社群網路與推薦系統

HW3 Report 賴廷瑋 F44054045

目錄

社群網路與推薦系統	1
Introduction	2
Methodology	4
Experimental analysis	6
Experiment Settings	6
Q1: Compared with the typical methods, can our NN-based	
approaches achieve comparable accuracy? Why?	8
Q2: Are there any hyperparameters in each model that	
significantly affect the performance?	9
Insights1	0
Q3: Can you create a new end-to-end NN that combine the	
advantages of nicely-performed methods to beat all methods?)
1	2
Conclusions1	.3
novelty of my method1	.3
summarization of the findings1	.3
How to improve in the future1	4
Citations1	.5

Introduction

本次作業有涉及 NN 的部分皆**利用 pytorch 實踐**,並**參考原論文**後自己實踐,無利用現成的 model 套件,因參考論文與自己實踐花費耗時,實踐共 10 個模型。

此外,因自己使用本地環境執行,對 Douban Bank 大資料集在某些模型下有 RAM 不夠的問題,且若利用 Recall 或是 NDCG metric 進行比較,會需要非常 sparse 的資料作為 input(沒有互動的部分也要考慮),故考量到運算資源問題,僅使用 RMSE 做模型比較的標準。而GBDT-LR 模型因訓練時間過久,無即時產生結果,但有以 sklearn 實踐模型架構。

故本次作業重心在對於模型的了解和實踐外,也針對 movielens 資料 集的結果作總結分析,以提升自己對於模型的理解和參數對模型的 影響,以及模型如何對於資料作處理等概念。

Table 本次作業實踐方法整理

類別	方法
Typical	User-based CF [UCF-s] (cosine as similarity)
Typical	User-based CF [UCF-p] (Pearson correlation as similarity)
Typical	Matrix Factorization [MF]
Typical	Factorization Machine [FM]
Typical	Pre-training via GBDT for LR
Typical	Pre-training via XGBoost for LR
NN-based	FM-supported Neural Networks [FNN]
NN-based	Deep Factorization Machine [DeepFM]
Recent NN-based	xDeepFM
My own method	XGBReg + NN

Methodology

User-based CF

利用使用者對於 item 評分的資訊,計算使用者之間的相似度,若兩使用者相似度高,則將一方對某 item 的評分納入計算另一方對某 item 的評分考量。

MF

將 user-item matrix 分解成兩個較低維度的矩陣相乘

• FM

將資料組成 sparse feature matrix 後,將 rating 以回歸形式表示,並將二次項權重 matrix 進一步進行 vector 拆解,改善 sparse 問題。

GBDT-LR

利用 GBDT 自動學習資料的特徵組合,解決 FM 僅針對兩兩之間 變量關係的問題,並以線性模型 LR 輸出 0-1 之間的數值。

XGB-LR

利用 XGBoost 自動學習資料的特徵組合,解決 FM 僅針對兩兩之間變量關係的問題,並以 LR 輸出 0-1 之間的數值。

FNN

將 sparse feature matrix 的每個 field 利用 fully connected layer 轉成 dense embedding (k+1),每組分別代表 w1, v1, v2,...vk,再將每個 field 所得之 dense embedding 做 concatenation 後卽得後續 NN 架 構的 input,讓 NN 自動學習各 feature vector 之間的交互關係。

DeepFM

將每個 field 的 sparse feature 轉成 dense embedding 後同時分別進行 FM layer 和 NN layer 的計算,學習出二階和高階交互作用的關係,最後將 FM layer 和 NN layer 的結果相加,進行 activation function 轉置後卽得預測。

XDeepFM

將 sparse feature 轉換成 dense feature 後,經過三個不同架構分別學習 explicit 和 Implicit 特徵,三個架構分別為 Linear 層, CIN 層, 及 DNN 層。其中 CIN 層結合 CNN 的概念主要學習 explicit 特徵。最後將此三層 output 相加後經過 activation 得出最終預測。

My own Method – XGBReg_NN

參考 XGB 作為 feature embedding 的想法,把 XGBoostRregressor得到的 leaf node embedding 作為 NN 層(兩層)的 INPUT,並結合 Linear 部分和 FM 部分相加,得出預測結果。

Experimental analysis

Experiment Settings

- 依照規定,所有模型皆進行 5次 cross validation, kfold 的部分使用 shuffle 且設定 random state 為 42,確保每個模型對於每個資料的分割都一致。
- 2. Optimizer 的部分固定使用 adam 並且 learning rate 為 1e-2。無使用任何 weight decay
- 3. Criterion(LOSS function)固定使用 nn.MSE 且 sqaured = False 作為 RMSE 的計算,僅 MF 的部分為依照課程講解自行設計 Loss Function。
- 4. 第一次實驗盡量皆保持所有模型參數一致,後續進行調整後觀察 對於準確度的變化。
- 5. 每次實驗僅有一次 cross_validation,沒有 epoch 的介入。

模型	參數	
UCF	取最接近的 20 鄰居作爲 Rating 的計算	
MF	Latent factor k = 10, lambda = 1	
FM	Latent factor k = 10	
GBDT-LR	N_estimator= 10, max_depth= 3	
XGB-LR	N_estimator= 10, max_depth= 3	
FNN	K= 10, 兩層全連接層 dimensions: (32, 32)	
DeepFM	K= 10, 兩層全連接層 dimensions: (32, 32)	
xDeepFM	K= 10, 兩層全連接層 dimensions: (32, 32)	
XGBReg_NN	K= 10, 兩層全連接層 dimensions: (32, 32)	
	N_estimator= 10, max_depth= 3	

各模型對於各 dataset 的表現 (Metric: RMSE)

模型	MovieLens
UCF(cosine)	2.04
UCF(pearson)	2.10
MF	3.18
FM	2.18
GBDT-LR	Х
XGB-LR	1.2
FNN	1.54
DeepFM	1.47
xDeepFM	1.75
XGBReg NN	1.67

Q1: Compared with the typical methods, can our NN-based approaches achieve comparable accuracy? Why?

從實驗結果來說,在未調整參數前,若僅經過一次的 cross validation, NN-based model 表現卽整體優於 typical methods, 從未 調參結果來看, NN 模型平均的 RMSE 落在 1-2 之間, 而 typical model 大多為 2 以上(除使用 XGB-LR)。

原因

可以發現從 XGB-LR 開始之後的模型表現(RMSE)皆有明顯的提升,可推斷原因是這些模型有考慮 Feature 之間更高階的交互作用關係,進而提升對於 Rating 的準確度,例如在 xgb-lr 中透過 xgb 學習分類特徵的 leaf embedding 或是在 NN model 把 sparse matrix 轉成 dense feature 後透過深度網路學習高階關係,這個特質讓 NN based model 有更好的表現。

Q2: Are there any hyperparameters in each model that

significantly affect the performance?

● 以下 metric 皆爲 RMSE

不同鄰居數影響

	Topk= 10	Topk= 20	Topk= 30
CF(cosine)	1.9	2.04	2.21

At hidden_dims= (32, 32), 不同 latent factor 影響

	K=15	K= 10	K= 5
MF	2.99	3.18	3.46
FM	2.19	2.18	2.19
FNN	1.49	1.54	1.59
DeepFM	1.50	1.47	1.57
XDeepFM	1.28	1.75	1.75

At K = 10, 不同全連接層 hidden_dim 影響

	32	64	128
FNN	1.54	1.48	1.4
DeepFM	1.47	1.49	1.42
xDeepFM	1.75	3.78	3.99

At max_depth= 3

	N_estimator= 10	N_estimator= 30
XGB_LR	1.2	1.2
XGBReg_NN	1.67	1.8

At n estimator= 10

	Max_depth= 3	Max_depth = 5
XGB_LR	1.2	1.2
XGBReg_NN	1.67	1.55

Insights

- 對於 CF,從實驗來說,計算該 User 時所考慮的鄰居數愈小,在 test data 上,平均而言有更好的效果。
- 論 latent factor 對於不同 model 的影響,整體來看 K 愈大對於
 RMSE 有些許的減少,但對於某些模型,K 愈大並不代表一定愈好,像是 FM 與 deepFM 在 k=10 時有相較佳的表現,而值得注意的是 xDeepFM 在 K=15 時有很大的表現提升,雖然如此,可以預想每個模型都有適合的 K 值,並不是愈大愈好。
- 論全連接層的 hidden dimension 對不同 model 的影響,FNN 和DeepFM 在 hidden_dim 增加時有模型表現提升的現象,而xDeepFM 在 hidden_dim 為最小時反而是有更好的表現,且該提升顯著,可推論 xDeepFM 本身模型結構較為複雜,若用較高的hidden_dim 數將造成模型不易收斂,可能有 gradient diminishing的問題。
- 論 n_estimator 和 max_depth 對 XGB 模型的影響,以 XGB_LR 模型 而言,改變參數對於預測結果較無影響,而較低的 n estimator

對於自行設計的 XGBReg_NN 有些許的效能提升,猜測可能因複雜度降低而進而得到泛化能力較好的模型,而 max_depth 提高時對於 XGBReg_NN 也有些許的提升,可能解釋為更深的樹產生更好的 feature selection。

- 對於 NN-Based model,可發現在 k=15, hidden_dims= (32, 32)
 時,xDeepFM 有最好的表現,且對於 NN-Based model,同樣和
 typical model 經過一樣的訓練次數,若繼續進行訓練,能有更好的表現。
- Typical model 整體而言可能會遇到訓練或者計算較耗時的問題,
 然而以 nn-based model 若有 GPU 等加速運算可以節省運算時間,
 並在應用上達到 online training 的目標。
- 因資料都為 categorical feature,相較於連續變數,XGBoost 較不擅長處理 categorical feature,雖然實驗中 XGB_LR 有很好的表現,但模型是已經透過 Sklearn 內部訓練完畢後才做預測,有在output 中發現 XGB 幾乎都是預測平均值,故在此 XGB 應有失準的現象,若將其他 NN-based model 繼續進行多次訓練,相信表現一定會比 XGB-LR 更好(XGB 模型無法與 NN-based model 公平比較)

Q3: Can you create a new end-to-end NN that combine the advantages of nicely-performed methods to beat all methods?

集結了 DeepFM 和 xDeepFM 的想法,也類似於 DeepGBM 的概念,利用 FM 模型對於二項交互作用關係良好的表達以及 nn 層對於高階交互作用關係的學習,也利用 XGBOOST 對於特徵分類的能力,將 FM 部分與 XGB, NN 連接層組合起來,去學習更好的 feature embedding 後也讓 NN 層學習高度的交互關係,是我設計的 XGBReg_NN 的主要想法。

以實驗結果來看,表現似乎與其他 NN-based model 差不多,而 XGBReg_NN 的實踐方法卽利用 XGBRegression 對 sparse feature matrix 對不同的樹做 embedding,產生(資料數, n_estimators)的 embedding 後,再做爲兩層全連接層的 input,而效果沒有明顯提升的原因,我想是這邊用到 regression tree 的方式並沒有達到理想中 feature selection 的效果,若能利用 XGBClassifier 得到 leaf node index 並做 embedding(如 DeepGBM 想法),應會有更好的結果。

Conclusions

novelty of my method

XGBReg_NN 結合了傳統 FM 與 XGB 特徵選取的概念,並結合 NN 的結構學習更好的高階作用關係,利用 XGB 對於連續特徵的特徵 選擇有很強的能力,以及 NN model 對於離散變量能有更好的學 習能力,我們能把連續型特徵透過 xgb+nn 的方式學習得更好,但因為本資料集皆爲離散變量,xgb 在此可能無法發揮它最大的效益,但效果也與大部分的 nn 模型匹配。

summarization of the findings

總體來說

- NN 模型平均有比傳統模型有更好的預測能力
- Latent factor:K 值並不是愈大愈好,每個模型都有不同適合的 k 值
- 對於 NN model 來說,並非 hidden_dim 愈大或愈小愈好,例如 dimension 在 32-128 範圍增大時對於 fnn 和 deepfm 有較好的表現,而 xdeepfm 則在 hidden_dim = 32 有最好的表現。

- 對於 xgb 模型來說, n_estimator 和 max_depth 對於模型的影響並不是非常大,但適度減少 n_estimator 可以減少過擬合的問題,
 而適度的 max depth 可以增加模型對於特徵選擇的能力。
- 最重要的點是,能讓預測最準最 robust 並不在模型本身的深度或是參數的調整,而在於如何有效地從資料取得好的 feature,且能針對不同類型的資料分別作優化,例如連續和離散分開,以及對sparse feature matrix 做 dense embedding,這些都是近期的新模型提出的想法,而在本次實驗中,也驗證了該方法確實比傳統model 更有效。

How to improve in the future

依照 DeepGBM 的想法,若能利用更好的特徵擷取方式,再進行 Dense feature 的轉換,搭配不同 NN 模型的算法(如增加 CNN 等特徵 萃取的想法),我想對於模型的預測會更加的穩定,且很重要的是要 對模型運算時間有更好的解決方法,因推薦系統會有不斷新的資料 產生,需要隨時隨刻進行模型的調整與預測,若能延續 DeepGBM 的精神,加上更全面的特徵選取方法,我想在應用上會有更好的表 現。

Citations

- DeepFM: A Factorization-Machine based Neural Network for CTR Prediction, 2017
- Deep Learning over Multi-field Categorical Data A Case Study on User Response Prediction, 2016
- xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems, 2018
- Factorization Machines, 2010
- Matrix Factorization Techniques for Recommender Systems, 2009