Scilab Textbook Companion for Principles Of Foundation Engineering by B. M. Das¹

Created by
Avik Kumar Das
Soil Mechanics
Civil Engineering
IIT Bombay
College Teacher
None
Cross-Checked by
Chaya Ravindra

June 3, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Principles Of Foundation Engineering

Author: B. M. Das

Publisher: Ceenage Lerning Usa

Edition: 7

Year: 2007

ISBN: 9780495668107

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Geotechnical Properties of Soil	5
2	Natural Soil Deposits and Subsoil Exploration	10
3	Shallow Foundations	12
4	Ultimate Bearing Capacity of Shallow Foundations	18
5	Shallow Foundations Allowable Bearing Capacity and Settlement	23
6	Mat Foundations	31
7	Lateral Earth Pressure	36
8	Retaining Walls	41
9	Sheet Pile Piles	50
10	Braced Cuts	58
11	Pile Foundations	61
12	Drift Shaft Foundations	71
13	Foundations on Difficult Soils	7 8
14	Soil Improvement and Ground Modification	81

List of Scilab Codes

Exa 1.1	1	5
Exa 1.2	2	6
Exa 1.3	3	6
Exa 1.4	4	7
Exa 1.5	5	7
Exa 1.6	6	7
Exa 1.7	7	8
Exa 1.8	8	9
Exa 2.1	1	10
Exa 3.1	1	12
Exa 3.2	2	12
Exa 3.3	3	13
Exa 3.4	4	14
Exa 3.5	5	15
Exa 3.6	6	16
Exa 3.7	7	16
Exa 3.8	8	17
Exa 4.1	1	18
Exa 4.2	2	19
Exa 4.3	3	19
Exa 4.4	4	20
Exa 4.5	5	21
Exa 4.6	6	21
Exa 4.7	7	21
Exa 4.8	8	22
Exa 5.1	1	23
Exa 5.2	2	24
Exa 5.3	3	24

Exa 5.4	4	25
Exa 5.5	5	26
Exa 5.6	6	26
Exa 5.7	7	27
Exa 5.8	8	27
Exa 5.9	9	28
Exa 5.10	10	28
Exa 5.11	11	29
Exa 6.1	1	31
Exa 6.2	2	31
Exa 6.3	3	32
Exa 6.4	4	32
Exa 6.5	5	33
Exa 6.6	6	33
Exa 7.1	1	36
Exa 7.2	2	36
Exa 7.3	3	37
Exa 7.4	4	38
Exa 7.5	5	38
Exa 7.6	6	39
Exa 7.7	7	40
Exa 8.1	1	41
Exa 8.2	2	43
Exa 8.3	3	43
Exa 8.4	4	44
Exa 8.5	5	46
Exa 8.6	6	46
Exa 8.7	7	48
Exa 9.1	1	50
Exa 9.2	2	51
Exa 9.3	3	52
Exa 9.4	4	53
Exa 9.5	5	54
Exa 9.6	6	55
Exa 9.7	7	56
Exa 9.8	4	56
Exa 10.1	1	58
Exa 10.2	2	59

Exa 10.3	3.															59
Exa 10.4	4 .															60
Exa 11.1	1.															61
Exa 11.2	2 .															62
Exa 11.3	3.															62
Exa 11.4																63
Exa 11.5	5.															64
Exa 11.6	6 .															65
Exa 11.7	7.															65
Exa 11.8	8.															66
Exa 11.9	9.															67
Exa 11.10	10															68
Exa 11.11	11															68
Exa 11.12	12															69
Exa 12.1	1 .															71
Exa 12.2	2 .															72
Exa 12.3	3.															72
Exa 12.4	4 .															73
Exa 12.5	5.															73
Exa 12.6	6.															74
Exa 12.7	7.															75
Exa 12.8	8.															76
Exa 13.1	1.															78
Exa 13.2	2 .															78
Exa 13.3	3.															79
Exa 14.1	1.															81
Exa 14.2	2 .															82
Eva 14 3	3															82

Chapter 1

Geotechnical Properties of Soil

Scilab code Exa 1.1 1

```
1 // example 1.1
2 clc(); funcprot(0);
3 V=0.25; // ft^3
4 W=30.8; //lb
5 Wd=28.2; // weight dried lb
6 Gs = 2.67;
7 Gammaw = 62.4; //lb/ft^3
8 Gamma=W/V;
9 disp(Gamma, "moist unit weight in lb/ft^3")
10 w = (W - Wd)/W;
11 disp(w*100, "moisture content in \%");
12 Gammad=Wd/V;
14 Vs=Wd/Gs/Gammaw;
15 Vv = V - Vs;
16 \text{ e=Vv/Vs};
17 disp(e, "void ratio");
18 n=e/(1+e);
19 disp(n, "porosity");
20 Vw = (W - Wd) / Gammaw;
21 S = Vw / Vv;
```

Scilab code Exa 1.2 2

```
//example 1.2
clc; funcprot(0);
e=0.72;
w=12/100; //moisture content
Gs=2.72;
Gammaw=9.81; //kN/m^3
Gammad=Gs*Gammaw/(1+e);
disp(Gammad, "dry unit weight in kN/m^3");
Gamma=Gs*Gammaw*(1+w)/(1+e);
disp(Gamma, "moist unit weight in kN/m^3");
Gammasat=(Gs+e)*Gammaw/(1+e);
wa=Gammasat-Gamma; // water added
disp(wa, "water added in kN/m^3");
```

Scilab code Exa 1.3 3

```
1 //example 1.3
2 clc; funcprot(0);
3 gmax=17.1; // Gammadmax
4 Dr=0.7;
5 w=8/100; // moisture content
6 gmin=14.2; // Gammadmin
7 deff('y=f(x)', 'y=(x-14.2)/(17.1-14.2)*17.1/x-0.7')
8 [x, v, info]=fsolve(16,f); // solving for gammad
9 Gamma=x*(1+w);
10 disp(Gamma, "moist unit weight in kN/m^3");
```

Scilab code Exa 1.4 4

```
1 //example 1.4
2 clc; funcprot(0);
3 F200=30;
4 PI=8;
5 GI=0.01*(F200-15)*(PI-10);
6 if GI<0 then
7    GI=0;
8    disp("the soil is A-2-4(0)")
9 end</pre>
```

Scilab code Exa 1.5 5

```
1 //example 1.5
2 clc; funcprot(0);
3 F200=41;
4 LL=31;
5 PI=12;
6 if 100-F200>50 then
7    disp("soil is coarse grained")
8 end
9 //from table 1.5 and 1.6
10 disp("soil is SC");
```

Scilab code Exa 1.6 6

```
1 //example 1.6
2 clc; funcprot(0);
3 Gammad=14.5;
4 Gammasat=17.2;
5 Gammaw=9.81;
```

Scilab code Exa 1.7 7

```
1 // example 1.7
2 clc; funcprot(0);
3 //parta
4 e1=0.92;
5 e2=0.86;
6 \text{ Hc} = 2.8;
7 s2=212; //sigma2dash
8 \text{ s1=140;}//\text{sigmaldash}
9 Cc=(e1-e2)/log10(s2/s1);
10 Sc=Cc*Hc/(1+e1)*log10(s2/s1);
11 disp(Sc*1000, "consolidated depth in mm");
12 //part b
13 Sct = 40;
14 \quad T50 = 0.197;
15 t=4.5;
16 \text{ Cr} = T50 * 12.7^2/t;
17 U=Sct/Sc*100/1000;
18 H=Hc/2;
19 Tv = \%pi/4*U^2/100^2;
20 t=Tv*H^2/Cr*1000^2/60/24;
21 disp(t,"time required in days");
```

Scilab code Exa 1.8 8

```
1 //example 1.8
2 clc; funcprot(0);
3 Cv=7.061;
4 tc=15*24*60;
5 H=2.8/2*1000;
6 Scmax=87.5; // consolidation
7 Tc=Cv*tc/H^2;
8 tv=31.6*24*60;
9 Tv=Cv*tv/H^2;
10 //from figure 1.28
11 Sct=Scmax*0.36;
12 disp(Sct, "consolidation in 31.6 days in mm");
```

Chapter 2

Natural Soil Deposits and Subsoil Exploration

Scilab code Exa 2.1 1

```
1 //example 2.1
2 clc; funcprot(0);
3 Distance = [2.5,5,7.5,10,15,20,25,30,35,40,50];
4 Time
      =10^{-3}*[11.2,23.3,33.5,42.4,50.9,57.2,64.4,68.6,71.1,72.1,75.5]
5 //part1
6 	ext{ distance=5.25};
7 time=23e-3;
8 v1=distance/time;
9 \operatorname{disp}(v1, "speed in m/s");
10 // part 2
11 distance=11;
12 \text{ time} = 13.5 e - 3;
13 v2=distance/time;
14 disp(v2, "speed in m/s");
15 // part3
16 distance=14.75;
17 time=3.5e-3;
```

Chapter 3

Shallow Foundations

```
Scilab code Exa 3.1 1
```

```
1 //example 3.1
2 clc; funcprot(0);
3 Nc=17.69;
4 Nq=7.44;
5 Ny=3.64;
6 q=3*115;
7 Gamma=115; //lb/ft^3
8 c=320;
9 B=5; //ft
10 FS=4; //factor of safety
11 qu=1.3*c*Nc+q*Nq+0.4*Gamma*B*Ny
12 qall=qu/FS; //q allowed
13 Q=qall*B^2;
14 disp(Q,"allowable gross load in lb");
```

Scilab code Exa 3.2 2

```
1 //example 3.2
```

```
2 clc; funcprot(0);
3 Gamma = 105; //lb/ft^3
4 Gammasat = 118; //lb/ft^3
5 \text{ FS}=3;
6 pa=2014.125; //lb/ft^2
7 Depth = [5, 10, 15, 20, 25];
8 \quad N60 = [4,6,6,10,5];
9 sigmao=[0,0,0,0,0];
10 phi=[0,0,0,0,0]
11 Gammaw=62.4;
12 s = 0;
13 printf("depth (ft)\tN60\t \tstress(lb/ft^2)\t phi(
      degrees)\n")
14 for i=1:5
       sigmao(i) = 2 * Gamma + (Depth(i) - 2) * (Gammasat - Gammaw)
15
       phi(i)=sqrt(20*N60(i)*sqrt(pa/sigmao(i)))+20;
16
       \texttt{printf} \texttt{ (" \%.2 f \ t)}
17
                                \%.2 f \setminus t \setminus t
                                            ",Depth(i),N60(i),sigmao(i),phi(i));
18 avgphi=phi(i)/5+s;
19 s=avgphi;
20 end
21 disp(round(avgphi), "average friction angle in
      degrees");
22 //using graph get the values of other terms in terms
       of B and solve for B
23 deff('y=f(x)', 'y=-150000/x^2+5263.9+5527.1/x+228.3*x
      ');
24 [x, v, info]=fsolve(4,f);
25 disp(x,"the width in ft");
```

Scilab code Exa 3.3 3

```
1 //example 3.3
2 clc; funcprot(0);
```

```
3 phi=25; //degrees
4 Es=620; //kN/m^2
5 Gamma=18; //kN/m^2
6 Df = 0.6;
7 B = 0.6;
8 L=1.2;
9 Fqc=0.347;
10 \text{ Nq} = 10.66;
11 Nc = 20.72;
12 Ngamma=10.88;
13 \text{ mu} = 0.3;
14 Fyd=1;
15 c=48; //kN/m^2
16 \quad q = Gamma*(Df+B/2);
17 Ir=Es/(2*(1+mu)*(c+q*tan(phi*%pi/180)));
18 disp(Ir, "value of Ir");
19 Fcc=Fqc-(1-Fqc)/(Nq*tan(phi*%pi/180));
20 Fcs=1+Nq/Nc*B/L;
21 Fqs=1+B/L*tan(phi*\%pi/180);
22 Fys=1-0.4*B/L;
23 Fcd=1+0.4*Df/B;
24 Fqd=1+2*tan(phi*\%pi/180)*(1-sin(phi*\%pi/180))^2*Df/B
25 q1=0.6*18;
26 \text{ Fyc=Fqc};
27 qu=c*Nc*Fcs*Fcd*Fcc+q1*Nq*Fqs*Fqd*Fqc+1/2*Gamma*
      Ngamma*Fys*Fyd*Fyc;
28 disp(qu,"ultimate bearing capacity in kN/m<sup>2</sup>");
```

Scilab code Exa 3.4 4

```
1 //example 3.4
2 clc; funcprot(0);
3 q=110*4; //lb/ft^2
4 Nq=33.3;
```

```
5 \text{ phi} = 35;
6 Df = 4;
7 B=6;
8 Gamma=110;
9 Ngamma = 48.03;
10 B1=6-2*0.5;
11 Fqi=1;
12 Fyi=1;
13 Fyd=1;
14 Fqs=1;
15 Fys=1;
16 Fqd=1+2*tan(phi*%pi/180)*(1-sin(phi*%pi/180))^2*Df/B
17 qu=q*Nq*Fqs*Fqd*Fqi+1/2*B1*Gamma*Ngamma*Fys*Fyd*Fyi;
18 Qult=B1*1*qu;
19 disp(Qult," ultimate bearing capacity in lb/ft");
20 disp(Qult/2000, "ultimate bearing capacity in ton/ft"
      );
```

Scilab code Exa 3.5 5

```
//example 3.5
clc; funcprot(0);
e=0.5;
B=6;
k=e/B;
Gamma=110;
q=440;
disp("get the values of Nqe and Nye from the figure from the value of e/B");
Nye=26.8;
Nqe=33.4;
Qult=B*1*(q*Nqe+1/2*Gamma*B*Nye);
disp(Qult,"ultimate bearing capacity in lb/ft");
disp(Qult/2000,"ultimate bearing capacity in ton/ft")
```

);

Scilab code Exa 3.6 6

```
1 // \text{example } 3.6
2 clc; funcprot(0);
3 \text{ Df} = 0.7;
4 //from table
5 \text{ Nq} = 18.4;
6 \text{ Ny} = 22.4;
7 q=12.6;
8 phi=30; //angle
9 L=1.5;
10 Fyd=1;
11 Gamma=18;
12 L1=0.85*1.5;
13 L2=0.21*1.5;
14 B=1.5;
15 A=1/2*(L1+L2)*B;
16 B1=A/L1; //B
17 Fqs=1+B1/L1*tan(phi*%pi/180);
18 Fys=1-0.4*B1/L1;
19 Fqd=1+2*tan(phi*%pi/180)*(1-sin(phi*%pi/180))^2*Df/B
20 Qult=A*(q*Nq*Fqs*Fqd+1/2*Gamma*B1*Ny*Fys*Fyd);
21 disp(Qult," ultimate load in kN");
```

Scilab code Exa 3.7 7

```
1 //example 3.7
2 clc; funcprot(0);
3 e=0.15;
4 B=1.5;
```

```
5 Fqs=1;
6 L=1.5;
7 Gamma=18;
8 q=0.7*18;
9 //from table
10 Nqe=18.4;
11 Nye=11.58;
12 Fys=1+(2*e/B-0.68)*(B/L)+(0.43-3/2*e/B)*(B/L)^2;
13 Qult=B*L*(q*Nqe*Fqs+1/2*Gamma*Nye*Fys);
14 disp(Qult,"ultimate load in kN");
```

Scilab code Exa 3.8 8

```
1 //example 3.8
2 clc; funcprot(0);
3 q=16;
4 Nqei=14.2;
5 Gamma=16
6 B=1.5;
7 Nyet=20;
8 Qult=B*(Nqei*q+1/2*Gamma*B*Nyet);
9 disp(Qult,"ultimate load in kN/m");
```

Chapter 4

Ultimate Bearing Capacity of Shallow Foundations

Scilab code Exa 4.1 1

```
1 //example 4.1
2 clc; funcprot(0);
3 \text{ FS}=4;
4 q=110*2;
5 \text{ Nq} = 90;
6 Ny=50;
7 Gamma=110;
8 m1 = 0.34;
9 B=2.5;
10 L=2.5;
11 H=1.5;
12 phi=35;
13 m2 = 0.45;
14 Fqs=1-0.34*B/L;
15 Fys=1-0.45*B/L;
16 qu=q*Nq*Fqs+1/2*Gamma*Ny*Fys*B;
17 Qall=qu*B^2/FS;
18 disp(Qall, "bearing load in lb");
```

Scilab code Exa 4.2 2

```
1 //example 4.2
2 clc; funcprot(0);
3 FS=3;
4 cu=72;
5 q=18;
6 B=1;
7 H=0.25;
8 qu=5.14*(1+(0.5*B/H-0.707)/5.14)*cu+q;
9 qall=qu/FS;
10 disp(qall,"bearing capacity of soil in kN/m^2");
```

Scilab code Exa 4.3 3

```
1 // example 4.3
2 clc; funcprot(0);
3 \text{ k=0}; //B/L;
4 c2=30;
5 Gamma = 17.5;
6 \text{ H} = 1.5;
7 Df=1.2;
8 \text{ H} = 1.5;
9 B=2.0;
10 Ks = 2.5;
11 phi=40;
12 pi=%pi;
13 qu = (1+0.2*k)*5.14*c2+(1+k)*Gamma*H^2*(1+2*Df/H)*Ks*
      tan(phi*pi/180)/B+Gamma*H;
14 Qu=qu*B;
15 disp(Qu," bearing capacity in kN/m");
```

Scilab code Exa 4.4 4

```
1 // \text{example } 4.4
2 clc; funcprot(0);
3 B=1;
4 L=1.5;
5 c2=48;
6 \text{ ca} = 108;
7 D=1;
8 \text{ H} = 1;
9 Gamma=16.8;
10 FS=4;
11 qu = (1+0.2*B/L)*5.14*c2+(1+B/L)*2*ca*H/B+Gamma*D;
12 c1 = 120;
13 gamma1=16.8;
14 Df=1;
15 qt = (1+0.2*B/L)*5.14*c1+gamma1*Df;
16 disp(qt,"qt in kN/m^2");
17 disp("no need to calculate qt since it is not useful
       for calculation")
18 disp(qu/FS, "allowable shear stress in kN/m^2");
19 disp(qu/FS*1*1.5, "allowable load in kN");
20 clear()
```

```
Scilab code Exa 4.5 5
```

```
1 //example 4.5
2 clc; funcprot(0);
3 c=50;
4 //from table
5 Ncq=6.3;
6 FS=4;
7 qu=c*Ncq;
8 qall=qu/4;
9 disp(qall, "allowed shear stress in kN/m^2");
```

Scilab code Exa 4.6 6

```
1 //example 4.6
2 clc; funcprot(0);
3 Gamma=16.8;
4 B=1.5;
5 //from table
6 Nyq=120;
7 qu=1/2*Gamma*B*Nyq;
8 disp(qu," shear stress in kN/m^2");
```

Scilab code Exa 4.7 7

```
1 //example 4.7
2 clc; funcprot(0);
3 phi=35;
4 Df=1.5;
```

```
5 B=1.5;
6 Gamma=17.4;
7 A=%pi/4*Df^2;
8 m=0.25;
9 Ku=0.936;
10 Fq=1+2*(1+m*Df/B)*Df/B*Ku*tan(phi*%pi/180);
11 Qu=Fq*Gamma*A*Df;
12 disp(Qu," bearing capacity in kN");
```

Scilab code Exa 4.8 8

```
1 //example 4.8
2 clc; funcprot(0);
3 cu=52;
4 B=1.5;
5 L=3;
6 k=0.107*cu+2.5;
7 disp(k,"Df/B of square");
8 A=L*B;
9 Beta=0.2;
10 Gamma=18.9;
11 Df=1.8;
12 Qu=A*(Beta*(7.56+1.44*B/L)*cu+Gamma*Df);
13 disp(Qu,"ultimate shear force in kN");
```

Chapter 5

Shallow Foundations Allowable Bearing Capacity and Settlement

Scilab code Exa 5.1 1

```
1 // \text{example } 5.1
2 clc; funcprot(0);
3 //first solution
4 B1=2.5;
5 B2=B1;
6 z=12.5;
7 L1=5;
8 L2=L1;
9 m=B1/z;
10 n=B2/z;
11 //from table of tthe values using m,n
12 q = 2000;
13 I=0.0328;
14 deltasigma=q*4*I;
15 disp(deltasigma, "change in pressure in lb/ft^2");
16 //second solution
17 Ic=0.131; //from table
```

```
18 deltasigma=q*Ic;
19 disp(deltasigma, "change in pressure in lb/ft^2");
```

Scilab code Exa 5.2 2

```
1 //example 5.2
2 clc; funcprot(0);
3 qo=100;
4 H1=3;
5 H2=5;
6 //from table
7 IaH2=0.126;
8 IaH1=0.175;
9 deltasigma=qo*((H2*IaH2-H1*IaH1)/(H2-H1));
10 disp(deltasigma, "change in pressure in kN/m^2");
11 TS=4*deltasigma;
12 disp(TS, "total change in pressure in kN/m^2");
```

Scilab code Exa 5.3 3

```
//example 5.3
clc; funcprot(0);
H=7;
Gamma=17.5;
q0=Gamma*H
disp(q0,"pressure change in kN/m^2");
//part2
//from figure
Ileftside=0.445;
Irightside=0.445;
deltasigma=q0*(Ileftside+Irightside);
disp(deltasigma,"change in stress in kN/m^2");
//partc
```

```
14  //from figure 5.11
15  I=0.24; //I'
16  Dsigma1=43.75*I; // deltasigma1
17  I2=0.495; //I'
18  Dsigma2=I2*q0; // deltasigma2
19  I3=0.335; //I'
20  Dsigma3=I3*78.75; // deltasigma3
21  Dsigma=Dsigma1+Dsigma2-Dsigma3;
22  disp(Dsigma," total stress increase in A in kN/m^2");
```

Scilab code Exa 5.4 4

```
1 // \text{example } 5.4
2 clc; funcprot(0);
3 zbar=5;
4 \text{ mus} = 0.3;
5 F1=0.641;
6 F2=0.031;
7 z1=2;
8 z2=1;
9 z3=2;
10 Es1=10000;
11 Es2=8000;
12 Es3=12000;
13 \text{ qo} = 150;
14 //from table
15 If = 0.709;
16 Es=(Es1*z1+Es2*z2+Es3*z3)/zbar;
17 disp(Es, "modulus of elasticity in kN/m<sup>2</sup>");
18 Is=F1+(2-mus)/(1-mus)*F2;
19 Sc=qo*(1/Es-mus^2/Es)*Is*If*2;
20 Scrigid=0.93*Sc;
21 disp(Scrigid*1000, "settelement in mm");
```

Scilab code Exa 5.5 5

```
1 //example 5.5
2 clc; funcprot(0);
3 B=5;
4 L=10;
5 Ef = 2.3e6;
6 Eo=1400;
7 k=25;
8 t=1.0;
9 \text{ mus} = 0.3;
10 Df=5;
11 qo = 5000;
12 Ig=0.69;
13 Be=sqrt(4*B*L/\%pi);
14 If=\%pi/4+1/(4.6+10*(Ef/(Eo+2*Be/2*k))*(2*t/Be)^3);
15 Ie=1-1/(3.5*exp(1.22*mus-0.4)*(Be/Df+1.6));
16 Se=qo*Be*Ig*If*Ie/Eo*(1-mus^2)/144;
17 disp(Se*12, "settlement in inches");
```

Scilab code Exa 5.6 6

```
1 //example 5.6
2 clc; funcprot(0);
3 q=3.06;
4 qbar=25;
5 C1=1-0.5*(q/(qbar-q));
6 Sum=0;
7 C2=1+0.2*log10(10/0.1);
8 L=[1, 2, 3, 4, 5];
9 Dz=[48, 48, 96, 48, 144];
10 Es=[750, 1250, 1250, 1000, 2000];
```

```
z=[24, 72, 144, 216, 312];
 12 Iz=[0.275, 0.425, 0.417, 0.292, 0.125];
13 printf("Layer No.\t deltaz (in)\t Es(lb/in^2)\t z to
                                     the middle of the layer (in) Iz at the middle
                                of the layer Iz/delta(z) \n");
14 for i=1:5
                                     k(i)=Iz(i)/Es(i)*Dz(i);
15
                                       printf ("%.2 f\t\t\%.2 f\t\t\\"%.2 f\t\t\\"%.2 f\t\t\"%.2 f\\t\"%.2 f\\t\"%.2 f\\t\"%.2 f\\t\"%.2 f\\t\"%.2 f\\t\"%.2 f\\"%.2 f\\"%.2
16
                                                       t \setminus t \setminus t %.2 f\t\t %.4 f\n ",L(i),Dz(i),Es(i
                                                       ),z(i),Iz(i),k(i));
                                        Sum=Sum+k(i);
17
18 \, end
19 Se=C1*C2*(qbar-q)*Sum;
20 disp(Se, "settlement in inches");
```

Scilab code Exa 5.7 7

```
1 //example 5.8
2 clc; funcprot(0);
3 Df=1;
4 B=1.75;
5 qnet=120;
6 N60=10;
7 Fd=1+0.33*Df/B;
8 Se=2*qnet/N60/Fd*(B/(B+0.3))^2;
9 disp(Se,"settlement in mm");
```

Scilab code Exa 5.8 8

```
1 //example 5.8
2 clc; funcprot(0);
3 Df=1;
4 B=1.75;
```

```
5 qnet=120;
6 N60=10;
7 Fd=1+0.33*Df/B;
8 Se=2*qnet/N60/Fd*(B/(B+0.3))^2;
9 disp(Se,"settlement in mm");
```

Scilab code Exa 5.9 9

```
1 // \text{example } 5.9
2 clc; funcprot(0);
3 \text{ Ny} = 23.76;
4 \text{ Nq} = 16.51;
5 q=3*110;
6 Gamma=110;
7 B=4;
8 Nqe=0.63*Nq;
9 Nye=0.4*Ny;
10 que=q*Nqe+1/2*Gamma*B*Nye;
11 disp(que, "bearing capacity in lb/ft^2");
12 / part 2
13 V = 0.4;
14 A = 0.32;
15 \text{ g=9.81};
16 kh=0.26;
17 k=0.92; //tan(alphae)
18 Seq=0.174*k*V^2/A/g*kh^-4/A^-4;
19 disp(Seq, "settelement in m");
20 disp(Seq*39.57, "settlement in inches")
```

Scilab code Exa 5.10 10

```
1 //example 5.10
2 clc; funcprot(0);
```

```
3 \text{ Cc} = 0.32;
4 Hc = 2.5;
5 eo = 0.8;
6 sigmao = 2.5*16.5+0.5*(17.5-9.81)+1.25*(16-9.81);
7 \text{ m1} = [2, 2, 2];
8 z=[2, 3.25, 4.5];
9 \text{ n1} = [4, 6.5, 9];
10 Ic=[0.19, 0.085, 0.045];
11 Dsigma=[28.5, 12.75, 6.75]; // deltasigma
12 printf("m1\t z(m)\t n1\t Ic\t Dsigma \n");
13 for i=1:3
14
       printf("%.2 f\t %.2 f\t %.2 f\t %.2 f\t %.2 f\n",m1(i)
           ),z(i),n1(i),Ic(i),Dsigma(i));
15 end
16 Dsigmaav=1/6*(Dsigma(1)+4*Dsigma(2)+Dsigma(3));
17 Sc=Cc*Hc/(1+eo)*log10((sigmao+Dsigmaav)/sigmao);
18 disp(Sc*1000, "settlement in mm")
19 //partb
20 B=1;
21 L=2;
22 z=0.5+1.5;
23 B=B+z;
24 L=L+z;
25 \quad A = 0.6;
26 //from table
27 \text{ kcr} = 0.36;
28 Sep=kcr*Sc;
29 disp(Sep*1000, "settlement in mm");
```

Scilab code Exa 5.11 11

```
1 //example 5.11
2 clc; funcprot(0);
3 N60=(3+7+12+12+16)/5;
4 B=[2, 2.25, 2.3];
```

```
5 Fd=[1.248, 1.22, 1.215];
6 Qoac=102000*9.81/1000; // actual Qo
7 Se=25;
8 printf("B(m)\t Fd\t qnet(kN/m^2)\t Qo \n");
9 \text{ for } i=1:3
10
      qnet(i)=10/0.08*(B(i)+0.3)^2/(B(i))^2*Fd(i)*Se
         /25;
      Qo(i)=qnet(i)*B(i)^2;
11
      12
         i),qnet(i),Qo(i))
13 \text{ end}
14 disp(Qoac, "value of Qo in kN");
15 printf("since Qo is 1000 kN thus B is equal to 2.3m
     from the table");
```

Chapter 6

Mat Foundations

Scilab code Exa 6.1 1

```
1 //example 6.1
2 clc; funcprot(0);
3 B=30;
4 L=45;
5 Df=6.5;
6 cu=1950;
7 qunet=5.14*cu*(1+0.195*B/L)*(1+0.4*Df/B);
8 disp(qunet, "allowed force in lb/ft^2");
```

Scilab code Exa 6.2 2

```
1 //example 6.2
2 clc; funcprot(0);
3 N60=10;
4 Df=2;
5 B=10;
6 Se=25;
7 qnetall=N60/0.08*(1+0.33*Df/B)*Se/25;
8 disp(qnetall, "allowed pressure in kN/m^2");
```

Scilab code Exa 6.3 3

```
1 //example 6.3
2 clc; funcprot(0);
3 cu=2800;
4 B=60;
5 L=100;
6 Df=5;
7 B=60;
8 Gamma=120;
9 A=60*100;
10 Q=25e6;
11 FS=5.14*cu*(1+0.195*B/L)*(1+0.4*Df/B)/(Q/A-Gamma*Df);
;
12 disp(FS, "factor of safety");
```

Scilab code Exa 6.4 4

```
1 //example 6.4
2 clc; funcprot(0);
3 Cc=0.28;
4 Hc=18*12;
5 e0=0.9;
6 sigmao=11*100+40*(121.5-64)+18/2*(118-62.4);
7 H2=5+40+18;
8 H1=5+40;
9 qo=3567;
10 //from table
11 IaH2=0.21;
12 IaH1=0.225;
13 Dsigma=qo*((H2*IaH2-H1*IaH1)/(H2-H1))*4;
```

```
14 Scp=Cc*Hc/(1+e0)*log10(sigmao/sigmao+Dsigma/sigmao);
15 disp(Scp, "settlement in inches");
```

Scilab code Exa 6.5 5

```
1 // \text{example } 6.5
2 clc; funcprot(0);
3 P=['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', '
     M', 'N']; // point
4 k=1.2*ones(1,14);//Q/A
5 x = [-38, -24, -12, 0, 12, 24, 38, 38, 24, 12, 0, -12,
      -24, -38];
6 x1=0.0017*x;
-48, -48];
8 y1 = -0.0011 * y;
  printf ("point \ t Q\A (kip/ft^2) \ t x(ft) \ t 0.0017x(ft)
      \t \t \y(ft) \t \0.0011 \y(ft) \t \q(kip/ft^2) \n")
10 \text{ for } i=1:14
       q(i)=1.2+x1(i)+y1(i);
11
       12
          .2 \text{ f} \text{ t} \text{ t} \text{ \%}.2 \text{ f} \text{ n} \text{ ",P(i),k(i),x(i),x1(i),y(i),y1}
          (i),q(i))
13 end
14 printf ("the soil pressure at all point is less than
      the given qallnet = 1.5 \text{ kip/ft}^2");
```

Scilab code Exa 6.6 6

```
1 //example 6.6
2 clc; funcprot(0);
3 //solving for d
4 deff('y=f(d)', 'y=(96+2*d)*d-2615.1');
```

```
5 [x] = fsolve(19, f);
6 d1=x;
7 deff('y=f(d)', 'y=(96+4*d)*d-6046.4');
8 [x] = fsolve(28, f);
9 d2=x;
10 d=\max(d2,d1);
11 d=round(d)
12 //now coming to design part
13 h=d+3+1;
14 disp(h, "total slab thickness in inches");
15 \text{ qa}=1.082;
16 \text{ qb} = 1.106;
17 \text{ qm} = 1.212;
18 qn=1.188;
19 q1A = qa/2 + qb/2;
20 disp(q1A, "force in strip ABMN in kip/ft^2");
21 \quad q2A = qm/2 + qn/2;
22 disp(q2A, "force in strip ABMN in kip/ft^2");
23 q1=1.106/3+1.127/3+1.147/3;
24 disp(q1," force in strip BCDKLM in kip/ft^2");
25 q2=1.253/3+1.233/3+1.212/3;
26 disp(q2, "force in strip BCDKLM in kip/ft^2");
27 q1=1.147/3+1.167/3+1.188/3;
28 disp(q1, "force in strip DEFIJK in kip/ft^2");
29 \quad q2=1.294/3+1.273/3+1.253/3;
30 disp(q2, "force in strip DEFIJK in kip/ft^2");
31 q1=1.188/2+1.212/2;
32 disp(q1, "force in strip FGHI in kip/ft^2");
33 q2=1.318/2+1.294/2;
34 disp(q2, "force in strip FGHI in kip/ft^2");
35 //checking for force
36 //net soil reaction < load
37 netforce=1/2*(1.094+1.2)*14*96+1/2*(1.127+1.233)
      *24*96+1/2*(1.167+1.273)*24*96+1/2*(1.2+1.306)
      *14*96;
38 if netforce < 8761 then
       disp("forces generated is OK")
39
40 \, \text{end}
```

```
41  // checking for reinforcement requirement
42  Q1=1.4*180+1.7*120;
43  Q2=1.4*360+1.7*200;
44  Q3=1.4*400+1.7*240;
45  Q4=1.4*180+1.7*120;
46  // solving for a
47  deff('y=f(a)', 'y=0.9*0.51*a*60*(29-a/2)-95.05*12');
48  [x]=fsolve(1.4,f);
49  a=x;
50  As=0.51*a
51  fy=60000;
52  disp(As,"required area in in^2");
53  Asmin=200/fy*12*29;
54  disp(Asmin,"minimum reinforcement required in^2/ft")
    ;
55  printf("use No 9 bars at 10 inch centre to centre")
```

Chapter 7

Lateral Earth Pressure

Scilab code Exa 7.1 1

```
1 //example 7.1
2 clc; funcprot(0);
3 sigmao=48;
4 phi1=30*%pi/180;
5 phi2=36*%pi/180;
6 Ka1=(tan(%pi/4-phi1/2))^2;
7 Ka2=(tan(%pi/4-phi2/2))^2;
8 sigmaa1=Ka1*sigmao;
9 disp(sigmaa1,"top soil pressure in kN/m^2");
10 sigmaa2=Ka2*sigmao;
11 disp(sigmaa2,"bottom soil pressure in kN/m^2");
12 Po=1/2*3*16+3*12.48+1/3*3*(19.65-12.48)+1/2*3*29.43;
13 zbar=(24*(3+3/3)+37.44*(3/2)+10.76*3/3+44.1*3/3)/Po;
14 disp(zbar,"resultant force acting from the bottom in m");
```

Scilab code Exa 7.2 2

```
1 // \text{example } 7.2
2 clc; funcprot(0);
3 c=14.36;
4 Gamma=17.4;
5 \text{ H=6};
6 phi = 26 * \%pi / 180;
7 Ka = (tan(\%pi/4-phi/2))^2;
8 sigma0=Gamma*H*Ka-2*c*sqrt(Ka);
9 Pa=1/2*Gamma*H^2*Ka-2*c*H*sqrt(Ka);
10 disp(Pa, "active force before which tensile crack
      appeared in kN/m");
11 zbar=(244.32-323.1)/14.46;
12 disp(zbar," the line of action on which net force is
      acting in m");
13 zc=2*c/Gamma/sqrt(Ka);
14 disp(zc," distance where tensile crack appeared in m"
      );
15 Pa=1/2*(H-zc)*(Gamma*H*Ka-2*c*sqrt(Ka));
16 disp(Pa, "Active force in tensile crack in kN/m");
17 zbar=(H-zc)/3;
18 disp(zbar," the line of action on which net force is
      acting in m");
```

Scilab code Exa 7.3 3

```
1 //example 7.3
2 clc; funcprot(0);
3 pi=%pi
4 H=10;
5 Gamma=110;
6 phi=35*%pi/180;
7 alpha=15*%pi/180;
8 theta=10*%pi/180;
9 zi=asin(sin(alpha)/sin(phi))-alpha+2*theta;
10 disp(zi*180/%pi,"zi in degrees");
```

Scilab code Exa 7.4 4

```
1 //example 7.4
2 clc; funcprot(0);
3 H=4.6;
4 Gamma=16.5;
5 Ka=0.297;
6 Po=1/2*Gamma*H^2*Ka;
7 disp(Po,"coulomb active force per unit length in kN/m");
```

Scilab code Exa 7.5 5

```
1 //example 7.5
2 clc; funcprot(0);
3 //parta
4 Gamma=105;
5 H=10;
6 Kae=0.474;
7 k1=0;
8 Pae=1/2*Gamma*H^2*Kae*(1-k1)
9 disp(Pae, "active force in lb/ft");
10 //oartb
```

```
11 Ka=0.246;
12 Pa=1/2*Gamma*H^2*Ka;
13 disp(Pa, "active force in lb/ft");
14 DPae=Pae-Pa;//deltaPae
15 zbar=(0.6*H*DPae+H/3*(Pa))/Pae;
16 disp(zbar, "the distance of resultant force from bottom in m");
```

Scilab code Exa 7.6 6

```
1 // example 7.6
2 clc; funcprot(0);
3 z=[0, 4, 8, 12, 16];
4 Gamma=110;
5 phi=36*\%pi/180;
6 \text{ H} = 16;
7 Sa1(1)=0; // sigma(1)
8 Sa2(1)=0; // sigma(2)
9 Sztr(1)=0; //sigma(z) translation
10 printf("z(ft) \setminus t \operatorname{sigma}(1)(lb/ft^2) \operatorname{sigma}(2)(lb/ft^2)
        sigma(z) translation (lb/ft^2)\n");
11 for i=1:5
        Sa1(i) = Gamma*(tan(\%pi/4-phi*z(i)/2/H))^2*(z(i)-
12
           phi*z(i)^2/H/cos(phi*z(i)/H));
        Sa2(i) = Gamma*z(i)*(cos(phi)/(1+sin(phi)))^2;
13
        Sztr(i) = Sa1(i)/2 + Sa2(i)/2;
14
        printf("%.2f\t \%.2f\t\t\t \%.2f\t\t\t\ \%.2f\n", z(
15
           i),Sa1(i),Sa2(i),Sztr(i));
16 \text{ end}
17 plot(z,Sztr);
18 xtitle("sigma(z)translation vs z", "z(m)", "sigma(z)
      translation (lb/ft<sup>2</sup>)")
```

Scilab code Exa 7.7 7

```
1 // \text{example } 7.7
2 Gammasat = 18.86;
3 Gammaw=9.81;
4 clc; funcprot(0);
5 phi1=%pi/180*30;
6 phi2=%pi/180*26;
7 Kp1 = (tan(\%pi/4+phi1/2))^2;
8 Kp2=(tan(\%pi/4+phi2/2))^2;
9 //for top soil
10 c = 0;
11 sigma0=31.44;
12 sigmap=sigma0*Kp1+2*c*sqrt(Kp1);
13 disp(sigmap, "passive pressure for top layer in kN/m
14 // for z=2
15 c = 10;
16 \text{ sigma0} = 31.44;
17 sigmap=sigma0*Kp2+2*c*sqrt(Kp2);
18 disp(sigmap, "passive pressure for z=2m in kN/m^2");
19 // \text{for } z=3
20 c = 10;
21 sigma0=15.72*2+(Gammasat-Gammaw)*1;
22 sigmap=sigma0*Kp2+2*c*sqrt(Kp2);
23 disp(sigmap, "passive pressure for z=3m in kN/m^2");
```

Chapter 8

Retaining Walls

Scilab code Exa 8.1 1

```
1 // \text{example } 8.1
2 clc; funcprot(0);
3 \text{ H1=}6*tan(10*\%pi/180);
4 H2=18;
5 \text{ H3} = 2.75;
6 Gamma1=117;
7 Ka=0.294; //from table
8 H = H1 + H2 + H3;
9 Pa=1/2*Gamma1*H^2*Ka/1000;
10 Pr=Pa*sin(10*%pi/180);
11 Ph=Pa*cos(10*\%pi/180);
12 Mo=Ph*H/3;
13 Sum=0; // sigma Mr
14 S=[1, 2, 3, 4, 5]; // section
15 W = [4.05, 1.35, 5.156, 13.01, 1.42]; // weight
16 MA=[5.75, 4.67, 6.25, 9.5, 12.5, 12.5]; //Moment Arm
17 printf ("Section Weight (kip/ft) Moment Arm(ft) Moment
       (kip-ft/ft) n");
18 \text{ for } i=1:5
       M(i) = W(i) * MA(i);
19
20
        Sum = Sum + M(i);
```

```
printf ("%.2 f\t\t\%.2 f\t\t\\%.2 f\t\\%.2 f\n\",S(i),W(
21
           i),MA(i),M(i));
22 end
23 FSO=Sum/Mo;
24 if FSO>2 then
25
        printf ("safe in overturning with FS=\%.2 \text{ f} \text{ n}", FSO)
26 \text{ end}
27 //for sliding
28 phi2=18*%pi/180;
29 V = 24.986;
30 B=12.5;
31 c2=0.9;
32 FSS=(V*tan(2/3*phi2)+B*2/3*c2)/Ph;
33 if FSS>2 then
        printf ("safe in sliding with FS=\%.2 \text{ f} \text{ n}", FSS)
34
35 end
36 //for bearing
37 e=B/2-(Sum-Mo)/V;
38 \text{ qtoe=V/B*(1+6*e/B)};
39 \text{ Nc} = 13.1;
40 \text{ Nq} = 5.26;
41 Ny=4.07;
42 D = 0.107;
43 Gamma2=4;
44 B1=B-2*e; //Bdash
45 \quad q = Gamma2 * D
46 Fcd=1+0.4*D/B1;
47 Fqd=1+2*tan(phi2)*(1-sin(phi2))^2*(D/B1);
48 \text{ Fyd=1};
49 zi = atan(Ph/V);
50 Fci=(1-zi/\%pi*2)^2;
51 Fqi=Fci;
52 Fyi=round((1-zi/phi2)^2);
53 qu=c2*Nc*Fcd*Fci+q*Nq*Fqd*Fqi+1/2*Gamma2*B1*Fyd*Fyi;
54 FSB=qu/qtoe;
55 if FSB>3 then
        printf ("safe in bearing with FS=\%.2 \text{ f} \n\n", FSB)
56
57 end
```

Scilab code Exa 8.2 2

```
1 // \text{example } 8.2
2 clc; funcprot(0);
3 c=0.9;
4 B=12.5;
5 \quad \text{Gamma2=4};
6 Fcd=1.138;
7 Fqd=1.107;
8 \text{ Nc} = 7.5;
9 Nq=4;
10 Ny=0;
11 q=0.428;
12 \text{ qtoe=} 2.44;
13 qu=c*Nc*Fcd+q*Nq*Fqd+1/2*Gamma2*B*Ny;
14 FSB=qu/qtoe;
15 if FSB>3 then
16
        printf ("safe in bearing with FS=\%.2 \text{ f} \n\n", FSB)
17 end
```

Scilab code Exa 8.3 3

```
1 //example 8.3
2 clc; funcprot(0);
3 Msum=0; //sum of moment
4 Vsum=0; //sum of force
5 H=15+2.5; //Hdash
6 phi=30*%pi/180;
7 Gamma=121;
8 Ka=(tan(%pi/4-phi/2))^2;
9 Pa=1/2*Gamma*H^2*Ka/1000;
```

```
10 Ph=Pa;
11 Mo=Ph*H/3;
12 AN=[1,2,3,4,5,6];//area number
13 W = [0.9, 3.375, 5.906, 3.863, 4.764, 2.723]; // weight
14 MA = [1.783, 2.8, 5.3, 5.15, 7.05, 9.55]; //moment arm
15
16 printf ("AreaNo Weight (kip/ft) Moment Arm (ft) Moment
      (kip-ft/ft)\n");
17 \text{ for } i=1:6
       M(i) = W(i) * MA(i);
18
       Vsum=Vsum+W(i);
19
20
       Msum=Msum+M(i);
21
       (i), MA(i), M(i));
22 \quad end
23 FSO=Msum/Mo;
24 if FSO>2 then
       printf ("safe in overturning with FS=\%.2 \text{ f} \text{ n}", FSO)
25
26 \text{ end}
27 //for sliding
28 phi2=20*%pi/180;
29 \quad V = V sum
30 B=10.3;
31 c2=1.0;
32 FSS = (V*tan(2/3*phi2)+B*2/3*c2)/Ph;
33 printf ("safe in sliding with FS=\%.2 \text{ f} \text{ n}", FSS)
34 \text{ e=B/2-(Msum-Mo)/V};
35 \text{ qtoe=V/B*(1+6*e/B)};
36 disp(qtoe, "soil pressure at toe in kip/ft^2")
37 qheel=V/B*(1-6*e/B);
38 disp(qheel, "soil pressure at heel in kip/ft^2")
```

Scilab code Exa 8.4 4

```
1 // example 8.4
```

```
2 clc; funcprot(0);
3 Msum=0; //sum of moment
4 Vsum=0; //sum of force
5 \text{ H}=5+1.5; // \text{Hdash}
6 phi=32*\%pi/180;
7 Gamma=18.5;
8 \text{ Ka} = 0.424;
9 Pa=1/2*Gamma*H^2*Ka;
10 Ph=Pa*\cos(15*%pi/180+2/3*phi);
11 Mo=Ph*H/3;
12 AN = [1, 2, 3, 4, 5]; //area number
13 A = [4.36, 3.42, 0.77, 2.8, 2.8]; // area
14 W=[102.81, 80.64, 18.16, 66.02, 93.14]; // \text{weight}
15 MA=[2.18, 1.37, 0.98, 1.75, 2.83]; //moment arm
16 printf ("AreaNo Area (m^2) Weight (kN/m) Momwnt Arm (m)
      Moment (kN-m/m) \setminus n");
17 for i=1:5
18
        M(i) = W(i) * MA(i);
19
        Vsum=Vsum+W(i);
20
        Msum=Msum+M(i);
21
        AN(i),A(i),W(i),MA(i),M(i));
22 \text{ end}
23 FSO=Msum/Mo;
24 if FSO>2 then
        printf ("safe in overturning with FS=\%.2 \text{ f} \text{ n}", FSO)
25
26 \, \text{end}
27 //for sliding
28 \text{ phi2}=24*\%\text{pi}/180;
29 \quad V = V sum
30 B=3.5;
31 c2=30;
32 \text{ Pp}=1/2*2.37*18*1.5^2+2*30*1.54*1.5;}
33 FSS = (V * tan (2/3 * phi2) + B * 2/3 * c2 + Pp) / Ph;
34 printf ("safe in sliding with FS=\%.2 \text{ f} \text{ n}", FSS)
35 disp("if Pp is ignored then FS=1.37");
36 \text{ e=B/2-(Msum-Mo)/V};
37 \text{ qtoe=V/B*(1+6*e/B)};
```

```
38 disp(qtoe,"soil pressure at toe in kN/m^2")
39 qheel=V/B*(1-6*e/B);
40 disp(qheel,"soil pressure at heel in kN/m^2")
41 disp("there is difference in answer due to rounding off error")
```

Scilab code Exa 8.5 5

Scilab code Exa 8.6 6

```
1 //example 8.6
2 clc; funcprot(0);
3 Sv=2;
4 Sh=3;
5 w=3/12;
6 fy=35000*144;
7 FSb=3;
8 pi=%pi;
9 phi=36*pi/180;
10 Gamma1=105;
11 H=30;
12 t=Gamma1*H*Sv*Sh*FSb/w/fy*(tan(pi/4-phi/2))^2;
13 t=t*12;
```

```
14 disp(t,"thiskness in inches");
15 t=t+0.001*50;
16 disp("so take thickness=0.2 inches");
17 //for tie length
18 z=[5,10,15,20,25,30];
19 TL=[38.45, 35.89, 33.34, 30.79, 28.25, 25.7]; // \text{tie}
      length
20 printf("z(ft) \setminus t Tie Length (ft) \setminus n");
21 for i=1:6
        printf ("%.2 f\t %.2 f\n", z(i), TL(i))
23 end
24 disp("use tie length=40ft")
25 //check for over turning
26
27 z = 30/3;
28 \times 1 = 20;
29 L = 40;
30 \text{ Ka=0.26};
31 Pa=1/2*Gamma1*Ka*H^2;
32 W1 = Gamma1 * H * L;
33 FSO=W1*x1/(Pa*z);
34 disp(FSO, "factor of safety is");
35 disp("since FS>3 structure is safe")
36 //check for sliding
37 k = 2/3;
38 \text{ Pa} = 12285;
39 FSS=W1*tan(k*phi)/Pa;
40 if FSS>3 then
        printf("safe in sliding with FS=\%.2 \text{ f} \text{ n}", FSS)
41
42 end
43 //check for bearing
44 Mr = 126000 * 20;
45 \text{ Mo} = 12285 * 10;
46 V = 126000;
47 \text{ e=L/}2-\text{Mr/V+Mo/V};
48 L1=L-2*e; // Ldash
49 c2=1000;
50 \text{ Nc} = 25.8;
```

```
51 Gamma2=110;
52 Ny=16.72;
53 qult=c2*Nc+1/2*Gamma2*L1*Ny
54 sigma0=Gamma1*H;
55 FSB=qult/sigma0;
56 if FSB>5 then
57 printf("safe in bearing with FS=%.2f\n\n",FSB)
58 end
```

Scilab code Exa 8.7 7

```
1 // \text{example } 8.7
2 clc; funcprot(0);
3 pi=\%pi;
4 phi=36*pi/180;
5 Ka=(tan(pi/4-phi/2))^2;
6 z = [8, 12, 16];
7 sigmaG=80*12;
8 Gamma1=110;
9 FS=1.5;
10 for i=1:3
11
        Sv(i)=sigmaG/Gamma1/z(i)/Ka/FS*12;
        printf ("for z=\%.2 f ft Sv = \%.2 f inches\n",z(i),
12
           Sv(i));
13 end
z = [16, 56, 76, 96, 112, 144, 176];
15 zf=z/12; //z in ft
16 Sv = [1.67, 1.67, 1.67, 1.67, 1.33, 1.33, 1.33];
17 k = [7.48, 5.78, 4.93, 4.08, 3.4, 2.04, 0.68]; // 0.51(H-z)
                       z(ft) Sv(ft) 0.51(H-z)(ft) 0.438
18 printf ("z(in)
      Sv(ft) L(ft) \setminus n")
19 for i=1:7
       k2(i) = 0.438 * Sv(i); // 0.438 Sv
20
21
       L(i)=k(i)+k2(i);
        printf ("%.2 f\t %.2 f\t %.2 f\t %.2 f\t \t %.2 f\t
22
                                                              \%
```

```
.2 f\n",z(i),zf(i),Sv(i),k(i),k2(i),L(i));

23 end

24 Sv=20/12;

25 Ka=0.26;

26 FS=1.5;

27 l1=Sv*Ka*FS/4/tan(2/3*phi);

28 if l1<3 then

29  l1=3;

30 disp(l1,"length in ft")

31 end
```

Chapter 9

Sheet Pile Piles

Scilab code Exa 9.1 1

```
1 // \text{example } 9.1
2 clc; funcprot(0);
3 sall=30;//sigma allowed
4 pi=%pi;
5 zbar=12.1;
6 L1 = 10;
7 L2=20;
8 \text{ Gamma} = 0.12;
9 Gamma1 = 0.1294 - 0.0624;
10 phi=40*pi/180;
11 Ka=(tan(pi/4-phi/2))^2;
12 Kp = (tan(pi/4+phi/2))^2;
13 s1=Gamma*L1*Ka; //sigma1
14 s2=Gamma*L1*Ka+Gamma1*L2*Ka; // sigma2
15 L3=s2/(Gamma1*(Kp-Ka));
16 disp(L3, "length in ft");
17 P=1/2*s1*L1+s1*L2+1/2*(s2-s1)*L2+1/2*s2*L3;
18 \operatorname{disp}(P, "force in \operatorname{kip}/\operatorname{ft}");
19 s5=Gamma*L1*Kp+Gamma1*L2*Kp+Gamma*L3*(Kp-Ka);//
      sigma5
20 disp(s5,"pressure in kip/ft");
```

```
21 A1=s5/(Gamma1*(Kp-Ka));
22 A2=8*P/(Gamma1*(Kp-Ka))
23 A3=6*P*(2*zbar*(Gamma1*(Kp-Ka))+s5)/(Gamma1*(Kp-Ka))
       ^2
24 \quad A4=P*(6*zbar*s5+4*P)/(Gamma1*(Kp-Ka))^2
25 printf ("A1, A2, A3, A4 respectively in \%.2 \, \mathrm{f}, \%.2 \, \mathrm{f}, \%.2 \, \mathrm{f}, \%
       .2 \text{ f } \setminus \text{n}, A1, A2, A3, A4);
26 disp("slight error due to rounding off error")
27 //partb
28 deff('y=f(x)', 'y=x^4+41.7*x^3-270.5*x^2-13363*x
       -106863;
29 [x] = fsolve(20, f);
30 D=1.88+x;
31 disp(D,"value of D, ft")
32 \text{ TL}=\text{L1}+\text{L2}+\text{1.3}*\text{D};
33 disp(TL, "total length in ft");
34 //partc
35 z = sqrt(2*P/(Gamma1*(Kp-Ka))); //zdash
36 \text{ Mmax} = P*(z+zbar) - 1/2*(Gamma1*(Kp-Ka))*z^2*z/3;
37 \text{ S=Mmax}*12/\text{sall};
38 disp(S, "section modulus in in 3/ft")
```

Scilab code Exa 9.2 2

```
1 //example 9.2
2 clc; funcprot(0);
3 sall=172.5*1000;//sigma allowed
4 pi=%pi;
5 c=47;
6 zbar=1.78;
7 L1=2;
8 L2=3;
9 Gamma=15.9;
10 Gamma1=19.33-9.81;
11 phi=32*pi/180;
```

```
12 Ka = (tan(pi/4-phi/2))^2;
13 Kp = (tan(pi/4+phi/2))^2;
14 s1=Gamma*L1*Ka; //sigma1
15 s2=Gamma*L1*Ka+Gamma1*L2*Ka; // sigma2
16 P=1/2*s1*L1+s1*L2+1/2*(s2-s1)*L2;
17 disp(P, "force in kN/ft");
18 deff('y=f(x)', 'y=127.4*x^2-104.4*x-357.15');
19 [x] = fsolve(2, f);
20 D=x;
21 disp(D, "value of D, m")
22 disp(D*1.5, "actual D in m")
23 L4=D*(4*c-(Gamma*L1+Gamma1*L2)-P/D)/4/c;
24 disp(L4, "length in m");
25 s6=4*c-(Gamma*L1+Gamma1*L2);//sigma6
26 \text{ s7}=4\text{*c+}(\text{Gamma*L1+Gamma1*L2}); // \text{sigma7}
z=P/s6; //zdash
28 Mmax=P*(z+zbar)-1/2*s6*z^2;
29 S=Mmax*12/sall;
30 disp(S, "section modulus in m<sup>3</sup>/m")
31 disp("slight error due to rounding off error")
```

Scilab code Exa 9.3 3

```
1 //example 9.3
2 clc; funcprot(0);
3 pi=%pi;
4 zbar=2.23;
5 L1=2;
6 L2=3;
7 Gamma=15.9;
8 Gamma1=19.33-9.81;
9 phi=32*pi/180;
10 Ka=(tan(pi/4-phi/2))^2;
11 Kp=(tan(pi/4+phi/2))^2;
12 s1=Gamma*L1*Ka;//sigma1
```

```
13 s2=Gamma*L1*Ka+Gamma1*L2*Ka;//sigma2
14 L3=s2/(Gamma1*(Kp-Ka));
15 disp(L3, "length in m");
16 P=1/2*s1*L1+s1*L2+1/2*(s2-s1)*L2+1/2*s2*L3;
17 disp(P,"force in kN/m");
18 deff('y=f(x)', 'y=x^3+6.99*x^2-14.55');
19 [x] = fsolve(1.4, f);
20 D = L3 + x;
21 disp(D, "value of D in m")
22 \text{ AL} = 1.4 * D;
23 disp(AL, "actual length in m");
24 //partb
25 \quad L4 = 1.4;
26 \text{ F=P-1/2*(Gamma1*(Kp-Ka)*L4^2)};
27 disp(F, "anchor force in kN/m");
28 //partc
29 deff('y=f(x)', 'y=x^2+6.682*x-14.44');
30 [x] = fsolve(1.7, f);
31 z = x + 2;
32 \text{ Mmax} = -1/2*s1*L1*(x+2/3)+F*(x+1)-s1*x*x/2-1/2*Ka*
      Gamma1*x^3/3;
33 disp(Mmax, "maximum moment in kN-m/m")
```

Scilab code Exa 9.4 4

```
1 //example 9.4
2 clc; funcprot(0);
3 Gamma=15.9;
4 Gamma1=19.33-9.81;
5 GD=0.23;
6 CDL1=1.172;
7 L1=2;
8 L2=3;
9 Dth=(L1+L2)*GD*CDL1;
10 disp(Dth,"theoritical depth in m");
```

```
11  Dac=1.4*Dth;
12  disp(Dac, "actual depth in m");
13  printf("approximate it as 2 m");
14  //partb
15  CFL1=1.073;
16  GF=0.07;
17  Gammaa=(Gamma*L1^2+Gamma1*L2^2+2*Gamma*L1*L2)/(L1+L2)^2;
18  F=Gammaa*(L1+L2)^2*GF*CFL1;
19  disp(F, "force in kN/m");
20  //partc
21  GM=0.021;
22  CML1=1.036;
23  Mmax=Gammaa*(L1+L2)^3*GM*CML1;
24  disp(Mmax, "maximum moment in kN-m/m");
```

Scilab code Exa 9.5 5

```
1 // \text{example } 9.5
2 clc; funcprot(0);
3 \text{ Mmax} = 43.72;
4 sp=["PSA-31","PSA-23"];//sheet pile
5 H = [7.9, 7.9]
6 I = [4.41e-6, 5.63e-6];
7 p = [0.00466, 0.00365];
8 S=[10.8e-5,12.8e-5];
9 \text{ Md} = [18.63, 22.08];
10 printf("SheetPile
                           I(m^4/m) H(m)
                                              p \setminus t
                                                       Logp S
      (m^3/m) Md(kN-m/m) Md/Mmax \n")
11 for i=1:2
12
       Logp(i) = log10(p(i));
13
       k(i) = Md(i) / Mmax;
       printf ("%s\t %.2e %.2f %f %.2f %.2e
                                                          \%.2 f
14
           t \%.3 f n, sp(i), I(i), H(i), p(i), Logp(i), S(i),
           Md(i),k(i));
```

```
15
16 end
17 plot(Logp,k);
18 xtitle("","LogP","Md/Mmax");
```

Scilab code Exa 9.6 6

```
1 // \text{example } 9.6
2 clc; funcprot(0);
3 pi=%pi;
4 R = 0.6;
5 L1=10;
6 L2=20;
7 Gammasat = 122.4;
8 11=5;
9 Gamma=110;
10 C=0.68;
11 L=L1+L2;;
12 Gammaw = 62.4;
13 Gamma1 = Gammasat - Gammaw; //gammadash
14 Gammaav = (Gamma*L1+Gamma1*L2)/(L1+L2);
15 phi=35*pi/180;
16 Ka=(tan(pi/4-phi/2))^2;
17 sa=C*Ka*Gammaav*L;//sigmaa
18 sp=R*sa;//sigmap
19 deff('y=f(x)', 'y=x^2+50*x-1000');
20 [x] = fsolve(15, f);
21 \quad D=x;
22 disp(D, "depth in ft");
23 R=L/D*(L-2*11)/(2*L+D-2*11);
24 printf("value of R=\%.2 f is OK\n",R);
25 // partb
26 \quad F=sa*(L-R*D);
27 disp(F, "Force in lb/ft")
28 // partc
```

```
29 Mmax=0.5*sa*L^2*((1-R*D/L)^2-2*11/L*(1-R*D/L));
30 disp(Mmax,"maximum moment lb-ft/ft");
```

Scilab code Exa 9.7 7

```
1 // \text{example } 9.7
2 clc; funcprot(0);
3 pi=%pi;
4 zbar=3.2;
5 c = 41;
6 L1=3;
7 L2=6;
8 \quad \text{Gamma} = 17;
9 Gamma1 = 20 - 9.81;
10 phi=35*pi/180;
11 Ka=(tan(pi/4-phi/2))^2;
12 Kp = (tan(pi/4+phi/2))^2;
13 s1 = Gamma * L1 * Ka; // sigma1
14 s2=Gamma*L1*Ka+Gamma1*L2*Ka; // sigma2
15 P=1/2*s1*L1+s1*L2+1/2*(s2-s1)*L2;
16 disp(P, "Force in kN/m");
17 s6=4*c-(Gamma*L1+Gamma1*L2);//sigma6
18 disp(s6, "pressure in kN/m^2");
19 deff('y=f(x)', 'y=x^2+15*x-25.43');
20 [x] = fsolve(1.6, f);
21 \quad D=x;
22 disp(D, "depth in m");
23 F = P - s6 * D;
24 disp(F,"force in kN/m");
25 printf("slight error due to rounding off")
```

Scilab code Exa 9.8 4

```
1 // \text{example } 9.8
2 clc; funcprot(0);
3 pi=\%pi;
4 Gamma=105;
5 Cov = 14;
6 B=15/12;
7 \text{ Ka=0.26};
8 phi=35*pi/180;
9 \text{ H}=37.5/12;
10 h=15/12;
11 t=6/12;
12 Gc=150;//gamma concrete
13 W=H*t*Gc;
14 k=4.5; //kp*cos(delta)
15 Pu=1/2*Gamma*H^2*(k-Ka*cos(phi));
16 disp(Pu, "force in lb/ft");
17 Pus=[(Cov+1)/(Cov+H/h)]*Pu;
18 disp(Pus, "force in lb/ft");
19 Be=0.227*(H+h)+B;
20 Pu=Pus*Be;
21 disp(Pu, "resistance of anchor plate i lb/ft")
```

Chapter 10

Braced Cuts

Scilab code Exa 10.1 1

```
1 // \text{example } 10.1
2 clc; funcprot(0);
3 Gamma=18;
4 \text{ H} = 7;
5 sigmaa=0.3*Gamma*H;
6 disp(sigmaa, "maximum pressure intensity in kN/m^2");
7 //partb
8 \quad A = 54.02;
9 B1=1/2*1.75*37.8+37.8*1.75-A;
10 B2=45.2;
11 C=54.02;
12 s=3; //spacing
13 Pa=C*s;
14 disp(Pa, "strut loads in kN");
15 Pb = (B1+B2)*s;
16 disp(Pb, "strut loads in kN")
17 Pc=C*s;
18 disp(Pc, "strut loads in kN");
19 //partc
20 Me = 45.2 \times 1.196 - 37.8 \times 1.196 \times 1.196 / 2; //Me=Mmax
21 Sall=170e3; // sigmaall
```

```
22 S=Me/Sall;
23 disp(S,"section modulus in m^3/m");
24 //partd
25 Mmax=(B1+B2)*s^2/8;
26 S=Mmax/Sall;
27 disp(S,"section modulus in m^3/m");
```

Scilab code Exa 10.2 2

```
1 //example 10.2
2 clc; funcprot(0);
3 phi=32;
4 Gamma=112;
5 \text{ s=12;} // \text{spacing}
6 \text{ H} = 27;
7 Ka=(tan(45*\%pi/180-32*\%pi/180/2))^2;
8 sigmaa=0.65*Gamma*Ka*H;
9 A = sigmaa * 15 * 15/2/9;
10 B1=603.44*15-A;
11 C=sigmaa*12*12/2/9;
12 B2=sigmaa*s-C;
13 Pa=A*s/1000;
14 Pb = (B1+B2)*s/1000;
15 Pc=C*s/1000;
16 disp(Pa, "strut loads at A in kN");
17 disp(Pb, "strut loads at B in kN");
18 disp(Pc, "strut loads at C in kN");
```

Scilab code Exa 10.3 3

```
1 //example 10.3
2 clc; funcprot(0);
3 //parta
```

Scilab code Exa 10.4 4

```
1 //example 10.4
2 clc; funcprot(0);
3 q=0;
4 Gamma=18;
5 L=25;
6 c=35;
7 T=4;
8 H=7;
9 B1=4; //B'
10 B11=T*sqrt(2); //B''
11 FS=(5.14*c*(1+B11*0.2/L)+c*H/B1)/(Gamma*H+q)
12 disp(FS, "factor of safety is")
```

Chapter 11

Pile Foundations

Scilab code Exa 11.1 1

```
1 //example 11.1
2 clc; funcprot(0);
3 //parta
4 phi=30;
5 pa=2000;
6 q=100*50/1000;
7 \text{ Nq} = 55;
8 Ap=16*16/16/12;
9 Qp = Ap * q * Nq;
10 qp=0.4*pa*Nq*tan(phi*%pi/180)*Ap;
11 disp(qp,"ultimate load in lb");
12 disp(qp/1000,"ultimate load in kip");
13 disp("there is change in answer because of
      calculation mistake in the book");
14 //partb
15 Nsigma=36;
16 Ap=16*16/12/12;
17 q=110*50/1000;
18 Qp = Ap * q * Nsigma * ((1+2*(1-sin(phi*%pi/180)))/3);
19 disp(Qp,"ultimate load in kip");
20 //partc
```

```
21 Nq=18.4;
22 Qp=Ap*q*Nq;
23 disp(Qp,"ultimate load in kip");
```

Scilab code Exa 11.2 2

```
1 // \text{example } 11.2
2 clc; funcprot(0);
3 //parta
4 \text{ K=1.3};
5 f0=0;
6 Delta=0.8*30;
7 D=16/12;
8 L1=50;
9 p=4*16/12;
10 Gamma=110/1000;
11 L=15*D;
12 sigma=Gamma*L;
13 f20=K*sigma*tan(Delta*%pi/180);
14 Qs=(f0+f20)/2*(p*L)+f20*p*(L1-L);
15 disp(Qs,"ultimate load in kip");
16 //partb
17 FS=4;
18 Qp = 56.45/3 + 234.7/3 + 179.9/3;
19 Qu = Qs + Qp;
20 Qall=Qu/FS;
21 disp(Qall, "allowed load in kip");
```

Scilab code Exa 11.3 3

```
1 //example 11.3
2 clc; funcprot(0);
3 K=0.25;
```

```
4 Ap=16*16/12/12;
5 phi=30*%pi/180;
6 Nq=25;
7 q=110*50/1000;
8 sigmao=q/2;
9 p=4*16/12;
10 L=50;
11 FS=4;
12 Qu=q*Nq*Ap+K*sigmao*tan(0.8*phi)*p*L;
13 Qall=Qu/FS;
14 disp(Qall, "allowed load in kip");
```

Scilab code Exa 11.4 4

```
1 //example 11.4
2 clc; funcprot(0);
3 \text{ FS}=4;
4 Ap=0.1295;
5 \text{ Nc} = 9;
6 cu2=100;
7 Qp = Ap * Nc * cu2;
8 D=[5, 10, 30];
9 avgD=[2.5, 7.5, 20];
10 sigma=[45, 110.5, 228.5];
11 cu=[30, 30, 100];
12 alpha=[0.6 0.9 0.725];
13 L=[5, 5, 20];
14 p = \%pi * 0.406;
15 Qs=0;
16 disp(Qp, "bering capacity in kN");
17 printf("depth (m)\t avg Depth(m)\t avgVerticalStress
      (kN/m^2) t cu(kN/m^2) t cu/sigma t alpha n")
18 \text{ for } i=1:3
19
       cusig(i)=cu(i)/sigma(i);
       Qs=Qs+alpha(i)*cu(i)*L(i)*p;
20
```

```
21
        printf ("\%.2 f\t
                                      \%.2 \text{ f} \setminus \text{t}
                                                            \%.2 f \setminus t \setminus
            t \setminus t %.2 f\t \%.2 f\t\\t\\%.2 f\n\",D(i),avgD(i),
            sigma(i),cu(i),cusig(i),alpha(i));
22 \text{ end}
23 disp(Qs," bearing capacity in kN");
24 //part2
25 lambda=0.136;
26 L = 30;
27 fav=lambda*(178.48+2*76.7);
28 \quad Qs2=p*L*fav;
29 //part3
30 \text{ fav1=13};
31 \text{ fav2}=31.9;
32 fav3=93.43;
33 Qs3=p*(fav1*5+fav2*5+fav3*20);
34 disp(Qs3, "bearing capacity in kN");
35 \, Qsavg = Qs/3 + Qs2/3 + Qs3/3;
36 Qu=Qp+Qsavg
37 Qall=Qu/FS;
38 disp(Qall, "allowed bearing capacity in kN");
```

Scilab code Exa 11.5 5

```
1 //example 11.5
2 clc; funcprot(0);
3 D=[6, 12, 20];
4 fc=[34.34, 54.94, 70.63];
5 alpha=[0.84, 0.71, 0.63];
6 dL=[6, 6, 8];
7 p=4*0.305;
8 Qs=0;
9 printf(" depth(m)\t fc(kN/m^2)\t alpha \t deltaL(m)\t Q(kN)\n");
10 for i=1:3
1    Q(i)=alpha(i)*fc(i)*p*dL(i);
```

```
12    Qs=Q(i)+Qs;

13    printf("%.2f\t\ %.2f\t\ %.2f
```

Scilab code Exa 11.6 6

```
1 // \text{example} 11.6
2 clc; funcprot(0);
3 L=21;
4 Qwp = 502 - 350;
5 Qws=350;
6 Ap=0.1045;
7 \text{ Ep} = 21 \text{ e6};
8 \text{ epsilon=0.62};
9 Se1=(Qwp+epsilon*Qws)*L/Ap/Ep;
10 //part2
11 Iwp = 0.85;
12 qwp = 152/Ap;
13 Es = 25e3;
14 D=0.356;
15 \text{ mus} = 0.35;
16 Se2=qwp*D/Es*Iwp*(1-mus^2);
17 // part3
18 p=1.168;
19 Iws = 2 + 0.35 * sqrt(L/D);
20 Se3=Qws/p/L*D/Es*Iws*(1-mus^2);
21 Se=Se1+Se2+Se3;
22 disp(Se*1000, "settlement in mm");
```

Scilab code Exa 11.7 7

```
1 // example 11.7
2 clc; funcprot(0);
3 \text{ Ep=}207\,e6;
4 Ip=123e-6;
5 \text{ nh} = 12000;
6 //from table
7 xz=0.008;
8 \text{ Ax} = 2.435;
9 T = (Ep * Ip/nh)^0.2;
10 Qg1=xz*Ep*Ip/Ax/T^3;
11 // part2
12 Fy=248000;
13 d1=0.254;
14 Am = 0.772;
15 Mzmax=Fy*Ip*2/d1;
16 Qg2=Mzmax/Am/T;
17 if Qg2>Qg1 then
18
        Qg = Qg1;
        disp(Qg, "lateral load in kN");
19
20 end
```

Scilab code Exa 11.8 8

```
1 //example 11.8
2 clc; funcprot(0);
3 //part1
4 Ep=207e6;
5 Ip=123e-6;
6 nh=12000;
7 //from table
8 xo=0.008;
9 L=25;
10 Fy=248000;
11 D=0.254;
12 Am=0.772;
```

Scilab code Exa 11.9 9

```
1 //example 11.9
2 clc; funcprot(0);
3 Wrh=30*12;
4 E=0.8;
5 \text{ Wr} = 7.5;
6 S=1/8;
7 C = 0.1;
8 \text{ FS}=6;
9 n = 0.4;
10 Wp=12/12*12/12*80*150+550;
11 Wp = Wp / 1000;
12 Qu=E*Wrh/(S+C)*(Wr+n^2*Wp)/(Wr+Wp);
13 Qall=Qu/FS;
14 disp(Qall, "allowed bearing capacity in kip")
15 //part2
16 He=30*12;
17 L=80*12;
18 Ap=12*12;
19 Ep=3e6/1000;
```

```
20 FS=4;
21 Qu=E*He/(S+sqrt(E*He*L/2/Ap/Ep));
22 Qall2=Qu/FS;
23 disp(Qall2, "allowed bearing capacity in kip")
24
25 //partc
26 a=27;
27 b=1;
28 He=30;
29 FS=3;
30 Qu=a*sqrt(E*He)*(b-log10(S));
31 Qall3=Qu/FS;
32 disp(Qall3, "allowed bearing capacity in kip")
```

Scilab code Exa 11.10 10

```
1 //example 11.10
2 clc; funcprot(0);
3 Hp=350;
4 vp=0.0016;
5 Sl=0.762e-3;
6 f=115;
7 Qu=(0.746*Hp+98*vp)/(vp+Sl*f);
8 disp(Qu,"ple load capacity in kN");
```

Scilab code Exa 11.11 11

```
1 //example 11.11
2 clc; funcprot(0);
3 Lg=9.92;
4 Bg=7;
5 n1=3;
6 Nc=8.75;
```

```
7 n2=4/1000;
8 Ap=14^2/12^2;
9 cup = 1775;
10 a1=0.4; // alpha1
11 p=4*14/12;
12 cu1=1050;
13 L1=15;
14 a2=0.54; // alpha2
15 \text{ cu}2=1775;
16 L2=45;
17 FS=4;
18 Qu=n1*n2*(9*Ap*cup+a1*p*cu1*L1+a2*p*cu2*L2);
19 Qu2=Lg*Bg*cup*Nc+2*(Lg+Bg)*(cu1*L1+cu2*L2);
20 disp(Qu2/1000, "load in kip")
21 Qall=Qu/FS;
22 disp(Qall, "allowed load in kip");
```

Scilab code Exa 11.12 12

```
1 //example 11.12
2 clc; funcprot(0);
3 z1=21/2;
4 \text{ Lg=9};
5 Bg=6;
6 Qg = 500 * 1000;
7 Cc1=0.3;
8 \text{ Cc2=0.2};
9 \text{ Cc3=0.25};
10 H2=12;
11 H3=6;
12 H1=21;
13 e1=0.82;
14 e2=0.7;
15 \text{ e3=0.75};
16 s1=Qg/(Lg+z1)/(Bg+z1); //sigma1
```

Chapter 12

Drift Shaft Foundations

Scilab code Exa 12.1 1

```
1 // example 12.1
2 clc; funcprot(0);
3 Ap = \%pi/4*1.75^2;
4 FS=4;
5 \text{ Nq} = 37.75;
6 L=8;
7 Es = 50000;
8 \text{ mus} = 0.265;
9 pu = 100;
10 Db=1.75;
11 q=6*16.2+2*19.2;
12 phi=36*%pi/180;
13 Fqs=1+tan(phi);
14 Fqd=1+2*tan(phi)*(1-sin(phi))^2*atan(L/Db);
15 Ir=Es/(2*(1+mus)*q*tan(phi));
16 delta=0.005*(1-phi/20*180/%pi+25/20)*q/pu;
17 Irr=Ir/(1+Ir*delta);
18 Fqc = exp(-3.8*tan(phi)+(3.07*sin(phi)*log10(2*Irr))
      /(1+sin(phi)));
19 Qp=Ap*(q*(Nq-1)*Fqs*Fqd*Fqc);
20 Qpall=Qp/FS;
```

Scilab code Exa 12.2 2

```
1 //example 12.2
2 clc; funcprot(0);
3 Ap=%pi/4*1.75^2;
4 q=135.6;
5 w=0.83;
6 FS=4;
7 phi=36;
8 Nq=0.21*exp(0.17*phi);
9 Qp=Ap*q*(w*Nq-1);
10 Qpall=Qp/FS;
11 disp(Qpall, "allowed load in kN");
```

Scilab code Exa 12.3 3

```
1 //example 12.3
2 clc; funcprot(0);
3 Ap=%pi/4*1.5^2;
4 Db=1.5;
5 z=3;
6 p=%pi*1;
7 Li=6;
8 N60=30;
9 sigmazi=16*z;
10 Beta=2.0-0.15*z^0.75;
11 fi=Beta*sigmazi;
12 qp=57.5*N60;
13 qpr=1.27/Db*qp;
```

```
14 Qunet=qpr*Ap+fi*p*Li;
15 disp(Qunet, "allowed load in kN");
16 //part b
17 k1=0.315; //from table
18 k2=12/1.5/1000*100;
19 Qunet2=qpr*Ap*k1+fi*p*Li*k2;
20 disp(Qunet2, "allowed load in kN");
```

Scilab code Exa 12.4 4

```
1 // example 12.4
2 clc; funcprot(0);
3 \text{ Nc} = 9;
4 Ap=\%pi/4*1.5<sup>2</sup>;
5 \text{ cu} = 105;
6 Qpnet=Ap*cu*Nc;
7 disp(Qpnet," net ultimate bearing point capacity in
      kN");
8 //part2
9 alpha=0.4;
10 Ds=1.5;
11 p=%pi*Ds;
12 Qs=alpha*p*(50*8+105*3);
13 disp(Qs, "skin resistance in kN");
14 //part3
15 FS=3;
16 Qu=Qpnet/FS+Qs/FS;
17 disp(Qu, "working load in kN");
```

Scilab code Exa 12.5 5

```
1 //example 12.5
2 clc; funcprot(0);
```

```
3 \text{ cub} = 3000;
4 L=20+5;
5 \text{ Db}=4;
6 Ap=\%pi/4*Db^2;
7 alpha=0.55;
8 cu1=800;
9 L1 = 7;
10 L2=5.5;
11 cu2=1200;
12 p = \%pi * 2.5;
13 k=alpha*p*(cu1*L1+cu2*L2);//f*p*deltaLi
14 j1=6*cub*(1+0.2*L/Db);
15 \ j2=9*cub;
16 [qp]=min(j1,j2);
17 Qu=k/1000+qp*Ap/1000;
18 disp(Qu, "allowed load in kN");
19 //part b
20 \text{ k1=0.57; } //\text{from table}
21 \text{ k2=0.89};
22 Qunet2=qp*Ap*k1+k*k2;
23 disp(Qunet2/1000, "allowed load in kN");
```

Scilab code Exa 12.6 6

```
1 //example 12.6
2 clc; funcprot(0);
3 Qws=1005-250;
4 Qwp=250;
5 epsilon=0.65;
6 L=11;
7 Ds=1.5;
8 Es=14000;
9 Ap=%pi/4*1.5^2;
10 Ep=21e6;
11 Cp=0.04;
```

```
12  Db=1.5;
13  mus=0.3;
14  p=%pi*1.5;
15  Nc=9;
16  qp=105*Nc;
17  se1=(Qwp+epsilon*Qws)*L/(Ap*Ep);
18  se2=Qwp*Cp/(Db*qp);
19  Iws=2+0.35*sqrt(L/Ds);
20  se3=Qws/p/L*Ds/Es*(1-mus^2)*Iws;
21  se=se1+se2+se3;
22  disp(se*1000,"net settlement in mm");
```

Scilab code Exa 12.7 7

```
1 // example 12.7
2 clc; funcprot(0);
3 \, \text{Ds} = 1;
4 Ep=22e6;
5 Ri=1;
6 \text{ cu} = 100;
7 Ip=%pi*Ds^4/64;
8 Qc=7.34*Ds^2*Ep*Ri*(cu/Ep/Ri)^0.6;
9 disp(Qc, "bearing force in kN");
10 Mc=3.86*Ds^3*Ep*Ri*(cu/Ep/Ri)^0.6;
11 disp(Mc, "bearing moment on kNm")
12 //from figure
13 xoQM=0.0046*1;
14 \text{ xoMQ} = 0.0041 * 1;
15 xo=0.5*(xoQM+xoMQ);
16 disp(xo*1000, "net ground line deflection in mm");
17 //partb
18 Ip=0.049;
19 Qg = 150;
20 \text{ Mg} = 200;
21 deff('y=f(T)', 'y=338e-6*T^3+300.6e-6*T^2-0.00435');
```

```
22 [x] = fsolve(2, f);
23 \quad T = x;
24 k=[0, 0.4, 0.6, 0.8, 1, 1.1, 1.25]; //z/T
25 \text{ Am} = [0, 0.36, 0.52, 0.63, 0.75, 0.765, 0.75];
26 \text{ Bm} = [1, 0.98, 0.95, 0.9, 0.845, 0.8, 0.73];
27 printf("z/T \setminus t Am \setminus t Bm \setminus t Mz(kN-m) \setminus n");
28 \text{ for } i=1:7
        Mz(i) = Am(i) * Qg * T + Bm(i) * Mg;
29
        printf ("%.2 f\t %.2 f\t %.2 f\t %.2 f\n", k(i), Am(i)
30
            ,Bm(i),Mz(i));
31 end
32 disp(1*T, "depth in m");
33 //partc
34 \text{ Mmax} = 400;
35 sigma=Mmax*Ds/2/Ip;
36 disp(sigma, "tensile stress in kN/m^2");
37 //partd
38 //from figure
39 \text{ k=0.85};
40 L=k*1;
41 disp(L, "length in m");
```

Scilab code Exa 12.8 8

```
1 //example 12.8
2 clc; funcprot(0);
3 qu=3000;
4 Ds=3*12;
5 L=15*12;
6 FS=3;
7 Ecore=0.36e6;
8 f=min(2.5*qu^0.5,0.15*qu);
9 Qu=%pi*Ds*L*f/1000;
10 Emass=Ecore*(0.266*80-1.66);
11 Ec=17.9*Emass;
```

```
12 Ac=%pi/4*Ds^2;
13 If=0.35;
14 se=Qu*L/Ac/Ec+Qu*If/Ds/Emass;
15 Qall=Qu/FS;
16 disp(Qall, "allowed load in kN");
```

Chapter 13

Foundations on Difficult Soils

Scilab code Exa 13.1 1 1 //example 13.1 2 clc; funcprot(0); 3 Sw=1; 4 Z=2; 5 deltaSf=0.0033*Z*Sw*1000;

Scilab code Exa 13.2 2

```
1 //example 13.2
2 clc; funcprot(0);
3 //from figure
4 deltaS=1/100*1/2*(0.55+0+0.55+1.2+1.2+2+2+3);
5 disp(deltaS*1000,"total swell in mm");
6 //partb
7 D=[5.2, 4.2, 3.2, 2.2, 1.2];
8 deltaS=[0, 0.00275, 0.0115, 0.0275, 0.0525];
9 printf("depth(m)\t total swell (m) \n");
```

6 disp(deltaSf, "free surface swell in mm");

Scilab code Exa 13.3 3

```
1 // \text{example } 13.3
2 clc; funcprot(0);
3 phi=12*%pi/180;
4 Ds = 0.8;
5 \ Z=5;
6 \text{ sigmaT} = 450;
7 U=%pi*Ds*Z*sigmaT*tan(phi);
8 deff('y=f(D)', 'y=1202-450*6.14/1.25*3.14/4*(D
      ^2 - 0.8^2);
9 [x] = fsolve(1,f);
10 Db=x;
11 disp(Db, "diameter of bell in m");
12 //partb
13 D=600;
14 \text{ cu} = 450;
15 \text{ Nc} = 6.14;
16 FS=cu*Nc*\%pi/4*(Db^2-Ds^2)/(U-D);
17 if FS>2 then
18
        disp("the structure is compatible with safety
           measures");
19 end
20 //check bearing capacity
21 L=D+300; // dead + live load
22 Dp=L/%pi*4/Db^2;//downward pressure
23 \text{ FS} = 2763/\text{Dp};
```

```
24 if FS>3 then
25 disp("the structure is safe in bearing");
26 end
```

Chapter 14

Soil Improvement and Ground Modification

Scilab code Exa 14.1 1

```
1 // \text{example} 14.1
2 clc; funcprot(0);
3 \text{ Cc=0.28};
4 Hc = 6;
5 eo = 0.9;
6 Cv = 0.36;
7 \text{ H=3};
8 t=9;
9 \text{ sigmao} = 210;
10 sigmap=115; //deltasigmap
11 Sc=Cc*Hc/(1+eo)*log10((sigmao+sigmap)/sigmao);
12 disp(Sc*1000, "primary consolidation in mm");
13 Tv = Cv * t/H^2;
14 //from table
15 k=1.8; //constant
16 sf=k*sigmap;
17 disp(sf,"deltasigmaf in kN/m^2");
```

Scilab code Exa 14.2 2

```
1 //example 14.2
2 clc; funcprot(0);
3 Tv=0.36;
4 sigmap=115;
5 Uv=sqrt(4*Tv/%pi)*100;
6 disp(Uv,"Uv in %");
7 //from table
8 k=0.12; //constant
9 sf=k*sigmap;
10 disp(sf,"deltasigmaf in kN/m^2");
```

Scilab code Exa 14.3 3

```
1 // example 14.3
2 clc(); funcprot(0);
3 \text{ Cc} = 0.31;
4 Hc = 15; //ft
5 \text{ eo} = 1.1;
6 n = 10;
7 Uv = 0.09;
8 sigmao=1000;
9 deltasigma=2000; // deltasigmap+deltasigmaf
10 Sc=Cc*Hc/(1+eo)*log10((sigmao+deltasigma)/sigmao);
11 disp(Sc, "primary consolidation in ft");
12 m=n^2/(n^2-1)*\log(n)-(3*n^2-1)/4/n^2;
13 A = 2/m;
14 Ur = (0.096 - 1/A*(1 - exp(-A*0.096)))/0.192;
15 Uvf = 1 - (1 - Ur) * (1 - Uv);
16 Sc30=Sc*Uvf*12; //settlement after 30 days
17 disp(Sc30, "settlement after 30 days in inch");
```