Deep Learning

Yoshua Bengio Ian J. Goodfellow Aaron Courville

January 1, 2015

Table of Contents

1	Dee	p Learning for AI	2			
	1.1	Who should read this book?	10			
	1.2	Machine Learning	11			
	1.3	Historical Perspective and Neural Networks	14			
	1.4	Recent Impact of Deep Learning Research	15			
	1.5	Challenges for Future Research	17			
2	Linear algebra 20					
	2.1	Scalars, vectors, matrices and tensors	20			
	2.2	Multiplying matrices and vectors	22			
	2.3	Identity and inverse matrices	24			
	2.4	Linear dependence, span, and rank	25			
	2.5	Norms	26			
	2.6	Special kinds of matrices and vectors	28			
	2.7	Eigendecomposition	29			
	2.8	Singular Value Decomposition	30			
	2.9	The trace operator	31			
	2.10	Determinant	31			
	2.11	Example: Principal components analysis	32			
3	Pro	bability and Information Theory	35			
	3.1	Why probability?	35			
	3.2	Random variables	37			
	3.3	Probability distributions	37			
		3.3.1 Discrete variables and probability mass functions	37			
		3.3.2 Continuous variables and probability density functions	38			
	3.4	Marginal probability	39			
	3.5	Conditional probability	39			
	3.6	The chain rule	40			
	3.7	Independence and conditional independence	40			
	3.8	Expectation, variance, and covariance	41			
	3.9	Information theory	42			
	3.10		44			

		3.10.1 Bernoulli Distribution
		3.10.2 Multinoulli Distribution
		3.10.3 Gaussian Distribution
		3.10.4 Dirac Distribution
		3.10.5 Mixtures of Distributions and Gaussian Mixture
	3.11	Useful properties of common functions
		Bayes' rule
	3.13	Technical details of continuous variables
	3.14	Example: Naive Bayes
4	Nur	nerical Computation 50
	4.1	Overflow and underflow
	4.2	Poor conditioning
	4.3	Gradient-Based Optimization
	4.4	Constrained optimization
	4.5	Example: linear least squares
5	Mad	chine Learning Basics 70
	5.1	Learning algorithms
		5.1.1 The task, T
		5.1.2 The performance measure, P
		5.1.3 The experience, E
	5.2	Example: Linear regression
	5.3	Generalization, Capacity, Overfitting and Underfitting
		5.3.1 Generalization
		5.3.2 Capacity
		5.3.3 Occam's Razor, Underfitting and Overfitting
	5.4	Estimating and Monitoring Generalization Error 8
	5.5	Estimators, Bias, and Variance
		5.5.1 Point Estimation
		5.5.2 Bias
		5.5.3 Variance
		5.5.4 Trading off Bias and Variance and the Mean Squared Error 8
		5.5.5 Consistency
	5.6	Maximum likelihood estimation
		5.6.1 Properties of Maximum Likelihood 8
		5.6.2 Regularized Likelihood
	5.7	Bayesian Statistics
	5.8	Supervised learning
		5.8.1 Estimating Conditional Expectation by Minimizing Squared Error 88
		5.8.2 Estimating Probabilities or Conditional Probabilities by Maxi-
		mum Likelihood
	5.9	Unsupervised learning
		5.9.1 Principal Components Analysis

	5.10	Weakly supervised learning	92
	5.11	The Smoothness Prior, Local Generalization and Non-Parametric Models	93
	5.12	Manifold Learning and the Curse of Dimensionality	97
			00
6	Feed	dforward Deep Networks 1	02
	6.1	•	02
	6.2		05
			05
		·	06
			11
			12
	6.3		13
			14
			16
	6.4		20
	6.5	Feature / Representation Learning	22
	6.6	Piecewise Linear Hidden Units	24
	6.7	Historical Notes	25
7	Reg	ularization 1	2 6
	7.1		27
			28
		7.1.2 L^1 Regularization	30
			32
	7.2	Classical Regularization as Constrained Optimization	32
	7.3	Regularization from a Bayesian Perspective	34
	7.4	Early Stopping as a Form of Regularization	34
	7.5	Regularization and Under-Constrained Problems	39
	7.6	Parameter Sharing	40
	7.7	Sparse Representations	40
	7.8	Dataset Augmentation	40
	7.9		41
		•	41
	7.11	1	42
		8	42
		00 0	44
		*	46
	7.14	Multi-Task Learning	49
8	Opt		5 0
	8.1		50
		v 11 c	50
		8.1.2 Plateaus, saddle points, and other flat regions	50

		8.1.3	Cliffs and Exploding Gradients	150	
		8.1.4	Vanishing and Exploding Gradients - An Introduction to the Issue		
			•	153	
	8.2	Optim	ization algorithms	156	
		8.2.1	Approximate Natural Gradient and Second-Order Methods	156	
		8.2.2	Optimization strategies and meta-algorithms	156	
		8.2.3	Coordinate descent	156	
		8.2.4	Greedy supervised pre-training	157	
	8.3	Hints a	and Curriculum Learning	157	
9	Ctm				
9	9.1			158 159	
	9.2			161	
	9.4	9.2.1		162	
		9.2.1		162	
		9.2.2		164	
		9.2.3		166	
		9.2.4		167	
		9.2.6		169	
		9.2.7		169	
	9.3		1	171	
	9.4		9	171	
	9.4	9.4.1		171	
		9.4.1		$171 \\ 172$	
	9.5		<u> </u>	172 173	
	9.6			173	
	9.0			179	
	9.1			177	
		9.7.1	Example. The Restricted Boltzmann Machine	111	
10	Uns	upervi	sed and Transfer Learning	17 9	
	10.1			180	
			0	181	
		10.1.2	Representational Power, Layer Size and Depth	184	
		10.1.3	Reconstruction Distribution	185	
	10.2			186	
			V	186	
		10.2.2	Manifold Interpretation of PCA and Linear Auto-Encoders	188	
				190	
		10.2.4	Sparse Coding as a Generative Model	191	
				192	
		•	· · ·	192	
	10.5	Transfe	er Learning and Domain Adaptation	193	

11	Con	volutional Networks	199
	11.1	The convolution operation	199
	11.2	Motivation	201
	11.3	Pooling	204
	11.4	Variants of the basic convolution function	209
	11.5	Data types	214
		Efficient convolution algorithms	216
	11.7	Deep learning history	216
12	Segi	uence Modeling: Recurrent and Recursive Nets	217
		Unfolding Flow Graphs and Sharing Parameters	217
		Recurrent Neural Networks	219
		12.2.1 Computing the gradient in a recurrent neural network	221
		12.2.2 Recurrent Networks as Generative Directed Acyclic Models	223
		12.2.3 RNNs to represent conditional probability distributions	225
	12.3	Bidirectional RNNs	227
	12.4	Recursive Neural Networks	229
	12.5	Auto-Regressive Networks	230
		12.5.1 Logistic Auto-Regressive Networks	231
		12.5.2 Neural Auto-Regressive Networks	232
		12.5.3 NADE	234
	12.6	Facing the Challenge of Long-Term Dependencies	235
		12.6.1 Echo State Networks: Choosing Weights to Make Dynamics Barely	
		Contractive	235
		12.6.2 Combining Short and Long Paths in the Unfolded Flow Graph .	237
		12.6.3 Leaky Units and a Hierarchy Different Time Scales	238
		12.6.4 The Long-Short-Term-Memory Architecture and Other Gated RNN	
		12.6.5 Deep RNNs	241
		12.6.6 Better Optimization	243
		12.6.7 Clipping Gradients	244
		12.6.8 Regularizing to Encourage Information Flow	245
		12.6.9 Organizing the State at Multiple Time Scales	245
	12.7	Handling temporal dependencies with n-grams, HMMs, CRFs and other	
		graphical models	246
		12.7.1 N-grams	246
		12.7.2 Efficient Marginalization and Inference for Temporally Structured	
		Outputs by Dynamic Programming	247
		12.7.3 HMMs	252
	10.0	12.7.4 CRFs	254
	12.8	Combining Neural Networks and Search	256
		12.8.1 Approximate Search	257

13	The	Manifold Perspective on Auto-Encoders	261
	13.1	Manifold Learning via Regularized Auto-Encoders	269
	13.2	Probabilistic Interpretation of Reconstruction Error as Log-Likelihood .	272
	13.3	Sparse Representations	273
		13.3.1 Sparse Auto-Encoders	274
		13.3.2 Predictive Sparse Decomposition	276
	13.4	Denoising Auto-Encoders	277
		13.4.1 Learning a Vector Field that Estimates a Gradient Field	279
		13.4.2 Turning the Gradient Field into a Generative Model	281
	13.5	Contractive Auto-Encoders	284
	13.6	Tangent Distance, Tangent-Prop, and Manifold Tangent Classifier	285
14	Dist	ributed Representations: Disentangling the Underlying Factors	288
	14.1	Causality and Semi-Supervised Learning	288
	14.2	Assumption of Underlying Factors and Distributed Representation	290
	14.3	Exponential Gain in Representational Efficiency from Distributed Repre-	
		sentations	294
		Exponential Gain in Representational Efficiency from Depth	295
	14.5	Priors Regarding The Underlying Factors	298
15		fronting the Partition Function	301
	15.1	Estimating the partition function	301
		15.1.1 Annealed importance sampling	303
		15.1.2 Bridge sampling	306
		15.1.3 Extensions	306
		Stochastic maximum likelihood and contrastive divergence	307
		Pseudolikelihood	314
		Score matching and ratio matching	316
		Denoising score matching	318
	15.6	Noise-contrastive estimation	318
16		proximate inference	321
		Inference as optimization	321
		Expectation maximization	323
		MAP inference: Sparse coding as a probabilistic model	324
	16.4	Variational inference and learning	325
		16.4.1 Discrete latent variables	327
		16.4.2 Calculus of variations	327
		16.4.3 Continuous latent variables	329
		Stochastic inference	329
	16.6	Learned approximate inference	329

17	Dee	p generative models	330
	17.1	Restricted Boltzmann machines	330
	17.2	Deep belief networks	332
	17.3	Deep Boltzmann machines	333
		17.3.1 Interesting properties	333
		17.3.2 Variational learning with SML	334
		17.3.3 Layerwise pretraining	335
		17.3.4 Multi-prediction deep Boltzmann machines	337
		17.3.5 Centered deep Boltzmann machines	337
	17.4	Boltzmann machines for real-valued data	337
		17.4.1 Gaussian-Bernoulli RBMs	337
		17.4.2 mcRBMs	338
		17.4.3 Spike and slab restricted Boltzmann machines	338
		Convolutional Boltzmann machines	338
	17.6	Other Boltzmann machines	339
	17.7	Directed generative nets	339
		17.7.1 Variational autoencoders	339
		17.7.2 Variational interpretation of PSD	339
		17.7.3 Generative adversarial networks	339
		A generative view of autoencoders	340
		Generative stochastic networks	340
	17.10	OMethodological notes	340
1 Q	Lone	ge scale deep learning	343
		Fast CPU implementations	343
		GPU implementations	343
		Asynchronous parallel implementations	343
			343
		Dynamically structured nets	$\frac{343}{344}$
	10.0	Woder compression	344
19	Prac	ctical methodology	345
	19.1	When to gather more data, control capacity, or change algorithms	345
	19.2	Machine Learning Methodology 101	345
		Manual hyperparameter tuning	345
		Hyper-parameter optimization algorithms	345
		Tricks of the Trade for Deep Learning	347
		19.5.1 Debugging Back-Prop	347
		19.5.2 Automatic Differentation and Symbolic Manipulations of Flow	
		Graphs	347
		19.5.3 Momentum and Other Averaging Techniques as Cheap Second	
		Order Methods	347

20 Applications	348
20.1 Computer vision	 . 348
20.1.1 Preprocessing	 . 349
20.1.2 Convolutional nets	 . 354
20.2 Speech Recognition	 . 354
20.3 Natural language processing and neural language models	 . 354
20.3.1 Neural language models	 . 354
20.4 Structured outputs	 . 354
20.5 Other applications	 . 354
Bibliography	355
Index	376

Acknowledgments

We would like to thank the following people who commented our proposal for the book and helped plan its contents and organization: Hugo Larochelle, Guillaume Alain, Kyunghyun Cho, Caglar Gulcehre (TODO diacritics), Razvan Pascanu, David Krueger and Thomas Rohée.

We would like to thank the following people who offered feedback on the content of the book itself:

In many chapters: Pawel Chilinski.

Introduction: Johannes Roith, Eric Morris, Samira Ebrahimi, Ozan Çaglayan.

Math background chapters: Ilya Sutskever, Vincent Vanhoucke, Johannes Roith,

Linear algebra: Guillaume Alain, Dustin Webb, David Warde-Farley, Pierre Luc Carrier, Li Yao, Thomas Rohée, Colby Toland, Amjad Almahairi, Sergey Oreshkov,

Probability: Rasmus Antti, Stephan Gouws, David Warde-Farley, Vincent Dumoulin, Artem Oboturov, Li Yao. John Philip Anderson

Numerical: Meire Fortunato, Jurgen Van Gael. Dustin Webb

ML: Dzmitry Bahdanau Kelvin Xu

MLPs: Jurgen Van Gael

Convolutional nets: Guillaume Alain, David Warde-Farley, Mehdi Mirza, Caglar Gulcehre.

Unsupervised: Kelvin Xu

Partition function: Sam Bowman. Graphical models: Kelvin Xu RNNs: Kelvin Xu Dmitriy Serdyuk

We also want to thank Jason Yosinski and Nicolas Chapados for contributing figures (as noted in the captions).

TODO- this section is just notes, write it up in nice presentation form.

Bibliography

- Alain, G. and Bengio, Y. (2012). What regularized auto-encoders learn from the data generating distribution. Technical Report Arxiv report 1211.4246, Université de Montréal. 279
- Alain, G. and Bengio, Y. (2013). What regularized auto-encoders learn from the data generating distribution. In *ICLR* '2013. also arXiv report 1211.4246. 279, 281
- Amari, S. (1997). Neural learning in structured parameter spaces natural Riemannian gradient. In Advances in Neural Information Processing Systems, pages 127–133. MIT Press. 113
- Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. Technical report, arXiv preprint arXiv:1409.0473. 10
- Bahl, L. R., Brown, P., de Souza, P. V., and Mercer, R. L. (1987). Speech recognition with continuous-parameter hidden Markov models. *Computer, Speech and Language*, **2**, 219–234. 48, 254
- Baldi, P. and Brunak, S. (1998). *Bioinformatics, the Machine Learning Approach*. MIT Press. 256
- Baldi, P. and Sadowski, P. J. (2013). Understanding dropout. In *Advances in Neural Information Processing Systems* 26, pages 2814–2822. 149
- Baldi, P., Brunak, S., Frasconi, P., Soda, G., and Pollastri, G. (1999). Exploiting the past and the future in protein secondary structure prediction. *Bioinformatics*, **15**(11), 937–946. 228
- Barron, A. E. (1993). Universal approximation bounds for superpositions of a sigmoidal function. *IEEE Trans. on Information Theory*, **39**, 930–945. **121**
- Bartholomew, D. J. (1987). Latent variable models and factor analysis. Oxford University Press. 187
- Basilevsky, A. (1994). Statistical Factor Analysis and Related Methods: Theory and Applications. Wiley. 187
- Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I. J., Bergeron, A., Bouchard, N., and Bengio, Y. (2012). Theano: new features and speed improvements. Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop. 57
- Baum, L. E. and Petrie, T. (1966). Statistical inference for probabilistic functions of finite state Markov chains. *Ann. Math. Stat.*, **37**, 1559–1563. 252
- Becker, S. and Hinton, G. (1992). A self-organizing neural network that discovers surfaces in random-dot stereograms. *Nature*, **355**, 161–163. 300

- Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. *Neural Computation*, **15**(6), 1373–1396. 98, 265
- Bengio, S. and Bengio, Y. (2000a). Taking on the curse of dimensionality in joint distributions using neural networks. *IEEE Transactions on Neural Networks, special issue on Data Mining and Knowledge Discovery*, **11**(3), 550–557. **232**
- Bengio, Y. (1991). Artificial Neural Networks and their Application to Sequence Recognition. Ph.D. thesis, McGill University, (Computer Science), Montreal, Canada. 237, 256
- Bengio, Y. (1993). A connectionist approach to speech recognition. *International Journal on Pattern Recognition and Artificial Intelligence*, **7**(4), 647–668. **254**
- Bengio, Y. (1999a). Markovian models for sequential data. Neural Computing Surveys, 2, 129–162. 254
- Bengio, Y. (1999b). Markovian models for sequential data. Neural Computing Surveys, $\mathbf{2}$, 129-162. $\mathbf{256}$
- Bengio, Y. (2009). Learning deep architectures for AI. Now Publishers. 18, 95, 122
- Bengio, Y. (2011). Deep learning of representations for unsupervised and transfer learning. In *JMLR W&CP: Proc. Unsupervised and Transfer Learning*. 18
- Bengio, Y. and Bengio, S. (2000b). Modeling high-dimensional discrete data with multi-layer neural networks. In NIPS'99, pages 400–406. MIT Press. 232, 234, 235
- Bengio, Y. and Delalleau, O. (2009). Justifying and generalizing contrastive divergence. *Neural Computation*, **21**(6), 1601–1621. **310**
- Bengio, Y. and Frasconi, P. (1996). Input/Output HMMs for sequence processing. *IEEE Transactions on Neural Networks*, **7**(5), 1231–1249. 256
- Bengio, Y. and LeCun, Y. (2007a). Scaling learning algorithms towards AI. In *Large Scale Kernel Machines*. 95
- Bengio, Y. and LeCun, Y. (2007b). Scaling learning algorithms towards AI. In L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, editors, *Large Scale Kernel Machines*. MIT Press. 123
- Bengio, Y. and Monperrus, M. (2005). Non-local manifold tangent learning. In NIPS'04, pages 129–136. MIT Press. 97, 266
- Bengio, Y., De Mori, R., Flammia, G., and Kompe, R. (1992). Global optimization of a neural network-hidden Markov model hybrid. *IEEE Transactions on Neural Networks*, **3**(2), 252–259. 254, 256
- Bengio, Y., Frasconi, P., and Simard, P. (1993). The problem of learning long-term dependencies in recurrent networks. In *IEEE International Conference on Neural Networks*, pages 1183–1195, San Francisco. IEEE Press. (invited paper). 155, 243
- Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. *IEEE Tr. Neural Nets.* 155, 156, 235, 241, 243

- Bengio, Y., LeCun, Y., Nohl, C., and Burges, C. (1995). Lerec: A NN/HMM hybrid for on-line handwriting recognition. *Neural Computation*, **7**(6), 1289–1303. **256**
- Bengio, Y., Ducharme, R., and Vincent, P. (2001a). A neural probabilistic language model. In NIPS'00, pages 932–938. MIT Press. 14
- Bengio, Y., Ducharme, R., and Vincent, P. (2001b). A neural probabilistic language model. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, *NIPS'2000*, pages 932–938. MIT Press. 267, 269
- Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003). A neural probabilistic language model. *Journal of Machine Learning Research*, **3**, 1137–1155. **267**, **269**
- Bengio, Y., Delalleau, O., and Le Roux, N. (2006a). The curse of highly variable functions for local kernel machines. In NIPS'2005. 94
- Bengio, Y., Larochelle, H., and Vincent, P. (2006b). Non-local manifold Parzen windows. In NIPS'2005. MIT Press. 97, 265
- Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2007). Greedy layer-wise training of deep networks. In NIPS'2006. 15, 142, 192
- Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum learning. In *ICML'09*. 113
- Bengio, Y., Yao, L., Alain, G., and Vincent, P. (2013a). Generalized denoising auto-encoders as generative models. In *Advances in Neural Information Processing Systems 26 (NIPS'13)*. 282
- Bengio, Y., Courville, A., and Vincent, P. (2013b). Representation learning: A review and new perspectives. *IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI)*, **35**(8), 1798–1828. 298, 299, 339
- Bengio, Y., Thibodeau-Laufer, E., Alain, G., and Yosinski, J. (2014). Deep generative stochastic networks trainable by backprop. In *Proceedings of the 30th International Conference on Machine Learning (ICML'14).* 282, 283
- Bennett, C. (1976). Efficient estimation of free energy differences from Monte Carlo data. *Journal of Computational Physics*, **22**(2), 245–268. **306**
- Berglund, M. and Raiko, T. (2013). Stochastic gradient estimate variance in contrastive divergence and persistent contrastive divergence. CoRR, abs/1312.6002. 313
- Bergstra, J. (2011). Incorporating Complex Cells into Neural Networks for Pattern Classification. Ph.D. thesis, Université de Montréal. 183
- Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., and Bengio, Y. (2010). Theano: a CPU and GPU math expression compiler. In *Proceedings of the Python for Scientific Computing Conference (SciPy)*. Oral Presentation. 57
- Besag, J. (1975). Statistical analysis of non-lattice data. The Statistician, 24(3), 179–195. 315
- Bishop, C. M. (1994). Mixture density networks. 109

- Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. K. (1989). Learnability and the vapnik–chervonenkis dimension. *Journal of the ACM*, **36**(4), 929—865. **78**, **79**
- Bordes, A., Glorot, X., Weston, J., and Bengio, Y. (2012). Joint learning of words and meaning representations for open-text semantic parsing. *AISTATS'2012*. 230
- Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In COLT '92: Proceedings of the fifth annual workshop on Computational learning theory, pages 144–152, New York, NY, USA. ACM. 14, 95, 106
- Bottou, L. (1991). Une approche théorique de l'apprentissage connexioniste; applications à la reconnaissance de la parole. Ph.D. thesis, Université de Paris XI. 256
- Bottou, L. (2011). From machine learning to machine reasoning. Technical report, arXiv.1102.1808. 229, 230
- Bottou, L., Fogelman-Soulié, F., Blanchet, P., and Lienard, J. S. (1990). Speaker independent isolated digit recognition: multilayer perceptrons vs dynamic time warping. *Neural Networks*, 3, 453–465. 256
- Bottou, L., Bengio, Y., and LeCun, Y. (1997). Global training of document processing systems using graph transformer networks. In *Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR'97)*, pages 490–494, Puerto Rico. IEEE. 247, 254, 255, 256, 257, 258, 260
- Bourlard, H. and Kamp, Y. (1988). Auto-association by multilayer perceptrons and singular value decomposition. *Biological Cybernetics*, **59**, 291–294. **180**
- Bourlard, H. and Morgan, N. (1993). Connectionist Speech Recognition. A Hybrid Approach, volume 247 of The Kluwer international series in engineering and computer science. Kluwer Academic Publishers, Boston. 256
- Bourlard, H. and Wellekens, C. (1990). Links between hidden Markov models and multilayer perceptrons. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, **12**, 1167–1178. 256
- Boyd, S. and Vandenberghe, L. (2004). *Convex Optimization*. Cambridge University Press, New York, NY, USA. 65
- Brand, M. (2003). Charting a manifold. In NIPS'2002, pages 961–968. MIT Press. 98, 265
- Breiman, L. (1994). Bagging predictors. Machine Learning, 24(2), 123–140. 144
- Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and Regression Trees. Wadsworth International Group, Belmont, CA. 95
- Brown, P. (1987). The Acoustic-Modeling problem in Automatic Speech Recognition. Ph.D. thesis, Dept. of Computer Science, Carnegie-Mellon University. 254
- Carreira-Perpiñan, M. A. and Hinton, G. E. (2005). On contrastive divergence learning. In R. G. Cowell and Z. Ghahramani, editors, AISTATS'2005, pages 33–40. Society for Artificial Intelligence and Statistics. 310

- Cauchy, A. (1847). Méthode générale pour la résolution de systèmes d'équations simultanées. In Compte rendu des séances de l'académie des sciences, pages 536–538. 58
- Cayton, L. (2005). Algorithms for manifold learning. Technical Report CS2008-0923, UCSD. 13, 98, 261
- Chen, S. F. and Goodman, J. T. (1999). An empirical study of smoothing techniques for language modeling. *Computer, Speech and Language*, **13**(4), 359–393. 246, 247
- Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H., and Bengio, Y. (2014). Learning phrase representations using rnn encoder-decoder for statistical machine translation. In Proceedings of the Empiricial Methods in Natural Language Processing (EMNLP 2014). 241
- Ciresan, D., Meier, U., Masci, J., and Schmidhuber, J. (2012). Multi-column deep neural network for traffic sign classification. *Neural Networks*, **32**, 333–338. **15**, 122
- Coates, A., Lee, H., and Ng, A. Y. (2011). An analysis of single-layer networks in unsupervised feature learning. In *Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2011)*. 350
- Collobert, R. (2004). Large Scale Machine Learning. Ph.D. thesis, Université de Paris VI, LIP6. 106
- Comon, P. (1994). Independent component analysis a new concept? Signal Processing, 36, 287–314. 190
- Cortes, C. and Vapnik, V. (1995). Support vector networks. *Machine Learning*, **20**, 273–297. 14, 95
- Couprie, C., Farabet, C., Najman, L., and LeCun, Y. (2013). Indoor semantic segmentation using depth information. In *International Conference on Learning Representations (ICLR2013)*. 15, 122
- Courville, A., Bergstra, J., and Bengio, Y. (2011). Unsupervised models of images by spike-and-slab RBMs. In ICML'11. 160
- Cover, T. (2006). Elements of Information Theory. Wiley-Interscience. 42
- Crick, F. H. C. and Mitchison, G. (1983). The function of dream sleep. *Nature*, **304**, 111–114.
- Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. *Mathematics of Control, Signals, and Systems*, **2**, 303–314. 297
- Dahl, G. E., Ranzato, M., Mohamed, A., and Hinton, G. E. (2010). Phone recognition with the mean-covariance restricted Boltzmann machine. In NIPS'2010. 15
- Dauphin, Y. and Bengio, Y. (2013a). Big neural networks waste capacity. In *ICLR'2013 workshops track (oral presentation)*, arXiv: 1301.3583. 17
- Dauphin, Y. and Bengio, Y. (2013b). Stochastic ratio matching of RBMs for sparse high-dimensional inputs. In NIPS26. NIPS Foundation. 318

- Dauphin, Y., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., and Bengio, Y. (2014). Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. In NIPS'2014. 61
- Davis, A., Rubinstein, M., Wadhwa, N., Mysore, G., Durand, F., and Freeman, W. T. (2014). The visual microphone: Passive recovery of sound from video. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, **33**(4), 79:1–79:10. 348
- Delalleau, O. and Bengio, Y. (2011). Shallow vs. deep sum-product networks. In NIPS. 122, 296, 297
- Deng, J., Ding, N., Jia, Y., Frome, A., Murphy, K., Bengio, S., Li, Y., Neven, H., and Adam, H. (2014). Large-scale object classification using label relation graphs. In *ECCV'2014*, pages 48–64. 248
- Deng, L., Seltzer, M., Yu, D., Acero, A., Mohamed, A., and Hinton, G. (2010). Binary coding of speech spectrograms using a deep auto-encoder. In *Interspeech 2010*, Makuhari, Chiba, Japan. 15
- Desjardins, G. and Bengio, Y. (2008). Empirical evaluation of convolutional RBMs for vision. Technical Report 1327, Département d'Informatique et de Recherche Opérationnelle, Université de Montréal. 338
- Desjardins, G., Courville, A., and Bengio, Y. (2011). On tracking the partition function. In NIPS'2011. 307
- Devlin, J., Zbib, R., Huang, Z., Lamar, T., Schwartz, R., and Makhoul, J. (2014). Fast and robust neural network joint models for statistical machine translation. In *Proc. ACL'2014*. 10
- Do, T.-M.-T. and Artières, T. (2010). Neural conditional random fields. In *International Conference on Artificial Intelligence and Statistics*, pages 177–184. 248
- Donoho, D. L. and Grimes, C. (2003). Hessian eigenmaps: new locally linear embedding techniques for high-dimensional data. Technical Report 2003-08, Dept. Statistics, Stanford University. 98, 265
- Doya, K. (1993). Bifurcations of recurrent neural networks in gradient descent learning. *IEEE Transactions on Neural Networks*, 1, 75–80. 156, 235
- Dugas, C., Bengio, Y., Bélisle, F., and Nadeau, C. (2001). Incorporating second-order functional knowledge for better option pricing. In NIPS'00, pages 472–478. MIT Press. 106
- Ebrahimi, S., Pal, C., Bouthillier, X., Froumenty, P., Jean, S., Konda, K. R., Vincent, P., Courville, A., and Bengio, Y. (2013). Combining modality specific deep neural network models for emotion recognition in video. In *Emotion Recognition In The Wild Challenge and Workshop (Emotiw2013)*. 9, 122
- El Hihi, S. and Bengio, Y. (1996). Hierarchical recurrent neural networks for long-term dependencies. In NIPS 8. MIT Press. 242, 245, 246
- ElHihi, S. and Bengio, Y. (1996). Hierarchical recurrent neural networks for long-term dependencies. In NIPS'1995. 238

- Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., and Bengio, S. (2010). Why does unsupervised pre-training help deep learning? *JMLR*, **11**, 625–660. **18**
- Farabet, C., LeCun, Y., Kavukcuoglu, K., Culurciello, E., Martini, B., Akselrod, P., and Talay, S. (2011). Large-scale FPGA-based convolutional networks. In R. Bekkerman, M. Bilenko, and J. Langford, editors, Scaling up Machine Learning: Parallel and Distributed Approaches. Cambridge University Press. 276
- Farabet, C., Couprie, C., Najman, L., and LeCun, Y. (2013a). Learning hierarchical features for scene labeling. *IEEE Transactions on Pattern Analysis and Machine Intelligence*. 15, 122
- Farabet, C., Couprie, C., Najman, L., and LeCun, Y. (2013b). Learning hierarchical features for scene labeling. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, **35**(8), 1915–1929. 248
- Fei-Fei, L., Fergus, R., and Perona, P. (2006). One-shot learning of object categories. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, **28**(4), 594–611. **196**
- Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. *Annals of Eugenics*, 7, 179–188. 74
- Frasconi, P., Gori, M., and Sperduti, A. (1997). On the efficient classification of data structures by neural networks. In *Proc. Int. Joint Conf. on Artificial Intelligence*. 229, 230
- Frasconi, P., Gori, M., and Sperduti, A. (1998). A general framework for adaptive processing of data structures. *IEEE Transactions on Neural Networks*, **9**(5), 768–786. **230**
- Frey, B. J. (1998). Graphical models for machine learning and digital communication. MIT Press. 231
- Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. *Biological Cybernetics*, **36**, 193–202. **15**
- Girosi, F. (1994). Regularization theory, radial basis functions and networks. In V. Cherkassky, J. Friedman, and H. Wechsler, editors, From Statistics to Neural Networks, volume 136 of NATO ASI Series, pages 166–187. Springer Berlin Heidelberg. 121
- Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In AISTATS'2010. 15
- Glorot, X., Bordes, A., and Bengio, Y. (2011a). Deep sparse rectifier neural networks. In AISTATS'2011. 15, 106, 275
- Glorot, X., Bordes, A., and Bengio, Y. (2011b). Deep sparse rectifier neural networks. In JMLR W&CP: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2011). 124, 275
- Glorot, X., Bordes, A., and Bengio, Y. (2011c). Domain adaptation for large-scale sentiment classification: A deep learning approach. In *ICML'2011*. 193, 275
- Gong, S., McKenna, S., and Psarrou, A. (2000). Dynamic Vision: From Images to Face Recognition. Imperial College Press. 264, 267

- Goodfellow, I., Le, Q., Saxe, A., and Ng, A. (2009). Measuring invariances in deep networks. In NIPS'2009, pages 646–654. 183, 275
- Goodfellow, I., Koenig, N., Muja, M., Pantofaru, C., Sorokin, A., and Takayama, L. (2010).
 Help me help you: Interfaces for personal robots. In Proc. of Human Robot Interaction (HRI), Osaka, Japan. ACM Press, ACM Press. 71
- Goodfellow, I., Courville, A., and Bengio, Y. (2012). Large-scale feature learning with spikeand-slab sparse coding. In ICML'2012. 192
- Goodfellow, I. J. (2010). Technical report: Multidimensional, downsampled convolution for autoencoders. Technical report, Université de Montréal. 213
- Goodfellow, I. J., Courville, A., and Bengio, Y. (2011). Spike-and-slab sparse coding for unsupervised feature discovery. In NIPS Workshop on Challenges in Learning Hierarchical Models. 9, 18, 122, 194
- Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y. (2013a). Maxout networks. In ICML'2013. 15
- Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y. (2013b). Maxout networks. In S. Dasgupta and D. McAllester, editors, *ICML'13*, pages 1319–1327. 124, 148, 350
- Goodfellow, I. J., Mirza, M., Courville, A., and Bengio, Y. (2013c). Multi-prediction deep Boltzmann machines. In NIPS26. NIPS Foundation. 316, 335, 336
- Gouws, S., Bengio, Y., and Corrado, G. (2014). Bilbowa: Fast bilingual distributed representations without word alignments. Technical report, arXiv:1410.2455. 196
- Graves, A. (2012). Supervised Sequence Labelling with Recurrent Neural Networks. Studies in Computational Intelligence. Springer. 227, 240, 241, 247
- Graves, A. (2013). Generating sequences with recurrent neural networks. Technical report, arXiv preprint arXiv:1308.0850. 110, 240, 242
- Graves, A. and Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. *Neural Networks*, **18**(5), 602–610. 227
- Graves, A. and Schmidhuber, J. (2009). Offline handwriting recognition with multidimensional recurrent neural networks. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, NIPS'2008, pages 545–552. 227
- Graves, A., Fernández, S., Gomez, F., and Schmidhuber, J. (2006). Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks. In ICML'2006, pages 369–376, Pittsburgh, USA. 247
- Graves, A., Liwicki, M., Bunke, H., Schmidhuber, J., and Fernández, S. (2008). Unconstrained on-line handwriting recognition with recurrent neural networks. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, NIPS'2007, pages 577–584. 227
- Graves, A., Mohamed, A.-r., and Hinton, G. (2013). Speech recognition with deep recurrent neural networks. In *ICASSP'2013*, pages 6645–6649. IEEE. 228, 240, 241

- Gulcehre, C. and Bengio, Y. (2013). Knowledge matters: Importance of prior information for optimization. In *International Conference on Learning Representations (ICLR'2013)*. 18
- Gutmann, M. and Hyvarinen, A. (2010). Noise-contrastive estimation: A new estimation principle for unnormalized statistical models. In *Proceedings of The Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS'10)*. 318
- Haffner, P., Franzini, M., and Waibel, A. (1991). Integrating time alignment and neural networks for high performance continuous speech recognition. In *International Conference on Acoustics*, Speech and Signal Processing (ICASSP), pages 105–108, Toronto. 256
- Håstad, J. (1986). Almost optimal lower bounds for small depth circuits. In Proceedings of the 18th annual ACM Symposium on Theory of Computing, pages 6–20, Berkeley, California. ACM Press. 122, 297
- Håstad, J. and Goldmann, M. (1991). On the power of small-depth threshold circuits. *Computational Complexity*, 1, 113–129. 122, 297
- Henaff, M., Jarrett, K., Kavukcuoglu, K., and LeCun, Y. (2011). Unsupervised learning of sparse features for scalable audio classification. In *ISMIR'11*. 276
- Herault, J. and Ans, B. (1984). Circuits neuronaux à synapses modifiables: Décodage de messages composites par apprentissage non supervisé. Comptes Rendus de l'Académie des Sciences, 299(III-13), 525—528. 190
- Hermann, K. M. and Blunsom, P. (2014). Multilingual Distributed Representations without Word Alignment. In *Proceedings of ICLR*. 10
- Hinton, G., Deng, L., Dahl, G. E., Mohamed, A., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen,
 P., Sainath, T., and Kingsbury, B. (2012a). Deep neural networks for acoustic modeling in speech recognition. *IEEE Signal Processing Magazine*, 29(6), 82–97. 10, 15
- Hinton, G. E. (2000). Training products of experts by minimizing contrastive divergence. Technical Report GCNU TR 2000-004, Gatsby Unit, University College London. 309
- Hinton, G. E. and Roweis, S. (2003). Stochastic neighbor embedding. In NIPS'2002. 265
- Hinton, G. E. and Salakhutdinov, R. (2006). Reducing the Dimensionality of Data with Neural Networks. *Science*, **313**, 504–507. 142
- Hinton, G. E. and Salakhutdinov, R. (2006). Reducing the dimensionality of data with neural networks. *Science*, **313**(5786), 504–507. **185**, 192, 193
- Hinton, G. E. and Zemel, R. S. (1994). Autoencoders, minimum description length, and Helmholtz free energy. In NIPS'1993. 180
- Hinton, G. E., Osindero, S., and Teh, Y. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 1527–1554. 15, 142, 192, 193, 332
- Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2012b). Improving neural networks by preventing co-adaptation of feature detectors. Technical report, arXiv:1207.0580. 133

- Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, T.U. Münich. 155, 235, 243
- Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. *Neural Computation*, **9**(8), 1735–1780. **240**, **241**
- Hochreiter, S., Informatik, F. F., Bengio, Y., Frasconi, P., and Schmidhuber, J. (2000). Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. In J. Kolen and S. Kremer, editors, *Field Guide to Dynamical Recurrent Networks*. IEEE Press. 241
- Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are universal approximators. *Neural Networks*, **2**, 359–366. **297**
- Hsu, F.-H. (2002). Behind Deep Blue: Building the Computer That Defeated the World Chess Champion. Princeton University Press, Princeton, NJ, USA. 2
- Huang, F. and Ogata, Y. (2002). Generalized pseudo-likelihood estimates for markov random fields on lattice. Annals of the Institute of Statistical Mathematics, 54(1), 1–18. 315
- Hyotyniemi, H. (1996). Turing machines are recurrent neural networks. In *STeP'96*, pages 13–24. 219
- Hyvärinen, A. (1999). Survey on independent component analysis. *Neural Computing Surveys*, **2**, 94–128. **190**
- Hyvärinen, A. (2005). Estimation of non-normalized statistical models using score matching. Journal of Machine Learning Research, 6, 695–709. 316
- Hyvärinen, A. (2007a). Connections between score matching, contrastive divergence, and pseudolikelihood for continuous-valued variables. *IEEE Transactions on Neural Networks*, **18**, 1529–1531. 317
- Hyvärinen, A. (2007b). Some extensions of score matching. Computational Statistics and Data Analysis, 51, 2499–2512. 317
- Hyvärinen, A., Karhunen, J., and Oja, E. (2001). *Independent Component Analysis*. Wiley-Interscience. 190
- Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991). Adaptive mixture of local experts. *Neural Computation*, 3, 79–87. 109
- Jaeger, H. (2003). Adaptive nonlinear system identification with echo state networks. In Advances in Neural Information Processing Systems 15. 236
- Jaeger, H. (2007a). Discovering multiscale dynamical features with hierarchical echo state networks. Technical report, Jacobs University. 242
- Jaeger, H. (2007b). Echo state network. Scholarpedia, 2(9), 2330. 235
- Jaeger, H. and Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. *Science*, **304**(5667), 78–80. 235
- Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., Mooij, J. M., and Schölkopf, B. (2012). On causal and anticausal learning. In *ICML'2012*, pages 1255–1262. 289

- Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun, Y. (2009a). What is the best multi-stage architecture for object recognition? In *ICCV'09*. 106, 276
- Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun, Y. (2009b). What is the best multi-stage architecture for object recognition? In Proc. International Conference on Computer Vision (ICCV'09), pages 2146–2153. IEEE. 124
- Jarzynski, C. (1997). Nonequilibrium equality for free energy differences. *Phys. Rev. Lett.*, **78**, 2690–2693. 306
- Jaynes, E. T. (2003). Probability Theory: The Logic of Science. Cambridge University Press. 35
- Jelinek, F. and Mercer, R. L. (1980). Interpolated estimation of markov source parameters from sparse data. In E. S. Gelsema and L. N. Kanal, editors, *Pattern Recognition in Practice*. North-Holland, Amsterdam. 246
- Jordan, M. I. (1998). Learning in Graphical Models. Kluwer, Dordrecht, Netherlands. 14
- Juang, B. H. and Katagiri, S. (1992). Discriminative learning for minimum error classification. *IEEE Transactions on Signal Processing*, **40**(12), 3043–3054. **254**
- Jutten, C. and Herault, J. (1991). Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture. Signal Processing, 24, 1–10. 190
- Katz, S. M. (1987). Estimation of probabilities from sparse data for the language model component of a speech recognizer. *IEEE Transactions on Acoustics*, Speech, and Signal Processing, ASSP-35(3), 400–401. 246
- Kavukcuoglu, K., Ranzato, M., and LeCun, Y. (2008a). Fast inference in sparse coding algorithms with applications to object recognition. CBLL-TR-2008-12-01, NYU. 183
- Kavukcuoglu, K., Ranzato, M., and LeCun, Y. (2008b). Fast inference in sparse coding algorithms with applications to object recognition. Technical report, Computational and Biological Learning Lab, Courant Institute, NYU. Tech Report CBLL-TR-2008-12-01. 276
- Kavukcuoglu, K., Ranzato, M.-A., Fergus, R., and LeCun, Y. (2009). Learning invariant features through topographic filter maps. In *CVPR* '2009. 276
- Kavukcuoglu, K., Sermanet, P., Boureau, Y.-L., Gregor, K., Mathieu, M., and LeCun, Y. (2010). Learning convolutional feature hierarchies for visual recognition. In NIPS'2010. 276
- Kindermann, R. (1980). Markov Random Fields and Their Applications (Contemporary Mathematics; V. 1). American Mathematical Society. 164
- Kingma, D. and LeCun, Y. (2010). Regularized estimation of image statistics by score matching. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages 1126–1134. 318
- Kingma, D. P. and Welling, M. (2014). Auto-encoding variational bayes. In *Proceedings of the International Conference on Learning Representations (ICLR)*. 267, 268
- Klementiev, A., Titov, I., and Bhattarai, B. (2012). Inducing crosslingual distributed representations of words. In *Proceedings of COLING 2012*. 196

- Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles and Techniques. MIT Press. 172, 173, 252
- Koren, Y. (2009). 1 the bellkor solution to the netflix grand prize. 146
- Koutnik, J., Greff, K., Gomez, F., and Schmidhuber, J. (2014). A clockwork RNN. In ICML'2014. 242, 246
- Krause, O., Fischer, A., Glasmachers, T., and Igel, C. (2013). Approximation properties of DBNs with binary hidden units and real-valued visible units. In *ICML'2013*. 297
- Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of features from tiny images. Technical report, University of Toronto. 160
- Krizhevsky, A., Sutskever, I., and Hinton, G. (2012a). ImageNet classification with deep convolutional neural networks. In NIPS'2012. 9, 15, 122, 275
- Krizhevsky, A., Sutskever, I., and Hinton, G. (2012b). ImageNet classification with deep convolutional neural networks. In *Advances in Neural Information Processing Systems 25* (NIPS'2012). 71
- Lafferty, J., McCallum, A., and Pereira, F. C. N. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In C. E. Brodley and A. P. Danyluk, editors, ICML 2001. Morgan Kaufmann. 248, 254
- Lake, B., Salakhutdinov, R., and Tenenbaum, J. (2013). One-shot learning by inverting a compositional causal process. In NIPS'2013. 18
- Lang, K. J. and Hinton, G. E. (1988). The development of the time-delay neural network architecture for speech recognition. Technical Report CMU-CS-88-152, Carnegie-Mellon University. 217, 237
- Larochelle, H. and Bengio, Y. (2008). Classification using discriminative restricted Boltzmann machines. In *ICML* '2008. 183
- Larochelle, H. and Murray, I. (2011). The Neural Autoregressive Distribution Estimator. In AISTATS'2011. 230, 234
- Larochelle, H., Erhan, D., and Bengio, Y. (2008). Zero-data learning of new tasks. In AAAI Conference on Artificial Intelligence. 18, 196
- Le Roux, N. and Bengio, Y. (2010). Deep belief networks are compact universal approximators. Neural Computation, 22(8), 2192–2207. 297
- Le Roux, N., Manzagol, P.-A., and Bengio, Y. (2008). Topmoumoute online natural gradient algorithm. In NIPS'07. 113
- LeCun, Y. (1987). Modèles connexionistes de l'apprentissage. Ph.D. thesis, Université de Paris VI. 14, 180
- LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. *Neural Computation*, 1(4), 541–551. 15

- LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998a). Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11), 2278–2324. 14, 247, 254, 255, 256
- LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998b). Gradient based learning applied to document recognition. *Proc. IEEE*. 15
- Lee, H., Ekanadham, C., and Ng, A. (2008). Sparse deep belief net model for visual area V2. In NIPS'07. 183
- Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. (2009). Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In L. Bottou and M. Littman, editors, *ICML* 2009. ACM, Montreal, Canada. 338, 339
- Leprieur, H. and Haffner, P. (1995). Discriminant learning with minimum memory loss for improved non-vocabulary rejection. In *EUROSPEECH'95*, Madrid, Spain. 254
- Lin, T., Horne, B. G., Tino, P., and Giles, C. L. (1996). Learning long-term dependencies is not as difficult with NARX recurrent neural networks. *IEEE Transactions on Neural Networks*, 7(6), 1329–1338. 237
- Linde, N. (1992). The machine that changed the world, episode 3. Documentary miniseries. 3
- Long, P. M. and Servedio, R. A. (2010). Restricted Boltzmann machines are hard to approximately evaluate or simulate. In *Proceedings of the 27th International Conference on Machine Learning (ICML'10)*. 330
- Lovelace, A. (1842). Notes upon L. F. Menabrea's "Sketch of the Analytical Engine invented by Charles Babbage". 2
- Lowerre, B. (1976). The Harpy Speech Recognition System. Ph.D. thesis. 248, 253, 258
- Lukoševičius, M. and Jaeger, H. (2009). Reservoir computing approaches to recurrent neural network training. *Computer Science Review*, **3**(3), 127–149. 235
- Luo, H., Carrier, P.-L., Courville, A., and Bengio, Y. (2013). Texture modeling with convolutional spike-and-slab RBMs and deep extensions. In *AISTATS* '2013. 72
- Lyu, S. (2009). Interpretation and generalization of score matching. In UAI'09. 317
- Maass, W., Natschlaeger, T., and Markram, H. (2002). Real-time computing without stable states: A new framework for neural computation based on perturbations. *Neural Computation*, 14(11), 2531–2560. 235
- Marlin, B., Swersky, K., Chen, B., and de Freitas, N. (2010). Inductive principles for restricted Boltzmann machine learning. In *Proceedings of The Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS'10)*, volume 9, pages 509–516. 313, 317
- Martens, J. and Medabalimi, V. (2014). On the expressive efficiency of sum product networks. arXiv preprint arXiv:1411.7717. 297
- Martens, J. and Sutskever, I. (2011). Learning recurrent neural networks with Hessian-free optimization. In *Proc. ICML* '2011. ACM. 243
- Mase, S. (1995). Consistency of the maximum pseudo-likelihood estimator of continuous state space Gibbsian processes. *The Annals of Applied Probability*, **5**(3), pp. 603–612. **315**

- Matan, O., Burges, C. J. C., LeCun, Y., and Denker, J. S. (1992). Multi-digit recognition using a space displacement neural network. In *NIPS'91*, pages 488–495, San Mateo CA. Morgan Kaufmann. 256
- McCullagh, P. and Nelder, J. (1989). Generalized Linear Models. Chapman and Hall, London. 107
- Mesnil, G., Dauphin, Y., Glorot, X., Rifai, S., Bengio, Y., Goodfellow, I., Lavoie, E., Muller, X., Desjardins, G., Warde-Farley, D., Vincent, P., Courville, A., and Bergstra, J. (2011). Unsupervised and transfer learning challenge: a deep learning approach. In *JMLR W&CP: Proc. Unsupervised and Transfer Learning*, volume 7. 9, 18, 122, 194
- Mesnil, G., Rifai, S., Dauphin, Y., Bengio, Y., and Vincent, P. (2012). Surfing on the manifold. Learning Workshop, Snowbird. 281
- Mikolov, T. (2012). Statistical Language Models based on Neural Networks. Ph.D. thesis, Brno University of Technology. 110, 244
- Mikolov, T., Le, Q. V., and Sutskever, I. (2013). Exploiting similarities among languages for machine translation. Technical report, arXiv:1309.4168. 196
- Minka, T. (2005). Divergence measures and message passing. *Microsoft Research Cambridge UK Tech Rep MSRTR2005173*, **72**(TR-2005-173). 303
- Minsky, M. L. and Papert, S. A. (1969). Perceptrons. MIT Press, Cambridge. 14
- Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, New York. 70
- Mnih, A. and Kavukcuoglu, K. (2013). Learning word embeddings efficiently with noise-contrastive estimation. In C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, editors, Advances in Neural Information Processing Systems 26, pages 2265–2273. Curran Associates, Inc. 320
- Montúfar, G. (2014). Universal approximation depth and errors of narrow belief networks with discrete units. *Neural Computation*, **26**. 297
- Montúfar, G. and Ay, N. (2011). Refinements of universal approximation results for deep belief networks and restricted Boltzmann machines. *Neural Computation*, **23**(5), 1306–1319. 297
- Montufar, G. and Morton, J. (2014). When does a mixture of products contain a product of mixtures? SIAM Journal on Discrete Mathematics (SIDMA). 295
- Montufar, G. F., Pascanu, R., Cho, K., and Bengio, Y. (2014). On the number of linear regions of deep neural networks. In NIPS'2014. 294, 297, 298
- Mor-Yosef, S., Samueloff, A., Modan, B., Navot, D., and Schenker, J. G. (1990). Ranking the risk factors for cesarean: logistic regression analysis of a nationwide study. *Obstet Gynecol*, **75**(6), 944–7. **3**
- Mozer, M. C. (1992). The induction of multiscale temporal structure. In *NIPS'91*, pages 275–282, San Mateo, CA. Morgan Kaufmann. 238, 246
- Murphy, K. P. (2012). *Machine Learning: a Probabilistic Perspective*. MIT Press, Cambridge, MA, USA. 108

- Murray, B. U. I. and Larochelle, H. (2014). A deep and tractable density estimator. In ICML'2014. 110, 234, 235
- Nadas, A., Nahamoo, D., and Picheny, M. A. (1988). On a model-robust training method for speech recognition. *IEEE Transactions on Acoustics, Speech and Signal Processing*, ASSP-36(9), 1432–1436. 254
- Nair, V. and Hinton, G. (2010a). Rectified linear units improve restricted Boltzmann machines. In ICML'2010. 106, 275
- Nair, V. and Hinton, G. E. (2010b). Rectified linear units improve restricted Boltzmann machines. In L. Bottou and M. Littman, editors, Proceedings of the Twenty-seventh International Conference on Machine Learning (ICML-10), pages 807–814. ACM. 15
- Narayanan, H. and Mitter, S. (2010). Sample complexity of testing the manifold hypothesis. In NIPS'2010. 13, 98, 261
- Neal, R. M. (1996). Bayesian Learning for Neural Networks. Lecture Notes in Statistics. Springer. 149
- Neal, R. M. (2001). Annealed importance sampling. Statistics and Computing, 11(2), 125–139. 305, 306
- Neal, R. M. (2005). Estimating ratios of normalizing constants using linked importance sampling. 306, 307
- Niranjan, M. and Fallside, F. (1990). Neural networks and radial basis functions in classifying static speech patterns. *Computer Speech and Language*, 4, 275–289. 106
- Nocedal, J. and Wright, S. (2006). Numerical Optimization. Springer. 65, 68
- Olshausen, B. A. and Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. *Nature*, **381**, 607–609. **182**, **183**, 300
- Olshausen, B. A. and Field, D. J. (1997). Sparse coding with an overcomplete basis set: a strategy employed by V1? Vision Research, 37, 3311–3325. 274
- Park, H., Amari, S.-I., and Fukumizu, K. (2000). Adaptive natural gradient learning algorithms for various stochastic models. *Neural Networks*, **13**(7), 755 764. **113**
- Pascanu, R. (2014). On recurrent and deep networks. Ph.D. thesis, Universit\u00e9 de Montr\u00e9al. 152, 153
- Pascanu, R. and Bengio, Y. (2012). On the difficulty of training recurrent neural networks. Technical Report arXiv:1211.5063, Universite de Montreal. 110
- Pascanu, R. and Bengio, Y. (2013). Revisiting natural gradient for deep networks. Technical report, arXiv:1301.3584. 113
- Pascanu, R., Mikolov, T., and Bengio, Y. (2013a). On the difficulty of training recurrent neural networks. In *ICML'2013*. 110, 156, 235, 238, 244, 245, 246
- Pascanu, R., Montufar, G., and Bengio, Y. (2013b). On the number of inference regions of deep feed forward networks with piece-wise linear activations. Technical report, U. Montreal, arXiv:1312.6098. 122

- Pascanu, R., Gulcehre, C., Cho, K., and Bengio, Y. (2014a). How to construct deep recurrent neural networks. In *ICLR* '2014. 148
- Pascanu, R., Gulcehre, C., Cho, K., and Bengio, Y. (2014b). How to construct deep recurrent neural networks. In *ICLR* '2014. 240, 242, 297
- Pascanu, R., Montufar, G., and Bengio, Y. (2014c). On the number of inference regions of deep feed forward networks with piece-wise linear activations. In *ICLR* '2014. 294
- Pearl, J. (1985). Bayesian networks: A model of self-activated memory for evidential reasoning. In Proceedings of the 7th Conference of the Cognitive Science Society, University of California, Irvine, pages 329–334. 162
- Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

 Morgan Kaufmann. 36
- Petersen, K. B. and Pedersen, M. S. (2006). The matrix cookbook. Version 20051003. 20
- Pinto, N., Cox, D. D., and DiCarlo, J. J. (2008). Why is real-world visual object recognition hard? *PLoS Comput Biol*, **4**. 339
- Pollack, J. B. (1990). Recursive distributed representations. Artificial Intelligence, 46(1), 77–105, 229
- Poon, H. and Domingos, P. (2011). Sum-product networks: A new deep architecture. In *UAI'2011*, Barcelona, Spain. 122, 296, 297
- Powell, M. (1987). Radial basis functions for multivariable interpolation: A review. 106
- Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. *Proceedings of the IEEE*, **77**(2), 257–286. **252**
- Rabiner, L. R. and Juang, B. H. (1986). An introduction to hidden Markov models. *IEEE ASSP Magazine*, pages 257–285. 217, 252
- Raiko, T., Yao, L., Cho, K., and Bengio, Y. (2014). Iterative neural autoregressive distribution estimator (NADE-k). Technical report, arXiv preprint arXiv:1406.1485. 234
- Ramsey, F. P. (1926). Truth and probability. In R. B. Braithwaite, editor, *The Foundations of Mathematics and other Logical Essays*, chapter 7, pages 156–198. McMaster University Archive for the History of Economic Thought. 37
- Ranzato, M., Poultney, C., Chopra, S., and LeCun, Y. (2007). Efficient learning of sparse representations with an energy-based model. In NIPS'2006. 15, 142, 192, 275
- Ranzato, M., Boureau, Y., and LeCun, Y. (2008). Sparse feature learning for deep belief networks. In NIPS'2007. 275
- Richard Socher, Milind Ganjoo, C. D. M. and Ng, A. Y. (2013). Zero-shot learning through cross-modal transfer. In 27th Annual Conference on Neural Information Processing Systems (NIPS 2013). 18, 196
- Rifai, S., Vincent, P., Muller, X., Glorot, X., and Bengio, Y. (2011a). Contractive auto-encoders: Explicit invariance during feature extraction. In *ICML'2011*. 284

- Rifai, S., Mesnil, G., Vincent, P., Muller, X., Bengio, Y., Dauphin, Y., and Glorot, X. (2011b). Higher order contractive auto-encoder. In European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD). 183
- Rifai, S., Mesnil, G., Vincent, P., Muller, X., Bengio, Y., Dauphin, Y., and Glorot, X. (2011c). Higher order contractive auto-encoder. In *ECML PKDD*. 284
- Rifai, S., Dauphin, Y., Vincent, P., Bengio, Y., and Muller, X. (2011d). The manifold tangent classifier. In NIPS'2011. 286, 287
- Rifai, S., Bengio, Y., Dauphin, Y., and Vincent, P. (2012). A generative process for sampling contractive auto-encoders. In *ICML'2012*. 281
- Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. *Psychological Review*, **65**, 386–408. **14**
- Rosenblatt, F. (1962). Principles of Neurodynamics. Spartan, New York. 14
- Roweis, S. and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. *Science*, **290**(5500). **98**, **265**
- Rumelhart, D., Hinton, G., and Williams, R. (1986a). Learning representations by back-propagating errors. *Nature*, **323**, 533–536. **14**
- Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986b). Learning representations by back-propagating errors. *Nature*, **323**, 533–536. **102**, 217
- Rumelhart, D. E., McClelland, J. L., and the PDP Research Group (1986c). *Parallel Distributed Processing: Explorations in the Microstructure of Cognition*, volume 1. MIT Press, Cambridge. 102
- Salakhutdinov, R. and Hinton, G. (2009a). Deep Boltzmann machines. In *Proceedings of the International Conference on Artificial Intelligence and Statistics*, volume 5, pages 448–455. 193, 333, 335
- Salakhutdinov, R. and Hinton, G. (2009b). Deep Boltzmann machines. In *Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS 2009)*, volume 8. 337
- Salakhutdinov, R. and Murray, I. (2008). On the quantitative analysis of deep belief networks. In W. W. Cohen, A. McCallum, and S. T. Roweis, editors, *ICML 2008*, volume 25, pages 872–879. ACM. 306
- Schmidhuber, J. (1992). Learning complex, extended sequences using the principle of history compression. *Neural Computation*, 4(2), 234–242. 15, 242
- Schölkopf, B., Smola, A., and Müller, K.-R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. *Neural Computation*, **10**, 1299–1319. **98**, **265**
- Schölkopf, B., Burges, C. J. C., and Smola, A. J. (1999). Advances in Kernel Methods Support Vector Learning. MIT Press, Cambridge, MA. 14, 106, 122
- Schuster, M. and Paliwal, K. (1997). Bidirectional recurrent neural networks. *IEEE Transactions on Signal Processing*, **45**(11), 2673–2681. 227

- Schölkopf, B. and Smola, A. (2002). Learning with kernels. MIT Press. 95
- Seide, F., Li, G., and Yu, D. (2011). Conversational speech transcription using context-dependent deep neural networks. In *Interspeech 2011*, pages 437–440. 15
- Sermanet, P., Kavukcuoglu, K., Chintala, S., and LeCun, Y. (2013). Pedestrian detection with unsupervised multi-stage feature learning. In Proc. International Conference on Computer Vision and Pattern Recognition (CVPR'13). IEEE. 15, 122
- Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and LeCun, Y. (2014). Overfeat: Integrated recognition, localization and detection using convolutional networks. *International Conference on Learning Representations*. 71
- Shilov, G. (1977). Linear Algebra. Dover Books on Mathematics Series. Dover Publications. 20
- Siegelmann, H. (1995). Computation beyond the Turing limit. Science, 268(5210), 545–548.
- Siegelmann, H. and Sontag, E. (1991). Turing computability with neural nets. *Applied Mathematics Letters*, 4(6), 77–80. 219
- Siegelmann, H. T. and Sontag, E. D. (1995). On the computational power of neural nets. *Journal of Computer and Systems Sciences*, **50**(1), 132–150. **156**
- Simard, P., Victorri, B., LeCun, Y., and Denker, J. (1992). Tangent prop A formalism for specifying selected invariances in an adaptive network. In *NIPS'1991*. 286, 287
- Simard, P. Y., LeCun, Y., and Denker, J. (1993). Efficient pattern recognition using a new transformation distance. In NIPS'92. 285
- Simard, P. Y., LeCun, Y. A., Denker, J. S., and Victorri, B. (1998). Transformation invariance in pattern recognition tangent distance and tangent propagation. *Lecture Notes in Computer Science*, **1524**. 285
- Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory. In D. E. Rumelhart and J. L. McClelland, editors, *Parallel Distributed Processing*, volume 1, chapter 6, pages 194–281. MIT Press, Cambridge. 167, 177
- Socher, R., Huang, E. H., Pennington, J., Ng, A. Y., and Manning, C. D. (2011a). Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In *NIPS'2011*. 230
- Socher, R., Manning, C., and Ng, A. Y. (2011b). Parsing natural scenes and natural language with recursive neural networks. In *Proceedings of the Twenty-Eighth International Conference on Machine Learning (ICML'2011)*. 230
- Socher, R., Pennington, J., Huang, E. H., Ng, A. Y., and Manning, C. D. (2011c). Semi-supervised recursive autoencoders for predicting sentiment distributions. In *EMNLP'2011*. 230
- Socher, R., Perelygin, A., Wu, J. Y., Chuang, J., Manning, C. D., Ng, A. Y., and Potts, C. (2013). Recursive deep models for semantic compositionality over a sentiment treebank. In EMNLP'2013. 230

- Solla, S. A., Levin, E., and Fleisher, M. (1988). Accelerated learning in layered neural networks. Complex Systems, 2, 625–639. 108
- Srivastava, N. and Salakhutdinov, R. (2012). Multimodal learning with deep Boltzmann machines. In NIPS'2012. 197
- Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. *Journal of Machine Learning Research*, **15**, 1929–1958. **146**, 148, 149, 335
- Stewart, L., He, X., and Zemel, R. S. (2007). Learning flexible features for conditional random fields. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, **30**(8), 1415–1426. 248
- Sutskever, I. (2012). *Training Recurrent Neural Networks*. Ph.D. thesis, Departement of computer science, University of Toronto. 236, 243
- Sutskever, I. and Tieleman, T. (2010). On the Convergence Properties of Contrastive Divergence. In Y. W. Teh and M. Titterington, editors, *Proc. of the International Conference on Artificial Intelligence and Statistics (AISTATS)*, volume 9, pages 789–795. 312
- Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). On the importance of initialization and momentum in deep learning. In *ICML*. 236, 243
- Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural networks. Technical report, arXiv preprint arXiv:1409.3215. 10, 240, 241
- Swersky, K., Ranzato, M., Buchman, D., Marlin, B., and de Freitas, N. (2011). On autoencoders and score matching for energy based models. In *ICML'2011*. ACM. 318
- Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2014). Going deeper with convolutions. Technical report, arXiv preprint arXiv:1409.4842. 9
- Tenenbaum, J., de Silva, V., and Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. *Science*, **290**(5500), 2319–2323. **98**, 265
- Tibshirani, R. J. (1995). Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society B*, **58**, 267–288. **132**
- Tieleman, T. (2008). Training restricted Boltzmann machines using approximations to the likelihood gradient. In W. W. Cohen, A. McCallum, and S. T. Roweis, editors, ICML 2008, pages 1064–1071. ACM. 313
- Tipping, M. E. and Bishop, C. M. (1999). Probabilistic principal components analysis. *Journal of the Royal Statistical Society B*, **61**(3), 611–622. 187, 188
- Uria, B., Murray, I., and Larochelle, H. (2013). Rnade: The real-valued neural autoregressive density-estimator. In NIPS'2013. 233, 234
- Utgoff, P. E. and Stracuzzi, D. J. (2002). Many-layered learning. *Neural Computation*, **14**, 2497–2539. **15**

- van der Maaten, L. and Hinton, G. E. (2008). Visualizing data using t-SNE. J. Machine Learning Res., 9, 265, 268
- Vapnik, V. N. (1982). Estimation of Dependences Based on Empirical Data. Springer-Verlag, Berlin. 78, 79
- Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer, New York. 78, 79, 81
- Vapnik, V. N. and Chervonenkis, A. Y. (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and Its Applications, 16, 264–280. 78, 79
- Vincent, P. (2011). A connection between score matching and denoising autoencoders. *Neural Computation*, **23**(7), 1661–1674. 282, 318
- Vincent, P. and Bengio, Y. (2003). Manifold Parzen windows. In NIPS'2002. MIT Press. 265
- Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. (2008). Extracting and composing robust features with denoising autoencoders. In *ICML* 2008. 277
- Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A. (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Machine Learning Res., 11. 277
- Wager, S., Wang, S., and Liang, P. (2013). Dropout training as adaptive regularization. In Advances in Neural Information Processing Systems 26, pages 351–359. 149
- Waibel, A., Hanazawa, T., Hinton, G. E., Shikano, K., and Lang, K. (1989). Phoneme recognition using time-delay neural networks. *IEEE Transactions on Acoustics, Speech, and Signal Processing*, 37, 328–339. 217
- Wan, L., Zeiler, M., Zhang, S., LeCun, Y., and Fergus, R. (2013). Regularization of neural networks using dropconnect. In *ICML'2013*. 149
- Wang, S. and Manning, C. (2013). Fast dropout training. In ICML'2013. 149
- Warde-Farley, D., Goodfellow, I. J., Courville, A., and Bengio, Y. (2014). An empirical analysis of dropout in piecewise linear networks. In *ICLR* '2014. 149
- Weinberger, K. Q. and Saul, L. K. (2004). Unsupervised learning of image manifolds by semidefinite programming. In CVPR'2004, pages 988–995. 98, 265
- Weston, J., Ratle, F., and Collobert, R. (2008). Deep learning via semi-supervised embedding. In ICML 2008. 18
- Weston, J., Bengio, S., and Usunier, N. (2010). Large scale image annotation: learning to rank with joint word-image embeddings. *Machine Learning*, **81**(1), 21–35. 230
- White, H. (1990). Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings. *Neural Networks*, **3**(5), 535–549. **121**
- Widrow, B. and Hoff, M. E. (1960). Adaptive switching circuits. In 1960 IRE WESCON Convention Record, volume 4, pages 96–104. IRE, New York. 14

- Williams, C. K. I. and Rasmussen, C. E. (1996). Gaussian processes for regression. In NIPS'95, pages 514–520. MIT Press, Cambridge, MA. 122
- Wolpert, D. H. (1996). The lack of a priori distinction between learning algorithms. *Neural Computation*, 8(7), 1341–1390. 121
- Xiong, H. Y., Barash, Y., and Frey, B. J. (2011). Bayesian prediction of tissue-regulated splicing using RNA sequence and cellular context. *Bioinformatics*, **27**(18), 2554–2562. **149**
- Xu, L. and Jordan, M. I. (1996). On convergence properties of the EM algorithm for gaussian mixtures. *Neural Computation*, **8**, 129–151. 253
- Younes, L. (1998). On the convergence of Markovian stochastic algorithms with rapidly decreasing ergodicity rates. In *Stochastics and Stochastics Models*, pages 177–228. 313
- Zaslavsky, T. (1975). Facing Up to Arrangements: Face-Count Formulas for Partitions of Space by Hyperplanes. Number no. 154 in Memoirs of the American Mathematical Society. American Mathematical Society. 295
- Zeiler, M. D. and Fergus, R. (2014). Visualizing and understanding convolutional networks. In ECCV'14. 6, 71
- Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. *Journal of the Royal Statistical Society, Series B*, **67**(2), 301–320. **112**

Index

L^p norm, $\frac{26}{}$	Context-specific independence, 169
,	Contrast, 324
Active constraint, 68	Contrastive divergence, 284, 309, 310
AIS, see annealed importance sampling	Convolution, 199, 313
Almost everywhere, 52	Convolutional neural network, 199
Ancestral sampling, 171	Coordinate descent, 156, 310
Annealed importance sampling, 278, 309	Correlation, 41
Approximate inference, 174	Cost function, see objective function
Artificial intelligence, 2	Covariance, 41
Asymptotically unbiased, 84	Covariance matrix, 41
	curse of dimensionality, 100
Bagging, 144	Cyc, 2
Bayes' rule, 51	• ,
Bayesian network, see directed graphical model	D-separation, 169
Bayesian probability, 37	Dataset augmentation, 324, 329
Belief network, see directed graphical model	DBM, see deep Boltzmann machine
Bernoulli distribution, 44	Deep belief network, 296, 306, 307, 314
Boltzmann distribution, 166	Deep Blue, 2
Boltzmann machine, 166	Deep Boltzmann machine, 296, 306, 308, 310
Calculus of variations, 302	314
CD, see contrastive divergence	Deep learning, 2, 5
Centering trick (DBM), 312	Denoising score matching, 293
Central limit theorem, 45	Density estimation, 71
Chain rule of probability, 40	density estimation, 92
Chess, 2	Derivative, 58
Classical regularization, 128	Detector layer, 204
Classification, 71	Dirac delta function, 47
Cliffs, 151	Directed graphical model, 162
Clipping the gradient, 244	Directional derivative, 62
Clique potential, see factor (graphical model)	domain adaptation, 193
CNN, see convolutional neural network	Dot product, 23
Collider, see explaining away	Doubly block circulant matrix, 201
Computer vision, 323	Dream sleep, 284, 304
<u>.</u>	DropConnect, 149
Conditional computation, see dynamically structured nets, 318	Diopout, 140, 510
Conditional independence, 40	Dynamically structured networks, 318
Conditional independence, 40 Conditional probability, 39	E stan 200
Constrained optimization, 65	E-step, 299 Forly storping, 114, 124, 126, 138, 150
Constrained optimization, 00	Early stopping, 114, 134, 136–138, 150

EBM, see energy-based model	Independence, 40
Effective number of parameters, 131	Inequality constraint, 67
Eigendecomposition, 28	Inference, 159, 174, 296, 298–300, 302, 304
Eigenvalue, 29	Invariance, 207
Eigenvector, 28	,
ELBO, see evidence lower bound	Jacobian matrix, 52, 62
Element-wise product, see Hadamard product	Joint probability, 38
EM, see expectation maximization	
Empirical distribution, 47	Karush-Kuhn-Tucker conditions, 68
Energy function, 166	Kernel (convolution), 200
Energy-based model, 166, 308	KKT conditions, see Karush-Kuhn-Tucker con-
Ensemble methods, 144	ditions
Equality constraint, 67	KL divergence, see Kllback-Leibler divergence42
Equivariance, 202	Kullback-Leibler divergence, 42
Error function, see objective function	
Euclidean norm, 26	Lagrange function, see Lagrangian
Euler-Lagrange equation, 302	Lagrange multipliers, 67, 303
Evidence lower bound, 296, 298–300, 308	Lagrangian, 67
Expectation, 41	Learner, 3
Expectation maximization, 298	Line search, 62
Expected value, see expectation	Linear combination, 25
Explaining away, 170	Linear dependence, 26
	Local conditional probability distribution, 162
Factor (graphical model), 164	Local minimum, 13
Factor graph, 169	Logistic regression, 3
Factors of variation, 5	Logistic sigmoid, 48
Frequentist probability, 37	Loss function, see objective function
Functional derivatives, 302	Mater 200
	M-step, 299
Gaussian distribution, see Normal distribu-	Machine learning, 3
tion45	Manifold hypothesis, 252
Gaussian mixture, 48	manifold hypothesis, 100
GCN, see Global contrast normalization	Manifold learning, 99, 252
Gibbs distribution, 165	MAP inference, 300
Gibbs sampling, 173	Marginal probability, 39
Global contrast normalization, 325	Markov chain, 171
Global minimum, 13	Markov network, see undirected model164
Gradient, 62	Markov random field, see undirected model164
Gradient clipping, 244	Matrix, 21
Gradient descent, 62	Matrix inverse, 24
Graphical model, see structured probabilistic	Matrix product, 22
model	Max pooling, 207
Hadamand product 22	Mean field, 309, 310
Hadamard product, 22	Measure theory, 51
Harmonium, see Restricted Boltzmann ma-	Measure zero, 52
chine177	Method of steepest descent, see gradient de-
Harmony theory, 167 Halmhaltz from anary, and avidence lawer bound	scent
Helmholtz free energy, see evidence lower bound	Missing inputs, 71
Hessian matrix, 63	Mixing (Markov chain), 175
Identity matrix, 24	Mixture distribution, 48
· /	

MNIST, 310	Random variable, 37
Model averaging, 144	Ratio matching, 292
Moore-Penrose pseudoinverse, 139	RBM, see restricted Boltzmann machine
MP-DBM, see multi-prediction DBM	Receptive field, 203
Multi-modal learning, 197	Regression, 71
Multi-prediction DBM, 309, 312	Regularization, 127
Multinomial distribution, 44	Representation learning, 3
Multinoulli distribution, 44	Restricted Boltzmann machine, 177, 192, 296 305, 306, 310, 312, 313
Naive Bayes, 53	Ridge regression, 129
Nat, 42	,
Negative definite, 63	Scalar, 20
Negative phase, 283	Score matching, 291
Netflix Grand Prize, 146	Second derivative, 62
Noise-contrastive estimation, 293	Second derivative test, 63
Norm, 26	Self-information, 42
Normal distribution, 45, 47	Separable convolution, 216
Normal equations, 131	Separation (probabilistic modeling), 167
Normalized probability distribution, 165	Shannon entropy, 42, 303
	Sigmoid, see logistic sigmoid
Object detection, 323	Singular value decomposition, 30, 140
Object recognition, 323	SML, see stochastic maximum likelihood
Objective function, 12, 58	Softmax, 110
one-shot learning, 196	Softplus, 48
Orthogonality, 28	Spam detection, 3
Overfitting, 79	Sparse coding, 191, 296
	spectral radius, 236
Parameter sharing, 202	Sphering, see Whitening, 326
Partial derivative, 58	Square matrix, 26
Partition function, 103, 165, 276, 309	Standard deviation, 41
PCA, see principal components analysis	Statistic, 83
PCD, see stochastic maximum likelihood	Steepest descent, see gradient descent
Persistent contrastive divergence, see stochas-	Stochastic gradient descent, 310
tic maximum likelihood	Stochastic maximum likelihood, 288, 309, 310
Pooling, 199, 313	Stochastic pooling, 149
Positive definite, 63	Structure learning, 173
Positive phase, 283	Structured output, 71
Precision (of a normal distribution), 45, 47	Structured probabilistic model, 158
Predictive sparse decomposition, 183, 265	Sum rule of probability, 39
Preprocessing, 324	SVD, see singular value decomposition
Principal components analysis, 31, 296, 326	Symmetric matrix, 28
Principle components analysis, 90	
Probabilistic max pooling, 313	Tangent plane, 255
Probability density function, 38	Tensor, 21
Probability distribution, 37	Test example, 12
Probability mass function, 37	Tiled convolution, 212
Product rule of probability, see chain rule of	Toeplitz matrix, 201
probability	Trace operator, 31
PSD, see predictive sparse decomposition	Training criterion, 12
Pseudolikelihood, 289	Transcription, 71

```
Transfer learning, 193
Transpose, 21
Triangle inequality, 26
Unbiased, 84
Underfitting, 78
Undirected model, 164
Uniform distribution, 38
Unit norm, 28
Unnormalized probability distribution, 164
V-structure, see explaining away
Variance, 41
Variational derivatives, see functional deriva-
Variational free energy, see evidence lower bound
Vector, 20
Weight decay, 129
Whitening, 326
ZCA, see zero-phase components analysis
zero-data learning, 196
Zero-phase components analysis, 326
zero-shot learning, 196
```