## See chapter 4 in Regression and Other Stories.

Widen the notebook.

```
html"""

<style>
    main {
        margin: 0 auto;
        max-width: 2000px;
        padding-left: max(160px, 10%);
        padding-right: max(160px, 10%);
}

</style>
"""
```

```
\circ using Pkg \checkmark , DrWatson \checkmark
```

A typical set of Julia packages to include in notebooks.

```
begin

# Specific to this notebook
using GLM 

# Specific to ROSStanPluto
using StanSample 

# Graphics related
using GLMakie 

# Common data files and functions
using RegressionAndOtherStories 
end
```

## 4.1 Sampling distributions and generative models.

```
begin
Random.seed!(1)
a = 1.0
b = 2.0
x = LinRange(-2, 2, 100)
y = a .+ b .* x .+ rand(Normal(0.0, 0.2), 100)
end;
```



```
stan4_1 = "
- data {
     int N;
     vector[N] x;
     vector[N] y;
parameters {
     real a;
     real b;
     real<lower=0> sigma;
model {
     vector[N] mu;
     a \sim normal(0.0, 1.5);
     b \sim normal(1.0, 1.5);
     sigma ~ exponential(1);
     mu = a + b * x;
     y ~ normal(mu, sigma);
```

|   | parameters | mean     | mcse        | std      |
|---|------------|----------|-------------|----------|
| 1 | "a"        | 1.00107  | 0.000306437 | 0.021698 |
| 2 | "b"        | 1.97538  | 0.000296873 | 0.018729 |
| 3 | "sigma"    | 0.218255 | 0.000234626 | 0.015618 |

```
data = (N = length(x), x = x, y = y)
global m4_1s = SampleModel("m4.1s",
stan4_1)
global rc4_1s = stan_sample(m4_1s;
data)
success(rc4_1s) && describe(m4_1s)
end
```

/var/folders/l7/pr04h0650q5dvqttnvs8s2c00000gr updated.

|   | parameters | median | mad_sd | mean  | stı  |
|---|------------|--------|--------|-------|------|
| 1 | "a"        | 1.001  | 0.022  | 1.001 | 0.02 |
| 2 | 2 "b"      | 1.975  | 0.019  | 1.975 | 0.01 |
| 3 | s "sigma"  | 0.217  | 0.015  | 0.218 | 0.01 |





### 4.2 Estimates, standard errors, and confidence intervals.



```
let
       f = Figure()
       ax = Axis(f[1, 1]; title="Sampling")
        distribution of b (revisited)")
        \hat{\mathbf{b}} = \mathbf{ms4\_1s}[:b, :mean]
        \hat{\sigma} = ms4\_1s[:b, :std]
       x = LinRange(\hat{b} - 4\hat{\sigma}, \hat{b} + 4\hat{\sigma}, 100)
       y = pdf.(Normal(\hat{b}, \hat{\sigma}), x)
       ylims!(ax, [0, maximum(y) + 1.0])
        ax.xticks = \hat{b} - 3\hat{\sigma} : \hat{\sigma} : \hat{b} + 3\hat{\sigma}
       ax.xtickformat = xs -> ["$(i) s.e." for
        i in -3:3]
        lines!(x, y)
        vlines!(ax, b̂;
       ymax=maximum(y)/(maximum(y) + 1.0),
        color=:grey)
        vlines!(ax, b̂-σ̂; ymax=pdf.(Normal(b̂,
        \hat{\sigma}), \hat{b}-\hat{\sigma})/(maximum(y) + 1.0),
        color=:grev)
        vlines!(ax, \hat{b}+\hat{\sigma}; ymax=pdf.(Normal(\hat{b},
        \hat{\sigma}), \hat{b}+\hat{\sigma})/(maximum(y) + 1.0),
        color=:grey)
        annotations!("b ± 1 s.e.", position=
        (\hat{b}-0.008, 7.5), \text{ textsize}=20)
        x1 = range(\hat{b} - \hat{\sigma}, \hat{b} + \hat{\sigma}; length=60)
        band!(x1, fill(0, length(x1)), pdf.
        (Normal(\hat{b}, \hat{\sigma}), x1); color = (:blue,
        0.25))
        f
  end
```



```
let
     n = 100
     b = 2.0
     f = Figure()
     ax = Axis(f[1,1]; title="Simulation of
     confidence intervals",
     xlabel="Simulation",
         ylabel="Assumed 50% and 95%
         confidence intervals")
     x = 1:n
     y = [rand(Uniform(b - 2.1, b + 2.1),
     1)[1] for i in 1:n]
     # Assumed s.e. = 1.0
     lowerrors = fill(0.66, n)
     higherrors = fill(2, n)
     errorbars!(x, y, lowerrors, color =
     :red) # same low and high error
     errorbars!(x, y, higherrors, color =
     :grey) # same low and high error
     scatter!(x, y, markersize = 3, color =
     :black)
     hlines!(ax, [2])
     f
 end
```

```
let
let
    y = [35, 34, 38, 35, 37]
    n = length(y)
    est = mean(y)
    se = std(y)/sqrt(n)
    int_50 = est .+ quantile.(TDist(n-1),
    [0.25, 0.75]) * se
    int_95 = est .+ quantile.(TDist(n-1),
    [0.025, 0.975]) * se
    (estimate = est, se = se, int_50 = int_50, int_95 = int_95)
end
```

#### df\_poll =

|    | poll1 | poll2 | poll3 | poll4 | poll5 |
|----|-------|-------|-------|-------|-------|
| 1  | 2002  | 10.0  | 70.0  | 25.0  | 5.0   |
| 2  | 2002  | 5.0   | 72.0  | 25.0  | 3.0   |
| 3  | 2001  | 10.0  | 68.0  | 26.0  | 6.0   |
| 4  | 2001  | 5.0   | 65.0  | 27.0  | 8.0   |
| 5  | 2001  | 2.0   | 67.0  | 25.0  | 8.0   |
| 6  | 2000  | 8.0   | 67.0  | 28.0  | 5.0   |
| 7  | 2000  | 6.0   | 66.0  | 26.0  | 8.0   |
| 8  | 2000  | 2.0   | 66.0  | 28.0  | 6.0   |
| 9  | 1999  | 5.0   | 71.0  | 22.0  | 7.0   |
| 10 | 1995  | 9.0   | 77.0  | 13.0  | 10.0  |
| •  | more  |       |       |       |       |
| 32 | 1937  | 12.0  | 60.0  | 33.0  | 7.0   |



## 4.3 Bias and unmodeled uncertaincy.

# 4.4 Statistical significance, hypothesis testing, and statistical erros.

- 4.5 Problems with the concept of statistical significance.
- 4.6 Example of hypothesis testing: 55,000 residents need your help!
- 4.7 Moving beyond hypothesis testing.