15. טבלת הנגזרות + אינטול ח $\left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}$ במקרה פרטי , $\left(x^{\alpha}\right)' = \alpha x^{\alpha-1}$ $\left(e^{x}\right)'=e^{x}$ במקרה פרטי , $\left(a^{x}\right)'=a^{x}\ln a$ $(\ln x)' = \frac{1}{x}$ במקרה פרטי, $(\log_a x)' = \frac{1}{x \ln a} = \frac{\log_a e}{x}$ $(\sin x)' = \cos x$, $(\cos x)' = -\sin x$, $(\tan x)' = \frac{1}{\cos^2 x}$, $(\cot x)' = -\frac{1}{\sin^2 x}$ |x| < 1 כאשר (arccos x)' = $-\frac{1}{\sqrt{1-x^2}}$, (arcsin x)' = $\frac{1}{\sqrt{1-x^2}}$ $(\operatorname{arc} \cot x)' = -\frac{1}{1+x^2}$, $(\operatorname{arc} \tan x)' = \frac{1}{1+x^2}$ $\left(\coth x\right)' = -\frac{1}{\sinh^2 x}$, $\left(\tanh x\right)' = \frac{1}{\cosh^2 x}$, $\left(\cosh x\right)' = \sinh x$, $\left(\sinh x\right)' = \cosh x$ $\alpha \neq -1$ כאשר $\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C$, $\int \frac{dx}{x} = \ln|x| + C$ $\int e^x dx = e^x + C$ במקרה פרטי , $\int a^x dx = \frac{a^x}{\ln a} + C$, (a > 0) $\int \sin x dx = -\cos x + C \quad , \quad \int \cos x dx = \sin x + C$ $\int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \quad , \quad \int \frac{dx}{\sin x} = \ln \left| \tan \frac{x}{2} \right| + C$ $\int \frac{dx}{\cos^2 x} = \tan x + C \quad , \quad \int \frac{dx}{\sin^2 x} = -\cot x + C$ $\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C, \qquad (a \neq 0)$ $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C , \int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C,$ $\int \frac{dx}{\sqrt{x^2 + a}} = \ln\left|x + \sqrt{x^2 + a}\right| + C, \qquad (a \neq 0), \int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin\frac{x}{a} + C,$ $\int \cosh x dx = \sinh x + C \quad , \int \sinh x dx = \cosh x + C$ $\int \frac{dx}{\cosh^2 x} = -\coth x + C \qquad , \int \frac{dx}{\cosh^2 x} = \tanh x + C$ מיטות האינטגרציה . 17 $\int f(ax+b)dx = \frac{1}{c}F(ax+b) + C$ אז אין אין פונקציה קדומה של (1) $\int f(x)dx = \int f(t)g'(t)dt \text{ in }, x = g(t) \text{ in } (2)$

$$\int f(ax+b)dx = \frac{1}{a}F(ax+b) + C \quad \text{אז}, \ f(x) \quad \text{אז} \quad F(x) \quad \text{אז} \quad F(x) \quad \text{אז} \quad F(x)$$

$$\int f(x)dx = \int f(t)g'(t)dt \quad \text{if} \quad x = g(t) \quad \text{if} \quad (2)$$

 $\int u(x) \cdot v'(x) dx = u(x) \cdot v(x) - \int v(x) \cdot u'(x) dx :$ בחלקים אינטגרציה (3)

6)

M's CMIR'S C MI'IN S

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2} , \quad \sin \alpha - \sin \beta = 2 \sin \frac{\alpha - \beta}{2} \cos \frac{\alpha + \beta}{2}$$

$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2} , \quad \cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

$$\tan \alpha \pm \tan \beta = \frac{\sin(\alpha \pm \beta)}{\cos \alpha \cos \beta} . \qquad \cot \alpha \pm \cot \beta = \frac{\sin(\alpha \pm \beta)}{\sin \alpha \sin \beta}$$

$$\cos \alpha \cdot \cos \beta = \frac{1}{2} (\cos(\alpha - \beta) + \cos(\alpha + \beta))$$

$$\sin \alpha \cdot \sin \beta = \frac{1}{2} (\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\sin \alpha \cdot \cos \beta = \frac{1}{2} (\sin(\alpha - \beta) + \sin(\alpha + \beta))$$

	-α	π	π	π – α	$\pi + \alpha$	$\frac{3\pi}{\alpha} - \alpha$	$\frac{3\pi}{2} + \alpha$
		$\frac{-\alpha}{2}$	$\frac{-+\alpha}{2}$			2	2
$\sin \alpha$	$-\sin\alpha$	cosα	cosα	sin α	$-\sin\alpha$	$-\cos\alpha$	$-\cos\alpha$
cosα	cosα	$\sin \alpha$	$-\sin \alpha$	-cos a	- cos α	$-\sin\alpha$	$\sin \alpha$
tanα	$-\tan \alpha$	$\cot \alpha$	$-\cot \alpha$	– tan α	$\tan \alpha$	cot a	$-\cot \alpha$
cota	$-\cot \alpha$	$\tan \alpha$	$-\tan \alpha$	$-\cot \alpha$	cot α	$\tan \alpha$	− tan α

	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	l	0
cosα	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	- l
$\tan \alpha$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	œ	0
cot a	×	$\sqrt{3}$	1	$\sqrt{3}$	0	r

11. זהויות טריגונומטריות

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}, \qquad \cot \alpha = \frac{1}{\tan \alpha}, \quad 1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha}, \qquad 1 + \cot^2 \alpha = \frac{1}{\sin^2 \alpha},$$

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta, \qquad \cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}, \qquad \cot(\alpha \pm \beta) = \frac{\cot \alpha \cot \beta \mp 1}{\cot \alpha \pm \cot \beta}$$

$$\sin 2\alpha = 2\sin \alpha \cos \beta, \qquad \cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha, \qquad \tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha}$$

$$1 - \cos \alpha = 2\sin^2 \frac{\alpha}{2}, \qquad 1 + \cos \alpha = 2\cos^2 \frac{\alpha}{2}$$

$$\sin \alpha = \frac{2\tan^2 \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}}, \qquad \cos \alpha = \frac{1 - \tan^2 \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}}$$

$$\tan^2 \frac{\alpha}{2} = \frac{1 - \cos \alpha}{1 + \cos \alpha}, \qquad \tan \frac{\alpha}{2} = \frac{1 - \cos \alpha}{1 + \cos \alpha}$$