

DS-2002: Data Systems

An Overview of SQL Databases

Prof. Jon Tupitza

SQL Database Design

Understanding the Principles that Govern Database Structure

Fundamental Structures: Enforcing Data Integrity

Essential Design Concepts & Database Objects Required for Enforcing Data Integrity

Entity Integrity

- Enforced by the **Table**
 - Entities (nouns):
 - People, Places and Things
 - Concrete: Employees,
 Customers, Products
 - Conceptual: Sales,
 Scenarios, etc.

Domain Integrity

- Enforced by the Column
 - Data Type definition:
 - Int, Decimal, Float, Char, Nchar, Varchar, Nvarchar, DateTime
 - Constraints:
 - Primary Key, Check,
 Unique, & Default

Relational Integrity

- Enforced by the Foreign Key Relationship
 - One-to-Many:
 Foreign key relates
 to Primary key
 - Many-to-Many:
 Primary keys relate
 to Foreign keys
 via a Juncture table

Database Normalization: The Normal Forms

There are other Normal Forms, but Resolving to 3rd NF is Considered Appropriate

First Normal Form (1NF)

- A tables columns must contain only atomic values; they may not contain multiple values
- Ex: a column named telephone_number may contain only one phone number.

Second Normal Form (2NF)

- The table must first satisfy the first normal form.
- The table must be free of partial dependencies; i.e., all columns that are not the Primary Key must depend on the Primary Key

Third Normal Form (3NF)

- The table must first satisfy both the first and second normal forms
- The table must be free of transitive dependencies; i.e., no column may depend on any column that is not the Primary Key.

Workload Characteristics: Form Follows Function

Two Essentially Incompatible Workloads... They Have a Contentious Relationship

Online Transaction Processing (OLTP)

- Characterized by a large volume of transactions each of which affect a small number of rows
- Online Sales, Bank Deposits & Transfers
- Highly Normalized Database Schema

Online Analytical Processing (OLAP)

- Characterized by a small volume of read transactions each of which affect a large number of rows
- Periodic Post-hoc Analysis (What Happened?)
- De-Normalized Multi-Dimensional Schema
- These two **don't** play well together: They contend for the same hardware resources!

Database Paradigms: Design Approaches

The Design Approach Accommodates the Workload Characteristic

Normalized Relational Database:

- Optimized for Online Transaction
 Processing (OLTP) workloads
- Aims to Eliminate Data Redundancy and Minimize Storage Requirements
- Complex: Sacrifices User-Friendliness in Favor of Transactional Performance

Multi-Dimensional Relational Database:

- Optimized for Online Analytical Processing (OLAP) workloads
- Aims to Optimize Query
 Performance and Provide an
 Intuitive User Experience
- Simple: Accepts Data Repetition in Favor of User-Friendliness and Improved Query Performance

OLTP Database: Normalized Schema

OLAP Database: Multi-Dimensional (Star) Schema

OLAP Database: Snowflake Schema

The SQL Language

Understanding the Structured Query Language

The SQL Language: Principal Components

Three Primary Aspects of the ANSI-Compliant SQL Language

Data Definition Language (DDL)

Data Control Language (DCL)

Data Manipulation Language (DML)

- CREATE, ALTER, DROP, TRUNCATE TABLE, ENABLE & DISABLE TRIGGER
- Used to manage database structures

- GRANT, REVOKE, DENY, EXECUTE AS
- Used to control access to server & database objects (permissions)

- SELECT, INSERT, UPDATE, DELETE, MERGE, and BULK INSERT
- Used to manipulate database content (data)

Microsoft Docs | Transact-SQL Reference (Database Engine)

Query a SQL Database: The SELECT Statement

Essential Components of Data Retrieval

SELECT

for specifying the required columns

FROM

for specifying the Table(s) being targeted

JOIN

for specifying additional Table(s)

GROUP BY

for specifying points of aggregation

ORDER BY

for sorting rows of the result set

Filtering Statements:

ON

specifies
the
column(s)
that
enable the
joining of
two Tables

WHERE

specifies conditions by which to reduce the rows returned **HAVING**

specifies conditions by which Groups or Aggregates may be reduced Q & A

An Overview of SQL Databases