GEOMETRIA I

GRADO DE MATEMÁTICAS DOBLE GRADO DE MATEMÁTICAS Y FÍSICA DOBLE GRADO DE MATEMÁTICAS e INFORMÁTICA

24 de enero de 2022 Convocatoria ordinaria

1. (2 ptos) Sean U_1, \ldots, U_n una familia finita de subespacios vectoriales de un espacio vectorial V. Demostrar que

$$\sum_{i=1}^{n} U_{i} = \left\{ u_{1} + ... + u_{n} : u_{i} \in U_{i} \ \forall i \in \{1, ..., n\} \right\}$$

Por definición $\sum_{i=1}^{n} U_i = L \left(\bigcup_{i=1}^{n} U_i \right)$

2. (2 ptos) Sean V y V' espacios vectoriales finito generados y sean $\Phi: V \to V^{**}$, y $\Phi': V' \to V'^{**}$ los correspondientes isomorfismos del Teorema de Reflexividad. Demostrar que si $f: V \to V'$ es una aplicación lineal entonces $\Phi' \circ f = (f^t)^t \circ \Phi$.

3. (3 ptos) En el espacio vectorial $A_3(\mathbb{R})$ de las matrices antisimétricas de orden 3 con coeficientes reales, se considera el subespacio vectorial

$$U = \left\{ A \in A_3(\mathbb{R}) : \operatorname{traz}(A \cdot M) = 0 \right\}$$

siendo M =
$$\begin{pmatrix} 1 & -1 & 1 \\ 1 & -1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$

(lpha) Calcular un subespacio complemetario de U en $A_3(\mathbb{R})$

(b) Calcular un subespacio complementario de L $\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1 & + U \\
0 & -1 & 0
\end{pmatrix}$ en $A_3(\mathbb{R})/U$

(c) Sea $f: A_3(\mathbb{R}) \to \mathbb{R}$ dada por f(A) = traz(AM), comprobar que $f \in A_3(\mathbb{R})^*$ y calcular una base de $A_3(\mathbb{R})^*$ que contenga a f.

4. (3 ptos) Sea la aplicación lineal $f: \mathbb{R}^3 \to \mathbb{R}^3$ dada por

$$M(f,B_{u}) = \begin{pmatrix} 3 & 2 & 0 \\ -3 & -2 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

(lpha) Calcular, en caso de que existan, bases B y B' de \mathbb{R}^3 tal que la matriz de f en esas bases sea

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)$$

(b) Determinar si es posible resolver el apartado anterior con una única base (B = B'), y si es posible calcular dicha base.

1