

PI5A4599A

SOTINY™ Low Resistance, Low-Voltage Single-Supply SPDT Switch

Features

- Low On-Resistance: 10 ohms max.
- R_{ON} Matching: 2 ohms max.
- R_{ON} Flatness: 3.5 ohms max.
- Low 0.5nA Input Leakage at 25 °C
- 2V to 6V Single-Supply Operation
- Fast Switching Time
 - 15ns t_{ON}
 - 7ns toff
- Break-Before-Make Switching Guaranteed
- 5pC max Charge Injection
- 225MHz Channel Bandwidth
- 76dB Off-Isolation at 1MHz
- TTL/CMOS Logic Compatible
- Low Power Consumption: 5µW
- Improved Direct Replacement for MAX4599
- Packages available:
 - -6-pin Small Compact SC70

Applications

- Communication Circuits
- Cellular Phones
- Audio and Video Signal Routing
- Portable Battery-Operated Equipment
- **Data Acquisition Systems**
- Computer Peripherals
- **Telecommunications**
- Relay Replacement
- Wireless Terminals and Peripherals

Description

The PI5A4599A is an improved, direct replacement for the MAX4599 single-pole, double-throw (SPDT) analog switch. Improved specifications include a low maximum ON resistance of 10 ohms and fast switching times ($t_{ON} = 15$ ns max., $t_{OFF} = 7$ ns max.) with 5V supply operation. With a 2.5V supply, resistance is a low 40 ohms max.

Specifications are given for 2.5V, 3.3V and 5V power supply operation. Operating voltage range is 2.0V to 6.0V.

To minimize PC board area use, the PI5A4599A is available in a compact 6-pin SC70 package. Operating temperature range is -40°C to 85°C.

Functional Diagram, Pin Configuration

Truth Tables

	PI5A4599A			
Logic	NC	NO		
0	ON	OFF		
1	OFF	ON		

Absolute Maximum Ratings

Voltages Referenced to GND V+	0.5V to +7V
$V_{IN}, V_{COM}, V_{NC}, V_{NO} (Note 1)or 30 mA, whichever occurs first$	0.5V to V _{CC} +2V
Current (any terminal)	±30mA
Peak Current, COM, NO, NC (Pulsed at 1ms, 10% duty cycle)	±30mA

Thermal Information

Continuous Power Dissipation	
SC70-6 (derate 3.1mW/°C above +70°C)	. 245mW
Storage Temperature65°C to	+150°C
Lead Temperature (soldering, 10s)	. +300°C

Note:

 $1. \ Signals \ on \ NC, NO, COM, or \ IN \ exceeding \ V+or \ Gnd \ are \ clamped$ by internal diodes. Limit forward diode current to 30mA.

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single +5V Supply

 $(V+=+5V\pm10\%, GND=0V, V_{INH}=2.4V, V_{INL}=0.8V)$

Parameter	Symbol	Conditions	Temp.(°C)	M in. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units	
Analog Switch	Analog Switch							
Analog Signal Range ⁽³⁾	V _{ANALOG}		Full	0		V+	V	
On Registeres	D		25		7	8		
On Resistance	R_{ON}	$V+ = 4.5V$, $I_{COM} = -30mA$,	Full			10		
On-Resistance Match	4.0	V_{NO} or $V_{NC} = +2.5V$	25		0.1	0.5		
Between Channels ⁽⁴⁾	$\Delta R_{ m ON}$		Full			1	ohm	
On-Resistance	D	$V+ = 5V,$ $I_{COM} = -30mA,$ V_{NO} or $V_{NC} = 1V, 2.5V, 4V$	25		2.72	3.5		
Flatness ⁽⁵⁾	R _{FLAT(ON)}		Full			4		
NO or NC Off	I _{NO(OFF)} or I _{NC(OFF)}	$V+ = 5.5V, V_{COM} = 0V,$	25	-0.5	0.18	0.5		
Leakage Current ⁽⁶⁾		V_{NO} or $V_{NC} = 4.5V$	Full	-5		5		
COM Off Leakage	_	$V+=5.5V, \\ V_{COM}=+4.5V, V_{NO} \text{ or } \\ V_{NC}=\pm 0V$	25	-1.0	0.20	1.0	nA	
Current ⁽⁶⁾	$I_{COM(OFF)}$		Full	-10		10		
COM On Leakage	T	$V + = 5.5V$, $V_{COM} = +4.5V$	25	-1.0	0.20	1.0		
Current ⁽⁶⁾	$I_{\text{COM(ON)}}$	V_{NO} or $V_{NC} = +4.5V$	Full	10		10		

2

Electrical Specifications - Single +5V Supply (continued)

 $(V+=+5V\pm10\%, GND=0V, V_{INH}=2.4V, V_{INL}=0.8V)$

Parameter	Symbol	Conditions	Temp(°C)	Min. ⁽¹⁾	Typ. (2)	Max.(1)	Units
Logic Input			'				
Input High Voltage	V_{IH}	Guaranteed logic High Level		2			V
Input Low Voltage	V_{IL}	Guaranteed logic Low Level				0.8	
Input Current with Voltage High	I_{INH}	$V_{IN} = 2.4V$, all others = $0.8V$	Full	-1	0.005	1	
Input Current with Voltage Low	I_{INL}	$V_{\rm IN}=0.8 V$, all others = 2.4 V		-1	0.005	1	μΑ
Dynamic							
Turn-On Time	4		25		7	15	
Turn-On Time	t_{ON}	V - 5V Figure 1	Full			20	
Turn-Off Time	4	$V_{\rm CC} = 5V$, Figure 1	25		1	7	- ns
Turn-OII Time	$t_{ m OFF}$		Full			10	
Duogle Dofono Moleo	Before-Make t_{BBM} Figure 3 $\frac{25}{\text{Full}}$	Fig. 2	25			10	
Break-Belore-Make		Full	5			1	
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ ohm, Figure 2	25		1.5	5	рC
Off Isolation	OIRR	$R_L = 50$ ohms, $C_L = 5pF$, $f = 1MHz$, Figure 4			80		ID.
Crosstalk ⁽⁸⁾	X_{TALK}	$R_L = 50$ ohms, $C_L = 5pF$, f = 1MHz, Figure 5			80		dB
NC or NO Capacitance	C _(OFF)	C 12 (I			5.0		
COM Off Capacitance	C _{COM(OFF)}	f = 1MHz, Figure 6			5.0		pF
COM On Capacitance	C _{COM(ON)}	f = 1MHz, Figure 7			13		†
-3dB Bandwidth	BW	$R_L = 50$ ohms, Figure 8	Full		300		MHz
Supply							
Power-Supply Range	V+		Full	2		6	V
Positve Supply Current	I+	$V_{CC} = 5.5V$, $V_{IN} = 0V$ or V+	rull			1	μА

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

3

- Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- Guaranteed by design. 3.
- 4. $\Delta R_{ON} = R_{ON} max. R_{ON} min.$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-resistance measured.
- 6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.
- Off Isolation = $20\log_{10} [V_{COM}/(V_{NO} \text{ or } V_{NC})]$. See Figure 3.
- 8. Between any two switches. See Figure 4.

Electrical Specifications - Single +3.3V Supply

 $(V+=+3.3V\pm10\%, GND=0V, V_{INH}=2.4V, V_{INL}=0.8V)$

Parameter	Symbol	Conditions	Temp.(°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units	
Analog Switch								
Analog Signal Range ⁽³⁾	V _{ANALOG}			0		V+	V	
On-Resistance	D	$V+ = 3V$, $I_{COM} = -30$ mA,	25		12	14.0		
On-Resistance	R _{ON}	V_{NO} or $V_{NC} = 1.5V$	Full			17		
On-Resistance Match			25		0.2	0.5	Ω	
Between Channels ⁽⁴⁾		$V+ = 3.3V$, $I_{COM} = -30mA$,	Full			1	22	
On-Resistance	Der imiers	$V_{NO} \text{ or } V_{NC} = 0.8V, 2.5V$	25		0.5	4		
Flatness ^(3,5)	R _{FLAT(ON)}		Full			5		
Dynamic								
T. O. T.			25		15	25		
Turn-On Time	ton	$V + = 3.3V, V_{NO}$	Full			40		
Turn-Off Time	torn	or $V_{NC} = 1.5V$, Figure 1	25		1.5	12		
Turn-On Time	toff		Full			20	ns	
Break-Before-Make	tonic	Figure 3	25		10			
Dicak-Deloie-Wake	t _{BBM}	riguic 3	Full	5				
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ V, Figure 2	25		1.3	5	pC	
Supply								
Positive Supply Current	I+	$V+=3.6V$, $V_{IN}=0V$ or $V+$ All Channels on or off	Full			1	μΑ	
Logic Input								
Input High Voltage	V _{IH}	Guaranteed logic high level	Full	2			V	
Input Low Voltage	V _{IL}	Guaranteed logic low level	Full			0.8	V	
Input High Current	I _{INH}	$V_{\rm IN}$ = 2.4V, all others = 0.8V	Full	-1		1		
Input Low Current	I _{INL}	$V_{IN} = 0.8V$, all others = 2.4V	Full	-1		1	μΑ	

Notes:

The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

4

- Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- $\Delta R_{ON} = R_{ON} \max$. $R_{ON} \min$.
- Flatness is defined as the difference between the maximum and minimum value of On-resistance measured.
- 6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.
- Off Isolation = $20\log_{10} [V_{COM}/(V_{NO} \text{ or } V_{NC})]$. See Figure 4.
- Between any two switches. See Figure 5.

Electrical Specifications - Single +2.5V Supply

 $(V+=+2.5V\pm10\%, GND=0V, V_{INH}=2.4V, V_{INL}=0.8V)$

Parameter	Symbol	Conditions	Temp.(°C)	Min.(1)	Typ. ⁽²⁾	Max.(1)	Units	
Analog Switch								
Analog Signal Range ⁽³⁾	V _{ANALOG}			0		V+	V	
On-Resistance	D	$V+ = 2.5V$, $I_{COM} = -30mA$,	25		20	22		
On-Resistance	R _{ON}	V_{NO} or $V_{NC} = 1.5V$	Full			26		
On-Resistance Match	ΔR_{ON}		25		0.3	0.5	Ω	
Between Channels ⁽⁴⁾		$V+ = 2.5V$, $I_{COM} = -30$ mA,	Full			1	22	
On-Resistance	D	$V_{NO} \text{ or } V_{NC} = 0.8V, 2.5V$	25		0.5	5		
Flatness ^(3,5)	R _{FLAT(ON)}		Full			6		
Dynamic								
Turn-On Time	tox		25		20	30	ns	
	t _{ON}	$V+ = 2.5V, V_{NO}$	Full		_	45		
Turn-Off Time	town		25			20		
Turi-On Time	t _{OFF}		Full		_	30		
Break-Before-Make	t	Figure 3	25		10			
Break-Belore-Wake	$t_{ m BBM}$	1 iguic 5	Full	5				
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ V, Figure 2	25		0.9	5	рC	
Supply								
Positive Supply Current	I+	$V+ = 2.5V$, $V_{IN} = 0V$ or $V+$ All Channels on or off	Full			1	μΑ	
Logic Input								
Input High Voltage	V _{IH}	Guaranteed logic high level	Full	2			V	
Input Low Voltage	V _{IL}	Guaranteed logic low level	Full			0.8	v	
Input High Current	I _{INH}	$V_{IN} = 2.4V$, all others = 0.8V	Full	-1		1		
Input Low Current	I _{INL}	$V_{IN} = 0.8V$, all others = 2.4V	Full	-1		1	μΑ	

Notes:

The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

5

- Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- Guaranteed by design. 3.
- 4. $\Delta R_{ON} = R_{ON} max. R_{ON} min.$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-resistance measured.
- 6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.
- Off Isolation = $20\log_{10} [V_{COM}/(V_{NO} \text{ or } V_{NC})]$. See Figure 4.
- Between any two switches. See Figure 5.

Test Circuits/Timing Diagrams

Figure 1. Switching Time

Figure 2. Charge Injection

Figure 3. Break-Before-Make Interval

Test Circuits/Timing Diagrams (continued)

Figure 4. Off Isolation/On-Channel Bandwidth

Figure 5. Crosstalk

Figure 6. Channel-Off Capacitance

Figure 7. Channel-On Capacitance

Figure 8. Bandwidth

PS8553 08/10/01

7

6-Pin SC70 (C) Package

Ordering Information

Part Number	Package	Package Top Mark
PI5A4599ACX	SC70-6	A63