

FCC RF EXPOSURE REPORT

FCC ID: T58N2R

Project No. : 1907T039

Equipment: AC1200 Wireless Daul Band Gigibit Router

Test Model : N2 Series Model : N2U

Applicant : NETIS SYSTEMS CO., LTD

Address: Floor 8, Building B, TongFang Information Harbor,

No.11 Langshan Road, Nanshan District, Shenzhen,

China.

According : FCC Part 2, Subpart J (2.1093)

KDB 447498 D01 General RF Exposure Guidance v06

IEEE Std C95.1-2005

Authorized Signatory

(Herbort Liu)

BTL INC.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan TEL:+886-2-2657-3299 FAX: +886-2-2657-3331

MPE CALCULATION METHOD:

Table 4: RF Field Strength Limits for Devices Used by the General Public (Uncontrolled Environment)

Frequency Range	Electric Field	Magnetic Field	Power Density	Reference Period
(MHz)	(V/m rms)	(A/m rms)	(W/m^2)	(minutes)
$0.003-10^{21}$	83	90	-	Instantaneous*
0.1-10	-	0.73/ f	-	6**
1.1-10	87/ f ^{0.5}	-	-	6**
10-20	27.46	0.0728	2	6
20-48	58.07/ f ^{0.25}	0.1540/ f 0.25	8.944/ f ^{0.5}	6
48-300	22.06	0.05852	1.291	6
300-6000	$3.142 f^{0.3417}$	0.008335 f 0.3417	0.02619f ^{0.6834}	6
6000-15000	61.4	0.163	10	6
15000-150000	61.4	0.163	10	616000/ f ^{1.2}
150000-300000	0.158 f ^{0.5}	$4.21 \times 10^{-4} f^{0.5}$	6.67 x 10 ⁻⁵ f	616000/ f ^{1.2}

Note: f is frequency in MHz.

Table for Filed Antenna:

For WLAN

Ant.	Brand	Model	Type	Connector	Gain (dBi)
1	RF link	RF21C04434A	Dipole	IPEX	5.01
2	RF link	RF21C04435A	Dipole	IPEX	5.32

For RLAN

UNII-1:

	Ant.	Brand	Model	Type	Connector	Gain (dBi)
	1	RF link	RF21C04436A	Dipole	IPEX	5.32
	2	RF link	RF21C04437A	Dipole	IPEX	5.32
- 1		`	<u> </u>	·	·	·

UNII-3:

Ant.	Brand	Model	Type	Connector	Gain (dBi)
1	RF link	RF21C04436A	Dipole	IPEX	5.32
2	RF link	RF21C04437A	Dipole	IPEX	5.32

NOTE:

(a) The EUT incorporates a MIMO function. Physically, the EUT provides two completed transmitters and receivers (2T2R). 2.4 GHz and 5GHz can't transmit simultaneously.

^{*}Based on nerve stimulation (NS).

^{**} Based on specific absorption rate (SAR).

Test Result

For WLAN 2.4 GHz:

Frequency	Average	Average	Antenna	Distance (cm)	Power Density	Power Density
(MHz)	Power (dBm)	Power (W)	Gain (dBi)		(W/m²)	Limit(W/m²)
2412-2462	29.33	0.8569	5.32	20	0.5804	1

For RLAN 5 GHz:

Frequency (MHz)	Average Power (dBm)	Average Power (W)	Antenna Gain (dBi)	Distance (cm)	Power Density (W/m²)	Power Density Limit(W/m²)
5180-5240	20.31	0.1073	5.32	20	0.0727	1
5745-5825	17.04	0.0505	5.32	20	0.0343	1

NOTE:

1. WLAN 2.4GHz:

For NANT = 2 < 5,

Direction gain = GANT + 0 = 5.32 + 0 = 5.32 dBi

2. For RLAN 5GHz:

For $N_{ANT} = 2 < 5$,

Direction gain = $G_{ANT} + 0 = 5.32 + 0 = 5.32 \text{ dBi}$.

Conclusion:

The formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

WLAN 2.4 GHz + RLAN 5 GHz = 0.5804 / 1 + 0.0727 / 1 = 0.6531

Therefore the maximum calculations of above situations are less than the "1" limit.