

Universidade Federal da Bahia - UFBA Instituto de Matemática e Estatística - IME Departamento de Matemática

MAT A07 - Álgebra Linear A Aula 13

Subespaços Vetoriais: Intersecção, União, Soma

Dependência e Independência Linear, Bases

Professora: Isamara C. Alves

Data: 27/10/2020

Subespaço Gerado

Exercícios:

Subespaço Gerado

EXERCÍCIOS:

Sejam $\mathcal{V}=\mathcal{M}_2(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K}=\mathbb{R}$, $\mathcal{W}_1=\{A\in\mathcal{M}_2(\mathbb{R})|A=A^t\}$

Subespaço Gerado

EXERCÍCIOS:

Subespaço Gerado

Exercícios:

Sejam $\mathcal{V} = \mathcal{M}_2(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\}$ e $\mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$ subespaços vetoriais de \mathcal{V} .

1. Determine um conjunto de geradores para $(W_1 \cap W_2) \subseteq V$.

Exercícios:

- 1. Determine um conjunto de geradores para $(W_1 \cap W_2) \subseteq V$.
- 2. Determine um conjunto de geradores para $(W_1 + W_2) \subseteq V$.

EXERCÍCIOS:

- 1. Determine um conjunto de geradores para $(W_1 \cap W_2) \subseteq V$.
- 2. Determine um conjunto de geradores para $(W_1 + W_2) \subseteq V$. (DICA: utilize a propriedade $[S_1] + [S_2] = [S_1 \cup S_2]$)

Exercícios:

- 1. Determine um conjunto de geradores para $(W_1 \cap W_2) \subseteq V$.
- 2. Determine um conjunto de geradores para $(W_1 + W_2) \subseteq V$. (DICA: utilize a propriedade $[S_1] + [S_2] = [S_1 \cup S_2]$)
- 3. Determine um conjunto de geradores para $\mathcal{V} = \mathcal{M}_2(\mathbb{R})$.

Exercícios:

- 1. Determine um conjunto de geradores para $(W_1 \cap W_2) \subseteq V$.
- 2. Determine um conjunto de geradores para $(W_1 + W_2) \subseteq V$. (DICA: utilize a propriedade $[S_1] + [S_2] = [S_1 \cup S_2]$)
- 3. Determine um conjunto de geradores para $\mathcal{V} = \mathcal{M}_2(\mathbb{R})$.

Subespaço Gerado

Exercícios: (respostas)

$$\text{Exercícios:} \big(\text{Respostas} \big) \ \, \mathcal{W}_1 = \{ A \in \mathcal{M}_2(\mathbb{R}) | A = A^t \} \, \, \text{e} \, \, \mathcal{W}_2 = \{ A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t \}$$

EXERCÍCIOS: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\}$$
 e $W_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$ $\forall A \in \mathcal{W}_1$

EXERCÍCIOS: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\}$$
 e $W_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$ $\forall A \in \mathcal{W}_1 \Rightarrow A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$

EXERCÍCIOS: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\}$$
 e $W_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$ $\forall A \in \mathcal{W}_1 \Rightarrow A = \begin{pmatrix} a & b \\ b & c \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

EXERCÍCIOS: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\}$$
 e $W_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$ $\forall A \in \mathcal{W}_1 \Rightarrow A = \begin{pmatrix} a & b \\ b & c \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

EXERCÍCIOS: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

 $\forall A \in \mathcal{W}_1 \Rightarrow A = \begin{pmatrix} a & b \\ b & c \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

EXERCÍCIOS: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

 $\forall A \in \mathcal{W}_1 \Rightarrow A = \begin{pmatrix} a & b \\ b & c \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

$$\Rightarrow W_1 =$$

EXERCÍCIOS: (RESPOSTAS)
$$\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\forall A \in \mathcal{W}_1 \Rightarrow A = \begin{pmatrix} a & b \\ b & c \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\Rightarrow \mathcal{W}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix};$$

EXERCÍCIOS: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\forall A \in \mathcal{W}_1 \Rightarrow A = \begin{pmatrix} a & b \\ b & c \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\Rightarrow \mathcal{W}_1 = \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_2} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};}_{\mathcal{W}_3} \underbrace{\begin{pmatrix} 0 & 1$$

EXERCÍCIOS: (RESPOSTAS)
$$\mathcal{W}_{1} = \{A \in \mathcal{M}_{2}(\mathbb{R}) | A = A^{t}\}$$
 e $\mathcal{W}_{2} = \{A \in \mathcal{M}_{2}(\mathbb{R}) | A = -A^{t}\}$ $\forall A \in \mathcal{W}_{1} \Rightarrow A = \begin{pmatrix} a & b \\ b & c \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ $\Rightarrow \mathcal{W}_{1} = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

EXERCÍCIOS: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\forall A \in \mathcal{W}_1 \Rightarrow A = \begin{pmatrix} a & b \\ b & c \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\Rightarrow \mathcal{W}_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix};$$

$$e$$

EXERCÍCIOS: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\forall A \in \mathcal{W}_1 \Rightarrow A = \begin{pmatrix} a & b \\ b & c \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\Rightarrow \mathcal{W}_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix};$$
e

 $\forall A \in \mathcal{W}_2$

EXERCÍCIOS: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\forall A \in \mathcal{W}_1 \Rightarrow A = \begin{pmatrix} a & b \\ b & c \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\Rightarrow \mathcal{W}_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix};$$

$$e$$

$$\forall A \in \mathcal{W}_2 \Rightarrow A = \begin{pmatrix} 0 & d \\ -d & 0 \end{pmatrix}$$

EXERCÍCIOS: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\forall A \in \mathcal{W}_1 \Rightarrow A = \begin{pmatrix} a & b \\ b & c \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\Rightarrow \mathcal{W}_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix};$$

$$e$$

$$\forall A \in \mathcal{W}_2 \Rightarrow A = \begin{pmatrix} 0 & d \\ -d & 0 \end{pmatrix} = d \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

EXERCÍCIOS: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\forall A \in \mathcal{W}_1 \Rightarrow A = \begin{pmatrix} a & b \\ b & c \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\Rightarrow \mathcal{W}_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix};$$

$$e$$

$$\forall A \in \mathcal{W}_2 \Rightarrow A = \begin{pmatrix} 0 & d \\ -d & 0 \end{pmatrix} = d \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Rightarrow \mathcal{W}_2 = \left[\underbrace{\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}}_{y_1} \right]$$

EXERCÍCIOS: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\forall A \in \mathcal{W}_1 \Rightarrow A = \begin{pmatrix} a & b \\ b & c \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\Rightarrow \mathcal{W}_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix};$$

$$e$$

$$\forall A \in \mathcal{W}_2 \Rightarrow A = \begin{pmatrix} 0 & d \\ -d & 0 \end{pmatrix} = d \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Rightarrow \mathcal{W}_2 = \left[\underbrace{\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}}_{\mathcal{U}} \right].$$

EXERCÍCIOS: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\forall A \in \mathcal{W}_1 \Rightarrow A = \begin{pmatrix} a & b \\ b & c \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\Rightarrow \mathcal{W}_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix};$$

$$e$$

$$\forall A \in \mathcal{W}_2 \Rightarrow A = \begin{pmatrix} 0 & d \\ -d & 0 \end{pmatrix} = d \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Rightarrow \mathcal{W}_2 = \left[\underbrace{\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}}_{\mathcal{U}} \right].$$

Subespaço Gerado

Exercícios: (respostas)

Exercícios: (respostas)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\}$$
 e $W_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$

Exercícios: (respostas)
$$\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\mathcal{W}_1 =$$

EXERCÍCIOS: (RESPOSTAS)
$$\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\}$$
 e $\mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$
$$\mathcal{W}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix};$$

EXERCÍCIOS: (RESPOSTAS)
$$\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\mathcal{W}_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \\ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \\ \mathcal{W}_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \\ \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\} \in \mathcal{M}_2(\mathbb{R}) | A = A^t\}$$

EXERCÍCIOS: (RESPOSTAS)
$$\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\mathcal{W}_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

EXERCÍCIOS: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t \}$$
 e $W_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t \}$ $W_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}$; e

EXERCÍCIOS: (RESPOSTAS)
$$\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\mathcal{W}_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}; e \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

EXERCÍCIOS: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$W_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}; e \mathcal{W}_2 = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{bmatrix}$$

Subespaço Gerado

EXERCÍCIOS: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$W_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}; e \mathcal{W}_2 = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{bmatrix}.$$

Subespaço Gerado

EXERCÍCIOS: (RESPOSTAS)
$$\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\mathcal{W}_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}; e \mathcal{W}_2 = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{bmatrix}.$$

Então, $\forall A \in (\mathcal{W}_1 \cap \mathcal{W}_2)$

Subespaço Gerado

EXERCÍCIOS: (RESPOSTAS)
$$\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\mathcal{W}_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}; e \mathcal{W}_2 = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{bmatrix}.$$
Então, $\forall A \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow A = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

Subespaço Gerado

EXERCÍCIOS: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t \} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t \}$$

$$W_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}; e \mathcal{W}_2 = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{bmatrix}.$$
Então, $\forall A \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow A = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

Subespaço Gerado

EXERCÍCIOS: (RESPOSTAS)
$$\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\mathcal{W}_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}; e \mathcal{W}_2 = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{bmatrix}.$$
Então, $\forall A \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow A = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

Subespaço Gerado

EXERCÍCIOS: (RESPOSTAS)
$$\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\mathcal{W}_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}; e \mathcal{W}_2 = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{bmatrix}.$$
Então, $\forall A \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow A = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = d \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

Subespaço Gerado

EXERCÍCIOS: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$W_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}; e \mathcal{W}_2 = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{bmatrix}.$$
Então, $\forall A \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow A = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = d \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Rightarrow a = 0;$

Subespaço Gerado

EXERCÍCIOS: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$W_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}; e \mathcal{W}_2 = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{bmatrix}.$$
Então, $\forall A \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow A = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = d \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Rightarrow a = 0; b = d;$

Subespaço Gerado

EXERCÍCIOS: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\mathcal{W}_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}; e \mathcal{W}_2 = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{bmatrix}.$$
Então, $\forall A \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow A = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = d \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Rightarrow a = 0; b = d; b = -d;$

Subespaço Gerado

EXERCÍCIOS: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\mathcal{W}_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}; e \mathcal{W}_2 = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{bmatrix}.$$
Então, $\forall A \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow A = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = d \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Rightarrow a = 0; b = d; b = -d; c = 0$

Subespaço Gerado

EXERCÍCIOS: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\mathcal{W}_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}; e \mathcal{W}_2 = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{bmatrix}.$$
Então, $\forall A \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow A = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = d \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Rightarrow a = 0; b = d; b = -d; c = 0 \Rightarrow$

Subespaço Gerado

EXERCÍCIOS: (RESPOSTAS)
$$\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\mathcal{W}_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}; \text{ e } \mathcal{W}_2 = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{bmatrix}.$$
Então, $\forall A \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow A = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = d \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Rightarrow a = 0; b = d; b = -d; c = 0 \Rightarrow a = b = c = d = 0$

Subespaço Gerado

EXERCÍCIOS: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\mathcal{W}_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}; e \mathcal{W}_2 = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{bmatrix}.$$
Então, $\forall A \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow A = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = d \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Rightarrow$

$$a = 0; b = d; b = -d; c = 0 \Rightarrow a = b = c = d = 0 \Rightarrow A = 0_2$$

Subespaço Gerado

EXERCÍCIOS: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\mathcal{W}_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}; e \mathcal{W}_2 = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{bmatrix}.$$
Então, $\forall A \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow A = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = d \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Rightarrow$

$$a = 0; b = d; b = -d; c = 0 \Rightarrow a = b = c = d = 0 \Rightarrow A = 0_2 \Rightarrow \mathcal{W}_1 \cap \mathcal{W}_2 = \{0\}$$

EXERCÍCIOS: (RESPOSTAS)
$$\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\mathcal{W}_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}; \text{ e } \mathcal{W}_2 = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \\ \end{bmatrix}.$$
Então, $\forall A \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow A = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = d \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Rightarrow$

$$a = 0; b = d; b = -d; c = 0 \Rightarrow a = b = c = d = 0 \Rightarrow A = 0_2 \Rightarrow \mathcal{W}_1 \cap \mathcal{W}_2 = \{0\}$$
por definição matemática: $\{0\} := [\emptyset] \Rightarrow$

EXERCÍCIOS: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$W_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}; e \mathcal{W}_2 = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{bmatrix}.$$
Então, $\forall A \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow A = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = d \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Rightarrow$

$$a = 0; b = d; b = -d; c = 0 \Rightarrow a = b = c = d = 0 \Rightarrow A = 0_2 \Rightarrow \mathcal{W}_1 \cap \mathcal{W}_2 = \{0\}$$
por definição matemática: $\{0\} := [\emptyset] \Rightarrow \mathcal{W}_1 \cap \mathcal{W}_2 = [\emptyset]$

Subespaço Gerado

Exercícios: (respostas)

Exercícios: (respostas)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\}$$
 e $W_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$

Exercícios: (respostas)
$$\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\}$$
 e $\mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$

$$\mathcal{W}_1 =$$

Exercícios: (respostas)
$$\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\}$$
 e $\mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$ $\mathcal{W}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$;

EXERCÍCIOS: (RESPOSTAS)
$$\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\mathcal{W}_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \\ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};$$

EXERCÍCIOS: (RESPOSTAS)
$$\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\mathcal{W}_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

EXERCÍCIOS: (RESPOSTAS)
$$\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\mathcal{W}_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}; \text{ e}$$

EXERCÍCIOS: (RESPOSTAS)
$$\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\mathcal{W}_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}; e \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

EXERCÍCIOS: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$W_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}; e \mathcal{W}_2 = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{bmatrix}$$

EXERCÍCIOS: (RESPOSTAS)
$$\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\mathcal{W}_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}; e \mathcal{W}_2 = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{bmatrix};$$

EXERCÍCIOS: (RESPOSTAS)
$$\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\mathcal{W}_1 = \left[\underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}}_{v_1}; \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_{v_2}; \underbrace{\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}}_{v_3} \right]; \text{ e } \mathcal{W}_2 = \left[\underbrace{\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}}_{u_1} \right]; \text{ então,}$$

$$\forall A \in (\mathcal{W}_1 + \mathcal{W}_2)$$

$$\begin{split} & \text{Exercícios:} \big(\text{Respostas} \big) \quad \mathcal{W}_1 = \{ A \in \mathcal{M}_2(\mathbb{R}) | A = A^t \} \text{ e } \mathcal{W}_2 = \{ A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t \} \\ & \mathcal{W}_1 = \left[\underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}}_{v_1}; \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_{v_2}; \underbrace{\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}}_{v_3} \right]; \text{ e } \mathcal{W}_2 = \left[\underbrace{\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}}_{u_1} \right]; \text{ então,} \\ & \forall A \in (\mathcal{W}_1 + \mathcal{W}_2) \Rightarrow A = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \end{split}$$

EXERCÍCIOS: (RESPOSTAS)
$$\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\mathcal{W}_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}; e \mathcal{W}_2 = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{bmatrix}; então,$$

$$\forall A \in (\mathcal{W}_1 + \mathcal{W}_2) \Rightarrow A = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

EXERCÍCIOS: (RESPOSTAS)
$$\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\}$$
 e $\mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$ $\mathcal{W}_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix};$ e $\mathcal{W}_2 = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{bmatrix};$ então,
$$\forall A \in (\mathcal{W}_1 + \mathcal{W}_2) \Rightarrow A = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

EXERCÍCIOS: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$W_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}; e \mathcal{W}_2 = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{bmatrix}; então,$$

$$\forall A \in (\mathcal{W}_1 + \mathcal{W}_2) \Rightarrow A = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + d \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

EXERCÍCIOS: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$W_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}; e \ \mathcal{W}_2 = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{bmatrix}; então,$$

$$\forall A \in (\mathcal{W}_1 + \mathcal{W}_2) \Rightarrow A = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + d \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$\Rightarrow A = \begin{pmatrix} a & b + d \\ b - d & c \end{pmatrix}$$

EXERCÍCIOS: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$W_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}; e \mathcal{W}_2 = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{bmatrix}; então,$$

$$\forall A \in (\mathcal{W}_1 + \mathcal{W}_2) \Rightarrow A = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + d \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$\Rightarrow A = \begin{pmatrix} a & b + d \\ b - d & c \end{pmatrix} \Rightarrow \mathcal{W}_1 + \mathcal{W}_2 = [v_1; v_2; v_3]$$

Subespaços Vetoriais Subespaço Gerado

Exercícios: (Respostas)
$$\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\mathcal{W}_{1} = \left[\underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}}_{v_{1}}; \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_{v_{2}}; \underbrace{\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}}_{v_{3}} \right]; e \mathcal{W}_{2} = \left[\underbrace{\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}}_{u_{1}} \right]; então,$$

$$\forall A \in (\mathcal{W}_{1} + \mathcal{W}_{2}) \Rightarrow A = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + d \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$\Rightarrow A = \begin{pmatrix} a & b+d \\ b-d & c \end{pmatrix} \Rightarrow \mathcal{W}_{1} + \mathcal{W}_{2} = [v_{1}; v_{2}; v_{3}; u_{1}]$$

EXERCÍCIOS: (RESPOSTAS)
$$W_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \in \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$W_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}; e \mathcal{W}_2 = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}; então,$$

$$\forall A \in (\mathcal{W}_1 + \mathcal{W}_2) \Rightarrow A = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + d \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$\Rightarrow A = \begin{pmatrix} a & b + d \\ b - d & c \end{pmatrix} \Rightarrow \mathcal{W}_1 + \mathcal{W}_2 = [v_1; v_2; v_3; u_1]$$
E, como $\mathcal{V} = \mathcal{M}_2(\mathbb{R}) = \mathcal{W}_1 + \mathcal{W}_2$, temos que:

EXERCÍCIOS: (RESPOSTAS)
$$\mathcal{W}_{1} = \{A \in \mathcal{M}_{2}(\mathbb{R}) | A = A^{t}\} \text{ e } \mathcal{W}_{2} = \{A \in \mathcal{M}_{2}(\mathbb{R}) | A = -A^{t}\}$$

$$\mathcal{W}_{1} = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}; \text{ e } \mathcal{W}_{2} = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{bmatrix}; \text{ então,}$$

$$\forall A \in (\mathcal{W}_{1} + \mathcal{W}_{2}) \Rightarrow A = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + d \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$\Rightarrow A = \begin{pmatrix} a & b+d \\ b-d & c \end{pmatrix} \Rightarrow \mathcal{W}_{1} + \mathcal{W}_{2} = [v_{1}; v_{2}; v_{3}; u_{1}]$$
E. como $\mathcal{V} = \mathcal{M}_{2}(\mathbb{R}) = \mathcal{W}_{1} + \mathcal{W}_{2}$, temos que :

$$\mathcal{V}=\mathcal{M}_2(\mathbb{R})=[v_1;v_2;v_3;u_1]$$

EXERCÍCIOS: (RESPOSTAS)
$$\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\} \text{ e } \mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$$

$$\mathcal{W}_1 = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}; \text{ e } \mathcal{W}_2 = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{bmatrix}; \text{ então,}$$

$$\forall A \in (\mathcal{W}_1 + \mathcal{W}_2) \Rightarrow A = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + d \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$\Rightarrow A = \begin{pmatrix} a & b+d \\ b-d & c \end{pmatrix} \Rightarrow \mathcal{W}_1 + \mathcal{W}_2 = [v_1; v_2; v_3; u_1]$$
E. como $\mathcal{V} = \mathcal{M}_2(\mathbb{R}) = \mathcal{W}_1 + \mathcal{W}_2$, temos que:

$$\mathcal{V}=\mathcal{M}_2(\mathbb{R})=[v_1;v_2;v_3;u_1]$$

Subespaços Vetoriais

Subespaço Gerado

Exercícios:

Subespaços Vetoriais

Subespaço Gerado

Exercícios:

Sejam $\mathcal{V}=\mathcal{P}_2(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K}=\mathbb{R}$, $\mathcal{W}_1=\{p(t)\in\mathcal{P}_2(\mathbb{R})|a_0=a_1+a_2\}$

Subespaços Vetoriais

Subespaço Gerado

Exercícios:

Sejam $\mathcal{V} = \mathcal{P}_2(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 = a_1 + a_2\}$ e $\mathcal{W}_2 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 + a_1 = 0 \text{ e } a_2 = 0\}$ subespaços vetoriais de \mathcal{V} .

Exercícios:

Sejam
$$\mathcal{V} = \mathcal{P}_2(\mathbb{R})$$
 um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 = a_1 + a_2\}$ e $\mathcal{W}_2 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 + a_1 = 0 \text{ e } a_2 = 0\}$ subespaços vetoriais de \mathcal{V} .

1. Determine um conjunto de geradores para $(W_1 \cap W_2) \subseteq V$.

Exercícios:

Sejam
$$\mathcal{V} = \mathcal{P}_2(\mathbb{R})$$
 um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 = a_1 + a_2\}$ e $\mathcal{W}_2 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 + a_1 = 0 \text{ e } a_2 = 0\}$ subespaços vetoriais de \mathcal{V} .

- 1. Determine um conjunto de geradores para $(W_1 \cap W_2) \subseteq V$.
- 2. Determine um conjunto de geradores para $(W_1 + W_2) \subseteq V$.

EXERCÍCIOS:

Sejam
$$\mathcal{V} = \mathcal{P}_2(\mathbb{R})$$
 um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 = a_1 + a_2\}$ e $\mathcal{W}_2 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 + a_1 = 0 \text{ e } a_2 = 0\}$ subespaços vetoriais de \mathcal{V} .

- 1. Determine um conjunto de geradores para $(\mathcal{W}_1 \cap \mathcal{W}_2) \subseteq \mathcal{V}$.
- 2. Determine um conjunto de geradores para $(W_1 + W_2) \subseteq V$.
- 3. Determine um conjunto de geradores para $\mathcal{V} = \mathcal{P}_2(\mathbb{R})$.

Exercícios:

Sejam
$$\mathcal{V} = \mathcal{P}_2(\mathbb{R})$$
 um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 = a_1 + a_2\}$ e $\mathcal{W}_2 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 + a_1 = 0 \text{ e } a_2 = 0\}$ subespaços vetoriais de \mathcal{V} .

- 1. Determine um conjunto de geradores para $(W_1 \cap W_2) \subseteq V$.
- 2. Determine um conjunto de geradores para $(W_1 + W_2) \subseteq V$.
- 3. Determine um conjunto de geradores para $\mathcal{V} = \mathcal{P}_2(\mathbb{R})$.
- 4. Determine um subespaço W_3 de V tal que $V = W_2 \oplus W_3$ onde, $W_3 \neq W_1$.

Exercícios:

Sejam
$$\mathcal{V} = \mathcal{P}_2(\mathbb{R})$$
 um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 = a_1 + a_2\}$ e $\mathcal{W}_2 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) | a_0 + a_1 = 0 \text{ e } a_2 = 0\}$ subespaços vetoriais de \mathcal{V} .

- 1. Determine um conjunto de geradores para $(W_1 \cap W_2) \subseteq V$.
- 2. Determine um conjunto de geradores para $(W_1 + W_2) \subseteq V$.
- 3. Determine um conjunto de geradores para $\mathcal{V} = \mathcal{P}_2(\mathbb{R})$.
- 4. Determine um subespaço W_3 de V tal que $V = W_2 \oplus W_3$ onde, $W_3 \neq W_1$.

Dependência e Independência Linear

Definição:

Dependência e Independência Linear

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um **subconjunto finito** de \mathcal{V} .

Dependência e Independência Linear

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um **subconjunto finito** de \mathcal{V} . Dizemos que $S \subset \mathcal{V}$ é LINEARMENTE INDEPENDENTE (LI)

Dependência e Independência Linear

Dependência e Independência Linear

$$\sum_{i=1}^{n} \lambda_i v$$

Dependência e Independência Linear

$$\sum_{i=1}^{n} \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0$$

Dependência e Independência Linear

$$\sum_{i=1}^{n} \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0$$

Dependência e Independência Linear

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um **subconjunto finito** de \mathcal{V} . Dizemos que $S \subset \mathcal{V}$ é LINEARMENTE INDEPENDENTE (LI) se, existem escalares $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ tais que

$$\sum_{i=1}^{n} \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0$$

se, e somente se, $\lambda_1 = \lambda_2 = \ldots = \lambda_n = 0$.

Dependência e Independência Linear

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um **subconjunto finito** de \mathcal{V} . Dizemos que $S \subset \mathcal{V}$ é LINEARMENTE INDEPENDENTE (LI) se, existem escalares $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ tais que

$$\sum_{i=1}^{n} \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0$$

se, e somente se, $\lambda_1 = \lambda_2 = \ldots = \lambda_n = 0$.

Caso contrário, dizemos que $S \subset \mathcal{V}$ é LINEARMENTE DEPENDENTE (LD).

Dependência e Independência Linear

DEFINIÇÃO: Seja $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb N^*$, um **subconjunto finito** de $\mathcal V$. Dizemos que $S \subset \mathcal V$ é LINEARMENTE INDEPENDENTE (LI) se, existem escalares $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb K$ tais que

$$\sum_{i=1}^n \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0$$

se, e somente se, $\lambda_1 = \lambda_2 = \ldots = \lambda_n = 0$.

Caso contrário, dizemos que $S \subset \mathcal{V}$ é LINEARMENTE DEPENDENTE (LD).

Ou seja, se existir na ${
m COMBINA}$ ÇÃO LINEAR NULA,

Dependência e Independência Linear

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um **subconjunto finito** de \mathcal{V} . Dizemos que $S \subset \mathcal{V}$ é LINEARMENTE INDEPENDENTE (LI) se, existem escalares $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ tais que

$$\sum_{i=1}^n \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0$$

se, e somente se, $\lambda_1 = \lambda_2 = \ldots = \lambda_n = 0$.

Caso contrário, dizemos que $S \subset V$ é LINEARMENTE DEPENDENTE (LD).

Ou seja, se existir na <code>COMBINAÇÃO</code> LINEAR <code>NULA</code>, pelo menos um escalar $\lambda_i \neq 0$

Dependência e Independência Linear

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um **subconjunto finito** de \mathcal{V} . Dizemos que $S \subset \mathcal{V}$ é LINEARMENTE INDEPENDENTE (LI) se, existem escalares $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ tais que

$$\sum_{i=1}^n \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0$$

se, e somente se, $\lambda_1 = \lambda_2 = \ldots = \lambda_n = 0$.

Caso contrário, dizemos que $S \subset V$ é LINEARMENTE DEPENDENTE (LD).

Dependência e Independência Linear

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um **subconjunto finito** de \mathcal{V} . Dizemos que $S \subset \mathcal{V}$ é LINEARMENTE INDEPENDENTE (LI) se, existem escalares $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ tais que

$$\sum_{i=1}^{n} \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0$$

se, e somente se, $\lambda_1 = \lambda_2 = \ldots = \lambda_n = 0$.

Caso contrário, dizemos que $S \subset V$ é LINEARMENTE DEPENDENTE (LD).

$$v_i = -\frac{1}{\lambda_i}(\lambda_1v_1 + \lambda_2v_2 + \ldots + \lambda_{i-1}v_{i-1} + \lambda_{i+1}v_{i+1} + \ldots + \lambda_nv_n)$$

Dependência e Independência Linear

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um **subconjunto finito** de \mathcal{V} . Dizemos que $S \subset \mathcal{V}$ é LINEARMENTE INDEPENDENTE (LI) se, existem escalares $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ tais que

$$\sum_{i=1}^{n} \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0$$

se, e somente se, $\lambda_1 = \lambda_2 = \ldots = \lambda_n = 0$.

Caso contrário, dizemos que $S \subset V$ é LINEARMENTE DEPENDENTE (LD).

$$v_i = -\frac{1}{\lambda_i}(\lambda_1v_1 + \lambda_2v_2 + \ldots + \lambda_{i-1}v_{i-1} + \lambda_{i+1}v_{i+1} + \ldots + \lambda_nv_n)$$

Dependência e Independência Linear

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um **subconjunto finito** de \mathcal{V} . Dizemos que $S \subset \mathcal{V}$ é LINEARMENTE INDEPENDENTE (LI) se, existem escalares $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ tais que

$$\sum_{i=1}^n \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0$$

se, e somente se, $\lambda_1 = \lambda_2 = \ldots = \lambda_n = 0$.

Caso contrário, dizemos que $S \subset V$ é LINEARMENTE DEPENDENTE (LD).

$$v_i = -\frac{1}{\lambda_i}(\lambda_1v_1 + \lambda_2v_2 + \ldots + \lambda_{i-1}v_{i-1} + \lambda_{i+1}v_{i+1} + \ldots + \lambda_nv_n)$$

Dependência e Independência Linear

Dependência e Independência Linear

Dependência e Independência Linear

Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e sejam $S_1=\{\underbrace{(2,0)}_{l^2},\underbrace{(0,-1)}_{l^2}\}\subset\mathcal{V}$, e

Dependência e Independência Linear

Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e sejam $S_1=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2}\}\subset\mathcal{V}$, e $S_2=\{\underbrace{(2,0)}_{v_1},$

Dependência e Independência Linear

Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e sejam $S_1=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2}\}\subset\mathcal{V}$, e $S_2=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2$

Dependência e Independência Linear

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{\mathsf{V}_1}, \underbrace{(0,-1)}_{\mathsf{V}_2}\} \subset \mathcal{V},\ \mathsf{e}\ S_2 = \{\underbrace{(2,0)}_{\mathsf{V}_1}, \underbrace{(0,-1)}_{\mathsf{V}_2}, \underbrace{(0,1)}_{\mathsf{V}_3}\} \subset \mathcal{V}.$$

Dependência e Independência Linear

EXEMPLO.1:

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2}\} \subset \mathcal{V}\text{, e}\ S_2 = \{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2},\underbrace{(0,1)}_{v_3}\} \subset \mathcal{V}.$$

Dependência e Independência Linear

EXEMPLO.1:

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2}\} \subset \mathcal{V}\text{, e}\ S_2 = \{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2},\underbrace{(0,1)}_{v_3}\} \subset \mathcal{V}.$$

$$\sum_{i=1}^{2} \lambda_i v_i =$$

Dependência e Independência Linear

EXEMPLO.1:

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{v_1}, \underbrace{(0,-1)}_{v_2}\} \subset \mathcal{V},\ \mathsf{e}\ S_2 = \{\underbrace{(2,0)}_{v_1}, \underbrace{(0,-1)}_{v_2}, \underbrace{(0,1)}_{v_3}\} \subset \mathcal{V}.$$

$$\sum_{i=1}^2 \lambda_i v_i = \lambda_1(2,0) + \lambda_2(0,-1)$$

Dependência e Independência Linear

EXEMPLO.1:

Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e sejam $S_1=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2}\}\subset\mathcal{V}$, e $S_2=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2},\underbrace{(0,1)}_{v_3}\}\subset\mathcal{V}$.

$$\sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) = (0,0)$$

Dependência e Independência Linear

EXEMPLO.1:

Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e sejam $S_1=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2}\}\subset\mathcal{V}$, e $S_2=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2},\underbrace{(0,1)}_{v_3}\}\subset\mathcal{V}$.

$$\sum_{i=1}^{2} \lambda_i v_i = \lambda_1(2,0) + \lambda_2(0,-1) = (0,0) \Rightarrow (2\lambda_1,-\lambda_2) = (0,0)$$

Dependência e Independência Linear

EXEMPLO.1:

Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e sejam $S_1=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2}\}\subset\mathcal{V}$, e $S_2=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2},\underbrace{(0,1)}_{v_3}\}\subset\mathcal{V}$.

$$\sum_{i=1}^2 \lambda_i v_i = \lambda_1(2,0) + \lambda_2(0,-1) = (0,0) \Rightarrow (2\lambda_1,-\lambda_2) = (0,0) \Rightarrow$$

Dependência e Independência Linear

Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e sejam $S_1=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2}\}\subset\mathcal{V}$, e $S_2=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2},\underbrace{(0,1)}_{v_3}\}\subset\mathcal{V}$. Então, em S_1 , para $\forall \lambda_1,\lambda_2\in\mathbb{R}$;
$$\sum_{i=1}^2\lambda_iv_i=\lambda_1(2,0)+\lambda_2(0,-1)=(0,0)\Rightarrow(2\lambda_1,-\lambda_2)=(0,0)\Rightarrow\left\{\begin{array}{c}2\lambda_1=0\Rightarrow\lambda_1=0\\2\lambda_1=0\Rightarrow\lambda_1=0\end{array}\right\}$$

Dependência e Independência Linear

$$\begin{split} \text{Seja } \mathcal{V} &= \mathbb{R}^2 \text{ e sejam } S_1 = \{\underbrace{(2,0)}_{v_1}, \underbrace{(0,-1)}_{v_2}\} \subset \mathcal{V} \text{, e } S_2 = \{\underbrace{(2,0)}_{v_1}, \underbrace{(0,-1)}_{v_2}, \underbrace{(0,1)}_{v_3}\} \subset \mathcal{V}. \\ \text{Então, em } S_1 \text{, para } \forall \lambda_1, \lambda_2 \in \mathbb{R}; \\ \sum_{i=1}^2 \lambda_i v_i &= \lambda_1(2,0) + \lambda_2(0,-1) = (0,0) \Rightarrow (2\lambda_1,-\lambda_2) = (0,0) \Rightarrow \left\{ \begin{array}{c} 2\lambda_1 = 0 \Rightarrow \lambda_1 = 0 \\ -\lambda_2 = 0 \Rightarrow \lambda_2 = 0 \end{array} \right. \end{split}$$

Dependência e Independência Linear

$$\begin{split} \text{Seja } \mathcal{V} &= \mathbb{R}^2 \text{ e sejam } S_1 = \{\underbrace{(2,0)}_{v_1}, \underbrace{(0,-1)}_{v_2}\} \subset \mathcal{V} \text{, e } S_2 = \{\underbrace{(2,0)}_{v_1}, \underbrace{(0,-1)}_{v_2}, \underbrace{(0,1)}_{v_3}\} \subset \mathcal{V}. \\ \text{Então, em } S_1 \text{, para } \forall \lambda_1, \lambda_2 \in \mathbb{R}; \\ \sum_{i=1}^2 \lambda_i v_i &= \lambda_1(2,0) + \lambda_2(0,-1) = (0,0) \Rightarrow (2\lambda_1,-\lambda_2) = (0,0) \Rightarrow \left\{ \begin{array}{c} 2\lambda_1 = 0 \Rightarrow \lambda_1 = 0 \\ -\lambda_2 = 0 \Rightarrow \lambda_2 = 0 \end{array} \right. \end{split}$$

Dependência e Independência Linear

Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e sejam $S_1=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2}\}\subset\mathcal{V}$, e $S_2=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2},\underbrace{(0,1)}_{v_3}\}\subset\mathcal{V}$. Então, em S_1 , para $\forall\lambda_1,\lambda_2\in\mathbb{R}$;
$$\sum_{i=1}^2\lambda_iv_i=\lambda_1(2,0)+\lambda_2(0,-1)=(0,0)\Rightarrow(2\lambda_1,-\lambda_2)=(0,0)\Rightarrow\left\{\begin{array}{c}2\lambda_1=0\Rightarrow\lambda_1=0\\-\lambda_2=0\Rightarrow\lambda_2=0\end{array}\right.$$
 portanto, fazendo a COMBINAÇÃO LINEAR NULA;

Dependência e Independência Linear

Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e sejam $S_1=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2}\}\subset\mathcal{V}$, e $S_2=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2},\underbrace{(0,1)}_{v_3}\}\subset\mathcal{V}$. Então, em S_1 , para $\forall \lambda_1,\lambda_2\in\mathbb{R}$;
$$\sum_{i=1}^2\lambda_iv_i=\lambda_1(2,0)+\lambda_2(0,-1)=(0,0)\Rightarrow(2\lambda_1,-\lambda_2)=(0,0)\Rightarrow\begin{cases}2\lambda_1=0\Rightarrow\lambda_1=0\\-\lambda_2=0\Rightarrow\lambda_2=0\end{cases}$$
 portanto, fazendo a COMBINAÇÃO LINEAR NULA; obtemos $\lambda_1=\lambda_2=0$;

Dependência e Independência Linear

EXEMPLO.1:

Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e sejam $S_1=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2}\}\subset\mathcal{V}$, e $S_2=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2},\underbrace{(0,1)}_{v_3}\}\subset\mathcal{V}$.

Então, em S_1 , para $\forall \lambda_1, \lambda_2 \in \mathbb{R}$;

$$\sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) = (0,0) \Rightarrow (2\lambda_{1}, -\lambda_{2}) = (0,0) \Rightarrow \begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} = 0 \Rightarrow \lambda_{2} = 0 \end{cases}$$

portanto, fazendo a COMBINAÇÃO LINEAR NULA; obtemos $\lambda_1 = \lambda_2 = 0$; ou seja, os vetores em S_1 são **linearmente independentes**.

Dependência e Independência Linear

EXEMPLO.1:

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2}\} \subset \mathcal{V}\text{, e}\ S_2 = \{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2},\underbrace{(0,1)}_{v_3}\} \subset \mathcal{V}.$$

Então, em S_1 , para $\forall \lambda_1, \lambda_2 \in \mathbb{R}$;

$$\sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) = (0,0) \Rightarrow (2\lambda_{1},-\lambda_{2}) = (0,0) \Rightarrow \begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} = 0 \Rightarrow \lambda_{2} = 0 \end{cases}$$

portanto, fazendo a COMBINAÇÃO LINEAR NULA; obtemos $\lambda_1 = \lambda_2 = 0$; ou seja, os vetores em S_1 são **linearmente independentes**.

Enquanto que em S_2 ;

Dependência e Independência Linear

EXEMPLO.1:

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2}\} \subset \mathcal{V}\text{, e}\ S_2 = \{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2},\underbrace{(0,1)}_{v_3}\} \subset \mathcal{V}.$$

Então, em S_1 , para $\forall \lambda_1, \lambda_2 \in \mathbb{R}$;

$$\sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) = (0,0) \Rightarrow (2\lambda_{1},-\lambda_{2}) = (0,0) \Rightarrow \begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} = 0 \Rightarrow \lambda_{2} = 0 \end{cases}$$

portanto, fazendo a COMBINAÇÃO LINEAR NULA; obtemos $\lambda_1 = \lambda_2 = 0$; ou seja, os vetores em S_1 são **linearmente independentes**.

Dependência e Independência Linear

EXEMPLO.1:

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{v_1}, \underbrace{(0,-1)}_{v_2}\} \subset \mathcal{V}\text{, e}\ S_2 = \{\underbrace{(2,0)}_{v_1}, \underbrace{(0,-1)}_{v_2}, \underbrace{(0,1)}_{v_3}\} \subset \mathcal{V}.$$

Então, em S_1 , para $\forall \lambda_1, \lambda_2 \in \mathbb{R}$;

$$\sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) = (0,0) \Rightarrow (2\lambda_{1},-\lambda_{2}) = (0,0) \Rightarrow \begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} = 0 \Rightarrow \lambda_{2} = 0 \end{cases}$$

portanto, fazendo a COMBINAÇÃO LINEAR NULA; obtemos $\lambda_1 = \lambda_2 = 0$; ou seja, os vetores em S_1 são **linearmente independentes**.

$$\sum_{i=1}^{3} \lambda_i v_i =$$

Dependência e Independência Linear

EXEMPLO.1:

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2}\} \subset \mathcal{V}\text{, e}\ S_2 = \{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2},\underbrace{(0,1)}_{v_3}\} \subset \mathcal{V}.$$

Então, em S_1 , para $\forall \lambda_1, \lambda_2 \in \mathbb{R}$;

$$\sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) = (0,0) \Rightarrow (2\lambda_{1},-\lambda_{2}) = (0,0) \Rightarrow \begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} = 0 \Rightarrow \lambda_{2} = 0 \end{cases}$$

portanto, fazendo a COMBINAÇÃO LINEAR NULA; obtemos $\lambda_1 = \lambda_2 = 0$; ou seja, os vetores em S_1 são **linearmente independentes**.

$$\sum_{i=1}^{3} \lambda_i v_i = \lambda_1(2,0) +$$

Dependência e Independência Linear

EXEMPLO.1:

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2}\} \subset \mathcal{V}\text{, e}\ S_2 = \{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2},\underbrace{(0,1)}_{v_3}\} \subset \mathcal{V}.$$

Então, em S_1 , para $\forall \lambda_1, \lambda_2 \in \mathbb{R}$;

$$\sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) = (0,0) \Rightarrow (2\lambda_{1},-\lambda_{2}) = (0,0) \Rightarrow \begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} = 0 \Rightarrow \lambda_{2} = 0 \end{cases}$$

portanto, fazendo a COMBINAÇÃO LINEAR NULA; obtemos $\lambda_1 = \lambda_2 = 0$; ou seja, os vetores em S_1 são **linearmente independentes**.

$$\sum_{i=1}^{3} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) +$$

Dependência e Independência Linear

EXEMPLO.1:

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2}\} \subset \mathcal{V},\ \mathsf{e}\ S_2 = \{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2},\underbrace{(0,1)}_{v_3}\} \subset \mathcal{V}.$$

Então, em S_1 , para $\forall \lambda_1, \lambda_2 \in \mathbb{R}$;

$$\sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) = (0,0) \Rightarrow (2\lambda_{1},-\lambda_{2}) = (0,0) \Rightarrow \begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} = 0 \Rightarrow \lambda_{2} = 0 \end{cases}$$

portanto, fazendo a COMBINAÇÃO LINEAR NULA; obtemos $\lambda_1 = \lambda_2 = 0$; ou seja, os vetores em S_1 são **linearmente independentes**.

$$\sum_{i=1}^{3} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) + \lambda_{3}(0,1)$$

Dependência e Independência Linear

EXEMPLO.1:

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{v_1}, \underbrace{(0,-1)}_{v_2}\} \subset \mathcal{V}\text{, e}\ S_2 = \{\underbrace{(2,0)}_{v_1}, \underbrace{(0,-1)}_{v_2}, \underbrace{(0,1)}_{v_3}\} \subset \mathcal{V}.$$

Então, em S_1 , para $\forall \lambda_1, \lambda_2 \in \mathbb{R}$;

$$\sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) = (0,0) \Rightarrow (2\lambda_{1}, -\lambda_{2}) = (0,0) \Rightarrow \begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} = 0 \Rightarrow \lambda_{2} = 0 \end{cases}$$

portanto, fazendo a COMBINAÇÃO LINEAR NULA; obtemos $\lambda_1 = \lambda_2 = 0$; ou seja, os vetores em S_1 são **linearmente independentes**.

$$\sum_{i=1}^{3} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) + \lambda_{3}(0,1) = (0,0)$$

Dependência e Independência Linear

EXEMPLO.1:

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{v_1}, \underbrace{(0,-1)}_{v_2}\} \subset \mathcal{V}\text{, e}\ S_2 = \{\underbrace{(2,0)}_{v_1}, \underbrace{(0,-1)}_{v_2}, \underbrace{(0,1)}_{v_3}\} \subset \mathcal{V}.$$

Então, em S_1 , para $\forall \lambda_1, \lambda_2 \in \mathbb{R}$;

$$\sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) = (0,0) \Rightarrow (2\lambda_{1}, -\lambda_{2}) = (0,0) \Rightarrow \begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} = 0 \Rightarrow \lambda_{2} = 0 \end{cases}$$

portanto, fazendo a COMBINAÇÃO LINEAR NULA; obtemos $\lambda_1 = \lambda_2 = 0$; ou seja, os vetores em S_1 são **linearmente independentes**.

$$\sum_{i=1}^{3} \lambda_i v_i = \lambda_1(2,0) + \lambda_2(0,-1) + \lambda_3(0,1) = (0,0) \Rightarrow (2\lambda_1, -\lambda_2 + \lambda_3) = (0,0)$$

Dependência e Independência Linear

EXEMPLO.1:

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{v_1}, \underbrace{(0,-1)}_{v_2}\} \subset \mathcal{V}\text{, e}\ S_2 = \{\underbrace{(2,0)}_{v_1}, \underbrace{(0,-1)}_{v_2}, \underbrace{(0,1)}_{v_3}\} \subset \mathcal{V}.$$

Então, em S_1 , para $\forall \lambda_1, \lambda_2 \in \mathbb{R}$;

$$\sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) = (0,0) \Rightarrow (2\lambda_{1},-\lambda_{2}) = (0,0) \Rightarrow \begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} = 0 \Rightarrow \lambda_{2} = 0 \end{cases}$$

portanto, fazendo a COMBINAÇÃO LINEAR NULA; obtemos $\lambda_1 = \lambda_2 = 0$; ou seja, os vetores em S_1 são **linearmente independentes**.

$$\sum_{i=1}^{3} \lambda_i v_i = \lambda_1(2,0) + \lambda_2(0,-1) + \lambda_3(0,1) = (0,0) \Rightarrow (2\lambda_1, -\lambda_2 + \lambda_3) = (0,0) \Rightarrow$$

Dependência e Independência Linear

EXEMPLO.1:

Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e sejam $S_1=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2}\}\subset\mathcal{V}$, e $S_2=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2},\underbrace{(0,1)}_{v_3}\}\subset\mathcal{V}$.

Então, em S_1 , para $\forall \lambda_1, \lambda_2 \in \mathbb{R}$;

$$\sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) = (0,0) \Rightarrow (2\lambda_{1},-\lambda_{2}) = (0,0) \Rightarrow \begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} = 0 \Rightarrow \lambda_{2} = 0 \end{cases}$$

portanto, fazendo a COMBINAÇÃO LINEAR NULA; obtemos $\lambda_1 = \lambda_2 = 0$; ou seja, os vetores em S_1 são **linearmente independentes**.

$$\sum_{i=1}^{3} \lambda_i v_i = \lambda_1(2,0) + \lambda_2(0,-1) + \lambda_3(0,1) = (0,0) \Rightarrow (2\lambda_1, -\lambda_2 + \lambda_3) = (0,0) \Rightarrow \begin{cases} 2\lambda_1 = 0 \Rightarrow \lambda_1 = 0 \end{cases}$$

Dependência e Independência Linear

EXEMPLO.1:

Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e sejam $S_1=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2}\}\subset\mathcal{V}$, e $S_2=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2},\underbrace{(0,1)}_{v_3}\}\subset\mathcal{V}$.

Então, em S_1 , para $\forall \lambda_1, \lambda_2 \in \mathbb{R}$;

$$\sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) = (0,0) \Rightarrow (2\lambda_{1}, -\lambda_{2}) = (0,0) \Rightarrow \begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} = 0 \Rightarrow \lambda_{2} = 0 \end{cases}$$

portanto, fazendo a COMBINAÇÃO LINEAR NULA; obtemos $\lambda_1 = \lambda_2 = 0$; ou seja, os vetores em S_1 são **linearmente independentes**.

$$\sum_{i=1}^{3} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) + \lambda_{3}(0,1) = (0,0) \Rightarrow (2\lambda_{1}, -\lambda_{2} + \lambda_{3}) = (0,0) \Rightarrow$$

$$\begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} + \lambda_{3} = 0 \Rightarrow \lambda_{2} = \lambda_{3} \end{cases}$$

Dependência e Independência Linear

EXEMPLO.1:

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2}\} \subset \mathcal{V}\text{, e}\ S_2 = \{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2},\underbrace{(0,1)}_{v_3}\} \subset \mathcal{V}.$$

Então, em S_1 , para $\forall \lambda_1, \lambda_2 \in \mathbb{R}$;

$$\sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) = (0,0) \Rightarrow (2\lambda_{1},-\lambda_{2}) = (0,0) \Rightarrow \begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} = 0 \Rightarrow \lambda_{2} = 0 \end{cases}$$

portanto, fazendo a COMBINAÇÃO LINEAR NULA; obtemos $\lambda_1 = \lambda_2 = 0$; ou seja, os vetores em S_1 são **linearmente independentes**.

$$\sum_{i=1}^{3} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) + \lambda_{3}(0,1) = (0,0) \Rightarrow (2\lambda_{1}, -\lambda_{2} + \lambda_{3}) = (0,0) \Rightarrow$$

$$\begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} + \lambda_{3} = 0 \Rightarrow \lambda_{2} = \lambda_{3} \end{cases}$$

Dependência e Independência Linear

EXEMPLO.1:

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{\mathsf{v}_1}, \underbrace{(0,-1)}_{\mathsf{v}_2}\} \subset \mathcal{V},\ \mathsf{e}\ S_2 = \{\underbrace{(2,0)}_{\mathsf{v}_1}, \underbrace{(0,-1)}_{\mathsf{v}_2}, \underbrace{(0,1)}_{\mathsf{v}_3}\} \subset \mathcal{V}.$$

Então, em S_1 , para $\forall \lambda_1, \lambda_2 \in \mathbb{R}$;

$$\sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) = (0,0) \Rightarrow (2\lambda_{1},-\lambda_{2}) = (0,0) \Rightarrow \begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} = 0 \Rightarrow \lambda_{2} = 0 \end{cases}$$

portanto, fazendo a COMBINAÇÃO LINEAR NULA; obtemos $\lambda_1 = \lambda_2 = 0$; ou seja, os vetores em S_1 são linearmente independentes.

$$\sum_{i=1}^{3} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) + \lambda_{3}(0,1) = (0,0) \Rightarrow (2\lambda_{1}, -\lambda_{2} + \lambda_{3}) = (0,0) \Rightarrow$$

$$\begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} + \lambda_{3} = 0 \Rightarrow \lambda_{2} = \lambda_{3} \end{cases}$$
logo,

Dependência e Independência Linear

EXEMPLO.1:

Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e sejam $S_1=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2}\}\subset\mathcal{V}$, e $S_2=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2},\underbrace{(0,1)}_{v_3}\}\subset\mathcal{V}$.

Então, em S_1 , para $\forall \lambda_1, \lambda_2 \in \mathbb{R}$;

$$\sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) = (0,0) \Rightarrow (2\lambda_{1},-\lambda_{2}) = (0,0) \Rightarrow \begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} = 0 \Rightarrow \lambda_{2} = 0 \end{cases}$$

portanto, fazendo a COMBINAÇÃO LINEAR NULA; obtemos $\lambda_1 = \lambda_2 = 0$; ou seja, os vetores em S_1 são **linearmente independentes**.

$$\sum_{i=1}^{3} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) + \lambda_{3}(0,1) = (0,0) \Rightarrow (2\lambda_{1}, -\lambda_{2} + \lambda_{3}) = (0,0) \Rightarrow$$

$$\begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} + \lambda_{3} = 0 \Rightarrow \lambda_{2} = \lambda_{3} \end{cases}$$

$$\log_{0} \lambda_{1} = 0$$

Dependência e Independência Linear

EXEMPLO.1:

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2}\} \subset \mathcal{V}\text{, e}\ S_2 = \{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2},\underbrace{(0,1)}_{v_3}\} \subset \mathcal{V}.$$

Então, em S_1 , para $\forall \lambda_1, \lambda_2 \in \mathbb{R}$;

$$\sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) = (0,0) \Rightarrow (2\lambda_{1},-\lambda_{2}) = (0,0) \Rightarrow \begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} = 0 \Rightarrow \lambda_{2} = 0 \end{cases}$$

portanto, fazendo a COMBINAÇÃO LINEAR NULA; obtemos $\lambda_1 = \lambda_2 = 0$; ou seja, os vetores em S_1 são linearmente independentes.

$$\sum_{i=1}^{3} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) + \lambda_{3}(0,1) = (0,0) \Rightarrow (2\lambda_{1}, -\lambda_{2} + \lambda_{3}) = (0,0) \Rightarrow$$

$$\begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} + \lambda_{3} = 0 \Rightarrow \lambda_{2} = \lambda_{3} \end{cases}$$

$$\log_{0}, \lambda_{1} = 0 \text{ e } \lambda_{2} = \lambda_{3}$$

Dependência e Independência Linear

EXEMPLO.1:

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{\mathsf{v}_1}, \underbrace{(0,-1)}_{\mathsf{v}_2}\} \subset \mathcal{V},\ \mathsf{e}\ S_2 = \{\underbrace{(2,0)}_{\mathsf{v}_1}, \underbrace{(0,-1)}_{\mathsf{v}_2}, \underbrace{(0,1)}_{\mathsf{v}_3}\} \subset \mathcal{V}.$$

Então, em S_1 , para $\forall \lambda_1, \lambda_2 \in \mathbb{R}$;

$$\sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) = (0,0) \Rightarrow (2\lambda_{1},-\lambda_{2}) = (0,0) \Rightarrow \begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} = 0 \Rightarrow \lambda_{2} = 0 \end{cases}$$

portanto, fazendo a COMBINAÇÃO LINEAR NULA; obtemos $\lambda_1 = \lambda_2 = 0$; ou seja, os vetores em S_1 são **linearmente independentes**.

Enquanto que em S_2 ; para $\forall \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$;

$$\sum_{i=1}^{3} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) + \lambda_{3}(0,1) = (0,0) \Rightarrow (2\lambda_{1}, -\lambda_{2} + \lambda_{3}) = (0,0) \Rightarrow$$

$$\begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} + \lambda_{3} = 0 \Rightarrow \lambda_{2} = \lambda_{3} \end{cases}$$

$$\log_{0} \lambda_{1} = 0 = \lambda_{2} = \lambda_{3} \Rightarrow 0.(2,0) +$$

Dependência e Independência Linear

EXEMPLO.1:

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{\mathsf{v}_1}, \underbrace{(0,-1)}_{\mathsf{v}_2}\} \subset \mathcal{V},\ \mathsf{e}\ S_2 = \{\underbrace{(2,0)}_{\mathsf{v}_1}, \underbrace{(0,-1)}_{\mathsf{v}_2}, \underbrace{(0,1)}_{\mathsf{v}_3}\} \subset \mathcal{V}.$$

Então, em S_1 , para $\forall \lambda_1, \lambda_2 \in \mathbb{R}$;

$$\sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) = (0,0) \Rightarrow (2\lambda_{1},-\lambda_{2}) = (0,0) \Rightarrow \begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} = 0 \Rightarrow \lambda_{2} = 0 \end{cases}$$

portanto, fazendo a COMBINAÇÃO LINEAR NULA; obtemos $\lambda_1 = \lambda_2 = 0$; ou seja, os vetores em S_1 são **linearmente independentes**.

Enquanto que em S_2 ; para $\forall \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$;

$$\sum_{i=1}^{3} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) + \lambda_{3}(0,1) = (0,0) \Rightarrow (2\lambda_{1}, -\lambda_{2} + \lambda_{3}) = (0,0) \Rightarrow$$

$$\begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} + \lambda_{3} = 0 \Rightarrow \lambda_{2} = \lambda_{3} \end{cases}$$

$$\log_{0} \lambda_{1} = 0 = \lambda_{2} = \lambda_{3} \Rightarrow 0.(2,0) + \lambda_{3}(0,-1) +$$

Dependência e Independência Linear

EXEMPLO.1:

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{\mathsf{v}_1}, \underbrace{(0,-1)}_{\mathsf{v}_2}\} \subset \mathcal{V},\ \mathsf{e}\ S_2 = \{\underbrace{(2,0)}_{\mathsf{v}_1}, \underbrace{(0,-1)}_{\mathsf{v}_2}, \underbrace{(0,1)}_{\mathsf{v}_3}\} \subset \mathcal{V}.$$

Então, em S_1 , para $\forall \lambda_1, \lambda_2 \in \mathbb{R}$;

$$\sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) = (0,0) \Rightarrow (2\lambda_{1},-\lambda_{2}) = (0,0) \Rightarrow \begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} = 0 \Rightarrow \lambda_{2} = 0 \end{cases}$$

portanto, fazendo a COMBINAÇÃO LINEAR NULA; obtemos $\lambda_1 = \lambda_2 = 0$; ou seja, os vetores em S_1 são **linearmente independentes**.

Enquanto que em S_2 ; para $\forall \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$;

$$\sum_{i=1}^{3} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) + \lambda_{3}(0,1) = (0,0) \Rightarrow (2\lambda_{1}, -\lambda_{2} + \lambda_{3}) = (0,0) \Rightarrow$$

$$\begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} + \lambda_{3} = 0 \Rightarrow \lambda_{2} = \lambda_{3} \end{cases}$$

$$\log_{0} \lambda_{1} = 0 \text{ e } \lambda_{2} = \lambda_{3} \Rightarrow 0.(2,0) + \lambda_{3}(0,-1) + \lambda_{3}(0,1) =$$

Dependência e Independência Linear

EXEMPLO.1:

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{\mathsf{v}_1}, \underbrace{(0,-1)}_{\mathsf{v}_2}\} \subset \mathcal{V},\ \mathsf{e}\ S_2 = \{\underbrace{(2,0)}_{\mathsf{v}_1}, \underbrace{(0,-1)}_{\mathsf{v}_2}, \underbrace{(0,1)}_{\mathsf{v}_3}\} \subset \mathcal{V}.$$

Então, em S_1 , para $\forall \lambda_1, \lambda_2 \in \mathbb{R}$;

$$\sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) = (0,0) \Rightarrow (2\lambda_{1},-\lambda_{2}) = (0,0) \Rightarrow \begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} = 0 \Rightarrow \lambda_{2} = 0 \end{cases}$$

portanto, fazendo a COMBINAÇÃO LINEAR NULA; obtemos $\lambda_1 = \lambda_2 = 0$; ou seja, os vetores em S_1 são linearmente independentes.

$$\sum_{i=1}^{3} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) + \lambda_{3}(0,1) = (0,0) \Rightarrow (2\lambda_{1}, -\lambda_{2} + \lambda_{3}) = (0,0) \Rightarrow$$

$$\begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} + \lambda_{3} = 0 \Rightarrow \lambda_{2} = \lambda_{3} \end{cases}$$

$$\log_{0} \lambda_{1} = 0 \text{ e } \lambda_{2} = \lambda_{3} \Rightarrow 0.(2,0) + \lambda_{3}(0,-1) + \lambda_{3}(0,1) = (0,0)$$

logo,
$$\lambda_1 = 0$$
 e $\lambda_2 = \lambda_3 \Rightarrow 0.(2,0) + \lambda_3(0,-1) + \lambda_3(0,1) = (0,0)$

Dependência e Independência Linear

EXEMPLO.1:

Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e sejam $S_1=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2}\}\subset\mathcal{V}$, e $S_2=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2},\underbrace{(0,1)}_{v_3}\}\subset\mathcal{V}$.

Então, em S_1 , para $\forall \lambda_1, \lambda_2 \in \mathbb{R}$;

$$\sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) = (0,0) \Rightarrow (2\lambda_{1},-\lambda_{2}) = (0,0) \Rightarrow \begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} = 0 \Rightarrow \lambda_{2} = 0 \end{cases}$$

portanto, fazendo a COMBINAÇÃO LINEAR NULA; obtemos $\lambda_1 = \lambda_2 = 0$; ou seja, os vetores em S_1 são **linearmente independentes**.

$$\sum_{i=1}^{3} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) + \lambda_{3}(0,1) = (0,0) \Rightarrow (2\lambda_{1}, -\lambda_{2} + \lambda_{3}) = (0,0) \Rightarrow$$

$$\begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} + \lambda_{3} = 0 \Rightarrow \lambda_{2} = \lambda_{3} \end{cases}$$

$$\begin{cases} -\lambda_{2} + \lambda_{3} = 0 \Rightarrow \lambda_{2} = \lambda_{3} \\ -\lambda_{3} = 0 \Rightarrow \lambda_{4} = \lambda_{3} \Rightarrow 0 = \lambda_{3} \Rightarrow 0 = \lambda_{4} \Rightarrow 0 \Rightarrow \lambda_{4} \Rightarrow$$

logo,
$$\lambda_1 = 0$$
 e $\lambda_2 = \lambda_3 \Rightarrow 0.(2,0) + \lambda_3(0,-1) + \lambda_3(0,1) = (0,0) \Rightarrow (0,-1) = -(0,1);$

Dependência e Independência Linear

EXEMPLO.1:

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{\nu_1}, \underbrace{(0,-1)}_{\nu_2}\} \subset \mathcal{V},\ \mathsf{e}\ S_2 = \{\underbrace{(2,0)}_{\nu_1}, \underbrace{(0,-1)}_{\nu_2}, \underbrace{(0,1)}_{\nu_3}\} \subset \mathcal{V}.$$

Então, em S_1 , para $\forall \lambda_1, \lambda_2 \in \mathbb{R}$;

$$\sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) = (0,0) \Rightarrow (2\lambda_{1},-\lambda_{2}) = (0,0) \Rightarrow \begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} = 0 \Rightarrow \lambda_{2} = 0 \end{cases}$$

portanto, fazendo a COMBINAÇÃO LINEAR NULA; obtemos $\lambda_1 = \lambda_2 = 0$; ou seja, os vetores em S_1 são **linearmente independentes**.

Enquanto que em S_2 ; para $\forall \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$;

$$\sum_{i=1}^{3} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) + \lambda_{3}(0,1) = (0,0) \Rightarrow (2\lambda_{1}, -\lambda_{2} + \lambda_{3}) = (0,0) \Rightarrow$$

$$\begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} + \lambda_{3} = 0 \Rightarrow \lambda_{2} = \lambda_{3} \end{cases}$$

$$\log_{0} \lambda_{1} = 0 = \lambda_{2} = \lambda_{3} \Rightarrow 0.(2,0) + \lambda_{3}(0,-1) + \lambda_{3}(0,1) = (0,0) \Rightarrow (0,-1) = -(0,1);$$

ou seja, os vetores em S_2 são **linearmente dependentes**

Dependência e Independência Linear

EXEMPLO.1:

Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e sejam $S_1=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2}\}\subset\mathcal{V}$, e $S_2=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2},\underbrace{(0,1)}_{v_3}\}\subset\mathcal{V}$.

Então, em S_1 , para $\forall \lambda_1, \lambda_2 \in \mathbb{R}$;

$$\sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) = (0,0) \Rightarrow (2\lambda_{1},-\lambda_{2}) = (0,0) \Rightarrow \begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} = 0 \Rightarrow \lambda_{2} = 0 \end{cases}$$

portanto, fazendo a COMBINAÇÃO LINEAR NULA; obtemos $\lambda_1 = \lambda_2 = 0$; ou seja, os vetores em S_1 são **linearmente independentes**.

Enquanto que em S_2 ; para $\forall \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$;

$$\sum_{i=1}^{3} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) + \lambda_{3}(0,1) = (0,0) \Rightarrow (2\lambda_{1}, -\lambda_{2} + \lambda_{3}) = (0,0) \Rightarrow$$

$$\begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} + \lambda_{3} = 0 \Rightarrow \lambda_{2} = \lambda_{3} \end{cases}$$

$$\log_{0}, \lambda_{1} = 0 \text{ e } \lambda_{2} = \lambda_{3} \Rightarrow 0.(2,0) + \lambda_{3}(0,-1) + \lambda_{3}(0,1) = (0,0) \Rightarrow (0,-1) = -(0,1);$$

ou seja, os vetores em S_2 são **linearmente dependentes** pois; o vetor v_1 pode ser escrito como combinação linear do vetor v_2 e vice-versa.

Dependência e Independência Linear

EXEMPLO.1:

Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e sejam $S_1=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2}\}\subset\mathcal{V}$, e $S_2=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2},\underbrace{(0,1)}_{v_3}\}\subset\mathcal{V}$.

Então, em S_1 , para $\forall \lambda_1, \lambda_2 \in \mathbb{R}$;

$$\sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) = (0,0) \Rightarrow (2\lambda_{1},-\lambda_{2}) = (0,0) \Rightarrow \begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} = 0 \Rightarrow \lambda_{2} = 0 \end{cases}$$

portanto, fazendo a COMBINAÇÃO LINEAR NULA; obtemos $\lambda_1 = \lambda_2 = 0$; ou seja, os vetores em S_1 são **linearmente independentes**.

Enquanto que em S_2 ; para $\forall \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$;

$$\sum_{i=1}^{3} \lambda_{i} v_{i} = \lambda_{1}(2,0) + \lambda_{2}(0,-1) + \lambda_{3}(0,1) = (0,0) \Rightarrow (2\lambda_{1}, -\lambda_{2} + \lambda_{3}) = (0,0) \Rightarrow$$

$$\begin{cases} 2\lambda_{1} = 0 \Rightarrow \lambda_{1} = 0 \\ -\lambda_{2} + \lambda_{3} = 0 \Rightarrow \lambda_{2} = \lambda_{3} \end{cases}$$

$$\log_{0}, \lambda_{1} = 0 \text{ e } \lambda_{2} = \lambda_{3} \Rightarrow 0.(2,0) + \lambda_{3}(0,-1) + \lambda_{3}(0,1) = (0,0) \Rightarrow (0,-1) = -(0,1);$$

ou seja, os vetores em S_2 são **linearmente dependentes** pois; o vetor v_1 pode ser escrito como combinação linear do vetor v_2 e vice-versa.

Dependência e Independência Linear

Exemplo.2:

EXEMPLO.2: Seja
$$V = \mathbb{R}^3$$
 e seja $S = \{(2,3,-1),$

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,3,-1)}_{v_1},\underbrace{(0,1,1)}_{v_2}\}\subset\mathcal{V}.$

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $S = \{\underbrace{(2,3,-1)}_{v_1},\underbrace{(0,1,1)}_{v_2}\} \subset \mathcal{V}.$

Então,
$$\forall \lambda_1, \lambda_2 \in \mathbb{R}$$

Dependência e Independência Linear

EXEMPLO.2:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,3,-1)}_{v_1},\underbrace{(0,1,1)}_{v_2}\}\subset\mathcal{V}.$

Então, $\forall \lambda_1, \lambda_2 \in \mathbb{R}$, fazendo a combinação linear nula:

$$\begin{array}{l} \text{Exemplo.2:} \\ \text{Seja } \mathcal{V} = \mathbb{R}^3 \text{ e seja } S = \{\underbrace{(2,3,-1)}_{v_1}, \underbrace{(0,1,1)}_{v_2}\} \subset \mathcal{V}. \\ \text{Então, } \forall \lambda_1, \lambda_2 \in \mathbb{R}, \text{ fazendo a combinação linear nula:} \\ \sum_{i=1}^2 \lambda_i v_i = \end{array}$$

Dependência e Independência Linear

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,3,-1)}_{v_1},\underbrace{(0,1,1)}_{v_2}\}\subset\mathcal{V}.$

Então, $\forall \lambda_1, \lambda_2 \in \mathbb{R}$, fazendo a combinação linear nula: $\sum_{i=1}^2 \lambda_i v_i = \lambda_1(2,3,-1) + \lambda_2(0,1,1) =$

$$\sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,3,-1) + \lambda_{2}(0,1,1) =$$

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,3,-1)}_{v_1},\underbrace{(0,1,1)}_{v_2}\}\subset\mathcal{V}.$

Então,
$$\forall \lambda_1, \lambda_2 \in \mathbb{R}$$
, fazendo a combinação linear nula:
$$\sum_{i=1}^2 \lambda_i v_i = \lambda_1(2,3,-1) + \lambda_2(0,1,1) = (0,0,0)$$

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,3,-1)}_{v_1},\underbrace{(0,1,1)}_{v_2}\}\subset\mathcal{V}.$

Então,
$$\forall \lambda_1, \lambda_2 \in \mathbb{R}$$
, fazendo a combinação linear nula:
$$\sum_{i=1}^2 \lambda_i v_i = \lambda_1(2,3,-1) + \lambda_2(0,1,1) = (0,0,0) \Rightarrow (2\lambda_1,1) = (0,0,0)$$

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,3,-1)}_{v_1},\underbrace{(0,1,1)}_{v_2}\}\subset\mathcal{V}.$

Então,
$$\forall \lambda_1, \lambda_2 \in \mathbb{R}$$
, fazendo a combinação linear nula:
$$\sum_{i=1}^2 \lambda_i v_i = \lambda_1(2,3,-1) + \lambda_2(0,1,1) = (0,0,0) \Rightarrow (2\lambda_1,3\lambda_1+\lambda_2,$$

Dependência e Independência Linear

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,3,-1)}_{v_1},\underbrace{(0,1,1)}_{v_2}\}\subset\mathcal{V}.$

Então, $\forall \lambda_1, \lambda_2 \in \mathbb{R}$, fazendo a combinação linear nula:

$$\sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,3,-1) + \lambda_{2}(0,1,1) = (0,0,0) \Rightarrow (2\lambda_{1},3\lambda_{1} + \lambda_{2},\lambda_{2} - \lambda_{1})$$

Dependência e Independência Linear

EXEMPLO.2:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,3,-1)}_{v_1},\underbrace{(0,1,1)}_{v_2}\}\subset\mathcal{V}.$

Então, $\forall \lambda_1, \lambda_2 \in \mathbb{R}$, fazendo a combinação linear nula:

$$\sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,3,-1) + \lambda_{2}(0,1,1) = (0,0,0) \Rightarrow (2\lambda_{1},3\lambda_{1}+\lambda_{2},\lambda_{2}-\lambda_{1}) =$$

Dependência e Independência Linear

EXEMPLO.2:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,3,-1)}_{v_1},\underbrace{(0,1,1)}_{v_2}\}\subset\mathcal{V}.$

Então, $\forall \lambda_1, \lambda_2 \in \mathbb{R}$, fazendo a combinação linear nula:

$$\sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,3,-1) + \lambda_{2}(0,1,1) = (0,0,0) \Rightarrow (2\lambda_{1},3\lambda_{1}+\lambda_{2},\lambda_{2}-\lambda_{1}) = (0,0,0) \Rightarrow$$

```
\begin{split} &\text{Exemplo.2:}\\ &\text{Seja } \mathcal{V} = \mathbb{R}^3 \text{ e seja } S = \{\underbrace{(2,3,-1)}_{v_1}, \underbrace{(0,1,1)}_{v_2}\} \subset \mathcal{V}.\\ &\text{Então, } \forall \lambda_1, \lambda_2 \in \mathbb{R}, \text{ fazendo a combinação linear nula:}\\ &\sum_{i=1}^2 \lambda_i v_i = \lambda_1(2,3,-1) + \lambda_2(0,1,1) = (0,0,0) \Rightarrow (2\lambda_1,3\lambda_1+\lambda_2,\lambda_2-\lambda_1) = (0,0,0) \Rightarrow \\ &\begin{cases} 2\lambda_1 = 0 \end{cases} \end{split}
```

```
\begin{split} & \text{Exemplo.2:} \\ & \text{Seja } \mathcal{V} = \mathbb{R}^3 \text{ e seja } S = \{\underbrace{(2,3,-1)}_{v_1}, \underbrace{(0,1,1)}_{v_2}\} \subset \mathcal{V}. \\ & \text{Então, } \forall \lambda_1, \lambda_2 \in \mathbb{R}, \text{ fazendo a combinação linear nula:} \\ & \sum_{i=1}^2 \lambda_i v_i = \lambda_1(2,3,-1) + \lambda_2(0,1,1) = (0,0,0) \Rightarrow (2\lambda_1,3\lambda_1 + \lambda_2,\lambda_2 - \lambda_1) = (0,0,0) \Rightarrow \\ & \begin{cases} 2\lambda_1 = 0 \Rightarrow \lambda_1 = 0 \end{cases} \end{split}
```

```
\begin{split} & \text{Exemplo.2:} \\ & \text{Seja } \mathcal{V} = \mathbb{R}^3 \text{ e seja } S = \{\underbrace{(2,3,-1)}_{v_1}, \underbrace{(0,1,1)}_{v_2}\} \subset \mathcal{V}. \\ & \text{Então, } \forall \lambda_1, \lambda_2 \in \mathbb{R}, \text{ fazendo a combinação linear nula:} \\ & \sum_{i=1}^2 \lambda_i v_i = \lambda_1(2,3,-1) + \lambda_2(0,1,1) = (0,0,0) \Rightarrow (2\lambda_1,3\lambda_1+\lambda_2,\lambda_2-\lambda_1) = (0,0,0) \Rightarrow \\ & 2\lambda_1 = 0 \Rightarrow \lambda_1 = 0 \\ & 3\lambda_1 + \lambda_2 = 0 \end{split}
```

$$\begin{split} & \text{Exemplo.2:} \\ & \text{Seja } \mathcal{V} = \mathbb{R}^3 \text{ e seja } S = \{\underbrace{(2,3,-1)}_{v_1}, \underbrace{(0,1,1)}_{v_2}\} \subset \mathcal{V}. \\ & \text{Então, } \forall \lambda_1, \lambda_2 \in \mathbb{R}, \text{ fazendo a combinação linear nula:} \\ & \sum_{i=1}^2 \lambda_i v_i = \lambda_1(2,3,-1) + \lambda_2(0,1,1) = (0,0,0) \Rightarrow (2\lambda_1,3\lambda_1+\lambda_2,\lambda_2-\lambda_1) = (0,0,0) \Rightarrow \\ & 2\lambda_1 = 0 \Rightarrow \lambda_1 = 0 \\ & 3\lambda_1 + \lambda_2 = 0 \Rightarrow \lambda_2 = -3\lambda_1 \Rightarrow \lambda_2 = 0 \end{split}$$

```
\begin{split} & \text{Exemplo.2:} \\ & \text{Seja } \mathcal{V} = \mathbb{R}^3 \text{ e seja } S = \{\underbrace{(2,3,-1)}_{v_1}, \underbrace{(0,1,1)}_{v_2}\} \subset \mathcal{V}. \\ & \text{Então, } \forall \lambda_1, \lambda_2 \in \mathbb{R}, \text{ fazendo a combinação linear nula:} \\ & \sum_{i=1}^2 \lambda_i v_i = \lambda_1(2,3,-1) + \lambda_2(0,1,1) = (0,0,0) \Rightarrow (2\lambda_1,3\lambda_1+\lambda_2,\lambda_2-\lambda_1) = (0,0,0) \Rightarrow \\ & 2\lambda_1 = 0 \Rightarrow \lambda_1 = 0 \\ & 3\lambda_1 + \lambda_2 = 0 \Rightarrow \lambda_2 = -3\lambda_1 \Rightarrow \lambda_2 = 0 \\ & -\lambda_1 + \lambda_2 = 0 \end{split}
```

```
\begin{split} &\text{Exemplo.2:} \\ &\text{Seja } \mathcal{V} = \mathbb{R}^3 \text{ e seja } S = \{\underbrace{(2,3,-1)}_{v_1}, \underbrace{(0,1,1)}_{v_2}\} \subset \mathcal{V}. \\ &\text{Então, } \forall \lambda_1, \lambda_2 \in \mathbb{R}, \text{ fazendo a combinação linear nula:} \\ &\sum_{i=1}^2 \lambda_i v_i = \lambda_1(2,3,-1) + \lambda_2(0,1,1) = (0,0,0) \Rightarrow (2\lambda_1,3\lambda_1+\lambda_2,\lambda_2-\lambda_1) = (0,0,0) \Rightarrow \\ &\begin{cases} 2\lambda_1 = 0 \Rightarrow \lambda_1 = 0 \\ 3\lambda_1 + \lambda_2 = 0 \Rightarrow \lambda_2 = -3\lambda_1 \Rightarrow \lambda_2 = 0 \\ -\lambda_1 + \lambda_2 = 0 \Rightarrow \lambda_1 = \lambda_2 = 0 \end{cases} \end{split}
```

```
\begin{split} & \text{Exemplo.2:} \\ & \text{Seja } \mathcal{V} = \mathbb{R}^3 \text{ e seja } S = \{\underbrace{(2,3,-1)}_{v_1}, \underbrace{(0,1,1)}_{v_2}\} \subset \mathcal{V}. \\ & \text{Então, } \forall \lambda_1, \lambda_2 \in \mathbb{R}, \text{ fazendo a combinação linear nula:} \\ & \sum_{i=1}^2 \lambda_i v_i = \lambda_1(2,3,-1) + \lambda_2(0,1,1) = (0,0,0) \Rightarrow (2\lambda_1,3\lambda_1+\lambda_2,\lambda_2-\lambda_1) = (0,0,0) \Rightarrow \\ & \begin{cases} 2\lambda_1 = 0 \Rightarrow \lambda_1 = 0 \\ 3\lambda_1 + \lambda_2 = 0 \Rightarrow \lambda_2 = -3\lambda_1 \Rightarrow \lambda_2 = 0 \\ -\lambda_1 + \lambda_2 = 0 \Rightarrow \lambda_1 = \lambda_2 = 0 \end{cases} \end{split}
```

```
EXEMPLO.2: Seja \mathcal{V}=\mathbb{R}^3 e seja S=\{\underbrace{(2,3,-1)}_{v_1},\underbrace{(0,1,1)}_{v_2}\}\subset\mathcal{V}. Então, \forall \lambda_1,\lambda_2\in\mathbb{R}, fazendo a combinação linear nula: \sum_{i=1}^2\lambda_iv_i=\lambda_1(2,3,-1)+\lambda_2(0,1,1)=(0,0,0)\Rightarrow(2\lambda_1,3\lambda_1+\lambda_2,\lambda_2-\lambda_1)=(0,0,0)\Rightarrow\\ \begin{cases} 2\lambda_1=0\Rightarrow\lambda_1=0\\ 3\lambda_1+\lambda_2=0\Rightarrow\lambda_2=-3\lambda_1\Rightarrow\lambda_2=0\\ -\lambda_1+\lambda_2=0\Rightarrow\lambda_1=\lambda_2=0 \end{cases} Como. \lambda_1=\lambda_2=0\Rightarrow
```

Dependência e Independência Linear

EXEMPLO.2:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,3,-1)}_{v_1},\underbrace{(0,1,1)}_{v_2}\}\subset\mathcal{V}.$

Então, $\forall \lambda_1, \lambda_2 \in \mathbb{R}$, fazendo a combinação linear nula:

$$\sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2, 3, -1) + \lambda_{2}(0, 1, 1) = (0, 0, 0) \Rightarrow (2\lambda_{1}, 3\lambda_{1} + \lambda_{2}, \lambda_{2} - \lambda_{1}) = (0, 0, 0) \Rightarrow (2\lambda_{1} = 0) \Rightarrow \lambda_{1} = 0$$

$$\begin{cases} 2\lambda_1 = 0 \Rightarrow \lambda_1 = 0 \\ 3\lambda_1 + \lambda_2 = 0 \Rightarrow \lambda_2 = -3\lambda_1 \Rightarrow \lambda_2 = 0 \\ -\lambda_1 + \lambda_2 = 0 \Rightarrow \lambda_1 = \lambda_2 = 0 \end{cases}$$

Como, $\lambda_1 = \lambda_2 = 0 \Rightarrow$ os vetores em S_1 são LI.

Dependência e Independência Linear

EXEMPLO.2:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,3,-1)}_{v_1},\underbrace{(0,1,1)}_{v_2}\}\subset\mathcal{V}.$

Então, $\forall \lambda_1, \lambda_2 \in \mathbb{R}$, fazendo a combinação linear nula:

$$\sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2, 3, -1) + \lambda_{2}(0, 1, 1) = (0, 0, 0) \Rightarrow (2\lambda_{1}, 3\lambda_{1} + \lambda_{2}, \lambda_{2} - \lambda_{1}) = (0, 0, 0) \Rightarrow (2\lambda_{1} = 0) \Rightarrow \lambda_{1} = 0$$

$$\begin{cases} 2\lambda_1 = 0 \Rightarrow \lambda_1 = 0 \\ 3\lambda_1 + \lambda_2 = 0 \Rightarrow \lambda_2 = -3\lambda_1 \Rightarrow \lambda_2 = 0 \\ -\lambda_1 + \lambda_2 = 0 \Rightarrow \lambda_1 = \lambda_2 = 0 \end{cases}$$

Como, $\lambda_1 = \lambda_2 = 0 \Rightarrow$ os vetores em S_1 são LI.

Dependência e Independência Linear

OBSERVAÇÕES:

Dependência e Independência Linear

OBSERVAÇÕES:

Seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um **subconjunto finito** do espaço vetorial \mathcal{V} .

Dependência e Independência Linear

OBSERVAÇÕES:

Seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um **subconjunto finito** do espaço vetorial \mathcal{V} .

Note que $\sum_{i=1}^{n} \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0$

Dependência e Independência Linear

OBSERVAÇÕES:

Seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um **subconjunto finito** do espaço vetorial \mathcal{V} . Note que $\sum_{i=1}^{n} \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0$ é um sistema de equações lineares HOMOGÊNEO:

Dependência e Independência Linear

OBSERVAÇÕES:

Seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um **subconjunto finito** do espaço vetorial \mathcal{V} . Note que $\sum_{i=1}^{n} \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0$ é um sistema de equações lineares HOMOGÊNEO: então.

Dependência e Independência Linear

OBSERVAÇÕES:

Seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um **subconjunto finito** do espaço vetorial \mathcal{V} . Note que $\sum_{i=1}^{n} \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0$ é um SISTEMA DE EQUAÇÕES LINEARES HOMOGÊNEO: então.

• Dizemos que *S* é LINEARMENTE INDEPENDENTE (LI)

Dependência e Independência Linear

OBSERVAÇÕES:

Seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um **subconjunto finito** do espaço vetorial \mathcal{V} . Note que $\sum_{i=1}^{n} \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0$ é um SISTEMA DE EQUAÇÕES LINEARES HOMOGÊNEO: então.

• Dizemos que S é LINEARMENTE INDEPENDENTE (LI) se, e somente se, o SISTEMA HOMOGÊNEO

Dependência e Independência Linear

OBSERVAÇÕES:

Seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um **subconjunto finito** do espaço vetorial \mathcal{V} . Note que $\sum_{i=1}^{n} \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0$ é um SISTEMA DE EQUAÇÕES LINEARES HOMOGÊNEO: então.

• Dizemos que S é LINEARMENTE INDEPENDENTE (LI) se, e somente se, o SISTEMA HOMOGÊNEO é possível e determinado,

Dependência e Independência Linear

OBSERVAÇÕES:

Seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um **subconjunto finito** do espaço vetorial \mathcal{V} . Note que $\sum_{i=1}^{n} \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0$ é um SISTEMA DE EQUAÇÕES LINEARES HOMOGÊNEO: então.

• Dizemos que S é LINEARMENTE INDEPENDENTE (LI) se, e somente se, o SISTEMA HOMOGÊNEO é **possível e determinado**, isto é, possui apenas a solução TRIVIAL:

Dependência e Independência Linear

OBSERVAÇÕES:

Seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um **subconjunto finito** do espaço vetorial \mathcal{V} . Note que $\sum_{i=1}^{n} \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0$ é um SISTEMA DE EQUAÇÕES LINEARES HOMOGÊNEO: então.

• Dizemos que S é LINEARMENTE INDEPENDENTE (LI) se, e somente se, o SISTEMA HOMOGÊNEO é possível e determinado, isto é, possui apenas a solução TRIVIAL: $\lambda_1 = \lambda_2 = \ldots = \lambda_i = \ldots = \lambda_n = 0; \forall i = 1, \ldots, n.$

Dependência e Independência Linear

OBSERVAÇÕES:

Seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um **subconjunto finito** do espaço vetorial \mathcal{V} . Note que $\sum_{i=1}^{n} \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0$ é um SISTEMA DE EQUAÇÕES LINEARES HOMOGÊNEO: então.

- Dizemos que S é LINEARMENTE INDEPENDENTE (LI) se, e somente se, o SISTEMA HOMOGÊNEO é possível e determinado, isto é, possui apenas a solução TRIVIAL: $\lambda_1 = \lambda_2 = \ldots = \lambda_i = \ldots = \lambda_n = 0; \forall i = 1, \ldots, n.$
- Dizemos que $S \subset V$ é LINEARMENTE DEPENDENTE (LD)

Dependência e Independência Linear

OBSERVAÇÕES:

Seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um **subconjunto finito** do espaço vetorial \mathcal{V} . Note que $\sum_{i=1}^{n} \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0$ é um SISTEMA DE EQUAÇÕES LINEARES HOMOGÊNEO: então.

- Dizemos que S é LINEARMENTE INDEPENDENTE (LI) se, e somente se, o SISTEMA HOMOGÊNEO é possível e determinado, isto é, possui apenas a solução TRIVIAL: $\lambda_1 = \lambda_2 = \ldots = \lambda_i = \ldots = \lambda_n = 0; \forall i = 1, \ldots, n.$
- Dizemos que $S \subset \mathcal{V}$ é LINEARMENTE DEPENDENTE (LD) se, e somente se, o SISTEMA HOMOGÊNEO

Dependência e Independência Linear

OBSERVAÇÕES:

Seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um **subconjunto finito** do espaço vetorial \mathcal{V} . Note que $\sum_{i=1}^{n} \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0$ é um SISTEMA DE EQUAÇÕES LINEARES HOMOGÊNEO: então.

- Dizemos que S é LINEARMENTE INDEPENDENTE (LI) se, e somente se, o SISTEMA HOMOGÊNEO é possível e determinado, isto é, possui apenas a solução TRIVIAL: $\lambda_1 = \lambda_2 = \ldots = \lambda_i = \ldots = \lambda_n = 0; \forall i = 1, \ldots, n.$
- Dizemos que $S \subset V$ é LINEARMENTE DEPENDENTE (LD) se, e somente se, o SISTEMA HOMOGÊNEO é possível e indeterminado.

Dependência e Independência Linear

OBSERVAÇÕES:

Seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um **subconjunto finito** do espaço vetorial \mathcal{V} . Note que $\sum_{i=1}^n \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n = 0$ é um SISTEMA DE EQUAÇÕES LINEARES HOMOGÊNEO; então,

- Dizemos que S é LINEARMENTE INDEPENDENTE (LI) se, e somente se, o SISTEMA HOMOGÊNEO é **possível e determinado**, isto é, <u>possui apenas a solução TRIVIAL</u>: $\lambda_1 = \lambda_2 = \ldots = \lambda_i = \ldots = \lambda_n = 0; \forall i = 1, \ldots, n.$
- Dizemos que *S* ⊂ *V* é LINEARMENTE DEPENDENTE (LD) se, e somente se, o SISTEMA HOMOGÊNEO é **possível e indeterminado**, isto é, <u>possui infinitas soluções</u>, incluindo a <u>TRIVIAL</u>.

Dependência e Independência Linear

Observações:

Seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um **subconjunto finito** do espaço vetorial \mathcal{V} . Note que $\sum_{i=1}^n \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n = 0$ é um SISTEMA DE EQUAÇÕES LINEARES HOMOGÊNEO; então,

- Dizemos que S é LINEARMENTE INDEPENDENTE (LI) se, e somente se, o SISTEMA HOMOGÊNEO é **possível e determinado**, isto é, <u>possui apenas a solução TRIVIAL</u>: $\lambda_1 = \lambda_2 = \ldots = \lambda_i = \ldots = \lambda_n = 0; \forall i = 1, \ldots, n.$
- Dizemos que *S* ⊂ *V* é LINEARMENTE DEPENDENTE (LD) se, e somente se, o SISTEMA HOMOGÊNEO é **possível e indeterminado**, isto é, <u>possui infinitas soluções</u>, incluindo a <u>TRIVIAL</u>.

Base

Definição:

Base

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial, **finitamente gerado**, sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um subconjunto finito de \mathcal{V} .

Base

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial, finitamente gerado, sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um **subconjunto finito** de \mathcal{V} . Dizemos que $S \subset \mathcal{V}$ forma uma BASE

Base

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial, finitamente gerado, sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um **subconjunto finito** de \mathcal{V} . Dizemos que $S \subset \mathcal{V}$ forma uma BASE para o espaço vetorial \mathcal{V} , se, e somente se,

Base

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial, finitamente gerado, sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um **subconjunto finito** de \mathcal{V} . Dizemos que $S \subset \mathcal{V}$ forma uma BASE para o espaço vetorial \mathcal{V} , se, e somente se,

(i) S GERA \mathcal{V} : e

Base

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial, **finitamente gerado**, sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um **subconjunto finito** de \mathcal{V} . Dizemos que $S \subset \mathcal{V}$ forma uma BASE para o espaço vetorial \mathcal{V} , se, e somente se,

- (i) S GERA \mathcal{V} : e
- (ii) S é LINEARMENTE INDEPENDENTE.

Base

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial, **finitamente gerado**, sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um **subconjunto finito** de \mathcal{V} . Dizemos que $S \subset \mathcal{V}$ forma uma BASE para o espaço vetorial \mathcal{V} , se, e somente se,

- (i) S GERA \mathcal{V} : e
- (ii) S é LINEARMENTE INDEPENDENTE.

Base

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial, **finitamente gerado**, sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um **subconjunto finito** de \mathcal{V} . Dizemos que $S \subset \mathcal{V}$ forma uma BASE para o espaço vetorial \mathcal{V} , se, e somente se,

- (i) S GERA \mathcal{V} : e
- (ii) S é LINEARMENTE INDEPENDENTE.

Ou seja:

(i) $\forall u \in \mathcal{V}$

- (i) S GERA \mathcal{V} : e
- (ii) S é linearmente independente.

(i)
$$\forall u \in \mathcal{V} \Rightarrow u = \sum_{i=1}^{n} \lambda_i v_i$$
;

- (i) S GERA \mathcal{V} : e
- (ii) S é linearmente independente.

(i)
$$\forall u \in \mathcal{V} \Rightarrow u = \sum_{i=1}^{n} \lambda_i v_i; \forall \lambda_i \in \mathbb{K}; e$$

- (i) S GERA \mathcal{V} : e
- (ii) S é linearmente independente.

- (i) $\forall u \in \mathcal{V} \Rightarrow u = \sum_{i=1}^{n} \lambda_i v_i; \forall \lambda_i \in \mathbb{K}; e$
- (ii) $\sum_{i=1}^{n} \lambda_i v_i = 0$

- (i) S GERA \mathcal{V} : e
- (ii) S é linearmente independente.

- (i) $\forall u \in \mathcal{V} \Rightarrow u = \sum_{i=1}^{n} \lambda_i v_i; \forall \lambda_i \in \mathbb{K}; e$
- (ii) $\sum_{i=1}^{n} \lambda_i v_i = 0 \Leftrightarrow \lambda_i = 0; \forall i = 1, \dots, n.$

- (i) S GERA \mathcal{V} : e
- (ii) S é linearmente independente.

Ou seja:

- (i) $\forall u \in \mathcal{V} \Rightarrow u = \sum_{i=1}^{n} \lambda_i v_i; \forall \lambda_i \in \mathbb{K}; e$
- (ii) $\sum_{i=1}^{n} \lambda_i v_i = 0 \Leftrightarrow \lambda_i = 0; \forall i = 1, \dots, n.$

Notação:

- (i) S GERA \mathcal{V} : e
- (ii) S é linearmente independente.

Ou seja:

- (i) $\forall u \in \mathcal{V} \Rightarrow u = \sum_{i=1}^{n} \lambda_i v_i; \forall \lambda_i \in \mathbb{K}; e$
- (ii) $\sum_{i=1}^{n} \lambda_i v_i = 0 \Leftrightarrow \lambda_i = 0; \forall i = 1, \dots, n.$

Notação:

$$\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$$

- (i) S GERA \mathcal{V} : e
- (ii) S é linearmente independente.

Ou seja:

- (i) $\forall u \in \mathcal{V} \Rightarrow u = \sum_{i=1}^{n} \lambda_i v_i; \forall \lambda_i \in \mathbb{K}; e$
- (ii) $\sum_{i=1}^{n} \lambda_i v_i = 0 \Leftrightarrow \lambda_i = 0; \forall i = 1, \dots, n.$

Notação:

$$\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$$

Base

Base

EXEMPLO.1:

Seja $\mathcal{V} = \mathbb{R}^2$ e sejam $S_1 = \{(2,0),$

Base

Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e sejam $S_1=\{\underbrace{(2,0)},\underbrace{(0,-1)}\}\subset\mathcal{V}$, e

Base

Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e sejam $S_1=\{\underbrace{(2,0)}_{\mathcal{V}_1},\underbrace{(0,-1)}_{\mathcal{V}_2}\}\subset\mathcal{V}$, e $S_2=\{\underbrace{(2,0)}_{\mathcal{V}_1},\underbrace{(0,-1)}_{\mathcal{V}_2}\}$

Base

Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e sejam $S_1=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2}\}\subset\mathcal{V}$, e $S_2=\{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2$

Base

EXEMPLO.1:

Seja $\mathcal{V} = \mathbb{R}^2$ e sejam $S_1 = \{(2,0), (0,-1)\} \subset \mathcal{V}$, e $S_2 = \{(2,0), (0,-1), (0,1)\} \subset \mathcal{V}$.

Base

EXEMPLO.1:

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{\mathsf{v}_1}, \underbrace{(0,-1)}_{\mathsf{v}_2}\} \subset \mathcal{V},\ \mathsf{e}\ S_2 = \{\underbrace{(2,0)}_{\mathsf{v}_1}, \underbrace{(0,-1)}_{\mathsf{v}_2}, \underbrace{(0,1)}_{\mathsf{v}_3}\} \subset \mathcal{V}.$$

(i) S_1 GERA \mathcal{V} ; pois

Base

EXEMPLO.1:

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{\mathsf{v}_1},\underbrace{(0,-1)}_{\mathsf{v}_2}\} \subset \mathcal{V},\ \mathsf{e}\ S_2 = \{\underbrace{(2,0)}_{\mathsf{v}_1},\underbrace{(0,-1)}_{\mathsf{v}_2},\underbrace{(0,1)}_{\mathsf{v}_3}\} \subset \mathcal{V}.$$

(i) S_1 GERA \mathcal{V} : pois $\forall u \in \mathbb{R}^2$

Base

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{\mathsf{v}_1},\underbrace{(0,-1)}_{\mathsf{v}_2}\} \subset \mathcal{V}\text{, e } S_2 = \{\underbrace{(2,0)}_{\mathsf{v}_1},\underbrace{(0,-1)}_{\mathsf{v}_2},\underbrace{(0,1)}_{\mathsf{v}_3}\} \subset \mathcal{V}.$$

(i)
$$S_1$$
 GERA V ; pois $\forall u \in \mathbb{R}^2 \Rightarrow u = \sum_{i=1}^2 \lambda_i v_i$

Base

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{v_1}, \underbrace{(0,-1)}_{v_2}\} \subset \mathcal{V}\text{, e}\ S_2 = \{\underbrace{(2,0)}_{v_1}, \underbrace{(0,-1)}_{v_2}, \underbrace{(0,1)}_{v_3}\} \subset \mathcal{V}.$$

(i)
$$S_1$$
 GERA V ; pois $\forall u \in \mathbb{R}^2 \Rightarrow u = \sum_{i=1}^2 \lambda_i v_i = (2\lambda_1, -\lambda_2)$;

Base

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2}\} \subset \mathcal{V}\text{, e}\ S_2 = \{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2},\underbrace{(0,1)}_{v_3}\} \subset \mathcal{V}.$$

(i)
$$S_1$$
 GERA \mathcal{V} ; pois $\forall u \in \mathbb{R}^2 \Rightarrow u = \sum_{i=1}^2 \lambda_i v_i = (2\lambda_1, -\lambda_2); \forall \lambda_i \in \mathbb{R}$; e

Base

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2}\} \subset \mathcal{V}\text{, e}\ S_2 = \{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2},\underbrace{(0,1)}_{v_3}\} \subset \mathcal{V}.$$

- (i) S_1 GERA V; pois $\forall u \in \mathbb{R}^2 \Rightarrow u = \sum_{i=1}^2 \lambda_i v_i = (2\lambda_1, -\lambda_2); \forall \lambda_i \in \mathbb{R}$; e
- (ii) S_1 é LINEARMENTE INDEPENDENTE; pois

Base

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{\mathsf{v}_1}, \underbrace{(0,-1)}_{\mathsf{v}_2}\} \subset \mathcal{V}\text{, e } S_2 = \{\underbrace{(2,0)}_{\mathsf{v}_1}, \underbrace{(0,-1)}_{\mathsf{v}_2}, \underbrace{(0,1)}_{\mathsf{v}_3}\} \subset \mathcal{V}.$$

- (i) S_1 GERA V; pois $\forall u \in \mathbb{R}^2 \Rightarrow u = \sum_{i=1}^2 \lambda_i v_i = (2\lambda_1, -\lambda_2); \forall \lambda_i \in \mathbb{R}$; e
- (ii) S_1 é LINEARMENTE INDEPENDENTE; pois a solução do sistema homogêneo : $\sum_{i=1}^{2} \lambda_{i} v_{i} = (0,0)$

Base

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{\mathsf{V}_1},\underbrace{(0,-1)}_{\mathsf{V}_2}\} \subset \mathcal{V}\text{, e } S_2 = \{\underbrace{(2,0)}_{\mathsf{V}_1},\underbrace{(0,-1)}_{\mathsf{V}_2},\underbrace{(0,1)}_{\mathsf{V}_3}\} \subset \mathcal{V}.$$

- (i) S_1 GERA V; pois $\forall u \in \mathbb{R}^2 \Rightarrow u = \sum_{i=1}^2 \lambda_i v_i = (2\lambda_1, -\lambda_2); \forall \lambda_i \in \mathbb{R}$; e
- (ii) S_1 é LINEARMENTE INDEPENDENTE; pois a solução do sistema homogêneo : $\sum_{i=1}^{2} \lambda_i v_i = (0,0) \Leftrightarrow \lambda_i = 0; \forall i = 1,2$; é apenas a TRIVIAL.

Base

EXEMPLO.1:

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{\mathsf{V}_1},\underbrace{(0,-1)}_{\mathsf{V}_2}\} \subset \mathcal{V}\text{, e } S_2 = \{\underbrace{(2,0)}_{\mathsf{V}_1},\underbrace{(0,-1)}_{\mathsf{V}_2},\underbrace{(0,1)}_{\mathsf{V}_3}\} \subset \mathcal{V}.$$

- (i) S_1 GERA V; pois $\forall u \in \mathbb{R}^2 \Rightarrow u = \sum_{i=1}^2 \lambda_i v_i = (2\lambda_1, -\lambda_2); \forall \lambda_i \in \mathbb{R}$; e
- (ii) S_1 é LINEARMENTE INDEPENDENTE; pois a solução do sistema homogêneo : $\sum_{i=1}^{2} \lambda_i v_i = (0,0) \Leftrightarrow \lambda_i = 0; \forall i = 1,2$; é apenas a TRIVIAL.

Portanto, S_1 forma uma BASE para \mathcal{V} :

Base

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{\mathsf{V}_1},\underbrace{(0,-1)}_{\mathsf{V}_2}\} \subset \mathcal{V},\ \mathsf{e}\ S_2 = \{\underbrace{(2,0)}_{\mathsf{V}_1},\underbrace{(0,-1)}_{\mathsf{V}_2},\underbrace{(0,1)}_{\mathsf{V}_3}\} \subset \mathcal{V}.$$

- (i) S_1 GERA V; pois $\forall u \in \mathbb{R}^2 \Rightarrow u = \sum_{i=1}^2 \lambda_i v_i = (2\lambda_1, -\lambda_2); \forall \lambda_i \in \mathbb{R}$; e
- (ii) S_1 é LINEARMENTE INDEPENDENTE; pois a solução do sistema homogêneo : $\sum_{i=1}^{2} \lambda_i v_i = (0,0) \Leftrightarrow \lambda_i = 0; \forall i = 1,2$; é apenas a TRIVIAL.

Portanto,
$$S_1$$
 forma uma BASE para \mathcal{V} : $\beta_{\mathbb{R}^2} = \{\underbrace{(2,0)}_{\mathcal{I}},$

Base

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{\mathsf{V}_1},\underbrace{(0,-1)}_{\mathsf{V}_2}\} \subset \mathcal{V}\text{, e } S_2 = \{\underbrace{(2,0)}_{\mathsf{V}_1},\underbrace{(0,-1)}_{\mathsf{V}_2},\underbrace{(0,1)}_{\mathsf{V}_3}\} \subset \mathcal{V}.$$

- (i) S_1 GERA V; pois $\forall u \in \mathbb{R}^2 \Rightarrow u = \sum_{i=1}^2 \lambda_i v_i = (2\lambda_1, -\lambda_2); \forall \lambda_i \in \mathbb{R}$; e
- (ii) S_1 é LINEARMENTE INDEPENDENTE; pois a solução do sistema homogêneo : $\sum_{i=1}^{2} \lambda_i v_i = (0,0) \Leftrightarrow \lambda_i = 0; \forall i = 1,2$; é apenas a TRIVIAL.

Portanto,
$$S_1$$
 forma uma BASE para \mathcal{V} : $\beta_{\mathbb{R}^2} = \{\underbrace{(2,0)}_{V_1}, \underbrace{(0,-1)}_{V_2}\}.$

Base

EXEMPLO.1:

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2}\} \subset \mathcal{V}\text{, e}\ S_2 = \{\underbrace{(2,0)}_{v_1},\underbrace{(0,-1)}_{v_2},\underbrace{(0,1)}_{v_3}\} \subset \mathcal{V}.$$

- (i) S_1 GERA V; pois $\forall u \in \mathbb{R}^2 \Rightarrow u = \sum_{i=1}^2 \lambda_i v_i = (2\lambda_1, -\lambda_2); \forall \lambda_i \in \mathbb{R}$; e
- (ii) S_1 é LINEARMENTE INDEPENDENTE; pois a solução do sistema homogêneo : $\sum_{i=1}^{2} \lambda_i v_i = (0,0) \Leftrightarrow \lambda_i = 0; \forall i = 1,2$; é apenas a TRIVIAL.

Portanto,
$$S_1$$
 forma uma BASE para \mathcal{V} : $\beta_{\mathbb{R}^2} = \{\underbrace{(2,0)}_{V_1}, \underbrace{(0,-1)}_{V_2}\}.$

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{\mathsf{v}_1},\underbrace{(0,-1)}_{\mathsf{v}_2}\} \subset \mathcal{V},\ \mathsf{e}\ S_2 = \{\underbrace{(2,0)}_{\mathsf{v}_1},\underbrace{(0,-1)}_{\mathsf{v}_2},\underbrace{(0,1)}_{\mathsf{v}_3}\} \subset \mathcal{V}.$$

- (i) S_1 GERA V; pois $\forall u \in \mathbb{R}^2 \Rightarrow u = \sum_{i=1}^2 \lambda_i v_i = (2\lambda_1, -\lambda_2); \forall \lambda_i \in \mathbb{R}$; e
- (ii) S_1 é LINEARMENTE INDEPENDENTE; pois a solução do sistema homogêneo : $\sum_{i=1}^{2} \lambda_i v_i = (0,0) \Leftrightarrow \lambda_i = 0; \forall i = 1,2$; é apenas a TRIVIAL.

Portanto,
$$S_1$$
 forma uma BASE para \mathcal{V} : $\beta_{\mathbb{R}^2} = \{\underbrace{(2,0)}_{V_1}, \underbrace{(0,-1)}_{V_2}\}.$

Enquanto que S_2 NÃO forma uma BASE para \mathcal{V} :

(i) S_2 GERA \mathcal{V} ; pois

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{\mathsf{V}_1},\underbrace{(0,-1)}_{\mathsf{V}_2}\} \subset \mathcal{V}\text{, e } S_2 = \{\underbrace{(2,0)}_{\mathsf{V}_1},\underbrace{(0,-1)}_{\mathsf{V}_2},\underbrace{(0,1)}_{\mathsf{V}_3}\} \subset \mathcal{V}.$$

- (i) S_1 GERA V; pois $\forall u \in \mathbb{R}^2 \Rightarrow u = \sum_{i=1}^2 \lambda_i v_i = (2\lambda_1, -\lambda_2); \forall \lambda_i \in \mathbb{R}$; e
- (ii) S_1 é LINEARMENTE INDEPENDENTE; pois a solução do sistema homogêneo : $\sum_{i=1}^{2} \lambda_i v_i = (0,0) \Leftrightarrow \lambda_i = 0; \forall i = 1,2$; é apenas a TRIVIAL.

Portanto,
$$S_1$$
 forma uma BASE para \mathcal{V} : $\beta_{\mathbb{R}^2} = \{\underbrace{(2,0)}_{V_1}, \underbrace{(0,-1)}_{V_2}\}.$

Enquanto que S_2 NÃO forma uma BASE para \mathcal{V} :

(i) S_2 GERA \mathcal{V} ; pois $\forall u \in \mathbb{R}^2$

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{\mathsf{v}_1},\underbrace{(0,-1)}_{\mathsf{v}_2}\} \subset \mathcal{V}\text{, e } S_2 = \{\underbrace{(2,0)}_{\mathsf{v}_1},\underbrace{(0,-1)}_{\mathsf{v}_2},\underbrace{(0,1)}_{\mathsf{v}_3}\} \subset \mathcal{V}.$$

- (i) S_1 GERA V; pois $\forall u \in \mathbb{R}^2 \Rightarrow u = \sum_{i=1}^2 \lambda_i v_i = (2\lambda_1, -\lambda_2); \forall \lambda_i \in \mathbb{R}$; e
- (ii) S_1 é LINEARMENTE INDEPENDENTE; pois a solução do sistema homogêneo : $\sum_{i=1}^{2} \lambda_i v_i = (0,0) \Leftrightarrow \lambda_i = 0; \forall i = 1,2$; é apenas a TRIVIAL.

Portanto,
$$S_1$$
 forma uma BASE para \mathcal{V} : $\beta_{\mathbb{R}^2} = \{\underbrace{(2,0)}_{\mathsf{v}_1}, \underbrace{(0,-1)}_{\mathsf{v}_2}\}.$

(i)
$$S_2$$
 GERA V ; pois $\forall u \in \mathbb{R}^2 \Rightarrow u = \sum_{i=1}^3 \lambda_i v_i$

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{\mathsf{v}_1},\underbrace{(0,-1)}_{\mathsf{v}_2}\} \subset \mathcal{V},\ \mathsf{e}\ S_2 = \{\underbrace{(2,0)}_{\mathsf{v}_1},\underbrace{(0,-1)}_{\mathsf{v}_2},\underbrace{(0,1)}_{\mathsf{v}_3}\} \subset \mathcal{V}.$$

- (i) S_1 GERA V; pois $\forall u \in \mathbb{R}^2 \Rightarrow u = \sum_{i=1}^2 \lambda_i v_i = (2\lambda_1, -\lambda_2); \forall \lambda_i \in \mathbb{R}$; e
- (ii) S_1 é LINEARMENTE INDEPENDENTE; pois a solução do sistema homogêneo : $\sum_{i=1}^{2} \lambda_i v_i = (0,0) \Leftrightarrow \lambda_i = 0; \forall i = 1,2$; é apenas a TRIVIAL.

Portanto,
$$S_1$$
 forma uma BASE para \mathcal{V} : $\beta_{\mathbb{R}^2} = \{\underbrace{(2,0)}_{V_1}, \underbrace{(0,-1)}_{V_2}\}.$

(i)
$$S_2$$
 GERA V ; pois $\forall u \in \mathbb{R}^2 \Rightarrow u = \sum_{i=1}^3 \lambda_i v_i = (2\lambda_1, -\lambda_2 + \lambda_3)$;

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{\mathsf{v}_1},\underbrace{(0,-1)}_{\mathsf{v}_2}\} \subset \mathcal{V}\text{, e } S_2 = \{\underbrace{(2,0)}_{\mathsf{v}_1},\underbrace{(0,-1)}_{\mathsf{v}_2},\underbrace{(0,1)}_{\mathsf{v}_3}\} \subset \mathcal{V}.$$

- (i) S_1 GERA V; pois $\forall u \in \mathbb{R}^2 \Rightarrow u = \sum_{i=1}^2 \lambda_i v_i = (2\lambda_1, -\lambda_2); \forall \lambda_i \in \mathbb{R}$; e
- (ii) S_1 é LINEARMENTE INDEPENDENTE; pois a solução do sistema homogêneo : $\sum_{i=1}^{2} \lambda_i v_i = (0,0) \Leftrightarrow \lambda_i = 0; \forall i = 1,2$; é apenas a TRIVIAL.

Portanto,
$$S_1$$
 forma uma BASE para \mathcal{V} : $\beta_{\mathbb{R}^2} = \{\underbrace{(2,0)}_{V_1}, \underbrace{(0,-1)}_{V_2}\}.$

(i)
$$S_2$$
 GERA V ; pois $\forall u \in \mathbb{R}^2 \Rightarrow u = \sum_{i=1}^3 \lambda_i v_i = (2\lambda_1, -\lambda_2 + \lambda_3); \forall \lambda_i \in \mathbb{R}$; mas,

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{\mathsf{V}_1},\underbrace{(0,-1)}_{\mathsf{V}_2}\} \subset \mathcal{V}\text{, e } S_2 = \{\underbrace{(2,0)}_{\mathsf{V}_1},\underbrace{(0,-1)}_{\mathsf{V}_2},\underbrace{(0,1)}_{\mathsf{V}_3}\} \subset \mathcal{V}.$$

- (i) S_1 GERA V; pois $\forall u \in \mathbb{R}^2 \Rightarrow u = \sum_{i=1}^2 \lambda_i v_i = (2\lambda_1, -\lambda_2); \forall \lambda_i \in \mathbb{R}$; e
- (ii) S_1 é LINEARMENTE INDEPENDENTE; pois a solução do sistema homogêneo : $\sum_{i=1}^{2} \lambda_i v_i = (0,0) \Leftrightarrow \lambda_i = 0; \forall i = 1,2$; é apenas a TRIVIAL.

Portanto,
$$S_1$$
 forma uma BASE para \mathcal{V} : $\beta_{\mathbb{R}^2} = \{\underbrace{(2,0)}_{V_1}, \underbrace{(0,-1)}_{V_2}\}.$

- (i) S_2 GERA V; pois $\forall u \in \mathbb{R}^2 \Rightarrow u = \sum_{i=1}^3 \lambda_i v_i = (2\lambda_1, -\lambda_2 + \lambda_3); \forall \lambda_i \in \mathbb{R}$; mas,
- (ii) S_1 NÃO É LINEARMENTE INDEPENDENTE: pois

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{\mathsf{v}_1},\underbrace{(0,-1)}_{\mathsf{v}_2}\} \subset \mathcal{V},\ \mathsf{e}\ S_2 = \{\underbrace{(2,0)}_{\mathsf{v}_1},\underbrace{(0,-1)}_{\mathsf{v}_2},\underbrace{(0,1)}_{\mathsf{v}_3}\} \subset \mathcal{V}.$$

- (i) S_1 GERA V; pois $\forall u \in \mathbb{R}^2 \Rightarrow u = \sum_{i=1}^2 \lambda_i v_i = (2\lambda_1, -\lambda_2); \forall \lambda_i \in \mathbb{R}$; e
- (ii) S_1 é LINEARMENTE INDEPENDENTE; pois a solução do sistema homogêneo : $\sum_{i=1}^{2} \lambda_i v_i = (0,0) \Leftrightarrow \lambda_i = 0; \forall i = 1,2$; é apenas a TRIVIAL.

Portanto,
$$S_1$$
 forma uma BASE para \mathcal{V} : $\beta_{\mathbb{R}^2} = \{\underbrace{(2,0)}_{V_1}, \underbrace{(0,-1)}_{V_2}\}.$

- (i) S_2 GERA V; pois $\forall u \in \mathbb{R}^2 \Rightarrow u = \sum_{i=1}^3 \lambda_i v_i = (2\lambda_1, -\lambda_2 + \lambda_3); \forall \lambda_i \in \mathbb{R}$; mas,
- (ii) S_1 NÃO É LINEARMENTE INDEPENDENTE; pois a solução do sistema homogêneo : $\sum_{i=1}^{3} \lambda_i v_i = (0,0)$; NÃO é apenas a TRIVIAL;

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{\mathsf{v}_1},\underbrace{(0,-1)}_{\mathsf{v}_2}\} \subset \mathcal{V},\ \mathsf{e}\ S_2 = \{\underbrace{(2,0)}_{\mathsf{v}_1},\underbrace{(0,-1)}_{\mathsf{v}_2},\underbrace{(0,1)}_{\mathsf{v}_3}\} \subset \mathcal{V}.$$

- (i) S_1 GERA V; pois $\forall u \in \mathbb{R}^2 \Rightarrow u = \sum_{i=1}^2 \lambda_i v_i = (2\lambda_1, -\lambda_2); \forall \lambda_i \in \mathbb{R}$; e
- (ii) S_1 é LINEARMENTE INDEPENDENTE; pois a solução do sistema homogêneo : $\sum_{i=1}^{2} \lambda_i v_i = (0,0) \Leftrightarrow \lambda_i = 0; \forall i=1,2$; é apenas a TRIVIAL.

Portanto,
$$S_1$$
 forma uma BASE para \mathcal{V} : $\beta_{\mathbb{R}^2} = \{\underbrace{(2,0)}_{V_1}, \underbrace{(0,-1)}_{V_2}\}.$

Enquanto que S_2 NÃO forma uma BASE para V:

- (i) S_2 GERA V; pois $\forall u \in \mathbb{R}^2 \Rightarrow u = \sum_{i=1}^3 \lambda_i v_i = (2\lambda_1, -\lambda_2 + \lambda_3); \forall \lambda_i \in \mathbb{R}$; mas,
- (ii) S_1 NÃO É LINEARMENTE INDEPENDENTE; pois a solução do sistema homogêneo : $\sum_{i=1}^{3} \lambda_i v_i = (0,0)$; NÃO É apenas a TRIVIAL; o sistema homogêneo obtido pela combinação linear nula possui infinitas soluções.

$$\mathsf{Seja}\ \mathcal{V} = \mathbb{R}^2\ \mathsf{e}\ \mathsf{sejam}\ S_1 = \{\underbrace{(2,0)}_{\mathsf{v}_1},\underbrace{(0,-1)}_{\mathsf{v}_2}\} \subset \mathcal{V},\ \mathsf{e}\ S_2 = \{\underbrace{(2,0)}_{\mathsf{v}_1},\underbrace{(0,-1)}_{\mathsf{v}_2},\underbrace{(0,1)}_{\mathsf{v}_3}\} \subset \mathcal{V}.$$

- (i) S_1 GERA V; pois $\forall u \in \mathbb{R}^2 \Rightarrow u = \sum_{i=1}^2 \lambda_i v_i = (2\lambda_1, -\lambda_2); \forall \lambda_i \in \mathbb{R}$; e
- (ii) S_1 é LINEARMENTE INDEPENDENTE; pois a solução do sistema homogêneo : $\sum_{i=1}^{2} \lambda_i v_i = (0,0) \Leftrightarrow \lambda_i = 0; \forall i=1,2$; é apenas a TRIVIAL.

Portanto,
$$S_1$$
 forma uma BASE para \mathcal{V} : $\beta_{\mathbb{R}^2} = \{\underbrace{(2,0)}_{V_1}, \underbrace{(0,-1)}_{V_2}\}.$

Enquanto que S_2 NÃO forma uma BASE para V:

- (i) S_2 GERA V; pois $\forall u \in \mathbb{R}^2 \Rightarrow u = \sum_{i=1}^3 \lambda_i v_i = (2\lambda_1, -\lambda_2 + \lambda_3); \forall \lambda_i \in \mathbb{R}$; mas,
- (ii) S_1 NÃO É LINEARMENTE INDEPENDENTE; pois a solução do sistema homogêneo : $\sum_{i=1}^{3} \lambda_i v_i = (0,0)$; NÃO É apenas a TRIVIAL; o sistema homogêneo obtido pela combinação linear nula possui infinitas soluções.

Base

Exercícios:

Base

Exercícios:

Sejam \mathcal{V} um espaço vetorial finitamente gerado sobre um corpo \mathbb{K} ; e $\beta_{\mathcal{V}}$ uma base de \mathcal{V} .

Base

Exercícios:

1.
$$\mathcal{V} = \mathbb{R}^3$$

- 1. $\mathcal{V} = \mathbb{R}^3$
- 2. $\mathcal{V} = \mathbb{C}^3$

- 1. $\mathcal{V} = \mathbb{R}^3$
- 2. $\mathcal{V} = \mathbb{C}^3$
- 3. $\mathcal{V} = \mathcal{M}_3(\mathbb{R})$

- 1. $\mathcal{V} = \mathbb{R}^3$
- 2. $\mathcal{V} = \mathbb{C}^3$
- 3. $\mathcal{V} = \mathcal{M}_3(\mathbb{R})$
- 4. $\mathcal{V} = \mathcal{M}_3(\mathbb{C})$

- 1. $\mathcal{V} = \mathbb{R}^3$
- 2. $\mathcal{V} = \mathbb{C}^3$
- 3. $\mathcal{V} = \mathcal{M}_3(\mathbb{R})$
- 4. $\mathcal{V} = \mathcal{M}_3(\mathbb{C})$
- 5. $\mathcal{V} = \mathcal{P}_3(\mathbb{R})$

- 1. $\mathcal{V} = \mathbb{R}^3$
- 2. $\mathcal{V} = \mathbb{C}^3$
- 3. $\mathcal{V} = \mathcal{M}_3(\mathbb{R})$
- 4. $\mathcal{V} = \mathcal{M}_3(\mathbb{C})$
- 5. $\mathcal{V} = \mathcal{P}_3(\mathbb{R})$
- 6. $\mathcal{V} = \mathcal{P}_3(\mathbb{C})$

- 1. $\mathcal{V} = \mathbb{R}^3$
- 2. $\mathcal{V} = \mathbb{C}^3$
- 3. $\mathcal{V} = \mathcal{M}_3(\mathbb{R})$
- 4. $\mathcal{V} = \mathcal{M}_3(\mathbb{C})$
- 5. $\mathcal{V} = \mathcal{P}_3(\mathbb{R})$
- 6. $\mathcal{V} = \mathcal{P}_3(\mathbb{C})$