南京大学 电子科学与工程学院 全日制统招本科生

《数字信号处理》期末考试试卷 团 卷

任课教师姓名: 李 晨 庄建军

考试日期:_		2015. 6. 27		考试时长:2_		小时	分句	中				
考生年级		_考生专业考生		生学号考生		姓名						
题号	_	=	三	四	五	六	总	 分				
得分												
以	一. (20 分) 单项选择 以下选择每题 2 分, 共计 20 分											
1. 下列哪个系统是移不变系统 (B) A. $T[x(n)]=g(n)x(n)$ B. $T[x(n)]=x(n-n_0)$ C. $T[x(n)]=nx(n)$ D. $T[x(n)]=\sum_{k=n_0}^{n}x(k)$												
A.:	T[x(n)]=g(n)	$\mathbf{x}(n)$ B. $T[x]$	$x(n)]=x(n-n_0)$	C. $T[x(n)]$	=nx(n) I	D. $T[x(n)] = \sum_{n=1}^{\infty}$	$\sum_{k=n_0}^n x$	(k)				
2. 已知一 FIR 数字滤波器的系统函数 $H(z) = \frac{1 + z^{-1}}{2}$, 试判断滤波器的类型为(A)												
A.	低通	B. 高通	C.	带通	D. 带阻							
	-1)的 Z 变换						(I	B)				
A.	. 1	B. z ⁻¹	C.2 π δ ((ω)	D.2 π							
4. 下面有关序列的傅里叶变换(DTFT)说法正确的是 (A)												
A.时域为离散序列,频域为连续周期信号												
B.时域为离散周期序列,频域也为离散周期序列												
C.时	域为离散无	限长序列,	频域为连续	周期信号								
D.时	域为离散有	「限长序列,	频域也为离	散有限长序	列							
5. 下列	列哪一个系统	充一定是因界	具系统				(D)				
6. 设1	• , ,) B. y(n)= 相位 FIR 系约)	, ,		,		` '	统阶				
A.	4	B. 5	(C. 6	D.	7						
7. 若月	亨列 x(n)的长	长度为30,则	用基2的FF	T 算法计算	X(k)的复数	乘法次数为	ı (A				
A.	80 B. 9	96 C. I	128 D.	256								

8.	若序列的长度为 N,	要能够由频域	油样信号 X(k))恢复原序列,	而不发生时域混叠现					
	象,则频域抽样点	数 M 需满足的多	长 件是		(B)					
	A.N≥M B.N	<u>C≤M</u> C.N	N≤2M	D.N≥2M						
9.	IIR 数字滤波器可以	以单独调整其零	极点位置的结	构是	(D)					
	A.直接 I 型	B. 典范型	C. 并明	 D.	级联型					
10.	有关 IIR 数字滤波	器特点说法正确	的是		(C)					
	A. h(n)有限长	公 <u>沙</u> 言的 <i>夕</i>								
	B.实现同样的性能阶次高的多 C.可用模拟滤波器设计									
	D.可用 FFT 计算	~ П								
二.	(30分)填空(每 :	空2分)			本题得分					
1.	序列 $x(n) = A\cos(\frac{3\pi}{7})$	$(\frac{7}{8}n - \frac{5\pi}{8})$ 的周期	为14	o						
2.	单位响应为 h(n)的	LTI 系统,输入	x(n)时,输出	占 y(n);输入为	$3x(n-2)+2\delta(n-1)$,输					
	出为 <u>3y(n-2) +2h(n</u>	-1)	_ •							
3.	已知序列 x(n)的傅	里叶变换为X(e-	^{iω}),则序列	$x_1(n) = x(1$	- n) + x(-1 -					
	n) 的傅里叶变换为	$\frac{2\cos\omega X(e^{-j\omega})}{2\cos\omega X(e^{-j\omega})}$	<u>.</u>							
4.	为了改善计算序列	DFT 时出现的栅	栏效应,可以	以采取的措施是	<u></u>					
5.	设计一个N点的F	TR 线性相位带道	通滤波器的 h(n)应该满足的统	条件是:h(n)=					
	$\underline{h(N-1-n)}_{\circ}$									
6.	时域 N 点的有限长	亨列 x(n) 有 X($e^{j\omega}$),对 $X(e^{j\omega})$	e ^{jω}) 进行 M 点	均匀抽样,则时域中					
	对应的新序列 y(n)和	和原序列 x(n)的	关系是: <u>y(n)</u>	$= \sum_{r=-\infty}^{+\infty} x(n +$	- rM)					
7.	对 N 点 x(n)有 X(k) =	DFT[x(n)],则 II	$PFT\left\{Re\left[X(k)\right]\right\}$	$= \frac{1}{2}[x(n) + x]$	$c((N-n))_{N}]R_{N}(N)$					
8.	某序列 DFT 的表达	式是 $X(k) = \sum_{n=0}^{5}$	$x(n)W_8^{kn}$, \pm	此可看出,该序	列的时域长度是 <u>6</u> ,					
	变换后数字频域	上相邻两个频率	样点之间隔是	$\frac{1}{2}$ $\frac{\pi}{4}$	_0					
9.	冲激响应不变法作为	为模拟滤波器逼	丘数字滤波器	的常用方法,	其优点是① 时域逼近					
	<u>良好</u> , ② <u>保持约</u>	<u> </u>	点是 <u>频域</u>	发生混叠	0					
10.	用窗函数设计法设记 宽则与 <u>窗形状</u>			卜衰减由 <u>窗形</u>	<u> </u>					
三.	(20分)简单计算				-L- HZ (P 1)					
					本题得分					

1. 一个长度为 8 的序列 x(n)在 $0 \le n \le 7$ 之外为零,其 8 点的 DFT 为 $X(k) = 1 + 2\sin(\frac{2\pi k}{8}) + 3\cos(\frac{4\pi k}{8}) + 4\sin(\frac{6\pi k}{8})$,计算 x(n) = IDFT[X(k)]

解:

$$X(k) = 1 - j\left(e^{j\frac{2\pi k}{8}} - e^{-j\frac{2\pi k}{8}}\right) - \frac{3}{2}j\left(e^{j\frac{4\pi k}{8}} - e^{-j\frac{4\pi k}{8}}\right) - 2j\left(e^{j\frac{6\pi k}{8}} - e^{-j\frac{6\pi k}{8}}\right) \qquad ---2 \, \text{f}$$

$$= 1 - je^{j\frac{2\pi k}{8}} + je^{-j\frac{2\pi k}{8}} - \frac{3}{2}je^{j\frac{4\pi k}{8}} + \frac{3}{2}je^{-j\frac{4\pi k}{8}} - 2je^{j\frac{6\pi k}{8}} + 2je^{-j\frac{6\pi k}{8}}$$

$$= 1 - je^{j\frac{2\pi}{8}k} + je^{j\frac{2\pi}{8}7k} - \frac{3}{2}je^{j\frac{2\pi}{8}2k} + \frac{3}{2}je^{j\frac{2\pi}{8}6k} - 2je^{j\frac{2\pi}{8}3k} + 2je^{j\frac{2\pi}{8}5k}$$

$$= 1 - je^{j\frac{2\pi}{8}k} - \frac{3}{2}je^{j\frac{2\pi}{8}2k} - 2je^{j\frac{2\pi}{8}3k} + 2je^{j\frac{2\pi}{8}6k} + je^{j\frac{2\pi}{8}7k} \qquad ---1 \, \text{f}$$

$$x(n) = \delta(n) - j\delta(n-1) - \frac{3}{2}j\delta(n-2) - 2j\,\delta(n-3) + 2j\delta(n-5) + \frac{3}{2}j\delta(n-6) + j\delta(n-7)$$

$$\vec{\mathbb{E}}x(n) = \begin{cases} 1, -j, \frac{-3}{2}j, 0, -2j, 2j, \frac{3}{2}j, j \end{cases}$$

2. 研究一个输入为x(n)和输出为y(n)的时域线性离散移不变系统,已知它满足 $y(n-1)-\frac{10}{3}y(n)+y(n+1)=x(n)$ 并已知系统是稳定的,试求其单位抽样响应。

解: 对差分方程两边取 z 变换

$$z^{-1}Y(z) - \frac{10}{3}Y(z) + zY(z) = X(z)$$
 得系统函数: $H(z) = \frac{Y(z)}{X(z)} = \frac{1}{z^{-1} - \frac{10}{3} + z} = \frac{1z}{z^2 - \frac{10}{3}z + 1} = \frac{z}{(z - \frac{1}{3})(z - 3)},$ ---1 分

零点: z = 0,∞

极点: $z = \frac{1}{3}, 3$

$$\frac{H(z)}{z} = \frac{1}{(z - \frac{1}{3})(z - 3)} = \frac{A_1}{(z - \frac{1}{3})} + \frac{A_2}{(z - 3)}$$

$$A_1 = Res(\frac{H(z)}{z})_{z = \frac{1}{3}} = -\frac{3}{8}$$

$$A_2 = Res(\frac{H(z)}{z})_{z = 3} = \frac{3}{8}$$

$$H(z) = \frac{-\frac{3}{8}z}{(z - \frac{1}{3})} + \frac{\frac{3}{8}z}{(z - 3)}, \text{ ROC: } \frac{1}{3} < |z| < 3 \qquad ---1 \text{ } \text{/} \text{/}$$

$$\frac{z}{(z - \frac{1}{3})} \xrightarrow{|z| > \frac{3}{3}} \left(\frac{1}{3}\right)^n u(n) \qquad \frac{-z}{(z - 3)} \xrightarrow{|z| < 3} 3^n u(-n - 1)$$

$$h(n) = -\frac{3}{8} \left(\frac{1}{3}\right)^n u(n) - \frac{3}{8} 3^n u(-n-1) \qquad ----2 \, \text{f}$$

- 3. 仔细观察下图。
 - (1) 这是什么类型具有什么特性的数字滤波器?
- (2) 写出其差分方程和系统函数。

解:

(1) 因为 h(n) 为奇对称, N=6 为偶数。

所以是第四类线性相位的 FIR 数字滤波器,适合用做希尔伯特滤波器及微分器。

---2分

(2) 系统函数:
$$H(z) = 1 - 3z^{-1} - 6z^{-2} + 6z^{-3} + 3z^{-4} - z^{-5}$$
 ---1 分

差分方程:
$$y(n) = x(n) - 3x(n-1) - 6x(n-2) + 6x(n-3) + 3x(n-4) - x(n-5)$$

---2 分

- 4. 若 $x(n) = R_5(n)$,
 - (1) 求此序列的傅里叶变换 $X(e^{j\omega})$, 并大致画出其幅度谱。
- (2)计算 x(n) 8 点的 DFT, 并在 $X(e^{j\omega})$ 的幅度谱上标出 X(k)所在的点。解:

(2)
$$X(k) = X(e^{j\omega})\Big|_{\omega = \frac{2\pi}{8}k} = e^{-j\frac{\pi k}{2}} \frac{\sin\frac{5\pi}{8}k}{\sin\frac{\pi k}{8}}$$
 ---1 \mathcal{D}

四. (10 分) 已知一个有限长序列 $x(n) = 2\delta(n) - \delta(n-4)$

本题得分

- (1) 求它的 8 点离散傅里叶变换 X(k)
- (2) 已知序列 y(n) 的 8 点离散傅立叶变换为 $Y(k) = W_8^{3k}X(k)$,求序列 y(n)
- (3) 已知序列 m(n) 的 8 点离散傅立叶变换为 M(k) = X(k)Y(k), 求序列 m(n)

解:

(1)
$$X(k) = \sum_{n=0}^{7} [2\delta(n) - \delta(n-4)] W_8^{nk} = 2 - (-1)^k, k = 0, ..., 7$$
 ---2 $\frac{1}{2}$

(2)
$$y(n) = x((n-3))_8 = 2\delta(n-5) - \delta(n-1)$$
 ---2 $\frac{1}{2}$

$$M(k) = X(k)Y(k) = 5W_8^{5k} - 4W_8^k$$
 ---2 $\%$

$$m(n) = -4\delta(n-1) + 5\delta(n-5) \qquad \qquad ---2 \, \text{ }$$

- 五. (10 分) 已知 x(n)是 4 点的实序列,并且已知 X(k) = DFT[x(n)] 的前 3 个值为: 6, -1+j, 4。
- 本题得分

- (1) 求 X(3)的值;
- (2) 写出利用 FFT 程序来实现 IFFT 的步骤。
- (3) 按照(2)中的方法,计算出 4 点序列 x(n)=IDFT[X(k)],要求画出按频率抽选(DIF) 输入自然序输出倒位序的基-2 FFT 蝶形运算流图来完成具体计算过程。

解:

(1) x(n)是实序列, X(k)是圆周共轭对称分量,即

$$X(k) = X^* ((N - k))_N R_N(k)$$

$$X(3) = X^* ((4-3))_4 R_4(k) = X^*(1) = -1 - j \qquad ---2$$

(2)

- 1) 对 X(k) 取共轭得X*(k);
- 2) 对X*(k)做 N 点 FFT;
- 3) 对 2) 中结果取共轭并除以 N

---4分

(3) $X^*(k) = \{6, -1-j, 4, -1+j\}$ 对 $X^*(k)$ 画 DIF FFT 流程图,再乘以 1/4,

---4 分

六. $(10\, \rm f)$ 用双线性变换法设计一个 Butterworth 数字低通滤波器,要求在频率低于 0.2π rad 的通带内幅度特性下降小于 1dB,在频率 0.3π 到 π 之间的阻带内,衰减大于 15dB。

本题得分

解:

(1) 由数字滤波器技术指标:

$$\omega_p = 0.2\pi \, rad$$
 $\delta_1 = 1dB$ $\delta_2 = 15dB$

(2) 考虑预畸变,得模拟滤波器技术指标,选 T=1s

$$\Omega_p = \frac{2}{T} \tan \frac{\omega_p}{2} = 0.65 \text{ rad/s}$$
 $\delta_1 = 1 dB$
$$\Omega_s = \frac{2}{T} \tan \frac{\omega_s}{2} = 0.65 \text{ rad/s}$$
 $\delta_{12} = 15 dB$ $---2$

(3) 设计 Butterworth 模拟低通滤波器

确定参数

$$\lambda_{sp} = \frac{\Omega_s}{\Omega_p} = 1.568$$
 $k_{sp} = \sqrt{\frac{10^{0.1\delta_{1-1}}}{10^{0.1\delta_{2-1}}}} = 0.092$ $N = -\frac{\log k_{sp}}{\log \lambda_{sp}} = 5.306$ $R = 0.092$

$$\Omega_c = \Omega_s (10^{0.1\delta_2})^{-\frac{1}{2N}} = 0.7662 \text{ rad/s}$$

----求出 N 和Ω_c2 分

用阻带技术指标, 使得通带特性较好

求出极点(左半平面)

$$s_k = \Omega_c e^{j[\frac{1}{2} + \frac{2k-1}{2N}]\pi}$$
 $k = 1, 2, ..., 6$

构造系统函数

$$H_a(s) = \frac{{\Omega_c}^6}{\prod_{k=1}^6 (s - s_k)}$$

或者由 N=6,直接查表得

---2分

$$H_{an}(s) = \frac{1}{1 + 3.8637s + 7.4641s^2 + 9.1416s^3 + 7.4641s^4 + 3.8637s^5 + s^6}$$
 去归一化

$$H(s) = H_{an} \left(\frac{s}{\Omega_c}\right) - -2 \, \mathcal{T}$$

$$= \frac{0.2024}{(s^2 + 0.396s + 0.5871)(s^2 + 1.083s + 0.5871)(s^2 + 1.480s + 0.5871)}$$

(4) 将
$$H_a(s)$$
变换成数字滤波器

---2 分

$$H(z) = H_a(s)$$
 $= \frac{21-z^{-1}}{T_{1+z^{-1}}}$

 $=\frac{1}{(1-1.268z^{-1}+0.7051z^{-2})}\frac{1}{(1-1.010z^{-1}+0.358z^{-2})}\frac{1}{(1-0.9044z^{-1}+0.2155z^{-2})}$