une portion moyenne de fibre optique dont les valeurs de rayon du profil d'indice correspondraient aux moyennes des valeurs de rayon des profils d'indice de l'ensemble des portions (T+, T-) de fibre optique, la valeur de l'intégrale ($S_{02} = \int_{r_1}^{r_2} \Delta n(r) dr$), entre le rayon (r_1) de la partie de la tranche centrale présentant un indice supérieur à l'indice de la gaine et le rayon extérieur (r_2) de la tranche enterrée, de la différence d'indice par rapport à l'indice de la gaine, est comprise entre -22,0.10⁻³ μ m et -8,0.10⁻³ μ m.
- 11. Fibre optique à gestion de dispersion selon l'une quelconque des revendications 3 à 10,

caractérisée en ce que la moyenne, sur l'ensemble des portions (T+, T-) de fibre optique, de la différence (Δn_3) entre l'indice maximum de la tranche annulaire et l'indice de la gaine, est comprise entre 0,50.10⁻³ et 7,5.10⁻³,

et en ce que la moyenne, sur l'ensemble des portions (T+, T-) de fibre optique, du rayon extérieur (r_3) de la tranche annulaire, est comprise entre $6,70\mu m$ et $10,50\mu m$.

- 12. Fibre optique à gestion de dispersion selon la revendication 11,
 20 caractérisée en ce que, pour une portion moyenne de fibre optique dont les valeurs de rayon du profil d'indice correspondraient aux moyennes des valeurs de rayon des profils d'indice de l'ensemble des portions (T+, T-) de fibre optique, la valeur de l'intégrale (S₀₃ = ∫_{r2}^{r3} Δn(r).dr), entre le rayon extérieur (r₂) de la tranche enterrée et le rayon extérieur (r₃) de la tranche annulaire, de la différence d'indice par rapport à l'indice de la gaine, est comprise entre 1,0.10-3 μm et 15.10-3 μm.
 - 13. Fibre optique à gestion de dispersion selon la revendication 1, caractérisée en ce que la moyenne, sur l'ensemble des portions (T+,T-) de fibre optique, du rayon extérieur (r_4) du profil d'indice du cœur, limite entre le cœur et

10

15

20

25

30

la gaine, est inférieur à $16\mu m$ et en ce que le profil d'indice du cœur est constitué de quatre tranches.

14. Fibre optique à gestion de dispersion selon la revendication 13, caractérisée en ce que le profil d'indice variable du cœur est successivement constitué, du centre vers la périphérie,

d'une tranche centrale d'indice maximum supérieur à l'indice de la gaine, d'une première tranche enterrée d'indice minimum inférieur à l'indice de la gaine,

d'une tranche annulaire d'indice maximum supérieur à l'indice de la gaine et inférieur à l'indice maximum de la tranche centrale,

d'une deuxième tranche enterrée d'indice minimum inférieur à l'indice de la gaine.

15. Fibre optique à gestion de dispersion selon la revendication 14, caractérisée en ce que la moyenne, sur l'ensemble des portions (T+, T-) de fibre optique, de la différence (Δn₁) entre l'indice maximum de la tranche centrale et l'indice de la gaine, est comprise entre 7,0.10⁻³ et 10,0.10⁻³,

et en ce que la moyenne, sur l'ensemble des portions (T+, T-) de fibre optique, du rayon (r_1) de la partie de la tranche centrale présentant un indice supérieur à l'indice de la gaine, est comprise entre $2,5\mu m$ et $3,5\mu m$.

16. Fibre optique à gestion de dispersion selon l'une quelconque des revendications 14 à 15,

caractérisée en ce que la moyenne, sur l'ensemble des portions (T+, T-) de fibre optique, de la différence (Δn_2) entre l'indice minimum de la première tranche enterrée et l'indice de la gaine, est comprise entre $-9,0.10^{-3}$ et $-2,5.10^{-3}$,

et en ce que la moyenne, sur l'ensemble des portions (T+, T-) de fibre optique, du rayon extérieur (r_2) de la tranche enterrée, est comprise entre 4,1 μ m et 7,0 μ m.

17. Fibre optique à gestion de dispersion selon l'une quelconque des revendications 14 à 16,

caractérisée en ce que la moyenne, sur l'ensemble des portions (T+, T-) de fibre optique, de la différence (Δn_3) entre l'indice maximum de la tranche annulaire et l'indice de la gaine, est comprise entre 0,5.10⁻³ et 5,0.10⁻³,

et en ce que la moyenne, sur l'ensemble des portions (T+, T-) de fibre optique, du rayon extérieur (r₃) de la tranche annulaire, est comprise entre 9,0µm et 13,0µm.

10

15

5

18. Fibre optique à gestion de dispersion selon l'une quelconque des revendications 14 à 17,

caractérisée en ce que la moyenne, sur l'ensemble des portions (T+, T-) de fibre optique, de la différence (Δn_4) entre l'indice minimum de la deuxième tranche enterrée et l'indice de la gaine, est comprise entre –9,0.10⁻³ et –2,0.10⁻³,

et en ce que la moyenne, sur l'ensemble des portions (T+, T-) de fibre optique, du rayon extérieur (r₄) de la deuxième tranche enterrée, est comprise entre 12,0 μ m et 16,0 μ m.

20

19. Fibre optique à gestion de dispersion selon l'une quelconque des revendications précédentes, caractérisée en ce que ladite fibre optique à gestion de dispersion est obtenue, par tirage, à partir de la modification des propriétés d'une seule et même préforme.

20. Fibre optique à gestion de dispersion selon l'une quelconque des 25 revendications précédentes, caractérisée en ce que la différence relative de rayon extérieur, entre les portions de fibre optique à dispersion chromatique positive et les portions de fibre optique à dispersion chromatique négative, est choisie inférieure à 11%.

21. Fibre optique à gestion de dispersion selon l'une quelconque des revendications précédentes, caractérisée en ce que la fibre optique présente, à une longueur d'onde de 1550nm, une atténuation inférieure ou égale à 0,35dB/km.

5

10

15

- **22.** Fibre optique à gestion de dispersion selon l'une quelconque des revendications précédentes, caractérisée en ce que la fibre optique présente, à une longueur d'onde de 1550nm, une dispersion modale de polarisation inférieure ou égale à 0,2ps/km^{1/2}, et de préférence inférieure ou égale à 0,1ps/km^{1/2}, voire inférieure ou égale à 0,05ps/km^{1/2}.
- 23. Fibre optique à gestion de dispersion selon l'une quelconque des revendications précédentes, caractérisée en ce que la fibre optique présente, à une longueur d'onde de 1625nm, des pertes par courbure mesurées pour un rayon de 10mm inférieures à 400dB/m pour l'une des quelconques portions constituant ladite fibre optique.

Figure 2

Figure 1

Figure 3

	r _{1α} (μm)	r₁ (μm)	r ₁₆ (µm)	r ₂ (µm)	r ₃ (μm)	10³∆n₁	10³∆n₂	10³∆n₃
1i	2.81	2.81	2.81	5.27	7.03	9.50	-5.00	2.50
2i	3.19	3.19	3.19	5.74	7.98	9.00	-6.50	6.00
3i	2.85	2.85	2.85	5.56	7.12	9.00	-4.50	3.00
4i	3.19	3.19	3.19	5.32	8.86	8.50	-7.50	2.50
5i	3.05	3.05	3.05	5.09	8.49	9.50	-6.00	3.00
6i	2.94	2.94	2.94	6.33	9.17	9.00	-4.00	3.50
7i	2.96	2.96	2.96	5.56	7.41	10.00	-6.00	6.00
8i	3.09	3.09	3.09	5.10	7.73	10.00	-8.00	4.50
9i	2.96	2.96	2.96	5.67	8.22	9.50	-5.50	3.50
10i	3.12	3.12	3.12	5.62	7.80	9.50	-7.50	5.50

Figure 4

———					·			PC ₁₆₂₅	
	Var Ray	λ _{cth}	2W ₀₂	Seff	λ_{0}	, C	C'	dB	S_{μ_c}
	(%)	nm	μm	μm²	nm	ps/nm-km	ps/nm²-km	100 tours \$\phi = 60 mm	
1a	0.91%	1146	6.74	35.4	1478	1.0	0.0100	<3.10 ⁻⁴	0.37
1b	-0.91%	1018	6.76	35.5	1764	-1.0	0.0071	< 2.10 ⁻³	0.48
2a	0.85%	1808	7.11	41.3	1434	1.0	0.0040	< 3.10 ⁻⁷	0.23
2b	-0.85%	1778	7.14	41.7	1662	-1.0	0.0037	<2.10 ⁻⁶	0.29
3a	2.78%	1051	6.92	37.4	1416	3.0	0.0139	<5.10⁴	0.43
3b	-2.78%	996	7.00	38.0	1815	-3.0	0.0060	<9.10 ⁻²	1.00
4a	3.73%	1727	7.00	39.5	1336	5.0	0.0015	<6.10 ⁻⁵	0.35
4b	-3.73%	1604	7.10	40.7	1835	-5.0	-0.0142	<8.10 ⁻²	1.04
5a	4.75%	1801	6.96	38.7	1364	5.0	0.0148	<2.10 ⁻¹⁰	0.11
5b	-4.75%	1639	7.10	40.0	1726	-5.0	0.0133	<10 ⁻⁷	0.33
6a	3.90%	1849	6.98	38.4	1357	5.0	0.0064	<4.10-6	0.25
6b	-3.90%	1711	7.09	39.6	1828	-5.0	-0.0118	<9.10 ⁻³	0.74
7a	4.31%	1774	6.69	35.8	1352	5.0	0.0096	<6.10 ⁻¹¹	0.09
7b	-4.31%	1628	6.77	36.6	1787	-5.0	0.0020	<3.10-6	0.26
8a	6.90%	1851	6.71	36.6	1314	8.0	0.0137	<9.10-14	0.06
8b	-6.90%	1614	6.84	37.8	1785	-8.0	0.0061	<5.10-6	0.29
9a	6.60%	1773	6.74	36.3	1321	8.0	0.0140	<3.10.9	0.13
9b	-6.60%	1561	6.87	37.4	1853	-8.0	-0.0100	<9.10.3	0.70
10a	6.80 %	1866	6.73	37.1	1298	9.5	0.0116	<7.10-11	0.27
10b	-6.80%	1615	6.87	38.6	.1833	-9.5	-0.0108	<3.10-3	0.60

3/15

Figure 5

	r _{to} (µm)	r₁ (μm)	r _{1ь} (µm)	r ₂ (µm)	r ₃ (μm)	10³Δn ₁	10³∆n₂	10³∆n₃
11i	2.98	3.11	3.21	5.08	7.53	9.45	-8.85	3.70
12i	2.54	3.02	3.28	6.05	7.90	9.95	-5.30	5.65
13i	2.80	3.09	3.22	5.85	8.36	9.20	-4.20	4.35
14i	2.79	3.07	3.29	5.39	7.38	9.15	-7.35	4.20
15i	2.43	3.08	3.35	5.69	8.82	10.00	-4.25	3.35

Figure 6

	Var Ray (%)	λ _{dh} nm	2W ₀₂ ·μm	S _{eff} µm²	λ _o nm	C ps/nm-km	C' ps/nm²-km	PC ₁₆₂₅ DB 100 tours \$\phi=60 \text{ mm}\$	$S_{\mu \epsilon}$
11a	6.47%	1.682	6.66	36.1	1310	8.0	0.0103	<2.10 ⁻⁹	0.12
11b	-6.47%	1486	6.77	37.0	1866	-8.0	-0.0113	<7.10 ⁻³	0.66
12a	6.49%	1836	6.62	34.9	1326	8.0	0.0131	<2.10 ⁻¹⁰	0.09
12b	-6.49%	1621	6.74	35.8	1867	-8.0	-0.0153	<2.10-3	0.51
13a	2.85%	1808	7.14	40.3	1405	3.0	0.0128	<4.10-8	0.18
13b	-2.85%	1708	7.24	41.5	1689	-3.0	0.0124	<2.10 ⁻⁵	0:36
14a	2.30%	1561	6.75	36.4	1371	3.0	0.0003	<5.10 ⁻⁵	0.31
14b	-2.30%	1491	6.79	36.9	1874	-3.0	-0.0096	<6.10-3	0.62
15a	0.88%	1806	6.86	36.7	1465	1.0 ~	0.0070	<2.10 ⁻⁸	0.15
15b	-0.88%	1774	6.88	36.9	1697	-1.0	0.0049	<2.10-7	0.19

;	i												4	145								
PC30mm	dB/an	1675 nm	<0.01	<2	<1.10-3	<1.10-3	<0.05	<2	<5.10-3	<2	<1.10-3	<1.10-3	<1.10-3	<2	<1.10-3	<1.10-3	<1.10-3	<1.10-3	<1.10-3	<2	<1.10-3	<2 <2
PC30mm	dB/m	1625 nm	<5.10-3	<5.10-3	<1.10-4	<1.10-4	<5.10-3	~0.1	<1.10-4	<0.1	<1.10-4	<1.10-4	<1.10-4	<0.05	<1.10-4	<1.10-4	<1.10-4	<1.10-4	<1.10-4	<0.05	<1.10-4	<5.10-3
PC30mm	dB/m	1550 nm	<1.10-5	<1.10-5	<1.10-5	<1.10-5	<1.10-5	<5.10-4	<1,10-5	<5.10-4	<1.10-5	<1.10-5	<1.10-5	<5.10-5	<1.10-5	<1.10-5	<1.10-5	<1.10-5	<1.10-5	<5.10-5	<1.10-5	<1.10-5
PC10mm	dB/m	1675 nm	<100	<150	<50	<50	<100	009>	<100	<600	<50	<50	<50	009>	<50	<50	<50	<50	<50	<600	<50	009>
PC10mm	dB/m	1625 nm	<50	<50	<50	<50	<50	<200	<50	<250	<50	<50	<50	<150	<50	<50	<50	<50	<50	<150	<50	<100
PC10mm	dB/m	1550 nm	<5	<10	<5	<5	<5	<50	<5	<50	<5	<5	<5	<20	<5	<5	<5	<5	<5	<15	<5	<15
U	ps/nm-km	1675 nm	1.7	-0.5	1.9	0.3	4.1	-2.4	4.2	-6.1	6.5	-2.2	4.7	-5.8	5.7	-4.0	9.0	-5.7	8.7	-8.3	6.6	-9.2
O	ps/nm-km	1625 nm	1.5	-0.7	1.4	-0.5	3.8	-2.7	4.7	-6.0	5.9	-3.7	5.0	-5.8	5.5	-4.7	8.7	-7.1	8.6	-8.5	6.6	-9.9
U	ps/nm-km	1500 nm	0.4	-1.5	0.7	-1.2	2.2	-3.4	4.7	-4.4	4.2	-5.6	4.5	-4.5	4.4	-5.1	7.2	-8.2	7.1	-7.5	8.7	-8.8
U	ps/nm-km	1460 nm	-0.4	-2.1	0.4	-1.5	1.2	-3.9	4.1	1.4-	3.3	-6.0	3.7	-4.4	3.6	-5.2	6.2	-8.3	6.1	-7.3	7.7	-8.3
Seff	μm²	1675 nm	43.1	44.0	52.2	53.7	45.2	48.5	47.8	54.2	46.2	51.9	46.4	52.7	42.6	47.0	42.6	49.9	42.3	49.8	42.8	52.3
Seff	µm²	1625 nm	39.6	40.1	47.2	48.2	41.6	43.6	43.9	47.8	42.8	46.4	42.7	46.5	39.5	42.2	39.9	44.3	39.6	44.0	40.1	45.7
S	μm²	1500 nm	33.1	33.1	38.3	38.5	35.0	35.1	37.2	37.2	36.4	36.6	36.1	36.3	33.8	33.6	34.8	34.5	34.5	34.1	35.2	34.8
S	um ²	1460 nm	31.5	31.4	36.3	36.3	33.4	33.1	35.6	35.0	34.8	34.3	34.6	34.1	32.4	31.7	33.5	32.3	33.2	32.0	34.0	32.5
			-	٤	20 12	25	39	38	40	4 p	5a	5b	6a	d8	70	7.6	80	98 P	90	9,6	100	10b

Figure 7

		:		•																,		į
FC30mm		dB/mc	1675 nm		<1.10-3	000	72.0	<1.10-3		<2.0		<1.10-3		<1.10-3	0	<5.10-3	<2.0		<1.10-3		<1.10-3	
PC30mm		dB/m	1625 nm		<1.10-4	70.05	20.07	<1.10-4		<5.10-3		<1.10-4		<1.10-4		<1.10-4	<0.05		<1.10-4		<1.10-4	
PC30mm)	dB/m	1550 nm		<1.10-5	30000	<0.0000.0>	<1.10.5	,	<1.10.5		<1.10-5		<1.10-5		<1.10°	<0.00005		<1.10.5		<1.10 ⁻³	
PC10mm	5	dB/m	1475 nm		<50		<600	>50	3	<200		<50		×100		<100	009>	200	<50		<50	
سسالات		dB/m	1495 am	1020	<50	7	001 ×	750	3	< 100		<50		<50		<50	7100	3	<50		<50	
010	EECO	dB/m	1660	mn 0cc1	<5		<15	7.5	?	<10		<5	2	<5	' 	× 25	715	2/	<5		< <u>></u>	
(ی	ps/nm-km		mu c/01	83		-8.5	0 0	0.0 —	0 6-	2	46	?!	-0.	.	2.3	7 2	C.4.	17		-0.3	
	U	ps/nm-km		1625 nm	ďα	r.	-8.6	,	ο.α	0 0	ì	0 0	\;;	α.	2	2.7	c	0.5	1 4	-	-0.7	
	U	ns/nm-km	2	1500 nm	7.2	ر. د	-7.4	;	7.1	7.3	٠. '- ن	0.0	۲.۵	2.4	5.5	2.8	1	-7.7	C	5	-1.3	
	U	my-mu/zu	D3/11111/cd	1460 nm	,	4.0	-7.1		6.1	1) }		ი. -	,	- '4'	2.3	,	-2./	10		-1.8	-
	v.	en c	mm'	1675 nm		42.1	49.1		40.7	1	4/./		49.5	0 0	53.8	44.3		47.2	0 1	45.7	46.2	
	U	# ₀ 0	μm²	1625 nm		39.4	13.4	1.01	38.1		42.1		45.3		48.1	40.6		42.4		41.3	41.9	
		λ _e γ	μm²	1500 nm	200	34.3	0 00	33.7	33.7	3.00	32.8		37.7		38.0	34.7	4.1.0	34.1		34.2	34.2	71.50
		Seff	μm^2	1460 200	1400 חווו	33.1		 	0 00	32.0	30.7		35.8	2	35.7	7 00	77.7	32.3		32.5	100	4.70
						11a		<u>ا</u>		1.70	195	2 4	139	2	13b	:	140	14b		15a	-	901

6/18

	S _{eff}	S _{eff}	S_{eff}	S _{eff}	ΔS_{eff}	С	С	С	С	С	ΔC
	μm²	μm²	μm²	μ m²	µm²	ps/nm-km	ps/nm-km	ps/nm-km	ps/nm-km	ps/nm-km	ps/nm-km
	1460 nm	1500 nm	1625 nm	1675 nm	Entre 1460 nm et 1625 nm	1460 nm	1500 nm	1550 nm	1625 nm	1675 nm	Entre 1460 nm et 1625 nm
1 m	31.5	33.1	39.9	43.6	8.4	-1.25	-0.56	0.0	0.42	0.58	1.7
2m	36.3	38.4	47.7	53.0	11.4	-0.55	-0.23	0.0	0.43	1.11	1.0
3m	33.2	35.0	42.6	46.9	9.4	-1.34	-0.62	0.0	0.55	0.85	1.9
4m	35.3	37.2	45.9	51.0	10.6	0.03	0.18	0.0	-0.64	-0.95	-0.7
5m	34.6	36.5	44.6	49.1	10.0	-1.38	-0.71	0.0	1.12	2.13	2.5
6m	34.3	36.2	44.6	49.6	10.3	-0.38	-0.04	0.0	-0.38	-0.56	0.0
7m	32.0	33.7	40.8	44.8	8.8	-0.81	-0.35	0.0	0.40	0.83	1.2
8m	32.9	34.6	42.1	46.3	9.2	-1.02	-0.51	0.0	0.83	1.65	1.9
9m	32.6	34.3	41.8	46.1	9.2	-0.62	-0.22	0.0	0.07	0.22	0.7
10m	33.2	35.0	42.9	47.5	9.7	-0.31	-0.07	0.0	0.04	0.32	0.3
11m	32.4	34.1	41.4	45.6	9.0	-0.36	-0.08	0.0	-0.12	-0.08	0.2
12m	31.3	33.0	40.1	44.2	8.7	-0.48	-0.11	0.0	-0.17	-0.22	0.3
13m	35.8	37.8	46.7	51.7	11.0	-1.32	-0.66	0.0	1.06	2.07	2.4
14m	32.5	34.2	41.5	45.7	9.0	-0.18	0.06	0.0	-0.58	-1.02	-0.4
15m	32.5	34.2	41.6	45.7	9.1	-0.96	-0.41	0.0	0.35	0.69	1.3

Figure 9

Figure 10

r (µm)

Figure 11

	r₁ (μm)	r ₂ (μm)	r ₃ (μm)	r ₄ (μm)	10³∆n₁	10³∆n₂	10 ³ Δn ₃	10³∆n₄
16i	2.74	6.93	11.70	14.44	9.50	-2.50	3.00	-4.50
1 <i>7</i> i	3.06	4.90	11.04	12.24	9.80	-6.80	2.21	-3.59
18i	3.21	5.70	9.13	13.44	8.86	-7.70	5.00	-3.00
19i	2.90	6.21	11.17	13.79	9.50	-3.50	3.00	-3.50
20i	3.29	5.74	10.40	11.95	8.00	-6.50	3.00	-3.50
21i	3.00	5.57.	11.14	14.29	9.50	-4.00	3.00	-5.00
22i	2.67	6.32	12.22	14.05	9.50	-3.00	1.50	-5.00
23i	2.78	6.36	11.13	13.25	9.50	-4.00	2.50	-4.50
24i	3.29	5.74	10.40	11.96	8.00	-6.50	3.00	-3.50
25i	3.07	5.87	10.67	13.34	9.30	-5.80	3.80	-7.60

8/15

Figure 12

	Var Ray (%)	λ _{cth}	2W ₀₂ μm	S _{eff} μm²	λ _o nm	C ps/nm-km	C′ ps/nm².km	PC ₁₆₂₅ dB 100 tours \$\phi=60 mm	$S_{\mu c}$
16a	2.60%	1695	6.97	37.5	1411	3.0	0.0094	<2.10 ⁻¹⁰	0.23
16b	-2.60%	1610	7.04	38.3	1748	-3.0	0.0011	<10 ⁻⁷	0.45
17a	6.03%	1848	6.81	37.1	1330	7.0	0.130	<8.10 ⁻¹⁷	0.08
17b	-6.03%	1640	6.94	38.3	1780	-7.0	0.0026	<3.10 ⁻⁷	0.3
18a	4.26%	1659	6.96	40.0	1328	5.0	0.0048	<2.10 ⁻¹¹	0.21
18b	-4.26%	1525	7.09	42.2	1700	-5.0	0.0117	<4.10 ⁻⁵	0.64
19a	5.06%	1790	6.94	37.8	1351	6.0	0.0005	<2.10 ⁻¹³	0.13
19b	-5.06%	1619	7.07	39.4	1763	-6.0	-0.0001	<6.10 ⁻⁶	0.45
20a	2.35%	1698	7.31	43.4	1359	3.0	-0.0006	<7.10 ⁻⁷	0.55
20b	-2.35%	1621	7.41	44.9	1731	-3.0	-0.0034	<2.10 ⁻³	1.09
21a	0.97%	1707	7.13	40.1	1476	1.0	0.0124	<3.10 ⁻¹³	0.16
21b	-0.97%	1675	7.16	40.5	1612	-1.0	0.0134	<7.10 ⁻¹⁰	0.19
22a	2.73%	1295	6.81	35.7	1422	3.0	0.0135	<3.10 ⁻⁸	0.34
22b	-2.73%	1228	6.88	36.2	1793	-3.0	0.0036	<9.10-4	0.77
23a	4.84%	1531	6.70	35.1	1352	6.0	0.0114	<3.10 ⁻¹⁰	0.21
23b	-4.84%	1391	6.79	35.9	1852	-6.0	-0.0124	<3.10 ⁻³	0.9
24a	3.13%	1712	7.31	43.4	1345	4.0	0.0008	<3.10 ⁻⁷	0.49
24b	-3.13%	1609	7.43	45.3	1738	-4.0	-0.0025	<4.10 ⁻³	1.22
25a	6.46%	1731	6.9	38.1	1311	8.0	0.0090	<2.10 ⁻¹⁴	0.12
25b	-6.46%		7.0	40.4	1728	-8.0	0.0118	<3.10 ⁻⁵	0.62

													g	115	•							
PC30mm	dB/m	1675 nm	<1.10 ⁻³	<0.01	<1.10-3	<1.10 ⁻³	<1.10-3	<0.05	<1.10-3	<5.10-3	<0.05	<2.0	<1.10 ⁻³	<1.10 ⁻³	<5.10-3	<2.0	<1.10-3	<2.0	<0.01	<2.0	<1.10-3	<0.05
PC30mm	dB/m	1625 nm	<1.10-4	<5.10-3	<1.10-4	<1,10-4	<1.10-4	<5.10 ⁻³	<1.10.4	<5.10-3	<5.10-3	<0.05	<1.10-4	<1.10-4	<1.10-4	<0.05	<1.10-4	<0.1	<5.10-3	<0.1	<1.10-4	<5.10-3
PC30mm	d8/m	1550 nm	<1.10.5	<1.10.5	<1.10.5	<1.10.5	<1.10-5	<1.10-5	<1.10-5	<1.10-5	<1.10.5	<5.10-4	<1.10-5	<1.10-5	<1.10.5	<1.10-4	<1.10-5	<5.10-4	<1.10-5	<5.10-4	<1.10-5	<1.10-5
PC10mm	dB/m	1675 nm	<50	<100	<50	<50	<50	<100	<50	<100	<150	009>	<50	<50	<50	<200	<50	009>	<150	009>	<50	<100
PC10mm	dB/m	1625 nm	<50	<50	<50	<50	<50	<50	<50	<50	<50	<200	<50	<50	<50	<100	<50	<150	<50	<250	<50	<50
PC10mm	dB/m	1550 nm	<5	<5	<5	<5	<5	<10	<5	<5	<10	<50	<5	<5	<5	<15	<5	<20	<10	<50	<5	<5
U	ps/nm-km	1675 nm	3.6	-2.2	7.9	-5.3	5.7	-1.4	6.6	-4.3	2.9	-2.0	3.2	1.8	3.9	-2.6	6.1	-7.0	3.9	-2.6	8.4	-3.6
U	ps/nm-km	1625 nm	3.4	-2.8	7.7	-6.4	5.3	-3.4	6.5	-5.5	2.9	-2.9	2.1	0.3	3.7	-2.8	6.3	-6.9	3.9	-3.7	8.3	-6.1
U	ps/nm-km	1500 nm	2.3	-3.2	6.2	-7.1	4.7	-5.4	5.2	-6.0	2.9	-2.8	0.3	-1.6	2.1	-3.3	5.2	-5.5	3.8	-3.8	7.4	-8.3
U	ps/nm-km	1460 nm	1.5	-3.5	5.2	-7.1	4.2	-5.5	4.3	-6.0	2.5	-2.8	-0.3	-2.2	1.2	-3.8	4.3	-5.3	3.3	-3.7	6.5	-8.3
Seff	μm²	1675 ուո	45.9	49.5	42.8	49.0	48.9	56.4	45.1	52.2	54.7	60.2	50.0	51.3	43.1	46.1	41.6	47.1	54.0	61.4	44.9	54.9
Seff	μm²	1625 nm	42.0	44.3	39.9	43.7	44.8	49.9	41.8	46.2	49.4	53.0	45.5	46.4	39.7	41.5	38.6	41.8	49.0	53.7	41.7	48.2
Speff	μm²	1500 nm	35.1	35.3	34.7	34.3	37.5	38.3	35.7	35.9	40.5	40.9	37.3	37.4	33.5	33.5	33.2	33.0	40.5	41.1	36.0	36.5
Sat	μm²	1460 nm	33.5	33.2	33.3	32.2	35.9	35.7	34.2	33.6	38.5	38.4	35.4	35.3	32.0	31.6	31.9	31.0	38.6	38.4	34.7	33.9
			16a	16b	17a	176	18a	18b	190	961	200	20b	210	216	220	22b	23a	23b	24α	24b	25a	25b

1er dépôt 10/15

	S _{eff}	S_{eff}	S_{eff}	S _{eff}	ΔS_{eff}	С	С	С	С	ΔС
	μm²	μm²	μm²	μm²	μm²	ps/nm-km	ps/nm-km	ps/nm-km	ps/nm-km	ps/nm-km
	1460 nm	1500 nm	1625 nm	1675 nm	Entre 1460 nm et 1625 nm	1460 nm	1500 nm	1625 nm	1675 nm	Entre 1460'nm et 1625 nm
16m	33.4	35.2	43.2	47.7	9.8	-1.02	-0.41	0.30	0.67	1.3
17m	32.8	34.5	41.8	45.9	9.0	-0.98	-0.46	0.65	1.33	1.6
18m	35.8	37.9	. 47.3	52.7	11.6	-0.66	-0.35	0.94	2.13	1.6
19m	33.9	35.8	44.0	48.7	10.1	-0.87	-0.37	0.50	1.15	1.4
20m	38.4	40.7	51.2	57.5	12.8	-0.12	0.04	0.00	0.47	0.1
21m	35.3	37.3	45.9	50.7	10.6	-1.25	-0.65	1.20	2.48	2.5
22m	31.8	33.5	40.6	44.6	8.8	-1.33	-0.58	0.43	0.66	1.8
23m	31.5	33.1	40.2	44.4	8.8	-0.53	-0.12	-0.28	-0.45	0.2
24m	38.5	40.8	51.4	57.7	12.9	-0.19	-0.01	0.11	0.65	0.3
24111	1 30.3	1		1	 	 		 	 	

Figure 14

-0.87

10.7

49.9

45.0

34.3

25m

36.3

2.39

1.11

-0.47

2.0

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

Figure 20

Figure 21

Figure 22

Figure 23

Figure 24

reçue le 12/08/02

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ

Code de la propriété intellectuelle - Livre VI

DÉPARTEMENT DES BREVETS

26 bis. rue de Saint Pétersbourg
 75800 Paris Cedex 08
 Téléphone : 01 53 04 53 04 Télécopie : 01 42 93 59 30

DÉSIGNATION D'INVENTEUR(S) Page Nº .1./3..

(Si le demandeur n'est pas l'inventeur ou l'unique inventeur) Cet imprimé est à remplir lisiblement à l'encre noire 08 H3 W /260800

ur ce dossier	104269/RV/OOFD/TPM						
EMENT NATIONAL	020 5136 28						
ITION (200 caractères ou e							
TIQUE A GESTIC	ON DE DISPERSION						
JR(S) :							
nonyme ALCA I							
	·						
•							
I TANT QU'INVENTEU laire identique et nume	R(S) : (Indiquez en haut à droite «Page N° 1/1» S'il y a plus de trois inventeurs, érotez chaque page en indiquant le nombre total de pages).						
	SILLARD						
	Pierre						
Rue	2 SQUARE RAPHAËL RÉSIDENCE ORSAY						
Code postal et ville	78150 LE CHESNAY, FRANCE						
ance (facultatif)							
	PROVOST						
	Lionel						
Rue	5TER RUE DE LA CHAUSSÉE						
Code postal et ville	91460 MARCOUSSIS, FRANCE						
nance (facultatif)							
	BEAUMONT						
	Florent						
Rue	18, AVENUE ALFRED BERNARD						
Code postal et ville	78700 CONFLANS STE HONORINE, FRANCE						
nance (facultatif)							
	17 juillet 2002						
	Régis VIGAND						
AIRE							
du signataire)							
	EMENT NATIONAL ITION (200 caractères ou de l'ITION (200 caractère						

La loi n°78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

reçue le 12/08/02

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ

Code de la propriété intellectuelle - Livre VI

DÉPARTEMENT DES BREVETS

26 bis, rue de Saint Pétersbourg 75800 Paris Cedex 08

DATE ET SIGNATURE(S) RYKRRAKERSKY RYKOLAMAN DATAIRE

(Nom et qualité du signataire)

Téléphone : 01 53 04 53 04 Télécople : 01 42 93 59 30

DÉSIGNATION D'INVENTEUR(S) Page Nº .2./3..

(Si le demandeur n'est pas l'inventeur ou l'unique inventeur)

		Cet imprime est a rempiir lisiblement a l'encre noire	DB 113 W /26089					
Vos références pour ce dossier (facultatif)		104269/RV/OOFD/TPM						
N° D'ENREGIS	TREMENT NATIONAL	0205186	85					
TITRE DE L'IN	/ENTION (200 caractères ou e	espaces maximum)						
FIBRE (OPTIQUE A GESTIC	ON DE DISPERSION						
LE(S) DEMANI	OFILE(S):							
EE(3) DEMARK	seontoj .							
Société	anonyme ALCAT	EL						
000,010								
DESIGNE(NT) utilisez un for	EN TANT QU'INVENTEU mulaire identique et nume	R(S) : (Indiquez en haut à droîte «Page N° 1/1» S'il y a plus de troi érotez chaque page en indiquant le nombre total de pages).	s inventeurs,					
Nom		FLEURY						
Prénoms	,	Ludovic						
	Rue	RÉSIDENCE «LA FORÊT»						
Adresse	Tiuc .	17, RUE JEAN RACINE						
	Code postal et ville	78390 BOIS D'ARCY, FRANCE						
Société d'appar	tenance (facultutif)							
Nom .		GORLIER						
Prénoms		Maxime						
	Rue	18, RUE FOURCROY						
Adresse								
0	Code postal et ville	75017 PARIS, FRANCE						
	tenance (facultatif)							
Nom		MOLIN						
Prénoms		Denis						
Adresse	Rue	53 RUE JEAN BROUTIN						
rui e55 6	Code montal at villa	BP 147						
C:412 31	Code postal et ville	78703 CONFLANS CEDEX, FRANCE						
Société d'appartenance (facultatif)								

La loi n°78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

17 juillet 2002

Régis VIGAND

reçue le 12/08/02

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ

Code de la propriété intellectuelle - Livre VI

DÉPARTEMENT DES BREVETS

26 bis, rue de Saint Pétersbourg

DÉSIGNATION D'INVENTEUR(S) Page N° .3./3..

(Si le demandeur n'est pas l'inventeur ou l'unique inventeur)

'5800 Paris Cédex 08 'éléphone : 01-53-04-53	04 Télécopie : 01 42 93 59 30	Cet imprimé est à remplir lisiblement à l'encre noire DE 113 W 12808							
Vos références p	our ce dossier	104269/RV/OOFD/TPM							
(facultatif)		, o (20), ki, o o i b, ii							
	REMENT NATIONAL	0209136 28							
TITRE DE L'INVE	NTION (200 caractères ou es	spaces maximum)							
FIBRE O	PTIQUE A GESTIO	N DE DISPERSION							
LE(S) DEMANDE	EUR(S) :								
a	ል፤ ሎ ል ፕሮጀ								
Societe a	anonyme ALCATE								
DESIGNE(NT) E	N TANT QU'INVENTEUR	t(S) : (Indiquez en haut à droite «Page N° 1/1» S'il y a plus de trois inventeurs,							
utilisez un form	ulaire identique et numér	rotez chaque page en indiquant le nombre total de pages).							
Nom		DE MONTMORILLON							
Prénoms	T	Louis-Anne							
Adresse	Rue	53, RUE JEAN BROUTIN BP 147							
	Code postal et ville	78703 CONFLANS CEDEX, FRANCE							
Société d'apparte	nance (facultatif)								
Nom		NOUCHI							
Prenoms		Pascale							
Adresse	Rue	2, AVENUE BOSSUET							
	Code postal et ville	78600 MAISONS-LAFITTE, FRANCE							
Société d'apparte	nance (facultatif)								
Nom									
Prėnoms									
Adresse	Rue								
	Code postal et ville								
Société d'apparte	nance <i>(facultatif)</i>								
DATE ET SIGNA	TURE(S)	17 juillet 2002							
KRIKKKRIK	KKKKKKK	Régis VIGAND							
ഉԷጀወሀ MANDAT (N m t qualité	AIRE du signataire)								
for an educate	ar oignaran e)								

La loi n°78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.