第6章 工序位置公差的設計

第一節 位置關係的尺寸式表達

第二節 工序位置公差的計算

第三節 位置公差和尺寸公差的綜合計算

第四節 工藝方案優化設計的方法

第五節 工藝方案優化設計

- ※由於工序基準和設計基準不重合的原因,使得設計所要求的位置公差不能靠某一工序公差直接保證,而需要兩個或兩個以上的工序位置公差間接保證,這樣就必須控制有關工序的位置公差,使得零件加工完後能達到零件圖上位置公差的要求。
- ≥>零件形狀公差一般由機床精度保證,不存在尺寸及公 差換算問題。

- 1. 位置關係的表示方法
 - 1) 零件有關要素的表示方法
 - 用英文字母表示零件的有關要素
 - 前面計算工序尺寸時,表示零件在一個方向的各個要素必須按 英文字母順序自左到右排列,目的:可以根據尺寸式,有規律 地寫出其對應的方程式。而位置誤差一般都對稱分布在公差帶 中心,並且對於位置誤差,不存在基本尺寸,即不存在對稱的 方程式,因而也就不必考慮表示各個要素的英文字母順序,可 以用任意一個字母表示任意一個要素
 - 為和零件圖取得一致,用零件圖上要素符號來表示該要素,而 不必再另設符號

1. 位置關係的表示方法

- 1) 零件有關要素的表示方法

1. 位置關係的表示方法

- 2) 工序位置關係的表示方法
 - 由於各工序所要求各要素 之間的位置關係多種多 樣,所以,工序位置關係 的表示符號必須表示出多 種多樣的位置關係,表為 常用的位置關係符號

平行度	//
垂直度	1
同軸度	0
圆跳度	7
全跳度	21
對稱度	

- 1. 位置關係的表示方法
 - 2) 工序位置關係的表示方法
 - 兩要素之間的位置關係, 可以用表示該兩要素的符 號及該兩要素之間的位置 關係符號表示。其中第一個字母表示基準要素, 個字母表示基準要素,第二個字母表示加工面要 素,兩個字母中間為它們 之間位置關係的符號
 - 圖1以A為定位基準加工E 面,工序位置關係的表示 應用 符號為A」E,

- 1. 位置關係的表示方法
 - 3) 零件位置關係的表示方法
 - 零件位置關係(設計位置關係)仍用兩個字母和它們之間關係的符號表示,兩個字母的前後順序可以任意,例如 $A_2 \perp E_1$ 或 $E_1 \perp A_2$ 都是可以

第一節

位置關係的尺寸式表達

2. 位置關係的聯繫及其尺寸式

• **圖**2(a):套筒零件

• **圖2**(**b**):加工該零件的兩個工序簡圖,設計要求C面對B面的平行度為 0.08

有關工藝過程如下:

工序25 加工大端面,直接控制大端面對內孔的垂直度,即控制 $A \perp B_1$

工序40 加工另一端面,直接控制這一端面對內孔的垂直度,即控制 $A \perp C_1$

圖2

- 2. 位置關係的聯繫及其尺寸式
 - 工藝尺寸式為:
 - $\bullet \quad B_1 // C_1 \rightarrow B_1 \perp A \perp C_1$
 - 尺寸式左端:設計位置公差
 - 右端:每相鄰兩個字母構成的工序位置公差都會影響設計位置公差

2. 位置關係的聯繫及其尺寸式

- 如工序保證的位置關係為 $M \perp B_1 \setminus B_1 \perp D_1 \setminus B_1 // E_1 \setminus D_1 // P_1$,零件 圖要求為 $M // P_1$,查找設計位置與工序位置關係的過程為:
- ① $M //P_1 \rightarrow M , D_1 //P_1$

尺寸設計理論及應用

第二節 工序位置公差的計算

- 圖3(a)為套筒零件,圖3(b)為有關工序
- 有關工序的工藝過程如下:

```
工序45 從一端磨內孔及端面,直接控制D⊥B<sub>1</sub>、D//E<sub>1</sub>
```

工序50 磨外圓及端面,直接控制 $B_1 \odot F_1 \cdot D//C_1$

工序55 以另一端面磨內孔,直接控制B1◎A₁、D//P₁

為保證設計位置公差,必須控制有關的工序位置公差,因此必須找到 設計位置公差和工序位置公差之間的關係,即位置關係的尺寸式。根 據寫尺寸式的規律,可以寫出每一個設計位置公差的尺寸式:

$$P_{1} // C_{1} \rightarrow P_{1} // D // C_{1}$$

$$E_{1} // C_{1} \rightarrow E_{1} // D // C_{1}$$

$$A_{1} \circledcirc B_{1} \rightarrow A_{1} \circledcirc B_{1}$$

$$A_{1} \circledcirc B_{1} \circledcirc F_{1} \rightarrow A_{1} \circledcirc B_{1} \circledcirc F_{1}$$

$$A_{1} \bot C_{1} \rightarrow A_{1} \circledcirc B_{1} \bot D // C_{1}$$

$$B_{1} \bot C_{1} \rightarrow B_{1} \bot D // C_{1}$$

第二節工序位置公差的計算

12

№確定工序位置公差時,應該先按那些設計位置公差較 小而相關工序位置公差又較多的尺寸式(最難保證的 尺寸式)來確定相關工序位置公差,這是因為,有的 工序位置公差同時影響幾個設計位置公差,這樣由難 到易的確定可以保證每一個設計位置公差。 ※在形位公差控制中,僅需考慮保證設計位置公差要求,因而只需確定各工序位置公差的大小,不需要確定基本尺寸,現根據工藝尺寸式按概率法確定各工序位置公差。

∞(1)由由 $A_1 \bot C_1 → A_1 \bigcirc B_1 \bot D / C_1$ (設計位置公差 為o.o3)按經驗確定工序位置公差:

03

$$\otimes A_1 \odot B_1 = \phi 0.02$$
 $B_1 \perp D = 0.01$ $D // C_1 = 0.02$

03

驗算設計位置公差:

 $A_1 \perp C_1 = \sqrt{0.02^2 + 0.01^2 + 0.02^2} = 0.03$,設計位置公差 滿足設計要求。

- $\mathfrak{D}(2)$ 工藝尺寸式 $B_1 \perp C_1 \rightarrow B_1 \perp D / C_1$ 中的所有工序位置公差在前面已確定,故只需驗算設計位置公差:
- $B_1 \perp C_1 = \sqrt{0.01^2 + 0.02^2} = 0.022$,滿足設計要求(要求設計位置公差為0.03)。
- \otimes (3) 由 $A_1 \otimes B_1 \otimes F_1 \rightarrow A_1 \otimes B_1 \otimes F_1$,確定:
- $B_1 \bigcirc F_1 = \phi_{0.02}$ ($A_1 \bigcirc B_1 = \phi_{0.02}$ 在前面已經確定)
- ∞驗算設計位置公差:
- $A_1 \bigcirc B_1 \bigcirc F_1 = \sqrt{0.02^2 + 0.02^2} = 0.028$,滿足設計要求(要求設計位置公差為0.03)。

- ∞(4)由工藝尺寸式 $E_1//C_1 \rightarrow E_1//D//C_1$ 確定:
- $E_1 // D = 0.02$
- ≫驗算設計位置公差:
- $E_1/\!/ C_1 = \sqrt{0.02^2 + 0.02^2} = 0.028$,滿足設計要求(要求設計
- ≫位置公差為o.o3)。
- ∞(5)由 $P_1//C_1 \rightarrow P_1//D//C_1$ 確定: $P_1//D = 0.02$
- ≫驗算設計位置公差:
- $P_1//C_1 = \sqrt{0.02^2 + 0.02^2} = 0.028$,滿足設計要求(要求設計 位置公差為0.03)。

第二節 工序位置公差的計算

• 工序位置公差計算表

工序號	工序 名稱	工序尺寸 及位置代號	工藝尺寸式	工序位置 公差	設計位置 公差
45	磨孔及	$D \perp B_{_{1}}$		0.01	
45	端面	D//E ₁		0.02	
5 0	磨外圓	$B_1 \odot F_1$		0.02	
50	及端面	D//C ₁		0.02	
	磨孔及	$B_{1} \bigcirc A_{1}$		0.02	
55 端面		D//P ₁		0.02	
			$P_1 // C_1 \rightarrow P_1 // D // C_1$	0.028	0.03
設			$E_1 // C_1 \rightarrow E_1 // D // C_1$	0.028	0.03
設計位置公差			A_{i} $\bigcirc B_{i}$ (直接保證)	0.02	0.02
置			$A_1 \bigcirc B_1 \bigcirc F_1 \longrightarrow A_1 \bigcirc B_1 \bigcirc F_1$	0.028	0.03
差			$A_1 \perp C_1 \rightarrow A_1 \odot B_1 \perp D//C_1$	0.03	0.03
			$B_1 \perp C_1 \rightarrow B_1 \perp D//C_1$	0.022	0.03

第三節 位置公差和尺寸公差的綜合計算

- ≫大部分機械零件既有尺寸公差要求,又有位置公差要求,為了使零件的尺寸公差和位置公差都能獲得保證,有必要對它們進行綜合計算。
- ※在只考慮位置公差時,表示要素的字母可以任意,但是,如果既要考慮位置公差,又要考慮尺寸公差時,就必須注意在一個方向上要按英文字母的順序依次表示零件的各要素。

第三節

位置公差和尺寸公差的綜合計算

1. 連桿位置公差和尺寸公差的計算

 圖4的連桿要求保證大小實孔的中心線保持平行度公差為φo.o6, 考慮到連桿的結構特點,打算透過對大小實孔及其端面的精加工來控制這個要求,具體工藝如下(設毛胚尺寸公差為o.5):

工序10 精鏜大孔,銑端面,保證 BA_1 且 $C \perp A_1$;銑端面,保證 CE_1

工序15 銑小端面,保證尺寸 E_iC_i 且 $A_i \perp C_i$

工序20 精鏜小孔,保證 A_iB_i 且 $C_i \perp B_i$;銑大端面,保證 C_iF_i

工序25 銑大端面,保證 F_1D_1 且 $B_1 \perp D_1$

第三節

位置公差和尺寸公差的綜合計算

1. 連桿位置公差和尺寸公差的計算

工序 名稱	工序 尺寸 (位置) 代號	工藝尺寸式	雙向 對稱 公差	最小餘量	餘量 變 動量	平均 餘量	工序 平均 尺寸
精鍵大孔銑	$\begin{array}{c} BA_1 \\ C \perp A_1 \end{array}$		±0.2 φ0.05		10.7		86
銑小	E_1C_1	$\begin{array}{c} EE_1 \rightarrow ECE_1 \\ CC_1 \rightarrow CE_1C_1 \end{array}$	±0.2	0.3	±0.7 ±0.4	0.7	24.5
精鐘 小孔銑	$ \begin{array}{c c} A_1 & C_1 \\ \hline A_1 B_1 \\ \hline C_1 \perp B_1 \end{array} $		±0.1 φ0.03				86
端面 銑大	C_1F_1 F_1D_1	$F_1F \rightarrow F_1C_1E_1CF$ $DD_1 \rightarrow DCE_1C_1F_1D_1$	±0.2 ±0.2	0.2	±1.1 ±1.3	1.3 1.5	45.8 29.8
端面	$B_1 \perp D_1$ C_1D_1	$C_1D_1 \rightarrow C_1F_1D_1$	φ0.03 ±0.4				16
			φ0.06				
	名稱 精工端 統端精孔面 特孔面小面 鐵 統 精孔面	工序名稱 尺寸(位置)(位置)(代號) 精鍵 BA1 大孔銑 CL A1 鉄油面 E1C1 精鍵 A1 L C1 精鍵 A1 L C1 精鍵 C1 L B1 C1 L B1 C1 F1 場上 D1 C1 D1	工序 名稱	工序 名稱 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	工序 名稱	大子	工序 名稱

第一節

位置公差和尺寸

公差的綜合計算

- 套筒零件的位置公差和尺寸公差 的計算
 - ₩ 帶凸緣的套筒零件(如圖5)要求 🚭 內孔及凸肩對外圓表面A保持 一定的同軸度,兩端面則有端 面圓偏擺公差要求
 - 工序25 精車,保證工序尺寸FB,、 $B_1C_1 \cdot FD_1$
 - 工序4o 磨孔及端面,保證D,F,、 $A \odot P_1 \cdot P_1 \nearrow F_1$
 - 工序45 磨外圓,保證P,◎A,;靠火花 磨C面,保證C,C,=o.1±o.05
 - 工序5o 磨凸肩,保證F,E,且PノE,、 $P_1 \bigcirc G_1$

第三節

位置公差和尺寸公差的綜合計算

2. 套筒零件的位置公差和尺寸公差的計算

工序號	工序 名稱	工序 尺寸 及 位置 代號	工藝尺寸式	雙向 對稱 公差	最小餘量	餘量 變 動量	平均餘量	工序 平均 尺寸
		FB_1	$BB_1 \rightarrow BFB_1$	±0.15	0.3	±0.65	0.95	62.05
25	精車	B_1C_1	$CC_1 \rightarrow CFB_1C_1$	±0.15	0.3	±0.80	1.1	37.7
		FD_1	$DD_1 \rightarrow DFD_1$	±0.1	0.3	±0.60	0.9	18.15
	磨孔	D_1F_1	$F_1F \rightarrow F_1D_1F$	±0.05	0.2	±0.15	0.35	17.8
40	及	$A @ F_1$		0.05				/
	端面	P1 ∕ F1		0.025				/
45	磨外圓	$P_1 \bigcirc A_1$		0.025				/
73	石八因	C_1C_2		±0.05			0.1	/
	磨	F_1E_1	$E_1E \rightarrow E_1F_1D_1FE$	±0.05	0.2	±0.7	0.9	5.9
50	磨凸順	$P_1 \nearrow E_1$		0.04				/
	局	$P_1 \odot G_1$		0.025				/
設		B_1C_2	$B_1C_2 \rightarrow B_1C_1C_2$	±0.2				37.8
設計		B_1F_1	$B_1F_1 \rightarrow B_1FD_1F_1$	±0.3				61.7
尺寸(D_1E_1	$D_1E_1 \rightarrow D_1F_1E_1$	±0.1				11.9
(;		$G_1 @ A_1$	$G_1 @ A_1 \rightarrow G_1 @ P_1 @ A_1$	0.04				
位置		$E_1 \nearrow A_1$	$E_1 \nearrow A_1 \rightarrow E_1 \nearrow P_1 \bigcirc A_1$	0.05				
基		$F_1 \nearrow A_1$	$F_1 \nearrow A_1 \rightarrow F_1 \nearrow P_1 \bigcirc A_1$	0.04				
注:	□內為認	设計尺寸(位	位置要求)					

第四節 工藝方案優化設計的方法

工藝人員在擬訂機械加工工藝方案時,必須根據毛胚形式、工件結構的工藝特點以及技術要求等,合理地選擇主要表面加工方法、各工序所採用的定位基準、安排工序順序,並確定全部工序尺寸、餘量、公差等,以達到所擬訂的工藝方案為最佳方案,使之能可靠地保證技術要求,提高勞動生產率,降低製造成本

№ 在保證工件精度要求這項工作中,工件表面形狀精度 及尺寸精度,很大程度上取決於表面最終加工工序的 加工方法和設備精度,而表面相互位置精度和表面之 間尺寸精度,卻與工藝過程方案密切相關,即取決於 選擇各主要工序定位基準、安裝方法、加工方法以及 工序順序等。因此,如何保證工件相互位置精度要求 ,採取工藝方案評比方法,選擇最優方案有著重要的 實際意義。

第四節 工藝方案優化設計的方法

為得到最佳的工藝方案,可採取下列措施:

- ① 改變某些表面的加工順序
- ② 改變某些表面加工時的工序尺寸的標註方法,即改變尺寸標註的基準
- ③ 增減某些表面的加工工序
- ④ 改變某些表面加工的公差要求...等等

- >>>一個複雜零件的加工由毛胚開始,到成品零件往往是 透過工藝過程中許多工序逐步實現的,而與相互位置 精度有關工序之間,有著內在的聯繫就是基準。在整 個工藝過程中以基準為線索,把有關工序尺寸和位置 密切地聯繫起來,形成一組工藝尺寸式。每一項相互 位置精度要求,往往就是工藝尺寸式中的一個目標尺 寸。由於一個零件加工的工藝方案可以有許多,故最 佳工藝方案的選擇就至關重要,選擇最佳工藝方案可 以透過工藝尺寸式的分析加以評比。
- ※由於工藝尺寸式不需畫圖,採取工藝方案的措施後僅需改變幾個字母即可很快知道採取措施後的結果,便 於工藝人員在設計過程中迅速對不同的尺寸控制方案 做出比較,決定優劣取捨,很快找到最合理的尺寸控 制方案。

第五節 工藝方案優化設計

- 1. 活塞工藝方案優選 活塞工件(如圖6)主要的技術要 求為:
 - ① 銷孔中心線與裙部中心線垂 直度不大於0.05/100
 - ② 油環槽側面對裙部中心線偏 擺不大於o.o7
 - ③ 裙部壁厚差不大於o.8
 - ④ 銷孔內沉槽底中心線與銷孔中心線不同心度不大於0.4

第五節

工藝方案優化設計

- 1. 活塞工藝方案優選
 - 工藝方案比較表

	方:	案 一		方案二	
工序號	工序名稱	工序(位置)代號		工序名稱	工序號
10	車止口	$A @ C_1 $, $A \perp 1$	H_1	車止口	10
15	擴銷孔	$H_1//G_1$	H ₁ //G ₁		15
		IA_1	$\begin{array}{c} IA_1 \\ H_1 \nearrow B_1 \end{array}$		
20	車外圓及槽	$H_1 \nearrow B_1$	$\begin{array}{c} H_1 \bot A_1 \\ IA_2 \end{array}$	粗、精車外圓及槽	20
		$H_1 \perp A_1$	$H_1 \nearrow B_2$ $H_1 \bot A_2$		
25	精車止口	$\begin{array}{c cccc} A_1 \circledcirc C_2 & A_2 \circledcirc C_2 \\ \hline A_1 \bot H_2 & A_2 \bot H_2 \end{array}$		精車止口	25
30	精車端面	$H_2//E_1$		精車端面	30
35	精車槽	H ₂ ≯ B ₂			35
40	精車外圓	$\begin{array}{c c} & & & & \\ \hline H_2\bot A_2 & & \\ \hline IA_2 & & & \\ \hline \end{array}$		鏜 銷孔內沉槽	40
45	鏜銷孔內沉槽	$G_1 @ F_1$			
50	精鏜銷孔	$E_1//G_2$	$A_2 \nearrow B_2 \rightarrow A_2 \bot H_2 \nearrow B_2$		
記	$A_2 \perp G_2 \rightarrow A_2 \perp H_2 // E_1 // G_2$				計
計		$B_2 \rightarrow A_2 \perp H_2 \nearrow B_2$			設計位置
位 置	設 $A_2 \perp G_2 \rightarrow A_2 \perp H_2 // E_1 // G_2$ 計 $A_2 \wedge B_2 \rightarrow A_2 \perp H_2 \wedge B_2$ 位 $A_2 \cap A_2 \cap A$			$A_2C \rightarrow A_2IC$	
注:□內為設計位置					

- ≫對第一項技術要求 A2 LG2 ,兩方案的不同僅反映在方案一在工序"精鏜銷孔"時,以活塞頂面為三點定位造成基準不一致,增加了兩道工序誤差的影響,其尺寸式為 A2 LG2 → A2 LH2 // E1 // G2 ,三個工序位置誤差影響它的精度。方案二則保證了基準一致,其尺寸式為 A2 LG2 → A2 LG2 ,僅有一個位置誤差影響它的精度。因此以保證第一項技術要求來講,方案二較合理。
- 對第二項技術要求 A_2/B_2 ,兩方案的尺寸式均為 $A_2/B_2 \rightarrow A_2 \bot H_2/B_2$
- »,因此以保證第二項技術要求來講,兩方案是一樣的

- 對第三項技術要求 I A₂ , 兩方案的尺寸式均為 I A₂ → I A₂ , 因此以保證第三項技術要求來講 , 兩方案也是一樣的。

$G_2 \bigcirc F_1 \rightarrow G_2 // E_1 // H_2 \perp A_1 \perp H_1 // G_1 \bigcirc F_1$

- ≫有六個工序位置誤差影響它的精度,所以其精度是很難保證的。方案二則將"鏜銷孔內沉槽"工序移到精鏜銷孔之後,其尺寸式為 G₂◎F₁→G₂◎F₁ 因此以保證第四項技術要求來講,方案二較合理。
- №通過對各項設計要求的尺寸式分析可以看出,以整體 上講,方案二是合理的。

第五節 工藝方案優化設計

- ∞方案一:先磨削左端,然後調頭磨削另一端,保證尺寸
- CA1 , A1B1 , B1C1 , C1E1 , C1D1 , B1C2 , C2D2 , C2B2

03

- ≥> 方案二:與方案一比較,只是將B面在第二次加工時 放在D面和C面第二次加工的前面,加工基準不變。
- ≫方案三:與方案一比較,本方案只是在工序中將工序 尺寸C2B2 改成A1B2。
- ≫方案四:與方案二比較,該標注C1B2為A1B2。

第五節

工藝方案優化設計

- 2. 軸類零件工藝方案優選
 - 工藝方案比較表

方案四是最佳尺寸控制方案,而且是唯一能保證設計尺寸的方案

刀希凹处	取住八寸狂刺刀杀	:'川丛疋唯一儿闭	R 起	
公差	方案一	方案二	方案三	方案四
±0.2			CA_1	
±0.15			A_1B_1	
±0.15			B_1C_1	
±0.2			C_1E_1	
±0.2			C_1D_1	
±0.03	B_1C_2	C_1B_2	B_1C_2	A_1B_2
±0.03	C_2D_2	B_2C_2	C_2D_2	B_2C_2
±0.03	C_2B_2	C_2D_2	A_1B_2	C_2D_2
B ₂ C ₂ 設計 尺寸公差 為±0.03	$B_2C_2 \\ \delta = \pm 0.03$	$B_2C_2 \\ \delta = \pm 0.03$	$B_2C_2 \rightarrow B_2A_1B_1C_2$ $\delta = \pm (0.03 + 0.15 + 0.03)$ $= \pm 0.21$	$B_2C_2 \\ \delta = \pm 0.03$
B ₂ D ₂ 設計 尺寸公差 為±0.06	$\begin{array}{c} B_2D_2 \rightarrow B_2C_2D_2 \\ \delta = \pm (0.03 + 0.03) \\ = \pm 0.06 \end{array}$	$B_2D_2 \rightarrow B_2C_2D_2$ $\delta = \pm (0.03 + 0.03)$ $= \pm 0.06$	$\begin{array}{c} B_2D_2 \rightarrow B_2A_1B_1C_2D_2 \\ \delta = \pm (0.03 + 0.15 + 0.03 + 0.03) \\ = \pm 0.24 \end{array}$	$\begin{array}{c} B_2D_2 \rightarrow B_2C_2D_2 \\ \delta = \pm (0.03 + 0.03) \\ = \pm 0.06 \end{array}$
A ₁ B ₂ 設計 尺寸公差 為±0.05	$\begin{array}{c} A_1B_2 \rightarrow A_1B_1C_2B_2 \\ \delta = \pm (0.15 + 0.03 + 0.03) \\ = \pm 0.21 \end{array}$	$A_1B_2 \rightarrow A_1B_1C_1B_2$ $\delta = \pm (0.15 + 0.15 + 0.03)$ $= \pm 0.33$	$\begin{array}{c} A_1B_2\\ \delta=\pm0.03\end{array}$	$A_1B_2 \\ \delta = \pm 0.03$
A ₁ E ₁ 設計 尺寸公差 為±0.5	$\begin{array}{c} A_1 E_1 \rightarrow A_1 B_1 C_1 E_1 \\ \delta = \pm (0.15 + 0.15 + 0.2) \\ = \pm 0.50 \end{array}$	$A_1E_1 \rightarrow A_1B_1C_1E_1 \delta = \pm (0.15 + 0.15 + 0.2) = \pm 0.50$	$A_1E_1 \rightarrow A_1B_1C_1E_1 \delta = \pm (0.15 + 0.15 + 0.2) = \pm 0.50$	$\begin{array}{c} A_1 E_1 \rightarrow A_1 B_1 C_1 E_1 \\ \delta = \pm (0.15 + 0.15 + 0.2) \\ = \pm 0.50 \end{array}$

第五節 工藝方案 優七設計

- 3. 曲軸尺寸的合理標註
 - 曲軸設計尺寸39.65±0.075及38.1±0.05的作用是:
 - ① 尺寸38.1±0.05:保證連桿大頭兩端面與曲軸銷柄兩端面 有一定的配合性質
 - ② 尺寸39.65±0.075:保證曲柄銷中心面與汽缸孔的軸線在 同一個平面上

- ≫以尺寸39.65 ±0.075來看,其左端面是曲軸止推軸頸的肩面,它既是裝配基準,也是設計基準。但其右端面的中間面C是一個假想平面,在加工時無法度量,設計尺寸應標注在實際存在的表面上,那麼設計尺寸如何標註呢?下面我們通過分析,找出最佳的尺寸標註方案。
- ≥>本例中,設計尺寸可能有以下幾種標註方案。
- ≫方案一:標註AB ,AD 。
- ≫方案二:標註BD,AD。
- ≫方案三:標註AB,BD。

≫方案一中兩個要求保證的尺寸均為間接保證。單以BD →BAD (BD的公差為±o.o5) 來看,設計尺寸AB,AD 的公差就要求很嚴。方案二和方案三中,所要求保證 的尺寸BD都是直接保證的,要求保證的尺寸AC都是 由兩個設計尺寸間接保證的,但是方案二中的兩個設 計尺寸(BD和AD)比方案三中兩個設計尺寸(AB和 BD)大,如給出同樣的公差,方案二就較難保證,因 此說方案三為最佳的設計尺寸標註方案。在尺寸式中 , BC = DC = 0.5BD

第五節 工藝方案優化設計

- 3. 曲軸尺寸的合理標註
 - 工藝方案比較表

方案三為最佳的設計尺寸標註方案

	方案一	方案二	方案三
設計尺寸註法	AB · AD	BD · AD	AB · BD
要求保證的尺寸BD	BD→BAD	BD	BD
要求保證的尺寸AC	AC→ABC	AC→ADC	AC→ABC