UNIVERSITY OF THE PHILIPPINES

Applied Physics 167: Applied Optics 1st Semester AY 2022-2023

COURSE GUIDE

COURSE DESCRIPTION

Imaging optics and electronics, 3D imaging, microscopy, holography, coherence theory, interferometry, Fourier optics, spectroscopy, and nonlinear optics.

Prerequisite: Physics 165

Credit: 3 units

COURSE GOALS

At the end of the course, the learner is expected to be able to:

- 1. Demonstrate advanced understanding of the principles of optical systems and methods.
- 2. Derive intrinsic and extrinsic parameters of optical systems.
- 3. Design and test optical metrology systems.
- 4. Perform measurements using optical systems.

COURSE OUTLINE WITH STUDY SCHEDULE

Week Number	Module/ Topic	Activity and Assessment
1 Sep 12	Class Orientation	
1 Sep 14	Imaging optics and electronics - pinhole camera model	Experiment
2 - Sep 19,21	Pinhole camera model and aberrations	Computation
3 - Sep 26,28	High dynamic range imaging	Group work
4 - Oct 3,5	Modulation transfer function	Experiment
5 - Oct 10	Basic microscopy; numerical aperture and resolution	Hands-on
Oct 12-18	Reading Break	
6 - Oct 19	Nonlinear optics; second order harmonic generation; atoms in intense fields	Lecture
7 - Oct 24,26	Spectroscopy; Light sources, Light-matter interaction	Group work
8 - Oct 31	Color; Properties of human visual system	Group work
9 - Nov 7,9	Color order systems and color matching functions; color appearance phenomena	Computation

10 - Nov 14,16	Color difference specification; Camera spectral sensitivity	Computation
11 - Nov 21,23	Fourier Optics; Fourier treatment of wave propagation, 4F setup and spatial filtering	Simulation
12 - Nov 28	Coherence theory	Lecture
13 - Dec 5,7	Interferometry	Experiment
14 - Dec 12,14	Holography; Hologram recording and reconstruction, Digital Holography	Simulation
15 - Dec 19, 21	Catch-up	
16 - Jan 2,4	Catch-up	

COURSE REQUIREMENTS

Project Reports - 100%

COURSE GUIDELINES

- 1. Mode of teaching is active learning. Activities include simulations, individual experiments, group work, problem solving.
- 2. Reports are by default slide presentation style. Occasionally I will require SPP-paper type reports.
- 3. Non-graded quizzes will be given to check on the students' grasp of concepts and to catch and correct misconceptions.
- 4. Groupings are not fixed.
- 5. Classes will begin at 10:10AM and will be dismissed at 11:25AM.
- 6. Classes, activities and demos will occasionally be held at the Advanced Lab (R209) or outdoors.

ABOUT THE INSTRUCTOR

Maricor Soriano, Ph.D Room R202 Consultation Hours: TTHF 11:30-2pm jing@nip.upd.edu.ph 09209083305

REFERENCES

- 1. Optics 5th ed., by E. Hecht, Pearson (2016)
- 2. Handbook of Optics Vol. I, OSA (2010)
- 3. Introduction to Fourier Optics 3rd ed., by J. Goodman, Roberts and Company Publishers (2004)
- 4. Basics of Interferometry 2nd ed., by P. Hariharan, Academic Press (2007)
- 5. Optical Physics, 3rd ed. by Lipson, Lipson & Tannhauser (1995)
- 6. Debevec, Paul E., and Jitendra Malik. "Recovering high dynamic range radiance maps from photographs." ACM SIGGRAPH 2008 classes. ACM, 2008.
- 7. Herrera, C., Juho Kannala, and Janne Heikkilä. "Joint depth and color camera

- calibration with distortion correction." Pattern Analysis and Machine Intelligence, IEEE Transactions on 34.10 (2012): 2058-2064.
- 8. Zimmermann, Timo. "Spectral imaging and linear unmixing in light microscopy." Microscopy techniques. Springer Berlin Heidelberg, 2005. 245-265.
- 9. Schalkoff, Robert J. Digital image processing and computer vision. Vol. 286. New York: Wiley, 1989.