

Tomas Šinkūnas ir Miglė Kiršytė (ISI 4 kursas)

Turinys

Užduotis

Sukurti priemonę, skirtą vaizdams (nuskaitomiems iš grafinių failų) konvertuoti į garsą. Konvertavimo metodas/algoritmas kuriamas/parenkamas autorių sprendimu. Gautasis garso signalas turi atspindėti vaizdo savybes (pasikartojimą, figūras ar pan.). Numatyti galimybę garsą išsaugoti faile.

Darbo priemonės

Kodo rašymui naudota *Visual Studio Code* programa, kodas parašytas *Python* kalba, pasinaudojus *librosa*, *matplotlib*, *numpy*, *sounddevice* ir *soundfile* bibliotekomis.

Plius daug muzikos teorijos

Pirmiausia programa vykdo failo apdorojimą – pasirinktą paveiksliuką konvertuoja į pilkus atspalvius (angl. *grayscale*). Vėliau paveiksliukas yra dalinamas horizontaliai pusiau, nuskaitomas pikselis po pikselio iš kairės į dešinę, eilutė po eilutės. Viršutinę paveikslo dalį priskiriame kairei ausiai/rankai (*left channel*), apatinę dalį – dešinei rankai/ausiai (*right channel*). Galiausiai, normalizuojame paveiksliuko reikšmes rėžyje [0;1].

kairė

dešinė

Kiekvieną reikšmę, atitinkančią pikselio šviesumą, priskiriame tam tikram dažniui: 0 (*juoda spalva*) – žemam F1 dažniui, 1 (*balta spalva*) – aukštam F2 dažniui; visos kitos reikšmės atitinkamai pasiskirsto rėžyje (0-1).

Programos naudotojas turi galimybę keisti dažnių diapazoną F1 ir F2 pasirenkant natų reikšmes devynių oktavų rėžyje [A0 - B9].

Tono/natos priskyrimas pikselio reikšmei (2)

Pikseliams dažniai yra parenkami pagal realias muzikos instrumentų charakteristikas, pvz.: nata "Lia" (A4) turi dažnj 440 Hz, sekančioje oktavoje - 880 Hz (A5), jos dažnis padvigubėja t.v. (obviously). Taigi atsitiktinai reikšmių negeneruojame, o priskiriame prie realaus gyvenimo garso/natų.

Pikselio/natos ilgumas

Pikselio ilgumo nustatyme norėjome pasidaryti sau daugiau darbo, tad nesirinkome apibrėžti ilgumo konkrečiai laiko trukmei pvz.: 1 pikselis = 1 sekundė. Ėjome sunkesniu keliu ir pikselio/natos ilgumo vertes skaičiavome pagal vartotojo nustatytą muzikos tempą (allegro, andante ir kt.), ritmą (4/4, 2/4, 3/4 etc.), bei natos ilgumą (sveikoji, pusinė, ketvirtinė, etc.).

Muzikinio kūrinio trukmė

Audio failo trukmė tiesiogiai priklauso nuo paveiksliuko dydžio ir natos ilgumo. Kuriant muziką pagal paveikslėlį, kurio matmenys 280x268 (75040 pixelių), tempas "presto", ritmas 4/4 (keturios ketvirtinės) ir natos ilgis 1/16 (šešioliktine), garso įrašo trukmė yra 50 minučių.

Trukmė: 16 s

Notes: C0 - C2 (16.3515 Sample rate: 44100 Pixel duration: 0.0125 Num pixels: 400

Time (s)

Monalisa

Frequency range: A3 - E6

Size: 280x268=75400px

Tempo: presto

Beat: 4/4

Note duration: 1/16

Final duration: 50:58

Frequency range: A2 - A6

Size: 232x300=69600px

Tempo: presto

Beat: 4/4

Note duration: 1/16

Final duration: 47:16

Notes: A2 - A6 (110.0 - 1760.0) Pixel duration: 0.08152173913043478

Sonate No. 14 "Moonlight"

3rd Movement

Piano Piano

10

20

Ludwig van Beethoven

Notes: f1 - E6 (46.2493028389543 - 1318.5102276514797) Pixel duration: 0.08152173913043478 Num pixels: 1088 Time (s)

