Rajshahi University of Engineering & Technology Department of Computer Science and Engineering

Compiler Lexical Analysis

Md. Sozib Hossain Lecturer, CSE sozib.hossain@cse.ruet.ac.bd

Epsilon closure: E()

- Epsilon closure of a state S_0 is set of state that can be reached from the state S_0 with epsilon(ϵ).
- Epsilon closure of a state contain itself also.


```
Epsilon closure of s_0 E(s_0): {s_0, s_1, s_2, s_4, s_7, s_8}

Epsilon closure of s_1 E(s_1): {s_1, s_2, s_4}

Epsilon closure of s_2 E(s_2): {s_2}

Epsilon closure of s_3 E(s_3): {s_3, s_6, s_1, s_2, s_4, s_7, s_8}

Epsilon closure of s_4 E(s_4): {s_4}

Epsilon closure of s_5 E(s_5): {s_5, s_6, s_1, s_2, s_4, s_7, s_8}

Epsilon closure of s_6 E(s_6): {s_6, s_1, s_2, s_4, s_7, s_8}
```

Epsilon closure: E()

- Epsilon closure of a state S_0 is set of state that can be reached from the state S_0 with epsilon(ϵ).
- Epsilon closure of a state contain itself also.


```
Epsilon closure of s_0 E(s_0): {s_0, s_1, s_2, s_4, s_7, s_8}

Epsilon closure of s_1 E(s_1): {s_1, s_2, s_4}

Epsilon closure of s_2 E(s_2): {s_2}

Epsilon closure of s_3 E(s_3): {s_3, s_6, s_1, s_2, s_4, s_7, s_8}

Epsilon closure of s_4 E(s_4): {s_4}

Epsilon closure of s_5 E(s_5): {s_5, s_6, s_1, s_2, s_4, s_7, s_8}

Epsilon closure of s_6 E(s_6): {s_6, s_1, s_2, s_4, s_7, s_8}
```

Epsilon closure: E()

- Epsilon closure of a state S_0 is set of state that can be reached from the state S_0 with epsilon(ϵ).
- Epsilon closure of a state contain itself also.

Epsilon closure of s_0 E(s_0): { s_0 , s_1 , s_2 , s_4 , s_7 , s_8 } Epsilon closure of s_1 E(s_1): { s_1 , s_2 , s_4 } Epsilon closure of s_2 E(s_2): { s_2 } Epsilon closure of s_3 E(s_3): { s_3 , s_6 , s_1 , s_2 , s_4 , s_7 , s_8 } Epsilon closure of s_4 E(s_4): { s_4 } Epsilon closure of s_5 E(s_5): { s_5 , s_6 , s_1 , s_2 , s_4 , s_7 , s_8 } Epsilon closure of s_6 E(s_6): { s_6 , s_1 , s_2 , s_4 , s_7 , s_8 }

- Language: All binary even number
- Regular Expression: (0|1)*0
- NFA:

	Epsilon Closure E()	0	1
s_0	$E(s_0) = \{s0, s1, s2, s4, s7, s8\}$		

	Epsilon Closure E()	0	1
$\{\mathbf{s}_0\}$	$E(s_0) = \{s0, s1, s2, s4, s7, s8\}$	$\{s_3, s_9\}$	

	Epsilon Closure E()	0	_1
\mathbf{s}_0	$E(s_0) = \{s0, s1, s2, s4, s7, s8\}$	$\{s_3, s_9\}$	$\{s_5\}$

	Epsilon Closure E()	0	1
s_0	$E(s_0) = \{s0, s1, s2, s4, s7, s8\}$	$\{s_3, s_9\}$	{s ₅ }
{s ₃ , s ₉ }	$E(s_3) U E(s_9) = \{s_3, s_6, s_7, s_8, s_1, s_2, s_4\} U \{s_9\} \{s_3, s_6, s_7, s_8, s_1, s_2, s_4, s_9\}$		

ε

	Epsilon Closure E()	0	1
s_0	$E(s_0) = \{s0, s1, s2, s4, s7, s8\}$	$\{s_3, s_9\}$	{s ₅ }
{s ₃ , s ₉ }	$E(s_3) U E(s_9) = $ $\{s_3, s_6, s_7, s_8, s_1, s_2, s_4\} U \{s_9\} $ $\{s_3, s_6, s_7, s_8, s_1, s_2, s_4, s_9\}$	$\{s_3, s_9\}$	

	Epsilon Closure E()	0	1
s_0	$E(s_0) = \{s0, s1, s2, s4, s7, s8\}$	$\{s_3, s_9\}$	{s ₅ }
{s ₃ , s ₉ }	$E(s_3) U E(s_9) = $ $\{s_3, s_6, s_7, s_8, s_1, s_2, s_4\} U \{s_9\} $ $\{s_3, s_6, s_7, s_8, s_1, s_2, \mathbf{S_4}, s_9\}$	$\{s_3, s_9\}$	{s ₅ }

	Epsilon Closure E()	0	1
s_0	$E(s_0) = \{s0, s1, s2, s4, s7, s8\}$	$\{s_3, s_9\}$	{s ₅ }
{s ₃ , s ₉ }	$E(s_3) U E(s_9) = $ $\{s_3, s_6, s_7, s_8, s_1, s_2, s_4\} U \{s_9\}$ $\{s_3, s_6, s_7, s_8, s_1, s_2, \mathbf{S_4}, s_9\}$	{s ₃ , s ₉ }	{s ₅ }
{s ₅ }	$E(s_5) = \{s_5, s_6, s_7, s_8, s_1, s_2, s_4\}$		

	Epsilon Closure E()	0	1
s_0	$E(s_0) = \{s0, s1, s2, s4, s7, s8\}$	$\{s_3, s_9\}$	{s ₅ }
$\{s_3, s_9\}$	$E(s_3) U E(s_9) = $ $\{s_3, s_6, s_7, s_8, s_1, s_2, s_4\} U \{s_9\} $ $\{s_3, s_6, s_7, s_8, s_1, s_2, \mathbf{S_4}, s_9\}$	$\{s_3, s_9\}$	{s ₅ }
{s ₅ }	$E(s_5) = \{s_5, s_6, s_7, \mathbf{S_8}, s_1, \mathbf{S_2}, s_4\}$	$\{s_3, s_9\}$	

	Epsilon Closure E()	0	1
s_0	$E(s_0) = \{s0, s1, s2, s4, s7, s8\}$	$\{s_3, s_9\}$	{s ₅ }
{s ₃ , s ₉ }	$E(s_3) U E(s_9) = $ $\{s_3, s_6, s_7, s_8, s_1, s_2, s_4\} U \{s_9\} $ $\{s_3, s_6, s_7, s_8, s_1, s_2, \mathbf{S_4}, s_9\}$	{s ₃ , s ₉ }	{s ₅ }
{s ₅ }	$E(s_5) = \{s_5, s_6, s_7, s_8, s_1, s_2, \mathbf{S_4}\}$	{s ₃ , s ₉ }	{s ₅ }

• DFA:

❖ The Subset Construction(NFA to DFA)

(a) NFA for " $a(b \mid c)$ " (With States Renumbered)

Set	DFA	NFA	€-c10	osure(Delta	(q, *))
Name	States	States	a	b	С
q ₀	d ₀	n_0	$\begin{cases} n_1, n_2, n_3, \\ n_4, n_6, n_9 \end{cases}$	- none -	– none –
<i>q</i> ₁	<i>d</i> ₁	$\begin{cases} n_1, n_2, n_3, \\ n_4, n_6, n_9 \end{cases}$	- none -	$\begin{cases} n_5, n_8, n_9, \\ n_3, n_4, n_6 \end{cases}$	$ \left\{ \begin{array}{l} n_7, n_8, n_9, \\ n_3, n_4, n_6 \end{array} \right\} $
q ₂	d ₂	$ \left\{ n_5, n_8, n_9, \\ n_3, n_4, n_6 \right\} $	- none -	q ₂	q ₃
<i>q</i> ₃	d ₃	$ \left\{ \begin{array}{l} n_7, n_8, n_9, \\ n_3, n_4, n_6 \end{array} \right\} $	- none -	q_2	q_3

(b) Iterations of the Subset Construction