

Lecture 1 Fourier Methods

02689 Advanced Numerical Methods for Differential Equations

Allan Peter Engsig-Karup

Scientific Computing Section

DTU Compute

Technical University of Denmark

DTU Compute

Department of Applied Mathematics and Computer Science

Fourier methods

General Fourier Series representation of a function f(x) on a domain $x \in [0,T]$ where solution is periodic, i.e. f(x) = f(x+nT) with n an integer, for a real-valued function

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx)$$

with coefficients defined from

$$a_n = \frac{2}{T} \int_0^T f(x) \cos(nx) dx$$
$$b_n = \frac{2}{T} \int_0^T f(x) \sin(nx) dx$$

If f(x) is symmetric, i.e. f(-x)=f(x) then it is possible to show that $b_n=0$ and if f(x) is antisymmetric then $a_n=0$.

Fourier methods

The Fourier series can be expressed in complex form as

$$f(x) = \sum_{n = -\infty}^{\infty} c_n e^{inx}$$

where the Fuler formula has been used

$$e^{inx} = \cos(nx) + i\sin(nx), \quad i = \sqrt{-1}$$

and where the expansion coefficient are then defined from

$$c_n = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-inx} dx = \begin{cases} \frac{1}{2}a_0 &, n = 0\\ \frac{1}{2}(a_n - ib_n) &, n > 0\\ \frac{1}{2}(a_n + ib_n) &, n < 0 \end{cases}$$

With the given definitions we can find the inverse relationships

$$a_n = c_n + c_{-n}, \quad n \ge 0$$

 $b_n = i(c_n - c_{-n}), \quad n \ge 1$

Trigonometric polynomials

For practical purposes the Fourier series is usually approximated by a truncated version (i.e. partial sum) of the form

$$\mathcal{P}_N f(x) = \frac{a_0}{2} + \sum_{n=1}^N a_n \cos(nx) + \sum_{n=1}^N b_n \sin(nx)$$

which is referred to as a real trigonometric polynomial of degree N.

This partial sum can be rewritten using Euler's formula and expressed as the projection

$$\mathcal{P}_N f(x) = c_0 + \sum_{n=1}^N \left(c_n e^{inx} + c_{-n} e^{-inx} \right) = \sum_{n=-N}^N c_n e^{inx}$$

If we introduce au as the truncation error, then we find

$$f(x) = \mathcal{P}_N f(x) + \tau, \quad \tau = \sum_{|n|=N+1}^{\infty} c_n e^{inx}$$

with the error dependent on how rapid c_n decays for $n \to \infty$.

Consider the approximation of the periodic extension of the piece-wise continuous function

$$f_1(x) = x$$

which can be shown to have the expansion coefficients

$$c_n = \left\{ \begin{array}{ll} \pi & , n = 0 \\ \frac{i}{n} & , n \neq 0 \end{array} \right.$$

Consider the approximation of the $C^0_p([0,2\pi])$ function

$$f_2(x) = x(2\pi - x)$$

which can be shown to have the expansion coefficients

$$c_n = \begin{cases} \frac{2\pi^2}{3} & , n = 0\\ -\frac{2}{n^2} & , n \neq 0 \end{cases}$$

Consider the approximation of the $C_p^\infty([0,2\pi])$ function

$$f_3(x) = \frac{3}{5 - 4\cos(x)}$$

which can be shown to have the expansion coefficients

$$c_n = 2^{-|n|}$$

Consider the approximation of the $C_n^0([0,2\pi])$ function

$$f_4(x) = \sin\left(\frac{x}{2}\right)$$

which can be shown to have the expansion coefficients

$$c_n = \frac{2}{\pi} \frac{1}{(1 - 4n^2)}$$

The complex Fourier series of a periodic function f(x) is defined as

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}, \quad c_n = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} dx$$

Using orthogonality of the basis functions

$$\int_0^{2\pi} e^{inx} e^{-ikx} dx = \begin{cases} 0, & k \neq n \\ 2\pi, & k = n \end{cases}$$

we can find the classical result referred to as Parseval's formula

$$\int_{0}^{2\pi} |f(x)|^{2} dx = \int_{0}^{2\pi} f(x) \overline{f(x)} dx = 2\pi \sum_{n=-\infty}^{\infty} |c_{n}|^{2}$$

Thus, if f(x) has bounded total variation then also the sum of the squares of the Fourier expansion coefficients is bounded.

Thus, the truncated Fourier series converges in the L^2 -norm as

$$||f(x) - \mathcal{P}_N f(x)||_{L^2[0,2\pi]} = ||\tau||_{L^2[0,2\pi]} \to 0 \text{ as } N \to \infty$$

But how fast does the series converge?

Suppose f(x) is periodic and has continuous derivatives of orders p=0,1,...,m-1 and $f^{(m)}(x)$ is integrable. By applying integration by parts it follows that

$$c_n = \frac{1}{2\pi (in)^m} \int_0^{2\pi} f^{(m)}(x)e^{-inx}dx$$

If $f^{(m)}(x)$ is integrable we find the upper bound

$$c_n \ll \frac{1}{n^m}, \quad n \to \infty$$

This implies that if f(x) is smooth and periodic, the Fourier series converges rapidly and uniformly.

- Algebraic convergence if $c_n = \mathcal{O}\left(\frac{1}{n}^m\right)$ for $n \to \infty$.
- ullet Spectral convergence if c_n decay faster than algebraically! (think infinite order asymptotic convergence)
- ullet If coefficients decay slowly, it requires a lot of work to evaluate f(x) to high accuracy (may not be practical)

Fourier series in practice

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}, \quad c_n = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} dx$$

Caveat's

- ullet Easy to determine Fourier coefficients c_n analytically for only a limited class of continuous functions.
- For arbitrary functions closed form expression for coefficients are not known.
- Point-wise convergence is determined by smoothness properties of f(x).

We can try and resort to approximations...

Discrete trigonometric polynomials

We know how to determine the coefficients of the continuous trigonometric polynomials, but

- How can we determine unknown coefficients for a discrete expansion?
- Can we retain the fast rate of convergence (accuracy) in approximate methods?
- How can it be done efficiently?

Main problem is orthogonal projection that requires evaluation of integrals.

What can we do?

Discrete trigonometric polynomials

Consider the coefficients

$$c_n = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-inx} dx$$

If we introduce a discrete set of N+1 points on the interval $x\in[0,2\pi]$ (odd number of points)

$$x_j = jh, \quad h = \frac{2\pi}{N+1}, \quad j = 0, 1, ..., N$$

The integral can be approximated discretely, e.g., using the composite Trapezoidal (quadrature) rule, and we find the following approximation to the coefficients (odd expansion)

$$\tilde{c}_n = \frac{1}{N+1} \sum_{j=0}^{N} f(x_j) e^{-inx_j}$$

Now, how fast convergence do we get?

Discrete trigonometric polynomials

If we use the discrete coefficients with an expansion for trigonometric polynomials with N+1 unknown coefficients (odd)

$$f(x) \approx \sum_{n=-N/2}^{N/2} \tilde{c}_n e^{inx}$$

Insert the expression for the discrete coefficients and we find

$$f(x) \approx \sum_{n=-N/2}^{N/2} \left(\frac{1}{N+1} \sum_{j=0}^{N} f(x_j) e^{-inx_j} \right) e^{inx}$$

If we change the order of summation we find

$$f(x) \approx \sum_{j=0}^{N} f(x_j) h_j(x), \quad h_j(x) = \frac{1}{N+1} \sum_{n=-N/2}^{N/2} e^{-inx_j} e^{inx}$$

Discrete orthogonality

If we evaluate $h_i(x)$ at the discrete set of nodes

$$x_i = \frac{2\pi}{N+1}i, \quad i = 0, 1, ..., N$$

it is possible to show by a change of index and by use of the summation formula (convert sum to a closed-form expression)

$$\sum_{n=0}^{M} q^n = \frac{q^{M+1} - 1}{q - 1}$$

that

$$h_j(x_i) = \left(\frac{1}{N+1} \sum_{n=-N/2}^{N/2} e^{in(x_i - x_j)}\right) = \delta_{ij}$$

This result implies that the discrete approximation to the function f(x) is in fact the (odd) Fourier Interpolant satisfying

$$\mathcal{I}_N f(x_n) = f(x_n), \quad n = 0, 1, ..., N$$

Fourier interpolation (odd expansion)

The odd Fourier Interpolant of a real function f(x), $x \in [0, 2\pi]$ is defined as

$$\mathcal{I}_N f(x) = \sum_{k=-N/2}^{N/2} \tilde{c}_k e^{ikx}$$

and satisfies the interpolation conditions

$$\mathcal{I}_N f(x_n) = f(x_n), \quad n = 0, 1, ..., N$$

for
$$x_n = \frac{2\pi n}{N+1}$$
.

The discrete coefficients (different from continuous coefficients) can be computed using the discrete inner product

$$\tilde{c}_k = \frac{1}{N+1} \sum_{j=0}^{N} f_j e^{-ikx_j} = \frac{1}{2\pi} (f, e^{ikx})_N, \quad k = -N/2, ..., N/2$$

The even Fourier Interpolant of a real function f(x), $x \in [0, 2\pi]$ is defined as

$$\mathcal{I}_N f(x) = \sum_{k=-N/2}^{N/2} \frac{\tilde{f}_k}{\bar{c}_k} e^{ikx}$$

where

$$\bar{c}_k = \left\{ \begin{array}{ll} 1, & k = -N/2 + 1, ..., N/2 - 1 \\ 2, & k = \pm N/2 \end{array} \right.$$

and satisfies the interpolation conditions

$$\mathcal{I}_N f(x_n) = f(x_n), \quad n = 0, 1, ..., N - 1$$

for $x_n = \frac{2\pi n}{N}$.

The discrete coefficients are computed as

$$\tilde{f}_k = \frac{1}{N} \sum_{j=0}^{N-1} f_j e^{-ikx_j} = \frac{1}{2\pi} (f, e^{ikx})_N, \quad k = -N/2, ..., N/2$$

Fourier interpolation

Consider the approximation of the $C_p^\infty([0,2\pi])$ function

$$f_3(x) = \frac{3}{5 - 4\cos(x)}$$

using a trigonometric polynomials based on coefficients computed using the Discrete Fourier Transform (DFT) method.

Fourier interpolation (odd expansion)

To rewrite the Lagrange interpolating polynomial function into a closed form expression that is easy to evaluate, we use the trigonometric sum formula

$$\sum_{k=-K}^{K}e^{iks}=\frac{\sin\left((K+\frac{1}{2})s\right)}{\sin\left(\frac{1}{2}s\right)}$$

which can be derived from the partial summation formula

$$\sum_{n=0}^{M} q^n = \frac{q^{M+1} - 1}{q - 1}$$

We find

$$h_j(x) = \frac{1}{N+1} \frac{\sin\left(\frac{N+1}{2}(x-x_j)\right)}{\sin\left(\frac{1}{2}(x-x_j)\right)}, \quad j = 0, 1, ..., N$$

which is valid for a total of N+1 points $x_j=\frac{2\pi}{N+1}j$.

The interpolation property of the trigonometric polynomials is a consequence of the orthogonal properties of the DFT.

Illustration of Fourier interpolants for ${\cal N}=6.$

Fourier interpolation (odd expansion)

Thus, the solution can be represented in Lagrange form as

$$\mathcal{I}_N u(x) = \sum_{j=0}^N u(x_j) h_j(x)$$

This form is referred to as a nodal expansion since the coefficients corresponds to the function values of u(x) evaluated at the grid nodes.

Discrete Fourier Transform (DFT)

The Discrete Fourier Transform (DFT) is the mapping between the discrete set of complex values $f(x_j)$ and the complex coefficients \tilde{c}_k of the trigonometric polynomial.

In summary, the N-point Discrete Fourier Transform (DFT) is defined as

$$\tilde{c}_k = \frac{1}{N} \sum_{j=0}^{N-1} f(x_j) e^{-2\pi i j k/N}, \quad k = -N/2, ..., N/2 - 1$$

and the inverse discrete Fourier Transform (IDFT) as

$$f(x_j) = \sum_{k=-N/2}^{N/2-1} \tilde{c}_k e^{2\pi i j k/N}, \quad j = 0, 1, ..., N-1$$

The DFT operations can be computed using the Fast Fourier Transform (FFT) method due to Cooley and Turkey (1967).

Discrete Fourier Transform (DFT) in Matlab

The Discrete Fourier Transform (DFT) in Matlab is defined as

$$X_{j} = \sum_{k=1}^{N} x_{k} \exp \left[-ik \left(\frac{2\pi j}{N}\right)\right], \quad j = 1, 2, ..., N$$

where Matlab coefficients are normalized differently than the standard DFT. We have $\tilde{c}_j = \frac{1}{N} X_j$.

The inverse DFT is defined as

$$x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k \exp\left[in\left(\frac{2\pi k}{N}\right)\right], \quad n = 1, 2, ..., N$$

where $f(x_n) = Nx_n$.

The actions of the DFT operations can be performed on a data set via the Matlab commands fft, and ifft.

Fast Fourier Transform (FFT) in Matlab¹

The Fast Fourier Transform is defined on the interval $x \in [0, 2\pi[$ with $x_j = \frac{2\pi}{N}j$ and assumed periodic such that $x_0 = x_N$.

In Matlab the discrete Fourier coefficients produced by fft is stored according to the wave number space interval [-N/2,N/2] in the following order

$$0, 1, ..., \frac{N}{2} - 1, -\frac{N}{2}, -\frac{N}{2} + 1, ..., -1$$

i.e. such that

- First half of coefficients corresponds to positive wavenumber parts.
- Second half of remaining coefficients corresponds to negative wavenumber parts.

¹Check out: http://www.fftw.org/, the fastest Fourier transform in the West .

A couple of useful commands in Matlab

```
% reorder coefficients such that they follow
% natural orderinger from low to high wave numbers
>> N = 6;
>> fftshift([0:N-1])
ans =
    3     4     5     0     1     2
% undo fftshift ordering back to Matlab standard
>> ifftshift(fftshift([0:N-1]))
ans =
    0     1     2     3     4     5
```

Zero-padding

Zero-padding is a technique that can be used for improving efficiency of DFT operations, interpolation via DFT and reducing aliasing errors in low wavenumber coefficients.

Assume the interpolating trigonometric polynomial of a function f(x) is given on a (N+1)-point grid as

$$\mathcal{I}_N f(x) = \sum_{k=-N/2}^{N/2} \tilde{c}_k e^{ikx}$$

Then via zero-padding we can represent same trigonometric polynomial on a refined (M+1)-point grid (M>N) as

$$\mathcal{I}_M f(x) = \mathcal{I}_N f(x) = \sum_{k=-M/2}^{M/2} \tilde{c}_k e^{ikx}$$

where $\tilde{c}_k = 0$ for |k| > N/2.

Matlab example of how **interpolation** can be done via FFT.

```
>> N = 11;
>> x = (0:N-1)/N*2-1;
>> u = exp(cos(pi*x));
>> cn = fft(u)/N; % Normalization
>> cn = fftshift(cn);
>> M = 40;
>> cm = zeros(1,M);
>> idx = round((M-1)/2+1+(-(N-1)/2:(N-1)/2))+mod(M,2);
>> cm(idx) = cn; % zero-padding
>> cm = fftshift(cm)*M; % Normalization
>> um = ifft(cm);
```


Example of interpolation of $I_{11}u(x)$ via zero-padding in Matlab with $u(x)=e^{\sin(x)}$ on $x\in[0,2\pi[$ to a new grid $x_j,\ j=0,1,...,39.$

Matlab example of how **truncation** from a very fine grid solution can be done via FFT.

```
% Define very fine grid
>> MM = 16*N: % Modes
>> xx = (0:MM-1)/MM*2*pi; % very fine grid
% Interpolation
>> uu0 = fun(xx,t,M);
% Discrete fourier transform via FFT
>> uuhat0 = fft(uu0)/MM; % normalization
>> uuhat0 = fftshift(uuhat0); % reorder
% Index map for order N solution
\Rightarrow idx = round((MM-1)/2+1+(-(N-1)/2:(N-1)/2))+mod(MM,2);
% Truncation to order N
>> uu1 = ifft( fftshift(uuhat0(idx))*N );
% Plotting
>> plot(x,u0,'k',xx,uu0,'r--',x,uu1,'bo'); xlabel('x')
>> legend('True', 'Interp. (alias.)', 'Proj. (de-alias.)')
```

1D Interpolation via FFT in Matlab

Matlab has a builtin function interpft that can be used to interpolate a signal efficiently via the FFT. The syntax is

```
>> y = interpft(x,n,dim)
```

and makes it possible to resample to n equidistant nodes on same interval. Check the documentation.

Matlab example of how interpolation can be done via FFT.

```
>> N = 11; x = (0:N-1)/N*2-1;
>> u = exp(cos(pi*x));
>> M = 5*N; y = (0:M-1)/M*2-1;
>> v = interpft(u,M);
>> plot(x,u,'o',y,v,'x')
```

Remark: The number of interpolation nodes M can be arbitrarily selected.

Errors of Fourier Interpolation

We have found that interpolating property is satisfied when discrete Fourier coefficients is used for the construction of a trigonometric polynomial, i.e.

$$\mathcal{I}_N u(x_i) = u(x_i)$$

Remark: No error at interpolation nodes, however, with global basis functions there can be errors in between nodes.

The size of the error can be measured in the L^2 -norm as

$$||u(x) - \mathcal{I}_N u(x)||^2 = \left| \left| \sum_{k=-N/2}^{N/2} (c_k - \tilde{c}_k) e^{ikx} + \sum_{|k|>N/2}^{\infty} c_k e^{ikx} \right| \right|^2$$
$$= 2\pi \left(\sum_{k=-N/2}^{N/2} |c_k - \tilde{c}_k|^2 + \sum_{|k|>N/2}^{\infty} |c_k|^2 \right)$$

Thus, minimum occur when $\tilde{c}_k = c_k$ for $|k| \leq N/2$. Thus, interpolation errors \geq truncation errors (due to aliasing).

Approximation of derivatives

How can we approximate derivatives of functions?

If we have approximations based on partial sums of the form

$$\mathcal{P}_N u(x) = \sum_{n=0}^{N-1} c_n e^{ikx}$$

derivatives can be obtained by direct analytical differentiation

$$\frac{d^q}{dx^q} \mathcal{P}_N u(x) = \sum_{n=0}^{N-1} c_n (ik)^q e^{ikx}$$

We note the following

- With the Fourier coefficients c_n known, the Fourier coefficients of the q'th derivative are given by $(ik)^q c_n$.
- The approximate expressions are of global nature and can be evaluated at arbitrary $x \in [0,2\pi]$ with coefficients known.

The Fourier Interpolation Derivative

If we choose to represent the solution in Lagrange form

$$\mathcal{I}_N u(x) = \sum_{j=0}^N u(x_j) h_j(x)$$

it is possible to determine derivatives of the $h_j(x)$ by algebraic differentiation using the rule

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$$

Direct differentiation of the interpolating polynomial leads to

$$\frac{d}{dx}\mathcal{I}_N u(x) = \sum_{j=0}^N u(x_j)h'_j(x)$$

The Fourier Interpolation Derivative

If we determine $h_j'(x)$ and evaluate it at $x_k = \frac{2\pi}{N+1}k$, k = 0, 1, ..., N we find

$$h'_j(x_k) = \frac{\frac{1}{2}(-1)^{k-l}}{\sin\left(\frac{\pi}{N+1}(k-l)\right)}$$

Remark: It shows that the Fourier Interpolation Derivative is identical to the infinite-order finite difference scheme!

From this derivative it also becomes clear that we can do differentiation via a matrix-vector product of the form

$$\frac{du_N}{dx} = Du_N, \quad D_{ij} = \begin{cases} \frac{1}{2}(-1)^{i+j} \left[\sin\left(\frac{\pi(i-j)}{N+1}\right) \right]^{-1} &, i \neq i \\ 0 &, i = j \end{cases}$$

with ${\cal D}$ an odd Fourier derivative matrix for the first derivative of the interpolant evaluated at the grid nodes.

Construction of derivative matrices

The derivative matrix ${\cal D}$ can be precomputed and stored for use multiple times. The construction can be sensitive to rounding errors.

Negative Sum Trick (NST)

Differentiation of a constant function should be zero. This implies that on a per grid point basis

$$\sum_{i=0}^{N} D_{ij} = 0, \quad i = 0, 1, ..., N$$

Enforce this condition explicitly by computing diagonal elements such that

$$D_{ij} = -\sum_{j=0, j \neq i}^{N} D_{ij}$$

Using the NST it is some times possible to reduce rounding errors.

Evaluation of derivative via FFT in Matlab


```
>> M = 31;
% exact solution
>> fun = @(x) exp(cos(x));
>> funx = @(x) -sin(x).*fun(x);
% range of wave numbers
>> kk = [0:round(M/2-1) -round(M/2-1):-1]
>> kk = kk*sqrt(-1);
% mesh paramters
>> h = 2*pi/M; x = (0:M-1)*h;
% Differentiation via FFT of periodic function.
>> u = fun(x);
>> ux = ifft(kk.*fft(u));
```


Note: optimal performance is hardware and implementation dependent (see fftw).

Phew!

© 2003 United Feature Syndicate, Inc.