On the Subject of Boolean Wires

Flavor text

• This module contains two displays with letters on them, 8 input wires, a submit wire (green) and a reset wire (red).

- To solve the module cut the wires so the wires you didn't cut form the symbol of a logical operator which makes the statement true (Letter reference on page 2).
- Valid operators are: OR; XOR; AND; NAND; NOT (Operators on page 3).
- You can only use the OR and the NAND operator once per module!
- · After 5 correct answers the module will disarm.
- Entering an incorrect or invalid symbol will result in a strike and the module'll reset (And you can use the OR and NAND operators again).

Letter reference

• A "!" on the module means NOT (True becomes false and vice versa.)

Letter	True if•••	Letter	True if•••
A	there's a vowel in the serial #.	N	there's a duplicate port on the bomb.
В	more than 1 D battery.	0	unlit MSA indicator present.
C	last digit of the serial # is even.	Р	lit FRQ indicator present.
D	even number of modules on the bomb.	Q	<u>true</u>
E	there's a Forget Me Not on the bomb.	R	number of modules is divisible by 3.
F	lit BOB indicator present.	S	more modules than starting time in minutes.
G	unlit CAR indicator present.	Т	more than 71 modules.
Н	no batteries present.	Ŭ	solved modules > unsolved modules
I	exactly 1 pair of AA batteries on the bomb.	V	number of solved modules is even.
J	number of modules on the bomb is prime.	W	PS/2 port present.
K	less than half of the bomb's original time left.	Х	RCA port present.
L	Parallel port present.	Y	number of lit indicators = number of unlit indicators
M	Serial port present.	Z	no indicators present.

Operator reference

- There are the symbols you can enter. If there are more operators that makes the statement true, either can be used.
- btl refers to byte 1; bt2 refers to byte 2. (A.K.A. First and second letter)
- In the table if a byte is in "not()" that means that byte is false. Otherwise the byte is true.
- Remainder: You can only submit OR and NAND once!

Symbol and name	Makes statement true if		
v (OR)	 btl v not(bt2) not(bt1) v bt2 btl v bt2 		
⊻ (XOR)	btl v not(bt2)not(bt1) v bt2		
Λ (AND)	btl n bt2		
i (NAND)	 btl v not(bt2) not(btl) v bt2 not(btl) not(bt2) 		
- (NOT)	not(bt1) - not(bt2)		

• Note: The NOT operator in this module (¬) is not an actual NOT operator and it doesn't used for telling if both input is false.