TAREA 8 - Axiomas de Armstrong

Vences Santillán Carlos Eduardo

13 de octubre de 2025

Axiomas de Armstrong

Los **Axiomas de Armstrong**, propuestos por William W. Armstrong en 1974, son un conjunto de reglas fundamentales utilizadas para derivar dependencias funcionales a partir de un conjunto inicial. Estas reglas son esenciales en el proceso de normalización de bases de datos, pues permiten deducir nuevas dependencias, verificar la consistencia del modelo y eliminar redundancias.

Axioma de Reflexividad

Definición: Si un conjunto de atributos Y es subconjunto de X, entonces X determina a Y.

$$Y \subseteq X \Rightarrow X \to Y$$

Explicación: Cualquier conjunto de atributos determina a sus propios subconjuntos, ya que estos ya están contenidos en él. **Ejemplo:** En una tabla Empleados(ID, Nombre, Departamento), el conjunto $\{ID, Nombre\}$ determina a $\{Nombre\}$, porque "Nombre" es parte de "ID, Nombre".

Axioma de Aumentación

Definición: Si $X \to Y$, entonces también $XZ \to YZ$.

$$X \to Y \Rightarrow XZ \to YZ$$

Explicación: Si una dependencia funcional es válida, seguirá siendo válida al agregar atributos adicionales tanto al lado izquierdo como al derecho. **Ejemplo:** Si $ID \rightarrow Nombre$, entonces $\{ID, Departamento\} \rightarrow \{Nombre, Departamento\}$.

Axioma de Transitividad

Definición: Si $X \to Y$ y $Y \to Z$, entonces $X \to Z$.

$$X \to Y$$
, $Y \to Z \Rightarrow X \to Z$

Explicación: Este axioma indica que si un conjunto de atributos determina a un segundo conjunto, y este a su vez determina a un tercero, entonces el primero también determina al tercero. **Ejemplo:** Si $Matricula \rightarrow CURP$ y $CURP \rightarrow Nombre$, entonces $Matricula \rightarrow Nombre$.

Reglas derivadas de Armstrong

Además de los tres axiomas principales, existen reglas derivadas que amplían su aplicación práctica:

Regla de Unión: Si $X \to Y$ y $X \to Z$, entonces $X \to YZ$. **Explicación:** Si un mismo conjunto de atributos determina dos conjuntos distintos, también determina su unión. **Ejemplo:** Si $ID \to Nombre$ y $ID \to Departamento$, entonces $ID \to \{Nombre, Departamento\}$.

Regla de Descomposición: Si $X \to YZ$, entonces $X \to Y$ y $X \to Z$. Explicación: Si un conjunto determina varios atributos, también los determina individualmente. Ejemplo: Si $ID \to \{Nombre, Departamento\}$, entonces $ID \to Nombre$ e $ID \to Departamento$.

Regla de Pseudotransitividad: Si $X \to Y$ y $WY \to Z$, entonces $XW \to Z$. Explicación: Si un conjunto X determina a Y, y al combinar Y con otro conjunto W se determina Z, entonces la unión de X y W también determina Z. Ejemplo: Si $CURP \to Nombre$ y $\{Nombre, Carrera\} \to Promedio$, entonces $\{CURP, Carrera\} \to Promedio$.

Referencias

- [1] Armstrong, W. W. (1974). Dependency Structures of Data Base Relationships. Information Processing 74, North-Holland Publishing Company.
- [2] Date, C. J. (2003). An Introduction to Database Systems (8th ed.). Addison-Wesley.
- [3] Elmasri, R., & Navathe, S. B. (2016). Fundamentals of Database Systems (7th ed.). Pearson.
- [4] Silberschatz, A., Korth, H. F., & Sudarshan, S. (2019). *Database System Concepts* (7th ed.). McGraw-Hill.
- [5] Connolly, T. M., & Begg, C. E. (2015). Database Systems: A Practical Approach to Design, Implementation, and Management (6th ed.). Pearson.