

LISTA DE EXERCICIOS № 04

Pede-se determinar pelo método dos elementos finitos, considerando elementos T3, as cargas hidráulicas e velocidades de fluxo nos pontos nodais da malha da figura. Admitir um coeficiente de permeabilidade isotrópico do solo de fundação $k = 1 \times 10-4 \text{ cm/s}$.

Para efeitos de coordenadas dos nós, considerar a origem dos eixos cartesianos no nó inferior esquerdo. Condições de contorno em relação ao NR na interface solo-rocha impermeável:

- a) Linha equipotencial máxima h = 13m.
- b) Contorno vertical esquerdo, admitindo ausência de fluxo h = 13m.
- c) Linha equipotencial sob o centro da barragem, devido à simetria do problema h = 10,5m.

Os elementos T3 da malha são todos iguais, representados por triângulos retângulos com catetos de 4m.

Figura 01. - Barragem de concreto e malha de elementos finitos T3 em metade da geometria do problema.

Solução.

1. Divisão o continuo em elementos finitos 2D.

Figura 02- Esquematização do sistema em coordenadas globais e locais.

2. Formulação das propriedades de cada elemento.

$$\Omega = \frac{1}{2} \int_{A} \{q\}^{T} [B]^{T} [R] [B] \{q\} dA - \int_{A} \overline{Q} \{q\}^{T} [N]^{T} dA - \int_{S1} \overline{q} \{q\}^{T} [N]^{T} dS$$

$$\partial \Omega = \frac{\partial \Omega}{\partial \{q\}} \partial \{q\} = 0$$

$$\frac{\partial \Omega}{\partial \{q\}} = \int_{A} [B]^{T} [R] [B] \{q\} dA - \int_{A} \overline{Q} [N]^{T} dA - \int_{S1} \overline{q} [N]^{T} dS = 0$$

$$\frac{\partial \Omega}{\partial \{q\}} = \left(\int_{A} [B]^{T} [R] [B] dA \right) \{q\} = \int_{A} \overline{Q} [N]^{T} dA + \int_{S1} \overline{q} [N]^{T} dS$$

Como

$$[k]{q} = {Q}$$

Então

$$[k] = \int_{A} [B]^{T} [R] [B] dA = [B]^{T} [R] [B] A$$

$$\{Q\} = \int_{A} \overline{Q} [N]^{T} dA + \int_{S1} \overline{q} [N]^{T} dS$$

Onde

$$[B] = \frac{1}{2A} \begin{bmatrix} y_{23} & y_{31} & y_{12} \\ x_{32} & x_{13} & x_{21} \end{bmatrix}$$

Então

$$[B]_{I} = \frac{1}{2A} \begin{bmatrix} -4 & 4 & 0 \\ -4 & 0 & 4 \end{bmatrix} e [B]_{II} = \frac{1}{2A} \begin{bmatrix} 0 & 4 & -4 \\ -4 & 4 & 0 \end{bmatrix}$$
$$[R] = \begin{bmatrix} k_{x} & 0 \\ 0 & k_{y} \end{bmatrix}$$

Para o solo isotrópico de permeabilidade k

$$\begin{bmatrix} R \end{bmatrix} = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix} = k \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

a. Calculando a matriz $\lceil k \rceil$ para os elementos 1, 3, 5, 7, 9 e 11.

$$[k]_{I} = A[B]_{I}^{T}[R][B]_{I} = A \begin{bmatrix} 1 \\ 2A \begin{bmatrix} -4 & -4 \\ 4 & 0 \\ 0 & 4 \end{bmatrix} \end{bmatrix} \left(k \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) \left(\frac{1}{2A} \begin{bmatrix} -4 & 4 & 0 \\ -4 & 0 & 4 \end{bmatrix} \right)$$

$$[k]_I = \frac{4k}{A} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

b. Calculando a matriz $\begin{bmatrix} k \end{bmatrix}$ para os elementos 2, 4, 6, 8, 10 e 12.

$$[k]_{II} = A[B]_{II}^{T}[R][B]_{II} = A \begin{bmatrix} 1 & 0 & -4 \\ 4 & 4 \\ -4 & 0 \end{bmatrix} \left(k \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) \left(\frac{1}{2A} \begin{bmatrix} 0 & 4 & -4 \\ -4 & 4 & 0 \end{bmatrix} \right)$$

$$[k]_{II} = \frac{4k}{A} \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$

c. Calculando a matriz [Q] para os elementos.

Como não tem fluxos nodais prescritos então

$$\{Q\}=0$$

Então.

$$[k]{q}=0$$

3. Montagem da matriz de rigidez global [K]

GRAU DE LIBERDADE												
GLOBAL	LOCAL											
	1	2	3	4	5	6	7	8	9	10	11	12
1	1											
2	2	1	1									
3			2	1	1							
4					2	1						
5	3	3					1					
6		2	3	3			2	1	1			
7				2	3	3			2	1	1	
8						2					2	1
9							3	3				
10								2	3	3		
11										2	3	3
12												2

	k_{11}^{1}	k_{12}^1	0	0	k_{13}^1	0	0	0	0	0	0	0]
	k_{21}^{1}	$k_{22}^1 + k_{11}^2 + k_{11}^3$	k_{12}^3	0	$k_{23}^1 + k_{13}^2$	$k_{12}^2 + k_{13}^3$	0	0	0	0	0	0
	0	k_{21}^{3}	$k_{22}^3 + k_{11}^4 + k_{11}^5$	k_{12}^{5}	0	$k_{23}^2 + k_{13}^4$	$k_{12}^4 + k_{13}^5$	0	0	0	0	0
	0	0	k_{21}^{5}	$k_{22}^5 + k_{11}^6$	0	0	$k_{23}^5 + k_{13}^6$	k_{12}^{6}	0	0	0	0
	k_{31}^{1}	$k_{32}^1 + k_{31}^2$	0	0	$k_{33}^1 + k_{33}^2 + k_{11}^7$	$k_{32}^2 + k_{12}^7$	0	0	k_{13}^{7}	0	0	0
[k] =	0	$k_{21}^2 + k_{31}^3$	$k_{22}^3 + k_{31}^4$	0	$k_{23}^2 + k_{21}^7$	$k_{22}^2 + k_{33}^3 + k_{33}^4 + k_{22}^7 + k_{11}^8 + k_{11}^9$	$k_{32}^4 + k_{12}^9$	0	$k_{23}^7 + k_{13}^8$	$k_{12}^9 + k_{13}^9$	0	0
[1,1] —	0	0	$k_{21}^4 + k_{31}^5$	$k_{32}^5 + k_{31}^6$	0	$k_{23}^4 + k_{21}^9$	$k_{22}^4 + k_{33}^5 + k_{33}^6 + k_{22}^9 + k_{11}^{10} + k_{11}^{11}$	$k_{32}^6 + k_{12}^{11}$	0	$k_{23}^9 + k_{13}^{10}$	$k_{12}^{10} + k_{13}^{11}$	0
	0	0	0	k_{21}^{6}	0	0	$k_{23}^6 + k_{21}^{11}$	$k_{22}^6 + k_{22}^{11} + k_{11}^{12}$	0	0	$k_{23}^{11} + k_{13}^{12}$	k_{12}^{12}
	0	0	0	0	k_{31}^{7}	$k_{32}^7 + k_{31}^8$	0	0	$k_{33}^7 + k_{33}^8$	$k_{_{32}}^{_{8}}$	0	0
	0	0	0	0	0	$k_{21}^8 + k_{31}^9$	$k_{32}^9 + k_{21}^{10}$	0	k_{23}^{8}	$k_{22}^8 + k_{33}^9 + k_{33}^{10}$	k_{32}^{10}	0
	0	0	0	0	0	0	$k_{21}^{10} + k_{31}^{11}$	$k_{32}^{11} + k_{31}^{12}$	0	k_{23}^{10}	$k_{22}^{10} + k_{33}^{11} + k_{33}^{12}$	k_{32}^{12}
	0	0	0	0	0	0	0	k_{21}^{12}	0	0	k_{23}^{12}	k_{22}^{12}

$$[k] = \frac{4k}{A} \begin{bmatrix} 2 & -1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 4 & -1 & 0 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 4 & -1 & 0 & 0 & -2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 2 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 4 & -2 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -2 & 0 & 0 & -2 & 8 & -2 & 0 & 0 & -2 & 0 & 0 \\ 0 & 0 & -2 & 0 & 0 & -2 & 8 & -2 & 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & -2 & 4 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 2 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -2 & 0 & 0 & -1 & 4 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 0 & 0 & -1 & 4 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 0 & 0 & -1 & 4 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & -1 & 2 \end{bmatrix}$$

4. Aplicar os carregamentos conhecidos.

Então.

$$[k]{q}=0$$

5. Condições de contorno.

a) Linha equipotencial máxima h = 13m, então.

$$h_9 = h_{10} = h_{11} = 13m$$

b) Contorno vertical esquerdo, admitindo ausência de fluxo h = 13m, então.

$$h_1 = h_5 = h_9 = 13m$$

c) Linha equipotencial sob o centro da barragem, devido à simetria do problema h = 10,5m, então.

$$h_4 = h_8 = h_{12} = 10.5m$$

	F-21-	0	- ф - ¦	10	θ - ·	 		· - 6 - ·		- 0-}	$\{h_{\overline{1}}\}$	[0]
$\frac{4k}{A}$	1 4	-1	0 0	-2	0	ø	þ	ø	ø	ø	h_2	0
	$\begin{vmatrix} 0 & -1 \end{vmatrix}$	4	-i1 0	0	-2	ø	0	þ	ø	ø	h_3	0
	- θθ -	1	- 2	0-	Ө	- - 1- ·	()	· - 🖒 - ·		- 🖫	$ h_{\overline{4}} $	
	1-0-	0	- 04	2	Q - ·	<mark>.</mark>	11-	· - 0 – ·		- 0	$ h_{\overline{5}} $	
	$\begin{vmatrix} 0 & -2 \end{vmatrix}$	0	0 - 2	2 8	-2	Ó	0	-2	Ó	Ó	$ h_6 $	0
	0 0	-2	0 0	-2	8	-2	0	ø	-2	$ 0 ^2$	$\begin{pmatrix} 1 \\ h_7 \end{pmatrix}$	$=\left\{0\right\}$
	- 0 0 -	0	10	0-	2	4	()	· - (1-	$\frac{1}{h_8}$	
	- ф 0 -	0	- 🖟 볶	10-	θ - ·	🖒	2	41		- 0	"	
	- 6	0	- 	=2	<u> θ</u> - ·	()	- -	· - 4 - ·	- = -1-	- 6	$ h_{10} $	
	- ф 0 -	0		0-	2	🖒	()		4 -		$\left h_{\overline{11}} \right $	
	- 0 0 -	0	- 0 0	0-		100	- - 0	· - (- ·			$ h_{12} $	

$$\frac{4k}{A} \begin{bmatrix} 4 & -1 & -2 & 0 \\ -1 & 4 & 0 & -2 \\ -2 & 0 & 8 & -2 \\ 0 & -2 & -2 & 8 \end{bmatrix} x \begin{cases} h_2 \\ h_3 \\ h_6 \\ h_7 \end{cases} = \frac{4k}{A} \begin{cases} 0 - (-1)h_1 - (0)h_4 - (0)h_5 - (0)h_8 - (0)h_9 - (0)h_{10} - (0)h_{11} - (0)h_{12} \\ 0 - (0)h_1 - (-1)h_4 - (0)h_5 - (0)h_8 - (0)h_9 - (0)h_{10} - (0)h_{11} - (0)h_{12} \\ 0 - (0)h_1 - (0)h_4 - (-2)h_5 - (0)h_8 - (0)h_9 - (-2)h_{10} - (0)h_{11} - (0)h_{12} \\ 0 - (0)h_1 - (0)h_4 - (0)h_5 - (-2)h_8 - (0)h_9 - (0)h_{10} - (-2)h_{11} - (0)h_{12} \\ 0 - (0)h_1 - (0)h_4 - (0)h_5 - (-2)h_8 - (0)h_9 - (0)h_9 - (0)h_{10} - (0)h_{11} - (0)h_{12} \\ 0 - (0)h_1 - (0)h_4 - (0)h_5 - (-2)h_8 - (0)h_9 - (0)h_9 - (0)h_{10} - (0)h_{11} - (0)h_{12} \\ 0 - (0)h_1 - (0)h_4 - (0)h_5 - (0)h_8 - (0)h_9 - (0)h_9 - (0)h_{10} - (0)h_{11} - (0)h_{12} \\ 0 - (0)h_1 - (0)h_4 - (0)h_5 - (0)h_8 - (0)h_9 - (0)h_9 - (0)h_{10} - (0)h_{11} - (0)h_{12} \\ 0 - (0)h_1 - (0)h_4 - (0)h_5 - (0)h_8 - (0)h_9 - (0)h_9 - (0)h_{10} - (0)h_{11} - (0)h_{12} \\ 0 - (0)h_1 - (0)h_4 - (0)h_5 - (0)h_8 - (0)h_9 - (0)h_9 - (0)h_{10} - (0)h_{11} - (0)h_{12} \\ 0 - (0)h_1 - (0)h_4 - (0)h_5 - (0)h_8 - (0)h_9 - (0)h_9 - (0)h_{10} - (0)h_{11} - (0)h_{12} \\ 0 - (0)h_1 - (0)h_4 - (0)h_5 - (0)h_8 - (0)h_9 - (0)h_9 - (0)h_{10} - (0)h_{11} - (0)h_{12} \\ 0 - (0)h_1 - (0)h_4 - (0)h_5 - (0)h_8 - (0)h_9 - (0)h_9 - (0)h_{10} - (0)h_{11} - (0)h_{12} \\ 0 - (0)h_1 - (0)h_4 - (0)h_5 - (0)h_8 - (0)h_9 - (0)h_9 - (0)h_{10} - (0)h_{11} - (0)h_{12} \\ 0 - (0)h_1 - (0)h_4 - (0)h_5 - (0)h_8 - (0)h_9 - (0)h_9 - (0)h_{10} - (0)h_{11} - (0)h_{12} \\ 0 - (0)h_1 - (0)h_4 - (0)h_5 - (0)h_8 - (0)h_9 - (0)h_9 - (0)h_{10} - (0)h_{11} - (0)h_{12} \\ 0 - (0)h_1 -$$

$$\frac{4k}{A} \begin{bmatrix} 4 & -1 & -2 & 0 \\ -1 & 4 & 0 & -2 \\ -2 & 0 & 8 & -2 \\ 0 & -2 & -2 & 8 \end{bmatrix} x \begin{cases} h_2 \\ h_3 \\ h_6 \\ h_7 \end{cases} = \frac{4k}{A} \begin{cases} 0 - (-1)h_1 \\ 0 - (-1)h_4 \\ 0 - (-2)h_5 - (-2)h_{10} \end{cases} = \frac{4k}{A} \begin{cases} 0 - (-1)(13) \\ 0 - (-1)(10.5) \\ 0 - (-2)(13) - (-2)(13) \end{cases} = \frac{4k}{A} \begin{cases} 0 - (-1)(13) \\ 0 - (-1)(10.5) \\ 0 - (-2)(13) - (-2)(13) \end{cases}$$

$$\begin{bmatrix} 4 & -1 & -2 & 0 \\ -1 & 4 & 0 & -2 \\ -2 & 0 & 8 & -2 \\ 0 & -2 & -2 & 8 \end{cases} x \begin{cases} h_2 \\ h_3 \\ h_6 \\ h_7 \end{cases} = \begin{cases} 13 \\ 10.5 \\ 52 \\ 47 \end{cases}$$

6. Resolver o sistema de equações

7. Calculo das quantidades secundarias (velocidade de fluxo)

$$\{g\} = [B]\{q\}$$

 $\{v\} = -[R][B]\{q\} = -k[B]\{q\}$

A área e igual a 8m² então,

$$[B]_{I} = \frac{1}{4} \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} e [B]_{II} = \frac{1}{4} \begin{bmatrix} 0 & 1 & -1 \\ -1 & 1 & 0 \end{bmatrix}$$

Elemento 1.

$$\{g\} = \frac{1}{4} \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{cases} 13 \\ 12.488 \\ 13 \end{cases} = \{ -0.128 \\ 0 \} \Rightarrow v = \{ v_x \\ v_y \} = \{ 1.28 * 10^{-7} \} \frac{m}{seg}$$

Elemento 2.

$$\{g\} = \frac{1}{4} \begin{bmatrix} 0 & 1 & -1 \\ -1 & 1 & 0 \end{bmatrix} \begin{cases} 12.488 \\ 12.612 \\ 13 \end{cases} = \begin{cases} -0.097 \\ 0.031 \end{cases} \Rightarrow v = \begin{cases} v_x \\ v_y \end{cases} = \begin{cases} 9.70*10^{-8} \\ -3.10*10^{-8} \end{cases} \frac{m}{seg}$$

Elemento 3.

$$\{g\} = \frac{1}{4} \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{cases} 12.488 \\ 11.727 \\ 12.612 \end{cases} = \begin{cases} -0.190 \\ 0.031 \end{cases} \Rightarrow v = \begin{cases} v_x \\ v_y \end{cases} = \begin{cases} 1.90*10^{-7} \\ -3.10*10^{-8} \end{cases} \frac{m}{seg}$$

Elemento 4.

$$\{g\} = \frac{1}{4} \begin{bmatrix} 0 & 1 & -1 \\ -1 & 1 & 0 \end{bmatrix} \begin{cases} 11.727 \\ 11.960 \\ 12.612 \end{cases} = \begin{cases} -0.163 \\ 0.058 \end{cases} \Rightarrow v = \begin{cases} v_x \\ v_y \end{cases} = \begin{cases} 1.63*10^{-7} \\ -5.83*10^{-8} \end{cases} \frac{m}{seg}$$

Elemento 5.

$$\{g\} = \frac{1}{4} \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 11.727 \\ 10.50 \\ 11.960 \end{bmatrix} = \begin{bmatrix} -0.307 \\ 0.058 \end{bmatrix} \Rightarrow v = \begin{bmatrix} v_x \\ v_y \end{bmatrix} = \begin{bmatrix} 3.07*10^{-7} \\ -5.83*10^{-8} \end{bmatrix} \frac{m}{seg}$$

Elemento 6.

$$\{g\} = \frac{1}{4} \begin{bmatrix} 0 & 1 & -1 \\ -1 & 1 & 0 \end{bmatrix} \begin{cases} 10.5 \\ 10.5 \\ 11.960 \end{cases} = \begin{cases} -0.365 \\ 0 \end{cases} \Rightarrow v = \begin{cases} v_x \\ v_y \end{cases} = \begin{cases} 3.65 * 10^{-7} \\ 0 \end{cases} \frac{m}{seg}$$

Elemento 7.

$$\{g\} = \frac{1}{4} \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{cases} 13 \\ 12.612 \\ 13 \end{cases} = \begin{cases} -0.097 \\ 0 \end{cases} \Rightarrow v = \begin{cases} v_x \\ v_y \end{cases} = \begin{cases} 9.70 * 10^{-8} \\ 0 \end{cases} \frac{m}{seg}$$

Elemento 8.

$$\{g\} = \frac{1}{4} \begin{bmatrix} 0 & 1 & -1 \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 12.612 \\ 13 \\ 13 \end{bmatrix} = \begin{cases} 0 \\ 0.097 \end{cases} \Rightarrow v = \begin{cases} v_x \\ v_y \end{cases} = \begin{cases} 0 \\ -9.70*10^{-8} \end{cases} \frac{m}{seg}$$

Elemento 9.

$$\{g\} = \frac{1}{4} \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{cases} 12.612 \\ 11.960 \\ 13 \end{cases} = \begin{cases} -0.163 \\ 0.097 \end{cases} \Rightarrow v = \begin{cases} v_x \\ v_y \end{cases} = \begin{cases} 1.63*10^{-7} \\ -9.70*10^{-8} \end{cases} \frac{m}{seg}$$

Elemento 10.

$$\{g\} = \frac{1}{4} \begin{bmatrix} 0 & 1 & -1 \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 11.960 \\ 13 \\ 13 \end{bmatrix} = \begin{cases} 0 \\ 0.260 \end{cases} \Rightarrow v = \begin{cases} v_x \\ v_y \end{cases} = \begin{cases} 0 \\ -2.60*10^{-7} \end{cases} \frac{m}{seg}$$

Elemento 11.

$$\{g\} = \frac{1}{4} \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{cases} 11.960 \\ 10.5 \\ 13 \end{cases} = \begin{cases} -0.365 \\ 0.260 \end{cases} \Rightarrow v = \begin{cases} v_x \\ v_y \end{cases} = \begin{cases} 3.65 * 10^{-7} \\ -2.60 * 10^{-7} \end{cases} \frac{m}{seg}$$

Elemento 12.

$$\{g\} = \frac{1}{4} \begin{bmatrix} 0 & 1 & -1 \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 10.5 \\ 10.5 \\ 13 \end{bmatrix} = \begin{cases} -0.625 \\ 0 \end{cases} \Rightarrow v = \begin{cases} v_x \\ v_y \end{cases} = \begin{cases} 6.25 * 10^{-7} \\ 0 \end{cases} \frac{m}{seg}$$

Então graficamente.

Figura 03- Esquematização das velocidades em (10-7) m/seg.