PROBLEMAS Y APLICACIONES SOBRE GRAFOS

Tecnología Digital V: Diseño de Algoritmos

Universidad Torcuato Di Tella

Conjunto independiente

Definición

- 1. Un conjunto independiente de un grafo G = (V, E) es un subconjunto $I \subseteq V$ de vértices tal que $ij \notin E$ para todo $i, j \in I$.
- 2. Una clique de un grafo G=(V,E) es un subconjunto $K\subseteq V$ de vértices tal que $ij\in E$ para todo $i,j\in K$.

Conjunto independiente

Definición

- 1. Notamos $\alpha(G)$ al tamaño del máximo conjunto independiente de G.
- 2. Notamos $\omega(G)$ al tamaño de la clique máxima de G.

El grafo de Petersen P

Pregunta

¿Cuánto valen $\alpha(P)$ y $\omega(P)$?

Conjunto independiente

Aplicación

Tenemos un grafo G = (V, E) que representa los usuarios de una red social. Una arista entre dos vértices representa que los usuarios correspondientes están conectados (son "amigos") en la red social.

- Suponemos que los pares de usuarios amigos comparten características en común.
- Sea $K \subseteq V$ una clique (pequeña) de usuarios que convirtieron (i.e., dieron click sobre) una publicidad.
- **Pregunta.** ¿Cuál es la clique $Q \subseteq V$ de tamaño máximo tal que $K \subseteq Q$? (¿y por qué nos interesa Q?)

Grafos pesados

Definiciones

- 1. Un grafo con pesos en los vértices es un grafo G = (V, E) junto con una función $w : V \to \mathbb{R}$. Para $i \in V$, decimos que $w_i := w(i)$ es el peso del vértice i.
- 2. Un grafo con pesos en las aristas es un grafo G = (V, E) junto con una función $w : E \to \mathbb{R}$. Para $ij \in E$, decimos que $w_{ij} := w(ij)$ es el peso de la arista ij.

$$G = (V, E) \operatorname{con}$$

- $OV = \{1, 2, 3, 4, 5\}, y$
- \bigcirc $E = \{12, 13, 23, 34, 45\}$
- $\bigcirc \ \ w_{12}=4, w_{13}=10, w_{23}=5, w_{45}=11, w_{34}=7.$

Grafos pesados

Pregunta

En el ejemplo de la red social, supongamos que ahora tenemos un grafo con pesos en las aristas, de modo tal que $w_{ij} \in [0,1]$ representa la similitud entre los usuarios i y j, para $ij \in E$. ¿Qué problema podemos resolver ahora para intentar mejorar la conversión de un anuncio?

Coloreo de grafos

Definición

Dado un grafo G=(V,E), la función $f:V\to\mathbb{N}$ es un coloreo (de los vértices) de G si $f(i)\neq f(j)$ para todo $ij\in E$.

Intuitivamente, buscamos *pintar* los vértices (número = color) con colores de forma tal que vértices adyacentes tengan colores distintos.

Preguntas

- ¿Es **válido** este coloreo?
- En caso de que lo sea, ¿es mínimo?
- ¿Podemos proveer una cota superior para el número mínimo de colores?
- ¿Podemos proveer una cota inferior para el número mínimo de colores?

Coloreo de grafos

Red de telefonía celular

Pregunta: ¿Cuál es el mínimo número de frecuencias para cubrir el área sin interferencias?

- O Modelamos el problema con el grafo de interferencias G = (V, E).
- Buscamos un coloreo válido para G con el mínimo número de colores.

Asignación de aulas

Pregunta: ¿Cuál es el mínimo número de aulas que necesitamos para dictar todos los cursos?

- Modelamos el problema con el grafo de intervalosG = (V, E).
- Buscamos un coloreo válido para G con el mínimo número de colores.

Matching en grafos

Definición

Un matching de un grafo G=(V,E) es un subconjunto $M\subseteq E$ de aristas tal que para todo $i\in V$ a lo sumo existe una arista en M incidente a i.

Matching en grafos

En la práctica

En un determinado instante, un conjunto de usuarios que contactan a soporte al cliente tienen que ser atendidos por representantes con diferentes habilidades, experiencia, etc.

Definimos:

- $V_1 = \{1, \dots, n_1\}$ el conjunto de clientes,
- $V_2 = \{n_1 + 1, \dots, n_1 + n_2\}$ el conjunto de representantes,
- \bigcirc $G = (V = V_1 \cup V_2, E, w)$ el grafo bipartito completo K_{n_1, n_2}
- \bigcirc w_{ij} el beneficio esperado de asignar el representante j al cliente $i, ij \in E$.

Penresentante

Isomorfismo entre grafos

Definición

Dos grafos G = (V, E) y G' = (V', E') se dicen isomorfos si existe una función biyectiva $f: V \to V'$ y para todo $v, w \in V$

$$(v,w)\in E \Longleftrightarrow (f(v),f(w))\in E'.$$

(b)
$$G' = (V', X')$$

(c) G'' = (V'', E'')

Intuitivamente

Dos grafos son isomorfos si son esencialmente el mismo grafo salvo un renombre de los vértices.

Isomorfismo entre grafos

Proposición[']

Si dos grafos son isomorfos, entonces

- O tienen el mismo número de vértices,
- O tienen el mismo número de aristas,
- para todo k, $0 \le k \le n-1$, tienen el mismo número de vértices de grado k,
- o tienen el mismo número de componentes conexas,
- para todo k, $1 \le k \le n 1$, tienen el mismo número de caminos simples de longitud k.

Preguntas (la segunda está abierta!)

- ¿Es cierta la recíproca de esta propiedad?
- ¿Hay condiciones necesarias y suficientes fácilmente verificables para ver si dos grafos son isomorfos?