Sveučilište u Zagrebu Geotehnički fakultet

Zadaci s vježbi iz kolegija Fizika 1

Akademska godina 2018./2019.

doc. dr. sc. Ivan Hip dr. sc. Marko Petric dr. sc. Davor Stanko

1. prosinca 2020.

Sadržaj

T	MATEMATICKI TEMELJI	1
	1.1 Vektori	1
	1.2 Mjerne jedinice	2
2	KINEMATIKA MATERIJALNE TOČKE	5
3	DNAMIKA MATERIJALNE TOČKE	13
4	ZAKONI OČUVANJA	21
5	KRUTO TIJELO	25
6	GRAVITACIJA	27
7	RJEŠENJA	31
	7.1 MATEMATIČKI TEMELJI	31
	7.2 KINEMATIKA MATERIJALNE TOČKE	32

MATEMATIČKI TEMELJI

1.1 Vektori

1.1. Nacrtajte slijedeća tri vektora u xy-ravnini: $\vec{a} = \vec{i} + 3\vec{j}$, $\vec{b} = -3\vec{i} - 2\vec{j}$, $\vec{c} = 2\vec{i} - 3\vec{j}$ i izračunajte računski i grafički:

- a) Nacrtajte sva tri vektora u xy-ravnini.
- b) Koja dva vektora su okomita? Provjerite!
- c) Izračunajte računski i grafički $\vec{a} + \vec{b}$.
- d) Izračunajte računski i grafički $\vec{b} \vec{c}$.

a)
$$\vec{a} \cdot \vec{b} = (\vec{i} + 3\vec{j}) \cdot (-3\vec{i} - 2\vec{j}) = -9$$

 $\vec{a} \cdot \vec{c} = (\vec{i} + 3\vec{j}) \cdot (2\vec{i} - 3\vec{j}) = -7$
 $\vec{b} \cdot \vec{c} = (-3\vec{i} - 2\vec{j}) \cdot (2\vec{i} - 3\vec{j}) = 0$

b)
$$\vec{a} + \vec{b} = \vec{i} + 3\vec{j} - 3\vec{i} - 2\vec{j} = -2\vec{i} + \vec{j}$$

c)
$$\vec{b} - \vec{c} = -3\vec{i} - 2\vec{j} - (2\vec{i} - 3\vec{j}) = -5\vec{i} + \vec{j}$$

1.2. Zadani su vektori $\vec{a} = \vec{i} - 2\vec{j} + 3\vec{k}$ i $\vec{b} = -\vec{i} + 2\vec{j} + 3\vec{k}$. Izračunajte:

- a) $\vec{a} \cdot \vec{b}$
- b) Kut između vektora \vec{a} i \vec{b} .
- c) $|\vec{a} \times \vec{b}|$
- d) $\vec{c} = \vec{a} \times \vec{b}$
- e) Izračunajte $|\vec{c}|,$ gdje je
 $\vec{c}=\vec{a}\times\vec{b}$ i usporedite s rezultatom c).
- f) $\vec{d} = \vec{b} \times \vec{a}$ i usporedite s rezultatom d).

a)
$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z = 1 \cdot (-1) + (-2) \cdot 2 + 3 \cdot 3 = 4$$

b)

$$ec{a} \cdot \vec{b} = |ec{a}| \cdot |ec{b}| \cos \alpha \qquad \Rightarrow \qquad \cos \alpha = \frac{ec{a} \cdot \vec{b}}{|ec{a}| \cdot |ec{b}|}$$

$$|\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2} = \sqrt{1^2 + (-2)^2 + 3^2} = \sqrt{14}$$

$$|\vec{b}| = \sqrt{b_x^2 + b_y^2 + b_z^2} \sqrt{(-1)^2 + 2^2 + 3^2} = \sqrt{14}$$

$$\cos \alpha = \frac{4}{\sqrt{14} \cdot \sqrt{14}} \quad \Rightarrow \quad \alpha = \arccos\left(\frac{4}{\sqrt{14} \cdot \sqrt{14}}\right) \quad \Rightarrow \quad \alpha = 73, 4^{\circ}$$

c) $|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \sin \alpha = \sqrt{14} \cdot \sqrt{14} \sin(73, 4^{\circ})$

$$|\vec{a} \times \vec{b}| \approx 13,42$$

d)
$$\vec{c} = ?$$

$$\vec{c} = \vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = \vec{i}(a_y b_z - a_z b_y) - \vec{j}(a_x b_z - a_z b_x) + \vec{k}(a_x b_y - a_y b_x)$$

$$\vec{c} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -2 & 3 \\ -1 & 2 & 3 \end{vmatrix} = \vec{i}(-6 - 6) - \vec{j}(3 - (-3)) + \vec{k}(2 - 2)$$

$$\vec{c} = -12\vec{i} - 6\vec{j} + 0\vec{k}$$

e)
$$\vec{c} = -12\vec{i} - 6\vec{j} \quad \Rightarrow \quad |\vec{c}| = \sqrt{144 + 36} \quad \Rightarrow \quad |\vec{c}| \approx 13,42$$

f)
$$\vec{d} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -1 & 2 & 3 \\ 1 & -2 & 3 \end{vmatrix} = \vec{i}(6+6) - \vec{j}(-3-3) + \vec{k}(2-2)$$

$$\vec{c} = 12\vec{i} + 6\vec{j} + 0\vec{k}$$

1.2 Mjerne jedinice

To ćemo trebati za provjeru imena zadatka i oznake: Matematicki_temelji/Zadatak_M802 1.3. Pretvorite mjerene jedinice:

a)
$$0,1746 \ rad =$$

b)
$$18, 3 MJ = J$$

c)
$$0,016 \ kN = mN$$

d)
$$100 \ \mu g = kg$$

e)
$$8,2 \ kmh^{-1} = ms^{-1}$$

f)
$$36 \ dana = min$$

g)
$$2 cm^2 = m^2$$

h)
$$10 L = m^3$$

Matematicki_temelji/Rjesenje_M802

a)
$$0.1746 \ rad = 0.1746 \ rad \ \frac{180^{\circ}}{\pi \ rad} = 10.00^{\circ}$$

b)
$$0.016 \ kN = 1.6 \cdot 10^{-2} \cdot 10^{3} N = 1.6 \cdot 10^{1} N = 1.6 \cdot 10^{1} \cdot 10^{3} \cdot 10^{-3} N = 1.6 \cdot 10^{4} \ mN$$

c)
$$18,3\ MJ = 1,83\cdot 10^1\cdot 10^6\ J = 1,83\cdot 10^7\ J$$

d)
$$100 \ \mu g = 10^2 \cdot 10^{-6} \ g = 10^{-4} \ g = 10^{-4} \cdot 10^{-3} \cdot 10^3 \ g = 10^{-7} \ kg$$

1.2. MJERNE JEDINICE

e)
$$8,2 \ kmh^{-1} = 8,2 \frac{1000m}{3600s} = \frac{82}{36} \ ms^{-1} = 2,28 \ ms^{-1}$$

f)
$$36 \ dana = 36 \cdot 24 \ h = 36 \cdot 24 \cdot 60 \ min = 51840 \ min$$

g)
$$2 cm^2 = 2 (cm)^2 = 2 (10^{-2}m)^2 = 2 \cdot 10^{-4}m^2 = 0,0002 m^2$$

h)
$$10 L = 10 dm^3 = 10 (dm)^3 = 10 (10^{-1}m)^3 = 10 \cdot 10^{-3} m^3 = 10^{-2} m^3 = 0.01 m^3$$

3

KINEMATIKA MATERIJALNE TOČKE

2.1. Gibanje materijalne točke (MT) opisano je vektorom položaja

$$\vec{r}(t) = (v_0 t)\vec{j} + (z_0 - \frac{1}{2}gt^2)\vec{k}.$$

U trenutku t=0 s MT se nalazi na visini $z_0=80$ m, a iznos početne brzine je $v_0=30$ ms⁻¹. Iznos ubrzanja slobodnog pada je g=9,81 ms⁻², ali radi lakšek računanja može se uzeti približna vrijednost g=10 ms⁻².

- a) Izračunajte položaj MT svakih pola sekunde i skicirajte putanju u yz-ravnini.
- b) Odredite vektor trenutne brzine $\vec{v}(t)$.
- c) Izračunajte i skicirajte trenutnu brzinu u trenucima $t_1=1\ s,\,t_2=2\ s,\,t_3=3\ s$ i $t_4=4\ s.$
- d) Odredite trenutno ubrzanje $\vec{a}(t)$ i skicirajte ga u nekoliko točaka putanje.

Uvrstimo zadane vrijednosti u $\vec{r}(t)$.

$$\vec{r}(t) = (30ms^{-1}t)\vec{j} + (80m - \frac{1}{2}10ms^{-2}t^2)\vec{k}$$

a)
$$\vec{r}(t=0,0s) = (30ms^{-1}0s)\vec{j} + (80m - \frac{1}{2}10ms^{-2}(0s)^2)\vec{k} = 0m\vec{j} + 80m\vec{k}$$

 $\vec{r}(t=0,5s) = (30ms^{-1}0,5s)\vec{j} + (80m - \frac{1}{2}10ms^{-2}(0,5s)^2)\vec{k} = 15m\vec{j} + 78,75m\vec{k}$
 $\vec{r}(t=1,0s) = (30ms^{-1}1,0s)\vec{j} + (80m - \frac{1}{2}10ms^{-2}(1,0s)^2)\vec{k} = 30m\vec{j} + 75m\vec{k}$
 $\vec{r}(t=1,5s) = (30ms^{-1}1,5s)\vec{j} + (80m - \frac{1}{2}10ms^{-2}(1,5s)^2)\vec{k} = 45m\vec{j} + 68,75m\vec{k}$
 $\vec{r}(t=2,0s) = (30ms^{-1}2,0s)\vec{j} + (80m - \frac{1}{2}10ms^{-2}(2,0s)^2)\vec{k} = 60m\vec{j} + 60m\vec{k}$
 $\vec{r}(t=2,5s) = (30ms^{-1}2,5s)\vec{j} + (80m - \frac{1}{2}10ms^{-2}(2,5s)^2)\vec{k} = 75m\vec{j} + 48,75m\vec{k}$
 $\vec{r}(t=3,0s) = (30ms^{-1}3,0s)\vec{j} + (80m - \frac{1}{2}10ms^{-2}(3,0s)^2)\vec{k} = 90m\vec{j} + 35m\vec{k}$
 $\vec{r}(t=3,5s) = (30ms^{-1}3,5s)\vec{j} + (80m - \frac{1}{2}10ms^{-2}(3,5s)^2)\vec{k} = 105m\vec{j} + 18,75m\vec{k}$
 $\vec{r}(t=4,0s) = (30ms^{-1}4,0s)\vec{j} + (80m - \frac{1}{2}10ms^{-2}(4,0s)^2)\vec{k} = 120m\vec{j} + 0m\vec{k}$
b)

$$\vec{v}(t) = \frac{d\vec{r}(t)}{dt}$$

 $\vec{v}(t) = v_0 \vec{j} - gt\vec{k}$

Slika 2.1: (lijevo) Položaj MT za svakih 0,5 s. (desno) Putanja MT do udarca o tlo.

Slika 2.2: (gore-lijevo) Komponenta brzine u y-smjeru. (gore-desno) Komponenta brzine u z-smjeru. (dolje) Brzina tijela s komponentama.

c)
$$\vec{v}(t) = 30 \ ms^{-1}\vec{j} - 10 \ ms^{-2}t\vec{k}$$

 $\vec{v}(t=1s) = 30 \ ms^{-1}\vec{j} - 10 \ ms^{-2}1s\vec{k}$
 $\vec{v}(t=1s) = 30 \ ms^{-1}\vec{j} - 10 \ ms^{-1}\vec{k}$
 $\vec{v}(t=2s) = 30 \ ms^{-1}\vec{j} - 20 \ ms^{-1}\vec{k}$
 $\vec{v}(t=3s) = 30 \ ms^{-1}\vec{j} - 30 \ ms^{-1}\vec{k}$
 $\vec{v}(t=4s) = 30 \ ms^{-1}\vec{j} - 40 \ ms^{-1}\vec{k}$
 $|\vec{v}(t=1s)| = \sqrt{(30 \ ms^{-1})^2 + (-10 \ ms^{-1})^2} = 31,623 \ ms^{-1}$
 $|\vec{v}(t=2s)| = \sqrt{(30 \ ms^{-1})^2 + (-20 \ ms^{-1})^2} = 36,055 \ ms^{-1}$
 $|\vec{v}(t=3s)| = \sqrt{(30 \ ms^{-1})^2 + (-30 \ ms^{-1})^2} = 42,43 \ ms^{-1}$
 $|\vec{v}(t=4s)| = \sqrt{(30 \ ms^{-1})^2 + (-40 \ ms^{-1})^2} = 50,0 \ ms^{-1}$
d)
$$\vec{a}(t) = \frac{d^2\vec{r}(t)}{dt^2} = \frac{d\vec{v}}{dt}$$

$$\vec{a}(t) = \frac{d}{dt} \left(v_0\vec{j} - gt\vec{k}\right)$$

$$\vec{a}(t) = -g\vec{k} = -9,81 \ ms^{-2}\vec{k} \approx -10 \ ms^{-2}\vec{k}$$

2.2. Materijalna točka (MT) giba se u prostoru tako da joj se vektor položaja mijenja u vremenu u skladu s relacijom

$$\vec{r}(t) = 6t^4\vec{i} + 4t^2\vec{j} + 3t\vec{k}$$
 [m].

Izračunajte:

- (a) Vektor položaja MT u t = 0, 5 s.
- (b) Trenutnu brzinu i iznos trenutne brzine u t = 0, 5 s.
- (c) Trenutno ubrzanje i iznos trenutnog ubrzanja u t = 0, 5 s.
- a) U relaciju $\vec{r}(t)$ potrebno je uvrstiti traženo vrijeme

$$\vec{r}(t=0,5s) = 6 \cdot 0,5^{4}\vec{i} + 4 \cdot 0,5^{2}\vec{j} + 3 \cdot 0,5\vec{k}$$
$$\vec{r}(t=0,5s) = 0,375\vec{i} + 1\vec{j} + 1,5\vec{k} \ [m].$$

b) Kako bismo dobili brzinu materijalne točke potrebno je derivirati po vremenu $\vec{r}(t)$

$$\vec{v}(t) = \frac{d\vec{r}(t)}{dt} = \frac{d}{dt} \left(6t^4 \vec{i} + 4t^2 \vec{j} + 3t \vec{k} \right)$$

$$\vec{v}(t) = 24t^3 \vec{i} + 8t \vec{j} + 3\vec{k}$$

$$\vec{v}(t = 0, 5) = 24 \cdot 0, 5^3 \vec{i} + 8 \cdot 0, 5 \vec{j} + 3\vec{k}$$

$$\vec{v}(t = 0, 5) = 3\vec{i} + 4\vec{j} + 3\vec{k} \ [ms]$$

$$|\vec{v}(t = 0, 5)| = \sqrt{3^2 + 4^2 + 3^2} = 5.83 \ [ms]$$

c)
$$\vec{a}(t) = \frac{d^2 \vec{r}(t)}{dt^2} = \frac{d\vec{v}}{dt}$$

 $\vec{a}(t) = \frac{d}{dt} \left(24t^3 \vec{i} + 8t \vec{j} + 3\vec{k} \right)$
 $\vec{a}(t) = 72t^2 \vec{i} + 8\vec{j}$
 $\vec{a}(t = 0, 5) = 72 \cdot 0, 5^2 \vec{i} + 8\vec{j}$

$$\vec{a}(t=0,5) = 18\vec{i} + 8\vec{j}$$

 $|\vec{a}(t=0,5)| = \sqrt{18^2 + 8^2} = 19,7 \text{ [ms}^{-2]}.$

2.3. Vektor trenutne brzine materijalne točke koja se giba u xy-ravnini zadan je izrazom

$$\vec{v}(t) = 4t\vec{i} + 3t^2\vec{j} \ [ms^{-1}].$$

U trenutku t=0 s vektor položaja materijalne točke je

$$\vec{r}_0 \equiv \vec{r}(t = 0s) = 2\vec{i} + 3\vec{j} \ [m].$$

Izračunajte vektor položaja $\vec{r}(t)$ materijalne točke t=1,2 s.

Rješavamo inverzni problem i tražimo $\vec{r}(t) = ?$

$$\vec{r}(t) = \vec{r_0} + \int_0^t \vec{v}(\tau) d\tau$$

$$\vec{r}(t) = 2\vec{i} + 3\vec{j} + \int_0^t (4\tau \vec{i} + 3\tau^2 \vec{j}) d\tau$$

Trebamo riješiti integral $I = \int_0^t (4\tau \vec{\imath} + 3\tau^2 \vec{j}) d\tau$.

$$\begin{split} I &= \int_0^t 4 \vec{\tau} i d\tau + \int_0^t 3 \tau^2 \vec{j} d\tau = 4 \vec{i} \int_0^t \tau d\tau + 3 \vec{j} \int_0^t \tau^2 d\tau = \\ &= 4 \frac{t^2}{2} \vec{i} + 3 \frac{t^3}{3} \vec{j} = 2 t^2 \vec{i} + t^3 \vec{j} \end{split}$$

Vratimo se u $\vec{r}(t)$

$$\begin{split} \vec{r}(t) &= 2\vec{i} + 3\vec{j} + 2t^2\vec{i} + t^3\vec{j} = 2(1+t^2)\vec{i} + (3+t^3)\vec{j} \\ \vec{r}(t=1,2~s) &= 2(1+1,2^2)\vec{i} + (3+1,2^3)\vec{j} = 4,88\vec{i} + 4,728\vec{j} ~[m] \end{split}$$

3.1. Tijelo je bačeno koso prema gore pod kutom od 30° prema horizontali početnom brzinom iznosa $20 \ ms^{-1}$ s visine $10 \ m$ iznad tla. Izračunajte (zanemarite otpor zraka):

- a) Vrijeme udarca tijela o tlo.
- b) Domet tijela.
- c) Kolika je maksimalna visina koju tijelo postigne tijekom leta?
- a) $\vec{r}(t) = \vec{r}_0 + \vec{v}_0 t + \frac{1}{2} \vec{g} t^2$ Početni uvijeti: $\vec{r}_0 = z_0 \vec{k}$.

Početni uvijeti: $\vec{r}_0 = z_0 \vec{k}$, $\vec{v}_0 = v_0 \cos \alpha \vec{j} + v_0 \sin \alpha \vec{k}$ $\vec{g} = -g\vec{k}$

$$\vec{r}(t) = z_0 \vec{k} + v_0 \cos \alpha \vec{j}t + v_0 \sin \alpha \vec{k}t - \frac{1}{2}gt^2 \vec{k}$$

$$\vec{r}(t) = (v_0 \cos \alpha \cdot t)\vec{j} + (z_0 + v_0 \sin \alpha \cdot t - \frac{1}{2}gt^2)\vec{k}$$

$$\vec{r}(t)=y\vec{j}+z\vec{k},$$
gdje je $y=v_0\cos\alpha\cdot t$ i
 $z=z_0+v_0\sin\alpha\cdot t-\frac{1}{2}gt^2$

Vrijeme udarca tijela o tlo $t=t_u$ kada je z=0 \Rightarrow $0=z_0+v_0\sin\alpha\cdot t-\frac{1}{2}gt^2$

$$t_{1,2} = \frac{v_0 \sin \alpha \pm \sqrt{(v_0 \sin \alpha)^2 + 2gz_0}}{q}.$$

Za navedene podatke rješenja su $t_1=2,77\ s$ i $t_2=-0,74\ s$, fizikalno rješenje je $t_1=2,77\ s$.

b) Kako bismo dobili domet, $D = v_y t$ tijela moramo znati komponentu brzine u y-smjeru i vrijeme udarca tijala o tlo. Vrijeme znamo iz prvog djela zadatka, a komponentu brzine možemo dobiti

$$\vec{v}(t) = \frac{dr}{dt} = \frac{d}{dt} \left((v_0 \cos \alpha \cdot t) \vec{j} + (z_0 + v_0 \sin \alpha \cdot t - \frac{1}{2} g t^2) \vec{k} \right).$$

Dobivamo komponente brzine su: $v_y = v_0 \cos \alpha$ i $v_z = v_0 \sin \alpha - gt$.

$$D = y(t = t_1) = v_0 \cos \alpha \cdot t_1$$

$$D = y(t = 2.77 \text{ s}) = 20 \text{ ms}^{-1} \cos 30^{\circ} \cdot 2.77 \text{ s} = 47.98 \text{ m}$$

c) Potražimo trenutak u kojem je komponenta brzine u z-smjeru $v_z=0$ jer je tada tijelo u na maksimalnoj visini $z=z_{max}$.

$$\vec{v}(t) = v_0 \cos \alpha \vec{j} + (v_0 \sin \alpha - gt)\vec{k}$$

komponente brzina su: $v_y(t) = v_0 \cos \alpha$ i $v_z(t) = v_0 \sin \alpha - gt$. Nakom izjednačivanja komponete v_z s nulom izrazimo

$$v_0 \sin \alpha - gt = 0 \quad \Rightarrow \quad t_H = \frac{v_0 \sin \alpha}{g}.$$

Potražimo maksimalnu visinu

$$z_{max} = z(t = t_H) = z_0 + v_0 \sin \alpha \cdot t_H - \frac{1}{2}gt_H^2$$

$$z_{max} = z_0 + v_0 \sin \alpha \cdot \frac{v_0 \sin \alpha}{g} - \frac{1}{2}g \left(\frac{v_0 \sin \alpha}{g}\right)^2$$
$$z_{max} = z_0 + \frac{v_0^2 \sin^2 \alpha}{2g} = 15, 1 m$$

3.2. Položaj materijalne točke koja se giba po kružnici polumjera $R=2\ m$ opisuje funkcija

$$s(t) = s_0 + b(1 - e^{-ct})$$
 [m]

pri čemu su $s_0 = 2 m, b = 8 m i c = 0.2s^{-1} s.$

- a) Izračunajte s koordinatu i skicirajte položaj materijalne točke na kružnici u trenucima t=0, 3, 6, 9, 30 s.
- b) Gdje će se materijalna točka zaustaviti kad $t \to \infty$?

- c) Izračunajte iznos i skicirajte vektor brzine u trenucima t=3 s i t=6 s.
- a) Kako bismo izračunali s koordinatu uvrštavamo zadane trenutke u funkciju

$$s(t) = s_0 + b(1 - e^{-ct}).$$

$$s(t = 0 \ s) = 2 \ m + 8 \ m(1 - e^{-0.2s^{-1} \cdot 0s}) = 2 \ m$$

$$s(t = 3 \ s) = 2 \ m + 8 \ m(1 - e^{-0.2s^{-1} \cdot 3s}) \approx 5,6095 \ m$$

$$s(t = 6 \ s) = 2 \ m + 8 \ m(1 - e^{-0.2s^{-1} \cdot 6s}) \approx 7,5904 \ m$$

$$s(t = 9 \ s) = 2 \ m + 8 \ m(1 - e^{-0.2s^{-1} \cdot 9s}) \approx 8,6776 \ m$$

$$s(t = 30 \ s) = 2 \ m + 8 \ m(1 - e^{-0.2s^{-1} \cdot 30s}) \approx 9,9802 \ m$$
b)
$$s(t) = ? \ \text{kada} \ t \to \infty$$

$$s(t \to \infty) = 2 \ m + 8 \ m(1 - e^{-0.2s^{-1} \cdot \infty})$$
c)
$$\vec{v} = |\vec{v}|\vec{\tau} = \frac{ds}{dt}\vec{\tau}$$

$$|\vec{v}(t)| = \frac{ds}{dt} = \frac{d}{dt} \left(s_0 + b(1 - e^{-ct})\right) = bce^{-ct}$$

$$|\vec{v}(t = 3 \ s)| = 8 \ m \cdot 0, 2^{-1}e^{-0.6} \approx 0,8781ms^{-1}$$

$$|\vec{v}(t = 6 \ s)| = 8 \ m \cdot 0, 2^{-1}e^{-0.6} \approx 0,4819ms^{-1}$$

3.3. Za gibanje opisano u prethodnom zadatku izračunajte tangencijalno i radijalno ubrzanje te iznos ukupnog ubrzanja $|\vec{a}(t)|$ materijalne točke u trenucima t=3 s i t=6 s.

Kako bismo mogli izračunati iznos ubrzanja moramo prvo izračunati tangencijalno \vec{a}_{τ} i radijalno \vec{a}_{r} ubrzanje.

$$\vec{a}_{\tau} = \frac{d^2s}{dt^2} \vec{\tau} = \frac{dv}{dt} \vec{\tau}$$

$$v = \frac{ds}{dt} = \frac{d}{dt} \left(s_0 + b(1 - e^{-ct}) \right) = bce^{-ct}$$

$$\frac{dv}{dt} = \frac{d}{dt} \left(bce^{-ct} \right) = -bc^2 e^{-ct}$$

$$\vec{a}_{\tau} = -bc^2 e^{-ct} \vec{\tau}$$

Ostaje za izračunati radijalnu komponentu ubrzanja.

$$\vec{a}_r = \frac{1}{R} \left(\frac{ds}{dt} \right)^2 \vec{n}$$

$$\vec{a}_r = \frac{b^2 c^2 e^{-2ct}}{R} \vec{n}$$

Ukupno ubrzanje je:

$$\vec{a}(t) = \vec{a}_{\tau} + \vec{a}_{r} = -bc^{2}e^{-ct}\vec{\tau} + \frac{b^{2}c^{2}e^{-2ct}}{R}\vec{n}$$
$$|\vec{a}(t)| = \sqrt{(-bc^{2}e^{-ct})^{2} + \left(\frac{b^{2}c^{2}e^{-2ct}}{R}\right)^{2}} = \sqrt{b^{2}c^{4}e^{-2ct}\left(1 + \frac{b^{2}e^{-2ct}}{R^{2}}\right)}$$

$$\begin{split} |\vec{a}(t)| &= bc^2 \mathrm{e}^{-ct} \sqrt{1 + \frac{b^2 \mathrm{e}^{-2ct}}{R^2}} \\ |\vec{a}(t=3\ s)| &= 8m \cdot (0, 2s^{-1})^2 \cdot \mathrm{e}^{-0, 2s^{-1} \cdot 3s} \sqrt{1 + \frac{(8m)^2 \mathrm{e}^{-2 \cdot 0, 2s^{-1} \cdot 3s}}{(2m)^2}} = 0, 4236ms^{-2} \\ |\vec{a}(t=6\ s)| &= 8m \cdot (0, 2s^{-1})^2 \cdot \mathrm{e}^{-0, 2s^{-1} \cdot 6s} \sqrt{1 + \frac{(8m)^2 \mathrm{e}^{-2 \cdot 0, 2s^{-1} \cdot 6s}}{(2m)^2}} = 0, 1509ms^{-2} \end{split}$$

DNAMIKA MATERIJALNE TOČKE

4.1. Vanjska sila iznosa $\vec{F_0} = 18~N$ djeluje pod kutom od $\alpha = 28^{\circ}$ prema horizontali na blok mase m = 3~kg. Izračunajte iznos ubrzanja kada je kinetičko trenje između bloka i podloge $\mu_k = 0, 4$.

$$\vec{F}_R = \sum_i \vec{F}_i = m\vec{a}$$

$$\vec{F}_0 + \vec{G} + \vec{R} + \vec{F}_{tr} = m\vec{a}$$

Radimo projekcije na y i z os

$$\mathbf{y:} \ \vec{F}_{0} \cdot \vec{j} + \vec{G} \cdot \vec{j} + \vec{R} \cdot \vec{j} + \vec{F}_{tr} \cdot \vec{j} = m\vec{a} \cdot \vec{j} / \vec{j}$$

$$|\vec{F}_{0}||\vec{j}|\cos \alpha + |\vec{G}||\vec{j}|\cos \frac{\pi}{2} + |\vec{R}||\vec{j}|\cos \frac{\pi}{2} + |\vec{F}_{tr}||\vec{j}|\cos \pi = m|\vec{a}||\vec{j}|\cos 0$$

$$F_{0}\cos \alpha + 0 + 0 - F_{tr} = ma$$
(3.1)

$$\mathbf{z:} \ \vec{F}_{0} \cdot \vec{k} + \vec{G} \cdot \vec{k} + \vec{R} \cdot \vec{k} + \vec{F}_{tr} \cdot \vec{k} = m\vec{a} \cdot \vec{k} / \cdot \vec{k}$$

$$|\vec{F}_{0}||\vec{k}|\cos(\frac{\pi}{2} - \alpha) + |\vec{G}||\vec{k}|\cos\pi + |\vec{R}||\vec{k}|\cos0 + |\vec{F}_{tr}||\vec{k}|\cos\frac{\pi}{2} = m|\vec{a}||\vec{k}|\cos\frac{\pi}{2}$$

$$F_{0}\sin\alpha - G + R = 0$$
(3.2)

Iz gornjeg izraza možemo izraziti silu reakcije podloge $R = mg - F_0 \sin \alpha$, gdje smo za silu težu (G) zapisali kao masa (m) puta ubrzanje sile teže (g).

Sila trenja koja nam se javlja u izrazu 3.1 možemo zapisati kao umonožak faktura kinetičkoga trenja i sili pritiska na podlogu, a sila pritiska na podlugu je jednaka težini tijela koja je po iznosu jednaka sili reakcije podloge tako pišemo: $F_{tr} = \mu_k F_{\perp} = \mu_k T = \mu_k R$. Silu reakcije podloge možemo zamjeniti izrazom koji smo dobili iz jednadžbe 3.2 i dobivamo konačni izraz:

$$F_0 \cos \alpha - \mu_k (mg - F_0 \sin \alpha) = ma$$

$$a = \frac{F_0}{m} \left(\cos \alpha + \mu_k \sin \alpha\right) - \mu_k g$$

$$a = \frac{18N}{3kg} \left(\cos 28^{\circ} + 0, 4\sin 28^{\circ}\right) - 0, 4 \cdot 9, 81ms^{-2} = 2, 5 \ ms^{-2}$$

- **4.2.** Vanjska sila iznosa $F_0 = 50 \ N$ djeluje na blok A mase $m_A = 5 \ kg$ koji vuče blok B mase $m_B = 3 \ kg$ (vidjeti skicu).
 - a) Izračunajte iznos sile kojom blokovi djeluju jedan na drugoga ako pretpostavimo da nema trenja.
 - b) Izračunajte iznos sile kojom blokovi djeluju jedan na drugoga kada je koeficijent kinetičkog trenja između blokova i podloge $\mu_k=0,3$.

Iznos sile kojom blok A djeluje na blok B jednaka je iznosu sile kojom blok B djeluje na blok A $T = |\vec{T}_{AB}| = |\vec{T}_{BA}|$.

a) Zapišemo sve sile koje djeluju na

blok B:
$$\vec{T}_{AB} + \vec{G}_B + \vec{R}_B = m_B \vec{a} / \vec{j} / \vec{k}$$

blok A:
$$\vec{F}_0 + \vec{T}_{BA} + \vec{G}_A + \vec{R}_A = m_A \vec{a} / \vec{j} / \vec{k}$$

Radimo projekciju sila za blok B na os y i z

B,z:
$$0 - G_B + R_B = 0 \implies R_B = G_B$$

B,y:
$$T_{AB} + 0 + 0 = m_B a \implies T = m_B a$$

Isto radimo za blok A:

A,z:
$$0 + 0 + G_A + R_A = 0 \Rightarrow R_A = G_A$$

A.y:
$$F_0 - T_{BA} + 0 + 0 = m_A a \Rightarrow F_0 - T = m_A a$$

U poslijednji izraz možemo zamjeniti napetost niti T sa izrazom iz \mathbf{B} , \mathbf{y}

$$F_0 - m_B a = m_A a$$

$$m_A a + m_B a = F_0$$

$$a = \frac{F_0}{m_A + m_B} = \frac{50N}{5kg + 3kg} = 6,25 \text{ ms}^{-2}$$

$$T = m_B a = 3kg \cdot 6,25ms^{-2} = 18,75 \text{ N}$$

b) Zapišemo sve sile koje djeluju na

blok A:
$$\vec{F}_0 + \vec{T}_{BA} + \vec{G}_A + \vec{R}_A + \vec{F}_{trA} = m_A \vec{a} / \vec{i} / \vec{k}$$

blok B:
$$\vec{T}_{AB} + \vec{G}_B + \vec{R}_B + \vec{F}_{tr B} = m_B \vec{a} / \vec{i} / \vec{k}$$

Radimo projekciju sila za blok A na osyi \boldsymbol{z}

A,y:
$$F_0 - T_{BA} + 0 + 0 - F_{tr,A} = m_A a \Rightarrow F_0 - T - \mu_k R_A = m_A a$$

A,z: $0 + 0 + G_A + R_A + 0 = 0 \Rightarrow R_A = G_A$

Dobivamo $F_0 - T - \mu_k G_A = m_A a$. Isto radimo za blok B:

B,y:
$$T_{AB} + 0 + 0 - F_{tr,B} = m_B a \Rightarrow T - \mu_k R_B = m_B a$$

B,z:
$$0 - G_B + R_B = 0 \implies R_B = G_B$$

Dobivamo $T = m_B a + \mu_k G_B$.

$$F_0 - m_B a - \mu_k m_B g - \mu_k m_A g = m_A a$$

Posložimo i izrazimo ubrzanje

$$F_0 - \mu_k (m_A + m_B)g = (m_A + m_B)a$$

$$a = \frac{F_0}{m_A + m_B} - \mu_k g$$

$$a = \frac{50N}{5kg + 3kg} - 0.3 \cdot 9.81ms^{-2} = 3.307 ms^{-2}$$

Još moramo izračunati napetost niti

$$T = m_B(a + \mu_k g)$$

Ubrzanje možemo zamjeniti s dobivenim izrazom

$$T = m_B \left(\frac{F_0}{m_A + m_B} - \mu_k g + \mu_k g\right) = \frac{m_B F_0}{m_A + m_B}$$
$$T = 18,75 \ N$$

4.3. Vanjska sila iznosa $F_0 = 42 \ N$ djeluje pod kutem od $\vartheta = 30^{\circ}$ prema horizontali na blok A mase $m_A = 5 \ kg$ koji gura blok B mase $m_B = 2 \ kg$ (vidjeti skicu). Izračunajte iznos ubrzanja blokova A i B kada je kinetičko trenje između blokova i podloge $\mu_k = 0, 3$.

Iznos sile kojom blok A djeluje na blok B jednaka je iznosu sile kojom blok B djeluje na blok A $|\vec{F}_{AB}| = |\vec{F}_{BA}|$.

Zapisujemo sve sile na tijelo A

A:
$$\vec{F}_0 + \vec{G}_A + \vec{R}_A + \vec{F}_{tr,A} + \vec{F}_{BA} = m_A \vec{a} / \vec{k} / \vec{j}$$

i radimo projekcije na os z i y.

A,z:
$$F_0 \cos(\frac{\pi}{2} + \vartheta) - m_A g + R_A + 0 + 0 = 0$$

Funkciju $\cos(\frac{\pi}{2} + \vartheta)$ možemo raspisati preko funkcije zbroja

$$\cos(\frac{\pi}{2} + \vartheta) = \cos\frac{\pi}{2}\cos\vartheta - \sin\frac{\pi}{2}\sin\vartheta = -\sin\vartheta$$
$$-F_0\sin\vartheta - m_a g + R_A = 0 \implies R_A = m_A g + F_0\sin\vartheta$$

Što ćemo ursti u izraz za y os.

A,y:
$$F_0 \cos \vartheta + 0 + 0 - F_{tr,A} - F_{BA} = m_A a$$
$$F_0 \cos \vartheta - \mu_k R_A - F_{BA} = m_A a$$
$$F_0 \cos \vartheta - \mu_k (m_A g + F_0 \sin \vartheta) - F_{BA} = m_A a$$
(3.3)

Zapisujemo sve sile na tijelo B

B:
$$\vec{G}_B + \vec{R}_B + \vec{F}_{tr,B} + \vec{F}_{AB} = m_B \vec{a} / \vec{k} / \vec{j}$$

i radimo projekcije na oszi y.

B,z:
$$-m_B g + R_B + 0 + 0 = 0 \implies R_B = m_B g$$

B,y:
$$0 + 0 - F_{tr,B} + F_{AB} = m_B a \implies F_{AB} = m_B a + \mu_k R_B$$

Spajanjem posljednja dva izraza dobivamo:

$$F_{AB} = m_B a + \mu_k m_B g. (3.4)$$

U izraz 3.3 umjesto F_{BA} uvrstimo 3.4 dobivamo:

$$F_0 \cos \vartheta - \mu_k (m_A g + F_0 \sin \vartheta) - m_B a - \mu_k m_B g = m_A a.$$

$$a(m_A + m_B) = F_0 \cos \vartheta - \mu_k \left[(m_A + m_B)g + F_0 \sin \vartheta \right]$$

$$a = \frac{F_0 \cos \vartheta - \mu_k \left[(m_A + m_B)g + F_0 \sin \vartheta \right]}{m_A + m_B}$$

$$a = \frac{42N \cos 30^\circ - 0, 3 \left[(5kg + 2kg)9, 81ms^{-2} + 42N \sin 30^\circ \right]}{5kg + 2kg} = 1,353 \ ms^{-2}$$

5.1. Tijelo klizi po kosini nagiba $\alpha = 35^{\circ}$. Koeficijent kinetičkog trenja između tijela i kosine je $\mu_k = 0,58$. Izračunajete iznos ubrzanja tijela.

$$\vec{F}_R = \sum_i \vec{F}_i = m\vec{a}$$

$$\vec{F}_0 + \vec{G} + \vec{R} + \vec{F}_{tr} = m\vec{a}$$

Silu teže možemo rastaviti na dvije komponente okomito na kosinu $\vec{G}_{\perp} = G \cos \alpha (-\vec{k})$ i paralelno $\vec{G}_{||} = G \sin \alpha \vec{j}$

$$G \sin \alpha \vec{j} - G \cos \alpha \vec{k} + R \vec{k} - F_{tr} \vec{j} = m a \vec{j} / \vec{i} / \vec{k}$$

Radimo projekcije na y i z os

$$G \sin \alpha - 0 + 0 - F_{tr} = ma$$
 \Rightarrow $G \sin \alpha - \mu_k R = ma$
 $0 - G \cos \alpha + R - 0 = 0$ \Rightarrow $R = G \cos \alpha$

$$G \sin \alpha - \mu_k G \cos \alpha = ma$$

$$mg \sin \alpha - \mu_k mg \cos \alpha = ma$$

$$a = g(\sin \alpha - \mu_k \cos \alpha)$$

$$a = 9,81ms^{-2}(\sin 35^\circ - 0,58\cos 35^\circ) = 0,966 \ ms^{-2}$$

5.2. Na slici dolje je sustav od dva utega mase $m_A = 10 \ kg$ i $m_B = 5 \ kg$. Uteg B povezan je tankom

nerastezljivom niti s utegom A. Kosina na kojoj se nalazi uteg A nagnuta je pod kutom $\alpha = 30^{\circ}$, a koeficijent kinetičkog trenja između kosine i utega A iznosi $\mu_k = 0, 2$.

- a) Skicirajte problem i označite sve sile i smjer gibanja (vektor ubrzanja) cijelog sustava.
- b) Izračunajte iznos ubrzanja cijelog sustava.
- c) Izračunajte iznos sile napetosti niti.

a) Na tijelo A djeluju sila teže (\vec{G}_A) prema dolje koju rastavljamo na dvije komponente: silu okomitu na kosinu $(\vec{G}_{A,\perp})$ i silu usporednu s kosinom prema dolje $(\vec{G}_{A,\parallel})$, zatim djeluje sila trenja $(\vec{F}_{tr,A})$, sila reakcije podloge \vec{R}_A i sila kojom uteg B vuče uteg A (sila napetosti niti \vec{T}_{BA}). Na uteg B djeluju samo dvije sile, sila teža prema dolje (\vec{G}_B) i napetost niti prema gore (\vec{T}_{AB}) .

Sila napetosti niti kojom djeluje uteg A na uteg B jednaka je po iznosu sili napetosti kojom uteg B djeluje na uteg A stoga pišemo

$$|\vec{T}_{AB}| = |\vec{T}_{BA}| = T.$$

b) Za uteg B možemo pisati

$$\vec{G}_B + \vec{T}_{AB} = m_B \vec{a},$$

$$G_B - T = m_B a \Rightarrow T = m_B (g - a).$$
(3.5)

Zapisujemo sve sile koje djeluju na uteg A

$$\vec{G}_{A,||} + \vec{G}_{A,\perp} + \vec{R}_A + \vec{F}_{tr,A} + \vec{T}_{BA} = m_A \vec{a}.$$

Radimo projekciju sila na smjer gibanja

$$G_{A,||} - F_{tr,A} + T = m_A a$$

$$m_A g \sin \alpha - \mu_k m_A g \cos \alpha + T = m_A a$$

Napetost niti možemo zamjeniti izrazom 3.5 i dobivamo

$$m_A g \sin \alpha - \mu_k m_A g \cos \alpha + m_B g - m_B a = m_A a.$$

Nakom sređivanja dobivamo konačni izraz

$$(m_A \sin \alpha - \mu_k m_A \cos \alpha + m_B)g = (m_A + m_B)a$$

$$a = \frac{m_A(\sin\alpha - \mu_k\cos\alpha) + m_B}{m_A + m_B} g.$$

Uvrstimo zadane vrijednosti

$$a = \frac{10 \ kg(\sin 30^{\circ} - 0.2\cos 30^{\circ})}{10 \ kg + 5 \ kg} \ 9.81 \ ms^{-2} = 5.41 \ ms^{-2}$$

c) Kako bismo dobili iznos sile napetosti niti uvrštavamo dobivenu akceleraciju u izrac 3.5

$$T = 5 \ kg(9, 81 \ ms^{-2} - 5, 41 \ ms^{-2}) = 22 \ N$$

5.3. Koeficijent kinetičkog trena između blokova i podloge je $\mu_k = 0, 2$, a dimenzije i mase su: a = 5 m, b = 3 m, v = 4 m, $m_A = 10 kg$ i $m_B = 15 kg$. Koliki je iznos ubrzanja blokova prikazanih na slici?

Sila napetosti niti kojom djeluje blok A na blok B jednaka je po iznosu sili napetosti kojom uteg B djeluje na uteg A stoga pišemo

$$|\vec{T}_{AB}| = |\vec{T}_{BA}| = T.$$

Kako bismo mogli rastaviti sile moramo izračunati kuteve α i β

$$\tan \alpha = \frac{v}{a} \implies \alpha = \arctan \frac{4m}{5m} = 38,66^{\circ},$$

$$\tan \beta = \frac{v}{b} \quad \Rightarrow \quad \beta = \arctan \frac{4m}{3m} = 53,13^{\circ}.$$

Zapisujemo sve sile koje djeluju na blok A i množimo skalarno s $\cdot \vec{j}$

$$ec{G}_{A,||} + ec{G}_{A,\perp} + ec{R}_A + ec{F}_{tr,A} + ec{T}_{BA} = m_A ec{a} \quad / \cdot ec{j}$$

Dobivamo sile u usporedne s lijevim nagibom kosine

$$-m_A g \sin \alpha - \mu_k m_A g \cos \alpha + T = m_A a.$$

Izrazimo napetosti niti

$$T = m_A g \sin \alpha + \mu_k m_A g \cos \alpha + m_A a. \tag{3.6}$$

Isto radimo za blok B

$$\vec{G}_{B,||} + \vec{G}_{B,\perp} + \vec{R}_B + \vec{F}_{tr,B} + \vec{T}_{AB} = m_B \vec{a} / \vec{j}$$

$$m_B g \sin \beta - \mu_k m_B g \cos \beta - T = m_B a$$
(3.7)

Uvrštavamo izraz 3.6 za napetost niti u izraz 3.7

$$m_B g \sin \beta - \mu_k m_B g \cos \beta - m_A g \sin \alpha - \mu_k m_A g \cos \alpha - m_A a = m_B a.$$

Sređujemo izraze:

$$g\left[m_B(\sin\beta - \mu_k\cos\beta) - m_A(\sin\alpha + \mu_k\cos\alpha)\right] = (m_A + m_B)a$$

$$a = \frac{m_B(\sin\beta - \mu_k\cos\beta) - m_A(\sin\alpha + \mu_k\cos\alpha)}{m_A + m_B}g$$

$$a = \frac{15kg(\sin53, 13^\circ - 0, 2\cos53, 13^\circ) - 10kg(\sin38, 66^\circ + 0, 2\cos38, 66^\circ)}{10kg + 15kg}9,81 \text{ } ms^{-2}$$

$$a=0,94\ ms^{-2}$$

ZAKONI OČUVANJA

6.1. Materijalna točka pomaknuta je u xy-ravnini iz točke A čiji je vektor položaja $\vec{r}_A = \vec{i} + 2\vec{j}$ [m] u točku B kojoj je vektor položaja $\vec{r}_B = 2\vec{i} - 3\vec{j}$ [m]. Tijekom pomaka na nju je djelovala stalna sila $\vec{F} = 3\vec{i} + 4\vec{j}$ [N]. Izračunajte rad sile \vec{F} .

$$\begin{split} W_{F,AB} &= \int_{r_A}^{r_B} \vec{F} \cdot d\vec{r} \\ \vec{F} &= konst. \quad \Rightarrow \quad W_{F,AB} = \vec{F} \cdot \Delta \vec{r} \\ \Delta \vec{r} &\equiv \vec{r}_B - \vec{r}_A \\ \Delta \vec{r} &= (2\vec{i} - 3\vec{j}) - (\vec{i} + 2\vec{j}) = \vec{i} - 5\vec{j} \\ W_{F,AB} &= (3\vec{i} + 4\vec{j}) \cdot (\vec{i} - 5\vec{j}) = -17 \ J \end{split}$$

6.2. Tijelo počinje klizati iz stanja mirovanja na visini od 0,8 metara na vrhu kosine. Kolika je brzina tijela na dnu kosine ako je nagib kosine 30°, koeficijent kinetičkog trenja 0,43?

Pišemo zakon očuvanja energije

$$E_k(B) + E_{p,G}(B) = E_k(A) + E_{p,G}(A) + W_{AB}$$

$$\frac{1}{2}mv^2 + 0 = 0 + mgH + \vec{F}_{tr} \cdot \Delta \vec{r}$$

Ostalo je za izračunati rad sile trenja

$$\vec{F}_{tr} \cdot \Delta \vec{r} = |\vec{F}_{tr}| |\Delta \vec{r}| \cos \langle (\vec{F}_{tr}, \Delta \vec{r}) = F_{tr} \Delta r \cos(\pi)$$

Pomak tijela Δr možemo izaraziti iz visine kosine i kuta $\Delta r = H/\sin \vartheta$. Potrebno je još zapisati silu trenja koja ovisi o kinematičkom koeficijentu trenja i sili kojom tijelo pritišće podlogu $F_{tr} = \mu_k mg \cos \vartheta$.

$$\vec{F}_{tr} \cdot \Delta \vec{r} = -\mu_k mg \cos \vartheta \frac{H}{\sin \vartheta} = -\mu_k mgH \cot \vartheta$$

Vraćamo se u zakon očuvanja energije

$$\frac{1}{2}mv^2 = mgH - \mu_k mgH \cot \vartheta$$

$$v = \sqrt{2gH(1 - \mu_k \cot \vartheta)}$$

$$v = \sqrt{2 \cdot 9,81 \ ms^{-2} \cdot 0,8 \ m(1 - 0,43 \cdot \cot 30^\circ)} = 2,0 \ ms^{-1}$$

6.3. Konstanta opruge koja se koristi za ispucavanje kuglice flipera mase 80 grama je 138 Nm^{-1} . Koliko centrimetara treba povući ručicu flipera (tj. stisnuti oprugu) da bi se kuglica ispalila brzinom iznosa $5ms^{-1}$?

Pišemo zakon očuvanja energije

$$E_k(B) + E_{p,el}(B) = E_k(A) + E_{p,el}(A) + W_{AB}$$
$$0 + \frac{1}{2}mv^2 = \frac{1}{2}K\Delta x^2 + 0 + 0$$
$$\frac{1}{2}mv^2 = \frac{1}{2}K\Delta x^2$$
$$\Delta x = v\sqrt{\frac{m}{K}}$$
$$\Delta x = 5ms^{-1}\sqrt{\frac{0.08kg}{138Nm^{-1}}} = 0.12 m$$

- 7.1. Automobil mase m=2000~kg giba se uz kosinu nagiba $\vartheta=15^\circ$ stalnom brzinom iznosa 60 kmh^{-1} . Ukupna sila otpora (trenje kotrljanja i otpor zraka) iznosi $|\vec{F}_{otp}|=2000~N$, a visina kosine je h=60~m. Izračunajte:
 - a) pogonsku silu automobila;
 - b) rad pogonske sile od početka do kraja kosine;
 - c) snagu automobila.
 - a) Ako je brzina stalna tada je rezultantna sila na automobil jednaka je nuli; $\vec{v} = konstanta \implies \vec{F}_R = \vec{0}$

$$\vec{F} + \vec{F}_{otp} + \vec{G}_{||} + \vec{G}_{\perp} + \vec{R} = \vec{0} \quad / \cdot \vec{j}$$

$$F - F_{otp} - mg \sin \vartheta = 0$$

$$F = F_{otp} + mg \sin \vartheta$$

$$F = 2000N + 2000kg 9,81ms^{-2} \sin 15^{\circ} = 7078,03 N$$

b)
$$W = \vec{F}\Delta\vec{r} = F\Delta r \cos 0^{\circ}$$

Pomak automobila možemo izraziti preko visine kosine i kuta

$$W = F \frac{h}{\sin \vartheta} = 7078, 03 \frac{60m}{\sin 15^{\circ}} = 1640844 J$$

c)
$$P = \vec{F} \cdot \vec{v} = Fv$$

Iznos brzine automobila je $v=60~kmh^{-1}=60\frac{1000~m}{3600~s}=16,67~ms^{-1}$

$$P = 7078, 03 \ N16, 67 \ ms^{-1} = 117967 \ W$$

7.2. Ledolomac mase 6000 tona s ugašenim motorom nalijeće brzinom 30 kmh^{-1} na santu leda koja se giba brzinom 2 kmh^{-1} u istom smjeru. Poslije sudara zajedno se kreću brzinom 5 kmh^{-1} . Kolika je masa sante leda?

Zapisujemo zakona očuvanja količine gibanja i izražavamo masu sante leda

$$m_1v_1 + m_2v_2 = (m_1 + m_2)v'$$

$$m_2v_2 - m_2v' = m_1v' - m_1v_1$$

$$m_2 = \frac{v' - v_1}{v_2 - v'}m_1$$

$$m_2 = \frac{5 \ kmh^{-1} - 30 \ kmh^{-1}}{2 \ kmh^{-1} - 5 \ kmh^{-1}}6000 \ t = 50000 \ t$$

7.3. Klizač mase 70 kg koji stoji na ledu odbacuje od sebe u horizontalnom smjeru predmet mase 3 kg brzinom od 8 ms^{-1} . Koliko će se klizač pomaknuti, ako je koeficijent kinetičkog trenja između leda i klizaljki 0,02?

Prije početka gibanja klizač miruje zajedno s predmetom v'=0 stoga možemo izraziti iz zakona očuvanja količine gibanja brzinu klizača na početku njegovog gibanja

$$(m_1 + m_2)v' = m_1v_1 + m_2v_2$$
$$0 = m_1v_1 + m_2v_2 \quad \Rightarrow \quad v_1 = -\frac{m_2}{m_1}v_2$$

Zapisujemo zakon očuvanja energije za klizača

$$E_k(B) + E_p(B) = E_k(A) + E_p(A) + W_{AB}.$$

Budući da nema promjene visine potencijalna energija klizača je jednaka nuli, a kako na kraju svojega gibanja staje njegova kinetička energija $E_k(B)$ će također biti jednaka nuli

$$0 + 0 = \frac{1}{2}mv_1^2 + 0 + \vec{F}_{tr} \cdot \Delta \vec{r}$$

$$0 = \frac{1}{2}mv_1^2 + F_{tr}\Delta r \cos \sphericalangle (\vec{F}_{tr}, \Delta \vec{r})$$

$$0 = \frac{1}{2}mv_1^2 + F_{tr}\Delta r \cos \pi$$

$$\Delta r = \frac{1}{2}\frac{v_1^2}{\mu_k g} = \frac{m_2^2 v_2^2}{2\mu_k m_1^2 g}$$

$$\Delta r = \frac{(3 \ kg)^2 \cdot (8 \ ms^{-1})^2}{2 \cdot 0.02 \cdot (70 \ kg)^2 \cdot 9.81 \ ms^{-2}} = 0.3 \ m$$

KRUTO TIJELO

8.1. Kotač promjera 40~cm vrti se oko nepomične osi tako da se kut zakreta mijenja u vremenu prema sljedećem izrazu:

$$\varphi(t) = 5t + 3t^2 + 4t^4 [rad].$$

Izračunajte:

- a) Kutnu brzinu vrtnje u trenutku t = 0, 5 s.
- b) Obodnu brzinu ruba kotača u trenutku t = 0, 5 s.
- c) Kutno ubrzanje u trenutku t = 0, 5 s.
- d) Koliko okretaja napravi kotač od t=0 s do t=0,5 s.

a)
$$\omega(t) = \frac{d\varphi(t)}{dt} = \frac{d}{dt}(5t+3t^2+4t^4)$$

$$\omega(t) = 5+6t+16t^3$$

$$\omega(t=0,5\;s) = 5+6\cdot 0, 5+16\cdot 0, 5^3 = 10\;rads^{-1}$$
 b)
$$v(t) = \omega(t)r = (5+6t+16t^3)r$$

$$v(t=0,5\;s) = \omega(t=0,5)r = 10\;rads^{-1}0, 2\;m = 2\;ms^{-1}$$
 c)
$$\alpha(t) = \frac{d\omega(t)}{dt} = \frac{d}{dt}(5+6t+16t^3) = 6+48t^2$$

$$\alpha(t=0,5\;s) = 6+48\cdot 0, 5^2 = 18\;rads^{-2}$$
 d) Označimo broj okretaja s n

- $n2\pi = \Delta\varphi$ $n = \frac{1}{2\pi}(\varphi(0, 5\ s) \varphi(0\ s))$ $n = \frac{1}{2\pi}(5\cdot 0, 5+3\cdot 0, 5^2+4\cdot 0, 5^4-0) = 0,557 \text{ okretaja.}$
- **8.2.** Homogeni aluminijski valjak polumjera 8 i visine 32 cm rotira oko osi koja je paralelna s osi valjka, a prolazi kroz plašt. Odredite kinetičku energiju rotacije ako napravi 105 okretaja u minuti. Gustoća aluminija je $2,7~gcm^{-3}$.

Kako bismo izračunali kinetičku energiju rotacije $E_k = \frac{1}{2}I\omega^2$ moramo znati moment tromosti oko osi rotacije i iznos kutne brzine. Kako bismo odredili moment tromosti koristimo teorem o paralelnim osima (Steinerov teorem):

$$I = I_T + Md^2$$

gdje je I_T moment tromosti oko osi koja prolazi kroz centar mase i za valjak iznosi $I_T = \frac{1}{2}MR^2$, M je u ovom slučaju masa valjka, a d je udaljenost između osi koja prolazi centrom mase i osi rotacije. Tako da moment tromosti možemo pisati

$$I = \frac{1}{2}MR^2 + MR^2 = \frac{3}{2}MR^2.$$

Masu valjka možemo izraziti preko gustoće i volumena valjka $(V = R^2 \pi h)$,

$$I = \frac{3}{2}\pi\rho hR^4.$$

Ostalo je izračunati kutnu brzinu koja je broj okretaja u sekunti puta 2π

$$\omega = \frac{105}{60\; s} 2\pi \; rad = 10,995 \; rads^{-1} \simeq 11 \; rads^{-1}$$

. Sada možemo izračunati kinetičku energiju rotacije:

$$E_k = \frac{3}{4}\pi\rho h R^4 \omega^2 = \frac{3}{4}\pi 2700 \ kgm^{-3}(0,08 \ m)^4 0,32 \ m(11 \ rads^{-1})^2$$

$$E_k = 10,0895 J$$

8.3. Dvije homogene kugle gustoće 2700 kgm^{-3} i polumjera 4 cm spojene su štapom zanemarive mase i duljine 10 cm (vidi skicu). Koliki je moment susutava oko osi koja prolazi polovištem štapa? Moment tromosti kugle oko osi koja prolazi kroz središte je $I=\frac{2}{5}MR^2$.

Moment tromosti sustava I je zbroj momenta tromosti svake kugel, $I=2I_{kugla}$ Kako bismo odredili moment tromosti kugle koristimo teorem o paralelnim osima (Steinerov teorem):

$$I_{kugla} = I_T + Md^2$$

$$I_{kugla} = \frac{2}{5}MR^2 + M(\frac{L}{2} + R)^2$$

gdje je M masa jedne kugle, R je njezin radijus, a L je udaljenost između kugli. Udaljenost osi rotacije od centra mase kugle je $d = \frac{L}{2} + R$. Izrazimo masu pomoću gustoće i volumena kugle $(V = \frac{4}{3}R^3\pi)$ i dobivamo moment tromosti jedne kugle:

$$I_{kugle} = \frac{4}{3}\pi\rho R^3 \left[\frac{2}{5}R^2 + \left(\frac{L}{2} + R\right)^2 \right].$$

Moment tromosti sustava je:

$$I = 2I_{kugle} = \frac{8}{3}\pi 2700 \ kgm^{-3}(0,04 \ m)^3 \left[\frac{2}{5}(0,04 \ m)^2 + \left(\frac{0,1 \ m}{2} + (0,04 \ m) \right)^2 \right]$$

$$I = 0,01265 \ kgm^2$$
.

6

GRAVITACIJA

Kod rješavanja zadataka koristite se sljedećim numeričkim vrijednostima:

• gravitacijska konstanta: $\gamma = 6,67 \cdot 10^{11} Nm^2kg^2$

• masa Zemlje: $M_Z = 5,98 \cdot 10^{24} \ kg$

• polumjer Zemlje: $R_Z = 6,371 \cdot 10^6 \text{ m}$

• $iznos\ ubrzanja\ slobodnog\ pada:\ g=9,81\ ms^2$

9.1. Odredite visinu iznad površine Zemlje na kojoj će na astronauta djelovati jakost gravitacijskog polja po iznosu jednaka iznosu ubrzanja a=0,3g.

Jakost gravitacijskog polja Zemlje na visini h možemo zapisati

$$G(h) = \gamma \frac{M_Z}{(R_Z + h)^2}.$$

Tražimo za koju visinu h vrijedi G(h) = 0, 3g.

$$\gamma \frac{M_Z}{(R_Z + h)^2} = 0.3g$$

$$(R_Z + h)^2 = \frac{\gamma M_z}{0.3g}$$

$$h = \sqrt{\gamma \frac{M_z}{0.3g}} - R_Z$$

$$h = \sqrt{6.67 \cdot 10^{11} \ Nm^2 kg^2 \frac{5.98 \cdot 10^{24} \ kg}{0.3 \cdot 9.81 \ ms^2}} - 6.371 \cdot 10^6 \ m$$

$$h = 5.271 \cdot 10^6 \ m$$

9.2. Umjetni satelit giba se oko Zemlje po kružnoj putanji s periodom vrtnjem $T=132\,\mathrm{min}$. Koliki je polumjer putanje satelita?

$$F_{cp} = F_{gr}$$

$$ma_{cp} = \gamma \frac{M_Z m}{r^2}$$

Centripetalnu akceleraciju možemo zapisati preko perioda vrtnje

$$a_{cp} = \frac{v^2}{r} = \omega^2 r = \left(\frac{2\pi}{T}\right)^2 r$$

$$\left(\frac{2\pi}{T}\right)^2 r = \gamma \frac{M_Z m}{r^2}$$

$$r = \sqrt[3]{\gamma} M_Z \left(\frac{T}{2\pi}\right)^2$$

$$r = \sqrt[3]{6,67 \cdot 10^{11} \ Nm^2 kg^2 5,98 \cdot 10^{24} \ kg \left(\frac{7920 \ s}{2\pi}\right)^2}$$

$$r = 8.589 592.25 \ m$$

9.3. Izračunajte period kruženja satelita po kružnoj putanji oko Zemlje, ako je iznos jakosti gravitacijskog polja Zemlje na putanji satelita $3 ms^{-2}$?

$$G = \gamma \frac{M_Z}{r^2} \quad \Rightarrow \quad r = \sqrt{\gamma \frac{M_Z}{G}}$$

Gravitacijsko polje drži satelit na kružnom gibanju

$$G = a_{cp} = \left(\frac{2\pi}{T}\right)^2 r \quad \Rightarrow \quad T = 2\pi\sqrt{\frac{r}{G}}$$

Uvrštavanjem prvog izraza u drugi dobivamo

$$T=2\pi\sqrt{\frac{1}{G}\sqrt{\gamma\frac{M_Z}{G}}}$$

$$T=2\pi\sqrt{\frac{1}{3\ ms^{-2}}\sqrt{6,67\cdot10^{11}\ Nm^2kg^2\frac{5,98\cdot10^{24}\ kg}{3\ ms^{-2}}}}$$

$$T=12\ 318,16\ s=205\ min\ 18,16\ s$$

9.4. Na pravcu koji povezuje zvijezdu A i zvijezdu B, koja ima pet puta manju masu od zvijezde A, postoji točka u kojoj bi na svemirski brod djelovale po iznosu iste privlačne sile od zvijezde A i od zvijezde B. Na kojoj udaljenosti od zvijezde A je ta točka, ako je udaljenost među zvijezdama $9,46 \cdot 10^{12} m$?

$$r = 6,537 \cdot 10^{12} \ m$$

9.5. Jakost gravitacijskog polja na površini Marsa je $3,71~ms^2$. Izračunajte srednju gustoću Marsa pod pretpostavkom da je Mars homogena kugla polumjera 3389~km.

$$\rho = 3918, 2 \ kgm^3$$

9.6. Koliki je period satelita koji kruži 300 km iznad Zemljine površine?

 $T = 90 \ min20, 7 \ s$

- 10.1. Izračunajte gravitacijsku potencijalnu energiju $E_{p,gr}$ i potencijalnu energiju u polju sile teže $E_{p,G}$ mase $m=1\ kg$ u gravitacijskom polju Zemlje kada se:
 - a) masa m nalazi na površini Zemlje;
 - b) masa m je na visini 1 km nad površinom Zemlje;
 - c) masa m je na visini 1000 km nad površinom Zemlje;
 - d) usporedite rezultate!

a)
$$h=0$$

$$E_{p,g}(A)=-\gamma\frac{M_Zm}{R_Z}$$

$$E_{p,g}(A)=-6,67\cdot 10^{11}\ Nm^2kg^2\ \frac{5,98\cdot 10^{24}\ kg\cdot 1\ kg}{6,371\cdot 10^6\ m}=-62\ 606\ 498,2\ J$$

$$E_{p,G}=mgh=0\ J$$
 b) $h=10^3\ m$
$$E_{p,g}(B)=-\gamma\frac{M_Zm}{R_Z+h}$$

$$E_{p,g}(B)=-6,67\cdot 10^{11}\ Nm^2kg^2\ \frac{5,98\cdot 10^{24}\ kg\cdot 1\ kg}{6,372\cdot 10^6\ m}=-62\ 596\ 672,9\ J$$

$$E_{p,g}(B)-E_{p,g}(A)=9\ 825,3$$

$$E_{p,G}=mgh=9\ 810\ J$$
 c) $h=10^6\ m$
$$E_{p,g}(C)=-\gamma\frac{M_Zm}{R_Z+h}$$

$$E_{p,g}(C)=-6,67\cdot 10^{11}\ Nm^2kg^2\ \frac{5,98\cdot 10^{24}\ kg\cdot 1\ kg}{6,372\cdot 10^6\ m}=-54\ 112\ 874,8\ J$$

$$E_{p,g}(C)-E_{p,g}(A)=8\ 493\ 623,4$$

$$E_{p,G}=mgh=9\ 810\ 000\ J$$

10.2. Do koje maksimalne visine će se dići metak ispaljen s površine Mjeseca vertikalno u vis brzinom iznosa 715 ms^{-1} ? Masa Mjeseca je 7,34 · 10²² kg, a polumjer Mjeseca 1737 km.

Koristimo zakon očuvanja energije. Metak na površini Mjeseca ima gravitacijsku potencijalnu energiju i kinetiču energiju, kada se popne na visinu h ima samo gravitacijsku potencijalnu energiju

$$E_{p,g}(h=0) + E_k(h=0) = E_{p,g}(h) + E_k(h)$$
$$-\gamma \frac{M_M m}{R_M} + \frac{1}{2} m v_0^2 = -\gamma \frac{M_M m}{R_M + h} + 0$$
$$R_M + h = \frac{-\gamma M_M}{-\gamma \frac{M_M m}{R_M} + \frac{1}{2} v_0^2}$$
$$h = \frac{-2\gamma M_M R_M}{-2\gamma M_M + v_0^2 R_M} - R_M$$

$$h = \frac{-2 \cdot 6,67 \cdot 10^{11} \ Nm^2 kg^2 7,34 \cdot 10^{22} \ kg 1,737 \cdot 10^6 \ m}{-2 \cdot 6,67 \cdot 10^{11} \ Nm^2 kg^2 7,34 \cdot 10^{22} \ kg + (715 \ ms^{-1})^2 1,737 \cdot 10^6 \ m} - 1,737 \cdot 10^6 \ m$$

$$h = 173 \ 239.9 \ m$$

10.3. Prema Zemlji se iz velike ("beskonačne") udaljenosti početnom brzinom iznosa $v_0 = 3 \ km s^{-1}$ duž pravca koji prolazi njezinim središtem giba meteor. Koliki će biti iznos brzine meteora u trenutku kada se meteor nađe na udaljenosti $r = 6R_Z$ od središta Zemlje? Što se događa s njegovom brzinom u odnosu na početnu? Koji je razlog tome?

Zapisujemo zakon očuvanja energije

$$E_{p,q}(\infty) + E_k(\infty) = E_{p,q}(6R) + E_k(6R).$$

U beskonačnosti tijelo nema gravitacijsku potencijalnu energiju tako da pišemo

$$\begin{split} 0 + \frac{1}{2} m v_0^2 &= -\gamma \frac{M_Z m}{6 R_Z} + \frac{1}{2} m v^2 \\ v^2 &= v_0^2 + \gamma \frac{M_Z}{3 R_Z} \\ v &= \sqrt{v_0^2 + \gamma \frac{M_Z}{3 R_Z}} \\ v &= \sqrt{(3000 \ m s^{-1})^2 + 6,67 \cdot 10^{11} \ N m^2 k g^2 \frac{5,98 \cdot 10^{24} \ kg}{3 \cdot 6,371 \cdot 10^6 \ m}} = 5465,2 \ m s^{-1} \end{split}$$

10.4.

Izračunajte 2. kozmičku brzinu Merkura pod pretpostavkom da je Merkur homogena kugla polumjera 2440 km i srednje gustoće $5,43g/cm^3$. Gravitacijska konstanta je $\gamma=6,67\cdot 10^{11}~Nm^2kg^2$.

$$v_2 = 4,25 \ km s^{-1}$$

10.5.

Tijelo je ispaljeno s površine Mjeseca vertikalno u vis brzinom iznosa $3~kms^{-1}$. Koliki će biti iznos brzine toga tijela kada se ono nađe u "beskonačnosti"? Masa Mjeseca je $7,34\cdot10^{22}~kg$, a polumjer 1737~km.

$$v = 1833.8 \ ms^{-1}$$

10.6.

Izračunajte iznos brzine kojom bi predmet pušten iz stanja mirovanja na visini od $10^4 \ km$ iznad površine Zemlje udario o tlo (kada ne bi bilo atmosfere)?

$$v = 8745.5 ms^{-1}$$

RJEŠENJA

7.1 MATEMATIČKI TEMELJI

a)
$$\vec{a} \cdot \vec{b} = (\vec{i} + 3\vec{j}) \cdot (-3\vec{i} - 2\vec{j}) = -9$$

 $\vec{a} \cdot \vec{c} = (\vec{i} + 3\vec{j}) \cdot (2\vec{i} - 3\vec{j}) = -7$
 $\vec{b} \cdot \vec{c} = (-3\vec{i} - 2\vec{j}) \cdot (2\vec{i} - 3\vec{j}) = 0$

b)
$$\vec{a} + \vec{b} = \vec{i} + 3\vec{j} - 3\vec{i} - 2\vec{j} = -2\vec{i} + \vec{j}$$

c)
$$\vec{b} - \vec{c} = -3\vec{i} - 2\vec{j} - (2\vec{i} - 3\vec{j}) = -5\vec{i} + \vec{j}$$

a)
$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z = 1 \cdot (-1) + (-2) \cdot 2 + 3 \cdot 3 = 4$$

b)

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cos \alpha \qquad \Rightarrow \qquad \cos \alpha = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$$

$$|\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2} = \sqrt{1^2 + (-2)^2 + 3^2} = \sqrt{14}$$

$$|\vec{b}| = \sqrt{b_x^2 + b_y^2 + b_z^2} \sqrt{(-1)^2 + 2^2 + 3^2} = \sqrt{14}$$

$$\cos \alpha = \frac{4}{\sqrt{14} \cdot \sqrt{14}} \quad \Rightarrow \quad \alpha = \arccos\left(\frac{4}{\sqrt{14} \cdot \sqrt{14}}\right) \quad \Rightarrow \quad \alpha = 73, 4^{\circ}$$

c)
$$|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \sin \alpha = \sqrt{14} \cdot \sqrt{14} \sin(73, 4^{\circ})$$

$$|\vec{a} \times \vec{b}| \approx 13,42$$

d) $\vec{c} = ?$

$$\vec{c} = \vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = \vec{i}(a_yb_z - a_zb_y) - \vec{j}(a_xb_z - a_zb_x) + \vec{k}(a_xb_y - a_yb_x)$$

$$\vec{c} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -2 & 3 \\ -1 & 2 & 3 \end{vmatrix} = \vec{i}(-6 - 6) - \vec{j}(3 - (-3)) + \vec{k}(2 - 2)$$

$$\vec{c} = -12\vec{i} - 6\vec{j} + 0\vec{k}$$

e)
$$\vec{c} = -12\vec{i} - 6\vec{j} \quad \Rightarrow \quad |\vec{c}| = \sqrt{144 + 36} \quad \Rightarrow \quad |\vec{c}| \approx 13,42$$

f)
$$\vec{d} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -1 & 2 & 3 \\ 1 & -2 & 3 \end{vmatrix} = \vec{i}(6+6) - \vec{j}(-3-3) + \vec{k}(2-2)$$

$$\vec{c} = 12\vec{i} + 6\vec{j} + 0\vec{k}$$

a) 0,1746
$$rad=0,1746~rad~\frac{180^{\circ}}{\pi~rad}=10,00^{\circ}$$

b)
$$0.016 \ kN = 1.6 \cdot 10^{-2} \cdot 10^{3} N = 1.6 \cdot 10^{1} N = 1.6 \cdot 10^{1} \cdot 10^{3} \cdot 10^{-3} N = 1.6 \cdot 10^{4} \ mN$$

c)
$$18,3 \ MJ = 1,83 \cdot 10^1 \cdot 10^6 \ J = 1,83 \cdot 10^7 \ J$$

d)
$$100 \ \mu g = 10^2 \cdot 10^{-6} \ g = 10^{-4} \ g = 10^{-4} \cdot 10^{-3} \cdot 10^3 \ g = 10^{-7} \ kg$$

e)
$$8,2 \ kmh^{-1} = 8,2 \frac{1000m}{3600s} = \frac{82}{36} \ ms^{-1} = 2,28 \ ms^{-1}$$

f)
$$36 \ dana = 36 \cdot 24 \ h = 36 \cdot 24 \cdot 60 \ min = 51840 \ min$$

g)
$$2 cm^2 = 2 (cm)^2 = 2 (10^{-2}m)^2 = 2 \cdot 10^{-4}m^2 = 0,0002 m^2$$

h)
$$10 L = 10 dm^3 = 10 (dm)^3 = 10 (10^{-1}m)^3 = 10 \cdot 10^{-3} m^3 = 10^{-2} m^3 = 0.01 m^3$$

7.2 KINEMATIKA MATERIJALNE TOČKE

Uvrstimo zadane vrijednosti u $\vec{r}(t)$.

$$\vec{r}(t) = (30ms^{-1}t)\vec{j} + (80m - \frac{1}{2}10ms^{-2}t^2)\vec{k}$$

 $\vec{v}(t) = v_0 \vec{j} - gt\vec{k}$

a)
$$\vec{r}(t=0,0s) = (30ms^{-1}0s)\vec{j} + (80m - \frac{1}{2}10ms^{-2}(0s)^2)\vec{k} = 0m\vec{j} + 80m\vec{k}$$

$$\vec{r}(t=0,5s) = (30ms^{-1}0,5s)\vec{j} + (80m - \frac{1}{2}10ms^{-2}(0,5s)^2)\vec{k} = 15m\vec{j} + 78,75m\vec{k}$$

$$\vec{r}(t=1,0s) = (30ms^{-1}1,0s)\vec{j} + (80m - \frac{1}{2}10ms^{-2}(1,0s)^2)\vec{k} = 30m\vec{j} + 75m\vec{k}$$

$$\vec{r}(t=1,5s) = (30ms^{-1}1,5s)\vec{j} + (80m - \frac{1}{2}10ms^{-2}(1,5s)^2)\vec{k} = 45m\vec{j} + 68,75m\vec{k}$$

$$\vec{r}(t=2,0s) = (30ms^{-1}2,0s)\vec{j} + (80m - \frac{1}{2}10ms^{-2}(2,0s)^2)\vec{k} = 60m\vec{j} + 60m\vec{k}$$

$$\vec{r}(t=2,5s) = (30ms^{-1}2,5s)\vec{j} + (80m - \frac{1}{2}10ms^{-2}(2,5s)^2)\vec{k} = 75m\vec{j} + 48,75m\vec{k}$$

$$\vec{r}(t=3,0s) = (30ms^{-1}3,0s)\vec{j} + (80m - \frac{1}{2}10ms^{-2}(3,0s)^2)\vec{k} = 90m\vec{j} + 35m\vec{k}$$

$$\vec{r}(t=3,5s) = (30ms^{-1}3,5s)\vec{j} + (80m - \frac{1}{2}10ms^{-2}(3,5s)^2)\vec{k} = 105m\vec{j} + 18,75m\vec{k}$$

$$\vec{r}(t=4,0s) = (30ms^{-1}4,0s)\vec{j} + (80m - \frac{1}{2}10ms^{-2}(4,0s)^2)\vec{k} = 120m\vec{j} + 0m\vec{k}$$
b)
$$\vec{v}(t) = \frac{d\vec{r}(t)}{dt}$$

Slika 7.1: (\it{lijevo}) Položaj MT za svakih $0,5~s.~(\it{desno})$ Putanja MT do udarca o tlo.

Slika 7.2: (gore-lijevo) Komponenta brzine u y-smjeru. (gore-desno) Komponenta brzine u z-smjeru. (dolje) Brzina tijela s komponentama.

c)
$$\vec{v}(t) = 30 \ ms^{-1}\vec{j} - 10 \ ms^{-2}t\vec{k}$$

 $\vec{v}(t=1s) = 30 \ ms^{-1}\vec{j} - 10 \ ms^{-2}1s\vec{k}$
 $\vec{v}(t=1s) = 30 \ ms^{-1}\vec{j} - 10 \ ms^{-1}\vec{k}$
 $\vec{v}(t=2s) = 30 \ ms^{-1}\vec{j} - 20 \ ms^{-1}\vec{k}$
 $\vec{v}(t=3s) = 30 \ ms^{-1}\vec{j} - 30 \ ms^{-1}\vec{k}$
 $\vec{v}(t=4s) = 30 \ ms^{-1}\vec{j} - 40 \ ms^{-1}\vec{k}$
 $|\vec{v}(t=1s)| = \sqrt{(30 \ ms^{-1})^2 + (-10 \ ms^{-1})^2} = 31,623 \ ms^{-1}$
 $|\vec{v}(t=2s)| = \sqrt{(30 \ ms^{-1})^2 + (-20 \ ms^{-1})^2} = 36,055 \ ms^{-1}$
 $|\vec{v}(t=3s)| = \sqrt{(30 \ ms^{-1})^2 + (-30 \ ms^{-1})^2} = 42,43 \ ms^{-1}$
 $|\vec{v}(t=4s)| = \sqrt{(30 \ ms^{-1})^2 + (-40 \ ms^{-1})^2} = 50,0 \ ms^{-1}$
d)
$$\vec{a}(t) = \frac{d^2\vec{r}(t)}{dt^2} = \frac{d\vec{v}}{dt}$$

$$\vec{a}(t) = \frac{d}{dt} \left(v_0\vec{j} - gt\vec{k}\right)$$

$$\vec{a}(t) = -g\vec{k} = -9,81 \ ms^{-2}\vec{k} \approx -10 \ ms^{-2}\vec{k}$$

a) U relaciju
$$\vec{r}(t)$$
 potrebno je uvrstiti traženo vrijeme
$$\vec{r}(t=0,5s) = 6 \cdot 0, 5^4 \vec{i} + 4 \cdot 0, 5^2 \vec{j} + 3 \cdot 0, 5 \vec{k}$$

$$\vec{r}(t=0,5s) = 0, 375 \vec{i} + 1 \vec{j} + 1, 5 \vec{k} \ [m].$$

b) Kako bismo dobili brzinu materijalne točke potrebno je derivirati po vremenu $\vec{r}(t)$

$$\vec{v}(t) = \frac{d\vec{r}(t)}{dt} = \frac{d}{dt} \left(6t^4\vec{i} + 4t^2\vec{j} + 3t\vec{k} \right)$$

$$\vec{v}(t) = 24t^3\vec{i} + 8t\vec{j} + 3\vec{k}$$

$$\vec{v}(t = 0, 5) = 24 \cdot 0, 5^3\vec{i} + 8 \cdot 0, 5\vec{j} + 3\vec{k}$$

$$\vec{v}(t = 0, 5) = 3\vec{i} + 4\vec{j} + 3\vec{k} \ [ms]$$

$$|\vec{v}(t = 0, 5)| = \sqrt{3^2 + 4^2 + 3^2} = 5,83 \ [ms]$$
c)
$$\vec{a}(t) = \frac{d^2\vec{r}(t)}{dt^2} = \frac{d\vec{v}}{dt}$$

$$\vec{a}(t) = \frac{d}{dt} \left(24t^3\vec{i} + 8t\vec{j} + 3\vec{k} \right)$$

$$\vec{a}(t) = 72t^2\vec{i} + 8\vec{j}$$

$$\vec{a}(t = 0, 5) = 72 \cdot 0, 5^2\vec{i} + 8\vec{j}$$

$$\vec{a}(t = 0, 5) = 18\vec{i} + 8\vec{j}$$

$$|\vec{a}(t = 0, 5)| = \sqrt{18^2 + 8^2} = 19, 7 \ [ms^{-2}].$$

Rješavamo inverzni problem i tražimo $\vec{r}(t) = ?$

$$\vec{r}(t) = \vec{r_0} + \int_0^t \vec{v}(\tau)d\tau$$
$$\vec{r}(t) = 2\vec{i} + 3\vec{j} + \int_0^t (4\tau\vec{i} + 3\tau^2\vec{j})d\tau$$

Trebamo riješiti integral $I = \int_0^t (4\tau \vec{i} + 3\tau^2 \vec{j}) d\tau$.

$$\begin{split} I &= \int_0^t 4\tau \vec{i} d\tau + \int_0^t 3\tau^2 \vec{j} d\tau = 4\vec{i} \int_0^t \tau d\tau + 3\vec{j} \int_0^t \tau^2 d\tau = \\ &= 4\frac{t^2}{2} \vec{i} + 3\frac{t^3}{3} \vec{j} = 2t^2 \vec{i} + t^3 \vec{j} \end{split}$$

Vratimo se u $\vec{r}(t)$

$$\vec{r}(t) = 2\vec{i} + 3\vec{j} + 2t^2\vec{i} + t^3\vec{j} = 2(1+t^2)\vec{i} + (3+t^3)\vec{j}$$

$$\vec{r}(t=1,2\ s) = 2(1+1,2^2)\vec{i} + (3+1,2^3)\vec{j} = 4,88\vec{i} + 4,728\vec{j} \quad [m]$$