POLITECHNIKA GDAŃSKA

Wydział, Elektroniki, Telekomunikacji i Informatyki

Katedra: Architektury systemów komputerowych

Imię i nazwisko dyplomanta: inż. Mariusz Gomse

Nr albumu: 119320

Kierunek studiów: Informatyka

Praca dyplomowa magisterska

Temat pracy:

Analiza sygnałów EEG do budowy interfejsu człowiek-maszyna.

Kierujący pracą:

dr inż. Julian Szymański

Zakres pracy:

Stworzenie interfejsu umożliwiającego komunikację człowiek-komputer za pomocą urządzeń odczytujących sygnały EEG.

Spis treści

$\mathbf{S}_{\mathbf{F}}$	ois tr	eści	1
1	Wst	eęp	3
	1.1	Wprowadzenie	3
	1.2	Motywacja	3
	1.3	Wytwarzanie mowy	3
	1.4	Sygnał mowy	3
	1.5	Model układu słuchowego	3
	1.6	Cel i założenia pracy	3
2	Pod	stawy teoretyczne	5
	2.1	Klasyfikacja różnych systemów rozpoznawania mowy	5
	2.2	Model akustyczny	5
	2.3	Model języka	5
	2.4	Schemat przetwarzania	5
	2.5	Przegląd istniejących rozwiązań	5
	2.6	Wybór technologii	5
3	Pro	jektowanie i tworzenie systemu	7
4	Test	towanie i eksperymenty	9
5	Zak	ończenie	11
Bi	bliog	grafia	13
\mathbf{A}	Spis	s zawartości załaczonej płyty	17

2	SPIS TREŚCI

Spis skrótów	19
Spis symboli	21
Spis rysunków	22
Spis tabel	23

Wstęp

- 1.1 Wprowadzenie
- 1.2 Motywacja
- 1.3 Wytwarzanie mowy
- 1.4 Sygnał mowy
- 1.5 Model układu słuchowego
- 1.6 Cel i założenia pracy

Podstawy teoretyczne

- 2.1 Klasyfikacja różnych systemów rozpoznawania mowy
- 2.2 Model akustyczny
- 2.3 Model języka
- 2.4 Schemat przetwarzania
- 2.5 Przegląd istniejących rozwiązań
- 2.6 Wybór technologii

Jakieś cytowanie literatury [1]

Pewne symbole: DMC, LZ77, LZ78.

Projektowanie i tworzenie systemu

Testowanie i eksperymenty

Zakończenie

Bibliografia

[1] S. Deorowicz and A. Skórczyński. LED documentation. 2004. [cytowanie na str. 5]

Dodatki

Dodatek A

Spis zawartości załączonej płyty

... jakiś tekst ...

Spis skrótów

Abbreviation	Description	Definition
DMC	dynamiczny koder Markowa	strona 5
LZ77	odmiana algorytmu Ziva–Lempela	strona 5
LZ78	odmiana algorytmu Ziva–Lempela	${ m strona} 5$

Spis symboli

Spis rysunków

Spis tabel