Question 19 (20 marks)

## Mass spectrometer

The mass spectrometer is an instrument that can measure the masses and relative concentrations of atoms in a mixed sample. It makes use of the magnetic force on a moving charged particle.

Different elements are ionised so they all have a charge of +1. They are then accelerated across a potential difference that increases their velocities. They move through a velocity selector and are then fired into a magnetic field where they undergo circular motion and land on a detector. The different masses of the elements will determine where they land on the detector. The concentration of each element can be determined by how many ions land in the one place.



|                                 | For copyright reasons this diagram cannot be reproduced in the online version of this document, but may be viewed at the link listed on the acknowledgements page.                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 | Velocity selector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| move<br>elect<br>field<br>perpe | any experiments involving moving charged particles, it is important that the particles all $\epsilon$ with essentially the same velocity. This can be achieved by applying a combination of an cric field and a magnetic field oriented as shown in the diagram above. A uniform electric is directed vertically downward, and a uniform magnetic field is applied in the direction endicular to the electric field and into the page. For positive particles, the magnetic force is all to $qvB$ upward and the electric force $(qE)$ is downward. |
|                                 | For copyright reasons this text cannot be reproduced in the online version of this document, but may be viewed at the link listed on the acknowledgements page.                                                                                                                                                                                                                                                                                                                                                                                     |
| (a)                             | Give an expression for the radius of a charged particle's path when fired into a uniform magnetic field. (1 mark) $r =$                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (b)                             | Explain why it is important to make sure that all the ions that enter the detector have the same velocity.  (3 marks)                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

|                                                 |                         | ble cannot be reproduced in the                                               |                      |         |
|-------------------------------------------------|-------------------------|-------------------------------------------------------------------------------|----------------------|---------|
|                                                 | ocument, out may be wew | su at the link listed on the ack                                              | noweugements page.   |         |
| 7 5 7 5 7 11 11 11 11 11 11 11 11 11 11 11 11 1 |                         |                                                                               |                      |         |
| 12.38 cm                                        | from the entrance point | tor at 9.24 × 10 <sup>4</sup> m s <sup>-1</sup> .<br>If the magnetic field st | rength is 3.50 T, ca | lculate |
| nass of t                                       | ne unknown particle and | d identify it from the table                                                  | le above.            | (5      |
|                                                 |                         |                                                                               |                      |         |
|                                                 |                         |                                                                               |                      |         |
|                                                 |                         |                                                                               |                      |         |
|                                                 |                         |                                                                               |                      |         |
|                                                 |                         |                                                                               |                      |         |
|                                                 |                         |                                                                               |                      |         |
|                                                 |                         | kg                                                                            | Particle:            |         |
| ~_11_                                           |                         | 20. <del>5</del>                                                              |                      |         |
| $0.24 \times 10$                                |                         | e needed for the ion to a<br>e velocity selector. If yo                       | attain a velocity of |         |

Below is a table of ions and their masses in kg.

(c)

| The velocity selector shown on page 29 uses a combination of electric and magnetic fields to select only ions with a specific velocity to enter the detector. These ions trave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                       |                |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|
| THE RESERVE OF THE PARTY OF THE | y across the selector parallel to the charged plates. Derive an expression<br>ed velocity in terms of $B$ and $E$ .                                                   | for th<br>(3 m |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       | ,,,,,,         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n in detail why an ion travelling at a velocity greater than the selected ve<br>not enter the detector. Use the diagram below to show the path the ion v              |                |  |  |
| 1900 P. S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                       | (4 m           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | For copyright reasons this diagram cannot be reproduced in the online version of<br>this document, but may be viewed at the link listed on the acknowledgements page. |                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |                |  |  |
| 54 <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                       |                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |                |  |  |

(e)