Data Structures & Algorithms III

String Matching

Dr. HND Thilini

String Matching

- Finding occurrences of a *pattern* within a *text*
- Where a **text** and **pattern** are *strings* of characters with $|\mathbf{text}| \ge |\mathbf{pattern}|$

• And 'finding' corresponds to discovering valid shifts of pattern along text that match all characters of pattern with those of text beginning at that position

String Matching

Example

String Matching

- Applications
 - Contents Search
 - Editing
 - Text Processing
 - Signal Processing
 - Virus Scanning
 - Bioinformatics (DNA-strings)

String Notions

- An alphabet Σ is a finite set of symbols (or characters).
- A string over \sum is a finite sequence $a_1 a_2 ... a_n$ where $a_i \in \sum$.

The set of strings over Σ is denoted by Σ^* The empty string is denoted by ϵ

String Notions

- Let $x = a_1 a_2 ... a_n$ and $y = b_1 b_2 ... b_m$ Then :
- |x| denotes the length n
- x[i.....j] denotes the (sub-)string a_ia_{i+1}...a_i
- xy denotes the concatenation $a_1 a_2 a_n b_1 b_2 ... b_m$

Prefix

A string ω is a prefix of a string x, denoted $\omega \sqsubseteq x$, if $x = \omega y$ for some string $y \notin \sum^* and$ $|\omega| <= |x|$ e.g. ab \sqsubseteq abcca

String Notions

Suffix

A string ω is a suffix of a string x, denoted $\omega \sqsupset x$, if $x = y\omega$ for some string $y \notin \sum^*$ and $|\omega| <= |x|$ e.g. cca \sqsupset abcca

The empty string ϵ is both a suffix and a prefix of every string.

String Matching

Algorithms

- Naïve String Matching
- Knuth-Morris-Pratt (KMP) Algorithm
- Rabin-Karp Algorithm
- Boyer Moore Algorithm

Naive (brute-force) algorithm:
 Simply test all the possible placements of P relative to T

Checks the condition for each of the possible
 n-m+1 positions

Consists of two nested loops.

```
BruteForceMatch(T,P)
input: strings T with n characters and P(pattern) with m
                characters
output: starting index of the first substring of T
 matching P, or an indication that P is not a substring of
 n = length(T); m = length(P);
 for i = o to n-m do
  j ← 0
 while (j < m \text{ and } T[i+j] = p[j]) do
    i ← j+1
     if j = m then return i
 return "there is no substring of T matching P "
```

```
NAIVE_STRING_MATCHER (T, P)

1. n \leftarrow \text{length } [T]

2. m \leftarrow \text{length } [P]

3. \text{for } s \leftarrow \text{o to } n - m \text{ do}

4. \text{if } P[1 \dots m] = T[s + 1 \dots s + m]

5. then print "pattern occurs with shift s''
```


Text:

ABBCABBCBCCABCDABCFGCD

Pattern:

ABCD

- Find the starting index of the first substring of Text matching Pattern
- 2. How many comparisons were made?

- The outer-loop is executed at most n-m+1 times,
- The inner loop is executed at most m times.
- The running time of this method is O((n-m+1)m) => O(nm)

• Since there is no preprocess, the total *running* time is the same as its *matching time*

Naive-Complexity

- Worst case: compares pattern to each substring of text of length M. For example, M=5.
- Total number of comparisons: M (N-M+1)
- Worst case time complexity: O(MN)

Naive-Complexity

Best case if pattern found: Finds pattern in first M positions of text.

- 1) AAAAAA 5 comparisons made
- Total number of comparisons: M
- Best case time complexity: O(M)

Naive-Complexity

- Best case if pattern not found: Always mismatch on first character.

 - 1 comparison made OOOOH
- Total number of comparisons: N
- Best case time complexity: O(N)

• Suppose that all characters in the pattern P are different. Show how to accelerate NAIVE-STRING-MATCHER to run in time O(n) on an n-character text T.

• Suppose that pattern P and text T are randomly chosen strings of length m and n, respectively, from the d-ary alphabet $\sum_d = \{0, 1, \ldots, d-1\}$, where $d \ge 2$. Show that the expected number of character-to-character comparisons made by the implicit loop in line 4 of the naive algorithm is

$$(n-m+1)\frac{1-d^{-m}}{1-d^{-1}} \le 2(n-m+1)$$
.

(Assume that the naive algorithm stops comparing characters for a given shift once a mismatch is found or the entire pattern is matched.)

• Inefficient because information gained about the text for one value of s is entirely ignored in considering other values of s.

e.g. if p = aaab and we find that s=o is valid then none of the shifts 1,2 or 3 are valid since T[4] = b.

How can we improve?

Knuth-Morris-Pratt Algorithm

- The Knuth-Morris-Pratt (KMP) string searching algorithm differs from the brute-force algorithm by keeping track of information gained from previous comparisons.
- Based on shifts of the pattern on itself
- Since the length of pattern is just m, preprocessing cost avoids dependence on Σ
- Thus running time complexity is O(m+n)