PROBLEMAS 2.6

De los problemas 1 a 17 determine cuáles matrices son matrices elementales.

1.
$$\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$

1.
$$\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$
 2. $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

3.
$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

4.
$$\begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$$

5.
$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

$$6. \quad \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$

5.
$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 6. $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ 7. $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ 8. $\begin{pmatrix} -4 & 0 \\ 4 & 3 \end{pmatrix}$

8.
$$\begin{pmatrix} -4 & 0 \\ 4 & 3 \end{pmatrix}$$

$$\begin{array}{cccc}
\mathbf{9.} & \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}
\end{array}$$

10.
$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

9.
$$\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
 10. $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 11. $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix}$ 12. $\begin{pmatrix} 1 & 3 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$

$$\begin{array}{ccc}
\mathbf{13.} & \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix}
\end{array}$$

14.
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 15.
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

15.
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

16.
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -6 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 17.
$$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$17. \ \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

De los problemas 18 a 31 escriba la matriz elemental de 3×3 que lleva a cabo las operaciones con renglones dadas sobre una matriz A de 3×5 mediante multiplicaciones por la izquierda.

18.
$$R_1 \to \frac{1}{2}R_1$$

19.
$$R_1 \to -6R_1$$

20.
$$R_2 \to R_2 + 2R_1$$

19.
$$R_1 \rightarrow -6R_1$$
 20. $R_2 \rightarrow R_2 + 2R_1$ **21.** $R_3 \rightarrow R_3 - 8R_2$

22.
$$R_2 \rightarrow R_2 + 3R_3$$
 23. $R_1 \rightarrow R_1 - 7R_3$
 24. $R_1 \rightleftarrows R_3$

 25. $R_2 \rightleftarrows R_3$
 26. $R_1 \rightleftarrows R_2$
 27. $R_2 \rightarrow R_2$

23.
$$R_1 \rightarrow R_1 - 7I$$

$$24$$
 $R_1 \rightarrow R_2$

25.
$$R_2 \rightleftharpoons R_3$$

26.
$$R_1 \rightleftharpoons R_2$$

27.
$$R_2 \rightarrow R_2 + R_3$$

28.
$$R_1 \rightarrow -R$$

28.
$$R_1 \rightarrow -R_1$$
 29. $R_1 \rightarrow R_1 - 4R_2$ **30.** $R_2 \rightarrow \pi R_2$ **31.** $R_3 \rightarrow R_3 + pR_1$

30.
$$R_2 \rightarrow \pi R_2$$

31.
$$R_3 \to R_3 + pR_1$$

De los problemas 32 a 46 encuentre la matriz elemental E tal que EA = B.

32.
$$A = \begin{pmatrix} 2 & 3 \\ -1 & 4 \end{pmatrix}, B = \begin{pmatrix} 2 & 3 \\ 2 & 8 \end{pmatrix}$$

33.
$$A = \begin{pmatrix} 2 & 3 \\ -1 & 4 \end{pmatrix}, B = \begin{pmatrix} 2 & 3 \\ -5 & -2 \end{pmatrix}$$

34.
$$A = \begin{pmatrix} 0 & 4 \\ -4 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 \\ -4 & 1 \end{pmatrix}$$

35.
$$A = \begin{pmatrix} 1 & -3 \\ 2 & -8 \end{pmatrix}, B = \begin{pmatrix} 2 & -8 \\ 1 & -3 \end{pmatrix}$$

36.
$$A = \begin{pmatrix} 2 & 3 \\ -1 & 4 \end{pmatrix}, B = \begin{pmatrix} -1 & 4 \\ 2 & 3 \end{pmatrix}$$

37.
$$A = \begin{pmatrix} -6 & 3 & 9 \\ 8 & 7 & -1 \end{pmatrix}, B = \begin{pmatrix} -6 & 3 & 9 \\ 4 & 9 & 5 \end{pmatrix}$$

38.
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}, B = \begin{pmatrix} 5 & 6 \\ 3 & 4 \\ 1 & 2 \end{pmatrix}$$

39.
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 \\ 0 & -2 \\ 5 & 6 \end{pmatrix}$$

40.
$$A = \begin{pmatrix} 0 & 5 \\ 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} -3 & -1 \\ 1 & 2 \\ 3 & 4 \end{pmatrix}$$

41.
$$A = \begin{pmatrix} -6 & 3 & 9 \\ 8 & 7 & -1 \end{pmatrix}, B = \begin{pmatrix} 8 & 7 & -1 \\ -6 & 3 & 9 \end{pmatrix}$$