Нехай маємо зв'язний неорієнтований граф в якому **вершини** з'єднуються **ребрами**, для кожного з яких задається **вага**

Задача побудови мінімального остового дерева полягає в побудові зв'язного підграфа, який містить усі вершини графа та має мінімальну вагу.

B C 7 d 9 14 14 e 10 h 1 g 2 f

Реалізація алгоритму Крускала починається зі знаходження ребра з мінімальною вагою. Дві вершини, що з'єднуються цим ребром утворюють дерево.

B C 7 d 9 14 e 10 f 10

Продовжуємо процес, на кожному кроці виконуючи перевірку: якщо обидва кінці ребра входять в одне дерево, то дане ребро пропускаємо.

Продовжуємо процес до того моменту, коли усі ребра будуть перевірені.

Мінімальне остове дерево побудоване.

Далі серед ребер з'єднуючих вершини дерева з вершинами, що не належать дереву, додаємо ребро найменшої ваги.

Вершина а формує дерево, серед ребер з вагою 4 та 8 обираємо найменшу, тобто 4.

На наступному кроці, за аналогією: Вершини **A** та **B** формують дерево, серед ребер з вагою 8, 8 та 11 обираємо найменшу, тобто 8. Можемо додати до дерева як вершину С так і вершину Н.

Нехай маємо зв'язний неорієнтований граф в якому **вершини** з'єднуються **ребрами**, для кожного з яких задається **вага**

Далі

b 8 C 7 d

В алгоритмі Пріма формування дерева починається з будь-якої кореневої вершини. Нехай це буде вершина а.

Продовжуємо процес до того моменту, коли в дереві будуть усі вершини графа.

Далі

Демонстрация алгоритма нахождения самого короткого пути на графике

Дискретная математика. Графы

ИНФОРМАЦИОННОЕ ОКНО

Продолжаем замену индексов до тех пор, пока остается хотя бы одна дуга, для которой можно уменьшить λ_i

Дискретная математика. Графы

ИНФОРМАЦИОННОЕ ОКНО

Продолжаем замену индексов до тех пор, пока остается хотя бы одна дуга, для которой можно уменьшить λ_j

Демонстрация алгоритма нахождения самого короткого пути на графике

Демонстрация алгоритма нахождения самого короткого пути на графике Дискретная математика. Графы 15 2 20 10 ИНФОРМАЦИОННОЕ ОКНО Таким образом, длина кратчайший путь в графе равна индексу начальной вершины = 32

Демонстрация алгоритма нахождения самого короткого пути на графике Дискретная математика. Графы 15 2 20 ИНФОРМАЦИОННОЕ ОКНО Внимание! Вершины с индексом 5 и 3 также удовлетворяет условию - следовательно имеется еще один минимальный путь. Покажем его иным цветом.