Assignment 1 Epidemic Modelling report

YOU CHAN LEE

s3850825@student.rmit.edu.au

Bachelor of Computer Science

• Introduction

In this report, we will evaluate our implemented structures which are adjacency list, adjacency matrix, and incidence matrix in terms of their time complexities for the different operations and different use case scenarios. In each scenario, we will consider and recommend which implementation would be most appropriate. Lastly, we will show the outcomes of SIR epidemic model simulations.

Data and experiment setup

To evaluate our data structures, we need to generate several graphs, so we decided to use Erdos-Renyi and Scale-free graphs which are automatic graph generators. For vertex degree, we decided to use 5, 20, and 50 because each number is more than double of previous number, so we could clearly see the difference of time complexities. For number of vertices, we decided to use 100, 200, and 400 because we noticed that in scenario 2, our laptop stopped running if we have over 500 vertices. We generated 3 graphs on each vertex degree and number of vertices so total 54 graphs are used. The table below lists the graphs of Erdos-Renyi and Scale-free.

Erdos-Rer	nyi		Vertex degree	
		5	20	50
		ER_V100D5_1.net	ER_V100D20_1.net	ER_V100D50_1.net
	100	ER_V100D5_2.net	ER_V100D20_2.net	ER_V100D50_2.net
		ER_V100D5_3.net	ER_V100D20_3.net	ER_V100D50_3.net
Number		ER_V200D5_1.net	ER_V200D20_1.net	ER_V200D50_1.net
of	200	ER_V200D5_2.net	ER_V200D20_2.net	ER_V200D50_2.net
vertices		ER_V200D5_3.net	ER_V200D20_3.net	ER_V200D50_3.net
		ER_V400D5_1.net	ER_V400D20_1.net	ER_V400D50_1.net
	400	ER_V400D5_2.net	ER_V400D20_2.net	ER_V400D50_2.net
		ER V400D5 3.net	ER V400D20 3.net	ER V400D50 3.net

Scale-free	•		Vertex degree	
		5	20	50
		SF_V100D5_1.net	SF_V100D20_1.net	SF_V100D50_1.net
	100	SF_V100D5_2.net	SF_V100D20_2.net	SF_V100D50_2.net
		SF_V100D5_3.net	SF_V100D20_3.net	SF_V100D50_3.net
Number		SF_V200D5_1.net	SF_V200D20_1.net	SF_V200D50_1.net
of	200	SF_V200D5_2.net	SF_V200D20_2.net	SF_V200D50_2.net
vertices		SF_V200D5_3.net	SF_V200D20_3.net	SF_V200D50_3.net
		SF_V400D5_1.net	SF_V400D20_1.net	Sf_V400D50_1.net
	400	SF_V400D5_2.net	SF_V400D20_2.net	SF_V400D50_2.net
		SF_V400D5_3.net	SF_V400D20_3.net	SF_V400D50_3.net

Use case scenarios

Scenario 1 k-hop Neighbourhoods

We decided to use 100 vertices for this scenario 1. The table below lists the times(seconds) of all of vertex's k-hop neighbourhoods depend on size of k in adjacency list, adjacency matrix, and incidence matrix. We used both of Erdos-Renyi and Scale-free graphs for this scenario 1.

Erdos-Renyi

		Adjace	ncy List		Adjacency Matrix				Incidence Matrix			
K	First	First Second Third Averag				First Second Third Average				Second	Third	Average
	Degree 5			Degree 5				Degree 5				

3	0.105945	0.108925	0.124525	0.113132	0.084837	0.089869	0.088036	0.087581	0.167027	0.161263	0.159749	0.16268
10	0.129712	0.145878	0.137364	0.137651	0.123017	0.116049	0.115376	0.118147	0.258946	0.258996	0.257628	0.258523
25	0.154767	0.149092	0.153192	0.15235	0.129962	0.120649	0.125314	0.125308	0.269799	0.268799	0.265986	0.268195
		Degr	ee 20			Degr	ee 20			Degr	ee 20	
3	0.173594	0.179942	0.174148	0.175895	0.110774	0.108834	0.115145	0.111584	0.509809	0.514442	0.513502	0.512584
10	0.180183	0.182342	0.179822	0.180782	0.130278	0.121130	0.119361	0.12359	0.539576	0.534681	0.522795	0.532351
25	0.185209	0.188447	0.183234	0.18563	0.130952	0.132574	0.128128	0.130551	0.544079	0.535796	0.540846	0.54024
		Degr	ee 50			Degr	ee 50			Degr	ee 50	
3	0.265968	0.264703	0.269987	0.266886	0.122173	0.119973	0.125307	0.122484	0.833497	0.815988	0.852216	0.8339
10	0.269983	0.276835	0.277250	0.274689	0.125672	0.129153	0.130141	0.128322	0.906098	0.864765	0.893622	0.888162
25	0.295229	0.289343	0.289521	0.291364	0.126829	0.135923	0.139324	0.134025	0.949582	0.896224	0.931961	0.925922

Scale-free

		Adjacency List				Adjacend	y Matrix			Incidenc	e Matrix	
K	First	Second	Third	Average	First	Second	Third	Average	First	Second	Third	Average
		Degr	ree 5			Degr	ree 5			Degr	ee 5	
3	0.051676	0.053018	0.055041	0.053245	0.057376	0.068977	0.059845	0.062066	0.077556	0.081852	0.079657	0.079688
10	0.059549	0.060125	0.062533	0.060736	0.065868	0.070605	0.063944	0.066806	0.083243	0.085906	0.094976	0.088042
25	0.063027	0.067995	0.068092	0.066371	0.099508	0.075323	0.068739	0.08119	0.088117	0.093446	0.098134	0.093232
	Degree 20					Degr	ee 20			Degr	ee 20	
3	0.113201 0.113527 0.115795 0.11417			0.114174	0.083313	0.082175	0.084492	0.083327	0.194403	0.197976	0.179677	0.190685
10	0.131369	0.128459	0.125843	0.128557	0.088562	0.084545	0.095764	0.089624	0.210518	0.209424	0.193544	0.204495
25	0.133828	0.138044	0.132032	0.134635	0.091339	0.098799	0.107227	0.099122	0.223187	0.211119	0.211068	0.215125
	Degree 50					Degr	ee 50			Degr	ee 50	
3	0.166205	0.156013	0.168567	0.163595	0.099107	0.089886	0.098688	0.095894	0.306954	0.280184	0.333832	0.30699
10	0.178598	0.173632	0.179835	0.177355	0.106341	0.099161	0.100629	0.102044	0.358003	0.311036	0.371904	0.346981
25	0.181879	0.179263	0.189662	0.183601	0.113484	0.116145	0.114555	0.114728	0.403437	0.339668	0.395831	0.379645

With Erdos-Renyi graphs, we can cleary see that time increases as vertex degree and k incresases. We can also see adjacency matrix is the most efficient graph and incidence matrix is the most inefficient graph.

With Scale-free graphs, we can cleary see that time increases as vertex degree and k incresases. We can also see adjacency matrix is the most efficient graph and incidence matrix is the most inefficient graph.

Scenario 2 Dynamic Contact Conditions

The table below lists the times(seconds) of non-existent edge additions and existent edges deletions depend on number of vertices and vertex degree in adjacency list, adjacency matrix, and incidence matrix. We used both of Erdos-Renyi and Scale-free graphs for this scenario 2.

Erdos-Renyi (edge additions)

		Adjace	ncy List			Adjacend	y Matrix		Incidence Matrix			
٧	First	Second	Third	Average	First	Second	Third	Average	First	Second	Third	Average

		Degree 5 0.040029 0.042051 0.041132 0.041071				Degr	ee 5		Degree 5			
100	0.040029	0.042051	0.041132	0.041071	0.020275	0.021445	0.023556	0.021758	3.603995	3.992512	4.01123	3.869245
200	0.154132	0.161135	0.148223	0.154496	0.032213	0.035521	0.037729	0.035154	98.15533	97.33571	98.66154	98.05086
400	2.004663	2.023521	2.155332	2.061172	0.150833	0.144668	0.145663	0.147054	3053.929	3049.223	3055.663	3052.938
		Degr	ee 20			Degre	ee 20			Degr	ee 20	
100	0.044023	0.040555	0.045552	0.043376	0.017162	0.015223	0.016633	0.016339	3.526291	3.475023	3.523511	3.508275
200	0.154218	0.163225	0.157003	0.158148	0.032115	0.031126	0.030882	0.031374	95.55213	94.77283	95.11203	95.14566
400	2.341528	2.315523	2.255317	2.304122	0.139422	0.142535	0.140552	0.140836	3003.223	3006.315	3009.713	3006.417
	Degree 50			Degre	ee 50			Degr	ee 50			
100	0.049112	0.043921	0.050223	0.047752	0.010691	0.012334	0.013552	0.012192	3.040098	3.12255	3.20096	3.121202
200	0.162153	0.165523	0.169552	0.165742	0.030552	0.029915	0.027715	0.029394	92.33851	91.88273	91.99532	92.07218
400	2.900091	2.912355	2.733532	2.848659	0.137235	0.129532	0.136523	0.13443	2952.209	2950.556	2947.617	2950.127

Scale-free (edge additions)

		Adjacency List				Adjaceno	y Matrix			Incidenc	e Matrix	
٧	First	Second	Third	Average	First	Second	Third	Average	First	Second	Third	Average
		Degr	ee 5			Degr	ee 5			Degr	ee 5	
100	0.036019	0.039015	0.038441	0.037825	0.019511	0.014892	0.015873	0.016758	3.512366	3.597725	3.578261	3.562784
200	0.152236	0.158823	0.150221	0.15376	0.028398	0.030186	0.027352	0.028645	96.16769	95.68264	96.22756	96.02596
400	1.969892	1.989732	2.007511	1.989045	0.147236	0.142612	0.148763	0.146203	3001.236	2998.435	3000.211	2999.961
	Degree 20				Degree 20					Degr	ee 20	
100	0.042123 0.040216 0.036147 0.039495		0.015839	0.014162	0.014416	0.014805	3.525001	3.30016	3.211166	3.345442		
200	0.156186	0.155198	0.153675	0.155019	0.025568	0.026018	0.023601	0.025062	92.58861	92.19605	92.66355	92.48273
400	2.105862	2.096632	2.208753	2.137082	0.140682	0.137856	0.137572	0.138703	2955.361	2952.981	2955.356	2954.566
	Degree 50					Degre	ee 50			Degr	ee 50	
100	0.045868	0.043175	0.045763	0.044935	0.011993	0.012236	0.011088	0.011772	3.398541	3.192648	3.145379	3.245522
200	0.159836	0.158752	0.156962	0.158516	0.021052	0.019965	0.018583	0.019866	89.11623	89.55816	90.37562	89.68333
400	2.736816	2.719756	2.708826	2.721799	0.106827	0.118967	0.097532	0.107775	2900.009	2901.664	2901.935	2901.202

With Erdos-Renyi graphs, we can clearly see that time increases as vertex and degree increases in adjacency list, but time increases as vertex increases and time decreases as degree increases in adjacency matrix and incidence matrix. We can also see adjacency matrix is the most efficient and incidence matrix is the most inefficient.

With Scale-free graphs, we can clearly see that time increases as vertex and degree increases in adjacency list, but time increases as vertex increases and time decreases as degree increases in adjacency matrix and incidence matrix. We can also see adjacency matrix is the most efficient and incidence matrix is the most inefficient.

Erdos-Renyi (edge deletions)

	Adjacency List					Adjaceno	y Matrix		Incidence Matrix				
V	First Second Third Averag				First Second Third Average				First	Second	Third	Average	
	Degree 5			Degree 5				Degree 5					

100	0.026715	0.020158	0.024872	0.023915	0.013643	0.014226	0.013032	0.013633	0.108641	0.107853	0.110862	0.109118
200	0.051132	0.050123	0.051003	0.050752	0.040238	0.045102	0.039901	0.041747	0.356918	0.349862	0.351152	0.352644
400	0.255015	0.260385	0.258331	0.257911	0.155321	0.149263	0.150362	0.151648	2.437728	2.581223	2.608635	2.542528
		Degr	ee 20			Degr	ee 20			Degr	ee 20	
100	0.028192	0.027897	0.029085	0.028391	0.014763	0.014826	0.015077	0.014888	0.265847	0.276365	0.281746	0.274652
200	0.058993	0.061003	0.059766	0.059921	0.048173	0.049777	0.048871	0.048940	1.658839	1.705826	1.717775	1.694146
400	0.283452	0.269374	0.269337	0.274054	0.164335	0.161326	0.165523	0.163728	12.52632	11.55399	12.00864	12.02965
		Degr	ee 50			Degr	ee 50			Degr	ee 50	
100	0.029985	0.038167	0.031156	0.033102	0.017395	0.016677	0.018636	0.017569	0.998321	1.087673	1.108635	1.064876
200	0.071773	0.077372	0.080611	0.076585	0.052237	0.050289	0.055372	0.052632	6.812352	6.836525	6.855213	6.834696
400	0.333871	0.323528	0.333127	0.330175	0.171738	0.185335	0.177727	0.178266	64.38723	64.99826	63.11382	64.16643

Scale-free (edge deletions)

		Adjacency List				Adjaceno	y Matrix			Incidenc	e Matrix	
٧	First	Second	Third	Average	First	Second	Third	Average	First	Second	Third	Average
		Degr	ee 5			Degr	ee 5			Degr	ee 5	
100	0.023051	0.021053	0.021113	0.021739	0.011976	0.011327	0.012005	0.011769	0.059228	0.067327	0.063216	0.063257
200	0.046923	0.046813	0.046933	0.046889	0.038922	0.039921	0.036128	0.038323	0.131892	0.127832	0.129336	0.129686
400	0.250135	0.248773	0.249111	0.249339	0.148775	0.145726	0.145558	0.146686	0.859912	0.922359	0.933651	0.905307
	Degree 20				Degree 20					Degr	ee 20	
100	0.024634 0.025112 0.023995 0.02458			0.024580	0.014155	0.012932	0.012633	0.01324	0.099239	0.102532	0.113066	0.104945
200	0.054113	0.054898	0.053882	0.054297	0.039983	0.041153	0.041262	0.040799	0.062603	0.071152	0.065512	0.066422
400	0.259332	0.265523	0.263316	0.262723	0.149555	0.150333	0.152553	0.150813	4.527381	5.022135	4.983621	4.844379
	Degree 50					Degre	ee 50			Degr	ee 50	
100	0.025593	0.025983	0.026643	0.026073	0.015663	0.016012	0.015266	0.015647	0.212102	0.200235	0.208853	0.207063
200	0.055113	0.059321	0.061123	0.058519	0.042733	0.044623	0.048765	0.045373	1.660552	1.677392	1.703321	1.680421
400	0.287371	0.295673	0.288831	0.290625	0.155531	0.156693	0.164321	0.158848	16.63523	15.99382	16.25599	16.29501

With Erdos-Renyi graphs, we can clearly see that time increases as vertex and degree increases. We can also see adjacency matrix is the most efficient and incidence matrix is the most inefficient.

With Scale-free graphs, we can clearly see that time increases as vertex and degree increases. We can also see adjacency matrix is the most efficient and incidence matrix is the most inefficient.

Scenario 3 Dynamic People Tracing

The table below lists the times(seconds) of non-existent vertex additions and existent vertex deletions depend on number of vertices and vertex degree in adjacency list, adjacency matrix, and incidence matrix. We used both of Erdos-Renyi and Scale-free graphs for this scenario 3.

Erdos-Renyi (vertex additions)

		Adjace	ncy List		Adjacency Matrix				Incidence Matrix				
٧	First	Second	Third	Average	First Second Third Average				First	Second	Third	Average	
	Degree 5				Degree 5				Degree 5				

100	0.001418	0.001315	0.001471	0.001401	0.023491	0.022123	0.020331	0.021981	0.020856	0.030331	0.029355	0.026847
200	0.001573	0.001587	0.001610	0.00159	0.083455	0.086331	0.091223	0.087003	0.041345	0.041002	0.041667	0.041338
400	0.003265	0.003156	0.003621	0.003347	0.456712	0.448828	0.436891	0.447477	0.263093	0.278832	0.265513	0.269146
	Degree 20		Degree 20				Degr	ee 20				
100	0.001053	0.001321	0.001533	0.001302	0.021393	0.022354	0.020713	0.021486	0.022353	0.025332	0.024391	0.024025
200	0.001511	0.001487	0.001495	0.001497	0.085521	0.086245	0.091522	0.087762	0.085321	0.088292	0.092211	0.088608
400	0.003116	0.003898	0.003156	0.00339	0.444019	0.445883	0.458981	0.449627	0.752391	0.723769	0.808873	0.761677
		Degr	ee 50			Degr	ee 50			Degr	ee 50	
100	0.001235	0.001311	0.001326	0.001290	0.023935	0.021223	0.022385	0.022514	0.098231	0.113626	0.107742	0.106533
200	0.001493	0.001522	0.001501	0.001505	0.085992	0.083112	0.095599	0.088234	0.203341	0.199235	0.200061	0.200879
400	0.003671	0.003701	0.003072	0.003481	0.441365	0.471362	0.411092	0.441273	1.793828	2.038964	1.977736	1.936842

Scale-free (vertex additions)

		Adjace	ncy List			Adjacend	y Matrix			Incidenc	e Matrix	
٧	First	Second	Third	Average	First	Second	Third	Average	First	Second	Third	Average
		Degr	ee 5		Degree 5			Degree 5				
100	0.000917	0.000957	0.000941	0.000938	0.021003	0.020607	0.021125	0.020911	0.021263	0.019553	0.020551	0.020455
200	0.001146	0.001151	0.001148	0.001148	0.082115	0.083189	0.081889	0.082397	0.035291	0.037993	0.036579	0.036621
400	0.003548 0.004168 0.003827 0.003847		0.437123	0.440162	0.439772	0.439019	0.265729	0.255271	0.261937	0.260979		
	Degree 20			Degree 20				Degree 20				
100	0.000926	0.000933	0.000986	0.000948	0.020514	0.021902	0.020761	0.021059	0.023185	0.022371	0.021331	0.022295
200	0.001175	0.001149	0.001183	0.001169	0.082038	0.083116	0.080682	0.081945	0.078238	0.080128	0.076621	0.078329
400	0.003827	0.003916	0.004012	0.003918	0.439816	0.441725	0.440081	0.440540	0.492731	0.482538	0.491176	0.488815
		Degre	ee 50			Degr	ee 50			Degr	ee 50	
100	0.000911 0.000981 0.000923 0.000938		0.000938	0.020191	0.021883	0.021077	0.021050	0.039625	0.042059	0.048128	0.043270	
200	0.001152	0.001117	0.001206	0.001158	0.083168	0.081169	0.081992	0.082109	0.115612	0.106389	0.119728	0.113909
400	0.003951	0.004091	0.003716	0.003919	0.437765	0.431758	0.440117	0.436546	1.205382	1.186352	1.217553	1.203095

With Erdos-Renyi graphs, we can clearly see that time increases as vertex and degree increases in incedence matrix, but time increases as vertex increases and time remains constant as degree increases in adjacency matrix and incidence matrix. We can also see adjacency list is the most efficient and incidence matrix is the most inefficient.

With Scale-free graphs, we can clearly see that time increases as vertex and degree increases in incedence matrix, but time increases as vertex increases and time remains constant as degree increases in adjacency matrix and incidence matrix. We can also see adjacency list is the most efficient and incidence matrix is the most inefficient.

Erdos-Renyi (vertex deletions)

	Adjacency List				Adjacency Matrix				Incidence Matrix			
٧	First	Second	Third	Average	First	Second	Third	Average	First	Second	Third	Average
	Degree 5			Degree 5				Degree 5				
100	0.003513	0.002538	0.003185	0.003078	0.010322	0.013929	0.012557	0.012269	0.044526	0.046816	0.045721	0.045687

200	0.008375	0.009736	0.007993	0.008701	0.035827	0.040887	0.041773	0.039495	0.090132	0.094736	0.087619	0.090829
400	0.019836	0.020572	0.024137	0.021515	0.077734	0.077583	0.074936	0.076751	0.557287	0.608625	0.631735	0.599215
		Degre	ee 20		Degree 20				Degree 20			
100	0.009513	0.010552	0.009166	0.009743	0.012358	0.013216	0.013872	0.013148	0.185736	0.173827	0.176882	0.178815
200	0.012957	0.014882	0.013997	0.013945	0.042876	0.043882	0.041772	0.042843	0.960283	0.967271	0.948819	0.958791
400	0.043882	0.041867	0.045717	0.043822	0.079886	0.081635	0.083765	0.081762	6.876628	7.278691	7.189352	7.114890
		Degre	ee 50		Degree 50			Degree 50				
100	0.012258	0.011732	0.010889	0.011626	0.014882	0.014521	0.014687	0.014696	0.793856	0.824658	0.786251	0.801588
200	0.021981	0.020875	0.019714	0.020856	0.044897	0.045776	0.044886	0.045186	5.672189	5.729947	5.620017	5.674051
400	0.087583	0.087652	0.091625	0.088953	0.084527	0.089372	0.087652	0.087183	45.50827	46.21883	45.87251	45.86653

Scale-free (vertex deletions)

		Adjace	ncy List			Adjacend	y Matrix			Incidenc	e Matrix	
٧	First	Second	Third	Average	First	Second	Third	Average	First	Second	Third	Average
		Degr	ee 5		Degree 5				Degr	ee 5		
100	0.001161	0.001458	0.001358	0.001325	0.009251	0.009971	0.010557	0.009926	0.030238	0.027989	0.024172	0.027466
200	0.006238	0.005382	0.005751	0.005790	0.033286	0.034772	0.035152	0.034403	0.071372	0.080636	0.084561	0.078856
400	00 0.014836 0.013782 0.013997 0.014205		0.074192	0.071251	0.069928	0.071790	0.424838	0.442173	0.437613	0.434874		
	Degree 20			Degree 20				Degree 20				
100	0.002313	0.002155	0.001972	0.002146	0.012931	0.012185	0.011959	0.012358	0.076172	0.082734	0.080726	0.079877
200	0.010327	0.011727	0.012007	0.011353	0.040581	0.039971	0.041667	0.040739	0.473816	0.483726	0.489162	0.482234
400	0.021893	0.022157	0.023115	0.022388	0.075836	0.075581	0.078921	0.076779	3.641623	3.573218	3.522178	3.579006
		Degr	ee 50			Degr	ee 50			Degr	ee 50	
100	0.004957 0.004488 0.004571 0.004672		0.004672	0.013896	0.013726	0.013266	0.013629	0.167382	0.176525	0.182185	0.175364	
200	0.013867	0.014898	0.014266	0.014343	0.043183	0.039172	0.048551	0.043635	1.298367	1.326389	1.366321	1.330359
400	0.031258	0.032258	0.033118	0.032211	0.079112	0.081129	0.080612	0.080284	15.48762	14.99275	15.32816	15.26951

With Erdos-Renyi graphs, we can clearly see that time increases as vertex and degree increases. We can also see adjacency list is the most efficient and incidence matrix is the most inefficient.

With Scale-free graphs, we can clearly see that time increases as vertex and degree increases. We can also see adjacency list is the most efficient and incidence matrix is the most inefficient.

SIR Model Epidemic Simulation

To evaluate what effect the parameters of graph type, infection and recover probabilities have on the spread of the epidemic in the SIR model, we decided to use ER_V200D20_1.net and SF_V200D20_1.net graphs. We also decided to use adjacency matrix and incidence matrix. The table below lists the times(seconds) of SIR model simulation.

Seed Initialisation

Data	Seed Initialisation	Infection	Recover	Iteration	Time
Structure		Probability	Probability		
Adjacency	1;10;20;30;40;50;60;70;80;90;100;110;120	0.9	0.1	12	0.0938724
Matrix					
Adjacency	1;10;20;30;40;50;60	0.9	0.1	10	0.0849762
Matrix					
Adjacency	1;10;20	0.9	0.1	8	0.0809861
Matrix					

Scale-free

Data	Seed Initialisation	Infection	Recover	Iteration	Time
Structure		Probability	Probability		
Adjacency	1;10;20;30;40;50;60;70;80;90;100;110;120	0.9	0.1	11	0.0899374
Matrix					
Adjacency	1;10;20;30;40;50;60	0.9	0.1	11	0.0735229
Matrix					
Adjacency	1;10;20	0.9	0.1	8	0.0722583
Matrix					

Erdos-Renyi

Data	Seed Initialisation	Infection	Recover	Iteration	Time
Structure		Probability	Probability		
Incidence	1;10;20;30;40;50;60;70;80;90;100;110;120	0.9	0.1	11	0.1482197
Matrix					
Incidence	1;10;20;30;40;50;60	0.9	0.1	10	0.1261612
Matrix					
Incidence	1;10;20	0.9	0.1	9	0.1108523
Matrix					

Scale-free

Data	Seed Initialisation	Infection	Recover	Iteration	Time
Structure		Probability	Probability		
Incidence	1;10;20;30;40;50;60;70;80;90;100;110;120	0.9	0.1	13	0.1062831
Matrix					
Incidence	1;10;20;30;40;50;60	0.9	0.1	9	0.0985572
Matrix					
Incidence	1;10;20	0.9	0.1	9	0.0815534
Matrix					

We can clearly see that time increases as number of seed initialisation increases. We can also see adjacency matrix is more efficient and scale-free graph type is more efficient.

o Infection Probability

Erdos-Renyi

Data	Seed Initialisation	Infection	Recover	Iteration	Time
Structure		Probability	Probability		
Adjacency	1;10;20;30;40;50;60;70;80;90;100;110;120	0.9	0.1	12	0.0938724
Matrix					
Adjacency	1;10;20;30;40;50;60;70;80;90;100;110;120	0.5	0.1	9	0.0888092
Matrix					
Adjacency	1;10;20;30;40;50;60;70;80;90;100;110;120	0.1	0.1	8	0.0811853
Matrix					

Scale-free

Data	Seed Initialisation	Infection	Recover	Iteration	Time
Structure		Probability	Probability		
Adjacency	1;10;20;30;40;50;60;70;80;90;100;110;120	0.9	0.1	11	0.0899374
Matrix					
Adjacency	1;10;20;30;40;50;60;70;80;90;100;110;120	0.5	0.1	9	0.0847815
Matrix					
Adjacency	1;10;20;30;40;50;60;70;80;90;100;110;120	0.1	0.1	8	0.0707726
Matrix					

Erdos-Renyi

Data	Seed Initialisation	Infection	Recover	Iteration	Time
Structure		Probability	Probability		
Incidence	1;10;20;30;40;50;60;70;80;90;100;110;120	0.9	0.1	11	0.1482197
Matrix					
Incidence	1;10;20;30;40;50;60;70;80;90;100;110;120	0.5	0.1	10	0.136763
Matrix					
Incidence	1;10;20;30;40;50;60;70;80;90;100;110;120	0.1	0.1	8	0.1186552
Matrix					

Scale-free

Data	Seed Initialisation	Infection	Recover	Iteration	Time
Structure		Probability	Probability		
Incidence	1;10;20;30;40;50;60;70;80;90;100;110;120	0.9	0.1	13	0.1062831
Matrix					
Incidence	1;10;20;30;40;50;60;70;80;90;100;110;120	0.5	0.1	11	0.101432
Matrix					
Incidence	1;10;20;30;40;50;60;70;80;90;100;110;120	0.1	0.1	8	0.099862
Matrix					

We can clearly see that time increases as infection probability increases. We can also see adjacency matrix is more efficient and scale-free graph type is more efficient.

Recover Probability

Erdos-Renyi

Data	Seed Initialisation	Infection	Recover	Iteration	Time
Structure		Probability	Probability		
Adjacency	1;10;20;30;40;50;60;70;80;90;100;110;120	0.9	0.1	11	0.1482197
Matrix					
Adjacency	1;10;20;30;40;50;60;70;80;90;100;110;120	0.9	0.5	8	0.1160183
Matrix					
Adjacency	1;10;20;30;40;50;60;70;80;90;100;110;120	0.9	0.9	6	0.0967524
Matrix					

Scale-free

Data	Seed Initialisation	Infection	Recover	Iteration	Time
Structure		Probability	Probability		
Adjacency	1;10;20;30;40;50;60;70;80;90;100;110;120	0.9	0.1	13	0.1062831
Matrix					
Adjacency	1;10;20;30;40;50;60;70;80;90;100;110;120	0.9	0.5	7	0.0711635
Matrix					
Adjacency	1;10;20;30;40;50;60;70;80;90;100;110;120	0.9	0.9	5	0.0577827
Matrix					

Erdos-Renyi

Data	Seed Initialisation	Infection	Recover	Iteration	Time
Structure		Probability	Probability		
Incidence	1;10;20;30;40;50;60;70;80;90;100;110;120	0.9	0.1	11	0.1482197
Matrix					
Incidence	1;10;20;30;40;50;60;70;80;90;100;110;120	0.9	0.5	7	0.1008163
Matrix					
Incidence	1;10;20;30;40;50;60;70;80;90;100;110;120	0.9	0.9	6	0.0977362
Matrix					

Scale-free

Data	Seed Initialisation	Infection	Recover	Iteration	Time
Structure		Probability	Probability		
Incidence	1;10;20;30;40;50;60;70;80;90;100;110;120	0.9	0.1	13	0.1062831
Matrix					
Incidence	1;10;20;30;40;50;60;70;80;90;100;110;120	0.9	0.5	7	0.0872357
Matrix					
Incidence	1;10;20;30;40;50;60;70;80;90;100;110;120	0.9	0.9	6	0.0716356
Matrix					

We can clearly see that time decreases as recover probability increases. We can also see adjacency matrix is more efficient and scale-free graph type is more efficient.

Conclusion

To evaluate our implemented structures in terms of their time complexities for the different operations and different use case scenarios, we used Erdos-Renyi and Scale-free graph generator. In scenario 1 which is k-hop neighbourhoods, with both of Erdos-Renyi and Scale-free graph types, we can see that time increases as vertex degree and k incresases. We recommend to use adjacency matrix because it is the most efficient data structure in every aspect in terms of time complexity. In scenario 2 which is dynamic contact conditions, with both of Erdos-Renyi and Scale-free graph types, we can see that time increases as vertex and degree increases in adjacency list, but time increases as vertex increases and time decreases as degree increases in adjacency matrix and incidence matrix. We recommend to use adjacency matrix because it is the most efficient data structure in every aspect in terms of time complexity. In scenario 3 which is dynamic people tracing, with both of Erdos-Renyi and Scale-free graph types, we can see that time increases as vertex and degree increases. We recommend to use adjacency list because it is the most efficient data structure in every aspect in terms of time complexity. Lastly, in SIR model epidemic simulation, we can see that time increases as number of seed initialisation increases, infection probability increases, and recover probability decreases. We recommend to use adjacency matrix and scale-free graph type because these are the most efficient data structure in every aspect in terms of time complexity.