# Отчёт по лабораторной работе №5

Дисциплина: Имитационное моделирование

Шошина Евгения(НФИ-01-22)

# Содержание

| Цель работы                                                    | 5  |
|----------------------------------------------------------------|----|
| Задание                                                        | 6  |
| Теоретическое введение                                         | 7  |
| Выполнение лабораторной работы                                 | 8  |
| Повторим пример из лабораторной работы                         | 8  |
| Реализация модели в xcos                                       | 8  |
| Реализация модели с помощью блока Modelica в xcos              | 10 |
| Упражнение. Реализация модели SIR в OpenModelica               | 14 |
| Задание для самостоятельной работы                             | 15 |
| Реализация модели в xcos                                       | 15 |
| Реализация модели с помощью блока Modelica в xcos (2 варианта) | 16 |
| Реализация модели в OpenModelica                               | 18 |
| метров модели                                                  | 19 |
| Выводы                                                         | 23 |
| Список литературы                                              |    |

# Список иллюстраций

| 1  | Установить контекст для учебного примера в Xcos | 8  |
|----|-------------------------------------------------|----|
| 2  | Модель SIR в xcos                               | 9  |
| 3  | Эпидемический порог модели SIR                  | 10 |
| 4  | Модель SIR в xcos с применением блока Modelica  | 11 |
| 5  | Параметры блока Modelica                        | 12 |
| 6  | Параметры блока Modelica                        | 13 |
| 7  | Эпидемический порог модели SIR                  | 13 |
| 8  | Код для реализация модели SIR в OpenModelica    | 14 |
| 9  | Эпидемический порог модели SIR                  | 14 |
| 10 | Mодель SIR в xcos                               | 15 |
| 11 | Эпидемический порог модели SIR                  | 16 |
| 12 | Модель SIR в xcos с применением блока Modelica  | 17 |
| 13 | Параметры блока Modelica                        | 17 |
| 14 | Параметры блока Modelica                        | 18 |
| 15 | Эпидемический порог модели SIR                  | 18 |
| 16 | Код для реализация модели SIR в OpenModelica    | 19 |
| 17 | Эпидемический порог модели SIR                  | 19 |
| 18 | Эпидемический порог модели SIR                  | 22 |
| 19 | Эпидемический порог модели SIR                  | 22 |

## Список таблиц

# Цель работы

Выполнить задания и получить практические навыки работы со средствами моделирования xcos, Modelica и OpenModelica. Рассмотреть модель эпидемии (SIR).

## **Задание**

- 1. Реализовать имитационную модель эпидемии в хсох;
- 2. Реализовать имитационную модель эпидемии в Modelica;
- 3. Реализовать имитационную модель эпидемии в OpenModelica (упражнение);
- 4. Выполнить задание для самостоятельной работы.

## Теоретическое введение

Модель SIR предложена в 1927 г. (W. O. Kermack, A. G. McKendrick). Предполагается, что особи популяции размера N могут находиться в трёх различных состояниях:

- S (susceptible, уязвимые) здоровые особи, которые находятся в группе риска и могут подхватить инфекцию;
- I (infective, заражённые, распространяющие заболевание) заразившиеся переносчики болезни;
- R (recovered/removed, вылечившиеся) те, кто выздоровел и перестал распространять болезнь (в эту категорию относят, например, приобретших иммунитет или умерших).

Внутри каждой из выделенных групп особи считаются неразличимыми по свойствам. Типичная эволюция особи популяции описывается следующей диаграммой:

 $S \rightarrow I \rightarrow R$ 

Считаем, что система замкнута, т.е. N=S+I+R. [@lab\_ruk].

## Выполнение лабораторной работы

## Повторим пример из лабораторной работы

#### Реализация модели в хсоѕ

Зайдя в среду моделирования Xcos начала выполнять учебный пример. В начале во вкладке "Моделирование" открыла "Установить контекст" и задала переменные  $\beta=1, \nu=0.3$  (рис. @fig:001).



Рис. 1: Установить контекст для учебного примера в Хсоѕ

Далее я реализовала модель при помощи следующих блоков xcos(рис. @fig:002):

$$\begin{cases} \dot{s} = -\beta s(t)i(t); \\ \dot{i} = \beta s(t)i(t) - \nu i(t); \\ \dot{r} = \nu i(t), \end{cases}$$

- CLOCK с запуск часов модельного времени;
- CSCOPE регистрирующее устройство для построения графика;
- TEXT f задаёт текст примечаний;
- MUX мультиплексер, позволяющий в данном случае вывести на графике сразу несколько кривых;
- INTEGRAL m блок интегрирования:
- GAINBLK\_f в данном случае позволяет задать значения коэффициентов  $\beta$  и  $\nu$ ;
- SUMMATION блок суммирования;
- PROD\_f поэлементное произведение двух векторов на входе блока.



Рис. 2: Модель SIR в хсоѕ



Рис. 3: Эпидемический порог модели SIR

### Реализация модели с помощью блока Modelica в xcos

Для реализации модели с помощью языка Modelica помимо блоков CLOCK\_c, CSCOPE, TEXT\_f и MUX требуются блоки:

- CONST\_m задаёт константу;
- MBLOCK (Modelica generic) блок реализации кода на языке Modelica.



Рис. 4: Модель SIR в xcos с применением блока Modelica

Задали параметры блока Modelica



Рис. 5: Параметры блока Modelica



Рис. 6: Параметры блока Modelica

Получили аналогичный первому графику "Эпидемический порог модели SIR"



Рис. 7: Эпидемический порог модели SIR

## Упражнение. Реализация модели SIR в OpenModelica

Написали программный код на в OpenModelica

```
1
    model laba5
2
      parameter Real S 0 = 0.999;
3
      parameter Real I 0 = 0.001;
4
      parameter Real R 0 = 0;
5
6
      parameter Real N=1;
      parameter Real b=1;
7
8
      parameter Real c=0.3;
9
10
      Real S(start=S 0);
      Real I(start=I 0);
11
      Real R(start=R 0);
12
13
14
    equation
      der(S) = -(b*S*I)/N;
15
      der(I) = (b*I*S)/N - c*I;
16
17
      der(R) = c*I;
18
19
    end laba5;
```

Рис. 8: Код для реализация модели SIR в OpenModelica

Получили аналогичный первому и второму графику "Эпидемический порог модели SIR"



Рис. 9: Эпидемический порог модели SIR

## Задание для самостоятельной работы

Предположим, что в модели SIR учитываются демографические процессы, в частности, что смертность в популяции полностью уравновешивает рождаемость, а все рожденные индивидуумы появляются на свет абсолютно здоровыми. Тогда получим следующую систему уравнений:

$$\begin{cases} \dot{s} = -\beta s(t)i(t) + \mu(N-s(t)); \\ \dot{i} = \beta s(t)i(t) - \nu i(t) - \mu i(t); \\ \dot{r} = \nu i(t) - \mu r(t), \end{cases}$$

где  $\mu$  — константа, которая равна коэффициенту смертности и рождаемости.

#### Реализация модели в хсоз

Построили модель SIR в xcos с учетом процесса рождения/гибели особей



Рис. 10: Модель SIR в хсоѕ



Рис. 11: Эпидемический порог модели SIR

## Реализация модели с помощью блока Modelica в xcos (2 варианта)

Формула выглядит следующим образом:

$$-\beta s(t)i(t) + \mu(N-s(t))$$

Но в начале мы говорили, что N=S+I+R, значит, можно вывести следующее:

$$N - S = I + R$$

Используем это для построения модели



Рис. 12: Модель SIR в xcos с применением блока Modelica



Рис. 13: Параметры блока Modelica



Рис. 14: Параметры блока Modelica



Рис. 15: Эпидемический порог модели SIR

## Реализация модели в OpenModelica

Написали программный код на в OpenModelica

```
model sir_sam_work3
      parameter Real beta = 1;
      parameter Real nu = 0.3;
      parameter Real mu = 0.01;
      Real s(start=0.999);
      Real i(start=0.001);
      Real r(start=0);
10
    equation
    // N = s+i+r -> N-s = i+r
11
      der(s)=-beta*s*i + mu*i + mu*r;
12
13
      der(i)=beta*s*i-nu*i - mu*i;
14
     der(r)=nu*i - mu*r;
15 end sir_sam_work3;
```

Рис. 16: Код для реализация модели SIR в OpenModelica



Рис. 17: Эпидемический порог модели SIR

# Графики эпидемического порога при различных значениях параметров модели

#### Изменение $\beta$ (скорости заражения):

Параметр  $\beta$  (скорость заражения) оказывает существенное влияние на динамику эпидемии. Чем выше  $\beta$ , тем быстрее распространяется болезнь и тем больше людей заражается.

•  $\beta$  = **3**: Высокая скорость заражения приводит к быстрому распространению

эпидемии. Число инфицированных быстро растет, достигает пика, а затем снижается.

•  $\beta$  = 1: Низкая скорость заражения приводит к медленному или незначительному распространению эпидемии. Число инфицированных остается низким или постепенно увеличивается.

#### Изменение $\nu$ (скорости выздоровления):

Более высокая скорость выздоровления способствует быстрому снижению числа инфицированных после пика.

#### • Изменение $\mu$ (коэффициента смертности и рождаемости):

В самых базовых моделях SIR (Susceptible - восприимчивые, Infected - инфицированные, Recovered - выздоровевшие), которые часто используются для начального анализа, рождаемость и смертность (и, следовательно, параметр  $\mu$ ) обычно не учитываются. Это делается для упрощения модели и сосредоточения внимания на динамике распространения инфекции. В таких моделях население считается постоянным.

- $\mu$  = 1: Высокий коэффициент  $\mu$  приводит к быстрому обороту популяции, что предотвращает распространение эпидемии.
- $\mu$  = **0.5**: Средний коэффициент  $\mu$  позволяет эпидемии распространяться медленно.
- $\mu$  = **0.1:** Низкий коэффициент  $\mu$  позволяет эпидемии распространяться быстрее, но в совокупности с изменениями других коэффициентов быстрый рост сопровождается и быстрым ростом "переболевших".

$$\beta$$
 = 3,  $\nu$  = 0.6,  $\mu$  = 0.1

• Начальная популяция восприимчивых быстро уменьшается, поскольку болезнь распространяется.

- Число инфицированных быстро растет, достигая пика, а затем постепенно снижается.
- Число выздоровевших увеличивается и стабилизируется на определенном уровне.
- Система достигает состояния равновесия, где популяция восприимчивых стабилизируется на уровне около 0.25, инфицированных на уровне около 0.1, а выздоровевших на уровне около 0.65.

$$\beta$$
 = 1,  $\nu$  = 0.3,  $\mu$  = 1

- Число восприимчивых остается неизменным.
- Число инфицированных остается очень низким.
- Число выздоровевших также остается неизменным.
- Болезнь не может распространиться.

$$\beta$$
 = 1,  $\nu$  = 0.3,  $\mu$  = 0.5

- Число восприимчивых немного уменьшается.
- Число инфицированных остается низким, но постепенно увеличивается.
- Число выздоровевших также постепенно увеличивается.

$$\beta$$
 = 1,  $\nu$  = 0.3,  $\mu$  = 0.1

- Начальная популяция восприимчивых значительно уменьшается.
- Число инфицированных быстро растет, достигая пика, а затем снижается.
- Число выздоровевших увеличивается и стабилизируется на определенном уровне.
- Система достигает состояния равновесия, где популяция восприимчивых стабилизируется на уровне около 0.4, инфицированных на уровне около 0.17, а выздоровевших на уровне около 0.45.



Рис. 18: Эпидемический порог модели SIR



Рис. 19: Эпидемический порог модели SIR

## Выводы

Я получила практические навыки работы со средствами моделирования хсоз, Modelica и OpenModelica. Была рассмотрена модель эпидемии (SIR).

# Список литературы