二维卷积层

0	1	2		0	1	1	10	25
3	4	5	*	0	1	=	19	25
6	7	8		2	3		37	43

- 输入 $\mathbf{X}: n_h \times n_w$
- •核 $\mathbf{W}: k_h \times k_w$
- 偏差 b ∈ ℝ
- 输出 $\mathbf{Y}: (n_h k_h + 1) \times (n_w k_w + 1)$

$$\mathbf{Y} = \mathbf{X} \star \mathbf{W} + b$$

· W 和 b 是可学习的参数

例子

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

边缘检测

(wikipedia)

锐化

高斯模糊

交叉相关 vs 卷积

•二维交叉相关

$$y_{i,j} = \sum_{a=1}^{h} \sum_{b=1}^{w} w_{a,b} x_{i+a,j+b}$$

• 二维卷积

$$y_{i,j} = \sum_{a=1}^{h} \sum_{b=1}^{w} w_{-a,-b} x_{i+a,j+b}$$

• 由于对称性,在实际使用中没有区别