The following notes are useful for this discussion: Note 14.

1. Orthonormality and Least Squares

Recall that, if $U \in \mathbb{R}^{m \times n}$ is a tall matrix (i.e. $m \ge n$) with orthonormal columns, then

$$U^{\top}U = I_{n \times n} \tag{1}$$

However, it is not necessarily true that $UU^{\top} = I_{m \times m}$. In this discussion, we will deal with "orthonormal" matrices, where the term "orthonormal" refers to a matrix that is square with orthonormal columns and rows. Furthermore, for an orthonormal matrix U,

$$U^{\top}U = UU^{\top} = I_{n \times n} \implies U^{-1} = U^{\top}$$
 (2)

This discussion will cover some useful properties that make orthonormal matrices favorable, and we will see a "nice" matrix factorization that leverages orthonormal matrices and helps us speed up least squares.

(a) Suppose you have a real, square, $n \times n$ orthonormal matrix U. You also have real vectors \vec{x}_1 , \vec{x}_2 , \vec{y}_1 , \vec{y}_2 such that

$$\vec{y}_1 = U\vec{x}_1 \tag{3}$$

$$\vec{y}_2 = U\vec{x}_2 \tag{4}$$

This is analogous to a change of basis. Show that, in this new basis, the inner products are preserved. Calculate $\langle \vec{y}_1, \vec{y}_2 \rangle = \vec{y}_2^\top \vec{y}_1 = \vec{y}_1^\top \vec{y}_2$ in terms of $\langle \vec{x}_1, \vec{x}_2 \rangle = \vec{x}_2^\top \vec{x}_1 = \vec{x}_1^\top \vec{x}_2$.

(b) Using the change of basis defined in part 1.a, show that, in the new basis, the norms are preserved. Express $\|\vec{y}_1\|^2$ and $\|\vec{y}_2\|^2$ in terms of $\|\vec{x}_1\|^2$ and $\|\vec{x}_2\|^2$.

(c) Suppose you observe data coming from the model $y_i = \vec{a}^\top \vec{x}_i$, and you want to find the linear scale-parameters (each a_i). We are trying to learn the model \vec{a} . You have m data points (\vec{x}_i, y_i) , with each $\vec{x}_i \in \mathbb{R}^n$. Each \vec{x}_i is a different input vector that you take the inner product of with \vec{a} , giving a scalar y_i .

Set up a matrix-vector equation of the form $X\vec{a} = \vec{y}$ for some X and \vec{y} , and propose a way to estimate \vec{a} .

(d) Let's suppose that we can write our *X* matrix from part **1.c** as

$$X = MV^{\top} \tag{5}$$

for some matrix $M \in \mathbb{R}^{m \times n}$ and some orthonormal matrix $V \in \mathbb{R}^{n \times n}$. Find an expression for \widehat{d} from the previous part, in terms of M and V^{\top} .

Note: take this form as a given. We will go over how to find such a *V* and *M* later.

(e) Now suppose that we have the matrix

$$\begin{bmatrix} \vec{x}_1^\top \\ \vec{x}_2^\top \\ \vdots \\ \vec{x}_m^\top \end{bmatrix} := X = U \Sigma V^\top.$$
 (6)

where $U \in \mathbb{R}^{m \times m}$ is an orthonormal matrix, and $V \in \mathbb{R}^{n \times n}$ is an orthonormal matrix. Here,

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_n \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}. \text{ Here we assume that we have more data points than the dimension of }$$

our space (that is, m > n). Also, the transformation V in part e) is the same V in this factorized representation.

Set up a least squares formulation for estimating \vec{a} and find the solution to the least squares. Why might this factorization help us compute $\hat{\vec{a}}$ faster?

Note: again, take this factorization as a given. We will go over how to find U, Σ , and V later.

Contributors:

- Neelesh Ramachandran.
- Kuan-Yun Lee.
- Anant Sahai.
- Kumar Krishna Agrawal.