

• General Description

The AGMH056N08A combines advanced trench MOSFET technology with a low resistance package to provide extremely low $R_{DS(ON)}$.

This device is ideal for load switch and battery protection applications.

Features

- Advance high cell density Trench technology
- Low R_{DS(ON)} to minimize conductive loss
- Low Gate Charge for fast switching
- Low Thermal resistance
- 100% Avalanche tested
- 100% DVDS tested

Application

- MB/VGA Vcore
- SMPS 2nd Synchronous Rectifier
- POL application
- BLDC Motor driver

Product Summary

BVDSS	RDSON	ID
85V	4.8mΩ	142A

PDFN5*6 Pin Configuration

Top View

Bottom View

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
AGMH056N08A	AGMH056N08A	PDFN5*6	330mm	12mm	3000

Table 1. Absolute Maximum Ratings (TA=25℃)

Symbol	Parameter	Value	Unit
VDS	Drain-Source Voltage (VGS=0V)	85	V
VGS	Gate-Source Voltage (VDS=0V)	±20	V
ID	Drain Current-Continuous(Tc=25℃) (Note 1)	142	Α
_	Drain Current-Continuous(Tc=100℃)	85	Α
IDM (pluse)	Drain Current-Pulsed (Note 2)	568	А
PD	Maximum Power Dissipation(Tc=25℃)	288	W
	Maximum Power Dissipation(Tc=100℃)	144	w
EAS	Avalanche energy (Note 3)	400	mJ
TJ,TSTG	Operating Junction and Storage Temperature Range	-55 To 175	$^{\circ}$

Table 2. Thermal Characteristic

Symbol	Parameter	Тур	Max	Unit
RθJA	Thermal Resistance Junction-ambient (Steady State) ¹		20	°C/W
RøJC	Thermal Resistance Junction-Case ¹		0.52	°C/W

Table 3. Electrical Characteristics (TJ=25℃ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
On/Off Sta	tes					
BVDSS	Drain-Source Breakdown Voltage	VGS=0V ID=250µA	85			V
IDSS	Zero Gate Voltage Drain Current	VDS=85V,VGS=0V			1	μΑ
IGSS	Gate-Body Leakage Current	VGS=±20V,VDS=0V			±100	nA
VGS(th)	Gate Threshold Voltage	VDS=VGS,ID=250µA	2.1	2.6	3.3	V
gFS	Forward Transconductance	VDS=5V,ID=20A		24		S
RDS(on)	Drain-Source On-State Resistance	VGS=10V, ID=20A		4.8	6.1	mΩ
Dynamic C	Characteristics					
Ciss	Input Capacitance	VP2 404402 04		1973		pF
Coss	Output Capacitance	VDS=40V,VGS=0V, F=1MHZ		795		pF
Crss	Reverse Transfer Capacitance			25		pF
Rg	Gate resistance	VGS=0V, VDS=0V,f=1.0MHz		0.8		Ω
Switching	Times		•			1
td(on)	Turn-on Delay Time			15		nS
tr	Turn-on Rise Time	VGS=10V,VDS=40V,		52		nS
td(off)	Turn-Off Delay Time	$ID=40A,RGEN=3\Omega$		38	-	nS
tf	Turn-Off Fall Time			24	-	nS
Qg	Total Gate Charge			57		nC
Qgs	Gate-Source Charge	VGS=40V, VDS=10V, ID=40A		19		nC
Qgd	Gate-Drain Charge	1.5 1.071		14		nC
Source-Dr	ain Diode Characteristics					
ISD	Source-Drain Current(Body Diode)				142	Α
VSD	Forward on Voltage	VGS=0V,IS=20A			1.2	V
trr	Reverse Recovery Time	ls=20A , dl/dt=100A/μs		52		ns
Qrr	Reverse Recovery Charge	,TJ=25℃		65		nc

Notes 1.The maximum current rating is package limited.

Notes 2.Repetitive Rating: Pulse width limited by maximum junction temperature

Notes 3.EAS condition: TJ=25 $^{\circ}\text{C,VDD}=40\text{V,Vgs}=10\text{V,ID}=40\text{A}, L=0.5\text{mH,RG}=25\text{ohm}$

Typical Characteristics

Fig1. Typical Output Characteristics

Fig3. Typical Transfer Characteristics

Fig5. Typical On Resistance Vs Gate -Source Voltage

Fig2. Typical V_{GS(TH)} Gate -Source Voltage Vs. Tj

Tj - Junction Temperature (°C)

Fig4. Typical Normalized On-Resistance Vs. Tj

ID, Drain-Source Current (A)

Fig6. Typical On Resistance Vs Drain Current

Typical Characteristics

Fig7. Typical Source-Drain Diode Forward Voltage

Fig9. Typical Capacitance Vs. Drain-Source Voltage

Fig11. Power Dissipation Vs. Case Temperature

Fig8. Maximum Safe Operating Area

Fig10. Typical Gate Charge Vs. Gate-Source Voltage

Fig12. Maximum Drain Current Vs. Case Temperature

Typical Characteristics

Pulse Width (s)

Fig13 . Normalized Maximum Transient Thermal Impedance

Fig14. Unclamped Inductive Test Circuit and waveforms

Fig15. Switching Time Test Circuit and waveforms

•Dimensions (PDFN5*6)

ornen or	MILLIMETER			
SYMBOL	MIN	Typ.	MAX	
A	0.900	1.000	1.100	
A1		0.254 REF.		
A2		0~0.05		
D	4.824	4.900	4. 976	
D1	3.910	4.010	4. 110	
D2	4. 924	5. 000	5. 076	
Е	5. 924	6.000	6. 076	
E1	3. 375	3. 475	3. 575	
E2	5. 674	5. 750	5. 826	
b	0.350	0.400	0.450	
е		1.270 TYP.		
L	0. 534	0.610	0.686	
L1	0.424	0.500	0. 576	
L2	1.800 REF.			
k	1.190	1.290	1. 390	
Н	0.549	0.625	0.701	
θ	8°	10°	12°	
Ф	1.100	1.200	1. 300	
d			0.100	

		Millimeters	
Symbol	MIN.	NOM.	MAX.
A	0.90	1.05	1. 20
В	0.35	0.40	0.50
С	0.20	0. 25	0.35
D	4.90	5. 05	5. 20
D1	3. 72	3. 82	3. 92
Е	6.00	6. 15	6.30
E1	5. 60	5. 75	5. 90
E2	3. 47	3. 57	3. 67
е		1.27 BSC.	
Н	0.48	0.58	0.68
K	1. 17	1. 27	1. 37
L	0.64	0.74	0.84
L1/L2	0.20 REF.		
θ	8°	10°	12°
M	0.08 REF.		
N	0	-	0. 15
0	0.25 REF.		
P	1.28 REF.		

PDFN5*6 Marking Instructions:

Model1:

Model2:

Disclaimer:

The information provided in this document is believed to be accurate and reliable. however, Shenzhen Core Control Electronics Technology Co., Ltd. does not assume any responsibility for the following consequences. Do not consider the use of such information or use beyond its scope.

The information mentioned in this document may be changed at any time without notice.

The products and information provided in this document do not infringe patents. Shenzhen Core Control Electronics Technology Co., Ltd. assumes no responsibility for any infringement of any other rights of third parties. The result of using such products and information.

This document is the fourth version issued on April 10th, 2024. This document replaces all previously provided information.

It is a registered trademark of Shenzhen Core Control Electronics Technology Co., Ltd.

Copyright © 2017 Shenzhen Core Control Electronics Technology Co., Ltd. all rights reserved.