Blackboard will return to service at 6 am EST.

Blackboard is unavailable every weekday (Monday to Friday) from 5 am to 6 am EST for regular maintenance.

At 6 am you can reload this page to access Blackboard.

DISCRETE SYSTEMS

STAR	CONTINUOUS	DISCRETE
TEMPERATURE	CONTINUOUS	DISCRETE
ELECTRON	CONTINUOUS	DISCRETE
TIME	CONTINUOUS	DISCRETE
WEIGHT	CONTINUOUS	DISCRETE
SPEED	CONTINUOUS	DISCRETE
STUDENT	CONTINUOUS	DISCRETE
SOUND	CONTINUOUS	DISCRETE
IMAGE	CONTINUOUS	DISCRETE
PAIN	CONTINUOUS	DISCRETE
LIGHT	CONTINUOUS	DISCRETE
WAVE	CONTINUOUS	DISCRETE

STAR		DISCRETE
TEMPERATURE	CONTINUOUS	
ELECTRON		DISCRETE
TIME	CONTINUOUS	
WEIGHT	CONTINUOUS	
SPEED	CONTINUOUS	
STUDENT		DISCRETE
SOUND	CONTINUOUS	
IMAGE	CONTINUOUS	DISCRETE
PAIN	CONTINUOUS	DISCRETE
LIGHT	CONTINUOUS	DISCRETE
WAVE	CONTINUOUS	

Burgundy. As heliography produces one-of-a-kind images, there are no duplicates of the piece, which is now part of the permanent collection at the University of Texas-Austin." 18 Famous First Photographs in History: From the Oldest Photo Ever to the World's First Instagram

Quantization

IIIIIIIVVVIVIIVIIIXX

Roman Numerals
Originated in Ancient Rome
8th Century BC

UNARY SYSTEM aka. Base-1

how many positions to represent the moon's distance to the sun if an Oracle said it is ~150 million km and earth's diameter is ~13,000 km?

~150 million km \div ~13,000 km = ~12,000 Earth paper = ~3,000 positions 12,000 \div 3,000 = 4 pages!

NUMBER SYSTEMS

0123456789

Hossein's Number System

More Position	0	(1-1)=0
	1	1+(1-1)=1
	2	2+(1-1)=2
	3	3+(1-1)=3
	3 0	3+0+(2-1)=4
	3 1	3+1+(2-1)=5
	3 2	3+2+(2-1)=6
	3 3	3+3+(2-1)=7
	3 3 0	3+3+(3-1)=8

		3	0	3	0	2	1	3	1	?
					3	\Im	3	3	1	?
				3	3	3	3	3	2	?
		3	0	0	3	3	3	3	0	?
3	3	3	3	3	3	γ	3	3	3	?

		3	0	\cap	0	2	1	3	1	1
					3	3	3	3	1	
				3	3	3	3	3	2	?
		3	0	0	3	3	3	3	0	?
3	3	3	3	3	3	3	3	3	3	?

		3	0	3	0	2	1	3	1	_	
					3	3	3	3	1		3*4+1+(5-1)
				3	3	3	3	3	2	?	
		3	0	0	3	3	3	3	0	?	
3	3	3	3	3	3	3	3	3	3	?	

		3	0	3	0	2	1	3	1	_
					3	3	3	3	1	17
				3	3	3	3	3	2	22
		3	0	0	3	3	3	3	0	-
3	3	3	3	3	3	\cap	3	3	3	39

$$3+3+3+\cdots+3+(n-1) = 3\times n + (n-1)=4n-1$$

n positions

3 3 ... 3 4n+1

$$Max = 4n-1$$

$$n=10 \Rightarrow (4\times10)-1 = 39$$

10 positions

					IVIdX
3	3	• •	3	3	39

$$Max = N = 4n-1$$

$$N+1 = 4n$$

$$(N+1) \div 4 = n$$

? positions

3 3 ... 3 N

how many positions to represent the moon's distance to the sun in Hossein's system if an Oracle said it is ~150 million km and earth's diameter is ~13,000 km?

~150 million km \div ~13,000 km = ~12,000 Earth N = 12,000 n = (N+1) \div 4 = (12,000+1) \div 4 = ~3,000 positions paper = ~3,000 positions 3,000 \div 3,000 = 1 pages

More Position		0	0
		1	1
		2	2
		3	3
1 rounds of all (4) symbols: 1 × 4	3	0	4
	3	1	5
	3	2	6
	3	3	7
2 rounds of all (4) symbols: 2 × 4	3 3	0	8

2 rounds of all (4) symbols = 2×4^{1}

2 rounds of all (4) symbols = 2×4^{1}	2	0
	2	1
	2	2
4 ¹ More Signific	ant 2	3
3 rounds of all (4) symbols = 3×4^{1}	3	0
	3	1
	3	2
	3	3
	?	?

QUATERNARY SYSTEM aka. Base-4, Radix-4

 $(0,1,2,3)_4$

Hindu-Arabic Numerals
Originated in India
7th Century AD

40	
0	$0 \times 4^{0} = 0$
1	$1 \times 4^{0} = 1$
2	$2 \times 4^0 = 2$
3	$3 \times 4^0 = 3$

#Symbols=4 Radix-4 Base-4

	4^{0}	41
$0 \times 4^{0} = 0$	0	
$1 \times 4^0 = 1$	1	
$2 \times 4^0 = 2$	2	
$3 \times 4^0 = 3$	3	
$1 \times 4^1 + 0 \times 4^0 = 4$	0	1
$1 \times 4^1 + 1 \times 4^0 = 5$	1	1
$1 \times 4^1 + 2 \times 4^0 = 6$	2	1
$1 \times 4^1 + 3 \times 4^0 = 7$	3	1
$2 \times 4^1 + 0 \times 4^0 = 8$	0	2

#Symbols=4 Radix-4 Base-4

42	41	40	
	2	0	$2 \times 4^1 + 0 \times 4^0 = 8$
	2	1	$2 \times 4^1 + 1 \times 4^0 = 9$
	2	2	$2 \times 4^{1} + 2 \times 4^{0} = 10$
	2	3	$2 \times 4^{1} + 3 \times 4^{0} = 11$
	3	0	$3 \times 4^{1} + 0 \times 4^{0} = 12$
	3	1	$3 \times 4^{1} + 1 \times 4^{0} = 13$
	3	2	$3 \times 4^{1} + 2 \times 4^{0} = 14$
	3	3	$3 \times 4^{1} + 3 \times 4^{0} = 15$
1	0	0	$1 \times 4^2 + 0 \times 4^1 + 0 \times 4^0 = 16$

#Symbols=4

Radix-4

Base-4

	4 ⁰	4'	44	
$2 \times 4^{1} + 0 \times 4^{0} = 8$	0	2		
$2 \times 4^{1} + 1 \times 4^{0} = 9$	1	2		
$2 \times 4^{1} + 2 \times 4^{0} = 10$	2	2		
$2 \times 4^{1} + 3 \times 4^{0} = 1$	3	2		
$3 \times 4^{1} + 0 \times 4^{0} = 1$	0	3		
$3 \times 4^{1} + 1 \times 4^{0} = 1$	1	3		
$3 \times 4^{1} + 2 \times 4^{0} = 1$	2	3		
$3 \times 4^{1} + 3 \times 4^{0} = 1$	3	3		
$1 \times 4^2 + 0 \times 4^1 + 0 \times 4^0 = 1$	0	0	1	

		3	0	3	0	2	1	3	1	?.
						$ \bigcirc $	3	3	1	~ ·
				3	3	3	3	3	2	
		3	0	0	3	3	3	3	0	
3	3	3	3	3	3	3	3	3	3	?

		3	0	\cap	0	2	1	3		?
					3	3	3	3		?
				3	3	3	3	3	2	
		3	0		3	3	3	3	0	
3	3	3	3	3	3	3	3	3	3	

47	46	4 ⁵	44	43	42	41	40
3	0	3	0	2	1	3	1

47	46	45	44	43	42	41	40	X
3	0	3	0	2	1	3	1	
3×4^7	0×4^6	3×4^5	0×4^4	2×4^3	1×4^2	3×4^{1}	1×4 ⁰	

47	46	4 ⁵	44	43	42	41	40	X
3	0	3	0	2	1	3	1	
3×4^7	0×4 ⁶	3×4^5	0×4^4	2×4^3	1×4^2	3×4^{1}	1×4 ⁰	\sum

65,437

		3	0	3	0	2	1	3	1	65,437
					3	3	3	3	1	?
				3	3	3	3	3	2	?
		3	0	0	3	3	3	3	0	
3	3	3	3	3	3	3	3	3	3	?

		3	0	3	0	2	1	3	1	65,437
					3	3	3	3	1	1,021
				3	3	3	3	3	2	?
		3	0	0	3	3	3	3	0	
3	3	3	3	3	3	3	3	3	3	?

		3	0	3	0	2	1	3	1	65,437
						3	3	3	1	1,021
				3	3	3	3	3	2	4,094
		3	0	0	3	3	3	3	0	50,172
3	3	3	3	3	3	3	3	3	3	1,048,575

										Base-4	Hossein's Number System
		3	0	3	0	2	1	3	<u> </u>	65,437	_
					\cap	\cap	3	3	\	1,021	17
				\cap	\cap	\cap	3	3	2	4,094	22
		3	0	0	3	3	3	3	0	50,172	_
3	3	3	3	3	3	3	3	3	3	1,048,575	39

$$N = 3 \times 4^{n-1} + 3 \times 4^{n-2} + \dots + 3 \times 4^2 + 3 \times 4^1 + 3 \times 4^0$$

$$N = 3 \times (4^{n-1} + 4^{n-2} + \dots + 4^2 + 4^1 + 4^0)$$

$$N = 3 \times \left(\frac{4^n - 1}{4 - 1}\right)$$

$$N = 4^n - 1$$

4n − 1 Hossein's System

n positions

Max

4n-1	4n-2		42	41	40	
3	3	• • •	ω	ω	ω	Z

$$n = 10 \Rightarrow 4^{10} - 1 = 1,048,575$$

10 positions

3 3 ... 3 ?

$$4^{n} - 1 = N$$
 $4^{n} = N + 1$
 $\log_{4} 4^{n} = \log(N + 1)$
 $n = \log_{4}(N + 1)$

? positions

3 3 ... 3 N

how many positions to represent the moon's distance to the sun in Base-4 system if an Oracle said it is ~150 million km and earth's diameter is ~13,000 km?

~150 million km \div ~13,000 km = ~12,000 Earth N = 12,000 n = Log₄ (12,000+1) = Log₁₀ 12,001 \div Log₁₀ 4 = 4 \div 0.6 = 6.79 ~ 7 positions

$$N = 12,000 \rightarrow (2323200)_4$$

We'll see how to convert from decimal to base-4 or any other number systems later. Stay tuned!

