This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-343827

(43) Date of publication of application: 20.12.1994

(51)Int.CI.

B01D 53/36 B01J 27/224

(21)Application number: 05-154565 (71)Applicant: SUMITOMO METAL

MINING CO LTD

(22)Date of filing:

02.06.1993 (72)Inventor: SUZUKI TAKAO

(54) TREATMENT OF FLUOROCARBON-CONTAINING GAS

(57)Abstract:

PURPOSE: To stably decompose a fluorocarbon-containing gas oxidatively for long time by allowing the fluorocarbon-containing gas to contact with the catalyst consisting of the silicon carbide carrying plutinum at more than specified temp. under the atmosphere in which steam and air coexist. CONSTITUTION: The fluorocarbon-containing gas is allowed to contact with the catalyst consisting of the silicon carbide carrying plutinum at □300° C under the atmosphere in which steam and air coexist. At that time, the fluorocarbon concn. in the fluorocarbon-containing gas is 0.1vol.% and the specific surface area of the silicon carbide is □1m2/g. In such a way, the fluorocarboncontaining gas is decomposed oxidatively for long time stably.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平6-343827

(43)公開日 平成6年(1994)12月20日

(51) Int. Cl. 5

識別記号

庁内整理番号

FΙ

技術表示箇所

B01D 53/36 B01J 27/224

ZAB

LAD

ZAB

A 9342-4G

審査請求 未請求 請求項の数3 FD (全4頁)

(21)出願番号

特願平5-154565

(71)出願人 000183303

住友金属鉱山株式会社

(22)出願日 平成5年(1993)6月2日

東京都港区新橋5丁目11番3号

(72)発明者 鈴木 孝雄

東京都杉並区宮前5-21-30

(54) 【発明の名称】フロン含有ガスの処理方法

(57)【要約】

【目的】 フロン含有ガスを酸化分解するに際し、触媒 寿命の長い処理方法を提供する。

【構成】 水蒸気、空気共存雰囲気下、300℃以上の温度で、白金を担持した炭化珪素からなる触媒と、フロン含有ガスを接触させる。

【特許請求の範囲】

フロン含有ガスを、水蒸気空気共存雰囲 【請求項1】 気下、300℃以上の温度で、白金を担持した炭化珪素 からなる触媒と接触させることを特徴とするフロン含有 ガスの処理方法。

【請求項2】 フロン含有ガス中のフロン濃度が0.1 容量%以上であることを特徴とする請求項1記載の処理 方法。

【請求項3】 炭化珪素の比表面積が1 m² / g以上で あることを特徴とする請求項1又は2記載の処理方法。 【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はフロン含有ガスを水蒸気 空気共存雰囲気下で触媒を用いて処理する方法に関す る。

[0002]

【従来の技術】フロンは、溶剤、溶媒、発泡剤等に広く 使用されているが、安定性が高いためオゾン層を破壊す る原因物質として懸念されており、フロンを大気中に放 出させない技術の開発が望まれている。フロンを無害化 20 する処理技術としては、無害な化合物に分解すること が、最も経済的と考えられている。最近、フロンを接触 酸化分解反応により温和な条件で無害化する技術が開発 され注目されている。

【0003】フロンの処理方法としては、吸着によりフ ロンを濃縮した後、吸着剤から脱離されたガスと、空 気、水蒸気などを含むガスの存在下で、アルミナ、シリ カ、チタニア、ジルコニアなどからなる担体に、銅、 鉄、コバルト、ニッケル、白金などの金属を担持した触 媒に接触させて、分解する方法(特開平3-10641 9号公報)が開示されている。また、フロンを含む排ガ スを、チタニアジルコニア複合酸化物に遷移金属を担持 してなる触媒に100℃以上で接触させて分解する方法 (特開平4-313344号公報)が開示されている。 [0004]

【発明が解決しようとする課題】しかし、上述の空気、 水蒸気などを用いてフロンを酸化分解処理する触媒は、 フロンの酸化分解によって生ずる塩化水素、フッ化水素 に対して耐蝕性が低く、このためとくに高濃度のフロン を含有するガスを処理する場合には分解活性の安定性、 すなわち触媒寿命が短かいという欠点がある。本発明 は、水蒸気空気共存雰囲気下でフロン含有ガスを酸化分 解するに際し、触媒寿命の長い処理方法を提供すること を目的とするものである。

[0005]

【課題を解決するための手段】本発明者等は、上記目的 を達成するために、化学的に安定でしかも活性の高い担 体と活性物質の組み合せを検討した結果、フロン含有ガ スを、水蒸気空気共存雰囲気下、300℃以上の温度

ことを特徴とする本発明を見い出した。本発明は、ま た、フロン含有ガス中のフロン濃度が0.1容量%以上 であることを特徴とし、また、炭化珪素の比表面積が1 m'/g以上であることを特徴とする。

[0006]

【作用】担体としては、多孔質の炭化珪素を用いる必要 がある。炭化珪素は、フロンが酸化分解によって生ずる 塩化水素、フッ化水素に対する耐蝕性が極めて高く、こ のため触媒の活性が長期間にわたって劣化しない。担体 10 の比表面積が大きい程触媒の活性は高くなり1m²/g 以上であることが好ましい。担体の形状は特に限定され ることはなく、球状、ペレット状等の成型担体あるいは 圧損を小さくするためハニカム等のモノリス状の成型担 体が使用される。

【0007】フロンの酸化分解には、酸素が必要であ り、酸素の供給源として空気が最も経済的である。水蒸 気は触媒性能を維持する効果がある。導入する空気と水 蒸気の量は、反応生成物がハロゲン化水素、炭酸ガスに なるに十分な化学量論以上であればよい。

【0008】フロンを酸化分解するには300℃以上の 反応温度である必要がある。300℃未満では担体の比 表面積を1m²/g以上であっても酸化分解の反応速度 が著しく小さくなるからである。600℃を越えると、 担持する白金の凝集が起こり、分解活性が劣化し易くな るので、600℃以下であることが好ましい。

【0009】活性金属である白金あるいは白金酸化物を 炭化珪素の担体に担持させるには、白金を含有する溶液 に担体を浸漬する方法、あるいは担体の吸液量に見合う 白金含有液を含浸させる方法がある。使用する白金塩と しては、塩化物、硝酸塩、酢酸塩、アンミン錯塩、有機 酸塩等がある。白金含有溶液を担持した触媒前駆体を、 100℃前後で乾燥した後、500℃前後で焼成し、白 金塩を分解し触媒とする。

【0010】フロンを酸化分解する装置の型式としては 特に制限されないが、一般的には触媒を固定層とし、フ ロン含有ガスを水蒸気、空気と共に触媒層に導入する流 通式接触反応装置が使用される。空間速度は50,00 0 h⁻¹以下が好ましい。また、酸化分解されるフロン含 有ガス中のフロン濃度が0.1容量%以上の高濃度のと き、高い分解率が得られることから、フロン濃度は0. 1容量%以上であることが好ましい。より好ましくは 1. 0容量%以上である。

[0011]

40

【実施例】次に実施例で本発明を更に詳述する。 (実施例1) 多孔質ハニカム形状炭化珪素 (イビデン (株) 製Grade: SPC、細孔容積: 0. 45cc /g、BET比表面積:1m²/g)を担体として用い た。1gの塩化白金酸(H, PtCl, -6H, O)を 50ccの0.6mol塩酸に溶かし、37gの担体に で、白金を担持した炭化珪素からなる触媒と接触させる 50 注ぎ白金を含浸させた。室温にて7h保持後乾燥機に移

し、110℃で16h乾燥した。この乾燥物6.7cc を内径20mmφの石英製の燃焼管に入れ、125cc /minの空気流通下、525℃で16h焼成し白金-炭化珪素触媒を得た。触媒のPt含有率は1.0%であ った。CFC113分解における触媒性能評価試験は、 存ガス流通下、常圧にて、下記条件下で実施した。

触媒量

4. 9g (6. 7cc)

CFC113液流量

0.38cc/h(1.1容量

%)

水流量 %)

0. 52cc/h (9. 6容量

空気流量	6	,	0 (0 0	cc/	/h	(8	9.	3
容量%)									
空間速度	1	,	0 (0 0	h-'				
反応温度	5	0	0 °	С					
反応時間	2	0	0 1	n					
CFC113の分解率は	t.	A	床首	前後	OC F	₹ C	1 1	3 滩	東

をガスクロマトグラフで定量分析することで計算した。 触媒の分解活性は表1に示すように、反応10h時点で の分解率は76%と高く、しかも200hまで活性劣化 10 は全く認められなかった。

[0012]【表1】

	担体組成	CFC113分解率(%)					
		10h	5 0 h	100h	200h		
実施例1	炭化珪素	7 6	7 6	7 6	7 6		
実施例2	炭化珪素	48	48	48	48		
比較例1	チタニア・ ジルコニア	9 6	8 2	6 0	2 0		
比較例 2	アルミナ	9 7	7 0	4 8	1 0		
比較例3	ジルコニア	99	9 0	7 8	4 0		

【0013】(実施例2)実施例1においてBET比表 面積が0 m² / gの多孔質ハニカム形状炭化珪素を担体 として用いたこと以外は実施例1と同様の方法で触媒を 得たのち、その分解活性を測定した。表1に示すように 分解率は48%と低いが200hまで活性劣化は全く認 められなかった。

【0014】 (比較例1) 2リットルのビーカー中で、 80gの塩化ジルコニル (ZrOCl, ・8H,O) を 蒸留水に溶解し、0.5molの塩化ジルコニル水溶液 500ccを調製した。この水溶液に、75ccの16 %四塩化チタン (TiCl,) を蒸留水で希釈し500 ccとした0.5molの四塩化チタン水溶液を加え た。一方、29%アンモニア水を蒸留水で1リットルに 希釈し、4.25molの希アンモニア水を調製し、2 5℃に保った上記硝酸ジルコニルと四塩化チタン混合水 溶液に攪拌しながら20cc/minの添加速度で加 え、最終pHを9.5にすることにより、水酸化ジルコ ニウムと水酸化チタニウムの共沈殿を生成させた。この 40 モニア水を調製し、25℃に保った上記塩化ジルコニル スラリーを3h放置後プフナーロートに移し減圧濾過 し、沈殿を1リットルの蒸留水で5回洗浄し、硝酸イオ ン、塩素イオンとアンモニウムイオンを除去した。得ら れた沈殿を1リットルの蒸留水に再度懸濁させ、25℃ に保ち半日放置した後ブフナーロートで減圧濾過し、沈 殿を再度1リットルの蒸留水で洗浄した。この沈殿を乾 燥器中で、110℃、36h乾燥した後、電気マッフル 炉に移し、室温から550℃まで4℃/minの昇温速 度で昇温し、550℃に5h保持焼成しジルコニアーチ

5 m² / gであった。ジルコニアーチタニア担体に実施 例1と同様の方法で、白金を担持して触媒を得たのち、 その分解活性を測定した。表1に示すように、触媒は反 応初期には分解活性が高いが、活性劣化が激しく、20 0 h後の分解率は20%まで低下した。

【0015】(比較例2)市販のィアルミナ担体(日本 ケッチェン社製、Grade-001E、BET表面 30 積:260 m² / g) を用いたこと以外は、実施例1と 同様の方法で白金を担持し、1.0%Pt含有白金アル ミナ触媒を得たのち、その分解活性を測定した。表1に 示すよう、劣化が激しく、200h後の分解率は10% まで低下した。

【0016】(比較例3)2リットルのビーカー中で、 80gの塩化ジルコニル (ZrOCl, ・8H,O)を 蒸留水に溶解し、500ccの0.5molの塩化ジル コニル水溶液を調製した。一方、29%アンモニア水を 蒸留水で1リットルに希釈し、4.25m01の希アン 水溶液に攪拌しながら20cc/minの添加速度で加 え、最終pHを9.5にすることにより、水酸化ジルコ ニウムの沈殿を生成させた。このスラリーを3h放置後 ブフナーロートに移し減圧濾過し、沈殿を1リットルの 蒸留水で5回洗浄し、塩素イオンとアンモニウムイオン を除去した。得られた沈殿を1リットルの蒸留水に再度 懸濁させ、25℃に保ち半日放置した後プフナーロート で減圧濾過し、沈殿を再度1リットルの蒸留水で洗浄し た。この沈殿を乾燥器中で、110℃、36h乾燥した タニア担体を得た。担体のBET法による表面積は12 50 後、電気マッフル炉に移し、室温から550でまで4℃

5

/minの昇温速度で昇温し、550 ℃に5 h保持焼成 しジルコニア担体を得た。担体のBET法による表面積は53 m² /gであった。ジルコニア担体に実施例 1 と同様の方法で、白金を担持して触媒を得たのち、その分解活性を測定した。表1 に示すように、劣化が200 hまで徐々に進行しており、200 h後の分解率は40%まで低下した。

【0017】 (実施例3~4) 実施例1, 2においてC

FC113液流量、水流量、空気流量を、CFC113 濃度0.1容量%、水蒸気0.9容量%、空気99.0 容量になるように調整して評価試験したこと以外は、実施例1,2と同様の方法で触媒を得たのち、その分解活性を測定した。その結果を表2に示す。

【0018】 【表2】

	担体組成	CFC113分解率(%)						
		10h	5 0 h	1 0 0 h	200h			
実施例3	炭化珪素	7 0	7 0	7 0	7 0			
実施例4	炭化珪素	4 3	4 3	4 3	4 3			
比較例 4	チタニア・	8 9	8 6	8 3	8 0			
	ジルコニア							
比較例 5	アルミナ	9 0	8 0	75	6 9			
比較例 6	ジルコニア	9 3	9 0	8 7	8 5			

【0019】(比較例4~5)比較例1,2,3においてCFC113液流量、水流量、空気流量を、CFC濃20度0.1容量%、水蒸気0.9容量%、空気99.0容量%になるように調整して評価試験したこと以外は、比較例1,2,3と同様の方法で触媒を得たのち、その分解活性を測定した。その結果を表2に示す。

【0020】表2より、炭化珪素を担体とする触媒はフロン濃度が低くなると、フロン濃度が高いときに比べ分解活性は下がる傾向を示すが200hまでの活性劣化は全く認められなく、一方チタニア・ジルコニア、アルミナ、ジルコニアを担体とする触媒はフロン濃度が低くなると、フロン濃度が高いときに比べ、10hまでの分解30活性は下がる傾向を示すが、200hまでの活性劣化は

著しく改善されていることが分かる。

【0021】 (実施例 $5\sim9$) 実施例1において、反応温度を300℃、400℃、500℃、600℃、650℃としたこと以外は実施例1と同様の方法で触媒を得たのち、その分解活性を測定した。その結果を表3に示す。

【0022】(比較例7)実施例1において反応温度を200℃としたこと以外は、実施例1と同様の方法で触媒を得たのち、その分解活性を測定した。その結果を表3に示す。

[0023]

【表3】

	反応温度(℃)	1 0 h	CFC11 50h	3分解率 100h	(%) 200h
実施例5	3 0 0	1 0	1 0	1 0	1 0
実施例6	4 0 0	3 4	3 4	3 4	3 4
実施例7	500	76	76	76	7 6
実施例8	600	9 5	9 4	9 3	9 3
実施例 9	6 5 0	99	9 8	9 7	9 5
比較例7	2 0 0	3	3	3	3

【0024】表3よりフロンを酸化分解するときの反応 温度は300℃以上が必要であり、600℃を越えると 分解活性が徐々に低下することが分かる。 [0025]

【発明の効果】本発明によれば、フロン含有ガスを長時間安定して酸化分解することが可能になる。