Solução dos Exercícios Capítulo 12

Exercício 1. (a) $D\hat{e}$ um exemplo de um conjunto $A \subset \mathbb{R}^2$ limitado tal que $\overline{c}(\partial A) > 0$. (b) Seja $A \subset \mathbb{R}^n$ um conjunto limitado e I um n-pavê tal que $I \supset A$. Considere uma

partição $P \in \mathcal{P}(\mathbf{I})$. Mostre que

$$\overline{J}(\partial A, P) = \overline{J}(A, P) - \underline{J}(A, P).$$

(c) Seja $A \subset \mathbb{R}^n$ limitado tal que A' é finito. Mostre que A é J-mensurável e c(A) = 0.

Solução: (a) Considere $A = ([0,1] \setminus \mathbb{Q})^2$. Então $\partial A = [0,1]^2$ e $c(\partial A) = 1$.

(b) Afirmo: $Cat_2(\partial A, P) = Cat_2(A, P) \setminus Cat_1(A, P)$.

Se $j \in \operatorname{Cat}_2(\partial A, P)$, então $\mathbf{I}_j \cap \partial A \neq \emptyset$. Como $\partial A \subset \overline{A}$, temos $\mathbf{I}_j \cap \overline{A} \neq \emptyset$ e consequentemente $j \in \operatorname{Cat}_2(A, P)$. Além disso, $\mathbf{I}_j \cap \partial A \neq \emptyset$ implica $\mathbf{I}_j \not\subset A$, de modo que $j \notin \operatorname{Cat}_1(A, P)$.

Por outro lado, se $j \in \operatorname{Cat}_2(A, P) \setminus \operatorname{Cat}_1(A, P)$, então $\mathbf{I}_j \cap \overline{A} \neq \emptyset$ e $\mathbf{I}_j \not\subset \mathring{A}$. Logo, $\mathbf{I}_j \cap (\overline{A} \setminus \mathring{A}) \neq \emptyset$. De fato, observe que $\mathbf{I}_j \cap \overline{A} \neq \emptyset$ e $\mathbf{I}_j \not\subset \mathring{A}$ implicam $\mathbf{I}_j \cap \overline{A} \cap (\mathring{A})^c \neq \emptyset$ e como $\overline{A} \cap (\mathring{A})^c = \overline{A} \setminus \mathring{A} = \partial A$, concluímos a afirmativa.

Como consequência da afirmativa, temos a igualdade: $\overline{J}(\partial A, P) = \overline{J}(A, P) - \underline{J}(A, P)$.

(c) Suponhamos inicialmente $A' = \emptyset$. Então, A possui um número finito de pontos: $A = \{x_1, \ldots, x_m\}$. Seja r > 0. Então,

$$A \subset \bigcup_{j=1}^{m} B_r(x_j),$$

onde B_r denota a bola de raio r com respeito à norma $\| \|_{\infty}$. Assim,

$$0 \le \overline{c}(A) \le \sum_{j=1}^{m} \overline{c}(B_r(x_j)) = m(2r)^n \to 0 \text{ se } r \to 0.$$

Suponhamos agora $A' = \{x_1, \dots, x_m\}$. Seja r > 0 e

$$B = A \setminus \bigcup_{j=1}^{m} B_r(x_j).$$

Então B é vazio ou possui um número finito de elmentos e, pelo item anterior, $\overline{c}(B) = 0$. Como

$$A \subset B \cup \left(\bigcup_{j=1}^{m} B_r(x_j)\right),$$

temos

$$\overline{c}(A) \le \overline{c}(B) + \sum_{j=1}^{m} \overline{c}(B_r(x_j)) \le m(2r)^n$$

e a conclusão segue.

Exercício 2. Mostre que se $A \subset \mathbb{R}^n$ é *J*-mensurável, o mesmo vale para \overline{A} . A recíproca é verdadeira?

Solução: Fixe um n-pavê tal que $\overline{A} \subset I$ e uma partição P de I. Considere $\{I_1, \ldots, I_m\}$ a família gerada por P. Então, $\operatorname{Cat}_2(\overline{A}, P) = \{j : I_j \cap \overline{A} \neq \emptyset\} = \operatorname{Cat}_2(A, P)$. Logo, $\overline{J}(\overline{A}, P) = \overline{J}(A, P)$. Além disso, como $A \subset \overline{A}$, temos $A \subset \overline{A}$, de modo que

$$\operatorname{Cat}_{1}(A, P) = \left\{ j \, ; \, \boldsymbol{I}_{j} \subset \overset{\circ}{A} \right\} \subset \left\{ j \, ; \, \boldsymbol{I}_{j} \subset \overset{\circ}{\overline{A}} \right\} = \operatorname{Cat}_{1}(\overline{A}, P) \quad \Rightarrow \quad \underline{J}(\overline{A}, P) \geq \underline{J}(A, P).$$

Assim,

$$\overline{J}(\overline{A}, P) - \underline{J}(\overline{A}, P) \le \overline{J}(A, P) - \underline{J}(A, P)$$

de onde concluimos que se A é J-mensurável, \overline{A} também é.

A recíproca é falsa, vide Exercício 12.1(a).

Exercício 3. Seja $A \subset \mathbb{R}^n$ conjunto J-mensurável. Mostre que:

(1) existe $\{A_k\}_{k\in\mathbb{N}}$ sequência de conjuntos elementares tal que

$$A_1 \subset A_2 \subset \dots$$
 e $\lim_{k \to \infty} c(A_k) = c(A);$

(2) existe $\{B_k\}_{k\in\mathbb{N}}$ sequência de conjuntos elementares tal que

$$B_1 \supset B_2 \supset \dots$$
 e $\lim_{k \to \infty} c(B_k) = c(A)$.

Solução: (a) Seja I um n-pavê tal que $I \supset A$. Para todo $\varepsilon > 0$, existe $P_{\varepsilon} \in \mathcal{P}(I)$ tal que

$$\overline{J}(A,P) - \underline{J}(A,P) < \varepsilon, \quad \forall P \supset P_{\varepsilon}.$$

Para $\varepsilon=1,1/2,1/3,\ldots$, podemos escolher $P_1\subset P_2\subset P_3\subset\cdots$ partições de \boldsymbol{I} tais que

$$\overline{J}(A, P_k) - \underline{J}(A, P_k) < \frac{1}{k}.$$

Seja $\mathcal{I}_k = \{I_{k,1}, \dots, I_{k,n_k}\}$ a família de n-pavês gerada pela partição P_k e consideremos

$$A_k = \bigcup_{j \in \operatorname{Cat}_1(A, P_k)} I_{k,j}.$$

Como $P_k \subset P_{k+1}$, cada n-pavê de \mathcal{I}_{k+1} está contido em algum n-pavê de \mathcal{I}_k . logo, $A_k \subset A_{k+1}$. Além disso, temos por definição, $c(A_k) = \underline{J}(A, P_k)$. Portanto

$$0 \le c(A) - c(A_k) \le \overline{J}(A, P_k) - \underline{J}(A, P_k) < \frac{1}{k}$$

e, consequentemente, temos

$$\lim_{k \to \infty} c(A_k) = c(A).$$

(b) Segue do mesmo argumento acima com

$$B_k = \bigcup_{j \in \operatorname{Cat}_2(A, P_k)} \mathbf{I}_{k,j}.$$

Exercício 4. Seja C o conjunto de Cantor, isto é, aquele obtido pelo seguinte processo recursivo:

$$\mathcal{C}_1 = [0,1] \setminus \left(\frac{1}{3}, \frac{2}{3}\right), \ \mathcal{C}_2 = \mathcal{C}_1 \setminus \left(\left(\frac{1}{9}, \frac{2}{9}\right) \cup \left(\frac{7}{9}, \frac{8}{9}\right)\right), \ \text{etc...}$$

Mostre que $\partial([0,1] \setminus \mathcal{C}) = \mathcal{C}$ e conclua que $[0,1] \setminus \mathcal{C}$ é *J*-mensurável.

Solução: É claro que $C_n \supset C_{n+1}$ e C_n é compacto, qualquer que seja $n \in \mathbb{N}$. Pelo Teorema 3.19, temos

$$\mathcal{C} = \bigcap_{k=1}^{\infty} \mathcal{C}_k \neq \emptyset.$$

Observe que

$$c(C_1) = 1 - \frac{1}{3} = \frac{2}{3}, \quad c(C_2) = \frac{2}{3} - \frac{2}{9} = \left(\frac{2}{3}\right)^2, \quad c(C_3) = \frac{4}{9} - \frac{4}{27} = \left(\frac{2}{3}\right)^3, \dots$$

e assim por diante, obtemos

$$c(\mathcal{C}_k) = \left(\frac{2}{3}\right)^k, \quad \forall k \in \mathbb{N}.$$

Como $\mathcal{C} \subset \mathcal{C}_k$ para todo k, temos

$$0 \le \overline{c}(\mathcal{C}) \le c(\mathcal{C}_k) = \left(\frac{2}{3}\right)^k$$

de onde se conclui que $\overline{c}(\mathcal{C}) = 0$.

Para mostrar que $A = [0,1] \setminus \mathcal{C}$ é J-mensurável, mostremos que $\partial A \subset \mathcal{C}$. Observe inicialmente que, por construção, $\mathcal{C} = [0,1] \setminus \bigcup_{i=1}^{\infty} I_i$, onde I_i denota o *i*-ésimo intervalo retirado. Logo, $A = \bigcup_{i=1}^{\infty} I_i$.

Suponhamos $x \in \partial A$. Então, para todo r > 0 temos

(a)
$$B_r(x) \cap A \neq \emptyset$$
, (b) $B_r(x) \cap A^c \neq \emptyset$.

Mas se $x \notin \mathcal{C}$, então

$$x \in (-\infty, 0) \cup (1, \infty) \cup \left(\bigcup_{i=1}^{\infty} I_i\right).$$

Se $x \in (-\infty, 0) \cup (1, \infty)$, então existe $r_0 > 0$ tal que $B_{r_0}(x) \subset (-\infty, 0) \cup (1, \infty)$, o que implica $B_{r_0}(x) \cap A = \emptyset$ e temos uma contradição com (a).

Logo, $x \in I_{i_0}$ para algum $i_0 \in \mathbb{N}$ e, consequentemente, existe $r_0 > 0$ tal que $B_{r_0}(x) \subset I_{i_0}$, o que implica $B_{r_0}(x) \subset A$, assim temos também uma contradição com (b). Portanto, $x \in \mathcal{C}$ e A é J-mensurável, pois $\overline{c}(\partial A) < \overline{c}(\mathcal{C}) = 0$.

Exercício 5. Prove o Corolário 12.9.

Solução: Por hipótese, f' é contínua em Ω . Logo, existe M>0 tal que

$$||f'(x)||_{\mathcal{L}(\mathbb{R}^n)} \le \frac{M}{2}, \quad \forall x \in K.$$

Se $x \in \Omega$ e $h \in \mathbb{R}^n$ é tal que $x + h \in \Omega$, então

$$f(x+h) = f(x) + f'(x)h + \epsilon(x,h),$$

onde $f': \Omega \to \mathcal{L}(\mathbb{R}^n)$ é contínua e, para cada $x \in \Omega$,

$$\lim_{h \to 0} \frac{\|\epsilon(x,h)\|}{\|h\|} = 0. \tag{12.1}$$

Se $K \subset \Omega$ é compacto, então o limite em (12.1) é uniforme em $x \in K$, isto é (veja Exercício 5.12), para todo $\varepsilon > 0$, existe $\delta > 0$ independente de x tal que se $||h|| < \delta$,

$$\frac{\|\epsilon(x,h)\|}{\|h\|} < \varepsilon, \quad \forall x \in K. \tag{12.2}$$

Assim, por (12.2) (com $\varepsilon = M/2$), existe $\delta_0 > 0$ tal que se $x \in K$ e $y \in \Omega$, com $\|y - x\| < \delta_0$, então $\|f(y) - f(x)\| < M\|y - x\|$ e a conclusão segue do Teorema 12.8.

Exercício 6. Mostre as seguintes propriedades sobre medida zero:

- (a) Se m(A) = 0 e $B \subset A$, então m(B) = 0;
- (b) Se c(A) = 0, então m(A) = 0;
- (c) A união enumerável de conjuntos de medida zero tem medida zero;

(d) m(A) = 0 se, e somente se, existe uma família enumerável de n-paralelepípedos satisfazendo as seguintes condições:

$$A \subset \bigcup_{j=1}^{\infty} \mathring{\mathbf{I}}_{j}$$
 e $\sum_{j=1}^{\infty} c(\mathring{\mathbf{I}}_{j}) < \varepsilon$.

(e) Seja $\mathbf{I} = [a_1, b_1] \times \cdots \times [a_n, b_n]$ um n-paralelepípedo tal que $a_j < b_j$ e $\partial \mathbf{I}$ a fronteira der \mathbf{I} . Mostre que $m(\partial \mathbf{I}) = 0$, mas que \mathbf{I} não tem medida zero.

Solução: O item (a) é trivial.

(b) Dado $\varepsilon > 0$, existe $\{\boldsymbol{I}_1, \dots, \boldsymbol{I}_m\}$ família finita de *n*-paralelepípedos tal que

$$A \subset \bigcup_{j=1}^{m} \mathbf{I}_{j}$$
 e $\sum_{j=1}^{m} c(\mathbf{I}_{j}) \leq \varepsilon/2$.

Considere então uma família enumerável qualquer $\{I_{m+1}, I_{m+2}, \ldots\}$ tal que

$$\sum_{j=m+1}^{\infty} (\boldsymbol{I}_j) \le \varepsilon/2.$$

Então é claro que a família $\{I_1,\ldots,I_m,I_{m+1},\ldots\}$ satisfaz a propriedade:

$$A \subset \bigcup_{j=1}^{\infty} \mathbf{I}_j$$
 e $\sum_{j=1}^{\infty} c(\mathbf{I}_j) \leq \varepsilon$.

(c) Seja $\{A_1, A_2, \ldots\}$ uma família enumerável de conjuntos de medida nula. Por hipótese, dado $\varepsilon > 0$, existe para cada $i \in \mathbb{N}$ uma família enumerável de n-paralelepípedos $\mathcal{I}_i = \{\boldsymbol{I}_1^i, \boldsymbol{I}_2^i \ldots\}$ tal que

$$A \subset \bigcup_{j=1}^{\infty} \mathbf{I}_{j}^{i} \quad \text{e} \quad \sum_{j=1}^{\infty} c(\mathbf{I}_{j}^{i}) \leq \varepsilon/2^{i}.$$

Então

$$\bigcup_{i=1}^{\infty} A_i \subset \bigcup_{i=1}^{\infty} \mathcal{I}_j = \bigcup_{i=1}^{\infty} \bigcup_{j=1}^{\infty} \mathbf{I}_j^i.$$

Como a união enumarável de conjuntos enumeáveis é enumerável, a família $\bigcup_{i=1}^{\infty} \mathcal{I}_i$ é enumerável e

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} c(\boldsymbol{I}_{j}^{i}) < \sum_{i=1}^{\infty} \frac{\varepsilon}{2^{i}} = \varepsilon.$$

(d) A condição é suficiente, pois $c(\mathbf{I}) = c(\mathbf{I})$ e $\mathbf{I} \subset \mathbf{I}$. Provemos então que a condição é necessária. Seja $\varepsilon > 0$ e $\{\mathbf{I}_1, \mathbf{I}_2, \ldots\}$ uma família enumerável de n-paralelepípedos tal que

$$A \subset \bigcup_{j=1}^{\infty} \mathbf{I}_j$$
 e $\sum_{j=1}^{\infty} c(\mathbf{I}_j) \leq \varepsilon/2$.

Se $I_k = [a_1^k, b_1^k] \times \cdots \times [a_n^k, b_n^k]$, denotemos $l_i^k = b_i^k - a_i^k$, de modo que $c(I_k) = l_1^k l_2^k \cdots l_n^k$. É claro que $c(I_k) = c(I_k)$. Para cada $s \ge 0$, consideremos o n-paralelepípedo aberto

$$I_k^s = \left(a_1^k - \frac{s}{2}, b_1^k + \frac{s}{2}\right) \times \left(a_2^k - \frac{s}{2}, b_2^k + \frac{s}{2}\right) \times \dots \times \left(a_n^k - \frac{s}{2}, b_n^k + \frac{s}{2}\right).$$

de modo que $c(I_k^s) = (l_1^k + s)(l_2^k + s) \cdots (l_n^k + s).$

A aplicação $s\mapsto c(\boldsymbol{I}_k^s)$ é um polinômio $p_k(s)$ de grau n e, pelo Teorema do Valor Médio, existe $0<\xi< s$ tal que

$$c(\mathbf{I}_k^s) - c(\mathbf{I}_k) = c(\mathbf{I}_k^s) - c(\mathbf{I}_k^0) = p_k(s) - p_k(0) = p_k'(\xi)s.$$

Denotando $l_{\max}^k = \max\{l_1^k, \dots l_n^k\}$, temos

$$p'_k(\xi)s = \sum_{i=1}^n \prod_{j \neq i} (l_j^k + \xi)s \le n(l_{\max}^k + \xi)^{n-1}s \le n2^{n-1}l_{\max}^{n-1}s.$$

Assim, para cada $k \in \mathbb{N}$ tomamos $s_k > 0$ tal que $n2^{n-1}l_{\max}^{n-1}s_k < \varepsilon/2^{k+1}$, de modo que

$$\sum_{k=1}^{\infty} c(\boldsymbol{I}_k^s) < \sum_{k=1}^{\infty} \left(c(\boldsymbol{I}_k) + n2^{n-1} l_{\max}^{n-1} s_k \right) < \frac{\varepsilon}{2} + \sum_{k=1}^{\infty} \frac{\varepsilon}{2^{k+1}} = \varepsilon.$$

Como os n-paralelepípedos I_k^s são abertos, concluímos a prova do item (d).

(d) Trivial! De fato, \boldsymbol{I} é elementar e, consequenetmente, J-mensurável. Logo, pelo Teorema 12.7, $c(\partial \boldsymbol{I}) = 0$. Pelo item (c) acima, concluímos que $\operatorname{med}(\partial \boldsymbol{I}) = 0$. Se $\operatorname{med}(\boldsymbol{I}) = 0$, existe para todo $\varepsilon > 0$ uma cobertura enumerável de n-paralelepípedos com soma total dos conteúdos menor que ε . Em particular, se $\varepsilon = c(\boldsymbol{I})/2$ temos

$$I \subset \bigcup_{i=1}^{\infty} I_i \quad \Rightarrow \quad c(I) \leq \sum_{i=1}^{\infty} c(I_i) < c(I)/2,$$

o que é impossível se $a_i < bi$ para todo $i = 1, \ldots, n$.

Exercício 7. Seja $I \subset \mathbb{R}^n$ $(n \ge 1)$ um n-pavê e $f : I \to \mathbb{R}$ função contínua. Considere o gráfico de f:

Graf
$$(f) = \{x = (x', x_n) \in \mathbb{R}^{n+1} ; x' \in \mathbf{I}, x_n = f(x')\}.$$

Mostre que Graf(f) tem conteúdo nulo em \mathbb{R}^{n+1} .

Solução: Como f é uniformemente contínua em I, dado $\varepsilon > 0$, existe δ tal que

$$||x - y||_2 < \delta \quad \Rightarrow \quad |f(x) - f(y)| < \frac{\varepsilon}{2\mu(\mathbf{I})}.$$

Seja $P \in \mathcal{P}(I)$ tal que $|P| < \delta$ e $\{I_1, \dots, I_m\}$ a família gerada por P. Se

$$f(x_j) = \min\{f(x) \, ; \, x \in \mathbf{I}_j\}, \quad f(y_j) = \max\{f(x) \, ; \, x \in \mathbf{I}_j\}$$

então

$$U(f,P) - L(f,P) = \sum_{j=1}^{m} (f(y_j) - f(x_j)) \mu(\mathbf{I}_j) < \frac{\varepsilon}{2}.$$

Sejam

$$m = \min\{f(x) \; ; \; x \in I\}, \quad M = \max\{f(x) \; ; \; x \in I\}$$

e considere $\widetilde{\boldsymbol{I}} = \boldsymbol{I} \times [n, M]$. Então $\widetilde{\boldsymbol{I}}$ é um (n+1)-pavê e $\operatorname{Graf}(f) \subset \widetilde{\boldsymbol{I}}$. Seja $\mathcal{I} = \{m = s_0 < s_1 < \dots < s_l = M\}$ uma partição de [m, M] tal que $\Delta s_i < \varepsilon$ e denotemos $\widetilde{P} = P \times \mathcal{I}$. Então \widetilde{P} é uma partição de $\widetilde{\boldsymbol{I}}$ cuja família gerada é

$$\{\widetilde{\boldsymbol{I}}_{i,j} = \boldsymbol{I}_i \times [s_{j-1}, s_j]; i = 1, \dots, m, j = 1, \dots l\}.$$

Observe que se $\operatorname{Graf}(f) \cap \widetilde{\boldsymbol{I}}_{i,j} \neq \emptyset$, então $\operatorname{Graf}(f) \cap \widetilde{\boldsymbol{I}}_{i,j-2} = \operatorname{Graf}(f) \cap \widetilde{\boldsymbol{I}}_{i,j+2} = \emptyset$. De fato, se

$$(x, f(x)) \in \operatorname{Graf}(f) \cap \widetilde{\boldsymbol{I}}_{i,j}, \quad (y, f(y)) \in \operatorname{Graf}(f) \cap \widetilde{\boldsymbol{I}}_{i,j-2}$$

então $||x - y|| < \delta$ e $|f(x) - f(y)| > \varepsilon$, o que contradiz a continuidade uniforme de f. Portanto, a quantidade de (n + 1)-pavês da família gerada por \widetilde{P} que interceptam o gráfico de f é, no máximo, 3m e como $\mu(\widetilde{I}_{i,j}) = \varepsilon \mu(I_i)$, temos

$$\overline{J}(\operatorname{Graf}(f), \widetilde{P}) \le 3(U(f, P) - L(f, P)) < 3\varepsilon.$$

Exercício 8. Seja $\gamma:[a,b]\to\mathbb{R}^n$ uma curva retificável e $\Gamma=\{\gamma(t)\,;\,t\in[a,b]\}$. Mostre que Γ tem conteúdo de Jordan nulo em \mathbb{R}^n .

Solução: Seja med(Γ) o comprimento da curva Γ . Como a aplicação $\gamma:[a,b]\to\mathbb{R}^n$ é uniformemente contínua, dado $0<\varepsilon<1$, existe $\delta>0$ tal que $\|\gamma(t)-\gamma(s)\|_2<\varepsilon$ se $|t-s|<\delta$.

Seja $P_{\varepsilon} = \{t_0 = a < t_1 < \dots < t_m = b\}$ uma partição de [a,b] tal que $t_i - t_{i-1} < \delta$ para todo $i = 1,\dots,m$. Seja Γ_{ε} a poligonal com vértices nos pontos $x_i = \gamma(t_i)$. Então, é claro que

$$\|\gamma(t) - x_i\|_2 < \varepsilon, \quad \forall t \in [t_{i-1}, t_i] \tag{*}$$

 \mathbf{e}

$$\sum_{i=1}^{m} \|\gamma(t_i) - \gamma(t_{i-1})\|_2 \le L.$$

Considere a seguinte visinhança tubular da poliginal Γ_{ε} :

$$\mathcal{V}_{\varepsilon} = \bigcup_{x \in \Gamma_{\varepsilon}} B_{\varepsilon}(x).$$

Afirmativa 1: $\Gamma \subset \mathcal{V}_{\varepsilon}$

$$\underline{\text{Afirmativa}} \ 2: \ \overline{c}(\mathcal{V}_{\varepsilon}) \le \frac{|\mathbb{S}^{n-2}|}{n-1} \mathrm{med}(\Gamma) \varepsilon^{n-1} + \frac{|\mathbb{S}^{n-1}|}{n} \varepsilon^{n}. \tag{**}$$

A afirmariva 1 é consequência direta de (*) e a desigualdade da afirmativa 2 implica que, no caso $\varepsilon < 1$, $\overline{c}(\Gamma) \le C\varepsilon$, onde C > 0 independe de ε . Assim, uma vez demostrada a afirmativa 2, teremos concluída a prova, fazendo $\varepsilon \to 0$.

Não faremos a prova da desiguladade (**) no caso geral. Entretanto, as figuras e as explicações abaixo são suficientemente convincentes no caso n=3 (em vez de demonstrar o óbvio complicado, eu aqui prefiro praticar com desenhos minhas aptidões aríticas).

Figura 1 Figura 2 Figura 3

A Figura 1 ilustra a visinhança $\mathcal{V}_{\varepsilon}$ no caso m=2 (i.e., com dois segmentos $[\gamma(a), \gamma(t_1)] \cup [\gamma(t_1), \gamma(b)]$), onde a linha pontilhada representa a poligonal Γ_{ε} . Neste caso, observamos (veja Figura 2) que as semiesferas das expremidades somam o volume $\frac{4}{3}\pi\varepsilon^3$, que correponde à parcela $|\mathbb{S}^{n-1}|\varepsilon^n/n$ na desigualdade (**), onde $|\mathbb{S}^{n-1}|=2\pi^{n/2}/\Gamma(n/2)$.

A Figura 3 mostra uma visinhança W_{ε} que contém a poliginal Γ_{ε} . Observe que W_{ε} é semelhante à $\mathcal{V}_{\varepsilon}$, exceto no entorno do ponto $\gamma(t_1)$ comum nos dois segmentos. Nessa região, W_{ε} é formada pela interseção dos cilindros. É fácil ver que o volume de W_{ε} é igual ao volume do cilindro circular reto cuja base é o círculo de raio ε e altura igual ao comprimento da poligonal, isto é, $\pi \varepsilon^2 \text{med}(\Gamma_{\varepsilon})$, que corresponde a $|\mathbb{S}^{n-2}| \text{med}(\Gamma_{\varepsilon}) \varepsilon^{n-1}/(n-1)$ no caso geral. Como $\text{med}(\Gamma_{\varepsilon}) \leq \text{med}(\Gamma)$, obtemos a outra parcela na desiguladade (**).

Para concluir o argmento, basta constatar que $\mathcal{V}_{\varepsilon} \subset \mathcal{W}_{\varepsilon}$. A Figura 4 ilustra esta fato.

Figura 4

Exercício 9. Sejam $A \subset \mathbb{R}^n$ conjunto J-mensurável e $f, g : A \to \mathbb{R}$ funções Riemann-integráveis. Mostre que fg é Riemann-integrável em A.

Exercício 10. Seja $I = [0,1] \times [0,1]$ e considere a função $f: I \to \mathbb{R}$ assim definida:

$$f(x,y) = \begin{cases} 1 & \text{se } x \in \mathbb{Q}, \\ 2y & \text{se } x \notin \mathbb{Q}. \end{cases}$$

f é Riemann integrável em I? As integrais iteradas existem? Justifique suas repostas.

Solução: Fixemos $x \in [0,1]$ e consideremos a função, $\psi : [0,1] \to \mathbb{R}$, $\psi(y) = f(x,y)$.

- se $x \in \mathbb{Q}$, então $\psi(y) \equiv 1$ e $\int_0^1 \psi(y) \, dy = 1$;
- se $x \notin \mathbb{Q}$, então $\psi(y) = 2y$ e $\int_0^1 \psi(y) \, dy = 1$;

Portanto, $\int_0^1 f(x,y) dy = 1$ para todo $x \in [0,1]$ e podemos calcular a integral iterada:

$$\int_0^1 \left(\int_0^1 f(x, y) \, dy \right) dx = 1.$$

Por outro lado, se ficarmos $y \in [0,1]$ e considerarmos a função $\varphi : [0,1] \to \mathbb{R}$, $\varphi(x) = f(x,y)$, φ não é Riemann-integrável, pois é descontínua em todos os pontos de seu domínio (com exceção, é claro, se y = 1/2). Neste caso, não está definida a integral iterada

$$\int_0^1 \left(\int_0^1 f(x,y) \, dx \right) dy.$$

Exercício 11. Seja $A = \mathbb{Q} \cap [0,1]$. Para cada $x \in A$, x = p/q fração irredutível, considere o conjunto S(x) assim definido: $S(0) = \{(0,0)\}$ e se $x \neq 0$,

$$S(x) = \left\{ \left(\frac{n}{q}, \frac{m}{q} \right) ; n, m = 0, 1, \dots, p \right\}.$$

Considere a função $f:[0,1]\times[0,1]\to\mathbb{R}$ definida por

$$f(x,y) = \begin{cases} 0 & \text{se } x \in A \text{ e } (x,y) \in S(x), \\ 1 & \text{senão.} \end{cases}$$

Mostre que

$$\int_0^1 \left(\int_0^1 f(x, y) \, dy \right) dx = \int_0^1 \left(\int_0^1 f(x, y) \, dx \right) dy = 1,$$

mas f não é Riemann-integrável em $[0,1] \times [0,1]$.

Solução: Fixe $x \in [0,1]$ e considere a função $f_x : [0,1] \to \mathbb{R}$ definida por $f_x(y) = f(x,y)$. Se $x \notin A$, então a aplicação $y \mapsto f_x(y) = f(x,y) = 1$ para todo $y \in [0,1]$. Se $x \in A$, então x = p/q fração irredutível e

$$f_x(y) = \begin{cases} 0 & \text{se } y \in \{0, 1/q, \dots, p/q\} \\ 1 & \text{senão.} \end{cases}$$

Em ambos os casos, a aplicação $y \mapsto f_x(y)$ é Riemann integrável em A e

$$F(x) = \int_0^1 f(x, y) \, dy = 1, \quad \forall x \in [0, 1]$$

e, consequentemente,

$$\int_0^1 \left(\int_0^1 f(x, y) \, dy \right) dx = 1.$$

O mesmo argumento vale para a aplicação $x \mapsto f_y(x)$, com $y \in [0,1]$ fixado. Portanto, valem as integrais iteradas.

Para mostrar que f não é integrável no quadrado $[0,1]^2$, considere uma partição P de $[0,1]^2$ e $\{\boldsymbol{I}_1,\ldots,\boldsymbol{I}_k\}$ a família gerada. Podemos então escolher $q\in\mathbb{N}$ suficientemente grande de modo que, para um qualquer pavê \boldsymbol{I}_j , existem $n,m\leq p$ tais que o par (n/q,m/q) pertença a \boldsymbol{I}_j . Como em cada um desses pavês há pontos com coordenadas irracionais, temos L(f,P)=0 e U(f,P)=1.

Exercício 12. Obtenha uma estimativa da constante C de em ternos de M e n.

Solução: Pelo binômio de Newton, temos

$$(1 + \varepsilon M)^n = 1 + \varepsilon M + \sum_{k=2}^n \binom{n}{k} \varepsilon^k M^k.$$

Como $\varepsilon M < 1$, temos

$$\sum_{k=2}^{n} {n \choose k} \varepsilon^k M^k < \varepsilon M \sum_{k=2}^{n} {n \choose k} = \varepsilon M (2^n - n - 1).$$

Portanto, $(1 + \varepsilon M)^n < 1 + \varepsilon M(2^n - n)$ e temos a seguinte experessão para a constante C:

$$C = M(2^n - n) \det[T].$$

Exercício 13. Seja $f:[0,1] \to \mathbb{R}$ contínua e $T \subset \mathbb{R}^2$ o tiângulo com vértices em (0,0), (1,0) e (0,1). Mostre que

$$\int_T f(x+y) \, dx dy = \int_0^1 u f(u) \, du.$$

Solução: Considere $G: \mathbb{R}^2 \to \mathbb{R}^2$ definida por G(u,v) = (u-v,v) e os conjuntos

$$D = \{(u, v); 0 \le u \le 1, 0 \le v \le u\},\$$

$$T = \{(x, y); 0 \le x \le 1, 0 \le y \le 1 - x\},\$$

Observe que T é o triângulo com vértices em (0,0), (1,0) e (0,1), D é o triângulo com vértices em (0,0), (1,0) e (1,1) e G(D)=T. Considere também a função F(x,y)=f(x+y).

Pelo Teorema de Mudança de variáveis, temos

$$\int_T F(x,y) \, dx dy = \int_D F(G(u,v)) |J_G(u,v)| \, du dv.$$

Como G é linear, $J_G(u, v) = \det[G] = 1$. Assim, aplicando a fórmula acima e o Teorema de Fubini, temos

$$\int_{T} f(x,y) \, dx dy = \int_{D} f(u) \, du dv = \int_{0}^{1} \left(\int_{0}^{u} f(u) \, dv \right) du = \int_{0}^{1} u f(u) \, du.$$

Exercício 14. Sejam $B_1(0)$ a bola aberta de \mathbb{R}^2 (relativa à norma euclidiana), de raio 1 e centro em zero, $f: \mathbb{R}^2 \to \mathbb{R}$ uma função contínua e R_{θ} a matriz de rotação:

$$R_{\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}.$$

Considere a função g definida por

$$g(\theta) = \int_{B_1(0)} f(R_{\theta}x) \, dx.$$

Mostre que $g(\theta) = g(0)$ para todo $\theta \in \mathbb{R}$.

Solução: A bola $B_1(0)$ é invariante pelas rotações, isto é, $R_{\theta}(B_1(0)) = B_1(0)$, qualquer que seja $\theta \in \mathbb{R}$. Como $\det[R_{\theta}] = 1$, a mudança de variável $y = R_{\theta}x$ nos dá dy = dx e

$$g(\theta) = \int_{B_1(0)} f(R_{\theta}x) dx = \int_{B_1(0)} f(y) dy = g(0).$$

Logo, g é constante.

Exercício 15. Sejam $\alpha \in \mathbb{R}$, $0 < a < b < +\infty$ e

$$D = \{ x \in \mathbb{R}^n ; a < ||x||_2 < b \}.$$

Considere $f: D \to \mathbb{R}$ a função definida por $f(x) = ||x||_2^{\alpha}$. Mostre que

$$\int_{D} f(x) dx = \begin{cases} |S^{n-1}|(n+\alpha)^{-1}(b^{\alpha+n} - a^{\alpha+n}) & \text{se } \alpha + n \neq 0, \\ |S^{n-1}| \ln(b/a) & \text{se } \alpha + n = 0. \end{cases}$$

Solução: Usando coordenadas esféricas, $f(x) = ||x||_2^{\alpha} = \rho^{\alpha}$. Logo,

$$\int_D f(x) dx = |S^{n-1}| \int_a^b \rho^{\alpha+n-1} d\rho$$

Exercício 16. Seja $||x||_p = (|x_1|^p + |x_2|^p + \cdots + |x_n|^p)^{1/p}$, $p \ge 1$, a norma p de \mathbb{R}^n . Determine os valores de $\alpha \in \mathbb{R}$ para os quais é finita a integral

$$\int_{B_1} \|x\|_p^{\alpha} dx, \quad \text{onde} \ B_1 = \{x \in \mathbb{R}^n \, ; \, \|x\|_2 \le 1\}.$$

Solução: Como as normas em \mathbb{R}^n são equivalentes, existem constantes positivas m e M tais que $m||x||_2 \le ||x||_p \le M||x||_2$, para todo $x \in \mathbb{R}^n$.

Aplicando coordenadas esféricas, temos (veja (12.46):

$$\int_{B_1(0)} \|x\|_2^{\alpha} dx = \frac{2\pi^{\pi/2}}{\Gamma(n/2)} \int_0^1 \rho^{\alpha+n-1} d\rho = \begin{cases} \frac{2\pi^{\pi/2}}{(n+\alpha)\Gamma(n/2)} & \text{se } n+\alpha > 0 \\ +\infty & \text{se } n+\alpha \le 0 \end{cases}$$

Portanto, segue da equicalência das normas que a integral é finita, se, e somente se, $\alpha > -n$.

Exercício 17. Seja $B_R(0)$ a bola fechada de centro em zero e raio R > 0 de \mathbb{R}^n , relativamente à norma $\| \cdot \|_1$, isto é,

$$B_R(0) = \{(x_1, x_2, \dots, x_n); |x_1| + |x_2| + \dots + |x_n| \le R\}.$$

Seja $V_n(R)$ o volume de $B_R(0)$.

- (a) Prove que $V_n(R) = R^n V_n(1)$.
- (b) Mostre que $V_n(1) = 2^n/n!$.

Solução: (a) Se $T: \mathbb{R}^n \to \mathbb{R}^n$ é definida por Tx = Rx, então T é linear (homotetia) e $\det[T] = R^n$ e

$$V_n(R) = \int_{T(B_1(0))} dx = \int_{B_1(0)} R^n du = R^n V_n(1).$$

(b) Observe que $V_n(1) = 2^n V_n^+$, onde V_n^+ é o volume de

$$B_n^+ = \{x \in \mathbb{R}^n ; ||x||_1 = 1, x_i \ge 0, i = 1, \dots, n\}.$$

Então,

$$V_n^+ = \int_0^1 dx_1 \int_0^{1-x_1} dx_2 \cdots \int_0^{1-x_1-\dots-x_n} dx_n$$

= $\int_0^1 dx_1 \int_0^{1-x_1} dx_2 \cdots \int_0^{1-x_1-\dots-x_{n-1}} (1-x_1-x_2-\dots-x_n) dx_n.$

Repare que a última inegral, cuja variável de integração é x_n , pode ser escrita da seguinte forma, denotando $\alpha = 1 - x_1 - \cdots - x_{n-1}$:

$$\int_0^{\alpha} (\alpha - x_n) \, dx_n = \frac{\alpha^2}{2} = \frac{(1 - x_1 - x_2 - \dots - x_{n-1})^2}{2}$$

Assim, temos

$$V_n^+ = \frac{1}{2} \int_0^1 dx_1 \int_0^{1-x_1} dx_2 \cdots \int_0^{1-x_1-\cdots-x_{n-2}} (1-x_1-x_2-\cdots-x_{n-1})^2 dx_{n-1}$$

e podemos repetir o processo considernado $\alpha = 1 - x_1 - \cdots - x_{n-2}$ na última integral:

$$\int_0^{1-x_1-\cdots-x_{n-2}} (1-x_1-x_2-\cdots-x_{n-1})^2 dx_{n-1} = \int_0^\alpha (\alpha-x_{n-1})^2 dx_{n-1} = \frac{\alpha^3}{3}.$$

E assim, sucessivamente, obtemos a fórmula

$$V_n(1) = 2^n V_n^+ = \frac{2^n}{n!}.$$

Exercício 18. Sejam $f: \mathbb{R} \times \mathbb{R}^n$ função de classe C^1 e $\Omega \subset \mathbb{R}^n$ aberto J-mensurável. Considere a função $M: \mathbb{R} \to \mathbb{R}$ definida por

$$M(t) = \int_{\Omega} f(t, x) \, dx.$$

Mostre que M é de classe C^1 em \mathbb{R} e

$$M'(t) = \int_{\Omega} \frac{\partial f}{\partial t}(t, x) dx, \quad \forall t \in \mathbb{R}.$$

Solução: Seja $Q=[0,T]\times\Omega$ e denotemos $X=(t,x)\in Q,\ \Delta X=(h,\Delta t)\in\mathbb{R}^n\times\mathbb{R}.$ Com f é de classe C^1 , temos

$$f(X + \Delta X) = f(X) + f'(X)\Delta X + \epsilon(X, \Delta X),$$

com

$$\lim_{\Delta X \to 0} \frac{|\epsilon(X, \Delta X)|}{\|\Delta X\|} = 0$$

uniformemente nos compactos de Q. Em particular, se $K\subset Q$ é compacto, dado $\varepsilon>0$, existe $\delta>0$ tal que

$$f(t + \Delta t, x) = f(t, x) + \frac{\partial f}{\partial t}(t, x)\Delta t + \epsilon(t, x, \Delta t)$$

com

$$\left| \frac{\epsilon(t, \Delta t, x)}{\Delta t} \right| < \varepsilon, \quad \forall (t, x) \in K.$$

Portanto, se $|\Delta t| < \delta$,

$$\left| \frac{M(t + \Delta t) - M(t)}{\Delta t} - \int_{\Omega} \frac{\partial f}{\partial t}(t, x) \, dx \right| \le \left| \int_{\Omega} \frac{\epsilon(t, \Delta t, x)}{\Delta t} \right| < \varepsilon c(\Omega).$$

Exercício 19. Seja $f: \mathbb{R}^n \to \mathbb{R}$ de classe C^1 e $\gamma: \mathbb{R} \to \mathbb{R}^n$ curva de classe C^1 tal que $\gamma(0) = 0$. Considere a função $F: (0, +\infty) \times \mathbb{R} \to \mathbb{R}$ definida por

$$F(t,r) = \int_{B_r(\gamma(t))} f(x) \, dx,$$

onde $B_r(\gamma(t))$ denota a bola de aberta de centro em $\gamma(t)$ e raio r > 0. Mostre que F é de classe C^1 e calcule

 $\frac{\partial F}{\partial t}, \quad \frac{\partial F}{\partial r}.$

Solução: (a) Seja $g : \mathbb{R} \times \mathbb{R}^n$ definida por $x = g(t, y) = y + \gamma(t)$. Então, g é de classe C^1 e $|J_g(t, y)| = 1$, o que implica dx = dy. Como $g(t, B_r(0)) = B_r(\gamma(t))$ para todo $t \in \mathbb{R}$, temos

$$F(t,r) = \int_{B_r(0)} f(g(t,y)) \, dy = \int_{B_r(0)} f(y + \gamma(t)) \, dy.$$

Pelo exercício anterior, F é de classe C^1 e

$$\frac{\partial F}{\partial t} = \int_{B_r(0)} \frac{\partial}{\partial t} f(y + \gamma(t)) dy$$

$$= \int_{B_r(0)} \langle \nabla f(y + \gamma(t)) : \gamma'(t) \rangle dy$$

$$= \int_{B_r(\gamma(t))} \langle \nabla f(x) : \gamma'(t) \rangle dx$$

(b) Seja $g:(0,+\infty)\times\mathbb{R}^n$ definida por $x=g(r,y)=ry+\gamma(t)$. Então, g é de classe C^1 e $|J_g(r,y)|=r^n$, o que implica $dx=r^ndy$. Como $g(r,B_1(0))=B_r(\gamma(t))$ para todo $t\in\mathbb{R}$, temos

$$F(t,r) = \int_{B_1(0)} f(g(t,y))r^n \, dy = \int_{B_1(0)} f(ry + \gamma(t))r^n \, dy.$$

Logo, F é de classe C^1 e

$$\frac{\partial F}{\partial r} = \int_{B_1(0)} \frac{\partial}{\partial r} \left[f(ry + \gamma(t)) r^n \right] dy$$

$$= \int_{B_1(0)} \left[\left\langle \nabla f(ry + \gamma(t)) : r^n y \right\rangle + n r^{n-1} f(ry + \gamma(t)) \right] dy$$

$$= \int_{B_1(0)} \left[\left\langle \nabla f(ry + \gamma(t)) : y \right\rangle + \frac{n}{r} f(ry + \gamma(t)) \right] r^n dy$$

Como $ry + \gamma(t) = x \iff y = \frac{1}{r}(x - \gamma(t))$, obtemos

$$\frac{\partial F}{\partial r} = \int_{B_r(\gamma(t))} \left[\left\langle \nabla f(x) : \frac{1}{r} (x - \gamma(t)) \right\rangle + \frac{n}{r} f(x) \right] dx.$$

Exercício 20. Para cada R > 0 e $n \in \mathbb{N}$, consideremos os conjuntos

$$B_R(n) = \{x \in \mathbb{R}^n ; ||x||_2 \le R\}, \quad C_R(n) = \{x \in \mathbb{R}^n ; ||x||_\infty \le R\}.$$

(1) Use coordenadas polares para calcular

$$I_R(2) = \int_{B_R(2)} e^{-\|x\|_2^2} dx.$$

(2) Mostre que $B_R(2) \subset C_R(2) \subset B_{\sqrt{2}R}(2)$ e conclua que

$$\sqrt{I_R(2)} \le \int_{-R}^R e^{-r^2} dr \le \sqrt{I_{\sqrt{2}R}(2)}.$$

(3) Usando (2) e o Teorema de Fubini, mostre que

$$\int_{\mathbb{R}^n} e^{-\|x\|_2^2} dx = \lim_{R \to +\infty} \int_{C_R(n)} e^{-\|x\|_2^2} dx = \pi^{n/2}.$$

(4) Considere $f_R:(0,\infty)\to\mathbb{R}$ definida por

$$f_R(\alpha) = \int_{C_R(n)} e^{-\alpha ||x||_2^2} dx.$$

Mostre que $f_R(\alpha)$ é derivável em relação a α e calcule a derivada $f_R'(\alpha)$.

(5) Mostre que existe o limite

$$\lim_{R \to +\infty} f_R'(\alpha), \quad \forall \alpha > 0.$$

(6) Use os resultados anteriores para calcular

$$\int_{\mathbb{R}^n} \|x\|_2^2 e^{-\|x\|_2^2} dx.$$

(7) Com o resultado de (3), a fórmula pode ser obtida diretamente a partir da seguinte astúcia: use coordenadas esféricas e o Teorema de Fubini para obter

$$\pi^{n/2} = \frac{1}{2} \int_0^\infty e^{-s} s^{(n/2)-1} d\rho \left(\int_{S^{n-1}} d\omega \right) = \frac{1}{2} \Gamma(n/2) \left(\int_{S^{n-1}} d\omega \right).$$

Solução: (1) Usando coordenadas polares,

$$I_R(2) = 2\pi \int_0^R e^{-r^2} r \, dr = \pi \int_0^{R^2} e^{-u} \, du = \pi (1 - e^{R^2}).$$

(2) Pelo Teorema de Fubini (em \mathbb{R}^2),

$$\int_{C_R(2)} e^{-\|x\|_2^2} dx = \left(\int_{-R}^R e^{-r^2} dr \right)^2.$$

Como $B_R(2) \subset C_R(2) \subset B_{\sqrt{2}R}(2)$, temos a estimativa

$$\left(\pi \left(1 - e^{R^2}\right)\right)^{1/2} \le \int_{-R}^{R} e^{-r^2} dr \le \left(\pi \left(1 - e^{2R^2}\right)\right)^{1/2}.$$

(3) Novamente, pelo Teorema de Fubini (agora em \mathbb{R}^n),

$$\left(\pi \left(1 - e^{R^2}\right)\right)^{n/2} \le \int_{C_R(n)} e^{-\|x\|_2^2} dx \le \left(\pi \left(1 - e^{2R^2}\right)\right)^{n/2},$$

de onde se conclui que

$$\lim_{R \to \infty} \int_{C_R(n)} e^{-\|x\|_2^2} dx = \int_{\mathbb{R}^n} e^{\|x\|_2^2} dx = \pi^{n/2}.$$

Obs: Repetindo o mesmo argumento acima, obtemos

$$\int_{\mathbb{R}^n} e^{-\alpha \|x\|_2^2} dx = \left(\frac{\pi}{\alpha}\right)^{n/2}.$$

(4) Se definirmos $g:(0,\infty)\times\mathbb{R}^n\to\mathbb{R}$ por $g(\alpha,x)=\mathrm{e}^{-\alpha\|x\|_2^2},$ então g é de classe C^∞ e segue do Exercício 12.18,

$$f'_{R}(\alpha) = \int_{C_{R}(n)} \frac{\partial}{\partial \alpha} f(\alpha, x) dx = -\int_{C_{R}(n)} ||x||_{2}^{2} e^{-\alpha ||x||_{2}^{2}} dx.$$

Observe que, formalmente, temos

$$\lim_{R \to \infty} f_R'(\alpha) = -\int_{\mathbb{R}^n} ||x||_2^2 e^{-\alpha ||x||_2^2} dx =: g(\alpha).$$

Se pudermos garantir que a convergência acima é uniforme em α , então, como $f_R(\alpha)$ converge pontualmente para $f(\alpha) = (\pi/\alpha)^{n/2}$, teremos

$$g(\alpha) = f'(\alpha) = -\frac{n}{2\alpha} \left(\frac{\pi}{\alpha}\right)^{n/2}.$$
 (12.3)

Mas, em vez de estudar essa possível convergência uniforme, vamos calcular (12.3) diretamente.

É claro que

$$\int_{B_R(n)} \|x\|_2^2 e^{-\alpha \|x\|_2^2} dx \le -f_R'(\alpha) \le \int_{B_{\sqrt{2}R(n)}} \|x\|_2^2 e^{-\alpha \|x\|_2^2} dx \tag{12.4}$$

Usando coordenadas esféricas, temos

$$\int_{B_R(n)} \|x\|_2^2 e^{-\alpha \|x\|_2^2} dx = |S^{n-1}| \int_0^R \rho^{n+1} e^{-\alpha \rho^2} d\rho = \frac{2\pi^{n/2}}{\Gamma(n/2)} \int_0^R \rho^{n+1} e^{-\alpha \rho^2} d\rho$$
$$= \frac{1}{\alpha \Gamma(n/2)} \left(\frac{\pi}{\alpha}\right)^{n/2} \int_0^{\alpha R^2} u^{n/2} e^{-u} du$$

Sabemos que

$$\lim_{R \to \infty} \int_0^{\alpha R^2} u^{n/2} e^{-u} du = \Gamma\left(\frac{n}{2} + 1\right) = \frac{n}{2} \Gamma\left(\frac{n}{2}\right).$$

Portanto, da desigualdade (12.4), obtemos

$$\lim_{R \to \infty} f_R'(\alpha) = -\int_{\mathbb{R}^n} \|x\|_2^2 e^{-\alpha \|x\|_2^2} dx = -\frac{n}{2\alpha} \left(\frac{\pi}{\alpha}\right)^{n/2}.$$

Exercício 21. Sejam $f, g : \mathbb{R}^n \to \mathbb{R}$ funções contínuas, $A \subset \mathbb{R}^n$ conjunto J-mensurável, $p, q \in (1, +\infty)$ tais que 1/p + 1/q = 1. Mostre que

$$\left| \int_{A} fg \right| \le \left(\int_{A} |f|^{p} \right)^{1/p} \left(\int_{A} |g|^{p} \right)^{1/q}. \tag{12.5}$$

Estenda a desiguladade (12.5) para $A = \mathbb{R}^n$ supondo que as integrais impróprias de $|f|^p$ e $|g|^q$ existam.

Solução: Repita o argumento da prova do Corolário 2.10.

Exercício 22. Seja G_n^+ o subconjunto de $\mathcal{M}_{n\times n}(R)$ das matrizes simétricas e positivas.

a) Mostre que

$$\frac{1}{\sqrt{\det(A)}} = (2\pi)^{-n/2} \int_{\mathbb{R}^n} \exp\left(-\frac{\langle Ax : x \rangle}{2}\right) dx, \quad \forall A \in G_n^+.$$

b) Mostre que G_n^+ é convexo e que a aplicação $A \mapsto \det(A)$ é log-côncava, isto é, $A \mapsto \ln(\det(A))$ é côncava.

Solução: (a) Como A é matriz simétrica e positiva, o Teorema Espectral nos garante que A possui n autovalores positivos, $\lambda_1, \dots, \lambda_n$. Mais precisamente, existe uma matriz unitária U tal que

$$U^{T}AU = D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$
 (12.6)

Consideremos $G:\mathbb{R}^n\to\mathbb{R}^n$ definido por G(u)=Uu. Então, para a substituição x=G(u) temos $dx=|\det U|du=du$ e

$$\langle Ax : x \rangle = \langle AUu : Uu \rangle = \langle U^T AUu : u \rangle = \langle Du : u \rangle = \sum_{i=1}^n \lambda_i u_i^2.$$

Observe que a bola $B_R(0)$ (relativamente à norma euclidiana) é invariante por U, de modo que

$$\int_{B_{R}(0)} \exp\left(-\frac{\langle Ax:x\rangle}{2}\right) dx = \int_{B_{R}(0)} \exp\left(-\frac{\langle Du:u\rangle}{2}\right) du.$$

Com argumentos análogos aos da solução do Exercício 12.19, podemos mostrar que

$$\int_{\mathbb{R}^n} \exp\left(-\frac{\langle Du : u \rangle}{2}\right) du = \prod_{i=1}^n \int_{\mathbb{R}} e^{-\lambda_i u_i^2/2} du_i = \frac{(2\pi)^{n/2}}{\sqrt{\lambda_1 \lambda_2 \cdots \lambda_n}}.$$

Lembrando que $\det[A] = \det[D] = \lambda_1 \lambda_2 \cdots \lambda_n$, concluímos a solução.

Observação: Uma segunda solução é considerar que toda matriz simétrica e positiva possui uma raiz quadrada, isto é, se $A \in G_n^+$, então existe $B \in G_n^+$ tal qe $B^2 = A$. Isso é consequência imediata do Teorema Espectral. De fato, se $A \in G_n^+$, então existe U unitária satisfazendo (12.6). Seja \sqrt{D} a matriz definida por

$$\sqrt{D} = \begin{pmatrix} \sqrt{\lambda_1} & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda_1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sqrt{\lambda_n} \end{pmatrix}$$

Então $B = U^T \sqrt{D} U$ é raiz quadrada de A.

Voltando ao problema, se u = Bx, temos $du = |\det(B)| dx$ e

$$\int_{\mathbb{R}^n} \exp\left(-\frac{\langle Ax : x \rangle}{2}\right) dx = \int_{\mathbb{R}^n} \exp\left(-\frac{\langle B^2x : x \rangle}{2}\right) dx = \int_{\mathbb{R}^n} \exp\left(-\frac{\langle Bx : Bx \rangle}{2}\right) dx$$
$$= \int_{\mathbb{R}^n} \exp\left(-\frac{\|u\|_2^2}{2}\right) \left|\frac{1}{\det(B)}\right| du = \frac{(2\pi)^{n/2}}{\det(B)}$$

e concluímos a solução, já que $det(B) = \sqrt{\det(A)}$.

(b) Queremos mostrar que

$$\det(\lambda A + (1 - \lambda)B) \ge (\det A)^{\lambda} (\det B)^{1-\lambda}, \quad \forall \lambda \in [0, 1].$$
 (12.7)

Seja $C = \lambda A + (1 - \lambda)B$. Então $C \in G_n^+$ e

$$\frac{1}{\sqrt{\det(C)}} = (2\pi)^{-n/2} \int_{\mathbb{R}^n} \exp\left(-\frac{\langle Cx : x \rangle}{2}\right) dx.$$

Para simplificar a notação, consideremos $\alpha = (2\pi)^{-n/2}$ e,

$$f(x) = \exp\left(-\frac{\langle Ax : x \rangle}{2}\right), \quad g(x) = \exp\left(-\frac{\langle Bx : x \rangle}{2}\right).$$

Então,

$$\exp\left(-\frac{\langle Cx:x\rangle}{2}\right) = f(x)^{\lambda}g(x)^{1-\lambda}.$$

Pela deigualdade de Holder (veja Exercício 12.21)

$$\frac{1}{\sqrt{\det(C)}} = \alpha \int_{\mathbb{R}^n} f(x)^{\lambda} g(x)^{1-\lambda} a, dx$$

$$\leq \alpha \left(\int_{\mathbb{R}^n} f(x) dx \right)^{\lambda} \left(\int_{\mathbb{R}^n} g(x) dx \right)^{1-\lambda}$$

$$= \left(\alpha \int_{\mathbb{R}^n} f(x) dx \right)^{\lambda} \left(\alpha \int_{\mathbb{R}^n} g(x) dx \right)^{1-\lambda}$$

$$= \left(\frac{1}{\sqrt{\det(C)}} \right)^{\lambda} \left(\frac{1}{\sqrt{\det(C)}} \right)^{1-\lambda},$$

e a temos a desigualdade (12.7).

Exercício 23. Seja u um vetor de \mathbb{R}^n e considere a matriz $A = [u \otimes u]$.

(a) Mostre que A é diagonalizável e seus autovalores são

$$\lambda_1 = \cdots = \lambda_{n-1} = 0, \quad \lambda_n = \|\boldsymbol{u}\|_2^2.$$

(b) Use este fato para mostrar que $\det(A) = 1 + \|\mathbf{u}\|_2^2$.

Solução: Se $\boldsymbol{u} = (u_1, \dots, u_n)$, a matrix A é, por definição,

$$A = \begin{pmatrix} u_1^2 & u_1 u_2 & \cdots & u_1 u_n \\ u_2 u_1 & u_2^2 & \cdots & u_2 u_n \\ \vdots & \vdots & \ddots & \vdots \\ u_n u_2 & u_n u_2 & \cdots & u_n^2 \end{pmatrix}$$

Portanto, sendo A simétrica, ela é diagonalizável.

Observe que se $\boldsymbol{w} = (w_1, \dots, w_n),$

$$\begin{pmatrix} u_1^2 & u_1u_2 & \cdots & u_1u_n \\ u_2u_1 & u_2^2 & \cdots & u_2u_n \\ \vdots & \vdots & \ddots & \vdots \\ u_nu_2 & u_nu_2 & \cdots & u_n^2 \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} = (\boldsymbol{u} \cdot \boldsymbol{w}) \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}.$$

Portanto, o produto tensorial $\boldsymbol{u} \otimes \boldsymbol{u}$ define uma transformação linear $L: \mathbb{R}^n \to \mathbb{R}^n$ tal que $L(\boldsymbol{w}) = \langle \boldsymbol{u} : \boldsymbol{w} \rangle \boldsymbol{u}$. Em particular, podemos verificar diretamente que \boldsymbol{u} é autovetor de L associaldo ao autovalor $\|\boldsymbol{u}\|_2^2$. Por outro lado, se \boldsymbol{w} é ortogonal a \boldsymbol{u} , então $L(\boldsymbol{w}) = 0 = \langle \boldsymbol{u} : \boldsymbol{w} \rangle \boldsymbol{u}$. Como existem n-1 vetores ortogonais a \boldsymbol{u} , concluímos o item (a).

Seja $\beta = \{u, w_1, \dots, w_{n-1}\}$ uma base de autovetores de L. Então, a matriz de L em relação a essa base é diagonal, tendo na diagonal seus autovalores, isto é,

$$[L]_{\beta} = \begin{pmatrix} \|\boldsymbol{u}\|_{2}^{2} & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

 \mathbf{e}

$$[I+L]_{\beta} = \begin{pmatrix} 1 + \|\boldsymbol{u}\|_{2}^{2} & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

Como o determinante é invariante por mudança de bases, temos

$$\det(I + [\boldsymbol{u} \otimes \boldsymbol{u}]) = \det([I + L]_{\beta}) = 1 + \|\boldsymbol{u}\|_{2}^{2}.$$