Algebra — Kolokwium 2

Czas: 150 minut.

W rozwiązaniach zaleca się podawanie kroków pośrednich obliczeń, tak aby były one weryfikowalna nawet w przypadku błędu rachunkowego.

Proszę podpisać (tylko numerem indeksu) wszystkie kartki. (Ta kartka jest przeznaczona na brudnopis).

Zadanie 1 Rozważmy skończenie-wymiarową przestrzeń liniową V z iloczynem skalarnym $\langle \cdot, \cdot \rangle$ oraz jej podprzestrzeń W. Niech X^{\perp} oznacza dopełnienie ortogonalne X, tj.:

$$X^{\perp} = \{ v \in V : \forall_{x \in X} \langle v, x \rangle = 0 \}.$$

Udowodnij, że $(W^{\perp})^{\perp}=W$. Możesz założyć, że dopełnienie ortogonalne jest podprzestrzenią liniową V.

Zadanie 2 Wykonaj następujące działania mod 3 oraz mod 5. $\bullet \ (-25)^3 + 121 - ((-532) \cdot 263) + 1505 \cdot (-2)^7 - (-2)^6; \\ \bullet \ (153^2 \cdot 3424^2) \cdot (172^3 - (-175) \cdot 231) + 1324^2 + (-1)^{10}.$

Numer i	ndeksu:
---------	---------

Zadanie 3 Rozważamy kwadraty, których krawędzie mogą mieć jeden z trzech kolorów: niebieski, zielony, czerwony. Dwa kwadraty uznajemy za identyczne, jeśli jeden można uzyskać z drugiego poprzez obrót lub symetrię. Ile jest takich rozróżnialnych kwadratów z tak pokolorowanymi bokami?

Zadanie 4 Rozważmy permutację

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 7 & 4 & 1 & 2 & 9 & 8 & 3 & 5 & 10 & 6 \end{pmatrix} .$$

Podaj permutację odwrotną σ^{-1} . Rozłóż σ oraz σ^{-1} na cykle. Która z permutacji σ, σ^{-1} jest parzysta?

Zadanie 5 Udowodnij, że jeśliGjest podgrupą grupy permutacji ${\cal S}_n$ to

- zbiór G_p permutacji parzystych z G jest podgrupą G;
 |G_p| = |G| lub |G_p| = |G|/2.

Numer	indeksu:.									

Zadanie 6 Niech grupa G działa na zbiorze S. Przez G_s oznaczmy stabilizator elementu s, tj. $\{g \in G : g(s) = s\}$. Pokaż, że przecięcie wszystkich stabilizatorów $\bigcap_{s \in S} G_s$ jest podgrupą normalną w G.

Zadanie 7 Dla podanych podzbiorów grupy permutacji S_4 określ, czy są one podgrupami S_4 (permutacje podane są jako rozkłady na cykle; e oznacza permutację identycznościową). Jeśli podany zbiór jest podgrupą, wystarczy odpowiedź "TAK". Jeśli nie jest, to odpowiedź "NIE" uzasadnij.

```
 \bullet \begin{tabular}{l} \bullet & \{(1234); (1432); (13)(24); e\}; \\ \bullet & \{(12)(34); (13)(24); e\}; \\ \bullet & \{(12)(34); e\}; \\ \bullet & \{(13); (24); (14)(23); (12)(34); (1234); (13)(24); (1432); e\}; \\ \bullet & \{(12)(34); (13)(24); (14)(23); e\}; \\ \bullet & \{(1234); (12)(34); e\}; \\ \bullet & \{(1234); (1432); (13)(24); (1324); (1423); (12)(34); e\}. \\ \end{tabular}
```