Пусть V — линейное подпространство поля вычетов по модулю 2, т.е. \mathbb{F}_2^n , где $\mathbb{F}_2=\{0,1\}$. Вес вектора из \mathbb{F}_2^n определяется как сумма его коэффициентов (в поле \mathbb{F}_2). Сколько может быть в V векторов нечетного веса?

3.6)

Анализ задачи:

- 1. Определение веса вектора:
 - ullet Вес вектора $v=(v_1,v_2,\ldots,v_n)\in \mathbb{F}_2^n$ это сумма его компонентов:

$$\mathtt{Bec}(v) = v_1 + v_2 + \cdots + v_n \pmod{2}.$$

- Вес вектора является нечетным , если он равен 1 (модию 2).
- 2. Свойства подпространства V :
 - Подпространство $V \subseteq \mathbb{F}_2^n$ это множество векторов, замкнутое относительно сложения и умножения на скаляры из \mathbb{F}_2 .
 - ullet Размерность подпространства V обозначим через k. Тогда V содержит 2^k векторов.
- 3. Количество векторов нечетного веса :
 - Мы хотим найти количество векторов в V, у которых вес является нечетным.

Теорема о распределении весов в подпространстве:

Для любого линейного подпространства $V \subseteq \mathbb{F}_2^n$:

- Количество векторов с нечетным весом равно ровно половине всех векторов в V, если размерность V больше нуля.
- Если $V=\{0\}$ (подпространство состоит только из нулевого вектора), то количество векторов нечетного веса равно 0.

Доказательство:

- 1. Пусть V линейное подпространство размерности k. Тогда V содержит 2^k векторов.
- 2. Рассмотрим операцию сложения векторов в V:
 - ullet Если $u,v\in V$, то $u+v\in V$.
 - Вес суммы двух векторов удовлетворяет следующему свойству:

$$\operatorname{Bec}(u+v) = \operatorname{Bec}(u) + \operatorname{Bec}(v) \pmod{2}.$$

- Это означает, что операция сложения сохраняет четность/нечетность веса.
- 3. Рассмотрим функцию $f:V o \mathbb{F}_2$, определенную как:

$$f(v) = \text{Bec}(v) \pmod{2}$$
.

- Эта функция является линейной, так как f(u+v) = f(u) + f(v).
- Ядро $\ker(f)$ состоит из всех векторов $v \in V$, для которых $\mathrm{Bec}(v) = 0 \pmod 2$ (четные векторы).
- ullet Образ $\mathrm{im}(f)$ это множество значений $\{0,1\}$, так как вес может быть либо четным, либо нечетным.
- 4. По теореме о ранге-нуле:

$$\dim(V) = \dim(\ker(f)) + \dim(\operatorname{im}(f)).$$

- ullet Так как $\operatorname{im}(f)\subseteq \mathbb{F}_2$, размерность образа $\dim(\operatorname{im}(f))\leq 1$.
- ullet Если $V
 eq \{0\}$, то $\dim(\operatorname{im}(f)) = 1$ (так как существует хотя бы один вектор нечетного веса).
- ullet Следовательно, $\dim(\ker(f)) = \dim(V) 1$.
- 5. Количество векторов в $\ker(f)$ (четных векторов) равно:

$$|\ker(f)| = 2^{\dim(\ker(f))} = 2^{\dim(V)-1}.$$

• Количество векторов нечетного веса равно:

$$|V| - |\ker(f)| = 2^{\dim(V)} - 2^{\dim(V)-1} = 2^{\dim(V)-1}.$$

Итог:

Если $V
eq \{0\}$, то количество векторов нечетного веса в V равно:

$$2^{k-1}$$
,

где k — размерность подпространства V.

Если $V = \{0\}$, то количество векторов нечетного веса равно:

Для отображения $\varphi:U o V$, которое является линейным, нужно решить следующее:

- 1. Пусть U и V конечномерные линейные пространства.
- 2. U_1 и V_1 подпространства U и V соответственно.
- 3. $\, \varphi : U o V o$ линейное отображение.

Требуется доказать или опровергнуть одно из двух равенств:

$$\varphi(U_1) = V_1$$
,

или заменить это равенство на включение:

$$\varphi(U_1)\subseteq V_1$$
.

Анализ задачи:

1. Определение линейного отображения:

Линейное отображение $\varphi:U o V$ удовлетворяет следующим свойствам:

- ullet Аддитивность: $arphi(u_1+u_2)=arphi(u_1)+arphi(u_2)$ для любых $u_1,u_2\in U$.
- ullet Гомогенность: arphi(lpha u) = lpha arphi(u) для любого $u \in U$ и скаляра lpha.

2. Образ подпространства:

Образ подпространства $U_1 \subseteq U$ при отображении φ определяется как:

$$\varphi(U_1)=\{\varphi(u)\mid u\in U_1\}.$$

Это множество является подпространством V, так как φ — линейное отображение.

3. Равенство $arphi(U_1)=V_1$:

Для того чтобы $arphi(U_1) = V_1$, должно выполняться два условия:

- 1. $\varphi(U_1) \subseteq V_1$ (включение).
- 2. $V_1 \subseteq arphi(U_1)$ (обратное включение).

4. Включение $arphi(U_1) \subseteq V_1$:

Включение $arphi(U_1)\subseteq V_1$ означает, что образ каждого элемента из U_1 лежит в V_1 . Это условие может быть выполнено, если arphi специально задано таким образом, что все элементы U_1 отображаются в V_1 .

Доказательство или опровержение:

Проверка равенства $arphi(U_1)=V_1$:

Равенство $arphi(U_1) = V_1$ верно только в том случае, если:

- 1. $arphi(U_1)\subseteq V_1$ (все элементы из $arphi(U_1)$ принадлежат V_1).
- 2. $V_1 \subseteq arphi(U_1)$ (каждый элемент из V_1 является образом некоторого элемента из U_1).

Однако без дополнительных условий (например, сюръективности φ на V_1 или специального выбора U_1 и V_1) нет гарантии, что $V_1\subseteq \varphi(U_1)$. Поэтому равенство $\varphi(U_1)=V_1$ не всегда верно.

Проверка включения $arphi(U_1) \subseteq V_1$:

Включение $\varphi(U_1)\subseteq V_1$ означает, что для любого $u\in U_1$ выполняется $\varphi(u)\in V_1$. Это условие можно проверить напрямую, используя определение линейного отображения и свойства подпространств.

Если φ задано так, что $\varphi(U_1)\subseteq V_1$, то это включение всегда верно. Однако если этого не указано явно, то равенство $\varphi(U_1)=V_1$ нельзя считать верным без дополнительных данных.

Итог

Без дополнительных условий равенство $\varphi(U_1)=V_1$ не всегда верно. Однако включение $\varphi(U_1)\subseteq V_1$ может быть верным, если φ специально задано таким образом.

Ответ:

$$\varphi(U_1)\subseteq V_1$$

Во втором у меня тут получилось, что а) верно, т.к. для любого и из $U_1 + U_2$ верно $\phi(u) = \phi(u_1) + \phi(u_2)$ $\rho(u_2)$, а это входит в $\rho(u_1) + \rho(u_2)$; также для любых u_1 из U_1 и u_2 из U_2 справедливо \phi(u_1) + $\phi(u_2) = \phi(u_1 + u_2)$, а это входит в $\phi(u_1 + u_2)$. В таком случае, б) неверно, а правильное утверждение там - \phi^{-1}(V_1 + V_2) является надмножеством $\phi^{-1}(V_1) + \phi^{-1}(V_2)$. Идея в том, что для любых v_1 из V_1 и v_2 из V_2 справедливо \phi^{-1}(v_1) + $\phi^{-1}(v_2) = u_1 + u_2 = u$, и при этом $\phi^{-1}(v_1) + u$ $\phi^{-1}(v_2) = \phi^{-1}(v_1 + v_2)$, то есть все возможные u из U, такие, что \phi^{-1}(v_1) + \phi^{-1}(v_2) = u, автоматически являются прообразами и для $v_1 + v_2$, а значит, $\phi^{-1}(V_1) + \phi^{-1}(V_2)$ является подмножеством $\phi^{-1}(V_1 + V_2)$. Обратное может быть неверно, так как могут существовать такие v_1 из V_1 и v_2 из V_2 , что их прообразов не существует (и, соответственно, не существует такого и из U, что u = $\phi^{-1}(v_1) + \phi^{-1}(v_2)$, но существует прообраз $v_1 + v_2$, так что в \phi^{-1}($V_1 + V_2$) существует элемент, которого нет в $\phi^{-1}(V_1) +$ \phi^{-1}(V_2). Контрпример в голову приходит такой: пусть V - это трёхмерное пространство, U - одномерное, $\phi(u_1) = (u_1, 0, 0), V_1 = \{(x, y, 0)\}, V_2 = \{(0, y, z)\},$ тогда v_1 из V_1 и v_2 из V_2, у которых у не равно 0, не имеют прообразов, но если они обратны друг другу по сложению (а ещё z y v_2 равен 0), то v_1 + v_2 = (x, 0, 0) элемент, имеющий прообраз в U.