Stein Variational Gradient Descent (SVGD) Un Algoritmo de Propósito General para Inferencia Bayesiana

Manuel Horn, Facundo Alvarez Motta

Noviembre 29, 2024

Introducción

Desafíos en la inferencia bayesiana escalable:

- MCMC: A menudo lento; difícil determinar la convergencia.
- Inferencia Variacional: Depende críticamente del conjunto de distribuciones definido para la aproximación.

Descenso por Gradiente Variacional de Stein (SVGD):

- Minimiza directamente $KL(\{x_i\}||p)$.
- No necesita definir una familia explícita de aproximación variacional.
- Aprovecha la información del gradiente.

Idea principal

Idea: Mover iterativamente $\{x_i\}_{i=1}^n$ hacia la distribución objetivo p(x) mediante actualizaciones del tipo:

$$x_i' \leftarrow x_i + \epsilon \phi(x_i),$$
 (1)

donde ϕ es la dirección de perturbación elegida para disminuir al máximo la divergencia KL con p(x):

$$\phi = \arg\max_{\phi \in \mathcal{F}} \left\{ -\frac{\partial}{\partial \epsilon} \mathsf{KL}(\mathbf{q}_{[\epsilon \phi]} \| p) \Big|_{\epsilon = 0} \right\}, \qquad \text{(2)}$$

Aquí, $q_{[\epsilon\phi]}$ es la densidad de $x'=x+\epsilon\phi(x)$ y ${\mathcal F}$ es el conjunto de direcciones de perturbación sobre el que optimizamos.

Como encuentro el ϕ óptimo?

(ロト 4回 ト 4 差 ト 4 差 ト) 差 | から(で)

Stein Variational Gradient Descent

Resulta que el objetivo en (2) es una funcional lineal simple de ϕ :

$$-\frac{\partial}{\partial \epsilon} \mathsf{KL}(\frac{\mathbf{q}_{[\epsilon \phi]}}{\|p)} \bigg|_{\epsilon=0} = \mathbb{E}_{\mathbf{x} \sim \mathbf{q}}[A_p \phi(\mathbf{x})]$$

donde

$$A_p \phi(x) \stackrel{\mathsf{def}}{=} \phi(x) \nabla_x \log p(x)^\top + \nabla_x \cdot \phi(x).$$

Por lo tanto, la optimización en (2) se reduce a:

$$\mathcal{D}(\mathbf{q}||p) \stackrel{\text{def}}{=} \max_{\phi \in \mathcal{F}} \mathbb{E}_{\mathbf{x} \sim \mathbf{q}}[A_p \phi(\mathbf{x})]. \tag{3}$$

Identidad de Stein: $\mathbb{E}_{\mathbf{x} \sim \mathbf{q}}[A_p \phi(\mathbf{x})] = 0$ si y solo si $\mathbf{q} = \mathbf{p}$.

Stein Variational Gradient Descent (continuación)

Tomemos \mathcal{F} como la bola unidad de un espacio de Hilbert de núcleos reproductores (RKHS) vectorial \mathcal{H} . Liu et al. (2016) mostraron que la solución óptima de (3) tiene una forma cerrada simple:

$$\phi^*(x') = \mathbb{E}_{x \sim \mathbf{q}} \left[A_p k(x, x') \right] = \mathbb{E}_{x \sim \mathbf{q}} \left[\nabla_x \log p(x) k(x, x') + \nabla_x k(x, x') \right]$$

Aproximando $\mathbb{E}_{x \sim q}$ mediante el promedio empírico de las partículas actuales $\{x_i\}_{i=1}^n$, la ecuación (1) se reduce a:

$$x_i \leftarrow x_i + \epsilon \hat{\mathbb{E}}_{x \sim \{x_i\}_{i=1}^n} \left[\nabla_x \log p(x) k(x, x_i) + \nabla_x k(x, x_i) \right]$$

Algoritmo

Entrada: Una distribución objetivo con función de densidad p(x) y un conjunto inicial de partículas $\{x_i^0\}_{i=1}^n$.

Salida: Un conjunto de partículas $\{x_i\}_{i=1}^n$ que aproxima la distribución objetivo.

Repetir:

$$x_i \leftarrow x_i + \epsilon \widehat{\mathbb{E}}_{\mathbf{x} \sim \{\mathbf{x}_i\}} \left[\underbrace{\nabla_{\mathbf{x}} \log p(\mathbf{x})}_{\mathsf{Gradiente}} k(\mathbf{x}, \mathbf{x}_i) + \underbrace{\nabla_{\mathbf{x}} k(\mathbf{x}, \mathbf{x}_i)}_{\mathsf{Fuerza Repulsiva}} \right], \quad \forall i = 1, \dots, n.$$

- $\nabla_x \log p(x)$: mueve las partículas $\{x_i\}$ hacia regiones de alta probabilidad de p(x).
- $\nabla_x k(x, x')$: impone diversidad en $\{x_i\}$ (evita que todas las partículas colapsen en los modos de p(x)).

Complejidad y Implementación Eficiente

En configuraciones de datos grandes, donde $p(x) \propto p_0(x) \prod_{k=1}^N p(D_k \mid x)$ con un N muy grande, aproximamos $\nabla_x \log p(x)$ usando mini-batches submuestreados:

$$\nabla_x \log p(x) \approx \nabla_x \log p_0(x) + \frac{N}{|\Omega|} \sum_{k \in \Omega} \nabla_x \log p(D_k \mid x)$$

7/11

Ejemplo: Ajuste de Mezcla de Gaussianas

- Distribución objetivo: $p(x) = \frac{1}{3}\mathcal{N}(-2,1) + \frac{2}{3}\mathcal{N}(2,1)$.
- Inicialización: 100 partículas con distribución $\mathcal{N}(-10,1)$.

Figure: Evolución de partículas hacia la distribución objetivo.

Ejemplo unimodal

Figure: Simulación unimodal

Ejemplo multimodal

Figure: Simulación multimodal

Cierre y Referencias

- Qiang Liu, Dilin Wang. Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm. ICML, 2016. https://arxiv.org/abs/1608.04471
- SVGD Paper Overview (Blog): https://random-walks.org/book/papers/svgd/svgd.html

¡Gracias! ¿Preguntas?