Math 444/539 Lecture 7

Goals

a) Prove T#RP=RP#RP#RP

6) Classify surfaces w/ bdry

Defn: The Klein bottle is

Picture: Can't draw K2 in R3 Wo Self-intersections.

Need R.

. Must use 4th dim to avoid self-intersections here.

Lemma: K2 = RP#RP2

bt,

Recall that

$$\mathbb{RP}^2 \cong \mathbb{C}^2$$

Goal a thus follows from: Thm: TattRP2 ~ K#RP2 bt! Observe: T²/disc ≃ Kg/qisc ≅ handle passes behind rectangle Central Mã bìus Hence T#RP3=

side
"handle"

Drag left side of handle around central Mobius band get that this is homeo. to

Since Mobius band has "+ wist".

Surfaces W Bdry

Defin! An mounifold w/ boundary is a 2nd countable Hausdorff Space X St. for all pex, there exists a ublid U of p St. one of the following holds:

a) U= n= {xeR" | \(\int x_i^2 < 1 \)}

b) $U = \{\hat{x} \in \mathbb{R}^n \mid \sum x_c^2 < 1 \text{ and } x_n \neq 0\}$; call this latter set b_+^n .

Vocabulary: Let X be n-mnfld w/ bdry

a) pex is interior pt if p has noted U

W/ U=B

Define

Int(X)= {peX | p interior pt}.

Rmk! This is different from point-set topology defin of interior.

b) pex is boundary pt if p is not interior pt
Define $\partial X = \{p \in X \mid p \text{ boundary pt}\}.$

Remarks:

- a) A manifold is a manifold w/ boundary X.

 St. $\partial X = \emptyset$; Conversely, if X is a manifold w/ boundary and $\partial X \neq \emptyset$ then X is not a manifold.
- b) If peax, then p has uphd () +
 homeo. PiU->Bt St. P(p)=0.

 It's true (but annoying to prove) that convenely
 if such a pexists, then p is <u>not</u> an interior
 Pt. In particular, the point debt has
 no ubhd V w V=B.

b) \geq cpt surface, BSX subspace W/
BPD. Then \leq Int(B) is mufled w/ boundary

c) Can also remove multiple discs

Lemma! X mufld w/ boundary => 2x is (u-1)-mufld.

pf!

pe ∂X . Let $\varphi: U \to \mathring{D}_{+}^{n}$ be chart $w/\varphi(p)=0$.

Then a pt $\bigoplus_{i=0}^{n} \mathring{E}_{+}^{n}$ is image of d and d a

pt w nonzero last coord.

has $nbhd \cong b_+^n$.

```
=) P maps Unax homeo. onto

{\hat{x}ept | \times = \hat{p}r |

=) Unax=\hat{p}r is chart for peax

=) Unax=\hat{p}r is chart for peax

[Cor! \( \sigma \) cot surface w/ boundary

=) \( \sigma \) \( \s
```

Thm! $\sum_{i,j} \sum_{j=1}^{n} \frac{1}{2} \frac{1$

pf; => : trivial

to all bdry Cpts.

 $\hat{\Xi}_i$ CP+ Surface (without bdry) Claim: $\chi(\hat{\Xi}_i) = \chi(\Sigma_i) + n$, where n is # of boundary CP+S.

Triangulate Ξ_i Then $\widehat{\Xi}_i$ obtained by adding \Im -cell glued to each bdry cpt, so $\chi(\widehat{\Xi}_i) = \chi(\Xi_i)$ th.

Conclude: $\chi(\hat{\Xi}_i) = \chi(\hat{\Xi}_i)$. Since $\hat{\Xi}_i + \hat{\Xi}_s$ either both orientable or both not orientable, classification of cot surfaces \Longrightarrow Thomaso. $\Psi: \hat{\Xi}_i \to \hat{\Xi}_s$ Need following annoying lemma, whose proof is omitted:

Lemma! S cot surface $B_1,...,B_n \subseteq S$ disjoint subsets $w_i B_i \cong D^2$ $B'_1,...,B'_n \subseteq S$ disjoint subsets $w_i B'_i \cong D^2$ $\Rightarrow \exists homeo \ \Psi'.S \rightarrow S \ W'$ $\Psi(B_{\tilde{k}})=B'_{\tilde{k}}$ for $|\leqslant i \leqslant N$

Lemma => we can assume that \$P\$ takes discs glued to bodry costs of \$\mathbb{Z}_2\$
to discs glued to bodry cost of \$\mathbb{Z}_2\$

Hence $\Psi|_{\Sigma_1}$ is homeo from Σ , to Σ_2

