When I run this in Rstudio, we get the following output:

Analysis of Variance Table

	Df	Sum Sq	Mean Sq	F value	$Pr_{()}F_{)}$
block	4	6.9465	1.7366	3.6692	0.0555884.
recipe	2	29.1472	14.5736	30.7918	0.0001747 ***
Residuals	8	3.7864	0.4733		

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

- A. Reject the null hypothesis and include block in further analysis
- B. Reject the null hypothesis and DON'T include block in further analysis
- C. Fail to reject the null hypothesis and include block
- D. Fail to reject the null hypothesis and DON'T include block

- Results in an additional variable, a block, that must be included in analysis
 - Can no longer use simple one-factor ANOVA
- Randomized block design
 - Paired design for > 2 treatments
 - Example:
 - Every treatment is replicated once within each block
 - Minimize "noise"
- Accounting for any variation caused by blocking can improve our treatment effect detection (i.e. increase the power of our test)
- Treatment effects are assessed by different treatments within each block so there is no interaction term

Experimental Design

Goals of experiments:

determine how explanatory variable (treatment) affects response variable

- Eliminate Bias
- Reduce Sampling Error
 - Blocking:

Response = Constant + Treatment + Block

H₀: Response = Constant + Block

H_A: Response = Constant + Block + Treatment

- Determine significance via ANOVA table which includes a row for the **block**
 - Calculates a F value for block examines how much better fit is with the block versus without

Response = Constant + Treatment + Block

 H_0 : Response = Constant + Block

H_A: Response = Constant + Block + Treatment

Response = Constant + Treatment + Block

H₀: Response = Constant + Block

H_A: Response = Constant + Block + Treatment

Source of variation	Sum of Squares	df	Mean Square	F	Р
BLOCK	2.340	4	0.5850		
Treatment	6.8573	2	3.4287	16.37	0.001
<u>Residual</u>	<u>1.6760</u>	<u>8</u>	0.2095		
Total	10.8733	14			

$$F = H_{A} = Constant + Block + Treatment$$

 H_0 Constant + Block

= residual+location+fish Abundance residual+location

Response = Constant + Treatment + Block

 H_0 : Response = Constant + Block

H_A: Response = Constant + Block + Treatment

Source of variation	Sum of Squares	df	Mean Square	F	Р
BLOCK	2.340	4	0.5850		
Treatment	6.8573	2	3.4287	16.37	0.001
<u>Residual</u>	<u>1.6760</u>	<u>8</u>	0.2095		
Total	10.8733	14			

$$F_{treatment} = \underline{H_{A-}} = \underline{Residual + Block + Treatment} = \underline{MS_{treatment}} = \underline{3.4287} = 16.37$$
 $H_0 \quad Residual + Block \quad Ms_{block} \quad 0.5850$

 $F_{0.05(1),2,14} = 3.74$ so we reject the H_{\odot}

Response = Constant + Block

 H_0 : Response = Constant +treatment

H_A: Response = Constant + treatment+Block

Source of variation	Sum of Squares	df	Mean Square	F	Р
BLOCK	2.340	4	0.5850		
Treatment	6.8573	2	3.4287	16.37	0.001
<u>Residual</u>	1.6760	<u>8</u>	0.2095		
Total	10.8733	14			

$$F_{Block} = H_{A=} = Residual + treatment + Block = MS_{block} = 0.5850 = 2.79$$

 H_0 Residual + treatment $MS_{residual} = 0.2095$

 $F_{0.05(1),4,8}$ = 3.84 so we fail to reject the H_{\odot}

* note: this is for illustration, though – you always want to include the block when it has been designed that way!

General Linear Models

Blocking

Source of variation	Sum of Squares	df	Mean Square	F	Р
BLOCK	2.340	4	0.5850		
VARIABLE	6.8573	2	3.4287	16.37	0.001
<u>Residual</u>	<u>1.6760</u>	<u>8</u>	0.2095		
Total	10.8733	14			

The foraging gene, *for*, has been found to underlie variation in foraging behavior in several insect species. Researchers examined if the gene might influence behavioral differences in the honey bee. Worker bees perform tasks in the hive such as brood care when they are young and switch to foraging for nectar and pollen as they age. The authors compared *for* gene expression in nurse and foraging workers bees in three bee colonies.

General Linear Models

Worker type	Colony	for gene expression
Nurse	1	0.99
Forager	1	1.93
Nurse	2	1.00
Forager	2	2.36
Nurse	3	0.24
Forager	3	1.96
Forager Nurse Forager Nurse	1 2 2 3	1.93 1.00 2.36 0.24

Colony is the nuisance Block

Worker type

Worker type	Col	ony	for gene expression
Nurse	1	0.	99
Forager	1	1.	93
Nurse	2	1.	00
Forager	2	2.	36
Nurse	3	0.	24
Forager	3	1.	96

For Expression = Constant + Worker Type + Colony

Constant = 'grand mean' for gene expression Worker type = treatment Colony = block

General Linear Models

Blocking:

Worker type	9	Colony	for gene expression
Nurse	1		0.99
Forager	1		1.93
Nurse	2		1.00
Forager	2		2.36
Nurse	3		0.24
Forager	3		1.96

 H_0 : For Expression = Constant + COLONY

 H_A : For Expression = Constant + Worker TYPE+COLONY

Worker type	Colony	for gene expression		
Nurse	1	0.99		
Forager	1	1.93		
Nurse	2	1.00		
Forager	2	2.36		
Nurse	3	0.24		
Forager	3	1.96		

For Expression = Constant + Worker Type + Colony

 H_0 : For Expression = Constant + COLONY

H_∧: For Expression = Constant + Worker TYPE+COLONY

I I// I OI E//	710001011	OUTOGET	11011101	· · · — • • ·	
Source of variation	Sum of Squares	df	Mean Square	F	Р
Colony	0.342	2	0.171		
Worker Type	2.69340	1	2.6930	35.53	0.0271
<u>Residual</u>	<u>0.152</u>	<u>2</u>	0.076		
Total		5			

$$F_{treatment} = \underline{H_{A-}}$$
 Residual+Block+ Treatment = $\underline{MS}_{treatment} = \underline{2.693} = 35.53$
 H_0 Residual + Block \underline{MS}_{block} 0.076

 $F_{0.05(1),1,2}$ = 18.51 so we reject the H_O

General Linear Models

Blocking:

Worker type		Colony	for gene expression
Nurse	1	_	0.99
Forager	1		1.93
Nurse	2		1.00
Forager	2		2.36
Nurse	3		0.24
Forager	3		1.96

Is worker type a random effect or a fixed effect?

What is the purpose of a blocking variable in experimental design?