Project1

Frank Hereygers

3. April 2016

represearchproject1

This repository includes my project work for the coursera course reproducible research

Loading required libraries and the data

```
library(ggplot2)

## Warning: package 'ggplot2' was built under R version 3.2.3

activity_data <- read.csv("C:/Data/projects/internal/personal/Coursera/reproducable research/project/activity.csv", header=TRUE)</pre>
```

What is mean total number of steps taken per day?

1. First I calculate the total number of steps taken per day:

```
stepsperday <- aggregate(steps ~ date, data=activity_data, sum)</pre>
```

2. Here is the Histogram of the total steps taken each day:

```
p <- ggplot(stepsperday, aes(x = steps))
p <- p + geom_histogram()
p</pre>
```

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```


3. Following figures are the mean and median of the total number of steps taken each day

```
mean(stepsperday$steps)

## [1] 10766.19

median(stepsperday$steps)

## [1] 10765
```

What is the average daily activity pattern

1. Time series plot of the 5 minute interval and the average number of steps taken per interval over all days

activity_pattern <- aggregate(steps ~ interval, data=activity_data, mean)
plot(activity_pattern\$interval, activity_pattern\$steps,type="l", main="Average Dialy Ac
tivity Pattern", xlab="Interval", ylab="average steps across all days")</pre>

Average Dialy Activity Pattern

2. Which Internal, contains the maximum number of steps on average.

```
activity_pattern[which.max(activity_pattern[,2]),1]
```

[1] 835

Imputing missing values

1. Calculation of total number of missing values in the dataset

sum(is.na(activity_data\$steps))

[1] 2304

2. Definition of Strategy for filling in all the missing values in the dataset

I have opted to replace the missing values with the average value of the respective interval.

3. Creation of new dataset with NAs replaced

```
# add the average steps for each interval
new_activity_data <- merge(activity_data, activity_pattern, by.x="interval" , by.y="int
erval")
# replace all steps that have NA with average steps for this interval
new_activity_data$steps <- ifelse(is.na(new_activity_data$steps.x),new_activity_data$st
eps.y,new_activity_data$steps.x)</pre>
```

4. Histogram of the total number of steps taken each day

```
# creating histogram for total number of steps taken each day
stepsperday <- aggregate(steps ~ date, data=new_activity_data, sum)
p <- ggplot(stepsperday, aes(x = steps))
p <- p + geom_histogram()
p</pre>
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Calculate mean and median
mean(stepsperday\$steps)

```
## [1] 10766.19
```

median(stepsperday\$steps)

```
## [1] 10766.19
```

The mean value does not differ from the Estimates from the first part of the asignment. The median however has changed and is now equal to the mean. I do not see any impact on the estimates of the total daily number of steps in the histogram.

Are there differences in activity patterns between weekdays and weekends?

1. Creation of new factor value with two levels "weekday" and "weekend"

```
activity_data$weekday <- weekdays(as.Date(activity_data$date),abbreviate =TRUE)
# Please note that due to my german settings I have to use "Sa" for "Sat" and "So" for
"Sun"
activity_data$daytype <- factor(ifelse( activity_data$weekday=="Sa" | activity_data$weekday=="So" , "weekend" , "weekday" ))</pre>
```

2. Panel Plot

```
activity_in_week <- activity_data[activity_data$daytype=="weekday",]
activity_in_weekend <- activity_data[activity_data$daytype=="weekend",]
activity_pattern_week <- aggregate(steps ~ interval, data=activity_in_week, mean)
activity_pattern_weekend <- aggregate(steps ~ interval, data=activity_in_weekend, mean)
par(mfrow=c(2,1))
plot(activity_pattern_week$interval, activity_pattern_week$steps,type="l", main="Averag
e Dialy Activity Pattern on Weekdays", xlab="Interval", ylab="average steps across all
days")
plot(activity_pattern_weekend$interval, activity_pattern_weekend$steps,type="l", main
="Average Dialy Activity Pattern on Weekends", xlab="Interval", ylab="average steps across all days")</pre>
```


We see a clear difference in activity patterns between weekdays and the weekend.