Schrödingergleichung 1

Allgemeines 1.1

"Herleitung" der SG
$$\Psi(x,t) = \Psi_0 \exp\left(\frac{i}{\hbar}(p_x x - Et)\right) \quad \text{(de Broglie)}$$

$$\Rightarrow p_x \Psi(x,t) = -i\hbar \frac{\partial}{\partial x} \Psi(x,t)$$

$$\Rightarrow E\Psi(x,t) = i\hbar \frac{\partial}{\partial t} \Psi(x,t)$$
 Via Korrespondenzprinzip gilt: $E = \frac{\hat{p}^2}{2m}$
$$\Rightarrow E\Psi(x,t) - i\hbar \frac{\partial}{\partial t} \Psi(x,t) - \frac{-\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \Psi(x,t) - \frac{\hat{p}^2}{2m} \Psi(x,t)$$
 Lösungsansatz (Separation der Variablen): $\Psi(x,t) = \psi(x) \cdot \chi(t)$
$$\Leftrightarrow \psi(x)i\hbar \frac{\partial \chi(t)}{\partial t} - \chi(t) \cdot \frac{-\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x)$$

$$\Leftrightarrow \frac{i\hbar \chi(t)}{\chi(t)} = \frac{-\hbar^2}{2m} \frac{\psi''(x)}{\psi(x)} = E$$

$$\Rightarrow \text{ODE 1: } i\hbar \chi(t) = E\chi(t) \Rightarrow \chi(t) = \exp(\frac{-i}{\hbar}Et)$$
 ODE 2: $\frac{-\hbar^2}{2m} \psi'''(x) = E\psi(x)$ allgemeine SG
$$\hat{H}\Psi = \hat{E}\Psi$$
 allg. zeitabhängige
$$\psi(\mathbf{r},t) = \psi(\mathbf{r})e^{-i\frac{E}{\hbar}t} = \psi(\mathbf{r})e^{-i\omega t}$$
 Lösung Normierungsbedingung
$$\int_{-\infty}^{\infty} |\Psi(x)|^2 dx = 1$$
 Aufenthalts
$$P(x) = |\Psi(x)|^2$$
 wahrscheinlichkeitsdichte
$$P(x) = |\Psi(x)|^2$$
 wahrscheinlichkeitsdichte
$$P(x) = |\Psi(x)|^2$$
 wahrscheinlichkeitsdichte
$$|\hat{A}, \hat{B}| \equiv \hat{A} \cdot \hat{B} - \hat{B} \cdot \hat{A} \quad \text{Falls } [\hat{A}, \hat{B}] = 0 \Rightarrow \text{A und B gleichzeitig messbar}$$
 Operatoren
$$\hat{\tau} \quad \text{Orts-Operator} \qquad \hat{\tau} = (x, y, z)^T$$

 $\hat{r} = (x, y, z)^T$

 \hat{r} Orts-Operator

Impuls-Operator

 $\hat{p} = -i\hbar \nabla = -i\hbar (\partial/\partial x, \partial/\partial y, \partial/\partial z)^{T}$

 \hat{H} Hamilton-Operator* $\hat{H} = \frac{\hat{p}^2}{2m} + E_p(\hat{r}) = -\frac{\hbar^2}{2m} \nabla^2 + E_p(\hat{r})$

* für ein freies Teilchen im Potentialfeld

1.2 allgemeine Lösung für SG mit Potential

zeitunabhängige Schrödingergleichung (1-dim) Lösung der zeitunabhängigen SG
$$\frac{-\hbar^2}{2m}\frac{\partial^2 \psi(x)}{\partial x^2} + E_{pot}(x)\psi(x) = E\psi(x)$$
 Lösung der zeitunabhängigen SG
$$\frac{-\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x) = (E-E_{pot})\psi(x)$$
 Ansatz: $\psi(x) = e^{ikx}$
$$\Rightarrow Ck^2 \cdot e^{ikx} = (E-E_{pot}) \cdot e^{ikx}$$

$$\Leftrightarrow k = \pm \sqrt{\frac{E-E_{pot}}{C}} = \pm \sqrt{\frac{(E-E_{pot}) \cdot 2m}{\hbar^2}}$$

$$\Rightarrow \psi_k(x) = A_k e^{ikx} + B_k e^{-ikx}$$
 Lösung für $E_{pot} = 0$
$$\psi_1(x) = A e^{ikx} + B e^{-ikx} \quad k^2 = \frac{2mE}{\hbar^2}$$
 Lösung für $E < E_{pot}$
$$\psi_2(x) = Ce^{-\alpha x} + De^{\alpha x} \quad \alpha^2 = \frac{2m}{\hbar^2}(E_{pot} - E)$$
 Lösung für $E > E_{pot}$
$$\psi_3(x) = E e^{i\alpha' x} + F e^{-i\alpha' x} \quad \alpha'^2 = \frac{2m}{\hbar^2}(E-E_{pot})$$
 Stetigkeitsbedingungen
$$\psi_i = \psi_j \quad \text{und} \quad \frac{\partial \psi_i}{\partial x} = \frac{\partial \psi_j}{\partial x} \text{ für } x = 0$$
 Teilchenstromdichte
$$v|A|^2 \quad v = \frac{p}{m} = \frac{\hbar k}{m}$$
 Reflexionskoeffizient
$$\frac{k_C|C|^2}{k_A|A|^2}$$
 Bedeutung von A,B,C wie unten Bsp. Potentialstufe
$$R + T = 1$$

1.3 Spezifische Probleme

1.3.1 Potentialstufe

$$E_{pot} \qquad E_{pot} = \begin{cases} 0 & x < 0 \text{ (Bereich I)} \\ E_0 & x \geqslant 0 \text{ (Bereich II)} \end{cases}$$
 allg. Lösung $(E < \psi_I(x) = Ae^{ikx} + Be^{-ikx} k^2 = \frac{2mE}{\hbar^2}$
$$\psi_{II}(x) = Ce^{-\alpha x} + De^{\alpha x} \alpha^2 = \frac{2m}{\hbar^2} (E_{pot} - E)$$
 Stetigkeitsbedingungen
$$\psi_{I|_{x=0}} = \psi_{II|_{x=0}} \text{ und } \frac{\partial \psi_I}{\partial x}\Big|_{x=0} = \frac{\partial \psi_{II}}{\partial x}\Big|_{x=0}$$
 Randbedingungen
$$\lim_{x \to \infty} \psi_{II} < \infty \text{ (vgl. Normierungsbedingung)}$$
 spez. Lösung
$$D = 0 \text{ (aus RB)}$$

$$B = \frac{(ik + \alpha)A}{ik - \alpha} C = \frac{2ikA}{ik - \alpha}$$
 allg. Lösung $(E > \psi_I(x) = Ae^{ikx} + Be^{-ikx} k^2 = \frac{2mE}{\hbar^2}$
$$E_{pot} \qquad \psi_{II}(x) = Ee^{i\alpha'x} + Fe^{-i\alpha'x} \alpha'^2 = \frac{2m}{\hbar^2} (E - E_{pot})$$
 spez. Lösung
$$F = 0 \text{ (aus RB)}$$

$$B = \frac{(k - \alpha')A}{k + \alpha'} E = \frac{2kA}{k + \alpha'}$$
 Transmissionskoeffizient
$$\frac{v_{II}|E|^2}{v_I|A|^2} = \frac{\alpha'}{k} \left(\frac{2k}{k + \alpha'}\right)^2$$

1.3.2 Potentialtopf (1D)

Reflexionskoeffizient

$$E_{pot} \qquad \qquad E_{pot} = \begin{cases} 0 & 0 < x < a \text{ Bereich II} \\ \infty & \text{sonst (Bereich II)} \end{cases}$$
 allg. Lösung
$$\psi_I(x) = Ae^{ikx} + Be^{-ikx} \quad k^2 = \frac{2mE}{\hbar^2}$$

$$\psi_{II}(x) = 0$$
 Randbedigungen
$$\psi_I(x=0) = \psi_I(x=a) = 0$$
 spez. Lösung
$$\psi_I(x) = \sqrt{\frac{2}{a}}\sin(kx) \quad k = \frac{n\pi}{a} \quad \Rightarrow \lambda = \frac{2\pi}{k}$$
 Energieeigenwert
$$E = \frac{\hbar^2 k^2}{2m} = \frac{n^2\pi^2\hbar^2}{2ma^2}$$

 $\frac{v_I|B|^2}{v_I|A|^2} = \left(\frac{k-\alpha'}{k+\alpha'}\right)$

1.3.3 Potentialtopf (3D)

SG in 3 Dimensionen
$$\psi(x,y,z)=\psi_1(x)\psi_2(y)\psi_3(z) \quad \psi_{1,2,3} \text{ sind Wellenfkt. im 1-dim. Kasten}$$
 Particle in a cube
$$\psi(x,y,z)=\sqrt{\frac{8}{a^3}}\sin(\frac{n_1\pi}{a}x)\sin(\frac{n_2\pi}{a}y)\sin(\frac{n_3\pi}{a}z)$$

$$E=\frac{\hbar^2\pi^2}{2ma^2}(n_1^2+n_2^2+n_3^2)$$

1.3.4 Der Tunneleffekt

Potentialstufe
$$V(x) = \begin{cases} 0 & x < 0 \text{ Bereich A} \\ V & 0 \leqslant x \leqslant D \text{ Bereich B} \\ 0 & D < x \text{ Bereich C} \end{cases}$$
 SG
$$\hat{H}\Psi_A(x) = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \Psi_A(x) = E\Psi_A(x)$$

$$\hat{H}\Psi_B(x) = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \Psi_B(x) + V\Psi_B(x) = E\Psi_B(x)$$

$$\hat{H}\Psi_C(x) = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \Psi_C(x) = E\Psi_C(x)$$
 Lösungen
$$\Psi_A(x) = Ae^{ikx} + Be^{-ikx} \qquad k = \sqrt{\frac{2mE}{\hbar^2}}$$

$$\Psi_B(x) = A'e^{ik'x} + B'e^{-ik'x} \qquad k' = \sqrt{\frac{2m(E-V)}{\hbar^2}} = i\kappa$$

$$\Psi_C(x) = A''e^{ikx} + B''e^{-ikx}$$
 Randbedingungen
$$\Psi_A(0) = \Psi_B(0)$$

$$\frac{d}{dx}\Psi_A(0) = \frac{d}{dx}\Psi_B(0)$$

$$\Psi_B(D) = \Psi_C(D)$$

$$\frac{d}{dx}\Psi_B(D) = \frac{d}{dx}\Psi_C(D)$$

$$B'' = 0 \text{ (keine reflektierte Komponente rechts der Barriere erland)}$$

B'' = 0 (keine reflektierte Komponente rechts der Barriere erlaubt)

Letztlich hat man nur 5 Randbedingungen für 6 Unbekannte. Man kann also lediglich die Tunnelwahrscheinlichkeit $P_T = \frac{|A''|^2}{|A|^2}$ angeben, indem man A'' durch A ausdrückt. $P_T = \frac{4E(V-E)}{4E(V-E) + V^2 \sinh^2(\kappa D)}$ Grundsätzlich wird die Tunnelwahrscheinlichkeit klein für breite Barrieren $(D \to \infty)$, hohe Barrieren $(V \to \infty)$ und grosse Massen m

1.3.5QM harmonischer Oszillator

Der QM harmonische Oszillator wird verwendet, um bspw. molekulare Vibrationsbewegungen zu modellieren. SG
$$\hat{H}\Psi = \left(-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + \frac{1}{2}kx^2\right)\Psi = E\Psi$$
 Eigenwerte
$$E_n = (n+\frac{1}{2})\hbar\omega$$
 Eigenfunktionen
$$\Psi_n = N_n H_n(\sqrt{\alpha}x)e^{-\alpha x^2/2} \quad \alpha = \frac{\sqrt{mk}}{\hbar} \quad H_n : \text{Hermite-Polynome}$$

1.3.6 3D QM harm. Osz.

Eigenwerte
$$E_n = (n_x + n_y + n_z + \frac{3}{2})\hbar\omega$$

Eigenfunktionen $\Psi_n = \Psi_{n_x} \cdot \Psi_{n_y} \cdot \Psi_{n_z}$

1.4 Weiteres

Postulat # 2 der QM – Einzig mögliches Messresult einer physik. Grösse $A(\mathbf{r}, \mathbf{p})$ ist ein Eigenwert a_n

von Operator $\hat{A}(\hat{\mathbf{r}}, \hat{\mathbf{p}}) \Rightarrow \hat{A}\psi_n = a_n\psi_n$

Postulat # 3 der QM WSK dass a_n Messresultat ist, ist $|c_n|^2$, falls Zustand des Systems: $\Phi = \sum c_n \psi_n$

Erwartungswert $\langle A \rangle = \int \Psi^* \hat{A} \Psi dx dy dz$

Beispiel (1-dim) Energieerwartungswert: $\langle E_{kin} \rangle = \int \Psi^* \hat{H} \Psi dx$

2 Klassische Mechanik

2.1 Newton'scher Formalismus

Newton BGL $m\ddot{\vec{x}} = \sum_{i=1}^{N} F_i$

pot. Energie $\vec{F}_i = -\hat{\vec{\nabla}_i} E_{pot}(\vec{r}_1, \vec{r}_2, ..., \vec{r}_N)$

kinet. Energie $E_{kin} = \sum_{i=1}^{N} \frac{1}{2} m_i \dot{\vec{r_i}}^2 = \sum_{i=1}^{N} \frac{\vec{p_i}^2}{2m_i}$

Obige Gleichungen nur in kartesischen Koordinaten erfüllt!

2.2 Lagrange'scher Formalismus

Unabhängig vom Koordinatensystem!

verallgemeinerte Ort- $\vec{q}^M = \{q_1, q_2, ..., q_M\}$

skoordinaten

verallgemeinerte $\dot{\vec{q}}^M = \{\dot{q}_1, \dot{q}_2, ..., \dot{q}_M\}$

Geschwindigkeiten

Lagrange funktion $L\left(\vec{q}^{M}, \dot{\vec{q}}^{M}\right) := E_{kin}\left(\vec{q}^{M}, \dot{\vec{q}}^{M}\right) - E_{pot}\left(\vec{q}^{M}, \dot{\vec{q}}^{M}\right)$

Lagrange BGL $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) = \frac{\partial L}{\partial q_i}$

2.3 Hamilton'scher Formalismus

konjugiert verallge- $\vec{p_i} \equiv \frac{\partial L\left(\vec{q}^M, \dot{\vec{q}}^M\right)}{\partial \dot{q_i}}$ meinerter Impuls

Hamilton funktion $H\left(\vec{q}^{M}, \vec{p}^{M}\right) := \sum_{i=1}^{M} p_{i} \dot{q}_{i} - L\left(\vec{q}^{M}, \dot{\vec{q}}^{M}\right) = E_{kin}\left(\vec{q}^{M}, \vec{p}^{M}\right) + E_{pot}\left(\vec{q}^{M}, \vec{p}^{M}\right) = E_{Tot}$

Hamilton BGL $\dot{q}_i = \frac{\partial H}{\partial p_i} \quad \dot{p}_i = -\frac{\partial H}{\partial q_i}$

2.4 Zwangsbedingungen

Holonom $C(\vec{q}^M) = 0$ Die Zwangsbedingung ist nur von Ortskoordinaten und Zeit abhängig.

Nicht-holonom —— Die Zwangsbedingung ist zusätzlich abhängig von $\dot{\vec{q}}^M$

Implizite Bedingung Sei z.B. $\dot{R} = 0$ (Kreisbahn). Dann ist $E_{kin} = \frac{1}{2}m\left[0 + R^2\dot{\Theta}^2\right]$ s. Skript 2. Woche S.10

Lagrange- Explizite Zwangsbedingung $C(\vec{q}^M) = 0$

Multipliaktoren neue Lagrangefunktion $L_{cons}\left(\vec{q}^{M}, \dot{\vec{q}}^{M}\right) = L\left(\vec{q}^{M}, \dot{\vec{q}}^{M}\right) + \lambda C\left(\vec{q}^{M}\right)$

Kraft der Zwangsbedingung $\frac{d^2}{dt^2}C(\vec{q}^M)=0$

 \Rightarrow Lösung durch Anwendung der L-BGL auf L_{cons} und Einsetzen der Kraft der Zwang

Gauss-Prinzip $\sum_{i=1}^{M} \frac{{F_C}_i^2}{2m_i} = MIN$ $\sum_{i=1}^{M} \frac{{F_C}_i \delta {F_C}_i}{m_i} = 0$

1. Aus Zwangsbedingung Gleichung für $\ddot{\vec{r}}$ herleiten.

2. In $m\ddot{\vec{r}} = F_C = F_C + \delta F_C$ einsetzen.

3. Mit Lagrange-Multipliaktor auf etwas in der Form $F_C = \lambda \vec{r}$ kommen.

Statistical Mechanics 3

Canonical Ensemble 3.1

N, V, TConstants

Fluctuations

A distribution of m_i systems in quantum states ψ_i with Energy E_i is denoted as: Distribution

$$(m_1, m_2, \ldots) \equiv \{m\}$$

$$\sum_{i} m_{i} = M \qquad \sum_{i} m_{i} E_{i} = E_{tot}$$
Distributions (Per- $\Omega(\{m\}) = \frac{M!}{\prod_{i} m_{i}!}$

mutations)

Probability of quan- $P_i = \frac{m_i}{M}$ tum state ψ_i

Most probable distribution m^*

$$\lim_{M \to \infty} \ln \left(\Omega(\{m^*\}) \right) = \ln \left(\sum_{\{m\}} \Omega(\{m\}) \right)$$

$$-\sum_{i} P_i \ln(P_i) = MAX;$$

$$\sum_{i}^{i} P_i = 1;$$

$$\sum_{i}^{i} P_{i} E_{i} = \frac{E_{tot}}{M} = \langle E \rangle$$

$$\sum_{i}^{i} P_{i} E_{i} = \frac{E_{tot}}{M} = \langle E \rangle$$

$$P_{i} = \frac{1}{Z(N, V, T)} e^{-\beta E_{j}}$$

Canonical Partition

Function

$$Z(N, V, T) = \sum_{j} e^{-\beta E_{j}}$$

$$\beta = \frac{1}{k_{B}T} \quad k_{B} \text{ is Boltzmann's Constant}$$

 β in an ideal gas

$$\langle E \rangle = -\left(\frac{\partial \ln Z(N, V, T)}{\partial z}\right)$$

Energy

$$\langle E \rangle = -\left(\frac{\partial \ln Z(N, V, T)}{\partial \beta}\right)_{N, V}$$
$$\langle p \rangle = \frac{1}{\beta} \left(\frac{\partial \ln Z(N, V, T)}{\partial V}\right)_{N, \beta}$$

Pressure

$$\langle p \rangle = \frac{1}{\beta} \left(\frac{\partial \ln Z(N, V, T)}{\partial V} \right)_{N, \beta}^{N, \beta}$$

Uncertainty Principle

Shannon's information theory says, that $-\sum P_i \log P_i$ is the value for uncertainty

If observer knows nothing about a system but the average energy, then his uncertaint

Ideal Gas Partition Function

$$Z_{id} = V \left(\frac{m}{2\beta\pi\hbar^2}\right)^{\frac{3}{2}}$$

3.2 Thermodynamical quantities and relations

Entropy
$$S = -k_B \sum_{i} P_i \ln P_i$$

$$S = \frac{E}{T} + k_B \ln Z(N, V, T)$$

$$S = -\left(\frac{\partial F}{\partial T}\right)_V$$

 $F = E - TS = -k_B T \ln Z(N, V, T)$ Helmholtz Free En-

ergy

Energy
$$E = \langle E \rangle = -T \left(\frac{\partial F}{\partial T} \right)_V + F$$

G = F + pVGibbs Free Energy

3.3 Isothermal-isobaric Ensemble

N, P, TConstants

E, VFluctuations

Various Volumes System characterisa-

tion Ψ_{ki} each with states

> and energies E_{ki}

 P_{ki} = probability that system is in state Ψ_{ki} Probability

 $-\sum_{k}\sum_{i}P_{ki}\ln(P_{ki})=MAX;$ Most probable distribution

$$\sum_{i=1}^{k} P_{ki} = 1$$

$$\sum_{k} \sum_{i}^{k} P_{ki} = 1$$

$$\sum_{k} \sum_{i}^{k} P_{ki} E_{ki} = \langle E \rangle$$

$$\sum_{k=1}^{k} \sum_{i=1}^{i} P_{ki} V_k = \langle V \rangle$$

$$\sum_{k=1}^{k} \sum_{i=1}^{n} P_{ki} V_{k} = \langle V \rangle$$

$$P_{ki} = \frac{1}{Z(N, p, T)} e^{-\beta E_{ki} - \gamma V_{k}}$$

 $Z(N, p, T) = \sum_{i} \sum_{k} e^{-\beta E_{ki} - \gamma V_k} = \sum_{k} Z(N, V_k, T) e^{-\gamma V_k}$ Isothermal-isobaric Partition Function

 β, γ

$$\beta = \frac{1}{k_B T} \quad \gamma = \frac{p}{k_B T}$$

$$Z(N, p, T) = \int_0^\infty \sum_i e^{-[E_i(V) + pV]/k_B T} dV = \int_0^\infty \sum_i e^{-H_i(V)/k_B T} dV$$

H = E + pVEnthalpy

$$\langle H \rangle = -\left(\frac{\partial \ln Z(N, p, T)}{\partial \beta}\right)_{N}$$

 $\langle H \rangle = -\left(\frac{\partial \ln Z(N, p, T)}{\partial \beta}\right)_{N, p}$ $V_{i} = \frac{\partial H_{i}}{\partial p} \quad \langle V \rangle = -\frac{1}{\beta} \left(\frac{\partial \ln Z(N, p, T)}{\partial p}\right)_{N, \beta}$ Volume

Thermodynamical quantities and relations 3.4

Entropy
$$S = -k_B \int_0^\infty \sum_i P_i(V) \ln P_i(V) dV$$

$$S = \frac{H}{T} + k_B \ln Z(N, p, T)$$
Free Enthalpy
$$G = H - TS = -k_B T \ln Z(N, p, T)$$
Other relations
$$H = \langle H \rangle = -T \left(\frac{\partial G}{\partial T}\right)_p + G$$

$$S = -\left(\frac{\partial G}{\partial T}\right)_p$$

$$V = \langle V \rangle = \left(\frac{\partial G}{\partial p}\right)_T$$

$$dG = -SdT + Vdp$$

3.5Grand-Canonical Ensemble

Constants
$$\mu, V, T$$
 μ = Chemisches Potential

Fluctuations
$$E, N$$

System characterisa- Various particle Numbers
$$N$$
 tion each with states

each with states
$$\Psi_{Ni}$$

and energies
$$E_{Ni}$$

Probability
$$P_{Ni}$$
 = probability that system is in state Ψ_{Ni}

Most probable distri-
bution
$$-\sum_{N}\sum_{i}P_{Ni}\ln(P_{Ni})=MAX;$$

$$\sum_{N} \sum_{i}^{N} P_{N} = 1$$

$$\sum_{N} \sum_{i}^{N} P_{Ni} E_{Ni} = \langle E \rangle$$

$$\sum_{N} \sum_{i}^{N} P_{Ni} N = \langle N \rangle$$

$$P_{Ni} = \frac{1}{Z(\mu, V, T)} e^{-\beta E_{Ni} - \gamma N}$$

and Canonical Par-
$$Z(\mu, V, T) = \sum_{N} \sum_{i} e^{-\beta E_{Ni} - \gamma N} = \sum_{N} Z(N, V, T) e^{-\gamma N}$$

Grand Canonical Par-
$$Z(\mu, V, T) = \sum_{N} \sum_{i} e^{-\beta E_{Ni} - \gamma N} = \sum_{N} Z(N, V, T) e^{-\gamma N}$$
 tition Function

$$\beta = \frac{1}{k_B T} \quad \gamma = \frac{-\mu}{k_B T}$$

$$Z(\mu, V, T) = \sum_{N} \sum_{i} e^{-[E_{Ni} - \mu N]/k_B T} = \sum_{N} e^{\beta \mu N} Z(N, V, T)$$

Particle Number
$$\langle N \rangle = k_B T \left(\frac{\partial \ln Z(\mu, V, T)}{\partial \mu} \right)_{\beta, V}$$

3.6 Thermodynamical quantities and relations

Entropy
$$S = -k_B \sum_{N} \sum_{i} P_{Ni} \ln P_{Ni}$$

$$S = \frac{E - \mu N}{T} + k_B \ln Z(\mu, V, T) = \frac{E - \mu N + pV}{T}$$

3.7 **Fluctuations**

Average of a distribution of a quantity Q
$$\langle Q \rangle = \sum_{i} P_{i}Q_{i}$$

$$\langle Q \rangle = \sum_{i} P_{i} Q_{i}$$

Variance

$$\begin{split} \sigma_Q^2 &= \left\langle Q^2 \right\rangle - \left\langle Q \right\rangle^2 \\ \sigma_Q &= \sqrt{\sigma_Q^2} \end{split}$$

Standard deviation

$$\sigma_Q = \sqrt{\sigma_Q^2}$$

Canonical Ensemble

Fluctuation of E

$$\begin{split} \frac{\partial Z(N,V,T)}{\partial \beta} &= \ldots = -\langle E \rangle Z(N,V,T) \\ \frac{\partial \ln Z(N,V,T)}{\partial \beta} &= \ldots = -\langle E \rangle \\ \frac{\partial^2 \ln Z(N,V,T)}{\partial \beta^2} &= \ldots = \langle E^2 \rangle - \langle E \rangle^2 = k_B T^2 \left(\frac{\partial E}{\partial T} \right)_V = k_B T^2 C_V \end{split}$$

 C_V : Heat capacity of system at constant volume

Isothermal-isobaric Ensemble

Fluctuation of V

The transfer of
$$V$$

$$\frac{\partial Z(N, p, T)}{\partial p} = \dots = -\beta \langle V \rangle Z(N, p, T)$$

$$\frac{\partial \ln Z(N, p, T)}{\partial \beta} = \dots = -\beta \langle V \rangle$$

$$\frac{\partial^2 \ln Z(N, p, T)}{\partial \beta^2} = \dots = \beta \langle V^2 \rangle - \beta \langle V \rangle^2 = -k_B T \left(\frac{\partial V}{\partial p}\right)_T = k_B T V \kappa_T$$

 κ_T : Isothermal compressibility

Grand Canonical Ensemble

Fluctuation of N

The traction of
$$N$$

$$\frac{\partial Z(\mu, V, T)}{\partial \mu} = \dots = -\beta \langle N \rangle Z(\mu, V, T)$$

$$\frac{\partial \ln Z(\mu, V, T)}{\partial \mu} = \dots = -\beta \langle N \rangle$$

$$\frac{\partial^2 \ln Z(\mu, V, T)}{\partial \mu^2} = \dots = \beta \langle N^2 \rangle - \beta \langle N \rangle^2 = N \rho k_B T \kappa_T$$

$$\rho = N/V : \text{ Particle Density}$$

Non interacting Many-particle systems 4

4.1 Distinguishable particles

Canonical function for N distinguishable particles

partition
$$Z(N,V,T) = \sum_j e^{-\beta E_j} = \dots = [z(V,T)]^N$$
 all particles with same energy state N distin-

Examples for dist. Atoms in a solid, Atoms in a macromolecule particles

4.2 Indistinguishable particles

Examples $\,$ for $\,$ in- $\,$ Gas molecules, electrons in a atom, photons,...

dist.part.

Fermions All particles with spin $\frac{1}{2}$: Protons, Neutrons, Electrons,...

Wave function Ψ must be anti-symmetric

$$\Psi(1,2) = \frac{1}{\sqrt{2}} \left(\Psi_{k1}(1) \Psi_{k2}(2) - \Psi_{k1}(2) \Psi_{k2}(1) \right)$$

 $k_1 = k_2 \Rightarrow \Psi(1,2) = 0$ Two particles cannot occupy the same state (Pauli)

Bosons All particles with integer spin: Photons, phonons, mesons

Wave function Ψ must be symmetric

$$\Psi(1,2) = \frac{1}{\sqrt{2}} \left(\Psi_{k1}(1) \Psi_{k2}(2) + \Psi_{k1}(2) \Psi_{k2}(1) \right)$$

Many particles may occupy the same state

Indistinguishability No set of particles may be a permutation of another one

Boltzmann Limit If all N particles are in different states with different energies, we can sum the

CPF as for indist. particles and divided by N!

Boltzmann Limit is valid if the number of energy-levels is vastly larger than

the number of particles

Then it's unlikely that two particles (bosons) occupy the same energy-level

4.3 Boltzmann Statistics

CPF in Boltzmann $Z(N, V, T) = \frac{1}{N!} [z(V, T)]^N$ Limit

Number of particle $n(\epsilon) = \frac{1}{8} \frac{4}{3} \pi R^3 = \frac{1}{6} \pi \left(\frac{2ma^2}{\pi^2 \hbar^2} \epsilon \right)^{\frac{3}{2}}$ $\epsilon = \frac{3}{2} k_B T$ $R^2 = n_x^2 + n_y^2 + n_z^2$ states with energies \leq

Boltzmann Statistics $Z(N, V, T) = \frac{1}{N!} [z(V, T)]^N$ applicable if $n(\epsilon) \gg N$

$$\Leftrightarrow \frac{\pi}{6} \left(\frac{12mk_BT}{h^2} \right)^{\frac{3}{2}} >> \frac{N}{a^3} = \frac{N}{V} = \rho$$

B. Stats valid for: large mass m, high temperatur T, low density ρ

Examples Liquid Neon at 27K, liq. Argon at 86K; not Boltzmann: Electrons in a metal at 300K

Energy of N-particle $\langle E \rangle = -\left(\frac{\partial \ln Z(N,V,T)}{\partial \beta}\right)_{N,F} = \dots = N \langle \epsilon \rangle$ system

Average energy of a $\langle \epsilon \rangle = \frac{\sum_{k} \epsilon_{k} e^{-\beta \epsilon_{k}}}{\sum_{k} e^{-\beta \epsilon_{k}}} = \frac{\sum_{k} \epsilon_{k} e^{-\beta \epsilon_{k}}}{z(V, T)}$

Probability of a particle for being in state k $\pi_k = \frac{e^{-\beta \epsilon_k}}{\sum_k e^{-\beta \epsilon_k}}$

Fermi-Dirac, Bose-Einstein partition functions 4.4

Volume: V

Number of particles: N

System Energy levels: E_i

1-particle energy levels: ϵ_k

Number of particles in a quantum state $\Psi_k: m_k$

$$E_j = \sum_k m_k \epsilon_k; N = \sum_k m_k$$

Grand-canonical partition function

$$Z(\mu, V, T) = \sum_{N=0}^{\infty} \sum_{j} e^{-\beta(E_j - \mu N)} = \dots = \prod_{k} \sum_{m_k} (e^{-\beta(\epsilon_k - \mu)})^{m_k}$$

function

Fermi-Dirac partition
$$m_k = 0 \lor 1 \Rightarrow Z_{FD}(\mu, V, T) = \prod_k \left[1 + e^{-\beta(\epsilon_k - \mu)} \right]$$
 function

Bose-Einstein

parti-
$$m_k = 0, 1, 2, ... \Rightarrow Z_{BE}(\mu, V, T) = \prod_k \left[1 - e^{-\beta(\epsilon_k - \mu)} \right]^{-1}$$

tion function

partition
$$Z_{FD/BE}(\mu, V, T) = \prod_{k} \left[1 \pm e^{-\beta(\epsilon_k - \mu)}\right]^{\pm 1}$$

Combined function

Fermi-Dirac Statistics 4.5

Avg. Number of par-
$$\langle N \rangle = \frac{1}{\beta} \left(\frac{\partial \ln Z_{FD}(\mu, V, T)}{\partial \mu} \right)_{V,T} = \dots = \sum_{k} \left(e^{+\beta(\epsilon_k - \mu)} + 1 \right)^{-1} = \sum_{k} \langle m_k \rangle$$
 ticles

$$\langle m_k \rangle \sim \langle m_k \rangle \approx e^{-\beta(\epsilon_k - \mu)} \quad \langle m_k \rangle << 1 \text{ (Boltzmann Limit)}$$

Avg. Energy
$$\langle E \rangle = \sum_{k} \langle m_k \rangle \epsilon_k = \sum_{k} \frac{\epsilon_k}{e^{+\beta(\epsilon_k - \mu)} + 1}$$

Pressure
$$pV = k_B T \ln Z_{FD}(\mu, V, T) = k_B T \sum_{k} \ln \left(1 + e^{-(\epsilon_k - \mu)/k_B T}\right)$$

4.6 **Bose-Einstein Statistics**

Avg. Number of par-
$$\langle N \rangle = \frac{1}{\beta} \left(\frac{\partial \ln Z_{BE}(\mu, V, T)}{\partial \mu} \right)_{V,T} = \dots = \sum_{k} \left(e^{+\beta(\epsilon_k - \mu)} - 1 \right)^{-1} = \sum_{k} \langle m_k \rangle$$
 ticles

$$\langle m_k \rangle \qquad \langle m_k \rangle \approx e^{-\beta(\epsilon_k - \mu)}$$

Avg. Energy
$$\langle E \rangle = \sum_{k} \langle m_k \rangle \epsilon_k = \sum_{k} \frac{\epsilon_k}{e^{+\beta(\epsilon_k - \mu)} - 1}$$

Pressure
$$pV = k_B T \ln Z_{BE}(\mu, V, T) = -k_B T \sum_{k} \ln \left(1 - e^{-(\epsilon_k - \mu)/k_B T}\right)$$

4.7 Maxwell distribution

Avg. kinetic energy
$$\langle \epsilon \rangle = \frac{3}{2} k_B T$$

Avg. size of velocity $\langle v \rangle = \left(\frac{8k_B T}{m \pi} \right)^{\frac{1}{2}}$
Root mean square $\langle v^2 \rangle^{\frac{1}{2}} = \left(\frac{3k_B T}{m} \right)^{\frac{1}{2}}$

Ideal Gas

Avg. kinetic energy
$$\langle E \rangle = N \frac{3}{2} k_B T$$

Heat capacity
$$\frac{dE}{dT} = \frac{3}{2}Nk_B$$

Free energy
$$F = -Nk_BT \left(\frac{3}{2}\ln\left(\frac{2\pi mk_BT}{h^2}\right) - \ln\left(\frac{N}{V}\right) + 1\right)$$

Entropy
$$S = Nk_B \left(\frac{3}{2} \ln \left(\frac{2\pi m k_B T}{\hbar^2} \right) - \ln \left(\frac{N}{V} \right) + \frac{5}{2} \right)$$

Distinguishable vs. indistinguishable particles 4.8

Ideal Gas
$$Z_d(N,V,T) = [z(V,T)]^N$$

$$Z_i(N,V,T) = \frac{1}{N!}[z(V,T)]^N$$
Free Energy
$$F_d = -Nk_BT(\ln z(V,T))$$

$$F_i = -Nk_BT(\ln z(V,T) - \ln N + 1)$$
Entropy
$$S_d = Nk_B(\ln z(V,T) + \frac{3}{2})$$

$$S_i = Nk_B(\ln z(V,T) + \frac{3}{2} - \ln N + 1)$$
Pressure
$$P_d = Nk_BT/V$$

$$P_i = Nk_BT/V$$

5 Computer Simulation

Generally, we want to solve the many-particle problem for a liquid state of macromolecules by using classical mechanics.

Van der Waals interaction between atoms

- 1. Short range repulsion due to electron overlap.
- 2. Long range attraction due induced dipoles.

Lennard-Jones (6,12) potential

A good approximation for van der Waals interaction is the L-J 12-6 function

$$V(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$
$$V(r_{ij}) = 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right]$$

 $\sigma = \text{Collision diameter} \quad \epsilon = \text{well depth}$

$$r_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2}$$

$$f_{x_i}(r_{ij}) = -\frac{\partial}{\partial x_i} V(r_{ij}) = -4\epsilon \left[-12 \left(\frac{\sigma}{r_{ij}} \right)^{12} + 6 \left(\frac{\sigma}{r_{ij}} \right)^6 \right] \frac{x_{ij}}{r_{ij}^2}$$

Force on atom i due to atom j

 ∂x_i (vij) ∂x_i (vij) ∂x_i

Covalent bond interaction

Approximation is harmonic function:

$$V(\vec{r}(t), K_n^b, b_n^0) = \sum_{n} \frac{1}{2} K_n^b (b_n(t) - b_n^0)^2$$

Newton's equation of motion

$$b_n = r_{ij}$$

$$m \frac{dv(t)}{dt} = f(x(t)) = -\frac{\partial}{\partial x} V(x(t))$$

$$\frac{dx(t)}{dt} = v(t)$$

Leap-Frog integration

Integration of Newton's equation of motion

$$v\left(t_n + \Delta \frac{t}{2}\right) = v\left(t_n - \Delta \frac{t}{2}\right) + \frac{f(x(t_n))}{m}\Delta t + O((\Delta t)^3)$$
$$x(t_n + \Delta t) = x(t_n) + v\left(t_n + \Delta \frac{t}{2}\right)\Delta t + O((\Delta t)^3)$$

Periodic boundary conditions

5.1 Metropolis Monte-Carlo Method

Metropolis Monte-Carlo method can be used to evaluate multidimensional integrals.

Häufig ist der Raum Ω so groß, dass die Summation nicht vollständig durchgeführt werden kann. Stattdessen erzeugt man nun eine Markow-Kette x_1, x_2, x_3, \ldots von Zuständen in Ω , deren Häufigkeit wie das vorgegebene Gewicht P(x) verteilt ist. Bereiche des Raumes Ω mit hohem Gewicht sollen also häufiger in der Markow-Kette vertreten sein als Bereiche mit niedrigem Gewicht. (Importance Sampling) Gelingt dies, so lassen sich die Erwartungswerte einfach als arithmetisches Mittel der Größe \mathcal{A} zu diesen Zuständen der Markow-Kette berechnen, also als

$$\langle \mathcal{A} \rangle \approx \frac{1}{N} \sum_{i=1}^{N} \mathcal{A}(x_i).$$

Man muss sicherstellen, dass die Markow-Kette tatsächlich den gesamten Raum Ω bedeckt und nicht nur einen Teil des Raumes abtastet. Man sagt, der Algorithmus muss ergodisch sein.

Algorithm

For large number of steps, do

- 1. Make a step $\Delta \vec{r}$ in configuration space: $\vec{r}_{n+1}^N = \vec{r}_n^N + \Delta \vec{r}$ (This is the Markov-Chain)
- 2. Calculate the change in energy $\Delta E = E_{n+1} E_n$
- 3. if $\Delta E \leq 0$ then

Accept new configuration
$$\vec{r}_{n+1}^N$$
 else if $\exp\left(\frac{-\Delta E}{k_B T}\right) > \text{random number } \in [0,1]$ then Accept \vec{r}_{n+1}^N else $\vec{r}_{n+1}^N = \vec{r}_n^N$ end if

Remarks

- It is better to perform N 1-particle moves rather than 1 N-particle move.
- If $T \to \infty$ then $\exp\left(\frac{-\Delta E}{k_B T}\right) \to 1$ (For high temperature, change of configuration is more likely)

5.2 Replica-exchange simulation

Replica-exchange is done to improve metropolis method. You get a very robust ensemble.

Essentially, one runs N copies of the system, randomly initialized, at different

- a) temperatures
- b) Hamiltonians

Then, based on the Metropolis criterion one exchanges configurations at different temperatures or Hamiltonians.

mans.

$$\Delta_{T} = \frac{H(\vec{r}_{s2}) - H(\vec{r}_{s1})}{\frac{1}{k_{B}T_{s1}} - \frac{1}{k_{B}T_{s2}}} \text{ for a)}$$

$$\Delta_{H} = \frac{\left(H(\vec{r}_{s2}; \lambda_{s1}) - H(\vec{r}_{s1}; \lambda_{s1})\right) - \left(H(\vec{r}_{s2}; \lambda_{s2}) - H(\vec{r}_{s1}; \lambda_{s2})\right)}{k_{B}T} \text{ for b)}$$

5.3 Stochastic Dynamics

 $m_i \dot{v}_i(t) = f_i(t) - m_i \gamma_i v_i(t) + f_i^{st}(t)$ Langevin-Equation

 γ_i = Friction coefficient (of solvent)

 f_i^{st} = Stochastic force (random punches of solvent)

 $\langle f^{st}(t) \rangle = 0$

 $P(f_i^{st})$ ist standard-normalverteilt.

 $v(t) = v_0 e^{-\gamma t} + e^{-\gamma t} \int_0^t e^{\gamma t'} \frac{f^{st}(t')}{m} dt'$ Solution of Langevin-

Eq

Average velocity $\langle v(t) \rangle = v_0 e^{-\gamma t} \lim_{t \to \infty} \langle v(t) \rangle = 0$ Average squared ve- $\langle v^2(t) \rangle = \frac{3k_BT}{m} + \left(v_0^2 - \frac{3k_BT}{m}\right) e^{-2\gamma t} \lim_{t \to \infty} \langle v^2(t) \rangle = \frac{3k_BT}{m}$ locity

 $\langle \frac{1}{2}mv^2(t)\rangle = \frac{3k_BT}{2} + \left(\frac{1}{2}mv_0^2 - \frac{3k_BT}{2}\right)e^{-2\gamma t}$ Average E_{kin}

Probability distribu- Gaussian

tion

Average displacement $\langle r(t) - r_0 \rangle = v_0 \frac{1}{\gamma} (1 - e^{-\gamma t})$

Average square dis- $\lim_{t\to 0} \langle (r(t)-r_0)^2 \rangle \Rightarrow r(t) = r_0 + v_0 t$ placement

 $\lim_{t \to \infty} \langle (r(t) - r_0)^2 \rangle = \lim_{t \to \infty} 6Dt \quad D = \frac{k_B T}{m\gamma} \quad \text{Diffusion constant}$

Thermodynamic Boundary Conditions 6

Coupling to an external temperature or pressure bath. (Measure T and P rather than E and V)

Coupling temperature by scaling velocities

> pressure by scaling positions

Intensive vs. Intensive variable Extensive variable exten-

sive variables independent of system size

> **T**emperature Energy Pressure Volume

Chemical Potential (μ) Particle Number

Keeping intensive variables constant

Weak coupling methods

Extended system methods

3. Stochastic methods

6.1 Constant Temperature

6.1.1 Weak coupling method (Heat bath)

Coupling equation
$$\frac{dT(t)}{dt} = \frac{1}{\tau_T} [T_0 - T(t)]$$
 Relation $T \leftrightarrow v_i$
$$E_{kin}(t) = \sum_{i=1}^N \frac{1}{2} m_i v_i^2(t) = \frac{1}{2} N_{df} k_B T(t)$$
 Velocity scaling
$$v_{new} = \lambda v_{old}$$
 Modified eqn of mo-
$$m_i \frac{dv_i(t)}{dt} = m_i \lambda(t) v_i(t)$$
 tion
$$c_v^{df} \Delta t \ [T_0]$$

$$\lambda = 1 + \frac{c_V^{df}}{k_B} \frac{\Delta t}{\tau_T} \left[\frac{T_0}{T(t)} - 1 \right]$$

 $\tau > 0.1$ should be o.k.

Energy distribution in $\sigma_{E_tot}^2 = k_B T^2 C_V N^{-2}$ L-J Fluid

6.1.2 Stochastic method

Collision model
$$\langle T \rangle = T_0$$

Langevin model $m_i \frac{dv_i(t)}{dt} = f_i(t) - m_i \gamma_i v_i(t) + f_i^{st}(t)$

6.2 Constant Pressure

6.2.1 Weak coupling method

Coupling equation
$$\frac{dP(t)}{dt} = \frac{1}{\tau_P} [P_0 - P(t)]$$
Virial
$$W \equiv -\frac{1}{2} \sum_{i < j}^{N} \vec{r}_{ij} \cdot \vec{f}_{ij}$$
Relation $P \leftrightarrow x_i, V$
$$P(t) = \frac{2}{3V} [\langle E_{kin} \rangle - \langle W \rangle] \quad \text{(Virial theorem)}$$
Velocity scaling
$$x_{new} = \mu x_{old}$$
Modified eqn of modulino
$$\frac{dx_i(t)}{dt} = m_i \mu(t) x_i(t)$$
tion
$$\mu(t) = \left[1 - \frac{\beta_T \Delta t}{\tau_P} [P_0 - P(t)]\right]^{1/3}$$

7 Biased Sampling