$2^{\underline{a}}$ Avaliação de Lógica Matemática (LMA) Professores: Rogério (T_A) e Claudio (T_B) Joinville, 18 de abril de 2017

Acadêmico(a)		Turma:

1. Verificar a validade dos argumentos (dedução natural) que se seguem:

(a)
$$\{p \to q, p \lor (\sim r \land \sim q), s \to \sim r, \sim (p \land q)\} \vdash \sim (s \land q)$$

(b)
$$\{p \to q, q \to r, r \to s, \sim s, p \lor t\} \vdash t$$

(c)
$$\{r \to t, s \to q, t \lor q \to \sim p, r \lor s\} \vdash \sim p$$

2. Utilizando o método de **demonstração condicional**, demonstre a validade das consequências abaixo:

(a)
$$\{r \lor s, \sim t \to \sim p, r \to \sim q\} \vdash \sim (p \land q) \to (s \land t)$$

(b)
$$\{q \to p, \ t \lor s, \ q \lor \sim s\} \vdash \sim (p \lor r) \to t$$

(c)
$$\{r \lor s, s \leftrightarrow t \land \sim p, \} \vdash p \to q$$

3. Demonstrar que o conjunto das proposições abaixo geram uma contradição (**demonstração por absurdo ou indireta**), (isto é, derivam uma inconsistência do tipo: ($\square \Leftrightarrow (\sim x \land x)$)

(a)
$$\{ (p \land q) \leftrightarrow \sim r, \sim r \rightarrow \sim p, \sim q \rightarrow \sim r \} \vdash q$$

Equivalências Notáveis:

```
Idempotência (ID): P \Leftrightarrow P \land P \text{ ou } P \Leftrightarrow P \lor P
Comutação (COM): P \land Q \Leftrightarrow Q \land P \text{ ou } P \lor Q \Leftrightarrow Q \lor P
```

Associação (ASSOC): $P \wedge (Q \wedge R) \Leftrightarrow (P \wedge Q) \wedge R \text{ ou } P \vee (Q \vee R) \Leftrightarrow (P \vee Q) \vee R$

Distribuição (DIST): $P \land (Q \lor R) \Leftrightarrow (P \land Q) \lor (P \land R)$ ou $P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$

Dupla Negação (DN): $P \Leftrightarrow \sim \sim P$

De Morgan (DM): $\sim (P \land Q) \Leftrightarrow \sim P \lor \sim Q \text{ ou } \sim (P \lor Q) \Leftrightarrow \sim P \land \sim Q$

Equivalência da Condicional (COND): $P \to Q \Leftrightarrow \sim P \lor Q$

Bicondicional (BICOND): $P \leftrightarrow Q \Leftrightarrow (P \rightarrow Q) \land (Q \rightarrow P)$

Contraposição (CP): $P \rightarrow Q \Leftrightarrow \sim Q \rightarrow \sim P$

Exportação-Importação (EI): $P \land Q \rightarrow R \Leftrightarrow P \rightarrow (Q \rightarrow R)$

Contradição: $P \land \sim P \Leftrightarrow \square$ Tautologia: $P \lor \sim P \Leftrightarrow \blacksquare$

Absorção: $p \land (p \lor q) \Leftrightarrow p$ $p \lor (p \land q) \Leftrightarrow p$

Regras Inferências Válidas (Teoremas):

Adição (AD): $P \vdash P \lor Q$ ou $P \vdash Q \lor P$

Simplificação (SIMP): $P \wedge Q \vdash P$ ou $P \wedge Q \vdash Q$

Conjunção (CONJ) $P, Q \vdash P \land Q \text{ ou } P, Q \vdash Q \land P$

Absorção (ABS): $P \to Q \vdash P \to (P \land Q)$

Modus Ponens (MP): $P \rightarrow Q, P \vdash Q$

Modus Tollens (MT): $P \to Q, \sim Q \vdash \sim P$

Silogismo Disjuntivo (SD): $P \vee Q, \sim P \vdash Q$ ou $P \vee Q, \sim Q \vdash P$

Silogismo Hipotético (SH): $P \rightarrow Q, Q \rightarrow R \vdash P \rightarrow R$

Dilema Construtivo (DC): $P \rightarrow Q, R \rightarrow S, P \lor R \vdash Q \lor S$

Dilema Destrutivo (DD): $P \to Q, R \to S, \sim Q \lor \sim S \vdash \sim P \lor \sim R$

Observações:

- 1. Qualquer dúvida, desenvolva a questão e deixe tudo explicado, detalhadamente, que avaliaremos o seu conhecimentos sobre o assunto;
- 2. Clareza e legibilidade;