MULTIPLEXORES

GRUPO: 7

ALUMNOS: JAVIER PÉREZ GUTIÉRREZ.

SAMUEL ECHEVRRÍA ACEREDA.

PABLO COSÍO.

Definición:

Un multiplexor es un circuito digital que selecciona una de entre varias entradas de datos Ii y lleva su valor lógico a la única salida Z del circuito. La selección de los datos se realiza mediante una o varias entradas de control Sj. La codificación binaria resultante de las entradas S indica el índice de la entrada I que pasa a la salida. Existiendo una entrada de habilitación (enable),la cual pone en funcionamiento el circuito,y trabaj en bajo áctivo.

ESQUEMA BÁSICO DEL FUNCIONAMIENTO DE UN MULTIPLEXOR 2 INPUT-MUX

***En el esquema se puede apreciar que existen dos entradas posibles,y el valor que tenga la salida depende de la señal de control SEL.

ESQUEMA DE MULTIPLEXORES

Su funcionamiento es como sigue:

Con la combinación binaria presente en las entradas de selección, escogemos la entrada de información cuyo valor se va a transmitir a la salida.

Diseño un multiplexor de 2 canales de entrada.

1°) <u>Se procede a la implementación de una tabla de verdad, en la cual se aprecian los valores de la salida dependiendo de el valor de la señal de control y de la señal de habilitación(enable):</u>

Ejemplos de explicación:

- 1-. Si el Enable está en alto activo, el circuito está apagado.
- 2-.Si el Enable está en bajo activo,el circuito funciona y selecciona la entrada atribuida a la señal de control.

Enable	D_1	D_0	S_0	Z
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	Χ	Χ	Χ	0

2º) Minimización mediante mapas de Karnaugh:

$$Z = \overline{I} D_1 S_0 + \overline{I} D_0 \overline{S_0}$$

Función en forma SOP:

 $\sum (2,5,6,7)$

3º) Diseño del circuito y simulación mediante puertas lógicas.

4°) Programación de un multiplexor en lenguaje VHDL

```
library ieee;
use.ieee.std_logic_1164.all;
entity multiplexor4to1 is
port (I: in std_logic_vector(3 downto 0); ← Entradas de datos
      S: in std_logic_vector(1 downto 0); ← Entradas de selección
     E: in std_logic;
                                            ← Entrada de habilitación
                                            ← Salida
     Z: out std_logic);
end mux4:
architecture multiplexor of multiplexor4to1 is
begin
process (I, S, E)
begin
                                          Si el enable está desactivado.la
                                      ← entrada directamente es 0
      if E = '1' then
        Z \le 0:
                                       **El enable debe ser bajo activo
else
case S is
     when "00" => Z \le I(0);
     when "01" => Z \le I(1);
      when "10" => Z \le I(2);
     when "11" => Z \le I(3);
      when others \Rightarrow Z \iff I(3);
end case;
end if;
end process;
end multiplexor;
```


OBTENCIÓN DE UN MULTIPLEXOR MEDIANTE PUERTAS LÓGICAS

Si se desea contruir un multiplexor, con las características que se quiera, se puede hacer un diseño mediante tablas de verdad y a continuación, implementarlo mediante puertas lógicas:

2-INPUT MUX

S	Z
0	10
1	11

$$Z = \overline{SO}IO + SOI1$$

4-INPUT MUX

S0	S1	Z
0	0	10
0	1	I 1
1	0	12
1	1	13

$$Z = \overline{S1} \overline{S0} \overline{10} + S1 \overline{S0} \overline{11} + \overline{S1} \overline{S0} \overline{12} + S1 \overline{S0} \overline{13}$$

Problema:

Dada la siguiente tabla de verdad, construir un multiplexor de 8 canales implementado puertas lógicas:

8-INPUT MUX

S0	S1	S2	Z
0	0	0	10
0	0	1	11
0	1	0	12
0	1	1	13
1	0	0	14
1	0	1	15
1	1	0	16
1	1	1	17

OBTENCIÓN DE UN MULTIPLEXOR MEDIANTE COMBINACIONES DE MULTIPLEXORES

Contruccion de un multiplexor de 4 canales combinando dos multiplexores de dos canales:

La explicación es la siguiente:

Cada uno de los multiplexores 2-to-1 selecciona una de las dos entradas disponibles dependiendo del valor de la señal de control.

$$Z = \overline{S3}*(\overline{S1}*IO + S1*I1) + S3*(\overline{S0}*I2 + SO*I3)$$

Multiplexores

Desarrollo de N-input MUXs en base a M-input MUX (N > M)

Desarrollo de 8-input MUXs

**Desarrollo de un mutiplexor de 8 canales mediante combinaciones de multiplexores de 4-to-1 y 2-to-1.

MULTIPLEXORES COMERCIALES

2 channel multiplexer MODELO: 74LCX157

Features

- 5V tolerant inputs
- High speed:
 - t_{PD} = 6.0ns (Max) at V_{CC} = 3V
- Power down protection on inputs and outputs
- Symmetrical output impedance:
 - II_{OH}I = I_{OL} = 24mA (Min) at V_{CC} = 3V
- PCI bus levels guaranteed at 24mA
- Balanced propagation delays:
 - t_{PLH} ≅ t_{PHL}
- Operating voltage range:
 - V_{CC} (Opr) = 2.0V to 3.6V
- Pin and function compatible with 74 series 157
- Latch-up performance exceeds 500mA (JESD 17)
- ESD performance:
 - HBM > 2000V (MIL STD 883 method 3015); MM > 200V

Truth table

Table 2. Truth table

Inputs			Output	
STROBE	SELECT	Α	В	Y
Н	X	X	X	L
L	L	L	X	L
L	L	Н	X	Н
L	Н	X	L	L
L	Н	X	Н	Н

X: Do not care

Logic diagram

PROBLEMAS:

1.-Diseño de un multiplexor de 5 canales:

Combinando multiplexores como hemos visto anteriormente, podemos fácilmente construir un multiplexor de 5 canales.

