Projeto e Análise de Algoritmos

Prof. Dr. Ednaldo B. Pizzolato

Análise de Algoritmos

Framework

Eficiencia de tempo e de espaço

- Complexidade temporal
- Complexidade espacial

 Evolução dos computadores, a questão espacial foi bem atenuada.

Tamanho da entrada

- Algoritmos demoram mais quando têm que trabalhar com maiores quantidades de dados.
- Como medir o tamanho da entrada?
 - Matriz n x n
 - Ordem n
 - Tamanho $N = n \times n$
 - Verificação ortográfica
 - Número de palavras?
 - Número de letras?

Tamanho da entrada

- Conhecer um pouco melhor o problema permitirá avaliar o tamanho da entrada
 - Número primo

Tamanho da entrada

- Conhecer um pouco melhor o problema permitirá avaliar o tamanho da entrada
 - Número primo
 - O que importa neste caso é a magnitude do número.
 - Uma possível medida é o número de bits em sua representação binária.

Comparações

Benchmark (prática)

Quando se compara 2 ou mais programas projetados para resolver a mesma tarefa, normalmente um conjunto padrão de dados é reservado para avaliar o desempenho da solução. Isso significa que este conjunto deve ser representativo do universo de dados aos quais o programa estará exposto e pode servir como referência de teste para outras soluções.

Análise teórica

Exemplos : reconhecimento de face, fala...

Comparações

- Benchmark (tempo)
- Análise teórica Operações básicas
 - □ Uma possibilidade: contar quantas vezes cada operação básica é executada → muito detalhista
 - Normalmente os maiores custos estão nos loops mais internos

Regra 90-10

Muitos programas executam um pequeno conjunto de instruções muitas vezes (90% do tempo de execução em 10% do código).

O que é complexidade?

A complexidade de um algoritmo consiste na quantidade de "trabalho" necessária para a sua execução, expressa em função das operações fundamentais, as quais variam de acordo com o algoritmo, e em função do volume de dados.

O que é complexidade?

- Ou seja, normalmente, programas demoram mais para executar de acordo com sua estruturação de instruções e na medida em que se aumenta a quantidade de dados de entrada.
- Esta "demora" pode ser linearmente proporcional, quadrática…
- Em alguns casos, o tempo de execução não depende somente da quantidade de dados, mas sim de sua forma.

Para que?

Para permitir a comparação teórica de soluções diferentes para o mesmo problema e identificar as melhores soluções (eficiência).

Unidades para medir tempo de execução

- $T(n) \approx c_{op}.C(n)$
- c_{op} é o custo da operação op
- C(n) é o número de vezes que ela é repetida
- T(n) é a estimativa do tempo de execução

Ordem de Crescimento

 A diferença em tempo de execução para entradas pequenas não é o que irá distinguir um algoritmo eficiente de um ineficiente.

entrada	Log n	N	N log N	N ²	N ³	2 ⁿ	N!
10	3.3	10	33	10 ²	10 ³	10 ³	3.6 10 ⁶
10 ²	6.6	10 ²	660	10 ⁴	10 ⁶	1.3 10 ³⁰	9.3 10157
10 ³	10	10 ³	104	10 ⁶	10 ⁹		
104	13	104	1.3 10 ⁵	10 ⁸	10 ²		

Ordem de Crescimento

 Algoritmos que requerem um número exponencial de operações são práticos para resolver apenas problemas de pequeno porte.

Pior caso

Caso médio

Melhor caso

Pior caso

Este método é normalmente representado por O (). Por exemplo, se dissermos que um determinado algoritmo é representado por g(x) e a sua complexidade no pior caso é n, será representada por g(x) = O(n).

Consiste, basicamente, em assumir o pior dos casos que podem acontecer, sendo muito usado e sendo normalmente o mais fácil de se determinar.

Caso médio

Representa-se por $\theta()$.

Este método é, dentre os três, o mais difícil de se determinar pois necessita de análise estatística (muitos testes). No entanto, é muito usado pois é também o que representa mais corretamente a complexidade do algoritmo.

Melhor caso

Representa-se por Ω ()

Método que consiste em assumir que vai acontecer o melhor. Pouco usado. Tem aplicação em poucos casos.

Limite Superior

Seja dado um problema, por exemplo, multiplicação de duas matrizes quadradas de ordem n (n*n). Conhecemos um algoritmo para resolver este problema(pelo método trivial) de complexidade O(n³). Sabemos assim que a complexidade deste problema não deve superar O(n³), uma vez que existe um algoritmo desta complexidade que o resolve. Um limite superior (upper bound) deste problema é O(n³). O limite superior de um algoritmo pode mudar se alguém descobrir um algoritmo melhor. Isso de fato aconteceu com o algoritmo de Strassen que é de O(nlog 7). Assim o limite superior do problema de multiplicação de matrizes passou a ser O $(n^{\log 7}) \approx O$ $(n^{2.807})$. Outros pesquisadores melhoraram ainda mais este resultado. Atualmente, o melhor resultado é o de Coppersmith e Winograd:

O $(n^{2.376})$.

Limite Superior

O limite superior de um algoritmo é parecido com o record mundial de uma modalidade de atletismo. Ele é estabelecido pelo melhor atleta (algoritmo) do momento. Assim como o record mundial o limite superior pode ser melhorado por um algoritmo (atleta) mais veloz.

Limite Inferior

Às vezes é possível demonstrar que para um dado problema, qualquer que seja o algoritmo a ser usado o problema requer pelo menos um certo número de operações. Essa complexidade é chamada Limite inferior (Lower Bound). Veja que o limite inferior dependo do problema mas não do particular algoritmo. Usamos a letra Ω em lugar de O para denotar um limite inferior.

Para o problema de multiplicação de matrizes de ordem n, apenas para ler os elementos das duas matrizes de entrada leva $O(n^2)$. Assim uma cota inferior trivial é $\Omega(n^2)$.

Limite Inferior

Na analogia anterior, um limite inferior de uma modalidade de atletismo não dependeria mais do atleta. Seria algum tempo mínimo que a modalidade exige, qualquer que seja o atleta. Um limite inferior trivial para os 100 metros seria o tempo que a velocidade da luz leva a percorrer 100 metros no vácuo.

Se um algoritmo tem uma complexidade que é igual ao limite inferior do problema então o algoritmo é ótimo.

O algoritmo de CopperSmith e Winograd é de $O(n^{2.376})$ mas o limite inferior é de $O(n^2)$. Portante não é ótimo. É possível que este limite superior possa ainda ser melhorado.

Comparando

Tempo	Tam. A	Tam. B
1s	10	22
10s	100	70
100s	1.000	223
1.000s	10.000	707

THE END