Referências Geometria Computacional

FÓRMULAS:

Área de polígonos regulares bidimensionais:

- Triângulo equilátero: $L^2 \sqrt{3} / 4$
- Quadrado: L*L
- Polígonos Regulares em geral: n * L * a / 2
 Onde n é a quantidade de lados do polígono, L é a medida do lado e a é a medida da apótema.
- Paralelogramo: b * h
- Circunferência: π * r²
- Comprimento da circunferencia:
 2 * π * r

Área de polígonos irregulares:

- Triângulos: b * h / 2
- Retângulo e Paralelogramo: b
 * h
- Trapézio: (B + b) * h / 2
- Losango: D * d / 2
- Polígonos irregulares em geral:

Aabcdef = Abcd + Adef + Aabdf

Área de figuras geométricas tridimensionais:

AL = Área Lateral AB = Área da base AT = Área total = AB + AL

- Cubo: AL = 4 * a²
 AB = 2 * a²
- Paralelepípedo:
 AL = 2 * (a * c + a * b)
 AB = 2 * (b * c)
 AT = 2 * (a * c + a * b + b * c)
- Esfera: Asuperf. = $4 * \pi * r^2$
- Prisma:
 Base triangular: AB = b * h
 Base de paralelogramo:
 AB = 2 * (b * h)
 AL = n * (b * h)
 (n varia de acordo com o numero de lados da base)
- Cilindro: AB = $2 * \pi * r^2$ AL = $2 * \pi * r * a$

Volume de figuras geométricas tridimensionais:

- Cubo = a³
- Paralelepípedo: b * c * a
- Esfera: 4 * π * r³ / 3
- Prisma: b*h*a OU b*h*a/2
- Cilindro: 2 * π * r² * a

Códigos:

Cálculo de algumas áreas:

```
float areaTriangulo(float x, float y){
        return x*y/2.0;
}

float areaCirculo (float x){
        return pi * (x * x);
}

float areaTrapezio (float x, float y, float z){
        return ((x + y) * z ) / 2.0;
}

float areaQuadrado (float x){
        return x * x;
}

float areaRetangulo (float x, float y){
        return x * y;
}
```

Problema de distancia entre pontos:

```
float delta(float x1, float x2){
    return pow(x2,2) - 2*x1*x2 + pow(x1,2);
}
int main(){
    float x1, y1, x2, y2;
    float dist;
    cin >> x1 >> y1 >> x2 >> y2;
    dist = sqrt(delta(x1,x2)+delta(y1,y2));
    cout << dist << endl;
}</pre>
```

Problema da escada:


```
int hipotenusa(int x, int y){
    return sqrt( pow(x,2) + pow(y,2));
}

int main(){
    int c, h, l;
    float a;
    cin >> h >> c >> l;
    a = ((hipotenusa(c,h) * n) * l) / 10000.0;
    cout << a << endl;
}</pre>
```