Maximum Flows in Networks Augmenting Path Method – Ford and Fulkerson (1957)

Endre Boros 26:711:653: Discrete Optimization

March 5, 2018

- Consider the source area S = {SF, A, D, H} that is reachable form the source.
 - No flight with an occupied seat is coming into this area (from the rest of the restsort).
 Proof of OPTIMALITY:

4□ > 4□ > 4□ > 4□ > □
9Q(

- A travel agency needs to book as many as possible travelers going from San Francisco (SF) to New York City (NY).
- ➤ The figure shows the available flights and number of seats (where A is Atlanta, C is Chicago, D is Denver and H is Houston.)
- Consider the source area S = {SF, A, D, H} that is reachable form the source.
 - All outgoing flight from S are fully boolest.
 No flight with an occupied seat is coming into this area (from the rest of the notwork)
 Description of CONTRACT FIRM.

4□▶ 4□▶ 4 亘 ▶ 4 亘 ▶ □ ● 9 0 0

- A travel agency needs to book as many as possible travelers going from San Francisco (SF) to New York City (NY).
- ► We call SF the **source**, and NY the **sink**
 - Consider the source area $S = \{SF, A, D, H\}$ that is reachable form the source.

- A travel agency needs to book as many as possible travelers going from San Francisco (SF) to New York City (NY).
- ▶ We call SF the **source**, and NY the **sink**
 - Consider the source area $S = \{SF, A, D, H\}$ that is reachable form the source.

- A travel agency needs to book as many as possible travelers going from San Francisco (SF) to New York City (NY).
- ▶ The figure shows the available flights and number of seats (where A is Atlanta, C is Chicago, D is Denver and H is Houston.)
 - ► Initialize the flow by 0 on all arcs.
 - Find a shortest augmenting path from source to sink.
 - ightharpoonup Compute bottleneck capacity: $\Delta =$
 - Push through the augmenting path extra Δ units of flow.
 - Compute residual network **precisely**!
- Consider the source area $S = \{SF, A, D, H\}$ that is reachable form the source.

- A travel agency needs to book as many as possible travelers going from San Francisco (SF) to New York City (NY).
- ▶ The figure shows the available flights and number of seats (where A is Atlanta, C is Chicago, D is Denver and H is Houston.)
 - ► Initialize the flow by 0 on all arcs.
 - Find a shortest **augmenting path** from source to sink.
 - ightharpoonup Compute bottleneck capacity: $\Delta =$
 - Push through the augmenting path extra Δ units of flow.
 - Compute residual network **precisely**!
- Consider the source area $S = \{SF, A, D, H\}$ that is reachable form the source.

- A travel agency needs to book as many as possible travelers going from San Francisco (SF) to New York City (NY).
- ▶ The figure shows the available flights and number of seats (where A is Atlanta, C is Chicago, D is Denver and H is Houston.)
 - ► Initialize the flow by 0 on all arcs.
 - Find a shortest augmenting path from source to sink.
 - ▶ Compute bottleneck capacity: $\Delta = 4$
 - Push through the augmenting path extra Δ units of flow.
 - Compute residual network **precisely**!
- Consider the source area $S = \{SF, A, D, H\}$ that is reachable form the source.

- A travel agency needs to book as many as possible travelers going from San Francisco (SF) to New York City (NY).
- ▶ The figure shows the available flights and number of seats (where A is Atlanta, C is Chicago, D is Denver and H is Houston.)
 - ► Initialize the flow by 0 on all arcs.
 - Find a shortest augmenting path from source to sink.
 - ▶ Compute bottleneck capacity: $\Delta = 4$
 - Push through the augmenting path extra Δ units of flow.
 - Compute residual network **precisely**!
- Consider the source area $S = \{SF, A, D, H\}$ that is reachable form the source.

- A travel agency needs to book as many as possible travelers going from San Francisco (SF) to New York City (NY).
- ▶ The figure shows the available flights and number of seats (where A is Atlanta, C is Chicago, D is Denver and H is Houston.)
 - ► Initialize the flow by 0 on all arcs.
 - Find a shortest **augmenting path** from source to sink.
 - ▶ Compute bottleneck capacity: $\Delta = 4$
 - Push through the augmenting path extra Δ units of flow.
 - ► Compute residual network **precisely**!
- Consider the source area $S = \{SF, A, D, H\}$ that is reachable form the source.

- A travel agency needs to book as many as possible travelers going from San Francisco (SF) to New York City (NY).
- ▶ The figure shows the available flights and number of seats (where A is Atlanta, C is Chicago, D is Denver and H is Houston.)
 - ► Initialize the flow by 0 on all arcs.
 - Find a shortest augmenting path from source to sink.
 - ▶ Compute bottleneck capacity: $\Delta = 1$
 - Push through the augmenting path extra Δ units of flow.
 - Compute residual network **precisely!**
- ▶ Consider the source area $S = \{SF, A, D, H\}$ that is reachable form the source.

- A travel agency needs to book as many as possible travelers going from San Francisco (SF) to New York City (NY).
- ▶ The figure shows the available flights and number of seats (where A is Atlanta, C is Chicago, D is Denver and H is Houston.)
 - ► Initialize the flow by 0 on all arcs.
 - Find a shortest augmenting path from source to sink.
 - ▶ Compute bottleneck capacity: $\Delta = 1$
 - Push through the augmenting path extra Δ units of flow.
 - Compute residual network **precisely**!
- ▶ Consider the source area $S = \{SF, A, D, H\}$ that is reachable form the source.

- A travel agency needs to book as many as possible travelers going from San Francisco (SF) to New York City (NY).
- ▶ The figure shows the available flights and number of seats (where A is Atlanta, C is Chicago, D is Denver and H is Houston.)
 - ► Initialize the flow by 0 on all arcs.
 - Find a shortest **augmenting path** from source to sink.
 - ▶ Compute bottleneck capacity: $\Delta = 1$
 - Push through the augmenting path extra Δ units of flow.
 - Compute residual network **precisely**!
- Consider the source area $S = \{SF, A, D, H\}$ that is reachable form the source.

- A travel agency needs to book as many as possible travelers going from San Francisco (SF) to New York City (NY).
- ▶ The figure shows the available flights and number of seats (where A is Atlanta, C is Chicago, D is Denver and H is Houston.)
 - ► Initialize the flow by 0 on all arcs.
 - Find a shortest augmenting path from source to sink.
 - ▶ Compute bottleneck capacity: $\Delta = 3$
 - Push through the augmenting path extra Δ units of flow.
 - Compute residual network **precisely!**
- ▶ Consider the source area $S = \{SF, A, D, H\}$ that is reachable form the source.

- A travel agency needs to book as many as possible travelers going from San Francisco (SF) to New York City (NY).
- ▶ The figure shows the available flights and number of seats (where A is Atlanta, C is Chicago, D is Denver and H is Houston.)
 - ► Initialize the flow by 0 on all arcs.
 - Find a shortest augmenting path from source to sink.
 - ▶ Compute bottleneck capacity: $\Delta = 3$
 - Push through the augmenting path extra Δ units of flow.
 - Compute residual network **precisely**!
- ▶ Consider the source area $S = \{SF, A, D, H\}$ that is reachable form the source.

- A travel agency needs to book as many as possible travelers going from San Francisco (SF) to New York City (NY).
- ▶ The figure shows the available flights and number of seats (where A is Atlanta, C is Chicago, D is Denver and H is Houston.)
 - ► Initialize the flow by 0 on all arcs.
 - Find a shortest **augmenting path** from source to sink.
 - ▶ Compute bottleneck capacity: $\Delta = 3$
 - Push through the augmenting path extra Δ units of flow.
 - Compute residual network **precisely**!
- Consider the source area $S = \{SF, A, D, H\}$ that is reachable form the source.

- A travel agency needs to book as many as possible travelers going from San Francisco (SF) to New York City (NY).
- ▶ The figure shows the available flights and number of seats (where A is Atlanta, C is Chicago, D is Denver and H is Houston.)
 - ► Initialize the flow by 0 on all arcs.
 - Find a shortest augmenting path from source to sink.
 - ▶ Compute bottleneck capacity: $\Delta = 3$
 - Push through the augmenting path extra Δ units of flow.
 - ► Compute residual network **precisely**!
- Consider the source area $S = \{SF, A, D, H\}$ that is reachable form the source.

- A travel agency needs to book as many as possible travelers going from San Francisco (SF) to New York City (NY).
- ▶ The figure shows the available flights and number of seats (where A is Atlanta, C is Chicago, D is Denver and H is Houston.)
 - ► Initialize the flow by 0 on all arcs.
 - Find a shortest **augmenting path** from source to sink.
 - ▶ Compute bottleneck capacity: $\Delta = 3$
 - Push through the augmenting path extra Δ units of flow.
 - ► Compute residual network **precisely**!
- Consider the source area $S = \{SF, A, D, H\}$ that is reachable form the source.

- A travel agency needs to book as many as possible travelers going from San Francisco (SF) to New York City (NY).
- ▶ The figure shows the available flights and number of seats (where A is Atlanta, C is Chicago, D is Denver and H is Houston.)
 - ► Initialize the flow by 0 on all arcs.
 - Find a shortest augmenting path from source to sink.
 - ▶ Compute bottleneck capacity: $\Delta =$
 - Push through the augmenting path extra Δ units of flow.
 - ► Compute residual network **precisely!**
- Consider the source area $S = \{SF, A, D, H\}$ that is reachable form the source.

- A travel agency needs to book as many as possible travelers going from San Francisco (SF) to New York City (NY).
- ▶ The figure shows the available flights and number of seats (where A is Atlanta, C is Chicago, D is Denver and H is Houston.)
 - ► Initialize the flow by 0 on all arcs.
 - Find a shortest **augmenting path** from source to sink.
 - ▶ Compute bottleneck capacity: Δ =
 - Push through the augmenting path extra Δ units of flow.
 - ► Compute residual network **precisely**!
- Consider the source area $S = \{SF, A, D, H\}$ that is reachable form the source.

- A travel agency needs to book as many as possible travelers going from San Francisco (SF) to New York City (NY).
- ▶ The figure shows the available flights and number of seats (where A is Atlanta, C is Chicago, D is Denver and H is Houston.)
 - ► Initialize the flow by 0 on all arcs.
 - Find a shortest augmenting path from source to sink.
 - ▶ Compute bottleneck capacity: Δ =
 - Push through the augmenting path extra Δ units of flow.
 - ► Compute residual network **precisely**!
- Consider the source area $S = \{SF, A, D, H\}$ that is reachable form the source.
 - All outgoing flight from S are fully booked.
 No flight with an occupied seat is coming into this area (from the rest of the

- A travel agency needs to book as many as possible travelers going from San Francisco (SF) to New York City (NY).
- ▶ The figure shows the available flights and number of seats (where A is Atlanta, C is Chicago, D is Denver and H is Houston.)
- ▶ Consider the source area $S = \{SF, A, D, H\}$ that is reachable form the source.
 - ightharpoonup All outgoing flight from S are fully booked.
 - No flight with an occupied seat is coming into this area (from the rest of the network).
 - ▶ Proof of **OPTIMALITY**:

- A travel agency needs to book as many as possible travelers going from San Francisco (SF) to New York City (NY).
- ▶ The figure shows the available flights and number of seats (where A is Atlanta, C is Chicago, D is Denver and H is Houston.)
- ▶ Consider the source area $S = \{SF, A, D, H\}$ that is reachable form the source.
 - ightharpoonup All outgoing flight from S are fully booked.
 - No flight with an occupied seat is coming into this area (from the rest of the network).
 - ▶ Proof of **OPTIMALITY**:

- A travel agency needs to book as many as possible travelers going from San Francisco (SF) to New York City (NY).
- ▶ The figure shows the available flights and number of seats (where A is Atlanta, C is Chicago, D is Denver and H is Houston.)
- ▶ Consider the source area $S = \{SF, A, D, H\}$ that is reachable form the source.
 - ightharpoonup All outgoing flight from S are fully booked.
 - No flight with an occupied seat is coming into this area (from the rest of the network).
 - ▶ Proof of **OPTIMALITY**:

- A travel agency needs to book as many as possible travelers going from San Francisco (SF) to New York City (NY).
- ▶ The figure shows the available flights and number of seats (where A is Atlanta, C is Chicago, D is Denver and H is Houston.)
- ▶ Consider the source area $S = \{SF, A, D, H\}$ that is reachable form the source.
 - ightharpoonup All outgoing flight from S are fully booked.
 - No flight with an occupied seat is coming into this area (from the rest of the network).
 - ▶ Proof of **OPTIMALITY**: