第 11 章 e: 对坐标的曲面积分

数学系 梁卓滨

2017.07 暑期班

定向曲面

定义

- 一个曲面称为可定向,是指该曲面在整体上的具有两侧。
- 指定可定向曲面的定向是指: 指定一侧为正侧, 另一侧为负侧。
- 指定了定向的可定向曲面, 称为定向曲面。

例

- 球面可定向,有内、外侧之分。 两种定向:
 - 以外侧为正向的定向球面
 - 以内侧为正向的定向球面
- 二元函数图形可定向,有上、下侧之分。 两种定向:
 - 以上侧为正向的定向函数图形
 - 以下侧为正向的定向函数图形

例 不可定向的曲面: 莫比乌斯曲面

制作方法 将纸带旋转半周,再把两端粘合(如图,使得两端箭头重合) 注 如无特殊说明,下面出现的曲面都是可定向的曲面

定向与单位法向量场

- 曲面上任一点,有两个单位法向量(方向相反),分别指向两侧。
- 给曲面定向,等价于指定其中一个单位法向量场 $\overrightarrow{n}(x,y,z)$

单位法向量场的计算

• 设曲面方程为 F(x, y, z) = 0, 则两个单位法向量场为:

$$\frac{1}{|\nabla F|}\nabla F \quad \leftrightarrows \quad -\frac{1}{|\nabla F|}\nabla F.$$

例 写出球面 $x^2 + y^2 + z^2 = R^2$ 的两个单位法向量场,并指出哪一个指

向外侧,哪个指向内侧?

解 令
$$F(x, y, z) = x^2 + y^2 + z^2 - R^2$$
,则球面方程改写为 $F = 0$ 。计算
$$\nabla F = (2x, 2y, 2z), \qquad |\nabla F| = 2\sqrt{x^2 + y^2 + z^2} = 2R$$

所以两个单位法向量场为

$$\frac{1}{|\nabla F|}\nabla F = \frac{1}{R}(x, y, z), \qquad -\frac{1}{|\nabla F|}\nabla F = -\frac{1}{R}(x, y, z)$$

前一个指向外侧,后一个指向内侧。

例 写出二元函数 z = f(x, y) 图 形的两个单位法向量场,并指出哪一个指向上侧,哪个指向下侧?

 $\mathbf{m} \Leftrightarrow F(x, y, z) = z - f(x, y)$,则该图形方程改写为 F = 0。计算

$$\nabla F = (-f_x, -f_y, 1), \qquad |\nabla F| = \sqrt{1 + f_x^2 + f_y^2}$$

所以两个单位法向量场为

$$\frac{1}{|\nabla F|}\nabla F = \frac{1}{\sqrt{1+f_{\nu}^2+f_{\nu}^2}}(-f_{x}, -f_{y}, 1), \quad -\frac{1}{|\nabla F|}\nabla F = \frac{1}{\sqrt{1+f_{\nu}^2+f_{\nu}^2}}(f_{x}, f_{y}, -1)$$

前一个指向上侧,后一个指向下侧。

例 求抛物面 $z = \frac{1}{2}(x^2 + y^2)$ 指向外侧的单位法向量场。

解 该单位法向量场应取为

$$\overrightarrow{n} = \frac{1}{\sqrt{1 + z_x^2 + z_y^2}} (z_x, z_y, -1) = \frac{1}{\sqrt{1 + x^2 + y^2}} (x, y, -1)$$

空间中向量场

设 P(x, y, z), Q(x, y, z), R(x, y, z) 是三元函数,则

$$V = (P, Q, R)$$

构成空间 3 维向量场, 如图:

物理应用:向量场 V = (P, Q, R) 可表示流体在任一点处的速度

物理应用 流体 V = (P, Q, R) 在单位时间内流过曲面 Σ 一侧(单位法向量 \overrightarrow{n} 所指向的一侧)的流量是:

向量场在定向曲面的曲面积分

定义 假设

- V = (P, Q, R) 是空间某区域上的向量场;
- Σ 是定向曲面, \overrightarrow{n} 是 Σ 上指定的单位法向量场;则称

$$\iint_{\Sigma} V \cdot \overrightarrow{n} \, dS$$

为向量场 V 在定向曲面 Σ 上的曲面积分。 令 $\overrightarrow{dS} = \overrightarrow{n} dS$,则记作

$$\iint_{\Sigma} V \cdot d\overrightarrow{S}$$

也记作

$$\iint_{\Sigma} Pdydz + Qdzdx + Rdxdy$$

(此时也称为对坐标的曲面积分,或第二类曲面积分)

性质 设 Σ 是定向曲面, Σ ⁻ 表示与取 Σ 相反侧的有向曲面,则

$$\iint_{\Sigma^{-}} Pdydz + Qdzdx + Rdxdy = -\iint_{\Sigma} Pdydz + Qdzdx + Rdxdy$$

物理解释 流过负侧的流量 = - 流过正侧的流量

证明 设 \overrightarrow{n} 是与 Σ 定向相符的单位法向量场,则 $-\overrightarrow{n}$ 是与 Σ^- 定向相符的单位法向量场。

令
$$V = (P, Q, R)$$
。则
$$\iint_{\Sigma^{-}} P dy dz + Q dz dx + R dx dy = \iint_{\Sigma} V \cdot (-\overrightarrow{n}) dS$$

$$= -\iint_{\Sigma} V \cdot \overrightarrow{n} dS$$

$$= -\iint_{\Sigma} P dy dz + Q dz dx + R dx dy$$

$$\stackrel{\triangle}{\square} \frac{P}{\partial x} dx + \frac{P}{\nabla x} dx dx$$

第 11 章 e: 对坐标的曲面积分

12/17 ⊲ ⊳ ∆ ⊽

例 计算 $\iint_{\Sigma} xyzdxdy$,其中定向曲面 Σ 如图:

$$x^{2} + y^{2} = 1$$

$$0 \qquad 1 \qquad x$$

原式 =
$$\iint_{\Sigma} V \cdot \overrightarrow{n} dS \xrightarrow{V = (0, 0, xyz)} \iint_{\Sigma} xyz^2 dS = 2 \iint_{\Sigma_{\pm}} xyz^2 dS$$
$$= \iint_{\Sigma} xy(1 - x^2 - y^2) \cdot \sqrt{1 + z_x^2 + z_y^2} dxdy$$

$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D_{xy}} \rho^2 \sin \theta \cos \theta \cdot \sqrt{1 - \rho^2} \cdot \rho d\rho d\theta$$
$$= 2 \int_0^{\frac{\pi}{2}} \left[\int_0^1 \sin \theta \cos \theta \rho^3 \sqrt{1 - \rho^2} d\rho \right] d\theta$$

 $= \iint_{D} xy(1-x^2-y^2) \cdot \sqrt{1+z_x^2+z_y^2} dxdy$

 $=2\iint_{\Omega}xy\sqrt{1-x^2-y^2}dxdy$

 $= \int_{0}^{\frac{\pi}{2}} \sin(2\theta) d\theta \cdot \int_{0}^{1} \rho^{2} \sqrt{1 - \rho^{2}} \cdot \rho d\rho$

 $\frac{u = \sqrt{1 - \rho^2}}{1 + \rho^2} \cdot 1 \cdot \int_{1}^{0} (1 - u^2) u \cdot (-u du) = \frac{2}{15}$

原式 = $\iint_{\Sigma} V \cdot \overrightarrow{n} dS \xrightarrow{V = (0, 0, xyz)} \iint_{\Sigma} xyz^2 dS = 2 \iint_{\Sigma} xyz^2 dS$

例 计算 $\int_{-\infty}^{\infty} (z^2 + x) dy dz - z dx dy$ 其中定向曲面 $\Sigma = \Sigma_1 \cup \Sigma_2$ 是三维 区域的边界,如图:

式 =
$$\iint_{\Sigma} V \cdot \overrightarrow{n} dS = \iint_{\Sigma_1} V$$

原式 = $\iint_{\Sigma} V \cdot \overrightarrow{n} dS = \iint_{\Sigma} V \cdot \overrightarrow{n} dS + \iint_{\Sigma} V \cdot \overrightarrow{n} dS$, $\iint_{\Sigma_1} V \cdot \overrightarrow{n} \, dS \xrightarrow{V = (z^2 + x, \, 0, \, -z)} \iint_{\Sigma_2} -z \, dS = \iint_{\Sigma} -2 \, dS = -2 |\Sigma_1| = -8\pi,$

 $\Sigma_1 : z = 2$

$$\iint_{\Sigma_1} V \cdot \vec{n} \, dS$$
$$\iint V \cdot \vec{n} \, dS$$

 $\iint_{\Sigma_2} V \cdot \overrightarrow{n} \, dS \xrightarrow{V = (z^2 + x, \, 0, \, -z)} \iint_{D_{xy}} \frac{(z^2 + x)x + z}{\sqrt{1 + x^2 + y^2}} \cdot \sqrt{1 + z_x^2 + z_y^2} dx dy$

 $= \iint_{D} (z^2 + x)x + z dx dy \xrightarrow{\text{white}} \iint_{D} x^2 + z dx dy = \cdots$

$$\begin{aligned}
\vec{n} &= \frac{(x,y-1)}{\sqrt{1+x^2+y^2}} \quad J J_{D_{xy}} \sqrt{1+x^2+y^2} \\
&= \iint_{D} (z^2+x)x + z dx dy \xrightarrow{\text{sym}} \iint_{D} x^2 + z dx dy
\end{aligned}$$

 $\frac{z = \frac{1}{2}(x^2 + y^2)}{2} \frac{1}{2} \iint_{D} 3x^2 + y^2 dx dy \xrightarrow{\text{symbol}} 2 \iint_{D} x^2 dx dy$

 $\iint_{\Sigma_{1}} V \cdot \overrightarrow{n} dS \xrightarrow{V = (z^{2} + x, 0, -z)} \iint_{\Sigma_{1}} -z dS \iint_{\Sigma_{1}} -2 dS = -2|\Sigma_{1}| = -8\pi,$ $\iint_{\Sigma_{2}} V \cdot \overrightarrow{n} dS \xrightarrow{V = (z^{2} + x, 0, -z)} \iint_{D_{xy}} \frac{(z^{2} + x)x + z}{\sqrt{1 + x^{2} + y^{2}}} \cdot \sqrt{1 + z_{x}^{2} + z_{y}^{2}} dx dy$

原式 = $\iint_{\Sigma} V \cdot \overrightarrow{n} dS = \iint_{\Sigma} V \cdot \overrightarrow{n} dS + \iint_{\Sigma} V \cdot \overrightarrow{n} dS$,

 $\frac{\text{対称性}}{\prod_{D_{xy}}} \iint_{D_{xy}} x^2 + y^2 dx dy = \int_0^{2\pi} \left[\int_0^2 \rho^2 \cdot \rho d\rho \right] d\theta = 8\pi$ 原式 = $-8\pi + 8\pi = 0$

例 设 Σ 是二元函数 z = z(x, y), $(x, y) \in D_{xy}$ 的图形,取朝上的单位

法向量。则

$$\iint_{\Sigma} R(x, y, z) dx dy = \iint_{D_{XY}} R(x, y, z(x, y)) dx dy.$$

证明 这是:

$$\iint_{\Sigma} R(x, y, z) dx dy = \iint_{\Sigma} V \cdot \overrightarrow{n} dS$$

$$\frac{V = (0, 0, R)}{\overrightarrow{n} = \frac{1}{\sqrt{1 + z_{x}^{2} + z_{y}^{2}}} (-z_{x}, -z_{y}, 1)} \iint_{\Sigma} R(x, y, z) \cdot \frac{1}{\sqrt{1 + z_{x}^{2} + z_{y}^{2}}} dS$$

$$= \iint_{D_{xy}} R(x, y, z(x, y)) \cdot \frac{1}{\sqrt{1 + z_{x}^{2} + z_{y}^{2}}} \cdot \sqrt{1 + z_{x}^{2} + z_{y}^{2}} dx dy$$

 $= \iint_{\mathbb{R}} R(x, y, z(x, y)) dx dy$