日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 2月28日

出 願 番 号

特願2003-053873

Application Number: [ST. 10/C]:

[JP2003-053873]

出 願 人
Applicant(s):

ヤマハ株式会社

2003年 9月25日

特許庁長官 Commissioner, Japan Patent Office

【書類名】 特許願

【整理番号】 C30932

【提出日】 平成15年 2月28日

【あて先】 特許庁長官 殿

【国際特許分類】 H03F 3/217

H03K 7/08

【発明の名称】 パルス幅変調増幅器

【請求項の数】 4

【発明者】

【住所又は居所】 静岡県浜松市中沢町10番1号 ヤマハ株式会社内

【氏名】 前島 利夫

【特許出願人】

【識別番号】 000004075

【住所又は居所】 静岡県浜松市中沢町10番1号

【氏名又は名称】 ヤマハ株式会社

【代表者】 伊藤 修二

【代理人】

【識別番号】 100081880

【弁理士】

【氏名又は名称】 渡部 敏彦

【電話番号】 03(3580)8464

【手数料の表示】

【予納台帳番号】 007065

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9202766

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 パルス幅変調増幅器

論理の信号を出力する第1の比較手段と、

【特許請求の範囲】

【請求項1】 三角波を生成する三角波生成手段と、

該三角波生成手段によって生成された三角波に基づいて、入力信号をパルス幅 変調増幅して出力するパルス幅変調増幅手段と

を有し、

前記三角波生成手段は、

増幅器と、該増幅器の入力端および出力端間に介装された容量とからなる積分 手段と、

前記容量に所定方向の定電流を流すことにより、前記増幅器の出力が第1の規 定電圧へ向かうように充電する第1の定電流手段と、

前記容量に前記所定方向と逆方向の定電流を流すことにより、前記増幅器の出力が、前記第1の規定電圧より低い第2の規定電圧へ向かうように放電する第2の定電流手段と、

前記第1および第2の定電流手段の定電流値を設定する定電流値設定手段と、 該定電流値設定手段によって設定される定電流値を変動させる変動手段と、 前記第1の定電流手段の定電流をオン/オフ制御する第1のスイッチ手段と、 前記第2の定電流手段の定電流をオン/オフ制御する第2のスイッチ手段と、 前記増幅器の出力電圧と前記第1の規定電圧とを比較し、該比較結果に応じた

前記増幅器の出力電圧と前記第2の規定電圧とを比較し、該比較結果に応じた 論理の信号を出力する第2の比較手段と、

前記第1の比較手段により、前記増幅器の出力電圧が上昇して前記第1の規定 電圧に到達したことが検出されたとき、または、前記第2の比較手段により、前 記増幅器の出力電圧が下降して前記第2の規定電圧に到達したことが検出された ときに、出力信号の論理を反転させるフリップフロップであって、該出力信号の 論理に応じて、前記第1および第2のスイッチ手段をオン/オフ制御するものと からなることを特徴とするパルス幅変調増幅器。

【請求項2】 前記電流設定手段は、

外部から供給されるクロックパルスの位相と、前記フリップフロップからの出力信号の位相とを比較する位相比較手段と、

該位相比較手段による比較結果に応じた方向および値の電流を生成する電流生成手段と、

該電流生成手段によって生成された電流を積分するロウパスフィルタと、

該ロウパスフィルタからの出力に応じて、前記第1および第2の定電流手段の 定電流を制御する制御手段と

からなることを特徴とする請求項1に記載のパルス幅変調増幅器。

【請求項3】 前記変動手段は、

前記ロウパスフィルタの総容量を変動させるための容量と、

該容量を前記ロウパスフィルタに接続させるか否かを制御する第3のスイッチ 手段と、

前記容量に蓄えられた電荷を放電するか否かを制御する第4のスイッチ手段と

前記フリップフロップからの出力信号の立ち上がりに同期して、出力信号の論理を反転させるDフリップフロップであって、該出力信号の論理に応じて、前記第3および第4のスイッチ手段をオン/オフ制御するものと

からなることを特徴とする請求項2に記載のパルス幅変調増幅器。

【請求項4】 前記変動手段は、

前記電流生成手段によって生成される各方向の電流の値をそれぞれ変動させる か否かを制御する第5および第6のスイッチ手段と、

前記フリップフロップからの出力信号の立ち上がりに同期して、出力信号の論理を反転させるDフリップフロップであって、該出力信号の論理に応じて、前記第5および第6のスイッチ手段をオン/オフ制御するものと

からなることを特徴とする請求項2に記載のパルス幅変調増幅器。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1\]$

【発明の属する技術分野】

本発明は、三角波を生成し、該三角波に基づいて、入力信号をパルス幅変調増幅するパルス幅変調(以下、「PWM」という)増幅器に関し、特に、出力信号に含まれ得るEMI(electromagnetic interference)を低減するようにしたPWM増幅器に関する。

[0002]

【従来の技術】

三角波を生成し、該三角波に基づいて、入力信号をPWM増幅して出力するときに、この出力信号に含まれ得るEMI(不要輻射)を低減するようにしたPW M増幅器は、従来から知られている。

[0003]

このようなPWM増幅器として、ランダム信号で周波数変調した三角波を生成し、該三角波に基づいて、入力信号をPWM増幅して出力することにより、出力信号に含まれ得るEMIを低減するようにしたものがある(たとえば、特許文献 1参照)。

[0004]

【特許文献1】

特公平7-85524号公報

[0005]

【発明が解決しようとする課題】

しかし、上記従来のPWM増幅器では、三角波をランダム信号で周波数変調するために、三角波発生回路の他に、ランダム信号発生器(発振器)と、該ランダム信号発振器からの信号によって周波数変調させるFM変調回路を備える必要があり、製造コストが増大していた。

[0006]

本発明は、この点に着目してなされたものであり、製造コストを低減させながらPWM出力に含まれ得るEMIを低減することが可能となる。PWM増幅器を提供することを目的とする。

[0007]

【課題を解決するための手段】

上記目的を達成するため、請求項1に記載のパルス幅変調増幅器は、三角波を 生成する三角波生成手段と、該三角波生成手段によって生成された三角波に基づ いて、入力信号をパルス幅変調増幅して出力するパルス幅変調増幅手段とを有し 、前記三角波生成手段は、増幅器と、該増幅器の入力端および出力端間に介装さ れた容量とからなる積分手段と、前記容量に所定方向の定電流を流すことにより 、前記増幅器の出力が第1の規定電圧へ向かうように充電する第1の定電流手段 と、前記容量に前記所定方向と逆方向の定電流を流すことにより、前記増幅器の 出力が、前記第1の規定電圧より低い第2の規定電圧へ向かうように放電する第 2の定電流手段と、前記第1および第2の定電流手段の定電流値を設定する定電 流値設定手段と、該定電流値設定手段によって設定される定電流値を変動させる 変動手段と、前記第1の定電流手段の定電流をオン/オフ制御する第1のスイッ チ手段と、前記第2の定電流手段の定電流をオン/オフ制御する第2のスイッチ 手段と、前記増幅器の出力電圧と前記第1の規定電圧とを比較し、該比較結果に 応じた論理の信号を出力する第1の比較手段と、前記増幅器の出力電圧と前記第 2の規定電圧とを比較し、該比較結果に応じた論理の信号を出力する第2の比較 手段と、前記第1の比較手段により、前記増幅器の出力電圧が上昇して前記第1 の規定電圧に到達したことが検出されたとき、または、前記第2の比較手段によ り、前記増幅器の出力電圧が下降して前記第2の規定電圧に到達したことが検出 されたときに、出力信号の論理を反転させるフリップフロップであって、該出力 信号の論理に応じて、前記第1および第2のスイッチ手段をオン/オフ制御する ものとからなることを特徴とする。

[0008]

好ましくは、請求項2に記載のパルス幅変調増幅器は、請求項1のパルス幅変調増幅器において、前記電流設定手段は、外部から供給されるクロックパルスの位相と、前記フリップフロップからの出力信号の位相とを比較する位相比較手段と、該位相比較手段による比較結果に応じた方向および値の電流を生成する電流生成手段と、該電流生成手段によって生成された電流を積分するロウパスフィルタと、該ロウパスフィルタからの出力に応じて、前記第1および第2の定電流手段の定電流を制御する制御手段とからなることを特徴とする。

[0009]

さらに、好ましくは、請求項3に記載のパルス幅変調増幅器は、請求項2のパルス幅変調増幅器において、前記変動手段は、前記ロウパスフィルタの総容量を変動させるための容量と、該容量を前記ロウパスフィルタに接続させるか否かを制御する第3のスイッチ手と、前記容量に蓄えられた電荷を放電するか否かを制御する第4のスイッチ手段と、前記フリップフロップからの出力信号の立ち上がりに同期して、出力信号の論理を反転させるDフリップフロップであって、該出力信号の論理に応じて、前記第3および第4のスイッチ手段をオン/オフ制御するものとからなることを特徴とする。

[0010]

また、好ましくは、請求項4に記載のパルス幅変調増幅器は、請求項2のパルス幅変調増幅器において、前記変動手段は、前記電流生成手段によって生成される各方向の電流の値をそれぞれ変動させるか否かを制御する第5および第6のスイッチ手段と、前記フリップフロップからの出力信号の立ち上がりに同期して、出力信号の論理を反転させるDフリップフロップであって、該出力信号の論理に応じて、前記第5および第6のスイッチ手段をオン/オフ制御するものとからなることを特徴とする。

[0011]

【発明の実施の形態】

以下、本発明の実施の形態を図面に基づいて詳細に説明する。

$[0\ 0\ 1\ 2\]$

図1は、本発明の一実施の形態に係るPWM増幅器の全体構成を示すブロック 図である。

[0013]

同図に示すように、本実施の形態のPWM増幅器は、単一電源VBBで動作するBTL (Balanced Transformer Less) 出力回路を備えた、左チャンネル (Lch)のPWM増幅部1と、同様に単一電源で動作するBTL出力回路を備えた、右チャンネル (Rch)のPWM増幅部2と、所定の周波数範囲内の三角波を発生し、この三角波をPWM増幅部1および2に供給する三角波発生回路3とに

6/

より、主として構成されている。

[0014]

LchPWM増幅部1は、音声信号である入力信号INを増幅する入力信号増 幅部11と、増幅された入力信号INのレベルと三角波発生回路3から供給され た三角波のレベルとを比較することにより、入力信号INのレベルに応じたデュ ーティ比のパルス信号を生成するPWM部12と、電界効果トランジスタPNM 1, PPM1, PNM2, PPM2と、該電界効果トランジスタPNM1, PP M1, PNM2, PPM2をドライブ (駆動) するMOS (Metal Oxicide Semi conductor) ドライバ13と、出力端子+OUT、-OUTを短絡すること等に より、電界効果トランジスタPNM1,PPM1,PNM2,PPM2に流れる 過大電流を、抵抗R1に印加される電圧値を検出することで検出する第1の過電 流検出(OCP)回路14と、電界効果トランジスタPNM1,PPM1,PN M2、PPM2に流れる上記過大電流を、抵抗R2に印加される電圧値を検出す ることで検出するとともに、後述するLCフィルタを介して接続されるスピーカ の一方の信号入力端子を、出力端子+OUT, -OUTの一方に接続したまま、 スピーカのもう一方の信号入力端子を接地したときに、スピーカに直流電流が流 れることを、上記抵抗R2に印加される負電圧を検出することで検出する第2の 過電流検出(OCP)回路15とによって構成されている。

$[0\ 0\ 1\ 5]$

そして、ドライバ13と電界効果トランジスタPNM1, PPM1, PNM2, PPM2によって、BTL出力回路を構成し、このBTL出力回路は、単一電源VBBによって動作する。

$[0\ 0\ 1\ 6]$

ドライバ13には、PWM部12からPWM出力が供給され、ドライバ13は、PWM出力を反転した反転パルスを生成し、PWM出力とその反転パルスとを出力する。

[0017]

ドライバ13から出力されるPWM出力によって、Pチャンネル電界効果トランジスタPPM1とNチャンネル電界効果トランジスタPNM1とからなる第1

のコンプリメンタリ回路が駆動され、ドライバ13から出力されるPWM出力の 反転パルスによって、Pチャンネル電界効果トランジスタPPM2とNチャンネ ル電界効果トランジスタPNM2とからなる第2のコンプリメンタリ回路が駆動 される。

[0018]

そして、第1および第2のコンプリメンタリ回路の各出力は、1つのコイルと1つのコンデンサからなる第1のロウパスフィルタ(図示せず)および1つのコイルと1つのコンデンサからなる第2のロウパスフィルタ(図示せず)にそれぞれ供給され、第1および第2のロウパスフィルタにて高周波成分が除去され、第1および第2のロウパスフィルタの出力でスピーカが駆動される。

[0019]

なお、第1および第2の過電流検出回路14, 15は、本発明に必須のものではないので、その説明は省略する。

[0020]

また、RchPWM増幅部2は、LchPWM増幅部1と同様に構成されているため、その詳細な構成は図示されていない。

[0021]

図2は、前記三角波発生回路3の詳細な回路構成の一例を示す図である。同図の三角波発生回路3は、特願2002-181772号で先に出願した、図5の三角波発生回路100に基づいて構成されているため、図5および図6を参照して、三角波発生回路100の動作の概要を説明した後に、図2を参照して、三角波発生回路3の構成および作用(動作)を詳細に説明する。

[0022]

図5において、三角波発生回路100に電源が投入されると、NANDゲート125の出力信号NFBのハイ/ロウに応じて、スイッチ素子118または119のいずれかがオンになる。いま、信号NFBがロウであり、スイッチ素子118がオンになったとすると、PチャンネルFET(電界効果トランジスタ)117からの電流(定電流)によってコンデンサ120が逐次充電され、演算増幅器121の出力電圧は、図6(a)の傾きP1のように、直線的に下降する。そし

て、演算増幅器 $1 \ 2 \ 1$ の出力電圧が VL に達すると(時刻 $t \ 1$)、コンパレータ $1 \ 2 \ 3$ の出力信号 NL Oがロウになり(図 6 (b))、これにより、NAND ゲート $1 \ 2 \ 5$ の出力信号、つまり前記信号 NFB はハイになる(図 6 (c))。

[0023]

信号NFBがハイになると、スイッチ素子118,119はそれぞれオフ/オンになり、コンデンサ120は、NチャンネルFET116の電流(定電流)によって上記方向と逆方向に放電されるので、演算増幅器121の出力電圧は上昇を開始する。演算増幅器121の出力電圧が上昇し、所定の閾値を超えると、コンパレータ123の出力信号NLOはハイに戻るが(図6(b))、NANDゲート124の出力が口ウに変化しているため、信号NFBはハイを継続し、これにより、演算増幅器121の出力電圧は、図6(a)の傾きP2のように、直線的に上昇する。

[0024]

そして、時刻 t 2で、演算増幅器 1 2 1 の出力電圧が V H に達すると、コンパレータ 1 2 2 の出力信号 N H I が口ウになり(図 6 (d))、これにより、N A N D ゲート 1 2 4 の出力信号は反転してハイになり、N A N D ゲート 1 2 5 の出力 N F B が口ウになる(図 6 (c))。信号 N F B が口ウになると、スイッチ素子 1 1 8,1 1 9 はそれぞれオン/オフになり、再び演算増幅器 1 2 1 の出力電圧は下降を開始する。演算増幅器 1 2 1 の出力電圧が下降を開始すると、コンパレータ 1 2 2 の出力信号 N H I はハイに戻る。

[0025]

以下、上述の動作が繰り返され、出力端子Toutから三角波の出力電圧Voutが得られる。そして、以上の説明から明らかなように、三角波の立ち上がり/立ち下がりの速度は、それぞれ、FET117,116に流れる電流値によって決まり、その電流値が大であれば、立ち上がり/立ち下がりが急峻な勾配の波形になる一方、その電流値が小であれば、立ち上がり/立ち下がりが緩やかな勾配の波形になる。

[0026]

次に、FET116、117に流れる電流値を決定する回路について説明する

[0027]

いま、端子Tclkに基準クロックパルスCLK(図6(e))を入力すると、位相比較器101は信号NFBの位相とクロックパルスCLKの位相を比較し、この比較結果に従って出力端子UPまたはDWからハイレベル信号をFET102または103に出力する。この結果、FET103がオンすると、そのドレインに接続されている定電流源105によって、定電流Iが、コンデンサ107、108と抵抗109からなるロウパスフィルタ(積分回路)106に流れ込む一方、FET102がオンすると、そのソースに接続されている定電流源104によって、定電流Iが、ロウパスフィルタ106から流れ出す。これにより、位相比較器101の出力に対応するアナログ信号PLLC(図6(f))がFET110のゲートに印加される。

[0028]

FET110は、このアナログ信号PLLCのレベル(電位)に基づいて、FET112に流れる電流を制御する。すなわち、信号PLLCのレベルが大になると、FET110のソースーゲートバイアスが大になって、FET112に流れる電流が減少する一方、信号PLLCのレベルが小になると、FET110のソースーゲートバイアスが小になって、FET112に流れる電流が増加する。

[0029]

そして、FET110,112および抵抗111の直列回路とFET113~115の直列回路とはカレントミラー回路を構成し、FET110,112および抵抗111の直列回路とFET117とはカレントミラー回路を構成し、さらに、FET113~115の直列回路とFET116とはカレントミラー回路を構成しているので、FET112に流れる電流の値と、FET116,117に流れる電流の値は同じになる。すなわち、FET112に流れる電流の値が変化すると、FET116,117に流れる電流の値も同様に変化するので、これにより、演算増幅器121の出力電圧の立ち上がり/立ち下がりの勾配が変化し、信号NFBの周期が変化する。

[0030]

このように、PLL (phase locked loop) 作用により、信号NFBの位相がクロックパルスCLKの位相と一致するように変化するので、信号NFBの周期がクロックパルスCLKの周期に一致するようになる。つまり、出力端子Toutから出力される三角波の周期が、基準クロックパルスCLKの周期に等しくなる。

[0031]

次に、前記図2の三角波発生回路3を説明する。

[0032]

三角波発生回路3は、上記三角波発生回路100に対して、Dフリップフロップ31、スイッチ素子32,33およびコンデンサ34を追加したものであるため、図2中、図5と同様の要素には同一符号を付し、その説明を省略する。

[0033]

図2において、Dフリップフロップ31の入力端子CKには、前記信号NFBが入力され、入力端子Dには、反転出力端子QNからの出力信号が入力され、出力端子Qは、スイッチ素子32,33に接続されている。

[0034]

スイッチ素子32,33は、たとえば、出力端子Qの出力がハイのときに、それぞれオフノオフになる一方、出力端子Qの出力がロウのときに、それぞれオフノオンになるように構成されている。そして、スイッチ素子32は、そのオンノオフに従って、コンデンサ34をコンデンサ107と並列に接続するか/しないかを切り替えることにより、FET110のゲートに接続されているコンデンサの容量を変動させる機能を営んでいる。つまり、スイッチ素子32がオンのときには、オフのときに比較して、FET110のゲートに接続されているコンデンサの容量は大きくなるので、オフのときと同じ電流値の信号PLLCが供給されたとしても、FET110のゲートに印加される電圧は変動(増加または減少)する。これにより、後述するように、三角波の傾きは変動する。他方、スイッチ素子33は、コンデンサ34に蓄えられた電荷を接地側に吸収(放電)する機能を営んでいる。つまり、スイッチ素子33を設けないと、スイッチ素子32が所定回数オン/オフを繰り返し、定電流源105からの定電流Iによってコンデン

サ34が満充電状態になった後、FET102がオン状態にならない場合には、この満充電状態は継続し、FET110のゲートに印加される電圧が変動しなくなるので、スイッチ素子33を設けて、この不具合を解消するようにしている。これにより、上記場合であっても、三角波の傾きは変動する。

[0035]

以下、以上のように構成された三角波発生回路3の動作について説明する。

[0036]

三角波発生回路3に電源が供給され、信号NFBがロウからハイに立ち上がったときに、Dフリップフロップ31の入力端子Dにロウレベル信号が入力されていると、出力端子Qからはロウレベル信号が出力され、これにより、スイッチ素子32,33はそれぞれオフ/オンになり、前記三角波発生回路100によって生成される三角波と同様の形状の三角波が生成される。

[0037]

図3は、三角波発生回路3および100によってそれぞれ生成される三角波の一例を示す図であり、(a)が三角波発生回路3によって生成される三角波を示し、(b)が三角波発生回路100によって生成される三角波を示している。

[0038]

すなわち、三角波発生回路3の上記動作により、図3 (a) 中、時間T1で示される三角波が生成される。

[0039]

次に、信号NFBが再度ロウからハイに立ち上がると、このとき、Dフリップフロップ31の入力端子Dには、ハイレベル信号が入力されているので、出力端子Qからはハイレベル信号が出力され、これにより、スイッチ素子32,33はそれぞれオン/オフになり、前述のように、コンデンサ34がコンデンサ107と並列に接続される。コンデンサ34がコンデンサ107と並列に接続されると、全体の静電容量は大きくなるので、信号PLLCとして同じ電流値のものが供給されたとしても、FET112のゲートに印加される電圧は変動する。つまり、このとき生成される三角波の傾きは、直前に生成された三角波の傾きと比較して、変化するので、たとえば、図3(a)中、時間T2で示される三角波が生成

される。

[0040]

さらに、信号NFBが再度ロウからハイに立ち上がると、このとき、Dフリップフロップ31の入力端子Dには、ロウレベル信号が入力されているので、出力端子Qからはロウレベル信号が出力され、これにより、スイッチ素子32,33はそれぞれオフ/オンになり、コンデンサ34とコンデンサ107との並列接続は解除され、コンデンサ34に蓄えられた電荷は接地側に吸収される。つまり、図3(a)中、前記時間T1の三角波と同様の形状の三角波が生成される(時間T3)。ただし、前述のように、三角波の形状は信号PLLCの電圧値によって決まり、信号PLLCの電流値は位相比較器101からの出力値、すなわち、信号NFBの位相とクロックパルスCLKの位相との比較結果(位相のずれ)に応じて変化するので、時間T3の三角波の形状は、実際には、時間T1の三角波の形状と完全には一致しない。

[0041]

以上の動作が繰り返され、出力端子Toutから、勾配の異なる三角波、つまり周期の異なる三角波が生成されて出力される。

[0042]

このような三角波に基づいて、入力信号をPWM増幅して出力すると、前記従来のPWM増幅器と同様の原理により、出力信号に含まれ得るEMIを低減することができる。そして、三角波発生回路3では、通常の三角波を生成する三角波発生回路100の構成に、Dフリップフロップ31、スイッチ素子32,33およびコンデンサ34のみを追加するだけで、勾配の異なる三角波を生成するようにしているため、前記従来のPWM増幅器と比較して、製造コストをより低減させることができる。

[0043]

次に、他の三角波発生回路について説明する。

[0044]

図4は、図2の三角波発生回路3と構成の異なる三角波発生回路3′の詳細な 回路構成の一例を示す図である。図4中、図2と同様の要素には同一符号を付し 、その説明を省略する。

[0045]

図4において、スイッチ素子32′,33′は、それぞれ、定電流源35,36を定電流源104,105に並列に接続させる/させないを切り替える機能を営むものである。なお、スイッチ素子32′,33′は、前記図2のスイッチ素子32,33と異なり、Dフリップフロップ31の出力端子Qの出力がハイのときに、ともにオンになる一方、出力端子Qの出力がロウのときに、ともにオフになるように構成されている。

[0046]

以下、以上のように構成された三角波発生回路3′の動作を説明する。

[0047]

三角波発生回路 3 に電源が供給され、信号NFBがロウからハイに立ち上がったときに、Dフリップフロップ 3 1 の入力端子Dにロウレベル信号が入力されていると、出力端子Qからはロウレベル信号が出力される。これにより、スイッチ素子 3 2 $^{\prime}$, 3 3 $^{\prime}$ はオフになって、定電流源 1 0 4 , 1 0 5 のみ有効となり、定電流源 3 5 , 3 6 は回路 3 $^{\prime}$ から切り離されるので、信号PLLCは、位相比較器 1 0 1 からの出力に応じて、定電流源 1 0 4 , 1 0 5 のうちの一方からの定電流 I となる。

[0048]

次に、信号NFBがロウからハイに再度立ち上がると、このとき、Dフリップフロップ31の入力端子Dには、ハイレベル信号が入力されているので、出力端子Qからはハイレベル信号が出力される。これにより、スイッチ素子32′,33′はオンになって、定電流源104,105に加えて、定電流源35,36も有効になるので、信号PLLCは、位相比較器101からの出力に応じて、定電流源104,35と定電流源105,36のうちの一方の組み合わせからの定電流I+iとなる。

[0049]

このような定電流 I と定電流 I + i の P L L 制御電流の変動によって、 P L L C の電圧は変動し、三角波の傾きが変動する。

[0050]

以上の動作が繰り返され、出力端子Toutから、勾配の異なる三角波、つまり周期の異なる三角波が生成されて出力される。

[0051]

このような三角波に基づいて、入力信号をPWM増幅して出力すると、前記従来のPWM増幅器と同様の原理により、出力信号に含まれ得るEMIを低減することができる。そして、三角波発生回路3では、通常の三角波を生成する三角波発生回路100の構成に、Dフリップフロップ31、スイッチ素子32′,33 および定電流源35,36のみを追加するだけで、勾配の異なる三角波を生成するようにしているため、前記従来のPWM増幅器と比較して、製造コストをより低減させることができる。

[0052]

【発明の効果】

以上説明したように、請求項1に記載の発明によれば、入力信号をパルス幅変調するための三角波の傾きを決める定電流値を、定電流値設定手段によって設定される値から変動させる変動手段を設け、その変動手段を簡単な構成で実現するようにしたので、製造コストを低減させながらPWM出力に含まれ得るEMIを低減することが可能となる。

【図面の簡単な説明】

- 【図1】 本発明の一実施の形態に係るPWM増幅器の全体構成を示すブロック図である。
 - 【図2】 図1の三角波発生回路の詳細な回路構成の一例を示す図である。
- 【図3】 図2および図5の三角波発生回路によってそれぞれ生成される三角波の一例を示す図である。
- 【図4】 図2の三角波発生回路と構成の異なる三角波発生回路の詳細な回路構成の一例を示す図である。
- 【図5】 図2の三角波発生回路の基礎として用いた三角波発生回路の回路 構成を示す図である。
 - 【図6】 図5の三角波発生回路に流れる各種信号のタイムチャートである

ページ: 15/E

【符号の説明】

1…LchPWM増幅部(パルス幅変調増幅手段),3…三角波発生回路(三角波生成手段),31…Dフリップフロップ(変動手段),32…スイッチ素子(変動手段、第3のスイッチ手段),33…スイッチ素子(変動手段、第4のスイッチ手段),32′…スイッチ素子(変動手段、第5のスイッチ手段),33′…スイッチ素子(変動手段、第6のスイッチ手段),34…コンデンサ(変動手段、容量),35,36…定電流源,101…位相比較器(位相比較手段),102,103…電界効果トランジスタ(電流生成手段),104,105…定電流源(電流生成手段),106…ロウパスフィルタ,110…電界効果トランジスタ(定電流値設定手段、制御手段),116…電界効果トランジスタ(第1の定電流手段),117…電界効果トランジスタ(第2の定電流手段),118…スイッチ素子(第1のスイッチ手段),121…演算増幅器(積分手段),122…コンパレータ(第2の比較手段),123…コンパレータ(第1の比較手段),124,125…NANDゲート(フリップフロップ)

【図1】

【図2】

【図3】

【図5】

【図6】

【要約】

【課題】 製造コストを低減させながらパルス幅変調出力に含まれ得るEM Iを低減することが可能となるパルス幅変調増幅器を提供する。

【解決手段】 位相比較器101からの比較結果は、FET102,103および定電流源104,105により、該比較結果に従ったアナログ信号PLLCに変換されて、コンデンサ107に供給される。コンデンサ107の電位は、FET110のゲートの電位となり、FET110は、このゲートの電位に応じた電流値の電流をFET112に流す。FET112に流れる電流の値と、FET116,117に流れる電流の値は同じであり、FET116,117に流れる電流の値は生成する三角波の傾きを決めるので、FET110の電位は、生成する三角波の傾きを決める。そして、Dフリップフロップ31、スイッチ素子32,33およびコンデンサ34を用いて、信号NFBの周期毎に、コンデンサ34をコンデンサ107に接続するか否かを制御することにより、同じ信号PLLCが供給されたときにも、FET110の電位が変動するようにしたので、生成される三角波の周期は変動する。このような三角波に基づいて、入力信号をパルス幅変調増幅して出力すると、出力信号に含まれ得るEMIを低減することができる。

【選択図】 図2

特願2003-053873

出願人履歴情報

識別番号

[000004075]

1. 変更年月日 [変更理由] 住 所 氏 名 1990年 8月22日 新規登録 静岡県浜松市中沢町10番1号 ヤマハ株式会社