Évaluation Individuelle TP N2 - Sujet A

Nom:	Prénom :
110111 •	i ichom .

Les données analysées ici sont celles proposées dans le fichier titanic.csv.

Notations: Dans ce sujet, on se propose d'étudier l'âge des passagers (age) de première classe (pclass). En sachant que la classe "aisé" (ou première classe) correspond aux passagers de classe = 1. On notera X la variable âge chez les passagers de classe "aisé", μ_X son espérance et σ_X^2 sa variance. On s'intéressera tout particulièrement par la suite à la proportion de passager dans X ayant un âge > 40 que l'on notera p.

1. (2 pts) Charger le jeu de données titanic.csv dans tita. En extraire les échantillons de X qu'on affectera à x. Indiquer les instructions utilisées, depuis le répertoire de travail contenant le fichier titanic.csv, pour construire tita et x:

| tita = | = . |
 |
.x | = |
 |
 |
 |
 |
 | |
|--------|-----|------|------|------|------|------|------|------|--------|---|------|------|------|------|------|--|

2. (3 pts : 1/2 par cellule du tableau) Compléter et commenter le tableau ci-dessous avec les estimations sans biais des espérances et écart-type des trois variables étudiées (à 10^{-3})

n	$\hat{\mu}$	$\hat{\sigma}$
1er quart.	médiane	3ème quart.

3. (2 pts) Indiquer les commandes permettant d'obtenir la figure ci-dessous. *Toutes les options doivent apparaître*.

••	••	• • •	•••		• • •	•••	• •	 ••	••	• •	••	· • •				• •	• • •	• • •		 	•		• • •	••	••	••	• •	••	• • •	••	••	• •	• • •	••	••	• •	• • •	•••	••	••	••	• •	••	••	• •		· • •	••
• •	• •	• • •	•••	• • •	• • •	••	• •	 • •	• •	• •	• • •		• • •	• •	• • •	•		• • •	• • •	 	•	• • •		• •	• •	• •	• •	• • •	• • •	• •	••			• •	• •	• •	• • •	• •	٠.	• •	• •	• •	• •	• •		• • •	· • •	• •

4.	(2 pts) Commentaires sur le tableau et le graphique précédent :

- 6. (3 pts : 1 pt par IC et 1 pt pour l'explication) Donner des intervalles de confiance de niveaux asymptotiques (ou exacts) 83% et 96% pour le paramètre \hat{p} (à 10^{-3}) dans le tableau suivant.

borne inf. IC niv 83% pour p	borne sup. IC niv 83% pour p
borne inf. IC niv 96% pour p	borne sup. IC niv 96% pour p

.....

7.	(7 pts) On donne $p_0=0.55$, la proportion de passagers de la classe "aisé" ayant un âge supérieur > 40. Faire un test statistique permettant de tester si la proportion \widehat{p} est significativement inférieure à cette valeur de référence p_0 . Utiliser un risque α de 5%.
	(a) (1 pt) Préciser les éventuelles conditions requises pour pouvoir faire le test mis en œuvre ainsi que la procédure utilisée.
	(b) (1.5 pts) Décrire les deux hypothèses testées :
	$\mathcal{H}_0:$ $\mathcal{H}_1:$
	(c) $(1,5 \text{ pts})$ Indiquer les instructions R exécutées pour réaliser le test précédent.
	(d) (1.5 pts) Donnez la valeur de la statistique de test et la p-valeur du test :

(e) Conclusion littérale $(1,5~\mathrm{pts})$:

 $tcalc = \dots \dots pval = \dots \dots pval = \dots$