Type equation here.

Министерство образования Российской Федерации

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. БАУМАНА

Факультет: Информатика и системы управления Кафедра: Информационная безопасность (ИУ8)

Методы оптимизации

Лабораторная работа №6 на тему: «Матричные игры с нулевой суммой. Смешанные стратегии»

Вариант 5

Преподаватель:

Коннова Н.С.

Студент:

Девяткин Е.Д.

Группа:

ИУ8-34

Репозиторий работы: https://github.com/ledibonibell/MO-lab06

Москва 2023

Цель работы

Изучить постановку антагонистической игры двух лиц в нормальной форме; получить навыки нахождения решения игры в смешанных стратегиях (стратегическую седловую точку) за обоих игроков.

Постановка задачи

В общем случае игра двух игроков А и В с нулевой суммой записывается в виде матрицы стратегий:

Стратегии	b_1	b_2	 b_n
a_1	c ₁₁	c ₁₂	 c_{1n}
a_2	c_{21}	c_{22}	 c_{2n}
a_n	c_{m1}	c_{m2}	 c_{mn}

Минимальной гарантированный выигрыш игрока A называют нижней ценой игры. Максимально возможный проигрыш игрока B называют его верхней ценой игры

Ход работыРассмотрим нашу матрицу стратегий (таблица 1):

Стратегии	b_1	b_2	b_3	b_4
a_1	8	12	4	17
a_2	1	6	19	19
a_3	17	11	11	6
a_4	8	10	15	17
a_5	1	16	2	16

Таблица 1.

Игрок А

Найдем смешанные стратегии для игрока А. Для этого составим систему уравнений:

$$\begin{cases} 8x_1 + x_2 + 17x_3 + 8x_4 + x_5 \ge g \\ 12x_1 + 6x_2 + 11x_3 + 10x_4 + 16x_5 \ge g \\ 4x_1 + 19x_2 + 11x_3 + 15x_4 + 2x_5 \ge g \\ 17x_1 + 19x_2 + 6x_3 + 17x_4 + 16x_5 \ge g \end{cases}$$

$$x_1 + x_2 + x_3 + x_4 + x_5 = 1$$

где g - минимальный выигрыш игрока A

Разделим систему на функцию g:

$$\begin{cases} 8u_1 + u_2 + 17u_3 + 8u_4 + u_5 \ge 1 \\ 12u_1 + 6u_2 + 11u_3 + 10u_4 + 16u_5 \ge 1 \\ 4u_1 + 19u_2 + 11u_3 + 15u_4 + 2u_5 \ge 1 \\ 17u_1 + 19u_2 + 6u_3 + 17u_4 + 16u_5 \ge 1 \end{cases}$$

$$u_1 + u_2 + u_3 + u_4 + u_5 = \frac{1}{g}$$

Сформулируем задачу для решения симплекс-методом:

$$W = u_1 + u_2 + u_3 + u_4 + u_5 \rightarrow \min$$

$$\begin{cases} 8u_1 + u_2 + 17u_3 + 8u_4 + u_5 \ge 1\\ 12u_1 + 6u_2 + 11u_3 + 10u_4 + 16u_5 \ge 1\\ 4u_1 + 19u_2 + 11u_3 + 15u_4 + 2u_5 \ge 1\\ 17u_1 + 19u_2 + 6u_3 + 17u_4 + 16u_5 \ge 1 \end{cases}$$

$$u_i \ge 0, i = 1,2,3,4,5$$

Рассмотрим решение симплекс методом (таблицы 1-4):

-8.00	-1.00	-17.00	-8.00	-1.00	1.00	0.00	0.00	0.00	-1.00
-12.00	-6.00	-11.00	-10.00	-16.00	0.00	1.00	0.00	0.00	-1.00
-4.00	-19.00	-11.00	-15.00	-2.00	0.00	0.00	1.00	0.00	-1.00
-17.00	-19.00	-6.00	-17.00	-16.00	0.00	0.00	0.00	1.00	-1.00
-1.00	-1.00	-1.00	-1.00	-1.00	0.00	0.00	0.00	0.00	0.00

Таблица 1.

Шаг 1:

0.47	0.06	1.00	0.47	0.06	-0.06	-0.00	-0.00	-0.00	0.06
-6.82	-5.35	0.00	-4.82	-15.35	-0.65	1.00	0.00	0.00	-0.35
1.18	-18.35	0.00	-9.82	-1.35	-0.65	0.00	1.00	0.00	-0.35
-14.18	-18.65	0.00	-14.18	-15.65	-0.35	0.00	0.00	1.00	-0.65
-0.53	-0.94	0.00	-0.53	-0.94	-0.06	0.00	0.00	0.00	0.06

Таблица 2.

Шаг 2:

0.43	0.00	1.00	0.43	0.01	-0.06	0.00	0.00	0.00	0.06
-2.75	0.00	0.00	-0.75	-10.86	-0.55	1.00	0.00	-0.29	-0.17
15.13	0.00	0.00	4.13	14.05	-0.30	0.00	1.00	-0.98	0.28
0.76	1.00	-0.00	0.76	0.84	0.02	-0.00	-0.00	-0.05	0.03
0.19	0.00	0.00	0.19	-0.15	-0.04	0.00	0.00	-0.05	0.09

Таблица 3.

Шаг 3:

0.42	0.00	1.00	0.43	0.00	-0.06	0.00	0.00	0.00	0.06
0.25	-0.00	-0.00	0.07	1.00	0.05	-0.09	-0.00	0.03	0.02
11.57	0.00	0.00	3.15	0.00	-1.01	1.29	1.00	-1.36	0.07
0.55	1.00	0.00	0.70	0.00	-0.02	0.08	0.00	-0.08	0.02
0.22	0.00	0.00	0.20	0.00	-0.03	-0.01	0.00	-0.05	0.09

Таблица 4.

Отсюда получим:

$$\begin{cases} u_1 = 0 \\ u_2 = 0,0218 \\ u_3 = 0,0566 \\ u_4 = 0 \\ u_5 = 0,0154 \end{cases} \begin{cases} W = 0,0938 \\ g = 10,6594 \\ x_1 = 0 \\ x_2 = 0,2322 \\ x_3 = 0,6037 \\ x_4 = 0 \\ x_5 = 0,1641 \end{cases}$$

Таким образом, оптимальная смешанная стратегия игрока А имеет вид:

Игрок В

Для нахождения смешанной стратегии игрока В составим систему уравнений:

$$\begin{cases} 8y_1 + 12y_2 + 4y_3 + 17y_4 \le h \\ y_1 + 6y_2 + 19y_3 + 19y_4 \le h \\ 17y_1 + 11y_2 + 11y_3 + 6y_4 \le h \\ 8y_1 + 10y_2 + 15y_3 + 17y_4 \le h \\ y_1 + 16y_2 + 2y_3 + 16y_4 \le h \end{cases}$$

где h - максимальный проигрыш игрока В

Разделим систему на функцию h:

$$\begin{cases} 8v_1 + 12v_2 + 4v_3 + 17v_4 \le 1 \\ v_1 + 6v_2 + 19v_3 + 19v_4 \le 1 \\ 17v_1 + 11v_2 + 11v_3 + 6v_4 \le 1 \\ 8v_1 + 10v_2 + 15v_3 + 17v_4 \le 1 \\ v_1 + 16v_2 + 2v_3 + 16v_4 \le 1 \end{cases}$$

$$v_1 + v_2 + v_3 + v_4 = \frac{1}{h}$$

Сформулируем задачу для решения симплекс-методом:

$$Z = v_1 + v_2 + v_3 + v_4 \to \max$$

$$\begin{cases} 8v_1 + 12v_2 + 4v_3 + 17v_4 \le 1 \\ v_1 + 6v_2 + 19v_3 + 19v_4 \le 1 \\ 17v_1 + 11v_2 + 11v_3 + 6v_4 \le 1 \\ 8v_1 + 10v_2 + 15v_3 + 17v_4 \le 1 \\ v_1 + 16v_2 + 2v_3 + 16v_4 \le 1 \end{cases}$$

$$v_i \ge 0, i = 1, 2, 3, 4$$

Рассмотрим решение симплекс методом (таблицы 5-8):

8.00	12.00	4.00	17.00	1.00	0.00	0.00	0.00	0.00	1.00
1.00	6.00	19.00	19.00	0.00	1.00	0.00	0.00	0.00	1.00
17.00	11.00	11.00	6.00	0.00	0.00	1.00	0.00	0.00	1.00
8.00	10.00	15.00	17.00	0.00	0.00	0.00	1.00	0.00	1.00
1.00	16.00	2.00	16.00	0.00	0.00	0.00	0.00	1.00	1.00
1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00

Таблица 5.

Шаг 1:

0.00	6.82	-1.18	14.18	1.00	0.00	-0.47	0.00	0.00	0.53
0.00	5.35	18.35	18.65	0.00	1.00	-0.06	0.00	0.00	0.94
1.00	0.65	0.65	0.35	0.00	0.00	0.06	0.00	0.00	0.06
0.00	4.82	9.82	14.18	0.00	0.00	-0.47	1.00	0.00	0.53
0.00	15.35	1.35	15.65	0.00	0.00	-0.06	0.00	1.00	0.94
0.00	0.35	0.35	0.65	0.00	0.00	-0.06	0.00	0.00	-0.06

Таблица 6.

Шаг 2:

0.00	2.75	-15.13	0.00	1.00	-0.76	-0.43	0.00	0.00	-0.19
0.00	0.29	0.98	1.00	0.00	0.05	-0.00	0.00	0.00	0.05
1.00	0.55	0.30	0.00	0.00	-0.02	0.06	0.00	0.00	0.04
0.00	0.75	-4.13	0.00	0.00	-0.76	-0.43	1.00	0.00	-0.19
0.00	10.86	-14.05	0.00	0.00	-0.84	-0.01	0.00	1.00	0.15
0.00	0.17	-0.28	0.00	0.00	-0.03	-0.06	0.00	0.00	-0.09

Таблица 7.

Шаг 3:

0.00	0.00	-11.57	0.00	1.00	-0.55	-0.42	0.00	-0.25	-0.22
0.00	0.00	1.36	1.00	0.00	0.08	-0.00	0.00	-0.03	0.05
1.00	0.00	1.01	0.00	0.00	0.02	0.06	0.00	-0.05	0.03
0.00	0.00	-3.15	0.00	0.00	-0.70	-0.43	1.00	-0.07	-0.20
0.00	1.00	-1.29	0.00	0.00	-0.08	-0.00	0.00	0.09	0.01
0.00	0.00	-0.07	0.00	0.00	-0.02	-0.06	0.00	-0.02	-0.09

Таблица 8.

Отсюда получим:

$$\begin{cases} v_1 = 0.0334 \\ v_2 = 0.0139 \\ v_3 = 0 \\ v_4 = 0.0465 \end{cases} \begin{cases} Z = 0.0938 \\ h = 10.6594 \\ y_1 = 0.356 \\ y_2 = 0.1486 \\ y_3 = 0 \\ y_4 = 0.4954 \end{cases}$$

Таким образом, оптимальная смешанная стратегия игрока В имеет вид:

Суммируя полученные вероятности получим единицы

Теперь рассмотрим цену игры и математическое ожидание:

Цена игры будет равна:

$$E(x^*, y^*) = \frac{1}{W} = \frac{1}{Z} = 10,6594$$

Математическое ожидание:

$$E(x,y) = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_i y_j = 10,6594$$

И так получим конечный ответ:

$$x = (0; 0.2322; 0.6037; 0; 0.1641)$$

 $y = (0.356; 0.1486; 0; 0.4954)$
 $E(x^*, y^*) = E(x, y) = 10.6594$

Вывод

В ходе выполнения работы были проделаны расчеты с смешанных игр (матричных игр), в результате которых были получены оптимальные решения или вероятности стратегий для каждого игрока.

Суммируя эти вероятности мы получим единицу, что соответствует определению смешанной стратегии

Приложение А

```
Файл 'Main.py':
import numpy as np
def dummy variable(self, params, function):
  A extended = np.hstack((self, np.eye(self.shape[0])))
  c extended = np.concatenate((function, np.zeros(self.shape[0])))
  A extended = np.vstack((A extended, c extended))
  b extended = np.append(params, 0)
  A extended = np.column stack((A extended, b extended))
  return A extended
def norm c(matrix):
  max element row index = np.argmax(matrix[-1,:-1])
  max element column = np.max(matrix[:, max element row index])
  max element column index = np.argmax(matrix[:, max element row index])
  matrix[max element column index, :] /= max element column
  for i in range(matrix.shape[0]):
    if i!= max element column index:
      ratio = matrix[i, max element row index] /
matrix[max element column index, max element row index]
      matrix[i, :] -= ratio * matrix[max element column index, :]
  return matrix
def norm b(matrix):
  max element column index = np.argmin(matrix[:-1, -1])
  max element row index = np.argmin(matrix[max element column index, :-1])
  max element row = matrix[max element column index,
max element row index]
  matrix[max element column index, :] /= max element row
  for i in range(matrix.shape[0]):
    if i!= max element column index:
      ratio = matrix[i, max element row index] /
matrix[max element column index, max element row index]
      matrix[i, :] -= ratio * matrix[max element column index, :]
  return matrix
```

def simplex_max(matrix):

```
i = 1
  while np.any(matrix[-1, :-1] > 0):
    norm c(matrix)
    print(f"\пШаг №{i}. Нормированная матрица:")
    print matrix(matrix)
    i += 1
  basic variables = []
  for col in range(matrix.shape[1] - 1):
    if abs(np.all(matrix[:, col] == 0)) or abs(np.count nonzero(matrix[:, col])) != 1:
       basic variables.append(0)
    else:
       row index = np.argmax(np.abs(matrix[:, col]))
       basic variables.append(matrix[row index, -1])
  optimal value = matrix[-1, -1]
  return basic variables, optimal value
def simplex min(matrix):
  i = 1
  while np.any(matrix[:-1, -1] < 0):
    norm b(matrix)
    print(f"\пШаг №{i}. Нормированная матрица:")
    print matrix(matrix)
    i += 1
  basic variables = []
  for col in range(matrix.shape[1] - 1):
    if abs(np.all(matrix[:, col] == 0)) or abs(np.count_nonzero(matrix[:, col])) != 1:
       basic variables.append(0)
    else:
       row index = np.argmax(np.abs(matrix[:, col]))
       basic variables.append(matrix[row index, -1])
  optimal value = matrix[-1, -1]
  return basic variables, optimal value
# def print matrix(matrix):
#
    for row in matrix:
      rounded row = [f"{val:.4f}" for val in row]
#
      print(" || ".join(rounded row))
#
def print matrix(matrix):
```

```
for row in matrix:
                              for value in row:
                                             print(f"{value:.2f}\t", end="")
                              print()
A = np.array([
                [8, 12, 4, 17],
                [1, 6, 19, 19],
                [17, 11, 11, 6],
                [8, 10, 15, 17],
                [1, 16, 2, 16]
1)
c = np.array([1, 1, 1, 1])
b = np.array([1, 1, 1, 1, 1])
print("Симплекс-таблица для игрока A:")
print_matrix(dummy_variable(-1 * np.transpose(A), -1 * c, -1 * b))
result variables A, result value A = simplex min(dummy variable(-1 *
np.transpose(A), -1 * c, -1 * b)
print("\nОптимальное значение переменных:")
print(f''u1 = \{round(result variables A[0], 4)\} \setminus u2 = \{round(result variables A[1], 4)\} \setminus u2 = \{round(result variabl
4)} nu3 = \{ round(result variables A[2], 4) \} nu4 = \{ round(result variables A[3], 4) \} 
4) \ln 5 = \{\text{round}(\text{result variables } A[4], 4)\}")
print("W =", round(result value A, 4))
print("\nСимплекс-таблица для игрока В:")
print matrix(dummy variable(A, b, c))
result variables B, result value B = simplex max(dummy variable(A, b, c))
print("\nОптимальное значение переменных:")
print(f''v1 = \{round(result variables B[0], 4)\} \setminus v2 = \{round(result variables B[1], 4)\} \setminus v2 = \{round(result variabl
4)} \nv3 = {\text{round(result variables B[2], 4)}} \nv4 = {\text{round(result variables B[3], 4)}}
4)}")
print("Z =", round(-result value B, 4))
g = 1 / result value A
print(f''x1 = \{round(g * result variables A[0], 4)\} \nx2 = \{round(g * result variables A[0], 4)\} \nx3 = \{roun
result variables A[1], 4)} \ln 3 = \{ \text{round}(g * \text{result variables A[2], 4}) \} \ln 4 =
```

```
{round(g * result variables A[3], 4)} \ln 5 = \{\text{round}(g * \text{result variables A[4], 4})\}")
print(f''Oптимальная смешанная стратегия игрока A - ({round(g * })
result variables A[0], 4)}, {round(g * result variables A[1], 4)}, {round(g *
result variables A[2], 4)}, {round(g * result variables A[3], 4)}, {round(g *
result variables A[4], 4)})")
h = -1 / result value B
print(f''y) = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{round(h * result variables B[0], 4)\} \setminus y2 = \{roun
result variables B[1], 4 \ny3 = {round(h * result variables B[2], 4)} \ny4 =
{round(h * result variables B[3], 4)}")
print(f''Oптимальная смешанная стратегия игрока B - ({round(h *
result variables B[0], 4)}, {round(h * result variables B[1], 4)}, {round(h *
result variables B[2], 4)}, {round(h * result variables B[3], 4)})")
print("\nЦена игры будет равна:\n1/W = 1/Z =", round(g, 4))
mat = 0
for i in range(len(A)):
        for j in range(len(A[0])):
                mat += A[i][j] * g * result variables A[i] * h * result variables B[j]
print("\nMатематическое ожидание:\nmat =", mat)
```

Приложение Б

