On the parity of generalized partition functions III

 $\mathbf{b}\mathbf{y}$

F. Ben Saïd^a, J.-L. Nicolas^b and A. Zekraoui^{a 1 2}

^aUniv. de Monastir, Faculté des Sciences, Département de Mathématiques, Avenue de l'environnement, 5000, Monastir, Tunisie.

^bInstitut Camile Jordan, UMR 5208, Batiment Doyen Jean Braconnier, Univ. Claude Bernard (Lyon 1), 21 Avenue Claude Bernard, F-69622 Villeurbanne, France.

Abstract. Improving on some results of J.-L. Nicolas [15], the elements of the set $\mathcal{A} = \mathcal{A}(1+z+z^3+z^4+z^5)$, for which the partition function $p(\mathcal{A}, n)$ (i.e. the number of partitions of n with parts in \mathcal{A}) is even for all $n \geq 6$ are determined. An asymptotic estimate to the counting function of this set is also given.

Key words: Partitions, periodic sequences, order of a polynomial, orbits, 2-adic numbers, counting function, Selberg-Delange formula.

2000 MSC: 11P81, 11N25, 11N37.

1 Introduction.

Let \mathbb{N} (resp. \mathbb{N}_0) be the set of positive (resp. non-negative) integers. If $\mathcal{A} = \{a_1, a_2, ...\}$ is a subset of \mathbb{N} and $n \in \mathbb{N}$ then $p(\mathcal{A}, n)$ is the number of partitions of n with parts in \mathcal{A} , i.e., the number of solutions of the diophantine equation

$$a_1 x_1 + a_2 x_2 + \dots = n, (1.1)$$

in non-negative integers $x_1, x_2, ...$ As usual we set $p(\mathcal{A}, 0) = 1$. The counting function of the set \mathcal{A} will be denoted by A(x), i.e.,

$$A(x) = |\{n \le x, \ n \in \mathcal{A}\}|.$$
 (1.2)

Let \mathbb{F}_2 be the field with 2 elements, $P = 1 + \epsilon_1 z^1 + ... + \epsilon_N z^N \in \mathbb{F}_2[z], N \ge 1$. Although it is not difficult to prove (cf. [14], [5]) that there is a unique subset

 $^{^1\}mathrm{E}$ -mail addresses : Fethi. Bensaid @fsm. rnu.tn, jlnicola @in 2p3.fr, ahlemzekraoui @yahoo.fr

²Research partially supported by CNRS, by Région Rhône-Alpes, contract MIRA 2004 *Théorie des nombres Lyon, Saint-Etienne, Monastir* and by DGRST, Tunisia, UR 99/15-18.

 $\mathcal{A} = \mathcal{A}(P)$ of N such that the generating function F(z) satisfies

$$F(z) = F_{\mathcal{A}}(z) = \prod_{a \in \mathcal{A}} \frac{1}{1 - z^a} = \sum_{n \ge 0} p(\mathcal{A}, n) z^n \equiv P(z) \pmod{2},$$
 (1.3)

the determination of the elements of such sets for general P's seems to be hard.

Let the decomposition of P into irreducible factors over \mathbb{F}_2 be

$$P = P_1^{\alpha_1} P_2^{\alpha_2} \dots P_l^{\alpha_l}. \tag{1.4}$$

We denote by $\beta_i = \operatorname{ord}(P_i)$, $1 \leq i \leq l$, the order of P_i , that is the smallest positive integer β_i such that $P_i(z)$ divides $1 + z^{\beta_i}$ in $\mathbb{F}_2[z]$. It is known that β_i is odd (cf. [13]). We set

$$\beta = \operatorname{lcm}(\beta_1, \beta_2, ..., \beta_l). \tag{1.5}$$

Let $\mathcal{A} = \mathcal{A}(P)$ satisfy (1.3) and $\sigma(\mathcal{A}, n)$ be the sum of the divisors of n belonging to \mathcal{A} , i.e.,

$$\sigma(\mathcal{A}, n) = \sum_{d|n, d \in \mathcal{A}} d = \sum_{d|n} d\chi(\mathcal{A}, d), \tag{1.6}$$

where $\chi(\mathcal{A}, .)$ is the characteristic function of the set \mathcal{A} , i.e, $\chi(\mathcal{A}, d) = 1$ if $d \in \mathcal{A}$ and $\chi(\mathcal{A}, d) = 0$ if $d \notin \mathcal{A}$. It was proved in [6] (see also [4], [12]) that for all $k \geq 0$, the sequence $(\sigma(\mathcal{A}, 2^k n) \mod 2^{k+1})_{n \geq 1}$ is periodic with period β defined by (1.5), in other words,

$$n_1 \equiv n_2 \pmod{\beta} \Rightarrow \forall k \ge 0, \ \sigma(\mathcal{A}, 2^k n_1) \equiv \sigma(\mathcal{A}, 2^k n_2) \pmod{2^{k+1}}.$$
 (1.7)

Moreover, the proof of (1.7) in [6] allows to calculate $\sigma(\mathcal{A}, 2^k n)$ mod 2^{k+1} and to deduce the value of $\chi(\mathcal{A}, n)$ where n is any positive integer. Indeed, let

$$S_{\mathcal{A}}(m,k) = \chi(\mathcal{A},m) + 2\chi(\mathcal{A},2m) + \ldots + 2^k \chi(\mathcal{A},2^k m). \tag{1.8}$$

If n writes $n = 2^k m$ with $k \ge 0$ and m odd, (1.6) implies

$$\sigma(\mathcal{A}, n) = \sigma(\mathcal{A}, 2^k m) = \sum_{d \mid m} dS_{\mathcal{A}}(d, k), \tag{1.9}$$

which, by Möbius inversion formula, gives

$$mS_{\mathcal{A}}(m,k) = \sum_{d \mid m} \mu(d)\sigma(\mathcal{A}, \frac{n}{d}) = \sum_{d \mid \overline{m}} \mu(d)\sigma(\mathcal{A}, \frac{n}{d}),$$
 (1.10)

where $\overline{m} = \prod_{p \mid m} p$ denotes the radical of m with $\overline{1} = 1$.

In the above sums, $\frac{n}{d}$ is always a multiple of 2^k , so that, from the values of $\sigma(\mathcal{A}, \frac{n}{d})$, by (1.10), one can determine the value of $S_{\mathcal{A}}(m, k) \mod 2^{k+1}$ and by (1.8), the value of $\chi(\mathcal{A}, 2^i m)$ for all $i, i \leq k$.

Let β be an odd integer ≥ 3 and $(\mathbb{Z}/\beta\mathbb{Z})^*$ be the group of invertible elements modulo β . We denote by < 2 > the subgroup of $(\mathbb{Z}/\beta\mathbb{Z})^*$ generated by 2 and consider its action \star on the set $\mathbb{Z}/\beta\mathbb{Z}$ given by $a \star x = ax$ for all $a \in < 2 >$ and $x \in \mathbb{Z}/\beta\mathbb{Z}$. The quotient set will be denoted by $(\mathbb{Z}/\beta\mathbb{Z})/_{<2>}$ and the orbit of some n in $\mathbb{Z}/\beta\mathbb{Z}$ by O(n). For $P \in \mathbb{F}_2[z]$ with P(0) = 1 and $\operatorname{ord}(P) = \beta$, let $\mathcal{A} = \mathcal{A}(P)$ be the set obtained from (1.3). Property (1.7) shows (after [3]) that if n_1 and n_2 are in the same orbit then

$$\sigma(\mathcal{A}, 2^k n_1) \equiv \sigma(\mathcal{A}, 2^k n_2) \pmod{2^{k+1}}, \ \forall k \ge 0.$$
 (1.11)

Consequently, for fixed k, the number of distinct values that $(\sigma(\mathcal{A}, 2^k n) \mod 2^{k+1})_{n\geq 1}$ can take is at most equal to the number of orbits of $\mathbb{Z}/\beta\mathbb{Z}$.

Let φ be the Euler function and s be the order of 2 modulo β , i.e., the smallest positive integer s such that $2^s \equiv 1 \pmod{\beta}$. If $\beta = p$ is a prime number then $(\mathbb{Z}/p\mathbb{Z})^*$ is cyclic and the number of orbits of $\mathbb{Z}/p\mathbb{Z}$ is equal to 1+r with $r=\frac{\varphi(p)}{s}=\frac{p-1}{s}$. In this case, we have

$$(\mathbb{Z}/p\mathbb{Z})/_{\langle 2\rangle} = \{O(g), O(g^2), ..., O(g^r) = O(1), O(p)\},$$
 (1.12)

where g is some generator of $(\mathbb{Z}/p\mathbb{Z})^*$. For r=2, the sets $\mathcal{A}=\mathcal{A}(P)$ were completely determined by N. Baccar, F. Ben Saïd and J.-L. Nicolas ([2], [8]). Moreover, N. Baccar proved in [1] that for all $r \geq 2$, the elements of \mathcal{A} of the form $2^k m$, $k \geq 0$ and m odd, are determined by the 2-adic development of some root of a polynomial with integer coefficients. Unfortunately, his results are not explicit and do not lead to any evaluation of the counting function of the set \mathcal{A} . When r=6, J.-L. Nicolas determined (cf. [15]) the odd elements of $\mathcal{A}=\mathcal{A}(1+z+z^3+z^4+z^5)$. His results (which will be stated in Section 2, Theorem 0) allowed to deduce a lower bound for the counting function of \mathcal{A} . In this paper, we will consider the case p=31 which satisfies r=6. In $\mathbb{F}_2[z]$, we have

$$\frac{1-z^{31}}{1-z} = P^{(1)}P^{(2)}...P^{(6)}, (1.13)$$

with

$$P^{(1)} = 1 + z + z^3 + z^4 + z^5, \quad P^{(2)} = 1 + z + z^2 + z^4 + z^5, \quad P^{(3)} = 1 + z^2 + z^3 + z^4 + z^5,$$

$$P^{(4)} = 1 + z + z^2 + z^3 + z^5, \quad P^{(5)} = 1 + z^2 + z^5, \quad P^{(6)} = 1 + z^3 + z^5.$$

In fact, there are other primes p with r = 6. For instance, p = 223 and p = 433.

In Section 2, for $\mathcal{A} = \mathcal{A}(P^{(1)})$, we evaluate the sum $S_{\mathcal{A}}(m,k)$ which will lead to results of Section 3 determining the elements of the set \mathcal{A} . Section 4 will be devoted to the determination of an asymptotic estimate to the counting function A(x) of \mathcal{A} . Although, in this paper, the computations are only carried out for $P = P^{(1)}$, the results could probably be extended to any $P^{(i)}$, $1 \leq i \leq 6$, and more generally, to any polynomial P of order p and such that r = 6.

Notation. We write $a \mod b$ for the remainder of the euclidean division of a by b. The ceiling of the real number x is denoted by

$$\lceil x \rceil = \inf\{n \in \mathbb{Z}, \ x \le n\}.$$

2 The sum
$$S_A(m,k)$$
, $A = A(1+z+z^3+z^4+z^5)$.

From now on, we take A = A(P) with

$$P = P^{(1)} = 1 + z + z^3 + z^4 + z^5. (2.1)$$

The order of P is $\beta=31$. The smallest primitive root modulo 31 is 3 that we shall use as a generator of $(\mathbb{Z}/31\mathbb{Z})^*$. The order of 2 modulo 31 is s=5 so that

$$(\mathbb{Z}/31\mathbb{Z})/_{\langle 2\rangle} = \{O(3), O(3^2), ..., O(3^6) = O(1), O(31)\},$$
 (2.2)

with

$$O(3^j) = \{2^k 3^j, \ 0 \le k \le 4\}, \ 1 \le j \le 6$$
(2.3)

and

$$O(31) = \{31n, \ n \in \mathbb{N}\}. \tag{2.4}$$

For $k \geq 0$ and $0 \leq j \leq 5$, we define the integers $u_{k,j}$ by

$$u_{k,j} = \sigma(\mathcal{A}, 2^k 3^j) \mod 2^{k+1}.$$
 (2.5)

The Graeffe transformation. Let \mathbb{K} be a field and $\mathbb{K}[[z]]$ be the ring of formal power series with coefficients in \mathbb{K} . For an element

$$f(z) = a_0 + a_1 z + a_2 z^2 + \ldots + a_n z^n + \ldots$$

of this ring, the product

$$f(z)f(-z) = b_0 + b_1 z^2 + b_2 z^4 + \dots + b_n z^{2n} + \dots$$

is an even power series. We shall call $\mathcal{G}(f)$ the series

$$\mathcal{G}(f)(z) = b_0 + b_1 z + b_2 z^2 + \ldots + b_n z^n + \ldots$$
 (2.6)

It follows immediately from the above definition that for $f, g \in \mathbb{K}[[z]]$,

$$\mathcal{G}(fg) = \mathcal{G}(f)\mathcal{G}(g). \tag{2.7}$$

Moreover if q is an odd integer and $f(z) = 1 - z^q$, we have $\mathcal{G}(f) = f$. We shall use the following notation for the iterates of f by \mathcal{G} :

$$f_{(0)} = f, \quad f_{(1)} = \mathcal{G}(f), \quad \dots, \quad f_{(k)} = \mathcal{G}(f_{(k-1)}) = \mathcal{G}^{(k)}(f).$$
 (2.8)

More details about the Graeffe transformation are given in [6]. By making the logarithmic derivative of formula (1.3), we get (cf. [14]):

$$\sum_{n=1}^{\infty} \sigma(\mathcal{A}, n) z^n = z \frac{F'(z)}{F(z)} \equiv z \frac{P'(z)}{P(z)} \pmod{2}, \tag{2.9}$$

which, by Propositions 2 and 3 of [6], leads to

$$\sum_{n=1}^{\infty} \sigma(\mathcal{A}, 2^k n) z^n \equiv z \frac{P'_{(k)}(z)}{P_{(k)}(z)} = \frac{z}{1 - z^{31}} \left(P'_{(k)}(z) W_{(k)}(z) \right) \pmod{2^{k+1}},$$
(2.10)

with $P'_{(k)}(z) = \frac{\mathrm{d}}{\mathrm{d}z}(P_{(k)}(z))$ and

$$W(z) = (1-z)P^{(2)}(z)...P^{(6)}(z). (2.11)$$

Formula (2.10) proves (1.11) with $\beta = 31$, and the computation of the k-th iterates $P_{(k)}$ and $W_{(k)}$ by the Graeffe transformation yields the value of $\sigma(\mathcal{A}, 2^k n) \mod 2^{k+1}$. For instance, for k = 11, we obtain:

$$u_{k,0}=1183, \ u_{k,1}=1598, \ u_{k,2}=1554, \ u_{k,3}=845, \ u_{k,4}=264, \ u_{k,5}=701.$$

A divisor of $2^k 3^j$ is either a divisor of $2^{k-1} 3^j$ or a multiple of 2^k . Therefore, from (2.5) and (1.6), $u_{k,j} \equiv u_{k-1,j} \pmod{2^k}$ holds and the sequence $(u_{k,j})_{k\geq 0}$ defines a 2-adic integer U_j satisfying for all k's:

$$U_j \equiv u_{k,j} \pmod{2^{k+1}}, \quad 0 \le j \le 5.$$
 (2.12)

It has been proved in [1] that the U_i 's are the roots of the polynomial

$$R(y) = y^6 - y^5 + 3y^4 - 11y^3 + 44y^2 - 36y + 32.$$

Note that $R(y)^5$ is the resultant in z of $\phi_{31}(z) = 1 + z + ... + z^{30}$ and $y + z + z^2 + z^4 + z^8 + z^{16}$.

Let us set

$$\theta = U_0 = 1 + 2 + 2^2 + 2^3 + 2^4 + 2^7 + 2^{10} + \dots$$

It turns out that the Galois group of R(y) is cyclic of order 6 and therefore the other roots $U_1, ..., U_5$ of R(y) are polynomials in θ . With Maple, by factorizing R(y) on $\mathbb{Q}[\theta]$ and using the values of $u_{11,j}$, we get

$$U_0 = \theta \equiv 1183 \pmod{2^{11}}$$

$$U_1 = \frac{1}{32} (3\theta^5 + 5\theta^3 - 36\theta^2 + 84\theta) \equiv 1598 \pmod{2^{11}}$$

$$U_2 = \frac{1}{32} (-3\theta^5 - 5\theta^3 + 20\theta^2 - 100\theta) \equiv 1554 \pmod{2^{11}}$$

$$U_3 = \frac{1}{32} (-\theta^5 - 7\theta^3 + 12\theta^2 - 44\theta + 32) \equiv 845 \pmod{2^{11}}$$

$$U_4 = \frac{1}{32} (-\theta^5 + 4\theta^4 + \theta^3 + 24\theta^2 - 68\theta + 96) \equiv 264 \pmod{2^{11}}$$

$$U_5 = \frac{1}{16} (\theta^5 - 2\theta^4 + 3\theta^3 - 10\theta^2 + 48\theta - 48) \equiv 701 \pmod{2^{11}}.$$
 (2.13)

For convenience, if $j \in \mathbb{Z}$, we shall set

$$U_j = U_{j \bmod 6}. \tag{2.14}$$

We define the completely additive function $\ell: \mathbb{Z} \setminus 31\mathbb{Z} \to \mathbb{Z}/6\mathbb{Z}$ by

$$\ell(n) = j \quad \text{if } n \in O(3^j), \tag{2.15}$$

so that $\ell(n_1n_2) \equiv \ell(n_1) + \ell(n_2) \pmod{6}$. We split the odd primes different from 31 into six classes according to the value of ℓ . More precisely, for $0 \le j \le 5$,

$$p \in \mathcal{P}_j \iff \ell(p) = j \iff p \equiv 2^k 3^j \pmod{31}, \ k = 0, 1, 2, 3, 4.$$
 (2.16)

We take $L: \mathbb{N} \setminus 31\mathbb{N} \longrightarrow \mathbb{N}_0$ to be the completely additive function defined on primes by

$$L(p) = \ell(p). \tag{2.17}$$

We define, for $0 \le j \le 5$, the additive function $\omega_j : \mathbb{N} \longrightarrow \mathbb{N}_0$ by

$$\omega_j(n) = \sum_{p|n, \ p \in \mathcal{P}_j} 1 = \sum_{p|n, \ \ell(p)=j} 1,$$
 (2.18)

and $\omega(n) = \omega_0(n) + ... + \omega_5(n) = \sum_{p|n} 1$. We remind that additive functions vanish on 1.

From (2.5), (2.3), (1.11) and (2.12), it follows that if $n = 2^k m \in O(3^j)$ (so that $j = \ell(n) = \ell(m)$),

$$\sigma(\mathcal{A}, n) = \sigma(\mathcal{A}, 2^k m) \equiv U_{\ell(m)} \pmod{2^{k+1}}.$$
 (2.19)

We may consider the 2-adic number

$$S(m) = S_{\mathcal{A}}(m) = \chi(\mathcal{A}, m) + 2\chi(\mathcal{A}, 2m) + \dots + 2^{k}\chi(\mathcal{A}, 2^{k}m) + \dots$$
 (2.20)

satisfying from (1.8),

$$S(m) \equiv S_{\mathcal{A}}(m,k) \pmod{2^{k+1}}.$$
 (2.21)

Then (1.10) implies for (m, 31) = 1,

$$mS(m) = \sum_{d \mid \overline{m}} \mu(d) U_{\ell(\frac{m}{d})}.$$
 (2.22)

If 31 divides m, it was proved in [3, (3.6)] that, for all k's,

$$\sigma(\mathcal{A}, 2^k m) \equiv -5 \pmod{2^{k+1}}.$$
 (2.23)

Remark 1. No element of \mathcal{A} has a prime factor in \mathcal{P}_0 . This general result has been proved in [3], but we recall the proof on our example : let us assume that $n = 2^k m \in \mathcal{A}$, where m is an odd integer divisible by some prime p in \mathcal{P}_0 , in other words $\omega_0(m) \geq 1$. (1.10) gives

$$mS_{\mathcal{A}}(m,k) = \sum_{d \mid m} \mu(d)\sigma\left(\mathcal{A}, \frac{n}{d}\right) = \sum_{d \mid \overline{m}} \mu(d)\sigma\left(\mathcal{A}, 2^{k} \frac{m}{d}\right)$$

$$= \sum_{d \mid \frac{\overline{m}}{p}} \mu(d)\sigma\left(\mathcal{A}, 2^{k} \frac{m}{d}\right) + \sum_{d \mid \frac{\overline{m}}{p}} \mu(pd)\sigma\left(\mathcal{A}, 2^{k} \frac{m}{pd}\right)$$

$$= \sum_{d \mid \frac{\overline{m}}{p}} \mu(d)\left(\sigma\left(\mathcal{A}, 2^{k} \frac{m}{d}\right) - \sigma\left(\mathcal{A}, 2^{k} \frac{m}{pd}\right)\right).$$

In the above sum, both $\frac{m}{d}$ and $\frac{m}{pd}$ are in the same orbit, so that from (1.11), $\sigma(\mathcal{A}, 2^k \frac{m}{d}) \equiv \sigma(\mathcal{A}, 2^k \frac{m}{pd}) \pmod{2^{k+1}}$ and therefore $mS_{\mathcal{A}}(m, k) \equiv 0 \pmod{2^{k+1}}$. Since m is odd and (cf. (1.8)) $0 \leq S_{\mathcal{A}}(m, k) < 2^{k+1}$ then $S_{\mathcal{A}}(m, k) = 0$, so that by (1.8), $2^h m \not\in \mathcal{A}$, for all $0 \leq h \leq k$.

In [15], J.-L. Nicolas has described the odd elements of \mathcal{A} . In fact, he obtained the following:

Theorem 0. ([15])) (a) The odd elements of \mathcal{A} which are primes or powers of primes are of the form p^{λ} , $\lambda \geq 1$, satisfying one of the following four conditions:

$$p \in \mathcal{P}_1$$
 and $\lambda \equiv 1, 3, 4, 5 \pmod{6}$
 $p \in \mathcal{P}_2$ and $\lambda \equiv 0, 1 \pmod{3}$
 $p \in \mathcal{P}_4$ and $\lambda \equiv 0, 1 \pmod{3}$
 $p \in \mathcal{P}_5$ and $\lambda \equiv 0, 2, 3, 4 \pmod{6}$.

(b) No odd element of A is a multiple of 31^2 . If m is odd, $m \neq 1$, and not a multiple of 31, then

$$m \in \mathcal{A}$$
 if and only if $31m \in \mathcal{A}$.

- (c) An odd element $n \in \mathcal{A}$ satisfies $\omega_0(n) = 0$ and $\omega_3(n) = 0$ or 1; in other words, n is free of prime factor in \mathcal{P}_0 and has at most one prime factor in \mathcal{P}_3 .
- (d) The odd elements of A different from 1, not divisible by 31, which are not primes or powers of primes are exactly the odd n's, $n \neq 1$, such that (where $\overline{n} = \prod_{p|n} p$):
 - 1. $\omega_0(n) = 0$ and $\omega_3(n) = 0$ or 1.
 - 2. If $\omega_3(n) = 1$ then $\ell(n) + \ell(\overline{n}) \equiv 0$ or $1 \pmod{3}$.
 - 3. If $\omega_3(n) = 0$ and $\omega_1(n) + \ell(n) \ell(\overline{n})$ is even then

$$2\ell(n) - \ell(\overline{n}) \equiv 2 \text{ or } 3 \text{ or } 4 \text{ or } 5 \pmod{6}.$$

4. If $\omega_3(n) = 0$ and $\omega_1(n) + \ell(n) - \ell(\overline{n})$ is odd then

$$2\ell(n) - \ell(\overline{n}) \equiv 0 \text{ or } 4 \pmod{6}.$$

Remark 2. Point (b) of Theorem 0 can be improved in the following way: No element of \mathcal{A} is a multiple of 31^2 . Indeed, from (1.10), we have for m odd, $k \geq 0$ and $\tau \geq 2$,

$$31^{\tau} m S_{\mathcal{A}}(31^{\tau} m, k) = \sum_{d \mid 31^{\tau} m} \mu(d) \sigma\left(\mathcal{A}, 2^{k} 31^{\tau} \frac{m}{d}\right) = \sum_{d \mid 31\overline{m}} \mu(d) \sigma\left(\mathcal{A}, 2^{k} 31^{\tau} \frac{m}{d}\right)$$
$$= \sum_{d \mid \overline{m}} \mu(d) \left\{ \sigma\left(\mathcal{A}, 2^{k} 31^{\tau} \frac{m}{d}\right) - \sigma\left(\mathcal{A}, 2^{k} 31^{\tau - 1} \frac{m}{d}\right) \right\}.$$

Since $31^{\tau} \frac{m}{d}$ and $31^{\tau-1} \frac{m}{d}$ are in the same orbit O(31) then (1.11) and (2.23) give $\sigma(\mathcal{A}, 2^k 31^{\tau} \frac{m}{d}) \equiv \sigma(\mathcal{A}, 2^k 31^{\tau-1} \frac{m}{d}) \equiv -5 \pmod{2^{k+1}}$, so that we get $S_{\mathcal{A}}(31^{\tau} m, k) \equiv 0 \pmod{2^{k+1}}$. Hence, from (1.8), $S_{\mathcal{A}}(31^{\tau} m, k) = 0$ and for all $0 \leq h \leq k$ and all $\tau \geq 2$, $2^h 31^{\tau} m$ does not belong to \mathcal{A} .

In view of stating Theorem 1 which will extend Theorem 0, we shall need some notation. The radical \overline{m} of an odd integer $m \neq 1$, not divisible by 31 and free of prime factors belonging to \mathcal{P}_0 will be written

$$\overline{m} = p_1 \dots p_{\omega_1} p_{\omega_1 + 1} \dots p_{\omega_1 + \omega_2} p_{\omega_1 + \omega_2 + 1} \dots p_{\omega_1 + \omega_2 + \omega_3 + \omega_4 + 1} \dots p_{\omega}, \quad (2.24)$$

where $\ell(p_i) = j$ for $\omega_1 + ... + \omega_{j-1} + 1 \le i \le \omega_1 + ... + \omega_j$, $\omega_j = \omega_j(m) = \omega_j(\overline{m})$ and $\omega = \omega(m) = \omega(\overline{m}) \ge 1$. We define the additive functions from $\mathbb{Z} \setminus 31\mathbb{Z}$ into $\mathbb{Z}/12\mathbb{Z}$:

$$\alpha = \alpha(m) = 2\omega_5 - 2\omega_1 + \omega_4 - \omega_2 \mod 12, \tag{2.25}$$

$$a = a(m) = \omega_5 - \omega_1 + \omega_2 - \omega_4 \mod 12.$$
 (2.26)

Let $(v_i)_{i\in\mathbb{Z}}$ be the periodic sequence of period 12 defined by

$$v_i = \begin{cases} \frac{2}{\sqrt{3}} \cos(i\frac{\pi}{6}) & \text{if } i \text{ is odd} \\ 2\cos(i\frac{\pi}{6}) & \text{if } i \text{ is even.} \end{cases}$$
 (2.27)

The values of $(v_i)_{i\in\mathbb{Z}}$ are given by :

i =	0	1	2	3	4	5	6	7	8	9	10	11
$i = v_i = v_i$: 2	1	1	0	-1	-1	-2	-1	-1	0	1	1

Note that

$$v_{i+6} = -v_i, (2.28)$$

$$v_i + v_{i+2} = \begin{cases} v_{i+1} & \text{if } i \text{ is odd} \\ 3v_{i+1} & \text{if } i \text{ is even,} \end{cases}$$
 (2.29)

$$v_{2i} \equiv -2^i \pmod{3} \tag{2.30}$$

and

$$v_i \equiv v_{i+3} \equiv v_{2i} \pmod{2}. \tag{2.31}$$

From the U_j 's (cf. (2.12) and (2.13)), we introduce the following 2-adic integers:

$$E_{i} = \sum_{j=0}^{5} v_{i+2j} U_{j}, \quad i \in \mathbb{Z},$$
(2.32)

$$F_i = \sum_{j=0}^{5} v_{i+4j} U_j, \quad i \in \mathbb{Z},$$
(2.33)

$$G = \sum_{j=0}^{5} (-1)^{j} U_{j}. \tag{2.34}$$

From (2.28), we have

$$E_{i+6} = -E_i, \quad E_{i+12} = E_i, \quad F_{i+6} = -F_i, \quad F_{i+12} = F_i.$$
 (2.35)

From (2.29), it follows that, if i is odd,

$$E_i + E_{i+2} = E_{i+1}, \quad F_i + F_{i+2} = F_{i+1},$$
 (2.36)

while, if i is even,

$$E_i + E_{i+2} = 3E_{i+1}, \quad F_i + F_{i+2} = 3F_{i+1},$$
 (2.37)

The values of these numbers are given in the following array:

Z		$Z \bmod 2^{11}$
$E_0 =$	$\frac{1}{32}(11\theta^5 - 8\theta^4 + 29\theta^3 - 124\theta^2 + 500\theta - 256)$	1157
$E_1 =$	$\frac{1}{16}(3\theta^5 - 2\theta^4 + 9\theta^3 - 26\theta^2 + 136\theta - 64)$	1533
$E_2 =$	$3E_1 - E_0$	1394
$E_3 =$	$2E_1 - E_0$	1909
$E_4 =$	$3E_1 - 2E_0$	237
$E_5 =$	$E_1 - E_0$	376
$F_0 =$	$\frac{1}{32}(-3\theta^5 - 21\theta^3 + 36\theta^2 - 36\theta + 64)$	1987
$F_1 =$	$\frac{1}{32}(-3\theta^5 - 4\theta^4 - 13\theta^3 + 24\theta^2 - 28\theta - 64)$	166
$F_2 =$	$3\tilde{F}_1 - F_0$	559
$F_3 =$	$2F_1 - F_0$	393
$F_4 =$	$3F_1 - 2F_0$	620
$F_5 =$	$F_1 - F_0$	227
G =	$\frac{1}{4}(-\theta^5 + \theta^4 - \theta^3 + 11\theta^2 - 34\theta + 20)$	1905

TABLE 1

Lemma 1. The polynomials $(U_j)_{0 \le j \le 5}$ (cf. (2.13)) form a basis of $\mathbb{Q}[\theta]$. The polynomials E_0 , E_1 , F_0 , F_1 , G, U_0 form an other basis of $\mathbb{Q}[\theta]$. For all i's, E_i and F_i are linear combinations of respectively E_0 and E_1 and F_0 and F_1 .

Proof. With Maple, in the basis $1, \theta, \ldots, \theta^5$, we compute determinant $(U_0, \ldots, U_5) = \frac{1}{1024}$. From (2.32), (2.33) and (2.34), the determinant of (E_0, E_1, \dots, E_n)

 F_0, F_1, G, U_0) in the basis U_0, U_1, \ldots, U_5 is equal to 12. The last point follows from (2.36) and (2.37). \square

We have

Theorem 1. Let $m \neq 1$ be an odd integer not divisible by 31 with \overline{m} of the form (2.24). Under the above notation and the convention

$$0^{\omega} = \begin{cases} 1 & \text{if } \omega = 0\\ 0 & \text{if } \omega > 0, \end{cases}$$
 (2.38)

we have:

1) The 2-adic integer S(m) defined by (2.20) satisfies

$$mS(m) = 2^{\omega_3 - 1} 3^{\lceil \frac{\omega_2 + \omega_4}{2} - 1 \rceil} E_{\alpha - 2\ell(m)} + \frac{0^{\omega_3}}{2} 3^{\lceil \frac{\omega}{2} - 1 \rceil} F_{a - 4\ell(m)} + \frac{0^{\omega_2 + \omega_4}}{3} 2^{\omega - 1} (-1)^{\ell(m)} G.$$
(2.39)

2) The 2-adic integer S(31m) satisfies

$$S(31m) = -31^{-1}S(m), (2.40)$$

where 31^{-1} is the inverse of 31 in \mathbb{Z}_2 . In particular, for all $k \in \{0, 1, 2, 3, 4\}$, we have

$$2^k m \in \mathcal{A} \iff 31 \cdot 2^k m \in \mathcal{A},$$

since the inverse of 31 modulo 2^{k+1} is -1 for $k \leq 4$.

Proof of Theorem 1, 1). From (2.22), we have

$$mS(m) = \sum_{d \mid \overline{m}} \mu(d) U_{\ell(\frac{m}{d})} = \sum_{d \mid \overline{m}} \mu(d) U_{\ell(m) - \ell(d)}. \tag{2.41}$$

Further, (2.41) becomes

$$mS(m) = \sum_{j=0}^{5} T(m,j)U_{\ell(m)-j} = \sum_{j=0}^{5} T(m,\ell(m)-j)U_{j}, \qquad (2.42)$$

with

$$T(m,j) = T(\overline{m},j) = \sum_{\substack{d \mid \overline{m}, \ \ell(d) \equiv j \pmod{6}}} \mu(d). \tag{2.43}$$

Therefore (2.39) will follow from (2.42) and from the following lemma:

Lemma 2. The integer T(m, j) defined in (2.43) with the convention (2.38) and the definitions (2.18) and (2.24)-(2.27), for $m \neq 1$, is equal to

$$T(m,j) = 2^{\omega_3 - 1} 3^{\lceil \frac{\omega_2 + \omega_4}{2} - 1 \rceil} v_{\alpha - 2j} + \frac{0^{\omega_3}}{2} 3^{\lceil \frac{\omega}{2} - 1 \rceil} v_{a - 4j} + 0^{\omega_2 + \omega_4} \frac{(-1)^j}{3} 2^{\omega - 1}.$$

$$(2.44)$$

Proof. Let us introduce the polynomial

$$f(X) = (1 - X)^{\omega_1} (1 - X^2)^{\omega_2} \dots (1 - X^5)^{\omega_5} = \sum_{\nu > 0} f_{\nu} X^{\nu}. \tag{2.45}$$

If the five signs were plus instead of minus, f(X) would be the generating function of the partitions in at most ω_1 parts equal to 1, ..., at most ω_5 parts equal to 5. More generally, the polynomial

$$\widetilde{f}(X) = \prod_{i=1}^{\omega} (1 + a_i X^{b_i}) = \sum_{\nu > 0} \widetilde{f}_{\nu} X^{\nu}$$

is the generating function of

$$\widetilde{f}_{\nu} = \sum_{\epsilon_1, \dots, \epsilon_{\omega} \in \{0,1\}, \; \sum_{i=1}^{\omega} \epsilon_i b_i = \nu} \prod_{i=1}^{\omega} a_i^{\epsilon_i}.$$

To the vector $\underline{\epsilon} = (\epsilon_1, ..., \epsilon_{\omega}) \in \mathbb{F}_2^{\omega}$, we associate

$$d = \prod_{i=1}^{\omega} p_i^{\epsilon_i}, \quad \mu(d) = \prod_{i=1}^{\omega} (-1)^{\epsilon_i}, \quad L(d) = \sum_{i=1}^{\omega} \epsilon_i \ell(p_i)$$

where L is the arithmetic function defined by (2.17) and we get

$$f_{\nu} = \sum_{d|\overline{m}, L(d)=\nu} \mu(d),$$
 (2.46)

Consequently, by setting $\xi = \exp(\frac{i\pi}{3})$, (2.43), (2.45) and (2.46) give

$$T(m,j) = \sum_{\nu, \ \nu \equiv j \ (\text{mod } 6)} \sum_{d \mid \overline{m}, \ L(d) = \nu} \mu(d)$$

$$= \sum_{\nu \equiv i \pmod{6}} f_{\nu} = \frac{1}{6} \sum_{i=0}^{5} \xi^{-ij} f(\xi^{i}) = \frac{1}{6} \sum_{i=1}^{5} \xi^{-ij} f(\xi^{i})$$

$$= \frac{1}{6} \sum_{i=1}^{5} \xi^{-ij} (1 - \xi^{i})^{\omega_1} (1 - \xi^{2i})^{\omega_2} (1 - \xi^{3i})^{\omega_3} (1 - \xi^{4i})^{\omega_4} (1 - \xi^{5i})^{\omega_5}.$$
 (2.47)

By observing that

$$1 - \xi = \xi^5, \ 1 - \xi^2 = \varrho = \sqrt{3} \left(\cos \frac{\pi}{6} - i \sin \frac{\pi}{6}\right), \ 1 - \xi^3 = 2, \ 1 - \xi^4 = \overline{\varrho}, \ 1 - \xi^6 = 0,$$

the sum of the terms in i = 1 and i = 5 in (2.47), which are conjugate, is equal to

$$\frac{2}{6}\mathcal{R}(\xi^{-j}\xi^{5\omega_1}\varrho^{\omega_2}2^{\omega_3}\overline{\varrho}^{\omega_4}\xi^{\omega_5}) = \frac{2^{\omega_3}}{3}\sqrt{3}^{\omega_2+\omega_4}\cos\frac{\pi}{6}(2\omega_5 - 2\omega_1 + \omega_4 - \omega_2 - 2j). \tag{2.48}$$

Now, the contribution of the terms in i = 2 and i = 4 is

$$\frac{2}{6}\mathcal{R}(\xi^{-2j}\varrho^{\omega_1}\overline{\varrho}^{\omega_2}0^{\omega_3}\varrho^{\omega_4}\overline{\varrho}^{\omega_5}) = 0^{\omega_3}\frac{\sqrt{3}^{\omega_1+\omega_2+\omega_4+\omega_5}}{3}\cos\frac{\pi}{6}(\omega_2+\omega_5-\omega_1-\omega_4-4j)$$

$$=0^{\omega_3}\frac{\sqrt{3}^{\omega_3}}{3}\cos\frac{\pi}{6}(\omega_2+\omega_5-\omega_1-\omega_4-4j) \qquad (2.49)$$

Finally, the term corresponding to i = 3 in (2.47) is equal to

$$\frac{1}{6}(-1)^{j}2^{\omega_{1}}0^{\omega_{2}}2^{\omega_{3}}0^{\omega_{4}}2^{\omega_{5}} = 0^{\omega_{2}+\omega_{4}}\frac{(-1)^{j}}{6}2^{\omega_{1}+\omega_{3}+\omega_{5}} = 0^{\omega_{2}+\omega_{4}}\frac{(-1)^{j}}{6}2^{\omega}. \quad (2.50)$$

Consequently, by using our notation (2.24)-(2.26), (2.47) becomes

$$T(m,j) = \frac{2^{\omega_3}}{3} \sqrt{3}^{\omega_2 + \omega_4} \cos \frac{\pi}{6} (\alpha - 2j) + 0^{\omega_3} \frac{\sqrt{3}^{\omega}}{3} \cos \frac{\pi}{6} (a - 4j) + 0^{\omega_2 + \omega_4} \frac{(-1)^j}{6} 2^{\omega}.$$
 (2.51)

Observing that $\alpha - 2j$ has the same parity than $\omega_2 + \omega_4$ and similarly for a - 4j and ω (when $\omega_0 = \omega_3 = 0$), via (2.27), we get (2.44).

Proof of Theorem 1, 2). For all $k \ge 0$, from (1.10), we have

$$31mS_{\mathcal{A}}(31m,k) = \sum_{d \mid 31m} \mu(d)\sigma(\mathcal{A}, 31 \cdot 2^{k} \frac{m}{d}) = \sum_{d \mid 31\overline{m}} \mu(d)\sigma(\mathcal{A}, 31 \cdot 2^{k} \frac{m}{d})$$

$$= \sum_{d \mid \overline{m}} \mu(d)\sigma(\mathcal{A}, 31 \cdot 2^{k} \frac{m}{d}) - \sum_{d \mid \overline{m}} \mu(d)\sigma(\mathcal{A}, 2^{k} \frac{m}{d})$$

$$= \sum_{d \mid \overline{m}} \mu(d)\sigma(\mathcal{A}, 31 \cdot 2^{k} \frac{m}{d}) - mS_{\mathcal{A}}(m, k). \tag{2.52}$$

Since for all d dividing \overline{m} , $31 \cdot 2^k \frac{m}{d} \in O(31)$ then, from (2.23), $\sigma(\mathcal{A}, 31 \cdot 2^k \frac{m}{d}) \equiv \sigma(\mathcal{A}, 31 \cdot 2^k) \equiv -5 \pmod{2^{k+1}}$, so that (2.52) gives

$$31mS_{\mathcal{A}}(31m,k) + mS_{\mathcal{A}}(m,k) \equiv -5\sum_{d\mid \overline{m}} \mu(d) \pmod{2^{k+1}}.$$
 (2.53)

Since $\overline{m} \neq 1$, $31mS_{\mathcal{A}}(31m, k) + mS_{\mathcal{A}}(m, k) \equiv 0 \pmod{2^{k+1}}$. Recalling that m is odd, by using (2.20), (2.21) and their similar for S(31m), we obtain the desired result. \square

3 Elements of the set $\mathcal{A} = \mathcal{A}(1+z+z^3+z^4+z^5)$.

In this section, we will determine the elements of the set \mathcal{A} of the form $n=2^k31^{\tau}m$, where $\overline{m}\neq 1$ satisfies (2.24) and $\tau\in\{0,1\}$, since from Remark 2, $2^k31^{\tau}m\notin\mathcal{A}$ for all $\tau\geq 2$. The elements of the set $\mathcal{A}(1+z+z^3+z^4+z^5)$ of the form $31^{\tau}2^k$, $\tau=0$ or 1, were shown in [1] to be solutions of 2-adic equations. More precisely, the following was proved in that paper.

1) The elements of the set $\mathcal{A}(1+z+z^3+z^4+z^5)$ of the form 2^k , $k \geq 0$, are given by the 2-adic solution

$$\sum_{k>0} \chi(\mathcal{A}, 2^k) \, 2^k = S(1) = U_0 = 1 + 2 + 2^2 + 2^3 + 2^4 + 2^7 + 2^{10} + 2^{11} + \dots$$

of the equation

$$y^6 - y^5 + 3y^4 - 11y^3 + 44y^2 - 36y + 32 = 0.$$

Note that $S(1) = U_0$ follows from (2.22).

2) The elements of the set $\mathcal{A}(1+z+z^3+z^4+z^5)$ of the form $31\cdot 2^k,\,k\geq 0$, are given by the solution

$$\sum_{k\geq 0} \chi(\mathcal{A}, 31 \cdot 2^k) \, 2^k = S(31) = y = 2^2 + 2^5 + 2^{11} + \dots$$

of the equation

$$31^{5}y^{6} + 31^{5}y^{5} + 13 \cdot 31^{4}y^{4} + 91 \cdot 31^{3}y^{3} + 364 \cdot 31^{2}y^{2} + 796 \cdot 31y + 752 = 0,$$

since, from (2.53) with m = 1, we have $31S(31) = -5 - U_0$, so that

$$S(31) = \frac{5 + U_0}{1 - 32} = (1 + 4 + U_0)(1 + 2^5 + 2^{10} + \dots) = 2^2 + 2^5 + 2^{11} + \dots$$

Theorem 2. Let $m \neq 1$ be an odd integer not divisible by any prime $p \in \mathcal{P}_0$ (cf. (2.16)) neither by 31^2 . Then the sum S(m) defined by (2.20) does not vanish. So we may introduce the 2-adic valuation of S(m):

$$\gamma = \gamma(m) = v_2(S(m)). \tag{3.1}$$

Then, if 31 does not divide m, we have

$$\gamma(31m) = \gamma(m). \tag{3.2}$$

Let us assume now that m is coprime with 31. We shall use the quantities $\omega_i = \omega_i(m)$ defined by (2.18), $\ell(m)$, $\alpha = \alpha(m)$, $\alpha = \alpha(m)$ defined by (2.15), (2.25) and (2.26),

$$\alpha' = \alpha'(m) = \alpha - 2\ell(m) \mod 12 = 2\omega_5 - 2\omega_1 + \omega_4 - \omega_2 - 2\ell(m) \mod 12$$
, (3.3)

$$a' = a'(m) = a - 4\ell(m) \mod 12 = \omega_5 - \omega_1 + \omega_2 - \omega_4 - 4\ell(m) \mod 12, (3.4)$$
$$t = t(m) = \left[\frac{\omega_1 + \omega_5 + \omega_2 + \omega_4}{2} - 1\right] - \left[\frac{\omega_2 + \omega_4}{2} - 1\right]$$

$$= \begin{cases} \lceil \frac{\omega_1 + \omega_5}{2} \rceil & if \quad \omega_1 + \omega_5 \equiv \omega_2 + \omega_4 \equiv 1 \pmod{2} \\ \lceil \frac{\omega_1 + \omega_5}{2} - 1 \rceil & if \quad not. \end{cases}$$
(3.5)

We have:

(i) if $\omega_3 \neq 0$ and $\omega_2 + \omega_4 \neq 0$, the value of $\gamma = \gamma(m)$ is given by

$$\gamma = \begin{cases} \omega_3 - 1 & \text{if} \quad \alpha' \equiv 0, 1, 3, 4 \pmod{6} \\ \omega_3 & \text{if} \quad \alpha' \equiv 2 \pmod{6} \\ \omega_3 + 2 & \text{if} \quad \alpha' \equiv 5 \pmod{6}. \end{cases}$$

(ii) If $\omega_2 + \omega_4 = 0$ and $\omega_3 \ge 1$, we set $\alpha'' = \alpha' + 6\ell(m) \mod 12$ and $\delta(i) = v_2(E_i + 2^{v_2(E_i)}G)$ and we have

if
$$\omega_1 + \omega_5 < v_2(E_{\alpha''})$$
, then $\gamma = \omega_3 - 1 + \omega_1 + \omega_5$,
if $\omega_1 + \omega_5 = v_2(E_{\alpha''})$, then $\gamma = \omega_3 - 1 + \delta(\alpha'')$,
if $\omega_1 + \omega_5 > v_2(E_{\alpha''})$, then $\gamma = \omega_3 - 1 + v_2(E_{\alpha''})$.

(iii) If $\omega_3 = 0$ and $\omega_2 + \omega_4 \neq 0$, we have

$$\gamma = -1 + v_2(E_{\alpha'} + 3^t F_{a'}).$$

(iv) If
$$\omega_3 = \omega_2 = \omega_4 = 0$$
 and $\omega_1 + \omega_5 \neq 0$, we have
$$\gamma = -1 + v_2(E_{\alpha'} + 3^t F_{\alpha'} + 2^{\omega_1 + \omega_5} (-1)^{\ell(m)} G).$$

Proof. We shall prove that $S(m) \neq 0$ in each of the four cases above. Assuming $S(m) \neq 0$, it follows from Theorem 1, 2) that $S(31m) \neq 0$ and that $\gamma(31m) = \gamma(m)$, which sets (3.2).

Proof of Theorem 2 (i). In this case, formula (2.39) reduces to

$$mS(m) = 2^{\omega_3 - 1} 3^{\lceil \frac{\omega_2 + \omega_4}{2} - 1 \rceil} E_{\alpha'}.$$

Since $E_{\alpha'} \neq 0$, S(m) does not vanish; we have

$$\gamma = v_2(S(m)) = \omega_3 - 1 + v_2(E_{\alpha'})$$

and the result follows from the values of $E_{\alpha'}$ modulo 2^{11} given in Table 1.

Proof of Theorem 2 (ii). If $\omega_2 + \omega_4 = 0$ and $\omega_3 \neq 0$, formula (2.39) becomes (since, cf. (2.35), $E_{i+6} = -E_i$ holds)

$$mS(m) = \frac{2^{\omega_3 - 1}}{3} \left(E_{\alpha'} + 2^{\omega_1 + \omega_5} (-1)^{\ell(m)} G \right) = (-1)^{\ell(m)} \frac{2^{\omega_3 - 1}}{3} \left(E_{\alpha''} + 2^{\omega_1 + \omega_5} G \right).$$

As displaid in Table 1, E_i is a linear combination of E_0 and E_1 so that, from Lemma 1, S(m) does not vanish and $\gamma = \omega_3 - 1 + v_2 (E_{\alpha''} + 2^{\omega_1 + \omega_5} G)$, whence the result. The values of $v_2(E_i)$ and $\delta(i)$ calculated from Table 1 are given below.

i	0	1	2	3	4	5	6	7	8	9	10	11
$v_2(E_i)$	0	0	1	0	0	3	0	0	1	0	0	3
$\delta(i)$	1	1	2	1	1	8	2	2	4	2	2	4

Proof of Theorem 2 (iii). If $\omega_3 = 0$ and $\omega_2 + \omega_4 \neq 0$ it follows, from (2.39) and the definition of t above, that

$$mS(m) = \frac{1}{2} 3^{\lceil \frac{\omega_2 + \omega_4}{2} - 1 \rceil} (E_{\alpha'} + 3^t F_{a'}).$$

But E_i and F_i are non-zero linear combinations of, respectively, E_0 and E_1 and F_0 and F_1 ; by Lemma 1, $E_{\alpha'} + 3^t F_{a'}$ does not vanish and $\gamma = -1 + v_2(E_{\alpha'} + 3^t F_{a'})$.

Proof of Theorem 2 (iv). If $\omega_3 = \omega_2 = \omega_4 = 0$ and $m \neq 1$, formula (2.39) gives

$$mS(m) = \frac{1}{6} \left(E_{\alpha'} + 3^t F_{a'} + 2^{\omega_1 + \omega_5} (-1)^{\ell(m)} G \right).$$

From Lemma 1, we obtain $E_{\alpha'} + 3^t F_{a'} + 2^{\omega_1 + \omega_5} (-1)^{\ell(m)} G \neq 0$, which implies $S(m) \neq 0$ and $\gamma = -1 + v_2 \left(E_{\alpha'} + 3^t F_{a'} + 2^{\omega_1 + \omega_5} (-1)^{\ell(m)} G \right)$. \square

Theorem 3. Let m be an odd integer satisfying $m \neq 1$, (m, 31) = 1, and with \overline{m} of the form (2.24). Let $\gamma = \gamma(m)$ as defined in Theorem 2 and Z(m) be the odd part of the right hand-side of (2.39), so that

$$mS(m) = 2^{\gamma(m)}Z(m). \tag{3.6}$$

- (i) If $k < \gamma$, then $2^k m \notin \mathcal{A}$ and $2^k 31m \notin \mathcal{A}$.
- (ii) If $k = \gamma$, then $2^k m \in \mathcal{A}$ and $2^k 31m \in \mathcal{A}$.
- (iii) If $k = \gamma + r$, $r \ge 1$, then we set $S_r = \{2^r + 1, 2^r + 3, ..., 2^{r+1} 1\}$ and we have

$$2^{\gamma+r}m \in \mathcal{A} \iff \exists l \in \mathcal{S}_r, \ m \equiv l^{-1}Z(m) \pmod{2^{r+1}},$$

$$2^{\gamma+r}31m \in \mathcal{A} \iff \exists l \in \mathcal{S}_r, \ m \equiv -(31l)^{-1}Z(m) \pmod{2^{r+1}}.$$

Proof of Theorem 3, (i). We remind that m is odd and (cf. 2.21) $S(m) \equiv S_{\mathcal{A}}(m,k) \pmod{2^{k+1}}$. It is obvious from (3.6) that if $\gamma > k$ then $S_{\mathcal{A}}(m,k) \equiv 0 \pmod{2^{k+1}}$. So that from (1.8), $S_{\mathcal{A}}(m,k) = 0$ and $2^{h}m \notin \mathcal{A}$, for all h, $0 \leq h \leq k$. To prove that $2^{k}31m \notin \mathcal{A}$, it suffices to use this last result and (2.40) modulo 2^{k+1} .

Proof of Theorem 3, (ii). If $\gamma = k$ then the same arguments as above show that

$$mS_{\mathcal{A}}(m,k) \equiv 2^k Z(m) \pmod{2^{k+1}}.$$

So that, by using Theorem 3, (i) and (1.8), we obtain

$$2^k m \chi(\mathcal{A}, 2^k m) \equiv 2^k Z(m) \pmod{2^{k+1}}.$$

Since both m and Z(m) are odd, we get $\chi(\mathcal{A}, 2^k m) \equiv 1 \pmod{2}$, which shows that $2^k m \in \mathcal{A}$. Once again, to prove that $2^k 31m \in \mathcal{A}$, it suffices to use this last result and (2.40) modulo 2^{k+1} .

Proof of Theorem 3, (iii). Let us set $k = \gamma + r$, $r \ge 1$. (3.6) and (2.21) give

$$mS_{\mathcal{A}}(m,k) \equiv 2^{\gamma} Z(m) \pmod{2^{\gamma+r+1}}.$$
 (3.7)

So that, by using Theorem 3, (i) and (ii), we get

$$m(2^{\gamma} + 2^{\gamma+1}\chi(\mathcal{A}, 2^{\gamma+1}m) + \ldots + 2^{\gamma+r}\chi(\mathcal{A}, 2^{\gamma+r}m)) \equiv 2^{\gamma}Z(m) \pmod{2^{\gamma+r+1}},$$

which reduces to

$$m(1+2\chi(\mathcal{A},2^{\gamma+1}m)+\ldots+2^r\chi(\mathcal{A},2^{\gamma+r}m))\equiv Z(m) \pmod{2^{r+1}}.$$

By observing that $2^{\gamma+r}m \in \mathcal{A}$ if and only if $l = 1 + 2\chi(\mathcal{A}, 2^{\gamma+1}m) + \ldots + 2^r\chi(\mathcal{A}, 2^{\gamma+r}m)$ is an odd integer in \mathcal{S}_r , we obtain

$$2^{\gamma+r}m \in \mathcal{A} \iff m \equiv l^{-1}Z(m) \pmod{2^{r+1}}, \ l \in \mathcal{S}_r.$$

To prove the similar result for $2^{\gamma+r}31m$, one uses the same method and (2.40) modulo 2^{k+1} . \square

4 The counting function.

In Theorem 4 below, we will determine an asymptotic estimate to the counting function A(x) (cf. (1.2)) of the set $\mathcal{A} = \mathcal{A}(1+z+z^3+z^4+z^5)$. The following lemmas will be needed.

Lemma 3. Let K be any positive integer and $x \ge 1$ be any real number. We have

$$\mid \{n \le x : \gcd(n, K) = 1\} \mid \le 7 \frac{\varphi(K)}{K} x,$$

where φ is the Euler function.

Proof. This is a classical result from sieve theory : see Theorems 3-5 of [11]. \square

Lemma 4. (Mertens's formula) Let θ and η be two positive coprime integers. There exists an absolute constant C_1 such that, for all x > 1,

$$\pi(x; \theta, \eta) = \prod_{p \le x, \ p \equiv \theta \pmod{\eta}} \left(1 - \frac{1}{p}\right) \le \frac{C_1}{\left(\log x\right)^{\frac{1}{\varphi(\eta)}}}.$$

Proof. For θ and η fixed, Mertens's formula follows from the Prime Number Theorem in arithmetic progressions. It is proved in [9] that the constant C_1 is absolute. \square

Lemma 5. For $i \in \{2, 3, 4\}$, let

$$K_i = K_i(x) = \prod_{p \le x, \ \ell(p) \in \{0, i\}} p = \prod_{p \le x, \ p \in \mathcal{P}_0 \cup \mathcal{P}_i} p,$$

where ℓ , \mathcal{P}_0 and \mathcal{P}_i are defined by (2.15)-(2.16). Then for x large enough,

$$|\{n: 1 \le n \le x, \gcd(n, K_i) = 1\}| = \mathcal{O}\left(\frac{x}{(\log x)^{\frac{1}{3}}}\right).$$

Proof. By Lemma 3 and (2.16), we have

$$|\{n: n \le x, \gcd(n, K_i) = 1\}| \le 7x \frac{\varphi(K_i)}{K_i}$$

$$=7x\prod_{0\le j\le 4,\ \tau\in\{0,i\}}\prod_{p\le x,\ p\equiv 2^{j}3^{\tau}(\bmod\ 31)}(1-\frac{1}{p}).$$

So that by Lemma 4, for all $i \in \{2, 3, 4\}$ and x large enough,

$$|\{n: n \le x, \gcd(n, K_i) = 1\}| \le \frac{7C_1^{10}x}{(\log x)^{\frac{10}{\varphi(31)}}} = \mathcal{O}\left(\frac{x}{(\log x)^{\frac{1}{3}}}\right). \square$$

Lemma 6. Let $r, u \in \mathbb{N}_0$, ℓ and α' be the functions defined by (2.15) and (3.3), ω_j be the additive function given by (2.18). We take ξ to be a Dirichlet character modulo 2^{r+1} with ξ_0 as principal character and we let ϱ be the completely multiplicative function defined on primes p by

$$\varrho(p) = \begin{cases} 0 & \text{if } \ell(p) = 0 \text{ or } p = 31\\ 1 & \text{otherwise.} \end{cases}$$
 (4.1)

If y and z are respectively some 2^u -th and 12-th roots of unity in \mathbb{C} , and if x is a real number > 1, we set

$$S_{y,z,\xi}(x) = \sum_{2^{\omega_3(n)} n \le x} \varrho(n)\xi(n)y^{\omega_2(n) + \omega_4(n)} z^{\alpha'(n)}. \tag{4.2}$$

Then, when x tends to infinity, we have

• If $\xi \neq \xi_0$,

$$S_{y,z,\xi}(x) = \mathcal{O}\left(x\frac{\log\log x}{(\log x)^2}\right).$$
 (4.3)

• If $\xi = \xi_0$,

$$S_{y,z,\xi_0}(x) = \frac{x}{(\log x)^{1-f_{y,z}(1)}} \left(\frac{H_{y,z,\xi_0}(1)C_{y,z}}{\Gamma(f_{y,z}(1))} + \mathcal{O}\left(\frac{\log\log x}{\log x}\right) \right), \tag{4.4}$$

where Γ is the Euler gamma function,

$$f_{y,z}(s) = \frac{1}{\varphi(31)} \sum_{1 \le j \le 5} \sum_{p, \ \ell(p)=j} g_{j,y,z}(s), \tag{4.5}$$

$$g_{1,y,z}(s) = z^8, \ g_{2,y,z}(s) = yz^7, \ g_{3,y,z}(s) = \frac{z^6}{2^s}, \ g_{4,y,z}(s) = yz^5, \ g_{5,y,z}(s) = z^4,$$

$$(4.6)$$

$$H_{y,z,\xi}(s) = \prod_{1 \le j \le 5} \prod_{p, \ \ell(p)=j} \left(1 + \frac{g_{j,y,z}(s)\xi(p)}{p^s - z^{-2j}\xi(p)} \right) \left(1 - \frac{\xi(p)}{p^s} \right)^{g_{j,y,z}(s)}, \quad (4.7)$$

$$C_{y,z} = \prod_{1 \le j \le 5} \left\{ \prod_{p, \ \ell(p)=j} (1 - \frac{1}{p})^{-g_{j,y,z}(1)} \prod_{p} (1 - \frac{1}{p})^{\frac{g_{j,y,z}(1)}{30}} \right\}. \tag{4.8}$$

Proof. The evaluation of such sums is based, as we know, on the Selberg-Delange method. In [7], one finds an application towards direct results on such problems. In our case, to apply Theorem 1 of that paper, one should start with expanding, for complex number s with $\Re s > 1$, the Dirichlet series

$$F_{y,z,\xi}(s) = \sum_{n>1} \frac{\varrho(n)\xi(n)y^{\omega_2(n) + \omega_4(n)}z^{\alpha'(n)}}{(2^{\omega_3(n)}n)^s}$$

in an Euler product given by

$$F_{y,z,\xi}(s) = \prod_{1 \le j \le 5} \prod_{p, \ \ell(p)=j} \left(1 + \sum_{m=1}^{\infty} \frac{\xi(p^m) y^{\omega_2(p^m) + \omega_4(p^m)} z^{\alpha'(p^m)}}{\left(2^{\omega_3(p^m)} p^m \right)^s} \right)$$

$$= \prod_{1 \le j \le 5} \prod_{p, \ \ell(p)=j} \left(1 + \frac{g_{j,y,z}(s) \xi(p)}{p^s - z^{-2j} \xi(p)} \right),$$

which can be written

$$F_{y,z,\xi}(s) = H_{y,z,\xi}(s) \prod_{1 \le j \le 5} \prod_{p, \ \ell(p)=j} \left(1 - \frac{\xi(p)}{p^s}\right)^{-g_{j,y,z}(s)},$$

where $g_{j,y,z}(s)$ and $H_{y,z,\xi}(s)$ are defined by (4.6) and (4.7). To complete the proof of Lemma 6, one has to show that $H_{y,z,\xi}(s)$ is holomorphic for $\Re s > \frac{1}{2}$ and, for y and z fixed, that $H_{y,z,\xi}(s)$ is bounded for $\Re s \geq \sigma_0 > \frac{1}{2}$, which can be done by adapting the method given in [7] (Preuve du Theorème 2, p. 235). \square

Lemma 7. We keep the above notation and we let \mathcal{G} be the set of integers of the form $n = 2^{\omega_3(m)}m$ with the following conditions:

- $m \ odd \ and \ \gcd(m, 31) = 1,$
- $m = m_1 m_2 m_3 m_4 m_5$, where all prime factors p of m_i satisfy $\ell(p) = i$. If G(x) is the counting function of the set \mathcal{G} then, when x tends to infinity,

$$G(x) = \frac{Cx}{(\log x)^{1/4}} \left(1 + \mathcal{O}\left(\frac{\log\log x}{\log x}\right) \right),\tag{4.9}$$

where

$$C = \frac{H_{1,1,\xi_0}(1)C_{1,1}}{\Gamma(f_{1,1}(1))} = 0.61568378..., \tag{4.10}$$

 $H_{1,1,\xi_0}(1)$, $C_{1,1}$ and $f_{1,1}(1)$ are defined by (4.7),(4.8) and (4.5).

Proof of Lemma 7. We apply Lemma 6 with $y=z=1, \ \xi=\xi_0$ and remark that $G(x)=S_{1,1,\xi_0}(x)$. By observing that $(1+\frac{1}{p-1})(1-\frac{1}{p})=1$, we have

$$H_{1,1,\xi_0}(1) = \prod_{p \in \mathcal{P}_3} \left(1 + \frac{1}{2(p-1)} \right) \left(1 - \frac{1}{p} \right)^{\frac{1}{2}} = \prod_{p \in \mathcal{P}_3} \left(1 - \frac{1}{2p} \right) \left(1 - \frac{1}{p} \right)^{-\frac{1}{2}}$$

 ≈ 1.000479390466

$$C_{1,1} = \lim_{x \to \infty} \prod_{p \in \mathcal{P}_1 \cup \mathcal{P}_2 \cup \mathcal{P}_4 \cup \mathcal{P}_5, \ p \le x} \left(1 - \frac{1}{p} \right)^{-1} \prod_{p \in \mathcal{P}_3, \ p \le x} \left(1 - \frac{1}{p} \right)^{\frac{-1}{2}} \prod_{p \le x} \left(1 - \frac{1}{p} \right)^{\frac{3}{4}}$$

$$\approx 0.75410767606$$

The numerical value of the above Eulerian products has been computed by the classical method already used and described in [7]. Since $\Gamma(f_{1,1}(1)) = \Gamma(\frac{3}{4}) = 1.225416702465...$, we get (4.10). \square

Lemma 8. We keep the notation introduced in Lemmas 6 and 7. If $(y, z) \in \{(1, 1), (-1, -1)\}$, we have

$$S_{y,z,\xi_0}(x) = \frac{C x}{(\log x)^{1/4}} \left(1 + \mathcal{O}\left(\frac{\log \log x}{\log x}\right) \right), \tag{4.11}$$

while, if $(y, z, \xi) \notin \{(1, 1, \xi_0), (-1, -1, \xi_0)\}$, we have

$$S_{y,z,\xi}(x) = \mathcal{O}_r\left(\frac{x}{(\log x)^{1/4+2^{-2u-3}}}\right).$$
 (4.12)

Proof. For y = z = 1, Formula (4.11) follows from Lemma 7. For y = z = -1 (which does not occur for u = 0), it follows from (4.4) and by observing that the values of $g_{j,y,z}(s)$, $f_{y,z}(s)$, $H_{y,z,\xi}(s)$, $C_{y,z}$ do not change when replacing y by -y and z by -z.

Let us define

$$M_{y,z} = \Re(f_{y,z}(1)) = \frac{1}{6}\Re(z^6(z^2 + z^{-2} + \frac{1}{2} + y(z + z^{-1}))).$$

When $\xi \neq \xi_0$, (4.3) implies (4.12) while, if $\xi = \xi_0$, it follows from (4.4) and from the inequality to be proved

$$M_{y,z} \le \frac{3}{4} - \frac{1}{2^{2u+3}}, \qquad (y,z) \notin \{(1,1), (-1,-1)\}.$$
 (4.13)

To show (4.13), let us first recall that z is a twelfth root of unity.

If $z \neq \pm 1$, $6f_{y,z}(1)$ is equal to one of the numbers $-3/2 \pm y\sqrt{3}$, $-1/2 \pm y$, 3/2 so that

$$M_{y,z} \le |f_{y,z}(1)| \le \frac{1}{6} \left(\frac{3}{2} + \sqrt{3}\right) < 0.55 \le \frac{3}{4} - \frac{1}{2^{2u+3}}$$

for all $u \geq 0$, which proves (4.13).

If z = 1 and $y \neq 1$ (which implies $u \geq 1$), we have

$$\Re y \le \cos \frac{2\pi}{2^u} = 1 - 2\sin^2 \frac{\pi}{2^u} \le 1 - 2\left(\frac{2\pi}{2^u}\right)^2 = 1 - \frac{8\pi}{2^{2u}}$$

and

$$M_{y,1} = \frac{5}{12} + \frac{1}{3}\Re y \le \frac{3}{4} - \frac{8}{3 \cdot 2^{2u}} < \frac{3}{4} - \frac{1}{2^{2u+3}}$$

If z = -1 and $y \neq -1$, (4.13) follows from the preceding case by observing that $f_{y,z}(1) = f_{-y,-z}(1)$, which completes the proof of (4.13). \square

Lemma 9. Let \mathcal{G} be the set defined in Lemma 7, ω_j and α' be the functions given by (2.18) and (3.3). For $0 \leq j \leq 11$, r, u, λ , $t \in \mathbb{N}_0$ such that t is odd, we let $\mathcal{G}_{j,r,u,\lambda,t}$ be the set of integers $n = 2^{\omega_3(m)}m$ in \mathcal{G} with the following conditions:

- $-\alpha'(m) \equiv j \pmod{12},$
- $-\omega_2(m) + \omega_4(m) \equiv \lambda \pmod{2^u},$
- $-m \equiv t \pmod{2^{r+1}}.$

If ρ is the function given by (4.1), the counting function $G_{j,r,u,\lambda,t}(x)$ of the set $\mathcal{G}_{j,r,u,\lambda,t}$ is equal to

$$G_{j,r,u,\lambda,t}(x) = \sum_{\substack{2^{\omega_3(m)}m \leq x, \ m \equiv t \pmod{2^{r+1}}\\ \alpha'(m) \equiv j \pmod{12}, \ \omega_2(m) + \omega_4(m) \equiv \lambda \pmod{2^u}}} \rho(m)$$

If $u \ge 1$ and $\lambda \not\equiv j \pmod 2$, $\mathcal{G}_{j,r,u,\lambda,t}$ is empty while, if $\lambda \equiv j \pmod 2$, when x tends to infinity, we have

$$G_{j,r,u,\lambda,t}(x) = \frac{C}{6 \cdot 2^{r+u}} \frac{x}{(\log x)^{\frac{1}{4}}} \left(1 + \mathcal{O}\left(\frac{1}{(\log x)^{2^{-2u-3}}}\right) \right),$$

where C is the constant given by (4.10). If u = 0, then

$$G_{j,r,0,0,t}(x) = \frac{C}{12 \cdot 2^r} \frac{x}{(\log x)^{\frac{1}{4}}} \left(1 + \mathcal{O}\left(\frac{1}{(\log x)^{1/8}}\right) \right),$$

Proof. If $u \geq 1$, it follows from (3.3) that $\alpha'(m) \equiv \omega_2(m) + \omega_4(m)$ (mod 2); therefore, if $j \not\equiv \lambda \pmod{2}$, then $\mathcal{G}_{j,r,u,\lambda,t}$ is empty. Let us set

$$\zeta = e^{\frac{2i\pi}{2^u}}, \quad \mu = e^{\frac{2i\pi}{12}}.$$

By using the relations of orthogonality:

$$\sum_{j_2=0}^{11} \mu^{j_2 \alpha'(m)} \mu^{-jj_2} = \begin{cases} 12 & \text{if } \alpha' \equiv j \pmod{12} \\ 0 & \text{if not,} \end{cases}$$

$$\sum_{j_1=0}^{2^u-1} \zeta^{-\lambda j_1} \zeta^{j_1(\omega_2(m)+\omega_4(m))} = \begin{cases} 2^u & \text{if } \omega_2(m) + \omega_4(m) \equiv \lambda \pmod{2^u} \\ 0 & \text{if not,} \end{cases}$$

$$\sum_{\xi \bmod 2^{r+1}} \overline{\xi}(t) \xi(m) = \left\{ \begin{array}{cc} \varphi(2^{r+1}) = 2^r & \text{if } m \equiv t \pmod {2^{r+1}} \\ 0 & \text{if not,} \end{array} \right.$$

we get

$$G_{j,r,u,\lambda,t}(x) = \frac{1}{12 \cdot 2^{r+u}} \sum_{\xi \bmod 2^{r+1}} \sum_{j_1=0}^{2^u-1} \sum_{j_2=0}^{11} \overline{\xi}(t) \zeta^{-\lambda j_1} \mu^{-jj_2} S_{\zeta^{j_1},\mu^{j_2},\xi}(x).$$

In the above triple sums, the main contribution comes from $S_{1,1,\xi_0}(x)$ and $S_{-1,-1,\xi_0}(x)$, and the result follows from (4.11) and (4.12).

If u = 0, we have

$$G_{j,r,0,0,t}(x) = \frac{1}{12 \cdot 2^r} \sum_{\xi \mod 2^{r+1}} \sum_{j_2=0}^{11} \overline{\xi}(t) \mu^{-jj_2} S_{1,\mu^{j_2},\xi}(x)$$

and, again, the result follows from Lemma 8.

Theorem 4. Let $A = A(1 + z + z^3 + z^4 + z^5)$ be the set given by (1.3) and A(x) be its counting function. When $x \to \infty$, we have

$$A(x) \sim \kappa \frac{x}{(\log x)^{\frac{1}{4}}},$$

where $\kappa = \frac{74}{31}C = 1.469696766...$ and C is the constant of Lemma 7 defined by (4.10).

Proof of Theorem 4. Let us define the sets A_1 , A_2 , A_3 and A_4 containing the elements $n = 2^k m$ (m odd) of A with the restrictions:

$$A_1: \ \omega_3(m) \neq 0 \text{ and } \omega_2(m) + \omega_4(m) \neq 0$$

 $A_2: \ \omega_3(m) \neq 0 \text{ and } \omega_2(m) = \omega_4(m) = 0$
 $A_3: \ \omega_3(m) = 0 \text{ and } \omega_2(m) + \omega_4(m) \neq 0$
 $A_4: \ \omega_2(m) = \omega_3(m) = \omega_4(m) = 0.$

We have

$$A(x) = A_1(x) + A_2(x) + A_3(x) + A_4(x). (4.14)$$

Further, for i = 2, 3, 4, it follows from Lemma 5 that $A_i(x) = \mathcal{O}\left(\frac{x}{(\log x)^{\frac{1}{3}}}\right)$ and therefore

$$A(x) = A_1(x) + \mathcal{O}\left(\frac{x}{(\log x)^{\frac{1}{3}}}\right).$$
 (4.15)

Now, we split A_1 in two parts \mathcal{B} and $\widehat{\mathcal{B}}$ by putting in \mathcal{B} the elements $n \in A_1$ which are coprime with 31 and in $\widehat{\mathcal{B}}$ the elements $n \in A_1$ which are multiples of 31. Let us recall that, from Remark 2, no element of \mathcal{A} is a multiple of 31^2 . Therefore,

$$A_1(x) = \mathcal{B}(x) + \widehat{\mathcal{B}}(x) \tag{4.16}$$

with

$$\mathcal{B}(x) = \sum_{n=2^k m \in \mathcal{A}_1, \ n \le x} \rho(m), \quad \widehat{\mathcal{B}}(x) = \sum_{n=2^k 31 m \in \mathcal{A}_1, \ n \le x} \rho(m). \tag{4.17}$$

Let us consider $\mathcal{B}(x)$; the case of $\widehat{\mathcal{B}}$ will be similar. We define

$$\nu_i = v_2(E_i) - 1 = \begin{cases} -1 & \text{if} \quad i \equiv 0, 1, 3, 4 \pmod{6} \\ 0 & \text{if} \quad i \equiv 2 \pmod{6} \\ 2 & \text{if} \quad i \equiv 5 \pmod{6} \end{cases}$$

$$(4.18)$$

so that, if \widehat{E}_i is the odd part of E_i (cf. (2.32) and Table 1), we have

$$\widehat{E_i} = 2^{-1-\nu_i} E_i. \tag{4.19}$$

In view of Theorem 2 (i), if $i = \alpha'(m) \mod 12$ then

$$\gamma(m) - \omega_3(m) = \nu_i. \tag{4.20}$$

Further, an element $n = 2^k m$ (m odd) belonging to \mathcal{A}_1 is said of index $r \geq 0$ if $k = \gamma(m) + r$. For $r \geq 0$ and $0 \leq i \leq 11$,

$$T_r^{(i)}(x) = \sum_{\substack{n = 2^{\gamma(m) + r} m \in \mathcal{A}_1, \ n \le x \\ \alpha'(m) \equiv i \pmod{12}}} \rho(m) = \sum_{\substack{n = 2^{\gamma(m) + r} m \in \mathcal{A}_1, \ 2^{\omega_3(m)} m \le 2^{-r - \nu_i} x \\ \alpha'(m) \equiv i \pmod{12}}} \rho(m)$$

$$(4.21)$$

will count the number of elements of A_1 up to x of index r and satisfying $\alpha'(m) \equiv i \pmod{12}$, so that

$$\mathcal{B}(x) = \sum_{r \ge 0} \sum_{i=0}^{11} T_r^{(i)}(x). \tag{4.22}$$

Since $\gamma(m) \geq 0$, from the first equality in (4.21), each n counted in $T_r^{(i)}(x)$ is a multiple of 2^r , hence the trivial upper bound

$$\sum_{i=0}^{11} T_r^{(i)}(x) \le \frac{x}{2^r}$$
 (4.23)

Since $\nu_i \ge -1$, the second equality in (4.21) implies

$$\sum_{i=0}^{11} T_r^{(i)}(x) \le G(2^{1-r}x) \tag{4.24}$$

with G defined in Lemma 7. Moreover, from Lemma 7, there exists an absolute constant K such that, for x > 3,

$$G(x) \le K \frac{x}{(\log x)^{\frac{1}{4}}} \tag{4.25}$$

Now, let R be a large but fixed integer; R' is defined in terms of x by $2^{R'-1} \leq \sqrt{x} < 2^{R'}$ and $R'' = \frac{\log x}{\log 2}$. Since $T_r^{(i)}(x)$ is a non-negative integer, (4.23) implies that $T_r^{(i)}(x) = 0$ for r > R''. If x is large enough, R < R' < R'' holds. Setting

$$\mathcal{B}_R(x) = \sum_{r=0}^R \sum_{i=0}^{11} T_r^{(i)}(x), \qquad (4.26)$$

from (4.22), we have

$$\mathcal{B}(x) - \mathcal{B}_R(x) = S' + S",$$

with

$$S' = \sum_{r=R+1}^{R'} \sum_{i=0}^{11} T_r^{(i)}(x), \qquad S'' = \sum_{r=R'+1}^{R''} \sum_{i=0}^{11} T_r^{(i)}(x).$$

The definition of R' and (4.23) yield

$$S'' \le \sum_{r=R'+1}^{R''} \frac{x}{2^r} \le \sum_{r=R'+1}^{\infty} \frac{x}{2^r} = \frac{x}{2^{R'}} \le \sqrt{x},$$

while (4.24), (4.25) and the definition of R' give

$$S' \leq \sum_{r=R+1}^{R'} G\left(\frac{x}{2^{r-1}}\right) \leq \sum_{r=R+1}^{R'} \frac{2Kx}{2^r \left(\log \frac{x}{2^{R'-1}}\right)^{\frac{1}{4}}}$$
$$\leq \frac{2^{\frac{5}{4}}Kx}{(\log x)^{\frac{1}{4}}} \sum_{r=R+1}^{R'} \frac{1}{2^r} \leq \frac{3Kx}{2^R (\log x)^{\frac{1}{4}}},$$

so that, for x large enough, we have

$$0 \le \mathcal{B}(x) - \mathcal{B}_R(x) \le \sqrt{x} + \frac{3Kx}{2^R (\log x)^{\frac{1}{4}}}.$$
 (4.27)

We now have to evaluate $T_r^{(i)}(x)$; we shall distinguish two cases, r=0 and $r\geq 1$.

Calculation of $T_0^{(i)}(x)$.

From (4.21), we have

$$T_0^{(i)}(x) = \sum_{\substack{n = 2^{\gamma(m)} m \in \mathcal{A}_1, \ n \le x \\ \alpha'(m) \equiv i \pmod{12}}} \rho(m) = \sum_{\substack{n = 2^{\gamma(m)} m \in \mathcal{A}, \ n \le x, \ \omega_3 \ne 0, \ \omega_2 + \omega_4 \ne 0 \\ \alpha'(m) \equiv i \pmod{12}}} \rho(m).$$

From Theorem 3, we know that $2^{\gamma(m)}m \in \mathcal{A}$. Hence,

$$T_0^{(i)}(x) = \sum_{\substack{2^{\gamma(m)} m \le x, \ \omega_3 \ne 0, \ \omega_2 + \omega_4 \ne 0 \\ \alpha'(m) \equiv i \pmod{12}}} \rho(m),$$

which, by use of (4.20), gives

$$T_0^{(i)}(x) = \sum_{\substack{2^{\omega_3(m)} m \le 2^{-\nu_i} x, \ \omega_3 \ne 0, \ \omega_2 + \omega_4 \ne 0 \\ \alpha'(m) \equiv i \pmod{12}}} \rho(m).$$

But, at the cost of an error term $\mathcal{O}\left(\frac{x}{(\log x)^{\frac{1}{3}}}\right)$, Lemma 5 allows us to remove the conditions $\omega_3 \neq 0$, $\omega_2 + \omega_4 \neq 0$, and to get from the second part of Lemma 9,

$$T_0^{(i)}(x) = G_{i,0,0,0,1}\left(\frac{x}{2^{\nu_i}}\right) + \mathcal{O}\left(\frac{x}{(\log x)^{\frac{1}{3}}}\right)$$

$$= \frac{C}{12} \frac{x}{2^{\nu_i} (\log x)^{\frac{1}{4}}} \left(1 + \mathcal{O}\left(\frac{1}{(\log x)^{1/12}}\right) \right). \tag{4.28}$$

Calculation of $T_r^{(i)}(x)$ for $r \geq 1$.

Under the conditions $\omega_3 \neq 0$ and $\omega_2 + \omega_4 \neq 0$, from (3.6), (2.39), (3.3), (4.19) and (4.20), we get

$$Z(m) = 3^{\lceil \frac{\omega_2 + \omega_4}{2} - 1 \rceil} \widehat{E}_{\alpha'(m)}.$$

From (4.21), it follows that

$$T_r^{(i)}(x) = \sum_{\substack{n=2^{\gamma(m)+r} m \in \mathcal{A}, \ n \le x, \ \omega_3 \ne 0, \ \omega_2 + \omega_4 \ne 0 \\ \alpha'(m) \equiv i \pmod{12}}} \rho(m).$$

Now, by Theorem 3, we know that $2^{\gamma(m)+r}m$ belongs to \mathcal{A} if there is some $l \in \mathcal{S}_r = \{2^r + 1, ..., 2^{r+1} - 1\}$ such that $m \equiv l^{-1}Z(m) \mod 2^{r+1}$. Note that the order of 3 modulo 2^{r+1} is 2^{r-1} if $r \geq 2$ and 2^r if r = 1. We choose

$$u = r + 1$$

so that $\omega_2 + \omega_4 \equiv \lambda \pmod{2^{r+1}}$ implies $3^{\lceil \frac{\lambda}{2} - 1 \rceil} \equiv 3^{\lceil \frac{\omega_2 + \omega_4}{2} - 1 \rceil} \pmod{2^{r+1}}$. Therefore, we have

$$T_r^{(i)}(x) = \sum_{l \in \mathcal{S}_r} \sum_{\lambda=0}^{2^{r+1}-1} \sum_{\substack{2^{\omega_3(m)} m \le 2^{-\nu_i - r} x, \ \omega_3 \ne 0, \ \omega_2 + \omega_4 \ne 0 \\ \alpha'(m) \equiv i \pmod{12}, \ \omega_2 + \omega_4 \equiv \lambda \pmod{2^{r+1}}} \rho(m).$$

$$m \equiv l^{-1} 3^{\lceil \frac{\lambda}{2} - 1 \rceil} \widehat{E_i} \pmod{2^{r+1}}$$

As in the case r = 0, we can remove the conditions $\omega_3 \neq 0$ and $\omega_2 + \omega_4 \neq 0$ in the last sum by adding a $\mathcal{O}\left(\frac{x}{(\log x)^{\frac{1}{3}}}\right)$ error term, and we get by Lemma 9 for r fixed

$$T_r^{(i)}(x) = \sum_{l \in \mathcal{S}_r} \sum_{\substack{\lambda = 0 \\ \lambda \equiv i \pmod{2}}}^{2^{r+1} - 1} G_{i,r,r+1,\lambda,l^{-1}3^{\lceil \frac{\lambda}{2} - 1 \rceil} \widehat{E}_i} \left(\frac{x}{2^{\nu_i + r}} \right) + \mathcal{O}\left(\frac{x}{(\log x)^{\frac{1}{3}}} \right)$$

$$= \frac{C}{24} \frac{x}{2^{\nu_i + r} (\log x)^{\frac{1}{4}}} \left(1 + \mathcal{O}\left(\frac{1}{(\log x)^{2^{-2r - 5}}} \right) \right). \tag{4.29}$$

From (4.26), (4.28), (4.29) and (4.18), we have

$$\mathcal{B}_{R}(x) = \frac{Cx}{12(\log x)^{\frac{1}{4}}} \left(\left(\sum_{i=0}^{11} \frac{1}{2^{\nu_{i}}} \right) \left(1 + \frac{1}{2} \sum_{r=1}^{R} \frac{1}{2^{r}} \right) + \mathcal{O}\left(\frac{1}{(\log x)^{2^{-2R-5}}} \right) \right)$$
$$= \frac{37}{24} \frac{Cx}{(\log x)^{\frac{1}{4}}} \left(\frac{3}{2} - \frac{1}{2^{R}} \right) \left(1 + \mathcal{O}\left(\frac{1}{(\log x)^{2^{-2R-5}}} \right) \right).$$

By making R going to infinity, the above equality together with (4.27) show that

$$\mathcal{B}(x) \sim \frac{37}{16} \frac{Cx}{(\log x)^{\frac{1}{4}}}, \quad x \to \infty.$$
 (4.30)

In a similar way, we can show that $\widehat{\mathcal{B}}(x)$ defined in (4.17) satisfies

$$\widehat{\mathcal{B}}(x) \sim \frac{1}{31} \mathcal{B}(x) \sim \frac{37}{16 \cdot 31} \frac{x}{(\log x)^{\frac{1}{4}}}$$

which, with (4.16) and (4.15), completes the proof of Theorem 4 with

$$\kappa = \frac{37}{16} \left(1 + \frac{1}{31} \right) C = \frac{74}{31} C = 1.469696766...$$

Numerical computation of A(x).

There are three ways to compute A(x). The first one uses the definition of \mathcal{A} and simultaneously calculates the number of partitions $p(\mathcal{A}, n)$ for $n \leq x$; it is rather slow. The second one is based on the relation (1.10) and the congruences (2.19) and (2.23) satisfied by $\sigma(\mathcal{A}, n)$. The third one calculates $\omega_j(n)$, $0 \leq j \leq 5$, in view of applying Theorem 1. The two last methods can be encoded in a sieving process

The following table displays the values of A(x), $A_1(x)$, ..., $A_4(x)$ as defined in (4.14) and also

$$c(x) = \frac{A(x)(\log x)^{\frac{1}{4}}}{x}, \quad c_1(x) = \frac{A_1(x)(\log x)^{\frac{1}{4}}}{x}.$$

It seems that c(x) and $c_1(x)$ converge very slowly to $\kappa = 1.469696766...$, which is impossible to guess from the table.

x	A(x)	c(x)	$A_1(x)$	$c_1(x)$	$A_2(x)$	$A_3(x)$	$A_4(x)$
10^{3}	480	0.7782	20	0.032	44	233	183
10^{4}	4543	0.7914	361	0.063	532	2294	1356
10^{5}	43023	0.7925	5087	0.094	5361	21810	10765
10^{6}	411764	0.7939	60565	0.117	52344	208633	90222
10^{7}	3981774	0.7978	680728	0.136	506199	2007168	787679
10^{8}	38719773	0.8022	7403138	0.153	4887357	19390529	7038749

Thanks

We are pleased to thank A. Sárközy who first considered the sets \mathcal{A} 's such that the number of partitions $p(\mathcal{A}, n)$ is even for n large enough for his interest in our work and X. Roblot for valuable discussions about 2-adic numbers.

References

- [1] N. Baccar, Sets with even partition functions and 2-adic integers, Periodica Math. Hung., Vol. 55 (2), 2007, pp. 177-193.
- [2] N. Baccar and F. Ben Saïd, On sets such that the partition function is even from a certain point on, to appear in International Journal of Number Theory, 2009.
- [3] N. Baccar, F. Ben Saïd and A. Zekraoui, On the divisor function of sets with even partition functions, Acta Math. Hungarica, 112 (1-2) (2006), 25-37.
- [4] F. Ben Saïd, On a conjecture of Nicolas-Sárközy about partitions, Journal of Number Theory, 95 (2002), 209-226.
- [5] F. Ben Saïd, On some sets with even partition function, The Ramanujan Journal, 9, 2005, 63-75.
- [6] F. Ben Saïd and J.-L. Nicolas, Sets of parts such that the partition function is even, Acta Arithmetica, 106 (2003), 183-196.
- [7] F. Ben Saïd and J.-L. Nicolas, Sur une application de la formule de Selberg-Delange, Colloquium Mathematicum, vol. 98, n° 2, (2003), 223-247.
- [8] F. Ben Saïd and J.-L. Nicolas, Even partition functions, Séminaire Lotharingien de Combinatoire (http://www.mat.univie.ac.at/slc/), 46 (2002), B 46i.
- [9] F. Ben Saïd, H. Lahouar and J.-L. Nicolas, On the counting function of the sets of parts such that the partition function takes even values for n large enough, Discrete Mathematics, 306 (2006), 1089-1096.
- [10] P. M. Cohn, Algebra, Volume 1, Second Edition, John Wiley and Sons Ltd, 1988.
- [11] H. Halberstam, H.-E. Richert, Sieve methods, Academic Press, New York, 1974.
- [12] H. Lahouar, Fonctions de partitions à parité périodique, European Journal of Combinatorics, 24 (2003), 1089-1096.
- [13] R. Lidl and H. Niederreiter, Introduction to finite fields and their applications, Cambridge University Press, revised edition, 1994.
- [14] J.-L. Nicolas, I.Z. Ruzsa and A. Sárközy, On the parity of additive representation functions, J. Number Theory **73** (1998), 292-317.
- [15] J.-L. Nicolas, On the parity of generalized partition functions II, Periodica Mathematica Hungarica, 43 (2001), 177-189.