Projet d'intégration Robot collaboratif - Agilus

Frédéric CANO | Brahim BERRICHE | Loïc BLANC | Marc DANJOUX | Thomas DURAND

Sommaire

- 1. Problématique du client
- 2. Notre proposition
- 3. Gantt
- 4. IHM
- 5. Phase 1 Première connexion avec les périphériques
- 6. Phase 2 Piloter le robot via la souris 3D
- 7. Phase 3 Apprentissage et lancement des mouvements
- 8. Phase 4 Gestion de stock des pièces
- 9. Démonstration vidéo
- 10. Capitalisation de l'expérience
- 11. Bilan

Problématique du client

- Apprendre des positions références (magasin, palette,...)
 - Gérer la récupération des pièces du magasin
- Gérer le placement des pièces sur la palette (position vide)
 - Utilisation la plus intuitive possible

Notre solution

- **❖** Solution web
- ➤ Pas d'installation/licence
 - ➤ Multi-plateforme
 - > Intuitivité
 - Maintenabilité
- Manipulation du robot via souris 3D (phase d'apprentissage)

Gantt simplifié

IHM - Interface homme machine

IHM - Interface homme machine

Phase 1 - Première connexion avec les périphériques

Équipe

- Connecter le programme au robot
- Connecter et récupérer les données de la souris
- Tester et gérer les différents capteurs et actionneurs du robot (pince, capteur,...)

Phase 2 - Piloter le robot via la souris 3D

M. Danjoux, F. Cano

- Calibrer les données renvoyées par la souris 3D
 - Bouger la souris 3D
 - Normaliser les données renvoyés par la souris
 - Prépondérance translation/rotation
 - Envoi des informations au robot
 - Déplacement du robot

Phase 2 - Piloter le robot via la souris 3D

Phase 3 - Apprentissage et lancement de mouvements

B. Berriche, T. Durand

- Déplacement du robot via la souris 3D (Phase 2)
 - Enregistrement des positions du robot
- Enregistrement des actions du robot (ouverture/fermeture de la pince)
 - Jouer les programmes enregistrés (trajectoires + actions)

Phase 3 - Apprentissage et lancement de mouvements

Phase 4 - Gestion de stock des pièces

- Apprendre la position du magasin
- Apprendre les points clés de la palette (3 coins)
- Déduction des positions des autres pièces de la palette
- Programme d'exécution pour la gestion des pièces de la palette
 - Récupération pièce du magasin
 - > Déplacement vers un emplacement de la palette
 - Dépôt de la pièce
 - Récupération d'une autre pièce du magasin
 - Déplacement vers le point suivant de la palette (libre)
 - Dépôt de la nouvelle pièce

...

Phase 4 - Gestion de stock des pièces

Démonstration

Phase 2 et 3 Phase 4

Capitalisation de l'expérience

- Un challenge technique intéressant
- Confrontation à des problèmes et des contraintes diverses
- Prise de conscience sur la nécessité d'analyse avant la conception
- Interconnexion de multiples technologies (Web, Souris 3D, Robot Kuka)
- ❖ Connaissance en manipulation de souris 3D avec 6 axes
- Manipulation du robot via la librairie fournie par la société Novalynx

Bilan

- Objectifs de départ atteints (4 phases)
- Challenges techniques surmontés
- Taches attribués en tenant compte des compétences de chacun
- * Acquisition de nouvelle compétences
- Bonne gestion des périodes de stress grâce à une cohésion d'équipe et une entraide mutuelle

Questions?

Merci de votre attention

Modélisation du stock

$$StepX = \frac{||\overrightarrow{BC}||}{nombre \ de \ colonne - 1}$$

$$Step Y = \frac{||\overrightarrow{BA}||}{nombre \ de \ ligne - 1}$$

$$PosX = j \times StepX \times cos(\theta) + i \times StepY \times sin(\theta) + x_b$$

$$PosY = j \times StepX \times sin(\theta) - i \times StepY \times cos(\theta) + y_b$$

