

现有X:nxp,n是观测值的个数,p是features个数、X可以 看成为维空间的一组点.

问题:如何在尽可能保留信息的情况下,把X的维度减力? 方案: 把X投影到多维空间上去,使这nf点到投影点的 距离最小.

从少维投影到过原点的一条直线上(红线)

 \vec{x}_i 成是红线的 unit vector.

OB 的to to to \vec{x}_i \vec{y}_i \vec{x}_i \vec{y}_i $\vec{y$ 0日的生标是(层页)证

目标:希望投影过后仍然尽可能保持交的信息,信息

目标改数: $\min_{i=1}^{n} ||\vec{x}_i - (\vec{x}_i \cdot \vec{w})\vec{w}||^2$

 $\|\vec{x}_i - (\vec{x}_i \cdot \vec{w})\vec{w}\|^2 = \vec{x}_i \cdot \vec{x}_i - 2(\vec{x}_i \cdot \vec{w})^2 + (\vec{x}_i \cdot \vec{w})^2 \vec{w} \cdot \vec{w}$ $= \vec{\chi}_i \cdot \vec{\chi}_i - (\vec{\chi}_i \cdot \vec{w})^2$

 $MSE(\vec{W}) = \frac{1}{N} \sum_{i=1}^{N} ||x_i||^2 - \frac{1}{N} \sum_{i=1}^{N} (\vec{x}_i \cdot \vec{w})^2$

最小化MSE,也即最大作品(成成)2E(x)=(E(N))+ Varx.

$$\frac{1}{N}\sum_{i=1}^{N}(\vec{\chi}_{i}\cdot\vec{w})^{2}=\left(\frac{1}{N}\sum_{i=1}^{N}(\vec{\chi}_{i}\cdot\vec{w})\right)^{2}+\left(\sqrt{2}(\vec{\chi}_{i}\cdot\vec{w})\right)^{2}$$

 \vec{x}_i 已作标准化,所以第一项为0 = [n \in]" \mathbf{x}_i 中心化,X均值为0,十二 \mathbf{x}_i = 0, \mathbf{x}_i \in $\{\mathbf{x}_i', \mathbf{x}_i^2, ..., \mathbf{x}_i^p\}$

若搜影到多维空间

$$\frac{1}{|\vec{x}|} (\vec{x}_1 \cdot \vec{w}_1) \vec{w}_1, \quad \vec{w}_1 \geq 24 + 360 + 360 + 460 + 560 + 560 + 36$$

 $\vec{w}_i^{\mathsf{T}} \sqrt{\vec{w}_i} - \lambda(\vec{w}_i \cdot \vec{w}_i^{\mathsf{T}} - 1)$ Lagrange: