复习提纲(2017.6)

Ch1. Introduction

- ❖ 数据库的基本概念
 - 数据库 (Database)
 - 数据库管理系统(DBMS database management system)
 - 数据模型(data model)
 - 数据库用户,数据库管理员 (DBA)

Ch2. The Relational Model

- ❖ 关系模型的基本概念
 - 数据结构: 表(table/relation),属性(column/attribute),元组(row/tuple),表头(table heading)/关系模式(relational schema),域(domain)
 - 关系的约束规则(relational rule)
 - 键/关键字(key) 与 超键(superkey)
 - 空值(null value)
- ❖ 关系代数 (relational algebra)
 - 基本运算:并,差,投影,选择,迪卡尔乘积
 - <u>扩充运算:交,自然联接/**0**-联接,除法</u> (请注意每个运算符的执行条件和结果关系的关系模式)
- ❖ 关系代数的应用
 - 单个关系上的选择与投影
 - 两个关系的并、交、差
 - 两个关系的迪卡尔乘积、自然联接、θ-联接
 - 两个关系的除法
- ❖ 难点
 - 查询条件带有'否定'语义:'不等'比较 & 减法运算
 - 使用表联接查询,还是使用除法?
 - 正确使用自然连接运算 和 除法运算
 - 表的自联接

Ch3. Basic SQL query language

- ❖ 数据访问命令的基本结构
 - SELECT 命令的语句成分
 - ♦ select/from/where/group by/having/order by
 - ◆ 两个必须的子句: select/from
 - ♦ having 子句的前面必须有 group by 子句
 - INSERT/UPDATE/DELETE 命令的语句成分
- ❖ 基本的数据查询命令
 - 单表查询
 - 在 FROM 子句中,对表的重命名
 - 多表查询:
 - ◆ 联接(join)查询

- ◆ 嵌套查询(subquery)
- ◆ 表自身的连接查询
- 扩展的查询谓词:
 - ♦ between ... and ...
 - ♦ is null, in not null
 - ♦ like
- 查询结果输出
 - ◆ 结果元组去重: distinct
 - ◆ 结果元组排序: order by
- 子查询的集合运算
 - ♦ UNION / INTERSECT / EXCEPT
 - ♦ UNION ALL / INTERSECT ALL / EXCEPT ALL
- ❖ 复杂的数据查询命令
 - 统计查询
 - 分组统计查询 (... GROUP BY)
 - 分组选择统计查询 (... GROUP BY ... HAVING ...)
 - 关系代数中的除法运算功能在 SQL 中的表示方法
 - ◆ 多层嵌套的 NOT EXISTS 查询
 - 在 FROM 子句中嵌入子查询
- ❖ 数据更新命令
 - 元组的插入、修改、删除功能

Ch4. Object-Relational SQL

- Oracle 对象关系 SQL 中的扩展数据类型:对象类型 & 集合类型
- Oracle 对象类型的定义
- Oracle 的对象引用类型

Ch5. Programs to Access Database

- ❖ 嵌入式 SQL 与交互式 SQL 在命令格式上的区别
 - 嵌入式 SQL 命令的前缀和后缀
 - 从数据库到应用程序的数据交换方式:
 - ◆ 单行数据交换: SELECT......INTO......
 - ◆ 多行数据交换:游标 (cursor)
 - 主变量 (Host Variables) 与 空值指示变量 (Indicator Variables)
- **※** 游标
 - 游标的用处
 - 与游标有关的四条语句
 - 游标指针在数据更新语句中的使用方法

Ch6. Database Design

❖ 概念设计

- ER 模型
 - ◆ 基本组成: 实体(entity), 属性(attribute), 联系(relationship)
 - ♦ Cardinality of Entity Participation in a Relationship
 - ♦ One-to-One, Many-to-Many, and Many-to-One Relationship
 - ◆ ER图
- 从 ER 模型到关系模型的转换规则

❖ 规范化

- 规范化的目的与手段
- 函数依赖(FD Functional Dependency)
 - ◆ 关键字(key),主属性(prime attribute),非主属性(non-prime attribute)
 - ◆ 函数依赖集的覆盖(FD set cover), 最小函数依赖集/最小覆盖(minimal cover)
 - ◆ 算法: 属性集闭包(Closure of a Set of Attributes)的计算算法,关键字的发现算法,最小函数依赖集的计算算法
- 范式: 1NF, 2NF, 3NF, BCNF
 - ◆ 各个范式的定义
 - ◆ 一个关系是否满足某个范式的判断
- 模式分解
 - ◆ 无损联结性(Lossless Decomposition)和依赖保持性(FD Preserved)的定义
 - ◆ 无损联结性的判定定理
 - ◆ 分解算法: 到 3NF 且能够满足无损联结性和依赖保持性的分解算法

❖ 数据库设计案例

- ER模型设计
- ER 模型到关系模型的转换
- 对指定关系的规范化设计:
 - ◇ 函数依赖的发现
 - ◆ 范式的判断与分解

Ch7. Integrity, Views, Security, and Catalogs

❖ 基表定义命令

- 基本的建表命令
- 各种数据完整性约束的含义及其定义方法
 - NOT NULL, 缺省值定义 (DEFALUT), CHECK 约束
 - Primary Key & Unique
 - Foreign Key (包括 ON DELETE/ON UPDATE 字句)

❖ 视图(view)定义命令

- 视图的概念与特点
- 视图的定义命令
- 视图的作用

❖ 安全性

● 授权语句 (GRANT...TO...) 和 权限回收语句 (REVOKE...FROM...)

Ch8. Indexing

- ❖ 索引的概念
- ❖ 索引的创建语句: Create index

Ch10. Update Transactions

- ❖ 事务(transaction)
 - 事务及其 ACID 特性
 - 事务的控制语句: 事务的提交(commit)与回滚(rollback)
- ❖ 事务调度(schedule)
 - 串行调度(serial schedule)
 - 可串行化调度(Serializability Schedule)
 - 冲突 与 冲突可串行化调度
 - 串行调度/可串行化调度/冲突可串行化调度 三者之间的关系
- ❖ 两阶段封锁(Two-Phase Locking)
 - 封锁
 - ◆ 排它锁的作用与申请规则
 - ◆ 共享锁的作用与申请规则
 - 两阶段封锁协议
 - 死锁的定义
- ❖ 日志 (Logs)
 - UNDO 日志的内容,记载规则和作用
 - REDO 日志的内容,记载规则和作用
 - UNDO/REDO 日志的内容,记载规则和作用