Sequências infinitas de termos constantes

Definição

Uma sequência é uma função cujo domínio é o conjunto de todos os inteiros positivos.

Como o domínio de uma sequência é sempre o mesmo os elementos da imagem podem ser usados para representar a sequência.

Os números da imagem são chamados elementos da sequência e a imagem de n é denotada por a_n .

A sequência $a_1, a_2, ..., a_n, ...$ será representada por $\{a_n\}$.

Exemplos

- 1) Os elementos da sequência $\left\{\frac{1}{3^n}\right\}$ são $\frac{1}{3}$, $\frac{1}{3^2}$, ..., $\frac{1}{3^n}$, ...
- 2) Os elementos da sequência $\{3^n\}$ são $3, 3^2, ..., 3^n, ...$

Definição

A sequência $\{a_n\}$ tem limite L se dado $\in > 0$ existir N > 0 tal que, se n for um inteiro positivo maior que N, então $|a_n - L| < \in$. Neste caso escrevemos $\lim_{n \to +\infty} a_n = L$

Teorema 1

Se $\lim_{x\to +\infty} f(x) = L$ e f estiver definida para todo inteiro positivo, então $\lim_{n\to +\infty} f(n) = L$ quando n for inteiro positivo qualquer.

Definição

Se a sequência $\{a_n\}$ tiver um limite dizemos que ela é convergente e converge para o limite. Se a sequência não tiver um limite, dizemos que ela é divergente.

Exemplos

- 1. A sequência $\left\{\frac{1}{3^n}\right\}$ é convergente pois, considerando $f(x) = \frac{1}{3^x}$, temos $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{1}{3^x} = 0$ e portanto $\lim_{n \to +\infty} \frac{1}{3^n} = 0$
- 2. A sequência $\{(-1)^n\}$ é divergente. De fato, os elementos da sequência $\{(-1)^n\}$ são $-1,1,-1,1,\ldots,(-1)^n,\ldots$

Suponha que esta sequência seja convergente e tem limite L. Então, dado $\epsilon > 0$ existe N > 0 tal que, se n for um inteiro maior que N, então $|a_n - L| < \epsilon$.

Tomando \in 1, temos que existe N > 0 tal que, se n for um inteiro maior que N, então $|a_n - L| < 1$.

Se n for par, temos |1 - L| < 1 e, se n for impar, temos |-1 - L| < 1.

 $|1 - L| < 1 \Leftrightarrow |L - 1| < 1 \Leftrightarrow -1 < L - 1 < 1 \Leftrightarrow 0 < L < 2.$ $|-1 - L| < 1 \Leftrightarrow |L + 1| < 1 \Leftrightarrow -1 < L + 1 < 1 \Leftrightarrow -2 < L < 0.$

Assim devemos ter 0 < L < 2 e -2 < L < 0 , o que é uma contradição.

Logo a sequência diverge.

Teorema 2

Se $\{a_n\}$ e $\{b_n\}$ forem convergentes e se c for uma constante, então

i)
$$\lim_{n \to +\infty} c \, a_n = c \lim_{n \to +\infty} a_n$$

$$\lim_{n \to +\infty} (a_n \pm b_n) = \lim_{n \to +\infty} a_n \pm \lim_{n \to +\infty} b_n$$

iii)
$$\lim_{n \to +\infty} (a_n \cdot b_n) = \lim_{n \to +\infty} a_n \cdot \lim_{n \to +\infty} b_n$$

iv)
$$\lim_{n \to +\infty} \left(\frac{a_n}{b_n}\right) = \frac{\lim_{n \to +\infty} a_n}{\lim_{n \to +\infty} b_n}, \text{ se } \lim_{n \to +\infty} b_n \neq 0 \text{ e } b_n \neq 0 \text{ para todo } n.$$

Definição

Dizemos que uma sequência $\{a_n\}$ é crescente se $a_n \le a_{n+1}$ para todo n e dizemos que $\{a_n\}$ é decrescente se $a_n \ge a_{n+1}$ para todo

n. Chamamos de monótona, uma sequência que é crescente ou que é decrescente.

Exemplos

- 1. A sequência $\left\{\frac{1}{3^n}\right\}$ é decrescente pois $\frac{1}{3^n} > \frac{1}{3^{n+1}}$
- 2. A sequência $\{3^n\}$ é crescente pois $3^n < 3^{n+1}$

Definição

O número m é chamado limitante inferior da sequência $\{a_n\}$ se $m \le a_n$ para todo inteiro positivo n e o número M é chamado limitante superior da sequência $\{a_n\}$ se $M \ge a_n$ para todo inteiro positivo n.

Definição

Se A for um limitante inferior da sequência $\{a_n\}$ e se A satisfizer a propriedade de que $A \ge B$ para todo limitante inferior B então A é chamado limitante inferior máximo da sequência.

Analogamente se A for um limitante superior da sequência $\{a_n\}$ e se A satisfizer a propriedade de que $A \leq B$ para todo limitante superior B então A é chamado limitante superior mínimo da sequência.

Exemplos

1. Todos os elementos da sequência $\left\{\frac{1}{3^n}\right\}$ são menores ou iguais a $\frac{1}{3}$. Logo qualquer número maior ou igual a $\frac{1}{3}$ é um limitante superior para esta sequência e $\frac{1}{3}$ é o limitante superior mínimo.

2. Todos os elementos da sequência $\{3^n\}$ são maiores ou iguais a 3. Logo qualquer número menor ou igual a 3 é um limitante inferior para esta sequência e 3 é o limitante inferior máximo.

Definição

Dizemos que uma sequência é limitada se, e somente se, ela tiver limitantes superior e inferior.

Exemplo

A sequência $\left\{\frac{1}{n}\right\}$ é limitada, pois $0 < \frac{1}{n} \le 1$, e portanto 0 é um limitante inferior e 1 é um limitante superior.

Teorema 3

Uma sequência monótona limitada é convergente.

Exemplo

Já vimos que a sequência $\{\frac{1}{n}\}$ é limitada. Como $\frac{1}{n} > \frac{1}{n+1}$ ela é monótona. O teorema 3 nos garante que ela é convergente.

Teorema 4

Seja $\{a_n\}$ uma sequência crescente e suponhamos que A seja um limitante superior da sequência. Então $\{a_n\}$ será convergente e $\lim_{n\to +\infty} a_n \leq A$

Teorema 5

Seja $\{a_n\}$ uma sequência decrescente e suponhamos que A seja um limitante inferior da sequência. Então $\{a_n\}$ será convergente e $\lim_{n\to +\infty} a_n \geq A$

Teorema 6

Uma sequência monótona convergente é limitada