

Syntactic and Dependency Parsing

Natalie Parde, Ph.D.

Department of Computer Science

University of Illinois at Chicago

CS 421: Natural Language Processing
Fall 2019

Many slides adapted from Jurafsky and Martin (https://web.stanford.edu/~jurafsky/slp3/), Ben-Gurion University's NLP course (https://www.cs.bgu.ac.il/~michaluz/seminar/CKY1.pdf).

What is syntactic parsing?

The process of automatically recognizing sentences and assigning syntactic (grammatical) structure to them.

Why is syntactic parsing useful?

- Lots of reasons!
 - Grammar checking
 - Sentences that can't be parsed may be grammatically incorrect (or at least hard to read)
 - Semantic analysis
 - Downstream applications
 - Question answering
 - Information extraction

What courses were taught by UIC CS assistant professors in 2019?

Subject = courses ...don't return a list of UIC CS assistant professors!

Parsing algorithms are one of the core tools for analyzing natural language.

- Parsing algorithms automatically describe the syntactic structure of sentences in terms of context-free grammars (such as those discussed last week)
- This can be viewed as a search problem:
 - Given the set of all possible parse trees, find the correct parse tree for this sentence.

Recognition vs. Parsing

- Recognition: Deciding whether a sentence belongs to the language specified by a formal grammar.
- Parsing: Producing a parse tree for the sentence based on that formal grammar.
- Both tasks are necessary for generating correct syntactic parses!
 - Failure to accurately recognize whether a sentence can be parsed will lead to misparses, which will in turn lead to additional errors in downstream applications.
- Parsing is more "difficult" (greater time complexity) than recognition

Remember, language is ambiguous!

Input sentences may have many possible parses

There are many ways to generate parse trees.

Top-Down Parsing:

- Goal-driven
- Builds parse tree from the start symbol down to the terminal nodes

Bottom-Up Parsing:

- Data-driven
- Builds parse tree from the terminal nodes up to the start symbol

Naïve approach: Enumerate all possible solutions Dynamic programming approach: Save partial solutions in a table, and use this information to reduce search time

These approaches can be implemented naïvely, or using more advanced techniques.

Top-Down Parsing

- Assume that the input can be derived by the designated start symbol S
- Find the tops of all trees that can start with S
 - Look for all production rules with S on the left-hand side
- Find the tops of all trees that can start with those constituents
- (Repeat recursively until POS categories at bottom of tree are reached)
- Trees whose leaves fail to match all words in the input sentence can be rejected, leaving behind trees that represent successful parses

Input Sentence:

Book that flight.

Grammar:

 $S \rightarrow NP VP$

 $S \rightarrow Aux NP VP$

 $S \rightarrow VP$

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal

Nominal → Noun

Nominal → Nominal Noun

Nominal → Nominal PP

VP → Verb

VP → Verb NP

VP → Verb NP PP

VP → Verb PP

 $VP \rightarrow VP PP$

PP → Preposition NP

Lexicon:

Det \rightarrow that | this | a

Noun → book | flight | meal | money

Verb → book | include | prefer

Pronoun \rightarrow I | she | me

Proper-Noun → Houston | NWA

 $Aux \rightarrow does$

Preposition → from | to | on | near | through

Book that flight.

 $S \rightarrow NP VP$

 $S \rightarrow Aux NP VP$

 $S \rightarrow VP$

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal

Nominal → Noun

Nominal → Nominal Noun

Nominal → Nominal PP

VP → Verb

VP → Verb NP

VP → Verb NP PP

VP → Verb PP

 $VP \rightarrow VP PP$

PP → Preposition NP

S S S

Book that flight.

 $S \rightarrow NP VP$

 $S \rightarrow Aux NP VP$

 $S \rightarrow VP$

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal

Nominal → Noun

Nominal → Nominal Noun

Nominal → Nominal PP

VP → Verb

VP → Verb NP

VP → Verb NP PP

VP → Verb PP

 $VP \rightarrow VP PP$

Book that flight.

 $S \rightarrow NP VP$

 $S \rightarrow Aux NP VP$

 $S \rightarrow VP$

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal

Nominal → Noun

Nominal → Nominal Noun

Nominal → Nominal PP

VP → Verb

VP → Verb NP

VP → Verb NP PP

VP → Verb PP

 $VP \rightarrow VP PP$

PP → Preposition NP

...and many more!

Book that flight.

 $S \rightarrow NP VP$

 $S \rightarrow Aux NP VP$

 $S \rightarrow VP$

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal

Nominal → Noun

Nominal → Nominal Noun

Nominal → Nominal PP

VP → Verb

VP → Verb NP

VP → Verb NP PP

VP → Verb PP

 $VP \rightarrow VP PP$

Book that flight.

 $S \rightarrow NP VP$

 $S \rightarrow Aux NP VP$

 $S \rightarrow VP$

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal

Nominal → Noun

Nominal → Nominal Noun

Nominal → Nominal PP

VP → Verb

VP → Verb NP

VP → Verb NP PP

VP → Verb PP

 $VP \rightarrow VP PP$

PP → Preposition NP

Det → that | this | a

Noun → book | flight | meal | money

Verb → book | include | prefer

Pronoun → I | she | me

Proper-Noun → Houston | NWA

Aux → does

Preposition → from | to | on | near | through

...and many, many more not shown!

Noun

Book that flight.

 $S \rightarrow NP VP$

 $S \rightarrow Aux NP VP$

 $S \rightarrow VP$

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal

Nominal → Noun

Nominal → Nominal Noun

Nominal → Nominal PP

VP → Verb

VP → Verb NP

VP → Verb NP PP

VP → Verb PP

 $VP \rightarrow VP PP$

PP → Preposition NP

 $Det \rightarrow that \mid this \mid a$

Noun → book | flight | meal | money

Verb → book | include | prefer

Pronoun \rightarrow I | she | me

Proper-Noun → Houston | NWA

 $Aux \rightarrow does$

Preposition → from | to | on | near | through

...and many, many more not shown!

Book that flight.

 $S \rightarrow NP VP$

 $S \rightarrow Aux NP VP$

 $S \rightarrow VP$

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal

Nominal → Noun

Nominal → Nominal Noun

Nominal → Nominal PP

VP → Verb

VP → Verb NP

VP → Verb NP PP

VP → Verb PP

 $VP \rightarrow VP PP$

PP → Preposition NP

Det → that | this | a

Noun → book | flight | meal | money

Verb → book | include | prefer

Pronoun → I | she | me

Proper-Noun → Houston | NWA

Aux → does

Preposition → from | to | on | near | through

...and many, many more not shown!

Book that flight.

 $S \rightarrow NP VP$

 $S \rightarrow Aux NP VP$

 $S \rightarrow VP$

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal

Nominal → Noun

Nominal → Nominal Noun

Nominal → Nominal PP

VP → Verb

VP → Verb NP

VP → Verb NP PP

VP → Verb PP

 $VP \rightarrow VP PP$

PP → Preposition NP

...and many, many more not shown!

Preposition → from | to | on | near | through

Verb → book | include | prefer

Proper-Noun → Houston | NWA

Pronoun \rightarrow I | she | me

 $Aux \rightarrow does$

Book that flight.

 $S \rightarrow NP VP$

 $S \rightarrow Aux NP VP$

 $S \rightarrow VP$

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal

Nominal → Noun

Nominal → Nominal Noun

Nominal → Nominal PP

VP → Verb

VP → Verb NP

VP → Verb NP PP

VP → Verb PP

 $VP \rightarrow VP PP$

PP → Preposition NP

Det → that | this | a Noun → book | flight | meal | money Verb → book | include | prefer Pronoun → I | she | me Proper-Noun → Houston | NWA Aux → does Preposition → from | to | on | near | through

...and many, many more not shown!

Book that flight.

 $S \rightarrow NP VP$

 $S \rightarrow Aux NP VP$

 $S \rightarrow VP$

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal

Nominal → Noun

Nominal → Nominal Noun

Nominal → Nominal PP

VP → Verb

VP → Verb NP

VP → Verb NP PP

VP → Verb PP

 $VP \rightarrow VP PP$

PP → Preposition NP

...and many, many more not shown!

20

Preposition → from | to | on | near | through

Verb → **book** | include | prefer

Proper-Noun → Houston | NWA

Pronoun \rightarrow I | she | me

 $Aux \rightarrow does$

Bottom-Up Parsing

- Earliest known parsing algorithm!
- Starts with the words in the input sentence, and tries to build trees from those words up by applying rules from the grammar one at a time
 - Looks for places in the in-progress parse where the righthand side of a production rule might fit
- Success = parser builds a tree rooted in the start symbol S that covers all of the input words

Input Sentence:

Book that flight.

Grammar:

 $S \rightarrow NP VP$

 $S \rightarrow Aux NP VP$

 $S \rightarrow VP$

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal

Nominal → Noun

Nominal → Nominal Noun

Nominal → Nominal PP

VP → Verb

VP → Verb NP

VP → Verb NP PP

VP → Verb PP

 $VP \rightarrow VP PP$

PP → Preposition NP

Lexicon:

Det \rightarrow that | this | a

Noun → book | flight | meal | money

Verb → book | include | prefer

Pronoun \rightarrow I | she | me

Proper-Noun → Houston | NWA

 $Aux \rightarrow does$

Preposition → from | to | on | near | through

Book that flight.

Det → that | this | a Noun → book | flight | meal | money Verb → book | include | prefer Pronoun → I | she | me Proper-Noun → Houston | NWA Aux → does Preposition → from | to | on | near | through

Book that flight.

 $S \rightarrow NP VP$

 $S \rightarrow Aux NP VP$

 $S \rightarrow VP$

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal

Nominal → Noun

Nominal → Nominal Noun

Nominal → Nominal PP

VP → Verb

VP → Verb NP

VP → Verb NP PP

VP → Verb PP

 $VP \rightarrow VP PP$

Book that flight.

 $S \rightarrow NP VP$

 $S \rightarrow Aux NP VP$

 $S \rightarrow VP$

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal

Nominal → Noun

Nominal → Nominal Noun

Nominal → Nominal PP

VP → Verb

VP → Verb NP

VP → Verb NP PP

VP → Verb PP

 $VP \rightarrow VP PP$

Book that flight.

 $S \rightarrow NP VP$

 $S \rightarrow Aux NP VP$

 $S \rightarrow VP$

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal

Nominal → Noun

Nominal → Nominal Noun

Nominal → Nominal PP

VP → Verb

VP → Verb NP

VP → Verb NP PP

VP → Verb PP

 $VP \rightarrow VP PP$

Book that flight.

 $S \rightarrow NP VP$

 $S \rightarrow Aux NP VP$

 $\mathsf{S} \to \mathsf{VP}$

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal

Nominal → Noun

Nominal → Nominal Noun

Nominal → Nominal PP

VP → Verb

VP → Verb NP

VP → Verb NP PP

VP → Verb PP

 $VP \rightarrow VP PP$

Book that flight.

 $S \rightarrow NP VP$

 $S \rightarrow Aux NP VP$

 $S \rightarrow VP$

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal

Nominal → Noun

Nominal → Nominal Noun

Nominal → Nominal PP

VP → Verb

VP → Verb NP

VP → Verb NP PP

VP → Verb PP

 $VP \rightarrow VP PP$

Top-Down vs. Bottom-Up Parsing

Top-Down Parsing

- Pros:
 - Never wastes time exploring trees that cannot result in a sentence
 - Never explores subtrees that cannot fit into a larger valid (i.e., results in a sentence) tree
- Cons:
 - Spends considerable effort on trees that are not consistent with the input

Bottom-Up Parsing

- Pros:
 - Never suggests trees that are inconsistent with the input
- Cons:
 - Generates many trees and subtrees that cannot result in a valid sentence (according to production rules specified by the grammar)

More about ambiguity....

- Structural Ambiguity: Occurs when a grammar allows for more than one possible parse for a given sentence
- Two Forms:
 - Attachment Ambiguity: Occurs when a constituent can be attached to a parse tree at more than one place
 - I eat spaghetti with chopsticks.
 - Coordination Ambiguity: Occurs when different sets of phrases can be conjoined by a conjunction
 - I grabbed a muffin from the table marked "nut-free scones and muffins," hoping I'd parsed the sign correctly.

Rememberlocal ambiguity can also exist.

- Det → that | this | a
- Noun → book | flight | meal | money
- Verb → book | include | prefer
- Pronoun \rightarrow I | she | me
- Proper-Noun → Houston | NWA
- Aux \rightarrow does
- Preposition → from | to | on | near | through

All of this ambiguity can lead to really complex search spaces!

- Backtracking approaches expand the search space incrementally, systematically exploring one state at a time
- When they arrive at trees inconsistent with the input, they return to an unexplored alternative
- However, in doing so they tend to discard valid subtrees ...this means that time-consuming work needs to be repeated
- More efficient approach?
 - Dynamic programming

Dynamic Programming Parsing Methods

- Tables store subtrees for constituents as they are discovered
- Solves:
 - Re-parsing problem
 - (Partially) ambiguity problem, since the table implicitly stores all possible parses

Dynamic Programming Parsing Methods

- Most widely used methods:
 - Cocke-Kasami-Younger (CKY) algorithm
 - Earley algorithm
 - Chart parsing

CKY Algorithm

- One of the earliest recognition and parsing algorithms
- Bottom-up dynamic programming
- Standard version can only recognize CFGs in Chomsky Normal Form (CNF)

Chomsky Normal Form

- Grammars are restricted to production rules of the form:
 - A → B C
 - $A \rightarrow W$
- This means that the righthand side of each rule must expand to either two nonterminals or a single terminal
- Any CFG can be converted to a corresponding CNF grammar that accepts exactly the same set of strings as the original grammar!

How does this conversion work?

- Three situations we need to address:
 - 1. Production rules that mix terminals and non-terminals on the righthand side
 - Production rules that have a single non-terminal on the righthand side (unit productions)
 - 3. Production rules that have more than two non-terminals on the righthand side
- Situation #1: Introduce a dummy non-terminal that covers only the original terminal
 - INF-VP → to VP could be replaced with INF-VP → TO VP and TO → to
- Situation #2: Replace the non-terminals with the non-unit production rules to which they
 eventually lead
 - A → B and B → w could be replaced with A → w
- Situation #3: Introduce new non-terminals that spread longer sequences over multiple rules
 - A → B C D could be replaced with A → B X1 and X1 → C D

CNF Conversion: Example

- $S \rightarrow NP VP$
- S → Aux NP VP
- $S \rightarrow VP$
- NP → Pronoun
- NP \rightarrow Proper-Noun
- NP → Det Nominal
- Nominal → Noun
- Nominal → Nominal Noun
- Nominal → Nominal PP
- $VP \rightarrow Verb$
- VP → Verb NP
- VP → Verb NP PP
- VP → Verb PP
- $VP \rightarrow VP PP$
- PP → Preposition NP

Original	CNF
$S \rightarrow NP VP$	$S \rightarrow NP VP$
$S \rightarrow Aux NP VP$	$S \rightarrow X1 VP$
	$X1 \rightarrow Aux NP$
$S \to VP$	$S \rightarrow book \mid include \mid prefer$
	$S \rightarrow Verb NP$
	$S \rightarrow X2 PP$
	$X2 \rightarrow Verb NP$
	$S \rightarrow Verb PP$
	$S \rightarrow VP PP$

CKY Algorithm

- With the grammar in CNF, each non-terminal node above the POS level of the parse tree will have exactly two children
- Thus, a two-dimensional matrix can be used to encode the tree structure
- For sentence of length n, work with upper-triangular portion of (n+1) x
 (n+1) matrix
- Each cell [i,j] contains a set of non-terminals that represent all constituents spanning positions i through j of the input
 - Cell that represents the entire input resides in position [0,*n*]

CKY Algorithm

- Non-terminal entries: For each constituent [*i,j*], there is a position, *k*, where the constituent can be split into two parts such that *i* < *k* < *j*
 - [i,k] must lie to the left of [i,j] somewhere along row i, and [k,j] must lie beneath it along column j
- To fill in the parse table, we proceed in a bottom-up fashion so when we fill a cell [i,j], the cells containing the parts that could contribute to this entry have already been filled

Det → that | this | a | the

Noun → book | flight | meal | money

Verb → book | include | prefer

Pronoun → I | she | me

Proper-Noun → Chicago | Dallas

Aux → does

Preposition → from | to | on | near | through

 $S \rightarrow NP \ VP$ $S \rightarrow VP \rightarrow Verb \rightarrow book \mid include \mid prefer$ $NP \rightarrow Pronoun \rightarrow I \mid she \mid me$ $NP \rightarrow Proper-Noun \rightarrow Chicago \mid Dallas$ $NP \rightarrow Det \ Nominal$ $Nominal \rightarrow Noun \rightarrow book \mid flight \mid meal \mid money$ $Nominal \rightarrow Nominal \ Noun$ $Nominal \rightarrow Nominal \ PP$ $VP \rightarrow Verb \rightarrow book \mid include \mid prefer$ $VP \rightarrow Verb \ NP$ $VP \rightarrow Verb \ PP$ $VP \rightarrow VP \ PP$

PP → Preposition NP

Det → that | this | a | the

Noun → book | flight | meal | money

Verb → book | include | prefer

Pronoun → I | she | me

Proper-Noun → Chicago | Dallas

Aux → does

Preposition → from | to | on | near | through

 $S \rightarrow NP \ VP$ $S \rightarrow VP \rightarrow Verb \rightarrow book \ | include \ | prefer$ $NP \rightarrow Pronoun \rightarrow I \ | she \ | me$ $NP \rightarrow Proper-Noun \rightarrow Chicago \ | Dallas$ $NP \rightarrow Det \ Nominal$ $Nominal \rightarrow Noun \rightarrow book \ | flight \ | meal \ | money$ $Nominal \rightarrow Nominal \ Noun$ $Nominal \rightarrow Nominal \ PP$ $VP \rightarrow Verb \rightarrow book \ | include \ | prefer$ $VP \rightarrow Verb \ NP$ $VP \rightarrow Verb \ PP$ $VP \rightarrow VP \ PP$ $VP \rightarrow VP \ PP$

Det → that | this | a | the

Noun → book | flight | meal | money

Verb → book | include | prefer

Pronoun → I | she | me

Proper-Noun → Chicago | Dallas

Aux → does

Preposition → from | to | on | near | through

Det → that | this | a | the

Noun → book | flight | meal | money

Verb → book | include | prefer

Pronoun → I | she | me

Proper-Noun → Chicago | Dallas

Aux → does

Preposition → from | to | on | near | through

Det → that | this | a | the

Noun → book | flight | meal | money

Verb → book | include | prefer

Pronoun → I | she | me

Proper-Noun → Chicago | Dallas

Aux → does

Preposition → from | to | on | near | through

 $S \rightarrow NP \ VP$ $S \rightarrow VP \rightarrow Verb \rightarrow book \mid include \mid prefer$ $NP \rightarrow Pronoun \rightarrow I \mid she \mid me$ $NP \rightarrow Proper-Noun \rightarrow Chicago \mid Dallas$ $NP \rightarrow Det \ Nominal$ $Nominal \rightarrow Noun \rightarrow book \mid flight \mid meal \mid money$ $Nominal \rightarrow Nominal \ Noun$ $Nominal \rightarrow Nominal \ PP$ $VP \rightarrow Verb \rightarrow book \mid include \mid prefer$ $VP \rightarrow Verb \ NP$ $VP \rightarrow Verb \ PP$ $VP \rightarrow VP \ PP$ $VP \rightarrow VP \ PP$

Det → that | this | a | the

Noun → book | flight | meal | money

Verb → book | include | prefer

Pronoun → I | she | me

Proper-Noun → Chicago | Dallas

Aux → does

Preposition → from | to | on | near | through

 $S \rightarrow NP \ VP$ $S \rightarrow VP \rightarrow Verb \rightarrow book \mid include \mid prefer$ $NP \rightarrow Pronoun \rightarrow I \mid she \mid me$ $NP \rightarrow Proper-Noun \rightarrow Chicago \mid Dallas$ $NP \rightarrow Det \ Nominal$ $Nominal \rightarrow Noun \rightarrow book \mid flight \mid meal \mid money$ $Nominal \rightarrow Nominal \ Noun$ $Nominal \rightarrow Nominal \ PP$ $VP \rightarrow Verb \rightarrow book \mid include \mid prefer$ $VP \rightarrow Verb \ NP$ $VP \rightarrow Verb \ PP$ $VP \rightarrow VP \ PP$ $VP \rightarrow VP \ PP$

Det → that | this | a | the

Noun → book | flight | meal | money

Verb → book | include | prefer

Pronoun → I | she | me

Proper-Noun → Chicago | Dallas

Aux → does

Preposition → from | to | on | near | through

Det → that | this | a | the Noun → book | flight | meal | money Verb → book | include | prefer Pronoun → I | she | me Proper-Noun → Chicago | Dallas Aux → does Preposition → from | to | on | near | through

 $S \rightarrow NP \ VP$ $S \rightarrow VP \rightarrow Verb \rightarrow book \mid include \mid prefer$ $NP \rightarrow Pronoun \rightarrow I \mid she \mid me$ $NP \rightarrow Proper-Noun \rightarrow Chicago \mid Dallas$ $NP \rightarrow Det \ Nominal$ $Nominal \rightarrow Noun \rightarrow book \mid flight \mid meal \mid money$ $Nominal \rightarrow Nominal \ Noun$ $Nominal \rightarrow Nominal \ PP$ $VP \rightarrow Verb \rightarrow book \mid include \mid prefer$ $VP \rightarrow Verb \ NP$ $VP \rightarrow Verb \ PP$ $VP \rightarrow VP \ PP$

Det → that | this | a | the

Noun → book | flight | meal | money

Verb → book | include | prefer

Pronoun → I | she | me

Proper-Noun → Chicago | Dallas

Aux → does

Preposition → from | to | on | near | through

 $S \rightarrow NP \ VP$ $S \rightarrow VP \rightarrow Verb \rightarrow book \mid include \mid prefer$ $NP \rightarrow Pronoun \rightarrow I \mid she \mid me$ $NP \rightarrow Proper-Noun \rightarrow \textbf{Chicago} \mid Dallas$ $NP \rightarrow Det \ Nominal$ $Nominal \rightarrow Noun \rightarrow book \mid flight \mid meal \mid money$ $Nominal \rightarrow Nominal \ Noun$ $Nominal \rightarrow Nominal \ PP$ $VP \rightarrow Verb \rightarrow book \mid include \mid prefer$ $VP \rightarrow Verb \ NP$ $VP \rightarrow Verb \ PP$ $VP \rightarrow VP \ PP$ $VP \rightarrow VP \ PP$ $VP \rightarrow VP \ PP$

Det → that | this | a | the

Noun → book | flight | meal | money

Verb → book | include | prefer

Pronoun → I | she | me

Proper-Noun → Chicago | Dallas

Aux → does

Preposition → from | to | on | near | through

Det → that | this | a | the

Noun → book | flight | meal | money

Verb → book | include | prefer

Pronoun → I | she | me

Proper-Noun → Chicago | Dallas

Aux → does

Preposition → from | to | on | near | through

Det → that | this | a | the

Noun → book | flight | meal | money

Verb → book | include | prefer

Pronoun → I | she | me

Proper-Noun → Chicago | Dallas

Aux → does

Preposition → from | to | on | near | through

 $S \rightarrow NP \ VP$ $S \rightarrow VP \rightarrow Verb \rightarrow book \mid include \mid prefer$ $NP \rightarrow Pronoun \rightarrow I \mid she \mid me$ $NP \rightarrow Proper-Noun \rightarrow Chicago \mid Dallas$ $NP \rightarrow \textbf{Det Nominal}$ $Nominal \rightarrow Noun \rightarrow book \mid flight \mid meal \mid money$ $Nominal \rightarrow Nominal \ Noun$ $Nominal \rightarrow Nominal \ PP$ $VP \rightarrow Verb \rightarrow book \mid include \mid prefer$ $VP \rightarrow Verb \ NP$ $VP \rightarrow Verb \ PP$ $VP \rightarrow VP \ PP$ $VP \rightarrow VP \ PP$ $VP \rightarrow VP \ PP$

Det → that | this | a | the

Noun → book | flight | meal | money

Verb → book | include | prefer

Pronoun → I | she | me

Proper-Noun → Chicago | Dallas

Aux → does

Preposition → from | to | on | near | through

Det → that | this | a | the

Noun → book | flight | meal | money

Verb → book | include | prefer

Pronoun → I | she | me

Proper-Noun → Chicago | Dallas

Aux → does

Preposition → from | to | on | near | through

Det → that | this | a | the

Noun → book | flight | meal | money

Verb → book | include | prefer

Pronoun → I | she | me

Proper-Noun → Chicago | Dallas

Aux → does

Preposition → from | to | on | near | through

Det → that | this | a | the

Noun → book | flight | meal | money

Verb → book | include | prefer

Pronoun → I | she | me

Proper-Noun → Chicago | Dallas

Aux → does

Preposition → from | to | on | near | through

Det → that | this | a | the

Noun → book | flight | meal | money

Verb → book | include | prefer

Pronoun → I | she | me

Proper-Noun → Chicago | Dallas

Aux → does

Preposition → from | to | on | near | through

 $S \rightarrow NP \ VP$ $S \rightarrow VP \rightarrow Verb \rightarrow book \mid include \mid prefer$ $NP \rightarrow Pronoun \rightarrow I \mid she \mid me$ $NP \rightarrow Proper-Noun \rightarrow Chicago \mid Dallas$ $NP \rightarrow Det \ Nominal$ $Nominal \rightarrow Noun \rightarrow book \mid flight \mid meal \mid money$ $Nominal \rightarrow Nominal \ Noun$ $Nominal \rightarrow Nominal \ PP$ $VP \rightarrow Verb \rightarrow book \mid include \mid prefer$ $VP \rightarrow Verb \ NP$ $VP \rightarrow Verb \ PP$ $VP \rightarrow VP \ PP$ $VP \rightarrow VP \ PP$ $VP \rightarrow VP \ PP$ $VP \rightarrow VP \ PP$

Det → that | this | a | the

Noun → book | flight | meal | money

Verb → book | include | prefer

Pronoun → I | she | me

Proper-Noun → Chicago | Dallas

Aux → does

Preposition → from | to | on | near | through

 $S \rightarrow NP \ VP$ $S \rightarrow VP \rightarrow Verb \rightarrow book \mid include \mid prefer$ $NP \rightarrow Pronoun \rightarrow I \mid she \mid me$ $NP \rightarrow Proper-Noun \rightarrow Chicago \mid Dallas$ $NP \rightarrow Det \ Nominal$ $Nominal \rightarrow Noun \rightarrow book \mid flight \mid meal \mid money$ $Nominal \rightarrow Nominal \ Noun$ $Nominal \rightarrow Nominal \ PP$ $VP \rightarrow Verb \rightarrow book \mid include \mid prefer$ $VP \rightarrow Verb \ NP$ $VP \rightarrow Verb \ PP$ $VP \rightarrow VP \ PP$ $VP \rightarrow VP \ PP$ $VP \rightarrow VP \ PP$ $VP \rightarrow VP \ PP$

Det → that | this | a | the

Noun → book | flight | meal | money

Verb → book | include | prefer

Pronoun → I | she | me

Proper-Noun → Chicago | Dallas

Aux → does

Preposition → from | to | on | near | through

 $S \rightarrow NP \ VP$ $S \rightarrow VP \rightarrow Verb \rightarrow book \ | include \ | prefer$ $NP \rightarrow Pronoun \rightarrow I \ | she \ | me$ $NP \rightarrow Proper-Noun \rightarrow Chicago \ | Dallas$ $NP \rightarrow Det \ Nominal$ $Nominal \rightarrow Noun \rightarrow book \ | flight \ | meal \ | money$ $Nominal \rightarrow Nominal \ Noun$ $Nominal \rightarrow Nominal \ PP$ $VP \rightarrow Verb \rightarrow book \ | include \ | prefer$ $VP \rightarrow Verb \ NP$ $VP \rightarrow Verb \ PP$

 $VP \rightarrow VP PP$

PP → Preposition NP

Det → that | this | a | the

Noun → book | flight | meal | money

Verb → book | include | prefer

Pronoun → I | she | me

Proper-Noun → Chicago | Dallas

Aux → does

Preposition → from | to | on | near | through

	Book	the	flight	through	Chicago
1	Noun, Verb, S, Nominal, VP		S, VP		
2		Det	NP		
3			Noun, Nominal		Nominal
4				Prep.	PP
5					PropN, NP

Det → that | this | a | the

Noun → book | flight | meal | money

Verb → book | include | prefer

Pronoun → I | she | me

Proper-Noun → Chicago | Dallas

Aux → does

Preposition → from | to | on | near | through

S oup NP VP S oup VP oup Verb oup book | include | prefer NP oup Pronoun oup I | she | me NP oup Proper-Noun oup Chicago | Dallas NP oup Det Nominal Nominal oup Noun oup book | flight | meal | money Nominal oup Nominal Noun Nominal oup Nominal PP VP oup Verb oup book | include | prefer VP oup Verb NP VP oup Verb PP VP oup VP PP

Det → that | this | a | the

Noun → book | flight | meal | money

Verb → book | include | prefer

Pronoun → I | she | me

Proper-Noun → Chicago | Dallas

Aux → does

Preposition → from | to | on | near | through

S o NP VP $S o VP o Verb o book \mid include \mid prefer$ $NP o Pronoun o I \mid she \mid me$ $NP o Proper-Noun o Chicago \mid Dallas$ NP o Det Nominal $Nominal o Noun o book \mid flight \mid meal \mid money$ Nominal o Nominal Noun Nominal o Nominal PP $VP o Verb o book \mid include \mid prefer$ VP o Verb NP VP o Verb PP VP o VP o VP PP VP o VP o VP PP VP o VP o VP PPVP o VP o VP PP

Det → that | this | a | the

Noun → book | flight | meal | money

Verb → book | include | prefer

Pronoun → I | she | me

Proper-Noun → Chicago | Dallas

Aux → does

Preposition → from | to | on | near | through

Det → that | this | a | the

Noun → book | flight | meal | money

Verb → book | include | prefer

Pronoun → I | she | me

Proper-Noun → Chicago | Dallas

Aux → does

Preposition → from | to | on | near | through

 $S \rightarrow NP \ VP$ $S \rightarrow VP \rightarrow Verb \rightarrow book \ | include \ | prefer$ $NP \rightarrow Pronoun \rightarrow I \ | she \ | me$ $NP \rightarrow Proper-Noun \rightarrow Chicago \ | Dallas$ $NP \rightarrow Det \ Nominal$ $Nominal \rightarrow Noun \rightarrow book \ | flight \ | meal \ | money$ $Nominal \rightarrow Nominal \ Noun$ $Nominal \rightarrow Nominal \ PP$ $VP \rightarrow Verb \rightarrow book \ | include \ | prefer$ $VP \rightarrow Verb \ NP$ $VP \rightarrow Verb \ PP$ $VP \rightarrow VP \ PP$ $VP \rightarrow VP \ PP$ $VP \rightarrow VP \ PP$

Det → that | this | a | the

Noun → book | flight | meal | money

Verb → book | include | prefer

Pronoun → I | she | me

Proper-Noun → Chicago | Dallas

Aux → does

Preposition → from | to | on | near | through

 $S \rightarrow NP \ VP$ $S \rightarrow VP \rightarrow Verb \rightarrow book | include | prefer$ $NP \rightarrow Pronoun \rightarrow I | she | me$ $NP \rightarrow Proper-Noun \rightarrow Chicago | Dallas$ $NP \rightarrow Det \ Nominal$ $Nominal \rightarrow Noun \rightarrow book | flight | meal | money$ $Nominal \rightarrow Nominal \ Noun$ $Nominal \rightarrow Nominal \ PP$ $VP \rightarrow Verb \rightarrow book | include | prefer$ $VP \rightarrow Verb \ NP$ $VP \rightarrow Verb \ PP$ $VP \rightarrow Verb \ PP$ $VP \rightarrow VP \ PP$ $VP \rightarrow VP \ PP$ $VP \rightarrow VP \ PP$

CKY Algorithm

- The example we just saw functions as a recognizer ...for it to succeed (i.e., find a valid sentence according to this grammar), is simply needs to find an S in cell [0,n]
- To return all possible parses, we need to make two changes to the algorithm:
 - Pair each non-terminal with pointers to the table entries from which it was derived
 - Permit multiple versions of the same non-terminal to be entered into the table
- Then, we can choose an S from cell [0,n] and recursively retrieve its component constituents from the table

Det → that | this | a | the

Noun → book | flight | meal | money

Verb → book | include | prefer

Pronoun → I | she | me

Proper-Noun → Chicago | Dallas

Aux → does

Preposition → from | to | on | near | through

 $S \rightarrow NP \ VP$ $S \rightarrow VP \rightarrow Verb \rightarrow book \mid include \mid prefer$ $NP \rightarrow Pronoun \rightarrow I \mid she \mid me$ $NP \rightarrow Proper-Noun \rightarrow Chicago \mid Dallas$ $NP \rightarrow Det \ Nominal$ $Nominal \rightarrow Noun \rightarrow book \mid flight \mid meal \mid money$ $Nominal \rightarrow Nominal \ Noun$ $Nominal \rightarrow Nominal \ PP$ $VP \rightarrow Verb \rightarrow book \mid include \mid prefer$ $VP \rightarrow Verb \ NP$ $VP \rightarrow Verb \ PP$ $VP \rightarrow VP \ PP$ $VP \rightarrow VP \ PP$

Time Complexity: O(n³)

Space Complexity: O(n²)

How can we improve upon CKY?

- Fill table in a single sweep over the input words, using a top-down approach
- Table is length n+1, where n is equivalent to the number of words
- Table entries contain three types of information:
 - A subtree corresponding to a single grammar rule
 - Information about the progress made in completing the subtree
 - The position of the subtree with respect to the input
- This is called Earley parsing

In Earley parsing, table entries are known as states.

- States include structures called dotted rules
- A within the righthand side of a state's grammar rule indicates the progress made towards recognizing it
- A state's position with respect to the input is represented by two numbers, indicating (1) where the state begins, and (2) where its dot lies

Example States

- Input: Book that flight.
- $S \to VP, [0,0]$
 - Top-down prediction for this particular kind of S
 - First 0: Constituent predicted by this state should begin at the start of the input
 - Second 0: Dot lies at the start of the input as well
- NP → Det Nominal, [1,2]
 - NP begins at position 1
 - Det has been successfully parsed
 - Nominal is expected next
- VP → V NP •, [0,3]
 - Successful discovery of a tree corresponding to a VP that spans the entire input

Earley Algorithm

- An Earley parser moves through the *n*+1 sets of states in a chart in a left-to-right fashion, processing the states within each set in order
- At each step, one of three operators is applied to each state depending on its status
 - Predictor
 - Scanner
 - Completer
- This results in the addition of new states to the end of either the current or next set of states in the chart
- States are never removed
- The algorithm never backtracks
- The presence of $S \to \alpha$ •, [0,n] in the list of states in the last chart entry indicates a successful parse

Earley Operators: Predictor

Predictor

- Creates new states representing top-down expectations
- Applied to any state that has a non-terminal immediately to the right of its dot (as long as the non-terminal is not a POS category)
- New states are placed into the same chart entry as the generating state
- They begin and end at the same point in the input where the generating state ends

$S \rightarrow \bullet VP, [0,0]$

- VP → Verb, [0,0]
- VP → Verb NP, [0,0]
- VP → Verb NP PP, [0,0]
- VP → Verb PP, [0,0]
- VP → VP PP, [0,0]

Earley Operators: Scanner

- Used when a state has a POS category to the right of the dot
- Examines input and incorporates a state corresponding to the prediction of a word with a particular POS into the chart
- Does so by creating a new state from the input state with the dot advanced over the predicted input category
- VP → Verb NP, [0,0]
 - Since category following the dot is a part of speech (Verb)....
 - Verb → book •, [0,1]

Earley Operators: Completer

- Applied to a state when its dot has reached the right end of the rule
- Indicates that the parser has successfully discovered a particular grammatical category over some span of input
- Purpose: Find and advance all previously created states that were looking for this grammatical category at this position in the input
- New states are created by copying the older state, advancing the dot over the expected category, and installing the new state in the current chart entry
- NP → Det Nominal •, [1,3]
 - What incomplete states end at position 1 and expect an NP?
 - VP → Verb NP, [0,1]
 - VP → Verb NP PP, [0,1]
 - So, add VP → Verb NP •, [0,3] and the new incomplete VP → Verb NP PP, [0,3] to the chart

Det → that | this | a | the Noun → book | flight | meal | money Verb → book | include | prefer

 $S \rightarrow NP VP$

 $\mathsf{S} \to \mathsf{VP}$

NP → Det Nominal

Nominal → Noun

Nominal → Nominal Noun

 $VP \rightarrow Verb$

VP → Verb NP

Chart	State	Rule	Start, End	Operator
0	S0	$\gamma \rightarrow {}^{ullet}$ S	0, 0	Start State
0	S1	$S \rightarrow \bullet NP VP$	0, 0	Predictor
0	S2	$S \rightarrow \bullet VP$	0, 0	Predictor
0	S3	NP → • Det Nominal	0, 0	Predictor
0	S4	VP → • Verb	0, 0	Predictor
0	S5	VP → • Verb NP	0, 0	Predictor

Det → that | this | a | the Noun → book | flight | meal | money Verb → book | include | prefer

 $S \rightarrow NP VP$

 $\mathsf{S} \to \mathsf{VP}$

NP → Det Nominal

Nominal → Noun

Nominal → Nominal Noun

 $VP \rightarrow Verb$

 $VP \rightarrow Verb NP$

Chart	State	Rule	Start, End	Operator
0	S0	$\gamma \rightarrow \bullet S$	0, 0	Start State
0	S1	$S \rightarrow \bullet NP VP$	0, 0	Predictor
0	S2	$S \rightarrow \bullet VP$	0, 0	Predictor
0	S3	NP → • Det Nominal	0, 0	Predictor
0	S4	VP → • Verb	0, 0	Predictor
0	S5	VP → • Verb NP	0, 0	Predictor
1	S6	Verb → book •	0, 1	Scanner
1	S7	$VP \rightarrow Verb \bullet$	0, 1	Completer
1	S8	$VP \rightarrow Verb \cdot NP$	0, 1	Completer
1	S9	$S \rightarrow VP \bullet$	0, 1	Completer
1	S10	NP → • Det Nominal	1, 1	Predictor

Det → that | this | a | the Noun → book | flight | meal | money Verb → book | include | prefer

 $S \rightarrow NP VP$

 $S \rightarrow VP$

NP → Det Nominal

Nominal → Noun

Nominal → Nominal Noun

 $VP \rightarrow Verb$

 $VP \rightarrow Verb NP$

Chart	State	Rule	Start, End	Operator
0	S0	$\gamma \rightarrow \bullet S$	0, 0	Start State
0	S1	$S \rightarrow \bullet NP VP$	0, 0	Predictor
0	S2	$S \rightarrow \bullet VP$	0, 0	Predictor
0	S3	$NP \rightarrow \bullet$ Det Nominal	0, 0	Predictor
0	S4	$VP \rightarrow \bullet Verb$	0, 0	Predictor
0	S5	$VP \rightarrow \bullet Verb NP$	0, 0	Predictor
1	S6	$Verb \to book \bullet$	0, 1	Scanner
1	S7	$VP \rightarrow Verb \bullet$	0, 1	Completer
1	S8	$VP \rightarrow Verb \cdot NP$	0, 1	Completer
1	S9	$S \rightarrow VP \bullet$	0, 1	Completer
1	S10	NP → • Det Nominal	1, 1	Predictor
2	S11	$Det \to that \; \bullet$	1, 2	Scanner
2	S12	NP → Det • Nominal	1, 2	Completer
2	S13	Nominal → • Noun	2, 2	Predictor
2	S14	Nominal → • Nominal Noun	2, 2	Predictor

Det → that | this | a | the Noun → book | flight | meal | money Verb → book | include | prefer

 $S \rightarrow NP \ VP$ $S \rightarrow VP$ $NP \rightarrow Det \ Nominal$ $Nominal \rightarrow Noun$ $Nominal \rightarrow Nominal \ Noun$ $VP \rightarrow Verb$ $VP \rightarrow Verb \ NP$

Chart	State	Rule	Start, End	Operator
0	S0	$\gamma \rightarrow \bullet S$	0, 0	Start State
0	S1	$S \rightarrow \bullet NP VP$	0, 0	Predictor
0	S2	$S \rightarrow \bullet VP$	0, 0	Predictor
0	S3	$NP \rightarrow \bullet$ Det Nominal	0, 0	Predictor
0	S4	VP → • Verb	0, 0	Predictor
0	S5	VP → • Verb NP	0, 0	Predictor
1	S6	Verb → book •	0, 1	Scanner
1	S7	$VP \rightarrow Verb \bullet$	0, 1	Completer
1	S8	$VP \rightarrow Verb \cdot NP$	0, 1	Completer
1	S9	$S \rightarrow VP \bullet$	0, 1	Completer
1	S10	NP → • Det Nominal	1, 1	Predictor
2	S11	$Det \to that \; \bullet$	1, 2	Scanner
2	S12	NP → Det • Nominal	1, 2	Completer
2	S13	Nominal → • Noun	2, 2	Predictor
2	S14	Nominal → • Nominal Noun	2, 2	Predictor
3	S15	Noun \rightarrow flight •	2, 3	Scanner
3	S16	Nominal → Noun •	2, 3	Completer
3	S17	$NP \rightarrow Det Nominal \bullet$	1, 3	Completer
3	S18	Nominal → Nominal • Noun	2, 3	Completer
3	S19	VP → Verb NP •	0, 3	Completer
3	S20	$S \rightarrow VP \bullet$	0, 3	Completer

Which states participate in the final parse?

Chart	State	Rule	Start, End	Operator
0	S0	$\gamma \rightarrow \circ S$	0, 0	Start State
0	S1	$S \rightarrow {}^{\bullet} NP VP$	0, 0	Predictor
0	S2	$S \rightarrow {}^{\bullet} VP$	0, 0	Predictor
0	S3	NP → • Det Nominal	0, 0	Predictor
0	S4	VP → • Verb	0, 0	Predictor
0	S5	VP → • Verb NP	0, 0	Predictor
1	S6	Verb → book •	0, 1	Scanner
1	S7	$VP \rightarrow Verb \bullet$	0, 1	Completer
1	S8	$VP \rightarrow Verb \cdot NP$	0, 1	Completer
1	S9	$S \to VP \bullet$	0, 1	Completer
1	S10	NP → • Det Nominal	1, 1	Predictor
2	S11	$Det \to that \; \bullet$	1, 2	Scanner
2	S12	$NP \to Det \bullet Nominal$	1, 2	Completer
2	S13	Nominal → • Noun	2, 2	Predictor
2	S14	Nominal → • Nominal Noun	2, 2	Predictor
3	S15	Noun \rightarrow flight •	2, 3	Scanner
3	S16	Nominal \rightarrow Noun •	2, 3	Completer
3	S17	$NP \rightarrow Det Nominal \bullet$	1, 3	Completer
3	S18	Nominal → Nominal • Noun	2, 3	Completer
3	S19	$VP \rightarrow Verb NP \bullet$	0, 3	Completer
3	S20	$S \rightarrow VP \bullet$	0, 3	Completer

As with CKY, the example algorithm acted as a recognizer.

- We can retrieve parse trees by adding a field to store information about the completed states that generated constituents
- How to do this?
 - Have the Completer operator add a pointer to the previous state onto a list of constituent states for the new state
 - When an S is found in the final chart, just follow pointers backward

Which states participate in the final parse?

Chart	State	Rule	Start, End	Operator (Backward Pointer)
0	S0	$\gamma \rightarrow {}^{\bullet} S$	0, 0	Start State
0	S1	$S \rightarrow \bullet NP VP$	0, 0	Predictor
0	S2	$S \rightarrow {}^{\bullet} VP$	0, 0	Predictor
0	S3	NP → • Det Nominal	0, 0	Predictor
0	S4	VP → • Verb	0, 0	Predictor
0	S5	$VP \rightarrow \bullet Verb NP$	0, 0	Predictor
1	S6	$Verb \to book \bullet$	0, 1	Scanner
1	S7	VP → Verb •	0, 1	Completer
1	S8	$VP \rightarrow Verb \cdot NP$	0, 1	Completer
1	S9	$S \to VP \bullet$	0, 1	Completer
1	S10	NP → • Det Nominal	1, 1	Predictor
2	S11	$Det \to that \; \bullet$	1, 2	Scanner
2	S12	$NP \to Det \bullet Nominal$	1, 2	Completer
2	S13	Nominal → • Noun	2, 2	Predictor
2	S14	Nominal → • Nominal Noun	2, 2	Predictor
3	S15	Noun \rightarrow flight •	2, 3	Scanner
3	S16	Nominal \rightarrow Noun •	2, 3	Completer (S15)
3	S17	$NP \to Det Nominal \bullet$	1, 3	Completer (S11, S15)
3	S18	Nominal → Nominal • Noun	2, 3	Completer
3	S19	$VP \to Verb\; NP\; \bullet$	0, 3	Completer (S6, S17)
3	S20	$S \rightarrow VP \bullet$	0, 3	Completer (S19)

Summary: Syntactic Parsing

- Syntactic parsing is the process of automatically determining the grammatical structure of an input sentence
- Language is ambiguous, so sentences can have multiple grammatically-correct parses
- Parsing can be performed using either a top-down or bottom-up approach
- Common algorithms for syntactic parsing include:
 - CKY
 - Earley