Aufgabe 1. Zu zeigen ist

$$|a+b| \le |a| + |b|.$$

Es gilt $|x| = \max(x, -x)$. Dann ist $|a + b| = \max(a + b, -(a + b)) = \max(a + b, -a - b)$. Weiters, nachdem $\pm x \le |x|$,

$$a + b \le |a| + b \le |a| + |b|$$
, und $-a - b \le |a| - b \le |a| + |b|$.

Aufgabe 2.

$$0 \leq (x-y)^2 \qquad \qquad \text{Quadrat einer reellen Zahl ist} \geq 0$$

$$0 \leq x^2 - 2xy + y^2$$

$$4xy \leq x^2 + 2xy + y^2$$

$$4xy \leq (x+y)^2$$

$$\sqrt{xy} \leq \frac{x+y}{2} \qquad \qquad \text{Quadratwurzel, dann Division durch 2}$$

Aufgabe 3.

- a) $\frac{2}{\sqrt{5}}$
- b) $\frac{\sqrt{5}}{3}$
- c) $\frac{1}{\sqrt{2}}$

Aufgabe 4. Wir haben $\lim_{n\to\infty} |a_n| = 0$. Für beliebiges $\epsilon > 0$ gibt es ein n_{ϵ} mit $|0 - |a_n|| < \epsilon$ für $n > n_{\epsilon}$. Weil $|0 - |a_n|| = ||a_n|| = |0 - a_n|$ gilt auch $|0 - a_n| < \epsilon$ und somit $\lim_{n\to\infty} a_n = 0$.

Aufgabe 5. Sei (a_n) eine Folge die gegen a konvergiert. Für ein $\epsilon > 0$ gibt es also n_{ϵ} derart, dass

$$|a_n - a| < \epsilon \implies |a_n| < |a| + \epsilon$$
 (für alle $n \ge n_{\epsilon}$)

Für alle $n \ge n_{\epsilon}$ haben wir nun also $|a| + \epsilon$ als obere Schranke. Es gibt endlich viele $1 \le n < n_{\epsilon}$ also können wir durch $a_m = \max(a_1, a_2, \dots, a_{n_{\epsilon}-1})$ eine obere Schranke für $n < n_{\epsilon}$ finden. Die obere Schranke für (a_n) ist dann $\max(a_m, |a| + 1)$.

Die untere Schranke lässt sich analog konstruieren, unter Verwendung von min und $|a| - \epsilon$.

Aufgabe 6. Angenommen die gegebene Folge (a_n) konvergiert gegen ein a. Für alle $\epsilon > 0$ muss es also ein n_{ϵ} geben, mit $|a - a_n| < \epsilon$ für $n \ge n_{\epsilon}$. Sei $\epsilon = \frac{1}{2}$. Es gibt kein a derart, dass für alle $n > n_{\epsilon}$ gilt

$$|a-1| < \frac{1}{2}$$
 und $|a+1| < \frac{1}{2}$

$$|a-1| + |a+1| < 1$$

Aufgabe 7. Zu zeigen ist, dass $\lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$ gilt.

a) Sei $\epsilon > 0$ und $n_{\epsilon} = \frac{2}{\epsilon^2}$. Dann gilt

$$|a - a_n| = \left| 0 - \frac{1}{\sqrt{n}} \right| = \frac{1}{\sqrt{n}} = \frac{1}{\sqrt{\frac{2}{\epsilon^2}}} = \frac{1}{\frac{\sqrt{2}}{e}} = \frac{e}{\sqrt{2}} < e$$

Aufgabe 8. Sei (a_n) eine gegen a konvergierende Folge. Für alle $\epsilon > 0$ gibt es also ein n_{ϵ} ab dem für alle $n \geq n_{\epsilon}$

$$|a - a_n| < \epsilon$$

Dann gilt auch

$$\lambda |a - a_n| < \lambda \epsilon$$
$$|\lambda a - \lambda a_n| < \lambda \epsilon$$

für alle $\epsilon > 0$ und ab jeweiligen n_{ϵ} . Somit konvergiert (λa_n) gegen λa wenn (a_n) gegen a konvergiert.