Capacité d'un ouvert en dimension 3

Houssam El Cheairi, Victor Spitzer

Février 2020

Abstract

To write at the end.

Résolution numérique du problème

1.1

Remarquons d'abord que l'inégalité à prouver est immédiate si $\phi=0_{\mathbb{R}}$

Ce cas étant mis à part, on considère alors une fonction ϕ non nulle p.p. On a alors en intégrant par parties:

$$\int_{0}^{+\infty} \phi(r)^{2} dr = [r\phi(r)]_{0}^{+\infty} - \int_{0}^{+\infty} 2r\phi(r)\phi'(r) dr = -\int_{0}^{+\infty} 2r\phi(r)\phi'(r) dr$$

Où la dernière inégalité provient du caractère $C_0^\infty(\mathbb{R})$ de ϕ . De plus, on a part Cauchy-Shwartz :

$$\left(\int_{0}^{+\infty} 2r\phi(r)\phi'(r)dr\right)^{2} \le 4\int_{0}^{+\infty} \phi(r)^{2}dr\int_{0}^{+\infty} (r\phi'(r))^{2}dr$$

Ainsi:

$$\left(\int_{0}^{+\infty} \phi(r)^{2} dr\right)^{2} = \left(\int_{0}^{+\infty} 2r\phi(r)\phi'(r)dr\right)^{2} \le 4\int_{0}^{+\infty} \phi(r)^{2} dr\int_{0}^{+\infty} (r\phi'(r))^{2} dr$$

En divisant par le terme (strict tement positif car ϕ est non nulle p.p) $\int_0^{+\infty}\phi(r)^2$ on obtient :

$$\int_0^{+\infty} \phi(r)^2 \le 4 \int_0^{+\infty} (r\phi'(r))^2 dr$$

Soit $\phi \in C_0^{\infty}(\mathbb{R}^3)$ avec $\phi|_{\Omega}$ constante. Considérons alors un réel R > 0 tel que $\operatorname{supp}(\phi) \subset \mathbb{B}(0, R)$ et posons $\delta = d(0, \Omega)$. On a alors sans difficultés:

$$\int_{\mathbb{R}^3\backslash\bar{\Omega}}\frac{\phi(x)^2}{|x|^2}dx\leq \int_{\mathbb{S}}\int_{\delta}^R\frac{\phi(rw)^2}{r^2}r^2drdw=\int_{\mathbb{S}}\int_{\delta}^R\phi(rw)^2drdw$$

Or $\forall w \in \mathbb{S}$:

$$\int_{\delta}^{R} \phi(rw)^{2} dr \leq \int_{0}^{+\infty} \phi(rw)^{2} dr \leq_{(1.1)} 4 \int_{0}^{+\infty} (r\psi'(r))^{2} dr$$

Où $\forall \alpha \in \mathbb{R}, \psi(\alpha) := \phi(\alpha w)$. On en déduit alors que :

$$\forall r \in \mathbb{R} : \psi'(r) = d\phi_{rw}.(r) = \nabla\phi(rw).w$$

Et donc par Cauchy-Shwartz:

$$(\psi'(r))^2 = |\nabla \phi(rw).w|^2 \le |\nabla \phi(rw)|^2 |w|^2 = |\nabla \phi(rw)|^2$$

Finalement on obtient:

$$\int_{\delta}^{R} \phi(rw)^2 dr \le 4 \int_{0}^{+\infty} r^2 |\nabla \phi(rw)|^2 dr$$

D'où:

$$\int_{\mathbb{R}^3\backslash\bar{\Omega}}\frac{\phi(x)^2}{|x|^2}dx \leq 4\int_{\mathbb{S}}\int_0^{+\infty}|\nabla\phi(rw)|^2r^2drdw = 4\int_{\mathbb{R}}|\nabla\phi(x)|^2dx$$

Or puisque $\phi|_{\Omega}$ est constante on en déduit que $\int_{\bar{\Omega}} |\nabla \phi(x)|^2 dx = 0$. En effet $\nabla \phi = 0$ sur Ω et donc sur $\bar{\Omega}$ par continuité de $\nabla \phi$.

On en déduit finalement:

$$\int_{\mathbb{R}^3 \setminus \bar{\Omega}} \frac{\phi(x)^2}{|x|^2} dx \le 4 \int_{\mathbb{R} \setminus \bar{\Omega}} |\nabla \phi(x)|^2 dx$$