CS 245: Database System Principles

Notes 6: Query Processing

Hector Garcia-Molina

CS 245 Notes

Query Processing

Q → Query Plan

CS 245 Notes 6

Query Processing

Q → Query Plan

Focus: Relational System

· Others?

CS 245 Notes 6

Example

Select B,D

From R,S

Where R.A = "c" \wedge S.E = 2 \wedge R.C=S.C

CS 245 Notes 6 4

R	A	В	C	S	C	D	Е	
	a	1	10		10	X	2	\supset
	b	1	20		20	у	2	
	С	2	10		30	z	2	
	d	2	35		40	x	1	
	e	3	45		50	у	3	
Answer B D								
				2	X			
CS 245			N	otes 6				6

Plan III Use R.A and S.C Indexes (1) Use R.A index to select R tuples with R.A = "c" (2) For each R.C value found, use S.C index to find matching tuples (3) Eliminate S tuples S.E ≠ 2 (4) Join matching R,S tuples, project B,D attributes and place in result

Overview of Query Optimization

CS 245 Notes 6 21

Example: SQL query

SELECT title
FROM StarsIn
WHERE starName IN (
 SELECT name
 FROM MovieStar
 WHERE birthdate LIKE "%1960"
);
(Find the movies with stars born in 1960)

Textbook outline

Chapter 15

 $\begin{array}{lll} 5 & \text{Algebra for queries} & \text{[bags vs sets]} \\ \text{[Ch 5]} & \text{- Select, project, join,} & \text{[project list} \\ & & a,a+b->x,...] \end{array}$

- Duplicate elimination, grouping, sorting

15.1 Physical operators

[15.1] - Scan,sort, ...

15.2 - 15.6 Implementing operators + estimating their cost

CS 245 Notes 6 31

Chapter 16

16.1[16.1] Parsing

16.2[16.2] Algebraic laws

16.3[16.3] Parse tree -> logical query

plan

16.4[16.4] Estimating result sizes 16.5-7[16.5-7] Cost based optimization

CS 245 Notes 6 32

Reading textbook - Chapters 15, 16

Optional:

Sections 15.7, 15.8, 15.9 [15.7, 15.8]Sections 16.6, 16.7 [16.6, 16.7]

Optional: Duplicate elimination operator grouping, aggregation operators

CS 245 Notes 6 33

Query Optimization - In class order

- · Relational algebra level
- · Detailed query plan level

CS 245 Notes 6 34

Query Optimization - In class order

- · Relational algebra level
- · Detailed guery plan level
 - Estimate Costs
 - without indexes
 - with indexes
 - Generate and compare plans

CS 245 Notes 6 35

Relational algebra optimization

- Transformation rules (preserve equivalence)
- What are good transformations?

Rules: Natural joins & cross products & union

$$R \bowtie S = S \bowtie R$$

 $(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$

CS 245

Notes 6

37

Note:

- Carry attribute names in results, so order is not important
- Can also write as trees, e.g.:

Notes 6

CS 245

Rules: Natural joins & cross products & union

Notes 6

$$R \bowtie S = S \bowtie R$$

 $(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$

$$R \times S = S \times R$$

 $(R \times S) \times T = R \times (S \times T)$

$$R U S = S U R$$

 $R U (S U T) = (R U S) U T$

CS 245

Rules: Selects

$$\sigma_{p1 \land p2}(R) =$$

$$\sigma_{p1vp2}(R) =$$

CS 245 Notes 6

Rules: Selects

$$\sigma_{p1 \land p2}(R) = \sigma_{p1} [\sigma_{p2}(R)]$$

$$\sigma_{\text{p1vp2}}(R) = [\sigma_{\text{p1}}(R)] \cup [\sigma_{\text{p2}}(R)]$$

CS 245 Notes 6

Bags vs. Sets

$$R = \{a,a,b,b,b,c\}$$

$$S = \{b,b,c,c,d\}$$

$$RUS = ?$$

Bags vs. Sets

 $R = \{a,a,b,b,b,c\}$ $S = \{b,b,c,c,d\}$

RUS = ?

• Option 1 SUM

 $RUS = \{a,a,b,b,b,b,b,c,c,c,d\}$

• Option 2 MAX

 $RUS = \{a,a,b,b,b,c,c,d\}$

S 245 Notes 6

43

45

Option 2 (MAX) makes this rule work:

 $\sigma_{p1vp2}(R) = \sigma_{p1}(R) \cup \sigma_{p2}(R)$

Example: $R = \{a,a,b,b,b,c\}$

P1 satisfied by a,b; P2 satisfied by b,c

CS 245 Notes 6 44

Option 2 (MAX) makes this rule work:

 $\sigma_{p1vp2}(R) = \sigma_{p1}(R) \cup \sigma_{p2}(R)$

Example: $R = \{a,a,b,b,b,c\}$

P1 satisfied by a,b; P2 satisfied by b,c

 $\sigma_{p1vp2}(R) = \{a,a,b,b,b,c\}$

 $\sigma_{p1}(R) = \{a, a, b, b, b\}$

 $\sigma_{p2}(R) = \{b,b,b,c\}$

 $\sigma_{p1}(R) \cup \sigma_{p2}(R) = \{a,a,b,b,b,c\}$

CS 245 Notes 6

"Sum" option makes more sense:

Senators (.....) Rep (.....)

T1 = $\pi_{yr,state}$ Senators; T2 = $\pi_{yr,state}$ Reps

State Yr T2 Yr State 97 CA 99 CA 99 CA 99 CA 98 ΑZ 98 CA Union?

CS 245 Notes 6 46

Executive Decision

- -> Use "SUM" option for bag unions
- -> Some rules cannot be used for bags

CS 245 Notes 6 47

Rules: Project

Let: X = set of attributes

Y = set of attributes

XY = X U Y

 $\pi_{xy}(R) =$

Rules: Project

$$XY = X U Y$$

$$\pi_{xy}(R) = \pi_x[\pi_y(R)]$$

CS 245 Notes 6

Rules: Project

$$XY = X U Y$$

$$\pi_{xy}(R) = \pi_x[\pi_y(R)]$$

Notes 6

Rules: $\sigma + \bowtie$ combined

Let p = predicate with only R attribs

q = predicate with only S attribs

m = predicate with only R,S attribs

49

51

$$\sigma_{p}$$
 (R \bowtie S) =

$$\sigma_q (R \bowtie S) =$$

CS 245 Notes 6

Rules: $\sigma + \bowtie$ combined

Let p = predicate with only R attribs

q = predicate with only S attribs

m = predicate with only R,S attribs

$$\sigma_p (R \bowtie S) = [\sigma_p (R)] \bowtie S$$

$$\sigma_q (R \bowtie S) = R \bowtie [\sigma_q (S)]$$

CS 245 Notes 6 52

Rules: $\sigma + \bowtie combined$ (continued)

Some Rules can be Derived:

$$\sigma_{pAq} (R \bowtie s) =$$

$$\sigma_{pAqAm} (R \bowtie S) =$$

$$\sigma_{pvq}$$
 (R \bowtie S) =

CS 245 Notes 6 53

Do one, others for homework:

$$\sigma_{pAq} (R \bowtie S) = [\sigma_p (R)] \bowtie [\sigma_q (S)]$$

$$\sigma_{pAqAm} (R \bowtie S) =$$

$$\sigma_m \left[(\sigma_p R) \bowtie (\sigma_q S) \right]$$

$$\sigma_{pvq}$$
 (R \bowtie S) =

$$[(\sigma_p R) \bowtie S] U [R \bowtie (\sigma_q S)]$$

45 Notes 6 54

--> Derivation for first one:

$$\sigma_{pAq} (R \bowtie S) =$$

$$\sigma_p [\sigma_q (R \bowtie S)] =$$

$$\sigma_p [R \bowtie \sigma_q(S)] =$$

$$[\sigma_p(R)] \bowtie [\sigma_q(S)]$$

CS 245 Notes 6

Rules: π,σ combined

Let x =subset of R attributes

z = attributes in predicate P (subset of R attributes)

$$\pi_x[\sigma_p(R)] =$$

55

57

CS 245 Notes 6

56

Rules: π,σ combined

Let x =subset of R attributes

z = attributes in predicate P (subset of R attributes)

$$\pi_x[\sigma_{p(R)}] = \{\sigma_{p[\pi_x(R)]}\}$$

CS 245 Notes 6

Rules: π,σ combined

Let x =subset of R attributes

z = attributes in predicate P (subset of R attributes)

$$\pi_x[\sigma_{p(R)}] = \pi_x \{\sigma_{p[\pi_x(R)]}\}$$

CS 245 Notes 6 58

Rules: π , \bowtie combined

Let x =subset of R attributes

y = subset of S attributes

z = intersection of R,S attributes

$$\pi_{xy}$$
 (R \bowtie S) =

CS 245 Notes 6 59

Rules: π , \bowtie combined

Let x =subset of R attributes

y = subset of S attributes

 $z = intersection of R_iS$ attributes

$$\pi_{xy}$$
 (R \bowtie S) =

$$\pi_{xy}\{[\pi_{xz}(R)] \bowtie [\pi_{yz}(S)]\}$$

$$\pi_{xy} \{ \sigma_p (R \bowtie S) \} =$$

CS 245 Notes 6 61

$$\pi_{xy} \left\{ \sigma_P \; (R \bowtie S) \right\} \; = \\ \pi_{xy} \left\{ \sigma_P \; [\pi_{xz'} \; (R) \bowtie \pi_{yz'} \; (S)] \right\} \\ z' = z \; U \; \left\{ \text{attributes used in P } \right\}$$

Rules for σ , π combined with X similar... e.g., $\sigma_P(R | X | S) = ?$

CS 245 Notes 6

63

Rules σ , U combined: $\sigma_p(R \cup S) = \sigma_p(R) \cup \sigma_p(S)$ $\sigma_p(R - S) = \sigma_p(R) - S = \sigma_p(R) - \sigma_p(S)$

Which are "good" transformations? $\Box \ \sigma_{p1 \land p2} \ (R) \to \sigma_{p1} \ [\sigma_{p2} \ (R)]$ $\Box \ \sigma_{p} \ (R \bowtie S) \to [\sigma_{p} \ (R)] \bowtie S$ $\Box \ R \bowtie S \to S \bowtie R$ $\Box \ \pi_{x} \ [\sigma_{p} \ (R)] \to \pi_{x} \ \{\sigma_{p} \ [\pi_{xz} \ (R)]\}$

But What if we have A, B indexes? B = "cat"Intersect pointers to get pointers to matching tuples Notes 6 CS 245 67

Bottom line:

- · No transformation is always good
- · Usually good: early selections

CS 245 Notes 6

In textbook: more transformations

- Eliminate common sub-expressions
- Other operations: duplicate elimination

CS 245 Notes 6

Outline - Query Processing

- · Relational algebra level
 - transformations
 - good transformations
- Detailed query plan level
 - estimate costs
 - generate and compare plans

CS 245 Notes 6

- · Estimating cost of query plan
- (1) Estimating size of results
- (2) Estimating # of IOs

CS 245 Notes 6

Estimating result size

· Keep statistics for relation R

- T(R): # tuples in R

- S(R): # of bytes in each R tuple

- B(R): # of blocks to hold all R tuples

- V(R, A): # distinct values in R

for attribute A

CS 245 72 Notes 6

Example

R A B C D

cat	1	10	а
cat	1	20	b
dog	1	30	а
dog	1	40	С
bat	1	50	d

A: 20 byte string

B: 4 byte integer

C: 8 byte date

D: 5 byte string

73

75

77

CS 245 Notes 6

Example

R A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c

bat 1 50 d

A: 20 byte string

B: 4 byte integer

C: 8 byte date

D: 5 byte string

74

$$T(R) = 5$$
 $S(R) = 37$

$$V(R,A) = 3$$

$$V(R,C) = 5$$

$$V(R,B) = 1$$

$$V(R,D) = 4$$

Notes 6

Size estimates for $W = R1 \times R2$

$$T(W) =$$

$$S(W) =$$

CS 245

Notes 6

Size estimates for $W = R1 \times R2$

$$T(W) = T(R1) \times T(R2)$$

$$S(W) = S(R1) + S(R2)$$

CS 245

Notes 6 76

Size estimate for $W = \sigma_{A=a}(R)$

$$S(W) = S(R)$$

$$T(W) = ?$$

CS 245

Notes 6

Example

R A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c

V(R,A)=3

V(R,B)=1

V(R,C)=5V(R,D)=4

 $W = \sigma_{z=val}(R) T(W) =$

bat 1 50 d

CS 245

Notes 6

Assumption:

Values in select expression Z = val are <u>uniformly distributed</u> over possible V(R,Z) values.

CS 245 Notes 6

Alternate Assumption:

Values in select expression Z = val are <u>uniformly distributed</u> over domain with DOM(R,Z) values.

CS 245 Notes 6 82

Example

Α	В	С	D
cat	1	10	а
cat	1	20	b
dog	1	30	а
dog	1	40	С
bat	1	50	d

Alternate assumption

V(R,A)=3 DOM(R,A)=10

85

87

V(R,B)=1 DOM(R,B)=10 V(R,C)=5 DOM(R,C)=10 V(R,D)=4 DOM(R,D)=10

$$W = \sigma_{z=val}(R)$$
 $T(W) = \frac{T(R)}{DOM(R,Z)}$

CS 245 Notes 6

Selection cardinality

SC(R,A) = average # records that satisfy equality condition on R.A

$$SC(R,A) = \begin{cases} \frac{T(R)}{V(R,A)} \\ \frac{T(R)}{DOM(R,A)} \end{cases}$$

CS 245

What about $W = \sigma_{z \ge val}(R)$?

$$T(W) = ?$$

CS 245

Notes 6

What about $W = \sigma_{z \ge val}(R)$?

$$T(W) = ?$$

• Solution # 1:

$$T(W) = T(R)/2$$

CS 245 Notes 6

What about $W = \sigma_{z \ge val}(R)$?

$$T(W) = ?$$

• Solution # 1:

$$T(W) = T(R)/2$$

• Solution # 2:

$$T(W) = T(R)/3$$

CS 245

• Solution # 3: Estimate values in range

Example R

CS 245

• Solution # 3: Estimate values in range

Example R

	Z		
		Min=1	V(R,Z)=10
		1	$W=\sigma_{z\geq 15}(R)$
		Max=20	

$$f = \frac{20-15+1}{20-1+1} = \frac{6}{20}$$
 (fraction of range)

$$T(W) = f \times T(R)$$

Notes 6 91

93

Equivalently:

$$f \times V(R,Z) = fraction of distinct values$$

$$T(W) = [f \times V(Z,R)] \times \underline{T(R)} = f \times T(R)$$

$$V(Z,R)$$

CS 245 Notes 6

Size estimate for $W = R1 \bowtie R2$

Let x = attributes of R1 y = attributes of R2

CS 245

<u>Size estimate</u> for W = R1 ⋈ R2

Let x = attributes of R1 y = attributes of R2

Case 1

$$X \cap Y = \emptyset$$

92

Same as R1 x R2

CS 245 Notes 6 94

Case 2 $W = R1 \bowtie R2$ $X \cap Y = A$ $R1 \mid A \mid B \mid C \mid R2 \mid A \mid D$

Notes 6

CS 245

Notes 6

Case 2 $W = R1 \bowtie R2$ $X \cap Y = A$ $R1 \mid A \mid B \mid C \mid R2 \mid A \mid D \mid$

Assumption:

 $V(R1,A) \le V(R2,A) \Rightarrow$ Every A value in R1 is in R2 $V(R2,A) \le V(R1,A) \Rightarrow$ Every A value in R2 is in R1

"containment of value sets" Sec. 7.4.4

CS 245 Notes 6 97

Computing T(W) when $V(R1,A) \leq V(R2,A)$

R1 A B C R2 A D

Take
1 tuple

Match

1 tuple matches with $\frac{T(R2)}{V(R2,A)}$ tuples...

so
$$T(W) = \frac{T(R2)}{V(R2, A)} \times T(R1)$$

CS 245 Notes 6

• $V(R1,A) \le V(R2,A)$ $T(W) = \frac{T(R2) T(R1)}{V(R2,A)}$

•
$$V(R2,A) \le V(R1,A)$$
 $T(W) = \frac{T(R2) T(R1)}{V(R1,A)}$

[A is common attribute]

CS 245 Notes 6

In general W = R1 ⋈ R2

$$T(W) = \frac{T(R2) T(R1)}{\max\{ V(R1,A), V(R2,A) \}}$$

CS 245 Notes 6 100

Case 2 with alternate assumption Values uniformly distributed over domain

R1 | A | B | C | R2 | A | D |

This tuple matches T(R2)/DOM(R2,A) so $T(W) = \frac{T(R2) T(R1)}{DOM(R2, A)} = \frac{T(R2) T(R1)}{DOM(R1, A)}$

Assume the same
CS 245 Notes 6 10

In all cases:

$$S(W) = S(R1) + S(R2) - S(A)$$
size of attribute A

Using similar ideas, we can estimate sizes of:

$$\Pi_{AB}$$
 (R) Sec. 16.4.2 (same for either edition)

$$\sigma_{A=a \land B=b}$$
 (R) Sec. 16.4.3

Union, intersection, diff,

Sec. 16.4.7

CS 245

103

105

Note: for complex expressions, need intermediate T,S,V results.

E.g.
$$W = [\sigma_{A=a}(R1)] \bowtie R2$$

Treat as relation U

$$T(U) = T(R1)/V(R1,A)$$
 $S(U) = S(R1)$

Also need V (U, *)!!

Notes 6 104

To estimate Vs

E.g.,
$$U = \sigma_{A=a}(R1)$$

Say R1 has attribs A,B,C,D

V(U, A) =

V(U, B) =

V(U, C) =

V(U, D) =

Notes 6 CS 245

Example

dog 1 30 10

dog 1 40 30 bat 1 50 10

$$V(R1,B)=1$$

 $V(R1,C)=5$

V(R1,A) = 3

$$V(R1,C)=5$$

 $V(R1,D)=3$

$$U = \sigma_{A=a}(R1)$$

CS 245 Notes 6 106

Example

$$V(R1,B)=1$$

 $V(R1,C)=5$

V(R1,A) = 3

$$V(R1,D)=3$$

 $V(R1,D)=3$

$$U = \sigma_{A=a}(R1)$$

$$V(U,A) = 1$$
 $V(U,B) = 1$ $V(U,C) = T(R1)$ $V(R1,A)$

Notes 6

V(D,U) ... somewhere in between

Possible Guess $U = \sigma_{A=a}(R)$

$$V(U,A) = 1$$

$$V(U,B) = V(R,B)$$

CS 245

For Joins $U = R1(A,B) \bowtie R2(A,C)$

$$V(U,A) = min \{ V(R1, A), V(R2, A) \}$$

$$V(U,B) = V(R1, B)$$

$$V(U,C) = V(R2, C)$$

[called "preservation of value sets" in section 7.4.4]

CS 245 Notes 6

Example:

$$Z = R1(A,B) \bowtie R2(B,C) \bowtie R3(C,D)$$

$$|R1| T(R1) = 1000 V(R1,A) = 50 V(R1,B) = 100$$

R2
$$T(R2) = 2000 V(R2,B) = 200 V(R2,C) = 300$$

R3
$$T(R3) = 3000 V(R3,C) = 90 V(R3,D) = 500$$

CS 245 Notes 6 110

Partial Result: U = R1 ⋈ R2

$$T(U) = \frac{1000 \times 2000}{200}$$
 $V(U,A) = 50$ $V(U,B) = 100$

V(U,C) = 300

109

CS 245 Notes 6 111

Z = U 🖂 R3

$$T(Z) = \frac{1000 \times 2000 \times 3000}{200 \times 300}$$
 $V(Z,A) = 50$ $V(Z,B) = 100$

V(Z,C) = 100V(Z,C) = 90

V(Z,D) = 500

CS 245 Notes 6 112

A Note on Histograms

 $\sigma_{A=val}(R) = ?$

CS 245 Notes 6 113

Summary

- Estimating size of results is an "art"
- Don't forget:

Statistics must be kept up to date... (cost?)

<u>Outline</u>

- Estimating cost of query plan

 Estimating size of results done!
 - Estimating # of IOs ----- next...
- Generate and compare plans

CS 245 Notes 6 115