Aufgabe 1: Elektrostatisches Feld und Kräfte

Drei Punktladungen sind gemäss Bild auf einer Linie angeordnet. (Medium: Luft)

Daten:

$$|Q| = 1 \text{ nC}$$

$$a = 10 \text{ cm}$$

- a) Bestimmen Sie die elektrischen Feldstärken in den Punkten A und B.
 (Betrag berechnen und Richtung in der Zeichnung eintragen)
- b) Zeichnen Sie die Feldlinien im Bild ein.

Aufgabe 2: Plattenkondensatoren

Daten:

$$A_1 = 2000 \text{ cm}^2$$
 $A_2 = 1000 \text{ cm}^2$
 $s_D = 5 \text{ mm}$ $\varepsilon_{rD} = 7$

- a) Für $U_q = 2$ kV und $s_2 = 8$ mm: Bestimmen Sie den Betrag der elektrischen Feldstärken E im Dielektrikum von C_1 , sowie im Dielektrikum und in der Luft von C_2 .
- b) Für $U_q = 8 \text{ kV}$:
 Bei welchem Wert von s_2 erreicht die Feldstärke in der Luft bei C_2 den Wert 20 kV/cm?
 (das Mass s_D bleibt unverändert)

Aufgabe 3: Netzwerk mit Kondensatoren

Die abgebildete Kondensatorschaltung wird mit der Spannungsquelle $U_{\rm q}$ langsam aufgeladen. Zu Beginn waren alle Kondensatoren entladen.

- a) Welche Quellenspannung U_q muss eingestellt werden, damit für U_{C1} eine Spannung von 40 V gemessen wird?
- b) Für $U_{\rm q}$ wird 300 V eingestellt: Bestimmen Sie die Spannung $U_{\rm C5}$, die in der Schaltung total gespeicherte Ladung $Q_{\rm T}$ und die total gespeicherte Energie $W_{\rm T}$.

Aufgabe 4: Energieverhältnis

Zwei Plattenkondensatoren haben gleiche Abmessungen (Fläche A und Abstand s). Die beiden Dielektrika mit ε_{r1} und ε_{r2} sind jedoch verschieden angeordnet.

Daten: $\varepsilon_{r1} = 3$ helles Muster Streuung vernachlässigen $\varepsilon_{r2} = 5$ dunkles Muster

Berechnen Sie das Verhältnis der gespeicherten Energien $\frac{W_{e1}}{W_{e2}}$ der beiden Anordnungen.