1a Avaluació	Tecnologia industrial	2n Batxillerat
Global		Data:
Nom i cognoms:		Qualificació:

Instruccions: Feu els exercicis a l'espai que se us proporciona. Feu servir la cara posterior si necessiteu més espai, indiqueu-ho clarament en aquest cas. Heu d'identificar clarament les respostes i mostrar el procés per tal d'aconseguir la màxima puntuació. La puntuació dels exercicis es dona entre parèntesis.

- 1. Una caseta aïllada de muntanya consta d'una sola habitació d'àrea $A=55\,m^2$ que es vol calefactar amb una estufa elèctrica de pèl·lets. L'estufa, de rendiment $\eta=0,89$, té un dipòsit per a $15\,kg$ de pèl·lets i en consumeix $q_p=1,483\,kg/h$. S'utilitza un sac de pèl·lets de massa $m=15\,kg$, que té un preu p=6. El fabricant de pèl·lets especifica que el poder calorífic del combustible és $p_c=5,23\,kWh/kg$ i que el residu en cendres és $r_{cen}=0,7\,\%$ de la seva massa abans de la combustió. Si es parteix del dipòsit de l'estufa ple i se'n consumeix tot el contingut, determineu:
 - (a) (0,5 pts) L'energia, E_{cons} , que proporciona un sac de pèl·lets.
 - (b) (1 pt) L'energia, E_{ut} , que l'estufa cedirà a l'habitatge i el seu cost, c_e , per kWh.
 - (c) (0,5 pts) Les hores, t, que l'estufa pot estar en funcionament.
 - (d) (0,5 pts) La quantitat de cendra generada, m_{cendra} .
- 2. **(0,5 pts)** Un cilindre de doble efecte té un diàmetre interior de 40 mm, un diàmetre de tija de 25 mm i una cursa de 300 mm. Si la pressió de treball és de 0,6 MPa, quina és la força que fa el cilindre en el procés de retrocés?

3. El motor d'una motocicleta de competició té una cilindrada de $250cm^3$, la relació de transmissió val $0,1$ i el seu rendiment és $\eta=0,9$ i el diàmetre de la roda motriu és $d=0,6m$. S'estudia el comportament de la motocicleta quan el motor gira a $n_{mot}=4000min^{-1}$ i proporciona una potència $P_{mot}=15kW$. Determineu:
(a) $(0,5 \text{ pts})$ La velocitat d'avanç, v , de la motocicleta.
(b) (1 pt) El parell a la roda, Γ .
(c) (1 pt) Suposant que només hi ha un cilindre i que la seva relació de compressió és $r=25$, calculeu el volum de la cambra de combustió del cilindre.

4. Considereu un escalfador d'aigua de rendiment $\eta = 0,87$ que funciona amb gas butà de poder calorífic $p_{c_{but}} = 47,7 \, MJ/kg$, i s'utilitza per incrementar $\Delta T = 20 \, ^{o}C$ la temperatura de l'aigua calenta sanitària. S'estima que en cada dutxa es consumeixen $V = 75 \, L$ d'aigua. Les bombones de butà contenen $m = 12,5 \, kg$ de combustible i tenen un preu $p_{but} = 17,66 \in$. El preu de l'aigua és

(a) (1 pt) L'energia, E_{cons} , que consumeix l'escalfador per subministrar l'aigua per una dutxa.

5. Suposem que ens parlen d'una bomba de calor de potència P = 2000 W amb COP = 12 que treballa entre dues fonts a temperatura $T_1 = -15 \, {}^{o}C$ i $T_2 = 28 \, {}^{o}C$, respectivament i s'està fent servir per

(b) (1 pts) És aquesta bomba de calor ideal? Pot existir en realitat? Justifiqueu la resposta.

 $p_{aigua} = 0,93 \in /m^3$ i la seva calor específica és $c_e = 4,18 \, kJ/(kgK)$. Determineu:

(c) (0.5 pts) El cost econòmic, p_{dutxa} , d'una dutxa.

(a) (1 pts) Calculeu la calor injectada en l'estança en un minut.

escalfar una estança. Es demana:

(b) (1 pt) El nombre, n, de dutxes que es poden fer amb una sola bombona de butà.