4.3 洛朗级数

常晋德

中国海洋大学数学科学学院

2020年4月5日

解析函数的孤立奇点

如果对函数 f(z) 的奇点 z_0 , 存在一个空心解析邻域, 则称 z_0 为 f(z) 的孤立奇点.

解析函数的孤立奇点

如果对函数 f(z) 的奇点 z_0 , 存在一个空心解析邻域, 则称 z_0 为 f(z) 的孤立奇点.

解析函数在孤立奇点处能否展成函数项级数形式?

解析函数的孤立奇点

如果对函数 f(z) 的奇点 z_0 , 存在一个空心解析邻域, 则称 z_0 为 f(z) 的孤立奇点.

解析函数在孤立奇点处能否展成函数项级数形式?

这个问题引出了洛朗级数.

目录

- 1 洛朗级数的收敛圆环
- 2 解析函数的洛朗展式
- 3 洛朗展式举例
- 4 作业

4.3.1 洛朗级数的收敛圆环

由级数

$$\sum_{n=0}^{+\infty} c_n (z-a)^n \tag{4.13}$$

与级数

$$\sum_{n=1}^{+\infty} \frac{c_{-n}}{(z-a)^n} \tag{4.14}$$

的和式

$$\sum_{n=1}^{+\infty} \frac{c_{-n}}{(z-a)^n} + \sum_{n=0}^{+\infty} c_n (z-a)^n \tag{4.15}$$

给出的函数项级数称为洛朗级数, 其中 a 和系数 c_n $(n = 0, \pm 1, \pm 2, \cdots)$ 都是复常数.

• 洛朗级数

$$\sum_{n=1}^{+\infty} \frac{c_{-n}}{(z-a)^n} + \sum_{n=0}^{+\infty} c_n (z-a)^n$$
 (4.15)

有时也被称为双边幂级数.

• 洛朗级数

$$\sum_{n=1}^{+\infty} \frac{c_{-n}}{(z-a)^n} + \sum_{n=0}^{+\infty} c_n (z-a)^n$$
 (4.15)

有时也被称为双边幂级数.

• 洛朗级数是幂级数的推广. 因为当 $c_n = 0, n = -1, -2, \cdots$ 时, 级数(4.15)就是幂级数.

• 洛朗级数

$$\sum_{n=1}^{+\infty} \frac{c_{-n}}{(z-a)^n} + \sum_{n=0}^{+\infty} c_n (z-a)^n$$
 (4.15)

有时也被称为双边幂级数.

- 洛朗级数是幂级数的推广. 因为当 $c_n = 0, n = -1, -2, \cdots$ 时, 级数(4.15)就是 幂级数.
- 为方便起见, 我们将洛朗级数(4.15)简记为

$$\sum_{n=-\infty}^{+\infty} c_n (z-a)^n. \tag{4.16}$$

今后都将洛朗级数记为这个形式.

如果级数

$$\sum_{n=0}^{+\infty} c_n (z-a)^n \tag{4.13}$$

和

$$\sum_{n=1}^{+\infty} \frac{c_{-n}}{(z-a)^n} \tag{4.14}$$

都在点 zo 收敛,则称洛朗级数

$$\sum_{n=-\infty}^{+\infty} c_n (z-a)^n \tag{4.16}$$

在点 zo 收敛;

如果级数

$$\sum_{n=0}^{+\infty} c_n (z-a)^n \tag{4.13}$$

和

$$\sum_{n=1}^{+\infty} \frac{c_{-n}}{(z-a)^n} \tag{4.14}$$

都在点 zo 收敛,则称洛朗级数

$$\sum_{n=-\infty}^{+\infty} c_n (z-a)^n \tag{4.16}$$

在点 z_0 收敛; 否则, 只要级数(4.13)和(4.14)其中有一个在点 z_0 发散, 就称洛朗级数(4.16)在点 z_0 发散.

我们曾经用类似的方式定义过微积分中的广义积分 $\int_{-\infty}^{+\infty} f(x) dx$:

$$\int_{-\infty}^{+\infty} f(x) \, dx = \int_{-\infty}^{0} f(x) \, dx + \int_{0}^{+\infty} f(x) \, dx = \lim_{c \to -\infty} \int_{c}^{0} f(x) \, dx + \lim_{b \to +\infty} \int_{0}^{b} f(x) \, dx.$$

洛朗级数

$$\sum_{n=-\infty}^{+\infty} c_n (z-a)^n \tag{4.16}$$

由两部分, 即幂级数

$$\sum_{n=0}^{+\infty} c_n (z-a)^n \tag{4.13}$$

和负幂次级数

$$\sum_{n=1}^{+\infty} \frac{c_{-n}}{(z-a)^n} \tag{4.14}$$

构成.

洛朗级数

$$\sum_{n=-\infty}^{+\infty} c_n (z-a)^n \tag{4.16}$$

由两部分,即幂级数

$$\sum_{n=0}^{+\infty} c_n (z-a)^n \tag{4.13}$$

和负幂次级数

$$\sum_{n=1}^{+\infty} \frac{c_{-n}}{(z-a)^n} \tag{4.14}$$

构成.

幂级数(4.13)的收敛性我们已经知道了, 因此洛朗级数(4.16)的收敛性由负幂次级数(4.14)决定.

对负幂次级数

$$\sum_{n=1}^{+\infty} \frac{c_{-n}}{(z-a)^n},\tag{4.14}$$

只需做变换 $\zeta = \frac{1}{z-a}$ 就可将其转化为我们熟悉的幂级数

$$\sum_{n=1}^{+\infty} c_{-n} \zeta^n.$$

对负幂次级数

$$\sum_{n=1}^{+\infty} \frac{c_{-n}}{(z-a)^n},\tag{4.14}$$

只需做变换 $\zeta = \frac{1}{z-a}$ 就可将其转化为我们熟悉的幂级数

$$\sum_{n=1}^{+\infty} c_{-n} \zeta^n.$$

若此幂级数的收敛圆为 $|\zeta| < \frac{1}{R}$, 则负幂次级数(4.14)在 |z - a| > R 内(绝对)收敛.

对负幂次级数

$$\sum_{n=1}^{+\infty} \frac{c_{-n}}{(z-a)^n},\tag{4.14}$$

只需做变换 $\zeta = \frac{1}{z-a}$ 就可将其转化为我们熟悉的幂级数

$$\sum_{n=1}^{+\infty} c_{-n} \zeta^n.$$

若此幂级数的收敛圆为 $|\zeta| < \frac{1}{R}$, 则负幂次级数(4.14)在 |z-a| > R 内(绝对)收敛. 在 $|z-a| > R_1$ ($R_1 > R$) 内一致收敛.

设幂级数
$$\sum_{n=0}^{+\infty} c_n(z-a)^n$$
 的收敛圆为 $|z-a| < R(R>0)$, 负幂次级数 $\sum_{n=1}^{+\infty} \frac{c_{-n}}{(z-a)^n}$ 的收敛区域为 $|z-a| > r(r < +\infty)$. 则

- 当 $r \ge R$ 时, 两者无公共收敛区域, 即洛朗级数 $\sum_{n=-\infty}^{\infty} c_n(z-a)^n$ 无收敛区域;
- 当 r < R 时, 洛朗级数 $\sum_{n=-\infty}^{+\infty} c_n (z-a)^n$ 在圆环 $r < |z-a| < R (0 \le r < R \le +\infty)$ 内绝对收敛, 并且在任一闭圆环 $\alpha \le |z-a| \le \beta \, (r < \alpha < \beta < R)$ 上一致收敛.

综上所述可得

定理 4.12

若洛朗级数(4.16)的收敛圆环为 $K: r < |z-a| < R \ (0 \le r < R \le +\infty)$, 则(4.16)在 圆环 K 内绝对收敛, 并且在任一闭圆环 $\alpha \le |z-a| \le \beta \ (r < \alpha < \beta < R)$ 上一致收敛. 洛朗级数(4.16)的和函数 f(z) 在圆环 K 内解析, 并可逐项积分、逐项求导.

这个定理与定理 4.6 是相对应的.

洛朗简介

洛朗(1813-1854)是一名工程师, 曾经负责位于英吉利海峡海岸上的 Le Havre 港 口的扩建工程, 使之成为法国的重要海港, 在负责港口扩建工程期间, 他开始写作 数学论文, 1843年, 洛朗为竞争法国科学院设的一个大奖, 提交了一篇数学论文, 其 中包含了洛朗级数。不幸的是,他错过了论文提交截止日期。所以尽管得到了柯西 的赏识, 洛朗不仅与大奖无缘, 论文也没被科学院接受出版. 差不多同时期洛朗向 科学院还提交过另一篇论文, 同样虽然被柯西推荐发表, 但却又一次被科学院忽视 而未能出版. 受此打击后. 洛朗将研究方向转向了光波理论. 在这个课题上洛朗发 表了一系列论文. 1846 年科学院有一个空缺职位. 柯西提名了洛朗. 但他没有当选. 雅可比当选了这个职位。1854年9月2日,年仅42岁的洛朗夫世后,他的妻子又 向法国科学院提交了他的两篇论文, 一篇关于光学的论文又一次虽然得到柯西的推 荐但未能发表. 另一篇论文直到 1863 年才得以发表.

4.3.2 解析函数的洛朗展式

既然洛朗级数的和函数是其收敛圆环内的解析函数,那么反过来,圆环内的解析函数是否可以展成洛朗级数?

4.3.2 解析函数的洛朗展式

既然洛朗级数的和函数是其收敛圆环内的解析函数,那么反过来,圆环内的解析函数是否可以展成洛朗级数?

定理 4.13 (洛朗)

在圆环 $K: r < |z-a| < R \, (0 \le r < R \le +\infty)$ 内的解析函数 f(z) 必可展成洛朗 级数

$$f(z) = \sum_{n=-\infty}^{+\infty} c_n (z-a)^n, \quad z \in K,$$
 (4.17)

其中系数

$$c_n = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z-a)^{n+1}} dz, \quad n = 0, \pm 1, \pm 2, \cdots,$$
 (4.18)

这里 Γ 为圆周 $|z-a| = \rho (r < \rho < R)$, 并且此展式是唯一的.

证 设z为K内任意一点,则总可以在K内取到两个圆周

$$\Gamma_1: |\zeta - a| = \rho_1 \quad \text{fill} \quad \Gamma_2: |\zeta - a| = \rho_2,$$

使得 z 位于圆环 $\rho_1 < |\zeta - a| < \rho_2$ 内.

证 设z为K内任意一点,则总可以在K内取到两个圆周

$$\Gamma_1: |\zeta - a| = \rho_1 \quad \text{fill} \quad \Gamma_2: |\zeta - a| = \rho_2,$$

使得 z 位于圆环 $\rho_1 < |\zeta - a| < \rho_2$ 内. 于是由柯西积分公式和复围线情形的柯西积分定理有

$$f(z) = \frac{1}{2\pi i} \int_C \frac{f(\zeta)}{\zeta - z} d\zeta$$
$$= \frac{1}{2\pi i} \int_{\Gamma_2} \frac{f(\zeta)}{\zeta - z} d\zeta - \frac{1}{2\pi i} \int_{\Gamma_1} \frac{f(\zeta)}{\zeta - z} d\zeta,$$

其中 C 是在圆环 $\rho_1 < |\zeta - a| < \rho_2$ 内以 z 为心的一个圆周.

所以

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma_2} \frac{f(\zeta)}{\zeta - z} d\zeta + \frac{1}{2\pi i} \int_{\Gamma_1} \frac{f(\zeta)}{z - \zeta} d\zeta.$$
 (4.19)

所以

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma_2} \frac{f(\zeta)}{\zeta - z} d\zeta + \frac{1}{2\pi i} \int_{\Gamma_1} \frac{f(\zeta)}{z - \zeta} d\zeta.$$
 (4.19)

对于第一个积分, 只要照搬定理 4.7 的证明中的相应部分, 就可得

$$\frac{1}{2\pi i} \int_{\Gamma_2} \frac{f(\zeta)}{\zeta - z} d\zeta = \sum_{n=0}^{+\infty} c_n (z - a)^n, \tag{4.20}$$

其中

$$c_n = \frac{1}{2\pi i} \int_{\Gamma_0} \frac{f(z)}{(z-a)^{n+1}} dz, \quad n = 0, 1, 2, \cdots.$$

所以

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma_2} \frac{f(\zeta)}{\zeta - z} d\zeta + \frac{1}{2\pi i} \int_{\Gamma_1} \frac{f(\zeta)}{z - \zeta} d\zeta.$$
 (4.19)

对于第一个积分, 只要照搬定理 4.7 的证明中的相应部分, 就可得

$$\frac{1}{2\pi i} \int_{\Gamma_2} \frac{f(\zeta)}{\zeta - z} \,\mathrm{d}\zeta = \sum_{n=0}^{+\infty} c_n (z - a)^n, \tag{4.20}$$

其中

$$c_n = \frac{1}{2\pi i} \int_{\Gamma_0} \frac{f(z)}{(z-a)^{n+1}} dz, \quad n = 0, 1, 2, \cdots$$

对(4.19)式中的第二个积分可类似处理, 我们有

$$\frac{f(\zeta)}{z-\zeta} = \frac{f(\zeta)}{(z-a)-(\zeta-a)} = \frac{f(\zeta)}{z-a} \cdot \frac{1}{1-\frac{\zeta-a}{2}}.$$
 (4.21)

$$\frac{f(\zeta)}{z-\zeta} = \frac{f(\zeta)}{(z-a)-(\zeta-a)} = \frac{f(\zeta)}{z-a} \cdot \frac{1}{1-\frac{\zeta-a}{z-a}}.$$
 (4.21)

当 $\zeta \in \Gamma_1$ 时,

$$\left|\frac{\zeta - a}{z - a}\right| = \frac{\rho_1}{|z - a|} < 1.$$

于是(4.21)式可以展成一致收敛的级数

$$\frac{f(\zeta)}{z-\zeta} = \frac{f(\zeta)}{z-a} \sum_{n=0}^{+\infty} \left(\frac{\zeta-a}{z-a}\right)^n = \sum_{n=1}^{+\infty} \frac{f(\zeta)(\zeta-a)^{n-1}}{(z-a)^n}.$$

沿 Γ_1 逐项积分, 再在两端乘以 $\frac{1}{2\pi i}$ 即得

$$\frac{1}{2\pi i} \int_{\Gamma_1} \frac{f(\zeta)}{z - \zeta} \,d\zeta = \sum_{n=1}^{+\infty} c_{-n} (z - a)^{-n}, \tag{4.22}$$

其中

$$c_{-n} = \frac{1}{2\pi i} \int_{\Gamma_1} \frac{f(\zeta)}{(\zeta - a)^{-n+1}} d\zeta, \quad n = 1, 2, \dots$$

由式(4.19)、(4.20)和(4.22)以及围线形变原理即得展式(4.17).

沿 Γ_1 逐项积分, 再在两端乘以 $\frac{1}{2\pi i}$ 即得

$$\frac{1}{2\pi i} \int_{\Gamma_1} \frac{f(\zeta)}{z - \zeta} \,d\zeta = \sum_{n=1}^{+\infty} c_{-n} (z - a)^{-n},$$
(4.22)

其中

$$c_{-n} = \frac{1}{2\pi i} \int_{\Gamma_1} \frac{f(\zeta)}{(\zeta - a)^{-n+1}} d\zeta, \quad n = 1, 2, \dots$$

由式(4.19)、(4.20)和(4.22)以及围线形变原理即得展式(4.17).

最后证明展式是唯一的. 设 f(z) 在圆环 K 内另有展式

$$f(z) = \sum_{n=-\infty}^{+\infty} \widetilde{c}_n (z-a)^n, \quad z \in K.$$

由定理**4.12**知, 它在圆周 $\Gamma: |z-a| = \rho (r < \rho < R)$ 上一致收敛. 于是乘以在 Γ 上有界的函数 $\frac{1}{(z-a)^{m+1}}$ 后仍然一致收敛, 故可逐项积分得

$$\int_{\Gamma} \frac{f(z)}{(z-a)^{m+1}} dz = \sum_{n=-\infty}^{+\infty} \widetilde{c}_n \int_{\Gamma} (z-a)^{n-m-1} dz.$$

由定理**4.12**知, 它在圆周 $\Gamma: |z-a| = \rho (r < \rho < R)$ 上一致收敛. 于是乘以在 Γ 上有界的函数 $\frac{1}{(z-a)^{m+1}}$ 后仍然一致收敛, 故可逐项积分得

$$\int_{\Gamma} \frac{f(z)}{(z-a)^{m+1}} dz = \sum_{n=-\infty}^{+\infty} \widetilde{c}_n \int_{\Gamma} (z-a)^{n-m-1} dz.$$

由例 3.2 知, 上式右端级数除 n=m 的那一项积分为 $2\pi i$, 其余各项均为零. 于是有

$$\widetilde{c}_m = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z-a)^{m+1}} dz = c_m, \quad m = 0, \pm 1, \pm 2, \cdots.$$

所以展式是唯一的.

定义 4.3

展式

$$f(z) = \sum_{n=0}^{+\infty} c_n (z-a)^n, \quad z \in K,$$
(4.17)

右端的洛朗级数称为解析函数 f(z) 在圆环 K 内的**洛朗展式**.

定义 4.3

展式

$$f(z) = \sum_{n=0}^{+\infty} c_n (z-a)^n, \quad z \in K,$$
 (4.17)

右端的洛朗级数称为解析函数 f(z) 在圆环 K 内的**洛朗展式**.

同泰勒展式一样, 洛朗展式的有效范围可通过圆环的边界上是否有奇点来确定.

4.3.3 洛朗展式举例

由于洛朗展式的系数公式

$$c_n = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z-a)^{n+1}} dz \quad n = 0, \pm 1, \pm 2, \cdots$$
 (20)

比较复杂, 我们基本上不会直接利用它去求洛朗展式, 一般总是利用一些已知的泰勒展式来求洛朗展式.

例 4.11

求函数

$$f(z) = \frac{1}{(z-1)(z-2)}$$

在下列各区域内的洛朗展式

(1) 0 < |z-1| < 1; (2) |z| < 1; (3) 1 < |z| < 2; (4) $2 < |z| < +\infty$.

解 先将函数 f(z) 分解成如下的简单和式

$$f(z) = \frac{1}{z - 2} - \frac{1}{z - 1}.$$

下面分别在各个区域内求它的洛朗展式.

解 先将函数 f(z) 分解成如下的简单和式

$$f(z) = \frac{1}{z - 2} - \frac{1}{z - 1}.$$

下面分别在各个区域内求它的洛朗展式.

(1) 当
$$0 < |z-1| < 1$$
 时,

$$f(z) = -\frac{1}{1 - (z - 1)} - \frac{1}{z - 1} = -\frac{1}{z - 1} - \sum_{n=0}^{+\infty} (z - 1)^n = -\sum_{n=-1}^{+\infty} (z - 1)^n.$$

解 先将函数 f(z) 分解成如下的简单和式

$$f(z) = \frac{1}{z - 2} - \frac{1}{z - 1}.$$

下面分别在各个区域内求它的洛朗展式.

(1) $\stackrel{.}{=}$ 0 < |z - 1| < 1 时,

$$f(z) = -\frac{1}{1 - (z - 1)} - \frac{1}{z - 1} = -\frac{1}{z - 1} - \sum_{n=0}^{+\infty} (z - 1)^n = -\sum_{n=-1}^{+\infty} (z - 1)^n.$$

或者从展开区域 0 < |z-1| < 1 中可以知道要求的洛朗展式的通项为 $c_n(z-1)^n$ 的形式, 而待展开的函数 f(z) 的原表达式中正好含有 $(z-1)^{-1}$, 所以我们也可以直接从 f(z) 的原表达式出发去求它的洛朗展式.

$$f(z) = \frac{1}{(z-1)(z-2)} = \frac{1}{z-1} \times \frac{1}{z-2} = -\frac{1}{z-1} \times \frac{1}{1-(z-1)}$$
$$= -\frac{1}{z-1} \sum_{n=0}^{+\infty} (z-1)^n = -\sum_{n=0}^{+\infty} (z-1)^{n-1} = -\sum_{n=-1}^{+\infty} (z-1)^n.$$

最后一步对求和指标作了一个变换.

$$f(z) = \frac{1}{(z-1)(z-2)} = \frac{1}{z-1} \times \frac{1}{z-2} = -\frac{1}{z-1} \times \frac{1}{1-(z-1)}$$
$$= -\frac{1}{z-1} \sum_{n=0}^{+\infty} (z-1)^n = -\sum_{n=0}^{+\infty} (z-1)^{n-1} = -\sum_{n=-1}^{+\infty} (z-1)^n.$$

最后一步对求和指标作了一个变换. 我们看到两种解法的结果是一样的, 这要归功于洛朗展式的唯一性

$$f(z) = \frac{1}{(z-1)(z-2)} = \frac{1}{z-1} \times \frac{1}{z-2} = -\frac{1}{z-1} \times \frac{1}{1-(z-1)}$$
$$= -\frac{1}{z-1} \sum_{n=0}^{+\infty} (z-1)^n = -\sum_{n=0}^{+\infty} (z-1)^{n-1} = -\sum_{n=-1}^{+\infty} (z-1)^n.$$

最后一步对求和指标作了一个变换. 我们看到两种解法的结果是一样的, 这要归功于洛朗展式的唯一性.

(2) 当 |z| < 1 时,

$$f(z) = -\frac{1}{2} \frac{1}{1 - \frac{z}{2}} + \frac{1}{1 - z} = -\frac{1}{2} \sum_{n=0}^{+\infty} \frac{z^n}{2^n} + \sum_{n=0}^{+\infty} z^n = \sum_{n=0}^{+\infty} \left(1 - \frac{1}{2^{n+1}}\right) z^n.$$

(3) 当 1 < |z| < 2 时,

$$f(z) = -\frac{1}{2} \frac{1}{1 - \frac{z}{2}} - \frac{1}{z} \frac{1}{1 - \frac{1}{z}} = -\frac{1}{2} \sum_{n=0}^{+\infty} \frac{z^n}{2^n} - \frac{1}{z} \sum_{n=0}^{+\infty} \frac{1}{z^n} = -\sum_{n=0}^{+\infty} \frac{z^n}{2^{n+1}} - \sum_{n=1}^{+\infty} \frac{1}{z^n}.$$

(3) 当 1 < |z| < 2 时,

$$f(z) = -\frac{1}{2} \frac{1}{1 - \frac{z}{2}} - \frac{1}{z} \frac{1}{1 - \frac{1}{z}} = -\frac{1}{2} \sum_{n=0}^{+\infty} \frac{z^n}{2^n} - \frac{1}{z} \sum_{n=0}^{+\infty} \frac{1}{z^n} = -\sum_{n=0}^{+\infty} \frac{z^n}{2^{n+1}} - \sum_{n=1}^{+\infty} \frac{1}{z^n}.$$

(4) 当 $2 < |z| < +\infty$ 时,

$$f(z) = \frac{1}{z} \frac{1}{1 - \frac{2}{z}} - \frac{1}{z} \frac{1}{1 - \frac{1}{z}} = \frac{1}{z} \sum_{n=0}^{+\infty} \frac{2^n}{z^n} - \frac{1}{z} \sum_{n=0}^{+\infty} \frac{1}{z^n} = \sum_{n=0}^{+\infty} \frac{2^n - 1}{z^{n+1}} = \sum_{n=1}^{+\infty} \frac{2^{n-1} - 1}{z^n}. \quad \blacksquare$$

(3) 当 1 < |z| < 2 时,

$$f(z) = -\frac{1}{2} \frac{1}{1 - \frac{z}{2}} - \frac{1}{z} \frac{1}{1 - \frac{1}{z}} = -\frac{1}{2} \sum_{n=0}^{+\infty} \frac{z^n}{2^n} - \frac{1}{z} \sum_{n=0}^{+\infty} \frac{1}{z^n} = -\sum_{n=0}^{+\infty} \frac{z^n}{2^{n+1}} - \sum_{n=1}^{+\infty} \frac{1}{z^n}.$$

(4) 当 $2 < |z| < +\infty$ 时,

$$f(z) = \frac{1}{z} \frac{1}{1 - \frac{2}{z}} - \frac{1}{z} \frac{1}{1 - \frac{1}{z}} = \frac{1}{z} \sum_{n=0}^{+\infty} \frac{2^n}{z^n} - \frac{1}{z} \sum_{n=0}^{+\infty} \frac{1}{z^n} = \sum_{n=0}^{+\infty} \frac{2^n - 1}{z^{n+1}} = \sum_{n=1}^{+\infty} \frac{2^{n-1} - 1}{z^n}. \quad \blacksquare$$

从这个例子可以看出一个函数在不同区域的洛朗展式是不同的. 所以在求洛朗展式时, 应特别注意是在什么区域内展开.

例 4.12

 $\frac{\sin z}{z}$ 在 z 平面上有唯一的孤立奇点 z=0,在其空心邻域 $0<|z|<+\infty$ 内有洛朗 展式

$$\frac{\sin z}{z} = \frac{1}{z} \sum_{n=0}^{+\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!} = \sum_{n=0}^{+\infty} \frac{(-1)^n z^{2n}}{(2n+1)!} = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \cdots$$

例 4.12

 $\frac{\sin z}{z}$ 在 z 平面上有唯一的孤立奇点 z=0,在其空心邻域 $0<|z|<+\infty$ 内有洛朗 展式.

$$\frac{\sin z}{z} = \frac{1}{z} \sum_{n=0}^{+\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!} = \sum_{n=0}^{+\infty} \frac{(-1)^n z^{2n}}{(2n+1)!} = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \cdots$$

例 4.13

 $\mathrm{e}^z+\mathrm{e}^{\frac{1}{z}}$ 在 z 平面上有唯一的孤立奇点 z=0,在其空心邻域 $0<|z|<+\infty$ 内有洛朗展式.

$$e^z + e^{\frac{1}{z}} = \sum_{n=0}^{+\infty} \frac{z^n}{n!} + \sum_{n=0}^{+\infty} \frac{1}{n!z^n} = 2 + \sum_{n=1}^{+\infty} \frac{z^n}{n!} + \sum_{n=1}^{+\infty} \frac{1}{n!z^n}.$$

作业

习题四

9. 将下列函数在指定的环域内展成洛朗级数:

(1)
$$\frac{z+1}{z^2(z-1)}$$
, $0 < |z| < 1$, $1 < |z| < +\infty$;

(3)
$$\frac{e^z}{z(z^2+1)}$$
, $0 < |z| < 1$ (写出前四项即可).

10. 将下列各函数在指定点的空心邻域内展成洛朗级数, 并指出成立的范围:

(1)
$$\frac{1}{(z^2+1)^2}$$
, $z=i$.

11. 把
$$f(z) = \frac{1}{1-z}$$
 在下列区域展成洛朗或泰勒级数:

(2)
$$|z| > 1$$
; (3) $|z+1| < 2$; (4) $|z+1| > 2$.

12. 把
$$f(z) = \frac{1}{z(1-z)}$$
 展成在下列区域收敛的洛朗或泰勒级数:

(1)
$$0 < |z| < 1$$
. (2) $|z| > 1$. (5) $|z+1| < 1$. (7) $|z+1| > 2$.