BIOSYSTEMS II: NEUROSCIENCES 2015 Spring Semester

Lecture 32

Kechen Zhang

4/15/2015

Recurrent networks

- Discrete attractor networks (e.g. Hopfield network)
- Continuous attractor networks

Amnesia following hippocampal lesion

Patient H.M. (Henry Molaison, 1926 - 2008)

ADAMSANDLER

DREWBARRYMORE

50FIRSTDATES

Anatomical Hierarchy of Macque Monkey Brain

Space related cells

- Head-direction cell: heading direction (Papez circuit)
- Grid cell: periodic spatial location (entorhinal cortex)
- Place cell: spatial location (hippocampus)

All three representations are in world coordinate system, and they depend on both familiar landmarks and path integration by self-motion.

(Muller et al. 1990)

Head-Direction Cell

Tuning Curve of a Head-Direction Cell

Preferred Direction of a Single Head-Direction Cell

Preferred direction (indicated by arrows) is the same everywhere

Head-direction cells

- signal heading direction in world coordinate system.
- anchored to familiar landmarks (rapid learning).
- relies on self-motion (works in total darkness).
- correlated tightly with hippocampal place cells.

Preferred Direction of a Head-Direction Cell

Familiar landmarks determine the preferred direction of a head-direction cell. Without landmark, a head-direction cell may still fire normally, presumably by path integration.

Hippocampal Place Field

Place Field Follows Learned Visual Landmark

Basic properties of place cells:

- Place cell firing is determined primarily by spatial location
- Cues for spatial location come from multiple sensory modalities and self-motion
- Rapid learning of landmarks within a few minutes

Place cells in hippocampus

Place Fields

50 cm

Head-direction cells and place cells are tightly coupled

Grid cells in entorhinal cortex

Another 3 cells: trajectories and spikes (superimposed)

Grid cells have different spatial scales

Example of continuous attractors: Ring attractor

Recurrent network: center-surround lateral connections

$$\frac{\partial S(x,t)}{\partial t} = -S(x,t) + \sum_{y} W(y-x)g(S(y,t)) + I(x,t)$$

where S(x,t) is the activity of the neuron at location x and time t and g() is gain function.

Recurrent network with symmetric lateral connections

Snapshots of the activity of a symmetric recurrent network starting from different initial states

Liapunov function (energy) of network state

Point Attractors

Continuous Attractor

Discrete memory states in a Hopfield network

A continuum of stable states (here a ring)

Asymmetric lateral connections

Snapshots of the activity of an asymmetric recurrent network starting from different initial states

Place cell activity as plane attractor

Grid cell activity as torus attractor?

Comparison of different animals

- Rat & Mouse: head-direction cell, grid cell, and place cell
- Bat: place cell in 3D space
- Monkey & Human may have head-direction cell, grid cell, and place cell as well. Evidence for "grandmother cell".

Response of a single neuron in human hippocampal region

"Halle Berry"

"Sydney Opera"

