

Center for Electric Power and Energy Department of Electrical Engineering

Reinforcement Learning applications for Peer-to-Peer energy markets

Tiago Sousa, Pierre Pinson

Motivation

Yes

— No

Reinforcement learning

- We can design the P2P negotiation as Reinforcement Learning
 - Agent learns the optimal policy by interacting with the environment (P2P market)

- Reinforcement Learning approach
 - Multi-Armed Bandit
- Test case and results
- Conclusions and next steps

Agent

prosumer

Step n	Arm 1	Arm 2	Arm 3
1	1	0	0
2	0	1	0
3	1	0	0
4	0	0	1

actions a_n

Step $n \neq \text{time } t$

Agent

prosumer

Environment

Step n	Arm 1	Arm 2	Arm 3	Reward
1	1	0	0	1
2	0	1	0	0
3	1	0	0	0
4	0	0	1	1

$$R_{Total} = \mathbb{E}(R_n) = \frac{1}{N} \sum R_n$$

$$a_n^* = \operatorname{argmax} R_{Total}$$

Agent

prosumer

Environment

Step n	Arm 1	Arm 2	Arm 3	F
1	1	0	0	
2	0	1	0	
3	1	0	0	
4	0	0	1	

Reward	Energy (kWh)
1	10
0	0
0	0
1	5

State per step *n*

$$s_n = \sum E_n(j)R_n$$

$$s_n \leq E_{Target}$$
 Stopping condition

Example

Example

• This iterative process is an episode

We terminate when

$$-s_n = E_{Target}$$

episode = time t

How to differentiate between episodes? Action n

Reward is a random variable

Bernoulli distribution

$$R_n(j) \sim \mathbf{B}(1, p_j)$$

For a large number of steps *n*:

$$R_n(j) \approx p_j$$

Step n	Arm 1
1	1
2	0
3	1
4	0

Environment

Reward		
1		
-		
0		
-		

Reward is a random variable

Bernoulli distribution

$$R_n(j) \sim B(1, p_j)$$

For a large number of steps *n*:

$$R_n(j) \approx p_j$$

Environment

Reward		
1		
1		
0		
-		

Action-Value function

Estimator of p_j for every arm j

$$Q_n(j) = \frac{1}{N_j} \sum_{j} R_n(j) = \hat{p}_n(j)$$

- Learning algorithms estimate the Action-Value function $Q_n(j)$
 - Random
 - $-\epsilon$ -greedy
 - Thompson Sampler
 - Upper Confidence Bound

Test case

- Case with 15 parterns *j*
- Test for 100 episodes
 - $-E_{Target} = 15 \text{ kWh}$
- Learning algorithms:
 - Random
 - $-\epsilon$ -greedy

Test case

Solution found on episode 91

$$-R_{Total} = 0.89$$

 However, there is no guarantee to reach always this reward value:

$$\overline{R}_{Total} = 0.67 \quad epi \in [21, 100]$$

Optimal solution

- We can compute the estimator Q_j^*
 - $Q_j^* \approx p_j$
 - Calculate the mean Q_j^* for the last 10 episodes

Conclusions and next steps

- We are able to learn the partners with high success probability
- We can use the learning algorithm for pre-selection of partners in **ADMM** optimization
- Code uploaded in this github <u>link</u>

Next steps:

-However, there is still room for improvements...but I'll not be here 😊

Thanks for your attention!

Agent learns which arm returns the highest payoff

Real-world applications:

- Clinical trials
- Online Advertising
- **Network routing**

Applied RL agent

Algorithm 1: Applied RL agent

```
Initialize episodes e \in \mathbb{E}, steps n \in \mathbb{N}, actions a_n \in \mathbb{A}, states s_n \in \mathbb{S}, trading prosumers j \in \omega_i;
for each episode e do
     E_i^e \leftarrow \text{random sample between } [\underline{E}_i, \overline{E}_i];
     Initialize step n \leftarrow 1;
     while E_i^e \geq s_n do
          Take action a_n = j \in \omega_i using policy strategy;
          Observe R_n(a_n), s_n;
          if R_n(a_n) = 1 then
              E_{ij}^n \leftarrow energy offer by selected prosumer j;
          else
             E_{ij}^n \leftarrow 0;
          end
          s_n \leftarrow \sum E_{ij}^n, R^{total} \leftarrow \sum R_n(a_n);
          Update the cumulative probability \theta(a_n);
          n \leftarrow n + 1;
     end
end
```


Total reward performance

Algorithm	\overline{R}_{Total} $epi \in [1, 20]$	\overline{R}_{Total} $epi \in [21, 100]$
Random	0.49	0.47
<i>ϵ-greedy</i>	0.50	0.67

Empirical distribution function across 100 episodes

