研发提效 2.0:设计稿转代码的探索与实践之路

李伟涛

京东资深前端开发工程师

为一线互联网公司核心技术人员提供优质内容

☑ 每日要闻

☑ 技术干货

☑大咖访谈

☑行业趋势

大纲

- 1. 研发提效还能怎么做
- 2. 如何将设计稿转为静态代码
- 3. 为静态代码注入灵魂
- 4. 业务落地实践
- 5. 总结与展望

1. 研发提效还能怎么做

我们面临的问题

个性化需求井喷

业务快速增长以及千人千面带来的挑战

研发效率提升瓶颈明显

传统研发模式在提效上遇到瓶颈

研发资产沉淀缓慢

低代码平台需要大量组件以满足各种需求

研发提效三阶段

阶段三

?

阶段二

多端统一开发

一份代码多端适配思想带来效率 爆发式提升

极致的工程化

基于工程化思想为研发带来效率提升

研发提效三阶段

基于工程化思维的传统提效方式

研发提效三阶段

基于组件模板的低代码模式

- 01. 组件物料增长缓慢
- 02. 无法及时满足个性需求

探索设计稿自动生成代码的解决方案

智能代码

设计稿一键生成多端代码

面向个性化研发场景的研发交付提效解决方案

2. 如何将设计稿转为静态代码

设计稿转代码方案探索

设计稿转代码方案探索

设计稿转代码方案探索


```
<div class="goods">
  <img class="goods_img" src="//img14.360buyimg.com/img/jfs/t1/181843/2/2994/31375/60963b17Ebbac38f4/7297ab1d5a65b43c.png" alt="" />
  <div class="wrapper">
    <div class="cnt">
      <div class="tag_wrap">
        <span class="tag">618</span>
      <span class="goods_tit"> DYSON戴森吹风机便携家用电吹风负离子智能空...</span>
    </div>
  </div>
  <div class="interest_wrap">
    <span class="interest">满199减10</span>
  </div>
  <div class="cnt_row">
    <div class="cnt_col">
      <div class="price_wrapper">
        <span class="yuan">¥</span>
        <div class="price_cnt">
          <span class="price_txt">199.</span><span class="price_txt1">00</span>
        </div>
      </div>
      <div class="oriprice_wrap">
        <span class="oriprice">¥499.99</span>
      </div>
    </div>
    <img class="img" src="//img14.360buyimg.com/img/jfs/t1/186785/25/1990/3033/60963b17E626cdb18/f3e60519ffd76ad1.png" alt="" />
    <button class="buy"></button>
  </div>
</div
```


将设计稿数据处理成我们需要的格式

设计稿数据处理


```
"taskId": "8ADE0D0A-B272-4789-AEB4-3755BE37E72D",
"pluginVersion": "2.3.0",
"reference": "sketch",
"type": "Block",
"id": "Block_1",
"__VERSION__": "2.0",
"props": {
 "style": {
   "width": 354,
   "height": 548
 "attrs": {
   "x": 0,
    "y": 0
"children": [{
  "___VERSION__": "2.0",
  "props": {
   "style": {
     "backgroundColor": "#FFFFFF",
     "width": 354,
     "height": 548
    "attrs": {
     "x": 0,
```

"y": 0

获得结构描述数据

- 节点之间的结构特征
- 节点自身的 UI 特征
- 节点自身的逻辑特征
- 等等...

设计稿数据处理

设计稿

/ Step 1/ Step 2

图层解耦处理

蒙层处理

/ Step 3/

无用图层检测

/ Step 4/

智能图层合并

/ Step 5/

图片 CDN 化

/ Step 6/

文字导出处理

信息数据

使用布局算法将设计稿数据还原为结构良好的代码

布局还原算法

布局算法

- 还原设计稿
- 布局结构
- 结构合理化
- 样式合理化

代码结构

如何成组

如何正确成行成列

样式合理计算

布局还原算法

布局还原算法-节点预处理

设计稿信息数据

```
• • •
LayoutNode {
  ...省略节点属性
  ...部分节点方法
  appendChild (child) {}
  prependChild (child) {}
  insertAfter (insertedChild, afterChild) {}
  insertBefore (insertedChild, beforeChild)
{}replaceChild (newChild, replacedChild) {}
  removeChild (child) {}
  get x () {}
  get y () {}
  get width () {}
  get height () {}
  get offsetLeft () {}
  get offsetTop () {}
  get previousSibling () {}
  get nextSibling () {}
  intersect (node) {}
  contains (node) {}
  disjoint (node) {}
  tangent (node) {}
  hitTest (node) {
```


布局还原算法-空间位置成组

根据『相交面积』大小判断位置关系

布局还原算法-投影算法切割行列

投影原理

布局还原算法-投影算法切割行列

同层级元素投影

使用 Cavas 绘制水平、垂直方向投影

投影分割计算

根据颜色区块、透明区块进行分割

节点筛选

基于四叉树算法进 行节点区域内坐标 碰撞检测

布局还原算法-背景图算法推断图片背景

能够「包含」子元素的图片节点

布局还原算法-特征检测增强可用性

成组关系不当

行列划分不当

布局还原算法-特征检测增强可用性

布局还原算法-自动修复算法提升还原度

基于 puppeter 预渲染节点,判断布局是否正确

让代码具备语义化

代码语义化处理

代码语义化处理

生成代码

支持各类 DSL 及拓展

支持各类 DSL 及拓展

3. 为静态代码注入灵魂

组件智能识别映射方案

组件智能识别映射流程

组件智能识别一页面分割

组件智能识别一U区块识别

Block

组件智能识别一节点映射

将识别区块映射成 DOM 节点

组件智能识别一组件分类

提升组件识别准确率

- 01. 样本优化
- 02. 模型调参
- 03. 多层级识别方案

组件识别映射落地

通用的组件智能识别映射

组件识别能力可以开放给多业务使用

AI能力开放平台

AI能力开放平台

4. 业务落地实践

如何在真正业务中进行落地?

落地实践三诉求

一站式在线研发工作台

项目管理

可视化干预编辑器

项目设置

代码下载

能否生成业务逻辑?

组件化

异步数据请求面板

带智能提示的字段绑定

循环体处理

全局处理函数

大促活动大规模投入使用

5. 总结与展望

近期规划

智能化布局和语义处理升级

基于 AI 算法让布局和语义 处理更加符合研发习惯 02.

标准化一站式研发工作台

剥离业务耦合的标准化研 发工作台

03.

外部版本

提供对外服务的智能 代码开发平台

我们的未来愿景

成为基础产研设施

拥有更优秀的算法、更全面的工程化能力

实现端到端的生成

向设计即交付迈进,打造高效生产链

打造开放生态

建设开放生态,减低接入门槛,赋能更多业务场景

极客时间企业版

企业级一站式数字技术学习平台

原创精品 课程

知识技能 图谱

岗位能力 模型

测学考评 体系

分层分级 培训

数字管理 系统

数字化专业人才培训方案定制

C \ 6 13167596032

https://b.geekbang.org/

扫码免费咨询

THANKS

_

Global
Architect Summit

