Gleichungen 3: Bruchgleichungen - Erarbeitung

Gleichungen, bei denen die Variable im Nenner eines oder mehrerer Bruchterme auftritt, nennt man Bruchgleichungen.

$$\frac{2x}{x^2 + x} = \frac{4x + 2}{x(x + 1)} + \frac{2}{x} \tag{1}$$

Lösungsstrategie

1. Definitionsmenge bestimmen

Eine Gleichung ist eine **Aussageform**, die erst durch Einsetzen von Zahlen für die Variable x zu einer Aussage wird. Falls eine **wahre Aussage** entsteht, so ist die eingesetzte Zahl eine Lösung der Gleichung, bei einer **falschen Aussage** nicht.

Bei vielen Gleichungen entsteht beim Einsetzen mancher Zahlen keine Aussage. Setzen Sie z.B. in die obige Gleichung x=0 ein, so steht im Nenner 0. Die Menge aller Zahlen, für die eine Aussage entsteht, nennt man **Definitionsmenge der Aussageform.**

Geben Sie die Definitionsmenge für die Gleichung (1) an:

2. Hauptnenner bestimmen

Eine Bruchgleichung vereinfacht man, indem man mit dem **Hauptnenner** durchmultipliziert. Der Hauptnenner ist das kleinste gemeinsame Vielfache aller auftretenden Nenner.

Eine schlechte Strategie wäre es, einfach mit dem Produkt aller Nenner zu multiplizieren: Wenn Sie die obige Gleichung mit $(x^2+x)\cdot x(x+1)\cdot x$ durchmultiplizieren würden, hätten Sie eine

Gleichung 6. Grades zu lösen!

Bestimmen Sie den Hauptnenner:

Wie sind Sie dabei vorgegangen?

3. Vereinfachen

Multiplizieren Sie Gleichung (1) mit dem Hauptnenner durch. Eine schlechte Strategie wäre es, zuerst alle Zähler mit dem Hauptnenner zu multiplizieren.

Wie geht es geschickter?

4. Standardtechniken zum Lösen von Gleichungen anwenden

Lösen Sie die entstandene Gleichung.

5. Vergleich mit der Definitionsmenge

Falls Lösungen dieser Gleichung nicht in der Definitionsmenge von Gleichung (1) sind, müssen diese ausgeschlossen werden.

6. Angabe der Lösungsmenge

Gleichungen 3: Bruchgleichungen - Aufgaben

0. Falls Ihnen das Bestimmen des **Hauptnenners** noch Schwierigkeiten bereitet, schreiben Sie sich die drei **binomischen Formeln** auf, jeweils mit zwei Zahlenbeispielen.

Dann wenden Sie das Distributivgesetz (Ausklammern) auf die folgenden Terme an:

a)
$$2x^2 + x$$

b)
$$6x^2 + 3x$$

c)
$$4x-4$$

d)
$$4x^2 - 4$$

Lösen Sie die folgenden Aufgaben in den Schritten 1 – 6 der Lösungsstrategie.

1. Einfache Hauptnenner

a)
$$\frac{3}{x}+2=x$$

b)
$$\frac{1}{3x^2} - 1 = \frac{1}{6x}$$

c)
$$\frac{1}{x+2} + x = \frac{3x+7}{x+2}$$

d)
$$\frac{2x+1}{3} + \frac{10}{2x+1} = 4$$

2. Hauptnenner mit zwei Linearfaktoren

a)
$$\frac{3}{x+1} + \frac{4}{x-2} = \frac{3}{2x+2}$$

b)
$$\frac{x}{x-1} + \frac{2}{x-2} = \frac{1}{x-1} + \frac{x}{x-2}$$

c)
$$\frac{x}{2x-3} - \frac{1}{2x} = \frac{3}{4x-6}$$

d)
$$\frac{36}{x+6} - 36 = \frac{36}{x-6}$$

3. Verwenden Sie die binomischen Formeln!

a)
$$\frac{3}{x-4} - \frac{24}{x^2-16} = \frac{3}{x+4} - x^2 + 16$$

b)
$$\frac{7(x-5)^2}{6x^2-6} = \frac{5x-1}{3x+3} - \frac{3x-2}{6x-6}$$

c)
$$\frac{3x+2}{x-2} = \frac{x+2}{3x-2}$$

d)
$$\frac{5x+1}{x+2} = 3 + \frac{2x^2 + 3x - 8}{x^2 + 4x + 4}$$

4. Geben Sie die Lösung in Abhängigkeit vom Parameter a an.

a)
$$\frac{x}{a} - \frac{a}{x} = \frac{3}{2}$$

b)
$$\frac{x+a}{x-a} - \frac{x-a}{x+a} = \frac{8a^2}{x^2-a^2}$$