

Outline

- Local search & optimization algorithms
 - Hill-climbing search
 - Simulated annealing search
 - Local beam search
 - Genetic algorithms

Review:Search

- Find a path with minimum cost from start state to goal state in state space graph
 - Systematic exploration of search space

Local search algorithms

- In many optimization problems, *path* is irrelevant; the goal state *is* the solution
 - state space = set of "complete" configurations;
 - For e.g. in solving n-queen by systematic search, each state is not a complete configuration
- find configuration satisfying constraints, e.g., n-queens problem;
- find *optimal configuration*, e.g., travelling salesperson problem

Local search algorithms

- use iterative improvement algorithms: keep a single "current" state, try to improve it
- Constant space, suitable for online as well as offline search
- More or less unavoidable if the "state" is yourself (i.e., learning)

Sample problems for local & systematic search

- Path to goal is important
 - Theorem proving
 - Route finding
 - 8-Puzzle
 - Chess
- Goal state itself is important
 - 8 Queens
 - TSP
 - VLSI Layout
 - Job-Shop Scheduling
 - Automatic program generation

Local Search

- Tree search keeps unexplored alternatives on the frontier (ensures completeness)
- Local search: improve a single option until you can't make it better (no fringe!)
 - New successor function: local changes
- Generally much faster and more memory efficient (but incomplete and suboptimal)

Hill Climbing Simple, general idea: Start wherever Repeat: move to the best neighboring state If no neighbors better than current, quit What's about this approach? Complete? Optimal? Benefit?

n-queens problem

- Put *n* queens on an *n* × *n* board with no two queens on the same row, column, or diagonal
- Systematic search :
 - What is state-space?
 - What is the size of state space?

Hill-climbing algorithm

- Node contains the state and the value of objective function in that state (not
- Search strategy: steepest ascent among immediate neighbors until reaching a

function HILL-CLIMBING(problem) returns a state

current ← make-node(problem.initial-state)

loop do

neighbor ← a highest-valued successor of current if neighbor.value ≤ current.value then return current.state

- $current \leftarrow neighbor$
- Current node is replaced by the best successor (if it is better than current node)
- "Like climbing Everest in thick fog with amnesia"

Run hill climbing algorithm

n-queens problem

- Modeling the state as a whole configuration
 - States: n queens on board, one per column
 - Successors: move a queen in its column
 - What is the branching factor?
 - What is objective function?

Hill-climbing search is greedy

- Greedy local search: considering only one step ahead and select the best successor state (steepest ascent)
- Rapid progress toward a solution
 - Usually quite easy to improve a bad solution

Random-restart hill climbing

- Hill climbing is incomplete
- · Getting stuck on local max
- Hill climbing with random restart
- while state ≠ goal do
 - run hill-climbing search from a random initial state
- p: probability of success in each hill-climbing search
- Expected no of restarts = 1/p
- Reasonable solution can be usually obtained after a small no of restarts

hill climbing variants

- Hill climbing: generate all successors and choose the best one
- Stochastic hill climbing: Randomly chooses among the available uphill moves according to the steepness of these moves
- P(S') is an increasing function of h(s') h(s)
- First-choice hill climbing: generating successors randomly until one better than the current state is found
 - · Good when number of successors is high

Sideways move

- plateau may be a shoulder so keep going sideways moves when there is no uphill move
 - Problem: infinite loop where flat local max
 - Solution: upper bound on the number of consecutive sideways moves

Hill-climbing on the 8-queens problem

- No sideways moves:
 - Succeeds w/ prob. 0.14
 - Expected number of restart to find the answer ? 1/p = 7
 - Average number of moves per trial (cost of finding solution):
 - 4 when succeeding, 3 when getting stuck
 - Expected total number of moves needed: $3(1-p)/p + 4 = \sim 22 \text{ moves}$
- Allowing 100 sideways moves:
 - Succeeds w/ prob. 0.94
 - Average number of moves per trial:
 - 21 when succeeding, 65 when getting stuck
 - Expected total number of moves needed: 65(1-p)/p + 21 =~ 25 moves

Simulated annealing

- Resembles the annealing process used to cool metals slowly to reach an ordered (low-energy) state
- Basic idea:
 - Allow "bad" moves occasionally, depending on "temperature"
 - High temperature => more bad moves allowed, shake the system out of its local minimum
 - Gradually reduce temperature according to some schedule
 - Sounds pretty flaky, doesn't it?

Simulated annealing algorithm

function SIMULATED-ANNEALING(problem, schedule) returns a state inputs: problem: a problem

schedule: a mapping from time to "temperature"

 $current \leftarrow problem.initial-state$ for t = 1 to ∞ do

T ←schedule(t) (T is a temperature, controlling probability of

downward steps) if T = 0 then return current

next ← a randomly selected successor of current

 $\Delta E \leftarrow \text{next.value} - \text{current.value}$ if $\Delta E > 0$ then current \leftarrow next

else current \leftarrow next only with probability $e^{\Delta E/T}$

- Theoretical guarantee:
 - If T decreased slowly enough, will converge to optimal state
 - Convergence can be guaranteed if at each step, T drops no more quickly than C/log n, C=constant, n = # of steps so far

Simulated Annealing

- Is this convergence an interesting guarantee?
- Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row
 - "Slowly enough" may mean exponentially slowly
 - Random restart hill climbing also converges to optimal state...
- Simulated annealing and its relatives are a key workhorse in VLSI layout and other optimal configuration problems

Local beam search

- Basic idea:
 - K copies of a local search algorithm, initialized randomly

Or, K chosen randomly with a bias towards good ones

- For each iteration
 - Generate ALL successors from K current states
 - If any of successors is goal -> finished
 - Choose best K of these to be the new current states

Local beam search example (k=4)

Local beam search

- Why is this different from *K* local searches in parallel?
 - The searches *communicate*! "Come over here, the grass is greener!"
- Problem: quite often, all k states end up on same local hill
 - Idea: Stochastic beam search
 - Choose k successors randomly, biased towards good ones
- What other well-known algorithm does this remind you of?
 - Evolution!

Genetic algorithms 24748552 24 31% 32752411 32752411 23 29% Pairs Genetic algorithms use a natural selection metaphor • Resample K individuals at each step (selection) weighted by fitness function Combine by pairwise crossover operators, plus mutation to give variety

Genetic operators: Selection

- Fitness function: number of non-attacking pairs of queens
- min = 0, max = $8 \times 7/2 = 28$
- Reproduction rate(i) = $fitness(i)/\sum_{k=1}^{n} fitness(k)$
- e.g., 24/(24+23+20+11) = 31%

Genetic operators: Cross-over

■ To select some part of the state from one parent and the rest from another.

Genetic operators: Mutation

change a small part of one state with a small probability

A Genetic algorithm diagram Start Generate initial population Individual Evaluation Stop Criteria? Selection Crossover Mutation

Genetic algorithm properties

- Genetic algorithm is a variant of "stochastic beam search"
- Why does a genetic algorithm usually take large steps in earlier generations and smaller steps later?
- Initially, population individuals are diverse
 - Cross-over operation on different parent states can produce a state long a way from both parents
- More similar individuals gradually appear in the population
- Useful on some set of problems but no convincing evidence that GAs are better than hill-climbing w/random restarts in general

Local search vs. systematic search

	Systematic search	Local search
Solution	Path from initial state to the goal	Solution state itself
Method	Systematically trying different paths from an initial state	Keeping a single or more "current" states and trying to improve them
State space	Usually incremental	Complete configuration
Memory	Usually very high	Usually very little (constant)
Time	Finding optimal solutions in small state spaces	Finding reasonable solutions in large or infinite (continuous) state spaces
Scope	Search	Search & optimization problems

38

Question

- Give the name of the algorithm that results from each of the following special cases
 - a. Local beam search with k = 1.
- b. Local beam search with one initial state and no limit on the number of states retained.
- c. Simulated annealing with T=0 at all times (and omitting the termination test).
- **d**. Simulated annealing with $T = \infty$ at all times.
- e. Genetic algorithm with population size N=1.