INE5403 - Fundamentos de Matemática Discreta para a Computação

- 5) Relações
 - 5.1) Relações e Dígrafos
 - 5.2) Propriedades de Relações
 - 5.3) Relações de Equivalência
 - 5.4) Manipulação de Relações
 - 5.5) Fecho de Relações

- Ligações entre elementos de conjuntos são representadas utilizando uma estrutura chamada <u>relação</u>.
- Relações podem ser usadas para resolver problemas tais como:
 - Determinar quais pares de cidades são ligadas por linhas aéreas em uma rede
 - Busca de uma ordem viável para as diferentes fases de um projeto
 - Elaboração de um modo útil de armazenar informação em bancos de dados computacionais

<u>**Definição**</u>: Um par ordenado (a,b) é uma lista de objetos a e b em uma ordem estabelecida, com a aparecendo em primeiro e b em segundo.

 dois pares ordenados (a₁,b₁) são ditos iguais (a₂,b₂) se e somente se a₁=a₂ e b₁=b₂.

Definição: Se A e B são dois conjuntos não-vazios, define-se o produto cartesiano A×B como o conjunto de *todos* os pares ordenados (a,b), com a∈ A e b∈ B:

$$A \times B = \{(a,b) \mid a \in A \in b \in B\}$$

Exemplo:
$$A = \{1,2,3\}$$
 e $B = \{r,s\}$
 $A \times B = \{(1,r),(1,s),(2,r),(2,s),(3,r),(3,s)\}$

<u>Exemplo</u>: Uma firma de pesquisa em marketing classifica uma pessoa de acordo com 2 critérios:

- 1. sexo: m=masculino; f=feminino
- grau de escolaridade:
 g=ginásio; m=médio; f=faculdade; p=pós-graduação
- sejam $S=\{m,f\}$ e $L=\{g,m,f,p\}$
- S×L contém todas as categorias de classificação (8)
- (f,f) representa mulheres que completaram a faculdade
- Obs.: para quaisquer conjuntos finitos não-vazios A e B, temos:

$$|A \times B| = |A|.|B|$$

<u>Definição</u>: Sejam A e B conjuntos. Uma *relação binária* R de A em B é um subconjunto de A×B.

- Ou: uma relação binária de A em B é um conjunto R de pares ordenados, onde o 1º elemento de cada par vem de A e o 2º vem de B, ou seja, R ⊆ A×B.
- Quando (a,b) ∈ R, diz-se que a está relacionado com b por R.
- Usa-se a notação a R b para denotar que (a,b)∈ R.
- Se a não está relacionado com b por R, escreve-se a R b.
- Relações binárias representam ligações entre elementos de 2 conjuntos.
 - veremos também relações n-árias
 - vamos omitir a palavra "binária"

Exemplo: Sejam $A = \{1,2,3\}$ e $B = \{r,s\}$.

 $-R=\{(1,r),(1,s),(2,s),(3,r)\}$ é uma relação de A em B.

Pode-se dizer: 1 R r, 1 R s, 2 R s, 3 R r

- Mas: 3 ₱ s

Esta relação também pode ser representada por:

R	r	S
1	×	×
2		×
3	×	

Exemplo: Seja A=B={1,2,3,4,5}. Define-se a relação R (menor do que) sobre A como:

- a R b se e somente se a<b.
- Neste caso: $R = \{(1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5)\}$

Exemplo: Seja A o conjunto de todas as cidades e seja B o conjunto dos 3 estados da região sul do Brasil.

- (a,b) ∈ R se a cidade a está no estado b
- Por exemplo, (Florianópolis, SC), (Maringá, PR),
 (Curitiba, PR) e (Porto Alegre, RS) estão em R.

 Observe que o que realmente importa em uma relação é que nós saibamos precisamente quais elementos em A estão relacionados a quais elementos em B.

Exemplo: A={1,2,3,4} e R é uma relação de A em A.

- Se sabemos que 1 R 2, 1 R 3, 1 R 4, 2 R 3, 2 R 4 e 3 R 4, então nós sabemos tudo que é preciso saber sobre R
- Na verdade, R é a relação < (menor do que), mas isto nós não precisamos saber: a lista já é suficiente.
- Podemos então escrever:
 R={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}
 pois R é completamente determinada pela lista de pares.

Relações sobre um conjunto

<u>Definição</u>: Uma *relação sobre o conjunto A* é uma relação de A para A.

ou seja, é um subconjunto de A×A.

Exemplo: Seja A o conjunto {1,2,3,4}. Quais pares ordenados estão na relação R={(a,b) | a divide b}?

$$R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$$

Note que:

$$A \times A = \{(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,3), (3,4), (4,1), (4,2), (4,3), (4,4)\}$$

Relações sobre um conjunto

Exemplo: Considere as seguintes relações sobre o conjunto dos inteiros:

$$R_1 = \{ (a,b) \mid a \le b \}$$

 $R_2 = \{ (a,b) \mid a > b \}$
 $R_3 = \{ (a,b) \mid a = b \text{ ou } a = -b \}$
 $R_4 = \{ (a,b) \mid a = b \}$
 $R_5 = \{ (a,b) \mid a = b+1 \}$
 $R_6 = \{ (a,b) \mid a+b \le 3 \}$

Quais destas relações contêm cada um dos pares (1,1),(1,2),(2,1),(1,-1) e (2,2)?

```
Resp.: (1,1) está em R_1, R_3, R_4 e R_6 (1,2) está em R_1 e R_6 (2,1) está em R_2, R_5 e R_6 (1,-1) está em R_2, R_3 e R_6 (2,2) está em R_1, R_3 e R_4
```

Relações sobre um conjunto

- Quantas relações podem ser construídas sobre um conjunto com n elementos?
 - Uma relação sobre A é um subconjunto de A×A
 - A×A tem n² elementos
 - Um conjunto com m elementos tem 2^m subconjuntos
 - Logo, há 2^{n²} subconjuntos de A×A
 - O que significa que há 2^{n²} relações possíveis sobre um conjunto com n elementos.

Definição: Seja R ⊆ A×B uma relação de A em B. Então:

- a) *Domínio* de R, denotado por Dom(R):
 - Conjunto dos elementos em A que estão relacionados com algum elemento em B
 - ou: Dom(R) é o subconjunto de A formado por todos os primeiros elementos nos pares que aparecem em R
- b) *Contradomínio* de R, denotado por Ran(R):
 - Conjunto dos elementos em B que são segundos elementos de pares de R
 - ou: Ran(R) é o conjunto de todos os elementos em B que são relacionados a algum elemento em A
- ou seja: elementos de A que não estão em Dom(R) não estão envolvidos na relação R de modo algum
 - idem para elementos de B que não estão em Ran(R)

Exemplo: Se R é a relação sobre A={1,2,3,4,5} dada por a R b se e somente se a
b, então:

$$Dom(R) = \{1,2,3,4\}$$

$$Ran(R) = \{2,3,4,5\}$$

Nota: $R = \{(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)\}$

Definição: Se x∈A, define-se o conjunto R(x) dos <u>R-relativos de x</u> como sendo o conjunto de todos os y em B com a propriedade de que x está relacionado a y por R (x R y).

- ou seja: $R(x) = \{ y \in B \mid x R y \}$

<u>Definição</u>: Similarmente, se $A_1 \subseteq A$, então $R(A_1)$, o conjunto dos <u>R</u><u>relativos de A_1 </u> é o conjunto de todos os y em B com a
propriedade de que x está relacionado a y por R com $x \in A_1$.

- ou seja: $R(A_1) = \{ y \in B \mid x R y \text{ para algum } x \in A_1 \}$

Obs.: note que $R(A_1)$ é a união dos conjuntos R(x), onde x∈ A_1

Conjuntos R-relativos

```
Exemplo: Seja A=B={a,b,c,d} e seja
    R={(a,a),(a,b),(b,c),(c,a),(d,c),(c,b)}
Então:

R(a) = {a,b}
    R(b) = {c}
    se A<sub>1</sub>={c,d}, então R(A<sub>1</sub>)={a,b,c}

Dom(R) = {a,b,c,d}

Ran(R) = {a,b,c}
```

Operações em conjuntos R-relativos

<u>Teorema</u>: Seja R uma relação de A em B e sejam A₁ e A₂ subconjuntos de A. Então:

- a) Se $A_1 \subseteq A_2$, então $R(A_1) \subseteq R(A_2)$
- b) $R(A_1 \cup A_2) = R(A_1) \cup R(A_2)$
- c) $R(A_1 \cap A_2) \subseteq R(A_1) \cap R(A_2)$

Exemplo: Seja A=B=Z, seja R a relação \leq , e sejam A₁={0,1,2} e A₂={9,13}. Então:

- R(A₁) consiste de todos os n tais que 0≤n ou 1≤n ou 2≤n.
- Portanto, $R(A_1) = \{0,1,2,...\}$
- Similarmente, R(A₂)={9,10,...}
- De modo que $R(A_1) \cap R(A_2) = \{9, 10, ...\}$
- Entretanto, $A_1 \cap A_2 = \emptyset$, o que indica que $R(A_1 \cap A_2) = \emptyset$

- Note que os conjuntos R(a), para a em A, determinam completamente uma relação R.
- <u>Teorema</u>: Sejam R e S relações de A em B. Se R(a)=S(a) para todo a∈A, então R=S.

Prova:

- Se a R b, então b∈ R(a). Portanto, b∈ S(a) e a S b. (R⊆S)
- Se a S b, então b∈ S(a). Portanto, b∈ R(a) e a R b. (S⊆R)
- Logo, R=S

Representando relações

- Há muitas maneiras de representar uma relação entre conjuntos finitos.
- Uma maneira é listar os pares ordenados.
- Também se pode usar:
 - matrizes de zeros e 1's
 - grafos direcionados (dígrafos)

Matrizes de relações

<u>Definição</u>: Se $A = \{a_1, a_2, ..., a_m\}$ e $B = \{b_1, b_2, ..., b_n\}$ são conjuntos finitos e R é uma relação de A em B, então R pode ser representada pela matriz m×n $M_R = [m_{ii}]$, definida como:

$$\mathbf{m}_{i,j} = \begin{cases} 1 & \text{se } (\mathbf{a}_i, \mathbf{b}_j) \in \mathbf{R} \\ 0 & \text{se } (\mathbf{a}_i, \mathbf{b}_j) \notin \mathbf{R} \end{cases}$$

M_R é denominada de <u>matriz de R</u>

Exemplo: Sejam $A=\{1,2,3\}$ e $B=\{r,s\}$ e a relação R de A em B dada por $R=\{(1,r),(2,s),(3,r)\}$. Então a matriz M_R de R é:

$$\mathbf{M}_{\mathbf{R}(3\times2)} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Matrizes de relações

Exemplo: Defina a relação representada pela matriz:

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

Solução: Como M é 3×4, fazemos:

$$A = \{a_1, a_2, a_3\}$$
 e $B = \{b_1, b_2, b_3, b_4\}$

– Então, como (a_i,b_j)∈R se e somente se m_{ij}=1, temos:

$$R = \{(a_1, b_1), (a_1, b_4), (a_2, b_2), (a_2, b_3), (a_3, b_1), (a_3, b_3)\}$$

Representação de relações com dígrafos

- <u>Definição</u>: Se A é um conjunto finito e R é uma relação sobre A, então R pode ser representada graficamente como segue:
 - desenhe um pequeno círculo para cada elemento de A e o nomeie com o correspondente elemento de A → vértices
 - desenhe uma linha orientada, chamada de aresta, do vértice a_i para o vértice a_i se (a_i,a_i)∈R

A representação gráfica que resulta é chamada de "grafo direcionado" ou *dígrafo* de R.

 Portanto, se R é uma relação sobre A, as arestas do dígrafo de R correspondem exatamente aos pares em R e os vértices correspondem aos elementos do conjunto A.

Representação de relações usando dígrafos

Exemplo: Sejam
$$A=\{1,2,3,4\}$$
 e $R=\{(1,1),(1,2),(2,1),(2,2),(2,3),(2,4),(3,4),(4,1)\}$

O dígrafo de R é:

Representação de relações usando dígrafos

Exemplo: Encontre a relação determinada pela figura abaixo:

Solução:

$$R = \{(1,1), (1,3), (2,3), (3,2), (3,3), (4,3)\}$$

Representação de relações usando dígrafos

- Note que dígrafos nada mais são do que representações geométricas de relações.
 - ⇒ qualquer afirmação feita a respeito de um dígrafo é na verdade uma afirmação sobre a relação correspondente.
- Isto é especialmente importante para teoremas sobre relações e suas provas:
 - frequentemente é mais fácil ou mais claro estabelecer um resultado em termos gráficos, mas a prova vai sempre estar ligada à relação associada.

Relações e dígrafos

<u>Definição</u>: Se R é uma relação sobre um conjunto A e a∈ A, então:

- i) O <u>grau de entrada de a</u> (com relação a R) é o número de elementos b∈ A tais que (b,a)∈ R.
- ii) O <u>grau de saída de a</u> é o número de elementos b∈A tais que (a,b)∈R.
 - Note que o grau de saída de a é |R(a)|

Relações e dígrafos

Exemplo: Seja A={a,b,c,d} e seja R uma relação sobre A que tenha como matriz:

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Construa o dígrafo de R e liste os graus de entrada e de saída dos vértices.

<u>Resp.</u>: $R = \{(a,a),(b,b),(c,a),(c,b),(c,c),(d,b),(d,d)\}$

<u>Definição</u>: Seja R uma relação sobre o conjunto A. Um <u>caminho de</u> <u>comprimento n</u> em R de a para b é uma seqüência finita $\pi=a,x_1,x_2,...,x_{n-1}$,b tal que:

a R
$$x_1$$
, x_1 R x_2 , ..., x_{n-1} R b

- Note que um caminho de comprimento n envolve n+1 elementos de A (não necessariamente distintos).
- O modo mais fácil de visualizar um caminho é com o dígrafo de uma relação:

sucessão de arestas, seguindo os sentidos indicados.

Exemplo: Considere o dígrafo:

Então:

 $\pi_1 = 1,2,5,4,3$ é um caminho de comprimento 4 de 1 a 3

 π_2 = 1,2,5,1 é um caminho de comprimento 3 do vértice 1 para ele mesmo

 π_3 = 2,2 é um caminho de comprimento 1 do vértice 2 para ele mesmo

- Um caminho que começa e termina no mesmo vértice é chamado de um <u>ciclo</u> (π_2 e π_3 são ciclos).
- Caminhos de comprimento 1 podem ser identificados pelos pares ordenados (x,y) que pertencem a R.
- Caminhos em relações R podem ser usados para definir novas relações bastante úteis.

<u>Definição</u>: (relação Rⁿ sobre A)

x Rⁿ y significa que há um *caminho de comprimento n* de x até y em R.

Definição: (relação R[∞] sobre A)

x R[∞] y significa que há algum caminho em R de x até y. (R[∞] é chamada de *relação de conectividade* para R)

- Note que Rⁿ(x) consiste de todos os vértices que podem ser alcançados a partir de x por meio de um caminho em R de comprimento n.
- O conjunto R[∞](x) consiste de todos os vértices que podem ser alcançados a partir de x por meio de <u>algum</u> caminho em R.

Exemplo1: Seja A o conjunto de todos os seres humanos vivos e seja R a relação "conhecimento mútuo" (a R b significa que a e b se conhecem). Então:

- A R² b significa que a e b têm um conhecido em comum.
- Em geral, $a \, \mathbb{R}^n \, b$ se a conhece alguém (x_1) , que conhece x_2 , ..., que conhece x_{n-1} , que conhece b.
- Finalmente, a R[∞] b significa que existe alguma lista encadeada de conhecidos que começa em a e termina em b.
- Questão: será que toda dupla de brasileiros está relacionada por R∞?

Exemplo2: Seja A o conjunto de cidades brasileiras, e seja x R y se há algum vôo direto (de alguma cia aérea) de x para y.

- x e y estão relacionados por Rⁿ se for possível agendar um vôo de x para y com exatamente n-1 paradas intermediárias
- x R[∞] y se for possível ir de avião de x para y.

Exemplo3: Seja A={1,2,3,4,5,6} e sejam os dígrafos das relações R e R² sobre A dados por:

Exemplo3 (cont.):

 Uma linha conecta 2 vértices no dígrafo para R₂ somente se existir um caminho de comprimento 2 conectando os mesmos vértices no dígrafo para R₁.

Portanto:

```
1 R<sup>2</sup> 2 porque 1 R 2 e 2 R 2
1 R<sup>2</sup> 4 porque 1 R 2 e 2 R 4
1 R<sup>2</sup> 5 porque 1 R 2 e 2 R 5
2 R<sup>2</sup> 2 porque 2 R 2 e 2 R 2
e assim sucessivamente.
```

 De um modo similar, podemos construir o dígrafo de Rⁿ para qualquer n.

Exemplo4: Sejam A=
$$\{a,b,c,d,e\}$$
 e R= $\{(a,a),(a,b),(b,c),(c,e),(c,d),(d,e)\}$. Compute (a) R² (b) R^{\infty}

Solução: o dígrafo de R é dado por:

(a) Portanto: $R^2 = \{(a,a),(a,b),(a,c),(b,e),(b,d),(c,e)\}$

Exemplo4 (cont.):

(b) R[∞] = "todos os pares ordenados de vértices para os quais há um caminho de qualquer comprimento do primeiro vértice para o segundo"

ou seja:

$$R^{\infty} = \{(a,a),(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e)\}$$

- Por exemplo, (a,d)∈ R[∞], já que há um caminho de comprimento 3 de a para d: "a,b,c,d".
- Similarmente, (a,e)∈ R[∞], já que há um caminho de comprimento 3 de a para e: "a,b,c,e" (assim como "a,b,c,d,e")

Produto booleano

Exemplo: Encontre o produto booleano de A e B, onde:

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

$$A \otimes B = \begin{bmatrix} (1 \wedge 1) \vee (0 \wedge 0) & (1 \wedge 1) \vee (0 \wedge 1) & (1 \wedge 0) \vee (0 \wedge 1) \\ (0 \wedge 1) \vee (1 \wedge 0) & (0 \wedge 1) \vee (1 \wedge 1) & (0 \wedge 0) \vee (1 \wedge 1) \\ (1 \wedge 1) \vee (0 \wedge 0) & (1 \wedge 1) \vee (0 \wedge 1) & (1 \wedge 0) \vee (0 \wedge 1) \end{bmatrix}$$

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} 1 \vee 0 & 1 \vee 0 & 0 \vee 0 \\ 0 \vee 0 & 0 \vee 1 & 0 \vee 1 \\ 1 \vee 0 & 1 \vee 0 & 0 \vee 0 \end{bmatrix}$$

Exemplo: Sejam A e R como no exemplo anterior. Então:

$$1 = (0 \land 0) \lor (0 \land 0) \lor \overline{(1 \land 1)} \lor (0 \land 0) \lor (0 \land 0)$$

 Seja R uma relação sobre A={a₁,a₂,...,a_n} e seja M_R uma matriz n×n representando R.

Teorema: Se R é uma relação sobre $A = \{a_1, a_2, ..., a_n\}$ então:

$$M_{R^2} = M_R \otimes M_R$$

Prova:

- Seja $M_R = [m_{ij}]$ and $M_{R2} = [n_{ij}]$;
- o elemento n_{ij} de M_R⊗M_R será = 1 se a <u>linha i</u> do 1º M_R e a <u>coluna j</u> do 2º M_R tiverem um nº 1 na mesma posição relativa (digamos k);
- ou seja, $n_{ij}=1$ se $m_{ik}=1$ e $m_{kj}=1$ para algum k \Rightarrow se $n_{ij}=1$, então $a_i R a_k$ e $a_k R a_j$
- portanto, $n_{ij}=1 \implies a_i R^2 a_j$.

Esta idéia pode ser generalizada:

Teorema: Para n ≥ 2 e para uma relação R sobre A, temos:

$$M_{R^n} = M_R \otimes M_R \otimes ... \otimes M_R$$
 (n fatores)

- Exercício: Para a relação R cujo dígrafo é dado abaixo,
 - a) Desenhe os dígrafos de R² e R[∞]
 - b) Encontre M_R² e M_R[∞]

