Comments on HW 7

Here are some brief comments on HW 7.

p. 38, Ex 35: Construct a polynomial in $\mathbb{Z}[x]$ with a root mod 2, but no root in \mathbb{Q}_p .

Solution: The book suggests $f(x)=x^2-3$ and many other examples are possible. We use the one suggested by the book.

It is easy to see that if x = 1, then

$$f(1) \equiv 1^2 - 3 \equiv -2 \equiv 0 \pmod{2}$$
.

Now suppose that $x\in\mathbb{Q}_p$ and that x were a root of f(x). Computing 2-adic norms, we see that $|x|_2^2=1$ from which it follows that $|x|_2=1$. Thus, x is a 2-adic integer, $x\in\mathbb{Z}_2$. However, we can check that f(x) has no root (mod 4) and by Theorem 1.42, it follows that x has no root in \mathbb{Z}_p .

p. 38, Ex 38: Use Hensel's Lemma to justify the existence of a root in \mathbb{Z}_7 . Then compute that the first three digits in the 7-adic expansion are ... 642_{\wedge} (or -1 times that).