Pravděpodobnost a statistika - zkoušková písemka 10.5.2018

Jméno a příjmení	1	2	3	4	celkem	známka

Úloha 1. Firma obdrží během pracovního týdne (= 5 pracovních dní) průměrně 15 zakázek, přičemž průměrně každá třetí zakázka je od mezinárodní společnosti a zbytek jsou tuzemští zákazníci. Předpokládejme, že doby příchodů zakázek jsou nezávislé a jsou během týdne rozloženy rovnoměrně. Určete pravděpodobnost, že

- a) od úterka do čtvrtka (včetně) přijdou maximálně dvě zakázky od tuzemsnkých zákazníků,
- b) v pondělí přijdou přesně tři zakázky a přitom všechny budou od tuzemského zákazníka,
- c) doba čekání na první zakázku bude kratší než půl dne,
- d) nejpozději čtvrtá zakázka, která příští týden přijde, bude od mezinárodní společnosti,
- e) v pěti po sobě jdoucích zakázkách budou maximálně dvě od mezinárodní společnosti.

Úloha 2. Sdružené pravděpodobnosti dvou diskrétních náhodných veličin X a Y jsou dány následující tabulkou:

	X = 0	X = 1	X=2	X = 3
Y = 0	1/6	0	1/6	0
Y=1	1/3	1/8	1/12	1/8

- a) Určete marginální rozdělení X a Y.
- b) Spočtěte kovarianci cov(X, Y).
- c) Jaká je souvislost této kovariance s (ne)závislostí X a Y?
- d) Určete sdružené rozdělení náhodného vektoru (U,V), v němž náhodné veličiny U, resp. V, mají stejná marginální rozdělení jako X, resp. Y, ale přitom jsou U a V nezávislé.
- e) Určete P(Y = 1|X je sudé).

Úloha 3. U jistého vyhledávače byly sledovány doby potřebné k nalezení zadaného výrazu. Naměřené hodnoty (v ms) jsou uvedeny v následující tabulce:

287 298 302 291 298 311 290 293 284 296 291 299 305 307 298	287	298	302	291	298	311	290	293	284	296	291	299	305	307	298
---	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

- a) Nakreslete histogram těchto dat.
- b) Odhadněte z histogramu, jaké rozdělení má doba vyhledávání.
- c) Odhadněte střední hodnotu a rozptyl tohoto rozdělení z dat ($\sum x_i = 4450$, $\sum (x_i \bar{x})^2 = 797, \bar{3}$).
- d) Otestujte na hladině 5%, zda je možné říct, že střední doba vyhledávání je 0,3 s.
- e) Co se stane (ohledně počtu zamítnutých hypotéz), když u libovolného testu zvýšíme testovací hladinu z 5% na 10%? Zdůvodněte.

Úloha 4. Při 100 hodech mincí padla $60 \times$ panna a $40 \times$ orel.

- a) Statisticky otestujte na hladině 5%, zda je kostka v pořádku (tj. zda je počet panen a orlů přibližně stejný).
- b) Statisticky otestujte na hladině 1%, zda je kostka v pořádku

Nechť náhodná veličina X popisuje počet panen a náhodná veličina X popisuje počet orlů ve 100 hodech mincí.

- c) Předpokládejme, že kostka v pořádku je. Jaké rozdělení (včetně parametrů) má nahodná veličina X.
- d) Jsou X a Y nezávislé? Svou odpověď řádně zdůvodněte.
- e) Definujte nezávislost **obecných** náhodných veličiny X a Y.