1 10/593730

Reifenseitenkraftbestimmung in elektrischen Lenksystemen

5 Gebiet der Erfindung

Die Erfindung betrifft ein Verfahren zur Bestimmung der Reifenseitenkraft in einem Kraftfahrzeug mit einem elektromechanischen oder elektrohydraulischen Lenksystem.

10

15

20

25

30

Hintergrund der Erfindung

Viele moderne Kraftfahrzeuge sind neben dem schon sehr weit verbreiteten ABS-Bremssystemen immer häufiger auch mit Fahrdynamikregelsystemen ausgerüstet, um die aktive Sicherheit von Fahrzeugen zu erhöhen. Fahrdynamikregelungen werden zur Kontrolle und Begrenzung von Gierbewegungen des Fahrzeuges um dessen Hochachse eingesetzt. Sensoren erfassen vom Fahrer vorgegebene Größen wie zum Beispiel den Lenkwinkel, die Gaspedalstellung und den Bremsdruck. Darüber hinaus werden die Querbeschleunigung sowie das Drehverhalten der einzelnen Fahrzeugräder gemessen. Die Leistungsfähigkeit von Fahrdynamikregelungen könnte durch das Erfassen weiterer Größen, die das dynamische Verhalten des Kraftfahrzeuges beeinflussen noch weiter gesteigert werden. Zu diesen Größen gehört beispielsweise der Reibwert der Fahrzeugräder auf der Fahrbahn oder der Schwimmwinkel, der die Winkelabweichung des Geschwindigkeitsvektors von der Fahrzeugmittellinie angibt.

Zusammenfassung der Erfindung

Hiervon ausgehend ist es eine Aufgabe der vorliegenden Erfindung ein Verfahren anzugeben, mit welchem wenigstens eine wei-

25

30

tere Größe ermittelbar ist, die das dynamische Verhalten eines Fahrzeuges beeinflusst.

Diese Aufgabe wird durch ein Verfahren nach Anspruch 1 gelöst. Erfindungsgemäß wird ein Verfahren zur Berechnung der Seiten-kraft in einem Kraftfahrzeug mit einem elektromechanischen oder elektrohydraulischen Lenksystem vorgeschlagen. Das Verfahren umfasst die folgenden Schritte:

- Erfassen einer Lenkstangenkraft;
- 10 Berechnen eines gesamten Rückstellmomentes aus der Lenkstangenkraft, wobei das Rückstellmoment ein durch Seitenkraft verursachtes Rückstellmoment sowie weitere Rückstellmomente umfasst:
 - Quantitatives Bestimmen der weiteren Rückstellmomente auf Grundlage von Messwerten;
 - Subtrahieren der weiteren Rückstellmomente von dem gesamten Rückstellmoment zur Bestimmung des durch die Seitenkraft verursachten Rückstellmomentes; und
- Ermitteln der Seitenkraft aus dem durch die Seitenkraft ver-20 ursachten Rückstellmoment.

Für viele Fahrdynamikregelsysteme ist die Seitenkraft an den Rädern eine vorteilhafte Eingangsgröße. Die Seitenkraft kann z.B. für die Bestimmung des Reibwertes oder die Schätzung des Schwimmwinkels verwendet werden.

Moderne elektromechanisch oder elektrohydraulisch unterstützte Lenksysteme bzw. vom Fahrer mechanisch entkoppelte elektromechanische oder elektrohydraulische Lenksysteme enthalten prinzipbedingt Kraft- oder Momentensensorik aus denen die Lenkstangenkraft (Zahnstange bei Zahnstangenlenkung) oder Spurstangenkräfte gemessen oder berechnet. Aus den genannten Kräften können die Reifenseitenkräfte bestimmt werden. Das erfin-

15

20

25

30

dungsgemäße Verfahren nutzt diese Sensorik um die Reifenseitenkräfte zu bestimmen.

Bei einer Weiterbildung der Erfindung fließt in die Ermittlung der Seitenkraft ein Übersetzungsverhältnis zwischen der Lenkstangenkraft und dem gesamten Rückstellmoment ein. Zweckmäßigerweise kann das Übersetzungsverhältnis lenkwinkelabhängig sein.

10 Vorteilhafterweise geht in die Ermittlung der Seitenkraft ein Spreizungswinkel und/oder ein Nachlaufwinkel ein.

Die für die Erfindung wichtigen weiteren Rückstellmomente können durch Rollwiderstand, Bremskraft, Antriebskraft und/oder Hochkraft verursachte Rückstellmomente umfassen.

Bei unterschiedlichen Ausführungsformen des erfindungsgemäßen Verfahrens kann die Lenkstangenkraft als auf die linke und rechte Spurstange wirkende Kraft oder als gesamte Lenkstangenkraft erfasst werden.

Vorteilhafterweise wird die gesamte Lenkstangenkraft aus einem vom Fahrer aufgebrachten Lenkmoment, einer Lenkverstärkung und einer Lenkübersetzung berechnet. Dabei kann vorgesehen werden, dass in die Berechnung der Lenkstangenkraft eine lenkwinkelabhängige Lenkübersetzung eingeht.

Bei einem Ausführungsbeispiel der Erfindung wird die gesamte Lenkstangenkraft aus dem Motorstrom und/oder der Motorposition eines oder mehrerer Elektromotoren des elektromechanischen oder elektrohydraulischen Lenksystems ermittelt. Das erfindungsgemäße Verfahren kann zweckmäßig so erweitert werden, dass aus der ermittelten Seitenkraft ein Schwimmwinkel und/oder ein Reibwert ermittelt wird.

5 Kurze Beschreibung der Zeichnung:

In der Zeichnung ist ein elektromechanisches Lenksystem schematisch dargestellt, in welchem ein Verfahren gemäß der Erfindung anwendbar ist. Es zeigen:

10

- Fig. 1 eine schematische Darstellung eines elektromechanischen Lenksystems;
- Fig. 2 den Nachlauf- und Spreizungswinkel an einem Fahrzeug-15 rad;
 - Fig. 3 den Seitenkrafthebelarm an einem Fahrzeugrad;
 - Fig. 4 den Bremskrafthebelarm an einem Fahrzeugrad;

20

- Fig. 5 den Störkrafthebelarm an einem Fahrzeugrad;
- Fig. 6 den Hochkrafthebelarm an einem Fahrzeugrad und dessen Zusammenhang mit dem Spreizungswinkel; und

25

Fig. 7 den Hochkrafthebelarm an einem Fahrzeugrad und dessen Zusammenhang mit dem Nachlaufwinkel.

Ausführliche Beschreibung eines Ausführungsbeispiels der Er30 findung:

In Fig. 1 ist schematisch die Vorderachse eines Kraftfahrzeuges und das Lenksystem dargestellt. Ein Fahrer dirigiert das

10

15

20

25

Fahrzeug durch Drehen eines Lenkrades 1 in eine gewünschte Fahrtrichtung. Die Lenkbewegung des Lenkrades 1 wird über eine Lenksäule 2 mechanisch auf ein Ritzel 3 übertragen. Das Ritzel 3 greift in eine Zahnstange 4 ein. Eine Drehbewegung des Lenkrades 1 führt somit zu einer Hin- und Herbewegung der Zahnstange 4. Die Zahnstange 4 ist an beiden Enden mit jeweils einer linken und rechten Spurstange 61, 6r verbunden, die die Bewegung der Zahnstange 4 auf Fahrzeugvorderräder 71 bzw. 7r übertragen. Die Aufhängung der Fahrzeugvorderräder 71, 7r ist der Übersichtlichkeit halber in Fig. 1 weggelassen. Das insoweit beschriebene Lenksystem ist rein mechanisch und erfordert bei hohen Fahrzeuggewichten hohe Lenkkräfte vom Fahrer. Aus diesem Grund ist die Lenksäule 2 zusätzlich antriebsmäßig mit einem Elektromotor 8 gekoppelt, der die Lenkbewegungen des Fahrers am Lenkrad 1 unterstützt. Der Motor 8 ist in Fig. 1 zwar neben der Lenksäule 2 dargestellt, treibt in Wirklichkeit jedoch die Lenksäule 2 an und wirkt auf das Ritzel 3. Der Motor 8 wird durch eine Motorsteuerung 9 gesteuert und aus einer Batterie 11 mit Energie versorgt. Die Lenksäule 2 ist weiterhin mit einem Drehmomentsensor 12a und ein Messwertwandler 12b ausgerüstet, der die Größe des vom Fahrer aufgebrachten Lenkmomentes M_L erfasst und an die Motorsteuerung 9 sowie an eine Seitenkraftberechnungseinheit 13 abgibt. Weiterhin gibt die Motorsteuereinheit 9 ein Signal $V_{\scriptscriptstyle L}$ an die Seitenkraftberechnungseinheit 13 ab. Das Signal $V_{\scriptscriptstyle L}$ beschreibt die Verstärkung des vom Fahrer aufgebrachten Lenkmomentes M_L . Die Seitenkraftberechnungseinheit 13 gibt ein Ausgangssignal ab, welches die auf die Vorderräder 71, 7r einwirkende Seitenkraft Fy repräsentiert.

30

Die Funktionsweise des insoweit beschriebenen Lenksystems und das Verfahren zur Berechnung der Seitenkraft F_Y werden im Folgenden beschrieben.

In den Figuren 2a bis 2c sind zum besseren Verständnis der Erfindung Kennwerte der Vorderradaufhängung graphisch erläutert. Der Übersichtlichkeit halber werden die Kennwerte nur am Beispiel des rechten Vorderrades eines Fahrzeuges veranschaulicht, das mit dem Bezugszeichen 7 bezeichnet ist. Bei Lenkbewegungen schwenken die Räder um je eine fahrzeugfeste Drehachse, die als Lenkachse 16 bezeichnet wird. Die Lenkachse 16 ist an zwei Punkten E und G fest mit dem Fahrzeugaufbau verbunden. Die Lage der Lenkachse 16 relativ zu einem mit dem Fahrzeugaufbau fest verbundenen Koordinatensystem X, Y, Z wird durch folgende Kennwerte beschrieben.

Fig. 2a zeigt das Rad 7 in einer Seitenansicht. Der Winkel zwischen der Lenkachse 16 und der Fahrbahnnormalen 17 in der Fahrzeuglängsebene wird als Nachlaufwinkel τ bezeichnet. Der Abstand zwischen dem Durchstoßpunkt 18 der Lenkachse 16 durch die Fahrbahn 21 und einem idealen Radaufstandspunkt 19 in der Fahrzeuglängsebene wird als Nachlaufstrecke $r_{\tau,k}$ bezeichnet.

20

25

30

10

15

Fig. 2b zeigt das Rad 7 in einer Ansicht von vorne. Der Winkel zwischen der Lenkachse 16 und der Fahrbahnnormalen 17 in der Fahrzeugquerebene wird als Spreizungswinkel σ bezeichnet. Der Abstand zwischen dem Durchstoßpunkt 18 der Lenkachse 16 durch die Fahrbahn 21 und dem idealen Radaufstandspunkt 19 in der Fahrzeugquerebene wird als Lenkrollradius r_{σ} bezeichnet.

Schließlich ist in Fig. 2c das Rad 7 in einer Ansicht schräg von vorne gezeigt, in der sowohl der Nachlaufwinkel τ als auch der Spreizungswinkel σ dargestellt sind.

In elektromechanisch oder elektrohydraulisch unterstützenden Lenksystemen wird das vom Fahrer aufgebrachte Lenkmoment $M_{\rm L}$ ge-

messen, um die vom Elektromotor aufzubringende Verstärkung V_L zu berechnen und einzustellen. Mit der in der Regel lenkwinkelabhängigen Übersetzung $i_{L1}(\delta)$ zwischen Lenkradmoment und der Summenlenkstangenkraft $F_{L,\,\text{sum}}$ sowie der Lenkverstärkung V_L berechnet sich die Summenlenkstangenkraft wie folgt

$$F_{L,sum} = M_L \cdot V_L \cdot i_{L1} (\delta) \qquad (1).$$

Die Summenlenkstangenkraft $F_{L,\,sum}$ resultiert aus der Addition der von der rechten und der linken Spurstange senkrecht auf die Lenkstange wirkenden Kräfte F_{Lr} und F_{Ll} .

In vom Fahrer mechanisch entkoppelten elektromechanischen oder elektrohydraulischen Lenkungen werden entweder beide Spurstangenkräfte einzeln ($F_{L,r}$ und $F_{L,l}$) oder ebenfalls die Summenspurstangenkraft $F_{L,sum}$ gemessen oder aus dem Motorstrom und/oder der Motorposition des bzw. der Elektromotoren geschätzt. Diese Kräfte werden z. B. für die Generierung des haptischen Lenkgefühls benötigt.

20

15

5

Die Vorgehensweise zur Berechnung der Einzellenkstangenkräfte $F_{L,r}$ und $F_{L,1}$ ist bis auf die Parameter und Kraftwirkrichtungen identisch und wird daher im Folgenden am Beispiel eines Rades 7 ohne Radindizes durchgeführt. Die Lenkstangenkraft F_L kompensiert Rückstellmomente, die auf das Rad 7 einwirken und durch unterschiedliche Kräfte erzeugt werden. Die Summe der Rückstellmomente wird mit M_Z bezeichnet, weil das gesamte Rückstellmoment um die z-Achse des in Fig. 2 dargestellten Koordinatensystems wirkt.

30

25

Zwischen der Lenkstangenkraft F_L und dem gesamten Rückstellmoment M_Z um die Lenkachse 16 wirkt eine zweite, ebenfalls lenkwinkelabhängige Übersetzung $i_{L2}(\delta)$:

10

15

8

$$M_{Z} = F_{L} \cdot i_{L2} (\delta)$$
 (2).

In dem gesamten Rückstellmoment ist auch ein von einer Seiten-kraft F_Y erzeugtes Rückstellmoment enthalten. Der Zusammenhang zwischen der Seitenkraft F_Y und dem von ihr erzeugten Rückstellmoment wird nachfolgend erläutert.

In Fig. 3a ist das Fahrzeugrad 7 wieder in einer Ansicht von der Seite dargestellt. Eine Seitenkraft F_Y greift an dem Rad 7 an dem Radaufstandpunkt an. Da die Lenkachse 16 gegenüber der Senkrechten um den Nachlaufwinkel τ gekippt ist, greift die Seitenkraft F_Y gegenüber der Lenkachse 16 versetzt an. Der Abstand zwischen dem Angriffspunkt der Seitenkraft F_Y , der dem Radaufstandspunkt entspricht, und der Lenkachse 16 wird als kinematische Seitenkrafthebelarm $n_{\tau,k}$ bezeichnet. Die Seitenkraft F_Y , die an dem Seitenkrafthebelarm $n_{\tau,k}$ angreift, erzeugt ein Rückstelldrehmoment $M_{z,y}$ gemäß:

$$M_{z,y} = F_{y} \cdot n_{\tau,k} \tag{3}.$$

Diese Betrachtung gilt nur für den Fall ohne Fahrzeugbewegung und ohne Schräglauf des Rades 7.

Durch Schräglauf wandert der Angriffspunkt der Seitenkraft F_Y um den Reifennachlauf hinter die Radmitte, wodurch sich der Seitenkrafthebelarm verlängert. Der Seitenkrafthebelarm verlängert sich zusätzlich zu dem kinematischen Seitenkrafthebelarm $n_{\tau,k}$ um die zur Lenkachse senkrechte Komponente Reifennachlaufs $r_{\tau,\tau}$, so dass für den gesamten Seitenkrafthebelarm $r_{\sigma,t}$ gilt:

$$r_{\sigma,t} = n_{\tau,k} + r_{\tau,T} \cdot \cos \tau \qquad (4).$$

In das Rückstellmoment M_Z geht die gesuchte Seitenkraft F_Y über den Seitenkrafthebelarm $r_{\sigma,\,t}$ und die kinematische Spreizung σ ein. Das durch die Seitenkraft F_Y erzeugte Rückstellmoment wird mit $M_{Z,\,Y}$ bezeichnet:

$$M_{z,Y} = F_Y \cdot \cos \sigma \cdot r_{\sigma,t}$$
 (5).

Durch Einsetzen der Gleichung (4) in Gleichung (5) folgt für 10 das Rückstellmoment $M_{z,\,Y}$:

$$M_{z,Y} = F_Y \cdot \cos \sigma \cdot (n_{\tau,k} + r_{\tau,T} \cdot \cos \tau)$$
 (6).

Neben der Seitenkraft F_Y wirken weitere Kräfte momentenbildend auf die Lenkachse. Um diese Momente von dem durch die Seitenkraft erzeugten Moment $M_{Z,Y}$ separieren zu können, werden im Folgenden die einzelnen Berechnungsformeln angegeben.

Zu den weiteren Kräften, die sich momentenbildend auf die Lenkachse 16 auswirken, gehört eine Bremskraft F_B , die von einer Fahrbahn 21 auf ein Rad 7 übertragen wird. In Fig. 4 ist das Fahrzeugvorderrad 7 in einer Ansicht von vorn dargestellt. Die von der Fahrbahn 21 auf das Rad 7 übertragene Bremskraft F_B greift in einem Abstand r_σ von dem Durchstoßpunkt 18 der Lenkachse 16 durch die Fahrbahn 21 an. Die Länge des zu der Lenkachse 16 senkrechten Bremskrafthebelarmes r_b beträgt

$$r_b = r_\sigma \cdot \cos \sigma$$
 (7),

30 wobei σ den Spreizungswinkel angibt. Unter Berücksichtigung des Nachlaufwinkels τ ergibt sich von der Bremskraft F_B erzeugte Moment um die Lenkachse 16 zu

$$M_{z,B} = F_B \cdot \cos \tau \cdot r_b \tag{8}.$$

Das durch die Bremskraft erzeugte Rückstellmoment $M_{z,\,B}$ ergibt sich somit zu:

5

10

15

20

$$M_{z,B} = F_B \cdot \cos \tau \cdot r_{\sigma} \cdot \cos \sigma \tag{9}$$

Diese Berechnung gilt nur für Fahrzeuge mit außenliegender Bremse. Für Fahrzeuge mit innenliegender Bremse ist an Stelle des Bremskrafthebelarmes r_b ein Störkrafthebelarm r_a zu verwenden, der im nächsten Abschnitt eingeführt wird.

Wie in Fig. 5 gezeigt ist, wirkt im Gegensatz zur Bremskraft die Rollwiderstands- und Antriebskraft nicht über den Bremskrafthebelarm r_b sondern über den bereits erwähnten Störkrafthebelarm momentenbildend auf die Lenkachse 16. Die unterschiedlichen Wirkhebel kommen zustande, weil für Antriebskraft und Rollwiderstandskraft F_R kein Moment sondern nur eine Kraftzwischen Rad und Radträger übertragen wird. Bei Freischneiden in Radmitte ist F_R (siehe Fig. 5). Damit ergibt sich das durch die Rollwiderstandskraft F_R verursachte Rückstellmoment $M_{Z,R}$ zu:

$$M_{Z,R} = F_R \cdot \cos \tau \cdot r_a \qquad (10).$$

25

30

Hierbei ist r_a der senkrecht auf der Lenkachse 16 stehende Störkrafthebelarm, und cos τ berücksichtigt die Kräfteaufteilung aufgrund des Nachlaufwinkels τ . Die Rollwiderstandskraft F_R kann aus der Hochkraft F_z und dem Rollwiderstandsbeiwert gewonnen werden.

Eine Antriebskraft F_A erzeugt ebenfalls über den Störkrafthebelarm r_a ein Moment M_A um die Lenkachse 16 gemäß

30

$$M_{Z,A} = F_A \cdot \cos \tau \cdot r_a$$
 (11).

Weiterhin erzeugt eine Hochkraft F_z ein Rückstellmoment, das insbesondere bei kleineren Geschwindigkeiten von Bedeutung ist, wenn nur kleine Seitenkräfte auftreten.

Aufgrund der Spreizung σ wirkt die mit cos τ skalierte Hoch-kraft F_z abhängig vom Lenkwinkel δ mit dem Hochkrafthebelarm q als Rückstellmoment wie in Fig. 6 gezeigt ist:

$$M_{z,z1} = F_z \cdot \cos \tau \cdot \sin \sigma \cdot \sin \delta \cdot q$$
 (12)

Der Hochkrafthebelarm oder auch Lenkhebelarm q berechnet sich aus dem Reifenradius $r_{\rm dyn}$, dem Lenkrollradius r_{σ} (Fig. 2b und 4) und dem Spreizungswinkel σ wie folgt:

$$q = (r_{\sigma} + r_{dyn} \cdot tan \sigma) \cdot cos \sigma \qquad (13)$$

20 Das Rückstellmoment berechnet sich mit dem Hochkrafthebelarm zu:

$$M_{z,z1} = F_z \cdot \cos \tau \cdot \sin \sigma \cdot \sin \delta \cdot (r_\sigma + r_{dyn} \cdot \tan \sigma) \cdot \cos \sigma$$
 (14)

25 Die beschriebenen geometrischen Verhältnisse sind in Fig. 6 dargestellt.

Zusätzlich zu dem durch die Spreizung hervorgerufenen Moment erzeugt die Hochkraft F_Z aufgrund des Nachlaufs τ ein weiteres Rückstellmoment $M_{Z,ZZ}$:

$$M_{z,z2} = F_z \cdot \sin \sigma \cdot \cos \tau \sin \delta \cdot n_{\tau}$$
 (15),

wobei der Nachlaufversatz n_{τ} den Abstand zwischen dem Angriffspunkt der Hochkraft F_Z und dem Befestigungspunkt am Fahrzeug angibt. Die geometrischen Verhältnisse sind für diese Situation in Fig. 7 dargestellt.

5

Die gesuchte Seitenkraft F_Y berechnet sich aus dem über die Lenkstangenkraft F_L ermittelten Gesamtrückstellmoment M_Z wie folgt. Es gilt, dass das gesamte Rückstellmoment M_Z die Summe der einzelnen Rückstellmomente ist:

10

$$M_Z = M_{Z,Y} + M_{Z,B} + M_{Z,R} + M_{Z,A} + M_{Z,Z1} + M_{Z,Z2}$$
 (16)

Für das Seitenkraftmoment $M_{Z,Y}$ gilt Gleichung (6). Durch Einsetzen von Gleichung (6) in Gleichung (16) und Umstellen ergibt sich

$$F_Y = (M_Z - M_{Z,B} - M_{Z,R} - M_{Z,A} - M_{Z,Z1} - M_{Z,Z2}) / (\cos \sigma \cdot (n_{\tau,k} + r_{\tau T} \cdot \cos \tau))$$
 (17).

Aus dieser Gleichung folgt, dass folgende Parameter bestimmt 20 werden müssen, um die Seitenkraft F_Y zu ermitteln:

σ: Spreizungswinkel

τ: Nachlaufwinkel

 δ : Lenkwinkel

 r_{σ} : Lenkrollradius

25 n_t: Nachlaufversatz

r_{dyn}: Reifenradius

r_a: Störkrafthebelarm

 $n_{t,k}$: kinematischer Seitenkrafthebelarm

 $r_{\tau,T}$: Reifennachlauf

30

Mittels der für herkömmliche Fahrdynamikregelungen bereits vorhandenen Sensoren werden neben dem bereits erwähnten Lenkmoment M_L , der Lenkstangenkraft F_L , der Lenkverstärkung V_L und der Übersetzungsverhältnisse i_{L1} , i_{L2} außerdem folgende Größen gemessen:

F_B: Bremskraft

 $5 ext{ } F_{A}$: Antriebskraft

F_z: Hochkraft

15

Die Gesamtheit der Parameter und Messgrößen gestattet es schließlich, die Seitenkraft F_Y gemäß Gleichung (17) zu ermitteln wie es oben beschrieben worden ist.

Die Erfindung ist zwar am Beispiel eines elektromechanischen Lenksystems beschrieben worden, aber sie ist in ganz entsprechender Weise auch auf elektrohydraulische Lenksysteme anwendbar.

Patentansprüche:

- 1. Verfahren zur Berechnung der Seitenkraft in einem Kraftfahrzeug mit einem elektromechanischen oder elektrohydraulischen Lenksystem, wobei das Verfahren die folgenden Schritte umfasst:
 - Erfassen einer Lenkstangenkraft (F_L) ;
 - Berechnen eines gesamten Rückstellmomentes (M_Z) aus der Lenkstangenkraft, wobei das Rückstellmoment ein durch Seitenkraft (F_Y) verursachtes Rückstellmoment $(M_{Z,Y})$ sowie weitere Rückstellmomente $(M_{Z,B},\ M_{Z,R},\ M_{Z,A},\ M_{Z,Z1},\ M_{Z,Z2})$ umfasst;
 - Quantitatives Bestimmen der weiteren Rückstellmomente auf Grundlage von Messwerten;
 - Subtrahieren der weiteren Rückstellmomente von dem gesamten Rückstellmoment zur Bestimmung des durch die Seitenkraft verursachten Rückstellmomentes; und
 - Ermitteln der Seitenkraft (F_Y) aus dem durch die Seitenkraft verursachten Rückstellmoment $(M_{Z,\,Y})$.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in die Ermittlung der Seitenkraft ein Übersetzungsverhältnis (i_{L2}) zwischen der Lenkstangenkraft (F_L) und dem gesamten Rückstellmoment (M_Z) einfließt.
- 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Übersetzungsverhältnis (i $_{L2}(\delta)$) lenkwinkelabhängig ist.
- 4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in die Ermittlung der Seitenkraft (F_Y) ein Spreizungswinkel (σ) und/oder ein Nachlaufwinkel (τ) eingeht.
- 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die weiteren Rückstellmomente ein durch Rollwiderstand (F_R) ,

Bremskraft (F_B) , Antriebskraft (F_A) und/oder durch Hochkraft verursachtes Rückstellmoment $(M_{Z,R},\ M_{Z,B},\ M_{Z,A},\ M_{Z,Z1},\ M_{Z,Z2})$ umfassen.

- 6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Lenkstangenkraft als auf die linke und rechte Spurstange wirkende Kraft oder als gesamte Lenkstangenkraft (F_L) erfasst wird.
- 7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die gesamte Lenkstangenkraft (F_L) aus einem vom Fahrer aufgebrachten Lenkmoment (M_L) , einer Lenkverstärkung (V_L) und einer Lenkübersetzung (i_{L1}) berechnet wird.
- 8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass in die Berechnung der Lenkstangenkraft (F_L) eine lenkwinkelabhängige Lenkübersetzung ($i_{L1}(\delta)$) einfließt.
- 9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die gesamte Lenkstangenkraft aus dem Motorstrom und/oder der Motorposition eines oder mehrerer Elektromotoren (8) des elektromechanischen oder elektrohydraulischen Lenksystems ermittelt wird.
- 10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass aus der ermittelten Seitenkraft (F_Y) ein Schwimmwinkel ermittelt wird.
- 11. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass aus der ermittelten Seitenkraft (F_Y) ein Reibwert ermittelt wird.

Zusammenfassung:

Es wird ein Verfahren zur Berechnung der Seitenkraft in einem Kraftfahrzeug mit einem elektromechanischen oder elektrohydraulischen Lenksystem vorgeschlagen. Das Verfahren umfasst die folgenden Schritte: Zunächst wird eine Lenkstangenkraft erfasst, aus der ein gesamtes Rückstellmoment berechnet wird. Das gesamte Rückstellmoment umfasst Rückstellmomente die von unterschiedlichen auf die Räder einwirkenden Kräften erzeugt werden. Zu diesen Rückstellmomenten gehört auch ein durch Seitenkraft verursachtes Rückstellmoment sowie weitere Rückstellmomente. Die weiteren Rückstellmomente werden auf Grundlage von Messwerten quantitativ erfasst und von dem gesamten Rückstellmoment abgezogen, um das durch Seitenkraft verursachte Rückstellmoment zu bestimmen. Schließlich wird aus dem durch Seitenkraft verursachten Rückstellmoment die Seitenkraft ermittelt.

(Fig. 1)