

Europäisches Patentamt

European Patent Office

Office européen des brevets

Publication number:

0 245 058

13

EUROPEAN PATENT APPLICATION

Application number: 87303961.4

2 Date of filing: 01.05.87

⑤ Int. Ct. C 07 D 403/12, C 07 D 409/12, C 07 D 401/12, C 07 D 491/04, C 07 F 7/18, C 07 D 231/18, C 07 D 233/34, C 07 D 213/71, C 07 D 213/89, A 01 N 47/36 // (C07D491/04, 307:00, 239:00),

(C07D491/04, 301:00, 239:00)

(30) Priority: 02.05.86 US 859275 13.06.86 US 874307 13.03.87 US 22365 30.03.87 US 29434 (ii) Applicant: E.I. DU PONT DE NEMOURS AND COMPANY, 1007 Market Street, Wilmington Delaware 19898 (US)

Date of publication of application: 11.11.87
Bulletin 87/46

 Inventor: Wexter Barry Arthur, 2205 Patwynn Road, Wilmington Delaware 19810 (US)

Designated Contracting States: AT BE CH DE ES FR GB GR IT LI LU NL SE

Representative: Hildyard, Edward Martin et al, Frank B. Dehn & Co. European Patent Attomeys Imperial House 15-19 Kingsway, London WC2B 6UZ (GB)

- Merbicidal heterocyclic sulfonamides.
- Sulfonylurea derivatives of formula

W | JSO₂NHCNR₁A

(1

wherein J is a pyrazola, thiophene or pyridine residue of defined structure;

W is O or S;

R₁ is H or CH₃;

B

4

A is a mono- or bicyclic heterocyclic residue, e.g. pyrimidin-2-yl or triazinyl;

and their agriculturally suitable salts, exhibit potent herbicidal activity. Some also exhibit a plant growth regulant

The novel compounds may be made e.g. by reacting an appropriate sulfonyl isocyanate or isothiocyanate of formula JSO₂NCW with an appropriate aminoheterocycle HNR₁A.

COMPLETE DOCUMENT

ACTORUM AG

Title

HERBICIDAL HETEROCYCLIC SULFONAMIDES

Background of the Invention

This invention relates to novel ketone pyrazole. thiophene. and pyridine sulfonylurea herbicidal compounds. agriculturally suitable compositions thereof and a method of using them to control the growth of undesired vegetation.

New compounds effective for controlling the growth of undesired vegetation are in constant demand. In the most common situation, such compounds are sought to selectively control the growth of weeds 15 in useful crops such as cotton, rice, corn, wheat and soybeans, to name a few. Unchecked weed growth in such crops can cause significant losses, reducing profit to the farmer and increasing costs to the consumer. In other situations, herbicides are desired 20 which will control all plant growth. Examples of areas in which complete control of all vegetation is desired are areas around railroad tracks and industrial storage areas. There are many products commercially available for these purposes, but the 25 search continues for products which are more effective, less costly and environmentally safe.

The "sulfonylurea" herbicides are an extremely potent class of herbicides discovered within the last few years. A multitude of structural variations exist within the class of herbicides, but they generally consist of a sulfonylurea bridge. -SO₂NHCONH-. linking two aromatic or heteroaromatic rings.

EP-A95,925 which was published 7.12.83/discloses herbicidal sulfonylureas of formula

35

Q-SO_ZNHCN-A

wherein

Q is, in part,

15 R₁₀ is H. C₁-C₄ alkyl, C₃-C₄ alkenyl. C₃-C₄ alkynyl, CO₂R₂₄, SO₂NR₂₀R₂₁ or SO₂R₂₂; R₁₁ is H. C₁-C₃ alkyl. F. Cl. Br. NO₂.

 OR_{16} , CO_2R_{24} , $S(O)_mR_{25}$ or $SO_2NR_{20}^R$; provided that when R_{10} is other than $C_1^{-C_3}$ alkyl, then R_{11} is H, Cl.

OCH₃. NO₂. or CH₃:

R₁₂ is H or CH₃;

25 R₁₃ and R₁₄ are independently H. C₁-C₃ alkyl.
OR₁₆, F. Cl. Br. NO₂, CO₂R₂₄.

 $S(0)_{m}R_{25}$ or $SO_{2}NR_{20}R_{21}$;

provided that. when either of R₁₃ or R₁₄ is

CO₂R₂₄. S(O)_mR₂₅ or SO₂NR₂₀R₂₁.

then the other 26 H. Cl. CH3. OCH3 or NO2;

R₁₅ is H or CH₃.

EP-A-87.780 (published 7.9.83) discloses

herbicidal sulfonylureas of formula

35

30

wherein

A is H. C₁-C₈ alkyl or optionally substituted phenyl:

B and C are independently H. halogen, NO₂,

C₁-C₈ alkyl, arylalkyl, C₁-C₈ alkoxy,

haloalkyl, CO₂R, CONR₁R₂, S(O)_nR₃,

SO₂NR₄R₅, or

optionally substituted phenyl.

ZA 83/3850 (published 28.11.83) discloses compounds of formula

20

25

30

15

5

wherein

Q is a five-membered, heterocyclic radical which is bound by way of a carbon atom and contains 2 or 3 heteroatoms and which may be optionally substituted by halogen, pseudohalogen, nitro, alkyl, hydroxyl, haloalkyl, alkoxy, alkylthio, haloalkoxy, haloalkylthio, amino, alkylamino, dialkylamino, alkylcarbonylamino, alkylcarbonyl, alkoxycarbonyl, alkoxyalkyl, alkylthiocarbonyl, carbamoyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylsulfinyl, alkylsulfonyl, alkenyloxy or alkynyloxy; and

groups such as phenyl, phenoxy or phenylthio.

which are unsubstituted or substituted by
halogen, nitre, cyano, alkyl, alkoxy,
haloalkyl, alkylcarbonyl, alkoxycarbonyl or
haloalkoxy; and also benzyl unsubstituted
or substituted by halogen and/or alkyl.

U.S. 4,127,405 and U.S. 4,169,719 disclose herbicidal thiophenesulfonamides, wherein the thiophene ring may be optionally substituted with CH₃.

Cl or Br.

U.S. 4.398.939 discloses herbicidal thiophenesulfonamides, wherein the thiophene ring is substituted with substituent groups selected from

15 C_1-C_4 alkyl, C_3 alkenyl, OCH_3 , NO_2 , Cl, Br. $SO_2N(C_1-C_3$ alkyl)₂ or $SO_2N(OCH_3)CH_3$.

U.S. 4.481,029 discloses herbicidal thiophenesulfonamides, wherein the thiophene ring is substituted with carboxylic acid, carboxylic ester and alkylcarbonyl groups or derivatives thereof.

U.S. 4.441.910 discloses herbicidal thiophenesulfonamides, wherein the thiophene ring is substituted with the group represented by $R_6S(0)_n$ wherein R_6 is C_1-C_4 alkyl. C_3-C_4 alkenyl. cyclopentyl or cyclopropylmethyl.

European Publication No. 13.480 (published July 23, 1980) discloses herbicidal pyridine-2-. -3- and -4-sulfonylureas. wherein the pyridine ring may be substituted by Cl. Br. F, C_3 - C_4 alkyl.

30 $C_1^{-C_4}$ alkoxy, $C_1^{-C_4}$ alkylthio, NO_2 or a carboxylic ester group.

U.S. 4.456.469 (issued 29.6.84) discloses herbicidal pyridine-3-sulfonylureas substituted by

20

C₁-C₆ alkyl-, C₃-C₆ alkenyl-, C₂-C₄ alkoxyalkyl- and C₅-C₆ cycloalkylsulfonyl groups.

U.S. 4.518.776 (Swiss priority 19.7.82) dis5 closes, in part, a process for the preparation of compounds of formula

GSO₂NHCNH Z

10

15

20

wherein

G is R_1 or R_2 R_3 R_4

 R_1 is H, C_1 - C_4 alkyl, halogen, NO_2 , CN, NH_2 , $S(O)_nC_1$ - C_4 alkyl, SO_2C_1 - C_4 alkoxy, SO_2 -di- C_1 - C_4 alkylamino, CHO, $CONH_2$, DC_3 - C_5 alkynyl, $CODC_3$ - C_5 alkynyl, DC_1 - C_4 alkyl, DC_3 - C_5 alkenyl, $CODC_1$ - C_4 alkyl, $CODC_1$ - C_4 alkyl, $CODC_1$ - C_4 alkyl, $CODC_1$ - C_4 alkyl, $CODC_3$ - C_5 alkenyl;

n is 1 or 2;

D is O. S. NH or NC₁-C₄ alkyl;

R₂ is H. halogen. CF₃. NO₂. C₁-C₄ alkyl or

C₁-C₄ alkoxy; and
A is O. S. NR₅ or -C=N-.

30 U.S. 4.521.597 discloses, in part, a process for the preparation of compounds of formula

ASO₂NHCNH
$$\stackrel{R}{\longleftrightarrow}_{N}$$

wherein

10 A is
$$R_2$$
 R_3 R_5 or

R₃

R₃ is H. halogen, NO₂. OCH₃ or CF₃:
R₅ is H. F. Cl. Br. NO₂. C₁-C₅ alkyl. C₁-C₅
alkoxy. CF₃. S(O)_mC₁-C₅ alkyl. COR₇ or
SO₂NR₈R₉:

Y is O, S or C(R₆)=N; and

R₇ is H, C₁-C₅ alkyl, C₁-C₅ haloalkyl, C₁-C₅
alkoxy, C₁-C₅ haloalkoxy, C₂-C₁₀ alkoxyalkoxy,

C₃-C₅ alkenyloxy, C₃-C₅ alkynyloxy, phenoxy,
benzyloxy, C₁-C₅ alkylthio or NR₈R₉.

U.S. 4.549.898 discloses herbicidal sulfonylureas of formula

35

15 .

20

25

30

ĸ

wherein

5

10

15

X is O. S. NR_A or $C(R_5)=N$:

Y is O or S;

Z is O or S:

E is N or CH;

 R_1 is H. C_1 - C_4 alkyl. C_1 - C_4 haloalkyl. C_1 - C_4 haloalkoxy. C_1 - C_4 alkoxy. halogen. C_1 - C_4 alkylthio. NR_6R_7 or alkoxyalkyl containing not more than 4 carbon atoms:

 R_2 is H. C_1-C_3 alkyl. C_1-C_3 haloalkyl. halogen. NO_2 . C_1-C_3 alkoxy. $C(W)R_8$. $SO_2NR_6R_7$. $S(O)_n-C_1-C_3$ alkyl or COR_9 :

R₃ is H, halogen, C₁-C₃ alkyl, OCH₃ or CF₃;

 R_5 is H. NO₂, F. Cl. Br. CH₃, CF₃, S(O)_nC₁-C₃ alky1, COC₁-C₄ alkoxy or C₁-C₃ alkoxy;

R₈ is H, C₁-C₆ alkyl, C₁-C₄ haloalkyl, C₃-C₆ cycloalkyl, C₄-C₇ cycloalkylalkyl or alkoxy-alkyl containing not more than 4 carbon atoms:

20 and

W is O or NOR 10.

Japanese Patent Application Number 58-70407 (SHO 59-219.218, laid open 10.12.84)/discloses pyrazole-5-sulfonylureas of formula

25

30 wherein

A is H. lower alkyl or phenyl;

B is H or lower alkyl:

D is H. CO₂R or COAr, halogen, NO₂ or SO₂NR¹R²; and

В

Ar is phenyl optionally substituted with halogen.
U.S. 4.370,480 discloses herbicidal sulfonylureas of formula

5

wherein

10

15

R is H, C_1 - C_2 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl; C_1 - C_4 alkyl substituted with one to four substituents selected from 0-3 F, 0-3 Cl, 0-3 Br, 0-2 OCH₃, 0-1 cyano, 0-1 $CO_2R_1^*$ where R_1^* is C_1 - C_3 alkyl, $CO_2R_1^*$, C_2 - C_4 alkenyl substituted with 1-3 Cl, C_3 - C_6 cycloalkyl, C_5 - C_6 cycloalkyl, C_5 - C_6 cycloalkyl, substituted with substituents selected from 1-3 CH₃ or one of CH_3CH_2 , Cl, OCH_3 , C_4 - C_7 cycloalkylalkyl,

25

20

30

or a single bond; and T is O or NOR_1^{III} .

Japanese Patent Application Number 84-273152 (Sho 86-151188, laid open July 9, 1986) discloses the following compound

SCH₂SO₂NHCNH OCH₃

10 SUMMARY OF THE INVENTION

This invention delates to novel compounds of Formula I. agriculturally suitable compositions containing them, and their method-of-use as general preemergence and/or postemergence herbicides or plant growth regulants.

10

JSO₂NHČNR₁A

I

15 wherein

25

. 20

EOCH2) nCR'

R'C(CH₂) N N R₂

30

<u>J-3</u>

7-5

11, <u>J-5</u> <u>J-6</u> <u>J-7</u> (CH₂)_nCR'

R is H, C₁-C₃ alkyl, phenyl, SO₂NR_aR_b, C₁-C₂ haloalkyl, C2-C4 alkoxyalkyl, C2-C3 cyanoalkyl, C2-C4 alkylthioalkyl, C2-C4 alkylsulfinylalkyl. C2-C4 alkylsulfonylalkyl. CO2C1-C2 alkyl. C1-C4 alkylcarbonyl, C₁-C₂ alkylsulfonyl, C₃-C₄ alkenyl, C3-C4 alkynyl or C1-C2 alkyl substituted with CO2C1-C2 alkyl: R, is H or CH; R_2 is H. C_1-C_3 alkyl. C_1-C_3 haloalkyl. halogen, 10 nitro. C₁-C₃ alkoxy, SO₂NR_cR_d, C₁-C₃ alkylthio. C₁-C₃ alkylsulfinyl, C₁-C₃ alkylsulfonyl, CN, CO2Re, C1-C3 haloalkoxy, C1-C3 haloalkylthio, amino. C₁-C₂ alkylamino. di(C₁-C₃ alkyl)amino or C_1-C_2 alkyl substituted with C_1-C_2 alkoxy, 15 C_1-C_2 haloalkoxy, C_1-C_2 alkylthio, C_1-C_2 haloalkylthio, CN, OH or SH; R_a and R_b are independently C_1-C_2 alkyl: R_c is H. C_1-C_4 alkyl. C_2-C_3 cyanoalkyl. methoxy or 20 R_d is H, C_1-C_4 alkyl or C_3-C_4 alkenyl; or R_c and R_d may be taken together as -(CH₂)₃-. -(CH₂)₄-. -(CH₂)₅- or <math>-CH₂CH₂OCH₂CH₂-: R_e is C_1-C_4 alkyl, C_3-C_4 alkenyl, C_3-C_4 alkynyl, C2-C4 haloalkyl, C1-C2 cyanoalkyl, C5-C6 cyclo-25 alkyl, C4-C7 cycloalkylalkyl or C2-C4 alkoxyalkyl; R' is C_1-C_5 alkyl, C_1-C_5 haloalkyl, C_1-C_5 alkyl substituted with one or two R_3 groups, C_2 - C_5 alkenyl, C2-C5 haloalkenyl, C3-C5 alkenyl substituted with one or two R_3 groups, C_3-C_5 30 alkynyl, C3-C5 haloalkynyl, C3-C5 alkynyl substituted with one or two R_3 groups, C_3-C_5 cycloalkyl, C3-C5 halocycloalkyl, C3-C5 cycloalkyl substituted with one or two R4 groups, C4-C7 cycloalkylalkyl, C4-C7 halocycloalkyl-. 35 alkyl. C4-C7 cycloalkylalkyl substituted with one or two R groups, phenyl or benzyl;

 R_3 is C_1-C_3 alkoxy, C_1-C_3 alkylthio, C_1-C_3 haloalkoxy, c₁-c₃ alkylsulfinyl, c₁-c₃ alkylsulfonyl. CN. NO₂. OH. OR₅ or $di-(C_1-C_3$ alkyl)amino; 5 R_4 is C_1-C_3 alkyl. C_1-C_3 alkoxy. C_1-C_3 haloalkoxy. CN. NO₂. OH. OR₅ or di-(C₁-C₃ alkyl)amino; R₅ is SO₂CH₃, Si(CH₃)₃, C₂-C₃ alkylcarbonyl or $co_2c_1^-c_2^-$ alkyl: E is a single bond or CH2: 10 W is O or S: n is O or 1; n' is 0 or 1; 15 20 25 <u>A-6</u> 30

X is H. C_1-C_4 alkyl, C_1-C_4 alkoxy, C_1-C_4 haloalkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkylthio. C1-C4 alkylthio. halogen. C2-C5 alkoxyalkyl. C2-C5 alkoxyalkoxy, amino, C1-C3 alkylamino, $di(C_1-C_3)$ alkyl)amino or C_3-C_5 cycloalkyl; Y is H, C_1-C_4 alkyl, C_1-C_4 alkoxy, C_1-C_4 haloalkoxy. C1-C4 haloalkylthio. C1-C4 alkylthio. C2-C5 alkoxyalkyl. C2-C5 alkoxyalkoxy. amino. C1-C3 alkylamino, di(C1-C3 alkyl)amino, C3-C4 10 alkenyloxy, C3-C4 alkynyloxy, C2-C5 alkylthioalkyl, C₁-C₄ haloalkyl, C₂-C₄ alkynyl, azido, cyano, C2-C5 alkylsulfinylalkyl, C2-C5 alkylsulfonylalkyl, CR₆, -CL₁R₇, -CL₁(CH₂)_m, -CR₆ L₂R₈ 15 or N(OCH₂)CH₃; m is 2 or 3: L_1 and L_2 are independently 0 or S: 20 R_6 is H or C_1-C_3 alkyl; R_7 and R_8 are independently C_1-C_3 alkyl; Z is CH or N; Z, is CH or N; Y, is O or CH,; 25 X₁ is CH₃, OCH₃, OC₂H₅ or OCF₂H; X₂ is CH₃. C₂H₅ or CH₂CF₃; Y2 is OCH3. OC2H5. SCH3. SC2H5. CH3 or CH2CH3; X₃ is CH₃ or OCH₃:

Y3 is H or CH3:

30

3 4

X4 is CH3. OCH3. OC2H5. CH2OCH3 or Cl: and

 Y_4 is CH_3 , OCH_3 , OC_2H_5 or C1;

and their agriculturally suitable salts; provided that

- a) when X is Cl. F. Br or I, then Z is CH and
 Y is
 OCH_, OC_H_, N(OCH_)CH_, NHCH_,N(CH_)_
 - OCH_3 , OC_2H_5 , $N(OCH_3)CH_3$, $NHCH_3$, $N(CH_3)_2$ or OCF_2H :
- b) when X or Y is C₁ haloalkoxy, then Z is CH;
- c) X_A and Y_A are not simultaneously C1;
- d) when W is S. then R₁ is H. A is A-1 and Y is CH₃. OCH₃. OC₂H₅. CH₂OCH₃. C₂H₅. CF₃. SCH₃. OCH₂CH=CH₂. OCH₂CECH. OCH₂CH₂OCH₃. CH(OCH₃)₂ or 1.3-dioxolan-2-y1;
- e) when the total number of carbons of X and Y is greater than four, then the number of carbons of R must be less than or equal to two;
- f) when J is J-1. J-2. J-3 or J-4 then R' is other than phenyl;
- g) when J is J-5. J-6 or J-7 wherein E is a single bond, then R' is other than C₁-C₅ (alkyl, C₃-C₅ alkenyl, phenyl, benzyl, cyclopentyl or C₄-C₇ cycloalkylalkyl;
- h) when either or both of X and Y are OCF₂H then J is J-1, J-2, J-3, J-4, J-8, J-9, J-10 or J-11; and
- i) when A is A-7 and Z_1 is N, then J is J-1, J-2, J-3 or J-4 and R' is C_3-C_5 cycloalkyl;
 - j) when the total number of carbon atoms of X and Y is greater than four, then the total number of carbon atoms of R_2 and R' must be less than or equal to 7.

In the above definitions, the term "alkyl", used either alone or in compound words such as "alkylthio"

35

30

5

10

15

20

or "haloalkyl", denotes straight chain or branched alkyl, e.g. methyl, ethyl, n-propyl, isopropyl or the different butyl, and spentyl isomers. And the chain of the control of the control

5 Alkoxy denotes methoxy, ethoxy, <u>n</u>-propyloxy, isopropyloxy and the different butyl isomers.

Alkenyl denotes straight chain or branched alkenes, e.g., 1-propenyl, 2-propenyl, 3-propenyl and the different butenyl and pentenyl isomers.

Alkynyl denotes straight chain or branched alkynes, e.g. ethynyl, 1-propynyl, 2-propynyl and the different butynyl and pentynyl isomers.

Alkylsulfonyl denotes methylsulfonyl. ethylsulfonyl and the different propylsulfonyl isomers.

Alkylthio, alkylsulfinyl, alkylamino, etc. are defined analogously to the above examples.

Cycloalkyl denotes cyclopropyl, cyclobutyl, cyclopentyl and cyclobexyl.

The term "halogen", either alone or in compound 20 words such as "haloalkyl", denotes fluorine, chlorine, bromine or iodine. Further, when used in compound words such as "haloalkyl" said alkyl may be partially halogenated or fully substituted with halogen atoms and said halogen atoms may be the same or different.

25 Examples of haloalkyl include CH2CH2F, CF2CF3 and CH2CHFC1.

The total number of carbon atoms in a substituent group is indicated by the C_i-C_j prefix where i and j are numbers from 1 to 7. For example, C_1-C_3 alkylsulfonyl would designate methylsulfonyl through propylsulfonyl, C_2 alkoxyalkoxy would designate OCH_2OCH_3 , C_2 cyanoalkyl would designate CH_2CN and C_3 cyanoalkyl would designate CH_2CH_2CN and $CH(CN)CH_3$.

1. 经未收款 阿尔

35

10

Compounds preferred for reasons of increased ease of synthesis and/or greater herbicidal efficacy are:

1. Compounds of Formula I wherein in addition

5 the provisos (a) to (j) there is additionally the
following proviso (k) when J is J-S. R₁ is H. R₂
is H. E is CH₂. A is A-1. X is OCH₃. Y is OCH₃
and Z is CH. then R' is other than CH₃.

10

15

20

25

30

- Compounds of <u>Formula I</u> where E is a single bond; and
 W is O.
- Compounds of <u>Formula I</u> where E is CH₂; and W is O.
- 4. Compounds of Preferred 2 where

 R₂ is H. C₁-C₃ alkyl. halogen, C₁-C₃ alkyl
 substituted with 1 to 3 halogen atoms
 selected from 1 to 3 Cl. 1 to 3 F or 1 Br.

 OCH₃. SO₂NHCH₃, SO₂N(CH₃)₂. S(O)_nCH₃.

 CO₂CH₃. CO₂CH₂CH₃. OCF₂H. CH₂OCH₃ or
 CH₂CN:

R is H, C₁-C₃ alkyl. phenyl. CH₂CF₃ or CH₂CH=CH₂; X is C₁-C₂ alkyl. C₁-C₂ alkoxy. Cl. F. Br. 1. OCF₂H. CH₂F. CF₃. OCH₂CH₂F. OCH₂CHF₂. OCH₂CF₃, CH₂Cl or CH₂Br; and

Y is H. C₁-C₂ alkyl. C₁-C₂ alkoxy. CH₂OCH₃.

CH₂OCH₂CH₃. NHCH₃. N(OCH₃)CH₃. N(CH₃)₂.

CF₃. SCH₃. OCH₂CH=CH₂. OCH₂CECH. OCH₂CH₂OCH₃.

 CH_2SCH_3 . $\ddot{C}R_2$. -C \dot{R}_2 L_2 R_4 \dot{R}_2 L_2 L_2

OCF₂H, OCF₂Br, SCF₂H, cyclopropyl, CECH or CECCH₃.

5. Compounds of <u>Preferred 4</u> where

R' is C₁-C₄ alkyl, C₁-C₃ alkyl
substituted with 1 to 3 halogen atoms

selected from 1 to 3 Cl, 1 to 3 P or 1 Br.

C₂-C₄ alkoxyalkyl, C₂-C₄ alkylthioalkyl.

C₂-C₄ cyanoalkyl, C₂-C₄
alkenyl, C₂-C₃ alkenyl substituted with
1 to 3 halogen atoms selected from 1 to
3 Cl. 1 to 3 f or 1 Br. C₃-C₄ alkynyl,
C₃-C₅ cycloalkyl, C₃-C₅ cycloalkyl
substituted with 1 to 3 halogen atoms
selected from 1 to 3 Cl. 1 to 3 f or 1 Br
or cyclopropylmethyl.

10 6. Compounds of Preferred 5 where

A is A-1;

n is O;

15

20

25

30 .

35

X is CH₃, OCH₃, OCH₂CH₃, C1 or OCF₂H; and Y is CH₃, OCH₃, C₂H₅, CH₂OCH₃, NHCH₃,

CH(OCH₃)₂ or cyclopropyl.

7. Compounds of Preferred 6 where

R₁ is H; R₂ is H.

R₂ is H. Cl. Br. OCH₃ or CH₃; and R'is C₁-C₃ alkyl. C₁-C₃ alkyl substituted with 1 to 3 F. C₂-C₃ alkoxyalkyl. C₂-C₃ alkylthicalkyl. C₂-C₃ cyanoalkyl. C₂-C₃ alkenyl. propargyl. C₃-C₅ cycloalkyl or

cyclopropylmethyl.

8. Compounds of Preferred 7 where J is J-1.

9. Compounds of Preferred 7 where J is J-2.

10. Compounds of Preferred 7 where J is J-3.

11. Compounds of Preferred 7 where J is J-4.

12. Compounds of Preferred 7 where J is J-5.

13. Compounds of Preferred 7 where J is J-6.

14. Compounds of <u>Preferred 7</u> where J is J-7.15. Compounds of <u>Preferred 7</u> where J is J-8.

16. Compounds of <u>Preferred 7</u> where J is J-9.

17. Compounds of <u>Preferred 7</u> where J is J-10.

18. Compounds of <u>Preferred 7</u> where J is J-11.

19. Compounds of Preferred 8 where R' is C_1-C_3 alkyl.

- 20. Compounds of Preferred 8 where

 R' is C₁-C₃ alkyl substituted with 1 to 3 F.

 C₂-C₃ alkoxyalkyl. C₂-C₃ alkylthioalkyl. C₂-C₃

 cyanoalkyl. C₂-C₃ alkenyl. propargyl. C₃-C₅ cycloalkyl or cyclopropylmethyl.
- 21. Compounds of <u>Preferred 8</u> where R' is C_3-C_5 cycloalkyl.
- 22. Compounds of Preferred 3 where

 R is H. C₁-C₃ alkyl. phenyl. CH₂CF₃ or CH₂CH=CH₂:

 R₂ is H. Cl. Br. OCH₃ or CH₃:

 R' is C₁-C₃ alkyl. C₁-C₃ alkyl substituted with 1 to 3 F. C₂-C₃ alkoxyalkyl. C₂-C₃ alkylthioalkyl. C₂-C₃ cyanoalkyl. C₂-C₃ alkenyl, propargyl. C₃-C₅ cycloalkyl or cyclopropylmethyl.

n is 0; A is A-1;

- X is CH₃, OCH₃, OCH₂CH₃, Cl or OCF₂H; and Y is CH₃, OCH₃, C₂H₅, CH₂OCH₃, NHCH₃, CH(OCH₃)₂ or cyclopropyl.
- 23. Compounds of Formula I where

 J is J-1, J-2, J-3 or J-4; and

 R' is C₁-C₅ haloalkyl, C₁-C₅ alkyl substituted with one or two R₃ groups, C₂-C₅ alkenyl,

 C₂-C₅ haloalkenyl, C₃-C₅ alkenyl substituted with one or two R₃ groups, C₃-C₅ alkynyl,

 C₃-C₅ haloalkynyl, C₃-C₅ alkynyl substituted with one or two R₃ groups, C₃-C₅ cycloalkyl,

 C₃-C₅ halocycloalkyl, C₃-C₅ cycloalkyl substituted with one or two R₄ groups, C₄-C₇ cycloalkylalkyl substituted with one or two R₄ groups, phenyl or benzyl.

35

- 24. Compounds of Formula I where J is J-5. J-6 or J-7.
- 25. Compounds of Formula I where when J is J-8, J-9, J-10 or J-11.

Compounds of the invention specifically preferred for reasons of greatest ease of synthesis and/or greatest herbicidal efficacy are 4-(cyclopropylcar-bonyl)-N-[(4.6-dimethoxy-pyrimidin-2-yl)aminocarbinyl]-l-methyl-lH-pyrazole-5-sulfonamide. m.p. 189-192°C (d): 4-(1-oxopropyl)-N-[(4.6-dimethoxypyrimidin-2-yl)aminocarbonyl]-l-methyl-lH-pyrazole-5-sulfonamide. m.p. 189-192°C(d), and 2-(cyclopropylcarbonyl)-N-[(4.6-dimethoxypyrimidin-2-yl)aminocarbonyl]-3-thiophenesulfonamide, m.p. 165-168°C.

The compounds of this invention are highly active as preemergent and/or postemergent herbicides 20 or plant growth regulants with selectivity on rice, corn, wheat, soybeans and barley.

25

; ; ;

5

30

DETAILED DESCRIPTION OF THE INVENTION

Synthesis

Compounds of Formula I can be prepared by one or 5 more of the procedures shown in Equations 1. 4. and 5. J. R_{1} , and A are as previously defined. Equation 1

II III

The reaction of Equation 1 is best carried out in an inert aprotic organic solvent such as dichloro-15 methane, 1,2-dichloroethane, tetrahydrofuran, or acetonitrile, at a temperature between 20° and 85°C. The order of addition is not critical; however, it is often convenient to add the sulfonyl isocyanate or a solution of it in the reaction solvent, to a stirred suspension of the amine.

In some cases, the desired product is insoluble in the reaction solvent at ambient temperature and crystallizes from it in pure form. Products soluble in the reaction solvent are isolated by evaporation of the solvent. Compounds of Formula I then may be purified by trituration of the evaporation residue with solvents such as 1-chlorobutane or ethyl ether and filtration. by recrystallization from mixtures of solvents such as 1,2-dichloroethane, 1-chlorobutane and heptane or by chromatography on silica gel.

Sulfonyl isocyanates (II. W is O) are known in the art and are prepared from the corresponding sulfonamides (IV) by one of the following two general methods.

35

20

25

Equation 2

JSO_ZNH; CH₃ (CH₂)₃NCO II. W is O

IV

35

isocyanate (e.g., n-butyl isocyanate) in a solvent
whose boiling point is above 135°C, such as xylene.
The reaction can optionally be carried out in the
presence of a catalytic amount of 1.4-diaza[2.2.2]bicyclooctane (DABCO). The reaction mixture is heated
to 135-140°C and held at that temperature for 5-60
minutes, after which phosgene is slowly added at such
a rate that the temperature remains between 133 and
135°C. When the consumption of phosgene has ceased,
the mixture is cooled and filtered to remove insoluble
material. Finally, the solvent, alkyl isocyanate, and
excess phosgene are evaporated, leaving the sulfonyl
isocyanate (II).

If desired, the alkyl isocyanate-sulfonamide adduct can be made and isolated before reaction with the phosgene. In this case the sulfonamide (IV), alkyl isocyanate, and anhydrous base (e.g. K₂CO₃) in a polar, aprotic solvent (e.g. acetone, butanone, or acetonitrile) are mixed and heated under reflux for 1 to 6 hours. The reaction mixture is then diluted with water, and the pH is adjusted to about 3 with acid (e.g. HCl, H₂SO₄). The adduct is filtered out and dried, and then reacted with phosgene as described above. This procedure modification is especially useful when sulfonamide (IV) is high melting and has low solubility in the phosgenation solvent.

Sulfonyl isocyanates (II, W is O) can also be prepared by the following method.

Equation 3

5

(a)
$$\underline{IV}$$
 $\xrightarrow{SOC1_2}$ $\underline{JSO_2NSO}$

10

(b)
$$\underline{v}$$
 $\xrightarrow{\text{cocl}_2.}$ $\underline{\text{pyridine cat.}}$ $\underline{\text{II}}$. W is 0

The sulfonamide (IV) is heated at reflux in an excess of thionyl chloride. The reaction is continued until the sulfonamide protons are no longer detectable in the proton magnetic resonance spectrum. From 16 hours to 5 days is typically sufficient for complete conversion to the thionylamide (V) (Equation 3a).

35

The thionyl chloride is evaporated and the residue is treated with an inert solvent (e.g. toluene) containing at least one equivalent (typically 2-3 equivalents) of phosgene. A catalytic amount of pyridine (typically 0.1 equivalent) is added, and the mixture is heated to about 60-140°C, with 80-100°C preferred. Conversion to the isocyanate (II, W is O) is usually substantially complete within 15 minutes to 3 hours (Equation 3b). The mixture is then cooled and filtered, and the solvent is evaporated, leaving the sulfonyl isocyanate (II, W is O).

Sulfonyl isothiocyanates (II, W is S) are known in the art and are prepared from the corresponding sulfonamides (IV) by reaction with carbon disulfide and potassium hydroxide followed by treatment of the resulting dipotassium salt VI with phosgene. Such a procedure is described in Arch.299, 174 (1966).

Many of the compounds of Formula I can be pregated by the procedure shows in Equation 4.

Equation 4

5

VI

The reaction of Equation 4 is carried out by contacting phenylcarbamates or phenylthiocarbamates of Formula VI with aminoheterocycles of Formula III in an inert organic solvent such as dioxane or tetrahydrofuran at temperatures of about 20-100°C for a period of about one-half to twenty-four hours. The product can be isolated by evaporation of the reaction solvent and purified by methods previously described.

Phenylcarbamates and phenylthiocarbamates of Formula VI can be prepared by the methods described.

20 or modifications thereof known to those skilled in the art, in U.S. 4.443,243.

Alternatively, many of the compounds of Formula I can be prepared by the method described in Equation 5.

Equation 5

25

$$\frac{IV}{IV} + C_6 H_5 \stackrel{\circ cna}{\circ R_1} \longrightarrow \underline{I}$$

The reaction of Equation 5 can be carried out by contacting equimolar amounts of a sulfonamide of Formula IV with a heterocyclic phenylcarbamate or phenylthiocarbamate of Formula VII in the presence of a base such as 1.8-diazabicyclo[5.4.0]undec-7-ene (DBU). by methods analogous to those described in South African Patent Application 83/0441. The phenylcarbamates and

phenylthiocarbamates of Formula VII can be prepared by methods. or modifications thereof known to those skilled in the art, described in South African Patent Application 82/5671 and South African Patent Application 82/5045.

The sulfonamides IV of this invention may be prepared in a variety of ways some of which are described in Equations 6 through 15.

10

30

For example, the 4-keto-5-sulfonamide isomer <u>1</u> may be prepared as outlined in Equation 6.

Equation 6

Preparation of the intermediates such as bromide 2 may be found in EPA-95,925. Exposure of bromide 2 to nBuLi followed by addition of the resulting anion to cyclopropyl acid chloride affords the protected sulfonamide. Deprotection of the sulfonamide affords the desired sulfonamide 1.

Introduction of various R and R₂ groups to sulfonamides such as <u>1</u> may be accomplished in several ways. For example, the sequence in Equation 6 could also be performed on 3-chloro-1-methylpyrazole or 1.3-dimethylpyrazole affording <u>3</u> and <u>4</u> respectively. Chloride <u>3</u> may then be used to further elaborate

5 CH₃ CH₃ CH₃ CH₃ CH₃ CH₃
$$\frac{3}{2}$$
 $\frac{4}{2}$

10 R₂ as outlined in Equation 7. Equation 7

The N-substituent of compounds such as 1. 3: 4 and 5
may also be varied by applying the same sequence of
reactions as outlined in Equation 6 to various N-substituted pyrazoles. For example, pyrazole may be
alkylated with dimethylsulfamoylchloride to afford
pyrazole 6. Pyrazole 6 is then converted to sulfonamide 7 as outlined in Equation 8.
Equation 8

In the case where either R or R₂ are sensitive to nBuLi (i.e. R₂ is CO₂CH₃ or Br) then the lithiating reagent of choice is lithium diisopropylamide (LDA). Utilizing the same sequence as outlined in Equation 6 but substituting LDA for nBuLi affords sulfonamides such as 8. This is outlined in Equation 9

Equation 9

10

The isomeric 5-keto-4-sulfonamide pyrazoles may be prepared as outlined in Equations 10 and 11.

25 Equation 10

In Equation 10 the sequential order of group introduction is reversed to that of Equation 6. The introduction of various R and R₂ groups may be accomplished in the same manor as previously described for the 4-ketoisomer in Equations 7. 8 and 9.

An alternate synthesis of sulfonamides such as 9 is outlined in Equation 11.

Equation 11

20

Oxidations of alcohols to ketones such as 12 to

g are well known in the art. For further discussion

pertaining to the oxidation of alcohols to ketones,

see R. H. Cornforth. J. W. Cornforth and G. Popjak,

25 see R. H. Cornforth. J. W. Cornforth and G. Popjak Tetrahedron, 18, 1351 (1962).

The isomeric 3-keto-4-sulfonamide such as 13 may be prepared as outlined in Equation 12.

Equation 12

In the above example of Equation 12, as before, minor variations of starting material allows for the introduction of different R and R₂ groups. The starting pyrazoles <u>14</u> or <u>15</u> may be prepared via the condensation of a hydrazine with a triketo species as outlined in Equation 13.

Equation 13

The final pyrazole isomer of the invention such as sulfonamide <u>16</u> may be prepared as outlined in Equation 14.

Equation 14

Again, as described previously, alteration of the starting material allows for the preparation of compounds such as 16 where R and/or R₂ may be varied. For example, utilizing phenylhydrazine and a chloronitrite results in pyrazole 20 and subsequently sulfonamide, 21. This is outlined in Equation 15.

Equation 15

In all the above examples, substitution of cyclo-propyl acid chloride with other acid chlorides would 15 result in the corresponding ketones such as compounds 22, 23, 24, 25 and 26.

For further details pertaining to the synthesis of pyrazoles see EP-A-87,780, South African Patent Application 833,350, EP-A-95,925 and T. L. Jacobs. "Heterocyclic compounds". R. C. Elderfield ed., Vol. 5, pp. 45-161, Wiley, New York, 1957.

For further details pertaining to carbanions see J. Stowell. "Carbanions in Organic Synthesis", Wiley-Interscience, New York, 1979.

Thiophene sulfonamides such as <u>27</u> may be prepared as outlined in Equation 16.

Equation 16

Introduction of various R₂ groups on the thiophene ring may be accomplished in several ways. For example, the sequence in Equation 16 may also be performed on the 4-substituted analogs resulting in the corresponding sulfonamides such as 29 and 30.

• The isomeric 2-thiophenesulfonamide such as 31 may be prepared as outlined in Equation 17.

Equation 17

30
$$\frac{1) \text{ n-BuLi}}{2) \text{ so}_2\text{Cl}_2}$$
 $\frac{1}{3} + \text{NH}_2$ $\frac{32}{3}$

35

An alternate synthesis of sulfonamides such as 31 is outlined in Equation 18.

10 Equation 18

Br
$$\frac{1) \text{ n-BuLi}}{2) \text{ CHO}}$$
 $\frac{1) \text{ n-BuLi}}{2) \text{ so}_2\text{Cl}_2}$ $\frac{31}{3) \text{ NH}_3}$ 4) [0]

The isomeric 3-thiophenesulfonamide such as 33 may be prepared as outlined in Equation 19.

Equation 19

Introduction of various \mathbf{R}_2 groups onto the thiophene ring may be accomplished by varying the starting material as previously described.

Further details pertaining to the preparation and functional group manipulation of thiophenes may be found in U.S. Patent 4.481.029.

Preparation of the pyridinesulfonamides of this invention, such as pyridine 36 may be carried out in a variety of ways. For example, Meerwein reaction of 37 followed by ortho lithiation affords sulfonamides such as 36, as outlined in Equation 20.

Equation 20

5

Prior to removal of the <u>tert</u>-butyl group it may be necessary to protect the ketone functionality as the ethylene ketal which may then be removed subsequently at a later time.

The isomeric sulfonamide. 39. may be prepared as outlined in Equation 21.

35

Equation 21

$$5 \text{ NH}_{2} \xrightarrow{\text{O}} \text{H} + \bigvee_{\text{O}} \text{SCH}_{3} \xrightarrow{\text{-H}_{2}\text{O}} \bigvee_{\text{O}} \text{SCH}_{3}$$

The isomeric sulfonamide <u>40</u> may be prepared as outlined in Equation 22.

Equation 22

Introduction of various substituents on the

pyridine ring system as well as variation of R' may be accomplished as described previously for the pyrazole system.

For further details pertaining to the synthesis of pyridines see, E. Beritmaier, S. Gassenmann and

- E. Bayer. <u>Tetrahedron 26</u>, 5907 (1970); B. Blank et al., <u>J. Med. Chem.</u>, <u>17</u>, 1065 (1974); M. Mallet and G. Queguiner, <u>Tetrahedron</u>, <u>41</u>, 3433 (1985) and
- 5 J. Delarge and C. L. Lapiere, <u>Annales Pharm, France</u>, <u>36</u>, 369 (1978).

The synthesis of heterocyclic amines such as those represented by Formula III has been reviewed in "The Chemistry of Heterocyclic Compounds." a series published by Interscience Publ., New York and London. Aminopyrimidines are described by D. J. Brown in "The Pyrimidines." Vol. XVI of the series mentioned above which is herein incorporated by reference. The 2-amino-1.3.5-triazines of Formula III, where A is A-1 and Z is N. can be prepared according to methods described by E. M. Smolin and L. Rapaport in "s-Triazines and Derivatives." Vol. XIII.

Pyrimidines of Formula III. where A is A-1 and Y is an acetal or thioacetal substituent, can be 20 prepared by methods taught in European Patent Application No. 84,224 (published July 27, 1983).

Pyrimidines of Formula III. where A is A-1 and Y is cyclopropyl or OCF₂H can be synthesized according to the methods taught in United States
25 Patent 4.515.626 and United States Patent 4.540.782. respectively.

Compounds of Formula III. where A is A-2 or A-3. can be prepared by procedures disclosed in United States Patent 4,339.267.

Compounds of Formula III. where A is A-4. can be prepared by methods taught in United States Patent 4.487.626.

Additional references dealing with the synthesis of bicyclic pyrimidines of Formula III, where A is A-2. 35 A-3, or A-4 are Braker, Sheehan, Spitzmiller and Lott.

J. Am. Chem. Soc., 69, 3072 (1947); Mitler and Bhattachanya, Quart. J. Indian Chem. Soc., 4, 152 (1927); Shrage and Hitchings, J. Org. Chem., 16, 1153 (1951);
Caldwell, Kornfeld and Donnell, J. Am. Chem. Soc., 63, 2188 (1941); and Fissekis, Myles and Brown. J. Org. Chem., 29, 2670 (1964).

Compounds of Formula III, where A is A-5, can be prepared by methods taught in United States Patent 10 4.421.550.

Compounds of Formula III, where A is A-6, can be prepared by methods taught in the United States Patent 4,496.392.

Compounds of Formula III, where A is A-7 can be prepared by methods taught in EP-A-125,864.

Agriculturally suitable salts of compounds of Formula I are also useful herbicides and can be prepared in a number of ways known to the art. For example, metal salts can be made by contacting compounds of Formula I with a solution of an alkali or alkaline earth metal salt having a sufficiently basic anion (e.g., hydroxide, alkoxide, carbonate or hydroxide). Quaternary amine salts can be made by similar techniques.

25 Salts of compounds of Formula I can also be prepared by exchange of one cation for another. Cationic
exchange can be effected by direct contact of an
aqueous solution of a salt of a compound of Formula I
(e.g., alkali or quaternary amine salt) with a solution
30 containing the cation to be exchanged. This method is
most effective when the desired salt containing the
exchanged cation is insoluble in water and can be
separated by filtration.

Exchange may also be effected by passing an 35 aqueous solution of a salt of a compound of Formula I (e.g., an alkali metal or quaternary amine salt)

through a column packed with a cation exchange resin containing the cation to be exchanged for that of the original salt and the desired product is eluted from the column. This method is particularly useful when the desired salt is water-soluble, e.g., a potassium sodium or calcium salt.

Acid addition salts, useful in this invention.

can be obtained by reacting a compound of Formula I

with a suitable acid. e.g., p-toluenesulfonic acid,

trichloroacetic acid or the like.

The preparation of the compounds of this invention is further illustrated by the following specific examples. Unless otherwise indicated, temperatures are in degrees centigrade.

Example 1

Preparation of 4-cyclopropylcarbonyl-1-methyl-5-pyrazole t-butyl sulfonamide

To a cooled -78°C, solution of n-BuLi (3.7 g, 57.2 mmol) in approximately 350 ml of tetrahydrofuran is added 1-methyl-4-bromo-5-pyrazole t-butylsulfonamide (7.5 g, 25.4 mmol) dropwise. The solution is stirred for 15 minutes and then added via cannula to freshly distilled cyclopropyl acid chloride (6 g, 57.2 mmol) cooled to -78°C. The resulting solution was quenched with brine, separated, dryed and concentrated in vacuo. The resulting oil was flash chromatographed (50:50 (v/v)) ethylacetate-hexane to afford 2.7 g of a white solid, m.p. 113-115°C.

Example 2

Preparation of 4-cyclopropylcarbonyl-1-methyl-5pyrazolesulfonamide

To a stirring solution of trifluoroacetic acid was added 4-cyclopropyl-1-methyl-5-pyrazole t-butyl-sulfonamide. The solution was stirred overnight at

room temperature. The reaction mixture was concentrated in vaccuo and the resulting solids were triturated with n-butylchloride, m.p. 125-127°C; NMR (200 MHz, CDCl₃) 1.1 (m. 2H), 1.3 (m. 2H), 2.4 (m. 1H), 4.2 (s. 3H), 6.4 (br. s. 2H), 8.07 (s. 1H).

Example 3

Preparation of 4-(Cyclopropylcarbonyl)-N-[(4.6-dimeth-10 oxypyrimidin-2-yl)aminocarbonyl]-1-methyl-1H-pyrazole-5-sulfonamide

To a stirring mixture of the sulfonamide from Example 2 (175 mg. 0.76 mmol) and the phenylcarbamate of 4.6-dimethoxy-2-aminopyrimidine (210 mg. 0.76 mmol) in 3 ml of acetonitrile was added diazobicycloundecane (116 mg. 0.76 mmol). The solution was stirred for approximately 10 minutes. Acidification of the reaction mixture and filtration of the resulting solids afforded 300 mg of the desired compound

20 m.p. 189-192°C NMR (200 MHz. CDCl₃) 1.0 (m. 2H).

1.1 (m. 2H). 2.4 (m. 1H). 4.0 (s. 6H). 4.35 (s. 1H).

5.80 (s. 1H). 7.4 (br. s. 1H). 8.05 (s. 1H).

Example 4

25 Preparation of 4-Acetyl-1-methyl-1H-pyrazole-5sulfonamide

mmol) in 350 mL of tetrahydrofuran cooled to -95°C is added 4-bromo-1-methyl-1H-pyrazole-5-t-butylsulfonamide (7.5 g. 25.4 mmol). The solution is cannulated into a stirring solution of acetyl chloride (76.2 mmol) cooled to -78°C. The reaction is stirred for 1/2 hour at -78°C then quenched with saturated sodium chloride. The organic layer is separated, dried and concentrated.

35 The resulting crude oil was added to CF₃CO₂H and allowed to stir for 24 hours. The acid was removed

under vacuum and the resulting oil was flash chromatographed. The resulting solid, m.p. 153-162°C, was mostly the closed hemiaminal, which was used directly in the next reaction.

Example 5

Preparation of 4-Acetyl-N-[(4.6-dimethoxy-2-pyrimidiny1)aminocarbony1]-1-methy1-1H-pyrazole-5-sulfonamide

To a mixture of the hemiaminal from Example 4 (200 mg. 0.98 mmol), the phenyl carbamate of 4.6dimethoxy-2-aminopyrimidine (271 mg. 0.98 mmol) 3 mL of acetonitrile, and DBU (212 mg, 0.98 mmol) was added. The reaction was diluted with 3 mL of water 15 and 3 mL of 5% hydrochloric acid. The resulting solids were collected to afford 200 mg of a white solid, m.p. 179-182°C; NMR (200 MHz, CDCl₃) δ 2.46 (s. 3H), 4.06 (s. 6H), 4.37 (s. 3H), 5.81 (s. 1H), 7.4 (br.s, 1H), 7.9 (s. 1H) and 13.0 (br.s, 1H); 20 IR (KBr) 1730 cm⁻¹.

Example 6

Preparation of N-(1,1-Dimethylethyl)-1-methyl-4-(1oxobutyl)-1H-pyrazole-5-sulfonamide

To a solution of \underline{n} -BuLi (2.1 g. 33.7 mmol) 25 cooled to -78°C in 250 mL of tetrahydrofuran is added the t-butyl protected 4-bromo-1-methyl-5-pyrazolesulfonamide (4.5 g, 15.2 mmol). The solution is then added to butyric anhydride (2.9 g. 18.2 mmol) at 30 -78°C. Standard work-up afforded 4.4 g of an oil which was a mixture of the desired product and debrominated starting material. This material was not purified, but used as is in the next reaction.

41 Example 7

Preparation of 1-Methyl-4-(1-oxobutyl)-1H-pyrazole-5-sulfonamide

The mixture from the previous Example 6 (3.9 g) was added to CF₃CO₂H (TFA) and stirred for 4.5 hours. Removal of the TFA afforded a brown oil. Flash chromatography (15:85 EtOAC:hexane (v/v)) yielded 1.0 g of a white solid, m.p. 97-99°C. NMR (200 MHz. 10 CDCl₃) & 0.97 (t, 3H), 1.67 (m, 2H). 2.83 (t, 3H), 4.19 (s, 3H), 6.40 (br.s, 2H) and 7.91 (s, 1H).

Example 8

Preparation of N-[(4-Methoxy-6-methyl-1,3,5-triazin-2-15 yl)aminocarbonyl]-1-methyl-4-(1-oxobutyl)-1H-pyrazole-5-sulfonamide

To a mixture of sulfonamide (150 mg. 0.61 mmol) and the phenyl carbamate of 4-methyl-6-methoxy-2-aminotriazine (158 mg. 0.61 mmol) in 3 mL of acetonitrile is added DBU (93 mg. 0.61 mmol). The solution is diluted with 3 mL of H₂O and 3 mL of 5% HCl, and the resulting solids are collected, m.p. 174-176°C. NMR (200 MHz. CDCl₃) & 0.88 (s. 3H), 1.68 (m. 2H). 2.7 (s. 3H), 2.79 (t. 2H), 4.19 (s. 3H), 4.33 (s. 3H), 7.7 (br.s. 1H), 7.9 (s. 1H) and 12.9 (br.s. 1H).

Example 9

Preparation of 2-(cyclopropylcarbonyl)-N-(1-1-dimethylethyl)-3-thiophenesulfonamide

30

To a stirring solution of <u>n</u>-BuLi (6.6g. 102 mmol) in 300 ml of tetrahydrofuran is added the t-butyl protected 3-thiophenesulfonamide (10.0g. 45.7 mmol). The solution was warmed to -30°C and then recooled to -78°C. The solution was cannulated into a mixture of cyclopropane carbonylic acid chloride (5.7g. 51.7 mmol) in 50 ml of tetrahydrofuran (9-78°C. The reaction was quenched with brine.

separated and dryed over magnesium sulfate, concentration of the organic in <u>vaccuo</u> afforded 17g of anvil. Flash chromatography (25:75 EtCAC/hexane (v/v)) afforded 44 g of the desired product. NMR (200MHz, CDC₃) δ 1.26 (m. 13H). 2.5 (m. 1H). 6.5 (br. S. 1H). 7.5 (d. 1H), 7.67 (d. 1H):

Example 10

Preparation of 2-(cyclopropylcarbonyl)-N
[(4,6-dimethoxy-1,3,5-triazin-2-yl)aminocarbonyl]3-thiophenesulfonamide

To a stirring solution of sulfonamide (300 mg. 1.3 mmol). the phenylcarbamate of 4.6-dimethoxy-2-aminotriazine (358 mg. 1.3 mmol) in 5 ml of acetonitrile was added DBU (197 mg. 1.3 mmol). The same work up as in example 5 afforded 390 mg of the desired product. m.p. 146-148°C. NMR (200 mHz. CDCl₃) & 1.1 (m.2H), 1.3 (m.2H), 2.5 (m.1H), 4.1 (S.6H), 7.5 hr.s.1H), 7.6 (d.1H), 7.9 (d.1H), 12.3 (s.1H):

Using the procedures from Equations 1 to 22 and Examples 1 to 10 the compounds of Tables I to XV can be prepared.

25

30

Table II

20 <u>Table III</u>

5

10

15

25
Table IV

30

44 Tables (continued)

45
Tables (continued)

5	Table X	SO ₂ NH NR ₁ X
10		9 NX
15	Table XI	SO2NH NR1 NZ
20	<u> Fable XII</u>	CH ₂) _n R' X
		N—X
25 <u>T</u>	Cable XIII	SO ₂ NH NR ₁ N Z
30		o *
<u>T</u>	able XIV	$R \xrightarrow{\text{CCH}_2} n \xrightarrow{\text{SO}_2\text{NH}} NR_1 \xrightarrow{\text{N}} Z$

<u>Tables (continued)</u>

SO₂NH NR₁ NR₂

.

Table XV

Table I

5		R,	_	R_2	D.		<u>¥</u>	z	m.p.(*C)
	R			_		Σ.		_	162-165
	CH ₃		0		cyclopropyl	•	CH ³		155-157
	CH ₃		0		cyclopropyl	•	OCH ₃		
	CH ³		0		cyclopropyl	•	OCH ₃		189-192
10	3	H	0	Н	cyclopropyl	3	CH ³	Ħ	
	3	Н	0		cyclopropyl	_	OCH ₃	N	134-136
	CH ₃	H	0		cyclopropyl	•	och ³	N	164-166
	CH ₃	H	0	H	cyclopropyl		och ₃	CH	197-199
	CH ₃	H	0	H	cyclobutyl	CH ₃	CH ₃	CH	190-194
**	CH ₃	H	0	H	cyclobutyl	CH ₃	och3	CH	200-203
15	CH3	H	0	H	cyclobutyl	OCH ₃	och ³	CH	196-199
	CH ₃	H	0	H		CH ₃	CH ₃	N	
	CH ₃	H	0	H	cyclobutyl	CH ₃	och ₃	N	175-178
	CH ₃	H	0	н	cyclobutyl	OCH ₃	OCH ₃	N	168-170
	CH ₃	H	0	H	cyclobutyl	Cl	och ₃	CH	210-212
20	CH3	H	0	H	cyclopentyl	CH ₃	CH ₃	СН	
	CH3	н	0	H	cyclopentyl	CH3	OCH ₃	CH	•
	CH ₃	H	0	н	cyclopentyl	OCH ₃	OCH ₃	CH	
	CH ₃	н	0	H	cyclopentyl	CH ₃	CH ₃	N	
	CH ₃	H	0	н	cyclopentyl	CH ₃	OCH ₃	N	٠
25	CH ₃	H	0	H	cyclopentyl	OCH ₃	-	A	
	CH ₃	H	0	H	cyclopentyl	Cl	OCH ₃	CH	
	CH3	H	0	H	cyclopropyl	осн	OCH2CH3	СН	
	CH ₃	H	0	H	cyclopropyl	cyclopropyl	OCH ₃	СН	
	CH ₃	н	0	H	cyclopropyl	OCH ₃	CH(OCH ₃)2	СН	
30	CH ₂	н	0	H	cyclopropyl	инсн,	OCH_CH3	N	
	-	н	Ò	н	cyclopropyl	-	OCH ₃	N	
	CH	н	0	н	cyclopropyl	•	OCH ₂ CH ₃	N	
	CH	н	0	н	cyclopropyl	- J	CH3	СН	

48
Table I (cont.)

								•
5	R	<u>R</u> 1	<u>n</u>	<u>R</u> 2	<u>R*</u>	<u>x</u>	Ā	Z m.p.(°C)
	CH ₃	H	0	CH3	cyclopropyl	CH ₃	CH ₃	ÇĦ
	CH ₃	H	0	CH ₃	cyclopropyl	CH ³	OCH ₃	CH .
	CH ₃	H	0	CH ₃	cyclopropyl	OCH ₃	OCH ³	CH
	CH3	H	0	CH ₃	cyclopropyl	CH ₃	CH ₃	H
10	_			-	cyclopropyl		OCH ₃	N
	_			_	cyclopropyl	-	осн ₃	n
	CH3	H	0	CH ₃	cyclopropyl	Cl	OCH ₃	CH .
	CH ₃			. –	cyclobutyl		CH ₃	CFI
	CH3		0	CH ₃	cyclobutyl	CH ₃	OCH ₃	CE
15	CH3	H	0	CH ₃	cyclobutyl	OCH ₃	OCH ₃	CH
	CH3	H	0	CH ₃	cyclobutyl	CH ₃	CH ₃	H .
	CH ₃		0	CH3	cyclobutyl	CH ₃	OCH ₃	H
	CH ₃	H	0	CH ₃	cyclobutyl	OCH ³	OCH ³	M .
	_			_	cyclobutyl		OCH ₃	CH
20	CH3	H	0	CH3	cyclopentyl	CH ₃	CH ₃	СН
	CH ₃	H	0	CH3	cyclopentyl	CH ³	OCH3	CH
	CH3	H	0	CH ₃	cyclopentyl	оснз	OCH ₃	CH
	CH3	H	0	CH3	cyclopentyl	CH ³	CH ₃	A
	CH3	H	0	CH3	cyclopentyl	CH ³	OCH ³	H
25	CH3	H	0	CH3	cyclopentyl	OCH ³	осн ³	n
	СН _З	H	0	CH ₃	cyclopentyl	Cl	осн ³	CH
	CH ₃	н	0	CH3	cyclopropyl	OCH ³	осн ₂ сн ₃	CH
	CH ₃	H	0	CH ₃	cyclopropyl	cyclopropyl	OCH 3	CH .
20	CH ₃	Ĥ	0	CH ₃	cyclopropyl	оснз	CH(OCH ₃) ₂	CH
30	CH ₃	H	0	CH3	cyclopropyl	инсн ₃	och ₂ ch ₃	E
	CH3	H	0	CH ₃	cyclopropyl	NHCH ₃	och ₃	N .
	CH ₃			_	cyclopropyl	•	OCH ₂ CH ₃	H
	CH3	H	0	CH ₃	cyclopropyl	CH ₂ F	CH ₃	СН

5	<u>R</u>	R ₁	Ū	R_2	R'	<u>x</u>	¥	<u>z</u>	m.p.(°C)
	CH	н	0	Cl	cyclopropyl	CH2	CH ₃	CH	167-169
	•				cyclopropyl	•	OCH ₃	CH	178-180
	•				cyclopropyl	•	OCH ₃	CH	193-195
	CH3	H	0	Cl	cyclopropyl	CH3	CH ₃	M	
10	CH ₃	H	0	Cl	cyclopropyl	CH ₃	OCH ₃	N	
	CH ₃	H	0	Cl	cyclopropyl	OCH ₃	och ³	N	
•	CH ₃	H	0	Cl	cyclopropyl	Cl	осн3	СН	
	CH ₃	H	0	Çl	cyclobutyl	CH3	CH ₃	CH	
	CH ₃	H	0	Cl	cyclobutyl	CH ₃	осн ₃	CH	• • •
15	CH ₃	H	0	Cl	cyclobutyl	OCH ₃	осн ₃	CH	
	_				cyclobutyl	CH3	CH3	n	
	CH ₃	H	0	Cl	cyclobutyl	CH ³	осн ₃	N	
	CH ₃	H	0	Cl	cyclobutyl	OCH ³	och ³	N	
20					cyclobutyl	C1	3	CH	
20	_				cyclopentyl	•	CH ₃	CH	
	_				cyclopentyl	_	3	CH	•
	9				cyclopentyl		OCH ₃	CH	
					cyclopentyl	9	CH ₃	N	
25	,				cyclopentyl	3	och ₃	N	
	-				cyclopentyl	•	och ₃	N	
					cyclopentyl		OCH ₃	CH	
	_				cyclopropyl.	_	och ₂ ch ₃	CH	
i	CH ₃				cyclopropyl		-	CH	
30	•				cyclopropyl	•	CH(OCH ₃) ₂	CH	
30	_				cyclopropyl	•	OCH ₂ CH ₃	n	
					cyclopropyl	•	OCH ₃	N	
	_				cyclopropyl	•	OCH ₂ CH ₃	N	
	CH ₃	Н	O	C1	cyclopropyl	CH ₂ F	CH3	CH	

5	<u>R</u>	<u>R</u> 1	n	R ₂	<u>R*</u> .		<u>¥</u>	<u>z</u>	m.p.(°C)
	CHa	н	0	Br	cyclopropyl	CH ₃	CH ₃	CH	•
	_	н			cyclopropyl	CH3	OCH ₃	CH	
	•	H	0	Br	cyclopropyl	OCH ₃	OCH ₃	CH	
	CH	н	0	Br	cyclopropyl	СН	CH ₃	Ħ	
10	-	H	0	Br	cyclopropyl	CH ³	OCH ₃	R	
	CH3	H	0	Br	cyclopropyl	OCH ₃	OCH ₃	Ħ	
		н	0	Br	cyclopropyl	Cl	OCH ³	CH	
	CH ₃	H	0	Br	cyclobutyl	CH ₃	CH ₃	CH	
	_	H	0	Br	cyclobutyl	CH ₃	OCH ³	CH	
15	CH ₃	H	0	Br	cyclobutyl	OCH ₃	OCH ₃	CH	
	CH ₃	H	0	Br	cyclobutyl	CH ₃	CH ³	Ħ	•
	CH ₃	H	0	Br	cyclobutyl	CH ³	OCH ₃	H	
	CH3	H	0	Br	cyclobutyl	OCH ₃	OCH ₃	H	
	CH3	H	Ô	Br	cyclobutyl	Cl	OCH ₃	CH	
20	CH3				cyclopentyl	.•	CH ³	CH	•.
	CH3				cyclopentyl	•	OCH ₃	CH	
	CH3	•			cyclopentyl	• .	OCH ₃	CH	•
	CH ₃				cyclopentyl	.	CH ₃	H	·
25	CH3	•			cyclopentyl	-	OCH ₃		
23	CH ₃				cyclopentyl	. •	OCH ₃	M	
	CH ₃				cyclopentyl		OCH ₃	CH	
	CH ₃				cyclopropyl		och ₂ ch ₃	CH	
	CH ₃	,				cyclopropyl		CE	
30	CH ₃	H			cyclopropy!		CH(OCH ₃) ₂	CI.	
50	CH ₃	,			cyclopropyl	•	OCH ₂ CH ₃	. M	. ,
	CH				cyclopropy)		OCH ₃	N	
	CH	,			cyclopropy	, -	OCH ₂ CH ₃	E	
	CH	3 H	C) B1	cyclopropy)	CH ₂ F	CH ₃	CI	1

5	R	R ₁	Ū	R ₂	R*	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
	СНЗ	н	0	CH ₂ F	cyclopropyl	CH ₃	CH ₃	CH	
•	_			-	cyclopropyl	-	OCH ₃	СН	
	•			-	cyclopropyl		OCH ₃	CH	
	CH	н	0	CH ₂ F	cyclopropyl	CH ₃	CH ₃	N	
10	_			_	cyclopropyl	_	OCH ₃	N	
	CH3	н	0	CH ₂ F	cyclopropyl	осн	OCH ₃	N	
•	CH ₃	н	0	CH ₂ F	cyclopropyl	Cl	OCH ₃	CH	
	CH3	H	0	CH ₂ F	cyclobutyl	CH ₃	CH3	CH	•
	-				cyclobutyl		OCH ₃	CH	
15	CH ₃	н	0	CH ₂ F	cyclobutyl	OCH ₃	OCH ₃	CH	
	CH ₃	H	0	CH ₂ F	cyclobutyl	CH3	CH3	n	
	CH ³	H	0	CH ₂ F	cyclobutyl	CH ₃	och ₃	H	
	CH ₃	H	0	CH ₂ F	cyclobutyl	OCH ₃	och ₃	N	
	CH ₃	н	0	CH ₂ F	cyclobutyl	C1	OCH3	CH	
20	CH3	H	0	CH ₂ F	cyclopentyl	CH ₃	CH ₃	CH	
	CH ₃	H	0	CH ₂ F	cyclopentyl	CH ₃	OCH3	CH	•
	CH3	H	0	CH ₂ F	cyclopentyl	OCH ₃	OCH ₃	CH	
	CH ₃	H	0	CH ₂ F	cyclopentyl	CH ³	CH3	N	
	CH ₃	H	0	CH ₂ F	cyclopentyl	CH ₃	OCH3	N	
25	CH ₃	Н	0	CH ₂ F	cyclopentyl	оснз	och ₃	N	
	CH3	H	0	CH ₂ F	cyclopentyl	Cl	OCH ₃	CH	
	CH3	H	0	CH ₂ F	cyclopropyl	осн ₃	осн ₂ сн ₃	CH	•
	CH3	н	0	CH ₂ F	cyclopropyl	cyclopropyl	och ₃	CH	
20	CH3	H	0	CH ₂ F	cyclopropyl	OCH ₃	CH(OCH ₃) ₂	CH	
30	CH3	H	0	CH ₂ F	cyclopropyl	NHCH ₃	осн ₂ сн ₃	N	
	CH3	H	0	CH ₂ F	cyclopropyl	NHCH ₃	OCH3	N	•
	_			_	cyclopropyl	-	осн ₂ сн ₃	N	
•	CH ₃	H	0	CH ₂ F	cyclopropyl	CH ₂ F	CH3	CH	

52
Table I (cont.)

					•			
5	R	. <u>R</u> 1	ū	<u>R</u> 2	R'	<u>x</u>	<u>x</u>	Z m.p.(*C)
	CH3	H	0	OCH ₃	cyclopropyl	CH ₃	CH ₃	CH
	CH3	H	0	OCH ₃	cyclopropyl	CH3	OCH3	CH
	CH ₃	H	0	OCH ₃	cyclopropyl	OCH,	OCH 3	CH
	_			_	cyclopropyl		CH ₃	H.
10	CH ₃	H	.0	OCH ₃	cyclopropyl	CH3	OCH ₃	H ,
	CH ₃	H	0	OCH ₃	cyclopropyl	OCH.	OCH ₃	N
	CH3	H	0	OCH ₃	cyclopropyl	Cl	OCH ₃	CH
	CH ₃	H	0	OCH ₃	cyclobutyl	CH ₃	CH ₃	CH
	CH ₃	н	0	OCH ₃	cyclobutyl	CH3	OCH ₃	CH
15	CH3				cyclobutyl		OCH ₃	CH
	CH ₃	H	0	OCH ₃	cyclobutyl	CH ₃	CH ³	N '
	CH ₃				cyclobutyl		OCH ₃	H
	CH ₃	H	0	OCH ₃	cyclobutyl	OCH ₃	OCH ₃	H
	CH ₃	H	0	OCH ₃	cyclobutyl	Cl	OCH ₃	CH
20	CH ₃	H	0	OCH ₃	cyclopentyl	CH ₃	CH ³	CH
	CH3	H	0	OCH ₃	cyclopentyl	CH ₃	OCH ₃	ĊH.
	CH ₃	H	0	OCH ₃	cyclopentyl	OCH ₃	осн3	CH
	CH ₃	H	0	OCH ₃	cyclopentyl	CH ₃	CH ³	M
25	CH3	H	0	OCH ₃	cyclopentyl	CH ³	OCH ₃	H
25	CH3	H	0	OCH ₃	cyclopentyl	OCH ₃	OCH ₃	N
	CH3	H	0	OCH ₃	cyclopentyl	Cl	OCH ₃	CH
	CH3	H	0	OCH ₃	cyclopropyl	осн3	OCH ₂ CH ₃	CH
	CH3	H	0	OCH ₃	cyclopropyl	cyclopropyl	осн ₃	CH
30	СH _З	H	0	OCH ₃	cyclopropyl	осн ₃	CH(OCH ₃) ₂	CH
30	CH ₃	H	0	OCH ₃	cyclopropyl	инсн ₃	och ₂ ch ₃	N
	СНЗ	H	0	OCH ₃	cyclopropyl	NHCH ₃	OCH ₃	H
	CH3	H	0	OCH ₃	cyclopropyl	осн ₃	OCH ₂ CH ₃	N
	CH3	H	0	OCH ₃	cyclopropyl	CH ₂ F	CH ₃	CH

53
Table I (cont.)

5 ,	<u>R</u>	R ₁	n	R ₂	R*	<u>x</u>	<u>¥</u>	Z m.p.(°C)
	_	-			cyclopropyl	CHa	CH ₃	CH
					cyclopropyl		OCH ₃	CH
					cyclopropyl	•	_	CH
					cyclopropyl	-	CH ₃	И
10					cyclopropyl		OCH ³	N.
					cyclopropyl		OCH ₃	H
					cyclopropyl		OCH ₃	СН
					cyclobutyl		CH3	CH
•					cyclobutyl		OCH ₃	CH
15	CH 3	н	0	2 3 2 SO N(CH.)	cyclobutyl	OCH,	OCH ₃	CH
	CH	 Н	,	SO N(CH.)	cyclobutyl	CH	CH3	H
	CH3	н	0	2 3 2 SO N(CH.)	cyclobutyl	CH	OCH ₃	H
	CH 3	··	0	SO N(CH_)_	cyclobutyl	OCH_	OCH ₃	N
					cyclobutyl		OCH3	СН
20	CH 3	H	0	SO N(CH.)	cyclopentyl	CH	CH ₃	CH
					cyclopentyl		OCH ₃	СН
	CH.3	 н	0	2 3 2 SO N(CH.).	cyclopentyl	OCH	OCH ₃	СН
					cyclopentyl		CH3	N
	CH3	Н	0	2 N(CH ₂)	cyclopentyl	. CH ₂	OCH ₃	R
25	CH_	н	0	SO_N(CH_)	cyclopentyl	OCH ₂	OCH ₃	N .
	CH_	н	o	2 3 2 SO_N(CH_)	cyclopentyl	. C1	OCH ₃	CH
					cyclopropyl		OCH ₂ CH ₃	CH
	CH_	H	0	2 3 2 SO_N(CH_),	cyclopropyl	cyclopropyl	осн	СН
					cyclopropyl		CH(OCH ₃) ₂	CH
30	CII.	H	0	່ວວິກ(CHັ້) ້	cyclopropy)	инсн _з	OCH ₂ CH ₃	H .
	Cit	H	O	SON(CH)	cyclopropy)	L WHCH3	OCH ₃	N .
					cyclopropy)		OCH ₂ CH ₃	Я
					cyclopropy		CH ₃	CH

54
Table I (cont.)

5	R R	n	R ₂	<u>R*</u>		<u>¥</u>	Z m.p.(°C)
				cyclopropyl	CH	CH ³	CH
				cyclopropyl		OCH ³	CH
				cyclopropyl	_	OCH ₃	CH
				cyclopropyl	· .	CH ₃	H
10				cyclopropyl		OCH ₃	H
				cyclopropyl		OCH ₃	K
				cyclopropyl		OCH ₃	CH
				cyclobutyl		CH ₃	CEL
				cyclobutyl		OCH ₃	CH
15	CH ₂ H			cyclobutyl		OCH ₃	CH
	CH ₃ H			cyclobutyl		CH ₃	A
	CH ₂ H			cyclobutyl		OCH ₃	¥
	CH3 H			cyclobutyl		OCH ₃	T .
	сн3 н			cyclobutyl		OCH ₃	CH
20	СН ₃ Н			cyclopentyl		CH3	CH.
				cyclopentyl		OCH ₃	CH
	сн _з н			cyclopenty]		OCH ₃	CH
				cyclopenty!		CH ₃	H
				cyclopenty		OCH3	H .
25				cyclopenty!		OCH ₃	M
	сн _з н			cyclopenty		OCH ₃	CH
				cyclopropy		OCH ₂ CH ₃	CH
	сн _з н	C	SCH	cyclopropy	l cyclopropyl	OCH ₃	CH
	сн _з н		SCH.	cyclopropy	I OCH3	CH(OCH ₃) ₂	CH
30	сн, н			3 cyclopropy		OCH ₂ CH ₃	E
	сн3 н			3 cyclopropy		OCH ₃	ĸ
				cyclopropy		OCH ₂ CH ₃	H
	Си, н			cyclopropy		CH ₃	CH

55
Table I (cont.)

5	R	<u>R</u> 1	n	R ₂	R'	<u>X</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
	CH,	н	0	SOCH	cyclopropyl	CHa	CH ₃	СН	
	_			•	cyclopropyl	•	осн ₃	СН	
	_			•	cyclopropyl	-	OCH ₃	СН	
	•			_	cyclopropyl		CH ₃	N	
10	_			•	cyclopropyl	•	OCH ₃	N	
	CH ₃	н	0	SOCH ₃	cyclopropyl	och ₃	OCH3	N	
	CH ₃	н	0	SOCH ₃	cyclopropyl	Cl	осн ₃	CH	
	CH ₃	H	0	SOCH ₃	cyclobutyl	CH ₃	CH ₃	CH	
	CH ₃	H	0	SOCH ₃	cyclobutyl	CH3	och ₃	СН	
15	CH ₃	H	0	SOCH ₃	cyclobutyl	OCH3	осн ₃	СН	•
	CH3	H	0	SOCH ₃	cyclobutyl	CH ₃	CH3	Ħ	
	CH ₃	H	0	SOCH ₃	cyclobutyl	CH ₃	och ₃	N	
	CH3	H	0	SOCH ₃	cyclobutyl	och ₃	осн ₃	N	
20	CH3	H	0	SOCH ₃	cyclobutyl	Cl	осн ₃	CH	
20	CH ³	H	0	SOCH ₃	cyclopentyl	CH ₃	СH ₃	CH	
	CH3	Н	0	SOCH ₃	cyclopentyl	CH ₃	och ³	CH	
	CH ₃	H	0	SOCH ₃	cyclopentyl	осн ₃	och ₃	CH	
	CH ₃	H	0	SOCH ₃	cyclopentyl	CH ₃	CH ₃	N	
25	CH3	н	0	SOCH ₃	cyclopentyl	CH ₃	OCH3	N	
				J	cyclopentyl	•	OCH ₃	N	
	_			_	cyclopentyl		OCH ₃	СН	
	_			•	cyclopropyl	•	осн ₂ сн ₃	CH	
	_			•	cyclopropyl		•	CH	
30	_			•	cyclopropyl	•	CH(OCH ₃) ₂	CH	
1	_			•	cyclopropyl	•	OCH ₂ CH ₃	N	
	_			•	cyclopropyl	•	OCH ₃	N	
	_			_	cyclopropyl	_	och ₂ ch ₃	N	
	CH ₃	H	0	SOCH ₃	cyclopropyl	CH ₂ F	CH3	CH	

56
Table I (cont.)

5	R	<u>R</u> 1	Þ	<u>R</u> 2	<u>R*</u>	<u>x</u>	<u>¥</u> .	Z m.p.(*C)
	CH3	н	0	SO ₂ CH ₃	cyclopropyl	CH3	CH ₃	CH
	_				cyclopropyl	• .	OCH ₃	CH
	_				cyclopropyl	•	OCH3	CH
	_				cyclopropyl	_	CH ₃	n .
10	CH3	H	0	SO ₂ CH ₃	cyclopropyl	СНЗ	OCH ₃	.m
	CH ₃	H	0	SO2CH3	cyclopropyl	OCH ³	OCH ₃	N
	CH3	H	0	SO ₂ CH ₃	cyclopropyl	C1	OCH3	CH
	CH3	H	0	SO2CH3	cyclobutyl	CH ₃	CH ₃	CH
	CH3	H	0	SO2CH3	cyclobutyl	CH3	OCH ₃	CH
15	CH ₃	H	Ō	SO2CH3	cyclobutyl	OCH ₃	осн ₃	CEH
	CH ₃	H	0	SO2CH3	cyclobutyl	CH ₃	CH ₃	H
	CH3	H	0	so ₂ cH ₃	cyclobutyl	CH3	OCH ³	H
	CH ₃	н	0	SO2CH3	cyclobutyl	OCH3	OCH ³	N
20	CH3	H	0	SO2CH3	cyclobutyl	Cl	OCH ³	CH
20	CH ₃	H	0	SO2CH3	cyclopentyl	CH ³	CH ₃	CH
	CH3	H,	0	SO ₂ CH ₃	cyclopentyl	CH ₃	OCH ³	CH
	CH ₃	H	0	SO2CH3	cyclopentyl	осн3	OCH ₃	CH
•	CH ₃	H	0	SO2CH3	cyclopentyl	CH ³	CH ₃	N
25	CH3	H	0	SO2CH3	cyclopentyl	CH ₃	OCH ³	B
25	CH ₃	H	0	50_2 CH $_3$	cyclopentyl	OCH ₃	OCH ³	N
	_				cyclopentyl		OCH ³	CH
					cyclopropyl	•	OCH ² CH ³	CH
	CH ₃	H	0	SO2CH3	cyclopropyl	cyclopropyl	_	CH
30	CH ₃	H	0	SO ₂ CH ₃	cyclopropyl	och ₃	CH(OCH ₃)2	CH
30	_				cyclopropyl	_	OCH2CH3	N
	_				cyclopropyl	. •	OCH ₃	n
	_				cyclopropyl	_	OCH ₂ CH ₃	n
	CH ₃	H	0	so ₂ cH ₃	cyclopropyl	CH ₂ F	CH ³	CH

5	ъ	R,	_	R ₂	D *	<u>x</u> ·	<u>¥</u>	Z m.p.(°C)
	R					_		CH CH
	CH ₃				cyclopropyl	-	CH ³	СН
	CH ₃				cyclopropyl	•	OCH ₃	
					cyclopropyl		OCH ₃	CH
10	CH ₃				cyclopropyl	•	CH ₃	N
	CH ₃				cyclopropyl	•	OCH ₃	N
	CH ₃				cyclopropyl	_	OCH ₃	N
	CH ₃				cyclopropyl		OCH ₃	CH
	CH ₃				cyclobutyl	CH ₃	CH ³	.CH
36	CH3	Н	0	CN	cyclobutyl	CH ₃	OCH ₃	CH
15	CH3	H	0	CN	cyclobutyl	och ₃	och ³	CH
	CH ₃	H	0	CN	cyclobutyl	•	CH ₃	N
	CH3	н	0	CN	cyclobutyl	CH ³	осн ₃	N .
	CH ₃	H	0	CN	cyclobutyl	OCH ₃	och ₃	N .
	CH ₃	H	0	CN	cyclobutyl	Cl	OCH ₃	СН
20	CH ₃	H	0	CN	cyclopentyl	CH ₃	CH3	CH
	CH ₃	H	0	CN	cyclopentyl	CH ₃	OCH3	CH .
	CH ₃	H	0	CN	cyclopentyl	och ₃	och ₃	CH
	CH3	н	0	CN	cyclopentyl	CH ₃	CH ₃	N
	CH3	н	0	CN	cyclopentyl	CH ₃	OCH ₃	N
25	CH ₃	н	0	CN	cyclopentyl	OCH ₃	OCH ₃	N .
	Cita		0	CN	cyclopentyl	C1	OCH ₃	СН
	CH	H	0	CN	cyclopropyl	OCH ₃	OCH ₂ CH ₃	CH
	CH ₃	H	0	CN	cyclopropyl	cyclopropyl	OCH ₃	СН
	CH		0	CN	cyclopropyl	OCH ₃	CH(OCH ₃) ₂	СН
30	CH3				cyclopropyl	•	OCH2CH3	N
	CH ₃				cyclopropyl	•	OCH ₃	N
	CHa				cyclopropyl	•	OCH ₂ CH ₃	A .
	CH ₃				cyclopropyl	_	CH3	CH

58
Table I (cont.)

5	<u>R</u>	R ₁	n	R ₂	<u>R*</u>	<u>x</u>	¥	Z m.p.(°C)
					cyclopropyl	CH ₃	CH ₃	CH
	_				cyclopropyl		OCH ₃	CH .
	_				cyclopropyl	_	OCH ³	CH
	_				cyclopropyl		CH ³	я .
10	_				cyclopropyl		OCH ₃	· N
	CH ₃	н	0	CO2CH3	cyclopropyl	och ₃	OCH ₃	H
	CH ₃	H	0	CO2CH3	cyclopropyl	Cl	3	CH
	CH3	н	0	CO2CH3	cyclobutyl	CH ³	CH ₃	CH
	CH ₃	H	0	CO2CH3	cyclobutyl	CH ³	OCH ³	CH
15	CH ₃	H	0	CO2CH3	cyclobutyl	осн ₃	OCH ³	CH
	CH ₃	н	0	CO2CH3	cyclobutyl	CH ₃	CH ₃	H
					cyclobutyl		3	· n ,
					cyclobutyl		OCH ₃	H
20					cyclobutyl		OCH3	CH
20	_				cyclopentyl		CH ₃	CH
	_				cyclopentyl		OCH ₃	CH
	CH3	H			cyclopentyl		och ³	CH
	CH3				cyclopentyl		CH ₃	. V
25	CH3	H			cyclopentyl	•	3	; H
23	CH3				cyclopentyl		OCH3	H
	CH ₃	н			cyclopentyl			CH
	CH ₃	H			cyclopropyl	•	· och ₂ ch ₃	CH
	CH ₃	H			cyclopropyl	•		CH:
30	СНЗ	•			cyclopropyl		CH(OCH ₃) ₂	
30	CH3	•		-	cyclopropyl		OCH ₂ CH ₃	H
_	CH3	•			cyclopropyl		OCH ₃	· M
	CH ₃	,			cyclopropyl	-	OCH ₂ CH ₃	N
	CH ₃	H	C	CO ₂ CH ₃	cyclopropyl	. Сн ₂ г	CH ₃	CH

59
Table I (cont.)

5	<u>R</u>	<u>n</u>	<u>R</u> 2	<u>R'</u>	X	<u>¥</u>	Z m.p.(°C)
	СН ₃ Н	0	N(CH ₃)	cyclopropyl	CH ₃	CH3	CH
	_			cyclopropyl		OCH ₃	СН
				cyclopropyl		OCH ₃	CH
	CH ₃ H	0	N(CH ₃) ₂	cyclopropyl	CH ₃	CH ₃	N
10	сн3 н	0	N(CH ₃)2	cyclopropyl	CH 3	OCH	N
	CH ₃ H	0	N(CH ₃)2	cyclopropyl	och ₃	осн ₃	N
	сн _з н	0	N(CH ₃)2	cyclopropyl	Cl	осн ₃	СН
	CH3 H	0	N(CH ₃) ₂	cyclobutyl	CH ₃	CH ₃	CH
	CH3 H	0	N(CH ₃)2	cyclobutyl	CH3	OCH ₃	CH
15	CH3 H	0	N(CH ₃) ₂	cyclobutyl	OCH ₃	осн3	CH
	CH ₃ H	0	N(CH ₃)2	cyclobutyl	CH ₃	CH ₃	N .
	CH ₃ H	0	N(CH ₃) ₂	cyclobutyl	CH ₃	OCH ₃	n
	СН 3 Н	0	N(CH ₃) ₂	cyclobutyl	OCH ₃	OCH ₃	n
20	СН ₃ Н	0	N(CH ₃) ₂	cyclobutyl	Cl	OCH ³	CH
20	•			cyclopentyl	•	CH ₃	CH .
	сн ₃ н	0	N(CH ₃) ₂	cyclopentyl	CH ₃	3	·СН
	_			cyclopentyl	_	och ₃	СН
	-			cyclopentyl	•	CH ₃	H
25	_			cyclopentyl		OCH ₃	N
23	_			cyclopentyl	_	OCH ₃	n
	_			cyclopentyl		OCH ₃	CH
	_			cyclopropyl	_	och ₂ ch ₃	CH
				cyclopropyl			CH
30	_			cyclopropyl	_	CH(OCH ₃) ₂	СН
	_			cyclopropyl	-	OCH ₂ CH ₃	N
	_			cyclopropyl		och ₃	N ·
	_			cyclopropyl	•	OCH ₂ CH ₃	N
	CH3 H	0	N(CH ₃) ₂	cyclopropyl	CH ₂ F	CH ₃	СН

60
Table I (cont.)

5	R	<u>R</u> 1	n	R ₂	<u>R*</u>	<u>x</u>	<u>¥</u>	Z m.p.(°C)
					cyclopropyl	CH3	CH ₃	CH
					cyclopropyl		OCH ₃	CH
					cyclopropyl		OCH ₃	CH
					cyclopropyl		CH ₃	H
10	_				cyclopropyl		OCH ³	H
				_	cyclopropyl	_	OCH ₃	A
					cyclopropyl		OCH ₃	CH
	_			_	cyclobutyl		CH ₃	CH
					cyclobutyl		OCH ₃	CH
15	CH ₃				cyclobutyl		och ₃	CH
	CH ₃	H	0	CH ₂ CN	cyclobutyl	CH ³	CH ³	H
•	CH ₃	H	0	CH ₂ CN	cyclobutyl	CH ₃	OCH3	H
	CH ₃	H	0	CH ₂ CN	cyclobutyl	OCH ³	och ³	. 13
	CH ₃	H	0	CH ₂ CN	cyclobutyl	Cl	OCH ₃	CH
20	CH ₃	H	0	CH ₂ CN	cyclopentyl	CH3	CH ₃	CH
	CH ₃	H	0	CH ₂ CN	cyclopentyl	. CH ₃	OCH3	CH
	CH ₃	H	0	CH ₂ CN	cyclopentyl	OCH ³	och ³	CH
	CH3	H	0	CH ₂ CN	cyclopentyl		CH ³	N
_ <u>:</u>	CH3	H	0	CH ₂ CN	cyclopentyl	. сн ₃	OCH3	H .
25	CH3	H	0	CH ₂ CN	cyclopentyl	C OCH	OCH ³	N
	CH ₃	н	. 0	CH ₂ CN	cyclopentyl	C1	OCH ₃	CH
	CII3				cyclopropy)		OCH ₂ CH ₃	CH
	CH ₃	H	C	CH ₂ CE	cyclopropy	cyclopropyl		CH
	CH ₃	•		-	cyclopropy)		CH(OCH ₃) ₂	СН
30	CH ₃	н			cyclopropy		och ₂ ch ₃	. 10
•	•	, н		_	cyclopropy		OCH ³	E
	CH.	н			cyclopropy		och ₂ ch ₃	N .
	CH.	3 H	(CH ₂ CI	d cyclopropy	1 CH ₂ F	CH ₃	CH

61
Table I (cont.)

5	R	R ₁	Ū	<u>R</u> 2	R*	<u>X</u> .	<u>¥</u>	Z m.p.(°C)
	CH ₂	н	0	CH2OCH3	cyclopropyl	CH3	CH ₃	СН
	_			-	cyclopropyl	-	осн	СН
					cyclopropyl	-	осн	СН
	•				cyclopropyl	_	CH ₃	N
10	_				cyclopropyl	-	OCH ₃	N
	_				cyclopropyl	_	OCH ₃	N
	_				cyclopropyl	•	OCH ³	СН
	_			_	cyclobutyl		CH ₃	CH
	_				cyclobutyl	-	OCH ₃	СН
15	_				cyclobutyl	-	OCH ₃	СН
	CH ₃	н	0	CH ₂ OCH ₃	cyclobutyl	CH ₃	CH3	N .
					cyclobutyl		OCH ₃	N
	CH ₃	H	0	CH2OCH3	cyclobutyl	OCH ₃	och ₃	A ·
	CH3	H	0	CH ₂ OCH ₃	cyclobutyl	Cl	OCH ₃	CH
20	CH3	H	0	CH2OCH3	cyclopentyl	CH ₃	CH ₃	СН
	CH3	Н	0	CH2OCH3	cyclopentyl	CH ₃	OCH3	·CH
	CH3	Н	0	CH ₂ OCH ₃	cyclopentyl	осн	OCH ₃	CH
	CH3	Н	0	CH ₂ OCH ₃	cyclopentyl	CH ₃	CH ₃	N
25	CH3	н	0	CH ₂ OCH ₃	cyclopentyl	CH ₃	OCH3	N
25	CH3	H	0	CH2OCH3	cyclopentyl	OCH ₃	och ₃	N
•	CH ₃	Н	0	CH ₂ OCH ₃	cyclopentyl	Cl	осн ₃	СН
	CH3	H	0	CH ₂ OCH ₃	cyclopropyl	OCH ₃	OCH ₂ CH ₃	СН
	CH3	н	0	CH ₂ OCH ₃	cyclopropyl	cyclopropyl	OCH ₃	СН
2.0	CH ₃	Н	0	CH ₂ OCH ₃	cyclopropyl	осн ₃	CH(OCH ₃) ₂	CH
30	CH3	н	0	CH ₂ OCH ₃	cyclopropyl	NHCH ₃	осн ₂ сн ₃	n
	CH3	H	0	CH ₂ OCH ₃	cyclopropyl	инсн ₃	och ₃	n
	CH3	н	0	CH ₂ OCH ₃	cyclopropyl	осн ₃	OCH ₂ CH ₃	R
	CH ₃	H	0	CH ₂ OCH ₃	cyclopropyl	CH ₂ F	CH ₃	СН

62
Table I (cont.)

5	R	<u>R</u> 1	n	<u>R</u> 2	<u>R*</u>	<u>x</u>	<u>x</u>	Z m.p.(°C)
	CH2	H	0	CH(OH)CH3	cyclopropyl	CH ₃	CH ₃	CH .
	_			•-	cyclopropyl		OCH ³	CH
	CH	H	0	CH(OH)CH3	cyclopropyl	OCH ₃	OCH ₃	CH
	CH	н	0	CH(OH)CH3	cyclopropyi	CH ₃	CH ₃	H
10	CH	н	0	CH (OH) CH3	cyclopropyl	CH ₃	OCH ₃	H
	CH3	H	0	CH(OH)CH3	cyclopropyl	OCH ₃	OCH ₃	M
	CH3	H	0	CH(OH)CH3	cyclopropyl	Cl	OCH ₃	CH .
	CH ₃	H	0	CH(OH)CH3	cyclobutyl	CH ₃	CH ₃	CH
	CH ₃	H	0	CH(OH)CH3	cyclobutyl	CH ₃	OCH ₃	CH
15	CH ₃	H	0	CH(OH)CH3	cyclobutyl	OCH ₃	OCH ₃	CH
	CH3	H	0	CH(OH)CH3	cyclobutyl	CH ³	CH ₃	A
	CH ₃	H	0	CH(OH)CH3	cyclobutyl	CH ³	OCH ₃	
	CH ₃	H	0	CH(OH)CH3	cyclobutyl	och ³	OCH ³	H
	CH ₃	H	0	CH(OH)CH3	cyclobutyl	C1	OCH ₃	CH
20	CH ₃	H	0	CH(OH)CH3	cyclopentyl	CH ₃	CH ₃	CK
	CH ₃	H	0	CH(OH)CH3	cyclopentyl	СН3	осн ³	СН
	CH ₃	н	0	CH(OH)CH3	cyclopentyl	och ₃	OCH ₃	СН
	CH ₃	H	0	CH(OH)CH3	cyclopentyl	CH ₃	CH ₃	H
25	CH ₃	н	0	CH(OH)CH3	cyclopentyl	CH3	OCH ³	H
- 25	CH ₃	H	0	CH(OH)CH ₃	cyclopentyl	осн ₃	OCH ³	H
	CH ₃	Н	0	CH(OH)CH3	cyclopentyl	Cl	OCH ₃ .	CH .
	CH ₃	н	0	CH(OH)CH3	cyclopropyl	OCH ³	OCH2CH3	CH
	CH ₃	Н	0	CH(OH)CH3	cyclopropyl	cyclopropyl		CH
30	CH ₃	н	0	CH(OH)CH3	cyclopropyl	och ₃	CH(OCH ₃) ₂	CH
30	-			_	cyclopropyl		OCH ₂ CH ₃	M
	CH ₃	н	0	CH(OH)CH3	cyclopropyl	HCH ₃	OCH ₃	n
	-			_	cyclopropyl	. •	OCH ₂ CH ₃	B
	CH ₃	H	0	CH(OH)CH	cyclopropyl	CH ₂ F	CH ₃	CH

63
Table I (cont.)

5	<u>R</u> .	<u>R</u> 1	Ū	R_2	<u>R'</u>	<u>x</u>	<u>¥</u>	Z m.p.(°C)
	CH2CH3	H	0	н	cyclopropyl	CH ₃	CH ₃	CH
	CH ₂ CH ₃		0	H	cyclopropyl	CH ₃	OCH ₃	СН
	СНСН		0	н	cyclopropyl	осн	OCH ₃	СН
	CH2CH3		0	Н	cyclopropyl	CH3	CH ₃	N
10	CH2CH3		0	H	cyclopropyl	CH ₃	OCH ₃	N
	CH2CH3		0	H	cyclopropyl	OCH ₃	OCH ₃	N
	CH2CH3	H	0	H	cyclopropyl	Cl	OCH ₃	СН
	CH2CH3		0	H	cyclobutyl	CH ₃	CH3	СН
	CH2CH3	H	0	H	cyclobutyl		OCH ₃	CH
15	CH ₂ CH ₃	H	0	Н	cyclobutyl	осн ₃	OCH ₃	СН
	CH ₂ CH ₃	H	0	H	cyclobutyl	CH ₃	CH ₃	N
•	CH ₂ CH ₃	H	0	H	cyclobutyl	CH ₃	OCH ₃	N ·
	CH ₂ CH ₃	H	0	н	cyclobutyl	OCH ₃	OCH3	h
20	CH ₂ CH ₃	H	0	H	cyclobutyl	Cl	OCH ³	СН
20	CH ₂ CH ₃	H	0	н	cyclopentyl	CH ₃	CH ₃	СН
	CH ₂ CH ₃	H	0	H	cyclopentyl	CH3	OCH ₃	CH
	CH ₂ CH ₃	H	0	Н	cyclopentyl	OCH ₃	OCH3	СН
	CH2CH3	H	0	н	cyclopentyl	CH3	CH ₃	H
	CH ₂ CH ₃	H	0	Н	cyclopentyl	CH ₃	OCH ₃	N ·
25	CH ₂ CH ₃	H	0	Н	cyclopentyl	OCH ₃	осн ₃	n .
•	CH ₂ CH ₃	H	0	Н	cyclopentyl	Cl	осн	СН
	CH ₂ CH ₃	H	0	H	cyclopropyl	осн ₃	осн ₂ сн ₃	CH
	CH ₂ CH ₃	H	0	H	cyclopropyl	cyclopropyl	осн ₃	CH
20	CH ₂ CH ₃	H	0	Н	cyclopropyl	осн ₃	CH(OCH ₃) ₂	СН
30	CH ₂ CH ₃	H	0	н	cyclopropyl	NHCH ₃	OCH2CH3	N
	сн ₂ сн ₃	H	0	н	cyclopropyl	•	OCH ₃	N.
	CH ₂ CH ₃	H .	0	Н	cyclopropyl	och3	OCH ₂ CH ₃	n
	CH2CH3	H	0	H	cyclopropyl	CH ₂ F	CH3	CH

64
Table I (cont.)

5	R R1	n R ₂	<u>R*</u>	_	<u>Y</u>	Z m.p.(°C)
	Ph H	о н	cyclopropyl	CH3	CH ₃	CH
	Ph H	о н	cyclopropyl		OCH ₃	CH .
	Ph H	о н	cyclopropyl	_	OCH3	CH .
	Ph H	о н	cyclopropyl	_	CH ₃	N
10	Ph H	ОН	cyclopropyl	•	OCH ₃	R .
	Ph H	о н	cyclopropyl	OCH ₃	och ₃	N
	Ph H	о н	cyclopropyl	. Cl	och ₃	CH
	Ph H	о н	cyclobutyl	CH ₃	CH ₃	CH
	Ph H	о н	cyclobutyl	CH ₃	OCH ₃	CH
15	Ph H	о н	cyclobutyl	осн ₃	OCH ₃	CH
	Ph H	ОН	cyclobutyl	СНЗ	CH ₃	H
	Ph H	о н	cyclobutyl	CH ₃	OCH ₃	H
	Ph H	ОН	cyclobutyl	OCH ₃	OCH ₃	H
	Ph H	ОН	cyclobutyl	Cl	OCH ³	CH
20	Ph H	OH	cyclopenty	LCH ₃	CH ₃	CH .
	Ph H	O H	cyclopenty:	I CH ³	OCH ₃	CH
	Ph H	O H	cyclopenty	1 OCH ₃	och ₃	CH
	Ph H	O H	cyclopenty:	1 CH ₃	CH ³	H
	Ph H	0 1	cyclopenty	1 CH ₃	QCH ₃	N
25	Ph H	O E	cyclopenty	1 OCH3	och ₃	n
	Ph H	. O E	i cyclopenty	1 Cl	OCH ₃	CH
	Ph H	O 1	i cyclopropy	1 OCH ₃	осн ₂ сн ₃	CR
	Ph H	0 1	t cyclopropy	l cyclopropy	-	CH .
	Ph H	0 1	d cyclopropy	1 OCH ₃	сн(осн ₃) ₂	CH
30	Ph H	0 1	H cyclopropy	1 NHCH ₃	och ₂ ch ₃	N ,
•	Ph H	0 1	H cyclopropy	1 NHCH ₃	och ₃	H
	Ph H	. 01	н сусјоргору	1 OCH3	OCH2CH3	H
	Ph F	. 0	H cyclopropy	1 CH ₂ F	CH ³	СН

65
Table I (cont.)

5	<u>R</u>	R ₁	ū	R ₂	<u>R*</u>	<u>x</u> .	¥	Z m.p.(*C)
	CO2CH3	н	0	н	cyclopropyl	CH3	CH ₃	СН
	CO2CH3				cyclopropyl		осн ₃	СН
	COCH	н	0	н	cyclopropyl	OCH ₃	OCH ₃	СН
					cyclopropyl		CH ₃	n
10	CO2CH3				cyclopropyl		OCH ₃	N
					cyclopropyl	OCH ₃	осн ₃	N .
	CO2CH3				cyclopropyl		och ₃	CH
	CO2CH3				cyclobutyl	CH ₃	CH ₃	CH
	CO2CH3				cyclobutyl	CH ₃	och ³	СН
3 E	CO2CH3				cyclobutyl	och ₃	och ₃	CH .
					cyclobutyl	CH ₃	CH ₃	N
	CO2CH3				cyclobutyl		och ₃	N .
	CO2CH3				cyclobutyl	_	och ₃	N
	CO2CH3				cyclobutyl	Cl	OCH ³	CH
20	CO2CH3	H	0	H	cyclopentyl	CH ₃	CH ₃	CH
	CO2CH3	H	0	H	cyclopentyl	CH ₃	OCH ₃	СН
	CO2CH3	H	0	H	cyclopentyl	осн _з	OCH ₃	CH
	CO2CH3				cyclopentyl	_	CH ₃	N
	CO2CH3	H	0	H	cyclopentyl	CH ₃	och ₃	n
25	CO2CH3	H	0	H	cyclopentyl	осн _з	OCH ₃	H
	CO2CH3	н	0	Ĥ	cyclopentyl	Cl	OCH ₃	СН
	CO2CH3				cyclopropyl	_	OCH ₂ CH ₃	СН
	CO2CH3	н	0	H	cyclopropyl	cyclopropyl	OCH ₃	СН
••	CO2CH3	н	0	н	cyclopropyl	och ₃	CH(OCH ₃) ₂	CH
30					cyclopropyl		OCH ₂ CH ₃	N .
					cyclopropyl		OCH ₃	N
	CO2CH3	н			cyclopropyl		OCH ₂ CH ₃	N L
	CO2CH3	н	0	н	cyclopropyl	CH ₂ F	CH3	CH

66
Table I (cont.)

5	<u>R</u> .	R ₁	<u>n</u>	R ₂	<u>R*</u>	<u>x</u>	<u>¥</u> .	Z m.p.(°C)
	SO_N(CH_)	н	0	H	cyclopropyl	CH ₃	CH ₃	CH
					cyclopropyl		OCH ₃	CH
					cyclopropyl		OCH ₃	CH
					cyclopropyl		CH3	N .
10					cyclopropyl	CH	OCH ₃	H
					cyclopropyl		осн ₃	M
					cyclopropyl		OCH3	CH
	SO_N(CH_)	Н	0	н	cyclobutyl	CH ₃	CH ₃	CH
					cyclobutyl		OCH ₃	CH
15					cyclobutyl	OCH ³	OCH ³	CH
					cyclobutyl		CH ₃	H
					cyclobutyl		OCH ₃	H .
	SON (CH3)2				cyclobutyl		OCH3	n
			0	н	cyclobutyl	C1	OCH3	CH
20	SON(CH3)2				cyclopentyl		CH ₃	CH
	SON (CH3)2	н	0	H	cyclopentyl	CH ₃	OCH ³	CH
					cyclopentyl		осн ³	CH
					cyclopentyl		CH ³	n
					cyclopentyl		OCH 3	H
25					cyclopentyl		OCH ₃	M
					cyclopentyl		OCH ³	CH
					cyclopropyl		och ₂ ch ₃	CH
	SON (CH3)	н	0	H	cyclopropy)	. cyclopropyl	OCH ₃	CH
					cyclopropy]		CH(OCH ₃) ₂	CH
30					cyclopropy			N
	SO2N(CH3)				cyclopropy		OCH ³	H
			. 0	н	cyclopropy]	OCH .	осн ₂ сн ₃	. N
	SON(CH)				cyclopropy		сн _з	CH

67
Table I (cont.)

5	R	R,	n	R ₂	R.	<u>x</u>	<u>¥</u>	Z m.p.(°C)
								CH CH
	CH ₂ F				cyclopropyl	•	CH ₃	
	CH ₂ F		0		cyclopropyl	•	OCH ₃	CH
	CH ₂ F				cyclopropyl	_	och ₃	CH ·
10	CH ₂ F				cyclopropyl	•	CH ₃	N
	CH ₂ F				cyclopropyl	•	OCH ₃	, N
	CH ₂ F				cyclopropyl	•	OCH ₃	N
	CH ₂ F	H	0.	Н	cyclopropyl		och ₃	CH
	CH ₂ F	H	0	H _.	cyclobutyl	CH ₃	CH ₃	CH
	CH ₂ F	H	0	H	cyclobutyl	CH ₃	och ₃	CH .
15	CH ₂ F	H	0	H	cyclobutyl	OCH ₃	OCH ₃	CH
	CH ₂ F	H	0	H	cyclobutyl	CH ₃	CH ₃	N
	CH ₂ F		•		cyclobutyl	CH3	OCH ₃	N
	CH ₂ F	H	0	H	cyclobutyl		OCH ₃	N
	CH ₂ F	H	0	H	cyclobutyl	C1	OCH ₃	СН
20	CH ₂ F	H	O.	н	cyclopentyl	CH ₃	CH ₃	CH
	CH ₂ F				cyclopentyl	CH ₃	OCH ₃	CH .
	CH ₂ F	H	0		cyclopentyl	•	OCH ₃	CH
•	CH ₂ F				cyclopentyl	CH3	CH3	N
	CH ₂ F	H	0		cyclopentyl	•	och ₃	N
25	CH ₂ F		0		cyclopentyl	_	осн ₃	N
	CH ₂ F		0	H ·	cyclopentyl	•	OCH ₃	СН
	CH_F		0		cyclopropyl	OCH	OCH ₂ CH ₃	CH
	CH ₂ F		0		cyclopropyl	_		СН
-	CH ₂ F		0		cyclopropyl		CH(OCH ₃) ₂	СН
30	CH ₂ F		0		cyclopropyl	•	OCH ₂ CH ₃	N
	CH ₂ F		0		cyclopropyl	•	OCH ₃	N
	CH ₂ F				cyclopropyl	•	och ₂ ch ₃	N
	CH ₂ F		0		cyclopropyl	_	CH ₃	СН

68
Table I (cont.)

5	R	<u>R</u> 1	n	R ₂	R.	<u>x</u>		Z m.p.(*C)
	CH_CH=CH_	H	0	H	cyclopropyl	CH ₃	CH ₃	CH
					cyclopropyl		OCH ₃	CH
	_				cyclopropyl		OCH ₃	CH
	CH2CH=CH2	H	0	H	cyclopropyl	CH3	CH3	N .
10					cyclopropyl		OCH3	H
					cyclopropyl	•	OCH ³	M
	CH2CH=CH2	H	0	H	cyclopropyl	Cl	OCH ₃	CH
					cyclobutyl	•	CH3	CH
	CH2CH=CH2	H	0	H	cyclobutyl	CH ₃	OCH ₃	CH
15	CH2CH=CH2	H	0	H	cyclobutyl	och ₃	OCH ₃	CH
•	CH2CH=CH2	H	0	H	cyclobutyl	CH3	CH3	H
					cyclobutyl		och ³	A
	CH2CH=CH2	H	0	H	cyclobutyl	OCH3	OCH ₃	N
	CH2CH=CH2	H	0	H	cyclobutyl	GI	OCH ³	CH
20	CH2CH=CH2	H	0	H	cyclopentyl	CH ₃	CH ₃	CH
	CH2CH=CH2	H	0	H	cyclopentyl	CH ³	OCH3	CH
	CH2CH=CH2	H	0	H	cyclopentyl	осн ₃	OCH ₃	CH
	CH2CH=CH2	H	0	H	cyclopentyl	CH ³	CH ₃	H
25	CH2CH=CH2	H	0	H	cyclopentyl	CH ³	OCH ₃	N
25	CH2CH=CH2	H	0	H	cyclopentyl	OCH ₃	OCH ₃	n
	CH2CH=CH2	H	0	H	cyclopentyl	Cl	och ₃	CH
	CH2CH=CH2				cyclopropyl	_	OCH ₂ CH ₃	CH
	CH2CH=CH2	H	0	H	cyclopropyl	cyclopropyl	OCH ₃	CH
20	CH2CH=CH2	H	0	H	caclobrobal	och ₃	CH(OCH ₃) ₂	CH .
30	CH2CH=CH2	H	0	H	cyclopropyl	NHCH ₃	och ₂ ch ₃	N
	CH2CH=CH2	H			cyclopropyl	•	OCH ₃	n
	CH ₂ CH=CH ₂	H	0	H	cyclopropyl	осн ₃	OCH ₂ CH ₃	N
	CH2CH=CH2	H	0	H	cyclopropyl	CH ₂ F	CH3	СН

69
Table I (cont.)

5	<u>R</u>	R ₁	n R ₂	<u>R*</u>	<u>x</u>	<u>x</u> .	Z m.p.(°C)
	сн₂с≡сн	H	ОН	cyclopropyl	CH ₃	CH ₃	CH
	_	H	ОН	cyclopropyl	•	осн ₃	СН
		н	ОН	cyclopropyl	OCH ₃	OCH ₃	CH
	сн ₂ с≡сн	н	о н	cyclopropyl	CH ₃	CH3	H
.10	сн_с≘сн	н	о н	cyclopropyl	CH ₃	OCH ₃	M
	сн2с≡сн	H	о н	cyclopropyl	OCH ₃	OCH ₃	n
	сн_с≘сн	H	ОН	cyclopropyl	C1	OCH ₃	CH '
	CH ₂ C≅CH	H	о н	cyclobutyl	CH ₃	CH ₃	СН
	сн₂с≘сн	H	о н	cyclobutyl	CH3	OCH ₃	СН
15	сн₂с≡ск	H	о н	cyclobutyl	OCH ₃	OCH ₃	СН
	CH ₂ C≡CH	H	о н	cyclobutyl	CH ₃	CH ₃	N
	CH ₂ C≡CH	H	ОН	cyclobutyl	CH ₃	OCH ₃	N .
	CH ₂ C≣CH	H	ОН	cyclobutyl	och ₃	OCH ₃	A .
	CH ₂ C≣CH	H	ОН	cyclobutyl	C1	OCH ₃	CH :
20	сн ₂ с≣сн	H	о н	cyclopentyl	CH ₃	CH ₃	CH .
	CH ₂ C≣CH	H	ОН	cyclopentyl	CH ₃	och ³	CH
•	сн ₂ с≡сн	H	ОН	cyclopentyl	och ₃	och ₃	СН
	сн ₂ с≘сн	H	O H	cyclopentyl	CH ₃	CH ₃	H
	CH ₂ C≣CH	H -	OH	cyclopentyl	CH ₃	OCH ₃	N
25	CH ₂ C≅CH	H	ОН	cyclopentyl	OCH ₃	OCH ₃	n .
	CH ₂ C≡CH	H	ОН	cyclopentyl	Cl	OCH ₃	CH
	CH ₂ C≡CH	H	ОН	cyclopropyl	•	OCH ₂ CH ₃	CH
	CH2CECH	H	ОН	cyclopropyl	cyclopropyl		CH
20	CH ₂ C≣CH	H	ОН	cyclopropyl	och ₃	CH(OCH ₃) ₂	ĆН
30	CH ₂ C≡CH	H	ОН	cyclopropyl	NHCH3	OCH2CH3	N
	CH2CECH	H	ОН	cyclopropyl		och ₃	n
	CH ₂ C≡CH	H	ОН	cyclopropyl	och ₃	OCH ₂ CH ₃	N
	сн ₂ с≣сн	H	ОН	cyclopropyl	CH ₂ F	CH ₃	СН

5	R R1	<u>n</u>	R ₂	<u>R*</u>	<u>x</u>	<u>¥</u>	Z m.p.(°C)
	H H	0	Cl	cyclopropyl	CH ₃	CH ₃	CH
	нн			cyclopropyl	_	OCH ³	CH
				cyclopropyl	_	OCH ₃	CH
	нн	0	Cl	cyclopropyl	CH ₃	CH3	H .
10	нн	0	Cl	cyclopropyl	CH ₃	OCH ₃	N
	н н	0	Cl	cyclopropyl	осн	OCH ³	n
	нк	0	CI	cyclopropyl	Cl	OCH3	CH
	нн	0	C1	cyclobutyl	CH ₃	CH ₃	CH
	нн	0	Cl	cyclobutyl	CH ₃	och ₃	CH
15	нн	0	Cl	cyclobutyl	OCH ₃	OCH ₃	CH
	нн	0	Cl	cyclobutyl	CH ₃	CH3	H
	нн	0	Cl	cyclobutyl ·	CH ₃	OCH ₃	n
	нн	0	Cl	cyclobutyl	OCH ₃	och ₃	H
	H H	0	C1	cyclobutyl	Cl	OCH ³	CH
20	нн	0	Cl	cyclopentyl	CH3	CH ³	CH .
	нн	0	Cl	cyclopenty1	CH ³	och ₃	CH
	нн	0	Cl	cyclopentyl	осн ₃	och ₃	CH
	нн	0	Cl	cyclopentyl	CH ₃	CH ³	H
25	нн	0	Cl	cyclopentyl	CH ₃	OCH ₃	M
25	нн	0	Cl	cyclopentyl	OCH ₃	OCH ₃	H
	нн	0	Cl	cyclopentyl	Cl	OCH ³	CH
	нн	0	Cl	cyclopropyl	och ₃	och ₂ ch ₃	CH
	нн	0	Cl	cyclopropyl	cyclopropyl	OCH ³	CH
20	нн	0	Cl	cyclopropyl	OCH ₃	CH(OCH ₃) ₂	CH
30	нн	0	Cl	cyclopropyl	NHCH ₃	OCH ₂ CH ₃	N
	нн	0	Cl	cyclopropyl	инсн _з	och ₃	N
	нн	0	Cl	cyclopropyl	OCH ₃	OCH ₂ CH ₃	B
	нн	0	Cl	cyclopropyl	CH ₂ F	CH ₃	CH .

5	<u>R</u>	R 1 1	n R ₂	<u>R*</u>	X	X	Z m.p.(°C)
				. cyclopropyl		CH ³	CH
				cyclopropyl	-	OCH ₃	СН
10				cyclopropyl	-	осн ₃	CK
				cyclopropyl	_		N.
				cyclopropyl	•	CH ₃	r.
				cyclopropyl	•	OCH ₃	r r
					•	OCH ₃	CH .
				cyclopropyl		OCH ₃	• •
15				cyclobutyl	•	CH ³	CH
				cyclobutyl	-	OCH ₃	СН
				cyclobutyl	•	och ₃	CH
				cyclobutyl	•	CH ₃	N
				cyclobutyl	_	OCH ₃	N
20	. – –			cyclobutyl	•	OCH ₃	R
				cyclobutyl		och ₃	CH
				cyclopentyl	_	CH ₃	CH
				cyclopentyl	•	och ₃	CH
	CH ₂ CH ₃ H	. 0	Cl	cyclopentyl	осн ₃	осн ₃	CH
	CH ₂ CH ₃ H	0	Cl	cyclopentyl	CH ₃	CH ₃	N .
25	CH ₂ CH ₃ H	0	Cl	cyclopentyl	CH ₃	och ³	N
	CH2CH3 H	0	C1	cyclopentyl	OCH ₃	осн ₃	N
	CH2CH3 H	0	C1	cyclopentyl	Cl	осн ₃	СН
	сн ₂ сн ₃ н	0	Cl	cyclopropyl	OCH ₃	OCH ₂ CH ₃	СН
30	сн ₂ сн ₃ н	0	C1	cyclopropyl	cyclopropyl	OCH ₃	СН
	CH2CH3 H	0	Cl	cyclopropyl	осна	CH(OCH ₃) ₂	CH .
	CH2CH3 H	0	Cl	cyclopropyl	инсн _з	OCH, CH3	N .
	CH2CH3 H			cyclopropyl	•	OCH ₃	N
	CH2CH3 H			cyclopropyl	•	OCH ₂ CH ₃	N
	CH ₂ CH ₃ H			cyclopropyl	•	CH3	СН

72
Table I (cont.)

5	<u>R</u>	<u>R</u> 1	<u>n</u>	R_2	<u>R*</u>	<u>x</u>	<u>¥</u>	Z m.p.(°C)
	СН,СН,СН	H	0	Cl	cyclopropyl	CH ³	.CH ₃	CH
					cyclopropyl		OCH ³	CH
					cyclopropyl		OCH ₃	CH
					cyclopropyl		CH ₃	N
10					cyclopropyl		OCH ₃	Ħ
					cyclopropyl		OCH3	H
	CH2CH2CH3	H	0	Cl	cyclopropyl	Cl	OCH ₃	CH
					cyclobutyl		CH ³	CH
	CH2CH2CH3	H	0	Cl	cyclobutyl	CH ³	OCH ³	CH
15	CH2CH2CH3	H			cyclobutyl	_	OCH ³	CH
	CH2CH2CH3	H	0	Cl	cyclobutyl	CH ₃	CH ₃	H .
	CH2CH2CH3	H	0	Cl	cyclobutyl	CH ₃	OCH ³	H
	CH2CH2CH3	H	0	Cī	cyclobutyl	OCH ₃	OCH ₃	H
	CH2CH2CH3	H	0	Cl	cyclobutyl	C1	OCH ³	CH
20	CH2CH2CH3	H	0	Cl	cyclopentyl	CH3	CH3.	CH
	CH2CH2CH3	H	0	Cl	cyclopentyl	CH ³	och ₃	СН
					cyclopentyl		och ₃	CH
	CH2CH2CH3	H	0	Cl	cyclopentyl	CH ₃	CH3	H
25	CH2CH2CH3	H	0	Cl	cyclopentyl	CH3	3	R
25	CH2CH2CH3				cyclopentyl	_	OCH ₃	Ħ
	CH2CH2CH3	Н			cyclopentyl		OCH ₃	CH
	CH2CH2CH3	H			cyclopropyl	•	och ₂ ch ₃	CH
	CH2CH2CH3	H				cyclopropyl	•	CH
30	CH2CH2CH3				cyclopropyl	. •	CH(OCH ₃) ₂	CH
30					cyclopropyl	-	осн ₂ сн ₃	N ·
					cyclopropyl	=	OCH ₃	
	CH2CH2CH3				cyclopropyl	7	och ₂ ch ₃	N
	CH2CH2CH3	H	0	Cl	cyclopropyl	CH ₂ F	сн ₃	CH

73
Table I (cont.)

5	<u>R</u>	<u>R</u> 1	ū	R ₂	<u>R'</u>	<u>x</u>	<u>¥</u>	Z m.p.(°C)
	CH, SO, CH,	H	0	Cl	cyclopropyl	СНЗ	CH ₃	CH
					cyclopropyl		OCH ₃	CH
					cyclopropyl	_	OCH ₃	СН
<i>:</i> _	CH2SO2CH3	H	0	Cl	cyclopropyl	CH ₃	CH ₃	N
10	CH2SO2CH3	H	0	Cl	cyclopropyl	CH ₃	OCH ₃	N
	CH2SO2CH3	H	0	Cl	cyclopropyl	OCH ₃	OCH3	N
	CH2SO2CH3	H	0	Cl	cyclopropyl	Cl	осн ₃	CH
	CH2SO2CH3	H	0	Cl	cyclobutyl	CH ₃	CH ₃	CH
3.5	CH2SO2CH3	H	0	Cl	cyclobutyl	CH ₃	осн ₃	CH
15	$\mathrm{CH_2SO_2CH_3}$	H	0	Cl	cyclobutyl	OCH ₃	OCH ₃	СН
	CH2SO2CH3	H	0	Cl	cyclobutyl	CH ₃	CH ₃	H
	CH2SO2CH3	H	0	Cl	cyclobutyl	CH ₃	OCH ₃	H
	$\text{CH}_2\text{SO}_2\text{CH}_3$	H	0	Cl	cyclobutyl	осн ₃	OCH ₃	n
20	CH2SO2CH3	H	O	Cl	cyclobutyl	C1	OCH ₃	CH
20	CH2SO2CH3	H	0	Cl	cyclopentyl	CH ₃	СН3 .	CH
	CH2SO2CH3	H	0	Cl	cyclopentyl	CH ₃	och ₃	CH
	CH2SO2CH3	H	0	Cl	cyclopentyl	OCH ₃	OCH ₃	CH
	CH2SO2CH3	H	0	Cl	cyclopentyl	CH ₃	CH ₃	N
25	CH2SO2CH3	H	0	Cl	cyclopentyl	CH ₃	осн ₃	N
23	CH2SO2CH3	H	0	Cl	cyclopentyl	осн ₃	OCH ₃	N
	CH ₂ SO ₂ CH ₃	H	0	Cl	cyclopentyl	C1	OCH ₃	CH
					cyclopropyl	-	OCH ₂ CH ₃	CH
						cyclopropyl	-	CH .
30					cacjobcobal		CH(OCH ₃) ₂	CH
					cyclopropyl	-	och ₂ ch ₃	N
					cyclopropyl	, •	OCH ₃	N
					cyclopropyl	<u> </u>	OCH ₂ CH ₃	N
	CH ₂ SO ₂ CH ₃	H	0	Cl	cyclopropyl	CH ₂ F	CH ₃	CH ·

74
Table I (cont.)

5	R	R ₁	n	R ₂	R*	<u>x</u>	<u>¥</u>	Z m.p.(*C)
	Ph				cyclopropyl		CH ³	СН
	Ph	•			cyclopropyl	_	OCH ₃	CH
					cyclopropyl	• .	OCH ²	CH
,					cyclopropyl	• .	CH3	N .
10	•				cyclopropyl	.	OCH ³	m H
					cyclopropyl	•	OCH ₃	# #
	Ph				cyclopropyl	•	OCH ²	СН
	Ph				cyclobutyl			
						CH ³	CH ³	CH
15	Ph	-			cyclobutyl	CH3	OCH ₃	CH
•	Ph				cyclobutyl	OCH ₃	OCH ₃	CH .
	Ph	Н			cyclobutyl	CH ³	CH ₃	H
	Ph	H	0	Cl	cyclobutyl	CH ₃	OCH ₃	H.
	Ph	H.	0	Cl	cyclobutyl	OCH ₃	OCH ₃	N .
20	Ph	H	0	Cl	cyclóbutyl	Cl	OCH ³	CH
20	Ph	H	0	Cl	cyclopentyl	CH3	CH ³	CH
	Ph	H	0	Cl	cyclopentyl	CH ₃	OCH ₃	CH .
	Ph	H	0	Cl	cyclopentyl	OCH ₃	OCH ₃	CH
	Ph	H	0	Cl	cyclopentyl	CH ₃	CH ₃	H
	Ph	H	0	C1	cyclopentyl	CH	OCH ₃	R
25	Ph	H	0	Cl	cyclopentyl	OCH ₃	OCH ₃	H .
	Ph	H	0	Cl	cyclopentyl	Cl	OCH ₃	CH
	Ph	H	0	Cl	cyclopropyl	OCH	OCH ₂ CH ₃	СН
	Ph	H	0	Cl	cyclopropyl	cyclopropyl		CH
	Ph	H	0	Cl	cyclopropyl	OCH	Сн(осн ₃) ₂	СН
30	Ph				cyclopropyl	-	OCH_CH_	Ħ
	Ph				cyclopropyl	_	OCH ₃	M
	Pħ				cyclopropyl	_	OCH ₂ CH ₃	u
	Ph				cyclopropyl	•	CH ₃	CH

75
Table I (cont.)

5	R R	1 1	R ₂	R*	<u>x</u> .	<u>x</u>	Z m.p.(°C)
	н н						CH E-F-C OZ
	•		-	cyclopropyl	_	CH ₃	
	нн		_	cyclopropyl	•	OCH ₃	CH
	нн	•		cyclopropyl	_	OCH ₃	CH
10	нн		_	cyclopropyl	-	CH ₃	H
10	нн	0	CH ₃	cyclopropyl	CH ₃	OCH ₃	n
	нн	0	CH ₃	cyclopropyl	OCH ₃	OCH ₃	n
	нн	0	CH ₃	cyclopropyl	Cl	OCH ₃	CH
	нн	0	CH ₃	cyclobutyl	CH ₃	CH3	СН
	нн	0	CH3	cyclobutyl	CH ₃	OCH ₃	СН
15	нн			cyclobutyl	_	OCH ₃	СН
	нн		_	cyclobutyl	-	CH ₃	N
	нн	0	CH	cyclobutyl	CH	och ₃	N .
	нн		_	cyclobutyl	-	och ₃	N
	нн		_	cyclobutyl	•	OCH ₃	CH
20	нн			cyclopentyl		CH3	СН
	нн		-	cyclopentyl	-	och ₃	СН .
	нн		_	cyclopentyl	_	OCH ₃	СН
	нн		-	cyclopentyl	•	CH3	n
	нн		-	cyclopentyl	•	OCH ₃	N
25	нн		_	cyclopentyl	•	och ₃	N
•	нн			cyclopentyl	J	OCH ₃ .	СН
	нн		•	cyclopropyl		OCH ₂ CH ₃	СН
	нн		•	cyclopropyl	_		СН
	нн		_	cyclopropyl		CH(OCH ₃) ₂	СН
30	нн		~	cyclopropýl.	•		N
	нн		-	•	• •	OCH ₂ CH ₃	
	нн		_	cyclopropyl		OCH CH	N
			•	cyclopropyl	•	och ₂ ch ₃	N.
•	нн	0	CH ₃	cyclopropyl	CH ₂ F	CH ₃	CH

76
Table I (cont.)

5	<u>R</u>	R ₁	n	E_2	<u>R*</u>	X .	<u>¥</u>	Z m.p.(°C)
	СН2СН3	H	0	CH ³	cyclopropyl	CH ²	CH ³	CH
				_	cyclopropyl	•	осн	CH
				_	cyclopropyl	_	осн3	CH
	CHCH	H	0	CH3	cyclopropyl	CH ₂	CH ³	R
10				_	cyclopropyl	_	OCH,	H
	CH ₂ CH ₃	H	0	CH ₃	cyclopropyl	OCH3	OCH ₃	N,
	CH ₂ CH ₃	H	0	CH ₃	cyclopropyl	•	OCH ₃	CH
					cyclobutyl		CH3	CH
	CH ₂ CH ₃	H	0	CH3	cyclobutyl	CH3	осн ₃	CH
15	CH ₂ CH ₃	H	0	CH3	cyclobutyl	OCH3	OCH ₃	CH
	CH ₂ CH ₃	H	0	CH3	cyclobutyl	CH3	CH ₃	H
	CH ₂ CH ₃	H	0	CH ₃	cyclobutyl	CH ³	OCH ₃	H
	CH ₂ CH ₃	H	0	CH ³	cyclobutyl	och ³	OCH ³	N
	CH ₂ CH ₃	H	0	CH ₃	cyclobutyl	Cl	OCH ³	CH
20	CH ₂ CH ₃	H	0	CH ³	cyclopentyl	CH ₃	CH3	CH
	CH ₂ CH ₃	H	0	CH ³	cyclopentyl	CH3	осн3	CH
	CH ₂ CH ₃	H	0	CH3	cyclopentyl	_	OCH ₃	CH
	CH ₂ CH ₃	H	0	CH ³	cyclopentyl	CH ₃	CH ³	R
25	CH ₂ CH ₃	H	0	CH3	cyclopentyl	CH ³	осн ₃	A
25	CH ₂ CH ₃	H	0	CH3	cyclopentyl	OCH ³	och ³	H
	CH ₂ CH ₃	H	0	CH3	cyclopentyl	Cl	осн3	CH
	CH ₂ CH ₃	H	0	CH3	cyclopropy1	OCH ³	OCH ₂ CH ₃	CH
	CH ₂ CH ₃	H	0	CH ₃	cyclopropyl	cyclopropyl	OCH ₃	CH
30	CH ₂ CH ₃	H	0	CH ₃	cyclopropyl	OCH ³	CH(OCH ₃) ₂	CH
30				_	cyclopropyl		осн ₂ сн ₃	N
	CH ₂ CH ₃	H	0	CH ₃	cyclopropyl	NHCH3	осн ₃	H
	сн ₂ сн ₃	H	0	ċн³	cyclopropyl	OCH ₃	och ₂ ch ₃	N .
	CH2CH3	H	0	CH ₃	cyclopropyl	CH ₂ F	CH ₃	CH

77
Table I (cont.)

5	_	R_	_	R_		_	••	_	
				R ₂		X	<u>¥</u>		m.p.(°C)
				_	cyclopropyl	_	CH ₃	СН	•
				_	cyclopropyl	_	och ₃	CH	
	CH2CH=CH2	Н	0	CH ₃	cyclopropyl	OCH ₃	OCH ₃	CH	•
10				_	cyclopropyl	•	CH ₃	N	
10	CH2CH=CH2	H	0	CH ₃	cyclopropyl	CH ₃	OCH ₃	Ħ	•
	CH2CH=CH2	H	0	CH ₃	cyclopropyl	OCH ₃	осн ₃	H	
	CH2CH=CH2	H	0	CH3	cyclopropyl	Cl	осн ₃	CH	
	CH2CH=CH2	H	0	CH ₃	cyclobutyl	CH ₃	CH ₃	CH	
	CH2CH=CH2	H	0	CH ₃	cyclobutyl	CH ₃	OCH ₃	CH	
15	CH2CH=CH2	H	0	CH ₃	cyclobutyl	och ₃	OCH ₃	CH	•
	CH2CH=CH2	H	0	CH ₃	cyclobutyl	CH ₃	CH ₃	H	
	CH2CH=CH2	H	0	CH3	cyclobutyl	CH ₃	OCH ₃	H	
•	CH2CH=CH2	H	0	CH3	cyclobutyl	OCH ₃	och ₃	N	
	CH2CH=CH2	H	0.	CH ₃	cyclobutyl	Cl	OCH ₃	CH	
20	CH2CH=CH2	H	0	CH ₃	cyclopentyl	CH ₃	CH ₃	CH	
	CH2CH=CH2	H	0	CH ₃	cyclopentyl	CH ₃	OCH ₃	CH	
	CH2CH=CH2	Н	0	CH ₃	cyclopentyl	OCH ₃	OCH ₃	CH	
	CH2CH=CH2	H	0	CH ₃	cyclopentyl	CH ₃	CH ₃	N	
	CH2CH=CH2	H	0	CH3	cyclopentyl	CH ₃	OCH ₃	H	
25	CH2CH=CH2	H	0	CH3	cyclopentyl	OCH ₃	OCH ₃	N	•
	CH2CH=CH2	H	0	CH3	cyclopentyl	Cl	OCH ₃	CH	•
	CH2CH=CH2	H	0	CH3	cyclopropyl	OCH ₃	OCH ₂ CH ₃	СН	
	CH ₂ CH≃CH ₂	H	0	CH ₃	cyclopropyl	cyclopropyl	OCH ₃	CH	•
	CH ₂ CH=CH ₂	H	0	CH ₃	cyclopropyl	OCH ₃	CH(OCH ₃) ₂	СН	•
30	CH2CH=CH2	H	0	CH3	cyclopropyl	NHCH3	OCH2CH3	N	
	CH2CH=CH2	H	0	CH ₃	cyclopropyl	NHCH ₃	OCH ₃	N	
	CH2CH=CH2	H	0	CH3	cyclopropyl	OCH ₃	OCH ₂ CH ₃	N	
					cyclopropyl		CH ₃	СН	

78
Table I (cont.)

5	<u>R</u>	R ₁	Ū	R ₂	<u>R*</u>	<u>x</u>	K · ·	Z m.p.(°C)
	CH ₂ C1	H	0	CH3	cyclopropyl	CH ₃	CH ₃	CH .
				_	cyclopropyl		OCH ₃	CH
	_			_	cyclopropyl		OCH3	CH
	CH_C1	H	0	CH	cyclopropyl	CH3	CH3	K .
10	_			_	cyclopropyl		OCH ₃	M
	-			_	cyclopropyl	_	OCH ₃	H
	-			_	cyclopropyl	-	OCH ₃	CH
	CH ₂ C1			_	cyclobutyl		CH ₃	CH
	_			_	cyclobutyl		OCH ₃	CH
15	_			_	cyclobutyl	•	och ₃	CH
	CH ₂ C1	H	0	CH ³	cyclobutyl	CH3	CH ₃	Ħ
				_	cyclobutyl		och ₃	H
	CH ₂ C1	H	0	CH ₃	cyclobutyl	och ₃	осн ₃	H
					cyclobutyl		OCH3	CH
20	CH ₂ C1	H	O	CH3	cyclopentyl	CH ³	CH3	CH
	CH ₂ C1	H	0	CH ₃	cyclopentyl	CH3	OCH ₃	CĦ
	CH ₂ C1	H	0	CH ₃	cyclopentyl	OCH ³	och ³	CH
	CH ₂ C1	н	0	CH ₃	cyclopentyl	CH ³	CH ₃	N '
	CH ₂ C1	H	0	CH ₃	cyclopentyl	CH ³	OCH3	¥
25	CH ₂ C1	H	0	CH ₃	cyclopentyl	OCH ₃	осн _з	H
	CH ₂ C1	н	0	CH ₃	cyclopentyl	Cl	OCH3	СН
	CH ₂ Cl	H	0	CH ₃	cyclopropyl	осн ₃	och ₂ ch ₃	CH
	CH ₂ C1	н	0	CH3	cyclopropyl	cyclopropyl	OCH ₃	СН
	CH ₂ C1	н	0	CH ₃	cyclopropyl	OCH3	сн(осн ₃) ₂	CH .
30	CH ₂ C1	. H	0	CH3	cyclopropyl	инсн ₃	och ₂ ch ₃	H
	CH ₂ C1	. н	0	CH ₃	cyclopropyl	NHCH ₃	och ₃	N
	CH ₂ C1	. н	0	CH ₃	cyclopropyl	OCH ₃	OCH ₂ CH ₃	Ä
	CH ₂ C1	. н	0	CH3	cyclopropyl	CH ₂ F	CH3	CH ,

79
Table I (cont.)

5	<u>R</u>	R ₁	. <u>n</u>	R ₂	<u>R*</u>	<u>x</u>	¥	Z m.p.(*C)
	СН,СЕСН	н	0	CH ₂	cyclopropyl	CHa	CH ₃	CH
	-			-	cyclopropyl	•	OCH ₃	СН
	Сн_с≡сн	н	0	CH3	cyclopropyl	OCH	OCH3	CH .
	сн_с≘сн	H	0	CH	cyclopropyl	CH ₂	CH3	N
10	сн ₂ с≡сн	H		_	cyclopropyl	•	OCH ₃	N
•	сн2с≘сн	H	0	CH ₃	cyclopropyl	OCH ₃	OCH ₃	N
	CH ₂ C≣CH	H	Ò	CH ₃	cyclopropyl	Cl	OCH ₃	CH
	CH ₂ C≡CH	H	0	CH ₃	cyclobutyl	CH ₃	CH3	CH ,
	CH ₂ C≡CH	H	0	CH ₃	cyclobutyl	CH ₃	OCH ₃	CH ·
15	сн ₂ с≡сн				cyclobutyl		осн ₃	СН
	сн ₂ с≘сн	H	0	CH3	cyclobutyl	CH ₃	CH3	N
	CH ₂ C≡CH	H	0	CH3	cyclobutyl	CH ₃	OCH ₃	H
	CH ₂ C≡CH	H	0	CH3	cyclobutyl	OCH ₃	OCH ₃	n
20	CH ₂ C≡CH	H	0	CH ₃	cyclobutyl	Cl	осн ₃	CH
20	CH ₂ C≡CH	H	0	CH ₃	cyclopentyl	CH ₃	CH ₃	CH
	CH ₂ C≡CH	H	0	CH ₃	cyclopentyl	CH ₃	OCH3	СН
	CH ₂ C≡CH	H	0	CH ₃	cyclopentyl	OCH3	осн ₃	СН
	сн ₂ с≡сн	H	0	CH ³	cyclopentyl	CH3	CH ₃	n
25	CH ₂ C≡CH	Н		_	cyclopentyl	•	och ₃	N
2,5	CH ₂ C≅CH	Н	0	CH ₃	cyclopentyl	осн ₃	och ₃	n
	сн ₂ с≘сн	Н		_	cyclopentyl		och ₃	СН
	сн ₂ с≡сн	Н		_	cyclopropyl	_	OCH ₂ CH ₃	СН
	CH ₂ C≡CH	Н		_	cyclopropyl		•	CH
30	CH ₂ C≘CH	Н		_	cyclopropyl	•	CH(OCH ₃) ₂	CH
30	CH ₂ C≡CH	Н		_	cyclopropyl	•	OCH ₂ CH ₃	H
	CH ₂ C≣CH			_	cyclopropyl	•	OCH ₃	N .
	CH ₂ C≘CH	H		_	cyclopropyl	-	OCH ₂ CH ₃	Я
•	CH ₂ C≡CH	H _.	0	СНЗ	cyclopropyl	CH ₂ F	CH ₃	СН

80 Table I (cont.)

•		ъ		Ð	•				
5 	<u>R</u>	_1	n	R ₂	R'	X	Ā	<u>z</u>	m.p.(*C)
•	CH ₃	H	1	H	cyclopropyl	CH ₃	CH ₃	CH	
	.CH ₃	H	1	H	cyclopropyl	CH ₃	OCH ³	CH	
	CH ₃	H	1	H	cyclopropyl	OCH ³	OCH3	CH	
	CH ₃	H ,	1	H	cyclopropyl	CH3	CH3	Ħ	
10	CH3	H	1	H	cyclopropyl	CH ₃	OCH ₃	H	
	CH3	H	1	H	cyclopropyl	OCH3	OCH3	Ħ	
	CH ₃	н	1	H	cyclopropyl	C1	OCH3	CH	
	CH ₃	н	1	H	cyclobutyl	CH ₃	CH ₃	CH	
	CH ₃	H	1	H	cyclobutyl	CH ₃	OCH ³	CH	
15	CH3	H	1	H	cyclobutyl	OCH ³	OCH ³	CH	
	CH ₃	H	1	H	cyclobutyl	CH3	CH ³	H	
	CH ₃	H	1	H	cyclobutyl	CH3	OCH3	H .	•
	CH ₃	H	1	H	cyclobutyl	OCH ₃	OCH ₃	n	•
	CH ₃	H	1	H	cyclobutyl	Cl	OCH ³	CH	
20	CH ₃	H	1	H	cyclopentyl	CH ₃	CH3	CH	
	CH ₃	H	1	H	cyclopentyl	CH ₃	OCH3	CH	•
	CH3	H	1	H	cyclopentyl	OCH ₃	OCH ₃	CH	
	CH3	H	1	H	cyclopentyl	CH ₃	CH3	R	
	CH ₃	H	1	H	cyclopentyl	CH ³	OCH ₃	H	
25	CH ₃	H	1	H	cyclopentyl	OCH ₃	OCH3	H	
	CH ₃	H	1	H	cyclopentyl	Cl	OCH ₃	CH	
	CH3	H	1	H	cyclopropyl	OCH 3	OCH ₂ CH ₃	CH	
	CH ₃	н	1	H	cyclopropyl	cyclopropyl	OCH3	CH	
	CH ₃	H	1	H	cyclopropyl	OCH 3	CH(OCH ₃) ₂	CH	
30	CH ₃	H	1	H	cyclopropyl	NHCH ₃	OCH ₂ CH ₃	Ħ	
	CH3	H	1	H	cyclopropyl	NHCH ₃	OCH ₃	Ð	
	CH ₃	H	1	H	cyclopropyl	OCH ₃	OCH ₂ CH ₃	H	
	CH ₃	Н	1	H	cyclopropyl	CH ₂ F _ ·	CH ₃	CH	

Table I (cont.)

5	<u>R</u>	R ₁	ū	R_2	R'	<u>x</u>	<u>¥</u>	Z m.p.(°C)
	CH2	н	1	Cl	cyclopropyl	CH ₂	CH ₃	СН
	-				cyclopropyl	•		СН
	_				cyclopropyl	•	OCH ₃	СН
	_				cyclopropyl	-	CH3.	N
10	-				cyclopropyl	•	OCH ₃	N
	CH3				cyclopropyl	•	OCH3	N
	CH				cyclopropyl	•	OCH	СН
	CH ₃	H	1	Cl	cyclobutyl	CH ₃	CH ₃	СН
	CH ₃	н	1	Cl	cyclobutyl	CH ₃	OCH ₃	СН
15	CH ₃	н	1	Cl	cyclobutyl	осн	OCH ₃	СН
	CH ₃	H	1	Cl	cyclobutyl	CH ₃	CH ₃	N
	CH3	H	1	Cl	cyclobutyl	CH3	OCH ₃	n
	CH3	Н	1	Cl	cyclobutyl	OCH ₃	OCH ₃	N
	CH3	н	1	Cl.	cyclobutyl.	Cl	OCH ₃	СН
20	CH ₃	H	1	Cl	cyclopentyl	CH ₃	CH ₃	СН
	CH ₃	н	1	Cl	cyclopentyl	CH ₃	OCH ₃	CH .
	CH3	H	1	Cl	cyclopentyl	OCH ₃	OCH ₃	СН
	CH ₃	Н	1	Cl	cyclopentyl	CH ³	CH3	N
25	CH3	H	1	Cl	cyclopentyl	CH ₃	OCH,	N
23	CH ₃	H	1	Cl	cyclopentyl	och ₃	OCH ₃	n
	CH ₃	Н	1	Cl	cyclopentyl	Cl	och ³	СН
	CH ₃	Н	1	Cl	cyclopropyl	осн _з	осн ₂ сн ₃	СН
	CH ₃				cyclopropyl		_	СН
30	CH ₃	H	1	Cl	cyclopropyl	осн ₃	CH(OCH ₃) ₂	СН
30	CH3				cyclopropyl	9	осн ₂ сн ₃	N
	CH ₃				cyclopropyl	-	осн ₃	N
	CI ₁ 3				cyclopropyl	•	OCH2CH3	N
	CH ₃	H	1	Cl	cyclopropyl	CH ₂ F	CH ₃	СН

82
Table I (cont.)

5	- <u>R</u>	R ₁	n	R ₂	R*	X ·	<u>¥</u>	Z m.p.(°C)
					cylopropyl	CH	СНЗ	CH
	CH3			_	cyclopropyl	•	OCH ₃	CH
	•			-	cyclopropyl	•	OCH ³	CH
	-			_	cyclopropyl	•	CH ³	n
10	_			_	cyclopropyl	•	OCH ₃	N
	CH3			_	cyclopropyl	•	OCH ₃	H
	CH ₃	H	1	CH3	cyclopropyl	C1	OCH ₃	СН
	CH ₃	H	1	CH ₃	cyclobutyl	CH ₃	CH ₃	CIT
	CH ₃		1	CH3	cyclobutyl	CH ₃	OCH ₃	CH
15	CH3	H	1	CH3	cyclobutyl	OCH ³	OCH ₃	CH
	CH3	H	1	CH ₃	cyclobutyl	CH3	CH3	H
	CH3	H	1	CH3	cyclobutyl	CH ₃	OCH ₃	H
	CH ₃	H	1	CH ₃	cyclobutyl	осн	och ₃	N
20	CH3	H	1	CH ₃	cyclobutyl	Cl	OCH ₃	CH
20	CH3	H	1	CH ₃	cyclopentyl	CH ₃	CH ₃	CH ,
	CH3	H	1	CH ₃	cyclopentyl	CH ₃	och ₃	CH
	CH3	Н	1	CH ₃	cyclopentyl	OCH ₃	och ₃	CH
	CH3	H	1	CH ₃	cyclopentyl	CH ₃	CH ₃	R
25	CH ₃	H	1	CH ₃	cyclopentyl	CH ₃	OCH ₃	H
25	CH ₃	H	1	CH3	cyclopentyl	OCH ³	OCH 3	n
	CH ³	Н	1	CH ₃	cyclopentyl	Cl	осн ₃	CH
	CH3	H	1	CH3	cyclopropyl	OCH3	OCH2CH3	CH
	CH ³	H	1	CH3	cyclopropyl	cyclopropy1	OCH ₃	CH
30	CH ₃	H	1	CH ³	cyclopropyl	OCH ³	CH(OCH ₃) ₂	CH
30	CH ₃	Н	1	CH ³	cyclopropyl	MHCH3	OCH ₂ CH ₃	
	CH3	н		•	cyclopropyl	-	осн ₃	H
	CH ₃	H		_	cyclopropyl	•	осн ₂ сн ₃	N .
	CH3	Н	1	CH ₃	cyclopropyl	CH ₂ F	CH ₃	ĊН

83
Table I (cont.)

5	R	R ₁	<u>n</u>	R ₂	<u>R*</u>	<u>x</u> .	<u>¥</u>	Z m.p.(°C)
	CH2	CH ₃	0	н	cylopropyl	CH3	CH ₃	СН
	_	_			cyclopropyl	_	OCH3	СН
	_	_			cyclopropyl	-	OCH ₃	CH
	. •	-			cyclopropyl	•	CH3	N ·
10	_	_			cyclopropyl		OCH 3	H
	_	_			cyclopropyl	•	OCH ₃	R
	_	_			cyclopropyl		OCH ₃	СН
	•	CH ₃			cyclobutyl	CH ₃	CH ₃	CH
	_	_			cyclobutyl	•	och ₃	СН
15	_	_			cyclobutyl	-	OCH ₃	СН
	CH ₃	CH ₃	0	H	cyclobutyl	CH ₃	CH3	N
	_	_			cyclobutyl		OCH ₃	H
	CH ₃	CH ₃	0	H	cyclobutyl		OCH3	H
	CH ₃	CH ₃	0	H	cyclobutyl	Cl	OCH ₃	СН
20	CH ₃	CH ₃	0	H	cyclopentyl	CH ₃	CH ₃	CH
	CH3	CH ₃	0	H	cyclopentyl	CH ₃	OCH3	СН
	CH ₃	CH ₃	0	Н	cyclopentyl	OCH ₃	OCH ₃	СН
	CH3	CH ₃	0	н	cyclopentyl	CH ₃	CH ₃	N
25	CH ₃	CH ₃	0	H	cyclopentyl	CH ₃	OCH3	N .
25	CH ₃	CH ₃	0	Н	cyclopentyl	осн ₃	осн ₃	N .
	CH ₃	CH ₃	0	Н	cyclopentyl	Cl	OCH ₃	СН
•	CH ₃	CH ₃	0	н	cyclopropyl	осн3	осн ₂ сн ₃	СН
	CH3	CH 3	0	H	cyclopropyl	cyclopropyl	OCH3	СН
30	CH ₃	CH ₃	0	H	cyclopropyl	OCH3	CH(OCH ₃) ₂	СН
30	CH3	CH ₃	0	н	cyclopropyl	NHCH ₃	OCH2CH3	N .
	CH3	CH ₃	0	H	cyclopropyl	NHCH ₃	осн ₃	N
	CH ₃	CH ₃	0	H	cyclopropyl	OCH ₃	OCH ₂ CH ₃	n
	CH ₃	CH ₃	0	H	cyclopropyl	CH ₂ F	CH ₃	CH

84
Table I (cont.)

5	<u>R</u>	<u>R</u> 1	<u>n</u>	R ₂	<u>R*</u>	<u>x</u>	<u>¥</u>	Z m.p.(°C)
	CH ₃	H	0	H	cylopropyl '	CH2CH3	CH ₃	СН
	CH3		0		cyclopropyl		OCH3	CH.
	CH ₃	H	0		cyclopropyl		CH ³	CH .
	CH3	H	0		cyclopropyl	OCF ₂ H	CH3	СН
10	CH ₃		0		cyclopropyl	OCF ₂ H	OCH ³	CH
	CH ₃	H	0		cyclopropyl	_	OCH ³	CH
	CH ₃	H	0	H ·	cyclopropyl	CH ₂ F	OCH ³	CH
•	CH ₃	H	0	H	cyclopropyl	CH ₂ C1	OCH ³	H
	CH ₃	H	0		cyclopropyl		OCH3	СН
15	CH ₃	H	0	H	cyclopropyl	SCH ₂ F	OCH ₃	CH
	CH ₃	H	0	H	cyclopropyl		OCH 3	СЯ
	CH ₃	H	0	H	cyclopropyl	CH ₂ OCH ₃	OCH ₃	M
	CH ³	H	0	H	cyclopropyl	OCH ₂ OCH ₃	OCH ₃	CH
20	CH ₃	H	0	H	cyclopropyl	OCH2OCH2CH3	CH ₃	CH
20	CH3	H	0	H	cyclopropyl	H(CH3)2	OCH ₃	N
	CH ₃	H	0	H	cyclopropyl	MHCH ₂ CH ₃	CH ₃	H .
	CH ₃	H	0	H	cyclopropyl	MHCH ³	och ₂ ch ₃	N
	CH ₃	н	0	H	cyclopropyl	CH ³	CH ₂ SCH ₃	CH
25	CH ₃	H	0	Н	cyclopropyl	осн3	CH2SO2CH3	CH
25	CH ₃	н	0	H	cyclopropyl	NH ₂	OCH2CH3	n
`	CH ₃		0	H	cyclopropyl	CH3	OCH2CH=CH2	CH
	CH ₃	H	0	H	cyclopropyl	CH ₂ CH ₃	ocp ₂ h	CH
	CH3				cyclopropyl	_	OCF ₂ H	CH
30	CH ₃				cyclopropyl	_	осн=сн2	СН
30	CH ₃				cyclopropyl	_	C(0)CH ₃	N
	3				cyclopropyl	•	M(OCH ₃)CH ₃	B
	CH ₃	H	0	H	cyclopropyl	осн(сн ₃)2	ocf ₂ h	СН

85
Table I (cont.)

_		_		_					
5	<u>R</u>	<u>R</u> 1	$\overline{\boldsymbol{u}}$	R ₂	R*	X	Ā	<u>z</u>	m.p.(°C)
	CH ₃	H	0	H	CH ₃	CH ₃	CH ₃	CH	185-188
	CH ₃	H	0	H	CH ₃	CH ₃	OCH ₃	СН	180-183
	CH ₃	H	0	H	CH ₃	OCH ₃	OCH ₃	СК	179-182
	CH ₃	н	0	H	CH ₃	CH ₃ .	CH3	N	
10	CH ₃	н	0	H	CH ₃	CH ₃	осн	N	110-112
	CH ₃	н	0	H	CH3	OCH ₃	OCH ₃	H	163-165
	CH3	н	0	н	CH3	Cl	OCH ₃	CH	199-201
	CH ₃	H	0	н	CH ₂ CH ₃	CH ₃	CH ₃	СН	157-161
	CH ₃	H	0	н	CH ₂ CH ₃	CH3	OCH ₃	CH	151-154
15	CH ₃	H	0	н	CH ₂ CH ₃	OCH ₃	OCH ₃	CH	143-146
	CH ³	-H	0	H	CH ₂ CH ₃	CH ₃	CH ₃	N	
	CH ₃	H	0	H	CH2CH3	CH ₃	OCH ₃	N	145-147
٠	CH ³	н	0	н	CH ₂ CH ₃	OCH ₃	OCH ₃	N	122-137
	CH ₃	H	0	H	CH ₂ CH ₃	Cl	OCH ₃	СН	180-182
20	CH ³	н	0	н	сн_сн_сн	CH ₃	CH ₃	CH	163-165
	CH3	н	0	H	CH2CH2CH3	CH ₃	OCH ₃	СН	173-175
	CH ₃	н	0	н	снэснэснз	осн ₃	OCH ₃	CH	180-184
	CH ₃	H	0	н	CH2CH2CH3	CH ₃	CH ₃	N	
	CH ₃	н	0	H	сн2сн2сн3	CH ₃	OCH ₃	N	174-176
25	CH ₃	н	0	н	сн2сн2сн3	осн ₃	осн ₃	N	154-156
	CH ₃	н	0	н	CH ₂ CH ₂ CH ₃	C1	OCH ₃	СН	203-205
	CH ₃	H	0	н	сн,сн,сн,сн,	CH ₃	CH ₃	CH	
	CH ₃	H	0	H	CH2CH2CH2CH3	CH ₃	осн ₃	CH	,
	снз	H	0	н	CH2CH2CH2CH3	осн ₃	OCH ₃	CH	
30	CH ₃	H	0	н	CH2CH2CH2CH3	CH ₃	CH3	N	
	CH ₃	н	0	H	CH2CH2CH2CH3	CH ₃	осн	N	
	CH3	н	0	н	CH2CH2CH2CH3	осна	OCH ₃	N	•
	CH ₃	н	0	н	CH2CH2CH2CH3	Cl	осн ₃	СН	
	3						-		

86
Table I (cont.)

•									
5	R	<u>R</u> 1	<u>n</u>	R ₂	<u>R'</u>	. X	<u>¥</u>	<u>z</u>	m.p.(*C)
	CH ₃	H	0	H	CH2CH2CH2CH2CH3	CH ₃	CH ₃	CH	
	CH ₃	Ħ.	0 :	H	CH2CH2CH2CH3		OCH ₃	CH	
	CH ₃	H	0	H	CH2CH2CH2CH2CH3		OCH ₃	CH	
	CH ₃	H	0	H	CH2CH2CH2CH2CH3		CH ₃	N	
10	CH ₃	H	0	H	CH2CH2CH2CH3	CH ₃	OCH ³	¥	
	CH3	H	0	Ħ	CH2CH2CH2CH2CH3		OCH 3	N	
	CH3	H	0	H	CH2CH2CH2CH2CH3	C1	OCH ³	CH	
•	CH ³	H	0	н	CH(CH ₃) ₂	CH ₃	CH3	CH	148-150
•	. CH3	н	0	H	CH(CH ₃) ₂	CH ₃	оснз	CH	178-180
15	CH3	н	0	H	CH(CH ₃) ₂	OCH ₃	OCH ₃	CH	181-183
	CH ₃	н	0	H	CH(CH ₃) ₂	CH ₃	CH ₃	H	
	CH ₃	H	0	H	CH(CH ₃) ₂	CH ₃	OCH ₃	H	152-154
	CH3	H	0	H	CH(CH ₃) ₂	OCH ₃	OCH ₃	H	159-161
	CH ³	H	΄ο	H	CH(CH ₃)	Cl	OCH3	CH	194-196
20	CH ₃	H	0	н	CH2CH(CH3)2	CH ₃	CH ₃	CH	
	CH ₃	H	0	H	CH2CH(CH3)2	CH ₃	OCH ₃	CH	
	CH3	H	0	н	CH2CH(CH3)2	OCH ₃	OCH ₃	CH	
	CH3	H	0	н	CH2CH(CH3)2	CH ₃	CH ₃	Ħ	
	CĤ ³	H	0	H	CH ₂ CH(CH ₃) ₂	CH ₃	OCH ₃	n	
25	CH3	H	. 0	H	CH ₂ CH(CH ₃) ₂	осн ₃	OCH ³	H	
	~ CH ₃	H	0	H	CH ₂ CH(CH ₃) ₂	C1	OCH3	CH	
	CH ₃	H	0	H	CH(CH ₃)CH ₂ CH ₃	CH ₃	CH ₃	CH	
	CH ₃	H	0	H	CH(CH ₃)CH ₂ CH ₃	CH ₃	OCH ₃	CH	
	CH3	H	0	H	CH(CH ₃)CH ₂ CH ₃	OCH ₃		CH	•
30	CH ₃	н	0	H	CH2CH2CH(CH3)2	СНЗ	CH ₃	H	
	CH ³	H	0	Ĥ	CH2CH2CH(CH3)2	CH ₃	ÓCH ₃	Ħ	
	CH ₃	н	0	H	CH2CH2CH(CH3)2	осн ₃	OCH ₃	¥	
	CH ₃	н	0	н	CH2CH2CH(CH3)2	Cl	OCH ₃	СН	•

Table I (cont.)

5	<u>R</u>	<u>R</u> 1	<u>n</u>	R ₂	<u>R*</u>	X	¥	<u>z</u>	m.p.(°C)
	CH ₃	н	0	H	CH ₂ OCH ₃	CH ₃	CH ₃	CH	
	CH ₃	н	0	н	сн осн	CH ₃	OCH ₃	CH	
	CH ₃	H	0	н	CH_OCH3	OCH ₃	OCH ₃	CH	
	CH ₃	H	0	H	CH2OCH3	CH ₃	CH3	H	
10	CH ₃	н	0	н	CH ₂ OCH ₃	CH ₃	OCH ₃	N	
	CH ₃	н	0	H.	CH ₂ OCH ₃	OCH ₃	OCH ₃	H	
	CH ₃	H ·	0	н	сн осн з	Cl	осн ₃	CH	
	CH3	н	0	H	CH ₂ OCH ₂ CH ₃	CH3	CH3	CH	
	CH ³	н	0	н	CH2OCH2CH3	CH3	OCH ₃	CH	
15	CH ₃	H	0	н	CH2OCH2CH3	OCH ₃	осн ₃	CH	
	CH ₃	н	0	н	CH2OCH2CH3	CH ₃	CH ₃	H	
	CH ₃	н	0	H	CH2CH2OCH3	CH ₃	OCH ₃	N	
	CH ³	H	0	н	CH2CH2OCH3	оснз	OCH ₃	N	
	CH3	H	0	H	CH_CH_OCH_	CI	OCH ₃	CH	
20	CH ₃	H	0	н	сн_сн_осн_	CH ₃	CH ₃	CH	
	CH3	н	0	н	CH2CH2OCH3	CH3	OCH ₃	CH	
	CH ₃	н	0	н	CH2CH2OCH3	OCH ₃	OCH ₃	CH	
	CH ₃	н	0	H	CH2CH2OCH3	CH ₃	CH ₃	. H ·	
	CH ₃	H	0	н	CH(OCH ₃) ₂	CH ₃	OCH ₃	N	
25	CH ₃	н	O	H	CH(OCH ₃) ₂	OCH ₃	OCH ₃	. 11	
	CH ₃	Ή.	0	Н	CH(OCH ₃)2	C1	OCH ₃	CH	
	CH ₃	н	0	H	CH2SCH3	CH ₃	CH ₃	CH	•
•	CH ₃	H	0	н	CH ₂ SCH ₃	CH ₃	och ₃	CH	
	CH ₃	н	0	н	CH2SCH3	OCH ₃	OCH ₃	CH	
30	CH ₃	н	0	H	CH ₂ SCH ₃	CH3	CH ₃	N	
	CH3	H	0	H	CH ₂ SCH ₃	CH ₃	осн ₃	Ħ	
	CH ₃	H	0	H	CH ₂ SCH ₃	och ₃	осн ₃	N	.:
	CH ₃	н	Ò	н	CH ₂ SCH ₃	Cl	осн ₃	СН	
	•				•				

88
Table I (cont.)

5	. <u>R</u>	R ₁	<u>n</u>	R ₂	<u>R*</u>	<u>x</u>	<u>¥</u> .	<u>z</u>	m.p.(*C)
	CH ₃	H	0	H	CH ₂ N(CH ₃) ₂	CH ₃	CH ₃	CH	
	CH ₃	H	0	н	CH ₂ H(CH ₃) ₂	CH ³	OCH ₃	CH	
	CH ₃	н	0	н	CH ₂ H(CH ₃) ₂	OCH ³	och ³	CH	
	CH ₃	н	0	н	CH2B(CH3)2	CH ₃	CH ₃	H	
10	CH ₃	Н	0	H	CH ₂ N(CH ₃) ₂	CH ₃	OCH ₃	H	
	CH ₃	Ĥ	0	H	CH ₂ H(CH ₃) ₂	осн ₃		H	•
	CH ₃	н	0	н	CH ₂ N(CH ₃) ₂	Cl	OCH3	CH	•
	CH ₃	H.	0	н	CH ₂ CH ₂ N(CH ₃) ₂	CH ₃	CH ₃	CH	
	CH ₃	н	0	H	CH2CH2H(CH3)2	CH ³	och3	CH	
15	CH3	н	0	H	CH2CH2N(CH3)2	OCH ₃		CH	
	CH ₃	H	0	H	CH2CH2N(CH3)2	CH ₃	CH ₃	H	•
	CH ³	H	. 0	н	CH2CH2N(CH3)2		OCH ₃	H	
	CH ₃	н	0	H	CH2CH2E(CH3)2	OCH ₃	och ₃	M	
	CH ₃	н	0	н	CH2CH2E(CH3)2	Cl	och ₃	CH	
20	CH ₃	H	0	H	CH ₂ CH=CH ₂	CH ₃	CH ₃	CH	_
	CH3	H	0	H	CH2CH=CH2	CH ₃	OCH ₃	CH	•
	CH ₃	H	0	H	CH2CH=CH2	OCH ₃	OCH ₃	CH	
	CH ₃	H	0	H	CH2CH=CH2	CH ₃	CH ₃	H	
	CH ₃	н	0	н	CH ₂ CH=CH ₂	CH ₃	OCH ₃	N	
25	CH3	Ħ	0	H	CH2CH=CH2	och ₃	OCH ₃		
	CH3	H	0	H	CH ₂ CH=CH ₂	C1	OCH ₃	CH	
	CH3	H	0	H	CH=CH ₂	CH ₃	CH ₃	CH	
	CH ₃	н	0	H	CH=CH ₂	CH3	och ₃		
	CH ₃	н	.0	н	CH=CH ₂	OCH ₃	OCH ₃		
30	CH ₃	н	0	H	CH=CH ₂	CH ₃	ĊH ³	H	
	CH ₃	н	0	H	CH=CH ₂	CH ₃	OCH ₃		
	CH	H	C	H	CH=CH ₂	OCH ₃	OCH ₃		
	CH.	-	. (H	CH=CH ₂	. C1	OCH	Ci	H

89
Table I (cont.)

5 ·	<u>R</u>	<u>R</u> 1	<u>n</u>	R ₂	R.	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
	CH ₃	H	0	CH ₃	CH ₂ OCH ₃	CH ₃	CH ₃	СН	
	CH ₃	н	0		CH2OCH3	CH ₃	OCH ₃	СН	
	CH ₃	н	0	CH ₃	CH_OCH3	OCH ₃	OCH ₃	CH	
	CH ₃	н	0	CH ₃	CH2OCH3	CH ₃	CH ₃	H	
10	CH ₃	H	0		CH ₂ OCH ₃	CH ₃	OCH ₃	N	
	CH ₃	H	Ö	CH ₃	CH ₂ OCH ₃	OCH ₃	осн3	H	,
	CH ₃	н	0	CH3	CH ₂ OCH ₃	Cl	OCH ₃	CH	
	CH ³	н	0 -	CH ₃	CH2OCH2CH3	CH ₃	CH ₃	СН	
	CH3	н	0		CH2OCH2CH3	CH ₃	осн ₃	СН	
15	CH ³	н	0	_	CH2OCH2CH3	оснз	оснз	CH	
	CH ₃	H	0		CH OCH CH3	CH ₃	CH ₃	N	
	CH3	H	0	CH ₃	сн ₂ сн ₂ осн ₃	CH ₃	оснз	N	
	CH ₃	н	0		сн,сн,осн,	OCH ₃		N	
	CH ₃	н	0	_	CH2CH2OCH3	Cl	OCH ₃	CH	
20	CH3	H	0		CH2CH2OCH3	CH ₃	CH ₃	CH	
	CH ₃	н	0	CH ₃	CH2CH2OCH3	CH ₃	OCH ₃	СН	•
	CH ₃	н	0		CH2CH2OCH3	OCH ₃	OCH ₃	CH	
	CH ₃	H	0		CH2CH2OCH3	CH ₃	CH ₃	N	
	CH3	H	0	CH ₃	CH(OCH ₃) ₂	CH ₃	OCH ₃	N	
25	CH ₃	H	0	CH3	CH(OCH ₃) ₂	OCH ₃	OCH ₃	N	
	CH3	H	0	CH ₃	CH(OCH ₃) ₂	Cl	OCH ₃	CH	
	CH ₃	H	0	_	CH ₂ SCH ₃	CH ₃	CH ₃	СН	
	CH ₃	Н	0	CH ₃	CH ₂ SCH ₃	CH ₃	OCH ₃	CH	
	CH ₃	Н	0	СНЗ	сн ₂ scн ₃	OCH ₃	OCH ₃	CH	
30	CH ₃	H	0		сн ⁵ асн ³	CH3	CH ₃	N	
	CH ₃	H	0	CH3	CH ₂ SCH ₃	CH ₃	OCH ₃	N	
	CH ₃	H	0	CH3	CH ₂ SCH ₃	OCH ₃	OCH ₃	N	
	CH ₃	н	0	CH3	CH ₂ SCH ₃	Cl	OCH ₃	CH	

90
Table I (cont.)

5	<u>R</u>	<u>R</u> 1	<u>n</u>	R ₂	R'	<u>x</u>	¥	<u>z</u>	m.p.(°C)
	CH ₃	н	0	Cl	CH ₂ OCH ₂ F	CH ₃	CH ₃	CH	
	CH ₃	н	0	Cl		CH ₃	OCH ³	CH	
	_	. н	. 0	Cl	CH_OCH_F	OCH ³	OCH3	CH	
	CH3	н	0	Cl	CH ₂ OCH ₂ F	CH ³	CH3	N	•
10	CH ₃	н	0	Cl	CH ₂ OCH ₂ F	CH ³	осн	H	
	CH ₃	н	0	Cl	CH_OCH_F	осн ₃	OCH ₃	H	•
	CH ₃	н	0	Cl	CH ₂ OCH ₂ F	C1	OCH ₃	CH	
	CH ₃	н	. 0	C1	CH ₂ SOCH ₃	CH ₃	CH3	CH	
	CH ₃	н	0	Cl	CH ₂ SOCH ₃	CH ³	осн ₃	CH	
15	CH ₃	н	0	Cl	CH ₂ SOCH ₃	OCH3	OCH3	CH	
	CH ₃	н	. 0	Cl	CH ₂ SOCH ₃	. CH ₃	CH ³	H	
	CH ₃	H	0	Cl	CH ₂ SOCH ₃	CH3.	OCH ₃	Ħ	
	CH ₃	H	0	Cl	CH ₂ SOCH ₃	осн ₃	осн ₃	H	
	CH ₃	H	0	Cl	CH2SOCH3	Cl	OCH ₃	CH	
20	CH3	H	0	Cl	CH ₂ SO ₂ CH ₃	CH ³	CH3	CH	
	CH ³	H	0	Cl	CH ₂ SO ₂ CH ₃		OCH ³	CH	•
	CH ₃	H .	0	Cl			осн ₃	CH	
	CH3	H	0	Cl	CH ₂ SO ₂ CH ₃	CH ₃	CH3	H	
	CH3	H	0	Cl		CH ₃	OCH ₃	n	
25	CH ₃	H	0	Cl	CH ₂ SO ₂ CH ₃	OCH ₃	осн ₃	H	
	CH ₃	н	0	Cl	CH ₂ SO ₂ CH ₃	Cl .	OCH ₃	CH	
	CH ₃	H	0	Cī	CH ₂ CN	CH ₃	CH ₃	CH	
	CH ₃	H ·	0	Cl	CH ₂ CH ₂ CN	CH ₃	осн3	CH	
	CH3	H	0	Cl		OCH ³	OCH ₃	CH	
30 .	CH ₃	H	0	CŦ	CH2NO2	CH ₃	CH ₃	N	
٠	CH ₃	н -	0	Cl	CH2CH2NO2	CH3	OCH ₃ .	N	
	CH3	H	0	Cl	CH ₂ CN	OCH ₃	OCH ₃	N	•
	CH ₃	H	0	Cl	CH ₂ CN	Cl	осн ₃	СН	

91
Table I (cont.)

5	R	R ₁	ū	R ₂	R'	X	X .	<u>z</u> .	m.p.(°C)
	CH ₃	H	0	CF ₃	сн ₃	CH ₃	CH ₃	CH	
	CH ₃	н	0	CF ₃	CH ₃	CH ₃	OCH ₃	CH	•
	CH ₃	н	0	CF ₃	CH ₃	осн ₃	OCH ₃	CH	
	CH ₃	H.	0	CF ₃	CH ₃	CH ₃	CH ₃	H	
10	CH ₃	н	0	CF ₃	CH ₃	CH ₃	осн	N	
	CH ₃	н	0	CF ₃	CH ₃	OCH ³		H	
	CH ₃	н	0	CF ₃	CH ₃	Cl	OCH ₃	CH	•
	CH ₃	H	0	CF ₃	сн ₂ сн ₃	CH ₃	CH ₃	CH	
	CH ₃	н	0	CF ₃	CH ₂ CH ₃	CH ₃	OCH ₃	CH	
15	CH ₃	н	0	CF ₃	CH ₂ CH ₃	OCH ₃	OCH ₃	CH	
	CH ₃	H	0	CF ₃	CH ₂ CH ₃	CH ₃	CH ₃	Ħ	
	CH ₃	н	0	CF ₃	сн ₂ сн ₃	CH ₃	OCH ₃	H	
	CH3	H	0	CF ₃	CH ₂ CH ₃	OCH ₃	OCH ₃	N	
	CH ₃	H	0	CF ₃	CH ₂ CH ₃	Cl	OCH ₃	CH	•
20	CH ₃	н	0	CF ₃	CH ₂ CH ₂ CH ₃	CH ₃	CH ₃	CH	
-	CH3	H	0	CF ₃	CH2CH2CH3	CH ₃	осн _з	CH	
	CH ₃	н	0	CF ₃	CH2CH2CH3	OCH ₃	OCH ₃	CH	
	CH ₃	н	0	CF ₃	CH2CH2CH3	CH3	CH3	N	
	CH3	н	0	CF ₃	CH ₂ CH ₂ CH ₃	CH ₃	OCH ₃	N	
25	CH ₃	H	0	CF ₃	CH2CH2CH3	OCH ₃	OCH ₃	N	
	CH ₃	н	0	CF ₃	CH2CH2CH3	C1	OCH ₃	CH	
	CH ₃	H	0	CF ₃	CH2CH2CH2CH3	CH ₃	CH ₃	CH	
	CH ₃	H	0	CF ₃	CH2CH2CH2CH3	CH ₃	OCH ₃	CH	
	CH ₃	H	0	CF ₃	CH2CH2CH2CH3	OCH ₃	OCH ₃		
30	CH ₃	H	0		CH2CH2CH2CH3	CH ₃	CH ₃	H	
	CH3	H	0	CF ₃	CH2CH2CH2CH3	CH ₃	OCH ₃		
	CH ₃	H	0	3	CH2CH2CH2CH3	оснз	оснз		
•	CH ₃	н	0		CH2CH2CH2CH3	C1	OCH ₃	CH	

92
Table I (cont.)

5	1 0	R ₁	_	R ₂	D.	_	••	_	4.5
	<u>R</u>	. ——		•	<u>R'</u>	X	<u>X</u>	<u>Z</u>	m.p.(°C)
	CH ₃	H	0	CN	CH ₃	CH ₃	CH ₃	CH	
	CH ₃	н	0	CN	сн ₃	CH ₃	оснз	CH	
	CH ₃	H	0	CN .	3	OCH ₃	OCH ₃	CH	
10	CH ₃	H	0	CN	CH ₃	CH3	CH ₃	H	÷
10	CH ₃	H	0	CH	CH3	CH ₃	осн ₃	H	
	CH ₃	H	0	CN	CH ₃	OCH ³		M	
	CH3	H	0	CN	CH ³	Cl	OCH3	CH	•
	CH3	H	0	CN	CH ₂ CH ₃	CH ₃	CH ₃	CH	
	CH ₃	H	0	CN	CH ₂ CH ₃	CH ₃	оснз	CH	
15	CH3-	H	0	CN	CH ₂ CH ₃	OCH ³	OCH ₃	CH	
	CH ₃	H	0	CN	CH ₂ CH ₃	CH ³	CH3	N	
	CH ₃	н	0	CN	CH ₂ CH ₃	CH3	OCH ₃	N	
	CH ₃	H	0	CN	CH ₂ CH ₃	OCH		N	
	CH3	н	0	CN	CH ₂ CH ₃	Cl	OCH3	СН	
20	CH ₃	H	0	CN	CH ₂ CH ₂ CH ₃	CH3	СНЗ	СН	_
	CH ₃	H	0	CN	CH2CH2CH3		осн3	СН	-
	CH ₃	H	0	CN	CH2CH2CH3	OCH ₃	OCH ₃	СН	
	CH ³	H	0	CN		CH3	CH3	Ħ	
	CH ₃	H	0	CN	CH ₂ CH ₂ CH ₃	сн ³	OCH ³	N	
25	CH ³	н	0	CN	CH2CH2CH3	OCH ³	OCH ₃	N	
	CH ₃	н	0	CN	CH2CH2CH3	Cl	OCH ₃	CH	
	CH3	н	0	CN	CH2CH2CH2CH3		CH3	СН	
	CH ₃	н	0	CN	CH2CH2CH2CH3		OCH ₃	СН	
	CH ₃	н	0	CN	CH2CH2CH2CH3	OCH_	OCH ₃	СН	
30	CH ₃	н	0	CN	CH2CH2CH2CH3		CH ₃	N	
	CH ₃	н	0	CN	CH ₂ CH ₂ CH ₂ CH ₃		OCH ₃	N	
	CH ₃	н	0	CN	CH ₂ CH ₂ CH ₂ CH ₃			N	
	CH ₃	н	0	CN	CH ₂ CH ₂ CH ₂ CH ₃			СН	
	3				2 2 2 3	•	3		

93
Table I (cont.)

5	R	R ₁	n	R ₂	R*	X	<u>¥</u>	<u>z</u>	m.p.(°C)
	CH ₂ CH ₃	H	0	H	CH2CH2CH2CH3	CH3	CH ₃	СН	
	CH ₂ CH ₃	н	0	н	СНСНСНСНСН	СНЗ	OCH ₃	СН	
	CH ₂ CH ₃	н	0	н	сн,сн,сн,сн,сн,		OCH ₃	СН	٠
•	CH ₂ CH ₃	н	0	H	CH2CH2CH2CH2CH3	CH ₃	CH ₃	N	
10	CH ₂ CH ₃	н	0	н	CH2CH2CH2CH3		OCH ₃	N	
	CH ₂ CH ₃	н	0	н	сн, сн, сн, сн, сн,	OCH ₃	_	H	
	CH ₂ CH ₃	н	0	н	CH2CH2CH2CH2CH3	C1	OCH ₃	CH	
	CH ₂ CH ₃	н	0	н	CH(CH ₃),	CH ₃	CH ₃	CH	•
	CH ₂ CH ₃	н	0	н	СH(СH ₃) ₂	CH3	OCH ₃	CH	
15	CH2CH3	н	0	н	CH(CH ₃) ₂	OCH ₃	OCH ₃	CH	
	CH ₂ CH ₃	н	0	H	CH(CH ₃) ₂	CH3	CH ₃	N	
	CH2CH3	н	0	н	CH(CH ₃) ₂	CH ₃	OCH ₃	N .	
	СНСН	н	0	H	CH(CH ₃) ₂	OCH ₃	OCH ₃	N	
	CH2CH3	н	0	H	CH(CH ₃) ₂	Cl	OCH ₃	СН	
20	CH2CH3	н	0	H	CH2CH(CH3)2	CH ₃	CH ₃	CH	,
	CH2CH3	н	0	H	CH2CH(CH3)2	CH ₃	och ₃	ĊН	,
	CH ₂ CH ₃	Н	0	H	CH2CH(CH3)2	OCH ₃	OCH ₃	CH	•
	CH2CH3	н	0	H	CH ₂ CH(CH ₃) ₂	CH3	CH3	N	
•	CH2CH3	H	0	H	CH ₂ CH(CH ₃) ₂	CH3	OCH ₃	H	
25	CH ₂ CH ₃	н	0	н	CH ₂ CH(CH ₃) ₂	OCH ₃	OCH ₃	N	•
	CH ₂ CH ₃	н	0	H	CH2CH(CH3)2	C1	OCH ₃	CH	
	CH2CH3	H	0	H	CH(CH3)CH2CH3	CH ₃	CH ₃	CH	
	CH ₂ CH ₃	н	0	н	CH(CH3)CH2CH3	CH ₃	OCH ₃	CH	·. ·
	CH ₂ CH ₃	н	0	H.	CH(CH ₃)CH ₂ CH ₃	OCH ₃	OCH ³	CH	
30	CH ₂ CH ₃	H	0	н .	CH2CH2CH(CH3)2	CH ₃	CH3	N	
	CH ₂ CH ₃	H	0	н	CH2CH2CH(CH3)2	СНЗ	OCH ₃	N	
	CH ₂ CH ₃	H	0	н	CH2CH2CH(CH3)2	OCH ₃	OCH ₃	N	
	CH ₂ CH ₃	н	0	H	CH2CH2CH(CH3)2	Cl	OCH ₃	CH	

94
Table I (cont.)

5	<u>R</u>	R ₁	ū	R ₂	<u>R*</u>	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
	Сн осн 3	H			CH2CH2CH2CH2CH3	CH ₃	СНЗ	CH ·	
•		H	0		CH2CH2CH2CH2CH3	CH ³	OCH ₃	CH ·	•
	CH ₂ OCH ₃	H			CH2CH2CH2CH3	оснз	OCH ³	СН	
		H	0		CH2CH2CH2CH2CH3	CH ³	CH ³	H	
10	сн осн	H	0		CH2CH2CH2CH3	CH3	OCH ₃	Ä	
	CH ₂ OCH ₃	H	0		CH2CH2CH2CH3	OCH ³		H	
	сн осн 3	Ĥ			CH2CH2CH2CH3	Cl	OCH ₃	CH	
	CH ₂ OCH ₃	H	0	H	CH(CH ₃) ₂	CH ₃	CH3	CHİ	
	CH ₂ OCH ₃	H	0	Н	CH(CH ₃) ₂	CH ³	OCH ₃	CH	•
15	CH ₂ OCH ₃	H	0	H	CH(CH ₃) ₂	OCH	OCH ³	CH	
	CH ₂ OCH ₃	. H	0	H	CH(CH ₃) ₂	CH ₃	CH ₃	H	
	CH ₂ OCH ₃	H	0	H	CH(CH ₃) ₂	CH ₃	осн 3	M	
	CH ₂ OCH ₃	H	0	H	CH(CH ₃) ₂	OCH ₃	OCH ₃	H.	
	CH ₂ OCH ₃	H	0	H	CH(CH ₃) ₂	Cl	OCH ₃	CH	
20	CH ₂ OCH ₃	H	0	H	CH ₂ CH(CH ₃) ₂	CH ₃	CH ₃	CH	
	CH ₂ OCH ₃	. H	0	H	CH2CH(CH3)2	CH ₃	OCH ₃	CH	
	CH ₂ OCH ₃	H	0	H	CH2CH(CH3)2	OCH ₃	OCH ₃	CH	
	CH ₂ OCH ₃	Н	0	H	CH2CH(CH3)2	CH ₃	CH ₃	N	
25	CH ₂ OCH ₃	H	0	H	CH ₂ CH(CH ₃) ₂	CH ₃	OCH ₃	N	
23	CH ₂ OCH ₃	H	0	H	CH ₂ CH(CH ₃).	OCH ³	OCH3	N	
	CH ₂ OCH ₃	H	0	H	CH2CH(CH3)2	Cl	OCH ³	CH	
	CH ₂ OCH ₃	H	0		CH(CH ₃)CH ₂ CH ₃	CH ₃	CH3	CH	
	CH ₂ OCH ₃	H	0	H	CH(CH ₃)CH ₂ CH ₃	CH ₃	OCH ₃	CH	
30	CH ₂ OCH ₃	H	0	H	CH(CH ₃)CH ₂ CH ₃	OCH3	OCH ₃	CH	
30	CH ₂ OCH ₃	H	0	H	CH2CH2CH(CH3)2	CH ₃	CH3	H	
	сн ₂ осн ₃	Н	0	H	CH2CH(CH3)2	CH ³	OCH ₃	¥	
	CH ₂ OCH ₃		0	н	CH2CH2CH(CH3)2	осн ₃	OCH ₃	H	
	CH ₂ OCH ₃	Н	0	Н	CH2CH2CH(CH3)2	Cl	OCH ₃	CH	

95
Table I (cont.)

5	<u>R</u>	<u>R</u> 1	n	R ₂	R'	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
	CH ₃	н	0	Н	CH ₃	н	CH ₃	CH	
	CH ₃	н	0	н	CH ₃	н	OCH ₃	CH	
	CH ₃	н	0	н	CH ₃	CH ₃	оснасна	CH	
•	CH ₃	н	0	н	CH ₃	CH ₃	OCH(CH ₃) ₂	CH	•
10	CH ₃	н	0	н	CH ₃	н	OCH ₃	N	
	CH ₃	н	0	H	CH ₃	OCH ₃	OCH ₂ CH ₃	CH	
	CH ₃	н	0	H	CH3	CH ₂ F	CH ₃	CH.	
	CH ₃	н	0	H	CH ₃	CH ₂ F	осн ₃	CH	
	CH ₃	н	0	H	CH ₃	OCF ₂ H	CH ₃	CH	
15	CH ₃	н	0	H	CH ₃	ocr ₂ h	och ₃	CH	
•	CH ₃	H	0	H	CH ₃	OCH ₂ CF ₃	och ₃	N	
	CH ₃	H	0	H	CH ₃	SCH3	och ₃	CH	
	CH3	H	0	H	CH ₃	осн ₃	NHCH ₃	N	•
	CH ₃	H	0	H	CH ₃	OCH ₂ CH ₃	NHCH ₃	N	195-197
20	CH ₃	H	0	H	CH ₃	OCH ₃	OCH2CH3	N	
	CH3	н	0	н	CH ₃	SCF ₂ H	OCH ₃	CH	
	CH ₃	H	0	H	CH3	Br	OCH ₃	CH	•
	CH ₃	H	0	н	CH ₃	CH ₂ OCH ₃	OCH ₃	CH	
	CH ₃	H	0	H	CH3	CH ₂ OCH ₃	CH ₃	N	
25	· CH ₃	H	0	H	CH3	NH ₂	OCH ₃	N	
	CH ₃	H	0	H	CH3	N(CH3)2	och ₃	N	•
	CH ₃	н	0	H	CH ₃	инсн 3	NHCH ₃	N	
	CH ₃	H	0	H	CH ₃	cyclopropyl	OCH ₃	CH	
	CH ₃	H	0	H	CH3	cyclopropyl	CH ₃	N	
30	CH ₃	H	0	H	CH ₃	cyclopropyl	CH ₃	CH	
	CH ₃		0	H	CH ₃	cyclopropyl	OCH ₃	N	
	CH ₃	н	0	H	CH3	CH.	CH(OCH ₃) ₂	CH	
	CH ₃	H	0	H	CH3	CF ₃	och ₃	CH	
	CH ₃		0	H	СH ^З	och ₃	CECH	CH	
35	_								

96 Table I (cont.) E is CH₂

5									•
	<u>R</u>	<u>R</u> 1	<u>n</u>	R ₂	<u>R*</u>	<u>x</u>	<u>x</u>	<u>z</u>	m.p.(°C)
	CH ₃	H	0	H	CH ₃	CH ₃	CH	CH	
	CH ₃	H	0	H	CH ₃	CH ³	OCH ³	CH	
	CH ₃	Ħ	0	H	CH3	OCH ₃	OCH ₃	CH	
10	CH3	H	0	H	CH3	СНЗ		H	
	CH ₃	H	0	H	CH ₃	CH ³		H	
•	CH ₃	H	0	H	CH ₃	OCH ³	OCH ₃	H	· ·
	CH ³	H	0	H	CH ₃	Cl	OCH ₃	CH-	
	. CH ₃	н	0	H	CH ₂ CH ₃	CH ³	CH3	CH	
15	CH3	H	0	H	CH2CH3	CH ₃	OCH ₃	CH	
	CH3	H	0	H	сн ₂ сн ₃	OCH ₃		CH	
	CH ₃	H	0	H	CH ₂ CH ₃	CH ₃	CH ₃	H	
	CH ₃	H	0	H	CH ₂ CH ₃	CH ₃		Ħ	
	CH ₃	H	0	H	CH ₂ CH ₃	och ³	OCH ₃	H	
20	CH ₃	H	0	H	CH ₂ CH ₃	Cl	OCH ³	CH	•
	CH ₃	H	0	H	CH ₂ CH ₂ CH ₃	CH ₃	CH ₃	CH	
	CH ₃	H	0	H	CH2CH2CH3	CH ₃	осн ₃	CH	
	CH ₃	H	0	H	CH ₂ CH ₂ CH ₃	OCH ³	OCH ₃	CH	
	CH ₃	H	0	H	CH2CH2CH3	CH.3		'n	
25	CH ₃	H	0	H	CH2CH2CH3		OCH ₃	H	
	CH ₃	H	0	н	CH2CH2CH3	och ³		N	
	CH ₃	H	0	H	CH2CH2CH3	Cl	OCH ₃	CH	
•	CH ₃	H	. 0	H	CH2CH2CH2CH3	CH ₃	CH ₃	CH	
20	CH ₃	H	0	H	CH2CH2CH2CH3	CH.3	OCH ₃	CH	
30	CH ₃	Н	0	H	CH2CH2CH2CH3	OCH ³	OCH ₃	CH	•
	CH ₃	H	0	Н	CH2CH2CH2CH3	CH ³	CH ₃	N	
	CH3	H	0	H	CH2CH2CH2CH3	CH ₃	och ₃	N	•
	CH ₃	Н	0	Н	сн ₂ сн ₂ сн ₂ сн ₃	OCH ₃	OCH ₃	H	
35	CH ₃	H	0	н	CH2CH2CH2CH3	¢1	OCH ₃	СН	

97 Table I (cont.)

	5									•
		R	<u>R</u> 1	<u>n</u>	R ₂	<u>R'</u>	<u>x</u>	<u>¥</u>	<u>2</u>	m.p.(°C)
		CH ₃	н	0	H	CH ₃	CH ₃	CH ₃	CH	
		CH ₃	H	0	н	CH ₃	CH ₃	OCH ₃	CH	
		CH ₃	н	0	н	CH ₃	OCH3	OCH ₃	CH	
1	LO	CH ³	H	0	H	CH ₃	CH3	CH ₃	H	•
		CH ₃	Н,	0	H	CH ₃	CH ₃	OCH ₃	N	
		CH ₃	н	0	н	СН3	OCH ₃	OCH ₃	N	
		CH ₃	H	0	H	CH ₃	Cl	OCH ₃	CH	
		CH ₃	H	0	н	CH ₂ CH ₃	CH ₃	CH3	CH	
1	L 5	CH ₃	H	0	Н	CH ₂ CH ₃	CH3	оснз	CH	
	•	CH3	H	0	H	сн_сн_	OCH ₃	осн _з	CH	· .
		CH3	H	0	H	CH ₂ CH ₃	CH ₃	CH3	N	
		CH ₃	H	0	H	CH ₂ CH ₃	CH ₃	OCH ₃	K	
	-	CH ₃	H	0	H	CH ₂ CH ₃	OCH ₃	OCH ₃	N	
7	20	CH ₃	H	0	H	CH ₂ CH ₃	Cl	och ₃	CH	
		CH3	H	0	H	CH2CH2CH3	CH3	CH ₃	CH	
		CH ₃	H	0	. н	CH2CH2CH3	CH ₃	OCH ₃	CH	
		CH3	H	0	H	CH2CH2CH3	OCH ₃	OCH ₃	CH	
	••	CH ₃	H	0	H	CH2CH2CH3	CH ₃	CH ₃	N.	
2	25	CH ₃	н	0	H	CH2CH2CH3	CH ₃	OCH ₃	Ŋ	ė
		CH ₃	н	0	H	CH2CH2CH3	OCH ₃	OCH ₃	N	
		CH3	н	0	H	CH2CH2CH3	Cl	OCH ₃	ĊН	
		CH ₃	H	0	H.	CH2CH2CH2CH3	CH ₃	CH3	CH	•
		CH ₃	н	0	H	CH2CH2CH2CH3	CH ₃	OCH ₃	CH	
	30	CH ₃	H	0	H	CH2CH2CH2CH3	och ₃	·OCH ₃	CH	
•		CH ₃	H	0	H	CH2CH2CH2CH3	CH ₃	CH ³	N	
		CH ₃	H	0	H	CH2CH2CH2CH3	CH ₃	OCH ₃	. N	
		CH ₃	H	0	н	CH2CH2CH2CH3	OCH3	осн3	N	•
		CH ₃	н	0	н	CH2CH2CH2CH3	Cl	OCH ₃	CH	
. :	35	3					•			

Table II

5		Ð		Ð	,			
2	R	<u>~1</u>	Ū	R ₂	R'	<u>x</u>	<u>x</u>	Z m.p.(°C)
	CH ₃	H	0	H	cyclopropyl .	CH ₃	CH ₃	CH
	CH ₃	H	0	H	cyclopropyl	CH ₃	OCH ₃	CH
	CH ₃	H	0	H	cyclopropyl .	OCH ₃	OCH ³	CH
	CH3	H	0	H	cyclopropyl	CH ₃	CH3	H
10	CH3	H	0	H	cyclopropyl	CH ₃	OCH ₃	H
•	CH3	H	0	H	cyclopropyl	OCH ₃	OCH ₃	M
•	CH ₃	н	0	H	cyclopropyl	CI	OCH ₃	CH
	CH3		0	H	cyclobutyl	CH ₃	CH ₃	CH
	CH ³	H	0	H	cyclobutyl	CH ₃	OCH3	CH
15	CH	H	0	н	cyclobutyl	OCH ₃	OCH ₃	CH
	CH ₃	н	0	H	cyclobutyl	CH3	CH ₃	H
	CH		0	H	cyclobutyl	CH ₃	OCH ₃	N
	CH3		0	н	cyclobutyl	OCH ₃	OCH ₃	N
	CH3		0	H	cyclobutyl	C1	OCH ₃	CH
20	CH ₃		0	H	cyclopentyl	CH3	CH ₃	CH
	CH ³		0	н	cyclopentyl	CH ₃	OCH ₃	CH
	CH3		0	H	cyclopentyl	OCH ₃	OCH ₃	CH
	CH		0	н	cyclopentyl	CH3	CH ₃	R
	CH ₃	H	0	н	cyclopentyl	CH ₃	OCH ₃	N
25	CH ₃		0	н	cyclopentyl	OCH ₃	OCH ₃	H
	CH ₃		0	н	cyclopentyl	Cl	OCH ₃	CH
	CH3		0	н	cyclopropyl	осн _з	OCH2CH3	CH
	CH ₃	H	0	н	cyclopropyl	cyclopropyl	OCH ₃	CH
	CH3		O	н	cyclopropyl	OCH ³	CH(OCH ₃) ₂	CH
30	CH3	н	0	н	cyclopropyl	NHCH3	OCH2CH3	N
	СНЗ		O	н	cyclopropyl	NHCH ₃	OCH ₃	n
	СН		C	н	cyclopropyl	OCH ₃	OCH ₂ CH ₃	n
	CH ₃	н	C	Н	cyclopropyl	CH ₂ F	CH3	СН

Table II (cont.)

					_	• .		
5	<u>R</u>	$\underline{\frac{R_1}{1}}$	ņ	R ₂	<u>R*</u>	X	<u>¥</u>	Z m.p.(°C)
	CH3	H	0	CH ₂ F	cyclopropyl	CH ³	CH ₃	CH
	_			_	cyclopropyl		OCH ₃	CH
	•			_	cyclopropyl		OCH ₃	CH
	_			-	cyclopropyl		CH ₃	N
10					cyclopropyl		OCH ₃	N
	_			_	cyclopropyl		OCH ₃	N
	_			_	cyclopropyl		och ₃	СН
				-	cyclobutyl		CH ₃	СН
	_			_	cyclobutyl		OCH ₃	CH
15	•			_	cyclobutyl		OCH ₃	СН
	_			_	cyclobutyl		CH ₃	N ,
	•			_	cyclobutyl		OCH ₃	N ·
	_			_	cyclobutyl	•	OCH ₃	N .
	_			_	cyclobutyl		och ₃	СН
20	•			_	cyclopentyl		CH ₃	СН
	•			_	cyclopentyl		och ₃	CH .
	•			_	cyclopentyl		OCH ₃	CH
	•			_	cyclopentyl		CH3	n
	CH	H	0	CH ₂ F	cyclopentyl	CH ₃	осн _з	n
25					cyclopentyl		OCH ₃	A
	_			_	cyclopentyl		och ₃	СН
	_			_	cyclopropyl		OCH2CH3	СН
	CH3	н	0	CH ₂ F	cyclopropyl	cyclopropyl	осн ₃	СН
	_			_	cyclopropyl		CH(OCH ₃) ₂	CH
30	_			_	cyclopropyl		OCH ₂ CH ₃	N .
					cyclopropyl		OCH ₃	N .
	CH3				cyclopropyl		OCH ₂ CH ₃	Bi .
	_			CH ₂ F	chclobLobAj	CH ₂ P	CH ₃	CH :

Table II (cont.)

5	R.	R ₁	n	R_2	R •_	<u>x</u>	X .	Z m.p.(*C)
	CH				cyclopropyl	-	CH ₃	CH .
	CH ₃				cyclopropyl	CH	OCH ₃	CH
	CH ₃				cyclopropyl	_	OCH ₃	CH
	CH ₃				cyclopropyl		CH ₃	H .
10	_			_	cyclopropyl		ося	H
	CH ₃				cyclopropyl	• .	OCH3	N
	CH3				cyclopropyl	_	OCH ₃	CH
	CH ₃				cyclobutyl		CH ₃	Сн -
	CH3		0	CN	cyclobutyl	CH3	OCH ₃	CH
15	CH3	H	0	CH	cyclobutyl	och ³	OCH ₃	CH
	CH ₃		0	CH	cyclobutyl	CH ₃	CH ₃	H
	CH ₃		0	CN	cyclobutyl	CH ₃	och ₃	H
	CH ₃		0	CH	cyclobutyl	OCH ₃	OCH ₃	H
	CH ₃	H	0	CN	cyclobutyl	Cl	och ₃	CH
20	CH ₃		0	CN	cyclopentyl	CH ₃	CH ₃	CH
	CH ₃	H	0	CN	cyclopentyl	CH ³	OCH ₃	CH
	CH ₃	H	0	CN	cyclopentyl	OCH ³	OCH ₃	CH
	CH3	H	0	CN	cyclopentyl	CH3	CH ₃	N.
	CH ₃	H	0	CN	cyclopentyl	CH ₃	OCH ₃	¥
25	CH ₃	H	0	CH	cyclopentyl	OCH ₃	OCH ₃	N .
•	CH3	Н	0	CN	cyclopentyl	. C1	OCH ₃	CH
	CH3	H,	0	CH	cyclopropyl	OCH ₃	OCH ₂ CH ₃	CH
	CH ₃	H	0	CH	cyclopropyl	cyclopropyl	_	CH
20	CH3	н	,0	CN	cyclopropyl	OCH ₃	CH(OCH ₃) ₂	CH
30	CH3	,	C	CH	cyclopropyl	инсн ₃	OCH ₂ CH ₃	N
	CH3	H	C	CN	cyclopropyl	NHCH ₃	och ₃	N .
	CH3	,	O	CN	cyclopropyl	OCH ₃	OCH ₂ CH ₃	H
	СНЗ	H	C	CN	cyclopropyl	. CH ₂ F	CH ₃	СН

101 Table II (cont.)

5	R	<u>R</u> 1	n	R ₂	<u>R*</u>	<u>x</u> -	<u>Y</u> .	<u>z</u>	m.p.(°C)
	CH ₂ CH ₃	Ĥ	0	н	cyclopropyl	ена	CH ₃	CH	
	CH2CH3		0.	н	cyclopropyl	CH ₃	OCH ₃	СН	
	CH2CH3			H.	cyclopropyl	осн	OCH ₃	СН	
	CH2CH3	H	0	H	eyclopropyl	CH 3	CH ₃	Ħ.	
10	CH2CH3	H	0	H	cyclopropyl	CH3	OCH ₃	H	,
	CH ₂ CH ₃	H	0	H	cyclopropyl	OEH ₃	och ₃	N	
	CH ₂ CH ₃	H	0	н	cyclopropyl	CÏ	och ₃	CH	
	CH ₂ CH ₃	H	0	н	cyclobutyl	CH ₃	CH ₃	CH	
	CH ₂ CH ₃	H	0	H	eyclobutyl	CH ₃	OCH3	CH	
15	CH ₂ CH ₃	H	0	H	cyclobutyl ·	OCH ₃	OCH ₃	CH	
	CH ₂ CH ₃	H	0	H	cyclobutyl	CK	CH ₃	H	
	CH ₂ CH ₃	H	0	н	cyclobutyl	CH ₃	OCH ₃	H .	
	CH2CH3	н	0	H	cyclobutyl	OCH 3	OCH 3	H	
	CH ₂ CH ₃	Н	0	H	cyclobutyl	cj	осн ₃	CH	<u>.</u>
20	CH2CH3	H	0	H	cyclopentyl	CH ₃	CH ₃	CH	
	CH ₂ CH ₃	H	0	H	cyclopentyl	CH ₃	осн ₃	CH	•
	CH ₂ CH ₃	H	0	H	cyclopentyl	och ₃	OCH ₃	CH	
	CH ₂ CH ₃	Н	0	H	cyclopentyl	CH.3	CH ₃	N	
25	CH ₂ CH ₃	H	0	H	cyclopentyl	CH ₃	OCH ₃	N	-
25	CH ₂ CH ₃	H	0	Н	cyclopentyl	OCH ₃	OCH ₃	N	
	CH ₂ CH ₃	Н	0	Н	cyclopentyl	C1	OCH ₃	CH	
	CH ₂ CH ₃	H	0		cyclopropyl	_	OCH ₂ CH ₃	CH	
	CH ₂ CH ₃	Н	0	H	cyclopropyl	cyclopropyl	•	CH	
30	CH ₂ CH ₃	H	0	Н	cyclopropyl	OCH ₃	CH(OCH ₃) ₂	CH	
30	CH ₂ CH ₃	H	0	Н	cyclopropyl	NHCH3	OCH ₂ CH ₃	H	
	CH ₂ CH ₃	H	0		cyclopropyl	инен 3	OCH ₃	N	
	CH ₂ CH ₃		0		cyclopropyl		och ₂ ch ₃	N	
	CH ₂ CH ₃	H	0	Н	cyclopropyl	CH ₂ F	CH ₃	CH	

102
Table II (cont.)

Ś	<u>R</u>	R ₁ n R ₂	<u>R'</u>	***	<u>¥</u>	Z m.p.(°C)
	CH ₂ CECH	н он	cyclopropyl	CH	CH ₃	СН .
	CH ₂ C≣CH		cyclopropyl	CH	OCH ₃	CH
	CH ₂ C≣CH		cyclopropyl		OCH ₃	CH .
	Снос≡сн		cyclopropyl	•	CH3	H
10	CH ₂ C≣CH		cyclopropyl	•	OCH ₃	R ·
	CH ² C≣CH	н он	cyclopropyl	OCH ₃	OCH ₃	n .
	CH2CECH	н он	cyclopropyl	C1	OCH ₃	CH
	CH ² C=CH	н он	cyclobutyl	CH ₃	CH ₃	Сн .
	сн₂с≣сн	н он	cyclobutyl	CH ₃	OCH ₃	CH
15 .	CH ₂ C≡CH	н он	cyclobutyl	_	OCH3	CH
	∵сн ₂ с≌сн	н он	cyclobutyl		CH ₃	H
٠.	сн2с≘сн		cyclobutyl	CH3.	OCH ₃	¥
	CH ₂ C≣CH		cyclobutyl	OCH	och,	n
	сн₂с≘сн		cyclobutyl	Cl	OCH ₃	CH
20	сн2≡сн	н он	cyclopentyl	CH ³	CH ₃	CH
	сн2с≅сн	н он	cyclopentyl	CH ₃	OCH3	CH
	снос≘сн		cyclopentyl	OCH ₃	OCH	СН
	CH ₂ C≡CH	н он	cyclopentyl	CH ₃	CH ³	H
	сн ₂ с≘сн	н он	cyclopentyl	CH3	och ₃	H
25	сн₂с≘сн	н он	cyclopentyl	OCH ₃	OCH ₃	N
	сн ₂ с≣сн	н он	cyclopentyl	C1	OCH ₃	CH
	сн ₂ с≘сн	н он	cyclopropyl	OCH ₃	осн ₂ сн ₃	CH
	сн2с≡сн	H O.H	cyclopropyl	cyclopropyl	OCH ₃	CH
	сн2с≘сн '	H. O H	cyclopropyl	OCH ₃	CH(OCH ₃) ₂	CH
.30	сн ₂ с≡сн	н он	cyclopropyl	NHCH ₃	OCH ₂ CH ₃	n
	сн ₂ с≡сн	н он	cyclopropyl	WHCH3	och ₃	R.
	сн ₂ с≡сн	н он	cyclopropyl	OCH ₃	och ₂ ch ₃	n .
	сн ₂ с≘сн	н он	cyclopropyl	CH ₂ F	CH ₃	CH .

103
Table II (cont.)

5	<u>R</u> R ₁	n	R ₂	<u>R'</u>	<u>x</u>	¥	Z m.p.(°C)
	нн			cyclopropyl	CH	CH ₃	СН
				cyclopropyl	_	OCH ₃	СН
	нн			cyclopropyl	•	OCH ₃	СН
	нн			cyclopropyl	•	CH ₃	n .
10	нн			cyclopropyl	•	OCH ₃	N
				cyclopropyl	•	OCH ₃	N
	нн			cyclopropyl	•.	OCH ₃	СН .
	нн			cyclobutyl	СН	CH3	СН
	нн			cyclobutyl	CH ₃	OCH ₃	СН
15	нн		•		OCH	OCH ₃	CH
	нн			cyclobutyl	CH ₂	CH ₃	N
	нн			cyclobutyl	CH ₃	OCH ₃	n ·
	нн			cyclobutyl	OCH ₃	OCH ₃	N
	нн			cyclobutyl	Cl	OCH ₃	СН
20	нн			cyčlopentyl	CH ₂	CH3	СН
	нн			cyclopentyl	_	осн	CH .
	нн			cyclopentyl	•	OCH ₃	СН
	нн			cyclopentyl	_	CH ₃	N
	нн			cyclopentyl	_	OCH ₃	N .
25	нн			cyclopentyl	•	OCH ₃	N
	нн			cyclopentyl	_	OCH ₃	CH
	нн	0	Cl	cyclopropyl	och ₃	OCH ₂ CH ₃	CH .
	нн	0	Cl	cyclopropyl	cyclopropyl		СН
	нн	0	Cl	cyclopropyl	OCH ₃	CH(OCH ₃) ₂	СН
30	нн	0	Cl	cyclopropyl	NHCH ₃	OCH ₂ CH ₃	N
	нн	0	Cl	cyclopropyl	инсн ₃	och ₃	N
	нн			cyclopropyl	•	OCH ₂ CH ₃	N
	нн			cyclopropyl	•	CH ₃	СН
					-		

104
Table II (cont.)

5	_ R_		R.		_	•	
	$R \frac{R_1}{R_1}$				X	<u>¥</u>	Z m.p.(°C)
				cyclopropyl	•	CH ₃	CH
	нн	0	CH ₃	cyclopropyl	CH ₃	OCH.	CEE .
	нн	0	CH ³	cyclopropyl	OCH ₃	OCH ₃	CH
	нн	0	CH ₃	cyclopropyl	CH ₃	CH ³	H
10	нн	0	CH3	cyclopropyl	CH ³	OCH ₃	H
	нн	0	CH ₃	cyclopropyl	OCH ₃	OCH ₃	H
•	нн	0	CH ₃	cyclopropyl	Cl	OCH ₃	CH .
	нн	0	CH ₃	cyclobutyl	CH ₃	CH ³	CH
·	нн	0	CH ₃	cyclobutyl	CH ₃	och ³	CH
15	нн	0	CH3	cyclobutyl	OCH ₃	OCH ₃	CH
	H' H	0	CH ₃	cyclobutyl	CH ₃	CH ₃	X
•	нн	0	CH3	cyclobutyl	CH ₃	OCH ₃	H
	нн		_	cyclobutyl	-	осн	
	·H H	0	CH3	cyclobutyl	Cl	OCH ₃	CH
20	нн	0	CH ³	cyclopentyl	CH ₃	CH ₃	CH
-	нн		_	cyclopentyl	-	OCH ₃	CH .
	нн	0	CH3	cyclopentyl	OCH ₃	OCH ₃	CH
	нн	0	CH3	cyclopentyl	CH ³	CH3	N
	нн	0	CH3	cyclopentyl	CH ₃	OCH ₃	E
25	нн	0	CH3	cyclopentyl	OCH ₃	OCH ₃	H
	нн	0	CH ₃	cyclopentyl	C1	OCH ₃	CH
	нн	0	CH3	cyclopropyl	OCH ₃	OCH ₂ CH ₃	CH
	нн	0	CH3	cyclopropyl	cyclopropyl	OCH ₃	CH
	нн		_	cyclopropyl		CH(OCH ₃) ₂	CH
30	нн	0	CH3	cyclopropyl	NHCH ₃	OCH2CH3	H
	нн		_	cyclopropyl	•	осн ₃	Ħ
	нн		_	cyclopropyl	_	OCH CH	H
	нн		_	cyclopropyl	_	CH ₃	CH
			_				

105
Table II (cont.)

5	R	<u>R</u> 1	ū	R ₂	<u>R*</u>	<u>x</u>	<u>¥</u>	Z m.p.(°C)
	CH ₃	н	0	н	cylobutyl	CH ₂ CH ₃	CH ₃	СН
	CH3	н	0	H	cyclobutyl	CH ₂ CH ₃	OCH ₃	СН
	CH ₂	H	0	H	cyclobutyl	CH ₂ F	CH ₃	Сн
	CH ₃	н	0	H	cyclobutyl -	OCF ₂ H	CH ₃	CH
10	CH ₃	н	0	H	cyclobutyl	OCF ₂ H	OCH ₃	CH
	CH3	н	0	H	cyclobutyl	OCH ₂ CF ₃	och ₃	CH -
	CH ₃	н	0	H	cyclobutyl	CH ₂ F	och ³	СН
	CH3	н	0	H	cyclobutyl	CH ₂ C1	осн ₃	N
	CH ³	H	0	H	cyclobutyl	SCH ₃	och ₃	CH
15	CH ₃	н	0	H	cyclobutyl	SCH ₂ F	OCH ₃	CH
		H	0	H	cyclobutyl	Br	OCH ₃	CH
	CH3	H	0	H	cyclobutyl	CH ₂ OCH ₃	OCH3	и ,
	CH3	H	0	H	cyclobutyl	OCH_OCH_3	och ₃	CH
	CH ₃	H	0	H	cyclobutyl	och ₂ och ₂ ch ₃	CH3	CH
20	CH ₃	Ħ	0	H	cyclobutyl	N(CH ₃) ₂	och ₃	n .
	CH ₃	H	0	H	cyclobutyl	NHCH ₂ CH ₃	CH3	N
	CH ₃	H	0	H	cyclobutyl	инсн _з	OCH ₂ CH ₃	n
	CH ₃	н	0	н	cyclobutyl	CH ₃	CH ₂ SCH ₃	CH
	CH ₃	н	0	H	cyclobutyl	OCH ³	CH ₂ SO ₂ CH ₃	СН
25	CH ₃	H	0	H	cyclobutyl	NH ₂	OCH2CH3	'n
	CH ₃	H	0	н	cyclobutyl	CH ₃	OCH2CH=CH2	
	CH ₃	H	0	Н	cyclobutyl	CH ₂ CH ₃	ocf ₂ H	СН
	CH ₃	H	0	Н	cyclobutyl	ocr ₂ H	ocf ₂ H	CH
30	CH ₃	H	0	Н	cyclobutyl	och ₃	OCH=CH ₂	CH
	CH ₃	Н	0	Н	cyclobutyl	OCH ₃	C(O)CH ₃	N .
	CH ₃	H	0	н	cyclobutyl	CH ₃	N(OCH ₃)CH ₃	
	CH3	н	O	н	cyclobutyl	och(ch ₃) ₂	ocf ₂ H	CH

106
Table II (cont.)

									•
5	R	<u>R</u> 1	<u>n</u>	R ₂	<u>R*</u>	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
	CH ₃	H	0	H	сн ₃ .	CH ₃	CH ₃	CH	
	CH ₃	H	0	H	CH ₃	CH3	OCH ₃	CH	. •
	CH ₃	H	0	H	CH ₃	OCH ₃	OCH ₃	CH	
	CH ₃	H	0	H	CH ₃	CH ³	CH ₃	Ħ	
10	CH ₃	н	0	H	CH ₃	CH ₃	OCH ₃	H	
	CH ₃	H	0	H	. СН ₃	OCH ₃	осн ₃	Ħ	:
	CH ₃	н	0	н	CH ₃	Cl	OCH ³	CH	
	CH ₃	H	0	н	CH,CH,	CH ₃	CH ₃	CH	
	CH ₃	H	0	H	CH ₂ CH ₃	CH ₃	OCH ₃	CH	
15	CH3	H	0	H	CH ₂ CH ₃	OCH ³	OCH ₃	CH	•
	CH3	H	0	H	CH ₂ CH ₃	CH ₃	CH ³	M	
	CH ₃	H	0	H	CH ₂ CH ₃	CH ₃	OCH ₃	n	
	CH ₃	H	0	H	CH ₂ CH ₃	OCH ₃	OCH ₃	Ħ	
	CH ₃	H	0	H	CH ₂ CH ₃	Cl	OCH ₃	CH	
20	CH ₃	H	0	H	CH ₂ CH ₂ CH ₃	CH ₃	CH ₃	CH	
	CH ₃	H	0	H	CH ₂ CH ₂ CH ₃	CH ³	OCH ₃	CH	•
	CH ₃	H	0	H	CH ₂ CH ₂ CH ₃	OCH ₃	OCH ₃	CH	
	CH ₃	H	0	H	CH ₂ CH ₂ CH ₃	CH ₃	CH ₃	n	
	CH ₃	H	0	H	CH ₂ CH ₂ CH ₃	.CH ₃	OCH ₃	Ħ	
25	CH ₃	H	0	H	CH ₂ CH ₂ CH ₃	OCH ₃	och ³	n	•
	CH3	H	0	H.	CH2CH2CH3	. C1	OCH	CH	
	CH ₃	H	0	H	CH2CH2CH2CH3	CH ³	CH ₃	CH	
	CH ₃	H	0	H	CH2CH2CH2CH3	CH ₃	OCH ₃	CH	
20	CH ₃		0	H	CH2CH2CH2CH3	OCH ₃	OCH ₃	CH	
30	CH ₃	H	0	H	CH2CH2CH2CH3	CH ₃	CH ₃	Ħ	
	CH ₃	H	0	H	CH2CH2CH2CH3	CH ₃	OCH ₃	N	•
	CH ₃	H	0	H	CH ₂ CH ₂ CH ₂ CH ₃	OCH ₃	och ₃	N	
	CH ₃	H	0	H	CH2CH2CH2CH3	C1	OCH ₃	CH	
_									

107
Table II (cont.)

5	R	R ₁	n	R ₂	<u>R*</u>	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
	CH ₃	н	0	н	сн ₂ он	CH ₃	CH3	CH	
	CH ₃	н	0	н	сн ₂ он	CH3	OCH3	CH	
	CH ₃	H	0	н	сн ₂ он	OCH ₃	OCH ₃	CH	
	CH ₃	н	0	н	сн_он	CH3	CH3	H	
10	CH3	H	0	H	Сн ² он	CH ₃	оснз	H	
	CH ₃	H	0	H	CH ₂ OH	OCH ₃	OCH ₃	n	
	CH3	H	0	н	СН ₂ ОН	Cl	оснз	CH	
	CH3	H	0	н	сн(сн ₃)он	CH ₃	CH3	CH	
	CH ₃	H	0	н	СН(СН ₃)ОН	CH ₃	оснз	CH	
15	CH3	H.	0	н	СН(СН3)ОН	och	OCH	CH	
	CH2	н	0	H	Сн(сн ³)он	CHa	CH ₃	H	
	CH ₃	н	0	H	СН(СН ₃)ОН	СН.	OCH ₃	Ħ	
	CH ₃	н	0	H	сн(сн ₃)он	OCH ₃	OCH ₃	N	
	CH ₃	H	0	H	сн(сн ₃)он	Cl	OCH ₃	CH	
20	CH ₃	H	0	н	CH ₂ OSi(CH ₃) ₃	CH ₃	CH ₃	CH	
	CH ₃	H	0	H	CH2OSi(CH3)3	CHa	OCH ₃	CH	•
	CH ₃	H	0	н	CH ₂ OSi(CH ₃) ₃	OCH	OCH	CH	
	CH3	H	0	H	CH2OSi(CH3)3	CH ₃	CH3	H	
25	CH ₃	H	.0	H	CH ₂ OSi(CH ₃) ₃	CH ₃	OCH	N	
	CH3	н	0	н	CH ₂ OSI(CH ₃) ₃	OCH ₃	OCH ₃	N	
	CH ₃	н	0	H	CH ₂ OSI(CH ₃) ₃	Cl	OCH	CH	
	CH ₃	н	0	н	CH2COCH3	CH ₃	СН _З	CH	
	CH ₃	Н	0	н	CH ₂ COCH ₃	CH ₃	OCH ₃	CH	
30	CH3	н	0	H	CH ₂ COCH ₃	OCH ₃	осн ₃	CH	
30	CH	Н	0	н	CH2COCH3	CH ₃	CH3	N	
	CH ₃	н	0	H	CH ₂ COCH ₃	CH ₃	OCH ₃	N	
	CH	H	0	н	CH2CO2CH3	OCH ₃ .	OCH ₃	N	
	CH ₃	H	0	н	CH2CO2CH3	Cl	OCH ₃	CH	

108
Table II (cont.)

5	<u>R</u>	<u>R</u> 1	<u>n</u>	R ₂	<u>R'</u>	<u>x</u>	<u>x</u>	<u>z</u>	m.p.(°C)
	CH ₃	н	0	CH ₂ F	CH ₃	CH ₃	CH ₃	CH	٠
	CH ³	H	0	CH ₂ F	CH ₃	CH.3	OCH ₃	CH	
	CH3	H		CH ₂ F		OCH3	OCH3	CH	
	CH ₃	Ħ	0	CH ₂ F		CH3	CH ₃	H	
10	CH ₃	н	0	CH ₂ F		CH 3	OCH ₃	H	
	CH ₃	H	0	CH ₂ F		OCH ₃	OCH ₃	H	
	CH ₃	H	0	CH ₂ F	_	Cl	OCH ₃	CH	
	CH ₃	H	0		CH ₂ CH ₃	CH ₃	CH ₃	CH	
	CH3	H	0		CH ₂ CH ₃	CH ³	OCH ₃	CH	•
15	CH ₃	H	0	CH ₂ F	CH ₂ CH ₃	OCH ₃	OCH ₃	CH	•
	CH3	H	0	CH ₂ F	CH ₂ CH ₃	CH ₃	CH3	H	
	CH3	H		CH ₂ F	•	CH ₃	OCH ₃	Ħ	
	CH ₃	н			CH ₂ CH ₃	OCH ₃	OCH ₃	H	
	CH3	H	0	CH ₂ F	CH ₂ CH ₃	Cl	OCH ³	CH	
20	CH ₃	H		CH ₂ F		CH ₃	CH ₃	CH	
	CH ₃	н		CH ₂ F		CH ₃		CH	•
	CH ₃	H			CH2CH2CH3	OCH ₃	OCH ₃	CH	
•	CH ₃	H	0	CH ₂ F	CH2CH2CH3	CH ₃	CH ₃	H	
	CH ₃	H	0	CH ₂ F	CH2CH2CH3	CH ₃	OCH ₃	M	•
25	CH ₃	H	0	CH ₂ F	CH2CH2CH3	OCH ₃	OCH ₃	H	
	CH ₃	H			CH2CH2CH3	Cl	OCH ₃	CH	
	CH3	H	. 0	CH ₂ F	CH2CH2CH2CH3	CH ₃	CH ₃	CH	
	CH ₃	н	0	CH ₂ F	CH2CH2CH2CH3	CH ₃	OCH ₃	CH	
	CH3	H	0	CH ₂ F	CH2CH2CH2CH3		OCH ₃		
30 .	CH ₃	H	0	CH ₂ F	CH2CH2CH2CH3			N	
	CH ₃	H	0	CH ₂ F	CH2CH2CH2CH3		OCH ₃		
	CH ₃	H	0	CH ₂ F	CH2CH2CH2CH3	och ₃	OCH ₃	N	
•	CH ₃	H	0	CH ₂ F	CH2CH2CH2CH3	C1	осн _з	CH	•

109
Table II (cont.)

	<u>R</u>	R ₁	Ū	R ₂	<u>R*</u>	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
5	CH ₂ OCH ₃	H	0	н	CH2CH2CH2CH2CH3	CH ³	CH ₃	CH	
	CH ₂ OCH ₃	н	0	н	CH2CH2CH2CH2CH3	CH3	осн	СН	•
•	CH ₂ OCH ₃	н	0	н	CH2CH2CH2CH2CH3	осн _з	OCH ₃	CH	
	CH ₂ OCH ₃	H	0	н		CH ³	CH3	H	
	CH ₂ OCH ₃	H	0	н		CH ₃	OCH ₃	H	
10	CH ₂ OCH ₃	Н	0	н	:	OCH ₃	OCH ₃	N	
	CH_OCH3	н	0	н		C1	OCH ₃	CH	
,	CH ₂ OCH ₃	н	0	H	CH(CH ₃) ₂	CH ₃	CH ₃	CH	
	CH ₂ OCH ₃	H	0	н	CH(CH ₃) ₂	CH ₃	OCH ₃	CH	
•	CH ₂ OCH ₃	н	0	н	CH(CH ₃) ₂	OCH ₃	OCH ₃	CH	•
15	CH ₂ OCH ₃	н	0	H	CH(CH ₃) ₂	CH3	CH3	N	
	CH ₂ OCH ₃	н	0	H	CH(CH ₃) ₂	CH ₃	OCH ₃	N	
	CH_OCH3	н	0	H	CH(CH ₃) ₂	OCH ₃	OCH ₃	n	
	CH ₂ OCH ₃	H	0	H	CH(CH ₃) ₂	Cl	OCH ₃	CH	
	CH2OCH3	H	0	H	CH2CH(CH3)2	CH ₃	CH ₃	CH	
20	CH ₂ OCH ₃	H	0	н	CH2CH(CH3)2	CH ₃	OCH ₃	CH	
	CH_OCH3	н	0	н	CH2CH(CH3)2	OCH ₃	OCH ₃	,CH	
	CH2OCH3	н	0	H	CH2CH(CH3)2	CH ₃	CH ₃	N	
	CH_OCH3	H	0	H	CH2CH(CH3)2	CH ₃	OCH ₃	Ħ	
	CH ₂ OCH ₃	H	0	H	CH2CH(CH3)2	OCH ₃	OCH ₃	N	
25	CH_OCH3	н	0	H	CH2CH(CH3)2	Çl	OCH ₃	CH	•
•	CH_OCH_3	н	0	H	CH(CH ₃)CH ₂ CH ₃	CH ₃	сн ₃	CH	
	CH2OCH3	H	0	H	CH(CH ₃)CH ₂ CH ₃	CH ₃	OCH ₃	CH	
	CH ₂ OCH ₃	Н	0	H	СН(СН ₃)СН ₂ СН ₃	och ₃	och ₃	CH	
30 .	CH ₂ OCH ₃	Н	0	H	CH2CH2CH(CH3)2	CH ₃	CH ₃	N	
	CH2OCH3	H	0	H	CH2CH2CH(CH3)2	CH ₃	OCH ₃	N	
	CH2OCH3	Н	0	Н	CH2CH2CH(CH3)2	OCH ₃	OCH ₃	N	
	CH ₂ OCH ₃	Н	0	H	CH2CH2CH(CH3)2	Cl	och ₃	СН	

Table III

5	<u>R</u>	R ₁	ū	R_2	R*		<u>¥</u>	Z !	n.p.(°C)
	ена	н	0	н	cyclopropyl	CH ₃	CH ₃	CH	157-159
	CH		0	H	cyclopropyl	CH ₃	OCH ₃	CH	179-182
	CH				cyclopropyl	OCH ₃	OCH ₃	CH	159-161
	CH		0	H	cyclopropyl	CH3	CH ₃	H	
10	CH3		0	H	cyclopropyl		OCH ₃	H	185-187
	CHa		0	H	cyclopropyl	och ₃	OCH ₃	Ħ	196-198
	CH ₂		0	H	cyclopropyl	C1	OCH ₃	CH	202-205
	CH3		0	н	cyclobutyl	CH3	CH ₃	CH	•
	CH		0	н	cyclobutyl	CH ₃	OCH ₃	CH	
15	CH3		0	H	cyclobutyl	OCH ₃	OCH ₃	CH	
	CH		0	H	cyclobutyl	CH ₃	CH ₃	n	•
	CH ₃	н	0	H	cyclobutyl	CH ₃	OCH ₃	M	
	CH3		0	н	cyclobutyl	OCH ₃	OCH ₃	n	•
	CH3	н	0	H	cyclobutyl	Cl	OCH ₃	CH	
20	CH ₃	н	0	H	cyclopentyl	CH ₃	CH ₃	CH	
	CH ₃	Н	0	H	cyclopentyl	CH ₃	och ₃	CH	•
	CH ₃	H	0	H	cyclopentyl	OCH 3	och ₃	CH	
	CH ₃	н	0	H	cyclopentyl	CH ₃	CH3	H	
	CI13	H	0	н	cyclopentyl	CH ₃	OCH ₃	H	
25	CH ₃	H	O	н	cyclopentyl	och ₃	OCH ₃	Ħ	
	CH3	н	C	H	cyclopentyl	. Cl	och ₃	CH	
	CH3	н	C	н	cyclop rop yl	. осн ₃	OCH ₂ CH ₃	_ CH	•
	CH3	н	C	н	cyclopropyl	. cyclopropyl	•	CH	
	CH ₃	н	C	H	cyclopropyl	OCH ₃	CH(OCH ₃)2	CH	
30	CH ₃	н	•	Н	cyclopropyl	NHCH3	OCH ₂ CH ₃	Ħ	
	CH ₃	н	(H	cyclopropyl	NHCH ₃	och ₃	, N	.*
	CH ₃	H	(Н	cyclopropy	CH ₃	OCH2CH3	Ħ	
	CH	3 H	(н	cyclopropy	CH ₂ F	CH ₃	CH	

111 Table III (cont.)

5	R	<u>R</u> 1	v	R ₂	<u>R*</u>	<u>x</u>	. X	Z m.p.(°C)
	CH ₃	H	0	Br	cyclopropyl	CH ₃	CH ₃	СН
	CH3	H	0	Br	cyclopropyl	CH ₃	OCH ₃	СН
	CH3	H	0	Br	cyclopropyl	OCH ₃	OCH ₃	CH
	CH3	H	0	Br	cyclopropyl	CH ₃	CH ₃	N
10	CH ₃	H	0	Br	cyclopropyl	CH ₃	OCH ₃	N
	CH ₃	н	0	Br	cyclopropyl	OCH ₃	och ₃	N
	CH ₃	H .	0	Br	cyclopropyl	Cl	OCH ₃	CH
	CH ₃	н	0	Br	cyclobutyl	CH ₃	CH ₃	CH
	CH ₃	H	0	Br	cyclobutyl	CH ₃		CH
15	CH ₃	H	0	Br	cyclobutyl	OCH ₃	осн	CH
	CH ₃	H	0	Br	cyclobutyl	CH ₃	CH ₃	H
	CH3	H	0	Br	cyclobutyl	CH ₃	och ³	N
	CH3	H	0	Br	cyclobutyl	OCH ₃	OCH ₃	N
	CH3	H	0	Br	cyclobutyl	Cl	осн ₃	CH
20	CH ₃	H	0	Br	cyclopentyl	CH ₃	CH ₃	CH
	CH ₃	н	0	Br	cyclopentyl	CH ₃	OCH3	CH ·
-	CH3	H	0	Br	cyclopentyl	och ₃	och ³	CH
	CH3	н	0	Br	cyclopentyl	CH ₃	CH ₃	N
25	CH ₃		0	Br	cyclopentyl	CH ₃	och ₃	N
25 .	CH3	H	0	Br	cyclopentyl	OCH ₃	осн ₃	N
	CH ₃	H	0	Br	cyclopentyl	C1	осн _з	СН
	CH3	H	0	Br	cyclopropyl	осн ₃	och ₂ ch ₃	CH
	CH ₃	H	0	Br	cyclopropyl	cyclopropyl	och ₃	CH
20	CH ₃	Н	0	Br	cyclopropyl	OCH ₃	CH(OCH ₃) ₂	CH
30	CH3	H	0	Br	cyclopropyl	NHCH ₃	OCH ₂ CH ₃	N
	CH3	H	0	Br	cyclopropyl	инсн ₃	OCH ₃	N
	CH ₃	н	0	Br	cyclopropyl	och ₃	och ₂ ch ₃	N
	CH3	H	0	Br	cyclopropyl	CH ₂ F	CH ₃	CH

112
Table III (cont.)

5	R	<u> </u>	<u>n</u>	R ₂	<u>R*</u>	<u>x</u>	<u>¥</u>	Z m.p.(*C)
	CH3	н	0	SO2CH3	cyclopropyl	CH3	CH3	СН
	CH3	H	0	SO2CH3	cyclopropyl	CH ₃	осн ₃	CH
	_				cyclopropyl		OCH3	CH
	CH ₃	H	0	SO2CH3	cyclopropyl	CH ₃	CH3	H
10	CH ₃	H	0	SO2CH3	cyclopropyl	CH ₃	OCH ₃	N.
	CH3	H	0	SO2CH3	cyclopropyl	OCH ₃	OCH ₃	N .
	CH ₃	H	0	SO2CH3	cyclopropyl	Cl	och ³	CH
	CH3	H	0	SO2CH3	cyclobutyl	CH ₃	CH ₃	CH
	CH3	H	0	SO2CH3	cyclobutyl	CH3	OCH ³	CH ,
15	CH3	H	0	SO2CH3	cyclobutyl	осн ₃	och ³	CH
	CH ₃	H	0	so ₂ CH ₃	cyclobutyl	CH ₃	CH ₃	H .
	CH ₃	H	0	SO2CH3	cyclobutyl	CH ₃	och ³	H
•	CH3	H	0	SO2CH3	cyclobutyl	OCH ³	och ³	H .
20	CH3	H	0	SO ₂ CH ₃	cyclobutyl	Cl	och ³	СН
20	CH ₃	H	0	SO ₂ CH ₃	cyclopentyl	CH ₃	CH ₃	CH
•	CH3	H	0	SO ₂ CH ₃	cyclopentyl	сн ₃	OCH ₃	ĊН
	-			_ ~	cyclopentyl	_	OCH ₃	CH
	CH3	H	0	so ₂ CH ₃	cyclopentyl	CH ₃	CH ₃	M
25	CH ³	H	Ö	SO ₂ CH ₃	cyclopentyl	CH ₃	OCH ³	N
23	_				cyclopentyl	_	OCH ³	N
	CH3	H	0	SO ₂ CH ₃	cyclopentyl	Cl	OCH ₃	CH
	_				cyclopropyl	_	OCH ₂ CH ₃	CH
	CH ₃	н	0	SO ₂ CH ₃	cyclopropyl	cyclopropyl	OCH ³	CH
30	_				cyclopropyl		CH(OCH ₃) ₂	CH
30	_			~ -	cyclopropyl	-	OCH ₂ CH ₃	M
	CH ₃	H	.0	SO ₂ CH ₃	cyclopropyl	NHCH ₃	OCH ₃	N
	CH3	Н	0	SO2CH3	cyclopropyl	OCH3	OCH ₂ CH ₃	N
	CH3	H	0	SO ₂ CH ₃	cyclopropyl	CH ₂ F	CH ₃	CH

5	_	R_		R ₂		_	•	
	_	-			<u>R*</u>	X	Ā	Z m.p.(°C)
	_			_	cyclopropyl		CH ₃	CH
•	•			_	cyclopropyl	•	OCH ₃	CH
	•			_	cyclopropyl		OCH ₃	CH
10	CH ₃	H	0	CH(OH)CH3	cyclopropyl	CH ₃	CH ₃	H
10	CH ₃	H	0	CH(OH)CH3	cyclopropyl	CH ₃	OCH ₃	N
	CH ₃	H	0	CH(OH)CH3	cyclopropyl	och ³	осн ³	N
	CH ₃	H.	0	CH(OH)CH3	cyclopropyl	Cl	OCH ₃	СН
	CH ₃	H	0	CH(OH)CH3	cyclobutyl	CH ₃	CH ₃	CH
	CH ₃	H	0	CH(OH)CH3	cyclobutyl	CH ₃	OCH ₃	CH
15	CH ₃	H	0	CH(OH)CH3	cyclobutyl	OCH ₃	OCH ₃	CH
	CH ₃	н	0	CH(OH)CH3	cyclobutyl	CH ₃	CH ₃	H .
	CH ₃	H	0	CH(OH)CH3	cyclobutyl	СН	OCH ₃	n
	CH3	H	0	CH(OH)CH3	cyclobutyl	осн ₃	OCH ₃	N
	•			_	cyclobutyl	-	OCH ₃	CH
20	CH3	н	0	CH(OH)CH3	cyclopentyl	CH ₃	CH3.	CH
	_			_	cyclopentyl	_	OCH ₃	CH
	_			_	cyclopentyl	•	OCH ₃	CH
	CH3	н	0	CH(OH)CH3	cyclopentyl	CH3	-	n
	CH	H	0	CH(OH)CH3	cyclopentyl	CH3		B
25	•			•	cyclopentyl	•	OCH ₃	n
	CH3	H	0	CH(OH)CH3	cyclopentyl	C1	OCH ₃	CH
	CH3			•	cyclopropyl		OCH_CH3	CH
	CH ₂	H	0	CH(OH)CH3	cyclopropyl	cyclopropyl	OCH ₃	CH
	СНЗ			_	cyclopropyl		CH(OCH ₃) ₂	CH
30	CH3			-	cyclopropyl		OCH ₂ CH ₃	N
	CH3				cyclopropyl	•	OCH ₃	N.
	-			•	cyclopropyl	•	осносна	n
	CH ₃			•	cyclopropyl	•	CH3	ĊН

35 -

Table III (cont.)

5	R	<u>R</u> 1	<u>n</u>	R ₂	<u>R*</u>	<u>x</u> .	<u>¥</u>	2 m.p.(°C)
	CH2CH=CH2	H	0	H	cyclopropyl	CH ₃	CH 3	CH
					cyclopropyl	•	OCH ₃	CH ·
					cyclopropyl		OCH 3	CH
					cyclopropyl	_	CH3	H
10					cyclopropyl		OCH ₃	H
	CH2CH=CH2	H	0	H	cyclopropyl	OCH ₃	OCH ₃	n
	CH2CH=CH2	H	0	H	cyclopropyl	Cl	OCH ₃	CH
					cyclobutyl		CH ₃	CH
3.5	CH2CH=CH2	H	0	H	cyclobutyl	CH ₃	OCH 3	CH
15	CH2CH=CH2	H	0	H	cyclobutyl	OCH 3	OCH ³	CH
	CH2CH=CH2	H	0	H	cyclobutyl	CH ₃	CH ³	H
	CH2CH=CH2	H	0	H	cyclobutyl	CH ₃	OCH ₃	H
	CH2CH=CH2	H	0	H	cyclobutyl	OCH 3	OCH ₃	n ·
20	CH2CH=CH2	H	0	H	cyclobutyl	Cl	och ³	CH
20					cyclopentyl		CH ³	CH
	CH2CH=CH2	H	0	H	cyclopentyl	CH ₃	3	CH
	CH2CH=CH2	H	0	H	cyclopentyl	och ³	OCH ₃	CH
	CH2CH=CH2	H	0	H	cyclopentyl	CH ₃	CH3	M
25					cyclopentyl		OCH ₃	H
25	CH ₂ CH=CH ₂	H	0	H	cyclopentyl	OCH ₃	och ³	H
	CH2CH=CH2	H	0	H	cyclopentyl	Cl	och ₃	СН
	CH ₂ CH=CH ₂	H	0	н	cyclopropyl	осн ₃	осн ₂ сн ₃	CH
	CH ₂ CH=CH ₂	H	0	H	cyclopropyl	cyclopropyl		CH
30	CH ₂ CH=CH ₂	H	0	H	cyclopropyl	OCH ₃	CH(OCH ₃) ₂	CH
30	CH2CH=CH2	H	0	H	cyclopropyl	NHCH ₃	OCH ₂ CH ₃	n
	CH2CH=CH2				cyclopropyl	•	OCH ₃	H
	CH ₂ CH=CH ₂	H	0	H	cyclopropyl	OCH ₃	OCH ₂ CH ₃	H
	CH ₂ CH=CH ₂	H	0	H	cyclopropyl	CH ₂ F	CH3	CH .

115
Table III (cont.)

5	R	R ₁	<u> 11</u>	R ₂	R*	· <u>X</u>	¥	Z m.p.(°C)
	Ph	н	0	Cl	cyclopropyl	CH	CH3	СН
					cyclopropyl		OCH ₃	СН
					cyclopropyl		OCH ₃	СН
					cyclopropyl		CH3	N
10					cyclopropyl	•	OCH ₃	H
					cyclopropyl	.	OCH ₃	N
					cyclopropyl		OCH ₃	СН
	Ph	н	0	C1	cyclobutyl	СНЗ	CH3	СН
	Ph	H	0	C1	cyclobutyl	СНЗ	OCH ₃	СН
15	Ph	H	0	Cl	cyclobutyl	•	OCH ₃	СН
•	Ph	н	0	Cl	cyclobutyl	CH ₃	CH ₃	H
	Ph	H	0	Cl	cyclobutyl	CH ₃	OCH ₃	H
	Ph	H	0	Cl	cyclobutyl	OCH ₃	OCH ₃	N
30	Ph	H	0	Cl	cyclobutyl	Cl .	OCH ₃	СН
20	Ph	H	0	Cl	cyclopentyl	CH ₃	CH3	СН
	Ph	H	0	Cl	cyclopentyl	CH3	OCH ₃	CH .
					cyclopentyl	•	осн ₃	СН
	Ph	Н	0	Cl	cyclopentyl	CH ₃	CH ₃	N
25	Ph	Н	0	Cl	cyclopentyl	CH ₃	OCH ³	N
23	Ph	H	0	Cl	cyclopentyl	och ₃	осн ₃	H
	Ph		0	Cl	cyclopentyl	Cl	OCH ₃	CH
	Ph	H			cyclopropyl		och ₂ ch ₃	CH
	Ph				cyclopropyl		-	СН
30					cyclopropyl	•	CH(OCH ₃) ₂	СН
	Ph				cyclopropyl	•	och ₂ ch ₃	H
	Ph				cyclopropyl	•	OCH ₃	N
	Ph				cyclopropyl	•	och ₂ ch ₃	n
	Ph	Н	0	Cl	cyclopropyl	CH ₂ F	CH ₃	СН

116
Table III (cont.)

5	R	<u>R</u> _	<u>n</u> .	R ₂	<u>R*</u>	X	<u>¥</u>	<u>z</u>	m.p.(*C)
	сн₂с≘сн	H	0 (CH ₃	cyclopropyl	CH3	CH ₃	CH	
	CH ₂ C≡CH	H			cyclopropyl		OCH ³	CH	
	CH ₂ C≣CH	H	0 (CH ₃	cyclopropyl	OCH ₃	OCH ₃	CH	
	CH ² C≡CH	H	0 (CH ₃	cyclopropyl	CH ₃	CH ³	Ħ	
10	сн2с≘сн	H	0 (CH ₃	cyclopropyl	CH ₃	OCH ³	ĸ	
	CH2C≡CH	H	0 (CH ₃	cyclopropyl	OCH ₃	OCH3	Ħ	
	CH ₂ C≡CH	H	0 (CH3	cyclopropyl	Cl	OCH ₃	CH	
	CH ₂ C≡CH	H	0 (CH ³	cyclobutyl	CH ₃	CH ³	CH	
	CH ₂ C≡CH	H	0	CH ₃	cyclobutyl	CH ₃	OCH ₃	CH	
15	сн2с≡сн	H	0	CH ₃	cyclobutyl	OCH ³	OCH ₃	CH	
	сн ₂ с≡сн	H	0, 0	CH3	cyclobutyl	CH ³	CH ₃	H	
	CH ₂ C≘CH	H	0	СНЗ	cyclobutyl	CH ₃	OCH3	M	
•	CH ₂ C≡CH	H	0	CH3	cyclobutyl	осн ₃	OCH ₃	H	:
	CH ₂ C≡CH	H	0 (CH ₃	cyclobutyl	C1	OCH ₃	CH	
20	сн ₂ с ≡ сн	H	0	CH ₃	cyclopentyl	CH ₃	СН ³	ĊH	
	сн ₂ с≘сн	H	0	CH3	cyclopentyl	CH ₃	OCH ₃	CH	
	сн ₂ с≡сн	H	0	CH ₃	cyclopentyl	och ³	OCH ³	CH	
	сн ₂ с≡сн	H	0	CH ₃	cyclopentyl	CH ₃	CH ₃	H	•
25	CH ₂ C≡CH	H	0	CH ₃	cyclopentyl	CH ₃	осн3	Ħ	
25	сн ₂ с≡сн	H	,0	CH ₃	cyclopentyl	OCH ³	OCH ₃	H	
	сн ₂ с≡сн	H	0	сн 3	cyclopentyl	CI	OCH 3	CH	
	CH ₂ C≅CH	H	0	CH3	cyclopropyl	och ³	OCH ₂ CH ₃	CH	
	CH ₂ C≡CH	H	0	CH ₃	cyclopropyl	cyclopropyl	-	CH	
20	-		0	CH ₃	cyclopropyl	och ³	·CH(OCH ₃) ₂	CH	
30	CH ₂ C≡CH	H	0	CH3	cyclopropyl	WHCH3	OCH ₂ CH ₃	H	
	сн ₂ с≡сн	н	0	CH3	cyclopropyl	NHCH3	OCH ³	H	
	сн ₂ с≡сн	H	O	СН 3	cyclopropyl	осн ₃	OCH ₂ CH ₃	M	
	CH ₂ C≣CH	H	0	CH ₃	cyclopropyl	CH ₂ F	CH ₃	CH	

117
Table III (cont.)

5	R	R ₁	<u>n</u>	R ₂	R.	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(*C)
	CH3	н	0	н	cylopropyl	CH2CH3	CH3	CH	
	CH3		0	н	cyclopropyl	CH2CH3	OCH ₃	CH	
	CH3	н	0	н	cyclopropyl	CH ₂ F	CH3	CH	
	CH3		0	н	cyclopropyl	OCF ₂ H	CH ₃	CH	
10	CH3		0	H	cyclopropyl	OCF ₂ H	OCH ₃	CH	
	CH ₃	H	0	H	cyclopropyl	OCH ₂ CF ₃	OCH ₃	CH	
•	CH ₃	H	0	H	cyclopropyl	CH ₂ F	OCH ₃	CH	
	CH ₃	H	0	H	cyclopropyl	CH ₂ Cl	och ₃	H	
	CH ₃	H	0	H,	cyclopropyl	SCH ₃	OCH ₃	CH	,
15	CH ₃	H	0	Н	cyclopropyl	SCH ₂ F	och ₃	CH	•
	CH3	н	0	H	cyclopropyl	Br	OCH ₃	CH	
	CH ₃	H	0	H	cyclopropyl	CH ₂ OCH ₃	OCH ₃	H	
	CH ₃	н	0	H	cyclopropyl	OCH ₂ OCH ₃	OCH ₃	CH	
	CH3	H	0	H	cyclopropyl	OCH2OCH2CH3	CH ₃	CH	
20	CH ₃	H	0	H	cyclopropyl	N(CH ₃)2	OCH ₃	N	
	CH3	H	0	H	cyclopropyl	NHCH ₂ CH ₃	CH3	H	•
	CH ₃	H	0	H	cyclopropyl	NHCH ₃	OCH ₂ CH ₃	N	
	CH ₃	H	0	H	cyclopropyl	CH3	CH ₂ SCH ₃	CH	·
25	CH ₃	H	0	H	cyclopropyl	OCH ₃	CH2SO2CH3	CH	
25	CH3	H	0	H	cyclopropyl	NH ₂	осн ₂ сн ₃	Ŋ	
	CH3	H	0	H	cyclopropyl	CH ₃	OCH2CH=CH2	CH	
	·CH ₃	H	0	H	cyclopropyl	CH ₂ CH ₃	ocf ₂ H	CH	
	CH3	H	0	H	cyclopropyl	ocf ₂ H	ocr ₂ H	CH	
20	CH3	H	0	H	cyclopropyl	осн ₃	OCH=CH ₂	CH	
	CH ₃	H	0	H	cyclopropyl	OCH ₃	C(0)CH3	N	
	CH ₃	H	0	H	cyclopropyl	сн ₃	N(OCH3)CH3	N	
	CH3	H	0	H	cyclopropyl	OCH(CH ₃) ₂	ocf ₂ H	CH	

118
Table III (cont.)

5	<u>R</u>	<u>R</u> 1	Ū	R ₂	<u>R'</u>	<u>x</u>	X	<u>z</u>	m.p.(*C)
	CH ₃	H.	0	H	CH ₃	CH ₃	CH ₃	CH	•
	CH ₃	н	0	H	CH3	CH ₃	OCH ³	CH	
**	CH ₃	H	0	H	CH3	OCH	OCH	CH	
	CH ₃	н	0	н	CH3	CH ₃	CH3	Ħ	
10	CH3	H	0	н	CH3	CH ³	OCH ³	H	
	CH ₃	H	0	H	CH3	OCH ₃	OCH ₃	H	•
	CH3	н.	0	н	CH ₃	Cl	OCH	CH	
	CH3	H	0	H	CH ₂ CH ₃	CH ³	CH ³	CH	
	CH ₃	H	0	H	CH ₂ CH ₃	CH ₃	OCH ₃	CH	
15	CH3	H	0		CH ₂ CH ₃	OCH ³	OCH 3	CH	
	CH ₃	н	0	H	CH ₂ CH ₃	CH ³	CH ₃	N	
	CH ₃	H	0	H	CH ₂ CH ₃	CH ₃	OCH ₃	H	
	CH3	H	0	н	CH ₂ CH ₃	OCH ₃	осн	Ħ	
	CH ₃		0	н	CH ₂ CH ₃	Cl	OCH 3	CH	
20	CH ₃		0		CH2CH2CH3	CH ₃	CH ₃	CH	•
	CH3	н	0	н	CH2CH2CH3	CH ₃	OCH ₃	CH	•
	CH ₃	H	0	H	CH2CH2CH3	OCH ₃	осн ₃	CH	
	CH ₃	H	0	H	CH2CH2CH3	CH ₃	CH3	H	
	CH ₃	H	0	H	CH2CH2CH3	CH ₃	OCH ₃	H	
25	CH ₃	н	0	H	CH ₂ CH ₂ CH ₃	OCH ₃	OCH ₃	H	
	CH ₃	Н	0	H	CH2CH2CH3	Cl	OCH ₃	CH	
	CH ₃	H	0	H	CH2CH2CH2CH3	. CH ₃	CH ³	CH	
	CH ₃	H	0	H	CH2CH2CH2CH3	CH ₃	OCH ₃	CH	•
	CH ₃	H	0	H	CH2CH2CH2CH3	OCH ₃	OCH ₃	CH	
30	CH ₃	H	0	н	CH2CH2CH2CH3.		СН _З	M.	
	CH3	H	0	H	CH2CH2CH2CH3		OCH ₃	H	
	CH ₃	H	0	H	CH2CH2CH2CH3		OCH	N	
	CH ₃	H	0	н	CH2CH2CH2CH3	Cl	осн 3	CH	•

119
Table III (cont.)

5 .	<u>R</u>	R ₁	<u>n</u>	<u>R</u> 2	<u>R*</u>	₹	<u>¥</u>	<u>z</u>	m.p.(°C)
	CH ₃	H	0	CH3	CH ₂ OCH ₂ F	CH ₃	CH3	CH	
	CH ₃	н	0		CH ₂ OCH ₂ F	CH ₃	OCH ₃	CH	
	CH ₃	H	0		CH ₂ OCH ₂ F	OCH ₃	OCH ₃	CH	
	CH ₃	н	0	CH ₃	CH ₂ OCH ₂ F	CH ₃	CH3	N ·	
10 .	CH ₃	н	0		CH ₂ OCH ₂ F	CH ³	OCH ₃	N	
	CH ₃	H	0		CH ₂ OCH ₂ F	OCH ₃	OCH ₃	H	
	CH ₃	H	0		CH_OCH_F	Cl	OCH	CH.	
	CH ₃	H	0	CH ₃	CH ₂ SOCH ₃	CH ₃	CH ₃	CH	(
	CH ₃	H	0		CH ₂ SOCH ₃	CH ₃	OCH ₃	CH	,
15	CH ₃	H	0		CH ₂ SOCH ₃	OCH ₃	OCH ₃	CH	
	CH ₃	H	0	CH ₃	CH2SOCH3	CH ₃		N	•
	CH ₃	H	0	CH ₃		CH ₃	OCH ₃	n	
	CH ₃	H	0		CH ₂ SOCH ₃	OCH ₃	OCH ₃	H	
	CH ₃	H	0		CH2SOCH3	Cl	OCH ₃	CH	
20	CH ₃	Ĥ	0		CH2SO2CH3	CH ₃	CH ₃	CH	
	CH ₃	H	0		CH ₂ SO ₂ CH ₃	CH ₃	OCH ₃	CH	•
	CH ³	H	0		CH ₂ SO ₂ CH ₃	OCH ₃	OCH ₃	СН	
	CH ₃	H	0		CH2SO2CH3	CH ₃	CH ₃	N	
	CH ₃	н	0	-	CH ₂ SO ₂ CH ₃	CH ₃	OCH ₃	H	
25	CH ₃	н	0		CH2SO2CH3	OCH ₃	OCH ₃	Ħ	
	CH ₃	н	0	_	CH ₂ SO ₂ CH ₃	Cl	OCH ₃	CH	
	CH3	H	0	CH ₃	CH ₂ CN	CH ₃	CH ₃	CH	
	CH ₃	н	0	CH ₃	CH ₂ CH ₂ CN	CH ₃	och ₃	CH	
	CH ₃	н	0			OCH ₃	OCH ₃	CH	
30	CH ₃	н	0			CH3	CH3	N	
	CH3	н	0	CH ₃	CH2CH2NO2	CH ₃	OCH ₃	N	
	CH3	н	0	CH ₃	CH ₂ CN	OCH ₃	OCH ₃	N	
	CH ₃	H	0	CH ₃	CH ₂ CN	Cl	OCH ₃	CH	

120
Table III (cont.)

5	_	<u>R</u> 1		<u>R</u> 2	<u>_</u>			_	- (45)
_	<u>R</u> .					X	<u>X</u>	<u>Z</u>	EL.P.(*C)
	CH ₃	H	0	Br	3	CH ₃	CH3	CH	
	CH ₃	H	0	Br	CH ³	CH3	OCH ³	CH	
	CH3	H	0	Br	3	OCH ³	OCH ₃	CK	
	CH ₃	H	0	Br	CH ₃	CH ₃	CH ³	H	
10	CH ₃	Н.	0	Br	CH3	CH ³	OCH ₃	H	
	CH ³	H	0	Br	CH ₃	OCH ³	OCH ₃	H	
	CH ₃	H	0	Br	CH ₃	Cl .	OCH ₃	CH	
	CH ₃	H	0	Br	CH ₂ CH ₃	с н	CH ₃	CH.	
	CH ₃	H	0	Br	CH ₂ CH ₃	CH ₃		CH	
1.5	CH ₃	н	0	Br	CH ₂ CH ₃	OCH ₃	OCH ₃	CH	
	CH ₃	н	0	Br	CH ₂ CH ₃	CH ³	CH3	H	
	CH ₃	H	0	Br	CH ₂ CH ₃	CH ³	OCH3	H	
	CH ₃	H	0	Br	CH ₂ CH ₃		OCH ₃	N	
	CH.3	H	0	Br	CH ₂ CH ₃	CI	OCH ₃	CH	
20	CH3	H	0	Br	CH ₂ CH ₂ CH ₃	CH ³		CH	
	CH ₃	H	0	Br	CH ₂ CH ₂ CH ₃	CH3	OCH ₃	CH	•
	CH ₃	H	. 0	Вг	CH ² CH ² CH ³		OCH ₃	CH	
	CH ₃	H	0	Br	CH ₂ CH ₂ CH ₃	CH ³	CH ₃	H	
	CH ₃	H	0	Br	CH ₂ CH ₂ CH ₃	CH ³	осн 3	H	
25	CH ₃		0	Br	CH2CH2CH3	OCH ₃		H	•
	CH ₃	н	0	Br	CH2CH2CH3	C1		CH	
	CH ₃	н	0	Br	CH2CH2CH2CH3			CH	
	CH ₃	н	0	Br	CH2CH2CH2CH3			CH	
	CH ₃	н	0	Br	CH ₂ CH ₂ CH ₂ CH ₃			CH	
30	CH ₃		0	Br	CH2CH2CH2CH3			Ħ	
	сн ₃		0	Br	CH2CH2CH2CH3		OCH ₃	H	-
	CH ₃	H	0	Br	CH ₂ CH ₂ CH ₂ CH ₃			N	
	CH ₃	н	0	Br	CH2CH2CH2CH3		OCH ₃	CH	

Table IV

5	R	R,	n	R ₂	.R*	<u>x</u>	<u>¥</u>	Z m.p.(*C)
	CH ₃			н	cyclopropyl	CH ₃	CH ₃	CH
	CH3			н	cyclopropyl	CH ₃	OCH ₃	СН
	CH ₃			H	cyclopropyl	OCH ₃	OCH ₃	CH
	CH3	н	0		cyclopropyl	CH ₃	CH ₃	N .
10	CH ₃		_	н	cyclopropyl	CH ₃	OCH ₃	N
	CH ₃	H		н	cyclopropyl	OCH ₃	OCH ₃	 N
	CH ₂		٠.	H	cyclopropyl	C1	OCH ₃	СН
	CH ₃	H.		H	cyclobutyl	CH ₃	CH ₃	СН
	_	н		H	cyclobutyl	CH ₃	OCH ₃	CH
15	CH ₃	н		H	cyclobutyl	OCH ₃	OCH ₃	СН
	CH ₂			H	cyclobutyl	CH ₃	CH ₃	H
	CH ₃	Н		н	cyclobutyl	CH ₃	OCH ₃	N
		н		н	cyclobutyl	OCH ₃	OCH ₃	N
	CH ₃	H		H.	cyclobutyl	C1	OCH ₃	CH
20	CH ₂			н	cyclopentyl	CH ₃	CH ₃	СН
	CH ₃	H		н	cyclopentyl	CH ₃	OCH ₂	CH .
٠	_	н		н	cyclopentyl	OCH ₃	OCH ₃	СН
÷	CH ₃	н	0	н	cyclopentyl	CH ₃	CH ₃	N
-	CH ₂	н	0	н	cyclopentyl	CH ₃	OCH ₃	n
25	CH ₃	н	0	н	cyclopentyl	OCH	осн	R.
•	CH ₃	H	0	H_	cyclopentyl	Cl	OCH ₃	CH
	CH ₃	н	0	н	cyclopropyl	OCH ₃	осносна	СН
	CH ₂	H	0	н	cyclopropyl	cyclopropyl		СН
	CH ₃	H	0	н	cyclopropyl	OCH ₃	CH(OCH ₃) ₂	CH
30	CH ₃	H	0	н	cyclopropyl	инсн _з	OCH CH3	H
	CH ₃	H	0	н	cyclopropyl	инсн3	OCH3	H
	CH	н	0	н	cyclopropyl	осн	OCH2CH3	N
	CII3	H	0	н	cyclopropyl	CH ₂ F	CH3	СН

122
Table IV (cont.)

5	<u>R</u>	R ₁	ņ	R ₂	<u>R*</u>	<u>x</u> .	<u>¥</u>	<u>z</u>	m.p.(°C)
	CH2	н	0	CH ₂ F	cyclopropyl	CH ₃	CH ₃	CH	
	_			_	cyclopropyl		OCH3	CH	
				_	cyclopropyl	OCH ₃	OCH 3	CH	
	-			-	cyclopropyl	CH3	CH ³	Ħ	
10	_			_	cyclopropyl	CH ₃	OCH ³	H	
	_			_	cyclopropyl	OCH ³	OCH ₃	N	
	_			_	cyclopropyl	CI	OCH ₃	CH	
	CH ₃	H	0	CH_F	cyclobutyl	CH ₃	_	CH	
	_			_	cyclobutyl	CH3	OCH ₃	CH	•
15	CH ₃	н	0	CH ₂ F	cyclobutyl	OCH3	осн ₃	CH	
	CH3	н	0	CH ₂ F	cyclobutyl	CH3	CH ₃	H	
	CH3	H	0	CH ₂ F	cyclobutyl	CH ₃	OCH ₃	T.	
	CH3	H	0	CH ₂ F	cyclobutyl	OCH ₃	OCH ₃	H	
	CH ₃	H	0	CH ₂ F	cyclobutyl	C1	OCH ₃	CH	
20	CH3	Н	0	CH ₂ F	cyclopentyl	CH ₃	CH ₃	CH	
	CH ₃	H	0	CH ₂ F	cyclopentyl	CH.3	осн ₃	CH	
• .	CH ₃	H	0	CH ₂ F	cyclopentyl	och ₃	OCH ₃	CH	^
	CH3	Н	0	CH ₂ F	cyclopentyl	CH3	CH3	H	
25	CH3	H	0	CH ₂ F	cyclopentyl	CH ₃	OCH ₃	ĸ	
25	CH3	H	0	CH ₂ F	cyclopentyl	OCH ₃	осн ₃	R	
	CH3	H	0	CH ₂ F	cyclopentyl	CI	осн3	CH	•
	CH3	H	0	CH ₂ F	cyclopropyl	OCH ₃	OCH ₂ CH ₃	CH	
	CH ³	H	0	CH ₂ F	cyclopropyl	cyclopropyl	осн ₃	CH	
20	CH ₃	Н	0	CH ₂ F	cyclopropyl	och ₃	CH(OCH ₃) ₂	CH	
30	CH ₃	Н	0	CH ₂ F	cyclopropyl		осн ₂ сн ₃	H	
	CH ₃	Н	0	CH ₂ F	cyclopropyl	NHCH ₃	OCH ₃	N ·	
	CH ₃	H	0	CH ₂ F	cyclopropyl	och ₃	OCH ₂ CH ₃	H	•
	CH3	H	0	CH ₂ F	cyclopropyl	CH ₂ F	CH ₃	CH	•

123
Table IV (cont.)

5	<u>R</u>	<u>R</u> 1	<u>n</u>	R ₂	<u>R*</u>	<u>x</u> ·	¥	Z m.p.(*C)
	CHa	н	0	CN	cyclopropyl	CH3	CH ₃	СН
	CH ₃				cyclopropyl	_	OCH ₃	CH
	CH				cyclopropyl	_	OCH ₃	СН
	CH				cyclopropyl	_	CH ₃	N
10	CH ₃		0	CN	cyclopropyl	CH3	OCH ₃	H
			0	CN	cyclopropyl	OCH ₃	OCH ₃	N .
	CH ₃		0	CN	cyclopropyl	Cl	och ₃	СН
	CH ₃	н	0	CN	cyclobutyl	CH ₃	CH ₃	CH
	CH ₃	H	0	CN	cyclobutyl	CH ₃	OCH ₃	СН
15	CH ₃	H	0	CN		OCH ₃	och ₃	CH
	CH ₃	H	0	CN	cyclobutyl	CH ₃	CH ₃	n
	CH ₃	H	0	CN	cyclobutyl	CH ₃	OCH ₃	H
	CH ₃	H	0	CN	cyclobutyl	och ₃	OCH ₃	N
	CH ₃	H	0	CH	cyclobutyl	Cl	OCH ₃	СН
20	CH ₃	н	0	CN	cyclopentyl	CH ₃	CH ₃	СН
	CH ₃	H	0	CN	cyclopentyl	CH ₃	OCH ₃	CH .
	CH ₃	H	0	CN	cyclopentyl	OCH ₃	och ₃	СН
•	CH ₃	H	0	CN	cyclopentyl	CH ₃	CH3	R
25	CH ₃	H	0	CN	cyclopentyl	CH ₃	OCH ₃	n
25	CH ₃	H	0	CN	cyclopentyl	och ₃	OCH ₃	H
	CH3	H			cyclopentyl		OCH ₃	СН
	CH ₃	H			cyclopropyl	•	OCH ₂ CH ₃	CH
	CH ₃		0	CN	cyclopropyl	cyclopropyl	_	СН
20	CH ₃	Н			cyclopropyl	_	CH(OCH ₃) ₂	CH
30	CH ₃				cyclopropyl	-	OCH ₂ CH ₃	N
	CH ₃	н			cyclopropyl	•	OCH ₃	N
	CH ₃	н			cyclopropyl	•	OCH ₂ CH ₃	N
•	CH ₃	Н	0	CN	cyclopropyl	CH ₂ F	CH ₃	CH

124
Table IV (cont.)

· 5	<u>R</u>	<u>R</u> 1	<u>n</u>	<u>R</u> 2	<u>R*</u>	X	¥	Z m.p.(°C)
	CH ₂ CH ₃	H	0	H	cyclopropyl	CH ³	CH ³	CH
				H	cyclopropyl	•		CH
					cyclopropyl	•	OCH ₃	CFF
					cyclopropyl	•	CH3	M
10	CH2CH3		0		cyclopropyl	_	OCH ₃	H
	CH2CH3	H	0	H	cyclopropyl	OCH ₃	OCH ₃	H
	CH2CH3	H	0	Ħ	cyclopropyl	Cl	OCH ₃	CH
	CH2CH3		0	H	cyclobutyl	CH ₃	CH ₃	CH
	CH2CH3		0	H	cyclobutyl		OCH ³	CH
15	CH2CH3	H	o ·	H	cyclobutyl	OCH ₃	OCH ₃	CH
	CH2CH3	H .	. 0	H	cyclobutyl	CH3	CH ₃	H
	CH2CH3	H	0	H	cyclobutyl	CH ³	OCH ³	H
	CH2CH3	H	0	H	cyclobutyl	ocH ³	OCH ₃	H
	CH2CH3	H	0	H	cyclobutyl	Cl	OCH ₃	CH
20	CH2CH3	H	0	H	cyclopentyl	CH ₃	CH ₃	CH
	CH ₂ CH ₃	H	0	H	cyclopentyl	CH ₃	OCH ₃	CH
	CH ₂ CH ₃	H	0	H	cyclopentyl	och ³	OCH ³	CH
	CH ₂ CH ₃	H	0	H	cyclópentýl	CH3	CH3	R
	CH ₂ CH ₃	H	0	H	cyclopentyl	CH ₃	OCH ₃	ET .
25	CH ₂ CH ₃	H	0	H	cyclopentyl	och ₃	OCH ₃	M
٠	CH ₂ CH ₃	H	0	H	cyclopentyl	Cl	OCH 3	СН
_	CH ₂ CH ₃	H	0	H	cyclopropyl	осн ₃	осн ₂ сн ₃	CH
	CH ₂ CH ₃	H	0	H	cyclopropyl	cyclopropyl	OCH ³	CH
20	CH2CH3	H	0	H	cyclopropyl	осн ₃	CH(OCH ₃) ₂	CH
30	CH2CH3			H	cyclopropyl	NHCH3.	осн ₂ сн ₃	H ·
	CH ₂ CH ₃	H	0		cyclopropyl	•	OCH ₃	N
	CH ₂ CH ₃	H	0	H	cyclopropyl	och ₃	OCH ₂ CH ₃	N
	CH ₂ CH ₃	H	0	Н	cyclopropyl	CH ₂ F	CH ₃	СН

125
Table IV (cont.)

• 5	<u>R</u>	R	L n R	2 R.	<u>x</u> .	¥	Z m.p.(°C)
	сн₂с≘сн	H	о н	cyclopropyl	CH	сн ₃	СН
	сн ₂ с≘сн	H	о н	cyclopropyl	•	OCH ₃	СН
	CH ₂ C≡CH		о н	cyclopropyl	OCH	OCH ³	СН
	сн ₂ с≡сн		ОН	cyclopropyl	•	CH3	n
10	- CH2C≡CH		ОН	cyclopropyl	CH3	OCH3	N
	сн ₂ с≡сн	H	O H	cyclopropyl	OCH	оснз	n
	CH ₂ C≣CH	H	ОН	cyclopropyl	_	осн	СН
	сн ₂ с≘сн	H	о н	cyclobutyl	CH ₃	CH ₃	CH
	CH ₂ C≡CH	H	ОН	cyclobutyl	CH ₃	осн	CH
15	сн ₂ с≡сн	H	ОН	cyclobutyl	-	OCH ₃	СН
	сн ₂ с≡сн	н	ОН	cyclobutyl	CH ₃	CH ₃	n
	CH ₂ C≡CH	H	ОН	cyclobutyl		OCH ₃	n
	сн ₂ с≡сн	H	ОН	cyclobutyl		OCH ₃	n
20	CH ₂ C≡CH	H	о н	cyclobutyl	Cl	OCH	СН
20	сн ₂ ≡сн	Н	ОН	cyclopentyl	CH ₃	CH ₃	СН
	CH ₂ C≡CH		ОН	cyclopentyl	CH ₃	OCH ₃	CH
	CH ₂ C≡CH	н	ОН	cyclopentyl	OCH ₃	OCH ₃	СН
	сн ₂ с ⊆ сн	н	ОН	cyclopentyl	CH ₃	CH ³	M
25	сн ₂ с≘сн	H	ОН	cyclopentyl	CH ₃	OCH ₃	N
23	CH ₂ C≡CH	H	ОН	cyclopentyl	осн ₃	OCH ₃	N
	CH ₂ C≣CH	н	ОН	cyclopentyl		OCH ₃	СН
	CH ₂ C≘CH	H	ОН	cyclopropyl		OCH ₂ CH ₃	СН
•	CH ₂ C≡CH	H	ОН	cyclopropyl	cyclopropyl	OCH ₃	СН
30	CH ₂ C≣CH	H	ОН	cyclopropyl	осн _з	CH(OCH ₃) ₂	СН
	CH ₂ C≡CH	H	ОН	cyclopropyl	•	OCH ₂ CH ₃	n
	CH ₂ CΞCH		ОН	cyclopropyl 1	3	OCH ₃	. N
	CH ₂ C≅CH	H	ОН	cyclopropyl		OCH ₂ CH ₃	N
	CH ₂ C≡CH	H	ОН	cyclopropyl	CH ₂ F	CH ₃	СН

126
Table IV (cont.)

5	R 1	<u>n</u>	R ₂	<u>R*</u>	<u>x</u>	<u>¥</u>	Z m.p.(°C)
	нн	0	Cl	cyclopropyl	CH ₃	CH ₃	CH
	нн	0	Cl	cyclopropyl	CH ₃	OCH ₃	СН
	нн	0	Cl	cyclopropyl	OCH ³	OCH ₃	CH
	нн	0	Cl	cyclopropyl	CH ₃	CH 3	R
10	нн	0	Cl	cyclopropyl	CH ₃	OCH ³	N
	нн	0	Cl	cyclopropyl	OCH ₃	OCH ₃	N·
	нн	0	Cl	cyclopropyl	Cl	OCH ₃	СН
	нн	0	Cl	cyclobutyl ·	CH ₃	CH ₃	CH
	H H .	0	Cl	cyclobutyl	CH ₃	OCH ₃	CH
15	нн	0	Cl	cyclobutyl	OCH ₃	OCH ₃	СН
	H H .	0	Cl	cyclobutyl	CH ₃	CH ₃	N
	нн	0	Cl	cyclobutyl	CH ₃	OCH ₃	N
•	нн	0	Cl	cyclobutyl	OCH ₃	осн ₃	N
	нн	0	Cl	cyclobutyl	Cl	осн3	CH
20	нн	0	Cl	cyclopentyl	CH ₃	CH ₃	CH
	HH	0	Cl	cyclopentyl	CH ₃	OCH3	CH
	нн	0	Cl	cyclopentyl	OCH ₃	OCH ₃	CH
	нн	0	Cl	cyclopentyl	CH ₃	CH 3	n
	н н	0	Cl	cyclopentyl	CH ₃	осн ₃	N
25	H H	0	Cl	cyclopentyl	OCH ₃	OCH ₃	N
	нн	0	Cl	cyclopentyl	Cl	осн3	CH
	H H	0	Cl	cyclopropyl	осн ₃	осн ₂ сн ₃	СН
	нн	0	Cl	cyclopropyl	cyclopropyl	осн ₃	СН
	нн	O.	Cl	cyclopropyl	OCH ₃	CH(OCH ₃) ₂	CH
30	нн	0	Cl	cyclopropyl	NHCH ₃	OCH ₂ CH ₃	R
	нн	0	Cl	cyclopropyl	NHCH ₃	OCH ₃	H
	нн	0	Cl	cyclopropyl	осн ₃	OCH ₂ CH ₃	N .
	нн	0	Cl	cyclopropyl	CH ₂ F	CH ₃	СН
					_	-	

127
Table IV (cont.)

5	<u>R</u>	R ₁	<u>n</u>	R ₂	R*	<u>x</u>	<u>¥</u> .	Z m.p.(*C)
					cyclopropyl	CH ₂	CH ₃	СН
	н			•	cyclopropyl	_	OCH ₃	CH
	н			_	cyclopropyl	_	OCH ₃	CH
	н				cyclopropyl	•	CH ₃	N
10,	н	н		_	cyclopropyl	_	OCH ₃	n
	н	H			cyclopropyl	•	осн	N .
	H	н		-	cyclopropyl	_	OCH ₃	СН
	H	н			cyclobutyl		CH ₃	СН
	H	н		_	cyclobutyl		OCH ₃	СН
15	H	H		•	cyclobutyl	•	och ₃	СН
	H	H	0	CH ₃	cyclobutyl	CH ₃	CH ₃	N
	Н	H	0	CH ₃	cyclobutyl	CH ₃	och ₃	R
	H	H	0	CH ₃	cyclobutyl	OCH ₃	och ₃	N
	H	H	0	CH ₃	cyclobutyl	Cl	OCH ₃	СН
20	H	H	0	CH ₃	cyclopentyl	CH ₃	CH ₃	CH
	H	H	0	CH ₃	cyclopentyl	CH ₃	OCH ₃	CH .
	H	Н	0	CH ₃	cyclopentyl	осн ₃	OCH ₃	CH
	H	H	0	CH ₃	cyclopentyl	CH ₃	CH ₃	N
25	H	H	0	CH ₃	cyclopentyl	CH ₃	och ₃	N ·
25	H	H	0	·CH ₃	cyclopentyl	och ₃	och ³	N .
	H	H	0	CH ₃	cyclopentyl	Cl .	och ₃	СН
	Н	H			cyclopropyl	•	OCH ₂ CH ₃	CH
	H	H	0	CH ₃	cyclopropyl	cyclopropyl	OCH ₃	CH
30	Н	H	0	CH3	cyclopropyl	OCH ₃	CH(OCH ₃) ₂	CH
30	H	н			cyclopropyl	•	OCH ₂ CH ₃	N
	H	H		-	cyclopropyl	_	OCH ₃	N .
	H	H			cyclopropyl	•	OCH ₂ CH ₃	N
	H	H	0	CH ₃	cyclopropyl	CH ₂ F	CH ₃	СН

128
Table IV (cont.)

5	R	<u>R</u> 1	<u>n</u>	R ₂	<u>R*</u>		-	<u>z</u>	m.p.(°C)
	CHa	н	0	H	cyclobutyl	CH ₂ CH ₃	CH ₃	CH	
	CH		0	н	cyclobutyl	CH2CH3		CH	
	-	н	0	н	cyclobutyl	CH ₂ F	CH ₃	CH	
â	CH ₃	н	0	н	cyclobutyl	OCF ₂ H	CH ₃	CH	
10	CH3		0	H	cyclobutyl	OCF ₂ H	OCH ₃	CH	
	CH2		0	H	cyclobutyl	OCH ₂ CF ₃	OCH ₃	CH.	
	CH3	H	0	н	cyclobutyl	CH ₂ F	осн ₃	CH	
	CH		0	H	cyclobutyl	CH ₂ C1	OCH ₃	H	
	CH	H	0	H	cyclobutyl	SCH ₃	och ₃	CH	
15	CH ₃	H	0	н	cyclobutyl	SCH ₂ F	OCH ₃	CH	
	CH3		0	H	cyclobutyl	Br	OCH ₃	CH	
	CH ₃		0	H	cyclobutyl	сн ₂ осн ₃	och ³	ĸ	
	CH3	н	0	H	cyclobutyl	OCH ₂ OCH ₃	och ₃	CH	
	CH3	H	0	н	cyclobutyl	OCH_OCH_CH3	CH ₃	СĦ	
20	CH ₃	H	0	H	cyclobutyl	N(CH ₃)2	OCH ₃	H	
	CH ₃		0	н	cyclobutyl	NHCH2CH3	CH ₃	N	•
	CH ₃	H	0	H	cyclobutyl	NHCH ₃	OCH2CH3	H	
•	CH ₃	н	O	н	cyclobutyl	CH ₃	CH ₂ SCH ₃	CH	
	CH3	н	O	н	cyclobutyl	och ₃	CH2SO2CH3	CH	
25	CH ₃	H	0	H	cyclobutyl	NH ₂	OCH2CH3	H	
	CI43	н	C	H	cyclobutyl	CH ₃	OCH2CH=CH2	CH	•
	CH3	н	C	H	cyclobutyl	CH ₂ CH ₃	OCF ₂ H	CH	
	CH ₃	H	C	Н	cyclobutyl	ocf ₂ H	ocf ₂ H	CH	
	CH3	н	C	Н	cyclobutyl	осн ₃	och=ch ₂	CH	
30	CH ₃	н	C	Н	cyclobutyl	осн ₃	C(0)CH ₃	ы	
	CH ₃	н	C	н	cyclobutyl	CH ₃	M(OCH ³)CH ³	M	
	CH ₃	н	C	н	cyclobutyl	осн(сн ₃) ₂	ocf ₂ H	CH	

129
Table IV (cont.)

5	R	<u>R</u> 1	<u>n</u>	R ₂	<u>R'</u>	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
	CH ₃	H	0	H	CH ₃	CH ₃	CH ₃	СН	
	CH ₃	H	0	н	CH ₃	CH ₃	OCH3	СН	
	CH ₃	H	0	н	CH ₃	OCH ₃	оснз	СН	
	CH ₃	н	0	н	CH ₃	CH3	CH3	N	
10,	CH ₃	H	0	н	CH ₃	CH ₃	осн ₃	N	
	CH ₃	H	0	H	CH ³	осн3	OCH ₃	H	
	CH ₃	H	0	н	CH ₃	C1	осн ₃	СН	
	CH3	н	0	н	CH ₂ CH ₃	CH ₃	CH ₃	CH	
	CH ₃	H	0	н	CH ₂ CH ₃	CH ₃	OCH ₃	CH	
15	CH ₃	H	0		CH ₂ CH ₃	OCH ₃	OCH ₃	CH	
	CH ₃	H	0	н	CH ₂ CH ₃	CH ₃	CH ₃	N	
	CH3	H .	0	H	CH ₂ CH ₃	CH ₃	OCH ₃	N	
	CH ₃	н	0	Н	CH ₂ CH ₃	OCH ³	OCH ₃	N	
20	CH ₃	н	0	н	CH ₂ CH ₃	Cl	OCH ³	CH	
20	CH ₃	н	0	н	CH2CH2CH3	CH ₃	CH ₃	CH	
	CH ₃	Н	0	н	CH2CH2CH3	CH ₃	OCH ₃	CH	•
	CH ₃	н	0	H	CH ₂ CH ₂ CH ₃	OCH ₃	OCH ₃	CH	
	CH ₃	H		H	CH ₂ CH ₂ CH ₃	CH ₃	CH ₃	N	
25	CH3	H	0	H	CH ₂ CH ₂ CH ₃	CH ₃	осн	N .	
23	CH ₃	H	0	н	CH2CH2CH3	OCH3	OCH ₃	N	
•	CH ₃	н	0	н	CH2CH2CH3	Cl	och ₃	CH	
	CH ₃	н	0	н	CH2CH2CH2CH3	CH ₃	CH ₃	CH	
	CH ₃	н	0	н	CH ₂ CH ₂ CH ₂ CH ₃	CH ₃	OCH ₃	CH	
30	CH ₃	н	0	H	CH2CH2CH2CH3	оснз	OCH ₃	CH	
	CH ₃	Н	0	H	2 2 2 3	CH ₃	CH ₃	N	
	CH ₃	H	0		CH2CH2CH2CH3	CH ₃	OCH ₃	N	
	CH ₃	H	0	Н	CH2CH2CH2CH3	OCH ₃	och ₃	N	
	CH3.	Н	0	Н	CH2CH2CH2CH3	Cl	och ₃	СН	

130
Table IV (cont.)

5	<u>R</u>	R ₁	Ū	R ₂	<u>R*</u>	<u>x</u>	¥	<u>z</u>	m.p.(*C)
	CH ₃	H	0	Cl	C(CH ₃)=CH ₂	CH3	CH ₃	CH	
	CH ₃	H	0		C(CH3)=CH2	CH	OCH ₃	СН	
	CH ₃	H	0		C(CH3)=CH2			CH	
•	CH ³	H	0	Cl	C(CH3)=CH2	CH ₃		H.	
10	CH3	H	0	Cl	C(CH3)=CH2		OCH ³	H	
	CH3	H	0	Cl	C(CH3)=CH2		OCH ³	H	•
	CH ₃	H	0	C1	C(CH ₃)=CH ₂		OCH ₃	CH	
	.CH ₃	H	0	Cl	сн ₂ сн=снсн ₃			СН	
	CH ₃	H	0	Cl	сн=сн-сн ₂ сн ₃	-		СН	
15	CH ₃	н	0	Cl	CH=CH-CH ₂ CH ₃	_	_	CH	
	CH ₃	н	0	Cl				N	
	CH ³	н	0	CI	CH=CH-CH ₂ CH ₃			H	
	CH3	н	0	Cl	CH=CH-CH ₂ CH ₃	_	_	N	
	CH ₃	н	0	Cl	CH=CH-CH ₂ CH ₃	_	_	СН	٠
20	CH3	H	0	Cl	CH=CHCH ₂ F	CH3		CH	
	CH3	H	0	Cl	CH=CHCH ₂ F		OCH ₃	CH	•
	CH ₃	H	0	Cl	_	_	_	CH	
	CH ₃	H	0	Cl	CH=CHCH ₂ F	CH ₃	CH ₃	N	
	CH ₃	н	0	Cl	CH=CHCH ₂ F	•	оснз	N	
25	CH ₃	H	0	Cl	CH=CHCH ₂ F		OCH ₃	N	
	CH ₃	н	0	Cl	CH=CHCH2F	Cl	OCH ₃	CH.	
	CH3	H	0	Cl	CH=CHF	CH ³	CH ₃	CH	
	CH ₃	H	0	Cl	CH=CHF	CH3	OCH ₃	CH	
	CH3	H	0	Cl	CH=CHF	OCH ₃	OCH ₃	CH	
30	CH3	H	0	Cl	CH=CHF	CH ₃	CH ₃	N	
	CH ³	H	0	Cl	CH=CHF	CH ₃	OCH ₃	H	
	CH ₃	H	0	Cl	CH=CHF	OCH ₃	осн ₃	Ħ	
	CH ₃	н	0	Cl	CH=CHF	CI	осн3	CH	

131
Table IV (cont.)

					• **				
5	R	<u>R</u> 1	ņ	<u>R</u> 2	R.	<u>x</u> .	<u>¥</u>	<u>z</u>	m.p.(°C)
	CH ₃	Н	0	CO2CH3	сн ₃	CH ₃	CH ₃	CH	
	CH ₃	H	0	CO2CH3	CH ₃	CH ₃	OCH ₃	CH	
	CH ₃	H	0	CO2CH3	CH ₃	OCH ₃	OCH ₃	CH	
	CH ₃	H	0	CO2CH3	CH ₃	CH3	CH3	H	
10,	CH ₃	H	0.	CO2CH3	CH ₃	CH ₃	OCH ₃	H	
•	CH ₃	H	0	CO2CH3	CH ₃	OCH ₃	OCH ₃	H	
	CH ₃	H ·	0	CO ₂ CH ₃	CH ₃	Cl	OCH ₃	CH	
	CH ₃	H	0			CH ₃	CH ₃	CH	•
	CH3	H	0	CO2CH3		CH ₃	OCH ₃	CH	
15	CH ₃	H	0	CO2CH3	- -	OCH ₃	OCH ₃	CH	
•	CH ₃	H	0	CO2CH3	CH ₂ CH ₃	CH ₃	CH ₃	N	
	CH ₃	н	0		CH ₂ CH ₃	CH ₃	OCH ₃	N	
	CH ₃	H	0	CO2CH3		OCH ₃	OCH ₃	N	
	CH ₃	H	0	CO_CH3	CH ₂ CH ₃	Cl	OCH ₃	CH	
20		н .	0	CO_CH3	CH ₂ CH ₂ CH ₃	CH ₃	CH ₃	CH	
	CH ₃	H	0		CH2CH2CH3	CH ₃	осн3	ĊH	•
	CH ₃	н	0		CH ₂ CH ₂ CH ₃	OCH ₃	OCH ₃	СН	
	CH ₃	н	0		CH2CH2CH3	CH ₃	CH ₃	N	
	CH ₃	H	0	CO2CH3	сн ₂ сн ₂ сн ₃	CH3	OCH ₃	N	
25	CH ₃	H	0	CO2CH3	сн ₂ сн ₂ сн ₃	осн _з	OCH ₃	N	
	CH ₃	H	0		сн ₂ сн ₂ сн ₃	Cl	OCH ₃	CH	
	CH ₃	н	0	CO2CH3	CH2CH2CH2CH3	CH ₃	CH ₃	CH	
	CH ₃	н -	0	CO2CH3	CH2CH2CH2CH3	CH3	OCH ₃	CH	
•	CH ₃	H	O	CO2CH3	CH2CH2CH2CH3	OCH ₃	OCH ₃	CH	•
·30	CH3	H	0		CH2CH2CH2CH3	CH ₃	CH ₃	N	
	CH ₃	H	0	CO2CH3	CH2CH2CH2CH3	CH ₃	OCH ₃	N	
	CH ₃	н	0	CO2CH3	CH2CH2CH2CH3	OCH ₃	OCH ₃	N	
	CH ₃	H	. 0	CO ₂ CH ₃	CH2CH2CH2CH3	Cl	осн3	CH	•

132
Table IV (cont.)

5 , .	<u>R</u>	<u>R</u> 1	<u>n</u>	R_2	R'	<u>X</u>	<u>¥</u>	<u>Z</u>	m.p.(°C)
	CH ₂ CN	H	0	H	CH ₂ F	CH ₃	CH ³	CH	·
•	CH ₂ CN	H	0	н	CH ₂ F	CH ³	OCH ₃	CH	
•	CH ₂ CN	н	0	H	CH ₂ F	OCH ₃	OCH ₃	CH	
	CH ₂ CN	H	0	н	CH ₂ F	CH ₃	CH ₃	Ħ	•
10	CH ₂ CN	Ħ	0	H	CH ₂ F	CH ₃	OCH ₃	H	
	CH ₂ CN	H	0	H	CH ₂ F	OCH ₃	OCH ₃	H	
	CH ₂ CN	Ħ	0	H	CH ₂ F	Cl	OCH ₃	CH	
	CH ₂ CN	H	0	H	CH2CH2F	CH3	CH ₃	CH	•
3.6	CH ₂ CN	H	0	H	CH2CH2F	CH3	OCH ₃	CH	
15	CH ₂ CN	H	0	H	CH ₂ CH ₂ F	OCH ₃	OCH ₃	CH	
	CH ₂ CN	H	0	H	CH ₂ CH ₂ F	CH ₃	CH ³	H	
	CH ₂ CN	H	0	H	CH ₂ CH ₂ F	CH ₃	OCH 3	H	
	CH ₂ CN	H	0	H	CH ₂ CH ₂ F	OCH ₃	осн 3	N	•
20	CH ₂ CN	H	0	Н	CH ₂ CH ₂ F	Cl	OCH ₃	CH	
20	CH ₂ CN	H	0	H	CHF ₂	CH ₃	CH ₃	CH	
	CH ₂ CN	H	0	H	CHF ₂	CH ₃	OCH ³	CH	•
	CH ₂ CN	H	0	H .	CHF ₂	OCH ₃	OCH ₃	CH	
	CH ₂ CN	H	0	H	CHF ₂	CH ₃	CH ₃	N	
25	CH ₂ CN	H	0	Н	CHF ₂	CH ₃	OCH ₃	N	
23	CH ₂ CN	H	0	H	CHF ₂	OCH ₃	OCH ³	Ħ	
•	CH ₂ CN	H	0	н	CHF ₂	Cl	OCH ³	CH	
	CH ₂ CN	н	0	н	CH ₂ CF ₃	CH ₃	CH ₃	CH	
	CH ₂ CN	H.	0	H	CH ₂ CF ₃	CH ₃	OCH ₃	CH	
30	CH ₂ CN	н	0	н	CH ₂ CF ₃	OCH ₃	OCH ₃	CH	
30	CH ₂ CN	н	0	н	CH ₂ Cl	CH ₃	CH ₃	H	
	CH ₂ CN	н	0	H	CH ₂ Cl	CH ₃	осн ₃	N	
	CH ₂ CN	н	0	н	CH ₂ Cl	. OCH ₃	OCH ₃	N	
	CH ₂ CN	Н	0	н	CH ₂ C1	Cl	осн ₃	CH	

133 Table V

```
Y3 T.B,
       CH2 H H cyclopropyl O A-2 CH2
       CH<sub>2</sub> H H cyclopropyl O A-2 OCH<sub>2</sub>
       CH3 H H cyclopropyl O A-2 OCH3
       CH<sub>2</sub> H H cyclopropyl O A-2 OCH<sub>2</sub>CH<sub>3</sub> O
10 CH<sub>3</sub> H H cyclopropyl O A-3 CH<sub>3</sub>
       CH2 H H cyclopropyl O A-3 OCH2
       CH<sub>2</sub> H H cyclopropyl O A-3 OCH<sub>2</sub>CH<sub>2</sub> -
       CH<sub>2</sub> H H eyclopropyl O A-3 OCF<sub>2</sub>H
       CH<sub>3</sub> H H cyclopropyl O A-4 CH<sub>3</sub>
       CH<sub>2</sub> H H cyclopropyl O A-4 CH<sub>3</sub>
       CH<sub>2</sub> H H cyclopropyl O A-4 OCH<sub>2</sub>
       CH3 H H cyclopropyl O A-4 OCH3
       CH3 H H cyclopropyl O A-4 OCF2H
                                                            CH3
                                                                     OCH
       CH3 H H cyclopropyl O A-5 -
20
                                                            СНЗ
       CH<sub>2</sub> H H cyclopropyl O A-5 -
                                                                      OCH_CH_-
                                                            CH3
       CH<sub>2</sub> H H cyclopropyl O A-5 -
       CH<sub>2</sub> H H cyclopropyl O A-5 -
                                                            CH, CH, OCH,
       CH<sub>2</sub> H H cyclopropyl O A-6 -
       CH<sub>2</sub> H H cyclopropyl O A-6 -
25
                      cyclopropyl O A-7 CH<sub>q</sub>
```

30

134
Table V (cont.)

5	R	<u>R</u> 1	R ₂	<u>R*</u>	n	A	<u>x</u> _	<u>Y</u> 1	<u>×2</u>	¥2	х <u>з</u>	¥3 T.E5
	CH3	н	CH ₃	cyclopropyl	0	A-2	CHa	0	-	_	-	-
	_		•	cyclopropyl			_	0	- ·	-	_	-
•	CH ₃	H	CH ₃	cyclopropyl	0	A-2	осн ₃	CH ₂	-	-	-	-
10	CH3	H	CH3	cyclopropyl	0	A-2	OCH ₂ CH ₃	o	-	-	-	- .
10	CH ₃	н	CH ₃	cyclopropyl	0	A-3	CH3	- ·	-	-	-	-
•	CH ₃	H	CH ₃	cyclopropyl	0	A-3	OCH ₃	-	-	- .	-	-
	CH ₃	H	CH ₃	cyclopropyl	0	A-3	OCH2CH3	-	-	-	-	-
	CH ₃	H	CH ₃	cyclopropyl	0	A-3	OCF ₂ H	-	- 1	-	-	-
16	CH3	Н	CH ₃	cyclopropyl	0	A-4	CH ₃	-	- ·	-	-	H
15	CH ₃	H	CH ₃	cyclopropyl	0	A-4	CH ₃	-	- :	- ·	-	CH ₃
	CH ³	H	CH ₃	cyclopropyl	0	A-4	OCH ₃	-	-	-	-	H
	CH3	H	CH ₃	cyclopropyl	0	A-4	OCH ₃	-	-	-	-	CH ₃
	CH ³	H	CH ₃	cyclopropyl	0	A-4	OCF ₂ H	-	-	-	-	Ħ
20	CH ₃	н	CH ³	cyclopropyl	0	A-5	-	-	CH ₃	OCH ³	-	-
20	CH ₃	H	CH ³	cyclopropyl	0	A-5	-	-	CH ₃	OCH ₂ CH	3	~
	CH3	Н	CH ₃	cyclopropyl	0	A-5	-	-	CH ₃	SCH ₃	-	-
	CH ₃	H	CH3	cyclopropyl	0	A-5		-	CH ₂ CH ₃	OCH ³	-	-
	CH ₃	H	CH ³	cyclopropyl	0	A-6	-	-	-		CH ₃	-
25	· CH3	H	CH3	cyclopropyl	0	A-6	-	-	-	-	OCH ³	-

Table Va
Where n' = 6

5		•					
	J	<u>R</u> .	R*	<u>A</u>	<u>x</u> 1	<u>Y</u> 1	m.p.(°C)
	J-1	CH ₃	СНЗ	A-2	CH ₃	0	
	J-1	CH ₃	CH ₃	A-2	осн	0	•
	J-1	CH	CHa	A-2	OCH ₂ CH ₃	0	
10,	J-1	СНЗ	сн ₃	A-2	OCF ₂ H	Ò	
	J-1	CH ₃	CH ₃	A-2	CH3	CH ₂	
	J-1	CH ₃	CH ₃	A-2	осн	CH ₂	
	J-5	-	cyclopropyl	A-2	CH ₃	0	
	J-5	-	cyclopropyl	A-2	OCH ₃	0	
15	J-5	-	cyclopropýl	A-2	OCH ₂ CH ₃	0	
	J -5	-	cyclopropyl	A-2	OCF ₂ H	0	
	J-5	-	cyclopropyl	A-2	CH3	СH ₂	
	J~5	-	cyclopropyl	A-2	осн	CH ₂	
	J - 8	-	cyclopropyl	A-2	CH ₃	0	•
20	J-8	-	cyclopropyl	A-2	оснз	0	
	J-8	-	cyclopropyl	A-2	OCH ₂ CH ₃	0	•
	J-8	-	cyclopropyl	A-2	OCF ₂ H	0	
	J-8	-	cyclopropyl	A-2	CH3	CH ₂	
	J-8	-	cyclopropyl	A-2	осн ₃	CH ₂	
25							
	<u>J</u>	R	<u>R*</u>	A	<u> *1</u>		m.p.(°C)
	J-1	CH ₃	CH ₃	A-3	CH ₃		•
	J-1	CH ₃	CH3	A-3	OCH ₃		
	J-1	СНЗ	сн ₃	A-3	OCH ₂ CH ₃	}	
30	J-1	CH ₃	CH ₃	A-3	ocf ₂ h		
	J-5	-	cyclopropyl	A-3	CH ₃		
	J-5	-	cyclopropyl	A-3	OCH ₃		•
	J-5	-	cyclopropyl	A-3	OCH ₂ CH ₃	}	
	J-5	- .	cyclopropyl	A-3	ocf ₂ h		
35	J-8	-	cyclopropyl	A-3	СНЗ		
	J-8	-	cyclopropyl	A-3	OCH ₃		
	J-8	-	cyclopropyl	A-3	OCH ₂ CH ₃	3	
	J-8	-	cyclopropyl	A · 3	OCF ₂ H		

136
Table Va (cont.)

5	_				. X	Y	
	ī	R	<u>R'</u>	A	. <u>X</u>		m.p.(°C)
	J-1	CH ³	CH ₃	<u>6</u> –4	CH ₃	H	
	J-1	CH ₃	CH ₃	A-4	OCH ₃	H	
	J-1	CH ₃	CH ³	A-4	OCH ₂ CH ₃	H	
10	J-1	CH3	CH ³	A-4 .	OCF ₂ H	H	•
. 10	J-1	CH3	CH ₃	A-4	CH ₃	CH ³	•
	J-1	CH ₃	CH ₃	<u>A</u> -4	OCH ₃	CH ³	
	J-5	-	cyclopropyl	A-4	CH ³	H	
	J-5	-	cyclopropyl	A-4	OCH ₃	H	
	J5	-	cyclopropyl	A-4	OCH ₂ CH ₃	H	
15	J-5	-	cyclopropyl	A-4	ocr ₂ h	H	
	J-5	-	cyclopropyl	A-4	CH3	CH ₃	
	J-5	- '	cyclopropyl	A-4	OCH ₃	CH ₃	
	J-8	-	cyclopropyl	A-4	CH ³	H	
	J-8	-	cyclopropyl	A-4	OCH ₃	H	
20	J-8	-	cyclopropyl	A-4	OCH2CH3	Ħ	
	J-8	-	cyclopropyl	A-4	ocf ₂ h	H	
	J-8	-	cyclopropyl	A-4	CH3	CH ³	
	J-8	- .	eyclopropyl	A-4	OCH ₃	CH ³	
25							
	<u>J</u>	<u>R</u>	<u>R*</u>	<u> </u>	<u> </u>	¥2	m.p.(°C)
	J-1	СНЗ	снз	A-5	снз	OCH3	
٠.	J-1	СНЗ	CH ³	A-5	СНЗ	००स् तम्	
•	J-1	СНЗ	СНЗ	A-5	CH3	SCH	·
30	J-1	CH ³	снз	A-5	CH3	CH ₃	
	J-1	CH3	CH ³	A-5	снз	CH ₂ CH ₃	
	J-1	CH ₃	CH ₃	A-5	CH ₂ CH ₃	OCH ₃	
	J-1	CH3	сн³	A-5	CH ₂ CF ₃	CH3	•
	J-5		cyclopropyl	A-5	CH ³	OCH3	
35	J-5 .	-	cyclopropyl	A-5	CH ₃	OCH ₂ CH ₃	

137
Table Va (cont.)

-			•			v	
5	<u>J</u>	<u>R</u>	<u>R*</u>	<u>A</u>	<u>x</u> 2	<u>Y</u> 2	m.p.(*C)
	J-5	-	cyclopropyl	A-5	CH ₃	SCH ₃	
	J -5	-	cyclopropyl	A-5	CH ₃	CH ₃	
•	J-5	-	cyclopropyl	A-5	CH ₃	CH ₂ CH ₃	
	J- 5	-	cyclopropyl	A-5	CH ₂ CH ₃	осн	•
10	J-5	-	cyclopropyl	A-5	CH ₂ CF ₃	CH3	
	J-8	_	cyclopropyl	A-5	CH ₃	осн	
	J-8	_	cyclopropyl	A-5	CH ₃	OCH ₂ CH ₃	
	J-8	-	cyclopropyl	A-5	CH ₃	SCH ₃	
	J-8	_	cyclopropyl	A-5	CH ₃	CH ₃	
15	J-8	-	cyclopropyl	A-5	CH3	CH ₂ CH ₃	
	J-8	-	cyclopropyl	A-5	CH ₂ CH ₃	осн	
	J-8	-	cyclopropyl	A-5	CH ₂ CF ₃	CH ₃	
20	-				<u>x</u> 3	(25)	
20	<u>J</u>	<u>R</u>	R'	<u>A</u>		m.p.(°C)	
	J-1	CH ₃	CH ₃	A-6	CH ³		
	J-1	CH ₃	CH ₃	A-6	och ₃		
	J-5	-	cyclopropyl	A-6	CH ₃		
	J-5	-	cyclopropyl	A-6	OCH ₃		
25	J-8	-	cyclopropyl	A6	CH ₃		
	J-8	-	cyclopropyl	A-6	осн ₃		
	•						
•	<u>J</u>	<u>R</u>	R'	A	<u> </u>	Y m.p	. (°C)
	<u>−</u> J-1	CH ₃	CH ₃	A-7	CH ₃	OCH ₂	
30	J-1	СН ₃	CH ₃	A-7	OCH ₃	och ₃	
	J-5	₃	cyclopropyl	A-7		осн ₃	
	J-5	_		A-7	CH ³	OCH ₃	
	J-8	_	cyclopropyl		OCH ₃		
		-	cyclopropyl	A-7	CH ₃	OCH ₃	
35	J-8		cyclopropyl	A-7	OCH ₃	OCH ₃	

Table VI

									• .
5	R	R 1	n	R 2	R*	X	<u>¥</u>	<u>2</u>	m.p. (°C)
	CH ₂				cyclopropyl				<u> </u>
	_					•	CH ₃	CH	
					cyclopropyl		OCH ³	CH	
					cyclopropyl	•	OCH ³	CH	
10					cyclopropyl		CH ₃	H	
	_				cyclopropyl	_	OCH ³	H	
•					cyclopropyl	•	OCH ³	H	
	_				cyclopropyl		OCH ³	CH	
					cyclobutyl	.	CH ³	CH ·	
15	CH ₃				cyclobutyl	CH ₃	OCH ₃	CH	
	CH3				cyclobutyl	3	OCH3.	CH	
	CH ³				cyclobutyl	3	CH ³	H	
	CH3	H	0	H	cyclobutyl	CH ₃	OCH ₃	Ħ	
	CH ₃	H	0	H	cyclobutyl	OCH ₃	OCH ₃	H	
20	CH ₃	H	0	H	cyclobutyl	Cl	OCH ₃	CH	
	CH ₃	H	0	H	cyclopentyl	CH ³	CH ₃	CH	•
	CH ₃	H	0	H	cyclopentyl	CH ₃	OCH ³	CH	
	CH3	H	0	H	cyclopentyl	OCH ₃	OCH ₃	CH	
	CH3	H	0	H·	cyclopentyl	CHa	CH 3	H	
25	CH ₃	H	0	H	cyclopentyl	CHa	OCH ₃	N	
	CH ₃	H	0		cyclopentyl	_	OCH3	H	•
	CH ₃	H	0	н	cyclopentyl	C1	OCH ³	CH	
	CH ₃	H	0	H	cyclopropyl	och ₂	OCH CH3	CH	
•	CH ₃	H	0		cyclopropyl		OCH ³	CH	
30	CH3		0		cyclopropyl		CH(OCH ₃) ₂	CH	
	_		0		cyclop ro pyl	•	OCH2CH3	H	٠
	CH ₃	H	0		cyclopropyl	•	OCH ₃	n	
	CH		0		cyclopropyl	_	осн ₂ сн ₃	H	
	CH3	H	0		cyclop ro pyl	•	CH ³	СН	
	_					-	3		

Table VII

5		R		R					m.p.
	<u>R</u>	1	$\overline{\boldsymbol{v}}$	_2	<u>R*</u>	<u>x</u>	X	<u>Z</u>	(°C)
	CH ₃	H	0	H	cyclopropyl	CH ₃	CH ₃	CH	
	CH ₃	H	0	H	cyclopropyl	CH ₃	OCH ₃	CH	
	CH ₃	H	0	H	cyclopropyl	OCH ₃	OCH ₃	CH	
10.	CH ₃		0	H	cyclopropyl	CH ₃	CH ₃	H	
20.	CH3	H	0	H	cyclopropyl	CH ₃	OCH ₃	n	
	CH3	H	0	H	cyclopropyl	осн	OCH ₃	H	
	CH ₃	H	0	H	cyclopropyl	Cl	OCH ₃	CH	
-	CH ₃		0	н	cyclobutyl	СН3	CH ₃	CH	
15	CH3.		0	H	cyclobutyl	-	OCH ₃	CH	
	CH	H	0	H	cyclobutyl		OCH ₃	CH	
	CH3	H	0	H	cyclobutyl	CH3	CH3	Ħ	
	CH3		0	H	cyclobutyl	CH ₃	OCH ₃	H	
	CH ₃	H	0	н	cyclobutyl		OCH ₃	n	
20	CH3		0	H	cyclobutyl	Cl	OCH ₃	CH	
20	CH3	H	0	H	cyclopentyl	CH ₃	CH ₃	CH	•
	CH ₃	H	0	H	cyclopentyl	CH ₃	OCH ₃	CH	
	CH ₃	H	0	H	cyclopentyl	OCH ₃	och ₃	CH	
	CH ₃	H	0	H	cyclopentyl	CH ₃	CH ₃	N	
25	CH ₃		0	H	cyclopentyl	CH ₃	och ₃	N	
	CH ₃	Н	0	H	cyclopentyl	OCH ₃	och ₃	N ·	•
	CH ₃	H	0	H	cyclopentyl	Cl	och ₃	CH	
	CH ₃	H	0	H	cyclopropyl	OCH ₃	OCH ₂ CH ₃	CH	
	CH ₃	H	0	H	cyclopropyl	cyclopropyl	OCH ₃	CH	
30	_	H	0	H	cyclopropyl	och ₃	CH(OCH ₃) ₂	CH	
30	CH ₃	H	0	H	cyclopropyl	NHCH ₃	OCH2CH3	H	
	CH ₃	H	0	H	cyclopropyl	инсн ₃	OCH ₃	Ħ	
	CH ₃	н	0	н	cyclopropyl	OCH ₃	OCH ₂ CH ₃	n	
	CH ₃	H	0	H	cyclopropyl	CH ₂ F	CH ₃	CH	
	•		•		•	_			

140 Table VIII

Compounds of Formula I where R is CH_3 and n^* is O

R. <u>J</u> <u>n</u> X <u>Y</u> <u>z</u> m.p.(°C) CH₃ CH3 1 CH₃ CH J-8 10 CH₃ OCH J-8 H 1 CH_q CH H OCH 1 CH₃ OCH₃ J-8 H H CH CH3 OCH₃ CH³ OCH₃ J-8 CH CH3 OCH₃ OCH₃ 1 J-8 n H CH₃ OCH₃ CH³ J-8 H 1 . 15 CH₃ CH2CH3 CH₃ J-8 H 1 CH H CH₃ осн₃ CH2CH3 CH J-8 H H 1 осн₃ OCH₃ CH2CH3 CH J-8 H осн₃ OCH₃ J-8 H H 1 CH2CH3 осн_з J-8 H 1 CH2CH3 CH₃. H 20 OCH₃ OCH₃ J-9 H H CH2CH2CH3 CH осн_з CH₃ OCH J-1 H CH H осн_з осн³ J-6 H H CH3 CH

25

5

30

Table IX

•							
5	R ₁	R ₂	R.	X	<u>x</u>	<u>z</u>	m.p.(°C)
	H	H	cyclopropyl	CH ₃	CH ₃	CH	154-157
	н	H	cyclopropyl	CH ₃	OCH ₃	CH	167-171
	н .	H	cyclopropyl	OCH ₃	OCH ₃	CH	165-168
10	н	H	cyclopropyl	CH ₃	CH ₃	M	
10	н	H	cyclopropyl	CH ₃	OCH ₃	M	146-148
	н	H	cyclopropyl	OCH ₃	och ₃	H	146-149
	н	H	cyclopropyl	Cl	OCH ₃	CH	122-125
	H	H	cyclobutyl	CH ₃	CH3	CH	
15	H	H	cyclobutyl	CH ₃	OCH ₃	CH	•
13	H	H	eyclobutyl	осн _з	OCH ₃	CH	
	H	H	eyclobutyl	CH3	CH ₃	Ħ	
	H	H	cyclobutyl	CH ₃	OCH ₃	H	
	н	н	cyclobutyl	оснз	och ₃	N	
20	H	H	cyclobutyl	Cl	осн ₃	CH	
20	н	H	2-fluorocyclopropyl	CH ₃	CH ₃	CH	
	H	H	2-fluorocyclopropyl	CH ₃	OCH ₃	CH	
	H	H	2-fluorocyclopropyl	OCH ₃	OCH ₃	CH	
	H	H	2-fluorocyclopropyl	CH ₃	CH ₃	N	
25	H	H	2-fluorocyclopropyl	CH ₃	OCH ₃	N	
	H	H	2-fluorocyclopropyl	осн	och ₃	N	
	н	H	2-fluorocyclopropyl	Cl	och ₃	CH	
	• н	H	2,2-difluorocyclopropyl	CH ₃	CH ₃	CH	
	Н	H	2,2-difluorocyclopropyl	CH ₃	OCH ₃	CH	
30	н	H	2,2-difluorocyclopropyl	och ₃	OCH ₃	CH	
	н	H	2,2-difluorocyclopropyl	CH ₃	CH ₃	N	
	н	H	2,2-difluorocyclopropyl		OCH ₃	N	•
	н	H	2,2-difluorocyclopropyl	•	OCH ₃	N	
	н	H	2,2-difluorocyclopropyl	Cl	och ₃	CH	

142 Table IX (cont.)

R_1	
H F eyelopropyl	
H F eyelopropyl	
H F cyclopropyl	
H	
H F eyelopropyl OCH ₃ OCH ₃ B H F eyelopropyl OCH ₃ OCH ₃ N H F eyelopropyl Cl OCH ₃ CH H F eyelobutyl CH ₃ OCH ₃ CH H F eyelobutyl OCH ₃ OCH ₃ CH H F eyelobutyl OCH ₃ OCH ₃ CH H F eyelobutyl OCH ₃ OCH ₃ CH H F eyelobutyl CH ₃ OCH ₃ CH H F eyelobutyl CH ₃ OCH ₃ N CH H F 2-fluorocyclopropyl CH ₃ OCH ₃ CH H F 2-fluorocyclopropyl CH ₃ OCH ₃ CH H F 2-fluorocyclopropyl CH ₃ OCH ₃ N 25 H F 2-fluorocyclopropyl CH ₃ OCH ₃ N CH H F 2-fluorocyclopropyl CH ₃ OCH ₃ N CH H F 2-fluorocyclopropyl CH ₃ OCH ₃ N CH H F 2-fluorocyclopropyl CH ₃ OCH ₃ N CH H F 2-fluorocyclopropyl CH ₃ OCH ₃ CH H F 2-fluorocyclopropyl CH ₃ OCH ₃ CH	
H	
H	
H	٠
H	
H F cyclobutyl OCH ₃ OCH ₃ CH H F cyclobutyl CH ₃ OCH ₃ H H F cyclobutyl OCH ₃ OCH ₃ H H F cyclobutyl OCH ₃ OCH ₃ H H F cyclobutyl Cl OCH ₃ OCH ₃ H 20 H F cyclobutyl Cl OCH ₃ CH H F 2-fluorocyclopropyl CH ₃ OCH ₃ CH H F 2-fluorocyclopropyl OCH ₃ OCH ₃ CH H F 2-fluorocyclopropyl OCH ₃ OCH ₃ CH H F 2-fluorocyclopropyl CH ₃ OCH ₃ H 25 H F 2-fluorocyclopropyl OCH ₃ OCH ₃ H H F 2-fluorocyclopropyl OCH ₃ OCH ₃ H H F 2-fluorocyclopropyl OCH ₃ OCH ₃ CH H F 2-fluorocyclopropyl CH ₃ OCH ₃ CH H F 2,2-difluorocyclopropyl CH ₃ OCH ₃ CH H F 2,2-difluorocyclopropyl CH ₃ OCH ₃ CH H F 2,2-difluorocyclopropyl OCH ₃ OCH ₃ CH	
H F cyclobutyl CH ₃ OCH ₃ N H F cyclobutyl OCH ₃ OCH ₃ N H F cyclobutyl Cl OCH ₃ CH H F 2-fluorocyclopropyl CH ₃ OCH ₃ N The second occupance	
H F cyclobutyl CH ₃ OCH ₃ N H F cyclobutyl OCH ₃ OCH ₃ N H F cyclobutyl Cl OCH ₃ CH H F 2-fluorocyclopropyl CH ₃ OCH ₃ N The second occupance	
H F cyclobutyl OCH ₃ OCH ₃ M H F cyclobutyl Cl OCH ₃ CH H F 2-fluorocyclopropyl CH ₃ OCH ₃ CH H F 2-fluorocyclopropyl OCH ₃ OCH ₃ CH H F 2-fluorocyclopropyl OCH ₃ OCH ₃ CH H F 2-fluorocyclopropyl CH ₃ OCH ₃ M E 2-fluorocyclopropyl CH ₃ OCH ₃ M H F 2-fluorocyclopropyl CH ₃ OCH ₃ M H F 2-fluorocyclopropyl CH ₃ OCH ₃ M H F 2-fluorocyclopropyl CH ₃ OCH ₃ CH H F 2,2-difluorocyclopropyl CH ₃ CH CH	
H F 2-fluorocyclopropyl CH ₃ CH ₃ CH H F 2-fluorocyclopropyl CH ₃ OCH ₃ CH H F 2-fluorocyclopropyl OCH ₃ OCH ₃ CH H F 2-fluorocyclopropyl CH ₃ OCH ₃ W H F 2-fluorocyclopropyl CH ₃ OCH ₃ W H F 2-fluorocyclopropyl OCH ₃ OCH ₃ W H F 2-fluorocyclopropyl CH ₃ OCH ₃ W H F 2-fluorocyclopropyl CH ₃ CH H F 2,2-difluorocyclopropyl CH ₃ CH H F 2,2-difluorocyclopropyl CH ₃ OCH ₃ CH H F 2,2-difluorocyclopropyl CH ₃ OCH ₃ CH	
H F 2-fluorocyclopropyl CH ₃ CH ₃ CH H F 2-fluorocyclopropyl CH ₃ OCH ₃ CH H F 2-fluorocyclopropyl OCH ₃ OCH ₃ CH H F 2-fluorocyclopropyl CH ₃ OCH ₃ H 25 H F 2-fluorocyclopropyl CH ₃ OCH ₃ H H F 2-fluorocyclopropyl CH ₃ OCH ₃ H H F 2-fluorocyclopropyl CH ₃ CH H F 2,2-difluorocyclopropyl CH ₃ CH H F 2,2-difluorocyclopropyl CH ₃ OCH ₃ CH H F 2,2-difluorocyclopropyl CH ₃ OCH ₃ CH H F 2,2-difluorocyclopropyl CH ₃ OCH ₃ CH	
H F 2-fluorocyclopropyl CH ₃ OCH ₃ CH H F 2-fluorocyclopropyl CCH ₃ OCH ₃ CH H F 2-fluorocyclopropyl CH ₃ CH ₃ M H F 2-fluorocyclopropyl CH ₃ OCH ₃ M H F 2-fluorocyclopropyl OCH ₃ OCH ₃ M H F 2-fluorocyclopropyl CCH ₃ CCH H F 2,2-difluorocyclopropyl CH ₃ CCH H F 2,2-difluorocyclopropyl CH ₃ OCH ₃ CCH H F 2,2-difluorocyclopropyl CCH ₃ OCCH ₃ CCH CCH CCH CCH CCH CCH CCH CCH	
H F 2-fluorocyclopropyl OCH ₃ OCH ₃ CH H F 2-fluorocyclopropyl CH ₃ OCH ₃ M H F 2-fluorocyclopropyl OCH ₃ OCH ₃ M H F 2-fluorocyclopropyl OCH ₃ OCH ₃ M H F 2-fluorocyclopropyl Cl OCH ₃ CH H F 2,2-difluorocyclopropyl CH ₃ CH H F 2,2-difluorocyclopropyl CH ₃ OCH ₃ CH H F 2,2-difluorocyclopropyl OCH ₃ OCH ₃ CH	
H F 2-fluorocyclopropyl CH ₃ OCH ₃ H H F 2-fluorocyclopropyl OCH ₃ OCH ₃ H H F 2-fluorocyclopropyl Cl OCH ₃ CH H F 2,2-difluorocyclopropyl CH ₃ CH ₃ CH H F 2,2-difluorocyclopropyl CH ₃ OCH ₃ CH H F 2,2-difluorocyclopropyl CH ₃ OCH ₃ CH	
H F 2-fluorocyclopropyl OCH ₃ OCH ₃ H H F 2-fluorocyclopropyl Cl OCH ₃ CH H F 2,2-difluorocyclopropyl CH ₃ CH H F 2,2-difluorocyclopropyl CH ₃ OCH ₃ CH H F 2,2-difluorocyclopropyl OCH ₃ OCH ₃ CH	
H F 2-fluorocyclopropyl OCH ₃ OCH ₃ H H F 2-fluorocyclopropyl Cl OCH ₃ CH H F 2,2-difluorocyclopropyl CH ₃ CH H F 2,2-difluorocyclopropyl CH ₃ OCH ₃ CH H F 2,2-difluorocyclopropyl OCH ₃ OCH ₃ CH	
H F 2,2-difluorocyclopropyl CH ₃ CH ₃ CH H F 2,2-difluorocyclopropyl CH ₃ OCH ₃ CH H F 2,2-difluorocyclopropyl OCH ₃ OCH ₃ CH	
H F 2,2-difluorocyclopropyl CH ₃ OCH ₃ CH H F 2,2-difluorocyclopropyl OCH ₃ OCH ₃ CH	
H F 2,2-difluorocyclopropyl OCH ₃ OCH ₃ CH	
H P 2,2-difluorocyclopropyl CH ₃ CH ₃ N	
H F 2,2-difluorocyclopropyl CH ₃ OCH ₃ N	
H F 2,2-difluorocyclopropyl OCH ₃ OCH ₃ N	
H F 2,2-difluorocyclopropyl Cl OCH CH	

- 35

143 Table IX (cont.)

5							n.p.
3	R	R ₂	<u>R'</u>	<u>X</u>	. X	<u>z</u>	(<u>.c</u>)
	H	CO2CH3	cyclopropy1	CH ₃	CH ₃	CH	
	H	CO2CH3	cyclopropyl	CH ₃	OCH ₃	CH	
	H	CO2CH3	cyclopropyl	осн ₃	OCH ₃	CH	
10	H	CO2CH3	cyclopropyl	CH ₃	CH ₃	H	
10	H	CO2CH3	cyclopropyl	CH ₃	OCH ₃	N	•
	H	CO2CH3	cyclopropyl	OCH ₃	OCH ₃	H	
	H	CO2CH3	cyclopropyl	C1	OCH3	CH	
	н	CO2CH3	cyclobutyl	CH ₃	CH ₃	CH	
15	H	CO2CH3	cyclobutyl	CH ₃	OCH ₃	CH	
	н	CO2CH3	cyclobutyl	och ₃	OCH ₃	CH	
	H	CO2CH3	cyclobutyl '	CH ₃	CH ₃	H	
	H	CO2CH3	cyclobutyl	CH ₃	OCH ₃	N	
	H	CO2CH3	cyclobutyl	оснз	OCH ₃	Ħ	
20	н	CO2CH3	cyclobutyl	Cl	OCH ₃	СН	
	н	CO2CH3	2-fluorocyclopropyl	CH ₃	СН3.	CH	
	H	CO2CH3	2-fluorocyclopropyl	CH ₃	OCH ³	CH	
	н	CO2CH3	2-fluorocyclopropyl	och ₃	OCH ₃	CH	
	н	CO2CH3	2-fluorocyclopropyl	CH ₃	CH ₃	N	
25	H	CO2CH3	2-fluorocyclopropyl	CH ₃	och ₃	Ħ	
	H	CO2CH3	2-fluorocyclopropyl	OCH ₃	OCH ₃	N	
	н	CO2CH3	2-fluorocyclopropyl	C1	OCH ₃	CH	
	H	CO2CH3	2,2-difluorocyclopropyl	CH ₃	CH ₃	CH	
	н	CO2CH3	2,2-difluorocyclopropyl	CH ₃	och ₃	CH	
30	Н	CO2CH3	2,2-difluorocyclopropyl	OCH ₃	OCH ₃	CH	
	Н	CO2CH3	2,2-difluorocyclopropyl	CH ₃	CH ₃	M	
	H	CO2CH3	2,2-difluorocyclopropyl	CH ₃	OCH ³	N N	
	н	CO2CH3	2,2-difluorocyclopropyl	OCH ₃	OCH ₃	CH	
	н	CO ₂ CH ₃	2,2-difluorocyclopropyl	C1	OCH ₃	CH	

144
Table IX (cont.)

_	•						
5	<u>R</u> 1	R ₂	R'	<u>x</u>	<u>¥</u>	<u>z</u>	m.p. (°C)
	H	H	cyclopropyl	H	сн ₃	СН	
	H	H	cyclopropyl	H	OCH ₃	CH	
	H	H	cyclopropyl	CH ₃	OCH ₂ CH ₃	CH	
10	H	H	cyclopropyl	CH ³	OCH(CH ₃) ₂	СН	
20	H.	H	cyclopropyl	н	OCH ₃	M	•
•	H	Ħ	cyclopropyl	осн	OCH ₂ CH ₃	CH	
	H	H	cyclopropyl	CH ₂ F	CH ³	CH	
	'H	H	cyclopropyl	CH ₂ F	OCH ₃	CH	
15	H	H	cyclopropyl	ocf ₂ H	CH ₃	CH	
	H	H	cyclopropyl	ocf ₂ H	OCH ₃	CH	
	H	H	cyclopropyl	OCH ₂ CF ₃	OCH ₃	ĸ	
	H	н	cyclopropyl	SCH ₃	OCH ₃	CH	
	H	H	cyclopropyl	OCH ₃	инсн ₃	H	
20	H	H	cyclopropyl	OCH ₂ CH ₃	NHCH ₃	n	
	H	H	cyclopropyl	OCH ₃	OCH ₂ CH ₃	n	
	H	H	cyclopropyl	SCF ₂ H	OCH ₃	CH	
	H	H	cyclopropyl	Br	OCH ₃	CH	
	H	H	cyclopropyl	CH ₂ OCH ₃	OCH ₃	CH	
25	H	H	cyclopropyl	CH ₂ OCH ₃	CH ₃	H	
•	H	H	cyclopropyl	MH ₂	och ³	H	
	H	H	cyclopropyl	N(CH ₃) ₂	OCH ₃	M	
	H	H	cyclopropyl	NHCH ₃	MHCH ₃	H	
	H	H	cyclopropyl	cyclopropyl	OCH ₃	CH	
30	H	H	cyclopropyl	cyclopropyl	CH3	M	
	H	H	cyclopropyl	cyclopropyl	CH ₃	. CH	
	H	H	cyclopropyl	cyclopropyl	OCH ₃	H	
	H	H	cyclopropyl	CH ₃	CH(OCH ₃) ₂	CH	
	H	Н	cyclopropyl	CF ₃	осн ₃	CH	
35	H	H	cyclopropyl	осн	С≣СН	CH	

Table X

5			•				m.p.
	$\frac{R_1}{2}$	R ₂	<u>R*</u>	<u>x</u>	<u>¥</u> .	<u>z</u>	(°C)
	н	H	cyclopropyl	CH ₃	CH ₃	СН	
	н	H	cyclopropyl	CH ³	OCH ₃	CH	
	н	H	cyclopropyl	OCH ₃	OCH ₃	CH	
10 ′	H	H	cyclopropyl	CH3	CH ₃	H	
	H	H	cyclopropyl	CH3	OCH ₃	Ħ	
	H	H	cyclopropyl	OCH ₃	OCH ₃	H	
•	н	H	cyclopropyl	Cl	OCH ₃	CH	
	H	H	cyclobutyl	CH ³	CH ³	CH	•
15	H	н	cyclobutyl	CH3	OCH ₃	СН	
	н	H	cyclobutyl	och ₃	OCH ₃	СН	•
	H	H	cyclobutyl	CH3	CH ₃ .	M	
	H	H	cyclobutyl	CH ₃	OCH ₃	Ħ	
	H	H	cyclobutyl	OCH ₃	OCH ₃	H	
20	н	H	cyclobutyl	C1	OCH ₃	CH	
	H	H	2-fluorocyclopropyl	CH ³	CH ₃	CH	
	H	H	2-fluorocyclopropyl	CH ₃	OCH ₃	CH	
	н	H	2-fluorocyclopropyl	OCH ₃	OCH ₃	CH	
	н	H	2-fluorocyclopropyl	CH ₃	CH ₃	H	
25	H	H	2-fluorocyclopropyl	CH3	OCH ₃	H	
	H	H	2-fluorocyclopropyl	OCH ₃	OCH ₃	Ħ	
	H	H	2-fluorocyclopropyl	Cl	OCH ₃	CH	
	H	H	2,2-difluorocyclopropyl	CH ₃	CH ₃	CH	
	H	H	2,2-difluorocyclopropyl	CH ₃	OCH ₃	СН	
30	H .	H	2,2-difluorocyclopropyl	OCH ₃	осн	CH	
	H	H	2,2-difluorocyclopropyl	CH ₃	CH ₃	N	
	H	н	2,2-difluorocyclopropyl	CH3	OCH ₃	N	
	н	Ħ	2,2-difluorocyclopropyl	OCH ₃	осн	H	•
	H	н	2,2-difluorocyclopropyl	C1	осн	СН	

146
Table X (cont.)

5	<u> P1</u>	<u>R</u> 2	<u>R*</u>	<u>x</u> .	<u>¥</u>	<u>z</u>	m.p. (°C)
	H	CO2CH3	cyclopropyl	CH ₃	CH ₃	CH	
•	H.	CO2CH3	cyclopropyl	CH ₃	OCH ₃	CH	
	H.	CO_CH3	cyclopropyl	оснз	OCH ₃	CH	
10	H	CO2CH3	cyclopropyl	CH3	CH ₃	H	
	· H ·	CO2CH3	cyclopropyl	CH ₃	OCH ₃	N	
	H	CO ₂ CH ₃	cyclopropyl	OCH ₃	OCH ₃	ĸ	
	H	CO_CH3	cyclopropyl	Cl	OCH ₃	CH	
	H	CO2CH3	cyclobutyl	CH ₃	CH ₃	CH	
15	H	CO_CH3	cyclobutyl	CH ₃	OCH ₃	CH	
	H	CO_CH3	cyclobutyl	OCH ₃	OCH ₃	CH	
	H	CO2CH3	cyclobutyl	CH3	CH ₃	M	
	H	CO ₂ CH ₃	cyclobutyl	CH ₃	OCH ₃	M	
	H	CO_CH3	cyclobutyl	OCH ₃	och ³	Ħ	
20	н	CO2CH3	cyclobutyl	Cl	OCH ₃	CH	
	H	CO2CH3	2-fluorocyclopropyl	CH ₃	CH3	CH	
•	H	CO2CH3	2-fluorocyclopropyl	CH ₃	OCH ₃	CH	
•	H	CO2CH3	2-fluorocyclopropyl	OCH ₃	OCH ₃	CH	
	H	CO ₂ CH ₃	2-fluorocyclopropyl	CH ₃	CH ₃	Ħ	
25	H	CO2CH3	2-fluorocyclopropyl	CH ₃	OCH ₃	H	
	H	CO2CH3	2-fluorocyclopropyl	OCH ₃	OCH ₃	N	
	H	CO2CH3	2-fluorocyclopropyl	Cl	OCH ³	CH	
	H	CO ₂ CH ₃	2,2-difluorocyclopropyl	CH ₃	CH3	CH	
	H	CO ₂ CH ₃	2,2-difluorocyclopropyl	CH ₃	осн _з	CH	
30	H	CO2CH3	2,2-difluorocyclopropyl	OCH ₃	OCH ³	CH	
	H	CO ₂ CH ₃	2,2-difluorocyclopropyl	CH ₃	CH ₃	H	
	Ħ	CO ₂ CH ₃	2,2-difluorocyclopropyl	CH ₃	OCH ₃	H	
	H	CO2CH3	2,2-difluorocyclopropyl	осн ₃	OCH ₃	N	
	H	CO ₂ CH ₃	2,2-difluorocyclopropyl	Cl	OCH ₃	CH	

147
Table X (cont.)

5	R	R.		_	••	_	m.p.
	<u>R</u> 1	<u>R</u> 2	<u>R*</u>	<u>X</u>	Ā	<u>Z</u>	(°C)
	H	CH ₂ F	cyclopropyl	CH3	CH ₃	CH	•
	H	CH ₂ F	cyclopropyl	CH ₃	OCH ₃	CH	
	H	CH ₂ F	cyclopropyl	OCH ₃	OCH ³	CH	
10'	H	CH ₂ F	cyclopropyl	CH3	CH ₃	H	
	H	CH ₂ F	cyclopropyl	CH ³	OCH ₃	N .	
	H	CH ₂ F	cyclopropyl	осн	OCH ₃	H	
	H	CH ₂ F	cyclopropyl	Cl	OCH ₃	CH	
•	H	CH ₂ F	cyclobutyl	CH3	CH ₃	CH	
15	н	CH ₂ F	cyclobutyl	CH ₃	OCH ₃	CH	
13	H	CH ₂ F	cyclobutyl	OCH ₃	OCH ₃	CH	
	H	CH ₂ F	eyclobutyl	CH ₃	CH ₃	H	
	H	CH ₂ F	cyclobutyl	CH ₃	OCH ₃	N	
	H	CH ₂ F	cyclobutyl	осн ₃	OCH ₃	N	
20	· H	CH ₂ F	cyclobutyl	Cl	OCH ₃	CH	
	H	CH ₂ F	2-fluorocyclopropyl	CH ₃	CH ₃	, CH	
	H	CH ₂ F	2-fluorocyclopropyl	CH ₃	och ₃	CH	
	н	CH ₂ F	2-fluorocyclopropyl	och ₃	OCH ₃ .	CH	
	H	CH ₂ F	2-fluorocyclopropyl	CH ₃	CH ₃	Ħ	
25	н	CH ₂ F	2-fluorocyclopropyl	CH ₃	OCH ₃	N	
23	н	CH ₂ F	2-fluorocyclopropyl	осн ₃	OCH ₃	. N	
	H	CH ₂ F	2-fluorocyclopropyl	Cl	och ₃	CH	
	н	CH ₂ F	2,2-difluorocyclopropyl	CH ₃	CH ₃	CH	
	H	CH ₂ F	2,2-difluorocyclopropyl	CH ₃	och ₃	CH	
30	н	CH ₂ F	2,2-difluorocyclopropyl	OCH ₃	OCH ₃	CH	
	н	CH ₂ F	2,2-difluorocyclopropyl	CH ₃	CH ₃	N	
	н	CH ₂ F	2,2-difluorocyclopropyl	CH ₃	och ₃	N	
	H	CH ₂ F	2,2-difluorocyclopropyl	OCH ₃	оснз	Ħ	
	H	CH ₂ F	2,2-difluorocyclopropyl	Cl	осн	CH	
		_		•			

<u>Table XI</u>

5	_	_					m.p.
	. <u>R1</u>	R ₂	<u>R*</u>	<u>x</u>	<u>¥</u>	<u>z</u>	(°C)
	H	H	cyclopropyl	CH ₃	CH ³	CH	
	H	H	cyclopropyl	CH ₃	OCH	. CH	
	H	H	cyclopropyl	OCH ₃	OCH,	CH	
10	Ħ	H	cyclopropyl	CH ³	CH ³	n	
	H	H	cyclopropyl	CH ³	OCH ₃	Ħ	
	H.	H	cyclopropyl	OCH ₃	OCH ₃	H	
	H	H	cyclopropyl	Cl	OCH ₃	CH	
	H	H	cyclobutyl	CH ₃	CH ³	CH	
15	H	H	cyclobutyl	CH-3	OCH ₃	CH	
	H	H	cyclobutyl	OCH ₃	осн	CH	
	H	H	cyclobutyl	CH ₃	CH3	Ħ	
	H	H	cyclobutyl	CH3	OCH3	Ħ	
	H	H	cyclobutyl	OCH ₃	OCH ₃	H	
20	H	H	cyclobutyl	C1	OCH ₃	CH	
•	H.	H	2-fluorocyclopropyl	CH ₃	CH ³	CH	
	H .	H	2-fluorocyclopropyl	CH ₃	OCH ₃	CH	
	H	H,	2-fluorocyclopropyl	OCH ³	OCH ₃	CH	
	H	Ħ	2-fluorocyclopropyl	CH ₃	CH3	H	
25	H	H	2-fluorocyclopropyl	CH ₃	OCH ₃	M	
	H	н	2-fluorocyclopropyl	OCH ₃	OCH ³	M	
	H	H	2-fluorocyclopropyl	Cl	OCH 3	CH	
	H	H	2,2-difluorocyclopropyl	CH3	CH3	CH	
	H	H	2,2-difluorocyclopropyl	CH ₃	OCH ₃	CH	
30	H	H	2,2-difluorocyclopropyl	OCH ₃	OCH ³	CH	
	H	H	2,2-difluorocyclopropyl	CH ₃	CH ³	H	
	H	H	2,2-difluorocyclopropyl	CH ₃	OCH ₃	N	•
	H	H .	2,2-difluorocyclopropyl	OCH ₃	OCH ₃	Ħ	
	H	H	2,2-difluorocyclopropyl	Cl	OCH ₃	CH	

149
Table XI (cont.)

5							m.p.
3	R ₁	<u>R₂</u>	<u>R*</u>	<u>x</u>	<u>Y</u>	<u>z</u>	(°C)
	H	SOZH(CH3)2	cyclopropyl	CH ₃	CH ₃	CH	
	H	SON(CH3)2	cyclopropyl	CH ₃	OCH ₃	CH	
•	н	SON (CH3)2	cyclopropyl	OCH ₃	OCH ₃	CH	
10 ,	H	SON(CH3)2	cyclopropyl	CH ₃	CH ₃	H	
,	Ħ	SO2N(CH3)2	cyclopropyl	CH3	OCH ₃	n	
	H	SO2N(CH3)2	cyclopropyl	OCH ₃	OCH ₃	H	
	H	SO2N(CH3)2	cyclopropyl	Cl	OCH ₃	CH	
	H	SO2H(CH3)2	cyclobutyl	CH ₃	CH ₃	CH	
15	H	SO2N(CH3)2	cyclobutyl	CH ₃	OCH ₃	CH	
	H	SO2N(CH3)2	cyclobutyl	OCH ₃	OCH ₃	CH	
	H	SO2N(CH3)2	cyclobutyl	CH ₃	CH ₃	H	
	H	SO2N(CH3)2	cyclobutyl	CH ₃	OCH ₃	H	
	H	SO2N(CH3)2	cyclobutyl .	OCH ₃	OCH ₃	H	
20 .	H	SO2N(CH3)2	cyclobutyl	C1	OCH ³	CH	
	H	SO2N(CH3)2	2-fluorocyclopropyl	CH ₃	CH3.	CH	
	H	SO2N(CH3)2	2-fluorocyclopropyl	CH ₃	och ₃	CH	
	H	so ₂ n(cH ₃) ₂	2-fluorocyclopropyl	OCH ₃	OCH ₃	CH	
-	H	SO2N(CH3)2	2-fluorocyclopropyl	CH ₃	CH ₃	N	
25	H	so2N(CH3)2	2-fluorocyclopropyl	CH ₃	OCH ³	n	1
	H	SO2N(CH3)2	2-fluorocyclopropyl	OCH ₃	OCH ₃	N	
	Ĥ	so2N(CH3)2	2-fluorocyclopropyl	C1	OCH ₃	CH	•
	н	SO2N(CH3)2	2,2-difluorocyclopropyl	CH ₃	CH ₃	CH	
	H	SO2N(CH3)2	2,2-difluorocyclopropyl	CH ₃	OCH ₃	CH	
30	Н	SO2N(CH3)2		och ₃	OCH ₃	CH	
	н	so ₂ n(cH ₃) ₂	2,2-difluorocyclopropyl	CH ₃	CH ₃	n	
	H	so2N(CH3)2	2,2-difluorocyclopropyl	CH3	OCH ₃	N	
	н	SO2H(CH3)2	2,2-difluorocyclopropyl	OCH ₃	OCH ₃	N	
	н	SO2N(CH3)2	2,2-difluorocyclopropyl	Cl	OCH ₃	CH	-

150
Table XI (cont.)

5 -	_	_					m.p.
•	<u>R</u> 1	R ₂	<u>R*</u>	<u>x</u>	<u>¥</u>	<u>z</u>	(°C)
	H	CH ₂ CN	cyclopropyl	CH ₃	CH ₃	CH	
	H	CH ₂ CN	cyclopropyl	CH ³	OCH	CH	
	H	CH ₂ CN	cyclopropyl	OCH ₃	OCH ₃	CH	
10	H	CH ₂ CN	cyclopropyl	CH3	CH3	M	
	H	CH ₂ CH	cyclopr op yl	CH ³	OCH ³	Ħ	
	H	CH ₂ CN	eyclopropyl	OCH ₃	OCH ³	Ħ	
	H	CH ₂ CN	cyclopropyl	Cl	осн	CH	
	H	CH ₂ CN	cyclobutyl .	CH ³	CH ₃	СН	
15	H	CH ₂ CN	cyclobutyl	CH ³	OCH ₃	CH	
	H	CH ₂ CN	cyclobutyl	OCH	OCH ₃	CH	
	H	CH ₂ CN	cyclobutyl	CH3	CH ₃	Ħ	
	H	CH ₂ CN	cyclobutyl	CH ₃	OCH ₃	Ħ,	•
	H	CH ₂ CH	cyclobutyl	OCH ³	OCH ³	H	
20	H	CH ₂ CN	cyclobutyl	Cl	OCH ₃	CH	
	H	CH ₂ CN	2-fluorocyclopropyl	CH ₃	CH ₃	ĊH	
·	H	CH ₂ CN	2-fluorocyclopropyl	CH ³	осн	CH	
	H	CH ₂ CN	2-fluorocyclopropyl	осн	OCH ₃	CH	
	H	CH ₂ CN	2-fluorocyclopropyl	CH ₃	CH ₃	Ħ	
25	H	CH ₂ CN	2-fluorocyclopropyl	CH ₃	OCH ₃	H	
	H	CH ₂ CN	2-fluorocyclopropyl	OCH.	OCH ₃	M	
	H	CH ₂ CN	2-fluorocyclopropyl	Cl	OCH ₃	CH	
	H	CH ₂ CN	2,2-difluorocyclopropyl	CH ₃	CH ₃	CH	
	H	CH ₂ CN	2,2-difluorocyclopropyl	CH ³	OCH ₃	CH	
30	H	CH ₂ CN	2,2-difluorocyclopropyl	осн ₃	och ₃	CH	
	H	CH ₂ CH	2,2-difluorocyclopropyl	CH ₃	CH3	H	
	H	CH ₂ CN	2,2-difluorocyclopropyl	CH ₃	OCH ₃	H	
	H	CH ₂ CN	2,2-difluorocyclopropyl	OCH ₃	OCH ₃	Ħ	
	H	CH ₂ CN	2,2-difluorocyclopropyl	Cl	OCH ₃	CH	•

Table XII

5	R ₁		R ₂			•		m.p.
		<u>n</u>		R'	X	Ā	<u>z</u>	(•c)
	H	0	H	cyclopropyl	CH ₃	CH ₃	CH	
	H	0	H	cyclopropyl	CH ₃	OCH ₃	CH	
	H	0	H	cyclopropyl	OCH ₃	OCH ₃	CH	
10 ′	H	0	H	cyclopropyl	CH ₃	CH ₃	H	
	H	0	H	cyclopropyl	CH3	OCH ₃	H	
	H	0	H	cyclopropyl	OCH3	OCH ₃	H	
	H	0	H	cyclopropyl	Cl	OCH ₃	CH	
	H	0	H	cyclobutyl	CH ₃	CH ₃	CH	•
15	H	0	H	cyclobutyl	CH ₃	OCH ₃	CH	
	H	0	H	cyclobutyl	OCH ₃	OCH ₃	CH	
	H .	0	H	cyclobutyl	CH ₃	CH ₃	H	
	H	0	H	cyclobutyl	CH3	OCH ₃	Ħ	
	H	0	H	cyclobutyl	OCH ₃	OCH ₃	N	
20	H	0	H	cyclobutyl	Cl	OCH ₃	CH	•
20	H	0	H	cyclopentyl	CH ₃	CH ₃	CH	•
	H	0	Н	cyclopentyl	CH ₃	OCH ₃	CH	
	H	0	H:	cyclopentyl	OCH ₃	OCH ₃	СН	
	· H	0	н	cyclopentyl	CH ₃	CH ₃	M	
25	H	0	H	cyclopentyl	CH ₃	OCH ₃	N	
23	H	0	н	cyclopentyl	OCH ₃	OCH ₃	N	
	H	0	н	cyclopentyl	Cl	OCH ₃	CH	
	H	0	н	2-fluorocyclopropyl	CH ₃	CH ₃	CH	
	н	0	н	2-fluorocyclopropyl	CH ₃	OCH ₃	СН	
30	н	0	H	2-fluorocyclopropyl	OCH ₃	OCH ₃	СН	
30	н	0	н	2-fluorocyclopropyl	CH3	· CH ₃	H	
	н	0	н	2-fluorocyclopropyl	CH3	осна	N	
	н	0	н	2-fluorocyclopropyl	OCH ₃	OCH ₃	N	
	н		н	2-fluorocyclopropyl	Cl	OCH ₃	СН	
				_		3		

152 Table XII (cont.)

5	R ₁		R.		_		_	m.p.
	_	n	<u>R</u> 2	<u>R'</u>	X	<u>¥</u>	<u>Z</u>	(°C)
	H	0	CI	cyclopropyl	CH ₃	CH ₃	CH	
	H	0	Cl	cyclopropyl ·	CH3.	OCH ₃	CH	
	H	0	Cl	cyclopropyl	OCH ³	OCH ³	CH	
10	H	0	Cl	cyclopropyl	CH ₃	CH ₃	H	
	H	0	Cl	cyclopropyl	CH ₃	OCH ³	H	
	H	0	Cl	cyclopropyl	OCH ₃	OCH ₃	Ħ	
	H	0	Cl	cyclopropyl	Cl	OCH ₃	CH	
•	H	0	Cl	cyclobutyl	CH ₃	CH ₃	CH	
15	H	0	Cl	cyclobutyl	CH ₃	OCH ₃	CH	
- :	H	Ö	Cl	cyclobutyl	OCH ₃	OCH ₃	CH	
	H	0	Cī	cyclobutyl	CH ₃	CH ₃	H	
	H	0	Cl	cyclobutyl	CH ₃	OCH ₃	H	
	H	0	Cl	cyclobutyl	OCH ₃	OCH ₃	M	
20	H	0	Cl	cyclobutyl	CI	OCH ₃	CH	
	H	0	Cl	cyclopentyl	CH ₃	CH ₃	CH	
	H	0	Cl	cyclopentyl	CH ₃	OCH ³	CH	
	H	0	Cl	cyclopentyl	OCH ₃	OCH ₃	CH	
<u>.</u>	H	0	Cl	cyclopentyl	CH ₃	CH ₃	H	
25	H	0	Cl	cyclopentyl	CH ³	OCH ₃	Ħ	
	H	0	Cl	cyclopentyl	OCH ₃	OCH ₃	H	
	H	0	Cl	cyclopentyl	Cl	OCH ₃	CH	
	H	0	CI	2-fluorocyclopropyl	CH ₃	CH ₃	CH	
	H	0	Cl	2-fluorocyclopropyl	CH ₃	OCH ₃	CH	
30	н	0	Cl	2-fluorocyclopropyl	OCH ₃	OCH ₃	СН	
30	. H	0	Cl	2-fluorocyclopropyl	CH ₃	CH ₃	H	
	н	0	Cl	2-fluorocyclopropyl	CH ₃	OCH ₃	H	
	н	0	Cl	2-fluorocyclopropyl	OCH ₃	OCH ₃	H	
•	н	0	CI	2-fluorocyclopropyl	C1	OCH ₃	CH	
						•		

153
Table XII (cont.)

5								m.p.
.	R ₁	n	<u>R</u> 2	<u>R'</u>	<u>x</u>	<u>x</u>	<u>z</u>	(°C)
	н	0	CH ₂ CH ₃	cyclopropyl .	CH ₃	CH ₃	CH	
	H	0	CH2CH3	cyclopropyl	CH ₃	och ₃	CH	
	H	0	CH2CH3	cyclopropyl	OCH ₃	OCH ₃	CH	
10	H	0	CH ₂ CH ₃	cyclopropyl	CH3	CH ₃	N	
10	H	0.	CH2CH3	eyclopropyl	CH ₃	OCH ₃	H	
	H	0	CH2CH3	cyclopropyl	OCH ₃	OCH ₃	R	
	H	0	CH2CH3	cyclopropyl	C1	OCH ₃	CH	
	H	0	CH ₂ CH ₃	cyclobutyl	CH3	CH3	CH	
15	H	0	CH ₂ CH ₃	cyclobutyl	CH ₃	OCH ₃	CH	
23	H	0	CH ₂ CH ₃	cyclobutyl	OCH ₃	OCH ₃	CH	
÷ .	H	0	CH ₂ CH ₃	cyclobutyl	CH ₃	CH ₃	H	
	H	0	CH ₂ CH ₃	cyclobutyl	CH ₃	OCH ₃	H	
	H	0	CH ₂ CH ₃	cyclobutyl	OCH ₃	OCH ₃	N	
20	H	0	CH ₂ CH ₃	cyclobutyl	Cl	OCH ₃	CH	
	H _.	0	CH ₂ CH ₃	cyclopentyl	CH ₃	Сн ₃	CH	
	H	0	CH ₂ CH ₃	cyclopentyl	CH ₃	OCH ₃	CH	
. •	H	0	CH ₂ CH ₃	cyclopentyl	OCH ₃	OCH ₃	CH	
-	н	0	CH ₂ CH ₃	cyclopentyl	CH ₃	CH ₃	N	
25	H	0	CH2CH3	cyclopentyl	CH ₃	OCH ₃	N	
	Н	0	CH ₂ CH ₃	cyclopenty1	OCH ₃	OCH ₃	N	
	H	0	^{СН} 2 ^{СН} 3	cyclopentyl	C1	OCH ₃	CH CH	
	H	0	CH ₂ CH ₃	2-fluorocyclopropyl	CH ₃	CH ₃	CH	
	H	0	CH ₂ CH ₃	2-fluorocyclopropyl	CH ₃	OCH ³	CH	
30	H	0	CH ₂ CH ₃	2-fluorocyclopropyl	OCH ₃	OCH ₃	n	
	н	0	CH ₂ CH ₃	2-fluorocyclopropyl	CH ₃	CH ₃		
	. H	0	CH ₂ CH ₃	2-fluorocyclopropyl	CH ₃	OCH ³		
	н	0	CH ₂ CH ₃	2-fluorocyclopropyl	OCH ₃	OCH ³		ı
	н	0	CH ₂ CH ₃	2-fluorocyclopropyl	C1	OCH ₃	, Cn	•

154 Table XII (cont.)

5								
	<u>R</u> 1	<u>n</u>	R ₂	<u>R*</u>	<u>x</u>	<u>¥</u>	<u>z</u>	m.p. (°C)
	H	0	OCHF ₂	cyclopropyl	CH ₃	CH ₃	CH	•
	H	0	OCHF ₂	cyclopropyl	CH.	OCH ₃	CH	
	H	0	OCHF ₂	cyclopropyl	OCH ₃	OCH ₃	CH	
10	H	0	OCHF ₂	cyclopropyl	CH.3	CH ₃	Ħ	
	H	0	OCHF ₂	cyclopropyl	CH ³	OCH ³	N	
	H	0	OCHF ₂	cyclopropyl	OCH ₃	OCH ₃	Ħ	-
•	H	0	OCHP ₂	cyclopropyl	Cl	OCH ₃	CH	
•	H	.0	OCHF ₂	cyclobutyl	CH ³	CH3	CH	
15	H	0	OCHF ₂	cyclobutyl	CH ₃	OCH ₃	CH	
	H	0	OCHF ₂	cyclobutyl	OCH ₃	OCH ₃	CH	
	H	0	OCHF ₂	cyclobutyl	CH ₃	CH ₃	N	
	H	0	OCHF ₂	eyelobutyl	CH3	OCH ³	H	
	H	0	OCHF ₂	cyclobutyl	осн ₃	OCH ³	H	
20	H	0	OCHF ₂	cyclobutýl	Cl	OCH ₃	CH	
	H	0	OCHF ₂	cyclopentyl	CH ³	CH ₃	CH	
	H	0	OCHF ₂	cyclopentyl	CH ³	OCH ₃	CH	
	H.	0	OCHF ₂	cyclopentyl .	OCH ³	OCH ₃	CH	
	H	0	OCHF ₂	cyclopentyl	CH ₃	CH ₃	H	
25	H	0	OCHF ₂	cyclopentyl	CH ₃	OCH ₃	n	
.7.	H	0	ochr ₂	cyclopentyl	OCH ₃	OCH ₃	H	
	H	0	OCHF ₂	cyclopentyl	Cl	OCH ₃	CH	
•	H	0	OCHF ₂	2-fluorocyclopropyl	CH ₃	CH ³	CH	
	H	0	OCHF ₂	2-fluorocyclopropyl	CH ³	OCH ₃	CH	
30	H	0	ochr ₂	2-fluorocyclopropyl	OCH ₃	OCH ₃	CH	
	H	0	OCHF ₂	2-fluorocyclopropyl	CH ₃	CH ₃	Ħ	
	H	0	OCHF ₂	2-fluorocyclopropyl	CH ³	OCH ₃	H	
	H	0	OCHF ₂	2-fluorocyclopropyl	OCH ₃	OCH ₃	H	
	H	0	OCHF ₂	2-fluorocyclopropyl	C1	OCH ₃	CH	

155
Table XII (cont.)

5	R ₁	<u>n</u>	R ₂	R*	X	<u>¥</u>	<u>z</u>	m.p. (°C)
	н	0	CN	cyclopropyl	CH ₃	CH ₃	CH	
	н	0	CN	cyclopropyl	CH ₃	OCH ₃	СН	
	н	0	CN	cyclopropyl	OCH ₃	OCH ₃	CH	
10	н	0	CN	cyclopropyl	CH ₃	CH ₃	H	
10	н	0	CN	cyclopropyl	CH ₃	OCH ₃	M	
	н	0	CN	cyclopropyl	OCH ₃	OCH ₃	N	
	H,	0	CN	cyclopropyl	Cl	OCH ₃	CH	
	H	0	CN	cyclobutyl	CH ₃	CH ₃	СН	
15	н	0	CN	cyclobutyl	CH ₃	OCH ₃	CH	
13	н	0	CN	cyclobutyl	OCH ₃	OCH ₃	CH	
	H	0	CN	cyclobutyl	CH ₃	CH ₃	Ħ	
	н	0	CN	cyclobutyl	CH ₃	OCH ₃	H	
	н	0	CN	cyclobutyl	осн	осн ₃	N	
20	H	0	CN	cyclobutyl	Cl	OCH ₃	CH	
	H	0	CN	cyclopentyl	CH ₃	CH ₃	CH	
	H	0	CN	cyclopentyl	CH ₃	OCH ₃	CH	
	H	0	CN	cyclopentyl	OCH ₃	OCH ₃	CH	
	H	0.	CN	cyclopentyl	CH ₃	CH ₃	n	
25	н	0	CN	cyclopentyl	CH ₃	OCH ₃	H	
	H	0	CN	cyclopentyl	осн ₃	OCH ₃	N	
	H	0	CN	cyclopentyl	Cl	OCH ₃	CH	
	H	0	CN	2-fluorocyclopropyl	CH ₃	CH3	CH	
	H	0	CN	2-fluorocyclopropyl	CH3	OCH ₃	CH	
30	H	0	CN	2-fluorocyclopropyl	OCH ₃	осн ₃	CH	
	H	0	CN	2-fluorocyclopropyl	CH ₃	CH3	N	
	H	0	CN	2-fluorocyclopropyl	CH ₃	och,	N	
	H	0	CN	2-fluorocyclopropyl	OCH ₃	och ₃	N	
	н	0	CN	2-fluorocyclopropyl	Cl	och ₃	СН	

156
Table XII (cont.)

· 5	<u>R</u> 1		<u>R</u> 2	<u>R*</u>	K	<u>¥</u>	7	m.p.(°C)
	_	<u>n</u>					<u>z</u>	ш.р.(с)
	H	0	CH3		CH ₃	CH ₃	CH	
	H	0	3		CH3	OCH ₃	CH	
	H	0	CH ₃	CH ₃	OCH ₃	OCH ₃	CH	
10	H	0	CH3	CH ₃	CH ₃	CH ₃	H	
10	H	0	CH ₃	CH ₃	CH ₃	OCH ₃	H	
•	H	0	CH ₃	CH ₃	OCH ₃	OCH ₃	Ħ	
	H	0	CH ₃	CH ₃	Cl	OCH ₃	CH	•
	H	0	CH ₃		CH3	CH ₃	CH	
	H	0		CH ₂ CH ₃	CH ₃	OCH ₃	CH	
15	H	0	CH ₃		OCH ₃	OCH ₃	CH	
	H	0	CH ₃		CH ₃	CH ₃	H	•
	H	0			CH ₃	OCH ₃	H	
	H	0		CH ₂ CH ₃	OCH ₃	OCH ₃	N	•
	H	0	CH ₃	CH ₂ CH ₃	Cl	OCH ₃	CH	
20	H	0	CH ₃		CH ₃	CH ₃	CH	•
•	H	0			CH ₃	OCH ³	CH	
	H	0		CH ₂ CH ₂ CH ₃	OCH ₃	OCH ₃	CH	
	H	0		CH ₂ CH ₂ CH ₃	CH ³	CH3	N	
	H	0		CH ₂ CH ₂ CH ₃	CH3	OCH ₃	N	
25	н	0	CH ₃		OCH ₃	OCH ³	Ħ	
	H	0		CH2CH2CH3	Cl	OCH ₃	CH	•
	н	0		CH2CH2CH2CH3	CH ₃	CH ₃	CH	
	н	0	_	CH2CH2CH2CH3	CH ₃	OCH ₃	CH	
	H	0	_		OCH ₃	OCH ₃	CH	
30	н -	0	CH3	CH2CH2CH2CH3		CH ₃	Ħ	
	н	0		CH2CH2CH2CH3	CH ₃	OCH ₃	H	
	H	0	_	CH2CH2CH2CH3		OCH ₃	Ħ	
	н	0	_	CH2CH2CH2CH3	C1	OCH ₃	CH	
			3	2 2 2 3		J		

157
Table XII (cont.)

5	R ₁	<u>n</u>	<u>R</u> 2	<u>R*</u>	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
	н	0		CH ₃	CH ₃	CH ₃	СН	
	н	0	OCH ₃	CHa	CH ₃	OCH ₃	CH	
	н	0	OCH ₃	CH ₃	OCH ₃	OCH ₃	СН	•
	н	0	OCH ³	CH ₃	CH ₃	CH3	N	
10 ′	H	0	OCH ³	CH ₃	CH ₃	OCH ₃	N	
	н	0	OCH3	CH ₃	осн ₃	оснз	N	
	н	0	OCH ₃	CH ₃	C1	OCH ₃	CH	
	H	0	OCH ₃	_	CH ₃	CH ₃	СН	
•	H	0		CH ₂ CH ₃	CH ₃	осн	CH	
15	H	0		CH ₂ CH ₃	OCH ₃	OCH3	CH	
	H	0	_	CH ₂ CH ₃	CH ₃	CH ₃	H	
	H	0	_	CH ₂ CH ₃	CH ₃	OCH ₃	N	
	H	0		CH ₂ CH ₃	OCH ₃	OCH ₃	N	
	H	0		CH ₂ CH ₃	C1	OCH ₃	CH	
20	H	0	OCH ₃	CH2CH2CH3	CH ₃	CH ₃	CH	•
	H	0	OCH ₃	CH2CH2CH3	CH ₃	OCH ₃	CH	
	H	. 0	OCH ₃	CH2CH2CH3	och ₃	OCH ₃	CH	
	H	0	OCH ₃	CH2CH2CH3	CH3	CH ₃	H	
	H	0	OCH ₃	CH ₂ CH ₂ CH ₃	CH ₃	OCH ₃	N	
25	H	0		CH2CH2CH3	och ₃	OCH ₃	N	
•	Н	0		CH2CH2CH3	C1	OCH ₃	CH	
	н	0	_	CH2CH2CH2CH3	CH ₃	CH ₃	CH	
	Н	0	_	CH2CH2CH2CH3	CH ₃	OCH ₃	CH	
30	H	0	_	сн ₂ сн ₂ сн ₂ сн ₃	och ₃	OCH ₃	CH	•
30	Н	0		CH2CH2CH3	CH3	CH ₃	N	
	H	0		CH2CH2CH2CH3		OCH ₃	N	
	H	0	OCH ₃		_	OCH ₃	N	
	Н	0	OCH ₃	CH2CH2CH2CH3	Cl	OCH ₃	CH	

158
Table XII (cont.)

5	R ₁	· n	<u>R</u> 2	<u>R*</u>	<u>x</u>	<u>x</u>	<u>z</u>	m.p.(°C)
	H	0			CH ₃	CH ³	CH —	
	H		SCH ₃	CH ₃	3 CH	OCH ³	CH	
	н	0	SCH ₃	CH ₃	OCH ³	OCH 3	CH	
•	н	0	SCH ₃	CH ₃	CH CH	сн 3	N	•
10	H	0	SCH ₃		CH ₃	OCH CH ₃	M	
	H	0	SCH ₃	CH ₃	CH ₃	OCH 3	H	
	H	0		CH ³	C1 OCH ³	OCH 3	СН	
	H	0	SCH ³	CH CH		OCH ³	СН	
	н		SCH ₃		CH ₃	CH ³		
15		^	SCH ₃	CH ₂ CH ₃	CH ₃	OCH ³	CH	
	H		SCH ₃	CH ₂ CH ₃	OCH ³	OCH ₃	CH ~	
	H	0	SCH ₃	CH ₂ CH ₃	CH ³	CH ³	H	
	H		SCH ³		CH ₃			
	H	0	SCH ₃	CH ₂ CH ₃	OCH ₃	OCH ³	N	٠
20 ·	H				Cl	OCH ₃	CH	
	H	0	SCH ₃		CH ₃	CH ₃	CH	•
	H	0	SCH ₃	CH2CH2CH3	CH ₃	OCH 3	CH	
	H	0	SCH ₃	CH ₂ CH ₂ CH ₃	OCH ₃	OCH ₃	CH	
	H			CH ₂ CH ₂ CH ₃	CH ₃	CH3	H	-
25	н	0	SCH ₃	CH ₂ CH ₂ CH ₃	CH ³	OCH ₃	H	
	H		SCH ₃	CH2CH2CH3	OCH ₃	OCH ³	H	
	H	0	SCH ₃	CH ₂ CH ₂ CH ₃	Cl	OCH ₃	CH	
••	H			CH2CH2CH2CH3	CH ₃	CH3	CH	
	H	0	SCH3	CH2CH2CH2CH3	CH ₃	OCH ₃	CH	
	H	0	SCH ₃		OCH ₃	OCH ₃	CH	
30	H	0	SCH ₃	CH2CH2CH2CH3	CH ₃		M	
	H	0		CH2CH2CH2CH3	CH ₃	OCH ³	N	
	H	0	SCH ₃	CH2CH2CH2CH3	_		H	
	H	0	SCH ₃		Cl	OCH ₃	СН	•
			_					

159
Table XII (cont.)

5	<u>R</u> 1	<u>n</u>	<u>R_2</u>	R*	<u>x</u>	<u>X</u>	<u>z</u>	m.p.(°C)
	н	0	N(CH ₃) ₂	CH ₃	CH ₃	CH ₃	CH	
	н	0	N(CH ₃) ₂	CH ₃	CH ³	OCH ³	CH	
•	н	0	N(CH ₃) ₂	CH ₃	OCH ₃	OCH ₃	CH	
	н	0	N(CH ₃)2	CH ₃	CH ³	CH ₃	H	
10-	н	0	N(CH ₃) ₂	CH ₃	CH ₃	OCH ₃	H	
	н	0	N(CH ₃) ₂	CH ₃	och ₃	осн ₃	H.	
	н	0	N(CH ₃) ₂	CH ₃	Cl	OCH ₃	СН	
	н	0	N(CH ₃) ₂	CH ₂ CH ₃	CH3	CH ₃	CH	
	н	0		CH ₂ CH ₃	CH ₃	OCH ₃	CH	
15	н	0		CH ₂ CH ₃	OCH ₃	OCH ₃	CH	
	н	0		CH ₂ CH ₃	CH ₃	CH ₃	H	
	н	0	N(CH ₃) ₂		CH ₃	OCH ₃	Ħ	
	H	0	N(CH ₃) ₂		OCH3	OCH ₃	H	
	H	0		CH ₂ CH ₃	C1	OCH ₃	CH	
20	H	0		CH ₂ CH ₂ CH ₃	CH ₃	CH ₃	.CH	
	H	0		CH ₂ CH ₂ CH ₃	CH ₃	OCH ₃	CH	
	н	0		CH2CH2CH3	OCH ₃	OCH ₃	СН	
	н	0		CH2CH2CH3	CH ₃	CH ₃	N	
٠	H	0		CH2CH2CH3	CH ₃	OCH ₃	N	
25	H	0	N(CH ₃) ₂	CH ₂ CH ₂ CH ₃	och ₃	OCH ₃	H	
ι	H	0		CH2CH2CH3	Cl	OCH ₃	CH	
	н	0	N(CH ₃) ₂	CH2CH2CH2CH3	CH ₃	CH ₃	CH	•
	H	0		CH2CH2CH2CH3	CH ₃	OCH3	CH	
	H	0	N(CH ₃)2	CH2CH2CH2CH3	осн ₃	OCH ₃	CH	
30	H	0	N(CH ₃)2	CH2CH2CH2CH3	CH ₃	CH ₃	H	
	H	0	N(CH ₃)2	CH2CH2CH2CH3	CH3	OCH ₃	N	
	H	0		CH2CH2CH2CH3	осн ₃	осн ₃	N	
	H	0	N(CH ₃) ₂	CH2CH2CH2CH3	Cl	OCH ₃	CH	
				· ·				

160
Table XII (cont.)

5	<u>R</u> 1	<u>n</u>	R ₂	<u>R*</u>	<u>x</u> .	<u>Y</u>	Z ' m.p.(°C)
	H	0	H	CH2CH2CH2CH2CH3	CH ₃		CH
	Ħ	0	н	CH2CH2CH2CH2CH3	CH	OCH ₃	
	H	0	н		OCH ₃	OCH ³	CH
	н	0	H	CH2CH2CH2CH3		CH ₃	N
10 .	H	0	H	CH2CH2CH2CH2CH3		-	H
	H	0	H	CH2CH2CH2CH2CH3	OCH	OCH	H
	H	0	H	CH2CH2CH2CH2CH3	Cl	OCH ₃	CH
•	H	0	H	CH(CH ₃) ₂	сн ₃	CH ₃	CH
	H	0	H	CH(CH ₃) ₂	СН ₃	OCH ₃	СН
15	Ħ	0	H	CH(CH ₃) ₂	осн	OCH ₃	CH
•	H	0	H	CH(CH ₃) ₂	CH ₃	CH ³	N
	H	0	н	CH(CH ₃) ₂	CH ₃		n
	H	0	H	CH(CH ₃) ₂	OCH ₃	OCH ³	H
	H	0	H	CH(CH ₃) ₂	C1	осн ₃	CH
20	H	0	H	CH2CH(CH3)2	CH ₃	CH ³	CH .
-	H	0	H	CH2CH(CH3)2	CH ₃	OCH ³	СН
	H	0	H	CH2CH(CH3)2	осн ₃	OCH ₃	CH
	H	0.		CH2CH(CH3)2	CH ₃	CH ³	R
	H	0	H	CH ₂ CH(CH ₃) ₂	CH ₃	OCH ₃	H
25	H	0	H	CH ₂ CH(CH ₃) ₂	OCH ₃		N.
	H	0	H	CH2CH(CH3)2	Cl	OCH ³	CH
	H	0	H	CH(CH ₃)CH ₂ CH ₃	CH ³	CH ₃	CH
	H	0	H	CH(CH ₃)CH ₂ CH ₃	CH ₃	осн3	CH
. • •	H	0	H	CH(CH ₃)CH ₂ CH ₃	OCH ₃	OCH ₃	СН
30	H	0	H	CH2CH2CH(CH3)2	CH ₃	CH ₃	N
	H	0	H	CH2CH2CH(CH3)2	CH ₃	OCH ₃	N
	н .	0	H	CH2CH(CH3)2	OCH ₃	OCH ₃	N
•	H ·	0	H	CH2CH(CH3)2	Cl	och ³	CH

161
Table XII (cont.)

5	<u>R</u> 1	n	R ₂	R*	X	<u>¥</u>	<u>z</u>	m.p.(°C)
	H	0	H	CH ₂ Br	CH ₃	CH ₃	CH	•
	н	0	H	CH ₂ Br	CH ₃	OCH ₃	CH	
	н	0	H	CH ₂ Br	OCH ₃	OCH ₃	CH	
	H	0	н	CH ₂ Br	CH ₃	CH ₃	H	
10 ·	H	0	н	CH ₂ CH ₂ Br	CH ₃	OCH ₃	N	
	H	0	Ĥ	CH2CH2Br	OCH ₃	OCH ₃	N	
·	н	0	H	CH ₂ CH ₂ Br	Cl	осн _з	CH	
	н	0	H	CH(CH ₃)CH ₂ F	CH ₃	CH ₃	CH	
	H	0	H	CH(CH ₃)CH ₂ F	CH ₃	OCH ₃	CH	
15	H	0	н	CH(CH ₃)CH ₂ F		och ₃	CH	
	н	0	H	CH(CH ₃)CH ₂ F	CH ₃	CH ₃	n	
	н	0	H	CH(CH ₃)CH ₂ F	CH ₃	och ₃	Ħ	
	H	0	н	CH(CH ₃)CH ₂ F	OCH ₃	och ₃	N	
	H	0	H	CH(CH3)CH2F		OCH ₃	CH	
20	H	0	H	CH(CH ₂ F) ₂	CH ₃	CH ₃	CH	
,	н	0	H	CH(CH ₂ F) ₂	CH ₃	осн _з	CH	
	H	0	н	CH(CH ₂ F) ₂	OCH ₃	осн _з	CH	
•	н	0	H	CH(CH ₂ F) ₂	CH ₃	CH ₃	N	
	H	0.	H	CH(CH ₂ F) ₂	CH ₃	och ₃	N	
25	н	0	н	CH(CH ₂ F) ₂	och ₃	och ₃	H	
	н	0	н	CH(CH2F)2	Cl.	och ₃	CH	
	н	0	H	CH ₂ I	CH3	CH ₃	CH	
	H	0	H	CH ₂ I	CH ₃	OCH ₃	Cł	
	н	0	н	CH ₂ I	och ₃	оснз	Ci	ŧ
30	н	0	H	CH ₂ I	CH ₃	CH ₃	N	
	н	0	H	CH2CH2CH2F	CH ₃	och ₃	N	
	н	0	H	CH2CH2CH2F	och ₃	OCH ₃		
	н	0	H	CH2CH2CH2F	Cl	OCH ₃	C	Н

162
Table XII (cont.)

5	.•	R ₁	_	R ₂		_		_	44-1
			Ū		<u>R*</u>	¥	<u>x</u>	<u>z</u>	m.p.(°C)
		н	Ó	H	CH ₂ OCH ₂ F	CH ³	CH ₃	CH	
		H	0	H	CH ₂ OCH ₂ F	CH ₃	OCH ₃	CH	
		H	.0	H	CH ₂ OCH ₂ F	OCH ₃	OCH ³	CH	
		H	0	H	CH ₂ OCH ₂ F	CH ₃	CH3	Ħ	
10		H	0	H	CH ₂ OCH ₂ F	CH ₃	OCH ₃	Ħ	
		H	0	H	CH ₂ OCH ₂ F	OCH3	OCH ₃	H	
		н	0	H	CH ₂ OCH ₂ F	Cl	осн3	CH	
		H	0	H	CH ₂ SOCH ₃	CH ³	CH3	CH	
		H	0	H	CH ₂ SOCH ₃	CH3	OCH ³	CH	
15		H	0	H	CH ₂ SOCH ₃	och ³	осн	CH	
		·H	0	H	сн восн	CH3	CH3	Ħ	
		H	0	H	CH ₂ SOCH ₃	CH ₃	OCH	H	
		H	0	H	CH2SOCH3	оснз	осн3	M	
		H	0	H	CH ₂ SOCH ₃	C1	осн ₃	CH	
20		H	0	H	CH2SO2CH3	CH ₃	CH3	CH	
		H	0 -	H	CH ₂ SO ₂ CH ₃	CH ³	OCH ₃	CH	• •
	•	н	0	H	CH2SO2CH3	OCH ₃	осн	CH	
		н	0	H	CH2SO2CH3	CH ³	CH ₃	Ħ	•
		H	0	H	CH ₂ SO ₂ CH ₃	CH ₃	осн	H	
25		н	0	н	CH2SO2CH3	оснз	осн3	N	
	•	H	0	H	CH ₂ SO ₂ CH ₃	Cl	OCH.3	CH	
		H	0	H	CH ₂ CN	CH ₃	CH3	CH	
		H	0	H	CH ₂ CH ₂ CN	СНЗ	осн	CH	
		н	0	H	СН ₂ (СН ₃)СИ	оснз	OCH ₃	CH	
30		н	0	н.	CH2NO2	CH3	CH ³	H	•
	•	н	0	н .	CH2CH2NO2	CH ₃	OCH ₃	H	
		н	0	н .	CH ₂ CN	OCH ₃	OCH ³	N	• • • • • • • • • • • • • • • • • • • •
	•	н	0	H	CH ₂ CN	Cl	OCH3	СН	
					2	•	3		

163
Table XII (cont.)

5	<u>R</u> 1	<u>n</u>	R ₂	<u>R*</u>	<u>x</u> .	¥	<u>z</u>	m.p.(*C)
	H	0	H	CH2N(CH3)2	CH ₃	CH3	CH	
	н	0	H	CH ₂ N(CH ₃) ₂	CH3	OCH3	CH	
	H	0	H	CH2N(CH3)2		оснз	CH	
•	н	0	H	CH2N(CH3)2	снз	CH ₃	H	
10.	H	0	H	CH2N(CH3)2	CH ₃	осн	H	
	• н	0	H	CH2N(CH3)2	осн	OCH ³	H	
	H	0		CH2N(CH3)2	C1	OCH ₃	CH	
·	H	0	H	CH2CH2N(CH3)2	CH ₃	CH ₃	CH	
	н	0	H	CH2CH2N(CH3)2	CH ₃	осн	CH	
15	H	0	H	CH2CH2N(CH3)2	OCH ₃	оснз	CH	
	H	0	H	CH2CH2N(CH3)2	CH ³	CH3	H	
	H	0	H	CH2CH2N(CH3)2	CH ₃	OCH3	N	
	H	0	H	CH2CH2N(CH3)2	осн	осн	N	
	H	0	H	CH2CH2N(CH3)2	Cl	осн3	CH	
20	H	0	H	CH2CH=CH2	CH ₃	CH3	CH	•
	H	0	н	CH ₂ CH=CH ₂	CH ₃	OCH ₃	CH	
	н	0	H	CH ₂ CH=CH ₂	OCH ₃	OCH ₂	CH.	
	H	0 .	H	CH2CH=CH2	CH ³	СНЗ	N	
	H	0	H	CH ₂ CH=CH ₂	CH ₃	осн	N	
25	H	0	H	CH ₂ CH=CH ₂	OCH ₃	оснз	N	
	H	0	H	CH2CH=CH2	Cl	осн	CH	
	H	0	H	CH=CH ₂	CH ₃	CH ₃	CH	
	H	0	H	CH=CH ₂	CH3	осн	CH	
	H	0	H	CH=CH ₂	OCH ₃	осн ₃	СН	
30	Н	0	H	CH=CH ₂	CH ₃	CH ₃	H	,
	н	0	H	CH=CH ₂	CH ₃	осн	N	
	H	0	Н	CH=CH ₂	OCH ₃	осн	H	
•	н	0	H	CH=CH ₂	Cl	OCH ³	CH	

164
Table XII (cont.)

5		R		R_					
_		<u>P1</u>	n	<u>R</u> 2		X	¥	<u>Z</u>	m.p.(°C)
		H	1	H	CH ₃	CH ₃	CH ₃	CH	
		H	1	H	CH ³	CH ₃	OCH ³	CH	
		Ħ	1	H	CH ₃	OCH ₃	OCH	CH	
		H	1	H	CH ₃	CH ₃	CH ³	H	
10		H	1	H	CH ₃	CH ₃	OCH ₃	N	
		H	1	H	CH ₃	OCH ₃	OCH ₃	H	
		Ħ	1	н	CH3	C1	OCH 3	CH	
		H .	1	H	CH ₂ CH ₃	CH ₃	CH ³	CH	
	•	H	1	н	CH ₂ CH ₃	CH ₃	OCH ₃	ÇH	
15	•	·H	1	H	CH ₂ CH ₃	OCH ₃	OCH ₃	CH	
		.	ļ	H	CH ₂ CH ₃	CH3	CH ₃		-
		'H	1	H	CH ₂ CH ₃	CH ₃	OCH ₃	M	
		H	1	н	CH ₂ CH ₃	OCH ₃	OCH ₃	H	
	•	H·	1	H	CH ₂ CH ₃	Cl	OCH 3	CH	
20		н	1	H	CH2CH2CH3	CH ₃	CH ₃	CH	•
		H	1	H	CH2CH2CH3	CH ₃		CH	
	•	H	1	H	CH2CH2CH3	OCH ₃	OCH ³	CH	
		H	1	H	CH2CH2CH3	CH ₃	CH ₃	H	
		H	1	H	CH ₂ CH ₂ CH ₃	CH ₃	OCH ₃	Ħ	
25		H	1	H	CH2CH2CH3	OCH 3		H	
	•	H	1	H	CH2CH2CH3	Cl	OCH ₃	CH	
	,	H	1	H	CH2CH2CH2CH3	CH ₃	CH ₃	CH	
		H	1	H	CH2CH2CH2CH3		OCH ₃	CH	
		H	1	H	CH2CH2CH2CH3		OCH ₃	CH	
30		H	1	H	CH2CH2CH2CH3	CH ₃	CH ₃	Ħ	
		H	1	H	CH2CH2CH2CH3		OCH ₃	M	
		H	1	н	CH2CH2CH2CH3	OCH ₃	OCH ₃	N	
		H	1	H .	CH2CH2CH2CH3	Cl	OCH ³	CH	• '

Table XIII

5	<u>R</u> 1	n	R ₂	<u>R*</u>	<u>x</u>	¥	<u>z</u>	m.p.
	H	0	H	cyclopropyl	CH ₃	CH ₃	CH	
	H	0	H	cyclopropyl	CH3	OCH	СН	
	H	0	H	cyclopropyl	OCH ₃	OCH ₃	CH	
10	H	0	н	cyclopropyl	CH ³	CH3	H	
10	H	0	H	cyclopropyl	CH ³	OCH ₃	H	
	H	0	H	cyclopropyl	OCH ₃	OCH ₃	H	
	H	0	H	cyclopropyl	C1	OCH ₃	CH	
	H	0	н	cyclobutyl	CH ₃	CH ₃	CH	
15	н	.0	н	cyclobutyl	CH ₃	OCH ₃	CH	
23	H	0	н	cyclobutyl	och ₃	OCH ₃	CH	
	H	0	н	cyclobutyl	CH3	CH ₃	H	
	H	0	H	cyclobutyl	CH ₃	OCH ₃	H	
	H	0	н	cyclobutyl	OCH ₃	OCH ₃	H	
20	H	0	н	cyclobutyl	Cl	OCH ₃	CH	
	H	0	н	cyclopentyl	CH ₃	CH ₃	CH	
	H	0	H	cyclopentyl	CH ₃	OCH ₃	CH	
	H	0	н	cyclopentyl	OCH ₃	OCH ₃	CH	
	H	0	H .	cyclopentyl	CH ₃	CH ₃	H	
25	H	0	H	cyclopentyl	CH ₃	OCH ₃	n	
	H	0	н	cyclopentyl	OCH ₃	OCH ₃	N	•
	H	0	н	cyclopentyl	Cl	OCH ₃	CH	
	H	0	H	2-fluorocyclopropyl	CH ₃	CH3	CH	
	H	0	н	2-fluorocyclopropyl	CH ₃	OCH ₃	СН	
30	H	0	н	2-fluorocyclopropyl	OCH ₃	OCH ₃	CH	
	H	0	н	2-fluorocyclopropyl	CH ₃	CH ₃	Ħ	
	H	0	н	2-fluorocyclopropyl	CH ₃	OCH ₃	H	
	H	0	н	2-fluorocyclopropyl	OCH ₃	OCH ₃	H	
	H	0	н	2-fluorocyclopropyl	Cl	OCH ₃	CH	

166
Table XIII (cont.)

5					-			
3	<u>R</u> 1	ņ	R ₂	<u>R*</u>	<u>x</u>	<u>X</u>	<u>z</u>	ш.р. (°С)
	H	0	OCHF ₂	cyclopropyl	CH3	CH ₃	CH	
	H	0	OCHF ₂	cyclopropyl	CH ³	OCH ₃ .	CH	
	H	0	OCHF ₂	cyclopropyl	OCH ³	OCH ₃	CH	
10	H	0	OCHF ₂	cyclopropyl	CH3	CH ³	H	
	н	0	OCHF ₂	cyclopropyl	CH ³	OCH ³	H	
	H	o	OCHF ₂	cyclopropyl	OCH ₃	OCH ₃	Ħ	
	H	٥	OCHF ₂	cyclopropyl	Cl	осн ₃	CH	
	H	0	OCHF ₂	cyclobutyl	CH ₃	CH ₃	CH	
15	H	0	OCHF ₂	cyclobutyl	CH ₃	OCH ₃	CH	
	H	٠ ٥	OCHF ₂	cyclobutyl	OCH ₃	OCH.	CH	
	H	ď	OCHF ₂	cyclobutyl	CH ₃	CH ₃	Ħ	
	н	ં	OCHF ₂	cyclobutyl	CH ₃	OCH ₃	H	
	H	0	OCHF ₂	cyclobutyl	OCH ₃	OCH ₃	H	
20	H	′o .	OCHF ₂	cyclobutyl	Cl	OCH ³	CH	
	H	ď	OCHF ₂	cyclopentyl	CH ₃	CH ₃	CH	
	H	0	OCHF ₂	cyclopentyl	CH ₃	OCH ₃	CH	
	H	0	OCHF ₂	cyclopentyl	OCH ₃	OCH ³	CH	
	H	0	OCHF ₂	cyclopentyl	CH ₃	CH ₃	Ħ	
25	H	:0	OCHF ₂	cyclopentyl	CH ₃	OCH3	Ħ	
	H	. ሳ	OCHF ₂	cyclopentyl	OCH ³	OCH3	Ħ	
	H	:0	OCHF ₂	cyclopentyl	Cl	OCH ₃	CH	
	H.	Ø	OCHF ₂	2-fluorocyclopropyl	CH ₃	CH ₃	CH	
	H	O	OCHF ₂	2-fluorocyclopropyl	CH ₃	OCH ₃	CH	
30	H	0	OCHF ₂	2-fluorocyclopropyl	OCH ₃	OCH ₃	CH	
	H	0	OCHF ₂	2-fluorocyclopropyl	CH ₃	CH ₃	H	
	H	0.	OCHF ₂	2-fluorocyclopropyl	CH ₃	OCH ₃	H	
	H	. 0	OCHF ₂	2-fluorocyclopropyl	OCH ₃	OCH ₃	N	
	H	.0	OCHP ₂	2-fluorocyclopropyl	Cl	OCH ₃	CH	

167
Table XIII (cont.)

5	R ₁	n	R ₂	<u>R*</u>	<u>x</u>	Ā	<u>z</u>	m.p.(°C)
	H	0	H '	CH ₂ F	CH3	CH ₃	CH	
	H	0	H	CH ₂ F	CH3	OCH ₃	CH	
	H	0	H	CH ₂ F	OCH ₃	OCH ₃	CH	
	H	0	H	CH ₂ F	CH3	CH ₃	H	
10.	H	0	H	CH ₂ F	CH3	OCH ₃	H	
	H	0	H	CH ₂ F	OCH3	OCH ₃	H	
	H	0	H	CH ₂ F	Cl .	OCH ₃	CH	
	H	0	H	CH ₂ CH ₂ F	CH ₃	CH ₃	CH	ř
	н	0	H	CH ₂ CH ₂ F	CH ₃	осн ₃	CH	
15	H	0	H	CH ₂ CH ₂ F	OCH ₃	OCH ₃	CH	
	H	0	H	CH ₂ CH ₂ F	CH3	CH ₃	N	
	H	0	H	CH ₂ CH ₂ F	CH3	OCH ₃	H	
	H	0	H	CH2CH2F	OCH ₃	OCH ₃	Ħ	
	H	0	H	CH ₂ CH ₂ F	Cl	OCH ₃	CH	
20	H	0	H	CHF ₂	CH ₃	CH3	CH	•
	H	0	H	CHF ₂	CH3	OCH ₃	CH	
	H	0	H	CHF ₂	OCH ₃	OCH ₃	CH	
	H	0	H	CHF ₂	CH ₃	CH3	N .	
	H	0	H	CHF ₂	CH ₃	осн	N	
25	H	0	H	CHF ₂	OCH ₃	оснз	N	
	H	0	H	CHF ₂	Cl	осн _з	CH	
• .	Н	0	Н	CH ₂ CF ₃	CH ₃	CH ₃	CH	
	H	0	H	CH ₂ CF ₃	CH3	осн ₃	CH	
20	н	0	H	CH ₂ CF ₃	och ₃	оснз	CH	
30	Н	0	H	CH ₂ C1	CH3	сн ₃	n	
	H	0	H	CH ₂ C1	CH3	оснз	N	
	H	0	H	CH ₂ C1	OCH ₃	осн	n	
	H	0	н	CH ₂ C1	C1	оснз	CH	

Table XIV

5			Ð					m.p.
	<u>R</u> 1	Ū	R ₂	<u>R*</u>	X	Ā	<u>z</u>	(°C)
	H	0	H	cyclopropyl	CH ₃	CH ₃	CH	
	H	0	H	cyclopropyl	CH ₃	OCH ₃	CH	
	H	0	H	cyclopropyl	OCH ₃	OCH ₃	CH	
10	H	0	H	cyclopropyl	CH ₃	CH3	H	
	H	0	H	cyclopropyl	CH ₃	OCH ₃	H	
	H	. 0	H	cyclopropyl	OCH ₃	OCH ³	H	•
	H	0	H	cyclopropyl	Cl	OCH ₃	CH	
	H	0	H	cyclobutyl	CH ₃	CH3	CH	
15	H	0	H	cyclobutyl	CH ₃	OCH ³	CH	
-	·H	0	H	cyclobutyl	OCH ₃	OCH ³	CH	
	H	0	H	cyclobutyl	CH ₃	CH ₃	Ħ	
•	н	0	H	cyclobutyl	CH ₃	OCH ₃	N	
	H	0	H	cyclobutyl	OCH ₃	OCH ₃	M	
20.	H	0	H	cyclobutyl	Cl	OCH ₃	CH	
	H	0	H	. cyclopentyl	CH ₃	CH ₃	CH	
	H	0	Ħ	cyclopentyl	CH ₃	OCH ₃	CH	
	H	0	H	cyclopentyl	OCH ₃	OCH ₃	CH	
	H	0	Ħ,	cyclopentyl	CH ₃	CH ₃	H	
25	H	0	H	cyclopentyl	CH ₃	OCH ₃	H	
	H.	0	H	cyclopentyl	OCH ₃	OCH ₃	H	
	·H	0	H	cyclopentyl	CI	OCH ₃	CH	
	'H	0	H	2-fluorocyclopropyl	CH ₃	CH3	CH	
	H	0	H	2-fluorocyclopropyl	CH ₃	ocH ³	CH	
30	H	0	H	2-fluorocyclopropyl	OCH ₃	OCH ₃	CH	
	H	0	H	2-fluorocyclopropyl	CH ₃	CH ₃	M	
	H	0	H	2-fluorocyclopropyl	CH3	OCH ₃	Ħ	
	H	0	H	2-fluorocyclopropyl	och ₃	OCH ₃	H	
•	н	0	H	2-fluorocyclopropyl	Cl	OCH ₃	CH	

169
Table XIV (cont.)

•								
5	<u> </u>	<u>n</u>	R ₂	<u>R*</u>	X	¥	<u>z</u>	m.p.(°C)
•	H	0	CH ₃	сн ₃	CH ₃	CH ₃	CH	
	н	0	CH ₃	CH ₃	CH ₃	OCH ₃	CH	
	H	0	CH ₃	CH ₃	осн	OCH ₃	CH	
	н	0	CH ₃	СНЗ	CH ₃	CH ₃	H	
10	H	0	CH ₃	CH ₃	CH3	OCH ₃	H	
	H.	0	CH3	CH ₃	OCH ₃	OCH ³	H	
	н	0	CH ₃	CH ₃	Cl	OCH ₃	CH	
	H	0		СН ₂ СН ₃	CH ₃	CH ₃	СН	
•	H	0		CH ₂ CH ₃	CH3	OCH ₃	CH	
15	H	0		CH ₂ CH ₃	OCH ³	OCH ³	СН	
	н	0	CH3		CH ₃	CH ₃	M	
•	н	0		CH ₂ CH ₃	CH ³	оснз	N	
	H	0	CH ₃	CH ₂ CH ₃	OCH ₃	OCH ₃	N	
	H	0	CH ₃	CH ₂ CH ₃	C1	OCH ₃	CH	
20	H	0		CH ₂ CH ₂ CH ₃	CH ₃	СНЗ	СН	•
	н	0	CH ₃	CH2CH2CH3	CH ₃	OCH ₃	CH	
	н	0		CH ₂ CH ₂ CH ₃	OCH ₃	OCH ₃	CH	•
•	н	0		CH2CH2CH3	CH3	CH ₃	N	
	H	0	CH ₃	CH ₂ CH ₂ CH ₃	CH ₃	OCH ₃	M	
25	н	0		CH2CH2CH3	OCH ₃	OCH ₃	H	
•	н	0	CH ₃	CH2CH2CH3	C1	OCH ₃	CH	
,	н	0		CH2CH2CH2CH3	CH ₃	CH3	CH	
	н	0		CH2CH2CH2CH3	CH ₃	OCH ₃	CH	
	н	0		CH2CH2CH2CH3	OCH ₃	OCH ₃	CH	
30	H	0		CH2CH2CH2CH3	CH ₃	CH ₃	Ħ	
	. н	0	-	CH2CH2CH2CH3	CH3	OCH ₃	M	
	н	0		CH2CH2CH2CH3	OCH ₃	OCH ₃	N	
	н	0	CH ₃	CH2CH2CH2CH3	C1	осн ₃	СН	
			_	·		_		

170
Table XIV (cont.)

					•			
5	<u>P</u> 1	Ū	R ₂	<u>R</u>	<u>x</u>	Ā	<u>z</u>	m.p.(*C)
•	H	0	H	CH ₂ F	CH ₃	CH ₃	CH	
•	H	0	H	CH ₂ F	CH ³	OCH ₃	CH	
	H	0	H	CH ₂ F	och3	OCH ³	CH	
	H	0	H	CH ₂ F	CH3	CH ³	N	
10	H	0	H	CH ₂ F	CH3	OCH ₃	H	
	H	0	H	CH ₂ F	OCH ₃	OCH ₃	H	
	H	0	H	CH ₂ F	Cl	OCH ₃	CH	
	H	0	н	CH ₂ CH ₂ F	CH ₃	CH ³	CH	
	H	0	Ħ	CH ₂ CH ₂ F	CH ₃	OCH ₃	CH	
15	H	. 0	H	CH ₂ CH ₂ E	OCH ₃	OCH ₃	CH	
	H	0	H	CH ₂ CH ₂ F	CH ³	CH ₃	H	
	H	0	H	CH ₂ CH ₂ F	CH ³	OCH ₃	H	
	H	0	H	CH ₂ CH ₂ F	OCH ₃	OCH ₃	H	
	Ħ	0	H	CH ₂ CH ₂ F	Cl	OCH ₃	CH	
20	H	0	H	CHF ₂	CH3	CH ₃	CH	•
	H	0	H	CHF ₂	CH ₃	OCH ₃	CH	
	H	0	H	CHF ₂	OCH ₃	OCH	CH	
	H	0	H	CHF ₂	CH ₃	CH ³	H	
	H	0	H	CHF ₂	CH ³	OCH ³	M	
25	H	0	H	CHF ₂	OCH ₃	OCH ³	Ħ	
	H .	0	H	CHF ₂	C1	OCH ₃	CH	
	H	0	н	CH ₂ CF ₃	CH ₃	CH ₃	CH	
	H	0	H	CH ₂ CF ₃	CH3	OCH ₃	CH	
	H	0	H	CH ₂ CF ₃	OCH ₃	OCH ₃	CH	
30	H	0	н	CH ₂ C1	CH ₃	CH ₃	H	
	н	0	H	CH ₂ C1	CH ₃	OCH ₃	Ħ	
	H	0	н	CH ₂ C1	осн	осн 3	N	
	Ή	0	H	CH ₂ C1	Cl	OCH ₃	CH	•

<u>Table XV</u>

5	R ₁	_	R ₂	<u>R*</u>	<u>x</u>	¥	<u>z</u>	m.p. (°C)
	_	Ū		-	_	_	_	7.07
	H	0	H	cyclopropyl	CH ³	CH ₃	CH	
•	H	0	H	cyclopropyl	CH ₃	och ₃	CH	
	H	0	H	cyclopropyl	OCH ₃	OCH ₃	CH	
10	H	0	H	cyclopropyl	CH ₃	CH ₃	H	
	H	0	H	cyclopropyl	CH ₃	OCH ₃	H	
	H	0	H	cyclopropyl	OCH ₃	OCH ₃	Ħ	
	н .	0	H	cyclopropyl	· C1	OCH ₃	CH	
	H	0	H	cyclobutyl	CH ₃	СНЗ	CH	
15	н	0.	H	cyclobutyl	CH3	OCH ₃	CH	
	H	0	H	cyclobutyl	OCH ₃	OCH	CH	
	н	0	н	cyclobutyl	CH3	CH3	Ħ	
·	H	0	H	cyclobutyl	CH3	OCH ₃	H	
-	H	0	H	cyclobutyl	OCH ₃	OCH ₃	H	
20	н	0	H	cyclobutyl	Cl	осн	CH	
20	н	0	H	cyclopentyl	CH ₃	CH3	·CH	
	н	0	н	cyclopentyl	CH3	осна	CH	
	н	0	H	cyclopentyl	осн	OCH3	CH	
	н -	0	H	cyclopentyl	CH3	CH ₃	Ħ	
25	н	0	H	cyclopentyl	CH ³	OCH ₃	H	
25	н	0	H	cyclopentyl	осн	оснз	H	
	H	0	н	cyclopentyl	C1	осн3	CH	
	H	0	н	2-fluorocyclopropyl	СНЗ	CH ₃	CH	
	H	0	н .	2-fluorocyclopropyl	CH ₃	осн ₃	CH	
30	н	0	н	2-fluorocyclopropyl	OCH ₃	осн ₃	CH	
30	H	0	H	2-fluorocyclopropyl	CH3	CH ₃	H	
	н	0	н	2-fluorocyclopropyl	CH ₃	OCH3	H	
	н	0	н	2-fluorocyclopropyl	осна	осна	H	
	н	0	н	2-fluorocyclopropyl	C1	OCH ₃	СН	

172
Table XV (cont.)

5								n.p.
Э	<u>R</u> 1	<u>n</u>	R ₂	<u>R*</u>	Z ·	<u>¥</u>	<u>z</u>	(°C)
	H	1	H	cyclopropyl	CH ₃	CH3	CH	
	H	1	H	cyclopropyl	CH ₃	OCH ₃	CH	
	H	1	H	cyclopropyl	OCH ³	OCH ₃	CH	
10	H	1	H	cyclopropyl	CH ₃	CH ₃	H	
10	H	1	H	cyclopropyl	CH ₃	OCH ₃	H	
	H	1	H	cyclopropyl	OCH ₃	OCH ₃	Ħ	
	H	1	H	cyclopropyl	Cl	OCH ₃	CH	
	H	1	H	cyclobutyl	CH ₃	CH ₃	CH	
15	H	1	H	cyclobutyl	CH ₃	OCH ³	CH	
	H	1	H	cyclobutyl	OCH ₃	OCH ₃	CH	
	H	1	H	cyclobutyl	CH ₃	CH ₃	H	
	H	1	H	cyclobutyl	CH ₃	OCH ₃	M	
	H `	1	H	cyclobutyl	och ³	OCH ₃	H	
20	Ħ	1	H	cyclobutyl	Cl	OCH ₃	CH	
	H	1	Ħ	cyclopentyl	CH ₃	CH ³	CH	
	H	1	H	cyclopentyl .	CH ₃	OCH ₃	CH	
	H	1	H	cyclopentyl	OCH ₃	OCH ₃	CH	
	H	1	H	cyclopentyl	CH ₃	CH ₃	H	
25	H	1	H	cyclopentyl	CH ³	OCH ³	H	
	H	1	H	cyclopentyl	OCH ₃	OCH 3	N	
	H	1	H	cyclopentyl	Cl	OCH ₃	CH	
	H	1	H	2-fluorocyclopropyl	CH ₃	CH ₃	CH	
	H	1	H	2-fluorocyclopropyl	CH ₃	och ³	CH	
30	H	1	H	2-fluorocyclopropyl	OCH ₃	OCH ₃	CH	
	H	1	H	2-fluorocyclopropyl	CH ₃	CH ₃	H	
	H	1	H	2-fluorocyclopropyl	СH ₃	OCH ₃	H	
	H	1	H	2-fluorocyclopropyl	осн _з	осн ₃	Ħ	
	H	1	H	2-fluorocyclopropyl	Cl	och ³	CH	

173
Table XV (cont.)

5	<u>R</u> 1	Ū	R ₂	<u>R*</u>	¥	¥	<u>z</u>	m.p.(*C)
	H	0	H	CH ₂ OCH ₃	CH ³	CH ₃	CH	
	H	0	н	сн ₂ осн ₃	CH3	OCH ₃	CH	
	H	0	H	сн2осн3	OCH ₃	OCH ₃	СН	
	н	0	H	сн ₂ осн ₃	CH ₃	CH3	H	
10 .	H	0	н	CH ₂ OCH ₃	CH ₃	OCH ₃	H	
	H	0	H	сн ₂ осн ₃	OCH ₃	OCH ₃	H	
	H	0	H	CH ₂ OCH ₃	Cl	OCH ₃	CH	
•	H	0	H	CH ₂ OCH ₂ CH ₃	CH ₃	CH ₃	CH	
_	H	0	н	CH ₂ OCH ₂ CH ₃	CH ₃	OCH ₃	CH	:
15	H	0	H	CH ₂ OCH ₂ CH ₃	OCH ₃	OCH ₃	CH	
	H	0	H	CH ₂ OCH ₂ CH ₃	CH ₃	CH ₃	H	
	H	0	H	CH2CH2OCH3	CH ₃	OCH ₃	N	
	H	0	H	CH2CH2OCH3	OCH ₃	OCH ₃	n	
	H	0	H	CH ₂ CH ₂ OCH ₃	C1	OCH ₃	CH	
20	H	0	H	CH2CH2OCH3	CH ₃	CH ₃	CH	•
	H	0	H	CH2CH2OCH3	CH ₃	OCH ₃	CH	
	H	0	H	CH2CH2OCH3	OCH ₃	OCH ₃	CH	
·	Ħ	0	H	CH ₂ CH ₂ OCH ₃	CH ₃	CH ₃	H	
	H	0	H	CH(OCH ₃) ₂	CH ₃	OCH ₃	H	
25	H	0	H	сн(осн ₃) ₂	och ₃	OCH ₃	H	
	H	0	H	сн(осн ₃) ₂	Cl	осн ₃	CH	
	н	0	н	CH ₂ SCH ₃	CH ₃	CH3	CH	
	Н	0	н	CH ₂ SCH ₃	CH ₃	осн ₃	CH	•
30	H	0	H	CH ₂ SCH ₃	осн ₃	OCH ₃	CH	
30	H	0	H	CH ₂ SCH ₃	CH ₃	CH ₃	N	
	H	0	н	CH ₂ SCH ₃	CH ₃	OCH ₃	N	
	H	0	Н	CH ₂ SCH ₃	OCH ₃	OCH ₃	H	
	H	0	Н	CH ₂ SCH ₃	Cl	осн ₃	CH	

Formulations

Useful formulations of the compounds of Pormula I can be prepared in conventional ways. They include 5 dusts, granules, pellets, solutions, suspensions, emulsions, wettable powders, emulsifiable concentrates and the like. Many of these may be applied directly. Sprayable formulations can be extended in suitable media and used at spray volumes of from a few liters 10 to several hundred liters per hectare. High strength compositions are primarily used as intermediates for further formulation. The formulations. broadly, contain about 0.1% to 99% by weight of active ingredient(s) and at least one of (a) about 0.1% to 20% 15 surfactant(s) and (b) about 1% to 99.9% solid or liquid inert diluent(s). More specifically, they will contain these ingredients in the following approximate proportions:

			Weight Percent*			
20	•	Active Ingredient	Diluent(s)	Surfactant(s)		
	Wettable Powders	20-90	0-74	1-10		
25	Oil Suspensions. Emulsions. Solutions. (including Emulsifiab Concentrates)	3-50 le	40-95	0-15		
23	Aqueous Suspension	10-50	40-84	1-20		
	Dusts	1-25	70-99	0-5		
	Granules and Pellets	0.1-95	5-99.9	0-15		
	High Strength Compositions	90-99	0-10	0-2		

* Active ingredient plus at least one of a Surfactant or a Diluent equals 100 weight percent.

Lower or higher levels of active ingredient can.

of course, be present depending on the intended use

and the physical properties of the compound. Higher

ratios of surfactant to active ingredient are sometimes desirable, and are achieved by incorporation into the formulation or by tank mixing.

Typical solid diluents are described in Watkins. 5 et al.. "Handbook of Insecticide Dust Diluents and Carriers". 2nd Ed., Dorland Books. Caldwell. New Jersey, but other solids, either mined or manufactured, may be used. The more absorptive diluents 10 are preferred for wettable powders and the denser ones for dusts. Typical liquid diluents and solvents are described in Marsden. "Solvents Guide." 2nd Ed., Interscience, New York, 1950. Solubility under 0.1% is preferred for suspension concentrates: solution 15 concentrates are preferably stable against phase separation at 0°C. "McCutcheon's Detergents and Emulsifiers Annual", MC Publishing Corp., Ridgewood, New Jersey, as well as Sisely and Wood, "Encyclopedia of Surface Active Agents". Chemical Publishing Co., 20 Inc., New York, 1964, list surfactants and recommended uses. All formulations can contain minor amounts of additives to reduce foaming, caking, corrosion, microbiological growth, etc.

The methods of making such compositions are well
known. Solutions are prepared by simply mixing the ingredients. Fine solid compositions are made by blending and, usually, grinding as in a hammer or fluid energy mill. Suspensions are prepared by wet milling (see, for example, Littler, U.S. Patent
30 3,060,084). Granules and pellets may be made by spraying the active material upon preformed granular carriers or by agglomeration techniques. See J. E. Browning, "Agglomeration", Chemical Engineering, December 4, 1967, pp. 147ff. and "Perry's Chemical

Engineer's Handbook", 5th Ed., McGraw-Hill, New York, 1973, pp. 8-57ff.

For further information regarding the art of 5 formulation, see for example:

H. M. Loux, U.S. Patent 3,235,361, February 15, 1966. Col. 6, line 16 through Col. 7, line 19 and Examples 10 through 41;

R. W. Luckenbaugh, U.S. Patent 3,309,192,

10 March 14. 1967. Col. 5, line 43 through Col. 7, line 62 and Examples 8, 12, 15, 39, 41, 52, 53, 58, 132, 138-140, 162-164, 166, 167 and 169-182;

H. Gysin and E. Knusli, U.S. Patent 2,891,855, June 23, 1959, Col. 3, line 66 through Col. 5, line 17 15 and Examples 1-4;

- G. C. Klingman, "Weed Control as a Science", John Wiley and Sons. Inc., New York, 1961, pp. 81-96; and
- J. D. Fryer and S. A. Evans, "Weed Control Hand20 book", 5th Ed., Blackwell Scientific Publications.
 Oxford, 1968, pp. 101-103.

In the following Examples, all parts are by weight unless otherwise indicated.

Example 11

25 <u>Wettable Powder</u>

4-Acetyl-N-[(4.6-dimethoxypyrimidin-2-yl)aminocarbon-

	yl]-1-methyl-1-H-pyrazole-5-sulfonamide	80%
	sodium alkylnaphthalenesulfonate	2%
	sodium ligninsulfonate	2%
30	synthetic amorphous silica	3%
	kaolinite	. 13%

The ingredients are blended, hammer-milled until all the solids are essentially under 50 microns, reblended, and packaged.

177 Example 12

	Wettable Powder	
	4-Acetyl-N-[(4,6-dimethoxypyrimidin-2-yl)aminoca	arbon-
5	yl]-1-methyl-1-H-pyrazole-5-sulfonamide	50%
	sodium alkylnaphthalenesulfonate	2%
	low viscosity methyl cellulose	2\$
	diatomaceous earth	46%
	The ingredients are blended, coarsely ham	ner-
10	milled and then air-milled to produce particles	
	tially all below 10 microns in diameter. The pa	
	is reblended before packaging.	
	Example 13	
	<u>Granule</u>	
15	Wettable Powder of Example 12	5%
-	attapulgite granules	95%
	(U.S.S. 20 to 40 mesh; 0.84-0.42 mm)	
	A slurry of wettable powder containing	25%
	solids is sprayed on the surface of attapulgite	
20	granules in a double-cone blender. The granules	s are
	dried and packaged.	
•	Example 14	
	Extruded Pellet	
	4-Acetyl-N-[(4.6-dimethoxypyrimidin-2-yl)aminoca	arbon-
25	yl]-l-methyl-l-H-pyrazole-5-sulfonamide	25%
	anhydrous sodium sulfate	101
	crude calcium ligninsulfonate	5
	sodium alkylnaphthalenesulfonate	13
	calcium/magnesium bentonite	591
30	The ingredients are blended, hammer-milled	
	then moistened with about 12% water. The mixtu	
	extruded as cylinders about 3 mm diameter which	
	cut to produce pellets about 3 mm long. These	
	used directly after drying, or the dried pellet	s may

35 be crushed to pass a U.S.S. No. 20 sieve (0.84 mm

openings). The granules held on a U.S.S. No. 40 sieve (0.42 mm openings) may be packaged for use and the fines recycled.

Example 15

Low Strength Granule

4-Acetyl-N-[(4.6-dimethoxypyrimidin-2-yl)aminocarbonyl]-1-methyl-1-H-pyrazole-5-sulfonamide 0.1% attapulgite granules 99.9%

(U.S.S. 20 to 40 mesh)

The active ingredient is dissolved in a solvent and the solution is sprayed upon dedusted granules in a double-cone blender. After spraying of the solution has been completed, the material is warmed to evaporate the solvent. The material is allowed to cool and then packaged.

Example 16

Granule

5

10

4-Acetyl-N-[(4.6-dimethoxypyrimidin-2-yl)aminocarbon20 yl]-l-methyl-l-H-pyrazole-5-sulfonamide 80%
wetting agent 1%
crude ligninsulfonate salt (containing 10%
5 to 20% of the natural sugars)
attapulgite clay 9%

The ingredients are blended and milled to pass through a 100 mesh screen. This material is then added to a fluid bed granulator, the air flow is adjusted to gently fluidize the material, and a fine spray of water is sprayed onto the fluidized material. The fluidization and spraying are continued until granules of the desired size range are made. The spraying is stopped, but fluidization is continued, optionally with heat, until the water content is reduced to the desired level, generally less than 1%. The material is then discharged, screened to the desired size range.

generally 14 to 100 mesh (1410 to 149 microns). and packaged for use.

Example 17

5 Low Strength Granule

4-Acetyl-N-[(4.6-dimethoxypyrimidin-2-yl)aminocarbon-yl]-1-methyl-1-H-pyrazole-5-sulfonamide 1%
N.N-dimethylformamide 9%
attapulgite granules 90%

10. (U.S.S. 20 to 40 sieve)

The active ingredient is dissolved in the solvent and the solution is sprayed upon dedusted granules in a double cone blender. After spraying of the solution has been completed, the blender is allowed to run for a short period and then the granules are packaged.

Example 18

Aqueous Suspension

4-Acetyl-N-[(4.6-dimethoxypyrimidin-2-yl)aminocarbonyl]-1-methyl-1-H-pyrazole-5-sulfonamide 40% polyacrylic acid thickener 0.3% 20 dodecylphenol polyethylene glycol ether . 0.5% 1% disodium phosphate 0.5% monosodium phosphate 1.0% polyvinyl alcohol 56.7% water 25

The ingredients are blended and ground together in a sand mill to produce particles essentially all under 5 microns in size.

Example 19

30 Solution

4-Acetyl-N-[(4,6-dimethoxypyrimidin-2-yl)aminocarbon-yl]-1-methyl-1-H-pyrazole-5-sulfonamide. ammonium salt

water 95%

The salt is added directly to the water with stirring to produce the solution, which may then be packaged for use.

Example 20

5 High Strength Concentrate

4-Acetyl-N-[(4,6-dimethoxypyrimidin-2-yl) aminocarbonylj-1-methyl-1-H-pyrazole-5-sulfonamide

0.5%

silica aerogel synthetic amorphous silica

0.5%

The ingredients are blended and ground in a 10 hammer-mill to produce a material essentially all passing a U.S.S. No. 50 screen (0.3 mm opening). The concentrate may be formulated further if necessary.

Example 21

15 Wettable Powder

Ť

4-Acetyl-N-[(4,6-dimethoxypyrimidin-2-yl)aminocarbon-90% yl)-methyl-l-H-pyrazole-5-sulfonamide

> dioctyl sodium sulfosuccinate synthetic fine silica

0.1% 9.98

The ingredients are blended and ground in a 20 hammer-mill to produce particles essentially all below 100 microns. The material is sifted through a U.S.S.

No. 50 screen (0.3 mm opening) and then packaged.

Example 22

25 Wettable Powder

4-Acetyl-N-[(4,6-dimethoxypyrimidin-2-yl)aminocarbonyl)-methyl-1-H-pyrazole-5-sulfonamide 40%

sodium ligninsulfonate

-20%

montmorillonite clay

40%

The ingredients are thoroughly blended, coarsely 30 hammer-milled and then air-milled to produce particles essentially all below 10 microns in size. The material is reblended and then packaged.

Example 23

Oil Suspension

4-Acetyl-N-[(4.6-dimethoxypyrimidin-2-y1)aminocarbonyl]-1-methyl-1-H-pyrazole-5-sulfonamide 35%

blend of polyalcohol carboxylic

6%

esters and oil soluble petroleum sulfonates

xylene

59%

The ingredients are combined and ground together in a sand mill to produce particles essentially all below 5 microns. The product can be used directly, extended with oils, or emulsified in water.

Example 24

15 Dust

30

4-Acetyl-N-[(4,6-dimethoxypyrimidin-2-yl)aminocarbon-yl]-1-methyl-1-H-pyrazole-5-sulfonamide 10% attapulgite 10% Pyrophyllite 80%

The active ingredient is blended with attapulgite and then passed through a hammer-mill to produce
particles substantially all below 200 microns. The
ground concentrate is then blended with powdered
pyrophyllite until homogeneous.

25 Example 25

Oil Suspension

4-Acetyl-N-[(4,6-dimethoxypyrimidin-2-yl)aminocarbon-yl]-1-methyl-1-H-pyrazole-5-sulfonamide 25% polyoxyethylene sorbitol hexaoleate 5%

highly aliphatic hydrocarbon oil 70%

The ingredients are ground together in a sand
mill until the solid particles have been reduced to
under about 5 microns. The resulting thick suspension
may be applied directly, but preferably after being

35 extended with oils or emulsified in water.

Example 26

	Wettable Powder 4-Acetyl-N-[(4.6-dimethoxypyrimidin-2-yl)-[ami yl]-l-methyl-l-H-pyrazole-5-sulfonamide 20	nocarbon-
	4-Acetyl-N-[(4.6-dimethoxypyrimidin-2-yl)-[ami yl]-l-methyl-1-H-pyrazole-5-sulfonamide 20	nocarbon-
	yl]-1-methyl-1-H-pyrazole-5-sulfonamide 20	
5		ક
		.8
	sodium ligninsulfonate 4	8.
	low viscosity methyl cellulose 3	8
•	attapulgite 69	8
10	The ingredients are thoroughly blended.	
	grinding in a hammer-mill to produce particles	s essen-
	tially all below 100 microns. the material is	reblended
	and sifted through a U.S.S. No. 50 sieve (0.3	mm
	opening) and packaged.	
15	Example 27	
	Wettable Powder	
	4-(Cyclopropylcarbonyl)-N-[(4.6-dimethoxypyri	midin
	2-yl)aminocarbonyl]-l-methyl-l-H-pyrazole-	
	5-sulfonamide	\$0 \$
20	sodium alkylnaphthalenesulfonate	2%
	sodium ligninsulfonate	2%
	synthetic amorphous silica	3%
	kaolinite	13%
	The ingredients are blended. hammer-mil	led until
25	all the solids are essentially under 50 micro	ns, re-
	blended, and packaged.	
	Example 28	
	Wettable Powder	
	4-(Cyclopropylcarbonyl)-N-{(4.6-dimethoxypyri	midin
30	2-yl)aminocarbonyl]-1-methyl-1-H-pyrazole-	
	5-sulfonamide	50%
	scdium alkylnaphthalenesulfonate	2%
	lcw viscosity methyl cellulose	2%
	diatomaceous earth	46%

The ingredients are blended, coarsely hammermilled and then air-milled to produce particles essentially all below 10 microns in diameter. The product is reblended before packaging.

Example 29

Granule

Wettable Powder of Example 27 5%
attapulgite granules 95%
(U.S.S. 20 to 40 mesh; 0.84-0.42 mm)
A slurry of wettable powder containing 25%
solids is sprayed on the surface of attapulgite
granules in a double-cone blender. The granules are

15

20

10

Example 30

Low Strength Granule

dried and packaged.

4-(Cyclopropylcarbonyl)-N-[(4.6-dimethoxypyrimidin 2-yl)aminocarbonyl]-1-methyl-1-H-pyrazole-

5-sulfonamide

0.1%

attapulgite granules

99.9%

(U.S.S. 20 to 40 mesh)

The active ingredient is dissolved in a solvent and the solution is sprayed upon dedusted granules in a double-cone blender. After spraying of the solution has been completed, the material is warmed to evaporate the solvent. The material is allowed to cool and then packaged.

Example 31

Aqueous Suspension

30 4-(Cyclopropylcarbonyl)-N-[(4.6-dimethoxypyrimidin

2-yl)aminocarbonyl]-1-methyl-1-H-pyrazole-

	5-sulfonamide	40%
	polyacrylic acid thickener	0.3%
	dodecylphenol polyethylene glycol ether	0.5%
35	disodium phosphate	1%
	monosodium phosphate	0.5%

	polyvinyl alcohol	1.0%
	water	56.7
	The ingredients are blended and ground toget	her
5	in a sand mill to produce particles essentially al	.1
	under 5 microns in size.	
	Example 32	
	High Strength Concentrate	
	4-(Cyclopropylcarbonyl)-N-[(4.6-dimethoxypyrimiding	.
.0	2-yl)aminocarbonyl]-1-methyl-1-H-pyrazole-	
	5-sulfonamide	99%
	silica aerogel	0.5%
	synthetic amorphous silica	0.5%
	The ingredients are blended and ground in a	
L 5	hammer-mill to produce a material essentially all	
	passing a U.S.S. No. 50 screen (0.3 mm opening).	
	concentrate may be formulated further if necessary	7 -
	Example 33	
	Wettable Powder	
20	4-(Cyclopropylcarbonyl)-N-[(4,6-dimethoxypyrimidi	n.
	2-yl)aminocarbonyl]-1-methyl-1-H-pyrazole-	
•	5-sulfonamide	90%
	dioctyl sodium sulfosuccinate	0.1%
	synthetic fine silica	9.9%
25	The ingredients are blended and ground in a	h
	hammer-mill to produce particles essentially all	
	100 microns. The material is sifted through a U.	J.J.
	No. 50 screen and then packaged. <u>Example 34</u>	
20	Oil Suspension	
30	4-(Cyclopropylcarbonyl)-N-[(4.6-dimethoxypyrimidi	n
	2-y1)aminocarbonyl]-1-methyl-1-H-pyrazole-	
	5-sulfonamide	35€
	blend of polyalcohol carboxylic	6%
35	esters and oil soluble petroleum	
	sulfonates	
	xvlene	59%

The ingredients are combined and ground together in a sand mill to produce particles essentially all below 5 microns. The product can be used directly. 5 extended with oils, or emulsified in water.

Example 35

Dust

4-(Cyclopropylcarbonyl)-N-[(4.6-dimethoxypyrimidin 2-yl)aminocarbonyl]-1-methyl-1-H-pyrazole-

5-sulfonamide 10.

10% 10%

attapulgite

Pyrophyllite

80\$

The active ingredient is blended with attapulgite and then passed through a hammer-mill to produce 15 particles substantially all below 200 microns. The ground concentrate is then blended with powdered pyrophyllite until homogeneous.

Utility '

Test results indicate that the compounds of the 20 present invention are highly active preemergent or postemergent herbicides or plant growth regulants. Many of them have utility for broad-spectrum preand/or post-emergence weed control in areas where 25 complete control of all vegetation is desired, such as around industrial storage areas. parking lots. drive-in theaters, around billboards, highway and railroad structures. Some of the compounds have utility for selective weed control in crops such as 30 wheat, barley, rice, soybeans and corn. Alternatively, the subject compounds are useful to modify plant growth.

The rates of application for the compounds of the invention are determined by a number of factors, 35 including their use as plant growth modifiers or as herbicies, the crop species involved, the types of

weeds to be controlled, weather and climate, formulations selected, mode of application, amount of
foliage present, etc. In general terms, the subject
compounds should be applied at levels of around 0.001
to 10 kg/ha, the lower rates being suggested for use
on lighter soils and/or those having a low organic
matter content, for plant growth modification or for
situations where only short-term persistence is
required.

The compounds of the invention may be used in combination with any other commercial herbicide, examples of which are those of the triazine, triazole, imidazolinone, uracil, urea, amide, diphenylether, carbamate and bipyridylium types as well as other sulfonylureas. They are particularly useful with the following herbicides.

	Common Name	187 Chemical Name
	alachlor	2-chloro-2',6'-diethyl-N-(methoxy-methyl)-acetanilide
5	atrazine	2-chloro-4-(ethylamino)-6-(isopropyl- amino)- <u>s</u> -triazine
	butylate	S-ethyl-diisobutylthiocarbamate
	cyanazine	2-[[4-chloro-6-(ethylamino)- <u>s</u> -triazin-2- yl]amino]-2-methylpropionitrile
10	dicamba	3,6-dichloro-o-anisic acid
	EPTC	S-ethyl dipropylthiocarbamate
	linuron	3-(3.4-dichlorophenyl)-l-methoxy-l-methylurea
15	metolachlor	2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide
	metribuz in	4-amino-6- <u>tert</u> -butyl-3-(methylthio)-as- triazine-5(4H)-one
20	tridiphane	2-(3.5-dichlorophenyl)-2-(2.2.2-tri-chloroethyl)oxirane
	2.4-D	(2,4-dichlorophenoxy)acetic acid
	thiobencarb	S-4-chlorobenzyldiethylthiocarbamate
	molinate	S-ethyl N.N-hexamethylenethiocarbamate
25	butachlor	N-(butoxymethyl-2-chloro-2',6'-di-ethylacetanilide
	naproanilide	N-phenyl-2-(1-naphthyloxy)propionamide
	pyrazolate	4-(2.4-dichlorobenzoyl)-1.3-dimethyl- pyrazol-5-yl-4-toluenesulfonate
30	pretilachlor	2-chloro-2',6'-diethyl-N-(\underline{n} -propoxy-ethyl)acetanilide
	oxidiazon	3-[2,4-dichloro-5-(1-methylethoxy)- phenyl]-5-(1,1-dimethylethyl)-1,3,4- oxadizol-2(3H)-one

		. T88
	Trade Name or Code Number	Chemical Name
5	Harmony [®]	3-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)aminocarbonyl]aminosulfonyl]-2-thiophenecarboxylic acid, methyl ester
	Cinch [®]	exo-l-methyl-4-(l-methylethyl)-2-[(2-methylphenyl)methoxy]-7-oxabicyclo-[2.2.1]heptane
10	MY-93	S-(1-methyl-1-phenethyl)piperidine-1-carbothioate
	CH-83	S-(2-methylpropyl)-hexanhydro-lH-aze- pine-l-carbothioic acid, ester
	X-52	2.4-dichlorophenyl-3-methoxy-4-nitro- phenyl ether
15	SC-2957	S-benzyl-N-ethyl-N-propylthiocarbamate
	HW-52	N-(2.3-dichlorophenyl)-4-(ethoxy-methoxy)benzamide
	NTN-801	2-(benzothiazol-2-yl)-N-methyl-N- phenylacetamide
20	SL-49	2-[4-[(2,4-dichlorophenyl)carbonyl]- 1,3-dimethyl-lH-pyrazol-5-yloxy]-l- phenylethanone
	BAS-514	3.7-dichloro-8-quinoline carboxylic acid
25		,

The herbicidal properties of the subject compounds were discovered in a number of greenhouse tests. The test procedures and results follow.

30.

Compounds

10	Compound	R.	<u>x</u>	¥	<u>z</u>
10 .					CH
	1	CH ₃	OCH ₃	OCH ₃	
	2	CH2CH2CH3	CH ₃	CH ₃	CH
	3	CH2CH2CH3	OCH ₃	CH3	CH
	4 .	CH2CH2CH3	OCH ₃	OCH ₃	CH
15	5	CH2CH2CH3	OCH ₃	CH3	N
	6	CH2CH2CH3	OCH ₃	OCH ₃	N
	7	CH2CH2CH3	Cl	OCH ₃	CH
	8	CH2CH2CH3	OCH ₃	OCH ₃	CH
•	9	CH ₂ CH ₃	CH ₃	CH ₃	CH
20	10	CH ₂ CH ₃	CH ₃	OCH ₃	CH
	11	CH ₂ CH ₃	CH ₃	OCH ₃	'n
	12	CH ₂ CH ₃	OCH ₃	OCH ₃	N
	13	CH ₂ CH ₃	Cl	OCH ₃	CH
	14	CH(CH ₃) ₂	CH ₃	CH ₃	CH
25 ·	15	CH(CH ₃) ₂	CH ₃	OCH ₃	CH
	16	CH(CH ₃) ₂	OCH ₃ .	OCH ₃	CH
	17	CH(CH ₃) ₂	CH ₃	OCH ₃	N
	18	CH(CH ₃) ₂	OCH ₃	OCH ₃	N
	19	CH(CH ₃) ₂	Cl	OCH ₃	CH

190
Compounds (continued)

School Sc	o 2 ^{NHČNH}	X X X X Y
II O		

10	Compound	<u>X</u>	X	<u>z</u>
	20	CH ₃	CH ₃	CH
	21	CH ³	OCH ³	CH
	22	OCH ₃	OCH ³	CH
	23	CH3	OCH ₃	N
15	24	OCH ₃	OCH ₃	N
	25	C1	OCH ³	CH

Test A

Seeds of crabgrass (Digitaria spp.), barnyardgrass (Echinochloa crusqalli), giant foxtail (Setaria 5 faberi), wild oats (Avena fatua), cheatgrass (Bromus secalinus), velvetleaf (Abutilon theophrasti), morningglory (Ipomoea spp.), cocklebur (Xanthium pennsylvanicum), sorghum, corn soybean, sugarbeet, cotton, rice, wheat, barley and purple nutsedge (Cyperus rotundus) tubers were planted and treated preemergence with the test chemicals dissolved in a non-phytotoxic solvent. At the same time, these crop and weed species. were treated with a soil/foliage application. time of treatment, the plants ranged in height from 2 15 to 18 cm. Treated plants and controls were maintained in a greenhouse for sixteen days, after which all species were compared to controls and visually rated for response to treatment. The ratings, summarized in Table A, are based on a numerical scale extending from 20 0 = no injury, to 10 = complete kill. The accompanying descriptive symbols have the following meanings:

C = chlorosis/necrosis

B = burn

D = defoliation

E = emergence inhibition

G = growth retardation

H = formative effect

U = unusual pigmentation

X = axillary stimulation

S = albinism

6Y = abscised buds or flowers

30

<u>Table A</u>

		Compou	nd 1	Compou	ind 2
5	*				
	Rate g/ha	0.05	0.01	0.05	0.01
	POSTEMERGENCE				
	Corn	9H	3C,5H	0	0
	Wheat	2G	0	. 0	Ö
10	Barley	5G	. 0	0	0
	Rice	5C,9G	8G	4G	ŏ
	Soybean	4C.9G	6H	0	3C,8H
	Cotton	9G	9H	3C.8H	2C, 3G
	Sugar beet	9C	9C	3C,6G 0	0
	Crabgrass	3C,8G	2C,6G	-	ŏ
	Barnyardgrass	9C	5C,9H	2C,6G 7G	ŏ
15	Nutsedge	3C.9G	9G	7G 2G	Ŏ
To	Giant Foxtaíl	5C.9G	3C.8G	2G 6G	. 0
	Cheatgrass	4C.9G	8G	0	· ŏ
	Wild Oats	2C,5G	0	4C,9G	3C,9H
	Cocklebur	9C	3C.9H	3C.8G	2H
	Morningglory	9C	3C,9H	4C,9G	3G
•	Velvetleaf	9C	3C,8H	40,36	50
20	PREEMERGENCE	2.6.011	3C.7H	0	0
	Corn	3C.9H	3C./A	0	Ö
	Wheat	3G	2C.4G	0	ō
	Barley	2C,5G	2C.4G 8H	· 2C	ŏ
	Rice	9H	3C.4H	0	Ö
	Soybean	3C,6H	6H	7 Ğ	5 G -
	Cotton	9G · 9G	4C.8G	ō	0
25	Sugar beet	5G	2C.5G	0	0
	Crabgrass	9H	9H	2 G	0
	Barnyardgrass	10E	10E	0	0
	Nutsedge	7G	3C.7H	Ö	0
	Giant Foxtail	9H	9H	Ö	0 -
	Cheatgrass	3G	2 G	Ō	0
	Wild Oats	2C.7H	5H -	8H	8H
20	Cocklebur	8H	8G	2G	. 0
30	Morningglory Velvetleaf	7H	Ö	5 G	0
	ASTABLIEGE		_		

194
Table A (continued)

		Compound 3		Compound 4	
5	Rate g/ha	0.05	0.01	0.05	0.01
10	POSTEMERGENCE Corn Wheat Barley Rice Soybean Cotton Sugar beet Crabgrass Barnyardgrass Nutsedge Giant Foxtail Cheatgrass Wild Oats	3C,9H 0 2C 7G 2C,4H 10C 4C,9H 2G 4C,9H 4C,9G 3C,7G 8G 1C	1C,4H 0 0 3G 1H 4C,8H 3C,6G 0 2C,5G 2C,5G 2G 5G	3C,9H 0 0 7G 3C,8G,7X 4C,9G 4C,8G 4G 5C,9H 4C,9G 4C,8G 8G 0	3C.9H O O 2G 3H 4C.9G 4C.8G O 3C.5H 4C.8G 4G 2G O
	Wild Oats Cocklebur Morningglory Velvetleaf	9C 9C	4C.9G 3C.8G 4C.9G	10C 10C 10C	6C.9G 9C 4C.9G
20	PREEMERGENCE Corn Wheat Barley Rice Soybean Cotton Sugar beet	3C,8G 0 2G 2C,2G 1H 9G 8G	2C,7G 0 0 0 0 0 8G 5G	3C,8G ⁻ 0 0 3G 3G 9G 9G	2C.6G 0 0 0 0 0 8G 6G
25	Crabgrass Barnyardgrass Nutsedge Giant foxtail Cheatgrass Wild Oats Cocklebur	0 3C.7G 7G 2C.4G 4G 0 9H	0 2G 8G 0 0 9H	0 3C,8G 9G 3C,7G 6G 0 9H 8G	0 2C,2G 7G 0 0 9H 8G
30	Morningglory Velvetleaf	9G 9C	8G 9G	9C	9G

195
Table A (continued)

		Compou	nd S	Compour	nd 6
5	Rate g/ha	0.05	0.01	0.05	0.01
	POSTEMERGENCE				•
	Corn	2C.6H	0	6 H	0
	Wheat	0	, O	0	_
10	Barley	0	· O	0	0
	Rice	5G	3 G	4C,9G	3G
•	Soybean	0	0	0	0
	Cotton	8G	0	4C.9G	3G
	Sugar beet	1C	2 G	3C,5G	2H
	Crabgrass	0	0	0	0
	Barnyardgrass	2C.5H	2H	9H	0
	Nutsedge	0	0	4G	0
15	Giant Foxtail	2G	0	2C.5G	0
	Cheatgrass	5 G	0	5G	0
	Wild Oats	0	0	0	0
	Cocklebur	5C.9G	4C,9H	4C,9G	4C,9H
	Morningglory	4C.9G	3C.7G	5C,9G	3C,8H
	Velvetleaf	3C.8H	2C,5G	3C.8H	6G
20	PREEMERGENCE		25.46	2C,5G	2C,5G
	Corn	3C,6G	2C.4G	20,50 .	0
	Wheat	0	0	5G	Ö
	Barley	0	0	2C,6G	2 G
	Rice	4G	3 G	•	0
	Soybean	0	0	0	2C,2G
	Cotton	2C,2G	0	8G	5G
	Sugar beet	4H	5 G	9G	0
25	Crabgrass	O	0	0 6G	2C,2G
	Barnyardgrass	3 G	0	0	.0
	Nutsedge	0	0	Ö	Ö
	Giant Foxtail	4G	0	5 G	ŏ.
	Cheatgrass	0	0	9G 0	ŏ
	Wild Oats	0	0	9H	3Н
	Cocklebur	7 G	7H	9 H 7 G	5H
30		6G	5G	8G	3G
	Velvetleaf	9C	8G	99	24

196
Table A (continued)

5		Compo	ound 7	Compo	und 8
	Rate g/ha	0.05	0.01	0.05	0.01
	POSTEMERGENCE				
	Corn	0	0	9C	4C.9G
	Wheat	0	0	0	0
10	Barley	0	0	0	0
	Rice	2G	0	5G	0
	Soybean	10	0	3C.8H	3C.5H
	Cotton	7G	0	10C 10C	10C 10C
	Sugar beet	3C,6G	0		2G
	Crabgrass	. 0	0	3C.7G 9C	5C,9H
	Barnyardgrass	0	0	9C	9C
15	Nutsedge	0	0	10C	9C
	Giant Foxtail	0	Ö	9C	7G
	Cheatgrass Wild Oats	. 0	Ö	0	Õ
	Cocklebur	3C.9G	2C.8H	10C	10C
	Morningglory	3C.8G	3G	100	100
	Velvetleaf	7G	Ö	9C	9C
	Sorghum	,	_	3C.8H	3G
20	Jorgana			•	
	PREEMERGENCE				•
	Corn	2C.3G	0	2C.9G	ZC.9G
	Wheat	0	o	2G	0
	Barley	0	0	3G	0
	Rice	2C,3G	0	8H	2G
	Soybean	0	0	6H .	6G
25	Cotton	5G	0	9G	9G
23	Sugar beet	8G	0	9G	8H
	Crabgrass	0	O .	2G	0
	Barnyardgrass	3C,5G	0	9H	4G
	Nutsedge	0	O	10E	10E
•	Giant Foxtail	0	0	9H	5G
	Cheatgrass	0	0	9G	8G
	Wild Oats	0	Ð	1C	0
30	Cocklebur	9H	_	8H	3C.6H
	Morningglory	8H	0	9H 8H	9G 6H
	Velvetleaf	7G	0	9H	7G
	Sorghum	. -	-	УП	/G

197
Table A (continued)

RATE RATE=KG/HA 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05
RATE RATE=KG/HA 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 POSTEMERGENCE COTION ROWHING GLORY 3C.8G 9C 5C.9G 9C 4C.8H 10C 3C.8R 10C COCKLEBUR 10C 10C 10C 10C 5C.9G 10C 3C.8R 10C RUTSEDGE 4C.9G 9C 5C.9G 9C 2G 3C.8G 0 RUTSEDGE 4C.9G 9C 5C.9G 9C 2G 3C.8G 0 CRABGRASS 0 3G 3G 9C 0 4G.9H 3E 4C.9H WILD OATS 0 3C.6G 0 2C.6G 0 0 0 0 WHEAT 0 7G 0 7G 0 0 0 0 WHEAT 0 7G 0 7G 0 0 0 0 WHEAT 0 7G 0 7G 0 2H 3C.9G 3E 3C.9G SOTBEAR 3H 6R 2C.9H 9C 9C 9R 9G 3R 3C.9G RICE 8G 9C 4G 2C.7G 2G 3C.9G 5C.9G RICE 8G 9C 4C.9H 9C 3C.9G 3C.9G 5C.9G CHEATGRASS 2C.8G 9C 7G 9C 3C.9G 3C.9G 5C.9G CHEATGRASS 2C.8G 9C 7G 9C 3C.9G 3C.9G 5C.9G CHEATGRASS 2C.8G 9C 7G 9C 5C.9G 0 4C.9G SUGAR BEETS 9C 10C 5C.9G 10C 5G 4C.8G 2R 6G VELVETLEAF 4C.9H 10C 9C 10C 2G 3C.8H 0 3C.7G BARLEY FOUTAIL 2C.5G 5C.9G 3C.8G 9C 0 3C.7R 0 4G BARLEY 6G 3C.8G 0 3C.7G 0 9G 0 9G NORNING GLORY 7R 9G 9G 9G 9G 0 9G 0 7R EUTSEDGE 9G 9G 9G 9G 0 9G 0 7R EUTSEDGE 9G 9G 9G 9G 0 9G 0 7R EUTSEDGE 9G 9G 9G 9G 0 9G 0 7R
POSTIMERGENCE COTTOR ROWING GLORY COCKLEBUR 10C RUTSEDGE COTTOR COCKLEBUR 10C 10C 10C 10C 10C 10C 10C 10
COTTON 10C 9C 10C 10C 7G 10C 3C.8H 10C 3C.8H 10C COCKLEBUR 10C 10C 10C 10C 5C.9G 10C 3C.7H 9C NUTSEDGE 4C.9G 9C 5C.9G 9C 2G 3C.8G 0 0 0 CRABGRASS 0 3G.9H 9C 4C.9H 9C 6M 4C.9H 3H 4C.9H MILD OATS 0 3C.6G 0 2C.6G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RORNING GLORY 3C,8G 9C 5C,9G 9C 4C,8H 10C 3C,8R 16C COCKLEBUR 10C 10C 10C 10C 5C,9G 10C 3C,7R 9C
COCKLEBUR 10C 10C 10C 10C 2G 3C.7K 9C 10C NUTSEDGE 4C.9G 9C 5C.9G 9C 2G 3C.8G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#UTSEDGE 4C,9G 9C 5C,9G 9C 2G 3C,8G 0 0 CRABGRASS 0 3G 3G 9C 0 4G 0 0 MRIATD GRABS 3C,9H 9C 4C,9H 9C 6K 4C,9H 3E 4C,9H MILD OATS 0 3C,6G 0 2C,6G 0 0 0 0 MHIAT 0 7G 0 7G 0 0 0 0 CORN 4G 2C,9H 9H 9C 9R 9G 3E 3C,9G SOTBEAN 3H 6R 2C,3H 3C,7G 0 2H 0 7R RICE 8G 9C 4G 2C,7G 2G 3C,9G 3C,9G RICE 8G 9C 4C,9H 9C 2C,9H 2C,9G 3C,8H 4C,9G SORGHUN 3C,9G 9C 4C,9H 9C 2C,9H 2C,9G 3C,8H 4C,9G CREATGRASS 2C,8G 9C 7G 9C 5G 5C,9G 3C,8H 4C,9G SUGAR BEETS 9C 10C 5C,9G 10C 5G 4C,8G 2E 6G VELVETLEAF 4C,9H 10C 9C 10C 2G 3C,8H 0 3C,7G DARLEY 6G 3C,8G 9C 0 3C,7G 0 0 0 0 PREEMERGENCE COTTON 8H 9G 9G 9C 0 3C,7H 0 4G COCKLEBUR 9H 9H 9H 1C 2C,7H 1E 3C,3H EUTSEDGE 9G 9G 9G 10E 0 0 ON ON ON ON ON ON ON ON ON O
CRABGRASS 0 3G 3G 9C 0 4G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10
WILD OATS 0 3C,6G 0 2C,6G 0 0 0 0 1C 0 1C 0 MHEAT 0 7G 0 7G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#HIAT 0 7G 0 7G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CORR 4G 2C,9H 9H 9C 9R 9G 3R 3C,9G GORDEAN 3H 6R 2C,3H 3C,7G 0 2H 0 7R GORDEAN 3H 6R 2C,3H 3C,7G 0 2H 0 7R GORDEAN 3C,9G 9C 4G,9H 9C 2C,9H 2C,9G 3C,8H 4C,9G CHEATGRASS 2C,8G 9C 7G 9C 5G 5C,9G 0 4C,9G SUGAR BEETS 9C 10C 5C,9G 10C 5G 5C,9G 0 4C,9G VELVETLEAF 4C,9H 10C 9C 10C 2G 3C,8H 0 3C,7G GORDEAN FOXTAIL 2C,5G 5C,9G 3C,8G 9C 0 3C,7H 0 4G GORDEAN FOXTAIL 2C,5G 5C,9G 3C,8G 9C 0 3C,7H 0 4G GORDEAN FOXTAIL 2C,5G 5C,9G 3C,8G 9C 0 3C,7H 0 4G GORDEAN FOXTAIL 2C,5G 5C,9G 3C,8G 9C 0 3C,7H 0 4G GORDEAN FOXTAIL 2C,5G 5C,9G 3C,8G 9C 0 3C,7H 0 7G GORDEAN FOXTAIL 2C,5G 5C,9G 3C,8G 9C 0 3C,7H 0 7G GORDEAN FOXTAIL 2C,5G 5C,9G 3C,8G 9C 0 3C,7H 0 7G GORDEAN FOXTAIL 2C,5G 5C,9G 3C,8G 9C 0 3C,7H 0 7G GORDEAN FOXTAIL 2C,5G 5C,9G 3C,8G 9C 0 3C,7H 0 7G GORDEAN FOXTAIL 2C,5G 5C,9G 3C,8G 9C 0 3C,7H 0 7G GORDEAN FOXTAIL 2C,5G 3C,9G 3C,8G 9C 0 3C,7H 0 7G GORDEAN FOXTAIL 2C,5G 3C,9G 3C,8G 9C 0 7G GORDEAN FOXTAIL 2C,5G 3C,9G 3C,8G 9C 0 3C,7H 0 7G GORDEAN FOXTAIL 2C,5G 3C,9G 3C,8H 4C,9G 7G GORDEAN FOXTAIL 2C,5G 3C,9G 3C,8H 4C,9G 7G GORDEAN FOXTAIL 2C,5G 3C,9G 3C,8H 0 3C,7G 7G 7
SOTBEAR 3H 6R 2C,3H 3C,7G 0 2R 0 7R
RICE 8G 9C 4G 2C,7G 2G 3C,9G 5G 6C,9G SORGRUM 3C,9G 9C 4C,9H 9C 2C,9H 2C,9G 3C,8H 4C,9G CHEATGRASS 2C,8G 9C 7G 9C 5G 5C,9G 0 4C,9G SUGAR BEETS 9C 10C 5C,9G 10C 5G 4C,8G 2H 6G VELVETLEAF 4C,9H 10C 9C 10C 2G 3C,8H 0 3C,7G 4C,9G 6G 7G
SORGRUM 3C,9G 9C 4C,9H 9C 2C,9H 2C,9G 3C,8H 4C,9G CHEATGRASS 2C,8G 9C 7G 9C 5G 5C,9G 0 4C,9G SUGAR BEETS 9C 10C 5C,9G 10C 2G 3C,8H 0 3C,7G VELVETLEAF 4C,9H 10C 9C 10C 2G 3C,8H 0 3C,7G GART FOXTAIL 2C,5G 5C,9G 3C,8G 9C 0 3C,7H 0 4G BARLEY 6G 3C,8G 0 3C,7G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CREATGRASS 2C,8G 9C 7G 9C 5G 5C,9G 0 4C,9G SUGAR BEETS 9C 10C 5C,9G 10C 5G 4C,8G 2E 6G VELVETLEAF 4C,9E 10C 9C 10C 2G 3C,8E 0 3C,7G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SUGAR BEETS 9C 10C 5C,9G 10C 5G 4C,8G 2E 6G 7E 7E 7E 7E 7E 7E 7E 7
VELVETLEAF 4C.9H 10C 9C 10C 2G 3C.8H 0 3C.7G 15 GLANT POXTAIL 2C.5G 5C.9G 3C.8G 9C 0 3C.7H 0 4G BARLEY 6G 3C.8G 0 3C.7G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 GIART POXTAIL 2C,5G 5C,9G 3C,8G 9C 0 3C,7M 0 46 BARLEY 6G 3C,8G 0 3C,7G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##################################
PRETERGENCE COTTON 8H 9G 8G 9G 0 8H 0 5G COTTON 8H 9G 9G 9G 0 7H MORNING GLORY 7H 9G 9G 9G 0 9G 0 7H COCKLEBUR 9H 9H 1C 2C,7H 1H 3C,3H BUTSEDGE 9G 9G 8G 10H 0 10E 0 0
COTTON 8H 9G 8G 9G 0 8H 0 7G 10 10 10 10 10 10 10 10 10 10 10 10 10
MORNING GLORY 7E 9G 9G 9G 0 9G 0 7E COCKLEBUR 9E 9E 9E 1C 2C,7E 1E 3C,3E EUTSEDGE 9G 9G 8G 10E 0 10E 0 0
COCKLEBUR 9E 9E 9E 1C 2C.7E 1E 3C.3E EUTSEDGE 9G 9G 8G 10E 0 10E 0 0
BUTSEDGE 9G 9G 8G 10E 0 10E 0
BUISLUUL
CHARGRASS 0 0 0 4G 0 0 0
CKADUKAJ3
BARRIARD GRASS /0 2G 2C 4G 0 0 0 0
WILD OALS
20 WEEAT 0 4G,94 3C,98 9R 2C,98 4R 2C,98
SOTREAM 3G 5G 3G 2C.7M 0 3C.4G 0 1C.1M
and the second s
20.7E 5C.9G
SORCHUM A SECOND A SE
CHEATGRASS 50 15 15 15 15 15 15 15 15 15 15 15 15 15
SUGAR BELTS 94 2 2C.2G
VELVET LAND
GIANT PORTAIL 0 70 2C.40 0 70 0 60 20 50

198
Table A (continued)

2		

9							•		
		CMPD 1	3	CHPD 1	•	CMPD 1	3	CKPD 16	;
	RATE RATE=KG/HA	0.01	0.05	10.0	0.05	0.01	0.05	0.01	0.05
	POSTEMERGERCE				•	91		50,96	
	COTTON	100	10C	30,16		30.86		9C	
	MORNING GLORY	4C,9G	10C	30,66		40,96		100	
	COCKPERGE	9C	100	30,70		30,86		5C,9G	
	BUTSEDGE	4C.9G	10C	0		,6,11		2G	
10	CRABGRASS	0	46	0 .		ŏ		3C.5E	
	BARNYARD GRASS	7 K	5C,9E	10		ĕ		0	
	WILD OATS	0	` 0	0		ŏ		ŏ	
	TASHY	C	0	0		_		90	
	CORN	7 H	3C,9G	0		78		38	
	SOTBEAN	0	36	2 H		3C,5H		ic	
	RICE	26	7G	36		2 G		1C.8G	
	SORGHUM	56	30,98	3C,5G		3C.8K			
	CKEATGRASS	5 G	SC.96	0		26		20,66	
	SUCLER BEETS	30.70	9 C	30,86		5C,9G		50,90	
3 -	AETAELTEVL	5G	30.76	30,76		40.90		9 C	
15		SG	5C.98	10		2G		46	
	GIANT FOXTAIL	- 0	36	0		0		0	
	BARLET	•	• •	• -					
,	PRECHERGENCE	3 G	86	0		2G		76	
	COTTOR	76	96	ŏ		30,48		9 G	
	HORRIEG GLORT	3 H	,,	ŏ		30,56		3C,7E	
	COCKLEBUR	7G	9 G .	ŏ		102		9 G	
	RUTSEDGE	70	3G	ŏ				8 G	
	CRABGRASS	26	9 15	ŏ		0		2G	
	BARBTARD GRASS			ŏ		6		. 0	
20	WILD OATS	0	ŏ	ă		•		•	•
20	WHEAT	0	•a ·	ě		20		30,40	
	CORE	20,50	2G	ă		12	•	36	
	SOTBEAM	0	#G	ŏ		0		26	
	. RICE	0		ŏ		20		56	
-	SORGEUM	30,41		ŏ		0		46	
	CHEATGRASS	5 G	96	36		36		86	
	SUGAR BEETS	. 16	9 G	90		20.28		6 E	
	VELVETLEAP	3 #	7#	ě				5G	
	GIART FOITAIL	0	76	ö		i		•	
	8.25.ET	0	20,36	•		-			

199
Table A (continued)

		CMPD 1	7	CHPD 1	•	CHPD 1	•	CKbD 5	0
	RATE RATE-EG/HA	0.01	0.05	0.01	0.05	0.01	0.05	0.01	0.05
	POSTEMERGENCE		0			•			
	COTTON	30,66		3C.6E		26		40,96	5c,9G
10	HOSELHE CFORE	3C.7H		30.76		2C,4E		38	100
LU	COCKTERNY	50,96		40.88		30,76		5C,9G	30
	MUTSEDGE	30,56		0		0		30,10	40,96
	CRABGRASS	0		0		0		0	. 0
	BARRYARD GRASS	ŏ		ō		0.		3C,7E	40,98
	WILD OATS	ŏ		č		٥		.3G	3C,8G
		ŏ		ŏ		0		3G	20,76
	WREAT	9 H		3C,8H		0	•	26	7 H
	CORF	18		18		. 0		5 R	30,46
	SOYBEAN	36		76		0		86	50,96
	RICE	30,86		30,86		30,50		4C,9E	90
15	SORGHUM	36,00		26		0		30,76	3C,9G
	CHB PTGRASS	40.86		4C.9B		20,36		40,89	4C,8G
	SUGAR BEETS	20,56		30,66		10		10C	9C
	VELVETLEAP	20,30		10		0		2G	30.36
	GIART POITAIL	10		- 5		0		36	96
	BARLEY	U		•		•			
	PREEMERGENCE	•		٥		0		2G	6 G
	COTTOR	0 2C,5G		2 C		20		0	6G
	MORRING GLORY	20,50		20		10		34	9 H
	COCKLEBUR	20		. 0		0		•	0
20	BUTSEDGE	ă		46		46		0	•
20	CRADGRASS	•		3		Ö		76	BH
	BARKYARD GRASS	•		ŏ		Ö	•	26	72
	WILD OATS	ğ	•	ŏ		ò		0	76
	TASEW	30,66		20.50		ò		0	7#
	CORR	30.00		0		Ö		26	3C,3E
	SOYBEAN	ŏ		36		Ò		86	9 K
	RICE	30.50		20.30		2C.4G		9 E	10H
	SORGHUN			-5,50		0		5G	8 G
	CHEATGRASS	_0		78		44		5E	76
	SUGAR BEETS	74		26		0		50	6 X
25	VELVETLEAP	3.5		26		ŏ		0	•
	GIZET POITAIL	•		• • •		Ō		0	76
	RARLEY	0		_		-			

200
Table A (continued)

•		CMPD :	21	CHIPD :	22	CKPD :	23	CKPD 2	14
	RATE RATE-EG/HA POSTEMERGENCE	0.01	0.05	0.01	0.05	0.01	0.05	0.01	0.05
10	cotion	5C,9G	• 9 C	30,90	4C.9G	9C	100	40.96	40,96
TO	MORNING GLORY	100	10C	40.90	100	100	100	100	100
	COCKLEBUR	90	100	100	100	100	100	100	100
	WUTSEDGE	4C,8G	90	90	100	0	0	- 0	20,56
	CRABGRASS	0	4 G	0	3 G	ŏ	ă	ŏ	0
	BARNYARD GRASS	3⊂,9≅	90	3c.5g	30.15	ŏ	3C,7E	ŏ	SE
	WILD OATS	5G	7 G	0	3 G	ŏ	26	ŏ	26
	WHEAT	3 G	7G	36	46	ŏ	3 G	ŏ	36
	CORN	8 H	3C.9E	26	30.98	2C.3G	9 H	6	
	SOYBEAN	5C.96	40,96	30,96	40,96	90	5C,9G	_	46
	RICE _	7G	30,96	46	20,86	20	40,86	4C,9G.	4C,9G
15	SOR CHEN	9 H	100	7 E	30,98	36		ic	40,86
	CHEATGRASS	5C.3G	5C,9G	3C.5G	90	30	3C, 8R	3C.3G	2C,6E
	SUGAR BEETS	100	100	30	100	90	2G. 9C		2C,4G
	VELVETLEAP	100	100	40,90	100	100		100	90
	GIART POITAIL	16	30,86	0	20,48	100	10C	2C,4E	SG
	BARLEY	50	16	26	4G	ŏ	36	0	30,56
	PREEMERGENCE			40	40	U	3G	•	0
	COTTOR	7G	. 48	e	5-G				
	MORNING GLORY	56	9 G	26	76	8 K	9 G	5G	30.80
	COCKLEBUR	4B	30.68	2G	76 76	9 6	96	9G	40,96
	BUTSEQGE		6G	10		3C,7E	9 H.	30,68	9 B
20	CRASGRASS	0	46	ĕ	105	0	0 '	0	6 .
	BARRTARD GRASS	7E	98	ŏ	26	0	.0	0	•
	WILD OATS	· 26	30.80	ŏ	7 E	10	ŽĦ	.0	• .
	MREVI	26	7G	Ö	0	0	0	•	0
	CORN	2C.8E	96	-	0	_ 0	0.	•	•
	MASSTOS	3C,5G		0	3C,7G	3C,4G	30,70	10	20,56
	RICE	46	3C.9E	1C,1K	3C,5E	3C,7E	9 E	3C,7E	30,95
	SORGHUM		30,98	76	96	. 0	8 G	3 G	7G .
	CHEATGRASS	3C,9E 5G	3C,9E	8.G	3C,9E	20,30	\$ G	2C,3G	30,66
	SUGAR BEETS		9G	0	16	0	26	¢	•
25	VELOSS LEAF	30,46	50,96	26	30,76	9 C	9 4	40,56	9 C
4 >	GIART POTTAIL	€E	9G	0	4 X	72	40,90	0	26
	BARLET	24	4 M	0	40	•	0	0	• .
		20	2C,8G	0	10	•	2C,3G	•	1

201 Table A (continued)

_		CMPD	25
	RATE RATE-RG/BA	0.01	0.05
	POSTEMERGENCE		
	COTTOR	90	9C .
10	HORNING GLORY	100	10C
•	COCKLEBUR	9C .	100
	RUTSEDGE	90	9 C
	CRABGRASS	0	0
	BARHYARD GRASS	0	216
	WILD OATS	0	0
	WHEAT	0	26
•	CORR	0	0
	SOTBEAR	0	8 G
	RICE	€H	36
15	SORGHUM	0	30,80
1.5	CHEATGRASS	0	30
	SUGAR BEETS	46	10C
	VELVETLEAF	90	10C
	GIANT POXTAIL	0	0
	BARLEY	0	0
	PREEMERGENCE	•	
	COTTON	0	26
	MORNING GLORY	5 G	9 E
	COCKLEBUR		10
	MUTSEDGE	5 G	9 G
20	CRABGRASS	0	0
	BARNYARD GRASS	0	48
	WILD OATS	0	0
	WEEAT	. 0	0
	CORR	0	26
	SOYBEAR	0	10
	RICE	•	76
	SORGHUN	36	20,70
	CHEATGRASS	0	3 G
	SUGAR BEETS	5G	5 G
25	VELVETLEAF	36	62
23	GIANT POXTAIL	0	•
	242.00	ō	6

<u>Table A</u>

	•	Compound	1 26	Compound	1 27
5	Rate kg/ha	0.05	0.01	0.05	0.01
	POSTEMERGENCE				
	Morningglory	9C	3C,8G	10C	10C
	Cocklebur	9C	5C.9G	10C	10C-
	Velvetleaf	10C	9C	10C	10C
10	Nutsedge	9G	3C.8G	5C,9G	9G .
	Crabgrass	3G	O .	2G	O _.
	Barnyardgrass	3H	. 0	5C.9H	3C,5H
	Cheatgrass	3C,7G	· O	3C,9G	8G
	Wild Oats	0	. 0	2C,2G	. 0
	Sicklepod	-	_		-
	Wheat	0	0	0	0
15	Corn	0	0	9H	2C.6G
12	Soybean	3H	0	3C,6H	3H
	Rice	3G	0	3 G	0
	Sorghum	9G	3C,9H	4C.9G	4C.9G
	Sugar beet	9C	10C	9C	10C
	Cotton	100	3C.9H	100	10C
	PREEMERGENCE				
20	Morningglory	8H	. 0	3C.7H	5G
	Cocklebur	, 7H	2C,3H	9H •	7H
	Velvetleaf	7H	0	5C,9G	5H
	Nutsedge	10E	3C,8G	10E	10E
	Crabgrass	Ο.	0	3C	0
	Barnyardgrass	-2G	0	3C.7G	3G
	Cheatgrass	7G	0	9G	8G
25	Wild Oats	0	0	lC _.	0
23	Sicklepod	-	· -	- .	-
	Wheat	0	2G	. 0	0
	Corn	3 G	0	2C,9G	3C,7G
	Soybean	1H	0	3C,6H	2C,3H
	Rice	. 6G	5G .	5G	2G
	Sorghum	3C,9H	3C,8G	9G	8H
	Sugar beet	3C,9G	3C,7H	4C.9G	4C,9G
30	Cotton	8G	0	9G	7H

203
Table A (cont.)

					•
		Compound	1 28	Compound	29
5			•		
9	Rate kg/ha	0.05	0.01	0.05	0.01
	POSTEMERGENCE				
	Morningglory	10C	10C	9C	3C,8G
	Cocklebur	10C	10C	9C	4C,9G
10	Velvetleaf	10C	10C	9C	3C.7H
-	Nutsedge	9G	9G	9G	2C.5G
	Crabgrass	2C,5G	2G	2C.5G	. 0
	Barnyardgrass	5C,9H	6C.9H	3C.BH	0
	Cheatgrass	2C,8G	7G	9G	0
	Wild Oats	0	0 -	0	0
	Sicklepod	-	-	-	<u>-</u>
	Wheat	2 G	0	3G	-
15	Corn	9H	9H	3C,9H	3C,7H 2H
	Soybean	3C,5H	5H	3C,6H	0
	Rice	3 G	0	3G	_
	Sorghum	9H	5H	2C.9H	2C,8G
	Sugar beet	9C .	9C	5C,9H	4C,8H 8H
	Cotton	10C	9C	4C.9G	on
20	PREEMERGENCE		50	9G .	7H
	Morningglory	9 G	7G	7H ·	711
	Cocklebur	9H	-	2C.5H	2H
	Velvetleaf	9G	2H	20.5A 8G	5G
	Nutsedge	10E	10E	2C.3G	. 0
	Crabgrass	3G ·	0	4G	2H
	Barnyardgrass	9H	7H	7G	0
25	Cheatgrass	9H	7G 0	0	ŏ
	Wild Oats	0	U	-	
	Sicklepod	_	ō	0	.0
	Wheat	0	5 G	9H	3C.9H
	Corn	9G	0	3C,6H	3C.5H
	Soybean	2C,5H	0	6G	1C
	Rice	2G	2G	9H	3C.9H
	Sorghum	2C,9H	7G	5C,9G	8H
30	Sugar beet	9G	7G 7G	2C.7H	2C.2G
	Cotton	9G	, <i>,</i> G	20,,	

Table A (cont.)

_		Compound	<u>i 30</u>	Compound	1 31
5	Rate kg/ha	0.05	0.01	0.05	0.01
	POSTEMERGENCE				
	Morningglory	5C,9G	3C,8H	10C	2C,4G
	Cocklebur	9H	3C.9H	9C	2C,8H
10	Velvetleaf	2G ·	0	9C	3C.7H
	Nutsedge	9G	0	9G	9G
•	Crabgrass	4G	0	0	0
	Barnyardgrass	9H	2H	2C,5H	0
	Cheatgrass	3C,9G	0	2C,5G	0
	Wild Oats	O	0	0	0
	Sicklepod	-		-	_
15	Wheat	0	0	0	• 0
To	Corn	3C,9H	2H	2G	. 0
	Soybean	3C,6H	3C,3H	2C	0
	Rice	5C,9G	0	0	O ,
	Sorghum	4C.9G	3C.7H	3C.8H	2G
	Sugar beet	4C,9H	4C,8G	5C,9G	8G
	Cotton	10C	5C,9G	9C	7 G
20	PREEMERGENCE				
	Morningglory	3C,8G	2C,5H	2C.5H -	O -
	Cocklebur	7出	2 .	2C,5H	0
	Velvetleaf	0	Ο.	3C,7G	. 0
	Nutsedge	9G	9G	10E	. 0
	Crabgrass	0	0	0	0
	Barnyardgrass	3H	0	5G	0
25	Cheatgrass	5G	0	3 G	0
2.7	Wild Oats	0	0	0	0
	Sicklepod	- .	-	-	-
	Wheat	0	0	0	• 0
	Corn	9H	2C,8H	2C,6G	2G
	Soybean	3C,6H	3C,3H	0	0
	Rice	3C,9H	5G	. 2G	0
_	Sorghum	3C.9H	2C,8G	2C.7H	0
30	Sugar beet	9G	8 H	9G	5 G
•	Cotton	3C.7H	Ο .	3G	0

205
Table A (cont.)

5									
		CMPD	32	CMPD	<u>33</u>	CMPD	34	CMPD	<u> 35</u>
	BATE BATE-EG/BA	0.01	0.05	0.01	0.05	0.01	0.05	0.01	9.05
	Postekergence				10C	40.99	100	2C.9E	196
	COTTON	46,96	10C	5C,9G 10C	100	20.66	100	30.75	100
	HORNING GLORY	5c.90	10C	100	100	100	100	100	100
	COCKTERAN	30,66	10C 9C	96	90	16	90	76	96
	BUTSEDGE	30,76	36.70	76	40.96	46	36.96	30.46	9¢
10.	CRABGRASS	26	36,76	40.98	90	31	96	16	90
	BARHYARD GRASS	40,98		20,30	46.96	20.50	20.86	40,80	46,90
	WILD CATS	3C.56 7G	30,96	56	36	26	40	20.86	SC.96
	ARENT		30.94	40.98	60.96	96	50,96	50,94	96
•	CORN	3C,78 4C,96	50,96	40.96	96	90	SC.96	40.96	9C
	SOTBEAN	30	9C	40,86	90	40.96	50.96	90	90
	RICE	30,94	90	50.90	90	96	50.96	90	10C
	SORGEUM	30,50	100	100	90	9c	100	90	50,96
	CHEATGRASS SUGAR BEETS	9 C	96	100) C	100	96	90	100
	VILVETLEAP	40.92	90	100	10C	90	100	3C,7E	6C.9E
15	GIANT FOXTAIL	30,66	40.96	40.86	50,96	30.76	30,96	60,96	9 C
	BARLET	30,66	20,86	30,76	60,96	20.46	30,76	2C,6G	46,96
	PRICHERGENCE	55,55	•••		•	•	•		
	COTTOR	30.66	96	3C,7E	96	26	6 G	54	96
	MORHING GLORY	7E	96	3C.8E	82	76	86	2C,5E	96
	COCKLIBUR		92	30,50	30,75	1 M	82		
	BUTSEDGE	30.86	10E	10E	102	96	10E	40,96	102
	CRABGRASS	3G	36	6G	40,96	30	60	40,96	92
	BARHYARD GRASS	30.60	4C.9E	30,86	9 H	30,72	9 X	4C,9%	4C,9E
	WILD DATS	20,40	40,48	30,36	30,76	•	60	3C,7#	40,82
20	WEEAT	36	30,62	26	76	• ·_	20		20.98
20	CORM	30,46	40,98	30,76	3C,9E	30,76	. 86	20,86	96
	BASETOR	30,56	30,72	4C,8E	92 .	20,46	9 X	30,72	911
	RICE	9 =	102	9 E	102	9 H	92.	5C,9X	102
	SORGHUM	3C,8#	10E	3C,9E	10E	30,86	92	9 X	102
	CHEATGRASS	30,70	9G	911	102	•6	911	92	105
•	SUGAR BEETS	76	96	4C,9G	40,96	94)C	96	5C.94 3C.96
	VELVETLEAP	30,68	30,96	30,56	30,98	7H ·	40,94	7E	40.98
	GIANT POITAIL	3C,5G	40,82	30,10	911	36.56	92	40,96	40,98
	BARLET	3C,7G	9 6	36,46	96	2C,4G	76	96	70,75

Table A (cont.)

RATE RATE=KG/HA 0.01 0.05 0.01 0.05	5					
POSTEMERGENCE COTTON MORNING GLORY 10.77 100 4C.8G 9C COCKLEBUR 10.78 100 100 100 RUTSEDGE 4G 5G 4C.9G 5C.9G CRABGRASS 5C.8G 9C 2G 2C.5G BARNYARD GRASS 5C.9E 10C 3C.7G 4C.9E WILD OATS 6C.9G 5C.9G 0 2C.2G WHEAT 3C.9G 6C.9G 0 2C.2G WHEAT 3C.9G 6C.9G 0 2C.4G SOYBEAN 5C.9G 6C.9G 3C.5H 4C.9G SORGHUN 9C 9C 2G 3C.7H SOYBEAN 5C.9G 6C.9G 3C.5H 4C.9G SORGHUN 9C 9C 3C.9H 9G CHEATGRASS 6C.9G 9C 7G 9C SUGAR BEETS 9C 10C 9C 9C GIANT FOXTAIL 5C.9G 9C 3C.3G 4C.8H BARLEY 7G 9C 0 2C.3G PREEMERGENCE COTTON 4H 7H 4G 8G COCKLEBUR 2C 3C.7H 0 COCKLEBUR 2C 10E 9G 10E CRABGRASS 3C.8G 4C.8G 0 7G BARNYARD GRASS 3C.7E 9H 4H 9H WILD OATS 3C.6G 3C.7G 0 3G WHEAT 7G 9E 0 3C.9G WHEAT 7G 9E 0 3C.9G SOYBEAN 3C.9G 3C.9G 2C 3C.9G SOYBEAN 3C.9G 3C.9G 2C 3C.9G SOYBEAN 3C.9G 3C.9G 2C 3C.9G SOYBEAN 3C.7E 9H 3C.4H 3C.7E RICE 9H 10E 8H 9H CHEATGRASS 8H 10E 8H 9H SUGAR BEETS 3G 3C.8G 8G 8G SUGAR BEETS 3G 3C.8G 8G SUGAR SUGAR SEETS 3G 3C.8H 5C.9H CHEATGRASS 8H 10E 8H CHEATGRASS 8H CHEATGRASS 8H 10E 8H CHEATGRASS			CMPD :	36	CMPD 3	37
COTTON SC.9H SC.9G 4C.9G 10C		· · · · · · · · · · · · · · · · ·	0.01	0.05	0.01	0.05
MORNING GLORY 3C,7H 10C 4C,8G 9C			5C.9H	5c,9G	4C,9G	10C
COCKLEBUR 3C,8H 10C 10C 10C NUTSEDGE 4G 5G 4C,9G 5C,9G CRABGRASS 5C,8G 9C 2G 2C,5G BARNYARD GRASS 5C,9H 10C 3C,7G 4C,9H WILD OATS 6C,9G 5C,9G 0 2C,2G WHEAT 3C,9G 6C,9G 0 2C,4G CORH 9C 9C 2G 3C,7H SOYBEAN 5C,9G 6C,9G 3C,5H 4C,9G 3C,9H 9G 9C 9C 9C 9C 9C 9C 9C			3C.7H	10C	4C,8G	9C .
NUTSEDGE 4G 5G 4C,9G 5C,9G CRABGRASS 5C,8G 9C 2G 2C,5G BARNYARD GRASS 5C,9H 10C 3C,7G 4C,9H WILD GATS 6C,9G 5C,9G 0 2C,2G WHEAT 3C,9G 6C,9G 0 2C,4G CORH 9C 9C 2G 3C,7H SOYBEAN 5C,9G 6C,9G 3C,5H 4C,9G 6C,9G 3C,5H 4C,9G 6C,9G 3C,5H 4C,9G 6C,9G 3C,9H 9G 6G 9C 9C 3C,9H 9G 6G 9C 9C 9C 9C 9C 9C 9C 9	10			10C	10C	10C
CRABGRASS 5C,8G 9C 2G 2C,5G BARNIYARD GRASS 5C,9H 10C 3C,7G 4C,9H WILD OATS 6C,9G 5C,9G 0 2C,2G WHEAT 3C,9G 6C,9G 0 2C,4G CORH 9C 9C 9C 2G 3C,7H SOYBEAM 5C,9G 6C,9G 3C,5H 4C,9G SORGHUM 9C 9C 3C,9H 9G CHEATGRASS 6C,9G 9C 3C,9H 9G CHEATGRASS 9C 10C 9C 9C 9C VELVETLEAF 6G 7G 9C 3C,3G 4C,8H BARLEY 7G 9C 3C,3G 4C,8H BARLEY 7G 9C 0 2C,3G PREEHERGENCE 2C 10E 9G 10E COKLEBUR 2C 3C,7H 0 NUTSEDGE 2C 10E 9G 10E 10E CRABGRASS 3C,3H 9H				5 G	4C,9G	5C,9G
BARNYARD GRASS 5C,9H 10C 3C,7G 4C,9H WILD OATS 6C,9G 5C,9G 0 2C,2G WHEAT 3C,9G 6C,9G 0 2C,4G CORH 9C 9C 9C 2G 3C,7H SOYBEAN 5C,9G 6C,9G 3C,5H 4C,9G 9C 9C 9C 6G 9C			5C,8G	9 C	2G	2C,5G
WILD OATS WHEAT 3C,9G 6C,9G 0 2C,2G WHEAT 3C,9G 6C,9G 0 2C,4G CORN 9C 9C 2G 3C,7H SOYBEAN 5C,9G 6C,9G 3C,5H 4C,9G 15 RICE 9C 9C 6G 9C SORGHUM 9C 9C 3C,9H 9G CHEATGRASS 6C,9G 9C 7G 9C SUGAR BEETS 9C 10C 9C 9C VELVETLEAF 6G 7G 9C 10C GIANT FOXTAIL 5C,9G 9C 3C,3G 4C,8H BARLEY 7G 9C 0 2C,3G PREEMERGENCE 20 COTTON 4H 7H 4G 8G COCKLEBUR 2C 3C,7H 0 WUTSEDGE 2C 10E 9G 10E CRABGRASS 3C,3H 8G 3C,5G 5H WILD OATS 3C,6G 3C,7G 0 3G WHEAT 7G 9H 4H 9H WILD OATS 3C,6G 3C,7G 0 3G WHEAT 7G 9H 0 3C,4H 3C,7H RICE 9H 10E 8H 9H SORGHUM 5C,9H 10H 3C,8H 5C,9H CHEATGRASS 8H 10E 8G 9H CHEATGRASS 8H 10E 8G 9H SUGAR BEETS 3G 3C,8G 8G 6G VELVETLEAF 0 5H 5E GIANT FOXTAIL 3C,8H 4C,9H 3G 9H GIANT FOXTAIL 3C,8H 4C,9H 3G 9H GIANT FOXTAIL 3C,8H 4C,9H 3G 9H BARLEY 9G 9G 4G 3C,5G			5C.9E	100	3C,7G	4C,9H
CORH 9C 9C 2G 3C,7H SOYBEAM 5C,9G 6C,9G 3C,5H 4C,9G RICE 9C 9C 6G 9C SORGHUN 9C 9C 3C,9H 9G CHEATGRASS 6C,9G 9C 7G 9C SUGAR BEETS 9C 10C 9C 9C VELVETLEAF 6G 7G 9C 10C GIANT FOXTAIL 5C,9G 9C 3C,3G 4C,8H BARLEY 7G 9C 0 2C,3G PREEMERGENCE COTTON 4H 7H 4G 8G COCKLEBUR 2C 3C,7H 0 COCKLEBUR 2C 3C,7H 0 HUTSEDGE 2C 10E 9G 10E CRABGRASS 3C,8G 4C,8G 0 7G BARHYARD GRASS 3C,7H 9H 4H 9H WILD OATS 3C,6G 3C,7G 0 3G WHEAT 7G 9H 0 3G SOYBEAM 3C,7H 9H 4H 9H SORGHUM 5C,9H 10H 3C,8H 3C,7H RICE 9H 10E 8H 9H SORGHUM 5C,9H 10H 3C,8H 5C,9H CHEATGRASS 8H 10E 8G 9H CHEATGRASS 8H 10E 8G 9H SUGAR BEETS 3G 3C,8G 8G 8G VELVETLEAF 0 5H 2H 5H BARLEY 9G 9G 4G 3C,5G					0	2C,2G
CORM SOYBEAM 5C,9G 6C,9G 3C,5H 4C,9G 8C 9C 9C 9C 6G 9C 9C 9C 6G 9C 9C 9C 6G 9C 9C 9C 6G 9C		WHEAT	3C,9G	6C,9G	0	
SORGHUM SO SOC SOC, SOC, SOC, SUGAR BEETS SUGA	•	CORN		9 C	2G	3C,7H
SORGHUM 9C 9C 3C,9H 9G		SOYBEAN	5C,9G	6C,9G	3C,5H	4C,9G
SORGHUM CHEATGRASS CHEATGRASS SUGAR BEETS SUGAR SUCAR	15			9 C	6G .	9 C
SUGAR BEETS 9C 10C 9C 9C VELVETLEAF 6G 7G 9C 10C GIANT FOXTAIL 5C,9G 9C 3C,3G 4C,8H BARLEY 7G 9C 0 2C,3G PREEMERGENCE COTTON 4H 7H 4G 8G COCKLEBUR 2C 3C,7H 0 . HUTSEDGE 2C 10E 9G 10E CRABGRASS 3C,7H 9H 4H 9H WILD OATS 3C,6G 3C,7G 0 3G WHEAT 7G 9H 0 3G WHEAT 7G 9H 0 3G CORM 3C,9G 3C,9G 2C 3C,9G SOYBEAN 3C,7H 9H 3C,4H 3C,7H RICE 9H 10E 8H 9H SORGHUM 5C,9H 10H 3C,8H 5C,9H CHEATGRASS 8H 10E 8G 9G SUGAR BEETS 3G 3C,8G 8G VELVETLEAF 0 5H 2H 5H GIANT FOXTAIL 3C,8H 4C,9H 3G 9H BARLEY 9G 9G 4G 3C,5G		SORGHUM	90	9 C	3C,9H	9 G
SUGAR BEETS 9C 10C 9C 9C VELVETLEAF 6G 7G 9C 10C GIANT FOXTAIL 5C,9G 9C 3C,3G 4C,8H BARLEY 7G 9C 0 2C,3G PREEMERGENCE COTTON 4H 7H 4G 8G COCKLEBUR 2C 3C,7H 0 HUTSEDGE 2C 10E 9G 10E CRABGRASS 3C,8G 4C,8G 0 7G BARNYARD GRASS 3C,7H 9H 4H 9H WILD OATS 3C,6G 3C,7G 0 3G WHEAT 7G 9H 0 3G WHEAT 7G 9H 0 3G WHEAT 7G 9H 0 3G SOYBEAN 3C,7H 9H 3C,4H 3C,7H RICE 9H 10E 8H 9H SORGHUM 5C,9H 10H 3C,8H 5C,9H CHEATGRASS 8H 10E 8G 9E SUGAR BEETS 3G 3C,8G 8G 8G VELVETLEAF 0 5H 2H 5H GIANT FOXTAIL 3C,8H 4C,9H 3G 9H BARLEY 9G 9G 4G 3C,5G	,	CHEATGRASS	6C,9G	9 C	7G	'9C
GIANT FOXTAIL 5C,9G 9C 3C,1G 4C,8H BARLEY 7G 9C 0 2C,3G PREEMERGENCE COTTON 4H 7H 4G 8G 3C,5G 5H COCKLEBUR 2C 3C,7H 0		SUGAR BEETS		10C	9 C	9 C
BARLEY 7G 9C 0 2C,3G PREEMERGENCE COTTON 4H 7H 4G 8G MORNING GLORY 3C,3H 8G 3C,5G 5H COCKLEBUR 2C 3C,7H 0 HUTSEDGE 2C 10E 9G 10E CRABGRASS 3C,8G 4C,8G 0 7G BARHYARD GRASS 3C,7H 9H 4H 9H WILD OATS 3C,6G 3C,7G 0 3G WHEAT 7G 9H 0 3G CORH 3C,9G 3C,9G 2C 3C,9G CORH 3C,9G 3C,9G 2C 3C,9G SOYBEAN 3C,7H 9H 3C,4H 3C,7H RICE 9H 10E 8H 9H SORGHUM 5C,9H 10H 3C,8H 5C,9H CHEATGRASS 8H 10E 8G 9H SUGAR BEETS 3G 3C,8G 8G 8G VELVETLEAF 0 5H 2H 5H GIANT FOXTAIL 3C,8H 4C,9H 3G 9H BARLEY 9G 9G 4G 3C,5G		VELVETLEAF	6G	7G	9 C	
PREÈNCE COTTON 4H 7H 4G 8G MORNING GLORY 3C,3H 8G 3C,5G 5H COCKLEBUR 2C 3C,7H 0 . HUTSEDGE 2C 10E 9G 16E CRABGRASS 3C,8G 4C,8G 0 7G BARHYARD GRASS 3C,7H 9H 4H 9H WILD OATS 3C,6G 3C,7G 0 3G WHEAT 7G 9H 0 3G CORH 3C,9G 3C,9G 2C 3C,9G SOYBEAN 3C,7H 9H 3C,4H 3C,7H RICE 9H 10E 8H 9H SORGHUM 5C,9H 10H 3C,8H 5C,9H CHEATGRASS 8H 10E 8G 9R SUGAR BEETS 3G 3C,8G 8G 8G VELVETLEAF 0 5H 2H 5H GIANT FOXTAIL 3C,8H 4C,9H 3G 9H BARLEY 9G 9G 4G 3C,5G		GIANT FOXTAIL	5C,9G	9 C	3C,3G	
20 COTTON 4H 7H 4G 8G MORNING GLORY 3C,3H 8G 3C,5G 5E COCKLEBUR 2C 3C,7H 0		BARLEY	76	9 C	0	2C,3G
## A STATE OF THE PROPERTY OF STATE OF		PREEMERGENCE				
MORNING GLORY 3C,3H 8G 3C,5G 5H COCKLEBUR 2C 3C,7H 0	20	COTTON	4H	7 出		8 G
HUTSEDGE 2C 10E 9G 10E CRABGRASS 3C,8G 4C,8G 0 7G BARHYARD GRASS 3C,7H 9H 4H 9H WILD OATS 3C,6G 3C,7G 0 3G WHEAT 7G 9H 0 3G CORH 3C,9G 3C,9G 2C 3C,9G SOYBEAN 3C,7H 9H 3C,4H 3C,7H RICE 9H 10E 8H 9H SORGHUM 5C,9H 10H 3C,8H 5C,9H CHEATGRASS 8H 10E 8G 9E SUGAR BEETS 3G 3C,8G 8G 8G VELVETLEAF 0 5H 2H 5H GIANT FOXTAIL 3C,8H 4C,9H 3G 9H BARLEY 9G 9G 4G 3C,5G	20	MORNING GLORY	3C,3H	8 G		5 E
CRABGRASS 3C,8G 4C,8G 0 7G BARNYARD GRASS 3C,7H 9H 4H 9H WILD OATS 3C,6G 3C,7G 0 3G WHEAT 7G 9H 0 3G CORH 3C,9G 3C,9G 2C 3C,9G CORH 3C,7H 9H 3C,4H 3C,7H RICE 9H 10E 8H 9H SORGHUM 5C,9H 10H 3C,8H 5C,9H CHEATGRASS 8H 10E 8G 9H SUGAR BEETS 3G 3C,8G 8G 8G VELVETLEAF 0 5H 2H 5H GIANT FOXTAIL 3C,8H 4C,9H 3G 9H BARLEY 9G 9G 4G 3C,5G		COCKLEBUR	2C	3C,7H	0	•
BARHYARD GRASS 3C,7H 9H 4H 9H WILD OATS 3C,6G 3C,7G 0 3G WHEAT 7G 9H 0 3G CORH 3C,9G 3C,9G 2C 3C,9G SOYBEAN 3C,7H 9H 3C,4H 3C,7H RICE 9H 10E 8H 9H SORGHUM 5C,9H 10H 3C,8H 5C,9H CHEATGRASS 8H 10E 8G 9H SUGAR BEETS 3G 3C,8G 8G 8G VELVETLEAF 0 5H 2H 5H GIANT FOXTAIL 3C,8H 4C,9H 3G 9H BARLEY 9G 9G 4G 3C,5G		NUTSEDGE	2C	10E	9G	_
WILD OATS WHEAT 7G 9B 0 3G WHEAT 7G 9B 0 3G CORH 3C,9G 3C,9G 2C 3C,9G 25 SOYBEAN 3C,7R 9R 3C,4R 3C,7R RICE 9R 10E 8H 9E SORGHUM 5C,9H 10H 3C,8H 5C,9H CHEATGRASS 8B 10E 8G 9B SUGAR BEETS 3G 3C,8G 8G VELVETLEAF 0 5H 2H 5E GIANT FOXTAIL 3C,8H 4C,9H 3G 9E BARLEY 9G 9G 4G 3C,5G		CRABGRASS	3C,8G	4C,8G	0	
WHEAT 7G 9E 0 3G CORH 3C,9G 3C,9G 2C 3C,9G SOYBEAN 3C,7H 9H 3C,4H 3C,7H RICE 9H 10E 8H 9E SORGHUM 5C,9H 10H 3C,8H 5C,9H CHEATGRASS 8H 10E 8G 9H SUGAR BEETS 3G 3C,8G 8G 8G VELVETLEAF 0 5H 2H 5H GIAHT FOXTAIL 3C,8H 4C,9H 3G 9H BARLEY 9G 9G 4G 3C,5G		BARNYARD GRASS	3C,7H	9 H		
CORH 3C,9G 3C,9G 2C 3C,9G 2S 50YBEAN 3C,7H 9H 3C,4H 3C,7H RICE 9H 10E 8H 9H SORGHUM 5C,9H 10H 3C,8H 5C,9H CHEATGRASS 8H 10E 8G 9H SUGAR BEETS 3G 3C,8G 8G 8G VELVETLEAF 0 5H 2H 5H GIAHT FOXTAIL 3C,8H 4C,9H 3G 9H BARLEY 9G 9G 4G 3C,5G		WILD OATS	3C,6G	3C,7G	0	
25 SOYBEAN 3C,7R 9R 3C,4H 3C,7H RICE 9R 10E 8H 9E SORGHUM 5C,9H 10H 3C,8H 5C,9H CHEATGRASS 8H 10E 8G 9H SUGAR BEETS 3G 3C,8G 8G 8G VELVETLEAF 0 5H 2H 5E GIANT FOXTAIL 3C,8H 4C,9H 3G 9E BARLEY 9G 9G 4G 3C,5G		TABHW	7G	9 H		
RICE 9H 10E 8H 9H SORGHUM 5C,9H 10H 3C,8H 5C,9H CHEATGRASS 8H 10E 8G 9H SUGAR BEETS 3G 3C,8G 8G 8G VELVETLEAF 0 5H 2H 5H GIANT FOXTAIL 3C,8H 4C,9H 3G 9H BARLEY 9G 9G 4G 3C,5G		CORN	3C,9G	3C,9G		
SORGHUM 5C,9H 10H 3C,8H 5C,9H CHEATGRASS 8H 10E 8G 9H SUGAR BEETS 3G 3C,8G 8G 8G VELVETLEAF 0 5H 2H 5H GIANT FOXTAIL 3C,8H 4C,9H 3G 9H BARLEY 9G 9G 4G 3C,5G	25	SOYBEAN	3C,7E	9 H	-	•
CHEATGRASS & BE 10E & BG 9E SUGAR BEETS 3G 3C,8G & BG VELVETLEAF 0 5H 2H 5H GIANT FOXTAIL 3C,8H 4C,9H 3G 9H BARLEY 9G 9G 4G 3C,5G	-	RICE	9 H	10E		
SUGAR BEETS 3G 3C,8G 8G 8G VELVETLEAF 0 5H 2H 5H GIANT FOXTAIL 3C,8H 4C,9H 3G 9H BARLEY 9G 9G 4G 3C,5G		SORGHUM	5C,9H	10H	3C,8H	. •
VELVETLEAF 0 5H 2H 5E GIAHT FOXTAIL 3C,8H 4C,9H 3G 9E BARLEY 9G 9G 4G 3C,5G		CHEATGRASS	8H			
GIANT FOXTAIL 3C,8H 4C,9H 3G 9E BARLEY 9G 9G 4G 3C,5G		SUGAR BEETS	3 G			
BARLEY 9G 9G 4G 3C,5G	•	VELVETLEAF	0			
P.1.2.2.		GIANT FOXTAIL	3C,8H	•		
30		Barley	9 G	9 G	4G	3C,5G
	30					

207 Table A (cont.)

Compound 38

Ų		

•	rate=kg/ha	0.01	0.05
	POSTEMERGENCE		
	PARLEY	0	2G
	BARNYARD GRASS	0	0
	CHEATGRASS	3G	8G
10	COCKLEBUR	5C.9G	100
	CORN	0	0
	COTTON	7G	4C,9G
	CRABGRASS	0	0
	GIANT FOXTAIL	0	3G
•	MORNING GLORY	2C,5G	3C,8G
	NUTSEDGE	3C,7G	4C,9G
	RICE	0	5G
15	SORGHUM	0	0
-	SOYBEAN	1 H	5 H
	SUGAR BEETS	9 C	10C
	VELVETLEAF	4C,8H	10C
	WHEAT	0	2G
,	WILD OATS	0	2G
	PREEMERGENCE		
	BARLEY	0	2G
20	BARNYARD GRASS	0	2C,2H
	CHEATGRASS	0	7G .
	COCKLEBUR	3C,3R	
	CORN	0	2 G
	COTTON	0	7 H
	CRABGRASS	0	0
	GIANT FOXTAIL	0	2G
•	MORNING GLORY	2G	8 G
25	HUTSEDGE	0	9 G
25	RICE	O·	0
	SORGHUM .	0	0
	SOYBEAN	0	0
	SUGAR BEETS	7G	9 G
	VELVETLEAF	0	3C,8H
	WEEAT	0	3 G
	WILD OATS	0	3 G

3.0

208 Table A (cont.)

Compound 39

	RATE=KG/HA	0.01	0.05
	POSTEMERGENCE		
	BARLEY	0	36
	BARNYARD GRASS	2 H	2C.5G
	CHEATGRASS	8 G	8 G
3.0	COCKLEBUR	100	100
10	CORN	0	0
	COTTON	90	5C.9G
	CRABGRASS	Ö	0
•	GIANT FOXTAIL	0	3 G
•	MORNING GLORY	3C,8G	90
	NUTSEDGE	9 G	100
	RICE	Õ	2 G
	SORGHUM	Ö	26
15	SOYBEAN	2C,5H	3C.7H
•	SUGAR BEETS	4C,9G	90
	VELVETLEAF	90	100
	WHEAT	0	5G
	WILD OATS	ō	3C,7G
	PREEMERGENCE	•	
	BARLEY	0	0
•	BARNYARD GRASS	Ō	SG.
. · · · · · · · · · · · · · · · · · · ·	CHEATGRASS	Ö	. 8G
	COCKLEBUR	2C.3H	9 H
	CORN	0	3 G
	COTTON	Ō	8 G
	CRABGRASS	Ö	2G
	GIANT FOXTAIL	0	3 G
•	MORNING GLORY	SG	9 G
	NUTSEDGE	10E	10E
25	RICE	0	0
	SORGHUM	0	0
	SOYBEAN	O ·	6H
	SUGAR BEETS	7G	9 G
	VELVETLEAF	5 H	4C,9G
-	TABHW	0	46
	WILD OATS	0	3 G

209 Table A (cont.)

Compound 40

	rate=kg/ha Postemergence	0.01	0.05
	BARLEY	0	0
	BARNYARD GRASS	3 G	2C.7G
	CHEATGRASS	6G	4C,9G
10	COCKLEBUR	100	100
10		100	2C, 2H
	CORN	5C,9G	5C, 9G
	COTTON	2G	
	CRABGRASS		3C,7G
	GIANT POXTAIL	3 G	4C,7G
	MORNING GLORY	6G	100
•	NUTSEDGE	4C,9G	
	RICE	0	2G
15	SORGHUM	0	0
	SOYBEAN	3C,8H	5c,9G
	SUGAR BEETS	10C	10C
	VELVETLEAF	10C	10C
	WHEAT	0	0
	WILD OATS	0	0
	PREEMERGENCE		_
	BARLEY	0	2G
20	BARNYARD GRASS	0	5G
20	CHEATGRASS	4 G	96
	COCKLEBUR	2C,4H	7 H
	CORN	0	2G
	COTTON	-	4 H
•	CRABGRASS	2C,3G	2C,5G
	GIANT FOXTAIL	0	3 G
	MORNING GLORY	7G	8 G
	NUTSEDGE	5 G	10E
25	RICE	.0	. 0
	SORGHUM	0	0
•	SOYBEAN	0	6 H
	SUGAR BEETS	9 C	9 G
•	VELVETLEAF	3 H	8 G
•	WHEAT	0	0
	WILD OATS	0	0

Test B

Postemergence

Three round pans (25 cm diameter by 12.5 cm 5 deep) were filled with Sassafras sandy loam soil. pan was planted with nutsedge (Cyperus rotundus) tubers, crabgrass (Digitaria sanguinalis), sicklepod (Cassia obtusifolia), jimsonweed (Datura stramonium). velvetleaf (Abutilon theophrasti), lambsquarters 10 (Chenopodium album), rice (Oryza sativa) and teaweed (Sida spinosa). The second pot was planted with green foxtail (Setaria viridis), cocklebur (Xantium pensylvanicum), morningglory (Ipomoea hederacea), cotton (Gossypium hirsutum), johnsongrass (Sorghum halepense). barnyardgrass (Echinochloa crusqalli). corn (Zea mays). soybean (Glycine max) and giant foxtail (Setaria faberi). The third pot was planted with wheat (Triticum aestivum), barley (Hordeum vulgare). wild buckwheat (Polgonum convolvulus L.), cheatgrass 20 (Bromus secalinus L.), sugarbeet (Beta vulgaris), Wild oats (Avena fatua), viola (Viola arvensis), blackgrass (Alopecurus myosuroides). and rape (Brassica napus). The plants were grown for approximately fourteen days. then sprayed postemergence with the chemicals dissolved in a non-phytotoxic solvent. 25

Preemergence

30

Three round pans (25 cm diameter by 12.5 cm deep) were filled with Sassafras sandy loam soil. One pan was planted with nutsedge tubers, crabgrass, sicklepod, jimsonweed, velvetleaf, lambsquarters, rice and teaweed. The second pot was planted with green foxtail, cocklebur, morningglory, cotton, johnsongrass, barnyardgrass, corn, soybean and giant foxtail. The third pot was planted with wheat, barley, wild buckwheat, cheatgrass, sugarbeet, wild oat, viola, blackgrass and rape. The three pans were sprayed preemer-

gence with the chemicals dissolved in a non-phytotoxic solvent.

Treated plants and controls were maintained in the greenhouse for 24 days, then all rated plants were compared to controls and visually rated for plant response.

Response ratings are based on a scale of 0 to 100 where 0 = no effect and 100 = complete control. A 10 dash (-) response means no test.

Response ratings are contained in Table B.

Table B

Compound 3

5										
		P	ostem	ergen	ence preeme			ERGENCE		
	Rate g/ha	62	16	4	1	250	62	16	4	
	Corn	20	0	0	0	40	0	0	. 0	
	Wheat	0	0	0	0	0	0	0	0	
10	Barley	0	0	0	•	0	. 0	0	0	
	Rice	0	0	0	0	60	40	20	0	
	Soybean	0	0	0	0	20	0 -	0	0	
	Cotton	70	50	30	0	50	20	0	0	
	Sugar beet	100	70	50	30	100	90	80	70	
	Rape	90	70	50	30	90	80	70	50	
	Crabgrass	60	30	0	0	50	30	0	0	
15	Johnsongrass	70	30	0	0	90	70	50	30	
13	Blackgrass	30	0	0	0	70	30	0	0	
	Barnyardgrass	70	30	0	0	80	60	40	O.	
	Nutsedge	80	60	30	0	Ο.	0	0	0	
	Giant Foxtail	30	0	0	0	80	60	40	O	
	Green Foxtail	70	30	0	0	90	70	50	30	
	Cheatgrass	30	0	0	0	90	60	30	0	
	Wild Oats	0	0	0	0	O	0	0	0	
20	Wild Buckwheat	70	50	30	0	90	70	50	30	
	Viola	90	70	50	30	100	. 90	70	50	
	Lambsquarter	100	70	50	30	100	90	70	50	
	Cocklebur	100	90	70	50	80	50	30	0	
	Morningglory	100	70	50	30	90	60	30	0	
	Teaweed	90	70	50	30	80	60	40	20	
	Sicklepod	60	. 30	0	0	100	70	50	30	
25	Jimsonweed	70	50	30	0	90	70	50	30	
23	Velvetleaf	90	70	50	30	90	70	50	30	

213 Table B (cont.)

Compound 4

5									
		PC	STEME	RGENC	E	P	REEME	RGENCE	:
	Rate g/ha	62	16	4	1	250	62	16	4
	Corn	30	0	0	0	60	20	0	0
	Wheat	0	0	0	0	30	0	0	0
10	Barley	Ō	-0	0	0	30	0	0	0
10	Rice	Ō	0	0	0	70	30	0	O.
	Soybean	20	0	0	0	0	0	0	0
	Cotton	90	40	0	0	20	0	. 0	0
	Sugar beet	100	90	70	50	100	90	70	50
	Rape	100	70	40	0	90	, B0	.70	50
	Crabgrass	70	50	30	0	50	30	0	0
	Johnsongrass	50	30	0 '	0	70	50	30	0
15	Blackgrass	0	. 0	0	0	30	· 0	0	0
	Barnyardgrass	90	60	30	0	70	30	0	0
	Nutsedge	90	70	50	30	100	70	50	30
	Giant Foxtail	80	60	30	0	70	50	30	0
	Green Foxtail	70	50	30	0	90	70	50	30
	Cheatgrass	30	0	0	0	70	30	0	0
	Wild Oats	100	70	50	30	0	0	0	0
20	Wild Buckwheat	90	70	50	30	80	60	40	0
20	Viola	100	90	70	50	100	90	70	50
	Lambsquarter	90	70	50	30	100	90	80	70
	Cocklebur	100	90	70	50	90	70	50	30
	Morningglory	100	90	70	50	90	80	60	40
	Teaweed	90	70	50	30	90	70	- 50	30
	Sicklepod	80	70	50	30	100	100	70 -	50
	Jimsonweed	100	70	50	30	90	70	50	30
25	Velvetleaf	100	70	.50	30	- 90	. 80	70	50

214
Table B (cont.)

Compound 8

	RATE RATE=G/BA	0004	0016	0062	0250
	PREEMERGENCE				
	GIANT FOXTAIL	40	90	100	100
10	VELVETLEAP	50	90	100	100
	SUGAR BEETS	90	100	100	100
•	CRABGRASS	. 0	0	20	90
	TEAWEED	30	80	90	100
	JIMSONVEED	40	80	100	100
	RICE	.0	Ō	20	100
	COCKLEBUR	40	50	90	100
	COTTON	30	50	70	100
		0	20	50	100
1,5	SOYBEAR	50	90	100	100
	BARNYARD GRASS	30	70	- 0	. 0
	WILD OATS	40	60	100	100
	MORNINGGLORY	0	- 5		- 0
	WREAT	_	40	70	100
	CASSIA	0	40	60	90
	JOHNSONGRASS	0		100	100
	MUTSEDGE	90	100	70	100
20	CORN	20	50	100	100
	WILD BUCKWHEAT	80	. 90		. 90
	BLACK GRASS		40	90	
	RAPESEED	40	90.	100	100
	BARLEY	0	0	0	0
	GREEN POXTAIL	70	100	100	100
	CHEAT GRASS	70	90	90 .	100
	LAMESOUARTER	90	100	100	100

Table B (cont.)

Compound 8

	RATE RATE-G/HA	0001	0004	0016	0062
	POSTEMERGERCE				
	GIANT POXTAIL	20	60	90	100
	VELVETLEAF	100	100	100	100
10	SUGAR BEETS	70	80	100	. 100
	CRABGRASS	0	20	50	100
	TEAWEED	0	30	70	100
_	JIMSONWEED	0	50	100	100
	RICE	0	0	0	•
	COCKLEBUR	40	70	100	100
	COTTON	40	40	80	90
	SOYBEAN	20	40	60	70
15	BARRYARD GRASS	40	40	80	100
To	WILD OATS	0	0	0	20
	MORNINGGLORY	Ō	30	80	100
	WHEAT	0	. 0	0	0
	CASSIA	30	30	50	100
	JOHNSONGRASS	Ö	0	0	0
	RUTSEDGE	80	100	100	100
	CORN	0	20	80	90
	TATEMATURE TATE	30	50	100	100
20	BLACK GRASS	Ö	0	30	30
	RAPESEED	100	100	100 '	100
	BARLET	0	0	0	0
	GREEN POITAIL	ŏ	30	100	100
	CHEAT GRASS	ŏ	30	50	80
	BUCKWREAT	•			
	tiola Lambsquarter	100			100

35 .

216
Table B (cont.)

	RATE RATE-G/HA	0001	0004	0016	0062
	POSTEMERGENCE		•		
	GIART POXTAIL	0	0	30	50
	VELVETLEAF	50	70	100	100
	SUGAR BEETS	70	80	90	90
10	CRABGRASS	Ō	0	30	70
	TEAVEED	30	50	70	90
	JINSONWEED	30	50	70	100
	RICE	-0	20	30	50
	COCKLEBUR	50	80	100	100
	COTTOR	50	60	70	80
		70	90	90	100
	SOIBEAR	. ,,	70	20	40
15	BARNYARD GRASS	ŏ	ŏ	-0	Ö
	WILD OATS	-	80	100	100
	HORNINGGLORY	60	- 0	100	
	WEERT	0	_	80	100
	CASSIA	30	50		70
	Johnsongrass	0	0	30	. • -
	· WUTSEDGE	30	40	60]	100
	CORN	0	0	20	60
•	WILD BUCKWHEAT	30	50	70	80
20	BLACK GRASS	0	0	30	5 0
	RAPESZED	100	100	100	. 100
	BARLEY	0	0	0	20
	GREEN FOXTAIL	0	0	30	50
	CHEAT GRASS	Ŏ.	0	30	60
	VIOLA	70	90	100	100
	LANBSQUARTER	30	40	50	70

ž,

217 Table B (cont.)

Compound 22

	RATE RATE=G/HA	0004	0016	0062	0250
10	Preemergenc e				
10	GIANT POXTAIL	0	30	50	70
	VELVETLEAP	30	50	70	90
	SUGAR BEETS	70	80	90	100
	CRABGRASS	0	30 .	60	90
	TEAWEED	50	70	8 0	ě o
	JIMSONWEED	50	70	80	90
	RICE	30	50	80	100
	COCKLEBUR	60	70	80	90
15	COTTON	Ð	30	50	70
	SOTBEAN	0	20	40	60
	BARNYARD GRASS	30	50	70	90
	WILD OATS	0	0	20	30
	MORHINGGLORY	70	80	90	100
	WEEAT	0 .	0	. 0	0
	CASSIA	30	50	70	90
	JOHNSONGRASS	30	50	70	90
20	MUTSEDGE	50	70	100	100
	CORM	0	0	30 .	60
	WILD BUCKWEEAT	70	80	90	100
	BLACK GRASS	50	60	70	80
	RAPESEED	80	. 90	100	100
	BARLEY	0	0	0	0
	GREEN POXTAIL	. 0	30	60	90
	CHIAT GRASS	. 0	30	50	80
25	LANDSQUARTER	70	80	90	100

218
Table B (cont.)

	RATE RATE=G/HA	0001.	0004.	0016.	0062.
10	POSTEMERGENCE	•			
	GIANT FOXTAIL	0	30	60	80
	VELVETLEAF	60	100	100	100
	SUGAR BEETS	100	100 -	100	
•	CRABGRASS	0	30	50	70
	TEAWEED	30	50	70	90
	JIMSONWEED	30	50	70	100
	RICE	0	0	. 0	100
15	COCKLEBUR	100	100	100	100
To	COTTON	30	60	100	100
	SOYBEAN	0	0	20.	
	BARNYARD GRASS	Ö	G	60	100
	WILD OATS	ō	0	0	
*	MORNINGGLORY	30	50	70	90
	WHEAT	ő	0	0	
	CASSIA	ō	30	50	70
	JOHNSONGRASS	Ö	0	0	50
20		100	100	100	100
	RUTSEDGE	0	30	50	•
	· · · CORN · · · WILD BUCKWHEAT	30	50	70	
	BLACK GRASS	ő	30	50	
		100	100	100	
	RAPESEED	0	0	0	
	BARLEY	ŏ	ŏ	30	. 60
	GREEN FOXTAIL	ŏ ·	ŏ	30	
25	CHEAT GRASS	•	•		
	BUCKWHEAT	70	90	100	
	VIOLA	50	70	90	100
	Lambsquarter	7 U	, ,		

219
Table B (cont.)

	RATE RATE=G/HA	0004.	0016.	0062.	0.250
	PREEMERGENCE				
10	GIANT FOXTAIL	30	60	100	100
	VELVETLEAF	50	70	60	100
	SUGAR BEETS	60	70	80	90
	CRABGRASS	30	50	80	100
		30	50	70	90
	TEAWEED	40	70	80	90
	JIMSONWEED .	70	0 .	30	80
	RICE	50	70	. 60	90 .
	COCKLEBUR		30	60	80
15	COTTON	0	20	50	70
	SOYBEAN	0		70	90
	BARNYARD GRASS	0	40		Ö
	WILD OATS	0	0	0 '	_
	MORNINGGLORY	30	70 1	80	90
١	WHEAT	0	0	0	0 .
,	CASSIA	30	50	60	80
	JOHNSONGRASS	. 30	50	70	90
70	RUTSEDGE	100	100	100	100
20	CORN	0	20	. 60	8.0
	WILD BUCKWHEAT	50	70	80	90
	BLACK GRASS	0	30	60	. 90
	RAPESEED	8.0	90	100	100
	BARLEY	0	0	0	0
	GREEN FOXTAIL	30	50	100	100
	CHEAT GRASS	Ŏ	30	60	90
		•		,	
25	BUCKWHEAT	70	90	100	100
	VIOLA	80	100	100	100
•	LAMBSQUARTER				-

Table B (cont.)

	RATE RATE=G/HA	0001.	0004.	0016.	0062.
10	PREEMERGENCE				
	GIANT FOXTAIL	50	70	80	90
	VELVETLEAF	.30	50	70	90
	SUGAR BEETS	70	90	100	100
	CRABGRASS	50	70	80	100
	TEAWEED	40	50	70	80
	JIMSONWEED	50	70	80	90
	RICE	90	100	100	100
	COCKLEBUR	60	70	80	90
15.	COTTON	20	40	60	80
	SOYBEAN	20	4.0	70	90
	BARNYARD GRASS	30	60	90	100
•	WILD OATS	40	50	70	90
	MORNINGGLORY	30	50	60	70
	WHEAT	20	30	60	100
	CASSIA	80	90	100	100
	JOHNSONGRASS	70	. 0	90	100
20	BUTSEDGE	Ŏ.	30	60	90
	CORN	Ŏ.	. 60	80 -	100
	WILD BUCKWHEAT	30	60	80	90
	BLACK GRASS	50	70	80	100
	RAPESEED	60	70	80	90
	BARLEY	20	40	90	100
	GREEN POXTAIL	60	80 .	100	100
•	CHEAT GRASS	50	80	100	100
25	BUCKWHEAT		•	3	
	VIOLA	60	70	80	100
	LAMBSQUARTER	70	80	90	100

221
Table B (cont.)

	RATE RATE=G/HA	0.25	0001.	0004.	0016.
	POSTEMERGENCE	_	••	50	80
10	GIANT FOXTAIL	0	20	60	80
	VELVETLEAF	30	40		1.00
-	SUGAR BEETS	70	80	90	60
	CRABGRASS	0	0	60	80
•	TEAWEED	60	60	70	80
	JIMSONWEED	0	40	70	
	RICE	- 30	50	80	100
	COCKLEBUR	40	50	80	100
15	COTTON	0	20	80	80
	SOYBEAN		60	70	100
	BARNYARD GRASS	20	60	70	100
	WILD OATS	Ö	50	80	90
	MITD OVIS	Ŏ	30	70	80
•	MORNINGGLORY	Ď	20	50	90
	WHEAT	60		80	90
	CASSIA	30	70	90	100
_	JOHNSONGRASS	20	40	60 .	60
20	MUTSEDGE	0	40	90	90
	CORN	ŏ	50	90	90
	WILD BUCKWHEAT	_	70	80	100
	BLACK GRASS	20	80	90	100
	RAPESEED	4.0	60	90	100
	BARLEY	20	60	70	90
	GREEN FOXTAIL	30		60	70
	CHEAT GRASS	•	30	60	
25	BUCKWREAT				100
25	VIOLA	0	40	90	100
	CAMBEAUARTER	40	70	90	***

Test C

Sixteen cm diameter Wagner pots, equipped with a stoppered drain opening near the bottom of the side 5 wall, were partially filled with Woodstown sandy About 1500 mls of water were added to each pot to bring the water level to a point 3 cm above the soil surface. Japonica and Indica rice seedlings were transplanted as described in Test E. Also. a number 10 of barnyardgrass (Echinochola crusqalli) seeds were added to each pot. At the same time, seedlings or tubers of the following species were transplanted into the muddy soil: water plantain (Alisma trivale). Scirpus (Scirpus mucranatus), and Cyperus (Cyperus 15 difformis). The weed species selected for this test are of economic importance in major rice-growing areas. The chemical treatments were applied directly to the paddy water after being formulated in a nonphytotoxic solvent within hours after transplanting of 20 two additional species: water chestnuts (Eleocharis spp.) and arrowhead (Sagittaria latifolia). Shortly after treatment, the drain hole was opened to drop the water level by 2 cm. Water was then added to restore the water level to its original height. The following 25 day the draining and refilling process was repeated. The pots were then maintained in the greenhouse. Rates of application and plant response ratings made 21 days after treatment are summarized in Table C.

In the subsequent tables. LS is used as an 30 abbreviation for leaf stage.

Table C

Compound 8

	RATE RATE=G/RA	0004	0008	0016
10	SOIL			
	BARNYARD GRASS	50	67	70
	WATER CHESTNUT	62	77	90
	ARROWHEAD	0	57	80
	SCIRPUS (SEDGE)	37	72	8.5
	CYPRESS (SEDGE)	75	75	95
	WATER PLANTAIN	75	55	90
	RICE JAP EFF	0	0	10
16	RICE INDICA ETT	0	17	0

224 Table C (cont.)

Compound 28

. •	RATE RATE=G/HA	0004.	0008.	0016.
	SOIL			
10	BARNYARD GRASS	45	60	65
	WATER CHESTRUT	75	95	92
	ARROWHEAD	85	90	95
	SCIRPUS (SEDGE)	82	85	92
	CYPRESS (SEDGE)	92	95	1.00
	WATER PLANTAIN	87	100	100
	RICE JAP EFF	٥	5	10
	PICE INDICA EFF	ŏ	Ŏ.	5

Test D

The soybeans were planted in large 25
cm-diameter pots of soil. 6 to 10 plants per pot. The
5 other plant species were planted in 15 cm-diameter pots
of soil. Carn. because of its importance as a
rotational crop, was by itself in one container. 3 to
5 plants per pot. The weed species used in this test
were all of major economic importance in soybean10 growing regions. They were planted 3 to 4 species per
pot. each confined to a separate quadrant of the soil
surface. The following species were included in the
screen:

15	barnyardgrass	Echinochloa crus-galli
	giant foxtail	Setaria faberi
	green foxtail	Setaris virdis
	johnsongrass	Sorghum halepense
	fall panicum	Panicum dichotomiflorum
20	purple nutsedge	Cyperus rotundus
	signalgrass	Brachiaria platyphylla
	crabgrass	Digitaria sanguinalis
	velvetleaf	Abutilon theophrasti
	jimsonweed	Datura stramonium
25	hemp sesbania	Sesbania exaltata
•	sicklepod	Cassia obtusifolia
	cocklebur	Xanthium pensylvanicum
	ivyleaf morningglory	Ipomoea hederacea
	purslane	Portulaça oleracea
30	pigweed	Amaranthus retroflexus
	lambsquarter	Chenopodium album
	teaweed	Sida spinosa
	bindweed	Convolvulus arvensis

For the post-emergence phase of the test, crop and weed species were planted two to three weeks before application so that they were present as young plants at the time of treatment. Plantings for the pre-emergence phase were made on the day before, or on the day of treatment. Approximate planting depths were: corn and soybeans - 3 to 4 cm; morningglory, cocklebur and nutsedge - 2.5 to 3 cm; velvetleaf.

10 sicklepod and sesbania - 2 cm; all other species - 0.5 cm.

The test chemicals were dissolved/suspended in a non-phytotoxic solvent in concentrations required to obtain the desirec rate of application. The solutions or suspensions were then applied as soil/foliage sprays to the young plants (post-emergence phase) and to the soil surfaces of the freshly planted containers (pre-emergence phase). Application was made utilizing an automatic spray machine at a spray volume of 500 liters per hectare. Immediately after treatment, the containers were transferred to a greenhouse and subsequently watered on a demand basis, taking care not to wet the foliage of the plants in the post-emergence phase of the test.

Table D

5	· .	*: •				
	RATE RATE GM/H	0002	0004	0008	0016	0031
	Postemergence					
	SOYBEAN	0	0	0	20	60
	CORN	0	0	0	50	70
1,0	VELVETLEAF	50	65	90	100	100
	NIGHTSHADE	0	20	30	75	85
	JIMSONWEED	0	0	20	30	40
	SICKLEPOD	O .	0	0	20	50
	SESBANIA	0	0	0	30	50
15	COCKLEBUR	40	85	100	100	100
	IVYLEAF M/G	30	65	75	80	95
	PIGWEED	40	60	75	85	90
	Lambsquarter	30	60	85	85	85
	PRICKLY SIDA	0	30	50	75	85
20	SMARTWEED	40	50	80	80	90
	BARNYARDGRASS	0	30	50	70	80
	GIANT FOXTAIL	0	0	0	40	65
	GREEN FOXTAIL	0	. 0	0	40	60
	JOHNSONGRASS	0	30	65	80	95
25	FALL PANICUM	0	20	40	50	75
,	CRABGRASS	• 0	0	0	20	30
•	SIGNALGRASS	0	20	. 30	50	65
	NUTSEDGE	65	80	90	100	100

228
Table D (cont.)

		•		
RATE RATE GM/H	0031	0062	0125	0250
PREEMERGENCE	•		0223	0230
SOYBEAN	o	0	25	60
CORN	0	20		90
VELVETLEAF	0	20		95
NIGHTSHADE	50	70		95
JIMSONWEED	0	30	70	95
SICKLEPOD	0	O	30	60
SESBANIA	0.	0	40	50
COCKLEBUR	80	75		95
IVYLEAF M/G	0	. 0		50
PIGWEED	70	85		100
LAMBSQUARTER	20			100
PRICKLY SIDA	40	70		90
SMARTWEED	70	90		100
BARNYARDGRASS	0	0		85
GIANT FOXTAIL	0	0		70
GREEN FOXTAIL	o	20		70
JOHNSONGRASS	85	90		95
PALL PANICUM	90	100		95
CRABGRASS	0	0		40
SIGNALGRASS	. 0	30		85
NUTSEDGE	80	90	100	100
	PREEMERGENCE SOYBEAN CORN VELVETLEAF NIGHTSHADE JIMSONWEED SICKLEPOD SESBANIA COCKLEBUR IVYLEAF M/G PIGWEED LAMBSQUARTER PRICKLY SIDA SMARTWEED BARNYARDGRASS GIANT FOXTAIL GREEN FOXTAIL JOHNSONGRASS PALL PANICUM CRABGRASS SIGNALGRASS	PREEMERGENCE SOYBEAN CORN VELVETLEAF NIGHTSHADE JIMSONWEED SICKLEPOD SESBANIA COCKLEBUR IVYLEAF M/G PIGWEED LAMBSQUARTER PRICKLY SIDA SMARTWEED BARNYARDGRASS GIANT FOXTAIL GREEN FOXTAIL JOHNSONGRASS PALL PANICUM CRABGRASS SIGNALGRASS O O O O O O O O O O O O	PREEMERGENCE SOYBEAN CORN CORN VELVETLEAF NIGHTSHADE JIMSONWEED SICKLEPOD SESBANIA COCKLEBUR IVYLEAF M/G PIGWEED LAMBSQUARTER PRICKLY SIDA SMARTWEED BARNYARDGRASS GIANT FOXTAIL JOHNSONGRASS FALL PANICUM CRABGRASS SIGNALGRASS O O O O O O O O O O O O	PREEMERGENCE SOYBEAN CORN 0 20 65 VELVETLEAF 0 20 80 NIGHTSHADE 50 70 85 JIMSONWEED 0 30 70 SICKLEPOD 0 0 30 SESBANIA 0 0 0 40 COCKLEBUR 80 75 80 IVYLEAF M/G PIGWEED 10 10 10 10 10 10 10 10 10 10 10 10 10

For the contracting states BE CH DE FR GB GR IT LI LU NL SE

229

Claims:

1. Compounds of Formula I

5

W JSO_ZNHČNR₁A

10

I

wherein

15 J is $R_{2} \longrightarrow (CH_{2})_{n} \stackrel{\circ}{\mathbb{C}} R'$ $\frac{J-1}{R} \longrightarrow (CH_{2})_{n} \stackrel{\circ}{\mathbb{C}} R'$ $\frac{J-2}{R} \longrightarrow (CH_{2})_{n} \stackrel{\circ}{\mathbb{C}} R'$ $R^{2} \longrightarrow (CH_{2})_{n} \stackrel{\circ}{\mathbb{C}} R'$

R

$$R_2$$
 R_2
 R_3
 R_4
 R_4
 R_5
 $$R_2$$
 CH_2
 CH_2
 CR_2
 C

<u>J-11</u>

R is H. C_1 - C_3 alkyl. phenyl. $SO_2NR_aR_b$. C_1 - C_2 haloalkyl. C_2 - C_4 alkoxyalkyl. C_2 - C_3 cyanoalkyl. C_2 - C_4 alkylthioalkyl. C_2 - C_4 alkylsulfinylalkyl. C_2 - C_4 alkylsulfonylalkyl. CO_2C_1 - C_2 alkyl. C_1 - C_4 alkylcarbonyl. C_1 - C_2 alkylsulfonyl. C_3 - C_4 alkenyl. C_3 - C_4 alkynyl or C_1 - C_2 alkyl substituted with CO_2C_1 - C_2 alkyl:

R₁ is H or CH_3 :

(.

 R_2 is H. C_1-C_3 alkyl. C_1-C_3 haloalkyl. halogen. nitro, c_1-c_3 alkoxy, $so_2NR_cR_d$, c_1-c_3 alkylthio, C1-C3 alkylsulfinyl, C1-C3 alkylsulfonyl, CN, CO₂R_e, C₁-C₃ haloalkoxy, C₁-C₃ haloalkylthio, amino. C₁-C₂ alkylamino. di(C₁-C₃ alkyl)amino or C1-C2 alkyl substituted with C1-C2 alkoxy. C1-C2 haloalkoxy, C1-C2 alkylthio, C1-C2 haloalkylthio. CN. OH or SH; R_a and R_b are independently C_1-C_2 alkyl: 10 Rc is H. C1-C4 alkyl. C2-C3 cyanoalkyl, methoxy or ethoxy; R_d is H, C_1-C_4 alkyl or C_3-C_4 alkenyl; or R_c and R_d may be taken together as -(CH₂)₃-. -(CH₂)₄-. -(CH₂)₅- or -CH₂CH₂OCH₂CH₂-; 15 R_e is $C_1 - C_4$ alkyl. $C_3 - C_4$ alkenyl. $C_3 - C_4$ alkynyl. C2-C4 haloalkyl, C1-C2 cyanoalkyl, C5-C6 cycloalkyl, C4-C7 cycloalkylalkyl or C2-C4 alkoxyalkyl; R' is C_1-C_5 alkyl, C_1-C_5 haloalkyl, C_1-C_5 alkyl substituted with one or two R3 groups. C2-C5 20 alkenyl, C2-C5 haloalkenyl, C3-C5 alkenyl substituted with one or two R3 groups. C3-C5 alkynyl. C3-C5 haloalkynyl. C3-C5 alkynyl substituted with one or two R₃ groups. C₃-C₅ cycloalkyl, C3-C5 halocycloalkyl, C3-C5 cyclo-25 alkyl substituted with one or two R4 groups. C4-C7 cycloalkylalkyl. C4-C7 halocycloalkylalkyl, C4-C7 cycloalkylalkyl substituted with one or two R4 groups, phenyl or benzyl; R_3 is C_1-C_3 alkoxy. C_1-C_3 alkylthio. C_1-C_3 halo-30 alkoxy. C1-C3 alkylsulfinyl, C1-C3 alkylsulfonyl. CN. NO₂. OH. OR₅ or $di-(C_1-C_3$ alkyl)- R_4 is C_1-C_3 alkyl, C_1-C_3 alkoxy, C_1-C_3 haloalkoxy, CN. NO₂. OH. OR₅ or di-(C₁-C₃ alkyl)amino; 35

 R_5 is SO_2CH_3 . $Si(CH_3)_3$. C_2-C_3 alkylcarbonyl or $CO_2C_1-C_2$ alkyl:

E is a single bond or CH;

W is O or S:

5

n is O or 1;

n' is 0 or 1;

10 A is
$$N_{Y}$$
, $N_{Y_{1}}$, $N_{N_{0}}$,

or Z_1 ;

<u>A=7</u>

30 X is H. C_1-C_4 alkyl, C_1-C_4 alkoxy. C_1-C_4 halo-alkoxy, C_1-C_4 haloalkyl, C_1-C_4 haloalkylthio, C_1-C_4 alkylthio, halogen, C_2-C_5 alkoxyalkyl, C_2-C_5 alkoxyalkoxy, amino, C_1-C_3 alkylamino, $di(C_1-C_3$ alkyl)amino or C_3-C_5 cycloalkyl;

35

Y is H. C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ halo-alkoxy, C₁-C₄ haloalkylthio, C₁-C₄ alkylthio, C₂-C₅ alkoxyalkyl, C₂-C₅ alkoxyalkoxy, amino, C₁-C₃ alkylamino, di(C₁-C₃ alkyl)amino, C₃-C₄ alkenyloxy, C₃-C₄ alkynyloxy, C₂-C₅ alkylthio-alkyl, C₁-C₄ haloalkyl, C₂-C₄ alkynyl, azido, cyano, C₂-C₅ alkylsulfinylalkyl, C₂-C₅ alkylsul-

fonylalkyl. CR_6 , $-C_{R_6}^{L_2R_8}$, $-C_{R_6}^{L_2(CH_2)_m}$, $-CR_6^{L_2}$

or N(OCH₃)CH₃;

m is 2 or 3;

10

20

25

L₁ and L₂ are independently O or S;

R₆ is H or C₁-C₃ alkyl;

R₇ and R₈ are independently C₁-C₃ alkyl;

Z is CH or N;

Z, is CH or N;

Y, is O or CH2;

 X_1 is CH_3 , OCH_3 , OC_2H_5 or OCF_2H ;

X₂ is CH₃. C₂H₅ or CH₂CF₃:

Y2 is OCH3. OC2H5. SCH3. SC2H5. CH3 or CH2CH3;

X₃ is CH₃ or OCH₄;

Y₃ is H or CH₃;

 X_4 is CH_3 . OCH_3 , OC_2H_5 , CH_2OCH_3 or C1; and

Y₄ is CH₃, OCH₃, OC₂H₅ or Cl;

and their agriculturally suitable salts; provided that

- a) when X is Cl. F. Br or I. then Z is CH and Y is OCH₃, OC₂H₅, N(OCH₃)CH₃, NHCH₃,N(CH₃)₂ or OCF₂H;
 - b) when X or Y is C_1 haloalkoxy, then Z is CH;
- c) X₄ and Y₄ are not simultaneously Cl:

- d) when W is S. then R₁ is H. A is A-1 and Y is CH₃. OCH₃. OC₂H₅. CH₂OCH₃. C₂H₅. CF₃. SCH₃. OCH₂CH=CH₂. OCH₂CECH. OCH₂CH₂OCH₃. CH(OCH₃)₂ or 1.3-dioxolan-2-y1;
- e) when the total number of carbons of X and Y is greater than four, then the number of carbons of R must be less than or equal to two:
- f) when J is J-1, J-2, J-3 or J-4 then R' is other than phenyl;
- g) when J is J-5. J-6 or J-7 wherein E is a single bond, then R' is other than C_1-C_5 alkeryl, phenyl, benzyl, cyclopentyl or C_4-C_7 cycloalkylalkyl;
- h) when either or both of X and Y are OCF₂H then J is J-1. J-2. J-3. J-4. J-8. J-9. J-10 or J-11; and
- i) when A is A-7 and Z_1 is N. then J is J-1. J-2. J-3 or J-4 and R' is C_3-C_5 cycloalkyl;
- j) when the total number of carbon atoms of X and Y is greater than four, then the total number of carbon atoms of R₂ and R' must be less than or equal to 7.
 - 2. Compounds of Claim 1 provided (k) when J is J-5, R₁ is H, R₂ is H, E is CH₂. A is A-1, X is OCH₃, Y is OCH₃ and Z is CH. then R' is other than CH₃.
- Compounds of Claim 1 where E is a single bond; and
 W is O.
 - 4. Compounds of Claim 1 where E is CH₂; and W is O.

35

30

5

10

15

20

```
5. Compounds of Claim 3 where
                R<sub>2</sub> is H. C<sub>1</sub>-C<sub>3</sub> alkyl. halogen. C<sub>1</sub>-C<sub>3</sub> alkyl
                     substituted with 1 to 3 halogen atoms
                     selected from 1 to 3 Cl. 1 to 3 F or 1 Br.
 5
                     OCH_3, SO_2NHCH_3, SO_2N(CH_3)_2, S(O)_nCH_3.
                     CO_2CH_3. CO_2CH_2CH_3. OCF_2H. CH_2OCH_3 or
                     CH, CN;
                 R is H. C<sub>1</sub>-C<sub>3</sub> alkyl. phenyl. CH<sub>2</sub>CF<sub>3</sub> or CH<sub>2</sub>CH=CH<sub>2</sub>:
                 x is C<sub>1</sub>-C<sub>2</sub> alkyl. C<sub>1</sub>-C<sub>2</sub> alkoxy. Cl. F. Br. I.
10
                     OCF2H. CH2F. CF3. OCH2CH2F. OCH2CHF2.
                     OCH2CP3. CH2Cl or CH2Br; and
                 Y is H. C1-C2 alkyl. C1-C2 alkoxy. CH2OCH3.
                     CH<sub>2</sub>OCH<sub>2</sub>CH<sub>3</sub>, NHCH<sub>3</sub>, N(OCH<sub>3</sub>)CH<sub>3</sub>, N(CH<sub>3</sub>)<sub>2</sub>.
                     CF3. SCH3. OCH2CH=CH2. OCH2CECH. OCH2CH2OCH3.
15
                     CH_2SCH_3, CR_2, -C
R_2
R_2
R_3
R_4
R_2
R_4
R_2
R_2
R_4
R_5
                     OCF2H. OCF2Br. SCF2H. cyclopropyl. CECH or CECCH3.
20
             6. Compounds of Claim 5 where
                 R' is C_1-C_4 alkyl, C_1-C_3 alkyl
                    substituted with 1 to 3 halogen atoms
                    selected from 1 to 3 Cl. 1 to 3 F or 1 Br,
                    C2-C4 alkoxyalkyl, C2-C4 alkylthioalkyl,
 25
                    C2-C4 cyanoalkyl. C2-C4
                    alkenyl. C2-C3 alkenyl substituted with
                    1 to 3 halogen atoms selected from 1 to
                    3 Cl. 1 to 3 F or 1 Br. C<sub>3</sub>-C<sub>4</sub> alkynyl.
                    C_3-C_5 cycloalkyl. C_3-C_5 cycloalkyl
                    substituted with 1 to 3 halogen atoms
 30
                    selected from 1 to 3 Cl. 1 to 3 F or 1 Br
                     or cyclopropylmethyl.
              7. Compounds of Claim 6 where
                  A is A-1:
 35
                n is O:
```

X is CH₃. OCH₃. OCH₂CH₃. Cl or OCF₂H; and Y is CH₃. OCH₃. C₂H₅. CH₂OCH₃. NHCH₃. CH(OCH₃)₂ or cyclopropyl.

8. Compounds of Claim 7 where

R₁ is H:

R₂ is H. Cl. Br. OCH₃ or CH₃; and

R'is C₁-C₃ alkyl. C₁-C₃ alkyl

substituted with 1 to 3 F. C₂-C₃

alkoxyalkyl. C₂-C₃ alkylthioalkyl.

C₂-C₃ cyanoalkyl. C₂-C₃ alkenyl.

propargyl. C₃-C₅ cycloalkyl or

cyclopropylmethyl.

5

10

15

- 9. Compounds of Claim 8 where J is J-1. J-2. J-3 or J-4.
- 10. Compounds of Claim 9 where

 R' is C₁-C₃ alkyl substituted with 1 to 3 F,

 C₂-C₃ alkoxyalkyl. C₂-C₃ alkylthioalkyl. C₂-C₃

 cyanoalkyl. C₂-C₃ alkenyl, propargyl. C₃-C₅ cycloalkyl or cyclopropylmethyl.
- 11. A compounds of Claim 1 which is 4-(cyclopropylcarbonyl)-N-[(4.6-dimethoxypyrimidin-2-yl)aminocarbinyl]-1-methyl-1Hpyrazole-5-sulfonamide.
- 25 12. A compound of Claim 1 which is

 4-(1-oxopropyl)-N-[(4.6-dimethoxypyrimidin2-y1)aminocarbonyl]-l-methyl-IH-pyrazole-5sulfonamide.
- 13. A compound of Claim 1 which is

 2-(cyclopropylcarbonyl)-N-[(4.6-dimethoxypyrimidin-2-yl)aminocarbonyl]-3-thiophenesulfonamide.
- 14. An agriculturally suitable composition for controlling the growth of undesired vegetation or for use as a plant growth regulant comprising an effective amount of a compound of any of Claims 1 to 13 and at

least one of the following: surfactant, solid, or liquid diluent.

- 15. A composition of Claim 14 comprising a compound of Claim 11, 12, or 13 or an agriculturally 5 suitable salt thereof.
 - 16. A method for controlling the growth of undesired vegetation which comprises applying to the locus to be protected an effective amount of a compound of any of Claims 1 to 13.
- 17. A method of Claim 16 wherein the compound of Claim 11. 12. or 13 is applied or an agriculturally suitable salt thereof.
- 18. A method for regulating the growth of plants which comprises applying to the locus of such plants
 15 an effective but substantially non-phytotoxic amount of a plant growth regulant selected from compounds of any of Claims 1 to 13.
 - 19. A process for the preparation of a compound of claim 1 which comprises:
- 20 (a) reacting a sulfonyl isocyanate or isothiocyanate of formula

$$JSO_2N=C=W (II)$$

or a phenyl carbamate or thiocarbamate of formula

30 with an aminoheterocycle of formula

35

(b) reacting a sulfonamide of formula

with a heterocyclic phenyl carbamate or thiocarbamate of formula

C₆H₅OCNA (VII);

wherein J, A, R_1 and W are as defined in claim 1. 10 20. Compounds of formulae

JSO₂N=C=W (II)

 JSO_2NH_2 (IV) and

15

wherein J and W are as defined in claim 1.

Claims:

A process for the preparation of a compound
 of Formula I

W JSO₂NHČNR₁A

10

I

wherein

15 J is
$$R_{2} = \frac{(CH_{2})_{n}CR}{R}$$

$$\frac{J-1}{R}$$

$$\frac{J-2}{R}$$

$$\frac{J-2}{R}$$

$$\frac{J-3}{R}$$

$$\frac{C(CH_{2})_{n}CR}{R}$$

$$\frac{C(CH_{2})_{n}CR}{R}$$

$$\frac{J-4}{R}$$

30

J-5

<u>J-6</u>

10.

J-11

R is H. C₁-C₃ alkyl, phenyl, SO₂NR_aR_b. C₁-C₂
haloalkyl, C₂-C₄ alkoxyalkyl, C₂-C₃ cyanoalkyl,

C₂-C₄ alkylthioalkyl, C₂-C₄ alkylsulfinylalkyl,

C₂-C₄ alkylsulfonylalkyl, CO₂C₁-C₂ alkyl, C₁-C₄
alkylcarbonyl, C₁-C₂ alkylsulfonyl, C₃-C₄ alkenyl,

C₃-C₄ alkynyl or C₁-C₂ alkyl substituted with

CO₂C₁-C₂ alkyl;

R₁ is H or CH₃:

5.

10

15

20

25

30

35

 R_2 is H, C_1-C_3 alkyl, C_1-C_3 haloalkyl, halogen, nitro, C₁-C₃ alkoxy, SO₂NR_cR_d, C₁-C₃ alkylthio, C1-C2 alkylsulfinyl, C1-C3 alkylsulfonyl, CN. CO2R6, C1-C3 haloalkoxy, C1-C3 haloalkylthio. amino, C_1-C_2 alkylamino, $di(C_1-C_3$ alkyl)amino or C_1-C_2 alkyl substituted with C_1-C_2 alkoxy. C1-C2 haloalkoxy. C1-C2 alkylthio. C1-C2 haloalkylthio. CN. OH or SH: R_a and R_b are independently C_1-C_2 alkyl; R_c is H. C_1-C_4 alkyl. C_2-C_3 cyanoalkyl. methoxy or ethoxy; R_d is H. C_1-C_4 alkyl or C_3-C_4 alkenyl; or R_c and R_d may be taken together as -(CH₂)₃-. -(CH₂)₄-. -(CH₂)₅- or -CH₂CH₂OCH₂CH₂-: R_{α} is C_1-C_4 alkyl. C_3-C_4 alkenyl. C_3-C_4 alkynyl. C2-C4 haloalkyl, C1-C2 cyanoalkyl, C5-C6 cycloalkyl, C4-C7 cycloalkylalkyl or C2-C4 alkoxyalkyl; R' is C_1-C_5 alkyl, C_1-C_5 haloalkyl, C_1-C_5 alkyl substituted with one or two R_3 groups, C_2-C_5 alkenyl, C2-C5 haloalkenyl, C3-C5 alkenyl substituted with one or two R₃ groups, C₃-C₅ alkynyl, C₃-C₅ haloalkynyl, C₃-C₅ alkynyl substituted with one or two R_3 groups, C_3-C_5 cycloalkyl, C_3-C_5 halocycloalkyl, C_3-C_5 cycloalkyl substituted with one or two R_4 groups. C4-C7 cycloalkylalkyl. C4-C7 halocycloalkylalkyl, C4-C7 cycloalkylalkyl substituted with one or two R4 groups, phenyl or benzyl; R_3 is C_1-C_3 alkoxy, C_1-C_3 alkylthio, C_1-C_3 haloalkoxy, C1-C3 alkylsulfinyl, C1-C3 alkylsulfonyl. CN, NO₂. OH, OR₅ or $di-(C_1-C_3 alkyl)$ amino; R_4 is C_1-C_3 alkyl. C_1-C_3 alkoxy. C_1-C_3 haloalkoxy. CN, NO2. OH, OR5 or di-(C1-C3 alkyl)amino;

R₅ is SO₂CH₃. Si(CH₃)₃. C₂-C₃ alkylcarbonyl or CO₂C₁-C₂ alkyl;
E is a single bond or CH₂;
W is O or S;
n is O or 1;
n' is O or 1;

10 A is
$$N_{Y}$$
. $N_{N_{1}}$. $N_{N_{2}}$. $N_{N_{2}}$. $N_{N_{3}}$. $N_{N_{1}}$. $N_{N_{2}}$. $N_{N_{2}}$. $N_{N_{2}}$. $N_{N_{3}}$. $N_{N_{2}}$.

or
$$X_4$$
 X_4

5

25

A-7

X is H. C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ halo-alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkylthio, C₁-C₄ alkylthio, halogen, C₂-C₅ alkoxyalkyl, C₂-C₅ alkoxyalkoxy, amino, C₁-C₃ alkylamino, di(C₁-C₃ alkyl)amino or C₃-C₅ cycloalkyl;

m is 2 or 3;

L₁ and L₂ are independently 0 or S;

R₆ is H or C₁-C₃ alkyl;

R₇ and R₈ are independently C₁-C₃ alkyl;

Z is CH or N;

Z₁ is CH or N;

Y₁ is 0 or CH₂;

X₁ is CH₃. OCH₃. OC₂H₅ or OCF₂H;

X₂ is CH₃. C₂H₅ or CH₂CF₃;

Y₂ is OCH₃. OC₂H₅. SCH₃. SC₂H₅. CH₃ or CH₂CH₃;

5

10

25

35

 X_3 is CH_3 or OCH_3 : Y_3 is H or CH_3 : X_4 is CH_3 , OCH_3 , OC_2H_5 , CH_2OCH_3 or Cl: and Y_4 is CH_3 , OCH_3 , OC_2H_5 or Cl:

or an agriculturally suitable salt thereof; provided that

a) when X is Cl. F. Br or I. then Z is CH and

Y is

OCH₃, OC₂H₅, N(OCH₃)CH₃, NHCH₃,N(CH₃)₂ or OCF₂H;

- b) when X or Y is C haloalkoxy. then Z is CH:
- c) X_4 and Y_4 are not simultaneously Cl;

- d) when W is S. then R₁ is H. A is A-1 and Y is CH₃. OCH₃. OC₂H₅. CH₂OCH₃. C₂H₅. CF₃. SCH₃. OCH₂CH=CH₂. OCH₂CECH. OCH₂CH₂OCH₃. CH(OCH₃)₂ or 1.3-dioxolan-2-y1:
- e) when the total number of carbons of X and Y is greater than four, then the number of carbons of R must be less than or equal to two:
- f) when J is J-1. J-2. J-3 or J-4 then R' is other than phenyl;
- g) when J is J-5. J-6 or J-7 wherein E is a single bond, then R' is other than C_1-C_5 alkeryl. phenyl. benzyl. cyclopentyl or C_4-C_7 cycloalkylalkyl;
- h) when either or both of X and Y are OCF₂H then J is J-1. J-2. J-3. J-4. J-8. J-9. J-10 or J-11; and
- i) when A is A-7 and Z_1 is N. then J is J-1. J-2. J-3 or J-4 and R' is C_3-C_5 cycloalkyl;
- j) when the total number of carbon atoms of X and Y is greater than four, then the total number of carbon atoms of R₂ and R' must be less than or equal to 7; which comprises:
- (i) reacting a sulfonyl isocyanate or isothiocyanate of formula

or a phenyl carbamate or thiocarbamate of formula

JSO₂NHCOC₆H₅ (VI)

35

30

5

10

15

with an aminoheterocycle of formula

HN-A

(III); or

5

(ii) reacting a sulfonamide of formula

JSO2NH2

(IV)

10

with a heterocyclic phenyl carbamate or thiocarbamate of formula

C₆H₅OCNA

(VII);

15

wherein J, A, R₁ and W are as defined above.

- 2. A process of Claim 1 provided (k) when J is

 J-5. R₁ is H. R₂ is H. E is CH₂. A is

 A-1. X is OCH₃. Y is OCH₃ and Z is CH.

 then R' is other than CH₃.
 - 3. A process of Claim 1 where E is a single bond; and
 W is O.
 - W is O
- 25 4. A process of Claim 1 where E is CH₂; and W is O.

S. A process of Claim 3 where

R₂ is H. C₁-C₃ alkyl. halogen. C₁-C₃ alkyl
substituted with 1 to 3 halogen atoms

selected from 1 to 3 Cl. 1 to 3 F or 1 Br.

OCH₃, SO₂NHCH₃, SO₂N(CH₃)₂, S(O)_nCH₃,

CO₂CH₃, CO₂CH₂CH₃, OCF₂H. CH₂OCH₃ or

CH₂CN:

R is H. C₁-C₃ alkyl. phenyl. CH₂CP₃ or CH₂CH=CH₂;

X is C₁-C₂ alkyl. C₁-C₂ alkoxy. Cl. F. Br. I.

OCF₂H. CH₂F. CF₃, OCH₂CH₂F. OCH₂CHF₂.

OCH₂CF₃, CH₂Cl or CH₂Br: and

Y is H. C₁-C₂ alkyl. C₁-C₂ alkoxy. CH₂OCH₃.

CH₂OCH₂CH₃, NHCH₃, N(OCH₃)CH₃, N(CH₃)₂.

CP₃, SCH₃, OCH₂CH=CH₂. OCH₂C=CH. OCH₂CH₂OCH₃.

OCF₂H. OCF₂Br. SCF₂H. cyclopropyl. CECH or CECCH₃.
6. A process of Claim 5 where

R' is C₁-C₄ alkyl, C₁-C₃ alkyl substituted with 1 to 3 halogen atoms selected from 1 to 3 Cl. 1 to 3 F or 1 Br. C₂-C₄ alkoxyalkyl, C₂-C₄ alkylthioalkyl, C₂-C₄ cyanoalkyl, C₂-C₄ alkylthioalkyl, C₂-C₄ alkenyl, C₂-C₃ alkenyl substituted with 1 to 3 halogen atoms selected from 1 to 3 Cl. 1 to 3 F or 1 Br. C₃-C₄ alkynyl, C₃-C₅ cycloalkyl substituted with 1 to 3 halogen atoms selected from 1 to 3 Cl. 1 to 3 F or 1 Br or cyclopropylmethyl.

7. A process of Claim 6 where
A is A-1;
n is O;

35

5

10

X	is	CH3.	OCH3.	OCH ₂ C	H ₃ , Cl	or	OCF ₂ H:	and
							NHCH3.	
					copyl.		, .	

8. A process of Claim 7 where

R₁ is H:

R₂ is H. Cl. Br. OCH₃ or CH₃; and

10

15

20

25

30

35

Ris C₁-C₃ alkyl, C₁-C₃ alkyl substituted with 1 to 3 F, C₂-C₃ alkoxyalkyl, C₂-C₃ alkylthioalkyl, C₂-C₃ cyanoalkyl, C₂-C₃ alkenyl, propargyl, C₃-C₅ cycloalkyl or cyclopropylmethyl.

- A process of Claim 8 where J is J-1, J-2, J-3 or J-4.
- 10. A process of Claim 9 where

 R' is C₁-C₃ alkyl substituted with 1 to 3 F.

 C₂-C₃ alkoxyalkyl. C₂-C₃ alkylthioalkyl. C₂-C₃

 cyanoalkyl. C₂-C₃ alkenyl, propargyl. C₃-C₅ cycloalkyl or cyclopropylmethyl.
- 11. A process of Claim 1 wherein the product is 4-(cyclopropylcarbonyl)-N-[(4.6-dimethoxy-pyrimidin-2-yl)aminocarbinyl]-1-methyl-1H-pyrazole-5-sulfonamide, or an agriculturally suitable salt thereof.
- 12. A process of Claim 1 wherein the product is 4-(1-oxopropy1)-N-[(4,6-dimethoxypyrimidin-z-y1)aminocarbony1]-1-methyl-1H-pyrazole-5-sulfonamide, or an agriculturally suitable salt thereof.
- 13. A process of Claim 1 wherein the product is 2-(cyclopropylcarbonyl)-N-[(4.6-dimethoxy-pyrimidin-2-yl)aminocarbonyl]-3-thiophenesulfonamide, or an agriculturally suitable salt thereof.

- 14. An agriculturally suitable composition for controlling the growth of undesired vegetation or for use as a plant growth regulant comprising an effective amount of a compound of formula (I) or an agriculturally suitable salt thereof as defined in any of Claims 1 to 13 and at least one of the following: surfactant, solid, or liquid diluent.
 - 15. A composition of Claim 14 comprising a compound of Claim 11, 12 or 13 or an agriculturally suitable salt thereof.
 - 16. A method for controlling the growth of undesired vegetation which comprises applying to the locus to be protected an effective amount of a compound of formula (I) or an agriculturally suitable salt thereof as defined in any of Claims 1 to 13.
 - 17. A method of Claim 16 wherein the compound of Claim 11, 12 or 13 is applied or an agriculturally suitable salt thereof.
- 18. A method for regulating the growth of plants
 20 which comprises applying to the locus of such plants
 an effective but substantially non-phytotoxic amount
 of a plant growth regulant selected from compounds of
 formula (I) or an agriculturally suitable salt thereof
 as defined in any of Claims 1 to 13.

11) Publication number:

0 245 058 A3

12

EUROPEAN PATENT APPLICATION

- (21) Application number: 87303961.4
- 2 Date of filing: 01.05.87

(5) Int. Cl.³: C 07 D 403/12 C 07 D 409/12, C 07 D 401/1-2 C 07 D 491/04, C 07 F 7/18 C 07 D 231/18, C 07 D 233/3-4 C 07 D 213/71, C 07 D 213/8-9 A 01 N 47/36 //(C07D491/04, 307:00, 239:00), (C07D491/04, 311:00, 239:00)

- (30) Priority: 02.05.86 US 859275 13.06.86 US 874307 13.03.87 US 22365 30.03.87 US 29434
- (43) Date of publication of application: 11.11.87 Bulletin 87/46
- B Date of deferred publication of search report: 06.04.88
- (A) Designated Contracting States:

 AT BE CH DE ES FR GB GR IT LI LU NL SE
- 71 Applicant: E.I. DU PONT DE NEMOURS AND COMPANY 1007 Market Street Wilmington Delaware 19898(US)
- (72) Inventor: Wexler Barry Arthur 2205 Patwynn Road Wilmington Delaware 19810(US)
- (74) Representative: Hildyard, Edward Martin et al, Frank B. Dehn & Co. European Patent Attorneys Imperial House 15-19 Kingsway London WC2B 6UZ(GB)

- (54) Herbicidal heterocyclic sulfonamides.
- 57 Sulfonylurea derivatives of formula

JSO₂NHCNR, A (1)

wherein J is a pyrazole, thiophene or pyridine residue of defined structure;

Wis Oor S;

R₁ is H or CH₃;

A is a mono- or bicyclic heterocyclic residue, e.g. pyrimidin-2-yl or triazinyl;

and their agriculturally suitable salts, exhibit potent herbloidal activity. Some also exhibit a plant growth regulant action.

The novel compounds may be made e.g. by reacting an appropriate sulfonyl isocyanate or isothlocyanate of formula JSO₂NCW with an appropriate aminoheterocycle HNR₁A.

EUROPEAN SEARCH REPORT

EP 87 30 3961

	DOCUMENTS CONS	INEDED TO DE DEL DUA	NIT	EP 87 30 33
		IDERED TO BE RELEVA indication, where appropriate.		
Category	of relevant p		Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.4)
A,D	PATENT ABSTRACTS OF JAPAN, vol. 9, no. 88 (C-276)[1811], 17th April 1985; & JP - A - 59 219 281 (NISSAN KAGAKU KOGYO K.K.) 10-12-1984		1,14-16 ,18-20	
A	PATENT ABSTRACTS OF JAPAN, vol. 9, no. 218 (C-301)[1941], 5th September 1985; JP - A - 60 78980 (NISSAN KAGAKU KOGYO K.K.) 04-05-1985		1,14-16	
	EP-A-0 030 142 (E. NEMOURS AND CO.) * claims 1-4, 8-10, tables XI a-f * & (Cat. D)	. 14. 15. 20-26:	1,14,16	·
	EP-A-0 046 677 (E. NEMOURS AND CO.) * claims 1, 2, 4, 5 67, lines 32, 33; page 75, lines 4 487 626 (Cat. D)	5. 10. 24-27: nage	1,14,16 ,18,19	TECHNICAL FIELDS SEARCHED (Int. Cl.4)
]	EP-A-0 097 122 (C) * claims 1-11, 13, 549 898 (Cat. D)	BA GEIGY AG) 17-23 * & US - A - 4	1,14,16	C 07 D 403/00 C 07 D 409/00 C 07 D 401/00 C 07 D 491/00
D	350 (C-387)[2406],	JAPAN, vol. 10, no. 26th November 1986; 88 (ISHIHARA SANGYO 1986	1,14,16 ,18-20	C 07 F 7/00 C 07 D 231/00 C 07 D 333/00 C 07 D 213/00 A 01 N 47/00 C 07 D 521/00
	The present search report has b			
. 00	Place of search DITAI	Date of completion of the search	Examiner	
DE	RLIN ·	21-12-1987	VAN A	AMSTERDAM L.J.P.
CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background O: non-written disclosure P: intermediate document		E : earlier patent d after the filing other D : document cited L : document cited	T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date D: document cited in the application L: document cited for other reasons å: member of the same patent family, corresponding document	