제 1과목 - 알고리즘 <part2. 알고리즘 순서도작성>

15. 자료처리 알고리즘 – 병합과 이분검색

2개 배열공간에 저장된 데이터를 하나의 공간으로 합치는 병합알고리즘 특정 데이터를 검색하는 이분검색 알고리즘 학습

▶ 병합알고리즘(MERGE) – 둘 이상의 기억공간 내용을 하나로 합하는 것을 의미

A(I)	A(2)	A(3)	A(4)	A(5)
1	3	5	7	9

B(I)	B(2)	B(3)	B(4)	B(5)
2	4	6	8	10

A배열의 내용과 B 배열의 내용을 차례대로 T배열에 저장=→10개 공간이 만들어짐

T(I)	T(2)	T(3)	T(4)	T(5)	T(6)	T(7)	T(8)	T(9)	T(10)

1. A(1)값과 B(1)값을 비교하여 두 값 중 작은 값을 먼저 T(1)에 저장→A(1) 값이 B(1)값보다 작으므로 A(1)이 저장

A(I)	A(2)	A(3)	A(4)	A(5)
1	3	5	7	9

이때 A배열은 A(1) 값이 T에 저장되었으므로, 4개 요소만 T에 저장하면되고, B배열은 5개 요소가 그대로 남아있게 됨

2. A(2)값과 B(1) 값을 비교하여 두 값 중 작은 값을 먼저 T(2)에 저장 → A(2)값 보다 B(1)이 작으므로 B(1)이 저장

B(I)	B(2)	B(3)	B(4)	B(5)
2	4	6	8	10

3. 위 식을 반복하여 각 배열의 내용을 비교하여 작은 값을 T 배열에 기억 T배열의 8개 공간에 값들이 저장되면 병합 마무리

다음은 배열 a(5)와 배열 b(5)에 기억된 데이터를 병합시켜 배열 T(10)에 기억시키는 순서도이다. 빈 부분을 채워 순서도를 완성하시오.

<처리조건>

배열 A(5)와 배열 B(5)에 기억된 데이터와 병합된 T(10)배열의 데이터는 다음과 같다.

A(5)	12		23		27		30		33	
B(5)	5		17		29		31		35	
T(10)	5	12	17	23	27	29	30	31	33	35

배열내의 모든 값들은 오름차순으로 정렬되어 있다.

A(5), B(5) 병합할 정수가 기억돤 배열 T(10) - 병합된 결과가 기억될 배열 J,K,L - 배열의 위치를 지정하는 변수

(5) 日 - K=K+J (4) 日 - K=K+J

(3) 를 - A(K)

(7) 昂 - [=[+]

(1) 日 - T(J)=B(L)

▶ 이분검색 알고리즘

제외부분

데이터가 정렬되어 있는 상태에서 검색할 자료를 반씩 나누어 나머지 반에 대해 검색하는 작업

R(I)	R(2)	R(3)	R(4)	R(5)	R(6)	R(7)
14	23	29	30	54	72	86

정렬된 데이터에서 29를 검색하는 알고리즘

How to

우리가 찾고자 하는 값 R(3)에 위치하는 29

1. 먼저, 비교키 값을 계산 . $\frac{\dot{0} \dot{0} \dot{0} \dot{0} \dot{0}}{2} = \frac{1+7}{2} = = \Rightarrow 4 즉, R(4)$ 값과 우리가 찾고자 하는 29와 같은지 비교

R(I)	R(2)	R(3)	R(4)	R(5)	R(6)	R(7)
14	23	29	30	E /	72	86
,		키값		교값		

R(3) < R(4) 이므로, R(4)부터는 검색할 값 찾을 확률이 없음

검색대상에서 제외

2. 다시 비교키 값 계산, 상한값 감소 $\frac{1+(4-1)}{2} =$ 정수값 계산하여 $2 ==\Rightarrow R(2)$ 값과 우리가 찾고자하는 29와 비교

R(2) < R(3) 이므로, R(2) 포함하여 그 전까지는 검색대상에서 제외시킴

3. 다시 비교키 값 계산, 하한 값 증가 $\frac{(2+1)+(4-1)}{2} = 정수값 계산하여 <math>3 ==\Rightarrow R(3)$ 값과 우리가 찾고자하는 29와 비교

R(3)29

R(3) = R(3) 이므로 비교키값과 찾고자 하는 값 일치!!==→검색완료!

문제) 배열 R(10)에 10개 정수가 정렬되어 저장되어 있으며, 키보드로 입력된 값이 배열에 저장되어 있는지 검색하여 저장위치와 값을 출력하고, 찾는 값이 없는 경우 "검색실패" 출력하는 알고리즘.

C+H)/2 다-(N)>1 (I) (2)

+7) - 昂 ([+