Double Integration.

In this chapter, we shall discuss the evaluation of bid fix, y) dady using (i) Trapezoidal rule a c (ii) simpson's rule.

Note: Weighting factors at the points on the boundary and interior points

1) 3×25 media matrix

Trapezoidal rule.

Simpson's rule

4

16

4

16

4

1 4 2 2 4 16 8 4 2 8 4 2 1 4 2 1

Formula.

x axis -> hadirection & yaxis -> k direction, Noter!

1. Evaluate the integral
$$\int_{1}^{2} \frac{dxdy}{x+y}$$
 vsing

trapezoidal rule with h=k=0.25

:noitulos

G-T
$$f(x,y) = \frac{1}{x+y}$$
 & h = 0.25 k = 0.25

	•						1.3			
AT	X	1		1.25	\	1.5	1	75		2
	1	0:5	C)-444 (2)	L	0.4 (2)	0.	3636	0	(1)
-		0.444	+	0.4	1	9.3636	0	.3333		0.3077
1	.251	0·444 (2)	-	(4)	+	(4)	7	(4)	7	0.2857
	1.5	0.4		0.3636 (4)	1	0·3333 (4)		9077 (4)		(2)
		0.3636	1	0.3333	1	0.3077	1	.285	- (0.2667
	75 1	(2)		(4))	(4)	1		Ð)	(2)
	2	0.333	1 3	0.3077	1	0.2859		0.266		0.25
						-	1		-	

$$=\frac{(0.25)(0.25)}{4} \left[(0.5 + 0.333 + 0.3333 + 0.25) + 2(0.444 + 0.4 + 0.3636 + 0.3077 + 0.2657 + 0.2667 + 0.3333 + 0.3077 + 0.2857 + 0.2667 + 0.3333 + 0.3077 + 0.3636 + 0.3333 + 0.3077 + 0.3636 + 0.3333 + 0.3077 + 0.3636 + 0.3333 + 0.3077 + 0.3636 + 0.3033 + 0.3077 + 0.3037 + 0.3037 + 0.3077 + 0.3037 + 0.3077 + 0.3037 + 0.3077 + 0.3077 + 0.3077 + 0.$$

h = 0.5 and K = 0.25

Solution:

$$G-T$$
 $I = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{dxdy}{x+y} dx = 0.5$

1 x-)	1	1.5	2
AT	<u> </u>	0.4 (4)	0.3333
	0.5		0.3077
1.25	0.444	0.3636	(4)
11.5	10.4 (1)	0.3333	4) (1)
1			

(1) Trapozoidal rule (11) slapsono rule, baking

12		N	
anyancar maa sa sa main in in in	(1) (3)	(3) 707/47	1 (1) [1]
7	0.7071	1	(2) [4]
7 2	1	(2) [4] 0.7071	[](i) [i]

(3) Traporodeal

3-) Simpsonie. (weight-fricty)

By Trapezoidal rule.

$$=\frac{7}{4}\times\frac{7}{4}\left[\frac{7}{100.00100.001100.00100.00100.00100.001000.0010000.00100.001000.001000.00100.00100.00100.00100.00100.00100.00100.00100.00100.00100.0$$

4) Evaluate
$$\int_{0}^{1} \int_{1+x^{2}}^{2} \frac{22y}{(1+x^{2})(1+y^{2})} dy dx$$

Twhen that
$$I = \int_{0}^{1} \int_{0}^{2xy} \frac{2xy}{(1+x^2)(1+y^2)} dy dx$$

K	XX		1.25	1.5	1.75	2
-	0	0	(2) [4]	(2) [2]	(2) [4)	(1) (1)
And in contrast of the last of	0.25	(1) [1] 0.2353 (2) [4]	0.2296	0.2172 (4) [8]	0·2027 (4) [K	
	0.5	0.4	0.3902 (4) [8]	(4) [4]		0.32
-	0.75	0.48	0.46 <i>f</i> 3	0.4431 14) [f]		2
, he	1	(1) ED	0.4.878	0.4615	(1) [4]	0.4

() -> Trapezoidel weightfactor [] -> Simpsorb weightfactor.

By Trapezoidal rule.

I = 'hk (Sum of Values of f at the four colners)

+ 2 (Sum of the values of f at the remaining

nodes on the boundary) + 4 (Sum of the

values of f at the interior values)

 $= \frac{(0.25)(0.25)}{4} \left(0.40+0.5+0.4) + 2(0.2353+0.4+0.48+0.48+0.4615+0.4308+0.1649+0.32+0.3840+0.40+0.40+0.469+0.32+0.3840+0.40+0.40+0.3692+0.3692+0.3446+0.4663+0.4431+0.4135)\right]$

1 = 0.3116.

Home work.

1 Evaluate I's exty dydx, using Trapezoidal rule of o with h=K=0.25

Ans. Trapezoidalnule I = 3.0763Simpsonbrule I = 2.9545

(2) Evaluate $\int_{1.3}^{2} \int_{1.3}^{4} \frac{dndy}{(x+y)^2}$, taking h=k=0.5 using both trapezoidal rule 4 slimpsons rule.

Ans: trapezoidal rule I = 0.0413Simpson's rule I = 0.0408

3 Evaluate $\int_{0}^{1} (x^2+y^2) dxdy$ using Trapezoidal rule with h=k=0.25.

2 = 0.6875.