ELEC 335 - Lab #2

Objective

The objective of this lab is to

- practice assembly language, and write programs that will require control flow and careful construction,
- work with seven segment displays,
- work with the debugging tools for analyzing program flow.

Setup

Install STM32CubeIDE and implement problems on the breadboard. For that, use the asm project from the g0 project repo (https://github.com/fcayci/stm32g0) and follow https://youtu.be/UYk_NAnDJlw. You can use one of the undergraduate laboratories for using the scope and measuring the necessary voltages if needed.

- For each coding problem, you are required to create a flowchart that shows software operation and a block/connection diagram that shows how things are connected and what modules are in use. You can use online tools to do that. One example is lucidchart (https://lucid.app). Alternatively, you can use a software you are familiar with.
- All codes should be written in assembly.
- If a specific pin number is not stated, you are free to pick any appropriate pin to connect your components. Make sure to include this in your block/connection diagram.

Submission

You should submit the following items organized in a folder:

- Lab report Written in English. PDF file. Should include
 - a cover page
 - for each problem
 - a flow chart
 - a block/connection diagram
 - pictures/photos if any/requested
 - code listing
 - at least one paragraph explanation/comment about that problem, code listing
 - final lab conclusion about what you've learned.
- **Source files** should have proper comments and pin connections if there are any external components.
- **Elf files** generated elf file with debug information.

Problems

Problem 1 [40 pts]. For this problem, you are asked to implement a diamond pattern given in Table 1 using external LEDs.

- Connect 8 LEDs and 1 push button to the board.
- The 8th LED should be a different color to indicate the status of the program. Let's call this the status LED. (Not necessary, but advised)

Requirements:

- The button should be used to play or pause the pattern. You can assume the program has two modes: play, and pause, and the button is used to change modes.
- When in pause mode, the status LED should be on, and when in play mode, the status LED should be off.
- There should be around 125 ms delay between transitions. (i.e., t3-t2 ~= 125 ms)
- All the patterns are given in Table1. You should repeat these patterns indefinitely.

Questions:

- Using an oscilloscope, capture LED1, show the ON and OFF times. You can use a trigger mechanism to do this capture by setting it to one-time capture.
 - What happens if you decrease this delay time to 10 ms or less? Capture LED1 again and explain it.
- Capture both the button signal and the status LED. Then press the button for pause.
 - How long did it take to go from button press to status LED lighting up?
 - How about vice versa (press the button for play)?
 - Explain your findings.

	LED1	LED2	LED3	LED4	LED5	LED6	LED7
t0							
t1							
t2							
t3							
t4							
t5							
t6							
t7							

Table 1. Pattern on LEDs. Rows represent time steps, and columns represent each LED.

Problem 2 [60 pts]. In this problem you are asked to write a **decimal counter** using Seven Segment Displays.

• Connect 1 x Seven Segment Displays, 2 x buttons, and 1 status LED.

Requirements:

- SSD should display the last digit of your school ID.
- One button should cycle through each project member's ID on the SSD.
- Second button should start the automatic counting down from that number down to 0.
 - It should roughly go down at 1 second intervals. If the ID is 0, treat it as 10 and count down from 10.
- Upon reaching 0, it should stay there and wait there for any button press.
 - If the cycle button is pressed, it should display the next ID.
 - o If the counter button is pressed, it should count down from the original ID again.
- Status LED should be ON when the countdown operation is in progress. OFF otherwise.
- Make sure the buttons do not have bouncing (or minimal). You can implement any hardware or software debouncing methods.

Warnings:

- Careful with the SSD (and LEDs in general), you need resistors to limit the current, otherwise you might burn some of the segments.
- Do not try to implement everything at once. After creating a detailed flowchart with the appropriate subroutines, divide the work into smaller tasks, assign between team members and implement gradually.
- It will be easier if you implement a subroutine that displays a given number on the SSD, then you can just change that number and the subroutine will display that.

Questions:

- Using an oscilloscope, capture the status LED when the countdown operation is in progress, and show the ON time. Does it match the seconds in the requirements?
- Do all the buttons need debouncing? Explain the method you implemented.