

Worksheet 4

HoTTEST Summer School 2022

The HoTTEST TAs, and 11 July 2022

1 (*)

We define the standard finite types $\operatorname{\mathsf{Fin}}:\mathbb{N}\to\mathcal{U}_0$ inductively with constructors

$$\begin{split} \operatorname{pt}: \Pi_{n:\mathbb{N}} \mathsf{Fin}(\mathsf{suc}(n)) \\ & \mathsf{i}: \Pi_{n:\mathbb{N}} \mathsf{Fin}(n) \to \mathsf{Fin}(\mathsf{suc}(n)). \end{split}$$

Spell out all elements of Fin(3).

It is common practice to leave the argument n of the constructors implicit. Then the induction principle states that a dependent function

$$f: \Pi_{n:\mathbb{N}} \Pi_{x:\mathsf{Fin}(n)} P_n(x)$$

is determined by

$$g_n:\Pi_{x:\operatorname{Fin}(n)}P_n(x)\to P_{\operatorname{suc}(n)}(\mathrm{i}(x))$$

and

$$p_n: P_{\mathsf{suc}(n)}(\mathsf{pt}).$$

The function f satisfies the judgemental equalities

$$\begin{split} f_{\mathsf{suc}(n)}(\mathsf{i}(x)) &\doteq g_n(x, f_n(x)) \\ f_{\mathsf{suc}(n)}(\mathsf{pt}) &\doteq p_n. \end{split}$$

$$2 \quad (\star \star \star)$$

It is also possible to define the standard finite types $Fin': \mathbb{N} \to \mathcal{U}_0$ recursively as a type family over \mathbb{N} ,

$$\mathsf{Fin'}(0) \doteq \emptyset$$

 $\mathsf{Fin'}(\mathsf{suc}(n)) \doteq \mathsf{Fin'}(n) + \mathbb{1}.$

We suggestively use the notation $\mathbf{i}': \mathsf{Fin'}_n \to \mathsf{Fin'}_{\mathsf{suc}(n)}$ and $\mathsf{pt}': \mathsf{Fin'}_{\mathsf{suc}(n)}$ for the inclusions inl and inr into the coproduct $\mathsf{Fin'}(n) + \mathbbm{1}$. Formulate the induction principle of $\mathsf{Fin'}$.

3 (**)

Choose your favourite version of the finite types. Use pattern matching to define two different inclusions $\iota, \hat{\iota}: \Pi_{n:\mathbb{N}}\mathsf{Fin}(n) \to \mathbb{N}$, such that the images of $\iota_{\mathsf{suc}(n)}$ and $\hat{\iota}_{\mathsf{suc}(n)}$ are the first n+1 natural numbers.

4 (*)

Give a recursive definition of the ordering relation $\leq : \mathbb{N} \to \mathbb{N} \to \mathcal{U}_0$.

Define is-prime : $\mathbb{N} \to \mathsf{Type}$.

6 (**)

State the twin prime conjecture and Goldbach's conjecture in HoTT.

7 (**)

Suppose we had constructed a proof

$$\mathsf{infinitude}\text{-of-primes}: \Pi_{n:\mathbb{N}}\Sigma_{p:\mathbb{N}}(\mathsf{is-prime}(p)\times (n\leq p)).$$

Further assume that the prime p returned by this program is the least prime above n. A definition of such a term can be found in the Agda UniMath library¹. Construct a function prime : $\mathbb{N} \to \mathbb{N}$ which computes the n-th prime.

8 (**)

We define the predicate

$$is-decidable(A) \doteq A + \neg A$$

for an arbitrary type A. Do we expect

$$\Pi_{n:\mathbb{N}}$$
 is-decidable (is-prime (n))

to be true (inhabited)? Why or why not?

Suppose we had a proof

is-decidable-is-prime :
$$\Pi_{n:\mathbb{N}}$$
 is-decidable (is-prime (n)).

 $^{^{1} \}verb|https://unimath.github.io/agda-unimath/elementary-number-theory.infinitude-of-primes.html|$

Construct a function

$$\mathsf{prime}\text{-}\mathsf{counting}:\mathbb{N}\to\mathbb{N}$$

which computes the number of primes less than or equal to its input.

10 $(\star \star \star)$

Show that adding k is an injective function which respects equality, i.e. that

$$(m=n) \leftrightarrow (m+_{\mathbb{N}} k = n+_{\mathbb{N}} k)$$

for all $m, n, k : \mathbb{N}$.