数学分析习题课四(问题)

April 15, 2024

问题 1. 计算重积分
(1)
$$\int_0^1 dx \int_0^{1-x} dy \int_0^{\frac{y}{2}} \frac{\cos z}{(2z-1)^2} dz$$
.

- (2) $\iiint_V \frac{y \sin x}{x} dV,$ 其中V是由 $y = \sqrt{x}, y = 0, z = 0, x + z = \frac{\pi}{2}$ 所围成的
- (3) $\iiint_{V} (\sqrt{x^2 + y^2 + z^2} + x y^3) dV, 其中V 是由球面 <math>x^2 + y^2 + z^2 = 2z \ (z \ge 1)$ 1) 与锥面 $z = \sqrt{x^2 + y^2}$ 所围成的区域.
- (4) $\iiint_V dV$, 其中V是由曲面 $\left(\frac{|x|}{a} + \frac{|y|}{b}\right)^2 + \left(\frac{z}{c}\right)^2 = 1$ 围成的区域. (即计

问题 2. 计算第一型线积分

- (1) $\oint_L \sqrt{x^2 + y^2} ds$, $\sharp r L : x^2 + y^2 = 4x$.
- (2) $\oint_L (x^2+y) \mathrm{d}s$, 其中 L 是球面 $x^2+y^2+z^2=R^2$ 与平面 x+y+z=R的交线, R > 0.

- (1) $\iint_S (ax + by + cy^2 + |xyz|) dS$, 其中 S 是锥面 $z = \sqrt{x^2 + y^2}$ 被平面 z = 1 截下的部分.
 (2) $\iint_S |y| dS$, 其中 S 是柱面 $x^2 + y^2 = x$ 被球面 $x^2 + y^2 + z^2 = 1$ 所截下
- 的部分曲面.

- (1) $\int_I x^2 \mathrm{d}y$,其中 L 是由点 A(-2,1) 沿直线到点 B(3,4),再由 B 沿圆心
- 在坐标原点半径为 5 的圆周上的劣弧到点 C(5,0). $(2) \oint_L (y+1) \mathrm{d}x + (z+2) \mathrm{d}y + (x+3) \mathrm{d}z$,其中 L 为球面 $x^2 + y^2 + z^2 = a^2$ (a>0) 与平面 x+y+z=0 的交线,且从 z 轴正向充分远处看 L 的方向为逆时针.

- **问题 5.** 计算第二型面积分 $(1) \iint_S -y \mathrm{d}z \wedge \mathrm{d}x + (z-1) \mathrm{d}x \wedge \mathrm{d}y, \ \ \mathrm{其中} \ S \ \mathbb{B}$ 是圆柱面 $x^2 + y^2 = 4$ 被两平 面 x + z = 2 和 z = 0 所截下的部分的外侧. $(2) \iint_S \frac{x \mathrm{d}y \wedge \mathrm{d}z + z^2 \mathrm{d}x \wedge \mathrm{d}y}{x^2 + y^2 + z^2}, \ \ \mathrm{其中} \ S \ \mathbb{B}$ 圆柱面 $x^2 + y^2 = R^2$ 与两平面 z = R 和 z = -R 所围立体表面的外侧.

问题 6. 已知平面区域 $D = \{(x,y) | 0 \le x \le \pi, 0 \le y \le \pi\}$, L 为 D 的逆时针边界. 证明: $\oint_L x \mathrm{e}^{\sin y} \mathrm{d}y - y \mathrm{e}^{-\sin x} \mathrm{d}x = \oint_L x \mathrm{e}^{-\sin y} \mathrm{d}y - y \mathrm{e}^{\sin x} \mathrm{d}x \ge 2\pi^2.$