Exercice 1 – (Bijection réciproque)

Soit $f: \mathbb{R} \to \mathbb{R}^{+*}$ définie par $f(x) = \frac{e^x + 2}{e^{-x}}$. Montrer que f est bijective et calculer sa bijection réciporque f^{-1} .

Exercice 2 – (Composition, injectivité et surjectivité)

Soient A, B, C et D 4 ensembles, et des applications $f:A\mapsto B,$ $g:B\mapsto C$ et $h:C\mapsto D.$

- 1. Montrer que si $q \circ f$ injective, alors f est injective.
- 2. Montrer que si $g \circ f$ surjective, alors g est surjective.
- 3. Montrer que $g \circ f$ et $h \circ g$ sont bijectives si et seulement si f, g et h sont bijectives.

Exercice 3 – (Dérivée de la fonction arcsin)

Soit $f: [-1,1] \mapsto [-\frac{\pi}{2}, \frac{\pi}{2}]$ telle que $f(x) = \arcsin(x)$. On souhaite déterminer la dérivée de f dans cet exercice.

- 1. Montrer que $\forall x \in [-1, 1], f'(x) = \frac{1}{\cos(\arcsin(x))}$.
- 2. A l'aide de l'identité $\cos^2 + \sin^2 = 1$, trouver une expression de $\cos(\arcsin(x))$ pour tout $x \in [-1, 1]$.
- 3. Conclure.

Exercice 4 – (Somme de fonctions hyperboliques)

 $\forall (x,y) \in \mathbb{R} \times \mathbb{R}$, montrer que :

- 1. sh(x+y) = sh(x)ch(y) + ch(x)sh(y)
- 2. ch(x+y) = ch(x)ch(y) + sh(x)sh(y)

Exercice 5 - (Inégalités de fonctions hyperboliques)

 $\forall x \in \mathbb{R}$, montrer que :

- 1. $sh(x) \geq x$
- 2. $ch(x) \ge 1 + \frac{x^2}{2}$

Exercice 6 - (Equation)

Résoudre l'équation cosh(x) = 2.