

4.2. Численные методы решение краевой задачи для ОДУ

Примером краевой задачи является двухточечная краевая задача для обыкновенного дифференциального уравнения второго порядка.

$$y'' = f(x, y, y')$$
 (4.28)

с граничными условиями, заданными на концах отрезка [a,b].

$$y(a) = y_0$$

 $y(b) = y_1$ (4.29)

Следует найти такое решение y(x) на этом отрезке, которое принимает на концах отрезка значения y_0, y_1 . Если функция f(x, y, y') линейна по аргументам y, y', то задача (4.28),(4.29) - линейная краевая задача, в противном случае – нелинейная.

Кроме граничных условий (4.29) называемых граничными условиями первого рода, используются еще условия на производные от решения на концах - граничные условия второго рода:

$$y'(a) = \hat{y}_0$$

 $y'(b) = \hat{y}_1$ (4.30)

или линейная комбинация решений и производных - граничные условия третьего рода:

$$\alpha y(a) + \beta y'(a) = \hat{y}_0$$

 $\delta y(b) + \gamma y'(b) = \hat{y}_1$, (4.31)

где $\alpha, \beta, \delta, \gamma$ - такие числа, что $|\alpha| + |\beta| \neq 0, |\delta| + |\gamma| \neq 0$.

Возможно на разных концах отрезка использовать условия различных типов.

В данном пособии рассматриваются два приближенных метода решения краевой задачи:

- метод стрельбы (пристрелки);
- конечно-разностный метод.

4.2.1. Метод стрельбы

Суть метода заключена в многократном решении задачи Коши для приближенного нахождения решения краевой задачи.

Пусть надо решить краевую задачу (4.28), (4.29) на отрезке [a,b]. Вместо исходной задачи формулируется задача Коши с уравнением (4.28) и с начальными условиями

$$y(a) = y_0$$

 $y'(b) = \eta$ (4.32)

где η - некоторое значение тангенса угла наклона касательной к решению в точке x=a .

Положим сначала некоторое начальное значение параметру $\eta=\eta_0$, после чего решим каким либо методом задачу Коши (4.28),(4.32). Пусть $y=y_0(x,y_0,\eta_0)$ решение этой задачи на интервале [a,b], тогда сравнивая значение функции $y_0(b,y_0,\eta_0)$ со значением y_1 в правом конце отрезка можно получить информацию для корректировки угла наклона касательной к решению в левом конце отрезка. Решая задачу Коши для нового значения $\eta=\eta_1$, получим другое решение со значением $y_1(b,y_0,\eta_1)$ на правом конце. Таким образом, значение решения на правом конце $y(b,y_0,\eta)$ будет являться функцией одной переменной η . Задачу можно сформулировать таким образом: требуется найти такое значение переменной η^* , чтобы решение $y(b,y_0,\eta^*)$ в правом конце отрезка совпало со значением y_1 из (4.29). Другими словами решение исходной задачи эквивалентно нахождению корня уравнения

$$\Phi(\eta) = 0 \; ,$$

$$\text{где} \quad \Phi(\eta) = y(b, y_0, \eta) - y_1 \; .$$

Уравнение (4.33) является "алгоритмическим" уравнением, так как левая часть его задается с помощью алгоритма численного решения соответствующей задачи Коши. Но методы решения уравнения (4.33) аналогичны методам решения нелинейных уравнений, изложенным в разделе 2. Следует заметить, что так как невозможно вычислить производную функции $\Phi(\eta)$, то вместо метода

Ньютона следует использовать метод секущих, в котором производная от функции заменена ее разностным аналогом. Данный разностный аналог легко вычисляется по двум приближениям, например η_k и η_{k+1} . Следующее значение искомого корня определяется по соотношению

$$\eta_{j+2} = \eta_{j+1} - \frac{\eta_{j+1} - \eta_j}{\Phi(\eta_{j+1}) - \Phi(\eta_j)} \Phi(\eta_{j+1})$$
(4.34)

Итерации по формуле (4.34) выполняются до удовлетворения заданной точности.

Пример 4.9. Методом стрельбы решить краевую задачу $y'' = e^x + \sin y$ с граничными условиями 1-го рода y(0) = 1, y(1) = 2 на отрезке [0,1].

Решение

Заменой переменных z = y' сведем дифференциальное уравнение второго порядка к системе двух дифференциальных уравнений первого порядка.

$$\begin{cases} y' = z \\ z' = e^x + \sin y \end{cases}$$

Задачу Коши для системы с начальными условиями на левом конце $y(0)=1,y'(0)=\eta$ будем решать методом Рунге-Кутта 4-го порядка точности с шагом h=0.1 до удовлетворения условия на правом конце $\left|y(1.0,1.0,\eta_k)-2.0\right|=\left|\Phi(\eta_k)\right|\leq \varepsilon,$ где $\varepsilon=0.0001,$ и $y(1.0,1.0,\eta_k)$ - значение решения задачи Коши в правом конце отрезка при $b=1.0,y(0)=y_0=1.0,$ η_k - значение первой производной к решению в левом конце отрезка на k – ой итерации.

Примем в качестве первых двух значений параметра η следующие: η_0 =1.0, η_1 =0.8. Дважды решим задачу Коши с этими параметрами методом Рунге-Кутта с шагом h =0.1, получим два решения $y(1.0,1.0,\eta_0)$ = 3.168894836, $y(1.0,1.0,\eta_1)$ = 2.97483325. Вычислим новое приближение параметра η по формуле (4.34)

$$\eta_2 = 0.8 - \frac{0.8 - 1.0}{2.97483325 - 3.168894836} (2.97483325 - 2.0) = -0.204663797 \; ;$$

Решая задачу Коши с параметром η_2 , получим решение $y(1.0,1.0,\eta_2)=1.953759449$ и так далее.

$$\begin{split} &\eta_3 = -0.204663797 - \frac{-0.204663797 - 0.8}{1.953759449 - 2.97483325} (1.953759449 - 2.0) = -0.159166393 \,; \\ &y(1.0,1.0,\eta_3) = 2.001790565; \quad \left| \Phi(\eta_3) \right| = 0.001790565 \geq \varepsilon \,; \\ &\eta_4 = -0.159166393 - \frac{-0.159166393 - (-0.204663797)}{2.001790565 - 1.953759449} (2.001790565 - 2.0) = -0.160862503 \,; \\ &y(1.0,1.0,\eta_4) = 2.0000003115; \quad \left| \Phi(\eta_4) \right| = 0.0000003115 \leq \varepsilon \,; \end{split}$$

Вычисления заносим в таблицу 4.15

Таблица 4. 15

j	$oldsymbol{\eta}_j$	$y(1.0,1.0,\eta_j)$	$\left \Phi({m{\eta}}_j) ight $
0	+1.000000000	3.168894836	1.168894836
1	+0.800000000	2.974483325	0.974483325
2	-0.204663797	1.953759449	0.046240551
3	-0.159166393	2.001790565	0.001790565
4	-0.160862503	2.000003115	0.000003115

Приближенным решением краевой задачи будем считать табличную функцию, полученную в результате решения задачи Коши с параметром η_4 и приведенную в таблице 4.16.

Таблица 4.16

x_k	0.	0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	1.00
	0	00	00	00	00	00	00	00	00	00	О
y_k	1.0	0.993	1.006	1.039	1.094	1.1743	1.279	1.4123	1.5752	1.770	2.00
		28	01	42	97	4	44	6	8	45	0

4.2.2. Конечно-разностный метод решения краевой задачи

Рассмотрим двухточечную краевую задачу для линейного дифференциального уравнения второго порядка на отрезке [a,b]

$$y''+p(x)y'+q(x)y = f(x)$$
 (4.35)

$$y(a) = y_0, y(b) = y_1$$
 (4.36)

Введем разностную сетку на отрезке [a,b] $\Omega^{(h)}=\{x_k=x_0+hk\},\ k=0,1,...,N$, h=|b-a|/N. Решение задачи (4.35),(4.36) будем искать в виде сеточной функции $y^{(h)}=\{y_k,k=0,1,...,N\}$, предлагая, что решение существует и единственно. Введем разностную аппроксимацию производных следующим образом:

$$y_{k}' = \frac{y_{k+1} - y_{k-1}}{2h} + O(h^{2});$$

$$y_{k}'' = \frac{y_{k+1} - 2y_{k} + y_{k-1}}{h^{2}} + O(h^{2});$$
(4.37)

Подставляя аппроксимации производных из (4.37) в (4.35),(4.36) получим систему уравнений для нахождения y_k :

$$\begin{cases} y_0 = y_a \\ \frac{y_{k+1} - 2y_k + y_{k-1}}{h^2} + p(x_k) \frac{y_{k+1} - y_{k-1}}{2h} + q(x_k) y_k = f(x_k), k = 1, N - 1 \\ y_N = y_b \end{cases}$$
(4.38)

Приводя подобные и учитывая, что при задании граничных условий первого рода два неизвестных y_0, y_N уже фактически определены, получим систему линейных алгебраических уравнений с трехдиагональной матрицей коэффициентов

$$\begin{cases} (-2 + h^{2}q(x_{1})y_{1} + (1 + \frac{p(x_{1})h}{2})y_{2} = h^{2}f(x_{1}) - (1 - \frac{p(x_{1})h}{2})y_{a} \\ (1 - \frac{p(x_{k})h}{2})y_{k-1} + (-2 + h^{2}q(x_{k}))y_{k} + (1 + \frac{p(x_{k})h}{2})y_{k+1} = h^{2}f(x_{k}) \\ (1 - \frac{p(x_{N-1})h}{2})y_{N-1} + (-2 + h^{2}q(x_{N-1}))y_{N-1} = h^{2}f(x_{N-1}) - (1 + \frac{p(x_{N-1})h}{2})y_{b} \end{cases}$$

$$(4.39)$$

Для системы (4.39) при достаточно малых шагах сетки h и $q(x_k) < 0$ выполнены условия преобладания диагональных элементов

$$\left| -2 + h^2 q(x_k) \right| > \left| 1 - \frac{p(x_k)h}{2} \right| + \left| 1 + \frac{p(x_k)h}{2} \right|,$$
 (4.39)

что гарантирует устойчивость счета и корректность применения метода прогонки для решения этой системы.

В случае использования граничных условий второго и третьего рода аппроксимация производных проводится с помощью односторонних разностей первого и второго порядков.

$$y_{0}' = \frac{y_{1} - y_{0}}{h} + O(h);$$

$$y_{N}' = \frac{y_{N} - y_{N-1}}{h} + O(h)$$

$$y_{0}' = \frac{-3y_{0} + 4y_{1} - y_{2}}{2h} + O(h^{2});$$

$$y_{N}' = \frac{y_{N-2} - 4y_{N-1} + 3y_{N}}{2h} + O(h^{2});$$

$$(4.41)$$

В случае использования формул (4.40) линейная алгебраическая система аппроксимирует дифференциальную задачу в целом только с первым порядком (из-за аппроксимации в граничных точках), однако сохраняется трех диагональная структура матрицы коэффициентов. В случае использования формул (4.41) второй порядок аппроксимации сохраняется везде, но матрица линейной системы не трехдиагональная.

Пример 4.10. Решить краевую задачу
$$\begin{cases} y'' - xy' - y = 0 \\ y(0) = 1 \qquad \text{с шагом } h = 0.2. \\ y'(1) + 2y(1) = 0 \end{cases}$$

Здесь
$$p(x)=x$$
, $q(x)=1$, $f(x)=0$, $N=5$, $x_0=0, x_1=0.2, x_2=0.4, x_3=0.6$, $x_4=0.8, x_5=1.0$

Во всех внутренних узлах отрезка [0,1] после замены производных их разностными аналогами получим

$$(1-0.1x_k)y_{k-1} + (-2.04)y_k + (1+0.1x_k)y_{k+1} = 0, k = 1,...,4$$

На левой границе $y_0 = 1$, на правой границе аппроксимируем производную односторонней разностью 1-го порядка:

$$\frac{y_5 - y_4}{0.2} + 2y_5 = 0.$$

С помощью группировки слагаемых, приведения подобных членов и подстановки значений x_k и с учетом $y_0=1$ получим систему линейных алгебраических уравнений.

$$\begin{cases}
-2.04y_1 + 1.02y_2 = -0.98 \\
0.96y_1 - 2.04y_2 + 1.04y_3 = 0 \\
0.94y_2 - 2.04y_3 + 1.06y_4 = 0 \\
0.92y_3 - 2.04y_4 + 1.08y_5 = 0 \\
+ y_4 - 1.4y_5 = 0
\end{cases}$$

В данной трехдиагональной системе выполнено условие преобладания диагональных элементов и можно использовать метод прогонки (раздел 1.1.2).

В результате решения системы методом прогонки получим следующие значения: $y_5=0.2233205$, $y_4=0.31265$, $y_3=0.43111$, $y_2=0.58303$, $y_1=0.77191$.

Решением краевой задачи является табличная функция

Таблица 4.17

k	0	1	2	3	4	5
X_k	0	0.2	0.4	0.6	0.8	1.0
${\mathcal Y}_k$	1.0	0.77191	0.58303	0.43111	0.31265	0.22332

Найдите больше информации на сайте **Учитесь.ру** (www.uchites.ru)!