Chapter 14

Eigenvectors and Eigenvalues

In this chapter all vector spaces are defined over an arbitrary field K. For the sake of concreteness, the reader may safely assume that $K = \mathbb{R}$ or $K = \mathbb{C}$.

14.1 Eigenvectors and Eigenvalues of a Linear Map

Given a finite-dimensional vector space E, let $f: E \to E$ be any linear map. If by luck there is a basis (e_1, \ldots, e_n) of E with respect to which f is represented by a diagonal matrix

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix},$$

then the action of f on E is very simple; in every "direction" e_i , we have

$$f(e_i) = \lambda_i e_i$$
.

We can think of f as a transformation that stretches or shrinks space along the direction e_1, \ldots, e_n (at least if E is a real vector space). In terms of matrices, the above property translates into the fact that there is an invertible matrix P and a diagonal matrix D such that a matrix A can be factored as

$$A = PDP^{-1}$$
.

When this happens, we say that f (or A) is diagonalizable, the λ_i 's are called the eigenvalues of f, and the e_i 's are eigenvectors of f. For example, we will see that every symmetric matrix can be diagonalized. Unfortunately, not every matrix can be diagonalized. For example, the matrix

$$A_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

can't be diagonalized. Sometimes a matrix fails to be diagonalizable because its eigenvalues do not belong to the field of coefficients, such as

$$A_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},$$

whose eigenvalues are $\pm i$. This is not a serious problem because A_2 can be diagonalized over the complex numbers. However, A_1 is a "fatal" case! Indeed, its eigenvalues are both 1 and the problem is that A_1 does not have enough eigenvectors to span E.

The next best thing is that there is a basis with respect to which f is represented by an *upper triangular* matrix. In this case we say that f can be *triangularized*, or that f is *triangulable*. As we will see in Section 14.2, if all the eigenvalues of f belong to the field of coefficients K, then f can be triangularized. In particular, this is the case if $K = \mathbb{C}$.

Now an alternative to triangularization is to consider the representation of f with respect to two bases (e_1, \ldots, e_n) and (f_1, \ldots, f_n) , rather than a single basis. In this case, if $K = \mathbb{R}$ or $K = \mathbb{C}$, it turns out that we can even pick these bases to be orthonormal, and we get a diagonal matrix Σ with nonnegative entries, such that

$$f(e_i) = \sigma_i f_i, \quad 1 \le i \le n.$$

The nonzero σ_i 's are the singular values of f, and the corresponding representation is the singular value decomposition, or SVD. The SVD plays a very important role in applications, and will be considered in detail in Chapter 20.

In this section we focus on the possibility of diagonalizing a linear map, and we introduce the relevant concepts to do so. Given a vector space E over a field K, let id denote the identity map on E.

The notion of eigenvalue of a linear map $f \colon E \to E$ defined on an infinite-dimensional space E is quite subtle because it cannot be defined in terms of eigenvectors as in the finite-dimensional case. The problem is that the map $\lambda \operatorname{id} - f$ (with $\lambda \in \mathbb{C}$) could be noninvertible (because it is not surjective) and yet injective. In finite dimension this cannot happen, so until further notice we assume that E is of finite dimension n.

Definition 14.1. Given any vector space E of finite dimension n and any linear map $f: E \to E$, a scalar $\lambda \in K$ is called an *eigenvalue*, or proper value, or characteristic value of f if there is some nonzero vector $u \in E$ such that

$$f(u) = \lambda u.$$

Equivalently, λ is an eigenvalue of f if $\operatorname{Ker}(\lambda \operatorname{id} - f)$ is nontrivial (i.e., $\operatorname{Ker}(\lambda \operatorname{id} - f) \neq \{0\}$) iff $\lambda \operatorname{id} - f$ is not invertible (this is where the fact that E is finite-dimensional is used; a linear map from E to itself is injective iff it is invertible). A vector $u \in E$ is called an eigenvector, or proper vector, or characteristic vector of f if $u \neq 0$ and if there is some $\lambda \in K$ such that

$$f(u) = \lambda u;$$

the scalar λ is then an eigenvalue, and we say that u is an eigenvector associated with λ . Given any eigenvalue $\lambda \in K$, the nontrivial subspace $\operatorname{Ker}(\lambda \operatorname{id} - f)$ consists of all the eigenvectors associated with λ together with the zero vector; this subspace is denoted by $E_{\lambda}(f)$, or $E(\lambda, f)$, or even by E_{λ} , and is called the eigenspace associated with λ , or proper subspace associated with λ .

Note that distinct eigenvectors may correspond to the same eigenvalue, but distinct eigenvalues correspond to disjoint sets of eigenvectors.

Remark: As we emphasized in the remark following Definition 8.4, we require an eigenvector to be nonzero. This requirement seems to have more benefits than inconveniences, even though it may considered somewhat inelegant because the set of all eigenvectors associated with an eigenvalue is not a subspace since the zero vector is excluded.

The next proposition shows that the eigenvalues of a linear map $f: E \to E$ are the roots of a polynomial associated with f.

Proposition 14.1. Let E be any vector space of finite dimension n and let f be any linear map $f: E \to E$. The eigenvalues of f are the roots (in K) of the polynomial

$$\det(\lambda \operatorname{id} - f).$$

Proof. A scalar $\lambda \in K$ is an eigenvalue of f iff there is some vector $u \neq 0$ in E such that

$$f(u) = \lambda u$$

iff

$$(\lambda \operatorname{id} - f)(u) = 0$$

iff $(\lambda \operatorname{id} - f)$ is not invertible iff, by Proposition 6.14,

$$\det(\lambda \operatorname{id} - f) = 0.$$

In view of the importance of the polynomial $\det(\lambda \operatorname{id} - f)$, we have the following definition.

Definition 14.2. Given any vector space E of dimension n, for any linear map $f: E \to E$, the polynomial $P_f(X) = \chi_f(X) = \det(X \operatorname{id} - f)$ is called the *characteristic polynomial of* f. For any square matrix A, the polynomial $P_A(X) = \chi_A(X) = \det(XI - A)$ is called the *characteristic polynomial of* A.

Note that we already encountered the characteristic polynomial in Section 6.7; see Definition 6.11.

Given any basis (e_1, \ldots, e_n) , if A = M(f) is the matrix of f w.r.t. (e_1, \ldots, e_n) , we can compute the characteristic polynomial $\chi_f(X) = \det(X \operatorname{id} - f)$ of f by expanding the following determinant:

$$\det(XI - A) = \begin{vmatrix} X - a_{11} & -a_{12} & \dots & -a_{1n} \\ -a_{21} & X - a_{22} & \dots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \dots & X - a_{nn} \end{vmatrix}.$$

If we expand this determinant, we find that

$$\chi_A(X) = \det(XI - A) = X^n - (a_{11} + \dots + a_{nn})X^{n-1} + \dots + (-1)^n \det(A).$$

The sum $\operatorname{tr}(A) = a_{11} + \cdots + a_{nn}$ of the diagonal elements of A is called the *trace of* A. Since we proved in Section 6.7 that the characteristic polynomial only depends on the linear map f, the above shows that $\operatorname{tr}(A)$ has the same value for all matrices A representing f. Thus, the *trace of a linear map* is well-defined; we have $\operatorname{tr}(f) = \operatorname{tr}(A)$ for any matrix A representing f.

Remark: The characteristic polynomial of a linear map is sometimes defined as $\det(f - X \operatorname{id})$. Since

$$\det(f - X \operatorname{id}) = (-1)^n \det(X \operatorname{id} - f),$$

this makes essentially no difference but the version det(X id - f) has the small advantage that the coefficient of X^n is +1.

If we write

$$\chi_A(X) = \det(XI - A)$$

= $X^n - \tau_1(A)X^{n-1} + \dots + (-1)^k \tau_k(A)X^{n-k} + \dots + (-1)^n \tau_n(A),$

then we just proved that

$$\tau_1(A) = \operatorname{tr}(A)$$
 and $\tau_n(A) = \det(A)$.

It is also possible to express $\tau_k(A)$ in terms of determinants of certain submatrices of A. For any nonempty subset, $I \subseteq \{1, \ldots, n\}$, say $I = \{i_1 < \ldots < i_k\}$, let $A_{I,I}$ be the $k \times k$ submatrix of A whose jth column consists of the elements $a_{i_h i_j}$, where $h = 1, \ldots, k$. Equivalently, $A_{I,I}$ is the matrix obtained from A by first selecting the columns whose indices belong to I, and then the rows whose indices also belong to I. Then it can be shown that

$$\tau_k(A) = \sum_{\substack{I \subseteq \{1,\dots,n\}\\|I|=k}} \det(A_{I,I}).$$

If all the roots, $\lambda_1, \ldots, \lambda_n$, of the polynomial $\det(XI - A)$ belong to the field K, then we can write

$$\chi_A(X) = \det(XI - A) = (X - \lambda_1) \cdots (X - \lambda_n),$$

where some of the λ_i 's may appear more than once. Consequently,

$$\chi_A(X) = \det(XI - A)$$

= $X^n - \sigma_1(\lambda)X^{n-1} + \dots + (-1)^k \sigma_k(\lambda)X^{n-k} + \dots + (-1)^n \sigma_n(\lambda),$

where

$$\sigma_k(\lambda) = \sum_{\substack{I \subseteq \{1, \dots, n\} \\ |I| = k}} \prod_{i \in I} \lambda_i,$$

the kth elementary symmetric polynomial (or function) of the λ_i 's, where $\lambda = (\lambda_1, \dots, \lambda_n)$. The elementary symmetric polynomial $\sigma_k(\lambda)$ is often denoted $E_k(\lambda)$, but this notation may be confusing in the context of linear algebra. For n = 5, the elementary symmetric polynomials are listed below:

$$\begin{split} \sigma_0(\lambda) &= 1 \\ \sigma_1(\lambda) &= \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 + \lambda_5 \\ \sigma_2(\lambda) &= \lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_1 \lambda_4 + \lambda_1 \lambda_5 + \lambda_2 \lambda_3 + \lambda_2 \lambda_4 + \lambda_2 \lambda_5 \\ &\quad + \lambda_3 \lambda_4 + \lambda_3 \lambda_5 + \lambda_4 \lambda_5 \\ \sigma_3(\lambda) &= \lambda_3 \lambda_4 \lambda_5 + \lambda_2 \lambda_4 \lambda_5 + \lambda_2 \lambda_3 \lambda_5 + \lambda_2 \lambda_3 \lambda_4 + \lambda_1 \lambda_4 \lambda_5 \\ &\quad + \lambda_1 \lambda_3 \lambda_5 + \lambda_1 \lambda_3 \lambda_4 + \lambda_1 \lambda_2 \lambda_5 + \lambda_1 \lambda_2 \lambda_4 + \lambda_1 \lambda_2 \lambda_3 \\ \sigma_4(\lambda) &= \lambda_1 \lambda_2 \lambda_3 \lambda_4 + \lambda_1 \lambda_2 \lambda_3 \lambda_5 + \lambda_1 \lambda_2 \lambda_4 \lambda_5 + \lambda_1 \lambda_3 \lambda_4 \lambda_5 + \lambda_2 \lambda_3 \lambda_4 \lambda_5 \\ \sigma_5(\lambda) &= \lambda_1 \lambda_2 \lambda_3 \lambda_4 \lambda_5. \end{split}$$

Since

$$\chi_A(X) = X^n - \tau_1(A)X^{n-1} + \dots + (-1)^k \tau_k(A)X^{n-k} + \dots + (-1)^n \tau_n(A)$$

= $X^n - \sigma_1(\lambda)X^{n-1} + \dots + (-1)^k \sigma_k(\lambda)X^{n-k} + \dots + (-1)^n \sigma_n(\lambda),$

we have

$$\sigma_k(\lambda) = \tau_k(A), \quad k = 1, \dots, n,$$

and in particular, the product of the eigenvalues of f is equal to det(A) = det(f), and the sum of the eigenvalues of f is equal to the trace tr(A) = tr(f), of f; for the record,

$$\operatorname{tr}(f) = \lambda_1 + \dots + \lambda_n$$

 $\det(f) = \lambda_1 \dots \lambda_n$,

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of f (and A), where some of the λ_i 's may appear more than once. In particular, f is not invertible iff it admits 0 has an eigenvalue (since f is singular iff $\lambda_1 \cdots \lambda_n = \det(f) = 0$).

Remark: Depending on the field K, the characteristic polynomial $\chi_A(X) = \det(XI - A)$ may or may not have roots in K. This motivates considering algebraically closed fields, which are fields K such that every polynomial with coefficients in K has all its root in K. For example, over $K = \mathbb{R}$, not every polynomial has real roots. If we consider the matrix

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix},$$

then the characteristic polynomial $\det(XI - A)$ has no real roots unless $\theta = k\pi$. However, over the field \mathbb{C} of complex numbers, every polynomial has roots. For example, the matrix above has the roots $\cos \theta \pm i \sin \theta = e^{\pm i\theta}$.

Remark: It is possible to show that every linear map f over a complex vector space E must have some (complex) eigenvalue without having recourse to determinants (and the characteristic polynomial). Let $n = \dim(E)$, pick any nonzero vector $u \in E$, and consider the sequence

$$u, f(u), f^2(u), \ldots, f^n(u).$$

Since the above sequence has n+1 vectors and E has dimension n, these vectors must be linearly dependent, so there are some complex numbers c_0, \ldots, c_m , not all zero, such that

$$c_0 f^m(u) + c_1 f^{m-1}(u) + \dots + c_m u = 0,$$

where $m \leq n$ is the largest integer such that the coefficient of $f^m(u)$ is nonzero (m must exits since we have a nontrivial linear dependency). Now because the field \mathbb{C} is algebraically closed, the polynomial

$$c_0 X^m + c_1 X^{m-1} + \dots + c_m$$

can be written as a product of linear factors as

$$c_0 X^m + c_1 X^{m-1} + \dots + c_m = c_0 (X - \lambda_1) \cdots (X - \lambda_m)$$

for some complex numbers $\lambda_1, \ldots, \lambda_m \in \mathbb{C}$, not necessarily distinct. But then since $c_0 \neq 0$,

$$c_0 f^m(u) + c_1 f^{m-1}(u) + \dots + c_m u = 0$$

is equivalent to

$$(f - \lambda_1 \operatorname{id}) \circ \cdots \circ (f - \lambda_m \operatorname{id})(u) = 0.$$

If all the linear maps $f - \lambda_i$ id were injective, then $(f - \lambda_1 \operatorname{id}) \circ \cdots \circ (f - \lambda_m \operatorname{id})$ would be injective, contradicting the fact that $u \neq 0$. Therefore, some linear map $f - \lambda_i$ id must have a nontrivial kernel, which means that there is some $v \neq 0$ so that

$$f(v) = \lambda_i v;$$

that is, λ_i is some eigenvalue of f and v is some eigenvector of f.

As nice as the above argument is, it does not provide a method for *finding* the eigenvalues of f, and even if we prefer avoiding determinants as a much as possible, we are forced to deal with the characteristic polynomial $\det(X \operatorname{id} - f)$.

Definition 14.3. Let A be an $n \times n$ matrix over a field K. Assume that all the roots of the characteristic polynomial $\chi_A(X) = \det(XI - A)$ of A belong to K, which means that we can write

$$\det(XI - A) = (X - \lambda_1)^{k_1} \cdots (X - \lambda_m)^{k_m},$$

where $\lambda_1, \ldots, \lambda_m \in K$ are the distinct roots of $\det(XI - A)$ and $k_1 + \cdots + k_m = n$. The integer k_i is called the *algebraic multiplicity* of the eigenvalue λ_i , and the dimension of the eigenspace $E_{\lambda_i} = \text{Ker}(\lambda_i I - A)$ is called the *geometric multiplicity* of λ_i . We denote the algebraic multiplicity of λ_i by $\text{alg}(\lambda_i)$, and its geometric multiplicity by $\text{geo}(\lambda_i)$.

By definition, the sum of the algebraic multiplicities is equal to n, but the sum of the geometric multiplicities can be strictly smaller.

Proposition 14.2. Let A be an $n \times n$ matrix over a field K and assume that all the roots of the characteristic polynomial $\chi_A(X) = \det(XI - A)$ of A belong to K. For every eigenvalue λ_i of A, the geometric multiplicity of λ_i is always less than or equal to its algebraic multiplicity, that is,

$$geo(\lambda_i) \leq alg(\lambda_i).$$

Proof. To see this, if n_i is the dimension of the eigenspace E_{λ_i} associated with the eigenvalue λ_i , we can form a basis of K^n obtained by picking a basis of E_{λ_i} and completing this linearly independent family to a basis of K^n . With respect to this new basis, our matrix is of the form

$$A' = \begin{pmatrix} \lambda_i I_{n_i} & B \\ 0 & D \end{pmatrix},$$

and a simple determinant calculation shows that

$$\det(XI - A) = \det(XI - A') = (X - \lambda_i)^{n_i} \det(XI_{n-n_i} - D).$$

Therefore, $(X - \lambda_i)^{n_i}$ divides the characteristic polynomial of A', and thus, the characteristic polynomial of A. It follows that n_i is less than or equal to the algebraic multiplicity of λ_i . \square

The following proposition shows an interesting property of eigenspaces.

Proposition 14.3. Let E be any vector space of finite dimension n and let f be any linear map. If u_1, \ldots, u_m are eigenvectors associated with pairwise distinct eigenvalues $\lambda_1, \ldots, \lambda_m$, then the family (u_1, \ldots, u_m) is linearly independent.

Proof. Assume that (u_1, \ldots, u_m) is linearly dependent. Then there exists $\mu_1, \ldots, \mu_k \in K$ such that

$$\mu_1 u_{i_1} + \cdots + \mu_k u_{i_k} = 0,$$

where $1 \leq k \leq m$, $\mu_i \neq 0$ for all $i, 1 \leq i \leq k$, $\{i_1, \ldots, i_k\} \subseteq \{1, \ldots, m\}$, and no proper subfamily of $(u_{i_1}, \ldots, u_{i_k})$ is linearly dependent (in other words, we consider a dependency relation with k minimal). Applying f to this dependency relation, we get

$$\mu_1 \lambda_{i_1} u_{i_1} + \dots + \mu_k \lambda_{i_k} u_{i_k} = 0,$$

and if we multiply the original dependency relation by λ_{i_1} and subtract it from the above, we get

$$\mu_2(\lambda_{i_2} - \lambda_{i_1})u_{i_2} + \dots + \mu_k(\lambda_{i_k} - \lambda_{i_1})u_{i_k} = 0,$$

which is a nontrivial linear dependency among a proper subfamily of $(u_{i_1}, \ldots, u_{i_k})$ since the λ_j are all distinct and the μ_i are nonzero, a contradiction.

As a corollary of Proposition 14.3 we have the following result.

Corollary 14.4. If $\lambda_1, \ldots, \lambda_m$ are all the pairwise distinct eigenvalues of f (where $m \leq n$), we have a direct sum

$$E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_m}$$

of the eigenspaces E_{λ_i} .

Unfortunately, it is not always the case that

$$E = E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_m}$$
.

Definition 14.4. When

$$E = E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_m},$$

we say that f is diagonalizable (and similarly for any matrix associated with f).

Indeed, picking a basis in each E_{λ_i} , we obtain a matrix which is a diagonal matrix consisting of the eigenvalues, each λ_i occurring a number of times equal to the dimension of E_{λ_i} . This happens if the algebraic multiplicity and the geometric multiplicity of every eigenvalue are equal. In particular, when the characteristic polynomial has n distinct roots, then f is diagonalizable. It can also be shown that symmetric matrices have real eigenvalues and can be diagonalized.

For a negative example, we leave it as exercise to show that the matrix

$$M = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

cannot be diagonalized, even though 1 is an eigenvalue. The problem is that the eigenspace of 1 only has dimension 1. The matrix

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

cannot be diagonalized either, because it has no real eigenvalues, unless $\theta = k\pi$. However, over the field of complex numbers, it can be diagonalized.

14.2 Reduction to Upper Triangular Form

Unfortunately, not every linear map on a complex vector space can be diagonalized. The next best thing is to "triangularize," which means to find a basis over which the matrix has zero entries below the main diagonal. Fortunately, such a basis always exist.

We say that a square matrix A is an upper triangular matrix if it has the following shape,

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n-1} & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n-1} & a_{2n} \\ 0 & 0 & a_{33} & \dots & a_{3n-1} & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & a_{n-1n-1} & a_{n-1n} \\ 0 & 0 & 0 & \dots & 0 & a_{nn} \end{pmatrix},$$

i.e., $a_{ij} = 0$ whenever $j < i, 1 \le i, j \le n$.

Theorem 14.5. Given any finite dimensional vector space over a field K, for any linear map $f: E \to E$, there is a basis (u_1, \ldots, u_n) with respect to which f is represented by an upper triangular matrix (in $M_n(K)$) iff all the eigenvalues of f belong to K. Equivalently, for every $n \times n$ matrix $A \in M_n(K)$, there is an invertible matrix P and an upper triangular matrix T (both in $M_n(K)$) such that

$$A = PTP^{-1}$$

iff all the eigenvalues of A belong to K.

Proof. If there is a basis (u_1, \ldots, u_n) with respect to which f is represented by an upper triangular matrix T in $M_n(K)$, then since the eigenvalues of f are the diagonal entries of T, all the eigenvalues of f belong to K.

For the converse, we proceed by induction on the dimension n of E. For n=1 the result is obvious. If n>1, since by assumption f has all its eigenvalue in K, pick some eigenvalue $\lambda_1 \in K$ of f, and let u_1 be some corresponding (nonzero) eigenvector. We can find n-1 vectors (v_2, \ldots, v_n) such that (u_1, v_2, \ldots, v_n) is a basis of E, and let F be the subspace of dimension n-1 spanned by (v_2, \ldots, v_n) . In the basis (u_1, v_2, \ldots, v_n) , the matrix of f is of the form

$$U = \begin{pmatrix} \lambda_1 & a_{1\,2} & \dots & a_{1\,n} \\ 0 & a_{2\,2} & \dots & a_{2\,n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a_{n\,2} & \dots & a_{n\,n} \end{pmatrix},$$

since its first column contains the coordinates of $\lambda_1 u_1$ over the basis (u_1, v_2, \ldots, v_n) . If we let $p: E \to F$ be the projection defined such that $p(u_1) = 0$ and $p(v_i) = v_i$ when $2 \le i \le n$, the linear map $g: F \to F$ defined as the restriction of $p \circ f$ to F is represented by the $(n-1) \times (n-1)$ matrix $V = (a_{ij})_{2 \le i,j \le n}$ over the basis (v_2, \ldots, v_n) . We need to prove that all the eigenvalues of g belong to K. However, since the first column of U has a single nonzero entry, we get

$$\chi_U(X) = \det(XI - U) = (X - \lambda_1) \det(XI - V) = (X - \lambda_1)\chi_V(X),$$

where $\chi_U(X)$ is the characteristic polynomial of U and $\chi_V(X)$ is the characteristic polynomial of V. It follows that $\chi_V(X)$ divides $\chi_U(X)$, and since all the roots of $\chi_U(X)$ are in K, all the roots of $\chi_V(X)$ are also in K. Consequently, we can apply the induction hypothesis, and there is a basis (u_2, \ldots, u_n) of F such that g is represented by an upper triangular matrix $(b_{ij})_{1 \leq i,j \leq n-1}$. However,

$$E = Ku_1 \oplus F$$
,

and thus (u_1, \ldots, u_n) is a basis for E. Since p is the projection from $E = Ku_1 \oplus F$ onto F and $g: F \to F$ is the restriction of $p \circ f$ to F, we have

$$f(u_1) = \lambda_1 u_1$$

and

$$f(u_{i+1}) = a_{1i}u_1 + \sum_{j=1}^{i} b_{ij}u_{j+1}$$

for some $a_{1i} \in K$, when $1 \le i \le n-1$. But then the matrix of f with respect to (u_1, \ldots, u_n) is upper triangular.

For the matrix version, we assume that A is the matrix of f with respect to some basis, Then we just proved that there is a change of basis matrix P such that $A = PTP^{-1}$ where T is upper triangular.

If $A = PTP^{-1}$ where T is upper triangular, note that the diagonal entries of T are the eigenvalues $\lambda_1, \ldots, \lambda_n$ of A. Indeed, A and T have the same characteristic polynomial. Also, if A is a real matrix whose eigenvalues are all real, then P can be chosen to real, and if A is a rational matrix whose eigenvalues are all rational, then P can be chosen rational. Since any polynomial over \mathbb{C} has all its roots in \mathbb{C} , Theorem 14.5 implies that every complex $n \times n$ matrix can be triangularized.

If E is a Hermitian space (see Chapter 13), the proof of Theorem 14.5 can be easily adapted to prove that there is an *orthonormal* basis (u_1, \ldots, u_n) with respect to which the matrix of f is upper triangular. This is usually known as Schur's lemma.

Theorem 14.6. (Schur decomposition) Given any linear map $f: E \to E$ over a complex Hermitian space E, there is an orthonormal basis (u_1, \ldots, u_n) with respect to which f is represented by an upper triangular matrix. Equivalently, for every $n \times n$ matrix $A \in M_n(\mathbb{C})$, there is a unitary matrix U and an upper triangular matrix T such that

$$A = UTU^*$$
.

If A is real and if all its eigenvalues are real, then there is an orthogonal matrix Q and a real upper triangular matrix T such that

$$A = QTQ^{\top}.$$

Proof. During the induction, we choose F to be the orthogonal complement of $\mathbb{C}u_1$ and we pick orthonormal bases (use Propositions 13.13 and 13.12). If E is a real Euclidean space and if the eigenvalues of f are all real, the proof also goes through with real matrices (use Propositions 11.11 and 11.10).

If λ is an eigenvalue of the matrix A and if u is an eigenvector associated with λ , from

$$Au = \lambda u$$

we obtain

$$A^2u = A(Au) = A(\lambda u) = \lambda Au = \lambda^2 u,$$

which shows that λ^2 is an eigenvalue of A^2 for the eigenvector u. An obvious induction shows that λ^k is an eigenvalue of A^k for the eigenvector u, for all $k \geq 1$. Now, if all eigenvalues $\lambda_1, \ldots, \lambda_n$ of A are in K, it follows that $\lambda_1^k, \ldots, \lambda_n^k$ are eigenvalues of A^k . However, it is not obvious that A^k does not have other eigenvalues. In fact, this can't happen, and this can be proven using Theorem 14.5.

Proposition 14.7. Given any $n \times n$ matrix $A \in M_n(K)$ with coefficients in a field K, if all eigenvalues $\lambda_1, \ldots, \lambda_n$ of A are in K, then for every polynomial $q(X) \in K[X]$, the eigenvalues of q(A) are exactly $(q(\lambda_1), \ldots, q(\lambda_n))$.

Proof. By Theorem 14.5, there is an upper triangular matrix T and an invertible matrix P (both in $M_n(K)$) such that

$$A = PTP^{-1}$$
.

Since A and T are similar, they have the same eigenvalues (with the same multiplicities), so the diagonal entries of T are the eigenvalues of A. Since

$$A^k = PT^k P^{-1}, \quad k > 1,$$

for any polynomial $q(X) = c_0 X^m + \cdots + c_{m-1} X + c_m$, we have

$$q(A) = c_0 A^m + \dots + c_{m-1} A + c_m I$$

= $c_0 P T^m P^{-1} + \dots + c_{m-1} P T P^{-1} + c_m P I P^{-1}$
= $P(c_0 T^m + \dots + c_{m-1} T + c_m I) P^{-1}$
= $Pq(T) P^{-1}$.

Furthermore, it is easy to check that q(T) is upper triangular and that its diagonal entries are $q(\lambda_1), \ldots, q(\lambda_n)$, where $\lambda_1, \ldots, \lambda_n$ are the diagonal entries of T, namely the eigenvalues of A. It follows that $q(\lambda_1), \ldots, q(\lambda_n)$ are the eigenvalues of q(A).

Remark: There is another way to prove Proposition 14.7 that does not use Theorem 14.5, but instead uses the fact that given any field K, there is field extension \overline{K} of K ($K \subseteq \overline{K}$) such

that every polynomial $q(X) = c_0 X^m + \cdots + c_{m-1} X + c_m$ (of degree $m \ge 1$) with coefficients $c_i \in K$ factors as

$$q(X) = c_0(X - \alpha_1) \cdots (X - \alpha_n), \quad \alpha_i \in \overline{K}, i = 1, \dots, n.$$

The field \overline{K} is called an algebraically closed field (and an algebraic closure of K).

Assume that all eigenvalues $\lambda_1, \ldots, \lambda_n$ of A belong to K. Let q(X) be any polynomial (in K[X]) and let $\mu \in \overline{K}$ be any eigenvalue of q(A) (this means that μ is a zero of the characteristic polynomial $\chi_{q(A)}(X) \in K[X]$ of q(A). Since \overline{K} is algebraically closed, $\chi_{q(A)}(X)$ has all its roots in \overline{K}). We claim that $\mu = q(\lambda_i)$ for some eigenvalue λ_i of A.

Proof. (After Lax [44], Chapter 6). Since \overline{K} is algebraically closed, the polynomial $\mu - q(X)$ factors as

$$\mu - q(X) = c_0(X - \alpha_1) \cdots (X - \alpha_n),$$

for some $\alpha_i \in \overline{K}$. Now $\mu I - q(A)$ is a matrix in $M_n(\overline{K})$, and since μ is an eigenvalue of q(A), it must be singular. We have

$$\mu I - q(A) = c_0(A - \alpha_1 I) \cdots (A - \alpha_n I),$$

and since the left-hand side is singular, so is the right-hand side, which implies that some factor $A - \alpha_i I$ is singular. This means that α_i is an eigenvalue of A, say $\alpha_i = \lambda_i$. As $\alpha_i = \lambda_i$ is a zero of $\mu - q(X)$, we get

$$\mu = q(\lambda_i),$$

which proves that μ is indeed of the form $q(\lambda_i)$ for some eigenvalue λ_i of A.

Using Theorem 14.6, we can derive two very important results.

Proposition 14.8. If A is a Hermitian matrix (i.e. $A^* = A$), then its eigenvalues are real and A can be diagonalized with respect to an orthonormal basis of eigenvectors. In matrix terms, there is a unitary matrix U and a real diagonal matrix D such that $A = UDU^*$. If A is a real symmetric matrix (i.e. $A^{\top} = A$), then its eigenvalues are real and A can be diagonalized with respect to an orthonormal basis of eigenvectors. In matrix terms, there is an orthogonal matrix Q and a real diagonal matrix D such that $A = QDQ^{\top}$.

Proof. By Theorem 14.6, we can write $A = UTU^*$ where $T = (t_{ij})$ is upper triangular and U is a unitary matrix. If $A^* = A$, we get

$$UTU^* = UT^*U^*.$$

and this implies that $T = T^*$. Since T is an upper triangular matrix, T^* is a lower triangular matrix, which implies that T is a diagonal matrix. Furthermore, since $T = T^*$, we have $t_{ii} = \overline{t_{ii}}$ for i = 1, ..., n, which means that the t_{ii} are real, so T is indeed a real diagonal matrix, say D.

If we apply this result to a (real) symmetric matrix A, we obtain the fact that all the eigenvalues of a symmetric matrix are real, and by applying Theorem 14.6 again, we conclude that $A = QDQ^{\top}$, where Q is orthogonal and D is a real diagonal matrix.

More general versions of Proposition 14.8 are proven in Chapter 16.

When a real matrix A has complex eigenvalues, there is a version of Theorem 14.6 involving only real matrices provided that we allow T to be block upper-triangular (the diagonal entries may be 2×2 matrices or real entries).

Theorem 14.6 is not a very practical result but it is a useful theoretical result to cope with matrices that cannot be diagonalized. For example, it can be used to prove that *every* complex matrix is the limit of a sequence of diagonalizable matrices that have distinct eigenvalues!

14.3 Location of Eigenvalues

If A is an $n \times n$ complex (or real) matrix A, it would be useful to know, even roughly, where the eigenvalues of A are located in the complex plane \mathbb{C} . The Gershgorin discs provide some precise information about this.

Definition 14.5. For any complex $n \times n$ matrix A, for $i = 1, \ldots, n$, let

$$R_i'(A) = \sum_{\substack{j=1\\j\neq i}}^n |a_{ij}|$$

and let

$$G(A) = \bigcup_{i=1}^{n} \{ z \in \mathbb{C} \mid |z - a_{ii}| \le R'_{i}(A) \}.$$

Each disc $\{z \in \mathbb{C} \mid |z - a_{ii}| \leq R'_i(A)\}$ is called a *Gershgorin disc* and their union G(A) is called the *Gershgorin domain*. An example of Gershgorin domain for $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & i & 6 \\ 7 & 8 & 1+i \end{pmatrix}$ is illustrated in Figure 14.1.

Although easy to prove, the following theorem is very useful:

Theorem 14.9. (Gershgorin's disc theorem) For any complex $n \times n$ matrix A, all the eigenvalues of A belong to the Gershgorin domain G(A). Furthermore the following properties hold:

(1) If A is strictly row diagonally dominant, that is

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|, \quad for \ i = 1, \dots, n,$$

then A is invertible.

Figure 14.1: Let A be the 3×3 matrix specified at the end of Definition 14.5. For this particular A, we find that $R_1'(A) = 5$, $R_2'(A) = 10$, and $R_3'(A) = 15$. The blue/purple disk is $|z - 1| \le 5$, the pink disk is $|z - i| \le 10$, the peach disk is $|z - 1 - i| \le 15$, and G(A) is the union of these three disks.

(2) If A is strictly row diagonally dominant, and if $a_{ii} > 0$ for i = 1, ..., n, then every eigenvalue of A has a strictly positive real part.

Proof. Let λ be any eigenvalue of A and let u be a corresponding eigenvector (recall that we must have $u \neq 0$). Let k be an index such that

$$|u_k| = \max_{1 \le i \le n} |u_i|.$$

Since $Au = \lambda u$, we have

$$(\lambda - a_{kk})u_k = \sum_{\substack{j=1\\j\neq k}}^n a_{kj}u_j,$$

which implies that

$$|\lambda - a_{kk}||u_k| \le \sum_{\substack{j=1\\j\neq k}}^n |a_{kj}||u_j| \le |u_k| \sum_{\substack{j=1\\j\neq k}}^n |a_{kj}|.$$

Since $u \neq 0$ and $|u_k| = \max_{1 \leq i \leq n} |u_i|$, we must have $|u_k| \neq 0$, and it follows that

$$|\lambda - a_{kk}| \le \sum_{\substack{j=1\\j\neq k}}^{n} |a_{kj}| = R'_k(A),$$

and thus

$$\lambda \in \{z \in \mathbb{C} \mid |z - a_{kk}| \le R'_k(A)\} \subseteq G(A),$$

as claimed.

- (1) Strict row diagonal dominance implies that 0 does not belong to any of the Gershgorin discs, so all eigenvalues of A are nonzero, and A is invertible.
- (2) If A is strictly row diagonally dominant and $a_{ii} > 0$ for i = 1, ..., n, then each of the Gershgorin discs lies strictly in the right half-plane, so every eigenvalue of A has a strictly positive real part.

In particular, Theorem 14.9 implies that if a symmetric matrix is strictly row diagonally dominant and has strictly positive diagonal entries, then it is positive definite. Theorem 14.9 is sometimes called the *Gershgorin–Hadamard theorem*.

Since A and A^{\top} have the same eigenvalues (even for complex matrices) we also have a version of Theorem 14.9 for the discs of radius

$$C'_{j}(A) = \sum_{\substack{i=1\\i\neq j}}^{n} |a_{ij}|,$$

whose domain $G(A^{\top})$ is given by

$$G(A^{\top}) = \bigcup_{i=1}^{n} \{ z \in \mathbb{C} \mid |z - a_{ii}| \le C'_{i}(A) \}.$$

Figure 14.2 shows
$$G(A^{\top})$$
 for $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & i & 6 \\ 7 & 8 & 1+i \end{pmatrix}$.

Thus we get the following:

Theorem 14.10. For any complex $n \times n$ matrix A, all the eigenvalues of A belong to the intersection of the Gershgorin domains $G(A) \cap G(A^{\top})$. See Figure 14.3. Furthermore the following properties hold:

(1) If A is strictly column diagonally dominant, that is

$$|a_{ii}| > \sum_{i=1, i \neq j}^{n} |a_{ij}|, \quad for \ j = 1, \dots, n,$$

then A is invertible.

(2) If A is strictly column diagonally dominant, and if $a_{ii} > 0$ for i = 1, ..., n, then every eigenvalue of A has a strictly positive real part.

There are refinements of Gershgorin's theorem and eigenvalue location results involving other domains besides discs; for more on this subject, see Horn and Johnson [36], Sections 6.1 and 6.2.

Remark: Neither strict row diagonal dominance nor strict column diagonal dominance are necessary for invertibility. Also, if we relax all strict inequalities to inequalities, then row diagonal dominance (or column diagonal dominance) is not a sufficient condition for invertibility.

Figure 14.2: Let A be the 3×3 matrix specified at the end of Definition 14.5. For this particular A, we find that $C_1'(A) = 11$, $C_2'(A) = 10$, and $C_3'(A) = 9$. The pale blue disk is $|z - 1| \le 1$, the pink disk is $|z - i| \le 10$, the ocher disk is $|z - 1 - i| \le 9$, and $G(A^{\top})$ is the union of these three disks.

14.4 Conditioning of Eigenvalue Problems

The following $n \times n$ matrix

$$A = \begin{pmatrix} 0 & & & & \\ 1 & 0 & & & \\ & 1 & 0 & & \\ & & \ddots & \ddots & \\ & & & 1 & 0 \\ & & & & 1 & 0 \end{pmatrix}$$

has the eigenvalue 0 with multiplicity n. However, if we perturb the top rightmost entry of A by ϵ , it is easy to see that the characteristic polynomial of the matrix

$$A(\epsilon) = \begin{pmatrix} 0 & & & & \epsilon \\ 1 & 0 & & & \\ & 1 & 0 & & \\ & & \ddots & \ddots & \\ & & & 1 & 0 \\ & & & & 1 & 0 \end{pmatrix}$$

is $X^n - \epsilon$. It follows that if n = 40 and $\epsilon = 10^{-40}$, $A(10^{-40})$ has the eigenvalues $10^{-1}e^{k2\pi i/40}$ with $k = 1, \ldots, 40$. Thus, we see that a very small change ($\epsilon = 10^{-40}$) to the matrix A causes a significant change to the eigenvalues of A (from 0 to $10^{-1}e^{k2\pi i/40}$). Indeed, the relative

Figure 14.3: Let A be the 3×3 matrix specified at the end of Definition 14.5. The dusty rose region is $G(A) \cap G(A^{\top})$.

error is 10^{-39} . Worse, due to machine precision, since very small numbers are treated as 0, the error on the computation of eigenvalues (for example, of the matrix $A(10^{-40})$) can be very large.

This phenomenon is similar to the phenomenon discussed in Section 8.5 where we studied the effect of a small perturbation of the coefficients of a linear system Ax = b on its solution. In Section 8.5, we saw that the behavior of a linear system under small perturbations is governed by the condition number $\operatorname{cond}(A)$ of the matrix A. In the case of the eigenvalue problem (finding the eigenvalues of a matrix), we will see that the conditioning of the problem depends on the condition number of the change of basis matrix P used in reducing the matrix A to its diagonal form $D = P^{-1}AP$, rather than on the condition number of A itself. The following proposition in which we assume that A is diagonalizable and that the matrix norm $\|\cdot\|$ satisfies a special condition (satisfied by the operator norms $\|\cdot\|_p$ for $p = 1, 2, \infty$), is due to Bauer and Fike (1960).

Proposition 14.11. Let $A \in M_n(\mathbb{C})$ be a diagonalizable matrix, P be an invertible matrix, and D be a diagonal matrix $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ such that

$$A = PDP^{-1},$$

and let $\| \|$ be a matrix norm such that

$$\|\operatorname{diag}(\alpha_1,\ldots,\alpha_n)\| = \max_{1 \le i \le n} |\alpha_i|,$$

for every diagonal matrix. Then for every perturbation matrix ΔA , if we write

$$B_i = \{ z \in \mathbb{C} \mid |z - \lambda_i| \le \operatorname{cond}(P) \|\Delta A\| \},\$$

for every eigenvalue λ of $A + \Delta A$, we have

$$\lambda \in \bigcup_{k=1}^{n} B_k.$$

Proof. Let λ be any eigenvalue of the matrix $A + \Delta A$. If $\lambda = \lambda_j$ for some j, then the result is trivial. Thus assume that $\lambda \neq \lambda_j$ for j = 1, ..., n. In this case the matrix $D - \lambda I$ is invertible (since its eigenvalues are $\lambda - \lambda_j$ for j = 1, ..., n), and we have

$$P^{-1}(A + \Delta A - \lambda I)P = D - \lambda I + P^{-1}(\Delta A)P$$

= $(D - \lambda I)(I + (D - \lambda I)^{-1}P^{-1}(\Delta A)P).$

Since λ is an eigenvalue of $A + \Delta A$, the matrix $A + \Delta A - \lambda I$ is singular, so the matrix

$$I + (D - \lambda I)^{-1} P^{-1}(\Delta A) P$$

must also be singular. By Proposition 8.11(2), we have

$$1 \le ||(D - \lambda I)^{-1} P^{-1}(\Delta A) P||,$$

and since $\| \|$ is a matrix norm,

$$||(D - \lambda I)^{-1}P^{-1}(\Delta A)P|| \le ||(D - \lambda I)^{-1}|| ||P^{-1}|| ||\Delta A|| ||P||,$$

so we have

$$1 \le \|(D - \lambda I)^{-1}\| \|P^{-1}\| \|\Delta A\| \|P\|.$$

Now $(D - \lambda I)^{-1}$ is a diagonal matrix with entries $1/(\lambda_i - \lambda)$, so by our assumption on the norm,

$$||(D - \lambda I)^{-1}|| = \frac{1}{\min_i(|\lambda_i - \lambda|)}.$$

As a consequence, since there is some index k for which $\min_i(|\lambda_i - \lambda|) = |\lambda_k - \lambda|$, we have

$$||(D - \lambda I)^{-1}|| = \frac{1}{|\lambda_k - \lambda|},$$

and we obtain

$$|\lambda - \lambda_k| \le ||P^{-1}|| ||\Delta A|| ||P|| = \operatorname{cond}(P) ||\Delta A||$$

which proves our result.

Proposition 14.11 implies that for any diagonalizable matrix A, if we define $\Gamma(A)$ by

$$\Gamma(A) = \inf\{\operatorname{cond}(P) \mid P^{-1}AP = D\},\$$

then for every eigenvalue λ of $A + \Delta A$, we have

$$\lambda \in \bigcup_{k=1}^{n} \{ z \in \mathbb{C}^n \mid |z - \lambda_k| \le \Gamma(A) \|\Delta A\| \}.$$

Definition 14.6. The number $\Gamma(A) = \inf\{\operatorname{cond}(P) \mid P^{-1}AP = D\}$ is called the *conditioning* of A relative to the eigenvalue problem.

If A is a normal matrix, since by Theorem 16.22, A can be diagonalized with respect to a unitary matrix U, and since for the spectral norm $||U||_2 = 1$, we see that $\Gamma(A) = 1$. Therefore, normal matrices are very well conditionned w.r.t. the eigenvalue problem. In fact, for every eigenvalue λ of $A + \Delta A$ (with A normal), we have

$$\lambda \in \bigcup_{k=1}^{n} \{ z \in \mathbb{C}^n \mid |z - \lambda_k| \le ||\Delta A||_2 \}.$$

If A and $A+\Delta A$ are both symmetric (or Hermitian), there are sharper results; see Proposition 16.28.

Note that the matrix $A(\epsilon)$ from the beginning of the section is not normal.

14.5 Eigenvalues of the Matrix Exponential

The Schur decomposition yields a characterization of the eigenvalues of the matrix exponential e^A in terms of the eigenvalues of the matrix A. First we have the following proposition.

Proposition 14.12. Let A and U be (real or complex) matrices and assume that U is invertible. Then

$$e^{UAU^{-1}} = Ue^AU^{-1}.$$

Proof. A trivial induction shows that

$$UA^{p}U^{-1} = (UAU^{-1})^{p},$$

and thus

$$e^{UAU^{-1}} = \sum_{p \ge 0} \frac{(UAU^{-1})^p}{p!} = \sum_{p \ge 0} \frac{UA^pU^{-1}}{p!}$$
$$= U\left(\sum_{p \ge 0} \frac{A^p}{p!}\right)U^{-1} = Ue^AU^{-1},$$

as claimed.

Proposition 14.13. Given any complex $n \times n$ matrix A, if $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A, then $e^{\lambda_1}, \ldots, e^{\lambda_n}$ are the eigenvalues of e^A . Furthermore, if u is an eigenvector of A for λ_i , then u is an eigenvector of e^A for e^{λ_i} .

Proof. By Theorem 14.5, there is an invertible matrix P and an upper triangular matrix T such that

$$A = PTP^{-1}.$$

By Proposition 14.12,

$$e^{PTP^{-1}} = Pe^TP^{-1}$$
.

Note that $e^T = \sum_{p \geq 0} \frac{T^p}{p!}$ is upper triangular since T^p is upper triangular for all $p \geq 0$. If $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the diagonal entries of T, the properties of matrix multiplication, when combined with an induction on p, imply that the diagonal entries of T^p are $\lambda_1^p, \lambda_2^p, \ldots, \lambda_n^p$. This in turn implies that the diagonal entries of e^T are $\sum_{p\geq 0} \frac{\lambda_i^p}{p!} = e^{\lambda_i}$ for $1 \leq i \leq n$. Since A and T are similar matrices, we know that they have the same eigenvalues, namely the diagonal entries $\lambda_1, \ldots, \lambda_n$ of T. Since $e^A = e^{PTP^{-1}} = Pe^TP^{-1}$, and e^T is upper triangular, we use the same argument to conclude that both e^A and e^T have the same eigenvalues, which are the diagonal entries of e^T , where the diagonal entries of e^T are of the form $e^{\lambda_1}, \ldots, e^{\lambda_n}$. Now, if u is an eigenvector of A for the eigenvalue λ , a simple induction shows that u is an eigenvector of A^n for the eigenvalue A^n , from which is follows that

$$e^{A}u = \left[I + \frac{A}{1!} + \frac{A^{2}}{2!} + \frac{A^{3}}{3!} + \dots\right]u = u + Au + \frac{A^{2}}{2!}u + \frac{A^{3}}{3!}u + \dots$$
$$= u + \lambda u + \frac{\lambda^{2}}{2!}u + \frac{\lambda^{3}}{3!}u + \dots = \left[1 + \lambda + \frac{\lambda^{2}}{2!} + \frac{\lambda^{3}}{3!} + \dots\right]u = e^{\lambda}u,$$

which shows that u is an eigenvector of e^A for e^{λ} .

As a consequence, we obtain the following result.

Proposition 14.14. For every complex (or real) square matrix A, we have

$$\det(e^A) = e^{\operatorname{tr}(A)}.$$

where tr(A) is the trace of A, i.e., the sum $a_{11} + \cdots + a_{nn}$ of its diagonal entries.

Proof. The trace of a matrix A is equal to the sum of the eigenvalues of A. The determinant of a matrix is equal to the product of its eigenvalues, and if $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A, then by Proposition 14.13, $e^{\lambda_1}, \ldots, e^{\lambda_n}$ are the eigenvalues of e^A , and thus

$$\det(e^A) = e^{\lambda_1} \cdots e^{\lambda_n} = e^{\lambda_1 + \cdots + \lambda_n} = e^{\operatorname{tr}(A)},$$

as desired. \Box

If B is a skew symmetric matrix, since tr(B) = 0, we deduce that $det(e^B) = e^0 = 1$. This allows us to obtain the following result. Recall that the (real) vector space of skew symmetric matrices is denoted by $\mathfrak{so}(n)$.

Proposition 14.15. For every skew symmetric matrix $B \in \mathfrak{so}(n)$, we have $e^B \in \mathbf{SO}(n)$, that is, e^B is a rotation.

Proof. By Proposition 8.23, e^B is an orthogonal matrix. Since $\operatorname{tr}(B) = 0$, we deduce that $\det(e^B) = e^0 = 1$. Therefore, $e^B \in \mathbf{SO}(n)$.

14.6. SUMMARY 509

Proposition 14.15 shows that the map $B \mapsto e^B$ is a map $\exp: \mathfrak{so}(n) \to \mathbf{SO}(n)$. It is not injective, but it can be shown (using one of the spectral theorems) that it is surjective.

If B is a (real) symmetric matrix, then

$$(e^B)^{\top} = e^{B^{\top}} = e^B,$$

so e^B is also symmetric. Since the eigenvalues $\lambda_1, \ldots, \lambda_n$ of B are real, by Proposition 14.13, since the eigenvalues of e^B are $e^{\lambda_1}, \ldots, e^{\lambda_n}$ and the λ_i are real, we have $e^{\lambda_i} > 0$ for $i = 1, \ldots, n$, which implies that e^B is symmetric positive definite. In fact, it can be shown that for every symmetric positive definite matrix A, there is a *unique* symmetric matrix B such that $A = e^B$; see Gallier [25].

14.6 Summary

The main concepts and results of this chapter are listed below:

- Diagonal matrix.
- Eigenvalues, eigenvectors; the eigenspace associated with an eigenvalue.
- Characteristic polynomial.
- Trace.
- Algebraic and geometric multiplicity.
- Eigenspaces associated with distinct eigenvalues form a direct sum (Proposition 14.3).
- Reduction of a matrix to an upper-triangular matrix.
- Schur decomposition.
- The *Gershgorin's discs* can be used to locate the eigenvalues of a complex matrix; see Theorems 14.9 and 14.10.
- The conditioning of eigenvalue problems.
- Eigenvalues of the matrix exponential. The formula $det(e^A) = e^{tr(A)}$.

14.7 Problems

Problem 14.1. Let A be the following 2×2 matrix

$$A = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}.$$

- (1) Prove that A has the eigenvalue 0 with multiplicity 2 and that $A^2 = 0$.
- (2) Let A be any real 2×2 matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Prove that if bc > 0, then A has two distinct real eigenvalues. Prove that if a, b, c, d > 0, then there is a positive eigenvector u associated with the largest of the two eigenvalues of A, which means that if $u = (u_1, u_2)$, then $u_1 > 0$ and $u_2 > 0$.

(3) Suppose now that A is any complex 2×2 matrix as in (2). Prove that if A has the eigenvalue 0 with multiplicity 2, then $A^2 = 0$. Prove that if A is real symmetric, then A = 0.

Problem 14.2. Let A be any complex $n \times n$ matrix. Prove that if A has the eigenvalue 0 with multiplicity n, then $A^n = 0$. Give an example of a matrix A such that $A^n = 0$ but $A \neq 0$.

Problem 14.3. Let A be a complex 2×2 matrix, and let λ_1 and λ_2 be the eigenvalues of A. Prove that if $\lambda_1 \neq \lambda_2$, then

$$e^{A} = \frac{\lambda_1 e^{\lambda_2} - \lambda_2 e^{\lambda_1}}{\lambda_1 - \lambda_2} I + \frac{e^{\lambda_1} - e^{\lambda_2}}{\lambda_1 - \lambda_2} A.$$

Problem 14.4. Let A be the real symmetric 2×2 matrix

$$A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}.$$

(1) Prove that the eigenvalues of A are real and given by

$$\lambda_1 = \frac{a+c+\sqrt{4b^2+(a-c)^2}}{2}, \quad \lambda_2 = \frac{a+c-\sqrt{4b^2+(a-c)^2}}{2}.$$

- (2) Prove that A has a double eigenvalue ($\lambda_1 = \lambda_2 = a$) if and only if b = 0 and a = c; that is, A is a diagonal matrix.
 - (3) Prove that the eigenvalues of A are nonnegative iff $b^2 \le ac$ and $a + c \ge 0$.
 - (4) Prove that the eigenvalues of A are positive iff $b^2 < ac$, a > 0 and c > 0.

Problem 14.5. Find the eigenvalues of the matrices

$$A = \begin{pmatrix} 3 & 0 \\ 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 \\ 0 & 3 \end{pmatrix}, \quad C = A + B = \begin{pmatrix} 4 & 1 \\ 1 & 4 \end{pmatrix}.$$

Check that the eigenvalues of A + B are not equal to the sums of eigenvalues of A plus eigenvalues of B.

14.7. PROBLEMS 511

Problem 14.6. Let A be a real symmetric $n \times n$ matrix and B be a real symmetric positive definite $n \times n$ matrix. We would like to solve the *generalized eigenvalue problem*: find $\lambda \in \mathbb{R}$ and $u \neq 0$ such that

$$Au = \lambda Bu. \tag{*}$$

(1) Use the Cholseky decomposition $B = CC^{\top}$ to show that λ and u are solutions of the generalized eigenvalue problem (*) iff λ and v are solutions the (ordinary) eigenvalue problem

$$C^{-1}A(C^{\top})^{-1}v = \lambda v$$
, with $v = C^{\top}u$.

Check that $C^{-1}A(C^{\top})^{-1}$ is symmetric.

- (2) Prove that if $Au_1 = \lambda_1 Bu_1$, $Au_2 = \lambda_2 Bu_2$, with $u_1 \neq 0$, $u_2 \neq 0$ and $\lambda_1 \neq \lambda_2$, then $u_1^{\top} Bu_2 = 0$.
 - (3) Prove that $B^{-1}A$ and $C^{-1}A(C^{\top})^{-1}$ have the same eigenvalues.

Problem 14.7. The sequence of *Fibonacci numbers*, $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \ldots$, is given by the recurrence

$$F_{n+2} = F_{n+1} + F_n$$

with $F_0 = 0$ and $F_1 = 1$. In matrix form, we can write

$$\begin{pmatrix} F_{n+1} \\ F_n \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix}, \quad n \ge 1, \quad \begin{pmatrix} F_1 \\ F_0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

(1) Show that

$$\begin{pmatrix} F_{n+1} \\ F_n \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

(2) Prove that the eigenvalues of the matrix

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

are

$$\lambda = \frac{1 \pm \sqrt{5}}{2}.$$

The number

$$\varphi = \frac{1 + \sqrt{5}}{2}$$

is called the *golden ratio*. Show that the eigenvalues of A are φ and $-\varphi^{-1}$.

(3) Prove that A is diagonalized as

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} \varphi & -\varphi^{-1} \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \varphi & 0 \\ 0 & -\varphi^{-1} \end{pmatrix} \begin{pmatrix} 1 & \varphi^{-1} \\ -1 & \varphi \end{pmatrix}.$$

Prove that

$$\begin{pmatrix} F_{n+1} \\ F_n \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} \varphi & -\varphi^{-1} \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \varphi^n \\ -(-\varphi^{-1})^n \end{pmatrix},$$

and thus

$$F_n = \frac{1}{\sqrt{5}}(\varphi^n - (-\varphi^{-1})^n) = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right], \quad n \ge 0.$$

Problem 14.8. Let A be an $n \times n$ matrix. For any subset I of $\{1, \ldots, n\}$, let $A_{I,I}$ be the matrix obtained from A by first selecting the columns whose indices belong to I, and then the rows whose indices also belong to I. Prove that

$$\tau_k(A) = \sum_{\substack{I \subseteq \{1,\dots,n\}\\|I|=k}} \det(A_{I,I}).$$

Problem 14.9. (1) Consider the matrix

$$A = \begin{pmatrix} 0 & 0 & -a_3 \\ 1 & 0 & -a_2 \\ 0 & 1 & -a_1 \end{pmatrix}.$$

Prove that the characteristic polynomial $\chi_A(z) = \det(zI - A)$ of A is given by

$$\chi_A(z) = z^3 + a_1 z^2 + a_2 z + a_3.$$

(2) Consider the matrix

$$A = \begin{pmatrix} 0 & 0 & 0 & -a_4 \\ 1 & 0 & 0 & -a_3 \\ 0 & 1 & 0 & -a_2 \\ 0 & 0 & 1 & -a_1 \end{pmatrix}.$$

Prove that the characteristic polynomial $\chi_A(z) = \det(zI - A)$ of A is given by

$$\chi_A(z) = z^4 + a_1 z^3 + a_2 z^2 + a_3 z + a_4.$$

(3) Consider the $n \times n$ matrix (called a companion matrix)

$$A = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & -a_n \\ 1 & 0 & 0 & \cdots & 0 & -a_{n-1} \\ 0 & 1 & 0 & \cdots & 0 & -a_{n-2} \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \ddots & 0 & -a_2 \\ 0 & 0 & 0 & \cdots & 1 & -a_1 \end{pmatrix}.$$

Prove that the characteristic polynomial $\chi_A(z) = \det(zI - A)$ of A is given by

$$\chi_A(z) = z^n + a_1 z^{n-1} + a_2 z^{n-2} + \dots + a_{n-1} z + a_n.$$

14.7. PROBLEMS 513

Hint. Use induction.

Explain why finding the roots of a polynomial (with real or complex coefficients) and finding the eigenvalues of a (real or complex) matrix are equivalent problems, in the sense that if we have a method for solving one of these problems, then we have a method to solve the other.

Problem 14.10. Let A be a complex $n \times n$ matrix. Prove that if A is invertible and if the eigenvalues of A are $(\lambda_1, \ldots, \lambda_n)$, then the eigenvalues of A^{-1} are $(\lambda_1^{-1}, \ldots, \lambda_n^{-1})$. Prove that if u is an eigenvector of A for λ_i , then u is an eigenvector of A^{-1} for λ_i^{-1} .

Problem 14.11. Prove that every complex matrix is the limit of a sequence of diagonalizable matrices that have distinct eigenvalues

Problem 14.12. Consider the following tridiagonal $n \times n$ matrices

$$A = \begin{pmatrix} 2 & -1 & 0 & & \\ -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & 0 & -1 & 2 \end{pmatrix}, \quad S = \begin{pmatrix} 0 & 1 & 0 & & \\ 1 & 0 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & 0 & 1 \\ & & 0 & 1 & 0 \end{pmatrix}.$$

Observe that A = 2I - S and show that the eigenvalues of A are $\lambda_k = 2 - \mu_k$, where the μ_k are the eigenvalues of S.

(2) Using Problem 9.6, prove that the eigenvalues of the matrix A are given by

$$\lambda_k = 4\sin^2\left(\frac{k\pi}{2(n+1)}\right), \quad k = 1, \dots, n.$$

Show that A is symmetric positive definite.

- (3) Find the condition number of A with respect to the 2-norm.
- (4) Show that an eigenvector $(y_1^{(k)}, \ldots, y_n^{(k)})$ associated with the eigenvalue λ_k is given by

$$y_j^{(k)} = \sin\left(\frac{kj\pi}{n+1}\right), \quad j = 1, \dots, n.$$

Problem 14.13. Consider the following real tridiagonal symmetric $n \times n$ matrix

$$A = \begin{pmatrix} c & 1 & 0 & \\ 1 & c & 1 & \\ & \ddots & \ddots & \ddots \\ & & 1 & c & 1 \\ & & 0 & 1 & c \end{pmatrix}.$$

(1) Using Problem 9.6, prove that the eigenvalues of the matrix A are given by

$$\lambda_k = c + 2\cos\left(\frac{k\pi}{n+1}\right), \quad k = 1, \dots, n.$$

(2) Find a condition on c so that A is positive definite. It is satisfied by c=4?

Problem 14.14. Let A be an $m \times n$ matrix and B be an $n \times m$ matrix (over \mathbb{C}).

(1) Prove that

$$\det(I_m - AB) = \det(I_n - BA).$$

Hint. Consider the matrices

$$X = \begin{pmatrix} I_m & A \\ B & I_n \end{pmatrix}$$
 and $Y = \begin{pmatrix} I_m & 0 \\ -B & I_n \end{pmatrix}$.

(2) Prove that

$$\lambda^n \det(\lambda I_m - AB) = \lambda^m \det(\lambda I_n - BA).$$

Hint. Consider the matrices

$$X = \begin{pmatrix} \lambda I_m & A \\ B & I_n \end{pmatrix}$$
 and $Y = \begin{pmatrix} I_m & 0 \\ -B & \lambda I_n \end{pmatrix}$.

Deduce that AB and BA have the same nonzero eigenvalues with the same multiplicity.

Problem 14.15. The purpose of this problem is to prove that the characteristic polynomial of the matrix

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & \cdots & n \\ 2 & 3 & 4 & 5 & \cdots & n+1 \\ 3 & 4 & 5 & 6 & \cdots & n+2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n & n+1 & n+2 & n+3 & \cdots & 2n-1 \end{pmatrix}$$

is

$$P_A(\lambda) = \lambda^{n-2} \left(\lambda^2 - n^2 \lambda - \frac{1}{12} n^2 (n^2 - 1) \right).$$

(1) Prove that the characteristic polynomial $P_A(\lambda)$ is given by

$$P_A(\lambda) = \lambda^{n-2} P(\lambda),$$

with

$$P(\lambda) = \begin{vmatrix} \lambda - 1 & -2 & -3 & -4 & \cdots & -n+3 & -n+2 & -n+1 & -n \\ -\lambda - 1 & \lambda - 1 & -1 & -1 & \cdots & -1 & -1 & -1 & -1 \\ 1 & -2 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \ddots & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 1 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & -2 & 1 \end{vmatrix}$$

14.7. PROBLEMS 515

(2) Prove that the sum of the roots λ_1, λ_2 of the (degree two) polynomial $P(\lambda)$ is

$$\lambda_1 + \lambda_2 = n^2.$$

The problem is thus to compute the product $\lambda_1\lambda_2$ of these roots. Prove that

$$\lambda_1 \lambda_2 = P(0)$$
.

(3) The problem is now to evaluate $d_n = P(0)$, where

I suggest the following strategy: cancel out the first entry in row 1 and row 2 by adding a suitable multiple of row 3 to row 1 and row 2, and then subtract row 2 from row 1.

Do this twice.

You will notice that the first two entries on row 1 and the first two entries on row 2 change, but the rest of the matrix looks the same, except that the dimension is reduced.

This suggests setting up a recurrence involving the entries u_k, v_k, x_k, y_k in the determinant

starting with k = 0, with

$$u_0 = -1$$
, $v_0 = -1$, $x_0 = -2$, $y_0 = -1$,

and ending with k = n - 2, so that

$$d_n = D_{n-2} = \begin{vmatrix} u_{n-3} & x_{n-3} & -3 \\ v_{n-3} & y_{n-3} & -1 \\ 1 & -2 & 1 \end{vmatrix} = \begin{vmatrix} u_{n-2} & x_{n-2} \\ v_{n-2} & y_{n-2} \end{vmatrix}.$$

Prove that we have the recurrence relations

$$\begin{pmatrix} u_{k+1} \\ v_{k+1} \\ x_{k+1} \\ y_{k+1} \end{pmatrix} = \begin{pmatrix} 2 & -2 & 1 & -1 \\ 0 & 2 & 0 & 1 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} u_k \\ v_k \\ x_k \\ y_k \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ -2 \\ -1 \end{pmatrix}.$$

These appear to be nasty affine recurrence relations, so we will use the trick to convert this affine map to a linear map.

(4) Consider the linear map given by

$$\begin{pmatrix} u_{k+1} \\ v_{k+1} \\ x_{k+1} \\ y_{k+1} \\ 1 \end{pmatrix} = \begin{pmatrix} 2 & -2 & 1 & -1 & 0 \\ 0 & 2 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 & -2 \\ 0 & -1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} u_k \\ v_k \\ x_k \\ y_k \\ 1 \end{pmatrix},$$

and show that its action on u_k, v_k, x_k, y_k is the same as the affine action of Part (3). Use Matlab to find the eigenvalues of the matrix

$$T = \begin{pmatrix} 2 & -2 & 1 & -1 & 0 \\ 0 & 2 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 & -2 \\ 0 & -1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

You will be stunned! Let N be the matrix given by

$$N = T - I$$
.

Prove that

$$N^4 = 0.$$

Use this to prove that

$$T^{k} = I + kN + \frac{1}{2}k(k-1)N^{2} + \frac{1}{6}k(k-1)(k-2)N^{3},$$

14.7. PROBLEMS 517

for all k > 0.

(5) Prove that

$$\begin{pmatrix} u_k \\ v_k \\ x_k \\ y_k \\ 1 \end{pmatrix} = T^k \begin{pmatrix} -1 \\ -1 \\ -2 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 & -2 & 1 & -1 & 0 \\ 0 & 2 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 & -2 \\ 0 & -1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}^k \begin{pmatrix} -1 \\ -1 \\ -2 \\ -1 \\ 1 \end{pmatrix},$$

for $k \geq 0$.

Prove that

$$T^{k} = \begin{pmatrix} k+1 & -k(k+1) & k & -k^{2} & \frac{1}{6}(k-1)k(2k-7) \\ 0 & k+1 & 0 & k & -\frac{1}{2}(k-1)k \\ -k & k^{2} & 1-k & (k-1)k & -\frac{1}{3}k((k-6)k+11) \\ 0 & -k & 0 & 1-k & \frac{1}{2}(k-3)k \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

and thus that

$$\begin{pmatrix} u_k \\ v_k \\ x_k \\ y_k \end{pmatrix} = \begin{pmatrix} \frac{1}{6}(2k^3 + 3k^2 - 5k - 6) \\ -\frac{1}{2}(k^2 + 3k + 2) \\ \frac{1}{3}(-k^3 + k - 6) \\ \frac{1}{2}(k^2 + k - 2) \end{pmatrix},$$

and that

$$\begin{vmatrix} u_k & x_k \\ v_k & y_k \end{vmatrix} = -1 - \frac{7}{3}k - \frac{23}{12}k^2 - \frac{2}{3}k^3 - \frac{1}{12}k^4.$$

As a consequence, prove that amazingly

$$d_n = D_{n-2} = -\frac{1}{12}n^2(n^2 - 1).$$

(6) Prove that the characteristic polynomial of A is indeed

$$P_A(\lambda) = \lambda^{n-2} \left(\lambda^2 - n^2 \lambda - \frac{1}{12} n^2 (n^2 - 1) \right).$$

Use the above to show that the two nonzero eigenvalues of A are

$$\lambda = \frac{n}{2} \left(n \pm \frac{\sqrt{3}}{3} \sqrt{4n^2 - 1} \right).$$

The negative eigenvalue λ_1 can also be expressed as

$$\lambda_1 = n^2 \frac{(3 - 2\sqrt{3})}{6} \sqrt{1 - \frac{1}{4n^2}}.$$

Use this expression to explain the following phenomenon: if we add any number greater than or equal to $(2/25)n^2$ to every diagonal entry of A we get an invertible matrix. What about $0.077351n^2$? Try it!

Problem 14.16. Let A be a symmetric tridiagonal $n \times n$ -matrix

$$A = \begin{pmatrix} b_1 & c_1 & & & & \\ c_1 & b_2 & c_2 & & & & \\ & c_2 & b_3 & c_3 & & & \\ & & \ddots & \ddots & \ddots & \\ & & & c_{n-2} & b_{n-1} & c_{n-1} \\ & & & & c_{n-1} & b_n \end{pmatrix},$$

where it is assumed that $c_i \neq 0$ for all $i, 1 \leq i \leq n-1$, and let A_k be the $k \times k$ -submatrix consisting of the first k rows and columns of $A, 1 \leq k \leq n$. We define the polynomials $P_k(x)$ as follows: $(0 \leq k \leq n)$.

$$\begin{split} P_0(x) &= 1, \\ P_1(x) &= b_1 - x, \\ P_k(x) &= (b_k - x) P_{k-1}(x) - c_{k-1}^2 P_{k-2}(x), \end{split}$$

where $2 \le k \le n$.

- (1) Prove the following properties:
- (i) $P_k(x)$ is the characteristic polynomial of A_k , where $1 \le k \le n$.
- (ii) $\lim_{x\to-\infty} P_k(x) = +\infty$, where $1 \le k \le n$.
- (iii) If $P_k(x) = 0$, then $P_{k-1}(x)P_{k+1}(x) < 0$, where $1 \le k \le n-1$.
- (iv) $P_k(x)$ has k distinct real roots that separate the k+1 roots of $P_{k+1}(x)$, where $1 \le k \le n-1$.
- (2) Given any real number $\mu > 0$, for every $k, 1 \le k \le n$, define the function $sg_k(\mu)$ as follows:

$$sg_k(\mu) = \begin{cases} sign \text{ of } P_k(\mu) & \text{if } P_k(\mu) \neq 0, \\ sign \text{ of } P_{k-1}(\mu) & \text{if } P_k(\mu) = 0. \end{cases}$$

We encode the sign of a positive number as +, and the sign of a negative number as -. Then let $E(k,\mu)$ be the ordered list

$$E(k,\mu) = \langle +, sg_1(\mu), sg_2(\mu), \dots, sg_k(\mu) \rangle,$$

and let $N(k,\mu)$ be the number changes of sign between consecutive signs in $E(k,\mu)$.

14.7. PROBLEMS 519

Prove that $sg_k(\mu)$ is well defined and that $N(k,\mu)$ is the number of roots λ of $P_k(x)$ such that $\lambda < \mu$.

Remark: The above can be used to compute the eigenvalues of a (tridiagonal) symmetric matrix (the method of Givens-Householder).