UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

0620 CHEMISTRY

0620/33

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2010	0620	33

1 (a) to complete the outer shell (of oxygen) / full outer or valence shell / 8 (electrons) in outer shell / Noble gas structure / to complete outer shell / to complete the octet ignore reference to hydrogen atoms / reference to accepting / sharing or gaining electrons [1] (b) loses (one) electron [1] not loses electrons (c) opposite charges <u>attract</u> / electrostatic <u>attraction</u> / positive <u>attracts</u> negative / + and - <u>attract</u> [1] (d) in solid ions cannot move / flow / no free ions / ions in a lattice [1] in solution ions can move / flow / mobile ions / ions free (to move) [1] [Total: 5] (a) 23p 23e 28n 2 [1] 23p 20e 28n [1] 23p 23e 27n [1] (b) (i) (contains) iron [1] cond with other element(s) / compounds / suitable named element [1] if iron is absent = 0 (ii) mild steel [1] cars / fridges / white goods / construction etc. [1] credit any sensible suggestion e.g. roofing, nails, screws, radiators or stainless steel [1] cutlery / chemical plant / jewellery / (kitchen) utensils / named kitchen utensil / in cars / surgical equipment / car exhausts etc. [1] **not** vanadium steel (this is in the question) (c) (i) V_2O_3 [1]

 $V_2 = V_2 = V_3$ [1]

(ii) add sodium hydroxide(aq) or other named alkali [1]
not ammonia
cond vanadium(IV) oxide dissolves / reacts
filter (to remove vanadium(III) oxide)

[1]

[Total: 12]

Page 3		3	Mark Scheme: Teachers' version	Syllabus		
	\ (!\	-:1	IGCSE – October/November 2010	0620	33	
s (a)) (1)		r, tin (cobalt and magnesium not possible to decide ilver less reactive then tin = 1	?)	[2	
	(ii)	magı or	nesium and cobalt <u>salt / compound / ions</u>			
		-	alt and magnesium salt / compound / ions		[1	
	(iii)		+ 2Ag ⁺ → Sn ²⁺ + 2Ag pecies correct = 1 balancing = 1		[2	
		Sn to	o Sn ²⁺ oxidation (can be written separately or as a c	orrect half-equatio	on) [1	
(b)	•	reaction	on → MgO + H₂O accept multiples		[1 [1	
	ivig	(011)2	7 MgO 1 H ₂ O accept multiples		L	
(c)) (i)		ms <u>positive</u> ions / loses or gives electrons trons move / flow from this electrode / enter the circ	uit / alactrons flow	from.	
			ative to positive (so it is negative)	uit / electrons now	[1	
	(ii)	bigge or	er voltage of Zn/Cu cell than Sn/Cu cell			
			is negative relative to tin (in the third cell)		[′	
	(iii)	not a	nesium / more reactive metal (must be named) insteanything above calcium in the reactivity series	ead of zinc		
			r / less reactive metal (must be named) instead of c	opper		
		or use ((more) concentrated acid		[′	
	(iv)	-	rities correct that is Zn - and Sn +		[1	
		0.6 ∖	I		[Tatal: 44	
					[Total: 14	
(a)) (i)		n RHS		[′	
		_	ore any other species on RHS of equation fully correct i.e. 2H⁺ + 2e → H₂		[1	
	(ii)		emoved / escapes / discharged / used up / reduced		[′	
			ilibrium) moves to RHS / more water molecules ioni ociate / forward reaction favoured	se or	[′	
	(iii)	oxyg	gen / O ₂ O		[:	
	(iv)	carbo	on / graphite / platinum (electrode)		[′	
(b)) (i)		nake ammonia / in petroleum processing / balloon ening of fats / fuel cells / fuel (unqualified) / making		fuel for cars	
	<i>(</i>)				_	

(ii) to sterilise / disinfect it / kill bacteria / bugs / microbes / micro-organisms / germs

[1]

	Page 4						Syllabus	Paper	
				IG	CSE – October/November	2010	0620	33	
	(c)	(i)	(refe	eference to) volume and time / how long it takes					
		(ii)	carry out experiment with different intensities of light / one in light and one in dark / repeat experiment in reduced light measure new rate which would be <u>faster</u> or <u>slower</u> depending on light intensity						
								[Total: 11]	
5	(a)	(i)	corre		OOH → (CH₃COO)₂Mg + H of magnesium ethanoate s	2		[1] [1]	
			sodi	um ethano	ate + water			[1]	
		(ii)	•	l ethanoate ayed form				[1] [1]	
	(b)	(i)	add	up to 5.8 g				[1]	
		(ii)	mole mole	noles of C atoms = 2.4/12 = 0.2 noles of H atoms = 0.2/1 = 0.2 noles of O atoms = 3.2/16 = 0.2					
			two	ree correc correct = 1 irical formu				[2] [1]	
		(iii)			with no working scores bot	h marks.		[1] [1]	
		(iv)	HOOCCH=CHCOOH / CH ₂ =C(COOH) ₂					[2]	
								[Total: 13]	
6	(a)	(i)	(i) 6e between two nitrogen atoms (can be any combination of dots or crosses) 1 lone pair on each nitrogen atom				es) [1]		
		(ii)			SOLID	GAS			
			PAT	TERN	regular / lattice (not fixed)	random / i	rregular / no patter	n [1]	
			DIST	ΓANCE	close	far apart /	spread out	[1]	
			MΟ\	/EMENT	vibrate / fixed / no motion	moving / t	ranslational	[1]	
	(b)	(i)		de harder /	cules have more energy / r collide more frequently / m		/ collide with more	[1] force (with the	

	Page 5	5	Mark Scheme: Teachers' version	Syllabus	Paper		
			IGCSE – October/November 2010	0620	33		
	(ii)		(1) nitrogen has smaller M_r / lighter molecules / lower density [1] nitrogen <u>molecules</u> / <u>particles</u> move faster (than chlorine molecules) [1]				
			at higher temperature nitrogen molecules or parte e more energy	ticles (not atoms	s) move faster / [1]		
					[Total: 10]		
7	(a) (i)		[1] [1]				
	(ii)	(ii) credit any two sensible suggestions e.g. rope / clothing / netting / string / carpets / line / fishing nets / parachutes / tyres / tents / bottles / thread / umbrellas / cur toothbrushes / cassettes / video tapes					
	(iii)	i) non-biodegradeable / do not rot / do not decompose / persist for years / accumulate landfill sites limited / getting filled up visual pollution danger to fish / animals (burn to form) toxic gases / harmful gases / pollutant gases / acidic gases / CO / HF / HCN not oxides of nitrogen / sulfur any three					
	(b) (i)	acce not CH ₃ ·	pene / propylene pept prop-1-ene prop-2-ene -CH=CH ₂ ple bond must be shown		[1]		
	(ii)		ect repeat unit (one or more whole repeat units mus d continuation	st be given)	[1] [1]		
	(c) (i)	amic	de / peptide / polypeptide		[1]		
	(ii)	prote	ein / polypeptide		[1]		
	(iii)		(CH ₂) ₆ NH ₂ DC(CH ₂) ₈ COOH		[1]		

[Total: 15]