Definície z ALGEBRY

- Hovoríme, že ceC je koreňom polynómu $p_n(x)=a_0+a_1x+...+a_nx^n$, ak platí $p_n(c)=0$
- Ak polynóm $p_n(x)=(x-c)^k \cdot q_{n-k}(x)$ je polynóm stupňa n-k a $q_{n-k}(c)\neq 0$ hovoríme, že c je k-násobný koreň polynómu $p_n(x)$
- Hovoríme, že polynóm p(x) je ireducibilný nad poľom P, ak neexistujú polynómy $p_1(x)$, $p_2(x)$ stupňa aspoň prvého aby sa dalo napísať $p(x) = p_1(x) \cdot p_2(x)$
- Nech p(x), q(x) sú 2 polynómy. Funkciu $f(x) = \frac{p(x)}{q(x)}$ definovanú pre každé x, pre ktoré je q(x) \neq 0 nazveme racionálnou funkciou. Nech stupeň {p(x)}=m, stupeň {q(x)}=n. Ak m < n, hovoríme, že je rýdzoracionálna funkcia.
- Funkcie tvaru A/(x-a)k alebo Mx+N/(x²+bx+c)k ,kde
 A, M, N, a, b, c reálne čísla
 k prirodzené čísla
 (x²+bx+c) nemá reálne korene ((b²-4ac)<0), nazývame elementárnymi zlomkami =parciálne zlomky
- Nech A je matica
 - Ak m=n, hovoríme, že A je štvorcová matica stupňa n
 - Ak $a_{ij}=0$ pre všetky i=1,2,...,m a j=1,2,...,n, hovoríme, že A je nulová matica $=0_{mxn}$, 0_{mn} , 0
 - Ak v štvorcovej matici A stupňa n je a_{ij}=0 pre všetky i≠j, i=1,2,...,n a j=1,2,...,n, hovoríme, že A je diagonálna matica
 - Ak v štvorcovej matici A stupňa n je $a_{ii}=1$ a $a_{ij}=0$ pre všetky $i \neq j$, i=1,2,...,n a j=1,2,...,n, hovoríme, že A je jednotková matica = E
 - Ak v štvorcovej matici A stupňa n je $a_{ij}=0$ pre všetky i>j, i=1,2,...,n a j=1,2,...,n, hovoríme, že A je horná trojuholníková matica
 - Ak v štvorcovej matici A stupňa n je $a_{ij}=0$ pre všetky i<j, i=1,2,...,n a j=1,2,...,n, hovoríme, že A je dolná trojuholníková matica
 - Ak v štvorcovej matici A stupňa n je $a_{ij}=a_{ij}$ pre všetky i=1,2,...,n a j=1,2,...,n, hovoríme, že A je symetrická matica
 - Ak v štvorcovej matici A stupňa n je a_{ij}≠a_{ij} pre všetky i=1,2,...,n a j=1,2,...,n, hovoríme, že A je antisymetrická matica (v antisymetrickej matici musí byť a_{ii}=0 pre všetky i=1,2,...,n)
- Nech A=(a_{ij}) je matica typu $m \times n$, B=(b_{ij}) je matica typu $n \times p$. Súčinom matíc A a B rozumieme maticu C=(c_{ij}) typu $m \times p$ s prvkami $c_{ij} = \sum_{k=1}^{n} a_{ik}$. b_{kj} pre všetky i=1,2,...,m a j=1,2,...,p
- Nech A je štvorcová matica stupňa n. Potom k-tou mocninou matice A rozumieme štvorcovú maticu stupňa k, ktorú označujeme A^k : $A^k = \begin{cases} E & k = 0 \\ A^{k-1}A & k = 1,2, \dots \end{cases}$
- Ak pre i<j, i,je{1,2,...,n} je π(i)>π(j), hovoríme, že dvojica (i,j) predstavuje inverziu k permutácii π
- Znamienko permutácie π je číslo $zn\pi=(-1)^k$, kde k je počet inverzií v permutácií π
- Determinantom danej štvorcovej matice A=(a_{ij}) stupňa n nad číselným poľom nazývame číslo: det A = $\sum_{\pi \in \Pi} zn\pi$. $a_{1\pi(1)}$. $a_{2\pi(2)}$ $a_{n\pi(n)}$

- Nech A=(a_{ij}) je štvorcová matica stupňa n a nech matica A_{ij} je štvorcová matica stupňa n-1, ktorá vznikla z matice A vynechaním jej i-teho riadku a j-teho stĺpca. Číslo A_{ij}=(-1)^{i+j}.lA_{ij}l sa nazýva algebraický doplnok prvku a_{ij}
- Vedúci prvok nenulového riadku matice A, ktorá má prvky A=(a_{ij})_{mxn} je prvý nenulový prvok tohto riadku
- Hovoríme, že matica A=(a_{ij})_{mxn} je v stupňovitom tvare ak:
 - 1. Každý nenulový riadok sa nachádza nad každým nulovým nulovým riadkom
 - 2. Ak a_{ii} a a_{kl} sú vedúce prvky i-teho a k-teho riadku a i<k, j<l
- Elementárnymi riadkovými operáciami na ľubovoľnej matici A rozumieme každú z nasledujúcich operácií:
 - 1. vzájomná výmena riadkov
 - 2. vynásobenie niektorého riadku nenulovým skalárom (konštantou)
 - 3. pripočítanie nenulového k-násobku niektorého riadku matice inému riadku matice
- Hodnosť matice A je počet nenulových riadkov matice B, ktorá je v stupňovitom tvare a ktorá je s maticou A riadkovo ekvivalentná = h(A)
- Nech A je štvorcová matica stupňa *n*, hovoríme, že matica A je regulárna, ak h(A)=n. Matica A je singulárna ak h(A)<n. Číslo d=n-h(A) sa nazýva defekt (nulita) matice
- Nech A je štvorcová matica stupňa n. Nech existuje štvorcová matica B stupňa n taká, že
 A.B=B.A=E. Potom hovoríme, že matica B je inverzná matica k matici A. Značíme A⁻¹
- Maticu (A_{ji}) nazývame adjungovanou maticou k matici A=(a_{ij}), kde A_{ij} sú algebraické doplnky k prvkom a_{ii}. Označujeme adjA=(A_{ii})
- Binárnou operáciou na neprázdnej množine M≠{0} rozumieme zobrazenie ○: MxM -> M
- Nech M je neprázdna množina M≠{0} a o je na nej definovaná BO. Budeme hovoriť že BO o je komutatívna, ak pre ∀a,beM: aob = boa. Operácia o je asociatívna, ak pre ∀a,b,c eM platí: (aob)oc = ao(boc)
- Nech M je neprázdna množina a o,□ sú BO na nej definované. Budeme hovoriť, že BO o je distributívna na BO □ ak je distributívna zľava aj sprava:
 ao(b□c) = (aob) □ (aoc) ∧ (b□c)oa = (boa) □ (coa)
- Algebraická štruktúra je neprázdna množina a na nej definované BO spolu s ich vlastnosťami
- Grupoid je AŠ=(M, ○), kde M≠{0} a je na nej BO
- Pologrupa je grupid, ktorého operácia je asociatívna
- Nech (M, \circ) je grupoid a nech e ε M. Hovoríme, že e je neutrálny prvok ak pre \forall a ε M: $e\circ a = a\circ e = a$
- Nech (M, O) je grupoid. Nech existuje neutrálny prvok eeM a nech a,a_seM. Hovoríme, že a_s je symetrizačný prvok k prvku a: a_sOa = aOa_s = e
- Monoid je pologrupa, v ktorej existuje neutrálny prvok
- Grupa je monoid, v ktorom ku každému prvku ∀a∈M existuje a₅∈M
- Nech M≠{0} a sú na nej definované operácie. Algebraická štruktúra (M, ⊕,⊗) sa nazýva okruh ak:
 - 1. (M, 🛨) je komutatívna grupa
 - 2. (M, 🗷) je pologrupa
 - 3. \bigotimes je distributívna vzhľadom na \bigoplus pre \forall a,b,c \in M:
 - $a(x)(b(x)) = (a(x)b)(x)(a(x)c) \wedge (b(x)c)(x)a = (b(x)a)(x)(c(x)a)$

- Nech $(M, \bigoplus, \bigotimes)$ je okruh. Hovoríme, že $(M, \bigoplus, \bigotimes)$ je <mark>teleso</mark>, ak algebraická štruktúra $(M-\{0_0\}, \bigotimes)$ je grupa.
 - Ak naviac operácia 🕱 je komutatívna, hovoríme o komutatívnom telese = poli
- Nech (M, \oplus, \bigotimes) je okruh. Prvky a,b \in M, také že a \neq 0 $_0$, b \neq 0 $_0$ nazývame delitele nuly okruhu, ak platí: a \bigotimes b=0 $_0$. Komutatívny okruh, ktorý nemá delitele nuly nazývame obor integrity
- Nech P=(P,+,.) je pole s jednotkovým prvkom 1_p. Nech V=(V,+) je komutatívna grupa. Nech . je vonkajšia BO, ktorá ∀teP a ∀veV priradí t.veV. Hovoríme, že (V,+,.) je vektorový priestor nad poľom P ak platí:

```
(t+s).v = t.v + s.v

(t.s).v = t.(s.v)

t.(u+v) = t.u + t.v

1_p.v = v
```

- Nech (V,+,.) je vektorový priestor definovaný nad poľom P a nech neprázdna množina S je podmnožinou množiny V. Hovoríme, že (S,+,.) je podpriestorom vektorového priestoru (V,+,.) ak platí:
 - 1. ∀u,veS -> u+teS
 - 2. $\forall t \in P, \ \forall v \in S \rightarrow t. v \in S$
- Hovoríme, že vektory $v_1, v_2, ..., v_n$ sú lineárne nezávislé ak z rovnosti $c_1v_1+c_2v_2+...+c_nv_n=0$ vyplýva $c_1=0$, $c_2=0$,..., $c_n=0$
- Hovoríme, že vektory $v_1, v_2, ..., v_n$ sú lineárne závislé ak $c_1v_1+c_2v_2+...+c_nv_n=0$ a existuje aspoň jedno $c_i\neq 0$
- Množinu β={b₁,b₂,...,b_n} vektorov vektorového priestoru V(P) nazývame bázou vektorového priestoru ak:
 - 1. vektory b₁,b₂,...,b_n sú lineárne nezávislé
 - 2. každý vektor aeV(P) možno napísať ako lineárnu kombináciu vektorov b₁,b₂,...,b_n
- Nech (V,+,.) je vektorový priestor definovaný nad poľom P. Nech β je jeho báza. Počet prvkov bázy nazývame dimenziou (rozmerom) vektorového priestoru V(P) = dim V(P)
- Hodnosť matice A je dimenzia vektorového podpriestoru, ktorý k nej prislúcha h(A)=dim V(P)
- Nech A je štvorcová matica stupňa n nad poľom R. Determinant det(A-λE) nazývame charakteristickým polynómom matice A
- Nech A je štvorcová matica stupňa n nad poľom R. Rovnicu $\det(A-\lambda E)=b_0\lambda^n+b_1\lambda^{n-1}+...+b_{n-1}\lambda+b_0$ nazývame charakteristickou rovnicou matice A. Korene charakteristickej rovnice matice A nazývame vlastné hodnoty matice A
- Nech λ₀ je vlastná hodnota matice A. Stĺpcový vektor x≠o, pre ktorý platí: (A-λ₀E)x≠o, nazývame vlastným vektorom prislúchajúcim vlastnej hodnote λ₀
- Nech V(P) je vektorový priestor s konečnou dimenziou n. Nech β =($b_1,b_2,...,b_n$) je báza vektorového priestoru V(P) a xeV(P). Nech x= $t_1b_1+t_2b_2+...+t_nb_n = \sum_{i=1}^n t_ib_i$. Prvky $t_1, t_2,...,t_n$ nazývame súradnice vektora x v báze β