

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594 Report No.: SZEMO09100574501

Email: sgs_internet_operations@sgs.com Page: 1 of 41

FCC REPORT

Application No: SZEMO091005745RF

Applicant: CHIN FAI ELECTRONICS COMPANY **Product Name:** SILICON BLUETOOTH KEYBOARD

Operation Frequency: 2.402GHz to 2.480GHz

FCC ID: XJ4KB6114

Standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247: 2008

Date of Receipt: 10 October 2009

Date of Test: 10 October to 04 November 2009

Date of Issue: 05 November 2009

Test Result : PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

SGS

SGS-CSTC Standards Technical Services Ltd.

Report No.: SZEMO09100574501

Page: 2 of 41

2 Contents

			Page 1
2	C	ONTENTS	
3	TE	EST SUMMARY	3
4	GI	ENERAL INFORMATION	4
	4.1	CLIENT INFORMATION	4
	4.2	GENERAL DESCRIPTION OF E.U.T.	
	4.3	E.U.T OPERATION MODE	6
	4.4	TEST FACILITY	
	4.5	TEST LOCATION	
	4.6	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	4.7	TEST INSTRUMENTS LIST	8
5	TE	EST RESULTS AND MEASUREMENT DATA	9
	5.1	Antenna requirement:	9
	5.2	CONDUCTED PEAK OUTPUT POWER	10
	5.3	20DB OCCUPY BANDWIDTH	13
	5.4	CARRIER FREQUENCIES SEPARATION	16
	5.5	HOPPING CHANNEL NUMBER	20
	5.6	DWELL TIME	
	5.7	BAND EDGE (CONDUCTED MEASUREMENT)	
	5.8	RF ANTENNA CONDUCTED SPURIOUS EMISSIONS	
	5.9	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	31
	5.10	RADIATED EMISSION	
	٠.	10.1 Radiated emission below 1GHz	
	•	10.2 Transmitter emission above 1GHz	
	5.	10.3 Band Edge (radiated measurement)	38-41

Report No.: SZEMO09100574501

Page: 3 of 41

3 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Passed
Conducted Peak Output Power	15.247 (b)(1)	Passed
20dB Occupied Bandwidth	15.247 (a)(1)	Passed
Carrier Frequencies Separation	15.247 (a)(1)	Passed
Hopping Channel Number	15.247 (b)	Passed
Dwell Time	15.247 (a)(1)	Passed
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)&TCB Exclusion List (7 July 2002)	Passed
Radiated Emission	15.205/15.209/15.247	Passed
Band Edge	15.247(d)	Passed
RF Antenna Conducted spurious emissions	15.247(d)	Passed

Remark: Passed: The EUT complies with the essential requirements in the standard.

Failed: The EUT does not comply with the essential requirements in the standard.

Report No.: SZEMO09100574501

Page: 4 of 41

4 General Information

4.1 Client Information

Applicant:	CHIN FAI ELECTRONICS COMPANY
Address of Applicant:	Building2c 2d, yingfeng industrial park, sanhe economic development zone huiyang district Huizhou city
Manufacturer/ Factory:	CHIN FAI ELECTRONICS COMPANY
Address of Manufacturer/ Factory:	Building2c 2d, yingfeng industrial park, sanhe economic development zone huiyang district Huizhou city

4.2 General Description of E.U.T.

Product Name:	SILICON BLUETOOTH KEYBOARD		
Trade Name:	E BTAU		
Item No.:	KB6114, KB6130, KB6131, KB6132, KB6133, KB6134, KB6135, KB6136, KB6137, KB6138, KB6139		
Operation Frequency:	2402MHz~2480MHz		
Channel numbers:	79		
Channel separation:	1MHz		
Modulation type:	GFSK		
Antenna Type:	Integral		
Antenna gain:	0dBi		
Power supply:	keyboard: 2*1.5(AAA)=3.0V		

Report No.: SZEMO09100574501

Page: 5 of 41

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

Report No.: SZEMO09100574501

Page: 6 of 41

4.3 E.U.T Operation mode

Operating Environment:					
Temperature:	24.0 °C				
Humidity:	52 % RH				
Atmospheric Pressure:	1008 mbar				
Test mode:					
Normal operation mode:	Bluetooth mode (Keep the EUT connected to PC and exchange data.)				
Transmitting mode:	Keep the EUT in transmitting mode with modulation.				

Report No.: SZEMO09100574501

Page: 7 of 41

4.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

VCCI

The 3m Semi-anechoic chamber and Shielded Room (7.5m x 4.0m x 3.0m) of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2197 and C-2383 respectively.

Date of Registration: September 29, 2008. Valid until September 28, 2011.

FCC - Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 556682, June 27, 2008.

Industry Canada (IC)

The 3m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1.

4.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch E&E Lab No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594 No tests were sub-contracted.

4.6 Other Information Requested by the Customer

None.

Report No.: SZEMO09100574501

Page: 8 of 41

4.7 Test Instruments list

RE i	RE in Chamber						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (dd-mm-yy)	Cal.Due date (dd-mm-yy)	
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	16-06-2009	15-06-2010	
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEL0023	12-12-2008	11-12-2009	
3	EMI Test software	AUDIX	E3	SEL0050	N/A	N/A	
4	Coaxial cable	SGS	N/A	SEL0028	18-06-2009	17-06-2010	
6	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0014	12-08-2009	11-08-2010	
7	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0005	12-08-2009	11-08-2010	
8	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	12-08-2009	11-08-2010	
9	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	18-06-2009	17-06-2010	
10	Pre-amplifier (1-18GHz)	Rohde & Schwarz	AFS42-00101 800-25-S-42	SEL0081	18-06-2009	17-06-2010	
11	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	SEL0080	18-06-2009	17-06-2010	
12	Band filter	Amindeon	82346	SEL0094	18-06-2009	17-06-2010	

RF c	RF conducted							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.		Cal.Due date (dd-mm-yy)		
1	Spectrum Analyzer	Rohde & Schwarz	10336/030	EMC0040	16-06-2009	15-06-2010		
2	Coaxial cable	SGS	N/A	SEL0029	18-06-2009	17-06-2010		

Report No.: SZEMO09100574501

Page: 9 of 41

5 Test results and Measurement Data

5.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No.: SZEMO09100574501

Page: 10 of 41

5.2 Conducted Peak Output Power

Measurement Data

GFSK mode						
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	-8.51	30.00	Pass			
Middle	-8.25	30.00	Pass			
Highest	-8.01	30.00	Pass			

Report No.: SZEMO09100574501

Page: 11 of 41

Test plot as follows:

Date: 19.OCT.2009 22:08:47

Date: 19.OCT.2009 23:54:27

Report No.: SZEMO09100574501

Page: 12 of 41

Date: 20.OCT.2009 00:00:34

Report No.: SZEMO09100574501

Page: 13 of 41

5.3 20dB Occupy Bandwidth

Measurement Data

20dB Occupy Bandwidth (KHz)					
Lowest	Middle	Highest			
964	968	964			

Report No.: SZEMO09100574501

Page: 14 of 41

Test plot as follows:

Date: 19.0CT.2009 22:09:53

Date: 19.OCT.2009 23:55:15

Report No.: SZEMO09100574501

Page: 15 of 41

Date: 20.OCT.2009 00:01:08

Report No.: SZEMO09100574501

Page: 16 of 41

5.4 Carrier Frequencies Separation

Report No.: SZEMO09100574501

Page: 17 of 41

Measurement Data

Measurement Data							
	GFSK mode						
Carrier Frequencies Separation (KHz)		Limit (KHz)	Result				
Lowest	1004	645	Pass				
Middle	1008	645	Pass				
Highest	1004	645	Pass				

Note: According to section 5.3

Mode	20dB bandwidth (KHz)	Limit (KHz)		
Mode	(worse case)	(Carrier Frequencies Separation)		
GFSK	968	645		

Report No.: SZEMO09100574501

Page: 18 of 41

Test plot as follows:

Date: 21.OCT.2009 16:17:05

Date: 21.OCT.2009 16:20:17

Report No.: SZEMO09100574501

Page: 19 of 41

Date: 21.OCT.2009 16:24:07

Report No.: SZEMO09100574501

Page: 20 of 41

5.5 Hopping Channel Number

Measurement Data

Mode	Hopping channel numbers	Limit		
GFSK	79	75		

Report No.: SZEMO09100574501

Page: 21 of 41

Test plot as follows

Date: 21.OCT.2009 16:12:11

Report No.: SZEMO09100574501

Page: 22 of 41

5.6 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)				
Test Method:	ANSI C63.4:2003 and KDB DA00-705				
Limit:	0.4 Second				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 4.7 for details				
Test state:	Hopping transmitting with modulation.				
Test results:	Passed				

Measurement Data

Mode	Packet	Dwell time (second)	Limit (second)		
	DH1	0.139	0.4		
GFSK	DH3	0.275	0.4		
	DH5	0.319	0.4		

Test Result:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

The lowest channel (2402MHz), middle channel (2441MHz), highest channel (2480MHz) as blow

DH1 time slot=0.435(ms)*(1600/ (2*79))*31.6=139 ms

DH3 time slot=1.72(ms)*(1600/(4*79))*31.6=275ms

DH5 time slot=3.00(ms)*(1600/ (6*79))*31.6=319ms

Report No.: SZEMO09100574501

Page: 23 of 41

Date: 28.OCT.2009 16:52:56

Date: 28.OCT.2009 16:52:08

Report No.: SZEMO09100574501

Page: 24 of 41

Date: 28.OCT.2009 16:51:17

Report No.: SZEMO09100574501

Page: 25 of 41

5.7 Band Edge (conducted measurement)

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.4:2003 and KDB DA00-705				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 2.0dB in the spectrum analyzer.				
Test Instruments:	Refer to section 4.7 for details				
Test state:	Hopping transmitting with modulation.				
Test results:	Passed				

Remark:

Band Edge (radiated measurement) is tested and described in 5.10.3 chapter.

Report No.: SZEMO09100574501

Page: 26 of 41

Test plot as follows:

Date: 21.OCT.2009 16:58:18

Date: 21.OCT.2009 16:55:50

Report No.: SZEMO09100574501

Page: 27 of 41

5.8 RF Antenna Conducted spurious emissions

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2003 and KDB DA00-705					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 2.0dB in the spectrum analyzer.					
Test Instruments:	Refer to section 4.7 for details					
Test results:	Passed					

Report No.: SZEMO09100574501

Page: 28 of 41

Date: 19.OCT.2009 23:48:07

Date: 19.OCT.2009 23:49:19

Report No.: SZEMO09100574501

Page: 29 of 41

Date: 19.0CT.2009 23:56:29

Report No.: SZEMO09100574501

Page: 30 of 41

Date: 20.OCT.2009 00:02:14

Date: 20.OCT.2009 00:03:15

Report No.: SZEMO09100574501

Page: 31 of 41

5.9 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C

FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Report No.: SZEMO09100574501

Page: 32 of 41

5.10 Radiated Emission

Test Frequency Range: 30 Test site: Me Receiver setup:	NSI C63.4: 200 DMHz to 25GH easurement D Frequency 30MHz-1GHz Above 1GHz	Z	Semi-Anecho		·)
Test site: Mo	easurement D Frequency 30MHz-1GHz	istance: 3m (S			·)
Receiver setup:	Frequency 30MHz-1GHz	Detector			•)
3	30MHz-1GHz		RBW		
3	30MHz-1GHz		RBW		
		Quasi-peak		VBW	Remark
	Above 1GHz		100KHz	300KHz	Quasi-peak Value
	710010 10112	Peak	1MHz	3MHz	Peak Value
Limit:		Peak	1MHz	10Hz	Average Value
					
	Freque		Limit (dBuV/		Remark
-	30MHz-88		40.0		Quasi-peak Value
_	88MHz-21		43.5		Quasi-peak Value
	216MHz-96 960MHz-		46.0 54.0		Quasi-peak Value Quasi-peak Value
	9001011 12-	IGIIZ	54.0		Average Value
	Above 1	GHz	74.0		Peak Value
Test Procedure: b. c. d. e. f.	the ground a rotated 360 radiation. The EUT was antenna, who tower. The antenna ground to de horizontal as the measure For each sucase and the meters and degrees to for the test-recomplete Specified Ball of the emissis the limit specified Ball of the EUT whave 10dB residence.	at a 3 meter so degrees to de degrees to de degrees to de de degrees to de degrees to de degrees de degrees de degrees de degree de degr	emi-anechoice termine the passes away from the too the too tied from one naximum valuarizations of the too too too too too too too too too to	camber. The consistion of the	ence-receiving ble-height antenna ur meters above the ld strength. Both a are set to make ged to its worst rom 1 meter to 4 degrees to 360
Test Instruments: Re	efer to section	4.7 for details			
	ormal operatio				
	assed				

Report No.: SZEMO09100574501

Page: 33 of 41

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Report No.: SZEMO09100574501

Page: 34 of 41

5.10.1 Radiated emission below 1GHz

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
36.790	0.60	12.30	28.12	31.01	15.79	40.00	-24.21	Vertical
63.950	0.80	7.07	28.03	37.63	17.47	40.00	-22.53	Vertical
122.150	1.26	7.85	27.67	34.26	15.70	43.50	-27.80	Vertical
525.670	2.63	18.53	27.68	35.11	28.59	46.00	-17.41	Vertical
797.270	3.20	22.09	26.95	37.75	36.09	46.00	-9.91	Vertical
935.980	3.64	23.30	26.43	33.75	34.26	46.00	-11.74	Vertical
118.270	1.25	8.02	27.70	39.27	20.84	43.50	-22.66	Horizontal
272.500	1.78	12.76	26.82	36.43	24.15	46.00	-21.85	Horizontal
478.140	2.52	17.80	27.65	34.78	27.45	46.00	-18.55	Horizontal
710.940	2.94	21.60	27.24	38.62	35.92	46.00	-10.08	Horizontal
749.740	3.06	21.70	27.11	44.20	41.85	46.00	-4.15	Horizontal
797.270	3.20	22.09	26.95	38.06	36.40	46.00	-9.60	Horizontal

Remark: the data above is tested with QP detector.

Report No.: SZEMO09100574501

Page: 35 of 41

5.10.2 Transmitter emission above 1GHz

Test mode:		GFSK	Test	channel:	Lowest Remark:		k:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2377	6.25	29.96	39.11	47.51	44.61	74.00	-29.39	Vertical
2394	6.31	30.01	38.95	47.51	44.88	74.00	-29.12	Vertical
2400	6.34	30.03	38.87	47.02	44.52	74.00	-29.48	Vertical
4842	11.47	34.30	41.59	48.86	53.04	74.00	-20.96	Vertical
6219	14.46	36.09	41.69	50.91	59.77	74.00	-14.23	Vertical
11506	15.53	38.70	38.43	45.64	61.44	74.00	-12.56	Vertical
2360	6.17	29.88	39.35	47.29	43.99	74.00	-30.01	Horizontal
2394	6.31	30.01	38.95	47.58	44.95	74.00	-29.05	Horizontal
2400	6.34	30.03	38.87	47.72	45.22	74.00	-28.78	Horizontal
5726	12.89	35.47	42.00	50.02	56.38	74.00	-17.62	Horizontal
7783	14.18	37.58	39.61	48.10	60.25	74.00	-13.75	Horizontal
12186	18.03	39.21	39.27	44.90	62.87	74.00	-11.13	Horizontal

Test mode:		GFSK	Te	st channel:	Lowest	Lowest Remark:		Average	
					_				
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Pream factor (dB)		Emission Level (dBµV/m)		imit μV/m)	Over limit (dB)	Polarization
2343	6.11	29.84	39.51	27.60	24.04	54	1.00	-29.96	Vertical
2394	6.31	30.01	38.95	28.80	26.17	54	1.00	-27.83	Vertical
2400	6.34	30.03	38.87	29.50	27.00	54	1.00	-27.00	Vertical
6797	13.47	36.85	40.18	28.30	38.44	54	1.00	-15.56	Vertical
10401	14.15	38.18	36.61	26.50	42.22	54	1.00	-11.78	Vertical
13019	16.68	39.77	38.88	24.90	42.47	54	1.00	-11.53	Vertical
2326	6.02	29.76	39.75	27.61	23.64	54	1.00	-30.36	Horizontal
2394	6.31	30.01	38.95	28.30	25.67	54	1.00	-28.33	Horizontal
2400	6.34	30.03	38.87	28.80	26.30	54	1.00	-27.70	Horizontal
4315	8.79	33.57	39.87	29.30	31.79	54	1.00	-22.21	Horizontal
7800	14.34	37.60	39.65	26.30	38.59	54	1.00	-15.41	Horizontal
15620	18.05	40.78	41.81	25.10	42.12	54	1.00	-11.88	Horizontal

Report No.: SZEMO09100574501

Page: 36 of 41

Test mode:		GFSK	Test	channel:	Middle Remark		k:	Peak
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over limit (dB)	Polarization
2377	6.25	29.96	39.11	46.90	44.00	74.00	-30.00	Vertical
3431	7.24	32.46	39.65	48.08	48.13	74.00	-25.87	Vertical
4298	8.74	33.54	39.85	47.85	50.28	74.00	-23.72	Vertical
6746	13.38	36.78	40.42	49.80	59.54	74.00	-14.46	Vertical
7800	14.34	37.60	39.65	47.10	59.39	74.00	-14.61	Vertical
10503	14.58	38.20	36.32	44.91	61.37	74.00	-12.63	Vertical
2343	6.11	29.84	39.51	47.37	43.81	74.00	-30.19	Horizontal
3703	7.40	32.78	39.14	48.38	49.42	74.00	-24.58	Horizontal
4876	10.36	34.34	39.89	48.40	53.21	74.00	-20.79	Horizontal
5947	13.10	35.74	41.93	49.20	56.11	74.00	-17.89	Horizontal
7715	13.68	37.54	39.47	48.14	59.89	74.00	-14.11	Horizontal
10690	14.90	38.24	36.82	45.37	61.69	74.00	-12.31	Horizontal

Test mode:	C	GFSK	Test	channel:	Middle	Remar	k:	Average
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over limit (dB)	Polarization
2343	6.11	29.84	39.51	26.80	23.24	54.00	-30.76	Vertical
3499	7.27	32.54	39.34	26.30	26.77	54.00	-27.23	Vertical
4842	11.47	34.30	41.59	25.40	29.58	54.00	-24.42	Vertical
6797	13.47	36.85	40.18	26.80	36.94	54.00	-17.06	Vertical
10605	14.91	38.22	36.57	22.80	39.36	54.00	-14.64	Vertical
12169	18.03	39.21	39.27	23.50	41.47	54.00	-12.53	Vertical
2377	6.25	29.96	39.11	28.60	25.70	54.00	-28.30	Horizontal
5250	11.78	34.85	41.18	25.59	31.04	54.00	-22.96	Horizontal
7800	14.34	37.60	39.65	26.30	38.59	54.00	-15.41	Horizontal
10605	14.91	38.22	36.57	22.60	39.16	54.00	-14.84	Horizontal
12169	18.03	39.21	39.27	23.90	41.87	54.00	-12.13	Horizontal

Report No.: SZEMO09100574501

Page: 37 of 41

Test mode:		GFSK	Test	channel:	Highest	Remar	k:	Peak
				T				
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over limit (dB)	Polarization
2360	6.17	29.88	39.35	47.34	44.04	74.00	-29.96	Vertical
2483.5	6.22	30.32	39.53	47.88	44.89	74.00	-29.11	Vertical
2513	5.81	30.42	39.13	47.20	44.30	74.00	-29.70	Vertical
5199	11.71	34.77	41.19	48.21	53.50	74.00	-20.50	Vertical
8429	13.07	37.75	38.31	45.41	57.92	74.00	-16.08	Vertical
13087	16.65	39.92	39.16	41.36	58.77	74.00	-15.23	Vertical
2377	6.25	29.96	39.11	47.48	44.58	74.00	-29.42	Horizontal
2483.5	6.22	30.32	39.53	47.31	44.32	74.00	-29.68	Horizontal
2496	5.99	30.35	39.34	47.15	44.15	74.00	-29.85	Horizontal
6967	13.71	37.08	40.95	49.69	59.53	74.00	-14.47	Horizontal
9194	13.26	37.86	38.35	47.08	59.85	74.00	-14.15	Horizontal
11098	15.12	38.38	37.81	45.44	61.13	74.00	-12.87	Horizontal

Test mode:		GFSK	Test	channel:	Highest	Remar	k:	Average
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over limit (dB)	Polarization
2326	6.02	29.76	39.75	26.31	22.34	54.00	-31.66	Vertical
2483.5	6.22	30.32	39.53	26.80	23.81	54.00	-30.19	Vertical
2496	5.99	30.35	39.34	27.50	24.50	54.00	-29.50	Vertical
6797	13.47	36.85	40.18	26.80	36.94	54.00	-17.06	Vertical
9500	13.66	37.95	37.26	24.70	39.05	54.00	-14.95	Vertical
12169	18.03	39.21	39.27	22.80	40.77	54.00	-13.23	Vertical
2377	6.25	29.96	39.11	26.80	23.90	54.00	-30.10	Horizontal
2483.5	6.22	30.32	39.53	26.40	23.41	54.00	-30.59	Horizontal
2496	5.99	30.35	39.34	28.50	25.50	54.00	-28.50	Horizontal
6848	13.55	36.93	40.44	27.40	37.44	54.00	-16.56	Horizontal
9687	13.69	38.01	37.79	22.50	36.41	54.00	-17.59	Horizontal
13495	17.19	40.65	40.57	20.30	37.57	54.00	-16.43	Horizontal

Remark: The disturbance above 13GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

Report No.: SZEMO09100574501

Page: 38 of 41

5.10.3 Band Edge (radiated measurement)

Remark:

From above plot, we can calculate that the radio frequency power that is produced by the intentional radiator is at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, so it is compliance to the limit requirement of band edge.

Report No.: SZEMO09100574501

Page: 39 of 41

Remark:

From above plot, we can calculate that the radio frequency power that is produced by the intentional radiator is at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, so it is compliance to the limit requirement of band edge.

Report No.: SZEMO09100574501

Page: 40 of 41

Mk.	Frequency (MHz)	Reading (dBuV)	Detector	Corrected factor(dB)	Result (dBuV)	Limit (dBuV)	Ant.Pos (cm)	Tab.Pos (deg.)	Margin (dB)	Comment
*	2480.000	88.65	peak	-4.99	83.66	74.00			9.66	
	2483.500	51.05	peak	-4.99	46.06	74.00			-27.94	

Remark:

From above plot, we can calculate that the radio frequency power that is produced by the intentional radiator is at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, so it is compliance to the limit requirement of band edge.

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms-e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Report No.: SZEMO09100574501

Page: 41 of 41

Remark:

From above plot, we can calculate that the radio frequency power that is produced by the intentional radiator is at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, so it is compliance to the limit requirement of band edge.

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."