Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "САНКТПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ МЕХАНИКИ И ОПТИКИ"

(Университет ИТМО)

ОТЧЕТ ПО ТВОРЧЕСКОЙ РАБОТЕ

ПОСТРОЕНИЕ МОДЕЛИ ГАУССОВЫХ ПУЧКОВ

Иван Трофимов Факультет ИТиП, кафедра КТ Группа M3238

Иван Гузев Факультет ИТиП, Кафедра КТ Группа М3236

Научный руководитель Чирцов Александр Сергеевич Преподаватель физики

Санкт-Петербург 2016

Содержание

Введение	2
Описание работы	3
Используемые технологии	4
Физика процесса	5
Результаты. Будущие перспективы	7
Литература и другие источники информации	8

Введение

До 50-х годов были только предпосылки создания лазера, пока в 1955 году ученые Николай Басов и Александр Прохоров не разработали квантовый генератор - усилитель микроволн с помощью индуцированного излучения, активной средой которого является аммиак.

В декабре того же года исследователи из Bell Laboratories продемонстрировали первый в мире газовый лазер на смеси гелия и неона, который повсеместно применяется и в наши дни.

В настоящее время лазер является наиболее распространенным источников когерентного излучения. Как правило, лазер генерирует излучение в виде слабо расходящегося волнового пучка, размеры которого в поперечной плоскости велики по сравнению с длинной волны.

Гауссов пучок, в свою очередь, является пучком электромагнитного излучения, в котором распределение электрического поля и излучения в поперечном сечении хорошо аппроксимируется функцией Гаусса.

Описание работы

Целью работы является разработка компьютерной модели преобразования гауссовых пучков в элементарной оптической системе. Придать модели гибкость настройки, позволить вручную изменять входные параметры системы.

Планируемые шаги:

- Повторение теорминимума по курсу Оптика
- Проектирование модели
- Визуализация процесса. Практическая часть
- Составление отчета

Ожидаемые результаты:

- Программа, являющая конструктором для поставленной задачи
- Использование модели для образовательных целей в Университете ИТМО

Текущие шаги и перспективы работы.

- Программа на языке Java, решающая поставленную задачу
- Оценка будущих перспектив использования модели в образовательных целях

Используемые технологии

Для имплементации был выбран язык программирования Java, как основной язык реализации конструктора. Ввиду близкого для авторов синтаксиса и наличия большого количества сторонних библиотек.

Построение графиков и моделей производилось с помощью сторонней библиотеки для языков Java и JS XChart Parent 3.2.2. С API фреймворка можно ознакомиться по ссылке [http://knowm.org/javadocs/xchart/overview-summary.html]

Данная библиотека позволяет с минимальными усилиями портировать конструктор на язык JavaScript, что несомненно является плюсом для образовательных целей. Сайт, в который встроен элемент на JS, будет доступен на всех платформах, в том числе и мобильных.

Физика процесса

Понятие Гауссова пучка

Гауссов пучок — это важное понятие, оно с разных сторон объясняет световой пучок, создаваемый лазером. В отличие от лучей, относящихся к геометрической оптике, в которой волновой природой света пренебрегают, гауссов пучок является волновым явлением, в котором дифракция играет ключевую роль в его распространении. Законы формирования лазерного пучков впервые были описаны на основе теории дифракции на языке волновой оптики. В связи с этим существует мнение, что геометрическая оптика неприменима к описанию особенностей формирования и преобразования лазерных пучков. Вместе с тем, идея о применимости геометрической оптики к указанным задачам появилась давно, более 30 лет назад.

На практике распространение гауссового пучка, включая его взаимодействие с оптическими компонентами, такими как линза и зеркала, могут быть описаны простым расширением понятий геометрической оптики.

Основные характеристики гауссова пучка

Радиус пучка (или размер пятна)

$$w(z) = w_0 \left[1 + \left(\frac{2z}{kw_0^2} \right)^2 \right]^{1/2}$$

Радиус кривизны волнового фронта

$$R(z) = z \left[1 + \left(\frac{kw_0^2}{2z} \right)^2 \right]$$

С выводом и подробным описанием данных формул можно ознакомиться в приложении [4].

Прохождение Гауссова пучка через оптическую систему

На основе данной базы знаний производилось моделирование.

Результаты. Будущие перспективы

В ходе курсовой работы был реализован прототип конструктора.

Хочется отметить, что использования сторонних библиотек накладывает ряд трудностей, связанных с их ограниченностью. Реализовать пошаговое моделирование с использованием технологии XChart оказалось невозможным.

Разработать графический интерфейс для ввода данных.

Сторонние библиотеки помогают ускорить процесс разработки лишь на первых, тривиальных шагах, но в дальнейшем требуется большая гибкость.

В случае заинтересованности написанной работой существует большой спектр возможностей для реализации более содержательной модели с использованием Web технологий.

Литература и другие источники информации

- 1. «Оптика» Е. И. Бутиков. Москва «Высшая школа» 1986
- 2. Запись лекции по курсу Оптики. Крылов Игорь Ратмирович. 2016 [https://www.youtube.com/watch?v=CWgiiUgWtEw]
- 3. Формирование и распространение волновых пучков. Информационный ресурс. [ftp://optics.sinp.msu.ru/pub/co/PART2-1.PDF]
- 4. Моды оптических резонаторов. Информационный ресурс. [http://optics.sinp.msu.ru/co/2/par22.html]
- 5. Лекция 5: Волновая оптика. Loffe Physico-Technical Institute. [http://pptonline.org/9392]
- 6. Gaussian beam. Wikipedia. [https://en.wikipedia.org/wiki/Gaussian beam]