Cours d'Informatique: Introduction

Simon Halfon; halfon@lsv.fr

Lycée Saint-Louis

MP2I, 2022-2023

Qu'est-ce que l'Informatique ?

Informatique \neq Ordinateur!

- Hal Abelson.

Qu'est-ce que l'Informatique ?

Informatique \neq Ordinateur!

- "Computer science is no more about computers than astronomy is about telescopes"
- Hal Abelson.

- Néologisme 1957 (Karl Steinbuch): Informatique = traitement automatique de l'information.
- Académie française 1966: Informatique = science du traitement de l'information.

Qu'est-ce que l'Informatique ?

Informatique \neq Ordinateur!

- "Computer science is no more about computers than astronomy is about telescopes"
- Hal Abelson.

- Néologisme 1957 (Karl Steinbuch): Informatique = traitement automatique de l'information.
- Académie française 1966: Informatique = science du traitement de l'information.

$$\begin{array}{cccc} \text{Traitement automatique} & \Rightarrow & \text{Calcul} & \Rightarrow & \begin{array}{c} & \text{Algorithme} \\ \text{(Al-Khwarizmi)} \end{array} \\ \text{Information} & \Rightarrow & \text{Données (Data)} & \Rightarrow & \begin{array}{c} & \text{encodage, représenta} \\ & \text{syntaxe} \end{array} \end{array}$$

Algorithme VS machine à calculs

• La pascaline (1645):

• Algorithme d'Euclide [Les Elements d'Euclide, \sim -300]:

Algorithmes pour humains

 Al-Khwârizmî, "L'Abrégé du calcul par la restauration et la comparaison": méthodes générales de résolutions de problèmes

N.	L. 0	1	2	3	4	5	6	7	8	9	P.	P.
250	39 794	SII	829	846	863	881	898	915	933	950		
251	967	985	*002	•010	*037	*054	*071	*o88	*106	*123		18
252	40 140	157	175	192	200	226	243	261	278	295	32	7.
253	312	329	346	364	381	398	415	432	449	466	- 1	3.6
254	483	500	518	535	552	569	586	603	620	637	1	5.4
255	654	671	688	705	722	739	756	773	790	807	4	7.3
256	824	841	858	875	802	900	926	943	960	976	1	10.5
257	993	*010	027	*044	*061	*078	0005	*111	*128	*t45	7	12.6
258	41 162	179	196	212	220	246	263	280	296	313		16.5
259	330	347	363	380	397	414	430	447	464	481		16.3

• Tables de logarithme:

Encodage de l'information: les entiers naturels

- Les vérités mathématiques sont indépendantes de la représentation choisie:
 - 5 = 1 + 1 + 1 + 1 + 1
 - (23,12) est l'unique solution du systeme $\left\{ \begin{array}{l} y=2x-34 \\ y=-3x+81 \end{array} \right.$

Encodage de l'information: les entiers naturels

- Les vérités mathématiques sont indépendantes de la représentation choisie:
 - 5 = 1 + 1 + 1 + 1 + 1
 - (23,12) est l'unique solution du systeme $\left\{ \begin{array}{l} y=2x-34 \\ y=-3x+81 \end{array} \right.$
- ullet Base (décimale, hexadécimale, ...) = encodage compact des entiers.

Encodage de l'information: les entiers naturels

- Les vérités mathématiques sont indépendantes de la représentation choisie:
 - 5 = 1 + 1 + 1 + 1 + 1
 - (23,12) est l'unique solution du systeme $\left\{ \begin{array}{l} y=2x-34 \\ y=-3x+81 \end{array} \right.$
- ullet Base (décimale, hexadécimale, ...) = encodage compact des entiers.

- Compromis:
 - Algorithmes de calculs plus compliqués.
 - Algorithmes de calculs plus rapides.

Conclusion

Algorithmique (S2)

Problème: un traitement d'une information

Traduction: une opération sur un type de données

Objectif: encoder l'information ET inventer un algorithme qui calcule **correctement** cette opération sur cet encodage et en optimisant la consommation des **ressources** (temps, mémoire, ...).

Conclusion

Algorithmique (S2)

Problème: un traitement d'une information

Traduction: une opération sur un type de données

Objectif: encoder l'information ET inventer un algorithme qui calcule **correctement** cette opération sur cet encodage et en optimisant la consommation des **ressources** (temps, mémoire, ...).

Programmation = écriture de programmes (S1)

Programme = implémentation d'un algorithme pour être exécuté par une machine (dans un langage bien figé et propre à la machine).