Poznámka (Literature)

Kechris.

## **Definice 0.1** (Polish space)

We say TS  $(X, \tau)$  is polish (PTS) if X is separable and completely metrizable.

Poznámka

Complete compatible metric is not unique:  $\tilde{\rho} = \min\{1, \rho\}$ .

Například

 $\mathbb{R}$ ,  $\mathbb{C}$ ,  $\mathbb{R}^n$ ,  $\mathbb{C}^n$ ,  $2 := \{0, 1\}$ ,  $\omega := \{0, 1, 2, \ldots\}$  with discrete topology, Separable Banach space (SBS), metrizable compacts,  $2^{\omega}$ ,  $\omega^{\omega}$  (both with product topology).

## Věta 0.1 (Baire)

X TS metrizable with complete metric. Then countable intersection of open dense subsets of X is dense in X.

 $D\mathring{u}kaz$ 

Without proof. (We should know it already.)

#### Věta 0.2

X complete metric space,  $\{F_n\}$  is decreasing sequence of closed subsets of X, such that  $\operatorname{diam}(F_n) \to 0$ . Then  $|\bigcap F_n| = 1$ .

 $D\mathring{u}kaz$ 

Without proof. (We should know it already.)

#### Věta 0.3

- (i) If  $X_n$  are PTS,  $n \in \omega$ . Then  $\prod_{n \in \omega} X_n$  is PTS.
  - (ii) X PTS,  $H \subset X$ . Then H is PTS  $\Leftrightarrow H \in \mathcal{G}_{\delta}(X)$

D ukaz ((i))

Let  $d_n$  be CCM (complete compatible metric) on  $X_n$ ,  $n \in \omega$ . Then

$$d(x,y) := \sum_{n=0}^{\infty} \min \{2^{-n}, d_n(x_n, y_n)\}\$$

is CCM on  $X = \prod_{n \in \omega} X_n$ , where  $x = (x_n)$ ,  $y = (y_n)$ . ("Definition is correct" is trivial, "d is metric" straightforward, "d is complete" also easy, compatibility too).

Důkaz ((ii))

 $H = \emptyset$ , H = X trivial. Assume  $H \neq \emptyset$ , X.

$$\subseteq$$
 :  $x \in H, n \in \omega, x \in B_{\varrho}(x, 2^{-n-2}) \subset V_n$ .

" $\supseteq$ ":  $x \in V_n \cap \overline{H}$  for every  $n \in \omega \implies \exists$  open sets  $G_n$ :  $x \in G_n$ ,  $G \cap H \neq \emptyset$ ,  $\operatorname{diam}(G_n \cap H) < 2^{-n}$ . We can assume:  $G_{n+1} \supset G_n$  (we can use intersection:  $G_{n+1} \cap G_n \cap H \neq \emptyset$ )  $\iff$   $x \in G_n \cap G_{n+1} \cap \overline{H} \neq \emptyset$ ).

 $\{y\} := \bigcap_{n \in \omega} \overline{G_n \cap H}^H \in H. \text{ For contradiction: } x \neq y \implies \exists O \subset X \text{ open: } x \notin \overline{O}, y \in O, G_n \cap H \subset B(y, 2^{-n}), n \in \omega. \implies \exists n \in \omega G_n \cap H \subset O, x \in G_n \cap (X \setminus \overline{O}) \cap \overline{H} \implies G_n \cap (X \setminus \overline{O}) \cap H \neq \emptyset.$ 

"  $\Leftarrow$  ": fix CCM d on X,  $H = \bigcap_{n \in \omega} U_n$ ,  $\emptyset = U_n \neq X$ .  $F_n := X \setminus U_n$ ,  $\tilde{d}(x,y) = d(x,y) + \sum_{n=0}^{\infty} \min \left\{ 2^{-n}, \left| \frac{1}{\operatorname{dist}(x,F_n)} - \frac{1}{\operatorname{dist}(y,F_n)} \right| \right\}$ ,  $x,y \in H$ . Next we verified that  $\tilde{d}$  is metric, that  $\tilde{d}$  is equivalent with d on H (by convergence), and that  $(H,\tilde{d})$  is complete metric space and separable. TODO?

# Definice 0.2 (Notation)

 $A \neq 0$ :

- $A^{<\omega}$  := finite sequence of elements of  $A = \bigcup_{n \in \omega} A^n$ ;
- $s \in A^k$ ,  $t \in A^{<\omega} \cup A^{\omega}$ :  $s \wedge t := (s_0, s_1, \dots, s_{k-1}, t_0, t_1, \dots)$ , where  $s = (s_0, \dots, s_{k-1})$ ,  $t = (t_0, t_1, \dots)$ ;
- $s \in A^{<\omega} \cup A^{\omega}$ : |s| is the number of elements of sequence s  $(|s| \in \omega \cup \{\infty\})$ ;
- $s \in A^{<\omega} \cup A^{\omega}$ ,  $k \in \omega$ ,  $|s| \ge k$ , then we denote restriction of s on first k elements as s/k;
- $s < t \text{ iff } |t| \ge |s| \text{ and } s = t/|s| \ (s \in A^{<\omega}, \ t \in A^{<\omega} \cup A^{\omega}).$

# 1 Baire space $\omega^{\omega}$

### Definice 1.1

For  $s \in \omega^{<\omega}$  we define Baire interval of s as  $\mathcal{N}(s) := \{ \nu \in \omega^{\omega} | s < \nu \}$ .

 $\mathcal{N}(s)$  are clopen  $(\mathcal{N}(s) = \omega^{\omega} \setminus \bigcup \{\mathcal{N}(t) | |t| = |s|, t \neq s, t \in \omega^{<\omega}\}).$ 

 $\{\mathcal{N}|s\in\omega^{<\omega}\}$  is base of topology of  $\omega^{\omega}$ .

## Věta 1.1 (Alexandrov–Urysohn)

 $\omega^{\omega}$  is up to homeomorphism unique nonempty multi-dimension PTS such that every compact has empty interior.

П

Důkaz

Bez důkazu.

Důsledek

 $\omega^{\omega}$  is homeomorphic to  $\mathbb{R}\backslash\mathbb{Q}$ .

#### Věta 1.2

Let  $X \neq \emptyset$ , PTS. Then X is continuous image of  $\omega^{\omega}$ .

Poznámko

 $X \neq \emptyset$  PTS. Then there  $\exists F \subset \omega^{\omega}$ , F closed, and continuous injection  $\varphi : F \to X$ .

 $D\mathring{u}kaz$ 

Find CCM on X such that diam  $X \leq 1$ . We inductively construct closed  $\emptyset \neq A_s \subset X$  for every  $s \in \omega^{<\omega}$  such that 1.  $A_{\emptyset} = X$ ; 2. diam $(A_s) \leq 2^{-|s|}$ ; 3.  $A_s = \bigcup_{i \in \omega} A_{s \hat{i}}$ .

Empty set is trivial. Assume we already have  $A_s$ . Find  $\{x_i|i\in\omega\}\subset A_s$  dense in  $A_s$ .  $A_{s^{\hat{}}i}:=A_s\cap\overline{B(x_i,2^{-|s|-2})}\neq\varnothing$  closed.

Fix  $\forall \nu \in \omega^{\omega} : f(\nu) := x$ , where  $\{x\} = \bigcap_{k \in \omega} A_{\nu/k} \neq \emptyset$  (intersection of closed nonempty non-increasing sequence of sets). "f is surjection":  $x \in A_s \stackrel{3}{\Longrightarrow} \exists n \in \omega : x \in A_{s^{\wedge}n} \stackrel{1}{\Longrightarrow} \forall x \in X \ \exists \alpha \in \omega^{\omega} \ \forall k \in \omega : x \in A_{\alpha/k} \implies x = f(\alpha)$ .

"f continuous":  $f(\mathcal{N}_{\nu/k}) \subset A_{\nu/k}$  for every  $\nu \in \omega^{\omega}$ ,  $k \in \omega$ , diam  $A_{\nu/k} \leq 2^{-k}$ .

### 1.1 Cantor set $2^{\omega}$

#### Tvrzení 1.3

 $2^{\omega}$  is up to homeomorphism unique nonempty nuldimensional compact metrizable space without isolated points (without isolated points is called perfect space).

#### Tvrzení 1.4

Let  $X \neq \emptyset$  metrizable, compact. Then X is continuous image of  $2^{\omega}$ .

 $D\mathring{u}kaz$ 

Without proof, but it is similar to the previous one.

# 1.2 Hilbert cube $[0,1]^{\omega}$

#### Tvrzení 1.5

Let X be PTS. Then X is homeomorphic to  $G_{\delta}$  subset of  $[0,1]^{\omega}$ .

Důkaz

X PTS, case  $\emptyset$  is trivial, so assume  $X \neq \emptyset$ ,  $\varrho$  is CCM on X,  $\varrho \leqslant 1$ . Let  $\{x_n, n \in \omega\}$  be dense in X. Define  $f: [0,1]^{\omega}: f(x) = (\varrho(x,x_n))_{n \in \omega}$ .  $\varrho \leqslant 1 \implies f(x) \in [0,1]^{\omega}$ .

"Continuity of f":  $f^{-1}(U) = \bigcap_{i=1}^n B(x_i, b_i) \setminus \overline{B(x_i, a_i)}$  open.

"Injective":  $x \neq y \implies \exists n \in \omega : \varrho(x, x_n) < \varrho(y, x_n) \implies f(x) \neq f(y)$ .

"Continuity of  $f^{-1}$ "  $f(y^n) \to f(y) \stackrel{?}{\Longrightarrow} y^n \to y$ .

$$f(y^n) \to f(y) \stackrel{?}{\Leftrightarrow} \forall k \in \omega : \varrho(y^n, x_k) \to \varrho(y, x_k).$$

Let  $\varepsilon > 0$  be arbitrary:

$$\exists k \in \omega : \varrho(y, x_k) < \frac{\varepsilon}{3}. \ \exists n_0 \ \forall n \geqslant n_0 : \varrho(y^n, x_k) < \frac{2\varepsilon}{3}.$$

Then

$$\forall n \ge n_0 : \varrho(y^n, y) \le \varrho(y^n, x_k) + \varrho(x_k, y) < \varepsilon.$$

So f(X) is homeomorphism to  $X \implies f(X)$  is PTS  $\implies f(X) \in \mathcal{G}_{\delta}([0,1]^{\omega})$ .

Důsledek

Let X be compact metrizable space. Then X is homeomorphic to some closed subset of  $[0,1]^{\omega}$ .

 $D\mathring{u}kaz$ 

Compact metrizable space is Polish. And compact subset must be closed.

# 1.3 $\mathcal{K}(X)$ : Hyperspace of compact subsets of X

#### Definice 1.2

Let X be PTS, denote  $\mathcal{K}(X) := \{K \subset X | K \text{ is compact}\}$ . Vietoris topology on  $\mathcal{K}(X)$  is generated by  $\{K \in \mathcal{K}(X) | K \subset V\}$  for V open and  $\{K \cap \mathcal{K}(X) | K \cap V \neq \emptyset\} = \mathcal{K}(X) \setminus \{K \in \mathbb{K}(X) | K \subset X \setminus V\}$ 

#### Tvrzení 1.6

Let X be PTS,  $\varrho$  CCM on X,  $\varrho \leqslant 1$ . Then mapping  $h : \mathcal{K}(X) \times \mathcal{K}(X) \mapsto [0, +\infty)$  defined as:

$$h(K,L) = \begin{cases} 0, & K = L = \varnothing, \\ \max\left\{\sup_{x \in K} \varrho(x,L), \sup_{y \in L} \varrho(y,K)\right\}, & K,L \neq \varnothing, \\ 1, & other \ cases, \end{cases}$$

is CCM on K(X) with Vietoris topology. h is known as Hausdorff metric.

Poznámka

 $\mathcal{K}(X)$  is separable if X is PTS. X is compact metrizable  $\implies \mathcal{K}(X)$  is compact (totally bounded).

X is separable  $\implies \exists D \subset X : \overline{D} = X, |D| = \omega.$ 

$$M = \{K \subset D | |K| < \omega\} \implies |M| = \omega.$$

 $\overline{M} = \mathcal{K}(X)$ .  $K \in \mathcal{K}(X)$  arbitrary,  $\varepsilon > 0$  arbitrary. Then  $\exists \frac{\varepsilon}{2}$  net  $P \subset K$ ,  $|P| < \omega$ . We find  $\{\tilde{x}_0, \dots, \tilde{x}_n\} \subset D : \varrho(x_i, \tilde{x}_i) < \frac{\varepsilon}{2} \wedge h(K, \{\tilde{x}_0, \dots, \tilde{x}_n\}) < \varepsilon$ .

X is compact, P is  $\varepsilon$ -net in X,  $|P| < \omega \implies 2^P$  is finite  $\varepsilon$ -net in  $\mathcal{K}(X)$ .

 $D\mathring{u}kaz$ 

 $(\emptyset \neq K, L, P \in \mathcal{K}(X).)$  h is metric, definition is correct,  $h \geqslant 0$  trivial, h(K, L) = h(L, K) trivial,  $h(K, L) = 0 \implies K = L \ (x \notin L \implies \varrho(x, L) > 0 \implies K \subset L \land L \subset K).$ 

" " aka "<br/>  $h(K,L) \leqslant h(K,P) + h(P,L)$ ": Let  $x \in K, y \in L, p \in P.$  Then

$$\varrho(x,L) \leqslant \varrho(x,y) \leqslant \varrho(x,p) + \varrho(p,y) \qquad \inf y \in L$$

$$\varrho(x,L) \leqslant \varrho(x,p) + \varrho(p,L) \qquad \sup p \in P$$

$$\varrho(x,L) \leqslant \varrho(x,p) + h(P,L) \qquad \inf p \in P$$

$$\varrho(x,L) \leqslant \varrho(x,P) + h(P,L) \qquad \inf p \in P$$

$$\sup_{x \in K} \varrho(x, L) \leqslant h(K, P) + h(P, L).$$

Similarly  $\sup_{y \in L} \varrho(y, K) \leq h(K, P) + h(P, L)$ .

TODO!!!

#### Definice 1.3

X is metrizable space,  $1 \leq \alpha < \omega_1$ . We define  $\Sigma^0_{\alpha}(X)$ ,  $\Pi^0_{\alpha}(X)$ , and  $\Delta^0_{\alpha}(X)$  by induction:

$$\Sigma_1^0(X) := \{ U \subset X | U \text{ open} \},\,$$

$$\Pi^0_\alpha(X) := \left\{ A \subset X | X \backslash A \in \Sigma^0_\alpha(X) \right\},$$

$$\Sigma^0_\alpha(X) := \left\{ \bigcup_{n \in \omega} A_n | A_n \in \Pi^0_{\alpha_n}(X), \alpha_n < \alpha, n \in \omega \right\},$$

$$\Delta^0_\alpha(X) := \Sigma^0_\alpha \cap \Pi^0_\alpha(X).$$

Poznámka (By induction it can be prooven)

$$\Sigma^0_{\alpha}(X) \subset \Sigma^0_{\beta}(X), \Pi^0_{\alpha}(X) \subseteq \Pi^0_{\beta}(X), \qquad 1 \leqslant \alpha < \beta < \omega_1.$$

Poznámka

$$\forall \alpha, \beta : 1 \leqslant \alpha < \beta < \omega_1 : \Sigma_{\alpha}^0(X) \subset \Pi_{\beta}^0(X).$$

Poznámka

If X contains homeomorphic copy of  $2^{\omega}$  then all inclusions are strict.

We denote Borel(X) as  $\sigma$ -algebra of Borel sets ( $\sigma$ -algebra generated by  $\Sigma_1^0(X)$ ).

Poznámka (Also non-trivial theorem)

$$Borel(X) = \bigcup_{1 \leq \alpha < \omega_1} \Sigma_{\alpha}^0(X) = \bigcup_{1 \leq \alpha < \omega_1} (X) = \bigcup_{1 \leq \alpha < \omega_1} \Delta_{\alpha}^0(X).$$

$$A_n \in \bigcup_{1 \leqslant \alpha < \omega_1} \Sigma_{\alpha}^0(X) \implies \exists 1 \leqslant \alpha_n < \omega_1 : A_n \in \Sigma_{\alpha_n}^0(X) \implies A_n \in \Sigma_{\sup\{\alpha_n \mid n \in \omega\}}^0 \implies \bigcup_{n \in \omega} A_n \in \Sigma_{\sup\{\alpha_n, n \in \omega\}}^0$$

Poznámka

$$F_{\sigma} = \Sigma_{2}^{0}, G_{\delta} = \Pi_{2}^{0}, F_{\sigma\delta} = \Pi_{3}^{0}, G_{\delta\sigma} = \Sigma_{3}^{0}.$$

 $\Sigma^0_{\alpha}(X)$  is closed under countable union and  $\Pi^0_{\alpha}(X)$  under countable intersection.

#### Věta 1.7

X be metrizable,  $1 \leq \alpha < \omega_1$ . Then

- 1.  $\Sigma^0_{\alpha}(X)$  is closed under finite intersection;
- 2.  $\Pi^0_{\alpha}(X)$  is closed under finite union.

 $D\mathring{u}kaz$ 

"1." Firstly for  $\alpha=1$ , it is trivial. Then let  $A,B\in \Sigma^0_{\alpha}(X),\ \alpha>1$ . Then  $A=\bigcup_{n\in\omega}A_n$ ,  $A_n\in \Pi^0_{\alpha_n}(X),\ \alpha_n<\alpha,\ B=\bigcup_{m\in\omega}B_m,\ B_m\in \Pi^0_{\beta_m}(X),\ \beta_n<\alpha.\ A\cap B=\bigcup_{(m,n)\in\omega^2}A_n\cap B_m,\ A_n\cap B_m\in \Pi^0_{\max\{\alpha_n,\beta_n\}}(X)\implies A\cap B\in \Sigma^0_{\alpha}(X).$  "2."  $\Longleftrightarrow$  de Morgan and 1.

### Věta 1.8

X be metrizable,  $A \subset Z \subset X$ ,  $1 \leq \alpha < \omega_1$ . Then  $A \in \Sigma^0_{\alpha}(Z) \Leftrightarrow$  there exists  $\tilde{A} \in \Sigma^0_{\alpha}(X)$ :  $A = \tilde{A} \cap Z$ . Similarly for  $\Pi^0_{\alpha}, \Delta^0_{\alpha}$ .

 $D\mathring{u}kaz$ 

Firstly  $\alpha = 1$  from definition of subspace. Then assume that it is all true for all  $\beta < \alpha$ . We want to prove it for  $\alpha$ . ":

$$A \in \Sigma_{\alpha}^{0}(Z) \implies A = \bigcup A_{n}, A_{n} \in \Pi_{\beta_{n}}^{0}(Z), \beta_{n} < \alpha \implies \exists \tilde{A}_{n} \in \Pi_{\beta_{n}}^{0}(X) : \tilde{A}_{n} \cap Z = A_{n}.$$

$$\tilde{A} = \bigcup \tilde{A}_n \in \Sigma^0_{\alpha}(X), \tilde{A} \cap Z = Z \cap \bigcup \tilde{A}_n = \bigcup (Z \cap \tilde{A}_n) = \bigcup A_n = A.$$

"←= ":

$$\tilde{A} \in \Sigma_{\alpha}^{0}(X), A = \tilde{A} \cap Z \implies \exists \tilde{A}_{n} \in \Pi_{\beta_{n}}^{0}(X), \beta_{n} < \alpha, \bigcup \tilde{A}_{n} = \tilde{A}.$$

$$\tilde{A} \cap Z \in \Pi^0_{\beta_n}(Z) \implies A = \tilde{A} \cap Z = \left(\bigcup \tilde{A}_n\right) \cap Z = \bigcup \left(\tilde{A}_n \cap Z\right) = \bigcup A_n \in \Sigma^0_{\alpha}(Z).$$

#### Věta 1.9

 $X, Y \text{ be metric spaces, } f: X \to Y \text{ is continuous. If } A \in \Sigma^0_{\alpha}(Y) \ (\Pi^0_{\alpha}(Y), \ \Delta^0_{\alpha}(Y)) \text{ then } f^{-1}(A) \in \Sigma^0_{\alpha}(X) \ (\Pi^0_{\alpha}(X), \ \Delta^0_{\alpha}(Y)).$ 

 $D\mathring{u}kaz$ 

 $\alpha = 1$  trivial. Assume it holds true for  $\Sigma^0_{\beta}(Y)$ ,  $\Pi^0_{\beta}(Y)$ ,  $\beta < \alpha$ , and we want to show for  $\Sigma^0_{\alpha}(Y)$  ( $\Pi^0_{\alpha}(Y)$ ). Let  $A \in \Sigma^0_{\alpha}(Y)$ ,  $\alpha > 1 \implies A = \bigcup_{n \in \omega} A_n$ ,  $A_n \in \Pi^0_{\beta_n}(Y)$ ,  $\beta_n < \alpha$ .

$$f^{-1}(A) = f^{-1}(\bigcup A_n) = \bigcup \underbrace{f^{-1}(A_n)}_{\Pi^0_{\beta^n}(X)} \in \Sigma^0_{\alpha}(X),$$

$$f^{-1}(Y \backslash A) = f^{-1}(Y) \backslash f^{-1}(A) = X \backslash f^{-1}(A).$$

Věta 1.10 (Borel classes in PTS)

X,Y be PTS,  $A \in \Sigma^0_{\alpha}(X)$ ,  $\alpha \geq 3$  (resp.  $A \in \Pi^0_{\alpha}(X)$ ,  $\alpha \geq 2$ ),  $B \subset Y$ . If B and A are homeomorphic then  $B \in \Sigma^0_{\alpha}(Y)$  (resp.  $\Pi^0_{\alpha}$ ).

 $D\mathring{u}kaz$ 

 $f:A\to B$  is homeomorphism A onto B. The theorem above (name?) there is extension  $\tilde{f}$  of f,  $\tilde{f}$  is homeomorphism  $\tilde{A}$  onto  $\tilde{B}$ ,  $A\subset\tilde{A}$ ,  $B\subset\tilde{B}$ ,  $\tilde{A}\in\Pi^0_2(X)$ ,  $\tilde{B}\in\Pi^0_2(Y)$ . Then  $B\in\Sigma^0_\alpha(\tilde{B})$  (because  $B=(f^{-1})^{-1}(A)$ ). From the theorem above,  $\exists \hat{B}\in\Sigma^0_\alpha(Y):B=\hat{B}\cap\tilde{B}\in\Sigma^0_\alpha(Y)\iff\alpha\geqslant 3$ .

# 1.4 Analytic sets

### Definice 1.4

X PTS,  $A \subset X$ . We say that A is analytic set in X if there exists PTS Y and continuous mapping  $\varphi: Y \to X$  such that  $\varphi(Y) = A$ .

We denote collection of analytic subsets of X as  $\Sigma_1^1(X)$ . We say that A is coanalytic in X if  $X \setminus A \in \Sigma_1^1(X)$  and we denote this collection as  $\Pi_1^1(X)$ .  $\Delta_1^1(X) = \Sigma_1^1(X) \cap \Pi_1^1(X)$ .

Například

$$Q = \{ \alpha \in 2^{\omega} | \exists n \in \omega \ \forall j \geqslant n : \alpha_j = 0 \} = 2^{<\omega} \in \Sigma_2^0(2^{\omega}) \setminus \Pi_2^0(2^{\omega})$$

TODO?

Poznámka

 $X \text{ PTS}, F : X \to \mathcal{K}(X) \text{ by } F(x) = \{x\}. \text{ Then } F \text{ is continuous, } F^{-1}(\mathcal{K}(A)) = A \Longrightarrow \text{if } \mathcal{K}(A) \in \Sigma^0_{\alpha}(\mathcal{K}(X)) \ (\Pi^0_{\alpha}, \ \Delta^0_{\alpha}) \text{ then } A \in \Sigma^0_{\alpha}(X) \ (\Pi^0_{\alpha}, \ \Delta^0_{\alpha}). \ A \text{ open } \Longrightarrow \mathcal{K}(A) \text{ is open,} A \text{ is closed } \Longrightarrow \mathcal{K}(A) \text{ is closed. } \mathcal{K}(\bigcap A_n) = \bigcap \mathcal{K}(A_n). \text{ Thus for } A \in \Pi^0_2(X) : \mathcal{K}(A) \in \Pi^0_2(\mathcal{K}(X)). \ A \in \Sigma^0_1(X) \ (\Pi^0_1(X), \ \Pi^0_2(X)) \Leftrightarrow \mathcal{K}(A) \in \Sigma^0_1(\mathcal{K}(X)) \ (\Pi^0_1(\mathcal{K}(X)), \ \Pi^0_2(\mathcal{K}(X))).$ 

#### Věta 1.11

 $X \ PTS, \ |X| > \omega. \ Assume \ I \subset \mathcal{K}(X), \ I \ is \ \sigma\text{-ideal} \ (K \in I, L \subset K \implies L \in I; \ K_n \in I, \bigcup K_n \in \mathcal{K}(X) \implies \bigcup K_n \in I). \ If \ I \in \Pi_2(\mathcal{K}(X)), \ then \ I \in \Sigma^1_1(\mathcal{K}(X)).$ 

Dusledek

 $A \notin \Pi_2^0(X) \implies \mathcal{K}(A) \notin \Sigma_1^1(\mathcal{K}(X)).$ 

Poznámka

 $A \in \Pi_1^1(X), \mathcal{K}(A) = \mathcal{K}(X) \setminus \{K \in \mathcal{K}(X) | \exists x \in (X \setminus A) \cap K\} \{(K, x) \in \mathcal{K}(X) \times X | x \in K\} \text{ is closed.}$