Anneaux, arithmétique

Anneaux et corps

Solution 1

1. Tout d'abord $1 = 1 + 0\sqrt{3} \in \mathbb{Z}[\sqrt{3}]$. Soient $z_1 = a_1 + b_1\sqrt{3}$ avec $(a_1, b_1) \in \mathbb{Z}^2$ et $z_2 = a_2 + b_2\sqrt{3}$ avec $(a_2, b_2) \in \mathbb{Z}^2$. Alors

$$z_1 - z_2 = (a_1 - a_2) + (b_1 - b_2)\sqrt{3} \in \mathbb{Z}[\sqrt{3}]$$

et

$$z_1 z_2 = (a_1 a_2 + 3b_1 b_2) + (a_1 b_2 + a_2 b_1) \sqrt{3} \in \mathbb{Z}[\sqrt{3}]$$

 $\mathbb{Z}[\sqrt{3}]$ est donc un sous-anneau de \mathbb{R} .

- 2. a. On reprend les notations de l'énoncé. On a donc $p^2 = 3q^2$. Ainsi 3 divise p^2 . Comme 3 est premier, 3 divise p. Il existe donc $k \in \mathbb{Z}$ tel que p = 3k. On a alors $9k^2 = 3q^2$ i.e. $3k^3 = q^2$. On prouve comme précédement que 3 divise q. Ainsi p et q ont un facteur premier commun, ce qui contredit $p \land q = 1$. En conclusion, $\sqrt{3} \notin \mathbb{Q}$.
 - **b.** On vérifie aisément que pour tout $(a, b, c, d) \in \mathbb{Z}^4$, f((a, b) + (c, d)) = f((a, b)) + f((c, d)), ce qui prouve que f est bien un morphisme de groupes.

Soit $(a, b) \in \text{Ker } f$. On a donc $a + b\sqrt{3} = 0$. Si on avait $b \neq 0$, $\sqrt{3}$ serait rationnel, ce qui n'est pas. Ainsi b = 0 puis a = 0. On a donc montré que Ker $f = \{(0, 0)\}$. Ainsi f est injective. f est surjective par définition de $\mathbb{Z}[\sqrt{3}]$.

3. **a.** Puisque $1 = 1 + 0\sqrt{3}$, $g(1) = \tilde{1} = 1 - 0\sqrt{3} = 1$. Soient $z_1 = a_1 + b_1\sqrt{3}$ avec $(a_1, b_1) \in \mathbb{Z}^2$ et $z_2 = a_2 + b_2\sqrt{3}$ avec $(a_2, b_2) \in \mathbb{Z}^2$. Alors $z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)\sqrt{3}$ et dans

$$g(z_1 + z_2) = \widetilde{z_1 + z_2} = (a_1 + a_2) - (b_1 + b_2)\sqrt{3} = (a_1 - b_1\sqrt{3}) + (a_2 - b_2\sqrt{3}) = \widetilde{z}_1 + \widetilde{z}_2 = g(z_1) + g(z_2)$$

De plus, $z_1 z_2 = (a_1 a_2 + 3b_1 b_2) + (a_1 b_2 + a_2 b_1)\sqrt{3}$ donc

$$g(z_1z_2) = \widetilde{z_1z_2} = (a_1a_2 + 3b_1b_2) - (a_1b_2 + a_2b_1)\sqrt{3} = (a_1 - b_1\sqrt{3})(a_2 - b_2\sqrt{3}) = \tilde{z}_1\tilde{z}_2 = g(z_1)g(z_2)$$

Ainsi f est un endomorphisme d'anneau.

De plus, $f \circ f = \operatorname{Id}_{\mathbb{Z}[\sqrt{3}]}$ donc f est bijectif : c'est un automorphisme d'anneau.

- **b.** On a $N(xy) = xy\widetilde{xy} = x\widetilde{x}y\widetilde{y} = N(x)N(y)$.
- c. Si x est inversible, il existe $y \in \mathbb{Z}[\sqrt{3}]$ tel que xy = 1. On a donc N(x)N(y) = N(1) = 1. Or N(x) et N(y) sont des entiers donc $N(x) = \pm 1$.

Si N(x) = 1, alors $x\tilde{x} = 1$, ce qui prouve que x est inversible d'inverse \tilde{x} . Si N(x) = -1, alors $x(-\tilde{x}) = 1$, ce qui prouve que x est inversible d'inverse $-\tilde{x}$.

Solution 2

- 1. a. Si on pose x=2, il n'existe pas $u\in\mathbb{Z}$ tel que xux=x i.e. 2u=1. L'anneau $(\mathbb{Z},+\times)$ n'est donc pas régulier.
 - **b.** Supposons que A soit un corps. Soit $x \in A$. Si $x = 0_A$, alors pour tout $u \in A$, $xux = x = 0_A$. Sinon, x est inversible et, en posant $u = x^{-1}$, xux = x. Le cors A est donc un anneau régulier.
 - c. Il est à peu près évident que si deux anneaux A et B sont isomorphes, A est régulier si et seulement si B est régulier. Comme l'anneau $\mathcal{L}(E)$ est isomorphe à l'anneau $\mathcal{M}_n(\mathbb{K})$ où $n=\dim E$, il suffit donc de montrer que $\mathcal{M}_n(\mathbb{K})$ est régulier. Soit donc

 $X \in \mathcal{M}_n(\mathbb{K})$. En notant $r = \operatorname{rg} X$ et $J_r = \left(\frac{I_r}{0}\right)$, on sait qu'il existe P et Q dans $\operatorname{GL}_n(\mathbb{K})$ telles que $X = \operatorname{QJ}_r \operatorname{P}^{-1}$. En posant $U = \operatorname{PQ}^{-1}$, on a bien XUX = X puisque $\operatorname{J}_r^2 = \operatorname{J}_r$.

1

REMARQUE. On peut raisonner de manière purement géométrique (notamment si E est de dimension infinie). Soit $f \in \mathcal{L}(E)$. En notant S un supplémentaire de Ker f dans E, on sait que f induit un isomorphisme de S sur Im f. Notons T un supplémentaire de Im f dans E. On définit $g \in \mathcal{L}(E)$ en posant $g(x) = h^{-1}(x)$ pour $x \in \text{Im } f$ et $g(x) = 0_E$ pour $x \in T$. On vérifie aisément que $(f \circ g \circ f)_{|Ker f} = 0 = f_{|Ker f}$ et $(f \circ g \circ f)_{|S} = f_{|S}$. Ainsi $f \circ g \circ f = f$ car $E = \text{Ker } f \oplus S$.

2. En s'inspirant de la question précédente, on s'aperçoit que $U = A^T$ convient.

REMARQUE. On pourra consulter l'article suivant sur la pseudo-inverse de Penrose-Moore pour plus de précision.

3. Notons $n = \prod_{i=1}^r p_i^{\alpha_i}$. D'après le théorème des restes chinois, l'anneau $\mathbb{Z}/n\mathbb{Z}$ est isomorphe à l'anneau produit $\prod_{i=1}^r \mathbb{Z}/p_i^{\alpha_i}\mathbb{Z}$. D'après une

remarque précédente, la régularité de $\mathbb{Z}/n\mathbb{Z}$ est équivalente à celle de l'anneau $\prod_{i=1}^r \mathbb{Z}/p_i^{\alpha_i}\mathbb{Z}$. Mais on montre aisément qu'un produit

d'anneau est régulier si et seulement si chaque facteur est régulier.

On est donc amené à étudier la régularité de $\mathbb{Z}/p^{\alpha}\mathbb{Z}$ avec p premier et $\alpha \in \mathbb{N}^*$. On va montrer que $\mathbb{Z}/p^{\alpha}\mathbb{Z}$ est régulier si et seulement si $\alpha = 1$. Si $\alpha = 1$, $\mathbb{Z}/p\mathbb{Z}$ est un corps donc un anneau régulier d'après une question précédente. Supposons que $\mathbb{Z}/p^{\alpha}\mathbb{Z}$ soit régulier. Notamment, il existe $\overline{u} \in \mathbb{Z}/p^{\alpha}\mathbb{Z}$ tel que $\overline{pup} = \overline{p}$. Notamment, p^{α} divise $up^2 - p = p(up - 1)$. Comme p est clairement premier avec up - 1, p^{α} l'est également. Ainsi, p^{α} divise p d'après le lemme de Gauss de sorte que $\alpha = 1$.

Si on retourne au cas général, $\mathbb{Z}/n\mathbb{Z}$ est un anneau régulier si toutes ses valuations p-adiques valent 0 ou 1. On dit également que n est sans facteur carré.

Solution 3

- 1. Soit $x \in A$. On a donc $x^3 = x$. Mais on a également $(x + 1_A)^3 = x + 1_A$ ou encore $x^3 + 3x^2 + 3x + 1_A = x + 1_A$. Sachant que $x^3 = x$, on obtient donc $3(x^2 + x) = 0_A$.
- 2. Soit à nouveau $x \in A$. D'après la question précédente, $3(x^2 + x) = 0_A$. Mais on a également $3[(x + 1_A)^2 + (x + 1_A)] = 0_A$ ou encore $3(x^2 + x) + 3(1_A^2 + 1_A) + 6x = 0 A$. Sachant que $3(x^2 + x) = 0_A$ de même que $3(1_A^2 + 1_A) = 0_A$, on obtient donc $6x = 0_A$.
- 3. Soit $(x, y) \in A^2$. Alors $3(x + y)^2 + 3(x + y) = 0_A$. En développant et en tenant compte du fait que $3x^2 + 3x = 3y^2 + 3y = 0_A$, on obtient bien $3(xy + yx) = 0_A$. Mais on sait également que $6yx = 0_A$. En soustrayant, on obtient bien $3(xy yx) = 0_A$.
- **4.** Soit $(x, y) \in A^2$. D'une part,

$$(x + y)^3 = x^3 + y^3 + x^2y + xyx + yx^2 + y^2x + yxy + xy^2$$

et d'autre part,

$$(x - y)^3 = x^3 - y^3 - x^2y - xyx - yx^2 + y^2x + yxy + xy^2$$

Ainsi

$$(x + y)^3 + (x - y)^3 = 2x^3 + 2y^2x + 2yxy + 2xy^2 = 2x + 2y^2x + 2yxy + 2xy^2$$

Mais on sait également que $(x + y)^3 + (x - y)^3 = (x + y) + (x - y) = 2x$. On en déduit que

$$2(y^2x + yxy + xy^2) = 0_{A}$$

En multipliant à gauche par y, on obtient sachant que $y^3 = y$,

$$2(yx + y^2xy + yxy^2) = 0_A$$

et en multipliant à droite par y, on obtient

$$2(y^2xy + yxy^2 + xy) = 0_{A}$$

En soustrayant membre à membre, on obtient comme convenu $2(xy - yx) = 0_A$.

5. Soit $(x, y) \in A$. On sait que $3(xy - yx) = 0_A$ et $2(xy - yx) = 0_A$. En soustrayant membre à membre, on obtient $xy - yx = 0_A$. A est donc bien commutatif.

- **1.** On vérifie que $\mathbb{Z}[i]$ est un sous anneau de \mathbb{C} .
 - $1 = 1 + 0i \in \mathbb{Z}[i]$
 - $\forall z, z' \in \mathbb{Z}, z z' \in \mathbb{Z}[i],$
 - $\forall z, z' \in \mathbb{Z}, zz' \in \mathbb{Z}[i]$.
- 2. Posons $N(z) = z\overline{z}$. Pour $z = a + ib \in \mathbb{Z}[i]$, $N(z) = a^2 + b^2 \in \mathbb{N}$. Pour $z, z' \in \mathbb{Z}[i]$, N(zz') = N(z)N(z'). Soit $z \in (\mathbb{Z}[i])^*$. Il existe donc $z' \in \mathbb{Z}[i]$ tel que zz' = 1. On a alors N(z)N(z') = 1 et $N(z), N(z') \in \mathbb{N}$. Ceci implique que N(z) = 1. Si z = a + ib, on a donc $a^2 + b^2 = 1$. Les seuls couples d'entiers (a, b) possibles sont (1, 0), (-1, 0), (0, 1) et (0, -1), ce qui correspond à $z = \pm 1$ ou $z = \pm i$. Réciproquement on vérifie que ces éléments sont bien inversibles dans $\mathbb{Z}[i]$.

Solution 5

1. Supposons $x \times y$ nilpotent. Il existe donc $n \in \mathbb{N}$ tel que $(x \times y)^n = 0$. Alors

$$(y \times x)^{n+1} = y \times (x \times y)^n \times x = y \times 0_A \times x = 0_A$$

de sorte que $y \times x$ est nilpotent.

2. Supposons que x et y commutent et que l'un d'entre eux est nilpotent. Puisque x et y commutent, on peut supposer x nilpotent. Il existe donc $n \in \mathbb{N}$ tels que $x^n = 0$. Comme x et y commutent,

$$(x \times y)^n = x^n \times y^n = 0_A \times y^n = 0_A$$

de sorte que $x \times y$ est nilpotent.

3. Supposons x et y nilpotents. Il existe donc $(n, p) \in \mathbb{N}^2$ tel que $x^n = 0_A$ et $y^p = 0_A$. Posons q = n + p. Alors

$$(x+y)^q = \sum_{k=0}^q \binom{q}{k} x^k \times y^{q-k}$$

Soit alors $k \in [0, q]$.

- Si $k \ge n$, alors $x^k = 0_A$ puis $\binom{q}{k} x^k \times y^{q-k} = 0_A$.
- Si k < n, alors q k > q n = p donc $y^k = 0_A$ puis $\binom{q}{k} x^k \times y^{q-k} = 0_A$.

Ainsi $(x + y)^q = 0_A$ de sorte que x + y est bien nilpotent.

4. Supposons x nilpotent. Il existe donc $n \in \mathbb{N}$ tel que $x^n = 0_A$. On écrit :

$$1_{A} = 1_{A}^{n} - x^{n} = (1_{A} - x) \times \left(\sum_{k=0}^{n-1} x^{k}\right) = \left(\sum_{k=0}^{n-1} x^{k}\right) \times (1_{A} - x)$$

Ainsi $1_A - x$ est inversible d'inverse $\sum_{k=0}^{n-1} x^k$.

Solution 6

1. Soit $x \in A$. D'une part,

$$(x+1)^2 = x^2 + 2x + 1 = 3x + 1$$

D'autre part,

$$(x+1)^2 = x+1$$

D'où 2x = 0.

2. Soient $x, y \in A$. D'une part,

$$(x + y)^2 = x^2 + xy + yx + y^2 = x + xy + yx + y$$

D'autre part,

$$(x+y)^2 = x+y$$

D'où xy + yx = 0. Donc 2xy + yx = xy. Or 2xy = 0 d'après la question précédente donc yx = xy. Ceci étant valable pour tous $x, y \in A$, l'anneau est commutatif.

Solution 7

1. Comme f est un morphisme de corps, on a f(1) = 1. De plus, pour $n \in \mathbb{Z}$,

$$f(n) = f(n1) = nf(1) = n1 = n$$

Soit
$$r = \frac{p}{q} \in \mathbb{Q}$$
. Alors $f(p) = f(qr) = qf(r)$. Or $p \in \mathbb{Z}$ donc $f(p) = p$. Par conséquent, $f(r) = \frac{p}{q} = r$.

- 2. Soit $x \ge 0$. Il existe $a \in \mathbb{R}$ tel que $x = a^2$. Alors $f(x) = f(a^2) = f(a)^2 \ge 0$. Soit $x \le y$. Alors $f(y) - f(x) = f(y - x) \ge 0$ car $y - x \ge 0$. Donc $f(x) \le f(y)$. Ainsi f est croissant.
- 3. Soit $x \in \mathbb{R}$. Par densité de \mathbb{Q} dans \mathbb{R} , il existe deux suites de rationnels (r_n) et r'_n convergeant respectivement vers x par valeurs inférieures et par valeurs supérieures. Ainsi, $\forall n \in \mathbb{N}$,

$$r_n \le x \le r'_n$$

Par croissance de f et en utilisant la première question,

$$r_n = f(r_n) \le f(x) \le f(r'_n) = r'_n$$

Par passage à la limite, on obtient f(x) = x. Ceci étant valable pour tout $x \in \mathbb{R}$, $f = \mathrm{Id}_{\mathbb{R}}$.

Solution 8

1. On peut par exemple utiliser les fonctions indicatrices pour montrer l'associativité de Δ . Soit $(A, B, C) \in \mathcal{P}(E)^3$. On montre que :

$$\mathbb{1}_{(A\Delta B)\Delta C} = \mathbb{1}_A + \mathbb{1}_B + \mathbb{1}_C - 2(\mathbb{1}_A \mathbb{1}_B + \mathbb{1}_A \mathbb{1}_C + \mathbb{1}_B \mathbb{1}_C) + 4\mathbb{1}_A \mathbb{1}_B \mathbb{1}_C$$

La dernière expression est invariante par permutation de A, B et C. Par conséquent,

$$\mathbb{1}_{(A\Delta B)\Delta C} = \mathbb{1}_{(B\Delta C)\Delta A}$$

Finalement, $(A\Delta B)\Delta C = (B\Delta C)\Delta A = A\Delta(B\Delta C)$. La loi Δ possède un élément neutre en la personne de l'ensemble vide \emptyset . Tout élément $A \in \mathcal{P}(E)$ possède un inverse pour Δ à savoir \overline{A} . La loi Δ est clairement commutative. En conclusion, $(\mathcal{P}(E), \Delta)$ est un groupe commutatif.

L'intersection \cap est clairement associative. Elle possède un élément neutre, à savoir E. On peut à nouveau montrer la distributivité de \cap sur Δ en utilisant les fonctions indicatrices. Enfin, \cap est commutative donc $(\mathcal{P}(E), \Delta, \cap)$ est un anneau commutatif.

- 2. Soit A ∈ P(E). A est inversible pour ∩ si et seulement si il existe B ∈ P(E) tel que A ∩ B = E. On a donc nécessairement A = E. Or E possède un inverse pour ∩, à savoir E lui-même. On en déduit que le seul élément inversible pour ∩ est E.
- 3. Pour tout $A \in \mathcal{P}(E)$, $A \cap \overline{A} = \emptyset$. Comme E est non vide, $\mathcal{P}(E)$ possède des éléments A non nuls (i.e. des parties non vides de E). Donc l'anneau $(\mathcal{P}(E), \Delta, \cap)$ n'est pas intègre.

Solution 9

On montre que $\mathbb{Q}[\sqrt{3}]$ est un sous-corps de \mathbb{R} .

- $1 = 1 + 0\sqrt{3} \in \mathbb{Q}[\sqrt{3}].$
- Soient $x=a+b\sqrt{3}$ et $x'=a'+b'\sqrt{3}$ des éléments de $\mathbb{Q}[\sqrt{3}]$. Alors $x-x'=(a-a')+(b-b')\sqrt{3}\in\mathbb{Q}[\sqrt{3}]$.

- On a également $xx' = (aa' + 3bb') + (ab' + a'b)\sqrt{3} \in \mathbb{Q}[\sqrt{3}].$
- Supposons $x \neq 0$. On a alors

$$\frac{1}{x} = \frac{a - b\sqrt{3}}{a^2 - 3b^2} = \frac{a}{a^2 - 3b^2} - \frac{b}{a^2 - 3b^2}\sqrt{3} \in \mathbb{Q}[\sqrt{3}]$$

Mais il aurait fallu montrer auparavant que $a^2 - 3b^2 \neq 0$. Supposons $a^2 - 3b^2 = 0$. En notant $a = \frac{p}{q}$ et $b = \frac{r}{s}$ avec p, q, r, s entiers, on a donc $p^2s^2 - 3r^2q^2 = 0$. Il existe donc des entiers m et n tels que $m^2 = 3n^2$. Quitte à les diviser par leur pgcd, on peut les supposer premiers entre eux. On a alors toujours la relation $m^2 = 3n^2$. En particulier, 3 divise m^2 . Mais 3 étant premier 3 divise m. Il existe donc $k \in \mathbb{Z}$ tel que m = 3k. On en déduit $9k^2 = 3n^2$ i.e. $3k^2 = n^2$ donc 3 divise n^2 et donc n. Ceci contredit le fait que m et n sont premiers entre eux. Finalement $a^2 - 3b^2 \neq 0$.

Solution 10

- 1. Soit $(x, y) \in A^2$ tel que $\varphi(x) = \varphi(y)$. Alors ax = ay i.e. a(x y) = 0. Puisque A est intègre et que $a \ne 0$, x y = 0 i.e. x = y. Ainsi φ est injective. Puisque A est de cardinal fini et que φ est une application de A dans A, φ est également bijective.
- 2. Soit a un élément non nul de A. Puisque l'application φ définie à la question précédente est bijective, elle est a fortiori surjective. Il existe donc b ∈ A tel que φ(b) = 1 i.e. ab = 1. Ceci prouve que a est inversible.
 Ainsi tout élément non nul de A est inversible : A est un corps.

Idéaux

Solution 11

- **1.** Pour tout $x \in I$, $x^1 = x \in I$ donc $I \subset R(I)$. Montrons maintenant que R(I) est un idéal.
 - $0_A \in I \subset R(I)$.
 - Soit $(a, x) \in A \times I$. Puisque $x \in I$, il existe $n \in \mathbb{N}$ tel que $x^n \in I$. Mais alors $(ax)^n = a^n x^n \in I$ car I est un idéal. Ainsi $ax \in I$.
 - Soit $(x, y) \in R(I)^2$. Alors il existe $(m, n) \in \mathbb{N}^2$ tel que $x^m \in I$ et $y^n \in I$. Alors

$$(x+y)^{m+n} = \sum_{k=0}^{m+n} {m+n \choose k} x^k y^{m+n-k}$$

$$= \sum_{k=0}^{m} {m+n \choose k} x^k y^{m+n-k} + \sum_{k=m+1}^{m+n} {m+n \choose k} x^k y^{m+n-k}$$

$$= \sum_{k=0}^{m} {m+n \choose m-k} x^k y^{n+k} + \sum_{k=1}^{n} {m+n \choose m+k} x^{m+k} y^{n-k}$$

$$= \left(\sum_{k=0}^{m} {m+n \choose m-k} x^k y^k\right) y^n + \left(\sum_{k=1}^{n} {m+n \choose m+k} x^k y^{n-k}\right) x^m$$

Ainsi $(x + y)^{m+n} \in I$ de sorte que $x + y \in R(I)$.

R(I) est donc bien un idéal.

2. Soit $x \in R(I \cap J)$. Il existe donc $n \in \mathbb{N}$ tel que $x^n \in I \cap J$. On en déduit que $x \in R(I) \cap R(J)$. Soit $x \in R(I) \cap R(J)$. Il existe donc $(m, n) \in \mathbb{N}^2$ tel que $x^m \in I$ et $x^n \in J$. Alors $x^{m+n} \in I \cap J$ de sorte que $x \in R(I \cap J)$. Par double inclusion, $R(I \cap J) = R(I) \cap R(J)$.

REMARQUE. Le radical de l'idéal nul s'appelle le nilradical de l'anneau A. C'est l'idéal des éléments nilpotents de A.

Solution 12

Si $a \in \mathbb{Z}$, $a\mathbb{Q}$ est clairement un idéal de \mathbb{Q} .

Soit I un idéal de \mathbb{Q} . On vérifie aisément que $\mathbb{I} \cap \mathbb{Z}$ est un sous-groupe de $(\mathbb{Z}, +)$. Il existe donc $a \in \mathbb{Z}$ tel que $\mathbb{I} \cap \mathbb{Z} = a\mathbb{Z}$.

En particulier, $a \in I$ et donc $a\mathbb{Q} \subset I$ car I est un idéal de \mathbb{Q} .

Réciproquement, soit $x \in I$. Comme $x \in \mathbb{Q}$, il existe $q \in \mathbb{N}^*$ tel que $qx \in \mathbb{Z}$. Mais comme $x \in I$, $qx \in I$ car I est un idéal de \mathbb{Q} . Ainsi $qx \in I \cap \mathbb{Z} = a\mathbb{Z}$. Il existe donc $p \in \mathbb{Z}$ tel que qx = ap i.e. $x = a\frac{p}{a} \in a\mathbb{Q}$. Ainsi $I \subset a\mathbb{Q}$.

Par double inclusion, $I = a\mathbb{Q}$.

Solution 13

On vérifie déjà que \mathbb{D} est un sous-anneau de $(\mathbb{Q}, +, \times)$ (facile).

Si $a \in \mathbb{Z}$, $a\mathbb{D}$ est clairement un idéal de \mathbb{D} .

Soit I un idéal de \mathbb{D} . On vérifie aisément que $I \cap \mathbb{Z}$ est un sous-groupe de $(\mathbb{Z}, +)$. Il existe donc $a \in \mathbb{Z}$ tel que $I \cap \mathbb{Z} = a\mathbb{Z}$.

En particulier, $a \in I$ et donc $a\mathbb{D} \subset I$ car I est un idéal de \mathbb{D} .

Réciproquement, soit $x \in I$. Comme $x \in \mathbb{D}$, il existe $n \in \mathbb{N}$ tel que $10^n x \in \mathbb{Z}$. Mais comme $x \in I$, $10^n x \in I$ car I est un idéal de \mathbb{D} . Ainsi $10^n x \in I \cap \mathbb{Z} = a\mathbb{Z}$. Il existe donc $p \in \mathbb{Z}$ tel que $10^n x = ap$ i.e. $x = a\frac{p}{10^n} \in a\mathbb{D}$. Ainsi $I \subset a\mathbb{D}$.

Par double inclusion, $I = a\mathbb{D}$.

Solution 14

- 1. Cf. cours.
- **2.** On a clairement $I \subset A$. Supposons que $1_A \in I$. Par définition d'un idéal, pour tout $a \in A$, $1_A \times a \in I$ i.e. $A \subset I$. Ainsi I = A.
- 3. $0_A = a0_A \in I_a$.
 - Soit $(x, y) \in A^2$. Alors $ax + ay = a(x + y) \in I_a$.
 - Soit $x \in A$. Alors pour tout $y \in A$, $(ax)y = a(xy) \in I_a$.

On en déduit que I_a est bien un idéal de A.

4. Supposons que A est un corps. Soit I un idéal non nul de A. Alors il existe a ∈ I tel que a ≠ 0_A. Mais comme A est un corps, a est inversible. Par conséquent, 1_A = aa⁻¹ ∈ I car I est un idéal de A. D'après une question précédente, I = A. Réciproquement supposons que les seuls idéaux de A soient {0_A} et A. Soit a un élément non nul de A. On sait que I_a est un idéal de A. On ne peut avoir I_a = {0_A} sinon on aurait a = 0_A. Ainsi I_a = A. Notamment 1_A ∈ I_a. Il existe donc x ∈ A tel que ax = 1_A. Ainsin a est inversible et A est un corps.

Arithmétique de \mathbb{Z}

- 1. Notons q ce quotient. Alors a-bq est le reste de cette même division euclidienne donc $0 \le a-bq < b$ puis $q \le \frac{a}{b} < q+1$. Puisque q est entier, $q = \left\lfloor \frac{a}{b} \right\rfloor$.
- **2.** Puisque $a \wedge b = 1$, \overline{a} est inversible dans $\mathbb{Z}/b\mathbb{Z}$. L'application de l'énoncé est donc clairement bijective d'inverse $\begin{cases} \mathbb{Z}/b\mathbb{Z} & \longrightarrow & \mathbb{Z}/b\mathbb{Z} \\ \overline{k} & \longmapsto & (\overline{a})^{-1}\overline{k} \end{cases}$
- 3. Notons r_n le reste de la division euclidienne de n par b. D'après la première question, $r_n = n b \left\lfloor \frac{n}{b} \right\rfloor$. On en déduit que

$$\sum_{k=1}^{b-1} \left\lfloor \frac{ka}{b} \right\rfloor = \sum_{k=1}^{b-1} \frac{ka}{b} - \sum_{k=1}^{b-1} \frac{r_{ka}}{b}$$

Mais d'après la question précédente, $\sum_{k=1}^{b-1} \frac{r_{ka}}{b} = \sum_{k=1}^{b-1} \frac{k}{b}$ (l'image de 0 par l'application de la question précédente étant 0). Finalement

$$\sum_{k=1}^{b-1} \left\lfloor \frac{ka}{b} \right\rfloor = \sum_{k=1}^{b-1} \frac{ka}{b} - \sum_{k=1}^{b-1} \frac{k}{b} = \frac{a-1}{b} \sum_{k=1}^{b-1} k = \frac{(a-1)(b-1)}{2}$$

Solution 16

Si a = 1, la suite (u_n) est constante égale à 1 de sorte que le résultat est clair. Dans la suite, on suppose $a \ge 2$. On peut alors prouver sans peine que la suite (u_n) est croissante et tend vers $+\infty$.

On raisonne alors par récurrence forte sur N.

Tout d'abord, la suite $(u_n \mod 1)$ est constamment nulle donc stationnaire.

Soit N un entier supérieur à 2. Supposons que pour tout $M \in [1, N-1]$, la suite $(u_n \mod M)$ soit stationnaire.

- Si la suite $(a^n \mod N)$ s'annule, elle est constamment nulle à partir d'un certain rang.
- Sinon, elle ne prend que des valeurs dans [[1, N − 1]]. D'après le principe de Dirichlet, les entiers a⁰ mod N, ..., a^{N-1} mod N ne peuvent être tous distincts. Il existe donc des entiers p et q tels que 0 ≤ p < q ≤ N − 1 et a^p mod N = a^q mod N. En posant M = q − p, la suite (aⁿ mod N) est alors M-périodique à partir du rang p.

Dans les deux cas, la suite ($a^n \mod N$) est M-périodique à partir d'un certain rang p avec $1 \le M \le N - 1$.

D'après l'hypothèse de récurrence, la suite $(u_n \mod M)$ est stationnaire. Il existe donc $q \in \mathbb{N}$ tel que pour tout entier $n \ge q, u_{n+1} \mod M = u_n \mod M$. La suite (u_n) tend vers $+\infty$ donc il existe un rang r tel que $u_n \ge p$ pour tout entier $n \ge r$. Soit un entier $n \ge \max(q, r)$. Il existe $k \in \mathbb{Z}$ tel que $u_{n+1} = u_n + kM$ car $u_{n+1} \mod M = u_n \mod M$. En fait, $k \in \mathbb{N}$ car la suite (u_n) est croissante. Alors

$$a^{u_{n+1}} \mod N = a^{u_n+kM} \mod N = a^{u_n} \mod N$$

car la suite $(a^n \mod N)$ est M-périodique à partir du rang p. Ainsi $u_{n+2} \mod N = u_{n+1} \mod N$. La suite $(u_n \mod N)$ est donc constante à partir du rang $\max(q,r)+1$.

Par récurrence forte, la suite $(u_n \mod N)$ est stationnaire pour tout $N \in \mathbb{N}^*$.

Solution 17

1. Comme $\mathbb{Z}/p\mathbb{Z}$ est un corps

$$x^2 = x \iff x(x-1) = 0 \iff (x = 0 \text{ ou } x = 1)$$

2. Comme $34 = 2 \times 17$ et $2 \wedge 17 = 1$, on peut considérer l'isomorphisme d'anneaux naturel φ de $\mathbb{Z}/34\mathbb{Z}$ sur $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/17\mathbb{Z}$. Alors

$$x^2 = x \iff \varphi(x^2) = \varphi(x) \iff \varphi(x)^2 = \varphi(x)$$

En posant $\varphi(x) = (y, z)$, ceci équivaut à $y^2 = y$ et $z^2 = z$. D'après la question précédente, on a donc

$$x^2 = x \iff (y, z) \in \{(0, 0), (0, 1), (1, 0), (1, 1)\}$$

Il s'agit donc maintenant de trouver les antécédents de (0,0), (0,1), (1,0) et (1,1) par φ . Les solutions de $x^2 = x$ sont par conséquent 0, 18, 17 et 1.

REMARQUE. On confond ici les entiers avec leurs classes modulo 34, ce qui est très mal.

Solution 18

1. a. Il existe donc $b \in \mathbb{N}^*$ tel que n = ab. Or $2^a \equiv 1[2^a - 1]$ donc $2^{ab} \equiv 1[2^a - 1]$. Ainsi $2^a - 1$ divise M_n .

b. On suppose M_n premier. Soit a un diviseur positif de n. La question précédente montre que $2^a - 1$ divise M_n . M_n étant premier, on a donc $2^a - 1 = 1$ i.e. a = 1 ou $2^a - 1 = 2^n - 1$ i.e. a = n. Les seuls diviseurs positifs de n sont donc 1 et n, ce qui prouve que n est premier.

- 2. a. Comme $p \ge 1$, M_p est impair. Donc q est impair. Ainsi $2 \land q = 1$. En appliquant le petit théorème de Fermat, on a donc $2^{q-1} \equiv 1[q]$.
 - **b.** Notons m l'ordre de $\overline{2}$ dans le groupe multiplicatif $(\mathbb{Z}/q\mathbb{Z})^*$. Comme q divise M_p , $\overline{2}^p = \overline{1}$ donc m divise p. Or p est premier donc m = 1 et m = p. Mais $\overline{2} \neq \overline{1}$ (sinon q = 1) donc m = p.
 - **c.** On a vu que $\overline{2}^{q-1} = \overline{1}$ donc m = p divise q 1 i.e. $q \equiv 1[p]$. Mais comme q est impair, 2 divise q 1. Or p est impair donc $2 \land p = 1$. On peut alors affirmer que 2p divise q 1 i.e. $q \equiv 1[p]$.
- 3. Si n = 1, on a évidemment $n \equiv 1[2p]$. Sinon n peut s'écrire sous la forme $n = \prod_{i=1}^r q_i$ où les q_i sont des nombres premiers. Soit $i \in [1, r]$, q_i divise n et donc M_p . La question précédente montre que $q_i \equiv 1[2p]$. En multipliant membre à membre ces congruences, on obtient $n \equiv 1[2p]$.

Solution 19

1. Soit $k \in \mathbb{Z}$ et notons p l'ordre de \overline{k} dans $\mathbb{Z}/n\mathbb{Z}$.

Alors $p\overline{k} = \overline{0}$ donc n divise kp. Il existe donc $q \in \mathbb{Z}$ tel que pk = nq puis $p\frac{k}{n \wedge k} = \frac{n}{n \wedge k}q$. Comme $\frac{k}{n \wedge k}$ et $\frac{n}{n \wedge k}$ sont des entiers premiers entre eux, $\frac{n}{n \wedge k}$ divise p.

Inversement $\frac{nk}{n \wedge k} = n \vee k$ est un multiple de n donc $\frac{n}{n \wedge k} \overline{k} = \overline{0}$ de sorte que p divise $\frac{n}{n \wedge k}$.

Finalement, $p = \frac{n}{n \wedge k}$.

Soit $k \in [0, n-1]$. Alors \overline{k} est d'ordre d si et seulement si $n \wedge k = n/d$. Supposons que $n \wedge k = n/d$. Alors n/d divise k. Il existe donc $q \in [0, d-1]$ tel que k = nq/d. Mais comme $n \wedge k = n/d$, on a $d \wedge q = 1$. Réciproquement, si k = nq/d avec $q \in [0, d-1]$ tel que $d \wedge q = 1$, on a bien $n \wedge k = n/d$.

Finalement, les $k \in [0, n-1]$ tels que \overline{k} est d'ordre d sont les nq/d avec $q \in [0, d-1]$ tels que $q \land d = 1$. Il y a exactement $\varphi(d)$ tels éléments.

2. Remarquons que l'ordre d'un élément de $\mathbb{Z}/n\mathbb{Z}$ divise l'ordre de $\mathbb{Z}/n\mathbb{Z}$, à savoir n. En notant A_d l'ensemble des éléments d'ordre d de $\mathbb{Z}/n\mathbb{Z}$, on a donc

$$\mathbb{Z}/n\mathbb{Z} = \bigsqcup_{d|n} \mathbf{A}_d$$

puis en passant aux cardinaux

$$n = \sum_{d|n} \varphi(d)$$

1. Le produit sur \mathbb{R} étant commutatif, on peut supposer que $2 \le n_1 < n_2 < \cdots < n_k$. Les n_j étant entiers, $n_{j+1} - n_j \ge 1$ pour tout $j \in [1, k-1]$. Ainsi pour tout $i \in [1, k]$,

$$n_i - n_1 = \sum_{j=1}^{i-1} n_{j+1} - n_j \ge \sum_{j=1}^{i-1} 1 = i - 1$$

Ainsi $n_i \ge i - 1 + n_1 \ge i + 1$ puis

$$1 - \frac{1}{n_i} \ge 1 - \frac{1}{i+1} = \frac{i}{i+1}$$

Par télescopage,

$$\prod_{i=1}^{k} \left(1 - \frac{1}{n_i} \right) \ge \prod_{i=1}^{k} \frac{i}{i+1} = \frac{1}{k+1}$$

2. Soit $n \in \mathbb{N}^*$. Notons p_1, \dots, p_k les diviseurs premiers de n (k = 0 si n = 1). D'après ce qui précède,

$$\prod_{i=1}^{k} \left(1 - \frac{1}{p_i} \right) \ge \frac{1}{k+1}$$

Donc

$$\varphi(n) = n \prod_{i=1}^{k} \left(1 - \frac{1}{p_i} \right) \ge \frac{n}{k+1}$$

De plus, tous les p_i étant supérieurs ou égaux à 2, $n \ge \prod_{i=1}^k p_i \ge 2^k$, puis $2n \ge 2^{k+1}$ et enfin, $\frac{1}{k+1} \ge \frac{\ln(2)}{\ln(2n)}$. Finalement,

$$\varphi(n) \ge \frac{n}{k+1} \ge \frac{n \ln(2)}{\ln(2n)} = \frac{n \ln(2)}{\ln(n) + \ln(2)}$$

Solution 21

Première méthode.

Notons $n = \prod_{i=1}^{r} p_i^{\alpha_i}$ la décomposition en facteurs premiers de n (r = 0 si n = 1). Les diviseurs de d sont les entiers de la forme $\prod_{i=1}^{r} p_i^{\beta_i}$ où $0 \le \beta_i \le \alpha_i$. Ainsi

$$\sum_{d|n} \frac{n}{d} \mu(d) = n \sum_{(\beta_1, \dots, \beta_r) \in \prod_{i=1}^r [0, \alpha_i]} \prod_{i=1}^r \frac{1}{p_i^{\beta_i}} \mu\left(\prod_{i=1}^r p_i^{\beta_i}\right)$$

Mais dès qu'il existe $i \in [[1, r]]$ tel que $\beta_i \ge 2$, $\mu\left(\prod_{i=1}^r p_i^{\beta_i}\right) = 0$ donc

$$\begin{split} \sum_{d|n} \frac{n}{d} \mu(d) &= n \sum_{(\beta_1, \dots, \beta_r) \in \{0,1\}^r} \prod_{i=1}^r \frac{1}{p_i^{\beta_i}} \mu\left(\prod_{i=1}^r p_i^{\beta_i}\right) \\ &= n \sum_{\mathbf{I} \subset [\![0,r]\!]} \prod_{i \in \mathbf{I}} \frac{1}{p_i} \mu\left(\prod_{i \in \mathbf{I}} p_i\right) \\ &= n \sum_{\mathbf{I} \subset [\![0,r]\!]} \prod_{i \in \mathbf{I}} \frac{1}{p_i} (-1)^{|\mathbf{I}|} \\ &= n \prod_{i=1}^r \left(1 - \frac{1}{p_i}\right) = \varphi(n) \end{split}$$

Deuxième méthode.

D'après le théorème des restes chinois, on sait que pour m et n deux entiers naturels non nuls premiers entre eux, $\varphi(mn) = \varphi(m)\varphi(n)$. On sait également que pour p premier et $\alpha \in \mathbb{N}^*$, $\varphi(p^{\alpha}) = p^{\alpha} - p^{\alpha-1}$.

On va montrer que $\psi: n \in \mathbb{N}^* \mapsto \sum_{d|n} \frac{n}{d} \mu(d)$ vérifie les mêmes propriétés. Soit donc $(m,n) \in (\mathbb{N}^*)^2$ tel que $m \land n = 1$. On vérifie aisément que l'application $\begin{cases} D_m \times D_n & \longrightarrow & D_{mn} \\ (d_1,d_2) & \longmapsto & d_1d_2 \end{cases}$ est bijective (on note D_n l'ensemble des diviseurs positifs de n). Ainsi

$$\psi(mn) = \sum_{d_1 | m} \sum_{d_2 | n} \frac{mn}{d_1 d_2} \mu(d_1 d_2)$$

Mais si d_1 et d_2 sont des diviseurs respectifs de m et n, ils sont également premiers entre eux de sorte que $\mu(d_1d_2) = \mu(d_1)\mu(d_2)$ puisque d_1 et d_2 n'ont pas de facteur premier commun. On en déduit que

$$\psi(mn) = \left(\sum_{d_1|m} \frac{m}{d_1} \mu(d_1)\right) \left(\sum_{d_2|n} \frac{n}{d_2} \mu(d_2)\right) = \psi(m)\psi(n)$$

Soit alors p un nombre premier et $\alpha \in \mathbb{N}^*$. Les diviseurs de p^{α} sont les p^{β} avec $0 \le \beta \le \alpha$. Ainsi

$$\psi(p^{\alpha}) = \sum_{\beta=0}^{\alpha} p^{\alpha-\beta} \mu(p^{\beta})$$

Mais dès que $\beta \ge 2$, $\mu(p^{\beta}) = 0$ donc

$$\psi(p^{\alpha}) = p^{\alpha}\mu(p^{0}) + p^{\alpha-1}\mu(p^{1}) = p^{\alpha} - p^{\alpha-1}$$

Notons alors $n = \prod_{i=1}^r p_i^{\alpha_i}$ la décomposition en facteurs premiers de $n \in \mathbb{N}^*$. Les $p_i^{\alpha_i}$ étant premiers entre eux deux à deux,

$$\psi(n) = \prod_{i=1}^{r} \psi(p_i^{\alpha_i}) = \prod_{i=1}^{r} (p_i^{\alpha_i} - p_i^{\alpha_i - 1}) = \prod_{i=1}^{r} \varphi(p_i^{\alpha_i}) = \varphi(n)$$

Solution 22

- 1. La matrice A est clairement triangulaire inférieure avec des 1 sur la diagonale donc det A = 1.
- 2. Remarquons que

$$d_{i,j} = \sum_{\substack{k|i\\k|j}} 1 = \sum_{k=1}^{n} a_{i,k} a_{j,k}$$

Ainsi $D = AA^T$. Par conséquent, $\det D = (\det A)^2 = 1$.

3. Remarquons que $k \mid i \land j \iff (k \mid i \to k \mid j)$. D'après la formule admise

$$i \wedge j = \sum_{k|i \wedge j} \varphi(k) = \sum_{\substack{k|i \ k|j}} \varphi(k)$$

Posons $p_{i,j} = \varphi(j)$ si j divise i et $p_{i,j} = 0$ sinon ainsi que $P = (p_{i,j})_{1 \le i,j \le n}$. Alors

$$i \wedge j = \sum_{k=1}^{n} p_{i,k} a_{j,k}$$

Ainsi $S = PA^T$ puis $\det S = \det P \det A = \det P$. A nouveau, P est triangulaire inférieure et ses coefficients diagonaux sont $\varphi(1), \dots, \varphi(n)$. Ainsi $\det S = \prod_{k=1}^n \varphi(k)$.

Arithmétique de $\mathbb{K}[X]$

Solution 23

Les racines de Q sont j et j^2 . Ce sont des racines simples et conjuguées. Pour prouver que Q divise P_m , il est nécessaire et suffisant de prouver que j et j^2 sont des racines d'ordre au moins 1 de P_m . Comme P_m est un polynôme à coefficients réels, ses racines sont conjuguées donc si j est une racine de P_m , j^2 en est aussi une. Donc Q divise P_m si et seulement si j est une racine de P_m .

On a $P_m(j) = (j+1)^m - j^m - 1$ mais on sait que $j^2 + j + 1 = 0$ donc $P_m(j) = (-j^2)^m - j^m - 1$. En utilisant le fait que

$$j^2 + j + 1 = 0$$
 et $j^3 = 1$,

un rapide calcul nous donne:

$$P_0(j) = -3$$
 $P_1(j) = 0$ $P_2(j) = 2j$ $P_3(j) = -3$ $P_4(j) = 2j^2$ $P_5(j) = 0$

Si on poursuit le calcul pour des plus grandes valeurs de m, on constate que l'on retombe sur les mêmes valeurs. Prouvons que la suite $(P_m(j))_{m\in\mathbb{N}}$ est périodique de période 6. En effet,

$$P_{m+6}(j) = (-j^2)^{m+6} - j^{m+6} - 1$$

= $(-j^2)^m j^{12} - j^m j^6 - 1$
= $(-j^2)^m - j^m - 1 = P_m(j)$

Les seuls entiers m tels que $P_m(j) = 0$ sont les entiers de la forme 1 + 6k ou 5 + 6k, où $k \in \mathbb{N}$. D'après ce qui précède, ce sont les seuls entiers tels que Q divise P_m .

Solution 24

1. On sait que j est une racine de $X^2 + X + 1$. On en déduit que $j + 1 = -j^2$. De plus, $2009 \equiv 2[3]$ (2007 est divisible par 3 car la somme de ses chiffres vaut 9). Or on sait également que $j^3 = 1$. Donc

$$j^{2009} = j^2$$
 et $(j+1)^{2009} = (-1)^{2009}j^4 = -j$.

Posons $P = (X + 1)^{2009} + X^{2009} + 1$. On a

$$P(j) = j^2 - j + 1 = -2j \neq 0.$$

Par conséquent, j n'est pas une racine de P et $X^2 + X + 1$ ne divise pas P.

2. D'après la question précédente, la valeur j^n dépend de la congruence de n modulo 3 et $(j+1)^n$ dépend des congruences de n modulo 2 et modulo 3. Si on pose $P_n = (X+1)^n + X^n + 1$, $P_n(j)$ devrait dépendre de la congruence de n modulo 6. On a :

$$P_n(j) = (-1)^n j^{2n} + j^n + 1$$

- Si $n \equiv 0[6]$, alors $P_n(j) = 3 \neq 0$.
- Si $n \equiv 1[6]$, alors $P_n(j) = -j^2 + j + 1 = -2j^2 \neq 0$.
- Si $n \equiv 2[6]$, alors $P_n(j) = j + j^2 + 1 = 0$.
- Si $n \equiv 3[6]$, alors $P_n(j) = 1 \neq 0$.
- Si $n \equiv 4[6]$, alors $P_n(j) = j^2 + j + 1 = 0$.
- Si $n \equiv 5[6]$, alors $P_n(j) = -j + j^2 + 1 = -2j$.

Comme P_n est à coefficients réels, j^2 est une racine de P_n si et seulement si j est une racine de P_n . Donc j et j^2 sont des racines de P_n si et seulement si $n \equiv 2[6]$ ou $n \equiv 4[6]$. Par conséquent, $X^2 + X + 1$ divise P_n pour ces valeurs de n.

1. On vérifie que P(1) = P(2) = Q(1) = Q(2) = 0. On peut donc factoriser P et Q par (X - 1)(X - 2). On trouve

$$P = (X - 1)(X - 2)(3X^{2} + 1)$$

$$O = (X - 1)(X - 2)(X^{2} + 1)$$

Ce sont bien des décompositions en facteurs irréductibles de P et Q sur $\mathbb{R}[X]$ puisque $3X^2 + 1$ et $X^2 + 1$ sont des polynômes de degré 2 de discriminant strictement négatif. On en déduit

$$P = (X - 1)(X - 2)(3X + i)(3X - i)$$

$$Q = (X - 1)(X - 2)(X + i)(X - i)$$

qui sont des décompositions de P et Q en facteurs irréductibles dans $\mathbb{C}[X]$.

2. On a clairement

$$P \wedge Q = (X - 1)(X - 2)$$

$$P \vee Q = (X - 1)(X - 2)(X^{2} + 1)\left(X^{2} + \frac{1}{3}\right)$$

Attention, le PPCM doit être unitaire.

Solution 26

S'il existe $m \in \mathbb{Z}$ tel que $\theta = \frac{m\pi}{n}$, alors $P = X^{2n} - 2(-1)^m X^n + 1$.

• Si m est pair,

$$P = (X^{n} - 1)^{2} = \prod_{k=0}^{n-1} \left(X - e^{\frac{2ik\pi}{n}} \right)^{2}$$

qui est la décomposition en facteurs irréductibles de P dans $\mathbb{C}[X]$. Il faut alors distinguer suivant la parité de n. Si n est pair, alors

$$P = (X - 1)^{2}(X + 1)^{2} \prod_{k=1}^{\frac{n}{2} - 1} \left(X^{2} - 2\cos\frac{2k\pi}{n} + 1\right)^{2}$$

qui est la décomposition en facteurs irréductibles de P dans $\mathbb{R}[X]$.

Si *n* est impair, alors

$$P = (X - 1)^{2} \prod_{k=1}^{\frac{n-1}{2}} \left(X^{2} - 2 \cos \frac{2k\pi}{n} + 1 \right)^{2}$$

qui est la décomposition en facteurs irréductibles de P dans $\mathbb{R}[X]$.

• Si m est impair,

$$P = (X^{n} + 1)^{2} = \prod_{k=0}^{n-1} \left(X - e^{\frac{(2k+1)i\pi}{n}} \right)^{2}$$

qui est la décomposition en facteurs irréductibles de P dans $\mathbb{C}[X]$. Il faut alors distinguer suivant la parité de n. Si n est pair, alors

$$P = \prod_{k=0}^{\frac{n}{2}-1} \left(X^2 - 2\cos\frac{(2k+1)\pi}{n} + 1 \right)^2$$

qui est la décomposition en facteurs irréductibles de P dans $\mathbb{R}[X]$. Si n est impair, alors

 $P = (X+1)^2 \prod_{n=1}^{\frac{n-1}{2}-1} \left(X^2 - 2\cos\frac{(2k+1)\pi}{n} + 1 \right)^2$

qui est la décomposition en facteurs irréductibles de P dans $\mathbb{R}[X]$.

Dans toutes les expressions précédentes, on convient qu'un produit indexé sur le vide vaut 1 et les facteurs sont bien irréductibles car les cosinus ne valent ni 1 ni -1.

On suppose maintenant qu'il n'existe pas d'entier $m \in \mathbb{Z}$ tel que $\theta = \frac{m\pi}{n}$. Remarquons que

$$P = (X^n - e^{ni\theta})(X^n - e^{-ni\theta})$$

On a

$$X^n - e^{ni\theta} = \prod_{k=0}^{n-1} \left(X - e^{i\left(\theta + \frac{2k\pi}{n}\right)} \right)$$

et par conjugaison

$$X^{n} - e^{-ni\theta} = \prod_{k=0}^{n-1} \left(X - e^{-i\left(\theta + \frac{2k\pi}{n}\right)} \right)$$

La décomposition de P en facteurs irréductibles dans $\mathbb{C}[X]$ est donc

$$P = \prod_{k=0}^{n-1} \left(X - e^{i\left(\theta + \frac{2k\pi}{n}\right)} \right) \prod_{k=0}^{n-1} \left(X - e^{-i\left(\theta + \frac{2k\pi}{n}\right)} \right)$$

On en déduit que la décomposition de P en facteurs irréductibles dans $\mathbb{R}[X]$ est

$$P = \prod_{k=0}^{n-1} \left(X^2 - 2X \cos \left(\theta + \frac{2k\pi}{n} \right) + 1 \right)$$

Les facteurs sont bien irréductibles car la condition $\theta \notin \frac{\pi}{n} \mathbb{Z}$ assure qu'aucun des cosinus ne vaut 1 ou -1.

Solution 27

Les nombres 0 et -1 sont des racines évidentes de P (donc de multiplicté au moins 1). De plus,

$$P(j) = (1+j)^7 - j^7 - 1 = (-j^2)^7 - j - 1$$

= -j¹⁴ - j - 1 = -(1+j+j^2) = 0

De même,

$$P'(j) = 7(1+j)^6 - 7j^6 = 7(-j^2)^6 - 7$$
$$= 7j^{12} - 7 = 7 - 7 = 0$$

Donc j est racine de multiplicité au moins égale à 2. Comme P est à coefficients réels, \bar{j} est également racine de multiplicité au moins 2. On remarque que deg P = 6. On en déduit que 0 et -1 sont des racines simples, que j et \bar{j} sont des racines doubles et que ce sont les seules racines de P. Enfin, le coefficient domiant de P est $\binom{7}{1}$ = 7 donc

$$P = 7X(X+1)(X-j)^2(X-\bar{j})^2 = 7X(X+1)(X^2+X+1)^2$$

- **1.** On trouve $P_0 = 1$, $P_1 = X$, $P_2 = \frac{3}{2}X^2 \frac{1}{2}$ et $P_3 = \frac{5}{2}X^3 \frac{3}{2}X$.
- 2. On a deg $Q_n = n \deg(X^2 1) = 2n$. Ainsi deg $P_n = \deg Q_n n = n$.
- **3.** Comme Q_n est pair, sa dérivée $n^{\text{ème}}$ P_n est pair est n est pair et impair si n est impair. Si n est impair, P_n est impair : on a donc $P_n(0) = 0$. Si n est pair, P_n est pair donc P'_n est impair : on a donc $P'_n(0) = 0$.

4. Via la formule du binôme

$$Q_n = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} X^{2k}$$

La formule de Taylor en 0 donne également

$$Q_n = \sum_{l=0}^{2n} \frac{Q_n^{(l)}(0)}{l!} X^l$$

Supposons n pair. Il existe donc $p \in \mathbb{N}$ tel que n = 2p. En identifiant les coefficients de X^n dans ces deux expressions, on obtient

$$\frac{\mathbf{Q}^{(n)}(0)}{n!} = \binom{2p}{p} (-1)^p$$

puis

$$P_n(0) = \frac{(-1)^p \binom{2p}{p}}{2^{2p}} = \frac{(-1)^p (2p)!}{2^{2p} (p!)^2}$$

Supposons n impair. Il existe donc $p \in \mathbb{N}$ tel que n = 2p + 1. En identifiant les coefficients de X^{n+1} dans les deux expressions précédentes, on obtient

$$\frac{\mathbf{Q}^{(n+1)}(0)}{(n+1)!} = \binom{2p+1}{p+1} (-1)^p$$

puis

$$P'_n(0) = \frac{(2p+2)(-1)^p \binom{2p+1}{p+1}}{2^{2p+1}} = \frac{(-1)^p (2p+1)!}{2^{2p} (p!)^2}$$

- **5.** a. Pour $n \ge 1$, on a $Q'_n = 2nX(X^2 1)^{n-1}$ et donc $(X^2 1)Q'_n = 2nX(X^2 1)^n = 2nXQ_n$. On vérifie que cette égalité est encore valable pour n = 0 puisque $Q_0 = 1$.
 - **b.** On utilise la formule de Leibniz. Comme les dérivées de $X^2 1$ sont nulles à partir de l'ordre 3 et que celles de X sont nulles à partir de l'ordre 2, on a

$$\binom{n+1}{0}(X^2-1)Q_n^{(n+2)} + 2\binom{n+1}{1}XQ_n^{(n+1)} + 2\binom{n+1}{2}Q_n^{(n)} = 2n\binom{n+1}{0}XQ_n^{(n+1)} + 2n\binom{n+1}{1}Q_n^{(n)}$$

Autrement dit

$$(X^2-1)Q_n^{(n+2)} + 2(n+1)XQ_n^{(n+1)} + n(n+1)Q_n^{(n)} = 2nXQ_n^{(n+1)} + 2n(n+1)Q_n^{(n)}$$

ou encore

$$(X^{2}-1)Q_{n}^{(n+2)} + 2XQ_{n}^{(n+1)} = n(n+1)Q_{n}^{(n)}$$

Par définition de P_n , on a donc

$$(X^2 - 1)P_n'' + 2XP_n' = n(n+1)P_n$$

- **6. a.** $Q_n = (X-1)^n(X+1)^n$ ce qui prouve que 1 et -1 sont des racines de Q_n de multiplicité n. On a donc $Q_n^{(k)}(\pm 1) = 0$ pour $k \in [0, n-1]$.
 - **b.** On fait l'hypothèse de récurrence HR(k) suivante :

 $Q_n^{(k)}$ possède au moins k racines distinctes dans l'intervalle]-1,1[

HR(0) est vraie puisque les seules racines de Q_n sont -1 et 1 (pas de racine du tout si n=0).

Supposons que $\operatorname{HR}(k)$ soit vraie pour un certain $k \in [0,n-1]$. Posons $\alpha_0 = -1$, $\alpha_{k+1} = 1$ et α_i pour $1 \le i \le k$ k racines distinctes de $\operatorname{Q}_n^{(k)}$ dans l'intervalle]-1, 1[rangées dans l'ordre croissant. D'après la question précédente, $\operatorname{Q}_n^{(k)}$ s'annule en α_0 et α_{k+1} . De plus, $\operatorname{Q}_n^{(k)}$ s'annule en les α_i pour $1 \le i \le k$. Comme Q_n est dérivable et continue sur $\mathbb R$, on peut appliquer le théorème de Rolle entre α_i et α_{i+1} pour $0 \le i \le k$. Ceci prouve que la dérivée de $\operatorname{Q}_n^{(k)}$, à savoir $\operatorname{Q}_n^{(k+1)}$ s'annule k+1 fois.

Par récurrence finie, $Q_n^{(n)}$ et donc P_n possède au moins n racines dans l'intervalle]-1,1[. Comme deg $P_n=n$, P_n possède au plus n racines réelles. On en déduit que P_n possède exactement n racines réelles toutes situées dans l'intervalle]-1,1[.

Solution 29

Première méthode:

Notons D = $(X^n - 1) \wedge (X^p - 1)$. On a

$$X^n - 1 = \prod_{\omega \in \mathbb{U}_n} (X - \omega)$$

et

$$X^p-1=\prod_{\omega\in\mathbb{U}_p}(X-\omega)$$

Donc

$$\mathrm{D} = \prod_{\omega \in \mathbb{U}_n \cap \mathbb{U}_p} (\mathrm{X} - \omega)$$

Montrons que $\mathbb{U}_n \cap \mathbb{U}_p = \mathbb{U}_{n \wedge p}$.

• Soit $z \in \mathbb{U}_n \cap \mathbb{U}_p$. Notons $d = n \wedge p$. D'après le théorème de Bézout, il existe $(u, v) \in \mathbb{Z}^2$ tel que un + vp = d. Par conséquent

$$z^d = (z^n)^u (z^p)^v = 1$$

Donc $z \in \mathbb{U}_d$.

On peut aussi remarquer que z est d'ordre fini dans (\mathbb{C}^* , \times). Notons k son ordre. Puisque $z^n = z^p = 1$, k divise n et p donc k divise d puis $z^d = 1$.

• Soit $z \in \mathbb{U}_d$. On a donc $z^d = 1$. Comme d|n, on a également $z^n = 1$ donc $z \in \mathbb{U}_n$. De même, $z \in \mathbb{U}_p$. Ainsi $z \in \mathbb{U}_n \cap \mathbb{U}_p$.

On a donc par double inclusion $\mathbb{U}_n \cap \mathbb{U}_p = \mathbb{U}_{n \wedge p}$. Ainsi

$$D = \prod_{\omega \in \mathbb{U}_d} (X - \omega) = X^d - 1$$

Seconde méthode:

Posons $r_0 = n$ et $r_1 = p$ et notons $(r_k)_{0 \le k \le N}$ la suite des restes dans l'algorithme d'Euclide appliqué à n et p. En particulier, $r_{N-1} = n \land p$ et $r_N = 0$.

Soit $k \in [0, N-2]$. Alors il existe $q \in \mathbb{N}$ tel que $r_k = qr_{k+1} + r_{k+2}$.

$$X^{r_{k}-r_{k+2}} - 1 = X^{qr_{k+1}} - 1 = (X^{r_{k+1}} - 1)Q$$

en posant Q = $\sum_{j=0}^{q-1} X^{jr_{k+1}}$. Il s'ensuit que

$$X^{r_k} - X^{r_{k+2}} = (X^{r_{k+1}} - 1)X^{r_{k+2}}Q$$

ou encore

$$X^{r_k} - 1 = X^{r_{k+2}} - 1 + (X^{r_{k+1}} - 1)\tilde{Q}$$

en posant $\tilde{Q} = X^{r_{k+2}}Q$. On en déduit classiquement que $(X^{r_k} - 1) \wedge (X^{r_{k+1}} - 1) = (X^{r_{k+1}} - 1) \wedge (X^{r_{k+2}} - 1)$.

Remarque. On peut simplifier les choses en utilisant des congruences de polynômes.

$$X^{r_{k+1}} \equiv 1 [X^{r_{k+1}} - 1]$$

donc

$$X^{qr_{k+1}} \equiv 1 [X^{r_{k+1}} - 1]$$

puis

$$X^{qr_{k+1}+r_{k+2}} \equiv X^{r_{k+2}} [X^{r_{k+1}} - 1]$$

et enfin

$$X^{r_k} - 1 \equiv X^{r_{k+2}} - 1 [X^{r_{k+1}} - 1]$$

ce qui permet d'aboutir également à $(X^{r_k} - 1) \wedge (X^{r_{k+1}} - 1) = (X^{r_{k+1}} - 1) \wedge (X^{r_{k+2}} - 1)$.

Finalement,
$$(X^n - 1) \land (X^p - 1) = (X^{r_{N-1}} - 1) \land (X^{r_N} - 1) = (X^n \land p - 1) \land 0 = (X^n \land p - 1).$$

Solution 30

Puisque P et Q sont à coefficients dans \mathbb{Z} et, a fortiori, à coefficients dans le corps \mathbb{Q} , le théorème de Bézout assure l'existence de deux polynômes U et V de $\mathbb{Q}[X]$ tels que UP + VQ = 1. En notant d le ppcm des dénominateurs des coefficients de U et V écrits sous forme fractionnaire et en posant A = dU et B = dV, on a AP + BQ = d avec A et B dans $\mathbb{Z}[X]$. Pour tout $n \in \mathbb{N}$, A(n)P(n) + B(n)Q(n) = d de sorte que u_n divise d.

Montrons alors que (u_n) est d-périodique. Soit $n \in \mathbb{N}$. Pour tout $k \in \mathbb{N}$

$$(n+d)^k = n^k + \sum_{j=1}^k \binom{k}{j} n^{k-j} d^j = n^k + cd$$

avec $c \in \mathbb{N}$. On en déduit que P(n+d) = P(n) + ad et Q(n+d) = Q(n) + bd avec $(a,b) \in \mathbb{Z}^2$. Puisque u_n divise P(n), Q(n) et d, u_n divise P(n+d) et Q(n+d) donc u_n divise u_{n+d} . De même, u_{n+d} divise P(n+d), Q(n+d) et d de sorte que u_{n+d} divise P(n) et Q(n) et donc u_n . On en déduit que $u_{n+d} = u_n$, ce qui prouve que la suite (u_n) est d-périodique.

Solution 31

Il n'y a aucune restriction à supposer P unitaire. Puisque P est scindé, il existe $(\alpha_1, \dots, \alpha_n) \in \mathbb{K}^n$ et $(\mu_1, \dots, \mu_n) \in (\mathbb{N}^*)^n$ tels que $P = \prod_{i=1}^n (X - \alpha_i)^{\mu_i}$. Puisque $P \wedge P'$ divise P, il existe $(\nu_1, \dots, \nu_n) \in \mathbb{N}^n$ tel que $P \wedge P' = \prod_{i=1}^n (X - \alpha_i)^{\nu_i}$.

Soit $i \in [\![1,n]\!]$. Puisque α_i est une racine de P de multiplicité μ_i , la caractérisation de la multiplicité à l'aide des dérivées successives montre que α_i est une racine de P' de multiplicité $\mu_i - 1$. Puisque $P \wedge P'$ divise P', $\nu_i \leq \mu_i - 1$. Finalement, $P \wedge P'$ divise $\prod_{i=1}^{n} (X - \alpha_i)^{\mu_i - 1}$.

Réciproquement, $\prod_{i=1}^{n} (X - \alpha_i)^{\mu_i - 1}$ divise bien P et P' donc divise également P \wedge P'. On en déduit que P \wedge P' = $\prod_{i=1}^{n} (X - \alpha_i)^{\mu_i - 1}$.

Solution 32

1. Le nombre *i* n'étant pas racine de P_n . Soit donc $z \in \mathbb{C} \setminus \{i\}$. Alors

$$(z+i)^n = (z-i)^n \iff \left(\frac{z+i}{z-i}\right)^n = 1$$

Ainsi,

$$\begin{split} \mathbf{P}_n(z) &= 0 \iff \exists k \in [\![0,n-1]\!], \ \frac{z+i}{z-i} = e^{\frac{2ik\pi}{n}} \\ &\iff \exists k \in [\![0,n-1]\!], \ z\left(e^{\frac{2ik\pi}{n}}-1\right) = i\left(e^{\frac{2ik\pi}{n}}+1\right) \\ &\iff \exists k \in [\![1,n-1]\!], \ z = i\frac{e^{\frac{2ik\pi}{n}}+1}{e^{\frac{2ik\pi}{n}}-1} \qquad \text{car l'équation précédente n'admet pas de solution lorsque } k = 0 \\ &\iff \exists k \in [\![1,n-1]\!], \ z = \cot \left(\frac{k\pi}{n}\right) \qquad \text{en utilisant la méthode de l'arc-moitié} \end{split}$$

Remarquons que cotan étant strictement décroissante sur $]0,\pi[$, on trouve bien n-1 racines distinctes.

- 2. En utilisant la formule du binôme, on voit que
 - P_n est de degré n-1;
 - son coefficient dominant est 2in;
 - son coefficient constant est $i^n (-i)^n$;
 - son coefficient du monôme de degré n-2 est nul.

D'après les liens coefficients/racines, la somme des racines de P_n vaut

$$A_n = \sum_{k=1}^{n-1} \cot \left(\frac{k\pi}{n}\right) = -\frac{0}{2in} = 0$$

et le produit des racines de P_n vaut

$$B_n = \prod_{k=1}^{n-1} \cot \left(\frac{k\pi}{n}\right) = \frac{(-1)^{n-1}(i^n - (-i)^n)}{2in} = \frac{(-1)^{n-1}}{n} \cdot \frac{e^{\frac{ni\pi}{2}} - e^{-\frac{ni\pi}{2}}}{2i} = \frac{(-1)^{n-1}\sin\left(\frac{n\pi}{2}\right)}{n}$$

Remarque. Le calcul de A_n peut se faire dirrectement. En effet, par le changement d'indice $k \mapsto n - k$,

$$A_n = \sum_{k=1}^{n-1} \cot \left(\frac{(n-k)\pi}{n}\right) = \sum_{k=1}^{n-1} \cot \left(\pi - \frac{k\pi}{n}\right) = -\sum_{k=1}^{n-1} \cot \left(\frac{k\pi}{n}\right) = -A_n$$

de sorte que $A_n = 0$.

On peut également remarquer directement que $B_n = 0$ si n est pair. En effet, le facteur d'indice $k = \frac{n}{2}$ est nul dans ce cas puisque $\cot \left(\frac{\pi}{2}\right) = 0$.

Algèbres

Solution 33

1. f est clairement un endomorphisme. Comme \mathbb{K} est intègre et $a \neq 0$, le noyau de f est nul. Comme \mathbb{K} est de dimension finie, f est un automorphisme. Notamment, f est surjectif et 1 admet un antécédent i.e. a est inversible. Autrement dit \mathbb{K} est un corps.

2. Si (1, a) était liée, il existerait $\lambda \in \mathbb{R}$ tel que $a = \lambda \cdot 1 = \lambda$, ce qui est exclu car $a \notin \mathbb{R}$. Comme K est de dimension finie, on peut considérer le polynôme minimal $P \in \mathbb{R}[X]$ de l'endomorphisme $f : x \mapsto ax$. Clairement $P(f) = P(a) \operatorname{Id}_K$ donc P(a) = 0. Par intégrité de K, P est nécessairement irréductible (dans $\mathbb{R}[X]$). Ainsi deg P = 1 ou deg P = 2 (et P est de discriminant strictement négatif). Le premier cas est exclu car (1, a) est libre. Ainsi deg P = 2 et donc $(1, a, a^2)$ est liée.

Remarque. On aurait aussi pu prouver que l'ensemble des polynômes de $\mathbb{R}[X]$ annulant a était un idéal de $\mathbb{R}[X]$ et noter P son générateur unitaire.

3. Comme n > 1, $\mathbb{R} \subseteq \mathbb{K}$. On peut donc considérer $a \in \mathbb{K} \setminus \mathbb{R}$. D'après la question précédente, il existe un polynôme $P \in \mathbb{R}[X]$ de degré 2 irréductible annulant a. Posons $P = X^2 + \alpha X + \beta$. On a donc $\alpha^2 + \alpha \alpha + \beta = 0$ avec $\alpha^2 - 4\beta < 0$. Ceci peut se réécrire

$$\left(a + \frac{\alpha}{2}\right)^2 = \frac{\alpha^2 - 4\beta}{4}$$

On peut donc poser

$$i = \frac{2a + \alpha}{\sqrt{4\beta - \alpha}}$$

pour avoir $i^2 = -1$.

On va maintenant montrer que $\mathbb{K} = \text{vect}(1, i)$. On a clairement $\mathbb{R} \subset \text{vect}(1, i)$. Soit alors $a \in \mathbb{K} \setminus \mathbb{R}$. En reprenant les notations précédentes

$$\left(\alpha + \frac{\alpha}{2}\right)^2 = \frac{\alpha^2 - 4\beta}{4} = \left(\frac{i\sqrt{4\beta - \alpha}}{2}\right)^2$$

Par intégrité de K,

$$a = \frac{-\alpha \pm i\sqrt{4\beta - \alpha}}{2} \in \text{vect}(1, i)$$

Ainsi $\mathbb{K} = \text{vect}(1, i)$ et (1, i) est une base du \mathbb{R} -espace vectoriel \mathbb{K} .

Rappelons que (1, i) est une base du \mathbb{R} -espace vectoriel \mathbb{C} . Notons alors φ l'unique application \mathbb{R} -linéaire de \mathbb{K} dans \mathbb{C} telle que $\varphi(1) = 1$

et $\varphi(i) = \iota$. C'est clairement un isomorphisme linéaire car (1, i) et $(1, \iota)$ sont des bases respectives de \mathbb{K} et \mathbb{C} . Enfin, pour $(a, b) \in \mathbb{K}^2$, il existe $(\alpha, \beta, \gamma, \delta) \in \mathbb{R}^4$ tel que $a = \alpha + \beta i$ et $b = \gamma + \delta i$. Alors

$$\varphi(ab) = \varphi((\alpha + \beta i)(\gamma + \delta i))$$

$$= \varphi(\alpha \gamma - \beta \delta + (\alpha \delta + \beta \gamma)i)$$

$$= \alpha \gamma - \beta \delta + (\alpha \delta + \beta \gamma)i$$

$$= (\alpha + \beta i)(\gamma + \delta i)$$

$$= \varphi(a)\varphi(b)$$

On en déduit que ϕ est un isomorphisme de \mathbb{R} -algèbres de \mathbb{K} sur \mathbb{C} .

Remarque. On a tenté de différencier $i \in \mathbb{K}$ et $i \in \mathbb{C}$.

Solution 34

Il est claire que M est linéaire car Re et Im sont des formes linéaires sur le \mathbb{R} -espace vectoriel \mathbb{C} . On a également $M(1) = I_2$. Enfin, on vérifie aisément que $M(z_1z_2) = M(z_1)M(z_2)$ pour tout $(z_1,z_2) \in \mathbb{C}$. Ainsi M est bien un morphisme de \mathbb{R} -algèbres. Enfin $z \in \operatorname{Ker} M \iff \operatorname{Re}(z) = \operatorname{Im}(z) = 0 \iff z = 0$ donc $\operatorname{Ker} M = \{0\}$ de sorte que M est injectif.

Solution 35

Soit θ un morphisme d'algèbres de $\mathbb{K}[X]$ dans \mathbb{K} . Posons $a = \theta(X)$. Alors pour tout $P \in \mathbb{K}[X]$, $\theta(P) = P(\theta(X)) = P(a)$. Réciproquement, pour tout $a \in \mathbb{K}$, $P \mapsto P(a)$ est bien un morphisme d'algèbres de $\mathbb{K}[X]$ dans \mathbb{K} . Les morphismes d'algèbres de $\mathbb{K}[X]$ dans \mathbb{K} sont donc les morphismes d'évaluation $P \in \mathbb{K}[X] \mapsto P(a)$ avec $a \in \mathbb{K}$.

Solution 36

L'énoncé considère implicite $\mathbb C$ comme une $\mathbb R$ -alèbre puisque $\mathcal M_2(\mathbb R)$ en est une. On vérifie sans peine que

- Φ est linéaire:
- $\Phi(1) = I_2$;
- $\forall (z_1, z_2) \in \mathbb{C}^2$, $\Phi(z_1 z_2) = \Phi(z_1)\Phi(z_2)$.

Ainsi Φ est un morphisme d'algèbres. De plus, il est clair que $\operatorname{Ker} \Phi = \{0\}$ donc Φ est injectif.

Remarquons que $A_{\theta} = \Phi(i\theta)$. En posant $P_n = \sum_{k=0}^n \frac{X^k}{k!}$, on a par propriété de morphisme $P_n(A_{\theta}) = \Phi(P_n(i\theta))$. D'une part, $(P_n(A_{\theta}))_{n\in\mathbb{N}}$ converge vers $\exp(A_{\theta})$. D'autre part, $(P_n(i\theta))$ converge vers $\exp(i\theta)$ et Φ est continue comme application linéaire sur un espace de dimension finie de sorte que $(\Phi(P_n(i\theta)))_{n\in\mathbb{N}}$ converge vers $\Phi(e^{i\theta})$. Par unicité de la limite,

$$\exp(\mathbf{A}_{\theta}) = \Phi(e^{i\theta}) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$