Automated Analysis of Weak Memory Models

Artem Yushkovskiy^{1,2}

MSc Candidate

Supervisors: Assoc. Prof. Keijo Heljanko¹

Docent Igor I. Komarov²

¹Department of Computer Science, School of Science, **Aalto University** (Espoo, Finland)

²Faculty of Information Security and Computer Technologies, ITMO University (Saint Petersburg, Russia)

Introduction

└Weak memory model-aware analysis

Verification of concurrent software

{ x=0; y=0; }		
P	Q	
$p_0: x \leftarrow 1$	$q_0: y \leftarrow 1$	
$p_1: r_p \leftarrow y$	$q_1: r_q \leftarrow x$	

{ x=0; y=0; }		
P	Q	
$p_0: x \leftarrow 1$	$q_0: y \leftarrow 1$	
$p_1: r_p \leftarrow y$	$q_1: r_q \leftarrow x$	

$$p_0, p_1, q_0, q_1$$
 (0; 1)
 q_0, q_1, p_0, p_1 (1; 0)

{ x=0; y=0; }		
P	Q	
$p_0: x \leftarrow 1$	$q_0: y \leftarrow 1$	
$p_1: r_p \leftarrow y$	$q_1: r_q \leftarrow x$	

{ x=0; y=0; }		
P	Q	
$p_0: x \leftarrow 1$	$q_0: y \leftarrow 1$	
$p_1: r_p \leftarrow y$	$q_1: r_q \leftarrow x$	

└Weak memory model-aware analysis

Verification of concurrent software

Example: Store buffering (by hardware)

{ x=0; y=0; }		
P	Q	
$p_0: x \leftarrow 1$	$q_0: y \leftarrow 1$	
$p_1: r_p \leftarrow y$	$q_1: r_q \leftarrow x$	

Figure: The four candidate executions

A weak memory model: Operational semantics

```
 \begin{array}{|c|c|c|c|}\hline \{ \text{ x=0; y=0; }\} \\ \hline P & Q \\ \hline p_0 : x \leftarrow 1 & q_0 : y \leftarrow 1 \\ p_1 : r_p \leftarrow y & q_1 : r_q \leftarrow x \\ \hline \end{array}
```


Figure: An x86-TSO abstract machine [sewell2010x86]

Weak memory model-aware analysis

Verification of concurrent software

A weak memory model: Axiomatic semantics

Automated Analysis of Weak Memory Models

First Main Section

First Subsection

∟First Subsection

1) 2) 3)

First Subsection

First Slide Title Optional Subtitle

- My first point.
- My second point.

Second Slide Title

First item.

- First item.
- Second item.

- First item.
- Second item.
- ► Third item.

- First item.
- Second item.
- ► Third item.
- Fourth item.

- First item.
- Second item.
- ► Third item.
- Fourth item.
- ► Fifth item.

- First item.
- Second item.
- Third item.
- Fourth item.
- Fifth item. Extra text in the fifth item.

Another Subsection

Second Main Section

☐ Another Subsection

Blocks

Block Title

You can also highlight sections of your presentation in a block, with it's own title

Theorem

There are separate environments for theorems, examples, definitions and proofs.

Example

Here is an example of an example block.

Summary

- ▶ The first main message of your talk in one or two lines.
- ▶ The second main message of your talk in one or two lines.
- ▶ Perhaps a third message, but not more than that.
- Outlook
 - Something you haven't solved.
 - Something else you haven't solved.

Bibliography I