1. Project 1: Diabetes Prediction from Medical Records

The following findings and results are based on the machine learning analysis of the provided dataset i.e. Diabetes EHR data. The applied machine learning approach demonstrates the application of 5 different machine learning models based on classification methods which are *Random Forest*, *Naïve Bayes*, *Logistic Regression*, *Support Vector Machine*, *K-Nearest Neighbor*.

i. Data Exploration and Visualization

The provided EHR diabetic data from the National Institute of Diabetes and Digestive and Kidney Diseases consists information of female patients (aged ≥ 21) of Pima Indian Heritage. Upon initial inspection it was found that there are 550 entries (rows) and 10 variables (columns) in the dataset. The predictor variables are Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age, and Outcome, where Outcome has two classes 0 and 1, 0 for healthy and 1 for diabetic.

There are no missing data in this dataset as verified by following steps.

Some quick stats of these variables including mean, standard deviation, min and max is depicted below as a part of exploratory data analysis.

0	print(df.describe()) #Quick Sta	ts Mean, Std,	Min, Max		
-	count mean std min 25% 50% 75% max	Pregnancies 550.000000 4.034545 3.447325 0.000000 1.000000 3.000000 17.000000 BMI 550.000000	Glucose 550.000000 121.560000 30.551206 0.000000 100.000000 119.000000 141.000000 197.000000		550.0000 20.0145 15.8986 0.0000 22.0000 32.0000 63.0000	550.000000 545 80.141818 506 115.429640 500 0.000000 500 0.000000 500 22.500000 500 128.750000	\
	mean	31.902000		0.466582	33.590909	0.354545	
	std min	7.822178 0.000000		0.320054 0.078000	12.054140 21.000000	0.478811 0.000000	
	25%	27.200000		0.239250	24.000000	0.000000	
	50%	32.000000		0.375000	29.000000	0.000000	
	75%	36.500000		0.628250	41.000000	1.000000	
	max	59.400000		2.420000	81.000000	1.000000	
		Id					
	count	550.000000					
	mean	379.630909 222.127731					
	std min	1.000000					
	25%	187.250000					
	50%	377.500000					
	75%	571.500000					
	max	766.000000					

Some Visualization of these variables are also depicted below.

Fig 1: Distribution of Variables

The figures illustrated above provides the overview of variables distribution. Variables like *Glucose*, *BloodPressure*, *SkinThickness*, and *Outcome* have a bell-shaped formation indicating normal distribution. Rest of others follow slight left or right skewed but that is something to worry since it is expected with the medical nature of dataset.

Fig 2: Plot of Class Imbalance

The Class imbalance plot above illustrates the count of 0 (healthy) and 1 (diabetic) cases in the dataset. It can be seen that there are 350 cases of 0 but only 200 cases of 1 which represents a slight imbalance but we can address this during the evaluation process.

Fig 3: Box Plot of Variables

The box plot of variables above provides the snapshot of presence of any outliers within the dataset but so far, our data looks normal there is no extreme cases of outlier which can alter our findings.

Final Project: Diabetes Prediction from Medical Records

Fig 4: Correlation Heatmap of the Variables

The Correlation heatmap above suggest that Glucose (0.5) have the highest or strongest positive correlation with the target variable outcome meaning higher glucose level are moderately associated with having diabetes. BMI and Age also suggest positive but small correlation. Since we are using a comprehensive approach for this analysis, we will be using all relevant variables as these medical biomarkers are indeed relevant for our study.

ii. 5 Machine Learning Models

To carry out with analysis, 5 machine learning classification methods were used; they are.

- 1. Support Vector Machine (SVM)
- 2. K-Nearest Neighbor (KNN)
- 3. Random Forest
- 4. Naïve Bayes
- 5. Logistic Regression

```
# Initialize models
models = {
    'Support Vector Machine': SVC(kernel='rbf', random_state=42),
    'Random Forest': RandomForestClassifier(n_estimators=100, random_state=42),
    'Logistic Regression': LogisticRegression(max_iter=1000, random_state=42),
    'K-Nearest Neighbors': KNeighborsClassifier(),
    'Naive Bayes': GaussianNB()
}
```

iii. Averaged Results using 10-fold Cross Validation

A 10-fold Stratified Cross Validation was used in order to address the slight imbalance that was encountered. The results of the 10-fold cross validation are illustrated in the table below.

Final Project: Diabetes Prediction from Medical Records

```
# 10-fold cross-validation setup
cv = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)

# Metrics to evaluate
metrics = ['accuracy', 'f1', 'precision', 'recall']

# Evaluate models
results = []
for name, model in models.items():
    scores = {m: cross_val_score(model, X_scaled, y, cv=cv, scoring=m).mean() for m in metrics}
    results.append([name, scores['accuracy'], scores['f1'], scores['precision'], scores['recall']])

# Create and display results DataFrame
results_df = pd.DataFrame(results, columns=['Model', 'Accuracy', 'F1-Score', 'Precision', 'Recall'])
results_df = results_df.sort_values('F1-Score', ascending=False).reset_index(drop=True)
```

iv. Tables and Figures of Classification F1-Scores and Accuracies

Model	Accuracy	F1-Score	Precision	Recall
Naive Bayes	0.7636	0.6455	0.6968	0.6108
Random Forest	0.7618	0.6417	0.7005	0.6100
Logistic Regression	0.7600	0.6204	0.7098	0.5592
Support Vector Machine (SVM)	0.7509	0.6057	0.6876	0.5487
K-Nearest Neighbors (KNN)	0.7327	0.5952	0.6412	0.5629

Table 1: Performance Comparison of Models

From the table above, we have accuracy, F1-score, precision and recall for all the models. These scores are further demonstrated graphically below to provide a visual overview.

Fig 5: Bar Plot of Accuracy Scores of all Models

Fig 6: Bar Plot of F1-Scores of all Models

v. Conclusion and Discussion on the best Classification method and Classification Report

```
print("Classification Reports (trained on full data):\n")

for name, model in models.items():
    # Fit model on full data
    model.fit(X, y)

# Predict on full data
    y_pred = model.predict(X)

# Print classification report
    print(f"Model: {name}")
    print(classification_report(y, y_pred, digits=4))
    print("-" * 60)
```

Model: Suppor	t Vector Mach	ine			
	precision	recall	f1-score	support	
0	0.7183	0.9408	0.8146	355	
1	0.7529	0.3282	0.4571	195	
accuracy			0.7236	550	
macro avg	0.7356	0.6345	0.6359	550	
weighted avg	0.7306	0.7236	0.6879	550	
Model: Random	Forest				-
	precision	recall	f1-score	support	
0	1.0000	1.0000	1.0000	355	
1	1.0000	1.0000	1.0000	195	
accuracy			1.0000	550	
macro avg				550	
weighted avg	1.0000	1.0000	1.0000	550	
Model: Logist	ic Regression	·			-
	precision	recall	f1-score	support	
0	0.7908	0.8732	0.8300	355	
1	0.7152	0.5795	0.6402	195	
accuracy			0.7691	550	
	0.7530			550	
weighted avg	0.7640	0.7691	0.7627	550	
					_

Model	Accuracy	F1-Score (Weighted Avg)	Notes
Random Forest	1.0000	1.0000	Perfect scores but highly suspicious of overfitting!
KNN	0.7891	0.7835	Good performance
Logistic Regression	0.7691	0.7627	Decent, balanced
Naive Bayes	0.7727	0.7692	Decent, balanced
SM	0.7236	0.6879	Lowest performance

Table 2: Classification Reports

Model: K-Nea	rest Neighbors			
	precision	recall	f1-score	support
0	0.8056	0.8873	0.8445	355
1	0.7484	0.6103	0.6723	195
			0.7001	550
accuracy			0.7891	550
macro avg	0.7770	0.7488	0.7584	550
weighted avg	0.7853	0.7891	0.7835	550
Model: Naive	Bayes			
Model: Naive	Bayes precision	recall	f1-score	support
Model: Naive	,	recall	f1-score	support
Model: Naive	,	recall	f1-score 0.8295	support 355
	precision			355
0	precision 0.8042	0.8563	0.8295	
0	precision 0.8042	0.8563	0.8295 0.6594	355 195
0 1 accuracy	precision 0.8042 0.7035	0.8563 0.6205	0.8295 0.6594 0.7727	355 195 550
0	precision 0.8042	0.8563	0.8295 0.6594	355 195

Considering all the results from accuracy, F1 scores, classification report, etc. the best model for our data is the Naïve Bayes. It has an accuracy of 0.7636 and a F1 score with 0.6455 which in comparison is a better number given other models and has a balanced fit.