Public Key Encryption

So far, we have focused on symmetric key encryption, where both parties have access to some k

• Now, we focus on when they do not

Public Key Encryption

A **public key encryption scheme** consists of three PPT algorithms:

- Gen: takes as input λ and outputs (pk, sk)
- Enc: takes as input pk and m and outputs a ciphertext ct
- Dec: takes as input sk and ct and outputs message m

The correctness guarantee is that the probability that Dec(Enc(m, pk), sk) = m is 1

E Semantically Secure

A public key encryption scheme is **semantically secure** if for all λ and pair of messages m_0, m_1 we have:

$$(\mathrm{pk},\mathrm{Enc}(\mathrm{pk},m_0))pprox (\mathrm{pk},\mathrm{Enc}(\mathrm{pk},m_1))$$

Note that adversaries have access to a lot of ciphertexts because they have the public key

Typically, classes will start with:

- El-Gamal
- RSA

But these are broken by quantum computers (rely on discrete log problem or factoring problem being hard)

• We focus on post-quantum encryption

Learning with Errors Assumption

Loosely speaking, the LWE assumption is that on a finite field, it is hard to solve noisy linear equations

LWE Assumption

The **LWE assumption** asserts that:

$$(A, sA + e) \approx (A, U)$$

where A is a $n \times m$ matrix, s is a n dim vector, e is a n dim error term sampled from some distribution χ , and U is the set of all possible n dim vectors

The idea is that we are trying to recover s and we are given a bunch of approximate linear equations relating the elements of s

- ullet There are cases where this is clearly true (when e is uniform across all elements in the field) or we have m < n
- ullet There are cases where this is clearly false (when e is 0)
- One useful case where we think this is true is when:
 - \circ $n(\lambda) = \lambda$
 - $\circ m(\lambda) = \text{poly}(\lambda)$
 - $\circ \ q(\lambda) = \operatorname{poly}(\lambda)$
 - $\circ \chi$ is a small normal distribution
 - lacktriangle We often use a discrete Gaussian distribution restricted to [-B,B]
 - If q is the size of the field (i.e. if we're in GF[q] which is the numbers under addition / multiplication modulo q, then we have:
 - -B = q B

LWE Symmetric Encryption Scheme

For encrypting messages b that are a single bit with a secret key s of length n:

$$\mathrm{Enc}(s,b) = (a, s \cdot a + e + b | q/2 |)$$

where $a \overset{R}{\longleftarrow} \mathbb{Z}_q^n$.

To decrypt messages (a, c):

$$\operatorname{Dec}(s,(a,c)) = 0 \text{ iff } |c - s \cdot a| \le q/4$$

• We assume e is small relative to q/4 so it cannot impact the answer

This scheme is **linearly homomorphic** which means for all messages b_1, b_2 :

$$\operatorname{Dec}(s,\operatorname{Enc}(s,b_1)+\operatorname{Enc}(s,b_2))=b_1\oplus b_2$$

- Intuitively, this means that we can add ciphertexts and then decrypt to get back the "sum" of the original messages
- However, the error is going to add up as we add more messages together
 - \circ If the error term is small relative to q, we should still be able to do a lot

Proving CPA-Secure:

• The LWE assumption says that $s\cdot a+e$ cannot be distinguished, so adding a $b\lfloor q/2\rfloor$ to it will still not be distinguishable from random data

LWE Public Encryption Scheme

We also have a public key encryption scheme for encrypting a single bit b

- $Gen(\lambda)$:
 - \circ Let $n=\lambda$, $q=\operatorname{poly}(\lambda)$, and $m=\Theta(n\cdot \log q)$
 - $\circ~$ Let χ be a discrete Gaussian distribution with B << q/4
 - o We generate $s \overset{R}{\longrightarrow} \mathbb{Z}_q^n$ and $A \overset{R}{\longrightarrow} \mathbb{Z}_q^{n \times m}$
 - Output

$$pk = (A, sA + e)$$

and $\mathbf{s} = s$

- lacktriangle We can think of the public key as a matrix B where the first n rows are A and the last row is sA+e
- lacksquare Note that, $(-s,1)\cdot B=e$
- $\operatorname{Enc}(\operatorname{pk}, b)$:
 - $\circ \;\;$ Chooses a random $r \stackrel{R}{\longrightarrow} \{0,1\}^m$
 - \circ Outputs $B \cdot r + b * (0, \ldots, 0, |q/2|)$
- Dec(s,c):
 - \circ Outputs 0 iff $|(-s,1)\cdot c| \leq q/4$

Correctness:

- We note that $(-s,1)\cdot (B\cdot r)=e\cdot r\leq mB$
 - \circ The last equation follows from the fact that each element in e is at most B
 - Each element in r is 0 or 1, so we can at most have m*B
 - Then, mB is at most q/4 from our setup
- We then have that multiplying our ciphertext by (-s,1) will give just:

$$mB + b * (0, \ldots, 0, |q/2|)$$

Omited