

US0D1089130S

(12) United States Design Patent (10) Patent No.:

Vasquez et al.

(10) Patent No.: US D1,089,130 S

(45) Date of Patent: ** Aug. 19, 2025

(54) PROCESS CHAMBER MANIFOLD

(71) Applicant: **Applied Materials, Inc.**, Santa Clara, CA (US)

(72) Inventors: Geraldine Vasquez, Santa Clara, CA
(US); Shreyas Patil
Shanthaveeraswamy, Bangalore (IN);
Mehran Behdjat, Santa Clara, CA
(US); Dien-Yeh Wu, Santa Clara, CA
(US); Jallepally Ravi, San Ramon, CA

(US); Yu Lei, Belmont, CA (US); Sandesh Yadamane, Bangalore (IN); Yi Xu, San Jose, CA (US);

Manjunatha Koppa, Bangalore (IN)

(73) Assignee: **Applied Materials, Inc.**, Santa Clara, CA (US)

(**) Term: 15 Years

(21) Appl. No.: 29/924,552

(22) Filed: Jan. 19, 2024

(52) U.S. Cl.

USPC **D13/182**; D15/5; D15/122; D23/233

(58) Field of Classification Search

USPC D15/1–7, 122, 135, 136, 199; D23/233; D13/129, 182, 184, 199

CPC . F16K 27/003; F16K 51/02; C23C 16/45544; C23C 16/513; C23C 16/4551; C23C 16/45559; C23C 16/45561; Y10T 137/87684; H05H 1/42

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

D312,120 S *	11/1990	Askew D23/245
5,468,298 A *	11/1995	Lei C23C 16/4401
		118/728
5,927,337 A *	7/1999	LaMantia F15B 13/0832
		137/884

(Continued)

FOREIGN PATENT DOCUMENTS

CN 302661587 * 11/2013 CN 304192862 * 6/2017 (Continued)

OTHER PUBLICATIONS

Design for additive manufacturing process for a lightweight hydraulic manifold, posted Dec. 2020 [online=], [retrieved May 1, 2025]. Retrieved from internet, https://www.sciencedirect.com/science/article/pii/S2214860420308186 (Year: 2020).*

(Continued)

Primary Examiner — Richard Edgar Assistant Examiner — Alexander Joseph David (74) Attorney, Agent, or Firm — Patterson + Sheridan, LLP

(57) CLAIM

The ornamental design for a process chamber manifold, as shown and described.

DESCRIPTION

FIG. 1 is a top, front, left side isometric view of a process chamber manifold, showing our new design.

FIG. 2 is a bottom, rear, right side isometric view thereof.

FIG. 3 is a left side elevation view thereof.

FIG. 4 is a right side elevation view thereof.

FIG. 5 is a front elevation view thereof.

FIG. 6 is a rear elevation view thereof.

FIG. 7 is a top plan view thereof.

FIG. 8 is a bottom plan view thereof.

FIG. 9 is a cross-sectional view taken along line 9-9 in FIG. 7; and,

FIG. 10 is a cross-sectional view taken along line 10-10 in FIG. 7.

1 Claim, 9 Drawing Sheets

US **D1,089,130** S Page 2

(56)	Refere	nces Cited	JP D1431576 * 1/2012 JP D1624352 2/2019	
	U.S. PATEN	Γ DOCUMENTS	JP D1790474 * 2/2025	
			KR 300656451 .0000 * 8/2012	
5,951,771		Raney et al.		
D479,576 D504,715		Wright	OTHER PUBLICATIONS	
D504,715 D593.969		Hagihara D23/245 Li D13/182		
D605.252			Hydraulic Valve Stacking Blocks for Fluidhaus Power Un	it SCO
7,780,788		Chen et al.	series, SCO-D Series Block, posted May 17, 2022 [online], [re	trieved
7,780,789	B2 * 8/2010	Wu C23C 16/45512	May 1, 2025]. Retrieved from internet, https://www.amazo	n.com/
		156/345.33	Hydraulic-Stacking-Blocks-Fluidhaus-Station/dp/BOB1 KV	RLL5/
8,372,201		Provencher et al.	ref (Year: 2022).*	
9,175,394		Yudovsky et al.	Chief SL Series High Pressure Relief Valve—1500 PSI P	ressure
10,407,771		Cui et al. Wu et al.	Relief Valve, posted May 18, 2017 [online], [retrieved 1	
10,982,326 D962,296		Jabusch D15/7	2025]. Retrieved from internet, https://www.amazon.com	
11,767,592				
2003/0145886		Paul G01L 9/0001	High-Pressure-Relief-Valve/dp/BOOMQ6YV06/ref (Year: 2 Benefits of a Gas Manifold in Semiconductor Delivery Sy	
		137/98	posted Feb. 19, 2019 [online], [retrieved May 1, 2025]. Re	
2005/0247359	A1* 11/2005	Hiser E02F 3/325	from internet, https://axenics.com/blog/benefits-of-gas-manifold#	
		137/879	A%20centralized%20manifold%20system%20gives,proce	
2007/0144436	A1* 6/2007	Huston F16L 41/03	20as%20chemical%20vapor%20deposition. (Year: 2019).*	2330370
		118/725	Taiwan Office Action dated Dec. 10, 2024, for Taiwan	Patent
2011/0223334		Yudovsky et al.	Application No. 113303177.	racent
2021/0118668			Korean Office Action dated Jan. 14, 2025. for Korean	Patent
2021/0246552 2023/0069359		Rasheed et al. Zheng C23C 16/45561	Application No. 30-2024-24909.	1 1110111
2023/0009339		Lu H01J 37/32715	Korean Office Action dated Jan. 14, 2025. for Korean	Patent
2023) 0402203	111 12/2023	Lu 11013 37/32713	Application No. 30-2024-24910.	- 444
FO	REIGN PATI	ENT DOCUMENTS	Chinese Office Action dated Feb. 5, 2025, for Chinese Application No. 202430444801.1.	Patent
CN 3	304194966	* 7/2017	TE	
IN .	309287	* 12/2021	* cited by examiner	
			ř	

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 8

FIG. 9

FIG. 10