

NASA Contractor Report 159174

NASA-CR-159174 1980 0011820

Howard Comment

TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH-TO-GEOSYNCHRONOUS ORBIT TRANSPORTATION SYSTEMS

VOLUME III: APPENDICES

Vincent A. Caluori, Robert T. Conrad, and James C. Jenkins

BOEING AEROSPACE COMPANY Seattle, Washington 98124

NASA Contract NAS1-15301 March 1980

NASA

National Aeronautics and Space Administration

Langley Research Center Hampton, Virginia 23665

CONTENTS

SUPPORTING DATA	APPENDIX
ENGINE DATA	. A
WORK BREAKDOWN STRUCTURE	. В
WEIGHT ESTIMATING METHODOLOGY - WINGED LAUNCH VEHICLES	. C
WEIGHT EVALUATION AND COMPARISON OF DEDICATED AND INTEGRATED $^{0}_{2}/^{1}_{2}$ SUBSYSTEMS	. D
CONVERSION FACTORS	E

N 80-20303#

APPENDIX A

ENGINE DATA

ù

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	A-7
2.0	MODE I LOX/CH ₄ ENGINE	A-8
3.0	LOX/CH ₄ EXPANDER BLEED CYCLE ENGINE	A-29
	Weight and Envelope Data	A-29
4.0	ADVANCED TECHNOLOGY FORECAST	A-40
	4.1 Dual Expander Engine Performance Data	A-40 A-40
	4.1.2 LOX/CH ₄ and LH ₂	A-54 A-54
5.0	ENGINE CONSULTING DATA	A-6 3
	5.1 Plug Cluster Engine	A-63
	5.2 70/30 Dual Expander Engine	A-63

LIST OF FIGURES

No.	<u>Title</u>	Page
2-1	Mode I fuel cooled engine cycle schematic	A-9
2-2	Mode I hydrogen cooled, expander bleed cycle schematic	A-10
2-3	Mode I LOX/CH ₄ engine weight parametrics	A-14
2-4	Mode I LOX/CH $_{\mu}$ engine weight parametrics	A-15
2-5	Mode I LOX/CH ₄ engine weight parametrics	A-16
2-7	Mode I LOX/CH ₄ engine length vs sea-level thrust	A-17
2-8	Mode I LOX/CH ₄ engine length vs sea-level thrust	A-18
2-9	Mode I LOX/CH $_{\mu}$ engine length vs sea-level thrust	A-19
2-10	Mode I LOX/CH ₄ engine diameter thrust	A-20
2-11	Mode I LOX/CH ₄ engine diameter thrust	A-21
2-12	Mode I LOX/CH ₄ engine diameter thrust	A-22
2-13	Mode I LOX/CH ₄ engine diameter thrust	A-23
2-14	LO ₂ /CH ₄ delivered engine performance	A-24
2-15	LO ₂ /CH ₄ staged combustion delivered performance	
	vs area ratio (AE/AT)	A-25
2-16	LO ₂ /CH ₄ Expander bleed delivered performance	
	vs area ratio	A-26
3-1	Mode I LOX/CH ₄ engine weight parametrics, expander	
	bleed cycle	A-30
3-2	Mode I LOX/CH ₄ engine weight parametrics, expander	
	bleed cycle	A-31
33	Mode I LOX/CH $_4$ engine length vs sea-level thrust, expander	
	bleed cycle	A-32
3-4	Mode I LOX/CH ₄ engine length vs sea-level thrust, expander	
	bleed cycle	A-33
3-5	Mode I LOX/CH ₄ engine length vs sea-level thrust, expander	
	bleed cycle	A-34
3-6	Mode I LOX/CH ₄ engine diameter parametrics, expander	
	bleed cycle	A-35
3-7	Mode I LOX/CH $_{\mu}$ engine diameter parametrics, expander	
	bleed cycle	A-36
3-8	Mode I LOX/CH ₄ engine diameter parametrics, expander	
	bleed cycle	A-37

LIST OF FIGURES (Continued)

No.	<u>Title</u>	Page
3-9	Mode I LOX/CH ₄ engine diameter parametrics, expander	
	bleed cycle	A-38
3-10	Mode I LOX/CH ₄ engine thrust/weight optimization, expander	
	bleed cycle	A-39
4-1	Tripropellant Dual-Expander Engine	A-42
4-2	Dual-Expander Tripropellant Engine Envelope Parametrics	A-49
4-3	Dual-Expander Tripropellant Engine Weight Parametrics	A-50
4-4	Dual-Expander Engine Weight Parametrics - 60% LOX/CH _u -	
	40% LOX/LH ₂	A-58
4-5	Dual-Expander Engine Envelope Parametrics - 60% LOX/CH ₁₁ -	
	40% LOX/LH ₂	A-59
4-6	ITA is a Flightweight High Technology Thruster	A-60
4-7	Integrated Thruster Assembly (ITA)	A-60
5-1	Dual expander engine weight parametrics	A-66
5-2	Dual expander envelope parametrics	A-67
		•
	LIST OF TABLES	
.∳. ↑ -		
No.	<u>Title</u>	Page
2-1	LOX/CH ₄ engine weight definition	A-11
2-2	LOX/CH ₄ baseline engine weight statement staged combustion	****
	cycle	A-12
2-3	Mode I LOX/CH _u hydrogen cooled, expander bleed cycle engine	
	weight statement	A-13
24	LOX/CH ₄ Staged combusion performance summary	A-27
2-5	LOX/CH _u Expander bleed performance summary	A-27
2-6	LOX/CH _u engine normal growth projections	A-28
4-1	Design Point Thrust Split 75/25 Tripropellant Dual-Expander	
	Engine Data Summary	A-43
4-2	Design Point Thrust Split 65/35 Tripropellant Dual-Expander	
	Engine Data Summary	A-44
		A #
		A-5

LIST OF TABLES (Continued)

<u>No</u> .	<u>Title</u>	Page
4-3	Design Point Thrust Split 60/40 Tripropellant Dual-Expander	
	Engine Data Summary	A-45
4-4	Design Point Thrust Split 50/50 Tripropellant Dual-Expander	
	Engine Data Summary	A-46
4-5	Design Point Thrust Split 30/70 Tripropellant Dual-Expander	
	Engine Data Summary	A-47
4-6	Dual Expander Engine Preliminary	A-48
4-7	Tripropellant Dual-Expander Engine Preliminary Operating	
·	Specifications - Design Point Thrust Split: 60% LOX/RP-1,	
	40% LOX/LH ₂	A-51
4-8	Dual-Expander Engine, Preliminary Pressure Schedule 60%	
	LOX/RP-1 and 40% LOX/LH ₂ Thrust Split	A-55
4-9	Tripropellant DualExpander Engine Preliminary Operating	
	Specifications - Design Point Thrust Split: 60% LOX/CH _h ,	
	40% LOX/LH ₂	A-56
4-10	Estimation of LO ₂ /LH ₂ + CH ₄ Dual Expander Staged Combustion	
	Engine Components Weights	A-57
4-11	ITA Design Summary	A-61
4-12	Plug Cluster Engine Data	A-62
5-1	Plug Cluster Engine Data Summary	A-64
5-2	Tripropellant Dual-Expander Engine Preliminary Operating	
	Specifications Design Point Thrust Split: 70% LOX/CH _{μ} ,	
	30% LOX/LH ₂	A-65

1.0 INTRODUCTION

This appendix provides detail technical engine data for the SSTO, HLLV, and POTV vehicles. These data are the results of Aerojet Liquid Rocket Company subcontract N-500601-9109 to prime contract NAS1-15301. Engine data is organized by the following sections.

- Section 2.0 Mode I LOX/Methane Engine Parametric Data

 (Sea-Level thrust 1.8 x 10⁶N to 4 x 10⁶N (400,000 to 900,000 lb)

 Chamber pressure - 13,800 to 34,500 kPa (2,000 to 5,000 psia)

 Nozzle area ratio 20:1 to 60:1
- Section 3.0 LOX/Methane Engine Parametric Data (Sea-Level thrust 4.5 x 10⁶ N to 11.1 x 10⁶ N (1,000,000 to 2,500,000 lb)

 Chamber pressure 13,800 to 34,500 kPa (2,000 to 5,000 psia)

 Nozzle area ratio 40:1 to 60:1
- Advanced Technology Forecast

 (1. Dual Expander engine parametric data; 2. Integrated Thruster Assembly Performance Data; 3. Plug Cluster Engine performance data; and 4. Propulsion Growth projections)
- Section 5.0 Engine Consulting Data
 (1. PCE, 40,000 lb thrust; 2. LOX/CH₄ 70:30: LOX/LH₂ Dual Expander Engine; and 3. Throttled 70:30 Dual Expander Engine)
- Section 6.0 References

2.0 MODE I LOX/CH₄ ENGINE

This technical brief presents the parametric performance, weight and envelope data for the LOX/CH₄, fuel cooled, staged combustion cycle and the hydrogen cooled, expander bleed cycle engine concepts.

2.1 PARAMETRIC PERFORMANCE, WEIGHT AND ENVELOP DATA

The Mode I LOX/CH $_4$ engines are defined by the schematics shown on figures 2-1 and 2-2. For these engine concepts, engine weight and envelope data were established for the following variables and ranges:

Sea-Level Thrust $-1.8 \times 10^6 \text{N}$ to $4 \times 10^6 \text{N}$ (400,000 to 900,000 lbf)

Chamber Pressure - 13,800 to 34,500 kPa (2,000 to 5,000 psia)

Nozzle Area Ratio - 20:1 to 60:1

A fixed 90% bell nozzle was assumed.

The elements of engine weight included in the parametric analysis are defined on table 2-1. Those items not included in the weight data are also listed. LOX/CH_{μ} weight statements are given on tables 2-2 and 2-3.

The engine weight data is presented on figures 2-3 through 2-5. The engine length and diameter parametrics are presented on figures 2-6 through 2-13. The engine performance summaries are given on tables 2-4 and 2-5, and performance parametrics are given on figures 2-11 through 2-16.

Normal growth projections are given on table 2-6.

Figure 2-1. Mode I Fuel Cooled Engine Cycle Schematic

Figure 2-2. Mode I Hydrogen Cooled, Expander Bleed Cycle Schematic

Table 2-1. LOX/CH₄ Engine Weight Definition

For purposes of the parametric weight study, the engine is assumed to be composed of the following components:

- o Regeneratively Cooled Combustion Chamber
- o Regeneratively Cooled Thrust Chamber Fixed Nozzle
- o Main Injector
- o Main Turbopumps
- o Boost Pumps
- o Preburners (Not Used For Expander Bleed Cycle)
- o Propellant Valves and Actuation
- o Gimbal
- o Hot Gas Manifold (Not Used For Expander Bleed Cycle)
- o Propellant Lines
- o Ignition System
- o Miscellaneous (Electrical Harness, Instrumentation, Brackets, Auxiliary Lines and Controls)

Engine dry weights do not include:

- Gimbal Actuators and Actuation System
- o Engine Controller
- o Pre-Valves
- o Tank Pressurant Heat Exchangers and Associated Equipment
- o Contingency (A Total Contingency is Normally Included in the Vehicle Weight Statement)

Table 2-2. LOX/CH₄ Baseline Engine Weight Statement Staged Combustion Cycle

F_{SL} = 607,000 lb. P_C = 4,000 psia c = 40

Component	Weight, Lb.
Gimba1	209
Main Injector	597
Main Chamber	281
Nozzle	550
Fuel Preburner	135
0x. Preburner	132
Ox. Valves and Actuation	442
Fuel Valves and Actuation	148
Ox. Boost Pump	159
Fuel Boost Pump	174
Main Ox. Pump	761
Main Fuel Pump	528
Hot Gas Manifold	170
Low Pressure Lines	195
High Pressure Lines	259
Ignition System	60
Miscellaneous	442
Total	5,242
Sea-Level Thrust/Weight	116

Table 2-3. Mode 1 LOX/CH₄ Hydroben Hydrogen Cooled, Expander Bleed Cycle Engine Weight Statement

 $F_{SL} = 607,000 \text{ lb.}$ $P_{C} = 4,250$ c = 40

Component	Weight, Lb
Gimbal	211
Main Injector	769
Copper Chamber and Nozzle (ϵ = 25)	351
Tube Bundle Nozzle (ε = 25 to 40)	193
Fuel Valves and Actuation	150
Oxidizer Valves and Actuation	166
Low Speed LOX TPA	306
Low Speed CH ₄ TPA	81
Low Speed LH ₂ TPA	17
High Speed LOX TPA	599
High Speed CH ₄ TPA	281
High Speed LH ₂ TPA	125
Low Pressure Lines	189
High Pressure Lines	238
Ignition System	60
Miscellaneous	442
Total	4,178
Sea-Level Thrust/Weight	145

Figure 2-3. Mode I LOX/CH₄ Engine Weight Parametrics

Figure 2-4. Mode I LOX/CH₄ Engine Weight Parametrics

Figure 2-5. Mode I LOX/CH₄ Engine Weight Parametrics

Figure 2-7. Mode I LOX/CH₄ Engine Length vs Sea-Level Thrust

Figure 2-8. Mode I LOX/CH₄ Engine Length vs Sea-Level Thrust

Figure 2-9. Mode I LOX/CH₄ Engine Length vs Sea-Level Thrust

Figure 2-10. Mode I LOX/CH₄ Engine Diameter Parametrics

Figure 2-11. Mode I LOX/CH₄ Engine Diameter Parametrics

Figure 2-12. Mode I LOX/CH4 Engine Diameter Parametrics

Figure 2-13. Mode I LOX/CH₄ Engine Diameter Parametrics

Figure 2-15. LO₂/CH₄ Staged Combustion Delivered Performance vs Area Ratio (AE/AT)

Figure 2-16. LOX/CH₄ Expander Bleed Delivered Performance vs Area Ratio

Table 2-4. LO₂/CH₄ Staged Combustion Performance Summary

(MR = 3.5, ε = 40:1, r_t = 5.190 in, ε_c = 2.5, 80% Bell Nozzle)

Pc (psia)	2000	3000	4000	5000
ODE Vacuum Isp (sec)	370.2	371.0	371.5	371.8
ΔIsp _{KI}	1.5	1.2	1.1	1.0
ODK Vacuum Isp (sec)	368.7	369.8	370.4	370.8
ΔIsp _{ERL} (1.5% ODK)	5.5	5.5	5.6	5.6
ΔIsp _{DL} (.65% ODK)	2.4	2.4	2.4	2.4
ΔIsp _{BL}	2.0	2.0	2.0	2.0
Delivered Vacuum Isp (sec)	358.8	359.9	360.4	360.8
Sea-Level Isp Correction	54.3	36.3	27.3	21.9
Delivered Sea-Level Isp (sec) `	304.5	323.6	333.1	338 .9

Table 2-5. LO₂/CH₄ Expander Bleed Performance Summary

(MR = 3.5, ε = 40:1, 80% Bell Nozzle)

Pc (psia)	2000	3000	4000	5000
ODE Vacuum Isp (sec)	370.2	371.0	371.5	371.8
ΔIsp _{KL}	1.5	1.2	1.1	1.0
ODK Vacuum Isp (sec)	368.7	369.8	370.4	370.8
ΔIsp _{ERL} (1.5% ODK)	5.5	5.5	5.6	5.6
ΔIsp _{DL} (.65% ODK)	2.4	2.4	2.4	2.4
ΔIsp _{BL}	2.0	2.0	2.0	2.0
ΔIsp _{HL}	1.2	1.2	1.2	1.2
ΔIsčť	0.9	2.0	3.0	5.0
Delivered Vacuum Isp (sec)	356.7	356.7	357.2	354.6
Sea-Level Isp Correction	54.3	36.3	27.3	21.9
Delivered Sea-Level Isp (sec)	302.4	320.4	329.9	332.7

^{*} Heat Loss to Hydrogen Coolant

^{**} Coolant Bleed Loss

Table 2-6. LOX/CH4 Engine Normal Growth Projections

		Present Value (1978)	<u>Change</u>	Projected Value (1995)
1.	Increase vacuum specific impulse (sec)	357.3	8.7 +1	366.0 ⁺¹ ₋₂
2.	Increase sea level specific impulse (sec)	332.1	8.1 +1	340.2 ⁺¹
3.	Decrease engine weight (1b) through advanced structures	4178	836 ⁺¹⁰⁰ -210	3342 ⁺²¹⁰ -100
4.	Increase engine thrust/ weight ratio at sea level (lb _f /lb _m)	145	41 ⁺⁶ -12	186 +6 -12
5.	Reduce engine length (in)	132	50 ⁺¹⁰ ₋₂₀	82 ⁺²⁰ -10
6.	Reduce engine diameter (in)	85	15 ⁺² ₋₆	70 ⁺⁶ -2

3.0 LOX/ CH_4 EXPANDER BLEED CYCLE ENGINE

This section contains technical information on the parametric performance, weight and envelope data for the LOX/CH $_{L}$ expander bleed cycle engine concept.

3.1 EXPANDER BLEED CYCLE PARAMETRIC PERFORMANCE, WEIGHT AND ENVELOPE DATA

Engine weight and envelop data are established for the following variables and ranges:

Sea-Level Thrust $-4.5 \times 10^6 \text{N}$ to 11.1 x 10^6N (1,000,000 to 2,500,000 lb)

Chamber Pressure - 13,800 to 34,500 kPa (2,000 to 5,000 psia)

Nozzle Area Ratio - 40:1 and 60:1

The engine weight data are given in figures 3-1 and 3-2. Engine length and diameter parametrics are given in figures 3-3 through 3-8. For ready comparison of the engines, figures 3-9 and 3-10 show the trend in engine thrust-to-weight ratio as a function of chamber pressure and engine thrust level.

Figure 3-1. Mode I LOX/CH₄ Engine Weight Parametrics, Expander Bleed Cycle

Figure 3-2. Mode I LOX/CH4 Engine Weight Parametrics, Expander Bleed Cycle

Figure 3-3. Mode I LOX/CH₄ Engine Length vs Sea-Level Thrust, Expander Bleed Cycle

Figure 3-5. Mode I LOX/CH₄ Engine Length vs Sea-Level Thrust, Expander Bleed Cycle

Figure 3-6. Mode I LOX/CH4 Engine Diameter Parametrics, Expander Bleed Cycle

Figure 3-7. Mode I LOX/CH₄ Engine Diameter Parametrics, Expander Bleed Cycle

Figure 3-8. Mode I LOX/CH₄ Engine Diameter Parametrics, Expander Bleed Cycle

Figure 3-9. Mode I LOX/CH4 Engine Thrust/Weight Optimization, Expander Bleed Cycle

Figure 3-10. Mode I LOX/CH₄ Engine Thrust/Weight Optimization, Expander Bleed Cycle

4.0 ADVANCED TECHNOLOGY FORECAST

This section is the fourth report (see References 1, 2 and 3) submitted in partial fulfillment of the requirements of Contract N-500601-9109, and primarily concerns a propulsion system advanced technology forecast. Included in this section are: (1) Dual Expander (DE) engine parametrics for the thrust range of 600K to 2M-pounds and a thrust split of $60.40~(LOX/CH_4~:LOX/LH_2)$. ALRC IR&D generated parametric data for LOX/RP-1: LOX/LH₂ engines are also provided to indicate the effect of thrust split on the engine characteristics; (2) Integrated Thruster Assembly (ITA) performance and weight data and drawings; (3) Plug Cluster Engine (PCE) performance data; and (4) propulsion system growth projection and resource requirements for the SSME, a LOX/CH₄ engine, the DE, the Advanced Space Engine (ASE), the ITA, and the PCE.

4.1 DUAL EXPANDER ENGINE PARAMETRIC DATA

4.1.1 LOX/RP-1 and LH₂.

Preliminary design data generated on ALRC IR&D funding are presented for the advanced tripropellant dual-expander engine conceived by R. Beichel. One version of the engine cycle is shown schematically in Figure 4-1. The engine burns oxygen as the oxidizer and RP-1 and hydrogen as the fuels. Some LOX and all of the RP-1 are pumped to high pressure and delivered to a central thrust chamber as liquids where combustion occurs at a chamber pressure of 41,368 kPa (6000 psia). The rest of the LOX and the hydrogen combine in preburners. The gaseous combusion products, both fuel- and oxidizer rich, are delivered to an annular combustion chamber. The engine is ideally suited to mixed mode vehicle applications currently under study by NASA and include the single-stage-to-orbit (SSTO), the heavy lift launch vehicle (HLLV) and the orbiter transfer vehicle (OTV).

The engine performance, weight and envelope parametric data are presented in tables 4-1 through 4-6 and figures 4-2 and 4-3. A thrust chamber pressure of 41,368 kPa (6000 psia) was selected for LOX/RP-1 operation and 20,684 kPa (3000 psia) was selected for the LOX/LH₂ mode. Nozzle area ratios of 70:1 and 50:1 were selected for the LOX/LH₂ and LOX/LH₂ nozzles, respectively. These area ratios result in slight overexpansion at sea-level and high vacuum performance. Trade-off studies by vehicle contractors are required to define the optimum area ratios. It should be noted that for the purposes of the parametric data, all thrust splits were assumed to power balance in the "staged combustion" mode. Therefore, the delivered performance was assumed to be a constant % of the theoretical value.

Figure 4-1. Tripropellant Dual-Expander Engine

Table 4-1. Design Point Thrust Split 75/25 Tripropellant Dual-Expander Engine Data Summary

PROPELLANTS	LOX/RP-1	LOX/LH ₂	COMBINED LOX/RP-1 & LH ₂
Engine Sea-Level Thrust, 1b	456,000	152,000	608,000
Engine Vacuum Thrust, 1b	498,800	174,000	672,800
Mixture Ratio	2.9	7.0	3.4
Thrust Chamber Pressure, psia	6,000	3,000	
Nozzle Area Ratio	70:1	50:1	61.6:1
ODE I _s , Sea-Level, sec	340.6	395.9	
ODE I _s , Vacuum, sec	372.3	452.2	· •
I _s Efficiency, %	97	98	•
I _s , Sea-Level, Delivered, sec	330	387	342.6
I _s , Vacuum, Delivered, sec	361	443	379
Total Flow Rate, 1b/sec	1381.8	392.8	1774.6
Fuel Flow Rate, lb/sec	354.3	49.1	403.4
Oxidizer Flow Rate, lb/sec	1027.5	343.7	1371.2

LOX/LH2 OPERATION ONLY

Engine Vacuum Thrust	181,300
Mixture Ratio	7.0
Thrust Chamber Pressure, psia	3,000
Nozzle Area Ratio	147
ODE I _s , Vacuum, sec	471
I _s Efficiency, %	98
I _s Vacuum, Delivered, sec	461.6
Total Flow Rate, 1b/sec	392.8

Table 4-2. Design Point Thrust Split 65/35 Tripropellant Dual-Expander Engine Data Summary

PROPELLANTS	LOX/RP-1	LOX/LH ₂	COMBINED LOX/RP-1 & LH ₂
Engine Sea-Level Thrust, 1b	395,200	212,800	608,000
Engine Vacuum Thrust, 1b	432,300	243,600	675,900
Mixture Ratio	2.9	7.0	3.65
Thrust Chamber Pressure, psia	6,000	3,000	
Nozzle Area Ratio	70:1	50:1	59.3
ODE I _s , Sea-Level, sec	340.6	3 95.9	
ODE I _s , Vacuum, sec	372.3	452.2	- ·
I Efficiency, %	97	98	
I _s , Sea-Level, Delivered, sec	330	387	347.9
I _s , Vacuum, Delivered, sec	361	443	386.8
Total Flow Rate, lb/sec	1197.6	549.9	1747.5
Fuel Flow Rate, lb/sec	307.1	68.7	375.8
Oxidizer Flow Rate, 1b/sec	890.5	481.2	1371.7

LOX/LH2 OPERATION ONLY

Engine Vacuum Thrust	251,700
Mixture Ratio	7.0
Thrust Chamber Pressure, psia	3,000
Nozzle Area Ratio	110
ODE I _s , Vacuum, sec	467
I _s Efficiency, %	98
I _s Vacuum, Delivered, sec	457.7
Total Flow Rate, lb/sec	549.9

Table 4-3. Design Point Thrust Split 60/40 Tripropellant Dual-Expander Engine Data Summary

PF	ROPELLANTS	LOX/RP-1	LOX/LH ₂	COMBINED LOX/RP-1 & LH ₂
	Engine Sea-Level Thrust, 1b	364,800	243,200	608,000
	Engine Vacuum Thrust, 1b	399,100	278,400	677,500
	Mixture Ratio	2.9	7.0	3,79
	Thrust Chamber Pressure, psia	6,000	3,000	•
	Nozzle Area Ratio	70:1	50:1	58.2
	ODE I _s , Sea-Level, sec	340.6	395.9	
	ODE I _s , Vacuum, sec	372.3	452.2	**
	I _s Efficiency, %	97	98	***
	I _s , Sea-Level, Delivered, sec	330	387	350.7
	I, Vacuum, Delivered, sec	361	443	390.7
	Total Flow Rate, lb/sec	1105.5	628.4	1733.9
	Fuel Flow Rate, lb/sec	283.5	78.6	362.1
	Oxidizer Flow Rate, 1b/sec	822.0	549.8	1371.8

LOX/LH₂ OPERATION ONLY

Engine Vacuum Thrust	286,400
Mixture Ratio	7.0
Thrust Chamber Pressure, psia	3,000
Nozzle Area Ratio	99
ODE I _s , Vacuum, sec	465
I _s Efficiency, %	98
I _s Vacuum, Delivered, sec	455.7
Total Flow Rate, 1b/sec	628.4

Table 4-4. Design Point Thrust Split 50/50 Tripropellant Dual-Expander Engine Data Summary

PROPELLANTS	LOX/RP-1	LOX/LH ₂	COMBINED LOX/RP-1 & LH ₂
Engine Sea-Level Thrust, 1b	304,000	304,000	608,000
Engine Vacuum Thrust, 1b	332,500	348,000	680,500
Mixture Ratio	2.9	7.0	4.1
Thrust Chamber Pressure, psia	6,000	3,000	-
Nozzle Area Ratio	70:1	50:1	56.3
ODE I _s , Sea-Level, sec	340.6	395.9	-
ODE I _s , Vacuum, sec	372.3	452.2	-
I _s Efficiency, %	97	98	• • • • • • • • • • • • • • • • • • •
${ m I}_{ m S}$, Sea-Level, Delivered, sec	330	387	356.3
I _s , Vacuum, Delivered, sec	361	443	398.7
Total Flow Rate, lb/sec	921.1	785.5	1706.6
Fuel Flow Rate, lb/sec	236.2	98.2	334.4
Oxidizer Flow Rate, lb/sec	684.9	687.3	1372.2

LOX/LH2 OPERATION ONLY

Engine Vacuum Thrust	356,100	
Mixture Ratio	7.0	
Thrust Chamber Pressure, psia	3,000	
Nozzle Area Ratio	82.5	
ODE I _s , Vacuum, sec	462.5	
I _s Efficiency, %	98	
I _s Vacuum, Delivered, sec	453.3	
Total Flow Rate, 1b/sec	785.5	

Table 4-5. Design Point Thrust Split 30/70 Tripropellant Dual-Expander Engine Data Summary

PROPELLANTS	LOX/RP-1	LOX/LH ₂	COMBINED LOX/RP-1 & LH ₂	
Engine Sea-Level Thrust, 1b	182,400	425,600	608,000	
Engine Vacuum Thrust, lb	199,500	487,200	686,700	
Mixture Ratio	2.9	7.0	4.92	
Thrust Chamber Pressure, psia	6,000	3,000		
Nozzle Area Ratio	70:1	50:1	53.3	
ODE I _s , Sea-Level, sec	340.6	395.9		
ODE I _s , Vacuum, sec	372.3	452.2	•	
I _s Efficiency, %	97	98	· •	
I _s , Sea-Level, Delivered, sec	330	387	367.9	
I _s , Vacuum, Delivered, sec	361	443	415.6	
Total Flow Rate, lb/sec	552.7	1099.7	1652.4	
Fuel Flow Rate, lb/sec	141.7	137.5	279.2	
Oxidizer Flow Rate, 1b/sec	411.0	962.2	1373.2	

LOX/LH₂ OPERATION ONLY

Engine Vacuum Thrust	492,800
Mixture Ratio	7.0
Thrust Chamber Pressure, psia	3,000
Nozzle Area Ratio	63.9
ODE I _s , Vacuum, sec	457.2
I _s Efficiency, %	98
I _s Vacuum, Delivered, sec	448.1
Total Flow Rate, 1b/sec	1099.7

Table 4-6. Dual Expander Engine Preliminary Weights

	*			
	WEIGHT, LB	WEIGHT, LB	WEIGHT, LB	WEIGHT, LB
Seal Level Thrust Split, % LOX/RP-1/% LOX/LH ₂	75/25	65/35	50/50	30/70
COMPONENT				
Gimbal	218	219	222	225
Injector (LOX/RP-1)	496	430	331	198
Combustion Chamber (LOX/RP-1)	220	201	170	125
Injector and Combustion Chamber (LOX/LH2)	441	545	700	907
Nozzle	294	280	254	205
Preburners (3)	79	95	119	150
Fuel Valves and Actuation	161	166	174	184
Oxidizer Valves and Actuation	193	193	193	193
Two (2) Low Speed LOX TPA's	300	300	300	300
Low Speed RP-1 TPA	41	34	24	12
Low Speed LH ₂ TPA	27	42	69	108
Two (2) High Speed LOX TPA's	602	602	602	602
High Speed RP-1 TPA	159	131	92	46
High Speed LH2 TPA	250	393	637	1004
Low Pressure Lines	177	182	188	194
High Pressure Lines	283	306	358	454
Ignition System	100	100	100	100
Miscellaneous	442	442	442	442
TOTAL DRY WEIGHT	4483	4661	4975	5449
Estimated Engine Weight 1990 Technology*	3362	3496	3731	4087

^{*25%} Decrease

Figure 4-2. Dual-Expander Tripropellant Engine Envelope Parametrics

Figure 4-3. Dual-Expander Tripropellant Engine Weight Parametrics

Table 4-7. Tripropellant Dual-Expander Engine Preliminary Operating Specifications Design Point Thrust Split: 60% LOX/RP-1, 40% LOX/LH₂

ENGINE	LOX/RP-1	LOX/LH ₂	COMBINED LOX/RP-1 & LH ₂
Sea-Level Thrust, 1b.	364,800	243,200	608,000
Vacuum Thrust, 1b.	399,100	278,400	677,500
Sea-Level Specific Impulse, sec.	330	387	350.7
Vacuum Specific Impulse, sec.	361	443	390.7
Total Flow Rate, 1b/sec.	1105.5	628.4	1733.9
Mixture Ratio	2.9	7.0	3.79
Oxidizer Flow Rate, 1b/sec.	822.0	549.8	1371.8
Fuel Flow Rate, 1b/sec.	283.5	78.6	362.1
THRUST CHAMBER			
Sea-Level Thrust, 1b.	364,800	243,200	608,000
Vacuum Thrust, 1b.	399,100	278,400	677,500
Sea-Level Specific Impulse, sec.	330	387	350.7
Vacuum Specific Impulse, sec.	361	443	390.7
Chamber Pressure, psia	6,000	3,000	**
Nozzle Area Ratio	70	50	58.2
Mixture Ratio	2.9	7.0	3.79
Throat Area, in. ²	33.3	47.9	81.2
Nozzle Exit Area, in. ²	2,334	2,395	4,729
Injector Oxygen Flow Rate, lb/sec.	822.0	60.	822.0
Injector RP-1 Flow Rate, 1b/sec.	283.5		283.5
Injector OxRich Gas Flow Rate, 1b/sec.		500.17	500.17
Injector Fuel-Rich Gas Flow Rate, 1b/sec.	· •	128.23	128.23

Table 4-7. (Continued)

	LOX/LH ₂	LOX/LH2
PREBURNERS (LOX & LH ₂ DRIVE FLOWS)	OX,-RICH	FUEL-RICH
Chamber Pressure, psia	4,572	6,026
Combustion Temperature, °R	1,660	1,850
Hydrogen Inlet Temperature, °R	540	540
Oxygen Inlet Temperature, °R	400	400
Mixture Ratio	110	0.73
Oxidizer Flow Rate, lb/sec.	495.66	27.93
Fuel Flow Rate, lb/sec.	4.51	38.27
TURBINES	LOX PUMP	LH ₂ PUMP
Inlet Pressure, psia	4,572	6,026
Inlet Temperature, °R	1,660	1,850
Total Gas Flow Rate, lb/sec.	500.17	66.20
Gas Properties		
C _p , Specific Heat @ Constant Pressure, Btu/1b.°R	0.277	2.17
γ , Ratio of Specific Heats	1.312	1.358
Shaft Horsepower	20,450	45,950
Efficiency, %	80	81
Speed, rpm	21,900	55,500
Pressure Ratio (Total to Static)	1.411	1.86
MAIN PUMPS	LOX	LH ₂
Total Outlet Flow Rate, 1b/sec.	549.8	78.6
Volumetric Flow Rate, gpm	3,480	8,020
NPSH, ft.	294	1,700
Suction Specific Speed, $(rpm) (gpm)^{1/2}/(ft.)^{3/4}$	18,200	18,800
Discharge Pressure, psia	8,200	8,000
Number of Stages	2	3
Specific Speec, $(rpm) (gpm)^{1/2}/(ft.)^{3/4}$	1,500	1,000
Total Head Rise, ft.	16,360	254,340
Efficiency, %	82	80

Table 4-7. (Continued)

PREBURNER (LOX & LH ₂ DRIVE FLOW)		
Chamber Pressure, psia	6,026	
Combustion Temperature, °R	1,850	
Hydrogen Inlet Temperature, °R	540	1.
Oxygen Inlet Temperature, °R	400	
Mixture Ratio	0.73	
LOX Flow Rate, 1b/sec.	26.21	
Hydrogen Flow Rate, 1b/sec.	35.82	
Total Flow Rate, 1b/sec.	62.03	
TURBINES	LOX PUMP	RP-1 PUMP
Inlet Pressure, psia	6,026	6,026
Inlet Temperature, °R	1,850	1,850
Total Gas Flow Rate, lb/sec.	41.58	20.45
Gas Properties		
C _D , Specific Heat @ Constant Pressure, Btu/lb. °R	2.17	2.17
γ, Ratio of Specific Heats	1.358	1.358
Shaft Horsepower	25,800	12,690
Efficiency, %	72	72
Speed, rpm	15,750	29,400
Pressure Ratio (Total to Static)	1.86	1.86
MAIN PUMPS		
Total Outlet Flow Rate, 1b/sec.	822.0	283.5
Volumetric Flow Rate, gpm	5,200	2,550
NPSH, ft.	294	364
Suction Specific Speed, $(rpm) (gpm)^{1/2}/(ft.)^{3/4}$	16,000	17,800
Discharge Pressure, psia	6,950	6,950
Number of Stages	2	2
Specific Speed, $(rpm) (gpm)^{1/2}/(ft.)^{3/4}$	1,500	1,500
Total Head Rise, ft.	13,800	19,700
Efficiency, %	82	82

Preliminary vehicle study results appear to favor an engine with a 60% LOX/RP-1 and 40% LOX/LH₂ thrust split. Preliminary performance data for this engine is shown in table 4-3. For a LOX/LH₂ system chamber pressure of 20,684 kPa (3000 psia) and the cycle shown in figure 4-1, pump discharge pressures of 56,537 kPa (8200 psia) and 55,158 kPa (8000 psia) are required for the LOX and LH₂ pumps respectively. Preliminary specifications for this design point are shown in table 4-7 and a pressure schedule is presented in table 4-8. This oxidizer-rich preburner side on this cycle has excess pressure drop as noted by the high control ΔP . This suggests that the cycle should be modified to make use of the excess power available.

4.1.2 LOX/CH₄ and LH₂.

Preliminary operating specifications for a LOX/methane and LOX/LH₂ dual expander engine are given in table 4-9. Weight and envelope parametric data for this engine are presented in table 4-10 and figures 4-4 and 4-5.

4.2 INTEGRATED THRUSTER ASSEMBLY DATA

The Integrated Thruster Assembly (ITA), figures 4-6 and 4-7 is a flightweight GH₂/GO₂ ACPS engine employing a spark initiated igniter. The nominal operating conditions are: 672 N (1500 lbf) thrust, 207 N/cm² (300 psia) chamber pressure, and a 4.0 mixture ratio, as given in table 4-11. The thruster has demonstrated a steady state specific impulse of 435 sec, and a 27 kg-sec bit impulse performance of 368 sec. The ITA consists of a premix triplet injector, a regeneratively cooled chamber, and a dump-film cooled throat and skirt; an ox rich torch type igniter and integral exciter/spark plug; two igniter valves, and two main propellant valves. The ITA S/N 002 was fired 42,266 times over 4200 full thermal cycles. A similar unit achieved 51,000 cycles in life testing at NASA/LeRC.

The results of the ITA development program are as follows: (1) the ITA design is satisfactory, simple to operate, and has adequate life, (2) the igniter is very reliable, (3) chamber coolant part to part hydraulic characteristics have no significant variations, (4) 51,000 pulses were demonstrated on a single unit, (5) the main propellant valves were unsatisfactory, (6) some fabrication problems were encountered, (7) operation of the ITA is excellent, (8) the predicted thermal cycle life of 65,000 cycles agrees with measured temperature data, (9) fuel lead starts can result in damage, thus .01 to .02 sec oxidizer leads are used, (10) fuel lag shutdowns are preferred, (11) pulse performance is optimized with a .006 oxidizer lead, (12) the specified minimum impulse bit (MIB) performance of 222 N-sec (50 lbf-sec) was not achieved, the best was 267 N-sec (60 lbf-sec), (13) the

Table 4-8. Dual-Expander Engine, Preliminary Pressure Schedule (PSI) 60% LOX/RP-1 and 40% LOX/LH₂ Thrust Split

	Component		/RP-1 Chamber	LOX	-Rich ^{/LH} 2 nerator	LOX	Rich ^{/LH} 2 urner	LOX,	-Rich ^{/LH} 2 <u>urner</u>
PRESSURE, psia	Propellant		RP-1	LOX		LOX		LOX	
Main Pump Discharge	Troperranc	6,950	6,950	8,200	LH ₂ 8,000	8,200	LH ₂ 8,000	8,200	LH ₂ 8,000
Main Shutoff Valve Inlet		6,950	6,950	8,200			-		
ΔP Shutoff Valve			-	•	8,000	8,200	8,000	8,200	8,000
		70	70	82	80	82	80	82	80
Valve Outlet		6,880	6,880	8,118	7,920	8,118	7,920	8,118	7,920
ΔP Line		40	40	40	40	40	40	40	40
Coolant Jacket Inlet		-	-	8,078	7,880	8,078	7,880	8,078	7,880
ΔP Coolant Jacket		_		952	1,070	952	1,070	952	1,070
Coolant Jacket Outlet		-	-	7,126	6,810	7,126	6,810	7,126	6,810
ΔP Line		-	-	40	40	40	40	40	40
Preburner (G.G.) Control Inlet		-	-	7,086	6,770	7,086	6,770	7,086	6,770
ΔP Control		_	-	337	322	1,965	1,878	337	322
Preburner (G.G.) Inlet		-	_	6,749	6,448	5,121	4,892	6,749	6,448
ΔP Preburner		-	-	723	422	549	320	723	422
Turbine Inlet		-	-	6,0	026	4,5	572	6,0	026
ΔP Turbine (Total to Static)		_		2,	786	1,:	332	2,	786
Turbine Exit Pressure Static			-	3,	240	3,2	240	3,	240
Main Injector Inlet, Total		6,840	6,840	3,	240	3,2	240	3,	240
ΔP Injector		840	840	7	240		240		240
Chamber Pressure, Plenum		6,0	000	3,	000	3,0	000	3,	000

Table 4-9. Tripropellant Dual-Expander Engine Preliminary Operating Specifications Design Point Thrust Split: 60% LOX/CH₄, 40% LOX/LH₂

	STREAM TUBES		MODE I	W00=	
ENGINE	LOX/CH ₄	LOX/LH ₂	COMBINED LOX/CH ₄ & LH ₂	MODE II LOX/LH ₂	
Sea-Level Thrust, 1b.	364,800	243,200	608,000	•	
Vacuum Thrust, 1b	398,900	278,400	677,300	286,500	
Sea-Level Specific Impulse, sec.	339.1	387	356.8	•	
Vacuum Specific Impulse, sec.	370.8	443	397.4	456	
Total Flow Rate, lb/sec.	1075.79	628.4	1704.2	628.4	
Mixture Ratio	3.6	7.0	4.45	7.0	
Oxidizer Flow Rate, 1b/sec.	841.92	549.8	1391.7	549.8	
Fuel Flow Rate, 1b/sec.	233.87	78.6	312.5	78.6	
THRUST CHAMBER					
Sea-Level Thrust, 1b.	364,800	243,200	608,000	• -	
Vacuum Thrust, 1b.	398,900	278,400	677,300	286,500	
Sea-Level Specific Impulse, sec.	339.1	387	356.8	* * -	
Vacuum Specific Impulse, sec.	370.8	443	397.4	456	
Chamber Pressure, psia	6,000	3,000	-	3,000	
Nozzle Area Ratio	70	50	58.3	100	
Mixture Ratio	3.6	7.0	4.45	7.0	
Throat Area, in. ²	34.01	47.9	81.9	47.9	
Nozzle Exit Area, in. ²	2,381	2,395	4,776	4,776	
Injector Oxygen Flow Rate, lb/sec.	841.92	-	841.92	* · · ·	
Injector CH ₄ Flow Rate, 1b/sec.	233.87	7	233.87		
Injector OxRich Gas Flow Rate, 1b/s	sec -	500.17	500.17	500.17	
Injector Fuel-Rich Gas Flow Rate, 1b,	/sec -	128.23	128.23	128.23	

Table 4-10. Estimation of LO $_2$ /LH $_2$ + CH $_4$ Dual Expander Stage Combustion Engine Component Weights

COMPONENT	60/40 (LOX/CH ₄)/(LOX/CH ₂) STAGED COMBUSTION
Gimbal	220
Injector (LOX/HDF)	397
Combustion Chamber (LOX/HDF)	192
Injector & Combustion Chamber (LOX/LH ₂)	58 9
Nozzle	274
Preburners (3)	103
Fuel Valves and Actuation	180
Oxidizer Valves & Actuation	194
Two Low Speed LOX TPA's	305
Low Speed HDF TPA	37
Low Speed LH ₂ TPA	5 2
Two High Speed LOX TPA's	611
High Speed HDF TPA	190
High Speed LH ₂ TPA	475
Low Pressure Lines	198
High Pressure Lines	346
Ignition System	100
Miscellaneous	442
Total Dry Weight	4905
Vacuum Thrust/Weight	138
Vacuum Thrust (1b)	677,300
Sea Level Thrust/Weight	124
Sea Level Thrust (1b)	608,000
Chamber Pressure (psia)	6000/3000
Mixture Ratio	4.45
LO ₂ Flow Rate (lb/s)	1391.7
CH ₄ Flow Rate (lb/s)	233.9
LH ₂ Flow Rate (1b/s)	78.6
Length (in)	110.5
Exit Dia. (in)	78.0

Figure 4-4. Dual Expander Engine Weight Parametrics -60% LOX/CH₄ -40% LOX/LH₂

Figure 4-5. Dual Expander Engine Envelope Parametrics -60% LOX/CH $_4$ -40% LOX/LH $_2$

Figure 4-6. ITA is a Flightweight High Technology Thruster

Figure 4-7. Integrated Thruster Assembly (ITA)

Table 4-11. ITA Design Summary

```
Design Characteristics
      Thrust
                                                      6672 N (15001b<sub>c</sub>)
                                                      207 \text{ N/cm}^2 (300^{\text{T}} \text{psia})
     Chamber Pressure
     Mixture Ratio
                                                      4.0
     Pressure at Inlet to Valves
                                                      276 \text{ N/cm}^2 (400 \text{ psia})
     Fuel Flow Rate
          Regen and Injector
                                                      247 g/sec (.545 lb/sec)
          Fuel Film Coolant
                                                      65.8 g/sec (.145 lb/sec)
          Total
                                                      313 g/sec (.69 lb/sec)
     Oxidizer Flow Rate
                                                      1252 g/sec (2.76 lb/sec)
                                                      130°C (250°R)
     Fuel Temperature
                                                      208°C (376°R)
     Oxidizer Temperature
     Igniter Fuel Flow Rate
          Core
                                                      .726 g/sec (.0016 lb/sec)
          Coolant
                                                      4.26 g/sec (.0094 lb/sec)
                                                      4.99 g/sec (.011 lb/sec)
          Total
     Igniter Oxidizer Flow Rate
                                                      32.66 g/sec (.072 lb/sec)
     Igniter Core MR
                                                      45
     Igniter Overall MR
                                                      6.55
Geometry
     Throat Diameter
                                                      4.88 cm (1.92 in.)
     Exit Diameter
                                                      30.73 cm (12.1 in.)
                                                      3.3
     Chamber Contraction Ratio
                                                      40:1
     Nozzle Exit Area Ratio
     Chamber L*
                                                      43.18 cm (17 in.)
     Overall Length
                                                      74.68 cm (29.4 in.)
     Overall Length (less exciter/spark plug)
                                                      61.37 cm (24.16 in.)
     Fwd End Clearance Diameter
                                                      33.78 cm (13.3 in.)
                                                      74.68 \times 36.32 \text{ cm} (29.4 \times 14.3 \text{ in. Dia})
     Dimension of Cylinder Enclosing ITA
Weights (Design)
     ITA (incl. Main Propellant Valves)
                                                      14.016 kg (30.9 1b)
          Main Propellant Valves
                                                      7.257 kg (16.0 lb)
          ITA (less valves)
                                                      6.758 kg (14.9 1b)
            Thrust Chamber (Incl. Insulation)
                                                      3.933 kg (8.67 lb)
                                                      1.887 kg (4.16 lb)
            Injector
            Igniter
                                                      .939 kg (2.07 lb)
Design Performance
     Specific Impulse
         Steady State
                                                      4266 N-sec/kg (435 1b_f-sec/1b_m)
                                                      3923 N-sec/kg (400 lbf-sec/lbm)
222 N-sec (50 lb-sec)
          Pulsing @ MIB
     Response (electrical signal to 90% thrust) .050 sec
```

longest firing duration made with the ITA was 513 sec, (14) the ITA weight was 6.895 kg (15.2 lbm) exclusive of valves, (15) the cycle life goal was not met due to correctable mechanical errors, not design errors, and (16) premature chamber failure was the result of icing, not design error.

4.3 PLUG CLUSTER ENGINE PERFORMANCE DATA

The plug cluster engine design was evaluated for Space Tug type applications on NASA Contract NAS 3-20109 (Reference 5). The engine offers many features including: (1) competitive payload when compared to high pressure engines such as the ASE, (2) increased payload length due to the shortness of the engine, (3) design flexibility that will allow fail-operational modes for manned missions, and (4) long life, demonstrated components that will provide low cost, maintenance-free operation far in excess of the ASE and RL-10.

Pertinent data for the plug cluster engine are summarized in table 4-12.

Table 4-12. Plug Cluster Engine Data (Cluster of ITA-Type Modules)

	LOX/LH ₂		
Thrust, 1b _f	15,000		
Chamber Pressure, psia	500		
Area Ratio (Ae/At)	894		
Weight, 1b	428		
Length, in.	37*		
Life, cycles	1,200**		
Mixture Ratio	5.0	5.5	6.0
Specific Impulse, sec	465.2	465.9	466.6

^{*}Compared to 55 in. for RL10 on Baseline Space Tug.

^{**}Compared to 190 cycles for the RL10 IIB and 300 cycles for the ASE.

5.0 ENGINE CONSULTING DATA

This section provides consulting data on: (1) a 40,000-pound thrust plug cluster engine, (2) a 70:30 LOX/CH₄: LOX/LH₂ dual expander engine, and (3) a throttled 70:30 dual expander engine.

5.1 PLUG CLUSTER ENGINE

A conceptual design for a 40,000-pound thrust plug cluster engine (PCE) was evaluated for the Space Tug baseline vehicle (Diameter = 14.7 feet). Summary data were previously supplied for a 15,000-pound thrust engine (Fourth Report entitled "Advanced Technology Forecast," dated 27 October 1978). Data for both engines are summarized in table 5-1.

A 40K conceptual design utilizes 26 thrusters, but otherwise resembles the 10-thruster 15K PCE. It seems reasonable, therefore, to assume a constant thrust-to-weight ratio for estimating the weight of the larger engine. Indications are that the 40K engine will possess a higher thrust-to-weight, since the thrusters are essentially mounted directly to the vehicle at the LOX tank centerline, eliminating the need for the thrust mount.

The weight data cited for the 15K and 40K plug cluster engines in table 5-1 are for a minimum valve system, which is probably not acceptable at this time for a man-rated system. A 50 to 100 pound weight penalty might be appropriate to place the PCE on the same basis as the ASE-type and expander cycle OTV engines (cf. Fifth Report entitled "Consulting Data," dated 20 December 1978). However, the plug cluster performance data are probably conservative by several seconds, compared to the candidate OTV engines. Utilization of the data as presented may, therefore, provide a fair comparison between engines.

An interesting feature of the 40K PCE is that the engine length is -15.9 inches compared to 37.1 inches for the 15K PCE and 55 inches for the RL10, when measured from the gimbal plane of the baseline Space Tug. In other words, the 40K PCE barely extends beyond the aft end of the LOX tank.

5.2 70/30 DUAL EXPANDER ENGINE

Parametric data are presented in table 5-2 and figures 5-1 and 5-2 for a dual expander engine with a 70% LOX/CH_{μ}: 30% LOX/LH₂ thrust split.

Throttling the LOX/CH $_4$ stream tube by 20% amounts to the approximate Mode I vacuum thrust shown in table 5-2.

Table 5-1. Plug Cluster Engine Data Summary

PARAMETER	- EN	- ENGINE -		
	15K	40K		
Vacuum Thrust, LB	15,000	40,000		
Vacuum Is*, Sec	465.9	466.9		
Chamber Pressure, PSIA	500	500		
Mixture Ratio, O/F	5.44	5.43		
Engine Area Ratio, AE/AT	890	600		
Thruster Area Ratio, AE/AT	500	180		
Number of Thrusters	10	26		
Engine Diameter, In	132	170		
Base Diameter, In	75	131		
Engine Length, In	37.1	-15.9		
Thruster Length, In	67.2	50,3		
Engine Weight, LB	428	1141		

^{*}SIMPLIFIED JANNAF METHODOLOGY: CONSERVATIVE VALUES

Table 5-2. Tripropellant Dual-Expander Engine Preliminary Operating Specifications Design Point Thrust Split: 70% LOX/CH₄, 30% LOX/LH₂

	STREAM LOX/CH ₄	TUBES LOX/LH ₂	MODE I COMBINED LOX/CH ₄ & LH ₂	MODE II LOX/LH ₂
Sea-Level Thrust, Lb.	425,600	182,400	608,000	
Vacuum Thrust, Lb.	465,390	208,790	674,180	216,710
Sea-Level Specific Impulse, Sec.	339.1	387	352.2	
Vacuum Specific Impulse, Sec.	370.8	443	390.5	459.8
Total Flow Rate, Lb/Sec.	1255.09	471.32	1726.41	471.32
Mixture Ratio	3.6	7.0	4.20	7.0
Oxidizer Flow Rate, Lb/Sec.	982.24	412.40	1394.6	412.40
Fuel Flow Rate, Lb/Sec.	272.85	58.92	331.8	58.92
Chamber Pressure, PSIA	6,000	3,000		3,000
Nozzle Area Ratio	70	50	60.5	127
Mixture Ratio	3.6	7.0	4.20	7.0
Throat Area, In. ²	39.68	35.93	75.61	35.93
Nozzle Exit Area, In. ²	2,777	1,796	4,573	4,573
THROTTLED ENGINE				
Vacuum Thrust, LB	372,310	208,790	581,100	-
Total Flow Rate, Lb/Sec	1,004	471	1,475	-
Chamber Pressure, PSIA	4,800	3,000	-	-

Figure 5-1. Dual Expander Engine Weight Parametrics

 $70\% LOX/CH_4 - 30\% LOX/LH_2$

Figure 5-2. Dual Expander Envelope Parametrics

6.0 REFERENCES

- 1. "Technology Requirements for Future Earth-To-Geosynchronous-Orbit Transportation Systems, LOX/Methane Engine Parametric Data", Prime Contract NAS 1-15301, Subcontract N-500601-9109, Aerojet Liquid Rocket Company, 5 May 1978.
- 2. "Technology Requirements for Future Earth-To-Geosynchronous-Orbit Transportation Systems, LOX/Methane Engine Parametric Data, Supplement #1", Prime Contract NAS 1-15301, Subcontract N-500601-9109, Aerojet Liquid Rocket Company, 24 May 1978.
- 3. "Technology Requirements for Future Earth-To-Geosynchronous-Orbit Transportation Systems, Cost Data and Technical Update", Prime Contract NAS 1-15301, Subcontract N-500601-9109, Aerojet Liquid Rocket Company, 30 June 1978.
- 4. Luscher, W.P. and Mellish, J.A., "Advanced High Pressure Engine Study for Mixed-Mode Vehicle Applications", Final Report NASA CR-135141, Contract NAS 3-19727, Aerojet Liquid Rocket Company, January 1977.
- 5. O'Brien, C.J., "Unconventional Nozzle Tradeoff Study", Final Report NASA CR-159520, Contract NAS 3-20109, Aerojet Liquid Rocket Company, July 1979.

APPENDIX B

WORK BREAKDOWN STRUCTURE

TABLE OF CONTENTS

		Page
1.0	COSTING METHODOLOGY AND GROUNDRULES	B-5
2.0	PROJECT AND PHASES DEFINITIONS	B-13
3.0	FUNCTION DEFINITIONS	B-15
4.0	SUBFUNCTION DEFINITIONS	B -18

1.0 COSTING METHODOLOGY AND GROUNDRULES

The costing methodology and groundrules used in this study DDT&E are summarized as follows:

- o Methodology
 - DDT&E & TFU developed using Boeing PCM
 - operations labor costs based on HHLV, SPS & shuttle derivative studies
- o Key Groundrules
 - 1977 dollars
 - contractor charges without fee
 - only program support based on shuttle user charges
 - indirect costs based on typical industry charges
 - propellant costs based on JSC estimates
 - o $LH_2 = $0.731/lb$ $LO_2 = $.018/lb$ $CH_4 = $.188/lb$

TFU costs were generated parametrically and used to build up LCC's in conjunction with vehicle operational characteristics and mission model requirements. Operations costs were based on operations analysis performed during Shuttle Derivative Vehicle and Solar Power Satellite studies (ref. 1 and 2).

The cost estimates for this study were generated using the Boeing-developed Parametric Cost Model (PCM). The PCM is a semiautomated technique that has been used successfully on previous studies such as Future Space transportation System Analysis (FSTSA), Heavy Lift Launch Vehicle, Shuttle Derivative Vehicle, and Space Solar Power activities. A summary of this methodology is as follows:

1)	Short turn around time	Investigate many alternatives in time available
2)	Minimum of descriptive inputs	Can use early program definition where big gains in cost reduction are most available
3)	Take account of "off-the-shelf" and "modified" hardware	Save development costs
4)	Hardware redundancy levels	Cost effective redundancy level
5)	Material type choices	Material selection cost impact

Hardening or not	Cost effects of hardening
Variable test hardware quantities	Affords cost effective design of ground and flight test program
Variable level of development and production spares	Spares costs reflect needed inventory and maintenance level
Tooling is function of production quantity and production rate	Tooling reflects production plan
GSE is based on number of sets needed	GSE reflects facilities plan (e.g., number of launch sites)
Segregates DDT&E and production costs	Identifiy costs by program phase for scheduling and funding purposes
Cost and manhour data provided at subsystem and cost element level	Facilitates detailed trades and indicates manpower levels involved
Selectable learning curves at major component level	Develops production costs based on component level learning curve analysis
	Variable test hardware quantities Variable level of development and production spares Tooling is function of production quantity and production rate GSE is based on number of sets needed Segregates DDT&E and production costs Cost and manhour data provided at subsystem and cost element level Selectable learning curves at major

The PCM Provides a high degree of cost visibility since it is very similar in approach to detailed cost estimating. PCM compares to several other costing models as follows:

Feature/parameter	Boeing PCM	Aerospace	Econo- metrics	KOELLE	RCA Price
Working units	Manhours	Dollars	Dollars	Manhours	?
Level of hardware manhour/ cost visibility	Subsystem	Subsystem	Subsystem	System*	Subsystem
Level of manhour/cost element visibility					
Total DDT&E	Yes	Yes	No	Yes	Yes
First unit	Yes	Yes	Yes	Yes	Yes
System engineering	Yes	Yes	No	No	Yes
System test	Yes	Yes	No	No	No
Software engineering	Yes	No	No	No	No
Quality control	Yes	No	No	No	No
Assembly and Checkout	Yes	Yes	No	No	No
Factory labor	Yes	No	No	No	Yes
Tooling	Yes	Yes	No	No	Yes
Design engineering	Yes	No	No	No	Yes
Developmental shop	Yes	No	No	No	Yes
Management	Yes	Yes	No	No	Yes
Support equipment	Yes	Yes	No	No	Yes
Facility workload	No	No	No	Yes	No
Length of prog effects	Yes	No	No	Yes	Yes
Off-the-shelf hardware effect	Yes	Limited	No	No	Yes
Existing design modification effect	Yes	Limited	No	No	Yes

The PCM estimates costs beginning with the major component level (level 6 of the WBS) and builds upward to obtain the total program cost. Cost estimations are based on physical and performance parameters at the hardware level and programmatic parameters (quantities, learning curves, production rates, etc.) at the project level. This methodology thus mirrors the actual approach used to develop and produce aerospace hardware. Boeing historical data collected in the Estimating Information System (EIS) data bank provide the raw information from which functional man-hour estimating relationships (MER) are These MER's are based upon strong statistical correlations occurring in all

^{*}With the exception of one subsystem area; i.e., liquid rocket engines

Boeing space programs and relate program inputs to the PCM internal working logic. In addition, each major functional area (e.g., project engineering, developmental shop, etc.) making up Boeing' organizational mix is represented and interrelated in the model. The role of these functional areas is ultimately expressed in terms of the man-hours required for each to fulfill the objectives of the program. Using man-hours instead of dollars allows construction of accountable estimates because it (1) eliminates the need to normalize for inflation, (2) allows construction of estimates in terms of either "constant" or "then year" dollars by simply applying the appropriately adjusted labor rates and pricing factors associated with the program's time span, and (3) allows use of large amounts of functional man-hour data accumulated by Boeing from actual programs.

The buildup of DDT&E costs from the constituent functional categories is diagrammed in figure 1. Judgement is required to evaluate system complexity of the subsystem being designed in order to select the correct MER. The procedure used to establish production costs is similar to that used for the design and development phase and is, in fact, implemented in the same PCM program.

Figure 1. Boeing PCM Methodology (DDT&E)

The Work Breakdown Structure (WBS) used in costing the vehicles is shown in figure 5. It is a two-dimensional matrix formed by the vehicle hardware elements and the programmatic phases and functions. The following dictionary defines each of the WBS programmatic elements.

Mature Industry Cost Approach

For those items needed at mass production rates, we have used mass production cost estimating. The relationships are illustrated in figures 2 and 3. Aerospace cost experience follows a "learning" or improvement curve. (Most of the improvement comes from learning how to make the production plan work. Mechanics learn quickly.) Typical experience is an 85% curve; unit #2N will cost 85% of unit #N. 727 jetliner production experience shows that this type of projection is good well beyond the 1000th unit. Aerospace estimates are based on historical correlations of manhours, element physical characteristics, and complexity. They are made at the subsystem or subassembly level. Despite a contrary reputation, the basic estimating procedures are accurate. Aerospace cost variances can generally be traced to pricing and procurement practices, and most significantly to requirements and design changes, rather than to inability to estimate cost.

A mass production process is facility and equipment intensive rather than labor intensive. It does not follow an aerospace-type improvement curve. Historical correlations indicate a labor intensiveness relationship as shown in figure 3. A mass production processes reaches its labor cost plateau during the process shakedown period and then improves no further unless the process is changed.

The overall mature industry cost anlysis methodology used in this study is shown in figure 4. The aerospace first unit costs are run through a mature industry anlysis that applies production rate factors according to the production rate required for each system element.

Figure 2. Program Cost Baseline

Figure 3. Mature Industry: Production Rate Curve

The mature industry costing approach was developed during SPS studies by Dr. Joe Gauger based on information developed during IR&D analyses of design-to-cost, experienced costs for commercial aircraft and other systems, and statistical correlations for financial and production factors for a wide variety of commercial industries.

Figure 4. Cost Analysis Methodology

		PI	HASE /	/			Dr	T&E 21	00		PRO	OGRAM PR		TION 22	200	,	OPED	ATIONS	220
		<i></i>	<u> </u>	7			—— "	TOL ZI	7					1014 24	<u> </u>				
	4	Funct	ion			neering		nufactu		Test	_//	E Light See	Se Ma	anufacti		Operati Suppor	/	Sup	unch oport
			/		2120)	/	2130	/	2140	-/ Ĕ	/ 🙇		2230	/	2310		2320)
	Sub Functi	ion / S	Systems am	2122			Ser Fee Street	System 1. The state of the stat	Tight of	is and a second	Sustain Managemen	80 12 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FIT 198 37 E	S. Conference S.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Juan and	Suojue do do	Tuelle Company	,
WBS ELEMENT	WBS 110	2110	2121	2122	2123	2131	2132	2141	2142	2210	2220	2231	2232	2311	2312	2321	2322	2323	1
OTAL VEHICLE	01-00-00	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ĺ
VEHICLE INT. SYSTEM	01-01-00		•						•									T.	ĺ
STAGE 1	01-02-00	•	•	•	•	•	•	•		•	•	•	•	1	•				ı
AEROSURFACES	01-02-01				•		•				1.0		•		•				l
TANKAGE	01-02-02			-	•		•						•		•				İ
BODY STRUCTURE	01-02-03				•		•						•		•		1		ĺ
THERMAL PROTECTION	01-02-04				•		•						•		•				l
LANDING SYS.	01-02-05				•		•						•		•	1			ĺ
PROPULSION	01-02-06				•		•						•		•				l
A.P.S. 1	01-02-07				•		•						•	1	•	1 -			1
R.C.S.	01-02-08				•		•		l			<u> </u>	•		•	 	t		i
PRIME POWER	01-02-09				•		•	·					•		•	 			1
ELECT. CONV./DIST.	01-02-10				•		•				 		•	-	•	 			ĺ
HYD./SURFACE CONTROL	01-02-11				•	l	•						•	1	•	 	-		ĺ
AVIONICS	01-02-12			7	•		•						•		•	1	T		ľ
E. C. S.	01-02-13				•		•					l	•	1	•		1		l
PERSONNEL/PAYLOAD	01-02-14				•		•						•		•	 	1		i
GSE	01-02-15				•		•		l		 	 	•	 	•	┪┈┈━	 		İ
PROPELLANT	01-02-16			 -	<u> </u>								 -	 	 	 			ĺ
STAGE II	01-03-00	•	•	•	<u> </u>	•		•		•	•	•	•	 -	 	+	•		1
AEROSURFACES	01-03-01			Ť	•	├ -	•	- - -				_	•	 	•	 -			1
TANKAGE	01-03-02				•		-	 					•	 	-	 	 		
BODY STRUCTURE	01-03-03				•		•	 			 	 	•	 	-	1	-		ı
THERMAL PROTECTION	01-03-04		 	·	•		•	 			 		•	-	 -	 	 		l
LANDING SYS.	01-03-05				•				-		-	ļ	-		•	 	!		1
PROPULSION	01-03-06				•		•								•	<u> </u>	ļ		l
A.P.S.	01-03-07				-		•	 			-	 	•		•	 	 		i
R.C.S.	01-03-08			 	•		•	 				├	•	-	•	 	-		
PRIME POWER	01-03-09			 	•	-	•	 		<u> </u>		 	-		•	+	-		ı
ELECT. CONV JDIST.	01-03-10			-	-		•	 	 		 	\vdash	•			 			
HYD./SURFACE CONTROL	01-03-11		_	·	•		•	l —				 	-		-	+	-	 	1
AVIONICS	01-03-12				•		•	l		 		—	•		•	 	 		
E. C. S.	01-03-13				•			i		<u> </u>		 	•	 	-	1	1		l
PERSONNEL/PAYLOAD	01-03-14				•						<u> </u>	 	-	<u> </u>	-	1	 		l
GSE	01-03-15				•		•	 			 	<u> </u>	•		•	 	 	-	i
PROPELLANT	01-03-16						 	l			 		<u> </u>	 	-	+			ı
						F		 			 	$\vdash \lnot$			 	1	 -		i .

Consists of OMS For Second Stages, Flyback Propulsion for First Stages

Figure 5. Work Breakdown Structure

2.0 PROJECT AND PHASES DEFINITION

2000 Program

This element sums all efforts and materials required for the design, development, production and operation of the total vehicle project.

2100 Design, Development, Test and Evaluation (DDT&E)

Consists of the "one time" cost of designing, developing, testing and evaluating the vehicle system. Specifically, it includes; mission analysis and requirements definition; mission and support hardware functional definition and design specifications, design engineering, interface analysis and engineering integration, developmental shop support, test hardware manufacture and functional, qualification and flight test effort; also includes special test equipment and development tooling, logistics, training (that not covered in operations), developmental spares and other program peculiar costs not associated with repetitive production. This element is subdivided into the following functions:

2110 Program Mangement

2120 Engineering

2130 Manufacturing

2140 Test

2200 Production

Recurring - These are the recurring costs of production program management, fabrication, assembly, checkout, quality control inspection and acceptance tests related to multiple units of hardware production. Also included in production costs are initial spares, multiple sets of ground support equipmet (recurring GSE) and sustaining engineering. This element is subdivided into the following functions:

2210 Program Management

2220 Sustaining Engineering

2230 Manufacturing

<u>Non-recurring</u> - Non-recurring production costs cover the costs of production tooling, sustaining tooling and special test equipment (STE).

2300 Operations

Relates to the effort and materials to put the vehicle system into service operate it and maintain it. This category covers such operational items as receipt of mission hardware elements (i.e., stages, engines, etc.), processing, testing and integration; launch operations, flight or mission operations and control, recovery, sustaining spares and inventory control, maintenance and propellants and other consumables.

This element is subdivided into to the following functions:

2310 Operations Support

2320 Launch Support

3.0 FUNCTION DEFINITIONS

2100 DDT&E

2110 Program Management

Contractor - This element includes that effort during DDT&E relating to the contractor(s) technical and business management of the program. It incudes the effort of decision making, directing and assuring that plans are implemented and products are designed and tested by "doing" organizationas and then controlling the program in a cost effective and technically competent manner. Specific areas of effort are:

Planning and Control

Finance Management

Contracts Management

Engineering and Developmental Manufacturing Management

Quality Assurance Management

Configuration Management

Data Management

Facilities Coordination

<u>NASA</u> - Customer program management relates to the overall direction and control of the program. This function includes the decision making and planning required to determine objectives, select the concept to fulfill the objective, assign responsibilities and coordinate program participants within NASA, plan the product's utilization, create schedules, direct contractors, control funding and develop the products operational plan.

2120 Engineering

This DDT&E element includes all efforts and materials associated with analysis, design, development, evaluation and redesign for specified hardware element items. This element is subdivided into the following lower elements:

- 2121 System Engineering and Integration
- 2122 Software Engineering
- 2123 Design and Development

2130 Manufacturing

This DDT&E element includes the efforts and materials required to produce the various items of test hardware required by the program which include inspection, assembly and checkout of tools, parts, material, subassemblies and assemblies. The testing of this hardware is accomplished under system operations. The test articles considered under this element include development models, engineering models, design verification units, qualification models, structural test units, thermal models, mechanical models and prototypes.

- 2131 Developmental Tooling and STE
- 2132 Test Hardware and Spares

2140 Test

This DDT&E element relates to the manpower and miscellaneous materials needed to conduct the testing of the ground and flight test articles. It also includes all efforts and materials required during flight test operations. This accumulation category is further difined under:

2141 Systems Test Operations

2142 Flight Test Operations

2200 Production

2210 Program Management

This element includes that effort during production relating to the technical and business management of the SDV production program. It includes the effort of decision making, directing and assuring that production plans are implemented by the manufacturing, quality control and material organizations.

2220 Sustaining Engineering

Starts after the First Article Configuration Inspection (FASI) of the first operational unit and continues to the end of the program. Includes correction of design errors, testing, updating of drawings, liaison with Manufacturing, Quality Control (Q.C.), and Materiel organizations, and design of company and customer initiated changes.

2230 Manufacturing

This element includes all recurring efforts and materials associated with the production of flight hardware, initial spares, tooling and special test equipment (STE). The subfunctions of this cost element are:

2231 Production (Rate) Tooling

2232 Flight Hardware and Spares

2300 Operations

2310 Operations Support

Includes (a) the required Program Support effort at the hardware/mission control centers, (b) the reusable spares procurement (which are the replenishment spares) and the refurbishment hardware required, and (c) the cost of all expendable hardware.

2320 Launch Support

This operations element includes all those efforts and materials required for launch support. This element includes those efforts and materials associated with the receipt of the stages, engines, etc. at the launch site and the processing, testing, and integration required for preparation and launching of the vehicle, excluding any payload integration activities.

4.0 SUBFUNCTION DEFINITIONS

2100 DDT&E

2110 Program Managment

211C No Subfunctions

2100 DDT&E

2120 Engineering

2121 Systems Engineering and Integration

This element includes the activities directed at assuring a totally integrated engineering effort. It includes the effort to establish system, subsystem, GSE and Test requirements and criteria, to define and integrate technical interfaces to optimize total system definition and design, to allocate performance parameters to the subsystem level, to identify, define and control interface requirements between system elements, to monitor design and equipment to determine contract end item (CEI) compliance, to provide and maintain inertial properties analyses, support and documentation, to develop and maintain system specification to provide parts, standards and materials and processes surveillance and to integrate product assurance activities. Fundamental to this WBS element is the documentation of system-level design requirements as derived from NASA-established requirements and guidelines and through functional analyses.

Specific areas of effort are:

System Design and Integration
Configuration
Flight Hardware Requirements
Operations Requirements
GSE Requirements
System Test Requirements
Mass Properties

Interfaces
Materials, Processes and Standards
Product Assurance
Service and Maintenance Requirements

2122 Software Engineering

This element includes the costs of the design, development, production, checkout, maintenance and delivery of computer software. Included are test, on-board and mission or flight software.

2123 Design and Development

This DDT&E element includes all efforts associated with analysis, design, development, evaluation and redesign necessary to translate a performance specification into a design. Specifically included are:

- Subsystem Design Engineering
 - o Subsystem Functional Definition and Design Specifications
 - o Design of Components and Hardware Assemblies
 - o Intra Subsystem Engineering Integration
- Developmental Shop Support
 - o Component, Assembly and Subsystem Mockups and Breadboards
 - o Materials and Processes Verification
- Subsystem Test
 - o Breadboard and Functional Tests
 - o Subsystem Qualification Tests

2100 DDT&E

2130 Manufacturing

2131 Developmental Tooling and STE

This DDT&E element includes all efforts and materials required to produce the various items of required ground and flight test hardware. This element includes the time expended on, or chargeable to, such operations as fabrication, processing, subassembly, final assembly, reworking and modification and installation of parts

and equipment. Included are those costs chargeable to the acceptance testing, quality control program, and assembly as related to ground test hardware. Ground test hardware includes such items as static and dynamic test models, thermal and (if required) firing test articles and the qualification test unit. Flight test hardware includes the flight-test vehicles and their associated GSE required for the flight test program. This element also includes the costs of developing and documenting requirements for, and the fabrication, assembly, test, storage, delivery and accountability of spare components, assemblies, or subsystems to be used in support of the ground test and flight program.

2100 DDT&E

2140 Test

2141 System Test Operations

This DDT&E element includes all efforts and materials required for System Test Operations. Included are tests on all systems test hardware, assemblies, subsystems, and systems to determine operational characteristics and compatibility with the overall system and its intended operational/nonoperational environment. Such tests include design feasibility tests, design verification tests, reliability tests, etc. Also included are tests on systems and integrated systems to verify whether they are unconditionally suitable for their intended use. These tests are conducted on hardware or final designs that have been produced, inspected and assembled and priced under test hardware category (2132).

2142 Flight Test Operations

This element includes all efforts and materials required to support the DDT&E flight test program. This item includes the operation of the mission control facilities and equipment. Included is mission control monitoring which provides the information required to control, direct and evaluate the mission from prelaunch through recovery. This operations element also includes all efforts and materials required to support launch and recovery operations during the DDT&E flight test program. Included are those efforts and materials associated with the receipt of the stages, engines, etc. at the launch site and the processing, testing and integration required for launching of the mission test hardware. This element does not include payload integration. Included are subelements such as ground operations (including recovery) and propellant operations.

2200 Production

2210 Program Management

221X No Subfunctions

2200 Production

2200 Sustaining Engineering

Includes both the systems engineering and design engineering required to support the production phase of the program.

222X No Subfunctions

2200 Production

2230 Manufacturing

2231 Production Tooling and STE

Production tooling is "hard" tooling designed for repetitive use in fabricating and assembling recurring production units. This element includes the fabrication of production tooling and those sustaining efforts necessary to facilitate production and to resolve production problems involving tooling and STE. Production tooling includes sustaining and replenishment tooling.

2232 Flight Hardware and Spares

This element includes all efforts and materials required to produce production flight units. This item includes time expended on, or chargeable to, such operations as fabrication, processing, subassembly, final assembly, reworking, modification, and installation of parts and equipment (including Government furnished equipment (GFE)). Included are those costs chargeable to the acceptance testing, quality control program, and assembly as related to flight units. Also included in this element are the costs of developing and documenting requirements for, and the fabrication, assembly, cost, storage, delivery and accountability of spare components, assemblies or subsystems that will be produced in the production phase of the program and be used as the initial "lay in" of spares to fill the beginning inventory

stocks. Excluded are bin production spares of small items such as fasteners, electronic parts, etc. Included within this element is the cost of developing and inventory-control documentation system and the costs of shipping and distribution of spares to maintain designated inventory levels.

2300 Operations

2310 Operations Support

Includes the required Program Support effort at the hardware/mission control centers, the reusable hardware spares procurement which are the replenishment spares and the refurbishment hardware required, and the cost of all expendable hardware including initial production spares inventory.

2311 Program Support

Includes the hardware/mission control center effort and their associated contracted effort to support the operations phase of the program. Mission planning, mission control, sustaining engineering and program management activities for hardware delivery in direct support of the program.

2312 Spares Procurement

Includes the cost of producing and inventorying replenishment/refurbishment hardware and the depot maintenance manpower to support the reusable hardware maintenance during operations. Both line replaceable and shop replaceable units are included.

2320 Launch Support

This operations element includes all those efforts and materials required for launch support, from recovery of the vehicle through launching. This element includes those efforts and materials associated with the receipt or recovery of the vehicle elements at the launch site and the processing, testing, and integration required to prepare the vehicle for launching, excluding any payload integration activities.

2321 Operations

Includes all the effort and materials required for the receipt of the vehicle hardware at the launch site and the processing, testing, and integration required to prepare for launching of the mission hardware. This effort includes the manpower associated with the:

- o Processing, testing, and integration of the flight hardware.
- o Operation and maintenance of launch related ground support equipment.
- o Offline ground systems activities (shops, labs, etc.) required to support the vehicle turnaround activities.
- o GSE sustaining engineering effort to support modification design and configuration control of all launch site related ground support equipment.
- o Recovery of the vehicle and all inspections and refurbishment required to return it to operational status.
- o Producing and inventorying the launch site related ground support equipment replenishment/refurbishment spares.

2322 Propellants

Includes all flight propellant costs at the launch site, excluding SRB solid propellants such as all fuels and oxidizers, pressurants, purging gases and fluids to support the operational phase of the program. These costs reflect annual base requirements in addition to total flight requirements.

2323 Other

Includes all other program direct at the launch site. These costs include:

- o Photo, central timing and ordnance effort
- o Purchase of supplies and materials
- o Operation of the local barge and port facilities.

REFERENCES

- 1. "Shuttle Derivative Vehicles Study Operations, Systems, and Facilities," Contract NAS8-32395, Final Report, dated December 1977.
- 2. "Solar Power Satellite Systems Definition Study," Part I Final Report Contract NAS9-15196, dated July, 1977.

APPENDIX C WEIGHT ESTIMATING METHODOLOGY WINGED LAUNCH VEHICLES

WEIGHT ESTIMATING METHODOLOGY

WINGED LAUNCH VEHICLES

An iterative point-design weight estimating approach was used throughout the study. The logic flow for this approach, as applied to winged launch launch vehicles, is presented in figure 1.

The starting point for the interative process is the calculation of top level vehicle characteristics consistent with ascent performance requirements and an estimate of the vehicle mass fraction. The top level characteristics are defined as those which are necessary to evolve a configuration 3-view drawing, namely; gross weight, propellant weight, payload weight, inert weight, and ascent engines definition. Depending on the time and data base available, point design weight analyses are conducted on major structural components such as main tankage and shell structures. Geometry data (areas) from the 3-view drawing and the results of any point design weight analyses are entered in the weight calculation notes. These notes, which are approximately 30-35 pages in length for an SSTO, HLLV Orbiter, or HLLV Booster, address every group in the group weight and balance statement and, in some instances, address items at the subgroup level and lower (see launch vehicle configuration descriptions in main body of report). The notes are in a simple fill-in-the-blanks format, complete with a brief description of, or reference to, supporting rationale.

The weight calculation notes are exercised in conjunction with the group weight and balance statement in mission sequential format. The objective is to define and compare the maximum allowable dry weight (obtained by a top-down weights analysis starting with the vehicle gross weight) and the calculated dry weight (obtained by a bottom-up weights analysis of subsystem dry weights).

The top down weights analysis is undertaken first and yields the following: usable propellant requirements for propulsion systems other than ascent propulsion (OMS, RCS, Flyback), start entry weight, and landing weight. In addition, consistent with landing wing loading limitations, the wing area on the 3-view drawing is revised and the area of other aerosurfaces adjusted as deemed necessary. Lastly, the bottom-up weights analysis is undertaken and the resulting calculated dry weight is compared with the maximum allowable dry weight. If the weight difference is considered acceptable, either the dry weight margin allowance or the payload weight is adjusted to compensate for it. If the

Figure 1. Logic Flow For Weight Estimating Winged Launch Vehicles

weight difference is unacceptable, the vehicle inert weight is changed (but not ascent propellant weight, payload weight or ascent thrust) and the weights analyses iterated until an acceptable delta dry weight condition exists.

At this point, though the ascent performance is either slightly excessive or slightly deficient, the vehicle mass fraction is valid for the ascent propellant weight, payload weight, and ascent thrust considered. This mass fraction is then used as the basis for a new mass fraction estimate with which to start a repeat effort at final vehicle sizing. For the HLLV, final vehicle sizing is accomplished first for the Orbiter, then for the Booster.

Figure 1 also depicts the manner in which the available data bank is maintained and used to support the weight estimating procedures in the weight calculation notes. As an example, Appendix D presents the results of a weight evaluation and comparison of dedicated and integrated $0_2/H_2$ subsystems (OMS, RCS, APS) for the midterm configurations. Based on this study data, weight scaling equations were derived for both dedicated and integrated $0_2/H_2$ subsystems and are included in the weight calculation notes (which contain methods for defining all input data for the equations). The weight scaling equations for the integrated $0_2/H_2$ subsystems are also included in Appendix D.

APPENDIX D WEIGHT EVALUATION AND COMPARISON OF DEDICATED AND INTEGRATED O_2/H_2 SUBSYSTEMS

*

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION/SUMMARY	D-5
2.0	SSTO AND HLLV VEHICLES	D-5
3.0	PTOV VEHICLE	D-25
· .		
	LIST OF FIGURES	
No.	<u>Title</u>	Page
2-1	Simplified schematic LO ₂ /LH ₂ OMS SSTO and HLLV Orbiter	D-6
2-2	Simplified schematic LO ₂ /LH ₂ RCS SSTO and HLLV, Pumped Hydrogen/Pumped oxygen	D-7
2-3	Simplified schematic of O_2/H_2 APU Subsystem SSTO and HLLV (super critical storage of O_2/H_2)	D-8
2-4	Simplified schematic of integrated LO ₂ /LH ₂ OMS/TCS/APS	
2-5	SSTO and HLLV Orbiter	D-9
2 1	booster	D-10
3-1	Simplified schematic of LO ₂ /LH ₂ MPS, POTV	D-26
3-2 3-3	Simplified schematic of LO ₂ /LH ₂ RCS, POTV	D-27 D-28
3-4	Simplified schematic of O ₂ /H ₂ fuel cell EPS POTV	D-20
	U LINE DOTA	11 70

LIST OF TABLES

No.	<u>Title</u>	Page
2-1	APU Power Requirements/Hydrazine Weight SSTO and HLLV	D-11
2-2	Primary weight estimating criteria for dedicated/integrated	
	O ₂ /H ₂ subsystems (SSTO and HLLV)	D-12
2-3	Detail weight comparison of integrated vs dedicated O ₂ /H ₂	
	OMS/RCS/APS/SSTO	D-14
2-4	Detail weight comparison of integrated vs dedicated O ₂ H ₂	
	OMS/RCS/APS, HLLV orbiter	D-17
2-5	Detail weight comparison of integrated vs dedicated O ₂ /H ₂	
	OMS/RCS/APS HLLV booster	D-20
2-6	Weight scaling equations for integrated O ₂ /H ₂ subsystems	
	(SSTO and HLLV)	D-23
3-1	Power requirements/fuel cell rating/reactant weight/POTV	D-30
3-2	Primary weight estimating criteria for dedicated/integrated	
	O_2/H_2 subsystems	D-31
3-3	Detail weight comparison of integrated vs dedicated O ₂ /H ₂	
	MPS/RCS/EPS	D-33

1.0 INTRODUCTION/SUMMARY

This appendix presents summary data from the study effort to evaluate and compare weight data for dedicated and integrated ${\rm O_2/H_2}$ subsystems for the normal growth technology vehicles SSTO, HLLV, and POTV. For the SSTO and HLLV, the auxiliary power unit (APU) power requirements and hydrazine requirements were updated, the APU working fluid was changed from ${\rm N_2H_4}$ to ${\rm O_2/H_2}$, and the dry weights and residuals weights for the dedicated OMS, RCS, and APS (auxiliary power system) were subjected to indepth analyses. For the POTV, the responsibility for providing for GEO and LEO terminal phase initiation maneuvers was transferred from the RCS to the MPS (in keeping with improved main engine life projections), the fuel cell power requirements, and the dry weights and residuals weights for the dedicated MPS, RCS, and EPS (electrical power system) were subjected to indepth analyses. Using the detailed weights definition of the dedicated subsystems, it was possible to define the detailed weights definition of the integrated subsystems. Pertinent summary data is identified in the following paragraphs.

2.0 SSTO AND HLLV VEHICLES

Simplified schematics of dedicated ${\rm O_2/H_2}$ OMS/RCS/APS subsystems are presented in figures 2-1, 2-2 and 2-3, respectively. Simplified schematics of integrated ${\rm O_2/H_2}$ OMS/RCS/APS subsystems for the SSTO and HLLV Orbiter, and integrated ${\rm O_2/H_2}$ RCS/APS subsystems for the HLLV Booster, are presented in figures 2-4 and 2-5, respectively. The updated APU power requirements and ${\rm N_2H_4}$ weight previously referred to are presented in table 2-1, including a note indicating the weight ratio of ${\rm O_2/H_2}$ to ${\rm N_2H_4}$. Primary weight estimating criteria for the ${\rm O_2H_2}$ subsystems is presented in table 2-2. Detailed weight comparison of dedicated and integrated ${\rm O_2H_2}$ OMS/RCS/APS subsystems for the SSTO and HLLV are presented in tables 2-3 and 2-4, respectively. Detailed weight comparisons of dedicated and integrated ${\rm O_2/H_2}$ RCS/APS subsystems for the HLLV Booster is presented in table 2-5. Weight scaling equations for the foregoing integrated ${\rm O_2/H_2}$ subsystems are presented in table 2-6.

* Usable oxidizer to usable fuel.

Figure 2-1. Simplified Schematic of LO_2/LH_2OMS SSTO and HLLV Orbiter.

^{*} Usable oxidizer to usable fuel

Figure 2-2. Simplified Schematic of LO₂/LH₂ RCS SSTO and HLLV Pumped Hydrogen/Pumped Oxygen

* Usable oxidizer to usable fuel.

Figure 2-3. Simplified Schematic of $\rm O_2/H_2APU$ Subsystem SSTO and HLLV (Supercritical Storage of $\rm O_2/H_2$)

Figure 2-4. Simplified Schematic of Integrated LO₂/LH₂OMS/RCS/APS SSTO and HLLV Orbiter.

Figure 2-5. Simplified Schematic of Integrated ${\rm LO_2/LH_2RCS/APS}$ HLLV Booster.

Table 2-1. APU Power Requirements/Hydrazine Weight SSTO and HLLV (MID-TERM UPDATE)

			HL]	LV
ITEM	SHUTTLE	SST0	ORBITER	BOOSTER
BODY FLAP AREA, 2FT 2 ELEVON AREA, FT 2 RUDDER AREA, FT 2 START FLYBACK WING LOADING, 2LB/FT 2 LANDING WING LOADING, LB/FT 2 NUMBER OF MAIN ROCKET ENGINES ELECTRICAL POWER, KW-HR	136 413 97 69.4 3* 	870 730 345 73.8 10** 50	1081 890 370 72.0 8* 50	1081 925 436 83.3 74.2 13* 10
APU PEAK POWER, HP ENTRY STEERING INSTALLED	360 220 405	730 930 🕏	840 1065 (2 >	1040 1320 🏖
HYDRAZINE USAGE-HYDRAULIC, LB PRELAUNCH/LIFTOFF/ASCENT ON-ORBIT ENTRY/LANDING ENTRY FLYBACK/LANDING HYDRAZINE USAGE-ELECTRIC, LB PRE-LAUNCH/LIFTOFF/ASCENT ON-ORBIT ENTRY/LANDING ENTRY FLYBACK/LANDING	(500) 90 30 380 ()	(1070) 150 50 870 (370) 20 330 20 	(1300) 240 60 1000 (370) 20 330 20	(1630) 390 620 620 (70) 20 10 40
NOMINAL HYDRAZINE USAGE, LB	500	1440	1670	1700

INCLUDES 20 HP DIVIDED EQUALLY BETWEEN 3 INDEPENDENT SYSTEMS, 2 OF WHICH PEAK ELECTRICAL ARE REQUIRED TO BE OPERATIONAL DURING ENTRY. *ALL GIMBALLED CURRENT BEST ESTIMATE FOR DUE EAST MISSION. (R.T. CONRAD, 12/1/78)**5 OF 10 GIMBALLED

NOTE: $W_{O2/H2} = 0.43 \times W_{N2H4}$

Table 2-2. Primary Weight Estimating Criteria for Dedicated/Integrated $0_2/H_2$ Subsystems (SSTO and HLLV)

ENGINES (OMS):

ASE-TYPE @20,000 LB TVAC EACH

TOTAL INSTALLATED THRUST ≥ 5% OF VEHICLE WEIGHT @INSERTION

NPSH OF LO-PRESS FUEL PUMP = 0.5 PSI

NPSH OF LO-PRESS OXID. PUMP = 1.0 PSI

THRUSTERS (RCS):

TOTAL INSTALLED THRUST = 17% OF VEHICLE WEIGHT @ENTRY NO. OF THRUSTERS:

FWD 14 (MAX OF 4 FIRED SIMULTANEOUSLY)
AFT 24 (MAX OF 6 FIRED SIMULTANEOUSLY)
TOTAL 38 (MAX OF 6 FIRED SIMULTANEOUSLY)

APU'S (APS):

3 O2/H2 UNITS

INSTALLED WEIGHT = 1.17 LB/HP

AUXILIARY BATTERIES (APS):

POWER REQUIREMENT: 10 AMP-HR, 400 VOLT Ni-H $_2$ @16 WATT-HR/LB

BOOST PUMPS/MOTORS (OMS,RCS):

ZERO NPSH PUMPS ELECTRIC MOTORS REDUNDANCY:

OMS - NONE RCS - 6 SETS {3 FUEL, 2 REQ'D}

PROPELLANT TANKS (OMS, RCS, APS):

SPHERICAL 2219-T87

500 MISSION SERVICE LIFE REQUIREMENT

(CONT'D)

SEE SIMPLIFIED SCHEMATICS AND APU MAX POWER ESTIMATES FOR ADDITIONAL DATA.

Table 2-2. (Continued)

BELLOWS ACCUMMULATORS (RCS):

CYLINDRICAL

2219-T87 PRESSURE SHELL

STAINLESS STEEL BELLOWS

(25 MISSIONS, SSTO AND HLLV ORBITER 50 MISSIONS, HLLV BOOSTER SERVICE LIFE REQUIREMENT

NO. OF ACCUMMULATORS: 2 FUEL, 2 OXID.

TOTAL ACCUMMULATOR CAPACITY:

SSTO AND HLLV ORBITER:

5% USABLE RCS PROP. (DEDICATED)

5% USABLE RCS/APS PROP. (INTEGRATED)

HLLV BOOSTER:

10% USABLE RCS PROP. (DEDICATED)

10% USABLE RCS/APS PROP. (INTEGRATED)

PRESSURE SHELL PROOF FACTORS (OMS, RCS, APS):

	TANKS	NKS ACCUM	
	SSTO & HLLV	SSTO & HLLV ORB.	HLLV BOOSTER
SERVICE LIFE REQ'T-MISSIONS PRESSURE CYCLING-PER MISSION	500	25	50
FULL DEPTH	1	0	0
PARTIAL	0	20	10
EQUIV. FULL DEPTH	1	2	1
PRESS. CYCLING-OPER. CONTINGENCY			
FULL DEPTH	10	0	0
PARTIAL	0	5	10
EQUIV. FULL DEPTH	10	0.5	1
DESIGN CYCLES (FULL DEPTH) STRESS INTENSITY RATIO	1020	101	102
LOWER BOUNDARY CURVE	0.43	0.63	0.63
PROOF FACTOR	2.3	1.6	1.6

THERMAL CONTROL (OMS, RCS, APS):

VACUUM JACKETS ON TANKS, ACCUMMULATORS, AND LINES LIGHTWEIGHT JACKETS @ 1.5 LB/FT

ITEM	REFERENCE DEDICATED SYSTEMS	REFERENCE INTEGRATED SYSTEMS
OMS ENGINES & ACCESSORIES (2 ASE'S) ZERO NPSH BOOST PUMPS/MOTORS FUEL TANK OXIDIZER TANK PROPELLANT FEED, FILL & DRAIN VENT/RELIEF-TANKS PNEMATIC PROPELLANT LOADING/MONITORING THERMAL CONTROL SUPPORTS/INSTALLATION	(4,240) 910 80 480 280 250 200 100 30 1,520 390	(4,525) 910 80 571 308 250 200 100 30 1,664 412
THRUSTERS-INCL. VALVES (38-2260 LBF) ZERO NPSH BOOST PUMPS/MOTORS TURBOPUMPS FUEL TANK OXIDIZER TANK FUEL BELLOWS ACCUMMULATORS OXID. BELLOWS ACCUMMULATORS PROP. LINES-FEED, FILL & DRAIN ISOLATION VALVES, ETC-FEED, FILL & DRAIN COMPENSATORS VENT/RELIEF-TANKS, ACCUMMULATORS THERMAL CONTROL SUPPORTS/INSTALLATION	(4,056) 1,240 33 70 125 50 366 94 247 150 50 80 1,185 366	(3,440) 1,240 36 75 420 88 247 150 50 30 790 314
APS AUXILIARY POWER UNITS-INSTALLED (3) BATTERIES ALTERNATORS FUEL TANK OXID. TANK REACTANT FEED, FILL & DRAIN VENT/RELIEF-TANKS THERMAL CONTROL SUPPORTS/INSTALLATION-REACTANT SYSTEM LUBE OIL COOLANT SYSTEM EXHAUST SYSTEM	(3,340) 1,090 250 30 906 94 150 90 400 160 	(1,773) 1,090 250 30 150 62 21 170
DRY WEIGHT-LESS MARGIN	11,636	9,738

INTERNAL TO APU'S.

Table 2-3. (Continued)

(ALL WEIGHT IN POUNDS)

ITEM	REFERENCE DEDICATED SYSTEMS	REFERENCE INTEGRATED SYSTEMS
(CONT'D)		
MARGIN	(1,165)	(973)
DRY WEIGHT	12,801	10,711
OMS RESIDUAL FLUIDS & GASES TRAPPED PROPELLANT-FEED SYSTEM TRAPPED PROPELLANT-ENGINES FUEL BIAS TRAPPED GH TRAPPED GO2	(725) 355 60 35 120 155	(764) 355 60 35 143 171
RCS RESIDUAL FLUIDS & GASES TRAPPED PROPACCUMMULATORS TRAPPED PROPFEED, FILL & DRAIN TURBOPUMP GG PROP. TRAPPED GH2 TRAPPED GO2 HE IN FUEL ACCUMMULATORS HE IN OXID. ACCUMMULATORS	(804) 22 635 41 19 16 67 4	(791) 22 635 50 80 4
APS RESIDUAL FLUIDS & GASES TRAPPED REACTANT-TANKS TRAPPED REACTANT-APU'S/LINES	(90) 86 4	(4) 4
OMS INFLIGHT LOSSES PROP. FOR ENGINE START/STOP (5)	(250) 250	(250) 250
INERT WEIGHT	14,670	12,520

Table 2-3. (Continued)

(ALL WEIGHTS IN POUNDS)

ITEM	REFERENCE DEDICATED SYSTEMS	REFERENCE INTEGRATED SYSTEMS
(CONT'D) RESERVES OMS - 0 '' - H2 RCS - 02 RCS - 02 WR=4:1 APS - 02 WR=1:1 OMS/RCS/APS - 02 OMS/RCS/APS - H2 ABOVE	(2,920) 1,594 266 600 150 155 155	(2,052) 1,710 342
NOMINAL PROPELLANT/REACTANT OMS @MR=6:1 RCS @MR=4:1 APS @MR=1:1	(41,590) 37,220 3,750 620	(41,590) 37,220 3,750 620
TOTAL WEIGHT	59,180	56,162

Table 2-4. Detail Weight Comparison of Integrated vs Dedicated ${\rm O_2/H_2}$ OMS/RCS/APS HLLV Orbiter (All Weights in Pounds)

ITEM	REFERENCE DEDICATED SYSTEMS	REFERENCE INTEGRATED SYSTEMS
OMS ENGINES & ACCESSORIES (2 ASE'S) ZERO NPSH BOOST PUMPS/MOTORS FUEL TANK OXIDIZER TANK PROPELLANT FEED, FILL & DRAIN VENT/RELIEF-TANKS PNEMATIC PROPELLANT LOADING/MONITORING THERMAL CONTROL SUPPORTS/INSTALLATION	(4,480) 910 80 510 290 310 200 100 30 1,640 410	(4,927) 910 80 653 334 310 200 100 30 1,862 448
THRUSTERS-INCL. VALVES (38-2350 LBF) ZERO NPSH BOOST PUMPS/MOTORS TURBOPUMPS FUEL TANK OXIDIZER TANK FUEL BELLOWS ACCUMMULATORS OXID. BELLOWS ACCUMMULATORS PROP. LINES-FEED, FILL & DRAIN ISOLATION VALVES, ETC-FEED, FILL & DRAIN COMPENSATORS VENT/RELIEF-TANKS, ACCUMMULATORS THERMAL CONTROL SUPPORTS/INSTALLATION	(4,758) 1,281 34 71 192 66 564 160 248 150 50 100 1,407 435	(3,876) 1,281 34 80 601 146 248 150 50 40 894 352
APS AUXILIARY POWER UNITS-INSTALLED (3) BATTERIES ALTERNATORS FUEL TANK OXID. TANK REACTANT FEED, FILL & DRAIN VENT/RELIEF-TANKS THERMAL CONTROL SUPPORTS/INSTALLATION-REACTANT SYSTEM LUBE OIL COOLANT SYSTEM EXHAUST SYSTEM	(3,720) 1,180 250 30 1,056 109 170 100 440 185 200	(2,031) 1,180 250 30 170 100 74 27 200
DRY WEIGHT - LESS MARGIN	12,958	10,834

INTERNAL TO APU'S.

Table 2-4. (Continued)

ITEM	REFERENCE DEDICATED SYSTEMS	REFERENCE INTEGRATED SYSTEMS	
(CONT'D)			
MARGIN	(1,295)	(1,083)	
DRY WEIGHT	14,253	11,917	
OMS RESIDUAL FLUIDS & GASES TRAPPED PROPELLANT-FEED SYSTEM TRAPPED PROPELLANT-ENGINES FUEL BIAS TRAPPED GH2 TRAPPED GO2 RCS RESIDUAL FLUIDS & GASES TRAPPED PROPACCUMMULATORS TRAPPED PROPFEED, FILL & DRAIN	(940) 545 60 40 130 165 (872) 38 589	(1,001) 545 60 40 166 190 (835) 35 589	
TURBOPUMP GG PROP. TRAPPED GH ₂ TRAPPED GO ² HE IN FUEL ² ACCUMMULATORS HE IN OXID. ACCUMMULATORS	69 31 27 112 6	85 121 5	
APS RESIDUAL FLUIDS & GASES TRAPPED REACTANT-TANKS TRAPPED REACTANT-APU'S/LINES	(105) 101 4	(4) 4	
OMS INFLIGHT LOSSES PROP. FOR ENGINE START/STOP (3)	(150) 150	(150) 150	
INERT WEIGHT	16,320	13,907	

Table 2-4. Cont.

ITEM	REFERENCE DEDICATED SYSTEMS	REFERENCE INTEGRATED SYSTEMS
(CONT'D)		
RESERVES OMS - O ₂ '' - H ₂ RCS - O ₂ '' - H ₂ MR=4:1 APS - O ₂ '' - H ₂ MR=1:1	(3,580) 1,689 281 1,000 250 180	(2,388)
OMS/RCS/APS - O ₂ RSS OF ABOVE		1,971 417
NOMINAL PROPELLANT/REACTANT OMS @MR=6:1 RCS @MR=4:1 APS @MR=1:1	(46,370) 39,380 6,270 720	(46,370) 39,380 6,270 720
TOTAL WEIGHT	66,270	62,665

Table 2-5. Detail Weight Comparison of Integrated vs Dedicated $^{0}2^{H_{2}}$ OMS/RCS/APS HLLV Booster (All Weights in Pounds)

ITEM	REFERENCE DEDICATED SYSTEMS	REFERENCE INTEGRATED SYSTEMS
OMS ENGINES & ACCESSORIES ZERO NPSH BOOST PUMPS/MOTORS FUEL TANK OXIDIZER TANK PROPELLANT FEED, FILL & DRAIN VENT/RELIEF-TANKS PNEMATIC PROPELLANT LOADING/MONITORING THERMAL CONTROL SUPPORTS/INSTALLATION	()	()
RCS THRUSTERS-INCL. VALVES (38-3170 LBF) ZERO NPSH BOOST PUMPS/MOTORS TURBOPUMPS FUEL TANK OXIDIZER TANK FUEL BELLOWS ACCUMMULATORS OXID. BELLOWS ACCUMMULATORS PROP. LINES-FEED, FILL & DRAIN ISOLATION VALVES, ETC-FEED, FILL & DRAIN COMPENSATORS VENT/RELIEF-TANKS, ACCUMMULATORS THERMAL CONTROL SUPPORTS/INSTALLATION APS AUXILIARY POWER UNITS-INSTALLED (3) BATTERIES ALTERNATORS FUEL TANK OXID. TANK REACTANT FEED, FILL & DRAIN VENT/RELIEF-TANKS THERMAL CONTROL SUPPORTS/INSTALLATION-REACTANT SYSTEM LUBE OIL COOLANT SYSTEM EXHAUST SYSTEM	(4,448) 1,630 44 76 85 34 420 106 260 170 70 1,118 405 (4,215) 1,540 250 30 1,069 111 210 100 460 195 250	(5,175) 1,630 73 102 131 38 721 122 265 170 70 70 1,313 470 (2,393) 1,540 250 30 210 84 29 250
DRY WEIGHT - LESS MARGIN	8,663	7,568

INTERNAL TO APU'S.

Table 2-5. (Continued)

ITEM	REFERENCE DEDICATED SYSTEMS	REFERENCE INTEGRATED SYSTEMS
(CONT'D)		
MARGIN	(870)	(760)
DRY WEIGHT	9,533	8,328
OMS RESIDUAL FLUIDS & GASES TRAPPED PROPELLANT-FEED SYSTEM TRAPPED PROPELLANT-ENGINES FUEL BIAS TRAPPED GH2 TRAPPED GO2 RCS RESIDUAL FLUIDS & GASES TRAPPED PROPACCUMMULATORS TRAPPED PROPFEED, FILL & DRAIN TURBOPUMP GG PROP. TRAPPED GH2 TRAPPED GH2 TRAPPED GO2 HE IN FUEL ACCUMMULATORS HE IN OXID. ACCUMMULATORS	(812) 26 660 23 10 9 79 5	(933) 35 680 31 19 11 151 6
APS RESIDUAL FLUIDS & GASES TRAPPED REACTANT-TANKS TRAPPED REACTANT-APU'S/LINES	(110) 104 6	(6) 6
OMS INFLIGHT LOSSES PROP. FOR ENGINE START/STOP ()	()	()
INERT WEIGHT	10,455	9,267

Table 2-5. (Continued)

ITEM	REFERENCE DEDICATED SYSTEMS	REFERENCE INTEGRATED SYSTEMS
(CON'T) RESERVES OMS - O ₂ MR=6:1 RCS - O ₂ MR=4:1 APS - O ₂ MR=1:1 OMS/RCS/APS - O ₂ RSS OF """ - H ₂ ABOVE NOMINAL PROPELLANT/REACTANT OMS @MR=6:1 RCS @MR=4:1 APS @MR=1:1	(805) 352 88 182.5 182.5 (2,930) 2,200 730	(599) 396 203 (2,930) 2,200 730
TOTAL WEIGHT	14,190	12,796

Table 2-6. Weight Scaling Equations for Integrated $\rm O_2/H_2$ Subsystems (SSTO and HLLV)

OMS DRY WEIGHT AND RESIDUAL WEIGHT (SSTO AND HLLV ORBITER)

SSTO:
$$W_{DRY} = 0.022W_p + 1.57W_p^{2/3} + 0.034T + 1.4T^{1/2}$$
 $W_{RESIDUALS} = 0.0081W_p + 0.017T$ (INCL. LOSSES FOR 5 FIRINGS)

HLLV ORBITER: $W_{DRY} = 0.022W_p + 1.57W_p^{2/3} + 0.034T + 2.1T^{1/2}$
 $W_{RESIDUALS} = 0.0081W_p + 0.019T$ (INCL. LOSSES FOR 3 FIRINGS)

WHERE

 $W_p = W_p_{NOM}$ OMS $W_p^{1/2}$ (INCL. LOSSES FOR 3 FIRINGS)

 $W_p^{1/2}$ To $W_p^{1/2}$ To $W_p^{1/2}$ To $W_p^{1/2}$ To $W_p^{1/2}$ To $W_p^{1/2}$ OMS. RCS $W_p^{1/2}$ To $W_p^{1/2}$ OMS. RCS $W_p^{1/2}$ OMS. OMS

RCS DRY WEIGHT AND RESIDUALS WEIGHT (SSTO AND HLLV ORBITER)

 $W_{\text{PNOM. APS}} \approx 1.5\% \rightarrow 2.0\% W_{\text{PNOM. OMS}}$

SSTO:
$$W_{DRY} = 0.059W_p + 1.9W_p^{2/3} + 0.020T + 3.3T^{1/2}$$
 $W_{RESIDUALS} = 0.035W_p + 0.0074T$

HLLV ORBITER: $W_{DRY} = 0.059W_p + 1.9W_p^{2/3} + 0.020T + 3.3T^{1/2}$
 $W_{RESIDUALS} = 0.035W_p + 0.0066T$

WHERE $W_p = W_p_{NOM. RCS} + W_p_{NOM. APS}$
 $T = (TVAC_{RCS})$ TOTAL INSTALLED

SUBJECT TO $W_p_{NOM. APS}$
 $\approx 10\% \rightarrow 18\% W_p_{NOM. RCS}$

Table 2-6. (Continued)

RCS DRY WEIGHT AND RESIDUALS WEIGHT (HLLV BOOSTER)

$$W_{DRY} = 0.14W_p + 6.0W_p^{2/3} + 0.019T + 3.0T^{1/2}$$

 $W_{RESIDUALS} = 0.072W_p + 0.0057T$

WHERE

SUBJECT TO
$$^{\approx}$$
 30% \rightarrow 36%W p NOM. APS

APS DRY WEIGHT AND RESIDUALS WEIGHT (SSTO HLLV ORBITER HLLV BOOSTER)

$$W_{DRY} = 1.4P_{MAX} + 5.4P_{MAX}^{1/2} + 280$$

 $W_{RESIDUALS} = 0.004P_{MAX}$

WHERE
$$P_{MAX} = \left(P_{MAX. APS} \sim HP\right)$$
 TOTAL INSTALLED

3.0 POTV VEHICLE

Simplified schematics of dedicated O_2/H_2 MPS/RCS/EPS subsystems are presented in figures 3-1, 3-2, and 3-3, respectively. A simplified schematic of integrated O_2/H_2 MPS/RCS/EPS subsystems is presented in figure 3-4. The updated fuel cell power requirements, power rating, and reactant weight previously referred to are presented in table 3-1. Primary weight estimating criteria for the O_2/H_2 subsystems is presented in table 3-2. A detailed weight comparison of dedicated and integrated O_2/H_2 MPS/RCS/EPS subsystems is presented in table 3-3.

Figure 3-1. Simplified Schematic of LO_2/LH_2MPS POTV

Figure 3-2. Simplified Schematic of LO₂/LH₂RCS POTV Pumped Hydrogen/pumped oxygen

Figure 3-3. Simplified Schematic of $\rm O_2/H_2$ Rue1 Cell EPS POTV Supercritical Storage of $\rm O_2/H_2$

Figure 3-4. Simplified Schematic of Integrated LO_2/LH_2 MPS/RCS/Fuel Cell EPS POTV

Table 3-1. Power Requirements/Fuel Cell Rating/Reactant Weight POTV (Normal Growth)

AVIONICS: BASIC RENDEZVOUS/DOCKING	434 42	WATTS	x x	73 HR 6 "	=	31,682 252	WATT-HR
MPS: BASIC MAIN ENGINES TVC BOOST PUMPS		**	\mathbf{x}	73 HR 0.58 " 0.58 "	=	116	
APS/RCS: BASIC ACCUM. CHARGING [2>	50 530			73 HR 5 "		3,650 2,650	WATT-HR
EPS & DISTRIBUTION:	100	WATTS	x	73 HR	=	7,300	WATT-HR
PAYLOAD:							

POWER REQUIREMENTS: 2,076 WATTS 53,310 WATT-HR

FUEL CELL RATING: 1.3 KW WITH 2.1 KW PEAK

REACTANT WEIGHT @ 1,228 WATT-HR/LB = 33% RESERVE = 58 LB

- REFLECTS ACTUATION OF RADAR/TV
- REFLECTS THRUST $P_c = 150 \text{ PSIA}$

Table 3-2. Primary Weight Estimating Criteria for Dedicated/Integrated O_2/H_2 Subsystems 1 (POTV)

ENGINES (MPS):

ASE-TYPE @20,000 LB TVAC EACH NPSH OF LO-PRESS FUEL PUMP = 0.5 PSI NPSH OF LO-PRESS OXID. PUMP = 1.0 PSI

THRUSTERS (RCS):

16 @150 LB TVAC EACH

FULL CELLS (EPS):
 2 O₂/H₂ UNITS
 UNINSTALLED WEIGHT = 35 LB/KW(AVE)

BACK-UP BATTERY (EPS):
POWER REQUIREMENT: 13 AMP-HR, 28V
Ni - H₂ @25 WATT-HR/LB

BOOST PUMPS/MOTORS (MPS,RCS):

ZERO NPSH BOOST PUMPS

ELECTRIC MOTORS

REDUNDANCY:

MPS - NONE {3 FUEL, 2 REQ'D}

EPS - 6 SETS (3 OXID., 2 REQ'D)

PROPELLANT TANKS (MPS, RCS, EPS):
SPHERICAL
2219-T87
50 MISSION SERVICE LIFE REQUIREMENT

BELLOWS ACCUMMULATORS (RCS):

CYLINDRICAL

2219-T87 PRESSURE SHELL

STAINLESS STEEL BELLOWS

50 MISSION SERVICE LIFE REQUIREMENT

NO. OF ACCUMMULATORS: 2 FUEL, 2 OXID.

TOTAL ACCUMMULATOR CAPACITY:

17% USABLE RCS PROP. (DEDICATED)

17% USABLE RCS/EPS PROP. (INTEGRATED)

(CONT'D)

SEE SIMPLIFIED SCHEMATICS AND FULL CELL POWER ESTIMATES FOR ADDITIONAL DATA.

Table 3-2. (Continued)

PRESSURE SHELL PROOF FACTORS (MPS,RCS,EI	(MPS,RCS,EPS): MPS RCS		RCS	
		TANKS	ACCUM'S	
SERVICE LIFE REQ'T-MISSIONS	50	50	50	50
PRESSURE CYCLING-PER MISSION FUEL DEPTH	0	0	0	0
PARTIAL	6	0	6	0
EQUIV. FULL DEPTH PRESSURE CYCLING-OPER. CONTINGENCY	0.40	0	0.66	50
FULL DEPTH	5	5	5	5
DESIGN CYCLES (FULL DEPTH) STRESS INTENSITY RATIO	50	10	76	110
LOWER BOUNDARY CURVE	0.68	0.77	0.65	0.62
PROOF FACTOR	1.48	1.27	1.54	1.61

THERMAL CONTROL (MPS, EPS)

MLI BLANKET ENCLOSING EACH MAIN TANK, AND SPACECRAFT FRAME RADIATOR SYSTEM FOR FUEL CELLS

Table 3-3. Detail Weight Comparison of Integrated vs Dedicated $\rm O_2/H_2$ MPS/RCS/EPS POTV

(All Weights in Pounds)

		
ITEM	REFERENCE DEDICATED SYSTEMS	REFERENCE INTEGRATED SYSTEMS
MPS (PLUS ASSOC.STRUCT.AND THERMAL CONTROL) MAIN ENGINES & ACCESSORIES (2) ZERO NPSH BOOST PUMPS/MOTORS (2 SETS) PROPELLANT FEED, FILL & DRAIN VENT/RELIEF PNEUMATIC PROPELLANT LOADING/MONITORING FUEL TANK OXIDIZER TANK PRIMARY TRUSSES THRUST STRUCTURE FUEL TANK INSULATION OXIDIZER TANK INSULATION SPACECRAFT INSULATION BASE HEAT SHIELD	(4,670) 910 80 200 250 145 75 1,014 772 170 85 268 139 502 60	(4,693) 910 80 200 250 145 75 1,023 777 174 85 270 140 504 60
FUEL TANK OXIDIZER TANK ZERO NPSH PUMPS/MOTORS (6 SETS) FEED LINES COMPENSATORS FUEL BELLOWS ACCUMMULATORS (2) OXIDIZER BELLOWS ACCUMMULATORS (2) ISOLATION VALVES PRESSURIZATION-VENT/RELIEF THRUSTERS-INCLUDING VALVES (16-150 LBF) INSULATION SUPPORTS/INSTALLATION	(945) 42 15 14 40 10 376 96 40 40 141 45 86	(857) 14 50 10 378 97 40 20 141 29 78
EPS (PLUS ASSOC. PWR. PROCESS. & DISTR. AND THERM. CONTR) FUEL CELLS (2) BATTERY HYDROGEN TANK OXYGEN TANK REACTANT FEED SYSTEM PRESSURIZATION-TANK VENT/RELIEF INSULATION/INTERNAL HEATERS-TANKS SUPPORTS/INSTALLATION POWER PROCESSING & DISTRIBUTION FUEL CELL THERMAL CONTROL	(351) 90 15 6 10 15 20 3 16 120 56	(308) 90 15 15 12 120 56
DRY WEIGHT - LESS MARGIN	5,966	5,858

Table 3-3. (Continued)

(ALL WEIGHTS IN POUNDS)

ITEMS	REFERENCE DEDICATED SYSTEMS	REFERENCE INTEGRATED SYSTEMS
(CON'T)	¥	
MARGIN	(597)	(586)
DRY WEIGHT	6,563	6,444
MPS RESIDUAL FLUIDS & GASES TRAPPED LH ₂ TRAPPED LO ₂ LH ₂ BIAS TRAPPED GH ₂ TRAPPED GO ₂	(1,780) 80 480 151 475 595	(1,787) 80 480 151 478 598
RCS RESIDUAL FLUIDS & GASES TRAPPED LH ₂ - TANK " " " - PUMPS " " - ACCUMMULATORS " " " - LINES TRAPPED LO ₂ - TANK " " " - ACCUMMULATORS " " " - ACCUMMULATORS " " " - LINES TRAPPED GH ₂ TRAPPED GO ₂ HE IN FUEL ACCUMMULATOR HE IN OXIDIZER ACCUMMULATOR EPS RESIDUAL FLUIDS & GASES	(156) 5 5 1 19 3 19 17 3 3 77 4	(139) 5 2 3 19 29 77 4 (2)
TRAPPED O ₂ - TANK TRAPPED H ² - TANK TRAPPED O ² & H ₂ - FUEL CELLS/LINES (CONT'D)	4 0.7 0.3	2

Table 3-3. (Continued)

(ALL WEIGHTS IN POUNDS)

	REFERENCE	REFERENCE
ITEM	DEDICATED SYSTEMS	INTEGRATED SYSTEMS
(CONT'D)		
MPS INFLIGHT LOSSES H ₂ BOILOFF	(522) 116	(524) 117
O ₂ BOILOFF	106	107
LH ₂ FOR ENGINE START/STOP	60	60
LO_2^2 FOR ENGINE START/STOP (6)	240	240
INERT WEIGHT	9,026	8,896
RESERVES	(1,254)	(1,118)
$ \begin{array}{c c} MPS & - & O_2 \\ " & - & H_2 \end{array} $ $ MR=6:1$	951 159	
$\begin{array}{c c} RCS - O^2 \\ MR = 4:1 \end{array}$	104 26	
EDC - 02)	12.5	
$\frac{H^2S}{H^2} = \frac{H^2}{H^2}$ MR=8:1	1.5	
$\left\{\begin{array}{ccc} \text{MPS/RCS/EPS} & - & 0 \\ \text{"} & \text{"} & - & \text{H}_2^2 \end{array}\right\} \text{R.s.s.}$		957 161
NOMINAL PROPELLANT/REACTANT	(174,514)	(174,514)
MPS @MR=6:1	173,160	173,160
RCS @MR=4:1 EPS @MR=8:1	1,310	1,310 44
TOTAL WEIGHT	184,794	184,528

APPENDIX E CONVERSION FACTORS

CONVERSION FACTORS

The following tables express the definitions of miscellaneous units of measure as exact numerical multiples of coherent SI units, and provide multiplying factors for converting numbers and miscellaneous units to corresponding new numbers and SI units.

The first two digits of each numerical entry represent a power of 10. An asterisk follows each number which expresses an exact definition. For example, the entry " $-02\ 2.54$ *" expresses the fact that 1 inch= 2.54×10^{-2} meter, exactly, by definition. Most of the definitions are extracted from National Bureau of Standards documents. Numbers not followed by an asterisk are only approximate representations of definitions, or are the results of physical measurements.

The conversion factors are listed alphabetically and by physical quantity.

The Listing by Physical Quantity includes only relationships which are frequently encountered and deliberately omits the great multiplicity of combinations of units which are used for more specialized purposes. Conversion factors for combinations of units are easily generated from numbers given in the Alphabetical Listing by the technique of direct substitution or by other well-known rules for manipulating units. These rules are adequately discussed in many science and engineering textbooks and are not repeated here.

ALPHABETICAL LISTING

To convert from	to	multiply by
abampere	ampere	+01 1.00*
abcoulomb	coulomb	+01 1.00*
abfarad	farad	+09 1.00*
abhenry	henry	-09 1.00*
abmho	siemens	+09 1.00*
abohm	ohm	-09 1.00*
abvolt	volt	-08 1.00*
acre	meter ²	+03 4.046 856 422 4*
angstrom	meter	-10 1.00*
are	meter ²	+02 1.00*
astronomical unit (IAU)		
astronomical unit (radio)	meter	+11 1.495 978 9
atmosphere	newton/meter2	+05 1.013 25*
bar		
barn	meter ²	-28 1.00*
barrel (petroleum, 42 gallons)	meter ³	-01 1.589 873
barye	newton/meter ²	-01 1.00*
board foot (1'×1'×1")	meter3	-03 2.359 737 216*
British thermal unit:		
(IST before 1956)		
(IST after 1956)	joule	+03 1.055 056
British thermal unit (mean)		
British thermal unit (thermochemical)		
British thermal unit (39° F)		
British thermal unit (60° F)		
bushel (U.S.)	meter ⁴	-02 3.523 907 016 688*
cable	meter	+02 2.194 56*
caliber		· · ·
calorie (International Steam Table)	ioule	+00 4.1868
calorie (mean)		
calorie (thermochemical)		
calorie (15° C)		

To convert from	to	multiply by	
calorie (20° C)	joule	+00 4.181 90	
calorie (kilogram, International Steam Table) _			
calorie (kilogram, mean)			
calorie (kilogram, thermochemical)	joule	+03 4.184*	
carat (metric)	kilogram	-04 2.00*	
Celsius (temperature)			
centimeter of mercury (0° C)			
centimeter of water (4° C)			
chain (engineer or ramden)	meter	+01 3.048*	
chain (surveyor or gunter)	meter	+01 2.011 68*	.,
circular mil			
cord			
cubit			
cup	meter*	-04 2.365 882 3	65*
curie			
day (mean solar)	second (mean solar)	+04 8.64*	
day (sidereal)			
degree (angle)	radian	-021.7453292	51 994 3
denier (international)			
dram (avoirdupois)	kilogram	-03 1.771 845 19	95 31 2 5•
dram (troy or apothecary)	kilogram	-03 3.887 934 6	*
dram (U.S. fluid)	meter ⁸	$-06\ 3.696\ 691\ 19$	95 312 5*
dyne			
electron volt	joule	-19 1.602 1917	
erg			
Fahrenheit (temperature)			
Fahrenheit (temperature)	Celsius	$t_C = (5/9) (t_P - 32)$;)
faraday (based on carbon 12)			
faraday (chemical)	coulomb	+04 9.649 57	
faraday (physical)			
fathom			
fermi (femtometer)			TO DET
fluid ounce (U.S.)			90 Z9+
foot (U.S. survey)			
foot (U.S. survey)	motor		0A
foot of water (39.2° F)	newton/meter*	±03 2 988 98	30
footcandle			
footlambert			
free fall, standard			
furlong			
gal (galileo)	meter/second2	02 1.00*	
gallon (U.K. liquid)			
gallon (U.S. dry)	meter*	-03 4.404 883 7	70 86*
gallon (U.S. liquid)	meter*	-03 3.785 411 7	84*
gamma.	tesia	-09 1.00*	
gauss	tesla	-04 1.00*	
gilbert	ampere turn	-01 7.957 747 2	
gill (U.K.)			
gill (U.S.)			Hay a
grad			
grad			
grain			•
gram	kilogram.	-03 1.00*	

To convert from	to	multiply by
hand	meter	-01 1.016*
hectare	meter ²	+04 1.00*
hogshead (U.S.)	meter ⁸	-01 2.384 809 423 92*
horsepower (550 foot lbf/second)	watt	+02 7.456 998 7
horsepower (boiler)		
horsepower (electric)	watt	+027.46*
horsepower (metric)	watt	+02 7.354 99
horsepower (U.K.)	watt	+02 7.457
horsepower (water)	watt	+02 7.460 43
hour (mean solar)	second (mean solar)	+03 3.60*
hour (sidereal)	second (mean solar)	+03 3.590 170 4
hundredweight (long)		
hundredweight (short)		
inch	meter	-02 2.54*
inch of mercury (32° F)	newton/meter2	+03 3.386 389
inch of mercury (60° F)	newton/meter2	+03 3.376 85
inch of water (39.2° F)		
inch of water (60° F)	newton/meter2	+02 2.4884
		•
kayser	1/meter	+02 1.00*
kilocalorie (International Steam Table)		
kilocalorie (mean)		
kilocalorie (thermochemical)		
kilogram mass	kilogram	+00 1.00*
kilogram force (kgf)	newton	+00 9.806 65*
kilopound force	newton	+00 9.806 65*
kip	newton	+03 4.448 221 615 260 5*
knot (international)		
lambert		
lambert		
langley	joule/meter ²	+04 4.184*
lbf (pound force, avoirdupois)	newton	+00 4.448 221 615 260 5*
lbm (pound mass, avoirdupois)	kilogram	-01 4.535 923 7*
league (U.K. nautical)	meter	+03 5.559 552*
league (international nautical)	meter	+03 5.556*
league (statute)	meter	+03 4.828 032*
light year	meter	+15 9.460 55
link (engineer or ramden)	meter	-01 3.048*
link (surveyor or gunter)	meter	-01 2.011 68*
liter		
lux	lumen/meter ²	+00 1.00*
	en en en en en en en en en en en en en e	
maxwell		
meter	•	
micron		
mil		
mile (U.S. statute)		
mile (U.K. nautical)		
mile (international nautical)	meter	+03 1.852*
mile (U.S. nautical)		
millibar		
millimeter of mercury (0° C)		
minute (angle)		
minute (mean solar)	second (mean solar)	+01.6.00*
minute (sidereal)		
month (mean calendar)	second (mean solar)	+06 2.628*

To convert from	to	multiply by
nautical mile (international)	meter	±03 1 852#
nautical mile (U.S.)		
nautical mile (U.K.)		
		7 00 1.000 101
oersted		
ounce force (avoirdupois)		
ounce mass (avoirdupois)		
ounce mass (troy or apothecary)		
ounce (U.S. fluid)	meter3	-05 2.957 352 956 25*
		01 7 004
parsec (IAU)	motor	1.16 2.005 7
parsec (IAO)		
Pascal	newton/meter	+00 1.00*
peck (U.S.)		
pennyweight		
perch		
phot		
pica (printers)	meter	-03 4.217 517 6*
pint (U.S. dry)	meter ³	-04 5.506 104 713 575*
pint (U.S. liquid)		
point (printers)	meter	-04 3.51 4 598*
poise	newton second/meter*	-01 1.00*
pole	meter	+00 5.0292*
pound force (lbf avoirdupois)	newton	+00 4.448 221 615 260 5*
pound mass (lbm avoirdupois)		
pound mass (troy or apothecary)		
poundal	newton	-01 1.382 549 543 76*
quart (U.S. dry)	m of and	02 1 101 200 042 715\$
quart (U.S. liquid)	mever	04 0 462 500 E
quart (0.8. nquid)	mewr	-04 9.403 392 3
rad (radiation dose absorbed)	joule/kilogram	-02 1.00*
Rankine (temperature)		
rayleigh (rate of photon emission)	1/second meter ²	+10 1.00*
rhe	meter ² /newton second	+01 1.00*
rod		
roentgen	coulomb/kilogram	-04 2.579 76*
rutherford	disintegration/second	+06 1.00*
second (angle)	radian	-06 4.848 136 811
second (ephemeris)	second	+00 1.000 000 000
second (mean solar)		
		and Nautical Almanac
second (sidereal)		
section		
scruple (apothecary)	kilogram	-03 1.295 978 2*
shake		
skein		
slug	kilogram	+01 1.459 390 29
span	meter	-01 2.286*
statampere	ampere	-10 3.335 640
statcoulomb	coulomb	-10 3.335 640
statfarad	farad	-12 1.112 650
stathenry		
statohm		
statute mile (U.S.)		
statvolt		
stere		
		•

To convert from	to	multiply by
stilb	candela/meter2	+04 1.00
stoke	meter ⁹ /second	-04 1.00*
tablespoon	meter ³	-05 1.478 676 478 125*
teaspoon	meter ³	-06 4.928 921 593 75*
ton (assay)		
ton (long)	kilogram	+03 1.016 046 908 8*
ton (metric)	kilogram	+03 1.00*
ton (nuclear equivalent of TNT)	joule	+09 4.20
ton (register)		
ton (short, 2000 pound)	kilogram	+02 9.071 847 4*
tonne		
torr (0° C)	newton/meter2	+02 1.333 22
township		
unit pole	weber	-07 1.256 637
yard	meter	-01 9.144*
year (calendar)	second (mean solar)	+07 3.1536*
year (sidereal)		
year (tropical)		
year 1900, tropical, Jan., day 0, hour 12		
year 1900, tropical, Jan., day 0, hour 12		

LISTING BY PHYSICAL QUANTITY

ACCELERATION

foot/second ²	meter/second2	-01 3.048*
free fall, standard		
gal (galileo)	meter/second2	-02 1.00*
inch/second ²	meter/second2	-02 2.54*

AREA

acre	meter*	+03 4.046 856 422 4*
are		
barn	meter ²	28 1.00*
circular mil	meter*	-10 5.067 074 8
foot ²	meter ²	
hectare	meter ²	+04 1.00*
inch ³	meter ²	-04 6.4516*
mile ² (U.S. statute)	meter ²	+06 2.589 988 110 336*.
section	meter ²	+06 2.589 988 110 336*
township	meter*	+07 9.323 957 2
yard ²	meter*	

DENSITY

gram/centimeter	kilogram/meter	+03 1.00*
lbm/inch ³		
lbm/foot ³		
slug/foot3		

:

To convert from	to	multiply by
caliber	meter	-04 2.54*
chain (surveyor or gunter)	meter	+01 2.011 68*
chain (engineer or ramden)	meter	+01 3.048*
cubit		
fathom		
fermi (femtometer)		
foot	meter	-01 3.048*
foot (U.S. survey)	meter	+00 1200/3937*
foot (U.S. survey)		
furlong	meter	+02 2.011 68*
hand		
inch		
league (U.K. nautical)		
league (international nautical)		
league (statute)		
light year	meter	+15 9.460 55
link (engineer or ramden)		
meter	meter	-01 2.011 68*
micron	waveletigons IXL oo	+00 1.000 763 73*
mil		
mile (U.S. statute)		
mile (U.K. nautical)		
mile (international nautical)		
mile (U.S. nautical)		
nautical mile (U.K.)		
nautical mile (international)		
nautical mile (U.S.)		
pace		
parsec (IAU)		
perch	meter	+00 5.0292*
pica (printers)	meter	-03 4.217 517 6*
point (printers)		
pole		
rod		
skein		
span		
statute mile (U.S.)	meter	+03 1.609 344*
yard	meter	-01 9.144*
	MASS	•
carat (metric)		
gram (avoirdupois)	•	
gram (troy or apothecary)	kilogram	-03 3.887 934 6*
grain	kilogram	05 6.479 891*
gram	kilogram	-03 1.00*
hundredweight (long)	kilogram	+01 5.080 234 544*
hundredweight (short)		
kgf second ² meter (mass)		
kilogram mass		
lbm (pound mass, avoirdupois)		
ounce mass (avoirdupois)		
ounce mass (troy or apothecary)		
pennyweight		
pound mass, lbm (avoirdupois)		
bound mass, rom (avoirdupois)	KHORLSHI	VI 4.000 840 17

To convert from	to	multiply by
pound mass (troy or apothecary)	kilogram	-01 3.732 417 216*
scruple (apothecary)	kilogram	-03 1.295 978 2*
slug	kilogram	+01 1.459 390 29
ton (assay)		
ton (long)	kilogram	+03 1.016 046 908 8*
ton (metric)	kilogram	+03 1.00*
ton (short, 2000 pound)		
tonne	kilogram	+03 1.00*
	POWER	
Btu (thermochemical)/second		
Bitu (thermochemical)/minute		
calorie (thermochemical)/second	watt	+00 4.184*
calorie (thermochemical)/minute	watt	-026.9733333
foot lbf/hour		
foot lbf/minute		
foot lbf/second	Wall	+00 1.355 817 9
horsepower (550 foot lbf/second)		
horsepower (boiler)horsepower (electric)	WALL	1 09 7 46*
horsepower (metric)	watt	±02 7.40°
horsepower (U.K.)	watt.	±02 7.004 88
horsepower (water)	wort.	±02 7.460 43
kilocalorie (thermochemical)/minute	watt	+01 6.973 333 3
kilocalorie (thermochemical)/second		
watt (international of 1948)	watt	+00 1.000 165
		•
	PRESSURE	
at orphore		⊥05 1 013 25
t osphere	newton/meter3	
bar	newton/meter ²	+05 1.00*
barye	newton/meter ² newton/meter ² newton/meter ²	+05 1.00* -01 1.00*
baryecentimeter of mercury (0° C)	newton/meter ² newton/meter ² newton/meter ² newton/meter ²	+05 1.00* -01 1.00* +03 1.333 22
bar barye centimeter of mercury (0° C) centimeter of water (4° C)	newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ²	+05 1.00* -01 1.00* +03 1.333 22 +01 9.806 38
baryecentimeter of mercury (0° C)	newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ²	+05 1.00* -01 1.00* +03 1.333 22 +01 9.806 38 -01 1.00*
bar barye centimeter of mercury (0° C) centimeter of water (4° C) dyne/centimeter2 foot of water (39.2° F) inch of mercury (32° F)	newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ²	+05 1.00* -01 1.00* +03 1.333 22 +01 9.806 38 -01 1.00* +03 2.988 98 +03 3.386 389
bar barye centimeter of mercury (0° C) centimeter of water (4° C) dyne/centimeter2 foot of water (39.2° F) inch of mercury (32° F) inch of mercury (60° F)	newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ²	+05 1.00* -01 1.00* +03 1.333 22 +01 9.806 38 -01 1.00* +03 2.988 98 +03 3.386 389 +03 3.376 85
bar	newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ³ newton/meter ³ newton/meter ³ newton/meter ³	+05 1.00* -01 1.00* +03 1.333 22 +01 9.806 38 -01 1.00* +03 2.988 98 +03 3.386 389 +03 3.376 85 +02 2.490 82
bar	newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ³ newton/meter ³ newton/meter ³ newton/meter ³ newton/meter ³	+05 1.00* -01 1.00* +03 1.333 22 +01 9.806 38 -01 1.00* +03 2.988 98 +03 3.386 389 +03 3.376 85 +02 2.490 82 +02 2.4884
bar barye centimeter of mercury (0° C) centimeter of water (4° C) dyne/centimeter2 foot of water (39.2° F) inch of mercury (32° F) inch of water (39.2° F) inch of water (60° F) kgf/centimeter2	newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ³	+05 1.00* -01 1.00* +03 1.333 22 +01 9.806 38 -01 1.00* +03 2.988 98 +03 3.386 389 +03 3.376 85 +02 2.490 82 +02 2.4884 +04 9.806 65*
bar barye centimeter of mercury (0° C) centimeter of water (4° C) dyne/centimeter² foot of water (39.2° F) inch of mercury (32° F) inch of water (39.2° F) inch of water (60° F) kgf/centimeter² kgf/meter²	newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ³	+05 1.00* -01 1.00* +03 1.333 22 +01 9.806 38 -01 1.00* +03 2.988 98 +03 3.386 389 +03 3.376 85 +02 2.490 82 +02 2.4884 +04 9.806 65* +00 9.806 65*
bar	newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ³	+05 1.00* -01 1.00* +03 1.333 22 +01 9.806 38 -01 1.00* +03 2.988 98 +03 3.386 389 +03 3.376 85 +02 2.490 82 +02 2.4884 +04 9.806 65* +00 9.806 65* +01 4.788 025 8
bar	newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ³	+05 1.00* -01 1.00* +03 1.333 22 +01 9.806 38 -01 1.00* +03 2.988 98 +03 3.386 389 +03 3.376 85 +02 2.490 82 +02 2.4884 +04 9.806 65* +00 9.806 65* +01 4.788 025 8 +03 6.894 757 2
bar	newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ³	+05 1.00* -01 1.00* +03 1.333 22 +01 9.806 38 -01 1.00* +03 2.988 98 +03 3.386 389 +03 3.376 85 +02 2.490 82 +02 2.4884 +04 9.806 65* +00 9.806 65* +01 4.788 025 8 +03 6.894 757 2 +02 1.00*
bar	newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ³	+05 1.00* -01 1.00* +03 1.333 22 +01 9.806 38 -01 1.00* +03 2.988 98 +03 3.386 389 +03 3.376 85 +02 2.490 82 +02 2.4884 +04 9.806 65* +00 9.806 65* +01 4.788 025 8 +03 6.894 757 2 +02 1.00* +02 1.333 224
bar	newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ³ newton/meter ² newton/meter ³	+05 1.00* -01 1.00* +03 1.333 22 +01 9.806 38 -01 1.00* +03 2.988 98 +03 3.386 389 +03 3.376 85 +02 2.490 82 +02 2.4884 +04 9.806 65* +00 9.806 65* +01 4.788 025 8 +03 6.894 757 2 +02 1.00* +02 1.333 224 +00 1.00*
bar	newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ³	+05 1.00* -01 1.00* +03 1.333 22 +01 9.806 38 -01 1.00* +03 2.988 98 +03 3.386 389 +03 3.376 85 +02 2.490 82 +02 2.4884 +04 9.806 65* +00 9.806 65* +01 4.788 025 8 +03 6.894 757 2 +02 1.00* +02 1.333 224 +00 1.00* +03 6.894 757 2
bar	newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ³	+05 1.00* -01 1.00* +03 1.333 22 +01 9.806 38 -01 1.00* +03 2.988 98 +03 3.386 389 +03 3.376 85 +02 2.490 82 +02 2.4884 +04 9.806 65* +00 9.806 65* +01 4.788 025 8 +03 6.894 757 2 +02 1.00* +02 1.333 224 +00 1.00* +03 6.894 757 2
bar	newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ³	+05 1.00* -01 1.00* +03 1.333 22 +01 9.806 38 -01 1.00* +03 2.988 98 +03 3.386 389 +03 3.376 85 +02 2.490 82 +02 2.4884 +04 9.806 65* +00 9.806 65* +01 4.788 025 8 +03 6.894 757 2 +02 1.00* +02 1.333 224 +00 1.00* +03 6.894 757 2
bar	newton/meter³ newton/meter² newton/meter² newton/meter² newton/meter² newton/meter² newton/meter³ newton/meter³ newton/meter³ newton/meter³ newton/meter³ newton/meter³ newton/meter² newton/meter² newton/meter² newton/meter³ newton/meter³ newton/meter³ newton/meter³ newton/meter³ newton/meter³ newton/meter³ newton/meter³ newton/meter³ newton/meter³ newton/meter³ newton/meter³ newton/meter³ newton/meter³ newton/meter³	+05 1.00* -01 1.00* +03 1.333 22 +01 9.806 38 -01 1.00* +03 2.988 98 +03 3.386 389 +03 3.376 85 +02 2.490 82 +02 2.4884 +04 9.806 65* +00 9.806 65* +01 4.788 025 8 +03 6.894 757 2 +02 1.333 224 +00 1.00* +03 6.894 757 2 +02 1.333 224 +00 1.00*
barye centimeter of mercury (0° C) centimeter of water (4° C) dyne/centimeter2_ foot of water (39.2° F) inch of mercury (60° F) inch of water (39.2° F) inch of water (60° F) kgf/centimeter3 kgf/meter4 lbf/foot2 lbf/inch2 (psi) millibar millimeter of mercury (0° C) pascal psi (lbf/inch3) torr (0° C) foot/hour foot/minute	newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ² newton/meter ³	+05 1.00* -01 1.00* +03 1.333 22 +01 9.806 38 -01 1.00* +03 2.988 98 +03 3.386 389 +03 3.376 85 +02 2.490 82 +02 2.4884 +04 9.806 65* +00 9.806 65* +01 4.788 025 8 +03 6.894 757 2 +02 1.00* +02 1.333 224 +00 1.00* +03 6.894 757 2 +02 1.333 22
barye centimeter of mercury (0° C) centimeter of water (4° C) dyne/centimeter2 foot of water (39.2° F) inch of mercury (60° F) inch of water (39.2° F) inch of water (60° F) kgf/centimeter2 kgf/meter3 lbf/foot2 lbf/inch2 (psi) millimeter of mercury (0° C) pascal psi (lbf/inch2) foot/hour	newton/meter³ newton/meter² newton/meter² newton/meter² newton/meter² newton/meter² newton/meter³ newton/meter³ newton/meter³ newton/meter³ newton/meter³ newton/meter³ newton/meter² newton/meter² newton/meter² newton/meter³ newton/meter³ newton/meter³ newton/meter³ newton/meter³ newton/meter³ newton/meter³ newton/meter³ newton/meter³ newton/meter³ newton/meter³ newton/meter³ newton/meter³ newton/meter³ newton/meter³ newton/meter3 newton/meter3	+05 1.00* -01 1.00* +03 1.333 22 +01 9.806 38 -01 1.00* +03 2.988 98 +03 3.386 389 +03 3.376 85 +02 2.490 82 +02 2.4884 +04 9.806 65* +00 9.806 65* +01 4.788 025 8 +03 6.894 757 2 +02 1.333 224 +00 1.00* +03 6.894 757 2 +02 1.333 22 -05 8.466 666 6 -03 5.08* -01 3.048*

	•		
	To convert from	to	multiply by
	kilometer/hour	meter/second	-01 2 777 777 8
	knot (international)		
	mile/hour (U.S. statute)	meter/second	-01 4 4704*
	mile/minute (U.S. statuta)	meter/second	+01 2.682 24*
	mile/second (U.S. statute)		
			1 00 2.000 022
		TEMPERATURE	•
	Celsius	kelvin	t-=t-±273 15
	Fahrenheit	kalvin	f (5/9) (f 450 67)
	Fahrenheit		
	Rankine		
		· · · · · · · · · · · · · · · · · · ·	
		TIME	
	day (mean solar)	second (mean solar)	+04 8.64*
	day (sidereal)		
	hour (mean solar)		
	hour (sidereal)		
,	minute (mean solar)		
	minute (sidereal)		
	month (mean calendar)		
	second (ephemeris)		
	second (mean solar)		
	No.		and Nautical Almanac
	second (sidereal)	second (mean solar)	-01 9.972 695 7
	year (calendar)	second (mean solar)	+07 3.1536*
	year (sidereal)	second (mean solar)	+07 3.155 815 0
	year (tropical)		
	year 1900, tropical, Jan., day 0, hour 12		
	year 1900, tropical, Jan., day 0, hour 12	second	+07 3.155 692 597 47
		VISCOSITY	
			00 4 00 4
	centistoke		
	stoke		
	foot ³ /second		
	centipoise		
	lbm/foot second lbf second/foot ²	newton second/meter*	1 01 4 700 005 0
	poise		
	poundal second/foot2		
	slug/foot second	newton second/meter2	±01 4 788 025 8
	rhe	meter ² /newton second	+01 1.00*
		VOLUME	
		· ·	
	acre foot		
	barrel (petroleum, 42 gallons)		
	board foot		
	bushel (U.S.)		
	cord		
	dam (TTS daid)	meter.	
	dram (U.S. fluid)		
	fluid ounce (U.S.)		-02 2.831 684 659 2*
	11717W	I DE WELT	VA A.OUI UOT UUJ A

To convert from	lo	multiply by
gallon (U.K. liquid)	meter•	
gallon (U.S. dry)	meter	
gallon (U.S. liquid)	meter*	03 3.785 411 784*
gill (UK.)	meter*	
gill (U.S.)		
inch ⁸		
liter		
pint (U.S. dry)	meter*	
pint (U.S. liquid)		
quart (U.S. dry)	meter*	
quart (U.S. liquid)	meter ³	-049.4635295
stere	meter*	+00 1.00*
tablespoon	meter ⁸	
tougnoon	meter	
ton (register)	meter ^s	+00 2.831 684 659 2*
yard*	meter*	

1. Report No. NASA CR-159174	2. Government Accession No.	3. R	ecipient's Catalog No.
4. Title and Subtitle Technology Requirements for	Technology Requirements for Future Earth-to-Geosynchronous Orbit Transportation Systems - Volume III: Appendices		eport Date Inch 1980
			rforming Organization Code
7. Author(s) Vincent A. Caluo Robert T. Conrad James C. Jenkins		8. Pe	rforming Organization Report No.
		10. W	ork Unit No.
9. Performing Organization Name and Address : Boeing Aerospace		54	0-03-13-01
P. O. Box 3999 Seattle, Washing	·	11. C	ontract or Grant No. NAS1-15301
12: Sponsoring Agency Name and Address		. (pe of Report and Period Covered Contractor Report inal, Appendices
National Aeronautics & 9 Washington, DC 20546	Space Administration		onsoring Agency Code
15. Supplementary Notes Langley Technical Monitor: Final Report	Donald G. Eide		
This report is one of three and Volume II - NASA CR-326	volumes. The other tw	o are: Volume	I - NASA CR-3265
Supporting data, in the form of appendices, are documented in this volume to support the final report, Volume II Technical. Appendix A, Engine Data, provides detail technical engine data performed by Aerojet Liquid Rocket Company under subcontract N-500601-9109 to this prime contract. These data are on LOX/CH4 engine, advanced technology forecast on dual expander engine, integrated thruster assembly (ITA), plug cluster engine (PCE), and propulsion growth. Appendix B summarizes the costing methodology and groundrules. Boeing Parametric Cost Model (PCM) is discussed. It also includes vehicle's WBS dictionary. Appendix C provides the iterative point-design weight estimating methodology used throughout this study as applied to winged launch vehicles. Appendix D presents summary data from the study to evaluate and compare weight data for dedicated and integrated O2/H2 subsystems for the SSTO, HLLV and POTV. Detail weights, comparisons, and weight scaling equations are provided.			
		,	·
17. Key Words (Suggested by Author(s)) Engi	ne narametric 18 Distribu	tion Statement	·
data. LOX/CH4 fuel cooled engind LOX/CH4 hydrogen cooled engine d	e concept. concept.	Unclassified	- Unlimited
LOX/CH4 engine; tripopellant dua engine parametric cost model; Vo iterative point-design weight es	ehicle WBS stimating		bject Category 16
dedicated and integrated 02/H2 19. Security Classif. (of this report) 20. Unclassified	weight data. Security Classif. (of this page) Unclassified	21. No. of Pages 143	22. Price* \$7.25

ħ t_{\parallel} • ۲.