Digitized by the Internet Archive in 2022 with funding from University of Toronto

CAIEP 321 -72R01

> OCEANOGRAPHIC OBSERVATIONS AT OCEAN STATION P (50° N, 145° W) VOLUME 51 May 14 - August 12, 1971

P. Vandergugten and B. G. Minkley

ENVIRONMENT CANADA
Water Management Service
Marine Sciences Branch
Pacific Region
1230 Government St.
Victoria, B.C.

MARINE SCIENCES BRANCH, PACIFIC REGION

PACIFIC MARINE SCIENCES REPORT NO. 72-1

OCEANOGRAPHIC OBSERVATIONS AT OCEAN STATION P (50°N, 145°W)

VOLUME 51

MAY 14 - AUGUST 12, 1971

by

P. Vandergugten and B. G. Minkley

Victoria, B.C.

Marine Sciences Branch, Pacific Region
Environment Canada
May, 1972

PACIFIC MARINE SCIENCE REPORT SERIES

ERRATA

TO

REPORT NO. 71-5

Page 4: Under headings for the data listing, etc., change:

TEMP is temperature (Decibars Celsius) to read:

TEMP is temperature (Degrees Celsius).

All pages of STD listings <u>without</u> profiles - <u>Lower</u> <u>columns</u> only - Change PRESS heading to read DEPTH.

REPORT NO. 71-6

Pages 122, 123: STD listings - Lower columns only - Change PRESS heading to read DEPTH.

REPORT NO. 71-7

Page 3: Other Observations, etc., subsection 111 - Change heading

Marine Geophysics to read Marine Geochemical.

Page 5: Under headings for the Data Listings, etc., change:

FEMP is temperature (decibars Celsius) to read:

TEMP is temperature (degrees Celsius).

Pages 54, 55: STD listings - Lower columns only - Change PRESS heading to read DEPTH.

REPORT NO. 71-8

Page 6: Under heading for the data listings, etc., change:

TEMP is temperature (decibars Celsius) to read:

TEMP is temperature (degrees Celsius).

Pages 54, 58, 66, 70, 76: STD profiles - Apparent Salinity Inversions should be ignored as they were generated numerically by applying a discontinuous salinity correction - See Fig. 2, Page 10.

REPORT NO. 71-9

Page 8:

Under heading for the Data Listings, etc., change:

TEMP is temperature (Decibars Celsius) to: TEMP is temperature (Degrees Celsius).

First sentence under Summary of Hydrographic Data - for "graphical" read "graphically".

Pages 42, 43, 98, 99, 158, 159, 196, 250, 251: STD Listings - Lower columns only - Change press heading to read DEPTH.

INTRODUCTION

Canadian operation of Ocean Weather Station P (latitude 50°00'N, longitude 145°00'W) was inaugurated in December, 1950. The station is manned by two vessels operated by the Marine Services Branch of the Ministry of Transport. They are the CCGS VANCOUVER and the CCGS QUADRA. Each ship remains on station for a period of six weeks, and is then relieved by the alternative ship, thus maintaining a continuous watch. The chief purpose of the station is to operate as a meteorological station for surface and upper-air observations and as an air-sea rescue station.

Bathythermograph observations have been made at Station P since July, 1952. A program of more extensive oceanographic observations was commenced in August, 1956. This was further extended in April, 1959, by the addition of a series of oceanographic stations along the route to and from Station P and Swiftsure Bank. These stations are known as Line P stations. The number of stations on Line P has been increased twice and now consists of twelve stations (Fig. 1). Bathythermograph observations and surface salinity sample collections in addition to being made on Line P oceanographic stations are also made at odd meridians at 40' i.e. 139°40'W, 141°40'W, etc. Data observed prior to 1968 has been indexed by Collins et al, (1969).

The present record includes hydrographic and salinity-temperature-pressure data collected from the QUADRA during the period 14 May to 30 June 1971 and the VANCOUVER during the period 25 June to 12 August 1971. Mechanical and expendable bathythermograph traces obtained on these cruises are available on IBM microfiche cards and will be available in digitized format on magnetic tape in the near future.

All physical data has been archieved by the Canadian Oceanographic Data Centre (CODC), 615 Booth Street, Ottawa, Ontario, Canada. Requests for these data should be directed to CODC.

Biological and productivity data are published in the Manuscript Report series of the Fisheries Research Board of Canada (FRB), The Biological Station, Nanaimo, B.C., Canada. Requests for these data should be directed to FRB.

Marine Geochemical data are for the Ocean Chemistry Group, Marine Sciences Branch, Department of the Environment, the Biological Station, Nanaimo, B.C., Canada.

Bird observations are sent to Dr. M. Myres, University of Calgary, Calgary, Alberta, Canada; and Marine Mammal observations to Mr. I. McAskie, Fisheries Research Board of Canada, The Biological Station, Nanaimo, B.C. Canada.

Program of observations from CCGS QUADRA, 14 May to 30 June, 1971 (P-71-4) (CODC Ref. No. 02-71-004)

Oceanographic observations were made by Mr. P. Vandergugten, Marine Sciences Branch, Department of the Environment.

Dr. C. G. Gruchy and Mr. R. Bowen of the National Museum of Natural Sciences, Ottawa, Canada carried out a program of fish and plankton studies on this cruise for the museum.

En route to Station P Line P oceanographic Stations 1 through 4 were occupied and STD casts made to near bottom or 1500 meters. Due to bad weather between Stations 4 and 10 inclusive only XBT casts were made at Oceanographic and BT Stations. Station observations between 10 and 12 were cancelled.

I) Physical Oceanography.

On Station P profiles of salinity, temperature and oxygen were obtained as follows:

- 1) Weekly Nansen bottle casts to near bottom (4200 meters).
- 2) Weekly STD casts to 1500 meters immediately after the bottle cast.
- 3) Twice weekly STD casts to 300 meters.
- 4) Mechanical BT casts 8 times daily.
- 5) Bucket surface salinity sample daily at 0000 hrs GMT.

Other observations made and data obtained at Station P were as follows:

II) Biological and Productivity.

These data were collected as follows:

- 1) Plankton.
 A total of 33 50m, 30 150 meter and 2 1200m vertical hauls, seven 10 minute horizontal tows. Daily microorganism samples from the seawater loop.
- 2) Van Dorn bottle casts to 200 meters for pigment, nitrate and C-14 productivity. I cast to 38 meters simultaneously with University of Washington vessel R. V. Thomas G. Thompson.
- Surface nitrate samples at all stations on Line P outbound and inbound.
- 4) Weekly secchi disk depth measurements.

III) Marine Geochemistry.

Samples for Marine Geochemical studies were taken as follows:

- 1) Oxygen -once weekly at standard depths from the hydrographic cast.
- 2) Nutrient samples for silicate, nitrate and phosphate daily from the ship's seawater loop as well as from one hydrographic cast. Hourly samples from seawater loop for one 48 hour period.
- 3) Alkalinity samples once every three days from the seawater loop.
- 4) Two seawater C14 samples from the seawater loop.
- 5) Weekly air samples for CO2 analysis.

IV) Marine Mammal, Bird and Data Gathered for Other Institutes.

- 1) Marine mammal and bird observations were recorded.
- 2) A program of fish and plankton data collection was carried out by Dr. C. G. Gruchy for the National Museum of Natural Sciences, Ottawa, Canada.

En route from Station P oceanographic Stations 12 to 5 were occuppied. STD casts to 1500 meters were made at Stations 12, 9, 8, 6 and 5 and to 300 meters at Stations 11, 10 and 7. Oceanographic Stations 4 to 1 were cancelled due to cable breakage. Standard BT casts and surface samples were taken at all Line P oceanographic and BT stations.

Program of observations from CCGS QUADRA, June 25 to August 12,1971 (P-71-5) (CODC Ref. No. 02-71-005)

Oceanographic observations were made by Mr. B. Minkley of the Marine Sciences Branch, Department of the Environment.

En route to Station P oceanographic Stations 1 to 3 and 8 to 12 were occupied and a STD cast to near bottom or 1500 meters was made. STD casts were not made at Stations 4 to 7 due to a breakage of the STD bridle. Standard BT or XBT casts were made and surface salinity, nutrient and nitrate samples taken at all Line P oceanographic and BT Stations.

I) Physical Oceanography.

On Station P profiles of salinity, temperature and oxygen were obtained as follows:

1) Weekly bottle casts to near bottom (4200 meters).

- 2) Weekly STD casts to 1500 meters with each bottle cast.
- 3) STD casts to 375 meters twice weekly.
- 4) Mechanical BT casts to 275 meters were made eight times daily.
- 5) A bucket sea surface salinity was collected daily at 0000 hours GMT.

Other observations made and data obtained at Station P were as follows:

II) Biological and Productivity.

These data were collected as follows:

1) Plankton

- a) Vertical hauls: daily from 50 and 150 meters and twice during the patrol from 1200 meters.
- b) Horizontal tows: Ten 10 minute tows during the patrol.
- c) Daily micro-organism samples from the ships seawater loop.
- d) Five 150 meter plankton hauls for nutrient analysis.
- 2) Three Van Dorn bottle casts to 50 meters and a surface sample every other week for plant pigment, nitrate and C₁₄ productivity.

Three Nansen bottle casts to 200 meters for nitrate

samples.

b) Weekly secchi disk depth observations.

III) Marine Geochemistry.

The following samples for marine geochemical studies were obtained as follows:

- 1) Weekly oxygen samples from the hydro casts.
- 2) Nutrient samples: -once at standard depths from a hydro cast, once daily from this seawater loop and at hourly intervals for one 25 hour period also from the seawater loop.
- 3) Alkalinity sample once every three days from this seawater loop.
- 4) Two seawater C₁₄ samples from this seawater loop.
- 5) Weekly duplicate air samples for CO2 analysis.

IV) Marine Mammal, Bird and Observations for Other Institutes.

1) Marine mammal and bird logs were kept.

2) Rainwater and surface samples for Scripps Institute of Oceanography were obtained.

En route from Station P oceanographic Stations 10 to 3 inclusive were occupied and STD casts to 1500 meters were made. BT casts were made and surface salinity, nutrient and nitrate sample collected at all Line P Stations.

Data was processed by Messrs. P. Vandergugten, C. de Jong, B. Minkley and D. Smith, and assembled and edited for publication by Mr. K. Abbott-Smith.

Observational Procedures

Temperatures at depth were measured by deep-sea reversing thermometers of German (Richter and Wiese) or Japanese (Yoshino Keiki Co.) manufacture. Two protected thermometers were used on all Nansen bottles, and one unprotected thermometer was used on each bottle at depths of 300 m or greater. The accuracy of protected reversing thermometers is believed to be + 0.02C.

Surface water temperatures were measured from a bucket sample using a deck thermometer of $\pm \ 0.1C$ accuracy.

Salinity determinations were made aboard ship with a Hytech model 6220 lab salinometer on cruise P-71-4 and with an Auto-Lab model 601 Mark 111 inductive salinometer on cruise P-71-5. Accuracy using duplicate determinations is estimated to be $\pm\,0.003$ ppt.

Depth determinations were made using the "depth difference" method described in the U.S.N. Hydrographic Office Publication No. 607 (1955). Depth estimates have an approximate accuracy of ± 5 m for depths less than 1000 m, and $\pm 0.5\%$ of depth for depths greater than 1000 m.

The dissolved oxygen analyses were done in the shipboard laboratory by a modified Winkler method (Carpenter, 1965).

Salinity-temperature-pressure data were obtained with a Bissett-Berman Model 9006 STD on cruise P-71-4 and with a Bissett-Berman Model 9040 STD on cruise P-71-5.

Computations.

All hydrographic data were processed with the aid of an IBM 360 computer. Reversing thermometer temperature corrections, thermometric depth calculations, and accepted depth from the "depth difference" method were computed. Extraneous thermometric depths caused by thermometer malfunctions are automatically edited and replaced. A Calcomp 563 Offline Plotter was used to plot temperature-salinity and temperature-oxygen diagrams, as well as plots of temperature, salinity and dissolved oxygen vs log10

depth. These plots were used to check the data for errors.

Missing hydrographic data were obtained using a weighted parabolas interpolation method (Reiniger and Ross, 1968). These data are indicated with an asterisk in this data record.

Data values that we suspect and are included in this data record are indicated with a plus. These data have been removed from punch card and magnetic tape records.

Analog records from the salinity-temperature-pressure instrument have been hand digitized, then replotted using the Calcomp Plotter. Digitization was continued until original and computer plotted traces were coincident. Temperature and salinity values were listed at standard pressures; integrals (depths, geopotential anomaly, and potential energy anomaly) were computed from the entire array of digitized data.

The headings for the data listings are explained as follows:

PRESS is pressure (decibars)

TEMP is temperature (degrees Celsius)

SAL is salinity (parts per thousand)

DEPTH is reported in meters

SIGMA-T is specific gravity anomaly

SVA is specific volume anomaly

THETA is potential temperature (degrees Celsius)

SVA (THETA) is potential specific volume anomaly

DELTA D is geopotential anomaly (J/kg)

POT EN is potential energy in units of 10⁸ ergs/cm²

OXY is the concentration of dissolved oxygen expressed in

milliliters per liter

V-B is the Väisälä-Brunt period in minutes

Summary of Hydrographic Data

The data are graphically summarized as follows:

Composite plots of temperature vs log_{10} depth (Fig. 4, P-71-4) and (Figs. 10, 11, P-71-5).

Composite plots of salinity vs log_{10} depth (Fig. 5, P-71-4) and (Figs. 12, 13, P-71-5).

Composite plots of oxygen vs log_{10} depth (Fig. 6, P-71-4) and (Figs. 14, 15, P-71-5).

REFERENCES

- Carpenter, J.H. 1965. The Chesapeake Bay Institute Technique for the Winkler Dissolved Oxygen Method. Limmnol. & Oceaogr., 10: 141-143.
- Collins, C.A., R.L. Tripe, D. A. Healey, and J. Joergensen, 1969. The Time Distribution of Serial Oceanographic Data from the Ocean Station P Program. Fisheries Research Board of Canada, Technical Report No. 106.
- Reiniger, R.F. and C.K. Ross, 1968. A Method of Interpolation with Application to Oceanographic Data. Deep Sea Re. 15: 185-193.
- U.S.N. Hydrographic Office, 1955. Instruction Manual for Oceanographic Observations, Publication No. 607.

LIST OF FIGURES

- Figure 1 Chart showing Line P station positions.
- Figure 2 Bottle STD salinity value difference profiles P-71-4.
- Figure 3 Reversing thermometer STD temperature difference profiles P-71-4.
- Figure 4 Composite plot of temperature vs log₁₀ depth P-71-4.
- Figure 5 Composite plot of salinity vs log10 depth P-71-4.
- Figure 6 Composite plot of salinity vs log₁₀ depth P-71-4.
- Figure 7 T-S plot of surface temperature and salinity observations on Line P (asterisks) and at Station P (pluses) during P-71-4.
- Figure 8 Bottle STD salinity value difference profiles P-71-5.
- Figure 9 Reversing thermometer STD temperature difference profiles P-71-5.
- Figure 10 Composite plot of temperature vs log₁₀ depth P-71-5.
- Figure 11 Composite plot of temperature vs log₁₀ depth P-71-5
- Figure 12 Composite plot of salinity vs log₁₀ depth P-71-5.
- Figure 13 Composite plot of salinity vs log₁₀ depth P-71-5.
- Figure 14 Composite plot of oxygen vs log₁₀ depth P-71-5.
- Figure 15 Composite plot of oxygen vs log₁₀ depth P-71-5.
- Figure 16 T-S plot of surface temperature and salinity observations on Line P (asterisks) and at Station P (pluses) during cruise P-71-5.

Fig. 1 Chart showing Line P station positions.

OCEANOGRAPHIC DATA OBTAINED ON CRUISE P-71-4

(CODC REFERENCE NO. 02-71-004)

Fig. 2 Bottle - STD salinity value difference profiles P-71-4.

TEMPERATURE DIFFERENCE, NANSEN - S.T.D., °C

Fig. 3 Reversing thermometer - STD temperature difference profiles P-71-4.

COMPOSITE PLOTS OF TEMPERATURE, SALINITY

AND DISSOLVED OXYGEN vs DEPTH

(P-71-4)

Fig. 4 Composite plot of temperature vs log₁₀ depth P-71-4.

Fig. 5 Composite plot of salinity vs log₁₀ depth P-71-4.

Fig. 6 Composite plot of salinity vs log₁₀ depth P-71-4.

RESULTS OF BOTTLE CASTS
(P-71-4)

REFERENCE NO. 71- 4- 6 DATE 197 5/71 PUSITION 50- 0.0 N. 145- 2.0 W GMT 19.5 HYDR DGRAPHIC CAST DATA

۵	•	•					•	•	•	•	•		•	•												
SOUND	471	471	471	471	470	467	195	467	46	46	9	695	470	471	472	472	+7	+	00	8	6	6	0		52	1525.
UXY	LA Y	• 4	. 4	0	9	4	5	- LLT	-	0	. 4	6	. 2	0	-	7	9	-	5	O.	5	~	~	0	3	3.71
TOG N	, .	0	•		0.28	•	0	•		-	(L)	ω.	6.4	0.4	5.0	0.0	0.4	5 . 7	2	7.2	32.5	89.7	57.3	36.3	7.6	47.3
DELTA	0	~	4.	9	1.08	LC.	-	-0	CO	· C	9	.2	000	0.	0	1	. 2	6.0	2	4.1	9.9	9.2	1.6	3.9	6.3	6.3
SVA	V	15.	15.	14.	.60	98	96	83.	28.	22.	19.	13.	07.	98	0	0	-	.+	•	0	0.	•	.+	•	•	0
THETA			-	9	5.35	· .	6	•	· Cu	garan;	Beauti	0		9.	.5	0	0	-	4	. 2	0	N.	33	2	2	_
SVA	15.	15.	15.	15.	210.4	986	07.	84.	29.	24.	21.	16.	10.	01.		5		•		0	•	1	.0	.0	.0	•
SIGMA	5.36	5.85	5.85	5.86	25.915	6.03	6.05	6.19	6.77	6.83	6.86	6.92	66.9	7.08	7.17	7.27	7.36	7.44	7.51	7.58	7.67	7.72	7.74	7.76	7.77	7.78
DEPTH	C	0	20	30	20	~	0	2	5	P	203	5	0		0	0	∞	00	0	64	95	45	96	94	96	90
SAL	P=	2.77	2.77	2.77	2.79	2.81	2.82	2.98	3.73	3.79	3.81	3.87	3.94	4.05	4.139	4.21	4.32	4.39	4.45	4.51	4.58	4.63	4.64	4.66	4.67	4.68
TEMP	5.72		1.	• 6		* (C)	. 2	general) (II)	*	2.		0	•	•	. 21		C	φ. I	5	m	6	-	9.	5	5	TC.
PRESS	0				50		\circ	\sim	5	-		5		· (C)			000	7		7	7	45	0	20	3	+

+ Oxygen data suspect - Not archived

PALIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 4- 9 DATE 24/ 5/71
PJSITION 50- 0.0 N, 145- 0.0 W GMT 19.0
HYJROGRAPHIC CAST DATA

SOUND	47	473	473	473	472	46	46	46	46	46	694	1470.	470	47	472	473	415	478	480	484	491	49	507	51	52	528
0XV	63	.3	• 4	.3	.3	.3	3	9.	1.	• 6	.5	1.74	•	. 7	• 6	• 5	.5	• 4	9.	.	• 4	•	• 5	6.	.2	63
POT.		0.	0.	•	• 2	5	0.	• 6	.2	-	• 4		. 4	0.3	4.9	6.6	1.8	5.9	1.8	8.4	39.3	98.5	68.4	49.5	• 6	82.7
DELTA	0	• 2	4.	• 6	0.	• 6	• 1	9.	0.	.3	-7	4.31	6.	6.	6.	œ.	5	1.0	2.4	4.3	7.1	7.6	2.1	4.5	6.	7.8
SVA	4	23.	23.	21.	16.	02.	.66	87.	55.	25.	20.	12.	08.	97.	0	2.	2.	5.	6	0	2.	7	5.	-	0	0
THETA	.3	•2	• 2	•		• 6	63	• 2	• 2		0.	3.99	00	• 6	5	.3	0.		• 5	•	- 7	5	.3	• 2	• 2	
SVA	24.	24.	24.	21.	16.	02.	.00	88	57.	27.	22.	115.2	11.	01.	94.	7.	8	2.	9	9.	2.	7.	7.	5.	5.	9
SIGMA	5.76	5.76	5.76	5.79	5.84	2.99	6.02	6.15	6.48	6.80	6.85	26.935	6.98	7.09	7.17	7.25	7.35	7.43	7.49	7.58	7.66	7.72	7.73	7.77	7.78	7.78
ОЕРТН	0	10	19	29	48	73	98	2	4	-		249				0	0	9	19	49	00	50	01	52	\sim	23
SAL	2.75	2.75	2.74	2.75	2.76	2.79	2.80	2.94	3.36	3.75	3.79	33.899	3.93	4.05	4.13	4.21	4.31	4.38	4.43	4.51	4.58	4.63	4.63	4.67	4.68	4.68
TEMP	6.3	. 2	. 2		7.	9.	~	. 2	~		0	4.01	00	• 6	6	(17)	0	000	9.	63	φ. •	-	e LTJ	ur:	• (1)	# Z
PRESS	C	. 10	61	29	48	73	66	2	4	7	0	251	0	0	0	0	0	0	7 7	5 1	22	7 (5	27	9	0

REFERENCE NO. 71- 4- 12 DATE 2/ 6/71 PD. ITION 49-58.0 N, 145- 2.0 W GMT 18.8 HYDROGRAPHIC CAST DATA

SOUND		47	47	47	47	47	1467.	46	467	468	46	468	469	694	471	47	473	414	476	478	482	487	493	664	505	510	512
OXY			.3		.3	.2	7.29	.2	- 7	4.	6.	.2	4.	0.	9.	.5	.5	.5	.5	.0	9.	.2	9.	6.	4.	.7	00
POT.	N.	0	0.	.0	•	.2	0.63	0.	• 6	• 2	-7	.3	9.	.2	6.	4.5	6.6	7.5	6.6	8	3.8	12.0	53.8	8.66	47.8	0.4	11.6
DELTA	0		.2	.4	• 6	•	1.67	•	• 6	0.	.3	• 6	•2	8	00	00	8	6.	4.0	• 6	3.3	5.7	7.8	7.6	1.4	3.0	3.4
\ V	HET	26.	26.	26.	24.	23.	200.1	97.	87.	34.	24.	19.	13.	07.	97.	0	3.	5.	7.	0	3.	4.	0.	9.	5.	4.	3.
THETA		. 4	. 4	. 4	.2	.2	4.52	3	. 1	-	0.	6.	00	1.	9.	.5	63		ω.	.5	63	6.	-7	.5	. 4	.3	3
SVA		26.	26.	26.	24.	23.	201.0	98.	88.	36.	25.	22.	15.	10.	01.	95.	· ·	•	4.	7.	1.	3.	0	6	7.	9	9
SIGMA	_	5.73	5.73	5.74	5.76	5.77	26.015	40.9	6.14	6.70	6.81	6.85	6.92	66.9	7.09	7.16	7.23	7.32	7.40	7.48	7.55	7.64	7.68	7.70	7.73	7.75	7.75
DEPTH		0	10	20	30	50	75	0	2	149	-	0	4	9	9	0	0	2	_	09	34	75	77	52	87	2	29
SAL		2.74	2.74	2.74	2.74	2.74	32.807	2.81	2.93	3.62	3.75	3.80	3.87	3.93	4.05	4.13	4.20	4.28	4.35	4.42	4.48	4.56	4.59	4.60	4.64	4.65	4.65
TEMP		. 4	4.	. 4	.2	.2	4.53	6.3	. 1		0.	0.	6.	- 7	• 6	5.	. 4	-	00	• 6	. 4	0	00		• 5	6	* 70
PRE SS		0	10	20	30	50	15	0	2	150	-	0	5	0	0		0	3	2	0 1	36	17	17	50	1 /	-	45

REFERENCE NO. 71- 4- 15
PUSITION 50- 0.0 N. 145- 0.0 W GMT 18.6
HYJROGRAPHIC CAST DATA

SOUND	47	47	47	47	47	1469.	9 5	467	468	468	468	46	694	471	472	473	414	477	480	484	490	498	506	515	52	52
0XY		3	63	6	• 2	7.33	• 2	•	. 4	. 4	6.	. 1	0	• &	.57	. 5	· 57	4.	.5	7.	m	0.	. 4	0.	•2	3.27
POT.	0	0	0.	•	.3	0.63	0.	• 6	.2	φ.	• 4	ф Ф	4.	0.3	4.9	0.1	8.0	.5	7.6	5.6	35.3	93.2	60.5	8.2	29.0	48.7
DELTA	•	.2	.4	-	•	1.68	•	• 6		**************************************	8	. 4	9,	0	0	6.	6	0.9	2.3	4.2	0.	9.5	1.9	4.2	6.6	7.1
SVA	2	31.	30.	27.	26.	05.	. 86	. 46	52.	24.	20.	13.	08.	98.	0	3.	3.	5.	8	•	2.	7.	4.	2.	-	0
THETA	00	00	- 7	• 4	. 4	4.88	•3	•2		6.	o.	φ (Ω)	- 7	• 6	.5	3	0.	-7	5	• 2	00	.5	.3	• 2		• 1
SVA	32.	32.	31.	28.	27.	206.3	.66	.96	54.	26.	22.	LC)	0 p(02.	.46	8	6	0 pml	5.	6	•	00	5	5.	9	. 9
Σ	5.6	5.68	5.69	5.72	5.73	9	6.02	6.07	6.51	6.80	6.85	6.93	6.97	7.08	7.16	7.24	7.34	7.43	7.50	7.57	7.67	7.71	7.75	7.76	7.77	7.77
ОЕРТН	0					14		N	4	Pare	0		3	0	0	9	3	8	17	47	-	47	16	47	16	1
SAL	2.73	2.73	2.73	2.73	2.73	32.787	2.80	2.83	3.38	3.73	3.78	3.86	3.92	4.04	4.13	4.20	4.30	4.38	4.44	4.50	4.58	4.62	4.65	4.66	4.67	4
TEMP	00	\$	- 7	• 4	. 4	4.89	.3	* 2	•	6.	6.	φ.		• 6	. 5	4.	•	®	· 03	6	6.		5	.57	* \(\frac{\pi}{2}\)	* 7U
PRESS	0					74	\odot	2	S		\circ)	\bigcirc	\circ	\Box	4	0	64	6.5	9	0	2	53	40	14

PACIFIC OCEANGGRAPHIC GROUP
REFERENCE NO. 71- 4- 19
POSITION 49-59.0 N, 145- 0.0 W GMT 18.8
HYJROGRAPHIC CAST DATA

	SOUND		7	4	7	4	7	4	4	4	4	7	4	4	3	471	1472.	473	475	477	7	- 3
	ΔXO		•	• (1)	. 2	• (22)	1/3	(4)	-2		(C)	2	-	0	∞.	9	0.58	4	N	9	5	Œ
	POT.	Z U														0	14.90	0		. 9	•	00
	DELTA			. 2	4.	-		• 6		9.	-	4.	-	· C	6.	6	86.9	Φ,	5	1.0	4.	4.3
	SVA	E	0	8	3	•	φ	6	6.	•	7	3.	φ		5	7.	88.8	2.	2.	4.	00	
	THETA																3.46					- 6
	SVA		40.	· ·	34.	31.	19.	.66	97.	92.	300	25.	20.	13.	08.	00.	93.1	-	φ Ω	0	5	0
•	SIGMA	-	5.58	5.61	5.66	5.68	5.82	6.02	6.05	6.10	6.67	6.82	6.87	6.95	7.00	7.09	27.186	7.24	7.35	7.44	7.50	7.57
	DEPTH		0	10	20	30	20	74	0	2	5	-	0	5	0	0	505	0	80	0	19	50
	SAL		2.72	2.72	2.72	2.72	2.75	2.80	2.81	2.85	3,58	3.74	3.80	3.89	3.96	4.05	34.151	4.21	4.31	4.38	4.44	4.50
	TEMP									- 8							3,50		- 9			
	E S S		0						0	2	2	-	\circ	5	0	\odot	60¢	\circ	0			reed

PALIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 4- 21
PUSITION 50- 0.0 N, 145- 1.0 W GMT 20.3
HYUNGGRAPHIC CAST DATA

SOUND	47	47	47	47	47	1468.	46	46	94	46	46	46	46	47	472	47	475	47	48	48	64	64	507	51	52	52
OXY				• 2	-	7.26	• 2	· CU	φ. •	• 6	-	5.	6.	7 .	• 6	3	• 6	• 6	9.	6.	. 4		• 6	0.	.2	. 2
POT.		0.	0.		63	0.65		• 6	• 2	φ.	• 4	φ.	4.	0.2	4.8	6.6	2.3	. 4	2.2	8.7	39.2	7.8	67.0	46.8	38.7	79.9
DELTA		• 2	• 5	- 7	• 2	1.74	• 2	-7	Daved 0	•4	000	4.	6.0	0	0.	6.	9.	•	2.5	4.4	7.2	-	2.1	4.5	6.8	7.8
SVA	-	46.	46.	30.	27.	01.	98.	85.	39.	24.	19.	12.	.90	· &	. 6	3.	2.	4 .	7 .	0	•	. 9	4.		0	0
THETA	• 00	00		.7	.5	4.60	3	• 2	•	6.	8	• 00	7.	• 6	• 4	• ~	0		• 4	p-ml 0	7.	. 5	3	• 2	•	•
SVA	47.	47.	46.	31.	28.	202.6	.66	87.	40.	26.	21.	57.	.60	02.	4.	о Ф	8	•	5.	œ	0 parent	-	9	5.	5.	9
SIGMA	5.52	5.52	5.53	5.69	5.72	25.998	6.03	6.16	99.9	6.81	6.86	6.93	7.00	7.08	7.17	7.24	7.35	7.44	7.50	7.58	7.67	7.72	7.74	7.77	7.77	7.77
ОЕРТН	0					75	0	2	5	~	0	5	0		0	0	0	00	2.0	50	01	provide	0	52	03	23
SAL	2.71	2.70	2.71	2.73	2.73	32.797	2.81	2.96	3.56	3.74	3.79	3.87	3.95	4.04	4.14	4.20	4.31	4.39	4.44	4.51	4.59	4.63	4.64	4.67	4.68	4.68
TEMP	Φ.	∞	-	7.	. 5	4.61	8	.2		6.	φ; •	00	-	9.	. 5	.3	•	. 7	. 5	. 2	6.	-	. 5	.5	. 5	. 5
PRESS	0	10	20	30	20	75	\odot	2	0	1	\odot	3	\bigcirc	+0+	0	0	-	7	7	25	3	4	90	0	6	0

RESULTS OF STD CASTS
(P-71-4)

SIGMA

T

SVA

103.

104.

114.

115.

120.

6.88

6.89

6.89

6.88

6.88

33.68

33.68

33.70

33.70

33.72

DELTA

n

POT.

SOUND

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 4- 1 DATE 15/ 5/71

SAL

TEMP

PKESS

25.

26.

27.

32.

34.

35.

7.59

7.55

7.51

7.46

7.46

7.41

31.94

32.06

32.11

32.16

32.20

32.23

PUSITION 48-33.0N, 125-33.0W GMT 0.7

RESULTS OF STP CAST 41 POINTS TAKEN FROM ANALOG TRACE

DEPTH

				1		U	F 14	
0	9.78	31.11	0	23.98	393.9	0.0	0.0	1485.
10	9.14	31.32	10	24.24		0.39		
20	8.57	31.53	20	24.49	345.3	0.75	0.07	1481
3.0	7.48	32.14	30	25.13	285.1	1.06	0.15	1478.
50	7.18	32.98	50	25.83	218.8	1.58	0.36	1478.
75	7.07	33.37	75	26.15	188.2	2.09	0.68	1478.
100	6.88	33.67	99			2.53	1.08	1478.
DEPTH	J T.	EMP .	SAL		DEDTH	TEND	SAL	
OCPII	1 11	IMP	SAL		DEPTH	TEMP	SAL	
0.	9,	.78	31.11		36.	7.39	32.2	7
4 .	9.	.78	31.15		40.	7.36	32.3	6
5.	9.	84	31.16		47.	7.21	32.8	0
6.	9.	.79	31.17		49.	7.20	32.9	2
8.	9.	19	31.26		50.	7.18	32.9	8
9.	9.	16	31.30		55.	7.26	33.0	4
10.	9.	14	31.32		56.	7.23	33.0	6
12.	9.	12	31.34		61.	7.17	33.1	8
14.	9.	11	31.35		66.	7.13	33.2	6
16.	9.	.06	31.36		72.	7.09	33.3	4
18.	8	.76	31.40		78.	7.05	33.4	1
19.	`8	.63	31.50		86.	7.05	33.4	6
20.	8.	57	31.53		88.	7.03	33.4	9
22.	8.	55	31.59		90.	6.97	33.5	7
23.	8.	50	31.62		97.	6.88	33.6	7

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 4- 2 DATE 15/ 5/71
PUSITION 48-38.0N, 126- 0.0W GMT 2.7
RESULTS OF STP CAST 46 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH		SVA		POT.	SOUND
				T		D	EN	
0			0			0.0		1484.
10				24.43	351.3	0.35		1483.
20	8.13	31.80	20	24.77	319.1	0.69	0.07	1480.
30	7.45	32.27	30	25.24	274.8	0.99	0.15	1478.
50	7.36	33.04	50	25.85	216.7	1.47	0.34	1479.
75	7.50	33.45	75	26.16	188.0	1.98	0.66	1480.
100				26.55	151.3	2.40	1.03	1478.
DEPT	H T	EMP	SAL		DEPTH	TEMP	SAL	
							J	
0.	9	. 37	31.55		50.	7.36	33.0	4
6.		.38			51.	7.45		
7.			31.56		54.	7.40		
8.	9	. 23	31.56		55.	7.46		
11.		.15	31.57		62.			
12.		.05				7.51		
14.			31.63		68.			
16.			31.72		70.			
17.			31.73		77.			
20.			31.80		78.	7.45		
22.			31.86		80.	7.46		
22.			31.86		82.	7.42		
24.			31.94		84.	7.42		
26.			32.03		84.	7.31		
28.			32.10		86.	7.31		
31.			32.36		86.			
32.			32.40			7.07		
34.			32.46			6.93		
	7		32.60			6.80		
42 •	7		32.72		96.	6.80		
44.	7		32.76		96.	6-77	33.8	
46.	7	.21	32.82		100.	6.77 6.75	33.8	
TU *	1	T	J & # U &		100	40	22.0	-

7.32

32.96

48.

114. 6.74

33.82

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 4- 3 DATE 15/ 5/71
PUSITION 48-42.0N, 126-40.0W GMT 4.7
RESULTS OF STP CAST 117 POINTS TAKEN FROM ANALOG TRACE

PKESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
				Ŧ		D	EN	
0	9.71	31.34	0	24.17	375.7	0.0	0.0	1485.
10	9.37	31.40	10	24.27	366.5	0.37	0.02	1484.
20	9.43	31.70	20	24.50	345.3	0.73	0.07	1484.
30	8.83	31.95	30	24.78	318.0	1.06	0.16	1483.
50	7.67	32.53	50	25.41	258.8	1.63	0.39	1479.
75	7.43	32.88	75	25.72	230.0	2.24	0.77	1479.
100	7.62	33.60	99	26.26	178.9	2.75	1.22	1481.
125	7.14	33.76	124	26.45	161.2	3.18	1.71	1480.
150	6.86	33.84	149	26.55	152.0	3.56	2.25	1479.
175	6.54	33.86	174	26.61	146.6	3.94	2.87	1479.
200	6.18	33.88	199	26.67	140.9	4.30	3.56	1478.
425	5.97	33.90	223	26.71	137.2	4.64	4.31	1477.
250	5.80	33.91	248	26.74	134.5	4.98	5.13	1477.
300	5.46	33.96	298	26.82	127.4	5.64	6.97	1476.
40.0	4.79	34.03	397	26.96	115.2	6.85	11.27	1475.
500	4.58	34.13	496	27.06	106.2	7.96	16.36	1476.
000	4.28	34.22	595	27.16	97.3	8.98	22.08	1477.
800	4.01	34.35	793	27.29	86.1	10.81	35.08	1479.
1000	3.52	34.43	991	27.41	76.1	12.43	49.88	1480.
1200	3.15	34.49	1188	27.49	69.0	13.87	66.09	1482.

PACIFIC OCEANOGRAPHIC GROUP

KEFERENCE NO. 71- 4- 4 DATE 15/ 5/71

PUSITION 48-47.0N, 127-40.0W GMT 8.2

RESULTS OF STP CAST 125 POINTS TAKEN FROM ANALOG TRACE

PKESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
				T		D	EN	
0	8.94	31.86	0	24.70	325.6	0.0	0.0	1482.
10	8.33	31.96	10	24.87	309.8	0.32	0.02	1480.
20	8.34	32.03	20	24.92	304.8	0.63	0.06	1481.
30	8.20	32.07	30	24.98	299.7	0.93	0.14	1480.
50	6.99	32.53	50	25.51	249.5	1.47	0.36	1477.
75	6.91	32.80	75	25.72	229.1	2.07	0.74	1477.
100	7.44	33.52	99	26.22	182.5	2.59	1.20	1480.
125	7.25	33.77	124	26.44	162.0	3.02	1.69	1480.
150	6.99	33.85	149	26.54	152.6	3.41	2.23	1480.
175	6.78	33.90	174	26.61	146.6	3.78	2.86	1480.
200	6.50	33.92	199	26.66	142.0	4.14	3.54	1479.
225	6.20	33.94	223	26.72	136.9	4.49	4.29	1478.
250	6.07	33.96	248	26.75	134.2	4.82	5.11	1478.
300.	5.65	33.97	298	26.81	128.8	5.48	6.94	1477.
400	5.10	34.04	397	26.93	118.2	6.71	11.33	1477.
200c	4.61	34.12	496	27.05	107.5	7.84	16.49	1476.
000	4.39	34.21	595	27.14	99.5	8.88	22.30	1477.
800	3.93	34.34	793	27.29	86.1	10.72	35.41	1479.
1000	3.46	34.44	991	27.42	74.8	12.33	50.11	1480.
1200	3.03	34.49	1188	27.50	67.7	13.76	66.11	1482.
1500	2.53	34.57	1484	27.61	57.7	15.63	91.81	1485.

PACIFIC OCEANOGRAPHIC GROUP

REFERENCE NO. 71- 4- 5 DATE 17/ 5/71

PUSITION 49-42.0N, 140-40.0W GMT 4.5

RESULTS OF STP CAST 108 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
				T		D	EN	
0	6.49	32.66	0	25.67	233.0	0.0	0.0	1474.
10	6.49	32.66	10	25.67	233.4	0.23	0.01	1474.
2.0	6.48	32.67	20	25.68	232.7	0.47	0.05	1474.
30	6.38	32.67	30	25.69	231.5	0.70	0.11	1474.
50	6.16	32.74	50	25.78	223.5	1.15	0.29	1474.
75	5.52	32.82	75	25.92	210.5	1.70	0.64	1471.
100	5.21	32.84	99	25.97	206.0	2.22	1.10	1471.
125	5.06	32.87	124	26.01	202.5	2.73	1.69	1470.
150	5.93	33.49	149	26.40	165.9	3.19	2.34	1475.
175	5.99	33.74	174	26.58	148.7	3.59	2.99	1476.
200	5.90	33.84	199	26.67	140.4	3.95	3.67	1476.
225	5.73	33.89	223	26.73	135.3	4.29	4.42	1476.
250	5.48	33.89	248	26.76	132.7	4.63	5.23	1476.
300	4.85	33.88	298	26.83	126.2	5.27	7.03	1474.
400	4.08	33.95	397	26.97	113.4	6.46	11.28	1472.
500	3.85	34.06	496	27.08	103.5	7.54	16.23	1473.
000	3.76	34.16	595	27.17	95.9	8.54	21.80	1475.
80.0	3.43	34.31	793	27.32	82.7	10.34	34.60	1477.
1000	3.09	34.40	990	27.42	73.7	11.91	48.93	1479.
1200	2.73	34.47	1188	27.51	65.7	13.29	64.43	1480.
1500	2.35	34.55	1484	27.61	57.1	15.13	89.64	1484.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 4- 7 DATE 20 / 5/71
PUSITION 49-57.0N, 144-57.0W GMT 18.1
RESULTS OF STP CAST 53 POINTS TAKEN FROM ANALOG TRACE

PKESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
0	5.71	32.74	0	25.83	217.9	0.0	0.0	1471.
10	5.69	32.75	10	25.84	217.4	0.22	0.01	1471.
20	5.68	32.76	20	25.85	216.7	0.43	0.04	1471.
30	5.66	32.76	30	25.85	216.0	0.65	0.10	1471.
50	5.33	32.79	50	25.91	210.9	1.08	0.27	1470.
75	4.65	32.82	75	26.01	201.3	1.59	0.60	1468.
100	4.55	32.83	99	26.03	199.7	2.09	1.05	1468.
125	4.33	32.96	124	26.16	187.9	2.59	1.61	1468.
150	4.40	33.65	149	26.70	137.0	2.97	2.15	1469.
175	4.29	33.75	174	26.79	128.8	3.30	2.70	1469.
200	4.15	33.79	199	26.83	124.4	3.62	3.30	1469.
225	4.07	33.82	223	26.87	121.4	3.92	3.96	1469.
250	4.00	33.85	248	26.89	119.1	4.23	4.69	1469.
00د	3.37	33.90	298	26.95	114.1	4.81	6.32	1470.
400	3.73	34.04	397	27.08	103.0	5.88	10.14	1471.
200	3.58	34.14	496	27.17	94.7	6.87	14.65	1472.
600	3.44	34.20	595	27.23	89.5	7.79	19.81	1473.
000	3.11	34.32	793	27.36	78.5	9.47	31.72	1475.
1000	2.84	34.39	990	27.44	71.7	10.97	45.41	1477.
1200	2.60	34.46	1188	27.51	65.1	12.33	60.68	1480.
1500	2.30	34.54	1483	27.60	57.3	14.16	85.81	1484.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 4- 8 DATE 22/ 5/71
PUSITION 50- 0.0N, 145- 0.0W GMT 18.5
RESULTS OF STP CAST 37 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
				1		D	EN	
0	6.14	32.78	0	25.81	219.9	0.0	0.0	1473.
10	6.08	32.79	10	25.82	218.8	0.22	0.01	1473.
20	5.81	32.80	20	25.86	215.0	0.44	0.04	1472.
30	5.71	32.81	30	25.89	213.0	0.65	0.10	1471.
50	5.11	32.77	50	25.92	209.7	1.07	0.27	1469.
75	4.50	32.84	75	26.05	198.1	1.58	0.59	1467.
100	4.43	32.85	99	26.06	196.7	2.07	1.03	1467.
125	4.36	33.26	124	26.39	165.9	2.54	1.57	1468.
150	4.36	33.76	149	26.79	128.5	2.90	2.06	1469.
175	4.26	33.80	174	26.83	124.9	3.21	2.59	1469.
200	4.14	33.83	199	26.87	121.2	3.52	3.17	1469.
425	4.10	33.86	223	26.90	118.7	3.82	3.82	1469.
250	4.04	33.89	248	26.92	116.3	4.11	4.54	1470.
300	3.85	33.94	298	26.98	110.9	4.68	6.12	1470.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 4- 10 DATE 24/ 5/71
PUSITION 50- 2.0N, 145- 4.0W GMT 21.7
RESULTS OF STP CAST 73 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA T	SVA	DELTA D	POT. EN	SOUND
0	6.33	32.73	0	25.74	225.9	0.0	0.0	1473.
10	6.25	32.74	10	25.76	224.7	0.23	0.01	1473.
20	6.21	32.74	20	25.77	224.1	0.45	0.05	1473.
3.0	6.15	32.74	30	25.78	223.5	0.67	0.10	1473.
50	5.68	32.77	50	25.86	216.0	1.11	0.28	1472.
75	4.69	32.80	75	26.00	203.0	1.64	0.62	1468.
100	4.43	32.82	99	26.04	199.2	2.14	1.06	1467.
125	4.23	32.89	124	26.11	192.1	2.63	1.63	1467.
150	4.23	33.73	149	26.78	129.3	3.01	2.15	1469.
175	4.18	33.77	174	26.81	126.1	3.33	2.69	1469.
200	4.07	33.80	199	26.85	122.8	3.64	3.28	1469.
225	4.03	33.85	223	26.89	119.0	3.95	3.93	1469.
450	3.97	33.89	248	26.93	115.4	4.24	4.64	1469.
200	3.83	33.95	298	26.99	110.0	4.80	6.21	1470.
400	3.70	34.07	397	27.10	100.4	5.85	9.95	1471.
500	3.57	34.15	496	27.18	93.9	6.82	14.39	1472.
600	3.39	34.22	595	27.25	87.5	7.73	19.45	1473.
o00	3.10	34.32	793	27.36	78.4	9.38	31.17	1475.
1000	2.85	34.38	990	27.43	72.5	10.89	44.97	1478.
1200	2.61	34.45	1188	27.51	65.9	12.26	60.32	1480.
1500	2.27	34.53	1483	27.60	57.7	14.13	85.98	1483.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 4- 11 DATE 29/ 5/71
PUSITION 50- 0.0N, 145- 5.0W GMT 18.2
RESULTS OF STP CAST 44 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
				T		D	EN	
0	6.13	32.73	0	25.77	223.5	0.0	0.0	1473.
10	6.11	32.75	10	25.79	222.1	0.22	0.01	1473.
20	6.10	32.77	20	25.80	220.8	0.44	0.05	1473.
30	6.09	32.77	30	25.81	220.6	0.66	0.10	1473.
50	5.34	32.80	50	25.92	210.0	1.10	0.28	1470.
75	4.72	32.83	75	26.01	201.3	1.61	0.60	1468.
100	4.39	32.83	99	26.05	197.7	2.11	1.05	1467.
125	4.29	33.06	124	26.24	180.1	2.59	1.60	1468.
150	4.12	33.69	149	26.76	131.2	2.96	2.11	1468.
175	4.01	33.75	174	26.82	125.5	3.28	2.64	1468.
200	3.93	33.79	199	26.86	121.9	3.59	3.23	1468.
225	3.88	33.84	223	26.90	117.9	3.89	3.88	1468.
250	3.86	33.88	248	26.94	114.7	4.18	4.58	1469.
300	3.80	33.95	298	27.00	109.7	4.74	6.15	1469.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 4- 13 DATE 2/ 6/71
PUSITION 49-58.ON, 145- 2.OW GMT 21.7
RESULTS OF STP CAST 63 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT. EN	SOUND
0	6.51	32.75	0	25.74	226.6	0.0	0.0	1474.
10	6.50	32.77	10	25.75	225.6	0.23	0.01	1474.
20	6.37	32.77	20	25.77	223.9	0.45	0.05	1474.
30	6.22	32.77	30	25.79	222.1	0.67	0.10	1473.
50	5.88	32.75	50	25.82	219.8	1.12	0.28	1472.
75	4.49	32.80	75	26.01	201.1	1.64	0.61	1467.
100	4.22	32.85	99	26.08	195.2	2.13	1.06	1467.
125	4.16	33.09	124	26.28	176.4	2.61	1.60	1467.
150	4.10	33.68	149	26.75	131.7	2.99	2.13	1468.
175	4.02	33.76	174	26.82	125.1	3.31	2.66	1468.
∠00	4.02	33.81	199	26.86	121.9	3.62	3.25	1469.
225	3.94	33.84	223	26.90	118.7	3.92	3.90	1469.
250	3.91	33.88	248	26.93	115.7	4.21	4.61	1469.
300	3.80	33.92	298	26.97	111.9	4.78	6.21	1469.
+0 C	3.66	34.04	397	27.08	102.3	5.85	9.99	1471.
200	3.53	34.14	496	27.17	94.2	6.83	14.47	1472.
3 00	3.39	34.20	595	27.24	89.0	7.74	19.59	1473.
800	3.07	34.31	793	27.35	78.8	9.42	31.48	1475.
1000	2.80	34.39	990	27.44	71.2	10.92	45.26	1477.
1200	2.56	34.46	1188	27.52	64.6	12.28	60.48	1480.
1500	2.27	34.52	1483	27.59	58.4	14.13	85.80	1483.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 4- 14 DATE 5/ 6/71
PUSITION 50- 0.0N, 145- 0.0W GMT 18.2
RESULTS OF STP CAST 41 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
				T		D	EN	
0	6.60	32.74	0	25.72	228.4	0.0	0.0	1474.
10	6.53	32.74	10	25.73	227.9	0.23	0.01	1474.
20	6.44	32.74	20	25.74	227.0	0.46	0.05	1474.
30	6.41	32.74	30	25.75	226.4	0.68	0.10	1474.
50	6.01	32.76	50	25.81	220.7	1.13	0.29	1473.
7.5	4.62	32.81	75	26.01	201.8	1.65	0.62	1468.
100	4.39	32.83	99	26.05	198.1	2.15	1.06	1467.
125	4.24	32.86	124	26.09	194.3	2.65	1.63	1467.
150	4.13	33.25	149	26.41	164.1	3.11	2.27	1467.
175	4.06	33.69	174	26.76	130.7	3.46	2.86	1468.
200	3.99	33.77	199	26.83	124.3	3.78	3.46	1468.
225	3.91	33.82	223	26.88	119.8	4.09	4.13	1469.
250	3.96	33.88	248	26.93	116.1	4.38	4.84	1469.
00د	3.82	33.94	298	26.99	110.6	4.95	6.43	1470.

PACIFIC DCEANDGRAPHIC GROUP
REFERENCE NO. 71- 4- 16 DATE 7/ 6/71
PUSITION 50- 1.0N, 144-59.0W GMT 21.8
RESULTS OF STP CAST 50 POINTS TAKEN FROM ANALOG TRACE

PKESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
				Ţ		n	EN	
0	6.74	32.74	0	25.70	230.1	0.0	0.0	1475.
10	6.73	32.76	10	25.72	228.9	0.23	0.01	1475.
2.0	6.71	32.77	20	25.73	228.1	0.46	0.05	1475.
3.0	6.54	32.77	30	25.75	226.0	0.69	0.10	1475.
50	6.31	32.78	50	25.79	222.7	1.13	0.29	1474.
75	5.05	32.81	75	25.96	206.3	1.68	0.63	1470.
100	4.40	32.85	99	26.06	196.7	2.18	1.08	1467.
125	4.20	32.94	124	26.15	188.2	2.67	1.64	1467.
150	4.08	33.69	1 49	26.76	130.8	3.07	2.19	1468.
175	3.99	. 33.78	174	26.84	123.1	3.38	2.72	1468.
∠00	3.92	33.82	199	26.88	119.8	3.68	3.30	1468.
225	3.88	33.87	223	26.92	115.9	3.98	3.93	1469.
250	3.85	33.92	248	26.97	112.0	4.26	4.62	1469.
000	3.82	33.98	298	27.02	107.6	4.81	6.16	1470.
400	3.69	34.10	397	27.13	98.1	5.84	9.80	1471.
200	3.55	34.18	496	27.20	91.4	6.79	14.13	1472.
630	3.41	34.27	595	27.29	84.0	7.67	19.03	1473.
300	3.08	34.37	793	27.40	74.5	9.25	30.28	1475.
1000	2.80	34.44	990	27.48	67.6	10.67	43.22	1477.
1200	2.57	34.51	1188	27.56	61.0	11.95	57.56	1480.
1500	2.27	34.57	1483	27.63	54.7	13.69	81.50	1484.

PACIFIC OCEANOGRAPHIC GROUP

KLEERENCE NO. 71- 4- 17 DATE 10/ 6/71

PUSITION 49-59.0N, 145- 8.0W GMT 18.1

RLSULTS OF STP CAST 39 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
				T		Ð	EN	
0	6.49	32.73	0	25.72	227.9	0.0	0.0	1474.
10	6.49	32.75	10	25.74	226.7	0.23	0.01	1474.
20	6.51	32.75	20	25.74	226.8	0.45	0.05	1474.
3.0	6.52	32.75	30	25.74	226.9	0.68	0.10	1475.
50	6.55	32.76	50	25.74	227.2	1.13	0.29	1475.
7.5	5.16	32.79	75	25.93	209.0	1.68	0.64	1470.
100	4.44	32.83	99	26.04	198.6	2.18	1.08	1467.
125	4.21	32.85	124	26.08	195.0	2.68	1.65	1467.
150	4.13	33.56	149	26.65	141.0	3.12	2.27	1468.
175	4.02	33.84	174	26.89	118.8	3.45	2.81	1468.
20.0	3.96	33.89	199	26.93	114.9	3.74	3.36	1468.
225	3.90	33.94	223	26.98	110.9	4.02	3.97	1469.
450	3.86	33.99	248	27.02	106.9	4.29	4.63	1469.
00د	3.80	34.06	298	27.08	101.4	4.81	6.08	1470.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 4- 18 DATE 14/ 6/71
PUSITION 50- 2.0N, 144-56.0W GMT 18.5
RESULTS OF STP CAST 40 POINTS TAKEN FROM ANALOG TRACE

PKESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA D	POT. EN	SOUND
0	7.28	32.70	0	25.60	240.1	0.0	0.0	1477.
10	7.08	32.73	10	25.65	235.6	0.24	0.01	1477.
2.0	7.04	32.75	20	25.67	233.7	0.47	0.05	1477.
30	6.69	32.76	30	25.72	228.6	0.70	0.11	1475.
50	6.61	32.76	50	25.73	227.9	1.16	0.29	1475.
7.5	4.65	32.82	75	26.01	201.3	1.70	0.64	1468.
100	4.27	32.83	99	26.06	196.9	2.20	1.08	1467.
125	4.13	32.95	124	26.17	186.7	2.69	1.64	1467.
150	4.10	33.63	149	26.71	135.5	3.10	2.21	1468.
175	3.99	33.78	174	26.84	123.3	3.42	2.74	1468.
200	3.92	33.83	199	26.89	119.1	3.72	3.32	1468.
225	3.88	33.86	223	26.92	116.3	4.01	3.95	1469.
250	3.85	33.90	248	26.95	113.5	4.30	4.65	1469.
300	3.80	33.97	298	27.01	108.2	4.85	6.20	1470.
40.0	3.70	34.07	397	27.10	100.4	5.90	9.90	1471.
000 د	3.56	34.17	496	27.20	92.3	6.86	14.30	1472.
000	3.42	34.24	595	27.26	86.4	7.75	19.29	1473.
800	3.10	34.35	793	27.38	76.1	9.37	30.79	1475.
1000	2.80	34.44	990	27.48	67.6	10.80	43.87	1477.
1200	2.56	34.50	1188	27.55	61.6	12.09	58.31	1480.
1500	2.25	34.57	1483	27.63	54.6	13.84	82.21	1483.

PACIFIC OCEANOGRAPHIC GROUP

REFERENCE NO. 71- 4- 20 DATE 17/ 6/71

PUSITION 50- 3.0N, 145- 0.0W GMT 19.2

RESULTS OF STP CAST 51 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA D	POT.	SOUND
0	7.48	32.71	0	25.58	241.9	0.0	0.0	1478.
10	7.47	32.74	10	25.60	239.7	0.24	0.01	1478.
20	7.12	32.75	20	25.66	234.7	0.48	0.05	1477.
30	6.66	32.76	30	25.73	228.3	0.71	0.11	1475.
50	6.21	32.77	50	25.79	222.2	1.16	0.29	1474.
75	4.45	32.85	75	26.06	197.0	1.68	0.62	1467.
100	4.22	32.86	99	26.09	194.1	2.17	1.05	1467.
125	4.06	32.89	124	26.13	190.6	2.65	1.61	1466.
150	4.11	33.63	149	26.71	135.4	3.05	2.16	1468.
175	3.98	33.77	174	26.83	124.0	3.37	2.69	1468.
200	3.92	33.82	199	26.88	119.8	3.67	3.27	1468.
425	3.88	33.87	223	26.92	115.9	3.97	3.91	1468.
250	3.84	33.90	248	26.96	113.1	4.25	4.60	1469.
300	3.79	33.98	298	27.02	107.3	4.80	6.14	1469.
400	3.67	34.10	397	27.13	97.9	5.83	9.78	1471.
500	3.54	34.19	496	27.21	90.6	6.77	14.08	1472.
500	3.39	34.26	595	27.28	84.5	7.65	18.97	1473.
800	3.10	34.36	793	27.39	75.4	9.25	30.34	1475.
1000	2.83	34.44	990	27.48	67.8	10.68	43.43	1478.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 4- 22 DATE 21/ 6/71
PUSITION 50- 3.0N, 144-59.0W GMT 21.5
RESULTS OF STP CAST 62 POINTS TAKEN FROM ANALOG TRACE

PKESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT. EN	SOUND
0	7.92	32.71	0	25.51	247.9	0.0	0.0	1480.
10	7.80	32.71	10	25.53	246.5	0.25	0.01	1479.
20	7.71	32.72	20	25.55	244.8	0.49	0.05	1479.
30	6.78	32.73	30	25.69	232.0	0.73	0.11	1476.
50	6.21	32.76	50	25.78	223.0	1.19	0.30	1474.
75	4.55	32.83	75	26.03	199.7	1.71	0.63	1467.
100	4.43	32.84	99	26.05	197.8	2.20	1.07	1467.
125	4.32	33.01	124	26.19	184.4	2.69	1.62	1468.
150	4.12	33.66	149	26.73	133.4	3.08	2.17	1468.
175	4.02	33.74	174	26.81	126.7	3.40	2.71	1468.
200	3.91	33.81	199	26.87	120.5	3.71	3.30	1468.
225	3.87	33.85	223	26.91	117.5	4.01	3.94	1468.
450	3.84	33.88	248	26.94	114.5	4.30	4.64	1469.
300	3.78	33.97	298	27.01	108.0	4.86	6.20	1469.
400	3.68	34.08	397	27.11	99.5	5.89	9.88	1471.
000 د	3.52	34.18	496	27.21	91.1	6.85	14.23	1472.
600	3.37	34.25	5 95	27.28	85.0	7.73	19.15	1473.
000	3.10	34.34	793	27.37	76.9	9.34	30.64	1475.
1000	2.81	34.43	990	27.47	68.4	10.79	43.88	1477.
1200	2.56	34.48	1188	27.53	63.1	12.10	58.55	1480.
1500	2.26	34.55	1483	27.61	56.1	13.90	83.17	1483.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 4- 23 DATE 23/ 6/71
PUSITION 50- 0.0N, 145- 0.0W GMT 18.0
RESULTS OF STP CAST 59 POINTS TAKEN FROM ANALOG TRACE

PKESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
				T		D	EN	
0	7.91	32.66	0	25.48	251.4	0.0	0.0	1480.
10	7.81	32.67	10	25.50	249.6	0.25	0.01	1479.
20	7.80	32.68	20	25.51	249.1	0.50	0.05	1479.
3.0	6.76	32.70	30	25.67	233.6	0.74	0.11	1476.
50	6.42	32.73	50	25.74	227.5	1.20	0.30	1475.
75	4.73	32.77	75	25.96	205.9	1.75	0.65	1463.
100	4.40	32.82	99	26.04	199.2	2.25	1.09	1467.
125	4.28	32.94	124	26.15	188.7	2.74	1.66	1467.
150	4.14	33.63	149	26.71	135.6	3.13	2.20	1468.
±75	4.04	33.75	174	26.81	126.4	3.46	2.74	1468.
200	3.99	33.80	199	26.86	122.1	3.77	3.33	1468.
425	3.91	33.84	223	26.90	118.6	4.07	3.98	1469.
250	3.87	33.88	248	26.93	115.4	4.36	4.69	1469.
0 0 د	3.83	33.95	298	26.99	110.0	4.92	6.27	1470.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 4- 24 DATE 26/ 6/71
PUSITION 50- 0.0N, 144-59.0W GMT 18.1
RESULTS OF STP CAST 46 POINTS TAKEN FROM ANALOG TRACE

PKESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
				Ŧ		D	EN	
0	8.33	32.70	0	25.45	254.3	0.0	0.0	1481.
10	8.29	32.71	10	25.46	253.7	0.25	0.01	1481.
20	7.56	32.73	20	25.58	242.0	0.51	0.05	1479.
3.0	6.48	32.75	30	25.74	226.8	0.74	0.11	1475.
50	6.26	32.76	50	25.78	223.7	1.19	0.29	1474.
7.5	4.68	32.81	75	26.00	202.3	1.72	0.63	1468.
100	4.38	32.83	99	26.05	198.2	2.22	1.08	1467.
125	4.13	33.10	124	26.29	175.4	2.70	1.63	1467.
150	4.11	33.68	149	26.75	131.8	3.07	2.15	1468.
175	4.00	33.78	174	26.84	123.1	3.39	2.67	1468.
200	3.93	33.84	199	26.90	118.4	3.69	3.25	1468.
225	3.87	33.88	223	26.93	115.0	3.98	3.88	1468.
250	3.83	33.92	248	26.97	111.8	4.27	4.56	1469.
000	3.80	33.97	298	27.01	108.2	4.82	6.10	1470.

PALIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 4- 25 DATE 28/ 6/71
PUSITION 49-49.0N, 142-40.0W GMT 2.5
KESULTS OF STP CAST 80 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT. EN	SOUND
0	8.91	32.70	0	25.36	262.8	0.0	0.0	1483.
10	8.89	32.72	10	25.38	261.4	0.26	0.01	1484.
2.0	8.80	32.72	20	25.39	260.1	0.52	0.05	1483.
30	8.26	32.72	30	25.47	252.6	0.78	0.12	1481.
50	7.27	32.72	50	25.61	239.4	1.27	0.32	1478.
75	5.90	32.82	75	25.87	215.0	1.84	0.68	1473.
100	5.19	32.83	99	25.96	206.7	2.37	1.15	1471.
125	5.03	32.96	124	26.08	195.3	2.87	1.73	1470.
150	5.48	33.64	149	26.57	149.4	3.31	2.33	1474.
175	5.29	33.76	174	26.68	138.9	3.66	2.92	1473.
200	5.03	33.78	199	26.73	134.6	4.01	3.58	1473.
225	4.71	33.80	223	25.78	130.1	4.34	4.30	1472.
250	4.52	33.83	248	26.83	125.9	4.66	5.07	1472.
000د	4.27	33.88	298	26.89	119.8	5.27	6.79	1471.
40.0	3.95	33.99	397	27.01	109.0	6.42	10.86	1472.
500	3.72	34.10	496	27.12	99.2	7.46	15.62	1473.
000	3.50	34.19	595	27.22	91.0	8.41	20.93	1473.
300	3.20	34.30	793	27.33	81.0	10.12	33.11	1476.
1000	2.92	34.38	990	27.42	73.3	11.66	47.15	1478.
1200	2.65	34.46	1188	27.51	65.6	13.04	62.67	1480.
1500	2.34	34.54	1484	27.60	57.7	14.89	88.00	1484.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 4- 26 DATE 28/ 6/71
PUSITION 49-44.ON, 140-40.OW GMT 10.O
RESULTS OF STP CAST 66 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA D	POT.	SOUND
0	9.39	32.68	0	25.27	271.4	0.0	0.0	1485.
10	9.39	32.69	10	25.27	271.4	0.27	0.01	1485.
20	9.33	32.69	20	25.28	270.6	0.54	0.06	1485.
30	8.16	32.67	30	25.44	255.1	0.81	0.12	1481.
50	6.61	32.72	50	25.70	230.9	1.29	0.32	1475.
75	5.88	32.79	75	25.85	217.0	1.85	0.68	1473.
100	5.35	32.83	99	25.94	208.4	2.38	1.15	1471.
125	5.17	32.92	124	26.03	199.9	2.90	1.74	1471.
150	5.71	33.37	149	26.33	172.5	3.36	2.39	1474.
175	5.79	33.68	174	26.56	150.5	3.76	3.05	1475.
200	5.33	33.75	199	26.67	140.3	4.12	3.74	1474.
425	5.05	33.80	223	26.75	133.5	4.46	4.48	1473.
250	4.99	33.86	248	26.80	128.8	4.79	5.27	1474.
000	4.42	33.88	298	26.88	121.4	5.43	7.05	1472.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 4- 27 DATE 28/ 6/71
PUSITION 49-34.0N, 138-40.0W GMT 15.2
RESULTS OF STP CAST 52 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
				T		D	EN	
0	9.61	32.74	0	25.28	270.3	0.0	0.0	1486.
10	9.60	32.74	10	25.28	270.6	0.27	0.01	1486.
20	9.46	32.75	20	25.31	267.9	0.54	0.06	1486.
30	7.88	32.74	30	25.54	246.0	0.79	0.12	1480.
50	6.26	32.78	50	25.79	222.1	1.26	0.31	1474.
75	5.42	32.82	75	25.93	209.6	1.80	0.65	1471.
100	5.01	32.85	99	26.00	203.1	2.31	1.11	1470.
125	5.15	33.12	124	26.19	184.6	2.80	1.67	1471.
150	5.19	33.65	149	26.61	145.8	3.22	2.25	1472.
175	4.95	33.75	174	26.71	136.0	3.57	2.82	1472.
200	4.75	33.77	199	26.75	132.3	3.90	3.46	1472.
225	4.55	33.80	223	26.80	127.8	4.22	4.17	1471.
250	4.43	33.83	248	26.84	124.8	4.54	4.93	1471.
00د	4.15	33.90	298	26.92	117.1	5.15	6.62	1471.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 4- 28 DATE 28/ 6/71
PUSITION 49-26.0N, 136-40.0W GMT 20.7
RESULTS OF STP CAST 114 POINTS TAKEN FROM ANALOG TRACE

PKESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT. EN	SOUND
0	10.24	32.63	0	25.09	288.4	0.0	0.0	1488.
10	10.15	32.64	10	25.11	286.7	0.29	0.01	1488.
20	10.09	32.64	20	25.12	285.9	0.57	0.06	1488.
30	8.48	32.63	30	25.37	262.4	0.85	0.13	1432.
50	7.14	32.65	50	25.58	242.5	1.35	0.33	1477.
75	6.14	32.68	75	25.73	228.5	1.94	0.71	1474.
100	5.50	32.79	99	25.89	213.1	2.49	1.20	1472.
125	5.48	33.14	124	26.17	187.2	2.99	1.77	1473.
150	5.89	33.66	149	26.53	153.1	3.41	2.36	1475.
175	5.60	. 33.77	174	26.66	141.5	3.78	2.97	1475.
200	5.38	33.83	199	26.73	134.9	4.13	3.63	1474.
225	5.20	33.85	223	26.77	131.7	4.46	4.35	1474.
250 ·	4.93	33.86	248	26.80	128.1	4.78	5.13	1473.
300	4.58	33.92	298	26.89	120.2	5.41	6.88	1473.
40.0	4.03	34.03	397	27.04	106.9	6.54	10.91	1472.
500	3.98	34.13	496	27.12	99.4	7.57	15.64	1474.
600	3.87	34.22	595	27.21	92.4	8.53	21.00	1475.
800	3.39	34.34	793	27.35	80.0	10.25	33.22	1476.
1000	3.03	34.42	990	27.44	71.5	11.75	47.00	1478.
1200	2.70	34.49	1188	27.53	64.1	13.10	62.11	1480.
1500	2.33	34.56	1484	27.62	56.2	14.90	86.72	1484.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 4- 29 DATE 29/ 6/71
POSITION 49-17.0N, 134-40.0W GMT 2.7
RESULTS OF STP CAST 83 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
				T		D	EN	
0	10.94	32.57	0	24.92	304.3	0.0	0.0	1491.
10	10.83	32.56	10	24.93	303.7	0.30	0.02	1490.
20	10.66	32.56	20	24.96	301.0	0.61	0.06	1490.
30	9.16	32.59	30	25.23	275.4	0.89	0.13	1485.
50	7.12	32.61	50	25.54	245.8	1.40	0.34	1477.
75	6.21	32.65	75	25.69	231.8	2.00	0.72	1474.
100	5.79	32.98	99	26.01	202.2	2.55	1.21	1473.
125	5.88	33.43	124	26.35	169.7	3.02	1.75	1475.
150	5.71	33.72	149	26.61	146.1	3.40	2.28	1475.
175	5.43	33.78	174	26.68	139.1	3.76	2.87	1474.
200	5.19	33.81	199	26.74	134.2	4.10	3.52	1473.
225	4.99	33.85	223	26.79	129.3	4.43	4.23	1473.
250	4.86	33.89	248	26.84	125.1	4.75	5.00	1473.
300	4.42	33.92	298	26.91	118.4	5.36	6.71	1472.
400	3.98	34.00	397	27.02	108.6	6.50	10.77	1472.
500	3.79	34.10	496	27.12	100.0	7.54	15.53	1473.
600	3.64	34.21	595	27.22	90.7	8.49	20.84	1474.
800	3.35	34.34	793	27.35	79.6	10.19	32.92	1476.
1000	2.98	34.42	990	27.45	70.9	11.69	46.68	1478.
1200	2.71	34.48	1188	27.52	64.8	13.05	61.88	1480.
1500	2.34	34.56	1484	27.62	56.3	14.85	86.62	1484.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 4- 30 DATE 29/ 6/71
PUSITION 49-10.0N, 132-40.0W GMT 7.5
RESULTS OF STP CAST 56 POINTS TAKEN FROM ANALOG TRACE

PKESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
				Ŧ		D	EN	
0	10.92	32.56	0	24.92	304.8	0.0	0.0	1491.
10	10.93	32.57	10	24.97	304.6	0.30	0.02	1491.
20	10.16	32.57	20	25.05	292.2	0.60	0.06	1488.
30	9.96	32.58	30	25.10	288.4	0.89	0.13	1488.
50	7.56	32.59	50	25.47	252.9	1.45	0.36	1479.
7.5	6.65	32.60	75	25.60	240.4	2.07	0.75	1476.
100	6.11	32.68	99	25.74	228.0	2.65	1.28	1474.
125	5.91	33.24	124	26.20	184.4	3.18	1.88	1474.
150	5.78	33.61	149	26.51	155.5	3.60	2.46	1475.
175	5.60	33.75	174	26.64	143.2	3.97	3.08	1475.
200	5.35	33.81	199	26.72	136.1	4.32	3.75	1474.
225	5.05	33.84	223	26.78	130.7	4.66	4.47	1473.
250	4.76	33.85	248	26.82	126.9	4.98	5.25	1473.
300	4.40	33.89	298	26.89	120.5	5.60	6.98	1472.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 4- 31 DATE 29/ 6/71
PUSITION 49- 2.0N, 130-40.0W GMT 12.8
RESULTS OF STP CAST 139 POINTS TAKEN FROM ANALOG TRACE

PKESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT. EN	SOUND
0	10.76	32.53	0	24.92	304.3	0.0	0.0	1490.
10	10.61	32.53	10	24.95	302.3	0.31	0.02	1490.
20	10.44	32.54	20	24.98	298.9	0.61	0.06	1489.
30	10.30	32.54	30	25.01	296.8	0.90	0.14	1489.
50	7.46	32.58	50	25.48	252.3	1.45	0.36	1478.
75	6.83	32.58	75	25.56	244.4	2.07	0.75	1476.
100	6.52	32.68	99	25.68	233.4	2.67	1.29	1476.
125	6.61	33.19	124	26.07	196.7	3.21	1.91	1477.
150	6.53	33.70	149	26.48	158.0	3.65	2.52	1478.
175	6.39	33.74	174	26.54	153.2	4.04	3.17	1478.
200	6.07	33.80	199	26.62	145.7	4.41	3.88	1477.
225	5.89	33.83	223	26.67	141.3	4.77	4.65	1477.
250	5.56	33.86	248	26.73	135.3	5.12	5.49	1476.
300	5.12	33.92	298	26.83	126.3	5.77	7.32	1475.
40.0	4.24	33.97	397	26.97	113.3	6.97	11.57	1473.
500	4.12	34.11	496	27.09	103.0	8.05	16.53	1474.
000	3.93	34.19	595	27.17	95.5	9.04	22.07	1475.
300	3.47	34.34	793	27.34	80.9	10.81	34.69	1477.
1000	3.17	34.41	990	27.42	74.0	12.37	48.92	1479.
1200	2.72	34.49	1188	27.53	64.1	13.74	64.32	1480.
1500	2.34	34.57	1484	27.62	55.5	15.52	88.70	1484.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 4- 32 DATE 29/ 6/71
PUSITION 48-51.0N, 128-40.0W GMT 19.5
RESULTS OF STP CAST 108 POINTS TAKEN FROM ANALOG TRACE

PKESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
				Ŧ		9	EN	
0	11.19	31.95	0	24.39	354.4	0.0).0	1491.
10	10.41	31.98	10	24.55	339.7	0.35	0.02	1488.
20	10.33	32.43	20	24.92	305.4	0.67	0.07	1489.
3.0	9.63	32.49	30	25.08	289.9	0.07	0.14	1486.
50	8.34	32.52	50	25.30	268.7	1.52	0.37	1432.
7.5	6.91	32.61	7 5	25.58	242.8	2.15	7.77	1477.
100	6.66	32.95	99	25.88	214.9	2.73	1.28	1477.
125	7.08	33.58	124	26.31	174.0	3.21	1.83	1490.
150	6.93	33.84	149	26.54	152.8	3.62	2.41	1480.
175	6.79	33.86	174	26.58	149.5	4.00	3.03	148C.
∠30	6.53	33.90	199	26.64	143.3	4.37	3.73	1479.
425	6.21	33.90	223	26.68	140.0	4.72	4.50	1478.
250	5.78	33.90	248	26.74	135.0	5.07	5.33	1477.
300	5.16	33.94	208	26.84	125.3	5.72	7.16	1475.
400	4.91	34.05	397	26.96	115.2	6.93	11.46	1476.
200c	4.61	34.16	496	27.08	104.7	9.02	15.46	1476.
0 0 د	4.24	34.24	595	27.18	95.3	9.02	22.05	1477.
300	3.88	34.35	793	27.31	84.7	10.83	34.88	1479.
1000	3.43	34.43	991	27.42	74.9	12.41	49.40	1490.
1200	2.94	34.49	1188	27.51	66.6	13.83	65.20	1481.
1500	2.43	34.56	1484	27.61	57.3	15.67	90.46	1434.

SURFACE TEMPERATURE AND SALINITY OBSERVATIONS
(P-71-4)

T-S plot of surface temperature and salinity observations on Line P (asterisks) and at Station P (pluses) during P-71-4.

SURFACE SALINITY AND TEMPERATURE OBSERVATIONS CRUISE REFERENCE NUMBER 71- 4

	TE/T		SALINITY	TEMP	LONGITUDE
	10 DY	GMT	0/00	С	WEST
71	5 15	40	31.108	9.9	125-33
71	5 15	240	31.518	9.0	126- 0
71	5 15	440	31.367	9.5	126-40
71	5 15	810	31.871	8.0	127-40
71	5 15	1210	32.438	8.0	128-40
71	5 15	0	32.244	. 0.0	130-40
71	5 15	2055	32.811	7.8	131-40
71	5 16	1200	32.661	6.5	135-40
71	5 16	1445	32.642	7.0	136-40
71	5 16	1745	32.687	6.6	137-40
71	5 16	2100	0.0	6.7	138-40
71 .	5 17	20	32.688	7.0	139-40
71	5 17	430	32.677	7.1	140-40
71	5 17	1040	32.418	6.7	141-40
71	5 18	0	0.0	6.0	145- 0
71	5 19	0	32.786	5.6	ON STATION
71	5 20	0	32.787	6.0	ON STATION
71	5 21	0	32.795	6.2	ON STATION
71	5 22	0	32.778	6.5	ON STATION
71	5 23	0	32.763	6.3	ON STATION
71	5 24	0	32.784	6.5	ON STATION
71	5 25	0	32.775	6.5	ON STATION
71	5 26	0	0.0	6.3	ON STATION
71	5 27	0	0.0	6.6	ON STATION
71	5 28	0	0.0	6.3	ON STATION
71	5 29	Ö	32.765	6.2	ON STATION
71	5 30	0	32.775	6.4	ON STATION
71	5 31	0	32.763	6.4	ON STATION
71	6 1	0	32.755	6.3	ON STATION
71	6 2	0	32.760	6.4	ON STATION
71	6 3	0	32.809	6.6	ON STATION
71	6 4	0	32.764	6.7	ON STATION
71	6 5	0	32.779	6.6	ON STATION
71	6 6	ő	32.774	7.0	ON STATION
71	6 7	ő	32.762	6.9	ON STATION
71	6 8	0	32.757	7.0	ON STATION
71	6 9	0	32.752	6.8	ON STATION
71	6 10	0	32.761	6.8	ON STATION
71	6 11	0	32.761	6.8	ON STATION
71	6 12	0	32.771	6.7	ON STATION
71	6 13	0	32.769	6.8	ON STATION
71	6 14	0	32.774	7.0	ON STATION
71	6 15	0	32.735	7.5	ON STATION
71	6 16	0	32.743	7.7	ON STATION
71	6 17	0	32.705	7.5	ON STATION
71	6 18	0	32.718	7.6	ON STATION
71	6 19	0	32.716	7.7	ON STATION
71	6 20	0	32.715	7.7	ON STATION
		0	32.768	7.8	ON STATION
71	6 21	U	32.100	1.0	UN STATION

SURFACE SALINITY AND TEMPERATURE OBSERVATIONS OFFICE REFERENCE NUMBER 71- 4

DATE/TIME	SALI	VITY TEM	P LONGI	TUDE
YR MO DY G	MT 0/0	22	WE	ST
71 6 21	0 32.	768 7.	8 ON ST	ATION
71 6 22	0 32.	727 7.	9 ON ST	ATION
71 6 23	0 32.		8 ON ST	ATION
71 6 24	0 32.		3 ON ST	ATION
71 6 25	0 32.		6 ON ST	ATION
71 6 26	0 32.	713 8.	9 ON ST	ATION
71 6 27	0 32.		5 ON ST	ATION
71 6 27 22	40 32.	771 8.	5 143-	40
71 6 28 2	30 32.	742 9.	0 142-	40
71 6 28 7	15 32.	596 9.	5 141-	40
71 6 28 10	00 32.	684 9.	6 140-	40
71 6 29 13	32.	760 9.	3 139-	40
71 6 28 15	32.	516 9.	6 138-	4.)
71 6 28 17	755 32.4	572 10.	2 137-	4.)
71 6 28 20	140 32.	634 10.	3 136-	4/1
71 6 28 23	30 32.	548 10.	3 135-	40
71 6 29 2	45 32.	539 11.	1 134-	40
71 6 29 5	32.	569 10.	7 133-	49
71 6 29 7	30 32.	555 10.	8 132-	40
71 6 29 10	32.	563 11.	0 131-	40
71 6 29 12	250 32.	551 11.	0 130-	40
71 6 29 16	45 32.	515 10.	8 129-	40
71 6 29 19	31.	980 11.	4 128-	40
71 6 29 23	05 31.	784 12.	3 127-	40
71 6 30 2	31.	433 13.	1 126-	40
71 6 30 4	50 29.	744 12.	4 126-	0
71 6 30 6	45 28.	285 12.	5 125-	33

OCEANOGRAPHIC DATA OBTAINED ON CRUISE P-71-5

(C.O.D.C. REFERENCE NO. 02-71-005)

SALINITY DIFFERENCE, NANSEN - S.T.D. 9/00

Fig. 8 Bottle - STD salinity value difference profiles P-71-5.

TEMPERATURE DIFFERENCE, NANSEN - S.T.D. (°C)

Fig. 9 Reversing thermometer - STD temperature difference profiles P-71-5.

COMPOSITE PLOTS OF TEMPERATURE, SALINITY

AND DISSOLVED OXYGEN vs DEPTH

(P-71-5)

Fig. 10 Composite plot of temperature vs log₁₀ depth P-71-5.

Fig. 11 Composite plot of temperature vs log₁₀ depth P-71-5.

Fig. 12 Composite plot of salinity vs log_{10} depth P-71-5.

Fig. 13 Composite plot of salinity vs log₁₀ depth P-71-5.

Fig. 14 Composite plot of oxygen vs log₁₀ depth P-71-5.

Fig. 15 Composite plot of oxygen vs log₁₀ depth P-71-5.

RESULTS OF BOTTLE CASTS
(P-71-5)

	6/71	12.5	
`	112	GMT	
	DATE	3 0	
GROUP	9	136-40.0	_
10			DATA
I	5	ź	DA
NOGRAPH	. 711- 5-	-26.0 N,	CAST
OCEANOGRAPH	E NO. 71- 5-	49-26.0	CAST
PALIFIC OCEANOGRAPHIC			

SOUND	1488.	1480.	1482.	1484.	1491.
OXY	0.0	0.0	0.0	0.0	0.0
POT.	0.0	53.63	70.65	79.59	128.67
DELTA	0.0	19.79	21.07	21.67	24.43
SVA (THETA)	287.4	59.7	53.9	51.0	41.7
THETA			2.35		
SVA	287.6	67.7	62.3	59.7	51.2
SIGMA	25.099	27.489	27.550	27.580	27.676
DEPTH	0	1189	1384	1482	1977
SAL	32.632	34.442	34.487	34.515	34.594
TEMP	10.18	2.73	2.44		1.94
PRESS	0	1200	0	64	7

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 5- 11
PUSITION 49-58.0 N, 145- 3.0 W GMT 20.1
HYJROGRAPHIC CAST DATA

SOUND	481	481	48	475	47	467	467	1467.	46	468	468	694	694	471	472	473	475	478	480	48	491	498	506	515	524	525	527
OXY	0	0	. 1	• 2		• 2	. 2	5.58	-	6	- 7	0.	00	- 7	9.	0	.5	5	. 5	• 8	6		9.	0	.2	•2	. 2
POT.		0	0	•	• 2	• 6	0		. 1	• 6	-	. 4	0	-7	4.3	9.5	1.5	5.4	0.9	• •	36.3	3.3	59.2	35.4	23.9	43.4	63.6
DELTA		• 2	.5	.7	0	•6	•	2.64	0.	6.3	•6		-7	00	- 7	- 7	.3	0.8	2.2	-	6.8	9.3	1.6	3.9	6.2	9.9	7.1
SVA	-	51.	46.	26.	13.	.66	.96	.69	31.	22.	12.	11.	05.	.96	00		•	4.	-	0	•	9	3.	•	0	0	0
THETA	.2	•	φ.	• 4	.5	. 4	.3	4.22		6.	6.	- 7		9.	• 4	3	0.	- 7	3	• 2	- 7	.5	.3	.2	•	•	•
SVA	52.	52.	46.	26.	14.	.00	98.	170.7	32.	24.	14.	13.	08.	.66	2.	.9	φ ω	-	5.	.6		7.	5.	4.	5.	5	S
SIGMA	5.47	5.47	5.53	5.74	5.87	6.01	40.9	26.338	6.73	6.83	6.94	6.95	7.01	7.10	7.19	7.26	7.36	7.44	7.51	7.58	7.67	7.72	7.75	7.77	7.78	7.78	7.78
ОЕРТН	0							123	4	~	6	4	0	6	6	0	80	00	19		66	48	98	47	16	07	17
SAL	2.71	2.71	2.72	2.75	2.77	2.80	2.82	33.175	3.66	3.76	3.89	3.89	3.96	4.07	4.15	4.22	4.32	4.39	4.45	4.51	4.59	4.63	4.66	4.68	4.68	4.68	4.69
TEMP	. 2	-	00	• 4	.5	. 4	.3	4.23	0.	6.	6.	00	7 .	9.	• 5	.3	0.	φ.	• 5	.3	6.	- 7	9.	• 5	5.	.5	. 5
PRESS	0						0	124	4	-	9	4	6	0	0	0	0	70	77	 	7	52	22	53	70	7 4	25

PAJIFIC DCEANDGRAPHIC GROUP
REFERENCE NO. 71- 5- 14
PUSITION 50- 2.0 N. 144-58.0 W GMT 20.2
HYJROGRAPHIC CAST DATA

SOUND		483	485	480	414	414	1470.	466	465	467	468	468	695	695	471	472	473	475	477	480	484	491	498	507	515	524	526	528
OXY		000	0.	•	• 2	•	7.12	~	6.	• 3	.5	- 7	•	6.	- 7	9.	.5	.5	-	9.	1.	.5	• 2	.7	• 2	.3	• 2	
POT.	EN		0.	0.	prod 0	.2	0.63	0.	9.	• 2	000	• 4	1.	• 3	0.1	4.6	9.8	. 7	5.5	0.8	6.5	35.7	4.1	61.8	39.7	30.0	40.4	4.69
DELTA	0	0.	•2	.5			1.72	•2	-7	•	.5	8	• 4	6.	0.	.0	6.	.5	1.0	•4	4.2	7.0	9.5	1.9	4.2	6.5	7.0	7-4
>	HET	.09	54.	.94	25.	23.	209.5	95.	86.	510	26.	18.	11.	05.	.96	6	2.	2.	2.	7.	0	•	. 9	3.	1.	0	0	0
THETA		00	4.	6.	.4	.2	5.28	•	00	6.	0	6.	00	-	9.	.5	.3	0.	- 7	. 4	pm(•	r.	.3	•2	• 1	•	•
SVA		.09	55.	47.	25.	23.	210.6	.96	87.	52.	28.	20.	14.	08.	.00	.46	7 .	00	. 6	4.	8	•	-	5.	4.	5.	5.	5
SIGMA		5.38	5.43	5.52	5.75	5.77	25.916	90.9	5.15	5.52	5.79	5.87	6.94	7.01	7.10	7.17	7.24	7.36	7.45	7.51	7.58	7.67	7.72	7.75	7.77	7.78	7.78	7.78
DEPTH		0	10	20	30	64	74	66	N	4	-	0	4	0	9	0	0	798	9	61	49	98	0	00	50	00	10	20
SAL		2.71	2.72	2.72	2.75	2.75	32.788	2.82	2.90	3.37	3.71	3.81	3.88	3.96	4.06	4.14	4.21	4.32	4.40	4.45	4.52	4.59	4.63	4.66	4.67	4.68	4.68	4.68
TEMP		00	4	6	4	2	5.29	-	00	6	0	6.	00	-	9.	.5	3	0	- 1	. 5	.2	6.	7 .	5	5.	5	.5	· 57
RESS		0	10	20	30	64	74	0	125	5	~	0	5	0	0	0	0	0	5	20	7	7	22	すっ	56	70	17	4578

PALIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 5- 17
PJSITION 49-58.0 N, 144-58.0 W GMT 20.2
HYJROGRAPHIC CAST DATA

SOUND	485	485	478	1475.	473	467	466	465	467	468	694	694	470	471	472	473	475	478	480	484	491	64	507	51	52	52	52
OXY		6.	• 4	7.22	•	• 1	• 2	00	.3	.3	• 5	00	.2	- 7	9.	5	• 5	.5	• 6	. 8	.3	0.	9.	0.	.2	• 2	.3
POT.	0	0.	0.		•2	• 6	• 0	.5	•	• 6	• 2	9.	proof 0	6.	4.6	6.6	2.1	•	1.6	7.6	37.1	94.8	60.7	36.8	27.6	47.3	7.7
DELTA	0.	•2	5		•		• 1	9.	0.	• 4	-7	• 3	00	6.	6.	6.	• 6	1.1	• 5	4.4	7.1	9.6	1.9	4.2	6.5	7.0	7.5
SVA	9	67.	38.	28.	20.	.66	92.	83.	51.	29.	21.	15.	10.	.66	2.	4.	2.	4.	•	0	•	• 9	2.	•	0	0	0.
THETA	.3	• 2	. 3	69.9	0	• 4	•	00	0.		0.	6.	00	9.	• 5	. 3	0.	7 .	.5	-	-	• 5	• 3	• 2	-	•	• 1
SVA	.69	67.	38.	228.8	21.	000	93.	84.	520	31.	23.	18.	12.	03.	.96	6	8	•	5.	° Ф	•	-	4.	4.	5.	5	5
SIGMA	5.28	5.31	5.61	25.720	5.79	6.02	60.9	6.18	6.53	6.76	6.83	6.90	6.96	7.06	7.15	7.23	7.35	7.43	7.51	7.58	7.67	7.72	7.76	7.77	7.78	7.78	7.78
DEPTH	0			59				N		-	0	4	0	6	0	6	6	0	19	6	66	64	98	64	66	60	19
SAL	2.70	2.70	2.73	32.741	2.75	2.81	2.84	2.94	3.39	3.69	3.78	3.85	3.91	4.02	4.11	4.20	4.31	4.39	4.45	4.51	4.59	4.63	4.67	4.67	4.68	4.68	4.68
TEMP	3	2	~	69.9	0	4.	0	00	0	provi 0	0	6.	00	7.	.5	4.	0	00	.5	• 2	6.		5	5	rU.	7.	·
PRESS	0			5.9				2		~	0	4	6	5	6	\circ	0	0	0	10	7	25	33	5 C	90	91	17

PACIFIC DCEANDGRAPHIC GROUP
REFERENCE ND. 71- 5- 20
PUSITION 49-57.0 N. 145- 0.0 W GMT 19.8
HYJROGRAPHIC CAST DATA

SOUND	488	488	487	1477.	474	695	467	467	467	468	468	469	694	471	472	473	475	478	480	484	491	665	50	515	524	52	C
0XY		- 7	000	7.38	0.	•	•	00	•	.0	• 5	- 7	.2	- 7	.0	. 5	.5	.5	9.	00	.4	•	• 6	0.	• 2	•2	6
POT.		0.	0.		.3	9.		9.	•2	8	3	7 .	.3	0.1	- 7	0.0	2.2	6.3	1.9	7.8	37.5	95.5	62.6	40.6	1.8	51.8	7.0 1
DELTA	0.	• 2	.5	0.83	• 2	00	63	-	•2	. 5	00	. 4	0.	•	•	0.	. 7	1.2	2.6	4.4	7.2	7.6	2.0	4.4	-7	7.2	7 4
SVA	3	82.	75.	34.	23.	.90	98.	.06	46.	26.	22.	14.	07.	98	0	~	2.	3.	7	.6	1.	• 9	3.	1.	0	0	
THETA	0.2	•	7.6	7.07	. 2	00	.3	•	0.	0	6.	00	7.	• 6	5	.3	0.	7.	. 4	emi 0	- 7	.5		•2	• 2	. 1	-
SVA	84.	82.	75.	235.4	24.	07.	.66	91.	48.	28.	24.	16.	10.	01.	94.	00	о С	-	4.	7.	•	-	5.	5	5.	5.	7
SIGMA	5,13	5.15	5.22	25.652	5.76	5.95	6.02	6.11	6.57	6.19	6.83	6.91	86.9	7.08	7.16	7.23	7.35	7.44	7.51	7.59	7.67	7.72	7.75	7.77	T.77	7.78	7 70
ОЕРТН	0	10	20	30	64	14	66	N	4	-	0	4	0	0	497	0	0	00	20	50	00	50	00	50	-		2
SAL	2.68	2.69	2.70	32,735	2.75	2.76	2.80	2.88	3.44	3.72	3.76	3.86	3.94	4.04	4.13	4.20	4.31	4.39	4.45	4.52	4.59	4.63	4.66	4.67	4.68	4.68	4 4 2
TEMP	0.2		9.7	7.07	2	Φ.	4.		0	0	6	6.	φ.	9.	5	4.	-	Φ.	10	• 2	6.	-	*U	ال ا	•	un •	us
RESS	0	10	2.0	30	64	74	0	~	4	-	5	4	0	0	201	0	0	7	-	:C	22	53	5	56	7	∞	0

PALIFIC OCEANDGRAPHIC GROUP
REFERENCE NO. 71- 5- 23 DATE 26/ 7/71
PUSITION 50- 0.0 N. 144-58.0 W GMT 20.2
HYJROGRAPHIC CAST DATA

SOUND	491	491	165	483	412	470	1467.	465	467	468	468	695	694	471	472	473	415	478	480	484	491	665	507	515	524	526	528
DXY		• 30	1	.2	• 2	•2	7.21	0.	• 6	• 8	•	• 2	00	9.	• 6	• 4	. 5	5	3	- 7	6	0.	• 6	.1		• 2	6
POT.	0	0	0.	-	.3	9.		5	•	9.	.2	. 5	0	7.6	4.2	4.6	2.2	6.1	7.	7.7	37.5	95.4	62.4	40.2	31.5	1.6	72.4
DELTA	0	63	5	ω.	6.3	Φ,	2.32	7.	.2	5.	Φ.	4.	6.	0.	0.	6.	7.6	1.2	9.	4.5	7.2	9.7	2.1	4.4	6.8	7.2	7.7
SVA	0	97.	.96	58°	26.	07.	96	84°	51°	28°	20.	14.	.60	98.	•	3.	2 .	9	7.	0	•	9	3.	1.	.0	0	6
THETA	6.	0.9	0.8	8.6	• 4	-	4.29	00	0	0	6.	00	-	• 6	. 5	.3	0.	10	r.		• 00	* 77.	63	• 2	. 1	•	•
SVA	.66	98.	.96	59.	27.	08.	197.9	86.	53.	30.	22.	16.	11.	02.	95.	00	00	0	5	8		7	5	4.	5	5	5
SIGMA	4.97	4.98	5.00	5,39	5.73	5,93	26.049	6.17	6.52	6.76	6.85	16.9	6.97	7.08	7,16	7.24	7.35	7.44	7.51	7.58	7.67	7.72	7.75	7.77	7.78	7.78	7.78
ОЕРТН	0	10	19	29	48	72	96	2	4	-0	0	4	0	389	∞	0	0	00	0	49	66	49	66	49	00		21
SAL	2.65	2.65	2.66	2.71	2.74	2.78	32,820	2.92	3 . 3 8	3.69	3.78	3.85	3.91	4.04	4.12	4.20	4.31	4.39	4.45	4.51	4.59	4.63	4.66	4.68	4.69	4.69	•69
TEMP	0.9	0.9	00	8.6	4.		സ	σ:	0	0	6	φ.	-	9.	· S	*	0	α •	· ru	. 2	0,	-	9 •		ري. (د)	ال ال	1.53
PRESS	0	10	19	29	4	7.2	16	2	1	ು	0	4	0	0	9	0	()	~~)	~	5	3	52	_C	5	7	8	4588

PALIFIC OCEANDGRAPHIC GROUP
REFERENCE NO. 71- 5- 26
PJSITION 50- 6.0 N. 145- 0.0 W GMT 18.9
HYJROGRAPHIC CAST EATA

SOUND	49	6 +	486	47	474	472	46	194	194	46	468	694	410	471	472	473	475	478	480	484	165	498	506	515	524	1526.	52
ΟΧΥ	4.	• 4	• 2	. 5	0.	6.	0.	- 7	• 5	•	• 5	• 6	.33	• α	• 6	. 5	. 5	• 4	• 5	- 7	.3	6.	9.	0.	• 2	3.23	• 2
POT.	0	0	0	-	3	9.		9.	.2	φ.	• 4	00	4.	0.3	6 • 4	0.2	1.7	5.6	6.0	6.7	36.2	94.0	9.09	37.9	28.5	448.29	68.8
DELTA	0	33	5	∞	3	∞	6	σ.	.2	9.	6.	٠ ا	,i	-2	.2	pared 0	9.7	1.2	2.6	4.5	7.2	9.7	2.1	4.4	6.7	27.21	7.6
SVA	-	16.	72.	41.	25.	13.	. 66	88	.64	27.	20.	13.	07.	8	0	3	2	+	7	0		9	3	-	Ö	Ô	0
THETA	0	2.0	9.4	9	3	9.	4.73	. 1	0	C.	0	00	6.	9	.5	6	<u></u>	1.	4.	•	∞	TZ.	6	-€2 -		1.17	-
SVA	17.	17.	72.	42.	26.	14.	0	89.	51.	29.	22.	15.	10.	02.	94.	ထ	œ.		4.	<u> </u>	•	-	5.	4.	5	45.4	5
SIGMA	. 78	1.78	5.25	5.58	5.74	5.87	5.02	5.14	5.54	5.78	5 . 35 5 . 35	5.92	5.98	7.08	7.17	7.24	7.35	7.44	7.51	7.58	7.67	7.72	7.75	7.77	7.78	27.784	7.78
ЭЕРТН	0	10	19	29	64	73	96	0	· <	_	0	1	0	$-\circ$	0	\circ	$ \sigma$	0	6.	49	80	48	_ 00	49	99	4098	23
SAL	.65	.65	. 68	.74	2.74	.79	γα. •	26.2	3.41	3.70	3.78	3.87	3.95	4.04	4.13	4.20	4.31	4.39	4.45	4.52	4.59	4.63	4.66	4.68	4.68	4.68	34.691
TEMP	2.0		4.6	9	· ~	- 40	· /-	_		0	0	000	5		· LA				1 TU								1.53
28ESS	C	C C	0 -	0	40	73	0.0	1	1 4	. ~	. 7	· LC	V (7)	(-					. ~	7	, 6) 4	+7.7+

RESULTS OF STD CASTS
(P-71-5)

PAUTEIC UCEANOGRAPHIC GROUP
REFERENCE NO. 71- 5- 1 DATE 25/ 6/71
PUSITION 48-33.0N, 125-33.0W GMT 23.1
REJULTS OF STP CAST 24 POINTS TAKEN FROM ANALOG TRACE

PALSS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT. EN	SOUND
×./	10.90	31.78	0	24.31	362.1	0.0	0.0	1490.
1.7	10.90	31.78	10	24.31	362.5	0.36	0.02	1490.
20	10.85	31.78	20	24.32	361.9	0.72	9.07	1490.
3.0	9.26	32.17	30	24.89	308.0	1.07	0.16	1485.
50	7.56	33.04	50	25.82	219.4	1.59	0.37	1479.
7.5	6.71	33.70	75	26.46	159.3	2.05	0.66	1477.

DEPTH	TEMP	SAL	DEPTH	TEMP	SAL
0.	10.90	31.78	39.	8.09	32.70
10.	10.90	31.78	44.	7.93	32.77
12.	10.90	31.78	50.	7.56	33.04
20.	10.85	31.78	53.	7.41	33.13
22.	10.85	31.79	55.	7.38	33.17
25.	10.76	31.79	56.	7.38	33.17
26.	10.56	31.79	62.	7.05	33.42
30.	9.26	32.17	65.	6.88	33.58
31.	9.08	32.20	68.	6.78	33.67
33.	8.93	32.34	70.	6.73	33.69
35.	8.50	32.52	75.	6.71	33.70
38.	8.28	32.66	90.	6.70	33.72

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 5- 2 DATE 26/ 6/71
PUSITION 48-37.0N, 125-58.0W GMT 0.6
RESULTS OF STP CAST 26 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
				Ŧ		D	EN	
0	10.53	31.61	0	24.25	368.6	0.0	0.0	1488.
10	10.45	31.64	10	24.28	365.5	0.37	0.02	1488.
20	9.83	31.94	20	24.62	333.7	0.72	0.07	1486.
30	7.98	32.61	30	25.43	256.8	1.01	0.14	1480.
50	7.60	33.01	50	25.79	222.1	1.49	0.34	1480.
75	7.13	33.32	75	26.10	193.1	2.00	0.67	1479.
DEP	TH TE	MP	SAL		DEPTH	TEMP	SAL	
	. 10.		11.61		43.	7.85	32.8	
2	. 10.	.48 3	1.62		46.	7.69	32.9	2
10	. 10.	45 3	11.64		48.	7.68	32.9	6
11	. 10.	,44 3	11.65		50.	7.60	33.0	1
13	. 10.	45 3	1.67		57.	7.43	33.1	0
17	. 10.	12 3	1.79		58.	7.41	33.1	0
18	. 10.	.08 3	1.82		60.	7.34	33.1	4
20	9.	83 3	11.94		64.	7.28	33.1	9
23	. 8.	.48 3	12.29		65.	7.24	33.1	9
30	7.	.98 3	12.61		75.	7.13	33.3	2
33	7.	95 3	12.65		80.	6.93	33.4	8
34	. 7.	90 3	32.71		84.	6.88	33.5	1
39	7.	90 3	12.77		90.	6.87	33.5	1

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 5- 3 DATE 26/ 6/71
PUSITION 48-42.0N, 126-40.0W GMT 3.1
RESULTS OF STP CAST 113 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
				T		D	EN	
0	10.95	31.85	0	24.36	357.7	0.0	0.0	1490.
10	10.90	31.84	10	24.36	358.1	0.36	0.02	1490.
20	10.74	31.85	20	24.40	354.9	0.72	0.07	1489.
30	8.46	32.08	30	24.94	303.0	1.04	0.15	1481.
50	7.58	32.43	50	25.34	265.0	1.61	0.38	1479.
75	6.95	32.68	75	25.62	238.5	2.24	0.78	1477.
100	7.40	33.26	99	26.02	201.6	2.78	1.27	1480.
125	7.39	33.59	124	26.28	177.3	3.25	1.80	1481.
150	7.04	33.75	149	26.45	161.0	3.68	2.40	1480.
175	6.80	33.87	174	26.58	149.3	4.06	3.04	1480.
200	6.62	33.89	199	26.62	145.8	4.43	3.74	1479.
225	6.21	33.92	223	26.69	139.0	4.79	4.51	1478.
250	6.03	33.94	248	26.74	135.2	5.13	5.34	1478.
00د	5.68	33.97	298	26.80	129.2	5.79	7.19	1477.
400	5.21	34.05	397	26.92	118.8	7.02	11.57	1477.
200	4.93	34.11	496	27.00	112.0	8.17	16.82	1478.
600	4.69	34.16	595	27.07	106.5	9.26	22.93	1478.
000	4.17	34.30	793	27.24	91.9	11.23	36.98	1480.
1000	3.67	34.40	991	27.37	80.3	12.95	52.71	1481.
1200	3.27	34.46	1188	27.45	72.6	14.47	69.75	1483.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 5- 4 DATE 27/ 6/71
PUSITION 49-17.0N, 134-40.0W GMT 3.7
RESULTS OF STP CAST 98 POINTS TAKEN FROM ANALOG TRACE

PKESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA D	POT.	SOUND
0	10.09	32.63	0	25.11	286.0	0.0	0.0	1488.
10	10.09	32.63	10	25.11	286.4	0.29	0.01	1488.
20	10.09	32.63	20	25.11	286.6	0.57	0.06	1488.
30	9.58	32.63	30	25.20	278.8	0.86	0.13	1486.
50	7.35	32.64	50	25.54	246.4	1.38	0.34	1478.
75	6.39	32.68	75	25.70	231.5	1.98	0.72	1475.
100	5.55	32.78	99	25.88	214.3	2.53	1.22	1472.
125	5.61	33.14	124	26.16	188.3	3.04	1.80	1473.
150	5.69	33.64	149	26.54	152.2	3.46	2.39	1474.
175	5.58	33.75	174	26.64	143.0	3.83	3.00	1475.
∠00	5.33	33.79	199	26.70	137.3	4.18	3.67	1474.
225	4.99	33.82	223	26.76	131.8	4.52	4.40	1473.
250	4.80	33.83	248	26.80	128.8	4.84	5.18	1473.
300	4.33	33.88	298	26.89	120.4	5.47	6.93	1472.
40 0	3.98	34.01	397	27.03	107.9	6.59	10.94	1472.
500	3.80	34.11	496	27.12	99.3	7.63	15.70	1473.
600	3.69	34.19	595	27.20	92.9	8.60	21.09	1474.
000	3.40	34.32	793	27.33	81.6	10.33	33.45	1476.
1000	3.03	34.39	990	27.42	73.7	11.89	47.69	1478.
1200	2.69	34.46	1188	27.51	66.0	13.28	63.25	1480.
1500	2.33	34.53	1484	27.59	58.4	15.15	88.87	1484.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 5- 5 DATE 27/ 6/71
PUSITION 49-26.0N, 136-40.0W GMT 9.7
RESULTS OF STP CAST 99 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
				T		D	EN	
0	10.17	32.65	0	25.11	285.8	0.0	0.0	1488.
10	10.16	32.65	10	25.12	286.0	0.29	0.01	1488.
20	8.70	32.65	20	25.35	263.9	0.56	0.06	1483.
30	7.58	32.65	30	25.51	248.4	0.82	0.12	1479.
50	6.68	32.69	50	25.67	234.0	1.30	0.32	1476.
75	5.85	32.73	75	25.80	221.3	1.87	0.68	1473.
100	5.33	32.82	99	25.94	208.9	2.41	1.16	1471.
125	5.31	33.02	124	26.10	193.9	2.91	1.73	1472.
150	5.78	33.51	149	26.43	163.0	3.35	2.35	1475.
175	5.68	33.71	174	26.60	147.1	3.74	2.99	1475.
200	5.37	33.80	199	26.71	137.1	4.09	3.67	1474.
225	5.03	33.79	223	26.74	134.2	4.43	4.41	1473.
250	4.80	33.81	248	26.78	130.3	4.77	5.21	1473.
300	4.53	33.88	298	26.86	122.6	5.40	6.98	1472.
49.0	4.13	33.97	397	26.98	112.4	6.58	11.18	1473.
000	4.06	34.08	496	27.07	104.3	7.66	16.13	1474.
500	3.94	34.17	595	27.16	97.1	8.67	21.77	1475.
800	3.47	34.30	793	27.31	83.9		34.64	1477.
1000	3.06	34.39	990	27.42	74.1	12.05	49.04	1478.
1200	2.75	34.45	1188	27.49	67.4		64.88	1480.
1500	2.35	34.52	1484	27.58	59.3		90.75	1484.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 5- 7 DATE 27/ 6/71
PUSITION 49-34.0N, 138-40.0W GMT 18.8
RESULTS OF STP CAST 105 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT. EN	SOUND
0	9.75	32.75	0	25.26	271.7	0.0	0.0	1487.
10	9.73	32.75	10	25.27	271.9	0.27	0.01	1487.
20	8.43	32.75	20	25.47	252.6	0.54	0.05	1482.
30	7.68	32.75	30	25.58	242.3	0.78	0.12	1479.
50	6.24	32.76	50	25.78	223.4	1.25	0.30	1474.
75	5.49	32.79	75	25.89	212.6	1.79	0.65	1471.
100	4.90	32.87	99	26.02	200.4	2.31	1.11	1469.
125	5.16	33.21	124	26.26	178.0	2.79	1.66	1471.
150	5.33	33.62	149	26.57	149.5	3.20	2.23	1473.
175	5.20	33.73	174	26.67	140.0	3.56	2.83	1473.
200	5.00	33.75	199	26.71	136.5	3.90	3.49	1473.
225	4.70	33.78	223	26.77	130.9	4.24	4.21	1472.
250	4.50	33.81	248	26.81	127.0	4.56	4.99	1471.
300	4.21	33.86	298	26.88	120.6	5.18	6.72	1471.
400	3.90	33.96	397	26.99	110.8	6.34	10.85	1472.
500	3.78	34.08	496	27.10	101.3	7.39	15.68	1473.
600	3.58	34.16	595	27.19	94.0	8.37	21.16	1474.
800	3.30	34.30	793	27.32	82.1	10.12	33.62	1476.
1000	3.00	34.38	990	27.42	74.2	11.68	47.87	1478.
1200	2.71	34.45	1188	27.50	67.0	13.09	63.64	1480.
1500	2.35	34.52	1484	27.58	59.3	14.98	89.66	1484.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 5- 8 DATE 28/ 6/71
PUSITION 49-41.ON, 140-40.OW GMT 1.0
RLSULTS OF STP CAST 96 POINTS TAKEN FROM ANALOG TRACE

PKESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT. EN	SOUND
0	9.54	32.68	0	25.24	273.7	0.0	0.0	1486.
10	9.53	32.68	10	25.24	274.0	0.27	0.01	1486.
20	9.18	32.68	20	25.30	268.8	0.55	0.06	1485.
30	8.21	32.68	30	25.45	254.8	0.81	0.12	1481.
50	7.02	32.71	50	25.64	236.8	1.30	0.32	1477.
75	6.38	32.76	75	25.76	225.4	1.87	0.69	1475.
100	5.85	32.79	99	25.85	217.0	2.43	1.18	1473.
125	5.35	32.83	124	25.94	208.6	2.96	1.79	1472.
150	5.32	33.01	149	26.09	195.0	3.47	2.50	1472.
175	5.87	33.60	174	26.49	157.6	3.91	3.24	1476.
200	5.72	33.73	199	26.61	146.4	4.29	3.96	1476.
225	5.18	33.77	223	26.70	137.3	4.65	4.73	1474.
250	4.94	33.83	248	26.78	130.4	4.98	5.54	1473.
300	4.65	33.88	298	26.85	123.9	5.62	7.33	1473.
400	3.98	33.94	397	26.97	113.1	6.81	11.56	1472.
200	3.80	34.04	496	27.07	104.6	7.89	16.52	1473.
600	3.63	34.14	595	27.16	96.1	8.90	22.12	1474.
800	3.30	34.28	793	27.31	83.5	10.69	34.88	1476.
1000	2.98	34.37	990	27.41	74.7	12.28	49.38	1478.
1200	2.73	34.44	1188	27.49	67.9	13.70	65.30	1480.
1500	2.42	34.51	1484	27.57	60.9	15.63	91.82	1484.

PACIFIC OCEANOGRAPHIC GROUP

KEFERENCE NO. 71- 5- 9 DATE 28/ 6/71

PUSITION 49-49.0N, 142-40.0W GMT 8.3

RESULTS OF STP CAST 84 POINTS TAKEN FROM ANALOG TRACE

PKESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT. EN	SOUND
0	8.91	32.74	0	25.39	259.8	0.0	0.0	1483.
10	8.85	32.74	10	25.40	259.3	0.26	0.01	1483.
20	8.17	32.74	20	25.50	249.6	0.51	0.05	1481.
30	7.52	32.74	30	25.59	240.9	0.76	0.11	1479.
50	6.48	32.77	50	25.76	225.5	1.23	0.31	1475.
7.5	5.33	32.83	75	25.94	207.9	1.77	0.65	1471.
100	4.85	32.85	99	26.01	201.4	2.28	1.10	1469.
125	5.31	33.34	124	26.35	170.0	2.76	1.65	1472.
150	5.36	33.74	149	26.66	140.8	3.14	2.18	1473.
175	5.03	33.78	174	26.73	134.4	3.48	2.74	1472.
200	4.83	33.78	199	26.75	132.4	3.81	3.38	1472.
225	4.66	33.81	223	26.79	128.9	4.14	4.09	1472.
250	4.58	33.83	248	26.82	126.4	4.46	4.87	1472.
300	4.28	33.88	298	26.89	119.9	5.08	6.60	1471.
400	3.95	33.99	397	27.01	109.0	6.22	10.66	1472.
500	3.74	34.08	496	27.11	100.9	7.27	15.48	1473.
600	3.56	34.16	595	27.19	93.8	8.25	20.92	1474.
300	3.24	34.29	793	27.32	82.1	10.00	33.37	1476.
1000	2.93	34.38	990	27.42	73.4	11.55	47.57	1478.
1200	2.67	34.45	1188	27.50	66.5	12.94	63.12	1480.
1500	2.37	34.52	1484	27.58	59.6	14.84	89.14	1484.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 5- 10 DATE 29/ 6/71
PUSITION 49-58.ON, 145- 3.OW GMT 18.7
RESULTS OF STP CAST 66 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT. EN	SOUND
0	8.20	32.71	0	25.47	251.8	0.0	0.0	1481.
10	8.20	32.71	10	25.47	252.2	0.25	0.01	1481.
20	8.20	32.71	20	25.47	252.3	0.50	0.05	1481.
30	6.61	32.73	30	25.71	229.9	0.74	0.11	1475.
50	6.15	32.75	50	25.78	223.0	1.20	0.30	1474.
75	4.51	32.80	75	26.01	201.4	1.72	0.63	1467.
100	4.34	32.83	99	26.05	197.6	2.21	1.07	1467.
125	4.19	33.17	124	26.34	170.7	2.69	1.62	1467.
150	4.08	33.63	149	26.71	135.3	3.07	2.15	1468.
175	3.99	33.74	174	26.81	126.4	3.40	2.68	1468.
200	3.91	33.80	199	26.87	121.2	3.71	3.27	1468.
225	3.85	33.84	223	26.90	118.0	4.00	3.92	1468.
250	3.83	33.88	248	26.94	114.8	4.30	4.62	1469.
300	3.76	33.95	298	27.00	109.2	4.86	6.19	1469.
400	3.65	34.07	397	27.11	99.9	5.91	9.94	1471.
500	3.52	34.15	496	27.18	93.4	6.88	14.36	1472.
000	3.36	34.22	595	27.25	87.2	7.78	19.40	1473.
800	3.09	34.33	793	27.37	77.5	9.42	31.05	1475.
1000	2.82	34.40	990	27.45	70.7	10.89	44.54	1477.
1200	2.56	34.47	1188	27.53	63.9	12.24	59.57	1480.
1500	2.28	34.53	1483	27.60	57.8	14.06	84.55	1484.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 5- 12 DATE 2/ 7/71
PUSITION 49-59.0N, 145- 2.0W GMT 18.3
RESULTS OF STP CAST 42 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
				Ŧ		D	EN	
0	8.29	32.71	0	25.46	253.1	0.0	0.0	1481.
10	8.25	32.72	10	25.47	252.1	0.25	0.01	1481.
20	8.21	32.73	20	25.49	251.0	0.50	0.05	1481.
30	8.18	32.74	30	25.50	249.9	0.75	0.12	1481.
50	6.38	32.77	50	25.77	224.3	1.22	0.30	1474.
75	4.75	32.81	75	25.99	203.1	1.76	0.65	1468.
100	4.09	32.85	99	26.09	193.6	2.25	1.09	1466.
125	3.85	32.94	124	26.19	184.7	2.73	1.63	1465.
150	3.89	33.45	149	26.59	146.9	3.15	2.22	1467.
175	4.01	33.72	174	26.79	128.1	3.49	2.78	1468.
200	3.94	33.79	199	26.86	122.3	3.80	3.37	1468.
225	3.89	33.82	223	26.89	119.4	4.10	4.03	1469.
250	3.85	33.86	248	26.92	116.5	4.40	4.74	1469.
300	3.78	33.93	298	26.98	110.9	4.97	6.33	1469.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 5- 13 DATE 5/ 7/71
PUSITION 50- 2.0N, 144-58.0W GMT 18.8
RESULTS OF STP CAST 61 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
				Ŧ		D	EN	
0	8.85	32.72	0	25.38	260.3	0.0	0.0	1483.
10	8.73	32.73	10	25.41	258.2	0.26	0.01	1483.
20	8.42	32.74	20	25.46	253.1	0.52	0.05	1482.
30	6.63	32.75	30	25.72	228.6	0.75	0.11	1475.
50	6.25	32.77	50	25.79	222.8	1.20	0.30	1474.
75	5.43	32.79	75	25.90	212.0	1.75	0.64	1471.
100	4.21	32.84	99	26.07	195.6	2.26	1.09	1466.
125	3.94	32.89	124	26.14	189.3	2.74	1.64	1466.
150	3.88	33.29	149	26.46	158.9	3.18	2.27	1466.
175	4.05	33.72	174	26.79	128.5	3.53	2.84	1468.
200	3.95	33.79	199	26.85	122.4	3.84	3.44	1468.
225	3.89	33.83	223	26.89	118.7	4.15	4.09	1469.
450	3.84	33.87	248	26.93	115.6	4.44	4.80	1469.
300	3.78	33.94	298	26.99	110.2	5.00	6.38	1469.
400	3.68	34.04	397	27.08	102.5	6.06	10.15	1471.
500	3.56	34.13	496	27.16	95.3	7.05	14.67	1472.
000	3.43	34.20	595	27.23	89.4	7.98	19.85	1473.
800	3.14	34.31	793	27.35	79.6	9.66	31.77	1475.
1000	2.85	34.40	990	27.44	71.1	11.16	45.53	1478.
1200	2.59	34.47	1188	27.52	.64.1	12.52	60.73	1480.
1500	2.30	34.53	1484	27.60	58.0	14.36	85.99	1484.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 5- 15 DATE 8/ 7/71
PUSITION 50- 2.0N, 144-58.0W GMT 19.3
RESULTS OF STP CAST 44 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
				T		D	EN	
0	8.93	32.73	0	25.38	260.8	0.0	0.0	1484.
10	8.91	32.73	10	25.38	260.9	0.26	0.01	1484.
20	8.83	32.73	20	25.39	259.9	0.52	0.05	1483.
30	7.72	32.75	30	25.57	242.8	0.77	0.12	1479.
50	6.33	32.77	50	25.78	223.7	1.23	0.30	1474.
75	4.52	32.83	75	26.03	199.2	1.76	0.64	1467.
100	4.12	32.84	99	26.08	194.6	2.25	1.08	1466.
125	3.91	32.90	124	26.15	188.2	2.73	1.63	1466.
150	3.82	33.27	149	26.45	159.8	3.18	2.25	1466.
175	4.00	33.65	174	26.74	133.2	3.54	2.84	1468.
200	3.94	33.77	199	26.84	123.7	3.86	3.45	1468.
425	3.88	33.83	223	26.90	118.7	4.16	4.11	1468.
250	3.84	33.86	248	26.92	116.4	4.45	4.82	1469.
300	3.79	33.93	298	26.98	111.0	5.02	6.41	1469.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 5- 16 DATE 12/ 7/71
PUSITION 49-58.0N, 144-58.0W GMT 18.6
RESULTS OF STP CAST 62 POINTS TAKEN FROM ANALOG TRACE

PKESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT. EN	SOUND
0	9.23	32.72	0 .	25.32	266.0	0.0	0.0	1485.
10	9.21	32.72	10	25.33	266.2	0.27	0.01	1485.
20	8.91	32.72	20	25.37	261.8	0.53	0.05	1484.
30	6.83	32.74	30	25.69	231.9	0.78	0.12	1476.
50	6.34	32.76	50	25.77	224.6	1.23	0.30	1474.
75	4.69	32.82	75	26.01	201.7	1.77	0.64	1468.
100	4.25	32.84	99	26.07	195.9	2.27	1.09	1467.
125	4.01	32.90	124	26.14	189.3	2.75	1.64	1466.
150	3.93	33.36	149	26.51	154.1	3.19	2.25	1467.
175	4.16	33.74	174	26.79	128.1	3.53	2.82	1469.
200	4.05	33.79	199	26.84	123.4	3.84	3.42	1469.
225	3.98	33 . 82	223	26.88	120.6	4.15	4.08	1469.
250	3.93	33.85	248	26.90	118.1	4.45	4.80	1469.
300	3.85	33.92	298	26.97	112.4	5.02	6.41	1470.
400	3.72	34.02	397	27.06	104.4	6.10	10.24	1471.
500	3.61	34.11	496	27.14	97.2	7.11	14.86	1472.
600	3.43	34.20	595	27.23	89.4	8.04	20.07	1473.
800	3.10	34.32	793	27.36	78.4	9.72	31.97	1475.
1000	2.86	34.40	990	27.44	71.2	11.21	45.65	1478.
1200	2.58	34.47	1188	27.52	64.0	12.56	60.70	1480.
1500	2.31	34.52	1484	27.59	58.9	14.40	86.02	1484.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 5- 18 DATE 15/ 7/71
PUSITION 49-58.ON, 145- 6.OW GMT 18.9
RESULTS OF STP CAST 51 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT. EN	COUND
0	9.43	32.73	0	25.30	268.3	0.0	0.0	1485.
10	9.43	32.73	10	25.30	268.7	0.27	0.01	1486.
20	9.43	32.73	20	25.30	268.9	0.54	0.05	1486.
30	8.13	32.74	30	25.51	249.2	0.80	0.12	1481.
50	6.48	32.76	50	25.75	226.3	1.27	0.31	1475.
75	4.72	32.81	75	26.00	202.8	1.81	0.65	1468.
100	4.25	32.84	99	26.07	195.9	2.30	1.09	1467.
125	4.01	32.91	124	26.15	188.5	2.78	1.65	1466.
150	4.10	33.51	149	26.62	144.5	3.19	2.22	1468.
175	4.05	. 33.73	174	26.80	127.6	3.53	2.77	1468.
200	3.99	33.78	199	26.84	123.5	3.84	3.37	1468.
425	3.92	33.83	223	26.89	119.6	4.15	4.03	1469.
250	3.90	33.86	248	26.92	117.0	4.44	4.74	1469.
300	3.85	33.92	298	26.97	112.4	5.01	6.34	1470.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 5- 19 DATE 19/ 7/71
PUSITION 49-57.ON, 145- 0.OW GMT 18.6
RESULTS OF STP CAST 78 POINTS TAKEN FROM ANALOG TRACE

T D EN 0 10.21 32.69 0 25.14 283.5 0.0 0.0 1488 10 10.17 32.71 10 25.16 281.8 0.28 0.01 1488 20 9.98 32.73 20 25.21 277.4 0.56 0.06 1488 30 8.08 32.74 30 25.51 248.6 0.82 0.12 1481	ID
10 10.17 32.71 10 25.16 281.8 0.28 0.01 1488 20 9.98 32.73 20 25.21 277.4 0.56 0.06 1488 30 8.08 32.74 30 25.51 248.6 0.82 0.12 1481	
20 9.98 32.73 20 25.21 277.4 0.56 0.06 1488 30 8.08 32.74 30 25.51 248.6 0.82 0.12 1481	
30 8.08 32.74 30 25.51 248.6 0.82 0.12 1481	
50 6.55 32.75 50 25.73 227.9 1.29 0.31 1475	
75 5.54 32.79 75 25.89 213.2 1.85 0.67 1472	
100 4.45 32.82 99 26.03 199.4 2.36 1.12 1467	
125 4.18 32.90 124 26.12 190.9 2.85 1.68 1467	
150 4.02 33.38 149 26.52 153.4 3.28 2.29 1467	
175 4.08 33.69 174 26.76 131.0 3.64 2.87 1468	
200 3.98 33.76 199 26.83 124.9 3.95 3.48 1468	
225 3.95 33.81 223 26.87 121.3 4.26 4.14 1469	
250 3.91 33.85 248 26.91 117.8 4.56 4.87 1469	
300 3.79 33.91 298 26.97 112.6 5.14 6.48 1469	
400 3.70 34.04 397 27.08 102.7 6.21 10.29 1471	
500 3.57 34.13 496 27.16 95.4 7.20 14.81 1472	
600 3.44 34.20 595 27.23 89.5 8.12 19.98 1473	
800 3.11 34.32 793 27.36 78.5 9.81 31.96 1475	
1000 2.85 34.40 990 27.44 71.1 11.30 45.60 1478	
1200 2.61 34.46 1188 27.51 65.1 12.66 60.83 1480	
1500 2.33 34.53 1484 27.59 58.4 14.51 86.21 1484	

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 5- 21 DATE 22/ 7/71
PUSITION 50- 0.0N, 145- 0.0W GMT 23.3
RESULTS OF STP CAST 58 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
				1		D	EN	
0	10.55	32.69	0	25.08	289.0	0.0	0.0	1489.
10	10.49	32.70	10	25.10	287.7	0.29	0.01	1489.
20	10.44	32.71	20	25.12	286.3	0.58	0.06	1489.
30	8.51	32.74	30	25.45	254.7	0.85	0.13	1482.
50	6.54	32.76	50	25.74	227.1	1.32	0.32	1475.
75	5.52	32.79	75	25.89	213.0	1.87	0.67	1471.
100	4.48	32.83	99	26.04	199.0	2.38	1.13	1468.
125	4.23	32.94	124	26.15	188.4	2.87	1.68	1467.
150	4.08	33.44	149	26.56	149.6	3.29	2.27	1468.
175	4.08	33.71	174	26.78	129.5	3.63	2.84	1468.
200	3.96	33.77	199	26.84	123.9	3.95	3.44	1468.
225	3.91	33.81	223	26.87	120.7	4.25	4.10	1469.
250	3.88	33.85	248	26.91	117.5	4.55	4.82	1469.
300	3.79	33,93	298	26.98	111.0	5.12	6.42	1469.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 5- 22 DATE 26/ 7/71
PUSITION 50- 0.0N, 144-58.0W GMT 18.6
RESULTS OF STP CAST 65 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT. EN	SOUND
0	10.96	32.66	0	24.99	298.1	0.0	0.0	1491.
10	10.89	32.66	10	25.00	297.3	0.30	0.02	1491.
20	10.83	32.68	20	25.02	295.0	0.59	0.06	1491.
30	7.99	32.71	30	25.50	249.5	0.86	0.13	1480.
5.0	6.55	32.75	50	25.73	227.9	1.33	0.32	1475.
75	5.48	32.79	75	25.90	212.5	1.88	0.67	1471.
100	4.47	32.82	99	26.03	199.7	2.40	1.13	1468.
125	3.99	32.89	124	26.14	189.8	2.89	1.69	1466.
150	3.99	33.32	149	26.48	157.6	3.32	2.30	1467.
175	4.01	33.69	174	26.77	130.2	3.67	2.88	1468.
200	3.94	33.77	199	26.84	123.7	3.99	3.48	1468.
225	3.87	33.82	223	26.89	119.5	4.29	4.14	1468.
250	3.83	33.86	248	26.92	116.3	4.59	4.86	1469.
300	3.78	33.93	298	26.98	110.9	5.16	6.44	1469.
400	3.65	34.06	397	27.10	100.6	6.21	10.20	1471.
500	3.55	34.14	496	27.17	94.4	7.19	14.67	1472.
000	3.40	34.21	595	27.24	88.4	8.10	19.78	1473.
800	3.08	34.32	793	27.36	78.1	9.76	31.58	1475.
1000	2.83	34.40	990	27.45	70.8	11.25	45.19	1477.
1200	2.58	34.46	1188	27.52	64.8	12.61	60.35	1480.
1500	2.29	34.53	1484	27.60	58.0	14.44	85.44	1484.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 5- 24 DATE 29/ 7/71
PUSITION 49-57.ON, 144-58.OW GMT 18.7
RESULTS OF STP CAST 75 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
0	12.21	32.65	0	24.75	320.5	0.0	0.0	1495.
10	11.78	32.65	10	24.83	313.3	0.32	0.02	1494.
20	10.98	32.65	20	24.97	299.8	0.62	0.06	1491.
3.0	7.84	32.71	30	25.52	247.5	0.89	0.13	1480.
50	6.48	32.75	50	25.74	227.1	1.36	0.32	1475.
75	5.37	32.80	75	25.92	210.5	1.91	0.67	1471.
100	4.73	32.85	99	26.03	200.1	2.42	1.13	1469.
125	4.38	32.96	124	26.15	188.4	2.91	1.69	1468.
150	4.23	33.63	149	26.70	136.8	3.32	2.25	1468.
175	4.11	33.73	174	26.79	128.3	3.64	2.80	1468.
200	3.98	33.78	199	26.84	123.4	3.96	3.40	1468.
225	3.96	33.82	223	26.88	120.4	4.27	4.06	1469.
250	3.96	33.87	248	26.92	116.9	4.56	4.78	1469.
300	3.83	33.93	298	26.98	111.4	5.13	6.38	1470.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 5- 25 DATE 4/ 8/71
PUSITION 50- 7.0N, 145- 7.0W GMT 18.8
RESULTS OF STP CAST 81 POINTS TAKEN FROM ANALOG TRACE

PKESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
				T		D	EN	
0	11.86	32.67	0	24.83	312.8	0.0	0.0	1494.
10	11.86	32.67	10	24.83	313.2	0.31	0.02	1494.
20	11.85	32.67	20	24.83	313.2	0.63	0.06	1494.
3.0	8.47	32.72	30	25.44	255.6	0.92	0.14	1482.
50	6.55	32.75	50	25.73	227.9	1.40	0.33	1475.
75	5.80	32.77	75	25.84	217.7	1.96	0.69	1473.
100	4.51	32.83	99	26.04	199.3	2.47	1.15	1468.
125	4.18	33.03	124	26.23	181.2	2.96	1.70	1467.
150	4.11	33.53	149	26.63	143.1	3.36	2.27	1468.
175	4.01	33.71	174	26.78	128.8	3.69	2.82	1468.
200	3.96	33.79	199	26.85	122.5	4.01	3.42	1468.
225	3.96	33.83	223	26.89	119.6	4.31	4.08	1469.
250	3.96	33.87	248	26.92	116.9	4.61	4.79	1469.
300	3.83	33.94	298	26.99	110.7	5.18	6.38	1470.
40.0	3.66	34.05	397	27.09	101.6	6.24	10.17	1471.
500	3.55	34.14	496	27.17	94.4	7.22	14.64	1472.
600	3.40	34.21	595	27.24	88.4	8.13	19.77	1473.
800	3.11	34.32	793	27.36	78.5	9.80	31.59	1475.
1000	2.83	34.40	990	27.45	70.8	11.29	45.22	1477.
1200	2.58	34.46	1188	27.52	.64.8	12.64	60.35	1480.
1500	2.32	34.52	1483	27.59	59.0	14.48	85.66	1484.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 5- 27 DATE 9/ 8/71
PUSITION 49-49.0N, 142-40.0W GMT 9.0
RESULTS OF STP CAST 87 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT. EN	SOUND
0	12.48	32.67	0	24.71	323.9	0.0	0.0	1496.
10	12.48	32.67	10	24.71	324.4	0.32	0.02	1496.
2.0	12.47	32.67	20	24.72	324.4	0.65	0.07	1496.
30	8.74	32.70	30	25.38	260.9	0.94	0.14	1483.
50	7.35	32.74	50	25.62	238.9	1.44	0.34	1478.
75	6.35	32.77	75	25.77	224.3	2.00	0.69	1475.
100	5.43	32.87	99	25.96	206.3	2.53	1.17	1472.
125	5.35	32.99	124	26.07	196.6	3.04	1.75	1472.
150	5.52	33.70	149	26.61	145.7	3.45	2.32	1474.
175	5.42	33.77	174	26.68	139.6	3.80	2.91	1474.
200	5.01	33.78	199	26.73	134.5	4.15	3.57	1473.
225	4.80	33.80	223	26.77	130.7	4.48	4.28	1472.
250	4.67	33.83	248	26.81	127.4	4.80	5.06	1472.
300	4.34	33.86	298	26.87	122.1	5.42	6.81	1472.
400	3.93	33.98	397	27.01	109.5	6.58	10.93	1472.
500	3.73	34.08	496	27.11	100.8	7.63	15.74	1473.
500	3.57	34.16	595	27.19	93.9	8.60	21.18	1474.
800	3.25	34.28	793	27.31	82.9	10.37	33.68	1476.
1000	2.97	34.38	990	27.42	73.8	11.94	48.02	1478.
1200	2.69	34.45	1188	27.50	66.7	13.34	63.68	1480.
1500	2.36	34.51	1484	27.57	60.2	15.24	89.77	1484.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 5- 28 DATE 9/ 8/71
PUSITION 49-41.0N, 140-40.0W GMT 15.6
RESULTS OF STP CAST 107 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
		20 (2		T		D	EN	
0	12.45	32.67	0	24.72	323.4	0.0	0.0	1496.
10	12.43	32.66	10	24.72	324.2	0.32	0.02	1496.
20	12.40	32.65	20	24.71	324.6	0.65	0.07	1496.
30	8.88	32.68	30	25.35	264.5	0.95	0.14	1484.
50	6.34	32.73	50	25.74	226.9	1.44	0.34	1474.
75	5.36	32.78	75	25.90	212.0	1.99	0.69	1471.
100	4.73	32.80	99	25.99	203.8	2.51	1.15	1469.
125	5.18	33.16	124	26.22	181.9	3.00	1.72	1471.
150	5.45	33.60	149	26.54	152.4	3.42	2.30	1473.
175	5.35	33.73	174	26.65	141.7	3.79	2.91	1474.
200	5.08	33.77	199	26.72	135.9	4.13	3.57	1473.
225	4.90	33.80	223	26.76	132.0	4.47	4.29	1473.
250	4.68	33.82	248	26.80	128.3	4.79	5.08	1472.
000	4.31	33.87	298	26.88	121.0	5.41	6.82	1472.
40.0	3.96	33.98	397	27.00	109.9	6.57	10.93	1472.
500	3.76	34.07	496	27.10	101.8	7.63	15.78	1473.
60.0	3.65	34.15	595	27.17	95.5	8.61	21.29	1474.
800	3.32	34.29	793	27.31	83.0	10.38	33.85	1476.
1000	2.94	34.38	990	27.42	73.5	11.93	48.10	1478.
1200	2.67	34.45	1188	27.50	66.5	13.34	63.77	1480.
1500	2.39	34.50	1484	27.56	61.2	15.26	90.24	1484.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 5- 29 DATE 9/ 8/71
PUSITION 49-34.0N, 138-40.0W GMT 21.7
RESULTS OF STP CAST 83 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
0	13.68	32.67	0	24.48	346.5	0.0	0.0	1500.
10	13.66	32.67	10	24.48	346.6	0.35	0.02	1500.
20	13.58	32.67	20	24.50	345.3	0.69	0.07	1500.
30	10.17	32.67	30	25.13	285.1	1.01	0.15	1489.
50	7.62	32.69	50	25.54	246.2	1.54	0.36	1479.
75	5.93	32.77	75	25.83	219.2	2.12	0.73	1473.
100	5.13	32.81	99	25.95	207.4	2.65	1.20	1470.
125	5.08	32.99	124	26.10	193.6	3.16	1.79	1471.
150	5.43	33.46	149	26.43	162.6	3.61	2.42	1473.
175	5.33	33.70	174	26.63	143.8	3.99	3.05	1473.
200	4.90	33.75	199	26.72	135.4	4.34	3.71	1472.
225	4.66	33.78	223	26.77	130.8	4.67	4.43	1472.
250	4.50	33.80	248	26.80	127.8	4.99	5.21	1471.
300	4.21	33.86	298	26.88	120.6	5.61	6.94	1471.
400	3.93	33.96	397	26.99	111.1	6.76	11.06	1472.
200	3.72	34.06	496	27.09	102.2	7.83	15.93	1473.
600	3.58	34.14	595	27.17	95.5	8.82	21.48	1474.
000	3.27	34.28	793	27.31	83.1	10.61	34.18	1476.
1000	2.96	34.38	990	27.42	73.7	12.18	48.57	1478.
1200	2.69	34.45	1188	27.50	66.7		64.32	1480.
1500	2.37	34.51	1484	27.57	60.3	15.49	90.43	1484.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 5- 30 DATE 10/ 8/71
PUSITION 49-26.0N, 136-40.0W GMT 3.5
RESULTS OF STP CAST 117 POINTS TAKEN FROM ANALOG TRACE

PKESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA D	POT. EN	SOUND
0	14.25	32.64	0	24.34	359.8	0.0	0.0	1502.
10	14.06	32.64	10	24.38	356.6	0.36	0.02	1502.
20	11.58	32.64	20	24.86	310.8	0.71	0.07	1493.
30	8.91	32.64	30	25.31	267.9	1.00	0.14	1484.
50	6.96	32.67	50	25.62	239.1	1.50	0.35	1477.
75	6.12	32.69	75	25.74	227.5	2.08	0.72	1474.
100	5.90	33.29	99	26.24	180.2	2.60	1.18	1474.
125	6.65	33.70	124	26.47	159.3	3.02	1.66	1478.
150	6.59	33.77	149	26.53	153.6	3.41	2.21	1478.
175	6.33	33.83	174	26.61	146.2	3.79	2.83	1478.
200	6.08	33.86	199	26.67	141.1	4.15	3.52	1477.
225	5.84	33.88	223	26.71	137.3	4.50	4.27	1477.
250	5.61	33.89	248	26.75	133.7	4.83	5.09	1476.
300	5.22	33.92	298	26.82	127.5	5.48	6.91	1475.
400	4.61	33.97	397	26.93	117.7	6.71	11.28	1475.
500	4.21	34.04	496	27.03	109.0	7.84	16.46	1475.
600	3.94	34.13	595	27.13	100.1	B. 88	22.29	1475.
800	3.48	34.26	793	27.27	86.9	10.75	35.53	1477.
1000	3.11	34.36	990	27.39	76.8	12.38	50.47	1479.
1200	2.76	34.43	1188	27.48	69.0	13.83	66.71	1481.
1500	2.39	34.50	1484	27.56	61.2	15.78.	93.40	1484.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 5- 31 DATE 10/ 8/71
PUSITION 49-17.0N, 134-40.0W GMT 9.4
RESULTS OF STP CAST 100 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT. EN	SOUND
0	14.62	32.61	0	24.24	369.5	0.0	0.0	1503.
10	14.46	32.60	10	24.26	367.5	0.37	0.02	1503.
20	14.33	32.60	20	24.29	365.1	0.74	0.07	1503.
30	10.08	32.60	30	25.09	288.9	1.06	0.16	1488.
50	7.08	32.65	50	25.58	242.1	1.58	0.37	1477.
75	6.36	32.69	75	25.71	230.4	2.17	0.74	1475.
100	5.78	32.77	99	25.84	217.7	2.73	1.24	1473.
125	5.66	33.16	124	26.17	187.4	3.24	1.83	1473.
150	5.73	33.64	149	26.54	152.7	3.66	2.41	1475.
175	5.56	33.73	174	26.63	144.2	4.03	3.03	1474.
∠00	5.33	33.79	199	26.70	137.3	4.38	3.70	1474.
225	5.11	33.80	223	26.74	134.3	4.72	4.43	1474.
250	4.83	33.82	248	26.78	129.9	5.05	5.23	1473.
300	4.45	33.86	298	26.86	123.2	5.69	7.01	1472.
400	4.03	33.96	397	26.98	112.2	6.86	11.20	1472.
500	3.80	34.06	496	27.08	103.0	7.94	16.12	1473.
500	3.68	34.14	595	27.16	96.6	8.94	21.73	1474.
800	3.38	34.28	793	27.30	84.3	10.74	34.55	1476.
1000	3.08	34.37	990	27.40	75.8	12.34	49.17	1478.
1200	2.77	34.44	1188	27.48	68.4	13.78	65.28	1481.
1500	2.39	34.51	1484	27.57	60.5	15.70	91.60	1484.

PACIFIC OCEANOGRAPHIC GROUP

REFERENCE NO. 71- 5- 32 DATE 10/ 8/71

PUSITION 49-10.0N, 132-40.0W GMT 14.4

RESULTS OF STP CAST 109 POINTS TAKEN FROM ANALOG TRACE

PKESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA D	POT.	SOUND
0	14.93	32.53	0	24.11	381.6	0.0	0.0	1504.
10	14.88	32.53	10	24.12	381.0	0.38	0.02	1504.
20	14.28	32.53	20	24.25	369.3	0.76	0.08	1502.
3.0	9.38	32.53	30	25.15	283.1	1.09	0.16	1485.
50	7.33	32.59	50	25.50	249.8	1.62	0.37	1478.
75	6.48	32.61	75	25.63	237.8	2.23	0.76	1475.
100	5.96	32.73	99	25.79	222.8	2.81	1.28	1474.
125	5.83	33.22	124	26.19	184.9	3.32	1.87	1474.
150	5.71	33.64	149	26.54	152.4	3.74	2.45	1475.
175	5.40	33.76	174	26.67	140.1	4.10	3.05	1474.
200	5.13	33.80	199	26.73	134.2	4.45	3.71	1473.
225	4.93	33.81	223	26.76	131.6	4.78	4.43	1473.
250	4.75	33.84	248	26.81	127.5	5.10	5.21	1473.
300	4.50	33.89	298	26.88	121.5	5.73	6.96	1472.
400	4.14	33.98	397	26.99	111.8	6.90	11.13	1473.
000د	4.01	34.09	496	27.09	103.0	7.97	16.05	1474.
600	3.85	34.17	595	27.17	96.2	8.97	21.64	1475.
800	3.48	34.30	793	27.31	84.0	10.78	34.47	1477.
1000	3.08	34.39	990	27.42	74.3	12.36	48.93	1479.
1200	2.71	34.45	1188	27.50	67.0	13.76	64.61	1480.
1500	2.35	34.51	1484	27.58	60.0	15.65		1484.

PACIFIC OCEANOGRAPHIC GROUP

REFERENCE NO. 71- 5- 33 DATE 10/ 8/71

PUSITION 49- 2.0N, 130-40.0W GMT 20.1

RESULTS OF STP CAST 111 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
0	15.47	32.54	0	24.00	392.1	0.0	0.0	1506.
10	15.47	32.54	10	24.00	392.6	0.39	0.02	1506.
20	15.08	32.54	20	24.08	384.7	0.78	0.08	1505.
30	11.73	32.54	30	24.75	321.0	1.14	0.17	1494.
50	8.52	32.54	50	25.29	269.9	1.72	0.41	1483.
75	7.47	32.57	75	25.47	253.6	2.38	0.82	1479.
100	6.92	32.81	99	25.73	228.8	2.99	1.36	1477.
125	6.73	33.44	124	26.25	179.7	3.50	1.95	1478.
150	6.59	33.71	149	26.48	158.1	3.92	2.54	1478.
175	6.37	33.79	174	26.58	149.4	4.30	3.17	1478.
200	6.28	33.83	199	26.62	145.9	4.67	3.87	1478.
425	6.00	33.83	223	26.65	142.7	5.03	4.65	1477.
250	5.57	33.85	248	26.72	136.3	5.38	5.50	1476.
300	5.31	33.89	298	26.78	130.8	6.05	7.37	1476.
400	4.70	33.97	397	26.92	118.7	7.29	11.79	1475.
500	4.15	34.05	496	27.04	107.8	8.42	16.97	1474.
600	4.00	34.14	595	27.13	100.1	9.46	22.81	1476.
800	3.65	34.29	793	27.28	86.7	11.32	36.04	1478.
1000	3.14	34.37	991	27.39	76.4	12.95	50.91	1479.
1200	2.79	34.44	1188	27.48	68.6	14.39	67.02	1481.
1500	2.40	34.52	1484	27.58	59.9	16.31	93.37	1484.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 5- 34 DATE 11/ 8/71
PUSITION 48-51.0N, 128-40.0W GMT 1.4
RESULTS OF STP CAST 105 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT. EN	SOUND
0	16.06	32.03	0	23.48	441.9	0.0	0.0	1507.
10	16.05	32.03	10	23.48	442.1	0.44	0.02	1507.
20	15.90	32.03	20	23.51	439.2	0.88	0.09	1507.
30	11.48	32.04	30	24.41	353.5	1.27	0.19	1492.
50	8.53	32.41	50	25.19	279.7	1.90	0.44	1482.
75	7.33	32.54	75	25.46	253.9	2.56	0.86	1478.
100	7.02	32.81	99	25.72	230.1	3.17	1.40	1478.
125	7.25	33.52	124	26.24	180.6	3.68	1.98	1480.
150	7.06	33.73	149	26.43	162.7	4.11	2.59	1480.
175	6.83	33.84	174	26.55	151.9	4.50	3.24	1480.
200	6.61	33.87	199	26.61	147.1	4.87	3.95	1479.
225	6.24	33.89	224	26.67	141.2	5.24	4.73	1478.
250	5.97	33.90	248	26.71	137.4	5.58	5.57	1478.
300	5.55	33.93	298	26.79	130.7	6.25	7.45	1477.
400	5.00	33.99	397	26.90	120.7	7.52	11.94	1476.
500	4.66	34.07	496	27.00	111.9	8,68	17.26	1477.
600	4.47	34.17	595	27.10	103.2	9.75	23.25	1478.
800	3.87	34.30	793	27.27	88.3	11.65	36.75	1478.
1000	3.40	34.41	991	27.40	76.4	13.29	51.76	1480.
1200	3.03	34.46	1188	27.48	69.9	14.76	68.22	1482.
1500	2.52	34.52	1484	27.57	61.3	16.72	95.08	1435.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 5- 35 DATE 11/ 8/71
PUSITION 48-46.0N, 127-40.0W GMT 5.0
RESULTS OF STP CAST 90 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
				T		D	EN	
0	16.17	32.01	0	23.44	445.7	0.0	0.0	1507.
10	16.14	32.01	10	23.44	445.6	0.45	0.02	1507.
20	13.37	32.04	20	24.05	387.5	0.86	0.08	1499.
30	8.48	32.23	30	25.06	292.1	1.17	0.16	1482.
50	7.36	32.58	50	25.49	251.0	1.71	0.38	1478.
75	7.60	33.16	75	25.91	211.4	2.30	0.75	1480.
100	8.09	33.68	99	26.25	180.0	2.78	1.18	1483.
125	7.96	33.81	124	26.37	168.8	3.22	1.68	1483.
150	7.83	33.85	149	26.42	164.4	3.63	2.26	1483.
175	7.65	33.88	174		160.1	4.04	2.93	1483.
				26.47				
200	7.43	33.90	199	26.52	155.9	4.43	3.69	1483.
225	7.12	33.91	223	26.57	151.0	4.82	4.52	1482.
250	6.94	33.93	248	26.61	147.7	5.19	5.42	1481.
200	6.43	33.95	298	26.69	140.2	5.91	7.43	1480.
400	5.58	34.00	397	26.84	127.0	7.24	12.16	1479.
500	5.19	34.06	496	26.93	118.9	8.46	17.79	1479.
000	4.75	34.14	595	27.05	108.7	9.61	24.20	1479.
800	4.19	34.28	793	27.22	93.6	11.64	38.64	1480.
1000	3.63	34.37	991	27.35	82.0	13.40	54.71	1481.
1200	3.14	34.45	1188	27.46	71.9	14.93	71.82	1482.
1500	2.60	34.52	1484	27.56	62.2	16.94	99.42	1485.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 5- 36 DATE 11/ 8/71
PUSITION 48-42.ON, 126-40.OW GMT 8.4
RESULTS OF STP CAST 103 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
				T		D	EN	
0	15.68	32.05	0	23.58	432.3	0 • C	0.0	1506.
10	15.65	32.05	10	23.58	432.2	0.43	0.02	1506.
20	13.43	32.05	20	24.05	387.9	0.85	0.08	1499.
30	11.13	32.10	30	24.52	343.1	1.21	0.18	1491.
50	8.28	32.46	50	25.26	272.5	1.81	0.42	1482.
75	7.20	32.72	75	25.62	238.8	2.44	0.82	1478.
100	7.48	33.41	99	26.13	191.5	2.98	1.30	1480.
125	7.42	33.67	124	26.34	171.7	3.44	1.82	1481.
150	7.10	33.82	149	26.50	156.6	3.85	2.39	1480.
175	6.91	33.88	174	26.57	149.9	4.23	3.03	1480.
200	6.74	33.90	199	26.61	146.6	4.60	3.74	1480.
425	6.45	33.91	223	26.66	142.4	4.96	4.52	1479.
250	6.18	33.91	248	26.69	139.3	5.32	5.37	1478.
00د	5.72	33.91	298	26.75	134.2	6.00	7.28	1477.
400	5.32	34.01	397	26.88	123.1	7.27	11.81	1478.
500	4.74	34.07	496	26.99	112.8	8.44	17.17	1477.
600	4.58	34.17	595	27.09	104.4	9.52	23.24	1478.
800	4.03	34.29	793	27.24	91.0	11.46	37.00	1479.
1000	3.53	34.37	991	27.36	80.8	13.18	52.73	1480.
1200	3.14	34.45	1188	27.46	71.9	14.70	69.73	1482.

SURFACE TEMPERATURE AND SALINITY OBSERVATIONS
(P-71-5)

T-S plot of surface temperature and salinity observations on Line P (asterisks) and at Station P (pluses) during cruise P-71-5. Fig. 16

SURFACE SALINITY AND TEMPERATURE OBSERVATIONS CRUISE REFERENCE NUMBER 71- 5

D	ATE/T	r M E	SALINITY	TEMP	LONGITUDE
		GMT	0/00	C	WEST
71	6 25	2243	31.889	10.9	125-33
71	6 26	40	31.530	10.5	125-58
71	6 26	300	31.824	11.0	126-40
71	6 26	710	31.736	10.6	127-40
71	6 26	1030	32.109	10.3	
71			32.510		128-40
		1610		10.5	130-40
71	6 26	2200 335	32.537	10.2	132-40
71	6 27	935	32.632	10.2	134-40
71	6 27		32.632	10.2	136-40
71	6 27	1845	32.745	9.8	138-40
71	6 28	110	32.690	9.6	140-40
71	6 28	815	32.743	9.0	142-40
71	6 29	0	32.722	8.5	ON STATION
71	6 30	0	32.711	8.4	ON STATION
71	7 1	0	32.708	8.5	ON STATION
71	7 2	0	32.711	8.5	ON STATION
71	7 3	0	32.711	8.8	ON STATION
71	7 4	0	32.726	8.5	ON STATION
71	7 5	0	32.726	8.9	ON STATION
71	7 6	0	32.725	8.9	ON STATION
71	7 7	0	32.712	9.1	ON STATION
71	7 8	0	32.712	9.2	ON STATION
71	7 9	0	32.714	8.8	ON STATION
71	7 10	0	32.697	9.6	ON STATION
71	7 11	0	32.706	9.5	ON STATION
71	7 12	0	32.700	9.3	ON STATION
71	7 13	0	32.705	9.5	ON STATION
71	7 14	0	32.703	10.3	ON STATION
71	7 15	0	32.706	10.1	ON STATION
71	7 16	0	32.703	9.9	ON STATION
71	7 17	0	32.708	10.3	ON STATION
71	7 18	0	32.699	10.1	ON STATION
71	7 19	0	32.698	10.2	ON STATION
71	7 20	0	32.692	10.5	ON STATION
71	7 21	0	32.701	10.6	ON STATION
71	7 22	0	32.699	10.7	ON STATION
71	7 23	0	32.686	10.5	ON STATION
71	7 24	0	32.681	11.0	ON STATION
71	7 25	0	32.677	11.0	ON STATION
71	7 26	0	32.667	10.7	ON STATION
71	7 27	-0	32.660	11.1	ON STATION
71	7 28	0	32.650	11.8	ON STATION
71	7 29	0	32.647	12.1	ON STATION
71	7 30	0	32.648	12.5	ON STATION
71	7 31	0	32.641	12.9	ON STATION
71	8 1	0	32.643	13.9	ON STATION
71	8 2	0	32.639	13.9	ON STATION
71	8 3	0	32.636	12.8	ON STATION
71	8 4	0	32.656	12.5	ON STATION

-178-

SURFACE SALINITY AND TEMPERATURE OBSERVATIONS CRUISE REFERENCE NUMBER 71- 5

DATE/TIME			IME	SALINITY	SALINITY TEMP	
YR	MO	DY	GMT	0/00	C	WEST
71	8	4	0	32.656	12.5	ON STATION
71	8	5	0	32.660	12.1	ON STATION
71	8	- 6	0	32.662	12.6	ON STATION
71	8	7	0	32.650	12.4	ON STATION
71	8	8	0	32.650	12.6	ON STATION
71	8	9	0	32.643	12.8	ON STATION
71	8	9	900	32.659	12.7	142-40
71	8	9	1530	32.656	12.5	140-40
71	8	9	2130	32.662	13.8	138-40
71	8	10	330	32.643	14.2	136-40
71	8	10	925	32.599	14.7	134-46
71	8	10	1425	32.531	15.0	132-40
71	8	10	2007	32.534	15.5	130-40
71	8	11	125	32.974	16.2	128-40
71	8	11	500	31.989	16.2	127-40
71	8	11	824	32.024	15.7	126-40

MARINE SCIENCES BRANCH, PACIFIC REGION PACIFIC MARINE SCIENCES REPORT NO. 72-2

OCEANOGRAPHIC OBSERVATIONS AT OCEAN STATION P (50°N, 145°W) VOLUME 52

AUGUST 6, 1971 - JANUARY 16, 1972

by

R. Bellegay, W. Hansen and D. Healey

Marine Sciences Branch

Environment Canada

and

J.H. Linggard, Master, CCGS VANCOUVER

Marine Sciences Branch

Ministry of Transport

Victoria, B.C.
Marine Sciences Branch
Environment Canada
May, 1972

INTRODUCTION

Canadian operation of Ocean Weather Station P (latitude 50°00'N, longitude 145°00'W) was inaugurated in December, 1950. The station is manned by two vessels operated by the Marine Services Branch of the Ministry of Transport. They are the CCGS VANCOUVER and the CCGS QUADRA. Each ship remains on station for a period of six weeks, and is then relieved by the alternative ship, thus maintaining a continuous watch. The chief purpose of the station is to operate as a meteorological station for surface and upper-air observations and as an air-sea rescue station.

Bathythermograph observations have been made at Station P since July, 1952. A program of more extensive oceanographic observations was commenced in August, 1956. This was further extended in April, 1959, by the addition of a series of oceanographic stations along the route to and from Station P and Swiftsure Bank. These stations are known as Line P stations. The number of stations on Line P has been increased twice and now consists of twelve stations (Fig. 1). Bathythermograph observations and surface salinity sample collections in addition to being made on Line P oceanographic stations are also made at odd meridians at 40' i.e. 139°40'W, 141°40'W, etc. Data observed prior to 1968 has been indexed by Collins et al, (1969).

The present record includes hydrographic and salinity-temperature-pressure data collected from the QUADRA during the period August 6 to September 22, 1971, hydrographic data from the VANCOUVER during the period September 17 to November 3, 1971, hydrographic and salinity-temperature-pressure data from the QUADRA during the period October 28 to December 8, 1971 and surface temperature and salinity data from the VANCOUVER during the period December 3, 1971 to January 16, 1972.

All physical data has been archieved by the Canadian Oceanographic Data Centre (CODC), 615 Booth Street, Ottawa, Ontario, Canada. Requests for these data should be directed to CODC.

Biological and productivity data are published in the Manuscript Report series of the Fisheries Research Board of Canada (FRB), The Biological Station, Nanaimo, B.C., Canada. Requests for these data should be directed to FRB.

Marine Geochemical data are for the Ocean Chemistry Group, Marine Sciences Branch, Department of the Environment, the Biological Station, Nanaimo, B.C., Canada.

Bird observations are sent to Dr. M. Myres, University of Calgary, Calgary, Alberta, Canada; and Marine Mammal observations to Mr. I. McAskie, Fisheries Research Board of Canada, The Biological Station, Nanaimo, B.C. Canada.

Program of observations from CCGS QUADRA, 6 August to 22 September, 1971 (P-71-6) (CODC Ref. No. 02-71-006)

Oceanographic observations were made by Mr. R. Bellegay, Marine Sciences Branch, Department of the Environment.

En route to Station P Line P oceanographic Stations 1 to 12 were occupied and STD casts made to near bottom or 1500 meters. At Stations 4 and 9 sampling was continued to 2400 and 3500 meters with water bottles. BT casts were made and surface salinity and nitrate samples were collected at all Line P oceanographic and BT Stations.

I) Physical Oceanography

On Station P profiles of salinity, temperature and oxygen were obtained as follows:

1) Weekly bottle casts to near bottom (4200 meters).

2) Weekly STD casts to 1500 meters following bottle casts.

3) Twice weekly STD casts to 300 meters.

4) Mechanical BT casts 8 times daily.

5) Bucket surface salinity sample daily at 0000 hrs. GMT.

Other observations made and data obtained at Station P were as follows:

II) Biological and Productivity

These data were collected as follows:

Plankton A total of 25 - 50 meter, 25 - 150 meter, 2 - 1200 meter vertical hauls and 7 - 10 minute horizontal tows.

2) Three profiles and 3 surface samples for pigment, nitrate and C₁₄ productivity.

3) Weekly secchi disk depth measurements.

III) Marine Geochemistry

Samples for Marine Geochemical studies were obtained as follows:

- 0xygen Weekly at standard depths from the hydrographic cast.
- 2) Nutrient samples for silicate, nitrate and phosphate daily from the ship's seawater loop plus one hourly sampling for 48 hours. A profile was taken from one hydrographic cast.
- 3) Alkalinity samples every three days from the seawater loop.
- 4) Two $C^{14}O_2$ samples from the seawater loop. 5) Air samples for CO_2 analysis once a week.

IV) Marine Mammal, Bird and Data Gathered for Other Institutes

- 1) Marine mammal and bird observations were recorded.
- 2) Samples from ten deep trawls sent to the Museum of Natural History in Ottawa and the Biological Station Nanaimo by Captain Dykes.
- 3) One salmon was caught in the fishing program.

En route from Station P oceanographic Station 12 through 1 were occupied and STD casts made to 1500 meters or near bottom. At Station 9 sampling was continued to 3500 meters with water bottles. BT casts were made and surface salinity and nitrate samples were collected at all Line P oceanographic and BT Stations.

Due to malfunction of STD only STD temperature data from Stations 38-50 inc. are included in this report.

Program of observations from CCGS VANCOUVER, September 17 to November 3, 1971. (P-71-7) (CODC Ref. No. 02-71-007)

Oceanographic observations were made by Mr. W. Hansen, Marine Sciences Branch, Department of the Environment.

En route to Station P bathythermograph casts were made and surface salinity and nitrate samples taken at all Line P oceanographic and BT Stations.

I) Physical Oceanography

On Station P profiles of salinity, temperature and oxygen obtained as follows:

- 1) 4 bottle casts to near bottom (4200 meters) and one to 600 meters.
- 2) BT casts 8 times daily.
- 3) Bucket surface salinity sample daily at 0000 hrs G.M.T.

II) Biological and Productivity

These data were collected as follows:

- 1) Plankton
 A total of 16 50 and 150 meter, 2 1200 meter vertical hauls and 7 10 minute horizontal tows. Daily microorganism samples from the ship's seawater loop.
- 2) One profile sampling for pigment, nitrate and C_{14} productivity.
- 3) One secchi disk depth measurement.

III) Marine Geochemistry

Samples for Marine Geochemistry studies were obtained as follows:

1) Oxygen - at standard depths from hydrographic casts.

2) Nutrient samples for silicate, nitrate and phosphate daily from the seawater loop plus hourly samples for one 48 hour period. A profile sampling was also taken from one hydrographic cast.

) Alkalinity samples once every three days from the sea-

water loop.

4) Two surface $C^{14}O_2$ sample from the seawater loop.

5) Air samples for CO_2 analysis once a week.

IV) Marine Mammal, Bird and Data Gathered for Other Institutes

1) Marine mammal and bird observations were recorded.

2) The fishing program produced 9 fish.

3) A rain water sample was collected for Scripps Institute of Oceanography.

En route from Station P the hydrographic program was cancelled due to bad weather. BT casts were made and surface salinity and nitrate samples were collected at Line P oceanographic Stations.

Program of observations from CCGS QUADRA, October 29 to December 8, 1971. (P-71-8) (CODC Ref. No. 02-71-008)

Oceanographic observations were made by Mr. D. Healey of the Marine Sciences Branch, Department of the Environment.

En route to Station P the hydrographic program was cancelled due to bad weather. Nine BT casts were made and surface salinity and nitrate samples were collected at all Line P Stations. The surface temperature recorder was operated continuously on Line P.

I) Physical Oceanography

On Station P profiles of salinity, temperature and oxygen were obtained as follows:
(Weather conditions on this cruise were such that the normal sampling program was not possible.)

- 1) A total of 3 bottle casts to near bottom (4200 meters).
- 2) A total of 16 1500 meter and 4 300 meter STD casts.

3) BT casts 8 times daily.

4) Surface salinity sample daily at 0000 hrs G.M.T.

Other observations made and data obtained at Station P were as follows:

II) Biological and Productivity

These data were collected as follows:

Plankton
 A total of 12 - 150 meter, 1 - 1200 meter vertical hauls
 and 7 - 10 minute horizontal tows. Daily micro-organism

- samples from the ships seawater loop (weather permitting).
- 2) Two profiles for pigment, nitrate and C-14 productivity and surface samples every other week.
- 3) Weekly secchi disk depth measurements.

III) Marine Geochemistry

Samples for Marine Geochemical studies were obtained as follows:

1) Oxygen profiles from the hydrographic casts.

2) Nutrient samples for silicate, nitrate and phosphate daily from the seawater loop and hourly for one 24 hour period. Profile sampling from one hydrographic cast.

3) Alkalinity samples once every three days from the sea-

water loop.

4) Two seawater $C^{14}O_2$ sample from the seawater loop.

5) Weekly air samples for CO2 analysis.

IV) Marine Mammal, Bird and Data Gathered for Other Institutes

1) Marine mammal and bird observations were recorded.

The fishing program produced 45 salmon.

3) A C¹⁴ profile for the University of Washington was made.

4) Rainwater samples for Scripps Institute of Oceanography were collected.

En route from Station P Line P Stations 12 through 5 were occupied and STD casts to 1500 meters were made. Bad weather forced the cancellation of hydrographic observations at Stations 4 through 1. BT casts were made and surface salinity and nitrate samples obtained at Line P hydrographic and BT Stations 12 through 5. The temperature recorder was operated continuously along the entire length of Line P.

Program of observations from CCGS VANCOUVER, December 3, 1971 to January 16, 1972. (P-71-9) (CODC Ref. No. 02-71-009).

Oceanographic observations were made by the ship's officers.

En route to Station P 4 XBT casts were made and surface salinity, nitrate and nutrient samples were obtained at Line P stations.

I) Physical Oceanography

1) Mechanical BT casts 8 times daily.

2) Surface salinity sample daily at 0000 hrs G.M.T.

Other observations made and data obtained at Station P were as follows:

II) Marine Geochemistry

Samples for Marine Geochemical studies were obtained as follows:

1) Daily surface nutrient samples.

2) 3 surface alkalinity samples.

3) Weekly air samples for CO₂ analysis.

III) Marine Mammal, Bird and Data Observations for Other Institutes

1) Marine mammal and bird observations were recorded.

En route from Station P only surface salinity, nutrient and nitrate samples were obtained at Line P stations.

Data was processed by Messrs. R. Bellegay, W. Hansen, D. Healey and D. Smith, and assembled and edited for publication by Mr. K. Abbott-Smith.

Observational Procedures

Temperatures at depth were measured by deep-sea reversing thermometers of German (Richter and Wiese) or Japanese (Yoshino Keiki Co.) manufacture. Two protected thermometers were used on all Nansen bottles, and one unprotected thermometer was used on each bottle at depths of 300 m or greater. The accuracy of protected reversing thermometers is believed to be ±0.02C.

Surface water temperatures were measured from a bucket sample using a deck thermometer of $\pm 0.1 \text{C}$ accuracy.

Salinity determinations were made aboard ship with either an Auto-Lab Model 601 Mark 111 inductive salimoneter or a Hytech Model 6220 lab salinometer. Accuracy using duplicate determinations is estimated to be ± 0.003 ppt.

Depth determinations were made using the "depth difference" method described in the U.S.N. Hydrographic Office Publication No. 607 (1955). Depth estimates have an approximate accuracy of ± 5 m for depths less than 1000 m, and $\pm 0.5\%$ of depth for depths greater than 1000 m.

The dissolved oxygen analyses were done in the shipboard laboratory by a modified Winkler method (Carpenter, 1965).

Salinity-temperature-pressure data were obtained with a Bissett-Berman Model 9006 STD on cruises P-71-6 and P-71-8.

Line P engine intake continuous temperatures were recorded by a Honeywell Model 15303836 Recorder. The temperature probe is at a depth of approximately 4 meters and the instrument accuracy is believed to be \pm .1C.

Computations

All hydrographic data were processed with the aid of an IBM 360 computer. Reversing thermometer temperature corrections, thermometric depth calculations, and accepted depth from the "depth difference" method were computed. Extraneous thermometric depths caused by thermometer malfunctions are automatically edited and replaced. A Calcomp 563 Offline Plotter was used to plot temperature-salinity and temperature-oxygen diagrams, as well as plots of temperature, salinity and dissolved oxygen vs log10 depth. These plots were used to check the data for errors.

Missing hydrographic data were obtained using a weighted parabolas interpolation method (Reiniger and Ross, 1968). These data are indicated with an asterisk in this data record.

Data values that we suspect but are included in this data record are indicated with a plus. These data have been removed from punch card and magnetic tape records.

Analog records from the salinity-temperature-pressure instrument have been hand digitized, then replotted using the Calcomp Plotter. Digitization was continued until original and computer plotted traces were coincident. Temperature and salinity values were listed at standard pressures; integrals (depths, geopotential anomaly, and potential energy anomaly) were computed from the entire array of digitized data.

The headings for the data listings are explained as follows:

PRESS is pressure (decibars)

TEMP is temperature (degrees Celsius)

SAL is salinity (parts per thousand)

DEPTH is reported in meters

SIGMA-T is specific gravity anomaly

SVA is specific volume anomaly

THETA is potential temperature (degrees Celsius)

SVA (THETA) is potential specific volume anomaly

DELTA D is geopotential anomaly (J/kg)

POT EN is potential energy in units of 10^8 ergs/cm²

OXY is the concentration of dissolved oxygen expressed

in milliliters per liter

V-B PERIOD is the Vaisala-Brunt period in minutes

Summary of Hydrographic Data

The data are graphically summarized as follows:

Composite plots of temperature vs log_{10} depth (Figs. 3, 4, P-71-6), (Fig. 10, P-71-7) and (Fig. 16, P-71-8).

Composite plots of salinity vs log_{10} depth (Figs. 5, 6, P-71-6), (Fig. 11, P-71-7) and (Fig. 17, P-71-8).

Composite plots of oxygen vs log_{10} depth (Figs. 7, 8, P-71-6), (Fig. 12, P-71-7) and (Fig. 18, P-71-8).

REFERENCES

- Carpenter, J.H. 1965. The Chesapeake Bay Institute Technique for the Winkler Dissolved Oxygen Method. Limmnol. & Oceaogr., 10: 141-143.
- Collins, C.A., R.L. Tripe, D.A. Healey, and J. Joergensen, 1969. The Time Distribution of Serial Oceanographic Data from the Ocean Station P Program. Fisheries Research Board of Canada, Technical Report No. 106.
- Reiniger, R.F. and C.K. Ross, 1968. A Method of Interpolation with Application to Oceanographic Data. Deep Sea Re. 15: 185-193.
- U. S. N. Hydrographic Office, 1955. Instruction Manual for Oceanographic Observations, Publication No. 607.

LIST OF FIGURES

- Figure 1 Chart showing Line P station positions.
- Figure 2 Reversing thermometer STD temperature difference Profiles P-71-6.
- Figure 3 Composite plot of temperature vs log10 depth P-71-6.
- Figure 4 Composite plot of temperature vs log10 depth P-71-6.
- Figure 5 Composite plot of salinity vs log₁₀ depth P-71-6.
- Figure 6 Composite plot of salinity vs log10 depth P-71-6.
- Figure 7 Composite plot of oxygen vs log₁₀ depth P-71-6.
- Figure 8 Composite plot of oxygen vs log10 depth P-71-6.
- Figure 9 T-S plot of surface temperature and salinity observations on Line P (asterisks) and at Station P (pluses) during Cruise P-71-6.
- Figure 10 Composite plot of temperature vs log10 depth P-71-7.
- Figure 11 Composite plot of salinity vs log₁₀ depth P-71-7.
- Figure 12 Composite plot of oxygen vs log10 depth P-71-7.
- Figure 13 T-S plot of surface temperature and salinity observations on Line P (asterisks) and at Station P (pluses) during Cruise P-71-7.
- Figure 14 Bottle STD salinity value difference profiles P-71-8.
- Figure 15 Reversing thermometer STD temperature difference profiles P-71-8.
- Figure 16 Composite plot of temperature vs log10 depth P-71-8
- Figure 17 Composite plot of salinity vs log₁₀ depth P-71-8.
- Figure 18 Composite plot of oxygen vs log10 depth P-71-8.
- Figure 19 Line P engine intake continuous thermograph temperature records outbound and inbound P-71-8.
- Figure 20 T-S plot of surface temperature and salinity observations on Line P (asterisks) and at Station P (pluses) during Cruise P-71-8.
- Figure 21 T-S plot of surface temperature and salinity observations on Line P (asterisks) and at Station P (pluses) during Cruise P-71-9.

Fig. 1 Chart showing Line P station positions.

OCEANOGRAPHIC DATA OBTAINED ON CRUISE P-71-6

(C.O.D.C. REFERENCE NO. 02-71-006)

TEMPERATURE DIFFERENCE, NANSEN - S.T.D. (OC)

Fig. 2 Reversing thermometer - STD temperature difference Profiles - P-71-6.

COMPOSITE PLOTS OF TEMPERATURE, SALINITY

AND DISSOLVED OXYGEN VS DEPTH

(P-71-6)

Fig. 3 Composite plot of temperature vs log₁₀ depth P-71-6.

Fig. 4 Composite plot of temperature vs log10 depth P-71-6.

Fig. 5 Composite plot of salinity vs log₁₀ depth P-71-6.

Fig. 6 Composite plot of salinity vs log10 depth P-71-6.

Fig. 7 Composite plot of oxygen vs log₁₀ depth P-71-6.

Fig. 8 Composite plot of oxygen vs log₁₀ depth P-71-6.

RESULTS OF BOTTLE CASTS
(P-71-6)

PALIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 6- 5
PUSITION 48-46.0 N. 127-40.0 W GMT 8.7
HYJROGRAPHIC CAST DATA

SOUND	1510.	1482.	1484.	1486.	1488.	1490.	1493.	1496
OXY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
POT.	0.0	54.65	72.73	92.03	112.12	132.96	154.98	178.30
DELTA	0.0	28.88	30.25	31.53	32.71	33.80	34.84	35.84
SVA (THETA)								
THETA	16.99	3.08	2.77	2.39	2.09	1.84	1.71	1.62
SVA	468.5	72.7	67.3	61.3	26.0	52.1	49.8	48.2
SIGMA	23.200	27.448	27.509	27.572	27.627	27.668	27.695	27.716
ОЕРТН	0	1165	1361	1558	1756	1955	2156	2357
SAL	31.945	,	34.483	34.521	4.		34.610	34.630
TEMP					2.21		1 . 86	1.79
PRESS	0 1	7	_	-	1775	-	∞	2386

REFERENCE NO. 71- 6- 11 DATE 8/ 8/71 PUSITION 49-26.0 N, 136-40.0 W GMT 16.7 HYJROGRAPHIC CAST DATA

SOUND	4	1501.	1481.	1483.	1484.	1491.	1499.	1507.	1516.
OXY		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
POT.	Z G	0	55.49	73.17	85.48	132 • 62	190.78	260.51	339.89
DELTA	ے م	0.0	24.02	25.29	25.90	28.64	31.11	33.54	35.88
	(THETA)								
THETA	, ,	13.90	2.53	2.32	2.19	1.77	1.51	1.37	1.30
SVA	0 U	333.8	1.99	65.0	59.5	51.3	47.3	46.0	46.5
SIGMA	T	795 - 47	27.506	27.554	27.581	27.676	27.725	27.751	27.761
ОЕРТН	C						2522		
SAL	4		34.450	34.491	34.511	34.592	34.632	34.656	34.667
TEMP	12 06	13.70	7.61	2.45	2.29	1601	1.69	1.60	1.58
PRESS	C	,	47	4	1547	4	2255	7	3285

PALIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 6- 16
PUSITION 50- 1.0 N, 144-56.0 W GMT 18.5
HYJROGRAPHIC CAST DATA

SOUND		55	49	48	47	47	46	46	46	46	46	94	46	46	470	47	473	1475.	47	48	48	48	64	50	51	52	52
OXY		6.3	6	.4	• 6	• 2	•	0.	.7	8	. 4	00	• 2	5	6.	- 7	9.	0.63	9.	.5	00	0	0		0	2.	4
POT.	E S		0	0	-	(C)	9	0	5	0	5	0	2	9	-	1	4	31.04	4	4	9	29.9	82.8	3	24.4	13.4	53.5
DELTA	۵	0	C	• 6	œ		8	• 2	1.	-	. 4	1.	.2	00	Φ.	6.	6.	9.63	1.1	2.4	4.3	6	9.2	1.6	3.9	6.2	7.2
SVA	HET	31.	29.	61.	40.	25.	-	96	86.	54.	30.	22.	16.	10.	02.	3	4.	73.5	2	9.	-	00	-	*	~	•	0
THETA		8	2.6	\$	5	0	• 6	• 2		0	0,	6.	6.	B		5	.3	3.05	. 7	. 5	• 2	• 6	.5		.2	2	
SVA		31.	29.	62.	41.	26.	2.	97.	88.	56.	32.	24.	38.	13.	05.	7	6	9.61	2.	9	9.	7.	00	.9	5	5	. 9
SIGMA	—	4.63	4.65	5.36	5.59	5.74	5.99	90.9	6.15	6.49	6.74	6.82	6.89	6.95	7.04	7.14	7.23	27.345	7.43	7.49	7.57	7.71	7.71	7.74	7.76	7.77	7.17
ОЕРТН		0	10	20	59	48	72	95	perroll.	4	9	00	3	<u></u>	~	-	00	781	16	16	46	3	43	92	41	92	12
SAL		2.66	2.64	2.71	2.73	2.74	2.80	2.82	2.93	3.35	3.66	3.75	3.83	3.90	4.00	4.10	4.19	34.303	4.38	4.43	4.50	4.62	4.62	4.65	4.66	4.68	4.68
TEMP		• \$	2.6	6.	5	6	• 6	• 2	•	0	0.	6.	6.	• 0	. 7	.5	• 4	3.10	•	• 6	• 3	- 7	. 7	9.	• 5	• 5	.5
PRESS		0							\rightarrow	4	9	∞	3	~		∞	6	188	∞	87	1+	9	46	36	14	38	61

PALIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 6- 20
PUSITION 50- 0.0 N, 145- 0.0 W GMT 18.5
HYJROGRAPHIC CAST DATA

SOUND		49	49	49	48	47	1469.	46	94	46	468	469	46	470	471	473	473	475	478	480	484	164	664	507	515	52	528
OXY		•2	.3	3	.2		7.14	•2	• 6	• 6	.5	6.		63	6.	6.	9.	.5	.5	0.	9.	.5	-	• 6	.0	.3	.3
POT.	ш		0.	0.	-		99.0	•	• 6	•2	8	. 4	00	.5	0.6	5	0.3	2.5	6.7	2.5	8.8	39.5	8.7	67.8	4-1-4	39.6	80.6
DELTA	۵	0.	.3	• 6	6.	. 4	1.97	• 4	6.	.3	- 7	0.	9.	• 2	.4	4.	• 2	0.0	.5	2.9	4.8	7.6	0.2	2.6	4.9	7.3	8.3
>	HET	38.	36.	34.	84.	23.	205.7	95.	82.	44.	28.	23.	16.	10.	00.	2.	5.	4.	5	8	0	2.	7.	4.	2.	- 1	•
THETA		6.	2.9	2.8	0.2	.2	5.01		•		0	0	6.	00	. 7	• 6	. 4	0.	٠ ش	.5	.2	•	.5	.3	• 2	• 2	•
SVA		39.	36.	35.	85.	24.	206.6	.95	83.	46.	30.	25.	18.	13.	04.	.9	0	0	2.	9	6	o prod	8	9	5.	9	. 9
SIGMA	⊢	4.55	4.58	4.59	5.12	5.76	25.957	90.9	6.20	6.59	6.77	6.82	6.89	6.95	7.06	7.15	7.21	7.33	7.43	7.50	7.58	7.67	7.71	7.74	7.76	7.77	7.77
DEPTH		0	10	19	29	64	73	86	2	4	-	6	250	0	0	0	9	9	66	0	64	66	50	00	51	01	21
SAL		2.57	2.61	2.62	2.69	2.74	32.801	2.82	2.97	3.49	3.69	3.76	3.84	3.90	4.03	4.12	4.18	4.29	4.38	4.45	4.51	4.59	4.62	4.65	4.67	4.67	4.68
TEMP		2.9	2.9	®	0.2	• 2	5.02	•	0.	•	0.	0.	6.	œ	. 7	9.	• 4	prod G	00	9.	.34	6.	-	• 6	• 5	.5	• 5
PRCSS		0					73		~	4	~	0		0	0	-	0	0	0	0	51	25	23	57	99	00	67

PALIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 6- 22
PUSITION 50- 0.0 N, 144-55.0 W GMT 18.2
HYJROGRAPHIC CAST GATA

SOUND	5 4	49	49	48	47	470	467	466	9 5	468	468	595	470	471	472	473	+7	478	+80	+84	164	664	507	515	52	1528.
OXY	.42	14.	64.	.15	.18	.20	111	.35	35	.30	09.	69	.22	86	88	19.	89	0	89	06	.52	16	.74	60	00	3.49
POT.		•	•	7	(17)	9	•	•	-	-	m		4	0.3	4.9	0.4	32.75	6.8	2.4	8.5	38.5	7.96	64.2	42.6	5.0	76.0
DELTA		(1)		•	(7)	80	L	Φ.	5	57	6.	r.		7	_	1-4	9.83	1.3	2.7	5	7.3	9.8	2.2	4.5	6.9	7.8
SV/	177	04.	02.	51.	21.	.60	95	77.	43.	27.	19.	13.	08.	00	0	6	o.	*	~	ċ		-	0	0	0	•
THETA	1.2		1.1		0			0	9	5	00	ω.	00	9.	5	.3	3.03	_	4.	-	7.	5	3	2	. 2	
SVA	03.	05.	02.	52.	21.	10.	96	78.	44.	29.	•	15.	10.	02.	*	•	78.4	°	.+	° °	•	-	•	•	•	.0
SIGMA	4.93	4.91	4.94	5.47	5.79	5.91	90.9	6.25	9.61	6.77	5.85	5.92	96.9	7.08	7.16	7.24	27.358	7.44	7.51	7.58	7.67	7.72	7.75	7.76	1.11	7.78
ОЕРТН	0	10	19	29	48	73	Ċ.	17	4	_	\$	S	Q	0	0	0	808	0	20	0	00	50	00	50	0 1	21
SAL	32.650	2.62	2.65	2.71	2.74	2.78	2.83	3.04	3.49	3.69	3.78	3.86	3.93	4.04	4.14	4.21	4.31	4.39	4.45	4.52	4.59	4.63	4.65	4.67	4.68	4.69
TEMP	11.22	1.2	•	. 2	9	• 2	. 2	0	0	ъ С	φ.	œ	တ	9.	9.	<u>م</u>	0	· •	ر.	. 2	6	-	5	5	IC.	5
PRESS	0	10	61	29	4 8	73	66	7	4	_		5	0	0	0	~	G.	7	77	2	ر ال	5	4	25	7	28

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 6- 26
POSITION 50- 2.0 N, 144-56.0 W GMT 18.4
HYJROGRAPHIC CAST DATA

0 11 10 11 11 11 11 11 11 11 11 11 11 11	TEMP	SAL	コーローコ	-	<>> <i>U</i>	VLUIL	>	-	TOO		CINIO
			-		•	J	L H H H	DELIA	- 2	UXI	CNODS
	• 4	2.64	0	4.89	07.	7 . 1	307.0	, .	0.0	6.44	4
, ,	<u></u>	2.64	10	4.89	90	•	.90	•	•	6.43	4
•	C	2.64	19	4.90	06.	6.1	90	.5			4
4		32.642	29	24.915	305.6	11.28	04.	06.0	0.13	6.64	1492.
	~	2.75	47	5.78	22.	•	21.	63			473
	0	2.79	70	5.94	07.	0	.90	00		_	695
	·	2.82	9	90.9	98.	(L)	96			-	9 5
	• 7	2.94	peri	91.9	87.	-	86.	7.		-	467
	pi	3.25	3	6.40	64.	-	63.	. 1		4	+6
	0	3.53	5	5.63	42.	0	41.	4.		-	9 5
	6.	3.73		5.80	26.	5.	25.	. 7		0	468
	6.	3.83	2	5.89	19.	ω.	16.	-2			694
	Φ.	3 8 8	9	5.93	15.	00	12.	00		R.	695
		4.00	5	7.04	05.	-	02.	Φ,		0	470
	• 6	4.12	9	7.15	9	9	O.	6.	3	9	472
	• 4	4.20	8	7.23	6	. 4		0	6	_	+73
	0	4.32	780	7.36	9	0	01	9.		0.53	+
	00	4.40	16	7.45	0	7	~	1.1	3.	9	+77
	9 .	4.45	-	7.50		r.	•	4.	a	9	+80
	٠ ا	4.51	46	7.58	о Ф	2		4.3	4.	00	183
	6	4.50	95	1.66	o.	0	•	7.0	32.	4	064
	- 1	4.63	45	7.71	00	5		6.5	° C	0	98
	9.	4.65	94	7.75	2	3		1.9	55.	5	909
	· 5	4.67	44	1.77	.+	2	4	4.2	31.	0	514
	5	֥68	94	7.78	.0	2	•	6.5	19.	2	2
	. 5	+•68	04	. 78	•	-	•	7.0	38.	3	2
	5	÷ 68	14	1.77	. ^	pred A	•	7.4	58.	3	26

PALIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 6- 32
PUSITION 50- 5.0 N, 145- 0.0 W GMT 18.3
HYJROGRAPHIC CAST DATA

	SUUNDS	48	5 5	490	490	47	694	467	467	467	468	468	695	470	471	1472.	473	475	477	480	484	06+	498	506	515	523	525	527
2	מאא	4	4.	• 4	4	5	5	0	•	-	0	3		<u></u>	9	0.72	0	r.	5	9	7	3	0	9	0	2	7	3
			0.	0	-		• 6	. 1	• 6		7.	.3	7.	٠ در	0.3	15.05	4.0	1.2	4.9	4.0	6.5	37.1	0.96	63.9	45.6	33.6	53.4	3.4
ŀ	DELIA D	0		5	00	• 4	6.	• 4	6.	5	• 6	6.	5		.2	7.22		9.	1.2	2.6	4.5	7.3	6.6	2.3	4.7	0	7.5	8.0
-	N N N N N N N N N N N N N N N N N N N	ന	94.	93.	93.	22.	05.	94.	70.	33.	25.	20.	14.	.60	.66	•	8	4		9	2	~	0		0	-	-	
ŀ	A	0.5		0.5	0.5	•	6.	- 2	0.	6	6.	6.	00	œ		3.54	.3	0.	. 7	. 5	. 2	တ	5	3	. 2			7
>	440	93.	4.	94.	94.	23.	90	95.	71.	35.	27.	22.	16.	12.	03.	96.1	9.	0	2	0	0	•	o C	2.	9	9	2.	0
jan.	Ē	5.03	5.02	5.03	5.03	5.78	5.95	6.07	6.33	6.71	6.80	6.85	16.9	96.9	7.07	27.155	7.23	7.33	7.42	7.49	7.56	7.65	7.70	7.74	7.75	7.27	7.17	1.77
DEGE	_	0	10	20	30	50	14	6	2	4	~	6	5	0	0	505	0	∞	16	1	47	96	46	96	46	9	90	16
CAI	3 2 2	2.63	2.62	2.62	2.63	2.74	2.79	2.84	3.14	3.61	3.72	3.78	3.85	3.91	4.03	34.122	4.20	4:29	4.37	4.43	4.49	4.57	4.61	4.64	4.65	4.67	4.67	4.67
TEMD	<u>.</u>	• 5	0.5	0.5	0.5	• 1	6.	• 2	0	6.	• 9	6.	00	တ	. 7	3.58	.3	0	00	• 6	· 3	0	. 7	• 5	• 5	• 5	5	5
DULUG)	0	10	20	30	20	-	0	2	2	-	0	5	0	0	90¢	0	00	200	8	\$	70	0	0	25	3	13	73

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 6- 34 DATE 13/ 9/71
POSITION 50- 0.0 N, 145- 0.0 W GMT 18.0
HYUROGRAPHIC CAST DATA

SOUND	48	48	48	486	484	470	1467.	468	468	468	694	694	470	471	472	473	475	478	480	484	165	665	507	515	524	526	ന
ΟΧΥ	• 2	• 6	9.	• 6	• 6	0	7.04	. 4	. 7	.0	.5	-7	4.	00	0	9.	5	5	• 6	8	4.	0	.5	0	.2	.3	.3
POT.		0.	0	-	.		1.16	• 6	-	-7	63	- 7	63	0.2	4.8	0.1	.5	9.9	2.4	8.7	39.6	98.8	67.3	6.1	38.3	58.5	79.3
DELTA		.2	.5	00	.3	6.	2.45	6.	• 2	.5	6.	.5	0.	-		. 1	Φ.	1.3	2.7	4.6	7.4	6.6	2.4	-7	7.1	7.5	8.0
SVA	C	72.	72.	72.	65.	08.	94.	58.	30.	24.	20.	13.	08.	98.	2.	5.	2.	4.	7.	•	2.	-	4.	2.	•	0 pml	•
THETA	. 4	.3	.3	63	6.	•	4.21	• 2		0.	0	6.	*	6	.5	63	0	7 .	• 4	. 2	8	• 5	63	• 2	• 2		parel 0
SVA	73.	73.	73.	73.	.99	08.	195.7	59.	31.	26.	22.	16.	11.	02.	.96	0	00	•	5.	6	2.	ф Ф	9	5.	9	9	. 9
SIGMA	5.24	5.25	5.25	5.25	5.32	5.93	26.073	6.45	6.75	6.81	6.85	6.92	6.97	7.08	7.15	7.22	7.35	7.43	7.50	7.57	7.66	7.71	7.74	7.76	7.77	7.77	7.77
ОЕРТН	0						66	2	4	-	6	4	0	0	0	0	80	0	20	50	00	64	66	49	00	10	20
SAL	2.66	2.66	2.66	2.66	2.67	2.79	32.840	3.33	3.69	3.75	3.79	3.87	3.93	4.04	4.12	4.19	4.31	4.38	4.44	4.50	4.58	4.62	4.64	4.66	4.67	4.67	4.6
TEMP	• 4	.3	.3	• 3	6.	•	4.22	• 2	• 1	0.	0.	6.	00	- 7	• 6	• 4	0.	•	• 5	63	6.	. 7	• 6	. 5	5	.5	• 5
PRESS	0						007	2	5	_	0	2	0	0	0	0		77	17	2.1	20	23	70	2	11	11	77

	20/ 9/71	GMT 19.8	
	201	GMT	
	DATE	ж С.	
GROUP	41	49-26.0 N, 136-40.3 W	V
HIC	-9	ž	DATA
SCEANDGRAPHIC	. 71-	-26.0	CAST
CEAR	S	40-	HIC
PAULFIC SC	AER ERENCE NO. 71- 6- 41	NOITICLG	HYDROGRAPHIC

SOUND	1495.	1480.	1483.	1484.	1491.	1498.	1507.	1515.
OXY	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0
POT.	0.0	55.07	72.66	81 • 82	131.97	189.60	257.20	337.76
DELTA	0.0	22.02	23.32					
SVA (THETA)	324.1							
THETA	12.26	2.58	2.33	2.23	1.78	1.52	1.37	1.27
SVA	324.3	67.7	62.6	4.09	51.R	47.7	46.2	46.0
SIGMA	24.712	27.488	27.546	27.572	27.669	27.721	27.746	27.762
DEPTH	0		1406					
SAL	32.613	34.434	34.482	4.5	4.5		4.5	1
TEMP	12.26	2.66			1.02	1.70	1.59	1,55
PRESS	0	6171	1420	1220	2321	2252	3,15	3356

RESULTS OF STD CASTS
(P-71-6)

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71-06-038 DATE 19/09/71
POSITION' 49-04.9N 142-04.0W GMT 23.4
RESULTS OF STP CAST 90 POINTS TAKEN FROM ANALOG TRACE

DEPTH	TEMP	DEPTH	TEMP	DEPTH	TEMP
0000	10.42	0104	05.12	0207	04.98
0004	10.42	0105	05.04	0210	04.98
0005	10.45	0109	04.90	0217	04.92
0010	10.25	0110	04.80	0220	04.90
0014	10.18	0112	04.80	0224	04.86
0020	10.16	0114	04.89	0232	04.84
0030	10.13	0115	05.03	0233	04.82
0032	10.12	0118	05.22	0236	04.82
0035	10.07	0121	05.25	0245	04.73
0050	10.02	0125	05.42	0258	04.66
0051	10.01	0126	05.45	0262	04.60
0054	09.83	0130	05.51	0267	04.59
0058	09.35	0138	05.50	0289	04.40
0060	08.99	0144	05.52	0298	04.35
0063	08.22	0149	05.51	0350	04.05
0064	07.95	0150	05.53	0380	03.96
0066	07.40	0155	05.58	0400	03.93
0068	07.00	0157	05.58	0450	03.85
0072	06.30	0160	05.53	0500	03.74
0074	06.19	0166	05.50	0600	03.54
0075	06.04	0171	05.37	0690	03.37
0080	05.87	0175	05.31	0743	03.31
0086	05.75	0179	05.26	0800	03.20
0087	05.67	0181	05.26	0820	03.19
0089	05.65	0183	05.21	0846	03.12
0094	05.42	0188	05.16	0855	03.13
0097	05.40	0194	05.13	1000	02.92
0098	05.30	0200	05.07	1200	02.67
0100	05.26	0203	05.02	1350	02.49
0102	05.16	0206	05.02	1490	02.35

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71-06-039

POSITION 49-04.1N 140-04.0W GMT 05.5
RESULTS OF STP CAST 68 POINTS TAKEN FROM ANALOG TRACE

DEPTH	TEMP	DEPTH	TEMP	DEPTH	TEMP
0000	10.77	0001	05 15		
0003	10.77	0081	05.15	0255	04.39
		0084	04.80	0270	04.25
0005	10.53	0087	04.68	0281	04.22
0010	10.47	0090	04.64	0298	04.15
0012	10.45	0092	04.67	0300	04.14
0015	10.27	0095	04.87	0310	04.06
0020	10.16	0100	05.05	0350	03.95
0026	10.05	0105	05.22	0400	03.86
0030	10.03	0110	05.32	0475	03.70
0041	09.99	0115	05.35	0500	03.67
0044	09.93	0120	05.35	0600	03.50
0047	09.90	0125	05.32	0685	
0050	09.70	0131	05.28		03.34
0054	06.34	0135	05.21	0715	03.32
0056	06.04	0150		0800	03.17
0058	05.96		05.10	0820	03.13
0060		0167	05.01	0960	02.93
	05.95	0173	05.00	1000	02.89
0064	05.82	0183	04.85	1100	02.78
0067	05.75	0200	04.73	1200	02.66
0070	05.61	0204	04.67	1270	02.57
0073	05.55	0216	04.62	1300	02.55
0075	05.44	0226	04.53	1485	02.36
0079	05.35	0250	04.40		32.030

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71-06-040 DATE 20/09/71
POSITION 49-03.4N 138-04.0W GMT 11.7
RESULTS OF STP CAST 92 POINTS TAKEN FROM ANALOG TRACE

DEPTH	TEMP	DEPTH	TEMP	DEPTH	TEMP
0000	12.09	0107	05.14	0280	04.36
0006	12.08	0109	05.12	0284	04.35
8000	12.05	0116	05.23	0300	04.28
0010	11.59	0119	05.22	0340	04.10
0014	11.45	0125	05.29	0400	04.00
0016	11.40	0134	05.34	0425	03.96
0020	11.37	0139	05.42	0430	03.96
0024	11.33	0144	05.41	0438	03.90
0026	11.30	0150	05.42	0440	03.94
0030	11.29	0159	05.41	0465	03.81
0035	11.25	0164	05.37	0475	03.82
0037	11.20	0167	05.36	0485	03.75
0038	11.11	0170	05.32	0500	03.74
0042	07.25	0175	05.28	0520	03.72
0043	07.00	0179	05.22	0530	03.72
0046	06.76	0183	05.22	0600	03.57
0050	06.71	0194	05.08	0620	03.53
0053	06.62	0196	05.11	0720	03.43
C056	06.37	0200	05.07	0755	03.37
0059	06.23	0208	05.00	0800	03.29
0068	06.10	0210	04.93	0925	03.05
0075	05.92	0220	04.88	0950	03.03
0076	05.90	0226	04.78	0970	02.99
0077	05.90	0238	04.65	1000	02.95
0079	05.88	0242	04.63	1090	02.85
0800	05.89	0246	04.57	1200	02.67
0083	05.80	0250	04.57	1250	02.62
0085	05.65	0256	04.52	1270	02.61
0090	05.58	0264	04.50	1350	02.50
0100	05.21	0269	04.43	1485	02.35
0103	05.12	0274	04.41		

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71-06-042
POSITION 49-02.6N 136-04.0W GMT 19.5
RESULTS OF STP CAST 98 POINTS TAKEN FROM ANALOG TRACE

0000 12.23 0116 05.62 0300 04.26 0006 12.23 0121 05.62 0325 04.12 0007 12.23 122 05.57 0355 03.97 0010 12.10 0125 05.57 0400 03.87 0012 12.03 0128 05.56 0420 03.84 0014 11.75 0134 05.66 0460 03.80 0015 11.53 0137 05.67 0500 03.80 0020 11.45 0150 05.56 0515 03.70 0030 11.35 0151 05.60 0525 03.77 0040 11.30 0155 05.57 0540 03.70 0044 11.21 0157 05.57 0585 03.60 0050 08.25 0162 05.50 0600 03.60 0055 07.21 0171 05.40 0800 03.29 0055	DEPTH	TEMP	DEPTH	TEMP	DEPTH	TEMP
0006 12.23 0121 05.62 0325 04.12 0007 12.23 122 05.57 0355 03.97 0010 12.10 0125 05.57 0400 03.87 0012 12.03 0128 05.56 0420 03.84 0014 11.75 0134 05.66 0460 03.86 0015 11.53 0137 05.67 0500 03.80 0020 11.45 0150 05.56 0515 03.76 0030 11.35 0151 05.60 0525 03.77 0040 11.30 0155 05.57 0540 03.70 0044 11.21 0157 05.57 0540 03.70 0046 10.95 0162 05.50 0600 03.60 0050 08.25 0166 05.48 0650 03.50 0057 07.03 0175 05.38 0830 03.22 0058	0000	12.25	0116	05.62	0300	04 24
0007 12.23 122 05.57 0355 03.97 0010 12.10 0125 05.57 0400 03.87 0012 12.03 0128 05.56 0420 03.84 0014 11.75 0134 05.66 0460 03.80 0015 11.53 0137 05.67 0500 03.80 0020 11.45 0150 05.56 0515 03.76 0030 11.35 0151 05.60 0525 03.77 0040 11.30 0155 05.57 0540 03.70 0044 11.21 0157 05.57 0585 03.64 0046 10.95 0162 05.50 0600 03.60 0050 08.25 0166 05.48 0650 03.50 0055 07.21 0171 05.40 0800 03.29 0057 07.03 0175 05.38 0830 03.25 0058	0006					
0010 12.10 0125 05.57 0400 03.87 0012 12.03 0128 05.56 0420 03.84 0014 11.75 0134 05.66 0460 03.86 0015 11.53 0137 05.67 0500 03.80 0020 11.45 0150 05.56 0515 03.76 0030 11.35 0151 05.60 0525 03.77 0040 11.30 0155 05.57 0540 03.70 0044 11.21 0157 05.57 0585 03.64 0046 10.95 0162 05.50 0600 03.60 0050 08.25 0166 05.48 0650 03.50 0057 07.03 0175 05.38 0830 03.22 0058 07.05 0187 05.25 0840 03.24 0061 06.82 0189 05.20 0880 03.22 0064 <td< td=""><td>0007</td><td>12.23</td><td></td><td></td><td></td><td></td></td<>	0007	12.23				
0012 12.03 0128 05.56 0420 03.84 0014 11.75 0134 05.66 0460 03.86 0015 11.53 0137 05.67 0500 03.80 0020 11.45 0150 05.56 0515 03.70 0030 11.35 0151 05.60 0525 03.77 0040 11.30 0155 05.57 0540 03.70 0044 11.21 0157 05.57 0585 03.64 0046 10.95 0162 05.50 0600 03.60 0050 08.25 0166 05.48 0650 03.50 0055 07.21 0171 05.40 0800 03.29 0057 07.03 0175 05.38 0830 03.25 0058 07.01 0171 05.40 0800 03.29 0057 07.03 0175 05.38 0830 03.25 0058 <td< td=""><td></td><td>12.10</td><td></td><td></td><td></td><td></td></td<>		12.10				
0014 11.75 0134 05.66 0460 03.86 0015 11.53 0137 05.67 0500 03.80 0020 11.45 0150 05.56 0515 03.76 0030 11.35 0151 05.60 0525 03.77 0040 11.30 0155 05.57 0540 03.70 0044 11.21 0157 05.57 0585 03.64 0046 10.95 0162 05.50 0600 03.60 0050 08.25 0166 05.48 0650 03.50 0055 07.21 0171 05.40 0800 03.29 0057 07.03 0175 05.38 0830 03.25 0058 07.05 0187 05.25 0840 03.24 0061 06.82 0189 05.20 0880 03.22 0064 06.68 0200 05.10 0927 03.13 0066 <td< td=""><td></td><td>12.03</td><td></td><td></td><td></td><td></td></td<>		12.03				
0015 11.53 0137 05.67 0500 03.80 0020 11.45 0150 05.56 0515 03.76 0030 11.35 0151 05.60 0525 03.70 0040 11.30 0155 05.57 0540 03.70 0044 11.21 0157 05.57 0585 03.64 0046 10.95 0162 05.50 0600 03.60 0050 08.25 0166 05.48 0650 03.50 0055 07.21 0171 05.40 0800 03.29 0057 07.03 0175 05.38 0830 03.25 0058 07.05 0187 05.25 0840 03.24 0061 06.82 0189 05.20 0880 03.22 0064 06.68 0200 05.10 0927 03.13 0066 06.50 0207 05.06 0940 03.08 0075 <td< td=""><td>0014</td><td>11.75</td><td></td><td></td><td></td><td></td></td<>	0014	11.75				
0020 11.45 0150 05.56 0515 03.76 0030 11.35 0151 05.60 0525 03.77 0040 11.30 0155 05.57 0540 03.70 0044 11.21 0157 05.57 0585 03.64 0046 10.95 0162 05.50 0600 03.60 0050 08.25 0166 05.48 0650 03.50 0055 07.21 0171 05.40 0800 03.29 0057 07.03 0175 05.38 0830 03.25 0058 07.05 0187 05.25 0840 03.24 0061 06.82 0189 05.20 0880 03.22 0064 06.68 0200 05.10 0927 03.13 0066 06.50 0207 05.06 0940 03.08 0068 06.47 0209 05.02 0955 03.07 0075 <td< td=""><td>0015</td><td>11.53</td><td>0137</td><td></td><td></td><td></td></td<>	0015	11.53	0137			
0030 11.35 0151 05.60 0525 03.77 0040 11.30 0155 05.57 0540 03.70 0044 11.21 0157 05.57 0585 03.64 0046 10.95 0162 05.50 0600 03.60 0050 08.25 0166 05.48 0650 03.50 0055 07.21 0171 05.40 0800 03.29 0057 07.03 0175 05.38 0830 03.29 0057 07.03 0187 05.25 0840 03.24 0061 06.82 0189 05.25 0840 03.24 0061 06.82 0189 05.20 0880 03.22 0064 06.68 0200 05.10 0927 03.13 0068 06.47 0209 05.02 0955 03.07 0070 06.38 0215 05.00 0985 02.98 0075 <td< td=""><td>0020</td><td>11.45</td><td>0150</td><td></td><td></td><td></td></td<>	0020	11.45	0150			
0040 11.30 0155 05.57 0540 03.70 0044 11.21 0157 05.57 0585 03.64 0046 10.95 0162 05.50 0600 03.60 0050 08.25 0166 05.48 0650 03.50 0057 07.21 0171 05.40 0800 03.29 0057 07.03 0175 05.38 0830 03.29 0058 07.05 0187 05.25 0840 03.24 0061 06.82 0189 05.20 0880 03.22 0064 06.68 0200 05.10 0927 03.13 0066 06.50 0207 05.06 0940 03.08 0068 06.47 0209 05.02 0955 03.07 0070 06.38 0215 05.00 0985 02.98 0075 06.28 0225 04.93 1000 02.97 0080 <td< td=""><td>0030</td><td>11.35</td><td>0151</td><td></td><td></td><td></td></td<>	0030	11.35	0151			
0044 11.21 0157 05.57 0585 03.64 0046 10.95 0162 05.50 0600 03.60 0050 08.25 0166 05.48 0650 03.50 0055 07.21 0171 05.40 0800 03.29 0057 07.03 0175 05.38 0830 03.25 0058 07.05 0187 05.25 0840 03.24 0061 06.82 0189 05.20 0880 03.22 0064 06.68 0200 05.10 0927 03.13 0066 06.50 0207 05.06 0940 03.08 0075 06.38 0215 05.00 0985 02.98 0075 06.38 0215 05.00 0985 02.98 0075 06.28 0225 04.93 1000 02.97 0080 06.21 0227 04.87 1020 02.96 0083 06.21 0227 04.84 1030 02.90 0084 06.18 </td <td>0040</td> <td>11.30</td> <td>0155</td> <td></td> <td></td> <td></td>	0040	11.30	0155			
0046 10.95 0162 05.50 0600 03.60 0050 08.25 0166 05.48 0650 03.50 0055 07.21 0171 05.40 0800 03.29 0057 07.03 0175 05.38 0830 03.25 0058 07.05 0187 05.25 0840 03.24 0061 06.82 0189 05.20 0880 03.22 0064 06.68 0200 05.10 0927 03.13 0066 06.50 0207 05.06 0940 03.08 0068 06.47 0209 05.02 0955 03.07 0070 06.38 0215 05.00 0985 02.98 0075 06.28 0225 04.93 1000 02.97 0080 06.21 0227 04.87 1020 02.96 0083 06.21 0232 04.84 1030 02.90 0084 06.18 0232 04.84 1030 02.90 0086 06.19 </td <td>0044</td> <td>11.21</td> <td>0157</td> <td></td> <td></td> <td></td>	0044	11.21	0157			
0050 08.25 0166 05.48 0650 03.50 0057 07.03 0171 05.40 0800 03.29 0057 07.03 0175 05.38 0830 03.25 0058 07.05 0187 05.25 0840 03.24 0061 06.82 0189 05.20 0880 03.22 0064 06.68 0200 05.10 0927 03.13 0066 06.50 0207 05.06 0940 03.08 0068 06.47 0209 05.02 0955 03.07 0070 06.38 0215 05.00 0985 02.98 0075 06.28 0225 04.93 1000 02.97 0080 06.21 0227 04.87 1020 02.96 0083 06.21 0232 04.84 1030 02.90 0084 06.18 0238 04.75 1050 02.90 0095 <td< td=""><td>0046</td><td>10.95</td><td>0162</td><td></td><td></td><td></td></td<>	0046	10.95	0162			
0055 07.21 0171 05.40 0800 03.29 0057 07.03 0175 05.38 0830 03.25 0058 07.05 0187 05.25 0840 03.24 0061 06.82 0189 05.20 0880 03.22 0064 06.68 0200 05.10 0927 03.13 0066 06.50 0207 05.06 0940 03.08 0068 06.47 0209 05.02 0955 03.07 0070 06.38 0215 05.00 0985 02.98 0075 06.28 0225 04.93 1000 02.97 0080 06.21 0227 04.87 1020 02.96 0083 06.21 0232 04.84 1030 02.90 0084 06.18 0238 04.75 1050 02.90 0086 06.19 0244 04.70 1070 02.85 0091 06.18 0250 04.62 1190 02.70 0095 06.12 </td <td>0050</td> <td>08.25</td> <td>0166</td> <td>05.48</td> <td></td> <td></td>	0050	08.25	0166	05.48		
0057 07.03 0175 05.38 0830 03.25 0058 07.05 0187 05.25 0840 03.24 0061 06.82 0189 05.20 0880 03.22 0064 06.68 0200 05.10 0927 03.13 0066 06.50 0207 05.06 0940 03.08 0068 06.47 0209 05.02 0955 03.07 0070 06.38 0215 05.00 0985 02.98 0075 06.28 0225 04.93 1000 02.97 0080 06.21 0227 04.87 1020 02.96 0083 06.21 0232 04.84 1030 02.90 0084 06.18 0238 04.75 1050 02.90 0091 06.18 0250 04.62 1190 02.70 0095 06.12 0257 04.60 1230 02.65 0100 <td< td=""><td>0055</td><td>07.21</td><td>0171</td><td>05.40</td><td></td><td></td></td<>	0055	07.21	0171	05.40		
0058 07.05 0187 05.25 0840 03.24 0061 06.82 0189 05.20 0880 03.22 0064 06.68 0200 05.10 0927 03.13 0066 06.50 0207 05.06 0940 03.08 0068 06.47 0209 05.02 0955 03.07 0070 06.38 0215 05.00 0985 02.98 0075 06.28 0225 04.93 1000 02.97 0080 06.21 0227 04.87 1020 02.96 0083 06.21 0232 04.84 1030 02.90 0084 06.18 0238 04.75 1050 02.90 0091 06.18 0250 04.62 1190 02.70 0095 06.12 0257 04.60 1230 02.65 0100 05.97 0268 04.50 1240 02.62 0109 <td< td=""><td></td><td>07.03</td><td>0175</td><td>05.38</td><td></td><td></td></td<>		07.03	0175	05.38		
0061 06.82 0189 05.20 0880 03.22 0064 06.68 0200 05.10 0927 03.13 0066 06.50 0207 05.06 0940 03.08 0068 06.47 0209 05.02 0955 03.07 0070 06.38 0215 05.00 0985 02.98 0075 06.28 0225 04.93 1000 02.97 0080 06.21 0227 04.87 1020 02.96 0083 06.21 0232 04.84 1030 02.90 0084 06.18 0238 04.75 1050 02.90 0086 06.19 0244 04.70 1070 02.85 0091 06.18 0250 04.62 1190 02.70 0095 06.12 0257 04.60 1230 02.65 0100 05.97 0268 04.50 1240 02.62 0109 05.66 0284 04.40 1410 02.43 0110 05.59 </td <td>0058</td> <td>07.05</td> <td>0187</td> <td></td> <td></td> <td></td>	0058	07.05	0187			
0064 06.68 0200 05.10 0927 03.13 0066 06.50 0207 05.06 0940 03.08 0068 06.47 0209 05.02 0955 03.07 0070 06.38 0215 05.00 0985 02.98 0075 06.28 0225 04.93 1000 02.98 0080 06.21 0227 04.87 1020 02.96 0083 06.21 0232 04.84 1030 02.96 0084 06.18 0238 04.75 1050 02.90 0086 06.19 0244 04.70 1070 02.85 0091 06.18 0250 04.62 1190 02.70 0095 06.12 0257 04.60 1230 02.65 0100 05.97 0268 04.50 1240 02.62 0109 05.66 0284 04.40 1410 02.43 0110 05.59 0287 04.36 1490 02.34			0189	05.20		
0066 06.50 0207 05.06 0940 03.08 0068 06.47 0209 05.02 0955 03.07 0070 06.38 0215 05.00 0985 02.98 0075 06.28 0225 04.93 1000 02.97 0080 06.21 0227 04.87 1020 02.96 0083 06.21 0232 04.84 1030 02.90 0084 06.18 0238 04.75 1050 02.90 0091 06.18 0244 04.70 1070 02.85 0095 06.12 0250 04.62 1190 02.70 0095 06.12 0257 04.60 1230 02.65 0100 05.97 0268 04.50 1240 02.62 0109 05.66 0284 04.40 1410 02.43 0110 05.59 0287 04.36 1490 02.34			0200	05.10		
0068 06.47 0209 05.02 0955 03.07 0070 06.38 0215 05.00 0985 02.98 0075 06.28 0225 04.93 1000 02.97 0080 06.21 0227 04.87 1020 02.96 0083 06.21 0232 04.84 1030 02.90 0084 06.18 0238 04.75 1050 02.90 0086 06.19 0244 04.70 1070 02.85 0091 06.18 0250 04.62 1190 02.70 0095 06.12 0257 04.60 1230 02.65 0100 05.97 0268 04.50 1240 02.62 0109 05.66 0284 04.40 1410 02.43 0110 05.59 0287 04.36 1490 02.34	0066	06.50	0207	05.06		
0070 06.38 0215 05.00 0985 02.98 0075 06.28 0225 04.93 1000 02.97 0080 06.21 0227 04.87 1020 02.96 0083 06.21 0232 04.84 1030 02.90 0084 06.18 0238 04.75 1050 02.90 0086 06.19 0244 04.70 1070 02.85 0091 06.18 0250 04.62 1190 02.70 0095 06.12 0257 04.60 1230 02.65 0100 05.97 0268 04.50 1240 02.62 0109 05.66 0284 04.40 1410 02.43 0110 05.59 0287 04.36 1490 02.34			0209			
0075 06.28 0225 04.93 1000 02.97 0080 06.21 0227 04.87 1020 02.96 0083 06.21 0232 04.84 1030 02.90 0084 06.18 0238 04.75 1050 02.90 0086 06.19 0244 04.70 1070 02.85 0091 06.18 0250 04.62 1190 02.70 0095 06.12 0257 04.60 1230 02.65 0100 05.97 0268 04.50 1240 02.62 0106 05.72 0274 04.43 1385 02.45 0109 05.66 0284 04.40 1410 02.43 0110 05.59 0287 04.36 1490 02.34		06.38	0215			
0080 06.21 0227 04.87 1020 02.96 0083 06.21 0232 04.84 1030 02.90 0084 06.18 0238 04.75 1050 02.90 0086 06.19 0244 04.70 1070 02.85 0091 06.18 0250 04.62 1190 02.70 0095 06.12 0257 04.60 1230 02.65 0100 05.97 0268 04.50 1240 02.62 0106 05.72 0274 04.43 1385 02.45 0109 05.66 0284 04.40 1410 02.43 0110 05.59 0287 04.36 1490 02.34			0225			
0083 06.21 0232 04.84 1030 02.90 0084 06.18 0238 04.75 1050 02.90 0086 06.19 0244 04.70 1070 02.85 0091 06.18 0250 04.62 1190 02.70 0095 06.12 0257 04.60 1230 02.65 0100 05.97 0268 04.50 1240 02.62 0106 05.72 0274 04.43 1385 02.45 0109 05.66 0284 04.40 1410 02.43 0110 05.59 0287 04.36 1490 02.34		06.21	0227	04.87		
0084 06.18 0238 04.75 1050 02.90 0086 06.19 0244 04.70 1070 02.85 0091 06.18 0250 04.62 1190 02.70 0095 06.12 0257 04.60 1230 02.65 0100 05.97 0268 04.50 1240 02.62 C106 05.72 0274 04.43 1385 02.45 0109 05.66 0284 04.40 1410 02.43 0110 05.59 0287 04.36 1490 02.34		06.21	0232	04.84		
0086 06.19 0244 04.70 1070 02.85 0091 06.18 0250 04.62 1190 02.70 0095 06.12 0257 04.60 1230 02.65 0100 05.97 0268 04.50 1240 02.62 C106 05.72 0274 04.43 1385 02.45 0109 05.66 0284 04.40 1410 02.43 0110 05.59 0287 04.36 1490 02.34		06.18	0238	04.75		
0091 06.18 0250 04.62 1190 02.70 0095 06.12 0257 04.60 1230 02.65 0100 05.97 0268 04.50 1240 02.62 0106 05.72 0274 04.43 1385 02.45 0109 05.66 0284 04.40 1410 02.43 0110 05.59 0287 04.36 1490 02.34			0244	04.70		
0095 06.12 0257 04.60 1230 02.65 0100 05.97 0268 04.50 1240 02.62 0106 05.72 0274 04.43 1385 02.45 0109 05.66 0284 04.40 1410 02.43 0110 05.59 0287 04.36 1490 02.34			0250	04.62		
0100 05.97 0268 04.50 1240 02.62 0106 05.72 0274 04.43 1385 02.45 0109 05.66 0284 04.40 1410 02.43 0110 05.59 0287 04.36 1490 02.34			0257	04.60		
C106 05.72 0274 04.43 1385 02.45 0109 05.66 0284 04.40 1410 02.43 0110 05.59 0287 04.36 1490 02.34						
0109 05.66 0284 04.40 1410 02.43 0110 05.59 0287 04.36 1490 02.34				04.43		
0110 05.59 0287 04.36 1490 02.34			0284	04.40		
			0287	04.36		
	0114	05.57	0296	04.30		

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71-06-043 DATE 21/09/71
POSITION 49-01.7N 134-04.0W GMT 01.8
RESULTS OF STP CAST 83 POINTS TAKEN FROM ANALOG TRACE

DEPTH	TEMP	DEPTH	TEMP	DEPTH	TEMP
0000	12.95	0089	06.35	0250	04.90
0010	12.95	0091	06.39	0262	
0013	12.95	0094	06.27	0265	04.83
0020	12.85	0096	06.27	0274	04.76
0022	12.75	0097	06.19	0277	04.72
0024	12.45	0100	06.15	0290	04.55
0030	12.36	0110	06.05	0300	04.52
0032	12.34	0120	05.66	0310	04.42
0034	12.18	0125	05.60	0330	04.42
0038	09.78	0129	05.57	380	04.08
0041	08.32	0134	05.60	0400	04.07
0042	08.25	0138	05.75	0450	03.90
0043	07.95	0142	06.08	460	03.85
0045	07.60	0150	06.00	0500	03.78
0050	07.28	0154	05.78	0600	03.67
0055	07.10	0158	05.75	0730	03.50
0060	07.01	0160	05.77	0755	03.47
0063	06.85	0175	05.66	0770	03.41
0066	06.82	0179	05.66	0800	03.37
0068	06.77	0184	05.55	0840	03.30
0069	06.80	0190	05.52	0890	03.25
0071	06.70	0200	05.36	0930	03.13
0075	06.67	0202	05.35	1000	03.00
0080	06.57	0204	05.27	1030	02.99
0081	06.51	0218	05.15	1120	02.83
0082	06.51	0226	05.02	1200	02.72
0084	06.45	0236	04.98	1490	02.39
0086	06.42	0242	04.95		

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71-06-044 DATE 21/09/71
POSITION 49-01.0N 132-04.0W GMT 08.2
RESULTS OF STP CAST 71 POINTS TAKEN FROM ANALOG TRACE

DEPTH	TEMP	DEPTH	TEMP	DEPTH	TEMP
0000	12 75	01.25	05.00		
0000	13.75	0125	05.90	0300	04.32
0010	13.75	0134	05.88	0315	04.27
0020	13.75	0150	05.75	0355	04.18
0030	13.75	0156	05.67	0385	04.08
0032	13.75	0164	05.62	0400	04.10
0038	13.58	0169	05.50	0500	03.92
0041	13.52	0175	05.42	0600	03.80
0044	11.90	0187	05.28	0670	03.67
0050	09.25	0193	05.17	0695	03.58
0051	08.80	0200	05.11	0726	03.57
0053	08.53	0208	05.02	0755	03.52
0055	08.54	0212	04.94	0800	03.47
0058	07.98	0220	04.85	0835	03.35
0062	07.60	0224	04.84	0870	03.30
0066	07.28	0230	04.74	0950	03.16
0069	07.20	0240	04.65	1000	03.04
C071	07.18	0250	04.58	1120	02.85
0075	06.93	0252	04.58	1200	02.70
0080	06.75	0256	04.55	1240	02.62
0084	06.66	0260	04.50	1290	02.55
C090	06.26	0267	04.48	1320	02.53
0097	05.95	0270	04.45	1425	02.39
0100	05.91	0274	04.44	1485	02.33
0106	05.88	0284	04.40	1405	02.033
3.30	37.00	3204	04.40		

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71-06-045 DATE 21/09/71
POSITION 49-00.2N 130-04.0W GMT 14.8
RESULTS OF STP CAST 94 POINTS TAKEN FROM ANALOG TRACE

DEPTH	TEMP	DEP	TH TEMP	DEPTH	TEMP
0000	13.93	011	6 06.45	0287	04.93
0010	13.93	012		0292	04.91
0020	13.93	012	5 06.31	0300	04.86
0028	13.92	012		0335	04.55
0030	13.90	012		0350	04.51
CO33	13.85	013		0365	04.35
0034	13.72	013	2 06.17	0400	04.20
0036	13.50	013	5 06.20	0450	04.00
0042	11.40	013	8 06.33	0500	03.90
0043	11.00	014	2 06.23	0600	03.73
0046	10.15	014	5 06.29	0625	03.70
0050	09.02	014	8 06.28	0655	03.68
0052	08.68	015	0 06.24	0660	03.71
C056	08.31	016	0 06.26	0675	03.69
0058	08.10	016	4 06.22	0680	03.65
0062	07.90	017	5 06.20	0705	03.67
0063	07.75	018	7 06.08	0720	03.64
0066	07.59	018	9 05.95	0730	03.64
C070	07.46	020	0 05.80	0740	03.58
0075	07.25	021	4 05.67	0770	03.56
0081	07.01	022	0 05.67	0800	03.50
0083	06.99	022	4 05.60	0820	03.42
0085	07.10	023	0 05.57	1000	03.14
0088	07.13	023	5 05.45	1090	02.95
0093	07.07	024		1200	02.77
0095	07.11	024	5 05.35	1230	02.75
C098	07.10	025	0 05.34	1270	02.65
0100	06.95	025	3 05.30	1300	02.62
0102	06.80	026	5 05.10	1340	02.52
0105	06.77	027	3 05.05	1405	02.49
0108	06.68	028	05.02	1490	02.37
C112	06.60				

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71-06-046 DATE 21/09/71
PUSITION 48-05.1N 128-04.0W GMT 20.8
RESULTS OF STP CAST 95 POINTS TAKEN FROM ANALOG TRACE

DEPTH	TEMP	DEPTH	TEMP	DEPTH	TEMP
0000	14.97	0125	07.05	0512	04.71
0001	15.00	0130	07.10	0520	04.71
0008	14.95	0136	07.11	0530	04.67
0010	14.93	0150	07.02	0532	04.69
0020	14.91	0175	06.80	0540	04.59
0025	14.89	0182	06.77	0550	04.56
30	14.81	0200	06.66	0560	04.59
0033	14.75	0210	06.58	0570	04.57
0036	14.10	0216	06.49	0600	04.47
0040	10.77	0220	06.42	0612	04.41
0045	10.20	0224	06.39	0630	04.41
0047	09.42	0227	06.38	0660	04.35
0050	09.30	0237	06.27	0680	04.25
0053	08.50	0241	06.27	0710	04.22
0054	08.45	0246	06.18	0780	04.00
0056	08.05	0250	06.16	0800	03.93
0060	07.82	0264	06.07	0925	03.60
0062	07.70	0282	05.81	0935	03.54
0065	07.60	0284	05.81	1000	03.40
0067	07.60	0285	05.78	1010	03.35
0070	07.45	0290	05.77	1050	03.30
0075	07.40	0298	05.65	1200	02.95
0082	07.22	0300	05.65	1220	02.91
C086	07.18	0320	05.40	1230	02.91
C088	07.12	0360	05.17	1250	02.81
0092	07.10	0370	05.24	1280	02.75
0093	07.02	0400	05.07	1350	02.68
C100	06.99	0450	04.91	1370	02.69
C103	06.94	0480	04.75	1410	02.62
C108	06.92	0495	04.75	1440	02.53
C113	07.01	0500	04.70	1485	02.46
0120	07.05	0510	04.64		

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71-06-047
POSITION 48-04.6N 127-04.0W GMT 00.4
RESULTS OF STP CAST 125 POINTS TAKEN FROM ANALOG TRACE

DEPTH	TEMP	DEPTH	TEMP	DEPTH	TEMP
		0142	07.07	0430	05.02
0000	15.19	0144	07.07	0440	05.05
0001	15.23	0144	07.13	0460	04.98
0005	15.24	0150	07.07	0470	04.79
0010	15.06	0153	07.04	0475	04.87
0014	14.99	0154	07.01	0485	04.65
0016	14.97	0156	07.01	0495	04.60
C018	14.84	0157	06.93	0500	04.71
0020	14.92	0160	06.86	0505	04.81
0022	14.88	0162	06.90	0510	04.72
0024	14.92	0164	06.90	0520	04.66
0028	14.73	0168	06.78	0545	04.62
0030	14.50	0175	06.72	0550	04.63
0033	10.90	0177		0575	04.46
0035	10.70	0179		0590	04.45
0038	09.90	0182		0600	04.50
0041	09.63	0187		0602	04.44
0043	09.55	0190		0612	04.49
0046	09.03 08.95	0197		0620	04.40
0050	08.70	0200		0645	04.40
0053	08.45	0204		0655	04.36
0058	08.20	0212		0680	04.35
0060	08.05	0222		0730	04.17
0064 0070	07.70	0228		0740	04.17
0075	07.61	0231		0770	04.10
	07.56	0240		0800	04.00
0077	07.45	0242		0810	03.95
0079 0082	07.53	0250		0820	03.97
0084	07.44	0262		0875	03.80
0085	07.53	0264		0905	03.78
0087	07.49	0269		0920	03.70
0089	07.55	0272		0940	03.69
0091	07.65	0275	05.68	1000	03.57
0094	07.58	0282	05.64	1020	03.47
6100	07.61	0296		1075	03.30
0110	07.50	0300		1200	03.07
0116	07.38	0310		1310	02.83
C122	07.56	032!		1340	
0125	07.57	0380			
0133	07.53	0399		1400	
0138	07.20	039		1490	02.49
0141	07.18	040	5 05.15		

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71-06-048

POSITION 48-04.2N 126-04.0W GMT 03.9
RESULTS OF STP CAST 96 POINTS TAKEN FROM ANALOG TRACE

DEPTH	TEMP	DEPTH	TEMP	0	ЕРТН	TEMP
0000	14.00	0066	07.50	C	185	06.79
0001	13.93	0068	07.50		188	06.75
0004	14.20	0070	07.54		195	06.72
0005	13.80	0075	07.45	C	196	06.70
0007	13.74	0077	07.40	0	200	06.69
8000	13.95	0084	07.36	C	210	06.70
0010	13.63	0093	07.23	C	214	06.65
0013	12.75	0100	07.42	0	220	06.65
0015	12.55	0102	07.45	C	1240	06.52
0017	11.25	0105	07.38	C	250	06.49
0019	11.17	0107	07.38	C	268	06.35
20	11.66	0109	07.21	C	275	06.27
0021	11.58	0112	07.23		293	06.16
0022	11.77	0114	07.21	C	300	06.15
0024	10.94	0116	07.25	C	310	06.01
0026	10.49	0119	07.25	0	400	05.47
8500	10.35	0121	07.36	C	430	05.29
0030	09.87	0122	07.27	C	470	05.17
0031	09.79	0125	07.22	C	500	05.01
0034	09.65	0127	07.17	C	1550	04.80
0036	09.55	0129	07.23	C	1600	04.67
0038	08.90	0132	07.23	C	695	04.33
0040	08.10	0135	07.19	C	710	04.33
0041	08.00	0140	07.19	C	0080	04.01
0043	08.12	0142	07.14		820	03.94
0046	07.91	0150	07.10		840	03.92
0050	07.72	0152	07.00		0880	03.77
C053	07.56	0156	06.93		940	03.65
0055	07.34	0162	06.92		970	03.62
0058	07.28	0166	06.88		.000	03.54
0060	07.33	0175	06.84		.040	03.46
0063	07.35	0182	06.79	1	.200	03.11

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71-06-049
PUSITION 48-03.8N 126-04.0W GMT 06.4
RESULTS OF STP CAST 38 POINTS TAKEN FROM ANALOG TRACE

DEPTH	TEMP	DEPTH	TEMP	DEPTH	TEMP
0000	14.22	0026	09.70	0054	07.43
0004	14.23	0028	10.17	0056	07.25
0006	13.95	0030	09.88	0060	07.50
0007	13.40	0032	09.86	0063	07.47
0008	13.69	0034	09.05	64	07.43
0010	13.45	0038	08.65	0069	07.38
0013	12.05	0041	08.53	0071	07.34
0014	11.90	0042	08.37	0075	07.28
0015	12.30	0044	08.28	0078	07.20
0018	10.73	0048	07.69	0082	07.00
0020	10.60	0050	07.69	0085	06.96
0022	10.25	0051	07.69	0100	06.97
0024	09.95	0052	07.73	• • • • • • • • • • • • • • • • • • • •	

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71-06-050 DATE 22/09/71
POSITION 48-03.3N 125-03.3W GMT 08.0
RESULTS OF STP CAST 44 POINTS TAKEN FROM ANALOG TRACE

DEPTH	TEMP	DEPTH	TEMP	DEPTH	TEMP
0000	10.50	0024	10.00	0058	07.90
0002	10.33	0026	09.82	0062	07.83
0003	10.31	0028	09.71	0064	07.70
0004	10.32	0030	09.38	71	07.63
0006	10.28	0031	09.31	0073	07.47
8000	10.28	0033	09.25	0075	07.47
0010	10.05	0034	09.08	0080	07.40
0011	10.03	0038	08.72	0081	07.25
0014	10.07	0040	08.55	0090	07.15
0016	10.02	0042	08.48	0100	07.07
0018	10.02	0043	08.39	0104	06.90
0019	10.06	0046	08.27	0109	06.85
0020	10.02	0050	08.22	0110	06.80
0022	10.03	0054	08.22	0115	06.78
0023	09.98	0055	08.05		

SURFACE TEMPERATURE AND SALINITY OBSERVATIONS
(P-71-6)

SURFACE SALINITY AND TEMPERATURE OBSERVATIONS
CRUISE REFERENCE NUMBER 71- 6

r	ATA	E/T	TMC	SALINITY	/ TEMP	LONGITUSE
YR	MO	DY	GMT	0/00	C	LONGITUDE
71	8	6	2315	31.376	14.3	125-33
71	8	7	55	31.956	16.0	126- 0
71	8	7	330	31.983	16.9	
71	8	7	655	31.939	16.9	126-40
71	8	7	1230	31.863	16.6	127-40 128-40
71	8	7	1620	32.324	16.0	
71	8	7	1915	32.553	15.5	129-40
71	8	7	2300	32.481	15.4	130-40
71	8	8	230	32.552	15.0	131-40 132-40
71	8	8	555	32.521	14.6	133-40
71	8	8	900	32.581	15.0	134-40
71	8	8	1230	32.561	14.1	135-40
71	8	8	1520	32.618	14.4	136-40
71	8	8	2020	32.641	14.0	137-40
71	8	8	2330	32.681	14.2	138-40
71	8	9	300	32.654	13.0	139-40
71	8	ý	605	32.667	12.8	140-40
71	8	9	1000	32.656	12.7	141-40
71	8	9	1330	32.666	12.7	142-40
71	8	9	1820	32.655	13.0	143-40
71	8	10	0	32.662	12.7	145- 0
71	. 8	11	0	32.664	12.8	ON STATION
71	8	12	0	32.661	13.1	ON STATION
71	8	13	0	32.648	13.4	ON STATION
71	8	14	0	32.639	13.2	ON STATION
71	8	15	0	32.647	13.2	ON STATION
71	8	16	C	32.617	12.9	ON STATION
71	8	17	0	32.625	13.5	ON STATION
71	8	18	0	32.624	13.3	ON STATION
71	Ŗ	19	0	32.606	12.9	ON STATION
71	8	20	0	32.623	12.4	ON STATION
71	8	22	0	32.667	11.6	ON STATION
71	8	23	0	32.637	11.0	ON STATION
71	8	24	0	32.653	11.3	ON STATION
71	8	25	0	32.664	11.3	ON STATION
71	8	26	0	32.706	11.4	ON STATION
71	8	27	0	32.648	11.4	ON STATION
71	8	28	0	32.631	11.4	ON STATION
71	8	29	0	32.637	11.3	ON STATION
71	8	30	. 0	32.649	11.5	ON STATION
71	8	31	0	32.652	11.4	ON STATION
71	9	1	0	32.675	11.3	ON STATION
71	9	2	0	32.653	11.3	ON STATION
71	9	3	0	32.641	11.3	ON STATION
71	9	4	0	32.637	11.3	ON STATION
71	9	5	0	32.638	11.0	ON STATION
71	9	6	С	32.654	11.0	ON STATION
71	9	7	0	32.604	10.6	ON STATION
71	9	8	0	32.754	10.7	ON STATION

SURFACE SALINITY AND TEMPERATURE OBSERVATIONS CRUISE REFERENCE NUMBER 71- 6

0	ATE	/ T	IME	SALINITY	TEMP	LONGITUDE
YR	MO	DY	GMT	0/00	С	WEST
71	9	8	0	32.754	10.7	ON STATION
71	9	9	0	32.647	10.6	ON STATION
71	9	10	0	32.630	10.6	ON STATION
71	9	11	0	32.640	9.9	ON STATION
71	9	13	0	32.667	9.5	ON STATION
71	9	14	0	32.660	9.5	ON STATION
71	9	15	0	32.633	9.7	ON STATION
71	9	16	0	32.622	9.7	ON STATION
71	9	17	0	32.654	9.5	ON STATION
71	9	18	0	32.635	9.5	ON STATION
71	9	19	0	32.627	9.6	ON STATION
71	9	19	2330	32.661	9.6	142-40
71	9	20	240	32.620	10.6	141-40
71	9	20	900	32.646	11.5	139-40
71	9	20	1200	32.613	12.5	138-40
71	9	20	1510	32.638	12.5	137-40
71	9	20	1800	32.606	12.5	136-40
71	9	20	2200	32.560	12.5	135-40
71	9	21	145	32.568	12.6	134-40
71	9	21	510	32.518	12.9	133-40
71	9	21	815	32.484	13.9	132-40
71	9	21	1145	32.535	14.0	131-40
71	9	21	1450	32.532	14.1	130-40
71	9	21	1800	32.505	14.3	129-40
71	9	21	2100	32.339	15.0	128-40
71	9	22	20	32.375	15.4	127-40
71	9	22	350	30.847	14.7	126-40
71	9	22	615	30.752	14.4	126- 0
71	9	22	800	31.103	10.7	125-33

OCEANOGRAPHIC DATA OBTAINED ON CRUISE P-71-7

(C. O. D. C. REFERENCE NO. 02-71-007)

COMPOSITE PLOTS OF TEMPERATURE, SALINITY

AND DISSOLVED OXYGEN VS DEPTH

(P-71-7)

Fig. 10 Composite plot of temperature vs log10 depth P-71-7.

Fig. 11 Composite plot of salinity vs log₁₀ depth P-71-7.

Fig. 12 Composite plot of oxygen vs log₁₀ depth P-71-7.

RESULTS OF BOTTLE CASTS.
(P-71-7)

PALIFIC OCEANOGRAPHIC GROUP

REFERENCE NO. 71- 7- 1

PUSITION 50- 7.0 N. 145- 3.0 W GMT 19.0

HYDROGRAPHIC CAST CATA

SOUND	4	48	48	48	48	1474.	46	46	46	46	46	46	46	47	47	47	47	4	4	4	3	4
OXY						0.0		.2	. 4	80	4.	1	5	0		6		0		0.	•6	0
		0.01	0.06	0.13	0.34	0.73	1.18	1.73	2.28	2.86	3.43	4.78	6.38	\circ	14.67	\circ	C	9	_		136.96	194.41
DELTA		•			•	1.98	- 4							- 9				-	12.84	4.	7.	0
SVA	1	77.	77.	77.	64.	21.	01.	79.	649	28.	22.	14.	.60	00	•	10	~	10	*	0.1	~	~
THETA	19.6	9.61	9	9.	00	6.07	• 6	. 1	0	6.	8	00	1	. 6	5	.3	0	. 7	. 5	.2	8	5
SVA	77.	77.	78.	78.	66.	222.7	02.	80.	51.	30.	24.	16.	12.	02.	9	0	9.	•	9	0	2。	000
SIGMA	5.20	5.20	5.20	5.20	5.33	25.789	00.9	6.23	6.54	91.9	6.83	16.9	96.9	7.C7	7.15	7.22	7.34	7.42	7.50	7.56	7.66	7.71
ОЕРТН	0	10	20	30	64	74	86	2	4	-	0	4	0	0	493	6	0	0	0	48	96	46
SAL	2.64	2.64	2.64	2.64	2.66	32.747	2.80	3.04	3.42	3.68	3.75	3.85	3.91	4.03	4.12	4.18	4.30	4.37	4.44	64.4	4.57	4.62
TEMP	• 6	9 •	• 6	• 6	00	6. 08	• 6	• 2	0	6.	00	9	. 7	• 6	• 5	• 4		00	• 5		6 .	- 7
PRE SS	0					14		7	4	~	0	4	0	5		0	\supset	0	07	5 5	56	5.

PACIFIC OCEANGGRAPHIC GROUP
REFERENCE NO. 71- 7- 2 DATE 30/ 9/71
PUSITION 50- 5.0 N. 145- 4.0 W GMT 20.0
HYJR OGRAPHIC CAST DATA

SOUND	1486.	1486.	1486.	1486.	1485.	1479.	1469.	1468.	1467.	1468.	1468.	1468.	1469.	1471.	1472.
OXY	6.70	6.70	6.73	6.71	6.67	6.83	7.03	66.9	5.73	4.23	3.50	2.48	1.63	1.08	1.06
POT.	0.0		0.05												13.37
DELTA	0.0	0.28	0.53	0.78	1.31	1.89	2.38	2.82	3.23	3.55	3.84	4.37	4.88	5.93	7.02
SVA (THETA)	278.5	278.1	278.0	277.8	270.2	240.6	204.7	193.5	166.6	135.4	125.5	117.7	1111.2	102.2	92.1
THETA			49.6									3.81			
SVA	278.7	278.6	278.6	278.6	271.2	241.9	205.8	194.8	167.9	137.0	127.3	119.8	113.8	105.5	6.96
SIGMA	19	19	25.197	61	,27	58	96	0.8	36	69	80	88	95	.04	15
ОЕРТН	0	10	19	28	47	69	16	113	135	156	178	221	265	360	467
SAL	2.6	2.6	32.643	2.6	32.657	2.7	2.8	2.8	3.1	3.6	3.7	3 . 8	3.8	4.0	4.1
TEMP			49.6												
PRESS	0		61						3	5	7)	9	~

PALIFIC OCEANOGRAPHIC SROUP
REFERENCE NO. 71- 7- 3
PUSITION 49-46.5 N. 144-59.0 W GMT 19.0
HYDROGRAPHIC CAST DATA

PALIFIC DCEANGGRAPHIC GROUP
REFERENCE NO. 71- 7- 4 DATE 14/13/71
PUSITION 50- 3.0 N, 145- 1.0 W GMT 19.2
HYJROGRAPHIC CAST DATA

SOUND	48	48	48	48	48	48	694	694	94	468	468	9 4	694	471	472	473	475	477	479	483	065	497	505	512	519	520	1522.
OXY	• 6	1	8	• 6	9.	7.	0	.5	6	- 7	• 1	2.45	6.	· .	6.	0	8	Φ.	7 .	ω.	. 5	-	9 .	6			0.0
POT.	0	0	0.	•	·	9 •	0	• C	0	. 4	0		9.	0	3.5	9.2	9.2	2.2	7.0	2.1	30.2	85.4	46.7	12.0	80.7	94.8	9
DELTA		•2	• 5	. 7	• 2	00	.3	8	-	• 5	-	4.37	6.	6.	0.	0.	9.5	1.0	2.4	4.3	7.1	9.8	1.8	3.8	5.7	6.1	4.
SVA	σ	68.	67.	68.	68.	50.	03.	80.	44.	29.	26.	20.	13.	02.	. 46	7.	5.	9	0	2 .	•	7.	•	-	-	- O	0
THETA	0	6.	6	6.	5	00	œ	• 6	.2	-	0	3.95	7.	000	9.	4.		.8	. 5	.2	∞	9.	4.	. 2	. 2	. 2	pared A
SVA	69	69	68.	69	69.	51.	04.	91.	46.	31.	28.	122.8	15.	05.	00	2.	1.	3.	7	0	2.	000	9	+	5.	2	*
SIGMA	5.29	5.29	5.30	5.29	5.29	5.49	5.97	6.22	69.9	5.75	5.78	26.852	5.92	7.04	7.13	7.20	7.32	7.41	7.48	7.56	7.66	7.71	7.74	1.77	7.77	7.77	7.78
ОЕРТН	0	6	19	28	46	69	6	-	3	5	∞	227	~	9	9	~	4	3	13	2	16	40	87	31	72	80	87
SAL	2.63	2.63	2.64	2.63	2.63	2.67	2.80	3.08	3.50	3.69	3.72	33.790*	3.86	4.01	4.10	4.16	4.28	4.37	4.43	4.50	4.58	4.62	4.65	4.67	4.68	4.68	4.68
TEMP	0.	6.	6.	6.	6.	6.	00	• 6	• 2	p-m4 0	0.	3.97	- 7	00	• 6	• 4	•	• 00	9.	• 3	6.	1.	9.	.5	. 5	. 5	4.
PRESS	0	6						~	3		30	627	_	~	7	00		4	47	4	76	43	7 7	9	8 /	9	14

PALIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 7- 5
DJITION 50- 8.0 N, 145- 0.0 W GMT 19.1
HYJROGRAPHIC CAST CATA

SOUND	48	48	48	1482.	48	47	9 +	9 5	46	46	94	694	410	47	472	473	415	478	480	484	491	498	506	515	523	525	527
0 X Y	.7	9.	• 6	02.9	• 6	φ.	• 2	• 4	• 80	- 7	• 2	.3	. 7	• 2	œ •	\$	6.	•	-7	6.	9.	9	6.	•	. 4	.3	φ •
POT.	0	0.	0.		• 3	7.	• 2	1.	.3	•	• 4	6.	• 5	0.4	-	9.0	2.1	6.2	1.7	7.6	37.1	7.46	60.8	37.3	27.7	7.3	67.5
DELTA		•2	.5	0.80	•3	6.	• 4	6.	• 3	- 7	0	• 6	.2	.3	.3	.3	6.	1 • 4	2.8	4.7	• 4	6.6	2.3	4.6	6.9	7.4	7.9
SVA	3	63.	63.	63.	63.	26.	97.	79.	45.	29.	24.	17.	10.	000	91.	3.	4.	5	0	-	2.	7.	3.	1.	0	0	0
THETA	5	• 5	• 5	8.54	• 5	.3	• 4	p-ref	0	•		6.	• &	9 .	.5	.3	-	. 7	.57	• 2	e	.5	.3	• 2	•		9
SVA	63.	63.	63.	263.9	64.	27.	98.	80.	46.	31.	26.	19.	13.	.40	9	8	0	2	. 9	6	2.	-	5	4.	5.	5	. 9
SIGMA	5.34	5.35	5.35	25.352	5.35	5.74	6.04	6.23	6.59	6.76	6.81	6.88	6.95	7.06	7.15	7.24	7.33	7.42	7.49	7.57	7.66	7.72	7.75	7.77	7.77	7.78	7.78
ОЕРТН	0	10	20	30	50	75	66	2	149	~	6	4	9	9	9	0	0	0	00	48	7	47	96	46	16	07	17
SAL	2.62	2,62	2.62	32.621	2.62	2.73	2.83	3.03	3.47	3.70	3.76	3.82	3.91	4.02	4.12	4.21	4.29	4.38	4.44	4.51	4.58	4.62	4.65	4.67	4.68	4.68	4.68
TEMP	.5	• 5	. 5	8.54	. 5	.3	. 5	•	0.	•	•	6.	6.	7.	• 6	. 4	0	00	9 .	• (L)	6.	-	• (U	٠ ک	*	.5	•
PAESS	0	10	70	30	5.0	75		N	150	~	0	.0	0		0	7	17	3	6 7	6+		7	~	52	ر س	77	47

SURFACE TEMPERATURE AND SALINITY OBSERVATIONS
(P-71-7)

T-S plot of surface temperature and salinity observations on Line P (asterisks) and at Station P (pluses) during Cruise P-71-7. Fig. 13

SURFACE SALINITY AND TEMPERATURE OBSERVATIONS
CRUISE REFERENCE NUMBER 71- 7

DATEATINE	CALTAITTY	7540	
DATE/TIME YR MO DY GMT	SALINITY	TEMP	LONGITUDE
	0/00 31.741	C	WEST
71 9 18 215 71 9 18 350		11.8	125-33
	30.544	15.5	126- 0
	31.164	14.4	126-40
	31.998	15.4	127-40
	32.392	14.8	128-40
71 9 18 1405	32.517	15.0	129-40
71 9 18 1615	32.517	13.8	130-40
71 9 18 1845	32.543	14.3	131-40
71 9 18 2100	32.484	14.6	132-40
71 9 18 2330 71 9 19 210	32.531	15.0	133-40
	32.570	14.5	134-40
71 9 19 500	32.586	13.2	135-40
71 9 19 800	32.648	13.0	136-40
71 9 19 1010	32.650	0.0	137-40
71 9 19 1240	32.694	13.2	138-40
71 9 19 1530	0.0	11.5	139-40
71 9 19 1745	32.647	13.0	140-40
71 9 19 2030	32.647	11.0	141-40
71 9 19 2330	32.649	11.2	142-40
71 9 20 230	32.624	11.0	143-40
71 9 21 0	32.632	10.1	ON STATION
71 9 22 0	32.656	10.0	ON STATION
71 9 23 0	32.625	10.1	ON STATION
71 9 24 0	32.627	10.0	ON STATION
71 9 25 0	32.631	10.0	ON STATION
71 9 26 0	32.643	10.0	ON STATION
71 9 27 0	32.636	10.0	ON STATION
71 9 28 0	32.636	10.0	ON STATION
71 9 29 0	32.637	10.0	ON STATION
71 9 30 0	32.641	10.1	ON STATION
71 10 1 0	32.646	10.1	ON STATION
71 10 2 0	32.643	10.0	ON STATION
71 10 3 0	32.611	10.1	ON STATION
71 10 4 0	32.612	10.0	ON STATION
71 10 5 0	32.624	9.8	ON STATION
71 10 6 0	32.637	9-8	ON STATION
71 10 7 0	32-621	9.9	ON STATION
71 10 8 0	32.609	9.8	ON STATION
71 10 9 0	32.593	9.6	ON STATION
71 10 10 0	32.599	9.6	ON STATION
71 10 11 0	32.598	9.5	ON STATION
71 10 12 0	32.619	9.5	ON STATION
71 10 13 0	32.588	9.4	ON STATION
71 10 14 0	32.595	9.3	ON STATION
71 10 15 0	32.610	9.4	ON STATION
71 10 16 0	32.591	9.4	ON STATION
71 10 17 0	32.586	9.5	ON STATION
71 10 18 0	32.601	9.4	ON STATION
71 10 19 0	32.587	9.4	ON STATION

SURFACE SALINITY AND TEMPERATURE OBSERVATIONS CRUISE REFERENCE NUMBER 71- 7

i	DAT	E/T	IME	SALINITY	TEMP	LONGITUDE
YR	MO	DY	GMT	0/00	С	WEST
71	10	19	0	32.587	9.4	ON STATION
71	10	20	0	32.590	9.2	ON STATION
71	10	21	0	32.597	9.2	ON STATION
71	10	22	0	32.597	9.3	ON STATION
71	10	23	0	32.620	8.9	ON STATION
71	10	24	0	32.617	B. 9	ON STATION
71	10	25	0	32.603	8.9	ON STATION
71	10	26	0	32.615	9.0	ON STATION
71	10	27	0	32.617	9.0	ON STATION
71	10	28	0	32.590	8.8	ON STATION
71	10	29	0	32.573	8.9	ON STATION
71	10	30	0	32.582	8.7	ON STATION
71	10	31	0	32.577	8.5	ON STATION
71	11	1	0	32.586	8.6	ON STATION
71	11	1	1900	32.606	9.1	142-40
71	11	1	2110	32.600	9.2	141-40
71	11	1	2350	32.587	9.2	140-35
71	11	2	150	32.619	9.6	139-40
71	11	2	415	32.668	9.7	138-40
71	11	2	600	32.665	9.9	137-40
71	11	2	830	32.553	9.8	136-40
71	11	2	1053	32.485	9.9	135-40
71	11	2	1540	32.568	10.3	133-40
71	11	2	1800	32.474	10.5	132-40
71	1.1	2	2000	32.527	10.7	131-40
71	11	2	2215	32.505	10.9	130-40
71	11	3	45	32.485	11.0	129-41
71	11	3	245	32.237	10.8	128-40
71	11	3	500	32.320	10.9	127-40
71	11	3	735	32.092	10.3	126-40
71	11	3	910	31.544	10.2	126- 0
71	11	3	1011	31.878	9.7	125-33

OCEANOGRAPHIC DATA OBTAINED ON CRUISE P-71-8

(C.O.D.C. REFERENCE NO. 02-71-008)

Fig. 14 Bottle - STD salinity value difference profiles P-71-8.

Fig. 15 Reversing thermometer - STD temperature difference profiles P-71-8.

COMPOSITE PLOTS OF TEMPERATURE, SALINITY

AND DISSOLVED OXYGEN VS DEPTH

(P-71-8)

Fig. 16 Composite plot of temperature vs log10 depth P-71-8.

Fig. 17 Composite plot of salinity vs log₁₀ depth P-71-8.

Fig. 18 Composite plot of oxygen vs log 10 depth P-71-8.

RESULTS OF BOTTLE CASTS
(P-71-8)

PALIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 8- 5 DATE 10/11/71
PJSITION 50- 0.0 N, 145- 0.0 W GMT 18.0
HYJROGRAPHIC CAST DATA

SOUND	47	1478.	14	4	4	1479.	4	4	4	4	470	470	470	4	473	413	475	114	4	483	065	498	909	S	523	S	5
OXY			0.	6.	8	6.85	• 6	• 4	• 3	.5	.0	. 4	6.	. 2	0.	• 8	9.	1.	8	-7	• 4	-	• 6	• 1	• 2	.3	• 3
POT.		.0	0.		.3	0.73	.2	- 7	.2	. 7	.3	. 8	.5	0.5	5.3	0.7	1.8	5.3	0.4	5.9	34.9	91.8	57.6	4.2	23.2	42.7	æ .
DELTA		•2	.5	.7	•2	1.89	4.	00	.2	•5	00	4.	0	.2	•2	•	~	1.2	2.5	4.4	7.2	1.6	2.1	4.	6.7	7.2	7.6
SVA	~	47.	47.	47.	47.	47.	81.	50.	32.	26.	22.	17.	11.	01.	3.	5.	4.	5.	9.	e proof	2.	7	3.	1.	0	0	0
THETA	.5	. 5	.5	. 5	• 5	7.49	1.	• 5	. 4	33	• 3	-	0.	1.	9.	• 4	•	8	. 5	• 2		• 5	• 3	• 2	. 1		•
SVA	47.	48.	48.	48.	48.	248.7	82.	51.	34.	28.	25.	19.	14.	04.	7.	0	0	2.	9	0.	2.	7	5.	4.	5.	5.	5
SIGMA	5.51	5.51	5.51	5.51	5.51	25.518	6.21	6.54	6.72	6.78	6.82	68.9	6.94	7.05	7.14	7.21	7.33	7.42	7.49	7.57	7.66	7.72	7.75	7.77	7.78	7.78	7.78
ОЕРТН	0	10	20	30	90	75	0	2	151	-	0	5	0	0	0	0	∞	-	17	46	95	44	94	5	9 6	05	15
SAL	2.64	2.64	2.64	2.64	2.64	32.640	3.08	3.47	3.70	3.75	3.80	3.86	3.91	4.02	4.11	4.18	4.29	4.37	4.43	4.50	4.58	4.62	4.65	4.67	4.68	4.68	4.68
TEMP	. 5	.5	.5	. 5	.5		. 7	. 5	• 5	63	.3	-	•	• 7	• 6	• 4	•	œ.	• 6	.3	• 9	. 7	.5	.5	· 57	.5	.5
PRESS	0	10	5.0	30	50	15	0	2	2	~	0	2	0	0	0	0	6	∞	20	14	7	48	6 K		7	12	22

PALIFIC OCEANOGRAPHIC GROUP
AEFERENCE NO. 71-8-8
PUSITION 50-0.0 N. 145-0.0 W GMT 18.0
HYJROGRAPHIC CAST DATA

ONNO				78	78		79		- 0	- 4	Z 3		- 1	70		72	72	-	76	8	32	38	35	33	0	6	0	22.
S		A	-	A	-4	~~	V	v	N.		J	- ST	- 57	-3	-	~	- 32	3			32		- 32	10	10	10	152	10
OXY		~	a	w	w.		00	0	4	10	-	4	9	0	(L)	5	~	00	N	9	-	-	80	m	0	3	3.23	3
POT.	Z		•	•	0		•	•		0	• 6	-	. 4	0	9	1.5	5.7	5.6	7.1	0.2	2.7	16.5	68.3	28.9	98.1	77.8	395.10	13.1
DELTA	-	•		4	9			. 2		7	• 4	-	C	6.	0	5	.3	6.	4.0	1.7	3.5	6.3	8 .8	1.1	3.3	5.6	26.04	6.4
SV	H	46.	46.	46.	46.	46.	46.	.60	1	52.	33.	26.	19.	13.	02.	7	•	·	9	~	.+	. 4		•	•	4	31.0	•
THETA		•	• 4	•	(4)	•		5	•	0		(1)	0	6	00	1.	.5	.2	6.		.3	6.	9.	4.	3	, 2	1.20	-
SVA		46.	46.	47.	47.	47.	47.	11.	2 .	54.	35.	28.	22.	16.	.90	01.	9	4	2.	0	S		9	9.	*	.0	45.2	•
SIGMA	-	5.53	5.52	5.52	5.52	5.53	5.52	5.91	6.21	5.51	6.71	5.78	5.86	5.92	7.03	1.09	7.16	7.29	7.38	7.45	7.54	7.64	7.70	7.73	7.77	1.77	27.77	1.77
DEPTH		0	6	18	27	94	69	9	present .	3	9	00	3	∞	~	2	-	∞	86	04	32	78	26	74	22	1/	3807	06
SAL		2.63	2.63	2.62	2.62	2.63	2.63	2.82	3.01	3.37	3.66	3.76	3.81	3.88	4.01	4.06	4.13	4.25	4.35	4.40	4.48	4.56	4.61	4.64	4.67	֥68	34.680	4.68
TEMP		•	• 4	• (1)	•	C.	(C)	· .	-	•	(T)	• 4	0	0	œ		• 6	۳.	0		4.	0	o	• 6	• 5	. 21	1.51	• 5
PRE S S	•	0						9		4	9	∞	3	∞	∞	2	-	5	20	5	53	20	67	8	77	1	3671	76

PALIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 8- 14
PUSITION 50- 0.0 N, 145- 0.0 W GMT 17.7
HYJR OGRAPHIC CAST EATA

SOUND	4	7	4	4	476	476	477	468	1470.	114	471	470	471	472	472	414	476	478	480	484	16+	665	507	516	524	52	52
ΟΧΥ		6	9.	5.	5		5	• 4	5.21	-	5	-	-	. 2	00	-	• 5	• 6	7.	80	4.	-	9 .		3	0	3
POT.	0	0.	0	•	C	• 6	.2	00		0	9.		6.	1.0	5.8	1.2	4.0	8.1	00	0.0	40.5	99.2	67.4	6.1	37.2	57.1	77.8
DELTA	0.0	•2	4.	7.	-		.3	6.	3.33	9.	0	• 6	. 2	4.	4.	.3	0.1	1.6	0	4.8	7.6	0.2	2.5	6.4	7.2	7.7	8.1
SVA	S	35.	35.	35.	35.	35.	35.	79.	46.	31.	25.	20.	14.	01.	91.	3	3.	+	7.	0	•	9	~	•	0	9	0
THETA	- 7	. 7	7.	-7	. 7	• 6	. 7	• 4	4.55	• 6	• 5	• 2	• 1	00	. 5	• 4	0.		. 5	• 2	00	• 5	.3	.2		•	
SVA	35.	36.	36.	36.	36.	36.	37.	80.	147.7	33.	28.	22.	17.	05.	. 9	6	0	•	5.	6	-	-	5.	4.	5.	5.	9
SIGMA	5.64	5.64	5.64	5.64	5.63	5.64	5.64	6.23	26.585	6.74	6.19	6.85	6.92	7.05	7.15	7.23	7.34	7.43	7.51	7.58	7.67	7.72	7.75	7.77	7.78	7.78	7.78
ОЕРТН	0						0	2	150	~	0	5	0	0	0	0	81	0.0	0	50	00	20	0 1	52	03	13	23
SAL	2.66	2.66	2.65	2.65	2.65	2.66	2.66	3.07	33.531	3.73	3.79	3.83	3.89	4.02	4.13	4.21	4.30	4.38	4.45	4.52	4.59	4.63	4.66	4.68	69.4	69.4	4.68
TEMP									4.56														•				
PRESS	0						2	7	151	_	\supset	5	0	0		-	7		77	75	ر ر	4	90	~	60	7	0.4

RESULTS OF STD CASTS
(P-71-8)

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 8- 1 DATE 2/11/71
POSITION 50- 0.0N, 145- 0.0W GMT 22.0
RESULTS OF STP CAST 70 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
				T		D	EN	
0	8.16	32.60	0	25.39	259.4	0.0	0.0	1480.
10	8.16	32.60	10	25.39	259.8	0.26	0.01	1481.
20	8.16	32.60	20	25.39	259.9	0.52	0.05	1481.
30	8.16	32.60	30	25.39	260.2	0.78	0.12	1481.
50	8.17	32.60	50	25.39	260.5	1.30	0.33	1481.
75	7.67	32.60	75	25.46	254.0	1.95	0.75	1480.
100	4.75	32.87	99	26.04	198.8	2.49	1.22	1469.
125	4.60	33.22	124	26.33	171.2	2.96	1.76	1469.
150	4.43	33.59	149	26.65	141.8	3.34	2.29	1469.
175	4.26	33.69	174	26.74	133.1	3.68	2.86	1469.
200	4.18	33.74	199	26.79	128.5	4.00	3.48	1469.
225	4.09	33.77	223	26.82	125.6	4.32	4.16	1469.
250	3.97	33.79	248	26.86	122.6	4.63	4.91	1469.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 8- 2 DATE 4/11/71
POSITION 50- 0.0N, 145- 0.0W GMT 17.3
RESULTS OF STP CAST 93 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
0	8.04	32.60	0	25.41	257.7	0.0	0.0	1480.
10	8.04	32.60	10	25.41	258.1	0.26	0.01	1480.
20	8.05	32.60	20	25.41	258.3	0.52	0.05	1480.
30	8.04	32.60	30	25.41	258.4	0.77	0.12	1480.
50	8.05	32.60	50	25.41	258.8	1.29	0.33	1481.
75	8.05	32.60	75	25.41	259.2	1.94	0.74	1481.
100	4.85	32.84	99	26.01	202.1	2.48	1.22	1469.
125	4.32	33.13	124	26.30	174.8	2.95	1.76	1468.
150	4.21	33.60	149	26.68	138.9	3.34	2.30	1468.
175	4.25	33.72	174	26.77	130.3	3.68	2.86	1469.
200	4.12	33.76	199	26.81	126.4	4.00	3.47	1469.
225	4.09	33.79	223	26.84	124.0	4.31	4.15	1469.
250	3.99	33.82	248	26.87	120.9	4.62	4.89	1469.
300	3.85	33.88	298	26.94	115.4	5.21	6.55	1470.
400	3.77	34.03	397	27.06	104.2	6.31	10.46	1471.
500	3.59	34.11	496	27.14	97.0	7.31	15.07	1472.
600	3.44	34.17	595	27.21	91.8	8.26	20.35	1473.
800	3.13	34.29	793	27.33	80.9	9.98	32.56	1475.
1000	2.85	34.37	990	27.42	73.3	11.52	46.67	1478.
1200	2.58	34.44	1188	27.50	66.2	12.92	62.31	1480.
1500	2.31	34.52	1484	27.59	58.9	14.80	88.10	1484.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71-8-3 DATE 8/11/71
POSITION 50-0.0N, 145-0.0W GMT 19.5
RESULTS OF STP CAST 83 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA T	SVA	DELTA	POT. EN	SOUND
0	7.62	32.62	0	25.49	250.5	0.0	0.0	1478.
10	7.62	32.62	10	25.49	250.9	0.25	0.01	1479.
20	7.62	32.62	20	25.49	251.0	0.50	0.05	1479.
30	7.62	32.62	30	25.49	251.2	0.75	0.12	1479.
50	7.62	32.62	50	25.49	251.5	1.26	0.32	1479.
75	7.62	32.62	75	25.49	251.8	1.88	0.72	1480.
100	4.57	32.90	99	26.08	194.7	2.43	1.20	1468.
125	4.32	33.36	124	26.48	157.7	2.87	1.71	1468.
150	4.17	33.68	149	26.74	132.5	3.23	2.21	1468.
175	4.14	33.73	174	26.79	128.6	3.56	2.75	1469.
200	4.04	33.77	199	26.83	124.8	3.88	3.36	1469.
225	3.97	33.81	223	26.87	121.3	4.18	4.02	1469.
250	3.92	33.84	248	26.90	118.7	4.48	4.75	1469.
300	3.87	33.89	298	26.94	114.9	5.07	6.38	1470.
400	3.73	34.01	397	27.05	105.2	6.17	10.31	1471.
500	3.57	34.12	496	27.15	96.1	7.17	14.91	1472.
600	3.40	34.19	595	27.23	89.8	8.10	20.10	1473.
800	3.10	34.30	793	27.34	79.9	9.80	32.14	1475.
1000	2.82	34.37	990	27.42	72.9	11.32	46.07	1477.
1200	2.57	34.45	1188	27.51	65.4	12.70	61.56	1480.
1500	2.28	34.52	1484	27.59	58.5	14.56	87.04	1484.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 8- 4 DATE 10/11/71
POSITION 50- 0.0N, 145- 0.0W GMT 21.0
RESULTS OF STP CAST 102 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
0	7.50	32.64	0	25.52	247.4	0.0	0.0	1478.
10	7.51	32.63	10	25.51	248.7	0.25		1478.
20	7.52	32.63	20	25.51	248.9	0.50	0.05	1478.
30	7.52	32.63	30	25.51	249.1	0.75		1478.
50	7.52	32.63	50	25.51	249.4	1.24		1479.
75	7.50	32.62	75	25.50	250.1	1.87		1479.
100	4.74	32.90	99	26.07	196.4	2.42		
125	4.46	33.11	124	26.26	178.0		1.20	1469.
150	4.47	33.48	149	26.55	150.5	2.88	1.73	1468.
175	4.38	33.69	174			3.29		1469.
200	4.31	33.75	199	26.73	134.1	3.64		1470.
225	4.12	33.19		26.78	129.3		3.51	1470.
			223	26.85	123.4	4.28	4.20	1469.
250	4.09	33.84	248	26.88	120.5			1470.
300	3.98	33.90	298	26.94	115.2	5.18	6.59	1470.
400	3.79	34.02	397	27.05	105.1	6.28	10.52	1471.
500	3.62	34.11	496	27.14	97.4	7.30	15.15	1472.
600	3.42	34.19	595	27.22	90.0	8.23	20.38	1473.
800	3.12	34.31	793	27.35	79.4	9.93	32.45	1475.
1000	2.87	34.37	990	27.42	73.5	11.46	46.43	1478.
1200	2.63	34.44	1188	27.50	66.8	12.85	62.07	1480.
1500	2.33	34.52	1484	27.59	59.1	14.73	87.87	1484.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71-8-6 DATE 13/11/71
PUSITION 50-0.0N, 145-0.0W GMT 17.3
RESULTS OF STP CAST 64 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
				T		D	EN	
0	7.50	32.63	0	25.51	248.2	0.0	0.0	1478.
10	7.50	32.63	10	25.51	248.7	0.25	0.01	1478.
2.0	7.50	32.63	20	25.51	249.0	0.50	0.05	1478.
30	7.51	32.62	30	25.50	249.3	0.75	0.11	1478.
50	7.51	32.62	50	25.50	250.0	1.25	0.32	1479.
75	7.51	32.62	75	25.50	250.4	1.87	. 0.72	1479.
100	4.59	32.90	99	26.08	194.9	2.43	1.21	1468.
125	4.22	33.39	124	26.51	154.4	2.88	1.72	1468.
150	4.16	33.68	149	26.74	132.6	3.23	2.22	1468.
175	4.15	33.74	174	26.79	127.9	3.56	2.76	1469.
200	4.06	33.78	199	26.84	124.3	3.87	3.36	1469.
225	3.97	33.81	223	26.87	121.1	4.18	4.02	1469.
250	3.90	33.84	248	26.90	118.5	4.48	4.75	1469.
300	3.87	33.91	298	26.96	113.3	5.06	6.37	1470.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 8- 7 DATE 17/11/71
POSITION 50- 0.0N, 145- 0.0W GMT 17.3
RESULTS OF STP CAST 117 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
				T		D	EN	
0	7.36	32.63	0	25.53	246.3	0.0	0.0	1477.
10	7.36	32.63	10	25.53	246.9	0.25	0.01	1478.
20	7.36	32.62	20	25.53	247.2	0.49	0.05	1478.
30	7.36	32.62	30	25.52	247.5	0.74	0.11	1478.
50	7.36	32.62	50	25.52	248.0	1.24	0.32	1478.
75	7.36	32.62	75	25.52	248.3	1.86	0.71	1479.
100	4.79	32.70	99	25.90	212.0	2.47	1.25	1469.
125	4.18	33.14	124	26.32	172.9	2.95	1.80	1467.
150	4.33	33.63	149	26.69	138.1	3.33	2.34	1469.
175	4.45	33.72	174	26.75	132.6	3.67	2.90	1470.
200	4.33	33.75	199	26.78	129.3	4.00	3.52	1470.
225	4.07	33.77	223	26.83	125.3	4.31	4.21	1469.
250	4.02	33.81	248	26.86	121.9	4.62	4.96	1469.
300	4.00	33.88	298	26.92	117.0	5.22	6.62	1470.
400	3.83	34.00	397	27.03	107.0	6.34	10.61	1471.
500	3.68	34.09	496	27.12	99.5	7.37	15.34	1472.
600	3.47	34.17	595	27.20	92.1	8.33	20.71	1473.
800	3.14	34.29	793	27.33	81.0	10.06	33.00	1475.
1000	2.85	34.36	990	27.41	74.0	11.60	47.16	1477.
1200	2.62	34.44	1188	27.50	66.7	13.01	62.92	1480.
1500	2.32	34.51	1484	27.58	59.7	14.90	88.82	1484.

PACIFIC UCEANOGRAPHIC GROUP
REFERENCE NO. 71- 8- 9 DATE 19/11/71
PUSITION 50- 0.0N, 145- 0.0W GMT 21.3
RESULTS OF STP CAST 108 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
0	7.39	32.62	0	25.52	247.4	0.0	0.0	1477.
10	7.39	32.62	10	25.52	247.8	0.25	0.01	1478.
20	7.39	32.62	20	25.52	247.9	0.50	0.05	1478.
30	7.39	32.62	30	25.52	248.1	0.74	0.11	1478.
50	7.39	32.62	50	25.52	248.4	1.24	0.32	1478.
75	7.39	32.62	75	25.52	248.7	1.86	0.71	1479.
100	4.41	32.82	99	26.04	199.0	2.44	1.23	1467.
125	4.08	33.12	124	26.31	173.5	2.91	1.76	1467.
150	4.20	33.61	149	26.69	138.1	3.30	2.30	1468.
175	4.36	33.73	174	26.77	130.5	3.63	2.86	1470.
200	4.23	33.77	199	26.81	126.8	3.95	3.47	1469.
225	3.91	33.77	223	26.85	123.3	4.27	4.15	1468.
250	4.05	33.85	248	26.89	119.5	4.57	4.89	1470.
300	3.99	33.91	298	26.95	114.6	5.16	6.53	1470.
400	3.76	34.03	397	27.06	104.2	6.26	10.44	1471.
500	3.58	34.11	496	27.15	96.9	7.26	15.02	1472.
600	3.45	34.19	595	27.22	90.3	8.19	20.26	1473.
800	3.12	34.30	793	27.34	80.1	9.90	32.38	1475.
1000	2.85	34.37	990	27.42	73.3	11.43	46.37	1478.
1200	2.62	34.45	1188	27.50	66.0	12.82	61.94	1480.
1500	2.34	34.52	1484	27.58	59.2	14.69	87.58	1484.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 8- 10 DATE 22/11/71
POSITION 50- 0.0N, 145- 0.0W GMT 0.3
RESULTS OF STP CAST 99 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
				T		Ð	EN	
0	7.27	32.64	0	25.55	244.4	0.0	0.0	1477.
10	7.27	32.64	10	25.55	244.8	0.24	0.01	1477.
20	7.27	32.64	20	25.55	244.9	0.49	0.05	1477.
30	7.27	32.64	30	25.55	245.1	0.73	0.11	1478.
50	7.28	32.64	50	25.55	245.4	1.22	0.31	1478.
75	7.28	32.64	75	25.55	245.8	1.84	0.70	1478.
100	4.55	32.82	99	26.02	200.5	2.42	1.22	1468.
125	4.10	33.28	124	26.43	161.6	2.87	1.74	1467.
150	4.42	33.61	149	26.66	140.3	3.25	2.26	1469.
175	4.47	33.70	174	26.73	134.1	3.59	2.83	1470.
200	4.61	33.78	199	26.78	130.0	3.92		
225	4.44	33.80	223				3.46	1471.
				26.81	126.9	4.24	4.16	1471.
250	4.08	33.80	248	26.85	123.3	4.56	4.91	1470.
300	3.95	33.88	298	26.93	116.5	5.16	6.59	1470.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 8- 11 DATE 27/11/71
POSITION 50- 0.0N, 145- 0.0W GMT 19.5
RESULTS OF STP CAST 110 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA D	POT.	SOUND
0	7.06	32.64	0	25.58	241.7	0.0		1/7/
10	7.06	32.64	10	25.58	242.1		0.0	1476.
20	7.06	32.64	20	25.58		0.24	0.01	1476.
30	7.06	32.64	.30		242.2	0.48	0.05	1477.
50	7.06	32.64		25.58	242.3	0.73	0.11	1477.
			50	25.58	242.6	1.21	0.31	1477.
75	7.06	32.64	75	25.58	242.9	1.82	0.70	1477.
100	4.86	32.91	99	26.06	197.0	2.38	1.20	1469.
125	4.41	33.39	124	26.49	156.4	2.83	1.71	1468.
150	4.49	33.65	149	26.69	138.0	3.19	2.22	1470.
175	4.46	33.75	174	26.77	130.4	3.53	2.77	1470.
200	4.36	33.78	199	26.80	127.3	3.85	3.38	1470.
225	4.18	33.81	223	26.85	123.5	4.16	4.06	
250	4.14	33.84	248	26.87	120.9	4.47		1470.
300	4.00	33.89	298	26.93	116.2		4.80	1470.
400	3.84	34.00	397			5.06	6.47	1470.
500				27.03	107.1	6.18	10.43	1471.
	3.65	34.11	496	27.14	97.9	7.20	15.10	1472.
600	3.50	34.18	595	27.21	91.7	8.15	20.41	1473.
800	3.12	34.30	793	27.34	80.1	9.87	32.65	1475.
1000	2.83	34.37	990	27.42	73.0	11.40	46.70	1477.
1200	2.61	34.44	1188	27.50	66.6	12.80	62.28	1480.
1500	2.32	34.52	1484	27.59	59.0	14.67	88.02	1484.
						2.001	00.02	1704.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 8- 12 DATE 30/11/71
POSITION 50- 0.0N, 145- 0.0W GMT 17.7
RESULTS OF STP CAST 77 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA D	POT. EN	SOUND
0	6.85	32.66	0	25.62	237.6	0.0	0.0	1475.
10	6.85	32.66	10	25.62	238.0	0.24	0.01	1476.
20	6.85	32.66	20	25.62	238.2	0.48	0.05	1476.
30	6.85	32.66	30	25.62	238.4	0.71	0.11	1476.
50	6.86	32.65	50	25.62	239.0	1.19	0.30	1476.
7.5	6.86	32.65	75	25.61	239.6	1.79	0.69	1477.
100	6.85	32.65	99	25.61	239.8	2.39	1.22	1477.
125	4.26	33.08	124	26.26	178.2	2.89	1.79	1467.
150	4.50	33.63	149	26.67	139.6	3.28	2.34	1470.
175	4.58	33.72	174	26.73	133.7	3.62	2.91	1470.
200	4.48	33.77	199	26.78	129.3	3.95	3.53	1470.
225	4.25	33.79	223	26.82	125.7	4.27	4.23	1470.
250	4.24	33.84	248	26.86	122.0	4.58	4.98	1470.
300	4.11	33.89	298	26.92	117.4	5.18	6.65	1471.

PACIFIC OCEANUGRAPHIC GROUP
REFERENCE NO. 71- 8- 13 DATE 2/12/71
POSITION 50- 0.0N, 145- 0.0W GMT 15.7
RESULTS OF STP CAST 118 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
				T.		. 0	EN	
0	6.74	32.66	Q.	25.64	236.1	0.0	0.0	1475.
10	6.74	32.66	10	25.64	236.4	0.24	0.01	1475.
20	6.74	32.66	20	25.64	236.6	0.47	0.05	1475.
30	6.74	32.66	30	25.64	236.7	0.71	0.11	1475.
50	6.74	32.66	50	25.64	237.0	1.18	0.30	1476.
75	6.74	32.66	75	25.64	237.3	1.78	0.68	1476.
100	6.74	32.66	99	25.64	237.6	2.37	1.21	1477.
125	4.55	33.20	124	26.32	172.4	2.85	1.76	1469.
150	4.61	33.66	149	26.68	138.6	3.24	2.30	1470.
175	4.64	33.75	174	26.75	132.1	3.57	2.85	1471.
200	4.52	33.78	199	26.79	129.1	3.90	3.48	1471.
225	4.47	33.83	223	26.83	125.0	4.22	4.16	1471.
250	4.32	33.86	248	26.87	121.4	4.52	4.91	1471.
300	4.15	33.90	298	26.92	117.1	5.12	6.58	1471.
400	3.91	34.02	397	27.04	106.4	6.24	10.57	1472.
500	3.68	34.12	496	27.14	97.2	7.25	15.21	1472.
600	3.50	34.19	595	27.22	91.0	8.20	20.48	1473.
800	3.14	34.31	793	27.35	79.6	9.89	32.53	1475.
1000	2.82	34.39	990	27.44	71.4	11.40	46.34	1477.
1200	2.60	34.46	1188	27.51	65.1	12.77	61.66	1480.
1500	2.32	34.52	1484	27.59	59.0	14.63	87.16	1484.
								2.510

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 8- 15 DATE 4/12/71
POSITION 50- 0.0N, 145- 0.0W GMT 17.5
RESULTS OF STP CAST 121 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA T	SVA	DELTA	POT. EN	SOUND
0	6.74	32.63	. 0	25.61	238.4	_	0.0	1475.
10	6.72	32.63	10	25.62	238.2	0.24		1475.
20	6.72	32.64	20	25.62	237.8			1475.
30	6.70	32.65	30	25.63	237.1		0.11	1475.
50	6.69	32.66	50	25.64	236.4		0.30	1476.
75	6.69	32.66	75	25.64	236.7			1476.
100	4.72	32.91	99	26.08	195.5	2.33	1.17	1469.
125	4.85	33.29	124	26.37	168.3		1.69	1470.
150	4.60	33.63	149	26.66	140.6		2.22	1470.
175	4.62	33.72	174	26.73	134.4	3.51	2.79	1471.
200	4.52	33.77	199	26.78	129.5	3.84		1471.
225	4.46	33.81	223	26.82	126.4	4.16	4.11	1471.
250	4.34	33.84	248	26.85	123.0	4.47	4.87	1471.
300	4.17	33.90	298	26.92	117.3	5.07	6.55	1471.
400	3.92	34.01	397	27.03	107.2	6.20	10.57	1472.
500	3.73	34.10	496	27.12	99.3	7.23	15.29	1473.
600	3.54	34.17	595	27.20	92.8	8.19	20.65	1474.
800	3.17	34.29	793	27.33	81.1	9.91	32.91	1475.
1000	2.86	34.37	990	27.42	73.4	11.46	47.06	1478.
1200	2.62	34.45	1188	27.50	66.0	12.85	62.63	1480.
1500	2.32	34.53	1484	27.59	58.3		88.07	1484.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71-8-16 DATE 5/12/71
POSITION 49-49.ON, 142-40.OW GMT 19.7
RESULTS OF STP CAST 105 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH -	SIGMA	SVA	DELTA	POT.	SOUND
				T		Ð	EN	
0	7.03	32.63	0	25.57	242.1	0.0	0.0	1476.
10	7.03	32.63	10	25.57	242.4	0.24	0.01	1476.
20	7.03	32.63	20	25.57	242.6	0.48	0.05	1476.
30	7.03	32.63	30	25.57	242.7	0.73	0.11	1477.
50	7.03	32.63	50	25.57	243.0	1.21	0.31	1477.
75	6.98	32.64	75	25.59	241.8	1.82	0.70	1477.
100	5.36	32.93	99	26.02	201.2	2.38	1.20	1471.
125	5.61	33.52	124	26.45	160.2	2.84	1.72	1474.
150	5.48	33.76	149	26.66	141.0	3.21	2.24	1474.
175	5.20	33.78	174	26.71	136.4	3.56	2.81	1473.
200	4.90	33.79	199	26.75	132.5	3.89	3.45	1472.
225	4.71	33.81	223	26.79	129.2	4.22	4.16	1472.
250	4.63	33.83	248	26.81	127.2	4.54	4.93	1472.
300	4.29	33.86	298	26.87	121.5	5.16	6.68	1471.
400	3.96	33.97	397	27.00	110.7	6.32	10.79	1472.
500	3.72	34.07	496	27.10	101.4	7.38	15.62	
600	3.54	34.16	595	27.19	93.6	8.35		1473.
800	3.21	34.29	793	27.32	81.8		21.07	1474.
1000	2.91	34.37	990			10.10	33.51	1476.
1200				27.42	73.9	11.65	47.72	1478.
	2.67	34.45	1188	27.50	66.5	13.06	63.40	1480.
1500	2.35	34.52	1484	27.58	59.3	14.93	89.19	1484.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 8- 17 DATE 6/12/71
POSITION 49-41.0N, 140-40.0W GMT 5.3
RESULTS OF STP CAST 99 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
				T		J	EN	
0	7.07	32.62	0	25.56	243.3	0.0	0.0	1476.
10	7.07	32.62	10	25.56	243.7	0.24	0.01	1476.
20	7.08	32.62	20	25.56	243.8	0.49	0.05	1477.
30	7.08	32.62	30	25.56	244.1	0.73	0.11	1477.
50	7.09	32.62	50	25.56	244.4	1.22	0.31	1477.
75	7.01	32.63	75	25.58	243.0	1.83		1477.
100	4.52	32.84	99	26.04	198.7	2.35	1.17	1468.
125	4.45	33.10	124	26.26	178.7	2.83	1.71	1468.
150	4.50	33.62	149	26.66	140.3	3.22	2.25	1470.
175	4.53	33.75	174	26.76	131.3	3.56	2.81	1470.
200	4.32	33.78	199	26.81	126.9	3.88	3.43	1470.
225	4.18	33.79	223	26.83	125.0	4.19	4.11	1470.
250	3.99	33.85	248	26.90	118.7	4.50	4.85	1469.
300	4.03	33.92	298	26.95	114.3	5.08	6.47	1470.
400	3.77	34.05	397	27.08	102.7	6.16	10.31	1471.
500	3.62	34.11	496	27.14	97.4	7.16	14.88	1472.
600	3.45	34.19	595	27.22	90.3	8.10	20.13	1473.
800	3.14	34.30	793	27.34	80.3	9.81	32.30	1475.
1000	2.87	34.39	990	27.43	72.0	11.33	46.19	1478.
1200	2.61	34.46	1188	27.51	65.1	12.69	61.47	1480.
1500	2.31	34.54	1484	27.60	57.4	14.52	86.58	1484.

PACÍFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 8- 18 DATE 6/12/71
POSITION 49-34.0N, 138-40.0W GMT 11.5
RESULTS OF STP CAST 98 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA D	POT. EN	SOUND
0	7.59	32.64	0	25.51	248.6	0.0	0.0	1478.
10	7.61	32.64	10	25.50	249.2	0.25	0.01	1479.
20	7.61	32.64	20	25.50	249.4	0.50	0.05	1479.
30	7.61	32.64	30	25.50	249.5	0.75	0.11	1479.
50	7.61	32.64	50	25.50	249.8	1.25	0.32	1479.
75	7.47	32.65	75	25.53	247.5	1.87	0.72	1479.
100	5.31	32.86	99	25.97	205.6	2.41	1.19	1471.
125	5.28	33.19	124	26.24	180.8	2.89	1.75	1472.
150	5.32	33.63	149	26.58	148.7	3.30	2.31	1473.
175	5.11	33.74	174	26.69	138.3	3.65	2.90	1473.
200	4.86	33.78	199	26.75	132.8	3.99	3.55	1472.
225	4.69	33.80	223	26.78	129.6	4.32	4.26	1472.
250	4.51	33.82	248	26.82	126.1	4.64	5.03	1471.
300	4.25	33.88	298	26.89	119.6	5.25	6.75	1471.
400	3.93	33.98	397	27.01	109.5	5.40	10.84	1472.
500	3.73	34.09	496	27.11	100.1	7.45	15.63	1473.
600	3.54	34.16	595	27.19	93.6	8.42	21.05	1474.
800	3.21	34.28	793	27.32	82.5	10.18	33.56	1476.
1000	2.90	34.38	990	27.42	73.0	11.73	47.78	1478.
1200	2.65	34.45	1188	27.50	66.3	13.13	63.40	1480.
1500	2.32	34.53	1484	27.59	58.3	14.98	88.78	1484.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 8- 19 DATE 6/12/71
POSITION 49-26.0N, 136-40.0W GMT 18.8
RESULTS OF STP CAST 95 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
				T		U	EN	
0	8.00	32.64	0	25.45	254.2	0.0	0.0	1480.
10	8.00	32.64	10	25.45	254.6	0.25	0.01	1480.
20	8.00	32.64	20	25.45	254.8	0.51	0.05	1480.
30	8.00	32.64	30	25.45	254.9	0.76	0.12	1480.
50	8.00	32.64	50	25.45	255.2	1.27	0.32	1481.
75	6.99	32.71	75	25.65	236.4	1.91	0.73	1477.
100	5.33	32.82	99	25.94	208.9	2.45	1.21	1471.
125	5.12	33.05	124	26.14	189.5	2.95	1.79	1471.
150	5.42	33.60	149	26.54	152.0	3.37	2.37	1473.
175	5.16	33.73	174	26.67	139.7	3.73	2.97	1473.
200	4.90	33.76	199	26.73	134.7	4.08	3.63	1472.
225	4.67	33.78	223	26.77	130.8	4.41	4.35	1472.
250	4.48	33.80	248	26.81	127.5	4.73	5.13	1471.
300	4.27	33.85	298	26.87	122.0	5.35	6.86	1471.
400	3.96	33.97	397	27.00	110.7	6.52	11.01	1472.
500	3.74	34.07	496	27.10	101.6	7.58	15.86	1473.
600	3.65	34.17	595	27.19	94.0	8.55	21.31	1474.
800	3.30	34.31	793	27.33	81.2	10.31	33.79	1476.
1000	2.97	34.39	990	27.43	73.0	11.85	47.91	1478.
1200	2.67	34.46	1188	27.51	65.8	13.23	63.38	1480.
1500	2.32	34.53	1484	27.59	58.3	15.09	88.88	1484.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 8- 20 DATE 7/12/71
POSITION 49-17.0N, 134-40.0W GMT 1.7
RESULTS OF STP CAST 119 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT. EN	SOUND
0	8.34	32.60	0	25.37	261.9	0.0	0.0	1481.
10	8.34	32.60	10	25.37	262.3	0.26	0.01	1481.
20	8.34	32.60	20	25.37	262.5	0.52	0.05	1481.
30	8.34	32.61	30	25.37	261.9	0.79	0.12	1482.
50	8.34	32.61	50	25.37	262.2	1.31	0.33	1482.
75	6.38	32.83	75	25.82	220.2	1.92	0.72	1475.
100	5.69	32.87	99	25.93	209.3	2.45	1.20	1473.
125	5.77	33.13	124	26.13	191.0	2.96	1.77	1474.
150	5.66	33.58	149	26.50	156.4	3.40	2.39	1474.
175	5.50	33.70	174	26.61	145.8	3.77	3.01	1474.
200	5.18	33.77	199	26.70	137.1	4.13	3.68	1473.
225	4.91	33.80	223	26.76	132.1	4.46	4.41	1473.
250	4.76	33.81	248	26.78	130.0	4.79	5.20	1473.
300	4.38	33.86	298	26.87	122.4	5.42	6.97	1472.
400	3.95	33.97	397	27.00	110.5	6.59	11.11	1472.
500	3.80	34.07	496	27.09	102.3	7.65	15.97	1473.
600	3.64	34.15	595	27.17	95.4	8.64	21.51	1474.
800	3.38	34.29	793	27.31	83.5	10.42	34.20	1476.
1000	3.01	34.38	990	27.41	74.3	11.99	48.58	1478.
1200	2.74	34.46	1188	27.50	66.5	13.41	64.41	1480.
1500	2.36	34.53	1484	27.59	58.8	15.30	90.39	1484.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 8- 21 DATE 7/12/71
POSITION 49-10.0N, 132-40.0W GMT 7.9
RESULTS OF STP CAST 107 POINTS TAKEN FROM ANALOG TRACE

0 8.47 32.51 0 25.28 270.5 0.0 0.0 1481 10 8.43 32.52 10 25.29 269.5 0.27 0.01 1482 20 8.43 32.52 20 25.29 269.6 0.54 0.05 1482 30 8.43 32.52 30 25.29 269.8 0.81 0.12 1482 50 8.43 32.52 50 25.29 270.1 1.35 0.34 1482	PRESS	S TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
10 8.43 32.52 10 25.29 269.5 0.27 0.01 1482 20 8.43 32.52 20 25.29 269.6 0.54 0.05 1482 30 8.43 32.52 30 25.29 269.8 0.81 0.12 1482 50 8.43 32.52 50 25.29 270.1 1.35 0.34 1482 75 6.54 32.75 75 25.73 228.1 2.00 0.75 1475 100 5.94 32.84 99 25.88 214.3 2.55 1.24 1474 125 5.80 33.20 124 26.18 186.1 3.05 1.82 1474	0	8.47	32.51	Ω	•	270 5			1 / 01
20 8.43 32.52 20 25.29 269.6 0.54 0.05 1482 30 8.43 32.52 30 25.29 269.8 0.81 0.12 1482 50 8.43 32.52 50 25.29 270.1 1.35 0.34 1482 75 6.54 32.75 75 25.73 228.1 2.00 0.75 1475. 100 5.94 32.84 99 25.88 214.3 2.55 1.24 1474. 125 5.80 33.20 124 26.18 186.1 3.05 1.82 1474.	1.0								
30 8.43 32.52 30 25.29 269.8 0.81 0.12 1482.55 8.43 32.52 50 25.29 270.1 1.35 0.34 1482.75 6.54 32.75 75 25.73 228.1 2.00 0.75 1475.100 5.94 32.84 99 25.88 214.3 2.55 1.24 1474.125 5.80 33.20 124 26.18 186.1 3.05 1.82 1474.									
50 8.43 32.52 50 25.29 270.1 1.35 0.34 1482. 75 6.54 32.75 75 25.73 228.1 2.00 0.75 1475. 100 5.94 32.84 99 25.88 214.3 2.55 1.24 1474. 125 5.80 33.20 124 26.18 186.1 3.05 1.82 1474.									
75 6.54 32.75 75 25.73 228.1 2.00 0.75 1475. 100 5.94 32.84 99 25.88 214.3 2.55 1.24 1474. 125 5.80 33.20 124 26.18 186.1 3.05 1.82 1474.							0.81	0.12	1482.
100 5.94 32.84 99 25.88 214.3 2.55 1.24 1474. 125 5.80 33.20 124 26.18 186.1 3.05 1.82 1474.					25.29	270.1	1.35	0.34	1482.
100 5.94 32.84 99 25.88 214.3 2.55 1.24 1474. 125 5.80 33.20 124 26.18 186.1 3.05 1.82 1474.		6.54	32.75	75	25.73	228.1	2.00	0.75	1475.
125 5.80 33.20 124 26.18 186.1 3.05 1.82 1474.	100	5.94	32.84	99	25.88	214.3			
150 5 71 22 /5 1/0	125	5.80	33.20	124	26.18				
	150	5.71	33.45						
175 5 (0 33 (4 17) 2/ 57 1/2	175	5.60							
200 5 27 22 7/ 100 2/ (7)									1475.
225 5 11 22 00 202									1474.
250 / 00 00 00 00								4.52	1474.
					26.78	130.1	4.92	5.32	1473.
300 4.52 33.87 298 26.86 123.3 5.56 7.10 1472.		4.52	33.87	298	26.86	123.3	5.56	7.10	1472.
400 400 33 07 307 34 34 35	400	4.09	33.97	397	26.98	112.0	6.74	11.31	1472.
500 3 05 : 3/ 07 /0/ 07 05	500	3.95	34.07	496	27.08	103.7	7.81		1474.
400 2 70 2/ 10 505	600	3.78	34.18	595					1475.
900 3 43 37 31 703 37 30 30 7	800								
1000 2 11 2/ 20									1477.
1200 2 77 24 /5 1100 27 /0									1479.
1500							13.57	64.73	1481.
1500 2.37 34.53 1484 27.59 58.8 15.46 90.58 1484.	1500	2.31	34.53	1484	27.59	58.8	15.46	90.58	1484.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 8- 22 DATE 7/12/71
POSITION 49- 2.0N, 130-40.0W GMT 14.5
RESULTS OF STP CAST 107 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT.	SOUND
				T	075			1 (0 2
0	8.85	32.52	0	25.23	275.2	0.0	0.0	1483.
10	8.85	32.52	10	25.23	275.6	0.28	0.01	1483.
20	8.85	32.52	20	25.23	275.7	0.55	0.06	1483.
30	8.85	32.52	30	25.23	275.9	0.83	0.13	1483.
50	8.85	32.52	50	25.23	276.2	1.38	0.35	1484.
75	8.33	32.53	75	25.31	268.4	2.07	0.79	1482.
100	6.75	32.89	99	25.82	220.4	2.67	1.33	1477.
125	6.66	33.30	124	26.15	189.3	3.19	1.92	1478.
150	6.54	33.56	149	26.37	168.6	3.63	2.54	1478.
175	6.50	33.68	174	26.47	159.5	4.04	3.21	1478.
200	6.25	33.78	199	26.58	149.0	4.42	3.94	1478.
225	5.85	33.80	223	26.65	143.0	4.79	4.73	1477.
250	5.49	33.81	248	26.70	138.0	5.14	5.58	1476.
300	5.10	33.83	298	26.76	132.8	5.81	7.48	1475.
400	4.41	33.94	397	26.92	118.0	7.06	11.91	1474.
500	4.08	34.05	496	27.05	106.9	8.19	17.06	1474.
600	3.88	34.14	595	27.14	98.8	9.21	22.81	1475.
800	3.57	34.30	793	27.30	85.0	11.04	35.78	1477.
1000	3.13	34.37	991	27.40	76.4	12.65	50.55	1479.
1200	2.77	34.46	1188	27.50	66.9	14.09	66.58	1481.
1500	2.39	34.53	1484	27.59	59.0	15.97	92.37	1484.

PACIFIC OCEANOGRAPHIC GROUP
REFERENCE NO. 71- 8- 23 DATE 7/12/71
POSITION 48-51.ON, 128-40.OW GMT 21.3
RESULTS OF STP CAST 153 POINTS TAKEN FROM ANALOG TRACE

PRESS	TEMP	SAL	DEPTH	SIGMA	SVA	DELTA	POT. EN	SOUND
.)	8.31	32.40	0	25.21	276.4	0.0	0.0	1481.
10	8.31	32.40	10	25.21	276.7	0.28	0.01	1481.
20	8.31	32.40	20	25.21	276.9	0.55	0.06	1481.
30	8.31	32.40	30	25.21	277.0	0.83	0.13	1481.
50	8.31	32.40	50	25.21	277.4	1.38	0.35	1482.
75	6.72	32.69	75	25.66	234.9	2.05	0.77	1476.
100	6.17	32.88	99	25.88	214.1	2.61	1.27	1475.
125	6.80	33.55	124	26.33	172.4	3.09	1.82	1478.
150	6.71	33.74	149	26.49	157.4	3.50	2.39	1479.
175	6.53	33.79	174	26.55	151.8	3.88	3.03	1478.
200	6.29	33.84	199	26.62	145.2	4.25	3.74	1478.
225	6.13	33.88	223	26.68	140.6	4.61	4.51	1478.
250	5.83	33.89	248	26.72	136.7	4.96	5.36	1477.
300	5.32	33.91	298	26.80	129.4	5.62	7.21	1476.
400	4.82	34.01	397	26.94	117.1	6.85	11.60	1475.
500	4.59	34.11	496	27.04	108.3	7.98	16.75	1476.
600	4.45	34.20	595	27.12	101.0	9.03	22.62	1477.
800	3.86	34.31	193	27.28	87.4	10.91	36.04	1478.
1000	3.41	34.39	991	27.38	78.0	12.56	51.12	1480.
1200	3.03	34.47	1188	27.43	69.1	14.03	67.59	1482.
1500	2.47	34.54	1484	27.59	59.2	15.96	93.96	1484.

SURFACE TEMPERATURE AND SALINITY OBSERVATIONS
(P-71-8)

TEMPERATURE RECORDS OUTBOURD AND INBOUND P-7]-8.

T-S plot of surface temperature and salinity observations on Line P (asterisks) and at Station P (pluses) during Cruise P-71-8.

SURFACE SALINITY AND TEMPERATURE OBSERVATIONS CRUISE REFERENCE NUMBER 71- 8

	DAT	F / T	T 44 /-			
		E/T		SALINITY	TEMP	LONGITUDE
YR			GMT	0/00	C	WEST
71	10	30	300	32.122	10.7	125-32
71	10	30	435	31.534	10.6	126- 0
71	10	30	640	32.112	11.0	
71	10		945			126-40
71				32.191	10.2	127-40
	10	30	1250	32.407	11.3	128-40
71	10	30	1600	32.523	10.9	129-40
71	10	30	1925	32.540	10.9	130-40
71	10	30	2255	32.506	11.0	131-40
71	10	31	205	32.479	11.0	
71	10	31	530	32.579		132-40
71	10	31	920		10.5	133-40
				32.638	10.8	134-40
71	10	31	1305	32.510	10.1	135-40
71	10	31	1655	32.563	9.9	136-40
71	10	31	2040	32.673	9.9	137-40
71	11	1	30	32.693	10.1	138-40
71	11	1	525	32.664	9.3	139-40
71	11	1	1025	32.647	9.1	
71	11	î	1520			140-40
				32.676	8.9	141-40
71	11	1	2015	32.671	8.9	142-40
71	11	2	10	32.648	8.6	143-40
71	11	3	0	32.617	8.2	145- 0
71	11	4	0	32.616	8.2	145- 0
71	11	5	0	32.621	8.1	145- 0
71	11	6	0	32.613	8.1	
71	11	7	0	32.638	7.8	
71	11	8	0			145- 0
71			_	32.628	7.9	145- 0
	11	9	. 0	32.629	7.8	145- 0
71	11	10	0	32.636	7.5	145- 0
71	11	11	0	32.639	7.6	145- 0
71	11	12	0	32.646	7.6	145- 0
71	11	13	0	32.634	7.7	145- 0
71	11	14	C	32.630	7.8	145- 0
71	11	15	0	32.631	7.8	
71	11	16	0			145- 0
71				32.650	7.6	145- 0
	11	18	0	32.631	7.6	145- 0
71	11	19	0	32.638	7.5	145- 0
71	11	20	0	32.615	7.5	145- 0
71	11	21	0	32.631	7.3	145- 0
71	11	22	0	32.630	7.4	145- 0
71	11	23	0	32.618	7.5	145- 0
71	11	24	0	32.634	7.1	
71	11	28	0	32.651		145- 0
71					7.3	145- 0
	11	29	0	32.653	7.2	145- 0
71	11	30	0	32.647	7.2	145- 0
71	11	30	100	32.648	7.0	145- 0
71	11	30	200	32.639	7.0	145- 0
71	11	30	300	32.648	7.1	145- 0
71	11	30	400	32.652	7.0	145- 0
71	11	30	500	32.654	7.0	145- 0
				32,403,1		143

SURFACE SALINITY AND TEMPERATURE OBSERVATIONS CRUISE REFERENCE NUMBER 71- 8

	DAT	E/T	IME	SALINITY	TEMP	LONGITUDE
YR	MO	DY	GMT	0/00	C	WEST
71	11	30	500	32.654	7.0	145- 0
71	11	3.0	600	32.653	7.1	145- 0
71	11	30	700	32.652	7.1	145- 0
71	11	30	800	32.649	7.0	145- 0
71	11	30	900	32.659	7.1	145- 0
71	11	30	1000	32.662	7.1	145- 0
71	11	30	1100	32.647	7.0	145- 0
71	11	30	1200	32.655	7.1	145- 0
71	11	30	1300	32.656	6.9	145- 0
71	11	30	1400	32.619	6.9	145- 0
71	11	30	1500	32.659	7.0	145- 0
71	11	30	1600	32.593	6.9	145- 0
71	11	30	1700	32.654	6.9	145- 0
71	11	30	1800	32.654	6.9	145- 0
71	11	30	1900	32.656	6.9	145- 0
71	11	30	2000	32.657	6.9	145- 0
71	11	30	2100	32.656	6.9	145- 0
71	11	30	2200	32.655	6.8	145- 0
71	11	30	2300	32.655	6.8	145- 0
71	12	1	0	32.663	6.8	145- 0
71	12	2	0	32.660	6.8	145- 0
71	12	3	C	32.660	6.8	145- 0
71	12	4	0	32.648	7.0	145- 0
71	12	5	0	32.644	6.8	145- 0
71	12	5	1518	32.658	7.1	143-40
71	12	5	1935	32.653	7.0	142-40
71	12	6	215	32.646	7.0	141-40
71	12	6	515	32.631	6.9	140-40
71	12	6	845	32.644	7.1	139-40
71	12	6	1130	32.674	7.6	138-40
71 71	12	6	1520	32.667	7.8	137-40
71	12	6	1845	32.655	8.0	136-40
71	12	6	2230	32.590	8.1	135-40
71	12 12	7	140	32.618	8.3	134-40
71	12	7	500	32.639	8.5	133-40
71	12		745	32.534	8.6	132-40
71	12	7	1140	32.572	8.5	131-40
71	12		1435	32.556	8.7	130-40
71	12	7	1810	32.516	8.6	129-40
71	12	7	35	32.395	8.3	128-40
71	12	8	350	32.390	8.5	127-40
71	12	8	600	32.292	8.4	126-40
71	12	8	715	31.135	8.9	126- 0
7.8	14	0	113	31.659	8.9	125-32

OCEANOGRAPHIC DATA OBTAINED ON CRUISE P-71-9

(C.O.D.C. REFERENCE NO. 02-71-009)

SURFACE TEMPERATURE AND SALINITY OBSERVATIONS
(P-71-9)

SURFACE SALINITY AND TEMPERATURE OBSERVATIONS CRUISE REFERENCE NUMBER 71- 9

DATE/TIME	SALINITY	TEMP	LONGITUDE
YR MO DY GMT	0/00	C	WEST
71 12 3 2345	32.282	0.0	125-33
71 12 4 0	32.208	0.0	126- 0
71 12 4 0	32.215	0.0	126-40
71 12 4 0	32.290	0.0	127-40
71 12 4 905	32.463	0.0	128-40
71 12 4 1500	32.487	9.0	130-40
71 12 4 2045	32.495	0.0	132-40
71 12 5 0	32.538	0.0	134-40
71 12 5 845	32.631	8.0	136-40
71 12 5 1230	32.635	8.1	138-40
71 12 5 1735	32.630	0.0	140-40
71 12 6 150	32.641	0.0	142-40
71 12 11 900	32.666	6.6	ON STATION
71 12 11 1800	32.670	6.6	ON STATION
71 12 11 2100	32.661	6.5	ON STATION
71 12 12 0	32.672	6.5	ON STATION
71 12 12 300	32.668	6.5	ON STATION
71 12 12 600	32.661	6.5	ON STATION
71 12 12 900	32.671	6.4	ON STATION
71 12 12 12 0	32.665	6.5	ON STATION
71 12 12 1500	32.369	6.5	ON STATION
71 12 12 1800	32.670	6.5	ON STATION
71 12 12 2100	32.656	6.5	ON STATION
71 12 13 0	32.665	6.3	ON STATION
71 12 13 300	32.685	6.4	ON STATION
71 12 13 600	32.662	6.4	ON STATION
71 12 13 900	32.674	6.4	ON STATION
71 12 13 1200	32.665	6.5	ON STATION
71 12 13 1500	32.661	6.5	ON STATION
71 12 13 1800	0.0	6.6	ON STATION
71 12 13 2100	0.0	6.6	ON STATION
71 12 14 0	0.0	6.7	ON STATION
71 12 14 300	32.668	6.6	ON STATION
71 12 14 600	32.666	6.3	ON STATION
71 12 14 900	32.681	6.3	ON STATION
71 12 14 1200	32.677	6.3	ON STATION
71 12 14 1500	32.676	6.2	ON STATION
71 12 14 1800	32.674	6.4	ON STATION
71 12 14 2100	32.691	6.5	ON STATION
71 12 15 0	32.714	6.5	ON STATION
71 12 15 300	32.726	6.5	ON STATION
71 12 15 600	32.673	6.5	ON STATION
71 12 15 900	32.663	6.4	ON STATION
71 12 15 1200	32.697	6.4	ON STATION
71 12 15 1500	32.676	6.4	ON STATION
71 12 15 1900	0.0	6.8	ON STATION
71 12 15 2100	32.665	6.5	ON STATION
71 12 16 0	32.712	6.4	ON STATION
71 12 16 300	32.666	6.6	ON STATION

SURFACE SALINITY AND TEMPERATURE OBSERVATIONS CRUISE REFERENCE NUMBER 71- 9

	DAT	E/T	IME	CALINITY	TEMP	LONGITUDE
YR		DY		SALINITY 0/00	C	LONGITUDE
71	12	16		32.666	5.6	WEST
71	12	16		32.668	6.5	ON STATION
71	12	16		32.663		ON STATION
71	12	16		32.678	6.5 6.5	ON STATION
71	12	16		32.671	6.5	
71	12	16		32.671		ON STATION
71	12	16			6.6	ON STATION
71	12	17	0	32.663 32.678	6.7	ON STATION
71	12	17			6.5	ON STATION
71	12	17	600	32.675 32.671	6.5	ON STATION
71	12	17		32.673	6.4	ON STATION
71	12	17	1200		6.4	ON STATION
71	12	17	1500	32.682	6.4	ON STATION
71	12	17	1800	32.666	6.4	ON STATION
71	12			32.664	6.4	ON STATION
71		17	21 10	32.672	6.4	ON STATION
	12	18	0	32.686	6.5	ON STATION
71	12	18	300	32.679	6.5	ON STATION
71	12	18	600	32.681	6.6	ON STATION
71	12	18	900	32.674	6.6	ON STATION
71	12	18	1200	32.683	6.6	ON STATION
71	12	18	1500	32.678	6.4	UN STATION
71	12	18	1800	32.682	6.5	ON STATION
71	12	18	2100	32.692	6.5	ON STATION
71	12	19	0	32.664	6.5	ON STATION
71	12	19	300	32.694	6.4	ON STATION
71	12	19	600	32.682	6.5	ON STATION
71	12	19	900	32.700	6.5	ON STATION
71	12	19	1270	32.677	6.3	ON STATION
71	12	19	1500	32.672	6.3	ON STATION
71	12	19	1800	32.674	6.3	ON STATION
71	12	19	2100	32.670	6.4	ON STATION
71	12	20	0	32.676	6.3	ON STATION
71	12	20	300	32.676	6.4	ON STATION
71	12	20	600	0.0	6.4	ON STATION
71	12	20	900	32.679	6.3	ON STATION
71	12	20	1200	32.693	6.3	ON STATION
71	12	20	1500	32.672	6.2	ON STATION
71	12	20	1800	0.0	6.3	ON STATION
71	12	20	2100	32.680	6.2	ON STATION
71	12	21	0	32.678	6.2	ON STATION
71	12	21	300	32.682	6.0	ON STATION
71	12	21	600	32.739	6.1	ON STATION
71	12	21	900	32.700	6.0	ON STATION
71	12	21	1200	32.705	5.9	ON STATION
71	12	21	1500	32.699	5.9	ON STATION
71	12	21	1800	32.695	6.0	ON STATION
71	12	21	2100	32.695	6.0	ON STATION
71	12	22	0	0.0	6.0	ON STATION
71	12	22	300	32.693	5.9	ON STATION

SURFACE SALINITY AND TEMPERATURE OBSERVATIONS CRUISE REFERENCE NUMBER 71- 9

DATE/TIME	SALINITY	TEMP	LONGITUDE
YR MO DY GMT	3/00	С	WEST
71 12 22 300	32.693	5.9	UN STATION
71 12 22 600	32.707	6.0	ON STATION
71 12 22 900	32.678	5.2 .	ON STATION
71 12 22 1200	32.697	6.3	ON STATION
71 12 22 1500	32.695	6.3	ON STATION
71 12 22 1800	32.705	6.2	ON STATION
	32.706	6.2	ON STATION
	32.670	6.2	ON STATION
	32.668	6.0	ON STATION
	32.663	5.9	ON STATION
	32.671	5.9	ON STATION
	32.698	5.9	ON STATION
71 12 23 1200	32.758	5.5	ON STATION
71 12 23 1500	32.701	.5.5	ON STATION
71 12 23 1800	32.701	5.7	ON STATION
71 12 23 2100			ON STATION
71 12 24 0	32.710	6.0 6.0	ON STATION
71 12 24 300	32.703		ON STATION
71 12 24 600	32.698	5.8	ON STATION
71 12 24 900	32.702	6.0	ON STATION
71 12 24 1200	32.708	6.0	ON STATION
71 12 24 1500	32.700	6.0	ON STATION
71 12 24 1800	32.699	6.0	
71 12 24 2190	32.706	6.0	
71 12 25	32.726	6.1	
71 12 25 300	32.697	6.1	ON STATION
71 12 25 600	32.715	6.1	ON STATION
71 12 25 900	32.711	5.9	ON STATION
71 12 25 1200	32.707	6.0	ON STATION
71 12 25 1500	32.707	5.9	ON STATION
71 12 25 1800	32.702	5.0	ON STATION ON STATION
71 12 25 2100	32.704	6.0	
71 12 26 0	32.726	6.0	
71 12 26 300	32.712	6.0	ON STATION
71 12 26 600	32.713	6.0	NCITATE NO NCITATE NO
71 12 26 900	32.716	5.9	
71 12 26 1200	32.707	5.9	ON STATION
71 12 26 1500	32.707	5.9	
71 12 26 1800	32.721	6.0	ON STATION
71 12 26 2100	32.712	6.0	ON STATION
71 12 27 0	32.706	6.1	ON STATION
71 12 27 300	32.708	5.9	ON STATION
71 12 27 600	32.710	5.8	ON STATION
71 12 27 900	32.728	5.8	ON STATION
71 12 27 1200	0.0	5.7	ON STATION
71 12 27 1500	32.703	5.9	ON STATION
71 12 27 1800	32.708	5.9	ON STATION
71 12 27 2100	32.717	5.9	ON STATION
71 12 28 0	0.0	5.9	ON STATION
71 12 28 300	32.707	5.9	UN STATION

SURFACE SALINITY AND TEMPERATURE OBSERVATIONS CRUISE REFERENCE NUMBER 71- 9

DATEATINE	CALINITY	TEMP	LONGITUDE
DATE/TIME	SALINITY 0/00	C	WEST
YR MO DY GMT 71 12 28 300	32.707	5.9	ON STATION
71 12 28 300 71 12 28 600	32.701	6.0	ON STATION
71 12 28 900	32.704	5.9	ON STATION
71 12 28 1200	0.0	5.9	ON STATION
71 12 28 1500	32.704	5.9	ON STATION
71 12 28 1800	32.713	5.7	ON STATION
71 12 28 2100	32.716	5.8	ON STATION
71 12 29 0	32.705	5.7	ON STATION
71 12 29 300	32.709	5.7	ON STATION
71 12 29 600	32.740	5.8	ON STATION
71 12 29 900	32.724	5.9	ON STATION
71 12 29 1200	32.725	5.8	ON STATION
71 12 29 1500	32.700	5.8	ON STATION
71 12 29 1800	32.719	5.9	ON STATION
71 12 29 2100	32.697	6.0	UN STATION
71 12 30 0	32.702	6.1	ON STATION
71 12 30 300	32.702	6.1	ON STATION
71 12 30 600	32.698	6.0	ON STATION
71 12 30 900	32.703	5.8	ON STATION
71 12 30 1200	32.703	5.9	ON STATION
71 12 30 1500	32.722	5.9	ON STATION
71 12 30 1800	32.730	5.9	ON STATION
71 12 30 2100	32.697	6.0	ON STATION
71 12 31 0	32.704	5.9	ON STATION
71 12 31 300	32.698	5.9	ON STATION
71 12 31 600	32.700	5.8	ON STATION
71 12 31 900	32.708	5.8	ON STATION
71 12 31 1200	32.703	5.8	ON STATION
71 12 31 1500	32.692	5.7	ON STATION
71 12 31 1800	32.693	5.8	ON STATION
71 12 31 2100	32.701	5.8	ON STATION
72 1 1 0	32.693	5.8	ON STATION
72 1 1 300	32.696	5.8	ON STATION
72 1 1 600	32.694	5.7	ON STATION
72 1 1 900	32.718	5.8	ON STATION
72 1 1 1200	32.701	5.9	ON STATION
72 1 1 1500	32.695	5.8	ON STATION
72 1 1 1800	32.697	5.9	ON STATION
72 1 1 2100	32.693	6.1	ON STATION
72 1 2 0	32.712	6.0	ON STATION
72 1 2 300	32.700	6.0	ON STATION
72 1 2 600 72 1 2 900	32.696 32.701	6.0 5.8	ON STATION ON STATION
	32.695	5.8	ON STATION
72 1 2 1200 72 1 2 1800	32.698	5.9	ON STATION
72 1 2 1500	0.0	5.9	ON STATION
72 1 2 2100	32.708	5.9	ON STATION
72 1 3 0	32.699	5.9	ON STATION
72 1 3 300	32.694	5.9	ON STATION
12 1 3 300	JC 0 0 7 4	107	OH STATION

SURFACE SALINITY AND TEMPERATURE OBSERVATIONS CRUISE REFERENCE NUMBER 71- 9

į	DAT	E/T	IME	SALINITY	TEMP	LONGITUM
YR	MO	DY		0/00	C	LONGITUDE
72	1	3	300	32.694	5.9	WEST ON STATION
72	1	3		32.706	6.0	ON STATION
72	1	3		32.776	6.2	UN STATION
72	1	3	1200	32.694	6.3	ON STATION
72	1	3		32.693	6.3	ON STATION
72	1	3		32.695	6.2	ON STATION
72	1	3		32.691	6.0	ON STATION
72	- 1	4		32.697	5.0	ON STATION
72	1	4	300	32.699	6.0	ON STATION
72	1	4	600	32.693	5.3	ON STATION
72	1	4		32.707	5.9	ON STATION
72	1	4		32.695	5.8	ON STATION
72	1	4	1500	32.690	5.9	ON STATION
7?	1	4	1800	32.690	6.0	ON STATION
72	1	4	2100	32.692	6.0	ON STATION
72	1	5	2	32.695	5.0	ON STATION
72	1	5	300	32.695	6.0	UN STATION
72	1	5	500	32.694	5.9	ON STATION
72	1	5	900	32.708	6.1	ON STATION
72	1	5	1200	0.0	5.9	ON STATION
72	1	5	1500	32.695	5.9	ON STATION
72	1	5	1800	32.703	5.9	ON STATION
72	1	5	2100	32.595	5.9	UN STATION
72	1	5	n	32.696	5.9	ON STATION
72	1	6	300	32.701	5.8	ON STATION
72	1	6	600	0.0	5.9	ON STATION
72	1	6	900	32.703	6.0	ON STATION
72	1	6	1200	32.707	5.9	ON STATION
72	1	6	1500	32.700	5.9	ON STATION
72	1	-6	1890	32.703	5.8	ON STATION
72	1	6	2100	32.703	5.9	ON STATION
72	1	7	0	32.703	5.8	ON STATION
72	1	7	300	32.7:)7	6.0	UN STATION
72	1	7	600	32.699	5.8	ON STATION
72	1	7	900	32.699	5.9	ON STATION
72	1	7	1200	32.699	5.9	ON STATION
72	1	7	1500	32.702	5.8	ON STATION
72	1	7	1800	32.694	5.9	ON STATION
72	1	7	2100	32.700	5.8	ON STATION
72	1	8)	32.709	5.8	ON STATION
72	1	8	300	32.702	5.8	ON STATION
72	1	8	600	32.699	6.0	ON STATION
72	1	8	900	32.704	5.8	ON STATION
72	1	3	1200	32.698	5.7	ON STATION
72	1	8	1500	32.704	5.9	ON STATION
72	1	8	1800	32.704	5.8	UN STATION
72	1	В	2100	32.698	5.8	ON STATION
72	1	9	0	32.689	5.9	ON STATION
72	1	9	300	32.700	5.9	ON STATION

SURFACE SALINITY AND TEMPERATURE OBSERVATIONS CRUISE REFERENCE NUMBER 71- 9

_) A T (- / - 1	T A4 (**	CALINITY	т	EMO	LONGITUDE	
	DATE			SALINITY	1	EMP	LONGITUDE	
YR		DY	GMT	0/00		C		
72	1	9	300	32.700		5.9	ON STATION	
72	1	9	600	32.697		5.8	ON STATION	
72	1	9	900	32.753		5.7	ON STATION	
72	1	9	1200	32.695		5.7	ON STATION	
72	1	9	1500	32.718		5.5	ON STATION	
72	1	9	1800	32.726		5.7	ON STATION	
72	1	9	2100	32.701		5.6	ON STATION	
72	1	10	0	32.713		5.7	ON STATION	
72	1	10	300	32.684		5.7	ON STATION	
72	1	10	600	32.684		5.7	ON STATION	
72	1	10	900	32.692		5.7	ON STATION	
72	1	10	1200	32.702		5.9	ON STATION	
72	1	10	1500	32.729		5.7	ON STATION	ł
72	1	10	1800	32.703		6.0	ON STATION	a a
72	1	10	2170	32.694		6.0	ON STATION	-
72	1	11	0	32.695		6.0	ON STATION	į
72	1	11	300	32.695		5.9	ON STATION	1
72	1	11	600	32.698		5.8	ON STATION	į
72	1	11	900	32.694		5.7	ON STATION	I
72	1	11	1200	32.702		5.7	ON STATION	1
72	1	11	1500	32.689		5.9	ON STATION	į
72	1	11	1800	32.691		5.9	ON STATION	į
72	1	11	2100	32.702		5.7	ON STATION	į
72	1	12	0	32.668		5.7	ON STATION	į
72	1	12	300	32.693		5.6	ON STATION	
72	- 1	12	600	32.693		5.8	ON STATION	1
72	1	12	910	32.666		5.7	ON STATION	
72	1	12	1200	32.689		5.7	ON STATION	
72	1	12	1500	32.691		5.7	ON STATION	
72	1	12	1800	32.676		5.6	ON STATION	
72	1	12	2100	32.688		5.6	ON STATION	
72	1	13	0	32.694		5.8	ON STATION	
72	1	13	300	32.707		5.6	ON STATION	
72	1	13	600	32.696		5.8	ON STATION	
72	1	13	900	32.694		5.7	ON STATION	
72	1	13	1200	32.699		5.6	UN STATION	
72	ī	13	1500	32.684		5.8	ON STATION	
72	1	13	1800	32.684		5.9	ON STATION	
72	1	13	2100	32.684		5.6	ON STATION	
72	î	14	0	32.683		5.9	144-53	*
72	î	14	300	0.0		5.7	144-12	
72	î	14	600	32.683		5.9	143-32	
72	1	14	900	32.708		5.7	143- 2	
72	1	14	1200	0.0		5.9	142-23	
72	1	14	1500	0.0		5.7	141-44	
72	1	14	1800	32.566		6.0	140-42	
72			2100					
	1	14		32.675		6.6	139-1	
72	1	14	2210	32.668		0.0	138-40	
72	1	15	300	32.596		0.0	136-40	

SURFACE SALINITY AND TEMPERATURE OBSERVATIONS CRUISE REFERENCE NUMBER 71- 9

DATE/TIME				SALINITY	TEMP	LONGITUDE
YR	CM	DY	CMT	0/00	C	WEST
72	1	15	300	32.596	0.0	136-40
72	1	15	600	32.654	0.0	135-21
72	1	15	1130	32.609	7.0	132-40
72	1	15	1600	32.336	0.0	130-40
72	1	15	2030	32.469	0.0	128-40
72	1	15	2300	32.192	0.0	127-40
72	1	15	1107	32.472	0.0	126-40
72	1	15	1510	31.797	0.0	126- 0
72	1	16	5/)0	31.422	0.0	125-33

© INFORMATION CANADA OTTAWA 1972

A SURVEY OF THE USES OF REMOTE SENSING FROM AIRCRAFT AND SATELLITES IN OCEANOGRAPHY AND HYDROGRAPHY

J.F.R. Gower

Remote Sensing Consultant
To Marine Sciences Branch
Department of the Environment

Department of the Environment
Marine Sciences Branch
Pacific Region
512 Federal Bldg
Victoria, B.C.

20 11

MARINE SCIENCES BRANCH PACIFIC MARINE SCIENCES REPORT NO. 72-3

A SURVEY OF THE USES OF
REMOTE SENSING FROM AIRCRAFT AND SATELLITES
IN OCEANOGRAPHY AND HYDROGRAPHY

BY

J.F.R. GOWER

REMOTE SENSING CONSULTANT

TO MARINE SCIENCES BRANCH

DEPARTMENT OF THE ENVIRONMENT

Victoria, B.C. Marine Sciences Branch, Pacific Region January, 1972

CONTENTS

- I. Introduction
- II. Remote Sensing from Aircraft
 - (a) Passive Sensors
 - (1) Optical methods using photography
 - (2) Infrared (wavelength longer that 14), and ultraviolet sensing
 - (3) Microwave sensing
 - (4) Other passive sensors
 - (b) Active Sensors
 - (1) Radar
 - i. Scatterometry
 - ii. Altimetry
 - iii.Radar Mapping
 - iv. Doppler radar navigation
 - v. Resonant Doppler returns
 - (2) Lidar radar type measurements using a light source
 - i. Laser profilometer
 - ii. Laser water depth measurement
 - iii.Spectroscopy
- III. Remote Sensing from Satellites
 - (a) Introduction
 - (b) Passive Sensors
 - (1) Pictures in the visible and near-infrared (.3 1.1μ)
 - (2) Pictures in the thermal infrared $(2 14\mu)$
 - (3) Microwave observations
 - (4) More specialized sensors

- (c) Active Sensors
- (d) Communications

I. INTRODUCTION

The developments of technology have a rapid effect on all branches of scientific research. Remote sensing of the sea is being made more attractive, scientifically and economically, by continuing improvements in space vehicles, sensors, navigation equipment and so on, whose development is most often spurred by other, often military, considerations.

Aerial photography, which has been used extensively for mapping, military surveillance, resource management and geology has been extended by the use of colour and infrared films and more recently by infrared scanners, microwave radiometers and gamma ray detectors, so that most of the accessible part of the electromagnetic spectrum can now be monitored, though with varying sensitivity, directivity and ease. This passive remote sensing can be supplemented by active methods, such as radar and lidar, which measure the response of the target to radiation.

Many properties cannot be measured remotely at all, but for those that can be measured conveniently from a satellite, for example, a world-wide picture and its day to day variation is now available to us. In other cases, development of new sensing systems has made operation from an air-craft quicker, cheaper or in other ways more desirable than work from a ship or buoy.

This report describes work from both aircraft and satellites.

Sensor systems are described in more detail in their airborne applications in Section II and the various possibilities for space craft are discussed in Section III.

II. REMOTE SENSING FROM AIRCRAFT

(a) Passive sensors.

In a passive measurement the sensor receives either radiation emitted naturally by the target or solar radiation reflected from it.

(1) Optical methods using photography

Photographic film is sensitive to radiation of wavelength shorter than about 1μ (=1000 nm = 10000 Å). The recorded light intensity is often a very nonlinear representation of the true light intensity and the film is not as sensitive a light detector as a photomultiplier, but where film can be used it has the advantage of storing information very densely in a very convenient form. Colour photography provides broad band spectroscopy of the light reflected from a target, which can be extended into the infrared (see for example Scientific American article by Colwell, 1968).

In hydrography, photography has been used extensively for mapping shorelines and shoals for chart construction. Since water is partly transparent in the optical region, the exact shoreline at a given state of the tide may not be well defined on an aerial photograph. The maximum trans parency for ocean water is in the wavelength band $.4 - .5\mu$ where the attenuation length is in the range 30-100 m, while closer inshore the maximum is at $.5-.6\mu$ with an attenuation length of roughly 5 m. If the shoreline is photographed with aerial infrared film which responds to $.7-.9\mu$, the attenuation length is less than one meter and the water/land interface becomes much more distinct.

The transparency of coastal water in the blue/green makes

shallow depth measurement possible. Anderson (1970) has investigated the possibility of mapping the 6 ft. contour (and possibly the 12 and 18 ft. contours) from the air, though measurements are complicated by varying transparency and bottom type. Vary (1969) and Helegeson (1970) have also investigated this problem. Vary (1971) has tested a colour film specially developed for this purpose.

A typical program for coastal surveying (Swanson, 1964) might involve taking a black and white infrared photograph at high tide to determine the shoreline, and a colour photograph at low tide to find shoals. An infrared photograph could also be taken to give the low water line.

Ice cover and icebergs are regularly photographed from the air. For shipping protection and routing the ice must be monitored regularly and cloud cover is a serious limitation.

Where adjacent bodies of water differ in colour, aerial photography can be used to map water circulation. This is usually possible near river estuaries where silt laden water can be easily distinguished from clearer sea water. Circulation of Fraser River water near Vancouver has been studied for evaluation of sewage disposal methods (Fjarlie, 1950) and recent examples of this work have been described by Carlson et al , 1970 and Drake et al , 1970. Simultaneous infrared photography has also been found useful here, because of its short penetration depth, to distinguish the purely surface features (Huh, 1971).

The spectrum of sunlight reflected from scattering centers up to several meters below the surface can be searched for the characteristic absorption line due to chlorophyll at .68 μ . Presence of chlorophyll above 0.2 g/m 3 indicates presence of sufficient plankton to support commercially

viable fish concentration, and a map of observed chlorophyll absorption would be of great use in the fishing industry. (N.A.S. (5) Sections 3.3.3. p. 51, Clarke, Ewing and Lorenzen, 1969).

Ewing, Lieberman and Yentsch among others, have studied problems associated with chlorophyll detection. Their work and other work on ocean colour is reported in "The Color of the Ocean," 1969 (see "Books and reports" references).

Sunlight reflected specularly from the surface of the sea reaches an observer from those areas of the surface (facets) which have the appropriate slope. Cox and Munk (1954, 2 papers) have studied the glitter patterns formed by these facets using aerial photography and have derived from them the slope distribution of the surface.

Aerial photography has also been used to track currents and diffusion processes where the sea has been artificially marked with buoys or dye. (Oliffe and Varney, 1964; Assaf et al, 1971; and, for a local current survey, Keenan et al, 1966).

Internal waves at interfaces between layers of different density in the sea become visible as bands of increased roughness on the surface of water with a separation of 1000 to 3000 ft. They have been observed from the air in coastal areas where they are initiated by tidal currents. Shand (1953) shows photographs of surface bands of roughness due to internal waves in the Georgia Strait, and a study of these waves is continuing at D.R.E.P. Victoria, B.C., under Dr. H.L. Grant (Hughes, 1969).

Cameron (1962) has reported on a method that makes use of stereophotography and viewing to measure small movements of any material floating on the water surface, such as foam or ice. When making aerial surveys over land it is common to take pairs of photographs, one a short

interval after the other, and to use the stereoscopic view produced to contour the ground. If an object moves between the two exposures, it may appear higher or lower than it would if stationary. The shift can be used to estimate the motion.

Stereo photography can also be used to survey waves on the ocean surface. Over land where features are stationary, stereo pairs can be taken from a single aircraft which takes two photographs from points some distance apart; over the ocean two aircraft must be used to take simultaneous photographs at the required spacing. In SWOP (Stereo Wave Observation Project) stereo pairs of photographs of an area 2700 ft. x 1800 ft. of the open ocean surface were used to obtain 5400 simultaneous spot heights on a square grid with 30 ft. spacing. The two dimensional wave spectra with 180° direction ambiguity were then calculated digitally (Coté et al, 1960; see also Kinsman, 1965 for a summary of this project).

Useful information on wave state can also be extracted from aerial photography by analogue Fourier transformation using a"holographic" technique. A suitably processed transparency of the photo diffracts a plane parallel light wavefront. Straight parallel wavecrests in the photograph diffract light through an angle depending on the wavecrest separation. The complex diffraction gives information on the two dimensional wave spectrum (Uberoi, 1962).Noble (1970)has used an analogous technique for satellite photographs.

(2) Infrared (wavelength longer than l_{μ}) and ultraviolet sensing. Semiconductor infrared sensors are now available that are extremely sensitive for the wavelength range from l_{μ} to millimeter wavelengths.

A black body at 300° K radiates its peak energy/unit wavelength interval at about $10\,\mu$. The cloudfree atmosphere has "windows" (transparency greater than 50%) in the near ultraviolet,optical and near infrared at 0.3 - $1.3\,\mu$ and from 1.4 to $1.9\,\mu$, 2.0 to $2.6\,\mu$, 3.0 to $4.1\,\mu$, 4.4 to 5.0 and 8.0 to $13.5\,\mu$. Beyond $14\,\mu$ the attenuation is very large up to wavelength greater than $1000\,\mu$. During the day the infrared radiation of wavelength less than $3\,\mu$ from a target would be mostly reflected sunlight; only in the 8 to $13.5\,\mu$ band do infrared pictures taken during the day indicate target temperature. Cloud and even slight haze can absord infrared radiation very strongly, depending on the total water or water vapour content of the air.

Infrared viewing systems may be simple radiometers (airborne radiation thermometers - A.R.T.) or may scan in either one dimension (scanners) or in two dimensions (usually called 'imagers') which can take a 'TV type' picture from a stationary or moving vehicle.

A typical infrared scanner uses a single sensor whose instantaneous view of the ground or sea surface defines the resolution limit of the instrument. This field of view is moved from side to side, usually by a rotating mirror, while the forward motion of the aircraft advances it in the other coordinate, so that the sensor scans a strip under the aircraft. The sensor is usually a cooled semi-conductor giving an electrical output varying with the incident radiation level. Radiation is focussed on to the sensor by a telescope with a dielectric interference filter to limit the incoming radiation to wavelengths of low atmospheric absorption. The electrical signal from the sensor is converted to a picture on a cathoderay tube and may also be stored on video tape or photographic film. Electronic processing may be used to counteract movements of the aircraft and

compensate for the longer path length in air for observations off nadir.

For accurate quantitative measurements correction must also be made for the total absorption based on a model atmosphere. Radiation collected by such a scanner system can be shared between many detectors, and in satellites (Section III) separate scanner outputs may give pictures in several optical bands using photomultipliers as well as infrared bands. For a review of scanning devices see Lowe, 1968 and for an example of current state of the art see Zaitzeff et al, 1971. For articles on infrared detectors see Holter and Legault, 1965 and Klein, 1971.

The scanning principle can easily be applied to the near ultraviolet (0.3 μ to 0.4 μ) using a photomultiplier as the sensing element. Lowe and Hasell(1969) used multispectral scanners between 0.32 and 1.4 μ to observe an oil slick, and found that it stood out particularly well in their band from 0.32 to 0.38 μ .

For measuring temperatures from the air, the window between 8 and 13.5μ is commonly used. Absorption in this window is slightly less than that in the visible (25% absorbed as against 40%, computed for a vertical path through the whole atmosphere) though clouds absorb at least as strongly as in the visible. A scanner operating from an aircraft at this wavelength will sense the temperature of the top 10μ of the sea's surface, this being the approximate attenuation length at this wavelength. Because of the low dielectric constant in the infrared (about 2) less than 2% of incident infrared radiation is reflected. The emissivity of the sea's surface is thus 98%. Pictures taken with infrared scanners can show the water temperature of the thin (less than 10μ) surface layer. Sudden temperature discontinuities are particularly easy to record and pictures of

convection cells, wind streaks and breaking waves have been published (McAllister & McLeish, 1965) and the boundary of the Gulf Stream near the U.S. Coast has been extensively surveyed (Pickett, 1968, Wilkerson and Noble, 1969; Curtis and Rao, 1969). Saunders (1967 (a),1967(b) and 1968) and Saunders and Wilkins (1966) have studied the accuracy that may be attained in making sea surface temperature measurements from the air with an A.R.T. Saunders (1967) has tested a normal/oblique viewing method which he finds can give an absolute accuracy of \pm 0.2°C. More recently he has described measurements using only normal viewing and methods of correcting them to the same absolute accuracy of \pm 0.2°C (Saunders, 1970).

If two different infrared bands are used for which sea water differs greatly in opacity, the measured temperatures will be those appropriate to averages through different depths of water. By observing in two bands simultaneously and comparing the two temperatures observed, an estimate can be made of the temperature gradient of the sea surface. This temperature gradient is a measure of the heat lost by the surface providing that conduction is the primary mechanism. McAlister and McLeish, 1965, observing at 2.0 to 2.4 and 3.5 to 4.0 u (where 50% of the radiation is absorbed in 400μ and 50μ respectively) were able to measure temperature differences between 0.1 and 0.20°C that agreed with the estimated heat lost for the conditions prevailing. More recent work with this system from an aircraft using a digital on-line data reduction system has given an accuracy of \pm 0.003 $^{\circ}$ C for the temperature difference between bands 3.4 to 4.1, and 4.5 to 5.1 (McAlister, McLeish and Corduan, 1971). The accuracy of water temperature measurements was reported as $\pm 0.01^{\circ}$ C, though more tests are probably needed to confirm this. Variation in sea state did not appear to

affect the results.

The thin surface layer, whose temperature is measured with an airborne radiation thermometer, will be cooler and more saline that the sea water immediately below it as a result of evaporation and thermal radiation, though precipitation may temporarily reverse this. The dynamics and other properties of the surface layer have been discussed by by Katsaros (1969).

McLeish (1970) discusses the small scale spatial variations in surface temperature observed with an A.R.T. and concludes that these are caused by slicks of oil and other organic material whose distribution reflects the turbulence in the upper layer of the ocean.

(3) Microwave sensing.

Microwave sensors have the great advantage of "all weather capability", but suffer from resolution limits due to the comparatively long wavelengths involved. Beam widths measure usually not less than $1^0 \times 1^0$, which at 3 cm implies an antenna nearly 2 meters across. In order to produce a raster pattern the response must be scanned from side to side sufficiently fast to leave no unobserved areas on the ground between scans. For an aircraft flying at 1000 ft. a 1^0 beam will cover an area of about 16ft. across on the ground, so that for an aircraft travelling at 400 ft./sec. the scan can only last 1/25 second. Such rapid motion implies an electronically scanned array (Louapre, 1968) unless only a single strip beneath the aircraft is to be surveyed.

Energy emitted by a black body at 300°K falls off rapidly below infrared frequencies, but microwave radiometers can be made sufficiently sensitive to measure the small amount of radiation remaining. For the above

example at a wavelength of 3 cm, the radiometer might be required to measure temperature to an accuracy of 1° K in 1 msec. and would therefore have to have a ratio of noise-temperature 2° ($^{\circ}$ K), to bandwidth (Hertz) of 1 to 4000, for example 100° K and 40 MHz. Such parameters probably represent the approximate state of the art (Ewen et al, 1968).

At these long wavelengths water has approximately its DC dielectric constant of about 84, a value which in the absence of conductivity losses implies an emissivity of about 0.35. At frequencies below 100 MHz the conductivity causes this value to drop still lower.

A radiometer operating at wavelengths longer than 2 cm pointing vertically down at sea water at 280° K will therefore indicate a temperature of only about 100° K. At shorter wavelengths atmospheric absorption increases and raises the apparent temperature to 135° K at 1.55 cm, and 150° K at 0.85 cm (Stogryn, 1967). The exact value of this low measured temperature is very sensitive to the emissivity of the surface. Actual temperature measurements of the sea are therefore more difficult, though experiments indicate that an accuracy of \pm 1-2°K may be possible.

Measurements of the emissivity variation due to changing wave state, leading to wind speed measurements have been proposed by several authors. The observed temperature is predicted to be most sensitive to the wave state at inclination angles of about 50° (Stogryn, 1967) where the observed temperature should increase by 1 to 2°K for each m/sec. of wind velocity. This prediction has been checked by Hollinger (1970 and 1971) and by Nordberg et al (1968) whose results confirm the increase in emissivity with wind speed, but disagree with the theory in many respects. Predictions are complicated by the effects of capillary roughness on top of gravity waves and by the high emissivity of any foam present on the surface

(Williams, 1969; Droppleman, 1970(a); Ross et al, 1970; Auckland et al, 1971).

Ice has a much higher emissivity than does water, although the exact value of this and other properties vary with the age and past history. At microwave frequencies the dielectric constant is bout 3.5 with a loss tangent of about 0.1 to 0.3 giving an emissivity of about 0.91 and observed temperatures between 200 and 250°K. Contrast between ice and water will therefore be very high, and passive microwave radiometry can easily be applied to all weather ice surveillance, though with low spatial resolution.

Ice thickness measurements may also be possible. For a loss tangent of sea ice of 0.1, radiation would penetrate about 0.85 of its free space wavelength before being reduced in intensity by a factor of 1/e. Because of the long wavelengths involved, this implies that a microwave radiometer will be sensitive to subsurface temperature in the ice, down to a depth of a few tens of centimeters for microwave radiation near 1.5GHz. For very thin ice over sea water, a microwave radiometer will indicate a very low temperature, tending towards the 100°K mentioned above for water alone as the ice thickness tends to zero. For thicker ice, the observed temperature will tend to the 200 to 250°K figure for ice alone. It is difficult to predict what thickness discrimination is possible, since the method will be sensitive to surface and conductivity differences of different areas of ice. Older, less salty ice, for example, will provide lower attenuation to radio waves. Investigations of this method are being carried out in Canada by Hartz (1970), whose initial results suggest that temperature differences due to ice up to 5 ft. in thickness can be detected; and also in the US (USNOO/NASA report).

Microwave radiometers may also be useful in detecting and monitoring oil slicks on water. Oil changes the reflectivity of the water surface and also damps out capillary waves. Both these effects change the microwave temperature observed.

Droppelman (1970 b)reports airborne measurements with a microwave radiometer which show the predicted reflectivity change in the water surface due to the salinity change at the mouth of the Mississippi.

(4) Other passive sensors.

Gamma rays have been used for geological surveys from the air, but in oceanography have only been used for shipboard tracing of water bodies tagged (usually inadvertantly) by radionucleides.

The magnetic field variations caused by motion of the (conducting) sea water in the earth's magnetic field, can be measured and used to determine the wave spectrum. The variations also form a noise-like background which, together with ionospheric micropulsations, hinder the airborne detection of magnetic anomalies due to submerged submarines. The effect has been discussed by Maclure et al (1964) Warburton and Caminiti (1964) and Weaver (1965). Baker and Graefe (1968) have used an airborne magnetometer for measuring ocean wave profiles and spectra by flying at 100 ft. above the water, well away from the magnetic bottom (i.e. in deep water) and measuring fields to 0.03 nT (compared to the earth's $4 \times 10^4 \, \text{nT}$). The method appears capable of detecting waves with periods between 10 and 30 seconds.

(b) Active sensors.

(1) Radar.

Active microwave sensing (radar) has four types of uses in oceanography Scatterometry -- measurements of roughness of the sea surface, altimetry, high resolution mapping and Doppler measurements.

i. Scatterometry.

Wave clutter due to reflections from waves is a limiting factor in detecting nearby objects with shipborne radar. The clutter contains statistical information about the waves and several airborne radar systems have been developed to investigate what properties of the wave state can be determined. In an early experiment the fraction of returned power for an airborne radar directed downwards, 2° below the horizontal, has been found to increase by a factor of about 16 between sea states 1 and 4 (Katz, 1965). Returned power over a greater range of depression angles and directions (upwind/downwind) has been analyzed by Marks (1965).

Moore (1968) has developed a scatterometer using frequency analysis of the reflected pulse. The radar beam is 120° wide fore-and-aft and 3° wide side to side. The varying doppler shift allows reflections from different parts of the beam to be separated. It is also possible to use the different travel times for radiation which left the antenna in different directions to make this separation (Moore, 1966). Possibilities for these systems over a range of different radio frequencies are being investigated (USNOO/NASA report, Krishen, 1971).Guinard et al (1971) and Valenzuela, Laing and Daley (1971) have reported on extensive research using the Naval Research Laboratory's 4 frequency radar (4FR) from an aircraft and have used their results together with predictions of the radar cross section, to derive the ocean wave spectrum for sea wavelengths between 0.3 and 11 cm. The scattering theory is based on the resonance

principles described later in subsection v.

ii. Altimetry

A pulsed downwards looking radar gives range information as well as wave state information. Such radar altimeters can be used to give information about very long waves if the aircraft motion is sufficiently well known, but its ability to measure shorter waves is limited by the area of sea illuminated by a single pulse (Barnett & Wilkerson, 1966; Yaplee et al, 1971).

Accurate altimetry, together with an accurate inertial navigation system may make possible measurements of large scale distortion of the ocean surface due to weather systems or to currents, tides and bottom features. (see the discussion for spacecraft in Greenwood et al, 1969 - 2 papers).

iii. Radar mapping

High resolution radar pictures can be made for mapping and ice surveillance purposes using sideways looking airborne radar (SLAR). In the sideways looking configuration, a long antenna is mounted down the side of the aircraft to give high resolution in the along track direction, i.e. 200 ft. at 5 miles, 2000 ft. at 50 miles. Output can be recorded by using the returned pulse power with compressed dynamic range to modulate a moving light spot which is then photographed on a continuously moving film strip. The strip of ground mapped might be 50 miles wide and several hundred miles long and can be combined with parallel strips to cover large areas (see general reference Kiefer and Scherz, 1970).

Synthetic aperture, or fully focussed SLAR, uses the principle of aperture synthesis. Here observations of a stationary scene

made at different times with a moving antenna are combined to give a much higher along track resolution than the beam width of this antenna would allow. This increase is such that the resolution becomes independent of range and might be 50 ft x 50 ft. to the range limit of the instrument. The technique implies use of coherent radiation and considerable analogue signal processing equivalent to a one dimensional Fourier transform. The aircraft must fly a straight course, though some electronic correction for a curved flight path is possible. Ultimate resolution along the track is half the antenna length at any range. Either real or synthetic aperture SLAR can be used for all weather ice surveillance (Johnson and Darmer, 1971) or coastline mapping. Return intensity over the open ocean may also give high resolution information on wave state.

For a review of SLAR types and uses see NAS 1969 (6) Sensors and Data systems. (See "Books and reports" references).

iv. Doppler Radar navigation

Doppler radar is the basis of the doppler navigation system used on many aircraft, though now being replaced by the inertial navigation systems (I.N.S.). These radar systems operate near 9 or 13 GHz and compare the doppler shifts of returns from four beams (left and right forward, left and right backward) to get the ground velocity vector of the aircraft. Over the sea the measured velocity vector will be affected by motion of the water surface caused by currents, wind and waves. If the exact course of the aircraft can be determined by other means (for example using INS) then the course measured by doppler radar will give a measure of surface drift. A standard relation for the wind drift that is observed with a doppler radar navigation unit is $1.28\ V_W^{1/3}$ knots,

where V_{W} is the wind velocity in knots. It should be possible to separate the effects of at least the larger, near-shore currents from this, although waves and resonant scattering (see next subsection) will also have an effect.

v. Resonant Doppler radar returns

The radar returns from a random surface such as that of the sea will be dominated by the signals from scattering centres placed so as to give a coherent build-up of scattered power in the direction of the receiver. At grazing incidence, for a monostatic arrangement (i.e. using the same antenna to transmit and receive), this return will be due to that component of the water wave spectrum having a wavelength equal to half the radar wavelength (for the first-order resonance), and a direction of propagation directly away from or towards the radar. These water waves will have a characteristic phase velocity and hence cause a characteristic doppler shift of the return signals.

The effect is especially marked at low radio frequencies where the resonance is with the longer, more dominant, water waves. Crombie (1955) found that by far the strongest component of sea clutter return from conerent radar signals at 13.56 MHz had a doppler shift of 0.38 Hz compared to the expected value for this resonance of 0.376 Hz. Sofaer (1958) found that the resonant, doppler shifted return near 50 MHz caused rythmic fading on broadcast TV receivers near the coast. Early Russian work is described in Braude (1966) and in later work Bass et al (1966) summarize the result that the doppler shifts for radio frequencies from 1.5 to 10,000 MHz agree with the predicted values. At the higher frequencies, however, the effect is masked by motion due to longer waves and wind (see for example work done by Melnichuk and Chernikov, 1971 at 10GHz and by Wright and Keller, 1971, in the laboratory). Crombie (1971) has used a broad band radar system

operating between 1.7 and 12.37 MHz in an experiment to measure the ocean wave spectrum from the shore out to a distance of about 100 km. He was able to resolve the return doppler spectrum to 0.002 Hz and found components (typically 0.04 Hz wide at 8 MHz) returned from both advancing and receding waves. Using the theory of Wait (1966) he related the observed return intensity to the wave spectral density and found good agreement with simultaneous aircraft measurements of the wave spectrum. His results also show that the equipment can be used to measure sea currents.

Peterson, Teague and Tyler (1970) have used Loran A signals at 1.35 MHz to make bistatic radar measurements with the receiving antenna a long distance from the transmitting station, to measure some components of the wave spectrum out to about 140 km from the shore.

- (2) Lidar (Radar-type measurements using a light source).
 - i. Laser Profilometer

To measure the detailed wave profile below an aircraft, a laser system can be used in which a very small area of the sea is illuminated at any one time. A pulsed laser would give gaps along the flight path so an amplitude modulated CW laser is usually used. The laser wave profiler described by Olsen and Adams (1970) can give an accuracy of 1.5 cm flying at a height of 60 m. The laser illuminates a spot 2 cm across and can measure height with a time constant of about 50μ sec. The lidar can therefore give a complete measurement of the gravity wave profile from which the statistical properties can be calculated later. Schule et al (1971), Ross et al (1970) describe the use of such an instrument.

ii. Laser water depth measurement

A suitably designed pulsed lidar system can detect the return from the bottom of shallow water as well as the return from the surface. Hickman et al (1969) describe the use of an airborne system based on a blue/green laser, that can measure depths up to about 30 ft. This limit depends very strongly on the water turbidity and the nature of the bottom. (See also Hickman and Hogg, 1969).

iii. Spectrometry of the lidar return.

Laser light, scattered elastically from a target, will be received at the same, transmission frequency. A very small doppler shift can be observed for a target moving at aircraft velocities if a frequency stabilized laser is used. It is planned to make use of this shift in the design of an airborne mapping lidar being developed by RCA on a contract with the Canadian Centre for Remote Sensing (Report Reference 4, report 10).

Light may also be scattered inelastically. A molecule in the target can interact with the light to give up or take in energy, usually a quantum of rotation or vibration. The weak frequency shifted components form the Raman spectrum of this molecule and can be used to identify it and estimate its relative abundance.

The lidar system described by Dr. Carswell of York University in Report reference 4, report no. 10, is designed to study either elastic or Raman scattering from atmospheric constituents or pollutants.

A stronger interaction occurs when a high energy photon is absorbed by a molecule, and the energy is subsequently reemitted in transitions at longer wavelengths. An ultraviolet laser can stimulate fluorescence in this way in many materials of interest in oceanography.

Oil films and dyes fluoresce strongly, and the organic content of sea water gives a weaker effect. An airborne fluorosensor is being developed by Dr. Measures of the University of Toronto (Report Reference 4, report no. 10) and should be useful for pollution studies, and also for tracking dye patches in the sea to measure diffusion and currents.

III. REMOTE SENSING FROM SATELLITES

(a) Introduction.

Many of the sensors used in aircraft can also be used in satellites. The satellite provides less space, power and weight capability for the sensor and has a vastly greater capital cost than an aircraft. It is also further away from the surface of the ground or ocean and therefore less capable of measuring fine details.

The importance of the satellite in oceanography lies in its ability to survey large areas rapidly so as to provide, for the first time, almost simultaneous pictures of the state of an entire ocean. If sensors can be built to measure oceanographic and meteorological data sufficiently accurately, then predictions of the future behaviour of an ocean, as well as greatly improved and longer term weather forecast, should be possible.

This section of the report deals with satellite measurements in physical oceanography. Meteorological satellites also provide necessary data (atmospheric soundings, pictures of cloud cover and weather systems) but are not discussed here.

From satellite altitudes (125 nm minimum, 5-600 nm typical for earth resources satellites, 22,800 nm for synchronous satellites) the fine detail on the surface of the earth at a scale of less than 100 meters becomes difficult to observe. For most oceanographic purposes this is not a serious limitation. More important is the fact that radiation received has passed through the entire thickness of the atmosphere. Clouds are opaque to the infrared as well as the visible light and accurate temperature measurements will be affected by the exact value of the atmospheric absorption.

The chance of any one vertical line of sight being cloudfree is about 40 to 50% on average, while the chance of observing a cloudfree area becomes increasingly smaller with the size of the area (see Graves, Sherr and Glaser, 1970, for a discussion of cloud cover statistics).

A summary of possible oceanographic sensors for use in spacecraft is given in the joint USNOO/NASA report. Most of the aircraft techniques can be adapted to use in satellites but the value of such a move has to be carefully considered in each case. The report lists uses of photography and other passive imaging devices as well as radar and lidar. Special purpose spectrometers for detecting particular molecules have also been suggested.

An additional problem in satellite work is the transmission of the collected data to earth. Only in special cases where high resolution (and perhaps secrecy) are required is it worth the expense of actually returning photographic film to the ground. In all earth resource satellites, weather satellites, etc. pictures are transmitted to the ground by television links of varying degrees of resolution. The manned Skylab A planned for April 1973 will carry an Earth Resources Experiment Package (EREP) as a follow-up to the ERTS-A satellite. Photographs, line scan and other output from EREP will be carried back to earth by each of the 3 crews who will visit the Skylab.

Pictures for retransmission are recorded by either vidicon tubes or spectral scanners. The earth resource satellite, ERTS-A will use both these techniques. Vidicon tubes will take pictures through blue/green, red and near infrared filters (.475 to $.575\mu$, $.58-68\mu$, $.69-.830\mu$). Each picture will cover a 180 km square area on the ground and will be transmitted as intensity measurements in 4200 x 4200 elements. The predicted

ground resolution is about 100 m. A spectral scanner will scan the same strip of ground, 180 km wide, through a telescope, and have about the same resolution. Light received by the telescope is focussed on sensors receiving 4 bands at $.5-.6\mu$, $.6-.7\mu$, $.7-.8\mu$ and $.8-1.1\mu$. Earlier satellites (Tiros, Nimbus, ATS and ESSA series) designed for meteorological purpose have also transmitted pictures using these techniques in the visible and infrared, but with much lower spatial resolution (NASA, 1970).

The following is a summary of satellite applications in oceanography taking types of sensors in roughly the same order as in the previous section for aircraft.

(b) Passive sensors.

(1) Pictures in the visible and near infrared $(.4-1.1\mu)$

Pictures with 100 meters resolution may be useful for large scale mapping of coast lines but in most cases the greater resolution of aircraft surveys will be required. For surveying ice and icebergs on the sea a satellite with its capability for making regular observations is extremely useful, but coverage is limited by cloud cover. For observations of snow and ice however, the effects of cloud can be greatly reduced by mapping the "composite minimum brightness" (CMB) over, say, a 5-day period. A computer selects the minimum brightness observed for a given ground location in several days of observations from a sun-synchronous satellite. In areas covered by ice or snow and in the few areas always cloud covered during the 5 days, this minimum will be relatively high. McLain (1969, General reference), has presented a series of 5-day CMB pictures of the Canadian Arctic showing receding ice and snow during the summer.

Colour pictures from space have shown some details of the sea bottom, particularly in clearer water near islands in mid-ocean and some useful depth measurements may be made. The telemetered pictures from ERTS-A will have 3 and 4 channel colour information which can be processed to give the best combination for mapping underwater topography or for tracking silt laden water against a background of sea water.

There has been discussion of glitter patterns visible on some satellite pictures and their use as an indicator of wave state and wind velocity (Martin, 1969; Strong and Ruff, 1970; Levanon, 1971). The sun's image reflected in the sea can cover a fairly compact area under calm conditions, or may be spread over a considerable area by rough seas. Approximate measurements corresponding to a few meters per second of wind speed up to a maximum of 15 m/sec. may be possible with this method, but the result is often an average over a rather large area (several hundred kilometers in diameter).

Astronaut Glenn in the MA-6 flight reported being able to see the Gulf Stream, possibly because of the different wave state in the current itself. Variations in texture due to such currents and possibly also due to internal waves, may be visible with 100 m resolution (Lowman 1965).

Analysis of an Apollo 7 photograph using an optical Fourier transformation process (Noble, 1970) was able to detect swell with a wavelength of 360 meters that had decreased by 5 to 10% in shallow water. Some ERTS pictures might show swell patterns, but all but the longest wavelength would be at or near the limit of resolution.

(2) Pictures in the thermal infrared $2-14\mu$)

Such pictures can show the temperature of the surface in those areas unobscured by cloud or haze. Absolute temperature measurements are difficult, but relative temperature changes of about 1°C can be measured with simple sensors now in operation; for example, the radiometers on the Tiros series and the high (5 nm) and medium (30 nm) resolution infrared (HRIR and MRIR) scanners and the IRIS spectrometer on the Nimbus series (Glaser et al, 1965; Sabatini, 1969; Conrath et al, 1970).

Corrections for the effect of atmospheric absorption on the observed temperature can be made by considering atmospheric models. Computerized methods have been devised to automatically reject temperature readings that are affected by clouds, and to correct and plot out the remainder (Anding and Kauth, 1970; Smith et al, 1970; Shank and Salomonson, 1970; Vukovich, 1971).

Such large scale temperature maps of the ocean surface are now available. Their accuracy and coverage are still limited by cloud but can still be extremely useful in weather forecasting for estimating the heat transfer between the ocean and the air.

Ocean currents can also be followed using their temperature difference from surrounding water, as from aircraft (Warnecke et al, 1971; Rao et al, 1971).

(3) Microwave observations

The "All weather" potential of microwave sensors is an even greater advantage in a satellite, but the lower resolving power becomes even more of a problem. The bulky (10 ft.) antenna needed to give a 1° beam

at 3 cm wavelength will only give a resolution of 10 miles on the ocean surface for a 600 miles altitude, though for surface temperature mapping this is probably sufficient. Suggested radiometers operate at shorter wavelengths than this (down to 1 cm), but then are more affected by clouds. The low emissivity of water is probably the most serious limitation to microwave sea surface temperature measurements. The problems of separating effects due to the wave state from effects due to varying sea surface temperature have been discussed by Williams (1969). Russian experiments in Cosmos 243 using microwave radiometers at 0.8, 1.35, 3.5 and 8.5 cm wavelengths are reported to give sea surface temperatures to better than $\pm 2^{0}$ K (Basharinov et al, 1971).

Ice cover, due to its high contrast with water, would be easy to distinguish but the low resolution would again give only a very broad picture. Areas of broken ice would give an intermediate temperature depending on the fraction of surface covered, but ice only a few millimeters thick (for an observing wavelength of 3 cm) would be indistinguishable from very much thicker ice.

(4) More specialized sensors.

The chlorophyll survey described in section II (a) (4) may also be possible from a satellite (N.A.S. (5)), using the absorption line at 0.68μ .

Observations from meteorological satellites at frequencies near absorption lines of ${\rm CO}_2$ (Smith, Woolf and Jacob, 1970) and H₂O (Gurvich and Demin, 1970) are now being used to obtain temperature and water vapour profiles of the atmosphere. Such observations are analogous to the heat flux (temperature profile) measurements of McAllister et al. for the ocean, and

will be necessary along with oceanographic measurements for following air/sea interactions.

(c) Active sensors.

Synthetic aperture sideways looking radar provides the only reasonable way round the low resolving power of microwave systems, although an active system has the disadvantage of not responding to the intrinsic black body radiation from the target. The resolution possible with such a system depends very much on the transmitter power available, but satellite systems capable of resolving 10 ft. from a slant range of 1000 km will probably be available in the next few years and there is no fundamental limit that would prevent a yet higher resolution. Such very high resolution is probably not sufficiently useful in oceanography to justify the high power requirements and the very expensive large scale data handling. Low power, low resolution systems for earth resource satellites have been suggested (N.A.S., 1969 (6)) and these could be useful for all weather ice surveillance. Here however, the economics of satellite observation against airborne systems still has to be considered. Ice surveillance is most important for main shipping lanes and these could possibly be more cheaply covered by airborne radar.

Radar altimetry from satellites over the ocean has considerable interest for measurements in geodesy and in oceanography (Greenwood et al, 1969, 2 papers; Zetler and Maul, 1971). The ocean surface takes up the local shape of the geoid except where it is distorted by weather systems, tides, currents or, on the smaller scale, waves. Accurate altimetry from satellites in an accurately known orbit could measure all of these, contributions from each being separable by suitable analysis and comparison with

other data. The beam from a radar altimeter will cover an area several miles square, so that only the longest wavelength waves will be observable directly, but a combination radar-altimeter-scatterometer (see references given earlier) could measure the average sea state beneath the satellite.

Satellites are especially suitable for these large scale altimetry measurements although the increasing accuracy of inertial navigation systems allows aircraft to be used over smaller areas.

A laser ranging system can also be considered, but here the all weather capability is missing.

(d) Communications.

One of the most useful application of earth satellites in general has been in the field of communications. Some recent and planned satellites have the ability to relay messages from instrumented stations on earth to a central data processing laboratory. Nimbus 3 and 4 have the IRLS (Instrumentation Relay and Location System) which relays readings from, for example, drifting buoys, as well as measuring their positions to within about 10 km with a pulse ranging system. The French EOLE system can interrogate up to 4000 ground stations and locate them to better than ± 1 km. ERTS-A will relay messages it receives from up to 2048 separate instrumented stations; a brief (69 bit) message should be successfully relayed from each station at least once every 12 hours.

Such relay systems will probably be useful in weather or wave forecasting in oceanography, where results are needed as soon as possible, and will also have advantages over the more traditional tape recording in other applications.

General Articles on Remote Sensing Techniques:

- Clark, John R. "Thermal Pollution and Aquatic Life". Scientific American, March 1969, p. 18.
- Colwell, Robert W. "remote Sensing of National Resources". Scientific American, Jan. 1968, p. 54.
- Kiefer, R.W. and J.P. Scherz "Applications of airborne remote sensing Technology". Proc. Amer. Soc. Cov. Eng. (Surveying and Mapping Division) SUI, 7225, 1970 (April).
- McLain, E.P. "Potential use of earth satellites for solving problems in oceanography and hydrology" in Volume 23 American Astronautical Science Society, Technology Series, AAS69-596.
- NASA "Ecological Surveys from Space" NASA publication SP-230, 1970.
- Stevenson, R.E. "Oceanographic Applications and Limitations of Satellite Remote Sensors". Bull. Am. Inst. Aeronaut. Astronaut., 7 (2) 1970.
- Wilkerson, J.W. "Airborne Oceanography" Geo-Marine Technology, V-287 Sept. 1966.
- Woodward, P.A. "How to get started in remote sensing", Earth Resources Observation Systems Program report, October 1970.
- Zaitzeff, J.B. and J.W. Sherman III, "Oceanographic Applications of Remote Sensing" in AA 5, p. 497.

Books and reports, some referred to in the text or in referencing:

Ref. 1 as "Oceanography from Space" with page no.

Ref. 2 as "N.A.S., 1969," with panel no. and page or section. Ref. 3 as "A.A.6" (for Ann Arbor and symposium number--also 4, 5) and page no.

Ref. 6 as "USNOO/NASA" report.

1. Oceanography from Space.

Proceedings of Conference on the feasability of conducting oceanographic explorations from aircraft, manned orbital and lunar laboratories. Wood's Hole, Mass. 24-28 August 1964.

Ref. No. 65-10 Wood's Hole Oceanographic Institution Woods Hole, Mass. 02543

2. Useful applications of Earth-oriented Satellites. Panels 1-13.

Especially 5: Oceanography, Summer Study on Space Application, National Academy of Sciences Washington D.C. (1969) prepared Summer 1967.

3. Proceedings of the Sixth International Symposium on Remote Sensing of Environment.

Centre for Remote Sensing Information and Analysis Institute of Sciences and Technology University of Michigan Ann Arbor, Michigan

also "First" to "Fifth" in this series "Seventh" should be available before the end of 1972.

4. Reports of Interdepartmental Committee on Resource Satellites and Remote Airborne Sensing, 1971.

Report no. 8 "Water Resources Group" Report no.10 "Sensors" Report no.14 "Remote Sensing Devices" Available from Dr. L.W. Morley Canadian Centre for Remote Sensing Program Planning Office No. 8 Temporary Building Ottawa, Ontario

5. Report 70-20-A on project 658 "Remote Sensing of Coastal Oceans"

Department of Oceanography Texas A & M University College Station, Texas 77843

6. Report on Space Oceanography Project

USNOO/NASA NAVOCEANO Washington, D.C.

7. Microwave Observations of the Ocean Surface

Papers given at a meeting held June 11-12 1969 at NASA HQ. Report SP-152, December 1970.
Sponsored by the Spacecraft Oceanography Project U.S. Naval Oceanographic Office Washington, D.C. 20390

8. Society of Photo-optical Instrumentation Engineers, 14th Annual Technical Symposium

Microwave Radiometric Instrumentation for Remote Sensing Applications San Fransisco, Calif. August 1969.

9. The Color of the Ocean, report on a conference held at Woods Hole, August 5-6, 1969.

Woods Hole Oceanographic Institution Woods Hole, Mass.

10. Kinsman, B. "Wind Waves", Prentice Hall Inc., 1965.

REFERENCES

- Anderson, N.M., Technical Report "Special Purpose Aerial Photography-Colour and Infrared". 1970, Canadian Hydrographic Service.
- Anding D. and Kauth R., "Estimation of sea surface temperature from space". Remote Sensing of Environment 1 47, 1970.
- Assaf, Gerard R. and Gordon, A.L., "Some mechanisms of oceanic mixing revealed in aerial photographs". J.G.R., 76, 6550, 1971.
- Aukland, J.C., Caruso Jr. P.J. and Conway, W.H., "Remote sensing of sea conditions with microwave radiometer systems". J. Hydronautics, 5, 15, 1971.
- Baker, R. and Graefe, P.W.V., "Ocean wave profile and spectra measurement using an airborne magnetometer". A.A.5 . 555, 1968.
- Barnett, T.P. and Wilkerson, J. C., "The growth of ocean wind waves as observed with an airborne wave profiling radar, A.A.4, p. 243, 1966.
- Basharinov, A.E., Yegorov, S.T., Gurvich, A.S. and Oboukov, A.M., "The results of microwave sounding of the atmosphere and ocean from the satellite Cosmos 243". Space Research XI, 593, 1971.
- Bass et al, "VHF radiowave scattering by a disturbed sea surface" IEEE Trans. AP-16, 560, 1968.
- Braude, S. Ya., "The radiooceanographic investigation of sea swells", U.S. Dept. of the Navy, Translation no. 2067, 1966.
- Cameron, H.L., "Water Current and movement measurement by time lapse air photography an evaluation". Photogrammetric Engineering, 28, 158, 1962.
- Carlson, P.R. et al, "Aerial and in situ observations of a fresh water plume in San Fransisco Bay and adjacent Pacific, Abstract for A.G.U. meeting 1970 published in EOS 51, 767, 1970.
- Clarke, G.L., Ewing, G.C. and Lorenzen, C.J., "Remote measurement of ocean colour as an index of biological productivity". A.A.6, 991, 1969.
- Conrath, B.J., Hanel, R.A., Kunde, V.G. and Prabhakara, C., "The infrared interferometer experiment on Nimbus 3", J.G.R., 75, 5831, 1970.
- Coté, L.J. et al, "The directional spectrum of a wind generated sea as determined from data obtained by the S.W.O.P.". Meteorological Papers, N.Y.U. Coll. of Eng., 2 (6) 88, 1960.
- Curtis, W.R. and Rao, P.K., "Gulf Stream thermal gradients from satellite, ship and aircraft observations", J.G.R., 74, 6984, 1969.

- Cox, C., and Munk, W. "Statistics of the sea surface derived from sun glitter". J. Marine Research, 13, 198, 1954.
- Cox, C. and Munk, W. "Measurements of the roughness of the sea surface from photographs of the sun's glitter". J. Opt. Soc. Amer. 44, 838, 1954.
- Crombie, D.D., "Doppler Spectrum of Sea Echo at 13.56 Mc/s", Nature, 175 681, 1955.
- Crombie, D.D., "Backscatter of HF radio waves from the sea". Chapter 4 of "Electromagnetic Probing in Geophysics". J.R. Wait (ed). Golem Press, 1971.
- Drake, D. et al, "Transport and deposition of flood sediment, Santa Barbara Basin, California." Abstract for AGU meeting 1970 published in EOS 51, 767, 1970.
- Droppelman, J.D., "Apparent microwave emissivity of sea foam". J.G.R., 75, 696, 1970.
- Droppelman, J.D., Mennella, R.A. and Evans, D.E., "An airborne measurement of the salinity variations of the Mississippi river outflow". J.G.R. 75, 5909, 1970.
- Ewen, H.I., Haneman, F., Kalafus, R.M., Louapré, M.E., Mailloux, R. and Steinbrecher, D.H., "Microwave radiometric capabilities and techniques" A.A.5, p. 9, 1968.
- Fjarlie, R.L.I., "The Oceanographic Phase of the Vancouver Sewage Problem", Report, File No. 7-18, Dec. 15, 1950, Pacific Oceanographic Group, Nanaimo, B.C.
- Glaser, A.H., Merritt, E.S., Wexler, R. and Widger, W.K. "The Applicability of Tiros and Nimbus data to investigation of the feasibility of sea surface temperature measurements from satellites", in "Oceanography from Space", p. 219, 1965.
- Graves, J.R., Sherr P.E. and Glaser, A.M., "Cloud cover statistics and their use in planning of remote sensing missions". Remote Sensing of Environment, 1, 95, 1970.
- Greenwood, J.A., Nathan, A. Neumann, G., Pierson, W.J., Jackson, F.L., and Pease, J.E., "Radar altimetry from a spacecraft and its potential applications to Geodesy". Remote Sensing of Environment, 1, 59, 1969.
- Greenwood, J.A., Nathan, A., Neumann, G., Pierson, W.J., Jackson, F.L., and Pease J.E., "Oceanographic applications of radar altimetry from a spacecraft", Remote Sensing of Environment, 1, 71, 1969.
- Guinard, N.W., Ransone, J.T. Jr., and Daley, J.C., "Variation of NRCS of the sea with increasing roughness", J.G.R., 76, 1525, 1971.

- Gurvich, A.S. and Demin, V.V., "Determination of the total moisture content in the atmosphere from measurements on the Cosmos 243 satellite", Izvestiya (Atmoshperic and Oceanic Physics) 6, 453, 1970.
- Hartz, T.R., "A radiometer method for determining the thickness of sea ice". Proceedings or the Seminar on Thickness Measurements of floating ice by remote sensing, held at Defence Research Establishment Ottawa, Oct. 27-28, 1968, and Report No. 1217, CRC, Ottawa, 1971.
- Helegeson, G.A., "Water depth and distance penetration", Photogammetric Engineering, 36, No. 2, Feb. 1970.
- Hickman, G.D., Hogg, J.E., Spadaro, A.R. and Felscher, M., "The airborne pulsed neon blue-green laser: a new oceanographic remote sensing device", A.A.6, 1061, 1969.
- Hickman, G.D. and Hogg, J.E. "Applications of an airborne pulsed laser for near-shore bathymetric measurements." Remote Sensing of Environment, 1, 47, 1969.
- Hollinger, J.P., "Passive Microwave measurements of the sea surface", J.G.R., 75, 5209, 1970.
- Hollinger, J.P., "Passive microwave measurement of sea surface roughness", IEEE Trans. Geoscience Electronics GE-9, 165, 1971.
- Holter, M.R. and Legault, R.R., "Orbital sensors for oceanography", in "Oceanography from Space", p. 91.
- Hughes, B.A., "Characteristics of some internal waves in Georgia Strait", D.R.E.P., Victoria, Technical Memorandum 69-2, March 1969, Defence Research Board, Canada.
- Huh, O.K., "Aerial photographic detection of coastal circulation patterns South Korea", Abstract for AGU meeting, 1971, published in EOS 52, 240, 1971.
- Johnson, J.D., and Farmer, D.L., "Use of side looking airborne radar for sea ice identification", J.G.R. 76, 2138, 1971.
- Katz, I., "Radar Backscattering from the Sea", in "Oceanography from Space", p. 367, 1965.
- Katsaros, K., "Temperature and salinity of the sea surface with particular emphasis on the effects of precipitation", University of Washington, Department of Atmospheric Sciences Scientific Report, September 1969.

- Keenan, C.J., Kinnear, A.C., Sanders, F.M., Tully, J.P., Waldichuk, M., Wigen, S.O. and Young, R.B., "Current observations in Cordova Bay and predictions on sewage dispersal", Fisheries Research Board of Canada Manuscript Report (Oceanographic and limnological) No. 197, October 1966.
- Klein, C.A. "Thermal imaging performance of passive infrared scanners", IEEE Trans. Geoscience Electronics GE-9, 139, 1971.
- Krishen, K., "Correlation of radar backscattering cross sections with ocean wave height and wind velocity". J.G.R. 76, 6528, 1971.
- Levanon, N., "Determination of the sea surface slope distribution and wind velocity using sun glitter viewed from a synchronous satellite".

 J. Phys. Oceano. 1, 45, 1971.
- Lowe, D.S., "Line Scan Devices and why use them". A.A. 5, p. 77, 1968.
- Lowe, D.S., and Hasell, P.G., "Multispectral sensing of oil pollution", A.A.6, 755, 1969.
- Lowman, P.D., "Space photography a review", in "Oceanography from Space" p. 73, 1965.
- Louapre, M.E., "Phased arrays for spaceborne microwave sensors", A.A.5, p. 59, 1968.
- McAlister, E.D. and McLeish, W.L., "Oceanographic measurements with infrared equipment and their airborne limitations", "A two wavelength microwave radiometer for temperature and heat exchange measurements of the sea surface of possible use in manned satellites", in "Oceanography from Space", p. 189, 1965.
- McAlister, E.D., McLeish W. and Corduan, E.A., "Airborne measurements of the total heat flux from the sea during Bomex". J.G.R., 76, 4172, 1971.
- McLeish, W., "Spatial spectra of ocean surface temperature", J.G.R., <u>75</u>, 6872, 1970.
- Maclure, K.C., Hafer, R.A. and Weaver, J.T., "Magnetic variations produced by ocean swell", Nature, 204, 1290, 1964.
- Marks, W., "The Application of airborne radar backscatter to measurement of the state of the sea", in "Oceanography from space", p. 377, 1965.
- Martin, J.J., "Sea surface wind speed from space", Note N-630, Institute for Defence Analyses, Arlington, Virginia, IDA log No. Hg. 69-10723 Sept. 1969.

- Melnichuk, Yu. V. and Chernikov, A.A., "Spectra of radar signals from sea surface for different polarizations", Izvestiya (Atmospheric and Ocean Physics) 7, 28, 1971.
- Moore, R.K., Waite, W.P., Lundien J.R. and Masenthin, H.W., "Radar Scatterometer data analysis techniques", A.A.5, p. 765, 1968.
- Moore, R.K., "Radar Scatterometry an active remote sensing tool", A.A.4, p. 339, 1966.
- NASA "Design Study Specifications for the Earth Resources Technology Satellite ERTS-A and B". S-701-P-3 Rev. B. January 1970.
- Noble, V.E., "Ocean swell measurements from satellite photographs", Remote Sensing of Environment, 1, 151, 1970.
- Nordberg, W., Conaway, J., and Thaddeux, P., "Microwave observations of sea state from an aircraft, NASA preprint X-620-68-414, 1968.
- Ollif, W.D. and Varney, P.A. "Simple aerial photography in coastal oceanography", CSIR Research Report 22, Pretoria, 1964.
- Olsen, W.S. and Adams, R.M., "A laser profilometer", J.G.R. <u>75</u>, 2185, 1970.
- Peterson, A.M., Teague, C.C., and Tyler, G.L. "Bistatic radar observation of long period directional ocean wave spectra with Loran A", Science 170, 158, 1970.
- Pickett, R.L., "An infrared technique for tracking the Gulf Stream", A.A.5, 549, 1968.
- Rao, P.K., Strong, A.E. and Koffler, R., "Gulf Stream meanders and eddies as seen in satellite infrared imagery", J. Phys. Oceano., <u>1</u>, 237, 1971.
- Ross, D.B., Cardone, V.J. and Conaway, J.W.Jr., "Laser and microwave observations of sea-surface condition for fetch-limited 17 to 25 meter/sec. winds", IEEE transactions on Geoscience Electronics GE-8, 326, 1970.
- Sabatini, "Nimbus 3 user's guide" Nimbus project, Goddard Space Flight Centre", Greenbelt, Md. 1969.
- Saunders, P.M. and Wilkins, C.H., "Precise airborne radiation thermometry" A.A.4, 815, 1966.
- Saunders, P.M., "The temperature of the ocean-air interface", J. Atmos. Sci., 24, 269, 1967.
- Saunders, P.M., "Aerial measurement of sea surface temperature in the infrared", J.G.R., 72, 4109, 1967.

- Saunders, P.M., "Radiance of sea and sky in the infrared window 800-1200 cm⁻¹", J. Opt. Soc. Amer. 58, 645, 1968.
- Saunders, P.M., "Corrections for airborne radiation thermometry", J.G.R. 75, 7596, 1970.
- Schule, J.J., Simpson, L.S. and De Leonibus, P.S., "A study of fetch-limited wave spectra with an airborne laser", J.G.R., 76, 4160, 1971.
- Shank, W.E., Salomonson, V.V., "A multispectral technique to determine sea surface temperature using Nimbus 2 data". Abstract for A.G.U. meeting 1970 published in EOS 51,763, 1970.
- Shand, J.A., "Internal waves in Georgia Strait", Transactions of Amer. Geophys. Union, 34, 849, 1953.
- Smith, W.L., Woolf, H.M. and Jacob, W.J., "A regression method for obtaining real time temperature and geopotential height profiles from satellite spectrometer measurements and its application to Nimbus 3 "SIRS" observations", Monthly Weather Review, 98, 582, 1970.
- Smith, W.L., Rao, P.K., Koffler, R. and Curtis, W.R., "The determination of sea surface temperature from satellite high resolution infrared window radiation measures", Monthly Weather Review, 98, 604, 1970.
- Sofaer, E., "Phase coherent backscatter of radio waves at the surface of the sea". Proc. I.E.E. (London) 105 B, 383, 1958.
- Stogryn, A., "The apparent temperature of the sea at microwave frequencies" Trans. IEEE, Antennae and Propagation, AP-15 (2), 278, March 1967.
- Strong, A.E. and Ruff, I.S., "Utilizing satellite observed solar reflections from the sea surface as an indicator of surface wind speeds", Remote Sensing of Environment, 1, 151, 1970.
- Swanson, L.W., "Aerial photography and photogrammetry in the coast and geodetic survey". Paper delivered at the Congress of the International Society of Photogrammetry, Lisbon 1964.
- Tomiyasu, K., "Short pulse wide band scatterometer ocean surface signature", IEEE Transactions on Geoscience Electronics GE-8, 175, 1970.
- Uberoi, M.S., "Optical measurements of spectra of two dimensional functions, Rev. Sci. Instr., 33 (3) 314, 1962.
- Valenzuela, G.R., Laing, M.B., Daley, J.C., "Ocean spectra for the high frequency water waves as determined from airborne radar measurements". J. Marine Research 29, 69, 1971.
- Vary, W.E., "New Colour film gives clear ocean bottom detail", Ocean Industry, 6 (4), 46, 1971.

- Vary, W.E., "Remote sensing by aerial photography for water depth penetration and ocean bottom detail", A.A.6, 1045, 1969.
- Vukovich, F.M., "Detailed sea surface temperature analysis utilizing Nimbus HRIR data", Monthly Weather Review 99, 812, 1971.
- Wait, J.R., "Theory of HF.ground wave backscatter from sea waves", J.G.R. 71, 4839, 1966.
- Warburton, F., and Caminiti, R., "The induced magnetic field of sea waves", J.G.R. 69, 4311, 1964.
- Warnecke, G., Allison, L.J., McMillin, L. and Szekielda, K.H., "Remote sensing of ocean currents and sea surface temperature changes derived from the Nimbus II satellite". J. Phys. Oceano. 1, 45, 1971.
- Williams, G.F., "Microwave radiometry of the ocean and the possibility of marine wind velocity determination from satellite observations", J.G.R. 74, 4591, 1969.
- Weaver, J.T., "Magnetic variations associated with ocean waves and swell", J.G.R. 70, 1921, 1965.
- Wright, J.W. and Keller, W.C., "Doppler spectra microwave scattering from wind waves", Physics of Fluids, 14, 466, 1971.
- Yaplee, B., Shapiro, A., Hammond, D.L., Au, B.D. and Uliana, E.A., "Nanosecond radar observations of the ocean surface from a stable platform". IEEE Trans. Geoscience Electronics GE-9, 170, 1971.
- Zaifzeff, E.M, Korb, C.L. and Wilson, C.L., "MSDS: an experimental 24 channel multispectral scanner system". IEEE Trans. Geoscience Electronics GE-9, 114, 1971.
- Zetler, B.D. and Maul, G.A., "Precision requirements for a spacecraft tide program". J.G.R. 76, 6601, 1971.
- Wilkerson, J.C., and Noble, V.E., "Time-space variations of the Gulf Stream as observed by airborne remote sensing techniques". A.A.6, 671, 1969.

© INFORMATION CANADA OTTAWA 1972

THE 'VANLENE' ACCIDENT

March 1972

A.B. Ages

Department of the Environment
Marine Sciences Branch
Pacific Region
512 Federal Bldg
Victoria, B.C.

Canada

1972

MARINE SCIENCES BRANCH

PACIFIC MARINE SCIENCES REPORT NO. 72-4

THE "VANLENE" ACCIDENT

MARCH 1972

BY

A.B. AGES

Victoria, B.C.
Marine Sciences Branch, Pacific Region
1972

m.v. "Vanlene" aground off Austin Island, March 1972

(courtesy "The Victorian Weekly")

INTRODUCTION

On Tuesday evening, March 14, 1972, the 8500 ton m.v. "Vanlene" ran aground off Austin Island in Barkley Sound (fig. 1), a rugged and isolated inlet on the southwest coast of Vancouver Island and part of the new Pacific Rim National Park.

The Panamanian freighter en route from Japan to Vancouver with a cargo of 300 cars, was heading for the entrance of the Juan de Fuca Strait when she found herself on the rocks in Barkley Sound, 20 nautical miles off course. In a press interview shortly afterwards, the captain revealed that ever since her departure from Japan, the ship had been operating without any navigational aids except a magnetic compass.

Exposed to southerly seas, the 20 year old "Vanlene" was holed that same night and had to be abandoned when the engine room flooded. At the time of her grounding, there were 400 tons (2666 barrels or 112,000 U.S. gallons) Bunker "B" fuel left in her bunkers and some of this fuel started to spill when the double bottom ruptured amidships. A persistent southeasterly wind of 25 mph moved the slick among the islands and on Thursday morning, less than 36 hours after the grounding, patches of oil were reported (1) as far as Forbes Island (fig. 2). Several ships arrived at the scene during the following days to assist in salvaging the vessel and in containing the oil spill.

CHRONICLE

It soon became apparent that despite the efforts to contain the oil, a significant portion of the ship's fuel was escaping from the wreck and threatened Barkley Sound's ecology.

To examine the behaviour of the oil in the sea and to help assess the extent of beach contamination, the Marine Sciences Branch recalled C.S.S. "Vector" from her work area in the Strait of Georgia and despatched her to Barkley Sound on Friday, March 17th. The Biological Station of the Fisheries Research Board at Nanaimo was advised of the "Vector's" cruise and two marine biologists, Dr. D. Quayle (intertidal invertebrae) and Mr. D. Outram (herring spawning) joined the vessel in Victoria.

The "Vector" arrived in Mayne Bay early Saturday morning. At dawn, two boats were launched and began working their way south towards the wreck, examining shores for signs of oil pollution. The "Vector" moved to the wreck site for a brief meeting with Mr. Larry Slaght, the Victoria District Manager of M.O.T., who was conducting salvage and oil containment operations from C.C.G.S. "Camsell".

After the rendezvous with "Camsell", the "Vector" continued her reconnaissance in the general area northwest of the wreck site, taking sea water samples at locations where oil had been reported.

Shore reconnaissance with small boats continued until darkness and was resumed at daybreak Sunday morning, covering the western and northwestern outer islands of the Broken Group.

After a second meeting with Mr. Slaght on CNAV "St. Anthony" (the "Camsell" left the wreck site Saturday afternoon), the "Vector" departed from Barkley Sound and returned to Victoria, Sunday evening, March 19.

The weather had been rather inclement throughout the operation; the winds were southerly at 15 mph, gusting to 35 mph in rain squalls. A moderate swell with an on-shore wind made boat landings on the western shore of Barkley Sound (the shoreline southwest of Forbes Island) too hazardous. Since the "Camsell's" helicopter had earlier reported a slick off this shore, which is one of the main herring spawning grounds in Barkley Sound, arrangements were made with the Fisheries Protection Officer o/b the "Comox Post" to visit this area at a later date.

The "Vector" under Captain C.E. Macaulay was ideally suited for this emergency. Her experienced crew and rugged boats enabled us to cover a large area in a very short time. There were no breakdowns or delays.

DISCUSSION

On the basis of some broad assumptions, we estimated the amount of oil drifting in the general area on the 18th and 19th of March to be about 500 barrels (17,500 Imp. gallons), and on the beaches 150 barrels (5200 Imp. gallons), see fig. 2.

The "broad assumptions" were as follows:

- (1) The oil in the immediate vicinity (one square cable) of the wreck had an average thickness of lmm, decreasing to 1/2mm in the channel north of Austin Island, over an area of 3 square cables. In laboratory experiments (2) the final thickness of oil films on water has been found to vary between 15 and 150 microns. This thickness increases considerably when the water contains surface active agents (also produced by the spreading oil itself) and consequently has a lower surface tension. Moreover, the oil in the immediate vicinity of the "Vanlene" was often trapped by an onshore wind and could not spread freely. Therefore, a layer thickness of lmm near the vessel and 0.5mm in the channel seemed a reasonable estimate.
- (2) The oil observed in the form of iridescent slicks had an average thickness of 2.5×10^{-5} cm over an area of about four square n.m. This assumption was derived from basic optical considerations: A thin film will create an interference pattern for a particular wave length of light about twice the thickness of the film. If visible light has a wave length of about 5×10^{-5} cm, we may expect to see colours when the thickness of the slick is about 2.5×10^{-5} cm (10^{-5} inches).
- (3) A total of 12 miles of beaches was covered with a one-foot wide band of oil at an average thickness of 1/2 cm. This estimate was derived from spot checks at various beaches (fig. 2). We concentrated our

attention on the more remote islands and beaches north and west of the wreck site. The site itself was being examined by a large group of Simon Fraser biology students operating from their Bamfield research station. This group was quoted by the press as having seen oil two feet thick in the area, a report which created apprehension among the public but which we were unable to confirm. We learned afterwards that it was based on observations of tidal pools on the eastern shore of Austin Island. (3) Since we did not closely examine the immediate vicinity of the wreck, our total estimate may be somewhat conservative.

Beach contamination is even more difficult to assess than oil on the sea since a moving sand beach might cover the oil. The "Vanlene's" 'Bunker B' oil, which turned from black to brown upon emulsification, was particularly hard to spot on sandy and log-covered beaches. 'Bunker C' fuel ("Arrow", "Irving Whale") is black and much more conspicuous, as a comparison between photographs in the "Arrow" and "Irving Whale" reports (4,5) and figures 6 and 7 of this report demonstrate. These photographs also show the almost negligible beach pollution caused by the "Vanlene" compared to that caused by the "Arrow" and "Irving Whale".

The "Vector" carried out a series of five oceanographic bottle casts to determine whether any oil had dispersed in the water column. One of the deficiencies of this procedure is that the bottles become contaminated by surface oil when lowered. We attempted to deal with this problem by lowering the bottles rapidly and agitating the bottles vigorously before sending the messengers down. To test the validity of this procedure, the first bottle went down to a depth well beyond the suspected maximum depth of contamination (about 40 meters). Had this deep sample contained any oil, the results of the analyses of the entire cast would obviously be doubtful.

The samples were inspected by the Biological Station at Nanaimo. No oil was found in any of the samples.

During our beach reconnaissance we counted six contaminated but otherwise quite mobile birds. Herds of seals did not show any sign of contamination. Preliminary inspection of various beaches by Dr. Quayle and Mr. Outram was reassuring. Barkley Sound is an important herring spawning ground with a peak spawning period around the middle of March. (6) Mr. Outram and Dr. Quayle will report their findings in a separate paper. The area will be re-examined at regular intervals during the next six months.

No detergents or chemicals were used to disperse the oil. Peat moss was kept on hand but not used.

A harbour boom of logs was initially employed but proved ineffective. A much more sophisticated boom of synthetic material arrived on Saturday (fig. 4). The boom, an improved version of the Bennet boom dispatched to the "Irving Whale" in 1970⁽⁷⁾ was supposed to corral the leaking oil to a more protected location where it could be collected by slicklickers. Local windshifts made this arrangement impractical; the boom was never severely tested and there was not enough oil to prove the merits of a slicklicker.

It is a relatively little known fact that an oil barrier only works at a certain minimum water depth and maximum current. These conditions can be expressed by a dimensionless parameter, the Froude number F:

We have
$$F = \frac{V}{\{(1-S.G.)gD\}^{\frac{1}{2}}}$$
, where

V = current in feet per second

S.G.= specific gravity of the oil
g = acceleration of gravity in

ft/sec

D = depth of channel in feet

This formula is an approximation of

$$F = \frac{V}{\left(\frac{\Delta \rho}{\rho} g D\right)^{\frac{1}{2}}}$$

where $\Delta \rho$ = oil-water density difference in slugs/ft³ and ρ = density of the water in slugs/ft³.

Experiments at the hydraulic laboratory of the National Research Council at Ottawa (8) showed that the oil is swept underneath the boom when F exceeds 0.4, no matter how deep the oil boom is, or even if the boom is inclined to the flow. For instance, in certain shallow locations near the "Vanlene", at depths less than ten feet, the oil would be swept underneath by a current of 1.5 knots (assuming that the oil's API gravity was 28, or its S.G. = 0.89).

RECOMMENDATIONS

Our method of collecting subsurface water samples to detect oil in particulate form was unsatisfactory. We must find a way to collect samples which are not contaminated by oil droplets nearer the sea surface. We were aware of this problem and, with the co-operation of a local paint manufacturer, tested oil-repellent coatings which would prevent the oil on or beneath the sea surface from sticking to the sampler. We have not yet found a satisfactory coating. We are still looking at other methods and hope to arrive at a better solution within the next few months.

Unfortunately, we did not have a Clarke Bumpus sampling net as was successfully used by F. Barber and W. Forrester after the grounding of the "Arrow" (9). However, this sampler has some disadvantages in that it may also become contaminated on its way down to the required depth, even with its door closed. It does not take an in situ sample either and the minimum particle size is restricted by the mesh diameter.

Apart from improving our sampling method, we should look into a better laboratory procedure. Our Branch has no facilities for the determination of the oil particle size. The Biological Station at Nanaimo helped us out, but a more formal arrangement in future more serious emergencies is advisable. This remark may well apply to all other phases of the operation. A great deal of confusion still seems to exist regarding the responsibilities of various scientific and technical groups in the event of an oil spill. The number of vessels and the amount of equipment and manpower sent to the area by government agencies, private companies and volunteer groups were excessive. It was a good exercise for all of us, but a clearer definition of the responsibilities of these groups is needed to effectively cope with a future emergency.

It is also regrettable that our volunteer organizations have not yet been given much guidance and instruction.

CONCLUSION

On the 15th of February, 1923, the British freighter "Tuscan Prince" was wrecked at Austin Island in almost exactly the same position as that of the "Vanlene". (10) The "Tuscan Prince" was en route from San Francisco to Seattle and her estimated position was well south of Cape Flattery, near the position originally given by the "Vanlene's" captain in her distress call. Both ships were at least 40 miles north of their deadreckoning positions.

They might have been caught in the Davidson current, a variable current, which, under certain conditions, flows north along the Washington coast. (11,12) Combining with a southeast gale and an ebb tide from the Strait of Juan de Fuca, this current can create a considerable northwesterly set as was demonstrated by the disabled American steamer "Nika" during the same storm which grounded the "Tuscan Prince". The burning "Nika" drifted from Cape Flattery to the reefs of Barkley Sound at an average speed of 2 1/2 knots.

Although of minor impact to the ecology, these accidents underline the risk of a tanker route from Valdez to Cherry Point.

Assuming a producing rate of 1,200,000 bbls. per day through the Trans-Alaska Pipeline System, and a tanker size of 120,000 DWT, the Puget Sound demand would amount to 0.22 ships per day. In other words, one tanker loaded with 120,000 tons or 28 million gallons of crude Alaskan oil would enter the Juan de Fuca Strait every five days. Although these vessels would sail under American flag and consequently be maintained under rigid inspection, there will always be the possibility of an accident. Regardless of their established routes well out from the coast of Vancouver Island, they must somewhere enter the Juan de Fuca Strait and this area may be the most vulnerable part of the route, perhaps of the entire operation. An engine

breakdown off Cape Flattery in a northerly set such as experienced by the "Tuscan Prince" and several others could conceivably cause the ship to drift towards the shore near Carmanah Point in four hours, well before the arrival of tug boats or rescue vessels.

The "Vanlene", nearing the end of her voyage, had only 400 tons of fuel left in her bunkers. About 300 tons were spilled and in spite of a great deal of effort and modern equipment, none of the 300 tons spilled was either contained or salvaged.

The supertankers entering the Juan de Fuca Strait would not carry 400 tons, but 120,000 tons of oil.

When witnessing the frustration involved in attempting to control a few hundred tons of oil, one cannot help but have misgivings about the containment of a spilled cargo of a supertanker.

REFERENCES

- Personal communication with Mr. Kasmer, Fisheries Protection Officer o/b "Comox Post".
- 2. "Spreading and evaporation of petroleum products on water", by Dr. P. Blokker, Koninklyke Shell, Amsterdam.
- 3. Personal communication with Dr. William Austin, Simon Fraser University.
- 4. "Report of the Task Force Operation Oil", Atlantic Oceanographic Laboratory, 1970.
- 5. "Oil reconnaissance in the Magdalen Islands", A. Ages, Atlantic Oceanographic Laboratory, 1971.
- 6. "The Time and extent of Herring Spawning along the British Columbia Coast in 1969", by D. Outram and C. Haegele, Biological Station of the Fisheries Research Board, Nanaimo, B.C.
- 7. "Spilled Oil Behaviour; some aspects of forecasting", F.G. Barber,
 Marine Sciences Branch, Dept. of Environment, Ottawa, November 1970.
- 8. "Containment of oil slicks in the St. Lawrence River", by D. Wilkinson, Div. of Mechanical Engineering, National Research Council, Ottawa.
- 9. "Distribution of suspended oil particles following the grounding of the tanker 'Arrow'", W.D. Forrester, Atlantic Oceanographic Laboratory, 1970.
- 10. "Victoria Times" and "Colonist", 15 February 1923.

- 11. "The Oceans", H. Sverdrup, M. Johnson, R.H. Fleming.
- 12. "Drift bottle observations of the Davidson Current off Oregon", W.V. Burt and B. Wyatt, University of Washington Press.

FIG. 3 THE "VANLENE", THREE DAYS AFTER HER GROUNDING

FIG. 4 THE OIL SLICK

FIG. 5 THE "BENNETT" BOOM WITH CNAV "ST. ANTHONY", MARCH 18th, 1972

FIG. 6 SLICKLICKER AND "BENNETT"

BOOM AWAITING IMPROVED WEATHER

CONDITIONS, MARCH 18th, 1972

FIG. 7 BEACH POLLUTION: CONTAMINATED ROCK

FIG. 8 BEACH POLLUTION: CONTAMINATED SAND

© INFORMATION CANADA OTTAWA 1973

