WHAT IS CLAIMED IS:

1. A compound of the structure:

5 or a pharmaceutically acceptable salt, crystal form, or hydrate, wherein:

A is

a) an aryl ring, wherein any stable aryl ring atom is independently unsubstituted or substituted with

- 1) halogen,
- 2) NO₂,

10

- 3) CN,
- 4) $CR^{46}=C(R^{47}R^{48})_{2}$
- 5) $C = C R^{46}$.
- 6) (CRiRJ)_rOR46
- 7) (CRiRj)_rN(R46R47),

15

- 8) (CRiRJ)_r C(O)R46,
- 9) (CRiRJ)_r C(O)OR46,
- 10) (CRiRJ)_rR46,
- 11) (CRiRJ)_r S(O)₀₋₂R⁶¹,
- 12) $(CR^{i}R^{j})_{r} S(O)_{0-2}N(R^{46}R^{47}),$

20

- 13) $OS(O)_{0-2}R^{61}$,
- 14) N(R46)C(O)R47,
- 15) N(R46)S(O)0-2R61,
- 16) (CRiRj)_rN(R46)R61,
- 17) (CRiRj)_rN(R⁴⁶)R⁶¹OR⁴⁷,

- 18) $(CR^{i}R^{j})_{r}N(R^{46})(CR^{k}R^{l})_{s}C(O)N(R^{47}R^{48})$,
- 19) N(R46)(CRiRj), R61,
- 20) N(R46)(CRiRj)_rN(R47R48).
- 21) $(CR^{i}R^{j})_{r}C(O)N(R^{47}R^{48})$, or
- 22) oxo, or

b) a heteroaryl ring selected from the group consisting of a 5-membered unsaturated monocyclic ring with 1, 2, 3 or 4 heteroatom ring atoms selected from the group consisting or N, O or S, a 6-membered unsaturated monocyclic ring with 1, 2, 3 or 4 heteroatom ring atoms selected from the group consisting N, O and S, and 5 a 9- or 10-membered unsaturated bicyclic ring with 1, 2, 3 or 4 heteroatom ring atoms selected from the group consisting or N, O or S; wherein any stable S heteroaryl ring atom is unsubstituted or mono- or di-substituted with oxo, and any stable C or N heteroaryl ring atom is independently unsubstituted or substituted with 10 1) halogen, 2) NO₂, 3) CN, 4) CR46=C(R47R48)2, 5) C≡CR46, 15 6) (CRiRJ)_rOR46 7) (CRiRJ)_rN(R46R47), 8) (CRiRj)_r C(O)R46, 9) (CRiRJ)_r C(O)OR46, 10) (CRiRj)_TR46, 20 11) (CRiRj)_r S(O)₀₋₂R61, 12) $(CR^{i}R^{j})_{r} S(O)_{0-2}N(R^{46}R^{47})$, 13) QS(O)₀₋₂R61, 14) N(R46)C(O)R47, 15) $N(R^{46})S(O)_{0-2}R^{61}$, 25 16) (CRiRJ), N(R46)R61, 17) (CRiRJ)_rN(R46)R61OR47, 18) $(CR^{i}R^{j})_{r}N(R^{46})(CR^{k}R^{l})_{s}C(O)N(R^{47}R^{48})$, 19) N(R46)(CRiRj)_rR61, 20) $N(R^{46})(CRiRi)_rN(R^{47}R^{48})$, 30 21) (CRiRJ)_rC(O)N(R⁴⁷R⁴⁸), or 22) oxo; R1 is selected from the group consisting of 1) hydrogen, 2) (CRaRb)_nR40 35

- 3) $(CRaRb)_nOR^{40}$,
- 4) $(CRaRb)_nN(R^{40}R^{41})$,
- 5) $(CRaRb)_nN(R^{40})C(O)OR^{41}$,
- 6) $(CR^{a}R^{b})_{n}N(R^{40})(CR^{c}R^{d})_{2}N(R^{41})C(O)R^{49}$,
- 5 7) C₃₋₈ cycloalkyl,
 - 8) $(CRaRb)_nC(O)OR^{40}$,
 - 9) $(CRaRb)_nN(R^{40})(CRcRd)_{1-3}R^{41}$,
 - 10) (CRaRb)_nS(O)₀₋₂R6,
 - 11) $(CRaRb)_nS(O)_{0-2}N(R^{40}R^{41})$,
 - 12) (CRaRb)_nN(R40)R6OR41,
 - 13) $(CRaRb)_nN(R^{40})(CRcRd)_{0-6}C(O)N(R^{41}R^{42});$

R⁵ is selected from the group consisting of

- 1) hydrogen,
- 2) halogen,
- 3) S(O)₀₋₂N(R⁵³R⁵⁰),
 - 4) $S(O)_{0-2}R62$,
 - 5) CH₃,
 - 6) C3-C6 alkyl,
 - 7) C3-C10 cycloalkyl,

20 8) R⁸²,

10

15

25

said alkyl, and cycloalkyl is unsubstituted, mono-substituted with R^{22} , di-substituted with R^{22} and R^{23} , tri-substituted with R^{22} , R^{23} and R^{24} , or tetra-substituted with R^{22} , R^{23} , R^{24} and R^{25} ;

or R¹ and R⁵ together with the atoms to which they are attached, form a ring selected from the group of structures consisting of

$$\lambda_{L_{L_{1}}} = \lambda_{L_{1}} =$$

where u is 0 or 1, R⁹⁹ is hydrogen or -OH, and X is O or $\{=$ NOH;

R2, R8, R9 and R10 are independently selected from:

30 1) hydrogen,

2) halogen,

3) NO₂,

4) CN,

5) CR43 = C(R44R45),

5 6) C≡CR⁴³,

7) (CReRf)pOR43

8) $(CReRf)_{p}N(R^{43}R^{44})$,

9) $(CReRf)_pC(O)R43$,

10) (CReRf)_pC(O)OR43,

10 11) (CReRf)_pR43,

15

20

30

12) (CReRf)_pS(O)₀₋₂R60,

13) $(CReR^f)_pS(O)_{0-2}N(R^{43}R^{44})$,

14) OS(O)0-2R60,

15) N(R43)C(O)R44,

16) N(R⁴³)S(O)₀₋₂R⁶⁰,

.17) (CReRf)_pN(R43)R60,

18) (CReRf)_pN(R43)R60OR44,

 $19) \ (CReR^f)_p N(R^{43}) (CRgR^h)_q C(O) N(R^{44}R^{45}),$

20) $N(R^{43})(CReRf)_pR^{60}$,

21) N(R43)(CReRf)_pN(R44R45), and

22) $(CReR^f)_pC(O)N(R^{43}R^{44})$,

or R^2 and R^8 are independently as defined above, and R^9 and R^{10} , together with the atoms to which they are attached, form the ring

, where Rm is C₁₋₆alkyl;

25 Ra, Rb, Rc, Rd, Re, Rf, Rg, Rh, Ri, Rj, Rk, and Rl are independently selected from the group consisting of:

1) hydrogen,

2) C₁-C₆ alkyl,

3) halogen,

4) aryl,

5) R80,

6) C3-C10 cycloalkyl, and

7) OR4,

said alkyl, aryl, and cycloalkyl being unsubstituted, monosubstituted with R^7 , disubstituted with R^7 and R^{15} , trisubstituted with R^7 , R^{15} and R^{16} , or tetrasubstituted with R^7 , R^{15} , R^{16} and R^{17} ;

5

R4, R40, R41, R42, R43, R44, R45, R46, R47, R48, R49, R50, R51, R52, and R53 and are independently selected from the group consisting of

- 1) hydrogen,
- 2) C₁-C₆ alkyl,
- 10 3) C₃-C₁₀ cycloalkyl,
 - 4) aryl,
 - 5) R81,
 - 6) CF₃,
 - 7) C2-C6 alkenyl, and

15

8) C2-C6 alkynyl,

said alkyl, aryl, and cycloalkyl is unsubstituted, mono-substituted with R^{18} , disubstituted with R^{18} and R^{19} , tri-substituted with R^{18} , R^{19} and R^{20} , or tetra-substituted with R^{18} , R^{19} , R^{20} and R^{21} :

 R^6 , R^{60} , R^{61} , R^{62} and R^{63} are independently selected from the group consisting of

- 1) C₁-C₆ alkyl,
- 2) aryl,
- 3) R83, and
- 4) C₃-C₁₀ cycloalkyl;

25

said alkyl, aryl, and cycloalkyl is unsubstituted, mono-substituted with R^{26} , disubstituted with R^{26} and R^{27} , tri-substituted with R^{26} , R^{27} and R^{28} , or tetra-substituted with R^{26} , R^{27} , R^{28} and R^{29} ;

 R^7 , R^{15} , R^{16} , R^{17} , R^{18} , R^{19} , R^{20} , R^{21} , R^{22} , R^{23} , R^{24} , R^{25} , R^{26} , R^{27} , R^{28} , and R^{29} are

- 30 independently selected from the group consisting of
 - 1) C₁-C₆ alkyl,
 - 2) halogen,
 - 3) OR51,
 - 4) CF₃,

35

5) aryl,

```
6) C3-C10 cycloalkyl,
```

7) R84,

8) $S(O)_{0-2}N(R^{51}R^{52})$,

9) C(O)OR51,

10) C(O)R51,

11) CN,

12) C(O)N(R51R52),

13) N(R⁵¹)C(O)R⁵²,

14) $S(O)_{0-2}R^{63}$,

15) NO₂, and

5

10

15

20

30

16) N(R51R52);

R80, R81, R82, R83 and R84 are independently selected from a group of unsubstituted or substituted heterocyclic rings consisting of a 4-6 membered unsaturated or saturated monocyclic ring with 1, 2, 3 or 4 heteroatom ring atoms selected from the group consisting N, O and S, and a 9- or 10-membered unsaturated or saturated bicyclic ring with 1, 2, 3 or 4 heteroatom ring atoms selected from the group consisting or N, O or S; and

n, p, q, r, and s are independently 0, 1, 2, 3, 4, 5 or 6; provided that

when R9 is OCH3, R1 is CH3 and R5 is C(CH3)3, then A is substituted,

when R⁹ is hydrogen, R¹ is CH₃, and R⁵ is hydrogen, then A is substituted,

when R⁹ is hydrogen, R¹ is CH₃, and R⁵ is C(CH₃)₃, then A is substituted, provided the substituent is not CH₃, and

when R⁹ is OCH₃, R¹ is CH₃, R⁵ is CH₃, then A is substituted.

A compound of Claim 1, or a pharmaceutically acceptable salt thereof, wherein
A is an aryl ring selected from phenyl, unsubstituted or substituted as in Claim 1, or a heteroaryl ring, unsubstituted or substituted as in Claim 1, selected from the group consisting of pyridine, pyrimidine, pyrazine, pyridazine, indole, pyrrolopyridine, benzimidazole, benzoxazole, benzothiazole, and benzoxadiazole;

R², R⁸, R⁹ and R¹⁰ are independently selected from the group consisting of:

- 1) hydrogen,
- 2) halogen,
- 3) OR43
- 4) (CReRf)pR43,
- 5) CN, and

6) $(CReRf)_pC(O)N(R^{43}R^{44})$,

or R² and R⁸ are independently as defined above, and R⁹ and R¹⁰, together with the atoms to which they are attached, form the ring

- 5 R1 is selected from the group consisting of
 - 1) hydrogen,
 - 2) $(CRaRb)_{1-2}R40$
 - 3) $(CRaRb)_{1-2}OR40$,
 - 4) $(CR^aR^b)_{1-2}N(R^{40}R^{41})$,
 - 5) (CRaRb)₁₋₂N(R⁴⁰)C(O)OR⁴¹,
 - 6) $(CRaRb)_{1-2}N(R^{40})(CRcRd)_2N(R^{41})C(O)R^{49}$,
 - 7) (CRaRb)₁₋₂C(O)OR⁴⁰,
 - 8) (CRaRb)₁₋₂N(R⁴⁰)(CRcRd)₁₋₃R⁴¹, and
 - 9) cyclopropyl; and
- 15 R⁵ is selected from the group consisting of
 - 1) hydrogen,
 - 2) halogen,
 - 3) $S(O)_{0-2}N(R^{53}R^{50})$,
 - 4) $S(O)_{0-2}R^{62}$,

20

10

- 5) CH₃,
- 6) C3-C6 alkyl,
- 7) C₃-C₁₀ cycloalkyl,
- . 8) R82,

25 said a

said alkyl, aryl, and cycloalkyl is unsubstituted, mono-substituted with R^{22} , disubstituted with R^{22} and R^{23} , tri-substituted with R^{22} , R^{23} and R^{24} , or tetra-substituted with R^{22} , R^{23} , R^{24} and R^{25} ,

or R¹ and R⁵ together with the atoms to which they are attached, form a ring selected from the group of structures consisting of

$$\chi^{2}$$
 H^{99} and χ^{2} χ^{2} χ^{2}

where u is 0 or 1, R⁹⁹ is hydrogen or -OH, and X is O or $\{=$ NOH.

3. A compound of Claim 2, or a pharmaceutically acceptable salt thereof, wherein R², R⁸, R⁹ and R¹⁰ are independently selected from the group consisting of:

- 1) hydrogen,
- 2) halogen,
- 3) OR43, and
- 4) (CReRf)_pC(O)N(R⁴³R⁴⁴).

4. A compound of Claim 3, or a pharmaceutically acceptable salt thereof, wherein

10 R¹ is selected from the group consisting of

- 1) hydrogen,
- 2) $(CRaRb)_{1-2}R^{40}$
- 3) (CRaRb)₁₋₂OR⁴⁰, or
- 4) $(CRaRb)_{1-2}N(R^{40}R^{41});$

15 R⁵ is selected from the group consisting of

- 1) hydrogen,
- 2) C3-C6 alkyl, and
- 3) CH3,

said alkyl is unsubstituted, mono-substituted with R^{22} , di-substituted with R^{22} and R^{23} , tri-substituted with R^{22} , R^{23} and R^{24} , or tetra-substituted with R^{22} , R^{23} , R^{24} and R^{25} ;

or R¹ and R⁵ together with the atoms to which they are attached, form a ring selected from the group of structures consisting of

where u is 1, and R⁹⁹ is hydrogen or -OH.

25

20

5. A compound of Claim 4, or a pharmaceutically acceptable salt thereof, wherein A is unsubstituted phenyl, or phenyl substituted with halogen.

- 6. A compound of Claim 5, or a pharmaceutically acceptable salt thereof, wherein R¹ is selected from the group consisting of -CH₃, -CH₂CH₃, -(CH₂)₂OCH₃, -(CH₂)₂NH₂, and -(CH₂)₃NH₂, -CH₂C(O)OC(CH₃)₃; and R⁵ is selected from the group consisting of hydrogen, -C(CH₃)₃, -CH₃,
- or R¹ and R⁵ together with the atoms to which they are attached, form a ring selected from the group of structures consisting of

$$R^{99}$$
 and R^{99}

where u is 1, and R⁹⁹ is hydrogen or -OH.

- 7. A compound of Claim 6, or a pharmaceutically acceptable salt thereof, selected from the group consisting of
- 15 3-tert-butyl-4-(3-fluorophenyl)-6-methoxy-2-methylisoquinolin-1(2H)-one,
 - 3-tert-butyl-4-(4-fluorophenyl)-6-methoxy-2-methylisoquinolin-1(2H)-one,
- 20 6-methoxy-2-methyl-4-phenylisoquinolin-1(2H)-one,

- 4-(3-fluorophenyl)-6-methoxy-2,3-dimethylisoquinolin-1(2H)-one,
- 4-(4-fluorophenyl)-6-methoxy-2,3-dimethylisoquinolin-1(2H)-one,
- (1E)-11-(3-fluorophenyl)-9-methoxy-3,4-dihydro-2H-pyrido[1,2-b]isoquinoline-1,6-dione 1-oxime,
 - 3-tert-butyl-6-hydroxy-2-methyl-4-phenylisoquinolin-1(2H)-one,

2,3-dimethyl-4-phenylisoquinolin-1(2H)-one,

3-tert-butyl-2-ethyl-6-methoxy-4-phenylisoquinolin-1(2H)-one,

5 3-tert-butyl-6-methoxy-4-phenylisoquinolin-1(2H)-one,

2-ethyl-6-methoxy-3-methyl-4-phenylisoquinolin-1(2H)-one,

6-methoxy-3-methyl-4-phenylisoquinolin-1(2H)-one,

6-methoxy-2-(2-methoxyethyl)-3-methyl-4-phenylisoquinolin-1(2H)-one,

2-(2-aminoethyl)-6-methoxy-3-methyl-4-phenylisoquinolin-1(2H)-one,

15 2-(3-aminopropyl)-6-methoxy-3-methyl-4-phenylisoquinolin-1(2H)-one,

3-tert-butyl-2-methyl-1-oxo-4-phenyl-1,2-dihydroisoquinoline-6-carbonitrile,

3-tert-butyl-8-hydroxy-2-methyl-4-phenylisoquinolin-1(2H)-one,

20

30

10

3-tert-butyl-2-methyl-1-oxo-4-phenyl-1,2-dihydroisoquinoline-6-carboxamide,

3-tert-butyl-2-methyl-4-phenyl-6-(4-phenylbutoxy)isoquinolin-1(2H)-one,

25 3-tert-butyl-2-methyl-4-phenyl-6-[(5-phenylpentyl)oxy]isoquinolin-1(2H)-one,

11-(3-fluorophenyl)-9-methoxy-3,4-dihydro-2H-pyrido[1,2-b]isoquinoline-1,6-dione,

(+/-)-11-(3-fluorophenyl)-1-hydroxy-9-methoxy-1,2,3,4-tetrahydro-6H-pyrido[1,2-b]isoquinolin-6-one,

(1S)-11-(3-fluorophenyl)-1-hydroxy-9-methoxy-1,2,3,4-tetrahydro-6H-pyrido[1,2-b]isoquinolin-6-one,

(1R)-11-(3-fluorophenyl)-1-hydroxy-9-methoxy-1,2,3,4-tetrahydro-6H-pyrido[1,2-b]isoquinolin-6-one, and

11-(3-fluorophenyl)-9-methoxy-1,2,3,4-tetrahydro-6H-pyrido[1,2-b]isoquinolin-6-one.

5

- 8. A method of treating a condition in a mammal, the treatment of which is effected or facilitated by $K_V 1.5$ inhibition, which comprises administering a compound of Claim 1 in an amount that is effective at inhibiting $K_V 1.5$.
 - 9. A method of Claim 8, wherein the condition is cardiac arrythmia.

10

- 10. A method of Claim 9, wherein the cardiac arrythmia is selected from the group consisting of atrial flutter, atrial arrhythmia and supraventricular tachycardia.
 - 11. A method of Claim 10, wherein the cardiac arrythmia is atrial fibrillation.

15

12. A method of preventing a condition in a mammal, the prevention of which is effected or facilitated by $K_V 1.5$ inhibition, which comprises administering a compound of Claim 1 in an amount that is effective at inhibiting $K_V 1.5$.

20

- 13. A method of Claim 12, wherein the condition is cardiac arrythmia.
- 14. A method of Claim 13, wherein the cardiac arrythmia is selected from the group consisting of atrial flutter, atrial arrhythmia and supraventricular tachycardia.

25

- 15. A method of Claim 14, wherein the cardiac arrythmia is atrial fibrillation.
- 16. A method of Claim 12, wherein the condition is a thromboembolic event.
- 17. A method of Claim 16, wherein the thromboembolic event is a stroke.

- 18. A method of Claim 12, wherein the condition is congestive heart failure.
- 19. A pharmaceutical formulation comprising a pharmaceutically acceptable carrier and the compound Claim 1 or a pharmaceutically acceptable crystal form or hydrate thereof.

20. A pharmaceutical composition made by combining the compound of Claim 1 and a pharmaceutically acceptable carrier.

- 21. A method of treating cardiac arrythmia comprising administering a compound of Claim 1 with a compound selected from one of the classes of compounds consisting of antiarrhythmic agents having Kv1.5 blocking activities, ACE inhibitors, angiotensin II antagonists, cardiac glycosides, L-type calcium channel blockers, T-type calcium channel blockers, selective and nonselective beta blockers, endothelin antagonists, thrombin inhibitors, aspirin, nonselective NSAIDs, warfarin, factor Xa inhibitors, low molecular weight heparin, unfractionated heparin, clopidogrel, ticlopidine, IIb/IIIa receptor antagonists, 5HT receptor antagonists, integrin receptor antagonists, thromboxane receptor antagonists, TAFI inhibitors and P2T receptor antagonists.
- 22. A method for inducing a condition of normal sinus rhythm in a patient having atrial fibrillation, which comprises treating the patient with a compound of Claim 1.
 - 23. A method for treating tachycardia in a patient which comprises treating the patient with an antitachycardia device in combination with a compound of Claim 1.