Lecture-7 and 8 Methods for Solving 2st Order Linear Ordinary Diff. Equations

Instructor: Dr. J. K. Sahoo

Second Order Linear Differential Equation

The general form of the second order linear differential equation is

$$\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = R(x).$$

[or
$$y'' + P(x)y' + Q(x)y = R(x)$$
]

Definitions: If R(x) = 0, then the equation is called homogeneous otherwise nonhomogeneous.

Note: Homogeneous has atleast one solution (trivial).

Aim: To find general solution for both type equations.

Existence and Uniqueness of the solution

Theorem A: Let P(x), Q(x) and R(x) are continuous functions on some interval [a, b] and x_0 is any point in [a, b], then the differential equation

$$y'' + P(x)y' + Q(x)y = R(x)$$

has one and only one solution on the entire interval such that $y(x_0) = y_0$ and $y'(x_0) = y'_0$.

Note that:
$$y_0' \neq \frac{dy_0}{dx}$$
. Here $y_0' = \frac{dy}{dx}\Big|_{x=x_0}$

Remarks and Understanding of Th. A

In other words Theorem A states that the solution can be uniquely determined if we know the value of y and its derivative at a single point in [a, b].

Ex: Show tha $y = x^2 \sin x$ and y = 0 are both solution of $x^2y'' - 4xy' + (x^2 + 6)y = 0$ and satisfies the condition y(0) = 0 and y'(0) = 0. Does this contradicts Theorem A?

Ans: No. Since P(x) and Q(x) are not continuous, so we can not apply Theorem A.

Principle of Superposition

Theorem B: If $y_1(x)$ and $y_2(x)$ are any two solution of y'' + P(x)y' + Q(x)y = 0, then $c_1y_1(x) + c_2y_2(x)$ is also a solution for any constants c_1 and c_2 .

Proof:

As
$$(c_1 y_1 + c_2 y_2)'' + P(x)(c_1 y_1 + c_2 y_2)' + Q(x)(c_1 y_1 + c_2 y_2)$$

$$= c_1 \left[y_1'' + P y_1' + Q y_1 \right] + c_2 \left[y_2'' + P y_2' + Q y_2 \right]$$

$$= c_1 \cdot 0 + c_2 \cdot 0 = 0$$

 \therefore $(c_1y_1 + c_2y_2)$ is a solution.

Principle of Superposition

Exercise: Let $y_1(x)$ and $y_2(x)$ be two solution of y'' + P(x)y' + Q(x)y = R(x). What about the following two functions ?

(a)
$$c_1 y_1(x) + c_2 y_2(x)$$

(b)
$$y_1(x) - y_2(x)$$

Solution:

- (a) $c_1y_1 + c_2y_2$ will be a solution provided $c_1 + c_2 = 1$.
- (b) $y_1 y_2$ is a solution of y'' + P(x)y' + Q(x)y = 0.

Exercise Problems

Ex-1: If $y_1(x)$ and $y_2(x)$ are two solution of y'' + P(x)y' + Q(x)y = 0, on [a,b] and have a common zero in [a,b], then show that one solution is constant multiple of the other.

Solution:

Let x_0 be the common zero of y_1 and $y_2 \Rightarrow y_1(x_0) = y_2(x_0) = 0$ If $y_1'(x_0) = 0$ or $y_2'(x_0) = 0$, then by Theorem A, $y_1(x) = 0$ or $y_2(x) = 0$. Hence proved the result.

Othewise there exist a constant c such that $y_1'(x_0) = cy_2'(x_0)$ and then apply Theorem A on the solutions $Y_1(x) = y_1(x) - cy_2(x)$ and $Y_2(x) = 0$.

Wronskian of Two Solutions

Definition: If $y_1(x)$ and $y_2(x)$ are two solution of y'' + P(x)y' + Q(x)y = 0, then the Wronskian of $y_1(x)$ and $y_2(x)$ is denoted as $W(y_1, y_2)$ and defined by

$$W(y_1, y_2) = y_1 y_2' - y_2 y_1'.$$

Important Results on Wronskian

Lemma A: If $y_1(x)$ and $y_2(x)$ are two solution of y'' + P(x)y' + Q(x)y = 0 on [a,b], then their Wronskian $W(y_1,y_2)$ is either identically zero or never vanishes on on [a,b].

Note: The lemma st te that if the Wronskian is **a**on zero at a single point then it is non zero thoughout the interval.

In otherwords, If the Wronskian is zero at a single point then it vanishes thoughout the interval.

Proof of Lemma A

Proof: We begin by observing that

$$W' = y_1 y_2'' - y_2 y_1''$$

Next since y_1 and y_2 are both solutions, we have

$$y_1'' + Py_1' + Q y_1 = 0.$$

and

$$y_2'' + Py_2' + Q y_2 = 0.$$

Proof of Lemma A

On multiplying the first equation by y_2 and the second by y_1 and subtracting the first from the second, we obtain

$$(y_1 y_2'' - y_2 y_1'') + P(y_1 y_2' - y_2 y_1') = 0$$

$$\Rightarrow \frac{dW}{dx} + PW = 0$$

The general solution of this equation is $W = Ce^{-\int Pdx}$

Since the exponential function is never zero, we see that W is identically zero if C = 0 or never zero if $C \neq 0$.

Important Results on Wronskian

Lemma B: If $y_1(x)$ and $y_2(x)$ are two solution of y'' + P(x)y' + Q(x)y = 0 on [a,b], then $y_1(x)$ and $y_2(x)$ are linearly dependent if and only if their Wronskian $W(y_1,y_2)$ is either identically zero.

Note-1: The concept of Wronskian can not be used for proving two functions are Linear dependent/LI.

Note-2: The Lemma B is applicable only for proving two solutions are Linearly dependent or linearly independent.

Exercise Problems

Ex-1: Consider two function $f(x) = x^3$ and $g(x) = x^2 |x|$ on the interval [-1, 1].

- (a) Show that W(f,g) = 0.
- (b) Show that f and g are linearly independent.
- (c) Does (a) and (b) contradicts Lemma B? Justify.

Solution:

(c) There are not contradicting Lemma B since f and g can not be solution of same differential equation on [-1,1].

Application of Wronskian for General functions

In general we have the following results:

Given two functions f(x) and g(x) that are differentiable on some interval I.

- (a) If for some x_0 in I, W(f, g) (x_0) $\neq 0$ then f(x) and g(x) are linearly independent on the interval I.
- (b) If f(x) and g(x) are linearly dependent on I then W(f, g)(x) = 0 for all x in the interval I.

It DOES NOT say that if W(f, g)(x) = 0 then f(x) and g(x) are linearly dependent. In fact it is possible for two linearly independent functions to have a zero Wronskian.

Exercise Problems

Ex-1: Use the wronskian to prove that two solution of the equation y'' + P(x)y' + Q(x)y = 0, on [a,b] are linearly dependent if

- (a) they have a common zero in [a,b].
- (b) they have maxima or minima at the same point in [a,b].

Solution:

- (a) Since $W(y_1, y_2)|_{x=x_0} = 0$
- (b) Since $W(y_1, y_2)|_{x=x_0} = 0$

Fundamental Theorems

Theorem C: Let $y_1(x)$ and $y_2(x)$ be two linearly independent solutions of the homogeneous differential equation

$$y'' + P(x)y' + Q(x)y = 0$$
 ---(1)

on the interval [a, b]. Then $c_1 y_1(x) + c_2 y_2(x)$ is the general solution of (1) on [a, b].

Fundamental Theorems

Theorem D: If y_g is the general solution of the homogeneous equation

$$y'' + P(x)y' + Q(x)y = 0$$

and y_p is any particular solution of the nonhomogeneous equation

$$y'' + P(x)y' + Q(x)y = R(x)$$
 ----(2)

then $y_g + y_p$ is the general solution of (2).