

Autonomous Vehicle Simulation (AVS) Laboratory

AVS-Sim Technical Memorandum

Document ID: AVS-SIM-orbitAxisSpin

GUIDANCE MODULE TO PERFORM A CONSTANT SPINNING ABOUT AN ORBIT AXIS

Prepared by	M. Cols
-------------	---------

Status: Initial Version

Scope/Contents

Generate the attitude reference to achieve a spinning motion about a primary orbit frame axis. A chosen reference axis $\hat{r}_j = \hat{r}_{spin}$ is to line up with the orbit axis $\hat{o}_i = \hat{o}_{spin}$, and rotate a desired rate ω_{spin}

Rev:	Change Description	Ву
Draft	initial copy	M. Cols

Contents

1	Introduction	1
2	Angular Velocity and Acceleration Descriptions	1
3	MRP Attitude Set	2
4	Spin Angle Initialization Process 4.1 Algorithm Outlines	2

Fig. 1: Illustration of spinning about the nadir orbit axis $\hat{\imath}_r$ of the Hill orbit frame \mathcal{H} at a constant rate $\omega_{\rm spin}$.

1 Introduction

In this note a method is discussed on how to compute the reference frame angular rate $\omega_{R/N}$ and acceleration $\dot{\omega}_{R/N}$ to achieve a particular family of stabilized spin motion. This module receives as input the generated reference for a constaint pointing towards an orbit reference frame. Let us call the input reference \mathcal{R}_0 . The goal is now to create a new reference \mathcal{R} that spins about any of the orbit axes, \hat{o}_{spin} , at a constant rate ω_{spin} . Note that the presented method is general enough to use any of the Hill $\mathcal{H}:\{\hat{\imath}_r,\hat{\imath}_\theta,\hat{\imath}_h\}$ or Velocity $\mathcal{V}:\{\hat{\imath}_n,\hat{\imath}_v,\hat{\imath}_h\}$ orbit frame orientations as the input reference. Figure 1 illustrates the case in which \mathcal{R}_0 is aligned with \mathcal{H} and the spinning is about the nadir axis $\hat{\imath}_r$.

2 Angular Velocity and Acceleration Descriptions

The reference frame \mathcal{R} is defined above, and the attitude reference frame tracking control requires the angular rate $\omega_{R/N}$ and acceleration $\dot{\omega}_{R/N}$. Let the MRP attitude set, angular velocity vector and angular acceleration vector associated with the constant pointing reference be $\sigma_{R_0/N}$, $\omega_{R_0/N}$ and $\dot{\omega}_{R_0/N}$ respectively. The angular velocity of the spinning reference frame is thus given by:

$$\omega_{R/N} = \omega_{\mathrm{spin}} + \omega_{R_0/N}$$
 (1a)

$$\omega_{R/N} = \omega_{\text{spin}} \hat{o}_{\text{spin}} + \omega_{R_0/N} \tag{1b}$$

Since \hat{o}_{spin} is aligned with one of the orbit axis defining \mathcal{R}_0 , taking the inertial derivative of (1):

$$\dot{\omega}_{R/N} = \dot{\omega}_{\rm spin} + \dot{\omega}_{R_0/N} \tag{2a}$$

$$\dot{\boldsymbol{\omega}}_{R/N} = \frac{\mathcal{R}_0 d}{dt} (\omega_{\text{spin}} \hat{o}_{\text{spin}}) + \boldsymbol{\omega}_{R_0/N} \times (\omega_{\text{spin}} \hat{o}_{\text{spin}}) + \dot{\boldsymbol{\omega}}_{R_0/N}$$
(2b)

3 MRP Attitude Set

Let be $\phi_{\rm spin}$ be the current spin angle that the reference frame has rotated about its spin axis $\hat{o}_{\rm spin}$. The final reference frame orientation is eventually given by

$$[RN] = [M_{\hat{o}_{\text{spin}}}(\phi_{\text{spin}})][R_0N] \tag{3}$$

where $[R_0N]$ is the Direction Cosine Matrix associated with the orbit axis pointing attitude set, and $M_{\hat{o}_{\rm spin}}$ is the principal axis rotation matrix about $\hat{o}_{\rm spin}$. Assuming a constant spin rate, the spin angle is propagated using the simple Euler integration scheme

$$\phi_{\text{spin, n+1}} = \phi_{\text{spin, n}} + \omega_{\text{spin}} \Delta t \tag{4}$$

With [RN] defined, the MRP attitude set $\sigma_{R/N}$ can readily be computed.

4 Spin Angle Initialization Process

Any alignment between reference frames, say $\mathcal B$ and $\mathcal R$, can be achieved through a single rotation about a principal rotation axis. If $\phi_{\rm align}$ is the principal rotation angle, then the alignment can be achieved through a rotation of whether $\phi_{\rm align}$ or $(2\pi-\phi_{\rm align})$. In order to determine the initial spin angle and assure that the chosen path is always the shortest rotation, the original $\mathcal B$ and final $\mathcal R$ frame orientations must be known.

4.1 Algorithm Outlines

The question remains on how to initialize the spin angle $\phi_{\rm spin}$. Since the initialization of the spin angle does not allow further generality in the generation of reference attitudes, a separate algorithm is used. Being $\mathcal B$ the body frame and $\mathcal R_0$ the orbit frame orientations, let us set $\hat b_{\rm spin}$ as the principal body axis that is to be aligned with the principal orbit axis $\hat o_{\rm spin}$. The triodes of axes $\hat b_i$ and $\hat o_i$ are labeled so that the first index determines the spin axis, i.e. $\hat b_1 = \hat b_{\rm spin}$ and $\hat o_1 = \hat o_{\rm spin}$. The remaining two indices are set to yield a right-handed coordinate frame. Note that $\mathcal R_0$ could reference to either Hill orbit frame $\mathcal H$ or Velocity $\mathcal V$.

Let \mathcal{R} be the reference orientation in which \hat{o}_1 orbit axis and \hat{b}_1 body axis are lined up. Using the definition where RN(i) is the i_{th} row of the [RN] DCM matrix:

$$RN(\hat{b}_1) = R_0 N(\hat{o}_1) \tag{5}$$

$$RN(\hat{b}_2) = R_0 N(\hat{o}_2) \tag{6}$$

$$RN(\hat{b}_3) = RN(\hat{b}_1) \times RN(\hat{b}_2) \tag{7}$$

Having [RN] and [BN] defined, the spin axis alignment angle $\phi_{\rm align}$ is computed as the relative orientation between $\hat{b}_{\rm spin}$ and $\hat{o}_{\rm spin}$. Next, the body frame is rotated about a principal rotation angle to align these two axes. Eventually, the initial spin angle $\phi_{\rm spin}$ is defined as the smallest angle to align the remaining two.