)(CDataCraft

Überblick

Statistik-Grundlagen

- 1. Skalen- und Merkmalstypen HEUTE
- 2. Lage- und Streuungsmaße
- 3. Visualisierungen
- 4. Kombinatorik
- 5. Verteilungen
- 6. Zusammenhangsmaße
- 7. Konfidenzintervalle
- 8. Fehlende Werte
- 9. Hypothesentests
- 10. Lineare Regression

Was ist Statistik?

Statistik

Die Lehre von Methoden zum Umgang mit quantitativen Informationen (Daten)

deskriptive Statistik

(beschreibende S., empirische S.)

Vorliegende Daten werden in geeigneter Weise beschrieben, aufbereitet und zusammengefasst.

Prädiktiv Induktive Statistik

(schließende S.)

Herleitung von
Eigenschaften einer
Grundgesamtheit anhand
von Daten einer Stichprobe

explorative Statistik

(hypothesen-generierende S.)

Systematische Suche nach möglichen Zusammenhängen/ Unterschieden

klassisch

Python Modulübersicht

Zusätzlich zu math, numpy, pandas, matplotlib und seaborn benötigen wir folgende Module:

Modul	Beschreibung	Quelle	Installations- Befehl
statistics	Statistische Funktionen	Standardbibliothek	
scipy	"Scientific Python"	conda	conda install scipy
statsmodels	Statistische Modelle	conda	conda install statsmodels
lmdiag	Visualisierungen	pip	pip install Imdiag

1 Skalen und Merkmalstypen

Um welche Art von Daten handelt es sich bei einer Variable?

Nominalskala

Daten können nur bennant werden, z.B. Farben

Ordinalskala

Daten haben eine natürliche Ordnung/Reihenfolge, d.h. man kann die Daten sortieren. Z.B. eine Frage mit Antwortmöglichkeiten immer, häufig, selten, nie)

Kardinalskala

- Intervallskala: Abstände zwischen Werten können gemessen werden, z.B.
 Zeitpunkte
- Verhältnisskala: Zusätzlich zur Intervallskala gibt es einen natürlich Nullpunkt,
 z.B. Gewicht oder Alter; Temperatur in Kelvin

Die Skala gibt an, was man mit den Daten machen darf, z.B. Mittelwert bilden!

kategorial

metrisch

Skala		Eigenschaften				
		Kategorial		Metrisch		
	Nominal	Häufigkeit				
	Ordinal	Häufigkeit	Rangfolge			
	Intervall	Häufigkeit	Rangfolge	Interpretierbare, regelmäßige Abstände		
	Verhältnis	Häufigkeit	Rangfolge	Interpretierbare, regelmäßige Abstände	Nullpunkt	10

- Statistik findet sich überall im Alltag
- Besonders zur Zeit von Corona sah man sich damit Zunehmens konfrontiert
- Um Statistiken zu verstehen, muss man Statistik verstehen!

Welche Skalen haben diese Daten?

Deskriptive Statistik

- beschreibt eine Stichprobe
- umfasst u.a.
 - Mittelwerte
 - Streuungsmaße
 - Häufigkeitsverteilungen
- Reine Beschreibung der Stichprobe, macht keine Schlussfolgerungen

Induktive Statistik

- zieht statistische Schlüsse auf Basis einer (möglichst repräsentativen) Stichprobe auf die Grundgesamtheit
- umfasst u.a. statistische Tests, z.B.
 t-Test, Chi²-Test, p-Test
- jede Schlussfolgerung ist mit einer gewissen Unsicherheit verbunden (Irrtumswahrscheinlichkeit) – Ziel ist i.d.R. Irrtums-wahrscheinlichkeit von max. 5 %

Merkmal, Merkmalsträger, Merkmalsausprägung

Was	Beispiel	In unseren Daten wäre das
Merkmalsträger	Eine Person	1 ganze Zeile
Merkmal	Studiengang, Körpergröße, Zufriedenheit einer Person	Je Merkmal 1 SpalteJe Merkmal PRO Merkmalsträger 1 Zelle
Beobachtungs- werte	Eine menschliche Körpergröße von 180 cm bei Person X / Merkmalsträger X	Der Wert in einer Zelle (in der Zeile der Person X)
Merkmals- ausprägung	Theoretisch mögliche Werte. (Eine Körpergröße von 1180 cm ist nicht sinnvoll, sondern ein Fehler im Datensatz)	(siehe Beobachtungswerte)

Population und Stichprobe

Was	Beispiel	In unseren Daten wäre das
Population	Bei der Bundestagswahl: Die Stimme aller wahlberechtigten Bürger Deutschlands	Nichts, da es fast immer viel zu aufwändig ist, alle zu befragen. Wenn doch: der gesamte Datensatz
Stichprobe	Der Teil der Population, den man befragt hat (z.B. wenn 55% der Bürger befragt werden, ist das meine Stichprobe)	der gesamte Datensatz oder ein Auszug daraus

Häufigkeitsverteilungen

Kurzeinführung statistische Formeln

Symbole der Statistik und Mathematik

Messbare Eigenschaft	Symbol	Beispiel: Bundestagswahl
Stichprobenumfang	n	Gesamt (gültige Stimmen): 46.419.448 Stimmen
Absolute Häufigkeit (Anzahl / Count)	Н	CDU: 8.770.980 Stimmen CSU: 2.402.826 Stimmen
Relative Häufigkeit (Anteil)	h	CDU: 18,9% (von 100) Anteil der gültigen Stimmen CSU: 5,2% Anteil der gültigen Stimmen
Kumulierte absolute Häufigkeit	F_{abs}	Union (= CDU & CSU summiert): 11.175.806 Stimmen
Kumulierte relative Häufigkeit	F_{rel}	Union (= CDU & CSU summiert): 24,1 % Stimmenabteil der gültigen Stimmen

Erste Formel: Berechnung relative Häufigkeit

h = Zeichen für "relative Häufigkeit"

der Variable/ des Merkmals A

H = Zeichen für "absolute Häufigkeit"

$$h_n(A) = \frac{n_n(A)}{n}$$

Und zwar über alle Werte $\,n\,$, die bei $\,A\,$ stehen

n = Stichprobenumfang

Relative Häufigkeit Beispiel

