Optimal Stochastic Algorithms for Convex-Concave Saddle Point Problems

Renbo Zhao

Operations Research Center, Massachusetts Institute of Technology

Department of ISEM, NUS Singapore, May 2019

- Introduction
 Problem Setup
 Main Contribution
- 2 Preliminaries
- **3** Algorithm for $\mu = 0$
- **6** Future Directions

- Introduction
 Problem Setup
 Main Contribution
- 2 Preliminaries
- **3** Algorithm for $\mu = 0$
- **4** Restart Scheme for $\mu > 0$ Subroutine Stochastic Restart Scheme
- 6 Future Directions

- 1 Introduction Problem Setup
 - Main Contribution
- 2 Preliminaries
- **3** Algorithm for $\mu = 0$
- **4** Restart Scheme for $\mu > 0$ Subroutine Stochastic Restart Scheme
- **6** Future Directions

$$\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \left[S(x, y) \triangleq f(x) + g(x) + \Phi(x, y) - J(y) \right], \tag{SPP}$$

Consider the following convex-concave saddle point problem (SPP)

$$\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \left[S(x, y) \triangleq f(x) + g(x) + \Phi(x, y) - J(y) \right], \tag{SPP}$$

 \triangleright $\mathcal{X} \subseteq \mathbb{X}$ and $\mathcal{Y} \subseteq \mathbb{Y}$ are nonempty, closed and convex sets, where \mathbb{X} and \mathbb{Y} be two finite-dimensional real normed spaces.

$$\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \left[S(x, y) \triangleq f(x) + g(x) + \Phi(x, y) - J(y) \right], \tag{SPP}$$

- $\triangleright \ \mathcal{X} \subseteq \mathbb{X}$ and $\mathcal{Y} \subseteq \mathbb{Y}$ are nonempty, closed and convex sets, where \mathbb{X} and \mathbb{Y} be two finite-dimensional real normed spaces.
- \triangleright X* and Y* are the dual spaces of X and Y, respectively.

$$\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \left[S(x, y) \triangleq f(x) + g(x) + \Phi(x, y) - J(y) \right], \tag{SPP}$$

- \triangleright $\mathcal{X} \subseteq \mathbb{X}$ and $\mathcal{Y} \subseteq \mathbb{Y}$ are nonempty, closed and convex sets, where \mathbb{X} and \mathbb{Y} be two finite-dimensional real normed spaces.
- \triangleright \mathbb{X}^* and \mathbb{Y}^* are the dual spaces of \mathbb{X} and \mathbb{Y} , respectively.

$$\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \left[S(x, y) \triangleq f(x) + g(x) + \Phi(x, y) - J(y) \right], \tag{SPP}$$

- \triangleright $\mathcal{X} \subseteq \mathbb{X}$ and $\mathcal{Y} \subseteq \mathbb{Y}$ are nonempty, closed and convex sets, where \mathbb{X} and \mathbb{Y} be two finite-dimensional real normed spaces.
- \triangleright X* and Y* are the dual spaces of X and Y, respectively.
- ho $\Phi: \mathbb{X} \times \mathbb{Y} \to [-\infty, +\infty]$ is convex-concave, i.e., $\Phi(\cdot, y)$ is convex and $\Phi(x, \cdot)$ is concave, for any $(x, y) \in \mathbb{X} \times \mathbb{Y}$.

 \triangleright f is μ -strong convex (s.c.) and L-smooth on \mathcal{X} ($L \ge \mu \ge 0$), i.e.,

$$\frac{\mu}{2} \|x - x'\|_{\mathbb{X}}^2 \le f(x) - f(x') - \langle \nabla f(x'), x - x' \rangle \le \frac{L}{2} \|x - x'\|_{\mathbb{X}}^2, \forall x, x' \in \mathcal{X}.$$

 \triangleright f is μ -strong convex (s.c.) and L-smooth on \mathcal{X} ($L \ge \mu \ge 0$), i.e.,

$$\frac{\mu}{2} \|x - x'\|_{\mathbb{X}}^{2} \le f(x) - f(x') - \langle \nabla f(x'), x - x' \rangle \le \frac{L}{2} \|x - x'\|_{\mathbb{X}}^{2}, \forall x, x' \in \mathcal{X}.$$

 \triangleright Both cases $\mu = 0$ and $\mu > 0$ will be considered.

 \triangleright f is μ -strong convex (s.c.) and L-smooth on \mathcal{X} ($L \ge \mu \ge 0$), i.e.,

$$\frac{\mu}{2} \|x - x'\|_{\mathbb{X}}^2 \le f(x) - f(x') - \langle \nabla f(x'), x - x' \rangle \le \frac{L}{2} \|x - x'\|_{\mathbb{X}}^2, \forall x, x' \in \mathcal{X}.$$

- \triangleright Both cases $\mu = 0$ and $\mu > 0$ will be considered.
- \triangleright g and J admit tractable Bregman proximal projections on \mathcal{X} and \mathcal{Y} , respectively. Also, dom $g \cap \mathcal{X} \neq \emptyset$ and dom $J \cap \mathcal{Y} \neq \emptyset$.

ightharpoonup f is μ -strong convex (s.c.) and L-smooth on \mathcal{X} ($L \ge \mu \ge 0$), i.e.,

$$\frac{\mu}{2} \|x - x'\|_{\mathbb{X}}^2 \le f(x) - f(x') - \langle \nabla f(x'), x - x' \rangle \le \frac{L}{2} \|x - x'\|_{\mathbb{X}}^2, \forall x, x' \in \mathcal{X}.$$

- \triangleright Both cases $\mu = 0$ and $\mu > 0$ will be considered.
- \triangleright g and J admit tractable Bregman proximal projections on \mathcal{X} and \mathcal{Y} , respectively. Also, dom $g \cap \mathcal{X} \neq \emptyset$ and dom $J \cap \mathcal{Y} \neq \emptyset$.
- $\triangleright \Phi$ is (L_{xx}, L_{yx}, L_{yy}) -smooth on $\mathcal{X} \times \mathcal{Y}$, i.e.,

$$\|\nabla_x \Phi(x, y) - \nabla_x \Phi(x', y)\|_{\mathbb{X}^*} \le L_{xx} \|x - x'\|_{\mathbb{X}},$$
 (1a)

$$\|\nabla_x \Phi(x, y) - \nabla_x \Phi(x, y')\|_{\mathbb{X}^*} \le L_{yx} \|y - y'\|_{\mathbb{Y}},$$
 (1b)

$$\|\nabla_y \Phi(x, y) - \nabla_y \Phi(x', y)\|_{\mathbb{V}^*} \le L_{yx} \|x - x'\|_{\mathbb{X}},$$
 (1c)

$$\|\nabla_y \Phi(x, y) - \nabla_y \Phi(x, y')\|_{\mathbb{V}^*} \le L_{yy} \|y - y'\|_{\mathbb{V}}.$$
 (1d)

ightharpoonup f is μ -strong convex (s.c.) and L-smooth on \mathcal{X} ($L \ge \mu \ge 0$), i.e.,

$$\frac{\mu}{2} \|x - x'\|_{\mathbb{X}}^2 \le f(x) - f(x') - \langle \nabla f(x'), x - x' \rangle \le \frac{L}{2} \|x - x'\|_{\mathbb{X}}^2, \forall x, x' \in \mathcal{X}.$$

- \triangleright Both cases $\mu = 0$ and $\mu > 0$ will be considered.
- \triangleright g and J admit tractable Bregman proximal projections on \mathcal{X} and \mathcal{Y} , respectively. Also, dom $g \cap \mathcal{X} \neq \emptyset$ and dom $J \cap \mathcal{Y} \neq \emptyset$.
- $\triangleright \Phi$ is (L_{xx}, L_{yx}, L_{yy}) -smooth on $\mathcal{X} \times \mathcal{Y}$, i.e.,

$$\|\nabla_x \Phi(x, y) - \nabla_x \Phi(x', y)\|_{\mathbb{X}^*} \le L_{xx} \|x - x'\|_{\mathbb{X}},$$
 (1a)

$$\|\nabla_x \Phi(x, y) - \nabla_x \Phi(x, y')\|_{\mathbb{X}^*} \le L_{yx} \|y - y'\|_{\mathbb{Y}},$$
 (1b)

$$\|\nabla_y \Phi(x, y) - \nabla_y \Phi(x', y)\|_{\mathbb{V}^*} \le L_{yx} \|x - x'\|_{\mathbb{X}},$$
 (1c)

$$\|\nabla_{y}\Phi(x,y) - \nabla_{y}\Phi(x,y')\|_{\mathbb{V}^{*}} \le L_{yy} \|y - y'\|_{\mathbb{V}}. \tag{1d}$$

 \triangleright A saddle point $(x^*, y^*) \in \mathcal{X} \times \mathcal{Y}$ exists for (SPP), i.e.,

$$S(x^*, y) \le S(x^*, y^*) \le S(x, y^*), \quad \forall (x, y) \in \mathcal{X} \times \mathcal{Y}.$$

 \triangleright Any bilinear SPP, i.e., $\Phi(x,y) = \langle \mathsf{A} x, y \rangle$, $\mathsf{A} \in \mathcal{L}(\mathbb{X}, \mathbb{Y}^*)$

- \triangleright Any bilinear SPP, i.e., $\Phi(x,y) = \langle \mathsf{A} x, y \rangle$, $\mathsf{A} \in \mathcal{L}(\mathbb{X}, \mathbb{Y}^*)$
- ▶ Non-bilinear SPP

- \triangleright Any bilinear SPP, i.e., $\Phi(x,y) = \langle \mathsf{A} x, y \rangle, \, \mathsf{A} \in \mathcal{L}(\mathbb{X}, \mathbb{Y}^*)$
- ▷ Non-bilinear SPP
 - Convex-concave game

7 / 39

- \triangleright Any bilinear SPP, i.e., $\Phi(x,y) = \langle \mathsf{A} x, y \rangle, \, \mathsf{A} \in \mathcal{L}(\mathbb{X}, \mathbb{Y}^*)$
- ▷ Non-bilinear SPP
 - Convex-concave game
 - Convex Optimization with Functional Constraints

- \triangleright Any bilinear SPP, i.e., $\Phi(x,y) = \langle \mathsf{A} x, y \rangle, \, \mathsf{A} \in \mathcal{L}(\mathbb{X}, \mathbb{Y}^*)$
- ▷ Non-bilinear SPP
 - Convex-concave game
 - Convex Optimization with Functional Constraints
 - Kernel Matrix Learning

Stochastic First-Order Oracles

$$f(x) \triangleq \mathbb{E}_{\xi}[\tilde{f}(x,\xi)] \qquad \quad \Phi(x,y) \triangleq \mathbb{E}_{\zeta}[\tilde{\Phi}(x,y,\zeta)]$$

Stochastic First-Order Oracles

$$f(x) \triangleq \mathbb{E}_{\xi}[\tilde{f}(x,\xi)]$$
 $\Phi(x,y) \triangleq \mathbb{E}_{\zeta}[\tilde{\Phi}(x,y,\zeta)]$

Oracle model (Stochastic approximation):

Return estimators of ∇f , $\nabla \Phi(\cdot, y)$ and $\nabla \Phi(x, \cdot)$, i.e., $\hat{\nabla} f$, $\hat{\nabla} \Phi(\cdot, y)$ and $\hat{\nabla} \Phi(x, \cdot)$, that

- are unbiased
- bave bounded variances
 base
 can
 base
 base
 can
 can
 can
 base
 can
 can
 base
 can
 c
- ▷ (may also) obey "light-tailed" distributions

Gradient Noise	Mean	Variance
$\delta_{x,f} \triangleq \hat{\nabla} f - \nabla f$	0	$\sigma_{x,f}^2$
$\delta_{x,\Phi} \triangleq \hat{\nabla}_x \Phi(\cdot, y) - \nabla_x \Phi(\cdot, y)$	0	$\sigma_{x,\Phi}^2$
$\delta_{y,\Phi} \triangleq \hat{\nabla}_y \Phi(x,\cdot) - \nabla_y \Phi(x,\cdot)$	0	$\sigma_{y,\Phi}^2$

Stochastic First-Order Oracles

$$f(x) \triangleq \mathbb{E}_{\xi}[\tilde{f}(x,\xi)]$$
 $\Phi(x,y) \triangleq \mathbb{E}_{\zeta}[\tilde{\Phi}(x,y,\zeta)]$

Oracle model (Stochastic approximation):

Return estimators of ∇f , $\nabla \Phi(\cdot, y)$ and $\nabla \Phi(x, \cdot)$, i.e., $\hat{\nabla} f$, $\hat{\nabla} \Phi(\cdot, y)$ and $\hat{\nabla} \Phi(x, \cdot)$, that

- are unbiased
- b have bounded variances
 b have
- ▷ (may also) obey "light-tailed" distributions

Gradient Noise	Mean	Variance
$\delta_{x,f} \triangleq \hat{\nabla} f - \nabla f$	0	$\sigma_{x,f}^2$
$\delta_{x,\Phi} \triangleq \hat{\nabla}_x \Phi(\cdot, y) - \nabla_x \Phi(\cdot, y)$	0	$\sigma_{x,\Phi}^2$
$\delta_{y,\Phi} \triangleq \hat{\nabla}_y \Phi(x,\cdot) - \nabla_y \Phi(x,\cdot)$	0	$\sigma_{y,\Phi}^2$

 $ightharpoonup (SPP) o SPP(L, L_{xx}, L_{yx}, L_{yy}, \sigma, \mu), \text{ where } \sigma \triangleq \sigma_{x,f} + \sigma_{x,\Phi} + \sigma_{y,\Phi}.$

- 1 Introduction
 - Problem Setup

Main Contribution

- 2 Preliminaries
- **3** Algorithm for $\mu = 0$
- **4** Restart Scheme for $\mu > 0$ Subroutine Stochastic Restart Scheme
- **6** Future Directions

$$SPP(L, L_{xx}, L_{yx}, L_{yy}, \sigma, \mu)$$

$$SPP(L, L_{xx}, L_{yx}, L_{yy}, \sigma, \mu)$$

▷ Develop the first stochastic restart scheme for SPP.

$$SPP(L, L_{xx}, L_{yx}, L_{yy}, \sigma, \mu)$$

- ▷ Develop the first stochastic restart scheme for SPP.
- \triangleright Consider the *sub-Gaussian* gradient noises.

$$SPP(L, L_{xx}, L_{yx}, L_{yy}, \sigma, \mu)$$

- ▷ Develop the first stochastic restart scheme for SPP.
- \triangleright Consider the *sub-Gaussian* gradient noises.
- \triangleright To obtain an ϵ -duality gap w.p. $\geq 1 \nu$, the oracle complexity is

$$O\left(\left(\sqrt{\frac{L}{\mu}} + \frac{L_{xx}}{\mu}\right)\log\left(\frac{1}{\epsilon}\right) + \frac{L_{yx}}{\sqrt{\mu\epsilon}} + \frac{L_{yy}}{\epsilon} + \left(\frac{(\sigma_{x,f} + \sigma_{x,\Phi})^2}{\mu\epsilon} + \frac{\sigma_{y,\Phi}^2}{\epsilon^2}\right)\log\left(\frac{\log(1/\epsilon)}{\nu}\right)\right).$$

 $SPP(L, L_{xx}, L_{yx}, L_{yy}, \sigma, \mu)$

$$SPP(L, L_{xx}, L_{yx}, L_{yy}, \sigma, \mu)$$

 \triangleright Furthermore, assume that dom g and dom J are closed.

$$SPP(L, L_{xx}, L_{yx}, L_{yy}, \sigma, \mu)$$

- \triangleright Furthermore, assume that dom g and dom J are closed.
- > Then to obtain an ϵ -expected duality gap, the oracle complexity is

$$O\left(\left(\sqrt{\frac{L}{\mu}} + \frac{L_{xx}}{\mu}\right)\log\left(\frac{1}{\epsilon}\right) + \frac{L_{yx}}{\sqrt{\mu\epsilon}} + \frac{L_{yy}}{\epsilon} + \left(\frac{(\sigma_{x,f} + \sigma_{x,\Phi})^2}{\mu\epsilon} + \frac{\sigma_{y,\Phi}^2}{\epsilon^2}\right)\log\left(\frac{1}{\epsilon}\right)\right).$$

$$SPP(L, L_{xx}, L_{yx}, L_{yy}, \sigma, \mu)$$

- \triangleright Furthermore, assume that dom g and dom J are closed.
- > Then to obtain an ϵ -expected duality gap, the oracle complexity is

$$O\left(\left(\sqrt{\frac{L}{\mu}} + \frac{L_{xx}}{\mu}\right)\log\left(\frac{1}{\epsilon}\right) + \frac{L_{yx}}{\sqrt{\mu\epsilon}} + \frac{L_{yy}}{\epsilon} + \left(\frac{(\sigma_{x,f} + \sigma_{x,\Phi})^2}{\mu\epsilon} + \frac{\sigma_{y,\Phi}^2}{\epsilon^2}\right)\log\left(\frac{1}{\epsilon}\right)\right).$$

• The complexities of L and L_{yx} are optimal.

$$SPP(L, L_{xx}, L_{yx}, L_{yy}, \sigma, \mu)$$

- \triangleright Furthermore, assume that dom g and dom J are closed.
- \triangleright Then to obtain an ϵ -expected duality gap, the oracle complexity is

$$O\left(\left(\sqrt{\frac{L}{\mu}} + \frac{L_{xx}}{\mu}\right)\log\left(\frac{1}{\epsilon}\right) + \frac{L_{yx}}{\sqrt{\mu\epsilon}} + \frac{L_{yy}}{\epsilon} + \left(\frac{(\sigma_{x,f} + \sigma_{x,\Phi})^2}{\mu\epsilon} + \frac{\sigma_{y,\Phi}^2}{\epsilon^2}\right)\log\left(\frac{1}{\epsilon}\right)\right).$$

- The complexities of L and L_{yx} are optimal.
- The complexities of $\sigma_{x,f}$, $\sigma_{x,\Phi}$ and $\sigma_{y,\Phi}$ are optimal up to a log factor, but still the best-known.

$$SPP(L, L_{xx}, L_{yx}, L_{yy}, \sigma, \mu)$$

- \triangleright Furthermore, assume that dom g and dom J are closed.
- > Then to obtain an ϵ -expected duality gap, the oracle complexity is

$$O\left(\left(\sqrt{\frac{L}{\mu}} + \frac{L_{xx}}{\mu}\right)\log\left(\frac{1}{\epsilon}\right) + \frac{L_{yx}}{\sqrt{\mu\epsilon}} + \frac{L_{yy}}{\epsilon} + \left(\frac{(\sigma_{x,f} + \sigma_{x,\Phi})^2}{\mu\epsilon} + \frac{\sigma_{y,\Phi}^2}{\epsilon^2}\right)\log\left(\frac{1}{\epsilon}\right)\right).$$

- The complexities of L and L_{yx} are optimal.
- The complexities of $\sigma_{x,f}$, $\sigma_{x,\Phi}$ and $\sigma_{y,\Phi}$ are optimal up to a log factor, but still the best-known.
- The complexities of L_{xx} and L_{yy} are the best-known. (Lower bound? Acceleration?)

Comparison with Other Methods

Algorithm	Problem Class	Oracle Complexity	
PDHG-type	$\sigma = 0$ $L = 0$	$O\left(\frac{L+L_{xx}+L_{yx}}{\sqrt{\mu\epsilon}}\right)$	
[Hamedani & Aybat'18]	$\sigma = 0, L_{yy} = 0$	$O\left(\frac{\sqrt{\mu\epsilon}}{\sqrt{\epsilon}}\right)$	
Mirror-Prox-B		/ - \	
[Juditsky &	$\sigma = 0, L_{yy} = 0$	$O\left(\frac{L+L_{xx}}{\mu}\log\left(\frac{1}{\epsilon}\right) + \frac{L_{yx}}{\sqrt{\mu\epsilon}}\right)$	
Nemirovski'12]		(- (-)	

Algorithm	Problem Class	Oracle Complexity	
PDHG-type	$\sigma = 0, L_{yy} = 0$	$O\left(\frac{L+L_{xx}+L_{yx}}{\sqrt{\mu\epsilon}}\right)$	
[Hamedani & Aybat'18]	$\sigma = 0, L_{yy} = 0$	$O\left(\frac{1}{\sqrt{\mu\epsilon}}\right)$	
Mirror-Prox-B		(
[Juditsky &	$\sigma = 0, L_{yy} = 0$	$O\left(\frac{L+L_{xx}}{\mu}\log\left(\frac{1}{\epsilon}\right) + \frac{L_{yx}}{\sqrt{\mu\epsilon}}\right)$	
Nemirovski'12]			

 \triangleright The oracle complexity of Algorithm 2 is

$$O\left(\left(\sqrt{\frac{L}{\mu}} + \frac{L_{xx}}{\mu}\right)\log\left(\frac{1}{\epsilon}\right) + \frac{L_{yx}}{\sqrt{\mu\epsilon}} + \frac{L_{yy}}{\epsilon} + \left(\frac{(\sigma_{x,f} + \sigma_{x,\Phi})^2}{\mu\epsilon} + \frac{\sigma_{y,\Phi}^2}{\epsilon^2}\right)\log\left(\frac{1}{\epsilon}\right)\right).$$

Algorithm	Problem Class	Oracle Complexity	
PDHG-type	$\sigma = 0$ $L_{\odot} = 0$	$O\left(\frac{L+L_{xx}+L_{yx}}{\sqrt{\mu\epsilon}}\right)$	
[Hamedani & Aybat'18]	$\sigma = 0, L_{yy} = 0$	$O\left(\frac{1}{\sqrt{\mu\epsilon}}\right)$	
Mirror-Prox-B		/	
[Juditsky &	$\sigma = 0, L_{yy} = 0$	$O\left(\frac{L+L_{xx}}{\mu}\log\left(\frac{1}{\epsilon}\right) + \frac{L_{yx}}{\sqrt{\mu\epsilon}}\right)$	
Nemirovski'12]		(, , , , , , , , , , , , , , , , , , ,	

▶ The oracle complexity of Algorithm 2 is

$$O\left(\left(\sqrt{\frac{L}{\mu}} + \frac{L_{xx}}{\mu}\right)\log\left(\frac{1}{\epsilon}\right) + \frac{L_{yx}}{\sqrt{\mu\epsilon}} + \frac{L_{yy}}{\epsilon} + \left(\frac{(\sigma_{x,f} + \sigma_{x,\Phi})^2}{\mu\epsilon} + \frac{\sigma_{y,\Phi}^2}{\epsilon^2}\right)\log\left(\frac{1}{\epsilon}\right)\right).$$

• For $\sigma = 0$ and $L_{yy} = 0$, strictly better than the previous methods.

Algorithm	Problem Class	Oracle Complexity	
PDHG-type	$\sigma = 0$ $L = 0$	$O\left(\frac{L+L_{xx}+L_{yx}}{\sqrt{\mu\epsilon}}\right)$	
[Hamedani & Aybat'18]	$\sigma = 0, L_{yy} = 0$	$O\left(\frac{1}{\sqrt{\mu\epsilon}}\right)$	
Mirror-Prox-B		/	
[Juditsky &	$\sigma = 0, L_{yy} = 0$	$O\left(\frac{L+L_{xx}}{\mu}\log\left(\frac{1}{\epsilon}\right) + \frac{L_{yx}}{\sqrt{\mu\epsilon}}\right)$	
Nemirovski'12]			

▷ The oracle complexity of Algorithm 2 is

$$O\left(\left(\sqrt{\frac{L}{\mu}} + \frac{L_{xx}}{\mu}\right)\log\left(\frac{1}{\epsilon}\right) + \frac{L_{yx}}{\sqrt{\mu\epsilon}} + \frac{L_{yy}}{\epsilon} + \left(\frac{(\sigma_{x,f} + \sigma_{x,\Phi})^2}{\mu\epsilon} + \frac{\sigma_{y,\Phi}^2}{\epsilon^2}\right)\log\left(\frac{1}{\epsilon}\right)\right).$$

- For $\sigma = 0$ and $L_{yy} = 0$, strictly better than the previous methods.
- For $\sigma > 0$ and $L_{yy} > 0$, the first complexity result.

 $SPP(L, L_{xx}, L_{yx}, L_{yy}, \sigma, 0)$

$$SPP(L, L_{xx}, L_{yx}, L_{yy}, \sigma, 0)$$

▷ Extend the primal-dual hybrid gradient (PDHG) framework to the non-bilinear stochastic SPP.

$$SPP(L, L_{xx}, L_{yx}, L_{yy}, \sigma, 0)$$

- ▷ Extend the primal-dual hybrid gradient (PDHG) framework to the non-bilinear stochastic SPP.
- \triangleright To obtain an ϵ -expected duality gap, the oracle complexity is

$$O\left(\sqrt{\frac{L}{\epsilon}} + \frac{L_{xx} + L_{yx} + L_{yy}}{\epsilon} + \frac{(\sigma_{x,f} + \sigma_{x,\Phi})^2 + \sigma_{y,\Phi}^2}{\epsilon^2}\right).$$

$$SPP(L, L_{xx}, L_{yx}, L_{yy}, \sigma, 0)$$

- ▷ Extend the primal-dual hybrid gradient (PDHG) framework to the non-bilinear stochastic SPP.
- \triangleright To obtain an ϵ -expected duality gap, the oracle complexity is

$$O\left(\sqrt{\frac{L}{\epsilon}} + \frac{L_{xx} + L_{yx} + L_{yy}}{\epsilon} + \frac{(\sigma_{x,f} + \sigma_{x,\Phi})^2 + \sigma_{y,\Phi}^2}{\epsilon^2}\right).$$

• The complexities of L, L_{yx} , $\sigma_{x,f}$, $\sigma_{x,\Phi}$ and $\sigma_{y,\Phi}$ are optimal.

$$SPP(L, L_{xx}, L_{yx}, L_{yy}, \sigma, 0)$$

- ▷ Extend the primal-dual hybrid gradient (PDHG) framework to the non-bilinear stochastic SPP.
- \triangleright To obtain an ϵ -expected duality gap, the oracle complexity is

$$O\left(\sqrt{\frac{L}{\epsilon}} + \frac{L_{xx} + L_{yx} + L_{yy}}{\epsilon} + \frac{(\sigma_{x,f} + \sigma_{x,\Phi})^2 + \sigma_{y,\Phi}^2}{\epsilon^2}\right).$$

- The complexities of L, L_{yx} , $\sigma_{x,f}$, $\sigma_{x,\Phi}$ and $\sigma_{y,\Phi}$ are optimal.
- The complexities of L_{xx} and L_{yy} are the best-known. (Lower bound? Acceleration?)

$$SPP(L, L_{xx}, L_{yx}, L_{yy}, \sigma, 0)$$

- ▷ Extend the primal-dual hybrid gradient (PDHG) framework to the non-bilinear stochastic SPP.
- \triangleright To obtain an ϵ -expected duality gap, the oracle complexity is

$$O\left(\sqrt{\frac{L}{\epsilon}} + \frac{L_{xx} + L_{yx} + L_{yy}}{\epsilon} + \frac{(\sigma_{x,f} + \sigma_{x,\Phi})^2 + \sigma_{y,\Phi}^2}{\epsilon^2}\right).$$

- The complexities of L, L_{yx} , $\sigma_{x,f}$, $\sigma_{x,\Phi}$ and $\sigma_{y,\Phi}$ are optimal.
- The complexities of L_{xx} and L_{yy} are the best-known. (Lower bound? Acceleration?)
- \triangleright If the gradient noises are sub-Gaussian, to obtain an ϵ -duality gap w.p. at least 1ν , the oracle complexity is

$$O\left(\sqrt{\frac{L}{\epsilon}} + \frac{L_{xx} + L_{yx} + L_{yy}}{\epsilon} + \frac{(\sigma_{x,f} + \sigma_{x,\Phi})^2 + \sigma_{y,\Phi}^2}{\epsilon^2} \log\left(\frac{1}{\nu}\right)\right).$$

Algorithm	Prob. Class	Oracle Complexity
PDHG-type	$\sigma = 0$	$O\left(\frac{L}{\epsilon} + \frac{L_{xx} + L_{yx} + L_{yy}}{\epsilon}\right)$
[Hamedani & Aybat'18]	$\theta = 0$	$O\left(\frac{\epsilon}{\epsilon} + \frac{\epsilon}{\epsilon}\right)$
Mirror-Prox	$\sigma = 0$	$O\left(\frac{L}{\epsilon} + \frac{L_{xx} + L_{yx} + L_{yy}}{\epsilon}\right)$
[Nemirovski'05]	$\sigma = 0$	$O\left(\frac{\epsilon}{\epsilon} + \frac{\epsilon}{\epsilon}\right)$
Stoc. MP	$\sigma > 0$	$O\left(\frac{L}{\epsilon} + \frac{L_{xx} + L_{yx} + L_{yy}}{\epsilon} + \frac{(\sigma_{x,f} + \sigma_{x,\Phi})^2 + \sigma_{y,\Phi}^2}{\epsilon^2}\right)$
[Juditsky et al.'11]	0 > 0	$O\left(\frac{\epsilon}{\epsilon} + \frac{\epsilon}{\epsilon} + \frac{\epsilon^2}{\epsilon}\right)$
Stoc. Acc. MP	$\sigma > 0$	$O\left(\sqrt{\frac{L}{\epsilon}} + \frac{L_{xx} + L_{yx} + L_{yy}}{\epsilon} + \frac{(\sigma_{x,f} + \sigma_{x,\Phi})^2 + \sigma_{y,\Phi}^2}{\epsilon^2}\right)$
[Chen et al.'17]	0 > 0	$O\left(\sqrt{\frac{\epsilon}{\epsilon}} + \frac{\epsilon}{\epsilon} + \frac{\epsilon^2}{\epsilon}\right)$
Algorithm 1	$\sigma > 0$	$O\left(\sqrt{\frac{L}{\epsilon}} + \frac{L_{xx} + L_{yx} + L_{yy}}{\epsilon} + \frac{(\sigma_{x,f} + \sigma_{x,\Phi})^2 + \sigma_{y,\Phi}^2}{\epsilon^2}\right)$
[Zhao'19]	0 > 0	$O\left(\sqrt{\frac{\epsilon}{\epsilon}} + \frac{1}{\epsilon}\right) + \frac{1}{\epsilon^2}$

- Introduction Problem Setup Main Contribution
- 2 Preliminaries
- **3** Algorithm for $\mu = 0$
- **4** Restart Scheme for $\mu > 0$ Subroutine Stochastic Restart Scheme
- **6** Future Directions

ightharpoonup Let $\mathcal{U} \subseteq \mathbb{U}$ be nonempty, closed and convex, where \mathbb{U} is a finite-dimensional real normed space.

- ightharpoonup Let $\mathcal{U} \subseteq \mathbb{U}$ be nonempty, closed and convex, where \mathbb{U} is a finite-dimensional real normed space.
- \triangleright We call $h_{\mathcal{U}}$ a distance generating function (DGF) on \mathcal{U} if

- ightharpoonup Let $\mathcal{U} \subseteq \mathbb{U}$ be nonempty, closed and convex, where \mathbb{U} is a finite-dimensional real normed space.
- \triangleright We call $h_{\mathcal{U}}$ a distance generating function (DGF) on \mathcal{U} if
 - it is essentially smooth, i.e., cont. differentiable on int dom $h_{\mathcal{U}} \neq \emptyset$, and for any $u_k \to u \in \operatorname{bd} \mathcal{U}$, $\|\nabla h_{\mathcal{U}}(u_k)\|_* \to +\infty$,

- ightharpoonup Let $\mathcal{U}\subseteq\mathbb{U}$ be nonempty, closed and convex, where \mathbb{U} is a finite-dimensional real normed space.
- \triangleright We call $h_{\mathcal{U}}$ a distance generating function (DGF) on \mathcal{U} if
 - it is essentially smooth, i.e., cont. differentiable on int dom $h_{\mathcal{U}} \neq \emptyset$, and for any $u_k \to u \in \operatorname{bd} \mathcal{U}$, $\|\nabla h_{\mathcal{U}}(u_k)\|_* \to +\infty$,
 - it is continuous on \mathcal{U} ,

- ightharpoonup Let $\mathcal{U}\subseteq\mathbb{U}$ be nonempty, closed and convex, where \mathbb{U} is a finite-dimensional real normed space.
- \triangleright We call $h_{\mathcal{U}}$ a distance generating function (DGF) on \mathcal{U} if
 - it is essentially smooth, i.e., cont. differentiable on int dom $h_{\mathcal{U}} \neq \emptyset$, and for any $u_k \to u \in \operatorname{bd} \mathcal{U}$, $\|\nabla h_{\mathcal{U}}(u_k)\|_* \to +\infty$,
 - it is continuous on \mathcal{U} ,
 - it generates the Bregman distance

$$D_{h_{\mathcal{U}}}(u, u') \triangleq h_{\mathcal{U}}(u) - h_{\mathcal{U}}(u') - \langle \nabla h_{\mathcal{U}}(u'), u - u' \rangle$$

that satisfies $D_{h_{\mathcal{U}}}(u, u') \geq (1/2) \|u - u'\|^2$, for any $u \in \mathcal{U}$ and $u' \in \mathcal{U}^o \triangleq \mathcal{U} \cap \operatorname{int} \operatorname{dom} h_{\mathcal{U}}$.

- ightharpoonup Let $\mathcal{U}\subseteq\mathbb{U}$ be nonempty, closed and convex, where \mathbb{U} is a finite-dimensional real normed space.
- \triangleright We call $h_{\mathcal{U}}$ a distance generating function (DGF) on \mathcal{U} if
 - it is essentially smooth, i.e., cont. differentiable on int dom $h_{\mathcal{U}} \neq \emptyset$, and for any $u_k \to u \in \operatorname{bd} \mathcal{U}$, $\|\nabla h_{\mathcal{U}}(u_k)\|_* \to +\infty$,
 - it is continuous on \mathcal{U} ,
 - it generates the Bregman distance

$$D_{h_{\mathcal{U}}}(u, u') \triangleq h_{\mathcal{U}}(u) - h_{\mathcal{U}}(u') - \langle \nabla h_{\mathcal{U}}(u'), u - u' \rangle$$

that satisfies $D_{h_{\mathcal{U}}}(u, u') \geq (1/2) \|u - u'\|^2$, for any $u \in \mathcal{U}$ and $u' \in \mathcal{U}^o \triangleq \mathcal{U} \cap \operatorname{int} \operatorname{dom} h_{\mathcal{U}}$.

Let $u' \in \mathcal{U}^o$, $u^* \in \mathbb{U}^*$ and $\varphi : \mathbb{U} \to \overline{\mathbb{R}}$ be CCP.

Let $u' \in \mathcal{U}^o$, $u^* \in \mathbb{U}^*$ and $\varphi : \mathbb{U} \to \overline{\mathbb{R}}$ be CCP.

$$u' \mapsto u^{+} \triangleq \arg\min_{u \in \mathcal{U}} \varphi(u) + \langle u^{*}, u \rangle + \lambda^{-1} D_{h_{\mathcal{U}}}(u, u')$$
(BPP)

Let $u' \in \mathcal{U}^o$, $u^* \in \mathbb{U}^*$ and $\varphi : \mathbb{U} \to \overline{\mathbb{R}}$ be CCP.

$$u' \mapsto u^{+} \triangleq \arg\min_{u \in \mathcal{U}} \varphi(u) + \langle u^{*}, u \rangle + \lambda^{-1} D_{h_{\mathcal{U}}}(u, u')$$
 (BPP)

▷ If $\inf_{u \in \mathcal{U}} \varphi(u) > -\infty$ and $\mathcal{U} \cap \operatorname{dom} \phi \cap \operatorname{dom} h_{\mathcal{U}} \neq \emptyset$, then u^+ is unique and lies in $\mathcal{U}^o \cap \operatorname{dom} \varphi$.

Let $u' \in \mathcal{U}^o$, $u^* \in \mathbb{U}^*$ and $\varphi : \mathbb{U} \to \overline{\mathbb{R}}$ be CCP.

$$u' \mapsto u^{+} \triangleq \arg\min_{u \in \mathcal{U}} \varphi(u) + \langle u^{*}, u \rangle + \lambda^{-1} D_{h_{\mathcal{U}}}(u, u')$$
(BPP)

- ▷ If $\inf_{u \in \mathcal{U}} \varphi(u) > -\infty$ and $\mathcal{U} \cap \operatorname{dom} \phi \cap \operatorname{dom} h_{\mathcal{U}} \neq \emptyset$, then u^+ is unique and lies in $\mathcal{U}^o \cap \operatorname{dom} \varphi$.
- \triangleright We say φ has a tractable BPP on \mathcal{U} if there exists a DGF $h_{\mathcal{U}}$ on \mathcal{U} such that (BPP) has a (unique) easily computable solution.

Let $u' \in \mathcal{U}^o$, $u^* \in \mathbb{U}^*$ and $\varphi : \mathbb{U} \to \overline{\mathbb{R}}$ be CCP.

$$\boxed{u' \mapsto u^{+} \triangleq \arg\min_{u \in \mathcal{U}} \ \varphi(u) + \langle u^{*}, u \rangle + \lambda^{-1} D_{h_{\mathcal{U}}}(u, u')}$$
 (BPP)

- ▷ If $\inf_{u \in \mathcal{U}} \varphi(u) > -\infty$ and $\mathcal{U} \cap \operatorname{dom} \phi \cap \operatorname{dom} h_{\mathcal{U}} \neq \emptyset$, then u^+ is unique and lies in $\mathcal{U}^o \cap \operatorname{dom} \varphi$.
- \triangleright We say φ has a tractable BPP on \mathcal{U} if there exists a DGF $h_{\mathcal{U}}$ on \mathcal{U} such that (BPP) has a (unique) easily computable solution.
- \triangleright If $\mathbb U$ is a Hilbert space, then (BPP) becomes

$$u' \mapsto u^+ \triangleq \mathbf{prox}_{\lambda\varphi}(u' - \lambda u^*).$$

$$(\mathbb{P}): \ \min_{x \in \mathcal{X}} \left[\bar{S}(x) \triangleq \sup_{y \in \mathcal{Y}} S(x,y) \right], \quad (\mathbb{D}): \ \max_{y \in \mathcal{Y}} \left[\underline{S}(x) \triangleq \inf_{x \in \mathcal{X}} S(x,y) \right].$$

$$(\mathbb{P}): \ \min_{x \in \mathcal{X}} \left[\bar{S}(x) \triangleq \sup\nolimits_{y \in \mathcal{Y}} S(x,y) \right], \quad (\mathbb{D}): \ \max_{y \in \mathcal{Y}} \left[\underline{S}(x) \triangleq \inf\nolimits_{x \in \mathcal{X}} S(x,y) \right].$$

 $\,\,\vartriangleright\,\, \bar{S} \to {\rm primal}$ function, $\underline{S} \to {\rm dual}$ function

$$(\mathbb{P}): \ \min_{x \in \mathcal{X}} \left[\bar{S}(x) \triangleq \sup_{y \in \mathcal{Y}} S(x,y) \right], \quad (\mathbb{D}): \ \max_{y \in \mathcal{Y}} \left[\underline{S}(x) \triangleq \inf_{x \in \mathcal{X}} S(x,y) \right].$$

- $ightharpoonup ar{S} o$ primal function, $\underline{S} o$ dual function
- \triangleright Since (SPP) has a saddle point (x^*, y^*) , x^* and y^* are solutions of (\mathbb{P}) and (\mathbb{D}) respectively and $\bar{S}(x^*) = S(x^*, y^*) = \underline{S}(y^*)$.

$$(\mathbb{P}): \ \min_{x \in \mathcal{X}} \left[\bar{S}(x) \triangleq \sup\nolimits_{y \in \mathcal{Y}} S(x,y) \right], \quad (\mathbb{D}): \ \max_{y \in \mathcal{Y}} \left[\underline{S}(x) \triangleq \inf\nolimits_{x \in \mathcal{X}} S(x,y) \right].$$

- $\triangleright \bar{S} \rightarrow \text{primal function}, \underline{S} \rightarrow \text{dual function}$
- \triangleright Since (SPP) has a saddle point (x^*, y^*) , x^* and y^* are solutions of (\mathbb{P}) and (\mathbb{D}) respectively and $\bar{S}(x^*) = S(x^*, y^*) = \underline{S}(y^*)$.
- \triangleright Define the duality gap

$$G(x,y) \triangleq \bar{S}(x) - \underline{S}(y) = \sup_{x' \in \mathcal{X}, y' \in \mathcal{Y}} S(x,y') - S(x',y).$$

- Introduction Problem Setup Main Contribution
- 2 Preliminaries
- **3** Algorithm for $\mu = 0$
- **4** Restart Scheme for $\mu > 0$ Subroutine Stochastic Restart Scheme
- **6** Future Directions

▶ Input: Interp. seq. $\{\beta_t\}_{t\in\mathbb{N}}$, dual stepsizes $\{\alpha_t\}_{t\in\mathbb{N}}$, primal stepsizes $\{\tau_t\}_{t\in\mathbb{N}}$, relaxation seq. $\{\theta_t\}_{t\in\mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \to \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \to \overline{\mathbb{R}}$

- ▶ Input: Interp. seq. $\{\beta_t\}_{t\in\mathbb{N}}$, dual stepsizes $\{\alpha_t\}_{t\in\mathbb{N}}$, primal stepsizes $\{\tau_t\}_{t\in\mathbb{N}}$, relaxation seq. $\{\theta_t\}_{t\in\mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \to \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \to \overline{\mathbb{R}}$
- ▶ Init: $(x^1, y^1) \in \mathcal{X}^o \times \mathcal{Y}^o$, $\bar{x}^1 = x^1$, $\bar{y}^1 = y^1$, $s^1 = \hat{\nabla}_y \Phi(x^1, y^1, \zeta_y^1)$, t = 1

- ▶ Input: Interp. seq. $\{\beta_t\}_{t\in\mathbb{N}}$, dual stepsizes $\{\alpha_t\}_{t\in\mathbb{N}}$, primal stepsizes $\{\tau_t\}_{t\in\mathbb{N}}$, relaxation seq. $\{\theta_t\}_{t\in\mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \to \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \to \overline{\mathbb{R}}$
- ▶ Init: $(x^1, y^1) \in \mathcal{X}^o \times \mathcal{Y}^o$, $\bar{x}^1 = x^1$, $\bar{y}^1 = y^1$, $s^1 = \hat{\nabla}_y \Phi(x^1, y^1, \zeta_y^1)$, t = 1
- ▶ Repeat (until some convergence criterion is met)

$$y^{t+1} := \arg\min_{y \in \mathcal{Y}} J(y) - \langle s^t, y - y^t \rangle + \alpha_t^{-1} D_{h_{\mathcal{Y}}}(y, y^t)$$
 (Dual Ascent)

- ▶ Input: Interp. seq. $\{\beta_t\}_{t\in\mathbb{N}}$, dual stepsizes $\{\alpha_t\}_{t\in\mathbb{N}}$, primal stepsizes $\{\tau_t\}_{t\in\mathbb{N}}$, relaxation seq. $\{\theta_t\}_{t\in\mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \to \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \to \overline{\mathbb{R}}$
- ▶ Init: $(x^1, y^1) \in \mathcal{X}^o \times \mathcal{Y}^o$, $\bar{x}^1 = x^1$, $\bar{y}^1 = y^1$, $s^1 = \hat{\nabla}_y \Phi(x^1, y^1, \zeta_y^1)$, t = 1
- ▶ Repeat (until some convergence criterion is met)

$$y^{t+1} := \arg\min_{y \in \mathcal{Y}} J(y) - \langle s^t, y - y^t \rangle + \alpha_t^{-1} D_{h_{\mathcal{Y}}}(y, y^t)$$
 (Dual Ascent)
$$\tilde{x}^{t+1} := (1 - \beta_t) \bar{x}^t + \beta_t x^t$$
 (Interpolation)

- ▶ Input: Interp. seq. $\{\beta_t\}_{t\in\mathbb{N}}$, dual stepsizes $\{\alpha_t\}_{t\in\mathbb{N}}$, primal stepsizes $\{\tau_t\}_{t\in\mathbb{N}}$, relaxation seq. $\{\theta_t\}_{t\in\mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \to \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \to \overline{\mathbb{R}}$
- ▶ Init: $(x^1, y^1) \in \mathcal{X}^o \times \mathcal{Y}^o$, $\bar{x}^1 = x^1$, $\bar{y}^1 = y^1$, $s^1 = \hat{\nabla}_y \Phi(x^1, y^1, \zeta_y^1)$, t = 1
- ▶ Repeat (until some convergence criterion is met)

$$y^{t+1} := \arg\min_{y \in \mathcal{Y}} J(y) - \langle s^t, y - y^t \rangle + \alpha_t^{-1} D_{h_{\mathcal{Y}}}(y, y^t) \quad \text{(Dual Ascent)}$$

$$\tilde{x}^{t+1} := (1 - \beta_t) \bar{x}^t + \beta_t x^t \quad \text{(Interpolation)}$$

$$x^{t+1} := \arg\min_{x \in \mathcal{X}} g(x) + \langle \hat{\nabla}_x \Phi(x^t, y^{t+1}, \zeta_x^t) + \hat{\nabla} f(\tilde{x}^{t+1}, \xi^t), x - x^t \rangle$$

$$+ \tau_t^{-1} D_{h_{\mathcal{X}}}(x, x^t)) \quad \text{(Primal Descent)}$$

- ▶ Input: Interp. seq. $\{\beta_t\}_{t\in\mathbb{N}}$, dual stepsizes $\{\alpha_t\}_{t\in\mathbb{N}}$, primal stepsizes $\{\tau_t\}_{t\in\mathbb{N}}$, relaxation seq. $\{\theta_t\}_{t\in\mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \to \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \to \overline{\mathbb{R}}$
- ▶ Init: $(x^1, y^1) \in \mathcal{X}^o \times \mathcal{Y}^o$, $\bar{x}^1 = x^1$, $\bar{y}^1 = y^1$, $s^1 = \hat{\nabla}_y \Phi(x^1, y^1, \zeta_y^1)$, t = 1
- ▶ Repeat (until some convergence criterion is met)

$$y^{t+1} := \arg\min_{y \in \mathcal{Y}} J(y) - \langle s^t, y - y^t \rangle + \alpha_t^{-1} D_{h_{\mathcal{Y}}}(y, y^t) \qquad \text{(Dual Ascent)}$$

$$\tilde{x}^{t+1} := (1 - \beta_t) \bar{x}^t + \beta_t x^t \qquad \text{(Interpolation)}$$

$$x^{t+1} := \arg\min_{x \in \mathcal{X}} g(x) + \langle \hat{\nabla}_x \Phi(x^t, y^{t+1}, \zeta_x^t) + \hat{\nabla} f(\tilde{x}^{t+1}, \xi^t), x - x^t \rangle$$

$$+ \tau_t^{-1} D_{h_{\mathcal{X}}}(x, x^t)) \qquad \text{(Primal Descent)}$$

$$s^{t+1} := (1 + \theta_{t+1}) \hat{\nabla}_y \Phi(x^{t+1}, y^{t+1}, \zeta_x^{t+1}) - \theta_{t+1} \hat{\nabla}_y \Phi(x^t, y^t, \zeta_y^t) \qquad \text{(Extrap.)}$$

- ▶ Input: Interp. seq. $\{\beta_t\}_{t\in\mathbb{N}}$, dual stepsizes $\{\alpha_t\}_{t\in\mathbb{N}}$, primal stepsizes $\{\tau_t\}_{t\in\mathbb{N}}$, relaxation seq. $\{\theta_t\}_{t\in\mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \to \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \to \overline{\mathbb{R}}$
- ▶ Init: $(x^1, y^1) \in \mathcal{X}^o \times \mathcal{Y}^o$, $\bar{x}^1 = x^1$, $\bar{y}^1 = y^1$, $s^1 = \hat{\nabla}_y \Phi(x^1, y^1, \zeta_y^1)$, t = 1
- ▶ Repeat (until some convergence criterion is met)

$$y^{t+1} := \arg\min_{y \in \mathcal{Y}} J(y) - \langle s^t, y - y^t \rangle + \alpha_t^{-1} D_{h_{\mathcal{Y}}}(y, y^t) \quad \text{(Dual Ascent)}$$

$$\tilde{x}^{t+1} := (1 - \beta_t) \bar{x}^t + \beta_t x^t \quad \text{(Interpolation)}$$

$$x^{t+1} := \arg\min_{x \in \mathcal{X}} g(x) + \langle \hat{\nabla}_x \Phi(x^t, y^{t+1}, \zeta_x^t) + \hat{\nabla} f(\tilde{x}^{t+1}, \xi^t), x - x^t \rangle$$

$$+ \tau_t^{-1} D_{h_{\mathcal{X}}}(x, x^t)) \quad \text{(Primal Descent)}$$

$$s^{t+1} := (1 + \theta_{t+1}) \hat{\nabla}_y \Phi(x^{t+1}, y^{t+1}, \zeta_y^{t+1}) - \theta_{t+1} \hat{\nabla}_y \Phi(x^t, y^t, \zeta_y^t) \quad \text{(Extrap.)}$$

$$\bar{x}^{t+1} := (1 - \beta_t) \bar{x}^t + \beta_t x^{t+1} \quad \text{(Primal Averaging)}$$

Algorithm 1: An Optimal Algorithm for $\mu = 0$

- ▶ Input: Interp. seq. $\{\beta_t\}_{t\in\mathbb{N}}$, dual stepsizes $\{\alpha_t\}_{t\in\mathbb{N}}$, primal stepsizes $\{\tau_t\}_{t\in\mathbb{N}}$, relaxation seq. $\{\theta_t\}_{t\in\mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \to \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \to \overline{\mathbb{R}}$
- ▶ Init: $(x^1, y^1) \in \mathcal{X}^o \times \mathcal{Y}^o$, $\bar{x}^1 = x^1$, $\bar{y}^1 = y^1$, $s^1 = \hat{\nabla}_y \Phi(x^1, y^1, \zeta_y^1)$, t = 1
- ▶ Repeat (until some convergence criterion is met)

$$y^{t+1} := \arg\min_{y \in \mathcal{Y}} J(y) - \langle s^t, y - y^t \rangle + \alpha_t^{-1} D_{h_{\mathcal{Y}}}(y, y^t) \qquad \text{(Dual Ascent)}$$

$$\tilde{x}^{t+1} := (1 - \beta_t) \bar{x}^t + \beta_t x^t \qquad \qquad \text{(Interpolation)}$$

$$x^{t+1} := \arg\min_{x \in \mathcal{X}} g(x) + \langle \hat{\nabla}_x \Phi(x^t, y^{t+1}, \zeta_x^t) + \hat{\nabla}_t f(\tilde{x}^{t+1}, \xi^t), x - x^t \rangle$$

$$+ \tau_t^{-1} D_{h_{\mathcal{X}}}(x, x^t)) \qquad \text{(Primal Descent)}$$

$$s^{t+1} := (1 + \theta_{t+1}) \hat{\nabla}_y \Phi(x^{t+1}, y^{t+1}, \zeta_y^{t+1}) - \theta_{t+1} \hat{\nabla}_y \Phi(x^t, y^t, \zeta_y^t) \quad \text{(Extrap.)}$$

$$\bar{x}^{t+1} := (1 - \beta_t) \bar{x}^t + \beta_t x^{t+1} \qquad \text{(Primal Averaging)}$$

$$\bar{y}^{t+1} := (1 - \beta_t) \bar{y}^t + \beta_t y^{t+1} \qquad \text{(Dual Averaging)}$$

Algorithm 1: An Optimal Algorithm for $\mu = 0$

- ▶ Input: Interp. seq. $\{\beta_t\}_{t\in\mathbb{N}}$, dual stepsizes $\{\alpha_t\}_{t\in\mathbb{N}}$, primal stepsizes $\{\tau_t\}_{t\in\mathbb{N}}$, relaxation seq. $\{\theta_t\}_{t\in\mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \to \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \to \overline{\mathbb{R}}$
- ▶ Init: $(x^1, y^1) \in \mathcal{X}^o \times \mathcal{Y}^o$, $\bar{x}^1 = x^1$, $\bar{y}^1 = y^1$, $s^1 = \hat{\nabla}_y \Phi(x^1, y^1, \zeta_y^1)$, t = 1
- ▶ **Repeat** (until some convergence criterion is met)

$$y^{t+1} := \arg\min_{y \in \mathcal{Y}} J(y) - \langle s^t, y - y^t \rangle + \alpha_t^{-1} D_{h_{\mathcal{Y}}}(y, y^t) \quad \text{(Dual Ascent)}$$

$$\tilde{x}^{t+1} := (1 - \beta_t) \bar{x}^t + \beta_t x^t \quad \text{(Interpolation)}$$

$$x^{t+1} := \arg\min_{x \in \mathcal{X}} g(x) + \langle \hat{\nabla}_x \Phi(x^t, y^{t+1}, \zeta_x^t) + \hat{\nabla}_t f(\tilde{x}^{t+1}, \xi^t), x - x^t \rangle$$

$$+ \tau_t^{-1} D_{h_{\mathcal{X}}}(x, x^t)) \quad \text{(Primal Descent)}$$

$$s^{t+1} := (1 + \theta_{t+1}) \hat{\nabla}_y \Phi(x^{t+1}, y^{t+1}, \zeta_y^{t+1}) - \theta_{t+1} \hat{\nabla}_y \Phi(x^t, y^t, \zeta_y^t) \quad \text{(Extrap.)}$$

$$\bar{x}^{t+1} := (1 - \beta_t) \bar{x}^t + \beta_t x^{t+1} \quad \text{(Primal Averaging)}$$

$$\bar{y}^{t+1} := (1 - \beta_t) \bar{y}^t + \beta_t y^{t+1} \quad \text{(Dual Averaging)}$$

$$t := t + 1$$

Algorithm 1: An Optimal Algorithm for $\mu = 0$

- ▶ Input: Interp. seq. $\{\beta_t\}_{t\in\mathbb{N}}$, dual stepsizes $\{\alpha_t\}_{t\in\mathbb{N}}$, primal stepsizes $\{\tau_t\}_{t\in\mathbb{N}}$, relaxation seq. $\{\theta_t\}_{t\in\mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \to \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \to \overline{\mathbb{R}}$
- ▶ Init: $(x^1, y^1) \in \mathcal{X}^o \times \mathcal{Y}^o$, $\bar{x}^1 = x^1$, $\bar{y}^1 = y^1$, $s^1 = \hat{\nabla}_y \Phi(x^1, y^1, \zeta_y^1)$, t = 1
- ▶ Repeat (until some convergence criterion is met)

$$y^{t+1} := \arg\min_{y \in \mathcal{Y}} J(y) - \langle s^t, y - y^t \rangle + \alpha_t^{-1} D_{h_{\mathcal{Y}}}(y, y^t) \qquad \text{(Dual Ascent)}$$

$$\tilde{x}^{t+1} := (1 - \beta_t) \bar{x}^t + \beta_t x^t \qquad \text{(Interpolation)}$$

$$x^{t+1} := \arg\min_{x \in \mathcal{X}} g(x) + \langle \hat{\nabla}_x \Phi(x^t, y^{t+1}, \zeta_x^t) + \hat{\nabla}_t f(\tilde{x}^{t+1}, \xi^t), x - x^t \rangle$$

$$+ \tau_t^{-1} D_{h_{\mathcal{X}}}(x, x^t)) \qquad \text{(Primal Descent)}$$

$$s^{t+1} := (1 + \theta_{t+1}) \hat{\nabla}_y \Phi(x^{t+1}, y^{t+1}, \zeta_y^{t+1}) - \theta_{t+1} \hat{\nabla}_y \Phi(x^t, y^t, \zeta_y^t) \quad \text{(Extrap.)}$$

$$\bar{x}^{t+1} := (1 - \beta_t) \bar{x}^t + \beta_t x^{t+1} \qquad \text{(Primal Averaging)}$$

$$\bar{y}^{t+1} := (1 - \beta_t) \bar{y}^t + \beta_t y^{t+1} \qquad \text{(Dual Averaging)}$$

$$t := t + 1$$

▶ Output: (\bar{x}^t, \bar{y}^t)

▷ Bregman diameters:

$$\Omega_{h_{\mathcal{X}}} \triangleq \sup_{x \in \mathcal{X}, x' \in \mathcal{X}^o} D_{h_{\mathcal{X}}}(x, x'), \quad \Omega_{h_{\mathcal{Y}}} \triangleq \sup_{y \in \mathcal{Y}, y' \in \mathcal{Y}^o} D_{h_{\mathcal{Y}}}(y, y').$$

▷ Bregman diameters:

$$\Omega_{h_{\mathcal{X}}} \triangleq \sup_{x \in \mathcal{X}, x' \in \mathcal{X}^o} D_{h_{\mathcal{X}}}(x, x'), \quad \Omega_{h_{\mathcal{Y}}} \triangleq \sup_{y \in \mathcal{Y}, y' \in \mathcal{Y}^o} D_{h_{\mathcal{Y}}}(y, y').$$

 \triangleright Gradient noises at iteration t:

$$\begin{split} & \delta_{y,\Phi}^t \triangleq \hat{\nabla}_y \Phi(x^t, y^t, \zeta_y^t) - \nabla_y \Phi(x^t, y^t), \\ & \delta_{x,\Phi}^t \triangleq \hat{\nabla}_x \Phi(x^t, y^{t+1}, \zeta_x^t) - \nabla_x \Phi(x^t, y^{t+1}), \\ & \delta_{x,f}^t \triangleq \hat{\nabla} f(\tilde{x}^{t+1}, \xi^t) - \nabla f(\tilde{x}^{t+1}). \end{split}$$

Assumptions 1 (On Constraint Sets)

- **A** The Bregman diameters $\Omega_{h_{\mathcal{X}}}$ and $\Omega_{h_{\mathcal{Y}}}$ are bounded.
- **B** The set \mathcal{X} is bounded and the Bregman diameter $\Omega_{h_{\mathcal{Y}}}$ is bounded.

Assumptions 2 (On Gradient Noises)

Define $\mathbb{E}_t[\cdot] \triangleq \mathbb{E}[\cdot \mid \mathcal{F}_t]$. For any $x \in \mathcal{X}$ and $y \in \mathcal{Y}$ and any $t \in \mathbb{N}$, there exist positive constants $\sigma_{y,\Phi}$, $\sigma_{x,\Phi}$ and $\sigma_{x,f}$ such that

- $\mathbb{E}_{t-1}[\delta_{y,\Phi}^t] = 0, \ \mathbb{E}_{t-1}[\delta_{x,\Phi}^t] = 0, \ \mathbb{E}_{t-1}[\delta_{x,f}^t] = 0 \ a.s.,$
- **B** (Bounded variance) $\mathbb{E}_{t-1}[\|\delta_{y,\Phi}^t\|_*^2] \leq \sigma_{y,\Phi}^2$, $\mathbb{E}_{t-1}[\|\delta_{x,\Phi}^t\|_*^2] \leq \sigma_{x,\Phi}^2$, $\mathbb{E}_{t-1}[\|\delta_{x,f}^t\|_*^2] \leq \sigma_{x,f}^2$ a.s.,
- (Sub-Gaussian distributions)

$$\mathbb{E}_{t-1} \left[\exp \left(\|\delta_{y,\Phi}^t\|_*^2 / \sigma_{y,\Phi}^2 \right) \right] \le \exp(1), \ \mathbb{E}_{t-1} \left[\exp \left(\|\delta_{x,\Phi}^t\|_*^2 / \sigma_{x,\Phi}^2 \right) \right] \le \exp(1),$$

$$\mathbb{E}_{t-1} \left[\exp \left(\|\delta_{x,f}^t\|_*^2 / \sigma_{x,f}^2 \right) \right] \le \exp(1) \ a.s..$$

Convergence Results

Theorem 1

Let Assumptions 1(A) and 2(A) hold. In Algorithm 1, for any $t \in \mathbb{N}$, choose

$$\begin{split} \theta_t &= \frac{t-1}{t}, \quad \beta_t = \frac{2}{t+1}, \quad \alpha_t = \frac{1}{16\left(L_{yx} + L_{yy} + \rho\sigma_{y,\Phi}\sqrt{t}\right)}, \\ \tau_t &= \frac{t}{2\left(2L + (L_{xx} + L_{yx})t + \rho'(\sigma_{x,\Phi} + \sigma_{x,f})t^{3/2}\right)}, \end{split}$$

where $\rho, \rho' > 0$ are constants independent of the parameters of interest, i.e., $(L, L_{xx}, L_{yx}, L_{yy}, \sigma_{x,f}, \sigma_{x,\Phi}, \sigma_{y,\Phi}, t)$.

1 If Assumption 2(B) also holds, then for any $T \geq 3$, we have

$$\begin{split} &\mathbb{E}[G(\bar{x}^T, \bar{y}^T)] \leq B_{\mathrm{e}}(T) \triangleq \frac{16L}{T(T-1)} \Omega_{h_{\mathcal{X}}} + \frac{8(L_{xx} + L_{yx})}{T} \Omega_{h_{\mathcal{X}}} \\ &+ \frac{128(L_{yx} + L_{yy})}{T} \Omega_{h_{\mathcal{Y}}} + \frac{8\sigma_{y,\Phi}}{\sqrt{T}} \left(\frac{1}{\rho} + 16\rho\Omega_{h_{\mathcal{Y}}}\right) + \frac{8(\sigma_{x,f} + \sigma_{x,\Phi})}{\sqrt{T}} \left(\frac{1}{\rho'} + \rho'\Omega_{h_{\mathcal{X}}}\right). \end{split}$$

Convergence Results

Thus, the oracle complexity of obtaining an ϵ -expected duality gap is

$$O\left(\sqrt{L/\epsilon} + (L_{xx} + L_{yx} + L_{yy})/\epsilon + \left((\sigma_{x,f} + \sigma_{x,\Phi})^2 + \sigma_{y,\Phi}^2\right)/\epsilon^2\right).$$

2 Let $\nu \in (0, 1/6]$. If Assumption 2(C) also holds, then w.p. at least $1 - 6\nu$,

$$G(\bar{x}^T, \bar{y}^T) \le B_{\mathrm{e}}(T) + \frac{8\sigma_{y,\Phi}}{\sqrt{T}} \left(\frac{\log(1/\nu)}{\rho} + \sqrt{\log(1/\nu)\Omega_{h_{\mathcal{Y}}}} \right) + \frac{8(\sigma_{x,\Phi} + \sigma_{x,f})}{\sqrt{T}} \left(\frac{\log(1/\nu)}{\rho'} + \sqrt{\log(1/\nu)\Omega_{h_{\mathcal{X}}}} \right).$$

Thus, the oracle complexity of obtaining an ϵ -duality gap $w.p. \geq 1 - \nu$ is

$$O\left(\sqrt{\frac{L}{\epsilon}} + \frac{L_{xx} + L_{yx} + L_{yy}}{\epsilon} + \frac{(\sigma_{x,f} + \sigma_{x,\Phi})^2 + \sigma_{y,\Phi}^2}{\epsilon^2} \log\left(\frac{1}{\nu}\right)\right).$$

- Introduction Problem Setup Main Contribution
- 2 Preliminaries
- **3** Algorithm for $\mu = 0$
- **6** Future Directions

- Introduction Problem Setup Main Contribution
- 2 Preliminaries
- **3** Algorithm for $\mu = 0$
- **a** Restart Scheme for $\mu > 0$ Subroutine Stochastic Restart Scheme
- **6** Future Directions

Most of the subroutines need to satisfy: For any starting point \bar{x}^1 and any $\epsilon, \delta > 0$, there exists $T \in \mathbb{N}$ such that

$$\mathbb{E}[\|\bar{x}^1 - x^*\|^2] \le \delta \quad \Longrightarrow \quad \mathbb{E}[f(\bar{x}^T) - f(x^*)] \le \epsilon.$$

where \bar{x}^T denotes the T-th iterate produced by the subroutine.

Most of the subroutines need to satisfy: For any starting point \bar{x}^1 and any $\epsilon, \delta > 0$, there exists $T \in \mathbb{N}$ such that

$$\mathbb{E}[\|\bar{x}^1 - x^*\|^2] \le \delta \quad \Longrightarrow \quad \mathbb{E}[f(\bar{x}^T) - f(x^*)] \le \epsilon.$$

where \bar{x}^T denotes the T-th iterate produced by the subroutine.

 \triangleright By the strong convexity of f, we can bound

$$\mathbb{E}[\|\bar{x}^1 - x^*\|^2] \le (2/\mu)\mathbb{E}[f(\bar{x}^1) - f(x^*)]$$

and thus establish a recursion.

Most of the subroutines need to satisfy: For any starting point \bar{x}^1 and any $\epsilon, \delta > 0$, there exists $T \in \mathbb{N}$ such that

$$\mathbb{E}[\|\bar{x}^1 - x^*\|^2] \le \delta \quad \Longrightarrow \quad \mathbb{E}[f(\bar{x}^T) - f(x^*)] \le \epsilon.$$

where \bar{x}^T denotes the T-th iterate produced by the subroutine.

 \triangleright By the strong convexity of f, we can bound

$$\mathbb{E}[\|\bar{x}^1 - x^*\|^2] \le (2/\mu)\mathbb{E}[f(\bar{x}^1) - f(x^*)]$$

and thus establish a recursion.

 \triangleright However, this does not work for SPP (convergence measured by duality gap, and only diameters $\Omega_{h_{\mathcal{X}}}$ and $\Omega_{h_{\mathcal{Y}}}$ appear in the bound)

Most of the subroutines need to satisfy: For any starting point \bar{x}^1 and any $\epsilon, \delta > 0$, there exists $T \in \mathbb{N}$ such that

$$\mathbb{E}[\|\bar{x}^1 - x^*\|^2] \le \delta \quad \Longrightarrow \quad \mathbb{E}[f(\bar{x}^T) - f(x^*)] \le \epsilon.$$

where \bar{x}^T denotes the T-th iterate produced by the subroutine.

 \triangleright By the strong convexity of f, we can bound

$$\mathbb{E}[\|\bar{x}^1 - x^*\|^2] \le (2/\mu)\mathbb{E}[f(\bar{x}^1) - f(x^*)]$$

and thus establish a recursion.

- \triangleright However, this does not work for SPP (convergence measured by duality gap, and only diameters $\Omega_{h_{\mathcal{X}}}$ and $\Omega_{h_{\mathcal{Y}}}$ appear in the bound)
 - \Longrightarrow New schemes need to be developed.

 \triangleright Fix any $x_c \in \mathcal{X}^o$ and define $\bar{\mathcal{X}}(x_c, R) \triangleq R\mathcal{X} + x_c$, where R > 0.

- \triangleright Fix any $x_c \in \mathcal{X}^o$ and define $\bar{\mathcal{X}}(x_c, R) \triangleq R\mathcal{X} + x_c$, where R > 0.
- \triangleright Define a rescaled DGFs on $\bar{\mathcal{X}}(x_c, R)$:

$$\tilde{h}_{\bar{\mathcal{X}}(x_{c},R)}(x) \triangleq R^{2} h_{\mathcal{X}}\left(\frac{x-x_{c}}{R}\right).$$
 (2)

- \triangleright Fix any $x_c \in \mathcal{X}^o$ and define $\bar{\mathcal{X}}(x_c, R) \triangleq R\mathcal{X} + x_c$, where R > 0.
- \triangleright Define a rescaled DGFs on $\bar{\mathcal{X}}(x_{\mathrm{c}}, R)$:

$$\tilde{h}_{\bar{\mathcal{X}}(x_c,R)}(x) \triangleq R^2 h_{\mathcal{X}}\left(\frac{x-x_c}{R}\right).$$
 (2)

▷ The corresponding Bregman distances are

$$D_{\tilde{h}_{\bar{\mathcal{X}}(x_{\mathsf{c}},R)}}(x,x') = R^2 \left\{ h_{\mathcal{X}} \left(\frac{x-x_{\mathsf{c}}}{R} \right) - h_{\mathcal{X}} \left(\frac{x'-x_{\mathsf{c}}}{R} \right) - \left\langle \nabla h_{\mathcal{X}} \left(\frac{x'-x_{\mathsf{c}}}{R} \right), \frac{x-x'}{R} \right\rangle \right\}.$$

- \triangleright Fix any $x_c \in \mathcal{X}^o$ and define $\bar{\mathcal{X}}(x_c, R) \triangleq R\mathcal{X} + x_c$, where R > 0.
- \triangleright Define a rescaled DGFs on $\bar{\mathcal{X}}(x_{\mathrm{c}}, R)$:

$$\tilde{h}_{\bar{\mathcal{X}}(x_{c},R)}(x) \triangleq R^{2} h_{\mathcal{X}}\left(\frac{x-x_{c}}{R}\right).$$
 (2)

▷ The corresponding Bregman distances are

$$D_{\tilde{h}_{\bar{\mathcal{X}}(x_{c},R)}}(x,x') = R^{2} \left\{ h_{\mathcal{X}}\left(\frac{x-x_{c}}{R}\right) - h_{\mathcal{X}}\left(\frac{x'-x_{c}}{R}\right) - \left\langle \nabla h_{\mathcal{X}}\left(\frac{x'-x_{c}}{R}\right), \frac{x-x'}{R} \right\rangle \right\}.$$

Define $\mathcal{B}(x_{c}, R) \triangleq \{x \in \mathbb{X} : ||x - x_{c}|| \leq R\}$. If $\mathcal{B}(0, 1) \subseteq \text{dom } h_{\mathcal{X}}$, then $\sup_{x \in \mathcal{X} \cap \mathcal{B}(x_{c}, R)} D_{\bar{h}_{\bar{\mathcal{X}}(x_{c}, R)}}(x, x_{c}) \leq R^{2} \Omega'_{h_{\mathcal{X}}},$ where $\Omega'_{h_{\mathcal{X}}} \triangleq \sup_{z \in \mathcal{B}(0, 1)} D_{h_{\mathcal{X}}}(z, 0) < +\infty$.

- \triangleright Fix any $x_c \in \mathcal{X}^o$ and define $\bar{\mathcal{X}}(x_c, R) \triangleq R\mathcal{X} + x_c$, where R > 0.
- \triangleright Define a rescaled DGFs on $\bar{\mathcal{X}}(x_c, R)$:

$$\tilde{h}_{\bar{\mathcal{X}}(x_{c},R)}(x) \triangleq R^{2} h_{\mathcal{X}}\left(\frac{x-x_{c}}{R}\right).$$
 (2)

▷ The corresponding Bregman distances are

$$D_{\tilde{h}_{\bar{\mathcal{X}}(x_{c},R)}}(x,x') = R^{2} \left\{ h_{\mathcal{X}}\left(\frac{x-x_{c}}{R}\right) - h_{\mathcal{X}}\left(\frac{x'-x_{c}}{R}\right) - \left\langle \nabla h_{\mathcal{X}}\left(\frac{x'-x_{c}}{R}\right), \frac{x-x'}{R} \right\rangle \right\}.$$

- Define $\mathcal{B}(x_{c}, R) \triangleq \{x \in \mathbb{X} : ||x x_{c}|| \leq R\}$. If $\mathcal{B}(0, 1) \subseteq \text{dom } h_{\mathcal{X}}$, then $\sup_{x \in \mathcal{X} \cap \mathcal{B}(x_{c}, R)} D_{\tilde{h}_{\tilde{\mathcal{X}}(x_{c}, R)}}(x, x_{c}) \leq R^{2} \Omega'_{h_{\mathcal{X}}}$,
 - where $\Omega'_{h_{\mathcal{X}}} \triangleq \sup_{z \in \mathcal{B}(0,1)} D_{h_{\mathcal{X}}}(z,0) < +\infty.$
- ightharpoonup If X is a Hilbert space and $h_{\mathcal{X}} = (1/2) \|\cdot\|^2$, then

$$\tilde{h}_{\bar{\mathcal{X}}(x_{\text{c}},R)}(x) = (1/2) \|x - x_{\text{c}}\|^2, \quad D_{\tilde{h}_{\bar{\mathcal{X}}(x_{\text{c}},R)}}(x,x') = (1/2) \|x - x'\|^2.$$

▶ Input: Starting primal variable $x^0 \in \mathcal{X}^o$, radius R, primal constraint set \mathcal{X}' ($\mathcal{X}' \subseteq \mathcal{X}$), number of iterations T, interp. seq. $\{\beta_t\}_{t \in \mathbb{N}}$, dual stepsizes $\{\alpha_t\}_{t \in \mathbb{N}}$, primal stepsizes $\{\tau_t\}_{t \in \mathbb{N}}$, relaxation seq. $\{\theta_t\}_{t \in \mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \to \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \to \overline{\mathbb{R}}$

- ▶ Input: Starting primal variable $x^0 \in \mathcal{X}^o$, radius R, primal constraint set \mathcal{X}' ($\mathcal{X}' \subseteq \mathcal{X}$), number of iterations T, interp. seq. $\{\beta_t\}_{t \in \mathbb{N}}$, dual stepsizes $\{\alpha_t\}_{t \in \mathbb{N}}$, primal stepsizes $\{\underline{\tau}_t\}_{t \in \mathbb{N}}$, relaxation seq. $\{\theta_t\}_{t \in \mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \to \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \to \overline{\mathbb{R}}$
- ▶ Init: $(x^1, y^1) \in \mathcal{X}^o \times \mathcal{Y}^o$, $\bar{x}^1 = x^1$, $\bar{y}^1 = y^1$, $s^1 = \hat{\nabla}_y \Phi(x^1, y^1, \zeta_y^1)$

- ▶ Input: Starting primal variable $x^0 \in \mathcal{X}^o$, radius R, primal constraint set \mathcal{X}' ($\mathcal{X}' \subseteq \mathcal{X}$), number of iterations T, interp. seq. $\{\beta_t\}_{t \in \mathbb{N}}$, dual stepsizes $\{\alpha_t\}_{t \in \mathbb{N}}$, primal stepsizes $\{\underline{\tau}_t\}_{t \in \mathbb{N}}$, relaxation seq. $\{\theta_t\}_{t \in \mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \to \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \to \overline{\mathbb{R}}$
- ▶ Init: $(x^1, y^1) \in \mathcal{X}^o \times \mathcal{Y}^o$, $\bar{x}^1 = x^1$, $\bar{y}^1 = y^1$, $s^1 = \hat{\nabla}_y \Phi(x^1, y^1, \zeta^1_y)$
- ▶ **Define**: $\bar{\mathcal{X}}(x^1, R)$ and $\tilde{h}_{\bar{\mathcal{X}}(x^1, R)}$ using $h_{\mathcal{X}}$, x^1 and R

- ▶ Input: Starting primal variable $x^0 \in \mathcal{X}^o$, radius R, primal constraint set \mathcal{X}' ($\mathcal{X}' \subseteq \mathcal{X}$), number of iterations T, interp. seq. $\{\beta_t\}_{t \in \mathbb{N}}$, dual stepsizes $\{\alpha_t\}_{t \in \mathbb{N}}$, primal stepsizes $\{\underline{\tau}_t\}_{t \in \mathbb{N}}$, relaxation seq. $\{\theta_t\}_{t \in \mathbb{N}}$, DGFs $h_{\mathcal{Y}} : \mathbb{Y} \to \overline{\mathbb{R}}$ and $h_{\mathcal{X}} : \mathbb{X} \to \overline{\mathbb{R}}$
- ▶ Init: $(x^1, y^1) \in \mathcal{X}^o \times \mathcal{Y}^o$, $\bar{x}^1 = x^1$, $\bar{y}^1 = y^1$, $s^1 = \hat{\nabla}_y \Phi(x^1, y^1, \zeta_y^1)$
- ▶ **Define**: $\bar{\mathcal{X}}(x^1, R)$ and $\tilde{h}_{\bar{\mathcal{X}}(x^1, R)}$ using $h_{\mathcal{X}}, x^1$ and R
- ▶ **For** t = 1, ..., T 1

$$y^{t+1} := \arg\min_{y \in \mathcal{Y}} J(y) - \langle s^t, y - y^t \rangle + \alpha_t^{-1} D_{\tilde{h}_{\mathcal{Y}}}(y, y^t) \qquad \text{(Dual Ascent)}$$

- ▶ Input: Starting primal variable $x^0 \in \mathcal{X}^o$, radius R, primal constraint set \mathcal{X}' ($\mathcal{X}' \subseteq \mathcal{X}$), number of iterations T, interp. seq. $\{\beta_t\}_{t\in\mathbb{N}}$, dual stepsizes $\{\alpha_t\}_{t\in\mathbb{N}}$, primal stepsizes $\{\underline{\tau}_t\}_{t\in\mathbb{N}}$, relaxation seq. $\{\theta_t\}_{t\in\mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \to \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \to \overline{\mathbb{R}}$
- ▶ Init: $(x^1, y^1) \in \mathcal{X}^o \times \mathcal{Y}^o$, $\bar{x}^1 = x^1$, $\bar{y}^1 = y^1$, $s^1 = \hat{\nabla}_y \Phi(x^1, y^1, \zeta_y^1)$
- ▶ **Define**: $\bar{\mathcal{X}}(x^1, R)$ and $\tilde{h}_{\bar{\mathcal{X}}(x^1, R)}$ using $h_{\mathcal{X}}$, x^1 and R
- ▶ **For** t = 1, ..., T 1

$$y^{t+1} := \arg\min_{y \in \mathcal{Y}} J(y) - \langle s^t, y - y^t \rangle + \alpha_t^{-1} D_{\tilde{h}_{\mathcal{Y}}}(y, y^t)$$
 (Dual Ascent)
$$\tilde{x}^{t+1} := (1 - \beta_t) \bar{x}^t + \beta_t x^t$$
 (Interpolation)

- ▶ Input: Starting primal variable $x^0 \in \mathcal{X}^o$, radius R, primal constraint set \mathcal{X}' ($\mathcal{X}' \subseteq \mathcal{X}$), number of iterations T, interp. seq. $\{\beta_t\}_{t \in \mathbb{N}}$, dual stepsizes $\{\alpha_t\}_{t \in \mathbb{N}}$, primal stepsizes $\{\underline{\tau}_t\}_{t \in \mathbb{N}}$, relaxation seq. $\{\theta_t\}_{t \in \mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \to \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \to \overline{\mathbb{R}}$
- ▶ Init: $(x^1, y^1) \in \mathcal{X}^o \times \mathcal{Y}^o$, $\bar{x}^1 = x^1$, $\bar{y}^1 = y^1$, $s^1 = \hat{\nabla}_y \Phi(x^1, y^1, \zeta_y^1)$
- ▶ **Define**: $\bar{\mathcal{X}}(x^1, R)$ and $\tilde{h}_{\bar{\mathcal{X}}(x^1, R)}$ using $h_{\mathcal{X}}, x^1$ and R
- ▶ For t = 1, ..., T 1

$$y^{t+1} := \arg\min_{y \in \mathcal{Y}} J(y) - \langle s^t, y - y^t \rangle + \alpha_t^{-1} D_{\tilde{h}_{\mathcal{Y}}}(y, y^t) \qquad \text{(Dual Ascent)}$$

$$\tilde{x}^{t+1} := (1 - \beta_t) \bar{x}^t + \beta_t x^t \qquad \text{(Interpolation)}$$

$$x^{t+1} := \arg\min_{x \in \mathcal{X}'} g(x) + \langle \hat{\nabla}_x \Phi(x^t, y^{t+1}, \zeta_x^t) + \hat{\nabla} f(\tilde{x}^{t+1}, \xi^t), x - x^t \rangle$$

$$+ \tau_t^{-1} D_{\tilde{h}_{\tilde{\mathcal{X}}(x^1, R)}}(x, x^t) \qquad \text{(Primal Descent)}$$

- ▶ Input: Starting primal variable $x^0 \in \mathcal{X}^o$, radius R, primal constraint set \mathcal{X}' ($\mathcal{X}' \subseteq \mathcal{X}$), number of iterations T, interp. seq. $\{\beta_t\}_{t \in \mathbb{N}}$, dual stepsizes $\{\alpha_t\}_{t \in \mathbb{N}}$, primal stepsizes $\{\underline{\tau}_t\}_{t \in \mathbb{N}}$, relaxation seq. $\{\theta_t\}_{t \in \mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \to \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \to \overline{\mathbb{R}}$
- ▶ Init: $(x^1, y^1) \in \mathcal{X}^o \times \mathcal{Y}^o$, $\bar{x}^1 = x^1$, $\bar{y}^1 = y^1$, $s^1 = \hat{\nabla}_y \Phi(x^1, y^1, \zeta_y^1)$
- ▶ **Define**: $\bar{\mathcal{X}}(x^1, R)$ and $\tilde{h}_{\bar{\mathcal{X}}(x^1, R)}$ using $h_{\mathcal{X}}$, x^1 and R
- ▶ For t = 1, ..., T 1

$$\begin{split} y^{t+1} &:= \arg\min_{y \in \mathcal{Y}} J(y) - \langle s^t, y - y^t \rangle + \alpha_t^{-1} D_{\tilde{h}_{\mathcal{Y}}}(y, y^t) & \text{(Dual Ascent)} \\ \tilde{x}^{t+1} &:= (1 - \beta_t) \bar{x}^t + \beta_t x^t & \text{(Interpolation)} \\ x^{t+1} &:= \arg\min_{x \in \mathcal{X}'} g(x) + \langle \hat{\nabla}_x \Phi(x^t, y^{t+1}, \zeta_x^t) + \hat{\nabla} f(\tilde{x}^{t+1}, \xi^t), x - x^t \rangle \\ & + \tau_t^{-1} D_{\tilde{h}_{\bar{\mathcal{X}}(x^1, R)}}(x, x^t) & \text{(Primal Descent)} \\ s^{t+1} &:= (1 + \theta_{t+1}) \hat{\nabla}_y \Phi(x^{t+1}, y^{t+1}, \zeta_y^{t+1}) - \theta_{t+1} \hat{\nabla}_y \Phi(x^t, y^t, \zeta_y^t) & \text{(Extrap.)} \end{split}$$

- ▶ Input: Starting primal variable $x^0 \in \mathcal{X}^o$, radius R, primal constraint set \mathcal{X}' ($\mathcal{X}' \subseteq \mathcal{X}$), number of iterations T, interp. seq. $\{\beta_t\}_{t \in \mathbb{N}}$, dual stepsizes $\{\alpha_t\}_{t \in \mathbb{N}}$, primal stepsizes $\{\underline{\tau}_t\}_{t \in \mathbb{N}}$, relaxation seq. $\{\theta_t\}_{t \in \mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \to \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \to \overline{\mathbb{R}}$
- ▶ Init: $(x^1, y^1) \in \mathcal{X}^o \times \mathcal{Y}^o$, $\bar{x}^1 = x^1$, $\bar{y}^1 = y^1$, $s^1 = \hat{\nabla}_y \Phi(x^1, y^1, \zeta_y^1)$
- ▶ **Define**: $\bar{\mathcal{X}}(x^1, R)$ and $\tilde{h}_{\bar{\mathcal{X}}(x^1, R)}$ using $h_{\mathcal{X}}$, x^1 and R
- ▶ For t = 1, ..., T 1

$$\begin{split} y^{t+1} &:= \arg\min_{y \in \mathcal{Y}} J(y) - \langle s^t, y - y^t \rangle + \alpha_t^{-1} D_{\tilde{h}_{\mathcal{Y}}}(y, y^t) & \text{(Dual Ascent)} \\ \tilde{x}^{t+1} &:= (1 - \beta_t) \bar{x}^t + \beta_t x^t & \text{(Interpolation)} \\ x^{t+1} &:= \arg\min_{x \in \mathcal{X}'} g(x) + \langle \hat{\nabla}_x \Phi(x^t, y^{t+1}, \zeta_x^t) + \hat{\nabla} f(\tilde{x}^{t+1}, \xi^t), x - x^t \rangle \\ & + \tau_t^{-1} D_{\tilde{h}_{\bar{\mathcal{X}}(x^1, R)}}(x, x^t) & \text{(Primal Descent)} \\ s^{t+1} &:= (1 + \theta_{t+1}) \hat{\nabla}_y \Phi(x^{t+1}, y^{t+1}, \zeta_y^{t+1}) - \theta_{t+1} \hat{\nabla}_y \Phi(x^t, y^t, \zeta_y^t) & \text{(Extrap.)} \end{split}$$

 $\bar{x}^{t+1} := (1 - \beta_t)\bar{x}^t + \beta_t x^{t+1}, \quad \bar{y}^{t+1} := (1 - \beta_t)\bar{y}^t + \beta_t y^{t+1}$ (Averaging)

- ▶ Input: Starting primal variable $x^0 \in \mathcal{X}^o$, radius R, primal constraint set \mathcal{X}' ($\mathcal{X}' \subseteq \mathcal{X}$), number of iterations T, interp. seq. $\{\beta_t\}_{t \in \mathbb{N}}$, dual stepsizes $\{\alpha_t\}_{t \in \mathbb{N}}$, primal stepsizes $\{\underline{\tau}_t\}_{t \in \mathbb{N}}$, relaxation seq. $\{\theta_t\}_{t \in \mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \to \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \to \overline{\mathbb{R}}$
- ▶ Init: $(x^1, y^1) \in \mathcal{X}^o \times \mathcal{Y}^o$, $\bar{x}^1 = x^1$, $\bar{y}^1 = y^1$, $s^1 = \hat{\nabla}_y \Phi(x^1, y^1, \zeta_y^1)$
- ▶ **Define**: $\bar{\mathcal{X}}(x^1, R)$ and $\tilde{h}_{\bar{\mathcal{X}}(x^1, R)}$ using $h_{\mathcal{X}}$, x^1 and R
- ▶ For t = 1, ..., T 1

$$\begin{split} y^{t+1} &:= \arg\min_{y \in \mathcal{Y}} J(y) - \langle s^t, y - y^t \rangle + \alpha_t^{-1} D_{\tilde{h}_{\mathcal{Y}}}(y, y^t) & \text{(Dual Ascent)} \\ \tilde{x}^{t+1} &:= (1 - \beta_t) \bar{x}^t + \beta_t x^t & \text{(Interpolation)} \\ x^{t+1} &:= \arg\min_{x \in \mathcal{X}'} g(x) + \langle \hat{\nabla}_x \Phi(x^t, y^{t+1}, \zeta_x^t) + \hat{\nabla} f(\tilde{x}^{t+1}, \xi^t), x - x^t \rangle \\ &+ \tau_t^{-1} D_{\tilde{h}_{\tilde{\mathcal{X}}(x^1, R)}}(x, x^t) & \text{(Primal Descent)} \end{split}$$

$$s^{t+1} := (1 + \theta_{t+1}) \hat{\nabla}_y \Phi(x^{t+1}, y^{t+1}, \zeta_y^{t+1}) - \theta_{t+1} \hat{\nabla}_y \Phi(x^t, y^t, \zeta_y^t) \text{ (Extrap.)}$$
$$\bar{x}^{t+1} := (1 - \beta_t) \bar{x}^t + \beta_t x^{t+1}, \quad \bar{y}^{t+1} := (1 - \beta_t) \bar{y}^t + \beta_t y^{t+1} \text{ (Averaging)}$$

▶ Output: (\bar{x}^T, \bar{y}^T)

$$\underset{x \in \mathcal{X}'}{\arg\min} g(x) + \langle x^*, x \rangle + \tau_t^{-1} R^2 h_{\mathcal{X}} \left(\frac{x - x_c}{R} \right)$$

$$\underset{x \in \mathcal{X}'}{\arg\min} g(x) + \langle x^*, x \rangle + \tau_t^{-1} R^2 h_{\mathcal{X}} \left(\frac{x - x_c}{R} \right)$$

$$\triangleright g \equiv 0 \text{ and } \mathcal{X}' = \mathcal{X} = \mathbb{X},$$

$$\underset{x \in \mathcal{X}'}{\arg\min} g(x) + \langle x^*, x \rangle + \tau_t^{-1} R^2 h_{\mathcal{X}} \left(\frac{x - x_c}{R} \right)$$

- $\triangleright g \equiv 0 \text{ and } \mathcal{X}' = \mathcal{X} = \mathbb{X},$
- \triangleright X is a Hilbert space

$$\underset{x \in \mathcal{X}'}{\arg\min} g(x) + \langle x^*, x \rangle + \tau_t^{-1} R^2 h_{\mathcal{X}} \left(\frac{x - x_c}{R} \right)$$

- $\triangleright g \equiv 0 \text{ and } \mathcal{X}' = \mathcal{X} = \mathbb{X},$
- \triangleright X is a Hilbert space
 - $\mathcal{X}' = \mathcal{X}$ and $h_{\mathcal{X}} = (1/2) \|\cdot\|_{\mathbb{X}}^2$,

Easily Computable Solutions

$$\underset{x \in \mathcal{X}'}{\arg\min} g(x) + \langle x^*, x \rangle + \tau_t^{-1} R^2 h_{\mathcal{X}} \left(\frac{x - x_c}{R} \right)$$

Has an easily computable solution if

- $\triangleright g \equiv 0 \text{ and } \mathcal{X}' = \mathcal{X} = \mathbb{X},$
- \triangleright X is a Hilbert space
 - $\mathcal{X}' = \mathcal{X}$ and $h_{\mathcal{X}} = (1/2) \|\cdot\|_{\mathbb{X}}^2$,
 - $g \equiv 0$, $\mathcal{X}' = \text{any set with easily computable projection}$, $h_{\mathcal{X}} = (1/2) \|\cdot\|_{\mathbb{X}}^2$.

Theorem 2

Assume that $\mathcal{B}(0,1) \subseteq \text{dom } h_{\mathcal{X}}$, and let Assumptions 1(B), 2(A) and 2(C) hold. Fix any $\varsigma \in (0,1/6]$. In Algorithm 1R, choose \mathcal{X}' such that $x^* \in \mathcal{X}'$ and $D_{\mathcal{X}'} \leq R$, and choose

Theorem 2

Assume that $\mathcal{B}(0,1) \subseteq \text{dom } h_{\mathcal{X}}$, and let Assumptions 1(B), 2(A) and 2(C) hold. Fix any $\varsigma \in (0,1/6]$. In Algorithm 1R, choose \mathcal{X}' such that $x^* \in \mathcal{X}'$ and $D_{\mathcal{X}'} \leq R$, and choose

$$T \geq \left[\max \left\{ 3, \ 64\sqrt{(L/\mu)\Omega'_{h_{\mathcal{X}}}}, \ 2048(L_{xx}/\mu)\Omega'_{h_{\mathcal{X}}}, \ 4096L_{yx}(\mu R)^{-1}\sqrt{\Omega'_{h_{\mathcal{X}}}\Omega_{h_{\mathcal{Y}}}}, \right. \\ 128^{2}L_{yy}(\mu R^{2})^{-1}\Omega_{h_{\mathcal{Y}}}, \ 512^{2}(\sigma_{x,f} + \sigma_{x,\Phi})^{2}(\mu R)^{-2}\left(4\sqrt{(1+\log(1/\nu))\Omega'_{h_{\mathcal{X}}}} + 2\sqrt{\log(1/\nu)}\right)^{2}, \\ 512^{2}\sigma_{y,\Phi}^{2}(\mu R^{2})^{-2}\left(8\sqrt{2(1+\log(1/\nu))\Omega_{h_{\mathcal{Y}}}} + 2\sqrt{\log(1/\nu)\Omega_{h_{\mathcal{Y}}}}\right)^{2}\right].$$

Theorem 2

Assume that $\mathcal{B}(0,1) \subseteq \text{dom } h_{\mathcal{X}}$, and let Assumptions 1(B), 2(A) and 2(C) hold. Fix any $\varsigma \in (0,1/6]$. In Algorithm 1R, choose \mathcal{X}' such that $x^* \in \mathcal{X}'$ and $D_{\mathcal{X}'} \leq R$, and choose

$$\begin{split} T &\geq \left\lceil \max\left\{3, \ 64\sqrt{(L/\mu)\Omega_{h_{\mathcal{X}}}'}, \ 2048(L_{xx}/\mu)\Omega_{h_{\mathcal{X}}}', \ 4096L_{yx}(\mu R)^{-1}\sqrt{\Omega_{h_{\mathcal{X}}}'}\Omega_{h_{\mathcal{Y}}}, \right. \\ & 128^{2}L_{yy}(\mu R^{2})^{-1}\Omega_{h_{\mathcal{Y}}}, \ 512^{2}(\sigma_{x,f} + \sigma_{x,\Phi})^{2}(\mu R)^{-2}\left(4\sqrt{(1+\log(1/\nu))\Omega_{h_{\mathcal{X}}}'} + 2\sqrt{\log(1/\nu)}\right)^{2}, \\ & 512^{2}\sigma_{y,\Phi}^{2}(\mu R^{2})^{-2}\left(8\sqrt{2(1+\log(1/\nu))\Omega_{h_{\mathcal{Y}}}} + 2\sqrt{\log(1/\nu)\Omega_{h_{\mathcal{Y}}}}\right)^{2}\right\} \right\rceil. \end{split}$$

If we choose $R \ge 2||x^0 - x^*||$, $\{\beta_t\}_{t \in [T]}$ and $\{\theta_t\}_{t \in [T]}$ as in Theorem 1, and $\alpha_t = \alpha$ and $\tau_t = t\tau$ for any $t \in [T]$, where

$$\alpha = 1/\left(16\left(\eta^{-1}L_{yx} + L_{yy} + \rho\sigma_{y,\Phi}\sqrt{T}\right)\right), \quad \rho = (4R)^{-1}\sqrt{(1+\log(1/\varsigma))/(2\Omega'_{h_{\mathcal{X}}}\Omega_{h_{\mathcal{Y}}})},$$

$$\tau = 1/\left(4L + 2(L_{xx} + \eta L_{yx})T + \rho'(\sigma_{x,\Phi} + \sigma_{x,f})T^{3/2}\right), \quad \eta = (4/R)\sqrt{\Omega_{h_{\mathcal{Y}}}/\Omega'_{h_{\mathcal{X}}}},$$

$$\rho' = (8R)^{-1}\sqrt{(1+\log(1/\varsigma))/(\Omega'_{h_{\mathcal{X}}}\Omega_{h_{\mathcal{Y}}})},$$

then w.p. at least $1 - 6\nu$,

$$G(\bar{\boldsymbol{x}}^T, \bar{\boldsymbol{y}}^T) \leq B_R^{\text{det}}(T) + B_R^{\text{var}}(T) \leq \mu R^2/16,$$

then w.p. at least $1 - 6\nu$,

$$G(\bar{\boldsymbol{x}}^T, \bar{\boldsymbol{y}}^T) \leq B_R^{\text{det}}(T) + B_R^{\text{var}}(T) \leq \mu R^2/16,$$

where

$$\begin{split} B_R^{\text{det}}(T) &\triangleq \frac{16LR^2}{T(T-1)} \Omega_{h_{\mathcal{X}}}' + \frac{8L_{xx}R^2}{T-1} \Omega_{h_{\mathcal{X}}}' \\ &\quad + \frac{8L_{yx}R}{T-1} \left(\sqrt{\eta_x/\eta_y} \Omega_{h_{\mathcal{X}}}' + 16\sqrt{\eta_y/\eta_x} \Omega_{h_{\mathcal{Y}}} \right) + \frac{128L_{yy}}{T} \Omega_{h_{\mathcal{Y}}}, \\ B_R^{\text{var}}(T) &\triangleq \frac{4(\sigma_{x,\Phi} + \sigma_{x,f})R}{\sqrt{T}} \left\{ 4\sqrt{(1 + \log(1/\nu))\Omega_{h_{\mathcal{X}}}'} + 2\sqrt{\log(1/\nu)} \right\} \\ &\quad + \frac{4\sigma_{y,\Phi}}{\sqrt{T}} \left\{ 8\sqrt{2(1 + \log(1/\nu))\Omega_{h_{\mathcal{Y}}}} + 2\sqrt{\log(1/\nu)\Omega_{h_{\mathcal{Y}}}} \right\}. \end{split}$$

then w.p. at least $1 - 6\nu$,

$$G(\bar{\boldsymbol{x}}^T, \bar{\boldsymbol{y}}^T) \leq B_R^{\text{det}}(T) + B_R^{\text{var}}(T) \leq \mu R^2/16,$$

where

$$\begin{split} B_R^{\text{det}}(T) &\triangleq \frac{16LR^2}{T(T-1)} \Omega_{h_{\mathcal{X}}}' + \frac{8L_{xx}R^2}{T-1} \Omega_{h_{\mathcal{X}}}' \\ &\quad + \frac{8L_{yx}R}{T-1} \left(\sqrt{\eta_x/\eta_y} \Omega_{h_{\mathcal{X}}}' + 16\sqrt{\eta_y/\eta_x} \Omega_{h_{\mathcal{Y}}} \right) + \frac{128L_{yy}}{T} \Omega_{h_{\mathcal{Y}}}, \\ B_R^{\text{var}}(T) &\triangleq \frac{4(\sigma_{x,\Phi} + \sigma_{x,f})R}{\sqrt{T}} \left\{ 4\sqrt{(1 + \log(1/\nu))\Omega_{h_{\mathcal{X}}}'} + 2\sqrt{\log(1/\nu)} \right\} \\ &\quad + \frac{4\sigma_{y,\Phi}}{\sqrt{T}} \left\{ 8\sqrt{2(1 + \log(1/\nu))\Omega_{h_{\mathcal{Y}}}} + 2\sqrt{\log(1/\nu)\Omega_{h_{\mathcal{Y}}}} \right\}. \end{split}$$

Furthermore, $\|\bar{x}^T - x^*\| \le \sqrt{(2/\mu)(B_R^{\text{det}}(T) + B_R^{\text{var}}(T))} \le R/(2\sqrt{2})$ w.p. at least $1 - 6\nu$.

- Introduction
 Problem Setup
 Main Contribution
- 2 Preliminaries
- **3** Algorithm for $\mu = 0$
- **4** Restart Scheme for $\mu > 0$ Subroutine Stochastic Restart Scheme
- Stochastic Restart Scheme

34 / 39

▶ Input: Diameter estimate $U \ge D_{\mathcal{X}}$, starting primal variable $x_0 \in \mathcal{X}^o$, desired accuracy $\epsilon > 0$, error probability $\nu \in (0, 1]$, $K = \lceil \max \{0, \log_2 (\mu U^2/(4\epsilon))\} \rceil + 1$, $\varsigma = \nu/(6K)$

- ▶ Input: Diameter estimate $U \ge D_{\mathcal{X}}$, starting primal variable $x_0 \in \mathcal{X}^o$, desired accuracy $\epsilon > 0$, error probability $\nu \in (0, 1]$, $K = \lceil \max \{0, \log_2 (\mu U^2/(4\epsilon))\} \rceil + 1$, $\varsigma = \nu/(6K)$
- ▶ Init: $R_1 = 2U, x_1 = x_0, y_0 \in \mathcal{Y}^o$

- ▶ Input: Diameter estimate $U \ge D_{\mathcal{X}}$, starting primal variable $x_0 \in \mathcal{X}^o$, desired accuracy $\epsilon > 0$, error probability $\nu \in (0, 1]$, $K = \lceil \max \{0, \log_2 (\mu U^2/(4\epsilon))\} \rceil + 1$, $\varsigma = \nu/(6K)$
- ▶ Init: $R_1 = 2U$, $x_1 = x_0$, $y_0 \in \mathcal{Y}^o$
- ▶ For k = 1, ..., K

- ▶ Input: Diameter estimate $U > D_{\mathcal{X}}$, starting primal variable $x_0 \in \mathcal{X}^o$, desired accuracy $\epsilon > 0$, error probability $\nu \in (0,1]$, $K = \lceil \max \{0, \log_2 (\mu U^2/(4\epsilon)) \} \rceil + 1, \varsigma = \nu/(6K)$
- ▶ Init: $R_1 = 2U, x_1 = x_0, y_0 \in \mathcal{Y}^o$
- ▶ For k = 1, ..., K• $T_k := \lceil \max \left\{ 3, 64 \sqrt{(L/\mu)\Omega'_{h_{\mathcal{X}}}}, 2048 (L_{xx}/\mu)\Omega'_{h_{\mathcal{X}}}, \right.$ $512^2(\sigma_{x,f} + \sigma_{x,\Phi})^2(\mu R_k)^{-2} \left(4\sqrt{(1 + \log(1/\varsigma))\Omega'_{h_{\mathcal{X}}}} + 2\sqrt{\log(1/\varsigma)}\right)^2,$ $128^2 L_{yy} (\mu R_k^2)^{-1} \Omega_{h_y}, \ 4096 L_{yx} (\mu R_k)^{-1} \sqrt{\Omega'_{h_x} \Omega_{h_y}},$ $512^2 \sigma_{u,\Phi}^2 (\mu R_k^2)^{-2} \left(8\sqrt{2(1+\log(1/\varsigma))\Omega_{h_V}} + 2\sqrt{\log(1/\varsigma)\Omega_{h_V}}\right)^2 \right].$

- ▶ Input: Diameter estimate $U \ge D_{\mathcal{X}}$, starting primal variable $x_0 \in \mathcal{X}^o$, desired accuracy $\epsilon > 0$, error probability $\nu \in (0, 1]$, $K = \lceil \max\{0, \log_2(\mu U^2/(4\epsilon))\} \rceil + 1$, $\varsigma = \nu/(6K)$
- ▶ Init: $R_1 = 2U, x_1 = x_0, y_0 \in \mathcal{Y}^o$
- For k = 1, ..., K• $T_k := \lceil \max \left\{ 3, 64 \sqrt{(L/\mu)\Omega'_{h_{\mathcal{X}}}}, 2048(L_{xx}/\mu)\Omega'_{h_{\mathcal{X}}}, 512^2(\sigma_{x,f} + \sigma_{x,\Phi})^2(\mu R_k)^{-2} \left(4\sqrt{(1 + \log(1/\varsigma))\Omega'_{h_{\mathcal{X}}}} + 2\sqrt{\log(1/\varsigma)} \right)^2, 128^2 L_{yy}(\mu R_k^2)^{-1}\Omega_{h_{\mathcal{Y}}}, 4096L_{yx}(\mu R_k)^{-1} \sqrt{\Omega'_{h_{\mathcal{X}}}\Omega_{h_{\mathcal{Y}}}}, 512^2 L_{yy}(\mu R_k^2)^{-2} \left(2\sqrt{2(1 + \log(1/\varsigma))\Omega_{xy}} + 2\sqrt{\log(1/\varsigma)} \right)^2 \right\}$

$$512^{2}\sigma_{y,\Phi}^{2}(\mu R_{k}^{2})^{-2}\left(8\sqrt{2(1+\log(1/\varsigma))\Omega_{h_{y}}}+2\sqrt{\log(1/\varsigma)\Omega_{h_{y}}}\right)^{2}\right].$$

• Run Algorithm 1S for T_k iterations with starting primal variable x_k , radius R_k , constraint set $\mathcal{X}_k = \{x \in \mathcal{X} : ||x - x_k|| \le R_k/2\}$ and other input parameters set as in Theorem 2, with output $(\bar{x}_k^{T_k}, \bar{y}_k^{T_k})$.

- ▶ Input: Diameter estimate $U \ge D_{\mathcal{X}}$, starting primal variable $x_0 \in \mathcal{X}^o$, desired accuracy $\epsilon > 0$, error probability $\nu \in (0, 1]$, $K = \lceil \max\{0, \log_2(\mu U^2/(4\epsilon))\} \rceil + 1$, $\varsigma = \nu/(6K)$
- ▶ Init: $R_1 = 2U$, $x_1 = x_0$, $y_0 \in \mathcal{Y}^o$
- ► For k = 1, ..., K• $T_k := \lceil \max \left\{ 3, \ 64\sqrt{(L/\mu)\Omega'_{h_{\mathcal{X}}}}, \ 2048(L_{xx}/\mu)\Omega'_{h_{\mathcal{X}}}, \right.$ $512^2(\sigma_{x,f} + \sigma_{x,\Phi})^2(\mu R_k)^{-2} \left(4\sqrt{(1 + \log(1/\varsigma))\Omega'_{h_{\mathcal{X}}}} + 2\sqrt{\log(1/\varsigma)} \right)^2,$ $128^2 L_{yy}(\mu R_k^2)^{-1}\Omega_{h_{\mathcal{Y}}}, \ 4096L_{yx}(\mu R_k)^{-1}\sqrt{\Omega'_{h_{\mathcal{X}}}\Omega_{h_{\mathcal{Y}}}},$ $512^2 \sigma_{u,\Phi}^2(\mu R_k^2)^{-2} \left(8\sqrt{2(1 + \log(1/\varsigma))\Omega_{h_{\mathcal{Y}}}} + 2\sqrt{\log(1/\varsigma)\Omega_{h_{\mathcal{Y}}}} \right)^2 \right\} \rceil.$
 - Run Algorithm 1S for T_k iterations with starting primal variable x_k , radius R_k , constraint set $\mathcal{X}_k = \{x \in \mathcal{X} : ||x x_k|| \le R_k/2\}$ and
 - other input parameters set as in Theorem 2, with output $(\bar{x}_k^{T_k}, \bar{y}_k^{T_k})$.

 $R_{k+1} := R_k/\sqrt{2}, x_{k+1} := \bar{x}_k^{T_k}$.

- ▶ Input: Diameter estimate $U \ge D_{\mathcal{X}}$, starting primal variable $x_0 \in \mathcal{X}^o$, desired accuracy $\epsilon > 0$, error probability $\nu \in (0, 1]$, $K = \lceil \max\{0, \log_2(\mu U^2/(4\epsilon))\} \rceil + 1$, $\varsigma = \nu/(6K)$
- ▶ Init: $R_1 = 2U$, $x_1 = x_0$, $y_0 \in \mathcal{Y}^o$
- ► For k = 1, ..., K• $T_k := \lceil \max \left\{ 3, \ 64\sqrt{(L/\mu)\Omega'_{h_{\mathcal{X}}}}, \ 2048(L_{xx}/\mu)\Omega'_{h_{\mathcal{X}}}, \right.$ $512^2(\sigma_{x,f} + \sigma_{x,\Phi})^2(\mu R_k)^{-2} \left(4\sqrt{(1 + \log(1/\varsigma))\Omega'_{h_{\mathcal{X}}}} + 2\sqrt{\log(1/\varsigma)} \right)^2,$ $128^2 L_{yy}(\mu R_k^2)^{-1}\Omega_{h_{\mathcal{Y}}}, \ 4096L_{yx}(\mu R_k)^{-1}\sqrt{\Omega'_{h_{\mathcal{X}}}\Omega_{h_{\mathcal{Y}}}},$ $512^2 \sigma_{y,\Phi}^2(\mu R_k^2)^{-2} \left(8\sqrt{2(1 + \log(1/\varsigma))\Omega_{h_{\mathcal{Y}}}} + 2\sqrt{\log(1/\varsigma)\Omega_{h_{\mathcal{Y}}}} \right)^2 \right\} \rceil.$
 - Run Algorithm 1S for T_k iterations with starting primal variable x_k , radius R_k , constraint set $\mathcal{X}_k = \{x \in \mathcal{X} : ||x x_k|| \le R_k/2\}$ and other input parameters set as in Theorem 2, with output $(\bar{x}_k^{T_k}, \bar{y}_k^{T_k})$.
 - $R_{k+1} := R_k/\sqrt{2}, x_{k+1} := \bar{x}_k^{T_k}.$
 - **Output**: (x_{K+1}, y_{K+1})

Oracle Complexity

Theorem 3

Assume $\mathcal{B}(0,1) \subseteq \text{dom } h_{\mathcal{X}}$ and let Assumptions 1(B), 2(A) and 2(C) hold. In Algorithm 2, for any $x_0 \in \mathcal{X}^o$, desired accuracy $\epsilon \in (0, \mu U^2/4]$ and error probability $\nu \in (0,1]$, it holds that $G(x_{K+1},y_{K+1}) \leq \epsilon$ w.p. at least $1-\nu$.

Oracle Complexity

Theorem 3

Assume $\mathcal{B}(0,1) \subseteq \text{dom } h_{\mathcal{X}}$ and let Assumptions 1(B), 2(A) and 2(C) hold. In Algorithm 2, for any $x_0 \in \mathcal{X}^o$, desired accuracy $\epsilon \in (0, \mu U^2/4]$ and error probability $\nu \in (0,1]$, it holds that $G(x_{K+1},y_{K+1}) \leq \epsilon$ w.p. at least $1-\nu$.

Furthermore, the number of oracle calls

$$\begin{split} &C_{\epsilon}^{\mathrm{st}} \leq \left(3 + 64\sqrt{(L/\mu)\Omega_{h_{\mathcal{X}}}'} + 2048(L_{xx}/\mu)\Omega_{h_{\mathcal{X}}}'\right) \left(\left\lceil \log_2\left(\mu U^2/(4\epsilon)\right)\right\rceil + 1\right) \\ &+ 256^2 \left(L_{yx}/\sqrt{\mu\epsilon}\right)\sqrt{\Omega_{h_{\mathcal{X}}}'}\Omega_{h_{\mathcal{Y}}} + 64^2 \left(L_{yy}/\epsilon\right)\Omega_{h_{\mathcal{Y}}} \\ &+ 1024^2 \left\{ (\sigma_{x,f} + \sigma_{x,\Phi})^2/(\epsilon\mu) \right\} \left\{ (4\Omega_{h_{\mathcal{X}}}' + 1)\log\left(6\left[\log_2\left(\mu U^2(4\epsilon)^{-1}\right) + 2\right]/\nu\right) + 4\Omega_{h_{\mathcal{X}}}'\right\} \\ &+ 1024^2 \left(\sigma_{y,\Phi}^2/\epsilon^2\right) \left\{ 1 + \log\left(6\left[\log_2\left(\mu U^2(4\epsilon)^{-1}\right) + 2\right]/\nu\right) \right\}\Omega_{h_{\mathcal{Y}}} \end{split}$$

Oracle Complexity

Theorem 3

Assume $\mathcal{B}(0,1) \subseteq \text{dom } h_{\mathcal{X}}$ and let Assumptions 1(B), 2(A) and 2(C) hold. In Algorithm 2, for any $x_0 \in \mathcal{X}^o$, desired accuracy $\epsilon \in (0, \mu U^2/4]$ and error probability $\nu \in (0,1]$, it holds that $G(x_{K+1},y_{K+1}) \leq \epsilon$ w.p. at least $1-\nu$.

Furthermore, the number of oracle calls

$$\begin{split} &C_{\epsilon}^{\text{st}} \leq \left(3 + 64\sqrt{(L/\mu)\Omega_{h_{\mathcal{X}}}'} + 2048(L_{xx}/\mu)\Omega_{h_{\mathcal{X}}}'\right) \left(\left\lceil \log_{2}\left(\mu U^{2}/(4\epsilon)\right)\right\rceil + 1\right) \\ &+ 256^{2}\left(L_{yx}/\sqrt{\mu\epsilon}\right)\sqrt{\Omega_{h_{\mathcal{X}}}'}\Omega_{h_{\mathcal{Y}}} + 64^{2}\left(L_{yy}/\epsilon\right)\Omega_{h_{\mathcal{Y}}} \\ &+ 1024^{2}\left\{(\sigma_{x,f} + \sigma_{x,\Phi})^{2}/(\epsilon\mu)\right\}\left\{(4\Omega_{h_{\mathcal{X}}}' + 1)\log\left(6\left[\log_{2}\left(\mu U^{2}(4\epsilon)^{-1}\right) + 2\right]/\nu\right) + 4\Omega_{h_{\mathcal{X}}}'\right\} \\ &+ 1024^{2}\left(\sigma_{y,\Phi}^{2}/\epsilon^{2}\right)\left\{1 + \log\left(6\left[\log_{2}\left(\mu U^{2}(4\epsilon)^{-1}\right) + 2\right]/\nu\right)\right\}\Omega_{h_{\mathcal{Y}}} \\ &= O\left(\left(\sqrt{\frac{L}{\mu}} + \frac{L_{xx}}{\mu}\right)\log\left(\frac{1}{\epsilon}\right) + \frac{L_{yx}}{\sqrt{\mu\epsilon}} + \frac{L_{yy}}{\epsilon} + \left(\frac{(\sigma_{x,f} + \sigma_{x,\Phi})^{2}}{\mu\epsilon} + \frac{\sigma_{y,\Phi}^{2}}{\epsilon^{2}}\right)\log\left(\frac{\log(1/\epsilon)}{\nu}\right)\right). \end{split}$$

ightharpoonup Assume that $\operatorname{\mathsf{dom}} g$ and $\operatorname{\mathsf{dom}} J$ are closed.

- \triangleright Assume that dom g and dom J are closed.
- ightharpoonup By compactness of $\mathcal X$ and $\mathcal Y$, invoke Berge's maximum theorem to conclude that $\bar S$ and $\underline S$ are continuous on $\mathcal X\cap\operatorname{\mathsf{dom}} g$ and $\mathcal Y\cap\operatorname{\mathsf{dom}} J$, respectively, so there exists $\Gamma<+\infty$ such that

- \triangleright Assume that dom g and dom J are closed.
- ightharpoonup By compactness of $\mathcal X$ and $\mathcal Y$, invoke Berge's maximum theorem to conclude that $\bar S$ and $\underline S$ are continuous on $\mathcal X\cap\operatorname{\mathsf{dom}} g$ and $\mathcal Y\cap\operatorname{\mathsf{dom}} J$, respectively, so there exists $\Gamma<+\infty$ such that

$$\begin{split} \sup_{x \in \mathsf{dom}\, g \cap \mathcal{X}} \, \sup_{y \in \mathsf{dom}\, J \cap \mathcal{Y}} & G(x,y) \\ &= \, \sup_{x \in \mathsf{dom}\, g \cap \mathcal{X}} \, \bar{S}(x) - \inf_{y \in \mathsf{dom}\, J \cap \mathcal{Y}} \, \underline{S}(y) \leq \Gamma. \end{split}$$

- \triangleright Assume that dom g and dom J are closed.
- ightharpoonup By compactness of $\mathcal X$ and $\mathcal Y$, invoke Berge's maximum theorem to conclude that $\bar S$ and $\underline S$ are continuous on $\mathcal X\cap\operatorname{\mathsf{dom}} g$ and $\mathcal Y\cap\operatorname{\mathsf{dom}} J$, respectively, so there exists $\Gamma<+\infty$ such that

$$\sup_{x \in \text{dom } g \cap \mathcal{X}} \sup_{y \in \text{dom } J \cap \mathcal{Y}} G(x, y)$$

$$= \sup_{x \in \text{dom } g \cap \mathcal{X}} \bar{S}(x) - \inf_{y \in \text{dom } J \cap \mathcal{Y}} \underline{S}(y) \leq \Gamma.$$

Theorem 4

Assume $\mathcal{B}(0,1) \subseteq \operatorname{dom} h_{\mathcal{X}}$ and let Assumptions 1(B), 2(A) and 2(C) hold. In Algorithm 2, for any $x_0 \in \mathcal{X}^o$ and $\varepsilon \in (0, \mu U^2/2]$, choose $\nu = \min\{\varepsilon/(2\Gamma), 1\}$ and $K = \lceil \log_2(\mu U^2/(2\varepsilon)) \rceil + 1$. Then it holds that $\mathbb{E}[G(x_{K+1}, y_{K+1})] \leq \varepsilon$.

- \triangleright Assume that dom g and dom J are closed.
- ightharpoonup By compactness of $\mathcal X$ and $\mathcal Y$, invoke Berge's maximum theorem to conclude that $\bar S$ and $\underline S$ are continuous on $\mathcal X\cap\operatorname{\mathsf{dom}} g$ and $\mathcal Y\cap\operatorname{\mathsf{dom}} J$, respectively, so there exists $\Gamma<+\infty$ such that

$$\begin{split} \sup_{x \in \mathsf{dom}\, g \cap \mathcal{X}} \, \sup_{y \in \mathsf{dom}\, J \cap \mathcal{Y}} & G(x,y) \\ &= \, \sup_{x \in \mathsf{dom}\, g \cap \mathcal{X}} \, \bar{S}(x) - \inf_{y \in \mathsf{dom}\, J \cap \mathcal{Y}} \, \underline{S}(y) \leq \Gamma. \end{split}$$

Theorem 4

Assume $\mathcal{B}(0,1) \subseteq \text{dom } h_{\mathcal{X}}$ and let Assumptions 1(B), 2(A) and 2(C) hold. In Algorithm 2, for any $x_0 \in \mathcal{X}^o$ and $\varepsilon \in (0, \mu U^2/2]$, choose $\nu = \min\{\varepsilon/(2\Gamma), 1\}$ and $K = \lceil \log_2(\mu U^2/(2\varepsilon)) \rceil + 1$. Then it holds that $\mathbb{E}[G(x_{K+1}, y_{K+1})] \leq \varepsilon$.

Furthermore, the oracle complexity is

$$O\left(\left(\sqrt{\frac{L}{\mu}} + \frac{L_{xx}}{\mu}\right)\log\left(\frac{1}{\varepsilon}\right) + \frac{L_{yx}}{\sqrt{\mu\varepsilon}} + \frac{L_{yy}}{\varepsilon} + \left(\frac{(\sigma_{x,f} + \sigma_{x,\Phi})^2}{\mu\varepsilon} + \frac{\sigma_{y,\Phi}^2}{\varepsilon^2}\right)\log\left(\frac{1}{\varepsilon}\right)\right).$$

- Introduction Problem Setup Main Contribution
- 2 Preliminaries
- **3** Algorithm for $\mu = 0$
- **4** Restart Scheme for $\mu > 0$ Subroutine Stochastic Restart Scheme
- **6** Future Directions

 \triangleright Lower bounds on the complexities of L_{xx} and L_{yy} .

- \triangleright Lower bounds on the complexities of L_{xx} and L_{yy} .
- \triangleright In the strongly convex case $(\mu > 0)$:

- \triangleright Lower bounds on the complexities of L_{xx} and L_{yy} .
- \triangleright In the strongly convex case $(\mu > 0)$:
 - Relax the sub-Gaussian assumption on the gradient noises.

- \triangleright Lower bounds on the complexities of L_{xx} and L_{yy} .
- \triangleright In the strongly convex case $(\mu > 0)$:
 - Relax the sub-Gaussian assumption on the gradient noises.
 - Remove the additional $\log(1/\epsilon)$ factors in the oracle complexities of $\sigma_{x,f}$, $\sigma_{x,\Phi}$ and $\sigma_{y,\Phi}$, in obtaining the ϵ -expected duality gap.

Thank you!