An Introduction to R

Anupama Lakshmanan

I must confess...

- I don't have all the answers!
- There are more 13000 packages in R (as of 2018)
- "Even the most experienced R user is surprised to learn about features they were unaware of" – Robert Kabacoff, author of R in Action

What is R?

- Free and open source software to carry out statistical data analysis
 - Runs on Windows, Mac OSX, Linux
- Can also run on the cloud
- User contributed packages (> 13000)
- Read in data in multiple formats
 - Excel, csv, sas, spss, text...
- Share your analysis

History

- Before R, there was S! Data R Us!
 - Developed by people at Bell Labs, starting1976.
- Then in 1993, Robert Gentleman and Ross Ihaka from University of Auckland, NZ.

Pictures from Wikipedia

Now maintained by a core team (including a statistician at ISI Delhi!)

Get This

- Install R
 - Download from http://cran.r-project.org/mirrors.html
 - Basic console, where you can type in text commands
- We will use Rstudio, a user-friendly environment
 - Download from http://rstudio.org/download/
 - Critical operations are menu-driven
 - help() or ?
 - Try out ?Im for help on a linear model

Ready to Rumble?

- demo()
- Try out a couple
 - demo(graphics)
 - demo(Hershey)

Basics

- How is data represented?
 - Usually, as a vector
 - -c(1, 2, 3, 4) is the same as c(1:4)
- Later, we shall study a matrix, data frame, list, . . .
- Try it in the Console window
- What if we wish to save our work?
- Select File → New File → R Script file
- Type the same things in and hit File → Save

Some basic stats

- # This is how you declare a set of numbers
- # In this case, from 1 to 10.
- nums <- c(1:10)
- # Explicitly declaring a set of numbers
- primes <- c(2,3,5,7,11,13,17,19,23,29)
- # Some stats on sets of numbers
- myMean <- mean(primes)
- cat("The mean of primes is", myMean,
 "\n") # This is an end-of-line character

Run or Source

Type these into a new file

normvar <- rnorm(1000) hist(normvar) unifvar <- runif(1000) hist(unifvar)

- Highlight a few statements and hit Run
- Contrast this with Source
- Bring down 1000 to, say, 25, and watch what happens

Directory settings

- You want to access a file somewhere else
 - Like when reading in a data set from a file
- Working directory
 - Use getwd() & setwd("your_directory")
 - Make good use of tab-completion
- Optionally via a menu: Tools > Options

Read and Write (I/O)

- Input from Console
 - scan(what = 'character')
- Input from a file
 - scan(file.choose())
- Output results to a file
 - Text: sink("filename",append=TRUE/FALSE)
 - Graphics: Use pdf/png/jpeg("fileName")

Packages

- When base R is not enough
- Install an external package
 - install.packages("data.table")
- Reference the package within your R session
 - library(data.table)

Datasets

- We often look at spreadsheets and databases
 - Different data modes: numeric, character, logical
 - Tabulated data has variables and observations

Vectors

- Condition: All items are of the same kind
 - Typically used to store a variable column
- v <- c(1, 3, 5); w <- c("blue", "red")
- Refer to elements as v[1], w[2], v[c(1,3)]
- Similar to spreadsheets, you can try v[c(1:3)]

Matrices

- Rectangular arrays of data with a common mode
 - Can only have two dimensions
 - Note: If the dataset has mixed mode, use a data frame
- A <- matrix(c(1,2,3,4,5,6), nrow=2)
 - Can supply row and column names with dimnames
 - Access a row/column as A[rowNum,]/ A[,colNum]
 - To access 2nd row 3rd column element, use A[2, 3]

Exercise: How do you create a submatrix of A?

File: 2-Matrices.R

More Data Structures - Lists

- List ordered collection of objects which allows to gather a variety of (possibly unrelated) objects under one name.
- List with 4 components: string, numeric vector, matrix and a scalar

Understanding Data Types - factors

 A factor stores the nominal values as a vector of integers in the range [1... k]

```
gender <- c(rep("male",20), rep("female", 30))
gender <- factor(gender) # stores gender as 20 1s and 30 2s and
associates. 1=female, 2=male. #R now treats gender as a nominal
variable
summary(gender)
```

Data frame

- Grid where the data can be of mixed mode
 - True of most datasets in real life
 - Cannot have mixed mode within the same column
 - Access columns with frame\$<columnName>
- You can summarise numerical data values
 - Try summary(frame\$serialNums) for example
- You can order categorical values in a column
 - Check out the example of the factor function

File: 3-Frames.R

Build a Dataframe

Suppose you wish to build a data frame of mixed mode

```
col1 <- c(12, 32, 445, 13, -5)
col2 <- col1 + 3
col3 <- c("Aman","Neha","Prabu","Sunil","Deb")
myFrame <- data.frame(col1, col2, col3)
View(myFrame)
print(sort(myFrame$col1))
print(sort(col3))</pre>
```

Import (Export) Data

- Data can be imported in multiple ways
- Common ways
 - CSV file
 myData <- read.table(file.choose(),header=TRUE, sep=",") (write.table() for output)</p>
 # first row of the csv being #read, contains variable #names, comma is separator
- data.table is an R package that provides an enhanced version of data.frames
 - With this package, can read in large tables using fread()
 - Similarly, to write to a file, use fwrite()

Let's Play

- Google string: "AAPL stock historical prices Yahoo"
- Dates are tricky to work with
 - First convert the Date column to the correct format
 - as.Date function
 - Mac users, alter the format: "%d/%m/%Y"
- Standard Date functionality shipped with R is limited
 - We use a library called lubridate to play with dates
 - To access the month, day, year fields

File: 4-Plot.R

Plot Parameters

- Default list of modifiables: par(no.readonly=TRUE)
- Declare a parameter with par(name=value)

bg/fg	Back/foreground	Look up colors()
cex	Scaling factor	Used on text/symbols
col	Plotting color	By "name" or number
lty	Line type	"solid" "dashed"
mfcol,mfrow	Grid size	To combine graphs
pch	Point symbol	See below!
pty	Type of plot region	"s" square "m" maximal

Try this

- Good practice: Capture the original parameter settings, modify them, and restore them once you are done
 - See how this is done in R
- Consider the Apple time series plot
 - Modify the subset to focus on August 2013 data only
 - Change the line type to ----
 - Change the symbol type to a diamond (pch=5)
 - Scale the symbol to 1.5 times the size (cex)
 - Adjust the margins of the plot
- Overlay plots

File: 5-Overlay.R

Charts

- For categorical data, we want to depict counts
 - Append a Month variable in the Apple stock data
 - Plot the **number** of trading days by month over years
 - barplot
 - pie
- Figure out which trading month is the "best"
 - aggregate by month, and apply the mean FUNction
 - Barplot the numbers

File: 6-Charts.R

Boxplots

Box-and-whisker plots

- boxplot(numbers) draws a box from Q1 to Q3
- Plus whiskers extending to either min/max or to outliers =1.5 IQRs from the quartile marks
- summary(numbers) returns min, Q1, Q2, Q3, max
- boxplot.stats(numbers) returns Q1-2-3 + hinges

File: 7-Boxplots.R

Functions

- Repeating some operations many times?
 Write your own
 - Name the function it's like a variable
- Think of it as (x, f(x)), where x ranges over a seq of values

File: 8-Functions.R

Data Analysis

- Life Cycle Savings
- Under the life-cycle savings hypothesis as developed by Franco Modigliani, the savings ratio (aggregate personal saving divided by disposable income) is explained by
 - per-capita disposable income,
 - the percentage rate of change in per-capita disposable income
 - and two demographic variables:
 - the percentage of population less than 15 years old
 - the percentage of the population over 75 years old.
- The data are averaged over the decade 1960–1970 to remove the business cycle or other short-term fluctuations.
- Source:

The data were obtained from Belsley, Kuh and Welsch (1980).

Thank You