

COMMONWEALTH OF AUSTRALIA

Copyright Regulations 1969

WARNING

This material has been reproduced and communicated to you by or on behalf of Monash University pursuant to Part VB of the Copyright Act 1968 (the Act).

The material in this communication may be subject to copyright under the Act. Any further reproduction or communication of this material by you may be the subject of copyright protection under the Act.

Do not remove this notice.

FIT5047: Fundamentals of Al

Intelligent Agents Chapter 2

Outline

- Agents and environments
- Rationality
- PEAS (Performance measure, Environment, Actuators, Sensors)
- Environment types
- Agent types

Agents

 An agent is anything that can be viewed as perceiving its environment using sensors, and acting upon that environment via actuators

Human agent:

- eyes, ears and other organs for sensors
- hands, legs, mouth and other body parts for actuators

Robotic agent:

- cameras and infrared range finders for sensors
- various motors for actuators

Agents and environments

- The agent function maps from percept histories to actions:
 f: P* → A
- The agent program runs on the physical architecture to produce f
- agent = architecture + program

Example: Agent in a vacuum-cleaner world

- Percepts: location and contents, e.g., [A,Dirty]
- Actions: Left, Right, Suck
- Program:

If status=Dirty return Suck
Elself Location=A return Right
Elself Location=B return Left

Is this a rational agent?

Rationality and rational agents

Rationality depends on

- Performance measure
- The agent's prior knowledge of the environment
- The actions that the agent can perform
- The percept sequence to date

Definition:

For each possible percept sequence, a <u>rational</u> <u>agent</u> should select an action that is expected to maximize its performance measure, given the evidence provided by the percept sequence and the agent's built-in knowledge

Rational autonomous agents

- Rationality is NOT omniscience
- Agents can perform actions to modify future percepts in order to obtain useful information
 → exploration, learning
- An agent is autonomous if its behavior is determined by its own experience

Task environment – PEAS

To design a rational agent, we must specify the Task environment

- PEAS
 - Performance measure
 - Environment
 - Actuators
 - Sensors

PEAS – Example (I)

Automated taxi driver:

Performance measure

 Safe, fast, legal, comfortable trip, minimize fuel consumption, maximize profit

Environment

Road types, road contents, customers, operating conditions

Actuators

 Control over the car, interfaces for informing other vehicles and informing passengers

Sensors

 Cameras, sonar, speedometer, GPS, odometer, engine sensors, interface for receiving information from other vehicles and passengers (e.g., speech recognizer)

PEAS – Example (II)

Internet shopping agent:

- Performance measure
 - cheap, good quality, appropriate product
- Environment
 - current internet sites, vendors
- Actuators
 - Packages that display to user, follow URL, fill in forms
- Sensors
 - Packages that read HTML pages (text, graphics, scripts)

Environment types (I)

The environment type largely determines the agent design

- Fully (partially) observable An agent's sensors give it access to the complete state of the environment at all times
- Known (unknown) An agent knows the "laws" of the environment
- Single (multi) agent An agent operating by itself in an environment
- Deterministic (stochastic) The next state is completely determined by the current state and the action executed by the agent

Environment types (II)

- Episodic (sequential) The agent's experience is divided into atomic episodes. The next episode does NOT depend on previous actions
 - In each episode an agent perceives a percept and performs a single action
- Static (dynamic) The environment is unchanged while an agent is deliberating
- Discrete (continuous) Pertains to number of states, the way time is handled, and number of percepts and actions
 - E.g., states may be continuous, but actions be discrete

Environment types – Examples

	Sorting laundry	8-puzzle	Back- gammon	Medical diagnosis	Taxi
Observable?					
Known?					
Single agent?					
Deterministic?					
Episodic?					
Static?					
Discrete?					

The real world is partially observable, unknown, multiagent, stochastic, sequential, dynamic, continuous

Environments and methodologies

	Search	Logical inference	Bayesian networks	Machine learning
Observable?	\checkmark	\checkmark		
Known?	\checkmark	\checkmark	\checkmark	×
Single agent?				
Deterministic?	\checkmark	\checkmark	×	
Episodic?				
Static?	\checkmark	\checkmark	\checkmark	✓
Discrete?	\checkmark	\checkmark		

Agent functions and programs

- An agent is specified by its <u>agent function</u> which maps percept sequences to actions
- Aim: design a program that implements the rational agent function concisely

Agent types

Based on the function = how actions are selected

Agent type	Action selected based on	
Simple reflex	current percept	
Model based	+ internal state (world model)	
Goal based	+ goal	
Utility based	+ utility function	
Learning	<pre>performance element = above agent + critic + learning element + problem generator (exploratory)</pre>	

Agent types: Taxi example

Agent type	Action
Simple reflex	brake when brake-lights of car in front light up
Model based	+ remember the roads travelled, time, state
Goal based	+ make a plan to reach a destination
Utility based	+ quickest with least petrol consumption
Learning performance elem +critic +learning element +problem generator	above agent observes the world & informs learning elem formulates new driving rules based on the feedback from critic + perf agent knowledge might suggest some driving exercises

How components of agent programs work?

Depends on the representation of states:

- Atomic each state is indivisible (Search, Game playing, Markov Decision Processes)
- Factored splits each state into attributes, each of which has a value (Propositional logic, Bayesian networks, Machine learning)
- Structured represents how things are related to each other (First-order logic, First-order probability models)

A more expressive representation can capture everything a less expressive representation can capture, but reasoning and learning is harder

Reading

Russell, S. and Norvig, P. (2010),
 Artificial Intelligence – Chapter 2

Next topic

- Lecture Topic 3 (LN3)
 - Problem solving as search

