## 3.2.5 – Вынужденные колебания в электрическом контуре.

**Цель работы.** Исследование вынужденных колебаний и процессов их установления. В работе используются: генератор звуковой частоты, осциллограф, вольтметр, частотометр, ёмкость, индуктивность, магазин сопротивлений, универсальный мост.

**Теоретическая часть.** В данной работе будем рассматривать колебания в электрическом колебательном контуре под воздействием внешней ЭДС, гармонически изменяющейся во времени.

Получаем, что при подключении внешнего источника возникнут колебания, которые будем рассматривать как решение дифференциального уравнения:

одна из которых с частотой собственных колебаний контура

$$L\ddot{I} + R\dot{I} + \frac{I}{C} = -\mathcal{E}\Omega\sin\Omega t,\tag{1}$$

в качестве суперпозиции двух синусоид:

$$I = Be^{-\gamma t}\sin(wt - \theta) + \frac{\mathcal{E}\Omega}{L\rho_0}\sin(\Omega t - \psi), \tag{2}$$



Рис. 1: Нарастание и затухание вынужденных колебаний

 $\omega$  и амплитудой, экспоненциально убывающей со временем; вынужденных колеоании вторая - с частотой внешнего источника и постоянной амплитудой. Однако со временем собственные колебания затухают, и в контуре устанавливаются вынужденные колебания. А их амплитуда максимальна, когда знаменатель второй синусоиды  $\rho_0 = \sqrt{(\omega_0^2 - \Omega_0^2)^2 + (2\gamma\Omega)^2}$  минимален, то есть  $\omega_0 = \Omega$  (частота внешнего сигнала совпадает с собственной частотой контура). Это явление и называется резонансом. Зависимость амплитуды колебаний от частоты внешнего напряжения называется резонансной кривой.



Рис. 2: Схема установки

Резонансная кривая колебательного контура. Мы можем снять зависимость амплитуды напряжения на резисторе R от частоты на генераторе (при постоянной амплитуде выходного напряжения), однако для этого выходное сопротивление генератора должно быть много меньше импеданса контура. Для этого в цепи используется конденсатор  $C_1$ . И в таком случае импеданс внешней по отношению к контуру цепи был гораздо больше импеданса самого контура вблизи резонанса:

$$\frac{1}{\omega C_1} \gg |Z_{\text{pes}}| = \frac{L}{RC}$$

**Процессы установления и затухания колебаний.** Добротность контура можно определить и другими способами, например, по скорости затухания свободных колебаний. Подавая на контур цуги синусоид конечной длины, можно наблюдать процессы установления и затухания колебаний в контуре. И те, и другие могут быть использованы для определения добротности контура по скорости нарастания/затухания напряжения:

$$\Theta = \frac{1}{n} \ln \frac{U_0 - U_k}{U_0 - U_{k+n}}$$

Измеряя амплитуды напряжения в какой-нибудь момент времени и через n периодов, можем посчитать добротность по формуле:

$$Q = \frac{\pi}{\gamma T} = \frac{\pi}{\Theta}$$



Рис. 3: Схема экспериментальной установки для исследования вынужденных колебаний

**Установка и параметры измерения.** Идеальная схема, изображённая на рисунке 2, не соответствует действительности. Элементы цепи не идеальны и имеют паразитные сопротивления. Измерим все величины с помощью RLC – моста:

$$R_L = 29.3 \text{ Om}^1, \ L = 99.9 \text{ м}$$
Гн,  $C = 100.0 \text{ н}$ Ф,  $R = 100.0 \text{ Om}$ 

Снимем зависимость напряжения на конденсаторе от входной частоты, и получим таким образом резонансную кривую. Рассчитаем добротность контура при разных значениях резистора по известной формуле:

$$Q = \frac{\nu_0}{\Delta \nu}$$

|   | U, B        | 0.83 | 0.64 | 0.45 | 0.33 | 0.25 | 0.20 | 0.28 | 0.48 | 0.91 | 0.80 | 0.70 | 0.60 | 0.50 | 0.40 | 0.30 | 0.20 |
|---|-------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Ī | $\nu$ , Гц  | 1594 | 1600 | 1631 | 1657 | 1692 | 1727 | 1673 | 1626 | 1561 | 1553 | 1546 | 1538 | 1528 | 1515 | 1493 | 1455 |
| ſ | $\nu/\nu_0$ | 1.02 | 1.02 | 1.04 | 1.06 | 1.08 | 1.10 | 1.07 | 1.04 | 1.00 | 0.99 | 0.99 | 0.98 | 0.97 | 0.97 | 0.95 | 0.93 |
| Ī | $U/U_0$     | 0.91 | 0.70 | 0.49 | 0.36 | 0.27 | 0.22 | 0.30 | 0.52 | 1.0  | 0.88 | 0.77 | 0.66 | 0.55 | 0.44 | 0.33 | 0.22 |

Таблица 1: Полученные значения при R = 0 Ом

| U, B        | 0.82 | 0.72 | 0.60 | 0.50 | 0.40 | 0.30 | 0.20 | 0.72 | 0.60 | 0.50 | 0.40 | 0.30 | 0.20 |
|-------------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| ν, Гц       | 1578 | 1523 | 1490 | 1456 | 1418 | 1365 | 1272 | 1644 | 1692 | 1744 | 1817 | 1940 | 2330 |
| $\nu/\nu_0$ | 1.00 | 0.96 | 0.94 | 0.92 | 0.89 | 0.86 | 0.80 | 1.04 | 1.07 | 1.10 | 1.15 | 1.23 | 1.47 |
| $U/U_0$     | 1.0  | 0.87 | 0.73 | 0.61 | 0.48 | 0.36 | 0.24 | 0.87 | 0.73 | 0.61 | 0.48 | 0.36 | 0.24 |

Таблица 2: Полученные значения при R = 100 Ом

## Экспериментальные значения добротностей:

$$Q_{R=0} = 25.1 \pm 1.2$$
  
 $Q_{R=100} = 7.3 \pm 0.4$ 

 $<sup>^{1}</sup>$ Заметим, что  $R_{L}$  зависит от частоты. В диапазоне 50 – 1500 Гц абсолютное изменение порядка ома.

|                | Bos  | враста | ние  | Затухание |      |      |  |  |
|----------------|------|--------|------|-----------|------|------|--|--|
| R, Om          |      |        | (    | )         |      |      |  |  |
| $U_n$ , MB     | 200  | 400    | 400  | 200       | 640  | 640  |  |  |
| $U_{k+n}$ , MB | 440  | 640    | 680  | 160       | 440  | 120  |  |  |
| $U_0$ , MB     |      | 740    |      | -         |      |      |  |  |
| k              | 5    | 10     | 15   | 5         | 10   | 15   |  |  |
| Q              | 26.7 | 25.6   | 27.1 | 24.2      | 26.7 | 28.1 |  |  |

Таблица 3: Измерение добротности по нарастанию и затуханию при  ${\rm R}=0$  Ом

|                | Воз | раста | ние | Затухание |     |     |  |  |
|----------------|-----|-------|-----|-----------|-----|-----|--|--|
| R, Om          | 100 |       |     |           |     |     |  |  |
| $U_n$ , MB     | 40  | 100   | 100 | 200       | 200 | 110 |  |  |
| $U_{k+n}$ , MB | 180 | 190   | 170 | 80        | 20  | 30  |  |  |
| $U_0$ , MB     |     | 200   |     | -         |     |     |  |  |
| k              | 5   | 10    | 3   | 3         | 6   | 3   |  |  |
| Q              | 7.5 | 8.6   | 7.8 | 10.3      | 8.2 | 7.2 |  |  |

Таблица 4: Измерение добротности по нарастанию и затуханию при  ${\rm R}=100~{\rm Om}$ 

## Экспериментальные значения добротности (нарастание напряжения):

$$Q_{R=0} = 26.4 \pm 0.7$$
  
 $Q_{R=100} = 7.9 \pm 0.5$ 

## Экспериментальные значения добротности (убывание напряжения):

$$Q_{R=0} = 26.3 \pm 1.1$$
  
 $Q_{R=100} = 8.5 \pm 1.8$ 

|             | Резонансная кривая | Нарастание     | Убывание       |
|-------------|--------------------|----------------|----------------|
| $Q_{R=0}$   | $25.1 \pm 1.2$     | $26.4 \pm 0.7$ | $26.3 \pm 1.1$ |
| $Q_{R=100}$ | $7.3 \pm 0.4$      | $7.9 \pm 0.5$  | $8.5 \pm 1.8$  |

Таблица 5: Сравнение экспериментальных значений добротности, полученных разными методами

Вывод. Были изучены законы, описывающие переходные процессы в резонансном контуре, изучена резонансная кривая и определение добротности из разных физических соображений.



Рис. 4: Резонансные кривые для  $R=100~\mathrm{Om}$  и  $R=0~\mathrm{Om}$