The Code Library of xiaohai

Version 2.0

Volume 1 (Part I, II, III)

xiaohai

Lingxiao Ma Yi Li Lanjun Duan Anran Li

College of Imformation Science and Technology Beijing Normal University

Contents

\mathbf{P}	reface	e	i
	0.1	$\label{eq:Acknowledgement} Acknowledgement$	i
	0.2	Build History	i
Ι	Fu	ndamental	1
1	JAV	/A(详见附录琨神模板)	3
	1.1	代码框架	3
	1.2	String	3
	1.3	BigInteger	3
	1.4	BigDecimal	3
	1.5	分数Fraction	3
2	Tecl	nnology	7
	2.1	代码框架	7
	2.2	手动扩栈	9
	2.3	输出格式控制	9
		2.3.1 C	9
		2.3.2 C++	9
	2.4	输入输出优化	10
		2.4.1 输入整数(正/负)	10
		2.4.2 输出整数	10
3	Star	ndard Templete Library(详见附录琨神模板)	11
	3.1	vector—数组/向量	11
	3.2	list—表	11
	3.3	string—字符串	11
	3.4	map/multimap— 映射/多重映射	12
	3.5	queue—队列	13
	3.6		13
	3.7	stack—栈	13
	3.8	priority_queue— 优先队列/最大堆	13
	3.9	set/multiset— 集合/多重集合	13
	3.10	algorithm—算法	14

4	Atte	ention	15
	4.1	Tips	15
	4.2	Error	15
		4.2.1 Compile Error	15
		4.2.2 Runtime Error	15
		4.2.3 Time Limit Exceeded	16
	4.3	Debug Technology	16
II	M	Tathematics	17
5	Basi	ic	19
	5.1	高精度算法	19
		5.1.1 大整数类From kuangbin	19
		5.1.2 大整数类	26
		5.1.3 高精度FFT乘法(O(N lg N))	31
	5.2	统计x(二进制)中1的个数(未知复杂度)	34
	5.3	二进制生成子集 $(O(2^N))$	35
6	Con	aputation Mathematics	37
	6.1	计算中序表达式 $(O(n))$	37
	6.2	快速幂取模 $(O(\lg n))$	39
	6.3	二分法: 单调函数 $(O(\lg(nf(n))))$	39
	6.4	迭代法(略)	40
	6.5	三分法: 凸性函数 $(O(\lg(nf(n))))$	40
	6.6	解线性方程组	41
		6.6.1 LU 分解(方阵) $(O(N^3))$ (优于高斯消元)	41
		$6.6.2$ 高斯消元 $(O(N^3))$	42
	6.7	解模线性方程或方程组(未知复杂度)	52
	6.8	定积分计算	53
		6.8.1 自适应辛普森	53
		6.8.2 Romberg	54
	6.9	多项式求根: 牛顿法	56
	6.10	周期性方程: 追赶法	57
	6.11	线性规划(单纯形法)	58
	6.12	快速傅立叶变换	62
	6.13	随机算法	62
	6.14	0/1 分数规划	62
		6.14.1 Theorm	62
		6.14.2 Dinkelbach算法 $(O(\lg(nM)))$	62
		6.14.3 二分法	63
	6.15	迭代逼近	63
	6.16	矩阵快速幂 $(O(\lg n))$	63

TEAM #xiaohai CONTENTS

7	Con	mbinatorics	35
	7.1	排列数	65
	7.2	组合数	65
		7.2.1 打印组合数表	65
		7.2.2 Theorm	65
	7.3	鸽笼原理和Ramsey 定理	66
		7.3.1 鸽笼原理 6	66
		7.3.2 Ramsey 定理	66
	7.4	常用的公式和数	66
		7.4.1 Sum of Reciprocal(1/n) Approximation	66
			66
		·	67
			67
			68
			69
			69
			70
			71
	7.5		71
	1.0	· · · · · · · · · · · · · · · · · · ·	71
			72
			12 72
	7.6	· — · · · · · · · ·	12 73
	7.7	离散变换与反演	73
8	Gar	me Theory	75
	8.1	Basic Game	75
		8.1.1 Bash Game	75
		8.1.2 Wythoff Game	75
		8.1.3 翻硬币游戏	76
		8.1.4 Green Hackenbush	76
	8.2	简单取子游戏	76
		8.2.1 游戏模型	76
		8.2.2 NIM 取石子游戏	77
	8.3	Sprague-Grundy 理论	77
		- · ·	77
			77
			78
			78
9			31
	9.1		81
			81
			81
		9.1.3 拓展欧几里得算法	82

CONTENTS TEAM #xiaohai

	9.2	LCM	33
	9.3	约数	33
		9.3.1 求约数的个数	33
		9.3.2 求n的所有约数之和 $(O(\sqrt{N}))$	33
	9.4	欧拉函数PHI(x) 8	34
		9.4.1 欧拉函数PHI(x) 定义	34
		9.4.2 计算PHI(n)(O(N))	34
		9.4.3 打印PHI(n) 表 $(O(N\sqrt{N}))$	34
		9.4.4 PHI(x) 应用	35
	9.5	打印素数表 $(O(\sqrt{N}))$	35
	9.6	分解质因数 $(O(\sqrt{N}))$	35
		9.6.1 分解质因数(无素数表版)	35
		9.6.2 分解质因数(素数表版,适合批量)	36
	9.7	求n!被p(素数)整除的p 的个数	37
	9.8	Primitive Root 费马小定理 8	38
		9.8.1 Theorm	38
		9.8.2 求Primitive Root(未知复杂度)	38
	9.9	同余乘:避免乘法溢出(未知复杂度) 8	39
10	C		
10)1)1
	10.1)1
)1
)2
		·)4
		,)4)4
)5
)6
			96
	10.9		96
	10.2		96
		,)6
		` ')6
		· - /)7
		· - /)7
		·) 1)7
		,	98
			98
		,	99
			99 99
			99 99
			99 99
		, , ,	99 99
		, - ,	
		10.2.14点到线段最短距离(PointToSegment2D) 10.2.15直线与直线距离(LineToLine2D) 10.2.15直线与直线距离(LineToLine2D)	
		- 10.4.10 虫纹引虫双呼的(DINC10DINC4D)	11

TEAM #xiaohai CONTENTS

	10.2.16 直线关于点对称(LineSymmetryOnPoint2D)	101
	10.2.17直线与直线的夹角(LineLineArc)	101
	10.2.18直线l1逆时针转到l2的角度(LineLineRotArc)	102
	10.2.19 直线关于直线对称(LineSymmetryOnLine2D)	102
	10.2.20 直线与圆的交点(CircleLineIntersect)	102
	10.2.21 三点非共线直线确定圆(PointMakeCircle2D)	103
	10.2.22 圆上的点p与弧ab的位置关系(PointOnArc2D)	103
	10.2.23两圆交点(CirCirIntersect)	104
	10.2.24 弓形的面积	104
	10.2.25 两圆/圆环的面积交和并(CircleUnionArea, CircleCommonArea)	104
	10.2.26 多圆的面积交和并(CirclesUnionArea, CirclesCommonArea)	105
	10.2.27 求圆外一点到圆的两个切点(OutTangentPoint)	110
	10.2.28 多边形有向面积(PolyArea)	110
	10.2.29 多边形重心(PolyCenter)	
	10.2.30 点与多边形位置关系(PointInPolygon)	
	10.2.31 半平面求交	112
	10.2.32	112
	10.2.33	112
	10.2.34	112
	10.2.35	
	10.2.36	112
	10.2.37	
	10.2.38	113
10.3	二维几何算法	
	10.3.1 平面最近点对(O(N lg N))	
	10.3.2 最小圆覆盖点(<i>O</i> (<i>N</i>))	
10.4	三维几何定义	
	10.4.1	
10.5	三维几何算法	
	10.5.1	
III I	Data Structure	117
11 基本	数据结构	119
	队列	
	堆	
	并查集	
11.0	11.3.1 扩展+异或(la 4487)	
	11.3.2 元素的删除与计数	
	11.3.3 权值排序+维护根(长春区域赛E)	
	11.0.0 (人田川/丁 本小 (人)	120
12 高级	数据结构	129
12.1	线段树	129
	12.1.1 单值更新	129
	12.1.2 段操作(整体区间操作)	131

CONTENTS TEAM #xiaohai

		12.1.3 hash+成段更新
		12.1.4 区间交并补等
		12.1.5 连续区间合并问题139
		12.1.6 扫描线
		12.1.7 重要题目
	12.2	伸展树(SPlay)149
		12.2.1 SPlay模板一
		12.2.2 SPlay模板二
	12.3	RMQ
13	字符	串 177
		KMP
		13.1.1 普通KMP
		13.1.2 拓展KMP
	13.2	后缀数组
		13.2.1 后缀数组模板
		13.2.2 倍增算法构造后缀数组
		13.2.3 应用: 子串多次出现在多个串中
		13.2.4 应用: 不同子串个数
		13.2.5 应用: 重复次数最多的连续子串 185
		13.2.6 应用: 最长不重复子串190
	13.3	AC自动机
	13.4	回文串
		13.4.1 判回文串
		13.4.2 最长回文串
	13.5	Other
		13.5.1 字符串哈希(推荐BKDR)
		13.5.2 最小表示法 & 最大表示法
		13.5.3 找某个字符串的不同子串的数目 $(O(N^2))$
14	树	21
	14.1	树的分治 211
		14.1.1 树的重心: POJ 1655 Balancing Art
		14.1.2 树链剖分
	14.2	动态树(LCT)
		14.2.1 HDU 4010
		14 2 2 HDH 5002 234

Preface

§ 0.1 Acknowledgement

本模板参考黄锟、詹钰、郭思瑶、kuangbin、cxlove、上交、浙大、吉大等模板,感谢!

§ 0.2 Build History

- $\bullet\,$ 2013 The 38th ACM-ICPC Asia Regional Contest Changchun Site Version 1.0
 - Author: Lingxiao Ma, Yi Li, Anran Li
 - Time: 2013.12.7-8
- 2014 The 39th ACM-ICPC Asia Regional Contest Anshan Site Version 2.0 β
 - Author: Lingxiao Ma, Yi Li, Lanjun Duan
 - Time: 2014.10.18-19
- \bullet 2014 The 39th ACM-ICPC Asia Regional Contest Guangzhou Site Version 2.0
 - Author: Lingxiao Ma, Yi Li, Lanjun Duan
 - Time: 2014.11.22-23

Part I Fundamental

JAVA(详见附录琨神模板)

§ 1.1 代码框架

```
import java.io.*;
import java.math.*;
import java.util.*;
public class test{
    public static void main(String args[]){
        Scanner in=new Scanner(System.in);
        while(in.hasNext()){
            String tmp=in.next();
            System.out.println(tmp);
        }
    }
}
```

$\S 1.2$ String

详见附录琨神模板

§ 1.3 BigInteger

详见附录琨神模板

§ 1.4 BigDecimal

详见附录琨神模板

§ 1.5 分数Fraction

```
class Fraction {
   public BigInteger a, b;
```

```
Fraction() {
    a = BigInteger.ZERO;
    b = BigInteger.ONE;
}
Fraction(BigInteger aa, BigInteger bb) {
    a = aa;
    b = bb;
    this.simplify();
}
void simplify() {
    BigInteger d = a.gcd(b);
    a = a.divide(d);
    b = b.divide(d);
    if (b.signum() == -1) {
        a = a.negate();
        b = b.negate();
    }
}
Fraction add(Fraction f) {
    Fraction res = new Fraction();
    res.b = b.multiply(f.b);
    res.a = a.multiply(f.b).add(b.multiply(f.a));
    res.simplify();
    return res;
}
Fraction minus(Fraction f) {
    Fraction res = new Fraction();
    res.b = b.multiply(f.b);
    res.a = a.multiply(f.b).subtract(b.multiply(f.a));
    res.simplify();
    return res;
}
Fraction multiply(Fraction f) {
    Fraction res = new Fraction();
    res.b = b.multiply(f.b);
    res.a = a.multiply(f.a);
    res.simplify();
    return res;
}
```

```
Fraction divide(Fraction f) {
    Fraction res = new Fraction();
    res.b = b.multiply(f.a);
    res.a = a.multiply(f.b);
    res.simplify();
    return res;
}
```

Technology

§ 2.1 代码框架

可以在GCC编译选项中添加-Dxysmlx使得程序从in.cpp读入数据,提交OJ时因为没有-Dxysmlx,所以是标准输入

```
// #pragma comment(linker, "/STACK:102400000,102400000")
#include <cstdio>
#include <iostream>
#include <cstring>
#include <string>
#include <cmath>
#include <set>
#include <list>
#include <map>
#include <iterator>
#include <cstdlib>
#include <vector>
#include <queue>
#include <ctime>
#include <stack>
#include <algorithm>
#include <functional>
using namespace std;
typedef long long 11;
#define pb push_back
#define ROUND(x) round(x)
#define FLOOR(x) floor(x)
#define CEIL(x) ceil(x)
const int maxn = 0;
const int maxm = 0;
const int inf = 0x3f3f3f3f;
const 11 inf64 = 0x3f3f3f3f3f3f3f3f3fLL;
const double INF = 1e30;
```

```
const double eps = 1e-6;
const int P[4] = \{0, 0, -1, 1\};
const int Q[4] = \{1, -1, 0, 0\};
const int PP[8] = \{ -1, -1, -1, 0, 0, 1, 1, 1\};
const int QQ[8] = \{ -1, 0, 1, -1, 1, -1, 0, 1\};
int kase;
void init()
{
    kase++;
}
void input()
{
    //
}
void debug()
{
    //
}
void solve()
{
    //
}
void output()
{
    //
}
int main()
{
    // 32-bit
    // int size = 256 << 20; // 256MB
    // char *p = (char *)malloc(size) + size;
    // __asm__("movl %0, %%esp\n" :: "r"(p));
    // 64-bit
    // int size = 256 << 20; // 256MB
    // char *p = (char *)malloc(size) + size;
    // __asm__("movq %0, %%rsp\n" :: "r"(p));
    // std::ios_base::sync_with_stdio(false);
#ifdef xysmlx
    freopen("in.txt", "r", stdin);
#endif
    kase = 0;
    while (1)
```

```
{
       init();
       input();
       solve();
       output();
   }
   return 0;
}
      手动扩栈
§ 2.2
/**
*32位G++
*需要放在main函数内
*/
int size = 256 << 20; // 256MB
char *p = (char *)malloc(size) + size;
__asm__("movl %0, %%esp\n" :: "r"(p));
/**
*64位G++
*需要放在main函数内
int size = 256 << 20; // 256MB
char *p = (char *)malloc(size) + size;
__asm__("movq %0, %%rsp\n" :: "r"(p));
/**
*C++
*/
#pragma comment(linker, "/STACK:102400000,102400000")
        输出格式控制
§ 2.3
2.3.1
       \mathbf{C}
输出long double: %Ld
科学计数法输出long double: %Le
科学计数法输出double: %e
2.3.2
      C++
需要#include <iomanip>
setprecision(n) 设显示小数精度为n位
```

setw(n) 设域宽为n个字符

```
setioflags(ios::fixed) 固定的浮点显示
setioflags(ios::scientific) 指数表示
setiosflags(ios::left) 左对齐
setiosflags(ios::right) 右对齐
setiosflags(ios::skipws 忽略前导空白
setiosflags(ios::uppercase) 16进制数大写输出
setiosflags(ios::lowercase) 16进制小写输出
setiosflags(ios::showpoint) 强制显示小数点
setiosflags(ios::showpos) 强制显示符号
```

§ 2.4 输入输出优化

2.4.1 输入整数(正/负)

```
inline int ReadInt()
    bool flag = 0;
    char ch = getchar();
    int data = 0;
    while (ch < '0' || ch > '9')
    {
        if (ch == '-') flag = 1;
        ch = getchar();
    }
    do
    {
        data = data * 10 + ch - '0';
        ch = getchar();
    while (ch >= '0' && ch <= '9');
    return flag ? -data : data;
}
```

2.4.2 输出整数

```
void print( int k )
{
   num = 0;
   while ( k > 0 ) ch[++num] = k % 10, k /= 10;
   while ( num )
        putchar( ch[num--] + 48 );
   putchar( 32 );
}
```

Standard Templete Library(详见 附录琨神模板)

§ 3.1 vector—数组/向量

front()	头元素(vector[0])
back()	尾元素
size()	目前大小
push_back()	从尾加入元素
pop_back()	从尾删除元素
empty()	测试是否空
sort(vec.begih(), vec.end(), cmp())	排序

§ 3.2 list—表

 $\operatorname{List}(\#include < list >)$ 又叫链表,是一种双线性列表,只能顺序访问(从前向后或者从后向前)

list仍然包涵了erase(),begin(),end(),insert(),push_back(),push_front() 这些基本函数

list1.merge(list2)	合并两个 排序 列表
list.sort()	列表的排序(<)

§ 3.3 string—字符串

将一个字符串截断

```
char *ch=strtok(str," ");//以空格截断,可任意改
while(ch!=NULL)
{
    //处理截断下来的字符串
    ch=strtok(NULL," ");
}
```

字符串转int, double

atoi(str);///返回int strtod(str,NULL);//返回double,第二个参数表示截取后的位置 strtol(str,NULL,base);//返回long,base表示是几进制,比如base=10表示10进制,第二个参数同上

§ 3.4 map/multimap— 映射/多重映射

在map中是不允许一个键对应多个值的,在multimap 中,不支持operator[], 也就是说不支持map 中允许的下标操作。

	第一个为唯一的关键字(如果为结构体则重载小于号)
map < key, value > maptemp	第二个为值
insert(pair < int, string > (key, value))	插入(key,value)
maptemp[key] = value	插入(key,value)
ite->first	ite指向的key
ite-> second	ite指向的value
size()	返回实际容量
clear()	清空
empty()	判空
erase(ite)/erase(key)/erase(beg,end)	删除
find(key)	查找,返回iterator(pair)
count(key)	由于key 的唯一性,所以返回0或1

§ 3.5 queue—队列

§ 3.6 deque—双向队列

assign(beg,end)	将[beg;end) 区间中的数据赋值
assign(n,elem)	将n各elem赋值
at(idx)	返回idx指向的数据
front()	返回第一个值
back()	返回最后一个值
begin()	返回头指针
end()	返回尾指针
rbegin	返回逆向队列头指针
rend()	返回逆向队列尾指针
push_back(elem)	尾插入
push_front(elem)	头插入
insert(pos,elem)	pos 插入
insert(pos,n,elem)	pos插入n 个
insert(pos,beg,end)	pos插入[beg;end)
pop_back()	尾删除
pop_front()	头删除
erase(pos)	删除pos
erase(beg,end)	删除[beg;end)
empty()	判断是否空
max_size()	最大容量
resize(num)	重赋容量
size()	实际容量
c1.swap(c2)/swap(c1,c2)	交换c1,c2

§ 3.7 stack—栈

§ 3.8 priority_queue— 优先队列/最大堆

§ 3.9 set/multiset— 集合/多重集合

集和多集的区别是: set支持唯一键值, set中的值都是特定的, 而且只出现一次; 而multiset中可以出现副本键, 同一值可以出现多次。

	key是所存储的键的类型	
	cmp是排序比较函数的类型	
insert(key)	插入key	

§ 3.10 algorithm—算法

reverse(起始,终止)	翻转数组			
reverse(arr,arr+6)	将arr[0] 到arr[5]位置翻转			
copy(起始,终止,目标)	复制元素			
例: copy(arr,(arr+6),arr1)	复制arr[0]到arr[5]到arr1[0]开始覆盖			
find(起始,终止,value)	如果找到,返回一个指向value 在序列中第一次出现的迭代;			
	如果没有找到,就返回一个指向last的迭代			
	在源序列[first1,last1-1]查找目标序列[first2, last2-1]。			
search(first1,last1,first2,last2)	如果查找成功,返回一个指向源序列中目标序列出现的首位置的迭代。			
	查找失败则返回一个指向last 的迭代。			
swap(a,b)	交换a,b位置			
sort(起始,终止,cmp)	排序			
count(起始,终止,value)	返回value 的数量			
make_heap(起始,终止,cmp)	建堆,默认是大跟堆			
pop_heap(起始,终止,cmp)	默认以建堆,把first和last交换			
push_heap(起始,终止,cmp)	假设由[first,last-1) 是一个有效的堆			
	然后,再把堆中的新元素加进来,做成一个堆。			
sort_heap(起始,终止,cmp)	对[first,last)中的序列进行排序。			
	它假设这个序列是有效堆。			
fill(first,last,val)	first为容器的首迭代器			
	last 为容器的末迭代器			
	val 为将要替换的值			
max_element(beg,end)	返回最大值,可用*max_element对数组操作			
min_element(beg,end) 返回最大值,可用*min_element对数组操作				

Attention

§ 4.1 Tips

- 1. printf中%.1f 是四舍五入的%.1lf是取floor。(未知是否正确)
- 2. for循环中注意不要把函数写在for的条件判断中,否则容易TLE。比如: for(int i=0;ijstrlen(str);i++) 会TLE; 先计算n=strlen(str); 然后for(int i=0;ijn;i++)可以AC。。。
- 3. mod过后有减法的要注意数变成负数。
- 4. 调用多个STL的 \max 或者 \min 时,尽量写在一起(例如: $a=\max(b,\max(c,d))$),可节约时间。
- 5. 栈调用一般12万层左右。
- 6. 手动扩栈: #pragma comment(linker, "/STACK:102400000,102400000"), 注意用VC++交才行
- 7. 用G++ T的可以用C++交试一下, C++比G++快。
- 8. 乘法可用取log转化加法,同理用exp将加法转化为乘法
- 9. double如果暴精度,可以考虑取log、exp或者边乘边除等方法解决
- 10. double的eps向大开、向小开需注意

§ 4.2 Error

4.2.1 Compile Error

4.2.2 Runtime Error

- 1. 除以0
- 2. 指针
- 3. 数组越界
- 4. 栈溢出(可以尝试手动扩栈,用C++交)

4.2.3 Time Limit Exceeded

- 1. 死循环,如while(1)未跳出
- 2. 算法时间复杂度太高
- 3. for循环条件设置问题

§ 4.3 Debug Technology

检测死循环 puts("1") 看结果或者用system("pause")

检测错误结果 输出中间变量

检测爆内存 用VC测是指针问题还是爆栈,然后用puts("1")看结果或者用system("pause")

Part II Mathematics

Basic

§ 5.1 高精度算法

5.1.1 大整数类From kuangbin

```
/* *************************
Author
           :kuangbin
Created Time :2013/9/28 星期六 12:54:45
File Name
           :2013长春网络赛\1004.cpp
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
/*
* 完全大数模板
* 输入cin>>a
* 输出a.print();
* 注意这个输入不能自动去掉前导0的,可以先读入到char数组,去掉前导0,再用构造函数。
*/
#define MAXN 9999
#define MAXSIZE 1010
```

```
#define DLEN 4
class BigNum
private:
   int a[500]; //可以控制大数的位数
   int len;
public:
   BigNum()
   {
      len = 1; //构造函数
      memset(a, 0, sizeof(a));
   }
                    //将一个int类型的变量转化成大数
   BigNum(const int);
   BigNum(const char *); //将一个字符串类型的变量转化为大数
   BigNum(const BigNum &); //拷贝构造函数
   BigNum & operator=(const BigNum &); //重载赋值运算符, 大数之间进行赋值运算
   friend istream & operator>>(istream &, BigNum &); //重载输入运算符
   friend ostream & operator << (ostream &, BigNum &); //重载输出运算符
   BigNum operator+(const BigNum &)const; //重载加法运算符,两个大数之间的相加
运算
   BigNum operator-(const BigNum &)const; //重载减法运算符,两个大数之间的相减
运算
   BigNum operator*(const BigNum &)const; //重载乘法运算符,两个大数之间的相乘
运算
                                    //重载除法运算符,大数对一个整数进行
   BigNum operator/(const int &)const;
相除运算
   BigNum operator^(const int &)const;
                                    //大数的n次方运算
                                    //大数对一个int类型的变量进行取模运
   int operator%(const int &)const;
算
                                    //大数和另一个大数的大小比较
   bool operator>(const BigNum &T)const;
                                    //大数和一个int类型的变量的大小比较
   bool operator>(const int &t)const;
   void print(); //输出大数
};
BigNum::BigNum(const int b) //将一个int类型的变量转化为大数
{
   int c, d = b;
   len = 0;
   memset(a, 0, sizeof(a));
   while (d > MAXN)
   {
      c = d - (d / (MAXN + 1)) * (MAXN + 1);
```

```
d = d / (MAXN + 1);
       a[len++] = c;
   }
    a[len++] = d;
}
BigNum::BigNum(const char *s) //将一个字符串类型的变量转化为大数
   int t, k, index, L, i;
   memset(a, 0, sizeof(a));
   L = strlen(s);
   len = L / DLEN;
   if (L % DLEN)len++;
   index = 0;
   for (i = L - 1; i \ge 0; i = DLEN)
    {
       t = 0;
       k = i - DLEN + 1;
       if (k < 0)k = 0;
       for (int j = k; j \le i; j++)
           t = t * 10 + s[j] - '0';
       a[index++] = t;
   }
}
BigNum::BigNum(const BigNum &T): len(T.len) //拷贝构造函数
{
    int i;
   memset(a, 0, sizeof(a));
   for (i = 0; i < len; i++)
       a[i] = T.a[i];
}
BigNum &BigNum::operator=(const BigNum &n) //重载赋值运算符,大数之间赋值运算
{
   int i;
   len = n.len;
   memset(a, 0, sizeof(a));
   for (i = 0; i < len; i++)
       a[i] = n.a[i];
   return *this;
}
istream &operator>>(istream &in, BigNum &b)
{
    char ch[MAXSIZE * 4];
   int i = -1;
   in >> ch;
    int L = strlen(ch);
```

```
int count = 0, sum = 0;
    for (i = L - 1; i >= 0;)
    {
        sum = 0;
        int t = 1;
        for (int j = 0; j < 4 \&\& i >= 0; j++, i--, t *= 10)
            sum += (ch[i] - '0') * t;
        b.a[count] = sum;
        count++;
    }
   b.len = count++;
    return in;
}
ostream &operator<<(ostream &out, BigNum &b) //重载输出运算符
    int i;
    cout << b.a[b.len - 1];</pre>
   for (i = b.len - 2; i >= 0; i--)
    {
        printf("%04d", b.a[i]);
    }
   return out;
}
BigNum BigNum::operator+(const BigNum &T)const //两个大数之间的相加运算
   BigNum t(*this);
    int i, big;
   big = T.len > len ? T.len : len;
    for (i = 0; i < big; i++)
        t.a[i] += T.a[i];
        if (t.a[i] > MAXN)
        {
            t.a[i + 1]++;
            t.a[i] -= MAXN + 1;
        }
    if (t.a[big] != 0)
        t.len = big + 1;
    else t.len = big;
    return t;
}
BigNum BigNum::operator-(const BigNum &T)const //两个大数之间的相减运算
```

```
{
    int i, j, big;
   bool flag;
    BigNum t1, t2;
    if (*this > T)
        t1 = *this;
        t2 = T;
        flag = 0;
    else
    {
        t1 = T;
        t2 = *this;
        flag = 1;
    }
   big = t1.len;
    for (i = 0; i < big; i++)
        if (t1.a[i] < t2.a[i])
        {
            j = i + 1;
            while (t1.a[j] == 0)
                j++;
            t1.a[j--]--;
            while (j > i)
                t1.a[j--] += MAXN;
            t1.a[i] += MAXN + 1 - t2.a[i];
        else t1.a[i] -= t2.a[i];
    }
    t1.len = big;
    while (t1.a[len - 1] == 0 \&\& t1.len > 1)
    {
        t1.len--;
        big--;
    }
    if (flag)
        t1.a[big - 1] = 0 - t1.a[big - 1];
   return t1;
}
BigNum BigNum::operator*(const BigNum &T)const //两个大数之间的相乘
   BigNum ret;
    int i, j, up;
```

```
int temp, temp1;
   for (i = 0; i < len; i++)
    {
       up = 0;
        for (j = 0; j < T.len; j++)
           temp = a[i] * T.a[j] + ret.a[i + j] + up;
            if (temp > MAXN)
               temp1 = temp - temp / (MAXN + 1) * (MAXN + 1);
               up = temp / (MAXN + 1);
               ret.a[i + j] = temp1;
           }
            else
            {
               up = 0;
               ret.a[i + j] = temp;
            }
        }
       if (up != 0)
           ret.a[i + j] = up;
    }
   ret.len = i + j;
    while (ret.a[ret.len - 1] == 0 && ret.len > 1)ret.len--;
   return ret;
BigNum BigNum::operator/(const int &b)const //大数对一个整数进行相除运算
{
   BigNum ret;
   int i, down = 0;
   for (i = len - 1; i \ge 0; i--)
       ret.a[i] = (a[i] + down * (MAXN + 1)) / b;
        down = a[i] + down * (MAXN + 1) - ret.a[i] * b;
   }
   ret.len = len;
    while (ret.a[ret.len - 1] == 0 \&\& ret.len > 1)
       ret.len--;
   return ret;
}
int BigNum::operator%(const int &b)const //大数对一个 int类型的变量进行取模
{
    int i, d = 0;
   for (i = len - 1; i >= 0; i--)
       d = ((d * (MAXN + 1)) \% b + a[i]) \% b;
```

```
return d;
}
BigNum BigNum::operator^(const int &n)const //大数的n次方运算
   BigNum t, ret(1);
    int i;
   if (n < 0)exit(-1);
    if (n == 0) return 1;
   if (n == 1)return *this;
    int m = n;
    while (m > 1)
       t = *this;
       for (i = 1; (i << 1) <= m; i <<= 1)
           t = t * t;
       m -= i;
       ret = ret * t;
       if (m == 1)ret = ret * (*this);
   }
   return ret;
}
bool BigNum::operator>(const BigNum &T)const //大数和另一个大数的大小比较
    int ln;
    if (len > T.len)return true;
    else if (len == T.len)
       ln = len - 1;
       while (a[ln] == T.a[ln] \&\& ln >= 0)
           ln--;
       if (ln >= 0 \&\& a[ln] > T.a[ln])
           return true;
       else
           return false;
   }
    else
       return false;
bool BigNum::operator>(const int &t)const //大数和一个int类型的变量的大小比较
   BigNum b(t);
   return *this > b;
}
void BigNum::print() //输出大数
{
```

```
int i;
   printf("%d", a[len - 1]);
    for (i = len - 2; i >= 0; i--)
        printf("%04d", a[i]);
   printf("\n");
}
int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int m, n;
    int T;
    scanf("%d", &T);
    while (T--)
    {
        scanf("%d%d", &m, &n);
        BigNum tt = 1;
        for (int i = 1; i < n; i++)
            tt = tt * m;
        int tmp = n;
        for (int i = 2; i \le n; i++)
            while ( tmp \% i == 0 \&\& (tt \% i == 0) )
            {
                tmp /= i;
                tt = tt / i;
            }
        }
        printf("%d/", tmp);
        tt.print();
   }
   return 0;
}
       大整数类
5.1.2
#include<stdio.h>
#include<string.h>
/* windy7926778, 非负大数,10<sup>4</sup>进制,所有的函数中的大数都为引用*/
const int N = 80; // 10 进制下的最大位数
struct big
{
```

```
int d[N / 4];
    int len;
};
void pri(big &x) // 输出大数 x , 不输出换行符
{
    int i;
   printf("%d", x.d[x.len - 1]);
   for (i = x.len - 2; i >= 0; i--)
       printf("%04d", x.d[i]);
void set(big &x, char str[]) //把不带符号的非空字符串 str 转化为大数 x , 并去除前
导零
{
   memset(&x, 0, sizeof(x));
    int i, w = 1, now = 0;
   for (i = strlen(str) - 1; i \ge 0; i--)
       now += w * (str[i] - 48);
       w *= 10;
       if (w == 10000)
           x.d[x.len++] = now;
           now = 0;
           w = 1;
       }
    }
   if (now)x.d[x.len++] = now;
   while (x.len > 1 && !x.d[x.len - 1])x.len--;
void set(big &x, int n) //把非负整数 n 转化为大数 x
{
   memset(&x, 0, sizeof(x));
   if (!n)
    {
       x.len = 1;
       x.d[0] = 0;
   }
    else
    {
       while (n)
           x.d[x.len++] = n % 10000;
           n /= 10000;
       }
   }
```

```
}
void add(big &x, big &y) // 大数 x = 大数 x + 大数 y
{
   int i, c = 0;
    for (i = 0; i < x.len || i < y.len; i++)
       x.d[i] += y.d[i] + c;
       if (x.d[i] >= 10000)
           x.d[i] = 10000;
           c = 1;
       else c = 0;
   }
    if (c)x.d[i++] = 1;
   x.len = i;
}
void sub(big &x, big &y) // 大数 x = 大数 y , 要求 x >= y
   int i, c = 0;
   for (i = 0; i < y.len; i++)
       x.d[i] = y.d[i] + c;
       if (x.d[i] < 0)
           x.d[i] += 10000;
           c = 1;
       }
       else c = 0;
   }
   for (; c; i++)
       x.d[i] -= c;
       c = 0;
       if (x.d[i] < 0)
           x.d[i] += 10000;
           c = 1;
       }
    while (x.len > 1 && !x.d[x.len - 1])
       x.len--;
}
void mul(big &z, big &x, big &y) // 大数 z = 大数 x * 大数 y
```

```
{
   memset(&z, 0, sizeof(z));
   z.len = x.len + y.len;
    int i, j;
    for (i = 0; i < x.len; i++)
        for (j = 0; j < y.len; j++)
            z.d[i + j] += x.d[i] * y.d[j];
            z.d[i + j + 1] += z.d[i + j] / 10000;
            z.d[i + j] \% = 10000;
        }
    while (z.len > 1 && !z.d[z.len - 1])
        z.len--;
}
void mul(big &z, big &x, int e) // 大数 z =  大数 x *  非负整数 e
   memset(&z, 0, sizeof(z));
    int i, c = 0;
   for (i = 0; i < x.len; i++)
    {
        z.d[i] += x.d[i] * e;
        z.d[i + 1] = z.d[i] / 10000;
        z.d[i] %= 10000;
    }
    if (z.d[i] / 10000)
        z.d[i + 1] = z.d[i] / 10000;
        z.d[i] %= 10000;
        i++;
    }
    z.len = i + 1;
    while (z.len > 1 && !z.d[z.len - 1])
        z.len--;
}
bool cmp(big &x, big &y) //return 大数 x <= 大数 y;
{
    if (x.len < y.len)
        return true;
    if (x.len > y.len)
        return false;
    int i;
    for (i = x.len - 1; i >= 0; i--)
        if (x.d[i] != y.d[i])
```

```
return x.d[i] < y.d[i];</pre>
   return true;
}
void div(big &z, big &x, big &y, big &t) // 大数 z = 大数 x / 大数 y 余数为 t
   memset(&z, 0, sizeof(z));
    int i, j, p, q, now;
   big e;
    set(t, 0);
    for (i = x.len - 1; i >= 0; i--)
    {
        for (j = t.len; j > 0; j--)
            t.d[j] = t.d[j - 1];
        t.len++;
        t.d[0] = x.d[i];
        while (t.len > 1 && !t.d[t.len - 1])
            t.len--;
        p = 0;
        q = 9999;
        while (p \le q)
        {
            now = (p + q) >> 1;
            mul(e, y, now);
            if (cmp(e, t))
                p = now + 1;
            else
                q = now - 1;
        }
        mul(e, y, q);
        sub(t, e);
        z.d[i] = q;
    }
   z.len = x.len;
    while (z.len > 1 && !z.d[z.len - 1])
        z.len--;
}
char b[100000];
char a[100000];
int main()
   while (scanf("%s%s", a, b) != EOF)
    {
```

```
big A, B;
        set(A, a);
        set(B, b);
        add(A, B);
        pri(A);
        printf("\n");
    }
   return 0;
}
        高精度\mathbf{FFT}乘法(O(N \lg N))
5.1.3
/**
*HDU 1402 A * B Problem Plus
*计算A*B
*/
#include<iostream>
#include<cmath>
using namespace std;
typedef struct vir
{
    double re, im;
   vir() {}
   vir(double a, double b)
    {
        re = a;
        im = b;
    }
    vir operator +(const vir &b)
    {
        return vir(re + b.re, im + b.im);
    }
    vir operator -(const vir &b)
    {
        return vir(re - b.re, im - b.im);
    }
   vir operator *(const vir &b)
    {
        return vir(re * b.re - im * b.im, re * b.im + b.re * im);
    }
} vir;
vir x1[200005], x2[200005];
const double Pi = acos(-1.0);
void change(vir *x, int len, int loglen)
{
```

```
int i, j, k, t;
    for (i = 0; i < len; i++)
    {
        t = i;
        for (j = k = 0; j < loglen; j++, t >>= 1)
            k = (k << 1) | (t & 1);
        if (k < i)
        {
            vir wt = x[k];
            x[k] = x[i];
            x[i] = wt;
        }
    }
}
void fft(vir *x, int len, int loglen)
{
    int i, j, t, s, e;
    change(x, len, loglen);
    t = 1;
   for (i = 0; i < loglen; i++, t <<= 1)
    {
        s = 0;
        e = s + t;
        while (s < len)
            vir a, b, wo(cos(Pi / t), sin(Pi / t)), wn(1, 0);
            for (j = s; j < s + t; j++)
            {
                a = x[j];
                b = x[j + t] * wn;
                x[j] = a + b;
                x[j + t] = a - b;
                wn = wn * wo;
            }
            s = e + t;
            e = s + t;
        }
    }
}
void dit_fft(vir *x, int len, int loglen)
{
    int i, j, s, e, t = 1 \ll loglen;
   for (i = 0; i < loglen; i++)
    {
        t >>= 1;
```

```
s = 0;
        e = s + t;
        while (s < len)
            vir a, b, wn(1, 0), wo(cos(Pi / t), -sin(Pi / t));
            for (j = s; j < s + t; j++)
            {
                a = x[j] + x[j + t];
                b = (x[j] - x[j + t]) * wn;
                x[j] = a;
                x[j + t] = b;
                wn = wn * wo;
            }
            s = e + t;
            e = s + t;
        }
    }
    change(x, len, loglen);
    for (i = 0; i < len; i++)x[i].re /= len;
}
int main()
{
    char a[100005], b[100005];
    int i, len1, len2, t, over, len, loglen;
    while (scanf("%s%s", a, b) != EOF)
        len1 = strlen(a) << 1;</pre>
        len2 = strlen(b) << 1;</pre>
        len = 1;
        loglen = 0;
        while (len < len1)
            len <<= 1;
            loglen++;
        while (len < len2)
        {
            len <<= 1;
            loglen++;
        }
        for (i = 0; a[i] != '\0'; i++)
            x1[i].re = a[i] - '0';
            x1[i].im = 0;
```

```
for (; i < len; i++)
           x1[i].re = x1[i].im = 0;
        for (i = 0; b[i] != '\0'; i++)
           x2[i].re = b[i] - '0';
           x2[i].im = 0;
        }
        for (; i < len; i++)
            x2[i].re = x2[i].im = 0;
        fft(x1, len, loglen);
        fft(x2, len, loglen);
        for (i = 0; i < len; i++)
            x1[i] = x1[i] * x2[i];
        dit_fft(x1, len, loglen);
        for (i = (len1 + len2) / 2 - 2, over = loglen = 0; i \ge 0; i = 0
           t = x1[i].re + over + 0.5;
           a[loglen++] = t % 10;
           over = t / 10;
       }
        while (over)
           a[loglen++] = over % 10;
           over /= 10;
        for (loglen--; loglen >= 0 && !a[loglen]; loglen--);
        if (loglen < 0)
           putchar('0');
        else
           for (; loglen >= 0; loglen--)
               putchar(a[loglen] + '0');
        putchar('\n');
    }
   return 0;
}
        统计x(二进制)中1的个数(未知复杂度)
§ 5.2
/**
*统计x(二进制)中1的个数
*/
int cb(int x)
    int cnt;
```

Page 34 of 241

```
for(cnt=0; x>0; cnt++) x&=x-1;
   return cnt;
}
§ 5.3 二进制生成子集(O(2^N))
/**
*二进制生成子集: 生成0--n-1的子集S
void print_subset(int n,int s)
   for(int i=0; i<n; i++)</pre>
       if(s&(1<<i))printf("%d ",i);//此时也可以用比较弱化的版本写出统计1的个数
   printf("\n");
}
/*枚举0<=x<2<sup>n</sup>中数*/
void subset(int n)
{
   int t=1 << n;
   for(int s=0; s<t; s++) print_subset(n,s);</pre>
}
```

Chapter 6

Computation Mathematics

§ 6.1 计算中序表达式(O(n))

```
/**
*计算中序表达式
*输入: str[](中序表达式,示例: 1.1 + 2.2 #)(注: 必须包含符号,否则无法计算)
*输出: 计算结果Item(可自定义类型)
typedef long long Item;
const int MAXN=0;
const int OpNum=7;//操作符的数目
const char op[OpNum+1]="#+-*/()";// 操作符
const int out[OpNum]= {0,2,2,4,4,6,1};//操作符外优先级
const int in[OpNum]= {0,3,3,5,5,1,6};//操作符内优先级
int GetPri(char ope)//得到对应op 数组的下标
{
   for(i=0; i<OpNum; i++) if(ope==op[i]) break;</pre>
   return i;
}
Item calculator(char *str)
   stack<Item> number;
   stack<char> opera;
   char temps[5*MAXN],ope;
   Item tempi,a,b;
   int i,j,k,len,ch1,ch2;
   bool OpFlag,flag,EndFlag=false;
   len=strlen(str);
   i=0;
   opera.push('#');
   while(!EndFlag)
   {
```

```
if(opera.top()=='#'&&i>=len) EndFlag=true;
j=0;
flag=false;
OpFlag=false;
for(; str[i]!=' '&&i<len; i++,j++) temps[j]=str[i];</pre>
if(i<len)
{
    temps[j]=0;
    i++;
if(i>=len)
{
    temps[0]='#';
    temps[1]=0;
}
for(k=0; k<0pNum; k++)</pre>
{
    if(temps[0]==op[k])
        if(temps[1]!=0) flag=true;
        else OpFlag=true;
    }
}
if(OpFlag)
{
    ope=temps[0];
    ch1=GetPri(opera.top());
    ch2=GetPri(ope);
    if(in[ch1]>out[ch2])
    {
        b=number.top();
        number.pop();
        a=number.top();
        number.pop();
        switch(opera.top())
        case '+':
            number.push(a+b);
            break;
        case '-':
             number.push(a-b);
            break;
        case '*':
            number.push(a*b);
             break;
```

```
case '/':
                   number.push(a/b);
                   break;
               }
               opera.pop();
               if(i<len) i=i-2;
           }
           else if(in[ch1]<out[ch2]) opera.push(ope);</pre>
           else opera.pop();
       }
       else
       {
           tempi=strtod(temps,NULL);
           number.push(tempi);
       }
    }
   return number.top();
}
§ 6.2
        快速幂取模(O(\lg n))
/**
*快速幂取模
*输入: a,b,n
*输出: (a^b)%n
*/
typedef long long LL;
LL modexp(LL a,LL b,LL n)
{
   LL ret=1;
   while(b)
      //基数存在
      if(b&1) ret=ret*a%n;
      a=a*a%n;
      b>>=1;
   }
   return ret;
}
        二分法: 单调函数(O(\lg(nf(n))))
   可以使用STL 的lower_bound() 函数; 例子: lower_bound(A,A+j,A[j]-S);
   或者:
//(L=...,R=...;)
```

```
while(L<R)
{
   int M=L+(R-L)/2;
   if(test(M)) R=M;
   else L=M+1;
}
        迭代法(略)
§ 6.4
Too Simple
        三分法: 凸性函数(O(\lg(nf(n))))
  • 类似二分的定义Left和Right, mid = (Left + Right)/2, midmid = (mid + Right)/2;
  ● - 如果mid 靠近极值点,则Right = midmid;
      - 否则(即midmid靠近极值点),则Left = mid;
/**
*三分法求极大值
*输入: Calc()函数,left,right
*输出: left, right
*/
double Calc(Type a)
   /* 根据题目的意思计算 */
}
void Solve(void)
   double Left, Right;
   double mid, midmid;
   double mid_value, midmid_value;
   Left = MIN;
   Right = MAX;
   while (Left + EPS < Right)
   {
       mid = (Left + Right) / 2;
       midmid = (mid + Right) / 2;
       mid_area = Calc(mid);
       midmid_area = Calc(midmid);
       // 假设求解最大极值
       if (mid_area >= midmid_area) Right = midmid;
       else Left = mid;
       // 求解最小极值改动如下
       /*if (mid_area < midmid_area) Right = midmid;</pre>
```

```
else Left = mid;*/
}
```

§ 6.6 解线性方程组

6.6.1 LU 分解(方阵) $(O(N^3))$ (优于高斯消元)

LU分解是矩阵分解的一种,可以将一个方阵分解为一个下三角矩阵和一个上三角矩阵的乘积(有时是它们和一个置换矩阵的乘积)。LU分解主要应用在数值分析中,用来解线性方程、求反矩阵或计算行列式。

一个可逆矩阵可以进行LU分解当且仅当它的所有子式都非零。如果要求其中的L矩阵(或U矩阵)为单位三角矩阵,那么分解是唯一的。同理可知,矩阵的LDU可分解条件也相同,并且总是唯一的。

求解Ax = LUx = b 时, 先解Ly = b 得到y, 再解Ux = y 得到x。

```
/**
*高斯消元法: n*n=n的矩阵的($0(N^3)$)
*输入: a[][] = b[]
*输出: b[](解),gauss()(是否有解)
*/
//const int maxn=0;
//const double eps=1e-6;
double a[maxn] [maxn], b[maxn];
bool gauss(int n)
{
    int i, j, k, row;
   double maxp, t;
   for (k = 0; k < n; k++)
    {
        for (maxp = 0, i = k; i < n; i++)
            if (fabs(a[i][k]) > fabs(maxp))
                maxp = a[row = i][k];
        if (fabs(maxp) < eps) return false;</pre>
        if (row != k)
            for (j = k; j < n; j++)
                t = a[k][j];
                a[k][j] = a[row][j];
                a[row][j] = t;
            }
            t = b[k];
            b[k] = b[row];
            b[row] = t;
        }
```

```
for (j = k + 1; j < n; j++)
        {
           a[k][j] /= maxp;
           for (i = k + 1; i < n; i++)
               a[i][j] -= a[i][k] * a[k][j];
        }
       b[k] /= maxp;
        for (i = k + 1; i < n; i++) b[i] -= b[k] * a[i][k];
   }
   for (i = n - 1; i \ge 0; i--)
        for (j = i + 1; j < n; j++)
           b[i] -= a[i][j] * b[j];
   return true;
}
       高斯消元(O(N^3))
6.6.2
多功能复杂版
/**
```

```
*高斯消元($0(N^3)$)
*输入: a[][]=a[n](n*(n+1))
*输出: x[](解集)
*/
#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<string.h>
#include<math.h>
using namespace std;
const int maxn=50;
int a[maxn][maxn];//增广矩阵
int x[maxn];//解集
bool free_x[maxn];//标记是否是不确定的变元
inline int gcd(int a,int b)
{
   int t;
   while(b!=0)
       t=b;
       b=a%b;
       a=t;
   }
```

```
return a;
}
inline int lcm(int a,int b)
   return a/gcd(a,b)*b;//先除后乘, 防溢出
}
// 高斯消元法解方程组(Gauss-Jordan elimination).(-2表示有浮点数解,但无整数解,
//-1表示无解, 0表示唯一解, 大于0表示无穷解, 并返回自由变元的个数)
//有equ个方程, var个变元。增广矩阵行数为equ,分别为0到equ-1,列数为var+1,分别为0到var.
int Gauss(int equ,int var)
{
   int i,j,k;
   int max_r;// 当前这列绝对值最大的行.
   int col;//当前处理的列
   int ta,tb;
   int LCM;
   int temp;
   int free_x_num;
   int free_index;
   for(int i=0; i<=var; i++)</pre>
       x[i]=0;
       free_x[i]=true;
   }
   //转换为阶梯阵.
   col=0; // 当前处理的列
   for(k = 0; k < equ && col < var; k++,col++)
   {
       // 枚举当前处理的行.
       // 找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差)
       max_r=k;
       for(i=k+1; i<equ; i++)</pre>
          if(abs(a[i][col])>abs(a[max_r][col])) max_r=i;
       if(max_r!=k)
          // 与第k行交换.
          for(j=k; j<var+1; j++) swap(a[k][j],a[max_r][j]);</pre>
       if(a[k][col]==0)
```

```
// 说明该col列第k行以下全是0了,则处理当前行的下一列.
         k--;
         continue;
      }
      for(i=k+1; i<equ; i++)</pre>
         // 枚举要删去的行.
         if(a[i][col]!=0)
             LCM = lcm(abs(a[i][col]), abs(a[k][col]));
             ta = LCM/abs(a[i][col]);
             tb = LCM/abs(a[k][col]);
             if(a[i][col]*a[k][col]<0)tb=-tb;// 异号的情况是相加
             for(j=col; j<var+1; j++)</pre>
             {
                a[i][j] = a[i][j]*ta-a[k][j]*tb;
             }
         }
      }
   }
   // 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a != 0).
   for (i = k; i < equ; i++)
   {
      // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影
响,则要记录交换.
      if (a[i][col] != 0) return -1;
   }
   // 2. 无穷解的情况: 在var * (var + 1)的增广阵中出现(0, 0, ..., 0) 这样的行,
即说明没有形成严格的上三角阵.
   // 且出现的行数即为自由变元的个数.
   if (k < var)
   {
      // 首先, 自由变元有var - k 个, 即不确定的变元至少有var - k 个.
      for (i = k - 1; i \ge 0; i--)
         // 第i行一定不会是(0,0,...,0)的情况,因为这样的行是在第k行到第equ 行.
         // 同样, 第i行一定不会是(0,0,...,a), a != 0的情况,这样的无解的.
         free_x_num = 0; // 用于判断该行中的不确定的变元的个数, 如果超过1个,
则无法求解,它们仍然为不确定的变元.
         for (j = 0; j < var; j++)
         {
             if (a[i][j] != 0 && free_x[j]) free_x_num++, free_index = j;
         }
          if (free_x_num > 1) continue; // 无法求解出确定的变元.
```

```
// 说明就只有一个不确定的变元free_index,那么可以求解出该变元,且该变
元是确定的.
           temp = a[i][var];
           for (j = 0; j < var; j++)
           {
               if (a[i][j] != 0 \&\& j != free\_index) temp -= a[i][j] * x[j];
           }
           x[free_index] = temp / a[i][free_index]; // 求出该变元.
           free_x[free_index] = 0; // 该变元是确定的.
       return var - k; // 自由变元有var - k个.
   }
   // 3. 唯一解的情况: 在var * (var + 1)的增广阵中形成严格的上三角阵.
   // 计算出Xn-1, Xn-2 ... XO.
   for (i = var - 1; i >= 0; i--)
   {
       temp = a[i][var];
       for (j = i + 1; j < var; j++)
           if (a[i][j] != 0) temp -= a[i][j] * x[j];
       if (temp % a[i][i] != 0) return -2; // 说明有浮点数解, 但无整数解.
       x[i] = temp / a[i][i];
   }
   return 0;
}
int main(void)
{
   freopen("in.txt", "r", stdin);
   freopen("out.txt","w",stdout);
   int i, j;
   int equ, var;
   while (scanf("%d %d", &equ, &var) != EOF)
   {
       memset(a, 0, sizeof(a));
       for (i = 0; i < equ; i++)
           for (j = 0; j < var + 1; j++)
           {
              scanf("%d", &a[i][j]);
           }
       }
       int free_num = Gauss(equ,var);
       if (free_num == -1) printf(" 无解!\n");
       else if (free_num == -2) printf("有浮点数解, 无整数解!\n");
```

```
else if (free_num > 0)
            printf("无穷多解! 自由变元个数为%d\n", free_num);
            for (i = 0; i < var; i++)
            {
                if (free_x[i]) printf("x%d 是不确定的\n", i + 1);
                else printf("x\%d: \%d\n", i + 1, x[i]);
            }
        }
        else
        {
            for (i = 0; i < var; i++)
            {
                printf("x%d: %d\n", i + 1, x[i]);
        }
        printf("\n");
    }
   return 0;
}
kuangbin版
double a[maxn] [maxn], x[maxn];
int equ, var;
int Gauss()
{
    int i, j, k, col, max_r;
    for (k = 0, col = 0; k < equ && col < var; k++, col++)
    {
        max_r = k;
        for (i = k + 1; i < equ; i++)
            if (fabs(a[i][col]) > fabs(a[max_r][col]))
                \max_r = i;
        if (fabs(a[max_r][col]) < eps)return 0;</pre>
        if (k != max_r)
        {
            for (j = col; j < var; j++)
                swap(a[k][j], a[max_r][j]);
            swap(x[k], x[max_r]);
        }
        x[k] /= a[k][col];
        for (j = col + 1; j < var; j++)a[k][j] /= a[k][col];
        a[k][col] = 1;
        for (int i = 0; i < equ; i++)
```

```
if (i != k)
            {
                x[i] = x[k] * a[i][k];
                for (j = col + 1; j < var; j++)
                    a[i][j] -= a[k][j] * a[i][col];
                a[i][col] = 0;
            }
    }
   return 1;
}
简化版(判是否有解,变上三角矩阵)
int gauss(int n)
{
    int i, j, k, x, y;
    for (i = j = 0; i \le n \&\& j \le N; i ++, j ++)
        if (mat[i][j] == 0)
        {
            for (x = i + 1; x \le n; x ++)
                if (mat[x][j])
                {
                    for (y = j; y \le N; y ++)
                        swap(mat[i][y], mat[x][y]);
                    break;
                }
            if (x > n)
            {
                -- i;
                continue;
            }
        for (x = i + 1; x \le n; x ++)
            if (mat[x][j])
            {
                for (y = j; y \le N; y ++)
                    mat[x][y] ^= mat[i][y];
            }
    }
    for (k = i; k \le n; k ++)
        if (mat[k][N])
            return 0;
   return 1;
}
```

JAVA版

```
import java.util.*;
import java.math.*;
class fraction {
   BigInteger a, b;
   public fraction() {
        a = new BigInteger("0");
        b = new BigInteger("1");
    }
   fraction( BigInteger a0, BigInteger b0) {
        this.a = a0; this.b = b0;
    }
    void reduction() {
        BigInteger tmp = a.gcd( b );
        a = a.divide( tmp );
        b = b.divide( tmp );
        if ( b.compareTo( BigInteger.ZERO ) == - 1 ) {
            b = b.multiply( BigInteger.valueOf( -1 ));
            a = a.multiply( BigInteger.valueOf( -1 ));
        }
    }
    fraction add( fraction t ) {
        fraction tmp = new fraction( a.multiply( t.b ).add( b.multiply( t.a )) , b.multiply(t.b)
        tmp.reduction();
        return tmp;
    }
    fraction sub( fraction t ) {
        fraction tmp = new fraction( a.multiply( t.b ).subtract( b.multiply( t.a )) , b.multiply
        tmp.reduction();
        return tmp;
    }
    fraction mult( fraction t) {
        fraction tmp = new fraction( a.multiply( t.a ), b.multiply( t.b ));
        tmp.reduction();
        return tmp;
    }
    fraction div( fraction t) {
        fraction tmp = new fraction( a.multiply( t.b ), b.multiply( t.a ));
        tmp.reduction();
        return tmp;
    }
    public void abs() {
```

```
if ( this.a.compareTo( BigInteger.ZERO ) == - 1 ) {
            this.a = this.a.multiply( BigInteger.valueOf( -1 ));
        }
    }
   void out() {
        this.reduction();
        if ( b.compareTo( BigInteger.ONE ) == 0 )
            System.out.println(a);
        else
            System.out.println(a + "/" + b);
    }
    boolean biger( fraction p ) {
        fraction tmp = new fraction ( a, b );
        fraction t = new fraction(p.a, p.b);
        //t = p;
        tmp.reduction();
        if ( tmp.a.compareTo( BigInteger.ZERO ) == - 1 ) {
            tmp.a = tmp.a.multiply( BigInteger.valueOf( -1 ));
        if ( t.a.compareTo( BigInteger.ZERO ) == - 1 ) {
            t.a = t.a.multiply( BigInteger.valueOf( -1 ));
        tmp = tmp.sub( t );
       return tmp.a.compareTo( BigInteger.ZERO ) > -1;
    }
}
public class Main {
   public static void lup_solve( fraction x[], fraction y[], fraction L[][], fraction U[][], int
        fraction z = new fraction( BigInteger.ZERO , BigInteger.ONE);
        fraction sum = z;//double sum;
        for (i = 0; i < n; i ++) {
            sum = z; //sum = 0;
            for (j = 0; j < i; j ++) {
                sum = sum.add( L[i][j].mult( y[j] ));//sum += L[i][j] * y[ j ];
            y[i] = b[ pi[i] ].sub( sum );//y[i] = b[ pi[i] ] - sum;
       for ( i = n - 1 ; i \ge 0 ; i -- ) {
            sum = z ; //sum = 0;
            for (j = i + 1; j < n; j ++) {
```

```
sum = sum.add( \ U[i][j].mult( \ x[j] \ )); //sum += U[i][j] * x[ \ j \ ];
        }
        x[i] = (y[i].sub(sum)).div(U[i][i]);//x[i] = (y[i] - sum)/U[i][i];
    }
}
public static int lup_decomposition( fraction a[][] , int n , int pi[] ) {
    int i, j, k, k1 = 0;
    fraction p = new fraction(BigInteger.valueOf(0), BigInteger.ONE ), z = new fraction( BigInteger.one
    for (i = 0; i < n; i ++)
       pi[i] = i;// 置换
    for (k = 0; k < n; k ++) {
        p = z;
        for ( i = k ; i < n ; i ++ ) {
            if ( a[i][k].biger( p ) ) {
                p = new fraction( a[i][k].a, a[i][k].b);
                k1 = i;
            }
        }
        if ( p.a.compareTo( BigInteger.ZERO ) == 0 ) {
            return 0 ;// error
        fraction tmp;
        int t = pi[ k ]; pi[ k ] = pi[ k1 ]; pi[k1] = t;
        for ( i = 0 ; i < n ; i ++ ) {
            tmp = a[ k ][i]; a[ k ][i] = a[ k1 ][i]; a[k1][i] = tmp;
        }//swap( a[k][i], a[k1][i] );
        for (i = k + 1; i < n; i ++) {
            a[i][k] = a[i][k].div(a[k][k]);
            for (j = k + 1; j < n; j ++)
                a[i][j] = a[i][j].sub(a[i][k].mult(a[k][j]));// - a[i][k] * a[k][j] ;
        }
    }
    return 1;
}
public static void check(fraction a[][], fraction x[], int n) {
    int i, j;
    fraction sum, z = new fraction( BigInteger.ZERO , BigInteger.ONE);
    for (i = 0; i < n; i++) {
        sum = z;
        for ( j = 0 ; j < n ; j ++ ) {
            sum = sum.add( a[i][j].mult( x[j] ));
```

}

```
sum.out();
        }
    }
    public static void main(String[] agrs) {
        Scanner cin = new Scanner( System.in );
        int i, j;
        int n;
        while ( cin.hasNextInt() ) {
            //任何函数都要和一个class相连
            n = cin.nextInt();
            int pi[] = new int[n];
            fraction a[][] = new fraction[n][n];
            fraction aa[][] = new fraction[n][n];
            fraction B[] = new fraction[n];
            fraction x[] = new fraction[n];
            fraction y[] = new fraction[n];
            for (i = 0; i < n; i ++) {
                for (j = 0; j < n; j ++) {
                    a[i][j] = new fraction( BigInteger.valueOf(0), BigInteger.valueOf(1));
                    a[i][j].a = cin.nextBigInteger();
                    aa[i][j] = new fraction( BigInteger.valueOf(0), BigInteger.valueOf(1));
                    aa[i][j] = a[i][j];
                B[i] = new fraction( BigInteger.valueOf(0), BigInteger.valueOf(1));
                B[i].a = cin.nextBigInteger();
                x[i] = new fraction( BigInteger.valueOf(0), BigInteger.valueOf(1));
                y[i] = new fraction( BigInteger.valueOf(0), BigInteger.valueOf(1));
            }
            if ( 1 == lup_decomposition( a, n, pi) ) {
                lup_solve( x, y, a, a, pi, B, n);
                for (i = 0; i < n; i ++)
                    x[i].out();
                //check( aa, x, n);
            } else {
                System.out.println("No solution.");
            System.out.println();
        }
    }
}
```

§ 6.7 解模线性方程或方程组(未知复杂度)

```
/**
*模线性方程ax=b(mod n): int modular_linear(int a,int b,int n,int* sol)
*输入: a,b,n
*输出: sol[]
*模线性方程组x=b[k](mod w[k]): int modular_linear_system(int b[],int w[],int k)
*for 一遍这个函数即可
*输入: b[],w[],k(方程组中的第k 个方程)
*输出: return int;
*/
typedef long long LL;
//扩展Euclid 求解gcd(a,b)=ax+by
int ext_gcd(int a,int b,int& x,int& y)
{
    int t,ret;
   if(!b)
    {
       x=1, y=0;
       return a;
    }
   ret=ext_gcd(b,a%b,x,y);
   t=x,x=y,y=t-a/b*y;
   return ret;
}
//计算m^a, O(loga), 本身没什么用, 注意这个按位处理的方法:-P
int exponent(int m,int a)
{
    int ret=1;
   for(; a; a>>=1,m*=m) if(a&1) ret*=m;
   return ret;
}
//计算幂取模a^b mod n, O(logb)
int modular_exponent(int a,int b,int n) //a^b mod n
{
    int ret=1;
   for(; b; b>>=1,a=(int)((LL)a)*a\(\(\text{n}\)) if(b\(\text{l}\)) ret=(int)((LL)ret)*a\(\text{n}\);
   return ret;
}
//求解模线性方程ax=b (mod n)
//返回解的个数,解保存在sol[] 中
```

```
//要求n>0,解的范围0..n-1
int modular_linear(int a,int b,int n,int* sol)
{
    int d,e,x,y,i;
   d=ext_gcd(a,n,x,y);
    if(b%d) return 0;
    e=(x*(b/d)%n+n)%n;
   for(i=0; i<d; i++) sol[i]=(e+i*(n/d))%n;
   return d;
}
//求解模线性方程组(中国余数定理)
// x = b[0] \pmod{w[0]}
// x = b[1] \pmod{w[1]}
// ...
// x = b[k-1] \pmod{w[k-1]}
//要求w[i]>0,w[i] 与w[j] 互质,解的范围1..n,n=w[0]*w[1]*...*w[k-1]
int modular_linear_system(int b[],int w[],int k)
   int d,x,y,a=0,m,n=1,i;
   for (i=0; i<k; i++) n*=w[i];
   for (i=0; i<k; i++)
       m=n/w[i];
       d=ext_gcd(w[i],m,x,y);
       a=(a+y*m*b[i])%n;
    }
   return (a+n)%n;
}
```

§ 6.8 定积分计算

6.8.1 自适应辛普森

```
/*
*定积分运算: 自适应辛普森公式
*输入: a,b,eps,F(x)
*输出: 积分值asr(a, b, eps)
double F(double x)
{
   return log10(x);
}
```

//三点辛普森公式

```
double simpson(double width, double fa, double fb, double fc)
{
   return (fb + fa + 4 * fc) * width / 6;
}
//自适应simpson公式递归过程
double asr(double a, double b, double eps, double A)
{
   double c = (a + b) / 2;
   double fa, fb, fc, L, R;
   fa = F(a); fb = F(b); fc = F(c);
   L = simpson(c - a, fa, fc, F((c + a) / 2));
   R = simpson(b - c, fc, fb, F((b + c) / 2));
    if (fabs(L + R - A) \le 15 * eps) return L + R + (L + R - A) / 15;
   return asr(a, c, eps / 2, L) + asr(c, b, eps / 2, R);
}
//自适应simpson公式主过程
double asr(double a, double b, double eps)
   return asr(a, b, eps, simpson(b - a, F(a), F(b), F((b + a) / 2)));
}
6.8.2
       Romberg
/**
Romberg求定积分
输入:积分区间[a,b],被积函数f(x,y,z)
输出: 积分结果
f(x,y,z)示例:
double f0( double x, double 1, double t )
{
   return sqrt(1.0+l*l*t*t*cos(t*x)*cos(t*x));
}
*/
const double PI = acos(-1.0);
const int maxn = 1010;
double f0( double x, double 1, double t )
{
   return sqrt(1.0+l*l*t*t*cos(t*x)*cos(t*x));
}
double Romberg (double a, double b, double (*f)(double x, double y, double z), double eps,
Page 54 of 241
```

```
double 1, double t)
{
    int i, j, temp2, min;
    double h, R[2][maxn], temp4;
    for (i = 0; i < maxn; i++)
    {
        R[0][i] = 0.0;
        R[1][i] = 0.0;
   h = b - a;
    min = (int)(log(h * 10.0) / log(2.0)); //h should be at most 0.1
   R[0][0] = ((*f)(a, 1, t) + (*f)(b, 1, t)) * h * 0.50;
    i = 1;
    temp2 = 1;
    while (i < maxn)
        i++;
        R[1][0] = 0.0;
        for (j = 1; j \le temp2; j++)
            R[1][0] += (*f)(a + h * ((double)j - 0.50), l, t);
        R[1][0] = (R[0][0] + h * R[1][0]) * 0.50;
        temp4 = 4.0;
        for (j = 1; j < i; j++)
            R[1][j] = R[1][j-1] + (R[1][j-1] - R[0][j-1]) / (temp4 - 1.0);
            temp4 *= 4.0;
        }
        if ((fabs(R[1][i-1]-R[0][i-2]) < eps) && (i > min))
            return R[1][i - 1];
        h *= 0.50;
        temp2 *= 2;
        for (j = 0; j < i; j++)
            R[0][j] = R[1][j];
    }
    return R[1][maxn - 1];
}
double Integral(double a, double b, double (*f)(double x, double y, double z), double eps,
                double 1, double t)
{
    int n;
    double R, p, res;
   n = (int)(floor)(b * t * 0.50 / PI);
```

```
p = 2.0 * PI / t;
   res = b - (double)n * p;
   if (n) R = Romberg (a, p, f0, eps / (double)n, l, t);
   R = R * (double)n + Romberg( 0.0, res, f0, eps, l, t);
   return R / 100.0;
}
        多项式求根: 牛顿法
§ 6.9
/**
*多项式求根:牛顿法
*a_n*x^n+a_(n-1)*x^(n-1)+...+a_1*x+a_0=0
*输入:多项式系数c[],多项式度数n,求在[a,b]间的根
*输出: Polynomial_Root()(根)
*要求保证[a,b]间有根
*/
double fabs(double x)
{
   return (x < 0) ? -x : x;
}
double f(int m, double c[], double x)
{
   int i;
   double p = c[m];
   for (i = m; i > 0; i--)
       p = p * x + c[i - 1];
   return p;
}
int newton(double x0, double *r,
          double c[], double cp[], int n,
          double a, double b, double eps)
{
   int MAX_ITERATION = 1000;
   int i = 1;
   double x1, x2, fp, eps2 = eps / 10.0;
   x1 = x0;
   while (i < MAX_ITERATION)
       x2 = f(n, c, x1);
```

```
fp = f(n - 1, cp, x1);
        if ((fabs(fp) < 0.000000001) \&\& (fabs(x2) > 1.0))
            return 0;
        x2 = x1 - x2 / fp;
        if (fabs(x1 - x2) < eps2)
            if (x2 < a | | x2 > b)
                return 0;
            *r = x2;
            return 1;
        }
        x1 = x2;
        i++;
    return 0;
}
double Polynomial_Root(double c[], int n, double a, double b, double eps)
    double *cp;
    int i;
    double root;
    cp = (double *)calloc(n, sizeof(double));
    for (i = n - 1; i \ge 0; i--) cp[i] = (i + 1) * c[i + 1];
    if (a > b) root = a; a = b; b = root;
    if ((!newton(a, &root, c, cp, n, a, b, eps)) &&
            (!newton(b, &root, c, cp, n, a, b, eps)))
        newton((a + b) * 0.5, &root, c, cp, n, a, b, eps);
    free(cp);
    if (fabs(root) < eps) return fabs(root);</pre>
    else return root;
}
```

§ 6.10 周期性方程: 追赶法

```
/* 追赶法解周期性方程
```

```
void run()
{
   c[0] /= b[0]; a[0] /= b[0]; x[0] /= b[0];
   for (int i = 1; i < N - 1; i ++)
       double temp = b[i] - a[i] * c[i - 1];
       c[i] /= temp;
       x[i] = (x[i] - a[i] * x[i - 1]) / temp;
       a[i] = -a[i] * a[i - 1] / temp;
   }
   a[N - 2] = -a[N - 2] - c[N - 2];
   for (int i = N - 3; i \ge 0; i --)
       a[i] = -a[i] - c[i] * a[i + 1];
       x[i] -= c[i] * x[i + 1];
   }
   x[N-1] = (c[N-1] * x[0] + a[N-1] * x[N-2]);
   x[N-1] /= (c[N-1] * a[0] + a[N-1] * a[N-2] + b[N-1]);
   for (int i = N - 2; i >= 0; i --)
       x[i] += a[i] * x[N - 1];
}
§ 6.11 线性规划(单纯形法)
/**
单纯形法解线性规划:
Simplex C(n+m)(n)
maximize:
   c[1]*x[1]+c[2]*x[2]+...+c[n]*x[n]=ans
subject to
   a[1,1]*x[1]+a[1,2]*x[2]+...a[1,n]*x[n] <= rhs[1]
   a[2,1]*x[1]+a[2,2]*x[2]+...a[2,n]*x[n] <= rhs[2]
   a[m,1]*x[1]+a[m,2]*x[2]+...a[m,n]*x[n] <= rhs[m]
限制:
   传入的矩阵必须是标准形式的,即目标函数要最大化;约束不等式均为<=; xi为非负
数(>=0).
simplex返回参数:
                     有唯一最优解
   OPTIMAL
   UNBOUNDED
                     最优值无边界
                     有可行解
   FEASIBLE
   INFEASIBLE
                     无解
n为元素个数,m为约束个数
```

线性规划:

```
max c[]*x;
   a[][]<=rhs[];
ans即为结果,x[]为一组解(最优解or可行解)
*/
const double eps = 1e-8;
const double inf = 0x3f3f3f3f;
                          //表示有唯一的最优基本可行解
#define OPTIMAL -1
#define UNBOUNDED -2
                          //表示目标函数的最大值无边界
#define FEASIBLE -3
                          //表示有可行解
#define INFEASIBLE -4
                          //表示无解
                          //还可以松弛
#define PIVOT_OK 1
#define maxn 1000
struct LinearProgramming
{
   int basic[maxn], row[maxn], col[maxn];
   double c0[maxn];
   double dcmp(double x)
   {
       if (x > eps)
                      return 1;
       else if (x < -eps)
                          return -1;
       return 0;
   }
   void init(int n, int m, double c[], double a[maxn][maxn], double rhs[],
             double &ans)
                          //初始化
   {
       for (int i = 0; i \le n + m; i++)
           for (int j = 0; j \le n + m; j++) a[i][j] = 0;
           basic[i] = 0; row[i] = 0; col[i] = 0;
           c[i] = 0; rhs[i] = 0;
       }
       ans = 0;
   //转轴操作
   int Pivot(int n, int m, double c[], double a[maxn][maxn], double rhs[],
             int &i, int &j)
   {
       double min = inf;
       int k = -1;
       for (j = 0; j \le n; j ++)
           if (!basic[j] && dcmp(c[j]) > 0)
               if (k < 0 | | dcmp(c[j] - c[k]) > 0)  k = j;
```

```
j = k;
   if (k < 0) return OPTIMAL;</pre>
   for (k = -1, i = 1; i \le m; i ++) if (dcmp(a[i][j]) > 0)
            if (dcmp(rhs[i] / a[i][j] - min) < 0)</pre>
            {
                min = rhs[i] / a[i][j];
                k = i;
            }
    i = k;
    if (k < 0) return UNBOUNDED;</pre>
         return PIVOT_OK;
}
int PhaseII(int n, int m, double c[], double a[maxn][maxn], double rhs[],
            double &ans, int PivotIndex)
{
    int i, j, k, l; double tmp;
    while (k = Pivot(n, m, c, a, rhs, i, j), k == PIVOT_OK || PivotIndex)
    {
        if (PivotIndex)
        {
            i = PivotIndex;
            j = PivotIndex = 0;
        basic[row[i]] = 0; col[row[i]] = 0;
        basic[j] = 1; col[j] = i; row[i] = j;
        tmp = a[i][j];
        for (k = 0; k \le n; k ++) a[i][k] /= tmp;
       rhs[i] /= tmp;
        for (k = 1; k \le m; k ++)
            if (k != i && dcmp(a[k][j]))
            {
                tmp = -a[k][j];
                for (1 = 0; 1 \le n; 1 ++) a[k][1] += tmp * a[i][1];
                rhs[k] += tmp * rhs[i];
            }
        tmp = -c[j];
        for (1 = 0; 1 \le n; 1 ++) c[1] += a[i][1] * tmp;
        ans -= tmp * rhs[i];
    }
   return k;
}
int PhaseI(int n, int m, double c[], double a[maxn] [maxn], double rhs[],
           double &ans)
{
    int i, j, k = -1;
```

```
double tmp, min = 0, ans0 = 0;
   for (i = 1; i <= m; i ++)
       if (dcmp(rhs[i] - min) < 0)</pre>
           min = rhs[i];
           k = i;
   if (k < 0) return FEASIBLE;</pre>
   for (i = 1; i \le m; i ++) a[i][0] = -1;
   for (j = 1; j \le n; j ++) c0[j] = 0;
   c0[0] = -1;
   PhaseII(n, m, c0, a, rhs, ans0, k);
   if (dcmp(ans0) < 0) return INFEASIBLE;</pre>
   for (i = 1; i <= m; i ++)
                             a[i][0] = 0;
   for (j = 1; j \le n; j ++)
       if (dcmp(c[j]) && basic[j])
           tmp = c[j];
           ans += rhs[col[j]] * tmp;
           for (i = 0; i <= n; i ++) c[i] -= tmp * a[col[j]][i];
       }
   return FEASIBLE;
}
//standard form
//n:原变量个数 m:原约束条件个数
//c:目标函数系数向量-[1~n],c[0] = 0;
//a:约束条件系数矩阵-[1~m][1~n]
                                  rhs:约束条件不等式右边常数列向量-[1~m]
//ans:最优值 x:最优解||可行解向量-[1~n]
int simplex(int n, int m, double c[], double a[maxn][maxn], double rhs[],
           double &ans, double x[])
{
   int i, j, k;
   //标准形式变松弛形式
   for (i = 1; i \le m; i ++)
   {
       for (j = n + 1; j \le n + m; j ++) a[i][j] = 0;
       a[i][n + i] = 1; a[i][0] = 0;
       row[i] = n + i; col[n + i] = i;
   k = PhaseI(n + m, m, c, a, rhs, ans);
   if (k == INFEASIBLE) return k;
   k = PhaseII(n + m, m, c, a, rhs, ans, 0);
   for (j = 0; j \le n + m; j ++) x[j] = 0;
   for (i = 1; i \le m; i ++) x[row[i]] = rhs[i];
   return k;
```

```
}
}; //Primal Simplex
```

§ 6.12 快速傅立叶变换

§ 6.13 随机算法

§ 6.14 0/1 分数规划

6.14.1 Theorm

0/1 分数规划就是给定两个数组,a[i] 表示选取i 的收益,b[i] 表示选取i的代价。如果选取i,定义x[i]=1 否则x[i]=0。每一个物品只有选或者不选两种方案,求一个选择方案使得 $R=\sum\limits_{i=0}^{n}\frac{(a[i]*x[i])}{(b[i]*x[i])}$ 取得最值,即所有选择物品的(总收益/总代价)的值最大或是最小。

```
变形: F(R) = \sum (a[i] * x[i]) - R \times \sum (b[i] * x[i]), 即求R最大值,
```

函数F(R)有这样的一个性质:在前一段L中可以找到一组对应的X使得F(R)>0,这就提供了一种证据,即有一个比现在的R 更优的解,而在某个R 值使,存在一组解使得F(R)=0,且其他的F(R)<0,这时的R 无法继续增大,即这个R就是我们期望的最优解,之后的R会使得无论哪种方案都会造成F(R)<0。而我们已经知道,F(R)<0是没有任何意义的,因为此时的R 值根本取不到。

方法: 二分法求R最大值或者Dinkelbach算法(比二分快1倍)

6.14.2 Dinkelbach算法 $(O(\lg(nM)))$

```
/**
*0/1分数规划: Dinkelbach 算法($O(\lg(nM))$)
*输入: a[](收益),b[](费用)
*输出: dinkelbach()(最优比例)
*/
const int maxn=0;
const double INF=1e30;
const double eps=1e-6;
double a[maxn],b[maxn],d[maxn];
double dinkelbach()
{
   double L=任意值;
   double ans;
   do
   {
       for(int i=0; i<n; i++) d[i]=a[i]-L*b[i];</pre>
       double p=0,q=0;
```

```
for(i=0; i<n; i++)
        {
            if(元素I在解中)
               p+=a[i];
               q+=b[i];
            }
        }
        L=p/q;
    while(fabs(ans-L)>=eps);
   return ans;
}
```

6.14.3 二分法

TEAM #xiaohai

同普通二分, 略。

§ 6.15 迭代逼近

矩阵快速幂 $(O(\lg n))$ § **6.16**

```
/**
*矩阵快速幂($0(\lg n)$)
*注意: 矩阵不易过大
*输入: t(矩阵),n(矩阵规模),power(幂),mod(模)
*输出: mtx_pow(t,power)
*/
struct mtx
{
    int x[100][100];
};
int n;
const int mod=0;
mtx mtx_mul(mtx &aa, mtx &bb)
{
   mtx s;
   int i, j, k;
    for (i = 1; i <= n; i++)
       for (j = 1; j \le n; j++)
           s.x[i][j] = 0;
           for (k = 1; k \le n; k++)
               s.x[i][j] = (s.x[i][j] + aa.x[i][k] * bb.x[k][j]) % mod;
       }
```

```
return s;
}
mtx mtx_pow(mtx t, int power)
   mtx res;
   int i, j;
   for (i = 1; i <= n; i++)
        for (j = 1; j \le n; j++) res.x[i][j] = 0;
        res.x[i][i] = 1;
   }
   while (power != 0)
    {
        if ((power & 1) == 1) res = mtx_mul(t, res);
        power >>= 1;
        t = mtx_mul(t, t);
   }
   return res;
}
```

Chapter 7

Combinatorics

- § 7.1 排列数
- § 7.2 组合数
- 7.2.1 打印组合数表

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

7.2.2 Theorm

- 一些关于组合数的定理:
- 1. C(n,k) 的奇偶性判断: 如果(n&k) == k 则C(n,k) 为奇数, 否则为偶数。
- 2. 杨辉三角从首行(首行行号为0) 到第n 次全为奇数时,行号为 2^n-1
- 3. 杨辉三角中从首行到第n 次出现全行为奇数时,所有的偶数的个数为 $2^{2n-1}+2^{n-1}-3^n$,所有的奇数的个数为 3^n-1

§ 7.3 鸽笼原理和Ramsey 定理

7.3.1 鸽笼原理

基本

n+1 个物体放入n 个盒子,则至少有一个盒子有2 个物体。

加强

令 q_1,q_2,\cdots,q_n 为正整数。如果将 $q_1+q_2+\cdots+q_n-n+1$ 放入n 个盒子,那么或者第1 个盒子至少有 q_1 个物体,或者第2 个盒子至少有 q_2 个物体·····,或者第n 个盒子至少有 q_n 个物体。

平均定理

如果n 个非负整数 m_1, m_2, \cdots, m_n 平均数至少等于r,则这n 个整数 m_1, m_2, \cdots, m_n 至少有一个满足 $m_i \ge r$ 。

7.3.2 Ramsey 定理

定理

如果 $m \ge 2, n \ge 2$ 是两个整数,则存在一个正整数p 使得如果给完全图 K_p 的顶点着红色或者蓝色,则一定存在红色的 K_m 子图或者蓝色的 K_m 子图。

Ramsey数

最小的满足条件的p记为r(m,n),即Ramsey数。

Ramsey 数表

§ 7.4 常用的公式和数

7.4.1 Sum of Reciprocal(1/n) Approximation

$$\sum_{i=1}^{n} \frac{1}{i} = \ln\left(n+1\right) + r(n \to \infty)$$

 $r = 0.57721566490153286060651209 \cdots$

7.4.2 生成Gray码

```
//生成reflected gray code
//每次调用gray取得下一个码
//000...000是第一个码,100...000是最后一个码
void gray(int n, int *code)
{
   int t = 0, i;
   for (i = 0; i < n; t += code[i++]);</pre>
```

```
if (t & 1) for (n--; !code[n]; n--);
code[n - 1] = 1 - code[n - 1];
}
```

7.4.3 Catalan Number

Theorm

$$C_{n} = \frac{1}{n+1} {2n \choose n} = \frac{(2n)!}{(n+1)!n!}$$

$$C_{n} = {2n \choose n} - {2n \choose n+1}$$

$$C_{0} = 1 , C_{n+1} = \sum_{i=0}^{n} C_{i}C_{n-i}$$

$$C_{0} = 1 , C_{n+1} = \frac{2(2n+1)}{n+2}C_{n}$$

$$C_{n} \sim \frac{4^{n}}{n^{3/2}\sqrt{\pi}}$$

★所有的奇Catalan数 C_n 都满足 $n=2^k-1$ 。所有其他的Catalan数都是偶数。

应用

- C_n 表示长度2n的Dyck word 的个数。Dyck word 是一个有n个X 和n 个Y组成的字串,且 所有的前缀字串皆满足X 的个数大于等于Y 的个数。
- 将上例的X换成左括号, Y 换成右括号, C_n表示所有包含n组括号的合法运算式的个数。
- C_n 表示有n个节点组成不同构二叉树的方案数。
- C_n 表示有2n+1个节点组成不同构满二叉树(full binary tree)的方案数。
- C_n 表示所有在 $n \times n$ 格点中不越过对角线的单调路径的个数。
- C_n 表示通过连结顶点而将n+2边的凸多边形分成三角形的方法个数。
- C_n 表示对 $1, \dots, n$ 依序进出栈的置换个数。
- C_n 表示集合1,···,n 的不交叉划分的个数. 那么, C_n 永远不大于第n项Bell 数. C_n 也表示集合1,···,2n 的不交叉划分的个数。
- C_n 表示用n个长方形填充一个高度为n的阶梯状图形的方法个数。

7.4.4 Lucas Number

1, 3, 4, 7, 11, 18, 29, 47, 76, 123...
$$L_1 = 1, \ L_2 = 3, \ L_n = L_{n-1} + L_{n-2}$$

$$L_n = \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{1-\sqrt{5}}{2}\right)^n$$

7.4.5 Stirling Number

第一类

第一类Stirling数是有正负的,其绝对值是n个元素的项目分作k个环排列的方法数目,用s(n,k)(小写)表示。

$$s(n,0) = 0$$

$$s(1,1) = 1$$

$$s(n+1,k) = s(n,k-1) + ns(n,k)$$

递推关系的说明:考虑第n+1个物品,n+1 可以单独构成一个非空循环排列,这样前n 种物品构成k-1个非空循环排列,方法数为s(n,k-1);也可以前n种物品构成k个非空循环排列,而第n+1个物品插入第i个物品的左边,这有n*s(n,k)种方法。

常用形态:

- |s(n,1)| = (n-1)!
- $s(n,k) = (-1)^{n+k} |s(n,k)|$
- s(n, n-1) = -C(n, 2)
- $s(n,2) = (-1)^n (n-1)! H_{n-1}$
- $x^{\underline{n}} = x(x-1)\cdots(x-n+1) = \sum_{k=1}^{n} s(n,k)x^{k}$

第二类

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0	0
2	0	1	1	0	0	0	0	0	0	0
3	0	2	3	1	0	0	0	0	0	0
4	0	6	11	6	1	0	0	0	0	0
5	0	24	50	35	10	1	0	0	0	0
6	0	120	274	225	85	15	1	0	0	0
7	0	720	1764	1624	735	175	21	1	0	0
8	0	5040	13068	13132	6769	1960	322	28	1	0
9	0	40320	109584	118124	67284	22449	4536	546	36	1

第二类Stirling数是个元素的集定义k 个等价类的方法数目。常用的表示方法有S(n,k)(大写), $S_n^{(k)}$ 。

$$S(n,n) = S(n,1) = 1$$

$$S(n,k) = S(n-1, k-1) + kS(n-1, k)$$

递推关系的说明:考虑第n个物品,n可以单独构成一个非空集合,此时前n-1个物品构成k-1个非空的不可辨别的集合,方法数为S(n-1,k-1);也可以前n-1种物品构成k个非空的不可辨别的集合,第n个物品放入任意一个中,这样有k*S(n-1,k)种方法。

常用:

- S(n, n-1) = C(n, 2) = n(n-1)/2
- $S(n,2) = 2^{n-1} 1$
- $S(n,k) = \frac{1}{k!} \sum_{j=1}^{k} (-1)^{k-j} C(k,j) j^n$
- 贝尔数: $B_n = \sum_{k=1}^n S(n,k)$

7.4.6 Bell Number

 B_n 是基数为n的集合的划分方法的数目。

$$B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k$$

$$B_n = \frac{1}{e} \sum_{k=0}^{\inf} \frac{k^n}{k!}$$

$$B_{p+n} \equiv B_n + B_{n+1}(modp)$$

$$B_n = \sum_{k=1}^{n} S(n, k)$$

Triangle.png

贝尔三角形 [編輯]

用以下方法建构一个三角矩阵(形式类似杨辉三角形):

- 第一行第一项是1(a_{1,1} = 1)
- 对于 $n\!\!>\!\!1$,第n行第一项等同第 $n\!\!-\!\!1$ 行最后一项。($a_{n,1}=a_{n-1,n-1}$)
- 对于 \mathbf{m} , \mathbf{n} >1,第 \mathbf{n} 行第 \mathbf{n} 项等于它左边和左上方的两个数之和。($a_{n,m}=a_{n,m-1}+a_{n-1,m-1}$)

结果如下: (OEIS:A011971)

1							
1	2						
2	3	5					
5	7	10	15				
15	20	27	37	52			
52	67	87	114	151	203		
203	255	322	409	523	674	877	
877	1080	1335	1657	2066	2589	3263	4140
		:		:		:	

每行首项是贝尔数。每行之和是<mark>第二类Stirling数</mark>。

这个三角形称为贝尔三角形、Aitken阵列或Peirce三角形 (Bell triangle, Aitken's array, Peirce triangle)。

7.4.7 Farey Sequence(法雷序列)

性质

- $F_n = \{a/b | gcd(a,b) = 1 \&\& 0 \le a, b \le n\};$
- 除了1级法雷数列外,所有的法雷数列都有奇数个元素,其中居于正中间的那个元素一定 是1/2.
- 当n趋于正无穷时,n级法雷数列包含的元素的个数趋于 $3/(\Pi * \Pi) * n2 \approx 0.30396355 * n2.$

- n级法雷数列中,若相邻两个元素是a/b 和c/d(a/b < c/d),则这两个数的差为1/bd,这个差的最小值为1/(n*(n-1)),最大值为1/n,在法雷数列的第一个元素(0/1)与其后继以及最后一个元素(1/1)与前驱之间的差取到最大值,而正中间的那个元素1/2 与其前驱和后继元素之间的差取次大值1/(n*2).
- 在法雷数列中,对于任意两个相邻分数,先算出前者的分母乘以后者的分子,再算出前者的分子乘以后者的分母,则这两个乘积一定刚好相差1.

递归

```
#include <iostream>
using namespace std;
void Produce(int a, int b, int c, int d, int n)
    if (b + d > n) return;
    Produce(a, b, a + c, b + d, n);
    cout << a + c << "/" << b + d << endl;
    Produce(a + c, b + d, c, d, n);
}
int main()
₹
    int n;
    cin >> n;
    cout << 0 << "/" << 1 << endl;
    Produce(0, 1, 1, 1, n);
    cout << 1 << "/" << 1 << endl;
}
```

非递归

7.4.8 五角形数定理(Function Partion P)

http://mathworld.wolfram.com/PartitionFunctionP.html

求n被划分成多个整数的方案数

$$P(n) = \sum_{k=1}^{n} (-1)^{k+1} \left[P(n - \frac{1}{2}k(3k - 1)) + P(n - \frac{1}{2}k(3k + 1)) \right]$$

```
const int maxn=100010;
int dp[maxn];
void init()
{
    memset(dp,0,sizeof(dp));
    dp[0]=1;
    for(int i=1; i<=100000; i++)</pre>
```

```
{
         for(int j=1; (i-(3*j*j-j)/2)>=0; j++)
         {
             if(j\%2==1) dp[i]+=dp[i-(3*j*j-j)/2];
             else dp[i] = dp[i - (3*j*j-j)/2];
             dp[i]%=mod;
             if(dp[i]<0) dp[i]+=mod;</pre>
             if((i-(3*j*j+j)/2>=0))
             {
                 if(j\%2==1) dp[i]+=dp[i-(3*j*j+j)/2];
                 else dp[i] = dp[i - (3*j*j+j)/2];
                 dp[i]%=mod;
                 if(dp[i]<0) dp[i]+=mod;</pre>
             }
        }
    }
}
```

7.4.9 折线划分平面

设用n个m折的线划分一个平面,将平面划分为F(n)块,则

$\S 7.5$ Pólya Counting

7.5.1 Burnside引理(O(nsp))

适用于单色

共轭类

设其中k阶循环出现的次数为 c_k , $k=1,2,\cdots,n$,k阶循环出现 c_k 次,用 $(k)^{c_k}$ 表示。 S_n 属于 $(1)^{c_1}(2)^{c_2}\cdots(n)^{c_n}$ 的个数为

$$\frac{n!}{c_1!c_2!\cdots c_n!1^{c_1}2^{c_2}\cdots n^{c_n}}$$

k不动置换类

设G是[1,n]上的一个置换群。 $G \le S_n$. $k \in [1,n]$,G中使k保持不变的置换全体,称为k 不动置换类,记做 Z_k .

群G中关于k的不动置换类 Z_k 是G 的一个子群。

等价类

一般[1,n]上G将[1,n]分成若干等价类,满足等价类的3个条件.(a) 自反性;(b) 对称性;(c)传递性。

Burnside 引理

设G是[1,n]上的一个置换群, E_k 是[1,n]在G的作用下包含k的等价类, Z_k 是k不动置换类,有 $[E_k||Z_k|=|G|,\ k=1,2,\cdots,n_\circ$

设 $G = a_1, a_2, \dots, a_g$ 是目标集[1, n]上的置换群。每个置换都写成不相交循环的乘积。 G将[1, n] 换分成L 个等价类。 $c_1(a_k)$ 是在置换 a_k 的作用下不动点的个数,也就是长度为1的循环的个数。则有: $L = [c_1(a_1) + c_1(a_2) + \dots + c_1(a_g)]/|G|$

7.5.2 Pólya Counting(O(sp))

设 \bar{G} 是n个对象的一个置换群,用m种颜色涂染这n个对象,则不同染色的方案数为

$$L = \frac{1}{\bar{G}} [m^{c(\bar{a_1})} + m^{c(\bar{a_2})} + \dots + m^{c(\bar{a_g})}]$$

其中 $\bar{G} = \bar{a_1}, \bar{a_2}, \cdots, \bar{a_q}, c(\bar{a_k})$ 为置换 $\bar{a_k}$ 的循环节数。

7.5.3 求置换的循环节

```
/**
*求置换的循环节,polya原理
*输入: perm[0..n-1]为0..n-1的一个置换(排列)
*输出: 返回置换最小周期,num返回循环节个数
*/
const int maxn=0;
int gcd(int a,int b)
{
   if(!a) return b;
   if(!b) return a;
   while(a>b?a\%=b:b\%=a);
   return a+b;
}
int polya(int* perm,int n,int& num)
{
   int i,j,p,v[maxn],ret=1;
   memset(v,0,sizeof(v));
   for (num=i=0; i<n; i++)</pre>
       if (!v[i])
       {
           for (num++,j=0,p=i; !v[p=perm[p]]; j++)
               v[p]=1;
           ret*=j/gcd(ret,j);
       }
   return ret;
```

}

- § 7.6 生成函数
- § 7.7 离散变换与反演

Chapter 8

Game Theory

§ 8.1 Basic Game

8.1.1 Bash Game

只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个。最后取光者得胜。

保持给对手留下(m+1)的倍数,就能最后获胜

8.1.2 Wythoff Game

有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

用 (a_k,b_k) $(a_k \le b_k, k=0,1,2,\cdots,n)$ 表示两堆物品的数量并称其为奇异局势,其中 $a_k=[k(1+\sqrt{5})/2]$ $b_k=a_k+k$ $(a_k \le b_k, k=0,1,2,\cdots,n)$ (方括号表示取整函数)

两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜;反之,则后拿者取胜。

模板

```
//POJ 1067 取石子游戏
const double CON=(1+sqrt(5))/2;
int main()
{
    int a,b;
    while(~scanf("%d%d",&a,&b))
    {
        if(a>b) swap(a,b);
        if(FLOOR((b-a)*CON)==a) puts("0");
        else puts("1");
    }
    return 0;
}
```

8.1.3 翻硬币游戏

8.1.4 Green Hackenbush

链删边

根节点的sg=链的长度。

树删边

在树中,叶子结点的sg=0,其他节点的sg等于儿子结点的sg+1的异或和。

局部连通图删边

- 对于一个单独的偶环,一定是先手必败,其sg=0。
- 对于一个单独的奇环,一定是先手必胜,其sg=1。

环缩点, 奇环变成一个节点, 偶环直接删掉。

无向图删边

环缩点,

§ 8.2 简单取子游戏

8.2.1 游戏模型

游戏定义

- 1. 有两个玩家
- 2. 游戏的操作状态是一个有限的集合(比如:限定大小的棋盘)
- 3. 游戏双方轮流操作
- 4. 双方的每次操作必须符合游戏规定
- 5. 当一方不能将游戏继续进行的时候,游戏结束,同时,对方为获胜方
- 6. 无论如何操作,游戏总能在有限次操作后结束

必败点和必胜点(P 点& N 点)

- 必败点(P点): 前一个选手(Previous player)将取胜的位置称为必败点。
- 必胜点(N 点): 下一个选手(Next player) 将取胜的位置称为必胜点。

必败(必胜)点属性

- 1. 所有终结点是必败点(P点)
- 2. 从任何必胜点(N点)操作,至少有一种方法可以进入必败点(P点)
- 3. 无论如何操作, 从必败点(P点)都只能进入必胜点(N点)

算法

- 1. 将所有终结位置标记为必败点(P点)
- 2. 将所有一步操作能进入必败点(P点)的位置标记为必胜点(N点)
- 3. 如果从某个点开始的所有一步操作都只能进入必胜点(N点),则将该点标记为必败点(P点)
- 4. 如果在步骤3 未能找到新的必败(P点),则算法终止;否则,返回到步骤2

8.2.2 NIM 取石子游戏

NIM-SUM 定义

假设 $(x_m, \dots, x_0)_2$ 和 $(y_m, \dots, y_0)_2$ 的nim-sum 是 $(z_m, \dots, z_0)_2$,则我们表示成 $(x_m, \dots, x_0)_2 \oplus (y_m, \dots, y_0)_2 = (z_m, \dots, z_0)_2$,这里, $z_k = (x_k + y_k)\%2$, $(k = 0 \dots m)$

NIM-SUM 定理

定理一 对于nim 游戏的某个位置 (x_m, \dots, x_0) ,当且仅当它各部分的nim-sum 等于0 时(即 $x_m \oplus \dots \oplus x_0 = 0$ 时),则当前位于必败点;否则就是必胜点。

定理二 对于nim 游戏的某个必胜点 (x_m, \dots, x_0) ,它各部分的nim-sum 的值为可行的操作方案数(待证)

§ 8.3 Sprague-Grundy 理论

8.3.1 游戏定义

基本版

给定一个有向无环图和一个起始顶点上的一枚棋子,两名选手交替的将这枚棋子沿有向边进行移动,无法移动者判负。也就是说:任何一个ICG都可以通过把每个局面看成一个顶点,对每个局面和它的子局面连一条有向边来抽象成这个"有向图游戏"。

加强版

有向图上并不是只有一枚棋子, 而是有n 枚棋子, 每次可以任选一颗进行移动

8.3.2 Sprague-Grundy 函数

MEX(minimal excludant) 运算

施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex0,1,2,4=3、mex2,3,5=0、mex=0。

Sprague-Grundy 函数定义

对于一个给定的有向无环图,定义关于图的每个顶点的Sprague-Garundy 函数g 如下: $g(x) = mex\{g(y) \mid y \text{ is the successor of } x\}$

Sprague-Grundy 函数特点

- 1. 所有的terminal position 所对应的顶点,也就是没有出边的顶点,其SG 值为0,因为它的后继集合是空集
- 2. 对于一个g(x)=0 的顶点x, 它的所有后继y 都满足g(y)!=0
- 3. 对于一个g(x)!=0 的顶点,必定存在一个后继y满足g(y)=0

8.3.3 游戏模型

基本版

项点x 所代表的postion 是P-position 当且仅当g(x)=0 (跟P-positioin/N-position 的定义的那三句话是完全对应的)。

加强版

有向图游戏的和(Sum of Graph Games): 设 G_1, G_2, \dots, G_n 是n 个有向图游戏,定义游戏G 是 G_1, G_2, \dots, G_n 的和(Sum),游戏G 的移动规则是: 任选一个子游戏 G_i 并移动上面的棋子。 Sprague-Grundy Theorem 就是: $g(G) = g(G_1) \bigoplus g(G_2) \bigoplus \dots \bigoplus g(G_n)$ 。 也就是说,游戏的和的SG 函数值是它的所有子游戏的SG 函数值的异或。

8.3.4 算法和模板

一个求MEX 的模板

```
/**
*ural 1465 Pawn Game
*mex有规律
*1 1 2 0 3 1 1 0 3 3 2 2 4 0 5 2 2 3 3 0 1 1 3 0 2 1 1 0 4 5 2 7 4 0
*1 1 2 0 3 1 1 0 3 3 2 2 4 4 5 5 2 3 3 0 1 1 3 0 2 1 1 0 4 5 3 7 4 8
*1 1 2 0 3 1 1 0 3 3 2 2 4 4 5 5 9 3 3 0 1 1 3 0 2 1 1 0 4 5 3 7 4 8
*1 1 2 0 3 1 1 0 3 3 2 2 4 4 5 5 9 3 3 0 1 1 3 0 2 1 1 0 4 5 3 7 4 8
*/
#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
using namespace std;
const int maxn=1010;
int dp[maxn];
int mex(int n)//递归地找mex
    if(dp[n]!=-1) return dp[n];
```

```
if(n==0)
    {
        dp[n]=0;
        return dp[n];
    }
    if(n==1||n==2)
    {
        dp[n]=1;
        return dp[n];
    set<int> s;
    s.insert(mex(n-2));
    s.insert(mex(n-3));
    for(int i=0;i\leq n-3;i++) s.insert(mex(n-i-3)^mex(i));
   for(int i=0;i<=n;i++)//按mex 定义返回mex()的值
        if(s.find(i)==s.end())
            dp[n]=i;
            return dp[n];
        }
    }
}
int main()
{
   memset(dp,-1,sizeof(dp));
    int n;
    scanf("%d",&n);
    int ans;
    if(n<=68) ans=mex(n);//规律
    else ans=mex((n-68)%34+68);// 规律
    if(ans) puts("White");
    else puts("Black");
   return 0;
}
```

Chapter 9

Number Theory(更多详见附录郭思瑶模板)

更多详见附录郭思瑶模板

§ 9.1 GCD

9.1.1 Theorm

- 一些GCD 相关的定理
- 1. 如果 $a \equiv r \pmod{b}$, 则GCD(a,b)=GCD(b,r)。
- 2. 欧几里德定理: $GCD(a,b) = GCD(b,a \mod b)$ (a;b 且a mod b 不为0)
- 3. 拓展欧几里德定理:对于不完全为0的非负整数a,b,必然存在整数对x,y,使得ax+by=gcd(a,b)。

9.1.2 欧几里得算法

思想

- 1. 整数a,b, 假设a;b
- 2. 若b=0, 则GCD(a,b)=—a—; 否则GCD(a,b)=GCD(b,a%b)

递归 $(O(\lg n))$

```
typedef long long LL;
LL gcd(LL a, LL b)
{
    return b==0? a:gcd(b,a%b);
}

/**
*二进制算法.避免了模运算.大整数时效率较高.($0(\lg n)$)
*/
```

```
LL gcd(LL a, LL b)
{
    if(!a) return b;
    if(!b) return a;
    if(!(a&1)&&!(b&1)) return gcd(a>>1,b>>1)<<1;
    else if(!(b&1)) return gcd(a,b>>1);
    else if(!(a&1)) return gcd(a>>1,b);
    else if(a<b) return gcd(b-a,a);</pre>
    else return gcd(a-b,b);
}
非递归(O(\lg n))
LL gcd(LL a,LL b)
{
    if(!a) return b;
    if(!b) return a;
    while(a>b?a%=b:b%=a);
    return a+b;
}
```

9.1.3 拓展欧几里得算法

思想

拓展欧几里德定理:对于不完全为0的非负整数a,b,必然存在整数对x,y,使得ax+by=gcd(a,b)。

```
设a > b。
```

- 1. 显然当b=0,GCD(a,b)=a。此时x=1,y=0;
- 2. ab!=0 时,

递归

```
typedef long long LL;
void exgcd(LL a, LL b, LL &d, LL &x, LL &y)
{
    if(!b)
    {
        d=a;
        x=1;
        y=0;
    }
    else
    {
        exgcd(b, a%b, d, y, x);
        y-=x*(a/b);
```

```
}
```

非递归

- § 9.2 LCM
- § 9.3 约数

9.3.1 求约数的个数

Theorm

约数个数定理:对于一个大于1 正整数n 可以分解质因数: $n=\prod_{i=1}^k P_i^{a_i}=P_1^{a_1}P_2^{a_2}\cdots P_k^{a_k}$,则n 的正约数的个数就是 $n=\prod_{i=1}^k (a_i+1)=(a_1+1)(a_2+1)\cdots (a_k+1)$ 。其中 P_1,P_2,P_3,\cdots,P_k 都是n 的质因数: a_1,a_2,a_3,\cdots,a_k 是 P_1,P_2,P_3,\cdots,P_k 的指数。

Algorithm

分解质因数法求约数个数

9.3.2 求n的所有约数之和 $(O(\sqrt{N}))$

思想

数形结合,求在双曲线x*y = n在第一象限分支中下方的整点的个数。

作直线x=y,于是可以先计算上半部分(含x=y 这条直线)的点数。x=1 的时候有m 个,x=2 的时候有m/2-1 个。。。于是乘以2。然后x=y 这条直线上的i-1 个点多计算了一次,于是要减去(i-1) 个。

时间复杂度

 $O(\sqrt{n})$

程序

```
long long int a[10] = {0,1,3,5,8,10};
long long int f(long long m)
{
    if(m <=5) return a[m];
    long long sum = 0;
    long long i;
    for(i = 1; i*i <= m; ++i) sum += m/i - (i - 1);
    return sum*2-i+1;
}</pre>
```

§ 9.4 欧拉函数PHI(x)

9.4.1 欧拉函数PHI(x) 定义

欧拉函数PHI(x)等于不超过x 且和x 互素的整数的个数。

$$\phi(n) = n(1 - \frac{1}{p_1})(1 - \frac{1}{p_2})\cdots(1 - \frac{1}{p_k})$$

9.4.2 计算PHI(n)(O(N))

```
/**
*计算PHI(n)
*输入: n
*输出: phi(n)
int euler_phi(int n)
    int m=(int)sqrt(n+0.5);
    int ans=n;
    for(int i=2;i<=m;i++)</pre>
        if(n%i==0)
            ans=ans/i*(i-1);
            while(n\%i==0) n/=i;
        }
    }
    if(n>1) ans=ans/n*(n-1);
    return ans;
}
```

9.4.3 打印PHI(n) 表 $(O(N\sqrt{N}))$

```
/**
*打印PHI(n) 表
*输入: n
*输出: phi[]
*/
int phi[maxn];
void phi_table(int n)
{
    for(int i=2;i<=n;i++) phi[i]=0;
    phi[1]=1;
    for(int i=2;i<=n;i++)
    {
        if(!phi[i])
```

```
{
    for(int j=i;j<=n;j+=i)
    {
        if(!phi[j]) phi[j]=j;
        phi[j]=phi[j]/i*(i-1);
    }
}
}</pre>
```

9.4.4 PHI(x) 应用

§ 9.5 打印素数表 $(O(\sqrt{N}))$

```
/**
*打印素数表
*输入: n
*输出: prime[](素数),num(素数个数)
int vis[maxn],prime[maxn],num;
void sieve(int n)
{
    int m=(int)sqrt(n+0.5);
    memset(vis,0,sizeof(vis));
    for(int i=2; i<=m; i++)</pre>
        if(!vis[i])
            for(int j=i*i; j<=n; j+=i) vis[j]=1;</pre>
}
void gen_prime(int n)
{
    sieve(n);
    num=0;
    for(int i=2; i<=n; i++) if(!vis[i]) prime[num++]=i;</pre>
}
```

§ 9.6 分解质因数 $(O(\sqrt{N}))$

$$k = \prod_{i=1}^{n} p_i^{e_i}$$

9.6.1 分解质因数(无素数表版)

```
/**
*分解质因数(无素数表版)
*输入: k
```

```
*输出: p[](k被分解的质数),ex[](k 被分解的这个质数的次数)
*/
typedef long long LL;
const int maxn=0;
int cnt;
LL p[maxn],ex[maxn];//p[]为k被分解的质数,ex[]为k被分解的质数的次数
void div_prime(LL k)
{
    cnt=0;
   for(LL i=2; i*i<=k; i++)</pre>
       if(k\%i==0)
       {
           ex[cnt]=0;
           p[cnt]=i;
           while(k%i==0)
               k/=i;
               ex[cnt]++;
           }
           cnt++;
       }
    }
    if(k>1)
    {
       p[cnt]=k;
       ex[cnt++]=1;
    }
}
```

9.6.2 分解质因数(素数表版,适合批量)

```
/**

*分解质因数(素数表版)(需先调用init生成素数表)

*输入: k

*输出: p[](k被分解的质数),ex[](k 被分解的这个质数的次数)

*/

typedef long long LL;

const int maxn=0;

int vis[maxn],prime[maxn],num;

void sieve(int n)

{
    int m=(int)sqrt(n+0.5);
    memset(vis,0,sizeof(vis));
    for(int i=2; i<=m; i++)
```

```
if(!vis[i])
            for(int j=i*i; j<=n; j+=i) vis[j]=1;</pre>
}
void gen_prime(int n)
{
    sieve(n);
    num=0;
    for(int i=2; i<=n; i++) if(!vis[i]) prime[num++]=i;</pre>
}
void init()
{
    gen_prime(maxn);
}
int cnt;
LL p[maxn],ex[maxn];//p[]为k被分解的质数,ex[]为k被分解的质数的次数
void div_prime(LL k)
{
    cnt=0;
    for(int i=0; i<num; i++)</pre>
    {
        if(prime[i]*prime[i]>k) break;
        if(k\%prime[i]==0)
        {
            ex[cnt]=0;
            p[cnt]=prime[i];
            while(k%prime[i]==0)
            {
                k/=prime[i];
                ex[cnt]++;
            }
            cnt++;
        }
    }
    if(k>1)
        p[cnt]=k;
        ex[cnt++]=1;
    }
}
```

\S 9.7 求n!被p(素数)整除的p 的个数

$$ANS = \lfloor \frac{n}{p} \rfloor + \lfloor \frac{n}{p^2} \rfloor + \lfloor \frac{n}{p^3} \rfloor + \cdots$$

§ 9.8 Primitive Root || 费马小定理

9.8.1 Theorm

费马小定理 假如p是质数,且(a,p)=1,那么 $a^{(p-1)}\equiv 1 \pmod{p}$ 。即:假如p是质数,且a,p互质,那么 $a^{(p-1)}$ 除以p的余数恒等于1

Primitive Root(原根) 设*m*是正整数,*a*是整数,若*a mod m*的阶等于 $\varphi(m)$,则称*a* 为*mod m*的一个原根(其中 $\varphi(m)$ 表示*m*的欧拉函数)

9.8.2 求Primitive Root(未知复杂度)

求原根目前的做法只能是从2开始枚举,然后暴力判断 $g^{(P-1)} = 1 \pmod{P}$ 是否当且当指数为P-1的时候成立,而由于原根一般都不大,所以可以暴力得到.

```
/**
*求原根(未知复杂度)
*输入: p
*输出: g(原根)
*/
LL modexp(LL a, LL b, LL n)
   LL ret=1;
   LL tmp=a;
   while(b)
    {
       //基数存在
       if(b&0x1) ret=ret*tmp%n;
       tmp=tmp*tmp%n;
       b>>=1;
    return ret;
}
LL primitive_root(LL p)
    vector<LL> temp;
   LL x=p-1;
    for(LL i=2;i<=x/i;i++)</pre>
    {
        if(x\%i==0)
            temp.push_back(i);
            while(x\%i==0) x/=i;
        }
    }
    if(x!=1) temp.push_back(x);
```

```
for(LL g=1;;g++)
{
    int flag=1;
    for(LL i=0;i<temp.size();i++)
        if(modexp(g,(p-1)/temp[i],p)==1)
          flag=0;
    if(flag) return g;
}</pre>
```

§ 9.9 同余乘:避免乘法溢出(未知复杂度)

```
/**
*同余乘:避免乘法溢出(未知复杂度)
*二进制思想
*输入: a(乘数),b(乘数),n(模)
*输出:
*/
typedef long long LL;
typedef const long long CLL;
LL mul_mod(LL a,LL b,CLL &n)
{
   LL ans(0),tmp((an+n)n;
   b=(b%n+n)%n; //b%=n;
   while(b)
   {
       if(b&1) if((ans+=tmp)>=n) ans-=n;
       if((tmp<<=1)>=n) tmp-=n;
       b>>=1;
   }
   return ans;
}
```

Chapter 10

Computational Geometry(详见附录詹钰模板)

详见附录詹钰模板

§ 10.1 二维几何定义

10.1.1 常量

```
typedef double db;
const double eps = 1e-7;
const double PI = acos(-1.0);
const double INF = 1e50;

const int POLYGON_MAX_POINT = 1024;

db dmin(db a, db b){ return a>b?b:a; }
db dmax(db a, db b){ return a>b?a:b; }
int sgn(db a){ return a<-eps? -1 : a>eps; } //返回double型的符号
```

10.1.2 常用

```
//叉乘
double det2(double x1, double y1, double x2, double y2)
{
    return x1*y2 - x2*y1;
}
//ab X bc
db cross(Point2D a, Point2D b, Point2D c)
{
    return (b-a)*(c-b);
}
//ab.*bc
```

```
db dot(Point2D a, Point2D b, Point2D c)
{
   return (b-a)^(c-b);
}
10.1.3 点(Point2D)
struct Point2D
   db x, y;
   int id;
   Point2D(db _x = 0, db _y = 0): x(_x), y(_y) {}
   void input()
       scanf("%lf%lf" , &x, &y);
   }
   void output()
       printf("%.2f %.2f\n" , x, y);
   }
    //
   db len2()
    {
       return x * x + y * y;
    }
    //到原点距离
   double len()
       return sqrt(len2());
    //逆时针转90度
   Point2D rotLeft90()
    {
       return Point2D(-y, x);
    }
   //顺时针转90度
   Point2D rotRight90()
   {
       return Point2D(y, -x);
   //绕原点逆时针旋转arc_u
   Point2D rot(double arc_u)
   {
       return Point2D( x * cos(arc_u) - y * sin(arc_u),
                       x * sin(arc_u) + y * cos(arc_u);
```

```
}
//绕某点逆时针旋转arc_u
Point2D rotByPoint(Point2D &center, db arc_u)
    Point2D tmp( x - center.x, y - center.y );
    Point2D ans = tmp.rot(arc_u);
    ans = ans + center;
    return ans;
}
bool operator == (const Point2D &t) const
{
    return sgn(x - t.x) == 0 \&\& sgn(y - t.y) == 0;
}
bool operator < (const Point2D &t) const</pre>
{
    if (sgn(x - t.x) == 0) return y < t.y;
    else return x < t.x;
}
Point2D operator + (const Point2D &t) const
    return Point2D(x + t.x, y + t.y);
}
Point2D operator - (const Point2D &t) const
{
    return Point2D(x - t.x, y - t.y);
}
Point2D operator * (const db &t)const
{
    return Point2D( t * x, t * y );
}
Point2D operator / (const db &t) const
    return Point2D( x / t, y / t );
}
//点乘
db operator ^ (const Point2D &t) const
{
    return x * t.x + y * t.y;
}
//叉乘
db operator * (const Point2D &t) const
```

```
{
        return x * t.y - y * t.x;
    }
    //两点之间的角度(-PI , PI]
   double rotArc(Point2D &t)
        double perp_product = rotLeft90()^t;
        double dot_product = (*this)^t;
        if (sgn(perp_product) == 0 && sgn(dot_product) == -1) return PI;
       return sgn(perp_product) * acos(dot_product / len() / t.len() );
   }
    //标准化
   Point2D normalize()
        return Point2D(x / len(), y / len());
    }
};
10.1.4 线段(Segment2D)
struct Segment2D
{
   Point2D s , e;
   Segment2D() {}
   Segment2D( Point2D _s, Point2D _e ):s(_s), e(_e) {}
};
10.1.5 直线(Line2D)
//ax + by + c = 0
struct Line2D
   db a, b, c;
   Line2D() {}
   Line2D(db _k, db _b):a(_k),b(-1),c(_b) \{\}
   Line2D(db _a, db _b, db _c):a(_a),b(_b),c(_c) {}
   Line2D(Point2D p1, Point2D p2)
        SetLine(p1, p2);
    }
    //用两点定直线
   void SetLine(Point2D p1, Point2D p2)
    {
       a = p2.y - p1.y;
       b = p1.x - p2.x;
        c = p2.x * p1.y - p1.x * p2.y;
```

```
}
   //dirx , diry为直线的方向向量
   void SetLine(Point2D p1, db dirx, db diry)
       a = diry;
       b = -dirx;
       c = -a*p1.x-b*p1.y;
   }
   //用线段定直线
   void SetLine(Segment2D seg)
       SetLine(seg.e, seg.s);
    }
};
10.1.6
        圆(Circle)
struct Circle
   Point2D o;
   db r;
   void input()
    {
       o.input();
       scanf("%lf" , &r);
   Circle(Point2D _o=Point2D(0,0) , db _r=1.0):o(_o),r(_r) {}
    //比另外一个圆小
   bool operator<(const Circle& t) const</pre>
    {
       return r<t.r;
    }
    //比另外一个圆大
   bool operator>(const Circle& t) const
    {
       return r>t.r;
    }
    //在另外一个圆中
   bool in(Circle t)
       return sgn( (o-t.o).len() + (r - t.r) )<=0;
    }
    //和另外一个圆重合
   bool operator==(const Circle &t) const
    {
```

```
return o==t.o && sgn(r-t.r)==0;
   }
};
10.1.7 多边形(POLYGON)
struct POLYGON
   Point2D v[POLYGON_MAX_POINT];
   int n;
};
10.1.8 凸包(CONVEX2D)
struct CONVEX2D
{
   Point2D v[POLYGON_MAX_POINT];
   int n;
};
§ 10.2 二维几何基本操作
10.2.1 得到直线上一点(GetPointOnLine)
Point2D GetPointOnLine(Line2D 1)
   if( sgn(1.b)==0 ) return Point2D(-1.c/1.a , 0);
   else return Point2D( 0, -1.c/1.b);
}
10.2.2 两点构造直线(MakeLine2D)
Line2D MakeLine2D(Point2D p1, Point2D p2)
   Line2D 1;
   1.a = p2.y - p1.y;
   1.b = p1.x - p2.x;
   1.c = p2.x * p1.y - p1.x * p2.y;
   return 1;
}
10.2.3 构造两点的中垂线(MidPerpLine2D)
Line2D MidPerpLine2D(Point2D p, Point2D q)
Point2D mid; Line2D 1;
mid.x = (p.x + q.x) / 2;
Page 96 of 241
```

```
mid.y = (p.y + q.y) / 2;
1.a = q.x - p.x;
1.b = q.y - p.y;
1.c = -(1.a * mid.x + 1.b * mid.y);
   return 1;
}
        点是否在线段上(PointOnSeg2D)
//在线段上则为1;否则为0
bool PointOnSeg2D(Point2D p, Segment2D ls)
   return ( sgn((ls.s-p)*(p-ls.e))==0 ) && ( sgn((ls.s-p)^(p-ls.e))!=-1 );
}
        判断直线相交(LineLineIntersect2D)
//平行和重合不算相交, 交点为p
bool LineLineIntersect2D(Line2D 11, Line2D 12, Point2D &p)
{
   db crs = 11.a*12.b - 12.a*11.b;
   if(sgn(crs)==0) return false;
   p.x = (11.b*12.c - 11.c*12.b)/crs;
   p.y = (12.a*11.c - 11.a*12.c)/crs;
   return true;
}
       判断线段相交(SegIntersect2D)
10.2.6
/**** 判断线段相交 P是否在线段矩形范围内***/
bool PinSegRange2D(Point2D p, Segment2D seg)
{//db 类型的需要
   if( min(seg.s.x, seg.e.x) <=p.x+eps &&
       max(seg.s.x, seg.e.x) >=p.x-eps &&
       min(seg.s.y, seg.e.y) <=p.y+eps &&
       max(seg.s.y, seg.e.y) >=p.y-eps ) return true;
   else return false;
}
/**** 判断线段相交 ***/
//有公共点即算相交
bool SegIntersect2D(Segment2D a, Segment2D b)
{
   int d1 = sgn((a.e - a.s)*(b.s - a.s));
   int d2 = sgn((a.e - a.s)*(b.e - a.s));
   int d3 = sgn((b.e - b.s)*(a.s - b.s));
```

```
int d4 = sgn((b.e - b.s)*(a.e - b.s));
   if(d1*d2<0 && d3*d4<0) return true;
   else if( (d1==0)&&PinSegRange2D(b.s, a) ) return true;
    else if( (d2==0)&&PinSegRange2D(b.e, a) ) return true;
   else if( (d3==0)&&PinSegRange2D(a.s, b) ) return true;
    else if( (d4==0)&&PinSegRange2D(a.e, b) ) return true;
   return false;
}
/**** 判断线段相交 并返回交点***/
bool SegIntersect2D(Segment2D a, Segment2D b, Point2D& p)
   int d1 = sgn((a.e - a.s)*(b.s - a.s));
   int d2 = sgn((a.e - a.s)*(b.e - a.s));
   int d3 = sgn((b.e - b.s)*(a.s - b.s));
   int d4 = sgn((b.e - b.s)*(a.e - b.s));
   if(d1*d2<0 && d3*d4<0) {
       Line2D 11,12;
       11.SetLine(a), 12.SetLine(b);
       LineLineIntersect2D(11, 12, p);
       return true;
   }
   else if( (d1==0)&&PinSegRange2D(b.s, a) ) {p=b.s; return true;}
   else if( (d2==0)&&PinSegRange2D(b.e, a) ) {p=b.e; return true;}
   else if( (d3==0)&&PinSegRange2D(a.s, b) ) {p=a.s; return true;}
   else if( (d4==0)&&PinSegRange2D(a.e, b) ) {p=a.e; return true;}
   return false;
}
        三点夹角(GetAnglePoint2D)
double GetAnglePoint2D(Point2D a, Point2D b, Point2D c)
{
   double dot = (b-a)^(c-a);
   double len = ((b-a).len())*((c-a).len());
   return acos(dot/len);
}
10.2.8
        点关于直线的对称点(PointSymmetryOnLine2D)
//center为对称的中心点
Point2D PointSymmetryOnLine2D(Point2D p, Line2D 1, Point2D &center)
{
   Line2D perpLine;
   perpLine.SetLine(p, 1.a, 1.b);
   LineLineIntersect2D(1, perpLine, center);
```

```
return (center*2) - p;
}
       反射方向(ReflectDir)
10.2.9
/***已知光线起点,入射点和法向量,求出射方向***/
//inSp光线起点,touch入射点,normal法向量
Point2D ReflectDir(Point2D inSp, Point2D touch, Line2D normal)
{
   Point2D tmp;
   Point2D ref = PointSymmetryOnLine2D(inSp, normal, tmp);
   return ref - touch;
}
        点到直线距离(PointToLine2D)
10.2.10
double PointToLine2D(Point2D p, Line2D 1)
{
   return fabs(l.a*p.x + l.b*p.y + l.c)/sqrt(l.a*l.a+l.b*l.b);
}
         点到线段距离(PointToSegment2D)
10.2.11
double PointToSegment2D(Point2D p, Segment2D seg)
₹
   if( ((p-seg.s)^(seg.e-seg.s)) < eps ) return (p-seg.s).len();</pre>
   if( ((p-seg.e)^(seg.s-seg.e)) < eps ) return (p-seg.e).len();</pre>
   return fabs((p-seg.s)*(seg.s-seg.e)) / (seg.s-seg.e).len();
}
10.2.12
         点在直线上的投影(GetLineProjection)
/***点在直线上的投影***/
Point GetLineProjection(const Point &P, const Point &A, const Point B)
{
   Vector v = B - A;
   return A + v * (Dot(v, P - A) / Dot(v, v));
}
         线段与线段距离(SegmentToSegment2D)
10.2.13
/***线段与线段最短距离****/
double SegmentToSegment2D(Segment2D s1, Segment2D s2)
{
  if(SegIntersect2D(s1, s2)) return 0;
  double d1 = min( PointToSegment2D(s1.s, s2), PointToSegment2D(s1.e, s2) );
  double d2 = min( PointToSegment2D(s2.s, s1), PointToSegment2D(s2.e, s1) );
```

```
return min(d1, d2);
}
/***线段与线段最短距离 并返回最近点对 Untested****/
//p1 与 p2是一对最短的点,不唯一
double SegmentToSegment2D(Segment2D s1, Segment2D s2, Point2D &p1, Point2D &p2)
   if(SegIntersect2D(s1, s2, p1))
       p2 = p1;
       return 0;
   }
   double minDis = 1e20; Point2D p3, p4;
   double ds1 = PointToSegment2D(s1.s, s2, p3);
   double de1 = PointToSegment2D(s1.e ,s2, p4);
   if(ds1 < de1) \{ p2 = p3; p1 = s1.s; minDis = ds1; \}
   else { p2 = p4; p1 = s1.e; minDis = de1; }
   double ds2 = PointToSegment2D(s2.s, s1, p3);
   double de2 = PointToSegment2D(s2.e, s1, p4);
   if(minDis > ds2){ p2 = p3; p1 = s2.s; minDis = ds2; }
   if(minDis > de2){ p2 = p4; p1 = s2.e; minDis = de2; }
   return minDis;
}
```

10.2.14 点到线段最短距离(PointToSegment2D)

Page 100 of 241

```
/***点到线段最短距离 返回最近点 Need LineLineIntersect2D untested***/
//平行和重合不算相交,交点为p
bool LineLineIntersect2D(Line2D 11, Line2D 12, Point2D &p)
{
   db crs = 11.a*12.b - 12.a*11.b;
   if(sgn(crs)==0) return false;
   p.x = (11.b*12.c - 11.c*12.b)/crs;
   p.y = (12.a*11.c - 11.a*12.c)/crs;
   return true;
}
//在线段上则为1; 否则为0
bool PointOnSeg2D(Point2D p, Segment2D ls)
{
   return ( sgn((ls.s-p)*(p-ls.e))==0 ) && ( sgn((ls.s-p)^(p-ls.e))!=-1 );
//minP为线段上离p最近的点
double PointToSegment2D(Point2D p, Segment2D seg, Point2D &minP)
```

{

```
{
   Line2D segLine(seg.s, seg.e);
   Line2D perpLine;
   perpLine.SetLine(p, segLine.a, segLine.b);
   LineLineIntersect2D(segLine, perpLine, minP);
   if(PointOnSeg2D(minP, seg))
   {
       return (minP - p).len();
   }else
       double diss = (p-seg.s).len();
       double dise = (p-seg.e).len();
       if(diss<dise) {minP = seg.s; return diss;}</pre>
       else {minP = seg.e; return dise;}
   }
}
         直线与直线距离(LineToLine2D)
10.2.15
/***直线与直线距离****/
double LineToLine2D(Line2D 11, Line2D 12)
   Point2D p;
   if(LineLineIntersect2D(11, 12, p)) return 0;
   p = GetPointOnLine(11);
   return PointToLine2D(p , 12);
}
         直线关于点对称(LineSymmetryOnPoint2D)
/***直线关于点对称 Untested***/
Line2D LineSymmetryOnPoint2D(Line2D 1, Point2D center)
{
   Point2D A = GetPointOnLine(1);
   A = A*2 - center;
   Line2D la;
   la.SetLine(A, -1.b, 1.a);
   return la;
}
        直线与直线的夹角(LineLineArc)
/***直线与直线的夹角 Untested****/
//直线11 12的夹角[0,PI/2]
double LineLineArc(Line2D 11, Line2D 12)
```

```
Point2D a = Point2D(11.b, -11.a);
Point2D b = Point2D(12.b, -12.a);
return acos( fabs(a^b)/a.len()/b.len() );
}
```

10.2.18 直线l1逆时针转到l2的角度(LineLineRotArc)

```
//求直线l1逆时针转到l2的角度
double LineLineRotArc(Line2D 11, Line2D 12)
{//[0, PI)
    Point2D a = Point2D(l1.b, -l1.a);
    Point2D b = Point2D(l2.b, -l2.a);
    double arc = a.rotArc(b);
    if(arc<-eps) arc+=PI;
    return arc;
}
```

10.2.19 直线关于直线对称(LineSymmetryOnLine2D)

```
/***直线关于直线对称 Untested****/
//直线1关于centerLine的对称直线
Line2D LineSymmetryOnLine2D(Line2D 1, Line2D centerLine)
{
   Point2D centerP;
   if(!LineLineIntersect2D(1, centerLine, centerP))
       centerP = GetPointOnLine(centerLine);
       return LineSymmetryOnPoint2D(1, centerP);
   }
   else
   {
       Point2D dir(-centerLine.b, centerLine.a);
       double arc = LineLineRotArc(1, centerLine);
       dir = dir.rot(arc);
       Line2D _line;
       _line.SetLine(centerP, dir.x, dir.y);
       return _line;
   }
}
```

10.2.20 直线与圆的交点(CircleLineIntersect)

```
//输出p1,p2
//return 0 表示无交点
//return 1 表示一个交点
//return 2 表示两个交点
```

Page 102 of 241

```
int CircleLineIntersect(Circle cir, Line2D 1, Point2D&p1, Point2D&p2)
{
    Point2D pcrs;
    PointSymmetryOnLine2D(cir.o , 1, pcrs);
    double d = (cir.o-pcrs).len2();
    if( d > cir.r*cir.r + eps) return 0;
    d = sqrt(cir.r*cir.r - d);
    Point2D dir; dir.x = 1.b, dir.y = -1.a; dir = dir.normalize();
    p1 = pcrs + (dir*d);
    p2 = pcrs - (dir*d);
    if(p1==p2) return 1;
    else return 2;
}
```

10.2.21 三点非共线直线确定圆(PointMakeCircle2D)

```
//输出cir
bool PointMakeCircle2D(Point2D a, Point2D b, Point2D c, Circle &cir)
{
    //找外心
    Line2D 11 = MidPerpLine2D(a, b);
    Line2D 12 = MidPerpLine2D(a, c);
    if( LineLineIntersect2D(11, 12, cir.o) )
    {
        cir.r = (cir.o - a).len();
        return true;//有
    }
    else return false;//无
}
```

10.2.22 圆上的点p与弧ab的位置关系(PointOnArc2D)

```
//0: 优弧上
//1: 劣弧上
bool PointOnArc2D(Point2D p, Circle c, Point2D a, Point2D b)
{
    double th1, th2, th;
    th = GetAnglePoint2D(c.o, a, b);
    th1 = GetAnglePoint2D(c.o, a, p);
    th2 = GetAnglePoint2D(c.o, p, b);
    if(th1 + th2 > th + eps) return 0;
    return 1;
}
```

10.2.23 两圆交点(CirCirIntersect)

```
//输出p1,p2
//return 0 表示无交点
//return 1 表示一个交点
//return 2 表示两个交点
int CirCirIntersect(Circle c1, Circle c2, Point2D&p1, Point2D &p2)
   Point2D pcrs;
   double d = (c1.o - c2.o).len();
   if(d>c1.r+c2.r+eps || d<fabs(c1.r-c2.r)-eps) return 0;</pre>
   if(fabs(d)<eps) return 3;//同心圆
   double dt = (sq(c1.r)-sq(c2.r)) / d;
   double d1 = (d+dt)/2; //c1.o距圆心连线与中垂线交点的距离
   Point2D dir = c2.o - c1.o;
   dir = dir.normalize();
   pcrs = c1.o + dir*d1;
   dt = sqrt(sq(c1.r) - sq(d1));
   dir = dir.rotLeft90();
   p1 = pcrs + dir*dt;
   p2 = pcrs - dir*dt;
   if( sgn((p1-c1.o)*(c2.o - c1.o))<0) swap(p1, p2);
   if(p1==p2) return 1;
   else return 2;
}
10.2.24
         弓形的面积
double func(double r, double x)
{// 对2*sqrt(r^2-x^2)的积分公式(-r<=x<=r)
   return x*sqrt(r*r-x*x) + r*r*asin(x/r);
}
double ArchArea(double r, double h)
{//半径为r, 高为h的弓形的面积
   return func(r, -r+h) - func(r, -r);
}
         两圆/圆环的面积交和并(CircleUnionArea, CircleCommonArea)
10.2.25
double func(double r, double x)
{// 对2*sqrt(r^2-x^2)的积分公式(-r<=x<=r)
   return x*sqrt(r*r-x*x) + r*r*asin(x/r);
}
```

{

double a;//记录极角 (0 -- 2PI) int type;//逆时针的入点或出点

```
double ArchArea(double r, double h)
{//半径为r, 高为h的弓形的面积
   return func(r, -r+h) - func(r, -r);
}
double CircleUnionArea(Circle& c1, Circle& c2)
{//两圆面积并
   double ds = (c1.o-c2.o).len();
   if(c1.r + c2.r < ds-eps) return c1.area() + c2.area();</pre>
   if(ds < fabs(c1.r - c2.r)+eps ) return max(c1.area(), c2.area());</pre>
   double dk = (sq(c1.r) - sq(c2.r)) / ds;
   double d1,d2; // d1+d2 = ds, d1-d2 = dk;
   d1 = (ds + dk)/2; d2 = ds - d1;
   return ArchArea(c1.r, c1.r + d1) + ArchArea(c2.r , c2.r + d2);
}
double CircleCommonArea(Circle& c1, Circle& c2)
{//两圆面积交
   return c1.area()+c2.area()-CircleUnionArea(c1, c2);
}
两圆环面积并:(S1,S2为外圆,S11,S22 为内圆)
S1 + S2 - S11 - S22 - S1^S2 + S1^S22 + S2^S11 - S11^S22
10.2.26
         多圆的面积交和并(CirclesUnionArea,CirclesCommonArea)
/**
*多圆的面积交和并
*输入: circle[](圆),n(圆的个数)
*输出: CirclesUnionArea(), CirclesCommonArea()
*/
const int IN=1;
const int OUT=0;
const int maxn=1010;
//需要圆的完整定义, 圆与圆的交点 CirCirIntersect
double ArchArea(double r, double ang)
   //半径为r, 弧度为ang的弧所在的弓形面积
   return r*r/2*(ang - sin(ang));
}
struct Ang
```

```
bool operator<(const Ang& t)const</pre>
    {
        if(sgn(a-t.a) == 0 ) return type< t.type ;</pre>
        else return a<t.a;</pre>
} ang[maxn*4];
bool kicked[maxn];
/*****圆面积求并*******/
void CirclesUnionKick(Circle c[], int &n)
{
    memset(kicked, false , sizeof(kicked));
    for(int i=0; i<n; ++i)</pre>
        for(int j=i+1; j<n; ++j)</pre>
        {
            if(!kicked[i] && !kicked[j])
            {
                if( c[i].in(c[j]) ) kicked[i] = true;
                else if( c[j].in(c[i])) kicked[j] = true;
            }
        }
    int idx = 0;
    for(int i=0; i<n; ++i)</pre>
        if(!kicked[i]) c[idx++] = c[i];
   n = idx;
}
double CirclesUnionArea( Circle c[], int n )
    CirclesUnionKick(c, n);
    if(n==1) return c[0].area();
    Point2D tmp, p1, p2;
    double a1,a2, b1, b2;
    double ansArea = 0;
    for(int i=0; i< n; ++i)
    {
        int m = 0;
        for(int j=0; j< n; ++j)
            if(i==j) continue;
            int pn = CirCirIntersect(c[i], c[j], p1, p2);
//保证p1逆时针到p2,覆盖了c[i]的部分
            if(pn == 0) continue;
```

```
tmp = p1-c[i].o;
    a1 = atan2(tmp.y, tmp.x);
   tmp = p2-c[i].o;
    a2 = atan2(tmp.y, tmp.x);
    if(a1<0) a1 += PI*2;
    if(a2<0) a2 += PI*2;
    if(a2<a1)
    {
       b1 = PI*2;
       b2 = a2, a2 = 0;
        ang[m].a = a1, ang[m].type = IN;
        ++m;
        ang[m].a = b1, ang[m].type = OUT;
        ang[m].a = a2, ang[m].type = IN;
        ang[m].a = b2, ang[m].type = OUT;
        ++m;
   }
   else
    {
        ang[m].a = a1, ang[m].type = IN;
        ang[m].a = a2, ang[m].type = OUT;
        ++m;
    }
}//for(int j
sort(ang, ang+m);
int cov = 0;
a1 = 0;
for(int j=0; j < m; ++j)
   if(ang[j].type == IN)
    {
        if(cov == 0)
        {
            a2 = ang[j].a;
            if( sgn(a2-a1) > 0)
            {
                ansArea += ArchArea(c[i].r, a2 - a1);
                p1 = c[i].o + (Point2D(cos(a1), sin(a1)) * c[i].r);
                p2 = c[i].o + (Point2D(cos(a2), sin(a2)) * c[i].r);
                ansArea += (p1*p2)/2;
```

```
}
                }
                ++cov;
            }
            else
            {
                --cov;
                if(cov == 0) a1 = ang[j].a;
            }
        }//for(int j
        a2 = PI*2;
        if(sgn(a2-a1) > 0)
        {
            ansArea += ArchArea(c[i].r, a2 - a1);
            p1 = c[i].o + (Point2D(cos(a1), sin(a1)) * c[i].r);
            p2 = c[i].o + (Point2D(cos(a2), sin(a2)) * c[i].r);
            ansArea += (p1*p2)/2;
        }
    }//for(int i
    return ansArea;
}
/*****圆面积求交*******/
bool CirclesCommonKick(Circle c[], int &n)
{
    memset(kicked, false , sizeof(kicked));
    for(int i=0; i<n; ++i)</pre>
        for(int j=i+1; j<n; ++j)</pre>
            if( (c[i].o - c[j].o).len() > c[i].r + c[j].r - eps ) return false;
            if(!kicked[i] && !kicked[j])
            {
                if( c[i].in(c[j]) ) kicked[j] = true;
                else if( c[j].in(c[i])) kicked[i] = true;
            }
        }
    int idx = 0;
    for(int i=0; i<n; ++i)</pre>
        if(!kicked[i]) c[idx++] = c[i];
    n = idx;
    return true;
}
double CirclesCommonArea( Circle c[], int n )
```

```
{
    if( CirclesCommonKick(c, n) )
    {
        if(n==1) return c[0].area();
        Point2D tmp, p1, p2;
        double a1, a2, b1, b2;
        double ansArea = 0;
        for(int i=0; i<n; ++i)</pre>
            int m = 0;
            for(int j=0; j < n; ++j)
            {
                if(i==j) continue;
                int pn = CirCirIntersect(c[i], c[j], p1, p2);
//保证p1逆时针到p2,覆盖了c[i]的部分
                if(pn==0) return 0;
                tmp = p1-c[i].o;
                a1 = atan2(tmp.y, tmp.x);
                tmp = p2-c[i].o;
                a2 = atan2(tmp.y, tmp.x);
                if(a1<0) a1 += PI*2;
                if(a2<0) a2 += PI*2;
                if(a2<a1)
                {
                    b1 = PI*2;
                    b2 = a2, a2 = 0;
                    ang[m].a = a1, ang[m].type = IN;
                    ++m;
                    ang[m].a = b1, ang[m].type = OUT;
                    ++m;
                    ang[m].a = a2, ang[m].type = IN;
                    ang[m].a = b2, ang[m].type = OUT;
                    ++m;
                }
                else
                {
                    ang[m].a = a1, ang[m].type = IN;
                    ang[m].a = a2, ang[m].type = OUT;
                    ++m;
                }
            }//for(int j
```

```
sort(ang, ang+m);
           int cov = 0;
           for(int j=0; j < m; ++j)
           {
               if(ang[j].type == IN)
                   ++cov;
                   if(cov == n-1) a1 = ang[j].a;
               }
               else
               {
                   if(cov == n-1)
                       a2 = ang[j].a;
                       ansArea += ArchArea(c[i].r, a2 - a1);
                       p1 = c[i].o + (Point2D(cos(a1), sin(a1)) * c[i].r);
                       p2 = c[i].o + (Point2D(cos(a2), sin(a2)) * c[i].r);
                       ansArea += (p1*p2)/2;
                   }
                   --cov;
               }//else
           }//for(int j
       }//for(int i
       return ansArea;
   }
   else return 0;
}
         求圆外一点到圆的两个切点(OutTangentPoint)
void OutTangentPoint(Point2D out, Circle cir, Point2D &p1, Point2D &p2)
{//转换成圆圆相交来做
    double d2 = sqrt( (out - cir.o).len2() - sq(cir.r) );
   Circle c; c.o = out; c.r = d2;
   CirCirIntersect(c, cir, p1, p2);
}
10.2.28
         多边形有向面积(PolyArea)
double PolyArea(Point2D p[], int n )
{// 有向面积, 逆时针为正, 顺时针为负
   p[n] = p[0];
   double area = 0;
   for(int i=0; i<n; ++i)</pre>
    area += p[i]*p[i+1];
```

Page 110 of 241

```
return area/2;
}
          多边形重心(PolyCenter)
10.2.29
Point2D TriCenter(Point2D& p1, Point2D& p2, Point2D& p3)
{ return (p1+(p2+p3))/3; } //三角形重心
Point2D PolyCenter(Point2D p[], int n)
   double area = 0 , wt;
   Point2D center;
   for(int i=1; i<n-1; ++i)
       wt = (p[i]-p[0])*(p[i+1]-p[0]);
       area += wt;
       center = center + TriCenter(p[0], p[i], p[i+1])*wt;
   }
   if( sgn(area) ) return center/area;
   else return (p[0]+p[n-1])/2;//无意义
}
10.2.30 点与多边形位置关系(PointInPolygon)
//0: 点在多边形外
//1: 点在多边形内
bool PonSegment2D(Point2D p, Segment2D seg)
   return sgn((seg.s-p)*(p-seg.e))==0 && sgn((seg.s-p)^(p-seg.e))>=0;
}
/**** 判断线段在内部相交***/
bool SegIntersect2D(Segment2D a, Segment2D b)
{
   //必须在线段内相交
   int d1 = sgn((a.e - a.s)*(b.s - a.s));
   int d2 = sgn((a.e - a.s)*(b.e - a.s));
   int d3 = sgn((b.e - b.s)*(a.s - b.s));
   int d4 = sgn((b.e - b.s)*(a.e - b.s));
   if(d1*d2<0 && d3*d4<0) return true;
   return false;
}
const double INF = 1e10;
int PointInPolygon(Point2D p, Point2D poly[], int n)
   Segment2D 1, seg;
```

```
1.s = p;
   1.e = p;
   1.e.x = INF;//作射线
   int i, cnt = 0;
   Point2D p1, p2, p3, p4;
   for(i = 0; i < n; i++)
   {
      seg.s = poly[i], seg.e = poly[(i+1)%n];
      if(PonSegment2D(p, seg)) return 2;//点在多边形上
      p1 = seg.s, p2 = seg.e, p3 = poly[(i+2)%n], p4 = poly[(i+3)%n];
      if(SegIntersect2D(1, seg) ||
             PonSegment2D(p2, 1) && PonSegment2D(p3, 1) &&
             sgn((p2-p1)*(p-p1))*sgn((p4-p3)*(p-p3)) > 0)
          cnt++;
   }
   if(cnt % 2 == 1) return 1;//点在多边形内
   return 0;//点在多边形外
}
```

10.2.31 半平面求交

10.2.32

10.2.33

10.2.34

10.2.35

10.2.36

10.2.37

10.2.38

§ 10.3 二维几何算法

10.3.1 平面最近点对 $(O(N \lg N))$

```
/**
*平面最近点对($0(N\lg N)$)
*输入:接入n个点坐标到A数组
*调用: 先调用ClosestPairInit(A,B,n)
*输出: ans = ClosestPointPair2D(0,n,A,B,C)(C数组是中间变量,不用管)
*/
const int maxn=0;
int sgn(db a){ return a <-eps? -1: a > eps; } //返回double型的符号
Point2D A[maxn] , B[maxn] , C[maxn];
bool cmpX(const Point2D& a, const Point2D& b)
{
   return a.x<b.x-eps || (sgn(a.x-b.x)==0 && a.y<b.y-eps);
}
bool cmpY(const Point2D&a, const Point2D& b)
{
   return a.y<b.y-eps || (sgn(a.y-b.y)==0 \&\& a.x<b.x-eps);
}
void ClosestPairInit(Point2D a[], Point2D b[], int n)
   sort(a, a+n, cmpX);
   for(int i=0; i<n; ++i)</pre>
   {
       a[i].id = i;
       b[i] = a[i];
   }
   sort(b, b+n, cmpY);
}
double ClosestPointPair2D(int 1, int r, Point2D a[], Point2D b[], Point2D c[])
   int i,j,k;
   double re = INF;
   if(r-1<=3)
   {
       for(i=1; i<r; ++i)
           for(j=i+1; j<r; ++j)
               re = min(re, (a[i]-a[j]).len());
       return re;
```

```
}
    int mid = (1+r)/2, p1 = 1, p2 = mid;
    for(int i=1; i<r; ++i)</pre>
        if(b[i].id < mid) c[p1++] = b[i];</pre>
        else c[p2++] = b[i];
    }
    re = min( re, ClosestPointPair2D(1, mid, a, c, b));
    re = min( re, ClosestPointPair2D(mid, r, a, c, b));
    for(i=1,j=mid,k=1; i<mid && j<r; )//重组b数组
    {
        if(c[i].y>c[j].y+eps) b[k++] = c[j++];
        else b[k++] = c[i++];
    }
    while(i<mid) b[k++] = c[i++];
    while(j<r) b[k++] = c[j++];
   for(i=l, k=l; i<r; ++i)
        if(fabs(b[i].x - a[mid].x) < re - eps) c[k++] = b[i];
    }
    for(i=1; i<k; ++i)</pre>
        for(j=i+1; j<k && c[i].y+re>c[j].y; ++j)
           re = min(re, (c[i]-c[j]).len());
   return re;
}
10.3.2 最小圆覆盖点(O(N))
/**
*最小圆覆盖点($O(N)$)
*输入: p[](点),n(点数)
*输出: MinCircleCover()
*/
Circle MinCircleCover(Point2D p[], int n)
{
    //随机增量法 平均复杂度O(n)
   random_shuffle(p, p+n);
   Circle cir;
    cir.o = p[0];
    cir.r = 0;
    for(int i=1; i<n; ++i)</pre>
    {
```

```
if(! cir.in(p[i]) )
        {
            cir.o = p[i];
            cir.r = 0;
        }
        else continue;
        for(int j=0; j<i; ++j)</pre>
        {
            if(cir.in(p[j])) continue;
            else
                cir.o = (p[i] + p[j])/2.0;
                cir.r = (p[i]-p[j]).len() / 2;
            }
            for(int k=0; k<j; ++k)
                //注意三点不能共线
                if(cir.in(p[k]) ) continue;
                else
                {
                    if (sgn((p[i]-p[j])*(p[j]-p[k])))
                        PointMakeCircle2D(p[i], p[j], p[k], cir);
                    else
                    {
                        Point2D tmp;
                        if( sgn((p[i]-p[j])^(p[j]-p[k])) > 0) tmp = p[i];
                        else tmp = p[j];
                        cir.o = (p[k] + tmp)/2.0;
                        cir.r = (p[k]-tmp).len()/2;
                    }
                }
            }//for(int k
        }//for(int j
    }//for(int i
    return cir;
}
```

§ 10.4 三维几何定义

10.4.1

§ **10.5** 三维几何算法

10.5.1

Part III Data Structure

Chapter 11

基本数据结构

§ 11.1 队列

```
const int maxn = 0;
class Queue
{
public:
    Queue(int n = maxn)
        first = 0;
        last = 0;
        maxSize = n;
    }
    ~Queue() {}
    void push(int item)
    {
        assert(!isfull());
        last = (last + 1) % maxSize;
        element[last] = item;
    }
    int pop()
        assert(!isempty());
        first = (first + 1) % maxSize;
        return element[first];
    }
    int front()
        assert(!isempty());
        return element[(first + 1) % maxSize];
    void clear()
    {
```

```
first = last = 0;
    }
    bool isempty()
        return first == last;
    }
    bool isfull()
        return (last + 1) % maxSize == first;
    int size()
        return (last - first + maxSize) % maxSize;
private:
    int first, last;
    int element[maxn];
    int maxSize;
};
          堆
§ 11.2
struct node
    LL i;
    int num;
    bool operator<(const node &a)const</pre>
        return (i < a.i);</pre>
}qq[500005<<1];
struct heap
{
    int n;
    void ini()
    {
        n=1;
    }
    void push(node &t)
        n++;
        int now=n-1;
        while(now>1)
            if(t<qq[now>>1])
```

```
{
                 qq[now] =qq[now>>1];
                 now>>=1;
             }
             else
             {
                 qq[now] = t;
                 return ;
             }
        qq[now] = t;
    }
    node top()
    {
        return qq[1];
    }
    void pop()
    {
        node t = qq[--n];
         int tmp = 1,k;
        while((tmp<<1)<n)
         {
             k = tmp << 1;
             if(k+1<n\&\&qq[k+1]<qq[k]) k = k+1;
             {\tt if}(\tt qq[k]\!<\!t)
             {
                 qq[tmp] = qq[k];
                 tmp = k;
             }
             else break;
        }
        qq[tmp] = t;
    }
    bool empty()
    {
        return n==1? 1:0;
    }
};
```

§ 11.3 并查集

11.3.1 扩展+异或(la 4487)

/* 题目大意: 有n(n<=20000)个未知的整数X0,X1,X2...Xn-1,有以下Q个(Q<=40000)操作:

I p v :告诉你Xp=v

I p q v :告诉你Xp Xor Xq=v

Q k p1 p2 … pk : 询问 Xp1 Xor Xp2 .. Xor Xpk, k不大于15。

题目解法:

由于异或运算满足很多特殊的性质,尤其是交换律,传递性,因此可以使用并查集维护这个集合。并查集为树状结构。设fa[x]为x结点的父亲,设ve[x]为xXor fa[x]的值。

最核心的部分就是实现并查集的扩展。

在并查集进行压缩路径的时候,明显有: fa[x] = fa[pref],之后就有ve[x] = ve[pref] ^ ve[x],pref为压缩之前x结点的父亲,通过递归计算可以得到。

合并的时候,假设已知a Xor b = v, 且a, b已经压缩路径,得到其父亲结点分别为pa, pb,那么fa[pa]=pb,且ve[a] = ve[a] Xor ve[b] Xor v。

有一个比较麻烦的问题需要解决。对于Ipv这种对单个数字的操作需要另外处理。虽然Ipv是对单个数字操作,但是可以认为存在一个"虚点"Xn=0,由于任何数与0异或等于自己本身,因此Ipv相当于Ipnv。注意,合并时必须要使Xn作为父亲,Xp作为Xn的儿子。

最后的难题就是查询了。对于Xp1 Xor Xp2 .. Xor Xpk, 分别找出在并查集中位于同一个集合的数字, 如果该集合的数字有奇数个, 且这个集合里面没有Xn, 那么意味着这个集合不能算出来, 返回I don't know。否则将各个集合的异或值再异或起来, 可得查询值。

为什么集合的数字有奇数个就不能算出来呢?根据我们并查集ve数组的定义,ve[x]保存的是x与其父亲的异或值。由于经过压缩路径,因此树的深度只有一层。会有两种情况:

需要计算的集合没有树根。假设a,b,c,d,e在同一个集合中,要求a ^ b ^ c ^ d ^ e,且并查集中树根为r,那么通过ve数组,我们知道ve[a] = r ^ a, ve[b] = r ^ b, ve[c] = r ^ c...。把这些数字异或起来,是r xor a ^ r ^ b ^ r ^ c ^ r ^ d ^ r ^ e ^ r。r有奇数个,不能消去。但是如果有偶数个r,也就是待计算的集合有偶数个数字,由于r ^ r = 0,刚好消去,是可以计算出a^b^c^d^e来的。

需要计算的集合含有树根。假设a,b,c,d,r在同一个集合中,要求a ^ b ^ c ^ d ^ r, 且并查集中树根为r,那么通过ve数组,我们知道ve[a] = r ^ a, ve[b] = r ^ b, ve[c] = r ^ c...。把这些数字异或起来,是r xor a ^ r ^ b ^ r ^ c ^ r ^ d ^ r。r有偶数个,刚好把需要多的一个r消去了。但是如果有奇数个r,也就是待计算的集合有偶数个数字,r不会被消去,是可以计算出a^b^c^d^r来的。

但是,如果集合中的数字包含Xn,由于已知Xn=0,因此无论多了一个0还是少了一个0,异或的结果不变,因此可以计算。

```
*/
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 20005
int n, Q;
int fa[N], ve[N];
void init()
{
   for (int i = 0; i <= n + 1; i++)
        fa[i] = i;</pre>
```

```
memset(ve, 0, sizeof(ve));
}
int find(int a)
    int pref = fa[a];
    if (fa[a] == a) return a;
   fa[a] = find(fa[a]);
    ve[a] = ve[pref] ^ ve[a];
   return fa[a];
bool uniset(int a, int b, int v)
    int pa = find(a), pb = find(b);
    if (pa == pb)
    {
        if ((ve[a] ^ ve[b]) != v) return 0;
    }
    else
    {
        if (pa == n) swap(pa, pb);
        fa[pa] = pb;
        ve[pa] = v ^ ve[a] ^ ve[b];
   return 1;
}
int K, num[20];
int query()
{
    bool g[20] = \{ 0 \};
    int i, j, ans = 0, ff, ret;
    for (i = 0; i < K; i++)
    {
        int sz = 1;
        if (g[i]) continue;
        ff = find(num[i]), ans ^= ve[num[i]];
        g[i] = 1;
        for (j = i + 1; j < K; j++)
            if (g[j]) continue;
            ret = find(num[j]);
            if (ret == ff) g[j] = 1, sz++, ans ^= ve[num[j]];
        if (ff != n && sz % 2 == 1) return -1;
    }
    return ans;
```

```
}
void solve()
{
    int T = 1, i, a, b, v;
    bool ig = 0;
    char s[500];
    init();
    while (Q--)
        scanf("%s ", s);
        if (s[0] == 'Q')
            scanf("%d", &K);
            for (i = 0; i < K; i++)
                scanf("%d", &num[i]);
            if (!ig)
            {
                int ret = query();
                if (ret == -1) printf("I don't know.\n");
                else printf("%d\n", ret);
            }
        }
        else
        {
            int blank = 0;
            gets(s);
            if (ig) continue;
            for (i = 0; i < (int) strlen(s); i++)</pre>
                if (s[i] == ' ') blank++;
            if (blank == 1) sscanf(s, "%d%d", &a, &v), b = n;
            else sscanf(s, "%d%d%d", &a, &b, &v);
            if (!uniset(a, b, v))
            {
                printf("The first %d facts are conflicting.\n", T);
                ig = 1;
            T++;
        }
    }
}
int main()
{
    int ca = 1;
    while (scanf("%d%d\n", &n, &Q) && n)
```

void solve()

```
{
        printf("Case %d:\n", ca++);
        solve();
        printf("\n");
    }
    return 0;
}
```

11.3.2 元素的删除与计数

```
/**
元素的删除,根节点的计数等(cnt),实现集合的合并,查找等(0(1))
元素的删除: 找替身的方法,将要删除的元素映射到新的空间元素(另开一个元素,并且
初始化新开的空间信息),然后通过每一个映射来操作每一个元素,这样的修改并没有改变原来
树状信息(比如说节点与父节点的关系等),但是我们每一次通过映射操作间接改变;
#include<stdio.h>
#include<string.h>
#define MAXD 200010
int N, M, p[MAXD], id[MAXD], num[MAXD], cnt;
long long sum[MAXD];
void init()
   int i;
   for (i = 1; i <= N; i ++) id[i] = p[i] = sum[i] = i, num[i] = 1; ///id数组是
将i节点映射到id[i]编号节点上
   cnt = N;
}
int find(int x)
   return p[x] == x ? x : (p[x] = find(p[x]));
}
void Union(int x, int y)
{
   int tx = find(id[x]), ty = find(id[y]);
   p[tx] = ty, num[ty] += num[tx], sum[ty] += sum[tx];
}
void Delete(int x)
   int tx = find(id[x]);
   -- num[tx], sum[tx] -= x;
   id[x] = ++ cnt, p[id[x]] = id[x], num[id[x]] = 1, sum[id[x]] = x;
}
```

```
{
    int i, x, y, op;
    for (i = 0; i < M; i ++)
        scanf("%d", &op);
        if (op == 1)
            scanf("%d%d", &x, &y);
            if (find(id[x]) != find(id[y])) Union(x, y);
        else if (op == 2)
            scanf("%d%d", &x, &y);
            if (find(id[x]) != find(id[y])) Delete(x), Union(x, y);
        }
        else
        {
            scanf("%d", &x);
            printf("%d %lld\n", num[find(id[x])], sum[find(id[x])]);
        }
    }
}
int main()
{
    while (scanf("%d%d", &N, &M) == 2)
    {
        init();
        solve();
    }
    return 0;
}
```

11.3.3 权值排序+维护根(长春区域赛E)

```
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
typedef long long LL;
using namespace std;
const int M = 2e5 + 10;
int fa[M], cnt[M];
LL val[M];
```

```
struct E
    int u, v, val;
} edge[M];
int n;
void build()
    for (int i = 0; i <= n; i++)
        cnt[i] = 1;
        fa[i] = i;
        val[i] = 0;
    }
}
int find(int x)
{
    if (x == fa[x])return fa[x];
    return fa[x] = find(fa[x]);
}
bool cmp(const struct E &a, const struct E &b)
    return a.val > b.val;
int main(void)
    while (scanf("%d", &n) != EOF)
        for (int i = 1; i \le n - 1; i++)
            scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].val);
        build();
        sort(edge + 1, edge + n, cmp);
        LL ans = 0;
        for (int i = 1; i \le n - 1; i \leftrightarrow +)
        {
            int u = edge[i].u, v = edge[i].v, w = edge[i].val;
            int ru = find(u), rv = find(v);
                          printf("%d %d\n",ru,rv);
            LL sumu = val[ru] + (LL)w * cnt[rv] , sumv = val[rv] + (LL)w * cnt[ru];
            if (sumu > sumv)
                fa[rv] = u;
                cnt[u] += cnt[v];
                val[u] = sumu;
            }
            else
```

```
{
     fa[u] = v;
     cnt[v] += cnt[u];
     val[v] = sumv;
}
    ans = max(ans, max(sumu, sumv));
}
printf("%lld\n", ans);
}
return 0;
}
```

Chapter 12

高级数据结构

§ 12.1 线段树

12.1.1 单值更新

```
#include <cstdio>
#define lson l , m , rt << 1</pre>
#define rson m + 1 , r , rt << 1 | 1 \,
/*单点替换,区间求和*/
const int maxn = 55555;
int sum[maxn<<2];</pre>
void PushUP(int rt)
    sum[rt] = sum[rt<<1] + sum[rt<<1|1];</pre>
}
void build(int l,int r,int rt)
    if (1 == r)
    {
        scanf("%d",&sum[rt]);
        return ;
    }
    int m = (1 + r) >> 1;
    build(lson);
    build(rson);
    PushUP(rt);
void update(int p,int add,int l,int r,int rt)
    if (1 == r)
    {
```

```
sum[rt] += add;
        return ;
    }
    int m = (1 + r) >> 1;
    if (p <= m) update(p , add , lson);</pre>
    else update(p , add , rson);
    PushUP(rt);
}
int query(int L,int R,int 1,int r,int rt)
    if (L <= 1 && r <= R)
    {
        return sum[rt];
    int m = (1 + r) >> 1;
    int ret = 0;
    if (L <= m) ret += query(L , R , lson);</pre>
    if (R > m) ret += query(L , R , rson);
    return ret;
}
int main()
{
    int T , n;
    scanf("%d",&T);
    for (int cas = 1; cas <= T; cas ++)
    {
        printf("Case %d:\n",cas);
        scanf("%d",&n);
        build(1 , n , 1);
        char op[10];
        while (scanf("%s",op))
            if (op[0] == 'E') break;
            int a , b;
            scanf("%d%d",&a,&b);
            if (op[0] == 'Q') printf("%d\n",query(a , b , 1 , n , 1));
            else if (op[0] == 'S') update(a , -b , 1 , n , 1);
            else update(a , b , 1 , n , 1);
        }
    }
    return 0;
}
```

12.1.2 段操作(整体区间操作)

成段增减

```
#include <cstdio>
#include <algorithm>
using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
#define LL long long
const int maxn = 111111;
LL add[maxn<<2];</pre>
LL sum[maxn<<2];</pre>
void PushUp(int rt)
{
    sum[rt] = sum[rt<<1] + sum[rt<<1|1];</pre>
void PushDown(int rt,int m)
    if (add[rt])
        add[rt<<1] += add[rt];
        add[rt<<1|1] += add[rt];
        sum[rt << 1] += add[rt] * (m - (m >> 1));
        sum[rt<<1|1] += add[rt] * (m >> 1);
        add[rt] = 0;
    }
}
void build(int l,int r,int rt)
{
    add[rt] = 0;
    if (1 == r)
    {
        scanf("%lld",&sum[rt]);
        return ;
    }
    int m = (1 + r) >> 1;
    build(lson);
    build(rson);
    PushUp(rt);
void update(int L,int R,int c,int l,int r,int rt)
{
    if (L <= 1 && r <= R)
    {
```

```
add[rt] += c;
        sum[rt] += (LL)c * (r - 1 + 1);
        return ;
    }
    PushDown(rt , r - 1 + 1);
    int m = (1 + r) >> 1;
    if (L <= m) update(L , R , c , lson);</pre>
    if (m < R) update(L , R , c , rson);</pre>
    PushUp(rt);
LL query(int L,int R,int l,int r,int rt)
    if (L <= 1 && r <= R)
        return sum[rt];
    }
    PushDown(rt, r - 1 + 1);
    int m = (1 + r) >> 1;
    LL ret = 0;
    if (L <= m) ret += query(L , R , lson);</pre>
    if (m < R) ret += query(L , R , rson);</pre>
    return ret;
}
int main()
{
    int N , Q;
    scanf("%d%d",&N,&Q);
    build(1 , N , 1);
    while (Q --)
        char op[2];
        int a , b , c;
        scanf("%s",op);
        if (op[0] == 'Q')
        {
            scanf("%d%d",&a,&b);
            printf("%lld\n",query(a , b , 1 , N , 1));
        }
        else
        {
            scanf("%d%d%d",&a,&b,&c);
            update(a , b , c , 1 , N , 1);
        }
    }
    return 0;
```

}

成段替换

```
#include <cstdio>
#include <algorithm>
using namespace std;
/*成段替换*/
#define lson l , m , rt << 1 \,
#define rson m + 1 , r , rt << 1 | 1
const int maxn = 111111;
int h , w , n;
int col[maxn<<2];</pre>
int sum[maxn<<2];</pre>
void PushUp(int rt)
{
    sum[rt] = sum[rt<<1] + sum[rt<<1|1];</pre>
}
void PushDown(int rt,int m)
    if (col[rt])
    {
        col[rt<<1] = col[rt<<1|1] = col[rt];</pre>
        sum[rt << 1] = (m - (m >> 1)) * col[rt];
        sum[rt<<1|1] = (m >> 1) * col[rt];
        col[rt] = 0;
    }
}
void build(int l,int r,int rt)
    col[rt] = 0;
    sum[rt] = 1; //每一点的初始值为1 (区间原始的长度为r-l+1)
    if (1 == r) return;
    int m = (1 + r) >> 1;
    build(lson);
   build(rson);
   PushUp(rt);
/*将L-R区间替换成c(数值修改)*/
void update(int L,int R,int c,int 1,int r,int rt)
{
    if (L <= 1 && r <= R)
    {
        col[rt] = c;
```

```
sum[rt] = c * (r - 1 + 1);
        return ;
    }
    PushDown(rt , r - 1 + 1);
    int m = (1 + r) >> 1;
    if (L <= m) update(L , R , c , lson);</pre>
    if (R > m) update(L , R , c , rson);
    PushUp(rt);
}
int main()
{
    int T , n , m;
    scanf("%d",&T);
    for (int cas = 1; cas <= T; cas ++)
    {
        scanf("%d%d",&n,&m);
        build(1 , n , 1);
        while (m --)
            int a , b , c;
            scanf("%d%d%d",&a,&b,&c);
            update(a , b , c , 1 , n , 1);
        printf("Case %d: The total value of the hook is %d.\n",cas , sum[1]);
    }
    return 0;
}
```

12.1.3 hash+成段更新

```
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1

/*poj2528 Mayor's posters
离散化简单的来说就是只取我们需要的值来用
比如说区间[1000,2000],[1990,2012]
我们用不到[-∞,999][1001,1989][1991,1999][2001,2011][2013,+∞] 这些值,
所以我只需要1000,1990,2000,2012 就够了,
将其分别映射到0,1,2,3,在于复杂度就大大的降下来了
```

所以离散化要保存所有需要用到的值,排序后,分别映射到1~n,这样复杂度就会小很多很多

```
而这题的难点在于每个数字其实表示的是一个单位长度(并非一个点),
这样普通的离散化会造成许多错误(包括我以前的代码,poj这题数据奇弱)
给出下面两个简单的例子应该能体现普通离散化的缺陷:
例子一:1-10 1-4 5-10
例子二:1-10 1-4 6-10
普通离散化后都变成了[1,4][1,2][3,4]
线段2覆盖了[1,2],线段3覆盖了[3,4],那么线段1是否被完全覆盖掉了呢?
例子一是完全被覆盖掉了,而例子二没有被覆盖
为了解决这种缺陷,我们可以在排序后的数组上加些处理,比如说[1,2,6,10]
如果相邻数字间距大于1的话,在其中加上任意一个数字,
比如加成[1,2,3,6,7,10], 然后再做线段树就好了.
线段树功能:update:成段替换 query:简单hash
*/
const int maxn = 11111;
bool hash[maxn];
int li[maxn] , ri[maxn];
int X[maxn*3];
int col[maxn<<4];</pre>
int cnt;
void PushDown(int rt)
   if (col[rt] != -1)
   {
      col[rt<<1] = col[rt<<1|1] = col[rt];</pre>
      col[rt] = -1;
   }
}
void update(int L,int R,int c,int l,int r,int rt)
{
   if (L <= 1 && r <= R)
   {
      col[rt] = c;
      return ;
   PushDown(rt);
   int m = (1 + r) >> 1;
   if (L <= m) update(L , R , c , lson);</pre>
   if (m < R) update(L , R , c , rson);
}
void query(int l,int r,int rt)
   if (col[rt] != -1)
   {
```

```
if (!hash[col[rt]]) cnt ++;
        hash[ col[rt] ] = true;
        return ;
   }
    if (1 == r) return;
    int m = (1 + r) >> 1;
    query(lson);
    query(rson);
}
int Bin(int key,int n,int X[])
    int 1 = 0, r = n - 1;
   while (l \le r)
        int m = (1 + r) >> 1;
        if (X[m] == key) return m;
        if (X[m] < key) l = m + 1;
        else r = m - 1;
    }
   return -1;
}
int main()
    int T , n;
    scanf("%d",&T);
    while (T --)
        scanf("%d",&n);
        int nn = 0;
        for (int i = 0; i < n; i ++)
        {
            scanf("%d%d",&li[i] , &ri[i]);
           X[nn++] = li[i];
            X[nn++] = ri[i];
        }
        sort(X , X + nn);
        int m = 1;
        /*在区间端点添加一些点*/
        for (int i = 1; i < nn; i ++)
            if (X[i] != X[i-1]) X[m ++] = X[i];
        for (int i = m - 1; i > 0; i --)
            if (X[i] != X[i-1] + 1) X[m ++] = X[i-1] + 1;
```

```
sort(X, X + m);
       memset(col , -1 , sizeof(col));
       for (int i = 0; i < n; i ++)
       {
          int 1 = Bin(li[i] , m , X);
          int r = Bin(ri[i], m, X);
          update(1 , r , i , 0 , m , 1);
       }
       cnt = 0;
       memset(hash , false , sizeof(hash));
       query(0 , m , 1);
       printf("%d\n",cnt);
   }
   return 0;
}
       区间交并补等
12.1.4
#include <cstdio>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
/*这类题目会询问区间中满足条件的连续最长区间,所以PushUp的时候需要对左右儿子的区间
进行合并*/
/*poj3667 Hotel
题意:1 a:询问是不是有连续长度为a 的空房间,有的话住进最左边
2 a b:将[a,a+b-1]的房间清空
思路:记录区间中最长的空房间
线段树操作:update:区间替换 query:询问满足条件的最左断点
const int maxn = 55555;
int lsum[maxn << 2], rsum[maxn << 2], msum[maxn << 2];
int cover[maxn<<2];</pre>
//cover[rt]=-1表示rt还没被更新
//cover[rt]=0表示全部区间都是0 (没有住人,未被占用)
//cover[rt]=1表示都是1 (全部是满的,被占用);
void PushDown(int rt,int m)
{
   if (cover[rt] != -1)
   {
       cover[rt<<1] = cover[rt<<1|1] = cover[rt];</pre>
```

```
msum[rt << 1] = lsum[rt << 1] = rsum[rt << 1] = cover[rt] ? 0 : m - (m >> 1);
        msum[rt<<1|1] = lsum[rt<<1|1] = rsum[rt<<1|1] = cover[rt] ? 0 : (m >> 1);
        cover[rt] = -1;
    }
}
void PushUp(int rt,int m)
    lsum[rt] = lsum[rt<<1];</pre>
    rsum[rt] = rsum[rt<<1|1];
    if (lsum[rt] == m - (m >> 1)) lsum[rt] += lsum[rt<<1|1];
    if (rsum[rt] == (m >> 1)) rsum[rt] += rsum[rt<<1];</pre>
    msum[rt] = max(lsum[rt<<1|1] + rsum[rt<<1] , max(msum[rt<<1] , msum[rt<<1|1]));
}
void build(int l,int r,int rt)
{
    msum[rt] = lsum[rt] = rsum[rt] = r - l + 1;
    cover[rt] = -1;
    if (1 == r) return ;
    int m = (1 + r) >> 1;
    build(lson);
    build(rson);
}
void update(int L,int R,int c,int l,int r,int rt)
    if (L <= 1 && r <= R)
    {
        msum[rt] = lsum[rt] = rsum[rt] = c ? 0 : r - 1 + 1;
        cover[rt] = c;
        return ;
    }
    PushDown(rt , r - l + 1);
    int m = (1 + r) >> 1;
    if (L <= m) update(L , R , c , lson);</pre>
    if (m < R) update(L , R , c , rson);</pre>
    PushUp(rt , r - 1 + 1);
int query(int w,int 1,int r,int rt)
    if (l == r) return l;
    PushDown(rt , r - 1 + 1);
    int m = (1 + r) >> 1;
    if (msum[rt<<1] >= w) return query(w , lson);
    else if (rsum[rt<<1] + lsum[rt<<1|1] >= w) return m - rsum[rt<<1] + 1;
    return query(w , rson);
}
```

```
int main()
{
    int n , m;
    scanf("%d%d",&n,&m);
    build(1 , n , 1);
    while (m --)
    {
        int op , a , b;
        scanf("%d",&op);
        if (op == 1)
        {
            scanf("%d",&a);
            if (msum[1] < a) puts("0");</pre>
            else
            {
                 int p = query(a , 1 , n , 1);
                 printf("%d\n",p);
                 update(p , p + a - 1 , 1 , 1 , n , 1);
            }
        }
        else
        {
            scanf("%d%d",&a,&b);
            update(a , a + b - 1 , 0 , 1 , n , 1);
        }
    }
    return 0;
}
```

12.1.5 连续区间合并问题

```
#include <cstdio>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
/*这类题目会询问区间中满足条件的连续最长区间,所以PushUp的时候需要对左右儿子的区间进行合并*/
/*poj3667 Hotel
题意:1 a:询问是不是有连续长度为a 的空房间,有的话住进最左边
2 a b:将[a,a+b-1]的房间清空
思路:记录区间中最长的空房间
线段树操作:update:区间替换 query:询问满足条件的最左断点
```

```
*/
const int maxn = 55555;
int lsum[maxn << 2], rsum[maxn << 2], msum[maxn << 2];
int cover[maxn<<2];</pre>
//cover[rt]=-1表示rt还没被更新
//cover[rt]=0表示全部区间都是0 (没有住人,未被占用)
//cover[rt]=1表示都是1 (全部是满的,被占用);
void PushDown(int rt,int m)
{
    if (cover[rt] != -1)
    {
        cover[rt<<1] = cover[rt<<1|1] = cover[rt];</pre>
        msum[rt<<1] = lsum[rt<<1] = rsum[rt<<1] = cover[rt] ? 0 : m - (m >> 1);
        msum[rt<<1|1] = lsum[rt<<1|1] = rsum[rt<<1|1] = cover[rt] ? 0 : (m >> 1);
        cover[rt] = -1;
   }
}
void PushUp(int rt,int m)
   lsum[rt] = lsum[rt<<1];</pre>
   rsum[rt] = rsum[rt<<1|1];
    if (lsum[rt] == m - (m >> 1)) lsum[rt] += lsum[rt<<1|1];</pre>
    if (rsum[rt] == (m >> 1)) rsum[rt] += rsum[rt<<1];</pre>
   msum[rt] = max(lsum[rt<<1|1] + rsum[rt<<1] , max(msum[rt<<1] , msum[rt<<1|1]));
}
void build(int 1,int r,int rt)
   msum[rt] = lsum[rt] = rsum[rt] = r - l + 1;
   cover[rt] = -1;
    if (1 == r) return ;
    int m = (1 + r) >> 1;
   build(lson);
   build(rson);
}
void update(int L,int R,int c,int l,int r,int rt)
    if (L <= 1 && r <= R)
    {
        msum[rt] = lsum[rt] = rsum[rt] = c ? 0 : r - l + 1;
        cover[rt] = c;
        return ;
   }
   PushDown(rt, r - 1 + 1);
    int m = (1 + r) >> 1;
    if (L <= m) update(L , R , c , lson);</pre>
```

```
if (m < R) update(L , R , c , rson);
    PushUp(rt, r-1+1);
}
int query(int w,int l,int r,int rt)
{
    if (l == r) return l;
   PushDown(rt , r - 1 + 1);
    int m = (1 + r) >> 1;
    if (msum[rt<<1] >= w) return query(w , lson);
    else if (rsum[rt<<1] + lsum[rt<<1|1] >= w) return m - rsum[rt<<1] + 1;
   return query(w , rson);
}
int main()
    int n , m;
    scanf("%d%d",&n,&m);
    build(1 , n , 1);
    while (m --)
    {
        int op , a , b;
        scanf("%d", &op);
        if (op == 1)
            scanf("%d",&a);
            if (msum[1] < a) puts("0");</pre>
            else
                int p = query(a , 1 , n , 1);
                printf("%d\n",p);
                update(p , p + a - 1 , 1 , 1 , n , 1);
            }
        }
        else
        {
            scanf("%d%d",&a,&b);
            update(a , a + b - 1 , 0 , 1 , n , 1);
        }
    }
   return 0;
}
```

12.1.6 扫描线

/*这类题目需要将一些操作排序,然后从左到右用一根扫描线(当然是在我们脑子里)扫过去

```
最典型的就是矩形面积并,周长并等题
*/
/*hdu1542 Atlantis
题意:矩形面积并
思路:浮点数先要离散化;然后把矩形分成两条边,上边和下边,对横轴建树,
然后从下到上扫描上去,用cnt表示该区间下边比上边多几个,sum代表该区间内被覆盖的线段的
长度总和
这里线段树的一个结点并非是线段的一个端点,而是该端点和下一个端点间的线段,
所以题目中r+1,r-1的地方可以自己好好的琢磨一下
线段树操作:update:区间增减 query:直接取根节点的值
*/
#include <cstdio>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
\#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
const int maxn = 2222;
int cnt[maxn << 2];</pre>
double sum[maxn << 2];</pre>
double X[maxn];
struct Seg
{
   double h , l , r;
   int s;
   Seg() {}
   Seg(double a,double b,double c,int d) : l(a) , r(b) , h(c) , s(d) {}
   bool operator < (const Seg &cmp) const</pre>
   {
       return h < cmp.h;
} ss[maxn];
void PushUp(int rt,int l,int r)
   if (cnt[rt]) sum[rt] = X[r+1] - X[1];
   else if (1 == r) sum[rt] = 0;
   else sum[rt] = sum[rt<<1] + sum[rt<<1|1];</pre>
void update(int L,int R,int c,int l,int r,int rt)
{
   if (L <= 1 && r <= R)
   {
       cnt[rt] += c;
```

```
PushUp(rt , l , r);
        return ;
    }
    int m = (1 + r) >> 1;
    if (L \le m) update(L , R , c , lson);
    if (m < R) update(L , R , c , rson);
    PushUp(rt , 1 , r);
}
int Bin(double key,int n,double X[])
    int 1 = 0, r = n - 1;
    while (1 \le r)
    {
        int m = (1 + r) >> 1;
        if (X[m] == key) return m;
        if (X[m] < key) 1 = m + 1;
        else r = m - 1;
    }
    return -1;
}
int main()
{
    int n , cas = 1;
    while (~scanf("%d",&n) && n)
        int m = 0;
        while (n --)
            double a , b , c , d;
            scanf("%lf%lf%lf",&a,&b,&c,&d);
            X[m] = a;
            ss[m++] = Seg(a, c, b, 1);
            X[m] = c;
            ss[m++] = Seg(a , c , d , -1);
        }
        sort(X, X + m);
        sort(ss , ss + m);
        int k = 1;
        for (int i = 1; i < m; i ++)
            if (X[i] != X[i-1]) X[k++] = X[i];
        }
        memset(cnt , 0 , sizeof(cnt));
        memset(sum , 0 , sizeof(sum));
        double ret = 0;
```

```
for (int i = 0; i < m - 1; i ++)
        {
            int l = Bin(ss[i].l , k , X);
            int r = Bin(ss[i].r, k, X) - 1;
            if (1 \le r) update(1, r, ss[i].s, 0, k-1, 1);
           ret += sum[1] * (ss[i+1].h - ss[i].h);
        }
        printf("Test case #%d\nTotal explored area: %.21f\n\n",cas++ , ret);
    }
   return 0;
}
2.
/*
hdu1828 Picture
题意:矩形周长并
思路:与面积不同的地方是还要记录竖的边有几个(numseg记录),
并且当边界重合的时候需要合并(用1bd和rbd表示边界来辅助)
线段树操作:update:区间增减 query:直接取根节点的值
*/
#include <cstdio>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1  
const int maxn = 22222;
struct Seg
{
    int 1 , r , h , s;
   Seg() {}
   Seg(int a,int b,int c,int d):1(a) , r(b) , h(c) , s(d) {}
   bool operator < (const Seg &cmp) const</pre>
        if (h == cmp.h) return s > cmp.s;
       return h < cmp.h;
    }
} ss[maxn];
bool lbd[maxn<<2] , rbd[maxn<<2];</pre>
int numseg[maxn<<2];</pre>
int cnt[maxn<<2];</pre>
int len[maxn<<2];</pre>
void PushUP(int rt,int 1,int r)
```

```
{
    if (cnt[rt])
    {
        lbd[rt] = rbd[rt] = 1;
        len[rt] = r - l + 1;
        numseg[rt] = 2;
    }
    else if (l == r)
        len[rt] = numseg[rt] = lbd[rt] = rbd[rt] = 0;
    }
    else
    {
        lbd[rt] = lbd[rt<<1];</pre>
        rbd[rt] = rbd[rt<<1|1];
        len[rt] = len[rt<<1] + len[rt<<1|1];</pre>
        numseg[rt] = numseg[rt<<1] + numseg[rt<<1|1];</pre>
        if (lbd[rt<<1|1] && rbd[rt<<1]) numseg[rt] -= 2;//两条线重合
    }
}
void update(int L,int R,int c,int l,int r,int rt)
{
    if (L <= 1 && r <= R)
    {
        cnt[rt] += c;
        PushUP(rt , 1 , r);
        return ;
    }
    int m = (1 + r) >> 1;
    if (L <= m) update(L , R , c , lson);</pre>
    if (m < R) update(L , R , c , rson);
    PushUP(rt , 1 , r);
}
int main()
{
    int n;
    while (~scanf("%d",&n))
    {
        int m = 0;
        int 1bd = 10000, rbd = -10000;
        for (int i = 0; i < n; i ++)
        {
            int a , b , c , d;
            scanf("%d%d%d%d",&a,&b,&c,&d);
            lbd = min(lbd , a);
```

```
rbd = max(rbd, c);
             ss[m++] = Seg(a, c, b, 1);
             ss[m++] = Seg(a , c , d , -1);
         }
         sort(ss , ss + m);
        int ret = 0 , last = 0;
         for (int i = 0; i < m; i ++)
         {
             if (ss[i].l < ss[i].r)</pre>
                 \label{eq:continuous} \verb"update"(ss[i].l", ss[i].r" - 1", ss[i].s", lbd , rbd - 1", 1");
             ret += numseg[1] * (ss[i+1].h - ss[i].h);
             ret += abs(len[1] - last);
             last = len[1];
         printf("%d\n",ret);
    }
    return 0;
}
```

12.1.7 重要题目

Page 146 of 241

LA3938 Ray, Pass me the dishes!

```
// LA3938 Ray, Pass me the dishes!
// Rujia Liu
//给定一个序列,多次询问区间的[ai,bi],求ai-->bi 中最大的连续区间和的最大值(num[q]+num[q+1]+num[q+2]
//并且给出所求区间的两端坐标(字典序最小)
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 500000 + 10;
const int maxnode = 1000000 + 10;
typedef long long LL;
typedef pair<int,int> Interval;
LL prefix_sum[maxn];//整个序列前缀和
LL sum(int L, int R)
{
   return prefix_sum[R] - prefix_sum[L-1];
}
LL sum(Interval p)
```

```
{
    return sum(p.first, p.second);
}
Interval better(Interval a, Interval b)
    if(sum(a) != sum(b)) return sum(a) > sum(b) ? a : b;
    return a < b ? a : b; // 利用pair 自带的字典序
}
int qL, qR;
struct IntervalTree
    int max_prefix[maxnode];
    int max_suffix[maxnode];
    Interval max_sub[maxnode];
    void build(int o, int L, int R)
        if(L == R)
            max_prefix[o] = max_suffix[o] = L;
           max_sub[o] = make_pair(L, L);
        }
        else
            int M = L + (R-L)/2;
            // 递归创建子树
            int lc = o*2, rc = o*2+1;
            build(lc, L, M);
            build(rc, M+1, R);
            // 递推max_prefix
            LL v1 = sum(L, max_prefix[lc]);
            LL v2 = sum(L, max_prefix[rc]);
            if(v1 == v2) max_prefix[o] = min(max_prefix[lc], max_prefix[rc]);
            else max_prefix[o] = v1 > v2 ? max_prefix[lc] : max_prefix[rc];
            // 递推max_suffix
            v1 = sum(max_suffix[lc], R);
            v2 = sum(max_suffix[rc], R);
            if(v1 == v2) max_suffix[o] = min(max_suffix[lc], max_suffix[rc]);
            else max_suffix[o] = v1 > v2 ? max_suffix[lc] : max_suffix[rc];
```

```
// 递推max_sub
            max_sub[o] = better(max_sub[lc], max_sub[rc]); // 完全在左子树或者右
子树
            max_sub[o] = better(max_sub[o], make_pair(max_suffix[lc], max_prefix[rc])); // 跨
越中线
        }
    }
    Interval query_prefix(int o, int L, int R)
        if(max_prefix[o] <= qR) return make_pair(L, max_prefix[o]);</pre>
        int M = L + (R-L)/2;
        int lc = o*2, rc = o*2+1;
        if(qR <= M) return query_prefix(lc, L, M);</pre>
        Interval i = query_prefix(rc, M+1, R);
        i.first = L;
        return better(i, make_pair(L, max_prefix[lc]));
    }
    Interval query_suffix(int o, int L, int R)
    {
        if(max_suffix[o] >= qL) return make_pair(max_suffix[o], R);
        int M = L + (R-L)/2;
        int lc = o*2, rc = o*2+1;
        if(qL > M) return query_suffix(rc, M+1, R);
        Interval i = query_suffix(lc, L, M);
        i.second = R;
        return better(i, make_pair(max_suffix[rc], R));
    }
    Interval query(int o, int L, int R)
    {
        if(qL <= L && R <= qR) return max_sub[o];</pre>
        int M = L + (R-L)/2;
        int lc = o*2, rc = o*2+1;
        if(qR <= M) return query(lc, L, M);</pre>
        if(qL > M) return query(rc, M+1, R);
        Interval i1 = query_prefix(rc, M+1, R); // 右半的前缀
        Interval i2 = query_suffix(lc, L, M); // 左半的后缀
        Interval i3 = better(query(lc, L, M), query(rc, M+1, R));
        return better(make_pair(i2.first, i1.second), i3);
    }
};
IntervalTree tree;
```

```
int main()
{
    int kase = 0, n, a, Q;
    while(scanf("%d%d", &n, &Q) == 2)
        prefix_sum[0] = 0;
        for(int i = 0; i < n; i++)
        {
            scanf("%d", &a);
            prefix_sum[i+1] = prefix_sum[i] + a;
        }
        tree.build(1, 1, n);
        printf("Case %d:\n", ++kase);
        while(Q--)
        {
            int L, R;
            scanf("%d%d", &L, &R);
            qL = L;
            qR = R;
            Interval ans = tree.query(1, 1, n);
            printf("%d %d\n", ans.first, ans.second);
        }
    }
    return 0;
}
```

§ 12.2 伸展树(SPlay)

12.2.1 SPlay模板一

```
/*
每次先调用一下splay::init()
不同的题目注意修改newNode, pushdown, update三个函数就足够了
splay命名空间里的函数都是对树的操作, 对结点的操作都归类到Node里。
空间吃紧时可修改erase函数, 增加内存池管理
*/
#include <algorithm>
#include <cstdio>
#include <iostream>
#include <string>
#include <cstring>
//#include <windows.h>
using namespace std;
const int N = 1e5 + 10;
```

```
struct Node
    int key, s, cnt; ///key是键值, s是以this为根的所有子树的节点数, cnt是本节点的
重复数
   bool rvs;
   Node *f, *ch[2];
   void set(int c, Node *x);
   void fix();
   void pushdown();
   void update();
   void rotate();
   void splay(Node *);
   Node()
    {
       key = 0; s = 0; cnt = 0;
       rvs = 0;
       ch[0] = ch[1] = f = NULL;
    }
} statePool[N];
Node *null = new Node();
void Node::set(int c, Node *x)///另x为this节点的第c儿子, c==1为右儿子
{
   ch[c] = x;
   x->f = this;
void Node::fix()///将儿子指向父亲
    ch[0] \rightarrow f = this;
    ch[1] \rightarrow f = this;
}
void Node::pushdown()///根据题目而定
    if (this == null) return;
   if (rvs)
    {
        ch[0]->rvs ^= 1;
        ch[1]->rvs ^= 1;
       rvs = 0;
        swap(ch[0], ch[1]);
   }
}
```

```
void Node::update()///用儿子更新根
{
    if (this == null) return;
    s = ch[0] -> s + ch[1] -> s + cnt;
}
void Node::rotate()
{
    Node *x = f;
    bool o = f \rightarrow ch[0] == this;
    x->set(!o, ch[o]);
    x->f->set(x->f->ch[1] == x, this);
    set(o, x);
    x->update();
    update();
}
void Node::splay(Node *goal = null)
    pushdown();
    for (; f != goal;)
        f->f->pushdown();
        f->pushdown();
        pushdown();
        if (f->f == goal)
            rotate();
        }
        else if ((f->f->ch[0] == f) ^ (f->ch[0] == this))
        {
            rotate();
            rotate();
        }
        else
        {
            f->rotate();
            rotate();
        }
    }
}
struct Splay
{
```

```
int poolCnt;///key值不同的个数
   Node *root ;
   int id[100000];///id[i]:将序列中的标号(元素值,一定注意不是序号)为i的节点
在statePool中的存储位置
   Node *newNode(int key = 0)///
       Node *p = &statePool[poolCnt++];
       p->f = p->ch[0] = p->ch[1] = null;
       p->s = p->cnt = 1;
       p->rvs = 0;
       p->key = key;
       id[p->key] = poolCnt - 1; ///做内存映射, 根据题目而定(通常是将1-n的序列
映射成另一个排列
       ///值为p->key的内存对应位置位 statePool[ id[p->key] ];
       return p;
   }
   void init()
   {
       poolCnt = 1;
       root = null;
   }
   /// use an array a to build a balanced splay tree. return its root.
   template <class T> Node *build(int 1, int r, T a[])
   {
       if (1 > r) return null;
       int mid = (1 + r) / 2;
       Node *p = newNode(a[mid]);
       //
                p->key = a[mid];
                cout<<"1,r: "<<1<<" " <<r<<endl;
       //
       if (1 < r)
       {
           p->ch[0] = build(1, mid - 1, a);
           p->ch[1] = build(mid + 1, r, a);
           p->update();
           p->fix();
       return root = p;
   }
   /// select the i-th element in the splay tree. index start from 1.
   /// take care you must splay after select
   Node *select(Node *rt, int kth) ///查找第k小的值
       if (rt == null || kth > rt->s)
           return null;
```

```
Node *x = rt;
    while (1)
    {
        x->pushdown();
        if (x->ch[0]->s + 1 \le kth && kth \le x->ch[0]->s + x->cnt)
            break;
        else if (kth \le x->ch[0]->s)
            x = x->ch[0];
        else
            kth = x->ch[0]->s + x->cnt;
            x = x->ch[1];
        }
    return x;
}
// find the node which just >= a in the tree.
// take care you must splay after lower_bound
template <class T> Node *lower_bound(T a)
{
    Node *ret = null;
    for (Node *p = root; p != null; )
        p->pushdown();
        if (a < p->key)
            p = p - ch[1];
        }
        else
        {
            ret = p;
            p = p->ch[0];
        }
    }
    return ret;
}
/// merge two splay tree. p, q should be root. return the root
///p在序列左边, q在右边
Node *merge(Node *p, Node *q)
{
    p->f = q->f = null;
    if (p == null) return q;
    if (q == null) return p;
```

```
q = select(q, 1);
    q->splay();
    q->set(0, p);
    q->update();
    return q;
}
//when p is root, q is p's right child(take care after pushdown),
//reverse from p to q, return the root of this tree.
Node *reverse(Node *p, Node *q)
{
    swap(p->ch[0], q->ch[0]);
    p->ch[1] = q->ch[1];
    q->ch[1] = p;
    q \rightarrow f = null;
    p->fix();
    q->fix();
    p->update();
    q->update();
    p->ch[0]->rvs ^= 1;
    return q;
}
// reverse the 1-th element to the r-th element in the splay tree(inclusive),
// return the root of this tree, index start from 1.
void reverse(int 1, int r)
    if (1 \ge r) return;
    Node *p = select(root, 1);
    p->splay();
    Node *q = select(p, r);
    q->splay(p);
    root = reverse(p, q);
}
///insert q before p. return the root of this tree.
Node *insert(Node *p, Node *q)
{
    p->splay();
    if (p->ch[0] == null)
        p->set(0, q);
    }
    else
    {
```

```
Node *t = select(p, p \rightarrow ch[0] \rightarrow s);
        t->splay(p);
        t->set(1, q);
        t->update();
    }
    p->update();
    return p;
}
///insert q before the i-th node.
///return the root of this tree. index start from 1.
///相当于在第i个位置插入节点q, 后面位置依次往后移动
void insert(Node *q, int i)
    if (i > root->s)
    {
        Node *p = select(root, root->s);
        p->splay();
        p->set(1, q);
        p->update();
        root = p;
    }
    else
    {
        Node *p = select(root, i);
        root = insert(p, q);
    }
}
///insert element into the splaytree, return the root of tree.
template<class T>Node *insert(T key)
{
    if (root == null)
    {
        poolCnt = 0;
        return root = newNode(key);
    }
    Node *x = root, *y;
    while (1)
        x->s++;
        if (key == x->key)
            x->cnt++;
            x->update();
```

```
y = x;
             break;
        }
         else if (key < x->key)
         {
             if (x->ch[0] != null)
                 x = x->ch[0];
             else
             {
                 y = newNode(key);
                 x->ch[0] = y;
                 y \rightarrow f = x;
                 break;
             }
        }
         else
         {
             if (x->ch[1] != null)
                 x = x->ch[1];
             else
             {
                 y = newNode(key);
                 x->ch[1] = y;
                 y \rightarrow f = x;
                 break;
             }
        }
    }
    y->splay();
    return root = y;
}
///erase the subtree whose root is p. return the root.
Node *erase(Node *p)
{
    if (p->f != null)
        Node *q = p->f;
        q->pushdown();
        q->set(q->ch[1] == p, null);
        q->update();
        q->splay();
        return root = q;
    }
    else
    {
```

```
return root = null;
    }
}
/// erase the element whose index in [1, r].
/// index start from 1. return the root.
Node *erase(Node *&dump, int 1, int r) ///
{
    if (1 > r) return root;
    if (1 == r)
        Node *p = select(root, 1);
        p->splay();
        Node *lp = p \rightarrow ch[0], *rp = p \rightarrow ch[1];
        p->ch[0] = p->ch[1] = null;
        dump = p;
        dump -> update();
        return root = merge(lp, rp);
    }
    else
    {
        Node *p = select(root, 1);
        p->splay();
        Node *q = select(p, r);
        q->splay(p);
        Node *lp = p \rightarrow ch[0], *rp = p \rightarrow ch[1];
        p->ch[0] = p->ch[1] = null;
        Node *lq = q->ch[0], *rq = q->ch[1];
        q \rightarrow ch[0] = q \rightarrow ch[1] = null;
        q->update();
        p->update();
        dump = merge(p, lq);
        dump = merge(dump, q);
        dump->update();
        return root = merge(lp, rq);
    }
/// 把o的前k小结点放在left里,其他的放在right里。1<=k<=o->s。当k=o->s时,right=null
void split(int k, Node *&left, Node *&right)
{
    Node *p = select(root, k);
    p->splay();
    left = p;
    right = p->ch[1];
    p \rightarrow ch[1] = null;
    left->update();
```

```
}
///以下是基于键值的维护,不能用来维护序列
Node *search(Node *root, int key) ///查找一个值, 返回指针
{
   if (root == null)
       return null;
   Node *x = root, *y = null;
   while (1)
       if (key == x->key)
       {
           y = x;
           break;
       }
       else if (key > x->key)
           if (x->ch[1] != null)
               x = x->ch[1];
           else
              break;
       }
       else
       {
           if (x->ch[0] != null)
               x = x->ch[0];
           else
              break;
       }
   }
   x->splay();
   return root = x;
}
Node *searchmin(Node *x) ///查找最小值, 返回指针
{
   Node *y = x->f;
   if (y == null)return x;
   while (x->ch[0] != null) ///遍历到最左的儿子就是最小值
   {
       x = x->ch[0];
   x->splay(y);
   return x;
}
void del(int key) ///删除一个值
```

```
{
        if (root == null)
            return;
        Node *x = search(root, key), *y;
        if (x == null)
            return;
        if (x\rightarrow cnt > 1)
        {
            x->cnt--;
            x->update();
            return;
        }
        else if (x->ch[0] == null && x->ch[1] == null)
            init();
            return;
        }
        else if (x->ch[0] == null)
            root = x->ch[1];
            x->ch[1]->f = null;
            return;
        else if (x->ch[1] == null)
            root = x->ch[0];
            x->ch[0]->f = null;
            return;
        y = searchmin(x->ch[1]);
        y->f = null;
        y - ch[0] = x - ch[0];
        x->ch[0]->f = y;
        y->update();
        root = y;
} spt;
int seq[N];
void splaySeq(Node *x)
{
    if (x != null)
        splaySeq(x->ch[0]);
        printf("节点: %2d 左儿子:%2d 右儿子:%2d cnt: %2d s: %2d\n",
```

```
x\rightarrow key, x\rightarrow ch[0]\rightarrow key, x\rightarrow ch[1]\rightarrow key, x\rightarrow cnt, x\rightarrow s);
         splaySeq(x->ch[1]);
    }
}
void debug(Node *fir)
    printf("内存映射: \n");
    for (int i = 1; i \le n; i++)
        printf("%d ", statePool[ spt.id[ seq[i] ] ].key);
    printf("\n");
    printf("root: %d\n", fir->key);
    splaySeq(fir);
    printf("\n");
}
void prin_ans(Node *rt)
{
    if (rt != null)
    {
        rt->pushdown();
        prin_ans(rt->ch[0]);
         printf("%d\n", rt->key);
        prin_ans(rt->ch[1]);
    }
}
12.2.2
          SPlay模板二
#include <cstdio>
#include <cstring>
#include <algorithm>
#define key_tree root->ch[1]->ch[0]
using namespace std;
const int M = 500000 * 2;
const int INF = 1000000000;
inline int max(int a, int b)
{
    return a > b ? a : b;
}
inline int min(int a, int b)
{
    return a < b ? a : b;
}
```

```
struct Node
{
    int sum;
    int value;
   int s;
   Node *ch[2];
   Node *pre;
   bool rev;
   bool same;
    int lx, rx, mx;
};
struct Splay
{
   Node data[M];
   Node *store[M];///人工堆栈
    Node *null;
   Node *root;
    int number;
    int top;
   Node *newNode(int val)
    {
        Node *p;
        if (top > 0)
            p = store[top--];
        }
        else
            p = &data[number++];
        p->s = 1;
        p->value = val;
        p->sum = val;
        p->rev = p->same = false;
        p->lx = p->rx = p->mx = val;
        p->ch[0] = p->ch[1] = null;
        p->pre = null;
        return p;
    }
```

```
void init()
   {
       number = 0;
        top = 0;
        null = newNode(-INF);
        null->s = null->sum = 0;
        root = newNode(-INF);
        root->ch[1] = newNode(-INF);
        root->ch[1]->pre = root;
        push_up(root);//这里主要是为了更新s, sum的更新并不正确, 但是在rotate和splay操
作中会正确
   }
   void push_up(Node *p)
   {
        if (p == null)
        {
            return;
        }
        push_down(p);
        push_down(p->ch[0]);//以求和为例,p节点值的更新需要依赖两个字节点,那么这
两个字节点的sum要先得到更新,所以要下放
       push_down(p->ch[1]);
        p->s = p->ch[0]->s + p->ch[1]->s + 1;
        p->sum = p->ch[0]->sum + p->ch[1]->sum + p->value;
        p->lx = max(p->ch[0]->lx, p->ch[0]->sum + p->value + max(0, p->ch[1]->lx));
        p-rx = max(p-ch[1]-rx, p-ch[1]-sum + p-value + max(0, p-ch[0]-rx));
        p->mx = max(p->ch[0]->mx, p->ch[1]->mx);
        p \rightarrow mx = max(p \rightarrow mx, max(p \rightarrow ch[0] \rightarrow rx + p \rightarrow ch[1] \rightarrow lx, 0) + p \rightarrow value);
        p->mx = max(p->mx, max(p->ch[0]->rx, p->ch[1]->lx) + p->value);
   }
   void push_down(Node *p)
        if (p == null)
        {
            return;
        if (p->rev)
        {
            p->rev = false;
            p->ch[0]->rev ^= 1;
            p->ch[1]->rev ^= 1;
```

```
swap(p->ch[0], p->ch[1]);
        swap(p->lx, p->rx);
    }
    if (p->same)
    {
        p->same = false;
        p->ch[0]->same = p->ch[1]->same = true;
        p->ch[0]->value = p->ch[1]->value = p->value;
        p->sum = p->value * p->s;
        p->lx = p->rx = p->mx = p->s * p->value;
        if (p->value < 0)
            p->lx = p->rx = p->mx = p->value;
        }
    }
}
//中序遍历
void dfs(Node *p)
{
    if (p == null)
    {
        return;
    dfs(p->ch[0]);
    printf("%d ", p->value);
    dfs(p->ch[1]);
}
//c=1 右旋
void rotate(Node *x, int c)
{
    Node *y = x->pre;
    push_down(y);
    push_down(x);
    y \rightarrow ch[!c] = x \rightarrow ch[c];
    if (x->ch[c] != null)
    {
        x->ch[c]->pre = y;
    x->pre = y->pre;
    if (y->pre != null)
    {
```

```
if (y->pre->ch[0] == y)
        {
            y->pre->ch[0] = x;
        }
        else
            y->pre->ch[1] = x;
        }
    }
    x->ch[c] = y;
    y->pre = x;
    push_up(y);
    if (y == root)
        root = x;
    }
}
void splay(Node *x, Node *f)
{
    if (x == null)
    {
        return;
    }
    for (push_down(x); x->pre != f;)
        if (x->pre->pre == f) //单旋
        {
            if (x == x-pre-ch[0])
            {
                rotate(x, 1);
            }
            else
            {
                rotate(x, 0);
            }
        }
        else
            Node *y = x->pre;
            Node *z = y->pre;
            if (z\rightarrow ch[0] == y)
            {
                if (y->ch[0] == x) //一字形旋转
```

```
{
                      rotate(y, 1);
                      rotate(x, 1);
                  }
                  else//之字形
                      rotate(x, 0);
                      rotate(x, 1);
              }
              else
              {
                  if (y->ch[1] == x) //一字形
                  }
                      rotate(y, 0);
                      rotate(x, 0);
                  }
                  else//之字形
                      rotate(x, 1);
                      rotate(x, 0);
              }
           }
       push_up(x);
   }
   void select(int k, Node *f)//k是指第几个节点,从1开始
   {
       //k = k-1+1; //其实正常情况下应该是 k = k-1;但是前后加两个节点的话,正好向
右移动一位
       for (t = root;;)
           push_down(t);
           int s = t->ch[0]->s;
           if (k == s)
              break;
           }
           if (k < s)
           {
              t = t->ch[0];
```

```
}
        else
        {
            k -= s + 1;
            t = t->ch[1];
        }
    }
    splay(t, f);
}
Node *build(int left, int right, int *ary)
{
    if (left > right)
        return null;
    }
    int mid = (left + right) >> 1;
    Node *p = newNode(ary[mid]);
    p->ch[0] = build(left, mid - 1, ary);
    if (p->ch[0] != null)
    {
        p->ch[0]->pre = p;
    }
    p->ch[1] = build(mid + 1, right, ary);
    if (p->ch[1] != null)
        p->ch[1]->pre = p;
    push_up(p);//Update操作
    return p;
}
void insert(int pos, int *ary, int n)
{
    select(pos, null);
    select(pos + 1, root);
    Node *p = build(1, n, ary);
    key_tree = p;
    p->pre = root->ch[1];
    splay(p, null); //将p移至根节点
}
void del(int pos, int end)
{
```

```
select(pos - 1, null);
       select(end, root);
       Node *p = key_tree; //如果不回收的话,将会造成内存泄漏
       key_tree = null;
       splay(root->ch[1], null); //别忘了维护
       recyle(p);
   }
   void recyle(Node *p)//人工回收删除的空间, 防止栈溢出
       if (p == null)
           return;
       recyle(p->ch[0]);
       recyle(p->ch[1]);
       store[++top] = p;
   }
   int getSum(int start, int end)
   {
       select(start - 1, null);
       select(end, root); //这里完全不用担心,肯定会移到root的右子树,因为end比start-1大,
根据查询二叉树的性质
       return key_tree->sum;
   }
   int maxSum(int pos, int end)
   {
       select(pos - 1, null);
       select(end, root);
       Node *p = key_tree;
       return p->mx;
   }
   void makeSame(int pos, int end, int s)
   {
       select(pos - 1, null);
       select(end, root);
       Node *p = key_tree;
       p->same = true;
       p->value = s;
       splay(p, null);
   }
   void reverse(int pos, int end)
   {
       select(pos - 1, null);
```

```
select(end, root);
        Node *p = key_tree;
        p->rev ^= 1;
        splay(p, null);
    }
} sp;
int ary[M];
int main()
{
    int T;
    for (scanf("%d", &T); T--;)
    {
        int n, m;
        int x, y;
        int s;
        Node *p;
        char cmd[20];
        scanf("%d%d", &n, &m);
        for (int i = 1; i <= n; i++)
        {
            scanf("%d", &ary[i]);
        sp.init();
        sp.insert(0, ary, n);
        for (; m--;)
        {
            scanf("%s", cmd);
            if (strcmp(cmd, "GET-SUM") == 0)
            {
                scanf("%d%d", &x, &y);
                printf("d\n", sp.getSum(x, x + y));
            }
            if (strcmp(cmd, "MAX-SUM") == 0)
            {
                printf("%d\n", sp.maxSum(1, sp.root->s - 1));
            }
            if (strcmp(cmd, "INSERT") == 0)
            {
                scanf("%d%d", &x, &y);
                for (int i = 1; i \le y; i++)
                {
                    scanf("%d", &ary[i]);
```

```
}
              sp.insert(x, ary, y);
           }
           if (strcmp(cmd, "DELETE") == 0)
           {
              scanf("%d%d", &x, &y);
              sp.del(x, x + y);
           }
           if (strcmp(cmd, "REVERSE") == 0)
              scanf("%d%d", &x, &y);
              sp.reverse(x, x + y);
           }
           if (strcmp(cmd, "MAKE-SAME") == 0)
           {
              scanf("%d%d%d", &x, &y, &s);
              sp.makeSame(x, x + y, s);
           }
       }
       //dfs(root);
       //printf("\n");
   }
   return 0;
}
§ 12.3
         RMQ
/**
*RMQ实现的是在一个区间里面求最大(小)值,并且可以返回这个最大小值的索引id。
*预处理的时间复杂度度是0(n*lgn),查询是0(1)。
*一维RMQ ST算法
*构造RMQ数组 makermq(int n,int b[]) O(nlog(n))的算法复杂度
*dp[i][j] 表示从i到i+2^{\circ}j -1中最小的一个值(从i开始持续2^{\circ}j个数)
*dp[i][j]=min{dp[i][j-1],dp[i+2^(j-1)][j-1]}
*查询RMQ rmq(int s,int v)
*将s-v 分成两个2~k的区间
*即 k=(int)log2(s-v+1)
*查询结果应该为 min(dp[s][k],dp[v-2^k+1][k])
*/
//1.返回值
void makermq(int n, int b[])
{
   int i, j;
   for (i = 0; i < n; i++)
```

```
dp[i][0] = b[i];
   for (j = 1; (1 << j) <= n; j++)
       for (i = 0; i + (1 << j) - 1 < n; i++)
           dp[i][j] = min(dp[i][j-1], dp[i+(1 << (j-1))][j-1]);
}
int rmq(int s, int v)
{
   int k = (int)(log((v - s + 1) * 1.0) / log(2.0));
   /* 或者int d = v - s+1 , k;
   for(k = 0; (1<<k) <= d; k++);
   k- -;*/
   return min(dp[s][k], dp[v - (1 << k) + 1][k]);
}
//2.返回最小值对应的下标
void makeRmqIndex(int n, int b[])
   int i, j;
   for (i = 0; i < n; i++)
       dp[i][0] = i;
   for (j = 1; (1 << j) <= n; j++)
        for (i = 0; i + (1 << j) - 1 < n; i++)
           dp[i][j] = b[dp[i][j-1]] < b[dp[i+(1 << (j-1))][j-1]] ? dp[i][j-1]
                      1] : dp[i + (1 << (j - 1))][j - 1];
int rmqIndex(int s, int v, int b[])
   int k = (int)(log((v - s + 1) * 1.0) / log(2.0));
   return b[dp[s][k]] < b[dp[v - (1 << k) + 1][k]] ? dp[s][k] : dp[v - (1 <
           < k) + 1][k];
}
```

Chapter 13

字符串

§ 13.1 KMP

13.1.1 普通KMP

int kmpindex(char *S, char *T)

```
//kmp模板:
/*
pku3461(Oulipo), hdu1711(Number Sequence)
#include <iostream>
#include <cstring>
using namespace std;
const int N = 1000002;
int next[N];
char S[N], T[N];
//s是文本串, T是模式串
int slen, tlen;
//求next数组: next[i]=j表示T[0...j-1]=T[i-j...i-1];next[i]=max{k|T[0...k-1]=T[i-k...i-1]}(i-k>0)
void getNext(char *T)
{
    int j, k;
    j = 0; k = -1; next[0] = -1;
    while (j < tlen)
       if (k == -1 || T[j] == T[k])
           next[++j] = ++k;
       else
           k = next[k];
}
返回模式串T在主串S中首次出现的位置
```

```
{
    int i = 0, j = 0;
   getNext(T);
    while (i < slen && j < tlen)
        if (j == -1 || S[i] == T[j])
        {
            i++; j++;
        else
            j = next[j];
    }
    if (j == tlen)
        return i - tlen;
    else
        return -1;
}
/*
返回模式串在主串S中出现的次数
int kmpcount(char *S, char *T)
    int ans = 0;
    int i, j = 0;
    if (slen == 1 && tlen == 1)
    {
        if (S[0] == T[0])
            return 1;
        else
            return 0;
    }
    getNext(T);
    for (i = 0; i < slen; i++)
    {
        while (j > 0 \&\& S[i] != T[j])
            j = next[j];
        if (S[i] == T[j])
            j++;
        if (j == tlen)
        {
            ans++;
            j = next[j];
        }
```

```
}
   return ans;
}
void check_next()
{
   for (int i = 0; i <= tlen; i++)
       cout << next[i] << " " ;</pre>
   }
    cout << endl;</pre>
}
int main()
{
    int TT;
    int i, cc;
    cin >> TT;
   while (TT--)
       cin >> S >> T;
       slen = strlen(S);
       tlen = strlen(T);
       cout << "模式串T在主串S中首次出现的位置是: " << kmpindex(S, T) << endl;
       cout << "模式串T在主串S中出现的次数为: " << kmpcount(S, T) << endl;
   }
   return 0;
}
13.1.2
        拓展KMP
/*
拓展kmp模板:
*/
```

```
拓展kmp模板:

*/

#include <iostream>
#include <string>
#include <cstring>
#include <cstdio>
using namespace std;
const int MM = 100005;

int next[MM], extand[MM];
char S[MM], T[MM];

//next[i] = T[i...tlen-1]与T[0...len-1]的最长公共前缀;
void GetNext(const char *T)
```

```
{
    int len = strlen(T), a = 0;
   next[0] = len;
    while (a < len - 1 \&\& T[a] == T[a + 1]) a++;
    next[1] = a;
    a = 1;
    for (int k = 2; k < len; k++)
    {
        int p = a + next[a] - 1, L = next[k - a];
        if ((k - 1) + L >= p)
        {
            int j = (p - k + 1) > 0 ? (p - k + 1) : 0;
            while (k + j < len \&\& T[k + j] == T[j]) j++;
            next[k] = j;
            a = k;
        }
        else
            next[k] = L;
    }
}
//extend[i]表示S[i...slen-1]与T[0...len-1]的最长公共前缀
void GetExtand(const char *S, const char *T)
   GetNext(T);
    int slen = strlen(S), tlen = strlen(T), a = 0;
    int MinLen = slen < tlen ? slen : tlen;</pre>
    while (a < MinLen && S[a] == T[a]) a++;
    extand[0] = a;
    a = 0;
    for (int k = 1; k < slen; k++)
    {
        int p = a + extand[a] - 1, L = next[k - a];
        if ((k - 1) + L >= p)
        {
            int j = (p - k + 1) > 0? (p - k + 1) : 0;
            while (k + j < slen && j < tlen && S[k + j] == T[j]) j++;
            extand[k] = j;
            a = k;
        }
        else
            extand[k] = L;
    }
}
int main()
{
```

```
while (scanf("%s%s", S, T) == 2)
{
    GetExtand(S, T);
    printf("next: \n");
    for (int i = 0; i < strlen(T); i++)
        printf("%d ", next[i]);
    puts("\n");
    printf("extend: \n");
    for (int i = 0; i < strlen(S); i++)
        printf("%d ", extand[i]);
    puts("");
}
return 0;
}</pre>
```

§ 13.2 后缀数组

13.2.1 后缀数组模板

```
#include <string.h>
#include <math.h>
#include <stdio.h>
#include <iostream>
using namespace std;
const int M = 200000;
int wa[M], wb[M], wv[M], wsum[M];
int sa[M];
int cmp(int *r, int a, int b, int 1)
   return r[a] == r[b] \&\& r[a + 1] == r[b + 1];
}
/**
sa[i](i: 0 - n-1,接进来如果是0-n-2的话,最后一个元素是补0的)范围是0-n;
sa[0] == n-1 (如果最后元素补的是0)
m是字符串的取值范围
n是开区间, n = len + 1;
void da(int *r, int *sa, int n, int m)
   int i, j, p, *x = wa, *y = wb, *t;
   for (i = 0; i < m; i++)
       wsum[i] = 0;
   for (i = 0; i < n; i++)
       wsum[x[i] = r[i]]++;
   for (i = 1; i < m; i++)
```

```
wsum[i] += wsum[i - 1];
    for (i = n - 1; i >= 0; i--)
        sa[--wsum[x[i]]] = i;
    for (j = 1, p = 1; p < n; j *= 2, m = p)
    {
        for (p = 0, i = n - j; i < n; i++)
           y[p++] = i;
        for (i = 0; i < n; i++)
            if (sa[i] >= j)
               y[p++] = sa[i] - j;
        for (i = 0; i < n; i++)
            wv[i] = x[y[i]];
        for (i = 0; i < m; i++)
            wsum[i] = 0;
        for (i = 0; i < n; i++)
           wsum[wv[i]]++;
        for (i = 1; i < m; i++)
            wsum[i] += wsum[i - 1];
        for (i = n - 1; i \ge 0; i--)
            sa[--wsum[wv[i]]] = y[i];
        for (t = x, x = y, y = t, p = 1, x[sa[0]] = 0, i = 1; i < n; i++)
            x[sa[i]] = cmp(y, sa[i - 1], sa[i], j) ? p - 1 : p++;
    }
}
/**
height[i](i: 1 - n): height[1] == 0 (当最后一个元素补0的时候,这个等式成立)
height[i]表示sa[i-1]与sa[i]的lcp,于是当总共最后一个元素下标可以是n(总共n+1个元
素)
*/
int height[M], rank[M];
void calheight(int *r, int *sa, int n)
{
   int i, j, k = 0;
   for (i = 0; i \le n; i++)
       rank[sa[i]] = i;
   for (i = 0; i < n; height[rank[i++]] = k)</pre>
       for (k ? k-- : 0, j = sa[rank[i] - 1]; r[i + k] == r[j + k]; k++);
    //
         for(int i=1;i<=n;i++)
    //
         cout<<height[i]<<" ";
         cout<<endl;</pre>
    //
}
int f[M][20];
void makeRMQ(int n)
{
```

```
int i, j, k, m;
    m = (int)(log(1.0 * n) / log(2.0));
    /**
   height是下标是1-n的,于是在1-n上做rmq
    */
    for (i = 1; i <= n; i++)
        f[i][0] = height[i];
   for (i = 1; i <= m; i++)
        for (j = n; j \ge 1; j--)
            f[j][i] = f[j][i - 1];
            k = 1 \ll (i - 1);
            if (j + k \le n)
                f[j][i] = min(f[j][i], f[j + k][i - 1]);
        }
}
int LCP(int x, int y)
{
    int m, t;
   x = rank[x];
   y = rank[y];
    if (x > y)
        t = x, x = y, y = t;
   x++;
   m = (int)(log(1.0 * (y - x + 1)) / log(2.0));
   return min(f[x][m], f[y - (1 << m) + 1][m]);
}
char str[M];
int num[M];
int main(void)
    while (~scanf("%s", str))
    {
        int len = strlen(str);
        for (int i = 0; i < len; i++)
            num[i] = str[i] - 'a' + 1;
        num[len] = 0;
        da(num, sa, len + 1, 128);
        calheight(num, sa, len);
        /**
        makeRMQ(len);
        int a,b;scanf("%d %d",&a,&b);
        cout<<LCP(a,b)<<endl;</pre>
        */
```

```
}
   return 0;
}
         倍增算法构造后缀数组
13.2.2
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using std::sort;
int const M = 1001000;
int const N = 20100;
int rank[N], wb[M], wv[M], ws[M], height[N], num[N], sa[N];
int n, k;
int cmp(int *r, int a, int b, int 1)
{
    return r[a] == r[b] && r[a + 1] == r[b + 1];
void da(int *r, int *sa, int n, int m)
    int i, j, p, *x = rank, *y = wb, *t;
   for (i = 0; i < m; i++) ws[i] = 0;
   for (i = 0; i < n; i++) ws[x[i] = r[i]]++;
   for (i = 1; i < m; i++) ws[i] += ws[i - 1];
    for (i = n - 1; i \ge 0; i--) sa[--ws[x[i]]] = i;
    for (j = 1, p = 1; p < n; j *= 2, m = p)
       for (p = 0, i = n - j; i < n; i++) y[p++] = i;
        for (i = 0; i < n; i++) if (sa[i] >= j) y[p++] = sa[i] - j;
        for (i = 0; i < n; i++) wv[i] = x[y[i]];
        for (i = 0; i < m; i++) ws[i] = 0;
        for (i = 0; i < n; i++) ws[wv[i]]++;
       for (i = 1; i < m; i++) ws[i] += ws[i - 1];
        for (i = n - 1; i \ge 0; i--) sa[--ws[wv[i]]] = y[i];
        for (t = x, x = y, y = t, p = 1, x[sa[0]] = 0, i = 1; i < n; i++)
            x[sa[i]] = cmp(y, sa[i - 1], sa[i], j) ? p - 1 : p++;
    }
   return;
}
void calheight(int *r, int *sa, int n)
```

```
{
    int i, j, k = 0;
    for (i = 1; i <= n; i++) rank[sa[i]] = i;
    for (i = 0; i < n; height[rank[i++]] = k)</pre>
        for (k ? k-- : 0, j = sa[rank[i] - 1]; r[i + k] == r[j + k]; k++);
    return;
}
bool check(int len)
{
    int tot = 0;
    for (int i = 2; i \le n; i++)
        if (height[i] < len)tot = 0;</pre>
        else
        {
            tot++;
            if (tot == k - 1)return true;
        }
    }
    return false;
}
int main()
    while (~scanf("%d %d", &n, &k))
    {
        for (int i = 0; i < n; i++)
            scanf("%d", &num[i]);
        }
        num[n] = 0;
        da(num, sa, n + 1, M);
        calheight(num, sa, n);
        int ans = 0;
        int 1 = 0, r = n;
        while (1 <= r)
            int m = (1 + r) >> 1;
            if (check(m))
                1 = m + 1, ans = m;
            else
                r = m - 1;
        printf("%d\n", ans);
    }
    return 0;
```

}

13.2.3 应用:子串多次出现在多个串中

```
#include <stdio.h>
#include <string.h>
#define maxn 101001
int wa[maxn], wb[maxn], wv[maxn], ws[maxn];
int cmp(int *r, int a, int b, int 1)
   return r[a] == r[b] \&\& r[a + 1] == r[b + 1];
void da(int *r, int *sa, int n, int m)
{
    int i, j, p, *x = wa, *y = wb, *t;
    for (i = 0; i < m; i++) ws[i] = 0;
   for (i = 0; i < n; i++) ws[x[i] = r[i]]++;
   for (i = 1; i < m; i++) ws[i] += ws[i - 1];
   for (i = n - 1; i \ge 0; i--) sa[--ws[x[i]]] = i;
   for (j = 1, p = 1; p < n; j *= 2, m = p)
    {
        for (p = 0, i = n - j; i < n; i++) y[p++] = i;
        for (i = 0; i < n; i++) if (sa[i] >= j) y[p++] = sa[i] - j;
        for (i = 0; i < n; i++) wv[i] = x[y[i]];
        for (i = 0; i < m; i++) ws[i] = 0;
        for (i = 0; i < n; i++) ws[wv[i]]++;
        for (i = 1; i < m; i++) ws[i] += ws[i - 1];
        for (i = n - 1; i \ge 0; i--) sa[--ws[wv[i]]] = y[i];
        for (t = x, x = y, y = t, p = 1, x[sa[0]] = 0, i = 1; i < n; i++)
            x[sa[i]] = cmp(y, sa[i - 1], sa[i], j) ? p - 1 : p++;
    }
    return;
}
int rank[maxn], height[maxn];
void calheight(int *r, int *sa, int n)
    int i, j, k = 0;
    for (i = 1; i <= n; i++) rank[sa[i]] = i;
    for (i = 0; i < n; height[rank[i++]] = k)</pre>
        for (k ? k-- : 0, j = sa[rank[i] - 1]; r[i + k] == r[j + k]; k++);
   return;
}
int len1, len, n, up, mx;
Page 180 of 241
```

```
char s[maxn], s1[maxn];
int sa[maxn], a[maxn], cate[maxn];
int flag[110];
int check(int tlen)
    int i, j, k, cnt;
    i = j = 1;
    while (i <= len && j <= len)
        for (k = 0; k < n; k++)
            flag[k] = 0;
        while (height[i] < tlen && i <= len)</pre>
        j = i;
        while (height[j] >= tlen && j <= len)</pre>
        if (j - i + 2 \le n / 2)
            i = j;
            continue;
        for (k = i - 1; k < j; k++)
            if (cate[sa[k]]!=-1) //差了这一句, wa了好久啊啊啊 嗄。。。
                flag[cate[sa[k]]] = 1;
        for (cnt = 0, k = 0; k < n; k++)
            cnt += flag[k];
        if (cnt > n / 2)
            return 1;
        i = j;
    }
    return 0;
}
void print(int tlen)
    if (tlen == 0)
    {
        printf("?\n");
        return;
    }
    int i, j, k, cnt;
    i = j = 1;
    while (i <= len && j <= len)
```

```
{
        for (k = 0; k < n; k++)
            flag[k] = 0;
        while (height[i] < tlen && i <= len)</pre>
            i++;
        j = i;
        while (height[j] >= tlen && j <= len)
            j++;
        if (j - i + 2 \le n / 2)
            i = j;
            continue;
        }
        for (k = i - 1; k < j; k++)
            if (cate[sa[k]] != -1)
                flag[cate[sa[k]]] = 1;
        }
        for (cnt = 0, k = 0; k < n; k++)
            cnt += flag[k];
        if (cnt > n / 2)
        {
            for (k = 0; k < tlen; k++)
                printf("%c", a[sa[i] + k] - 1);
            printf("\n");
        }
        i = j;
    }
}
void solve()
    int 1, r, ans, mid;
    1 = 0, r = mx;
    while (1 <= r)
        mid = (l + r) >> 1;
        if (check(mid))
            1 = mid + 1;
        else
            r = mid - 1;
    }
    ans = r;
    //printf("%d.....\n", ans);//...
    print(ans);
```

```
}
int main()
{
    int i, j, k;
    scanf("%d", &n);
    while (1)
    {
        if (n == 0)
           break;
       up = 140;
       mx = 1;
       for (i = 0, j = 0; i < n; i++)
        {
            scanf("%s", s1);
           len1 = strlen(s1);
           if (len1 > mx)
               mx = len1;
           for (k = 0; k < len1; k++)
               cate[j] = i;
               a[j++] = s1[k] + 1; //加1了的输出的时候注意一下。。
            }
           cate[j] = -1;
           a[j++] = up + i;
        a[--j] = 0;
       len = j;
        if (n == 1)
           printf("%s\n", s1);
            continue;
       }
        da(a, sa, len + 1, 250);
        calheight(a, sa, len);
       //for(i=0; i<=len; i++)//.....
        // printf("i=%2d..%2d %2d..\n", i, sa[i], height[i]);
        solve();
        scanf("%d", &n);
        if (n == 0)
           break;
        else
           printf("\n");
   }
```

```
return 0;
}
```

13.2.4 应用:不同子串个数

```
/**
每一个子串一定是某个后缀的前缀, 那么问题便等价于求所有
后缀之间的不相同的前缀个数。我们按sa的顺序来考虑, 当加入sa[k]
的时候, sa[k]这个后缀的长度为n-sa[k], 那么便有n-sa[k]个前缀, 但是由heigh数组可
知sa[k]与sa[k-1]有height[k]个前缀是相同的,所以要除去,最终的答案便是sigma(n-sa[k]+height[k])
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath>
#include<string>
#include<vector>
#include<algorithm>
#define maxn 50005
using namespace std;
//以下为倍增算法求后缀数组
int wa[maxn], wb[maxn], wv[maxn], Ws[maxn];
int cmp(int *r, int a, int b, int 1)
{
   return r[a] == r[b] \&\& r[a + 1] == r[b + 1];
}
void da(const char *r, int *sa, int n, int m)
{
   int i, j, p, *x = wa, *y = wb, *t;
   for (i = 0; i < m; i++) Ws[i] = 0;
   for (i = 0; i < n; i++) Ws[x[i] = r[i]]++;
   for (i = 1; i < m; i++) Ws[i] += Ws[i - 1];
   for (i = n - 1; i \ge 0; i--) sa[--Ws[x[i]]] = i;
   for (j = 1, p = 1; p < n; j *= 2, m = p)
   {
       for (p = 0, i = n - j; i < n; i++) y[p++] = i;
       for (i = 0; i < n; i++) if (sa[i] >= j) y[p++] = sa[i] - j;
       for (i = 0; i < n; i++) wv[i] = x[y[i]];
       for (i = 0; i < m; i++) Ws[i] = 0;
       for (i = 0; i < n; i++) Ws[wv[i]]++;
       for (i = 1; i < m; i++) Ws[i] += Ws[i - 1];
       for (i = n - 1; i \ge 0; i--) sa[--Ws[wv[i]]] = y[i];
       for (t = x, x = y, y = t, p = 1, x[sa[0]] = 0, i = 1; i < n; i++)
           x[sa[i]] = cmp(y, sa[i - 1], sa[i], j) ? p - 1 : p++;
```

```
}
    return;
int sa[maxn], Rank[maxn], height[maxn];
//求height数组
void calheight(const char *r, int *sa, int n)
    int i, j, k = 0;
    for (i = 1; i <= n; i++) Rank[sa[i]] = i;
    for (i = 0; i < n; height[Rank[i++]] = k)</pre>
        for (k ? k-- : 0, j = sa[Rank[i] - 1]; r[i + k] == r[j + k]; k++);
    return;
}
char str[maxn];
int slove(int n)
{
    int sum = 0;
    for (int i = 1; i <= n; i++)
        sum += n - sa[i] - height[i];
    return sum;
}
int main()
    int t;
    scanf("%d", &t);
    while (t--)
        scanf("%s", str);
        da(str, sa, strlen(str) + 1, 130);
        calheight(str, sa, strlen(str));
        for (int i = 1; i <= strlen(str); i++)</pre>
            printf("%d %d\n", sa[i], height[i]);
        printf("%d\n", slove(strlen(str)));
    }
    return 0;
}
```

13.2.5 应用: 重复次数最多的连续子串

```
/**
poj 3693
题意:
给一个串,求重复次数最多的连续子串(并且字典序最小,输出整个重复的字符串)比如:
ccabababc
```

```
daabbccaa
Case 1: ababab
Case 2: aa
**/
#include <string.h>
#include <math.h>
#include <stdio.h>
#include <iostream>
using namespace std;
const int M = 200000;
int wa[M], wb[M], wv[M], wsum[M];
int height[M], sa[M], rank[M];
int n, ans, len, pos;
char str[M];
int R[M];
int f[M][20];
int a[M], num;
int cmp(int *r, int a, int b, int 1)
    return r[a] == r[b] \&\& r[a + 1] == r[b + 1];
}
/**
sa[i](i: 0 - n,接进来如果是0-n-1的话,最后一个元素是补0的)范围是0-n;
sa[0] == n (如果最后元素补的是0)
*/
void da(int *r, int *sa, int n, int m)
    int i, j, p, *x = wa, *y = wb, *t;
   for (i = 0; i < m; i++)
        wsum[i] = 0;
    for (i = 0; i < n; i++)
        wsum[x[i] = r[i]]++;
    for (i = 1; i < m; i++)
        wsum[i] += wsum[i - 1];
   for (i = n - 1; i \ge 0; i--)
        sa[--wsum[x[i]]] = i;
    for (j = 1, p = 1; p < n; j *= 2, m = p)
    {
        for (p = 0, i = n - j; i < n; i++)
            y[p++] = i;
        for (i = 0; i < n; i++)
            if (sa[i] >= j)
               y[p++] = sa[i] - j;
        for (i = 0; i < n; i++)
            wv[i] = x[y[i]];
```

```
for (i = 0; i < m; i++)
           wsum[i] = 0;
        for (i = 0; i < n; i++)
           wsum[wv[i]]++;
        for (i = 1; i < m; i++)
           wsum[i] += wsum[i - 1];
        for (i = n - 1; i \ge 0; i--)
           sa[--wsum[wv[i]]] = y[i];
        for (t = x, x = y, y = t, p = 1, x[sa[0]] = 0, i = 1; i < n; i++)
           x[sa[i]] = cmp(y, sa[i - 1], sa[i], j) ? p - 1 : p++;
   }
}
/**
height[i](i: 1 - n): height[1] == 0 (当最后一个元素补0的时候,这个等式成立)
height[i]表示sa[i-1]与sa[i]的lcp,于是当总共最后一个元素下标可以是n(总共n+1个元
素)
*/
void calheight(int *r, int *sa, int n)
   int i, j, k = 0;
   for (i = 0; i \le n; i++)
       rank[sa[i]] = i;
   for (i = 0; i < n; height[rank[i++]] = k)</pre>
       for (k ? k-- : 0, j = sa[rank[i] - 1]; r[i + k] == r[j + k]; k++);
    //
         for(int i=1;i<=n;i++)
    //
         cout<<height[i]<<" ";
    //
         cout<<endl;</pre>
}
int mmin(int x, int y)
   return x < y ? x : y;
void rmqinit(int n)
{
   int i, j, k, m;
   m = (int)(log(1.0 * n) / log(2.0));
    /**
   height是下标是1-n的,于是在1-n上做rmq
    */
   for (i = 1; i \le n; i++)
        f[i][0] = height[i];
   for (i = 1; i <= m; i++)
       for (j = n; j >= 1; j--)
        {
           f[j][i] = f[j][i - 1];
```

```
k = 1 \ll (i - 1);
            if (j + k \le n)
                f[j][i] = mmin(f[j][i], f[j + k][i - 1]);
        }
}
int get_rmq(int x, int y)
    int m, t;
    x = rank[x];
    y = rank[y];
    if (x > y)
        t = x, x = y, y = t;
    x++;
    m = (int)(log(1.0 * (y - x + 1)) / log(2.0));
    return mmin(f[x][m], f[y - (1 << m) + 1][m]);
}
int main()
{
    int i, j, k, ca = 0, 1, s, t, p, cnt;
    while (~scanf("%s", str))
    {
        if (str[0] == '#')
            break;
        n = strlen(str);
        for (i = 0; i < n; i++)
            R[i] = str[i] - 'a' + 1;
        R[n] = 0;
        da(R, sa, n + 1, 28);
        calheight(R, sa, n);
        rmqinit(n);
        ans = 1;
        num = 0;
        pos = 0;
        for (1 = 1; 1 \le n / 2; 1++)
        {
            for (i = 0; i < n - 1; i += 1)
            {
                if (str[i] != str[i + 1])
                    continue;
                k = get_rmq(i, i + 1);
                s = k / l + 1;
                p = i;
                t = 1 - k \% 1;
                cnt = 0;
                for (j = i - 1; j \ge 0 \&\& j \ge i - 1 \&\& str[j] == str[j + 1]; j--)
```

```
{
                    cnt++;
                    if (cnt == t)
                        s++;
                        p = j;
                    else if (rank[j] < rank[p])
                        p = j;
                    }
                }
                if (ans < s)
                    pos = p;
                    len = s * 1;
                    ans = s;
                }
                else if (ans == s && rank[pos] > rank[p])
                    pos = p;
                    len = s * 1;
                }
            }
        printf("Case %d: ", ++ca);
        if (ans < 2)
        {
            char c = 'z';
            for (i = 0; i < n; i++)
                if (str[i] < c)
                    c = str[i];
            printf("%c\n", c);
            continue;
        }
        for (i = 0; i < len; i++)
            printf("%c", str[i + pos]);
        puts("");
    }
   return 0;
}
```

13.2.6 应用:最长不重复子串

```
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<cstdio>
#include<cmath>
#include<vector>
#include<cstring>
using namespace std;
const int nMax = 1000012;
int num[nMax];
int sa[nMax], rank[nMax], height[nMax];
int wa[nMax], wb[nMax], wv[nMax], wd[nMax];
int mmin(int a, int b)
{
   if (a > b) return b;
   return a;
}
int cmp(int *r, int a, int b, int 1)
   return r[a] == r[b] \&\& r[a + 1] == r[b + 1];
}
                                       // 倍增算法 r为待匹配数组 n为总长度 m为
void da(int *r, int n, int m)
字符范围
{
    int i, j, p, *x = wa, *y = wb, *t;
    for (i = 0; i < m; i ++) wd[i] = 0;
   for (i = 0; i < n; i ++) wd[x[i] = r[i]] ++;
   for (i = 1; i < m; i ++) wd[i] += wd[i - 1];
   for (i = n - 1; i \ge 0; i --) sa[-- wd[x[i]]] = i;
    for (j = 1, p = 1; p < n; j *= 2, m = p)
    {
        for (p = 0, i = n - j; i < n; i ++) y[p ++] = i;
        for (i = 0; i < n; i ++) if (sa[i] >= j) y[p ++] = sa[i] - j;
        for (i = 0; i < n; i ++) wv[i] = x[y[i]];
        for (i = 0; i < m; i ++) wd[i] = 0;
        for (i = 0; i < n; i ++) wd[wv[i]] ++;
        for (i = 1; i < m; i ++) wd[i] += wd[i - 1];
        for (i = n - 1; i \ge 0; i --) sa[-- wd[wv[i]]] = y[i];
        for (t = x, x = y, y = t, p = 1, x[sa[0]] = 0, i = 1; i < n; i ++)
        {
```

```
x[sa[i]] = cmp(y, sa[i - 1], sa[i], j) ? p - 1 : p ++;
       }
   }
}
                                     // 求height数组。
void calHeight(int *r, int n)
    int i, j, k = 0;
   for (i = 1; i <= n; i ++) rank[sa[i]] = i; // 1->n
   for (i = 0; i < n; i++)
    {
       for (k ? k -- : 0, j = sa[rank[i] - 1]; r[i + k] == r[j + k]; k ++);
       height[rank[i]] = k;
   }
}
int Log[nMax];
int best[20][nMax];//best[i][j] 表示从j开始的长度为2的i次方的一段元素的最小值
void initRMQ(int n)
{
   //初始化RMQ
   int i, j;
   for (i = 1; i <= n ; i ++) best[0][i] = height[i];
   for (i = 1; i \le Log[n]; i ++)
    {
       int limit = n - (1 << i) + 1;
       for (j = 1; j \le limit; j ++)
           best[i][j] = mmin(best[i - 1][j] , best[i - 1][j + (1 << i>>1)]);
       }
    }
}
int lcp(int a, int b) //询问a,b后缀的最长公共前缀
{
    a = rank[a]; b = rank[b];
   if (a > b) swap(a, b);
    a ++;
    int t = Log[b - a + 1];
   return mmin(best[t][a], best[t][b - (1 << t) + 1]);
}
void get_log()
    int i;
   Log[0] = -1;
```

```
for (i = 1; i <= nMax; i++)
   {
       // 求log2,这么强大的位运算。。
       Log[i] = (i \& (i - 1)) ? Log[i - 1] : Log[i - 1] + 1 ;
   }
}
char str[nMax];
int ans[nMax];
int n;
int a[nMax];
int solve(int x)
   ///注意通过判断sa[i]-sa[i-1]>=k决定不重复长度是否大于k是不行的 因为有可能有好
几个重复的排在一起
   ///对于每个都不大于k 但是最后一个和第一个的距离是大于k的
   ///注意sa[i],sa[i-1]不一定哪个大那个小
   int i, mx, mn;
   mx = 0, mn = nMax;
   for (i = 1; i \le n; i++)
       if (height[i] >= x)
       {
          mx = max(mx, sa[i]);
          mn = min(mn, sa[i]);
           if (mx - mn \ge x) return 1;
       }
       else
          mx = mn = sa[i];
       }
   }
   return 0;
}
int main()
{
   int i, j;
   get_log();
   while (scanf("%d", &n) != EOF)
   {
       if (!n) break;
       for (i = 0; i < n; i++) scanf("%d", &a[i]);
       // n--;
       for (i = 1; i < n; i++)
```

{

```
num[i] = a[i] - a[i - 1] + 100; //加100防止出现负数
        num[n] = 0;
        da(num, n + 1, 300); //这里要开大一点 300
        calHeight(num, n);
        initRMQ(n);
        /*
         for(i=0; i<n+1; i++) // rank[i] : suffix(i)排第几
            printf("rank[%d] = %d\n",i,rank[i]);
         printf("\n");
         for(i=0; i<n+1; i++) // sa[i] : 排在第i个的是谁
            printf("sa[%d] = %d\n",i,sa[i]);
        for (i = 0; i < n + 1; i++)
           printf("%d ", height[i]);
        printf("\n");
        int left, right, mx = 0, mid;
       left = 4; right = n / 2 + 1;
        while (left <= right)</pre>
        {
           mid = (left + right) / 2;
            if (solve(mid) && mid > mx)
            {
               mx = mid;
               left = mid + 1;
            else
            {
               right = mid - 1;
            }
        }
        if (mx == 0)
        {
           printf("0\n");
            continue;
        }
       printf("%d\n", mx + 1);
    }
   return 0;
}
```

§ 13.3 AC自动机

#include<cstring>

```
#include<queue>
#include<cstdio>
#include<map>
#include<string>
using namespace std;
const int MN = 90000; ///儿子的最大个数, 意思为: 每一个元素节点的取值范围
const int R = 26;
//const int MAXS = 150 + 10;
struct AhoCorasickAutomata
{
   int ch[MN][R];
   int f[MN]; /// fail函数
   int val[MN]; /// 每个字符串的结尾结点都有一个非O的val
   int last[MN]; /// 输出链表的下一个结点
        int cnt[MAXS];
   //
   int sz;
   void init()
   {
       sz = 1;///只有跟, 根从0开始
       memset(ch[0], 0, sizeof(ch[0]));
   }
   /// 字符c的编号
   int idx(char c)
       return c - 'a';
   }
   /// 插入字符串。v必须非0
   void insert(char *s, int v)
   {
       int u = 0, n = strlen(s);
       for (int i = 0; i < n; i++)
           int c = idx(s[i]);
           if (!ch[u][c])
           {
              memset(ch[sz], 0, sizeof(ch[sz]));
              val[sz] = 0;
              ch[u][c] = sz++;
           }
           u = ch[u][c];
       }
```

```
///
       val[u] = v;
       ///根据题目填写后面的附件情况
               ms[string(s)] = v;
   }
   /// 递归打印以结点j结尾的所有字符串,根据题目而定
   void print(int j)
   {
       if (j)
       {
          //
                       cnt[val[j]]++;
          print(last[j]);
       }
   }
   /// 在T中找模板
   int find(char *T)
   {
       int n = strlen(T);
       int j = 0; // 当前结点编号, 初始为根结点
       for (int i = 0; i < n; i++) // 文本串当前指针
          int c = idx(T[i]);
                       while(j && !ch[j][c]) j = f[j]; // 顺着细边走, 直到可
          //
以匹配
          j = ch[j][c];
          if (val[j]) print(j);
          else if (last[j]) print(last[j]); // 找到了!
       }
   }
   /// 计算fail函数
   void getFail()
   {
       queue<int> q;
       f[0] = 0;
       /// 初始化队列
       for (int c = 0; c < R; c++)
          int u = ch[0][c];
          if (u)
          {
              f[u] = 0;
              q.push(u);
```

```
last[u] = 0;
            }
        }
        /// 按BFS顺序计算fail
        while (!q.empty())
            int r = q.front();
            q.pop();
            for (int c = 0; c < R; c++)
                int u = ch[r][c];
                if (!u)
                {
                    ch[r][c] = ch[f[r]][c];
                    continue;
                }
                q.push(u);
                int v = f[r];
                while (v \&\& !ch[v][c]) v = f[v];
                f[u] = ch[v][c];
                last[u] = val[f[u]] ? f[u] : last[f[u]];
            }
        }
    }
};
```

§ 13.4 回文串

13.4.1 判回文串

字符串哈希,正着来一遍与反着来一遍的哈希值相同,则为回文串

更改字符, 判任意区间是否为回文串(线段树+字符串哈希)(Ural 1989)

```
/*
操作:
1.更改字符串的任意字符
2.询问从1到r是否为回文串
*/
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <vector>
using namespace std;
const int M = 1e5 + 10;
Page 196 of 241
```

```
unsigned int ltor[M<<2],rtol[M<<2];</pre>
int L,R,top;
char s[M];
unsigned int seed = 131;
const unsigned int Ha = 0x7FFFFFF;
unsigned int ha[M];
void init()
{
    ha[0] = 1;
    for(int i = 1; i<M; i++)</pre>
        ha[i] = seed * ha[i-1];
        ha[i] &= Ha;
    }
}
void pushup(int rt,int len)
    ltor[rt] = ltor[rt<<1] + ((ha[len-(len>>1)]*ltor[rt<<1|1])&Ha);</pre>
    ltor[rt] &= Ha;
    rtol[rt] = ( (rtol[rt<<1]*ha[len>>1])&Ha) + rtol[rt<<1|1];
    rtol[rt] &= Ha;
    return;
void build(int l,int r,int rt)
{
    if(l==r)
        ltor[rt] = rtol[rt] = s[top++] - 'a';
        return;
    }
    ltor[rt] = rtol[rt] = 0;
    int m = (1+r) >> 1;
    build(1,m,rt<<1);
    build(m+1,r,rt<<1|1);
    pushup(rt,r-l+1);
void debug(int l,int r,int rt)
{
    cout<<l<" "<<r<" "<<ltor[rt]<<" "<<rtol[rt]<<endl;
    if(l==r)
    {
        return;
    int m = (1+r)>>1;
    debug(1,m,rt<<1);
```

```
debug(m+1,r,rt<<1|1);
}
void update(int l,int r,int rt,int pos,int val)
    //cout<<l<" "<<r<" "<<ltor[rt]<<" "<<rtol[rt]<<endl;
    if(l==r)
    {
        ltor[rt] = rtol[rt] = val;
        return;
    int m=(1+r)>>1;
    if(pos<=m)update(1,m,rt<<1,pos,val);</pre>
    else update(m+1,r,rt<<1|1,pos,val);</pre>
    pushup(rt,r-l+1);
}
unsigned int query(int 1,int r,int rt,int kind)
    //cout<<l<" "<<r<" "<<ltor[rt]<<" "<<rtol[rt]<<endl;
    if(L<=1 && R>=r)
    {
        if(kind)return ((ltor[rt]*ha[l-L])&Ha);
        else return ((rtol[rt]*ha[R-r])&Ha);
    int m = (1+r)>>1;
    unsigned int ret = 0;
    if(L \le m)
        ret += query(1,m,rt<<1,kind);</pre>
        //cout<<"ret: "<<ret<<endl;
        ret &= Ha;
    }
    if(m<R) ret += query(m+1,r,rt<<1|1,kind);</pre>
    return ret &= Ha;
}
int main(void)
//
      freopen("in.cpp","r",stdin);
    init();
    scanf("%s",s);
    top = 0;
    int len = strlen(s);
    build(1,len,1);
    //debug(1,len,1);
    int q;
    scanf("%d",&q);
```

```
for(int i = 1; i<=q; i++)
    {
        char t[20];
        scanf("%s",t);
        if(t[0] == 'p')
            scanf("%d%d",&L,&R);
            unsigned int ltr = query(1,len,1,0);
            unsigned int rtl = query(1,len,1,1);
            //cout<<ltr<<" "<<rtl<<endl;
            if(ltr == rtl)printf("Yes\n");
            else printf("No\n");
        }
        else
            int pos;
            scanf("%d",&pos);
            char st[20];
            scanf("%s",st);
            update(1,len,1,pos,st[0]-'a');
            // debug(1,len,1);
        }
    }
    return 0;
}
```

13.4.2 最长回文串

```
#include<vector>
#include<iostream>
using namespace std;

const int N = 300010;
int n, p[N];
char s[N], str[N];

#define _min(x, y) ((x)<(y)?(x):(y))

void kp()
{
   int i;
   int mx = 0;
   int mx = 0;
   int id;
   for (i = n; str[i] != 0; i++)</pre>
```

```
str[i] = 0;
   for (i = 1; i < n; i++)
    {
        if (mx > i)
            p[i] = \min(p[2 * id - i], p[id] + id - i);
        else
            p[i] = 1;
        for (; str[i + p[i]] == str[i - p[i]]; p[i]++)
        if (p[i] + i > mx)
            mx = p[i] + i;
            id = i;
        }
    }
}
void init()
    int i, j, k;
    str[0] = '$';
    str[1] = '#';
   for (i = 0; i < n; i++)
        str[i * 2 + 2] = s[i];
        str[i * 2 + 3] = '#';
   n = n * 2 + 2;
   s[n] = 0;
}
int main()
    int i, ans;
   while (scanf("%s", s) != EOF)
        n = strlen(s);
        init();
        kp();
        for (int i = 0; i < )
            ans = 0;
        for (i = 0; i < n; i++)
            if (p[i] > ans)
                ans = p[i];
        printf("%d\n", ans - 1);
```

```
}
   return 0;
}
//最长回文子串模板
//hdu3068, 最长回文子串模板, Manacher算法, 时间复杂度O(n), 相当快
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define M 20000050
char str1[M], str[2 * M]; //start from index 1
int rad[M], nn, n;
void Manacher(int *rad, char *str, int n)/*str是这样一个字符串(下标从1开始):
举例: 若原字符串为"abcd",则str为"$#a#b#c#d#",最后还有一个终止符。
n为str的长度,若原字符串长度为nn,则n=2*nn+2。
rad[i]表示回文的半径, 即最大的j满足str[i-j+1...i] = str[i+1...i+j],
而rad[i]-1即为以str[i]为中心的回文子串在原串中的长度*/
   int i;
   int mx = 0;
   int id;
   for (i = 1; i < n; i++)
   {
       if (mx > i)
          rad[i] = rad[2 * id - i] < mx - i ? rad[2 * id - i] : mx - i;
       else
          rad[i] = 1;
       for (; str[i + rad[i]] == str[i - rad[i]]; rad[i]++)
       if ( rad[i] + i > mx )
          mx = rad[i] + i;
          id = i;
       }
   }
}
```

Page 202 of 241

```
int main()
{
   int i, ans, Case = 1;
   while (scanf("%s", str1) != EOF)
      nn = strlen(str1);
      n = 2 * nn + 2;
      str[0] = '$';
      for (i = 0; i <= nn; i++)
         str[2 * i + 1] = '#';
         str[2 * i + 2] = str1[i];
      Manacher(rad, str, n);
      ans = 1;
      for (i = 0; i < n; i++)
         ans = rad[i] > ans ? rad[i] : ans;
      printf("%d\n", ans - 1);
   }
   return 0;
}
//扩展kmp版,时间复杂度O(nlogn),稍慢
//hdu3068
/*给一个w长的字符串, 求最长回文子串的长度
解题思路:不是传说中的高深的后缀数组,而是扩展的kmp算法。
扩展kmp中,模式串与主串都有一个next向量,相应的next[i],记录该串的后缀与模式串的最
大匹配数,关于扩展kmp的具体实现这里就不说了,现在只说一下解此题的思路:
令所给字符串为a,则找到中点mid位置,一后半段做为模式串,把a倒过来生成b,求出b串在该
模式串的每一位的next1[i]:在以字符串a的前半段的逆串作为模式串,求出a串在该模式串下
的next2。然后遍历a串的每一位,根据next1和next2就可以判断此处是否回文,但这个回文只
能判断跨越中点mid的回文,因此这里要进行划分递归,分别在a的前半段和后半段重复此算法
即可找到最大回文串。
*/
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define N 110005
char tmp1[N], tmp2[N], s[N], tt[N];
```

```
int tmp[N], ans, ne1[N], ne2[N];
char *rev(char *str, int 11)
    for (int i = 0; i < 11; i++)
        tt[i] = str[ll - i - 1];
    tt[11] = 0;
    return tt;
}
void getA(char *pat, int *aa)
{
    int j = 0;
    while (pat[1 + j] \&\& pat[j] == pat[1 + j])
        j++;
    aa[1] = j;
    int k = 1;
    int len, 1;
    for (int i = 2; pat[i]; i++)
        len = k + aa[k];
        l = aa[i - k];
        if (1 < len - i)
            aa[i] = 1;
        else
        {
            j = (0 > len - i) ? 0 : len - i;
            while (pat[i + j] && pat[j] == pat[i + j])
                j++;
            aa[i] = j;
            k = i;
        }
    }
}
void getB(char *pat, char *str, int *bb, int length)
{
    getA(pat, tmp);
    int j = 0;
    while (pat[j] && str[j] && pat[j] == str[j])
        j++;
    bb[0] = j;
    int k = 0;
    int len, 1;
    for (int i = 1; i < length; i++)
```

```
{
        len = k + bb[k];
        l = tmp[i - k];
        if (1 < len - i)
            bb[i] = 1;
        else
        {
            j = (0 > len - i) ? 0 : len - i;
            while (i + j < length && pat[j] && pat[j] == str[i + j])
                j++;
            bb[i] = j;
            k = i;
        }
   }
}
void find(int 1, int r)
{
    if (r - 1 + 1 \le ans)
        return;
    int x;
    int mid = (1 + r) / 2;
    strncpy(tmp1, s + 1, mid - 1 + 1);
    tmp1[mid - 1 + 1] = 0;
    strncpy(tmp2, s + mid + 1, r - mid);
    tmp2[r - mid] = 0;
    getB(tmp2, rev(s + 1, r - 1 + 1), ne1, r - 1 + 1);
    getB(rev(tmp1, mid - 1 + 1), s + 1, ne2, r - 1 + 1);
    ne1[r - 1 + 1] = ne2[r - 1 + 1] = 0;
    for (int i = 1; i <= mid; i++)
    {
        if (ne2[i-1] * 2 >= mid - i + 1)
            x = mid - i + 1 + ne1[r - i + 1] * 2;
            if (ans < x)
                ans = x;
        }
    }
    if (ans < 2 * ne2[mid + 1 - 1])
        ans = 2 * ne2[mid + 1 - 1];
    for (int i = mid + 1; i <= r; i++)
    {
        if (ne1[r - i] * 2 >= i - mid)
        {
            x = i - mid + ne2[i - 1 + 1] * 2;
```

```
if (ans < x)
               ans = x;
       }
    }
   find(1, mid);
   find(mid + 1, r);
}
int main()
   while (scanf("\%s", s) != EOF)
    {
        ans = 1;
       find(0, strlen(s) - 1);
        printf("%d\n", ans);
   }
   return 0;
}
//下面注释掉的也对,只要把上面的rev函数换成下面的rev函数,并把find函数换成下面
的solve函数就可以了
int nextb[N], nexta1[N], nexta2[N];
char a[N], b[N];
void rev(char *a, int len)
{
    char t;
   for (int i = 0; i < len / 2; i++)
       t = a[i], a[i] = a[len - 1 - i], a[len - 1 - i] = t;
void solve(char *a, int len)
{
    if (len <= ans || len < 2)return ;</pre>
    int mid = len >> 1;
    int i, j, k;
   for (i = mid; i < len; i++) b[i - mid] = a[i];
   b[i - mid] = 0;
   rev(a, len);
    getB(b, a, nexta1, len);
   rev(a, len);
   for (i = 0; i < mid; i++) b[i] = a[mid - i - 1];
   b[i] = 0;
    getB(b, a, nexta2, len);
```

```
nexta1[len] = nexta2[len] = 0;
    for (i = 0; i < mid; i++)
    {
        if (nexta2[i] >= (mid - i) / 2)
        {
            int x = mid - i + 2 * nextal[len - i];
            if (x > ans)ans = x;
        }
    }
    for (i = mid; i < len; i++)
        if (nextal[len - i] >= (i - mid) / 2)
            int x = i - mid + 2 * nexta2[i];
            if (x > ans)ans = x;
        }
    }
    solve(a, mid - 1);
    solve(a + mid, len - mid);
}
int main()
{
    int i, j, k;
    while (scanf("%s", a) != EOF)
    {
        ans = 1;
        solve(a, strlen(a));
        printf("%d\n", ans);
    }
}
```

§ 13.5 Other

13.5.1 字符串哈希(推荐BKDR)

字符串哈希算法

普通字符串哈希算法

```
// ELF Hash
unsigned int ELFHash(char *str)
{
   unsigned int hash = 0, x = 0;
   while (*str)
   {
     hash = (hash << 4) + (*str++);</pre>
```

```
if ((x = hash & 0xF0000000L) != 0)
        {
            hash = (x >> 24);
            hash \&= x;
        }
    }
    return (hash & 0x7FFFFFFF);
}
// BKDR Hash
unsigned int BKDRHash(char *str)
    unsigned int seed = 131; // 31 131 1313 13131 131313 etc..
    unsigned int hash = 0;
    while (*str)hash = hash * seed + (*str++);
    return (hash & 0x7FFFFFFF);
}
// DJB Hash
unsigned int DJBHash(char *str)
    unsigned int hash = 5381;
    while (*str)hash += (hash << 5) + <math>(*str++);
    return (hash & 0x7FFFFFFF);
// AP Hash
unsigned int APHash(char *str)
{
    unsigned int hash = 0;
    int i;
    for (i = 0; *str; i++)
        if ((i \& 1) == 0)hash ^= ((hash << 7) ^ (*str++) ^ (hash >> 3));
        else hash ^{=} (^{((hash << 11) ^ (*str++) ^ (hash >> 5)));}
    return (hash & 0x7FFFFFFF);
}
```

O(N)预处理O(1)查询的字符串哈希

刘汝佳大白书P225

13.5.2 最小表示法 & 最大表示法

```
/**
*最小表示法
*/
```

```
int getmin()
{
   int len = strlen(pat);
   int i=0, j=1, k=0;
   while(i<len && j<len && k<len)
       int t = pat[(i+k)\%len] - pat[(j+k)\%len];
       if(!t) k++;
       else
       {
           if(t>0) i = i+k+1;
           else j = j+k+1;
           if(i == j) j++;
          k = 0;
       }
   }
   return i<j?i:j;</pre>
}
/**
*最大表示法
*/
int getmax()
   int len = strlen(pat);
   int i=0, j=1, k=0;
   while(i<len && j<len && k<len)
       int t = pat[(i+k)\%len] - pat[(j+k)\%len];
       if(!t) k++;
       else
       {
           if(t>0) j = j+k+1;
           else i = i+k+1;
           if(i == j) j++;
          k = 0;
       }
   }
   return i<j?i:j;</pre>
}
         找某个字符串的不同子串的数目(O(N^2))
13.5.3
/**
*找某个字符串的不同子串的数目($0(N^2)$)
*输入: str
```

Page 208 of 241

```
*输出: 不同子串的数目
*/
int f(string str)
{
    set<string> st;
    st.clear();
    for(int i=0;i<st.size();i++)
        for(int j=1;i+j<st.size();j++)
        st.insert(str.substr(i,j));
    return st.size();
}
```

Chapter 14

树

§ 14.1 树的分治

14.1.1 树的重心: POJ 1655 Balancing Art

解题思路,树形dp balance[i]表示i结点的平衡度balance[i] = $\max(\text{node}(k), \text{node}(k))$ 表示以i的孩子结点k为根的子树的总结点个数,其中i为整棵树的根结点可以规定节点1为这棵树的根结点,进行深度遍历,那么就形成了一个有向树,在深度遍历的过程中,求出每个结点的出度,根据出度进行拓扑排序,将出度为0的点入队列深度遍历的过程中求出以每个结点为根的子树的总个数node[k],blanance[k]初始化为num - node[k](num为整棵树的总结点个数)遍历完毕后,按拓扑排序求balance[i] = $\max(\text{node}[k], \text{balance}[i])$,k为i的孩子结点

```
/**
*树的重心: POJ 1655 Balancing Art
*题目大意:给一个树,删除其中一个点就会形成一个森林,
*点的平衡度为删除了这个节点后, 所形成多个树,
*其中组成树的节点最多,节点个数就是那个平衡度。
*要你求出最小平衡度,输出这个节点和平衡度,
*要是有多个节点的平衡度一样,输出节点序号最小。
*输出树的重心和最大的子树的节点数
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
struct nodes
{
   int u, next;
};
const int maxn = 20010;
```

```
int t, e, num, node[maxn], n, parent[maxn], balance[maxn], degree[maxn], head[maxn];
nodes edge[maxn * 10];
queue<int> q;
void addEdge(int u, int v);
void dfs(int u, int pre);
int main()
   scanf("%d", &t);
   while (t-- != 0)
   {
       memset(node, 0, sizeof(node));
       memset(balance, 0, sizeof(balance));
       memset(degree, 0, sizeof(degree));
       memset(head, -1, sizeof(head));
       e = 0;
       while (!q.empty())
           q.pop();
       scanf("%d", &num);
       for (int i = 0; i < num - 1; i++)
           int u, v;
           scanf("%d %d", &u, &v);
           addEdge(u, v);
       dfs(1, -1);
       while (!q.empty())
       {
           int u = q.front();
           q.pop();
           if (ans > balance[u])
               ans = balance[u];
               tnode = u;
           }
           else if (ans == balance[u])
               tnode = min(tnode, u);
           if (parent[u] != -1)
           {
               balance[parent[u]] = max(balance[parent[u]], node[u]);
               degree[parent[u]]--;
               if (degree[parent[u]] == 0)
```

```
q.push(parent[u]);
            }
        }
        printf("%d %d\n", tnode, ans);
    }
    return 0;
}
void addEdge(int u, int v)
{
    edge[e].u = v;
    edge[e].next = head[u];
    head[u] = e++;
    edge[e].u = u;
    edge[e].next = head[v];
    head[v] = e++;
}
void dfs(int u, int pre)
    parent[u] = pre;
    node[u] = 1;
    if (pre != -1)
        degree[pre]++;
    for (int i = head[u]; i != -1; i = edge[i].next)
    {
        int v = edge[i].u;
        if (v != pre)
            dfs(v, u);
            node[u] += node[v];
        }
    balance[u] = num - node[u];
    if (degree[u] == 0)
        q.push(u);
}
```

一开始想到的是模仿求树的直径那样子去Dp,两次DFS。son[i] - 结点i的儿子结点数目第一遍求出son; h[i] - 结点i向上的结点数目h[i] = h[k] + son[k] - son[i] - 1; blance = max(son[j], h[i]) 第二遍求出h,和blance;

后来去看题解,才发现有更简单的方法。应用一个性质,h[i]=n - son[i] -1; blance=max(son[j], n - son[i] -1); 这样只需要一次DFS。

```
#include <cstdio>
#include <iostream>
#include <fstream>
#include <cstring>
#include <string>
#include <vector>
#define OP(s) cout<<#s<<"="<<s<" ";</pre>
#define PP(s) cout<<#s<<"="<<s<endl;</pre>
using namespace std;
int n;
vector <int> adj[20010];
int son[20010];
bool vd[20010];
int ans,asize = 1 << 29;
void DFS(int s)
    vd[s] = 1;
    son[s] = 0;
    int blance = 0;
    int size = adj[s].size();
    for (int j = 0; j < size; j++)
    {
        int u = adj[s][j];
        if (vd[u]) continue;
        DFS(u);
        son[s] += son[u]+1;
        blance = max(blance, son[u]+1);
    }
    blance = max(blance, n - son[s] - 1);
    if (blance < asize || blance == asize && s < ans)
        ans = s,asize = blance;
}
int main()
//
      freopen("test.txt","r",stdin);
    int T;
    cin>>T;
    while(T--)
    {
        cin>>n;
        for (int i = 1;i <= n;i++) adj[i].clear();</pre>
        for (int i = 1; i \le n-1; i++)
        {
```

```
int u,v;
    scanf("%d%d",&u,&v);
    adj[u].push_back(v);
    adj[v].push_back(u);
}

memset(vd,0,sizeof(vd));
    asize = 1<<29;
    DFS(1);
    cout<<ans<<" "<<asize<<<endl;
}

return 0;
}</pre>
```

14.1.2 树链剖分

HDU 5029 Relief grain

/*

题目分析: 这题的方法太美妙了!

首先看到这是一颗树,那么很容易想到树链剖分。然后想到可以将查询排个序,然后每一种查 询执行完以后

更新每个点的最优值。但是这样进行的复杂度太高!尤其是当z给的没有一样的时候尤其如此。 那么我们是否可以找到更加高效的算法?

答案是肯定的!

先简化一下问题,如果这些操作是在线段上进行的,我们怎么求解?

我们很容易可以想到标记法:区间【L,R】染上颜色X,

则位置L标记为X,表示从L开始染色X,位置R+1标记为-X,表示从R+1开始结束染色。

用邻接表保存当前位置上的标记,然后从左往右,每到一个点上就把所有的标记执行了,为此我们建立

一棵权值线段树,+X,我们就在位置X上+1,-X,我们就在位置X上-1,然后用 $\max v$ 标记记录区间最大值。

执行完这些操作以后就是查询了,顺着maxv == 最大值走,尽量往左走就行了。

然后我们回到本题,完全就是一个套路啊!只不过把连续的区间分成logN个不是

连续的区间而已。还是按照上面的操作就可以了,不过要注意扫描时的点是线段树上的点,而 不是原来的点,还要映射回去。

而且由于本题的特殊性, 我们直接将线段树改成非递归效率更佳

*/

```
#pragma comment(linker, "/STACK:102400000,102400000")
#include <cstdio>
#include <cstring>
#include <set>
#include <algorithm>
#include <string>
#include <queue>
```

```
#include <vector>
using namespace std;
const int M = 100003;
struct Edge
    int u, v, next;
    Edge(int _u, int _v, int _next): u(_u), v(_v), next(_next) {}
    Edge() {}
} edge[M << 1];</pre>
int head[M], edgenum, n, m;
void addedge(int u, int v)
    edge[edgenum] = Edge(u, v, head[u]);
    head[u] = edgenum++;
}
int hson[M], size[M], fa[M], dep[M];
void dfs(int u, int p)
    if (p == 0) dep[u] = 0;
    fa[u] = p; dep[u] = dep[p] + 1;
    size[u] = 1; hson[u] = -1;
    for (int i = head[u]; i != -1; i = edge[i].next)
    {
        int v = edge[i].v;
        if (v == p)continue;
        dfs(v, u);
        size[u] += size[v];
        if (hson[u] == -1 \mid | size[v] > size[hson[u]]) hson[u] = v;
    }
}
int seq[M], reseq[M], top[M], num;
void link(int u, int tp)
{
    seq[u] = ++num;
    reseq[seq[u]] = u;
    top[u] = tp;
    if (hson[u] == -1)return;
    link(hson[u], tp);
    for (int i = head[u]; i != -1; i = edge[i].next)
    {
        int v = edge[i].v;
        if (v == fa[u] || v == hson[u]) continue;
        link(v, v);
```

```
}
}
//segTree
int ma[M << 2], val[M << 2];
void pushup(int rt)
{
    if (ma[rt << 1] < ma[rt << 1 | 1])</pre>
        ma[rt] = ma[rt << 1 | 1];
        val[rt] = val[rt << 1 | 1];</pre>
    }
    else
    {
        ma[rt] = ma[rt << 1];</pre>
        val[rt] = val[rt << 1];</pre>
    }
}
void build(int rt, int 1, int r)
{
    if (1 == r)
        ma[rt] = 0; val[rt] = 1;
        return;
    }
    int m = (1 + r) >> 1;
    build(rt << 1, 1, m);
    build(rt << 1 | 1, m + 1, r);
    pushup(rt);
}
void update(int rt, int l, int r, int k, int v)
    if (1 == r)
    {
        ma[rt] += v;
        return;
    }
    int m = (1 + r) >> 1;
    if (k <= m) update(rt << 1, 1, m, k, v);</pre>
    else update(rt << 1 | 1, m + 1, r, k, v);</pre>
    pushup(rt);
}
vector<int>in[M], de[M];
void change(int u, int v, int w)
```

```
{
    int fu = top[u], fv = top[v];
    while (fu != fv)
        if (dep[fu] < dep[fv])</pre>
            swap(u, v);
            swap(fu, fv);
        }
        in[ seq[fu] ].push_back(w);
        de[ seq[u] + 1].push_back(w);
        u = fa[fu];
        fu = top[u];
    }
    if (dep[u] > dep[v])swap(u, v);
    in[ seq[u] ].push_back(w);
    de[ seq[v] + 1].push_back(w);
}
void init()
{
    memset(head, -1, sizeof(head));
    edgenum = num = 0;
    for (int i = 0; i < M; i++)
    {
        in[i].clear();
        de[i].clear();
    }
}
int ans[M];
int main(void)
    while (scanf("%d%d", &n, &m) != EOF)
    {
        if (n == 0 \&\& m == 0)break;
        init();
        for (int i = 1; i < n; i++)
            int u, v; scanf("%d%d", &u, &v);
            addedge(u, v);
            addedge(v, u);
        int rt = (n + 1) / 2;
        dfs(rt, 0); //fa[rt] = 0;
        link(rt, rt);
```

```
build(1, 1, M - 1);
       for (int i = 1; i <= m; i++)
       {
           int u, v, w;
           scanf("%d%d%d", &u, &v, &w);
           change(u, v, w);
       }
       for (int i = 1; i \le n; i++)
       {
           for (int j = 0; j < in[i].size(); j++)</pre>
               update(1, 1, M - 1, in[i][j], 1);
           for (int j = 0; j < de[i].size(); j++)
               update(1, 1, M - 1, de[i][j], -1);
           int u = reseq[i];
           ans[u] = val[1];
           if (ma[1] == 0)ans[u] = 0;
       }
       for (int i = 1; i <= n; i++)
           printf("%d\n", ans[i]);
   }
   return 0;
}
SPOJ 375 (更改边值, 询问极值)
一棵树, 每条边有个权值
两种操作
一个修改每条边权值
一个询问两点之间这一条链的最大边权
点数<=10000
多组测试数据, case<=20
*/
#include <cstdio>
#include <algorithm>
#include <iostream>
#include <string.h>
using namespace std;
const int maxn = 10010;
struct Tedge
```

```
{
    int b, next;
e[maxn * 2];
int tree[maxn];
int zzz, n, z, edge, root, a, b, c;
int d[maxn][3];
int first[maxn], dep[maxn], w[maxn], fa[maxn];
int top[maxn], son[maxn], siz[maxn];
char ch[10];
void insert(int a, int b, int c)
{
    e[++edge].b = b;
    e[edge].next = first[a];
    first[a] = edge;
}
void dfs(int v)
    siz[v] = 1; son[v] = 0;
    for (int i = first[v]; i > 0; i = e[i].next)
        if (e[i].b != fa[v])
            fa[e[i].b] = v;
            dep[e[i].b] = dep[v] + 1;
            dfs(e[i].b);
            if (siz[e[i].b] > siz[son[v]]) son[v] = e[i].b;
            siz[v] += siz[e[i].b];
        }
}
void build_tree(int v, int tp)
    w[v] = ++ z; top[v] = tp;
    if (son[v] != 0) build_tree(son[v], top[v]);
    for (int i = first[v]; i > 0; i = e[i].next)
        if (e[i].b != son[v] && e[i].b != fa[v])
            build_tree(e[i].b, e[i].b);
}
void update(int root, int lo, int hi, int loc, int x)
{
    if (loc > hi || lo > loc) return;
    if (lo == hi)
    {
```

```
tree[root] = x;
        return;
    }
    int mid = (lo + hi) / 2, ls = root * 2, rs = ls + 1;
    update(ls, lo, mid, loc, x);
    update(rs, mid + 1, hi, loc, x);
    tree[root] = max(tree[ls], tree[rs]);
}
int maxi(int root, int lo, int hi, int l, int r)
{
    if (1 > hi || r < lo) return 0;
    if (1 <= lo && hi <= r) return tree[root];</pre>
    int mid = (lo + hi) / 2, ls = root * 2, rs = ls + 1;
    return max(maxi(ls, lo, mid, l, r), maxi(rs, mid + 1, hi, l, r));
}
inline int find(int va, int vb)
    int f1 = top[va], f2 = top[vb], tmp = 0;
    while (f1 != f2)
        if (dep[f1] < dep[f2])
        {
            swap(f1, f2);
            swap(va, vb);
        tmp = max(tmp, maxi(1, 1, z, w[f1], w[va]));
        va = fa[f1]; f1 = top[va];
    }
    if (va == vb) return tmp;//va此时为lca
    if (dep[va] > dep[vb]) swap(va, vb);//深度小的为lca
    return max(tmp, maxi(1, 1, z, w[son[va]], w[vb])); //
}
void init()
{
    scanf("%d", &n);
    root = (n + 1) / 2;
    fa[root] = z = dep[root] = edge = 0;
    z = 1;
   memset(siz, 0, sizeof(siz));
   memset(first, 0, sizeof(first));
   memset(tree, 0, sizeof(tree));
    for (int i = 1; i < n; i++)
```

```
{
       scanf("%d%d%d", &a, &b, &c);
       d[i][0] = a; d[i][1] = b; d[i][2] = c;
       insert(a, b, c);
       insert(b, a, c);
    }
   dfs(root);
    build_tree(root, root);
    //
          for(int i = 1;i <= n;i++) //
    //
             printf("%d ",w[i]);
    //
          printf("\n");
   for (int i = 1; i < n; i++)
    {
       if (dep[d[i][0]] > dep[d[i][1]]) swap(d[i][0], d[i][1]);//保证大小
       update(1, 1, z, w[d[i][1]], d[i][2]);//w是树上的顶点对应线段树中的标号
       //每一个顶点的全脂记录的是它和父亲节点连边的权值
   }
}
inline void read()
{
    ch[0] = ' ';
    while (ch[0] < 'C' \mid | ch[0] > 'Q') scanf("%s", &ch);
}
void work()
   for (read(); ch[0] != 'D'; read())
    {
       scanf("%d%d", &a, &b);
       if (ch[0] == Q) printf("%d\n", find(a, b));
       else update(1, 1, z, w[d[a][1]], b);
   }
}
int main()
{
#ifdef xiaohai
   freopen("in.cpp", "r", stdin);
    for (scanf("%d", &zzz); zzz > 0; zzz--)
    {
       init();
       work();
    }
```

```
return 0;
}
POJ 3237 Tree
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 10010;
struct edge
{
    int v, next;
} e[maxn * 2];
int first[maxn], cnt;
int top[maxn], dep[maxn], sz[maxn], f[maxn];
int son[maxn], rank[maxn], tid[maxn];
int tp, tim;
int d[maxn][3];
int n;
void AddEdge(int u, int v)
{
    e[cnt].v = v;
    e[cnt].next = first[u];
    first[u] = cnt++;
    e[cnt].v = u;
    e[cnt].next = first[v];
    first[v] = cnt++;
}
void init()
    memset(first, -1, sizeof(first));
    cnt = 1;
   memset(son, -1, sizeof(son));
    tim = 0;
}
```

void dfs1(int u, int fa, int d)

sz[u] = 1;
dep[u] = d;
f[u] = fa;

{

```
for (int i = first[u]; i != -1; i = e[i].next)
    {
        int v = e[i].v;
        if (v == fa)
             continue;
        dfs1(v, u, d + 1);
        sz[u] += sz[v];
        if (son[u] == -1 \mid \mid sz[son[u]] < sz[v])
             son[u] = v;
    }
}
void dfs2(int u, int tp)
    top[u] = tp;
    tid[u] = ++tim;
    rank[tid[u]] = u;
    if (son[u] == -1)
        return;
    dfs2(son[u], tp);
    for (int i = first[u]; i != -1; i = e[i].next)
    {
        int v = e[i].v;
        if (v != f[u] && son[u] != v)
            dfs2(v, v);
    }
}
int ma[maxn << 2];</pre>
int mi[maxn << 2];</pre>
int lz[maxn << 2];</pre>
void pushup(int 1, int r, int rt)
    ma[rt] = max(ma[rt << 1], ma[rt << 1 | 1]);</pre>
    mi[rt] = min(mi[rt << 1], mi[rt << 1 | 1]);
void build(int 1, int r, int rt)
{
    ma[rt] = 0;
    mi[rt] = 0;
    lz[rt] = 0;
    if (1 == r)
        return;
    }
```

```
int m = (1 + r) >> 1;
    build(1, m, rt << 1);
    build(m + 1, r, rt << 1 | 1);
}
void pushdown(int 1, int r, int rt)
    if (1 == r)
        return;
    if (lz[rt])
        mi[rt << 1] = -mi[rt << 1];
        ma[rt << 1] = -ma[rt << 1];
        swap(mi[rt << 1], ma[rt << 1]);</pre>
        mi[rt << 1 | 1] = -mi[rt << 1 | 1];
        ma[rt << 1 | 1] = -ma[rt << 1 | 1];
        swap(mi[rt << 1 | 1], ma[rt << 1 | 1]);</pre>
        lz[rt << 1] ^= 1;
        lz[rt << 1 | 1] ^= 1;</pre>
        lz[rt] = 0;
    }
}
void update(int x, int y, int 1, int r, int rt)
    if (x == 1 \&\& y == r)
    {
        mi[rt] = -mi[rt];
        ma[rt] = -ma[rt];
        swap(mi[rt], ma[rt]);
        lz[rt] ^= 1;
        return;
    }
    pushdown(l, r, rt);
    int m = (1 + r) >> 1;
    if (y \le m)
        update(x, y, 1, m, rt << 1);
    else if (x > m)
        update(x, y, m + 1, r, rt << 1 | 1);
    else
    {
        update(x, m, 1, m, rt << 1);
        update(m + 1, y, m + 1, r, rt << 1 | 1);
    }
    pushup(1, r, rt);
}
void update2(int x, int 1, int r, int rt, int w)
```

```
{
    if (1 == r)
    {
        ma[rt] = mi[rt] = w;
        lz[rt] = 0;
        return;
    }
    pushdown(l, r, rt);
    int m = (1 + r) >> 1;
    if (x \le m)
        update2(x, 1, m, rt \ll 1, w);
    else
        update2(x, m + 1, r, rt << 1 | 1, w);
    pushup(1, r, rt);
}
int query(int x, int y, int 1, int r, int rt)
    if (1 == x \&\& r == y)
        return ma[rt];
    pushdown(1, r, rt);
    int m = (1 + r) >> 1;
    if (y \le m)
        return query(x, y, 1, m, rt << 1);</pre>
    else if (x > m)
        return query(x, y, m + 1, r, rt << 1 | 1);
    else
    {
        return max(query(x, m, 1, m, rt << 1),</pre>
                    query(m + 1, y, m + 1, r, rt << 1 | 1));
    }
}
void change(int u, int v)
{
    while (top[u] != top[v])
    {
        if (dep[top[u]] < dep[top[v]])</pre>
            swap(u, v);
        update(tid[top[u]], tid[u], 1, n, 1);
        u = f[top[u]];
    }
    if (u == v)
        return;
    if (dep[u] > dep[v])
```

```
swap(u, v);
    update(tid[son[u]], tid[v], 1, n, 1);
}
int find(int u, int v)
{
    while (top[u] != top[v])
    {
        if (dep[top[u]] < dep[top[v]])</pre>
            swap(u, v);
        ans = max(ans, query(tid[top[u]], tid[u], 1, n, 1));
        u = f[top[u]];
    }
    if (u == v)
        return ans;
    if (dep[u] > dep[v])
        swap(u, v);
    ans = max(ans, query(tid[son[u]], tid[v], 1, n, 1));
    return ans;
}
int main()
{
    int T;
    scanf("%d", &T);
    while (T--)
    {
        init();
        scanf("%d", &n);
        for (int i = 1; i < n; i++)
        {
            int u, v, w;
            scanf("%d %d %d", &u, &v, &w);
            AddEdge(u, v);
            d[i][0] = u;
            d[i][1] = v;
            d[i][2] = w;
        }
        dfs1(1, 0, 0);
        dfs2(1, 1);
        build(1, n, 1);
        for (int i = 1; i < n; i++)
        {
            if (dep[d[i][0]] > dep[d[i][1]])
```

```
swap(d[i][0], d[i][1]);
            update2(tid[d[i][1]], 1, n, 1, d[i][2]);
        }
        char s[10];
        while (scanf("%s", s) && strcmp(s, "DONE"))
            if (s[0] == 'Q')
            {
                int x, y;
                scanf("%d %d", &x, &y);
                printf("%d\n", find(x, y));
            }
            else if (s[0] == 'C')
                int x, y;
                scanf("%d %d", &x, &y);
                update2(tid[d[x][1]], 1, n, 1, y);
            }
            else
            {
                int x, y;
                scanf("%d %d", &x, &y);
                change(x, y);
            }
        }
    }
    return 0;
}
```

§ 14.2 动态树(LCT)

14.2.1 HDU 4010

```
#include <stdio.h>
#include <iostream>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <string>
#include <map>
#include <math.h>
#include <stdlib.h>
#include <time.h>
```

Page 228 of 241

```
using namespace std;
//动态维护一组森林,要求支持一下操作:
//link(a,b): 如果a,b不在同一颗子树中,则通过在a,b之间连边的方式,连接这两颗子树
//cut(a,b) : 如果a,b在同一颗子树中,且a!=b,则将a视为这颗子树的根以后,切断b与其父
亲结点的连接
//ADD(a,b,w): 如果a,b在同一颗子树中,则将a,b之间路径上所有点的点权增加w
//query(a,b): 如果a,b在同一颗子树中,返回a,b之间路径上点权的最大值
const int MAXN = 300010;
int ch[MAXN][2], pre[MAXN], key[MAXN];
int add[MAXN], rev[MAXN], Max[MAXN];
bool rt[MAXN];
void Update_Add(int r, int d)
   if (!r)return;
   key[r] += d;
   add[r] += d;
   Max[r] += d;
}
void Update_Rev(int r)
{
   if (!r)return;
   swap(ch[r][0], ch[r][1]);
   rev[r] ^= 1;
}
void push_down(int r)
   if (add[r])
   {
       Update_Add(ch[r][0], add[r]);
       Update_Add(ch[r][1], add[r]);
       add[r] = 0;
   }
   if (rev[r])
   {
       Update_Rev(ch[r][0]);
       Update_Rev(ch[r][1]);
       rev[r] = 0;
   }
}
void push_up(int r)
{
   Max[r] = max(max(Max[ch[r][0]], Max[ch[r][1]]), key[r]);
}
void Rotate(int x)
```

```
{
    int y = pre[x], kind = ch[y][1] == x;
    ch[y][kind] = ch[x][!kind];
   pre[ch[y][kind]] = y;
   pre[x] = pre[y];
   pre[y] = x;
    ch[x][!kind] = y;
    if (rt[y]) //if y isn't his father's preferred child
       rt[y] = false, rt[x] = true;//don't let x be y's orgin father's child
        ch[pre[x]][ch[pre[x]][1] == y] = x; //in splay , rt[x] must be false
   push_up(y);
//P函数先将根结点到r的路径上所有的结点的标记逐级下放
void P(int r)
{
    if (!rt[r])P(pre[r]);
   push_down(r);
void Splay(int r)
{
   P(r);
   while ( !rt[r] )
        int f = pre[r], ff = pre[f];
        if (rt[f])
            Rotate(r);
        else if (ch[ff][1] == f) == (ch[f][1] == r))
           Rotate(f), Rotate(r);
        else
           Rotate(r), Rotate(r);
    }
   push_up(r);
}
int Access(int x)
    int y = 0;
   //go on splaying x to its root of splay tree until x be root of whole forest
   for (; x; x = pre[y = x])
        Splay(x);//the right subtree of x is deeper than x
        rt[ch[x][1]] = true, rt[ch[x][1] = y] = false;
        push_up(x);
    }
   return y;
```

```
}
//判断是否是同根(真实的树, 非splay)
bool judge(int u, int v)
   while (pre[u]) u = pre[u];
   while (pre[v]) v = pre[v];
   return u == v;
}
//使r成为它所在的树的根
void mroot(int r)
{
   Access(r);
   Splay(r);
   Update_Rev(r);
}
//调用后u是原来u和v的lca,v和ch[u][1]分别存着lca的2个儿子
//(原来u和v所在的2颗子树)
void lca(int &u, int &v)
   Access(v), v = 0;
   while (u)
   {
       Splay(u);
       if (!pre[u])return;
       rt[ ch[u][1] ] = true;
       rt[ ch[u][1] = v ] = false;
       push_up(u);
       u = pre[v = u];
   }
}
void link(int u, int v)
   if (judge(u, v))
   {
       puts("-1");
       return;
   }
   mroot(u);
   pre[u] = v;
//使u成为u所在树的根,并且v和它父亲的边断开
void cut(int u, int v)
   if (u == v \mid | !judge(u, v))
   {
```

```
puts("-1");
        return;
    }
   mroot(u);
   Splay(v);
    pre[ch[v][0]] = pre[v];
    pre[v] = 0;
    rt[ch[v][0]] = true;
    ch[v][0] = 0;
    push_up(v);
}
void ADD(int u, int v, int w)
{
    if (!judge(u, v))
    {
        puts("-1");
        return;
    }
    lca(u, v);
   Update_Add(ch[u][1], w);
    Update_Add(v, w);
   key[u] += w;
    push_up(u);
}
void query(int u, int v)
{
    if (!judge(u, v))
    {
        puts("-1");
        return;
    }
    lca(u, v);
    printf("%d\n", max(max(Max[v], Max[ch[u][1]]), key[u]));
}
struct Edge
{
    int to, next;
} edge[MAXN * 2];
int head[MAXN], tot;
void addedge(int u, int v)
{
    edge[tot].to = v;
    edge[tot].next = head[u];
    head[u] = tot++;
```

```
}
void dfs(int u)
{
    for (int i = head[u]; i != -1; i = edge[i].next)
    {
        int v = edge[i].to;
        if (pre[v] != 0)continue;
        pre[v] = u;
        dfs(v);
    }
}
int main()
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int n, q, u, v;
    while (scanf("%d", &n) == 1)
    {
        tot = 0;
        for (int i = 0; i <= n; i++)
        {
            head[i] = -1;
            pre[i] = 0;
            ch[i][0] = ch[i][1] = 0;
            rev[i] = 0;
            add[i] = 0;
            rt[i] = true;
        }
        Max[0] = -2000000000;
        for (int i = 1; i < n; i++)
            scanf("%d%d", &u, &v);
            addedge(u, v);
            addedge(v, u);
        for (int i = 1; i \le n; i++)
        {
            scanf("%d", &key[i]);
            Max[i] = key[i];
        }
        scanf("%d", &q);
        pre[1] = -1;
        dfs(1);
        pre[1] = 0;//must make sure the root of forest's father is 0
```

```
int op;
        while (q--)
        {
            scanf("%d", &op);
            if (op == 1)
                int x, y;
                scanf("%d%d", &x, &y);
                link(x, y);
            else if (op == 2)
            {
                int x, y;
                scanf("%d%d", &x, &y);
                cut(x, y);
            }
            else if (op == 3)
            {
                int w, x, y;
                scanf("%d%d%d", &w, &x, &y);
                ADD(x, y, w);
            }
            else
            {
                int x, y;
                scanf("%d%d", &x, &y);
                query(x, y);
            }
        }
        printf("\n");
    }
    return 0;
}
```

14.2.2 HDU 5002

/*

Problem Description

You are given a tree with N nodes which are numbered by integers 1..N. Each node is associated with

Your task is to deal with ${\tt M}$ operations of 4 types:

- 1.Delete an edge (x, y) from the tree, and then add a new edge (a, b). We ensure that it still co
- 2. Given two nodes a and b in the tree, change the weights of all the nodes on the path connecting

```
3. Given two nodes a and b in the tree, increase the weights of all the nodes on the path connects
4. Given two nodes a and b in the tree, compute the second largest weight on the path connecting m
Input
The first line contains an integer T (T<=3), which means there are T test cases in the input.
For each test case, the first line contains two integers N and M (N, M<=10^5). The second line co
In next N-1 lines, there are two integers a and b (1<=a, b<=N), which means there exists an edge
The next M lines describe the operations you have to deal with. In each line the first integer is
If c = 1, there are four integers x, y, a, b (1<= x, y, a, b <=N) after c.
If c = 2, there are three integers a, b, x (1<= a, b<=N, |x|<=10^4) after c.
If c = 3, there are three integers a, b, d (1<= a, b<=N, |d|<=10^4) after c.
If c = 4 (it is a query operation), there are two integers a, b (1<= a, b<=N) after c.
All these parameters have the same meaning as described in problem description.
Output
For each test case, first output "Case #x:"" (x means case ID) in a separate line.
For each query operation, output two values: the second largest weight and the number of times it
*/
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<stdio.h>
#include<algorithm>
#include<string.h>
#define ls son[0][rt]
#define rs son[1][rt]
using namespace std;
const int maxn = 100001 ;
const int INF = -1110011111;
int son[2][maxn] , mx[2][maxn] , cnt[2][maxn] , size[maxn] ;
int fa[maxn] , is[maxn] , val[maxn] ;
int col[maxn] , add[maxn] , rev[maxn] ;
int st[55];
void push_up ( int rt )
```

{

```
size[rt] = size[ls] + size[rs] + 1;
    st[1] = mx[0][ls];
    st[2] = mx[1][ls];
    st[3] = mx[0][rs];
    st[4] = mx[1][rs];
    st[5] = val[rt];
    sort ( st + 1 , st + 6 );
    int T = unique (st + 1, st + 6) - st - 1;
    mx[0][rt] = st[T] , mx[1][rt] = st[T - 1] ;
    cnt[0][rt] = cnt[1][rt] = 0;
    for ( int i = 0 ; i < 2 ; i ++ )
        for ( int j = 0 ; j < 2 ; j ++ )
        {
            int v = mx[i][son[j][rt]];
            if (v == mx[0][rt]) cnt[0][rt] += cnt[i][son[j][rt]];
            if ( v == mx[1][rt] ) cnt[1][rt] += cnt[i][son[j][rt]] ;
        }
    if ( val[rt] == mx[0][rt] ) cnt[0][rt] ++;
    if ( val[rt] == mx[1][rt] ) cnt[1][rt] ++ ;
}
void reverse ( int rt )
    if (!rt ) return ;
    swap ( son[0][rt] , son[1][rt] );
   rev[rt] ^= 1 ;
void color ( int rt , int c )
    if (!rt ) return ;
    val[rt] = c ;
   mx[0][rt] = col[rt] = c;
    mx[1][rt] = add[rt] = INF;
    cnt[0][rt] = size[rt] ;
    cnt[1][rt] = 0;
}
void ADD ( int rt , int c )
    if ( !rt ) return ;
    if ( add[rt] == INF ) add[rt] = c ;
    else add[rt] += c ;
   mx[0][rt] += c ;
    val[rt] += c ;
```

```
if ( mx[1][rt] != INF ) mx[1][rt] += c ;
}
void push_down ( int rt )
{
   if ( rev[rt] )
       reverse (ls);
       reverse ( rs ) ;
       rev[rt] = 0;
   }
   if ( col[rt] != INF )
   {
        color ( ls , col[rt] ) ;
        color ( rs , col[rt] ) ;
        col[rt] = INF ;
   }
    if ( add[rt] != INF )
        ADD (ls, add[rt]);
        ADD ( rs , add[rt] ) ;
        add[rt] = INF ;
    }
}
void down ( int rt )
    if ( !is[rt] ) down ( fa[rt] );
   push_down ( rt ) ;
}
void rot ( int rt )
    int y = fa[rt], z = fa[y], c = rt == son[0][y];
    son[!c][y] = son[c][rt] ; fa[son[c][rt]] = y ;
    son[c][rt] = y ; fa[y] = rt ;
   fa[rt] = z;
    if (is[y])is[y] = 0, is[rt] = 1;
    else son[y == son[1][z]][z] = rt;
   push_up ( y );
}
void splay ( int rt )
{
   down ( rt ) ;
```

```
while ( !is[rt] )
    {
        int y = fa[rt], z = fa[y];
        if ( !is[y] )
            rot ( (rt == son[0][y]) == (y == son[0][z]) ? y : rt ) ;
        rot ( rt ) ;
   }
   push_up ( rt ) ;
}
void access ( int rt )
    for ( int v = 0 ; rt ; rt = fa[rt] )
        splay ( rt ) ;
        is[rs] = 1 ; is[v] = 0 ;
        rs = v ;
        v = rt;
        push_up ( rt ) ;
    }
}
void change_root ( int rt )
{
    access ( rt );
    splay ( rt ) ;
   reverse ( rt ) ;
}
void cut ( int a , int b )
{
    change_root ( a ) ;
    // printf("fa[a]: %d\n",fa[a]);
    access ( a ) ;//clear the flag about a and his son
    // printf("fa[a]: %d\n",fa[a]);
    splay ( b );
    //
         printf("fa[b]: %d\n",fa[b]);
   fa[b] = 0;
}
void link ( int a , int b )
{
    change_root ( b ) ;
   fa[b] = a;
}
```

```
void gao1 ( int a , int b , int c , int d )
{
    cut ( a , b ) ;
    link ( c , d );
}
void gao2 ( int a , int b , int c )
{
    change_root ( a ) ;
    access ( b );
    splay ( b );
    color ( b , c ) ;
}
void gao3 ( int a , int b , int c )
    change_root ( a ) ;
    access ( b );
    splay ( b );
   ADD ( b , c );
}
void print ( int rt )
    if (!rt ) return ;
    printf ( "rt = %d , mx0 = %d , mx1 = %d\n" ,
             rt , mx[0][rt] , mx[1][rt] ) ;
   print ( ls ) ;
   print ( rs ) ;
}
void gao4 ( int a , int b )
    change_root ( a ) ;
    access ( b );
    splay ( b );
    // print ( b );
    if ( mx[1][b] == INF ) puts ( "ALL SAME" ) ;
    else printf ( "%d %d\n" , mx[1][b] , cnt[1][b] );
void init ( int rt )
    int a ;
    scanf ( \mbox{"%d"} , &a ) ;
```

```
val[rt] = mx[0][rt] = a ;
                      mx[1][rt] = INF;
                        cnt[0][rt] = 1;
                        cnt[1][rt] = 0;
                        size[rt] = 1;
                        add[rt] = col[rt] = INF ;
                        son[0][rt] = son[1][rt] = fa[rt] = rev[rt] = 0 ;
                       is[rt] = 1;
}
int main ()
{
                        int T, ca = 0;
                       int n , m ;
                                                           freopen ( "main.in" , "r" , stdin ) ;
                      mx[0][0] = mx[1][0] = INF;
                       is[0] = 1 , fa[0] = 0 ;
                        scanf ( "%d" , &T ) ;
                       while ( T -- )
                        {
                                                scanf ( "%d%d" , &n , &m ) ;
                                               for ( int i = 1 ; i \le n ; i ++ )
                                                                       init ( i );
                                               for ( int i = 1 ; i < n ; i ++ )
                                                {
                                                                       int a , b ;
                                                                      scanf ( "%d%d" , &a , &b ) ;
                                                                      link ( a , b );
                                                printf ( "Case #%d:\n" , ++ ca ) ;
                                                for ( int i = 1 ; i <= m ; i ++ )
                                                                       int a , b , c , d ;
                                                                      scanf ( "%d" , &c ) ;
                                                                      if ( c == 1 )
                                                                       {
                                                                                              int f ;
                                                                                              scanf ( \mbox{"}\mbox{d}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\
                                                                                              if ( a == b \mid \mid d == f ) continue;
                                                                                              gao1 (a,b,d,f);
                                                                      }
                                                                      else if ( c == 2 )
                                                                                              scanf ( \mbox{"}\mbox{d}\mbox{\ensuremath{\mbox{$\mbox{$d$}$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ensuremath{\mbox{$d$}}\mbox{\ens
                                                                                              gao2 (a,b,d);
```

```
}
            else if ( c == 3 )
            {
                scanf ( \dd\d\d\d\d\d\ , &a , &b , &d ) ;
                gao3 ( a , b , d ) ;
            }
            else
            {
                scanf ( "%d%d" , &a , &b ) ;
                gao4 ( a , b ) ;
            }
        }
    }
}
/*
2
3 2
1 1 2
1 2
1 3
4 2 3
*/
```