Claims

A compound of formula IA

wherein

 R^{5A} is $-X^{A}$ R^{6A} or $-N(R^{7A})R^{8A}$, wherein

XA is piperidinylene or piperazinylene,

R^{6A} is H, C₁-C₄alkyl, C₃-C₄alkenyl, C₃-C₄alkinyl, C₁-C₄(alkoxyalkyl), C₁-C₄(carboxyalkyl), a C₅-C₇heterocyclic group or phenyl-C₁-C₄alkyl;

R^{7A} is amino-C₂-O₄alkyl or mono- or di-(C₁-C₅alkyl)amino-C₂-C₅alkyl, and

R^{8A} is H, C₁-C₄alkyl or has the meanings as given for R^{7A};

 X^1 is a divalent group of formula IA' $\frac{-(CH_2)_n - X^3 - (CH_2)_m - X^4 - N}{R^{4A}}$ wherein

n is zero or 1;

X³ is CH or N;

- (a) X4 is a direct bond, R3A and R4A together are ethylene and m is 2; or
- (b) X⁴ is a direct bond, R³A is H, C₁-C₄alkyl, C₃-C₆cycloalkyl, C₃-C₆alkenyl, C₃-C₆alkinyl, C₂-C₁₀aralkyl or C₆-C₆heteroaralkyl, R⁴A is H and m is 1 or 2 or 3; or
- (c) X⁴ is -CH(R¹²)-, R^{3A} is H and R^{1A} and R¹² together are propylene and m is 1, or ethylene and m is 2;

X² is a divalent group of formula IA"

X³ is CH or N; and

R¹¹ is C₁-C₄alkyl, C₃-C₆cycloalkyl or -NR^{1A}R^{2A}, wherein

R^{1A} and R^{2A} independently are C₁-C₄alkyl or, together with the N-atom to which they are attached, represent a 5 to 7 membered heterocyclic ring; and

R⁹ and R¹⁰ independently are a phenyl or pyridine ring; and salts thereof.

S A STATE OF THE COMPANY OF THE COMP

2. A 2-(2,2-diphenylethylamino)- -5-(4-aminocarbonyl-piperidine-1-sulfonyl)-benzoic acid amide or -5-(aminocarbonyl-C₂-C₄alkylereaminosulfonyl)-benzoic acid amide, or salt thereof.

3. A compound of formula i

wherein

R¹ and R² independently are C₁C₄alkyl or, together with the N-atom to which they are attached, represent a 5 to 7 membered heterocyclic ring;

- (a) R³ and R⁴ together are ethylene and m is 2; or
- (b) R³ is H, C1-C4alkyl, C5-C7cycloalkyl or phenyl-C1-C4alkyl, R⁴ is H and m is 1 or 2 or 3;
- n is zero or 1; and

R⁵ is -X-R⁶ or -N(R⁷)R⁸, wherein

R⁶ is C₁-C₄alkyl, C₃-C₄alkenyl, C₃-C₄alkinyl, C₁-C₄(alkoxyalkyl), C₁-C₄(carboxyalkyl), a C₅-C₇heterocyclic group or phenyl-C₁-C₄alkyl;

R⁷ is amino-C₂-C₄alkyl or mono- or di-(C₁-C₅alkyl)amino-C₂-C₅alkyl, and R⁸ is H, C₁-C₄alkyl or has the meanings as given for R⁷; and salts thereof.

- 4. A compound according to claim 1 which is {2-(2,2-diphenyl-ethylamino)-5-[4-(4-isopropyl-piperazine-1-carbonyl)-piperidine-1-sulfonyl]-morpholin-4-yl-methanone, or {2-(2,2-diphenyl-ethylamino)-5-[4-(4-methyl-piperazine-1-carbonyl)-piperidine-1-sulfonyl]-phenyl}-morpholin-4-yl-methanone.
- 5. A process for the production of a compound of formula IA according to claim 1 which process comprises reacting a compound of formula IIA

$$HO - C - X^{1} - X^{2} - NH - CH_{2} - CH_{R^{10}}$$
(IIA)

wherein X^1 , X^2 , R^9 and R^{10} have the meanings according to claim 1, with an amine and recovering the obtained compound in free or in salt form.

6. A process for the production of a compound of formula I according to claim 3, which process comprises reacting a compound of formula II

wherein R¹, R², R³, R⁴, m and have the meanings according to claim 3, with an amine and recovering the obtained compound in free or in salt form.

7. A process for the production of a compound of formula II according to claim 6, which process comprises the steps as outlined in the following scheme:

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\$$

wherein Hal is halogen, R^{15} is C_1 - C_4 alkyl, and R^1 , R^2 , R^3 , R^4 , m and n are as defined in claim 3.

- 8. A compound according to claim 1 for use in the treatment of the human or animal body.
- 9. Use of a compound according to claim 1 for the manufacture of a medicament for the treatment or prevention of a disease or condition in which bradykinin B₁ receptor activation plays a role or is implicated.
- 10. A method for treating or preventing a disease or condition in which bradykinin B₁ receptor activation plays a role or is implicated comprising administering to a mammal in need thereof a therapeutically effective amount of a compound according to claim 1.
- 11. A pharmaceutical composition for the treatment or prevention of a diseases or condition in which bradykinin B₁ receptor activation plays a role or is implicated comprising a compound according to claim 1 and a carrier.

