



## **CASE STUDY**

# REGRESSION ANALYSIS (RA)

Due Date: 9th September, 2015

Date of Submission: 8th September, 2015

Supervisor's Remarks

Late Submission:

Plagiarism:

**Completeness:** 

**Quality of Content:** 

**Results and Interpretations:** 

**Additional Remarks:** 

# **Contents**

|                                                       | Page no. |
|-------------------------------------------------------|----------|
| About RA                                              | 4        |
| a) Model Building                                     | 5-7      |
| b) Multicollinearity                                  | 7-10     |
| Detection and Removal of Multicollinearity using:     |          |
| Correlation Analysis                                  | 7-9      |
| <ul> <li>Variance Inflation Factors (VIFs)</li> </ul> | 9-10     |
| c) Parsimonious Modelling or Model Selection          | 11-16    |
| ■ Forward Selection                                   | 11       |
| Backward Elimination                                  | 12-14    |
| <ul> <li>Stepwise Selection</li> </ul>                | 15-16    |
| d) Validation of Assumptions and Residual Analysis    | 16-20    |
| <ul><li>Linearity of Regression</li></ul>             | 16-17    |
| <ul> <li>Autocorrelation</li> </ul>                   | 17       |
| <ul> <li>Heteroscedasticity</li> </ul>                | 18       |
| <ul><li>Normality of Errors</li></ul>                 | 19       |
| <ul> <li>Outliers Detection</li> </ul>                | 20-21    |
| Sign- off note                                        | 21       |

### About RA:

Regression analysis is a statistical process for estimating the relationships among variables. It includes many techniques for modelling and analyzing several variables, when the focus is on the relationship between a dependent variable and one or more independent variables. More specifically, regression analysis helps one understand how the typical value of the dependent variable (or 'criterion variable') changes when any one of the independent variables is varied, while the other independent variables are held fixed.

Regression analysis is widely used for prediction and forecasting, where its use has substantial overlap with the field of machine learning. In restricted circumstances, regression analysis can be used to infer causal relationships between the independent and dependent variables.

## Classical assumptions for Regression Analysis:

- Sample is representative of the population for the inference prediction.
- Normality of Errors: Error is a random variable with a mean of zero conditional on the explanatory variables.
- The independent variables are measured with no error.
- The predictors are linearly independent, i.e. it is not possible to express any predictor as a linear combination of the others.
- The errors are uncorrelated, that is, the variance—covariance matrix of the errors is diagonal and each non-zero element is the variance of the error.
- Homoscedasticity: The variance of the error is constant across observations If not, weighted least squares or other methods might instead be used.

Dataset: "Mtcars"

Aim: To explore the relationship of various variables designed to analyze the performance of cars on "Miles per gallon" (mpg).

## a) Model Building

The very simplest case of a single scalar predictor variable x and a single scalar response variable y is known as **simple linear regression**. The extension to multiple and/or vector-valued predictor variables (denoted with a capital X) is known as multiple linear regression, also known as **multivariable linear regression**.

### Regression

#### Variables Entered/Removeda

| Model | Variables<br>Entered                                                    | Variables<br>Removed | Method |
|-------|-------------------------------------------------------------------------|----------------------|--------|
| 1     | carb, am, vs,<br>drat, qsec,<br>gear, disp,<br>hp, wt, cyl <sup>b</sup> |                      | Enter  |

a. Dependent Variable: mpg

b. All requested variables entered.

- R<sup>2</sup> is **coefficient of determination** indicates how well data fit a statistical model.
- Adjusted R-squared is a modified version of R-squared that has been adjusted for the number of
  predictors in the model. The adjusted R-squared increases only if the new term improves the model more
  than would be expected by chance. It decreases when a predictor improves the model by less than
  expected by chance. The adjusted R-squared can be negative, but it's usually not. It is always lower than
  the R-squared.

### **Model Summary**

| Model | R     | R Square | Adjusted R<br>Square | Std. Error of<br>the Estimate |
|-------|-------|----------|----------------------|-------------------------------|
| 1     | .934ª | .873     | .813                 | 2.6070                        |

 a. Predictors: (Constant), carb, am, hp, vs, drat, wt, gear, qsec, disp, cyl

Here, We have R<sup>2</sup>= 0.873 and adj R<sup>2</sup>= 0.813. Since R<sup>2</sup> is close to 1 we can say that model is a good fit.

### **Test for Overall Regression**

Under normality assumption for the error terms, significance overall regression can be tested using an F-test. The procedure is as follows.

 $H_0$ :  $\beta_1 = \beta_2 = \dots = \beta_{10}$ 

 $H_1$ : β<sub>i</sub>≠0 for at least one i. (i=1,2,3,....,10)

### **Test-statistic:**

F=MSreg/MSres

| ANOVA <sup>a</sup> |            |                   |    |             |        |                   |
|--------------------|------------|-------------------|----|-------------|--------|-------------------|
| Model              |            | Sum of<br>Squares | df | Mean Square | F      | Sig.              |
| 1                  | Regression | 983.318           | 10 | 98.332      | 14.468 | .000 <sup>b</sup> |
|                    | Residual   | 142.729           | 21 | 6.797       |        |                   |
|                    | Total      | 1126.047          | 31 |             |        |                   |

a. Dependent Variable: mpg

### Inference:

Since p-value for overall regression is less than 0.05, so we reject our Null-Hypothesis and say that βi≠0 for at least one i.

### Test for Individual Regressors

Coefficients<sup>a</sup>

|       |            | Unstandardize | d Coefficients | Standardized<br>Coefficients |        |      |
|-------|------------|---------------|----------------|------------------------------|--------|------|
| Model |            | В             | Std. Error     | Beta                         | t      | Sig. |
| 1     | (Constant) | 20.163        | 21.599         |                              | .934   | .361 |
|       | cyl        | .517          | .974           | .153                         | .531   | .601 |
|       | disp       | 007           | .011           | 134                          | 607    | .550 |
|       | hp         | 031           | .020           | 355                          | -1.594 | .126 |
|       | drat       | 1.550         | 1.696          | .138                         | .914   | .371 |
|       | wt         | -2.192        | 1.165          | 290                          | -1.882 | .074 |
|       | qsec       | .101          | .837           | .026                         | .121   | .905 |
|       | VS         | .176          | 2.429          | .015                         | .073   | .943 |
|       | am         | .810          | 2.082          | .067                         | .389   | .701 |
|       | gear       | 1.307         | 1.524          | .160                         | .858   | .401 |
|       | carb       | -1.154        | .528           | 251                          | -2.185 | .040 |

a. Dependent Variable: mpg

b. Predictors: (Constant), carb, am, hp, vs, drat, wt, gear, qsec, disp, cyl

Under normality assumption for the error terms, significance of individual parameters can be tested using t-test.

H0: βi=0

H1: βi≠0

Test-Statistic:  $t=(\beta^{\wedge})/(S.E(\beta^{\wedge}))$ 

#### Inference:

Since p-value for all the individual regressors are greater than 0.05, so we fail to reject our Null-Hypothesis and conclude that βi=0. Only carb is coming out to be significant.

#### FITTED MODEL:

```
mpg = 20.163 + (0.517cyl) + (-0.007disp) + (-0.031hp) + (1.550drat) + (-2.192wt) + (0.101qsec) + (0.176vs) + (0.810am) + (1.307gear) + (-1.154carb).
```

## b) MULTICOLLINEARITY

### Problem of multicollinearity

- Multicollinearity is a statistical phenomenon in which there exists a perfect or exact relationship between the predictor variables.
- When there is a perfect or exact relationship between the predictor variables, it is difficult to come up with reliable estimates of their individual coefficients.
- It will result in incorrect conclusions about the relationship between outcome variable and predictor variables.

### Consequences of high multicollinearity:

- Increased standard error of estimates of the β's (decreased reliability).
- Often confusing and misleading results.

#### **Detection of Multicollinearity:**

#### 1) Examination of Correlation Matrix:

The easiest way to measure the extent of multicollinearity is simply to look at the matrix of correlations between the individual variables.

 Large correlation coefficients in the correlation matrix of predictor variables indicate multicollinearity. (Taking threshold for significant (absolute) correlation to be 0.75) • If there is a multicollinearity between any two predictor variables, then the correlation coefficient between these two variables will be near to unity.

|                |      |                         |        |        | Correlation | ns      |        |        |        |        |        |        |
|----------------|------|-------------------------|--------|--------|-------------|---------|--------|--------|--------|--------|--------|--------|
|                |      |                         | cyl    | disp   | hp          | drat    | wt     | qsec   | vs     | am     | gear   | carb   |
| Spearman's rho | cyl  | Correlation Coefficient | 1.000  | .928   | .902        | 679     | .794   | 535    | 814    | 522    | 564    | .559   |
|                |      | Sig. (2-tailed)         |        | .000   | .000        | .000    | .000   | .002   | .000   | .002   | .001   | .001   |
|                |      | N                       | 32     | 32     | 32          | 32      | 32     | 32     | 32     | 32     | 32     | 32     |
|                | disp | Correlation Coefficient | .928** | 1.000  | .851**      | 684**   | .776** | 444*   | 724**  | 624**  | 594**  | .537** |
|                |      | Sig. (2-tailed)         | .000   | 1 . '  | .000        | .000    | .000   | .011   | .000   | .000   | .000   | .002   |
|                |      | N                       | 32     | 32     | 32          | 32      | 32     | 32     | 32     | 32     | 32     | 32     |
|                | hp   | Correlation Coefficient | .902** | .851** | 1.000       | 520**   | .679** | 646**  | 752**  | 362*   | 331    | .686** |
|                |      | Sig. (2-tailed)         | .000   | .000   | 1           | .002    | .000   | .000   | .000   | .042   | .064   | .000   |
|                |      | N                       | 32     | 32     | 32          | 32      | 32     | 32     | 32     | 32     | 32     | 32     |
|                | drat | Correlation Coefficient | 679**  | 684**  | 520**       | 1.000   | 697**  | .058   | .447*  | .687** | .745** | 122    |
|                |      | Sig. (2-tailed)         | .000   | .000   | .002        | ( · · ! | .000   | .754   | .010   | .000   | .000   | .505   |
|                |      | N                       | 32     | 32     | 32          | 32      | 32     | 32     | 32     | 32     | 32     | 32     |
|                | wt   | Correlation Coefficient | .794** | .776** | .679**      | 697**   | 1.000  | 233    | 505**  | 710**  | 598**  | .372*  |
|                |      | Sig. (2-tailed)         | .000   | .000   | .000        | .000    | 1 . !  | .200   | .003   | .000   | .000   | .036   |
|                |      | N                       | 32     | 32     | 32          | 32      | 32     | 32     | 32     | 32     | 32     | 32     |
|                | qsec | Correlation Coefficient | 535**  | 444*   | 646**       | .058    | 233    | 1.000  | .771** | 162    | 181    | 602**  |
|                |      | Sig. (2-tailed)         | .002   | .011   | .000        | .754    | .200   | 1 . !  | .000   | .376   | .323   | .000   |
|                |      | N                       | 32     | 32     | 32          | 32      | 32     | 32     | 32     | 32     | 32     | 32     |
|                | vs   | Correlation Coefficient | 814**  | 724**  | 752**       | .447*   | 505**  | .771** | 1.000  | .168   | .283   | 620**  |
|                |      | Sig. (2-tailed)         | .000   | .000   | .000        | .010    | .003   | .000   | . '    | .357   | .117   | .000   |
|                |      | N                       | 32     | 32     | 32          | 32      | 32     | 32     | 32     | 32     | 32     | 32     |
|                | am   | Correlation Coefficient | 522**  | 624**  | 362         | .687**  | 710**  | 162    | .168   | 1.000  | .808** | 136    |
|                |      | Sig. (2-tailed)         | .002   | .000   | .042        | .000    | .000   | .376   | .357   |        | .000   | .458   |
|                |      | N                       | 32     | 32     | 32          | 32      | 32     | 32     | 32     | 32     | 32     | 32     |
|                | gear | Correlation Coefficient | 564**  | 594**  | 331         | .745**  | 598**  | 181    | .283   | .808** | 1.000  | .028   |
|                |      | Sig. (2-tailed)         | .001   | .000   | .064        | .000    | .000   | .323   | .117   | .000   |        | .880   |
|                |      | N                       | 32     | 32     | 32          | 32      | 32     | 32     | 32     | 32     | 32     | 32     |
|                | carb | Correlation Coefficient | .559** | .537** | .686**      | 122     | .372   | 602**  | 620**  | 136    | .028   | 1.000  |
|                |      | Sig. (2-tailed)         | .001   | .002   | .000        | .505    | .036   | .000   | .000   | .458   | .880   |        |

<sup>\*\*.</sup> Correlation is significant at the 0.01 level (2-tailed).

#### Inference:

Since value of absolute:

- a) Correlation of cyl with disp, hp, drat, wt, vs is greater than 0.75, so we say cyl has strong linear relationship with each of respective variables.
- b) Correlation between factor disp and cyl, hp, wt, vs is greater than 0.75, so we say disp has strong linear relationship with each of respective variables.
- c) Correlation between factor hp and cyl, disp, vs is greater than 0.75, so we say hp has strong linear relationship with each of respective variables.
- d) Correlation between factor drat and gear is greater than 0.75, so we say drat has strong linear relationship with each other.
- e) Correlation between factor wt and cyl, disp, am is greater than 0.75, so we say wt has strong linear relationship with each of respective variables.

<sup>\*.</sup> Correlation is significant at the 0.05 level (2-tailed).

- f) Correlation between factor qsec and vs is greater than 0.75, so we say qsec has strong linear relationship with each other.
- g) Correlation between factor vs and cyl, disp, hp, qsec is greater than 0.75, so we say vs has strong linear relationship with each of respective variables.
- h) Correlation between factor am and wt, gear is greater than 0.75, so we say am has strong linear relationship with each of respective variables.
- i) Correlation between factor gear and drat, am is greater than 0.75, so we say gear has strong linear relationship with each of repective variables.
- j) Correlation between factor carb and other variables are less than threshold value. So we conclude it has not much strong relationship with other variables.

*Inference:* We conclude that "*cyl*" has stronger relationship with most of the variables. So, if infer that we drop cyl multicollinearity could be reduced.

### 2) Variance Inflation Factor:

• The Variance Inflation Factor (VIF) quantifies the severity of multicollinearity in an ordinary least- squares regression analysis.

The VIF is an index which measures how much variance of an estimated regression coefficient is increased

- because of multicollinearity.
  Rule of Thumb: If any of the VIF values exceeds 5 or 10, it implies that the associated regression
- Rule of Thumb: If any of the VIF values exceeds 5 or 10, it implies that the associated regression coefficients are poorly estimated because of multicollinearity.

### Coefficients<sup>a</sup>

|       |      | Collinearity | Statistics |
|-------|------|--------------|------------|
| Model |      | Tolerance    | VIF        |
| 1     | cyl  | .072         | 13.801     |
|       | disp | .123         | 8.104      |
|       | hp   | .122         | 8.206      |
|       | drat | .267         | 3.750      |
|       | wt   | .255         | 3.925      |
|       | qsec | .134         | 7.486      |
|       | vs   | .146         | 6.837      |
|       | am   | .203         | 4.921      |
|       | gear | .173         | 5.767      |
|       | carb | .459         | 2.180      |

(Taking threshold for VIF to be 10)

a. Dependent Variable: mpg

### Inference:

Since VIF of cyl is greater than 10, we say that it has strong linear relationship with all other regressors.

So, we drop cyl and run regression again we get the following results:

### Regression



|       | ANOVA <sup>a</sup> |                   |    |             |        |       |  |
|-------|--------------------|-------------------|----|-------------|--------|-------|--|
| Model |                    | Sum of<br>Squares | df | Mean Square | F      | Sig.  |  |
| 1     | Regression         | 981.401           | 9  | 109.045     | 16.585 | .000b |  |
|       | Residual           | 144.647           | 22 | 6.575       |        |       |  |
|       | Total              | 1126.047          | 31 |             |        |       |  |
|       |                    |                   |    |             |        |       |  |

a. Dependent Variable: mpg

### Model Summary<sup>b</sup>

|   | Model | R     | R Square | Adjusted R<br>Square | Std. Error of<br>the Estimate |
|---|-------|-------|----------|----------------------|-------------------------------|
| ٠ | 1     | .934ª | .872     | .819                 | 2.5641                        |

- a. Predictors: (Constant), carb, am, hp, vs, drat, wt, gear, qsec, disp
- b. Dependent Variable: mpg

#### Coefficients<sup>a</sup>

|       |            | Unstandardize | d Coefficients | Standardized<br>Coefficients |        |      | Collinearity | Statistics |
|-------|------------|---------------|----------------|------------------------------|--------|------|--------------|------------|
| Model |            | В             | Std. Error     | Beta                         | t      | Sig. | Tolerance    | VIF        |
| 1     | (Constant) | 25.093        | 19.182         |                              | 1.308  | .204 |              |            |
|       | disp       | 005           | .010           | 110                          | 519    | .609 | .129         | 7.770      |
|       | hp         | 027           | .018           | 311                          | -1.529 | .141 | .141         | 7.092      |
|       | drat       | 1.336         | 1.620          | .119                         | .825   | .418 | .283         | 3.538      |
|       | wt         | -2.059        | 1.119          | 272                          | -1.840 | .079 | .267         | 3.743      |
|       | qsec       | .037          | .814           | .009                         | .045   | .965 | .136         | 7.327      |
|       | VS         | 227           | 2.269          | 019                          | 100    | .921 | .162         | 6.169      |
|       | am         | .812          | 2.047          | .067                         | .396   | .696 | .203         | 4.921      |
|       | gear       | 1.038         | 1.414          | .127                         | .734   | .470 | .195         | 5.130      |
|       | carb       | -1.110        | .513           | 241                          | -2.164 | .042 | .470         | 2.127      |

a. Dependent Variable: mpg

### Inference:

We can conclude now that problem of multicollinearity has been resolved since VIF of all the variables are less than 10.

b. Predictors: (Constant), carb, am, hp, vs, drat, wt, gear, gsec, disp

## c) Parsimonious Modelling or Model Selection

### Forward selection:

This approach builds the model starting with no variables in the model and adds useful variables one by one.

### Regression

|   | Variables Entered/Removed <sup>a</sup> |                      |                      |                                                                      |  |  |  |  |
|---|----------------------------------------|----------------------|----------------------|----------------------------------------------------------------------|--|--|--|--|
|   | Model                                  | Variables<br>Entered | Variables<br>Removed | Method                                                               |  |  |  |  |
|   | 1                                      | disp                 |                      | Forward<br>(Criterion:<br>Probability-of-<br>F-to-enter <= .<br>150) |  |  |  |  |
|   | 2                                      | wt                   |                      | Forward<br>(Criterion:<br>Probability-of-<br>F-to-enter <= .<br>150) |  |  |  |  |
|   | 3                                      | carb                 |                      | Forward<br>(Criterion:<br>Probability-of-<br>F-to-enter <= .<br>150) |  |  |  |  |
| ľ | a. Depe                                | endent Variable: m   | ıpg                  | _                                                                    |  |  |  |  |

#### **Model Summary**

| Model | R                 | R Square | Adjusted R<br>Square | Std. Error of<br>the Estimate |
|-------|-------------------|----------|----------------------|-------------------------------|
| 1     | .848ª             | .718     | .709                 | 3.2515                        |
| 2     | .895 <sup>b</sup> | .801     | .787                 | 2.7800                        |
| 3     | .917°             | .842     | .825                 | 2.5240                        |

a. Predictors: (Constant), disp

b. Predictors: (Constant), disp, wt

c. Predictors: (Constant), disp, wt, carb

#### **ANOVA**<sup>a</sup>

| Model |            | Sum of<br>Squares | df | Mean Square | F      | Sig.              |
|-------|------------|-------------------|----|-------------|--------|-------------------|
| 1     | Regression | 808.888           | 1  | 808.888     | 76.513 | .000b             |
|       | Residual   | 317.159           | 30 | 10.572      |        |                   |
|       | Total      | 1126.047          | 31 |             |        |                   |
| 2     | Regression | 901.925           | 2  | 450.962     | 58.352 | .000°             |
|       | Residual   | 224.122           | 29 | 7.728       |        |                   |
|       | Total      | 1126.047          | 31 |             |        |                   |
| 3     | Regression | 947.666           | 3  | 315.889     | 49.584 | .000 <sup>d</sup> |
|       | Residual   | 178.381           | 28 | 6.371       |        |                   |
|       | Total      | 1126.047          | 31 |             |        |                   |

a. Dependent Variable: mpg

b. Predictors: (Constant), disp

c. Predictors: (Constant), disp, wt

d. Predictors: (Constant), disp, wt, carb

### Coefficients<sup>a</sup>

|       |            | Unstandardized Coefficients |            | Standardized<br>Coefficients |        |      | Collinearity | Statistics |
|-------|------------|-----------------------------|------------|------------------------------|--------|------|--------------|------------|
| Model |            | В                           | Std. Error | Beta                         | t      | Sig. | Tolerance    | VIF        |
| 1     | (Constant) | 29.600                      | 1.230      |                              | 24.070 | .000 |              |            |
|       | disp       | 041                         | .005       | 848                          | -8.747 | .000 | 1.000        | 1.000      |
| 2     | (Constant) | 36.112                      | 2.151      |                              | 16.786 | .000 |              |            |
|       | disp       | 025                         | .006       | 512                          | -4.019 | .000 | .423         | 2.364      |
|       | wt         | -3.345                      | .964       | 442                          | -3.470 | .002 | .423         | 2.364      |
| 3     | (Constant) | 37.157                      | 1.992      |                              | 18.655 | .000 |              |            |
|       | disp       | 022                         | .006       | 453                          | -3.848 | .001 | .408         | 2.449      |
|       | wt         | -3.015                      | .884       | 398                          | -3.411 | .002 | .415         | 2.410      |
|       | carb       | -1.029                      | .384       | 223                          | -2.680 | .012 | .814         | 1.228      |

a. Dependent Variable: mpg

#### Inference:

Using method of forward selection we get the following regression model:

### **Backward elimination**

Instead of starting with no variables in the model, start with all predictor variable in the model and remove unhelpful variables from the model one by one.

### Regression

|       | Variables E                                                        | ntered/Removed <sup>a</sup> | 1                                                                     |
|-------|--------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------|
| Model | Variables<br>Entered                                               | Variables<br>Removed        | Method                                                                |
| 1     | carb, am, hp,<br>vs, drat, wt,<br>gear, qsec,<br>disp <sup>b</sup> |                             | Enter                                                                 |
| 2     |                                                                    | qsec                        | Backward<br>(criterion:<br>Probability of<br>F-to-remove<br>>= .200). |
| 3     |                                                                    | VS                          | Backward<br>(criterion:<br>Probability of<br>F-to-remove<br>>= .200). |
| 4     |                                                                    | am                          | Backward<br>(criterion:<br>Probability of<br>F-to-remove<br>>= .200). |
| 5     |                                                                    | disp                        | Backward<br>(criterion:<br>Probability of<br>F-to-remove<br>>= .200). |
| 6     | endent Variable: m                                                 | drat                        | Backward<br>(criterion:<br>Probability of<br>F-to-remove<br>>= .200). |

a. Dependent Variable: mpg

b. All requested variables entered.

#### Model Summary

| Model | R                 | R Square | Adjusted R<br>Square | Std. Error of<br>the Estimate |
|-------|-------------------|----------|----------------------|-------------------------------|
| 1     | .934ª             | .872     | .819                 | 2.5641                        |
| 2     | .934 <sup>b</sup> | .872     | .827                 | 2.5079                        |
| 3     | .934°             | .871     | .834                 | 2.4556                        |
| 4     | .933 <sup>d</sup> | .870     | .839                 | 2.4193                        |
| 5     | .932 <sup>e</sup> | .868     | .843                 | 2.3875                        |
| 6     | .929 <sup>f</sup> | .862     | .842                 | 2.3976                        |

- a. Predictors: (Constant), carb, am, hp, vs, drat, wt, gear, qsec, disp
- b. Predictors: (Constant), carb, am, hp, vs, drat, wt, gear, disp
- c. Predictors: (Constant), carb, am, hp, drat, wt, gear, disp
- d. Predictors: (Constant), carb, hp, drat, wt, gear, disp
- e. Predictors: (Constant), carb, hp, drat, wt, gear
- f. Predictors: (Constant), carb, hp, wt, gear

#### **ANOVA**<sup>a</sup>

| Model |            | Sum of<br>Squares | df | Mean Square | F      | Sig.              |
|-------|------------|-------------------|----|-------------|--------|-------------------|
| 1     | Regression | 981.401           | 9  | 109.045     | 16.585 | .000b             |
|       | Residual   | 144.647           | 22 | 6.575       |        |                   |
|       | Total      | 1126.047          | 31 |             |        |                   |
| 2     | Regression | 981.387           | 8  | 122.673     | 19.504 | .000°             |
|       | Residual   | 144.660           | 23 | 6.290       |        |                   |
|       | Total      | 1126.047          | 31 |             |        |                   |
| 3     | Regression | 981.329           | 7  | 140.190     | 23.249 | .000 <sup>d</sup> |
|       | Residual   | 144.718           | 24 | 6.030       |        |                   |
|       | Total      | 1126.047          | 31 |             |        |                   |
| 4     | Regression | 979.720           | 6  | 163.287     | 27.898 | .000°             |
|       | Residual   | 146.327           | 25 | 5.853       |        |                   |
|       | Total      | 1126.047          | 31 |             |        |                   |
| 5     | Regression | 977.841           | 5  | 195.568     | 34.309 | .000 <sup>f</sup> |
|       | Residual   | 148.206           | 26 | 5.700       |        |                   |
|       | Total      | 1126.047          | 31 |             |        |                   |
| 6     | Regression | 970.843           | 4  | 242.711     | 42.223 | .000 <sup>g</sup> |
|       | Residual   | 155.204           | 27 | 5.748       |        |                   |
|       | Total      | 1126.047          | 31 |             |        |                   |

- a. Dependent Variable: mpg
- b. Predictors: (Constant), carb, am, hp, vs, drat, wt, gear, qsec, disp
- c. Predictors: (Constant), carb, am, hp, vs, drat, wt, gear, disp
- d. Predictors: (Constant), carb, am, hp, drat, wt, gear, disp
- e. Predictors: (Constant), carb, hp, drat, wt, gear, disp
- e. Predictors: (Constant), carb, np, drat, wt, gear, dis f. Predictors: (Constant), carb, hp, drat, wt, gear
- g. Predictors: (Constant), carb, hp, wt, gear

Coefficients<sup>d</sup>

|          |              | Unstandardize   | d Coefficients | Standardized<br>Coefficients |                 |              | Collinearity | Statistics     |
|----------|--------------|-----------------|----------------|------------------------------|-----------------|--------------|--------------|----------------|
| Model    |              | В               | Std. Error     | Beta                         | t               | Sig.         | Tolerance    | VIF            |
| 1        | (Constant)   | 25.093          | 19.182         |                              | 1.308           | .204         |              |                |
|          | disp         | 005             | .010           | 110                          | 519             | .609         | .129         | 7.770          |
|          | hp           | 027             | .018           | 311                          | -1.529          | .141         | .141         | 7.092          |
|          | drat         | 1.336           | 1.620          | .119                         | .825            | .418         | .283         | 3.538          |
|          | wt           | -2.059          | 1.119          | 272                          | -1.840          | .079         | .267         | 3.743          |
|          |              |                 | .814           | .009                         |                 |              |              |                |
|          | qsec         | .037            |                |                              | .045            | .965         | .136         | 7.327          |
|          | VS           | 227             | 2.269          | 019                          | 100             | .921         | .162         | 6.169          |
|          | am           | .812            | 2.047          | .067                         | .396            | .696         | .203         | 4.921          |
|          | gear         | 1.038           | 1.414          | .127                         | .734            | .470         | .195         | 5.130          |
|          | carb         | -1.110          | .513           | 241                          | -2.164          | .042         | .470         | 2.127          |
| 2        | (Constant)   | 25.885          | 7.421          |                              | 3.488           | .002         |              |                |
|          | disp         | 005             | .010           | 109                          | 529             | .602         | .132         | 7.598          |
|          | hp           | 028             | .014           | 316                          | -1.927          | .066         | .207         | 4.823          |
|          | drat         | 1.321           | 1.550          | .117                         | .852            | .403         | .296         | 3.384          |
|          | wt           | -2.052          | 1.083          | 271                          | -1.895          | .071         | .273         | 3.662          |
|          | vs           | 158             | 1.643          | 013                          | 096             | .924         | .296         | 3.378          |
|          | am           | .825            | 1.980          | .068                         | .417            | .681         | .208         | 4.813          |
|          | gear         | 1.012           | 1.261          | .124                         | .803            | .430         | .235         | 4.263          |
|          | carb         | -1.111          | .502           | 241                          | -2.213          | .037         | .470         | 2.127          |
| <u> </u> |              |                 |                | .2                           | 2.2.0           | .007         |              | 2.127          |
| 3        | (Constant)   | 25,002          | 7.219          | 1                            | 2.574           | .002         | 1            |                |
| ľ        | disp         | 25.803<br>005   | .009           | 103                          | 3.574<br>537    | .596         | .146         | 6.848          |
|          | hp           | 028             | .014           | 314                          | -1.970          | .060         | .210         | 4.757          |
|          | drat         | 1.292           | 1.488          | .115                         | .868            | .394         | .307         | 3.254          |
|          | wt           | -2.047          | 1.059          | 270                          | -1.933          | .065         | .274         | 3.654          |
|          | am           | .907            | 1.755          | .075                         | .516            | .610         | .254         | 3.943          |
|          | gear         | .991            | 1.215          | .121                         | .816            | .423         | .242         | 4.128          |
|          | carb         | -1.090          | .444           | 237                          | -2.456          | .022         | .576         | 1.735          |
| 4        | (Constant)   | 25.238          | 7.030          |                              | 3.590           | .001         |              |                |
|          | disp         | 005             | .009           | 107                          | 567             | .576         | .146         | 6.837          |
|          | hp           | 026             | .014           | 301                          | -1.939          | .064         | .216         | 4.622          |
|          | drat<br>wt   | 1.410<br>-2.267 | 1.448<br>.955  | .125<br>300                  | .974            | .340<br>.026 | .315         | 3.177<br>3.062 |
|          | wı<br>gear   | 1.288           | 1.054          | .158                         | -2.374<br>1.222 | .026         | .327         | 3.062          |
|          | carb         | -1.108          | .436           | 241                          | -2.541          | .018         | .580         | 1.724          |
| 5        | (Constant)   | 23.549          | 6.283          | 1                            | 3.748           | .001         |              |                |
|          | hp           | 032             | .009           | 364                          | -3.467          | .002         | .458         | 2.182          |
|          | drat         | 1.558           | 1.406          | .138                         | 1.108           | .278         | .325         | 3.074          |
|          | wt           | -2.349          | .931           | 310                          | -2.522          | .018         | .334         | 2.992          |
|          | gear         | 1.589           | .897           | .195                         | 1.771           | .088         | .419         | 2.384          |
|          | carb         | -1.138          | .427           | 247                          | -2.663          | .013         | .588         | 1.699          |
| 6        | (Constant)   | 28.621          | 4.323          |                              | 6.621           | .000         |              |                |
|          | hp           | 035             | .009           | 399                          | -3.962          | .000         | .503         | 1.988          |
|          | wt           | -2.727          | .870           | 360                          | -3.133          | .004         | .386         | 2.591          |
|          | gear<br>carb | 2.107           | .770<br>421    | .258                         | 2.737           | .011         | .575         | 1.739<br>1.640 |
|          | cain         | -1.049          | .421           | 228                          | -2.490          | .019         | .610         | 1.040          |

a. Dependent Variable: mpg

### Inference:

Using method of Backward elimination, we get the following regression model:

mpg = 28.261-0.035hp-2.727wt+2.107gear-1.409carb

### **Stepwise Selection**

This approach combines both forward selection and backward deletion. It allows variable added early on to be dropped out and variables that are dropped at one point to be added back in.

### Regression

#### Variables Entered/Removeda

|       | Variables | Variables |                                                                                                                     |
|-------|-----------|-----------|---------------------------------------------------------------------------------------------------------------------|
| Model | Entered   | Removed   | Method                                                                                                              |
| 1     | disp      |           | Stepwise<br>(Criteria:<br>Probability-of-<br>F-to-enter <= .<br>150,<br>Probability-of-<br>F-to-remove<br>>= .200). |
| 2     | wt        |           | Stepwise<br>(Criteria:<br>Probability-of-<br>F-to-enter <= .<br>150,<br>Probability-of-<br>F-to-remove<br>>= .200). |
| 3     | carb      |           | Stepwise<br>(Criteria:<br>Probability-of-<br>F-to-enter <= .<br>150,<br>Probability-of-<br>F-to-remove<br>>= .200). |

a. Dependent Variable: mpg

## Model Summary<sup>d</sup>

|   | Model | R                 | R Square | Adjusted R<br>Square | Std. Error of<br>the Estimate |
|---|-------|-------------------|----------|----------------------|-------------------------------|
| ı | 1     | .848ª             | .718     | .709                 | 3.2515                        |
| ı | 2     | .895 <sup>b</sup> | .801     | .787                 | 2.7800                        |
|   | 3     | .917°             | .842     | .825                 | 2.5240                        |

a. Predictors: (Constant), disp

b. Predictors: (Constant), disp, wt

c. Predictors: (Constant), disp, wt, carb

d. Dependent Variable: mpg

|   |        |                 |                   | <b>ANOVA</b> <sup>a</sup> |             |        |                   |
|---|--------|-----------------|-------------------|---------------------------|-------------|--------|-------------------|
|   | Model  |                 | Sum of<br>Squares | df                        | Mean Square | F      | Sig.              |
| ١ | 1      | Regression      | 808.888           | 1                         | 808.888     | 76.513 | .000b             |
|   |        | Residual        | 317.159           | 30                        | 10.572      |        |                   |
| 1 |        | Total           | 1126.047          | 31                        |             |        |                   |
|   | 2      | Regression      | 901.925           | 2                         | 450.962     | 58.352 | .000°             |
|   |        | Residual        | 224.122           | 29                        | 7.728       |        |                   |
| 1 |        | Total           | 1126.047          | 31                        |             |        |                   |
|   | 3      | Regression      | 947.666           | 3                         | 315.889     | 49.584 | .000 <sup>d</sup> |
|   |        | Residual        | 178.381           | 28                        | 6.371       |        |                   |
|   |        | Total           | 1126.047          | 31                        |             |        |                   |
|   | a. Dep | endent Variable | : mpg             |                           |             |        |                   |

|          | Coefficients <sup>a</sup> |               |                             |            |                              |        |      |                         |       |  |
|----------|---------------------------|---------------|-----------------------------|------------|------------------------------|--------|------|-------------------------|-------|--|
|          |                           |               | Unstandardized Coefficients |            | Standardized<br>Coefficients |        |      | Collinearity Statistics |       |  |
|          | Model                     |               | В                           | Std. Error | Beta                         | t      | Sig. | Tolerance               | VIF   |  |
|          | 1                         | (Constant)    | 29.600                      | 1.230      |                              | 24.070 | .000 |                         |       |  |
|          |                           | disp          | 041                         | .005       | 848                          | -8.747 | .000 | 1.000                   | 1.000 |  |
| <u> </u> | 2                         | (Constant)    | 36.112                      | 2.151      |                              | 16.786 | .000 |                         |       |  |
| 7        |                           | disp          | 025                         | .006       | 512                          | -4.019 | .000 | .423                    | 2.364 |  |
|          |                           | wt            | -3.345                      | .964       | 442                          | -3.470 | .002 | .423                    | 2.364 |  |
|          | 3                         | (Constant)    | 37.157                      | 1.992      |                              | 18.655 | .000 |                         |       |  |
|          |                           | disp          | 022                         | .006       | 453                          | -3.848 | .001 | .408                    | 2.449 |  |
|          |                           | wt            | -3.015                      | .884       | 398                          | -3.411 | .002 | .415                    | 2.410 |  |
|          |                           | carb          | -1.029                      | .384       | 223                          | -2.680 | .012 | .814                    | 1.228 |  |
|          | a. Dep                    | endent Variab | e: mpg                      |            |                              |        |      |                         |       |  |

#### Inference:

b. Predictors: (Constant), disp c. Predictors: (Constant), disp, wt d. Predictors: (Constant), disp, wt, carb

Using method of Stepwise Selection, we get the following regression model:

mpg = 37.157 - .022 disp - 3.015 wt - 1.029 carb

### **Actions:**

- Stepwise procedures are relatively cheap (less variables).
- Stepwise methods use a restricted search through the space of potential models and use a
  dubious hypothesis testing based method for choosing between models.
   Hence we adopt stepwise selection process.

### d) Validation of Assumptions And Residual Analysis

### 1) Linearity Of Regression







#### Inference:

Only mpg and disp are almost linear but we observe that other two plots (mpg-wt and mpg-carb) are not forming a straight line so they are non-linear which indicates the need to transform and re-build the model.

## 2) Test for Autocorrelation

Autocorrelation occurs when the residuals are not independent from each other. In other words when the value of y(x+1) is not independent from the value of y(x).

### Following is the rule:

- if 1≤ DW ≤3 then there is no Autocorrelation,
- if 0 < DW < 1 then there is a positive autocorrelation, and</li>
- if 3 < DW < 4 then there is a negative autocorrelation

#### Model Summary<sup>d</sup>

| Model | R                 | R Square | Adjusted R<br>Square | Std. Error of<br>the Estimate | Durbin-<br>Watson |
|-------|-------------------|----------|----------------------|-------------------------------|-------------------|
| 1     | .848 <sup>a</sup> | .718     | .709                 | 3.2515                        |                   |
| 2     | .895 <sup>b</sup> | .801     | .787                 | 2.7800                        |                   |
| 3     | .917 <sup>c</sup> | .842     | .825                 | 2.5240                        | 2.125             |

a. Predictors: (Constant), disp

#### Residuals Statistics<sup>a</sup>

|                      | Minimum | Maximum | Mean   | Std. Deviation | N  |
|----------------------|---------|---------|--------|----------------|----|
| Predicted Value      | 6.816   | 29.029  | 20.091 | 5.5290         | 32 |
| Residual             | -4.5506 | 4.8706  | .0000  | 2.3988         | 32 |
| Std. Predicted Value | -2.401  | 1.617   | .000   | 1.000          | 32 |
| Std. Residual        | -1.803  | 1.930   | .000   | .950           | 32 |

a. Dependent Variable: mpg

### Inference:

Since model's Durbin Watson statistic is 2.125 implies there is an evidence of no autocorrelation.

b. Predictors: (Constant), disp, wt

c. Predictors: (Constant), disp, wt, carb

d. Dependent Variable: mpg

### 3) Test for Hetereoscedasticity

Heteroscedasticity may occur when some variables are skewed and others are not. Thus, checking that your data are normally distributed should cut down on the problem of heteroscedasticity.



It can be infer from the scatter plot that there is absolutely no linear relationship between absolute residuals and predicted values. The points are completely scattered in the plot hence we can say that the model is not heteroscedastic in nature.

### **Nonparametric Correlations**

Since Spearman's rank correlation between predicted response and absolute residual is not significant. We fail to reject the hypothesis that correlation is not significant which further implies it is homoscedastic in nature.

### Correlations

|                |                                   |                         | Absolute<br>Residual | Unstandardiz<br>ed Predicted<br>Value |
|----------------|-----------------------------------|-------------------------|----------------------|---------------------------------------|
| Spearman's rho | Absolute Residual                 | Correlation Coefficient | 1.000                | .188                                  |
|                |                                   | Sig. (2-tailed)         |                      | .303                                  |
|                |                                   | N                       | 32                   | 32                                    |
|                | Unstandardized<br>Predicted Value | Correlation Coefficient | .188                 | 1.000                                 |
|                |                                   | Sig. (2-tailed)         | .303                 |                                       |
|                |                                   | N                       | 32                   | 32                                    |

Inference: It is homoscedastic in nature.

### 4) Normality of Errors

#### Histogram

Dependent Variable: mpg

Mean = -1,43E-15
Std. Dev. = 0.950
N = 32

Regression Standardized Residual

Normal P-P Plot of Regression Standardized Residual



Ho: Errors are normally distributed.

H1: Errors are not close to normal distribution

**Tests of Normality** 

|                         | Kolmogorov-Smirnov <sup>a</sup> |    | Shapiro-Wilk |           |    |      |
|-------------------------|---------------------------------|----|--------------|-----------|----|------|
|                         | Statistic                       | df | Sig.         | Statistic | df | Sig. |
| Unstandardized Residual | .139                            | 32 | .119         | .967      | 32 | .430 |

a. Lilliefors Significance Correction

### Inference:

- a) Using histogram we can see that errors are almost normally distributed since it is forming a symmetric line.
- b) Using P-P plot we can see that errors lie around a straight line so errors are normally distributed.
- c) Using K-S and S-W tests, we conclude that errors are normally distributed .Since p-values are greater than 0.05, we accept our null hypothesis that errors are normally distributed.

This implies errors are normally distributed.

## 5) <u>Detection of Outliers</u>

| S.no | Unstandardized<br>Predicted<br>Value | Unstandardized<br>Residual | Studentized<br>Residual | Absolute<br>Stundetized<br>Residual | Centered<br>Leverage<br>Value |
|------|--------------------------------------|----------------------------|-------------------------|-------------------------------------|-------------------------------|
| 1    | 21.61853                             | -0.61853                   | -0.25974                | 0.25974                             | 0.07862                       |
| 2    | 20.84969                             | 0.15031                    | 0.06294                 | 0.06294                             | 0.07357                       |
| 3    | 26.75431                             | -3.95431                   | -1.64388                | 1.64388                             | 0.06049                       |
| 4    | 20.75175                             | 0.64825                    | 0.27146                 | 0.27146                             | 0.07366                       |
| 5    | 16.79797                             | 1.90203                    | 0.79601                 | 0.79601                             | 0.07256                       |
| 6    | 20.73996                             | -2.63996                   | -1.11689                | 1.11689                             | 0.09179                       |
| 7    | 14.34879                             | -0.04879                   | -0.0202                 | 0.0202                              | 0.05344                       |
| 8    | 22.25014                             | 2.14986                    | 0.89001                 | 0.89001                             | 0.05288                       |
| 9    | 22.5007                              | 0.2993                     | 0.12392                 | 0.12392                             | 0.05304                       |
| 10   | 18.97878                             | 0.22122                    | 0.09455                 | 0.09455                             | 0.10947                       |
| 11   | 18.97878                             | -1.17878                   | -0.50381                | 0.50381                             | 0.10947                       |
| 12   | 15.72456                             | 0.67544                    | 0.28339                 | 0.28339                             | 0.07709                       |
| 13   | 16.74968                             | 0.55032                    | 0.2247                  | 0.2247                              | 0.02727                       |
| 14   | 16.59893                             | -1.39893                   | -0.5729                 | 0.5729                              | 0.03282                       |
| 15   | 6.81644                              | 3.58356                    | 1.66596                 | 1.66596                             | 0.24246                       |
| 16   | 13.64455                             | -3.24455                   | -1.54084                | 1.54084                             | 0.27276                       |
| 17   | 14.08509                             | 0.61491                    | 0.28366                 | 0.28366                             | 0.23115                       |
| 18   | 27.76151                             | 4.63849                    | 1.93962                 | 1.93962                             | 0.07105                       |
| 19   | 28.56279                             | 1.83721                    | 0.78598                 | 0.78598                             | 0.11112                       |
| 20   | 29.02942                             | 4.87058                    | 2.06287                 | 2.06287                             | 0.09371                       |
| 21   | 26.0506                              | -4.5506                    | -1.88747                | 1.88747                             | 0.05635                       |
| 22   | 17.48191                             | -1.98191                   | -0.81504                | 0.81504                             | 0.0406                        |
| 23   | 18.04657                             | -2.84657                   | -1.16572                | 1.16572                             | 0.03278                       |
| 24   | 13.75499                             | -0.45499                   | -0.18786                | 0.18786                             | 0.048                         |
| 25   | 14.69579                             | 4.50421                    | 1.91845                 | 1.91845                             | 0.10349                       |
| 26   | 28.5539                              | -1.2539                    | -0.52824                | 0.52824                             | 0.08429                       |
| 27   | 25.99747                             | 0.00253                    | 0.00104                 | 0.00104                             | 0.0443                        |
| 28   | 28.443                               | 1.957                      | 0.85008                 | 0.85008                             | 0.13686                       |
| 29   | 15.75305                             | 0.04695                    | 0.01975                 | 0.01975                             | 0.08189                       |
| 30   | 19.43945                             | 0.26055                    | 0.1294                  | 0.1294                              | 0.33236                       |
| 31   | 17.08845                             | -2.08845                   | -0.8481                 | 0.8481                              | 0.01692                       |
| 32   | 24.05241                             | -2.65241                   | -1.08677                | 1.08677                             | 0.03374                       |

If an observation has leverage more than 2p/n, where n is the no. of observations and p is the no. of variables, then ,It would be influential.

### Rule:

- The observations corresponding to which the absolute value of studentized residuals lie beyond 3 can surely be taken as outliers.
- If observations corresponding to which the absolute value of studentized residuals lies between 2 and 3 have an levereage value greater than 2p/n, then those observations are also taken to be outlier.

#### Inference:

- We observe from above table that no value of absolute residual is > 3 implies there is no influential observation.
- Observation corresponding to which the absolute value of studentized residuals lies between 2 and 3 is 20th observation which is marked bold in above table. Its leverage is 0.09371< 0.1875 (=2p/n) which implies it is not an outlier.</li>

[Here p=3(no.of variables in the model), n=32(no.of observations)]

Thus, it can be concluded that on using stepwise selection method, we end up with no outliers.

## Sign- off note:



The most valuable (and correct) use of regression is in making predictions. Though, only a small minority of regression exercises end up by making a prediction, however.