確率·統計入門

Ryuhei Mori

2025 - 03 - 27

目次

前書き		2
第Ⅰ部	確率論	3
第1章	はじめに	4
1.1	なぜ確率論と統計学を学ぶか?	4
1.2	本書の構成	4
1.3	その他の参考文献	4
第2章	確率空間	5
2.1	有限集合上の確率・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
2.2	可算無限集合上の確率・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
2.3	確率論の公理	5
第Ⅱ部	統計学	6
第3章	Summary	7
参考文献		8

前書き

これは確率論と統計学の入門書である。確率論を数学的に取り扱うには通常は測度論とルベーグ積分を用いる。本書では測度論を学ぶ前の数学専攻の学生を対象に確率論と統計学の基礎を解説する。測度論とルベーグ積分を省略するため、しばしば積分と極限の交換などの等式を証明なしに用いる。後で測度論を学んだ後にぜひ振り返って欲しい。

第Ⅰ部

確率論

第1章

はじめに

1.1 なぜ確率論と統計学を学ぶか?

This is a book created from markdown and executable code.

See Knuth (1984) for additional discussion of literate programming.

1.2 本書の構成

1.3 その他の参考文献

第2章

確率空間

2.1 有限集合上の確率

確率を考える集合を Ω とする。例えば明日の天気の確率を考えたいときは

$$\Omega = \{$$
"晴れ", "雨", "曇り" $\}$

とする。この Ω のことを **標本空間** という。そして、 Ω の部分集合について確率を与える関数 $P: 2^\Omega \to \mathbb{R}_{\geq 0}$ を**確率測度**という。確率測度は以下の条件を満たす。

- 1. $P(\Omega) = 1$.
- 2. $P(A \cup B) = P(A) + P(B)$ for all $A, B \subseteq \Omega$ satisfying $A \cap B = \emptyset$.

2.2 可算無限集合上の確率

2.3 確率論の公理

第Ⅱ部

統計学

第3章

Summary

In summary, this book has no content whatsoever.

参考文献

Knuth, Donald E. 1984. "Literate Programming." $Comput.\ J.\ 27\ (2):\ 97-111.\ https://doi.org/10.1093/comjnl/27.2.97.$