Chapter 6: Differentiable Functions

6.1 Limits of functions

We review some standard facts on limits of functions. See Chapter 4 of MA2108 for more details.

Roughly speaking, we say that a function f has a limit L at the point x = a if

$$x \approx a \Longrightarrow f(x) \approx L$$
.

Definition Let the function f be defined in a deleted neighborhood of a. We say that the real number L is the limit of f at a if for any given $\varepsilon > 0$, there exists $\delta = \delta(\varepsilon) > 0$ such that

$$0 < |x - a| < \delta \Longrightarrow |f(x) - L| < \varepsilon$$
.

In this case, we write

$$\lim_{x \to a} f(x) = L.$$

Sequential Criterion for limits

 $\lim_{x\to a} f(x) = L \iff \text{If } (x_n) \text{ is any sequence in the domain of } f \text{ such that } x_n \neq a \text{ for all } n \text{ and } x_n \to a, \text{ then } f(x_n) \to L.$

Consequences:

- 1. If there is a sequence (x_n) in the domain of f such that $x_n \neq a$ for all n and $x_n \to a$, but $f(x_n) \not\rightarrow L$, then $\lim_{x\to a} f(x) \neq L$.
- 2. *Divergent Criterion*. To prove that $\lim_{x\to a} f(x)$ does not exist:
 - (a) Method 1. Find a sequence (x_n) in the domain of f such that $x_n \neq a$ for all n and $x_n \to a$, but $(f(x_n))$ diverges.
 - (b) *Method* 2. Find two sequences (x_n) and (y_n) in the domain of f such that $x_n \neq a$ and $y_n \neq a$ for all n and $x_n \to a$, $y_n \to a$, but $\lim_{n \to \infty} f(x_n) \neq \lim_{n \to \infty} f(y_n)$.

Exercise (Revision) Suppose that the limit $\lim_{x \to a} f(x) = L$ exists.

(i) Prove that if L > 0, then there exists $\delta > 0$ such that

$$0 < |x - a| < \delta \Longrightarrow f(x) > 0$$
.

(ii) Prove that if $L \neq 0$, then there exists $\delta > 0$ such that

$$0 < |x - a| < \delta \Longrightarrow f(x) \neq 0.$$

Definition A function f is said to be *continuous* at a if $\lim_{x \to a} f(x) = f(a)$.

Other types of limits:

Two sided limit at aOne-sided limits at aLimit at infinity $\lim_{x \to a} f(x) = L$ $(left-hand limit) \lim_{x \to a^{-}} f(x) = L$ $\lim_{x \to \infty} f(x) = L$ $(right-hand limit) \lim_{x \to a^{+}} f(x) = L$ $\lim_{x \to -\infty} f(x) = L$

(Finite limit) $L \in \mathbb{R}$ (Infinite limit) $L = \infty, -\infty$

6.2 The derivative

Definition A function f is said to be *differentiable* at the point a if f is defined in some open interval containing a and the limit

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

exists. In this case, f'(a) is called the *derivative* of f at a.

Remark

(i) By letting h = x - a, we can write f'(a) as the limit

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

(ii) Geometrically, f'(a) is the slope of the tangent line to the curve y = f(x) at x = a.

Definition

(a) (Differentiable functions on open intervals)

If f is differentiable at every point in (a, b), then we say that f is differentiable on (a, b).

(b) (Differentiable functions on closed intervals)

If the function $f:[a,b] \to \mathbb{R}$ is such that

- (i) f is differentiable on (a, b); and
- (ii) the one-sided limits

$$L_1 = \lim_{x \to a^+} \frac{f(x) - f(a)}{x - a}, \quad L_2 = \lim_{x \to b^-} \frac{f(x) - f(b)}{x - b}$$

exist,

then we say that f is differentiable on [a, b].

In this case, we define

$$f'(a) := L_1, \quad f'(b) = L_2.$$

Question: How should we define differentiable functions on other types of intervals [a, b), $[a, \infty)$, (a, b], $(-\infty, b]$ and $(-\infty, \infty)$?

Definition Let f be differentiable on the interval I. Then the derivative of f is the function $f': I \to \mathbb{R}$ given by

$$x \to f'(x), \quad x \in I.$$

We also write $f'(x) = \frac{d}{dx}f(x)$ as a function of x, and write the derivative of f at the point a as

$$f'(a) = \left. \frac{d}{dx} f(x) \right|_{x=a}.$$

Definition We say that f is continuously differentiable on I if f is differentiable on I and f' is continuous on I.

Notation The collection of all functions which are continuously differentiable on I is denoted by $C^1(I)$.

Example For any constant c, $\frac{d}{dx}(c) = 0$, i.e. the derivative of a constant function is the zero function.

Proof. Let f(x) = c. Then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c - c}{h} = \lim_{h \to 0} \frac{0}{h} = 0. \square$$

Example $\frac{d}{dx}(x) = 1$, i.e. the derivative of x is the constant function 1.

Proof. Let f(x) = x. Then

$$f'(x) = \lim_{h \to 0} \frac{(x+h) - x}{h} = \lim_{h \to 0} \frac{h}{h} = 1. \square$$

Exercise Prove that for $n \in \mathbb{N}$, $\frac{d}{dx}(x^n) = nx^{n-1}$. So $x^n \in C^1(\mathbb{R})$.

Theorem 6.2.1. If f is differentiable at a, then it is continuous at a.

Proof. We have

$$\lim_{x \to a} f(x) = \lim_{x \to a} \{ f(x) - f(a) \} + \lim_{x \to a} f(a)$$

$$= \lim_{x \to a} \left\{ \frac{f(x) - f(a)}{x - a} \cdot (x - a) \right\} + f(a)$$

$$= \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \cdot \lim_{x \to a} (x - a) + f(a)$$

$$= f'(a) \cdot 0 + f(a)$$

$$= f(a).$$

Remark

(a) By the above theorem, if f is not continuous at a, then it is not differentiable at a.

(b) f continuous at $a \implies f$ differentiable at a.

Example Let f(x) = |x|. Then f is continuous at 0.

Note that

$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{|x| - 0}{x - 0} = \lim_{x \to 0^{+}} \frac{x}{x} = 1,$$

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{|x| - 0}{x - 0} = \lim_{x \to 0^{-}} \frac{-x}{x} = -1.$$

So

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}$$

does not exist, and f is not differentiable at 0.

Remark

- (i) By extending the corners of the graph of |x|, we obtain continuous functions which are not differentiable at any finite number of points or at countably infinite number of points.
- (ii) There exists a continuous function on \mathbb{R} which is not differentiable anywhere. We will discuss the construction of such a function in Chapter 8.

Theorem 6.2.2. Let f and g be differentiable at a. Then

(a)
$$\frac{d}{dx}[f(x) \pm g(x)]\Big|_{x=a} = f'(a) \pm g'(a).$$

(b) (Product Rule)

$$\left. \frac{d}{dx} f(x)g(x) \right|_{x=a} = f'(a)g(a) + f(a)g'(a).$$

(c) (Quotient Rule) If $g(a) \neq 0$, then

$$\left. \frac{d}{dx} \frac{f(x)}{g(x)} \right|_{x=a} = \frac{f'(a)g(a) - f(a)g'(a)}{(g(a))^2}.$$

Proof. (a) Exercise.

(b) We have

$$\begin{aligned} \frac{d}{dx}f(x)g(x)\Big|_{x=a} &= \lim_{x \to a} \frac{f(x)g(x) - f(a)g(a)}{x - a} \\ &= \lim_{x \to a} \frac{f(x)g(x) - f(x)g(a) + f(x)g(a) - f(a)g(a)}{x - a} \\ &= \lim_{x \to a} \left\{ f(x) \cdot \frac{g(x) - g(a)}{x - a} \right\} + \lim_{x \to a} \left\{ \frac{f(x) - f(a)}{x - a} \cdot g(a) \right\} \\ &= f(a)g'(a) + f'(a)g(a). \end{aligned}$$

(c) We have

$$\frac{d}{dx} \frac{f(x)}{g(x)} \Big|_{x=a} = \lim_{x \to a} \frac{\frac{f(x)}{g(x)} - \frac{f(a)}{g(a)}}{x - a}$$

$$= \lim_{x \to a} \frac{f(x)g(a) - g(x)f(a)}{g(x)g(a)(x - a)}$$

$$= \lim_{x \to a} \frac{f(x)g(a) - f(a)g(a) + f(a)g(a) - g(x)f(a)}{g(x)g(a)(x - a)}$$

$$= \lim_{x \to a} \frac{1}{g(x)g(a)} \left\{ \frac{f(x) - f(a)}{x - a} \cdot g(a) - f(a) \frac{g(x) - g(a)}{x - a} \right\}$$

$$= \frac{1}{(g(a))^2} \left\{ f'(a)g(a) - f(a)g'(a) \right\}.$$

Remark

You can also prove the formula $\frac{d}{dx}(x^n) = nx^{n-1}$ $(n \in \mathbb{N})$ using the Product Rule and induction, and the formula

$$\frac{d}{dx}\left(\frac{1}{x^n}\right) = -\frac{n}{x^{n+1}} \quad (n \in \mathbb{N})$$

using the Quotient Rule. The second formula can be written as $\frac{d}{dx}(x^{-n}) = (-n)x^{-n-1}$. Hence we can combine the two formulas into one:

$$\frac{d}{dx}(x^n) = nx^{n-1} \quad \forall n \in \mathbb{Z} \setminus \{0\}.$$

Remark We will define the functions e^x , $\ln x$, $\sin x$, $\cos x$ precisely in Chapter 9. For now, we will assume the following results:

$$\frac{d}{dx}\sin x = \cos x$$
, $\frac{d}{dx}\cos x = -\sin x$, $\frac{d}{dx}e^x = e^x$, $\frac{d}{dx}\ln x = \frac{1}{x}$.

The derivatives of other trigonometric functions can be obtained by using the above facts and Theorem 6.2.2.

Theorem 6.2.3. (Carathéodory's Theorem) Let I be an interval, $f: I \to \mathbb{R}$ and $c \in I$. Then f'(c) exists if and only if there exists a function φ on I such that φ is continuous at c and

$$f(x) - f(c) = \varphi(x)(x - c) \quad \forall x \in I.$$

In this case, $f'(c) = \varphi(c)$.

Proof. (\Longrightarrow) Define

$$\varphi(x) = \begin{cases} \frac{f(x) - f(c)}{x - c} & x \in I, x \neq c, \\ f'(c) & x = c. \end{cases}$$

Then clearly $f(x) - f(c) = \varphi(x)(x - c)$ for all $x \in I$. Moreover,

$$\lim_{x \to c} \varphi(x) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = f'(c) = \varphi(c).$$

So φ is continuous at c.

 (\Leftarrow) Since φ is continuous at c,

$$\varphi(c) = \lim_{x \to c} \varphi(x) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}.$$

So $f'(c) = \varphi(c)$ exists.

Chain Rule. Let I and J be intervals, and let $g: I \to \mathbb{R}$ and $f: J \to \mathbb{R}$ be such that $f(J) \subseteq I$. If $a \in J$, f is differentiable at a and g is differentiable at f(a), then $h = g \circ f$ is differentiable at a, and

$$h'(a) = g'(f(a))f'(a).$$

Proof. Since f'(a) exists, by Theorem 6.2.3, there exists a function φ on J such that φ is continuous at a and $f(x) - f(a) = \varphi(x)(x - a)$ for all $x \in J$, and $\varphi(a) = f'(a)$.

Next, g'(f(a)) exists. By Theorem 6.2.3 again, there exists a function ψ on I such that ψ is continuous at b = f(a) and $g(y) - g(b) = \psi(y)(y - b)$ for all $y \in I$, and $\psi(b) = g'(b)$.

We now define the function $\alpha: J \to \mathbb{R}$ by

$$\alpha(x) = \psi(f(x))\varphi(x) \quad \forall x \in J.$$

Then α is continuous at a. Moreover, for each $x \in J$, by putting y = f(x), we obtain

$$g(f(x)) - g(f(a)) = \psi(f(x))(f(x) - f(a)) = \psi(f(x))\varphi(x)(x - a) = \alpha(x)(x - a).$$

By Theorem 6.2.3, $g \circ f$ is differentiable at a and

$$(g\circ f)'(a)=\alpha(a)=\psi(f(a)\varphi(a)=g'(f(a))f'(a).$$

Remark

(1) Another form of the Chain Rule:

Let y = g(f(x)) = g(u), where u = f(x). Then

$$\frac{dy}{dx} = (g \circ f)'(x) = g'(f(x))f'(x) = g'(u)u' = \frac{dy}{du}\frac{du}{dx}.$$

Formally: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$.

(2) We usually rewrite a complicated function as a composite function (by making a substitution) and use the Chain Rule to find its derivative.

Example Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x^2 \sin(1/x) & x \neq 0 \\ 0 & x = 0. \end{cases}$$

Determine the points at which f is differentiable.

Solutions: Let h(x) = 1/x and $g(x) = \sin x$. If $c \ne 0$, then h is differentiable at c and g is differentiable at h(c). By the Chain Rule, the composite function

$$s(x) = (g \circ h)(x) = \sin(1/x)$$

is differentiable at c, and

$$s'(c) = g'(h(c))h'(c) = \cos(1/c)(-1/c^2) = -\frac{\cos(1/c)}{c^2}.$$

By the Product Rule, $f(x) = x^2 s(x)$ is differentiable at c, and

$$f'(c) = 2cs(c) + c^2s'(c) = 2c\sin(1/c) - \cos(1/c).$$

For c = 0,

$$f'(0) = \lim_{x \to 0} \frac{x^2 \sin(1/x) - 0}{x - 0} = \lim_{x \to 0} x \sin(1/x) = 0$$

by the Squeeze Theorem. Hence f is differentiable on \mathbb{R} .

Question: Is f continuously differentiable on \mathbb{R} ? That is, is $f \in C^1(\mathbb{R})$?

Since $f'(x) = 2x \sin(1/x) - \cos(1/x)$ for $x \neq 0$, f' is clearly continuous on $\mathbb{R}\setminus\{0\}$, i.e. $f \in C(\mathbb{R}\setminus\{0\})$.

However, f' is not continuous at x = 0. So $f \notin C(\mathbb{R})$.

We prove this using sequential criterion: If f' is continuous at x = 0, then for any sequence $x_n \to 0$, we must have $f'(x_n) \to f'(0) = 0$. We show that there is a sequence (x_n) which violates sequential criterion, and so f' is not continuous at x = 0.

The sequence (x_n) is defined by $x_n = \frac{1}{2n\pi}$, $n \in \mathbb{N}$. Then $x_n \to 0$, but

$$f'(x_n) = 2x_n \sin \frac{1}{x_n} - \cos \frac{1}{x_n} = \frac{1}{n\pi} \sin(2n\pi) - \cos(2n\pi) = -1 \not\to 0 = f'(0).$$

Inverse Functions. Recall that if $I \subseteq \mathbb{R}$ is an interval and $f: I \to \mathbb{R}$ is strictly monotone and continuous on I, then J = f(I) is also an interval and the inverse function $g = f^{-1}: J \to \mathbb{R}$ satisfies the relation

$$g(f(x)) = x \quad \forall x \in I.$$

By the Continuous Inverse Theorem (c.f. Section 5.4), g is strictly monotone and continuous on J.

Theorem 6.2.4. (Inverse Function Theorem) Let I be an interval, and let $f: I \to \mathbb{R}$ be strictly monotone and continuous on I. Let J := f(I) and let $g: J \to \mathbb{R}$ be the inverse function of f. If f is differentiable at $c \in I$ and $f'(c) \neq 0$, then g is differentiable at d := f(c) and

$$g'(d) = \frac{1}{f'(c)}.$$

Proof. By Theorem 6.2.3, there exists a function φ defined on I such that φ is continuous at c, $\varphi(c) = f'(c) \neq 0$ and

$$f(x) - f(c) = \varphi(x)(x - c) \quad \forall x \in I.$$

Since φ is continuous at c and $\varphi(c) \neq 0$, there exists $\delta > 0$ such that

$$\varphi(x) \neq 0 \quad \forall x \in V := (c - \delta, c + \delta) \subseteq I.$$

Let $U := f(V) \subseteq J$. Then U is an interval containing d := f(c) and g(U) = V. For all $y \in U$, we have $g(y) \in V$ and y = f(g(y)), so

$$\varphi(g(y)) \neq 0$$
 and $y - d = f(g(y)) - f(c) = \varphi(g(y))(g(y) - g(d))$.

Hence

$$g(y) - g(d) = \frac{1}{\varphi(g(y))}(y - d), \quad y \in U.$$

Now the function $\frac{1}{\varphi \circ g}$ is defined on U and it is continuous at d. By Theorem 6.2.3, g is differentible at d and

$$g'(d) = \frac{1}{\varphi(g(d))} = \frac{1}{\varphi(c)} = \frac{1}{f'(c)}.$$

Example Let $n \in \mathbb{N}$, and let $f(x) = x^n$ for $x \in [0, \infty)$. Then f is strictly increasing and continuous on $[0, \infty)$. The inverse function of f is given by

$$g(y)=y^{1/n}, \qquad y\in [0,\infty).$$

Now $f'(x) = nx^{n-1}$ for $x \in [0, \infty)$. So by Theorem 6.2.4,

$$g'(y) = \frac{1}{f'(g(y))} = \frac{1}{n(g(y))^{n-1}} = \frac{1}{ny^{(n-1)/n}} = \frac{1}{n}y^{\frac{1}{n}-1}, \qquad y \in (0, \infty).$$

Rational exponents: Recall that if x > 0 and $r = \frac{n}{m}$ where $n, m \in \mathbb{N}$, then

$$x^r = x^{\frac{n}{m}} := \left(x^{\frac{1}{m}}\right)^n.$$

Example Let r be a positive rational number, and let $f(x) = x^r$ for x > 0. Prove that

$$f'(x) = rx^{r-1} \quad \text{for all } x > 0.$$

Proof. Tutorial 1.

6.3 Mean Value Theorem and applications

The circle of related theorems: Rolle's Theorem, Mean Value Theorem, Cauchy's Mean Value Theorem and Taylor's Theorem are fundamental results in differential calculus. In this section, we will discuss these results and a few standard applications.

Definition Let *I* be an interval, $f: I \to \mathbb{R}$ and $x_0 \in I$.

- (a) (Absolute Maximum) We say that $f(x_0)$ is the absolute maximum of f on I if $f(x_0) \ge f(x)$ for all $x \in I$.
- (b) (Absolute Minimum) We say that $f(x_0)$ is the absolute minimum of f on I if $f(x_0) \le f(x)$ for all $x \in I$.
- (c) (Relative Maximum) We say $f(x_0)$ is a relative maximum of f if there exists $\delta > 0$ such that

$$f(x) \le f(x_0), \quad \forall x \in (x_0 - \delta, x_0 + \delta) \subseteq I.$$

(d) (Relative Minimum) We say $f(x_0)$ is a relative minimum of f if there exists $\delta > 0$ such that

$$f(x) \ge f(x_0), \quad \forall x \in (x_0 - \delta, x_0 + \delta) \subseteq I.$$

(e) (Relative Extremum) We say $f(x_0)$ is a relative extremum of f if $f(x_0)$ is either a relative maximum or a relative minimum of f.

Remark (i) A relative extremum can only occur at an interior point, but an absolute extremum may occur at one of the end points of the interval. So if a function has an absolute maximum at a point x_0 , it may not have a relative maximum at x_0 .

(ii) If f has a absolute maximum at an interior point x_0 of I, then $f(x_0)$ is also a relative maximum of f.

Lemma 6.3.1. Let $f:(a,b) \to \mathbb{R}$ and f'(c) exists for some $c \in (a,b)$.

(i) If f'(c) > 0, then there exists $\delta > 0$ such that

$$f(x) < f(c)$$
 for every $x \in (c - \delta, c)$, and

$$f(x) > f(c)$$
 for every $x \in (c, c + \delta)$.

(ii) If f'(c) < 0, then there exists $\delta > 0$ such that

$$f(x) > f(c)$$
 for every $x \in (c - \delta, c)$, and

$$f(x) < f(c)$$
 for every $x \in (c, c + \delta)$.

Proof. (i) Since $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} > 0$, there exists $\delta > 0$ such that

$$0 < |x - c| < \delta \Longrightarrow \frac{f(x) - f(c)}{x - c} > 0.$$

If $x \in (c - \delta, c)$, then x - c < 0, so that

$$f(x) - f(c) = \frac{f(x) - f(c)}{x - c} \cdot (x - c) < 0$$
 and $f(x) < f(c)$.

If $x \in (c, c + \delta)$, then x - c > 0, so that

$$f(x) - f(c) = \frac{f(x) - f(c)}{x - c} \cdot (x - c) > 0$$
 and $f(x) > f(c)$.

The proof for (ii) is similar.

Interior Extremum Theorem. Suppose that c is an interior point of an interval I and $f: I \to \mathbb{R}$ is differentiable at c. If f has a relative extremum at c, then f'(c) = 0.

Proof. Suppose f has a relative maximum at c.

- (1) If f'(c) > 0, by Lemma 6.3.1, there exists $\delta > 0$ such that $(c \delta, c + \delta) \subseteq I$ (since c is an interior point of I), f(x) < f(c) for every $x \in (c \delta, c)$, and f(x) > f(c) for every $x \in (c, c + \delta)$. This contradicts the assumption that f has a relative maximum at c.
- (2) If f'(c) < 0, then likewise we get a contradiction using Lemma 6.3.1.

Hence f'(c) = 0.

The case of a relative minimum at *c* is similar.

Remark

(1) A function f may have a relative extremum at x_0 but $f'(x_0)$ does not exist.

Example: Let $f(x) = |x|, x \in \mathbb{R}$.

Then f has a relative (indeed absolute) minimum at 0, but f'(0) does not exist.

(2) The converse of the Interior Extremum Theorem is **false**: f'(c) = 0 does not imply that f has a relative extremum at c.

Example: Let $f(x) = x^3, x \in \mathbb{R}$.

Then f'(0) = 0 but 0 is *not* a relative extremum point of f.

Rolle's Theorem. If f is continuous on [a,b] and differentiable on (a,b) and f(a)=f(b), then there exists $c \in (a,b)$ such that

$$f'(c) = 0.$$

Proof. Case 1: f is a constant function. In this case, f'(x) = 0 for all $x \in (a,b)$.

Case 2: *f* is not a constant function.

By the Extrema-value Theorem, there exists $x_1, x_2 \in [a, b]$ such that

$$f(x_1) \le f(x) \le f(x_2), \quad \forall x \in [a, b].$$

Since f is not constant, $f(x_1) \neq f(x_2)$. Since f(a) = f(b), at least one of x_1 and x_2 is in (a, b), and we call this point c. So f has a absolute extremum at $c \in (a, b)$. In particular, f has a relative extremum at c. By the Interior Extremum Theorem, f'(c) = 0. \square

Mean Value Theorem. If f is continuous on [a,b] and differentiable on (a,b), then there exists $c \in (a,b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Proof. Define $g:[a,b] \to \mathbb{R}$ by

$$g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a).$$

Then g is continuous on [a, b], differentiable on (a, b),

$$g(a) = f(a) - f(a) - \frac{f(b) - f(a)}{b - a}(a - a) = 0,$$

and

$$g(b) = f(b) - f(a) - \frac{f(b) - f(a)}{b - a}(b - a) = 0.$$

By Rolle's Theorem, $\exists c \in (a, b)$ such that

$$g'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0.$$

So

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Example Use the Mean Value Theorem to show that $e^x \ge 1 + x$ for all $x \in \mathbb{R}$.

Solution: Let $f(x) = e^x$, $x \in \mathbb{R}$. Then $f'(x) = e^x$ for all $x \in \mathbb{R}$.

If x > 0, then by the Mean Value Theorem, there exists $c_1 \in (0, x)$ such that

$$e^{x} - 1 = f(x) - f(0) = f'(c_{1})(x - 0) = e^{c_{1}}x.$$

Since $e^{c_1}x > e^0x = x$, we obtain $e^x > 1 + x$.

Similarly, if x < 0, then there exists $c_2 \in (x, 0)$ such that $e^x - 1 = e^{c_2}x$. Since x < 0 and $e^{c_2} < 1$, $e^{c_2}x > x$. Again we obtain $e^x > 1 + x$.

Finally, if x = 0, then $e^x = 1 = 1 + x$.

Theorem 6.3.2. If f is continuous on [a,b] and differentiable on (a,b), and f'(x) = 0 for all $x \in (a,b)$, then f is constant on [a,b].

Proof. If $a < x \le b$, then by the Mean Value Theorem, there is a point $c \in (a, x)$ such that

$$f'(c) = \frac{f(x) - f(a)}{x - a}.$$

But f'(c) = 0, so f(x) = f(a). \square

Definition Let $f: I \to \mathbb{R}$.

• f is said to be increasing on I if

$$x_1, x_2 \in I$$
 and $x_1 < x_2 \implies f(x_1) \le f(x_2)$.

• f is said to be decreasing on I if

$$x_1, x_2 \in I \text{ and } x_1 < x_2 \implies f(x_1) \ge f(x_2).$$

Theorem 6.3.3. Let f be differentiable on (a, b).

- (i) If $f'(x) \ge 0$ for all $x \in (a,b)$, then f is increasing on (a,b).
- (ii) If $f'(x) \le 0$ for all $x \in (a, b)$, then f is decreasing on (a, b).

Proof. We only prove (i). Let $a < x_1 < x_2 < b$. By the Mean Value Theorem, there exists $c \in (x_1, x_2)$ such that

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}.$$

So

$$f(x_2) - f(x_1) = f'(c)(x_2 - x_1).$$

Since $f'(c) \ge 0$ and $x_2 - x_1 > 0$, $f(x_2) - f(x_1) \ge 0$. So $f(x_2) \ge f(x_1)$. \square

Remark The converse of (i) and (ii) in Theorem 6.3.3 are true. See Tutorial 2.

Exercise

(i) Prove that if f'(x) > 0 for all $x \in (a, b)$, then f is strictly increasing on (a, b), i.e.

$$a < x_1 < x_2 < b \Longrightarrow f(x_1) < f(x_2)$$
.

Give an example to show that the converse is false.

(ii) Prove that if f'(x) < 0 for all $x \in (a, b)$, then f is strictly decreasing on (a, b).

First Derivative Test. Let f be continuous on [a,b] and $c \in (a,b)$. Suppose that f is differentiable on (a,b) except possibly at c.

(i) If there is a neighborhood $(c - \delta, c + \delta) \subseteq I$ of c such that $f'(x) \ge 0$ for $x \in (c - \delta, c)$ and $f'(x) \le 0$ for $x \in (c, c + \delta)$, then

$$f(c) \ge f(x), \quad \forall x \in (c - \delta, c + \delta).$$

Hence f has a relative maximum at c.

(ii) If there is a neighborhood $(c - \delta, c + \delta) \subseteq I$ of c such that $f'(x) \le 0$ for $x \in (c - \delta, c)$ and $f'(x) \ge 0$ for $x \in (c, c + \delta)$, then

$$f(c) \le f(x), \quad \forall x \in (c - \delta, c + \delta).$$

Hence f has a relative minimum at c.

Proof. We only prove (i). Let $x \in (c - \delta, c)$. By applying the Mean Value Theorem to [x, c], we obtain a point $x_0 \in (x, c)$ such that

$$f'(x_0) = \frac{f(c) - f(x)}{c - x},$$

i.e.

$$f(c) - f(x) = f'(x_0)(c - x).$$

Since $c - \delta < x_0 < c$, $f'(x_0) \ge 0$. This together with c - x > 0 give $f(c) - f(x) \ge 0$. So $f(c) \ge f(x)$.

Next we let $x \in (c, c + \delta)$. Then there exists $x_1 \in (c, x)$ such that

$$f(x) - f(c) = f'(x_1)(x - c).$$

Since $f'(x_1) \le 0$ and x - c > 0, $f(x) - f(c) \le 0$. So $f(c) \ge f(x)$. \Box

Higher derivatives

If f is differentiable on an interval I, then its derivative f' is a function on I. So we can consider the differentiability of f'. If $c \in I$ and f' is differentiable at c, then we call the derivative of f' at c the **second derivative** of f at c and denote it by f''(c) or $f^{(2)}(c)$. That is,

$$f''(c) := (f')'(c).$$

Similarly, we define the third derivative $f'''(c) = f^{(3)}(c) := (f'')'(c)$. In general, if $n \in \mathbb{N}$, then the *n*th derivative $f^{(n)}(c)$ of f at c is defined as

$$f^{(n)}(c) := (f^{(n-1)})'(c).$$

So $f^{(n)}(c)$ exists if $f^{(n-1)}$ exists in a neighborhood of c, and $f^{(n-1)}$ is differentiable at c.

Notation Let *I* be an interval.

(i) For $n \in \mathbb{N}$, let

$$C^{n}(I) = \{f : f^{(n)} \text{ exists and is continuous on } I\}.$$

(ii) Let

$$C^{\infty}(I) = \{f : f^{(n)} \text{ exists and is continuous on } I \text{ for all } n \in \mathbb{N}\} = \bigcap_{n=1}^{\infty} C^n(I).$$

If $f \in C^{\infty}(I)$, then we say that f is infinitely differentiable on I.

Remark

- (i) We denote the collection of all continuous functions on I by $C^0(I)$ or C(I).
- (ii) For integers $m > n \ge 1$, we have

$$C^{\infty}(I) \subset C^m(I) \subset C^n(I) \subset C(I)$$
.

Exercise Suppose that the function $f : [a, b] \to \mathbb{R}$ has the following properties:

- (1) f is continuous on [a, b].
- (2) f'' exists on (a, b).
- (3) The graph of f and the line segment joining the points (a, f(a)) and (b, f(b)) intersect at a point $(x_0, f(x_0))$, where $a < x_0 < b$.

Prove that there exists $c \in (a, b)$ such that f''(c) = 0.

Second Derivative Test. Let f be defined on an interval I and let its derivative f' exist on I. Suppose that c is an interior point of I such that f'(c) = 0 and f''(c) exists.

- (i) If f''(c) > 0, then f has a relative minimum at c.
- (ii) If f''(c) < 0, then f has a relative maximum at c.

Proof. (i) Suppose that (f')'(c) = f''(c) > 0.

By Lemma 6.3.1 (applied to f'), there exists $\delta > 0$ such that

$$f'(x) \begin{cases} < f'(c) = 0 & \text{if } x \in (c - \delta, c) \\ > f'(c) = 0 & \text{if } x \in (c, c + \delta). \end{cases}$$

By the First Derivative Test, f has a relative minimum at c.

The proof for (ii) is similar.

Remark

(a) If f''(c) = 0, then the Second Derivative Test is inconclusive.

Example: Let $f(x) = x^3$. Then f'(0) = f''(0) = 0, but 0 is not a relative extremum point for f.

(b) It is easier to apply the Second Derivative Test, but it is less powerful than the First Derivative Test.

Example: Let $g(x) = x^4$. Then g'(0) = g''(0) = 0. So the Second Derivative Test cannot be used here.

On the other hand,

$$g'(x) = 4x^3 \begin{cases} < 0 & x < 0 \\ > 0 & x > 0. \end{cases}$$

By the First Derivative Test, 0 is a relative minimum point for g.

Cauchy Mean Value Theorem. Let f and g be continuous on [a,b] and differentiable on (a,b), and assume that $g'(x) \neq 0$ for all $x \in (a,b)$. Then there exists $c \in (a,b)$ such that

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

Proof. First we claim that $g(a) \neq g(b)$.

If this is not the case, then g(a) = g(b), and by Rolle's Theorem, there exists $x_0 \in (a, b)$ such that $g'(x_0) = 0$. But this contradicts the assumption that $g'(x) \neq 0$ for all $x \in (a, b)$.

We now define $h : [a, b] \to \mathbb{R}$ by

$$h(x) := \frac{f(b) - f(a)}{g(b) - g(a)} (g(x) - g(a)) - (f(x) - f(a)), \qquad x \in [a, b]. \quad (*)$$

Then h is continuous on [a, b], differentiable on (a, b), h(a) = h(b) = 0. So by Rolle's Theorem, there exists $c \in (a, b)$ such that h'(c) = 0. On the other hand, by (*),

$$h'(c) = \frac{f(b) - f(a)}{g(b) - g(a)}g'(c) - f'(c).$$

L'Hospital's Rule for right-hand limit (0/0 case)

Let f and g be differentiable on (a,b) and assume that $g(x) \neq 0$ and $g'(x) \neq 0$ for all $x \in (a,b)$. Suppose that $\lim_{x \to a^+} f(x) = \lim_{x \to a^+} g(x) = 0$.

(i) If
$$\lim_{x\to a^+} \frac{f'(x)}{g'(x)} = L$$
, where $L \in \mathbb{R}$, then $\lim_{x\to a^+} \frac{f(x)}{g(x)} = L$.

(ii) If
$$\lim_{x \to a^+} \frac{f'(x)}{g'(x)} = \pm \infty$$
, then $\lim_{x \to a^+} \frac{f(x)}{g(x)} = \pm \infty$.

Proof. (i) Let $\varepsilon > 0$. Then there exists $c \in (a, b)$ such that

$$t \in (a,c) \Longrightarrow L - \frac{\varepsilon}{2} < \frac{f'(t)}{g'(t)} < L + \frac{\varepsilon}{2}.$$

Now let a < x < y < c.

By Rolle's Theorem, $g(x) \neq g(y)$.

Further, by the Cauchy Mean Value Theorem, there exists $u \in (x, y)$ such that

$$\frac{f(y)-f(x)}{g(y)-g(x)}=\frac{f'(u)}{g'(u)}.$$

Since $u \in (x, y) \subseteq (a, c)$,

$$L - \frac{\varepsilon}{2} < \frac{f(y) - f(x)}{g(y) - g(x)} < L + \frac{\varepsilon}{2}.$$
 (*)

Now, since $\lim_{x \to a^+} f(x) = \lim_{x \to a^+} g(x) = 0$, we have for each $y \in (a, c)$,

$$\lim_{x \to a^+} \frac{f(y) - f(x)}{g(y) - g(x)} = \frac{f(y)}{g(y)}.$$

It follows that as $x \to a^+$ in (*),

$$L - \varepsilon < L - \frac{\varepsilon}{2} \le \frac{f(y)}{g(y)} \le L + \frac{\varepsilon}{2} < L + \varepsilon$$
, for all $y \in (a, c)$.

(ii) Exercise.

Example Find $\lim_{x\to 0^+} \frac{\sin x}{\sqrt{x}}$.

Solutions: By L'Hospital's Rule,

$$\lim_{x \to 0^+} \frac{\sin x}{\sqrt{x}} = \lim_{x \to 0^+} \frac{\cos x}{\frac{1}{2} \frac{1}{\sqrt{x}}} = \lim_{x \to 0^+} 2\sqrt{x} \cos x = 0.$$

Remark L'Hospital's Rule (with obvious modifications) remains valid if the right-hand limits as " $x \to a^+$ " are replaced throughout by the left-hand limits as " $x \to b^-$ ", or replaced throughout by the limits as " $x \to c$ ", or as " $x \to \pm \infty$ ". For other forms of L'Hospital's Rule, see Section 6.3 of the textbook.

L'Hospital's Rule for right-hand limit (∞/∞ case)

Let f and g be differentiable on (a,b) and assume that $g'(x) \neq 0$ for all $x \in (a,b)$. Suppose that $\lim_{x \to a^+} g(x) = \infty$.

(i) If
$$\lim_{x \to a^+} \frac{f'(x)}{g'(x)} = L$$
, where $L \in \mathbb{R}$, then $\lim_{x \to a^+} \frac{f(x)}{g(x)} = L$.

(ii) If
$$\lim_{x\to a^+} \frac{f'(x)}{g'(x)} = \pm \infty$$
, then $\lim_{x\to a^+} \frac{f(x)}{g(x)} = \pm \infty$.

Example Find $\lim_{x\to 0} \frac{1-\cos x}{x^2}$.

 $\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{\sin x}{2x} = \lim_{x \to 0} \frac{\cos x}{2} = \frac{1}{2}.$

Example Find
$$\lim_{x\to 0} \frac{e^x - 1 - x}{x^2}$$
. *Solutions:*

$$\lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = \lim_{x \to 0} \frac{e^x - 1}{2x} = \lim_{x \to 0} \frac{e^x}{2} = \frac{1}{2}.$$

Example Find $\lim_{x\to\infty} \frac{x^n}{e^x}$ where $n \in \mathbb{N}$.

$$\lim_{x \to \infty} \frac{x^n}{e^x} = \lim_{x \to \infty} \frac{nx^{n-1}}{e^x} = \dots = \lim_{x \to \infty} \frac{n!}{e^x} = 0.$$

Example Find $\lim_{x\to 0^+} \frac{e^{-1/x^2}}{x^n}$ where $n \in \mathbb{N}$. Solutions: Using the fact that $\lim_{x\to 0^+} f(x) = \lim_{y\to \infty} f(1/y)$, we have

$$\lim_{x \to 0^+} \frac{e^{-1/x^2}}{x^n} = \lim_{y \to \infty} \frac{y^n}{e^{y^2}}.$$

For y > 1,

$$0 \le \frac{y^n}{e^{y^2}} \le \frac{y^{2n}}{e^{y^2}} = \frac{(y^2)^n}{e^{y^2}} \to 0 \quad \text{as } y \to \infty,$$

using the result of the previous example. By the squeeze theorem, $\frac{y^n}{y^2} \to 0$ as $y \to \infty$.

So
$$\lim_{x \to 0^+} \frac{e^{-1/x^2}}{x^n} = 0.$$

Taylor's Theorem

Let f be a function such that $f \in C^n([a,b])$ and $f^{(n+1)}$ exists on (a,b). If $x_0 \in [a,b]$, then for any $x \in [a, b]$, there exists a point c between x and x_0 such that

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1}.$$

Proof. Fix $x \in [a, b]$. We may assume that $x_0 \neq x$. Let M be the unique number such that

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + M(x - x_0)^{n+1}.$$

Define $F : [a, b] \to \mathbb{R}$ by

$$F(t) := f(t) + f'(t)(x - t) + \frac{f''(t)}{2!}(x - t)^2 + \dots + \frac{f^{(n)}(t)}{n!}(x - t)^n + M(x - t)^{n+1}. \quad (*)$$

Then F is continuous on [a, b] and is differentiable on (a, b).

Now F(x) = f(x). By the choice of M, we also have $F(x_0) = f(x)$. So by Rolle's Theorem, there exists a point c between x and x_0 such that

$$F'(c) = 0.$$

On the other hand, by differentiating (*), we obtain

$$F'(c) = \frac{f^{(n+1)}(c)}{n!}(x-c)^n - M(n+1)(x-c)^n.$$

So

$$M = \frac{f^{(n+1)}(c)}{(n+1)!}$$

Remark

(a) If n = 0, then by Taylor's Theorem,

$$f(x) = f(x_0) + f'(c)(x - x_0),$$

that is,

$$f'(c) = \frac{f(x) - f(x_0)}{x - x_0}.$$

So Taylor's Theorem can be regarded as an extension of the Mean Value Theorem

(b) The polynomial

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

is called the *nth Taylor polynomial* for f at x_0 . It has the property that

$$P_n^{(j)}(x_0) = f^{(j)}(x_0)$$
 for $j = 0, 1, 2..., n$.

So we can use it to estimate the value of f at points near x_0 . In this context, we see that Taylor's Theorem give us the error (or remainder) of this estimation:

$$R_n(x) := f(x) - P_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

where c is a point between x and x_0 . The formula for R_n is called the **Lagrange form** (or the **derivative form**) of the remainder.

Example Show that $\cos x \ge 1 - \frac{1}{2}x^2$ for all $x \in \mathbb{R}$.

Solutions: Let $f(x) = \cos x$, $x \in \mathbb{R}$ and set $x_0 = 0$. Then by Taylor's Theorem,

$$f(x) = f(0) + f'(0)(x - 0) + \frac{f''(0)}{2!}(x - 0)^2 + R_2(x)$$
$$= 1 - \frac{1}{2}x^2 + R_2(x)$$

where

$$R_2(x) = \frac{f'''(c)}{3!}x^3 = \frac{\sin c}{6}x^3$$

for some c between 0 and x.

We consider 3 cases: $0 \le x \le \pi$, $-\pi \le x \le 0$ and $|x| \ge \pi$.

If $0 \le x \le \pi$, then $0 < c < \pi$ and $\sin c > 0$, so that $R_2(x) \ge 0$. Hence $\cos x = 1 - \frac{1}{2}x^2 + R_2(x) \ge 1 - \frac{1}{2}x^2$. The other cases are left as an exercise.

Example If $f(x) = e^x$, show that the remainder term in Taylor's Theorem converges to zero as $n \to \infty$ for each x_0 and each x.

Solution: Since $f'(x) = e^x = f(x)$ for all $x \in \mathbb{R}$, $f^{(j)}(x) = f(x)$ for all $j \in \mathbb{N}$ and for all $x \in \mathbb{R}$. For fixed x_0 and x,

$$R_n(x) = \frac{f^{(n+1)}(c_n)}{(n+1)!} (x - x_0)^{n+1} = \frac{f(c_n)}{(n+1)!} (x - x_0)^{n+1}$$

and c_n is a point between x and x_0 . Let I be the closed interval with end points x_0 and x. Since f is continuous on I, there exists M > 0 such that $|f(u)| \le M$ for all $u \in I$. It follows that

$$|R_n(x)| = \frac{|f(c_n)|}{(n+1)!} \left| (x-x_0)^{n+1} \right| \le \frac{M}{(n+1)!} |x-x_0|^{n+1}.$$

We now recall the following fact from MA2108: If (x_n) is a positive sequence and $\lim_{n\to\infty} \frac{x_{n+1}}{x_n} < 1$, then $x_n \to 0$.

Let
$$x_n = \frac{M}{(n+1)!} |x - x_0|^{n+1}, n \in \mathbb{N}$$
. Then

$$\frac{x_{n+1}}{x_n} = \frac{|x - x_0|}{n+2} \to 0.$$

Hence $x_n \to 0$. By the Squeeze Theorem, $R_n(x) \to 0$.

Remark Let $f(x) = e^x$. For each $n \in \mathbb{N}$, by Taylor's Theorem,

$$f(x) = P_n(x) + R_n(x)$$

where

$$P_n(x) = \sum_{i=0}^n \frac{f^{(j)}(x_0)}{j!} (x - x_0)^j = e^{x_0} \sum_{i=0}^n \frac{(x - x_0)^j}{j!}$$

is the *n*th Taylor polynomial for f at x_0 . By letting $n \to \infty$, we obtain

$$f(x) = \lim_{n \to \infty} f(x) = \lim_{n \to \infty} P_n(x) + \lim_{n \to \infty} R_n(x) = \lim_{n \to \infty} P_n(x) + 0 = e^{x_0} \sum_{n=0}^{\infty} \frac{(x - x_0)^n}{n!}.$$

In particular, if $x_0 = 0$, then

$$f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

Remark In general, if $R_n(x) \to 0$, then

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n,$$

i.e., f(x) is equal to its *Taylor series*.

Question: Does $R_n(x) \to 0$ all the time?

Example Let

 $h(x) = \begin{cases} e^{-1/x^2} & x \neq 0\\ 0 & x = 0. \end{cases}$

For $x \neq 0$,

 $h'(x) = e^{-1/x^2} \frac{d}{dx} \left(-\frac{1}{x^2} \right) = \frac{2}{x^3} e^{-1/x^2}.$

At x = 0,

 $h'(0) = \lim_{x \to 0} \frac{e^{-1/x^2} - 0}{x - 0} = \lim_{x \to 0} \frac{e^{-1/x^2}}{x} = 0.$

Hence, h is differentiable on \mathbb{R} .

Moreover, it can be proved that (Tutorial 3) for any $j \in \mathbb{N}$,

$$h^{(j)}(0) = 0.$$

Now by Taylor's Theorem,

$$h(x) = P_n(x) + R_n(x)$$

where

$$P_n(x) = h(0) + h'(0)x + \frac{h''(0)}{2!}x^2 + \dots + \frac{h^{(n)}(0)}{n!}x^n = 0.$$

It follows that

$$h(x) = R_n(x) \not\to 0$$
 for $x \ne 0$.

In particular,

$$h(x) \neq \sum_{j=0}^{\infty} \frac{h^{(j)}}{j!} x^j$$
 for $x \neq 0$.

That is, h(x) is not equal to its Taylor series except at x = 0.