72-е Дни науки студентов **НИТУ** «**МИСиС**» Институт ИТАСУ Кафедра Инженерной Кибернетики

Компьютерный анализ динамики безмасштабной сети и ее макроскопических характеристик

Студент: Группа: Руководитель: Мазлов И.А. ММ-13-1 доц., к.ф.-м. Шихеева В.В.

Сложные сетевые структуры - для чего?

- > Сети знакомств
- > Семантические сети
- > Сети научного сотрудничества
- > Сотовые сети
- > Сети электростанций
- > Компьютерные сети
- > Нейронные сети мозга
- > Сети авиалиний
- > Дорожное сообщение

Рис.1 Примеры реальных сетей

Безмасштабные сети

> Характерное распределение вершин

$$p = cd^{-k} \tag{1}$$

- \rightarrow p вероятность того, что вершина имеет степень d
- \rightarrow c нормирующий множитель
- \rightarrow k разный для разных систем

Рис.2 Пример безмасштабной сети

Цель работы

 Исследовать поведение безмасштабной сети при условии динамики в ее узлах

> Динамика фазы каждого узла определяется дифференциальным уравнением:

$$\forall i \in V \colon \ \dot{\varphi}_i = \omega_i + \lambda \sum_{j \in V} w_{ij} \sin(\varphi_j - \varphi_i), \qquad (2)$$

- ω_i собственная частота i-ого осциллятора
- w_{ij} число связей между i-ым и j-ым узлами,
- $\lambda = const$ сила связи
- > Суммарный сигнал, порожденный системой,

$$X(t) = A \sum_{i \in V} \cos(\varphi_i(t))$$
 (3)

- где A − нормирующий множитель
- > Степень согласованности узлов

$$r(t) = \frac{1}{n} \sum_{j \in V} e^{i\varphi_j(t)} \tag{4}$$

Макро-характеристики: N = 200

Выводы

Разработано программное обеспечение для

- 1) Построения безмасштабной сети.
- 2) Решения систем дифференциальных уравнений динамики сети
- 3) Визуализации макро-характеристик сети
- 4) Визуализации динамики сети

Проведен ряд экспериментов

Перспективы

- 1. Динамика на связях сети
- 2. Вейвлет-преобразование суммарного сигнала сети

Спасибо!

Студент: Мазлов И.А.

mazlov.i.a@gmail.com

Группа: ММ-13-1

Руководитель: Шихеева В.В.

Предметная область

- > Распространение информации в интернете
 - Сфера рекламы
- > Транспортные задачи

- > Электроэнцефалография головного мозга
 - Суммарные сигналы
 - Нестационарные характеристики
 - Невозможность поэлементного исследования

 10^{-4} $2,5 \cdot 10^{-4}$ $5 \cdot 10^{-4}$ $7,5 \cdot 10^{-4}$

 10^{-3} $2 \cdot 10^{-3}$ $4 \cdot 10^{-3}$ $6 \cdot 10^{-3}$

 $7 \cdot 10^{-3}$ $8 \cdot 10^{-3}$ $9 \cdot 10^{-3}$ 10^{-2}

Классический метод Рунге-Кутта 4

- > Аппроксимация рядом Тейлора
 - Расчет старших производных функции
- > Методы Рунге-Кутты
 - ✓ Модифицированный метод Эйлера
 - ✓ Исправленный метод Эйлера
 - ✓ Классический метод Рунге-Кутта
 - Необходимость вычисления значения функции в промежуточных точках
- > Методы прогноза и коррекции
 - + Использование информации о пройденных точках
 - Не самостартующие

- > Среда разработки: Microsoft Visual Studio
 - С# интерфейс и визуализация
 - C++ вычислительное ядро
- > Алгоритм построения безмасштабных сетей
 - Статическая модификация модели Боллобаша-Риордана
 - LCD-диаграмма
- > Алгоритм генерации равномерно распределенных циклов
 - Алгоритм Саттоло
- > Решение систем дифференциальных уравнений
 - Классический метод Рунге-Кутты 4 порядка

LCD-модель

Диаметр сети

 Под диаметром сети понимается максимальная длина среди кратчайших путей между двумя узлами в сети

Спасибо!

Студент: Мазлов И.А.

mazlov.i.a@gmail.com

Группа: ММ-13-1

Научный руководитель: Шихеева В.В.