Оглавление

1.	Математика	2
	1.1. Математический анализ	2
	1.2. Дискретная математика и математическая логика	3
	1.3. Алгебра и теория чисел	4
	1.4. Теория вероятностей	10
2.	Алгоритмы и структуры данных	12
	2.1. Оценка алгоритмов	12
	2.2. Простейшие алгоритмы	12
	2.3. Простейшие структуры данных	13
n	Программирование	14

1. Математика

1.1. Математический анализ

Предел 1 Обозначения О() и о() 1 Доказательство и применение асимптотических оценок, при необходимости переформулировка в «терминах эпсилон и дельта» 1 Непрерывность 1 Производная 1 Первообразная 1 Дифференциал 1 Нахождение экстремума функции от одной и от многих переменных 1

Формула Тейлора 1 1.2. Дискретная математика и математическая логика Отображения и отношения и их свойства 1 Транзитивное замыкание отношения 1 Эквивалентность 1 Отношения порядка 1 Логика высказываний 1 Кванторы 1 Метод математической индукции

Основные понятия теории графов

1

Лемма о рукопожатиях

1

Критерий двудольности

1

Оценки числа ребер

1

Характеризация деревьев

1

1.3. Алгебра и теория чисел

Группы

Непустое множество G с заданной на нём бинарной операцией $*: G \times G \to G$ называется группой (G,*), если выполнены следующие аксиомы:

1. ассоциативность:

$$\forall (a, b, c \in G): (a * b) * c = a * (b * c);$$

2. наличие нейтрального элемента:

$$\exists e \in G \quad \forall a \in G : (e * a = a * e = a);$$

3. наличие обратного элемента:

$$\forall a \in G \quad \exists a^{-1} \in G: (a * a^{-1} = a^{-1} * a = e).$$

Поля

Множество F с введёнными на нём алгебраическими операциями сложения + и умножения * (+: $F \times F \to F$, *: $F \times F \to F$, т. е. $\forall a,b \in F$ (a+b) \in F, $a*b \in F$) называется полем $\langle F, +, * \rangle$, если выполнены следующие аксиомы:

1. Коммутативность сложения:

$$\forall a, b \in F \quad a+b=b+a.$$

2. Ассоциативность сложения:

$$\forall a, b, c \in F \quad (a+b) + c = a + (b+c).$$

3. Существование нулевого элемента:

$$\exists 0 \in F \colon \forall a \in F \quad a+0=0+a=a.$$

4. Существование противоположного элемента:

$$\forall a \in F \ \exists (-a) \in F : a + (-a) = 0.$$

5. Коммутативность умножения:

$$\forall a, b \in F \quad a * b = b * a.$$

6. Ассоциативность умножения:

$$\forall a, b, c \in F \quad (a * b) * c = a * (b * c).$$

7. Существование единичного элемента:

$$\exists e \in F \setminus \{0\}: \forall a \in F \quad a * e = a.$$

8. Существование обратного элемента для ненулевых элементов:

$$\forall a \in F: a \neq 0) \ \exists a^{-1} \in F: a * a^{-1} = e.$$

9. Дистрибутивность умножения относительно сложения:

$$\forall a, b, c \in F \quad (a+b) * c = (a*c) + (b*c).$$

Кольца

Множество R, на котором заданы две бинарные операции: + и * (называемые сложение и умножение), со следующими свойствами, выполняющимися для любых $a,b,c\in R$:

1. Коммутативность сложения:

$$a+b=b+a$$
.

2. Ассоциативность сложения:

$$(a+b) + c = a + (b+c).$$

3. Существование нулевого элемента:

$$\exists 0 \in R: a + 0 = 0 + a = a.$$

4. Существование противоположного элемента:

$$\forall a \in R \ \exists (-a) \in R : a + (-a) = 0.$$

5. Ассоциативность умножения:

$$(a*b)*c = a*(b*c).$$

6. Дистрибутивность:

$$a * (b + c) = (a * b) + (a * c)$$

 $(b + c) * a = (b * a) + (c * a).$

Факторизация

Факторизацией натурального числа называется его разложение в произведение простых множителей. Может быть выполнена, например, **перебором возможных делителей**. Способ заключается в том, чтобы последовательно делить факторизуемое число n на натуральные числа от 1 до $\lfloor \sqrt{n} \rfloor$. Формально достаточно делить только на простые числа в этом интервале, однако, для этого необходимо знать их множество. На практике составляется таблица простых чисел и производится проверка небольших чисел (например, до 2^{16}). Для очень больших чисел алгоритм не используется в силу низкой скорости работы.

Идеал

Для кольца R идеалом называется подкольцо, замкнутое относительно умножения на элементы из R.

Идеалом кольца R называется такое подкольцо (подкольцо кольца (K, +, *) рассматривается как подмножество $R \subset K$, замкнутое относительно операций + и * из основного кольца) I кольца R, что

- 1. $\forall i \in I \ \forall r \in R$ произведение $ir \in I$ (условие на правые идеалы);
- 2. $\forall i \in I \ \forall r \in R$ произведение $ri \in I$ (условие на левые идеалы);

Сравнения

Если два целых числа a и b при делении на m дают одинаковые остатки, то они называются сравнимыми (или равноостаточными) по модулю числа m.

Сравнимость чисел a и b записывается в виде формулы (сравнения):

$$a \equiv b \pmod{m}$$

. Число m называется модулем сравнения.

Алгоритм Евклида

Алгоритм Евклида – эффективный алгоритм для нахождения наибольшего общего делителя двух целых чисел.

Пусть a и b — целые числа, не равные одновременно нулю, и последовательность чисел $a>b>r_1>r_2>r_3>r_4>\ldots>r_n$ определена тем, что каждое r_k — это остаток от деления предпредыдущего числа на предыдущее, а предпоследнее делится на последнее нацело, то есть:

```
a = bq_0 + r_1,
b = r_1q_1 + r_2,
r_1 = r_2q_2 + r_3,
...
r_{k-2} = r_{k-1}q_{k-1} + r_k,
...
r_{n-2} = r_{n-1}q_{n-1} + r_n,
r_{n-1} = r_nq_n.
```

Тогда HOД(a,b), наибольший общий делитель a и b, равен r_n , последнему ненулевому члену этой последовательности.

Теоремы Эйлера и Ферма

Теорема Эйлера: если a и m взаимно просты, то $a^{\varphi(m)} \equiv 1 \pmod{m}$, где $\varphi(m)$ — функция Эйлера (количество натуральных чисел, меньших m и взаимно простых с ним).

Малая теорема Ферма: если a не делится на простое число p, то $a^{p-1} \equiv 1 \pmod{p}$.

Кольцо многочленов

Многочлен от x с коэффициентами в поле k — это выражение вида $p = p_m x^m + p_{m-1} x^{m-1} + \ldots + p_1 x + p_0$, где p_0, \ldots, p_m — элементы k, коэффициенты p, a, x, x^2, \ldots — формальные символы («степени х»). Такие выражения можно складывать и перемножать по обычным правилам действий с алгебраическими выражениями (коммутативность сложения, дистрибутивность, приведение подобных членов и т. д.). Члены $p_k x^k$ с нулевым коэффициентом

 p_k при записи обычно опускаются. Используя символ суммы, многочлены записывают в более компактном виде:

$$p = p_m x^m + p_{m-1} x^{m-1} + \ldots + p_1 x + p_0 = \sum_{k=0}^m p_k x^k.$$

Множество всех многочленов с коэффициентами в k образует коммутативное кольцо, обозначаемое k[x] и называемое **кольцом многочленов** над k.

Число корней многочлена

Корень многочлена (не равного тождественно нулю) $a_0 + a_1 x + \ldots + a_n x^n$ над полем K — это элемент $c \in K$ (либо элемент расширения поля K), такой, что выполняются два следующих равносильных условия:

- данный многочлен делится на многочлен x-c;
- подстановка элемента с вместо х обращает уравнение $a_0 + a_1 x + \ldots + a_n x^n = 0$ в тождество.

Число корней многочлена степени n не превышает n даже в том случае, если кратные корни учитывать кратное количество раз.

Линейные пространства и операторы

Линейное пространство $V\left(F\right)$ над полем F — это упорядоченная четвёрка $(V,F,+,\cdot)$, где

- \bullet V непустое множество элементов произвольной природы, которые называются векторами;
- F поле, элементы которого называются скалярами;
- Определена операция сложения векторов $V \times V \to V$, сопоставляющая каждой паре элементов \mathbf{x}, \mathbf{y} множества V единственный элемент множества V, называемый их суммой и обозначаемый $\mathbf{x} + \mathbf{y}$;
- Определена операция умножения векторов на скаляры $F \times V \to V$, сопоставляющая каждому элементу λ поля F и каждому элементу \mathbf{x} множества V единственный элемент множества V, обозначаемый $\lambda \cdot \mathbf{x}$ или $\lambda \mathbf{x}$;

причём заданные операции удовлетворяют следующим аксиомам — аксиомам линейного (векторного) пространства:

- $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$, для любых $\mathbf{x}, \mathbf{y} \in V$ (коммутативность сложения);
- $\mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}$, для любых $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ (ассоциативность сложения);
- существует такой элемент $\mathbf{0} \in V$, что $\mathbf{x} + \mathbf{0} = \mathbf{0} + \mathbf{x} = \mathbf{x}$ для любого $\mathbf{x} \in V$ (существование нейтрального элемента относительно сложения), называемый нулевым вектором или просто нулём пространства V;
- для любого $\mathbf{x} \in V$ существует такой элемент $-\mathbf{x} \in V$, что $\mathbf{x} + (-\mathbf{x}) = \mathbf{0}$, называемый вектором, противоположным вектору \mathbf{x} ;
- $\alpha(\beta \mathbf{x}) = (\alpha \beta) \mathbf{x}$ (ассоциативность умножения на скаляр);
- $1 \cdot \mathbf{x} = \mathbf{x}$ (унитарность: умножение на нейтральный (по умножению) элемент поля F сохраняет вектор).
- $(\alpha + \beta)$ **x** = α **x** + β **x** (дистрибутивность умножения вектора на скаляр относительно сложения скаляров);
- $\alpha(\mathbf{x} + \mathbf{y}) = \alpha \mathbf{x} + \alpha \mathbf{y}$ (дистрибутивность умножения вектора на скаляр относительно сложения векторов).

Линейным отображением (оператором) векторного пространства L_K над полем K в векторное пространство M_K над тем же полем K (линейным оператором из L_K в M_K) называется отображение $f\colon L_K\to M_K$, удовлетворяющее условию линейности:

- f(x + y) = f(x) + f(y),
- $f(\alpha x) = \alpha f(x)$.

для всех $x, y \in L_K$ и $\alpha \in K$.

Базис, размерность, ранг

Рангом системы строк (столбцов) матрицы A с m строк и n столбцов называется максимальное число линейно независимых строк.

Число столбцов и строк задают размерность матрицы.

Векторы $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ называются линейно зависимыми, если существует их нетривиальная линейная комбинация, значение которой равно нулю; то есть $\alpha_1\mathbf{x}_1 + \alpha_2\mathbf{x}_2 + \dots + \alpha_n\mathbf{x}_n = \mathbf{0}$ при некоторых коэффициентах $\alpha_1, \alpha_2, \dots, \alpha_n \in F$, причём хотя бы один из коэффициентов α_i отличен от нуля.

В противном случае эти векторы называются линейно независимыми.

Число элементов (мощность) максимального линейно независимого множества элементов векторного пространства не зависит от выбора этого множества. Данное число называется рангом, или размерностью, пространства, а само это множество — базисом. Элементы базиса именуют базисными векторами. Размерность пространства чаще всего обозначается символом dim.

Собственные числа и собственные векторы

Пусть L — линейное пространство над полем $K,\ A{:}\ L\to L$ — линейное преобразование.

Собственным вектором линейного преобразования A называется такой ненулевой вектор $x \in L$, что для некоторого $\lambda \in K$ $Ax = \lambda x$.

Собственным значением (собственным числом) линейного преобразования A называется такое число $\lambda \in K$, для которого существует собственный вектор, то есть уравнение $Ax = \lambda x$ имеет ненулевое решение $x \in L$.

Упрощённо говоря, собственный вектор — любой ненулевой вектор x, который отображается в коллинеарный ему вектор λx оператором A, а соответствующий скаляр λ называется собственным значением оператора.

Характеристический многочлен

Для данной матрицы $A, \chi(\lambda) = \det(A - \lambda E),$ где E — единичная матрица, является многочленом от λ , который называется характеристическим многочленом матрицы A.

1.4. Теория вероятностей

Зависимые и независимые события

1

Условные вероятности

Формула полной вероятности

1

Математическое ожидание

1

Второй момент

1

Неравенства Маркова и Чебышёва

2. Алгоритмы и структуры данных

Нужно уметь написать код для перечисленных ниже элементарных алгоритмов.

2.1. Оценка алгоритмов

Мы рассчитываем, что вы понимаете, какое количество операций и объём дополнительной памяти необходимы для обсуждаемых алгоритмов и из каких соображений это получается.

2.2. Простейшие алгоритмы

Поиск заданного элемента

Пои

Поиск наибольшего элемента

1

Сортировка вставкой

1

Сортировка пузырьком

1

Быстрая сортировка

1

Иерархические сортировки

2.3. Простейшие структуры данных

Массив

1

Список

1

Стек

1

Очередь

3. Программирование

Нужно знать базовые принципы одного из «традиционных» (C, C++, Java, Python и др.) языков программирования.

Основы синтаксиса
Переменные
Условные выражения
Циклы
Массивы

Функции Рекурсия

Динамическая память

Стек