Astrofisica

Cesare Sabattini Manginella

December 20, 2024

Abstract

1 Introduzione

ATTENZIONE: formulario ancora in fase di sviluppo. Alcune informazioni potrebbero essere incomplete o errate.

2 Unità di misura

2.0.1 Lunghezza

- Raggio solare: $R_{\odot} = 6.96 \times 10^8 m$
- Unità astronomica (UA): $1UA = 1.496 \times 10^{11} m$
- Anno luce (AL): $1AL = 9.461 \times 10^{15} m$
- Parsec (pc): $1pc = 3.086 \times 10^{16} m$. E' la distanza cui 1AU sottende 1".
- Redshift (lo vedremo più avanti).

2.0.2 Massa

• Massa solare: $M_{\odot} = 1.989 \times 10^{30} kg$

2.0.3 Tempo

• Anno: $1yr = 3.156 \times 10^7 s$

2.0.4 Velocità

• $\frac{km}{s}$

2.0.5 Temperatura

 \bullet Kelvin

3 Luminosità

3.1 Luminosità Bolometrica L

Quantità di energia emessa da una sorgente luminosa in un intervallo di tempo. Unità di misura:

- Watt
- Luminosità solare: $L_{\odot} = 3.83 \times 10^{26} W$
- Erg/s

3.2 Luminosità Monocromatica L_{ν}

Luminosità bolometrica per unità di frequenza. Unità di misura:

- Watt/Hz
- erg/(s Hz)

Altresì esprimibile in funzione della lunghezza d'onda λ (L $_{\lambda}$). Unità di misura:

- Watt/ μm
- erg/(s μ)

La relazione tra le due luminosità è data da:

$$L_{\nu}d\nu = -L_{\lambda}d\lambda \to L_{\lambda} = \frac{c}{\lambda^2}L_{\nu} \tag{1}$$

inoltre L e L_{ν} sono legate da:

$$L = \int_0^{\inf} L_{\nu} d\nu \tag{2}$$

3.3 Flusso F

Si definisce Flusso il rapporto tra luminosità e l'area sottesa dalla superficie di emissione isotropa di una sorgente.

$$F = \frac{L}{4\pi d^2} \tag{3}$$

3.3.1 Flusso monocromatico F_{ν}

Si definisce Flusso monocromatico il rapporto tra la luminosità monocromatica e l'area sottesa dalla superficie di emissione isotropa di una sorgente.

$$F_{\nu} = \frac{L_{\nu}}{4\pi d^2} \tag{4}$$

Ne segue immediatamente:

$$F = \int_0^{\inf} F_{\nu} d\nu \tag{5}$$

3.4 Magnitudine

3.4.1 Magnitudine apparente m

La magnitudine è una scala logaritmica per misurare la luminosità di un oggetto celeste. La magnitudine apparente m è definita come:

$$m = -2.5 \log_{10}(\frac{F}{F_0}) \tag{6}$$

dove ${\rm F}_0$ rappresenta il punto di riferimento per definire un flusso, sovente la stella Vega.

3.4.2 Magnitudine assoluta M

La magnitudine assoluta M è definita come la magnitudine apparente che avrebbe un oggetto celeste se fosse posto alla distanza di 10 pc.

$$M = m + 5 - \log_{10}(d_{pc}) \tag{7}$$

3.5 Colore

Si definisce colore la differenza in termini di megnitudine tra due bande fotometriche.

$$C = m_1 - m_2 \tag{8}$$

3.6 Estinzione

L'estinzione è la diminuzione del flusso dovuta alla presenza di polvere interstellare.

4 Astrofisica Osservativa

Studio dei corpi celesti mediante il loro spettro di emissione.

4.1 Potere risolutivo

Si definisce potere risolutivo teorico:

$$\theta = \frac{\lambda}{D} \tag{9}$$

dove λ è la lunghezza d'onda e D il diametro della lente o dello specchio. Dunque si vuole che θ sia il più piccolo possibile, aumentando la dimensione dello strumento di osservazione.

4.2 Atmospheric seeing

Il seeing atmosferico è la distorsione dell'immagine di un oggetto celeste dovuta alla turbolenza dell'aria. Si ovvia a tale problema mediante l'uso di telescopi adattivi.