Arithmetique | CM: 5

Par Lorenzo

04 octobre 2024

1 Arithmétique avancée dans $\mathbb Z$

1.1 Bézout, Gauss

Proposition 1.1 (Bézout).

Soient $a, b \in \mathbb{Z}^*$. Il existe $u, v \in \mathbb{Z}$ tels que au + bv = PGCD(a, b)

Méthode 1.1.

Pour trouver une relation de Bezout, il suffit de remonter l'algorithme d'Euclide. Que l'on appelle **l'algorithme d'Euclide étendu**.

- 1. Faire l'algorithme d'Euclide
- 2. Réecrire le reste avec les autres valeurs

Lemme 1.1. Les sous-groupes de \mathbb{Z} sont les $n\mathbb{Z} := \{nk \mid k \in \mathbb{Z}\}$ avec $n \in \mathbb{Z}$

Démonstration 1.1.

- $n\mathbb{Z}$ sous groupe de $(\mathbb{Z}, +)$ (cf TD1)
- Soit H un sous groupe de $(\mathbb{Z}, +)$ alors $0 \in H$
 - Si $H = \{0\}$ alors $H = 0\mathbb{Z}$
 - Sinon il existe un x non nuls dans H, alors $(-x) \in H$ "A completer"

Corollaire 1.1. Soient $a, b \in \mathbb{Z}$ alors $a\mathbb{Z} + b\mathbb{Z} = \{au + bv | u, v \in \mathbb{Z}\} = \delta\mathbb{Z}$ où $\delta = \operatorname{PGCD}(a, b)$

Démonstration 1.2.

Soient $u, v \in \mathbb{Z}$ et c = au + bv. Comme δa et δb alors δc .

Réciproquement, soit $c \in \delta \mathbb{Z}$, il existe un c' dans \mathbb{Z} tel que $c = \delta c'$. Par Bézout, il existe $u', v' \in \mathbb{Z}$ tels que $au' + bv' = \delta$, en multipliant par c' on a $au'c' + bv'c' = \delta c' = c$. Il suffit alors de poser u = u'c' et v = v'c'.

On dit alors que le sous groupe **engendré par** a et b coïncide avec le sous groupe engendré par leurs PGCD.

1

Proposition 1.2 (Gauss).

Soient $n, a, b \in \mathbb{Z}^*$ tels que n|ab et PGCD(n, a) = 1. Alors n|b.

Démonstration 1.3.

Par Bezout, il existe u et v tels que nu + av = 1. Donc nub + abv = b. De ab = nk (pour un $k \in \mathbb{Z}$), on déduit n(ub + kv) = b. Donc n|b.

1.2 Unicité de la décomposition en facteurs premiers

Lemme 1.2.

1. Soient $a, b, c \in \mathbb{Z}^*$

$$\left. \begin{array}{l} \operatorname{PGCD}(c,a) = 1 \\ \operatorname{PGCD}(c,b) = 1 \end{array} \right\} \implies \operatorname{PGCD}(c,ab) = 1$$

- 2. Soient p un nombre premier et $a, b \in \mathbb{Z}^*$
 - (a) On a PGCD(a, p) = 1 ou p|a
 - (b) On a $[p|ab \implies (p|aoup|b)]$

Démonstration 1.4.

À faire

Proposition 1.3.

Une décomposition en facteurs premier est unique à l'ordre des facteurs près.

Démonstration 1.5.

À faire

1.3 Résolution des équations diophantiennes

Soient $a, b \in \mathbb{Z}^*$ et $c \in \mathbb{Z}$.

On cherche à résoudre l'équation suivante d'inconnues entères u, v

au + bv = c

Méthode 1.2.

1. Posant $\delta = PGCD(a, b)$, on $a = \delta a'$, $b = \delta b'$ et $c = \delta c'$ avec $a', b', c' \in \mathbb{Z}$ on a donc

$$a'u + b'v = c'$$

Soit d = PGCD(a', b') alors $d\delta$ est un diviseur commun à $a = \delta a'$ et $b = \delta b'$. Par maximalité du diviseur commun δ , on a d = 1. Donc a' et b' sont premier entre eur

- 2. Bézout nous fournit une solution à l'équation a'u + b'v = 1, qu'il suffit de multiplier par c' pour avoir une solution particulière (u_0, v_0) .
- 3. Soit $(u, v) \in \mathbb{Z}^2$ une solution. a'u + b'v = c' et $a'u_0 + b'v_0 = c'$ donc $a'(u u_0) + b'(v v_0) = 0$. On a PGCD(a', b') = 1 donc, d'après Gauss, $a'|(v v_0)$. Donc $\exists k \in \mathbb{Z}$ tel que $v v_0 = ka' \implies v = v_0 + ka'$ donc $u = u_0 b'k$.
- 4. L'ensemble des solutions est donc contenu dans $\{u_0 b'k, v_0 + a'k \mid k \in \mathbb{Z}\}$