Lec 42 幂级数 $\sum a_n x^n$

42.1 幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径和收敛区间

定理 42.1 (Abell 定理)

若幂级数在 x_0 ($\neq 0$) 处收敛,则在所有 $|x| < |x_0|$ 处收敛.如果幂级数在 x_1 处发散,则当 $|x| > |x_1|$ 时发散.

证明

1. 已知 $\sum_{n=0}^{\infty} a_n x_0^n$ 收敛, 则 $a_n x_0^n \to 0 \Rightarrow \exists M > 0, |a_n x_0^n| \leqslant M, \forall n \in \mathbb{N}.$ 而 $|a_n x^n| = 0$ $|a_n x_0^n| \left| \frac{x}{x_0} \right|^n \leqslant M \left| \frac{x}{x_0} \right|^n$, 由比较判别法, $\sum_{n=0}^{\infty} M \left| \frac{x}{x_0} \right|^n$ 收敛, 所以 $\sum_{n=0}^{\infty} a_n x^n$ 在 $|x| < |x_0|$

2. 反证法: 若 $\exists x_2, |x_2| > |x_1|, \sum_{n=0}^{\infty} a_n x_2^n$ 收敛,则由 1 知, $\sum_{n=0}^{\infty} a_n x_1^n$ 收敛,矛盾,所以 $\sum_{n=0}^{\infty} a_n x_1^n$ 在

 $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 0$ 时, $R = +\infty$, 此时, 幂级数在 $(-\infty, +\infty)$ 上收敛. 当 $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = +\infty$ 时,R=0,此时,幂级数只在x=0处收敛.

注 也可用 $\lim_{n\to\infty} \sqrt[n]{|a_n|}$ 来判断收敛半径,即 $R = \frac{1}{\lim_{n\to\infty} \sqrt[n]{|a_n|}}$.
当 $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$ 或 $\lim_{n\to\infty} \sqrt[n]{|a_n|} \in (0,+\infty)$ 时, $R = \frac{1}{\lim_{n\to\infty} |a_{n+1}/a_n|} > 0$,此时,幂级数在 (-R,R) 上收敛,称 (-R,R) 为收敛区间.

对于幂级数 $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ 而言, 若 $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 0$, 则从 $|x-x_0| < R$ 推出 $x \in (x_0 - x_0)$ $R, x_0 + R$) 为收敛区间

例 42.1 求下列幂级数的收敛半径,收敛区间,收敛域:

$$1. \sum_{n=0}^{\infty} \frac{x^n}{n(n+1)};$$

2.
$$\sum_{n=0}^{\infty} \frac{n^2}{3^n} (x+1)^{n-1};$$

3.
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{3n-2}}{3n-2}.$$

解

1.
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{n(n+1)}{(n+1)(n+2)} \right| = 1$$
, 所以收敛半径 $R = 1$, 收敛区间 $(-1,1)$. 而后判断端点处的收敛性, 当 $x = \pm 1$ 时, $|a_n(x)| \le \frac{1}{n(n+1)}$, 故收敛, 所以收敛域 $[-1,1]$.

2.
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{n^2/3^n}{(n+1)^2/3^{n+1}} \right| = \lim_{n\to\infty} \left| \frac{n^2}{3n^2+6n+3} \right| = \frac{1}{3}, \text{ 所以收敛半径 } R = 3, \text{ 解}$$
$$|x-1| < 3 \text{ 得收敛区间 } (-4,2). \text{ 而后判断端点处的收敛性质}, \sum_{n=1}^{\infty} fracn^2 3^n (-4+1)^n = \frac{1}{3} \sum_{n=1}^{\infty} (-1)^{n-1} n^2 \text{ 发散}; \sum_{n=1}^{\infty} fracn^2 3^n (2+1)^{n-1} = \frac{1}{3} \sum_{n=1}^{\infty} n^2, \text{ 发散}, \text{ 所以收敛域 } (-4,2).$$

3.
$$\lim_{n \to \infty} \left| \frac{a_{n+1}(x)}{a_n(x)} \right| = \lim_{n \to \infty} \left| \frac{x^3}{3n+1} \right| = |x|^3 = \rho(x) < 1 \Rightarrow |x| < 1$$
,所以收敛半径 $R = 1$,收敛区间 $(-1,1)$. 而后判断端点处的收敛性质,当 $x = 1$ 时, $\sum_{n=0}^{\infty} (-1)^n \frac{1}{3n-2}$ 由 Leibniz 判别法收敛,当 $x = -1$ 时, $\sum_{n=0}^{\infty} \frac{-1}{3n-2}$ 发散,所以收敛域 $(-1,1]$.

42.2 幂级数的 3 个分析性质

定理 42.2 (幂级数的和函数的连续性)

设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为 R, 则和函数 S(x) 在 (-R,R) 内连续.

证明 任给 0 < r < R, 则 $\sum_{n=0}^{\infty} |a_n r^n|$ 收敛, 而当 $|x| \le r$ 时, 有 $|a_n x^n| \le |a_n r^n|$. 由 Weierstrass 判别法, 幂级数在 [-r,r] 上一致收敛. 对任意的 $x_0 \in (-R,R)$, 一定在 r 使得 $x_0 \in [-r,r] \subset (-R,R)$, 由幂级数在 [-r,r] 上的一致性得和函数 S(x) 在 [-r,r] 上连续, 故 x_0 连续.

定理 42.3 (幂级数的积分性质)

幂级数的和函数 S(x) 在收敛区间 (-R,R) 中 Riemann 可积,并有

$$\int_0^x S(t) dt = \int_0^x \left(\sum_{n=0}^\infty a_n t^n \right) dt = \sum_{n=0}^\infty \frac{a_n}{n+1} x^{n+1}, x \in (-R, R).$$

并且积分后的幂级数的收敛半径仍为 R.

证明 对 $\forall [0,x] \subset (-R,R), \exists r_0 \in (0,R),$ 使得 $[0,x] \subset [0,r_0] \subset [0,R),$ 且 $\sum_{n=0}^{\infty} a_n x^n$ 在 [0,x] 中一 致收敛. 由 $a_n x^n$ 在 [0,x] 中的 Riemann 可积性, 可知和函数 S(x) 在 [0,x] 中 Riemann 可积. 由 $\lim_{n\to\infty} \left| \frac{a_{n+1}/n+2}{a_n/n+1} \right| = \lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|,$ 可知积分后的幂级数的收敛半径仍为 R.

定理 42.4 (幂级数的微分性质)

幂级数的和函数 S(x) 在收敛区间 (-R,R) 中可导, 并有

$$S'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1},$$

且求导后的幂级数的收敛半径仍为 R.

 \bigcirc

证明 先求 $\sum_{n=1}^{\infty} na_n x^{n-1}$ 的收敛半径. 任取 $x_0 \in (-R,R)$, 存在 $r:|x_0| < r < R$, 级数 $\sum_{n=1}^{\infty} |a_n r^n|$ 收敛, 因此 $|a_n r^n| < M$ 有界, 所以

$$|na_n x_0^{n-1}| = |a_n r^n| \left| \frac{n}{r} \right| \left| \frac{x_0}{r} \right|^{n-1} \leqslant M \left| \frac{n}{r} \right| \left| \frac{x_0}{r} \right|^{n-1}.$$

因为 $\sum \frac{n}{r} \left| \frac{x_0}{r} \right|^{n-1}$ 当 $|x_0| < r$ 时收敛, 所以幂级数 $\sum_{n=1}^{\infty} na_n x^{n-1}$ 在 x_0 绝对收敛. 也就是说 $\sum_{n=1}^{\infty} na_n x^{n-1}$ 的收敛坐径 R' > R

$$\sum_{n=1}^{\infty} n a_n x^{n-1} \text{ 的收敛半径 } R' > R.$$

如果 R' > R, 则存在 $x_0 : R' > x_0 > R$, 使得 $\sum_{n=1}^{\infty} |na_n x_0^{n-1}|$ 收敛. 因为

$$x_0|na_nx_0^{n-1}| = |na_nx_0^n| \ge |a_nx_0^n|,$$

所以 $\sum |a_n x_0^n|$ 收敛, 这是不可能的, 所以 R' = R.

作为幂级数, $\sum_{n=1}^{\infty} na_n x^{n-1}$ 在 (-R,R) 的任意闭子区间上一致收敛, 所以定理的结论在任意闭子区间上成立, 因此在 (-R,R) 内每一点成立.

42.3 例题

例 42.2 求下列幂级数的收敛半径与和函数 S(x):

- 1. $\sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n}$;
- 2. $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{2n+1}$;
- $3. \sum_{n=0}^{\infty} \frac{x^n}{n!}.$
- 4. $\sum_{n=0}^{\infty} nx^n$.

解

1.
$$\lim_{n\to\infty}\frac{1/n+1}{1/n}=1$$
,所以收敛半径 $R=1$,收敛区间 $(-1,1)$. $S'(x)=\sum_{n=1}^{\infty}(-1)^nx^{n-1}=\frac{1}{1+x}$,所以 $S(x)=\ln(1+x)$.

- 2. $\lim_{n\to\infty} \sqrt[n]{\frac{1}{2n+1}} = 1$, 所以收敛半径 R = 1, 收敛区间 (-1,1). $S'(x) = \sum_{n=1}^{\infty} (-1)^n x^{2n} = \frac{1}{1+x^2}$, 所以 $S(x) = \arctan x$.
- 3. $\lim_{n\to\infty} \frac{1/(n+1)!}{1/n!} = 0$,所以收敛半径 $R = +\infty$,收敛区间 $(-\infty, +\infty)$. $S'(x) = \sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!} = \sum_{n=0}^{\infty} \frac{x^n}{n!} = S(x), S(0) = 1$,解微分方程得 $S(x) = e^x$.
- 4. $\lim_{n\to\infty} \frac{n+1}{n} = 1$, 所以收敛半径 R = 1, 收敛区间 (-1,1). $\int_0^x \frac{S(x)}{x} \, \mathrm{d}x = \sum_{n=1}^\infty \int_0^x nt^{n-1} \, \mathrm{d}t = \frac{x}{x-1} \Rightarrow S(x) = \frac{x}{(x-1)^2}$.
- **作业** ex7.3:1(2)(4)(5)(6),3(1)(2)(3),4(1)(4).