

d) With zwingerd, eine nicht-niedrig/aberdurchschniklliche Like-Anzahlist
aber wahrscheinlich.

12	P-1- (Σ Z d?) = 1- G Σ (Rx: - Rx:)2	NR		(x2)	Test	
	b (23-1)	1	1	0	4	10
		1	5	1	1	7
	3 G · 8 142	1	Q	٦	7	-7
	P= 1 - 9(92-4) = 1- 790 = 0,83,	2	3	0	0	1
4)		2	3	0	0	1
P)	Die zaordnung der nicht-vamensden Werte	2	3	0	0	1
	1st rein Subsectiv. Eine andere Bowartana potri	3	3	0	0	1
	Fil anderen Ergepursen	3	1	2	u	7
		3	5	4	10	9
()	Es muss eme Ordinale Sontening geben bew	-			-	-
	es mussen Objetime Standarts (28 bpm)			8	20	16

2.3 WDRSCHEINLICHKETT
Daten: 1000 zustilige Nutter, die angenusen worden Sollen X Mitarbeiter die Dato Anrase/ Stunde schassen
O NO MINIOSO STATULE SCHOOLS
Wahrschemkohlensmodelle
Die Mathematische Darstellung zußalliger Ereignisse
Quantisfever du Wahrschemlichkeit mit di Erelenisse eintreten
Verderlungen
Diskret - Zahlbare & abzahlbare Ereignisse
stering o kontinuierlicher Bereich r. Ereignissen -> 091 glatte kurre im Modell
-A Hier nermittich Stetia
* I I I I I I I I I I I I I I I I I I I
Binomialrerteilung - Dnacht x Ersolgen in Binaren Ereignissen Cunabhangigt identisch)
n = Dnzahl Yersuche p = Wahnscheinlichket Jedes Yersuchs identisch)
P - COamsenemmenter Jeors 1213dens
Hypergeometrische Verteilung -> Anzeihi r. Ersolgen in Stichprobe (ohne N.= Resamtzahi d. Elemente X = Elemente m relevanzer Elsenschaft n= Große d. Stichprobe
Poissonverteilung - 6 misst Anzah v. Ereignissen in Interval Chei Seltenen X = durchschnittliche Rate v. Ereignissen in Interval
-D Hier remuttich Poisson
cuir haben Intervalle, durchschntliche Raten & Ereignisse
a. 3. a)
currovenden die Poissonnertolung nutten
$P(X) = e^{\lambda} \lambda^{\chi}$
da aur eine zahlbare, endliche Menge von Ereignissen mit Intervallen und duchschnittichen Ereignissraten haben
Paramoter:
K (talgachliche Anzahl r. Ereignissen im Intervall)= X = !
Y Comarteter Darchsonin v. Ereighizzen im intervails
e Compromo 30M = ~ 9.71898
k (das Produkt aller positiven ganzen Zahlen 1-1) = ?

$$P(X = 8) = \frac{e^{-\lambda}\lambda^k}{2} = \frac{e^{-10}10^8}{8!} = \sim 0.412599$$

8 gente auralt my 18'30 .. Manuschenlich reit mit der ein Mitarpeiter

a.3 c)

hier wind die kammulierte wahrscheinlichteil von 0-8 anneigen benutzt:

$$\Rightarrow \frac{6!}{e^{-10}10^{\circ}} + \frac{5!}{e^{-10}10^{\circ}} + \frac{5!}{e^{-10}10^{\circ}} + \frac{8!}{e^{-10}10^{\circ}} + \frac{5!}{e^{-10}10^{\circ}} + \frac{5!}{e^{-10}10^{\circ$$

=> mt 33, 28: Wahrschenlichkeit rußt d. Utarbeiter
maximal 8 personen an

a.3 d)

Wir kummulieren die Wahrscheinlichkeit von X < 8

-> \(\subsection{\subsection{1}{2} \in \overline{1} \square \alpha \al

Das ziehen aur von 100% ab

mit 77,78%. Wehrschenlichkeit raßt d. Mitarbeiter