Dhruvin Dankhara

dhruvindankhara@gmail.com | +1 (437) 988-6732 | Guelph, ON, CA | ♥ | in

EDUCATION

University of Guelph, Canada

Jan 2022 - May 2023

Master of Applied Science in Engineering GPA: 3.9 (92.7 %)

Courses: Intro to Machine Learning, Software Architecture: AI, Intro to IoT, Finite Element Methods,

Computer programming for MEng., Finance for Engineers

Gujarat Technological University, India

Jun 2015 - Jun 2018

Bachelor of Mechanical Engineering CGPA: 8.43/10

Gujarat Technological University, India

Jun 2012 - Jun 2015

Diploma in Mechanical Engineering CGPA: 8.33/10

SKILLS

• Programming: Python, Java, MATLAB, C++, Linux, Spark

• Machine Learning: TensorFlow, Keras, PyTorch, JAX, Scikit-Learn, OpenCV, RAY, MLFlow, DeepXDE

• Data Analysis: MySQL, Numpy, Pandas, Matplotlib, Seaborn, Power BI

ACADEMIC PROJECTS

Data Driven Reduced Order Model (Data Reduction) (Image Processing)

Nov 2022 - Mar 2023

- Developed a Reduced-Order model using Dynamic Mode Decomposition for transient heat transfer in arbitrary domain
- Data extracted from infrared video captured by FLIR thermal imaging camera using OpenCV
- Reduced the captured data into 3 tiny matrices using Dynamic Mode Decomposition, that are able to interpolate data and extrapolate in the future

Physics Informed PINNs and DeepONet (Deep Learning) (Operator Learning)

Aug 2022 - Mar 2023

- Developed and trained Physics Informed Neural Networks (PINN) and Deep Operator Network (DeepONet) to learn operator mapping between partial differential equations and their solution
- Implemented TensorFlow models with custom forward, backward and training methods
- Trained models are able to solve problems in solid mechanics, heat transfer and fluid dynamics using unseen data

3D printing non-adhesion anomaly detection (Machine Vision) (Deep Learning)

Dec 2022

- Trained Convolution Neural Network using TensorFlow to detect 3D printing anomaly due to first layer non-adhesion
- Training data include total 1557 images of defected and non-defected samples. Model trained with 5 data augmentation layers and 2 convolution layers achieved 99% accuracy on validation set.

A review of NLP methods for Sentiment Analysis of Tweets (NLP) %

Jan 2022 - May 2022

- In depth review of Natural Language Processing techniques for Sentiment classification of sentiment-140 data set
- Implemented, dictionary based and bag of words representation based sentiment classifiers and compared performance

IoT for Equipment Health Management in Smart Factory: A Review %

May 2022 - Sep 2022

- Review of available Equipment Health Management (EHM) methods from the Internet of Things Perspective
- Study provides in-depth review of available sensors, communication techniques, data processing techniques, and deep learning methods for the purpose of EHM in industries

WORK EXPERIENCE

Research Assistant, University of Guelph, Canada

May 2022 - Present

- Use of multidisciplinary skills in computer engineering, mechanical engineering, mathematics and machine learning to solve unique problems in engineering
- Development of data driven algorithms and machine learning models for engineering simulations

Teaching Assistant, University of Guelph, Canada

May 2022 - Present

- Teaching assistant for the course Design and Engineering 2, mentoring students to design a 3D printed Kinder toy
- Primary responsibilities include monitoring progress, giving feedback, conducting labs and seminars, student consultation, orientation and training.

- FE analysis, machine design, and detailed engineering of coal pulverizer used in supercritical coal power plants and Stress Analysis of reactor pressure vessels used in chemical and petroleum industries
- Some of the notable projects include stress analysis of World's heaviest LC Max reactor (2200 tons) and World's largest FCC re-generator (22 meters)
- As Digital Enabler, responsible for the implementation of digital technologies to improve and automate design processes and prepare tools for project tracking
- Notable contributions include welding & pipe bending process parameters optimization using machine learning and project tracking platform using Power BI

CERTIFICATIONS

- Introduction to Machine Learning in Production Coursera %
- Deep Neural Networks with Pytorch Coursera %
- Finite Element Methods for Problems in Physics Coursera %
- Lean Six Sigma White Belt Binghamton University %