Answer for Shanshu Interview Question

Du Bo*

September 27, 2018

Notations

- $k \in K$: Order set
- $S = \{v_m | m \in M\}$: Start node set
- Virtual end node 0: $t_{i0} = 0$; $c_0 = 0$
- $U = K \cup S \cup 0$: Consider $s \in S$, 0 are virtual orders
- $m \in M$: Vehicle set
- c_j : time for order j, $c_j = d(j_1, j_2)$; j_1, j_2 : origin and destination of order j.
- $t_{ij} = d(i_2, j_1)$.

Variables

- $x_{ijm} = 1$ if order j is served after i by m, 0 otherwise.
- T_{im} : the time at which m begins to serve order i

$\mathbf{2}$ **Formulation**

max	$\sum_{m \in M} \sum_{i \in U} \sum_{j \in U} c_j x_{ijm}$		(1)
s.t.	$\sum_{m \in M} \sum_{j \in K} x_{ijm} \leqslant 1$	$\forall i \in K \cup S$	(2)
	$\sum_{j \in K} x_{v_m j m} = 1$	$\forall m \in M$	(3)
	$\sum_{j \in U} x_{jim} - \sum_{j \in U} x_{ijm} = 0$	$\forall i \in K, m \in M$	(4)
	$\sum_{i \in K} x_{i0m} = 1$	$\forall m \in M$	(5)
	$T_{jm} \geqslant (T_{im} + c_i + t_{ij})x_{ijm}$	$\forall i \in U, j \in U, m \in M$	(6)
	$l_i^p \leqslant T_{im} \leqslant u_i^p$	$\forall i \in U, m \in M$	(7)
	$l_i^d \leqslant T_{im} + c_i \leqslant u_i^d$	$\forall i \in U, m \in M$	(8)
	$x_{ijm} \in \{0, 1\}$	$\forall i \in U, j \in U, m \in M$	(9)
	$T_{im} \geqslant 0$	$\forall i \in U, m \in M$	(10)

^{*}dubo0111@hotmail.com; 188-1056-2686

2.1 Linearization

Let $Q_{ijm} = T_{im}x_{ijm}$. Constraints in (6) can be linearized using big-M method:

$$T_{jm} \geqslant (c_i + t_{ij})x_{ijm} + Q_{ijm} \qquad \forall i \in U, j \in U, m \in M$$

$$Q_{ijm} \leqslant \mathbb{M}x_{ijm} \qquad \forall i \in U, j \in U, m \in M$$

$$Q_{ijm} \leqslant T_{im} \qquad \forall i \in U, m \in M$$

$$Q_{ijm} \geqslant T_{im} - (1 - x_{ijm})\mathbb{M} \qquad \forall i \in U, j \in U, m \in M$$

$$Q_{ijm} \geqslant 0 \qquad \forall i \in U, j \in U, m \in M$$

$$(11)$$

$$\forall i \in U, j \in U, m \in M$$

$$\forall i \in U, j \in U, m \in M$$

$$(12)$$

$$\forall i \in U, j \in U, m \in M$$

$$(13)$$

$$\forall i \in U, j \in U, m \in M$$

$$(14)$$

3 Solution

The model is solved using Python 3 and Gurobi 8.0. The optimal solution is:

- Objective Value: 130.0
- Routing Plan /(Node(Time)):
- Vehicle 1: 4(0.0)-10(13.0)-9(16.0)-7(34.0)-10(55.0)
- Vehicle 3: 2(0.0)-7(7.0)-10(28.0)-4(41.0)-3(54.0)