

Dinámica (FIS1514)

Energía potencial y conservación de la energía

Felipe Isaule

felipe.isaule@uc.cl

Miércoles 2 de Octubre de 2024

Resumen clase anterior

- Presentamos el concepto de trabajo.
- Definimos la energía cinética.
- Presentamos la ecuación de trabajo-energía.

Clase de hoy

- Energía potencial.
- Ecuación de trabajo-energía.
- Fuerzas conservativas y disipación.

- Bibliografía recomendada:
 - Meriam (3.6, 3.7).
 - Hibbeler (14.1, 14.2, 14.3, 14.5, 14.6).

Clase de hoy

- Energía potencial.
- Ecuación de trabajo-energía.
- Fuerzas conservativas y disipación.

Ecuación trabajo-energía

• En la clase anterior presentamos la ecuación de trabajo-energía

$$W_{A\to B} = T_B - T_A$$

donde T es la **energía cinética**

$$T = \frac{1}{2}mv^2$$

 En principio el trabajo total realizado por fuerzas lo tenemos que calcular formalmente

$$W_{A\to B} = \int_{A}^{B} \vec{F} \cdot d\vec{r}$$

 Pero el trabajo producido por ciertas fuerzas es siempre conocido, por lo que podemos definir una energía potencial.

Energía potencial gravitatoria (Peso)

• En la clase pasada, obtuvimos que el trabajo producido por el Peso entre dos altura y_A e y_B es:

$$W_{A\to B} = -mg(y_B - y_A)$$

Lo que motiva la definición de energía potencial gravitatoria

$$U_g = m g h$$

donde h es la **altura** a la que está el cuerpo.

- Esta altura es definida desde un punto de referencia.
- La elección de este punto de referencia no es importante, ya que sólo nos interesan las diferencias de energía.

$$\Delta U_g = m g \left(h_B - h_A \right)$$

Energía potencial elástica

• En la clase pasada, obtuvimos que el trabajo producido por un resorte entre dos puntos x_A e x_B es:

$$W_{A \to B} = -\frac{k}{2}(x_B^2 - x_A^2)$$

Lo que motiva la definición de energía potencial elástica

$$U_e = \frac{k}{2}x^2$$

Esta distancia está definida desde el punto de equilibrio.

Recordar tener cuidado si se usa un sistema de referencia que no parte del punto de equilibrio del resorte.

Clase de hoy

- Energía potencial.
- Ecuación de trabajo-energía.
- Fuerzas conservativas y disipación.

Ecuación de trabajo-energía

 Cuando tenemos fuerzas que generan energía potencial, la ecuación de trabajo-energía toma la forma

$$W'_{A\to B} = \Delta T + \Delta U$$

$$\Delta T = T_B - T_A$$
$$\Delta U = U_B - U_A$$

donde W' es el trabajo realizado por fuerzas <u>sin</u> energía potencial, y ΔU considera todas las energías potenciales presentes.

Usualmente escribimos esta ecuación como

$$T_A + U_A + W'_{A \to B} = T_B + U_B$$

En este curso sólo consideramos fuerzas potenciales gravitacionales (peso) y elásticas.

Conservación de la energía

 En problemas donde sólo hay fuerzas con energía potencial o que no generan trabajo, la ecuación trabajo-energía se simplifica

$$T_A + U_A = T_B + U_B$$

que corresponde a la ecuación de conservación de la energía.

Definimos la energía mecánica total en un instante como

$$E = T + U$$

es decir, la suma de la energía cinética y potencial.

• Entonces, cuando hay conservación de la energía

$$E_A = E_B$$

Ejemplo 1:

- Una esfera de **masa** m es lanzada horizontalmente con una **rapidez** $v_0>2gh$ hacia una rampa sin roce como muestra la figura. Considerando que la rampa alcanza una altura h, encuentre:
 - → La rapidez con que sale de la rampa.
 - → La altura máxima que alcanza.

Ejemplo 1:

- Una esfera de **masa** m es lanzada horizontalmente con una **rapidez** $v_0>2gh$ hacia una rampa sin roce como muestra la figura. Considerando que la rampa alcanza una altura h, encuentre:
 - → La rapidez con que sale de la rampa.

Por conservación de la energía:

$$T_A + U_A = T_B + U_B$$

$$\frac{1}{2}mv_0^2 = \frac{1}{2}mv_B^2 + mgh$$

$$v_B = \sqrt{v_0^2 - 2gh}$$

^{*}Para salir de la rampa es necesaria una rapidez inicial de $v_0>2gh$.

Ejemplo 1:

- Una esfera de **masa** m es lanzada horizontalmente con una **rapidez** $v_0>2gh$ hacia una rampa sin roce como muestra la figura. Considerando que la rampa alcanza una altura h, encuentre:
 - → La altura máxima que alcanza.

Por conservación de la energía:

Ejemplo 2:

• Una argolla de **masa** m se encuentra pegada a un resorte de **constante elástica** k y **largo natural** x_0 como muestra la figura. Si la argolla es soltada del **reposo** desde el punto A, encuentre la rapidez de la argolla en el punto B.

Ejemplo 2:

• Una argolla de **masa** m se encuentra pegada a un resorte de **constante elástica** k y **largo natural** x_0 como muestra la figura. Si la argolla es soltada del **reposo** desde el punto A, encuentre la rapidez de la argolla en el punto B.

Por conservación de la energía:

$$T_A + U_A = T_B + U_B \longrightarrow$$

$$2mgx_0 + \frac{k}{2}(2x_0)^2 = \frac{m}{2}v_B^2 + \frac{k}{2}x_0^2$$

$$v_B = \sqrt{\frac{2}{m} \left(2mgx_0 + \frac{3}{2}kx_0^2\right)}$$

Clase de hoy

- Energía potencial.
- Ecuación de trabajo-energía.
- Fuerzas conservativas y disipación.

Fuerzas conservativas

- ¿Cuándo una fuerza tiene una energía potencial asociada?
- Llamamos fuerza conservativa a una fuerza que genera el mismo trabajo independiente de la trayectoria.
- Podemos definir la energía potencial de una fuerza conservativa a partir del trabajo

$$W_{A\to B} = \int_A^B \vec{F} \cdot d\vec{r} = -(U_B - U_A)$$

Fuerzas de roce y disipación

- Las fuerzas de roce no son conservativas.
- Por lo tanto debemos calcular su trabajo para incluírlas en la ecuación de trabajo-energía:

$$T_A + U_A + W'_{\text{roce}} = T_B + U_B$$

- Podemos entender el trabajo producido por el roce como disipación.
- Es decir, la energía no se conserva, ya que debido al roce se disipa parte de la energía.

Ejemplo

• Un bloque de masa m se encuentra en un plano inclinado con constante de roce dinámico μ_d . Si el bloque comienza a deslizar cuando está a una altura h respecto a la horizontal, calcule la rapidez con que llega a la parte inferior del plano inclinado.

Ejemplo

• Un bloque de **masa** m se encuentra en un **plano inclinado** con constante de roce dinámico μ_d . Si el bloque comienza a deslizar cuando está a una **altura** h respecto a la horizontal, calcule la rapidez con que llega a la parte inferior del plano inclinado.

Ecuación trabajo-energía:

$$T_A = 0$$
 $U_A = mgh$

$$U_A = mgh$$

$$T_A + U_A + W'_{\text{roce}} = T_B + U_B$$
 \longrightarrow

$$W'_{\text{roce}} = \int_0^d F_r d_x = -mgd\mu_d \cos\theta$$

$$T_B = \frac{m}{2}v_B^2 \qquad U_B = 0$$

Por trigonometría:

$$d = \frac{h}{\sin \theta}$$

$$v_B = \sqrt{2gh(1 - \mu_d \cot \theta)}$$

Resumen

- Hemos definido el concepto de **energía potencial**, incluyendo la energía potencial **gravitatoria** y **elástica**.
- Hemos actualizado la ecuación de trabajo-energía para incluir energía potencial.
- Definimos el concepto de energía total mecánica y el concepto de conservación de la energía.
- Definimos la disipación de energía debido al roce.
- Próxima clase:
 - → Potencia.