14.8 Lagrange multipliers

有條件的極值, 如: 到曲面的最短距離, 限制面積的最大容積。 § 14.7 使用代入限制條件減少變數作微分, 但只能解最多三變數。 拉格朗日乘數法可以解多條件多變數的極值。

0.1 One constraint

Recall: 梯度垂直等高[面]線: $\nabla f \perp f = c$, 所以也垂直切[面]線。

如果想找 f(x,y[,z]) 在 g(x,y[,z])=k 限制下的極值, 可以先畫出 $f=\ell$ 的 等高面/線 跟 g=k, 極值就發生在 $f=\ell$ 與 g=k 相切的點 P(a,b[,c]); 這時候 $f=\ell$ 與 g=k 在 P 的切線[平面]平行(相同)。

因爲 $\nabla f(a,b[,c])$ 與 $f=\ell$ 的切線[平面]<u>垂直</u>,而且 $\nabla g(a,b[,c])$ 與 g=k 的 切線[平面]垂直,所以 $\nabla f(a,b[,c])$ 與 $\nabla g(a,b[,c])$ 平行,也就是:

 $\nabla f(a,b[,c]) = \lambda \nabla g(a,b[,c])$ for some constant λ ("lambda" [爛打]).

Theorem 1 (Method of Lagrange Multipliers) (一個限制)

To find the maximum and minimum values of f(x, y, z) subject to the constraint g(x, y, z) = k [assuming extreme values exist and $\nabla g \neq \mathbf{0}$ on the surface g(x, y, z) = k]:

(a) Find all values of x, y, z, and λ such that

$$abla f(x,y,z) = \lambda
abla g(x,y,z) \quad \mathcal{E} \quad g(x,y,z) = k$$

where λ is called a Lagrange multiplier 拉格朗日乘數.

(b) 比大小, 最大/小的一定是絕對最大/小。

Note: 1. 雙 [三]變數會有 3[4] 個式子: (方程式與變數一樣多!)

$$f_x = \lambda g_x$$
 $f_y = \lambda g_y$ $[f_z = \lambda g_z]$ $g(x, y, z) = k$

Attention: 1. $\nabla g \neq \mathbf{0}$, 當 $\nabla g = \mathbf{0}$ 時的點要另外判斷。(Ex 14.8.25)

♦ 2. 其實找到的是奇異點 (critical points), 有可能是局部極大/小或鞍點。 Ex: f = y, $g = y - x^3 = 0$. (try it yourself.)

Example 0.1 (無蓋盒) V(x, y, z) = xyz, g(x, y, z) = 2xz + 2yz + xy = 12.

$$\nabla V = \lambda \nabla g \implies \begin{cases} V_x = \lambda g_x \\ V_y = \lambda g_y \\ V_z = \lambda g_z \\ g = 12 \end{cases} \implies \begin{cases} yz = \lambda(2z+y) \\ xz = \lambda(2z+x) \\ xy = \lambda(2x+2y) \\ 2xz + 2yz + xy = 12 \end{cases}$$

If $\lambda = 0$, 代入得到 g = 0, contradiction 矛盾, so $\lambda \neq 0$

約掉 $\lambda \implies 2xz + xy = 2yz + xy = 2xz + 2yz \implies xy = 2yz = 2xz$.

If x = 0, y = 0, or z = 0 then V(x, y, z) = 0. (這也是個極値)

Otherwise, $\implies x = y = 2z$, 代入 $g(2z, 2z, z) = 12z^2 = 12$, z = 1 (負不合).

So
$$x = y = 2$$
, $z = 1$, $(\lambda = \frac{1}{2})$, $V(2, 2, 1) = 4$.

Example 0.2 Find the extreme value of $f(x,y) = x^2 + 2y^2$ on the circle $x^2 + y^2 = 1$.

$$Let \ g(x,y) = x^2 + y^2 = 1.$$

$$\nabla f = \lambda \nabla g \implies \begin{cases} f_x = \lambda g_x \\ f_y = \lambda g_y \\ g = 1 \end{cases} \implies \begin{cases} 2x = \lambda 2x \\ 4y = \lambda 2y \\ x^2 + y^2 = 1 \end{cases} \implies \lambda = 1$$

$$If \ x = 0, \ then \ y = \pm 1; \ if \ \lambda = 1, \ then \ y = 0, \ x = \pm 1.$$

So the absolute maximum value of f on the circle is $f(0,\pm 1)=2$, and the absolute minimum value is $f(\pm 1,0)=1$.

Example 0.3 Find the extreme value of $f(x,y) = x^2 + 2y^2$ on the disk $x^2 + y^2 \le 1$.

- 1. 找奇異點: $f_x = 2x = 0$, $f_y = 4y = 0$. critical point: (0,0) and f(0,0) = 0.
 - 2. 找邊點: 由上題 $f(\pm 1,0) = 1$ and $f(0,\pm 1) = 2$.
- 3. 比大小: the maximum value of f on the disk is $f(0,\pm 1)=2$ and the minimum value is f(0,0)=0.

Example 0.4 Find the points on the sphere $x^2 + y^2 + z^2 = 4$ that are closest to and the farthest from the point (3, 1, -1).

Let d be the distance, $f(x, y, z) = d^2 = (x - 3)^2 + (y - 1)^2 + (z + 1)^2$, $g(x, y, z) = x^2 + y^2 + z^2 = 4$.

$$\nabla f = \lambda \nabla g \implies \begin{cases} 2(x-3) = \lambda 2x \\ 2(y-1) = \lambda 2y \\ 2(z+1) = \lambda 2z \\ x^2 + y^2 + z^2 = 4 \end{cases} \implies \begin{cases} x = \frac{3}{1-\lambda} \\ y = \frac{1}{1-\lambda} \\ z = \frac{-1}{1-\lambda} \end{cases} (\lambda \neq 1)$$

$$\frac{3^2 + 1^2 + (-1)^2}{(1 - \lambda)^2} = 4, \ \lambda = 1 \pm \frac{\sqrt{11}}{2},$$

$$\implies (x,y,z) = \left(\frac{-6}{\sqrt{11}}, \frac{-2}{\sqrt{11}}, \frac{2}{\sqrt{11}}\right) \text{ (when } \lambda = 1 + \frac{\sqrt{11}}{2}\text{),}$$

and
$$(x, y, z) = \left(\frac{6}{\sqrt{11}}, \frac{2}{\sqrt{11}}, \frac{-2}{\sqrt{11}}\right)$$
 (when $\lambda = 1 - \frac{\sqrt{11}}{2}$).

$$f(x,y,z) = (x-3)^2 + (y-1)^2 + (z+1)^2 \ (\text{H} \ \nabla f = \lambda \nabla g \ \text{L})$$
$$= x^2 \lambda^2 + y^2 \lambda^2 + z^2 \lambda^2 = 4\lambda^2 = (2 \pm \sqrt{11})^2 = 15 \pm 4\sqrt{11}.$$

So the closest point is
$$\left(\frac{6}{\sqrt{11}}, \frac{2}{\sqrt{11}}, \frac{-2}{\sqrt{11}}\right)$$
 (with distance $\sqrt{11} - 2$, $\sqrt{11} > 2$),

and the farthest point is
$$\left(\frac{-6}{\sqrt{11}}, \frac{-2}{\sqrt{11}}, \frac{2}{\sqrt{11}}\right)$$
 (with distance $2 + \sqrt{11}$).

Note: \pm 代表有正跟負兩個答案, 同時也用 $\mp = -(\pm)$ 表示對應的負與正。 ex: $x = a \pm b \mp c$ 代表 x = a + b - c and x = a - b + c.

0.2 Two constraints

極値發生在 f 的 level curves(surfaces) C 與 g=k 與 h=c 的交線 C' 相切的 點 P。這時後 C 與 C' 在 P 的切向量平行。因爲 ∇f 與 C 在 P 的切向量垂直, ∇g 與 ∇h 都與 C' 在 P 的切向量垂直,所以 ∇f 在 ∇g 與 ∇h 展開的平面上, 也就是

$$\nabla f = \lambda \nabla g + \mu \nabla h$$
 & $g = k$ & $h = c$

where λ, μ ("mu"[喵]) are called *Lagrange multipliers*.

Note: $\nabla g \neq \mathbf{0}$ on g = k and $\nabla h \neq \mathbf{0}$ on h = c.

Example 0.5 Find the maximum value of f(x, y, z) = x + 2y + 3z on the curve of intersection of the plane x - y + z = 1 and the cylinder $x^2 + y^2 = 1$.

$$\text{Let } g(x,y,z) = x - y + z = 1, \ h(x,y,z) = x^2 + y^2 = 1.$$

$$\begin{cases} 1 = \lambda + \mu 2x \\ 2 = -\lambda + \mu 2y \\ 3 = \lambda \end{cases} \implies \begin{cases} \lambda = 3 \\ x = \frac{-1}{\mu} \\ y = \frac{5}{2\mu} \end{cases}$$

$$(\text{P. h.:}) \ (\frac{1}{\mu})^2 + (\frac{5}{2\mu})^2 = 1, \ \mu = \pm \frac{\sqrt{29}}{2},$$

$$\implies x = \mp \frac{2}{\sqrt{29}}, \ y = \pm \frac{5}{\sqrt{29}}, \ (\text{P. g.:}) \ z = 1 - x + y = 1 \pm \frac{7}{\sqrt{29}},$$

$$f(\mp \frac{2}{\sqrt{29}}, \pm \frac{5}{\sqrt{29}}, 1 \pm \frac{7}{\sqrt{29}}) = \mp \frac{2}{\sqrt{29}} + 2\left(\pm \frac{5}{\sqrt{29}}\right) + 3\left(1 \pm \frac{7}{\sqrt{29}}\right) = 3 \pm \sqrt{29}.$$

$$\text{So the maximum value of } f \text{ on the curve is }$$

$$f(-\frac{2}{\sqrt{29}}, \frac{5}{\sqrt{29}}, 1 + \frac{7}{\sqrt{29}}) = 3 + \sqrt{29}.$$

$$(\text{And the minimum value of } f \text{ on the curve is }$$

$$f(\frac{2}{\sqrt{29}}, -\frac{5}{\sqrt{29}}, 1 - \frac{7}{\sqrt{29}}) = 3 - \sqrt{29}.)$$

