Решение листочка 2 по теории вероятностей

Михаил Иванов

Декабрь 2019

Задача 1

Попробуем посмотреть на распределения. Нас просят доказать, что есть некоторая случайная величина M, к которой M_n сходится по распределению — то есть во всех точках, где F_M непрерывна, F_{M_n} сходится к F_M .

Взглянем на F_{M_n} (в одном месте мы пользуемся независимостью и одинаковой распределённостью величин):

$$F_{M_n}(x) = \mathbb{P}\left\{M_n \leqslant x\right\} = \mathbb{P}\left\{n \min_{j \leqslant n} W_j \leqslant x\right\} = 1 - \mathbb{P}\left\{n \min_{j \leqslant n} W_j > x\right\} = 1 - \mathbb{P}\left\{\bigwedge_{j \leqslant n} nW_j > x\right\} = 1 - \mathbb{P}\left\{nW_1 > x\right\}^n = 1 - \mathbb{P}\left\{W_1 > \frac{x}{n}\right\}^n = 1 - \left(\int_{\max\left(\frac{x}{n}, 0\right)}^{+\infty} e^{-t} dt\right)^n = 1 - \left(e^{-\max\left(\frac{x}{n}, 0\right)}\right)^n = 1 - e^{-\max(x, 0)}.$$

Получилась функция стандартного показательного распределения. Поэтому M_n сходится по распределению.

Но вот сходимостью почти наверное и не пахнет. Действительно, рассмотрим событие $A_n = \left\{W_n \leqslant \frac{1}{n}\right\}$. Все события A_n независимы; кроме того, $\mathbb{P}A_n = 1 - e^{-\frac{1}{n}} \geqslant \frac{1}{n} \cdot \frac{e-1}{e}$ (при $n \geqslant 1$), поэтому ряд $\sum_{n=1}^{+\infty} \mathbb{P}A_n$ расходится. Тогда по лемме Бореля-Кантелли вероятность того, что множество n, для которых выполнено событие A_n , бесконечно, равна единице. То есть почти наверное $nW_n \leqslant 1$ для бесконечно многих n. Это значит, что почти наверное $\lim_{n \to +\infty} nW_n \leqslant 1$. Следовательно, почти наверное $\lim_{n \to +\infty} M_n \leqslant 1$ (так как $M_n \leqslant nW_n$). С другой стороны, если бы M_n сходилась почти наверное, то мы знаем, к какой величине — к стандартной показательной. У неё почти наверняка был бы предел, и с вероятностью $\int_1^+ e^{-t} \, dt = e^{-1}$ предел был бы больше 1. Значит, нижний предел тоже с вероятностью не менее e^{-1} был бы больше 1, а мы только что выяснили, что он почти наверное не больше 1.

Задача 2

Обозначим

$$\mathcal{N}(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt.$$

Пусть F_X — функция распределения случайной величины X:

$$F_X(x) = \mathbb{P}\{X \leqslant x\}.$$

И \mathcal{N} , и F_X действуют из \mathbb{R} в [0;1]. Но \mathcal{N} — это гладкая функция с положительной производной, поэтому дифференциал по F_X переписывается через дифференциал по \mathcal{N} : существует вероятностная мера μ на отрезке [0;1], что $F_X=\mu\circ\mathcal{N}$. Мы хотим доказать равносильность условия про функцию g и того, что X имеет распределение \mathcal{N} , то есть что $F_X=\mathcal{N}$, то есть что μ — это обычная мера Лебега.

Условие равносильно тому, что $\mathbb{E}(Xg(X) - g'(X)) = 0$, или

$$\int_{-\infty}^{+\infty} xg(x) - g'(x) dF_X = 0,$$

или

$$\int_{-\infty}^{+\infty} -\left(g(x)e^{-\frac{x^2}{2}}\right)' e^{\frac{x^2}{2}} dF_X = 0.$$

Потрудимся это красиво расписать, пользуясь тем, что $\mathcal{N}' = \frac{d\mathcal{N}}{dx} = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$.

$$\int_{-\infty}^{+\infty} -\frac{dg\mathcal{N}'}{dx} : \frac{d\mathcal{N}}{dx} d\mu \circ \mathcal{N} = 0.$$

 $g(x)\mathcal{N}'(x)$ — это любая непрерывно дифференцируемая функция с компактным носителем (так как \mathcal{N} гладкая с положительной производной). Но это функция переменной x. Подставим в качестве x функцию, обратную к \mathcal{N} , получим некоторую функцию h, которая принимает значение \mathcal{N} и восстанавливает, чему при этом значении должно быть равно $g\mathcal{N}'$. Функция h — это любая непрерывно дифференцируемая функция с носителем в интервале (0; 1) (так как она является композицией хорошей функции $g(x)\mathcal{N}'(x)$ и гладкой \mathcal{N}^{-1} , в обратную сторону это соответствие тоже работает). Итак, у нас получается такое условие:

$$\int_{0}^{1} -\frac{dh}{d\mathcal{N}} d\mu = 0.$$

Заметим, что мы уже полностью забыли о том, что \mathcal{N} была функцией; теперь это переменная, по которой мы интегрируем и дифференцируем.

Докажем, что $\mu = \lambda$ равносильно тому, что для любой непрерывно дифференцируемой h с носителем в (0;1) выполнено неравенство выше. В одну сторону очевидно: если μ — мера Лебега, то интеграл производной функции с компактным носителем нулевой (равен разности значений функции в единице и нуле, которые оба нулевые).

В другую сторону менее очевидно. Как известно из математического анализа, для любых двух различных мер с компактным носителем существует гладкая функция с компактным носителем, у которой по ним разные интегралы (это следует из теоремы Стоуна-Вейерштрасса). Вот для любого отрезка [a;b] строго внутри (0;1) можно ограничить μ и λ только на отрезок [a;b], и если эти меры там разные, то найдётся гладкая функция с носителем в [a;b], у которой в этом отрезке разные интегралы. Если найдётся непрерывная функция с компактным носителем с другим отношением интегралов по этим двум мерам, то найдётся их непрерывная линейная комбинация $\varphi(\mathcal{N})$, у которой лебегов интеграл нулевой, а интеграл по μ ненулевой. Тогда $\Phi(\mathcal{N}) = \int_0^1 \varphi(t) \, dt$ подойдёт в качестве h, для которой $\int_0^1 -\frac{dh}{d\mathcal{N}} \, d\mu \neq 0$: она непрерывно дифференцируема, так как её производная — φ , она имеет компактный носитель, так как интеграл φ по Лебегу нулевой, ну и неравенство выполнено, так как интеграл φ по μ ненулевой.

Таким образом, мы доказали, что отношение лебегова интеграла и интеграла по μ у любых непрерывных функций с компактным носителем в (0;1) фиксировано. При этом, если в качестве последовательности функций рассмотреть такие гладкие функции со значениями от 0 до 1, у которых значения в $[0;\frac{1}{n}]$ и $[1-\frac{1}{n};1]$ нулевые, а в $\left[\frac{2}{n}';1-\frac{2}{n}\right]$ единичные, то эти функции имеют компактные носители в (0;1), и при этом по обеим мерам их интеграл стремится к мере единичного отрезка, то есть к единице. ($\mu[0;1]=1$, так как $\mu[0;1]=F_X(+\infty)-F_X(-\infty)=1-0=1$.) Значит, отношение равно единице. Таким образом, на отрезках в (0;1) меры μ и λ совпадают. Значит, они вообще совпадают, так как меры точек 0 и 1, очевидно, нулевые, а любой отрезок в [0;1] представим в виде объединения счётного числа отрезков из (0;1) и, возможно, точек 0 и 1.

1. Задача 3

Понятно, что для любого $\varepsilon > 0$ существует $\delta > 0$, что из $\frac{\|X_n\|^2}{n} \in [1-\delta;1+\delta]$ следует $\frac{X_n}{\sqrt{n}} \in B(1+\varepsilon) \setminus B(1-\varepsilon)$. Так что мы докажем, что вероятность условия с дельтой стремится к единице.

Рассмотрим последовательность N_n из независимых стандартно нормально распределённых величин. Тогда $\|X_n\|$ распределено так же, как $N_1^2+\ldots+N_n^2$. Поскольку $\mathbb{P}\left\{\frac{\|X_n\|^2}{n}\in[1-\delta;1+\delta]\right\}$ зависит лишь от распределения $\|X_n\|$, можно считать, что $\|X_n\|^2=N_1^2+\ldots+N_n^2$. Теперь применим центральную предельную теорему. N_n^2 одинаково распределены и независимы, их матожидания равны $\mu=\sigma^2(2-1)!!=1$, их дисперсии равны $\sigma^4(4-1)!!-mu^2=2$, то есть они конечны, значит, $\frac{\|X_n\|^2-1\cdot n}{\sqrt{2n}}$ сходится по распределению к \mathcal{N} . Вероятность того, что $\frac{\|X_n\|^2}{n}\in[1-\delta;1+\delta]$, равна вероятности того, что $\frac{\|X_n\|^2}{\sqrt{2n}}\in\left[\sqrt{\frac{n}{2}}-\delta\sqrt{\frac{n}{2}};\sqrt{\frac{n}{2}}+\delta\sqrt{\frac{n}{2}}\right]$, то есть вероятности того, что $\frac{\|X_n\|^2-1\cdot n}{\sqrt{2n}}\in\left[-\delta\sqrt{\frac{n}{2}};\delta\sqrt{\frac{n}{2}}\right]$. Так как эта штука сходится к нормальному распределению, то эта вероятность стремится к единице: она будет больше 1-2k, поскольку можно рассмотреть достаточно большой отрезок, на котором интеграл нормального распределения больше 1-k, и дождаться, пока на нём нормальное и наше распределения будут отличаться менее чем на k по распределению.

Задача 4

В прямую сторону верно. Для любого $\varepsilon > 0$ из сходимости по вероятности следует, что $\mathbb{P}\left\{|X_n - X| > \frac{\varepsilon}{2}\right\} \to 0$. Значит, для достаточно больших n > N эта вероятность меньше $\frac{\varepsilon}{2}$. Значит, для достаточно больших m > N и n > N вероятность того, что хоть кто-то из X_n и X_m отстоит от X более, чем на $\frac{\varepsilon}{2}$, меньше $\frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. Но это событие следует из того, что $|X_n - X_m| > \varepsilon$. Следовательно, вероятность того, что $|X_n - X_m| > \varepsilon$, меньше ε , с того же самого места N.

В обратную сторону мы сделаем так: мы найдём подпоследовательность, сходящуюся по вероятности. Чтобы найти место, начиная с которого, любой член последовательности отличается более чем на ε от предела с вероятностью менее, чем ε , мы возьмём максимум из места, с которого подпоследовательность отличается от предела более чем на $\frac{\varepsilon}{2}$ с вероятностью менее, чем $\frac{\varepsilon}{2}$, и места, с которого любые два члена последовательности отличаются более чем на $\frac{\varepsilon}{2}$ с вероятностью менее, чем $\frac{\varepsilon}{2}$.

Искать подпоследовательность будем так: рассмотрим любой строго положительный сходящийся ряд a_n , найдём места N_n , начиная с которых, любые два члена последовательности отличаются более чем на a_n с вероятностью менее, чем a_n , и рассмотрим любую подпоследовательность, в которой n-й член правее всех N_i , $i \leq n$. Теперь X определим так: если у подпоследовательности есть предел, то X_n ему и равняется, а иначе X_n равно любой константе. Если мы докажем, что случай, что предела нет, имеет нулевую вероятность, то мы выиграем: подпоследовательность будет сходиться даже не по вероятности, а почти наверное.

Для доказательства рассмотрим такие события: A_n означает, что X_n отличается от X_{n+1} более чем на a_n . Тогда $\mathbb{P}A_n < a_n$. Ряд из вероятностей A_n , таким образом, сходится. По лемме Бореля-Кантелли вероятность того, что бесконечное количество разных A_n выполнится, нулевая. Значит, почти наверное с некоторого места A_n не выполняются. Значит, почти наверное с этого места последовательность сходится по Коши (n-й и m-й члены отличаются меньше, чем на $\min(n, m)$ -й остаток ряда), а тогда она просто почти наверное сходится, что и требовалось.

Задача 5

Пусть X и \mathcal{M} независимы. Тогда действуем ровно по определению. Что такое $\mathbb{E}\{f(X) \mid \mathcal{M}\}$? Это некоторая случайная величина, измеримая относительно \mathcal{M} . Давайте предположим, что она не равна почти наверное числу $\mathbb{E}f(X)$. Не умаляя общности, положительна вероятность, что $\mathbb{E}\{f(X) \mid \mathcal{M}\} > \mathbb{E}f(X)$. Рассмотрим борелевский луч $x > \mathbb{E}f(X)$ и его прообраз M при действии $\mathbb{E}\{f(X) \mid \mathcal{M}\}$. Так как $\mathbb{E}\{f(X) \mid \mathcal{M}\}$ измеримая, $M \in \mathcal{M}$. Применим к множеству M определение условного математического ожидания:

$$\mathbb{E}\left(\mathbb{E}\{f(X)\mid \mathcal{M}\}\chi_M\right) = \mathbb{E}f(X)\chi_M = \mathbb{E}f(X)\mathbb{E}\chi_M = \mathbb{E}f(X)\mathbb{P}M.$$

Второе равенство выполнено, так как M и X независимы. Таким образом, на множестве M величина $\mathbb{E}\{f(X) \mid \mathcal{M}\}$ в среднем равна $\frac{\mathbb{E}f(X)\mathbb{P}M}{\mathbb{P}M} = \mathbb{E}f(X)$; с другой стороны, на M она строго больше $\mathbb{E}f(X)$; это невозможно. Аналогично рассматривается случай, если положительна вероятность, что $\mathbb{E}\{f(X) \mid \mathcal{M}\} < \mathbb{E}f(X)$. Остаётся лишь единственная возможность, что $\mathbb{E}\{f(X) \mid \mathcal{M}\} = \mathbb{E}f(X)$ почти наверное, а это мы и хотели.

Задача 6 5

Обратно, пусть есть условие про борелевскую функцию. То, что случайная величина X не зависит от \mathcal{M} , равносильно тому, что для каждого борелевского множества A событие $X \in A$ не зависит от \mathcal{M} . Рассмотрим $f(x) = \chi_A$, у f(X) конечное матожидание, так как f ограниченная, поэтому $\mathbb{P}\{X \in A \mid \mathcal{M}\} = \mathbb{E}\{f(X) \mid \mathcal{M}\} = \mathbb{E}\{f(X) = \mathbb{P}\{X \in A\}.$

Задача 6