

Lecture 5: Random Variable, Part III

Yi, Yung (이용)

EE210: Probability and Introductory Random Processes KAIST EE

August 26, 2021

Roadmap

- (1) Derived distribution of Y = g(X) or Z = g(X, Y)
- (2) Derived distribution of Z = X + Y
- (3) Covariance: Degree of dependence between two rvs.
- (4) Correlation coefficient
- (5) Conditional expectation and law of iterative expectations
- (6) Conditional variance and law of total variance
- (7) Random number of sum of random variables

Roadmap

- (1) Derived distribution of Y = g(X) or Z = g(X, Y)
- (2) Derived distribution of Z = X + Y
- (3) Covariance: Degree of dependence between two rvs.
- (4) Correlation coefficient
- (5) Conditional expectation and law of iterative expectations
- (6) Conditional variance and law of total variance
- (7) Random number of sum of random variables

• Given the PDF of X, What is the PDF of Y = g(X)?

- Given the PDF of X, What is the PDF of Y = g(X)?
- Wait! Didn't we cover this topic? No. We covered just $\mathbb{E}[g(X)]$.

L5(1) August 26, 2021

- Given the PDF of X, What is the PDF of Y = g(X)?
- Wait! Didn't we cover this topic? No. We covered just $\mathbb{E}[g(X)]$.
- Examples: Y = X, Y = X + 1, $Y = X^2$, etc.

- Given the PDF of X, What is the PDF of Y = g(X)?
- Wait! Didn't we cover this topic? No. We covered just $\mathbb{E}[g(X)]$.
- Examples: Y = X, Y = X + 1, $Y = X^2$, etc.
- What are easy or difficult cases?

- Given the PDF of X, What is the PDF of Y = g(X)?
- Wait! Didn't we cover this topic? No. We covered just $\mathbb{E}[g(X)]$.
- Examples: Y = X, Y = X + 1, $Y = X^2$, etc.
- What are easy or difficult cases?
- Easy cases
 - Discrete
 - Linear: Y = aX + b

Discrete Case

• Take all values of x such that g(x) = y, i.e.,

$$p_Y(y) = \mathbb{P}(g(X) = y)$$
$$= \sum_{x:g(x)=y} p_X(x)$$

Discrete Case

• Take all values of x such that g(x) = y, i.e.,

$$p_Y(y) = \mathbb{P}(g(X) = y)$$
$$= \sum_{x:g(x)=y} p_X(x)$$

Discrete Case

• Take all values of x such that g(x) = y, i.e.,

$$p_Y(y) = \mathbb{P}(g(X) = y)$$
$$= \sum_{x:g(x)=y} p_X(x)$$

$$p_Y(3) = p_X(2) + p_X(3) = 0.1 + 0.2 = 0.3$$

 $p_Y(4) = p_X(4) + p_X(5) = 0.3 + 0.4 = 0.7$

If a > 0,

If a < 0,

If
$$a>0$$
, $F_Y(y)=\mathbb{P}(aX+b\leq y)=\mathbb{P}(X\leq \frac{y-b}{a})=F_X(\frac{y-b}{a})$

If a < 0,

If
$$a > 0$$
, $F_Y(y) = \mathbb{P}(aX + b \le y) = \mathbb{P}(X \le \frac{y - b}{a}) = F_X(\frac{y - b}{a})$
 $\to f_Y(y) = \frac{1}{a} f_X\left(\frac{y - b}{a}\right)$

If a < 0,

If
$$a > 0$$
, $F_Y(y) = \mathbb{P}(aX + b \le y) = \mathbb{P}(X \le \frac{y - b}{a}) = F_X(\frac{y - b}{a})$

$$\to f_Y(y) = \frac{1}{a} f_X\left(\frac{y - b}{a}\right)$$
If $a < 0$, $F_Y(y) = \mathbb{P}(aX + b \le y) = \mathbb{P}(X \ge \frac{y - b}{a}) = 1 - F_X(\frac{y - b}{a})$

If
$$a > 0$$
, $F_Y(y) = \mathbb{P}(aX + b \le y) = \mathbb{P}(X \le \frac{y - b}{a}) = F_X(\frac{y - b}{a})$
 $\to f_Y(y) = \frac{1}{a} f_X\left(\frac{y - b}{a}\right)$
If $a < 0$, $F_Y(y) = \mathbb{P}(aX + b \le y) = \mathbb{P}(X \ge \frac{y - b}{a}) = 1 - F_X(\frac{y - b}{a})$
 $\to f_Y(y) = -\frac{1}{a} f_X\left(\frac{y - b}{a}\right)$

If
$$a > 0$$
, $F_Y(y) = \mathbb{P}(aX + b \le y) = \mathbb{P}(X \le \frac{y - b}{a}) = F_X(\frac{y - b}{a})$

$$\to f_Y(y) = \frac{1}{a} f_X\left(\frac{y - b}{a}\right)$$
If $a < 0$, $F_Y(y) = \mathbb{P}(aX + b \le y) = \mathbb{P}(X \ge \frac{y - b}{a}) = 1 - F_X(\frac{y - b}{a})$

$$\to f_Y(y) = -\frac{1}{a} f_X\left(\frac{y - b}{a}\right)$$

Therefore,

$$f_Y(y) = \frac{1}{|a|} f_X\left(\frac{y-b}{a}\right)$$

Linear: Y = aX + b, when X is exponential

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

$$f_Y(y) = egin{cases} rac{\lambda}{|a|} e^{-\lambda(y-b)/a}, & ext{if} \quad (y-b)/a \geq 0 \ 0, & ext{otherwise} \end{cases}$$

• If b=0 and a>0, Y is exponential with parameter $\frac{\lambda}{a}$, but generally not.

Linear: Y = aX + b, when X is normal

• Remember? Linear transformation preserves normality. Time to prove.

If
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
, then for $a \neq 0$ and $b, \ Y = aX + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.

Linear: Y = aX + b, when X is normal

• Remember? Linear transformation preserves normality. Time to prove.

If
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
, then for $a \neq 0$ and $b, \ Y = aX + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.

• Proof.

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$$

Linear: Y = aX + b, when X is normal

• Remember? Linear transformation preserves normality. Time to prove.

If
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
, then for $a \neq 0$ and $b, Y = aX + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.

• Proof.

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$$

$$f_Y(y) = \frac{1}{|a|} f_X\left(\frac{y-b}{a}\right) = \frac{1}{|a|} \frac{1}{\sqrt{2\pi}} \exp\left\{-\left(\frac{y-b}{a} - \mu\right)^2 / 2\sigma^2\right\}$$
$$= \frac{1}{\sqrt{2\pi}|a|\sigma} \exp\left\{-\frac{(y-b-a\mu)^2}{2a^2\sigma^2}\right\}$$

L5(1) August 26, 2021

Step 1. Find the CDF of *Y*:

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(g(X) \le y)$$

Step 2. Differentiate: $f_Y(y) = \frac{dF_Y}{dy}(y)$

L5(1) August 26, 2021

Step 1. Find the CDF of Y:

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(g(X) \le y)$$

Step 2. Differentiate: $f_Y(y) = \frac{dF_Y}{dy}(y)$

Ex1.
$$Y = X^2$$
.

$$F_Y(y) = \mathbb{P}(X^2 \le y) = \mathbb{P}(-\sqrt{y} \le X \le \sqrt{y})$$
$$= F_X(\sqrt{y}) - F_X(-\sqrt{y})$$
$$f_Y(y) = \frac{1}{2\sqrt{y}} f_X(\sqrt{y}) +$$

$$f_Y(y) = \frac{1}{2\sqrt{y}} f_X(\sqrt{y}) + \frac{1}{2\sqrt{y}} f_X(\sqrt{y$$

$$\frac{1}{2\sqrt{y}}f_X(-\sqrt{y}), \quad y \ge 0$$

Step 1. Find the CDF of Y:

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(g(X) \le y)$$

Step 2. Differentiate: $f_Y(y) = \frac{dF_Y}{dy}(y)$

Ex1.
$$Y = X^2$$
.

$$F_{Y}(y) = \mathbb{P}(X^{2} \leq y) = \mathbb{P}(-\sqrt{y} \leq X \leq \sqrt{y})$$

$$= F_{X}(\sqrt{y}) - F_{X}(-\sqrt{y})$$

$$f_{Y}(y) = \frac{1}{2\sqrt{y}} f_{X}(\sqrt{y}) + \frac{1}{2\sqrt{y}} f_{X}(-\sqrt{y}), \quad y \geq 0$$

Ex2. $X \sim \mathcal{U}[0, 1]. Y = \sqrt{X}.$

$$F_Y(y) = \mathbb{P}(\sqrt{X} \le y) = \mathbb{P}(X \le y^2) = y^2$$

$$f_Y(y) = 2y, \quad 0 \le y \le 1$$

Step 1. Find the CDF of Y:

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(g(X) \le y)$$

Step 2. Differentiate: $f_Y(y) = \frac{dF_Y}{dy}(y)$

Ex1.
$$Y = X^2$$
.

$$F_Y(y) = \mathbb{P}(X^2 \le y) = \mathbb{P}(-\sqrt{y} \le X \le \sqrt{y})$$

$$= F_X(\sqrt{y}) - F_X(-\sqrt{y})$$

$$f_Y(y) = \frac{1}{2\sqrt{y}} f_X(\sqrt{y}) + \frac{1}{2\sqrt{y}} f_X(-\sqrt{y}), \quad y \ge 0$$

Ex2. $X \sim \mathcal{U}[0,1]$. $Y = \sqrt{X}$.

$$F_Y(y) = \mathbb{P}(\sqrt{X} \le y) = \mathbb{P}(X \le y^2) = y^2$$

$$f_Y(y) = 2y, \quad 0 \le y \le 1$$

Ex3. $X \sim \mathcal{U}[0, 2]$. $Y = X^3$.

$$F_Y(y) = \mathbb{P}(X^3 \le y) = \mathbb{P}(X \le \sqrt[3]{y}) = \frac{1}{2}y^{1/3}$$

 $f_Y(y) = \frac{1}{6}y^{-2/3}, \quad 0 \le y \le 8$

Step 1. Find the CDF of Y:

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(g(X) \le y)$$

Step 2. Differentiate: $f_Y(y) = \frac{dF_Y}{dy}(y)$

Ex1.
$$Y = X^2$$
.

$$F_Y(y) = \mathbb{P}(X^2 \le y) = \mathbb{P}(-\sqrt{y} \le X \le \sqrt{y})$$
$$= F_X(\sqrt{y}) - F_X(-\sqrt{y})$$
$$f_Y(y) = \frac{1}{2\sqrt{y}} f_X(\sqrt{y}) +$$

$$\frac{1}{2\sqrt{y}}f_X(-\sqrt{y}), \quad y \geq 0$$

Ex2.
$$X \sim \mathcal{U}[0, 1]$$
. $Y = \sqrt{X}$.

$$\begin{aligned} F_Y(y) &= \mathbb{P}(\sqrt{X} \le y) = \mathbb{P}(X \le y^2) = y^2 \\ f_Y(y) &= 2y, \quad 0 \le y \le 1 \end{aligned}$$

Ex3.
$$X \sim \mathcal{U}[0, 2]$$
. $Y = X^3$.

$$F_Y(y) = \mathbb{P}(X^3 \le y) = \mathbb{P}(X \le \sqrt[3]{y}) = \frac{1}{2}y^{1/3}$$

 $f_Y(y) = \frac{1}{6}y^{-2/3}, \quad 0 \le y \le 8$

When Y = g(X) is monotonic, a general formula can be drawn (see the textbook at pp 207)

Ex1.
$$X, Y \sim \mathcal{U}[0, 1]$$
, and $X \perp \!\!\!\perp Y$. $Z = \max(X, Y)$.

*
$$\mathbb{P}(X \leq z) = \mathbb{P}(Y \leq z) = z, \ z \in [0,1].$$

10 / 46

Ex1.
$$X, Y \sim \mathcal{U}[0, 1]$$
, and $X \perp \!\!\!\perp Y$. $Z = \max(X, Y)$.

*
$$\mathbb{P}(X \le z) = \mathbb{P}(Y \le z) = z, \ z \in [0,1].$$

$$F_{Z}(z) = \mathbb{P}(\max(X, Y) \le z) = \mathbb{P}(X \le z, Y \le z)$$

= $\mathbb{P}(X \le z)\mathbb{P}(Y \le z) = z^{2}$ (from $X \perp \!\!\!\perp Y$)

Ex1.
$$X, Y \sim \mathcal{U}[0, 1]$$
, and $X \perp \!\!\!\perp Y$. $Z = \max(X, Y)$.

*
$$\mathbb{P}(X \leq z) = \mathbb{P}(Y \leq z) = z, \ z \in [0,1].$$

$$F_{Z}(z) = \mathbb{P}(\max(X, Y) \le z) = \mathbb{P}(X \le z, Y \le z)$$

= $\mathbb{P}(X \le z)\mathbb{P}(Y \le z) = z^{2}$ (from $X \perp \!\!\!\perp Y$)

$$f_Z(z) = egin{cases} 2z, & ext{if } 0 \leq z \leq 1 \ 0, & ext{otherwise} \end{cases}$$

11 / 46

11 / 46

Ex2.
$$X, Y \sim \mathcal{U}[0,1]$$
, and $X \perp \!\!\! \perp Y$. $Z = Y/X$. VIDEO PAUSE

11 / 46

$$F_Z(z) = \mathbb{P}(Y/X \leq z)$$

Basically, follow two step approach: (i) CDF and (ii) differentiate.

Ex2.
$$X, Y \sim \mathcal{U}[0, 1]$$
, and $X \perp \!\!\!\perp Y$. $Z = Y/X$.

$$F_Z(z) = \mathbb{P}(Y/X \leq z)$$

- Depending on the value of z, two cases need to be considered separately.

Basically, follow two step approach: (i) CDF and (ii) differentiate.

Ex2.
$$X, Y \sim \mathcal{U}[0, 1]$$
, and $X \perp \!\!\!\perp Y$. $Z = Y/X$.

$$egin{aligned} F_Z(z) &= \mathbb{P}(Y/X \leq z) \ &= egin{cases} z/2, & 0 \leq z \leq 1 \ 1-1/2z, & z > 1 \ 0, & ext{otherwise} \end{cases} \end{aligned}$$

- Depending on the value of z, two cases need to be considered separately.

Functions of multiple rvs: Z = g(X, Y) (2)

Basically, follow two step approach: (i) CDF and (ii) differentiate.

Ex2. $X, Y \sim \mathcal{U}[0, 1]$, and $X \perp \!\!\!\perp Y$. Z = Y/X.

$$egin{aligned} F_Z(z) &= \mathbb{P}(Y/X \leq z) \ &= egin{cases} z/2, & 0 \leq z \leq 1 \ 1-1/2z, & z > 1 \ 0, & ext{otherwise} \end{cases} \end{aligned}$$

$$f_Z(z) = egin{cases} 1/2, & 0 \le z \le 1 \ 1/(2z^2), & z > 1 \ 0, & ext{otherwise} \end{cases}$$

- Depending on the value of z, two cases need to be considered separately.

Functions of multiple rvs: Z = g(X, Y) (2)

Basically, follow two step approach: (i) CDF and (ii) differentiate.

Ex2.
$$X, Y \sim \mathcal{U}[0, 1]$$
, and $X \perp \!\!\!\perp Y$. $Z = Y/X$.

$$egin{aligned} F_Z(z) &= \mathbb{P}(Y/X \leq z) \ &= egin{cases} z/2, & 0 \leq z \leq 1 \ 1-1/2z, & z > 1 \ 0, & ext{otherwise} \end{cases} \end{aligned}$$

$$f_Z(z) = egin{cases} 1/2, & 0 \le z \le 1 \ 1/(2z^2), & z > 1 \ 0, & ext{otherwise} \end{cases}$$

- Depending on the value of z, two cases need to be considered separately.

(Note) Sometimes, the problem is tricky, which requires careful case-by-case handing. :-)

L5(1)

Roadmap

- (1) Derived distribution of Y = g(X) or Z = g(X, Y)
- (2) Derived distribution of Z = X + Y
- (3) Covariance: Degree of dependence between two rvs.
- (4) Correlation coefficient
- (5) Conditional expectation and law of iterative expectations
- (6) Conditional variance and law of total variance
- (7) Random number of sum of random variables

Functions of multiple rvs: Z = X + Y, $X \perp \!\!\! \perp Y$ (1)

• Sum of two independent rvs

Functions of multiple rvs: Z = X + Y, $X \perp \!\!\!\perp Y$ (1)

- Sum of two independent rvs
- A very basic case with many applications
- Assume that $X, Y \in \mathbb{Z}$

Functions of multiple rvs: Z = X + Y, $X \perp \!\!\!\perp Y$ (1)

- Sum of two independent rvs
- A very basic case with many applications
- Assume that $X, Y \in \mathbb{Z}$

$$\rho_{Z}(z) = \mathbb{P}(X + Y = z) = \sum_{\{(x,y): x+y=z\}} \mathbb{P}(X = x, Y = y) = \sum_{x} \mathbb{P}(X = x, Y = z - x) \\
= \sum_{x} \mathbb{P}(X = x) \mathbb{P}(Y = z - x) = \sum_{x} \rho_{X}(x) \rho_{Y}(z - x)$$

L5(2)

Functions of multiple rvs: Z = X + Y, $X \perp \!\!\! \perp Y$ (1)

- Sum of two independent rvs
- A very basic case with many applications
- Assume that $X, Y \in \mathbb{Z}$

$$\frac{p_{Z}(z)}{p_{Z}(z)} = \mathbb{P}(X + Y = z) = \sum_{\{(x,y): x + y = z\}} \mathbb{P}(X = x, Y = y) = \sum_{x} \mathbb{P}(X = x, Y = z - x) \\
= \sum_{x} \mathbb{P}(X = x) \mathbb{P}(Y = z - x) = \sum_{x} p_{X}(x) p_{Y}(z - x)$$

• $p_Z(z)$ is called of the PMFs of X and Y.

Functions of multiple rvs: Z = X + Y, $X \perp \!\!\! \perp Y$ (1)

- Sum of two independent rvs
- A very basic case with many applications
- Assume that $X, Y \in \mathbb{Z}$

$$\frac{p_{Z}(z)}{p_{Z}(z)} = \mathbb{P}(X + Y = z) = \sum_{\{(x,y): x + y = z\}} \mathbb{P}(X = x, Y = y) = \sum_{x} \mathbb{P}(X = x, Y = z - x) \\
= \sum_{x} \mathbb{P}(X = x) \mathbb{P}(Y = z - x) = \sum_{x} p_{X}(x) p_{Y}(z - x)$$

• $p_Z(z)$ is called convolution of the PMFs of X and Y.

L5(2)

13 / 46

Functions of multiple rvs: Z = X + Y, $X \perp \!\!\!\perp Y$ (2)

- Convolution: $p_Z(z) = \sum_x p_X(x) p_Y(z-x)$
- Interpretation for a given z:
 - (i) Flip (horizontally) the PMF of Y $(p_Y(-x))$
 - (ii) Put it underneath the PMF of X
 - (iii) Right-shift the flipped PMF by z $(p_Y(-x+z))$

Example. z = 3

$Y = X + Y, X \perp \!\!\!\perp Y$: Continuous

• Same logic as the discrete case

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx$$

For a fixed z,

Y = X + Y, $X \perp \!\!\!\perp Y$: Continuous

• Same logic as the discrete case

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx$$

For a fixed z,

$Y = X + Y, X \perp \!\!\!\perp Y$: Continuous

• Same logic as the discrete case

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx$$

 Youtube animation for convolution: https://www.youtube.com/ watch?v=C1N55M1VD2o

For a fixed z,

Example

• Example. $X, Y \sim \mathcal{U}[0,1]$ and $X \perp \!\!\! \perp Y$. What is the PDF of Z = X + Y? Draw the PDF of Z.

Example

• Example. $X, Y \sim \mathcal{U}[0,1]$ and $X \perp \!\!\! \perp Y$. What is the PDF of Z = X + Y? Draw the PDF of Z.

L5(2)

16 / 46

Convolution in Image Processing

https://www.youtube.com/watch?v=MQm6ZP1F6ms

$Y = X + Y, X \perp \!\!\!\perp Y, \text{ Normal (1)}$

- Very special, but useful case
 - \circ X and Y are normal.

$Y = X + Y, X \perp \!\!\!\perp Y, \text{ Normal (1)}$

- Very special, but useful case
 - \circ X and Y are normal.

$Y = X + Y, X \perp \!\!\!\perp Y, \text{ Normal } (1)$

- Very special, but useful case
 - X and Y are normal.

Sum of two independent normal rvs

$$X \sim \mathcal{N}(\mu_x, \sigma_x^2)$$
 and $Y \sim \mathcal{N}(\mu_x, \sigma_x^2)$ Then, $X + Y \sim \mathcal{N}(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)$

August 26, 2021

$Y = X + Y, X \perp \!\!\!\perp Y, \text{ Normal (1)}$

- Very special, but useful case
 - X and Y are normal.

Sum of two independent normal rvs

$$X \sim \mathcal{N}(\mu_x, \sigma_x^2)$$
 and $Y \sim \mathcal{N}(\mu_x, \sigma_x^2)$ Then, $X + Y \sim \mathcal{N}(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)$

- Why normal rvs are used to model the sum of random noises.
- Extension. The sum of finitely many independent normals is also normal.

L5(2)

Y = X + Y, $X \perp \!\!\!\perp Y$, Normal (2)

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma_x} \exp\left\{-\frac{(x - \mu_x)^2}{2\sigma_x^2}\right\} \frac{1}{\sqrt{2\pi}\sigma_y} \exp\left\{-\frac{(z - x - \mu_y)^2}{2\sigma_y^2}\right\} dx$$

• The details of integration is a little bit tedious. :-)

$$f_Z(z) = \frac{1}{\sqrt{2\pi(\sigma_x^2 + \sigma_y^2)}} \exp\left\{-\frac{(z - \mu_x - \mu_y)^2}{2(\sigma_x^2 + \sigma_y^2)}\right\}$$

Roadmap

- (1) Derived distribution of Y = g(X) or Z = g(X, Y)
- (2) Derived distribution of Z = X + Y
- (3) Covariance: Degree of dependence between two rvs
- (4) Correlation coefficient
- (5) Conditional expectation and law of iterative expectations
- (6) Conditional variance and law of total variance
- (7) Random number of sum of random variables

21 / 46

• Goal: Given two rvs X and Y, assign some number that quantifies the degree of their dependence.

- Goal: Given two rvs X and Y, assign some number that quantifies the degree of their dependence.
 - feeling/weather, university ranking/annual salary,

- Goal: Given two rvs X and Y, assign some number that quantifies the degree of their dependence.
 - feeling/weather, university ranking/annual salary,
- Requirements

- Goal: Given two rvs X and Y, assign some number that quantifies the degree of their dependence.
 - feeling/weather, university ranking/annual salary,
- Requirements
 - **R1.** Increases (resp. decreases) as they become more (resp. less) dependent. 0 when they are independent.

- Goal: Given two rvs X and Y, assign some number that quantifies the degree of their dependence.
 - feeling/weather, university ranking/annual salary,
- Requirements
 - **R1.** Increases (resp. decreases) as they become more (resp. less) dependent. 0 when they are independent.
 - R2. Shows the 'direction' of dependence by + and -

- Goal: Given two rvs X and Y, assign some number that quantifies the degree of their dependence.
 - feeling/weather, university ranking/annual salary,
- Requirements
 - R1. Increases (resp. decreases) as they become more (resp. less) dependent. 0 when they are independent.
 - R2. Shows the 'direction' of dependence by + and -
 - R3. Always bounded by some numbers (i.e., dimensionless metric). For example, [-1,1]

- Goal: Given two rvs X and Y, assign some number that quantifies the degree of their dependence.
 - feeling/weather, university ranking/annual salary,
- Requirements
 - **R1.** Increases (resp. decreases) as they become more (resp. less) dependent. 0 when they are independent.
 - R2. Shows the 'direction' of dependence by + and -
 - R3. Always bounded by some numbers (i.e., dimensionless metric). For example, [-1,1]
- · Good engineers: Good at making good metrics
 - Metric of how our society is economically polarized
 - Cybermetrics in MLB (Major League Baseball): http://m.mlb.com/glossary/advanced-stats

• Simple case: $\mathbb{E}[X] = \mu_{\mathsf{X}} = 0$ and $\mathbb{E}[Y] = \mu_{\mathsf{Y}} = 0$

- Simple case: $\mathbb{E}[X] = \mu_X = 0$ and $\mathbb{E}[Y] = \mu_Y = 0$
- Dependent: Positive (If $X \uparrow$, $Y \uparrow$) or Negative (If $X \uparrow$, $Y \downarrow$)

- Simple case: $\mathbb{E}[X] = \mu_X = 0$ and $\mathbb{E}[Y] = \mu_Y = 0$
- Dependent: Positive (If $X \uparrow$, $Y \uparrow$) or Negative (If $X \uparrow$, $Y \downarrow$)
- What about $\mathbb{E}[XY]$? Seems good.

L5(3)

- Simple case: $\mathbb{E}[X] = \mu_X = 0$ and $\mathbb{E}[Y] = \mu_Y = 0$
- Dependent: Positive (If $X \uparrow$, $Y \uparrow$) or Negative (If $X \uparrow$, $Y \downarrow$)
- What about $\mathbb{E}[XY]$? Seems good.
 - $\circ \ \mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y] = 0 \text{ when } X \perp \!\!\! \perp Y$

L5(3)

- Simple case: $\mathbb{E}[X] = \mu_X = 0$ and $\mathbb{E}[Y] = \mu_Y = 0$
- Dependent: Positive (If $X \uparrow$, $Y \uparrow$) or Negative (If $X \uparrow$, $Y \downarrow$)
- What about $\mathbb{E}[XY]$? Seems good.
 - $\circ \mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y] = 0 \text{ when } X \perp \!\!\!\perp Y$
 - \circ More data points (thus increases) when xy > 0 (both positive or negative)

- Simple case: $\mathbb{E}[X] = \mu_{\mathsf{x}} = 0$ and $\mathbb{E}[Y] = \mu_{\mathsf{Y}} = 0$
- Dependent: Positive (If $X \uparrow$, $Y \uparrow$) or Negative (If $X \uparrow$, $Y \downarrow$)
- What about $\mathbb{E}[XY]$? Seems good.
 - $\circ \mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y] = 0 \text{ when } X \perp \!\!\!\perp Y$
 - More data points (thus increases) when xy > 0 (both positive or negative)
 - $|\mathbb{E}[XY]|$ also quantifies the amount of spread.

(Q) What about $\mathbb{E}[X + Y]$?

L5(3)

- Simple case: $\mathbb{E}[X] = \mu_{\mathsf{x}} = 0$ and $\mathbb{E}[Y] = \mu_{\mathsf{Y}} = 0$
- Dependent: Positive (If $X \uparrow$, $Y \uparrow$) or Negative (If $X \uparrow$, $Y \downarrow$)
- What about $\mathbb{E}[XY]$? Seems good.
 - $\circ \mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y] = 0 \text{ when } X \perp \!\!\!\perp Y$
 - More data points (thus increases) when xy > 0 (both positive or negative)
 - \circ $|\mathbb{E}[XY]|$ also quantifies the amount of spread.

(Q) What about $\mathbb{E}[X + Y]$?

When they are positively dependent, but have negative values?

L5(3)

What If $\mu_X \neq 0, \mu_Y \neq 0$?

• Solution: Centering. $X \to X - \mu_X$ and $Y \to Y - \mu_Y$

23 / 46

• Solution: Centering. $X \to X - \mu_X$ and $Y \to Y - \mu_Y$

$$\operatorname{\mathsf{cov}}(X,Y) = \mathbb{E} \Big[(X - \mathbb{E}[X]) \cdot (Y - \mathbb{E}[Y]) \Big]$$

• Solution: Centering. $X \to X - \mu_X$ and $Y \to Y - \mu_Y$

Covariance

$$\mathsf{cov}(X,Y) = \mathbb{E}\Big[(X - \mathbb{E}[X]) \cdot (Y - \mathbb{E}[Y])\Big]$$

• After some algebra, $\operatorname{cov}(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$

• Solution: Centering. $X \to X - \mu_X$ and $Y \to Y - \mu_Y$

$$\mathsf{cov}(X,Y) = \mathbb{E}\Big[(X - \mathbb{E}[X]) \cdot (Y - \mathbb{E}[Y])\Big]$$

- After some algebra, $\text{cov}(X,Y) = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- $X \perp \!\!\!\perp Y \Longrightarrow \operatorname{cov}(X,Y) = 0$

• Solution: Centering. $X \to X - \mu_X$ and $Y \to Y - \mu_Y$

$$\operatorname{\mathsf{cov}}(X,Y) = \mathbb{E} ig[(X - \mathbb{E}[X]) \cdot (Y - \mathbb{E}[Y]) ig]$$

- After some algebra, $cov(X, Y) = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- $X \perp \!\!\!\perp Y \Longrightarrow cov(X,Y) = 0$
- $cov(X, Y) = 0 \Longrightarrow X \perp\!\!\!\perp Y$? NO.

• Solution: Centering. $X \to X - \mu_X$ and $Y \to Y - \mu_Y$

$$\operatorname{\mathsf{cov}}(X,Y) = \mathbb{E} ig[(X - \mathbb{E}[X]) \cdot (Y - \mathbb{E}[Y]) ig]$$

- After some algebra, $cov(X, Y) = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- $X \perp \!\!\!\perp Y \Longrightarrow cov(X,Y) = 0$
- $cov(X, Y) = 0 \Longrightarrow X \perp\!\!\!\perp Y$? NO.
- When cov(X,Y)=0, we say that X and Y are

• Solution: Centering. $X \to X - \mu_X$ and $Y \to Y - \mu_Y$

$$\operatorname{\mathsf{cov}}(X,Y) = \mathbb{E} ig[(X - \mathbb{E}[X]) \cdot (Y - \mathbb{E}[Y]) ig]$$

- After some algebra, $cov(X, Y) = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- $X \perp \!\!\!\perp Y \Longrightarrow cov(X,Y) = 0$
- $cov(X, Y) = 0 \Longrightarrow X \perp\!\!\!\perp Y$? NO.
- When cov(X, Y) = 0, we say that X and Y are uncorrelated.

Example: cov(X, Y) = 0, but not independent

• $p_{X,Y}(1,0) = p_{X,Y}(0,1) = p_{X,Y}(-1,0) = p_{X,Y}(0,-1) = 1/4.$

Example: cov(X, Y) = 0, but not independent

- $p_{X,Y}(1,0) = p_{X,Y}(0,1) = p_{X,Y}(-1,0) = p_{X,Y}(0,-1) = 1/4.$
- $\mathbb{E}[X] = \mathbb{E}[Y] = 0$, and $\mathbb{E}[XY] = 0$. So, cov(X, Y) = 0

Example: cov(X, Y) = 0, but not independent

- $p_{X,Y}(1,0) = p_{X,Y}(0,1) = p_{X,Y}(-1,0) = p_{X,Y}(0,-1) = 1/4$.
- $\mathbb{E}[X] = \mathbb{E}[Y] = 0$, and $\mathbb{E}[XY] = 0$. So, cov(X, Y) = 0
- Are they independent? No, because if X=1, then we should have Y=0.

L5(3) August 26, 2021 25 / 46

$$cov(X, X) = var(X)$$

$$cov(X, X) = var(X)$$

$$cov(aX + b, Y) = \mathbb{E}[(aX + b)Y] - \mathbb{E}[aX + b]\mathbb{E}[Y] = a \cdot cov(X, Y)$$

$$cov(X, X) = var(X)$$

$$cov(aX + b, Y) = \mathbb{E}[(aX + b)Y] - \mathbb{E}[aX + b]\mathbb{E}[Y] = a \cdot cov(X, Y)$$

$$cov(X, Y + Z) = \mathbb{E}[X(Y + Z)] - \mathbb{E}[X]\mathbb{E}[Y + Z] = cov(X, Y) + cov(X, Z)$$

$$cov(X, X) = var(X)$$

$$cov(aX + b, Y) = \mathbb{E}[(aX + b)Y] - \mathbb{E}[aX + b]\mathbb{E}[Y] = a \cdot cov(X, Y)$$

$$cov(X, Y + Z) = \mathbb{E}[X(Y + Z)] - \mathbb{E}[X]\mathbb{E}[Y + Z] = cov(X, Y) + cov(X, Z)$$

$$var[X + Y] = \mathbb{E}[(X + Y)^2] - (\mathbb{E}[X + Y])^2 = var[X] + var[Y] + 2cov(X, Y)$$

$$cov(X, X) = var(X)$$

$$cov(aX + b, Y) = \mathbb{E}[(aX + b)Y] - \mathbb{E}[aX + b]\mathbb{E}[Y] = a \cdot cov(X, Y)$$

$$cov(X, Y + Z) = \mathbb{E}[X(Y + Z)] - \mathbb{E}[X]\mathbb{E}[Y + Z] = cov(X, Y) + cov(X, Z)$$

$$var[X + Y] = \mathbb{E}[(X + Y)^2] - (\mathbb{E}[X + Y])^2 = var[X] + var[Y] + 2cov(X, Y)$$

$$\mathsf{var}\Big[\sum X_i\Big] = \sum \mathsf{var}[X_i] + \sum_{i \neq i} \mathsf{cov}(X_i, X_j)$$

- n people throw their hats in a box and then pick one at random
- X: number of people with their own hat
- (Q) var[X]
- Key step 1. Define a rv $X_i = 1$ if i selects own hat and 0 otherwise. Then, $X = \sum_{i=1}^{n} X_i$.
- Key step 2. Are X_i s are independent?

L5(3)

- n people throw their hats in a box and then pick one at random
- X: number of people with their own hat
- (Q) var[X]
- Key step 1. Define a rv $X_i = 1$ if i selects own hat and 0 otherwise. Then, $X = \sum_{i=1}^{n} X_i$.
- Key step 2. Are X_i s are independent?
- $X_i \sim \operatorname{Bern}(1/n)$. Thus, $\mathbb{E}[X_i] = 1/n$ and $\operatorname{var}[X_i] = \frac{1}{n}(1 \frac{1}{n})$

- n people throw their hats in a box and then pick one at random
- X: number of people with their own hat
- (Q) var[X]
- Key step 1. Define a rv $X_i = 1$ if i selects own hat and 0 otherwise. Then, $X = \sum_{i=1}^{n} X_i$.
- Key step 2. Are X_i s are independent?
- $X_i \sim \operatorname{Bern}(1/n)$. Thus, $\mathbb{E}[X_i] = 1/n$ and $\operatorname{var}[X_i] = \frac{1}{n}(1 \frac{1}{n})$

$$var[X] = var\left[\sum_{i} X_{i}\right]$$

$$= \sum_{i} var[X_{i}] + \sum_{i \neq i} cov(X_{i}, X_{j})$$

- n people throw their hats in a box and then pick one at random
- X: number of people with their own hat
- (Q) var[X]
- Key step 1. Define a rv $X_i = 1$ if i selects own hat and 0 otherwise. Then, $X = \sum_{i=1}^{n} X_i$.
- Key step 2. Are X_i s are independent?
- $X_i \sim \text{Bern}(1/n)$. Thus, $\mathbb{E}[X_i] = 1/n$ and $\text{var}[X_i] = \frac{1}{n}(1 \frac{1}{n})$

• For $i \neq j$,

$$egin{aligned} \mathsf{cov}(X_i, X_j) &= \mathbb{E}[X_i X_j] - \mathbb{E}[X_i] \mathbb{E}[X_j] \ &= \mathbb{P}(X_i = 1 \text{ and } X_j = 1) - rac{1}{n^2} \ &= \mathbb{P}(X_i = 1) \mathbb{P}(X_j = 1 | X_i = 1) - rac{1}{n^2} \ &= rac{1}{n} rac{1}{n-1} - rac{1}{n^2} = rac{1}{n^2(n-1)} \end{aligned}$$

$$var[X] = var\left[\sum X_i\right]$$

= $\sum var[X_i] + \sum_{i \neq i} cov(X_i, X_j)$

- n people throw their hats in a box and then pick one at random
- X: number of people with their own hat
- (Q) var[X]
- Key step 1. Define a rv $X_i = 1$ if i selects own hat and 0 otherwise. Then, $X = \sum_{i=1}^{n} X_i$.
- Key step 2. Are X_is are independent?
- $X_i \sim \text{Bern}(1/n)$. Thus, $\mathbb{E}[X_i] = 1/n$ and $\text{var}[X_i] = \frac{1}{2}(1 \frac{1}{2})$

• For $i \neq j$,

$$cov(X_{i}, X_{j}) = \mathbb{E}[X_{i}X_{j}] - \mathbb{E}[X_{i}]\mathbb{E}[X_{j}]$$

$$= \mathbb{P}(X_{i} = 1 \text{ and } X_{j} = 1) - \frac{1}{n^{2}}$$

$$= \mathbb{P}(X_{i} = 1)\mathbb{P}(X_{j} = 1|X_{i} = 1) - \frac{1}{n^{2}}$$

$$= \frac{1}{n} \frac{1}{n-1} - \frac{1}{n^{2}} = \frac{1}{n^{2}(n-1)}$$

$$var[X] = var\left[\sum X_i\right]$$

$$= \sum var[X_i] + \sum_{i \neq j} cov(X_i, X_j)$$

$$= n\frac{1}{n}(1 - \frac{1}{n}) + n(n - 1)\frac{1}{n^2(n - 1)} = 1$$

Roadmap

- (1) Derived distribution of Y = g(X) or Z = g(X, Y)
- (2) Derived distribution of Z = X + Y
- (3) Covariance: Degree of dependence between two rvs
- (4) Correlation coefficient
- (5) Conditional expectation and law of iterative expectations
- (6) Conditional variance and law of total variance
- (7) Random number of sum of random variables

28 / 46

• Reqs. R1 and R2 are satisfied.

28 / 46

- Reqs. R1 and R2 are satisfied.
 - R3. Always bounded by some numbers (dimensionless metric)

28 / 46

- Reqs. R1 and R2 are satisfied.
 R3. Always bounded by some numbers (dimensionless metric)
- How? but by what?

28 / 46

- Reqs. R1 and R2 are satisfied.
 R3. Always bounded by some numbers (dimensionless metric)
- How? Normalization, but by what?

- Reqs. R1 and R2 are satisfied.
 R3. Always bounded by some numbers (dimensionless metric)
- How? Normalization, but by what?

$$\rho(X,Y) = \mathbb{E}\left[\frac{(X-\mu_X)}{\Box} \cdot \frac{(Y-\mu_Y)}{\Box}\right] = \frac{\text{cov}(X,Y)}{\sqrt{\text{var}[X]\text{var}[Y]}}$$

- Reqs. R1 and R2 are satisfied.
 R3. Always bounded by some numbers (dimensionless metric)
- How? Normalization, but by what?

$$\rho(X,Y) = \mathbb{E}\left[\frac{(X-\mu_X)}{\boxed{\sigma_X}} \cdot \frac{(Y-\mu_Y)}{\boxed{\sigma_Y}}\right] = \frac{\text{cov}(X,Y)}{\sqrt{\text{var}[X]\text{var}[Y]}}$$

- Regs. R1 and R2 are satisfied.
 - R3. Always bounded by some numbers (dimensionless metric)
- How? Normalization, but by what?

$$\rho(X,Y) = \mathbb{E}\left[\frac{(X - \mu_X)}{\boxed{\sigma_X}} \cdot \frac{(Y - \mu_Y)}{\boxed{\sigma_Y}}\right] = \frac{\text{cov}(X,Y)}{\sqrt{\text{var}[X]\text{var}[Y]}}$$

- Theorem.
 - 1. $-1 \le \rho \le 1$ (proof at the next slide)

- Regs. R1 and R2 are satisfied.
 - R3. Always bounded by some numbers (dimensionless metric)
- How? Normalization, but by what?

$$\rho(X,Y) = \mathbb{E}\left[\frac{(X - \mu_X)}{\sigma_X} \cdot \frac{(Y - \mu_Y)}{\sigma_Y}\right] = \frac{\text{cov}(X,Y)}{\sqrt{\text{var}[X]\text{var}[Y]}}$$

- Theorem.
 - 1. $-1 \le \rho \le 1$ (proof at the next slide)
 - 2. $|\rho| = 1 \Leftrightarrow X \mu_X = c(Y \mu_Y)$ for some constant c (c > 0 when $\rho = 1$ and c < 0 when $\rho = -1$). In other words, linear relation, meaning VERY related.

29 / 46

• Cauchy-Schwarz inequality. For any rvs X and Y, $(\mathbb{E}(XY))^2 \leq \mathbb{E}(X^2)\mathbb{E}(Y^2)$

- Cauchy-Schwarz inequality. For any rvs X and Y, $(\mathbb{E}(XY))^2 \leq \mathbb{E}(X^2)\mathbb{E}(Y^2)$
- Proof of $-1 \le \rho \le 1$:

Let
$$ilde{X}=X-\mathbb{E}(X)$$
 and $ilde{Y}=Y-\mathbb{E}(Y)$. Then, $\left(
ho(X,Y)\right)^2=rac{\left(\mathbb{E}[ilde{X} ilde{Y}]\right)^2}{\mathbb{E}(ilde{X}^2)\mathbb{E}(ilde{Y}^2)}\leq 1$

- Cauchy-Schwarz inequality. For any rvs X and Y, $(\mathbb{E}(XY))^2 \leq \mathbb{E}(X^2)\mathbb{E}(Y^2)$
- Proof of $-1 \le \rho \le 1$:

Let
$$\tilde{X} = X - \mathbb{E}(X)$$
 and $\tilde{Y} = Y - \mathbb{E}(Y)$. Then, $\left(\rho(X,Y)\right)^2 = \frac{\left(\mathbb{E}[\tilde{X}\tilde{Y}]\right)^2}{\mathbb{E}(\tilde{X}^2)\mathbb{E}(\tilde{Y}^2)} \leq 1$

• Proof of CSI: For any constant a,

$$0 \leq \mathbb{E}\left[\left(X - aY\right)^2\right] = \mathbb{E}\left[X^2 - 2aXY + a^2Y^2\right] = \mathbb{E}(X^2) - 2a\mathbb{E}(XY) + a^2\mathbb{E}(Y^2)$$

- Cauchy-Schwarz inequality. For any rvs X and Y, $(\mathbb{E}(XY))^2 \leq \mathbb{E}(X^2)\mathbb{E}(Y^2)$
- Proof of $-1 \le \rho \le 1$:

Let
$$\tilde{X} = X - \mathbb{E}(X)$$
 and $\tilde{Y} = Y - \mathbb{E}(Y)$. Then, $\left(\rho(X,Y)\right)^2 = \frac{\left(\mathbb{E}[\tilde{X}\tilde{Y}]\right)^2}{\mathbb{E}(\tilde{X}^2)\mathbb{E}(\tilde{Y}^2)} \leq 1$

• Proof of CSI: For any constant a,

$$0 \leq \mathbb{E}\left[(X - aY)^2 \right] = \mathbb{E}\left[X^2 - 2aXY + a^2Y^2 \right] = \mathbb{E}(X^2) - 2a\mathbb{E}(XY) + a^2\mathbb{E}(Y^2)$$

Now, choose $a = \frac{\mathbb{E}(XY)}{\mathbb{E}(Y^2)}$. Then,

$$\mathbb{E}(X^2) - 2\frac{\mathbb{E}(XY)}{\mathbb{E}(Y^2)}\mathbb{E}(XY) + \frac{(\mathbb{E}[XY])^2}{(\mathbb{E}[Y^2])^2}\mathbb{E}(Y^2) = \mathbb{E}(X^2) - \frac{(\mathbb{E}[XY])^2}{\mathbb{E}(Y^2)} \geq 0$$

L5(4)

2. $|\rho| = 1 \Leftrightarrow X - \mu_X = c(Y - \mu_Y)$

 (\Rightarrow) Suppose that $|\rho|=1$. In the proof of CSI,

$$\mathbb{E}\left[\left(\tilde{X} - \frac{\mathbb{E}(\tilde{X}\tilde{Y})}{\mathbb{E}(\tilde{Y}^2)}\tilde{Y}\right)^2\right] = \mathbb{E}(\tilde{X}^2) - \frac{(\mathbb{E}[\tilde{X}\tilde{Y}])^2}{\mathbb{E}(\tilde{Y}^2)} = \mathbb{E}(\tilde{X}^2)(1 - \rho^2) = 0$$

$$\tilde{X} - \frac{\mathbb{E}(\tilde{X}\tilde{Y})}{\mathbb{E}(\tilde{Y}^2)}Y = 0 \leftrightarrow \tilde{X} = \frac{\mathbb{E}(\tilde{X}\tilde{Y})}{\mathbb{E}(\tilde{Y}^2)}\tilde{Y} = \rho\sqrt{\frac{\mathbb{E}(\tilde{X}^2)}{\mathbb{E}(\tilde{Y}^2)}}\tilde{Y}$$

 (\Leftarrow) If $\tilde{Y} = c\tilde{X}$, then

$$\rho(X,Y) = \frac{\mathbb{E}(\tilde{X}c\tilde{X})}{\sqrt{\mathbb{E}[\tilde{X}^2]\mathbb{E}[(c\tilde{X})^2]}} = \frac{c}{|c|}$$

Roadmap

- (1) Derived distribution of Y = g(X) or Z = g(X, Y)
- (2) Derived distribution of Z = X + Y
- (3) Covariance: Degree of dependence between two rvs
- (4) Correlation coefficient
- (5) Conditional expectation and law of iterative expectations
- (6) Conditional variance and law of total variance
- (7) Random number of sum of random variables

• Consider a rv Y, such that

$$Y = \begin{cases} 0, & \text{w.p. } 1/4 \\ 1, & \text{w.p. } 1/4 \\ 2, & \text{w.p. } 1/2 \end{cases}$$

• Consider a rv Y, such that

$$Y = \begin{cases} 0, & \text{w.p. } 1/4 \\ 1, & \text{w.p. } 1/4 \\ 2, & \text{w.p. } 1/2 \end{cases}$$

• If $h(y) = y^2$, then a new rv h(Y) is:

$$h(Y) = \begin{cases} 0, & \text{w.p. } 1/4 \\ 1, & \text{w.p. } 1/4 \\ 4, & \text{w.p. } 1/2 \end{cases}$$

• Consider a rv Y, such that

$$Y = \begin{cases} 0, & \text{w.p. } 1/4 \\ 1, & \text{w.p. } 1/4 \\ 2, & \text{w.p. } 1/2 \end{cases}$$

• If $h(y) = y^2$, then a new rv h(Y) is:

$$h(Y) = \begin{cases} 0, & \text{w.p. } 1/4 \\ 1, & \text{w.p. } 1/4 \\ 4, & \text{w.p. } 1/2 \end{cases}$$

 Consider other rv X, which, we assume, has:

$$\mathbb{E}[X|Y = y] = \begin{cases} 3, & \text{if } y = 0 \\ 8, & \text{if } y = 1 \\ 9, & \text{if } y = 2 \end{cases}$$

• Consider a rv Y, such that

$$Y = \begin{cases} 0, & \text{w.p. } 1/4 \\ 1, & \text{w.p. } 1/4 \\ 2, & \text{w.p. } 1/2 \end{cases}$$

• If $h(y) = y^2$, then a new rv h(Y) is:

$$h(Y) = egin{cases} 0, & ext{w.p. } 1/4 \ 1, & ext{w.p. } 1/4 \ 4, & ext{w.p. } 1/2 \end{cases}$$

 Consider other rv X, which, we assume, has:

$$g(y) = \mathbb{E}[X|Y = y] = \begin{cases} 3, & \text{if } y = 0 \\ 8, & \text{if } y = 1 \\ 9, & \text{if } y = 2 \end{cases}$$

• Consider a rv Y, such that

$$Y = \begin{cases} 0, & \text{w.p. } 1/4 \\ 1, & \text{w.p. } 1/4 \\ 2, & \text{w.p. } 1/2 \end{cases}$$

• If $h(y) = y^2$, then a new rv h(Y) is:

$$h(Y) = \begin{cases} 0, & \text{w.p. } 1/4 \\ 1, & \text{w.p. } 1/4 \\ 4, & \text{w.p. } 1/2 \end{cases}$$

 Consider other rv X, which, we assume, has:

$$g(y) = \mathbb{E}[X|Y = y] = \begin{cases} 3, & \text{if } y = 0 \\ 8, & \text{if } y = 1 \\ 9, & \text{if } y = 2 \end{cases}$$

• Then, a rv g(Y) is:

$$g(Y) = \begin{cases} 3, & \text{w.p. } 1/4 \\ 8, & \text{w.p. } 1/4 \\ 9, & \text{w.p. } 1/2 \end{cases}$$

• Consider a rv Y, such that

$$Y = \begin{cases} 0, & \text{w.p. } 1/4 \\ 1, & \text{w.p. } 1/4 \\ 2, & \text{w.p. } 1/2 \end{cases}$$

• If $h(y) = y^2$, then a new rv h(Y) is:

$$h(Y) = \begin{cases} 0, & \text{w.p. } 1/4 \\ 1, & \text{w.p. } 1/4 \\ 4, & \text{w.p. } 1/2 \end{cases}$$

(4, w.p. 1/2

- The rv g(Y) looks special, so let's give a fancy notation to it.

 Consider other rv X, which, we assume, has:

$$g(y) = \mathbb{E}[X|Y = y] = \begin{cases} 3, & \text{if } y = 0 \\ 8, & \text{if } y = 1 \\ 9, & \text{if } y = 2 \end{cases}$$

• Then, a rv g(Y) is:

$$g(Y) = \begin{cases} 3, & \text{w.p. } 1/4 \\ 8, & \text{w.p. } 1/4 \\ 9, & \text{w.p. } 1/2 \end{cases}$$

L5(5)

• Consider a rv Y, such that

$$Y = \begin{cases} 0, & \text{w.p. } 1/4 \\ 1, & \text{w.p. } 1/4 \\ 2, & \text{w.p. } 1/2 \end{cases}$$

• If $h(y) = y^2$, then a new rv h(Y) is:

$$h(Y) = \begin{cases} 0, & \text{w.p. } 1/4 \\ 1, & \text{w.p. } 1/4 \\ 4, & \text{w.p. } 1/2 \end{cases}$$

 Consider other rv X, which, we assume, has:

$$g(y) = \mathbb{E}[X|Y = y] = \begin{cases} 3, & \text{if } y = 0 \\ 8, & \text{if } y = 1 \\ 9, & \text{if } y = 2 \end{cases}$$

• Then, a rv g(Y) is:

$$g(Y) = \begin{cases} 3, & \text{w.p. } 1/4 \\ 8, & \text{w.p. } 1/4 \\ 9, & \text{w.p. } 1/2 \end{cases}$$

- The rv g(Y) looks special, so let's give a fancy notation to it.
- What about? $X_{exp}(Y)$, $\mathbb{E}[X_Y]$, $\mathbb{E}_X[Y]$?

33 / 46

Conditional Expectation

A random variable g(Y) = , called takes the value $g(y) = \mathbb{E}[X|Y = y]$, if Y happens to take the value y.

L5(5) August 26, 2021

Conditional Expectation

A random variable $g(Y) = \mathbb{E}[X|Y]$, called conditional expectation of X given Y, takes the value $g(y) = \mathbb{E}[X|Y = y]$, if Y happens to take the value y.

A function of Y

L5(5)

Conditional Expectation

A random variable $g(Y) = \mathbb{E}[X|Y]$, called conditional expectation of X given Y, takes the value $g(y) = \mathbb{E}[X|Y = y]$, if Y happens to take the value y.

- A function of Y
- A random variable

Conditional Expectation

A random variable $g(Y) = \boxed{\mathbb{E}[X|Y]}$, called conditional expectation of X given Y, takes the value $g(y) = \mathbb{E}[X|Y = y]$, if Y happens to take the value y.

- A function of Y
- A random variable
- Thus, having a distribution, expectation, variance, all the things that a random variable has.

Conditional Expectation

A random variable $g(Y) = \boxed{\mathbb{E}[X|Y]}$, called conditional expectation of X given Y, takes the value $g(y) = \mathbb{E}[X|Y = y]$, if Y happens to take the value y.

- A function of Y
- A random variable
- Thus, having a distribution, expectation, variance, all the things that a random variable has.
- Often confusing because of the notation.

Expectation of $\mathbb{E}[X|Y]$

Expectation of Conditional Expectation

$$\mathbb{E}ig[\mathbb{E}[X|Y]ig] = \mathbb{E}[X],$$
 Law of iterated expectations

Proof.

$$\mathbb{E}\left[\mathbb{E}[X|Y]\right] = \sum_{y} \mathbb{E}[X|Y = y]p_{Y}(y)$$
$$= \mathbb{E}[X]$$

L5(5) August 26, 2021 35 / 46

35 / 46

- Stick of length /
- Uniformly break at point Y, and break what is left uniformly at point X.

L5(5) August 26, 2021

- Stick of length /
- Uniformly break at point Y, and break what is left uniformly at point X.
- $\mathbb{E}[X|Y = y] = y/2$
- $\mathbb{E}[X|Y] = Y/2$

- Stick of length I
- Uniformly break at point Y, and break what is left uniformly at point X.
- $\mathbb{E}[X|Y = y] = y/2$
- $\mathbb{E}[X|Y] = Y/2$
- $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[Y/2] = \frac{1}{2}\frac{I}{2} = I/4$

- Stick of length /
- Uniformly break at point Y, and break what is left uniformly at point X.

•
$$\mathbb{E}[X|Y = y] = y/2$$

•
$$\mathbb{E}[X|Y] = Y/2$$

•
$$\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[Y/2] = \frac{1}{2}\frac{I}{2} = I/4$$

 Forecasts on sales: calculating expected value, given any available information

- Stick of length /
- Uniformly break at point Y, and break what is left uniformly at point X.
- $\mathbb{E}[X|Y = y] = y/2$
- $\mathbb{E}[X|Y] = Y/2$
- $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[Y/2] = \frac{1}{2}\frac{I}{2} = I/4$

- Forecasts on sales: calculating expected value, given any available information
- X : February sales
- Forecast in the beg. of the year: $\mathbb{E}[X]$

- Stick of length /
- Uniformly break at point Y, and break what is left uniformly at point X.
- $\mathbb{E}[X|Y = y] = y/2$
- $\mathbb{E}[X|Y] = Y/2$
- $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[Y/2] = \frac{1}{2}\frac{I}{2} = I/4$

- Forecasts on sales: calculating expected value, given any available information
- X : February sales
- Forecast in the beg. of the year: $\mathbb{E}[X]$
- End of Jan. new information Y = y (Jan. sales)

Revised forecast: $\mathbb{E}[X|Y=y]$ Revised forecast $\neq \mathbb{E}[X]$

- Stick of length /
- Uniformly break at point Y, and break what is left uniformly at point X.
- $\mathbb{E}[X|Y = y] = y/2$
- $\mathbb{E}[X|Y] = Y/2$
- $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[Y/2] = \frac{1}{2}\frac{1}{2} = 1/4$

- Forecasts on sales: calculating expected value, given any available information
- X : February sales
- Forecast in the beg. of the year: $\mathbb{E}[X]$
- End of Jan. new information Y = y (Jan. sales) Revised forecast: $\mathbb{E}[X|Y = y]$ Revised forecast $\neq \mathbb{E}[X]$
- Law of iterated expectations $\mathbb{E}[\text{revised forecast}] = \text{original one}$

• A class: *n* students, student *i*'s quiz score: x_i

- A class: *n* students, student *i*'s quiz score: *x_i*
- Average quiz score: $m = \frac{1}{n} \sum_{i=1}^{n} x_i$

- A class: *n* students, student *i*'s quiz score: *x_i*
- Average quiz score: $m = \frac{1}{n} \sum_{i=1}^{n} x_i$
- Students: partitioned into sections A_1, \ldots, A_k and n_s : number of students in section s

- A class: *n* students, student *i*'s quiz score: x_i
- Average quiz score: $m = \frac{1}{n} \sum_{i=1}^{n} x_i$
- Students: partitioned into sections A₁, ...,
 A_k and n_s: number of students in section s
- average score in section $s = m_s = \frac{1}{n_s} \sum_{i \in A_s} x_i$

- A class: *n* students, student *i*'s quiz score: *x_i*
- Average quiz score: $m = \frac{1}{n} \sum_{i=1}^{n} x_i$
- Students: partitioned into sections A₁, ...,
 A_k and n_s: number of students in section s
- average score in section $s = m_s = \frac{1}{n_s} \sum_{i \in A_s} x_i$
- whole average: (i) taking the average m_s of each section and (ii) forming a weighted average

$$\sum_{s=1}^{k} \frac{n_s}{n} m_s = \sum_{s=1}^{k} \frac{n_s}{n} \frac{1}{n_s} \sum_{i \in A_s} x_i = \frac{1}{n} \sum_{i=1}^{n} x_i = m$$

- A class: *n* students, student *i*'s quiz score: x_i
- Average quiz score: $m = \frac{1}{n} \sum_{i=1}^{n} x_i$
- Students: partitioned into sections A₁, ...,
 A_k and n_s: number of students in section s
- average score in section $s = m_s = \frac{1}{n_s} \sum_{i \in A_s} x_i$
- whole average: (i) taking the average m_s of each section and (ii) forming a weighted average

$$\sum_{s=1}^{k} \frac{n_s}{n} m_s = \sum_{s=1}^{k} \frac{n_s}{n} \frac{1}{n_s} \sum_{i \in A_s} x_i = \frac{1}{n} \sum_{i=1}^{n} x_i = m$$

• Understanding from $\mathbb{E}\Big[\mathbb{E}[X|Y]\Big] = \mathbb{E}[X]$

- A class: n students, student i's quiz score: x_i
- Average quiz score: $m = \frac{1}{n} \sum_{i=1}^{n} x_i$
- Students: partitioned into sections A_1, \ldots, A_k and n_s : number of students in section s
- average score in section $s = m_s = \frac{1}{n_s} \sum_{i \in A_s} x_i$
- whole average: (i) taking the average m_s of each section and (ii) forming a weighted average

$$\sum_{s=1}^{k} \frac{n_s}{n} m_s = \sum_{s=1}^{k} \frac{n_s}{n} \frac{1}{n_s} \sum_{i \in A_s} x_i = \frac{1}{n} \sum_{i=1}^{n} x_i = m$$

- Understanding from $\mathbb{E} \big[\mathbb{E}[X|Y] \big] = \mathbb{E}[X]$
- X: score of a randomly chosen student, Y: section of a student $(\in \{1, ..., k\})$

$$m = \mathbb{E}(X) = \mathbb{E}\left[\mathbb{E}[X|Y]\right]$$

$$= \sum_{s=1}^{k} \mathbb{E}(X|Y=s)\mathbb{P}(Y=s)$$

- A class: n students, student i's quiz score: x_i
- Average quiz score: $m = \frac{1}{n} \sum_{i=1}^{n} x_i$
- Students: partitioned into sections A_1, \ldots, A_k and n_s : number of students in section s
- average score in section $s = m_s = \frac{1}{n_s} \sum_{i \in A_s} x_i$
- whole average: (i) taking the average m_s of each section and (ii) forming a weighted average

$$\sum_{s=1}^{k} \frac{n_s}{n} m_s = \sum_{s=1}^{k} \frac{n_s}{n} \frac{1}{n_s} \sum_{i \in A_s} x_i = \frac{1}{n} \sum_{i=1}^{n} x_i = m$$

- Understanding from $\mathbb{E}\Big[\mathbb{E}[X|Y]\Big] = \mathbb{E}[X]$
- X: score of a randomly chosen student, Y: section of a student $(\in \{1, ..., k\})$

$$m = \mathbb{E}(X) = \mathbb{E}\left[\mathbb{E}[X|Y]\right]$$

$$= \sum_{s=1}^{k} \mathbb{E}(X|Y=s)\mathbb{P}(Y=s)$$

$$= \sum_{s=1}^{k} \left(\frac{1}{n_s} \sum_{i \in A_s} x_i\right) \frac{n_s}{n} = \sum_{s=1}^{k} m_s \frac{n_s}{n}$$

Roadmap

- (1) Derived distribution of Y = g(X) or Z = g(X, Y)
- (2) Derived distribution of Z = X + Y
- (3) Covariance: Degree of dependence between two rvs
- (4) Correlation coefficient
- (5) Conditional expectation and law of iterative expectations
- (6) Conditional variance and law of total variance
- (7) Random number of sum of random variables

 $var[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$

$$\operatorname{\mathsf{var}}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

$$g(y) = \text{var}[X|Y = y] = \mathbb{E}[(X - \mathbb{E}[X|Y = y])^2|Y = y]$$

$$var[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

$$g(y) = var[X|Y = y] = \mathbb{E}[(X - \mathbb{E}[X|Y = y])^2|Y = y]$$

 $g(Y) = \text{var}[X|Y] = \mathbb{E}[(X - \mathbb{E}[X|Y])^2|Y]$

$$var[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

$$g(y) = \text{var}[X|Y = y] = \mathbb{E}[(X - \mathbb{E}[X|Y = y])^2|Y = y]$$

$$g(Y) = \text{var}[X|Y] = \mathbb{E}[(X - \mathbb{E}[X|Y])^2|Y]$$

Conditional Variance

A random variable g(Y) = and called and called takes the value g(y) = var[X|Y = y], if Y happens to take the value y.

L5(6)

38 / 46

$$var[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

$$g(y) = \operatorname{var}[X|Y = y] = \mathbb{E}[(X - \mathbb{E}[X|Y = y])^2|Y = y]$$

$$g(Y) = \text{var}[X|Y] = \mathbb{E}[(X - \mathbb{E}[X|Y])^2|Y]$$

Conditional Variance

A random variable g(Y) = var[X|Y] and called conditional variance of X given Y, takes the value g(y) = var[X|Y = y], if Y happens to take the value y.

L5(6) August 26, 2021

$$var[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

$$g(y) = \operatorname{var}[X|Y = y] = \mathbb{E}[(X - \mathbb{E}[X|Y = y])^2|Y = y]$$

$$g(Y) = \text{var}[X|Y] = \mathbb{E}[(X - \mathbb{E}[X|Y])^2|Y]$$

Conditional Variance

A random variable g(Y) = var[X|Y] and called conditional variance of X given Y, takes the value g(y) = var[X|Y = y], if Y happens to take the value y.

- A function of Y
- A random variable
- Thus, having a distribution, expectation, variance, all the things that a random variable has

Expectation and Variance of $\mathbb{E}[X|Y]$ and var[X|Y]

	$\mathbb{E}[X Y]$	var[X Y]
Expectation	$\Big \mathbb{E} \Big[\mathbb{E}(X Y) \Big]$	$\mathbb{E}\Big[var(X Y)\Big]$
Variance	$\operatorname{var}igl[\mathbb{E}(X Y)igr]$	var[var(X Y)]

L5(6) August 26, 2021

Law of total variance (LTV)

$$var[X] =$$

Proof.

(1)

Law of total variance (LTV)

$$\mathsf{var}[X] = \mathbb{E}\Big[\mathsf{var}(X|Y)\Big] + \mathsf{var}[\mathbb{E}(X|Y)]$$

Proof.

(1)

Law of total variance (LTV)

$$\mathsf{var}[X] = \mathbb{E}\Big[\mathsf{var}(X|Y)\Big] + \mathsf{var}[\mathbb{E}(X|Y)]$$

Proof.

$$\operatorname{\mathsf{var}}(X|Y) = \mathbb{E}[X^2|Y] - (\mathbb{E}[X|Y])^2$$

(1)

Law of total variance (LTV)

$$\mathsf{var}[X] = \mathbb{E}\Big[\mathsf{var}(X|Y)\Big] + \mathsf{var}[\mathbb{E}(X|Y)]$$

Proof.

$$\operatorname{\mathsf{var}}(X|Y) = \mathbb{E}[X^2|Y] - (\mathbb{E}[X|Y])^2$$

$$\mathbb{E}\Big[\mathsf{var}(X|Y)\Big] = \mathbb{E}[X^2] - \mathbb{E}\Big[(\mathbb{E}[X|Y])^2\Big]$$

(1)

Law of total variance (LTV)

$$\mathsf{var}[X] = \mathbb{E}\Big[\mathsf{var}(X|Y)\Big] + \mathsf{var}[\mathbb{E}(X|Y)]$$

Proof.

$$\operatorname{\mathsf{var}}(X|Y) = \mathbb{E}[X^2|Y] - (\mathbb{E}[X|Y])^2$$

$$\mathbb{E}\left[\operatorname{var}(X|Y)\right] = \mathbb{E}[X^2] - \mathbb{E}\left[\left(\mathbb{E}[X|Y]\right)^2\right] \tag{1}$$

$$\operatorname{var}\left[\mathbb{E}(X|Y)\right] = \mathbb{E}\left[\left(\mathbb{E}[X|Y]\right)^{2}\right] - \left(\mathbb{E}\left[\mathbb{E}(X|Y)\right]\right)^{2} = \mathbb{E}\left[\left(\mathbb{E}[X|Y]\right)^{2}\right] - \left(\mathbb{E}[X]\right)^{2} \tag{2}$$

L5(6)

Law of total variance (LTV)

$$\mathsf{var}[X] = \mathbb{E}\Big[\mathsf{var}(X|Y)\Big] + \mathsf{var}[\mathbb{E}(X|Y)]$$

Proof.

$$\operatorname{\mathsf{var}}(X|Y) = \mathbb{E}[X^2|Y] - (\mathbb{E}[X|Y])^2$$

$$\mathbb{E}\left[\operatorname{var}(X|Y)\right] = \mathbb{E}[X^2] - \mathbb{E}\left[\left(\mathbb{E}[X|Y]\right)^2\right] \tag{1}$$

$$\operatorname{var}\left[\mathbb{E}(X|Y)\right] = \mathbb{E}\left[\left(\mathbb{E}[X|Y]\right)^{2}\right] - \left(\mathbb{E}\left[\mathbb{E}(X|Y)\right]\right)^{2} = \mathbb{E}\left[\left(\mathbb{E}[X|Y]\right)^{2}\right] - \left(\mathbb{E}[X]\right)^{2} \tag{2}$$

$$(1) + (2) = \mathbb{E}[X^2] + (\mathbb{E}[X])^2 = \text{var}[X]$$

- Same setting as that in page 36
- X: score of a randomly chosen student, Y: section of a student $(\in \{1, ..., k\})$

- Same setting as that in page 36
- X: score of a randomly chosen student, Y: section of a student $(\in \{1, \dots, k\})$
- Let's intuitively understand: ${\sf var}[X] = \mathbb{E} \Big[{\sf var}(X|Y) \Big] + {\sf var}[\mathbb{E}(X|Y)]$

- Same setting as that in page 36
- X: score of a randomly chosen student, Y: section of a student $(\in \{1, ..., k\})$
- Let's intuitively understand: $\mathsf{var}[X] = \mathbb{E}\Big[\mathsf{var}(X|Y)\Big] + \mathsf{var}[\mathbb{E}(X|Y)]$
- $\mathbb{E}[\operatorname{var}(X|Y)] = \sum_{k=1}^{s} \mathbb{P}(Y=s)\operatorname{var}(X|Y=s) = \sum_{k=1}^{s} \frac{n_s}{n}\operatorname{var}(X|Y=s)$
 - Weighted average of the section variances

- Same setting as that in page 36
- X: score of a randomly chosen student, Y: section of a student $(\in \{1, ..., k\})$
- Let's intuitively understand: $\mathsf{var}[X] = \mathbb{E}\Big[\mathsf{var}(X|Y)\Big] + \mathsf{var}[\mathbb{E}(X|Y)]$
- $\mathbb{E}[\mathsf{var}(X|Y)] = \sum_{k=1}^s \mathbb{P}(Y=s)\mathsf{var}(X|Y=s) = \sum_{k=1}^s \frac{n_s}{n} \mathsf{var}(X|Y=s)$
 - Weighted average of the section variances
- $var[\mathbb{E}(X|Y)]$: variability of the average of the differenct sections
 - $\mathbb{E}(X|Y=s)$: average score in section s

- Same setting as that in page 36
- X: score of a randomly chosen student, Y: section of a student $(\in \{1, ..., k\})$
- Let's intuitively understand: $\mathsf{var}[X] = \mathbb{E}\Big[\mathsf{var}(X|Y)\Big] + \mathsf{var}[\mathbb{E}(X|Y)]$
- $\mathbb{E}[\operatorname{var}(X|Y)] = \sum_{k=1}^{s} \mathbb{P}(Y=s)\operatorname{var}(X|Y=s) = \sum_{k=1}^{s} \frac{n_s}{n}\operatorname{var}(X|Y=s)$
 - Weighted average of the section variances
 - average score variability within individual sections
- $var[\mathbb{E}(X|Y)]$: variability of the average of the differenct sections
 - $\mathbb{E}(X|Y=s)$: average score in section s
 - variability between sections

- Stick of length /
- Uniformly break at point Y, and break what is left uniformly at point X.

L5(6) August 26, 2021 42 / 46

- Stick of length I
- Uniformly break at point Y, and break what is left uniformly at point X.
- Question. var(X)?
- LTV: $\mathsf{var}[X] = \mathbb{E}\Big[\mathsf{var}(X|Y)\Big] + \mathsf{var}[\mathbb{E}(X|Y)]$

- Stick of length 1
- Uniformly break at point Y, and break what is left uniformly at point X.
- Question. var(X)?
- LTV: $\mathsf{var}[X] = \mathbb{E}\Big[\mathsf{var}(X|Y)\Big] + \mathsf{var}[\mathbb{E}(X|Y)]$
- Fact. If a rv $X \sim \mathcal{U}[0, \theta]$, then $\text{var}(X) = \frac{\theta^2}{12}$

- Stick of length I
- Uniformly break at point Y, and break what is left uniformly at point X.
- Question. var(X)?
- LTV: $var[X] = \mathbb{E}\Big[var(X|Y)\Big] + var[\mathbb{E}(X|Y)]$
- Fact. If a rv $X \sim \mathcal{U}[0, \theta]$, then $\text{var}(X) = \frac{\theta^2}{12}$
- Since $X \sim \mathcal{U}[0, Y]$, $\text{var}(X|Y) = \frac{Y^2}{12} \to \mathbb{E}[\text{var}[X|Y]] = \frac{1}{12} \int_0^I \frac{1}{7} y^2 dy = \frac{I^2}{36}$

- Stick of length I
- Uniformly break at point Y, and break what is left uniformly at point X.
- Question. var(X)?
- LTV: $var[X] = \mathbb{E}\Big[var(X|Y)\Big] + var[\mathbb{E}(X|Y)]$
- Fact. If a rv $X \sim \mathcal{U}[0,\theta]$, then $\text{var}(X) = \frac{\theta^2}{12}$
- Since $X \sim \mathcal{U}[0, Y]$, $\text{var}(X|Y) = \frac{Y^2}{12} \to \mathbb{E}[\text{var}[X|Y]] = \frac{1}{12} \int_0^I \frac{1}{7} y^2 dy = \frac{I^2}{36}$
- $\mathbb{E}(X|Y) = Y/2 \to \text{var}(\mathbb{E}[X|Y]) = \frac{1}{4}\text{var}[Y] = \frac{1}{4}\frac{I^2}{12} = \frac{I^2}{48}$

- Stick of length I
- Uniformly break at point Y, and break what is left uniformly at point X.
- Question. var(X)?
- LTV: $var[X] = \mathbb{E}\Big[var(X|Y)\Big] + var[\mathbb{E}(X|Y)]$
- Fact. If a rv $X \sim \mathcal{U}[0,\theta]$, then $\text{var}(X) = \frac{\theta^2}{12}$
- Since $X \sim \mathcal{U}[0, Y]$, $\text{var}(X|Y) = \frac{Y^2}{12} \to \mathbb{E}[\text{var}[X|Y]] = \frac{1}{12} \int_0^I \frac{1}{7} y^2 dy = \frac{I^2}{36}$
- $\mathbb{E}(X|Y) = Y/2 \rightarrow \mathsf{var}(\mathbb{E}[X|Y]) = \frac{1}{4}\mathsf{var}[Y] = \frac{1}{4}\frac{f^2}{12} = \frac{f^2}{48}$
- $\operatorname{var}(X) = \frac{l^2}{36} + \frac{l^2}{48} = \frac{7l^2}{144}$

Roadmap

- (1) Derived distribution of Y = g(X) or Z = g(X, Y)
- (2) Derived distribution of Z = X + Y
- (3) Covariance: Degree of dependence between two rvs
- (4) Correlation coefficient
- (5) Conditional expectation and law of iterative expectations
- (6) Conditional variance and law of total variance
- (7) Random number of sum of random variables

• *N* : number of stores visited (random)

- *N* : number of stores visited (random)
- X_i : money spent in store i, independent of other X_j and N, X_i s are identically distributed with $\mathbb{E}[X_i] = \mu$

- *N* : number of stores visited (random)
- X_i : money spent in store i, independent of other X_j and N, X_i s are identically distributed with $\mathbb{E}[X_i] = \mu$
- $Y = X_1 + X_2 + \dots X_N$. What are $\mathbb{E}[Y]$ and var[Y]?

- *N* : number of stores visited (random)
- X_i : money spent in store i, independent of other X_j and N, X_i s are identically distributed with $\mathbb{E}[X_i] = \mu$
- $Y = X_1 + X_2 + \dots X_N$. What are $\mathbb{E}[Y]$ and var[Y]?
- $\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|N]] = \mathbb{E}[N\mathbb{E}[X_i]] = \mathbb{E}[N]\mathbb{E}[X_i] = \mu\mathbb{E}[N]$

- *N* : number of stores visited (random)
- X_i : money spent in store i, independent of other X_j and N, X_i s are identically distributed with $\mathbb{E}[X_i] = \mu$
- $Y = X_1 + X_2 + \dots X_N$. What are $\mathbb{E}[Y]$ and var[Y]?
- $\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|N]] = \mathbb{E}[N\mathbb{E}[X_i]] = \mathbb{E}[N]\mathbb{E}[X_i] = \mu\mathbb{E}[N]$
- ullet var $[Y] = \mathbb{E}\Big[\mathsf{var}(Y|\mathcal{N}) \Big] + \mathsf{var}[\mathbb{E}(Y|\mathcal{N})]$

- *N* : number of stores visited (random)
- X_i : money spent in store i, independent of other X_j and N, X_i s are identically distributed with $\mathbb{E}[X_i] = \mu$
- $Y = X_1 + X_2 + \dots X_N$. What are $\mathbb{E}[Y]$ and var[Y]?
- $\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|N]] = \mathbb{E}[N\mathbb{E}[X_i]] = \mathbb{E}[N]\mathbb{E}[X_i] = \mu\mathbb{E}[N]$
- $\operatorname{var}[Y] = \mathbb{E}\left[\operatorname{var}(Y|N)\right] + \operatorname{var}[\mathbb{E}(Y|N)]$ $\operatorname{var}(\mathbb{E}[Y|N]) = \operatorname{var}(N\mu) = \mu^2 \operatorname{var}[N]$

- *N* : number of stores visited (random)
- X_i : money spent in store i, independent of other X_j and N, X_i s are identically distributed with $\mathbb{E}[X_i] = \mu$
- $Y = X_1 + X_2 + \dots X_N$. What are $\mathbb{E}[Y]$ and var[Y]?
- $\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|N]] = \mathbb{E}[N\mathbb{E}[X_i]] = \mathbb{E}[N]\mathbb{E}[X_i] = \mu\mathbb{E}[N]$
- $\operatorname{var}[Y] = \mathbb{E}\left[\operatorname{var}(Y|N)\right] + \operatorname{var}[\mathbb{E}(Y|N)]$ $\operatorname{var}(\mathbb{E}[Y|N]) = \operatorname{var}(N\mu) = \mu^2 \operatorname{var}[N]$ $\operatorname{var}[Y|N] = N \operatorname{var}[X_i]$

- *N* : number of stores visited (random)
- X_i : money spent in store i, independent of other X_j and N, X_i s are identically distributed with $\mathbb{E}[X_i] = \mu$
- $Y = X_1 + X_2 + \dots X_N$. What are $\mathbb{E}[Y]$ and var[Y]?
- $\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|N]] = \mathbb{E}[N\mathbb{E}[X_i]] = \mathbb{E}[N]\mathbb{E}[X_i] = \mu\mathbb{E}[N]$
- $\operatorname{var}[Y] = \mathbb{E}\left[\operatorname{var}(Y|N)\right] + \operatorname{var}[\mathbb{E}(Y|N)]$ $\operatorname{var}(\mathbb{E}[Y|N]) = \operatorname{var}(N\mu) = \mu^2 \operatorname{var}[N]$ $\operatorname{var}[Y|N] = N \operatorname{var}[X_i]$ $\operatorname{\mathbb{E}}[\operatorname{var}(Y|N)] = \operatorname{\mathbb{E}}[N \operatorname{var}[X_i]] = \operatorname{\mathbb{E}}[N] \operatorname{var}[X_i]$

- *N* : number of stores visited (random)
- X_i : money spent in store i, independent of other X_j and N, X_i s are identically distributed with $\mathbb{E}[X_i] = \mu$
- $Y = X_1 + X_2 + \dots X_N$. What are $\mathbb{E}[Y]$ and var[Y]?
- $\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|N]] = \mathbb{E}[N\mathbb{E}[X_i]] = \mathbb{E}[N]\mathbb{E}[X_i] = \mu\mathbb{E}[N]$
- $\operatorname{var}[Y] = \mathbb{E}\left[\operatorname{var}(Y|N)\right] + \operatorname{var}\left[\mathbb{E}(Y|N)\right] = \mathbb{E}[N]\operatorname{var}[X_i] + \mu^2\operatorname{var}[N]$ $\operatorname{var}(\mathbb{E}[Y|N]) = \operatorname{var}(N\mu) = \mu^2\operatorname{var}[N]$ $\operatorname{var}[Y|N] = N\operatorname{var}[X_i]$ $\mathbb{E}[\operatorname{var}(Y|N)] = \mathbb{E}[N\operatorname{var}[X_i]] = \mathbb{E}[N]\operatorname{var}[X_i]$

45 / 46

Questions?

L5(6) August 26, 2021

Review Questions

- 1) What are the key steps to get the derived distributions of Y = g(X) or Z = g(X, Y)?
- 2) How can we compute the distribution of Z + X + Y when X and Y are independent?
- 3) What are covariance and correlation coefficient? Why do we need them?
- 4) Please explain the concepts of conditional expectation and conditional variance.