

Lecture 11 Dynamic games

Thomas Marchioro November 9, 2023

Dynamic games

- A **dynamic game** involves some players moving first, others moving later
- We still consider dynamic games of complete information: strategies and payoffs are common knowledge
- However, we make a further distinction:
 - perfect information: every player can make decision with full awareness
 - imperfect information; some decisions are "simultaneous" or Nature moves

Battle of the Sexes (original)

Now it becomes a dynamic game of perfect information

- A and B agreed to go to either rock concert (R) or science night (S)
 - Let us denote B's options in lower case for clarity

		В	
		r	S
⋖	R	2, 1	0, 0
	S	0, 0	1, 2

- To frame this as a normal game, the two players must act unbeknownst of each other
- Not very realistic nowadays

Battle of the Sexes (revisited)

- Let us add a more sensible time sequence
- Assume A decides (before B) which event to join, and texts B to let him know
 - Which event should she choose? R or S?
 - A knows (due to complete information) that whatever his/her choice, B's best response is to play along and choose the same thing
 - Since A prefers R over S, his/her best option is to choose R (no uncertainty on this outcome, we will see why)

Extensive form

- To unfold the time dimension, we may want more than just the bi-matrix and payoffs
- We need to link possible choices to the knowledge of previous events
 - e.g., we need to model the fact that B acts after receiving A's text (B knows that A is playing R)
- This can be expressed using the so-called **extensive form** of the game
 - Graphically, this can be represented as a decision tree

Extensive form: ingredients

- Set of players
- 2 Their utility functions
- 3 Order of their move turns
- 4 Actions allowed to players when they can move

- 5 Information they have when they can move
- 6 Probability of external events (lotteries)
- 7 All of this: common knowledge

Extensive form representation

Extensive form representation

- From these two points on, B's options are the same, but the payoffs are different. Why?
- Because B knows A's choice
- Information is captured by different nodes

10

* priority on the left

- We can label the nodes of the tree starting from the root x_0 and proceeding until the leaves $x_3 \dots, x_6$
- Here, in each node, players have different information

- Nodes go beyond denoting the game stage
- They also describe the **information set** h_i available to player i who is moving
- If the information set is a <u>singleton</u> $h_i = \{x_j\}$, then the node is fully aware of previous moves
- What if a player does not know?
 - In the original "battle of the sexes", B does not know A's choice
 - This means that B does not know if he/she is in x_1 or x_2

■ We circle two nodes with a dashed line to show that a player is not able to distinguish between them (i.e., they belong to the same information set)

Alternative notation: just use a dashed line connecting x_1 and x_2 to show that $h_B = \{x_1, x_2\}$

Perfect/imperfect information

- In dynamic games with **perfect information**
 - 1 all information sets are singletons, and
 - 2 there is no choice of Nature
- Instead we have imperfect information in the following cases:
 - endogenous uncertainty: information sets contain multiple nodes (simultaneous moves)
 - exogenous uncertainty: there is a choice of Nature (lotteries)
- When we have imperfect information, players need to form beliefs

- In static games of complete information, we have that
 - pure strategy = action
 - mixed strategy = probability distribution of actions
- In dynamic games, we need to account for the **history of play** (through the information sets)
- A player's pure strategy specifies an action according to what happened in the game
- Think of it as an algorithm: you decide of a countermove for any possible case
 - e.g. "If A plays R I play r; if A plays S I play s"

- In the battle of Sexes, A is moving first and both players choose a move in the set of actions $A_1 = A_2 = \{R, S\}$
- B has 2 actions, but more strategies
- \blacksquare A **strategy** s_B for B is a pair of elements of A

$$\underbrace{\left(a_{R}\right.}_{\text{what to do if A plays R what to do if A plays S}}, \underbrace{a_{S})}_{\text{what to do if A plays S}}$$

- \bullet $s_B = (s,s)$ means "I go to S no matter what"
- $s_B = (r,s)$ means "I do what A does"
- \bullet $s_B = (s,r)$ means "I do the opposite of what A does"

- If A and B repeat the original (static) battle for two consecutive nights
- A strategy for both prayers is now a quintuple of moves

$$(a_1)$$
, a_{2Rr} , a_{2Rs} , a_{2Sr} , a_{2Ss})

first move answer to Rr answer to Rs answer to Sr answer to Ss

- $s_i = (r,r,r,r,r)$ "Always go to R both nights"
- $s_i = (r, s, r, r, r)$ "Go to R on the first night. If the outcome of the first night is Rr, go to S on the second night; otherwise, go to R again."

Prof example:

19

- In principle, we may describe an "algorithm" for all possible strategies
- Yet, even a simple game with two sequential moves and $|A_1| = |A_2| = 3$ has 27 possible joint (pure) strategies:
 - 3 strategies by player 1
 - 9 strategies by player 2
- Therefore, we will often rely on some implicit description, except for very simple cases

Sorry, gotta bounce! Send me questions via e-mail