

Control 2

Integrantes: Adolfo Rojas V. Profesor: Juan Manuel Barrios Ayudantes: Andrés Calderón

Martina Navarro Scarleth Betancurt Sebastián Sáez

Fecha de realización: 23 de junio de 2025 Fecha de entrega: 23 de junio de 2025

Santiago de Chile

Semana 5

1. Semana 5

1) a) El audio dura 229 segundos con profundidad de 16 bits (2 bytes) y un sample rate de 22050 por lo que el tamaño de A.raw es de 229*22050*2 = 10098900 bytes, ahora por el sampling theorem tenemos que la frecuencia máxima es 22050/2 = 11025

- b) Peor, para consumo humano 32 bits of depth (precisión del volumen) no aporta, por otro lado el sample rate es tan bajo que se dejan de escuchar los agudos 5512, 5Hz
- 2) a) Calculamos los samples por ventana 48000 * 0.04 = 1920 luego como solo estamos interesados en los coeficientes reales podemos ignorar los complementos por simetría con lo que nos quedamos con un total de 1920/2 = 960 coeficientes
 - b) La máxima que se puede llegar a escuchar es de 40/0.04 = 1 kHz
- 3) a) La escala agrupa las frecuencias de forma parecida a cómo las escuchamos nosotros, así se evita que cambios en el sonido que no notamos afecten la comparación
 - b) Buena idea porque este coeficiente es solo la energía total del audio, que puede verse afectada por cambios de volumen/ruido, sin cambiar realmente el contenido

Tabla 1: Matriz de distancias DTW A-M

2	12	14	17
13	5	16	22
21	7	13	20
22	16	10	12
25	23	13	12

4) a) Costo total = 12

Tabla 2: Matriz de distancias DTW B-M

2	10	16	17
4	14	12	17
17	7	20	22
19	17	9	12
21	25	13	10
23	29	19	11

- b) Costo total = 11
- c) El ganador es B puesto que a DTW no le importan las dimensiones/ventanas sino que la similitud y B consigue la mejor alineación (menor coste) respecto a M

2. Semana 6

1) De los 3 canales de colores asumimos que cada uno tiene una profundidad de un byte (o sea que 4:2:0 ocupa 1.5 bytes por píxel y 4:4:4 ocupa 3, aunque si se quisieran simplificar los cálculos también se podría asumir una profundidad por canal de un tercio de byte)

- a) pixels = 1920 * 1080 = 2073600 luego se necesitan 2073600 pixels $* 1.5 \frac{\text{bytes}}{\text{pixels}} * 60 \frac{\text{frames}}{\text{s}} * 1\text{s} = 186,624,000$ bytes $\approx 187mb$
- b) 1280 * 720 * 3 * 24 = 66,355,200 bytes $\approx 66mb$
- c) 3180 * 2160 * 1.5 * 30 = 309,096,000 bytes $\approx 309mb$
- d) 1920 * 1440 * 3 * 30 = 248,832,000 bytes $\approx 249mb$
- a) Puesto que los frames de tipo B dependen de P al decodificar habrán errores con los cuadros 5, 7 y 8
 - b) Todos los frames que lo usan de referencia hasta el próximo intra-coded frame se verán afectados con lo que habrán errores desde el cuadro 10 hasta el 15
 - c) No hay frame que dependa de este tipo así que ningún otro cuadro se ve afectado
 - d) Igual al item a) se ven afectados los B-frames anteriores y posteriores a este cuadro, también el P-frame que lo usaba de referencia, es decir los cuadros desde el 17 hasta el 22

3. Semana 8

- 1) a) Calculamos el average precision por cada sistema
 - Sistema 1: los índices donde se encuentran las imágenes relevantes para Q_1 son $\{2,4,6,8\}$ por lo que $AP(Q_1)=(\frac{1}{2}+\frac{2}{4}+\frac{3}{6}+\frac{4}{8})/4=0.5$ y para Q_2 son $\{3,6,8\}$ por lo que $AP(Q_2)=(\frac{1}{3}+\frac{2}{6}+\frac{3}{8})/3\approx 0.347$. Finalmente

$$MAP_1 = \frac{0.5 + 0.347}{2} \approx 0.424$$

– Sistema 2: los índices donde se encuentran las imágenes relevantes para Q_1 son $\{1,2,12\}$ por lo que $AP(Q_1)=(\frac{1}{1}+\frac{2}{2}+\frac{3}{12}+0)/4=0.5625$ y para Q_2 son $\{1,10\}$ por lo que $AP(Q_2)=(\frac{1}{1}+\frac{2}{10}+0)/3=0.4$. Finalmente

$$MAP_2 = \frac{0.5625 + 0.4}{2} \approx 0.481$$

- b) Sistema 1:
 - Mean Reciprocal Rank: para Q_1 la primera imágen se encuentra en 2do lugar por lo que se tiene $RR_{Q1} = \frac{1}{2}$, luego para Q_2 , $RR_{Q2} = \frac{1}{3}$. Finalmente

$$MRR_1 = (\frac{1}{2} + \frac{1}{3})/2 \approx 0.42$$

precision@
$$1_1 = (0+0)/2 = 0$$

Recall@12: para Q_1 se tiene recall@12 $Q_1 = \frac{4}{4}$, luego para Q_2 , recall@12 $Q_2 = \frac{3}{3}$. Finalmente

$$recall@12_1 = (1+1)/2 = 1$$

 \circ R-precision: para Q_1 se encuentran 2 imágenes en el top- $|Q_1|$ con $|Q_1|=4$ por lo que se tiene R-precision $Q_1=\frac{2}{4}$, luego para Q_2 , R-precision $Q_2=\frac{1}{3}$. Finalmente

R-precision₁ =
$$(\frac{2}{4} + \frac{1}{3})/2 \approx 0.42$$

- Sistema 2:

$$MRR_2 = (1+1)/2 = 1$$

precision@
$$1_2 = (1+1)/2 = 1$$

recall@
$$12_2 = (\frac{3}{4} + \frac{2}{3})/2 \approx 0.708$$

 ° R-precision: para Q_1 se tiene R-precision $Q_1=\frac{2}{4}$, luego para Q_2 , R-precision $Q_2=\frac{1}{3}$. Finalmente

R-precision₂ =
$$(\frac{2}{4} + \frac{1}{3})/2 \approx 0.42$$

c) Podríamos fundamentar erróneamente nuestra elección en base a la tabla 3 pero dado que solo nos interesa recuperar la mayor cantidad de imágenes similares en la primera pág que soporta 8 de estas podemos calcular rápidamente recall@8, de aquí fácilmente podemos concluir que el sistema 1 es nuestra mejor opción

Tab	la	3	: '	$\Gamma\!\mathrm{a}$	ola	resumen	de	métricas	por	sistema
-----	----	---	-----	----------------------	-----	---------	----	----------	-----	---------

	Sistema 1	Sistema 2
MAP	0.424	0.481
MRR	0.42	1
precision@1	0	1
recall@12	1	0.708
R-precision	0.42	0.42

- 2) a) El MAP de cada algoritmo ya está dado (corresponde a μ_i con $i \in \{1, 2, 3\}$)
 - Algoritmo 1: con un (α) p-value de 5% tenemos que $z\approx 1.96$ por lo que $IC_1=0.671\pm 1.96\cdot \frac{0.216}{\sqrt{20}}=0.671\pm 0.0947$. Finalmente

$$IC_1 = [0.576, 0.766]$$

– Algoritmo 2: $IC_2 = 0.811 \pm 1.96 \cdot \frac{0.165}{\sqrt{20}} = 0.811 \pm 0.0723$. Finalmente

$$IC_2 = [0.739, 0.883]$$

– Algoritmo 3: $IC_3 = 0.744 \pm 1.96 \cdot \frac{0.017}{\sqrt{20}} = 0.744 \pm 0.0075$. Finalmente

$$IC_3 = [0.737, 0.752]$$

De aquí podemos concluir que el algoritmo 2 a pesar de no ser tan consistente como el algoritmo 3, sigue siendo el con mayor desempeño, por otro lado el peor es el algoritmo 1

b) – Algoritmo 1: $IC_1 = 0.671 \pm \frac{0.0947}{\sqrt{10}}$. Finalmente

$$IC_1 = [0.641, 0.701]$$

– Algoritmo 2: $IC_2 = 0.811 \pm \frac{0.0723}{\sqrt{10}}$. Finalmente

$$IC_2 = [0.788, 0.834]$$

– Algoritmo 3: $IC_3 = 0.744 \pm \frac{0.0075}{\sqrt{10}}$. Finalmente

$$IC_3 = [0.742, 0.746]$$

Simplemente se estrecharon más los intervalos de confianza pero el ranking de desempeño entre algoritmos sigue siendo el mismo

3) a) En base a la tabla 4 podemos decir que el que más se parece a la realidad es el servicio 2 (o mejor dicho, el que menos se aleja de la realidad)

Tabla 4: Coeficiente de Spearman

	Real	Servicio 1	Servicio 2
España	1	3	4
Chile	2	4	1
Suiza	3	1	3
Honduras	4	2	2

$Diff_1^2$	$Diff_2^2$
4	9
4	1
4	0
4	4

Suma	16	14		
Cf. Spearman	-0,6	-0,4		

- b) Para ambos servicios el total de pares posibles es 6
 - Servicio 1:
 - o (España, Chile): concuerda
 - o (España, Suiza): no
 - o (España, Honduras): no
 - o (Chile, Suiza): no
 - (Chile, Honduras): no
 - o (Suiza, Honduras): concuerda

Finalmente
$$\tau = \frac{2-4}{6} = -0.33$$

- Servicio 2:
 - o (España, Chile): no
 - o (España, Suiza): no
 - (España, Honduras): no
 - o (Chile, Suiza): concuerda
 - (Chile, Honduras): concuerda
 - o (Suiza, Honduras): no

Finalmente
$$\tau = \frac{2-4}{6} = -0.33$$

En base a esta métrica concluimos que somos indiferentes entre escoger qué servicio se acerca más a la respuesta real