CS 302.1 - Automata Theory

Lecture 10

Shantanav Chakraborty

Center for Quantum Science and Technology (CQST)
Center for Security, Theory and Algorithms (CSTAR)
IIIT Hyderabad

Quick Recap

0 B 1 0 1

Turing Machines:

- TM halts and accepts/rejects on reaching the accept or reject states
- TM may never halt it may loop forever.

Configuration of a TM: Combination of the current tape contents, the current state and the current head location. $X \ 0 \ 0 \ 1 \ 1 \ 1 \ B \ B \ B \ ...$

 \dagger_{q_1}

A TM M accepts w if there exists a sequence of configurations C_1 to C_k , where

- C_1 is the start configuration M on w.
- Each C_i yields C_{i+1} .
- C_k is an accepting configuration

A TM model \mathcal{M}_1 is equivalent to another model \mathcal{M}_2 :

• \mathcal{M}_2 can be simulated by \mathcal{M}_1 and vice versa.

Is the standard TM M more powerful/equivalent to the following TM models where

- The head can move left, right or stay put?
- We have k read/write tapes instead of one?
- We had a two-way infinite tape, instead of one?
- TM has a printer attached?
- We introduced non-determinism?

Is the standard TM M more powerful/equivalent to the following TM models where

- The head can move left, right or stay put?
- We have k read/write tapes instead of one?
- We had a two-way infinite tape, instead of one?
- TM has a printer attached?
- We introduced non-determinism?

A TM model \mathcal{M}_1 is equivalent to another model \mathcal{M}_2 if \mathcal{M}_2 can be simulated by \mathcal{M}_1 and vice versa.

Lazy Turing Machine: The head can either move left, move right or stay put (L, R, S)

Is the standard TM M more powerful/equivalent to the following TM models where

- The head can move left, right or stay put?
- We have k read/write tapes instead of one?
- We had a two-way infinite tape, instead of one?
- TM has a printer attached?
- We introduced non-determinism?

A TM model \mathcal{M}_1 is equivalent to another model \mathcal{M}_2 if \mathcal{M}_2 can be simulated by \mathcal{M}_1 and vice versa.

Lazy Turing Machine: The head can either move left, move right or stay put (L, R, S)

Hence a lazy Turing machine model is equivalent to a standard Turing Machine model.

Is the standard TM M more powerful/equivalent to the following TM models where

- The head can move left, right or stay put?
- We have k read/write tapes instead of one?
- We had a two-way infinite tape, instead of one?
- TM has a printer attached?
- We introduced non-determinism?

A TM model \mathcal{M}_1 is equivalent to another model \mathcal{M}_2 if \mathcal{M}_2 can be simulated by \mathcal{M}_1 and vice versa.

k-read/write tapes instead of one: What does a k-tape TM S look like? k-tape TM also has k heads, each associated with a tape. New transition function $\delta_S: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L,R\}^k$, i.e. $\delta_S(q_i,a_1,\cdots,a_k) = (q_j,b_1,\cdots,b_k,L,R,\cdots,L)$

- To simulate *S* with *M*, we store the entire information of the *k* tapes in one single tape.
- M uses \$ to separate the contents of the k tapes.
- To keep track of the locations of the k heads, M marks the symbols where the heads would be, with a $\underline{'}$.

Is the standard TM M more powerful/equivalent to the following TM models where

- The head can move left, right or stay put?
- We have k read/write tapes instead of one?
- We had a two-way infinite tape, instead of one?
- TM has a printer attached?
- We introduced non-determinism?

k-read/write tapes instead of one: What does a k-tape TM S look like? k-tape TM also has k heads, each associated with a tape. New transition function $\delta_S: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L,R\}^k$, i.e. $\delta_S(q_i,a_1,\cdots,a_k) = (q_j,b_1,\cdots,b_k,L,R,\cdots,L)$

- Single tape TM M first scans the entire tape from leftmost \$ to rightmost \$ (k+1 in all) to determine the symbols under the virtual heads. Then it makes a second pass to update the tape according to δ_S .
- If it so happens that M's head needs to go to the right of any of the intermediate $\Rightarrow S$ has moved the head on the corresponding tape to the unread blank symbols. Starting from this cell to the rightmost \Rightarrow , shift one cell to the right to make space to write a blank on the empty tape cell and simulate as before.

Is the standard TM model \mathcal{M}_1 more powerful/equivalent to the following TM models where

- The head can move left, right or stay put?
- We have k read/write tapes instead of one?
- We have a two-way infinite tape, instead of one?
- TM has a printer attached?
- We introduce non-determinism?

Two-way infinite Tape: Let M_D be the TM equipped with this power.

A TM model \mathcal{M}_1 is equivalent (as powerful as) to another model \mathcal{M}_2 if \mathcal{M}_2 can be simulated by \mathcal{M}_1 and vice versa.

- Cut the two tapes of M_D into Tape R and $(\text{Tape }L)^R$. We get a two-tape TM.
- Whenever M_D uses the tape to the right of the a_0 , Tape R is used.
- When M_D uses the tape to the left of a_0 , (Tape L) R is used.

 M_D isn't any more powerful than a one way infinite tape TM.

So a TM with a two-way infinite tape is equivalent to a TM with a one-way infinite tape.

Is the standard TM model \mathcal{M}_1 more powerful/equivalent to the following TM models where

- The head can move left, right or stay put?
- We have k read/write tapes instead of one?
- We have a two-way infinite tape, instead of one?
- TM with a printer
- We introduce non-determinism?

Enumerators: TM attached with a printer

- The Enumerator E uses the print tape to output strings
- The input tape is initially blank
- The language of E is the set of strings that it prints out
- If E does not halt, it may print infinitely many strings in some order

 $\mathcal{L}(E) = \{ w \in \Sigma^* | w \text{ is printed by E} \}$

Is the standard TM model \mathcal{M}_1 more powerful/equivalent to the following TM models where

- The head can move left, right or stay put?
- We have k read/write tapes instead of one?
- We have a two-way infinite tape, instead of one?
- TM with a printer
- We introduce non-determinism?

Enumerators: TM attached with a printer

If L(M) is the language recognized by a Turing Machine M then there exists an enumerator E that enumerates it.

The set of all finite length (binary) strings is **countably infinite**.

- Lexicographically generate all binary strings one after the other. There exists a one-one correspondence with \mathbb{N} .
- We can lexicographically generate all (binary) strings and number them:

$$s_1 = 0, s_2 = 1, s_3 = 00, \cdots$$

Is the standard TM model \mathcal{M}_1 more powerful/equivalent to the following TM models where

- The head can move left, right or stay put?
- We have k read/write tapes instead of one?
- We have a two-way infinite tape, instead of one?
- TM with a printer
- We introduce non-determinism?

Enumerators: TM attached with a printer

If L(M) is the language recognized by a Turing Machine M then there exists an enumerator E that enumerates it.

Proof:

```
For i=1,2,\cdots

For j=1,2,\cdots,i

Run M with string s_j for i steps.

If any string is accepted, then PRINT it.
```

Is the standard TM model \mathcal{M}_1 more powerful/equivalent to the following TM models where

- The head can move left, right or stay put?
- We have k read/write tapes instead of one?
- We have a two-way infinite tape, instead of one?
- TM with a printer
- We introduce non-determinism?

Enumerators: TM attached with a printer

If there exists an Enumerator E, then there exists a Turing Machine M such that L(M) = L(E).

Proof:

M = On input w:

- 1. Run E. Every time E prints some string, compare it with w.
- 2. If they match, ACCEPT.

E and M are equivalent

Is the standard TM model \mathcal{M}_1 more powerful/equivalent to the following TM models where

- The head can move left, right or stay put?
- We have k read/write tapes instead of one?
- We have a two-way infinite tape, instead of one?
- We introduce non-determinism?

ACCEPT REJECT

ACCEPT/REJECT

Non-deterministic Turing Machines (NTM):

- For a DTM, from a given configuration, exactly one configuration available to it at any stage.
- For an NTM, any point in the computation, several possible configurations are available.
- Its transition function is $\delta_N: \mathbb{Q} \times \Gamma \to \mathcal{P}(\mathbb{Q} \times \Gamma \times \{L,R\})$, i.e. $\delta(q_i,a) \to \{(q_j,b,R),(q_k,c,L) \cdots \}$
- The computation corresponds to a configuration tree: From the starting configuration, the computation has several branches, each of which leads to a different configuration.
- If any branch of the computation, leads to an accepting configuration, the NTM accepts. Immediately, DTM is a special case of NTM.

Is the standard TM model \mathcal{M}_1 more powerful/equivalent to the following TM models where

- The head can move left, right or stay put?
- We have k read/write tapes instead of one?
- We have a two-way infinite tape, instead of one?
- We introduce non-determinism?

Any NTM can be simulated by a DTM

- The DTM searches from among the configurations of the NTM for an accepting configuration.
- Clearly an ordinary Depth First Search shouldn't work
- A branch of the configuration tree can be of infinite depth (when the TM loops forever for that sequence of configuration) and hence the DTM can miss a much shorter accepting configuration.

Is the standard TM model \mathcal{M}_1 more powerful/equivalent to the following TM models where

- The head can move left, right or stay put?
- We have k read/write tapes instead of one?
- We have a two-way infinite tape, instead of one?
- We introduce non-determinism?

Any NTM can be simulated by a 3-tape DTM

- Input string w
- Generate runs lexicographically
- Simulate the run for i/p w

- Tape 1 holds the input string w.
- As for the content of Tape 2, note that we can always obtain a bound for the maximum number of nodes at any level of the configuration tree (say b).
- Let $C = \{1, 2, \dots, b\}$, then we can define a run by a string $s \in C$. E.g. 122: choose the first node from level 1, second node from level 2, third node from level 3.

Is the standard TM model \mathcal{M}_1 more powerful/equivalent to the following TM models where

- The head can move left, right or stay put?
- We have k read/write tapes instead of one?
- We have a two-way infinite tape, instead of one?
- We introduce non-determinism?

1100011*BB*

Simulate the run for i/p w

121

Any NTM can be simulated by a 3-tape DTM

ACCEPT/REJECT

- Tape 1 holds the input string w.
- Tape 2 generates a string in $C = \{1, 2, \dots, b\}$ lexicographically: Generate all strings of length 1, then strings of length 2 and so on, i.e. $\{1, 2, \dots, b, 11, 12, 21, 22, \dots\}$.
- Some of these runs may be invalid or too short to lead to any accept/reject state.

ACCEPT

Is the standard TM model \mathcal{M}_1 more powerful/equivalent to the following TM models where

- The head can move left, right or stay put?
- We have k read/write tapes instead of one?
- We have a two-way infinite tape, instead of one?
- We introduce non-determinism?

Any NTM can be simulated by a 3-tape DTM

- Tape 1 holds the input string w.
- Tape 2 generates runs lexicographically
 - Tape 3 simulates one branch of the configuration tree corresponding to the run generated in Tape 2. At each step of the simulation consult Tape 2 to decide the next configuration.

REJECT

ACCEPT/REJECT

- If the simulation leads to an accept state accept the computation
- During the simulation, if the run in Tape 2 is found to be invalid, abort and generate the next lexicographic string

3-tape DTM \equiv 1-tape DTM \Rightarrow NTM \equiv DTM

Variants of TM:

- The head can move left, right or stay put?
- We have k read/write tapes instead of one?
- We have a two-way infinite tape, instead of one?
- TM with a printer attached?
- We introduce non-determinism?

Key takeaway: A standard TM is quite robust. Adding extra power seems to make no difference in computing power

- As an aside, although $NTM \equiv DTM$, a DTM may require several more steps to perform the same computation.
- For a moment, consider problems that are computable (TM halts on all inputs).
- For a given decision problem L, let for all input strings |w| = n, suppose \exists
- DTM that halts within DTIME steps and outputs YES if $w \in L$ and NO if $w \notin L$.

- As an aside, although $NTM \equiv DTM$, a DTM may require several more steps to perform the same computation.
- For a moment, consider problems that are computable (TM halts on all inputs).
- For a given decision problem L, let for all input strings |w| = n, suppose \exists
- DTM that halts within DTIME steps and outputs YES if $w \in L$ and NO if $w \notin L$.

P = Set of all problems for which DTIME is a polynomial in n $(\text{e.g.: } n^{1000} + 3n^2)$

- As an aside, although $NTM \equiv DTM$, a DTM may require several more steps to perform the same computation.
- For a moment, consider problems that are computable (TM halts on all inputs).
- For a given decision problem L, let for all input strings |w| = n, suppose \exists
- NTM that halts within NTIME steps and outputs YES if $w \in L$ and NO if $w \notin L$.

NP = Set of all problems for which NTIME is a polynomial in n.

- For a given decision problem L, let for all input strings w such that |w| = n, suppose \exists
- DTM that halts within DTIME steps and outputs YES if $w \in L$ and NO if $w \notin L$.
- NTM that halts within NTIME steps and outputs YES if $w \in L$ and NO if $w \notin L$.

P =Set of all problems for which DTIME is a polynomial in n.

(e.g.:
$$n^{1000} + 3n^2$$
)

NP = Set of all problems for which NTIME is a polynomial in n.

Clearly, $P \subseteq NP$. However, is P = NP?

A million dollar problem

Thank You!