2021 2 학기 자료구조개론 중간고사

Caution

1. Following lines are all included in the program, but omitted due to page limitation

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
```

2. All variables and arrays in program are initialized with zeros at the beginning.

```
ex 1) int i; double d; \Rightarrow i and d is initialized with 0
```

- ex 1) char s[100]; => all the values are 0 at the start
- ex 2) char $s = (char^*)malloc(100)$; -> all the values in s is initialized with 0 when allocated

Q1. Solve the problem related to the following problem

```
#define SWAP(x, y, t) ((t) = (x), (x) = (y), (y) = (t))
                                                      void main(void) {
void sort(int list[], int n)
                                                           int n = 15;
                                                           9, 10, 5, 8, 3, 5, 3};
    int i, j, temp;
    int for_count = 0;
                                                           sort(list, n);
    for(i = 1; i < n; i++) {
        for (j = i - 1; j >= 0; j--) {
             if(list[j + 1] < list[j])
                 SWAP(list[j + 1], list[j], temp);
             for_count++;
            (A)
        }
    }
    Printf("%d\n", for_count); (B)
       What is ti
```

a.	What is	stime	complexity	of the	sort	program?	(array	ien -	->	n))
----	---------	-------	------------	--------	------	----------	--------	-------	----	----	---

- ① Θ(1)
- ② Θ(n)
- ③ Θ(log n)
- (4) $\Theta(n \log n)$ (5) $\Theta(n^2)$

b. What is the name of this sort method

- ① Selection sort
- ② Insertion sort
- 3 Bubble sort
- 4 Quick sort
- ⑤ Merge sort

c. What is the value of list[12] after sort

- 1 1
- ② 3
- 3 9
- 4 11
- ⑤ 15

d. What is the value of list[3] after sort

- ① 3
- 2 5
- ③ 9
- **4** 15
- ⑤ 17

e. When i is 10 and j is 6, what is the value of list[4] when program is at (A)

- 1) 7
- ② 20
- ③ 9
- 4) 10
- (5) **1**

f. When i is 7 and j is 3, what is the value of list[2] when program is at (A)

- ① 5
- ② 20
- ③ 3
- 4 10
- ⑤ 1

g. What is the output of the printf at **B**① 86
② 97
③ 105
④ 113
⑤ 120
h. How many times **SWAP** called in this program

⑤ 52

① 48 ② 49 ③ 50 ④ 51

Q2. Solve the problem related to the following problem

Q2. Solve the problem related to the following proble	m				
#define MAX_TERMS 101		row	col	value	
#define MAX_COL 10	a[0]	7	8	12	
typedef struct {	a[1]	1	0	-3	
int col;	a[2]	4	3	24	
int row;	a[3]	0	2	13	
int value;	a[4]	3	1	-2	
} term;	a[5]	0	3	4	
	a[6]	0	6	-5	
	a[7]	5	2	34	
	a[8]	2	2	-79	
void fasttranspose(term a[], term b[]) {	int mair	n(int argo	c, char *a	irgv[]) {	
int rowTerms[MAX_COL], startPos[MAX_COL];	term	a[MAX_T	ERMS], b	o[MAX_TERMS];	
int i, j, numCol = a[0].col, numTerms = a[0].value;					
b[0].row = numCol; b[0].col = a[0].row;	/* a is initialized with upper value */				
b[0].value = numTerms;					
if (numTerms >0) {	fasttra	anspose(a, b);		
for(i=0; i <numcol; i++)<="" td=""><td>}</td><td></td><td></td><td></td></numcol;>	}				
rowTerms[i] = 0;					
for(i=1; i<=numTerms; i++)					
rowTerms[a[i].col]++;					
A					
startPos[0] = 1;					
for(i=1; i <numcol; i++)<="" td=""><td></td><td></td><td></td><td></td></numcol;>					
startPos[i] =					
startPos[i-1] + rowTerms[i-1];					
B					
for(i=1; i<=numTerms; i++) {					
j=startPos[a[i].col]++;					
b[j].row = a[i].col; b[j].col = a[i].row;					
b[j].value = a[i].value;					
}					
©					
}					
}					

a.	What is the val	What is the value of b[2].row after fasttranspose?								
	① 0	② 1	3 2	4 3	⑤ 8					
b.	o. What is the value of b[6].value after fasttranspose?									
	① 12	② 24	③ -2	4 -5	⑤ -79					
C.	What is the val	ue of b[7].value	e after fasttrans	spose?						
	① -3	② 13	3 4	4 34	⑤ -79					
d.	What is the val	ue of the rowT	erms[1] when p	orogram is at (A					
	① 0	② 1	③ 2	4 3	⑤ 4					
e.	What is the val	ue of the rowT	erms[5] when p	orogram is at (Ā					
	① 0	② 1	③ 2	4 3	⑤ 4					
f.	What is the val	ue of the startl	Pos[2] when pr	ogram is at ®)					
	① 4	② 5	3 6	4 7	⑤ 8					
g.	What is the val	ue of the startl	Pos[6] when pr	ogram is at ®)					
	① 9	② 10	③ 11	4 12	⑤ 13					
h.	What is the val	ue of the starti	Pos[2] when pr	ogram is at ©)					
	① 9	② 10	③ 11	412	⑤ 13					
i.	What is the val	ue of the startl	Pos[6] when pr	ogram is at ©)					
	① 9	② 10	3 11	4 12	⑤ 13					
j.	What is the tim	ne complexity o	of this program	(termNum ->	n)?					
	① Θ(1)	② Θ(n)	③ Θ(log n)	④ Θ(n log n)	⑤ Θ(n²)					

Q3. Solve the problem related to the following problem

```
#define COMPARE(x,y) ((x) < (y)?-1:((x)==(y)?0:1))
                                                            polyPointer cpadd (polyPointer a, polyPointer b) {
typedef struct polyNode *polyPointer;
                                                              polyPointer startA, c, lastC;
struct polyNode {
                                                              int
                                                                            sum, done = 0;
  int coef;
                                                                            else\_count = 0;
                                                              int
  int expon;
                                                              startA = a;
  polyPointer link;
                                                              a = a - \sinh;
};
                                                              b = b - \sinh;
polyPointer cpadd (polyPointer a, polyPointer b);
                                                              c = (polyPointer)malloc(sizeof(struct polyNode));
int length (polyPointer last) {
                                                              c \rightarrow expon = -1;
  polyPointer temp;
                                                              lastC = c;
  int count = 0;
                                                              do {
  if (last) {
                                                                 switch (COMPARE(a->expon, b->expon)) {
    temp = last;
                                                                 case -1:
    do {
                                                                   attach(b->coef,b->expon,&lastC);
       count++;
                                                                   b = b - \sinh;
                                                                   break;
       temp = temp->link;
    } while (temp != last);
                                                                 case 0:
                                                                   if (startA == a) done = 1;
  return count;
                                                                   else {
                                                                     sum = a -> coef + b -> coef;
void attach(float coefficient,
                                                                     if (sum) attach(sum,a->expon,&lastC);
            int exponent, polyPointer *ptr) {
                                                                     else else_count++;
  polyPointer temp;
                                                                     a = a - \sinh; b = b - \sinh;
  temp =
  (polyPointer)malloc(sizeof(struct polyNode));
                                                                   break;
  temp->coef = coefficient;
                                                                 case 1:
  temp->expon = exponent;
                                                                   attach(a->coef,a->expon,&lastC);
  (*ptr)->link = temp;
                                                                   a = a -> link;
  *ptr = temp;
                                                                }
                                                              } while (!done);
                                                              lastC->link =c;
void main() {
  polyPointer a,b, c;
                                                              printf("else_count : %d\n", else_count); (B)
  polyPointer init_a,init_b;
                                                              return c;
  /* a, b is initialized with format below */
  /* check the actual value in problem */
  c= cpadd(a, b);
  printf("%d₩n", length(c)); (A)
```

 $A(x) = 4x^{14} + 3x^{10} + 13$

a - -1 -1 3 10 - 13 0

a. If $A(x) = 4x^{14} + 3x^{10} + 13$, $B(x) = -2x^{14} + x^7 + 25x^2$,

what is output of the printf at line (A)

- ① 5
- ② 6
- ③ 7
- 4 8
- ⑤ 9
- b. If $A(x) = 4x^{14} + 3x^{10} + 13$, $B(x) = -2x^{14} + x^7 + 25x^2$,

what is output of the printf at line (B)

- 1) 0
- ② 1
- 3 2
- **4** 3
- ⑤ 4
- c. If $A(x) = 4x^{14} + 3x^{10} + 13$, $B(x) = -2x^{14} + x^7 + 25x^2$, what is the value of c->link->link->link->link->expon
 - ① 0
- ② 3
- ③ 9
- 4 19
- ⑤ 20
- d. If $A(x) = 2x^{25} + 16x^7 3x^2 + x$, $B(x) = 2x^{10} 33x^3$,

what is output of the printf at line (A)

- ① 5
- ② 6
- 3 7
- 4 8
- ⑤ 9
- e. If $A(x) = 2x^{25} + 16x^7 3x^2 + x$, $B(x) = 2x^{10} 33x^3$,

what is output of the printf at line (B)

- ① 0
- ② 3
- ③ 9
- 4 19
- ⑤ 20
- f. If $A(x) = 2x^{25} + 16x^7 3x^2 + x$, $B(x) = 2x^{10} 33x^3$,

what is the value of c->link->link->link->link->expon

- ① 0
- ② 2
- 3 4
- **4** 8
- ⑤ 14
- g. If $A(x) = x^3 + 3x^2 + 3x^1 + 1$, $B(x) = -x^3 2x^2 1$.

what is output of the printf at line (A)

- ① 0
- ② 1
- 3 2
- **4** 3
- ⑤ 4
- h. If $A(x) = x^3 + 3x^2 + 3x^1 + 1$, $B(x) = -x^3 2x^2 1$,

what is output of the printf at line (B)

- ① 0
- ② 1
- ③ 2
- **4** 3
- 5 4

i. If $A(x) = x^3 + 3x^2 + 3x^1 + 1$, $B(x) = -x^3 - 2x^2 - 1$,

what is the value of c->link->link->link->link->expon

- ① -1
- ② 0
- ③ 1

⑤ 3

j. What is time complexity of the pmatch program? (A(x) term -> n, B(x) term -> m)

- ① Θ(1)
- ② Θ(n)

4 2

Q4. Solve the problem related to the following problem

```
#define MAX_STACK_SIZE 1000
                                                 void path(void){
#define MAX_ROWS 8
                                                 /* output a path through the maze if such a
#define MAX_COLS 8
                                                 path exisits*/
#define EXIT_ROW 6
                                                    int i, row, col, nextRow, nextCol, dir = 0;
#define EXIT_COL 6
                                                    int found = false;
                                                    int total_tries = 0;
typedef struct __element{
                                                    int right_path_tries = 0;
  int row:
                                                    element position;
  int col;
                                                    mark[1][1]=1;
  int dir;
                                                    top=0;
                                                    stack[0].row=1; stack[0].col=1; stack[0].dir=0;
}element;
typedef element elements;
                                                    while (top>-1 && !found) {
typedef struct __offset{
                                                      position = pop();
  int vert;
                                                      row = position.row;
  int horiz;
                                                      col = position.col;
}offset;
                                                      dir= position.dir;
                                                      while (dir < 8 && !found) {
elements stack[MAX_STACK_SIZE];
                                                        /* move in direction dir*/
offset move[8];
                                                        nextRow= row + move[dir].vert;
int maze[MAX_ROWS][MAX_COLS];
                                                        nextCol= col + move[dir].horiz;
int mark[MAX_ROWS][MAX_COLS];
                                                        (A)
int top;
                                                        if (nextRow==EXIT_ROW &&
                                                                        nextCol==EXIT COL)
void path(void);
                                                          found = true;
                                                        else if (!maze[nextRow][nextCol]
element pop(void){
                                                               && !mark[nextRow][nextCol]){
  return stack[top--];
                                                          mark[nextRow][nextCol] = 1;
}
                                                          position.row= row;
                                                          position.col= col;
void push(element e){
                                                          position.dir= ++dir;
  stack[top++] = e;
                                                          push(position);
                                                          row = nextRow;
int main(void)
                                                          col = nextCol;
                                                          dir=0;
    path();
                                                          right_path_tries++;
```

```
Maze
/* Continued from path function */
                                                 Indices
                                                                  2 3 4 5 6 7
      else{
                                                                 1
                                                                        1
        ++dir;
                                                  1
                                                                    0
                                                                           0
                                                                 0
                                                                        1
      }
                                                  2
                                                                 1
                                                                    0
                                                                        0
                                                                           1
                                                  3
      total_tries++;
                                                                    0
                                                                       1
    } /* while (dir< 8 & !found) */
                                                  4
                                                                        0
 } /* while (top>-1 && !found) */
                                                  5
  if (found) {
                                                  6
                                                                    1
                                                                        0
                                                                          0 0
                                                                                 1
                                                                 0
    printf("The path is:₩n");
                                                  7
                                                             1 1 1 1 1 1 1
    printf("row col₩n");
    for (i=0; i<top; i++)
                                                  Move
      printf("%2d%5d₩n", stack[i].row,
                                                         vert
                                                                    horiz
                                                                       1
                                stack[i].col);
                                                           0
    printf("%2d%5d₩n", row, col);
                                                  1
    printf("%2d%5d₩n", EXIT_ROW, EXIT_COL);
                                                  2
                                                           1
                                                                       0
 }
                                                  3
                                                                      -1
                                                           1
                                                  4
 else{
                                                                      -1
                                                           0
    printf("The maze does not have a
                                                  5
                                                           -1
                                                                     -1
                                                  6
path₩n");
                                                           -1
                                                                      0
                                                  7
 }
                                                           -1
                                                                      1
 printf("total_tries: %d\n", total_tries); (B)
  printf("right_path_tries: %d₩n",
                       right_path_tries); (C)
```

What is result of the printf at line (A)

a.	What	point	IS	not	ın	the	path
----	------	-------	----	-----	----	-----	------

① (1, 2)

② (1, 3)

③ (3, 3)

4 (5, 5)

⑤ (6, 5)

b. What is the value of position.dir when nextRow is 1 and nextCol is 3 at

1 0

② 1

③ 2

4) 3

⑤ 4

c. What is the value of position.dir when nextRow is 4 and nextCol is 5 at (A)

① 0

② 1

3 2

4 3

⑤ 4

	① 12	② 13	③ 14	4 15	⑤ 16				
e.	. What is the result of the printf at line ©								
	① 6	② 7	3 8	4 9	⑤ 10				
f.	Suppose maze What point is r	not in the path			0.49				
	① (1, 2)	② (1, 3)	③ (2, 3)	(4) (5, 4)	⑤ (6, 5)				
g.	Suppose maze	[5][5] = 1, then							
	What is the val	ue of position.	dir when nextR	ow is 1 and ne	xtCol is 2 at 🕒				
	① 0	② 1	3 2	4 3	⑤ 4				
h.	. Suppose maze[5][5] = 1, then								
	What is the value of position.dir when nextRow is 3 and nextCol is 5 at 🕙								
	① 0	② 1	3 2	4 3	⑤ 4				
i.	Suppose maze	[5][5] = 1, then							
	What is the result of the printf at line (B)								
	① 12	② 13	③ 14	4 15	⑤ 16				
j.	Suppose maze	[5][5] = 1, then							
	What is the result of the printf at line (C)								
	① 6	② 7	3 8	4 9	⑤ 10				

d. What is the result of the printf at line $\ensuremath{\text{\textbf{B}}}$