Ex. 9.10: Design a MOD-5 synchronous counter using JK flip-flops and implement it. Also construct a timing diagram.

Flip-flops required are Sol.:

 $2^n \ge N$

Here

N = 5

n = 3

i.e. three flip-flops are required. Excitation table for JK

Q _n	Q _{n+1}	J	K
0	0	0	Х
0	1	. 1	X
1	0	×	1
1	1	×	0

Table 9.25

State table

Pro	esent St	ate	N	lext Stat	te	Flip-flop Inputs							
Q_{C}	Q_{B}	Q_{A}	Q _{c + 1}	Q _{B + 1}	Q _{A + 1}	Jc	K _C	J _B	K _B	JA	KA		
0	0	0	0	0	1	0	X	0	X	1	X		
0	0	1	0	1	0	0	x	1	X	×	. 1		
. 0	1	0	0	1	1	0	x	X	0	1	Χ		
0	1	1	1	0	0	1	×	x	1	×	1		
1	0	0	0	0	0	×	1	0	X	0	×		
1.	0	1	X	×	X	X	X	X	×	X	×		
1		0	×	×	×	X	×	×	×	×	×		
1	1	1	X	×	X	×	×	X	×	×	X		

K-map Simplification

Fig. 9.75

Logic Diagram

Fig. 9.77 Timing diagram

Ex. 9.11: Design divide by 6 counter using T-flip-flop. Write state table and reduce the expression using K-map.

Sol.: For designing mod 6 counter using the formula

 $2^n \ \geq \ N$

Here

N = 6

n = 3

i.e. 3 flip-flops are required.

Excitation table for T-flip-flop

-Inp nop		
Q_n	Q_{n+1}	T
0	0	. 0
0	1	1
1	0	1
1	1	0
1		

e-bla 0.27

State Table

51	ate Tab	16						(4)	181	TA	ı
	СР	Qc	QB	QA	Qcst	Qui	QAH	16	14		
	0	0	0	0	0	0	1	0	6	î	
	U			,	0	1	0	0	1	¥	
	1	0	0	'		١.	,	0	0	1	۱
	2	0	1	0	0	'	'		4	4	۱
	3	0	1	1	1	0	0	1	,	,	0400000
ı	A	1	0	0	1	0	1	0	0	1	
I	* .				0	0	0	1	0	1	
1	5	1	0	- I	U					AND REAL PROPERTY.	

Table 9.28

K-map Simplification

Logic Diagram

Fig. 9.79

Synchronous Decade Counter

We know that in the decade counters we have to truncate normal counter sequence. Therefore, it is also called MOD-10 counter. Let us design the synchronous decade counter. Here, we will not use clear input to reset the counter after state 1010. Table 9.29 shows the excitation table for synchronous decade counter using T flip-flops.

Excitation Table

	Presen	t State			Next	State		1	Flip-flop	Inputs	
Q_D	Q_C	Q_B	Q_A	Q _{D + 1}	Q _{C + 1}	Q _{B + 1}	Q _{A + 1}	T _D	T _C	T _B	$T_{\mathbf{A}}$
0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	1	0	0	1	0	0	0	1	1
0	0	- 1	0	0	0	1	1	. 0	0	0	1
0	0	1	1	0	1	0	0	0	1	1	1
0	1	0	0	0	1	0	1	0	0	0	1
0	1	0	1	0	1	1.	0	0	0	1	1
0	1	1	0	0	1	1	1	0	0	0	1
0	1	1	1	1	0	0	0	1	1	1	1
1	0	0	0	1	0	0	1	0	0	0	1 1
1	0	0	1	0	0	0	0	- 1	0	0	1
1	0	1	0	X	X	×	X	X	X	X	X
1	0	1	1	X	×	X	X	X	X	X	Х
1	1	0	0	×	Х	X	X	X	X	X	Х
1	1	0	1	X	X	X	X	X	×	X	X
1	1	1	0	Х	X	X	х	Х	Х	Х	Х
1	1	1	1	X	Х	X	×	X	Х	Х	X

K-map Simplification

Fig. 9.80

Logic Diagram

An up/down counter is one that is capable of progressing in increasing order or decreasing order through a certain sequence. An up/down counter is also called bidirectional counter. Usually up/down operation of the counter is controlled by UP/DOWN signal. When this signal is HIGH, counter goes through UP sequence, i.e. 0, 1, 2, 3,, n. When UP/DOWN signal is LOW counter follows reverse sequence i.e. n, n-1, n-2,...., 1, 0. For 3-bit counters these sequences are : 0, 1, 2, 3, 4, 5, 6, 7 for up operation and 7, 6, 5, 4, 3, 2, 1, 0 for DOWN operation. This is illustrated in Table 9.31. The arrows in the Table 9.31 indicate the state-to-state movement of the counter for both its UP and its DOWN modes of operation.

State Table

СР	UP	Qc	Q _s	Q _A	DOWN
0	0	0	0	0	5
1	>	0	0	1	$ \langle \cdot \cdot \rangle$
2	>	0	1	0	1
3	>	0	1	1	$ \langle $
4	>	1	0	0	$ \langle $
5	11>	1	0	1	141
6	>	1	1	0	141
7		1	1	1	12

Table 9.31

Let us design the 3-bit UP/ DOWN synchronous counter, using T flip-flops. Table 9.32 shows the excitation table for 3-bit UP/ DOWN synchronous counter.

Excitation Table

Input	Pre	esent Sta	ite	1	Next State		Fli	p-flop I	nputs
UP/DOWN (UD)	Qc	Q _B	Q _A	Q _{C+1}	Q _{B+1}	Q _{A + 1}	T _C	Тв	T _A
0	. 0	0	0	1	1	1	1	1	1
0	0	0	1	0	0	0	0	0	1
0	0	1	0	0	0	1	0	1	1
0	0	1	1	0	1	0	0	0	1
0	1	0	0	0	1	1	1	1	1
0	1	0	1	1	0	0	0	0	1
0	1	1	0	1	0	1	0	1	1

						the state of the s				
	0	1	1	1	1	1	0	0	0	1
	1	0	0	0	0	0	1	0	0	1
	1	0	0	1	0	1	0	0	1	1
	1	0	1	0	0	1	1	0	0	1
	1	0	1	1	1	0	0	1	1	1
- Company	1	1	0	0	1	0	1	0	0	1
	1	1	0	1	1	1	0	0	1	1
	1	1	1	0	1	1	1	0	0	1
	1	1	1	1	0	0	0	1	1	1

Table 9.32

K-Map Simplification

Fig. 9.87

Logic Diagram

Mod-6 gray code synchemow counter clock Parity bit generals odd pacity but generals b c | Parity but (odd)

Ex. 9.37: Design a 4-bit counter that counts either in binary or BCD depending on control line MODE. When MODE = 0, the counter is to count in binary, and when MODE = 1, the counter is to count in BCD. Select any flip-flops for implementation. Draw the logic diagram for realization.

Sol.: Table 9.40 shows the excitation table for BCD/Binary counter.

	nput	Pre	sent	Stat	e		Next	State				Flip	-flor	Inp	uts		
	M	Q_A	Q_B	Q_C		Q_{A+1}	Q _{B+1}	Q_{C+1}	Q_{D+1}	J_A	K _A	J _B	K _B	Jc	K _C	J_D	KD
	0	0	0	0	0	0	0	0	1	0	X	0	X	0	х	1	Х
L	0	0	0	0	1	0	0	1	0	0	Х	0	X	·1	х	х	1
L	0	0	0	1	0	0	0	1	1	0	Х	0	X	Х	0	1	Х
	0	0	0	1	1	0	1	0	0	0	X	1	Х	Х	1	Х	1
L	0	0	1	0	0	0	1	0	1	0	Х	Х	0	0	Х	1	х
L	0	0	1	0	1	0	1	1	0	0	X	Х	0	1	Х	Х	1
-	0	0	1	1	0	0	1	1	1	0	Х	Х	0	Х	0	1	Х
-	0	0	1	1	1	1	0	0	0	1	X	Х	1	Х	1	x	1
-	0	1	0	0	0	1	0	0	1	X	0	0	Х	0	х	1	Х
-	0	1	0	0	1	1	0	1	0	X	0	0	X	1	х	x	1
-	0, 1	1	0	1	0	1	0	1	1	X	10	0	Х	Х	0	1	Х
-	0	1	0	1	1	1	1	0	0	X	0	1	X	X	1	х	1
-	0	1	1	- 0	0		1	0	1	X	0	X	0	0	х	1	Х
-	0	1	1		1	1	1	1	0	X	0	X	0	1	х	х	1
-	0	1	1	. 1	1 (1	1	1	1	X	0	X	0	Х	0	1	Х
	0	1	1	1		0	0	0	0	X	1	X	1	X	1	Х	1
	1	0	-	_		0	0	0	1	0	X	0	X	0	X	1	Х
	1	0				1 0	0	1	- 0	0	X	0	X	1	X	X	1
	1	0				0 0	0		1	0	X	0	X	X	0	1	X
	1	0	_			$\frac{1}{0}$	1	0	0	0	X	1	X	X	1	X	1
	1		-		0	0 0		0	1	0	-	X	0	- 0	Х	1	X
	1			1	1	$\begin{array}{c c} 1 & 0 \\ \hline 0 & 0 \end{array}$		1	0	0	+	X	0	1	X	X	1
	1			1	1	1 1		1 0	0	0	1		0	X	0	1	X
	1	_	-	0	0	0 1			1	1 X	1	1	1	X	1	X	1
	1		1	0	0	1 (T _x	1	0	X	0	X	1	X
						`		Table		1.	1 1	10	1 ^	0	X	X	1

Fig. 9.103

Ex. 9.38: Design a synchronous Gray code up counter. Derive the expressions for the inputs of JK flip-flops.

Sol.: Table 9.41 shows the excitation table for synchronous Gray code up counter.

P	resen	t Stat	e		Next	State				Fli	p-flop	Inp	uts	programme of the later	
Q_{A}	Q_B	Q_{C}	Q_{D}	Q_{A+1}	Q_{B+1}	Q _{C+1}	Q_{D+1}	$J_{\mathbf{A}}$	KA	JB	KB	Jc	Kc	JD	J_D
ø	0	0	0	0	0	0	1	0	×	0	X	0	Х	1	Х
/o	0	0	1	0	0	1	1	0	×	0	X	1	X	X	0
0	0	1	0	0	1	1	0	0	×	1	×	×	0	0	Х
0	0	1	1	0	1	1	0	0	×	0	X	×	0	×	1
0	1	0	0	1	1	0	0	1	×	×	0	0	Х	0	Х
0	1	0	1	0	1	0	0	0	X	×	0	0	X	×	1
0	1	1	0	0	· 1 ·	1	1	0	X	×	0	×	0	1	Х
0	1	1	1	0	1	0	1	0	×	×	0	×	1	×	0
1	0	0	0	0	0	0	0	×	1	0	X	0	X	0	>
1	0	0	1	1	0	0	0	×	0	0	X	0	×	×	1
1	0	1	0	1	0	1	1	×	0	0	×)	(0	1	1 2
1	0	1	1	1	0	0	1	×	0)	()	(1	1)	<
1	1	0	0	1	1	0	1	×	0	;	Κ (0 2	x	1
1	1	0	1	1	1	1	1	×	0		X (0	1	x :	×
			_		0	1	0	×	+	,	X	1	x	0	0
1	1	1	0	1	1	1	0	1	+	\dashv	×	0	X	0	X

K-Map Simplification

 $J_{D} = \overline{Q_{A}} \overline{Q_{B}} \overline{Q_{C}} + Q_{A} Q_{B} \overline{Q_{C}} + \overline{Q_{A}} Q_{B} Q_{C} + (Q_{A} \overline{Q_{B}} Q_{C})$

 $K_D = \overline{Q_A} \overline{Q_B} Q_C + Q_A Q_B Q_C + \overline{Q_A} Q_B \overline{Q_C} + Q$