ISA 401: Business Intelligence & Data Visualization

17: Charts Used for Comparisons, Relationships, Distributions and Correlations

Fadel M. Megahed, PhD

Endres Associate Professor Farmer School of Business Miami University

- @FadelMegahed
- fmegahed
- ✓ fmegahed@miamioh.edu
- ? Automated Scheduler for Office Hours

Learning Objectives for Today's Class

- Identify strengths & weaknesses of basic charts
- Use appropriate charts based on objective
- Avoid using pie charts (never use pie charts)
- Avoid 3D graphs (unless VR changes their utility)

A Catalog of Commonly Used Graph Types

Chart Suggestions

Chart Chooser Single Bar Chart Multiple Bar Charts Variable Width Table or Table with Circular Area Chart Line Chart Column Chart Embedded Charts Cyclical Data Many Items Non-Cyclical Data Single or Few Items Many Items One Variable Two Variables Three or More Variables Many Periods Few Periods Static Changing Over Time Column Histogram Few Comparison Variable Scatter Chart Variables What would you Line Histogram Distribution Relationship Many like to show? Composition ...O Variables Two - Variables Static Changing Over Time 3D Area Chart Three Variables Few Periods Many Periods Relative and Absolute Simple Share Accumulation or Components Only Relative Relative and Absolute Only Relative of Total Subtraction to Total of Components Differences Matter Differences Matter Differences Matter Differences Matter Stacked 100% Stacked Area Chart Waterfall Chart Stacked 100% Column Chart Column Chart with Subcomponents

© 2020 Andrew V. Abela, Dr. Abela@ExtremePresentation.com www.extremepresentation.com

Charts Used for Comparing Data (Unit of Analysis is Based on a Nominal Categorical Variable)

A Literal Bar Chart

04:00

Activity

Your Solution

Answer the following questions:

- (1) How many variables do we have in this graph?
- (2) How many observations?
- (3) Please discuss the type of variables in the graph? (i.e. nominal, ordinal, etc.)
- (4) How is the data encoded in the graph?
- (5) Any other comments/observations?

A Literal Bar Chart

Activity

Your Solution

- Q1: ___
- Q2: ___
- Q3: __
- Q4: __
- Q5: ___

Using a Bar Chart to Visualize R Code

```
insert_sort <- function(x) {
   i <- 2
   while(i <= length(x)) {
      j <- i
      while(j > 1 && x[j - 1] > x[j]) {
           j <- j - 1
            x[j + 0:1] <- x[j + 1:0]
      }
      i <- i + 1
   }
   x
}</pre>
```


04:00

Non-graded activity: Two Bar Charts

Activity

Your Solution

Over the next five minutes, identify 3-4 differences that make the graph on the right better, and suggest how you can further improve the graph on the right

We invest primarily in four areas

Since we began investing in 2006, four areas have received more than \$600K each, accounting for 75% of total grantmaking activity

Investment by Area of Impact

04:00

Non-graded activity: Two Bar Charts

Activity

Your Solution

Insert your differences and suggestions for improvement below.

Issues with the Interpretation of Bar Charts

The Draw Datapoints on Graph (DDoG) measure maintains the graph as a consistent reference frame across its three stages.

Issues with the Interpretation of Bar Charts

Data distribution differs categorically between mean and count graphs. (a) Mean bar graphs and (c) count bar graphs do not differ in basic appearance, but they do depict categorically different data distributions.

Key Takeaway 1

The typically used **bar** chart should not be to depict means of categorical variables.

Waterfall Charts

Activity

Your Solution

What are the advantages and disadvantages of these two charts? They are using the same exact data. Please try to list 2-4 in each category for each chart.

Income closely matched expenses in 2010

INCOME & EXPENSES: 2010 OVERVIEW

Whereas income is primarily from a single channel (Grants, \$531K in 2010, or 61% of total income), 2010 expenses were spread roughly evenly across programs, salaries, and other expenses. This means [...]

Waterfall Charts

Activity

Your Solution

Insert your advantages and disadvantages below

3D Bar Charts are Awful

3D Charts are Awful

Adam Grant's Plot of the Penn and Harvard Bar Chart

3D Bar Charts are Awful

A remake of the plot with colorblind-friendly colors and a 2D bar representation to avoid distorting the data

3D Charts are Awful: Even This

Dot Charts: Recall the Playfair Example

Proportions

My Favorite Pie Chart

The Egyptian Pie Chart

15/31

Pie Charts are Awful By Design

Pie Charts are Awful By Design

16/31

And often made even worse: 3D

And often made even worse: Side Legend

And often made even worse: Exploded Pie

And often made even worse: SUM(%) != 100%

And often made even worse: Many Levels

Key Takeaway 2

Please do **NOT** use pie charts.

▶ If you need any further evidence, please check ?pie() in R. Even statistical software are recommending against using pie charts!!

Should you use Pie Charts?

Stacked Bar Charts

Activity

Your Solution

When it is best to use the four charts below? They are using the same exact data.

Stacked Bar Charts

Activity

Your Solution

Insert best usage scenario for each chart below

A Note on Stacked Bar Charts

Global personal computing device sales by OS

cludes annual estimates of global IT and consumer purchased devices in 62 leading countries Research: company reports.

A Note on Stacked Bar Charts

After spending years dominating the operating system market, Microsoft is destined to become one of three major players

Global personal computing device sales by operating system

^{*}Forecasted based on...(I don't know what it's based on, but that detail should be added!)

A Note on Stacked Bar Charts

After spending years dominating the operating system market, Microsoft is destined to become one of three major players

Global personal computing device sales by operating system

^{*}Forecasted based on...(I don't know what it's based on, but that detail should be added!)

Distributions and Correlations

Issues with Histograms

Histograms ignore the distribution of data over time

In a consulting engagement with a sports' electronic manufacturer, we saw the patterns in How did we observe this?

Chart created by Fadel Megahed, with some assistance from ChatGPT

Issues with Box Plots

Issues with Box Plots

Key Takeaway 3

To capture the variability in a dataset, the use of box plots may not be appropriate!!!!

Scatter Plots

Recap

Summary of Main Points

- Identify strengths & weaknesses of basic charts
- Use appropriate charts based on objective
- Avoid using pie charts (never use pie charts)
- Avoid 3D graphs (unless VR changes their utility)