

Modeling Molecular Systems

MSSE Bootcamp

August 12, 2020

Monte Carlo Connection to Molecular Systems

According to **statistical mechanics**

We can use MC to evaluate this integral!

$$\langle Q \rangle = \int_{V} Q(r^{N}) \rho(r^{N}) dr^{N}$$

- $oldsymbol{Q}$ quantity which depends on atomic coordinates (r^N)
- (Q) average value of quantity Q (square brackets denote average)
- r^N atomic coordinates with N dimensions (x, y, z is three dimensions)
- $ho(r^N)$ probability density based on thermodynamic properties (beyond scope of this course)

Monte Carlo Connection to Molecular Systems

According to **statistical mechanics**

$$\langle Q \rangle = \int_{V} Q(r^{N}) \rho(r^{N}) dr^{N}$$

This integral gets complicated very quickly. Consider a system of 10 atoms in 3 dimensions.

3 dimensions x 10 atoms = 30 dimensional integral!

This integral cannot be solved analytically, but we can use Monte Carlo integration to evaluate it.

Today, we will build our model for our thermodynamic quantity, Q.

The Lennard Jones Potential

The Lennard Jones Potential is an equation that is often used to model the interaction energy of nonbonded atoms:

$$Q = U(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

This interaction is pairwise, meaning it occurs between two particles.

r – distance between two particles

 ε – strength of particle interaction

 σ – particle size

 ε and σ – are parameters which are dependent on particle identity

The Lennard Jones Potential

$$Q = U(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

 ε and σ – are parameters which are dependent on particle identity

Reduced Units

For Argon,

$$\varepsilon = 120 \ K \ (k_B) = 1.68 \ x \ 10^{-21} \ J \ \text{and} \ \sigma = 3.4 \ x \ 10^{-10} \ meters$$

These are really inconvenient numbers!

We will normalize our energy by ε and our distances by σ .

$$U^*(r) = \frac{U(r)}{\varepsilon}$$

$$r^* = \frac{r}{\sigma}$$

$$U^*(r^*) = 4\left[\left(\frac{1}{r^*}\right)^{12} - \left(\frac{1}{r^*}\right)^6\right]$$
 This will make $U^*(r^*)$ be on

This will make the order of 1.

