Линейная алгебра

Бобень Вячеслав @darkkeks, GitHub

Большую часть исходного кода предоставила Левина Александра. Благодарность выражается Левину Александру за видеозаписи лекций.

2019 - 2020

"К коллоку можете даже не готовиться".

— Роман Сергеевич Авдеев

Содержание

1.4 Транспонирование матриц 1.5 Умножение матриц 2 Лекция 12.09.2019 2.1 Отступление о суммах 2.2 Основные свойства умножения матриц 2.3 Диагональные матрицы 2.4 Единичная матрицы и её свойства 2.5 След квадратной матрицы и его свойства 2.6 Системы линейных уравнений 2.6.1 Совместные и несовместные системы 2.6.2 Матричная форма записи СЛУ 3 Лекция 14.09.2019 3.1 Расширенная матрицы системы линейных уравнений 3.2 Эквивалентные системы 3.3 Как решить СЛУ? 3.3.1 Элементарные преобразования СЛУ и соответствующие преобразования строк её расширенной матрицы 3.3.2 Сохранение множества решений системы линейных уравнений при элементарных преобразовани 3.4 Ступенчатые матрицы 3.4.1 Улучшенный ступенчатый вид матрицы 3.5 Реализация элементарных преобразований строк матрицы при помощи умножения слева на подходящую матрицу 4 Лекция 19.09.2019 4.1 Метод Гаусса решения системы линейных уравнений и множеством решений соответствую щей однородные системы линейных уравнений 4.3 Связь между множеством решений системы линейных уравнений и множеством решений соответствую щей однородный системы. 4.4 Матричные уравнения вида АХ = В и ХА = В, общий метод их решения 4.5 Обратные матрицы 4.6 Обратные матрицы	1	Jlek	кция 9.09.2019	5					
1.3 Пространство ℝ ⁿ , его отождествление с матрицами-столбцами высоты n 1.4 Транспонирование матриц 1.5 Умножение матриц 2 Лекция 12.09.2019 2.1 Отступление о суммах 2.2 Основные свойства умножения матриц 2.3 Диагональные матрицы 2.4 Единичная матрицы и её свойства 2.5 След квадратной матрицы и его свойства 2.6 Системы линейных уравнений 2.6.1 Совместные и несовместные системы 2.6.2 Матричная форма записи СЛУ 3 Лекция 14.09.2019 3.1 Распиренная матрицы системы линейных уравнений 3.2 Эквивалентные системы 3.3 Как решить СЛУ? 3.3.1 Элементарные преобразования СЛУ и соответствующие преобразования строк её расширенной матрицы 3.3.2 Сохранение множества решений системы линейных уравнений при элементарных преобразования 3.4 Ступенчатые множества решений системы линейных уравнений при элементарных преобразования 3.4.1 Улучшенный ступенчатый вид матрицы 3.4.1 Улучшенный ступенчатый вид матрицы 3.5 Реализация элементарных преобразований строк матрицы при помощи умножения слева на подходящую матрицу 4 Лекция 19.09.2019 4.1 Метод Гаусса решения систем линейных уравнений 4.2 Срязь между множеством решений системы линейных уравнений и множеством решений соответствую щей однородной системы. 4.4 Матричные уравнения вида АХ = В и ХА = В, общий метод их решения 4.5 Обратные матрицы		1.1							
1.4 Транспонирование матриц 1.5 Умножение матриц 2 Лекция 12.09.2019 2.1 Отступление о суммах 2.2 Основные свойства умножения матриц 2.3 Диагональные матрицы 2.4 Единичная матрицы и её свойства 2.5 След квадратной матрицы и его свойства 2.6 Системы линейных уравнений 2.6.1 Совместные и несовместные системы 2.6.2 Матричная форма записи СЛУ 3 Лекция 14.09.2019 3.1 Расширенная матрицы системы линейных уравнений 3.2 Эквивалентные системы 3.3 Как решить СЛУ? 3.3.1 Элементарные преобразования СЛУ и соответствующие преобразования строк её расширенной матрицы 3.3.2 Сохранение множества решений системы линейных уравнений при элементарных преобразовани 3.4 Ступенчатые матрицы 3.4.1 Улучшенный ступенчатый вид матрицы 3.5 Реализация элементарных преобразований строк матрицы при помощи умножения слева на подходящую матрицу 4 Лекция 19.09.2019 4.1 Метод Гаусса решения системы линейных уравнений и множеством решений соответствую щей однородные системы линейных уравнений 4.3 Связь между множеством решений системы линейных уравнений и множеством решений соответствую щей однородный системы. 4.4 Матричные уравнения вида АХ = В и ХА = В, общий метод их решения 4.5 Обратные матрицы 4.6 Обратные матрицы		1.2		٥					
1.5 Умножение матриц 2 Лекция 12.09.2019 2.1 Отступление о суммах 2.2 Основные свойства умножения матриц 2.3 Диагональные матрицы 2.4 Единичная матрицы и её свойства 2.5 След квадратной матрицы и его свойства 2.6 Системы линейных уравнений. 2.6.1 Совместные и несовместные системы 2.6.2 Матричная форма записи СЛУ 3.1 Расширенная матрицы системы линейных уравнений 3.2 Эквивалентные системы 3.3 Как решить СЛУ? 3.3.1 Элементарные преобразования СЛУ и соответствующие преобразования строк её расширенной матрицы 3.4 Ступенчатые матрицы 3.4.1 Улучшенный ступенчатый вид матрицы 3.5 Реализация элементарных преобразований строк матрицы при помощи умножения слева на подходящук матрицу 4 Лекция 19.09.2019 4.1 Метод Гаусса решения систем линейных уравнений 4.2 Однородные системы линейных уравнений 4.3 Связь между множеством решений системы линейных уравнений и множеством решений соответствую щей однородной системы. 4.4 Матричные уравнения вида $AX = B$ и $XA = B$, общий		1.3	Пространство \mathbb{R}^n , его отождествление с матрицами-столбцами высоты $n\ldots\ldots\ldots\ldots\ldots$	٤					
2 Лекция 12.09.2019 2.1 Отступление о суммах 2.2 Основные свойства умножения матриц 2.3 Диагональные матрицы 2.4 Единичная матрица и её свойства 2.5 След квадратной матрицы и его свойства 2.6 Системы линейных уравнений. 2.6.1 Совместные и несовместные системы 2.6.2 Матричная форма записи СЛУ 3 Лекция 14.09.2019 3.1 Расширенная матрицы системы 3.2 Эквивалентные системы 3.3 Как решить СЛУ? 3.3.1 Элементарные преобразования СЛУ и соответствующие преобразования строк её расширенной матрицы 3.4 Ступенчатые множества решений системы линейных уравнений при элементарных преобразовани 3.4 Ступенчатые матрицы 3.5 Реализация элементарных преобразований строк матрицы при помощи умножения слева на подходящук матрицу 4 Лекция 19.09.2019 4.1 Метод Гаусса решения систем линейных уравнений 4.2 Однородные системы линейных уравнений 4.3 Связь между множеством решений системы линейных уравнений и множеством решений соответствую щей однородные системы. 4.4 Матричные уравнения вида $AX = B$ и $XA = B$, общий метод их решения 4.5 Обратные матрицы		1.4	Транспонирование матриц, его простейшие свойства	(
 2.1 Отступление о суммах 2.2 Основные свойства умножения матриц 2.3 Диагональные матрицы 2.4 Единичная матрицы и её свойства 2.5 След квадратной матрицы и его свойства 2.6 Системы линейных уравнений 2.6.1 Совместные и несовместные системы 2.6.2 Матричная форма записи СЛУ 3 Лекция 14.09.2019 3.1 Расширенная матрицы системы линейных уравнений 3.2 Эквивалентные системы 3.3 Как решить СЛУ? 3.3.1 Элементарные преобразования СЛУ и соответствующие преобразования строк её расширенной матрицы 3.3.2 Сохранение множества решений системы линейных уравнений при элементарных преобразовани 3.4 Ступенчатые матрицы 3.4.1 Улучшенный ступенчатый вид матрицы 3.5 Реализация элементарных преобразований строк матрицы при помощи умножения слева на подходящук матрицу 4 Лекция 19.09.2019 4.1 Метод Гаусса решения систем линейных уравнений 4.2 Однородные системы линейных уравнений 4.3 Связь между множеством решений системы линейных уравнений и множеством решений соответствую щей однородной системы. 4.4 Матричные уравнения вида АХ = В и ХА = В, общий метод их решения 4.5 Обратные матрицы 		1.5	Умножение матриц	6					
2.2 Основные свойства умножения матриц 2.3 Диагональные матрицы 2.4 Единичная матрица и её свойства 2.5 След квадратной матрицы и его свойства 2.6 Системы линейных уравнений 2.6.1 Совместные и несовместные системы 2.6.2 Матричная форма записи СЛУ 3 Лекция 14.09.2019 3.1 Расширенная матрицы системы линейных уравнений 3.2 Эквивалентные системы 3.3 Как решить СЛУ? 3.3.1 Элементарные преобразования СЛУ и соответствующие преобразования строк её расширенной матрицы 3.3.2 Сохранение множества решений системы линейных уравнений при элементарных преобразовани 3.4 Ступенчатые матрицы 3.4.1 Улучшенный ступенчатый вид матрицы 3.5 Реализация элементарных преобразований строк матрицы при помощи умножения слева на подходящук матрицу 4 Лекция 19.09.2019 4.1 Метод Гаусса решения систем линейных уравнений 4.2 Однородные системы линейных уравнений 4.3 Связь между множеством решений системы линейных уравнений и множеством решений соответствую щей однородной системы. 4.4 Матричные уравнения вида АХ = В и ХА = В, общий метод их решения 4.5 Обратные матрицы	2	Лек	кция 12.09.2019	8					
2.2 Основные свойства умножения матриц 2.3 Диагональные матрицы 2.4 Единичная матрица и её свойства 2.5 След квадратной матрицы и его свойства 2.6 Системы линейных уравнений 2.6.1 Совместные и несовместные системы 2.6.2 Матричная форма записи СЛУ 3 Лекция 14.09.2019 3.1 Расширенная матрицы системы линейных уравнений 3.2 Эквивалентные системы 3.3 Как решить СЛУ? 3.3.1 Элементарные преобразования СЛУ и соответствующие преобразования строк её расширенной матрицы 3.3.2 Сохранение множества решений системы линейных уравнений при элементарных преобразовани 3.4 Ступенчатые матрицы 3.4.1 Улучшенный ступенчатый вид матрицы 3.5 Реализация элементарных преобразований строк матрицы при помощи умножения слева на подходящук матрицу 4 Лекция 19.09.2019 4.1 Метод Гаусса решения систем линейных уравнений 4.2 Однородные системы линейных уравнений 4.3 Связь между множеством решений системы линейных уравнений и множеством решений соответствую щей однородной системы. 4.4 Матричные уравнения вида АХ = В и ХА = В, общий метод их решения 4.5 Обратные матрицы		2.1	Отступление о суммах	8					
2.3 Диагональные матрицы 2.4 Единичная матрица и её свойства 2.5 След квадратной матрицы и его свойства 2.6 Системы линейных уравнений. 2.6.1 Совместные и несовместные системы 2.6.2 Матричная форма записи СЛУ 3.1 Расширенная матрицы системы линейных уравнений 3.2 Эквивалентные системы 3.3 Как решить СЛУ? 3.3.1 Элементарные преобразования СЛУ и соответствующие преобразования строк её расширенной матрицы 3.4 Ступенчатые матрицы 3.4.1 Улучшенный ступенчатый вид матрицы 3.5 Реализация элементарных преобразований строк матрицы при помощи умножения слева на подходящую матрицу 4 Лекция 19.09.2019 4.1 Метод Гаусса решения систем линейных уравнений 4.2 Однородные системы линейных уравнений 4.3 Связь между множеством решений системы линейных уравнений и множеством решений соответствую щей однородной системы. 4.4 Матричные уравнения вида $AX = B$ и $XA = B$, общий метод их решения 4.5 Обратные матрицы		2.2		8					
 2.4 Единичная матрица и её свойства 2.5 След квадратной матрицы и его свойства 2.6 Системы линейных уравнений. 2.6.1 Совместные и несовместные системы. 2.6.2 Матричная форма записи СЛУ 3 Лекция 14.09.2019 3.1 Расширенная матрицы системы линейных уравнений 3.2 Эквивалентные системы 3.3 Как решить СЛУ? 3.3.1 Элементарные преобразования СЛУ и соответствующие преобразования строк её расширенной матрицы 3.3.2 Сохранение множества решений системы линейных уравнений при элементарных преобразовани 3.4 Ступенчатые матрицы 3.4.1 Улучшенный ступенчатый вид матрицы 3.5 Реализация элементарных преобразований строк матрицы при помощи умножения слева на подходящую матрицу 4 Лекция 19.09.2019 4.1 Метод Гаусса решения систем линейных уравнений 4.2 Однородные системы линейных уравнений 4.3 Связь между множеством решений системы линейных уравнений и множеством решений соответствую щей однородной системы. 4.4 Матричные уравнения вида АХ = В и ХА = В, общий метод их решения 4.5 Обратные матрицы 		2.3		ç					
 2.5 След квадратной матрицы и его свойства 2.6 Системы линейных уравнений. 2.6.1 Совместные и несовместные системы 2.6.2 Матричная форма записи СЛУ 3 Лекция 14.09.2019 3.1 Расширенная матрицы системы линейных уравнений 3.2 Эквивалентные системы 3.3 Как решить СЛУ? 3.3.1 Элементарные преобразования СЛУ и соответствующие преобразования строк её расширенной матрицы 3.3.2 Сохранение множества решений системы линейных уравнений при элементарных преобразовани 3.4 Ступенчатые матрицы 3.4.1 Улучшенный ступенчатый вид матрицы 3.5 Реализация элементарных преобразований строк матрицы при помощи умножения слева на подходящук матрицу 4 Лекция 19.09.2019 4.1 Метод Гаусса решения систем линейных уравнений 4.2 Однородные системы линейных уравнений 4.3 Связь между множеством решений системы линейных уравнений и множеством решений соответствую щей однородной системы. 4.4 Матричные уравнения вида АХ = В и ХА = В, общий метод их решения 4.5 Обратные матрицы 				Ç					
2.6 Системы линейных уравнений. 2.6.1 Совместные и несовместные системы 2.6.2 Матричная форма записи СЛУ. 3. Лекция 14.09.2019 3.1 Расширенная матрицы системы 3.2 Эквивалентные системы 3.3 Как решить СЛУ? 3.3.1 Элементарные преобразования СЛУ и соответствующие преобразования строк её расширенной матрицы 3.3.2 Сохранение множества решений системы линейных уравнений при элементарных преобразовани 3.4 Ступенчатые матрицы 3.5 Реализация элементарных преобразований строк матрицы при помощи умножения слева на подходящук матрицу 4 Лекция 19.09.2019 4.1 Метод Гаусса решения систем линейных уравнений 4.2 Однородные системы линейных уравнений 4.3 Связь между множеством решений системы линейных уравнений и множеством решений соответствую щей однородной системы. 4.4 Матричные уравнения вида $AX = B$ и $XA = B$, общий метод их решения 4.5 Обратные матрицы				10					
2.6.1 Совместные и несовместные системы 2.6.2 Матричная форма записи СЛУ 3. Лекция 14.09.2019 3.1 Расширенная матрицы системы линейных уравнений 3.2 Эквивалентные системы 3.3 Как решить СЛУ? 3.3.1 Элементарные преобразования СЛУ и соответствующие преобразования строк её расширенной матрицы 3.3.2 Сохранение множества решений системы линейных уравнений при элементарных преобразовани 3.4 Ступенчатые матрицы 3.4.1 Улучшенный ступенчатый вид матрицы 3.5 Реализация элементарных преобразований строк матрицы при помощи умножения слева на подходящую матрицу 4 Лекция 19.09.2019 4.1 Метод Гаусса решения систем линейных уравнений 4.2 Однородные системы линейных уравнений 4.3 Связь между множеством решений системы линейных уравнений и множеством решений соответствую щей однородной системы. 4.4 Матричные уравнения вида $AX = B$ и $XA = B$, общий метод их решения 4.5 Обратные матрицы				10					
2.6.2 Матричная форма записи СЛУ 3 Лекция 14.09.2019 3.1 Расширенная матрицы системы линейных уравнений 3.2 Эквивалентные системы 3.3 Как решить СЛУ? 3.3.1 Элементарные преобразования СЛУ и соответствующие преобразования строк её расширенной матрицы 3.3.2 Сохранение множества решений системы линейных уравнений при элементарных преобразовани 3.4 Ступенчатые матрицы 3.4.1 Улучшенный ступенчатый вид матрицы 3.5 Реализация элементарных преобразований строк матрицы при помощи умножения слева на подходящук матрицу 4 Лекция 19.09.2019 4.1 Метод Гаусса решения систем линейных уравнений 4.2 Однородные системы линейных уравнений 4.3 Связь между множеством решений системы линейных уравнений и множеством решений соответствую щей однородной системы. 4.4 Матричные уравнения вида АХ = В и ХА = В, общий метод их решения 4.5 Обратные матрицы		2.0		11					
3. Лекция 14.09.2019 3.1 Расширенная матрицы системы линейных уравнений 3.2 Эквивалентные системы 3.3 Как решить СЛУ? 3.3.1 Элементарные преобразования СЛУ и соответствующие преобразования строк её расширенной матрицы 3.3.2 Сохранение множества решений системы линейных уравнений при элементарных преобразовани 3.4 Ступенчатые матрицы 3.4.1 Улучшенный ступенчатый вид матрицы 3.5 Реализация элементарных преобразований строк матрицы при помощи умножения слева на подходящук матрицу 4 Лекция 19.09.2019 4.1 Метод Гаусса решения систем линейных уравнений 4.2 Однородные системы линейных уравнений 4.3 Связь между множеством решений системы линейных уравнений и множеством решений соответствую щей однородной системы. 4.4 Матричные уравнения вида $AX = B$ и $XA = B$, общий метод их решения 4.5 Обратные матрицы				11					
 3.1 Расширенная матрицы системы линейных уравнений 3.2 Эквивалентные системы 3.3 Как решить СЛУ? 3.3.1 Элементарные преобразования СЛУ и соответствующие преобразования строк её расширенной матрицы 3.3.2 Сохранение множества решений системы линейных уравнений при элементарных преобразовани 3.4 Ступенчатые матрицы 3.4.1 Улучшенный ступенчатый вид матрицы 3.5 Реализация элементарных преобразований строк матрицы при помощи умножения слева на подходящую матрицу 4 Лекция 19.09.2019 4.1 Метод Гаусса решения систем линейных уравнений 4.2 Однородные системы линейных уравнений 4.3 Связь между множеством решений системы линейных уравнений и множеством решений соответствую щей однородной системы. 4.4 Матричные уравнения вида АХ = В и ХА = В, общий метод их решения 4.5 Обратные матрицы 			2.0.2 Marph man dobus annen Cara						
 3.2 Эквивалентные системы 3.3 Как решить СЛУ? 3.3.1 Элементарные преобразования СЛУ и соответствующие преобразования строк её расширенной матрицы 3.3.2 Сохранение множества решений системы линейных уравнений при элементарных преобразовани 3.4 Ступенчатые матрицы 3.4.1 Улучшенный ступенчатый вид матрицы 3.5 Реализация элементарных преобразований строк матрицы при помощи умножения слева на подходящук матрицу 4 Лекция 19.09.2019 4.1 Метод Гаусса решения систем линейных уравнений 4.2 Однородные системы линейных уравнений 4.3 Связь между множеством решений системы линейных уравнений и множеством решений соответствующей однородной системы. 4.4 Матричные уравнения вида АХ = В и ХА = В, общий метод их решения 4.5 Обратные матрицы 	3	Лек		12					
 3.3 Как решить СЛУ? 3.3.1 Элементарные преобразования СЛУ и соответствующие преобразования строк её расширенной матрицы 3.3.2 Сохранение множества решений системы линейных уравнений при элементарных преобразовани 3.4 Ступенчатые матрицы 3.4.1 Улучшенный ступенчатый вид матрицы 3.5 Реализация элементарных преобразований строк матрицы при помощи умножения слева на подходящую матрицу 4 Лекция 19.09.2019 4.1 Метод Гаусса решения систем линейных уравнений 4.2 Однородные системы линейных уравнений 4.3 Связь между множеством решений системы линейных уравнений и множеством решений соответствую щей однородной системы. 4.4 Матричные уравнения вида АХ = В и ХА = В, общий метод их решения 4.5 Обратные матрицы 		3.1		12					
 3.3.1 Элементарные преобразования СЛУ и соответствующие преобразования строк её расширенной матрицы 3.3.2 Сохранение множества решений системы линейных уравнений при элементарных преобразовани 3.4 Ступенчатые матрицы 3.4.1 Улучшенный ступенчатый вид матрицы 3.5 Реализация элементарных преобразований строк матрицы при помощи умножения слева на подходящую матрицу 4 Лекция 19.09.2019 4.1 Метод Гаусса решения систем линейных уравнений 4.2 Однородные системы линейных уравнений 4.3 Связь между множеством решений системы линейных уравнений и множеством решений соответствую щей однородной системы. 4.4 Матричные уравнения вида АХ = В и ХА = В, общий метод их решения 4.5 Обратные матрицы 		_		12					
матрицы 3.3.2 Сохранение множества решений системы линейных уравнений при элементарных преобразовани 3.4 Ступенчатые матрицы 3.4.1 Улучшенный ступенчатый вид матрицы 3.5 Реализация элементарных преобразований строк матрицы при помощи умножения слева на подходящук матрицу 4 Лекция 19.09.2019 4.1 Метод Гаусса решения систем линейных уравнений 4.2 Однородные системы линейных уравнений 4.3 Связь между множеством решений системы линейных уравнений и множеством решений соответствую щей однородной системы. 4.4 Матричные уравнения вида $AX = B$ и $XA = B$, общий метод их решения 4.5 Обратные матрицы		3.3	Как решить СЛУ?	12					
 3.3.2 Сохранение множества решений системы линейных уравнений при элементарных преобразования. 3.4 Ступенчатые матрицы 3.4.1 Улучшенный ступенчатый вид матрицы 3.5 Реализация элементарных преобразований строк матрицы при помощи умножения слева на подходящую матрицу 4 Лекция 19.09.2019 4.1 Метод Гаусса решения систем линейных уравнений 4.2 Однородные системы линейных уравнений 4.3 Связь между множеством решений системы линейных уравнений и множеством решений соответствующей однородной системы. 4.4 Матричные уравнения вида АХ = В и ХА = В, общий метод их решения 4.5 Обратные матрицы 			3.3.1 Элементарные преобразования СЛУ и соответствующие преобразования строк её расширенной						
 3.4 Ступенчатые матрицы			матрицы	12					
3.4.1 Улучшенный ступенчатый вид матрицы 3.5 Реализация элементарных преобразований строк матрицы при помощи умножения слева на подходящую матрицу 4 Лекция $19.09.2019$ 4.1 Метод Гаусса решения систем линейных уравнений 4.2 Однородные системы линейных уравнений 4.3 Связь между множеством решений системы линейных уравнений и множеством решений соответствую щей однородной системы. 4.4 Матричные уравнения вида $AX = B$ и $XA = B$, общий метод их решения 4.5 Обратные матрицы			3.3.2 Сохранение множества решений системы линейных уравнений при элементарных преобразованиях	13					
3.5 Реализация элементарных преобразований строк матрицы при помощи умножения слева на подходящую матрицу. 4 Лекция 19.09.2019 4.1 Метод Гаусса решения систем линейных уравнений 4.2 Однородные системы линейных уравнений 4.3 Связь между множеством решений системы линейных уравнений и множеством решений соответствую щей однородной системы. 4.4 Матричные уравнения вида $AX = B$ и $XA = B$, общий метод их решения 4.5 Обратные матрицы		3.4	Ступенчатые матрицы	13					
матрицу . 4 Лекция 19.09.2019 4.1 Метод Гаусса решения систем линейных уравнений 4.2 Однородные системы линейных уравнений 4.3 Связь между множеством решений системы линейных уравнений и множеством решений соответствующей однородной системы. 4.4 Матричные уравнения вида $AX = B$ и $XA = B$, общий метод их решения 4.5 Обратные матрицы			3.4.1 Улучшенный ступенчатый вид матрицы	13					
 4 Лекция 19.09.2019 4.1 Метод Гаусса решения систем линейных уравнений 4.2 Однородные системы линейных уравнений 4.3 Связь между множеством решений системы линейных уравнений и множеством решений соответствую щей однородной системы. 4.4 Матричные уравнения вида AX = B и XA = B, общий метод их решения 4.5 Обратные матрицы 		3.5	Реализация элементарных преобразований строк матрицы при помощи умножения слева на подходящую						
 4.1 Метод Гаусса решения систем линейных уравнений 4.2 Однородные системы линейных уравнений 4.3 Связь между множеством решений системы линейных уравнений и множеством решений соответствующей однородной системы. 4.4 Матричные уравнения вида AX = B и XA = B, общий метод их решения 4.5 Обратные матрицы 			матрицу	14					
 4.2 Однородные системы линейных уравнений 4.3 Связь между множеством решений системы линейных уравнений и множеством решений соответствующей однородной системы. 4.4 Матричные уравнения вида AX = B и XA = B, общий метод их решения 4.5 Обратные матрицы 	4	Лек	кция 19.09.2019	15					
 4.3 Связь между множеством решений системы линейных уравнений и множеством решений соответствую щей однородной системы. 4.4 Матричные уравнения вида AX = B и XA = B, общий метод их решения 4.5 Обратные матрицы 		4.1	Метод Гаусса решения систем линейных уравнений	15					
щей однородной системы. 4.4 Матричные уравнения вида $AX=B$ и $XA=B$, общий метод их решения		4.2	Однородные системы линейных уравнений	16					
щей однородной системы. 4.4 Матричные уравнения вида $AX=B$ и $XA=B$, общий метод их решения		4.3	Связь между множеством решений системы линейных уравнений и множеством решений соответствую-						
4.4 Матричные уравнения вида $AX = B$ и $XA = B$, общий метод их решения				16					
4.5 Обратные матрицы		4.4		16					
		4.5		17					
TIO TEOPOOLOGIODINI IIU MIIOMOOLDO [1424. 1440] TEELEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE		4.6	Перестановки на множестве $\{1,2,\ldots,n\}$	17					

5	Лекция 23.09.2019					18
	5.1 Инверсии в перестановке					18
	5.2 Знак и чётность перестановки					18
	5.3 Произведение перестановок					18
	5.4 Ассоциативность произведения перестановок					18
	5.5 Тождественная перестановка					18
	5.6 Обратная перестановка и её знак					19
	5.7 Теорема о знаке произведения перестановок					19
	5.8 Транспозиции, знак транспозиции					19
	5.9 Определитель квадратной матрицы					20
	5.10 Определители порядков 2 и 3					20
	опредением порядков 2 и от технетический и и и и и и и и и и и и и и и и и и		•	•		
6	Лекция 26.09.2019					21
	6.1 Свойства определителей					
	6.2 Поведение определителя при элементарных преобразованиях строк (столбцов)					$\frac{1}{23}$
7	Лекция 30.09.2019					24
	7.1 Определитель с углом нулей					24
	7.2 Определитель произведения матриц					24
	7.3 Дополнительные миноры и алгебраические дополнения к элементам квадратной матрицы					25
	7.4 Лемма об определителе матрицы, содержащей ровно один ненулевой элемент в некоторой					$\frac{25}{25}$
	7.5 Разложение определителя по строке (столбцу)					25
	7.6 Лемма о фальшивом разложении определителя					26
	7.7 Обратная матрица, её единственность					26
	7.8 Невырожденные матрицы					26
	7.9 Определитель обратной матрицы					26
	7.10 Присоединённая матрица					26
	7.11 Критерий обратимости квадратной матрицы, явная формула для обратной матрицы					26
8	Лекция 2.11.2019					28
0						28
						28
	8.2 Формулы Крамера					
	8.3 Понятие поля					28
	8.4 Простейшие примеры.					28
	8.5 Построение поля комплексных чисел.					29
	$8.5.1$ Формальная конструкция поля $\mathbb C$					
	8.5.2 Проверка аксиом					
	8.6 Алгебраическая форма комплексного числа, его действительная и мнимая части.					
	8.7 Комплексное сопряжение					30
	8.7.1 Свойства комплексного сопряжения					30
	8.8 Геометрическая модель комплексных чисел, интерпретация сложения и сопряжения в это	ймс	дел	И		30
9	Лекция 7.11.2019					31
	9.1 Модуль комплексного числа, его свойства					31
	9.2 Аргумент комплексного числа					31
	9.3 Тригонометрическая форма комплексного числа					31
	9.4 Умножение и деление комплексных чисел в тригонометрической форме					32
	9.5 Возведение в степень комплексных чисел в тригонометрической форме, формула Муавра					32
	9.6 Извлечение корней из комплексных чисел					32
	9.7 Основная теорема алгебры комплексных чисел (без доказательства)					32
	9.8 Деление многочленов с остатком					33
	9.9 Теорема Безу					33
	9.10 Кратность корня многочлена					33
	9.11 Утверждение о том, что всякий многочлен степени п с комплексными коэффициентами и					00
	корней с учётом кратностей					33
	корпои с учетом кратпостей				• •	96
10	Лекция 14.11.2019					34
	10.1 Векторные пространства, простейшие следствия из аксиом					34
	10.1.1 Определение векторного пространства					$\frac{34}{34}$
	10.1.1 Определение векторного пространства					34
	10.2 Подпространства векторных пространств					35
	10.3 Утверждение о том, что множество решений однородной системы линейных уравнений с п					٥.
	является подпространством в F^n					35
	10.4 Линейная комбинация конечного набора векторов					35

	0.5 Линейная оболочка подмножества векторного пространства, примеры	35
11		36
	1.1 Утверждение о том, что линейная оболочка системы векторов является подпространством объемлющего	
		36
	·	36
		37
		37
		38
		38
		$\frac{38}{38}$
	1.6 1 азмерность конечномерного векторного пространства	30
12		39
		39
		39
	2.4 Утверждение о возможности выбора из конечной системы векторов базиса её линейной оболочки	39 41
		41 41
	2.0 Лемма о дооавлении вектора к конечнои линеинои независимои системе	41
13	Текция 5.12.2019	$\bf 42$
		42
		42
		42
		42
	3.5 Сохранение линейных зависимостей между столбцами матрицы при элементарных преобразованиях строк	43
	3.6 Инвариантность столбцового и строкового рангов матрицы при элементарных преобразованиях строк и столбцов	43
		43
		44
		44
		44
		44
14	Текция 12.12.2019	45
17		45
		45
		45
		45
	14.3.2 Критерий существования единственного решения у совместной системы линейных уравнений в	
		45
	14.3.3 Критерий существования единственного решения у системы линейных уравнений с квадратной матрицей коэффициентов в терминах её определителя	46
	матрицеи коэффициентов в терминах ее определителя 14.3.4 Размерность пространства решений однородной системы линейных уравнений в терминах ранга	40
		46
	$14.3.5$ Реализация подпространства в F^n в качестве множества решений однородной системы линейных	10
	· · · · · · · · · · · · · · · · · · ·	46
		46
	4.5 Описание всех базисов конечномерного векторного пространства в терминах одного базиса и матриц	
		47
		47
	4.7 Формула преобразования координат вектора при замене базиса	47
15	Текция 9.01.2020	49
		49
		49
		50
		50
		51
	5.6 Проекция вектора на подпространство вдоль дополнительного подпространства	51

16 Лекция 16.01.2020	52
	52
	52
	52
	52
	52
	53
	53
	53
	53
	53
	54
	54
	54
	54
	54
	55
	55
10.110 agains similaris of copanicinal ny fon sagainal sopasob bentopob quincipobanicito sasinoa	00
	56
17.1 Матрица линейного отображения	56
	56
	57
$17.4\;$ Формула изменения матрицы линейного отображения между векторными пространствами V и W при	
замене их базисов	57
17.5 Операции сложения и умножения на скаляр на множестве всех линейных отображений между двумя	
векторными пространствами	58
17.6 Матрица суммы двух линейных отображений и произведения линейного отображения на скаляр	58
17.7 Изоморфизм между пространством $\operatorname{Hom}(V,W)$ и пространством $(m \times n)$ -матриц, где $n = \dim V, m = \dim W$	58
17.8 Матрица композиции двух линейных отображений	58
17.9 Ядро и образ линейного отображения; утверждение о том, что они являются подпространствами в со-	
ответствующих векторных пространствах	59
T	
	60
	60
	60
	60
18.4 Инвариантность ранга матрицы относительно умножения на квадратную невырожденную матрицу слева	
	60
	61
	61
18.7 Приведение матрицы линейного отображения к диагональному виду с единицами и нулями на диагонали	
	61
	61
	62
18.11Двойственный базис	62

1 Лекция 9.09.2019

1.1 Матрицы

Определение 1. *Матрица размера* $n \times m$ — это прямоугольная таблица высоты m и ширины n.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

 a_{ij} – элемент на пересечении i-й строки и j-го столбца

Краткая запись $-A = (a_{ij})$

Множество всех матриц размера $m \times n$ с коэффициентами из \mathbb{R} (множество всех действительных чисел) — $\mathrm{Mat}_{n \times m}(\mathbb{R})$ или $\mathrm{Mat}_{n\times m}$

Определение 2. Две матрицы $A\in \mathrm{Mat}_{n\times m}$ и $B\in \mathrm{Mat}_{p\times q}$ называются $\mathit{paвнымu}$, если $m=p,\, n=q$, и соответствующие

$$\Pi pumep. \ \begin{pmatrix} \circ & \circ & \circ \\ \circ & \circ & \circ \end{pmatrix} \neq \begin{pmatrix} \circ & \circ \\ \circ & \circ \\ \circ & \circ \end{pmatrix}$$

1.2 Операции над матрицами

Для любых $A, B \in \mathrm{Mat}_{m \times n}$

• Сложение
$$A+B:=(a_{ij}+b_{ij})=\begin{pmatrix} a_{11}+b_{11}&a_{12}+b_{12}&\dots&a_{1n}+b_{1n}\\ a_{21}+b_{21}&a_{22}+b_{22}&\dots&a_{2n}+b_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{m1}+b_{m1}&a_{m2}+b_{m2}&\dots&a_{mn}+b_{mn} \end{pmatrix}$$

• Сложение
$$A+B:=(a_{ij}+b_{ij})=\begin{pmatrix} a_{11}+b_{11} & a_{12}+b_{12} & \dots & a_{1n}+b_{1n} \\ a_{21}+b_{21} & a_{22}+b_{22} & \dots & a_{2n}+b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}+b_{m1} & a_{m2}+b_{m2} & \dots & a_{mn}+b_{mn} \end{pmatrix}$$
• Умножение на скаляр $\lambda \in \mathbb{R} \implies \lambda A:=(\lambda a_{ij})=\begin{pmatrix} \lambda a_{11} & \lambda a_{12} & \dots & \lambda a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \dots & \lambda a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{m1} & \lambda a_{m2} & \dots & \lambda a_{mn} \end{pmatrix}$

Свойства суммы и произведения на скаляр

 $\forall A, B, C \in \mathrm{Mat}_{m \times n} \quad \forall \lambda, \mu \in \mathbb{R}$

- 1) A + B = B + A (коммутативность)
- 2) (A + B) + C = A + (B + C) (ассоциативность)
- 3) A + 0 = 0 + A = A, где

$$0 = egin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}$$
 — нулевая матрица.

- 4) A + (-A) = 0 $-A = (-a_{ij})$ – противоположная матрица
- 5) $(\lambda + \mu)A = \lambda A + \mu A$
- 6) $\lambda(A+B) = \lambda A + \lambda B$
- 7) $\lambda(\mu A) = \lambda(\mu A)$
- 8) 1A = A

Упраженение на дом. Доказать эти свойства.

Замечание. Из свойств 1) – 8) следует, что $\mathrm{Mat}_{n \times m}(\mathbb{R})$ является векторным пространством над \mathbb{R}

Пространство \mathbb{R}^n , его отождествление с матрицами-столбцами высоты n

 $\mathbb{R}^n := \{ (x_1, \dots, x_n) \mid x_i \in \mathbb{R} \ \forall i = 1, \dots, n \}$

 \mathbb{R} — числовая прямая

 \mathbb{R}^2 – плоскость

 \mathbb{R}^3 — трехмерное пространство

Договоримся отождествлять \mathbb{R}^n со столбцами высоты n

$$(x_1,\ldots,x_n) \leftrightarrow egin{pmatrix} x_1 \ dots \ x_n \end{pmatrix} -$$
вектор столбец $\mathbb{R}^n = \left\{ egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix} \mid x \in \mathbb{R} \ orall i = 1,\ldots,n
ight\} = \mathrm{Mat}_{n imes 1}(\mathbb{R})$ $\left[x = egin{pmatrix} x_1 \ dots \ x_n \end{pmatrix} \in \mathbb{R}^n, y = egin{pmatrix} y_1 \ dots \ y_n \end{pmatrix} \in \mathbb{R}^n
ight] \implies [x = y \iff x_i = y_i \ orall i \ x_1 + y_1 \ dots \ x_n + y_n \end{pmatrix}$ $\lambda \in \mathbb{R} \implies \lambda x_i := (\lambda x_1, \ldots, \lambda x_n)$

1.4 Транспонирование матриц, его простейшие свойства

$$A \in \operatorname{Mat}_{m \times n} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

$$A^{T} \in \operatorname{Mat}_{n \times m} := \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{pmatrix} - mpancnonupo ванная матрица.$$

Свойства:

1)
$$(A^T)^T = A^T$$

1)
$$(A^T)^T = A$$

2) $(A + B)^T = A^T + B^T$
3) $(\lambda A)^T = \lambda A^T$

$$(\lambda \Delta)^T - \lambda \Delta^T$$

Пример.
$$(x_1 \dots x_n)^T = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Пример.
$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}^T = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix}$$

Пример.
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}^T = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}$$

1.5Умножение матриц

Пусть
$$A = (a_{ij}) \in \operatorname{Mat}_{m \times n}$$

$$A_{(i)}=egin{pmatrix} a_{i1},a_{i2},\dots,a_{in}\end{pmatrix}-i$$
-я строка матрицы $A_{(i)}=egin{pmatrix} a_{1j}\\a_{2j}\\\vdots\\a_{mn}\end{pmatrix}-j$ -й столбец матрицы A

1) Частный случай: умножение строки на столбец той же длинны

$$\underbrace{(x_1,\ldots,x_n)}_{1\times n}\underbrace{\begin{pmatrix}y_1\\\vdots\\y_n\end{pmatrix}}_{n\times 1} = x_1\cdot y_1 + \cdots + x_n\cdot y_n$$

2) Общий случай:

A – матрица размера $m \times \underline{n}$

B – матрица размера $\underline{n} \times p$

 $AB := C \in \mathrm{Mat}_{m \times p}$, где

$$C_{ij} = A_{(i)}B^{(j)} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}.$$

Количество столбцов матрицы A равно количеству строк матрицы B — условие согласованности матриц.

$$\Pi$$
ример. $\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix} := \begin{pmatrix} x_1y_1 & x_2y_1 & \dots & x_ny_1 \\ x_1y_2 & x_2y_2 & \dots & x_ny_2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1y_n & x_2y_m & \dots & x_ny_m \end{pmatrix}$

$$\textit{Пример.} \ \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 3 \end{pmatrix} \times \begin{pmatrix} 2 & -1 \\ 0 & 5 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 2 + 0 \cdot 0 + 2 \cdot 1 & 1 \cdot (-1) + 0 \cdot 5 + 2 \cdot 1 \\ 0 \cdot 2 + (-1) \cdot 0 + 3 \cdot 1 & 0 \cdot (-1) + (-1) \cdot 5 + 3 \cdot 1 \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 3 & -2 \end{pmatrix}$$

2 Лекция 12.09.2019

2.1 Отступление о суммах

Пусть $S_p, S_{p+1}, \ldots, S_q$ – набор чисел.

Тогда,
$$\sum_{i=p}^q S_i := S_p + S_{p+1} + \cdots + S_q$$
 – сумма по i от p до q

Например,
$$\sum_{i=1}^{100} i^2 = 1^2 + 2^2 + \dots + 100^2$$

Свойства сумм:

1.
$$\lambda \sum_{i=1}^{n} S_i = \sum_{i=1}^{n} \lambda S_i$$

2.
$$\sum_{i=1}^{n} (S_i + T_i) = \sum_{i=1}^{n} S_i + \sum_{i=1}^{n} T_i$$

3.
$$\sum_{i=1}^m \sum_{j=1}^n S_{ij} = \sum_{j=1}^n \sum_{i=1}^m S_{ij}$$
 — сумма всех элементов матрицы $S = (S_{ij})$

2.2 Основные свойства умножения матриц

Пусть $A \in \operatorname{Mat}_{m \times n}, B \in \operatorname{Mat}_{n \times p}$

1.
$$\underline{\underline{A(B+C)}} = \underline{\underline{AB+AC}}$$
 — левая дистрибутивность.

Доказательство.

$$x_{ij} = A_{(i)}(B+C)^{(j)} = \sum_{k=1}^{n} a_{ik}(b_{kj} + c_{kj})$$

$$= \sum_{k=1}^{n} (a_{ik}b_{kj} + a_{ik}c_{kj})$$

$$= \sum_{k=1}^{n} a_{ik}b_{kj} + \sum_{k=1}^{n} a_{ik}c_{kj}$$

$$= A_{(i)}B^{(j)} + A_{(i)}C^{(j)} = y_{ij}.$$

2. (A+B)C = AC + BC — правая дистрибутивность, доказывается аналогично.

3.
$$\lambda(AB) = (\lambda A)B = A(\lambda B)$$

4.
$$(AB)C = A(BC)$$
 — ассоциативность.

Доказатель ство.
$$(AB)C = x$$
, $A(BC) = y$.

$$x_{ij} = \sum_{k=1}^{n} u_{ik} \cdot c_{kj} = \sum_{k=1}^{n} \left(\sum_{l=1}^{p} a_{il} b_{lk} \right) c_{kj} = \sum_{k=1}^{n} \sum_{l=1}^{p} \left(a_{il} b_{lk} c_{kj} \right)$$
$$= \sum_{l=1}^{p} \sum_{k=1}^{n} \left(a_{il} b_{lk} c_{kj} \right) = \sum_{l=1}^{p} a_{il} \sum_{k=1}^{n} \left(b_{lk} c_{kj} \right) = \sum_{l=1}^{p} a_{il} v_{lj} = y_{ij}.$$

5.
$$(AB)^T = B^T A^T$$

Доказательство.

$$x_{ij} = [AB]_{ji} = A_{(j)}B^{(i)} = \sum_{k=1}^{n} a_{jk} \cdot b_{ki}$$
$$= \sum_{k=1}^{n} b_{ki} \cdot a_{jk} = B_{(i)}^{T}(A^{T})^{(j)} = y_{ij}.$$

Умножение матриц не коммутативно.

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, BA = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Определение 3. $A \in \mathrm{Mat}_{n \times n}$ называется $\kappa вадратной$ матрицей порядка n

Обозначение $M_n := \operatorname{Mat}_{n \times n} A \in M_n$

2.3 Диагональные матрицы

Определение 4. Матрица $A \in M_n$ называется *диагональной* если все ее элементы вне главной диагонали равны нулю $(a_{ij} = 0 \text{ при } i \neq j)$

$$A = \begin{pmatrix} a_1 & 0 & \dots & 0 \\ 0 & a_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_n \end{pmatrix} \implies A = \operatorname{diag}(a_1, a_2, \dots, a_n).$$

Лемма 2.1. $A = diag(a_1, \ldots, a_n) \in M_n \implies$

1.
$$\forall B \in \operatorname{Mat}_{n \times p} \implies AB = \begin{pmatrix} a_1 B_{(1)} \\ a_2 B_{(2)} \\ \vdots \\ a_n B_{(n)} \end{pmatrix}$$

2.
$$\forall B \in \operatorname{Mat}_{m \times n} \implies BA = \begin{pmatrix} a_1 B^{(1)} & a_2 B^{(2)} & \dots & a_n B^{(n)} \end{pmatrix}$$

Доказательство.

1.
$$[AB]_{ij} = \begin{pmatrix} 0 & \dots & 0 & a_i & 0 & \dots & 0 \end{pmatrix} \begin{pmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{pmatrix} = a_i b_{ij}$$

2.
$$[BA]_{ij} = \begin{pmatrix} b_{i1} & b_{i2} & \dots & b_{im} \end{pmatrix} \begin{pmatrix} \vdots \\ 0 \\ a_j \\ 0 \\ \vdots \end{pmatrix} = b_{ij}a_j$$

2.4 Единичная матрица и её свойства

Определение 5. Матрица $E = E_n = diag(1, 1, ..., 1)$ называется единичной матрицей порядка n.

$$E = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Свойства:

1.
$$EA = A \quad \forall A \in \operatorname{Mat}_{n \times p}$$
.

2.
$$AE = A \quad \forall A \in \operatorname{Mat}_{p \times n}$$
.

3.
$$AE = EA = A \quad \forall A \in M_n$$
.

2.5 След квадратной матрицы и его свойства

Определение 6. Следом матрицы $A \in M_n$ называется число $trA = a_{11} + a_{22} + \dots + a_{nn} = \sum_{i=1}^n a_{ii}$.

Свойства:

1.
$$\operatorname{tr}(A+B) = \operatorname{tr} A + \operatorname{tr} B$$
.

2.
$$\operatorname{tr} \lambda A = \lambda \operatorname{tr} A$$
.

3.
$$\operatorname{tr} A^T = \operatorname{tr} A$$
.

4.
$$\operatorname{tr}(AB) = \operatorname{tr}(BA)$$
.

 $\forall A \in \mathrm{Mat}_{m \times n}, B \in \mathrm{Mat}_{n \times m}.$

Доказатель ство. $AB = x \in M_m$, $BA = y \in M_n$.

$$\operatorname{tr} x = \sum_{i=1}^{m} x_{ii} = \sum_{i=1}^{m} \sum_{j=1}^{n} (a_{ij}b_{ji})$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{m} (b_{ji}a_{ij}) = \sum_{j=1}^{n} y_{jj} = \operatorname{tr} y.$$

Пример.
$$A=(1,2,3), B=\begin{pmatrix}4\\5\\6\end{pmatrix}$$

$$tr(AB)=tr(1\cdot 4+2\cdot 5+3\cdot 6)=32$$

$$tr(BA)=tr\begin{pmatrix}4&8&12\\5&10&15\\6&12&18\end{pmatrix}=4+10+18=32$$

2.6 Системы линейных уравнений.

Линейное уравнение: $a_1x_1+\cdots+a_nx_n=b$. $a_1,a_2,\ldots,a_n,b\in\mathbb{R}$ — коэффициенты. x_1,x_2,\ldots,x_n — неизвестные.

Система линейных уравнений (СЛУ):

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

т уравнений, п неизвестных

Определение 7.

- 1. Решение одного уравнения это такой набор значений неизвестных x_1, x_2, \ldots, x_n , при подстановке которого в уравнение получаем тождество.
- 2. Решение СЛУ такой набор значений неизвестных, который является решением каждого уравнения СЛУ.

Основная задача: решить СЛУ, т.е. найти все решения.

$$\Pi pu$$
м $ep.$ $n=m=1$ $ax=b,\,a,b\in\mathbb{R},\,\mathrm{x}$ – неизвестная

1.
$$a \neq 0 \implies x = \frac{b}{a}$$
 – единственное

$$2. \ a=0 \implies 0x=b$$

$$b \neq 0 \implies$$
 решений нет.

$$b=0 \implies x$$
 – любое \implies бесконечно много решений.

2.6.1 Совместные и несовместные системы

Определение 8. СЛУ называется

- совместной, если у нее есть хотя бы одно решение,
- несовместной, если решений нет.

2.6.2 Матричная форма записи СЛУ

$$AX = B$$
.

$$A \in Mat_{m \times n}(R) = egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$
 — матрица коэффициентов

$$B\in \mathrm{Mat}_{m imes 1}=egin{pmatrix} b_1\b_2\ dots\b_n \end{pmatrix}-$$
 столбец правых частей $\begin{pmatrix} x_1 \end{pmatrix}$

$$X\in \mathrm{Mat}_{m imes 1}=egin{pmatrix} x_1\\x_2\\ \vdots\\x_n \end{pmatrix}$$
 — столбец неизвестных

3 Лекция 14.09.2019

3.1 Расширенная матрицы системы линейных уравнений

 $Ax = b, A \in \mathrm{Mat}_{m \times n}, b \in \mathbb{R}^m$

Полная информация о СЛУ содержится в её расширенной матрице.

$$(A \mid b) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{pmatrix}$$

3.2 Эквивалентные системы

Определение 9. Две системы уравнений от одних и тех же неизвестных называются *эквивалентными*, если они имеют одинаковые множества решений.

Пример. Рассмотрим несколько СЛУ

A)
$$\begin{cases} x_1 + x_2 = 1 \\ x_1 - x_2 = 0 \end{cases} \iff \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$

B)
$$\begin{cases} 2x_1 = 1 \\ 2x_2 = 1 \end{cases} \iff \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$

C)
$$x_1 + x_2 = 1 \iff (1 \ 1 \mid 1)$$

А и В эквиваленты, так как обе имеют единственное решение $(\frac{1}{2}, \frac{1}{2})$.

А и С не эквивалентны, так как С имеет бесконечно много решений.

3.3 Как решить СЛУ?

Идея: выполнить преобразование СЛУ, сохраняющее множество её решений, и привести её к такому виду, в котором СЛУ легко решается.

$$\textit{Пример.} \left(\begin{matrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{matrix} \right) \leftrightarrow \begin{cases} x_1 = b_1 \\ x_2 = b_2 \\ \vdots \\ x_n = b_n \end{cases}$$

3.3.1 Элементарные преобразования СЛУ и соответствующие преобразования строк её расширенной матрицы

ΤИП	СЛУ	расширенная матрица
1.	К i -му уравнению прибавить j -ое, умноженное на $\lambda \in \mathbb{R} \ (i \neq j)$	$\Theta_1(i,j,\lambda)$
2.	Переставить i -е и j -е уравнения $(i \neq j)$	$\Im_2(i,j)$
3.	Умножить i -ое уравнение на $\lambda \neq 0$	$\Theta_3(i,\lambda)$

1. $\vartheta_1(i,j,\lambda)$: к *i*-ой строке прибавить *j*-ую, умноженную на λ (покомпонентно),

$$a_{ik} \mapsto a_{ik} + \lambda a_{jk} \ \forall k = 1, \dots, n,$$

 $b_i \mapsto b_i + \lambda b_i.$

2. $\Theta_2(i,j)$: переставить і-ую и ј-ую строки.

3. $\Theta_3(i, \lambda)$: умножить і-ю строку на λ (покомпонентно).

 $\Theta_1,\Theta_2,\Theta_3$ называются элементарными преобразованиями строк расширенной матрицы.

3.3.2 Сохранение множества решений системы линейных уравнений при элементарных преобразованиях

Лемма 3.1. Элементарные преобразования СЛУ не меняют множество решений

Доказательство. Пусть мы получили СЛУ $(\star\star)$ из СЛУ (\star) путем применения элементарных преобразований.

- 1. Всякое решение системы (*) является решением (**).
- 2. (⋆) получается из (⋆⋆) путем элементарных преобразований.

$$\begin{array}{c|ccc} (\star) \rightarrow (\star\star) & (\star\star) \rightarrow (\star) \\ \hline \Theta_1(i,j,\lambda) & \Theta_1(i,j,-\lambda) \\ \Theta_2(i,j) & \Theta_2(i,j) \\ \Theta_3(i,\lambda) & \Theta_3(i,\frac{1}{\lambda}) \\ \end{array}$$

Следовательно, всякое решение (**) является решением (*) \implies множества решений совпадают.

3.4 Ступенчатые матрицы

Определение 10. Строка (a_1, a_2, \dots, a_n) называется *нулевой*, если $a_1 = a_2 = \dots = a_n = 0$ и *ненулевой* иначе $(\exists i : a_i \neq 0)$.

Определение 11. Ведущим элементом ненулевой строки называется первый её ненулевой элемент.

Определение 12. Матрица $M \in \mathrm{Mat}_{m \times n}$ называется cmyne нча mov , или имеет ступенчатый вид, если:

- 1. Номера ведущих элементов её ненулевых строк строго возрастают.
- 2. Все нулевые строки стоят в конце.

$$M = \begin{pmatrix} 0 & \dots & 0 & \diamond & * & * & * & * & * & * \\ 0 & \dots & 0 & 0 & \dots & \diamond & * & * & * & * \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & \diamond & * & * \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & 0 & \diamond & * \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & 0 & 0 & \diamond \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

где $\diamond \neq 0$, * — что угодно.

3.4.1 Улучшенный ступенчатый вид матрицы

Определение 13. М имеет улучшенный ступенчатый вид, если:

- 1. М имеет обычный ступенчатый вид.
- 2. Все ведущие элементы равны 1.
- 3. В одном столбце с любым ведущим элементом стоят только нули.

Теорема 3.2. 1) Всякую матрицу элементарными преобразованиями можно привести к ступенчатому виду.

2) Всякую ступенчатую матрицу элементарными преобразованиями строк можно привести к улучшенному ступенчатому виду.

Следствие. Всякую матрицу элементарными преобразованиями строк можно привести к **улучшенному** ступенчатому виду.

Доказательство.

- 1. Алгоритм. Если М нулевая, то конец. Иначе:
- Шаг 1: Ищем первый ненулевой столбец, пусть j его номер.
- Шаг 2: Переставляем строки, если нужно, добиваемся того, что $a_{1j} \neq 0$
- Шаг 3: Зануляем элементы в этом столбце используя первую строку $-\Im_1(2,1,-\frac{a_{2j}}{a_{1j}}),\ldots,\Im_1(m,1,-\frac{a_{mj}}{a_{1j}})$. В результате $a_{ij}=0$ при $i=2,3,\ldots m$.

Дальше повторяем все шаги для подматрицы M' (без первой строки и столбцов $1, \ldots, j$).

- 2. Алгоритм. Пусть $a_{1j_1}, a_{2j_2}, \dots, a_{rj_r}$ ведущие элементы ступенчатой матрицы.
- Шаг 1: Выполняем $\vartheta_3(1,\frac{1}{a_{1j_1}}),\ldots,\vartheta_3(r,\frac{1}{a_{rj_r}})$, в результате все ведущие элементы равны 1.
- Шаг 2: Выполняем $\mathfrak{I}_1(r-1,r,-a_{r-1,\;j_r}), \mathfrak{I}_1(r-2,r,-a_{r-2,\;j_r}),\ldots,\mathfrak{I}_1(1,r,-a_{1,\;j_r})$. В результате все элементы над a_{rj_r} равны 0.

Аналогично обнуляем элементы над всеми остальными ведущими.

Итог: матрица имеет улучшенный ступенчатый вид.

3.5 Реализация элементарных преобразований строк матрицы при помощи умножения слева на подходящую матрицу

Всякое элементарное преобразование строк матрицы реализуется умножением как умножение слева на подходящую "элементарную матрицу".

• $\vartheta_1(i,j,\lambda)$: $A \mapsto U_1(i,j,\lambda)A$, где

(на диагонали стоят единицы, на i-м j-м месте стоит λ , остальные элементы нули)

• $\Im_2(i,j)$: $A \mapsto U_2(i,j)A$, где

$$U_2(i,j) = \begin{pmatrix} i & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 1 \end{pmatrix}$$

(на диагонали стоят единицы, кроме i-го и j-го столбца (на i-м j-м и j-м и j-м местах стоит 1, остальные нули)

• Э₃ (i, λ) : $A \mapsto U_3(i, \lambda)A$, где

$$U_3(i,\lambda) = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & \lambda & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 1 \end{pmatrix}$$

(на диагонали стоят единицы, кроме i-го столбца, там λ , остальные элементы нули)

Элементарные преобразования столбцов — умножение на соответствующую матрицу справа.

Упражнение на дом. Доказательство.

4 Лекция 19.09.2019

Дана СЛУ с расширенной матрицей $(A \mid b)$.

Было: элементарные преобразования строк в $(A \mid b)$ сохраняют множество решений.

4.1 Метод Гаусса решения систем линейных уравнений

Прямой ход метода Гаусса.

Выполняя элементарные преобразования строк в (A|b), приведем A к ступенчатому виду:

$$\begin{pmatrix} 0 & \dots & 0 & a_{ij_1} & * & \dots & \dots & b_1 \\ 0 & \dots & 0 & 0 & a_{2j_2} & * & \dots & b_2 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & 0 & 0 & 0 & a_{rj_r} & b_r \\ 0 & \dots & 0 & 0 & 0 & 0 & 0 & b_{r+1} \\ 0 & \dots & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Случай 1 $\exists i \geqslant r+1: b_i \neq 0$ (в A есть нулевая строка с $b_i \neq 0$)

Тогда в новой СЛУ i-е уравнение $0 \cdot x_1 + \dots + 0 \cdot x_n = b_i$, т.е. $0 = b_i \implies \text{СЛУ}$ несовместна.

Случай 2 либо r=m, либо $b_i=0 \quad \forall i \geqslant r+1$

Выполняя элементарные преобразования строк приводим матрицу к улучшенному ступенчатому виду – обратный ход метода Гаусса

$$\begin{pmatrix} 0 & \dots & 0 & 1 & * & 0 & * & 0 & 0 & b_1 \\ 0 & \dots & 0 & 0 & \dots & 1 & * & 0 & 0 & b_2 \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & 1 & 0 & b_3 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & 0 & 1 & b_r \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Неизвестные $x_{j_1}, x_{j_2}, \ldots, x_{j_r}$ называются главными, а остальные свободными, где j_i – индексы столбцов с ведущими элементами.

Подслучай 2.1 r=n, т.е. все неизвестные – главные

$$\begin{pmatrix} 1 & 0 & \dots & 0 & b_1 \\ 0 & 1 & \dots & 0 & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & b_r \\ 0 & 0 & \dots & 0 & 0 \end{pmatrix} \leftrightarrow \begin{cases} x_1 = b_1 \\ x_2 = b_2 \\ \vdots \\ x_r = b_r \end{cases} -$$
единственное решение.

Подслучай 2.2 r < n, т.е. есть хотя бы одна свободная неизвестная.

Перенесем в каждом уравнении все члены со свободными неизвестными в правую часть, получаем выражения всех главных неизвестных через свободные, эти выражения называется общим решением исходной CЛУ.

Пример. Улучшенный ступенчатый вид:

$$\begin{pmatrix} 1 & 3 & 0 & 1 & | & -1 \\ 0 & 0 & 1 & -2 & | & 4 \end{pmatrix}$$

Главные неизвестные: x_1, x_3 . Свободные неизвестные: x_2, x_4 . $x_2 = t_1, x_4 = t_2$ – параметры.

$$\begin{cases} x_1 = -1 - 3t_1 - t_2 \\ x_2 = t1 \\ x_3 = 4 + 2t_2 \\ x_4 = t_2 \end{cases} \iff \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -1 - 3t_1 - t_2 \\ t_1 \\ 4 + 2t_2 \\ t_2 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 4 \\ 0 \end{pmatrix} + t_1 \begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t_2 \begin{pmatrix} -1 \\ 0 \\ 2 \\ 1 \end{pmatrix}$$

Общее решение:

$$\begin{cases} x_1 = -1 - 3x_2 - x_4 \\ x_3 = 4 + 2x_4 \end{cases}$$

Следствие. Всякая СЛУ с коэффициентами из \mathbb{R} имеет либо 0 решений, либо одно решение, либо бесконечно много решений.

4.2 Однородные системы линейных уравнений

Определение 14. СЛУ называется однородной (ОСЛУ), если все её правые части равны 0. Расширенная матрица: $(A \mid 0)$.

Очевидный факт. Всякая ОСЛУ имеет нулевое решение $(x_1 = x_2 = \cdots = x_n = 0)$.

Следствие. Всякая ОСЛУ либо имеет ровно 1 решение (нулевое), либо бесконечно много решений.

Следствие. Всякая ОСЛУ, у которой число неизвестных больше числа уравнений, имеет ненулевое решение (бесконечно много ненулевых решений).

Доказательство. В ступенчатом виде будет хотя бы одна свободная неизвестная. Придавая ей ненулевое значение, получим ненулевое решение. ■

4.3 Связь между множеством решений системы линейных уравнений и множеством решений соответствующей однородной системы.

Частное решение СЛУ — это какое-то одно её решение.

Утверждение 4.1. Пусть Ax = b - coвместная СЛУ,

 x_0 – частное решение Ax = b,

 $S \subset \mathbb{R}^n$ – множество решений ОСЛУ Ax = 0,

 $L \subset \mathbb{R}^n$ – множество решений Ax = b.

 $Torda, L = x_0 + S, rde x_0 + S = \{x_0 + v \mid v \in S\}.$

Доказательство.

- 1. Пусть $u \in L$ (u решение Ax = b), положим $v = u x_0$. Тогда, $Av = A(u - x_0) = Au - Ax_0 = b - b = 0 \implies v \in S \implies L \subseteq x_0 + S$.
- 2. Пусть $v \in S$ (v решение Ax = 0), положим $u = x_0 + v$. Тогда, $Au = A(x_0 + v) = Ax_0 + Av = b + 0 = b \implies u \in L \implies x_0 + S \subseteq L$. Значит, $x_0 + S = L$.

4.4 Матричные уравнения вида AX = B и XA = B, общий метод их решения

Два типа матричных уравнений:

1. AX = B

A и B известны, X — неизвестная матрица.

2. XA = C

A и C известны, X – неизвестная матрица.

Из второго типа получается первый транспонированием матриц: $XA = C \iff A^TX^T = B^T$, то есть достаточно уметь решать только уравнения первого типа.

 $\underset{n\times m}{A}\underset{n\times p}{X}=\underset{n\times p}{B}$ – это уравнение равносильно системе

$$\begin{cases} AX^{(1)} = B^{(1)} \\ AX^{(2)} = B^{(2)} \\ \vdots \\ AX^{(p)} = B^{(p)} \end{cases}$$

Этот набор СЛУ надо решать одновременно методом Гаусса.

Записываем матрицу $(A \mid B)$ и элементарными преобразованиями строк с ней приводим A к улучшенному ступенчатому виду.

Получаем $(A' \mid B')$, где A' имеет улучшенный ступенчатый вид.

Остается выписать общее решение для каждой СЛУ

$$\begin{cases} A'x^{(1)} = B'^{(1)} \\ A'x^{(2)} = B'^{(2)} \\ \vdots \\ A'x^{(p)} = B'^{(p)} \end{cases}$$

4.5 Обратные матрицы

Определение 15. Матрица $B \in M_n$ называется *обратной*, к A, если AB = BA = E. Обозначение: $B = A^{-1}$.

Факты:

1. Если $\exists A^{-1}$, то она определена однозначно

Доказательство. Пусть B, B' – две матрицы, обратные к A. Тогда B = B(AB') = (BA)B' = B'.

2. Если AB=E для некоторой $B\in M_n$, то BA=E автоматически и тогда $B=A^{-1}$

Замечание. Доказывается на Лекции 8.

Следствие. A^{-1} является решение матричного уравнения AX = E (если решение существует).

4.6 Перестановки на множестве $\{1, 2, ..., n\}$

Определение 16. *Перестановкой (подстановкой)* на множестве $\{1, 2, \ldots, n\}$ называется всякое биективное (взаимно однозначное) отображение множества $\{1, 2, \ldots, n\}$ в себя.

$$\sigma: \{1, 2, \dots, n\} \to \{1, 2, \dots, n\}.$$

 S_n – множество всех перестановок на множестве $\{1, 2, ..., n\}$.

Запись:

$$\begin{pmatrix} 1 & 2 & 3 & \dots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \dots & \sigma(n) \end{pmatrix} \text{ либо } \begin{pmatrix} i_1 & i_2 & i_3 & \dots & i_n \\ \sigma(i_1) & \sigma(i_2) & \sigma(i_3) & \dots & \sigma(i_n) \end{pmatrix}.$$

Здесь, $\{i_1, i_2, \dots, i_n\} = \{1, 2, \dots, n\}.$

Замечание. Количество всех перестановок длины n: $|S_n|=n!$

5 Лекция 23.09.2019

5.1 Инверсии в перестановке

Обозначение: S_n – множество всех перестановок из n элементов.

Пусть
$$\sigma \in S_n$$
, $i, j \in \{1, 2, ..., n\}$, $i \neq j$

Определение 17. Пара $\{i,j\}$ (неупорядоченная) образует *инверсию* в σ , если числа i-j и $\sigma(i)-\sigma(j)$ имеют разный знак (то есть либо i < j и $\sigma(i) > \sigma(j)$, либо i > j и $\sigma(i) < \sigma(j)$).

5.2 Знак и чётность перестановки

Определение 18. Знак перестановки σ – это число $\mathrm{sgn}(\sigma) = (-1)^{<\mathrm{число}}$ инверсий в $\sigma>$.

Определение 19. Перестановка σ называется четной, если $\text{sgn}(\sigma) = 1$ (четное количество инверсий), и нечетной если $\text{sgn}(\sigma) = -1$ (нечетное количество инверсий).

Примеры.

σ	$\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$	
число инверсий	0	1	
$\operatorname{sgn}(\sigma)$	1	-1	
четность	четная	нечетная	

σ	$ \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array}\right) $	$ \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array}\right) $	$ \left \begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array} \right $	$\left \begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array} \right $	$\left \begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array} \right $	$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$
число инверсий	0	1	2	3	2	1
$sgn(\sigma)$	1	-1	1	-1	1	-1
четность	четная	нечетная	четная	нечетная	четная	нечетная

Замечание. число инверсий в $\sigma \in S_n \leqslant \binom{n}{2} = \frac{n(n-1)}{2}$, равенство достигается при $\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ n & n-1 & \dots & 1 \end{pmatrix}$

5.3 Произведение перестановок

Определение 20. Произведением (или композицией) двух перестановок $\sigma, \rho \in S_n$ называется такая перестановка $\sigma \rho \in S_n$, что $(\sigma \rho)(x) := \sigma(\rho(x)) \quad \forall x \in \{1, \dots, n\}.$

Пример

$$\frac{\text{diphasep.}}{\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}}, \rho = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$

$$\sigma \rho = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

$$\rho \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix}$$
Prove the second of the s

Видно, что $\sigma \rho \neq \rho \sigma \implies$ произведение перестановок не обладает свойством коммутативности.

5.4 Ассоциативность произведения перестановок

Утверждение 5.1. Умножение перестановок ассоциативно, то есть $\sigma(\tau\pi) = (\sigma\tau)\pi \ \forall \sigma, \tau, \pi \in S_n$.

Доказательство.
$$\forall i \in \{1, 2, \dots, n\}$$
 имеем:
$$[\sigma(\tau\pi)](i) = \sigma((\tau\pi)(i)) = \sigma(\tau(\pi(i))).$$
$$[(\sigma\tau)\pi](i) = (\sigma\tau)(\pi(i)) = \sigma(\tau(\pi(i))).$$

5.5 Тождественная перестановка

Определение 21. Перестановка $id = \begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix} \in S_n$ называется mox decm eeнной перестановкой.

Свойства:

$$\forall \sigma \in S_n \quad id \cdot \sigma = \sigma \cdot id = \sigma.$$

 $\operatorname{sgn}(id) = 1.$

5.6 Обратная перестановка и её знак

Определение 22. $\sigma \in S_n, \ \sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix} \implies$ подстановка $\sigma^{-1} := \begin{pmatrix} \sigma(1) & \sigma(2) & \dots & \sigma(n) \\ 1 & 2 & \dots & n \end{pmatrix}$ называ-

Свойства: $\sigma \cdot \sigma^{-1} = id = \sigma^{-1} \cdot \sigma$

5.7 Теорема о знаке произведения перестановок

Теорема 5.2. $\sigma, \rho \in S_n \implies \operatorname{sgn}(\sigma \rho) = \operatorname{sgn} \sigma \cdot \operatorname{sgn} \rho$

Доказательство. Для каждой пары i < j введем следующие числа:

$$\alpha(i,j) = \begin{cases} 1, & \text{если } \{i,j\} \text{ образует инверсию в } \rho \\ 0, & \text{иначе} \end{cases}$$

$$eta(i,j) = egin{cases} 1, & \text{если } \{
ho(i),
ho(j) \} \ \text{образует инверсию в } \sigma \ 0, & \text{иначе} \end{cases}$$

$$\gamma(i,j) = \begin{cases} 1, & \text{если } \{i,j\} \text{ образует инверсию в } \sigma \rho \\ 0, & \text{иначе} \end{cases}$$

"число инверсий в ρ " = $\sum_{1\leqslant i < j\leqslant n} \alpha(i,j)$ "число инверсий в $\sigma \rho$ " = $\sum_{1\leqslant i < j\leqslant n} \gamma(i,j)$ "число инверсий в σ " = $\sum_{1\leqslant i < j\leqslant n} \beta(i,j)$ – Почему?

Когда $\{i,j\}$ пробегает все неупорядоченные пары в $\{1,2,\ldots,n\}$, пара $\{\rho(i),\rho(j)\}$ тоже пробегает все неупорядоченные пары в $\{1, 2, \ldots, n\}$.

Зависимость $\gamma(i,j)$ от $\alpha(i,j)$ и $\beta(i,j)$:

Вывод: $\alpha(i,j) + \beta(i,j) \equiv \gamma(i,j) \pmod{2}$.

Тогда
$$\operatorname{sgn}(\sigma\rho) = (-1)^{\sum \gamma(i,j)} = (-1)^{\sum \beta(i,j) + \sum \alpha(i,j)} = (-1)^{\sum \alpha(i,j)} \cdot (-1)^{\sum \beta(i,j)} = \operatorname{sgn}\sigma \cdot \operatorname{sgn}\rho.$$

Следствие. $\sigma \in S_n \implies \operatorname{sgn}(\sigma^{-1}) = \operatorname{sgn}(\sigma)$.

Доказательство.
$$\sigma \sigma^{-1} = id \implies \operatorname{sgn}(\sigma \sigma^{-1}) = \operatorname{sgn}(id) \implies \operatorname{sgn} \sigma \operatorname{sgn} \sigma^{-1} = 1 \implies \operatorname{sgn} \sigma = \operatorname{sgn} \sigma^{-1}.$$

Упражнение на дом: Показать, что число инверсий в σ^{-1} такое же, как в σ .

5.8 Транспозиции, знак транспозиции

Пусть $i, j \in \{1, 2, ..., n\}, i \neq j$.

Рассмотрим перестановку $\tau_{ij} \in S_n$, такую что

 $\tau_{ij}(j) = i$.

 $\tau_{ij}(k) = k \ \forall k \neq i, j.$

Определение 23. Перестановки вида au_{ij} называются *танспозициями*.

Замечание. τ – траспозиция $\implies \tau^2 = id, \tau^{-1} = \tau$.

Определение 24. Перестановки вида $au_{i,i+1}$ называются элементарными траспозициями.

Лемма 5.3. $\tau \in S_n$ – транспозиция \implies $sgn(\tau) = -1$.

Доказательство. Пусть $\tau = \tau_{ij}$, можем считать, что i < j.

$$\tau := \begin{pmatrix} 1 & \dots & i-1 & i & i+1 & \dots & j-1 & j & j+1 & \dots & n \\ 1 & \dots & i-1 & j & i+1 & \dots & j-1 & i & j+1 & \dots & n \end{pmatrix}$$

Посчитаем инверсии:

 $\{i, j\}$

 $\{i,k\}$ при $i+1 \leqslant k \leqslant j-1$, всего =j-i-1

 $\{k,j\}$ при $i+1\leqslant k\leqslant j-1$, всего =j-i-1

Значит, всего инверсий $2(j-i-1)+1\equiv 1\pmod 2\implies \operatorname{sgn}(\tau)=-1.$

Следствие. При $n\geqslant 2$ отображение $\sigma\to\sigma\tau_{12}$ является биекцией между множеством четных перестановок в S_n и множеством нечетных перестановок в S_n .

Следствие. При $n \ge 2$ количество нечетных перестановок в S_n равно количеству четных перестановок в S_n и равно $\frac{n!}{2}$.

Теорема 5.4. Всякая перестановка $\sigma \in S_n$ может быть разложена в произведение конечного числа элементарных транспозиций.

Доказательство.

$$\sigma \in S_n := \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$$

Тогда

$$\sigma \tau_{i,i+1} = \begin{pmatrix} 1 & 2 & \dots & i & i+1 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(i+1) & \sigma(i) & \dots & \sigma(n) \end{pmatrix}$$

При умножении справа на $\tau_{i,i+1}$ в нижней строке меняются местами i-ый и (i+1)-ый элементы.

Тогда, домножив σ на подходящее произведение $\tau_1 \cdot \tau_2 \cdot \dots \cdot \tau_k$ элементарных траспозиций, можем добиться, что нижняя строка есть $(1, 2, \dots, n) \implies \sigma \tau_1 \tau_2 \dots \tau_k = id$.

Теперь, домножая справа на $\tau_k \tau_{k-1} \dots \tau_1$, получим $\sigma = \tau_k \tau_{k-1} \dots \tau_1$.

5.9 Определитель квадратной матрицы

Определение 25. Определителем матрицы $A \in M_n$ называется число

$$\det A = \sum_{\sigma \in S_{-}} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}.$$

 $(\sum_{\sigma \in S_n}$ – сумма по всем перестановкам)

Другие обозначения: $|A|, \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$

5.10 Определители порядков 2 и 3

•
$$n = 2$$

$$S_2 = \left\{ \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \right\}$$

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

$$n = 3$$

$$S_3 = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \right\}$$

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}.$$

6 Лекция 26.09.2019

Напомним что такое определитель:

$$\sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}. \tag{*}$$

Замечание. Каждое слагаемое содержит ровно 1 элемент из каждой строки и ровно 1 элемент из каждого столбца.

6.1 Свойства определителей

Свойство Т $\det A = \det A^T$.

Доказатель ство. Пусть $B = A^T$, тогда $b_{ij} = a_{ji}$.

$$\det A^T = \det B = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) b_{1\sigma(1)} b_{2\sigma(2)} \dots b_{n\sigma(n)} = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{\sigma(1)1} a_{\sigma(2)2} \dots a_{\sigma(n)}$$

$$= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)^{-1}} a_{2\sigma(2)^{-1}} \dots a_{n\sigma(n)^{-1}} \quad /\!/ \text{ замена } \sigma^{-1} = \rho \text{ }/\!/$$

$$= \sum_{\rho \in S_n} \operatorname{sgn}(\rho) a_{1\rho(1)} a_{2\rho(2)} \dots a_{n\rho(n)} = \det A.$$

Свойство 0 Если в A есть нулевая строка или нулевой столбец, то $\det A = 0$.

Доказательство. В связи со свойством Т можно доказать только для строк.

Так как в каждом слагаемом (\star) присутствует элемент из каждой строки, то все слагаемые в (\star) равны 0 \Longrightarrow det A=0.

Свойство 1 Если в A все элементы одной строки или одного столбца домножить на одно и то же число λ , то $\det A$ тоже умножается на λ .

$$\begin{vmatrix} * & * & \dots & * \\ \dots & \dots & \dots & \dots \\ \lambda * & \lambda * & \lambda * & \lambda * \\ \dots & \dots & \dots & \dots \\ * & * & \dots & * \end{vmatrix} = \lambda \begin{vmatrix} * & * & \dots & * \\ \dots & \dots & \dots & \dots \\ * & * & * & * \\ \dots & \dots & \dots & \dots \\ * & * & \dots & * \end{vmatrix}$$

Доказательство. В связи со свойством Т можно доказать только для строк.

 $A_{(i)} o \lambda A_{(i)} \implies a_{ij} o \lambda a_{ij} \ \forall j \implies$ в (*) каждое слагаемое умножается на $\lambda \implies \det A$ умножается на λ .

Свойство 2 Если
$$A_{(i)} = A_{(i)}^1 + A_{(i)}^2$$
, то $\det A = \det \begin{pmatrix} A_{(1)} \\ \vdots \\ A_{(i)}^1 \\ \vdots \\ A_{(n)} \end{pmatrix} + \det \begin{pmatrix} A_{(1)} \\ \vdots \\ A_{(i)}^2 \\ \vdots \\ A_{(n)} \end{pmatrix}$.

Пример:

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 + c_1 & b_2 + c_2 & b_3 + c_3 \\ d_1 & d_2 & d_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ d_1 & d_2 & d_3 \end{vmatrix} + \begin{vmatrix} a_1 & a_2 & a_3 \\ c_1 & c_2 & c_3 \\ d_1 & d_2 & d_3 \end{vmatrix}$$

Аналогично, если $A^{(j)} = A_1^{(j)} + A_2^{(j)}$, то $\det A = \det(A^{(1)} \cdots A_1^{(j)} \cdots A^{(n)}) + \det(A^{(1)} \cdots A_2^{(j)} \cdots A^{(n)})$.

Пусть
$$A^1_{(i)} = (a'_{i1}a'_{i2} \cdots a'_{in}), \, A^2_{(i)} = (a''_{i1}a''_{i2} \dots a''_{in}) \implies a_{ij} = a'_{ij} + a''_{ij}.$$

$$\det A = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}$$

$$= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots (a'_{i\sigma(i)} + a''_{i\sigma(i)}) \dots a_{n\sigma(n)}$$

$$= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a'_{i\sigma(i)} \dots a_{n\sigma(n)} + \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a''_{i\sigma(i)} \dots a_{n\sigma(n)}$$

$$= \det A_1 + \det A_2.$$

Свойство 3 Если в A поменять местами две строки или два столбца, то $\det A$ поменяет знак.

Доказательство. В связи со свойством T можно доказать только для строк. Пусть $A=(a_{ij})\in M_n$, $B=(b_{ij})\in M_n$ – матрица, полученная из A перестановкой p-ой и q-ой строк. Так же, $\tau=\tau_{pq}$.

Свойство 4 Если к строке (столбцу) прибавить другую строку (столбец), умноженный на скаляр, то $\det A$ не изменится.

Доказательство. В связи со свойством Т можно доказать только для строк.

$$A \to A' = \begin{pmatrix} \dots \\ A_{(i)} + \lambda A_{(j)} \\ \dots \\ A_{(j)} \\ \dots \end{pmatrix}$$
$$|A'| = \begin{vmatrix} \dots \\ A_{(i)} \\ \dots \\ A_{(j)} \\ \dots \\ A_{(j)} \\ \dots \end{vmatrix} + \begin{vmatrix} \dots \\ \lambda A_{(j)} \\ \dots \\ A_{(j)} \\ \dots \\ A_{(j)} \\ \dots \end{vmatrix} = |A| + \lambda \begin{vmatrix} \dots \\ A_{(j)} \\ \dots \\ A_{(j)} \\ \dots \end{vmatrix} = |A| + \lambda 0 = |A|.$$

Свойство 5 Если в A есть две одинаковые строки (столбца), то $\det A = 0$.

Доказательство. В связи со свойством Т можно доказать только для строк.

При перестановке двух одинаковых строк (столбцов):

- A не изменится \implies det A не изменится
- по свойству 3: $\det A$ меняет знак

Значит, $\det A = -\det A \implies \det A = 0$.

Определение 26. Матрица называется верхнетреугольной, если $a_{ij} = 0$ при i > j, нижнетреугольной, если $a_{ij} = 0$ i < j.

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ 0 & 0 & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{mn} \end{pmatrix} - \text{верхнетреугольная}$$

$$\begin{pmatrix} a_{11} & 0 & 0 & \dots & 0 \\ a_{21} & a_{22} & 0 & \dots & 0 \\ a_{31} & a_{32} & a_{33} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{pmatrix} - \text{ниж нетреугольная}$$

Замечание. Всякая ступенчатая квадратная матрица верхнетреугольна.

Свойство 6 Если A верхнетреугольная или нижнетреугольная, то $\det A = a_{11}a_{22}\dots a_{nn}$.

Доказательство. В связи со свойством Т можно доказать только для строк.

Выделим в (*) слагаемые, которые могут быть отличны от нуля.

$$a_{1,\sigma(1)} \dots a_{n-1,\sigma(n-1)} a_{n,\sigma(n)} \neq 0$$

$$\implies a_{n\sigma(n)} \neq 0 \implies \sigma(n) = n.$$

$$\implies a_{n-1,\sigma(n-1)} \neq 0 \implies \sigma(n-1) \in \{n-1,n\},$$

но n уже занято, значит $\sigma(n-1) = n-1$, и так далее.

Рассуждая аналогично, получаем $\sigma(k) = k \ \forall k \implies \sigma = id$ – это единственное слагаемое в (*), которое может быть не равно 0.

$$\operatorname{sgn}(id) = +1 \implies \det A = a_{11}a_{22}\dots a_{nn}.$$

Следствие. det diag $(a_1, a_2, \dots, a_n) = a_1 a_2 \dots a_4$.

Следствие. $\det E = 1$.

6.2 Поведение определителя при элементарных преобразованиях строк (столбцов)

 $\Theta_1(i,j,\lambda)$: det A не меняется.

 $\mathfrak{I}_2(i,j)$: det A меняет знак.

 $\Theta_3(i,\lambda)$: det A умножается на λ .

Aлгоритм. Элементарными преобразованиями строк A приводится к ступенчатому (\rightarrow верхнетреугольному) виду, в котором $\det A$ легко считается.

7 Лекция 30.09.2019

7.1 Определитель с углом нулей

Предложение.

$$A = \left(\begin{array}{c|c} P & Q \\ \hline 0 & R \end{array} \right)$$
 или $A = \left(\begin{array}{c|c} P & 0 \\ \hline Q & R \end{array} \right), \ P \in M_k, \ R \in M_{n-k} \implies \det A = \det P \det R.$

Матрица с углом нулей:

$$\left(\begin{array}{c|cccc}
* & * & * & * \\
\hline
0 & * & * & * \\
0 & * & * & * \\
0 & * & * & *
\end{array}\right)$$

НЕ матрица с углом нулей:

$$\begin{pmatrix}
* & * & * & * \\
* & * & * & * \\
\hline
0 & * & * & * \\
0 & * & * & *
\end{pmatrix}$$

Доказательство. В силу свойства Т достаточно доказать для строк.

- 1. Элементарными преобразованиями строк в A, приведем $(P \mid Q)$ к виду $(P' \mid Q')$, в котором P' имеет ступенчатый вид. При этом $\det A$ и $\det P$ умножаются на один и тот же скаляр $\alpha \neq 0$.
- 2. Элементарными преобразованиями строк в A, приведем $(0 \mid R)$ к виду $(0 \mid R')$, в котором R' имеет ступенчатый вид. При этом $\det A$ и $\det R$ умножаются на один и тот же скаляр $\beta \neq 0$.

$$\begin{pmatrix} P' & Q' \\ 0 & R' \end{pmatrix} - \text{верхнетреугольная} \implies \det \begin{pmatrix} P' & Q' \\ 0 & R' \end{pmatrix} = \det P' \det R'.$$

$$\alpha\beta \det A = \det \begin{pmatrix} P' & Q' \\ 0 & R' \end{pmatrix} = \det P' \det R' = (\alpha \det P)(\beta \det R) = \alpha\beta \det P \det R.$$

7.2 Определитель произведения матриц

Теорема 7.1. $A, B \in M_n \implies \det(AB) = \det A \det B$.

Доказательство. Выполним с матрицей A одно элементарное преобразование строк, получим матрицу A'.

$$A \leadsto A' = UA.$$

Такое же преобразование строк с AB.

$$AB \leadsto U(AB) = (UA)B = A'B.$$

Таким образом, сначала выполнив элементарное преобразование и домножив на матрицу B, либо домножив на B и затем применив элементарное преобразование, получим тот же результат.

Тогда, цепочка элементарных преобразований строк:

 $A \leadsto C$ — улучшенный ступенчатый вид.

Так же цепочка для AB:

$$AB \leadsto CB$$
.

При этом, $\det A$ и $\det AB$ умножились на один и тот же скаляр $\alpha \neq 0$

$$\det C = \alpha \det A.$$

$$\det CB = \alpha \det AB$$
.

Случай 1 Последняя строка состоит из нулей:

$$C_{(n)} = (0 \dots 0)$$

$$\implies [CB]_{(n)} = C_{(n)}B = (0 \dots 0)$$

$$\implies \det CB = 0 = 0 \cdot \det B = \det C \det B.$$

$$C_{(n)} \implies C = E,$$

так как матрица C имеет улучшенный ступенчатый вид.

Значит,

$$\det CB = \det B = 1 \cdot \det B = \det C \cdot \det B.$$

Из этих двух случаем следует, что $\det CB = \det C \det B$.

Сокращая α получаем,

$$\det CB = \det C \det B \implies \det AB = \det A \det B.$$

Замечание. Пусть $A \in M_n$, $A_{y\pi}$ – её улучшенный ступенчатый вид.

$$\det A \neq 0 \iff A_{y\pi} = E.$$

7.3 Дополнительные миноры и алгебраические дополнения к элементам квадратной матрицы

Определение 27. Дополнительным минором к элементу a_{ij} называется определитель $(n-1) \times (n-1)$ матрицы, получающейся из A вычеркиванием i-ой строки и j-го столбца.

Обозначение: \overline{M}_{ij} .

Определение 28. Алгебраическим дополнением κ элементу a_{ij} называется число $A_{ij}=(-1)^{i+j}\overline{M}_{ij}$.

7.4 Лемма об определителе матрицы, содержащей ровно один ненулевой элемент в некоторой строке

Лемма 7.2. Пусть $a_{ik}=0$ при всех $k\neq j$. Тогда $\det A=a_{ij}\cdot A_{ij}$.

Доказательство.

$$A = \begin{pmatrix} P & U & Q \\ \hline 0 \dots 0 & a_{ij} & 0 \dots 0 \\ \hline R & V & S \end{pmatrix}.$$

Переставляя соседние строки i-1 раз, вытолкнем i-ю строку наверх.

$$A' = \begin{pmatrix} 0 \dots 0 & a_{ij} & 0 \dots 0 \\ \hline P & U & Q \\ \hline R & V & S \end{pmatrix}$$

Переставляя соседние столбцы j-1 раз, переместим j-й столбец на первое место.

$$A'' = \begin{pmatrix} a_{ij} & 0 \dots 0 & 0 \dots 0 \\ \hline U & P & Q \\ \hline V & R & S \end{pmatrix}$$

$$\det A'' = a_{ij} \det \left(\frac{P \mid Q}{R \mid S} \right) = a_{ij} \overline{M}_{ij}.$$

$$\implies det A = (-1)^{i-1+j-1} \det A'' = (-1)^{i+j} a_{ij} \overline{M}_{ij} = a_{ij} A_{ij}.$$

7.5 Разложение определителя по строке (столбцу)

Теорема 7.3. При любом фиксированном $i \in \{1, 2, ..., n\}$,

$$\det A = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in} = \sum_{j=1}^{n} a_{ij}A_{ij}$$
 – разложение по i-й строке.

Аналогично, для любого фиксированного $j \in \{1, 2, ..., n\}$,

$$\det A = a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj} = \sum_{i=1}^{n} a_{ij}A_{ij}$$
 – разложение по j-у столбиу.

Доказательство. В силу свойства Т достаточно доказать для строк.

$$A_{(i)} = (a_{i1}, 0, \dots, 0) + (0, a_{i2}, 0, \dots, 0) + \dots + (0, \dots, 0, a_{in}).$$

Требуемое следует из свойства 2 определителей и леммы.

7.6 Лемма о фальшивом разложении определителя

Лемма 7.4.

1. При любых $i, k \in \{1, 2, \dots, n\} : i \neq k \implies \sum_{j=1}^{n} a_{ij} A_{kj} = 0$,

2. При любых $j, k \in \{1, 2, \dots, n\} : j \neq k \implies \sum_{i=1}^{n} a_{ij} A_{ik} = 0.$

Доказательство. В силу свойства Т достаточно доказать для строк.

Пусть $B \in M_n$ – матрица, полученная из A заменой k-й строки на i-ю.

$$B = \begin{pmatrix} A_{(1)} \\ \vdots \\ A_{(i)} \\ \vdots \\ A_{(i)} \\ \vdots \\ A_{(n)} \end{pmatrix}$$

В B есть две одинаковые строки $\implies \det B = 0$.

Разлагая $\det B$ по k-й строке, получаем

$$\det B = \sum_{j=1}^{n} b_{kj} B_{kj} = \sum_{j=1}^{n} a_{ij} A_{kj}.$$

7.7 Обратная матрица, её единственность

Пусть дана $A \in M_n$.

Определение 29. Матрица $B \in M_n$ называется *обратной* к A, если AB = BA = E. Обозначение: A^{-1} .

Лемма 7.5. Если $\exists A^{-1}$, то она единственна.

Доказательство. Пусть $B, C \in M_n$ такие, что AB = BA = E и AC = CA = E. Тогда,

$$B = BE = B(AC) = (BA)C = EC = C \implies B = C.$$

7.8 Невырожденные матрицы

Определение 30. Матрица $A \in M_n$ называется *невырожденной*, если $\det A \neq 0$, и *вырожденной* иначе (то есть $\det A = 0$).

7.9 Определитель обратной матрицы

Лемма 7.6. Если $\exists A^{-1}$, то det $A \neq 0$.

Доказательство.
$$AA^{-1} = E \implies \det(AA^{-1}) = \det E \implies \det A \det(A^{-1}) = 1.$$

7.10 Присоединённая матрица

Определение 31. Присоединенной к A матрицей называется матрица $\widehat{A} = (A_{ij})^T$.

$$\widehat{A} = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix}$$

7.11 Критерий обратимости квадратной матрицы, явная формула для обратной матрицы

Теорема 7.7. A обратима (то есть $\exists A^{-1}$) \iff A невырождена ($\det A \neq 0$), при этом $A^{-1} = \frac{1}{\det A} \widehat{A}$.

Доказательство. Утверждение в одну сторону следует из леммы 2.

Пусть $\det A \neq 0$. Покажем, что $\frac{1}{\det A} \widehat{A} = A^{-1}$. Для этого достаточно доказать, что $A\widehat{A} = \widehat{A}A = \det A \cdot E$. Для $X = A\widehat{A}$ имеем

$$x_{ij} = \sum_{k=1}^n a_{ik} [\widehat{A}]_{kj} = \sum_{k=1}^n a_{ik} A_{jk} = \begin{cases} \det A, & \text{при } i = j \\ 0, & \text{при } i \neq j \end{cases}.$$

Для $Y = \widehat{A}A$ имеем

$$y_{ij} = \sum_{k=1}^n [\widehat{A}]_{ik} a_{kj} = \sum_{k=1}^n A_{ki} a_{kj} = \begin{cases} det A, & \text{при } i = j \\ 0, & \text{при } i \neq j \end{cases}.$$

8 Лекция 2.11.2019

8.1 Следствия из критерия обратимости квадратной матрицы

Следствие. Если AB = E, то BA = E (и тогда $A = B^{-1}$, $B = A^{-1}$).

Доказательство.

$$AB = E \implies \det A \det B = 1 \implies \det A \neq 0 \implies \exists A^{-1}.$$

 $BA = EBA = (A^{-1}A)BA = A^{-1}(AB)A = A^{-1}A = E.$

Следствие. $A, B \in M_n \implies AB$ обратима \iff обе A, B обратимы. При этом $(AB)^{-1} = B^{-1}A^{-1}$.

Доказательство. Эквивалентность (\iff) следует из условия $\det AB = \det A \det B$.

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AA^{-1} = E.$$

8.2 Формулы Крамера

Пусть есть СЛУ
$$Ax=b(\star),\ A\in M_n,\ x=\begin{pmatrix}x_1\\\ldots\\x_n\end{pmatrix}\in\mathbb{R}^n,\ b=\begin{pmatrix}b_1\\\ldots\\b_n\end{pmatrix}\in\mathbb{R}^n.$$
 Также, $\forall i\in\{1,2,\ldots,n\},\ A_i=(A^{(1)},\ldots,A^{(i-1)},b,A^{(i+1)},\ldots,A^{(n)}).$

Теорема 8.1. Если $\det A \neq 0$, то СЛУ (*) имеет единственное решение и его можно найти по формулам:

$$x_i = \frac{\det A_i}{\det A}.$$

Доказательство. $\det A \neq 0 \implies \exists A^{-1} \implies (\star) \iff x = A^{-1}b$ – единственное решение.

$$b = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x_1 A^{(1)} + x_2 A^{(2)} + \dots + x_n A^{(n)}.$$

$$\det A_i = \det \left(A^{(1)}, \dots, A^{(i-1)}, x_1 A^{(1)} + \dots + x_n A^{(n)}, A^{(i+1)}, \dots, A^{(n)}\right)$$

$$= x_1 \det \left(A^{(1)}, \dots, A^{(i-1)}, A^{(1)}, A^{(i+1)}, \dots A^{(n)}\right)$$

$$+ x_2 \det \left(A^{(1)}, \dots, A^{(i-1)}, A^{(2)}, A^{(i+1)}, \dots, A^{(n)}\right)$$

$$+ \dots +$$

$$+ x_n \det \left(A^{(1)}, \dots, A^{(i-1)}, A^{(n)}, A^{(i+1)}, \dots, A^{(n)}\right)$$

$$= x_i \det A \quad // \text{ Все слагаемые кроме i-го равны 0.}$$

8.3 Понятие поля.

Определение 32. Полем называется множество F, на котором заданы две операции "сложение" $((a,b) \to a+b)$ и "умножение" $((a,b) \to a \cdot b)$, причем $\forall a,b,c \in F$ выполнены следующие условия:

- 1. a + b = b + a (коммутативность сложения)
- 2. (a+b)+c=a+(b+c) (ассоциативность сложения)
- 3. $\exists 0 \in F : 0 + a = a + 0 = a$ (нулевой элемент)
- 4. $\exists (-a) \in F : a + (-a) = (-a) + a = 0$ (противоположный элемент) \uparrow абелева группа \uparrow
- 5. a(b+c) = ab + ac (дистрибутивность)
- 6. ab = ba (коммутативность умножения)
- 7. (ab)c = a(bc) (ассоциативность умножения)
- 8. $\exists 1 \in F \setminus \{0\} : 1a = a1 = a$ (единица)
- 9. Если $a \neq 0$, $\exists a^{-1} \in F : aa^{-1} = a^{-1}a = 1$ (обратный элемент)

8.4 Простейшие примеры.

- О Рациональные числа.
- \mathbb{R} Действительные числа.

 $F_2 = \{0, 1\}$, сложение и умножение по модулю 2.

8.5 Построение поля комплексных чисел.

Ближайшая цель — построить поле $\mathbb C$ комплексных чисел. Неформально, $\mathbb C$ – это наименьшее поле со следующими свойставми:

- 1. $\mathbb{C} \supset \mathbb{R}$.
- 2. Многочлен $x^2 + 1$ имеет корень, то есть $\exists i : i^2 = -1$.

8.5.1 Формальная конструкция поля С

$$\mathbb{C} = \mathbb{R}^2 = \{(a, b) \mid a, b \in \mathbb{R}\}.$$

- $(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$
- $(a_1,b_1)(a_2,b_2) = (a_1a_2 b_1b_2, a_1b_2 + a_2b_1)$

Неформально, каждой такой паре (a, b) соответствует комплексное число a + bi:

- $(a,b) \iff a+bi$
- $(a_1 + b_1 i) + (a_2 + b_2 i) = (a_1 + a_2) + (b_1 + b_2)i$
- $(a_1 + b_1 i)(a_2 + b_2 i) = a_1 a_2 + a_1 b_2 i + a_2 b_1 i + b_1 b_2 \underbrace{i^2}_{=-1} = (a_1 a_2 b_1 b_2) + (a_1 b_2 + a_2 b_1) i$

8.5.2 Проверка аксиом

- 1, 2. Очевидны.
 - 3. 0 = (0,0).
 - 4. -(a,b) = (-a,-b).
 - 5. Дистрибутивность

$$(a_1 + b_1 i)((a_2 + b_2 i) + (a_3 + b_3 i)) = (a_1 + b_1 i)((a_2 + a_3) + (b_2 + b_3)i)$$

$$= (a_1(a_2 + a_3) - b_1(b_2 + b_3)) + (a_1(b_2 + b_3) + b_1(a_2 + a_3))i$$

$$= a_1 a_2 + a_1 a_3 - b_1 b_2 - b_1 b_3 + (a_1 b_2 + a_1 b_3 + b_1 a_2 + b_1 a_3)i$$

$$= ((a_1 a_2 - b_1 b_2) + (a_1 b_2 + b_1 a_2)i) + ((a_1 a_3 + b_1 b_3) + (b_1 a_3 + a_1 b_3)i)$$

$$= (a_1 + b_1 i)(a_2 + b_2 i) + (a_1 + b_1 i)(a_3 + b_3 i)$$

6. Коммутативность умножения – из явного вида формулы.

$$(a_1 + b_1 i)(a_2 + b_2 i) = (a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1)i$$

7. Ассоциативность умножения

$$(a_1, b_1)(a_2, b_2)(a_3, b_3) = (a_1a_2 - b_1b_2, a_1b_2 + a_2b_1)(a_3, b_3)$$

$$= (a_1a_2a_3 - b_1b_2a_3 - a_1b_2b_3 - b_1a_2b_3, a_1a_2b_3 - b_1b_2b_3 + a_1b_2a_3 + b_1a_2a_3)$$

$$= (a_1, b_1)(a_2a_3 - b_2b_3, a_2b_3 + b_2a_3)$$

$$= (a_1, b_1)(a_2, b_2)(a_3, b_3).$$

8. 1 = (1,0).

9.
$$(a,b) \neq 0 \implies a^2 + b^2 \neq 0$$
. Тогда, $(a,b)^{-1} = \left(\frac{a}{a^2 + b^2}, -\frac{b}{a^2 + b^2}\right)$.
$$(a,b) \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right) = \left(\frac{a^2}{a^2 + b^2} + \frac{b^2}{a^2 + b^2}, \frac{-ab}{a^2 + b^2} + \frac{ba}{a^2 + b^2}\right) = (1,0).$$

Итак, \mathbb{C} – поле.

Проверка свойств

1.
$$a \in \mathbb{R} \leftrightarrow (a,0) \in \mathbb{C}$$
.
 $a + b \leftrightarrow (a,0) + (b,0) = (a+b,0)$.
 $ab \leftrightarrow (a,0)(b,0) = (ab,0)$

Значит, \mathbb{R} отождествляется в \mathbb{C} .

2.
$$i = (0,1) \implies i^2 = (0,1)(0,1) = (-1,0) = -1$$
.

8.6 Алгебраическая форма комплексного числа, его действительная и мнимая части.

Определение 33. Представление числа $z \in \mathbb{C}$ в виде a+bi, где $a,b \in \mathbb{R}$ называется его алгебраической формой. Число i называется мнимой единицей.

 $a =: Re(z) - \partial e \ddot{u} c m e u m e$ льная часть числа z.

b =: Im(z) -мнимая часть числа z.

Числа вида bi, где $b \in \mathbb{R} \setminus \{0\}$, называются *чисто мнимыми*.

8.7 Комплексное сопряжение.

Определение 34. Число $\overline{z}:=a-bi$ называется комплексно сопряженным к числу z=a+bi.

Операция $z \to \overline{z}$ называется комплексным сопряжением.

8.7.1 Свойства комплексного сопряжения

- \bullet $\overline{\overline{z}} = z$.
- $\bullet \ \overline{z+w} = \overline{z} + \overline{w}.$
- $\bullet \ \overline{zw} = \overline{z} \cdot \overline{w}.$

Доказательство.

- $\overline{\overline{z}} = \overline{\overline{a + bi}} = \overline{a bi} = a + bi = z$.
- $\bullet \ \overline{z+w} = \overline{(a_1+b_1i)+(a_2+b_2i)} = \overline{(a_1+a_2)+(b_1+b_2)i} = (a_1+a_2)-(b_1+b_2)i = (a_1-b_1i)+(a_2-b_2i) = \overline{z}+\overline{w}.$
- $\overline{z} \cdot \overline{w} = (a_1 b_1 i)(a_2 b_2 i) = (a_1 a_2 b_1 b_2) (a_1 b_2 + a_2 b_1)i = \overline{zw}$.

8.8 Геометрическая модель комплексных чисел, интерпретация сложения и сопряжения в этой модели.

Числу z=a+bi соответствует точка (или вектор) на плоскости \mathbb{R}^2 с координатами (a,b). Сумме z+w соответствует сумма соответствующих векторов. Сопряжение $z\to \overline{z}$ – это отражение z относительно действительной оси.

9 Лекция 7.11.2019

Модуль комплексного числа, его свойства

Определение 35. Число $|z| = \sqrt{a^2 + b^2}$ называется модулем числа $z = a + bi \in \mathbb{C}$ (то есть длина соответствующего вектора).

Свойства

- 1. $|z| \ge 0$, причем $|z| = 0 \iff z = 0$.
- 2. $|z+w| \leq |z| + |w|$ (неравенство треугольника).

Пусть z = a + bi, w = c + di.

$$|z+w| \leq |z| + |w|$$

$$\sqrt{(a+c)^2 + (b+d)^2} \leq \sqrt{a^2 + b^2} + \sqrt{c^2 + d^2}$$

$$(a+c)^2 + (b+d)^2 \leq a^2 + b^2 + c^2 + d^2 + 2\sqrt{(a^2 + b^2)(c^2 + d^2)}$$

$$ac + bd \leq \sqrt{(a^2 + b^2)(c^2 + d^2)}$$

$$ac + bd \leq \sqrt{(ac)^2 + (ad)^2 + (bc)^2 + (bd)^2}$$

$$(ac)^2 + (bd)^2 + 2acbd \leq (ac)^2 + (ad)^2 + (bc)^2 + (bd)^2$$

$$2acbd \leq (ad)^2 + (bc)^2$$

$$0 \leq (ad)^2 + (bc)^2 - 2abcd$$

$$0 \leq (ad - bc)^2$$

3.
$$z\overline{z} = |z|^2$$
.
 $z\overline{z} = (a+bi)(a-bi) = a^2 - (bi)^2 = a^2 + b^2 = |z|^2$

4.
$$|zw| = |z||w|$$
.
 $|zw|^2 = (zw) \cdot (\overline{zw}) = z \cdot w \cdot \overline{z} \cdot \overline{w} = |z|^2 |w|^2$.

Замечание. Из 3) следует, что для $\forall z \neq 0, \ z^{-1} = \frac{\overline{z}}{|z|^2}$, то есть $(a+bi)^{-1} = \frac{a-bi}{a^2+b^2}$

9.2 Аргумент комплексного числа

Пусть
$$z=a+bi\in\mathbb{C},\ z\neq 0.$$
 Тогда, $z=|z|\left(\frac{a}{|z|}+\frac{b}{|z|}i\right)$, при этом $\left(\frac{a}{|z|}\right)^2+\left(\frac{b}{|z|}i\right)^2=1$ Значит, $\frac{a}{|z|}$ и $\frac{b}{|z|}$ являются синусом и косинусом некоторого угла.

Определение 36. Аргументом числа $z=a+bi\in\mathbb{C}\setminus\{0\}$ называется число $\varphi\in\mathbb{R}$, такое что

$$\cos \varphi = \frac{a}{|z|} = \frac{a}{\sqrt{a^2 + b^2}}.$$

$$\sin \varphi = \frac{b}{|z|} = \frac{b}{\sqrt{a^2 + b^2}}.$$

В геометрических терминах, φ есть угол между осью Ox и соответствующим вектором.

Замечание. При $z \neq 0$, аргумент определен с точностью до $2\pi k, k \in \mathbb{Z}$.

Замечание. При z=0, удобно считать что любое φ является аргументом.

9.3Тригонометрическая форма комплексного числа

Arg(z) := множество всех аргументов числа z.

arg(z) := единственное значение из Arg(z), лежащее в $[0; 2\pi)$.

 $Arg(z) = arg(z) + 2\pi k, k \in \mathbb{Z}$

$$Arg(z) = \{ \varphi \in \mathbb{R} \mid \cos \varphi = \frac{a}{|z|}, \sin \varphi = \frac{b}{|z|} \}$$

Тогда, $\forall z \in \mathbb{C}, \ z = |z| \left(\frac{a}{|z|} + \frac{b}{|z|} i \right) = |z| \left(\cos \varphi + i \sin \varphi \right)$, где $\varphi \in Arg(z)$.

Определение 37. Представление числа $z\in\mathbb{C}$ в виде $z=|z|(\cos\varphi+i\sin\varphi)$ называется его тригонометрической формой.

Умножение и деление комплексных чисел в тригонометрической форме

Предложение. Пусть $z_1 = |z_1|(\cos\varphi_1 + i\sin\varphi_1)$ и $z_2 = |z_2|(\cos\varphi_2 + i\sin\varphi_2)$, тогда

$$z_1 z_2 = |z_1||z_2|(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)).$$

Доказательство.

$$z_1 z_2 = |z_1||z_2|(\cos\varphi_1 + i\sin\varphi_1)(\cos\varphi_2 + i\sin\varphi_2)$$

$$= |z_1||z_2|((\cos\varphi_1\cos\varphi_2 - \sin\varphi_1\sin\varphi_2) + i(\cos\varphi_1\sin\varphi_2 + \sin\varphi_1\cos\varphi_2))$$

$$= |z_1||z_2|(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)).$$

Следствие. В условиях предложения, предположим, что $z_2 \neq 0$.

Тогда
$$\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} (\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2)).$$

Тогда
$$\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} (\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2)).$$
 В частности, $\frac{1}{|z_2|} (\cos(-\varphi_2) + i\sin(-\varphi_2)) = \frac{1}{|z_2|} (\cos\varphi_2 - i\sin\varphi_2) = \frac{\overline{z}_2}{|z_2|^2}.$

9.5Возведение в степень комплексных чисел в тригонометрической форме, формула Муавра

Следствие. Пусть $z = |z|(\cos \varphi + i \sin \varphi)$. Тогда $\forall n \in \mathbb{Z}$,

$$z^n = |z|^n(\cos(n\varphi) + i\sin(n\varphi))$$
 – формула Муавра.

Замечание. В комплексном анализе функция $\exp: \mathbb{R} \to \mathbb{R}, x \to e^x$, доопределяется до функции $\exp: \mathbb{C} \to \mathbb{C}, z \to e^z$ с сохранением всех привычных свойств.

Доказывается $e^{i\varphi} = \cos \varphi + i \sin \varphi$, $\forall \varphi \in \mathbb{C}$ – формула Эйлера.

Тогда $\forall z \in \mathbb{C}$ представляется в виде $z = |z|e^{i\varphi}$, где $\varphi \in Arg(z)$ – показательная форма.

9.6Извлечение корней из комплексных чисел

Пусть $z \in \mathbb{C}$, $n \in \mathbb{N}$, $n \geqslant 2$.

Определение 38. Корнем степени n (или корнем n-й степени) из числа z называется всякое число $w \in \mathbb{C}$, что $w^n = z$.

Положим $\sqrt[n]{z} := \{ w \in \mathbb{C} \mid w^n = z \}.$

Опишем множество $\sqrt[n]{z}$.

$$w = \sqrt[n]{z} \implies w^n = z \implies |w|^n = |z|.$$

Если
$$z=0$$
, то $|z|=0$ \Longrightarrow $|w|=0$ \Longrightarrow $w=0$ \Longrightarrow $\sqrt[n]{0}=\{0\}.$

Далее считаем, что $z \neq 0$.

$$z = |z|(\cos\varphi + i\sin\varphi)$$

$$w = |w|(\cos\psi + i\sin\psi)$$

$$z = w^n = |w|^n (\cos(n\psi) + i\sin(n\psi))$$

$$z=w^n\iff egin{cases} |z|=|w|^n \ n\psi=arphi+2\pi k,$$
 для некоторого $k\in\mathbb{Z} \end{cases}\iff egin{cases} |w|=\sqrt[n]{|z|} \ \psi=rac{arphi+2\pi k}{n},$ для некоторого $k\in\mathbb{Z}$

С точностью до $2\pi l,\ l\in\mathbb{Z},$ получается ровно n различных значений для $\psi,$ при $k=0,1,\ldots,n-1.$

В результате
$$\sqrt[n]{z}=\{w_0,w_1,\ldots,w_{n-1}\}$$
, где $w_k=\sqrt[n]{|z|}\left(\cos\frac{\varphi+2\pi k}{n}+i\sin\frac{\varphi+2\pi k}{n}\right)$

Замечание. Числа w_0, w_1, \dots, w_{n-1} лежат в вершинах правильного n-угольника с центром в начале координат.

Примеры.

$$\sqrt{1} = \{\pm 1\}$$

$$\sqrt{-1} = \{\pm i\}$$

$$\sqrt[3]{1} = \{1, -\frac{1}{2} \pm i\frac{\sqrt{3}}{2}\}$$

$$\sqrt[4]{1} = \{\pm 1, \pm i\}$$

Основная теорема алгебры комплексных чисел (без доказательства)

$$\sqrt[n]{z} = \{$$
 корни многочлена $x^n - z\}.$

Теорема 9.1. Всякий многочлен степени $\geqslant 1$ с комплексными коэффициентами имеет комплексный корень.

Пусть
$$f = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z_1 + a_0, n \geqslant 1, a_n \neq 0, a_i \in \mathbb{C},$$
 тогда $\exists c \in \mathbb{C} : f(c) = 0.$

Замечание. Свойство поля С, сформулированное в теореме, называется алгебраической замкнутостью.

9.8 Деление многочленов с остатком

Пусть \mathbb{F} – поле.

 $\mathbb{F}[x] :=$ все многочлены от переменной x с коэффициентами из \mathbb{F} .

$$f(x) = a_n x^n + \dots + a_1 x + a_0, \ a_n \neq 0 \implies \deg f = n.$$

 $\deg(f \cdot g) = \deg f + \deg g.$

Определение 39. Многочлен $f(x) \in F[x]$ делится на $g(x) \in F[x]$, если $\exists h(x) \in F[x]$, такой что f(x) = g(x)h(x).

Если f(x) не делится на g(x), то можно поделить с остатком.

Предложение (деление с остатком). Если $f(x), g(x) \in F[x], g(x) \neq 0$, то $\exists ! q(x), r(x) \in F[x]$, такие что

$$\begin{cases} f(x) = q(x)g(x) + r(x) \\ \text{либо } r(x) = 0, \text{ либо } \deg r(x) < \deg g(x) \end{cases}$$

Пример.
$$f(x) = x^3 - 2x$$
, $g(x) = x + 1$. $f(x) = (x^2 - x - 1)(x + 1) + 1$, $q(x) = (x^2 - x - 1)$, $r(x) = 1$.

9.9 Теорема Безу

Частный случай деления многочлена f(x) на многочлен g(x) с остатком: g(x) = x - c, $\deg g(x) = 1$: f(x) = q(x)(x-c) + r(x), где либо r(x) = 0, либо $\deg r(x) < g(x) = 1$ Значит, $r(x) \equiv r = const \in F$.

Теорема 9.2. r = f(c).

Доказательство. Подставить x = c в f(x) = (x - c)g(x) + r(x).

Следствие. Элемент $c \in F$ является корнем многочлена $f(x) \in F[x]$ тогда и только тогда, когда f(x) делится на (x-c).

9.10 Кратность корня многочлена

Определение 40. *Кратностью* корня $c \in F$ многочлена f(x) называется наибольшее целое k такое что, f(x) делится на $(x-c)^k$.

9.11 Утверждение о том, что всякий многочлен степени n с комплексными коэффициентами имеет ровно n корней с учётом кратностей

Следствие. Пусть $f(z) \in F[z]$, $\deg f = n \geqslant 1$.

$$f(x) = a_n z^n + \dots + a_1 z + a_0.$$

$$c_1, \ldots c_s$$
 – корни f, k_1, \ldots, k_s – их кратности.

Любой многочлен с комплексными коэффициентами разлагается в произведение линейных множителей:

$$f(x) = a_n(x - c_1)^{k_1}(x - c_2)^{k_2} \dots (x - c_s)^{k_s}.$$

Иными словами, f(z) имеет ровно n корней с учетом кратностей.

10 Лекция 14.11.2019

10.1 Векторные пространства, простейшие следствия из аксиом

10.1.1 Определение векторного пространства

Фиксируем поле F (можно считать, что $F = \mathbb{R}$ или \mathbb{C})

Определение 41. Множество V называется векторным (линейным) пространством над полем F, если на V заданы две операции

- "сложение": $V \times V \to V$, $(x,y) \mapsto x+y$.
- "умножение на скаляр": $F \times V \to V$, $(\alpha \in F, x \in V) \mapsto \alpha x$.

а также, $\forall x, y, z \in V$ и $\alpha, \beta \in F$ выполнены следующие условия (называются аксиомами векторного пространства):

- 1. x + y = y + x.
- 2. (x+y) + z = x + (y+z).
- 3. $\exists \overrightarrow{0} \in V : x + \overrightarrow{0} = \overrightarrow{0} + x = x$ (нулевой элемент).
- 4. $\exists -x : -x + x = x + (-x) = \overrightarrow{0}$ (противоположный элемент).
- 5. $\alpha(x+y) = \alpha x + \alpha y$.
- 6. $(\alpha + \beta)x = \alpha x + \beta x$.
- 7. $(\alpha \beta)x = \alpha(\beta x)$.
- 8. $1 \cdot x = x$.

Определение 42. Элементы векторного пространства называются (абстрактными) векторами.

 $\Pi p u м e p$.

- 1. \mathbb{R} над \mathbb{R} (или F над F).
- 2. Пространство \mathbb{R}^n над \mathbb{R} (или F^n над F) реализованное как пространство столбцов или строк длины n.
- 3. $\operatorname{Mat}_{m \times n}(F)$
- 4. F[x] многочлены то переменной x с коэффициентами в \mathbb{R} .
- 5. Пространство функций на множестве M с значениями в F:

 $f:M\to\mathbb{R}$

- сложение $(f_1 + f_2)(x) := f_1(x) + f_2(x)$.
- умножение на скаляр $(\alpha f)(x) := \alpha f(x)$.
- это векторное пространство над F.

Например, множество всех функций $[0,1] \to R$.

10.1.2 Простейшие следствия из аксиом

 $\forall \alpha \in F, x \in V.$

1. Элемент $\overrightarrow{0}$ единственный.

Если $\overrightarrow{0}'$ – другой такой ноль, то $\overrightarrow{0}' = \overrightarrow{0}' + \overrightarrow{0} = \overrightarrow{0}$.

2. Элемент -x единственный.

Если (-x)' – другой такой противоположный элемент, то

$$(-x)' = (-x)' + \overrightarrow{0} = (-x)' + (x + (-x)) = ((-x)' + x) + (-x) = \overrightarrow{0} + (-x) = -x.$$

3. $\alpha \overrightarrow{0} = \overrightarrow{0}$.

Рассмотрим равенство $\overrightarrow{0} + \overrightarrow{0} = \overrightarrow{0}$. Домножив на α получаем $\alpha(\overrightarrow{0} + \overrightarrow{0}) = \alpha \overrightarrow{0}$.

Раскроем скобки, $\alpha \overrightarrow{0} + \alpha \overrightarrow{0} = \alpha \overrightarrow{0}$.

Прибавим к обоим частям обратный элемент к $\alpha\overrightarrow{0}$, получим $\alpha\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0}\implies \alpha\overrightarrow{0}=\overrightarrow{0}$.

4. $\alpha(-x) = -(\alpha x)$.

Рассмотрим равенство $x + (-x) = \overrightarrow{0}$.

$$x + (-x) = \overrightarrow{0} \implies ax + a(-x) = 0 \implies a(-x) = -(ax).$$

34

5. $0 \cdot x = \overrightarrow{0}$

Доказывается так же, как пункт 3, но с 0 вместо $\overrightarrow{0}$.

6. $(-1) \cdot x = -x$.

Рассмотрим равенство 1 + (-1) = 0. Домножив на x получаем (1 + (-1))x = 0x.

Раскроем скобки и воспользуемся пунктом 5 - 1x + (-1)x = 0 или x + (-1)x = 0.

Прибавим к обоим частям -x, получим 0 + (-1)x = -x или (-1)x = -x.

10.2 Подпространства векторных пространств

Пусть V – векторное пространство над F.

Определение 43. Подмножество $U \subseteq V$ называется *подпространством* (в V), если

- 1. $\overrightarrow{0} \in U$.
- $2. \ x, y \in U \implies x + y \in U.$
- 3. $x \in U, \alpha \in F \implies \alpha x \in U$.

Замечание. Всякое подпространство само является векторным пространством относительно тех же операций.

Пример.

- 1. $\{\overrightarrow{0}\}$ и V всегда подпространства в V. они называются neco6cm eenhumu подпространствами, остальные называются co6cm eenhumu.
- 2. Множество всех верхнетреугольных, нижнетреугольных, диагональных матриц в $M_n(F)$.
- 3. $F[x]_{\leq n}$ все многочлены в F[x] степени $\leq n$ подпространство в F[x].

10.3 Утверждение о том, что множество решений однородной системы линейных уравнений с ${\bf n}$ неизвестными является подпространством в F^n

Предложение. Множество решений любой ОСЛУ Ax = 0 ($A \in \mathrm{Mat}_{m \times n}(F), x \in F^n$) является подпространством в F^n .

Доказательство. Пусть S – множество решений ОСЛУ Ax = 0.

$$1. \overrightarrow{0} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \in S.$$

2.
$$x, y \in S \implies Ax = \overrightarrow{0} \text{ if } Ay = \overrightarrow{0} \implies A(x+y) = Ax + Ay = \overrightarrow{0} + \overrightarrow{0} = \overrightarrow{0} \implies x+y \in S.$$

3.
$$x \in S, \alpha \in F \implies Ax = \overrightarrow{0} \implies A(\alpha x) = \alpha(Ax) = \alpha \overrightarrow{0} = \overrightarrow{0} \implies \alpha x \in S$$
.

10.4 Линейная комбинация конечного набора векторов

Пусть V – векторное пространство над F и $v_1, \ldots, v_k \in V$ – набор векторов.

Определение 44. Линейной комбинацией векторов v_1, \ldots, v_k называется всякое выражение вида $\alpha_1 v_1 + \cdots + \alpha_k v_k$, где $\alpha_i \in F$.

10.5 Линейная оболочка подмножества векторного пространства, примеры

Пусть $S \subseteq V$ — подмножество векторного пространства.

Определение 45. Линейной оболочкой множества S называются множество всех векторов из V, представимых в виде линейной комбинации какого-то конечного набора векторов из S.

Обозначение: $\langle S \rangle$.

Если $S=\{v_1,\ldots,v_k\}$ конечно и состоит из векторов v_1,\ldots,v_k , то еще пишут $\langle v_1,\ldots,v_k\rangle$ и говорят "линейная оболочка векторов v_1,\ldots,v_k ".

Cоглашение: $\langle \varnothing \rangle = \{ \overline{0}' \}$.

Пример.

- 1. $\langle \overrightarrow{0} \rangle = \{ \overrightarrow{0} \}.$
- 2. $V = \mathbb{R}^2, v \neq 0, \langle v \rangle = \{\alpha v \mid \alpha \in \mathbb{R}\}$ прямая.
- 3. $V = \mathbb{R}^3, \, v_1, v_2$ пара неколлинеарных векторов.

Тогда, $\langle v_1, v_2 \rangle = \{a_1v_1 + a_2v_2 \mid a_1, a_2 \in \mathbb{R}\}$ – плоскость натянутая на v_1, v_2 .

11 Лекция 21.11.2019

Напомним, если V — векторное пространство над полем F, то при $S\subseteq V$, линейная оболочка $\langle S\rangle=\{$ все линейные комбинации конечных наборов векторов из $S\}$

 Π ример.

4.
$$V = F^n$$
, $S = \{e_1, \ldots, e_n\}$, где

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \dots \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ \dots \\ 0 \end{pmatrix}, \dots, e_n = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 1 \end{pmatrix}.$$

Тогда $\langle S \rangle = \langle e_1, \dots, e_n \rangle = F^n$.

Так как для любого
$$x \in F^n \implies x = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 0 \\ \dots \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 1 \\ \dots \\ 0 \end{pmatrix} + \dots + x_n \begin{pmatrix} 0 \\ 0 \\ \dots \\ 1 \end{pmatrix} = x_1e_1 + x_2e_2 + \dots + x_ne_n.$$

11.1 Утверждение о том, что линейная оболочка системы векторов является подпространством объемлющего векторного пространства

Пусть V — векторное пространство, $S \subseteq V$.

Предложение. $\langle S \rangle$ является подпространством в V.

Доказательство.

1. Два случая:

$$\begin{split} S &= \varnothing \implies \langle \varnothing \rangle = \{ \overrightarrow{0} \} \implies \overrightarrow{0} \in \langle S \rangle. \\ S &\neq \varnothing \implies \exists V \in S \implies \underbrace{0V}_{\in \langle S \rangle} = \overrightarrow{0} \implies \overrightarrow{0} \in \langle S \rangle. \end{split}$$

2. Пусть $v, w \in \langle S \rangle$:

$$\begin{split} v &= \alpha_1 v_1 + \dots + \alpha_m v_m, \\ w &= \beta_1 w_1 + \dots + \beta_n w_n, \text{ где } v_i, w_i \in S, \ \alpha_i, \beta_i \in F. \\ \text{Тогда, } v + w &= \alpha_1 v_1 + \dots + \alpha_m v_m + \beta_1 w_1 + \dots + \beta_n w_n \in \langle S \rangle. \\ (\text{если } v_i &= w_j, \text{ то } \alpha_i v_i + \beta_j w_j = (\alpha_i + \beta_j) w_j) \end{split}$$

3.
$$v \in \langle S \rangle$$
, $\alpha \in F \implies v = \alpha_1 v_1 + \dots + \alpha_m v_m$
 $\implies \alpha v = (\alpha \alpha_1) v_1 + \dots + (\alpha \alpha_m) v_m \in \langle S \rangle$.

11.2 Линейно зависимые и линейно независимые системы векторов

Определение 46. Линейная комбинация $\alpha_1 v_1 + \dots + \alpha_n v_n$ называется *тривиальной*, если $\alpha_1 = \dots = \alpha_n = 0$ и нетривиальной иначе (то есть $\exists i : a_i \neq 0$ или $(\alpha_1, \dots, \alpha_n) \neq (0, \dots, 0)$).

 $\Pi pumep. \ v + (-v)$ — нетривиальная линейная комбинация векторов v и -v.

Определение 47.

- 1. Векторы $v_1, \ldots, v_n \in V$ называются линейно зависимыми если существует их нетривиальная линейная комбинация, равная $\overrightarrow{0}$ (то есть $\exists (\alpha_1, \ldots, \alpha_n) \neq (0, \ldots, 0)$, такие что $\alpha_1 v_1 + \cdots + \alpha_n v_n = \overrightarrow{0}$) и линейно независимыми иначе (то есть из условия $\alpha_1 v_1 + \ldots \alpha_n v_n = \overrightarrow{0}$ следует $\alpha_1 = \cdots = \alpha_n = 0$).
- 2. Множество $S \subseteq V$ (возможно бесконечное, возможно с повторяющимися элементами) называется *линейно зависимым* если существует конечное линейно зависимое подмножество, и *линейно независимым* если любое конечное подмножество линейно независимо.

Соглашение. Система векторов – множество векторов, в котором возможны повторения.

 Πp имеp.

1.
$$S = \{\overrightarrow{0}\}$$
 $1 \cdot \overrightarrow{0}$ — нетривиальная линейная комбинация $\Longrightarrow \overrightarrow{0}$ линейно зависимо.

2. $S = \{v\}, v \neq \overrightarrow{0}$ — линейно независимо. Пусть $\lambda v = \overrightarrow{0} \implies \overrightarrow{0} = \lambda^{-1} \overrightarrow{0} = \lambda^{-1} (\lambda v) = (\lambda^{-1} \lambda) v = 1 v = v$ — противоречие.

3. $S = \{v_1, v_2\} \implies S$ линейно зависимо тогда и только тогда, когда v_1 и v_2 пропорциональны (то есть либо $v_2 = \lambda_1 v_1, \, \lambda_1 \in F$, либо $v_1 = \lambda_2 v_2, \, \lambda_2 \in F$).

Доказательство.

 (\Longrightarrow) $\mu_1v_1+\mu_2v_2=\overrightarrow{0}$, $(\mu_1,\mu_2)\neq (0,0)$. Если $\mu_1\neq 0$, то $v_1=-\frac{\mu_2}{\mu_1}v_2$. Аналогично для $\mu_2\neq 0$.

 $(\longleftarrow) \ v_2 = \lambda_1 v_1 \implies \lambda_1 v_1 + (-1)v_2 = \overrightarrow{0} \implies v_1, v_2$ линейно зависимы. Аналогично для $v_1 = \lambda_2 v_2$.

4. $V = F^n, S = \{e_1, \dots, e_n\} \implies S$ линейно независимо.

$$\alpha_1 e_1 + \dots + \alpha_n e_n = \overrightarrow{0} \iff \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} 0 \\ \dots \\ 0 \end{pmatrix} \iff \alpha_1 = \dots = \alpha_n = 0.$$

11.3 Критерий линейной зависимости конечного набора векторов

Предложение. Пусть $v_1, \ldots, v_n \in V$, $i \in \{1, \ldots, n\}$, тогда следующие условия эквивалентны:

1.
$$\exists (\alpha_1, \dots, \alpha_n) \in F^n$$
, такой что $\alpha_1 v_1 + \dots + \alpha_n v_n = \overrightarrow{0}(\star)$ и $\alpha_i \neq 0$.

2.
$$v_i \in \langle v_1, \dots, v_{i-1}, v_{i+1}, \dots, v_n \rangle$$
.

Доказательство.

$$(1) \implies (2) \ \alpha_i \neq 0 \ \mathbf{B} \ (\star) \implies v_i = -\frac{\alpha_1}{\alpha_i} v_1 - \dots - \frac{\alpha_{i-1}}{\alpha_i} v_{i-1} - \frac{\alpha_{i+1}}{\alpha_i} v_{i+1} - \dots - \frac{\alpha_n}{\alpha_i} v_n \in \langle v_1, \dots v_{i-1}, v_{i+1}, \dots, v_n \rangle.$$

(2)
$$\implies$$
 (1) $v_i = \beta_1 v_1 + \dots + \beta_{i-1} v_{i-1} + \beta_{i+1} v_{i+1} + \dots + \beta_n v_n \implies$

$$\beta_1 v_1 + \dots + \beta_{i-1} v_{i-1} + \underbrace{(-1)}_{\neq 0} v_i + \beta_{i+1} v_{i+1} + \dots + \beta_n v_n = \overrightarrow{0}.$$

(нетривиальная линейная комбинация с i-м скаляром $\neq 0$).

Следствие. Векторы v_1, \ldots, v_n линейно зависимы тогда и только тогда, когда $\exists i \in \{1, \ldots, n\}$, такое что $v_i \in \langle v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n \rangle$.

11.4 Основная лемма о линейной зависимости

Лемма 11.1. Пусть есть две системы векторов v_1, \ldots, v_m и w_1, \ldots, w_n , причем m < n и $w_i \in \langle v_1, \ldots, v_m \rangle$ $\forall i = 1, \ldots, n$. Тогда векторы w_1, \ldots, w_n линейно зависимы.

Доказательство.

$$w_1 = a_{11}v_1 + a_{21}v_2 + \dots + a_{m1}v_m = (v_1, \dots, v_m) \begin{pmatrix} a_{11} \\ a_{21} \\ \dots \\ a_{m1} \end{pmatrix}$$

. . .

$$w_n = a_{1n}v_1 + a_{2n}v_2 + \dots + a_{mn}v_m = (v_1, \dots, v_m) \begin{pmatrix} a_{1n} \\ a_{2n} \\ \dots \\ a_{mn} \end{pmatrix}.$$

$$\implies (w_1, \dots, w_n) = (v_1, \dots, v_m)A,\tag{*}$$

где $A = (a_{ij}) \in \operatorname{Mat}_{m \times n}(F)$.

Так как m < n, то ОСЛУ $Ax = \overrightarrow{0}$ имеет ненулевое решение $z = \begin{pmatrix} z_1 \\ \dots \\ z_n \end{pmatrix} \in F^n$.

Тогда умножим (\star) справа на z:

$$(w_1,\ldots,w_n)\cdot z=(v_1,\ldots,v_m)\cdot\underbrace{A\cdot z}_{=\overrightarrow{0}}=(v_1,\ldots,v_m)\begin{pmatrix}0\\\ldots\\0\end{pmatrix}=\overrightarrow{0}.$$

$$\implies (w_1, \dots, w_n) \begin{pmatrix} z_1 \\ \dots \\ z_n \end{pmatrix} = \overrightarrow{0} \implies z_1 w_1 + \dots z_n w_n = \overrightarrow{0}.$$

Это нетривиальная линейная комбинация, так как $z \neq 0$.

Следовательно, w_1, \ldots, w_n линейно зависимы.

Пример. Любые n+1 векторов в F^n линейно зависимы, так как $F^n = \langle e_1, \dots, e_n \rangle$.

11.5 Базис векторного пространства

Определение 48. Подмножество $S \subseteq V$ называется базисом пространства V, если

- 1. S линейно независимо,
- 2. $\langle S \rangle = V$.

Пример. e_1, \ldots, e_n – это базис в F^n . Он называется стандартным базисом в F^n .

Замечание. Всякая линейно независимая система векторов является базисом своей линейной оболочки.

11.6 Конечномерные и бесконечномерные векторные пространства

Определение 49. Векторное пространство V называется конечномерным, если в нем есть конечный базис, и бесконечномерным иначе.

11.7 Независимость числа элементов в базисе векторного пространства от выбора базиса

Предложение. V – конечномерное векторное пространство. Тогда, все базисы в V содержат одно и то же количество элементов.

Доказательство. V конечномерно, тогда существует конечный базис e_1,\ldots,e_n .

Пусть $S \subseteq V$ – другой базис. Так как $\langle e_1, \dots, e_n \rangle = V$, то $\forall v \in S \implies v \in \langle e_1, \dots, e_n \rangle$. Тогда любые n+1 векторов в S линейно зависимы по основной лемме о линейной зависимости. Но S линейно независимо, значит $|S| \leqslant n$.

Пусть $S = \{e'_1, \dots, e'_m\}$, где $m \leqslant n$. Тогда $\forall i = 1, \dots, n$ $e_i \in \langle e'_1, \dots, e'_m \rangle$, по основной лемме о линейной зависимости получаем $n \leqslant m$.

To есть m=n.

11.8 Размерность конечномерного векторного пространства

Определение 50. *Размерностью* конечномерного векторного пространства называется число элементов в (любом) его базисе.

Обозначение: $\dim V$.

 Π ример.

- 1. $\dim F^n = n$,
- 2. $V = \{\overrightarrow{0}\} \implies \dim V = 0$ так как базисом V будет \varnothing .

12 Лекция 28.11.2019

Пусть V — векторное пространство над полем F. Обозначение $\dim V < \infty - V$ конечномерно.

12.1 Характеризация базисов в терминах единственности линейного выражения векторов

Утверждение 12.1. Пусть $\dim V < \infty, e_1, \dots, e_n \in \langle V \rangle$.

 e_1,\ldots,e_n — базис V тогда и только тогда, когда, $\forall v \in V$ единственным образом представим в виде

$$v = x_1 e_1 + \dots + x_n e_n \quad x_i \in F.$$

Доказательство.

 \implies Пусть есть два представления $v=x_1e_1+\ldots x_ne_n=x_1'e_1+\cdots+x_n'e_n.$

Тогда,
$$(x_1 - x_1')e_1 + \dots + (x_n - x_n')e_n = \overrightarrow{0}$$
.

Так как e_1, \dots, e_n линейно независимы, то $(x_1 - x_1') = \dots = (x_n - x_n') = 0$.

Значит, $x_i = x'_i \quad \forall i$.

 $\iff \forall v \in V \text{ имеем } v \in \langle e_1, \dots, e_n \rangle.$

Значит, $\langle e_1, \ldots, e_n \rangle = V$.

Для $v = \overrightarrow{0}$ существует единственное представление $\overrightarrow{0} = \lambda_1 e_1 + \dots + \lambda_n e_n$.

Ho мы знаем, что $\overrightarrow{0} = 0e_1 + \cdots + 0e_n$.

Следовательно $\alpha_1 = \dots \alpha_n = 0$, то есть e_1, \dots, e_n линейно независимо.

Итог: e_1, \ldots, e_n – базис V.

12.2 Фундаментальная система решений однородной системы линейных уравнений

$$Ax = 0 - \text{OC}\Pi Y. \tag{*}$$

 $A \in \mathrm{Mat}_{m \times n}(F), x = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} \in F^n.$

 $S \subseteq F^n$ – множество решений.

Знаем, что S – подпространство в F^n .

Определение 51. *Фундаментальной системой решений* (ФСР) для ОСЛУ (⋆) называется всякий базис пространства её решений.

Замечание. У одной ОСЛУ может быть много разных ФСР.

12.3 Метод построения фундаментальной системы решений

Приведем матрицу к улучшенному ступенчатому виду элементарными преобразовиями строк.

$$(A|\overrightarrow{0}) \leadsto (B|\overrightarrow{0}) \quad \leftarrow \,$$
 улучшенный ступенчатый вид.

Пусть r — число ненулевых строк в B.

Тогда будет r главных неизвестных и n-r свободных.

Выполнив перенумерацию будем считать что,

 x_1, \ldots, x_r – главные неизвестные,

 x_{r+1},\ldots,x_n – свободные.

Тогда, общее решение для (⋆) имеет вид

$$x_1 = c_{11}x_{r+1} + c_{12}x_{r+2} + \dots + c_{1,n-r}x_n$$

$$x_2 = c_{21}x_{r+1} + c_{22}x_{r+2} + \dots + c_{2,n-r}x_n$$

. . .

$$x_r = c_{r1}x_{r+1} + c_{r2}x_{r+2} + \dots + c_{r,n-r}x_n.$$

Предъявим некоторую систему решений

$$u_{1} = \begin{pmatrix} c_{11} \\ c_{21} \\ \vdots \\ c_{r1} \\ \frac{1}{0} \\ \vdots \\ 0 \end{pmatrix}, u_{2} = \begin{pmatrix} c_{12} \\ c_{22} \\ \vdots \\ c_{r2} \\ 0 \\ \frac{1}{0} \\ \vdots \\ 0 \end{pmatrix}, \dots, u_{n-r} = \begin{pmatrix} c_{1,n-r} \\ c_{2,n-r} \\ \vdots \\ c_{r,n-r} \\ 0 \\ \vdots \\ 0 \\ \frac{1}{2} \end{pmatrix}.$$

$$u_1, \ldots, u_{n-r} \in S$$

Предложение. $u_1, ..., u_{n-r}$ – это ФСР для ОСЛУ (★).

Доказательство.

1. Линейная независимость.

Пусть $\alpha_1 u_1 + \dots + \alpha_{n-r} u_{n-r} = \overrightarrow{0}$.

При любом $k \in \{1,\dots,n-r\}$, (r+k)-я координата левой части равна α_k , значит $\alpha_k=0$.

Следовательно $\alpha_1 = \cdots = \alpha_{n-r} = 0$.

 $2. \langle u_1, \dots, u_{n-r} \rangle = S.$

" \subseteq " Верно, так как $u_1, \ldots, u_{n-r} \in S$.

" \supseteq " Пусть $u \in S$, тогда

$$u=\begin{pmatrix} *\\ \dots\\ *\\ \alpha_1\\ \alpha_2\\ \dots\\ \alpha_{n-r} \end{pmatrix}$$
 для некоторых $\alpha_1,\dots,\alpha_{n-r}\in F.$

Положим $v := u - \alpha_1 u_1 - \dots - \alpha_{n-r} u_{n-r}$.

Тогда, $v \in S$, но

$$v = \begin{pmatrix} * \\ \dots \\ * \\ 0 \\ \dots \\ 0 \end{pmatrix}.$$

Тогда формулы для общего решения дают $v = \overrightarrow{0}$.

Поэтому $u = \alpha_i u_1 + \cdots + \alpha_{n-r} u_{n-r}$.

Значит $\langle u_1, \ldots, u_{n-r} \rangle = S$.

 Πp имep.

$$A = \begin{pmatrix} 1 & -3 & 0 & 1 \\ 0 & 0 & 1 & -2 \end{pmatrix}$$

Общее решение:

$$\begin{cases} x_1 = 3x_2 - x_4 \\ x_3 = 2x_4 \end{cases}$$

Тогда ФСР:

$$u_1 = \begin{pmatrix} 3 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \ u_2 = \begin{pmatrix} -1 \\ 0 \\ 2 \\ 1 \end{pmatrix}.$$

12.4 Утверждение о возможности выбора из конечной системы векторов базиса её линейной оболочки

Пусть V — векторное пространство над F.

Наблюдение: если $v, v_1, \ldots, v_m \in V$ и $v \in \langle v_1, \ldots, v_m \rangle$, тогда $\langle v, v_1, \ldots, v_m \rangle = \langle v_1, \ldots, v_m \rangle$

Предложение. Из всякой конечной системы векторов $S \subseteq V$ можно выбрать подсистему, которая является базисом в линейной оболочке $\langle S \rangle$.

Доказательство. Пусть $S = \{v_1, \dots, v_m\}$.

Индукция по m.

База m = 1: $S = \{v_1\}$.

Если $v_1 = \overrightarrow{0}$, то $\langle S \rangle = \{ \overrightarrow{0} \}$, значит в качестве базиса берем \varnothing .

Если $v_1 \neq 0$, то S линейно независимо.

Следовательно S – базис в $\langle S \rangle$.

Шаг Пусть доказано для < m, докажем для m.

Если v_1, \ldots, v_m линейно независимо, то v_1, \ldots, v_m – это уже базис в $\langle S \rangle$.

Иначе, $\exists i : v_i \in \langle S \setminus \{v_i\} \rangle$.

Положим $S' := S \setminus \{v_i\}.$

Тогда, $\langle S' \rangle = \langle S \rangle$.

Так как |S'| = m - 1 < m, то по предположению индукции в S' можно выбрать базис для $\langle S' \rangle = \langle S \rangle$.

12.5 Дополнение конечной линейно независимой системы векторов до базиса конечномерного векторного пространства

Предложение. Пусть $\dim V < \infty$, тогда всякую линейно независимую систему векторов в V можно дополнить до базиса всего пространства V.

Доказательство. Пусть v_1, \dots, v_m – данная линейно независимая система.

Так как dim $V < \infty$, в V есть конечный базис e_1, \ldots, e_n .

Рассмотрим систему векторов $v_1, \dots, v_m, e_1, \dots, e_n$.

Пройдемся по этим векторам слева направо и выбросим те, которые линейно выражаются через предыдущие (не выброшенные).

При этом:

- 1) линейная оболочка системы сохраняется и равна $\langle v_1, \ldots, v_m, e_1, \ldots, e_n \rangle = V;$
- 2) v_1, \ldots, v_m останутся в системе, так как они линейно независимы;
- 3) в новой системе никакой вектор линейно не выражается через предыдущие.

Пусть новая система - это $S' = \{v_1, \dots, v_m, e_{i_1}, \dots, e_{i_t}\}.$

Докажем, что S' – базис в V.

По свойству 1) имеем, что $\langle S' \rangle = V$.

Осталось доказать, что S' линейно независимо.

Пусть $\alpha_1 v_1 + \dots + \alpha_n v_n + \beta_1 e_{i_1} + \dots + \beta_t e_{i_t} = \overrightarrow{0}$.

Предположим, что эта линейная комбинация нетривиальна.

Так как v_1, \ldots, v_m линейно независимы, то $\exists k : \beta_{i_k} \neq 0$.

Выберем k максимальным с этим свойством.

Тогда, e_{i_k} линейно выражается через предыдущие — противоречие.

Следствие. Если $\dim V = n$ и v_1, \dots, v_n – линейно независимая система, тогда v_1, \dots, v_m – базис V.

12.6 Лемма о добавлении вектора к конечной линейной независимой системе

Лемма 12.2. Пусть $v, v_1, \dots, v_m \in V$ и v_1, \dots, v_m линейно независимы, тогда либо v, v_1, \dots, v_m линейно независимы, либо $v \in \langle v_1, \dots, v_m \rangle$.

Доказательство. Пусть v, v_1, \ldots, v_m линейно зависимы, тогда $\exists (\alpha, \alpha_1, \ldots, \alpha_m) \neq (0, \ldots, 0)$, такой что

$$\alpha v + \alpha_1 v_1 + \dots + \alpha_m v_m = \overrightarrow{0}.$$

Но, так как v_1, \ldots, v_m линейно независимы, то $\alpha \neq 0$. Значит, $v \in \langle v_1, \ldots, v_m \rangle$ по предложению.

13 Лекция 5.12.2019

13.1 Размерность подпространства конечномерного векторного пространства

Пусть V — конечномерное векторное пространство.

Предложение. Если $U \subseteq V$ — подпространство V, тогда U тоже конечномерно, причем $\dim U \leqslant \dim V$. Кроме того, $\dim U = \dim V \iff U = V$.

Доказательство. Пусть $n = \dim V$.

Построим в U конечный базис.

Если $U = \{\overrightarrow{0}\}$, то в качестве базиса берем \varnothing .

Далее считаем, что $U \neq \{\overrightarrow{0}\}$.

Выберем $v_1 \in U \setminus \{\overrightarrow{0}\}$. Если $\langle v_1 \rangle = U$, то конец. Иначе, выберем $v_2 \in U \setminus \langle v_1 \rangle$.

Если $\langle v_1, v_2 \rangle = U$, то конец.

Иначе, выберем $v_3 \in U \setminus \langle v_1, v_2 \rangle$, и так далее.

Получаем систему векторов v_1, v_2, \ldots Она линейно независима по <u>лемме</u>.

По основной лемме о линейной зависимости процесс закончится не позднее шага n, значит U конечномерно и $\dim U \leqslant \dim V$.

Если $\dim U = n$, то v_1, \ldots, v_n – базис U. По следствию, если v_1, \ldots, v_n – базис U, то U = V.

13.2 Ранг системы векторов

Пусть $\dim V < \infty$ и $S \subseteq V$ — система векторов.

Определение 52. *Рангом* системы векторов S называется число $\operatorname{rk} S$, равное наибольшему числу векторов в линейно независимой подсистеме из S.

 $\operatorname{rk} S = \max\{|S'| \mid S' \subset S - \operatorname{линейно}$ независимая подсистема $\}$.

13.3 Связь ранга системы векторов с размерностью её линейной оболочки

Предложение. $\operatorname{rk} S = \dim \langle S \rangle$.

Доказательство. Пусть $\mathrm{rk}\,S=r$.

Тогда существует линейно независимая подсистема $S' = \{v_1, \dots, v_r\}.$

По определению ранга и лемме получаем $S \subseteq \langle v_1, \ldots, v_r \rangle$.

Значит, $\langle S \rangle = \langle v_1, \dots, v_r \rangle$ (так как $v_1, \dots, v_r \in S$).

Следовательно $\dim S = r$.

13.4 Ранг матрицы: столбцовый и строковый

Пусть $A \in \operatorname{Mat}_{m \times n}(F)$.

Определение 53. $\mathit{Столбиовым}$ рангом (или просто рангом) матрицы A называется ранг системы её столбцов

$$A^{(1)},\ldots,A^{(n)}\subseteq F^n$$
.

Обозначение: $\operatorname{rk} A = \operatorname{rk} \{A^{(1)}, \dots, A^{(n)}\}.$

Определение 54. Строковым рангом матрицы A называется число $\operatorname{rk} A^T$, то есть ранг системы строк

$$A_{(1)},\ldots,A_{(n)}\in F^n$$
.

 Πp имep.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

Любые два столбца линейно независимы (не пропорциональны), то есть $\operatorname{rk} A \geqslant 2$. Но, $A^{(2)} = \frac{1}{2} \left(A^{(1)} + A^{(3)} \right)$, значит $A^{(1)}, A^{(2)}, A^{(3)}$ линейно зависимы $\implies \operatorname{rk} A = 2$.

13.5 Сохранение линейных зависимостей между столбцами матрицы при элементарных преобразованиях строк

Предложение. Элементарные преобразования строк сохраняют линейные зависимости между столбцами матрицы. Если $A \leadsto B$ элементарным преобразованиями строк, то

$$\alpha_1 A^{(1)} + \dots + \alpha_n A^{(n)} = \overrightarrow{0} \iff \alpha_1 B^{(1)} + \dots + \alpha_n B^{(n)} = \overrightarrow{0}.$$

В частности, при $1 \leqslant i_1 < \dots < i_k \leqslant n$

 $A^{(i_1)},\ldots,A^{(i_k)}$ линейно независимы $\iff B^{(i_1)},\ldots,B^{(i_k)}$ линейно независимы.

Доказательство.

$$\alpha_1 A^{(1)} + \dots + \alpha_n A^{(n)} = \overrightarrow{0} \iff A \cdot \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{pmatrix} = \overrightarrow{0}$$

$$\iff \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{pmatrix} - \text{решение ОСЛУ } Ax = \overrightarrow{0}$$

$$\iff \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{pmatrix} - \text{решение ОСЛУ } Bx = \overrightarrow{0}$$

$$\iff B \cdot \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{pmatrix} = \overrightarrow{0} \iff \alpha_1 B^{(1)} + \dots + \alpha_n B^{(n)} = \overrightarrow{0}.$$

13.6 Инвариантность столбцового и строкового рангов матрицы при элементарных преобразованиях строк и столбцов

Следствие. При элементарных преобразованиях строк (столбцовый) ранг матрицы сохраняется.

Предложение. При элементарных преобразованиях столбцов линейная оболочка $\langle A^{(1)}, \dots, A^{(n)} \rangle$ сохраняется.

Доказательство. Пусть $A \leadsto B$ элементарными преобразованиями столбцов.

Тогда,

$$B^{(1)}, \dots, B^{(n)} \in \langle A^{(1)}, \dots, A^{(n)} \rangle.$$

Значит,

$$\langle B^{(1)}, \dots, B^{(n)} \rangle \subseteq \langle A^{(1)}, \dots, A^{(n)} \rangle.$$

Так как элементарные преобразования обратимы, то включение верно и в другую сторону.

Следствие. При элементарных преобразованиях столбцов (столбцовый) ранг матрицы сохраняется.

Следствие. Строковый ранг матрицы сохраняется при элементарных преобразованиях строк и столбцов.

13.7 Столбцовый и строковый ранги матрицы, имеющей улучшенный ступенчатый вид

Предложение. Если A имеет улучшенный ступенчатый вид, то оба числа $\operatorname{rk} A$ и $\operatorname{rk} A^T$ равны числу ненулевых строк в A.

Доказательство. Пусть r – число ненулевых строк в A и пусть $i_1 < \dots < i_r$ – номера ведущих элементов строк.

$$\begin{pmatrix} 0 & \dots & 0 & 1 & 0 & 0 & 0 & 0 \\ & & 0 & \dots & 1 & 0 & 0 & & \\ & & & 0 & \dots & 1 & 0 & & \\ & & & & 0 & \dots & 1 & 0 \\ & & & & & 0 & \dots & 1 \\ & & & 0 & 0 & 0 & 0 & & \end{pmatrix}$$

Тогда,
$$\{A^{(1)}, \dots, A^{(n)}\} \ni e_1, \dots, e_r$$
, где

$$e_i = \begin{pmatrix} 0 \\ \dots \\ 0 \\ 1 \\ 0 \\ \dots \\ 0 \end{pmatrix} \leftarrow i.$$

Значит,
$$\langle A^{(1)},\ldots,A^{(n)}\rangle\supseteq\langle e_1,\ldots,e_r\rangle$$
. Заметим, что $A^{(1)},\ldots,A^{(n)}\in\langle e_1,\ldots,e_r\rangle$, то есть $\langle A^{(1)},\ldots,A^{(n)}\rangle\subseteq\langle e_1,\ldots,e_r\rangle$.

Теперь покажем, что строки $A_{(1)},\ldots,A_{(r)}$ линейно независимы.

Пусть
$$\alpha_1 A_{(1)} + \cdots + \alpha_r A_{(r)} = \overrightarrow{0}(\star)$$
.

 $\forall k=1,\ldots,r$ на месте i_k в левой части (*) стоит α_k , значит $\alpha_k=0$.

То есть $\alpha_i = 0 \ \forall i,$ следовательно $A_{(1)}, \dots, A_{(r)}$ линейно независимы.

 $\implies \operatorname{rk} A^T = r.$

13.8 Равенство столбцового и строкового рангов матрицы

Теорема 13.1. Пусть $A \in Mat_{m \times n}(F)$, тогда $\operatorname{rk} A = \operatorname{rk} A^T$, причем оба числа равны количеству строк в ступенчатом виде матрицы A.

 \mathcal{A} оказательство. rk $A=\operatorname{rk} A^T$ следует из следствий, предыдущего предложения и теоремы о приведении матрицы к улучшенному ступенчатому виду.

Остальное вытекает из предложения и того, что при переходе от ступенчатого виду к улучшенному ступенчатому виду число ненулевых строк сохраняется.

13.9 Связь ранга квадратной матрицы с её определителем

Следствие. Пусть $A \in M_n(F)$ – квадратная матрица. Тогда,

$$\operatorname{rk} A = n \iff \det A \neq 0,$$

$$\operatorname{rk} A < n \iff \det A = 0.$$

Доказательство. При элементарных преобразованиях строк ${
m rk}\,A$ сохраняется, условия $\det A \neq 0$ и $\det A = 0$ тоже. Следовательно, достаточно доказать для ступенчатых матриц. В этом случае

$$\operatorname{rk} A = n \iff n$$
 ненулевых строк $\iff \det A \neq 0$,

$$\operatorname{rk} A < n \iff \operatorname{ecth}$$
 нулевые строки $\iff \det A = 0.$

13.10 Подматрицы

Определение 55. Подматрицей матрицы A называется всякая матрица, получающаяся из A вычёркиванием какихто строк и каких-то столбцов.

13.11 Связь рангов матрицы и её подматрицы

Предложение. S подматрица \Longrightarrow $\operatorname{rk} S \leqslant \operatorname{rk} A$.

Доказательство. Пусть rk S = r, значит в S есть линейно независимая система из r столбцов. Но тогда соответствующие r столбцов в матрице A будут и подавно линейно независимы.

14 Лекция 12.12.2019

14.1 Миноры

Пусть $A \in \operatorname{Mat}_{m \times n}(F)$.

Определение 56. Mинором матрицы A называется определитель всякой квадратной подматрицы в A.

 Π ример.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}.$$

- 6 миноров порядка 1,
- 3 минора порядка 2

$$\begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix}, \quad \begin{vmatrix} 1 & 3 \\ 4 & 6 \end{vmatrix}, \quad \begin{vmatrix} 2 & 3 \\ 5 & 6 \end{vmatrix}.$$

14.2Теорема о ранге матрицы

Теорема 14.1. Для любой $A \in Mat_{m \times n}(F)$ следующие 3 числа равны:

- (1) rk A (столбцовый ранг),
- (2) rk A (строковый ранг),
- (3) наибольший порядок ненулевого минора в А.

Доказательство. (1) = (2) – уже знаем.

Пусть S – квадратная подматрица в A порядка r и $\det S \neq 0$. Тогда $r = \operatorname{rk} S \leqslant \operatorname{rk} A$. Отсюда, $(3) \leqslant (1)$.

Пусть теперь $\operatorname{rk} A = r$. Найдем в A ненулевой минор порядка r.

Так как $\operatorname{rk} A = r$, в A есть r линейно независимых столбцов $A^{(i_1)}, \ldots, A^{(i_r)}$.

Составим из них матрицу B. Тогда $\mathrm{rk}\,B = r$.

Так как (1) = (2) для B, то в B можно найти r линейно независимых строк.

Пусть S – подматрица в B, составленная из этих строк.

S — квадратная подматрица порядка r и rk $S=r \implies \det S \neq 0 \implies$ нашли. Значит, (3) \geqslant (1).

Итог:
$$(3) = (1)$$
.

14.3 Приложения ранга матрицы к исследованию СЛУ

Пусть $A \in \operatorname{Mat}_{m \times n}(F), b \in F^m, x \in F^n$ – столбец неизвестных.

$$Ax = b. (\star)$$

 $(A \mid b)$ — расширенная матрица.

14.3.1 Теорема Кронекера-Капелли

Теорема 14.2 (Кронекера-Капелли). $C\Pi Y$ (*) $cosmecmna \iff \operatorname{rk}(A \mid b) = \operatorname{rk} A$.

Доказательство. При элементарных преобразованиях строк

- сохраняется множество решений,
- сохраняются числа $\operatorname{rk}(A \mid b)$ и $\operatorname{rk} A$.

Следовательно, вопрос сводится к ситуации когда A имеет ступенчатый вид.

В ступенчатом виде СЛУ совместна тогда и только тогда, когда нет строк вида $(0,\ldots,0\mid \star)$.

То есть матрицы $(A \mid b)$ и A имеют одно и то же число ненулевых строк.

Значит,
$$\operatorname{rk}(A \mid b) = \operatorname{rk} A$$
.

Критерий существования единственного решения у совместной системы линейных уравнений в терминах ранга её матрицы коэффициентов

Теорема 14.3. Пусть СЛУ (⋆) совместна. Тогда, она имеет единственное решение тогда и только тогда, ко $r\partial a \operatorname{rk} A = n$, $r\partial e n - число неизвестных.$

Доказательство. Снова все сводится к ситуации, когда $(A \mid b)$ имеет ступенчатый вид.

Тогда, единственное решение \iff нет свободных неизвестных \iff ступенек ровно $n \iff$ rk A=n.

14.3.3 Критерий существования единственного решения у системы линейных уравнений с квадратной матрицей коэффициентов в терминах её определителя

Следствие. Пусть A квадратна (то есть m=n). Тогда СЛУ (\star) имеет единственное решение $\iff \det A \neq 0$.

Доказательство. Единственное решение \iff rk $A=n \iff$ det $A\neq 0$.

Замечание. Это единственное решение равно $x = A^{-1}b$.

14.3.4 Размерность пространства решений однородной системы линейных уравнений в терминах ранга её матрицы коэффициентов

Пусть теперь СЛУ однородна, то есть b = 0.

$$Ax = 0. (\star)$$

Пусть $S \subseteq F^n$ – множество её решений. Знаем, что S – подпространство в F^n .

Предложение. $\dim S = n - \operatorname{rk} A$.

Доказательство. Пусть r — число ненулевых строк в ступенчатом виде матрицы A. Тогда $r = \operatorname{rk} A$.

Мы уже строили Φ СР для (★) из n-r векторов.

Значит, $\dim S = n - r = n - \operatorname{rk} A$.

14.3.5 Реализация подпространства в F^n в качестве множества решений однородной системы линейных уравнений

Пусть $b_1, \ldots, b_n \in F^n$,

$$B := (b_1, \ldots, b_p) \in \operatorname{Mat}_{n \times p}(F).$$

Пусть $a_1, \dots, a_q \in F^n$ — ФСР для ОСЛУ $B^T x = 0$.

$$A := (a_1, \dots, a_q) \in \operatorname{Mat}_{n \times q}(F).$$

Предложение. $\langle b_1, \dots, b_p \rangle$ есть множество решений ОСЛУ $A^T x = 0$.

Доказательство. Пусть $S = \{x \in F^n \mid A^T x = 0\}.$

$$\forall i = 1, \dots, q \quad B^T a_i = 0 \implies B^T A = 0$$
$$\implies A^T B = 0 \implies A^T b_j = 0 \quad \forall j = 1, \dots, p.$$

Значит, $b_j \in S \quad \forall j = 1, \dots, p$.

Hо тогда, $\langle b_1, \ldots, b_p \rangle \subseteq S$.

Пусть $r = \operatorname{rk}\{b_1, \ldots, b_p\} = \dim \langle b_1, \ldots, b_p \rangle = \operatorname{rk} B$.

При этом, $\operatorname{rk} A = q = n - r$.

Тогда, dim $S = n - \operatorname{rk} A = n - (n - r) = r$.

Следовательно, $\langle b_1, \ldots, b_p \rangle = S$.

Следствие. Всякое подпространство в F^n является решением некоторой ОСЛУ.

14.4 Координаты вектора по отношению к фиксированному базису векторного пространства

Пусть V — векторное пространство, $\dim V = n, \ e_1, \dots, e_n$ — базис.

Знаем, что $\forall v \in V \ \exists ! \alpha_1, \dots, \alpha_n \in F$, такие что, $v = \alpha_1 e_1 + \dots + \alpha_n e_n$.

Определение 57. Скаляры $\alpha_1, \ldots, \alpha_n$ называются координатами вектора v в базисе e_1, \ldots, e_n .

 Π ример. $V = F^n$.

$$v = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}.$$

Тогда, x_1, \ldots, x_n – координаты вектора v в стандартном базисе пространства F^n .

14.5 Описание всех базисов конечномерного векторного пространства в терминах одного базиса и матриц координат

Пусть теперь e_1',\dots,e_n' – какой то другой набор векторов в V. Тогда,

$$e_1' = c_{11}e_1 + c_{21}e_2 + \dots + c_{n1}e_n$$
 $e_2' = c_{21}e_1 + c_{22}e_2 + \dots + c_{n2}e_n$
 \dots
 $e_n' = c_{n1}e_1 + c_{2n}e_2 + \dots + c_{nn}e_n$.
 $(e_1', \dots, e_n') = (e_1, \dots, e_n) \cdot C$, где $C = (c_{ij})$.

в j-м столбце матрицы C стоят координаты вектора e_i' в базисе e_1, \ldots, e_n .

Предложение. (e'_1,\ldots,e'_n) – базис в $V\iff \det C\neq 0$.

Доказательство.

 $\Rightarrow e'_1,\ldots,e'_n$ – базис, значит $(e_1,\ldots,e_n)=(e'_1,\ldots,e'_n)\cdot C'=(e_1,\ldots,e_n)\cdot C\cdot C'.$ Так как e_1,\ldots,e_n линейно независимы, то $C\cdot C'=E \Rightarrow \det C\neq 0.$

 $\iff \det C \neq 0 \implies \exists C^{-1}.$

Достаточно доказать, что e'_1, \ldots, e'_n линейно независимы.

Пусть

$$\alpha_1 e_1' + \dots + \alpha_n e_n' = 0.$$

Тогда,

$$(e'_1, \dots, e'_n)$$
 $\begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{pmatrix} = 0 \implies (e_1, \dots, e_n) \cdot C \cdot \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{pmatrix} = 0.$

Так как e_1, \ldots, e_n линейно независимы, то

$$C\begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{pmatrix} = 0.$$

Домножаем слева на C^{-1} , получаем

$$\begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} 0 \\ \dots \\ 0 \end{pmatrix}.$$

14.6 Матрица перехода от одного базиса конечномерного векторного пространства к другому

Пусть (e_1, \ldots, e_n) и (e'_1, \ldots, e'_n) — два базиса в V,

$$(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n) \cdot C,$$

при этом $\det C \neq 0$.

Определение 58. Матрица C называется матрицей перехода от базиса (e_1, \ldots, e_n) к базису (e'_1, \ldots, e'_n) .

Замечание. Матрица перехода от (e'_1, \dots, e'_n) к (e_1, \dots, e_n) — это C^{-1} .

14.7 Формула преобразования координат вектора при замене базиса

Пусть $v \in V$, тогда

$$v = x_1 e_1 + \dots + x_n e_n$$
$$v = x_1' e_1' + \dots + x_n' e_n'.$$

Предложение.

$$\begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = C \cdot \begin{pmatrix} x_1' \\ \dots \\ x_n' \end{pmatrix}.$$

Доказательство. Имеем

$$v = (e_1, \dots, e_n) \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$$

С другой стороны,

$$v = (e'_1, \dots, e'_n) \begin{pmatrix} x'_1 \\ \dots \\ x'_n \end{pmatrix} = (e_1, \dots, e_n) \cdot C \begin{pmatrix} x'_1 \\ \dots \\ x'_n \end{pmatrix}$$

Так как e_1,\ldots,e_n линейно независимы, то

$$\begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = C \begin{pmatrix} x_1' \\ \dots \\ x_n' \end{pmatrix}.$$

15 Лекция 9.01.2020

15.1 Сумма двух подпространств векторного пространства

Пусть V – векторное пространство над F.

 $U, W \subseteq V$ — подпространства.

Тогда, $U \cap W$ – тоже подпространство. (можно проверить по определению)

Определение 59. Cуммой подпространств U, W называется множество

$$U + W := \{u + w \mid v \in U, w \in W\}.$$

Упражнение. U + W – подпространство.

Замечание. Имеем $U \cap W \subseteq U = U + 0 \subseteq U + W$.

Значит, $\dim(U \cap W) \leqslant \dim U \leqslant \dim(U + W)$.

15.2 Связь размерностей двух подпространств с размерностями их суммы и пересечения

Теорема 15.1. $\dim(U \cap W) + \dim(U + W) = \dim U + \dim W$.

 $\Pi puмер$. Всякие две плоскости в \mathbb{R}^3 (содержащие 0) имеют общую прямую.

Здесь $V = \mathbb{R}^3$, dim U = 2, dim W = 2.

При этом $\dim(U+W) \leqslant 3$.

Тогда, $\dim(U \cap W) = \dim U + \dim W - \dim(U + W) \ge 2 + 2 - 3 = 1$.

Доказательство. Пусть $\dim(U \cap W) = p$, $\dim U = q$, $\dim W = r$.

Пусть $a = \{a_1, \ldots, a_p\}$ – базис в $U \cap W$.

Тогда, a можно дополнить до базиса в U и в W:

 $b = \{b_1, \dots, b_{q-p}\}$ – такая система, что $a \cup b$ – базис в U.

 $c = \{c_1, \dots, c_{r-p}\}$ – такая система, что $a \cup c$ – базис в W.

Докажем, что $a \cup b \cup c$ – базис в U+W.

1. $\langle a \cup b \cup c \rangle = U + W$:

 $v \in U + W \implies \exists u \in U, w \in W$, такие что v = u + w.

 $u \in U = \langle a \cup b \rangle \subseteq \langle a \cup b \cup c \rangle.$

 $w \in W = \langle a \cup c \rangle \subseteq \langle a \cup b \cup c \rangle.$

Значит, $v \in \langle a \cup b \cup c \rangle$.

2. $a \cup b \cup c$ линейно независимо.

Пусть
$$\underbrace{\alpha_1 a_1 + \dots + \alpha_p a_p}_x + \underbrace{\beta_1 b_1 + \dots + \beta_{q-p} b_{q-p}}_y + \underbrace{\gamma_1 c_1 + \dots + \gamma_{r-p} c_{r-p}}_z = 0$$
, где $\alpha_i, \beta_j, \gamma_k \in F$.

Тогда, $z = -\underset{\in U}{x} - \underset{\in U}{y} \in U$.

Ho, $z \in W$, значит $z \in U \cap W$.

To есть $z = \lambda_1 a_1 + \cdots + \lambda_p a_p, \lambda_i \in F$.

Тогда, $\lambda_1 a_1 + \cdots + \lambda_p a_p - \gamma_1 c_1 - \cdots - \gamma_{r-p} c_{r-p} = 0$

Так как $a \cup c$ линейно независимо, то $\lambda_1 = \cdots = \lambda_p = \gamma_1 = \cdots = \gamma_{r-p} = 0$ и z = 0.

Следовательно, x + y = 0, то есть $\alpha_1 a_1 + \dots + \alpha_p a_p + \beta_1 b_1 + \dots + \beta_{q-p} b_{q-p} = 0$.

Так как $a \cup b$ линейно независимо, то $\alpha_1 = \cdots = \alpha_p = \beta_1 = \cdots = \beta_{q-p} = 0$.

Получаем, что $a \cup b \cup c$ линейно независимо.

Итог: $a \cup b \cup c$ – базис в U + W.

$$\dim(U+W) = |a|+|b|+|c|$$

$$= p+q-p+r-p$$

$$= q+r-p$$

$$= \dim U + \dim W - \dim(U\cap W).$$

49

15.3 Сумма нескольких подпространств векторного пространства

Пусть $U_1, \dots U_k \subseteq V$ – подпространства.

Определение 60. *Суммой* подпространств $U_1, \dots U_k$ называется множество

$$U_1 + \cdots + U_k = \{u_1 + \cdots + u_k \mid u_i \in U_i\}.$$

Упражнение. Доказать, что $U_1 + \cdots + U_k$ – подпространство.

Замечание. $\dim(U_1 + \cdots + U_k) \leq \dim U_1 + \cdots + \dim U_k$.

15.4 Линейно независимые подпространства, пять эквивалентных условий

Определение 61. Подпространства U_1, \ldots, U_k называются *линейно независимыми*, если $\forall u_1 \in U_1, \ldots, u_k \in U_k$ из условия $u_1 + \cdots + u_k = 0$ следует $u_1 = \cdots = u_k = 0$.

 Π ример. Если dim $U_i=1$ и $U_i=\langle u_i \rangle \ \forall i$, то U_1,\ldots,U_k линейно независимы $\iff u_1,\ldots,u_k$ линейно независимы.

Теорема 15.2. Следующие условия эквивалентни:

- (1) U_1, \ldots, U_k линейно независимы.
- (2) всякий $u \in U_1 + \dots + U_k$ единственным образом представим в виде $u = u_1 + \dots + u_k$, где $u_i \in U_i$.
- (3) Ecau e_i basic e U_i $\forall i$, mo $\underbrace{e_1 \sqcup e_2 \sqcup \cdots \sqcup e_k}_{\text{obsedunence myarmumhookeems}}$ basic e $U_1 + \cdots + U_k$.
- (4) $\dim(U_1 + \dots + U_k) = \dim U_1 + \dots + \dim U_k$.
- (5) $\forall i = 1, ..., k$ $U_i \cap (U_1 + \cdots + U_{i-1} + U_{i+1} + \cdots + U_k) = 0.$

Пример. Если $e_1 = \{e_1, e_2\}, e_2 = \{e_2, e_3\},$ то

- $e_1 \cup e_2 = \{e_1, e_2, e_3\} 2$ элемента,
- $e_1 \sqcup e_2 = \{e_1, e_2, e_2, e_3\} 4$ элемента.

Доказательство. Пусть $\hat{U}_i = U_1 + \dots + U_{i-1} + U_{i+1} + \dots + U_k$.

(1) \Longrightarrow (2) Пусть $u_1 + \dots + u_k = u'_1 + \dots + u'_k$, где $u_i, u'_i \in U_i$. Тогда, $(u_1 - u'_1) + (u_2 - u'_2) + \dots + (u_k - u'_k) = 0 \implies u_i - u'_i = \dots = u_k - u'_k = 0$.

To есть, $u_1 = u'_1, \ldots, u_k = u'_k$.

 $(2) \Longrightarrow (3)$ Пусть $u \in U_1 + \cdots + U_k$ – произвольный.

u единственным образом представим в виде $u = u_1 + \cdots + u_k$, где $u_i \in U_i$,

 u_i единственным образом представим в виде линейной комбинации векторов из \mathbf{e}_i .

Следовательно, u единственным образом представим в виде линейной комбинации векторов из $e_1 \sqcup \cdots \sqcup e_k$.

To есть, $e_1 \sqcup \cdots \sqcup e_k$ — базис в $U_1 + \cdots + U_k$.

- $(3) \Longrightarrow (4)$ Очевидно.
- $(4) \Longrightarrow (5)$

$$\dim(U_i \cap \widehat{U}_i) = \dim U_i + \dim \widehat{U}_i - \dim(U_1 + \dots + U_k)$$

$$\leq \dim U_i + (\dim U_1 + \dots + \dim U_{i-1} + \dim U_{i+1} + \dots + \dim U_k) - (\dim U_1 + \dots + \dim U_k)$$

$$= 0.$$

$$(5) \Longrightarrow (1) \ u_1 + \dots + u_k = 0, \ \text{где} \ u_i \in U_i.$$

Тогда,
$$u_i = \underbrace{-u_1 - \dots - u_{i-1} - u_{i+1} - \dots - u_k}_{\in \widehat{U}_i}$$

Следовательно, $u_i \in U_i \cap \widehat{U}_i = 0 \implies u_i = 0.$

Следствие. Пусть k=2, тогда

 U_1, U_2 линейно независимы $\iff U_1 \cap U_2 = 0.$

15.5 Разложение векторного пространства в прямую сумму нескольких подпространств

Определение 62. Говорят, что векторное пространство V разлагается в *прямую сумму* U_1, \dots, U_k , если

1.
$$V = U_1 + \cdots + U_k$$
,

2. U_1, \dots, U_k линейно независимы.

Обозначение:
$$V = U_1 \oplus U_2 \oplus \cdots \oplus U_k$$
.

Пример. Если
$$e_1, \ldots, e_n$$
 – базис V , то $V = \langle e_1 \rangle \oplus \langle e_2 \rangle \oplus \cdots \oplus \langle e_n \rangle$

15.6 Проекция вектора на подпространство вдоль дополнительного подпространства

Замечание. При k=2:

1.
$$V = U_1 \oplus U_2 \iff \begin{cases} V = U_1 + U_2, \\ U_1 \cap U_2 = 0, \end{cases}$$

2. $V=U_1\oplus U_2 \implies \forall v\in V \; \exists !u_1\in U_1,u_2\in U_2,$ такие что $v=u_1+u_2.$

Тогда, u_1 называется проекцией вектора v на U_1 вдоль U_2 .

Так же, u_2 называется проекцией вектора v на U_2 вдоль U_1 .

16 Лекция 16.01.2020

16.1 Линейные отображения векторных пространств

Пусть V, W — векторные пространства над F.

Определение 63. Отображение $\varphi:V\to W$ называется линейным, если

- 1. $\varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2)$,
- 2. $\varphi(\lambda v) = \lambda \varphi(v)$.

 $\forall v_1, v_2, v \in V, \forall \lambda \in F.$

Упражнение. 1 и 2 эквивалентны тому, что $\varphi(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 \varphi(v_1) + \lambda_2 \varphi(v_2).$ $\forall v_1, v_2 \in V, \ \forall \lambda_1, \lambda_2 \in F.$

16.2 Примеры линейных отображений

Презентация (продублирована ниже)

16.2.1 Пример 0

 $\begin{array}{ll} \varphi:V\to W - \text{ нулевое отображение,} \\ \varphi(v):=\overrightarrow{0} & \forall v\in V \end{array}$

1) $\varphi(v_1 + v_2) = \overrightarrow{0} = \overrightarrow{0} + \overrightarrow{0} = \varphi(v_1) + \varphi(v_2),$ 2) $\varphi(\lambda \cdot v) = \overrightarrow{0} = \lambda \overrightarrow{0} = \lambda \cdot \varphi(v).$

16.2.2 Пример 1

arphi:V o W — тожественное отображение, $arphi(v):=v\quad \forall v\in V.$ Обозначение: arphi=: Id.

1) $\varphi(v_1 + v_2) = v_1 + v_2 = \varphi(v_1) + \varphi(v_2),$ 2) $\varphi(\lambda \cdot v) = \lambda \cdot v = \lambda \cdot \varphi(v).$

16.2.3 Пример 2

 $\varphi:\mathbb{R}^2 o \mathbb{R}^2$ — поворот на угол α вокруг начала координат.

Два красных вектора v_1 , v_2 и их сумму v_1+v_2 повернули на угол α , получив $\varphi(v_1)$, $\varphi(v_2)$ а так же точку A. Свойство 1 говорит нам, что точка A это не просто сумма образов, она так же является образом суммы v_1+v_2 . То есть точку A можно получить двумя разными способами: сложить $\varphi(v_1)$ и $\varphi(v_2)$ или повернуть v_1+v_2 .

Вторая картинка показывает свойство 2: точка B это с одной стороны $\varphi(v) \cdot \lambda$, а с другой — образ $\lambda \cdot v$.

1) $\varphi(v_1) + \varphi(v_2) = A = \varphi(v_1 + v_2),$

2) $\varphi(\lambda \cdot v) = B = \lambda \cdot \varphi(v)$.

16.2.4 Пример 3

 $\varphi: \mathbb{R}^3 \to \mathbb{R}^2$ — ортогональная проекция на плоскость Oxy.

16.2.5Пример 4

 $\mathbb{R}[x]_{\leqslant n}$ — пространство многочленов от x степени $\leqslant n$ с коэффициентами из \mathbb{R} . $\Delta: f(x) \mapsto f'(x)$ — отображение дифференциирования.

1)
$$(f+g)' = f' + g'$$

1)
$$(f+g)' = f' + g'$$
,
2) $(\lambda \cdot f)' = \lambda \cdot f' \quad \forall \lambda \in \mathbb{R}$.

1) и 2)
$$\implies \Delta$$
 — линейное отображение $\mathbb{R}[x]_{\leqslant n} \to \mathbb{R}[x]_{\leqslant n-1}$.

16.2.6 Пример 5

V — векторное пространство над F, dim V = n.

$$(e_1,\ldots,e_n)$$
 — базис V .

$$\varphi:V\to F^n$$

$$v = x_1 e_1 + \dots + x_n e_n \implies \varphi(v) := \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Покажем, что оно линейно:

Пусть

$$v = x_1 e_1 + \dots + x_n e_n \implies \varphi(v) := \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix},$$

$$w = y_1 e_1 + \dots + y_n e_n \implies \varphi(w) = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}.$$

Тогда,

1)
$$v + w = (x_1 + y_1)e_1 + \dots + (x_n + y_n)e_n \implies \varphi(v + w) = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \varphi(v) + \varphi(w),$$

2)
$$\lambda \cdot v = (\lambda x_1)e_1 + \dots + (\lambda x_n)e_n \implies \varphi(\lambda \cdot v) = \begin{pmatrix} \lambda x_1 \\ \vdots \\ \lambda x_n \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \lambda \varphi(v).$$

16.3 Простейшие свойства линейных отображений

Здесь $\overrightarrow{0_V}$ — нулевой вектор в векторном пространстве V.

1.
$$\varphi(\overrightarrow{0_V}) = \overrightarrow{0_W}$$
.

Доказательство:
$$\varphi(\overrightarrow{0_V})=\varphi(0\cdot\overrightarrow{0_V})=0\cdot \varphi(\overrightarrow{0_V})=\varphi(\overrightarrow{0_W})$$

2.
$$\varphi(-v) = -\varphi(v)$$
.

Доказательство:
$$\varphi(-v) + \varphi(v) = \varphi(-v+v) = \varphi(0) = \varphi(\overrightarrow{0_V}) = \overrightarrow{0_W} \implies \varphi(-v) = -\varphi(v)$$
.

Изоморфизм векторных пространств

Определение 64. Отображение $\varphi: V \to W$ называется *изоморфизмом* если оно линейно и биективно. Обозначение: $\varphi: V \xrightarrow{\sim} W$.

В примерах выше:

0.
$$\varphi$$
 — изоморфизм \iff $\begin{cases} V = \{\overrightarrow{0}\}, \\ W = \{\overrightarrow{0}\} \end{cases}$

- 2. да
- 3. нет
- 4. φ изоморфизм $\iff n=0$
- 5. да!

16.5 Отображение, обратное к изоморфизму

Предложение. Если $\varphi:V\to W$ — изоморфизм, то φ^{-1} — тоже изоморфизм.

Доказательство. Биективность есть, так как φ^{-1} — обратное отображение. Проверим линейность

1) $w_1, w_2 \in W \implies w_1 = \varphi(\varphi^{-1}(w_1)), w_2 = \varphi(\varphi^{-1}(w_2))$

$$\varphi^{-1}(w_1 + w_2) = \varphi^{-1}\left(\underbrace{\varphi\left(\varphi^{-1}(w_1)\right)}_{w_1} + \underbrace{\varphi\left(\varphi^{-1}(w_2)\right)}_{w_2}\right)$$
$$= \underbrace{\varphi^{-1}\left(\varphi\left(\varphi^{-1}(w_1) + \varphi^{-1}(w_2)\right)\right)}_{Id}$$
$$= \varphi^{-1}(w_1) + \varphi^{-1}(w_2).$$

2)

$$\varphi^{-1}(\lambda \cdot w_1) = \varphi^{-1} \left(\lambda \cdot \varphi \left(\varphi^{-1} \left(w_1\right)\right)\right)$$
$$= \underbrace{\varphi^{-1} \left(\varphi \left(\lambda \cdot \varphi^{-1} \left(w_1\right)\right)\right)}_{Id}$$
$$= \lambda \varphi^{-1}(w_1)$$

16.6 Композиция двух линейных отображений, композиция двух изоморфизмов

Пусть $U \xrightarrow{\psi} V \xrightarrow{\varphi} W$, тогда $\varphi \circ \psi : U \to W$ — композиция.

Предложение.

- 1. Если φ , ψ линейны, то $\varphi \circ \psi$ тоже линейна.
- 2. Если φ , ψ изоморфизмы, то $\varphi \circ \psi$ тоже изоморфизм.

Доказательство.

- 1. (1) $(\varphi \circ \psi)(u_1 + u_2) = \varphi(\psi(u_1 + u_2)) = \varphi(\psi(u_1) + \psi(u_2)) = \varphi(\psi(u_1)) + \varphi(\psi(u_2)) = (\varphi \circ \psi)(u_1) + (\varphi \circ \psi)(u_2)$.
 - (2) $(\varphi \circ \psi)(\varphi u) = \varphi(\psi(\lambda u)) = \varphi(\lambda \psi(u)) = \lambda \varphi(\psi(u)) = \lambda(\varphi \circ \psi)(u).$
- 2. из 1 следует, что $(\varphi \circ \psi)$ линейно, но при этом биективно как композиция двух биекций.

16.7 Изоморфные векторные пространства

Определение 65. Два векторных пространства V, W называются *изоморфными*, если существует изоморфизм $\varphi: V \xrightarrow{\sim} W$.

Обозначается: $V \simeq W$ (либо $V \cong W$).

16.8 Отношение изоморфности на множестве всех векторных пространств

Теорема 16.1. Отношение изомор ϕ ности является отношением эквивалентности на множестве всех векторных пространств над фиксированным полем F.

Доказательство.

- 1. Рефлексивность: $Id: V \xrightarrow{\sim} V$.
- 2. Симметричность: $V \simeq W \implies W \simeq V$ следует из Предложения 1.
- 3. Транзитивность: $U \simeq V, V \simeq W \implies U \simeq W$ следует из Предложения 2.

16.9 Классы изоморфизма векторных пространств

Определение 66. Классы эквивалентности называются классами изоморфизма.

Пример. $F[x]_{\leqslant n} \simeq F^{n+1}$:

$$a_0 + a_1 x + \dots + a_n x^n \longleftrightarrow \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix}.$$

16.10 Критерий изоморфности двух конечномерных векторных пространств

Теорема 16.2. Пусть $V, W - \partial \epsilon a$ конечномерных векторных пространства над F. $Tor\partial a, V \simeq W \iff \dim V = \dim W$.

Лемма 16.3. dim $V = n \implies V \simeq F^n$.

Доказательство. Фиксируем базис (e_1, \ldots, e_n) в V. Тогда, отображение $\varphi: V \to F^n$ из Примера 5 — изоморфизм.

Лемма 16.4. Пусть $\varphi:V\stackrel{\sim}{\longrightarrow} W$ и e_1,\ldots,e_n — базис V, тогда $\varphi(e_1),\ldots,\varphi(e_n)$ — базис W.

Доказательство. Пусть $w \in W$. Тогда $\exists x_1, \dots, x_n \in F$, такие что $\varphi^{-1}(w) = x_1 e_1 + \dots + x_n e_n$. Тогда, $w = \varphi\left(\varphi^{-1}(w)\right) = \varphi(x_1 e_1 + \dots + x_n e_n) = x_1 \varphi(e_1) + \dots + x_n \varphi(e_n) \Longrightarrow W = \langle \varphi(e_1), \dots, \varphi(e_n) \rangle$.

Теперь докажем линейную независимость:

Пусть $\alpha_1 \varphi(e_1) + \cdots + \alpha_n \varphi(e_n) = \overrightarrow{0}$.

Тогда, $\varphi(\alpha_1 e_1 + \dots + \alpha_n e_n) = \overrightarrow{0}$.

Применяя φ^{-1} получаем, $\alpha_1 e_1 + \dots + \alpha_n e_n = \varphi^{-1}(\overrightarrow{0}) = \overrightarrow{0}$. Значит, $\alpha_1 = \dots = \alpha_n = 0$.

Итог: $\varphi(e_1), \ldots, \varphi(e_n)$ — базис в V.

Доказательство теоремы.

- \longleftarrow Пусть $\dim V = \dim W = n$. Тогда по лемме 1 $V \simeq F^n$, $W \simeq F^n$, значит $V \simeq W$.
- \implies Пусть $V \simeq W.$ Фиксируем изоморфизм $\varphi: V \xrightarrow{\sim} W.$

Тогда по лемме 2 получаем, что $\varphi(e_1), \ldots, \varphi(e_n)$ — базис W, а значит $\dim V = n = \dim W$.

Упражнение. Если $\dim V = n$, то все изоморфизмы $V \xrightarrow{\sim} F^n$ находятся в биекции с базисами пространства V.

16.11 Задание линейного отображения путём задания образов векторов фиксированного базиса

Пусть V, W — векторные пространства над F и (e_1, \ldots, e_n) — фиксированный базис в V.

Предложение.

- 1. Если $\varphi: V \to W$ линейное отображение, то φ однозначно определяется векторами $\varphi(e_1), \dots, \varphi(e_n)$,
- 2. $\forall w_1, \ldots, w_n \in W \exists !$ линейное отображение φ , такое что, $\varphi(e_1) = w_1, \ldots, \varphi(e_n) = w_n$.

Доказательство.

- 1. $v \in V \implies v = x_1 e_1 + \dots + x_n e_n \implies \varphi(v) = x_1 \varphi(e_1) + \dots + x_n \varphi(e_n)$.
- 2. Зададим $\varphi: V \to W$ формулой $\varphi(x_1e_1 + \dots + x_ne_n) = x_1w_1 + \dots + x_nw_n$.

Тогда φ — линейное отображение из V в W (упражнение).

Единственность следует из 1

17 Лекция 23.01.2020

17.1 Матрица линейного отображения

Пусть V, W — векторные пространства над F.

$$e = (e_1, \ldots, e_n)$$
 — базис V ,

$$f = (f_1, \dots, f_m)$$
 — базис W .

Пусть $\varphi:V \to W$ — линейное отображение.

$$\forall j = 1, \dots, n$$

$$\varphi(e_j) = a_{1j}f_1 + a_{2j}f_2 + \dots + a_{mj}f_m = (f_1, \dots, f_m) \begin{pmatrix} a_{1j} \\ a_{2j} \\ \dots \\ a_{mj} \end{pmatrix}.$$
 Тогда, $(\varphi(e_1), \dots, \varphi(e_n)) = (f_1, \dots, f_m) \cdot A$, где $A = (a_{ij}) \in \operatorname{Mat}_{m \times n}(F)$.

Определение 67. A называется матрицей линейного отображения φ в базисах e и f.

Обозначение: $A = A(\varphi, e, f)$.

В j-м столбце матрицы A стоят координаты вектора $\varphi(e_i)$ в базисе f.

Обозначение 1. $\operatorname{Hom}(V,W) := \operatorname{множество}$ всех линейных отображений из V в W.

Следствие (из предложения 16.11). При фиксированных базисах е и f отображение $\varphi \mapsto A(\varphi, e, f)$ является биекцией между $\operatorname{Hom}(V, W)$ и $\operatorname{Mat}_{m \times n}(F)$.

17.2 Примеры

$$0. \ \varphi(v) = 0 \ \forall v \implies \forall e, f \ A(\varphi, e, f) = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}.$$

3.
$$\mathbb{R}^3 \to \mathbb{R}^2$$
 — проекция на Oxy .

е — стандартный базис в
$$\mathbb{R}^3$$
 $\Longrightarrow A(\varphi, \mathbf{e}, \mathbf{f}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$

4.
$$\Delta: \mathbb{R}[x]_{\leq n} \to \mathbb{R}[x]_{\leq n-1}, f \to f'$$
.

$$e = (1, x, \dots, x^n), f = (1, x, \dots, x^{n-1}).$$

$$A(\varphi, e, f) = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 2 & 0 & \dots & 0 \\ 0 & 0 & 0 & 3 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & n \end{pmatrix}$$

5.
$$x_1e_1 + \dots + x_ne_n \mapsto \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$$
.

$$\begin{array}{l} \mathrm{e} = (e_1, \ldots, e_n) \\ \mathrm{f} = \mathrm{стандартный\ базиc} \end{array} \} \implies A(\varphi, \mathrm{e}, \mathrm{f}) = E.$$

6.
$$\varphi: F^n \to F^m$$

$$\varphi(x) = A \cdot x, A \in \operatorname{Mat}_{m \times n}(F).$$

$$f =$$
стандартный базис.

$$A(\varphi, e, f) = A.$$

17.3 Связь координат вектора и его образа при линейном отображении

Предложение. Пусть $\varphi: V \to W$ — линейное отображение,

$$e = (e_1, \dots, e_n)$$
 — базис V ,

$$f = (f_1, \ldots, f_m)$$
 — базис W ,

$$A=A(\varphi,\mathbf{e},\mathbf{f}).$$

$$v \in V \implies v = x_1 e_1 + \dots + x_n e_n,$$

$$\varphi(v) = y_1 f_1 + \dots + y_m f_m.$$

Тогда,

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Доказательство. $v = (e_1, \dots, e_m) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$.

Значит,

$$\varphi(v) = (\varphi(e_1), \dots, \varphi(e_n)) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = (f_1, \dots, f_m) \cdot A \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

При этом,

$$\varphi(v) = (f_1, \dots, f_m) \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}.$$

Так как f_1, \ldots, f_m линейно независимы, то

$$A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}.$$

17.4 Формула изменения матрицы линейного отображения между векторными пространствами V и W при замене их базисов

Пусть теперь e' — другой базис в V, \mathbf{f}' — другой базис в W.

$$e' = e \cdot C_{\in M_n}$$

$$f' = f \cdot D_{\in M_m}.$$

$$A = A(\varphi, e, f),$$

$$A' = A(\varphi, e', f').$$

Предложение. $A' = D^{-1}AC$.

Доказательство.

$$(e'_1, \dots e'_n) = (e_1, \dots, e_n) \cdot C.$$

Применим φ ,

$$(\varphi(e_1'), \dots, \varphi(e_n')) = (\varphi(e_1), \dots, \varphi(e_n)) \cdot C = (f_1, \dots, f_m) \cdot A \cdot C$$

При этом,

$$(\varphi(e'_1), \dots, \varphi(e'_n)) = (f'_1, \dots, f'_m) \cdot A' = (f_1, \dots, f_m) \cdot D \cdot A'.$$

Отсюда,

$$A \cdot C = D \cdot A' \implies A' = D^{-1} \cdot A \cdot C.$$

17.5 Операции сложения и умножения на скаляр на множестве всех линейных отображений между двумя векторными пространствами

Пусть $\varphi, \psi \in \text{Hom}(V, W), \lambda \in F$.

Определение 68.

- 1. $\mathit{Суммой}$ линейных отображений φ и ψ называется линейное отображение $\varphi+\psi\in \mathrm{Hom}(V,W),$ такое что $(\varphi+\psi)(v):=\varphi(v)+\psi(v).$
- 2. Произведение φ на λ это линейное отображение $\lambda \varphi \in \text{Hom}(V, W)$, такое что $(\lambda \varphi)(v) := \lambda \varphi(v)$.

Упражнение. $\varphi + \psi$ и $\lambda \varphi$ — действительно линейные отображения.

Упражнение. $\operatorname{Hom}(V,W)$ с этими операциями является векторным пространством над F.

17.6 Матрица суммы двух линейных отображений и произведения линейного отображения на скаляр

Зафиксируем базисы $e = (e_1, \dots, e_n)$ в V и $f = (f_1, \dots, f_m)$ в W.

Предложение.

- 1. $\varphi, \psi \in \text{Hom}(V, W), A_{\varphi} = A(\varphi, e, f)$ $A_{\psi} = A(\psi, e, f)$ $A_{\varphi+\psi} = A(\varphi + \varphi, e, f) \implies A_{\varphi+\psi} = A_{\varphi} + A_{\psi}$
- $$\begin{split} 2. \quad \lambda \in F, \varphi \in \mathrm{Hom}(V,W), \ A_{\varphi} &= A(\varphi,\mathrm{e},\mathrm{f}) \\ A_{\lambda \varphi} &= A(\lambda \varphi,\mathrm{e},\mathrm{f}) \quad \Longrightarrow \ A_{\lambda \varphi} = \lambda A_{\varphi} \end{split}$$

Доказательство.

1.

$$(f_1, \dots, f_m) \cdot A_{\varphi + \psi} = ((\varphi + \psi)(e_1), \dots, (\varphi + \psi)(e_n))$$

$$= (\varphi(e_1), \dots, \varphi(e_n)) + (\psi(e_1), \dots, \psi(e_n))$$

$$= (f_1, \dots, f_m)A_{\varphi} + (f_1, \dots, f_m)A_{\psi}$$

$$= (f_1, \dots, f_m)(A_{\varphi} + A_{\psi}).$$

Следовательно, $A_{\varphi+\psi} = A_{\varphi} + A_{\psi}$.

2. Аналогично.

17.7 Изоморфизм между пространством $\mathrm{Hom}(V,W)$ и пространством $(m \times n)$ -матриц, где $n = \dim V$, $m = \dim W$

Следствие. При фиксированном e и f отображение $\varphi \mapsto A(\varphi, e, f)$ является изоморфизмом между $\operatorname{Hom}(V, W)$ и $\operatorname{Mat}_{m \times n}(F)$.

Доказательство. Биективность была выше. Линейность — из предыдущего предложения.

Следствие. dim $\text{Hom}(V, W) = m \cdot n$.

17.8 Матрица композиции двух линейных отображений

Пусть $U \xrightarrow{\psi} V \xrightarrow{\varphi} W$ — цепочка линейных отображений, а $\varphi \circ \psi : U \to W$ — их композиция, е = (e_1,\ldots,e_n) — базис V, f = (f_1,\ldots,f_m) — базис W, g = (g_1,\ldots,g_k) — базис U.

$$A_{\varphi} = A(\varphi, \mathbb{e}, \mathbb{f}),$$

$$A_{\psi} = A(\psi, \mathbf{g}, \mathbf{e}),$$

$$A_{\varphi \circ \psi} = A(\varphi \circ \psi, g, f).$$

Тогда,
$$A_{\varphi \circ \psi} = A_{\varphi} \cdot A_{\psi}$$
.

Доказательство. $(\psi(g_1),\ldots,\psi(g_k))=(e_1,\ldots,e_n)A_{\psi}$. Тогда применяя $\varphi,$

$$(\varphi(\psi(g_1)), \dots, \varphi(\psi(g_k))) = (\varphi(e_1), \dots, \varphi(e_n)) A_{\psi} = (f_1, \dots, f_m) A_{\varphi} A_{\psi}.$$

С другой стороны,

$$(\varphi(\psi(g_1)),\ldots,\varphi(\psi(g_k)))=(f_1,\ldots,f_m)A_{\varphi\circ\psi}.$$

Значит, $A_{\varphi} \cdot A_{\psi} = A_{\varphi \circ \psi}$.

17.9 Ядро и образ линейного отображения; утверждение о том, что они являются подпространствами в соответствующих векторных пространствах

Пусть
$$\varphi: V \to W$$
.

Определение 69. Ядро линейной оболочки φ — это $\ker \varphi := \{v \in V \mid \varphi(v) = 0\} \subseteq V$. Образ линейного отображения φ — это $\operatorname{Im} \varphi := \varphi(V) \subseteq W$.

$$\begin{array}{l} \varPipumep. \ \Delta: \mathbb{R}[x]_{\leqslant n} \to \mathbb{R}[x]_{\leqslant n}, \ f \mapsto f', \\ \ker \Delta = \{f \mid f = \mathrm{const}\}, \\ \mathrm{Im} \ \Delta = \mathbb{R}[x]_{\leqslant n-1}. \end{array}$$

Предложение.

- 1. Ядро подпространство в V.
- 2. Образ подпространство в W.

Доказательство.

- 1. (a) $\varphi(0_V) = 0_W$,
 - (b) $v_1, v_2 \in \ker \varphi \implies \varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2) = 0 + 0 = 0 \implies v_1 + v_2 \in \ker \varphi$,
 - (c) $\lambda \in F, v \in V \implies \varphi(\lambda v) = \lambda \varphi(v) = \lambda 0 = 0 \implies \lambda v \in \ker \varphi$.
- 2. (a) $0_W = \varphi(W) \in \operatorname{Im} \varphi$,
 - $\text{(b)} \ \ w_1,w_2 \in \operatorname{Im} \varphi \implies \exists v_1,v_2:w_1 = \varphi(v_1),w_2 = \varphi(v_2) \implies w_1+w_2 = \varphi(v_1)+\varphi(v_2) = \varphi(v_1+v_2) \in \operatorname{Im} \varphi,$
 - $\text{(c)} \ \ \varphi \in F, w \in \operatorname{Im} \varphi \implies \exists v \in V : w = \varphi(v) \implies \varphi(w) = \lambda \varphi(v) = \varphi(\lambda v) \in \operatorname{Im} \varphi.$

18 Лекция 25.01.2020

18.1 Критерий инъективности линейного отображения в терминах его ядра

Пусть V,W — векторные пространства над F, $\varphi:V\to W$ — линейное отображение. Ядро: $\ker\varphi:=\{v\in V\mid \varphi(v)=0\}\subseteq V.$ Образ: $\operatorname{Im}\varphi:=\varphi(V)\subseteq W.$

Предложение.

- (a) φ инъективно $\iff \ker \varphi = \{0\},$
- (b) φ сюръективно \iff Im $\varphi = W$.

Доказательство.

- (а) \implies очевидно \iff Пусть $v_1, v_2 \in V$ таковы, что $\varphi(v_1) = \varphi(v_2)$. Тогда $\varphi(v_1 v_2) = 0$, а значит $v_1 v_2 \in \ker \varphi$. Но тогда, $v_1 v_2 = 0$, то есть $v_1 = v_2$.
- (b) очевидно.

Следствие. φ изоморфизм \iff $\begin{cases} \ker \varphi = \{0\}, \\ \operatorname{Im} \varphi = W. \end{cases}$

18.2 Характеризация изоморфизмов в терминах их ядер и образов

Пусть $U \subseteq V$ — подпространство, u_1, \ldots, u_k — базис в U.

Лемма 18.1. Тогда, $\varphi(U) = \langle \varphi(u_1), \dots, \varphi(u_k) \rangle$. В частности, $\dim \varphi(U) \leqslant \dim U$, $\dim \operatorname{Im} \varphi \leqslant \dim V$.

Доказательство. $u \in U \implies u = \alpha_1 u_1 + \cdots + \alpha_k u_k, \ \alpha_i \in F$, тогда

$$\varphi(u) = \alpha_1 \varphi(u_1) + \dots + \alpha_k \varphi(u_k) \in \langle \varphi(u_1), \dots, \varphi(u_k) \rangle.$$

18.3 Связь размерности образа линейного отображения с рангом его матрицы

Пусть $\mathbf{e} = (e_1, \dots, e_n)$ — базис V, $\mathbf{f} = (f_1, \dots, f_m)$ — базис W, $A = A(\varphi, \mathbf{e}, \mathbf{f})$.

Теорема 18.2. $\operatorname{rk} A = \dim \operatorname{Im} \varphi$.

Доказательство. По лемме, $\operatorname{Im} \varphi = \langle \varphi(e_1), \dots, \varphi(e_n) \rangle$. Поэтому, $\dim \operatorname{Im} \varphi = \operatorname{rk} \{ \varphi(e_1), \dots, \varphi(e_n) \}$. Так как j-й столбец матрицы A составлен из координат вектора $\varphi(e_j)$ в базисе f, то

$$\alpha_1 \varphi(e_1) + \dots + \alpha_n \varphi(e_n) = 0 \iff \alpha_1 A^{(1)} + \dots + \alpha_n A^{(n)} = 0.$$

Значит, dim Im $\varphi = \text{rk}\{\varphi(e_1), \dots, \varphi(e_n)\} = \text{rk}\{A^{(1)}, \dots, A^{(n)}\} = \text{rk } A$.

Замечание. Число dim Im φ называется рангом линейного отображения φ , обозначается $\operatorname{rk} \varphi$.

Следствие. $\operatorname{rk} A$ не зависит от выбора пары базисов e и f .

18.4 Инвариантность ранга матрицы относительно умножения на квадратную невырожденную матрицу слева или справа

Обозначение 2. $M_n^0(F) := \{ C \in M_n(F) \mid \det C \neq 0 \}.$

Следствие. Ранг матрицы не меняется при умножении слева и/или справа на невырожденную матрицу.

Доказательство. Если $A \in \text{Mat}_{m \times n}, C \in M_n^0, D \in M_m^0$, то A и $D^{-1}AC$ — это матрицы одного и того же линейного отображения в разных парах базисов.

По теореме, $\operatorname{rk} A = \operatorname{rk} (D^{-1}AC)$.

18.5 Свойство образов векторов, дополняющих базис ядра до базиса всего пространства

Предложение. Пусть e_1, \ldots, e_k — базис $\ker \varphi$ и векторы e_{k+1}, \ldots, e_n дополняют его до базиса всего V. Тогда, $\varphi(e_{k+1}), \ldots, \varphi(e_n)$ образуют базис в $\operatorname{Im} \varphi$.

 \mathcal{A} оказательство. Іт $\varphi = \langle \varphi(e_1), \dots, \varphi(e_k), \varphi(e_{k+1}), \dots, \varphi(e_n) \rangle = \langle \varphi(e_{k+1}), \dots, \varphi(e_n) \rangle$. (так как $\varphi(e_1) = \dots = \varphi(e_k) = 0$). Осталось показать, что $\varphi(e_{k+1}), \dots, \varphi(e_n)$ линейно независимы.

Пусть $\alpha_{k+1}\varphi(e_{k+1}) + \cdots + \alpha_n\varphi(e_n) = 0$, где $\alpha_i \in F$.

Тогда $\varphi(\alpha_{k+1}e_{k+1}+\dots\alpha_ne_n)=0 \implies \alpha_{k+1}e_{k+1}+\dots+\alpha_ne_n\in\ker\varphi.$

Но тогда $\alpha_{k+1}e_{k+1} + \dots + \alpha_n e_n = \beta_1 e_1 + \dots + \beta_k e_k$, где $\beta_j \in F$.

Так как (e_1, \ldots, e_n) — базис V, то $\alpha_i = \beta_j = 0 \ \forall i, j$.

18.6 Теорема о связи размерностей ядра и образа линейного отображения

Теорема 18.3. dim Im φ + dim ker φ = dim V.

Доказательство. Вытекает из предыдущего предложения так как в его доказательстве:

 $\dim V = n$,

 $\dim \ker \varphi = k$,

 $\dim \operatorname{Im} \varphi = n - k.$

18.7 Приведение матрицы линейного отображения к диагональному виду с единицами и нулями на диагонали

Предложение. Пусть $\operatorname{rk} \varphi = r$. Тогда существует базис e в V и базис f в W, такие что

$$A(\varphi,\mathbf{e},\mathbf{f}) = \left(\begin{array}{c|cccc} E & 0 \\ \hline 0 & 0 \end{array}\right) = \begin{pmatrix} r & r & n-r \\ 1 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & \ddots & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 \end{pmatrix}.$$

Доказательство. Пусть e_{r+1}, \ldots, e_n — базис $\ker \varphi$. Дополним его векторами e_1, \ldots, e_r до базиса всего V.

Положим $f_1 = \varphi(e_1), \ldots, f_r = \varphi(e_r)$, тогда (f_1, \ldots, f_r) — базис $\operatorname{Im} \varphi$.

Дополним f_1, \ldots, f_r до базиса f_1, \ldots, f_m всего W.

Тогда, $e = (e_1, \dots, e_n)$ и $f = (f_1, \dots, f_m)$ — искомые базисы.

Следствие. Если $A \in \operatorname{Mat}_{m \times n}(F)$, $\operatorname{rk} A = r$, то $\exists C \in M_n^0(F)$ и $D \in M_m^0(F)$, такие что

$$D^{-1}AC = \left(\begin{array}{c|c} E & 0 \\ \hline 0 & 0 \end{array}\right) = B.$$

$$(\iff A = DBC^{-1}).$$

Доказательство. Реализуем A как матрицу линейного отображения $\varphi: F^n \to F^n$ в некоторой паре базисов, тогда утверждение вытекает из предложения и формулы изменения матрицы линейного отображения при замене базисов.

18.8 Линейные функции на векторном пространстве

Определение 70. Линейной функцией (или линейной формой, или линейным функционалом) на V называется всякое линейное отображение $\alpha:V\to F$.

Обозначение 3. $V^* := \text{Hom}(V, F)$ — множество всех линейных функций на V.

18.9 Примеры

 $1 \quad \alpha: F^n \to F$

$$a egin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = (a_1,\dots,a_n) egin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = a_1x_1 + \dots + a_nx_n,$$
 где $a_i \in F$ — фиксированные скаляры.

2. $F(X,\mathbb{R})$ — все функции из линейного пространства X в $\mathbb{R},\,x_0\in X$

$$\alpha: F(X, \mathbb{R}) \to \mathbb{R},$$

$$\alpha(f) := f(x_0).$$

3. $\alpha: C[0,1] \to \mathbb{R}$

$$\alpha(f) := \int_0^1 f(x) \, dx$$

4. $\alpha: M_n(F) \to F$

$$\alpha(X) := \operatorname{tr} X$$

18.10 Двойственное (сопряжённое) векторное пространство, его размерность в конечномерном случае

Из общей теории линейных отображений:

- 1. V^* векторное пространство (оно называется сопряженным или двойственным).
- 2. Если $e = (e_1, \dots, e_n)$ фиксированный базис в V, то есть изоморфизм $V^* \simeq \operatorname{Mat}_{1 \times n}(F)$ (а это ни что иное, как строки длины n).

$$\alpha \to (\alpha_1, \ldots, \alpha_n)$$

$$v = x_1 e_1 + \dots + x_n e_n$$

$$\alpha(v) = (\alpha_1, \dots, \alpha_n) \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = \alpha_1 x_1 + \dots + \alpha_n x_n.$$

 $\alpha_i = \alpha(e_i)$ — коэффициенты линейной функции α в базисе е.

Следствие. $\dim V^* = \dim V \ (\Longrightarrow V^* \simeq V)$.

18.11 Двойственный базис

При $i=1,\ldots,n$ рассмотрим линейную функцию $\varepsilon_i\in V^*$, соответствующую строке $(0\ldots 1\ldots 0)$. Тогда $\varepsilon_1,\ldots,\varepsilon_n$ — базис V^* , он однозначно определяется условием $\varepsilon_i(e_j)=\delta_{ij}=\begin{cases} 1, & i=j,\\ 0, & i\neq j. \end{cases}$. $(\delta_{ij}-\text{символ Кронекера})$

Определение 71. Базис $(\varepsilon_1, \dots, \varepsilon_n)$ пространства V^* , определенный условием выше, называется базисом, *двойственным* (сопряженным) к базису \mathfrak{e} .

Удобная запись условия:

$$\begin{pmatrix} \varepsilon_1 \\ \dots \\ \varepsilon_n \end{pmatrix} (e_1, \dots, e_n) = E.$$