Regularised Additive Least Squares Regression

Calvin & Kirthevasan

May 7, 2015

Nonparametric Regression

Given data:
$$(X_i, Y_i)_{i=1}^n$$
 where $(X_i, Y_i) \sim P_{XY}$
Estimate $f(x) = \mathbb{E}[Y|X = x]$.

Nonparametric Regression

- \blacktriangleright Assume only smoothness of f. No parametric form assumed.
- ► E.g.: Nadaraya-Watson, Support Vector Regression, Locally Polynomial Regression, Splines etc.

Nonparametric Regression

Given data:
$$(X_i, Y_i)_{i=1}^n$$
 where $(X_i, Y_i) \sim P_{XY}$
Estimate $f(x) = \mathbb{E}[Y|X = x]$.

Nonparametric Regression

- ightharpoonup Assume only smoothness of f. No parametric form assumed.
- E.g.: Nadaraya-Watson, Support Vector Regression, Locally Polynomial Regression, Splines etc.
- ▶ Kernel Ridge Regression
 Use a kernel k and its associated RKHS H_k,

$$\hat{f} = \operatorname*{argmin}_{f \in \mathcal{H}_k} \sum_{i=1}^n (Y_i - f(X_i))^2 + \lambda \|f\|_{\mathcal{H}_k}^2$$

The Bane of Nonparametric Methods

- ► The curse of dimensionality: Sample complexity is exponential in D. Typically work well only under 4 — 6 dimensions.
- Difficult to identify/ exploit structure in the problem.

This work: Address above via additive estimate for f,

$$\hat{f}(\cdot) = \hat{f}^{(1)}(\cdot) + \hat{f}^{(2)}(\cdot) + \ldots + \hat{f}^{(M)}(\cdot)$$

Outline

- Additive Least Squares Regression
- ► High dimensional nonparametric regression
 - "Statistically" simpler structures.
- Function selection
- Implementation
 - Comparison of optimisation procedures.

Recall,

$$\hat{f}(\cdot) = \hat{f}^{(1)}(\cdot) + \hat{f}^{(2)}(\cdot) + \dots + \hat{f}^{(M)}(\cdot)$$

Recall,

$$\hat{f}(\cdot) = \hat{f}^{(1)}(\cdot) + \hat{f}^{(2)}(\cdot) + \dots + \hat{f}^{(M)}(\cdot)$$

Given: kernels $k^{(j)}$ and the RKHS $\mathcal{H}_{k^{(j)}}$ for each $\hat{f}^{(j)}$. Optimise over $f^{(j)} \in \mathcal{H}_{k^{(j)}}$, $j=1,\ldots,M$

Recall,

$$\hat{f}(\cdot) = \hat{f}^{(1)}(\cdot) + \hat{f}^{(2)}(\cdot) + \dots + \hat{f}^{(M)}(\cdot)$$

Given: kernels $k^{(j)}$ and the RKHS $\mathcal{H}_{k^{(j)}}$ for each $\hat{f}^{(j)}$. Optimise over $f^{(j)} \in \mathcal{H}_{k^{(j)}}$, $j=1,\ldots,M$

$$\begin{split} & \{\hat{f}^{(j)}\}_{j=1}^{M} = \underset{f^{(j)} \in \mathcal{H}_{k^{(j)}}, j=1, \dots, M}{\operatorname{argmin}} F\left(\{f^{(j)}\}_{j=1}^{M}\right) \\ & F\left(\{f^{(j)}\}_{j=1}^{M}\right) = \frac{1}{2} \sum_{i=1}^{n} \left(Y_{i} - \sum_{j=1}^{M} f^{(j)}(X_{i})\right)^{2} + \lambda \sum_{j=1}^{M} \|f^{(j)}\|_{\mathcal{H}_{k^{(j)}}} \end{split}$$

Representer Theorem: $\hat{f}^{(j)}(\cdot) = \sum_{i=1}^{n} \alpha_i^{(j)} k^{(j)}(\cdot, X_i)$.

Representer Theorem: $\hat{f}^{(j)}(\cdot) = \sum_{i=1}^{n} \alpha_i^{(j)} k^{(j)}(\cdot, X_i)$.

Write $\alpha^{(j)} \in \mathbb{R}^n$, $\alpha \in \mathbb{R}^{nM}$. The objective reduces to

$$F_1(\alpha) = \frac{1}{2} \left\| Y - \sum_{j=1}^m K^{(j)} \alpha^{(j)} \right\|_2^2 + \lambda \sum_{j=1}^M \sqrt{\alpha^{(j)} K^{(j)} \alpha^{(j)}}.$$

This is convex.

$$\hat{f}(\cdot) = \hat{f}^{(1)}(\cdot) + \hat{f}^{(2)}(\cdot) + \dots + \hat{f}^{(M)}(\cdot)$$

$$\hat{f}(\cdot) = \hat{f}^{(1)}(\cdot) + \hat{f}^{(2)}(\cdot) + \ldots + \hat{f}^{(M)}(\cdot)$$

Idea: Choose $k^{(j)}$ to be "simple".

The sum \hat{f} will still be "simpler" than estimating on a full Kernel.

$$\hat{f}(\cdot) = \hat{f}^{(1)}(\cdot) + \hat{f}^{(2)}(\cdot) + \ldots + \hat{f}^{(M)}(\cdot)$$

Idea: Choose $k^{(j)}$ to be "simple".

The sum \hat{f} will still be "simpler" than estimating on a full Kernel.

Full Kernel

$$k(x,x') = \exp\left(\frac{\|x-x'\|^2}{2h^2}\right) = \prod_{j=d}^{D} \exp\left(\frac{(x_d - x_d')^2}{2h^2}\right) = \prod_{d=1}^{D} k_d(x_d, x_d')$$

$$\hat{f}(\cdot) = \hat{f}^{(1)}(\cdot) + \hat{f}^{(2)}(\cdot) + \ldots + \hat{f}^{(M)}(\cdot)$$

Idea: Choose $k^{(j)}$ to be "simple".

The sum \hat{f} will still be "simpler" than estimating on a full Kernel.

Full Kernel

$$k(x,x') = \exp\left(\frac{\|x-x'\|^2}{2h^2}\right) = \prod_{j=d}^{D} \exp\left(\frac{(x_d - x_d')^2}{2h^2}\right) = \prod_{d=1}^{D} k_d(x_d, x_d')$$

Why Simpler kernels? More bias, but better variance

Higher Dimensional Regression - ESP Kernels

$$k^{(1)}(x,x') = \sum_{1 \le i \le D} k_i(x_i,x_i')$$

$$k^{(2)}(x,x') = \sum_{1 \le i_1 < i_2 \le D} k_{i_1}(x_{i_1},x_{i_1}')k_{i_2}(x_{i_2},x_{i_2}')$$

$$k^{(M)}(x,x') = \sum_{1 \le i_1 < i_2 < \dots < i_M \le D} \prod_{d=1}^M k_{i_d}(x_{i_d},x_{i_d}')$$

Higher Dimensional Regression - ESP Kernels

$$k^{(1)}(x,x') = \sum_{1 \le i \le D} k_i(x_i,x_i')$$

$$k^{(2)}(x,x') = \sum_{1 \le i_1 < i_2 \le D} k_{i_1}(x_{i_1},x_{i_1}')k_{i_2}(x_{i_2},x_{i_2}')$$

$$k^{(M)}(x,x') = \sum_{1 \le i_1 < i_2 < \dots < i_M \le D} \prod_{d=1}^M k_{i_d}(x_{i_d},x_{i_d}')$$

- Combinatorially large number of terms.
- ▶ Observation: $k^{(j)}$ is the j^{th} elementary symmetric polynomial of base kernels k_i .
- ightharpoonup Computable in O(DM) time using Newton-Girard Formulae.

Results

Dataset (D, n)	Add-KR	KRR	NW	GP	SVR
Speech (21, 520)	0.02269	0.02777	0.11207	0.02531	0.22431
Music (90, 1000)	0.91627	0.91922	1.05745	0.94329	1.07009
Tele-motor (19, 300)	0.06059	0.06488	0.20119	0.06678	0.38038
Housing (12, 256)	0.31285	0.35947	0.42087	0.67566	1.15272
Blog (91, 700)	1.43288	1.53227	1.49305	1.64429	1.66705
Forest Fires (10, 210)	0.30675	0.32618	0.37199	0.29038	0.70154
Propulsion (15, 400)	0.04167	0.01396	0.11237	0.00355	0.74511

Also comparisons with k-NN, Locally Linear/Quadratic regression.

Function Selection

Important genomics task: Identify interdependent effect of mutations.

f has 50 variables, but true interactions are pairwise (or low order) and sparse.

$$f(x_1^{50}) = f(x_2, x_7) + f(x_{21}, x_{34}) + \cdots + f(x_{12}, x_{49})$$

4/50 individual effects and 4/1225 pairwise effects

Recovers all true nonzero functions with FPR=3.7%

Optimization Problem

Recall objective: $\alpha^{(j)} \in \mathbb{R}^n$, $\alpha \in \mathbb{R}^{nM}$

$$\min_{\alpha} \frac{1}{2} \| Y - \sum_{j=1}^{m} K^{(j)} \alpha^{(j)} \|_{2}^{2} + \lambda \sum_{j=1}^{M} \sqrt{\alpha^{(j)} K^{(j)} \alpha^{(j)}}$$

► Challenge: generalized sum-of-norms regularization:

$$\sqrt{\alpha^{(j)}^{\top} K^{(j)} \alpha^{(j)}} = \|R^{(j)} \alpha^{(j)}\|_2 \text{ where } K^{(j)} = R^{(j)}^{\top} R^{(j)}$$

Optimization Problem

Recall objective: $\alpha^{(j)} \in \mathbb{R}^n$, $\alpha \in \mathbb{R}^{nM}$

$$\min_{\alpha} \frac{1}{2} \left\| Y - \sum_{j=1}^{m} K^{(j)} \alpha^{(j)} \right\|_{2}^{2} + \lambda \sum_{j=1}^{M} \sqrt{\alpha^{(j)}^{\top} K^{(j)} \alpha^{(j)}}$$

► Challenge: generalized sum-of-norms regularization:

$$\sqrt{\alpha^{(j)^{\top}} K^{(j)} \alpha^{(j)}} = \|R^{(j)} \alpha^{(j)}\|_2 \text{ where } K^{(j)} = R^{(j)^{\top}} R^{(j)}$$

Rewrite with Cholesky decomposition: $K^{(j)} = L^{(j)}L^{(j)^{\top}}$. Let $\beta^{(j)} = L^{(j)^{\top}}\alpha^{(j)}$

$$\min_{\beta \in \mathbb{R}^{nM}} \frac{1}{2} \| Y - \sum_{j=1}^{m} L^{(j)} \alpha^{(j)} \|_{2}^{2} + \lambda \sum_{j=1}^{M} \| \beta^{(j)} \|_{2}$$

Group lasso problem!

Optimization methods

- ▶ Subgradient / Proximal gradient: iteration cost $O(n^2M)$
- ► ADMM: iteration cost $O(n^2M^2)$ Main cost: solve triangular $nM \times nM$ system in primal update

Optimization methods

- ▶ Subgradient / Proximal gradient: iteration cost $O(n^2M)$
- ► ADMM: iteration cost $O(n^2M^2)$ Main cost: solve triangular $nM \times nM$ system in primal update
- ▶ Exact BCD: iteration cost $O(n^3M)$
 - ▶ Quickly solve 1d problem for Δ $\| (\Delta L^{(j)^{\top}} L^{(j)} + \lambda I)^{-1} (L^{(j)^{\top}} (\sum_{i \neq j} L^{(i)} \beta^{(i)})) \| = 1$
 - ► Then solve $n \times n$ system for $\beta^{(j)} \leftarrow -(\Delta L^{(j)^{\top}} L^{(j)} + \lambda I)^{-1} (L^{(j)^{\top}} (\sum_{i \neq j} L^{(i)} \beta^{(i)}))/\Delta$

Optimization methods

- ▶ Subgradient / Proximal gradient: iteration cost $O(n^2M)$
- ► ADMM: iteration cost $O(n^2M^2)$ Main cost: solve triangular $nM \times nM$ system in primal update
- ► Exact BCD: iteration cost $O(n^3M)$
 - Quickly solve 1d problem for Δ $\parallel (\Delta L^{(j)^{\top}} L^{(j)} + \lambda I)^{-1} (L^{(j)^{\top}} (\sum_{i \neq j} L^{(i)} \beta^{(i)})) \parallel = 1$
 - ► Then solve $n \times n$ system for $\beta^{(j)} \leftarrow -(\Delta L^{(j)}^{\top} L^{(j)} + \lambda I)^{-1} (L^{(j)}^{\top} (\sum_{i \neq i} L^{(i)} \beta^{(i)}))/\Delta$
- ▶ BCGD: iteration cost $O((n^2 + nM)M)$
 - ▶ Block coordinate gradient descent (Tseng & Yun, 2007)
 - Diagonal Hessian approximation closed form update
 - Skip backtracking since expensive

Optimization results

Thanks!