ENGG 5501: Foundations of Optimization Homework Set 2 Instructor: Anthony Man-Cho So Due: October 11, 2021

SOLVE THE FOLLOWING PROBLEMS:

Problem 1 (20pts). Given any $A, B \in \mathcal{S}^n$, we define $A \bullet B = \operatorname{tr}(AB)$ to be the inner product between A and B.

- (a) (10pts). Show that for any $A, B \in \mathcal{S}_{+}^{n}$, we have $A \bullet B \geq 0$.
- (b) (10pts). The result in (a) implies that $\mathcal{S}_{+}^{n} \subseteq \{X \in \mathcal{S}^{n} : A \bullet X \geq 0\}$ for any $A \in \mathcal{S}_{+}^{n}$. Show that in fact

$$\mathcal{S}^n_+ = \bigcap_{A \in \mathcal{S}^n_+} \{ X \in \mathcal{S}^n : A \bullet X \ge 0 \}.$$

Problem 2 (25pts). We say that a function $f: \mathbb{R}^n \to \mathbb{R}$ possesses Property C if for any sequence $\{x^k\}_{k\geq 0} \subset \mathbb{R}^n$ satisfying $\|x^k\|_2 \to +\infty$, we have $f(x^k) \to +\infty$.

(a) (15pts). Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuous function. Show that f possesses Property C if and only if $L_t = \{x \in \mathbb{R}^n : f(x) \leq t\}$ is compact for any $t \in \mathbb{R}$. Hence, show that if the function f is continuous and possesses Property C, then the optimization problem

$$\inf_{x \in \mathbb{R}^n} f(x)$$

always has an optimal solution. (Hint: Since the function f is continuous, the set L_t is closed for any $t \in \mathbb{R}$; see Handout C, Section 3.1.)

(b) (10pts). Let $f: \mathbb{R}^m \to \mathbb{R}$ be a continuous function that possesses Property C and $A \in \mathbb{R}^{m \times n}$ be a matrix. Does the function $x \mapsto f(Ax)$ necessarily possess Property C? Justify your answer.

Problem 3 (35pts). Let $K \subseteq \mathbb{R}^n$ be a closed convex cone. Define

$$K^{\circ} = \{ w \in \mathbb{R}^n : w^T x \le 0 \text{ for all } x \in K \}$$

to be the *polar cone* of K.

- (a) (5pts). Show that K° is a convex cone.
- (b) (15pts). Show that for any $x \in \mathbb{R}^n$, we have $z^* = \Pi_K(x)$ if and only if

$$z^* \in K$$
, $x - z^* \in K^{\circ}$, $(x - z^*)^T z^* = 0$.

(c) (15pts). Using the result in (a), or otherwise, show that for any $x \in \mathbb{R}^n$, we have

$$x = \Pi_K(x) + \Pi_{K^{\circ}}(x).$$

Remark: The above identity shows that a closed convex cone K can be used to decompose any vector x into the orthogonal components $\Pi_K(x)$ and $\Pi_{K^{\circ}}(x)$.

Problem 4 (20pts). Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable function. We say that f is ρ -convex (where $\rho \in \mathbb{R}$) if for any $x, y \in \mathbb{R}^n$ and $\alpha \in [0, 1]$, we have

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y) + \frac{\rho \alpha (1 - \alpha)}{2} ||x - y||_2^2.$$

Note that the usual notion of convexity is the same as 0-convexity. Show that the following statements are equivalent:

- 1. The function f is ρ -convex for some $\rho \in \mathbb{R}$.
- 2. The function $x \mapsto f(x) + \frac{\rho}{2} ||x||_2^2$ is convex.
- 3. For any $x, y \in \mathbb{R}^n$, we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) - \frac{\rho}{2} ||y - x||_2^2.$$