

Tutorato 3 di AL310

Tutori

Luciana Longo Sara Milliani

Anno Accademico 2016/2017 27 Ottobre 2016

1. Mostrare che i seguenti polinomi hanno stesso campo di spezzamento

$$x^4 - 9$$
 $x^4 - 2x^2 - 3$

2. Calcolare il campo di spezzamento dei seguenti polinomi

$$x^4 - 2$$
 $x^6 - 5x^4 - 2x^2 + 10$

- 3. Si consideri il numero reale $\alpha=\sqrt{5+\sqrt{5}},$ si determini il grado di α su $\mathbb Q$ e su $\mathbb Q(\sqrt{5})$
- 4. Calcolare il campo di spezzamento dei seguente polinomi: $f(x) = x^4 + 2x^2 + 9$ $g(x) = x^4 9x^2 + 20$ $h(x) = x^4 2x^2 1$
- 5. Dimostrare che l'applicazione

$$\phi: \quad \mathbb{Q}(\sqrt{2}) \longrightarrow \mathbb{Q}(\sqrt{3})$$

non è un isomorfismo di campi.

- 6. Sia ξ una radice primitiva ottava dell'unità. Dimostrare che $\mathbb{Q}(\xi) = \mathbb{Q}(i, \sqrt{2})$.
- 7. Per i valori di p a fianco indicati e per ciascuno dei seguenti polinomi f(x) in $\mathbb{F}_p[x]$, determinare il campo di spezzamento k di f(x) su \mathbb{F}_p ed il grado di K su \mathbb{F}_p . per p=2

$$x^{3} + x + 1$$
 $x^{3} + x^{2} + 1$ $x^{4} + x + 1$ $x^{6} + x^{3} + x^{2} + x + 1$

per p=3

$$x^3 + 2x + 1$$
 $x^4 + 2$

per p=5

$$x^3 + 2x + 1$$