Übungsblatt 04 Elias Gestrich

Aufgabe 4.1:

(a)

$$f(T)(x_1, x_2, x_3) = \left(\sum_{i=0}^{3} c_i T^i\right) (x_1, x_2, x_3)$$

$$= \sum_{i=0}^{3} c_i T^i(x_1, x_2, x_3)$$

$$= -(T \circ T \circ T)(x_1, x_2, x_3) + 2 \cdot (x_1, x_2, x_3)$$

$$= -T(T(T((x_1, x_2, x_3)))) + 2 \cdot (x_1, x_2, x_3)$$

$$= -T(T((x_1, x_3, -2x_2 - x_3))) + 2 \cdot (x_1, x_2, x_3)$$

$$= -T((x_1, -2x_2 - x_3, -2x_3 + 2x_2 + x_3)) + 2 \cdot (x_1, x_2, x_3)$$

$$= -T((x_1, -2x_2 - x_3, 2x_2 - x_3)) + 2 \cdot (x_1, x_2, x_3)$$

$$= -(x_1, 2x_2 - x_3, 4x_2 + 2x_3 - (2x_2 - x_3)) + 2 \cdot (x_1, x_2, x_3)$$

$$= -(x_1, 2x_2 - x_3, 4x_2 + 2x_3 - 2x_2 + x_3) + 2 \cdot (x_1, x_2, x_3)$$

$$= -(x_1, 2x_2 - x_3, 2x_2 + 3x_3) + 2 \cdot (x_1, x_2, x_3)$$

$$= -(x_1, 2x_2 - x_3, 2x_2 + 3x_3) + 2 \cdot (x_1, x_2, x_3)$$

$$= (x_1, 2x_2 - x_3, 2x_2 - 3x_3) + 2 \cdot (x_1, x_2, x_3)$$

$$= (x_1, x_3, -2x_2 - x_3)$$

und somit f(T) = T

(b) Vor.: K ein Körper

$$\varphi_h: K[x] \to K[x], f = \sum_{i=0}^n c_i x^i \mapsto \sum_{i=0}^n c_i h^i$$
wobei $h^0 = 1, \underbrace{h \cdot \dots \cdot h}_{i\text{-mal}} \in K[x] (i \ge 1).$

Beh.: φ_h linear und injektiv, also $\forall f, g \in K[x], \lambda_1, \lambda_2 \in K$

$$\varphi_h(\lambda_1 f + \lambda_2 g) = \lambda_1 \varphi_h(f) + \lambda_2 \varphi_h(g)$$
 und
$$\varphi_h(f) = 0 \implies f = 0$$

Bew.: Sei $f,g \in K$ gegeben mit $f = \sum_{i=0}^n f_i x^i, g = \sum_{i=0}^m g_i x^i$ und $\lambda_1,\lambda_2 \in K$. Œ $n \geq m$ und

 $g_i = 0$ für $m < i \le n$, so gilt:

$$\varphi_h(\lambda_1 f + \lambda_2 g) = \varphi_h \left(\lambda_1 \left(\sum_{i=0}^n f_i x^i \right) + \lambda_2 \left(\sum_{i=0}^m g_i x^i \right) \right)$$

$$= \varphi_h \left(\left(\sum_{i=0}^n \lambda_1 f_i x^i \right) + \left(\sum_{i=0}^m \lambda_2 g_i x^i \right) \right)$$

$$= \varphi_h \left(\sum_{i=0}^n \lambda_1 f_i x^i + \lambda_2 g_i x^i \right)$$

$$= \varphi_h \left(\sum_{i=0}^n (\lambda_1 f_i + \lambda_2 g_i) x^i \right)$$

$$= \sum_{i=0}^n (\lambda_1 f_i + \lambda_2 g_i) h^i$$

$$= \left(\sum_{i=0}^n \lambda_1 f_i h^i \right) + \left(\sum_{i=0}^m \lambda_2 g_i h^i \right)$$

$$= \left(\lambda_1 \sum_{i=0}^n f_i h^i \right) + \left(\lambda_2 \sum_{i=0}^m g_i h^i \right)$$

$$= \lambda_1 \varphi_h \left(\sum_{i=0}^n f_i x^i \right) + \lambda_2 \varphi_h \left(\sum_{i=0}^m g_i h^i \right)$$

$$= \lambda_1 \varphi_h \left(f \right) + \lambda_2 \varphi_h \left(g \right),$$

was zu zeigen war

Für deg
$$h=:l$$
 gilt deg $(h^i)=\deg(\underbrace{h\cdot\dots\cdot h}_{i\text{-mal}})=\underbrace{l+\dots+l}_{i\text{-mal}}=il$ Also

$$\deg(\varphi_h(f)) = \deg(f) \cdot l = nl = \deg(f) \cdot \deg(h). \tag{1}$$

Wenn also $n \ge 1$, dann auch $\deg(\varphi_h(f)) \ge 1$, also ist $f = f_0$. Also $0 = \varphi_h(f) = \sum_{i=0}^0 f_i h^i = f_0 \cdot 1 = f_0 = 0$, somit ist auch $f = f_0 = 0$

- (c) s. (1)
- (d) **Beh.:** φ_h ist genau dann ein Isomorphismus, wenn $\deg(h) = 1$
 - Bew.: " \Longrightarrow ": Durch Kontraposition, sei $\deg(h) = n > 1$, zu zeigen φ_h ist kein Isomorphismus, insbesondere φ_h ist nicht surjektiv. Betrachte hierfür die Funktion g(x) = x, mit $\deg(g) = 1$. Für alle Funktionen $f \in K[x]$ mit $\deg(f) = m$ gilt $\deg(\varphi_h(f)) = n \cdot m$. Für m = 0 gilt $\deg(\varphi_h(f)) = 0$ und für $n \ge 1$ gilt $\deg(\varphi_h(f)) = nm > n \ge 1$, da aber wenn $\varphi_h(f) = g$ gelten soll auch der Grad der Funktionen gleich sein muss, aber $\deg(\varphi_h(f)) \ne 1$ für alle $f \in K[x]$, gibt es kein $f \in K[x]$ mit $\varphi_h(f) = g$
 - " \Leftarrow ": Sei $h \in K[x]$ mit $\deg(h) = 1$, also $h = h_0 + h_1 x$ mit $h_1 \neq 0$ Sei $g \in K[x]$ beliebig mit $\deg(g) = n$. So gilt nach Tayors Formel mit Entwicklungspunkt $a = -\frac{h_0}{h_1}$:

$$g = \sum_{i=0}^{n} \frac{g^{(i)}}{i!} \cdot \left(x + \frac{h_0}{h_1}\right)^i = \sum_{i=0}^{n} \frac{g^{(i)}}{h_1^i i!} \cdot (h_0 + h_1 x)^i$$

Wähle $f = \sum_{i=0}^{n} f_i x^i$ mit

$$f_i \coloneqq \frac{g^{(i)}}{h_1^i i!}$$

so, dass

$$\varphi_h(f) = \sum_{i=0}^n \frac{g^{(i)}}{h_1^i i!} h^i = \sum_{i=0}^n \frac{g^{(i)}}{h_1^i i!} (h_0 + h_1 x)^i = g$$

Aufgabe 4.2:

- (a) Sei $f \in K[x]$ gegeben mit $f = \sum_{i=0}^n f_i x^i$, zu zeigen es existieren endlich viele $c_{\sigma(1)}, \ldots, c_{\sigma(m)}$ mit σ injektiv, sodass $f = \sum_{i=0}^m c_{\sigma(i)} x^{\sigma(i)}$. Wähle $\sigma = \operatorname{Id}, m = n \text{ und } c_i = f_i, \operatorname{sodass} \sum_{i=0}^m c_{\sigma(i)} x^{\sigma(i)} = \sum_{i=0}^n c_i x^i = \sum_{i=0}^n f_i x^i = f$
- (b) Wähle $f = \sum_{i=0}^{\infty} x^i \in K[\![x]\!]$. Behauptung, f ist nicht durch eine enldiche lineare Kombination von Elementen aus \mathcal{B} darstellbar. Zum Widerspruch, nehme an es gäbe eine endliche Linearkombination aus Elementen aus \mathcal{B} , sodass diese f darstellt. Dann muss es auch ein Element x^k aus \mathcal{B} geben mit dem größtem k, sei dies n. Also existieren c_0, \ldots, c_n mit $f = \sum_{i=0}^n c_i x^i$. Das ist aber ein Widerspruch dazu, dass $f = \sum_{i=0}^{\infty} x^i$ ist.

Aufgabe 4.3:

- (a) Da K endlich ist $\exists m, l \in \mathbb{N}$, sodass $c^m = c^l$, $\times m > l$, also $c^{m-l} = 1$. Setze n = m l, sodass $c^n = c^{m-l} = 1$.
- (b) Sei $m:=\operatorname{Char}(K)\geq 1$. Für alle $i=1,\ldots,m-1$ existiert nach (a) ein n_i mit $i^{n_i}=1$. Sei $n=1+\prod_{i=1}^{m-1}n_i$, so dass für alle $c\in K$ gilt

$$c^n = c^{\left(1 + \prod_i n_i\right)} = c \cdot (c^{n_c})^{\left(\prod_{i \neq c} n_i\right)} = c \cdot (1)^{\left(\prod_{i \neq c} n_i\right)} = c \cdot 1 = c$$

Sei $f_1 = cx$ ein Polynom und $f_2 = cx^n$ so, dass $f_1 \neq f_2$ Dann folgt $\phi(f_1)(a) = c \cdot a = c \cdot a^n = \phi(f_2)(a)$. Für alle $a \in K$. Also $\phi(f_1) = \phi(f_2)$

Aufgabe 4.4:

(a) Für $i \neq j$:

$$L_{i}(P_{j}) = P_{j}(t_{i})$$

$$= \prod_{k \neq j} \frac{t_{i} - t_{k}}{t_{j} - t_{k}}$$

$$= \frac{t_{i} - t_{i}}{t_{j} - t_{i}} \cdot \left(\prod_{k \neq j, k \neq i} \frac{t_{i} - t_{k}}{t_{j} - t_{k}} \right)$$

$$= 0 \cdot \left(\prod_{k \neq j, k \neq i} \frac{t_{i} - t_{k}}{t_{j} - t_{k}} \right)$$

$$= 0$$

und für i = j:

$$L_i(P_j) = L_i(P_i)$$

$$= P_i(t_i)$$

$$= \prod_{k \neq i} \frac{t_i - t_k}{t_i - t_k}$$

$$= 1$$

(b) Lineare Unabhängigkeit von $\{P_0,\ldots,P_n\}$: Sei

$$\sum_{i=0}^{n} a_i P_i = 0$$

zu zeigen $a_i=0$ für alle $1\leq i\leq n$. Betrachte hierfür:

$$0 = L_j(0)$$

$$= L\left(\sum_{i=0}^n a_i P_i\right)$$

$$= \sum_{i=0}^n a_i L_j(P_i)$$

$$= \sum_{i=0}^n a_i \delta_{ij}$$

$$= a_j$$

Also $a_j = 0$ für alle $1 \le j \le n$, was zu zeigen war. Da $\{1, x, \dots, x^n\}$ eine Basis für $K[x]_{\le n}$ gilt dim $V = n + 1 = |\{P_0, \dots, P_n\}|$. Also $\{P_0, \dots, P_n\}$ Basis von V.

Da $|\{L_0,\ldots,L_n\}|=|\{P_0,\ldots,P_n\}|$ und $L_i(P_j)=\delta_{ij}$ ist $\{L_0,\ldots,L_n\}$ die Dualbasis zu $\{P_0,\ldots,P_n\}$ und damit insbesondere eine Basis.