UNIVERSIDAD DE GRANADA

FACULTAD DE CIENCIAS

DEPARTAMENTO DE FÍSICA APLICADA

GRUPO DE INVESTIGACIÓN DE FÍSICA DE LA ATMÓSFERA - IISTA

Exploring aerosol-cloud interaction in the atmospheric column using improved remote sensing methods

PhD. Dissertation

María Soledad Fernández Carvelo

PhD candidate
Universidad de Granada

Thesis director: Cat. Lucas Alados Arboledas

Catedrático de la Universidad de Granada

Thesis director: Dr. Juan Antonio Bravo Aranda

Profesor Titular de la Universidad de Granada

UNIVERSIDAD DE GRANADA

FACULTAD DE CIENCIAS

DEPARTAMENTO DE FÍSICA APLICADA

GRUPO DE INVESTIGACIÓN DE FÍSICA DE LA ATMÓSFERA - IISTA

Exploring aerosol-cloud interaction in the atmospheric column using improved remote sensing methods

PhD. Dissertation

María Soledad Fernández Carvelo

PhD candidate
Universidad de Granada

Thesis director: Cat. Lucas Alados Arboledas

Catedrático de la Universidad de Granada

Thesis director: Dr. Juan Antonio Bravo Aranda

Profesor Titular de la Universidad de Granada

Tribunal nombrado por el Magfco. y Excmo. Sr. Rector de la Universidad Politécnica de Madrid, el día de de 202X.
Presidente: PhD jury committee 1.
Secretario: PhD jury committee 2.
Vocal: PhD jury committee 3.
Vocal: PhD jury committee 4.
Vocal: PhD jury committee 5.
Suplente: PhD jury committee 6.
Suplente: PhD jury committee 7.
Opta a la mención de "Doctor Internacional" Evaluadores de organizaciones internacionales: Reviewer 1, Institution, Country. Reviewer 2, Institution, Country.
Realizado el acto de defensa y lectura de la Tesis el día de de 202X en la E. T. S. Ingenieros Industriales.
CALIFICACIÓN:
EL PRESIDENTE LOS VOCALES

EL SECRETARIO

The research leading to this doctoral dissertation has received funding from the following programs.

Abstract

Abstract (English version).

Resumen (Spanish)

Resumen (versión en español).

Acknowledgements

Time to say thank you!

Contents

I	INTRODUCTION		1											
1	State of the art													
2	Objectives of this Thesis													
3	Layout of this Thesis		7											
II	FUNDAMENTALS		9											
4	Aerosol and climate	•	11											
5	Atmosphere structure and properties	-	13											
6	Radiation-atmosphere interaction	-	15											
	6.1 Elastic scattering		15											
	6.2 Extinction		15											
	6.3 Raman scattering		15											
	6.4 Absorption		15											
	6.5 Radiative transfer equation		15											
7	Atmospheric aerosol characterization		17											
8	Atmospheric aerosol properties		19											
	8.1 Optical properties	• • •	19											
	8.2 Microphysical properties		19											
9	Lidar technique	:	21											
	9.1 Principle and ecuation		21											
	9.2 Aerosol intensive properties		21											
	9.3 Elastic and inelastic lidar retrievals		21											
	9.4 Depolarization lidar		21											
	9.5 Fluorescence lidar		າ 1											

III INSTRUMENTATION	23
10 ALHAMBRA lidar system	25
11 Setup and calibration	27
11.1 Overlap function retrieval	27
11.2 ND Filter optimization	27
11.3 Depolarization optical elements adjustment	27
11.4 Vibrational and rotational Raman channels characterization	27
11.5 Bandwidth filter fluorescence channel calibration	27
11.6 Spectrometer coupling fluorescence channel characterization	27
12 Quality Assurance tests	29
12.1 Rayleigh-fit	29
12.2 Telecover	29
12.3 Depolarization calibration	29
12.4 Zero bin	29
IV METHODOLOGY	31
13 Lidar data preprocessing	33
13.1 Dead time correction	33
13.2 Trigger delay correction	33
13.3 Background subtraction	33
13.4 Overlap correction	33
13.5 Analog and photocounting signals gluing	33
13.6 Near- and far-field signals gluing	33
14 Conventional lidar data processing	35
15 Fluorescence data processing	37
15.1 Bandwidth filter fluorescence channel measurements	37
15.2 Fluorescence spectra measurements	37
V CONCLUSIONS AND FUTURE WORK	39
16 Conclusions	41
17 Future work	43

ВІ	IBLIOGRAPHY	45
Α	APPENDIX	47
	A.1 APPENDIX I	47

List of Figures

13.1	Figure caption.																																	34
	i iguic cuption.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0

List of Tables

14.1	Table caption	35
15.1	Table caption.	3'

Abbreviations

EOA Example of Abbreviation.

Part I

INTRODUCTION

State of the art

Background of your work.

This is an example of a reference (Croff 1983).

Objectives of this Thesis

Main goals and contributions arising from this Thesis.

Layout of this Thesis

This Thesis is divided into five Parts, with several related Chapters in each of them. Firstly, Part I establishes the framework and background of this Thesis and presents the original contributions and outcomes.

Part ?? corresponds to the description of the fundamentals that applies to this work...

Part II

FUNDAMENTALS

Aerosol and climate

Atmosphere structure and properties

Radiation-atmosphere interaction

- 6.1 Elastic scattering
- 6.2 Extinction
- 6.3 Raman scattering
- 6.4 Absorption
- 6.5 Radiative transfer equation

Atmospheric aerosol characterization

Atmospheric aerosol properties

- 8.1 Optical properties
- 8.2 Microphysical properties

Lidar technique

- 9.1 Principle and ecuation
- 9.2 Aerosol intensive properties
- 9.3 Elastic and inelastic lidar retrievals
- 9.4 Depolarization lidar
- 9.5 Fluorescence lidar

Part III

INSTRUMENTATION

ALHAMBRA lidar system

Setup and calibration 111

- 11.1 Overlap function retrieval
- 11.2 ND Filter optimization
- 11.3 Depolarization optical elements adjustment
- 11.4 Vibrational and rotational Raman channels characterization
- 11.5 Bandwidth filter fluorescence channel calibration
- 11.6 Spectrometer coupling fluorescence channel characterization

Quality Assurance tests

- 12.1 Rayleigh-fit
- 12.2 Telecover
- 12.3 Depolarization calibration
- 12.4 Zero bin

Part IV

METHODOLOGY

Lidar data preprocessing

13

- 13.1 Dead time correction
- 13.2 Trigger delay correction
- 13.3 Background subtraction
- 13.4 Overlap correction
- 13.5 Analog and photocounting signals gluing
- 13.6 Near- and far-field signals gluing

Let's include Figure 13.1 as an example.

Fig. 13.1.: Figure caption.

ta 14

Conventional lidar data processing

Let's include Table 15.1 as an example.

Tab. 14.1.: Table caption.

X1	X2	Х3	X4	X5
Y1	XY1	XY2	XY3	XY4

Fluorescence data processing

15.1 Bandwidth filter fluorescence channel measurements

15.2 Fluorescence spectra measurements

Let's include Table 15.1 as an example.

Tab. 15.1.: Table caption.

X1	X2	Х3	X4	X5
Y1	XY1	XY2	XY3	XY4

Part V

CONCLUSIONS AND FUTURE WORK

Conclusions 16

Conclusions and main outcomes of work carried out in this Thesis.

Future work

As a continuation of the work carried out in this Thesis, the following lines are identified for further research.

Bibliography

Croff, A. G. (1983). "ORIGEN2: A Versatile Computer Code for Calculating the Nuclide Compositions and Characteristics of Nuclear Materials". In: *Nuclear Technology* 62.3, pp. 335–352. DOI: 10.13182/NT83-1 (cit. on p. 3).

APPENDIX

A.1 APPENDIX I