

# AULA 11 – INTERPOLAÇÃO



Prof. Gustavo Resque gustavoresqueufpa@gmail.com

## INTRODUÇÃO

- A interpolação consiste em encontrar uma função g(x) suficientemente próxima de uma outra função f(x)
  - Sendo que a função g(x) pertence a uma classe de funções definidas a priori e satisfaz algumas propriedades

- Existem várias motivações para o uso da interpolação, citemos 2:
  - Quando se conhece somente alguns pontos tabelados da f(x) e se deseja calcular outros pontos não tabelados
  - Quando é computacionalmente caro calcular usando a f(x) ou difícil de resolver equações que derivam dela, como derivadas e integrais

## INTRODUÇÃO

 Exemplo: A tabela a seguir relaciona calor específico e temperatura da água

| temperatura<br>(°C) | 20      | 25      | 30      | 35      | 40      |
|---------------------|---------|---------|---------|---------|---------|
| calor<br>específico | 0.99907 | 0.99852 | 0.99826 | 0.99818 | 0.99828 |
| temperatura<br>(°C) | 45      | 50      |         |         |         |
| calor<br>específico | 0.99849 | 0.99878 |         |         |         |

 Dado isso, suponhamos que queiramos calcular o calor específico da água a 32,5°C ou a temperatura da água para 0.99837 de calor específico

#### INTERPOLAÇÃO

- Consideremos (n+1) pontos distintos  $x_0, x_1, ..., x_n$ , chamados nós da interpolação e os valores de f(x) para esses pontos  $f(x_0), f(x_1), ..., f(x_n)$
- A forma de interpolação que será vista a seguir consiste em se obter uma determinada função g(x) tal que:

$$\begin{cases} g(x_0) = f(x_0) \\ g(x_1) = f(x_1) \\ \vdots \\ g(x_n) = f(x_n) \end{cases}$$

# INTERPOLAÇÃO

- Graficamente
  - Neste caso, consideramos que g(x) pertence a classe das funções polinomiais



■ Dados os pontos  $(x_0, f(x_0)), (x_1, f(x_1)), ..., (x_n, f(x_n))$  queremos aproximar f(x) por um polinômio de grau  $n, p_n(x)$ , tal que:

$$f(x_k) = p_n(x_k) \ \forall \ k = 0,1,2,...,n$$

■ Representaremos  $p_n(x)$  por:

$$p_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

- Portanto, obter  $p_n(x)$  significar conhecer os coeficientes  $a_0, a_1, \dots, a_n$ 
  - Lembrando que já conhecemos alguns pontos de f(x)

■ Da condição  $p_n(x_k) = f(x_k), \forall \ k = 0,1,2,...,n$  montamos o seguinte sistema linear

$$\begin{cases} a_0 + a_1x_0 + a_2x_0^2 + \dots + a_nx_0^n = f(x_0) \\ a_0 + a_1x_1 + a_2x_1^2 + \dots + a_nx_1^n = f(x_1) \\ \vdots & \vdots & \vdots \\ a_0 + a_1x_n + a_2x_n^2 + \dots + a_nx_n^n = f(x_n) \end{cases}$$

■ Com n+1 equações e n+1 variáveis:  $a_0$ ,  $a_1$ , ...,  $a_n$ 

■ A matriz A de coeficientes é:

- Essa matriz é conhecida como matriz de Vandermonde.
  - De acordo com suas propriedades já conhecidas, desde que  $x_0, x_1, ..., x_n$ , sejam distintos, temos que  $\det(a) \neq 0$
  - Portanto, o sistema linear sempre admite solução única.

- **E**studaremos 3 formas de se obter  $p_n(x)$ :
  - Resolução do sistema linear visto
  - Método de Lagrange
  - Método de Newton

■ Resolução do sistema linear

#### Exemplo 1

Vamos encontrar o polinômio de grau ≤ 2 que interpola os pontos da tabela:

| x    | -1 | 0 | 2  |  |
|------|----|---|----|--|
| f(x) | 4  | 1 | -1 |  |

Temos que  $p_2(x) = a_0 + a_1 x + a_2 x^2$ ;

$$p_2(x_0) = f(x_0) \Leftrightarrow a_0 - a_1 + a_2 = 4$$
  
 $p_2(x_1) = f(x_1) \Leftrightarrow a_0 = 1$   
 $p_2(x_2) = f(x_2) \Leftrightarrow a_0 + 2a_1 + 4a_2 = -1$ .

Resolvendo o sistema linear obtemos:

• 
$$a_0 = 1$$
,

$$a_1 = -\frac{7}{3}$$
,

• 
$$a_2 = \frac{2}{3}$$
,

- No Exemplo 1 o polinômio fica assim:  $p_2(x) = 1 \frac{7}{3}x + \frac{2}{3}x^2$
- Embora a resolução tenha sido simples nesse caso, isso pode não ocorrer sempre, uma vez que a matriz de Vandermonde pode gerar situações de imprecisão para certos valores:
  - Exemplo: muitos pontos e valores baixos de x
  - Ou seja, n grande e x pequeno gera a situação em que x<sup>n</sup> pode ser tão próximo de 0 que degenere a solução dependendo da capacidade da mantissa.

#### FORMA DE LAGRANGE

- Sejam  $x_0, x_1, ..., x_n$  e  $y_i = f(x_i), \forall i = 0, 1, ..., n$
- Seja  $p_n(x)$  o polinômio de grau n que interpola f em  $x_0, x_1, \dots, x_n$ .
  - Podemos representar  $p_n(x)$  da seguinte forma

$$p_n(x_i) = y_0 L_0(x_i) + y_1 L_1(x_i) + \dots + y_n L_n(x_i) = y_i$$

A forma mais simples de satisfazer essa equação é:

$$L_{k}(x_{i}) = \begin{cases} 0 & \text{se } k \neq i \\ 1 & \text{se } k = i \end{cases}$$
 e, para isso, definimos  $L_{k}(x)$  por

$$L_k(x) \ = \ \frac{\left(x-x_0\right)\left(x-x_1\right) \ \dots \ \left(x-x_{k-1}\right)\left(x-x_{k+1}\right) \ \dots \ \left(x-x_n\right)}{\left(x_k-x_0\right)\left(x_k-x_1\right) \ \dots \ \left(x_k-x_{k-1}\right)\left(x_k-x_{k+1}\right) \ \dots \ \left(x_k-x_n\right)} \ .$$

#### FORMA DE LAGRANGE

■ Então a forma de Lagrange para o polinômio interpolador é:

$$p_n(x) = \sum_{k=0}^n y_k L_k(x)$$

Onde

$$L_k(x) = \frac{\prod_{j=0}^n (x - x_j)}{\prod_{\substack{j=0 \ j \neq k}}^n (x_k - x_j)}$$

#### FORMA DE LAGRANGE

#### Exemplo 3

Seja a tabela:

Pela forma de Lagrange, temos que:

$$p_2(x) = y_0 L_0(x) + y_1 L_1(x) + y_2 L_2(x)$$
, onde:

$$L_0(x) = \frac{(x - x_1) (x - x_2)}{(x_0 - x_1) (x_0 - x_2)} = \frac{(x - 0) (x - 2)}{(-1 - 0) (-1 - 2)} = \frac{x^2 - 2x}{3}$$

$$L_1(x) = \frac{(x - x_0) (x - x_2)}{(x_1 - x_0) (x_1 - x_2)} = \frac{(x + 1) (x - 2)}{(0 + 1) (0 - 2)} = \frac{x^2 - x - 2}{-2}$$

$$L_2(x) = \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} = \frac{(x+1)(x-0)}{(2+1)(2-0)} = \frac{x^2+x}{6}.$$

Assim, na forma de Lagrange,

$$p_2(x) = 4\left(\frac{x^2-2x}{3}\right) + 1\left(\frac{x^2-x-2}{-2}\right) + (-1)\left(\frac{x^2+x}{6}\right).$$

Agrupando os termos semelhantes, obtemos que  $p_2(x) = 1 - \frac{7}{3}x + \frac{2}{3}x^2$ , que é a mesma expressão obtida no Exemplo 1.