Держим тонус моделей в продуктиве

Селезнев Артем

Data Scientist @ MegaFon

РЕКОМЕНДУЕМ В УСЛОВИЯХ ТРЯСКИ

КОГДА ДАННЫХ МНОГО (и ещё не хватает)

1. Голодание (специализированного) контента

- 1. Голодание (специализированного) контента
- 2. Каннибализация популярным контентом

- 1. Голодание (специализированного) контента
- 2. Каннибализация популярным контентом
- 3. Постоянство контента (не постоянство пользователя)

- 1. Голодание (специализированного) контента
- 2. Каннибализация популярным контентом
- 3. Постоянство контента (не постоянство пользователя)
- 4. Новые форматы и содержание предложений

- 1. Голодание (специализированного) контента
- 2. Каннибализация популярным контентом
- 3. Постоянство контента (не постоянство пользователя)
- 4. Новые форматы и содержание предложений
- 5. События по контенту

КОГДА ОБУЧАЕМСЯ

После отклика пользователя?

1 раз в месяц

КОГДА ОБУЧАЕМСЯ

После отклика пользователя?

После отклика группы

1 раз в месяц

1. Появление объект: ?

- 1. Появление объект: 0.1
- 2. Оценка момента появления: $(m_i)^k$

-

- 1. Появление объект: 0.1
- 2. Оценка момента появления: $(m_i)^k$
- 3. n(2X.value 1)

-

Как сравнить модели и найти лучшую

- 1. Как сравниваются модели?
 - 1. Построение таблицы по каждой модели

bind_type	model 1		model №
Bind	Bad % / Good %	:-:	Bad % / Good %

Как сравнить модели и найти лучшую

- 1. Как сравниваются модели?
 - 1. Построение таблицы по каждой модели

bind_type	model 1	•••	model №
до 30	32%	:-:	34%
35 – 40	16%	:-:	19%

Как сравнить модели и найти лучшую

- 1. Как сравниваются модели?
 - 1. Построение таблицы по каждой модели

bind_type	model 1		model №
до 30	32%	:-:	34%
35 – 40	16%	:-:	19%

- 1. Как сравниваются модели?
 - 1. Построение таблицы по каждой модели
 - 2. График

- 1. Как сравниваются модели?
 - 1. Построение таблицы по каждой модели
 - График
 - 3. Дивергенция

$$DIV = \frac{(\overline{good} - \overline{bad})^2}{[0.5*(\sigma_{good}^2 + \sigma_{bad}^2))]}$$

- 1. Как сравниваются модели?
 - 1. Построение таблицы по каждой модели
 - График
 - 3. Дивергенция

$$DIV = \frac{(\overline{good} - \overline{bad})^2}{[0.5*(\sigma_{good}^2 + \sigma_{bad}^2))]}$$

0 -> UNLIM

- 1. Как сравниваются модели?
 - 1. Построение таблицы по каждой модели
 - График
 - 3. Дивергенция
 - 4. Таблица выигрышей

	score group	количество в группе	факт.good	факт.bad	model good	model bad
Model Old						
Model 1						

- 1. Как сравниваются модели?
 - 1. Построение таблицы по каждой модели
 - График
 - 3. Дивергенция
 - 4. Таблица выигрышей

	score group	количество в группе	факт.good	факт.bad	model good	model bad
Model Old	до 30	1280	950	330	870	410
Model 1	до 30	1280	950	330	844	350

1. Как сравниваются модели?

- 1. Построение таблицы по каждой модели
- 2. График
- 3. Дивергенция
- 4. Таблица выигрышей
- 5. Стабильность

	bind_type	actual %	expected %	actual - expected	actual / expected	In(actual / expected)	index
Model Old							
Model 1							

index расчитывается по формуле:

$$index = \frac{\sum (actual\% - expected\%)}{\ln(actual\%/expected\%)}$$

1. Как сравниваются модели?

- 1. Построение таблицы по каждой модели
- График
- 3. Дивергенция
- 4. Таблица выигрышей
- 5. Стабильность

- 1. Как сравниваются модели?
 - 1. Построение таблицы по каждой модели
 - График
 - 3. Дивергенция
 - 4. Таблица выигрышей
 - Стабильность
 - 6. Групповой отчет

- 1. Как сравниваются модели?
- 2. Цена ошибки!

НАШЛИ ИЛИ ПОТЕРЯЛИ?

- 1. Уменьшение времени реакции
- 2. Активность рекомендаций
- 3. Шаг в сторону универсальной платформы рекомендаций

НАШЛИ ИЛИ ПОТЕРЯЛИ?

- 1. Уменьшение времени реакции
- 2. Активность рекомендаций
- 3. Шаг в сторону универсальной платформы рекомендаций

1. Нет Python в процессе работы с данными (Apache Samza работает с Java | Scala)

Рекомендации начинаются с тебя

Артем Селезнев, Data Scientist

@ SeleznevArtem

