

Aprendizagem de Máquina Probabilística

César Lincoln Cavalcante Mattos

Agenda

- Regressão linear iterativa Regressão linear simples Regressão linear múltipla
- 2 Regressão linear analítica
- 3 Regressão Linear Bayesiana
- 4 Comparação Bayesiana de modelos
- **6** Tópicos adicionais
- 6 Referências

 Cataterismo cardíaco: procedimento de inserção de um cateter (usualmente pela artéria femural) para diagnosticar problemas de obstrução no coração.

 Cataterismo cardíaco: procedimento de inserção de um cateter (usualmente pela artéria femural) para diagnosticar problemas de obstrução no coração.

 Problema: Dada a altura de um paciente, qual o comprimento do cateter necessário para alcançar seu coração?

 Considere a tabela a seguir relacionando alturas de jovens pacientes e comprimentos do cateter correspondente:

Altura (m)	Comprimento (cm)
1.087	37
1.613	50
0.953	34
1.003	36
1.156	43
0.978	28
1.092	37
0.572	20
0.940	34
0.597	30
0.838	38
1.473	47

• Considere a tabela a seguir relacionando alturas de jovens pacientes e comprimentos do cateter correspondente:

Altura (m)	Comprimento (cm)
1.087	37
1.613	50
0.953	34
1.003	36
1.156	43
0.978	28
1.092	37
0.572	20
0.940	34
0.597	30
0.838	38
1.473	47

 Problema: Dado uma altura não presente na tabela, qual deverá ser o comprimento do cateter?

- A coluna Altura é a entrada do nosso modelo.
- A coluna **Comprimento** é a **saída** do nosso modelo.
- Nosso conjunto de dados é formado por 12 alturas e 12 comprimentos correspondentes.

- A coluna Altura é a entrada do nosso modelo.
- A coluna **Comprimento** é a **saída** do nosso modelo.
- Nosso conjunto de dados é formado por 12 alturas e 12 comprimentos correspondentes.
- Matematicamente, temos:

$$\mathcal{D} = \{(x_1, y_1), \cdots, (x_2, y_2)\} = \{(x_i, y_i)\}_{i=1}^{12},$$

em que x_i é a i-ésima entrada e y_i é a i-ésima saída.

- A coluna Altura é a entrada do nosso modelo.
- A coluna Comprimento é a saída do nosso modelo.
- Nosso conjunto de dados é formado por 12 alturas e 12 comprimentos correspondentes.
- Matematicamente, temos:

$$\mathcal{D} = \{(x_1, y_1), \cdots, (x_2, y_2)\} = \{(x_i, y_i)\}_{i=1}^{12},$$

em que x_i é a i-ésima entrada e y_i é a i-ésima saída.

• **Objetivo**: Encontrar uma relação entre x_i e y_i que forneça uma predição \hat{y}_i o mais próximo possível da saída real y_i .

Terminologia

• Atributo (feature): Uma dada característica de um padrão.

- Atributo (feature): Uma dada característica de um padrão.
- Padrão (pattern): Um vetor de atributos que representa um exemplo.

- Atributo (feature): Uma dada característica de um padrão.
- Padrão (pattern): Um vetor de atributos que representa um exemplo.
- Modelo: Uma função que expressa a relação entre um padrão de entrada e sua saída correspondente.

- Atributo (feature): Uma dada característica de um padrão.
- Padrão (pattern): Um vetor de atributos que representa um exemplo.
- Modelo: Uma função que expressa a relação entre um padrão de entrada e sua saída correspondente.
- Função custo (ou função objetivo): Indica o quão mal (ou o quão bem) um modelo aproxima os dados disponíveis.

- Atributo (feature): Uma dada característica de um padrão.
- Padrão (pattern): Um vetor de atributos que representa um exemplo.
- Modelo: Uma função que expressa a relação entre um padrão de entrada e sua saída correspondente.
- Função custo (ou função objetivo): Indica o quão mal (ou o quão bem) um modelo aproxima os dados disponíveis.
- Parâmetros: Variáveis que caracterizam o modelo proposto.

- Atributo (feature): Uma dada característica de um padrão.
- Padrão (pattern): Um vetor de atributos que representa um exemplo.
- Modelo: Uma função que expressa a relação entre um padrão de entrada e sua saída correspondente.
- Função custo (ou função objetivo): Indica o quão mal (ou o quão bem) um modelo aproxima os dados disponíveis.
- Parâmetros: Variáveis que caracterizam o modelo proposto.
- Risco empírico: Estimativa do risco (custo) obtida a partir dos dados disponíveis.

- Atributo (feature): Uma dada característica de um padrão.
- Padrão (pattern): Um vetor de atributos que representa um exemplo.
- Modelo: Uma função que expressa a relação entre um padrão de entrada e sua saída correspondente.
- Função custo (ou função objetivo): Indica o quão mal (ou o quão bem) um modelo aproxima os dados disponíveis.
- Parâmetros: Variáveis que caracterizam o modelo proposto.
- Risco empírico: Estimativa do risco (custo) obtida a partir dos dados disponíveis.
- Otimização (ou treinamento, aprendizagem): Algoritmo de obtenção dos parâmetros do modelo que minimizem uma função custo (ou maximizem uma função objetivo).

• Considere uma relação linear entre x_i (entrada do modelo) e \hat{y}_i (saída do modelo):

$$\hat{y}_i = w_0 + w_1 x_i.$$

• Considere uma relação linear entre x_i (entrada do modelo) e \hat{y}_i (saída do modelo):

$$\hat{y}_i = w_0 + w_1 x_i.$$

 Escolhemos uma função custo quadrática para os erros obtidos pelo modelo:

$$\mathcal{J}(w_0, w_1) = \frac{1}{2N} \sum_{i=1}^{N} e_i^2,$$

 $e_i = y_i - \hat{y}_i.$

 Escolhemos uma função custo quadrática para os erros obtidos pelo modelo:

$$\mathcal{J}(w_0, w_1) = \frac{1}{2N} \sum_{i=1}^{N} e_i^2,$$

 $e_i = y_i - \hat{y}_i.$

 Esse custo é chamado Erro Quadrático Médio (MSE, Mean Squared Error).

 Desejamos minimizar a função custo em relação aos parâmetros do modelo:

$$\min_{w_0, w_1} \mathcal{J}(w_0, w_1)
\min_{w_0, w_1} \frac{1}{2N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2
\min_{w_0, w_1} \frac{1}{2N} \sum_{i=1}^{N} (y_i - w_0 - w_1 x_i)^2$$

$$\min_{w_0, w_1} \frac{1}{2N} \sum_{i=1}^{N} (y_i - w_0 - w_1 x_i)^2$$

- Escolhemos valores iniciais para w_0 e w_1 .
- Movimentamos os parâmetros na direção que diminui a função custo $\mathcal{J}(w_0, w_1)$:

$$w_0 \leftarrow w_0 - \alpha \frac{\partial \mathcal{J}}{\partial w_0},$$

 $w_1 \leftarrow w_1 - \alpha \frac{\partial \mathcal{J}}{\partial w_1}$

• $\alpha > 0$ é um passo de aprendizado.

$$\frac{\partial \mathcal{J}}{\partial w_0} = \frac{\partial}{\partial w_0} \frac{1}{2N} \sum_{i=1}^N (y_i - w_0 - w_1 x_i)^2$$

$$\frac{\partial \mathcal{J}}{\partial w_0} = \frac{1}{N} \sum_{i=1}^N (y_i - w_0 - w_1 x_i)(-1)$$

$$\frac{\partial \mathcal{J}}{\partial w_0} = -\frac{1}{N} \sum_{i=1}^N e_i$$

$$\frac{\partial \mathcal{J}}{\partial w_0} = \frac{\partial}{\partial w_0} \frac{1}{2N} \sum_{i=1}^N (y_i - w_0 - w_1 x_i)^2$$

$$\frac{\partial \mathcal{J}}{\partial w_0} = \frac{1}{N} \sum_{i=1}^N (y_i - w_0 - w_1 x_i)(-1)$$

$$\frac{\partial \mathcal{J}}{\partial w_0} = -\frac{1}{N} \sum_{i=1}^N e_i$$

Logo:

$$w_0 \leftarrow w_0 + \alpha \frac{1}{N} \sum_{i=1}^{N} e_i$$

$$\frac{\partial \mathcal{J}}{\partial w_1} = \frac{\partial}{\partial w_1} \frac{1}{2N} \sum_{i=1}^N (y_i - w_0 - w_1 x_i)^2$$

$$\frac{\partial \mathcal{J}}{\partial w_1} = \frac{1}{N} \sum_{i=1}^N (y_i - w_0 - w_1 x_i)(-x_i)$$

$$\frac{\partial \mathcal{J}}{\partial w_1} = -\frac{1}{N} \sum_{i=1}^N e_i x_i$$

$$\frac{\partial \mathcal{J}}{\partial w_1} = \frac{\partial}{\partial w_1} \frac{1}{2N} \sum_{i=1}^N (y_i - w_0 - w_1 x_i)^2$$

$$\frac{\partial \mathcal{J}}{\partial w_1} = \frac{1}{N} \sum_{i=1}^N (y_i - w_0 - w_1 x_i)(-x_i)$$

$$\frac{\partial \mathcal{J}}{\partial w_1} = -\frac{1}{N} \sum_{i=1}^N e_i x_i$$

Logo:

$$w_1 \leftarrow w_1 + \alpha \frac{1}{N} \sum_{i=1}^{N} e_i x_i$$

Gradiente Descendente (GD, gradient descent)

- $oldsymbol{0}$ Escolha um valor α positivo e pequeno.
- 2 Inicialize os parâmetros do modelo na iteração t=0.
- 3 Repita por diversas iterações (épocas):
 - $1 t \leftarrow t + 1;$
 - 2 Calcule os erros do modelo:

$$\hat{y}_i(t-1) = w_0(t-1) + w_1(t-1)x_i, \quad \forall i,$$

 $e_i(t-1) = y_i - \hat{y}_i(t-1), \quad \forall i.$

3 Atualize os parâmetros:

$$w_0(t) = w_0(t-1) + \alpha \frac{1}{N} \sum_{i=1}^{N} e_i(t-1)$$
$$w_1(t) = w_1(t-1) + \alpha \frac{1}{N} \sum_{i=1}^{N} e_i(t-1)x_i$$

Regressão linear simples - Otimização via GD

Gradiente Descendente Estocástico (SGD, stochastic gradient descent)

- **1** Escolha um valor α positivo e pequeno.
- 2 Inicialize os parâmetros do modelo na iteração t=0.
- 3 Repita por diversos ciclos (épocas):
 - 1 Permute aleatoriamente a ordem dos dados.
 - 2 Para cada padrão de entrada, i = 1, ..., N, repita:
 - 1 Faça $t \leftarrow t + 1$.
 - 2 Calcule os erros do modelo:

$$\hat{y}_i(t-1) = w_0(t-1) + w_1(t-1)x_i,$$

$$e_i(t-1) = y_i - \hat{y}_i(t-1).$$

3 Atualize os parâmetros:

$$w_0(t) = w_0(t-1) + \alpha e_i(t-1)$$

$$w_1(t) = w_1(t-1) + \alpha e_i(t-1)x_i$$

• Também chamado de algoritmo LMS (Least Mean Squares).

Regressão linear simples - Otimização via SGD

Regressão linear múltipla
Podemos reconsiderar o problema inserindo o peso do paciente:

Altura (m)	Peso (Kg)	Comprimento (cm)
1.087	18.141	37
1.613	42.404	50
0.953	16.100	34
1.003	13.605	36
1.156	23.583	43
0.978	7.710	28
1.092	17.460	37
0.572	3.855	20
0.940	14.966	34
0.597	4.308	30
0.838	9.524	38
1.473	35.828	47

Regressão linear múltipla

Podemos reconsiderar o problema inserindo o peso do paciente:

Altura (m)	Peso (Kg)	Comprimento (cm)
1.087	18.141	37
1.613	42.404	50
0.953	16.100	34
1.003	13.605	36
1.156	23.583	43
0.978	7.710	28
1.092	17.460	37
0.572	3.855	20
0.940	14.966	34
0.597	4.308	30
0.838	9.524	38
1.473	35.828	47

• Novo modelo linear múltiplo:

$$\hat{y}_i = w_0 + w_1 x_{i1} + w_2 x_{i2}$$

• x_{i1} é a i-ésima **Altura** e x_{i2} é o i-ésimo **Peso**.

Regressão linear múltipla

• Caso façamos $x_{i0} = 1$, temos:

$$\hat{y}_i = w_0 x_{i0} + w_1 x_{i1} + w_2 x_{i2}$$
$$\hat{y}_i = \boldsymbol{w}^\top \boldsymbol{x}_i.$$

Note que:

$$\mathbf{w} = [w_0, w_1, w_2]^{\top},$$

 $\mathbf{x}_i = [1, x_{i1}, x_{i2}]^{\top}.$

Regressão linear múltipla

Gradiente Descendente

• Regra de atualização:

$$\boldsymbol{w}(t) = \boldsymbol{w}(t-1) + \alpha \frac{1}{N} \sum_{i=1}^{N} e_i(t-1) \boldsymbol{x}_i$$

Gradiente Descendente Estocástico

Regra de atualização:

$$\boldsymbol{w}(t) = \boldsymbol{w}(t-1) + \alpha e_i(t-1)\boldsymbol{x}_i$$

Diferença probabilística entre o GD e o SGD

• O erro quadrático \mathcal{J} é uma variável aleatória:

$$\min_{\mathbf{w}} \frac{1}{2} \mathbb{E} \{ \mathcal{J}(\mathbf{w}) \}, \quad \mathcal{J}(\mathbf{w}) = e^2 = (y - \hat{y})^2, \\
\mathbf{w} \leftarrow \mathbf{w} - \frac{\alpha}{2} \frac{\partial}{\partial \mathbf{w}} \mathbb{E} \{ \mathcal{J} \}$$

Diferença probabilística entre o GD e o SGD

• O erro quadrático $\mathcal J$ é uma variável aleatória:

$$\min_{\boldsymbol{w}} \frac{1}{2} \mathbb{E} \{ \mathcal{J}(\boldsymbol{w}) \}, \quad \mathcal{J}(\boldsymbol{w}) = e^2 = (y - \hat{y})^2, \\
\boldsymbol{w} \leftarrow \boldsymbol{w} - \frac{\alpha}{2} \frac{\partial}{\partial \boldsymbol{w}} \mathbb{E} \{ \mathcal{J} \}$$

A média amostral resulta no algoritmo GD:

$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \frac{\alpha}{2} \frac{\partial}{\partial \boldsymbol{w}} \left(\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 \right)$$

Diferença probabilística entre o GD e o SGD

• O erro quadrático \mathcal{J} é uma variável aleatória:

$$\min_{\mathbf{w}} \frac{1}{2} \mathbb{E} \{ \mathcal{J}(\mathbf{w}) \}, \quad \mathcal{J}(\mathbf{w}) = e^2 = (y - \hat{y})^2, \\
\mathbf{w} \leftarrow \mathbf{w} - \frac{\alpha}{2} \frac{\partial}{\partial \mathbf{w}} \mathbb{E} \{ \mathcal{J} \}$$

A média amostral resulta no algoritmo GD:

$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \frac{\alpha}{2} \frac{\partial}{\partial \boldsymbol{w}} \left(\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 \right)$$

• Uma aproximação estocástica resulta no algoritmo SGD:

$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \frac{\alpha}{2} \frac{\partial}{\partial \boldsymbol{w}} (y_i - \hat{y}_i)^2$$

Agenda

- Regressão linear iterativa Regressão linear simples Regressão linear múltipla
- 2 Regressão linear analítica
- 3 Regressão Linear Bayesiana
- 4 Comparação Bayesiana de modelos
- **5** Tópicos adicionais
- 6 Referências

• Reunimos todos os padrões de entrada $m{x}_i$ em uma matriz $m{X}$:

$$\boldsymbol{X} = [\boldsymbol{x}_1 \ \boldsymbol{x}_2 \ \cdots \ \boldsymbol{x}_N]^{\top} \in \mathbb{R}^{N \times (D+1)}.$$

- -N é o número de observações/amostras/vetores/padrões.
- D é a dimensão da entrada (excluindo o termo $x_{i0} = 1$).
- Agrupamos as saídas disponíveis em um vetor y:

$$\boldsymbol{y} = [y_1, y_2, \cdots, y_N]^{\top} \in \mathbb{R}^N.$$

• Agrupamos as saídas do modelo em um vetor \hat{y} :

$$\hat{\boldsymbol{y}} = [\hat{y}_1, \hat{y}_2, \cdots, \hat{y}_N]^{\top} \in \mathbb{R}^N.$$

• Agrupamos os parâmetros em um vetor w:

$$\boldsymbol{w} = [w_0, w_1, \cdots, w_D]^{\top} \in \mathbb{R}^{D+1}.$$

 Dados do problema do cateterismo cardíaco em formato matricial:

$$\boldsymbol{X} = \begin{bmatrix} 1 & 1.087 & 18.141 \\ 1 & 1.613 & 42.404 \\ 1 & 0.953 & 16.100 \\ 1 & 1.003 & 13.605 \\ 1 & 1.156 & 23.583 \\ 1 & 0.978 & 7.710 \\ 1 & 1.092 & 17.460 \\ 1 & 0.572 & 3.855 \\ 1 & 0.940 & 14.966 \\ 1 & 0.597 & 4.308 \\ 1 & 0.838 & 9.524 \\ 1 & 1.473 & 35.828 \end{bmatrix}, \quad \boldsymbol{y} = \begin{bmatrix} 37 \\ 50 \\ 34 \\ 36 \\ 43 \\ 28 \\ 37 \\ 20 \\ 34 \\ 30 \\ 38 \\ 47 \end{bmatrix}$$

Reformulamos nosso modelo linear na forma matricial:

$$\hat{y}_i = \boldsymbol{w}^{\top} \boldsymbol{x}_i,$$

 $\hat{\boldsymbol{y}} = \boldsymbol{X} \boldsymbol{w}.$

Reformulamos nosso modelo linear na forma matricial:

$$\hat{y}_i = \boldsymbol{w}^{\top} \boldsymbol{x}_i, \\ \hat{\boldsymbol{y}} = \boldsymbol{X} \boldsymbol{w}.$$

Reformulamos também a função custo:

$$\mathcal{J}(\boldsymbol{w}) = \frac{1}{2} (\boldsymbol{y} - \hat{\boldsymbol{y}})^{\top} (\boldsymbol{y} - \hat{\boldsymbol{y}})$$
$$\mathcal{J}(\boldsymbol{w}) = \frac{1}{2} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})^{\top} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})$$

• O mínimo de $\mathcal{J}({m w})$ ocorrerá em $\frac{\partial \mathcal{J}({m w})}{\partial {m w}}=0$:

$$\begin{split} \frac{\partial \mathcal{J}(\boldsymbol{w})}{\partial \boldsymbol{w}} &= \frac{1}{2} 2 (-\boldsymbol{X}^{\top}) (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{w}) \\ -\boldsymbol{X}^{\top} \boldsymbol{y} + \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{w} &= 0 \\ \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{w} &= \boldsymbol{X}^{\top} \boldsymbol{y} \\ \boldsymbol{w} &= (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}. \end{split}$$

• O mínimo de $\mathcal{J}({m w})$ ocorrerá em $\frac{\partial \mathcal{J}({m w})}{\partial {m w}}=0$:

$$\begin{split} \frac{\partial \mathcal{J}(\boldsymbol{w})}{\partial \boldsymbol{w}} &= \frac{1}{2} 2 (-\boldsymbol{X}^{\top}) (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{w}) \\ -\boldsymbol{X}^{\top} \boldsymbol{y} + \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{w} &= 0 \\ \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{w} &= \boldsymbol{X}^{\top} \boldsymbol{y} \\ \boldsymbol{w} &= (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}. \end{split}$$

• $X^+ = (X^\top X)^{-1} X^\top$, em que $X^+ X = I$, é chamada de inversa de Moore-Penrose ou pseudo-inversa.

Método dos mínimos quadrados ordinários (OLS, ordinary least squares)

• O vetor de parâmetros $m{w}$ que minimiza $\mathcal{J}(m{w}) = rac{1}{2}(m{y} - \hat{m{y}})^{ op}(m{y} - \hat{m{y}})$ é dado por

$$\boldsymbol{w} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{y},$$

em quem $oldsymbol{X}$ é a matriz de vetores de entrada (um por linha) e $oldsymbol{y}$ é o vetor de saídas desejadas.

• OLS equivale ao método de Newton aplicado na função de custo quadrática \mathcal{J} :

$$egin{aligned} oldsymbol{w} &= oldsymbol{w}_0 - \left(rac{\partial^2 \mathcal{J}(oldsymbol{w}_0)}{\partial oldsymbol{w}_0^2}
ight)^{-1} rac{\partial \mathcal{J}(oldsymbol{w}_0)}{\partial oldsymbol{w}_0}, \ rac{\partial^2 \mathcal{J}(oldsymbol{w}_0)}{\partial oldsymbol{w}_0^2} &= oldsymbol{X}^ op oldsymbol{X}, \ oldsymbol{w} &= oldsymbol{w}_0 - (oldsymbol{X}^ op oldsymbol{X})^{-1} \left(-oldsymbol{X}^ op (oldsymbol{y} - oldsymbol{X} oldsymbol{w}_0)
ight) \end{aligned}$$

• Podemos escolher $oldsymbol{w}_0 = oldsymbol{0}$ para obter o mínimo global.

$$\boldsymbol{w} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$$

• De onde vem a função custo $\mathcal{J}(\boldsymbol{w}) = \frac{1}{2}(\boldsymbol{y} - \hat{\boldsymbol{y}})^{\top}(\boldsymbol{y} - \hat{\boldsymbol{y}})$?

- De onde vem a função custo $\mathcal{J}(m{w}) = rac{1}{2} (m{y} \hat{m{y}})^{ op} (m{y} \hat{m{y}})$?
- Considerando um ruído independente $\epsilon \sim \mathcal{N}(0, \sigma^2)$:

$$\begin{aligned} y_i &= \hat{y}_i + \epsilon = \boldsymbol{w}^\top \boldsymbol{x}_i + \epsilon, \\ p(y_i | \boldsymbol{x}_i, \boldsymbol{w}) &= \mathcal{N}(y_i | \boldsymbol{w}^\top \boldsymbol{x}_i, \sigma^2), \\ p(\boldsymbol{y} | \boldsymbol{X}, \boldsymbol{w}) &= \prod_{i=1}^N \mathcal{N}(y_i | \boldsymbol{w}^\top \boldsymbol{x}_i, \sigma^2) \\ \log p(\boldsymbol{y} | \boldsymbol{X}, \boldsymbol{w}) &= \sum_{i=1}^N \log \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_i - \boldsymbol{w}^\top \boldsymbol{x}_i)^2}{2\sigma^2}\right) \\ \log p(\boldsymbol{y} | \boldsymbol{X}, \boldsymbol{w}) &= \underbrace{-\frac{N}{2} \log(2\pi\sigma^2)}_{\text{const. em relação a } \boldsymbol{w}} - \frac{1}{2\sigma^2} \sum_{i=1}^N (y_i - \boldsymbol{w}^\top \boldsymbol{x}_i)^2 \end{aligned}$$

- Queremos maximizar $\mathcal{L}(w) = \log p(y|X, w)$, o que equivale a minimizar $\mathcal{J}(w) = -\mathcal{L}(w)$.
- Ignorando os termos constantes:

$$\mathcal{J}(\boldsymbol{w}) = \frac{1}{2} \sum_{i=1}^{N} (y_i - \boldsymbol{w}^{\top} \boldsymbol{x}_i)^2$$
$$\mathcal{J}(\boldsymbol{w}) = \frac{1}{2} (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{w})^{\top} (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{w})$$
$$\mathcal{J}(\boldsymbol{w}) = \frac{1}{2} (\boldsymbol{y} - \hat{\boldsymbol{y}})^{\top} (\boldsymbol{y} - \hat{\boldsymbol{y}})$$

- Queremos maximizar $\mathcal{L}(\boldsymbol{w}) = \log p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{w})$, o que equivale a minimizar $\mathcal{J}(\boldsymbol{w}) = -\mathcal{L}(\boldsymbol{w})$.
- Ignorando os termos constantes:

$$\mathcal{J}(\boldsymbol{w}) = \frac{1}{2} \sum_{i=1}^{N} (y_i - \boldsymbol{w}^{\top} \boldsymbol{x}_i)^2$$
$$\mathcal{J}(\boldsymbol{w}) = \frac{1}{2} (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{w})^{\top} (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{w})$$
$$\mathcal{J}(\boldsymbol{w}) = \frac{1}{2} (\boldsymbol{y} - \hat{\boldsymbol{y}})^{\top} (\boldsymbol{y} - \hat{\boldsymbol{y}})$$

Solução de máxima verossimilhança

A solução obtida via OLS (e aproximada via GD e SGD), chamada de solução de **máxima verossimilhança (maximum likelihood)**, é ótima quando o ruído é Gaussiano:

$$w_{\mathsf{OLS}} = w_{\mathsf{ML}} = \arg\max\log p(y|X, w)$$

Agenda

- Regressão linear iterativa Regressão linear simples Regressão linear múltipla
- Regressão linear analítica
- 3 Regressão Linear Bayesiana
- 4 Comparação Bayesiana de modelos
- 5 Tópicos adicionais
- 6 Referências

Propriedades da Distribuição Gaussiana

$$m{x} = \left[egin{array}{c} m{x}_1 \ m{x}_2 \end{array}
ight] \sim \mathcal{N}(m{\mu}, m{\Sigma}), \quad m{\mu} = \left[egin{array}{c} m{\mu}_1 \ m{\mu}_2 \end{array}
ight], \quad m{\Sigma} = \left[egin{array}{cc} m{\Sigma}_{11} & m{\Sigma}_{12} \ m{\Sigma}_{21} & m{\Sigma}_{22} \end{array}
ight].$$

Marginalização

A observação de uma coleção maior de variáveis não afeta a distribuição de subconjuntos menores, ou seja:

$$extbf{\emph{x}}_1 \sim \mathcal{N}(m{\mu}_1, m{\Sigma}_{11})$$
 e $extbf{\emph{x}}_2 \sim \mathcal{N}(m{\mu}_2, m{\Sigma}_{22})$

Condicionamento

Condicionar Gaussianas resulta em uma Gaussiana:

$$p(\mathbf{x}_1|\mathbf{x}_2=\mathbf{z}) = \mathcal{N}(\mathbf{x}_1|\mathbf{\mu}_1 + \mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}(\mathbf{z}-\mathbf{\mu}_2), \mathbf{\Sigma}_{11} - \mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}\mathbf{\Sigma}_{21})$$

Linearidade

Uma combinação linear de Gaussianas resulta em uma Gaussiana:

$$p(a\mathbf{x}_1 + b\mathbf{x}_2) = \mathcal{N}(a\boldsymbol{\mu}_1 + b\boldsymbol{\mu}_2, a^2\boldsymbol{\Sigma}_{11} + b^2\boldsymbol{\Sigma}_{22})$$

Considere um modelo linear com ruído Gaussiano:

$$y = Xw + \epsilon, \quad \epsilon \sim \mathcal{N}(\epsilon_i | 0, \sigma^2).$$

A verossimilhança do modelo é dada por:

$$p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{w}, \sigma^2) = \mathcal{N}(\boldsymbol{y}|\boldsymbol{X}\boldsymbol{w}, \sigma^2 \boldsymbol{I}).$$

• Por ser desconhecido, o vetor de parâmetros w recebe uma distribuição a priori, por exemplo, Gaussiana:

$$p(\boldsymbol{w}) = \mathcal{N}(\boldsymbol{w}|\boldsymbol{m}_0, \boldsymbol{S}_0).$$

• Após a observação dos dados $\mathcal{D} = (\boldsymbol{X}, \boldsymbol{y})$, como calcular a distribuição a posteriori $p(\boldsymbol{w}|\mathcal{D})$?

• Voltamos às propriedades da distribuição Gaussiana:

$$oldsymbol{z} = \left[egin{array}{c} oldsymbol{w} \ oldsymbol{y} \end{array}
ight] \sim \mathcal{N}(oldsymbol{m}_z, oldsymbol{S}_z), \quad oldsymbol{m}_z = \left[egin{array}{c} oldsymbol{\mu}_w \ oldsymbol{\mu}_y \end{array}
ight], \quad oldsymbol{S}_z = \left[egin{array}{c} oldsymbol{\Sigma}_w & oldsymbol{\Sigma}_{wy} \ oldsymbol{\Sigma}_{yw} & oldsymbol{\Sigma}_y \end{array}
ight].$$

Marginalização

A observação de uma coleção maior de variáveis não afeta a distribuição de subconjuntos menores, ou seja:

$$oldsymbol{w} \sim \mathcal{N}(oldsymbol{\mu}_w, oldsymbol{\Sigma}_w)$$
 e $oldsymbol{y} \sim \mathcal{N}(oldsymbol{\mu}_y, oldsymbol{\Sigma}_y)$

Condicionamento

Condicionar Gaussianas resulta em uma Gaussiana:

$$p(\boldsymbol{w}|\boldsymbol{y}) = \mathcal{N}(\boldsymbol{w}|\boldsymbol{\mu}_w + \boldsymbol{\Sigma}_{wy}\boldsymbol{\Sigma}_y^{-1}(\boldsymbol{y} - \boldsymbol{\mu}_y), \boldsymbol{\Sigma}_w - \boldsymbol{\Sigma}_{wy}\boldsymbol{\Sigma}_y^{-1}\boldsymbol{\Sigma}_{yw})$$

• Incluímos a priori de w:

$$oldsymbol{z} = \left[egin{array}{c} oldsymbol{w} \ oldsymbol{y} \end{array}
ight] \sim \mathcal{N}(oldsymbol{m}_z, oldsymbol{S}_z), \quad oldsymbol{m}_z = \left[egin{array}{c} oldsymbol{m}_0 \ oldsymbol{\mu}_y \end{array}
ight], \quad oldsymbol{S}_z = \left[egin{array}{c} oldsymbol{S}_{uy} \ oldsymbol{\Sigma}_{yw} \end{array}
ight].$$

Marginalização

A observação de uma coleção maior de variáveis não afeta a distribuição de subconjuntos menores, ou seja:

$$oldsymbol{w} \sim \mathcal{N}(oldsymbol{\mu}_w, oldsymbol{\Sigma}_w)$$
 e $oldsymbol{y} \sim \mathcal{N}(oldsymbol{\mu}_y, oldsymbol{\Sigma}_y)$

Condicionamento

Condicionar Gaussianas resulta em uma Gaussiana:

$$p(\boldsymbol{w}|\boldsymbol{y}) = \mathcal{N}(\boldsymbol{w}|\boldsymbol{m}_0 + \boldsymbol{\Sigma}_{wy}\boldsymbol{\Sigma}_y^{-1}(\boldsymbol{y} - \boldsymbol{\mu}_y), \boldsymbol{S}_0 - \boldsymbol{\Sigma}_{wy}\boldsymbol{\Sigma}_y^{-1}\boldsymbol{\Sigma}_{yw})$$

ullet Começamos calculando a verossimilhança marginal de y:

$$p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{m}_0, \boldsymbol{S}_0, \sigma^2) = \int p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{w}, \sigma^2) p(\boldsymbol{w}) d\boldsymbol{w}$$
$$= \int \mathcal{N}(\boldsymbol{y}|\boldsymbol{X}\boldsymbol{w}, \sigma^2 \boldsymbol{I}) \mathcal{N}(\boldsymbol{w}|\boldsymbol{m}_0, \boldsymbol{S}_0) d\boldsymbol{w}$$
$$= \mathcal{N}(\boldsymbol{y}|\boldsymbol{X}\boldsymbol{m}_0, \boldsymbol{X}\boldsymbol{S}_0\boldsymbol{X}^\top + \sigma^2 \boldsymbol{I}).$$

ullet Começamos calculando a verossimilhança marginal de $oldsymbol{y}$:

$$p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{m}_0, \boldsymbol{S}_0, \sigma^2) = \int p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{w}, \sigma^2) p(\boldsymbol{w}) d\boldsymbol{w}$$
$$= \int \mathcal{N}(\boldsymbol{y}|\boldsymbol{X}\boldsymbol{w}, \sigma^2 \boldsymbol{I}) \mathcal{N}(\boldsymbol{w}|\boldsymbol{m}_0, \boldsymbol{S}_0) d\boldsymbol{w}$$
$$= \mathcal{N}(\boldsymbol{y}|\boldsymbol{X}\boldsymbol{m}_0, \boldsymbol{X}\boldsymbol{S}_0\boldsymbol{X}^\top + \sigma^2 \boldsymbol{I}).$$

ullet Portanto, se $oldsymbol{y} \sim \mathcal{N}(oldsymbol{\mu}_y, oldsymbol{\Sigma}_y)$:

$$egin{aligned} oldsymbol{\mu}_y &= oldsymbol{X} oldsymbol{m}_0, \ oldsymbol{\Sigma}_y &= oldsymbol{X} oldsymbol{S}_0 oldsymbol{X}^ op + \sigma^2 oldsymbol{I}. \end{aligned}$$

• Começamos calculando a verossimilhança marginal de y:

$$p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{m}_0, \boldsymbol{S}_0, \sigma^2) = \int p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{w}, \sigma^2) p(\boldsymbol{w}) d\boldsymbol{w}$$
$$= \int \mathcal{N}(\boldsymbol{y}|\boldsymbol{X}\boldsymbol{w}, \sigma^2 \boldsymbol{I}) \mathcal{N}(\boldsymbol{w}|\boldsymbol{m}_0, \boldsymbol{S}_0) d\boldsymbol{w}$$
$$= \mathcal{N}(\boldsymbol{y}|\boldsymbol{X}\boldsymbol{m}_0, \boldsymbol{X}\boldsymbol{S}_0\boldsymbol{X}^\top + \sigma^2 \boldsymbol{I}).$$

ullet Portanto, se $oldsymbol{y} \sim \mathcal{N}(oldsymbol{\mu}_y, oldsymbol{\Sigma}_y)$:

$$egin{aligned} oldsymbol{\mu}_y &= oldsymbol{X} oldsymbol{m}_0, \ oldsymbol{\Sigma}_y &= oldsymbol{X} oldsymbol{S}_0 oldsymbol{X}^ op + \sigma^2 oldsymbol{I}. \end{aligned}$$

ullet Qual a covariância entre $oldsymbol{w}$ e $oldsymbol{y}$, isto é, $oldsymbol{\Sigma}_{wy}$?

$$egin{aligned} oldsymbol{\Sigma}_{wy} &= \operatorname{cov}[oldsymbol{w}, oldsymbol{X} oldsymbol{w} + oldsymbol{\epsilon}] \ &= \operatorname{cov}[oldsymbol{w}, oldsymbol{X} oldsymbol{w}] + \operatorname{cov}[oldsymbol{w}, oldsymbol{\epsilon}] \ &= \operatorname{cov}[oldsymbol{w}, oldsymbol{X} oldsymbol{w}] = \operatorname{cov}[oldsymbol{w}, oldsymbol{w}] oldsymbol{X}^{ op} = oldsymbol{S}_0 oldsymbol{X}^{ op}. \end{aligned}$$

• Agora podemos construir a distribuição conjunta p(w, y):

$$oldsymbol{z} = \left[egin{array}{c} oldsymbol{w} \ oldsymbol{y} \end{array}
ight] \sim \mathcal{N}(oldsymbol{m}_z, oldsymbol{S}_z), \quad oldsymbol{m}_z = \left[egin{array}{c} oldsymbol{m}_0 \ oldsymbol{\mu}_y \end{array}
ight], \quad oldsymbol{S}_z = \left[egin{array}{c} oldsymbol{S}_{00} & oldsymbol{\Sigma}_{wy} \ oldsymbol{\Sigma}_{yw} & oldsymbol{\Sigma}_y \end{array}
ight],$$

$$\left[egin{array}{c} m{w} \ m{y} \end{array}
ight] \sim \mathcal{N}\left(\left[egin{array}{c} m{m}_0 \ m{X}m{m}_0 \end{array}
ight], \left[egin{array}{c} m{S}_0 & m{S}_0m{X}^ op \ m{X}m{S}_0 & m{X}m{S}_0m{X}^ op + \sigma^2m{I} \end{array}
ight]
ight).$$

 Finalmente, usamos a propriedade de condicionamento de Gaussianas para obter a posteriori de w:

$$p(\boldsymbol{w}|\boldsymbol{y}) = \mathcal{N}(\boldsymbol{w}|\boldsymbol{m}_0 + \boldsymbol{\Sigma}_{wy}\boldsymbol{\Sigma}_y^{-1}(\boldsymbol{y} - \boldsymbol{\mu}_y), \boldsymbol{S}_0 - \boldsymbol{\Sigma}_{wy}\boldsymbol{\Sigma}_y^{-1}\boldsymbol{\Sigma}_{yw}),$$

$$p(\boldsymbol{w}|\mathcal{D}, \boldsymbol{m}_0, \boldsymbol{S}_0, \sigma^2) = \mathcal{N}(\boldsymbol{w}|\boldsymbol{\mu}, \boldsymbol{\Sigma}),$$

$$\boldsymbol{\mu} = \boldsymbol{m}_0 + \boldsymbol{S}_0\boldsymbol{X}^{\top}(\boldsymbol{X}\boldsymbol{S}_0\boldsymbol{X}^{\top} + \sigma^2\boldsymbol{I})^{-1}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{m}_0)$$

$$= \boldsymbol{m}_0 + (\boldsymbol{S}_0\boldsymbol{X}^{\top}\boldsymbol{X} + \sigma^2\boldsymbol{I})^{-1}\boldsymbol{S}_0\boldsymbol{X}^{\top}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{m}_0),$$

$$\boldsymbol{\Sigma} = \boldsymbol{S}_0 - \boldsymbol{S}_0\boldsymbol{X}^{\top}(\boldsymbol{X}\boldsymbol{S}_0\boldsymbol{X}^{\top} + \sigma^2\boldsymbol{I})^{-1}\boldsymbol{X}\boldsymbol{S}_0$$

$$= \boldsymbol{S}_0 - (\boldsymbol{S}_0\boldsymbol{X}^{\top}\boldsymbol{X} + \sigma^2\boldsymbol{I})^{-1}\boldsymbol{S}_0\boldsymbol{X}^{\top}\boldsymbol{X}\boldsymbol{S}_0.$$

em que foi usada a identidade matricial abaixo (derivada a partir da identidade de Woodbury):

$$U(VU + I)^{-1} = (UV + I)^{-1}U$$

• Note que o modelo não é definido por um único valor para w, mas uma distribuição a posteriori $p(w|\mathcal{D}, m_0, S_0, \sigma^2)$.

• Com a distribuição a posteriori $p(\boldsymbol{w}|\mathcal{D}, \boldsymbol{m}_0, \boldsymbol{S}_0, \sigma^2)$, podemos fazer predições para novas entradas \boldsymbol{X}_* :

$$\begin{aligned} \boldsymbol{y}_* &= \boldsymbol{X}_* \boldsymbol{w} + \boldsymbol{\epsilon}, \\ p(\boldsymbol{y}_* | \boldsymbol{X}_*, \mathcal{D}, \boldsymbol{m}_0, \boldsymbol{S}_0, \sigma^2) &= \int p(\boldsymbol{y}_* | \boldsymbol{w}, \sigma^2) p(\boldsymbol{w} | \mathcal{D}, \boldsymbol{m}_0, \boldsymbol{S}_0, \sigma^2) \mathrm{d} \boldsymbol{w} \\ &= \int \mathcal{N}(\boldsymbol{y}_* | \boldsymbol{X}_* \boldsymbol{w}, \sigma^2 \boldsymbol{I}) \mathcal{N}(\boldsymbol{w} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) \mathrm{d} \boldsymbol{w} \\ &= \mathcal{N}(\boldsymbol{y}_* | \boldsymbol{X}_* \boldsymbol{\mu}, \boldsymbol{X}_* \boldsymbol{\Sigma} \boldsymbol{X}_*^\top + \sigma^2 \boldsymbol{I}). \end{aligned}$$

 Note que a predição não é um único valor, mas uma distribuição de probabilidade bem definida.

• Caso escolhamos uma priori $p(w) = \mathcal{N}(w|\mathbf{0}, \sigma_w^2 \mathbf{I})$, temos:

$$\begin{split} &p(\boldsymbol{w}|\mathcal{D}, \sigma_w^2, \sigma^2) = \mathcal{N}(\boldsymbol{w}|\boldsymbol{\mu}, \boldsymbol{\Sigma}), \\ &\boldsymbol{\mu} = \sigma_w^2 (\sigma_w^2 \boldsymbol{X}^\top \boldsymbol{X} + \sigma^2 \boldsymbol{I})^{-1} \boldsymbol{X}^\top \boldsymbol{y}, \\ &\boldsymbol{\Sigma} = \sigma_w^2 \boldsymbol{I} - \sigma_w^2 (\sigma_w^2 \boldsymbol{X}^\top \boldsymbol{X} + \sigma^2 \boldsymbol{I})^{-1} \boldsymbol{X}^\top \boldsymbol{X} \sigma_w^2. \end{split}$$

• Podemos reescrever a média a posteriori μ para obter a solução de mínimos quadrados regularizada (ridge regression):

$$egin{aligned} oldsymbol{\mu} &= \left(oldsymbol{X}^ op oldsymbol{X} + rac{\sigma^2}{\sigma_w^2} oldsymbol{I}
ight)^{-1} oldsymbol{X}^ op oldsymbol{y}, \quad egin{aligned} \lambda &= rac{\sigma^2}{\sigma_w^2}. \end{aligned}$$

Resumo do algoritmo

- Passo de estimação
 - Defina a partir de conhecimentos/experimentos anteriores:
 - ightarrow os momentos da priori $p(oldsymbol{w}) = \mathcal{N}(oldsymbol{w} | oldsymbol{m}_0, oldsymbol{S}_0);$
 - ightarrow a variância do ruído $p(\epsilon) = \mathcal{N}(\epsilon|0,\sigma^2)$.
 - **2** A partir dos dados $\mathcal{D} = (X, y)$, calcule a posteriori de w:

$$p(\boldsymbol{w}|\mathcal{D}) = \mathcal{N}(\boldsymbol{w}|\boldsymbol{\mu}, \boldsymbol{\Sigma}),$$

 $\boldsymbol{\mu} = \boldsymbol{m}_0 + (\boldsymbol{S}_0 \boldsymbol{X}^{\top} \boldsymbol{X} + \sigma^2 \boldsymbol{I})^{-1} \boldsymbol{S}_0 \boldsymbol{X}^{\top} (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{m}_0),$
 $\boldsymbol{\Sigma} = \boldsymbol{S}_0 - (\boldsymbol{S}_0 \boldsymbol{X}^{\top} \boldsymbol{X} + \sigma^2 \boldsymbol{I})^{-1} \boldsymbol{S}_0 \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{S}_0.$

- **3** Retorne a posteriori $p(w|\mathcal{D})$ dos parâmetros.
- Passo de predição
 - $oldsymbol{0}$ Dados padrões $oldsymbol{X}_* \in \mathbb{R}^{(N_* imes D)}$, retorne a distribuição preditiva

$$p(\boldsymbol{y}_{*}|\boldsymbol{X}_{*}) = \mathcal{N}(\boldsymbol{y}_{*}|\boldsymbol{X}_{*}\boldsymbol{\mu}, \boldsymbol{X}_{*}\boldsymbol{\Sigma}\boldsymbol{X}_{*}^{\top} + \sigma^{2}\boldsymbol{I}).$$

Regressão Linear Bayesiana em batch

Regressão Linear Bayesiana sequencial

Regressão Linear Bayesiana com Funções de Base

• Podemos usar uma transformação arbitrária $\phi(\cdot)$ nos atributos:

$$\mathbf{\Phi} = \phi(\mathbf{X}) = [\phi(\mathbf{x}_1), \phi(\mathbf{x}_2), \dots, \phi(\mathbf{x}_N)]^{\top}, \quad \phi : \mathbb{R}^D \to \mathbb{R}^Q,$$
$$\mathbf{y} = \mathbf{\Phi}\mathbf{w} + \boldsymbol{\epsilon}, \quad \epsilon \sim \mathcal{N}(\epsilon|0, \sigma^2).$$

• As expressões do modelo linear Bayesiano continuam as mesmas:

$$\begin{aligned} p(\boldsymbol{y}|\boldsymbol{\Phi}, \boldsymbol{w}, \sigma^2) &= \mathcal{N}(\boldsymbol{y}|\boldsymbol{\Phi}\boldsymbol{w}, \sigma^2\boldsymbol{I}), \\ p(\boldsymbol{w}) &= \mathcal{N}(\boldsymbol{w}|\boldsymbol{m}_0, \boldsymbol{S}_0), \\ p(\boldsymbol{w}|\mathcal{D}, \boldsymbol{m}_0, \boldsymbol{S}_0, \sigma^2) &= \mathcal{N}(\boldsymbol{w}|\boldsymbol{\mu}, \boldsymbol{\Sigma}), \quad \mathcal{D} = (\boldsymbol{\Phi}, \boldsymbol{y}), \\ p(\boldsymbol{y}_*|\boldsymbol{X}_*, \mathcal{D}, \boldsymbol{m}_0, \boldsymbol{S}_0, \sigma^2) &= \mathcal{N}(\boldsymbol{y}_*|\boldsymbol{\Phi}_*\boldsymbol{\mu}, \boldsymbol{\Phi}_*\boldsymbol{\Sigma}\boldsymbol{\Phi}_*^\top + \sigma^2\boldsymbol{I}), \\ \boldsymbol{\mu} &= \boldsymbol{m}_0 + (\boldsymbol{S}_0\boldsymbol{\Phi}^\top\boldsymbol{\Phi} + \sigma^2\boldsymbol{I})^{-1}\boldsymbol{S}_0\boldsymbol{\Phi}^\top(\boldsymbol{y} - \boldsymbol{\Phi}\boldsymbol{m}_0), \\ \boldsymbol{\Sigma} &= \boldsymbol{S}_0 - (\boldsymbol{S}_0\boldsymbol{\Phi}^\top\boldsymbol{\Phi} + \sigma^2\boldsymbol{I})^{-1}\boldsymbol{S}_0\boldsymbol{\Phi}^\top\boldsymbol{\Phi}\boldsymbol{S}_0. \end{aligned}$$

• Regressão polinomial Bayesiana de ordem P pode ser obtida fazendo $\phi(x_i) = [1, x_i, x_i^2, \dots, x_i^P]^\top$.

Regressão Polinomial Bayesiana variando a ordem

Regressão Polinomial Bayesiana variando a ordem

Regressão Polinomial Bayesiana em batch

Regressão Linear Bayesiana com Funções de Base

• Podemos escolher $p(\boldsymbol{w}) = \mathcal{N}(\boldsymbol{0}, \boldsymbol{S}_0)$:

$$p(\mathbf{y}_*|\mathbf{X}_*, \mathcal{D}, \mathbf{S}_0, \sigma^2) = \mathcal{N}(\mathbf{y}_*|\mathbf{\Phi}_*\boldsymbol{\mu}, \mathbf{\Phi}_*\boldsymbol{\Sigma}\mathbf{\Phi}_*^\top + \sigma^2\mathbf{I}),$$

$$\boldsymbol{\mu} = \underbrace{(\mathbf{S}_0\mathbf{\Phi}^\top\mathbf{\Phi} + \sigma^2\mathbf{I})^{-1}\mathbf{S}_0\mathbf{\Phi}^\top}_{\mathbf{A}}\mathbf{y},$$

$$\boldsymbol{\Sigma} = \mathbf{S}_0 - \underbrace{(\mathbf{S}_0\mathbf{\Phi}^\top\mathbf{\Phi} + \sigma^2\mathbf{I})^{-1}\mathbf{S}_0\mathbf{\Phi}^\top}_{\mathbf{A}}\mathbf{\Phi}\mathbf{S}_0.$$

 Usamos a seguinte identidade matricial (derivada da identidade de Woodbury):

$$\boldsymbol{A} = (\boldsymbol{S}_{\!0}\boldsymbol{\Phi}^{\top}\boldsymbol{\Phi} + \sigma^2\boldsymbol{I})^{-1}\boldsymbol{S}_{\!0}\boldsymbol{\Phi}^{\top} = \boldsymbol{S}_{\!0}\boldsymbol{\Phi}^{\top}(\boldsymbol{\Phi}\boldsymbol{S}_{\!0}\boldsymbol{\Phi}^{\top} + \sigma^2\boldsymbol{I})^{-1}$$

Reescrevemos a distribuição preditiva:

$$p(\boldsymbol{y}_*|\boldsymbol{X}_*, \mathcal{D}, \boldsymbol{S}_0, \sigma^2) = \mathcal{N}(\boldsymbol{y}_*|\boldsymbol{\Phi}_*\boldsymbol{S}_0\boldsymbol{\Phi}^\top(\boldsymbol{\Phi}\boldsymbol{S}_0\boldsymbol{\Phi}^\top + \sigma^2\boldsymbol{I})^{-1}\boldsymbol{y},$$
$$\boldsymbol{\Phi}_*(\boldsymbol{S}_0 - \boldsymbol{S}_0\boldsymbol{\Phi}^\top(\boldsymbol{\Phi}\boldsymbol{S}_0\boldsymbol{\Phi}^\top + \sigma^2\boldsymbol{I})^{-1}\boldsymbol{\Phi}\boldsymbol{S}_0)\boldsymbol{\Phi}_*^\top + \sigma^2\boldsymbol{I}),$$

Regressão RBF Bayesiana

- Podemos usar uma função de base radial (radial basis function) para obter uma regressão RBF Bayesiana.
- Considerando M funções RBF com centros $c_m|_{m=1}^M$, largura de banda $\lambda > 0$ e entradas unidimensionais:

$$y_i = \boldsymbol{w}^{\top} \boldsymbol{\phi}_i + \epsilon,$$
 $\boldsymbol{\phi}_i = [1, \phi_1(x_i), \dots, \phi_M(x_i)]^{\top},$
 $\phi_m(x_i) = \exp\left(-\frac{(x_i - c_m)^2}{2\lambda}\right).$

• Por exemplo, podemos inicializar os centros via algoritmo de agrupamento e fazer $\lambda = \mathbb{V}(x)$.

Regressão Polinomial Bayesiana com base RBF

Do espaço de atributos para funções de kernel

ullet Fazendo $oldsymbol{\Psi}=oldsymbol{\Phi} oldsymbol{S}_0^{1/2}$ e $oldsymbol{\Psi}_*=oldsymbol{\Phi}_*oldsymbol{S}_0^{1/2}$ a preditiva se torna:

$$p(\boldsymbol{y}_*|\boldsymbol{X}_*, \mathcal{D}, \boldsymbol{S}_0, \sigma^2) = \mathcal{N}(\boldsymbol{y}_*|\boldsymbol{\Psi}_*\boldsymbol{\Psi}^\top(\boldsymbol{\Psi}\boldsymbol{\Psi}^\top + \sigma^2\boldsymbol{I})^{-1}\boldsymbol{y}, (\boldsymbol{\Psi}_*\boldsymbol{\Psi}_*^\top - \boldsymbol{\Psi}_*\boldsymbol{\Psi}^\top(\boldsymbol{\Psi}\boldsymbol{\Psi}^\top + \sigma^2\boldsymbol{I})^{-1}\boldsymbol{\Psi}\boldsymbol{\Psi}_*^\top) + \sigma^2\boldsymbol{I}),$$

Agora podemos aplicar o kernel trick (truque do kernel):

$$egin{aligned} m{\Psi} m{\Psi}^{ op} &= k(m{X}, m{X}) = m{K}, \ m{\Psi}_* m{\Psi}^{ op} &= k(m{X}_*, m{X}) = m{K}_{*f}, \ m{\Psi} m{\Psi}_*^{ op} &= k(m{X}, m{X}_*) = m{K}_{f*}, \ m{\Psi}_* m{\Psi}_*^{ op} &= k(m{X}_*, m{X}_*) = m{K}_{**}. \end{aligned}$$

• Finalmente, obtemos a versão abaixo da distribuição preditiva:

$$p(\mathbf{y}_*|\mathbf{X}_*, \mathcal{D}, \mathbf{S}_0, \sigma^2) = \mathcal{N}(\mathbf{y}_*|\mathbf{K}_{*f}(\mathbf{K} + \sigma^2 \mathbf{I})^{-1}\mathbf{y}, \mathbf{K}_{**} - \mathbf{K}_{*f}(\mathbf{K} + \sigma^2 \mathbf{I})^{-1}\mathbf{K}_{f*} + \sigma^2 \mathbf{I}),$$

correspondente a um modelo de processo Gaussiano.

Agenda

- Regressão linear iterativa Regressão linear simples Regressão linear múltipla
- Regressão linear analítica
- 3 Regressão Linear Bayesiana
- 4 Comparação Bayesiana de modelos
- **5** Tópicos adicionais
- 6 Referências

Comparação Bayesiana de modelos

- A abordagem Bayesiana evita otimizar parâmetros, preferindo marginalizá-los.
- Não há a necessidade de um conjunto de validação para comparar modelos.
- Dado um modelo \mathcal{M}_j e um conjunto de dados $\mathcal{D} = (\boldsymbol{X}, \boldsymbol{y})$, desejamos computar avaliar a distribuição a posteriori do modelo:

$$p(\mathcal{M}_j|\mathcal{D}) = \frac{p(\mathcal{M}_j)p(\mathcal{D}|\mathcal{M}_j)}{p(\mathcal{D})} \approx p(\mathcal{M}_j)p(\mathcal{D}|\mathcal{M}_j).$$

- Considere L modelos com a priori $p(\mathcal{M}_j)$ iguais.
- Considere a evidência (verossimilhança marginal) $p(\mathcal{D}|\mathcal{M}_j)$.
- Fator de Bayes entre modelos com priori iguais:

$$B_{j,k} = \frac{p(\mathcal{D}|\mathcal{M}_j)}{p(\mathcal{D}|\mathcal{M}_k)}.$$

Evidência e Navalha de Occam Bayesiana

• A evidência é obtida pela marginalização dos parâmetros:

$$p(\mathcal{D}|\mathcal{M}_j) = \int p(\mathcal{D}|\boldsymbol{w}, \mathcal{M}_j) p(\boldsymbol{w}|\mathcal{M}_j) d\boldsymbol{w}$$
$$p(\mathcal{D}) = \int p(\mathcal{D}|\boldsymbol{w}) p(\boldsymbol{w}) d\boldsymbol{w} \quad \text{(omitindo } \mathcal{M}_j\text{)}.$$

- Soluções ML ou MAP usam somente o ajuste aos dados $p(\mathcal{D}|\boldsymbol{w})$ na comparação de modelos, podendo resultar em overfitting.
- Ao marginalizar os parâmetros, penalizamos modelos muito complexos.
- Navalha de Occam Bayesiana: Equilíbrio entre ajuste aos dados e complexidade na comparação Bayesiana de modelos.

Conservação de massa de probabilidade

Mistura e seleção de modelos

 Mistura de modelos: Predições são feitas combinando todos os modelos (note que os parâmetros já foram marginalizados):

$$p(\boldsymbol{y}_*|\boldsymbol{X}_*, \mathcal{D}) = \sum_{j=1}^{L} p(\boldsymbol{y}_*|\boldsymbol{X}_*, \mathcal{M}_j, \mathcal{D}) p(\mathcal{M}_j|\mathcal{D}).$$

- Seleção de modelos: Somente o modelo com maior posteriori $p(\mathcal{M}_{\text{best}}|\mathcal{D})$ é usado na predição.
 - ightarrow Para modelos com priori iguais, equivale a usar aquele com maior verossimilhança marginal $p(\mathcal{D}|\mathcal{M}_{\mathsf{best}})$.

Evidência aproximada

• Em um tratamento Bayesiano puro, colocaríamos prioris aos hiperparâmetros ϕ (por exemplo σ_w^2 e σ^2) e marginalizaríamos juntamente com os parâmetros para fazer predições:

$$p(\mathbf{y}_*|\mathbf{X}_*, \mathcal{D}) = \int p(\mathbf{y}_*|\mathbf{X}_*, \mathcal{D}, \mathbf{w}, \boldsymbol{\phi}) p(\mathbf{w}|\mathcal{D}, \boldsymbol{\phi}) p(\boldsymbol{\phi}|\mathcal{D}) d\mathbf{w} d\boldsymbol{\phi}.$$

Evidência aproximada

• Em um tratamento Bayesiano puro, colocaríamos prioris aos hiperparâmetros ϕ (por exemplo σ_w^2 e σ^2) e marginalizaríamos juntamente com os parâmetros para fazer predições:

$$p(\mathbf{\textit{y}}_*|\mathbf{\textit{X}}_*,\mathcal{D}) = \int p(\mathbf{\textit{y}}_*|\mathbf{\textit{X}}_*,\mathcal{D},\mathbf{\textit{w}},\boldsymbol{\phi})p(\mathbf{\textit{w}}|\mathcal{D},\boldsymbol{\phi})p(\boldsymbol{\phi}|\mathcal{D})\mathrm{d}\mathbf{\textit{w}}\mathrm{d}\boldsymbol{\phi}.$$

• A integral acima usualmente não é analítica, podendo ser aproximada por $p(\boldsymbol{y}_*|\boldsymbol{X}_*,\mathcal{D}) \approx p(\boldsymbol{y}_*|\boldsymbol{X}_*,\mathcal{D},\hat{\boldsymbol{\phi}})$:

$$p(\boldsymbol{y}_*|\boldsymbol{X}_*, \mathcal{D}, \hat{\boldsymbol{\phi}}) = \int p(\boldsymbol{y}_*|\boldsymbol{X}_*, \mathcal{D}, \boldsymbol{w}, \hat{\boldsymbol{\phi}}) p(\boldsymbol{w}|\mathcal{D}, \hat{\boldsymbol{\phi}}) d\boldsymbol{w},$$
$$\hat{\boldsymbol{\phi}} = \arg \max p(\mathcal{D}|\boldsymbol{\phi}) = \arg \max \int p(\mathcal{D}|\boldsymbol{w}, \boldsymbol{\phi}) p(\boldsymbol{w}) d\boldsymbol{w}.$$

• O procedimento acima também é chamado de *empirical Bayes*, type 2 maximum likelihood ou generalized maximum likelihood.

Computando a evidência

• Considere o modelo de regressão abaixo:

$$p(\boldsymbol{y}|\boldsymbol{\Phi}, \boldsymbol{w}, \sigma^2) = \mathcal{N}(\boldsymbol{y}|\boldsymbol{\Phi}\boldsymbol{w}, \sigma^2\boldsymbol{I}), \quad \boldsymbol{\Phi} = \phi(\boldsymbol{X}),$$
$$p(\boldsymbol{w}|\sigma_w^2) = \mathcal{N}(\boldsymbol{w}|\boldsymbol{0}, \sigma_w^2\boldsymbol{I}).$$

• A evidência é dada por:

$$p(\boldsymbol{y}|\boldsymbol{\Phi}) = \int p(\boldsymbol{y}|\boldsymbol{\Phi}, \boldsymbol{w}, \sigma^2) p(\boldsymbol{w}|\sigma_w^2) p(\sigma^2, \sigma_w^2) \mathrm{d}\boldsymbol{w} \mathrm{d}\sigma_w^2 \mathrm{d}\sigma^2$$

$$\approx p(\boldsymbol{y}|\boldsymbol{\Phi}, \sigma^2, \sigma_w^2) = \int p(\boldsymbol{y}|\boldsymbol{\Phi}, \boldsymbol{w}, \sigma^2) p(\boldsymbol{w}|\sigma_w^2) \mathrm{d}\boldsymbol{w},$$

$$p(\boldsymbol{y}|\boldsymbol{\Phi}, \sigma^2, \sigma_w^2) = \int \mathcal{N}(\boldsymbol{y}|\boldsymbol{\Phi}\boldsymbol{w}, \sigma^2\boldsymbol{I}) \mathcal{N}(\boldsymbol{w}|\boldsymbol{0}, \sigma_w^2\boldsymbol{I}) \mathrm{d}\boldsymbol{w}$$

$$= \mathcal{N}(\boldsymbol{y}|\boldsymbol{0}, \sigma_w^2 \boldsymbol{\Phi}\boldsymbol{\Phi}^\top + \sigma^2\boldsymbol{I}).$$

• A otimização pode ser feita iterativamente a partir dos dados de treinamento e de valores iniciais (Bishop, pg. 168).

Maximizando a evidência

- Lembrando a diferença entre ML e ML-II:
 - → Máxima verossimilhança (ML):

$$\hat{\boldsymbol{w}} = \arg\max\log p(\mathcal{D}|\boldsymbol{w}).$$

→ Máxima verossimilhança do tipo II (ML-II):

$$\hat{\phi} = \arg \max \log \int p(\mathcal{D}|\boldsymbol{w}, \boldsymbol{\phi}) p(\boldsymbol{w}) d\boldsymbol{w}.$$

- Encontrar os hiperparâmetros $\hat{\phi}$ via ML-II pode ser feito por:
 - ightarrow Uso dos gradientes da evidência.
 - \rightarrow Algoritmo Expectation-Maximization (EM).
 - $\rightarrow\,$ Computar a evidência para uma grid de candidatos.

Agenda

- Regressão linear iterativa Regressão linear simples Regressão linear múltipla
- Regressão linear analítica
- 3 Regressão Linear Bayesiana
- 4 Comparação Bayesiana de modelos
- **5** Tópicos adicionais
- 6 Referências

Tópicos adicionais

• Regressão Bayesiana com variância σ^2 do ruído desconhecida com priori Gamma inversa $IG(\sigma^2|a_0,b_0)$:

$$p(\boldsymbol{y}|\boldsymbol{\Phi}, \boldsymbol{w}, \sigma^2) = \mathcal{N}(\boldsymbol{y}|\boldsymbol{\Phi}\boldsymbol{w}, \sigma^2\boldsymbol{I}), \quad \boldsymbol{\Phi} = \phi(\boldsymbol{X}),$$
$$p(\boldsymbol{w}, \sigma^2|\boldsymbol{m}_0, \boldsymbol{S}_0, a_0, b_0) = \mathcal{N}(\boldsymbol{w}|\boldsymbol{m}_0, \boldsymbol{S}_0)\mathrm{IG}(\sigma^2|a_0, b_0).$$

- ightarrow A posteriori $p(\boldsymbol{w}, \sigma^2 | \mathcal{D})$ é analítica (Murphy, pgs. 235 e 236), sendo as marginais $p(\boldsymbol{w} | \mathcal{D})$ e $p(\sigma^2 | \mathcal{D})$ respectivamente uma t de Student e uma Gamma inversa.
- \rightarrow A preditiva $p(y_*|X_*)$ também é analítica (Murphy, pg. 236), sendo uma t de Student.
- Modelos não-conjugados.

Agenda

- Regressão linear iterativa Regressão linear simples Regressão linear múltipla
- Regressão linear analítica
- 3 Regressão Linear Bayesiana
- 4 Comparação Bayesiana de modelos
- **5** Tópicos adicionais
- 6 Referências

Referências bibliográficas

- Cap. 9 DEISENROTH, M. et al. Mathematics for machine learning. 2019.
- Caps. 1 e 7 MURPHY, Kevin P. Machine learning: a probabilistic perspective, 2012.
- Caps. 2 e 3 HAYKIN, Simon. Neural Networks and Learning Machines, 3ed., 2010.
- Cap. 3 BISHOP, Christopher M. Pattern recognition and machine learning, 2006.