& PREDICTION USING MACHINE LEARNING

A PROJECT SUBMISSION BY

DHARSHINI K

DIVYA DHARSHINI P

HARISHMA K

HESINI PRIYA R

ABSTRACT:

Water is one of the vital needs of all living beings. Humans need water in many daily activities like drinking, washing, bathing, cooking etc. If the quality of water is not good then it becomes unfit for drinking and other activities. The quality of water usually described according to its physical, chemical and biological characteristics. Hence it becomes necessary to find the suitability of water for drinking, irrigation and Industry purpose. The groundwater quality based on Sodium percent, Sodium Absorption Ratio and Residual Sodium Carbonate will help to identify the suitability of water for irrigation purpose. Rapid industrialization and use of chemical fertilizers and pesticides in agriculture are causing deterioration of water quality and depletion of aquatic biota. Due to use of contaminated water, human population suffers from water borne diseases. Parameters that may be tested include temperature, pH, turbidity, salinity, nitrates, TDS, Cations, Anions and phosphates.

TABLE OF CONTENTS

S.No	Title	Page No.
	Abstract	2
1	Introduction	6
	1.1 Project Overview	6
	1.2 Purpose	7
2	Literature Survey	9
	2.1 Existing Problem	9
	2.2 References	14
	2.3 Problem	17
	Statement Definition	
3	Ideation and	19
	Proposed Solution	
	3.1 Empathy Map	19
	Canvas	
	3.2 Ideation and	20
	Brain Storming	
	3.3 Proposed	20
	Solution	
	3.4 Problem	23
	Solution Fit	
4	Requirement	24

	Analysis	
	4.1 Functional	24
	Requirement	
	4.2 Non-Functional	26
	Requirements	
5	Project Design	29
	5.1 Dataflow	29
	Diagrams	
	5.2 Solution and	30
	Technical	
	architecture	
	5.3 User Stories	32
6	Project Planning and	33
	Scheduling	
	6.1 Sprint planning	33
	and estimation	
	6.2 Sprint delivery	34
	schedule	
	6.3 Reports from	35
	JIRA	
7	Coding and	36
	Solutioning	
	7.1 Front-end	36
	7.2 Back-end	40
8	Testing	47
	8.1 Testcases	47
	8.2 User Acceptance	48

	Testing	
9	Results 49	
	9.1 Performance 49	
	Metrics	
10	Advantages and 51	
	Disadvantages	
11	Conclusion 52	
12	Future Scope 53	
13	Appendix 54	

1 INTRODUCTION 1.1 Project Overview

Ground water, surface water (rivers, streams and atmospheric water (rain-water, snow and hail) and springs are the main source of water available to the people in general. The qualities of these water bodies vary widely depending on the location and environmental factors. The major source of ground water is precipitation that infiltrates the ground and moves through the soil and pore spaces of rocks. Other sources include water infiltrating from lakes and streams, recharge ponds and waste-water treatment system. As ground water moves through soil, sediment and rocks, many impurities such as diseasecausing microorganisms are filtered out. Many water resources in developing countries are unhealthy because they contain harmful physical, chemical and biological agents. To maintain a good health however, water should be safe to drink and meet the local standards and international standards to taste, odour and appearance. To monitor the water resource and ensure sustainability, national and international criteria and guidelines established for water quality standards are being used. (WHO-1993; 2005). The chemistry of water is very dynamic, largely controlled and modified by its medium of contact. Since the chemistry of water directly hints the quality of water for various purposes, its monitoring and assessment gained substantial importance in the present century.

A tremendous increase in the population increased the stress on both surface and the groundwater. It is believed at the beginning of the human civilization itself, groundwater was the most trusted form of drinking water because of the filtering effect of the aguifer. However, in the present world drinking the water directly from the source without proper treatment is a tough task. The groundwater analysis for physical and chemical properties is very important for public health studies. These studies are also main part of pollution studies in the environment. The groundwater contains dissolved solids possesses physical characteristics such as odour, taste and temperature. The natural quality of groundwater depends upon the physical environment, the origin, and the movement of water. As the water moves through the hydrological cycle, various chemical, physical and biological processes change its original quality through reactions with soil, rock and organic matter. Natural processes and human activities cause the changes in groundwater quality, directly or indirectly. According to WHO organization, about 80% of all the diseases in human beings are caused by water.

1.2 Purpose

As ground water moves through soil, sediment and rocks, many impurities such as disease-causing microorganisms are filtered out. Many water resources in developing countries are unhealthy because they contain harmful physical, chemical and biological

agents. To maintain a good health however, water should be safe to drink and meet the local standards and international standards to taste, odour and appearance. To monitor the water resource and ensure sustainability, national and international criteria and guidelines established for water quality standards are being used.(WHO-1993; 2005). The chemistry of water is very dynamic, largely controlled and modified by its medium of contact. Since the chemistry of water directly hints the quality of water for various purposes, its monitoring and assessment gained substantial importance in the present century.

2 Literature Survey2.1 Existing Problem

The extensive literature review was carried out by referring standard journals, reference books and conference proceedings. major work carried out by different researchers is summarized below. Dinesh Kumar Tank et.al [01] study focused on the hydrochemistry of groundwater in the Jaipur city to assess the quality of groundwater for determining its suitability for drinking and agricultural purposes. Groundwater samples were collected from eleven stations of Jaipur city during monsoon season and were analyzed for physico-chemical parameters such as pH, EC, TDS, sodium, potassium, calcium, magnesium, chloride, sulphate, carbonate, bicarbonate, nitrate and fluoride. Comparison of the concentration of the chemical constituents with WHO (world health organization) drinking water standards of 1983, the status of groundwater is better for drinking purposes. pH, sodium, potassium, carbonate, The parameters like bicarbonate, chloride are within permissible limit as per WHO but calcium, magnesium and nitrate values exceeding the limit. The calculated values of SAR, RSC and percentage sodium indicate that the water for irrigation uses is excellent to good quality. US Salinity diagram was used for evaluating the water quality for irrigation which suggests that the majority of the groundwater samples were good for irrigation.

Vikas Tomar et.al [02] collected water samples from 67 locations during pre and post-monsoon seasons of the year 2011 from Karnal district, Haryana and were subjected to analysis for chemical characteristics. The type of water that predominates in the study area was of sodium-calcium bicarbonate and magnesium bicarbonate type during pre and post-monsoon seasons of the year 2011 respectively and based on hydrochemical facies. Based on chemical analysis, the pre and post monsoon water samples were classified as per different standard irrigation criteria to study the chemical changes resulting due to rain and natural recharge. It indicates that Na-Ca-HCO3 type water dominates during pre monsoon and Mg-HCO3 during post monsoon seasons of the year 2011.

Chidanand Patil et.al [03] carried out Physical, chemical, bacteriological analysis of water samples from seven bore wells located around landfill site at Turmuri, Belgaum to ascertain the magnitude of dumpsite pollution on groundwater quality. During the study period,7 bore wells were selected around the landfill area at a distance of 500, 750 and 1000m. The parameters analyzed during the study period were pH, Total dissolved

solids(TDS), Total Hardness, Nitrate, Most Probable Number (MPN) and heavy metal such as Lead using standard laboratory procedures. The pH ranged from 6.01 to 7.3 indicating acidic in nature in the month of Feb and March, but in the month of April and may all the wells within the levels. The pHs of water in wells within 500-700m are contaminated by the leachate of landfill. Concentrations of Hardness, TDS, Nitrate ranged from 0 to 80 mg/L, 49 to 190 mg/L, 4 to 79.89 mg/L respectively. The analysis was done for four months from Feb to May. The results showed that within 500 m bore wells were contaminated by E-Coli bacteria, also nitrate concentration is above the permissible level described by WHO and Bureau of Indian Standards for drinking water and pH were acidic in nature. The polluted water requires certain levels of treatment before use. Public enlightenment on waste sorting, adoption of clean technology, using climate change mitigation strategies and the use of sanitary landfill to prevent further contamination of ground water flow are recommended.

Sarala C.et.al [04] studied the groundwater quality parameters in the surrounding wells of Jawaharnagar, in upper Musi catchment area of Ranga Reddy district in Andhra Pradesh. The bore wells data was collected from the study area for two seasons i.e., post monsoon in December 2007and pre monsoon in June 2008. The groundwater is acidic in nature and very hard. It is done by using Arc GIS software. The study reveals that the concentrations of major constituents are well within the permissible limits of IS10500-1994, except in few cases where total hardness and fluoride concentrations are high. The fluoride conc. exceeded the permissible limit. From the analysis it was observed that the groundwater is polluted in the entire study area. During last few years, the utilization of surface and groundwater for drinking, industrial and agricultural purposes has increased manifolds but consequently it is observed that the water is polluted and affecting the human health, soil nutrients,livestock,biomass and environment in certain areas.

Priti Singh et.al [05] he assess and map the spatial distribution of ground water quality of the Dhankawadi ward,pune by using GIS.APHA's standard laboratory procedure has been adopted to assess the quality of ground water. The spatial distribution map of pH, Chlorides, Magnesium and Sulphate shows that, these parameters are within range as per standard.TDS and Nitrate concentrations in ground water of the study area exceed the permissible limit at central location at katraj dairy near katraj,Pune.

People can use the ground water for drinking and domestic

purpose in study area except in upper katraj nagar, Pune. Priyanka Pandey et.al [06] he analysis the physiochemical properties of ground water near munciple solid waste dumping sites in Jabalpur. All the samples were collected from bore well and hand pump near the MSW dumping sites and stored at 40C. The temp. of ground water sample ranged from 25.11 to 27.310C. The study is carried out on parameters which are selected for testing are pH,TSS,TDS,COD,Nitrate,Cl,PO4 - ,Fetc.The parameters for both type water are within permissible limit for the use except TDS,TSS,TS. Sarala C.et.al [04] studied the groundwater quality parameters in the surrounding wells of Jawaharnagar, in upper Musi catchment area of Ranga Reddy district in Andhra Pradesh. The bore wells data was collected from the study area for two seasons i.e., post monsoon in December 2007 and pre monsoon in June 2008. The groundwater is acidic in nature and very hard. It is done by using Arc GIS software. The study reveals that the concentrations of major constituents are well within the permissible limits of IS10500-1994, except in few cases where total hardness and fluoride concentrations are high. The fluoride conc. exceeded the permissible limit. From the analysis it was observed that the groundwater is polluted in the entire study area. During last few years, the utilization of surface and groundwater for drinking, industrial and agricultural purposes has increased manifolds but consequently it is observed that the water is polluted affecting the health. soil and human nutrients, livestock, biomass and environment in certain areas.

Priti Singh et.al [05] he assess and map the spatial distribution of

ground water quality of the Dhankawadi ward,pune by using GIS.APHA's standard laboratory procedure has been adopted to assess the quality of ground water. The spatial distribution map of pH, Chlorides, Magnesium and Sulphate shows that, these parameters are within range as per standard.TDS and Nitrate concentrations in ground water of the study area exceed the permissible limit at central location at katraj dairy near katraj,Pune.

People can use the ground water for drinking and domestic purpose in study area except in upper katraj nagar, Pune. Priyanka Pandey et.al [06] he analysis the physiochemical properties of ground water near munciple solid waste dumping sites in Jabalpur. All the samples were collected from bore well and hand pump near the MSW dumping sites and stored at 40C. The temp. of ground water sample ranged from 25.11 to 27.310C. The study is carried out on parameters which are selected for testing are pH,TSS,TDS,COD,Nitrate,Cl,PO4 - ,Fetc.

2.2 References

[1] C.Sadashivaia1,C.R.Ramakrishnaiah and G. Ranganna, "Hydrochemical Analysis and Evaluation of Groundwater Quality in TumkurTaluk, Karnataka State, India, International Journal of Environmental Research and Public Health, 2008, 5(3) 158-164.

- [2] Adetunde L.A, Glover R.L.K & Oguntola G.O, "assessment of the ground water quality in ogbomoso township of oyo state of nigeria", IJRRAS8 (1) july 2011, 115-122.
- [3] Shimaa M. Ghoraba&A.D.Khan, "hydrochemistry and groundwater quality assessment in balochistan province, Pakistan", IJRRAS 17 (2) November 2013, 185-199
- [4] M. R. G. Sayyed1, G. S. Wagh2, A. Supekar3, "Assessment of impact on the groundwater quality due to urbanization by hydrogeochemical facies analysis in SE part of Pune city, India", Proceedings of the International Academy of Ecology and Environmental Sciences, 2013, 3(2): 148-15.
- [5] Dinesh kumar tank and c. p. Singh chandel, "Analysis of the major ion constituents in groundwater of Jaipur city", Nature and Science, 2010;8(10), 1-7
- VikasTomar, Kamra S.K, Kumar S, Kumar Ajay and Vishal Khajuria, "Hydro-chemical analysis and evaluation of groundwater quality for irrigation in Karnal district ofHaryana state, India", International Journal of Environmental Sciences, Volume 3, No 2, 2012, pp.756-766.
- [7] Mona A. Hagras Assistant Professor, Irrigation & Hydraulics Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt

[8] S. Prabaharan, R. Manonmani, M. Ramalingam and T. Subramani, "Groundwater Contamination due to Municipal Solid Waste Disposal in Salem City using GIS", International Journal of Earth Science and Engineering, Volume 05, No. 04, pp- 696-702.

[10]ManeT.T.andHinganeHemalataN."Existing Situation of Solid Waste Management in Pune City, India", Research Journal of Recent Sciences, Vol. 1, 2012, pp.348-351

[11]S.S. Castaneda , R.J. Sucgang , R.V. Almoneda , N.D.S. Mendoza and C.P.C. David, "Environmental isotopes and major ions for tracing leachate contamination from a municipal landfill in Metro Manila, Philippines", Journal of Environmental Radioactivity 110 (2012), pp.30-37.

[12]GunjanBhalla, Swamee, P.K, Arvind Kumar, Ajay Bansal, "Assessment of groundwater quality near municipal solid waste landfill byan Aggregate Index Method", International Journal of Environmental Sciences Volume 2, No 2, 2012, pp. 1492-1503.

[13]P.I. Agber, A. Ali and N. A. Tsaku, "Assessment of Ground Water Quality, Soil Properties and Nutrient Content of Soil in Areas Close to MunicipalRefuse Dump Sites in Makurdi, Nigeria", J. Biol. Chem. Research. Vol. 30, No. 1, 2013, pp.88-97.

[14]Sarala C, Ravi Babu P, " Assessment of Groundwater Quality

Parameters in and around Jawaharnagar, Hyderabad, International Journal of Scientific and Research Publications, Volume 2, Issue 10, 2012, pp.1- 6. [15]N Shaheda Niloufer, A.V. V. S. Swamy and M K. Syamala Devi, "Impact of Municipal Solid Waste on the Ground Water Quality in Vijayawada City, Andhra Pradesh", Indian Journal of Applied research, Volume 3, April 2013, pp.62-642.

[16]Chidanand Patil, Shreekant Narayanakar and ArjunVirupakshi, "Assessment of Groundwater Quality Around Solid Waste Landfill Area - A Case Study, International Journal of Innovative Research in Science, Engineering and Technology, Vol. 2, Issue 7, July 2013,pp. 3131-3136.

2.3 Problem Statement Definition

Water is considered as a vital resource that affects various aspects of human health and lives. The quality of water is a major concern for people living in urban areas. The quality of water serves as a powerful environmental determinant and a foundation for the prevention and control of waterborne diseases. However predicting the urban water quality is a challenging task since the water quality varies in urban spaces non-linearly and depends on multiple factors, such as meteorology, water usage patterns, and land uses, so this project aims at building a Machine Learning

(ML) model to Predict Water Quality by considering all water quality standard indicators.

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

miro

3.2 Ideation & Brainstorming

3.3 Proposed Solution

S.NO	Parameter	ſ		Description
1.	Problem	Statem	ent	Water is considered
	(Problem	to	be	as a vital resource
	solved)			that affects various
				aspects of human
				health and lives. The
				quality of water is a
				major concern for
				people living in
				urban areas. The
				quality of water
				serves as a
				powerful
				environmental

determinant and a foundation for the prevention and control of waterborne diseases. However. predicting the urban water quality is a challenging task since the water quality varies in urban spaces nonlinearly and depends on multiple factors, such as meteorology, water usage patterns, and land uses, so this project aims building a Machine Learning (ML) model to **Predict** Water Quality by considering all quality water standard indicators. 2. Idea Solution The solution

	1 -	
	description	derived from the
		data sets by
		comparing the
		accuracy rate with
		previous data set
		and the current data
		set.
3.	Novelty /	Can be determined
	Uniqueness	whether the water
		can be recycled or
		reused. User
		Friendly and Eco
		friendly.
4.	Social Impact /	Beneficial for people
	Customer	health. By analysing
	Satisfaction	the quality of water,
		good and healthy
		water is provided.
5.	Business Model	First the application
	(Revenue Model)	is tested with few
		people.Later on it
		comes into the
		picture where
		everyone can see by
		networking. By
		conducting various
		activities regarding

				the	impo	ortance	of
				qual	ity of	water.	
6.	Scalability	of	the	Help	s in	getting	all
	Solution			requ	ired	aspects	of
				wate	r.		

3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

4.1 Functional requirement

FR No.	Functional	Sub Requirement
	Requirement (Epic)	(Story / Sub-Task)
FR-1	User Registration	Registration through
		Form
		Registration through
		Gmail
		Registration through
		LinkedIN
FR-2	User Confirmation	Confirmation via
		Email
		Confirmation via
		OTP
FR-3	Executive	Regulation of
	administration	monitoring the
		water environment
		status
		and regulatory
		compliance like
		pollution event
		emergency
		management, and it

		in alicala a de la constante d
		includes two
		different
		functions: early
		warning/forecast
		monitoring.
FR-4	Data handling	File contains water
		quality metrics for
		different water
		bodies.
FR-5	Quality analysis	Analyze with the
		acquired
		information of the
		water
		across various
		water quality
		indicator like (PH,
		Turbidity, TDS,
		Temperature) using
		different models.
FR-6	Model prediction	Confirming based
		on water quality
		index and shows the
		machine learning
		prediction (Good,
		Partially Good,
		Poor) with the
		percentage of

		presence of various
		parameter.
FR-7	Remote	Visualization
	Visualization	through charts
		based on present
		and past
		values of all the
		parameter for future
		forecast.
FR-8	Notification services	Confirming through
		notification of water
		status
		prediction with
		parameter presence
		along with
		timestamp.

4.2 Non-Functional requirements

NFR No.	Non-Functional	Description
	Requirement	
NFR-1	Usability	The system
		provides a natural
		interaction with the

		uooro Acquireto
		users. Accurate
		water quality
		prediction with short
		time analysis and
		provide prediction
		safe to drink or
		not using some
		parameters and
		provide a great
		significance for
		water environment
		protection.
NFR-2	Security	The model enables
		with the high
		security system as
		the user's data will
		not be shared to the
		other sources. The
		system is protected
		with the user name
		and password
		throughout the
		process.
NFR-3	Reliability	The system is very
		reliable as it can last
		for long
		period of time when

		it is well maintained.
		The model
		can be extended in
		large scale by
		increasing the
		datasets.
NFR-4	Performance	Our system should
		run on 32 bit (x86)
		or 64 bit (x64) Dual-
		core 2.66-GHZ or
		faster processor. It
		should not exceed 2
		GB RAM.
NFR-5	Availability	The system should
		be available for the
		duration of
		the user access the
		system until the
		user terminate
		the access. The
		system response to
		request of the
		user in less time
		and the recovery is
		done is less time.
NFR-6	Scalability	It provides an
		efficient outcome

and has the ability
to increase or
decrease the
performance of the
system based on
the datasets.

5. PROJECT DESIGN

5.1 Data Flow Diagrams

DFD LEVEL 0

DFD LEVEL 1

5.2 Solution & Technical Architecture

5.3 User Stories

User Type	Functional	User	User Story	Acceptan	Priority	Release
	Requireme	Story	/	ce		
	nt	Number	Task	criteria		
	(Epic)					
Customer	Access	USN-1	As a user,	I can	High	Sprint-1
(Web user)	Web		anyone	access my		
	page		can access	webpage		
			the web	through		
			page to	online		
			check the	at any time.		
			water			
			quality.			
Customer	Usage of	USN-2	As per the	Prediction	High	Sprint-2

(Moh usor)	wotor		uoogo of	oon		
(Web user)	water		usage of user, the quality of water should be predicted in easy way.	can be done in easy way.		
Customer (Web user)	Accuracy of water	USN-3	By using the prediction model the user will know the quality of water on a daily basis.	analysis of water will be	High	Sprint-3
Administrat or	Manage the web page	USN-4	As an admin, he/she can manage user details and update parameters essential for prediction.	Interface	High	Sprint-4
Administrat or	Calculation of WQI	USN-5	As an admin, he/she can update the calculatio ns for water quality index.	Improves the accuracy of the calculation.	High	Sprint-5

6. PROJECT PLANNING & SCHEDULING6.1 Sprint Planning & Estimation

Sprint	Functional	User Story	User Story	Story	Priority
	Requireme	Number	/ Task	Points	
On winst 1	nt (Epic)	LION 1	O all a ation o	2	11:
Sprint-1			Collecting dataset for	2	High
	Collection				
			pre-		
Sprint-1		USN-2	processing Data pre-	1	High
Sprinter		0314-2	processing	'	riigii
			used to		
			transform		
			the data		
			into useful		
			format.		
Sprint-2	Model	USN-3	Calculate	2	Low
	Building		the Water		
			Quality		
			Index		
			(WQI)		
			using		
			Regression		
			algorithm		
			of machine		
Sprint-2		USN-4	learning Splitting	2	Medium
Spriit-2		0311-4	the data	2	Medium
			into		
			training		
			and testing		
			from		
<u> </u>	I.	1	1	l	I

			the entire dataset.		
Sprint-3	Application Building	USN-5	Implementi ng the web page for collecting the data from	1	High
			user		
Sprint-4	Training and Testing	USN-6	Training the model using regression algorithm and testing the performan ce of the model	2	High
Sprint-4		USN-7	Deploying the model using IBM Cloud and IBM Watson Studio	2	Medium

6.2 Sprint Delivery Schedule

Sprint	Total Story	Duration	Sprint Start	Sprint End	Story	Sprint
	Points		Date	Date	Points	Release
				(Planned)	Completed	Date
					(as on	(Actual)

							Planned		
							End Date)		
Sprint-1	20	6 days	24	Oct	29	Oct	20	29	Oct
			2022		2022			2022	
Sprint-2	20	6 days	31	Oct	5 Nov	2022	20	5 Nov	2022
			2022						
Sprint-3	20	6 days	07	Nov	12	Nov	20	12	Nov
			2022		2022			2022	
Sprint-4	20	6 days	14	Nov	19	Nov	20	19	Nov
			2022		2022			2022	

6.3 Reports from JIRA Backlog

Board

Roadmap

7. CODING & SOLUTIONING 7.1 Front-end

web.html

```
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <title>WATER QUALITY ANALYSIS</title>
  k rel="stylesheet" href="../static/css/style.css">
<style>
body {
  background: url('../static/css/water.jpg');
  background-repeat: no-repeat;
  background-size:cover;
</style>
</head>
<body>
  <header>
    <nav>
      <div class="row">
        <div class="row1">
           <img src="../static/css/img.png" alt="logo">
        </div>
        <div class="row2">
           <h1 style="color:black"> Water Quality Prediction</h1>
        </div>
      </div>
    </nav>
  </header>
```

```
<main>
    <div class="column">
      <form action="/login" method="post">
         <label for=""></label>
         <input type="text" name="year" id="" placeholder="Enter Year">
         <label for=""></label>
         <input type="text" name="do" id="" placeholder="Enter D.O">
         <label for=""></label>
         <input type="text" name="ph" id="" placeholder="Enter PH">
         <label for=""></label>
         <input type="text" name="co" id="" placeholder="Enter Conductivity">
         <label for=""></label>
         <input type="text" name="bod" id="" placeholder="Enter B.O.D">
         <label for=""></label>
         <input type="text" name="na" id="" placeholder="Enter Nitratenen">
         <label for=""></label>
         <input type="text" name="tc" id="" placeholder="Enter Total Coliform">
         <label for=""></label>
         <div class="last">
           <input type="submit" value="Predict">
         <div class="bor" style="color:black"><b>
           {{showcase}}</b>
        </div>
      </form>
    </div>
  </main>
  </div>
</body>
</html>
style.css
* {
  margin: 0;
  padding: 0;
  box-sizing: border-box;
```

```
}
/* styling the header */
.row1 img {
  height: 70px;
  position: relative;
  left: 54vw;
}
.row2 h1 {
  position: absolute;
  left: 60vw;
  color: #ffff;
  top: 30px;
}
main div.column input {
  display: block;
  position: relative;
  margin: 24px 26px;
  left: 60vw;
  border-radius: 35px;
  width: 250px;
  height: 30px;
}
input[type="text"] {
  text-align: center;
  font-family: 'Courier New', Courier, monospace;
}
main div.last input {
  width: 256px;;
  background: rgb(5, 3, 68);
   background: linear-gradient(90deg, rgba(5, 3, 68, 1) 0%, rgba(0, 12, 36, 1) 0%, rgba(39, 9, 121,
1) 0%, rgba(38, 8, 114, 1) 0%, rgba(94, 0, 255, 1) 45%, rgba(188, 0, 255, 1) 84%);
  font-weight: 600;
  font-family: 'Courier New', Courier, monospace;
}
```

```
main div.last input:hover {
    background: rgb(188, 0, 255);
    background: linear-gradient(90deg, rgba(188, 0, 255, 1) 23%, rgba(94, 0, 255, 1) 63%, rgba(22, 9, 121, 1) 100%, rgba(5, 3, 68, 1) 100%, rgba(0, 12, 36, 1) 100%, rgba(38, 8, 114, 1) 100%);
}

.bor {
    text-align: center;
    margin-left: 60vw;
    color: white;
    font-size: 21px;
    border: 2px solid rgb(251, 253, 255);
    width: 358px;
    padding-left: 4px;
}
```

7.2 Back-end

Water_Quality_Analysis.ipynb

app.py

```
import numpy as np
from flask import Flask,render_template,request
import pickle
app= Flask(__name__)
@app.route('/')
def home():
return render_template("web.html")
@app.route('/login',methods = ['POST'])
def login():
year = request.form["year"]
do = request.form["do"]
ph = request.form["ph"]
 co = request.form["co"]
bod = request.form["bod"]
tc = request.form["tc"]
 na = request.form["na"]
 #ibm start
 import requests
```

```
import ison
  # NOTE: you must manually set API_KEY below using information retrieved from your IBM
Cloud account.
 API_KEY = "H3ZSwhKcbaPPAmxup7UnpF9FBPEBXJHbaaa-yUelJpJU"
token_response = requests.post('https://iam.cloud.ibm.com/identity/token', data={"apikey":
 API_KEY, "grant_type": 'urn:ibm:params:oauth:grant-type:apikey'})
 mltoken = token_response.json()["access_token"]
 header = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' + mltoken}
 # NOTE: manually define and pass the array(s) of values to be scored in the next line
 payload_scoring = {"input_data": [{"field": [["do","ph","co","bod","tc","na"]], "values": [[do, ph, co, bod,
tc, na]]}]}
                                                                       requests.post('https://us-
                          response_scoring
south.ml.cloud.ibm.com/ml/v4/deployments/b6831db5-17e8-4f64-87a2-
56aa167b55a9/predictions?version=2022-11-16', json=payload_scoring,
 headers={'Authorization': 'Bearer ' + mltoken})
 print("Scoring response")
 predict = response_scoring.json()
 pred = (predict['predictions'][0]['values'][0][0])
y_pred=round(pred,3)
 #ibm end
 if(y_pred >= 95 and y_pred <= 100):
      return render_template("web.html",showcase = 'Excellent, The Predicted Value Is '+
str(y_pred))
 elif(y_pred >= 89 \text{ and } y_pred <= 94):
     return render_template("web.html",showcase = 'Very Good, The Predicted Value Is '+
str(y_pred))
 elif(y_pred >= 80 \text{ and } y_pred <= 88):
  return render_template("web.html",showcase = 'Good, The Predicted Value Is '+ str(y_pred))
 elif(y_pred >= 65 \text{ and } y_pred <= 79):
  return render_template("web.html",showcase = 'Fair, The Predicted Value Is '+ str(y_pred))
 elif(y_pred >= 45 \text{ and } y_pred <= 64):
      return render_template("web.html",showcase = 'Marginal, The Predicted Value Is '+
str(y_pred))
 else:
  return render_template("web.html",showcase = 'Poor, The Predicted Value Is '+ str(y_pred))
```

if __name__ == '__main__':
 app.run(debug = True,port=5000)

wqi.pkl

RandomForestRegressor(n_estimators=10, random_state=0)

8. TESTING8.1 Test Cases

Testcase	Feature	Component	Test	Steps to	Expected	Actual
ID	Туре		Scenario	execute	Result	Result
TC_1	Functional	HomePage	Verify user	Run	User	User gets
			is able to	'app.py' file	should get	predicted
			predict	in	the	value for
			quality of	command	predicted	their given
			water.	prompt and	value.	data.
				then open		
				the		
				webpage.		
				Give values		

Ī					in the		
					respective		
					text boxes		
					and click		
					PREDICT.		
=	TC_2	Functional	HomePage	Verify use		User simply	Finally gets
	10_2	Tunctional	rioinei age	-			_
				is able to	'app.py' file	gets error	the error
				predict	in	page.	page.
				quality of	command		
				water.	prompt and		
					then open		
					the		
					webpage.		
					Give values		
					in the		
					respective		
					text boxes		
					and don't		
					click		
					PREDICT.		

8.2 User Acceptance Testing

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	7	0	0	7
Client	51	0	0	51
Application				
Security	2	0	0	2
Exception	9	0	0	9
Reporting				
Final Report	4	0	0	4
Output				

9. RESULTS			
Output:			
Webpage with data entered			

Webpage with predicted value

9.1 Performance Metrics

S. No.	Parameter	Values	Screenshot
1.	Metrics	Regression model-	Model Evaluation
		MAE,MSE,RMSE	<pre>print('MME:',metrics.mean_absolute_error(y_test,y_pred)) print('MSE:',metrics.mean_squared_error(y_test,y_pred)) print('MSE:',np.sqrt(metrics.mean_squared_error(y_test,y_pred)))</pre>
			MAE: 0.9972000200501312 MSE: 5.555005879009208 RMSE: 2.3500220099034506
2.	Tune the model	Accuracy score	

	[] #accuracy of the model metrics.r2_score(y_test, y_pred)
	0.96971918125809
10. ADVANTAGES & [DISADVANTAGES
_ _ _	
Advantages	
 Water quality standards pro 	otect human health and avoid the
cost related to medical care	e and productivity loss.

 It can give accurate measurement on pH, total dissolved salt and electrical conductivity.

Disadvantages

- Water pollutants may cause disease or act as poison.
- Health Risk: Open storage structures can be contaminated by animals and can provide a breeding ground for disease carrying insects.

11. CONCLUSION

Potability determines the quality of water, which is one of the most important resources for existence. Traditionally, testing water quality required an expensive and time-consuming lab analysis. This study looked into an alternative machine learning

method for predicting water quality using only a few simple water quality criteria. To estimate, a set of representative supervised machine learning algorithms was used. It would detect water of bad quality before it was released for consumption and notify the appropriate authorities It will hopefully reduce the number of individuals who drink low-quality water, lowering the risk of diseases like typhoid and diarrhea. In this case, using a prescriptive analysis based on projected values would result in future capabilities to assist decision and policy makers.

12. FUTURE SCOPE

Each study-unit investigation will consist of a high-intensity phase, followed by a low-intensity phase. The high-intensity phase will cover the first 6 years of the study. During this phase, existing water-quality data and basin characteristics will be evaluated; data for evaluation of surface-water and groundwater quality, river-bed sediments, and aquatic organisms will be collected; and technical and nontechnical reports and papers describing study results will be prepared. During the 4-year low-intensity phase, water-quality sampling will be less frequent than it will be during the highintensity phase. Surface water will be sampled at about 20 sites at weekly to monthly intervals during the high-intensity phase of the study. These sites will represent environmental settings characteristic of the study unit. Major water-quality constituents to be analyzed at these sites include suspended sediment, nutrients, major ions, and trace elements.

13 Appendix

GitHub Link - Github

