

Параллельный алгоритм для получения равномерного приближения решений множества задач глобальной оптимизации с нелинейными ограничениями

В.В. Соврасов К.А. Баркалов

Нижегородский государственный университет им. Н.И. Лобачевского

1 Апреля 2020 Пермь. Россия

Постановка задачи

$$\begin{split} \varphi(y^*) &= \min\{\varphi(y): y \in D\}, \\ D &= \{y \in \mathbb{R}^N: a_i \leq y_i \leq b_i, 1 \leq i \leq N\} \end{split}$$

 $\varphi(y)$ is multiextremal objective function, which satisfies the Lipschitz condition:

$$|\varphi(y_1) - \varphi(y_2)| \leq L \|y_1 - y_2\|, y_1, y_2 \in D,$$

where L>0 is the Lipschitz constant, and $||\cdot||$ denotes l_2 norm in \mathbb{R}^N space.

Conclusions

Q&A

Contacts:

sovrasov.vlad@gmail.com https://github.com/sovrasov