GIẢI TÍCH I BÀI 4. (§1.9, §1.10)

§1.9 ĐẠO HÀM VÀ VI PHÂN (Tiếp theo)

5. Đạo hàm và vi phân cấp cao.

a) Đạo hàm cấp cao.

Định nghĩa.
$$f^{(n)}(x) = (f^{(n-1)}(x))'$$

Ví dụ 1. a)
$$y = \cos x$$
, $y^{(n)} = \cos \left(x + n\frac{\pi}{2}\right)$
b) $y = x^{\alpha}$, $\alpha \in \mathbb{R}$, tính $y^{(n)}$

c) $y = \log_a |x|$, tính $y^{(n)}$

Quy tắc. $\exists f^{(n)}(x), g^{(n)}(x)$

$$1^{\circ}) (\alpha f(x))^{(n)} = \alpha f^{(n)}(x)$$

$$2^{\circ}$$
) $(f(x) \pm g(x))^{(n)} = f^{(n)}(x) \pm g^{(n)}(x)$

3°)
$$(f(x).g(x))^{(n)} = \sum_{k=0}^{n} C_n^k f^{(k)}(x) g^{(n-k)}(x)$$

Ví dụ 2. $y = x \ln x$, tính $y^{(5)}$. **Ví dụ 3.** $y = \sin ax \cos bx$, tính $y^{(20)}$

Ví dụ 4.
$$y = x^2 \cos x$$
, tính $y^{(30)}$. Ví dụ 5. $y = \frac{1}{x^2 - 1}$, tính $y^{(n)}$

Ví dụ 6. a)(K50) 1.
$$y = \frac{1-2x}{e^{2x}}$$
, tính $y^{(n)}$ $((-2)^n e^{-2x} (n+1-2x))$

2.
$$y = x \ln(1-3x)$$
, tính $y^{(n)}$ $\left(\frac{(n-2)!3^{n-1}}{(1-3x)^n}(3x-n)\right)$

b)(K52) 1.
$$y = f(x)$$
,
$$\begin{cases} x = 3t + 2t^3 \\ y = te^{t^2} \end{cases}$$
, tính $f'(x)$, $f''(x)$ $(f' = \frac{e^{t^2}}{3}, f'' = \frac{2te^{t^2}}{9(1 + 2t^2)})$

2.
$$y = f(x)$$
, $\begin{cases} x = t + e^t \\ y = 2t - e^{2t} \end{cases}$, tính $f'(x)$, $f''(x)$ $(f' = 2(1 - e^t), f'' = \frac{-2e^t}{1 + e^t})$

c)(K55) 1.
$$f(x) = x^2 \sin(1 - x)$$
. Tính $f^{(50)}(1)$ (-100)

2.
$$f(x) = (1 - x)^2 \cos x$$
. Tính $f^{(51)}(0)$ (102)

d)(K57) Cho
$$f(x) = \ln \left| \frac{2x-1}{2x^2 - x - 1} \right|$$
. Tính $f^{(2n)}(0)$ ((2n-1)!)

e)(K60) 1.
$$f(x) = x^9 \ln x$$
. Tính $f^{(10)}(1)$ (9!)

2.
$$f(x) = \ln \frac{1}{1+x}$$
. Tính $f^{(10)}(0)$ (9!)

3.
$$f(x) = \frac{x^3}{x-2}$$
. Tính $f^{(20)}(x)$

$$(8\frac{20!}{(x-2)^{21}})$$

f)(K62)
$$f(x) = \frac{1}{\sqrt{1+x}}$$
. Tính $f^{(50)}(x)$.

$$(\frac{99!}{2^{50}}\frac{1}{\sqrt{(1+x)^{101}}}, x > -1$$

b) Vi phân cấp cao

Định nghĩa. $d^n f = d(d^{n-1}f)$

khi x là biến số độc lập ta có $d^n f = f^{(n)}(x) dx^n$.

Ví dụ 7. $y = x^3 e^x$, tính $d^{10}y$

Vi phân cấp cao không có tính bất biến

Ví dụ 8. $y = x^3$, $x = t^2$, có $d^2y \neq y^{(2)}dx^2$

Ví dụ 9(K52) a)
$$y = (x + 1)^2 \ln(2x + 3)$$
, tính $d^{11}y(-1)$, $(8!C_{11}^2 2^{10} dx^{11})$

b)
$$y = (1 - x^2) \ln(2x - 1)$$
, tính d¹⁰ $y(1)$. $(-7!C_{10}^2.2^9 dx^{10})$

Ví dụ 10(K54) a)
$$f(x) = e^x \sin x$$
, tính d²² $f(0)$ (-2¹¹ dx^{22})

b)
$$f(x) = e^x \cos x$$
, tính $d^{20}f(0)$ (-2¹⁰ dx^{20})

Ví dụ 11(K56) a)
$$f(x) = (x^3 + 1)\ln(1 + x)$$
. Tính d⁷ $f(0)$ (-540 d x^7)

b)
$$f(x) = (x^3 - 1)\ln(1 - x)$$
. Tính $d^7 f(0)$ (-540 dx^7)

§ 1.10. CÁC ĐỊNH LÍ VỀ HÀM KHẢ VI VÀ ỨNG DỤNG

• Đặt vấn đề.

1. Các định lí về hàm khả vi

Định lí Fermat. f(x) xác định trên (a; b), f(x) đạt cực trị tại $c \in (a; b)$, $\exists f'(c)$ thì f'(c) = 0.

Ví dụ 1. a)
$$y = x^2$$
, $x \in (-1; 2)$ b) $y = |x|, x \in (-1; 1)$.

Định lí Rolle. f(x) liên tục trên [a;b], khả vi trên (a;b), $f(a)=f(b)\Rightarrow \exists c\in (a;b)$ sao cho f'(c)=0

Ví dụ 2. $f(x) = (x + 1)(x + 2)(x + 3), x \in [-3; -1]$

Ví dụ 3.
$$f(x) = 2 - \sqrt[5]{x^4}$$
, $x \in [-1; 1]$. Ví dụ 4. $f(x) = x^2 + 2x$, $x \in \left[-\frac{3}{2}; 1 \right]$

Ví dụ 5(K51) f(x) khả vi [0; 1], f'(0).f'(1) < 0. CMR $\exists c \in (0; 1)$: f'(c) = 0. **Ví dụ 6.**

a)(K52) 1. Cho a = b + c. CMR phương trình $4ax^3 + 3bx^2 + c = 0$ có nghiệm thuộc khoảng (-1; 0).

2. Cho a + b + c = 0. CMR phương trình $ax^3 + 2bx + 2c = 0$ có nghiệm thuộc khoảng (0; 2).

b)(K54) 1.CMR: Với mọi số tự nhiên lẻ n, phương trình $x = \int_{0}^{x} (\arctan t)^{n} dt$ có không quá 2 nghiệm thực phân biệt

2. CMR: Với mọi số tự nhiên lẻ n, phương trình $x = \int_{0}^{x} (\operatorname{arccot} t)^{n} dt$ có không quá 2 nghiệm thực phân biệt.

c)(K59) Cho 6a = 4b + 3c. CMR phương trình $ax^3 + bx^2 + c = 0$ có ít nhất một nghiệm trong khoảng (-2; 0).

d)(K60) 1. Hàm số $f(x) = x^2 + 2x$ có thỏa mãn định lý Rolle trên $[-\frac{3}{2},1]$? Kết luận của định lý Rolle có còn đúng? (không, $c = -1 \in (-\frac{3}{2},1]$: f'(c) = 0)

2. Hàm số $f(x) = x^2 + 3x$ có thỏa mãn định lý Rolle trên [0,2]? Kết luận của định lý Rolle có còn đúng? (không, $c = 1 \in (0,2)$: f'(c) = 0)

e)(K61) 1. Cho a + b + c = 0. CMR phương trình $6ax^5 + 5bx^4 + c = 0$ có ít nhất một nghiệm trong khoảng (0; 1). (3)

c)(K59) 1. Hàm số f(x) = |x|(x-1), $1 \le x \le 2$ có thỏa mãn định lý Lagrange? công thức Lagrange có đúng cho hàm đó? (thỏa mãn, $c = \frac{3}{2}$)

2. Hàm số f(x) = |x|(x+1), $-1 \le x \le 2$ có thỏa mãn định lý Lagrange ? công thức Lagrange có đúng cho hàm đó ? (không, $c = \frac{1}{2}$)

3. Cho $x_i, y_i \in (a; b), x_i > y_i$, $i = \overline{1, n}$. CMR nếu f khả vi trên (a;b) thì tồn tại số $c \in (a; b)$, sao cho $\sum_{i=1}^n [f(x_i) - f(y_i)] = f'(c) \sum_{i=1}^n (x_i - y_i)$.

Định lí Cauchy. f(x), g(x) liên tục trên [a;b], khả vi trên $(a;b) \Rightarrow \exists c \in (a;b)$: (f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).

Ngoài ra, nếu $g'(x) \neq 0$, $\forall x \in (a; b)$ thì có

$$\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(c)}{g'(c)}.$$

Ví dụ 11. $f(x) = x^2$, $g(x) = x^3$, $x \in [1; 2]$

Ví dụ 12. $f(x) = |x|(x + 1), g(x) = x, x \in [-2; 1]$

Ví dụ 13. a)(K53) 1) CMR $\forall x > 0$ có $3\arctan x + \arctan(x + 2) < 4\arctan(x + 1)$. 2) CMR $\forall x > 0$ có $2\operatorname{arccot} x + \operatorname{arccot} (x + 2) > 3\operatorname{arccot} (x + 1)$.

b)(K58) 1) Cho phương trình
$$x^4 + a_1 x^3 + a_2 x^2 + a_3 x + a_4 = 0$$
, $\prod_{k=1}^4 a_k \neq 0$, có

bốn nghiệm thực phân biệt. CMR: $3(a_1)^2 > 8a_2$

- 2) Cho f(x) liên tục trên [0,1], khả vi trên (0,1), có f(0)=0, f(1)=1.
- +) CMR: phương trình f(x)=1-x có nghiệm trong khoảng (0,1)
- +) CMR : Tồn tại hai số a, $b \in (0,1)$: f'(a)f'(b) = 1.
- c)(K59) 1. Hàm số f(x) = |x|(x+1), g(x) = x-1, $-1 \le x \le 2$ có thỏa mãn định lý Cauchy ? công thức Cauchy có đúng cho hàm đó ? (không thỏa mãn, $c = \frac{1}{2}$)
- 2. Hàm số f(x) = |x|(x-1), g(x) = x+1, $-2 \le x \le 1$ có thỏa mãn định lý Cauchy ? công thức Cauchy có đúng cho hàm đó ? (không thỏa mãn, $c = -\frac{1}{2}$)

HAVE A GOOD UNDERSTANDING!