Индивидуальное задание.

"Проектирование и реализация машины Тьюринга.

Вариант 17.2

Выполнил: Кравченко Александр Андреевич КТбо1-6

1. Постановка задачи:

- 1. Разработать систему команд для машины Тьюринга, реализующей посимвольную конъюнкцию двух неотрицательных двоичных чисел.
- 2. Выполнить тестирование разработанной машины на эмуляторе МТ Полякова Константина Юрьевича.
- 3. Разработать программную библиотеку для реализации модели машины Тьюринга.
- 4. Разработать программу, моделирующую работу спроектированной машины Тьюринга с использованием разработанной библиотеки.

2. Словесное описание алгоритма решения задачи на машине Тьюринга:

Идея работы алгоритма машины Тьюринга заключается в следующем. Первым шагом пробел перед первым числом заменяется на знак '=' и после этого головка перемещается вправо в конец входной строки(пробел после второго числа). Как только оказывается последовательности, головка конце перемещается влево, и оказывается на первой с конца цифре второго числа. Алгоритм 'запоминает' эту цифру и меняет её на вспомогательный знак '2' или '4'(если текущая цифра $-0 \rightarrow 2$, если 1 -> 4), тем самым алгоритм отмечает данную цифру как пройденную, а также запоминает её значение. Следующим шагом алгоритм перемещает головку до символа '#'(разделительный знак между числами). Как только этот знак пройден, алгоритм запоминает первую найденную цифру, и снова заменяет её на вспомогательный знак. После этого алгоритм перемещается в начало последовательности, и в зависимости от результата конъюнкции двух цифр записывает результат. После этого алгоритм повторяет вышеописанные шаги. Его особенностью является то, что он длина резльутирующего двоичного числа равна длине максимального из двух входных чисел. Поэтому, если все цифры первого числа были использованы, алгоритм просто запишет '0' для оставшихся цифр второго числа. Аналогично с

цифрами второго числа. В конце, когда все цифры во всех числах были использованы, алгоритм пройдет по этим числам из начала в конец, заменяя вспомогательные знаки на соответсвующие им символы. Как только алгоритм попадёт в конец последовательности его работа завершится.

3. Используемый алфавит:

Используемый в МТ алфавит: {1,0,#,=,2,4,_)

Входной алфавит: {1,0,#} Выходной алфавит: {1,0,#,=}

Вспомогательный алфавит: {2,4,_}.

4. Система команд машины Тьюринга в виде диаграммы:

Система команд машины Тьюринга в виде диаграммы представлена на рисунке 1:

Рисунок 1

5. Система команд машины Тьюринга в виде таблицы команд:

Система команд машины Тьюринга представлена в таблице 1:

Таблица 1

	=	0	1	#	2	4	_
q1							=Πq2
q2	=Πq2	0Πq2	1Πq2	#Πq2	2Πq2	4Πq2	
q3		2Лq8	4Лq4	#Лq11	2Лq3	4Лq3	
q4	=Лq7	0Лq4	1Лq4	#Лq5	2Лq4	4Лq4	
q5	=Лq7	2Лq7	4Лq6	#Лq5	2Лq5	4Лq5	_Лq5
q6	=Лq6	0Лq6	1Лq6				1Πq2
q7	=Лq7	0Лq6	1Лq6				0Πq2
q8	=Лq7	0Лq8	1Лq8	#Лq9	2Лq8	4Лq8	
q9	=Лq7	2Лq10	4Лq10	#Лq91	2Лq9	4Лq9	
q 10	=Лq10	0Лq10	1Лq10				0Πq2
q11	=Лq12	2Пq7	4Πq7		2Πq11	4Πq11	
q12		0Πq12	1Πq12	#Πq12	0Πq12	1Πq12	_Пq0

6. Набор тестов для алгоритма:

1. 1111=1111#1111(рисунок 2)

Рисунок 2

2. 1=1#1(рисунок 3)

Рисунок 3

3. 10100=10110#10101(рисунок 4)

Рисунок 4

3 -12	-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
	1	0	1	0	0	=	1	0	1	1	0	#	1	0	1	0	1	

4. 00100=0110#10101(рисунок 5)

Рисунок 5

5. 00010=10110#1010(рисунок 6)

Рисунок 6

