§ 8 Zuvéxerd Kar épld

- @ Ngord6y: 1E6τω A⊆IR, Xo € A κου f= A → IR.
 - (1) AV TO XO EÍVAI MEMOVIMENO EGMENO TOU A, TOTE M F EÍVAI GWEXTIS 6TO XO.
 - [ii] Av x_0 6-6- t_0 u A t_0 te η f sivel Givex $\dot{\eta}$ s 670 x_0 du $l_{im}f(x) = f(x_0)$ $x \to x_0$ [duv t_0 in Asupicá ópid unapxou xai isovutai μ e $f(x_0)$].
- οΠαρατήρηση (Είξη διωέχειας): Έστω $A \subseteq IR$ μη κενό, $X_0 \in A$ 6-6- του A από αριστερά και δεξιά, και $f = A \rightarrow IR$ αδωέχης στο X_0 . Τότε υπάρχουν τρία ενδεχόμενα:
 - (i) Aprily activities. It is a newlike opid undexous ten lim $f(x) = \lim_{x \to x_0^+} f(x) = l \in \mathbb{R}$ opus of timing tys of 600 to Sev evols o l.
 - (ii) AGNÉXER d'ESTONS: To n'AEUPINO à por lunf(x) Kor lin f(x) unàpxon x x x x x to x x x x to
 - H Starlopá lim f(x) lim f(x) Eivar to "à Aya" Tys f 670 Xo.
 - Im Abwexed B' Essous: Kánon dnó ta n'Aerpirá òpid try f Kathis $x \to x_0$ \overline{ser} unixf xe.
- Θεωρημα (αντίστροιθης σωαρτησης): Έστω $I \subseteq IR$ διάστημα και $f = I \rightarrow IR$ 1-1 και σωεχής. Τότε η f είναι γνησίως μονότονη. Επιπλέον, η $f^{-1} = f(I) \rightarrow IR$ (με f(I) διάστημα) είναι σωεχής και έχει την ίδια μονοτονία με την f.

§ 9 Norapithniký svidetysky

TESTUR $d \in [0, 100)$ pre $d \neq 1$ kay $f_{\alpha} = 1R \rightarrow [0, +00)$ pre $f_{\alpha}(x) = \alpha^{\chi}$.

The η for eight constant participating providing providing 1 - 1 kay ent.

Opizeral homóv η aviticipatin condition $f_{\alpha}^{-1} = (0, +00) \rightarrow 1R$ KU to rephysópevo Demenda Seixver ou η for eival conexás.

Europeodiforas tan for pre loga (hopepelpuna condition pe Bása a).

The fe pre exp kall the f_{α}^{-1} pre f_{α}^{1} pre f_{α}^{-1} pre f_{α}^{-1} pre f_{α}^{-1} pre f_{α}

· Babillés i Sistytes

-> taro, txEIR: dx = ex. lnd

> td>0, d+1, tx70 = logd x = lnx

> +d>0, d+1, +xiy>0 = logd(x.y) = logd x + logd y

> AV 0 ZZ Z1, DI XX KAI log X JUMETUS PTIVOUES

Kd) $\lim_{X \to -\infty} d^{X} = +\infty$, $\lim_{X \to +\infty} d^{X} = 0$

Evis lim log $X = +\infty$, lim log $X = -\infty$ $X \to 0^+$ $X \to +\infty$

Av d > 1, or d^{\times} Kar log d^{\times} Typhiws differences

Ker lim $d^{\times} = 0$, lim $d^{\times} = +\infty$ Evin lim $\log_d X = -\infty$, lim $\log_d X = +\infty$ $x \to -\infty$ $\log_d X = -\infty$, lim $\log_d X = +\infty$

$$AZK:N_0D_0$$
. (i) $d^X = e^{X_0} \ln d$, $\forall d>0$, $\forall x \in \mathbb{R}$
(ii) $\log_d X = \frac{\ln x}{\log x}$, $\forall d>0$, $d\neq 1$, $\forall x > 0$
 $Liii$) $\log_d (X_0 y) = \log_d x + \log_d y$, $\forall d>0$, $d\neq 1$, $\forall x, y > 0$.

$$\frac{NGGY}{}: (i) \quad e^{\times \cdot ln \lambda} = \left(e^{ln \lambda}\right)^{\times} = \lambda^{\times}$$

(ii) 'Equal
$$x>0$$
, $x\neq 1$ Kai $x>0$. Denoting $\int_{x=x^2}^{y} \ln x = y$ (iii) $\int_{x=x^2}^{y} \ln x = y$

And to (i) Exours
$$x = e^y = a^z = e^z \ln a$$
 $\Rightarrow y = z \ln a \Rightarrow z = \frac{y}{\ln a}$
 $\Rightarrow \log_a x = \frac{\ln x}{\ln a}$

(iii) EGW 270, 2 # 1 Kdi
$$x_{1}y > 0$$
. Détouper $\begin{cases} log_{\alpha} x = \widetilde{x} \iff x = \alpha^{\widetilde{x}} \\ log_{\alpha} y = \widetilde{y} \iff y = e^{\widetilde{y}} \end{cases}$

Ken Exouple of
$$\log_{\alpha}(x,y) = x, y = \alpha^{\chi}, \alpha^{\chi} = \alpha^{\chi} + \tilde{y}$$

$$\Rightarrow \log_{\alpha}(x,y) = \tilde{\chi} + \tilde{y} = \log_{\alpha} x + \log_{\alpha} y$$

Alfor f(x) = u < w < v = f(y), underset $z \in [x_1y]$ where f(z) = w. Alfor $z \in I$, expense for $w = f(z) \in f(I)$ ker and to options to $v \in I$ find $v \in I$ for $v \in I$

AEK: D.o. dv n f: [2,18] -> [x18] Erval GWEXTHS, TOTE JXOE[A]B]
T.W. f(x0) = xo.

Must: Av $f(x) = \alpha$ if $f(B) = \beta$ Exouple to Sythius you $x_0 = \alpha$ if $x_0 = \beta$.

You determine do now on $f(\alpha) > \alpha$ is $f(\beta) < \beta$. Ensure opijouple ty sweety our property $h = [\alpha, \beta] \rightarrow iR$ he h(x) = f(x) - x. Exouple $h(\alpha) > 0$ such $h(\beta) < 0$, when $f(x) = x_0$.

 $\frac{A \Xi K}{} = {}^{1} E G I \omega \quad f \cdot g \cdot h = IR \rightarrow IR \quad \mu \Xi \quad f(x) = \int_{Z}^{X^{2}} dv \quad X \neq 0$ $g(x) = L \times J \quad \alpha K \Xi \rho \Delta IO \quad \mu \Xi \rho S \quad Tov \quad X \in IR \quad K \Delta I \quad h(x) = \int_{Q}^{S In} \frac{1}{X} \quad dv \quad X \neq 0$ $\sigma V \quad \Delta V$

 $M_{06} = 618 = 6 = 50$ $= 670 \times 50$ = 0.

H g éxa dewéxad d' éisors et x=0, sion lun g(x) = 0 evir lin g(x) = -1 syl to ndeprá opid undexou deld éire six six foperina.

H h Exel dewexend B' eisons er x=0 , Sion to naturent opid this er x=0 ser unapxow.

Avribroff on unapper another (x_{11}) 620 A $\mu \in x_{11} \rightarrow +\infty$, to $\pi \in A$ $\pi \in A$

AZK: 'EGTW $f:A \rightarrow IR$ KU Xo ÉVX preporméro expreso tou A. $D \cdot 0 - \eta$ f rével GVEXYYS 670 Xo.

AZK: 'EGW $f:A \rightarrow IR$ xd $x_0 \in A$ 6.6. tov A. Totally ferval $a_0 \in A$ for $a_0 \in A$ $a_0 \in A$

Mily: Avy f Eival GWEXTS 620 XO, TOTE

7670, 3570 übte XEA Ku $|X-X_0| < S \Rightarrow |f(X)-f(X_0)| < \epsilon$ Ku 4570, 3570 übte XEA Ku $0 < |X-X_0| < J \Rightarrow |f(X)-f(X_0)| < \epsilon$ ElJikotepa

Apr lim f(x) = f(x2).

Aville Pd, dv lim f(x) = f(x0), TOTE

 $\forall \xi > 0$, $\exists \xi > 0$ where $x \in A$ kou $0 < |x - x_0| < \xi \Rightarrow |f(x) - f(x_0)| < \xi$ ever $y \bowtie x = x_0$, Exorphe notions in address $|f(x) - f(x_0)| = 0$. 'April $\forall \xi > 0$, $\exists \xi > 0$ where $|f(x) - f(x_0)| < \xi$, $|f(x) - f(x_0)| < \xi$.

AZK: 'EGTW I CIR SIGETUPER IGG $f: I \to IR$ pild GWEXYS

KU 1-1 GUYÜPTYGY · N. S.O. Y $f^{-1} = f(I) \to I$ ZXZI TYV (FW

Note the proof of the proof of

AEK: 'Estan $\pm \le IR$ Sizerypa kau $f=J \rightarrow IR$ everys kau 1-1 evaptyey. N. S.O. $y f^{-1} = f(I) \rightarrow I$ evan everys.

Note $X, Y_3 - 1$, Y unobstovps or y f ever graphing autoval. Enter $y_0 \in f(I)$, $Y_0 = f(I)$ for to y_0 for every appoint f(I) (or all is negligible $x_0 \in I$. Enter f(I) for f(I) for all is equal $x_0 \in I$. Enter f(I) for f(I) fore

AZK: EGTW I SIR SIGGIAND KOU EGEW f: I -> IR MID MOVE TONY δννάρτη 6η - Δ.ο. τα πλευρικά ορια της <math>f υπαρχουν εε κάθε $χ_0 ∈ I$ και εννεπώς αν η f είναι αθυνεχής δε κάποιο $χ_06$ J, τότε παρουδιάζει άλμα 600 Xo (dewexued d' & 5005)

NUEY = Ynobitoupe xweis Blaky my germontas on y feira 203000 και ότι χο είναι ένα εδωτερικό σημείο του Ι. Ορίζουμε

 $A^{-}(x_0) = f(x) = x \in I$, $x < x_0$ f. To $A^{-}(x_0) \in \mathcal{N}_{\omega}$ μ_{f} were ken $f(x_0) \in \mathcal{N}_{\omega}$ PPLYMÉNO dno to $f(x_0)$ - Ewening opijeth o $\ell^- = \sup_{x_0 \in \mathbb{N}} A^-(x_0)$. And to $\lim_{x_0 \in \mathbb{N}} \sup_{x_0 \in$

Mpdymoti, E6th E70, dnó TOV Xapaktyp16pó TOU SUP, Unapxel X1EI

X1 < X0 ME l- E < f(X1) - 'Apx, DETOVILS S = X0 - X1 > 0

Example ou $x \in I$ ka $x \in (x_0 - 5, x_0) \Rightarrow \ell - \varepsilon < f(x_1) \le f(x) \le \ell - \ell + \varepsilon$

Syl Xy < X < X6

Syldedy lun f(x) = l-. He tor itio toono Jeixvoupe ou

 $\lim_{X\to X_0^+}f(x)=\ell^+:=\inf_{x\to X_0}f(x)=x\in I, x>x_0, y\geqslant f(x_0).$

AV TO SUO MAENPINS OPIN EÍVAN ÍGA, TOTE XYDÓ LE \$ (XO) & L+ Comne βαίνου με σα lim $f(x) = f(x_0)$ και η f είναι ενεχής ετο x_0 .

Didyspetika, y f EXEL dewexer & ELFOUS 620 Xo.