

UNIVERSITY OF GHANA

(all rights reserved)

DEPARTMENT OF MATHEMATICS SCHOOL OF PHYSICAL AND MATHEMATICAL SCIENCES 1ST SEMESTER, 2018/2019 ACADEMIC YEAR

COURSE SYLLABUS

Course Code and Title: MATH 223: Calculus II 3 Credits

Prerequisites: At least a D in MATH 122 - Calculus I

Course Instructors:

NAME	OFFICE	EMAIL
Mr. J. S. G. Jackson (JSGJ)	Room 23, Mathematics Department	kofigyakye2006@yahoo.com
Dr. B. Sehba (BS)	Room 21, Mathematics Department	bfsehba@ug.edu.gh
Dr. A. Asare - Tuah (AAT)	Room 29, Mathematics Department	aasare-tuah@ug.edu.gh
Dr E. K. A. Schwinger (EKAS)	Room 22, Mathematics Department	eschwinger@gmail.com
Ms. L. F. Kyei (LFK)	Room 11, Mathematics Department	lfkyei@ug.edu.gh

Eligibility for Examinations:

Please refer to the University of Ghana Regulations for Junior Members

Learning Outcomes:

At the end of this course, students should be able to

- Understand the Mean Value Theorem (MVT; including that for integrals) and apply it to find solutions to problems.
- Determine the intervals on the domain of a function, on which the function is increasing or decreasing
- Determine when a function has an inverse and find derivatives of the inverse of a function at some point on its domain
- Apply the properties of logarithmic and exponential functions in solving problems
- Perform logarithmic differentiation
- Apply l'Hopitals law to find limits of indeterminate forms
- Define hyperbolic functions and their inverses
- Apply hyperbolic identities to solve problems

- Find derivatives of hyperbolic functions and their inverses
- Define sequences
- Find sums of terms of geometric and arithmetic sequences
- Apply the criteria (root and ratio tests) for establishing convergence of sequences
- Define series
- Apply the criteria (root, ratio and integral tests) for establishing convergence of sequences
- Find the radius of convergence of a series
- Identify series that do not converge
- Define Taylor polynomials and apply the Lagrange remainder theorem in solving problems
- Evaluate Riemann sums
- Use the method of substitution, integration by parts, trigonometric substitutions, partial fractions, and the tables of anti-derivatives to evaluate definite and indefinite integrals.
- Derive reduction formulas to evaluate integrals
- Use integration techniques in the evaluation of integrals involving hyperbolic functions.
- Evaluate improper integrals
- Use the concept of the definite integral to solve problems involving the area between curves, arc length, volumes of surfaces of revolution and area of surface of revolution.
- Apply different techniques in solving first order differential equations

Outline of Topics:

- 1. The Mean Value Theorem (MVT) and its Applications
 - Proof of the MVT as a generalisation of Rolle's theorem.
 - (a) Corollaries (Consequencies of the MVT)
 - Functions with zero derivatives
 - Functions with equal derivatives
 - Increasing and decreasing functions
 - (b) Applications of the MVT
 - Use the MVT to establish the validity or otherwise of an inequality
- 2. Inverse Functions
 - Reflective property of inverse functions
 - The existence of an inverse function
 - The derivative of an inverse function

- 3. Logarithmic and Exponential Functions
 - The natural logarithmic function defined as an integral

$$\ln x = \int_1^x \frac{1}{t} dt, \quad x > 1$$

- The graphs of the natural logarithmic and exponential functions
- Proofs of the basic properties of the natural logarithmic function using the definition
- Proofs of the basic properties of the exponential function using the logarithmic properties
- \bullet The definition of the number e
- Behaviour of the exponential and logarithmic functions, $\exp(x)$ at $\pm \infty$, and $\ln x$ at 0^+ and at $+\infty$
- General exponential and logarithmic functions
- Representation of the natural logarithmic function as a limit:

$$\ln y = \lim_{x \to 0} \frac{y^x - 1}{x}, \quad y > 0$$

• Representation of the natural exponential function as a limit:

$$e^{x} = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^{n}, \qquad e^{x} = \lim_{n \to 0} \left(1 + x\right)^{\frac{1}{n}}$$

- Logarithmic inequalities and limits
- Scales of infinity: Comparison of order of magnitude of two functions
- Logarithmic differentiation
- 4. Indeterminate Forms and l'Hôpital's Rule
- 5. Hyperbolic Functions
 - Definition of even and odd functions
 - Definition of hyperbolic functions in terms of the exponential functions
 - Sketch of graphs of hyperbolic functions using their definitions
 - Hyperbolic identities and Osborn's Rule
 - Inverses of hyperbolic functions and their domains
 - Inverse hyperbolic functions as natural logarithmic functions
 - Derivatives of hyperbolic functions and their inverses
- 6. Sequences
 - Definition of a sequence numerical and recurrent
 - Monotonicity of sequences
 - Geometric and Arithmetic sequences
 - Sums of terms of geometric and arithmetic sequences

- Criteria for convergence of sequences
 - The root and ratio tests

7. Series

- Definition numerical and power series
- Convergence criteria (using ratio, root and integral tests)
- Radius of convergence
- Example of a series that does not converge (The Harmonic series)
- 8. Taylor Polynomials
 - Definition of Taylor polynomials
 - Lagrange Remainder
- 9. Integration
 - (a) Fundamental Theorems of Calculus (FTCs)
 - Intuitive idea of the FTCs
 - MVT for intergrals
 - FTC Part I (with proof) and FTC Part II (without proof).
 - (b) Riemann Sums and the Definite Integral: Integration as a Sum
 - The existence of the integral
 - The definite integral and its properties
 - Evaluation of basic integrals (with polynomials of at most degree three being the integrand) using the Riemann sum
 - Interpreting infinite limits as definite integrals
 - (c) Techniques of Integration
 - i. Method of Substitution
 - Trigonometric Integrals
 - Integrals of sines and cosines
 - Integrals of tangents and secants
 - Integrals of cotangents and cosecants
 - Hyperbolic Integrals
 - Some standard hyperbolic integrals (as a result of antiderivatives of the hyperbolic functions)
 - Integrals of hyperbolic sines and cosines
 - Integrals of hyperbolic tangents and secants
 - Integrals of hyperbolic cotangents and cosecants
 - Trigonometric and Hyperbolic Substitutions
 - Substitutions for integrands containing $\sqrt{a^2-b^2x^2}$, $\sqrt{a^2+b^2x^2}$ and $\sqrt{b^2x^2-a^2}$

- Integration of rational functions using partial fractions
 - Integration of proper and improper rational functions
 - Special cases of rational function integrands where partial fractions can be avoided; e.g.

$$\int \frac{x^3+1}{(x-2)^4} dx$$
, let $y=x-2$; $\int \frac{dx}{x^4(1-x)}$, expand $(1-x)^{-1}$; etc

• Integrals of the form

$$\int \frac{px+q}{ax^2+bx+c}dx, \qquad \int \frac{px+q}{\sqrt{ax^2+bx+c}}dx, \qquad \int (px+q)\sqrt{ax^2+bx+c}dx$$

where $a, b, c, p, q \in \mathbb{R}$ and $ax^2 + bx + c$ cannot be factored into linear expressions

• Integrals of the form

$$\int \frac{\sin^2 x + \cos x}{\cos^2 x + \sin x} dx, \qquad \int \frac{a \sin x + b \cos x + c}{a_1 \sin x + b_1 \cos x + c_1} dx, \qquad \int \frac{a \sinh x + b \cosh x + c}{a_1 \sinh x + b_1 \cosh x + c_1} dx$$

where the substitutions $t = \tan \frac{\pi}{2}$ and $t = \tanh \frac{\pi}{2}$ are useful and $a, b, c, a_1, b_1, c_1 \in \mathbb{R}$

• Integrals of the form

$$\int \frac{a\sin x + b\cos x}{a_1\sin x + b_1\cos x} dx$$

where the substitution

$$a\sin x + b\cos x = \lambda \frac{d}{dx}(a_1\sin x + b_1\cos x) + \mu(a_1\sin x + b_1\cos x)$$

for some scalars λ and μ is useful

- ii. Integration by parts
- iii. Method of Substitution and integration by parts for definite integrals
- iv. Proofs and use of the following properties in simplying and evaluating definite integrals

$$\int_0^a f(x)dx = \int_0^a f(a-x)dx; \qquad \int_0^{2a} f(x)dx = \int_0^a f(x)dx + \int_0^a f(2a-x)dx$$

- 10. The Reduction Formulae
 - (a) Reduction fomulae for indefinite integrals
 - Reduction formulae for integrals of the form

$$\int x^n e^x dx, \quad n \in \mathbb{N}$$

• Reduction formulae for integrals of the form

$$\int \frac{dx}{(x^2 + a^2)^n}, \quad n \in \mathbb{N}$$

5

(b) Reduction formulae for trigonometric and hyperbolic integrals

• Reduction formulae for integrals of the forms

$$\int \cosh^n x ds x, \qquad \int \sinh^n x dx, \qquad n \in \mathbb{N}, n \ge 2 \quad \text{etc}$$

• Reduction formulae for integrals of the forms

$$\int \sin^m x \cos^n x dx, \qquad \int \sin^x \cos nx dx, \qquad m, n \in \mathbb{N}, \quad \text{etc}$$

- (c) Reduction formulae for defintie integrals
 - Reduction formulae for integrals of the forms

$$\int_0^{\frac{\pi}{2}} x \sin^n x dx, \qquad \int_0^{\frac{\pi}{2}} x^n \sqrt{1 - x} dx, \quad \text{etc}$$

11. Improper Integrals

Integrals of the form $\int_a^b f(x)dx$ where

- f is not defined at a or b or in between a and b
- the interval of integration is infinite
- 12. Applications of Integration
 - Area between two curves
 - Volumes of solids of revolution
 - Arc length
 - Area of surface of revolution
- 13. Ordinary Differential Equations
 - Formation of ordinary differential equations
 - Solutions to first order differential equations
 - Separable equations
 - Using the integrating factor
 - Exact Equations
 - Initial value problems
 - Homogenous equations,
 - Using an integrating factor to make a differential equation exact
 - Bernoulli equations
 - Reduction of orders

Course Delivery

Topic	Allocated Time
The MVT and it Applications & Inverse Functions	5 hours
Logarithmic and Exponential Functions & Indeterminate Forms	4 hours
Hyperbolic Functions	6 hours
Sequences, Series & Taylor Polynomials	9 hours
Integration	10 hours
Reduction Formulae	4 hours
Improper Integrals	2 hours
Applications of Integration	2 hours
Oridinary Differential Equations	8 hours

References:

- Calculus by James Stewart
- Calculus by Soo T. Tan
- Calculus and Analytic Geometry by C.H Edwards Jr and D. E. Penny

Grading:

The course grade consists of three sections: continuous assessment (in-class tests and homeworks), interim assessment tests, and the final exam.

Activity	% of Final Score	Timeline
Final Exam	60	End of semester
Interim Assessment Tests (2)	30	Weeks 7 & 11
Quizzes	10	Weeks 3 & 9