POTENTIALFÄLT (=konservativt fält). POTENTIALER. EXAKTA DIFFERENTIALER

Definition A1. En kurva $\vec{r} = \vec{r}(t)$, $a \le t \le b$ är **sluten** om $\vec{r}(a) = \vec{r}(b)$ dvs om startpunkten och ändpunkten sammanfaller.

Definition A2. Vi säger att $\vec{r} = \vec{r}(t)$, $a \le t \le b$ är en **enkel**, **sluten kurva** om $\vec{r}(a) = \vec{r}(b)$ och $\vec{r}(t_1) \ne \vec{r}(t_2)$ om $t_1 < t_2$ och $(t_1, t_2) \ne (a, b)$.

Definition B1. Ett område Ω i Rⁿ kallas **sammanhängande** om två godtyckliga punkter i Ω kan förbindas med en kontinuerlig kurva som helt ligger i Ω .

Definition B2.(R^2)Ett sammanhängande område Ω i planet R^2 kallas **enkelt sammanhängande** om varje enkel, sluten kontinuerlig kurva i Ω omsluter ett område som helt ligger i Ω .

(Med andra ord Ω är ett sammanhängande område utan hål)

Definition B3. (R³) Ett sammanhängande område Ω i planet R³ kallas **enkelt sammanhängande** om varje enkel, sluten kontinuerlig kurva L i Ω kan kontinuerligt deformeras, utan att lämna Ω , till en punkt i Ω .

(Med andra ord, till varje enkel, sluten kontinuerlig kurva L kan vi skapa en yta som ligger i Ω och har L som randen.)

POTENTIALFÄLT (=konservativt fält)

Vi betraktar ett vektorfält \vec{F} definierad i ett öppet område Ω ,

$$\vec{F} = (P(x, y), Q(x, y)) i R^2$$
, eller $\vec{F} = (P(x, y, z), Q(x, y, z), R(x, y, z)) i R^3$.

Definition1. Vektorfältet \vec{F} kallas ett **potentialfält** eller ett **konservativt fält** i området Ω om det finns en C^1 funktion U sådan att

$$\vec{F} = grad(U) \qquad (*)$$

Funktionen U kallas då en **potential** till fältet \vec{F} eller en potentialfunktion till \vec{F} .

Eftersom $grad(U) = (U'_x, U'_y) i R^2$ och $grad(U) = (U'_x, U'_y, U'_z) i R^3$ kan vi skriva (*) på följande sätt:

Definition 2a (för fält i R^2) . Vektorfältet $\vec{F} = (P, Q)$ kallas ett **potentialfält** eller ett **konservativt fält** i ett öppet området Ω om det finns en C^1 funktion U sådan att

$$U_x' = P \ och \ U_y' = Q$$

Definition 2b. Vi säger att uttrycket Pdx + Qdy är en **exakt differential** i $\Omega \subseteq R^2$, om det finns en C^{1-} funktion U så att dU = Pdx + Qdy i området Ω .

Sats om exakta differentialer i R²:

 $\vec{F} = (P, Q)$ är ett potentialfält i Ω med potentialen U då och endast då gäller dU = Pdx + Qdy dvs uttrycket Pdx + Qdy är en **exakt differential** i Ω .

Definition 3a (för fält i R^3) . Vektorfältet $\vec{F} = (P, Q, R)$ kallas ett **potentialfält** eller ett **konservativt fält** i ett öppet området Ω om det finns en C^1 funktion U sådan att

$$U'_x = P$$
, $U'_y = Q$ och $U'_z = R$

Definition 3b. Vi säger att uttrycket Pdx + Qdy + Rdz är en **exakt differential** i $\Omega \subseteq R^3$ om det finns en C^1 -funktion U så att dU = Pdx + Qdy i området Ω .

Sats om exakta differentialer i R³:

 $\{\vec{F} = (P, Q, R) \text{ är ett potential fält i } \Omega \text{ med potential en U}\} \iff \{dU = Pdx + Qdy + Rdz \text{ dvs uttrycket } Pdx + Qdy + Rz \text{ är en exakt differential i } \Omega. \}$

Exempel 1.

- a) Visa att $\vec{F} = (2xy, x^2 + 3)$ är ett potentialfält (dvs att \vec{F} har en potentialfunktion U(x, y)).
- **b)** Bestäm för vektorfältet \vec{F} den potentialfunktion U(x,y) som satisfierar U(1,1)=3. **Lösning:**
- a) Vi löser systemet:

$$\begin{cases} U'_x = 2xy & Ekv \ 1 \\ U'_y = x^2 + 3 & Ekv \ 2 \end{cases}$$

Ekv 1 medför $U(x, y) = \int 2xydx = x^2y + \varphi(y)$ (*)

För att bestämma $\varphi(y)$ substituerar vi (*) i ekv 2

$$U'_y = x^2 + 3 \implies x^2 + \varphi'(y) = x^2 + 3 \Rightarrow \varphi'(y) = 3 \Rightarrow \varphi = 3y + C$$

Alltså har fältet en potential $U(x, y) = x^2y + \varphi(y) = x^2y + 3y + C$

Kontroll:

$$U'_x = 2xy = P \ och \ U'_y = x^2 + 3 = Q$$

Därmed har vi visat att fältet är ett potentialfält (= konservativt fält) **Svar a**) $U(x, y) = x^2y + 3y + C$

b) Villkoret $U(1,1) = 3 \implies C = -1$ och därför $U(x,y) = x^2y + 3y - 1$

Svar b)
$$U(x, y) = x^2y + 3y - 1$$

Nödvändiga och tillräckliga villkor för ett potentialfält

Ett nödvändigt villkor för ett potentialfält i R².

Låt $\vec{F} = (P, Q)$ vara ett C^1 vektorfält (dvs P och Q har kontinuerliga derivator) i ett öppet området Ω i \mathbf{R}^2 . Om \vec{F} är ett potentialfält då gäller {Eftersom $\frac{\partial}{\partial x}(\frac{\partial U}{\partial y}) = \frac{\partial}{\partial y}(\frac{\partial U}{\partial x})$ }

$$Q_x^{'} = P_y^{'}$$
 för alla punkter $(x, y) \in \Omega$.

Alltså $Q'_x = P'_y$ är ett **nödvändigt villkor** för att ett C^1 vektorfält $\vec{F} = (P, Q)$ blir potentialfält i området Ω .

Nödvändiga villkor för ett potentialfält i R³.

Låt $\vec{F} = (P, Q, R)$ vara ett C¹ vektorfält (dvs P och Q har kontinuerliga derivator) i ett öppet området Ω i \mathbb{R}^2 . Om \vec{F} är ett potentialfält då gäller

{Eftersom
$$\frac{\partial}{\partial x}(\frac{\partial U}{\partial y}) = \frac{\partial}{\partial y}(\frac{\partial U}{\partial x}), \quad \frac{\partial}{\partial x}(\frac{\partial U}{\partial z}) = \frac{\partial}{\partial z}(\frac{\partial U}{\partial x}) \text{ och } \quad \frac{\partial}{\partial y}(\frac{\partial U}{\partial z}) = \frac{\partial}{\partial z}(\frac{\partial U}{\partial y})$$
}

$$Q_x'=P_y', \quad R_x'=P_z'$$
 , $R_y'=Q_z'$ för alla punkter $(x,y,z)\in\Omega$

Alltså $Q_x'=P_y'$, $R_x'=P_z'$, $R_y'=Q_z'$ är **nödvändiga villkor** för att ett C^1 vektorfält $\vec{F} = (P, O, R)$ blir potentialfält området Ω .

Tillräckliga villkor för ett potentialfält

Om området Ω är ett **enkelt sammanhängande område** (ett sammanhängande område utan hål) då är ovanstående villkor även **tillräckliga** för att ett C^1 vektorfält \vec{F} blir ett potentialfält.

T ex för R³ har vi följande

Om följande villkor är uppfyllda

- 1. Ω är ett enkelt sammanhängande område
- 2. P, Q, R har kontinuerliga partiella derivator

3.
$$Q'_x = P'_y$$
, $R'_x = P'_z$, $R'_y = Q'_z$

då är $\vec{F} = (P, Q, R)$ ett potentialfält i Ω.

Exempel 2. Avgör om följande vektorfält är potentialfält i Ω .

a)
$$\vec{F} = (x^2 + y^2, 5x^2 + y)$$
 där Ω är hela R^2

b)
$$\vec{F} = (x^2 + 5y^2, 10xy + 8y)$$
 där Ω är hela R^2

Svar a) $Q'_x = 10x$, $P'_y = 2y$. Nej, eftersom $Q'_x \neq P'_y$ i \mathbb{R}^2 .

Svar b) Ja eftersom, P, Q har kontinuerliga partiella derivator och $Q'_x = P'_y = 10 \ y$ i hela R^2 (som är ett enkelt sammanhängande område)

Exempel 3. Avgör om följande vektorfält är potentialfält i hela R².

a)
$$\vec{F} = (x + y + z, x, 3z)$$
, där Ω är klotet $x^2 + y^2 + z^2 < 1$

b)
$$\vec{F} = (yz, xz, xy)$$
, där Ω är klotet $x^2 + y^2 + z^2 < 1$

Svar a) Nej, eftersom $0 = R_x^{'} \neq P_z^{'} = 1$.

Svar b) Ja eftersom,

- 1. Ω är ett enkelt sammanhängande område
- 2. P, Q, R har kontinuerliga partiella derivator

3.
$$Q'_x = P'_y \ (= z)$$
, $R'_x = P'_z \ (= y)$, $R'_y = Q'_z \ (= x)$

Uppgift 1.

Avgör om vektor fältet \vec{F} är ett potentialfält i \mathbb{R}^2 . Om detta är fall bestäm fältets potential U(x,y) om U(1,1) = 4.

$$\mathbf{a}) \quad \vec{F} = (x, 4x + y)$$

a)
$$\vec{F} = (x, 4x + y)$$
 b) $\vec{F} = (5xy, \frac{5x^2}{2} + 2y)$

Lösning a)

$$Q_x^{'} = 4$$
, $P_y^{'} = 0$

Svar a) Fältet är **inte** ett potentialfält eftersom $Q'_x \neq P'_y$.

Lösning b)

Fältet är ett potentialfält eftersom $Q'_x = P'_y$ och alla partiella derivator är kontinuerliga i R^2 .

Vi löser systemet:

$$\begin{cases} U_x' = 5xy \\ U_y' = \frac{5x^2}{2} + 2y \end{cases}$$

Ekv 1 medför
$$U(x,y) = \int 5xydx = \frac{5x^2y}{2} + \varphi(y)$$
 (*)

För att bestämma $\varphi(y)$ substituerar vi (*) i ekv 2

$$U_y' = \frac{5x^2}{2} + 2y \Rightarrow \frac{5x^2}{2} + \varphi'(y) = \frac{5x^2}{2} + 2y \Rightarrow \varphi'(y) = 2y \Rightarrow \varphi = y^2 + C$$

Alltså
$$U(x,y) = \frac{5x^2}{2} + \varphi(y) = \frac{5x^2}{2} + y^2 + C$$

Startvillkoret $U(1,1) = 4 \implies C=1/2$ och

$$U(x,y) = \frac{5x^2}{2} + y^2$$

Svar b)
$$U(x,y) = \frac{5x^2y}{2} + y^2 + \frac{1}{2}$$

Uppgift 2.

Avgör om vektorfältet \vec{F} är ett potentialfält i \mathbb{R}^3 . Om detta är fall bestäm fältets potential.

a)
$$\vec{F} = (x + y + 2z, x + y, 3x + z)$$
 b) $\vec{F} = (2x + yz, 2y + xz, xy + 3)$ **Lösning a)**

Vi kollar de nödvändiga villkoren

$$Q_{x}^{'}=P_{y}^{'},\quad R_{x}^{'}=P_{z}^{'}\;,\quad R_{y}^{'}=Q_{z}^{'}$$

är uppfyllda.

Eftersom $R'_x = 3$, $P'_z = 2$ ser vi att andra villkoret $R'_x = P'_z$ är INTE uppfylld.

Svar a) Fältet är **inte** ett potentialfält eftersom $R'_x \neq P'_z$.

Lösning b)

P,Q,R har kotinuerliga derivator i hela R³ och villkoren

$$Q'_{x} = P'_{y}, \quad R'_{x} = P'_{z}, \quad R'_{y} = Q'_{z}$$

är uppfyllda. alltså \vec{F} är ett potentialfält.

För att finna potentialen U löser vi systemet :

$$\begin{cases} U'_x = 2x + yz & (ekv1) \\ U'_y = 2y + xz & (ekv2) \\ U'_z = xy + 3 & (ekv3) \end{cases}$$

Från ekv1 har vi $U(x, y, z) = \int (2x + yz)dx = x^2 + xyz + g(y, z)$ (*)

För att finna g(y,z) substituerar vi (*) i (ekv 2)

$$U'_{y} = 2y + xz \implies xz + g'_{y}(y,z) = 2y + xz \Rightarrow g'_{y}(y,z) = 2y \Rightarrow g(x,y) = y^{2} + h(z)$$
.

Detta och (*) ger

$$U(x, y, z) = x^{2} + xyz + y^{2} + h(z)$$
 (**)

För att finna h(z) substituerar vi (**) i (ekv3)

$$U'_z = xy + 3 \implies xy + h'_z(z) = xy + 3 \Rightarrow h(z) = 3z + C$$

Detta och (**) ger
$$U(x, y, z) = x^2 + xyz + y^2 + 3z + C$$
.

(Kontroll
$$U'_x = 2x + yz = P$$
, $U'_y = 2y + xz = Q$, $U'_z = xy + 3 = R$

Svar b)
$$U(x, y, z) = x^2 + xyz + y^2 + 3z + C$$

KURVINTEGRALER I ETT POTENTIALFÄLT

Potentialfält (=konservativa fält) har en viktig egenskap: deras kurvintegraler är oberoende av vägen utan endast av kurvans start- och ändpunkt .

Sats 1a. (Om kurvintegraler i ett potentialfält.)

Låt \vec{F} är ett potentialfält med potentialen U i det öppna sammanhängande området Ω . För varje kurva γ i Ω , med startpunkt i A och ändpunkt i B, gäller då att

$$\int_{V} \vec{F} \cdot d\vec{r} = U(B) - U(A).$$

Från ovanstående formell har vi speciellt att **kurvintegralen i ett potentialfält är oberoende av vägen**. Integralen beror endast av startpunkten A och ändpunkten B.

Omvänt påstående är också sant, och därmed har vi följande ekvivalens som karakteriserar potentialfält (= konservativa fält):

Sats 1b. Låt \vec{F} är ett kontinuerligt vektorfält i det öppna sammanhängande området Ω och γ en C¹ kurva som ligger i Ω .

Då gäller:

$$\{\vec{F} = (P,Q) \text{ är potentialfält}\} \Leftrightarrow \{\text{Integralen } \int_{\gamma} \vec{F} \, d\vec{r} \text{ beror ej av vägen }\}$$

Ett annat sätt att formulera sats 1a är följande sats.

Sats 2. (Om kurvintegraler längs en sluten kurva i ett potentialfält.)

Låt \vec{F} är ett kontinuerligt potentialfält med potentialen U i det öppna sammanhängande området Ω . Då gäller att kurvintegral längs varje **sluten styckvis** \mathbf{C}^1 **kurva** γ i Ω är 0 d v s

$$\oint_{\mathcal{V}} \vec{F} \cdot d\vec{r} = 0.$$

Uppgift 3. Avgör om vektorfältet $\vec{F} = (2x, \cos(y))$ är ett potentialfält i \mathbb{R}^2 . Om detta är fall bestäm fältets potential och beräkna med hjälp av en potentialfunktion $\int_{V} \vec{F} \cdot d\vec{r}$ längs γ då

- γ är linjestycken från A (0,0) till M(4,6) och från M(4,6) till $B(1,\pi/2)$ är cirkeln $x^2 + y^2 = 4$.
- b)

Lösning:

Eftersom P, Q har kontinuerliga partiella derivator och $Q'_x = P'_y = 0$ i hela R² (som är ett enkelt sammanhängande område) ser vi att \vec{F} är ett potentialfält.

Vi bestämmer U(x, y) från ekvationerna

$$\begin{array}{ll} U_x' = 2x & \text{ekv1} \\ U_y' = \cos(y) & \text{ekv2} \end{array}$$

Från ekv1 har vi

$$U(x,y) = x^2 + f(y) \quad (*)$$

som vi substituerar i ekv2 för att få f(y):

$$U'_{y} = \cos(y) \Rightarrow f'(y) = \cos(y) \Rightarrow f(y) = \sin(y) + C$$

$$U'_{y} = \cos(y) \Rightarrow f'(y) = \cos(y) \Rightarrow f(y) = \sin(y) + C$$

Vi substituerar (y) i (*) och får potentialen

$$U(x,y) = x^2 + \sin y + C$$

a) För att beräkna kurvintegralen i potentialfältet \vec{F} behöver vi inte räkna direkt längs kurvan γ utan vi använder en potentialfunktion t ex (om vi tar C=0) $U(x,y) = x^2 + siny$. Vi har

$$\int\limits_{V} \vec{F} \cdot d\vec{r} = U(\ddot{a}ndpunkten) - U(startpunkten) = U(1,\pi/2) - U(0,0) = 2 - 0 = 2$$

(mellan punkt M(4,6) spällar ingen i det här fallet)

b) I det här fallet är γ en sluten kurva (cirkeln $x^2 + y^2 = 4$) och därför är kurvintegralen lika med 0,

$$\oint_{\gamma} \vec{F} \cdot d\vec{r} = 0.$$

Uppgift 4.

Beräkna $\int_{V} \vec{F} \cdot d\vec{r}$ längs γ där $\vec{F} = (yze^{xyz}, xze^{xyz}, xye^{xyz})$ och γ är linjestyckena från (0,0,0) till (4,5,6) och från (4,5,6) till (1,1,1)

Svar:

Vi läser ekvationerna

$$U'_{x} = yze^{xyz}$$
 ekv1
 $U'_{y} = xze^{xyz}$ ekv2
 $U'_{z} = xye^{xyz}$ ekv3

och får potentialen $U = e^{xyz} + C$ (Kontrollera själv). Därefter räknar vi kurvintegralen med hjälp av en potentialfunktion

$$\int\limits_{\gamma} \vec{F} \cdot d\vec{r} = U(\ddot{a}ndpunkten) - U(startpunkten) = U(1,1,1) - U(0,0,0) = e-1$$

(mellanpunkten (4,5,6) spällar ingen i det här fallet).

Uppgift 5.

Beräkna $\int_{V} \vec{F} \cdot d\vec{r}$ längs γ där $\vec{F} = (y^2 z^3, 2xyz^3, 3xy^2 z^2 + 2z)$ längs γ som definieras av

$$\vec{r}(t) = (t\cos(t-1), t^2\sin(t\frac{\pi}{2}), t^3(\sin(t\frac{\pi}{2}) + \cos(t\frac{\pi}{2})) \text{ där } 0 \le t \le 1$$

Lösning: Fältet har potentialen $U = xy^2z^3 + z^2$ (kontrollera själv); dessutom

t=0 svarar mot punkten (0,0,0)

t=1 ger punkten (1,1,1)

Vi har

$$\int\limits_{V} \vec{F} \cdot d\vec{r} = U(\ddot{a}ndpunkten) - U(startpunkten) = U(1,1,1) - U(0,0,0) = 2$$

Uppgift 6. Bestäm p, om möjligt så att fältet \vec{F} blir konservativt (= potentialfält) i hela R^3

a)
$$\vec{F} = (y^2z^2, 2xyz^2, pxy^2z + 2z)$$
 b) $\vec{F} = (y^2z^2, 3xyz^2, pxy^2z + 2z)$

Tips: a) Första två, bland 3 nedanstående villkor, är uppenbart uppfyllda

- 1. Ω (hela R³⁾ är ett enkelt sammanhängande område
- 2. P, Q, R har kontinuerliga partiella derivator

3.
$$Q'_x = P'_y$$
, $R'_x = P'_z$, $R'_y = Q'_z$
Vi bestämmer p så att tredje villkoret dvs

$$Q_x' = P_y'$$
 , $R_x' = P_z'$, $R_y' = Q_z'$ också blir uppfylld

b) Saknas lösning eftersom $Q'_x = 3yz^2 \neq P'_y = 2yz^2$ (oberoende av p). Svar a) p=2