Sensors of flow rate and level

AE3B38SME - Sensors and Measurement

Two forces act on the float

F_g gravity force

Ff force due to flow

The flow is in equilibrium when

$$F_g = F_f$$

The force due to flow F_f depends on the flow and on the area the fluid rue through.

If I want a constant F_f equal to gravity

$$F_f = F_g$$

if the flow increases the area should also increase.

The equilibrium point $F_f = F_g$ is found at higher level for higher flux

- Low flux but small area
- High flux but large area

- no power needed
- should be always installed vertically

KOBOLD Instruments, Inc.

Turbine flowmeter

- based on measurement of velocity
- paddle movement measured magnetically
- linearity 0 − 1% threshold 2 − 3% range

Paddle wheel flowmeter

- cheaper
- less precise

Vortex —Shedding flowmeter

The frequency of vortices f depends on velocity of the fluid

$$f = \frac{Sr}{a}v$$

a = characteristic of the obstacleSr = Strouhal number (char. for certain shape of obstacles)

Detection of vortices: thermoanemometers ultrasonic detectors pressure detectors

Ultrasonic flowmeter

 Δt_2 : time from T_2 to R_1

$$v = \frac{L}{2\cos\alpha} \frac{\Delta t_2 - \Delta t_1}{\Delta t_1 \Delta t_2}$$

Ultrasonic flowmeter

Multiple reflections can be used to achieve longer path, and therefore larger effect.

Induction (electromagnetic) flowmeter

Typically AC magnetic field (the resulting force is periodically reversed)

Differential pressure flowmeter

PITOT TUBE USED TO MEASURE FLOW RATE

Differential pressure flowmeter

MEASURING FLOW RATE USING THE VENTURI EFFECT

Sensors with conversion of flow to deformation

cross sectional area

Accuracy: units of % Goof dynamic response

Thermal mass flowmeter

- a thermistor is immersed in the fluid which flows with speed v
- the current I warms up the thermistor due to power Rt-I²

Let us consider a negative thermistor

If the thermistor is warmed up by the current and cooled down by the flow of fluid

Mode of operation I: constant current

Mode of operation 2: constant temperature

The control sets the current in the bridge so that Vo=0. If Vo=0, it means that Rt=Rm.

 $v \uparrow \Rightarrow i \downarrow$ to compensate extra cooling $v \downarrow \Rightarrow i \uparrow$ to compensate lower cooling

source of heat

same heat is transferred to both thermistors the bridge is still balanced

source of heat

 R_2 receives larger amount of heat than R_1 the bridge is not balanced anymore

Principle

arrival point with no rotation

Measurement of level

Bubbler (sensor not in contact with liquid)

Capacitive sensor of level

For

- non-conductive liquids
- conductive liquids (insulated electrode)

Float + weight

Float with reed switch

Float with reed switch(es)

Ultrasonic level meter

