STANDARD BANKSON	Université Abdelmalek Essaâdi Ecole Normale Supérieure	Chairmaild (Mashelmathin) Canadi
Licence d'éducation		Année scolaire : 2023/2024
Spécialité : Maths		Semestre: 2
Matière : Analyse	SERIE (2)	Prof: EL ALAMI LAAROUSSI Adil

Exercice 1 (Fonctions primitives)

Calculer les intégrales suivantes:

$$A = \int_0^x \frac{t}{1+t} dt, \quad B = \int_0^x \frac{\tan^3(t)}{\cos^2(t)} dt, \quad C = \int_0^x |t^2 - t| dt$$

Exercice 2 (Intégration par partie)

Soit
$$u_n = \int_0^1 (1 - t^2)^n dt$$

- 1) Établir une relation de récurrence entre u_n et u_{n+1}
- 2) Calculer u_n .
- 3) En déduire que

$$u_n = \sum_{k=0}^{n} \frac{(-1)^k}{2k+1} C_n^k = \frac{2^{2n} (n!)^2}{(2n+1)!}.$$

Exercice 3 (Changement de variables)

Calculer les intégrales suivantes :

$$A = \int_0^1 \frac{1}{t\sqrt{1+t^2}} dt, \quad B = \int_0^e \frac{1}{t(t+1)} \ln\left(\frac{t}{1+t}\right) dt, \quad C = \int_0^{\frac{\pi}{2}} \frac{\cos t}{4\sin(t) + 13} dt$$

Exercice 4:

1) Calculer selon la valeur de $n \in \mathbb{N}$ l'intégrale suivante :

$$A(x) = \int \frac{1}{(t-a)^n} dt$$

2) En déduire les valeurs de

$$I = \int_0^1 \frac{1}{(t-3)^4} dt \quad et \quad J = \int_1^2 \frac{2}{t-3} dt$$

Exercice 5:

Soient $n \in \mathbb{N}$ et

$$I = \int \frac{\alpha x + \beta}{(x^2 + bx + c)^n} dx$$

1) Déterminer p et q tels que

$$I = \int \frac{\alpha x + \beta}{((x - p)^2 + q)^n} dx$$

2) En utilisant le changement de variable x = p + qt, montrer que

$$I = \alpha' \int \frac{t}{(t^2+1)^n} dt + \beta' \int \frac{1}{(t^2+1)^n} dt$$

3) Par la suite, posons

$$I_n = \int \frac{t}{(t^2+1)^n} dt \ et J_n = \int \frac{1}{(t^2+1)^n} dt$$

a) Montrer que

$$I_n = \begin{cases} \frac{-1}{2(n-1)(t^2+1)^{n-1}} + cte & si \ n \neq 1\\ \frac{1}{2}ln(t^2+1) + cte & si \ n = 1 \end{cases}$$

- b) Calculer J_{n+1} en fonction de J_n .
- 4) Application : calculer

$$A = \int \frac{x^3 + 1}{x^2 - x - 2} dx \quad \text{et } B = \int \frac{x - 7}{(x^2 + 4x + 13)^2} dx$$

Exercice 6:

1) Montrer que si $f: [a, b] \to \mathbb{R}$ est Riemann intégrable alors

$$\int_{a}^{b} f(t) dt = \int_{a}^{b} f(a+b-t) dt$$

2) Calculer les intégrales suivantes :

$$A = \int_0^{\pi} \frac{t \sin t}{\cos^2(t)} dt \ et \ A = \int_0^{\frac{\pi}{4}} \log(1 + \tan(t)) dt$$

Exercice 7:

On se propose d'étudier la suite $(u_n)_{n\in\mathbb{N}^*}$, définie par un

$$u_n = \sum_{k=1}^n \frac{1}{k}$$

1) Soit $k \in \mathbb{N}^*$. Montrer que

$$\frac{1}{k+1} \le \int_{k}^{k+1} \frac{1}{x} dx \le \frac{1}{k}$$

2) En déduire que pour tout $n \in \mathbb{N}^*$

$$\int_{1}^{n+1} \frac{1}{x} dx \le u_n \le 1 + \int_{1}^{n} \frac{1}{x} dx$$

3) Que peut-on en conclure sur $\lim_{n\to+\infty} u_n$?

Exercice 8:

Soit $f:[0;1] \to \mathbb{R}$ une fonction continue. Montrer que

$$\lim_{n \to +\infty} \int_0^1 x^n f(x) dx = 0$$