

Machine Learning

Linear Algebra review (optional)

Inverse and transpose

Matrix inverse:

If A is an
$$\frac{m \times m}{m \times m}$$
 matrix, and if it has an inverse,

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Matrices that don't have an inverse are "singular" or "degenerate"

Not all numbers have an inverse.

12 > (12-1) = 1

Andrew Ng

Matrix Transpose

Example:
$$\underline{\underline{A}} = \underbrace{\frac{1}{2} \underbrace{\frac{2}{3} \underbrace{5}}_{2 \times 3} \underbrace{0}_{2}$$

$$\mathbf{B} = \underline{A^T} = \begin{pmatrix} 1 \\ 2 \\ 5 \\ 0 \end{pmatrix} \begin{pmatrix} 3 \\ 5 \\ 9 \end{pmatrix}$$

Let A be an $\underline{\mathbf{m}}$ $\underline{\mathbf{x}}$ $\underline{\mathbf{n}}$ matrix, and let $B = A^T$. Then B is an $\underline{\mathbf{n}}$ $\underline{\mathbf{x}}$ $\underline{\mathbf{m}}$ matrix, and

$$B_{\underline{i}\underline{j}} = A_{\underline{j}\underline{i}}.$$

$$B_{12} = A_{21} = 2$$

$$B_{32} = 9$$

$$A_{23} = 9$$