강의교안 이용 안내

- 본 강의교안의 저작권은 김영길과 한빛아카데미㈜에 있습니다.
- 이 자료를 무단으로 전제하거나 배포할 경우 저작권법 136조에 의거하여 벌금에 처할 수 있고 이를 병과(倂科)할 수도 있습니다.

통신시스템의 개요

기초 통신이론

디지털 통신 중심으로

Contents

- 1 통신의 역사
- 2 주파수 대역
- 용신시스템의 자원

통신 시스템은 [그림 1]과 같이 송신단, 채널, 수신단으로 구성되어 있다.

[그림 1] 통신 시스템의 블록도

$$s(t) \neq r(t)$$

1 통신의 역사

통신의 역사

1820	Oersted: 전류가 자기장을 만든다.	
1831	araday: 전자기 유도현상 발견	
	코일 감은 회로에 자석을 접근시키면 방해하는	
	방향으로 전류 생성	
1876	Bell의 전화 발명	
1896	Marconi 무선통신 실험	
1920	AM 방송 시작	
1936	영국 BBC TV 방송 시작	
1969	인터넷의 전신인 ARPANET 개발	
1979	1G cellular communication	
1992	2G cellular communication	

주파수대역

[표 1] ITU의 주파수 대역별 구분 기준

주파수 대역	주파수 범위	파장
VLF(초장파) Very Low Frequency	3~30 kHz	100~10 km
LF(장파) ^{Low Frequency}	30∼300 kHz	10~1 km
MF(중파) ^{Medium Frequency}	300~3000 kHz	1~0.1 km
HF(단파) ^{High Frequency}	3~30 MHz	100∼10 m
VHF(초단파) ^{Very High Frequency}	30∼300 MHz	10∼1 m
UHF(극초단파) ^{Ultra High Frequency}	300~3000 MHz	1~0.1 m
SHF(센티미터파) ^{Super High Frequency}	3~30 GHz	10~1 cm
EHF(밀리미터파) ^{Extra High Frequency}	30∼300 GHz	10~1 mm
THF(서브밀리미터파) ^{Tremendously High Frequency}	300~3000 GHz	1~0.1 mm

• mmWave for 5G

ISM band

- Industrial, Scientific, and Medical band
- 무료 주파수 대역
- Wi-Fi, Bluetooth, Zigbee

통신시스템의 자원

[그림 2] 통신 시스템의 자원인 전력, 대역폭, 복잡도와 자원 투자의 결과

- 전력
- 송신 전력
- 다중 사용자 간섭

- Q 통신 시스템의 성능을 증가시키기 위해서는 통신 시스템의 자원을 많이 사용해야 한다. 다음 중 통신 시스템의 자원이 아닌 것은?

- ① 대역폭 나 전력다 복잡도라 비트 오류 확률

Q&A

수고하셨습니다.