IN THE CLAIMS:

- 1. Canceled
- 2. (Currently Amended) A compound of the formula I

$$R^6$$
 Z CH Y N R^3 (I)

where R is formyl, tetrazole, nitrile, a COOH group or a radical which can be hydrolyzed to COOH, and the other substituents have the following meanings:

- R^2 <u>is hydrogen</u>, hydroxyl, NH_2 , $NH(C_1-C_4-alkyl)$, $N(C_1-C_4-alkyl)_2$, halogen, $C_1-C_4-alkyl$, $C_1-C_4-alkyl$, $C_1-C_4-alkoxy$, $C_1-C_4-alkoxy$, $C_1-C_4-alkyl$, $C_1-C_4-alkyl$
- is CR¹⁴ which forms together with CR³ a 5- or 6-membered ring which is unsubstituted or substituted by one or two C₁-C₄-alkyl groups and which ring consists of methylene and/or ethenylene members and one member selected from the group consisting of oxygen, sulfur, NH or N(C₁-C₄-alkyl), or CR¹⁴ which forms together with CR³ a 6-membered ring which is unsubstituted or substituted by one or two C₁-C₄-alkyl groups and which ring consists of methylene and/or ethenylene members;
- R^3 is linked to CR^{14} as indicated above to give a 6-membered ring; R^4 and R^5 , which are identical or different, are

phenyl or naphthyl, which are unsubstituted or substituted by one or more of the following radicals: halogen, nitro, cyano, hydroxyl, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, phenoxy, C_1 - C_4 -alkylthio, amino, C_1 - C_4 -alkylamino or C_1 - C_4 -dialkylamino; or phenyl or naphthyl, which are connected together in the ortho position via a direct linkage, a methylene, ethylene or ethenylene group, an oxygen or sulfur atom or an S_{02} , NH or N-alkyl group; or C_3 - C_7 -cycloalkyl;

- hydrogen, C₁-C₈-alkyl, C₃-C₆-alkenyl, C₃-C₆-alkynyl or C₃-C₈-cycloalkyl, where each of these radicals are unsubstituted or substituted one or more times by: halogen, nitro, cyano, C₁-C₄-alkoxy, C₃-C₆-alkenyloxy, C₃-C₆-alkynyloxy, C₁-C₄-alkylthio, C₁-C₄-haloalkoxy, C₁-C₄-alkoxycarbonyl, C₃-C₈-alkylcarbonylalkyl, C₁-C₄-alkylamino, di-C₁-alkylamino, phenyl or phenoxy which is substituted one or more times by halogen, nitro,
- cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy or C₁-C₄-alkylthio;

phenyl or naphthyl, each of which is unsubstituted or substituted by one or more of the following radicals: halogen, nitro, cyano, hydroxyl, amino, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, phenoxy, C₁-C₄-alkylthio, C₁-C₄-alkylamino, C₁-C₄-dialkylamino or dioxomethylene or dioxoethylene; a five or six-membered heteroaromatic moiety containing one to three nitrogen atoms and/or one sulfur or oxygen atom, which can carry one to four halogen atoms and/or one or two of the following radicals: C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-haloalko

ABB10010P0114US

 C_4 -alkylthio, phenyl, phenoxy or phenylcarbonyl, it being possible for the phenyl radicals in turn to carry one to five halogen atoms and/or one to three of the following radicals: C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy and/or C_1 - C_4 -alkylthio;

- Y <u>is sulfur or oxygen or a single bond; and</u>
- Z <u>is</u> sulfur, oxygen, -SO- or -SO₂-.
- 3. Canceled
- 4. Canceled
- 5. Canceled
- 6. Canceled
- 7. Canceled
- 8. Canceled
- 9. Canceled
- 10. Canceled
- 11. Canceled
- 12. (Previously Presented). The compound of claim 2 where R² and R³ each are methyl.

- 13. (Previously Presented). The compound of claim 2 wherein R⁶ is methyl.
- 14. (Previously Presented). The compound of claim 2 wherein R² and R³ each are methoxy.
- 15. (Previously Presented). The compound of claim 2 wherein R², R³ and R⁶ each are methyl.
- 16. (Previously Presented). The compound of claim 2 wherein R^2 and R^3 each are methoxy and R^6 is methyl.
- 17. (Previously Presented). The compound of claim 2 wherein R is CO_2H , R^2 , R^3 and R^6 each are methyl, R^4 and R^5 each are phenyl and Y and Z each are oxygen.
- 18. (Previously Presented). The compound of claim 2 wherein R is CO_2H , R^2 and R^3 each are methoxy, R^4 and R^5 each are phenyl, R^6 is methyl and Y and Z each are oxygen.
- 19. (New) A compound having the formula:

X is CH;

Y is oxygen;

Z is oxygen;

```
R is CO<sub>2</sub>H;

R<sup>2</sup> is methyl;

R<sup>3</sup> is methyl;

R<sup>4</sup> is phenyl;

R<sup>5</sup> is phenyl; and

R<sup>6</sup> is methyl,
```

and salts thereof.

- · 20. (New) The compound of formula I as defined in claim 19, wherein the compound is further defined as an optically active enantiomer.
 - 21. (New) The compound of claim 20, wherein the enantiomer is the S enantiomer, and salts thereof.
 - 22. (New) The compound of claim 20, wherein the enantiomer is the pure form of the S enantiomer.
 - 23. (New) The compound of claim 20, wherein the enantiomer is the R enantiomer, and salts thereof
 - 24. (New) The compound of claim 20, wherein the enantiomer is the pure form of the R enantiomer.
 - 25. (New) A pharmaceutical formulation comprising a compound having the formula:

$$R_6$$
— Z — CH — Y — X
 R_5
 R

X is CH;

Y is oxygen;

Z is oxygen;

R is CO₂H;

R² is methyl;

R³ is methyl;

R⁴ is phenyl;

R⁵ is phenyl;

R⁶ is methyl; and

pharmaceutically acceptable salts thereof,

dispersed in a pharmaceutical buffer, diluent or excipient.

- 26. (New) The formulation of claim 25, formulated for delivery via oral, parenteral, subcutaneous, intravenous, intramuscular, intraperitoneal, sublingual, transdermal or nasopharyngeal routes.
- 27. (New) The formulation of claim 25, wherein the compound is in a solid form.
- 28. (New) The formulation of claim 25, wherein the compound is in a liquid form.

ABB10010P0114US

- 29. (New) The formulation of claim 25, wherein the compound is formulated as an uncoated tablet, as a coated tablet, a capsule, a powder, a granule, a suppository, a solution, a colloid, an ointment, a cream, a vapor or a spray.
- 30. (New) The formulation of claim 25, further comprising one or more of a tablet binder, a filler, a preservative, a tablet disintegrant, a flow regulator, a plasticizer, a wetting agent, a dispersant, an emulsifier, a solvent, a release-slowing agent, an antioxidant, or a propellant gas.
- 31. (New) The formulation of claim 25, wherein the compound is an optically active enantiomer.
- 32. (New) The formulation of claim 31, wherein the enantiomer is the S enantiomer, and salts thereof.
- 33. (New) The formulation of claim 13, wherein the enantiomer is the pure form of the S enantiomer.
- 34. (New) The formulation of claim 31, wherein the enantiomer is the R enantiomer, and salts thereof.
- 35. (New) The formulation of claim 31, wherein the enantiomer is the pure form of the R enantiomer.
- 36. (New) A compound of the formula:

$$R_6$$
— Z — C — C H— Y — X
 R_5
 R

X is CH;

Y is oxygen;

Z is oxygen;

R is CO₂H;

R² is methoxy;

R³ is methoxy;

R⁴ is phenyl;

R⁵ is phenyl;

R⁶ is methyl,

and salts thereof.

- 37. (New) The compound of claim 36, wherein the compound is an optically active enantiomer.
- 38. (New) The compound of claim 37, wherein the enantiomer is the S enantiomer, and salts thereof.
- 39. (New) The compound of claim 37, wherein the enantiomer is the pure form of the S enantiomer.

- 40. (New) The compound of claim 37, wherein the enantiomer is the R enantiomer, and salts thereof
- 41. (New) The compound of claim 37, wherein the enantiomer is the pure form of the R enantiomer.
- 42. (New) A pharmaceutical formulation comprising a compound having the formula:

$$R_6$$
— Z — C — C H— Y — X
 R_5
 R

X is CH;

Y is oxygen;

Z is oxygen;

R is CO₂H;

R² is methoxy;

R³ is methoxy;

R⁴ is phenyl;

R⁵ is phenyl;

R⁶ is methyl; and

pharmaceutically acceptable salts thereof,

dispersed in a pharmaceutical buffer, diluent or excipient.

- 43. (New) The formulation of claim 42, formulated for delivery via oral, parenteral, subcutaneous, intravenous, intramuscular, intraperitoneal, sublingual, transdermal or nasopharyngeal routes.
- 44. (New) The formulation of claim 42, wherein the compound is in a solid form.
- 45. (New) The formulation of claim 42, wherein the compound is in a liquid form.
- 46. (New) The formulation of claim 42, wherein the compound is formulated as an uncoated tablet, as a coated tablet, a capsule, a powder, a granule, a suppository, a solution, a colloid, an ointment, a cream, a vapor or a spray.
- 47. (New) The formulation of claim 42, further comprising one or more of a tablet binder, a filler, a preservative, a tablet disintegrant, a flow regulator, a plasticizer, a wetting agent, a dispersant, an emulsifier, a solvent, a release-slowing agent, an antioxidant, or a propellant gas.
- 48. (New) The formulation of claim 42, wherein the compound is an optically active enantiomer.
- 49. (New) The formulation of claim 48, wherein the enantiomer is the S enantiomer, and salts thereof.
- 50. (New) The formulation of claim 48, wherein the enantiomer is the pure form of the S enantiomer.
- 51. (New) The formulation of claim 48, wherein the enantiomer is the R enantiomer, and salts thereof.

52. (New) The formulation of claim 48, wherein the enantiomer is the pure form of the R enantiomer.