

A Unified Model for Opinion Target Extraction and Target Sentiment Prediction

报告人: 史可为、吴冠陞

金融+情感分析

社群平台

主观性文本

金融領域平台

相关研究

金融词库:中国财经媒体领域的正负面词库

中文情感分析分类模型

- 一、研究背景
- 二、研究方法
- 三、实验
- 四、结论

研究背景

基于目标的情感分析(Target-based sentiment analysis, TBSA)

: 1. 检测意见目标, 2. 并预测意见目标的情绪极性

一般方法: 分为两个子任务

- 目标提取
- 检测文本中的意见目标

- 情绪分类
- 预测给定意见目标的情感极性

传统工作:大部分只针对其中的一个子任务解决。

已有的集成解决方案:

两个子任务的模型联合训练
利用一组目标边界标签(例如: B, I, E, S和O)
和一组情感标签(例如POS, NEG, NEU)
进行联合训练

Unified Tagging Scheme: 两个子任务的边界,利用一组专门设计的标签

("统一标记方案")

Input	The	AMD	Turin	Processor	seems	to	always	perform	much	better	than	Intel	
Joint	0	В	I	E	0	0	0	0	0	0	0	S	0
Joint	0	POS	POS	POS	0	0	0	0	0	0	0	NEG	0
Unified	0	B-POS	I-POS	E-POS	0	0	0	0	0	0	0	S-NEG	0

Table 1: Tagging schemes used in the integrated approaches. "Joint" and "Unified" refers to joint and unified approaches respectively.

提出一种更完整的模型来解决这一问题

2021–12–23

A Unified Model for Opinion Target Extraction and Target Sentiment Prediction

unified tagging scheme

本文提出一种端到端的方案,通过一个应用"统一标记方案"的统一模型来完成TBSA。

模型包括两个LSTM:

上层预测统一标签进行初步TBSA

下层通过辅助目标边界预测来指导上层网络提升性能

任务定义

本文提出了一个 Target-Based Sentiment Analysis (**TBSA**)任务作为一个序列标注任务,给定一个序列采用如下标签进行标记:

其中B,I,E,S分别代表一个 aspect 的开始、一个 aspect 的中间部分、一个 aspect 的结尾、和单个 aspect; O 代表该字符不在一个 aspect 之内; POS、NEG、NEU 分别代表情感倾向为正向、负向、中性。如下图所示:

Input	The	AMD	Turin	Processor	seems	to	always	perform	much	better	than	Intel	
Laint	0	В	I	E	0	0	0	0	0	0	0	S	0
Joint	0	POS	POS	POS	0	0	0	0	0	0	0	NEG	0
Unified	0	B-POS	I-POS	E-POS	0	0	0	0	0	0	0	S-NEG	0

模型图

针对给定的输入序列 $X = (x_1, ..., x_T)$, 我们的目标是输出 $Y^S = (y_1^S, ..., y_T^S)$, 其中 $y_i^S \in \mathcal{Y}^S$

Input	The	AMD	Turin	Processor	seems	to	always	perform	much	better	than	Intel	
Laint	0	В	I	E	0	0	0	0	0	0	0	S	0
Joint	0	POS	POS	POS	0	0	0	0	0	0	0	NEG	0
Unified	0	B-POS	I-POS	E-POS	0	0	0	0	0	0	0	S-NEG	0

低层LSTM: 主要负责目标边界检测,即预测给定的 token 标签

高层LSTM: 主要负责预测标签序列,并以低层LSTM生成的隐含表示作为指导信息

Sentiment Consistency (SC): 情感一致性组件,结合前文特征到当前预测中,保持多词

目标的情感依赖

Boundary Guidance (BG): 边界引导组件,从辅助任务提取边界信息指导统一标签预测 Opinion–Enhanced (OE): 观点增强目标词检测组件,判定当前词是否为目标词

- 低层LSTM主要负责预测目标边界,即预测给定的 token 标数 $\mathcal{Y}^{\mathcal{T}} \in \{B, I, E, S, O\}$
- 高层LSTM预测标签序列,即标签POS/NEG/NEU
- 低层LSTM生成的隐含表示作为高层的指导信息。

$$h_t^{\mathcal{T}} = [\overrightarrow{\text{LSTM}}^{\mathcal{T}}(x_t); \overleftarrow{\text{LSTM}}^{\mathcal{T}}(x_t)],$$

$$h_t^{\mathcal{S}} = [\overrightarrow{\text{LSTM}}^{\mathcal{S}}(h_t^{\mathcal{T}}); \overleftarrow{\text{LSTM}}^{\mathcal{S}}(h_t^{\mathcal{T}})], \ \ \text{t} \in [1, T]$$

• 边界标签和统一标签的概率分数:

$$egin{aligned} z_t^{\mathcal{T}} &= \mathbf{p}\left(y_t^{\mathcal{T}}|x_t
ight) = \operatorname{Softmax}\!\left(\mathbf{W}^{\mathcal{T}}h_t^{\mathcal{T}}
ight) \ z_t^{\mathcal{S}} &= \mathbf{p}\left(y_t^{\mathcal{S}}|h_t^{\mathcal{T}}
ight) = \operatorname{Softmax}\!\left(\mathbf{W}^{\mathcal{S}}h_t^{\mathcal{S}}
ight) \end{aligned}$$

 $z_t^T \in \mathbb{R}^{|\mathcal{Y}^T|}$ 代表着该 token 作为 boundary tag 的概率

 $\mathbf{z}_t^S \in \mathbb{R}^{|\mathcal{Y}^S|}$ 在前者的基础上计算其附加情感倾向的概率

Boundary guided transition matrix

$$\mathbf{W}^{tr} \in \mathbb{R}^{|\mathcal{Y}^{\mathcal{T}}| imes |\mathcal{Y}^{\mathcal{S}}|}$$

$$\mathbf{W}_{i,j}^{tr} = egin{cases} rac{1}{|\mathcal{B}_i|}, & ext{if } j \in \mathcal{B}_i \ 0, & ext{Otherwise} \end{cases}$$

这里的 \mathcal{B}_i 是在给定 boundary tag i 的情况下,unified tag 的合理输出,比如 B 对应着 B-POS、B-NEG、B-NEU。最后 transition-based sentiment score $\mathbf{z}^{s'} \in \mathbb{R}^{|\mathcal{Y}^{s}|}$ 计算方式如下:

$$z_t^{\mathcal{S}'} = \left(\mathbf{W}^{tr}
ight)^ op z_t^\mathcal{T}$$

如果 z_t^T 差不多满足均匀分布的情况下,那么 $z_t^{s'}$ 也会差不多满足均匀分布

• Proportion scor $\alpha_t \in \mathbb{R}$:

$$egin{aligned} c_t &= \left(z_t^T
ight)^ op z_t^T \ lpha_t &= \epsilon c_t \end{aligned}$$

Final scores

$$ilde{z}_t^{\mathcal{S}} = lpha_t z_t^{\mathcal{S}'} + \left(1 - lpha_t
ight) z_t^{\mathcal{S}}$$

Maintaining Sentiment Consistency

Input	The	AMD	Turin	Processor	seems	to	always	perform	much	better	than	Intel	
Loint	0	В	Ι	E	0	0	0	0	0	0	0	S	0
Joint	0	POS	POS	POS	0	0	0	0	0	0	0	NEG	0
Unified	0	B-POS	I-POS	E-POS	0	0	0	0	0	0	0	S-NEG	0

• 从当前和之前步的特征中预测当前统一标签(使用门机制):

$$egin{aligned} ilde{h}_t^S &= g_t \odot h_t^S + (1 - g_t) \odot ilde{h}_{t-1}^S \ g_t &= \sigma \left(\mathbf{W}^g h_t^\mathcal{S} + \mathbf{b}^g
ight) \end{aligned}$$

• 之前的特征也会被考虑到当前预测中,避免同一目标中出现不同的情感。

Auxiliary Target Word Detection

该部分的主要作用就是,确保情感词和 aspect 同时出现,采用如下计算方式:

$$egin{aligned} z_t^{\mathcal{O}} &= \operatorname{Softmax} ig(\mathbf{W}^o h_t^{\mathcal{T}} ig) \ y_t^{\mathcal{O}} &= rg \max_y z_t^{\mathcal{O}} \end{aligned}$$

实验部分

数据集

来源:

1. SemEval ABSA Challenges

2. 推特数据库

DL: 笔记型电脑产品评价

DR: 2014 - 2016餐厅数据

DT: 2013年收集的推特推文数据

D	ataset	Train	Dev	Test	Total
	# POS	883	104	339	1326
\mathbb{D}_{L}	# NEG	754	106	130	990
	# NEU	404	46	165	615
	# POS	2337	270	1524	4131
\mathbb{D}_{R}	# NEG	942	93	500	1535
	# NEU	614	50	263	927
	# POS		-		692
\mathbb{D}_{T}	# NEG		-	263	
	# NEU			2244	

Table 2: Statistics of the datasets.

对比模型

CRF- Conditional Random Fields 条件随机场 (Mitcheel 2013)

CRF-pipeline:

CRF-joint: joint tagging scheme

CRF-unified: unified tagging scheme

NN-CRF 增强的CRF 模型,利用NN进行特征提取 (Zhang 2015)

NN- CRF-pipeline:

NN- CRF-joint: joint tagging scheme

NN- CRF-unified: unified tagging scheme

HAST-TNet (Li等人)

目标检测+情感分类 两个模型的 Pipeline

2021–12–23

对比模型

LSTM-unified

标准 LSTM模型: unified tagging scheme

LSTM- CRF

LSTM+CRF decoding 层

LM-LSTM-CRF

Language mode 增强LSTM-CRF模型

2021–12–23

实验结果

$$F_1 = 2 \cdot rac{precision \cdot recall}{precision + recall}$$

评估指标: standard precision (P) 、recall (R) 和F1 Score

	Model	. West	\mathbb{D}_{L}	190000	-723	\mathbb{D}_{R}	2.00		\mathbb{D}_{T}	TOTAL PROPERTY.
	Model	P	R	F1	P	R	Fl	P	R	FI
	CRF-joint	57.38	35.76	44.06	60.00	48.57	53.68	43.09	24.67	31.35
Evicting Decalines	CRF-unified	59.27	41.86	49.06	63.39	57.74	60.43	48.35	19.64	27.86
Existing Baselines	NN-CRF-joint	55.64	34.48	45.49	61.56	50.00	55.18	44.62	35.84	39.67
	NN-CRF-unified	58.72	45.96	51.56	62.61	60.53	61.56	46.32	32.84	38.36
Tambo Ma Maria Jawa	CRF-pipeline	59.69	47.54	52.93	52.28	51.01	51.64	42.97	25.21	31.73
Pipeline Baselines	NN-CRF-pipeline	57.72	49.32	53.19	60.09	61.93	61.00	43.71	37.12	40.06
The latest expension as	HAST-TNet	56.42	54.20	55.29	62.18	73.49	67.36	46.30	49.13	47.66
	LSTM-unified	57.91	46.21	51.40	62.80	63.49	63.14	51.45	37.62	43.41
Unified Baselines	LSTM-CRF-1	58.61	50.47	54.24	66.10	66.30	66.20	51.67	44.08	47.52
Unified Daseillies	LSTM-CRF-2	58.66	51.26	54.71	61.56	67.26	64.29	53.74	42.21	47.26
	LM-LSTM-CRF	53.31	59.4	56.19	68.46	64.43	66.38	43.52	52.01	47.35
	Base model	60.00	46.85	52.61	61.48	66.16	63.73	53.02	41.47	46.50
	Base model + BG	58.58	50.63	54.31	67.51	66.42	66.96	52.26	43.84	47.66
OURS	Base model $+$ BG $+$ SC	58.95	53.00	55.81	63.95	69.65	66.68	53.12	43.60	47.79
	Base model + BG + OE	63.43	49.53	55.62	62.85	66.77	65.22	53.10	43.50	47.78
	Full model	61.27	54.89	57.90 ^{\$,\$}	68.64	71.01	69.80 ^{±,‡}	53.08	43.56	48.01

消融研究

base model中辅助LSTM预测的边界信息对性能有所提升,加入BG后,由于边界限制,提升更加明显,SC和OE如果只是单独加入,则另外的组件信息无法提供指导,有时性能反而下降。

2,	Base model	60.00	46.85	52.61	61.48	66.16	63.73	53.02	41.47	46.50
	Base model + BG	58.58	50.63	54.31	67.51	66.42	66.96	52.26	43.84	47.66
OURS	Base model $+$ BG $+$ SC	58.95	53.00	55.81	63.95	69.65	66.68	53.12	43.60	47.79
	Base model $+$ BG $+$ OE	63.43	49.53	55.62	62.85	66.77	65.22	53.10	43.50	47.78
	Full model	61.27	54.89	57.90b.5	68.64	71.01	69.80h.#	53.08	43.56	48.01

例子

Input	В	ase model	Base	e model + BG	F	ull model
Input	Target	Complete	Target	Complete	Target	Complete
1. And the fact that it comes with an [i5 processor] _{POS} definitely speeds things up	i5 processor	[processor] _{POS} (X)	i5 processor	[i5 processor] _{POS}	i5 processor	[i5 processor] _{POS}
2. There were small problems with [mac office] _{NEG} .	mac office	$[mac]_{NEG}(X)$	mac office	[mac office] _{NEG}	mac office	[mac office] _{NEG}
3. The $[teas]_{POS}$ are great and all the $[sweets]_{POS}$ are homemade	teas, sweets	[teas] _{POS} , [sweets] _{POS}	teas, sweets, homemade (X)	[teas] _{POS} , [sweets] _{POS} , [homemade] _{POS} (X)	teas, sweets	[teas] _{POS} , [sweets] _{POS}
4. I love the [form factor] _{POS}	NONE	NONE	NONE	NONE	form factor	[form factor] _{POS}
5. I blame the $[Mac\ OS]_{NEG}$.	Mac OS	$[Mac_{\text{NEG}} OS_{\text{NEU}}] (X)$	Mac OS	$[Mac_{\text{NEG}} OS_{\text{POS}}] (X)$	Mac OS	$[Mac\ OS]_{NEG}$
	portobello	$[portobello_{ m NEG}]$	portobello	$[portobello_{ m NEG}]$	portobello	
6. Also, I personally wasn't a fan of the	and	$and_{ m NEG}$	and	$and_{ m NEG}$	and	[portobello and
$[portobello\ and\ asparagus\ mole]_{ exttt{NEG}}$.	asparagus	$ asparagus_{\rm NEG} $	asparagus	$asparagus_{ m NEU}$	asparagus	asparagus mole] _{NEG}
	mole	$[mole_{ m NEU}]$ ($m{X}$)	mole	$mole_{\text{NEU}}]$ (X)	mole	

base可以预测目标边界,但目标情感错误,两个LSTM没有准确预测边界信息, BG可以准确预测边界信息,但可能会存在边界检测错误,OE可以解决这个问 题,SC针对一些较长的目标词也可准确识别。

总结

本文的模型中,三个组件起到了很好的辅助作用,只加入BG时由于增加了边界信息,准确率会上升,但可能会从低层LSTM中获取错误的边界信息,检测边界错误,OE与SC的加入会改善这个问题,但单独加入时有时性能反而会下降,其中原因可能是OE会提供准确的目标词与非目标词给SC进行情感依赖处理,而SC会控制同一目标词中相同的情感信息,后续可以验证SC与OE的相互关系。