Relazione di Laboratorio 2 Esperienza A7 A.A. 2023/2024

Luciano Leotta Matricola 556372

13/12/2023

1 Cenni teorici

Lo scopo dell'esperienza è quello di determinare il valore dell'autoinduttanza L e della resistenza R_L della bobina in un circuito RL. La bobina presenta una resistenza "spuria", in quanto essa è un elemento reale del circuito, dovuta alla resistenza intrinseca degli avvolgimenti che la costituiscono. Per determinare tali valori si è usato un circuito composto da una resistenza ed una bobina collegate in serie e sottoposte ad una tensione variabile nel tempo:

Figure 1: Circuito RL

Tale circuito è equivalente a:

Figure 2: Circuito equivalente

Analizzando il circuito con il metodo simbolico, si ha:

$$Z_{bob}(\omega) = R_L + j\omega L \tag{1.1}$$

con Z_{bob} l'impedenza della bobina, la quale è determinata dalla resistenza della bobina e dal suo autoflusso. Il simbolo j rappresenta l'unità immaginaria, indicata con questo simbolo al fine di non creare confusione con la simbologia adottata per indicare l'intensità di corrente. Dunque il suo modulo risulta:

$$|Z_{bob}| = \sqrt{R_L^2 + \omega^2 L^2} \tag{1.2}$$

Il modulo della corrente che circola nel circuito RL serie è (con $V_{bob} \equiv V_{BC}$):

$$|I| = \frac{V_{bob}}{Z_{bob}} = \frac{V_{bob}}{\sqrt{R_L^2 + \omega^2 L^2}} = \frac{V_R}{R}$$
 (1.3)

Ergo:

$$\frac{V_{bob}}{V_R} = \frac{\sqrt{R_L^2 + \omega^2 L^2}}{R} \tag{1.4}$$

Dalla quale, elevando al quadrato ambo i membri, si ottiene:

$$\left(\frac{V_{bob}}{V_R}\right)^2 = \frac{L^2}{R^2}\omega^2 + \left(\frac{R_L}{R}\right)^2 \tag{1.5}$$

Per cui, si ha:

$$\left(\frac{V_{bob}}{V_R}\right)^2 = \left(\frac{2\pi L}{R}\right)^2 \nu^2 + \left(\frac{R_L}{R}\right)^2 \tag{1.6}$$

Dall'equazione 1.6 è possibile ricavare i valori di L e R_L utilizzando una procedura di best fit.

2 Strumenti e metodo di misura

Strumenti usati per eseguire l'esperimento:

- Multimetro digitale Proster BM4070
- Multimetro digitale Rigol DM3058
- Generatore di segnali Rigol DG1022
- Bobina dal valore nominale di induttanza pari a 100mH
- Resistenza dal valore nominale di $1K\Omega$
- Box per montaggio componenti
- Cavi a banana
- Cavi BNC-Coccodrillo

É stato costruito il seguente circuito:

Figure 3: Circuito costruito

Al fine di verificare la relazione 1.6 è necessario misurare la differenza di pontenziale ai capi della bobina V_{bob} e la differenza di potenziale ai capi della resistenza V_R . Per far ciò sono state montate le componenti in uno specifico box, il quale permette tramite uno switch di modificare i punti di uscita del segnale dal circuito, in modo tale che essi coincidano o con gli estremi della resistenza o con quelli della bobina. É stato collegato in ingresso al box un generatore di segnali ed è stato inviato al circuito un segnale di onda sinusoidale con ampiezza dal valore nominale $V_{pp} = 4V$. In uscita è stato collegato un multimetro digitale Rigol DM3058 al fine di misurare la differenza di potenziale ai capi dei componenti. Poiché i segnali in uscita dal circuito sono periodici è stato impostato il multimetro in modalità AC. Sono, dunque, stati misurati i valori di differenza di potenziale dei componenti del circuito per segnali a diverse frequenze.

3 Analisi dati

I valori misurati sono:

- $V_{pp} = (4.000 \pm 0.082)V$; valore di tensione fornita dal generatore di segnali
- Resistenza dal valore $R = (995.5 \pm 8.0)\Omega$; valore misurato con il multimetro Proster
- Induttanza dal valore $L = (100.1 \pm 2.6) mH$; valore misurato con il multimetro Proster

Gli errori sono stati valuti secondo le indicazioni fornite dai costruttori degli strumenti. Per la V_{pp} seguendo le indicazioni fornite dal manuale del generatore di segnali Rigol e per la resistenza e l'induttanza utilizzando il manuale del tester Proster.

Dati					
$V_{bob}(V)$	$\Delta V_{bob}(V)$	$V_R(V)$	$\Delta V_R(V)$	$\nu(Hz)$	$\Delta\nu(Hz)$
0.234	0.001	1.133	0.003	100.00	0.01
0.264	0.002	1.129	0.003	200.00	0.02
0.307	0.002	1.121	0.003	300.00	0.03
0.356	0.002	1.111	0.003	400.00	0.04
0.410	0.002	1.099	0.003	500.00	0.05
0.464	0.002	1.085	0.003	600.00	0.06
0.518	0.002	1.068	0.003	700.00	0.07
0.570	0.002	1.050	0.003	800.00	0.08
0.621	0.002	1.031	0.003	900.00	0.09
0.669	0.002	1.010	0.003	1000.00	0.10
0.715	0.002	0.989	0.003	1100.00	0.11
0.758	0.003	0.968	0.003	1200.00	0.12
0.798	0.003	0.946	0.003	1300.00	0.13
0.836	0.003	0.923	0.003	1400.00	0.14
0.872	0.003	0.901	0.003	1500.00	0.15
0.905	0.003	0.879	0.003	1600.00	0.16
0.935	0.003	0.858	0.003	1700.00	0.17
0.964	0.003	0.836	0.003	1800.00	0.18
0.990	0.003	0.816	0.003	1900.00	0.19
1.015	0.003	0.795	0.003	2000.00	0.20
1.037	0.003	0.775	0.003	2100.00	0.21
1.058	0.003	0.756	0.003	2200.00	0.22
1.078	0.003	0.737	0.002	2300.00	0.23
1.096	0.003	0.719	0.002	2400.00	0.24
1.113	0.003	0.702	0.002	2500.00	0.25
1.129	0.003	0.685	0.002	2600.00	0.26
1.143	0.003	0.668	0.002	2700.00	0.27
1.157	0.003	0.653	0.002	2800.00	0.28
1.170	0.003	0.638	0.002	2900.00	0.29
1.181	0.003	0.623	0.002	3000.00	0.30
1.230	0.003	0.557	0.002	3500.00	0.35
1.265	0.004	0.502	0.002	4000.00	0.40
1.291	0.004	0.456	0.002	4500.00	0.45
1.311	0.004	0.417	0.002	5000.00	0.50
1.326	0.004	0.383	0.002	5500.00	0.55
1.338	0.004	0.355	0.002	6000.00	0.60
1.348	0.004	0.330	0.002	6500.00	0.65
1.356	0.004	0.308	0.002	7000.00	0.70
1.363	0.004	0.289	0.002	7500.00	0.75
1.368	0.004	0.272	0.002	8000.00	0.80

Dati					
$V_{bob}(V)$	$\Delta V_{bob}(V)$	$V_R(V)$	$\Delta V_R(V)$	$\nu(Hz)$	$\Delta \nu(Hz)$
1.373	0.004	0.257	0.002	8500.00	0.85
1.378	0.004	0.243	0.001	9000.00	0.90
1.381	0.004	0.230	0.001	9500.00	0.95
1.384	0.004	0.219	0.001	10000.00	1.00

Gli errori sulle misure sono state calcolate utilizzando il manuale del generatore di segnali per la frequenza e il manuale del multimetro Rigol DM3058 per V_{bob} e V_R (tali valori sono valori rms).

É possibile ricavare R_L anche dalla relazione:

$$R_L = \frac{2\pi\nu L}{\tan(\phi)} \tag{3.1}$$

dove L è il coefficiente di autoinduttanza, ν la frequenza del segnale e ϕ la differenza di fase tra corrente e tensione.

Per determinare ϕ si è utilizzata la composizione dei vettori, come nella seguente figura:

Figure 4: Composizione vettori

Applicando il teorema di Carnot al triangolo OAC si ottiene:

$$V_{app}^{2} = V_{R}^{2} + V_{bob}^{2} - 2V_{R}V_{bob}cos(\pi - phi) = V_{R}^{2} + V_{bob}^{2} + 2V_{R}V_{bob}cos(\phi)$$
(3.2)

Da cui:

$$cos(\phi) = \frac{V_{app}^2 - V_R^2 - V_{bob}^2}{2V_R V_{bob}}$$
(3.3)

Dati				
$Cos(\phi)$	$\Delta Cos(\phi)$	$\nu(Hz)$	$\Delta\nu(Hz)$	
1.248	0.156	100.00	0.01	
1.102	0.138	200.00	0.02	
0.943	0.119	300.00	0.03	
0.805	0.104	400.00	0.04	
0.693	0.091	500.00	0.05	
0.604	0.082	600.00	0.06	
0.534	0.074	700.00	0.07	
0.477	0.068	800.00	0.08	
0.431	0.064	900.00	0.09	
0.393	0.061	1000.00	0.10	
0.361	0.058	1100.00	0.11	
0.333	0.056	1200.00	0.12	
0.310	0.054	1300.00	0.13	
0.290	0.053	1400.00	0.14	
0.272	0.052	1500.00	0.15	
0.257	0.052	1600.00	0.16	
0.243	0.051	1700.00	0.17	
0.231	0.051	1800.00	0.18	
0.220	0.051	1900.00	0.19	
0.210	0.051	2000.00	0.20	
0.201	0.051	2100.00	0.21	
0.193	0.051	2200.00	0.22	
0.185	0.052	2300.00	0.23	
0.179	0.052	2400.00	0.24	
0.172	0.053	2500.00	0.25	
0.166	0.053	2600.00	0.26	
0.161	0.054	2700.00	0.27	
0.156	0.054	2800.00	0.28	
0.151	0.055	2900.00	0.29	
0.147	0.056	3000.00	0.30	
0.130	0.060	3500.00	0.35	
0.117	0.065	4000.00	0.40	
0.107	0.070	4500.00	0.45	
0.099	0.075	5000.00	0.50	
0.093	0.081	5500.00	0.55	
0.087	0.087	6000.00	0.60	
0.083	0.093	6500.00	0.65	
0.079	0.099	7000.00	0.70	
0.075	0.105	7500.00	0.75	
0.072	0.111	8000.00	0.80	

Dati				
$Cos(\phi)$	$\Delta Cos(\phi)$	$\nu(Hz)$	$\Delta \nu(Hz)$	
0.068	0.117	8500.00	0.85	
0.065	0.124	9000.00	0.90	
0.063	0.130	9500.00	0.95	
0.060	0.137	10000.00	1.00	

Gli errori su $cos(\phi)$ sono stati determinati utilizzando la propagazione dell'errore:

$$\Delta cos(\phi) = \sqrt{\left(\frac{\partial cos(\phi)}{\partial V_{app}} \Delta V_{app}\right)^2 + \left(\frac{\partial cos(\phi)}{\partial V_R} \Delta V_R\right)^2 + \left(\frac{\partial cos(\phi)}{\partial V_{bob}} \Delta V_{bob}\right)^2}$$
(3.4)

Si può notare come a determinate frequenze vi sia $cos(\phi) > 1$ e ciò è impossibile. Ciò è dovuto, probabilmente, alle incertezze sulle misure delle tensioni. Inoltre, a frequenze superiori a 4000Hz, i valori di $cos(\phi)$ hanno un'elevata imprecisione che comporta una conseguente indeterminazione sull'angolo ϕ (si noti che per $cos(\phi) \to 0$, $\phi \to \frac{\pi}{2}$ e quindi $tan(\phi) \to \infty$). Tale indeterminazione si propaga naturalmente anche su $tan(\phi)$. Dunque 3.1 risulta inapplicabile ai dati raccolti, poiché non restituirebbe valori consistenti di R_L .

3.1 Best fit

La procedura di best fit che è stata utilizzata per l'analisi dei dati è basata sulla minimizzazione del χ^2 così definito:

$$\chi^{2} = \sum_{i=1}^{N} \frac{(y_{i} - F(x_{i}))^{2}}{\sigma_{y_{i}}^{2} + (\frac{\partial F(x_{i})}{\partial x} \sigma_{x_{i}})^{2}}$$
(3.5)

dove gli y_i sono i valori della variabile dipendente misurata, gli $F(x_i)$ sono i valori previsti dal modello nella sua forma funzionale (cioè dipendenti dai parametri che si desidera trovare), gli x_i sono i valori misurati della variabile indipendente i, σ_{y_i} sono gli errori associati alla variabile dipendente, i σ_{x_i} sono gli errori associati alla variabile indipendente ed N il numero di valori su cui si sta effettuando la procedura di best fit.

Poiché si è voluta verificare la relazione 1.6, è stato usato il modello:

$$Y = MX + Q \tag{3.6}$$
 in cui $Y = \left(\frac{V_{bob}}{V_R}\right)^2$, $X = \nu^2$, $M = \left(\frac{2\pi L}{R}\right)^2$ e $Q = \left(\frac{R_L}{R}\right)^2$.

Best Fit				
Y	ΔY	$X(Hz^2)$	$\Delta(Hz^2)$	
0.043	0.001	10000	2	
0.055	0.001	40000	8	
0.075	0.001	90000	18	
0.103	0.001	160000	32	
0.139	0.001	250000	50	
0.183	0.002	360000	72	
0.235	0.002	490000	98	
0.295	0.003	640000	128	
0.363	0.003	810000	162	
0.438	0.004	1000000	200	
0.522	0.005	1210000	242	
0.614	0.006	1440000	288	
0.713	0.006	1690000	338	
0.820	0.007	1960000	392	
0.935	0.008	2250000	450	
1.058	0.009	2560000	512	
1.189	0.010	2890000	578	
1.328	0.012	3240000	648	
1.474	0.013	3610000	722	
1.628	0.014	4000000	800	
1.790	0.016	4410000	882	
1.960	0.017	4840000	968	
2.137	0.019	5290000	1058	
2.323	0.021	5760000	1152	
2.516	0.023	6250000	1250	
2.718	0.024	6760000	1352	
2.926	0.026	7290000	1458	
3.143	0.029	7840000	1568	
3.366	0.031	8410000	1682	
3.598	0.033	9000000	1800	
4.878	0.046	12250000	2450	
6.351	0.062	16000000	3200	
8.021	0.081	20250000	4050	
9.890	0.103	25000000	5000	
11.961	0.128	30250000	6050	
14.223	0.158	36000000	7200	
16.699	0.191	42250000	8450	
19.374	0.229	49000000	9800	
22.266	0.272	56250000	11250	
25.354	0.320	64000000	12800	

Best Fit			
Y	ΔY	$X(Hz^2)$	$\Delta(Hz^2)$
28.667	0.373	72250000	14450
32.198	0.431	81000000	16200
35.945	0.496	90250000	18050
39.869	0.566	100000000	20000

Best Fit

Figure 5: Plot dati best fit

Best Fit

Figure 6: Best fit

I valori ottenuti eseguendo la procedura di best fit sono:

- $M = (3.970 \pm 0.007)10^{-7} \frac{H^2}{\Omega^2}$
- $Q = (3.920 \pm 0.036) 10^{-2}$

4 Conclusioni

Dai coefficienti ottenuti tramite best fit, utilizzando 3.6 si sono calcolati:

- $L = \frac{R}{2\pi} \sqrt{M} = (0.0998 \pm 0.0008)H$
- $R_L = R\sqrt{Q} = (197 \pm 2)\Omega$

Le incertezze su tali grandezze sono state determinate usando la propagazione dell'errore:

$$\Delta L = \sqrt{\left(\frac{\partial L}{\partial M}\Delta M\right)^2 + \left(\frac{\partial L}{\partial R}\Delta R\right)^2} \tag{4.1}$$

$$\Delta R_L = \sqrt{\left(\frac{\partial R_L}{\partial Q} \Delta Q\right)^2 + \left(\frac{\partial R_L}{\partial R} \Delta R\right)^2}$$
 (4.2)

Il valore di induttanza ottenuto è conforme al valore misurato di $L = (0.1001 \pm 0.0026)H$, ciò è in accordo con 1.6. Per la resistenza interna R_L non è stato possibile eseguire un controllo tramite lo sfasamento del segnale a causa delle frequenze scelte per effettuare le misure, in quanto tale metodo non ha prodotto un risultato consistente.

5 Bibliografia

- Slide A.A. 2023/2024, Professore F. Neri, Università degli Studi di Messina
- Mazzoldi; Nigro; Voci, Fisica 2, EdiSES
- Documentazione root: https://root.cern/doc/v628/