Exercises(7) April 2, 2024

1. Let $G: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$G(x,y) = \begin{cases} (x^2 + y^2) \sin 1/(x^2 + y^2) & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Show that G is differentiable at every point of \mathbb{R}^2 but the partial derivatives $\frac{\partial G}{\partial x_1}$ and $\frac{\partial G}{\partial x_2}$ are not bounded (and hence not continuous) on a neighborhood of (0,0).

2. Let $G: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$F(x,y) = \begin{cases} x^2 + y^2 & \text{if both x, y are rational,} \\ 0 & \text{otherwise .} \end{cases}$$

Show that F is differentiable at the point (0,0).

3. Show that every continuous real-valued function f on $[0, \pi]$ is the uniform limit of a sequence of functions of the form

$$x \rightarrow a_0 + a_1 \cos x + a_2 \cos 2x + \dots + a_n \cos nx$$
.

4. Use Exercise 3 to show that every continuous real-valued function f on $[0,\pi]$ with $f(0)=f(\pi)$ is the uniform limit of a sequence of functions of the form

$$x \rightarrow b_0 + b_1 \sin x + b_2 \sin 2x + \dots + b_n \sin nx$$
.

(Hint: If $f(0) = f(\pi) = 0$, first approximate f by a function g vanishing on some intervals $[0, \delta]$ and $[\pi - \delta, \pi]$. Then consider $h(x) = g(x)/\sin x$ for $x \in (0, \pi)$, h(x) = 0 for $x = 0, \pi$.)