Problem A. 2-Letter Strings

Time limit 2000 ms **Mem limit** 262144 kB

Given n strings, each of length 2, consisting of lowercase Latin alphabet letters from 'a' to 'k', output the number of pairs of indices (i,j) such that i < j and the i-th string and the j-th string differ in exactly one position.

In other words, count the number of pairs (i,j) (i < j) such that the i-th string and the j-th string have **exactly** one position p $(1 \le p \le 2)$ such that $s_{ip} \ne s_{jp}$.

The answer may not fit into 32-bit integer type, so you should use 64-bit integers like long long in C++ to avoid integer overflow.

Input

The first line of the input contains a single integer t ($1 \le t \le 100$) — the number of test cases. The description of test cases follows.

The first line of each test case contains a single integer n ($1 \le n \le 10^5$) — the number of strings.

Then follows n lines, the i-th of which containing a single string s_i of length 2, consisting of lowercase Latin letters from 'a' to 'k'.

It is guaranteed that the sum of n over all test cases does not exceed 10^5 .

Output

For each test case, print a single integer — the number of pairs (i,j) (i < j) such that the i-th string and the j-th string have **exactly** one position p $(1 \le p \le 2)$ such that $s_{ip} \ne s_{jp}$.

Please note, that the answer for some test cases won't fit into 32-bit integer type, so you should use at least 64-bit integer type in your programming language (like long long for C++).

Sample 1

Test Aug 18, 2022

Input	Output
4	5
6	6
ab	0
cb	6
db	
aa	
cc	
ef	
7	
aa	
bb	
cc	
ac	
ca	
bb	
aa	
4	
kk	
kk	
ab	
ab	
5	
jf jf	
jf	
jk jk	
jk	
jk	

Note

For the first test case the pairs that differ in exactly one position are: ("ab", "cb"), ("ab", "db"), ("ab", "aa"), ("cb", "db") and ("cb", "cc").

For the second test case the pairs that differ in exactly one position are: ("aa", "ac"), ("aa", "ca"), ("cc", "ac"), ("cc", "ca"), ("ac", "aa") and ("ca", "aa").

For the third test case, the are no pairs satisfying the conditions.