Linear Algebra

March 31, 2023

1 Affine Spaces

This chapter is about spaces that are offset from the origin, or in other words, spaces that are no longer subspaces.

Definition - Affine Subspace

Let V be a vector space, $x_0 \in V$ and $U \subseteq V$ a subspace. Then the subset

$$L = \mathbf{x}_0 + U := \{\mathbf{x}_0 + \mathbf{u} : \mathbf{u} \in U\}$$

= $\{\mathbf{v} \in V | \exists \mathbf{u} \in U : \mathbf{v} = \mathbf{x}_0 + \mathbf{u}\} \subset V$ (1)

is called affine subspace of linear manifold of V. U is called direction or direction space, and x_0 is called support point.

Important to note is, that the according to the definition to the affine subspace, it does not include $\mathbf{0}$ if $\mathbf{x}_0 \notin U$. Therefore, an affine subspace is not a (linear) subspace (vector subspace) of V for $\mathbf{x}_0 \notin U$.

Examples of affin subspace are points, lines, and planes in \mathbb{R}^3 , which do not (necessarily) go through the origin.

in \mathbb{R}^n , the (n-1)-dimensional affine subspaces are called hyperplanes, and the corresponding parametric equation is $\boldsymbol{y} = \boldsymbol{x}_0 + \sum_{i=1}^{n-1} \lambda_i \boldsymbol{b}_i$, where $\boldsymbol{b}_1, \dots, \boldsymbol{b}_{n-1}$ form a basis of an (n-1)-dimensional subspace U of \mathbb{R}^n . This means that a hyperplane is defined by a support point \boldsymbol{x}_0 and (n-1) linearly independent vectors $\boldsymbol{b}_1, \dots, \boldsymbol{b}_{n-1}$ that span the direction space. In \mathbb{R}^2 , a line is also a hyperplane. In \mathbb{R}^3 , a plane is also a hyperplane.

2 Affine Mappings

Definition - Affine Mapping

For two vector spaces V, W, a linear mapping $\Phi: V \to W$, and $\mathbf{a} \in W$, the mapping

$$\phi: V \to W \tag{2}$$

$$x \mapsto a + \Phi(x)$$
 (3)

is an affine mapping from V to W. The vector \boldsymbol{a} is called translation vector of ϕ .

Properties:

- Every affine mapping $\phi: V \to W$ is also the composition of a linear mapping $\Phi: V \to W$ and a translation $\tau: W \to W$ in W, such that $\phi = \tau \circ \Phi$. The mappings Φ and τ are uniquely determined.
- The composition $\phi' \circ \phi$ of affine mappings $\phi: V \to W, \ \phi': W \to X$ is affine.

• Affine mappings keep the geometric structure invariant. They also preserve the dimension and

parallelism.