Institut für Angewandte Mathematik Priv.-Doz. Dr. K. Deckelnick Dipl.-Math. A. Veeser

[= 29 von 40 Plut.

Klausur zur Vorlesung

Mathematik für Ingenieure und Physiker I

WS 1997/98

Beachten Sie folgende Hinweise:

a) Benutzen Sie für jede Aufgabe ein eigenes Blatt. Versehen Sie jedes Blatt mit Ihrem Namen.

b) Begründen Sie Ihre Antworten, indem Sie auf Resultate aus der Vorlesung verweisen.

c) 20 der möglichen 40 Punkte sind hinreichend zum Bestehen der Klausur.

Aufgabe 1: Beweise durch vollständige Induktion

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}.$$

(3 Punkte)

√Aufgabe 2:

)

a) Berechne

$$\lim_{x \to \infty} \frac{x^{16} + 2x + 3}{2x^{16} + x^6} \text{ und } \lim_{n \to \infty} \frac{\ln n}{n}.$$

 $\mathcal{J}_{\mathrm{b}})$ Sei $q\in(0,1).$ Konvergiert die Reihe $\sum\limits_{k=1}^{\infty}k^{2}q^{k}$?

(3+2 Punkte)

In welchen Punkten ist die Funktion

$$f(x,y) := \begin{cases} \frac{x(y-1)}{x^4 + y^4} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

stetig?

(3 Punkte)

/ Aufgabe 4:

Berechne alle Lösungen der Gleichung

$$x^3 - 4x + 2 = 0$$

Hinweis: Bestimme zunächst mit Hilfe des Newtonverfahrens (2 Iterationen) einen Nährungswert \bar{x} für eine Nullstelle von x^3-4x+2 und spalte anschließend den Faktor $(x-\bar{x})$ ab. (5 Punkte)

Bestimme das globale Maximum und Minimum der Funktion

Raduk $f(x) = x^3 e^{-x}$

auf [0, 4].

(4 Punkte)

Aufgabe 6:

Berechne die Ableitung der Funktion $\arccos: [-1,1] \to I\!\! R$, wo sie existiert.

(3 Punkte)

Aufgabe 7:

Berechne das Taylorpolynom 2. Ordnung in (0,0) zur Funktion

$$f(x,y) = \sin x \, \sin y.$$

Ist (0,0) ein lokales Extremum?

(4 Punkte)

Aufgabe 8:

Berechne

$$\int \frac{\ln x}{x} dx \quad \text{und} \quad \int_{0}^{\pi} \cos^{2}x \ dx$$

$$\frac{2}{x} \cdot 2x \qquad (2+1 \text{ Punkte})$$

Aufgabe 9:

Für jede Teilaufgabe gibt es einen Punkt.

 \sqrt{a}) Gib $e^{j\frac{\pi}{4}}$ in kartesischen Koordinaten an.

vb) Berechne alle Lösungen von $z^2 + 2z + 5 = 0$.

 \sqrt{c}) Untersuche die Funktion $f: \mathbb{R} \to \mathbb{R}, f(x) := |x|$ auf Injektivität und Surjektivität.

d) Seien $f,g:\mathbb{R}\to\mathbb{R}^3$ differenzierba; zeige, daß die Funktion $f\cdot g:\mathbb{R}\to\mathbb{R}^3, t\mapsto f(t)\cdot g(t)$ ebenfalls differenzierbar ist und daß

$$\frac{d}{dt}(f \cdot g) = \frac{df}{dt} \cdot g + f \cdot \frac{dg}{dt}$$

gilt.

e) Zeige durch ein Gegenbeispiel, daß die Aussage

, ist $(a_k^2)_{k\in\mathbb{N}}$ konvergent, so auch $(a_k)_{k\in\mathbb{N}}$ nicht richtig ist.

f) Existiert der Grenzwert von

$$f(x) = \frac{1 - x}{1 - \sqrt{x}}$$

für $x \to 1$?

f(x) Zeige, daß die Funktion $f(x) := \sqrt{x}, x \ge 0$, in 0 nicht differenzierbar ist.

 $\sqrt{\mathbf{h}}$) Bestimme den Konvergenzradius der Potenzreihe $\sum_{k=0}^{\infty} k^2 x^k$.

i) Skizziere die Kurve $\gamma:[0,2\pi]\to I\!\!R^2, t\mapsto (\cos t,\,\cos t\sin t).$

j) Ist die Aussage

$$\int_{0}^{1} f(x) dx = 0 \implies f(x) = 0 \text{ für alle } x \in [0, 1]$$

richtig?

a) $\lim_{x \to \infty} \frac{x^{16} + 2 \cdot x^{2}}{2 \cdot x^{16} + x^{6}} = \frac{90}{40}$ $\Rightarrow Regel \quad von \quad de \quad e' \quad Hospital$ $\int (x) = \frac{16 \cdot x^{15} + 2}{2 \cdot x^{16} + x^{16}} = \frac{16 \cdot x^{16} + 2}{2 \cdot x^{16} + x^{16}} = \frac{16 \cdot x^{16} + 2}{2 \cdot x^{16} + x^{16}} = \frac{16 \cdot x^{16} + 2}{2 \cdot x^{16} + x^{16}} = \frac{16 \cdot x^{16} + 2}{2 \cdot x^{16} + x^{16}} = \frac{16 \cdot x^{16} + 2}{2 \cdot x^{16} + x^{16}} = \frac{16 \cdot x^{16} + 2}{2 \cdot x^{16}} = \frac{16 \cdot x^{16} + 2}{$

$$\frac{16x^{15}+2)(2x^{16}+x^{6})-(x^{16}+2x+3)(32x^{15}+6x^{5})}{(2x^{16}+x^{6})^{2}}$$

$$\frac{(x^{16} + 2x + 3) \cdot (2x^{16} + x^{6}) - \frac{1}{2} - \frac{1}{2}x^{6} \cdot 2x^{3} \cdot 3}{2x^{16} + x^{6}}$$

$$= \frac{1}{2}x^{6} \cdot 2x + 3$$

$$= \frac{1}{2}x^{6} + 2x + 3$$

=>
$$\lim_{x\to\infty} \frac{1}{2} - \frac{\frac{1}{2}x^6 + 2x + 3}{2x^{16} + x^6} = \frac{1}{2}$$

lin lun = 00 4

-) de l'Hospital

$$\lim_{n\to\infty}\frac{\ln n}{n}=0$$

$$\frac{1}{n} \cdot n - \ln n \cdot 1 = 1 - \ln n$$

$$= \begin{cases} 1/8 = 1 & \text{if } n < 1 \\ 1/8 = 1 & \text{if } n < 1 \end{cases}$$

$$= \begin{cases} 1/8 = 1 & \text{if } n < 1 \\ 1/8 = 1 & \text{if } n < 1 \end{cases}$$

$$= \begin{cases} 1/8 = 1 & \text{if } n < 1 \\ 1/8 = 1 & \text{if } n < 1 \end{cases}$$

$$= \begin{cases} 1/8 = 1 & \text{if } n < 1 \\ 1/8 = 1 & \text{if } n < 1 \end{cases}$$

$$= \begin{cases} 1/8 = 1 & \text{if } n < 1 \\ 1/8 = 1 & \text{if } n < 1 \end{cases}$$

$$= \begin{cases} 1/8 = 1 & \text{if } n < 1 \\ 1/8 = 1 & \text{if } n < 1 \end{cases}$$

hic beniesen (Vorlesg.) skrift.

En x languar, als x2

=> him har = c

10

(x,y) = (0,0) $\lim_{h \to \infty} f(x_{n_1}, x_{n_2}) = V \frac{1}{k} \left(-\frac{1}{k} - 1\right) = \lim_{h \to \infty} \frac{1}{h^{4}} + \frac{1}{h^{4}} = \lim_{h \to \infty} \frac{1}{h^{4}} + \frac{1}{h^{4}} = \lim_{h \to \infty} \frac$ $\lim_{k\to\infty} -\frac{1}{2}k^2 - \frac{1}{2}k^3 =$ f(x,y) ist im Panht xo = (0,0) micht stetig, $da - \infty \neq 0$ ist (0 = f(0,0))ander / übrige Punkte: => (x, y) + 0,0 ; him xny = xoz $\lim_{n\to\infty} f(x_{n_3}, x_{n_4}) = \lim_{n\to\infty} \frac{x_{n_3}(x_{n_4} - 1)}{x_{n_3}^{2} + x_{n_4}^{2}} = \frac{x_{0,1}(x_{02} - 1)}{x_{0,1}^{2} + x_{02}^{2}} = f(x_{0,1}, x_{02})$ => f(x,y) it un in Pht. (x,y) = (0,0) unstering! oder f(x,y) it absolve string, unsquamman Punht (0,0).

3

$$f'(x) = 3x^2 - 4$$

٧	2W	in	Interi	rell	Lo. 1	$J \rightarrow$	Nst.
=)	Start	-w	+:	a a	= X1		
				· ·	·		
	74	•4 -	Xn -	1'0	ra)		
		A company of the comp					
2)	Œ	1	= 4		-	
>) X	, =	0	2 =	2	(1	Iteration
				1 1 1			
	ך	, =	え - -	13	= 13	(2.	Iresat,

Homer - Schane:

$$\frac{7}{13}$$
 $\frac{49}{169}$ $\frac{-1,997}{-6,89}$

=>
$$(x^3 - 4x + 2)(x - \frac{1}{3}) = x^2 + \frac{1}{3}x - 3,71$$

->
$$x^2 + \frac{7}{13}x - 3,71 = 0$$

$$x_{2/3} = -\frac{7}{26} \pm \sqrt{\frac{49}{676} + 3.74}$$

$$X_{1} = \frac{7}{13}$$
, $X_{2} = 1.68$, $X_{3} = -2.21$

Nebanchag.

$$J(x) = x^{3}e^{-x}$$

$$J(x) = 3x^{2}e^{-x} + x^{3}(-1)e^{-x}$$

$$= 3x^{2}e^{-x} - x^{3}e^{-x} = e^{-x}(3x^{2} - x^{3})$$

$$J''(x) = -e^{-x}(3x^{2} - x^{3}) + e^{-x}(6x - 3x^{2})$$

$$= e^{-x}(3x^{2} + x^{3} + 6x - 3x^{2}) = e^{-x}(x^{2} - 6x^{2} + 6x)$$

$$J''(y) = e^{-x}(3x^{2} - x^{3}) = 0$$

$$X_{12} = 0$$

$$X_{2} = 0$$

$$X_{3} = 3$$

$$X_{3} = x^{3} = 0$$

$$X_{3} = 3$$

$$X_{3} = 0$$

4.7
$$P_2$$
 in $(0,0)$
 $S(X,Y) = Sin \times Sin Y$
 $S(X,Y) = Sin \times Cosy$
 $S(X,Y) = Sin \times Cosy$
 $S(X,Y) = Sin \times Cosy$
 $S(X,Y) = Sin \times Sin Y$
 $S(X,Y) =$

 $\int \frac{\ln x}{x} dx = \int$ - siche Volesungsonz. $=\frac{4}{2}\left(\pi+\sin x\cos x\right)^{x=\pi}=\frac{4}{2}\pi+\frac{4}{2}\left(-0\right)$

das fortaber vo le a dere disate

1. -4:
$$m=1$$
: $1 = \frac{1(\Lambda+\Lambda)}{2} = \Lambda$

T. -5: $m \mapsto m+\Lambda$:
$$\sum_{k=\Lambda}^{m+\Lambda} \sum_{k=1}^{m} k + m+\Lambda = \frac{m(m+\Lambda)}{2} + m+\Lambda = \frac{m^2 + m + 2m + 2}{2} = \frac{m^2 + 3m + 2}{2} = \frac{m+\Lambda(m+2)}{2}$$

(2) a)
$$\lim_{x\to\infty} \frac{x^{16} + 2x + 3}{2x^{16} + x^{6}} = \lim_{x\to\infty} \frac{x^{16} (1 + \frac{2}{x^{15}} + \frac{3}{x^{16}})}{x^{16} (2 + \frac{1}{x^{10}})} = \frac{1}{2}$$

$$\lim_{n\to\infty} \frac{\ln n}{n} = \lim_{n\to\infty} \frac{\ln n}{x} = (\mathcal{A}' \text{ Heyntal})$$

$$= \lim_{n\to\infty} \frac{1}{x} \cdot 1 = 0$$
Is a right of the second of the secon

(4)
$$x^3 - 4x + 2 = 0$$
: ungefolie Not bei $x_n = 1/7$

$$f(x) = x^3 - 4x + 2 : f'(x) = 3x^2 - 4$$

$$= 3x^2 - 4$$

$$(x^{3}-4x+2): (x-x_{4}) = x^{2}+x_{4}x+(x_{4}^{2}-4)$$

$$-(x^{3}-x_{4}x^{2}) = x_{4}x^{2}-4x+2$$

$$-(x_{4}x^{2}-4)x+2 = (x_{4}x^{2}-x_{4}^{2}x) = (x_{4}x^{2}-4)x-(x_{4}^{3}-4x_{4}) = 0$$

$$-(x_{4}x^{2}-4)x-(x_{4}^{3}-4x_{4}) = 0$$

=>
$$x^{2} + x_{4} \times + (x_{4}^{2} - 4) \stackrel{!}{=} 0$$

(=) $x_{4,2} = \frac{-x_{4} \pm \sqrt{x_{4}^{2} - 4x_{4}^{2} + 16}}{2}$

l"(3) = - = 2 Lohnult

(3)
$$f'(x) = 3x^{2}e^{-x} - x^{2}e^{-x}$$
 $f''(x) = 6x e^{-x} - 3x^{2}e^{-x} - 3x^{2}e^{-x} + x^{3}e^{-x} = (6x - 6x^{2} + x^{3})e^{-x}$
 $f(0) = 0$; $f(4) = \frac{6^{4}}{2^{4}} \approx 1.17$ Randwerte

Exchemiente: $f'(x) = 0$ (=) $(3x^{2} - x^{3})e^{-x} = 0$

(=) $3x^{2} - x^{3} = 0$ (=) $x = 0$ $y = 3$
 $f''(0) = 0$ Suttinget

mit
$$f(x) > 0$$
 für $x > 0$
=> $P(0|0)$ globales Kinimum
und $f(3) = \frac{27}{e^3} \approx 1,34 > f(4)$ landwet
=> $Q(3|\frac{27}{e^3})$ globales Maximum

6)
$$f(x) = cn x$$

 $g'(y) = \frac{1}{g'(x)} = \frac{1}{-\sin(cnc)x} = -\frac{1}{\sqrt{1-cn^2(cnc)x}} = -\frac{1}{\sqrt{1-x^2}}$
6) $f(x) = cn x$
 $f'(y) = \frac{1}{g'(x)} = -\sin(cnc)x$

8)
$$\int \frac{h}{x} dx = (\ln x)^2 - \int \frac{h}{x} dx$$
 (Produktintegration)
(=) $2 \int \frac{h}{x} dx = (\ln x)^2$
 $(=) \int \frac{h}{x} dx = \frac{1}{2} (\ln x)^2 + c$

$$\int_{0}^{\infty} \cos^{2}x \, dx = \left[\sin x \cos x\right] + \int_{0}^{\infty} \sin^{2}x \, dx = \int_{0}^{\infty} (1 - \cos^{2}x) \, dx$$

(b)
$$e^{2}+2+5=0$$
 (=) $e_{112}=-\frac{2}{2}\pm\sqrt{\frac{4}{4}-5}=-1\pm2j$

c) inj. ? nein, dann 1. D.
$$x_1 \neq x_2$$
 mit $x_1 = 1$; $x_2 = -1$
 $\Rightarrow f(x_1) = 1 = f(x_2) = 1$

f)
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1-x}{1-\sqrt{x}} = \lim_{x \to 0} \frac{(1-\sqrt{x})(1+\sqrt{x})}{1-\sqrt{x}} = 2$$