On the Complexity of Path Checking in Temporal Logics

Daniel Bundala Joël Ouaknine

Department of Computer Science University of Oxford

Given LTL formula $(\mathrm{X} ho) \wedge ((\mathrm{G} q) \ \mathrm{U} \ r))$

Given LTL formula $(Xp) \wedge ((Gq) \cup r))$ and finite trace

	and finite trace							
p :	0	1	0	1	1			
q :	0	1	1	1	1			
<i>r</i> :	0	0	0	1	0			

Does it satisfy the formula? What is the complexity of checking?

Best lower bound: NC¹-hard - propositional formula evalution.

Can we do better than P?

 $\varphi \ \mathrm{U} \ \psi = \psi \lor (\varphi \land \mathrm{X}(\varphi \ \mathrm{U} \ \psi))$ Build circuits for independent leaves in parallel.

$$\varphi \cup \psi = \psi \vee (\varphi \wedge X(\varphi \cup \psi))$$

 $\varphi \ \mathrm{U} \ \psi = \psi \lor (\varphi \land \mathrm{X}(\varphi \ \mathrm{U} \ \psi))$ Build circuits for independent leaves in parallel.

Circuits:

$$\varphi \cup \psi = \psi \vee (\varphi \wedge X(\varphi \cup \psi))$$

 $\varphi \ \mathrm{U} \ \psi = \psi \lor (\varphi \land \mathrm{X}(\varphi \ \mathrm{U} \ \psi))$ Build circuits for independent leaves in parallel. Circuits: planar, layered, stratified, monotone

$$\varphi \cup \psi = \psi \vee (\varphi \wedge X(\varphi \cup \psi))$$

 $\varphi \ \mathrm{U} \ \psi = \psi \lor (\varphi \land \mathrm{X}(\varphi \ \mathrm{U} \ \psi))$ Build circuits for independent leaves in parallel.

Circuits: planar, layered, stratified, monotone (logDCFL \subseteq AC¹)

$$\varphi \cup \psi = \psi \vee (\varphi \wedge X(\varphi \cup \psi))$$

Build circuits for independent leaves in parallel.

Circuits: planar, layered, stratified, monotone (logDCFL \subseteq AC 1)

log |formula| parallel stages are sufficient.

$$\varphi \cup \psi = \psi \vee (\varphi \wedge X(\varphi \cup \psi))$$

Build circuits for independent leaves in parallel.

Circuits: planar, layered, stratified, monotone (logDCFL \subseteq AC 1)

 $\log|\mathrm{formula}|$ parallel stages are sufficient. Gives $\mathsf{AC}^1[\mathsf{log}\mathsf{DCFL}]$ algorithm

$$\varphi \cup \psi = \psi \vee (\varphi \wedge X(\varphi \cup \psi))$$

Build circuits for independent leaves in parallel.

Circuits: planar, layered, stratified, monotone (logDCFL \subseteq AC¹)

 $\log|\mathrm{formula}|$ parallel stages are sufficient. Gives $\mathrm{AC}^1[\log \mathsf{DCFL}]$ algorithm

 $AC^1[logDCFL]\subseteq AC^2 \implies \text{ efficient parallel algorithm for LTL path checking. LTL path checking unlikely P-hard}$

Evaluated a single layer of the circuit

Inductively, circuit evaluation reduces to LTL path checking

Inductively, circuit evaluation reduces to LTL path checking Matching upper bounds (AC¹[logDCFL])

Inductively, circuit evaluation reduces to LTL path checking Matching upper bounds (AC¹[logDCFL])
Nonmonotone circuits: PTIME-Complete

Inductively, circuit evaluation reduces to LTL path checking Matching upper bounds (AC¹[logDCFL])

Nonmonotone circuits: PTIME-Complete

Inductively, circuit evaluation reduces to LTL path checking Matching upper bounds (AC¹[logDCFL])
Nonmonotone circuits: PTIME-Complete

X	or		1	1				
	Х	X	Х	Х	Х	Х	X	

Inductively, circuit evaluation reduces to LTL path checking Matching upper bounds (AC¹[logDCFL])

Nonmonotone circuits: PTIME-Complete

			$\neg x$	$\neg x$				
X	or		1	1				
	Χ	Х	X	Х	X	Х	X	

Inductively, circuit evaluation reduces to LTL path checking Matching upper bounds (AC¹[logDCFL])

Nonmonotone circuits: PTIME-Complete

			$\neg x$	$\neg x$				
X	or		1	1				
	Χ	Х	Х	Х	Χ	Х	X	

⇒ LTL+XOR path checking is PTIME-complete

Formula $p U_{[1,3]} q$:

p :	*	*	*	*	*	*	*	*
q :	0	0	0	0	1	0	1	1
<i>t</i> :	1	2	3	3.5	3.8	4	4.5	5

Formula $p U_{[1,3]} q$:

p :	*	*	*	*	*	*	*	*
q :	0	0	0	0	1	0	1	1
<i>t</i> :	1	2	3	3.5	3.8	4	4.5	5

Formula $p U_{[1,3]} q$:

p :	*	*	*	*	*	*	*	*
q :	0	0	0	0	1	0	1	1
t:	1	2	3	3.5	3.8	4	4.5	5

Formula $p U_{[1,3]} q$:

p :	*	*	*	*	*	*	*	*
q :	0	0	0	0	1	0	1	1
<i>t</i> :	1	2	3	3.5	3.8	4	4.5	5

Formula $p U_{[1,3]} q$:

p :	*	*	*	*	*	*	*	*
q :	0	0	0	0	1	0	1	1
t:	1	2	3	3.5	3.8	4	4.5	5

Formula $p U_{[1,3]} q$:

Formula $p U_{[1,3]} q$:

Similar circuits for other operators

Similar circuits for other operators

⇒ MTL path checking in AC¹[logDCFL].

Polynomially many possibilities for $Gp \implies$ can be stored explicitly in polynomial space

Polynomially many possibilities for $\mathrm{G}\rho \Longrightarrow \mathrm{can}$ be stored explicitly in polynomial space Leads to AC^1 algorithm for UTL

Polynomially many possibilities for $\mathrm{G}\rho \implies$ can be stored explicitly in polynomial space

Leads to AC¹ algorithm for UTL

Polynomially many possibilities for $\mathrm{G} \rho \implies$ can be stored explicitly in polynomial space

Leads to AC¹ algorithm for UTL

Questions?