EC-252: COMPUTER ARCHITECTURE AND MICROPROCESSORS

Vaskar Raychoudhury
Indian Institute of Technology Roorkee

CPU Power Management for PC

- Overclocking
 - Increase clock speeds of CPU, CPU multiplier, memory, etc
 - Pros: faster, Cons: generates more heat and noise
- Underclocking
 - □ CPU, GPU, memory, etc
- Must be done Manually!!

Power Constraint in Mobile Devices

- Mobile devices are entities with power-constraints
 - Laptops, smart phones, PDAs
- To increase the battery life, we need some power saving policy
 - Display condition adaptation (dim/ sleep)
 - Thermal condition adaptation
 - Processing condition adaptation
- User power policy
 - User choices made through control panel
- System power policy
 - Dynamic frequency scaling (depends on user power policy)

Power Options in Windows OS

Dynamic Frequency Scaling

- Automatically adjust CPU clock frequency "on the fly"
 - Objectives are to
 - Conserve power
 - reduce heat generation
- Also used in quiet computing
 - Decreases energy and cooling costs for lightly loaded machines
 - Less heat output => cooling fans are slowed down or turned off => reduces noise levels & saves more power
- Also known as CPU (dynamic) throttling

CPU Dynamic Throttling

 Relationship between power policy scheme and processor dynamic throttling policy

Power Scheme	AC Power	DC Power
Home/Office Desk	None	Adaptive
Portable/Laptop	Adaptive	Adaptive
Presentation	Adaptive	Degrade
Always On	None	None
Minimal Power Management	Adaptive	Adaptive
Max Battery	Adaptive	Degrade

CPU Dynamic Throttle Policy

- Four operating states of the CPU
 - "None"
 - Ensures the processor is always at the highest performance state
 - "Adaptive"
 - Matches the performance state to current demand
 - "Constant"
 - Runs the processor in the lowest available frequency/voltage state
 - "Degrade"
 - Also runs the processor in the lowest available frequency/voltage state
 - Utilizes linear stop clock throttling if the remaining battery capacity drops below a certain threshold

Advanced Configuration and Power Interface (ACPI / ACPI 2.0)

- ACPI provides a platform-independent open standard for device configuration and power management by the operating system
 - The standard was originally developed by Intel, Microsoft, and Toshiba - later joined by HP and Phoenix
- □ First released in December 1996
- □ Latest version is "Revision 5.0," published on November 23, 2011

ACPI: Processor and Power States

Processor States

- □ The CPU power states C0-C3:
 - CO is the operating state.
 - C1 (often known as Halt)
 - Not executing instructions, but can return to an executing state essentially instantaneously
 - All ACPI-conformant processors must support this power state
 - **C2** (often known as Stop-Clock) is a (optional) state where
 - the processor maintains all software-visible state, but may take longer to wake up
 - C3 (often known as Sleep) is a (optional) state where
 - the processor does not need to keep its cache coherent, but maintains other state
 - Variants: Deep Sleep, Deeper Sleep, etc, based on how long it takes to wake the processor

Power-performance States

- While a processor operates (C0 state), it can be in one of several power-performance states P0 to Pn
 - P0 max power and frequency
 - P1 less than P0, voltage/frequency scaled
 - **-** ...
 - \blacksquare **Pn** less than P(n-1), voltage/frequency scaled
- \square up to an implementation-specific limit of n, no greater than 16

Clock Speed vs. P-States

- CPU clock speed can be dynamically changed (to different *P-states*)
 - to meet the instantaneous performance needs of the operation being performed,
 - while minimizing power draw and heat dissipation
- P-states are known as SpeedStep in Intel processors and as PowerNow! or Cool'n'Quiet in AMD processors

Dynamic Freq. Scaling (in Practice)

- Intel's SpeedStep Technology
 - Allows dynamic and software controlled moderation of CPU clock speed (mainly for mobile systems)
 - □ SpeedStep I: used in 2nd gen. Pentium III processors
 - SpeedStep II: (aka. Enhanced SpeedStep) used in Pentium III-Mobile processors
 - SpeedStep III: adapted for Pentium 4-Mobile (M) processors
 - Pentium 4-Mobile (P4-M) emerged as the laptop version of the Pentium 4

Dynamic Freq. Scaling (in Practice)

- Intel's Enhanced Intel SpeedStep Technology (EIST)
 - used with the first and second generation of Pentium M processors (family of mobile single-core x86 CPU)
 - Pentium M emerged as the new mobile processor which is a heavily modified version of the Pentium III
 - Why not modify P4?
 - P4 consumed more power and emitted more heat than any previous Intel or AMD processors

Pentium M Performance States

Supported Performance States (P-states) for the Intel
 Pentium M Processor at 1.6GHz

Dynamic Freq. Scaling (in Practice)

- AMD employs 2 different CPU throttling technologies
- Cool'n'Quiet technology
 - used in desktop and server processor lines
 - aim is to produce less heat => fans move slower => keeps cool and reduces noise level
- PowerNow! Technology
 - used in mobile processor line,
 - sometimes, also in desktops (e.g., AMD K6-2+)

Enhanced Intel SpeedStep Technology

- The software model behind EIST performs all mgmt. for the frequency and voltage transitions
- Microsoft* Windows* XP and the Windows Server 2003 family include complete native processor performance control to support EIST
- The native support in Windows XP and the Windows Server 2003 family consists of two components:
 - The kernel power policy manager, and
 - the processor driver

Enhanced Intel SpeedStep Technology

- □ The kernel power policy manager owns
 - the decision-making, and
 - the set of rules used to determine the appropriate frequency/voltage operating state
 - □ It may make decisions based on several inputs, such as
 - end-user power policy,
 - processor utilization,
 - battery level, or
 - thermal conditions and events

Enhanced Intel SpeedStep Technology

- The processor driver is used to make actual state transitions on the kernel power policy manager's behalf
 - The driver does not initiate frequency/voltage state transitions independent of the kernel power policy manager