10 infra TI

Cloud Computing I

Conceitos de Virtualização. Host vs. Hypervisor. Consolidação e outras vantagens da virtualização. Impactos em um data center. Desafios da Virtualização.

Esta apresentação baseia-se em artigo publicado e apresentado pelo UPM na CAPSI`2008

Fatos sobre a Virtualização

- Uso por várias grandes empresas
- Virtualização de servidores é a mais empregada
- Cresce o interesse pela Virtualização de Desktops
- Redução de Custos é o principal motivador

Cresce o interesse por outros benefícios da Virtualização

Tipos de Virtualização

Servidores

- Outras aplicações de Virtualização (também empregadas em data centers mas fora do nosso escopo aqui)
 - Sistemas de Armazenamento (Storage)
 - Redes
 - Estações de Trabalho (Desktops)
 - Aplicações

MMV Hipervisor

Figura 1 – O Monitor de Máquina Virtual fornece uma camada de abstração suficientemente próxima do *hardware* para a execução de quaisquer programas escritos para o uso daquele *hardware*. O processo de consolidação permite, então, centralizar várias aplicações em um único *hardware*.

Virtualização x Emulação

Figura 2 – Diferentemente dos emuladores a virtualização permite que instruções não privilegiadas (2) sejam executadas diretamente (Instruction Set Architecture) provendo aos programas um desempenho mais próximo da execução no hardware nativo. A forma como o Monitor de Máquina Virtual permite a execução das instruções privelegiadas (1) define diferentes tipos de máquina virtuais. Na solução geral a máquina virtual oferece algum overhead na execução desse tipo de instruções.

Principais MMV x86

Tabela 1 – Principais MMV para processadores x86. A tabela sumariza os sistemas suportados (cpu/SO, Host/Guest) e o tipo de virtualização a partir das informações dos sites de origem.

		CPU				SO								
		Host			Guest		Host			Guest				
Nome	Fornecedor/Site (Documentação)	98x	PowerPC	IA-64	98×	PowerPC	IA-64	Windows	Linux	Outros	Windows	Linux	Outros	Tipo de Virtualização
Virtual PC	www.microsoft.com	Х	X		X			X		Х	Х	Х	Х	Completa
Virtual Server	www.microsoft.com	X			X			X			X			Completa
WMware WS	www.vmware.com	X			X			X	X		X	X	X	Completa
WMware Server	www.vmware.com	X			X			X	X		X	X	X	Completa
WMware ESX	www.vmware.com	X			×					None	X	X	X	Completa
Xen	www.cl.cam.ac.uk	X	X	X	×				X	X	X	X	X	Paravirtualização
XenServer	www.xensource.com	X			X					None	X	X		Paravirtualização
Bochs	bochs.sourceforge.net	X	X		×			X	X	X	X	X	X	Emulação
KVM	sourceforge.net/projects/kvm	X			X				X		X	X		Outro
QEMU	fabrice.bellard.free.fr/qemu	X	X	X	X	X			X	X	X	X	X	Completa
Virtual Iron	www.virtualiron.com	X			X					None	X	X	X	Outro

Host none = bare metal (execução direta sobre o hardware)

Benefícios do Uso da Virtualização

Tabela 2 – Problemas comuns dos serviços de TI encontram na virtualização uma alternativa.

Alternativa da virtualização	Problemas comuns dos serviços de TI
Otimização e centralização de recursos	Baixa utilização dos recursos de <i>hardware</i>
Isolamento de aplicações	Segurança
Flexibilidade na alocação de recursos	Disponibilidade e confiabilidade dos serviços
Simplificação da infraestrutura	Processos laboriosos de operação

Uso ineficiente dos recursos de hardware

→ Oportunidade de Redução de Custos

Uso de recursos sem a virtualização

Figura 3 – Uso médio de processadores e percentual de uso de discos externos em um ambiente comercial típico sem virtualização. A maior parte dos servidores avaliados (cerca 2000) e que têm uso constante apresentam um consumo médio próximo a 20% de cpu. O grande percentual de servidores com consumos inferiores a 10 e 5% indica servidores com uso pouco frequente. No gráfico de uso de disco (120TB de discos externos distribuídos por cerca de 200 servidores) os servidores encontram-se ordenados da mais alta para a mais baixa taxa de utilização. A área do gráfico representa o storage alocado (área pontilhada) e a área superior o espaço disponível. Cerca 50% das áreas encontram-se disponíveis (~60TB). O espaço não utilizado seria ainda maior se considerados os discos não alocados mas disponíveis nas controladoras de armazenamento externo (reservas técnicas de storage).

O Efeito Virtualização (IDC)

Virtualização SEM Processos

Figura 4 – A adoção da virtualização com foco unicamente na redução de máquinas fisicas (virtualização não planejada) apresenta um custo inicial menor que a criação de um processo permanente com vistas a virtualização. Este último requer um nvestimento inicial maior em processos, ferramentas e automação. Entretanto, a medida que o ambiente torna-se mais complexo, prolifera-se o número de imagens e alocações dinâmicas, torna-se mais difícil o controle do uso de recursos. Aumenta-se a necessidade de provisionamento de recursos ociosos e o tempo de alocação de recursos para as aplicações.

Como evitar essa deterioração?

Questões da Virtualização

Tabela 3 – Questões e riscos envolvidos no emprego da virtualização e possíveis abordagens e ações.

- Custos de Entrada na Tecnologia
- Ausência de Dados e Métricas para Lidar com Recursos Compartilhados
- Licenças de Software
- Gerenciamento
- Impactos Humanos
- Diferente Complexidade do ambiente
- Questões de Segurança
- Compartilhamento de Ambientes com Diferentes Níveis de Serviço
- Desempenho
- Definição de Hardware e Capacidade

Visão Tradicional

Onde queremos chegar?

Visão Tradicional vs. Infra Virtual

Virtual Data Center rint **Exchange** System System System **Exchange** File/Print **Operating System** Virtual Infrastructure **Operating System Operating System CPU** Pool Memory Pool **VPN CRM Storage** Operating System **Operating System Pool** Interconnect **Pool**

Virtual Data Center

Requer: Tecnologia + Processos

Gerenciamento Ciclo de Vida das Máquinas Virtuais

Downtime Planejado

Scheduler Distribuição de Recursos

Disaster Recovery

Virtual Data Center

De "Virtualization Changes Virtually Everything," Thomas Bittman, Gartner, Novembro 2007.

Real case (Data Center ~ 2000 servers)

Redução de 450 servidores

- Energia
- Espaço Físico
- Refresh de HW

	fore lization	With VMware Virtualization								
Total Servers	Eligible Servers	Consolidation Scenario and Platform	ESX Hosts	ESX CPU Utilization	ESX Memory Utilization	Average Memory Per VM	Racks Saved	Eligible Server Consolidation Ratio	Total Server Consolidation Ratio	
575	531	Conservative	25	35 %	80 %	1.50 G	19	95 %	88 %	
575	531	Aggressive	21	29 %	48 %	2.50 G	19	96 %	89 %	

Conservative

Make: VMware, Inc.

Model: 4 CPU Cores w/ 16 GB of RAM

CPU: 8

Memory: 32 GB

Aggressive

Make: VMware, Inc.

Model: 8 CPU Cores w/ 16 GB of RAM

CPU: 16

Memory: 64 GB

Where we are and next?

Cloud is the next!

Virtualização NE Cloud!

Leitura Recomendada

Popek G.J, Goldberg R.P.,

"Formal Requirements for Virtualizable Third-Generation Architectures", Communications of the ACM, Julho (1974), 412-421.

http://www.emc.com/collateral/software/white-papers/h7298-it-journey-private-cloud-wp.pdf