Решение домашнего задания №1 по курсу «Алгоритмы и структуры данных»

Тетерин Дмитрий

23 сентября 2020 г.

Задача 4.

Пусть M_1 - нерасширяемое (максимальное по включению) паросочетание в G, а M_2 - наибольшее паросочетание в G. Докажите, что $|M_2| \le 2 \cdot |M_1|$.

Решение. Выберём произвольное ребро α из наибольшего паросочетания M_2 . Понятно, что возможны всего 2 варианта:

- 1. $\alpha \in M_1$. Всё ок, смежных α рёбер в M_1 нет, т.к. иначе это не паросочетание. Сопоставим α её же в M_1 .
- 2. $\alpha \notin M_1$. В таком случае в $M_1 \leq 2$ смежных с α ребра, выходящих из вершин, инцидентных α . Больше, чем 2, быть не может, т.к. иначе M_1 не паросочетание.

Таким образом мы сопоставили каждому ребру из наибольшего паросочетания ≤ 2 ребра из произвольного максимального паросочетания. Значит, $|M_2| \leq 2 \cdot |M_1|$.

Задача 3.

Дан ориентированный граф. Найдите в нём (или определите, что так сделать нельзя) некоторое множество циклов, которые попарно не пересекаются, но покрывают всё множество вершин. Цикл из одной вершины не считается циклом (а из двух — считается). Асимптотика: $O(n \cdot m)$. Указание: раздвойте вершины.

Решение. Воспользуемся указанием и "раздвоим" вершины – представим наш граф как неориентированный двудольный, в каждую долю положим все копии вершин.

Вершина первой доли α будет соединяться с вершиной второй доли β , если в исходном ориентированном графе было ребро, начинающееся в α и заканчивающееся в β .

Утверждение 1. Паросочетание, насыщающее все вершины построенного двудольного графа, задаёт покрытие всех вершин исходного графа множеством циклов, которые попарно не пересекаются.

Доказательство. Достаточно понять, что нерасширяемое паросочетание в полученном графе задаёт либо путь, либо цикл в исходном графе без пересечения по вершинам. \Box

Следовательно, алгоритмом Куна на полученном двудольном графе за нужную асимптотику мы либо получим ответ на вопрос задачи, либо поймём, что такого покрытия графа циклами без пересечений не существует.

Задача 2.

Игра в города на графе G определяется следующим образом. Изначально фишка расположена в одной из вершин (назовём её стартовой). Игроки ходят по очереди, на каждом ходу нужно сдвинуть фишку вдоль любого исходящего ребра в вершину, в которой фишка ещё ни разу не была. Проигрывает тот, кто не может сделать ход. Докажите, что первый выигрывает, если и только если стартовая вершина лежит во всех максимальных паросочетаниях.

Решение.

1. Первый выигрывает \Rightarrow стартовая вершина лежит во всех максимальных паросочетаниях.

Пусть нашлось максимальное паросочетание M, в котором стартовая вершина не лежит. Тогда ребро e, по которому ходит первый, переносит фишку в какую-то вершину, насыщенную M, т.к. иначе M – не максимальное (его

можно расширить ребром e). Дальше второй может всегда ходить по инцидентному текущей вершине, на которой стоит фишка, ребру в M, и победа останется за ним, т.к. если в какой-то момент второй игрок не может сделать ход в ребро из M, то мы нашли увеличивающий путь для M, что противоречит его максимальности.

 Первый выигрывает ← стартовая вершина лежит во всех максимальных паросочетаниях.

Пусть стартовая вершина принадлежит всем максимальным паросочетаниям. Первому игроку предлагается выбрать любое максимальное паросочетиние M и ходить по его рёбрам. У него всегда будет ход, т.к. в противном случае рёбра, по которым будет ходить второй, составят какое-то максимальное паросочетание, которое не включает стартовую вершину. Противоречие.