Math 245B Lecture 13 Notes

Daniel Raban

February 6, 2019

1 The Hahn-Banach theorem and Dual spaces

1.1 Reflexive spaces and dual spaces

Last time, we showed a consequence of the Hahn-Banach theorem. Here is a special case, where we separate $x \in \mathcal{X}$ from the closed subspace $\mathcal{M} = \{0\}$.

Proposition 1.1. Let $x \in \mathcal{X} \setminus \{0\}$. Then there exists some $f \in \mathcal{X}^*$ such that ||f|| = 1, and ||f(x)|| = ||x||. Moreover, \mathcal{X}^* separates points of \mathcal{X} .

Proposition 1.2. If $x \in \mathcal{X}$, define $\hat{x} : \mathcal{X}^* : \to K$ by $\hat{x}(f) := f(x)$. Then $x \mapsto \hat{x}$ is a linear isometry $\mathcal{X} \to \mathcal{X}^{**}$.

This is called the **canonical embedding**.

Proof. For linearity,

$$\widehat{x+y}(f) = f(x+y) = f(x) + f(y) = \hat{x}(f) + \hat{y}(f).$$

Multiplication by constants is the same. To show that it is an isometry,

$$\|\hat{x}\|_{**} = \sup\{\hat{x}(f) : \|f\|_{*} \le 1\}$$
$$= \sup\{f(x) : \|f\|_{*} \le 1\}$$
$$< \|x\|.$$

We can achieve equality by the above corollary of Hahn-Banach.

Remark 1.1. Recall that if \mathcal{Y} is complete, then $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ is complete. Then, since $\mathcal{X}^{**} = \mathcal{L}(\mathcal{X}^*, K)$, and $K = \mathbb{R}$ or \mathbb{C} is complete, \mathcal{X}^{**} is complete. So $\hat{\mathcal{X}} = \{\hat{x} : x \in \mathcal{X}\}$ is a canonical way of completing \mathcal{X} .

Definition 1.1. \mathcal{X} is reflexive if $\hat{\mathcal{X}} = \mathcal{X}^{**}$.

Finite dimensional vector spaces are always reflexive. This is not always the case for infinite dimensional spaces.

Example 1.1. C[0,1] is not reflexive. We will see this later, but its dual is not separable, and neither is its double dual.

Definition 1.2. The **adjoint** (or **transpose**) of $T : \mathcal{X} \to \mathcal{Y}$ is $T^* : \mathcal{Y}^* \to \mathcal{X}^*$ defined by $T^*(f) = f \circ T$.

 \mathcal{T}^* is linear, and it satisfies $||T^*|| \leq ||T||$.

Proposition 1.3. Let $T: \mathcal{X} \to \mathcal{Y}$ be bounded and linear.

- 1. $||T^*|| = ||T||$.
- 2. Let $T^{**}: \mathcal{X}^{**} \to \mathcal{Y}^{**}$ be $T^{**} = (T^*)^*$. Then $T^{**}|_{\hat{\mathcal{X}}} = T$.
- 3. T^* is injective if and only if $T[\mathcal{X}]$ is dense in \mathcal{Y} .
- 4. If $T^*[\mathcal{Y}^*]$ is dense in \mathcal{X}^* , then T is injective.

Proof. The verification of these either follows quickly from the definitions or is an application of Hahn-Banach. \Box

1.2 The Hahn-Banach theorem

For now, \mathcal{X} will be a real vector space.

Definition 1.3. A sublinear functional is a function $p: \mathcal{X} \to \mathbb{R}$ such that

- 1. $p(x+y) \le p(x) + p(y)$ for all $x, y \in \mathcal{X}$
- 2. $p(\lambda x) = \lambda p(x)$ for all $\lambda \geq 0$ and $x \in \mathcal{X}$.

Example 1.2. Any seminorm is a sublinear functional.

Theorem 1.1 (Hahn-Banach, general form). Let \mathcal{X} be a real normed space, let p be a sublinear functional, let $\mathcal{M} \subseteq \mathcal{X}$ be a subspace, and let $f: \mathcal{M} \to \mathbb{R}$ be linear and such that $f(x) \leq p(x)$ for all $x \in \mathcal{M}$. Then there exists a linear functional $F: \mathcal{X} \to \mathbb{R}$ such that $F|_{\mathcal{M}} = f$ and $F \leq p$.

Proof. Step 1: Suppose $\mathcal{X} = \mathcal{M} + \mathbb{R}x$, where $x \notin \mathcal{M}$. Then any element of \mathcal{X} is $m + \lambda x$ for some unique $m \in \mathcal{M}$ and $\lambda \in \mathbb{R}$. We want to find $\alpha \in \mathbb{R}$ such that if we set $F(m + \lambda x) := f(m) + \lambda \alpha$, then $F \leq p$; i.e. $f(m) + \lambda \alpha \leq p(m + \lambda x)$ for all $m \in \mathcal{M}$ and $\lambda \in \mathbb{R}$. Equivalently, we want $\lambda \alpha \leq p(m + \lambda x) - f(m)$. We have two cases:

1. If $\lambda > 0$, then this is equivalent to $\alpha \le p(m + \lambda x)/\lambda - f(m)/\lambda$ for all $m \in M$. That is, $\alpha \le p(m/\lambda + x) - f(m/\lambda)$. This is equivalent to $\alpha \le p(m + x) - f(m)$ for all $m \in M$.

2. If $\lambda < 0$, divide by $-\lambda$ and rearrange similarly. We want $-\alpha \le p(m-x) - f(m)$ for all $m \in \mathcal{M}$. This is $\alpha \ge f(m') - p(m'-x)$ for all $m' \in \mathcal{M}$.

So it remains to show that $f(m') - p(m' - x) \le p(m + x) - f(m)$ for all $m, m' \in \mathcal{M}$; if we have this, then we can pick any α between these upper and lower bounds. We can rearrange to get $f(m) + f(m') \le p(m' - x) + p(m + x)$ for all $m, m' \in \mathcal{M}$. But this is

$$f(m) + f(m') = f(m + m')$$

$$\leq p(m + m')$$

$$= p((m + x) + (m' - x))$$

$$\leq p(m' - x) + p(m + x).$$

so we can have the desired α .

Step 2: Here is the general case. Let \mathcal{E} be the collection of pairs (\mathcal{N}, g) such that \mathcal{N} is a subspace of \mathcal{X} containing \mathcal{M} ,and $g: \mathcal{N} \to \mathbb{R}$ is a linear functional such that $g|_{\mathcal{M}} = f$ and $g \leq p$. Define the partial order $(N, g) \leq (\mathcal{N}', g')$ if $N \subseteq \mathcal{N}'$, and $g'|_{\mathcal{N}} = g$. We will use Zorn's lemma. We wnt to show that every chain $((N_{\alpha}, g_{\alpha}))_{\alpha}$ has an upper bound. Let $\mathcal{N} = \bigcup_{\alpha} N_{\alpha}$, and let $g(x) = g_{\alpha}(x)$ for all $x \in \mathcal{N}_{\alpha}$. Then $g \leq p$, and $g|_{\mathcal{M}} = g_{\alpha}|_{\mathcal{M}} = f$. We must show that \mathcal{N} and g are linear. If $x, y \in \mathcal{N}$, then $x \in N_{\alpha}$ and $y \in \mathcal{N}_{\beta}$, so $x, y \in N_{\alpha}$, where $N_{\alpha} \supseteq N_{\beta}$. So $x + y \in \mathcal{N}_{\alpha} < N$. So by Zorn's lemma there exists a maximal element $(\mathcal{N}, g) \in \mathcal{E}$. We must have $\mathcal{N} = \mathcal{X}$ otherwise step 1 contradicts the maximality of \mathcal{N} . \square