SCHWARZ ALTERNATING METHOD

AILI SHAO

We take Ω to be a bounded open domain in \mathbb{R}^n (assume that it is smooth for simplicity), and decompose Ω into two subdomains Ω_1 , Ω_2 such that $\Omega = \Omega_1 \cup \Omega_2$.

Consider the Neumann Problem

$$\begin{cases} -u'' + u = f \text{ in } \Omega, \\ \frac{\partial u}{\partial n} = 0 \text{ on } \partial \Omega \end{cases}$$

where n is the outward pointing normal.

Let $X = H^1(\Omega)$, and define

$$Y_1 := \overline{\{\phi \in C^{\infty}(\Omega) : \phi = 0 \text{ in the neighbourhood of } \Omega \setminus \Omega_1\}} = H_0^1(\Omega_1),$$

$$Y_2 := \overline{\{\phi \in C^{\infty}(\Omega) : \phi = 0 \text{ in the neighbourhood of } \Omega \setminus \Omega_2\}} = H_0^1(\Omega_2).$$

Fix $u_0 \in X$ and find u_1 by first solving

$$\begin{cases} -u_1'' + u_1 = f \text{ in } \Omega_1, \\ u_1 = u_0 \text{ on } \gamma_1 := \partial \Omega_1 \cap \Omega_2, \\ \frac{\partial u_1}{\partial n} = 0 \text{ on } \partial \Omega_1 \setminus \gamma_1 \end{cases}$$

and then extend by u_0 from Ω_1 to all of Ω . We repeat the procedure alternatingly to find u_2, u_3, \cdots such that u_{2n+1} (for $n \geq 0$) solves

$$\begin{cases} -u_{2n+1}'' + u_{2n+1} = f \text{ in } \Omega_1, \\ u_{2n+1} = u_{2n} \text{ on } \gamma_1 := \partial \Omega_1 \cap \Omega_2, \\ \frac{\partial u_{2n+1}}{\partial n} = 0 \text{ on } \partial \Omega_1 \setminus \gamma_1 \end{cases}$$

while u_{2n} (for $n \ge 1$) is a solution of

$$\begin{cases} -u_{2n}'' + u_{2n} = f \text{ in } \Omega_2, \\ u_{2n} = u_{2n-1} \text{ on } \gamma_2 := \partial \Omega_2 \cap \Omega_1, \\ \frac{\partial u_{2n}}{\partial n} = 0 \text{ on } \partial \Omega_2 \setminus \gamma_2 \end{cases}$$

We may extend u_{2n+1} by u_{2n} and $u_{2n}=u_{2n-1}$ respectively to all of Ω . Since $-(u_1-u)''+(u_1-u)=0$ in Ω_1 ,

$$\langle u_1 - u, \phi \rangle_{H^1} = \int_{\Omega_1} (u_1 - u)' \phi' + (u_1 - u) \phi dx = \int_{\Omega_1} -(u_1 - u)'' \phi + (u_1 - u) \phi dx = 0$$

for all $\phi \in Y_1$. This shows that $u_1 - u \perp Y_1$. Let $M_i = Y_i^{\perp}$ for i = 1, 2, then $u_1 - u \in M_1$.

Note that

$$u_0 - u = (u_0 - u_1) + (u_1 - u)$$

2 AILI SHAO

where $u_0 - u_1 \in Y_1 = M_1^{\perp}$ and $u - u_1 \in M_1$, so $u_1 - u = P_{M_1}(u_0 - u)$ where P_{M_i} is the orthogonal projection onto M_i for i = 1, 2.

Similarly, $u_2 - u = P_{M_2}(u_1 - u)$ as

$$u_1 - u = (u_1 - u_2) + (u_2 - u)$$

where $u_2 - u \in M_2$ and $u_1 - u_2 \in M_2^{\perp}$.

Iteratively,

$$u_{2n+1} - u = P_{M_1}(u_{2n} - u)$$

and

$$u_{2n} - u = P_{M_2}(u_{2n-1} - u)$$

for $n \geq 1$.

Let $T = P_{M_2}P_{M_1}$. If $x_{2n} := u_{2n} - u$, $x_0 := u_0 - u$, then $x_{2n} = T^nx_0$. By Von-Neumann Halperin Theorem,

$$\lim_{n \to \infty} ||T^n x_0 - P_M x_0||_{H^1} = 0$$

where $M=M_1\cap M_2$. In this case, we have $X=\overline{M_1^{\perp}+M_2^{\perp}}=\overline{Y_1+Y_2}(\star)$, so $M=M_1\cap M_2=\{0\}$, and $P_Mx_0=0$. Then

$$\lim_{n \to \infty} \|x_{2n}\|_{H^1} = 0.$$

This implies that $u_{2n}(x)$ converges to u(x) strongly.

Note that $x_{2n+1} = P_{M_1} x_{2n}$, then

$$\lim_{n \to \infty} ||x_{2n+1}||_{H^1} = \lim_{n \to \infty} ||P_{M_1} x_{2n}||_{H^1} = 0$$

by continuity of P_{M_1} . That is, u_{2n+1} converges to u strongly as well.

Thus, the Schwarz Alternating Method generates a sequence of solutions $\{u_n\}$ converging to the exact solution u strongly.

We formulate the proof of (\star) in the following lemma:

Lemma 1. For $X = H^1(\Omega), Y_i = \overline{Z_i}$ where

$$Z_i := \{ u \in C^{\infty}(\Omega) : u = 0 \text{ in the neighbourhood of } \Omega \setminus \Omega_1 \},$$

 $Y = Y_1 + Y_2$ is a proper dense subspace of X.

Proof. For simplicity, we consider the two-dimensional domain Ω as shown below. We first show that $Y=Y_1+Y_2$ is a proper subspace of X. Assume for contradiction that $X=Y_1+Y_2$, then for each $u\in X$, we have $u=u_1+u_2$ where $u_1\in Y_1,\ u_2\in Y_2$. Now we consider the trace defined as

$$\operatorname{Tr}: H^1 \to H^{\frac{1}{2}}(\partial\Omega).$$

Since $u \equiv 1 \in H^1(\Omega)$ and u is continuous on $\overline{\Omega}$, then

$$1 = \text{Tr}u = \text{Tr}(u_1 + u_2) = \text{Tr}u_1 + \text{Tr}u_2.$$

We also have $\operatorname{Tr} u_1 = 0$ on $\partial \Omega_1$, and $\operatorname{Tr} u_2 = 0$ on $\partial \Omega_2$, so $\operatorname{Tr} u_2 = 1$ on γ_1 and $\operatorname{Tr} u_1 = 1$ on γ_2 . This implies that $\operatorname{Tr} u_1 = \mathbb{1}_{\gamma_2}$ on $\gamma_1 \cup \gamma_2$, but $\mathbb{1}_{\gamma_2} \notin H^{\frac{1}{2}}(\gamma_1 \cup \gamma_2)$ as

$$\int_{(\gamma_1 \cup \gamma_2)} \int_{(\gamma_1 \cup \gamma_2)} \frac{|\mathbb{1}_{\gamma_2}(x) - \mathbb{1}_{\gamma_2}(y)|^2}{|x - y|} dx dy = \infty,$$

thus yields a contradiction.

Now we proceed to the density argument. Note that for each $u \in Y = Y_1 + Y_2$, for $\varepsilon > 0$, there exists $\varphi_i \in Z_i$ such that

$$||u - \varphi_1 - \varphi_2||_{H^1} < \varepsilon.$$

Define $Z:=\{\varphi\in C^\infty(\Omega)\colon \varphi=0 \text{ near the problematic point}\}$, then $Z=Z_1+Z_2$. It suffices to show that for each $u\in C^\infty(\Omega)$, for all $\varepsilon>0$, there exists $\varphi\in Z$ such that $\|u-\varphi\|_{H^1}<\varepsilon$. Assume that z is the problematic point, and consider the function $\varphi_\varepsilon\colon\Omega\to\mathbb{C}$ defined as

$$\varphi_{\varepsilon}(x,y) = \begin{cases} \left(\frac{|(x,y)-z|}{\varepsilon}\right)^{\varepsilon}, \text{ for } r = |(x,y)-z| \in (0,\varepsilon), \\ 1, \text{ otherwise.} \end{cases}$$

For each $u \in C^{\infty}(\Omega)$, we have $u_{\varepsilon} := u \cdot \varphi_{\varepsilon} \in \tilde{Z} := \{ \varphi \in C^{1}(\Omega), \varphi = 0 \text{ near the problematic point} \}$. Since Z is dense in \tilde{Z} , it suffices to show that $\|u - u_{\varepsilon}\|_{H^{1}} \to 0$ as $\varepsilon \to \infty$. Note that

$$||u - u_{\varepsilon}||_{L^2} \to 0 \text{ as } \varepsilon \to 0,$$

and

$$\| \nabla u - \nabla u_{\varepsilon} \|_{L^{2}} = \| \nabla u (1 - \varphi_{\varepsilon}) - u \nabla \varphi_{\varepsilon} \|_{L^{2}}$$

$$\leq C(\|1 - \varphi_{\varepsilon}\|_{L^{2}} + \| \nabla \varphi_{\varepsilon} \|_{L^{2}})$$

4 AILI SHAO

for some positive constant C. It is obvious that $||1 - \varphi_{\varepsilon}||_{L^2} \to 0$ as $\varepsilon \to 0$. Also,

$$\| \nabla \varphi_{\varepsilon}(x,y) \|_{L^{2}} = \| \nabla \varphi_{\varepsilon}(r) \|_{L^{2}}$$

$$= \| \left(\frac{r}{\varepsilon} \right)^{\varepsilon-1} (\cos \theta, \sin \theta) \|_{L^{2}}$$

$$= \left(\int_{0}^{\varepsilon} \int_{0}^{2\pi} \left(\frac{r}{\varepsilon} \right)^{2\varepsilon-2} r dr d\theta \right)^{\frac{1}{2}}$$

$$= \sqrt{2\pi} \left(\int_{0}^{\varepsilon} \left(\frac{r}{\varepsilon} \right)^{2\varepsilon-2} r dr \right)^{\frac{1}{2}}$$

$$= \sqrt{2\pi} \sqrt{\frac{\varepsilon}{2}}$$

$$= \sqrt{\pi\varepsilon}$$

tends to 0 as $\varepsilon \to 0$. Thus, $\|u - u_{\varepsilon}\|_{H^1} = \|u - u_{\varepsilon}\|_{L^2} + \|\nabla u - \nabla u_{\varepsilon}\|_{L^2} \to 0$ as $\varepsilon \to 0$.

Remark 2. In this case, $M_1^{\perp} + M_2^{\perp}$ is not closed, then for each $(r_n) \in c_0$, $r_n \in \mathbb{R}^+$, for all $x \in X$, $||T^n x - P_M x|| = ||T^n x|| \neq O(r_n)$. This implies that the convergence rate is not exponetially fast. (Proof is given in the dichotomy results).