Transaction ID	Items Bought
0001	$\{a,d,e\}$
0024	$\{a,b,c,e\}$
0012	$\{a,b,d,e\}$
0031	$\{a,c,d,e\}$
0015	$\{b,c,{\color{red}e}\}$
0022	$\{b,d,e\}$
0029	$\{c,d\}$
0040	$\{a,b,c\}$
0033	$\{a,d,{\color{red}e}\}$
0038	$\{a,b,{\color{red}e}\}$

a) (15%) Compute the support for itemsets {e}, {b, d}, and {b, d, e} by treating each transaction ID as a market basket.

support count 6	support s(x)
6{e} = 8	$6(\{e\}) = \frac{8}{10} = 0.8$
O({b,d}) = 2	$\frac{1}{3}(\{b,d\}) = \frac{2}{10} = 0.2$
6({b,d,e}) = 2	5 ([b,d,e]) = = = 0,2

b) (13%) Use the results in part (a) to compute the confidence for the association rules {b, d} \rightarrow {e} and {e} \rightarrow {b, d}. Is confidence a symmetric measure?

Confidence
$$C(x \rightarrow Y)$$

$$C(\{b,d\} \rightarrow \{e\}) = \frac{2}{\lambda} = 1$$

$$(\{e\} \to \{b,d\}) = \frac{\nu}{\ell} = \frac{1}{4} = 0.75 \text{ g}$$

(2)

 $\{1,2,3\}, \{1,2,4\}, \{1,2,5\}, \{1,3,4\}, \{1,3,5\}, \{2,3,4\}, \{2,3,5\}, \{3,4,5\}.$

Assume that there are only five items in the data set.

a) (25%) List all candidate 4-itemsets obtained by the candidate generation procedure in Apriori.

Frequent		Frequent		Candidate	Fr-1 x Fr-1
h-itemset		h-itemset	_	(
{1,2,3}		{1,2,3}		Generation	
{1,2,4}		{1,2,4}		{1,2,3,4}	
[1,2,5]		[1,2,5]		{1,>,3,5}	
[1,3,4]	X	[1,3,4]	=		
(1,3,5)		(1,3,5)		{1, >, 4,5}	
12,3,4]		[2,3,4]		{1,3,4,5}	
{2,3,5}	-	{2,3,5}		{>,3,4,5}	
{3,4,5}		(3,4,5)		[77717,5]	
	_		-		

(C4) {1,2,3,4], (1,2,3,5), {1,2,4,5}, (1,3,4,5), {2,3,4,5}

b) (10%) List all candidate 4-itemsets that survive the candidate pruning step of the Apriori algorithm.

$$C4 \Rightarrow \{1,2,3,4\}, \{1,2,3,5\}, \{1,2,4,5\}, \{1,3,4,5\}, \{2,3,4,5\}\}$$

$$0 \{1,2,3,4\} \Rightarrow \{1,2,3\}, \{1,3,4\}, \{1,2,4,5\}, \{2,3,4\}, \text{ are all frequent}$$

$$2 \{1,2,3,5\} \Rightarrow \{1,2,3\}, \{1,2,5\}, \{1,3,5\}, \{2,3,5\}, \text{ are all frequent}$$

$$3 \{1,2,4,5\} \Rightarrow \{1,4,5\}, \{2,4,5\}, \text{ are infrequent}. \text{ Prune } \{1,2,4,5\}$$

$$4 \{1,3,4,5\} \Rightarrow \{1,4,5\}, \text{ is infrequent}. \text{ Prune } \{1,3,4,5\}$$

$$5 \{2,3,4,5\} \Rightarrow \{2,4,5\}, \text{ is infrequent}. \text{ Prune } \{2,3,4,5\}$$

a) (25%) Given a transaction that contains items {1, 3, 4, 5, 8}, which of the hash tree leaf nodes will be visited (e.g., L1,...) when finding the candidates of the transaction?

b) (12%) Use the visited leaf nodes in part (a) to determine the candidate itemsets that are contained in the transaction {1, 3, 4, 5, 8}.