# Урок 15 Графіки рівномірного прямолінійного руху Мета уроку:

**Навчальна.** Показати учням, як можна за допомогою графіків охарактеризувати рівномірний прямолінійний рух; формувати навички побудови графіків руху; акцентувати увагу учнів на застосуванні математичних знань у фізиці.

**Розвивальна.** Розвивати навички міжособистісного спілкування, творчу активність

Виховна. Виховувати почуття колективізму, інтересу до предмета.

Тип уроку: комбінований

Обладнання: навчальна презентація, комп'ютер.

План уроку:

І. ОРГАНІЗАЦІЙНИЙ ЕТАП

II. ПЕРЕВІРКА ДОМАШНЬОГО ЗАВДАННЯ

III. АКТУАЛІЗАЦІЯ ОПОРНИХ ЗНАНЬ ТА ВМІНЬ

IV. ВИВЧЕННЯ НОВОГО МАТЕРІАЛУ

V. ЗАКРІПЛЕННЯ НОВИХ ЗНАНЬ ТА ВМІНЬ

VI. ПІДБИТТЯ ПІДСУМКІВ УРОКУ

VII. ДОМАШНЄ ЗАВДАННЯ

#### Хід уроку

## І. ОРГАНІЗАЦІЙНИЙ ЕТАП

#### ІІ.ПЕРЕВІРКА ДОМАШНЬОГО ЗАВДАННЯ

#### ІІІ. АКТУАЛІЗАЦІЯ ОПОРНИХ ЗНАНЬ ТА ВМІНЬ

Запитання для фронтального опитування

- 1. Який рух називають рівномірним? Наведіть приклади.
- 2. Як знайти швидкість рівномірного руху тіла?
- 3. Назвіть одиниці швидкості руху.
- 4. Як обчислити шлях, пройдений тілом, якщо відомі швидкість його руху та час руху?
  - 5. Як обчислити час руху, якщо відомі шлях і швидкість руху тіла?

#### IV. ВИВЧЕННЯ НОВОГО МАТЕРІАЛУ

Спортсмен, велосипед якого має спідометр, рухається по трасі (рис. 1). Швидкість руху, яку показує спідометр у будь-який момент часу, дорівнює 5 м/с. Як описати рух цього спортсмена і взагалі будь-якого тіла за допомогою графіків? Згадаємо, адже графіки руху тіл ви вивчали в курсі математиці 6 класу.

Будуємо графік залежності шляху від часу для рівномірного руху тіла



Рис.1

Побудуємо графік залежності шляху, що долає велосипедист (див. рис. 1), від часу спостереження — графік шляху.

Для побудови графіка виконаємо таки дії.

1. Заповнимо таблицю відповідних значень часу t руху спортсмена та шляху l, який він долає за цей час.

| t, c         | 0 | 2  | 4  | 6  | 8  | 10 |
|--------------|---|----|----|----|----|----|
| <i>l</i> , м | 0 | 10 | 20 | 30 | 40 | 50 |

2. Проведемо дві взаємно перпендикулярних осі (рис.2).



- 3. Побудуємо точки з координатами: (0; 0), (2; 10), (4; 20), (6; 30), (8; 40), (10; 50).(puc.3)
- 4. З'єднаємо побудовані точки лінією (рис. 4). Отриманий відрізок прямої графік шляху велосипедиста.



Велосипедист рухається рівномірно, тому шлях, який він долає, можна визначити за формулою l = 5t — рівняння залежності шляху, який долає велосипедист, від часу спостереження.

У разі рівномірного руху графік шляху — це завжди відрізок прямої, нахиленої під певним кутом до вісі часу.

## З'ясовуємо, про що можна дізнатися за графіком шляху

Графік шляху дає багато корисної інформації. За графіком шляху можна:

- 1) дізнатися про характер руху тіла;
- 2) визначити шлях, який долає тіло за певний інтервал часу;
- 3) визначити швидкість руху тіла;
- 4) порівняти швидкості руху тіл: чим більше швидкість руху тіла, тим більший кут між графіком шляху та віссю часу (рис. 5).



Рис.5

Задача. За графіком шляху, який подолало тіло за 4 години (рис. 6), дізнайтеся: 1) як рухалось тіло; 2) який шлях подолало тіло за першу годину; за наступні дві години; 3) якою була швидкість руху тіла на кожній ділянці.



Розв'язання

Із графіка бачимо, що весь шлях складається з трьох ділянок, на кожній з яких тіло рухалось рівномірно (графік шляху тіла — відрізки прямих).

Ділянка І. За графіком шлях, який подолало тіло за першу годину, дорівнює 20 км, тому швидкість руху тіла становила:

$$v_I = \frac{l_I}{t_I} = \frac{20 \text{ км}}{1 \text{ год}} = 20 \frac{\text{км}}{\text{год}}.$$

Ділянка II. За наступні 2 години тіло по долало шлях

 $l_{II}=30~{
m km}-20~{
m km}=10~{
m km}.$  Відповідно швидкість руху тіла дорівнювала:  $v_{II}=rac{l_{II}}{t_{II}}=rac{10~{
m km}}{2~{
m rog}}=5rac{{
m km}}{{
m rog}}.$ 

$$v_{II} = \frac{l_{II}}{t_{II}} = \frac{10 \text{ км}}{2 \text{ год}} = 5 \frac{\text{км}}{\text{год}}.$$

Ділянка III. Останню годину шлях не змінювався, отже, тіло зупинилось:  $l_{III} = 30 \text{ км} - 30 \text{ км} = 0 \text{ км}. v_{III} = 0.$ 

Аналіз результатів. Із графіка бачимо, що ділянка І графіка складає з віссю часу більший кут, ніж ділянка ІІ. Тому ділянка І відповідає більшій швидкості руху тіла. Результат  $\epsilon$  цілком реальним.

## Будуємо графік швидкості рівномірного руху тіла

Повернемося до велосипедиста, який рухається рівномірно зі швидкістю v = 5 м/с (див. рис. 7). Побудуємо графік залежності швидкості його руху від часу спостереження — графік швидкості руху.

Для побудови графіка виконаємо таки дії.

1. Заповнимо таблицю відповідних моментів часу t руху спортсмена та швидкості руху v, яку він мав у ці моменти часу:



- 2. Проведемо дві взаємно перпендикулярних осі (рис.7).
- 3. Побудуємо точки з координатами (0; 5), (2; 5), (4; 5), (6; 5), (8; 5), (10; 5).
- 4. З'єднаємо точки лінією. Отриманий відрізок прямої графік швидкості руху велосипедиста.

У разі рівномірного руху графік швидкості руху тіла — відрізок прямої, паралельної осі часу.

З'ясовуємо, про що можна дізнатися за графіком швидкості руху тіла



Розглянемо графік швидкості руху деякого тіла (рис. 8, а) і дізнаємося про його рух якнайбільше.

- 1. Протягом інтервалу часу від 0 до 5 с і протягом інтервалу часу від 5 до 15 с тіло рухалось рівномірно, оскільки графік швидкості руху відрізки прямих, які паралельні вісі часу.
- 2. Швидкість руху тіла протягом останніх 10 с спостереження більша, ніж протягом перших 5 с, оскільки друга ділянка графіка розташована вище від осі часу, ніж перша ділянка (рис. 8, б).

У даному випадку:

 $v_1 = 3 \frac{M}{c}$  — на інтервалі часу від 0 до 5 с;

 $v_2 = 9 \frac{6}{5}$  — на інтервалі часу від 5 до 15 с.

3. Можна визначити шлях який подолало тіло (згадайте: l=vt). Наприклад, за інтервал часу від 5 до 15 с тіло подолало шлях 90 м:

$$l_2 = v_2 t_2 = 3 \frac{M}{c} \cdot (15 \text{ c} - 5 \text{ c}) = 90 \text{ m}.$$

#### V. ЗАКРІПЛЕННЯ НОВИХ ЗНАНЬ ТА ВМІНЬ

#### Бесіда за питаннями

- 1. Який вигляд має графік шляху в разі рівномірного руху?
- 2. Як за графіками шляхів двох тіл порівняти їхні швидкості руху?
- 3. Який вигляд має графік швидкості рівномірного руху тіла?
- 4. Як за графіками швидкостей двох тіл порівняти їхні швидкості руху?
- 5. Як за графіком швидкості руху тіла визначити шлях, подоланий тілом?

## Розв'язування задач

1. За графіком залежності l(t), поданому на рис. 9, визначте швидкість руху автомобіля і побудуйте графік залежності v(t).



Відповідь:  $v = \frac{l}{t}$ ;  $v = \frac{60 \text{ км}}{1 \text{ год}} = 60 \frac{\text{км}}{\text{год}}$ . Графік див. на рис. 10.

2. На графіку, поданому на рис. 11, виберіть ділянку, що відповідає рівномірному руху тіла, і визначте швидкість цього руху. Побудуйте графік залежності l(t), що відповідає цій ділянці, і визначте шлях, пройдений тілом за 2 с.



Відповідь: Рівномірному руху відповідає ділянка AB;  $v=2\frac{M}{c}$ ; графік див. на рис.12; для даної ділянки: l=2t, при t=2c l=4 м.)

## VI. ПІДБИТТЯ ПІДСУМКІВ УРОКУ

# **VII. ДОМАШНЄ ЗАВДАННЯ**

Вивчити § 10, Вправа № 10 (2-4)

Виконане д/з відправте на Нитап,

Або на елетрону адресу Kmitevich.alex@gmail.com