# COMP310 – Multi Agent Systems Video 2.2: Abstract Architecture for Agents

Lecturer: Dr T Carroll

Email: Thomas.Carroll2@Liverpool.ac.uk

Office: G.14

See Vital for all material

### **Agent within an Environment**



- Can an abstract architecture help us to:
  - Model states of the environment
  - Model possible actions
  - Model decision making?
  - Model actions taken?

COMP310 - V2.2

### **TILEWORLD**



| 0,0 | 0,1 | 0,2 |
|-----|-----|-----|
| 1,0 | 1,1 | 1,2 |
| 2,0 | 2,1 | 2,2 |

- Finite set of **states**: "Agent in (0,0)", "Agent in (0,1)", ..., "Agent in (2,2)"
- Finite set of actions: "North", "East", "South", "West"





|  | • |
|--|---|
|  |   |
|  |   |

#### A Bit More Formal....

#### States

 The world can be in any of a finite set of states

$$E = \{e, e', ...\}$$

#### Actions

 The finite set of actions that are available to the agent

$$Ac = \{\alpha, \alpha', \dots\}$$

Set of interleaved world states and actions

$$r: e_0 \xrightarrow{\alpha_0} e_1 \xrightarrow{\alpha_1} e_2 \dots$$

## **TILEWORLD**



| 0,0 | 0,1 | 0,2 |
|-----|-----|-----|
| 1,0 | 1,1 | 1,2 |
| 2,0 | 2,1 | 2,2 |

• Finite set of **states**:

• Finite set of **actions**:



### **TILEWORLD**









#### Runs

• We must be able to consider all possible runs from all possible starting states

 $\mathcal{R}$ 

 $\mathcal{R}^{Ac}$ 

 $\mathcal{R}^{E}$ 

### **Behaviour of Environment**

• A state transformer function represents the behaviour of the environment

$$\tau: \mathcal{R}^{Ac} \to 2^E$$

### **An Environment**

$$Env = \langle E, e_0, \tau \rangle$$

# An Agent

$$Ag: \mathcal{R}^E \to Ac$$

 $\mathcal{AG}$ 

### A Purely Reactive Agent

- Some agents don't care about the past, but only about the present
- These are purely reactive

$$Ag: E \to Ac$$

COMP310 - V2.2 11

### A System

#### Pair of an agent and an environment

 $\mathcal{R}(Ag, Env)$ 

Formally, a sequence  $e_0, \alpha_0, e_1, \alpha_1, e_2, ...$  represents a **run** of agent Ag in environment  $Env = \langle E, e_0, \tau \rangle$  iff:

- 1.  $e_0$  is the initial state of Env
- 2.  $Ag(e_0) = \alpha_0$
- 3. For  $u > 0 : e_u \in \tau((e_0, \alpha_0, ...e_{u-1}, \alpha_{u-1}))$  and  $\alpha_u \in Ag(e_0, \alpha_0, ..., e_u)$

### .... But why?

- Notation gives us a precise handle on ideas about agents
- Allows us to to go more in-depth and more formal with our analysis and thinking

COMP310 - V2.2 13