M4: Probability

L3: Introduction to Probability Distributions

Learning Outcome

By the end of this lecture, you will be able to:

- Define a random variable
- Calculate the probability distribution of a random variable
- Compute the expected value and standard deviation for a discrete random variable or for a linear transformation of it

Introduction

Which of the two is a example of random experiment?

M4: Probability

L3: Introduction to Probability Distributions

Random Variable

A random variable is real-valued function, defined on the sample space of a random experiment that assigns real number to each elementary event in the sample space. There are two types of random variables, discrete and continuous.

Dice

M4: Probability

L3: Introduction to Probability Distributions

A continuous random variable assumes any real number in interval of real numbers, such as:

• The annual revenue of a certain company
• The percentage of government funds to a certain university

Continuous random variable

Continuous random variable

Random Variable > Example

Consider a random experiment to select a committee of 3 members from a group of 3 managers, 7 clerks, and 10 sales persons.

If X is a random variable that represents the number of clerks in the selected committee, then the possible values of X are $\{0, 1, 2, 3\}$.

Therefore, *X* is a discrete random variable.

M4: Probability

L3: Introduction to Probability Distributions

Example

There are six questions on a multiple-choice quiz. Let *Y* represent the number of questions a student answers correctly.

- 1. Is *Y* a continuous or a discrete random variable?
- 2. What are the possible values of *Y*?

Y is counting the number of correctly answered questions. Then,

- 1. Y is a discrete random variable.
- 2. The possible values for $Y = \{0, 1, 2, 3, 4, 5, 6\}$.

Discrete Probability Distribution

The probability distribution of a discrete random variable is a list of all possible values of the random variable along with their respective probabilities or a formula that calculates the probability of any possible value of the random variable.

Discrete probability distribution is a list of all possible $(x_i, P(x_i))$ pairs, where:

 x_i = Value of the random variable X, i.e.an outcome

 $P(x_i) = Probability associated with the value x_i$

Note:

- 1. x_i 's are mutually exclusive.
- 2. x_i 's are collectively exhaustive.
- 3. $0 \le P(x_i) \le 1$ for all x_i .

 $\sum_{all\ i} P(x_i) = 1$

M4: Probability

L3: Introduction to Probability Distributions

Example

Consider rolling a die twice. Let *X* represents the number of times the digit 4 comes up. Write the sample space and the probability distribution of *X*.

Solution:

$$S = \{(1,1), (1,2), ..., (1,6), (2,1), (2,2), ..., (2,6), ..., (6,1), (6,2), ..., (6,6)\}$$

X is a discrete random variable with the values $X = \{0, 1, 2\}$ and their corresponding probabilities as shown in the table.

X=x	Elementary events	# E.E	P(x)
0	All the others	25	25/36 = 0.69
1	(1,4),(2,4),(3,4),(4,1),(5,4),(6,4),(4,2),(4,3),(4,5), (4,6)	10	10/36 = 0.28
2	(4,4)	1	1/36 = 0.028
Total		36	36/36

Moreover, the probability distribution can be displayed graphically in the probability histogram given.

Histogram of X

M4: Probability

L3: Introduction to Probability Distributions

Example

The lab in your department contains 15 computers of which 3 are defective. Two of these computers are randomly chosen and inspected. Let U denote the number of defective computers. Find the probability distribution of U.

Lab

Solution:

Since U is counting the number of defective computers then,

- 1. *U* is a discrete random variable.
- 2. The possible values for $U = \{0, 1, 2\}$.
- 3. Let D be defective and N be non-defective, then the probability distribution of U is:

U = u	Elementary events	# E.E	P(x)
0	NN	1	(12/15)(11/14) = 22/35
1	DN, ND	2	2*(3/15)(12/14) = 12/35
2	DD	1	(3/15)(2/14) = 1/35
Total		4	1

M4: Probability

L3: Introduction to Probability Distributions

Example

Suppose we are about to learn the sexes of the three children of a certain family. Let V denote the number of females in this family. Write the values of V and find the probability distribution of V.

Solution:

Since *V* is counting the number of female children then,

- 1. *V* is a discrete random variable.
- 2. The possible values for $V = \{0, 1, 2, 3\}$.
- 3. Let F be Female and M be Male, then the probability distribution of V is:

V = v	Elementary events	# E.E	P(v)
0	MMM	1	1 / 8 = 0.125
1	FMM, MFM, MMF	3	3 / 8 = 0.375
2	FFM, FMF, MFF	3	3 / 8 = 0.375
3	FFF	1	1 / 8 = 0.125
Total		8	8 / 8 = 1

Discrete Random Variable > Summary Measures

The summary measures of a discrete random variable can be:

	It is a weighted average.
Expected value of a discrete distribution	If X is a discrete random variable that takes the values $x_1, x_2, x_3,, x_n$, then the expected value of X is defined by: $\mu_X = E(X) = \sum_{All \ i} x_i P(x_i)$ where:
	E(X) =Expected value of the random variable.

M4: Probability

L3: Introduction to Probability Distributions

If *X* is a discrete random with expected value μ_x , then the variance of *X* is defined by:

Variance of a discrete distribution

$$\sigma_X^2 = Var(X) = E(X - \mu_X)^2 = \sum_{X \in \mathcal{X}} [x - \mu_X]^2 P(x_i)$$

$$= \sum_{X \in \mathcal{X}} x_i^2 P(x_i) - [\mu_X]^2 = \sigma_X^2 = E(X^2) - (E(X))^2$$

where:

E(X) = Expected value of the random variable.

Note: that the standard deviation is given by: $SD(X) = \sqrt{Var(X)}$.

Properties of the Expected Value and the Variance

The properties of the expected value and the variance can be examined in two cases:

	For any random variable X with expected value $E(X)$, variance Var
	(X), and any constant c , then
	1. $E(cX) = cE(X)$
Case 1	2. $E(X+c) = E(X) + c$
	$3. Var\left(cX\right) = c^2 \ Var\left(X\right)$
	$4. Var\left(X+c\right)=Var\left(X\right)$
	If <i>X</i> and <i>Y</i> are two random variables, and <i>a</i> and <i>b</i> are two constants, then
	Constants, then
	1. $E(aX \pm bY) = aE(X) \pm bE(Y)$
	2. If <i>X</i> and <i>Y</i> are independent then
	$Var(aX \pm bY) = a^2 Var(X) \pm b^2 Var(Y)$
Case 2	
	Note that:
	1. If $X_1, X_2, X_3,, X_k$ are k random variables, then
	$E\left(\sum_{i=1}^{k} X_{i}\right) = \sum_{i=1}^{k} E\left(X_{i}\right)$

M4: Probability

L3: Introduction to Probability Distributions

2. If $X_1, X_2, X_3, ..., X_k$ are independent random variables, then

$$Var\left(\sum_{i=1}^{k} X_i\right) = \sum_{i=1}^{k} Var(X_i)$$

Example

Consider a random variable X that takes on the values 1 or 0 with probability p and 1 - p respectively. Find E(X) and Var(X).

Solution:

The probability distribution for *X* can be shown in the table.

X	0	1	Total
P(x)	1 - p	p	1

$$\mu_X = E(X) = \sum_{i=0}^{1} x_i P(x_i) = 1(p) + 0(1-p) = p$$

$$\sigma_X^2 = Var(X) = E(X^2) - E(X)^2 = \left[\sum_{i=0}^{1} x_i^2 P(x_i)\right] - [\mu_X]^2$$

$$= \left[0^2(1-p) + 1^2(p)\right] - p^2 = p - p^2 = p(1-p)$$

Example

Consider the given discrete probability distribution:

y	-2	1	3	6
P (y)	0.13	0.12	0.15	0.6

M4: Probability

L3: Introduction to Probability Distributions

- 1. Calculate the expected value of *Y*.
- 2. Calculate the variance of *Y*.
- 3. Let the random variable W = Y + 7, calculate the expected value and the variance of W.
- 4. Let the random variable V = -7Y, calculate the expected value and the variance of V.

Solution:

У	-2	1	3	6	Sum
P(y)	0.13	0.12	0.15	0.6	1
yP(y)	-0.26	0.12	0.45	3.6	3.91
$y^2 P(y)$	0.52	0.12	1.35	21.6	23.59

$$\mu_Y = E(Y) = \sum_{All\ i} y_i P(y_i)$$
$$= 3.91$$

1.

$$E(Y^{2}) = \sum_{Alli\ i} y_{i}^{2} P(y_{i})$$

$$= 23.59$$

$$\sigma_{Y}^{2} = Var(Y) = E(Y^{2}) - E^{2}(Y)$$

$$= 23.59 - (3.91)^{2}$$

$$= 8.3019$$

2.

$$E(W) = E(Y) + 7$$

= 3.91 + 7
= 10.71
 $Var(W) = Var(Y) = 8.3019$

3.

$$E(V) = -7E(Y)$$

$$= -7(3.91)$$

$$= -27.37$$

$$Var(V) = (-7)^{2} Var(Y)$$

$$= 49(8.3019)$$

$$= 406.7931$$

4.

M4: Probability

L3: Introduction to Probability Distributions

Recap

In this lecture, you have learned that:

- Random variable is a real-valued function defined on the sample space of a random experiment that assigns a real number to each elementary event in the sample space. The two types are:
 - Discrete
 - Continuous
- The probability distribution of a discrete random variable is a list of all possible values of the random variable along with their respective probabilities or a formula
- The expected value of a discrete random variable is:

$$\mu_{x} = E(X) = \sum_{All\ i} x_{i} P(x_{i})$$

• The variance of a discrete random variable is:

$$\sigma_X^2 = Var(X) = E(X - \mu_X)^2 = \sum_{i=1}^{n} [x - \mu_X]^2 P(x_i)$$
$$= \sum_{i=1}^{n} x_i^2 P(x_i) - [\mu_X]^2 = E(X^2) - (E(X))^2$$