Stackelberg-Pareto Synthesis

Clément Tamines (Université de Mons)

Joint work with Véronique Bruyère (Université de Mons) Jean-François Raskin (Université libre de Bruxelles)

> September 15, 2021 Highlights '21

Reactive systems: systems which constantly interact with the environment

Reactive systems: systems which constantly interact with the environment

Problem of Reactive Synthesis (RS)

Reactive systems: systems which constantly interact with the environment

Problem of Reactive Synthesis (RS)

• given a **specification** for the system

Reactive systems: systems which constantly interact with the environment

Problem of Reactive Synthesis (RS)

- given a **specification** for the system
- synthesize an adequate **controller** for the system

Reactive systems: systems which constantly interact with the environment

Problem of Reactive Synthesis (RS)

- given a **specification** for the system
- synthesize an adequate **controller** for the system
- enforce the specification whatever the behavior of the environment

Reactive systems: systems which constantly interact with the environment

Problem of Reactive Synthesis (RS)

- given a specification for the system
- synthesize an adequate controller for the system
- enforce the specification whatever the behavior of the environment

Classical approach for RS: two-player games played on graphs [GTW02]

Classical approach for RS: zero-sum games [GTW02]

• objective of environment is **opposite** objective of system: $\Omega_1 = \neg \Omega_0$

- objective of environment is **opposite** objective of system: $\Omega_1 = \neg \Omega_0$
- adversarial environment: we want a winning strategy for the system

- objective of environment is **opposite** objective of system: $\Omega_1 = \neg \Omega_0$
- adversarial environment: we want a winning strategy for the system

- objective of environment is **opposite** objective of system: $\Omega_1 = \neg \Omega_0$
- adversarial environment: we want a winning strategy for the system

Classical approach for RS: zero-sum games [GTW02]

- objective of environment is **opposite** objective of system: $\Omega_1 = \neg \Omega_0$
- adversarial environment: we want a winning strategy for the system

Bold abstraction of reality: only goal of environment = make system fail

Alternative: framework of Stackelberg games [vS37] (non-zero-sum)

Alternative: framework of Stackelberg games [vS37] (non-zero-sum)

Stackelberg-Pareto game (SP game): $\mathcal{G} = (G, \Omega_0, \Omega_1, \dots, \Omega_t)$

Alternative: framework of Stackelberg games [vS37] (non-zero-sum)

Stackelberg-Pareto game (SP game): $\mathcal{G} = (G, \Omega_0, \Omega_1, \dots, \Omega_t)$

• Player 0 (system): objective Ω_0 , announces strategy σ_0

Alternative: framework of Stackelberg games [vS37] (non-zero-sum)

Stackelberg-Pareto game (SP game): $\mathcal{G} = (G, \Omega_0, \Omega_1, \dots, \Omega_t)$

- Player 0 (system): objective Ω_0 , announces strategy σ_0
- Player 1 (environment): **several objectives** $\Omega_1, \ldots, \Omega_t$ (components)

Alternative: framework of Stackelberg games [vS37] (non-zero-sum)

Stackelberg-Pareto game (SP game): $\mathcal{G} = (G, \Omega_0, \Omega_1, \dots, \Omega_t)$

- Player 0 (system): objective Ω_0 , announces strategy σ_0
- Player 1 (environment): **several objectives** $\Omega_1, \ldots, \Omega_t$ (components)

Payoff of ρ for Player 1 is the **vector of Booleans** pay $(\rho) \in \{0,1\}^t$

$$\Omega_1 = \operatorname{Reach}(\{v_6\})$$

$$\Omega_2 = \operatorname{Reach}(\{v_2\})$$

$$\Omega_3 = \operatorname{Reach}(\{v_7\})$$

$$V_1 = V_2 = V_3$$

$$V_3 = V_4 = V_5$$

$$V_7 = V_7 = V_7$$

Alternative: framework of Stackelberg games [vS37] (non-zero-sum)

Stackelberg-Pareto game (SP game): $\mathcal{G} = (G, \Omega_0, \Omega_1, \dots, \Omega_t)$

- Player 0 (system): objective Ω_0 , announces strategy σ_0
- Player 1 (environment): **several objectives** $\Omega_1, \ldots, \Omega_t$ (components)

Payoff of ρ for Player 1 is the **vector of Booleans** pay $(\rho) \in \{0, 1\}^t$

• order \leq on payoffs, e.g., (0, 1, 0) < (0, 1, 1)

$$\Omega_1 = \text{Reach}(\{v_6\})$$

$$\Omega_2 = \text{Reach}(\{v_2\})$$

$$\Omega_3 = \text{Reach}(\{v_7\})$$

Stackelberg-Pareto Synthesis Problem (SPS problem)

The SPS problem is to decide whether there exists a strategy σ_0 for Player 0 such that for every play $\rho \in \text{Plays}_{\sigma_0}$ with $\text{pay}(\rho) \in P_{\sigma_0}$, it holds that $\rho \in \Omega_0$

Stackelberg-Pareto Synthesis Problem (SPS problem)

The SPS problem is to decide whether there exists a strategy σ_0 for Player 0 such that for every play $\rho \in \text{Plays}_{\sigma_0}$ with $\text{pay}(\rho) \in P_{\sigma_0}$, it holds that $\rho \in \Omega_0$

Environment is rational and responds to σ_0 to get a Pareto-optimal payoff

Stackelberg-Pareto Synthesis Problem (SPS problem)

The SPS problem is to decide whether there exists a strategy σ_0 for Player 0 such that for every play $\rho \in \text{Plays}_{\sigma_0}$ with $\text{pay}(\rho) \in P_{\sigma_0}$, it holds that $\rho \in \Omega_0$

Environment is rational and responds to σ_0 to get a Pareto-optimal payoff

 \rightarrow Player 0 must satisfy Ω_0 in every such rational response

Stackelberg-Pareto Synthesis Problem (SPS problem)

The SPS problem is to decide whether there exists a strategy σ_0 for Player 0 such that for every play $\rho \in \text{Plays}_{\sigma_0}$ with $\text{pay}(\rho) \in P_{\sigma_0}$, it holds that $\rho \in \Omega_0$

Environment is rational and responds to σ_0 to get a Pareto-optimal payoff

 \rightarrow Player 0 must satisfy Ω_0 in every such rational response

NEXPTIME-Completeness of the SPS problem

The SPS problem is NEXPTIME-complete for reachability SP games and for parity SP games

NEXPTIME-Completeness of the SPS problem

The SPS problem is NEXPTIME-complete for reachability SP games and for parity SP games

Fixed-Parameter Complexity of the SPS problem

Solving the SPS problem is FPT for reachability SP games for parameter t (number of objectives of Player 1) and FPT for parity SP games for parameters t and the maximal priority according to each parity objective of Player 1

NEXPTIME-Completeness of the SPS problem

The SPS problem is NEXPTIME-complete for reachability SP games and for parity SP games

Fixed-Parameter Complexity of the SPS problem

Solving the SPS problem is FPT for reachability SP games for parameter t (number of objectives of Player 1) and FPT for parity SP games for parameters t and the maximal priority according to each parity objective of Player 1

Sound: in practice, we can assume those parameters to have small values

NEXPTIME-Completeness of the SPS problem

The SPS problem is NEXPTIME-complete for reachability SP games and for parity SP games

Fixed-Parameter Complexity of the SPS problem

Solving the SPS problem is FPT for reachability SP games for parameter t (number of objectives of Player 1) and FPT for parity SP games for parameters t and the maximal priority according to each parity objective of Player 1

Sound: in practice, we can assume those parameters to have small values

Thank you!

Bibliography

[BRT21] Véronique Bruyère, Jean-François Raskin, and Clément Tamines. Stackelberg-pareto synthesis.

In Serge Haddad and Daniele Varacca, editors, 32nd International Conference on Concurrency Theory, CONCUR 2021, August 24-27, 2021, Virtual Conference, volume 203 of LIPIcs, pages 27:1–27:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[GTW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors.

Automata, Logics, and Infinite Games: A Guide to Current Research
[outcome of a Dagstuhl seminar, February 2001], volume 2500 of Lecture
Notes in Computer Science. Springer, 2002.

[vS37] Heinrich Freiherr von Stackelberg.
Marktform und Gleichgewicht.
Wien und Berlin, J. Springer, 1937.

1. Player 0 announces his strategy σ_0

- 1. Player 0 announces his strategy σ_0
- 2. Player 1 considers Plays_{σ_0}

- 1. Player 0 announces his strategy σ_0
- 2. Player 1 considers Plays $_{\sigma_0}$
 - corresponding set of payoffs $\{pay(\rho) \mid \rho \in Plays_{\sigma_0}\}$

- 1. Player O announces his strategy σ_0
- 2. Player 1 considers Plays_{q_0}
 - corresponding set of payoffs $\{pay(\rho) \mid \rho \in Plays_{\sigma_0}\}$
 - identify Pareto-optimal (PO) payoffs (maximal w.r.t. ≤): set P_{σ₀}

