The Wage Distribution

Christine Braun

From last time

$$U = b + \beta \int_{w_R}^{\infty} E(w) dF(w)$$
$$E(w) = w + \beta [\delta U + (1 - \delta)E(w)]$$

• Workers search for jobs and receive offers from F(w)

• Assumed that F(w) was known by the workers

Where does F(w) come from?

are firms posting wages to maximizes profits?

why would firms post different wages? heterogeneity?

Rothschild critique

• Diamond paradox

- Workers
 - unit mass of identical workers
 - flow value of unemployment b = 0
 - workers search for jobs
 - once a worker accepts a new worker is born and searches

Firms

- a continuum of firms with different productivities
- $y \in [0, \infty)$ is productivity drawn from c.d.f. G(y)
- firms post single vacancy at cost $\gamma > 0$
- filled jobs last forever
- discount at rate β
- price of output normalized to 1

Example....the issue

what does the wage offer distribution look like?

• if firms post wages to max profits: it will be degenerate!

- Worker's Problem
 - choose whether or not to accept an offer

$$a\colon \mathbb{R}_+ \to [0,1]$$

• from before:

$$a(w) = \begin{cases} 1 & \text{if } w \ge w_R \\ 0 & \text{otherwise} \end{cases}$$

- Firm's Problem
 - given the workers strategy a(w) the firm chooses
 - to post a vacancy

$$p \colon Y \to \{0,1\}$$

• the wage to post

$$w\colon Y\to \mathbb{R}_+$$

• given the decision to post, firms max profits

$$\max_{w} \pi(y)$$

$$\max_{w} \frac{1}{n} \frac{(y-w)}{1-\beta} - \gamma$$
s.t. $w \ge w_R$ & $n = \int p(y) \ dG(y)$

- Firms solution
 - the wage decision

$$w(y) = w_R$$

the posting decision

$$p(y) = \begin{cases} 1 & \text{if } \pi(y) \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

- The wage distribution
 - Rothschild critique: it's degenerate! $F(w(y)) = w_R \forall y$
 - Diamond paradox: all firms offer $b = w_R$

How do we get a wage distribution?

• Firms choose wages to max profits

Albrecht-Axell (1984): heterogeneity in b

- Burdett-Judd (1983): multiple applications
- Burdett-Mortensen (1998): on the job search

The Search Environment

- Assumptions about the search process
 - Sequential Search: Workers receive offers sequentially (typically the cost of search is time rather than a monetary cost). ex: McCall model
 - Non-sequential Search: Workers choose the number of applications to send at a cost c per application, then choose the highest wage offer. ex: Stigler
- Burdett-Judd (1983): non-sequential search

Burdett-Judd

- The setup: One-shot game with a continua of workers and firms
 - Workers: decide how many wage offers to sample
 - Firms: decide what wage to offer

Environment

- μ : measure of job seekers relative to firms
- p: revenue per employee
- b: workers value of leisure
- c: cost per additional application (first application is free)

Equilibrium

- Equilibrium Objects:
 - $\{q_N\}_{n=1}^{\infty}$: fraction of workers sampling n wages
 - w_R: reservation wage
 - F(w): distribution of wage offers
 - $\pi(w)$:expected profit at w
- **Definition:** An equilibrium is the set of objects above s.t.,
 - 1. Given $\{q_N\}_{n=1}^{\infty}$ and w_R

$$\pi(w) = \pi \ \forall \ w \text{ in the support of } F$$

 $\pi(w) < \pi \ \forall \ w \text{ not in the support of } F$

2. Given F(w), w_R is optimal and $\{q_N\}_{n=1}^{\infty}$ is generated by the income-maximizing strategies of workers.

- Take workers strategies $\{q_N\}_{n=1}^{\infty}$ as given. What possible wages will the firm post?
 - 1. $q_1 = 1$: all workers only sample one wage

2. $q_1 = 0$: all workers sample more than one wage

3. $q_1 \in (0,1)$: some workers sample one wage

- Take workers strategies $\{q_N\}_{n=1}^{\infty}$ as given. What possible wages will the firm post?
 - 1. $q_1 = 1$: all workers only sample one wage

$$\Rightarrow w = b$$
 (Diamond)

2. $q_1 = 0$: all workers sample more than one wage

3. $q_1 \in (0,1)$: some workers sample one wage

- Take workers strategies $\{q_N\}_{n=1}^{\infty}$ as given. What possible wages will the firm post?
 - 1. $q_1 = 1$: all workers only sample one wage

$$\Rightarrow w = b$$
 (Diamond)

2. $q_1 = 0$: all workers sample more than one wage

$$\Rightarrow w = p$$
 (Bertrand)

3. $q_1 \in (0,1)$: some workers sample one wage

- Take workers strategies $\{q_N\}_{n=1}^{\infty}$ as given. What possible wages will the firm post?
 - 1. $q_1 = 1$: all workers only sample one wage

$$\Rightarrow w = b$$
 (Diamond)

2. $q_1 = 0$: all workers sample more than one wage

$$\Rightarrow w = p$$
 (Bertrand)

- 3. $q_1 \in (0,1)$: some workers sample one wage
 - \Rightarrow F(w) is continuous with compact support $[b, \bar{w}]$ where $\bar{w} < p$

Understanding F(w)

- F(w) is continuous: suppose there is an atom in F(w) at \tilde{w} . Then a firm could increase profits by offering $\tilde{w} + \varepsilon$.
- $\bar{w} < p$: If some workers only sample one wage, $q_1 > 0$ then w = p can not be optimal.
- b is the lower bound of the support of F(w): Suppose $\underline{w} > b$, any worker willing to accept \underline{w} in equilibrium would also be willing to accept $\underline{w} \varepsilon$.

What do firm profits look like?

• If the firm choses w = p, only get workers who sample one wage

$$\pi(b) = \mu q_1(p-b)$$

• If the firm chooses $w = \bar{w}$, can attract all workers

$$\pi(\bar{w}) = \mu(p - \bar{w}) \sum_{n=1}^{\infty} nq_n$$

But in equilibrium all firms must make the same profit

$$\pi(b) = \pi(\bar{w}) = \pi(w) \ \ \forall \ w \ \text{in the support of F(w)}$$

• Suppose all firms offer w = b:

• Suppose all firms offer w = p:

• Suppose all firms offer w = b:

 \Rightarrow $q_1 = 1$, all workers sample one wage. There is always a monopsony equilibrium!

• Suppose all firms offer w = p:

- Suppose all firms offer w = b:
 - \Rightarrow $q_1=1$, all workers sample one wage. There is always a monopsony equilibrium!
- Suppose all firms offer w = p:
 - \Rightarrow $q_1=1$, all workers sample one wage. But for all firms to offer w=p it must be that no worker samples one wage $(q_1=0)$. There is never a competitive equilibrium.

• Suppose there exist a wage distribution F(w)

• Suppose there exist a wage distribution F(w)

 \Rightarrow Since workers are identical they all sample the same number of wage (not an equalibrium!) or they are indifferent between sampling n or n+1 number of wage.

- Suppose there exist a wage distribution F(w)
 - \Rightarrow Since workers are identical they all sample the same number of wage (not an equallibrium!) or they are indifferent between sampling n or n+1 number of wage.
 - \Rightarrow Since $q_1 \in (0,1)$ for there to be a wage distribution it must be that $q_1 + q_2 = 1$

Characterizing F(w)

• Fix $q_1 \in (0,1)$

$$\pi(w) = (p-w)\mu(q_1 + 2(1-q_1)F(w))$$

• Since profits are equal for all $w \in [b, \bar{w}]$

$$\pi(b) = \pi(w) \Rightarrow (p-b)\mu q_1 = (p-w)\mu(q_1+2(1-q_1)F(w))$$

$$F(w) = \frac{q_1(w-b)}{2(p-w)(1-q_1)}$$

Still missing q₁

Solving for q_1

• Marginal benefit of sampling 2 wages instead of 1 must equal \boldsymbol{c}

$$V(q_1) = 2\int_b^{\bar{w}} wf(w)F(w) \ dw - \int_b^{\bar{w}} wf(w) \ dw$$

where f(w) and F(w) are functions of q_1

- Two solutions for $V(q_1)=c,\ V(q_1) o 0$ as $q_1 o 1$ or 0
 - Suppose q₁ is close to zero, then almost all wages close to p, little benefit to sending a second application
 - Suppose q₁ is close to one, then almost all wage close to b, little benefit to sending second application

Burdett-Mortensen (1998)

- **Key Idea:** On the job search generates a continuous wage distribution with no mass points.
- Intuition: High wage firms earn less profit per worker but attract more workers so equilibrium profits for firms are equal across the wage distribution.
- **Limits of the model:** Diamond outcome is the limit as on-the-job search disappears and competitive equilibrium as search frictions disappear.

Environment

- set in continuous time
- measure m of workers
- workers and firms are identical and discount the future at rate r
- workers are either employed or unemployed and receive job offers at poisson rate
 - λ_0 when unemployed
 - λ_1 when employed
- workers draw wage offers from known distribution F(w)
- workers receive b when unemployed
- ullet workers lose their jobs at rate δ

Workers

Unemployed

$$rU = b + \lambda_0 \left[\int \max\{U, E(w)\} \ dF(w) - U \right]$$

 $rU = b + \lambda_0 \int_{R}^{\bar{w}} E(w) - U \ dF(w)$

Employed

$$rE(w) = w + \lambda_1 \left[\int \max\{E(w), E(w')\} dF(w') - E(w) \right] + \delta[U - E(w)]$$

$$rE(w) = w + \lambda_1 \int_{-\infty}^{\overline{w}} E(w') - E(w) dF(w') + \delta[U - E(w)]$$

Firms

• Firms choose w to maximize their profits

$$\pi = \max_{w} (p - w) \ell(w|R, F)$$

w determines

- the revenue per worker (p w)
- the number of workers $\ell(w|R,F)$

The Reservation Wage

• The reservation wage R is such that E(R) = U, so

$$R - b = (\lambda_0 - \lambda_1) \int_R^{\bar{w}} [E(w) - U] \ dF(w)$$

• Then integration by parts

$$R - b = (\lambda_0 - \lambda_1) \int_{R}^{w} E'(w) [1 - F(w)] dw$$
$$= (\lambda_0 - \lambda_1) \int_{R}^{\bar{w}} \frac{1 - F(w)}{r + \delta + \lambda_1 [1 - F(w)]} dw$$

• What happens as $\lambda_1 \to \lambda_0$?

Steady State and Equilibrium

- Steady State:
 - an unemployment rate that does not change
 - a distribution of wages paid G(w)
- Equilibrium Objects:
 - offered wage distribution F(w)
 - the reservation wage R
 - the profits of firms π
- Equilibrium Definition: the set of objects s.t. R is the reservation wage of the workers and profits are equal for all wages in the support of F(w).

Steady State - Unemployment Rate

- in steady state the number of unemployed does not change
 - inflow: $\delta(m-u)$
 - outflow: $\lambda_0[1-F(R)]u$
- the steady state number of unemployed

$$u = \frac{\delta m}{\delta + \lambda_0 [1 - F(R)]}$$

• the steady state unemployment rate is u/m

Steady State - Distribution of Wages Paid

• The measure of workers earning wage $\leq w$ at time t is

$$G(w,t)[m-u(t)]$$

• In steady state G(w, t) does not change

$$0 = \frac{\partial G(w, t)}{\partial t}$$

= $\lambda_0 [F(w) - F(R)]u - [\delta + \lambda_1 (1 - F(w))]G(w)(m - u)$

• solving for G(w) gives

$$G(w) = \frac{\delta[F(w) - F(R)]/[1 - F(R)]}{\delta + \lambda_1[1 - F(w)]}$$

Labor Supply

• To solve for the equilibrium wage distribution F(w) we need to maximize profits of firms. For this we need labor supplied to each firm. Consider a firm paying w:

$$\ell(w|R,F) = \lim_{\varepsilon \to 0} \frac{G(w) - G(w - \varepsilon)}{F(w) - F(w - \varepsilon)} (m - u)$$

- $[G(w) G(w \varepsilon)](m u)$: steady state number of workers earning wage $\in [w, w + \varepsilon]$
- $F(w) F(w \varepsilon)$: measure of firms offering wage $\in [w, w + \varepsilon]$

Labor Supply

• The labor supplied to a firm offering $w \ge R$ is

$$\ell(w|R,F) = \frac{\delta m \lambda_0 [\delta + \lambda_1 (1 - F(R))]/[\delta + \lambda_0 (1 - F(R))]}{[\delta + \lambda_1 (1 - F(w))]^2}$$

• The labor supplies to a firm offering w < R is

$$\ell(w|R,F)=0$$

• $\ell(w|R,F)$ is increasing in w and continuous unless F(w) has a mass point

Equilibrium

- Assume $0 \le b and <math>0 < \lambda_i < \infty$ for i = 0, 1.
 - 1. No firm pays less than $R \Rightarrow R \geq \bar{w}$
 - 2. No pass points: if there exists a mass point at $\tilde{w} < p$ then a firm can increase its wage to $\tilde{w} + \varepsilon \Rightarrow \ell(\cdot)$ would increase a lot (all the workers at the mass point) and profit per worker decrease only slightly.
- So F(w) is continuous with compact support $[\underline{w}, \overline{w}]$

Equilibrium

• The lower bound of F(w)

$$\ell(\underline{\mathbf{w}}|R,F) = \frac{\delta m \lambda_0}{(\delta + \lambda_1)(\delta + \lambda_0)} \text{ for all } \underline{\mathbf{w}} > R$$

Since this is a constant w.r.t. w we have that w = R.

• In the support of F(w) all profits are equal

$$\frac{(p-R)\delta m\lambda_0}{(\delta+\lambda_1)(\delta+\lambda_0)}=(p-w)\ell(w|R,F)$$

$$F(w) = \frac{\delta + \lambda_1}{\lambda_1} \left[1 - \left(\frac{p - w}{p - R} \right)^{\frac{1}{2}} \right]$$

• The upper bound of F(w) is found with $F(\bar{w}) = 1$

Let's look at some data

- In the model the offer distribution F(w) is different from the observed wage distribution G(w).
 - G(w) stochastically dominates F(w)
- Can we see this in wage data?
 - Christensen et al. (2001) look at Danish wage data
 - Calculate g as the observed wage distribution
 - Calculate f as the wage distribution of individuals hired out of unemployment

Figure 3.2 Offer (f) and wage (g) densities.

Some Critiques about Burdett-Mortensen

- 1. Why don't incumbent firms react to offers from outside firms trying to hire their workers?
 - Postel-Vinay and Robin (2002): allow for Bertrand competition between firms
- All wage growth is generated from job-to-job movements. No wage growth within the same job.
 - Burdett-Coles (2003): allow firms to post wage-tenure contracts

For next time

What is the job finding probability?

what does it depend on?

• does it change over the business cycle?