(1)
$$X^n + Y^n = 1$$

(2) $x^m + y^n = z^n$

man i de Province sai de la la

and + bn = 1

and + bnch = chdn

clad => cld.

"By symmetry" (and bith cod positive)

So, C=1

 $\frac{a^{n}}{c^{n}} + \frac{b^{n}}{c^{n}} = 1$ $a^{n} + b^{n} = c^{n} \longrightarrow (2)$ $(x_{1}y_{1}t) = (0,0,0)$

$$a^{n} + b^{n} = c^{n}$$
 $(ta)^{n} + (tb)^{n} = (tc)^{n} + t^{n}$
 $t^{n} + t^{n} + t^{n} = t^{n}$

$$x'' + y'' = 0$$

$$x'' = -y''$$

$$X = -y$$

$$(1,-1,0) \text{ solves } (2)$$

$$x \rightarrow 1, y \rightarrow -1, c \rightarrow 0$$

$$X \rightarrow \frac{1}{0} \quad Y \rightarrow \frac{1}{0}$$

$$P^2 = \left\{ \left[a, b, c \right] \right\}$$

The state of the s

Lines in \mathbb{P}^2 [a,b,c] s.t. $\angle X+\beta Y+\delta Z=0$ $\sum f \angle \alpha + \beta b + \delta C = 0$ whall $\angle A, \angle A, \delta C=0$. $\angle (fa) + \beta(fb) + \delta(fc) = 0$.