SFWRENG 6003 Final Report: Combinatorial optimization formulations with applications to theoretical physics

William Luders 001403581

21 December 2018

1 Introduction

Consider the following combinatorial structure: for a given integer d, let R_d be the set of all non-zero $\{0,1\}^d$ vectors. By excluding the $\{0\}^d$ vector we get $|R_d| = 2^d - 1$ such vectors. Let S_d be the set of possible $\{0,1\}$ vector sub-sums of R_d . There are $|S_d| = 2^{|R_d|} = 2^{2^d-1}$ such sub-sums. We will study the convex hull of S_d , specifically considering the number of vertices of the convex hull. Let H_d represent the subset of S_d whose members are vertices of the convex hull of S_d . Let $a(d) = |H_d|$ represent the number of vertices of the described d-dimensional hull.

The sequence a(d) is described in the OEIS with its relevance to quantum field theory [1].

1.1 Example

For d = 2, we have $|R_2| = 2^2 - 1 = 3$. These vectors are: $R_2 = \{\{0, 1\}, \{1, 0\}, \{1, 1\}\}$. We have $|S_2| = 2^3 = 8$. These points are:

$$0 \times \{0,1\} + 0 \times \{1,0\} + 0 \times \{1,1\} = \{0,0\}$$

$$0 \times \{0,1\} + 0 \times \{1,0\} + 1 \times \{1,1\} = \{1,1\}$$

$$0 \times \{0,1\} + 1 \times \{1,0\} + 0 \times \{1,1\} = \{1,0\}$$

$$0 \times \{0,1\} + 1 \times \{1,0\} + 1 \times \{1,1\} = \{2,1\}$$

$$1 \times \{0,1\} + 0 \times \{1,0\} + 0 \times \{1,1\} = \{0,1\}$$

$$1 \times \{0,1\} + 0 \times \{1,0\} + 1 \times \{1,1\} = \{1,2\}$$

$$1 \times \{0,1\} + 1 \times \{1,0\} + 0 \times \{1,1\} = \{1,1\}$$

$$1 \times \{0,1\} + 1 \times \{1,0\} + 1 \times \{1,1\} = \{2,2\}$$

 $\{1,1\}$ occurs twice in S_2 . By plotting the convex hull of S_2 in figure 1, we can see that $\{1,1\}$ is not a member of H_d , but all other points are. Therefore $a(2) = |H_2| = |S_2| - 2 = 6$, and we can equivalently visually verify there are 6 vertices of S_2 .

Figure 1: Cartesian Representation of S_2

Any member of S that can be generated uniquely in the fashion described above is a vertex. The converse is also true. We can use these facts to determine vertices of S by generating S and finding its members that occur only once.

The vertices for d = 2 are $\{0, 0\}, \{0, 1\}, \{1, 0\}, \{1, 2\}, \{2, 1\}$ and $\{2, 2\}$. There are only 2 vertices we care about: $\{0, 0\}$ and $\{0, 1\}$. All others can be

deduced from permutation and symmetry arguments. $\{1,0\}$ is a permutation of $\{0,1\}$. Symmetrical vertices (the latter three) are obtained by subtracting known vertices from $\{2,2\}$. In any d, symmetrical vertices are obtained by subtracting known vertices from $\{2^{d-1}\}^d$. Considering only the number of vertices whose coordinates average to 2^{d-2} or less, and multiplying by 2 accounts for all symmetric vertices.

2 Calculation

Let \mathbf{R} be the a $d \times (2^d - 1)$ matrix in which each row contains a unique non-zero $\{0,1\}^d$ vector. Let \mathbf{W} be a $(2^{2^d-1}) \times (2^d - 1)$ 'weight' matrix in which each row contains a unique $\{0,1\}^{2^d-1}$. Let $\mathbf{S} = \mathbf{W}\mathbf{R}$. Each row of \mathbf{S} will contain a member of S_d . Unique rows are vertices of the convex hull of S_d .

This method is prohibitive for d > 4 due to memory constraints. Smarter methods can be used; since \mathbf{R} and \mathbf{W} contain only 0 and 1, once can perform bitwise operations on bit arrays or integers and iterate through them rather than storing them as a matrix. Since \mathbf{S} will contain duplicates, it would be a better use of memory to store members of S in a dictionary, with the key being the member and its value being the count.

Calculation of vertices for d=3 and d=4 were done with the above primary described method with a Matlab program. Figures 1 and 2 were generated with Matlab also.

3 Permutation and Symmetry

Representing H_3 in Cartesian space further displays the arguments of permutation and symmetry (See figure 2).

It is noted that all 6 vertices from d=2 exist as vertices with a prepended 0 for d=3, such as $\{0,1,2\}$ and $\{0,2,2\}$. Their permutations (e.g. $\{2,0,1\}$) and symmetries (e.g. $\{4,4,4\}-\{0,1,2\}=\{4,3,2\}$) are also vertices. Thus $\{0,1,2\}$ has 6 permutations and contributes a total of 12 vertices to a(d) by symmetry. However, one new vertex exists: $\{1,1,3\}$. Identification of these vertices becomes particularly challenging as d grows.

Permutations and symmetry provide an easy way to calculate a(d). Provided

Figure 2: Cartesian Representation of \mathcal{S}_3

a comprehensive list of unpermuted vertices, a(3) can be calculated as seen in Table 1.

Unpermuted Vertex	Total Vertices
$\overline{\{0,0,0\}}$	2
$\{0, 0, 1\}$	6
$\{0, 1, 2\}$	12
$\{0, 2, 2\}$	6
$\{1, 1, 3\}$	6
Sum:	32

Table 1: Count of vertices of H_3 by permutation and symmetry

4 Representation for arbitrary d

Visualising H_d is obviously prohibitive for d > 3. However, any vertex v of H_d can be represented compactly in the form of a hypergraph. The nodes of the hypergraph represent the coordinates of v, and the set of hyperedges represents the members of set R_d that were used in the sub-sum that created v. For any member of $R_d = \{r_1, ..., r_d\}$, the hyperedge touches the coordinates $\{v_1, ..., v_d\}$ where $r_i = 1$. The number of hyperedges touching a given node is that node's coordinate value. For example, in d = 3, the vertex $\{1, 1, 3\}$ is uniquely composed of $\{0, 0, 1\} + \{0, 1, 1\} + \{1, 0, 1\}$ and its hypergraph appears in figure 3.

Figure 3: Hypergraph representation of $\{1, 1, 3\}$ vertex

5 Hypergraph Representation of H(d), $d \leq 4$

Table 2 shows the unpermuted vertices of S_d for $d \leq 4$, as well as the count of their permutations and symmetries. Table 3 shows the vertices of H_d in hypergraph form from d=1 to d=4. For d=3 and d=4, vertices that are obtained by adding a prepended 0 are ignored as the hypergraph has already been shown for lower d, but without the additional unused vertices. For example, $\{0,0,1\}$ has a similar hypergraph to $\{0,1\}$ but has one extra node with no hyperedges attached to it. Equivalently, $\{4,4,4\}$ is a vertex by symmetry in d=3, so in d=4 we will not display $\{0,4,4,4\}$. Vertices obtained by symmetry are not shown as their hyperedges are the complement of the hyperedges of the symmetric vertex. For example, the complement of the empty hypergraph for $\{0,0,0\}$ is a hypergraph with hyperedges corresponding to the power set of $\{1,2,3\}$: edges $\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}$ and $\{1,2,3\}$

Table 2: Count of vertices of H_d by permutation and symmetry

Dimension	Unpermuted Vertex	Total Vertices	a(d)
1	{0}	2	=2
2	{0,0}	2	
	$ \begin{cases} \{0,1\} \\ \{0,0,0\} \end{cases} $	+4	=6
3	$\{0,0,0\}$	2	
	$\{0,0,1\}$	6	
	$ \begin{cases} \{0, 0, 1\} \\ \{0, 1, 2\} \\ \{0, 2, 2\} \end{cases} $	12	
	$\{0,2,2\}$	6	
	$ \begin{cases} 1, 1, 3 \\ 0, 0, 0, 0 \end{cases} $	+6	=32
4	$\{0,0,0,0\}$	2	
	$\{0,0,0,1\}$	8	
	$\{0,0,1,2\}$	24	
	$\{0,0,2,2\}$	12	
	$ \begin{cases} (0,1,1,3) \\ (0,1,3,3) \end{cases} $	24	
	$\{0,1,3,3\}$	24	
	(0 0 0 1)	24	
	$\{0,2,3,4\}$	48	
	$\{0,3,4,4\}$	24	
	$\{0,4,4,4\}$	8	
	$\{1,1,1,4\}$	8	
	$\{1, 1, 4, 4\}$	12	
	$\{1, 2, 2, 5\}$	24	
	$\{1, 2, 4, 5\}$	48	
	$\{1,3,5,5\}$	24	
	$ \{1, 5, 5, 5\}$	8	
	$\{2,2,3,6\}$	24	
	$ \begin{cases} \{0, 2, 2, 4\} \\ \{0, 2, 3, 4\} \\ \{0, 3, 4, 4\} \\ \{0, 4, 4, 4\} \\ \{1, 1, 1, 4\} \\ \{1, 1, 2, 2, 5\} \\ \{1, 2, 2, 5\} \\ \{1, 2, 4, 5\} \\ \{1, 3, 5, 5\} \\ \{2, 2, 3, 6\} \\ \{2, 2, 4, 6\} \end{cases} $	+24	=370

Table 3: Unpermuted vertices and hypergraphs of H_d .

Dimension	Vertex	Hypergraph
		v_1
1	{0}	
		v_1
	6.3	
	$ \{1\} $	

	1	
2	{1,2}	v_1 v_2
	{2,2}	v_1 v_2
		v_1 v_2
	(4.4.0)	v_3
3	$\{1,1,3\}$	
		v_1 v_2
4	{1,1,1,4}	v_3 v_4
		v_1 v_2
	{1,1,4,4}	v_3 v_4
		$egin{pmatrix} v_1 & v_2 \\ lackbox{} & lackbox{} \\ & lackbox{} \\ lackbox{} & lackbox{} \\ \\ & lackbox{} \\ \\ & lackbox{} \\ \\ \\ & lackbox{} \\ \l$
	{1,2,2,5}	v_3 v_4
		v_1 v_2 v_3 v_4
	$\{1, 2, 4, 5\}$	

6 Bibliography

 $1\,$ Tim S. Evans (2019), The On-Line Encyclopedia of Integer Sequences, http://oeis.org/A034997.