

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación:

2 133 104

(21) Número de solicitud: 9701343

(51) Int. Cl.6: C12N 15/53

C12N 9/04

(1) Solicitante/s: ANTIBIOTICOS, S.A.U.

(12)

SOLICITUD DE PATENTE

A1

ST AVAILABLE COP

- (22) Fecha de presentación: 19.06.97
- (43) Fecha de publicación de la solicitud: 16.08.99
- - (2) Inventor/es: Casqueiro, Javier; Gutiérrez Martín, Santiago: Bañuelos, Oscar; Fierro Fierro, Francisco; Díez García, Bruno; Collados de la Vieja, Alfonso; Salto Maldonado, Francisco; Barredo Fuente, José Luis y Martín Martín, Juan Francisco

Avda. de Burgos, 8 - A 28036 Madrid, ES

- Fecha de publicación del folleto de la solicitud: 16.08.99
- (4) Agente: No consta
- (5) Título: Un procedimiento para incrementar la producción de penicilina en Penicillium chrysogenum mediante la inactivación del gen lys2.

(57) Resumen:

Un procedimiento para incrementar la producción de penicilina en Penicililum chrysogenum mediante la inactivación del gen lys2.
El gen lys2 de P. chrysogenum se ha Identificado y aislado mediante hibridación con una sonda correspondiente al homólogo LYS2 de Saccharomyces cerevislae. El gen de P. chrysogenum codifica una proteína de 1.296 aminoácidos y 142.421 Da con una identidad elevada con las reductasas de ácido caminoadípico de S. cerevisiae. Schizosaccharomyuna identidad elevada con las reductasas de ácido
α-aminoadípico de S. cerevisiae, Schizosaccharomyces pombe y Candida albicans. La disrupción del gen
lys2 se ha realizado mediante (I) integración por recombinación simple y (II) sustitución génica por doble recombinación, empleando en ambos casos el gen
pyrG como marcador de transformación. Los clones
disrupcionados se han seleccionado como auxótrofos
de lisina y confirmado por hibridación de Southern.
Estos mutantes disrupcionados superproducen penicilina (40%-100% de incremento con respecto a la cepa parental no disrupcionada) en un medio suple- -mentado con L-lisina 4 mM.

Venta de fascículos: Oficina Española de Patentes y Marcas. C/Panamá, 1 - 28036 Madrid

DESCRIPCION

Un procedimiento para incrementar la producción de penicilina en Penicillium chrysogenum mediante la inactivación del gen lys2.

Campo de la invención

La presente invención se refiere a un procedimiento para la inactivación del gen lys2 de P. chrysogenum y a las cepas transformadas que lo contienen. La inactivación de este gen, que codifica la actividad α -aminoadipato reductasa, se consigue empleando técnicas de ADN recombinante, más concretamente mediante el procedimiento de disrupción génica. La inactivación del gen lys2 permite una mayor disponibilidad del ácido α -aminoadípico para la biosíntesis de penicilina, impidiendo su utilización como sustrato para la biosíntesis de lisina. La ruta biosintética de lisina se bloquea inmediatamente después de haberse sintetizado el ácido α -aminoadípico, lo cual supone que en los clones disrupcionados en el gen lys2 este incremento en la disponibilidad celular de ácido α -aminoadípico provocará a su vez un incremento en la producción de penicilina.

Estado de la técnica

El ácido L-α-aminoadípico es un precursor de la ruta de biosíntesis de penicilina (Martín y Liras 1989, Ann. Rev. Microbiol., 43: 173-114; Aharonowitz et al., 1992, Ann. Rev. Microbiol., 46: 461-495), el cual es condensado junto con L-valina y L-cisteína para formar el tripéptido L-α-aminoadipil-L-cisteinil-D-valina, primer intermediario de la ruta de biosíntesis de β-lactamas (van Liempt et al., 1989, J. Biol. Chem. 6: 529-546; Díez et al., 1990, J. Biol. Chem. 265: 16358-16365; Aharonowitz et al., 1993, Bio/technology 11: 807-810).

El ácido α-aminoadípico es sintetizado en los hongos filamentosos en los pasos iniciales de la ruta de biosíntesis de lisina (ver esquema en página 5). En la naturaleza existen dos rutas diferentes de biosíntesis de lisina. La llamada vía del ácido α-aminoadípico la emplean los hongos y levaduras (Bhattacharjee, 1985, CRC critical reviews of microbiology 12: 131-151), mientras que bacterias y plantas sintetizan lisina a través de la vía del ácido diaminopimélico, una ramificación de la ruta biosintética del ácido aspártico (Eikmanns et al., 1993, Antonie van Leeuwenhoek 64: 145-163; Malumbres y Martín, 1996, FEMS microbiol. lett. 143: 103-114).

El ácido α-aminoadípico es pues el punto de ramificación entre las rutas biosintéticas de lisina y penicilina en P. chrsogenum (ver esquema en página 5). La parte común de la vía comienza con la condensación de acetil-CoA y α-cetoglutarato para formar homocitrato (Jaklitsch y Kubicek, 1990, Biochem. J. 269: 247-253), que es posteriormente convertido a través de una serie de reacciones de isomerización, des carboxilación oxidativa y aminación en homoisocitrato, α-cetoglutarato y α-aminoadipato. En la segunda parte de la vía biosintética de lisina el ácido α-aminoadípico es convertido en α-aminoadípico semialdehído y este, a través de la sacaropina se convierte en lisina. La primera enzima de la segunda parte de la vía biosintética de lisina, se denomina α-aminoadipato reductasa (E.C. 1.2.1.31) y cataliza la formación del δ-semialdehído del α-aminoadípico en una reacción que se lleva a cabo en dos pasos: (I) activación del grupo δ-carboxilo del ácido α-aminoadípico mediante la formación del derivado adenilado del ácido α -aminoadípico (α -aminoadípiladenilato) y (II) reducción para formar α -aminoadípico- δ -semialdehído (Sagisaka y Shimura, 1960 Nature 188: 1189; 1962, J. Biochem 52: 155). En el primer paso el ácido α-aminoadípico es activado por adenilación utilizando el ATP como donador de AMP, una reacción de activación de aminoácidos inusual, aunque es muy frecuente en la biosíntesis de péptidos no ribosomales (Kleinkauf y von Döhren, 1996 Eur. J. Biochem. 236: 335-351). En el segundo paso el α-aminoadipil-30 AMP activado es reducido empleando como cofactor NADPH y finalmente es liberado como semialdehido. Estas actividades están codificadas en S. cerevisiae por los genes LYS2 y LYS5 (Sinha y Bhattacharjee, 1970, Biochem. Biophys. Res. Commun. 39: 1205-1210).

55

a-CETOGLUTARATO+Acetil-CoA

Homocitrato sintasa **HOMOMOCITRATO** Homocitrato deshidratasa ↓ lys7.lyS8 10 **HOMOACONITATO** Homoaconitato hidratasa 1 lys4.lys15 15 HOMOISOCITRATO **Homoisocitrato** deshidrogenasa 1 lys10 20 **OXALOGLUTARATO** espontáneo 1 25 α-CETOADIPATO Aminoadipato aminotransferasa I 30 α-AMINOADIPATO Aminoadipato ACV sintetasa reductasa lys 2,lys5 35 α-AAA-SEMIALDEHIDO a-AAA-Cys-Val Sacaropina 40 Lys9Isopenicilina N sintasa reductasa SACAROPINA ISOPENICILINA N 45 Sacaropina Aciltransferasa deshidrogenasa Lysl 6-APA 50 LISINA PENICILINA G

Descripción detallada de la invención

En la presente invención, se describe por primera vez el gen lys2 de P. chrysogenum y su utilización en la mejora de la producción de penicilina. Utilizando técnicas de ADN recombinante se ha clonado y caracterizado el gen lys2 de P. chrysogenum. Posteriormente este gen se ha disrupcionado, consiguiendo inactivar totalmente su actividad enzimática. La disrupción de este gen permite la obtención de cepas con un nivel de producción de penicilina incrementado con respecto a la cepa parental no disrupcionada.

Para la clonación del gen lys2 de P. chrysogenum, se rastreó una genoteca de ADN genómico construida en el vector fágico EMBL3 (Sambrook, J., Fritsch, E.F. y Maniatis, T. 1989. Molecular Cloning: A

Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA), empleando como sonda heteróloga un fragmento interno del gen LYS2 de S. cerevisiae. Tras varias series de infección e hibridación se purificaron una serie de fagos positivos, los cuales se mapearon con las enzimas de restricción BamHI, HindIII, EcoRI y Sall, y posteriormente se subclonó y secuenció un fragmento que contenía la zona de hibridación (Figura 1).

Del análisis de la secuencia se dedujo la existencia de dos marcos de lectura abiertos denominados ORF1 y ORF2. El ORF1 (SEQ ID NO: 1) codificaba una proteína de 129 aminoácidos (SEQ ID NO: 2) que presentaba similitud con las regiones amino-terminales de las reductasas de α-aminoadipato de S. cerevisiae, Schizosaccharomyces pombe y Candida albicans. El codón de terminación de traducción TAA del ORF1 solapaba en un nucleótido con el codón de inicio de traducción ATG del ORF2. Este segundo marco de lectura de 3.888 nucleótidos (SEQ ID NO: 3) codificaba una proteína de 1.296 aminoácidos y 142.421 Da (SEQ ID NO: 4) que presentaba identidad significativa con la porción central y carboxiloterminal de las reductasas de ácido α-aminoadípico de S. cerevisiae (46,6%), S. pombe (44,3%) y C. albicans (47,9%).

Para conseguir la inactivación del gen lys2 de P. chrysogenum, se emplearon dos técnicas alternativas: disrupción mediante integración por entrecruzamiento simple y disrupción por doble recombinación. Los transformantes disrupcionados en el gen lys2, se caracterizaron por ser auxótrofos de lisina, requiriendo la adición de este aminoácido a una concentración en torno a 1 mM como suplemento en los medios de cultivo.

Para la disrupción mediante integración por entrecruzamiento simple se construyó el plásmido pDLVII (Figura 2), portador de un fragmento de ADN de P. chrysogenum que contiene el gen lys2 carente de su extremo 3' y con una mutación de cambio de marco de lectura en el sitio BamHI. La integración de este vector entre el extremo 3' truncado y la mutación del sitio BamHI provoca la disrupción de la copia lys2 endógena. La disrupción mediante doble recombinación o sustitución génica se realizó utilizando el plásmido pDLX (Figura 3) el cual contiene un cassette de inactivación génica de 8,8 kb consistente en sustituir un fragmento PstI-EcoRV de 200 nucleótidos del gen lys2 por un inserto de 1,5 kb portador del gen pyrG que sirve como marcador de selección.

Las pruebas de fermentación en matraz realizadas con los mutantes disrupcionados en el gen lys2 mostraron niveles de producción específica de penicilina que suponían incrementos entre el 40% y el 100% con respecto al nivel de producción de la cepa parental no transformada.

Ejemplo 1

35

1.1. Clonación del gen lys2 de P. chrysogenum.

Con el fin de identificar y aislar el gen lys2 de P. chrysogenum, se empleó como sonda un fragmento interno Ndel de 2,0 kb del gen LYS2 de S. cerevisiae marcado por nick translation y purificado a través de minicolumnas elutipD (Sigma) para rastrear una genoteca de ADN genómico de P. chrysogenum AS-P-78 construida en el vector fágico EMBL3 (Barredo et al., 1989, Gene 83: 291-300). Los fagos positivos fueron purificados y caracterizados mediante análisis de Southern según técnicas estándar (Sambrook, J., Fritsch, E.F. y Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA): el ADN digerido con las enzimas de restricción BamHl, HindII, Sall, Xbal y EcoRl se sometió a electroforesis en gel de agarosa y los fragmentos de ADN se transfirieron a membranas de nylon (Hybond, Amersham) para realizar hibridaciones con la sonda Ndel de 2,0 kb del gen LYS2 de S. cerevisiae anteriormente mencionada. El análisis de los resultados permitió obtener el mapa genómico que se muestra en la Figura 1. El gen lys2 de P. chrysogenum se subcionó en pBluescript I KS (+) (Stratagene) como un fragmento Xbal de 6,5 kb originando los plásmidos pLIIa y pLIIb (ambas orientaciones del fragmento).

1.2. Secuencia de nucleótidos del gen lys2.

El inserto de los vectores pLIIa y pDLIIb se secuenció empleando los sistemas Erase-a-base (Promega) y Sequenase (USB) de acuerdo con las indicaciones del fabricante. El análisis de la secuencia de 5,1 kb reveló la presencia de dos ORFs denominados ORF1 y ORF2. El ORF1 (SEQ ID NO: 1) codificaba para una proteína de 129 aminoácidos y 14.289 Da-(SEQ ID NO: 2). Esta proteína mostró similitud significativa con los extremos amino-terminales de las α-aminoadipato reductasas de S. cerevisiae, S. pombe y C. albicans.

El codón de terminación TAA del ORF1 se superponía con el primer nucleótido del triplete de inicio ATG del ORF2. El ORF2 (SEQ ID NO: 3) tenía una extensión de 3.888 nucleótidos y codificaba para una proteína de 1.296 aminoácidos (SEQ ID NO: 4) con un peso molecular deducido de 142.421 Da, mostrando una identidad elevada con las regiones central y-carboxilo-terminal de las α-aminoadipato reductasas codificadas por los genes LYS2 de S. cerevisiae (46,6%), S. pombe (44,3%) y C. albicans (47,9%).

En la región 3' del gen lys2 be identificó un intrón al comparar la secuencia genómica con la de un fragmento de ADN complementario (ADNc) obtenido mediante amplificación por PCR en condiciones estándar (Sambrook, J., Fritsch, E.F. y Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA) con los oligonucleótidos 5' AGT-TCCTTGGTGCGCTCC 3' y 5' TTTGGACAAGGTATGAGG 3', situados a ambos lados del intrón.

Ejemplo 2

2.1. Disrupción del gen lys2.

Se utilizaron dos técnicas de inactivación génica alternativas: disrupción por integración simple y disrupción por doble recombinación. Para la disrupcion por integración simple se construyó el vector pDLVII (Figura 2). Con este fin se subclonó un fragmento Xhol-Sall de 5 kb portador del gen lys² truncado en su extremo 3', en un plásmido derivado de pBluescript I KS (+) (Stratagene) al que se había eliminado el sitio de restricción BamHI. Esta construcción intermedia se utilizó para eliminar el sitio de restricción BamHI presente en el extremo 5' del gen lys² mediante digestión y rellenado con el fragmento Klenow de la ADN polimerasa I de E. coli (Amersham), de acuerdo con las instrucciones del fabricante. La eliminación del sitio BamHI dio lugar a una mutación de cambio de marco de lectura en el mencionado extremo 5' del genlys². El fragmenta Xhol-Sall de 5 kb portador del gen lys² truncado en su extremo 31 y mutado en el sitio BamHI se subclonó en un derivado del vector pBluescript I KS (+) al que se había introducido el gen pyrG como marcador de transformación fúngica, dando lugar al plásmido de inactivación por recombinación simple pDLVII. En la Figura 4 se muestra el proceso teórico de recombinación provocado por la transformación con este vector.

El vector de inactivación por recombinación simple pDLVII se digirió con BstEII para forzar la recombinación entre el lugar BamHI mutado y el punto de truncamiento en el extremo 3' y se transformó en un mutante auxótrofo pyrG de P. chrysogenum Wisconsin 54-1255 mediante procedimientos descritos (Cantoral et al., 1987, Bio/technology 5: 497-497; Díez et al., 1987, Curr. Genet. 12: 277-282) plaqueando los protoplastos transformados en medio mínimo Czapeck suplementado con L-lisina 1 mM. Los transformantes obtenidos fueron transferidos a medio mínimo Czapeck con y sin suplemento de L-lisina 1 mM, con el fin de comprobar la aparición de auxotrofía de lisina. Aquellos que mostraron esta deficiencia se analizaron por la técnica de Southern (Sambrook, J., Fritsch, E.F. y Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA) utilizando como sonda un fragmento interno EcoRV de 1,5 kb del gen lys2. El ADN total de los transformantes se obtuvo mediante un procedimiento descrito (Barredo et al., 1994, Patente española P9400931) a partir de micelio crecido en medio PM (Anné, 1977, Agricultura 25) suplementado con un 2% de extracto de levadura y con L-lisina 1 mM. Se consideraron transformantes disrupcionados aquellos que carecían del fragmento genómico BamHI de 8 kb presente en el patrón de hibridación de la cepa control P. chrysogenum Wisconsin 54-1255, presentando en su lugar un fragmento de 13 kb y otro de 2,9 kb.

La disrupción por doble recombinación o sustitución génica se realizó utilizando el plásmido pDLX.

Este plásmido se construyó insertando en pBluescript I KS (+) (Stratagene) un cassette de disrupción génica portador del gen pyrG de P. chrysogenum flanqueado por el fragmento Sall-Pstl de 4,3 kb con el extremo 5' del gen lys2 y el fragmento EcoRV-Xbal de 3 kb portador del extremo 3' del genlys2. En este cassette de disrupcion el gen pyrG había sustituido un fragmento Pstl-EcoRV de 200 nucleótidos del gen lys2, impidiendo así su funcionalidad. En la Figura 5 se muestra el proceso de recombinación teórico provocado por la transformación con este vector.

El ADN del vector pDLX se digirió con las enzimas Notl-KpnI liberando un fragmento de 8,8 kb portador del cassette de inactivación y esta preparación se utilizó para transformar protoplastos de la cepa P. chrysogenum Wisconsin 54-1255 pyrG, utilizando procedimientos descritos (Cantoral et al., 1987, Bio/technology 5: 497-497; Díez et al., 1987, Curr. Genet. 12: 277-282) plaqueando los protoplastos transformados en medio mínimo Czapeck suplementado con L-lisina 1 mM. Los transformantes obtenidos fueron transferidos a medio mínimo Czapeck con y sin suplemento de L-lisina 1 mM con el fin de

comprobar la aparición de auxotrofía de lisina. Aquellos que mostraron esta deficiencia se analizaron por la técnica de Southern (Sambrook, J., Fritsch, E.F. y Maniatis, T. 1989. Molecular Cloning : A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA) utilizando como sonda un fragmento EcoRV de 1,5 kb interno del gen lys2. El ADN total de los transformantes se 5 obtuvo mediante un procedimiento descrito (Barredo et al., 1994, Patente española P9400931) a partir de micelio crecido en medio PM (Anné, 1977, Agricultura 25) suplementado con un 2% de extracto de levadura y con L-lisina 1 mM. Se consideraron transformantes disrupcionados aquellos que carecían del fragmento genómico BamHI de 8 kb presente en el patrón de hibridación del ADN de la cepa control P. chrysogenum Wisconsin 54-1255, presentando en su lugar un fragmento de 2,1 kb. Las cepas transformantes obtenidas se depositaron en la Colección Española de Cultivos Tipo (CECT) sita en el Departamento de Microbiología de la Facultad de Ciencias Biológicas de la Universidad de Valencia, Burjasot 46100, Valencia, con el nº 20209.

2.2. Incremento de la producción de penicilina en los transformantes disrupcionados en el gen lys2.

Para comprobar el esecto de la disrupción del gen lys2 sobre la producción de penicilina se realizaron sermentaciones de los transformantes disrupcionados frente a controles de la cepa parental P. chrysogenum Wisconsin 54-1255 sin transformar. Las fermentaciones se inocularon con esporas obtenidas de medio de esporulación (Fierro Et al., 1996, Appl. Microbiol. Biotechnol. 44; 597-604) suplementado 20 con L-lisina 1 mM en el caso de los transformantes disrupcionados. Los cultivos de inóculo se realizaron en medio DPM (Esmahan et al., 1994, Appl. Environ. Microbiol. 60: 1705-1710) sin ácido fenilacético pero suplementado con 4% de glucosa y 4 mM de L-lisina y se incubaron a 25°C con agitación orbital (200 r.p.m.) durante 26 horas, salvo en el caso de los auxótrofos de lisina que requirieron 82 horas para alcanzar la misma biomasa.

Las fermentaciones de producción de penicilina se realizaron en matraces de 500 ml con 100 ml de medio DPM al que se añadió ácido fenilacético al 0,1 %. Los azúcares lactosa y sacarosa se esterilizaron separadamente y se afiadieron al medio DPM base a una concentración final de 3 g/l y 1 g/l respectivamente. Los matraces se suplementaron con L-lisina 4 mM, excepto en controles de la cepa parental 30 (prototrófa) que fueron incubados en presencia y en ausencia de suplemento de L-lisina 4 mM. Los matraces se inocularon con un 10 % de los cultivos de inóculo (10 ml), incubándose en las mismas condiciones que éstos. La concentración de penicilina en el medio de cultivo se determinó cada 24 horas por bioensayo frente a Micrococcus luteus ATCC 9341, y la biomasa se caracterizó con la misma periodicidad como peso

35 Como se muestra en la Figura 7, que representa los resultados de una de las fermentaciones, el crecimiento de los mutantes auxótrofos disrupcionados en el gen lys2 fue ligeramente más lento que el de la cepa parental, aunque al final de la fermentación alcanzaban una biomasa similar. La producción de la cepa parental se incrementó a las 48 horas en medio sin lisina, siendo ligeramente menor en los medios con lisina. Los mutantes disrupcionados mostraron niveles de producción específica de penicilina que suponían un incremento entre el 40 % y el 100 % respecto de la cepa parental no transformada.

Descripción detallada de las figuras

- Figura 1.- Mapa de restricción de la región genómica de P. chrysogenum que hibrida con el gen LYS2 de S. cerevisiae, ilustrando la posición de los ORF 1 y ORF 2 identificados en la secuencia de nucleótidos.
- Figura 2.- Vector pDLVII construido para la disrupción del gen lys2 de P. chrysogenum por integración simple. Este vector consiste en el fragmento XhoI-Sall de 5 kb portador del gen lys2 truncado en su extremo 3' y mutado en el sitio BamHI, subclonado en un derivado del vector pBluescript I KS (+) al que se ha introducido el gen pyrG como marcador de transformación fúngica.
- Figura 3.- Vector pDLX construido para la disrupción del gen lys2 de P. chrysogenum por doble recombinación. Este vector consiste en pBluescript I KS (+) portador de un cassette de inactivación génica de 8,8 kb que incluye el ORF lys2 en el que se ha sustituido un fragmento PstI-EcoRV de 200 nucleotidos por un inserto de 1,5 kb portador del gen pyrG que sirve como marcador de transformación fúngica.
- Figura 4 Esquema teórico del suceso de recombinación génica por entrecruzamiento simple provocado por la integración del vector pDLVII.
- Figura 5.- Esquema teórico del suceso de recombinación génica por doble recombinación provocada por la integración del vector pDLX.

50

60

Figura 6.- Cinéticas de crecimiento en mg/ml (A) y producción específica de penicilina en μg/mg peso seco (B), frente al tiempo en horas, de un transformante disrupcionado con el vector pDLVII (triángulos negros) y otro transformado con el vector pDLX (cuadrados negros) frente a controles de la cepa parental Wisconsin 54-1255 suplementada con L-lisina 4mM (círculos negros) o sin suplementar (círculos blancos).

Lista de secuencias

SEQ ID NO: 1

10																	
	GTG	GCTG:	rct	AGGG	CAAG'	TA T	AGTA	GTCT	C AA	TGCC	AAAA	ACA	CTCA	GTG :	AATC	AGACAA	60
																GCCGCC	120
	TTG	GACT	GGA	GAAA	CCTC	AA C	TCCG	ACGC	CAC	CCCA	CCAT	GTA	CAAG	GCG (GTGA	ATACTC	180
15	TGT	GGGG	AAA	ATAG	CTAA'	IC A	GTGC	CTCA	A CT	CTCA:	TTGG	CAG	AAAT	AGC (GCG	AGATCG	240
	GAC	TTTT	CCA	CTAT	GGGG	GG G	TAAT'	TTTA	A CA	TTGA	STCA	TCG'	rgrc	TTT (CATT	CTCCAA	300
	CTC	TTTC	AAA	CATA	CTGC	AA T	T AT	G GC	r GT	G GG	A AC	GC	C TC	r TT	G CA	GAC	352
																n Asp	
20						•	1				5					10	
20	CGT	CTG	GAG	ACA	TGG	GCA	CAA	AGG	TTG	AAG	AAC	CTG	ACT	GTC	TCT	CCA	400
	Arg	Leu	Glu	Thr		Ala	Gln	Arg	Leu	Lys	Asn	Leu	Thr	Val	Ser	Pro	
					15					20					25		
				CAT													448
25	Leu	Thr	Arg	Asp	Tyr	Pro	Asp	Thr	Gln	Lys	Thr	Asp	Ser	Lys	Arg	Val	
				30					35					40			
				TTC													496
	Ile	Glu		Phe	Glu	Ser	Leu		Leu	Pro	Lys	Ala	Lys	Leu	Thr	Gly	
30			45					50					5 5				
	TCA	TCA	TCC	AGC	TTC	ATT	GCT	TTC	TTG	ACT	GCC	TTT	ATT	ATC	CTG	GTA	544
	Ser		Ser	Ser	Phe	Ile		Phe	Leu	Thr	Ala		Ile	Ile	Leu	Val	
	CCC	60	***				65					70					<u></u>
35				ACT													592
50	75	Arg	Leu	Thr	GIŞ	80	GIU	qeA	TIE	ATA		Gly	Thr	Asn	Ser		
	_	CAT	CCT	COT	CCN		CTC) TO	000		85		~~=			90	640
				CGT													640
	GIG	vab	GIY	Arg	95	Pne	vai	116	Arg		Pro	iie	Asp	Thr		Glu	
40	тст	ттС	GCC	CNG		ThT	ccc	***	Cm s	100		C			105	amm	600
				CAG													688
	561		710	Gln 110	neu	TYL	AIG	rya	115	мар	гЛа	vaı	Pne		TYT	vai	
	тст	TGC	CGT	AGT	GTT	TAC	TGC	та	112					120			711
45				Ser				•^									/11
	•	. , .	125			- 1 -	-,-										

Número de hélices: doble.

50 Configuración de la secuencia: lineal.

Tipo de molécula: ADN.

Secuencias hipotéticas: No.

Antisentido: No.

Tipo de fragmento:

Origen de la molécula: Secuencia de ADN procedente de P. chrysogenum correspondiente al ORF 1 del gen lys2.

Fuente experimental inmediata de la secuencia: plásmidos pDLIIa y pDLIIb.

Posición de la secuencia en el genoma: Cromosoma IV (5, 6 Mb) en la cepa P. chrysogenum P2 y cromosoma III (7,5 Mb) en la cepa P. chrysogenum AS-P-78.

Características de la secuencia:

Longitud: 711 pares de bases.

10 CDS: 323 ... 709

SEQ ID NO: 2

15	Met 1	Ala	Val	Gly	Thr 5	Ala	Ser	Leu	Gln	Asp 10	Arg	Leu	Glu	Thr	Trp 15	Ala
	Gln	Arg	Leu	Lys 20	Asn	Leu	Thr	Val	Ser 25	Pro	Leu	Thr	Arg	Asp 30	Tyr	Pro
20	Asp	Thr	Gln 35	rys	Thr	Asp	Ser	Lys 40	Arg	Val	Ile	Glu	Ala 45	Phe	Glu	Ser
	Leu	Gln 50		Pro	Lys	Ala	Lys 55	Leu	Thr	Gly	Ser	Ser 60	Ser	Ser	Phe	Ile
25	Ala 65	Phe	Leu	Thr	Ala	Phe 70	Ile	Ile	Leu	Val	Ala 75	Arg	Leu	Thr	Gly	Asp 80
	Clu	-			85					90			Gly		95	
	Val	lle	Arg	Val 100	Pro	Ile	Asp	Thr	Ser 105	Glu	Ser	Phe	Ala	Gln 110	Leu	Tyr
30	Ala	Lys	Val 115	γsb	Lys	Val	Phe	Ile 120	Tyr	Val	Ser	Суз	Arg 125	Ser	Val	Tyr
	Cys															

Origen de la molécula: Secuencia de aminoácidos codificada por el ORF1 del gen lys2 de P. chrysogenum.

Características de la secuencia:

40 Longitud: 129 aminoácidos

Peso molecular: 14.289 Da

SEQ ID NO: 3

45

35

	ATG Met	GTC Val	TTG Leu	CAG Gln	GCA Ala	TAT Tyr	DAA Lys	GAG Glu	GGC Gly	TCT Ser	TCC Ser	CAA Gln	ATC Ile	GTG Val	CCC Pro	Leu	48
50	1 GGC	AGC	CTT	CGC	TCG Ser	5 TAC Tyr	ATC Ile	CAA Gln	GAG Glu	AAG Lys	10 TCC Ser	AAG Lys	TCC Ser	GAA Glu	CGC Arg	15 ACC Thr	96
55	CCA	CTC	CTC	20 TTC	CGA	TTC	GCC	GCA	25 TAT	GAT	GCC	CCT	GCT	TCC	TCG	CAA Gln	144
00	Pro	Val	Leu 35	Phe	Arg	Pne	Ala	40	IYL	vab	Ala	110	45				

5	GAT Nsp	TAC Tyr 50	CCT Pro	GCG Ala	AAC	ACC Thr	TTT Phe 55	GAT Asp	ACT Thr	ACT Thr	GAT Asp	TTG Leu 60	GTG Val	GTT Val	AAC Asn	GTT Val	192
	GCA Ala 65	CCT Pro	GGC Gly	TCA Ser	GCT Ala	GAG Glu 70	GTC Val	GAA Glu	TTG Leu	GGC Gly	GCA Ala 75	TAC Tyr	TAC Tyr	AAT Asn	CAG Gln	CGC Arg 80	240
10	Leu	Phe	Ser	Ser	Ala 85	CGT Arg	Ile	Ala	Phe	Ile 90	Leu	Lys	Gln	Leu	Ala 95	Ser	288
15	Ile	Ala	Ser	Asn 100	Ala	GCC Ala	Ala	Asn	Pro 105	Asp	Glu	λla	Ile	Gly 110	Arg	Ile	336
	qeA	Leu	Met 115	Thr	Glu	TAD qeA	Gln	Arg 120	Ala	Leu	Leu	Pro	Asp 125	Pro	Thr	СЛа	384
20	asn	Leu Leu	Asn	Trp	Ser	AAC Asn	Phe 135	Arg	Gly	Ala	Ile	H19 140	yab	Ile	Phe	Thr	432
25	Ala 145	Asn	Ala	Glu	Arg	CAC His 150	Pro	Glu	Lys	Leu	Cys 155	Val	Val	Glu	Thr	Gln 160	480
	Ser	Ser	Ser	Ser	Pro 165	CAC His	Arg	Glu	Phe	Thr 170	Tyr	Arg	Gln	Ile	Asn 175	Glu.	528
30	Ala	Ser	Asn	Ile 180	Leu	GGA Gly	His	His	Leu 185	Val	Arg	Ser	Gly	11e 190	Gln	Arg	576
35	Gly	Glu	Val 195	Val	Met	GTC Val	Tyr	Ala 200	Tyr	Arg	Gly	Va1	λsp 205	Leu	Val	Val	624
	Ala	V.al 210	Met	Gly	Tle	TTG Leu	Lys 215	Ala	Gly	Ala	The	Phe 220	Ser	Val	Ile	Asp	672
40	Pro 225	Ala	туг	סצי]	Pro	GAA Glu 230	Arg	Gln	Asn	11e	Tyr 235	Leu	yab	Va1	Ala	Arg 240	720
	Pro	Arg	Ala	Leu	Val 245	AAC Asn	Ile	Ala	Lys	Ala 250	Thr	Lys	Aab	Ala	Gly 255	Glu	768
45	Leu	Ser	qeA	11e 260	Val	CGT Arg	Thr	Phe	Ile 265	Asp	Glu	neA	Leu	Glu 270	Leu	Arg	816
50	Thr	Glu	11e 275	Pro	Ala	CTT Leu	Ala	Lcu 280	Leu	qeA	Asp	Gly	Thr 285	Leu	Ala	Gly	864
	Gly	Ser 290	Ile	Asn	Gly	CAC Gln	Asp 295	Val	Plie	Ala	neA	qeA 006	Val	Ala	Leu	Lys	912
55	TCC Ser 305	AAG Lys	CCT Pro	ACT Thr	GGT Gly	GTC Val 310	GTC Val	GTT Val	GGT Gly	CCT Pro	GAT Asp 315	TCT Ser	ATT	CCG Pro	ACC Thr	CTG Leu 320	960
60				Ser		TCG Ser											1008

	CAC	TTC	rcr	CTG	GCT	TAT	TAT '	TTC	CCT	TGG .	ATG	TCT	GAG	ACT	TTC	AAA	1056
	His	Phe	Ser	Leu i	Ala	Tyr	Tyr	Phe	Pro	Trp	Met	Ser	Glu	Thr	Phe	Lys	
5				340					345					350			
	CTC	ACC	CCA	GAC (GAG .	AAG	TTT	NCT	λTG	CTC	ACT	CCC	ATC	GCT	CAT	GAT	1104
	Leu	Thr	Pro.	Asp (Glu	ГУЯ			Met	Leu	Ser	Gly		Ala	His	Aab	
			355					360					365		Ch h	CEC	1152
10	CCT	ATT	CAG	AGA I	GAC .	ATT	TTC	ACC	CCG	CTC	TTC	TIG	GGI	91-	Cla	Tau	1132
	5.LO		Gln .	Arg .	Asp	ITE	Phe	Inr	PFO	ren	Pne	380	GIA	AIG	GIII	Leu	
	080	370	000	COT	CCT	CAC	375 GAT .	ATC	CAA	AAC	CAA		CTT	GCC	CAA	TGG	1200
	CTG	GIG USI	פרכ	GC1 Ala	Aro	Clu	Asp	Ile	Gln	Asn	Glu	Lvs	Leu	Ala	Glu	Trp	
15	385	Val	110	A10 .		390					395		_			400	
13	ATC	GAG	AAG	TAC	GGT	GCT	ACC .	ATT	ACT	CAC	CTT	ACG	CCT	GCT	ATG	GGT	1248
	Tle	GTu	Lys	Tyr	Gly	Ala	Thr	Ile	Thr	His	Leu	Thr	Pro	Ala	Met	Gly	
			_		405					410					415		1206
	CAA	ATC	CTT	GTC	GGT	GGT	GCC	TCT	GCC	CAG	TTC	CCI	GCT	CIT	CAC	CAC	1296
20	Gln	ile	Leu		Gly	Gly	Ala	Ser		Glr	Phe	Pro	Ala	430	HIS	urs	
				420		C1 C	1 mm	CTC	425	200	CCD	CAC	TCC	-	TCA	CTC	1344
	GCC	TTC	TTT	GTG	COL	ZHO	ATT Ile	Tau	TIA	LVS	Ara	Agn	Cvs	Aru	Ser	Leu	
	Ald	Phe	435	vai	GIY	ASP	116	440	110	Ly 3	71.29	,,,,,	445				
25	CAG	CCA	CTT	GCG	CCC	AAT	GTC		ATT	GTG	AAC	ATG	TAC	GGA	ACA	ACC	1392
	Gln	Glv	Leu	Ala	Pro	Asn	Val	Ser	Ile	Val	Asn	Met	Tyr	Gly	Thr	Thr	
		450					455					460					
	GAG	ACC	CAG	CGT	GCT	GTC	AGC	TAC	TAT	GAA	ATC	CCT	AGC	TAC	GCC	AGC	1440
30	Glu	Thr	Gln	Arg	Ala		Ser	Tyr	Tyr	Glu		Pro	Ser	Tyr	Ala	480	
	465					470	AAT	3 TC	3 3 3	CAT	475	АТТ	ስፐG	GCT	GGT		1488
	VVC	GΛC	GGC	TAC	CTG	AMC	neA	Met	LVS	Asn	Val	Ile	Met	Ala	Gly	Arg	
	ASII	Gru	Gry	ıyı	485	A311	A3		- , .	490					495		
35	GGA	ATG	TTG	GAT	GTG	CAG	ATG	CTG	GTT	GTC	AAC	CGC	TAT	GAC	CCC	ACT	1536
	Gly	Met	Leu	Asp	Val	Gln	Met	Leu	Val	Val	Asn	Arg	Tyr	Asp	Pro	Thr	
	_			520					505					510			3604
	CGT	CTC	TGT	GCT	λTT	GGA	GAG	GTC	GGC	GAG	ATC	TAT	GTT	CGC	GCA	GGG	1584
40	Arg	Leu			Ile	Gly	Glu			Glu	Ile	Tyr	Vai	Arg	Ala	Gly	
•	_		515		000	m> 0		520	- T-C-	CCC	CAA	CTG	525 AGT		AAG	AAG	1632
	GGT	CTT	GCA	GAG	GGC	TAC	LII	GGC	Ser	Pro	Glu	Leu	Ser	Ala	Lys	Lys	
	GTY	530		(111)	(11 y	1 7 1	535	··- /	,,,,_			510	,				
45	TTC	СТТ	AAC	AAC	TGG	TTT	GTT	AAC	CCT	GAG	ATC	TGG	GCG	GAA	. AAA	GAT	1680
40	Phe	Leu	Asn	Asn	Trp	Phe	Val	Asn	Pro	Glu	Ile	Trp	Ala	Glu	Lys	, wab	
	545					550)				555	5				200	1728
	CAA	GCC	GAA	TCC	AGG	TAA	GAG	CCC	TGG	CGT	CYA	TTC	TAC	GT	GG	CCG	1/20
	Glr	Ala	Glu	Ser	Arg	Asn	Glu	Pro	Trp	Arg	Glr	n Phe	Tyr	· va	579	Pro	
50					565					570			r #13/	* » C(_		1776
	CG1	GA7	CGC	CTI	TAT	. CCC	AGT	GGT	GAC	CIF			. T.O.	- Thi	r Pro	TCT Ser	
	Arc	g Asp	Arg			Arg	j Ser	GI	gaa y 182	, Lec	ı GI	YAL	3 - X .	59	0	ser	
	415		C P1	580 200	י יינייי ייניייי	ר דרי	r ccc				GA'	T CA	A GT			r CGT	1824
55	GG/	A GA	n Vai	נים ו וום ו	T CAN	s Sei	. 330 c Glv	Are	a Ala	A Ası	Ası	p C1	n Va	l Ly	g Il	e Arg	
			591	5				60	0				60	>			
	GG'	r TT	- cc	ר אדר	r GA	CT'	r GG	CA(G AT	C GA	CAC	C CA	T CT	CTC	T CA	G CAC	1872
	Gl	y Ph	e Ar	gIle	e Gl	ı Le	u Gly	y G1:	u Fl	e As	p Th	r Hi	s Le	u Se	r Gl	n His	
60	-	61					61	5				62	0				

	درحه	CTC	GTI	CGI	GAG	AAC	GTG	ACC	TTO	: GTC	: CC:	1 AC				GAG	
	Pro	Leu	val	. Arq	Glu	λεπ	Val	Thr	Lei	Val	Arc	NOA NACA	. SA	T	GAC	Glu	1920
5	625	;		_		630		• • • • • • • • • • • • • • • • • • • •			635		, wat	Lys			
	GAG	ccc	ACA	TTG	GTC			TTI	GTA	רכז	. כט רגם י	, የ አጥር				640 GCC	
	Glu	Pro	Thr	Leu	Val	Ser	Tvr	Phe	Val	Pro) Dar	Mar	Ann	Tue	7	Ala	1968
					645					650	1				656	•	
10	TCA	TGG	TTG	GAG	AGC	AAG	GGC	CTT	AAG	GAT	GAT	· GAC	TCT	GAC	TCC	CAC	2016
10	Ser	Trp	Leu	Glu	Ser	Lys	Gly	Leu	Lys	Asp	Asp	Asp	Ser	Asp	Ser	Glu	2016
				660					665					670			
	GGT	ATG	GTC	GGT	CTG	TTG	CGA	CGC	TTC	CGT	ССТ	CTC	CGT	CAT	CAT	GCT	2064
	Gly	Met	Val	Gly	Leu	Leu	λrg	Arg	Phe	Arg	Pro	Leu	Arq	Asp	Asp	Ala	2001
15			0/5					680					685				
	CGT	GAG	CAT	CTC	CGG	ACT	λAG	CTC	CCI	ACA	TAC	GCA	GTG	CCG	ACC	GTT	2112
	Ar9	GIU	HIS	Leu	Arg	Thr	Lys	Leu	Pro	Thr	Tyr	Ala	Val	Pro	Thr	Val	
		690					695					700					
20	ATC	ATT	CCC	CTC	AAG	CCC	ATG	CCT	CTG	AAC	CCG	AAC	GGC	AAG	ATC	GAC	2160
	116	He	Pro	Leu	Lys	Arg	Met	Pro	Leu	Asπ	Pro	λsn	Gly	Lys	Ile	yab	
	705	ccc	ccc	CITA	CCD	710					715					720	
	Lun	Pro	GCG Ala	Lou	CCI	Dho	Des	GAT	ACT	GCA	GAG	CIG	AGC	GCC	GCT	GCA	2208
	2,3		Ala	Dea	725	Pne	Pro	Asp	Thr		Glu	Leu	Ser	Ala		Ala	
25	CCC	CGC	CGC	GCC		тст	CCA	TTC	CNC	730	000				735	2. 2	
	Pro	Arq	Ara	Ala	Ser	Ser	Ala	T.AU	Cla	812	7.00	TCT	CAA	ACT	CAC	CAG Gln	2256
		-		740				Deu	745	VIG	re:11	ser	(+111		Glu	Gin,	
	ACT	CTG	GCT		GTC	TGG	GCC	AAG	CTC	ΔΤΤ	ccc	እ እ ፐ	CTC	750		22.0	
30	Thr	Leu	Ala	Gln	Val	Trp	Ala	Lva	Leu	Tle	Pro	Val	Ual	AC I	Con	CGC	2304
			100					760					765				
	ATG	ATT	GGC	CCG	GAT	GAC	TCC	TTC	TTT	GЛT	CTC	CCC	CCC	CAC	ΔСТ	ልጥር	2352
	Met	116	Gly	Pro	Asp	qeA	Ser	Phe	Phe	Азр	Leu	Gly	Glv	His	Ser	Ile	2332
25		,,,					775					780					
35	CTC	GCA	CAA	CAA	ATG	TTC	TTC	GAG	CTT	CGC	CGT	AAG	TGG	CGT	GTT	ATT	2400
	rieu	Ala	Gln	Gln	Met	Pne	Phe	Glu	Leu	Arg	Arg	Lys	Trp	Arg	Val	Tle	
	100					790					795					900	
	311	TIO	AGT	Man	AAT	GCT	ATC	TTC	CGC	AGC	CCG	ACC	CIC	AAG	GGC	TTT	2448
40	Asp	116	Ser	Mec	805	AIA	116	Pue	Arg		Pro	Thr	Leu	Lys	Gly	Phe	
	SCC	AGC	CAG	ATC			CTO	~~ \	~~	810					815		
	Ala	Ser	GAG GLu	714	Aun	Ares	140	CIN	SCA NI-	ATG	GAA	TCA	TTC	GCA	λCT	AGC	2496
			Glu	820	vab	719	Leu	Leu	825	met	GIU	Ser	Phe		Thr	Ser	
45	GAT	GAC	AAG	-	CTA	GCT	GTG	CAG		ccc	55T	CNC	ccc	830	C	a. a	
	Asp	Asp	Lys	Thr	Leu	Ala	Val	Gln	Ala	Ala	Agn	Clu	Dro	MAC	AAC AAC	Clu	2544
			835	_				840					845				
	TAC	TCC	AAC;	GAT	GCC	GTC	CAG	CTT	GTG	AAT	GAA	TTG	CCT	244	NCC:	TT/'	2592
	Tyr	Ser	Lys	Asp	Ala	Val	Cln	Leu	Val	Asn	Glu	Leu	Pro	Lvs	Thr	Phe	7.332
50		กอบ					855					960					
	CCT	CAG	CGT	ACG	GAG	GCT .	ATG	CTC	ACT	λGC	GΛΛ	CCC	νсν	GTG	TTC	CTC	2640
	FFO	Cln	Arg	Thr	Glu	Ala	Met	Leu	Thr	Ser	Glu	PIO	Thr	Val	Phe	Leu	
	805					870					875					ARA	
55	AUT	GGA	GCC	ACT	GGT	TTC	CTA (GGC	GCA	CAT	ATC	CTC	CGA	GAT	CTA	CTT	2689
	ınr	CIA	Ala	Thr	GIÅ	Phe	Leu	Gly .	Ala	His	Ile	Leu	Arg	Asp	Leu	Leu	
	N C C	<i></i>			885					890					895		
	ACC	7	AAG T	TUT	CCT	TCC /	ACT .	AAG	GTG	GTG	GCT	CTG	GTT	CGG	GCA	AAG	2736
60	inr.	wid	Lys	ser	PTO .	ser '	rhr .	Lys	Val	Val_	Ala	Leu	Val		Ala	Lys	
60				900					905					910			

	- 44	~~~	CAG	OTC.	CCN	CTC	CAG	CGA	CTT	CGC	TCC	AC'I	TGC	CGC	GCA	TAT	2784
	ACC	GAG	Glu	LIG	امن م 1 م	T.an	Glu	Ara	Leu	Ara	Ser	Thr	Суз	Arg	Ala	Tyr	
5	TNE	GLU	915	rea	V19	Deu	O.L.	920		,			925	_			
•	COT	TTC	mcc	CAT	GAA	GCG	TGG	ACT	GCC	AAG	CTG	CAA	GCT	GTC	TGT	GGT	2832
	Clu	Dho	Trp	Ago	Glu	Ala	Trp	Thr	Ala	Lya	Leu	Gln	Ala	Val	Суз	Gly	
		930					935					940					
	CAT	CTT	GGA	AAG	CCG	CAG	TTT	GGT	CTT	TCC	CAG	TCA	GTA	TGG	GAC	GAC	2880
10	Asp	Leu	Gly	Lуз	Pro	Gln	Phe	Gly	Leu	Ser	Gln	Ser	Val	Trp	Asp	Aab	
	045					950					955					900	2020
		ACC	AAC	CGC	CTC	GλT	GCT	GTA	ATT	CAC	AAC	GGA	GCC	CTT	GTC	CAC	2928
	Leu	Thr	AAC	Arg	Val	qeA	Ala	Val	Ile	His	Asn	Gly	Ala	Leu	vai	HIS	
15					965					970					313		2976
_	TGG	GTC	TAC	CCC	TAT	GCG	ACA	CIC	AGA	CCG	GCT	AAT	GTC	MAL	C1.4	The	2310
	Trp	Val	Tyr	Pro	Tyr	Ala	Thr	Leu	Arg	Pro	Ala	Agn	vai	990	GIY	1111	
				980	_				985	/ 1/1 B	4 B C		226		ттт	GCC	3024
	ATT	GAT	GCC	CTC	AAG	CTG	TGC	GCC	AGC	Clu	TVE	λla	Lvs	Gln	Phe	Ala	
20	Ile	Asp	λla	Leu	Lys	Leu	Сув	100	o Ser	GTÅ	Lys	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100	5	•		
			995 AGT	=00	200	አሮሞ	CCT	TTC	ርአጥ	λAG	GAT	CGT			CAA	GAA	3072
	TTT	GTC	AGT Ser	100	Th-	COT	Ala	T.eu	Asp	Lvs	QEA	Arg	Tyr	Val	Ğln	Glu	
			_				101	5				102	U				
25	.000	101	~~	אדכ	ATC	GCC	GCC	GGT	GGA	AAT	GGT	ATC	AGC	GAA	CAC	GAC	3120
	100	GAA	Arg	rle	Ile	λla	Ala	Gly	Gly	Agn	Gly	ile	Ser	Glu	qe <i>K</i>	735	
		-				זחו	Ω				103	ິ				10.0	
	A > M	B. T.C	GλG	GGC	AGC	AGA	GTT	GGC	CTT	GGA	ACC	GGT	TAC	GGA	CAA	AGC	3168
30	ARO	Met	Glu	Gly	Ser	Arg	Val	Gly	Leu	Gly	Thr	Gly	TYX	Gly	Gir		
50					104	5				105	U				103	_	3216
	AAA	TGG	GCC	GGT	GAA	TAC	CTT	GTC	AAA	GAG	GCC	CGC	CGC	AGA	GGC	CIG	3210
	Lys	Trp	Ala	Gly	Glu	Tyr	Leu	Val	Lys	Glu	Ala	GLY	Arq	107	GIY	Leu	
				106	Δ.				106	5					.,		3264
35	AGG	GGA	ACC	ATT	GTT	CGC	TCC	GGA	TAT	. U. 1	Tau	(21)	Aan	Ser	val	ACC Thr	
	Arg	Gl			Val	Arg	Ser	GTA	, TAE	val	rec	GLy	108	5		Thr	
			107	'5 		C B T	. C'ST	108	ነ ነ ሮሞሮ	י אדר	CCI	Y ATC			GGC	TGC	3312
	GGA	AC:	r ACC	AAI	. VCI	GA1	GAL Age	Dhe	Leu	Ile	Arc	Met	Leu	Lys	Gly	У Сув	
40	Gl;			ASD	THE	Waf	, ASP	15	. 200			110	00	_			
		10			י כדי	· ccc		יממ:	TATO	TT	: AAC	C AC	GTC	AA(TA C	G GTG	3360
	ATT	CA	M MII		. T.A.	Arc	Pro	Ası	ı Ile	Phe	2 Ast	n Th	r Val	Ası	ı Met	t Val 1120	•
						111	וח				11.	7.3					
	110		T (A)	r cai	r GTC		· cci	TA 7	T GT	C AT	r GC	C AC	T GC	TTC	CA	C CCA	3408
45	D**	ı Va	l Ast	o His	y Val	Ala	Arg	11	e Va	1 11	e Al	a Th	r Ala	a Ph			
										11	(1)					J J	3456
	cc	T GC	CAC	A GG	C GT	C AA	C GT	C GC	C CV.	T GT	T AC	C GG	A CA	ם ככ	T CG	T TTG	3430
	Pr	o Al	a Th	r Gl	y Vai	l As	n Vai	l Al	a Hl	s va	1 Th	r Gl	у нт		•	g Leu	
50				7 4	4 ^				1.1	45					50		3504
•	CG	c TI	AA T	C CA	G TT	C CI	T GG	T GC	G CI	C GA	G CT	C TA	.C GG	A 1A	- AA	T GTC	550.
	Ar	q Ph	e As	n Gl	n Ph	e Le	u Gl	λ yr	a Le	u Gl	u Le	u Ty	T GI	X + 1	I Ya	n Val	
								וו	A n					0 2			3552
	CC	T C	C GT	T GA	C TA	C GT	G CC	T TG	C .LC	TAC	T TC	C (1	1 GA	C1	יז ט. דע	T GTC	•
55	Pr	o G1	n Va	1 As	р Ту	r Va	l Pr	O Tr	p Se	r Th	r sc	E De	180		• 3	r Val	
							וו	75									3600
	A.A	C G	AC GG	C GA	G CA	CAA	GA	C AA	C1		ים. ום או	n Hi	is Al	a Le	e u	AAGTC	
			ac GG	y G1	ט או	9 AS	n A9	ליד ען	2 G1		11	195					
	1 1	9.5					.90										

	CCTCACTTTG CTCAGCCCCT TAACGGATGA ATACTGACCT TATTTAG T ATG CCC	3654
5	Met Pro 1200	
	CTT TAC CAC TTC GTT ACC TCA GAC CTT CCC TCC AAC ACC AAG GCC CCC	3702
	Leu Tyr His Phe Val Thr Ser Asp Leu Pro Ser Asn Thr Lys Ala Pro	
	1205 1210 1215	
10	GAA CTG GAT GAT GTG AAC GCA GCG ACC GCT CTG CGT GCC GAT GCC ACC	3750
	Glu Leu Asp Asp Val Asn Ala Ala Thr Ala Leu Arg Ala Asp Ala Thr	
	1220 1225 1230	
	TGG TCG GGC GTT GAC GCA TCA GCC GGT GCT GGC GTG ACT GAG GAA TTA	3798
15	Trp Ser Gly Val Asp Ala Ser Ala Gly Ala Gly Val Thr Glu Glu Leu	
	1235 1240 1245	
	GTT GGC TTA TAT GCC TCA TAC CTT GTC CAA ACC GGT TTC CTG CCC GCG	3846
	Val Gly Leu Tyr Ala Ser Tyr Leu Val Gln Thr Gly Phe Leu Pro Ala	
	1250 1255 1260	
20	CCG ACG GTT GCT GGA GCC CGC CCT CTG CCT GCT GCT CAG ATC AGT GAG	3894
	Pro Thr Val Ala Gly Ala Arg Pro Leu Pro Ala Ala Gln Ile Ser Glu	
	1265 1270 1275 1280	
	GAA CAG AAG AAG ACT CTG TTG AGT GTC GGT GGC GGT ACA TCT	3942
25	Glu Gln Lys Lys Thr Leu Leu Ser Val Gly Gly Arg Gly Gly Thr Ser	
	1285 1290 1295	4002
	TAAGAAATTT ATAAAAAGAT CTCATGTACT TATTCTGATT TTATAAAAGC AATTGCATTT	4002
	CCAAGCTCCC CAAAAAATGT GTAGTAAATT GAGCCATCAA AGACGAGGCT TGTATTTTGT ATACAACCCT GATAGTACGG AGTCGTTCGA TTCTTCACGA AAAAGCCCGA TTCGCGGATC	4122
30	TGCCCGTTCT GTGATACTCG GACTCACCGT TTGGCTCCCC GCTCTTTATT TACTCCTCTT	4182
	GAGAGTTTAT ATAGTCCCCA ACATATCTTC TGTCTTTCTT TCTTCTGTAT CTCTCTCCAT	4242
	TAGTATTCCA TCATGTCTGA AGGTAAGTGT GAGAGTGTTT ATGCGCGTCC TTGGCAATTC	4302
	NACTTCCCCG TCAGTTTTTC CCGCTTTCTC TCTTATCGGT CATTCAACCC GAAACTGTCG	4362
35	GAGCTCTGTG AGAAGTACCA CGCATCGGTT GTTGGGATTA	4402
33	The state of the s	

Número de hélices: doble.

Configuración de la secuencia: lineal.

Tipo de molécula: ADN.

Secuencias hipotéticas: No.

⁴⁵ Antisentido: No.

Tipo de fragmento: .

Origen de la molécula: Secuencia de ADN procedente de P. chrysogenum correspondiente al ORF 2 del gen lys2.

Fuente experimental inmediata de la secuencia: plásmido pDLIIa y pDLIIb.

Posición de la secuencia en el genoma: Cromosoma IV (5,6 Mb) en la cepa P. chrysogenum P2 y cromosoma III (7,5 Mb) en la cepa P. chrysogenum AS-P-78.

Características de la secuencia:

Longitud: 4.402 pares de bases.

CDS: Unir (1..3593, 3648..3942).

Intrón: 3594..3647.

SEQ ID NO: 4

5																
	Met	Val	Leu	Gln	Ala	Tyr	Lys	Glu	Gly		Ser	Glr	ıIl	e Va	l Pr	o Leu
	1	_	_		5			01 -	1	10				- ~1.	1	- Th-
	Gly	Ser		Arg	Ser	Tyr	ile	GIN 25	GIU	rys	Ser	Lys	30	C GII	u AI	g Thr
10	D	1/- 1	20	Dho	N ~~	Dho	212	Ala	エ レン	ă a n	2 l a	Pro		Ser	Ser	Gln
	Pro	var	Jeu 35	Pne	Arg	Pne	Ald	40	TYL	vaħ	VIG	-10	45	361	56.	01
	۸en	Tur		Ala	Asn	Thr	Phe	Asp	Thr	Thr	Q E A	Leu		Val	Asn	Val
	V2b	50					55					60				
15	Ala	Pro	Gly	Ser	Ala	Glu	Val	Glu	Leu	Gly	Ala	Tyr	Tyr	Asn	Gln	Arg
	65					70					75					80
					85			Ala		90					95	
20	Ile	Ala	Ser	Asn	Ala	Ala	Ala	Asn		Asp	Glu	Ala	Ile		Arg	Ile
				100					105	_		_	-	110	m	C
	Asp	Leu		Thr	Glu	Asp	Gln	Arg	Ala	Leu	Leu	Pro		PLO	Thr	САя
		_	115		/2 -	3	nh -	120	C1	212	77.0	uia	125	T1a	Phe	The
25	Asn		Asn	Trp	Ser	Asn	135	Arg	GIY	MIG	TIE	140	vah	116		••••
	015	130	۸۱=	CI.	Ara	uie		Glu	I.vq	Leu	Cvs		Val	Glu	Thr	Gln
	145	ASII	A10	910	7.3	150		010	-,-		155					160
	Ser	Ser	Ser	Ser	Pro	His	Arg	Glu	Phe	Thr	Tyr	Arg	Gln	Ile	neA	Glu
30					165					170					175	
	Ala	Ser	Λsn	ile	Leu	Gly	His	His	Leu	Val	Arg	Ser	Gly		Gln	Arg
				180				_	185				_	190	*** 1	**-1
	Gly	Glu		Val	Met	Val	Tyr	Ala	Tyr	Arg	Gly	Val		Leu	vaı	vai
35			195	a 1	• \ -	•	*	200	C1	21-	Th-	Dho	205	Va 1	110	Agn
	Ala		Met	Gly	116	Leu	215	Ala	GIĀ	Ald	1111	220	Ser	Vai	110	71.56
	D=0	210	Tur	Dro	Pro	Glu		Gln	Äsn	Tle	Tvr		GRA	Val	Ala	Arg
	225	VIG	TYL	FLO		230					235					240
40		Arg	Ala	Leu	Val		Ile	Ala	Lys	Ala	Thr	Lys	Asp	Ala	Gly	Glu
					245					250					255	
	Leu	Ser	Asp	Ile	Val	Arg	Thr	Phe	Ile	Asp	Glu	Agn	Leu	Glu	Leu	Arg
				260					265					270		
45	Thr	Glu	Ile	Pro	Ala	Leu	Ala	Leu	Leu	Asp	Asb	Gly		Leu	Ala	Gly
			275				_	280			•		285	21-	T 011	Tve
	Gly			Asn	Gly	Gln			Pne	Ala	ASR	300	vai	Ald	Leu	Lys
	•	290		æ.	61. .	17-1	295		C23 vz	Pro	Aen		Tle	Pro	Thr	Leu
50		_	PFO	Inr	GIY	310		491	GLY		315					320
-	305	Dha	Thr	Ser	Glv			Glv	Ara	Pro			Val	Arg	Gly	Arg
	Jei	FILE		541	325		~-u	1	3	330		• 4			335	,

55

```
His Phe Ser Leu Ala Tyr Tyr Phe Pro Trp Met Ser Glu Thr Phe Lys
                                     345
     Leu Thr Pro Asp Glu Lys Phe Thr Met Leu Ser Gly Ile Ala His Asp
             355
                                 360
     Pro Ile Gln Ary Asp Ile Phe Thr Pro Leu Phe Leu Gly Ala Gln Leu
                             375
     Leu Val Pro Ala Arg Glu Asp Ile Gln Asn Glu Lys Leu Ala Glu Trp
 10
                         390
                                              395
     He Glu Lys Tyr Gly Ala Thr He Thr His Leu Thr Pro Ala Met Gly
                     405
                                          410
     Gln Ile Leu Val Gly Gly Ala Ser Ala Cln Phc Pro Ala Leu His His
 15
                 420
                                     425
     Ala Fhe Fhe Val Cly Asp Ile Leu Ile Lys Arg Asp Cys Arg Ser Leu
             435
                                 440
     Gln Gly Leu Ala Pro Asn Val Ser Ile Val Asn Met Tyr Gly Thr Thr
                             455
                                                  460
 20
     Glu Thr Gln Arg Ala Val Ser Tyr Tyr Glu Ile Pro Ser Tyr Ala Ser
                         470
                                              475
     Asn Glu Gly Tyr Leu Asn Asn Met Lys Asp Val Ile Met Ala Gly Arg
                     485
                                         490
                                                             495
     Gly Met Leu Asp Val Gln Met Leu Val Val Asn Arg Tyr Asp Pro Thr
                 500
                                     505
     Arg Leu Cys Ala Ile Gly Glu Val Gly Glu Ile Tyr Val Arg Ala Gly
             515
                                 520
     Gly Leu Ala Glu Gly Tyr Leu Gly Ser Pro Glu Leu Ser Ala Lys Lys
30
                             535
     Phe Leu Asn Asn Trp Phe Val Asn Pro Glu Ile Trp Ala Glu Lys Asp
                         550
                                             555
     Gln Ala Glu Ser Ary Asn Glu Pro Trp Arg Gln Phe Tyr Val Gly Pro
                     565
                                         570
                                                             575
     Arg Asp Arg Leu Tyr Arg Ser Gly Asp Leu Gly Arg Tyr Thr Pro Ser
                 580
                                     585
     Gly Asp Val Glu Cys Ser Gly Arg Ala Asp Asp Cln Val Lys Ile Arg
             595
                                 500
     Gly Phe Arg Ilc Clu Leu Gly Glu Ile Asp Thr His Leu Ser Gln His
                             615
                                                 620
     Pro Leu Val Arg Glu Asn Val Thr Leu Val Arg Arg Asp Lys Asp Glu
                         630
                                             635
     Clu Pro Thr Leu Val Ser Tyr Phe Val Pro Asp Met Asn Lys Trp Ala
45
                     645
                                         650
     Ser Trp Leu Glu Ser Lys Gly Leu Lys Asp Asp Asp Ser Asp Ser Glu
                 660
                                     665
     Gly Met Val Gly Leu Leu Arg Arg Phe Arg Pro Leu Arg Asp Asp Ala
                                 680
50
     Arg Glu His Leu Arg Thr Lys Leu Pro Thr Tyr Ala Val Pro Thr Val
                             695
                                                 700
     lle Ile Pro Leu Lys Arg Met Pro Leu Asn Pro Asn Gly Lys Ile Asp
                         710
                                             715
     Lys Pro Ala Leu Pro Phe Pro Asp Thr Ala Glu Leu Ser Ala Ala Ala
55
                     725
                                         730
     Pro Ary Ary Ala Ser Ser Ala Leu Gln Ala Leu Ser Glu Thr Glu Gln
                                     745
     Thr Leu Ala Gln Val Trp Ala Lys Leu Ile Pro Asn Val Thr Ser Arg
60
                                 760
```

	Mat	110	Gl··	Pro	GEA	Asp	Ser	Phe	Phe	Asp	Leu	c1y	Gly	His	Ser.	Ile
		770					775					780				
5	!.eu	GJA	G] n	Gln			Phe	Glu	Leu	Arg	Arg 795	Lys	Trp	Arg	vaı	800
	785			Mar.	2	790 213	Tla	Dhe	Ara	Ser		Thr	Leu	Lys	Gly	
	_				805					810					RTD	
10	Ala	Ser	Glu	Ile	qeA	Arg	Leu	Leu	Ala	Met	Glu	Ser	Phe	Ala	Thr	Ser
				320	_		11-1	C1 =	825	λla	Δan	Glu	Pro	QEA	ASD.	Glu
	-		935					840					845			
	Tyr	Ser	Lys	qeA	Ala	Val	Gln	Leu	Val	neA	Glu	Leu	Pro	Lys	Thr	Phe
15		OFA					855					860				
		Gln	Arg	Thr	Glu	Ala	Met	Leu	Thr	Ser	875	Pro	III	Val	riic	880
	865	C1	n I a	Thr	Glv	870 Phe	Leu	Gly	Ala	His	Ile	Leu	λrg	Asp	Leu	Leu
				-	885					890					937	
20	Thr	Arg	Lys	Ser	Pro	Ser	Thr	Lys	Val	Val	Ala	Leu	Val	Arg 910	Ala	Lys
			01	300	N 1 -	T 611	Glu	A ra	905 Leu	Ara	Ser	Thr	Cys	Arg	Ala	Tyr
			015					920					723			
25	Gly	Phe	Trp	Asp	Glu	Ala	Trp	Thr	Ala	Lys	Leu	Gln	Ala	Val	Cys	Gly
		020					235					940		Trp		
						950					955					700
	Leu	Thr	Asn	Arg	Val	Asp	Ala	Val	Ile	His	Asn	Gly	Ala	Leu	Val 975	His
30					065					970					,,,	
									985	,				Met 990		
	fle	Asp	Ala	Leu	Lys	Leu	Суз	Ala	Ser	Gly	Lys	Ala	Lys	Gln 5	Phe	Ala
35			OOE					100	U				100	_		
33			^				וחו	ς				102	U			Glu
	Ser	Glu	.J L Arq	Ile	Ile	Ala	Ala	Gly	Gly	/ Asn	Gly	Ile	Scr	Glu	Asp	Asp 1040
		_				107	^				1 U 3	_				
40					1 1 1 1	_				102) U					
	Lvs	Trt	a Ala	Cly	, Glu	Tyr	Leu	ı Val	Lys	3 Glu	ı Ala	Gly	Arg	Arg	Gly	Leu
				100	. ^				1.06	ככ				10,	•	
	Arc	G1;			val	. Arg	Sei	101	y Tyl	e val	r rec	, GLY	108	35		Thr
45	G1s	, Th	107 Thi	/S	ı Thi	Ast) Asi	Pho	e Le	u Ile	a Arg	Met	: Lev	Lys	G1)	/ Cys
							10	95				11	,,,			
	110	e Gl	n Ile	e Cly	y Le	Arg	g Pr	eA c	n Il	e Pho	e Asi 111	i Tri	r va.	r war	1 ME	val 1120
50	11	05	1 20	∽ Uii	a Va	11: 1 Al.	1U a Ar	a Il	e Va	1 11	e Ala	a Th	r Ala	a Phe	e Hi	s Pro
						2 E				1.1	30					_
	Pr	o Al	a Th			l As	n Va	1 A1	a Hi	y Va	1 Th	r Gl	y Hi	s Pro	5 AF	g Leu
	_			- 11	40 Ph	a T.e	., G1	v Al	a Le	45 u Gl	u Le	u Ty	r Gl			n Val
55								11	611							
	Pr	o G1	n Va	1 As	рТу	r Va	l Pr	o Tr	p Se	r Th	r Se	r Le	u Gl	u Cl	n Ty	r Val
~~			sp Gl	y G1	u Hi	eA e.	n As 190	ip L)	∖a <u>.</u> @1	iu se	:F G1	n ni 195	^.			t Pro 1200
60	_ 1	.85					130				_					

	Leu 1	Tyr His	3 Phe	Val	Thr	Ser	Asp	Leu	Pro	Ser	Asn	Thr	Lys	Ala	Pro
				120	5				121	0				121	5
5	Glu I	Leu Ası	dry c	Val	Asn	Ala	Ala	Thr	Ala	Leu	Arg	Ala	Asp	Ala	Thr
•			122	0				122	5				123	0	
	Trp S	Ser Gly	/ Val	qeA	Ala	Ser	Ala	Gly	Ala	Gly	Val	Thr	Glu	Glu	Leu
		123	15				124	0				1249	5		
	Val C	Gly Leu	Tyr	Ala	Ser	Tyr	Leu	Val	Gln	Thr	Gly	Phe	Leu	Pro	Ala
10	1	1250				1255	5				1260)			
	Pro 1	Thr Val	. Ala	Gly	Ala	Arg	Pro	Leu	Pro	Ala	Ala	Gln	Ile	Ser	Glu
	: 265				1270)				1279	5				1280
	Glu C	Cln Lys	Lys	Thr	Leu	Leu	Ser	Val	Gly	Gly	Arg	Gly	Gly	Thr	Ser
15				1285	5				1290			•	-	1295	
	Origen de la m	olécula:	Secuer	ncia de	e amin	oácid	os co	dificad	la por	el OF	RF2 d	el gen	lys2 (de <i>P.</i>	chrysogenum.
20	Características	de la se	cuenci	a :											
	Longitud: 1	1.296 am	inoácio	dos											
	Peso moleci	ular: 142	.421 E)a											

REIVINDICACIONES

- 1. Procedimiento para incrementar la producción de penicilina en Penicillium chrysogenum caracterizado por inactivar el gen que codifica para la actividad enzimática α-aminoadipato reductasa, en dicho microorganismo.
- 2. Procedimiento según la reivindicación 1, caracterizado porque la inactivación del gen se lleva a cabo mediante la disrupción del mismo.
- 3. Procedimiento según las reivindicaciones 1 y 2, caracterizado porque la disrupción del gen se logra mediante integración por recombinación homóloga simple de una construcción de ADN transformante que contiene al menos una o parte del gen que se va a inactivar.
- 4. Procedimiento según las reivindicaciones 1 y 2, caracterizado porque la disrupción del gen se logra mediante sustitución génica por doble recombinación homóloga de una construcción de ADN transformante que contiene al menos una parte del gen que se va a inactivar.
 - 5. Procedimiento según las reivindicaciones 3 y 4, caracterizado porque la construcción de ADN transformante es una molécula circular que lleva un fragmento de ADN interno al gen que se va a inactivar.
 - 6. Procedimiento según las reivindicaciones 3 y 4, caracterizado porque la construcción de ADN transformante es una molécula de ADN lineal, cuya parte central y esencial del gen a inactivar ha sido sustituida por un fragmento de ADN no relacionado que contiene un marcador de transformación que interrumpe la secuencia codificante.
 - 7. Procedimiento según las reivindicaciones 1 a 6, caracterizado porque que el gen a inactivar es el gen lys2.
- 8. Procedimiento según las reivindicaciones 1 a 7, en que se emplea como marcador de transformación el gen pyrG.
 - 9. Compuesto de ADN aislado de P. chrysogenum y definido por el mapa de restricción que aparece en la Fig. 1, el cual incluye el gen lys2.
- 35 10. Secuencia de ADN identificada como SEQ ID NO: 1.
 - 11. Secuencia de aminoácidos identificada como SEQ ID NO: 2, que se corresponde con la proteína codificada por SEQ ID NO: 1.
- 12. Secuencia de ADN identificada como SEQ ID NO: 3.
 - 13. Secuencia de aminoácidos identificada como SEQ IP NO: 4, que se corresponde con la proteína codificada por SEQ ID NO: 3.
- 14. Vectores que portan los compuestos de ADN descritos en las reivindicaciones 9, 10 y 12 o fragmentos de los mismos que expresen una funcionalidades análogas a los compuestos íntegros.
 - 15. Vectores de acuerdo con la reivindicación 14, caracterizados por consistir en un plásmido.
- 16. Plásmido de acuerdo con la reivindicación 15, caracterizado por consistir en pDLVII.
 - 17. Plásmido de acuerdo con la reivindicación 15, caracterizado por consistir en pDLX.
- 18. Secuencias nucleotídicas caracterizadas por ser capaces de hibridar bajo condiciones restrictivas con los compuestos de ADN de las reivindicaciones 9, 10 ó 12 y que expresen funcionalidades análogas a las que expresan éstos.
- 19. Organismos hospedantes transformados caracterizados porque se les han introducido las secuencias de ADN de las reivindicaciones 9, 10 ó 12.
 - 20. Organismos hospedantes según la reivindicación 19 caracterizados porque las secuencias de ADN introducidas están incluidas total o parcialmente en los vectores de las reivindicaciones 14 a 17.

1

٠..

- 21. Organismos hospedantes transformados según las reivindicaciones 19 y 20 caracterizados por consistir en un eucariota, preferentemente un hongo filamentoso.
- 22. Organismos hospedantes transformados según reivindicación 21, caracterizados por consistir preferentemente en P. chrysogenum.
- 23. Cepa transformada de P. chrysogenum en la que una construcción de ADN que lleva una versión truncada, incompleta o inactiva de un gen que codifica para la enzima α-aminoadipato reductasa, implicada en la biosíntesis de lisina, inactiva el gen endógeno tras su integración por recombinación homóloga.
 - 24. Una cepa transformada de P. chrysogenum, conforme a la reivindicación 23, en la que dicho gen codifica una enzima con actividad a-aminoadipato reductasa.
- 25. Cepa transformada de *P. chrysogenum*, conforme a la reivindicaciones 23 y 24, en la que dicho gen es *lys2*, el gen de *P. chrysogenum* que codifica una enzima con actividad α-aminoadipato reductasa, definida por las secuencias proteicas que se muestran en SEQ ID NO: 2 y SEQ ID NO: 4.
- 26. Cepa transformada de P. chrysogenum, conforme a las reivindicaciones 23 y 24, en la que dicho gen es un homólogo funcional de lys2, con procedencia distinta de P. chrysogenum, procedente de otras especies emparentadas filogenéticamente, y cuya similitud en la secuencia de ADN con el gen lys2 de P. chrysogenum es suficiente para mediar recombinación homóloga con el locus endógeno de P. chrysogenum y expresar una funcionalidad análoga a la expresada por éste.
- 27. P. chrysogenum transformado según las reivindicaciones 23 a 25, caracterizado por consistir en cepas puras representadas por CECT 20209 o sus mutantes y derivados transformados.
 - 28. Procedimiento para la obtención de organismos transformados con una producción incrementada de penicilina caracterizado por comprender al menos las operaciones de:
 - * Construir vectores que porten, total o parcialmente, SEQ ID NO: 1, SEQ ID NO: 3 o compuestos de ADN recombinante de las mismas que expresen funcionalidades análogas a dichas secuencias.
 - * Introducir los vectores anteriores en organismos hospedantes obteniendo organismos transformados con el gen lys2 inactivado.
 - * Seleccionar los organismos transformados que presentan incrementada la producción de penicilina cuando se comparan con organismos controles sin transformar.
- 29. Procedimiento para la obtención de organismos transformados según la reivindicación 28, caracterizado porque los vectores construidos son los definidos en las reivindicaciones 14 a 17.
 - 30. Procedimiento según las reivindicaciones 28 y 29, caracterizado porque los organismos hospedantes transformados son los definidos en las reivindicaciones 19 a 27.

45

30

35

50

55

Figura 1

igura 2

Figura 3

① ES 2 133 104

(1) N.º solicitud: 9701343

22) Fecha de presentación de la solicitud: 19.06.97

(32) Fecha de prioridad:

INFORME SOBRE EL ESTADO DE LA TECNICA

(51) Int. Cl. ⁶ :	C12N 15/53, 9/04	

DOCUMENTOS RELEVANTES

Categoría		Documentos citados	Reivindicaciones afectadas
Y	Penicillium chrysogenum in rel alpha-aminoadipate into penici		1-7,28
. Y	EIBEL, H. et al. "Identification of the cloned S. cerevisiae LYS2 gene by an integrative transformation approach". MOL. GEN. GENET., 1983, Vol. 191, N° 1, páginas 66-73, todo el documento.		1-4.6.7. 28
Y	BARNES, D.A. et al. "Genetic manipulation of Saccharomyces cerevisiae by use of the LYS2 gene". MOLECULAR AND CELLULAR BIOLOGY, 1986, Vol. 6, N° 8, páginas 2828-2838, páginas 2835-2837; figura 6.		1-5,7,28
A	control of lysine biosynthesis or	ential effects of general amino acid n penicillin formation in strains THE JOURNAL OF ANTIBIOTICS, 1988, 7, todo el documento.	1-30
	·		ý-
X: de Y: de mi	goría de los documentos citado particular relevancia particular relevancia combinado co sma categoría (leja el estado de la técnica	O: referido a divulgación no escrit	oridad y la de presentación
	esente informe ha sido realiza para todas las reivindicaciones	ndo para las reivindicaciones n	·•:
Fecha de realización del informe 30.06.99		Examinador J.L. Vizán Arroyo	Página 1/1

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.