CENTRO UNIVERSITÁRIO SENAC BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

GABRIEL VIEIRA FIGUEIREDO TOMAZ TALES CARLOS DE PÁDUA VINICIUS DE CARVALHO

Mini Games com Visão Computacional

SÃO PAULO MAIO DE 2014

CENTRO UNIVERSITÁRIO SENAC BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

Gabriel Vieira Figueiredo Tomaz, Tales Carlos de Pádua, Vinicius de Carvalho.

 ${\it vieira_frifri@hotmail.com,\ talesc padua@gmail.com,\ carvalho.v@outlook.com.}$

Mini Games com Visão Computacional

"Pequenos jogos eletrônicos utilizando conhecimentos de Visão Computacional apresentados para a conclusão da disciplina Projeto Interativo III, do bacharelado em Ciência da Computação, Centro Universitário Senac."

Sob orientação do Prof.º: Marcelo Hashimoto

SÃO PAULO MAIO DE 2014

Resumo

Conforme proposto na disciplina de Projeto Interativo III, a partir do estudo de algoritmos relacionados à visão computacional foram desenvolvidos pequenos jogos eletrônicos (mini games) em linguagem C usando a interface gráfica provida pela biblioteca Allegro 5 e uma interface de acesso à câmeras de vídeo provida pela biblioteca OpenCV, de modo que a visão computacional oferecesse não apenas uma opção de controle para o jogador, mas sim um diferencial na experiência e imersão do usuário ao vivenciar os mini games.

Palavras-chave: jogos eletrônicos, visão computacional, Allegro 5.

Abstract

As proposed by the Interactive Project III discipline, from the study of algorithms related to computer vision were originated little eletronic games (mini games) in C language utilizing a graphical interface provided by Allegro 5 library and a web cam access interface provided by OpenCV library, in order to make computer vision offer not only another controller option for the player, but a different experience and imersion for the user while playing the mini games.

Keywords: eletronic games, computer vision, Allegro 5.

Introdução

A visão computacional é uma ciência e tecnologia voltada a lidar com a forma como as máquinas enxergam o mundo ao seu redor. As informações captadas por meio de sensores (como scanners, câmeras de vídeo, etc.) podem ser modeladas de diversas formas a fim de suprir necessidades que permeiam desde ramos diretamente ligados à tecnologia de informação (como robótica e áreas de automação tecnológica) até os que se utilizam da tecnologia para dadas outras necessidades, como ciências ambientais, medicina e outros.

Com o objetivo de dar um passo inicial para dentro da visão computacional, este trabalho visa utilizar técnicas e algoritmos da mesma aliada à captação de imagens por câmera de vídeo para a produção de jogos simples, mas que mantenham a jogabilidade focada no poder da visão computacional, de modo que a experiência do jogador, ao invés de ser restringida pela interface proposta, se torne um diferencial por conta deste quesito.

Revisão da Literatura

%% TODO referenciar trabalhos utilizados como base para nossos jogos, etc.

Desenvolvimento

Ponto de Partida

Visto que este trabalho foi o primeiro contato formal com a visão computacional por parte do grupo, a estatégia adotada desenvolver os mini games foi uma via de mão-dupla passando por um *brainstorm* de jogos existentes até quais algoritmos poderiam modelar uma interface de controle aceitável para os mesmos e fazendo o caminho de volta, onde eram estudados algoritmos existentes e se imaginava o que era possível, em termos de jogos, produzir a partir deles.

A partir desta metodologia aliada à orientação e pesquisa, surgiram as tecnicas e algoritmos a seguir e a consequente combinação dos mesmos para elaboração dos jogos.

Distância Euclidiana

%% TODO: distância euclidiana

Detecção de Cor

%% TODO: detecção de cor

Escala de Cinza

%% TODO: grey scale

Binarização

%% TODO: binarização

Filtro Sobel

%% TODO: sobel operator para detecção de bordas

Filtro Gaussiano

%% TODO: distância euclidiana

Resultados

%% TODO o que conseguimos produzir com os algoritmos citados no desenvolvimento, e descrever por que funcionou fazer os jogos desta forma.

Considerações Finais

%% TODO conclusões sobre o nosso trabalho.

Ex: Flappy Bino: estudamos X algoritmo e Y técnica mas não deu certo por motivo A.

Jogo do Mexe-Mexe: com o X algoritmo do Flappy Bino conseguimos fazer o jogo com sucesso por motivo B.

Referências Bibliográficas

%% TODO formatar referências em ABNT

- Livros do nosso Google Drive sobre Visão Computacional Tutoriais do OpenCV