Polynomials

Shef Scholars Competitive Math Acaemy

August 2025

Introduction

A polynomial in one variable x is an expression of the form:

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where:

- *n* is a non-negative integer called the **degree** of the polynomial.
- $a_n, a_{n-1}, \ldots, a_1, a_0$ are **coefficients**, typically real or complex numbers.
- $a_n \neq 0$ is the **leading coefficient**.
- a_0 is the **constant term**.

Properties of Polynomials

1. Given polynomials A(x) and $B(x) \neq 0$, there exist unique polynomials q(x) and r(x) such that:

$$A(x) = B(x)q(x) + r(x)$$

where deg(r) < deg(B).

- 2. A polynomial P(x) is divisible by the binomial x a if and only if P(a) = 0.
- 3. If a polynomial P(x) is divisible by a polynomial Q(x), then every zero of Q(x) is also a zero of P(x).
- 4. Any real polynomial P(x) of degree n has a unique representation of the form:

$$P(x) = c(x - a_1)(x - a_2) \dots (x - a_k)(x^2 - p_1x + q_1) \dots (x^2 - p_lx + q_l)$$

where $c \neq 0$, a_i, p_j, q_j are real numbers, and the quadratic terms satisfy $p_j^2 < 4q_j$. Additionally, k + 2l = n.

5. Let P(x) be a polynomial with real coefficients, and let $a, b \in \mathbb{R}$ with a < b. If

$$P(a) \cdot P(b) < 0$$
,

then there exists some $c \in (a, b)$ such that

$$P(c) = 0.$$

Elementary Symmetric Polynomials and Vieta's Formulas

Given n variables $x_1, x_2, ..., x_n$, the **elementary symmetric polynomials** are defined as follows:

• The first elementary symmetric polynomial:

$$e_1 = x_1 + x_2 + \dots + x_n$$

• The second elementary symmetric polynomial:

$$e_2 = \sum_{1 \le i < j \le n} x_i x_j$$

• The general form:

$$e_k = \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} x_{i_1} x_{i_2} \dots x_{i_k}$$

for $1 \le k \le n$, where $e_n = x_1 x_2 \dots x_n$.

Let P(x) be a polynomial of degree n with roots x_1, x_2, \ldots, x_n :

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

The relationships between the coefficients and the roots, known as **Vieta's formulas**, are:

$$e_1 = x_1 + x_2 + \dots + x_n = -\frac{a_{n-1}}{a_n},$$

$$e_2 = x_1 x_2 + x_1 x_3 + \dots + x_{n-1} x_n = \frac{a_{n-2}}{a_n},$$

$$\vdots$$

$$e_n = x_1 x_2 \dots x_n = (-1)^n \frac{a_0}{a_n}.$$

These formulas express the coefficients of a polynomial in terms of its roots.

Examples

Example 1: A Direct Application of Vieta

Problem. Let $a, b, c, x, y \in \mathbb{R}$ satisfy

$$a^{3} + ax + y = 0,$$
 $b^{3} + bx + y = 0,$ $c^{3} + cx + y = 0,$

with a, b, c pairwise distinct. Prove that a + b + c = 0.

Walk-through.

- 1. Construct the cubic. Each equality can be rewritten as $P(t) = t^3 + xt + y = 0$ with $t \in \{a, b, c\}$. Hence a, b, c are roots of P.
- 2. Note the degree. Since P is cubic and a, b, c are distinct, they comprise all the roots of P.

3. Invoke Vieta's formulas. For a monic cubic $t^3 + Bt^2 + Ct + D$ with roots r_1, r_2, r_3 , Vieta states $r_1 + r_2 + r_3 = -B$. Here B = 0, so

$$a+b+c=-B=0.$$

Therefore

$$a + b + c = 0$$

Example 2: Sign Information From Vieta's Formulas

Problem. Let $a, b, c \in \mathbb{R}$ satisfy

$$a+b+c>0,$$
 $ab+bc+ca>0,$ $abc>0.$

Show that a, b, c > 0.

Solution. Write the monic cubic with roots a, b, c:

$$P(x) = (x - a)(x - b)(x - c) = x^3 - (a + b + c)x^2 + (ab + bc + ca)x - abc.$$

By Vieta's formulas the given inequalities say that

(i)
$$-(\cos f. \cos x^2) < 0$$
, (ii) $(\cos f. \cos x) > 0$, (iii) $-(\cos f. \cot x) < 0$.

Note that 0 isn't a root of the polynomial given abc > 0. If at least one of a, b, c wasn't positive, the polynomial would have a negative root. But for x < 0 we have that:

(i)
$$-x^3 < 0$$
, (ii) $-(a+b+c)x^2 < 0$, (iii) $(ab+bc+ca)x < 0$, (iv) $-abc < 0$

and therefore P(x) < 0. Therefore P(x) cannot have a negative root and:

Interpolation Polynomial

Interpolation polynomials are used to construct a polynomial that passes through a given set of points. Given n+1 distinct points $(x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n)$, there exists a unique polynomial P(x) of degree at most n such that:

$$P(x_i) = y_i$$
 for each $i = 0, 1, ..., n$.

A natural way to construct P(x) is as a weighted sum of simpler polynomials:

$$P(x) = \sum_{i=0}^{n} y_i L_i(x).$$

Here, each **Lagrange basis polynomial** $L_i(x)$ is designed to satisfy the following two key properties:

1. At $x = x_i$, we get $L_i(x_i) = 1$ This ensures that when evaluating P(x) at $x = x_i$, we get y_i , because all other terms $y_i L_j(x_i)$ vanish for $j \neq i$.

2. At $x = x_j$ for $j \neq i$, we get $L_i(x_j) = 0$ This ensures that the contribution from $y_j L_j(x)$ does not interfere with $P(x_i)$, keeping the interpolation intact.

To achieve these properties, we define:

$$L_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x - x_j}{x_i - x_j}.$$

Roots of Unity

Definition

The *n*th roots of unity are the complex solutions to the equation:

$$x^n = 1$$
.

These roots can be expressed using Euler's formula:

$$\omega_k = e^{2\pi i k/n} = \cos\left(\frac{2\pi k}{n}\right) + i\sin\left(\frac{2\pi k}{n}\right),$$

for k = 0, 1, ..., n - 1. Here, $\omega = e^{2\pi i/n}$ is a **primitive** nth root of unity, and the set $\{\omega^k\}_{k=0}^{n-1}$ comprises all nth roots of unity.

Algebraic and Geometric Properties

- Closure under multiplication: The set of *n*th roots of unity forms a cyclic group under multiplication. That is, $\omega^a \cdot \omega^b = \omega^{a+b(\mod n)}$.
- Sum of roots: The sum of all nth roots of unity is zero:

$$\sum_{k=0}^{n-1} \omega_k = \sum_{k=0}^{n-1} \omega^k = 0.$$

• **Product of roots:** The product of all *n*th roots of unity is:

$$\prod_{k=0}^{n-1} \omega^k = \begin{cases} 1, & \text{if } n \text{ is odd,} \\ -1, & \text{if } n \text{ is even.} \end{cases}$$

• **Geometric interpretation:** When plotted on the complex plane, the *n*th roots of unity lie on the unit circle and are evenly spaced, forming the vertices of a regular *n*-gon centered at the origin.

Primitive Roots of Unity

A root ω^k is called a **primitive** nth root of unity if its order is n, i.e., $\omega^{k \cdot m} \neq 1$ for $1 \leq m < n$. There are $\phi(n)$ primitive nth roots of unity, where ϕ denotes Euler's totient function.

Applications in Problem Solving

1. Factoring Polynomials

Roots of unity are instrumental in factoring polynomials like $x^n - 1$. For example:

$$x^{n} - 1 = \prod_{k=0}^{n-1} (x - \omega^{k}).$$

This factorization is fundamental in understanding the structure of polynomials and in simplifying expressions.

2. Solving Equations Involving Sums of Powers

Consider the equation:

$$x^n + x^{n-1} + \dots + x + 1 = 0.$$

This can be rewritten using the formula for the sum of a geometric series:

$$\frac{x^{n+1} - 1}{x - 1} = 0.$$

Solving $x^{n+1} = 1$ and $x \neq 1$ leads us to the (n+1)th roots of unity, excluding 1.

3. Cyclotomic Polynomials

The minimal polynomials over \mathbb{Q} for primitive nth roots of unity are called **cyclotomic polynomials**, denoted $\Phi_n(x)$. They are defined as:

$$\Phi_n(x) = \prod_{\substack{1 \le k \le n \\ \gcd(k,n)=1}} (x - \omega^k).$$

These polynomials are irreducible over \mathbb{Q} and have integer coefficients.

Examples

Example 1: Cube Roots of Unity

Find all cube roots of unity.

Solution: Solve $x^3 = 1$. The roots are:

$$\omega_0 = 1$$
, $\omega_1 = e^{2\pi i/3} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$, $\omega_2 = e^{4\pi i/3} = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$.

Example 2: Factoring $x^4 + 1$

Factor $x^4 + 1$ over \mathbb{C} .

Solution: Note that $x^4 + 1 = x^4 - (-1)$. The 8th roots of unity satisfy $x^8 = 1$, so the roots of $x^4 + 1$ are the 8th roots of unity with odd indices:

$$x^4 + 1 = \prod_{k=1,3,5,7} (x - \omega^k).$$

5

Example 3: Sum of Powers of Roots of Unity

Compute $\sum_{k=0}^{n-1} \omega^{k \cdot m}$, where ω is a primitive *n*th root of unity.

Solution: This sum equals:

$$\sum_{k=0}^{n-1} \omega^{k \cdot m} = \begin{cases} n, & \text{if } n \mid m, \\ 0, & \text{otherwise.} \end{cases}$$

This property is useful in filtering specific coefficients in polynomial expressions.

Example 4: A Divisibility Criterion via Roots of Unity

Problem. For which positive integers n does

$$x^2 + x + 1 \mid x^{2n} + x^n + 1$$

hold?

Solution. We know that if a polynomial Q(x) divides a polynomial P(x) in $\mathbb{C}[x]$. then every root of Q is also a root of P. This motivates us to look at the roots of polynomial $x^2 + x + 1$. However these are the roots of unity!

Let $\zeta = \frac{-1 + i\sqrt{3}}{2}$; then ζ and ζ^2 are the primitive cube–roots of unity:

$$\zeta^3 = 1, \qquad \zeta \neq 1, \qquad \zeta^2 + \zeta + 1 = 0.$$

Because $\zeta^3 = 1$, every power ζ^n depends only on $n \mod 3$. Write n = 3q + k with $k \in \{0, 1, 2\}$. Then

$$\zeta^n = \zeta^k, \qquad \zeta^{2n} = \zeta^{2k}.$$

$$x^{2n} + x^n + 1 \Big|_{x=\zeta} = \zeta^{2k} + \zeta^k + 1 = \begin{cases} 3 & \text{if } k = 0, \\ 0 & \text{if } k = 1, \\ 0 & \text{if } k = 2. \end{cases}$$

Thus ζ (and, by the same calculation, ζ^2) is a root of $x^{2n} + x^n + 1$ precisely when $k \neq 0$, i.e. when $3 \nmid n$.

Therefore ζ and ζ^2 are roots of $x^{2n} + x^n + 1$ iff $3 \nmid n$. By the factor (or Remainder) Theorem, this happens exactly when the quadratic $x^2 + x + 1$ divides the trinomial.

$$\boxed{x^2 + x + 1 \mid x^{2n} + x^n + 1 \iff 3 \nmid n}$$

Checks.

- n = 1, 2: $x^2 + x + 1$ divides $x^2 + x + 1$ and $x^4 + x^2 + 1$.
- n=3: $x^6+x^3+1=(x^2+x+1)(x^4-x^2+1)+3$; remainder $3\neq 0$, so divisibility fails.

6

Problems

- 1. Let P be a nonconstant polynomial with integer coefficients. Prove that there is an integer x so that P(x) is composite.
- 2. Let $P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ be a polynomial with integer coefficients. Prove that P(x) is irreducible over the integers if there exists a prime number p such that:
 - p divides a_i for all i < n,
 - p does not divide a_n , and
 - p^2 does not divide a_0 .
- 3. Let real numbers a_1, a_2, a_3, a_4, a_5 satisfy

$$\frac{a_1}{k^2+1} + \frac{a_2}{k^2+2} + \frac{a_3}{k^2+3} + \frac{a_4}{k^2+4} + \frac{a_5}{k^2+5} = \frac{1}{k^2}, \qquad k = 1, 2, 3, 4, 5.$$

Find

$$\frac{a_1}{37} + \frac{a_2}{38} + \frac{a_3}{39} + \frac{a_4}{40} + \frac{a_5}{41}$$
.

- 4. The product of two of the four roots of the quartic equation $x^4 18x^3 + kx^2 + 200x 1984 = 0$ is -32. Determine the value of k.
- 5. Given that the polynomials P and Q each have at least one real root, and the following equality holds:

$$P(1 + x + Q(x)^{2}) = Q(1 + x + P(x)^{2}),$$

prove that P is identically equal to Q, denoted $P \equiv Q$.

6. Let P be a polynomial of degree n satisfying

$$P(k) = \binom{n+1}{k}^{-1}$$
 for $k = 0, 1, ..., n$.

Determine P(n+1).

7. Let z_1, z_2, \ldots, z_n be the roots of the polynomial

$$P(x) = x^n + x^{n-1} + \dots + x + 1.$$

Determine the smallest natural number m such that the points $z_1^m, z_2^m, \ldots, z_n^m$ in the complex plane lie on the same line, if:

- a) n = 2011
- b) n = 2010
- 8. Let P be a polynomial of degree n with real coefficients. Assume that for all x in the interval [0,1], the absolute value of P(x) satisfies the inequality $|P(x)| \le 1$. Show that:

$$|P\left(-\frac{1}{n}\right)| \le 2^{n+1} - 1$$

9. Determine all pairs of natural numbers (m,n) with $m,n \geq 3$ such that the expression

$$\frac{a^m + a - 1}{a^n + a^2 - 1}$$

7

is an integer for infinitely many natural numbers a.