### Review of 6.1 - 6.3

Liang Ling E02201210...

MATH@NUS

November 5, 2018

#### Table of Contents

Eigenvalues and Eigenvectors

- 2 Diagonalization
- Orthogonal Diagonalization

## Eigenvalues and Eigenvectors

#### Definition

Let A be a **square** matrix of order n. A **nonzero** column vector  $u \in \mathbb{R}^n$  is called an *eigenvector* of A if

$$Au = \lambda u$$

for some scalar  $\lambda$ . The scalar  $\lambda$  is called an *eigenvalue* of A and u is said to be an eigenvector of A associated with the eigenvalue  $\lambda$ 

Note: *u* is assumed to be nonzero column vector.

## How to compute eigenvalues?

① Remark 6.1.5:

 $\lambda$  is an eigenvalue of A  $\Leftrightarrow Au = \lambda u, \quad u \neq 0$   $\Leftrightarrow \lambda u - Au = 0, \quad u \neq 0$   $\Leftrightarrow (\lambda I - A)u = 0, \quad u \neq 0$   $\Leftrightarrow$  the linear system  $(\lambda I - A)u = 0$  has non-trivial solutions  $\Leftrightarrow \det(\lambda I - A) = 0$ 

- ② Note that  $det(\lambda I A)$  is a polynomial of degree at most n. (WHY?, consider co-factor expansion of  $\lambda I A$  along the first row)
- **3**  $\det(\lambda I A)$  is called the characteristic polynomial of A.
- All possible eigenvalues of A is exactly all the roots of characteristic polynomial of A.



# Eigenspace of A

#### Definition

The **solution space** of the linear system  $(\lambda I - A)x = 0$  is called the eigenspace of A associated with the eigenvalue  $\lambda$  and is denoted by  $E_{\lambda}$ .

#### Note:

- First we need to compute the eigenvalues of A as in the last slide.
- Then recalled the point that shows us how to compute the solution space of a homogeneous linear system.
- **3** Apply the skill in 2 to the homogeneous linear system  $(\lambda I A)x = 0$ .

# How to compute all the eigenvectors of A?

- If u is an eigenvector of A associated with  $\lambda$ , then for any scalar  $\alpha \neq 0$ ,  $\alpha u$  is also an eigenvector of A associated with  $\lambda$ .
- ② If u and v are two eigenvectors of A associated with  $\lambda$ , then for any scalar  $\alpha \neq 0$  and  $\beta \neq 0$ ,  $\alpha u + \beta v$  is also an igenvector of A associated with  $\lambda$ .
- **3** As indicated by the concept of eigenspace, we have that the set of all eigenvectors of A associated with  $\lambda$  is a vector space, this vector space is exactly the solution space of the homogeneous linear system  $(\lambda I A)x = 0$ .
- So we can find a basis  $\{u_1, \dots, u_k\}$  for  $E_{\lambda}$ , which is exactly the basis for the solution space of the homogeneous linear system  $(\lambda I A)x = 0$ .
- **9** Now each eigenvector of A associated with  $\lambda$  can be written as a linear combination of the basis  $\{u_1, \dots, u_k\}$  for  $E_{\lambda}$ .



### Table of Contents

Eigenvalues and Eigenvectors

② Diagonalization

3 Orthogonal Diagonalization

## Diagonalization

#### **Definition**

A square matrix A is called **diagonalizable** if there exists an invertible matrix P such that  $P^{-1}AP$  is a diagonal matrix. Here the matrix P is said to diagonalize A.

### Theorem (6.2.3)

Let A be a square matrix of order n. Then A is diagonalizable if and only if A has n linearly independent eigenvectors.

## Determine if A is diagonalizable and find P.

Given a square matrix A of order n, we want to determine whether A is diagonalizable. Also, if A is diagonalizable, find an invertible matrix P such that  $P^{-1}AP$  is a diagonal matrix.

- Find all distinct eigenvalues  $\lambda_1, \dots, \lambda_k$ . (can be obtained by solving the characteristic equation of A.)
- ② For each eigenvalue  $\lambda_i$  find a basis  $S_{\lambda_i}$  for the eigenspace  $E_{\lambda_i}$ .
- **3** Let  $S = S_{\lambda_1} \cup \cdots \cup S_{\lambda_k}$ . Then if |S| < n, A is not diagonalizable. If |S| = n, say  $S = \{u_1, \cdots, u_n\}$ , then

$$P = \begin{pmatrix} u_1 & u_2 & \cdots & u_n \end{pmatrix}$$

is an invertible matrix that diagonalizes A. And the (i, i)-entry of  $P^{-1}AP$  is the eigenvalue corresponding to the eigenvector  $u_i$ .



### Table of Contents

1 Eigenvalues and Eigenvectors

② Diagonalization

Orthogonal Diagonalization

# Orthogonal Diagonalization

#### **Definition**

A square matrix A is called *orthogonal diagonalizable* if there exits an orthogonal matrix P such that  $P^TAP$  is a diagonal matrix.

Question: When exactly a matrix is diagonalizable?

### Theorem (6.3.4)

A square matrix is orthogonally diagonalizable if and only if it is symmetric.

This Theorem tells us that a symmetric matrix of order n always have n linear independent eigenvectors. (WHY?)

### Find P?

Given a symmetric matrix A of order n, we want to find an orthogonal matrix P such that  $P^TAP$  is a diagonal matrix.

- Find all distinct eigenvalues  $\lambda_1, \dots, \lambda_k$ .
- ② For each eigenvalue  $\lambda_i$ , first find a basis  $S_{\lambda_i}$  for the eigenspace  $E_{\lambda_i}$  and then use the Gram-Schmidt Process to transfer  $S_{\lambda_i}$  to an orthonormal basis  $T_{\lambda_i}$ .
- **3** Let  $T = T_{\lambda_1} \cup \cdots T_{\lambda_k}$ , say  $T = \{v_1, \cdots, v_n\}$ . Then

$$P = \begin{pmatrix} v_1 & v_2 & \cdots & v_n \end{pmatrix}$$

is an orthogonal matrix that diagonalizes A. And the (i, i)-entry of  $P^TAP$  is the eigenvalue corresponding to the eigenvector  $v_i$ .

