

SOFT TENTACLES Simulation and modeling for design optimization

Capucine Denis
Guilhem Destriau
Lorenzo Vignoli

Reference: Soft passive swimmer optimization: from simulation to reality using data-driven transformation

EPFL

WHY DATA-DRIVEN DESIGN

NONLINEAR DYNAMICS

- Behavior hard to model analytically
- Data-driven approach captures realworld complexity

FLUID-STRUCTURE INTERACTIONS

- Forces depend on shape and velocity
- Data capture realistic, time-varying effects

ENCODING AND OBJECTIVE FUNCTION

DESIGN SPACE

- Tentacle length $l \in [0.1; 1.5] \text{ m}$
- Material ratio $c \in [0; 1]$
- Control amplitude $A \in [5; 120]$ °
- Control frequency $f \in [0.05; 10] Hz$

MULTI-OBJECTIVE

- Thrust
- Velocity

MULTIBODY MODELING

TENTACLE

- Chain of masses with spring-damper links
- Parameters from material and literature data

FEEDFORWARD ACTUATION

- Sawtooth motor input via Fourier series
- Imposed displacement on first spring

SIMULATION

- Balance of hydrodynamic, elastic, damping, and inertial moments to model complex interactions with the fluid
- 60 s simulation to capture transients
- Mean thrust and velocity evaluation

SURROGATE MODELING

GRID-BASED ACQUISITION

- Initial sampling from simulations
- Full factorial design with fixed number of levels per factor

NEURAL NETWORK

- Surrogate regression using MLP
- Maps design parameters to thrust and velocity

ACTIVE LEARNING WITH GA

- Genetic Algorithm (GA) used to compute Pareto front (thrust vs. velocity)
- Iterative re-sampling around Pareto to expand dataset
- Stopping criterion: improvement evaluation

