

Taller Formativo 4

Mario Castillo Sanhueza

Docente: Dr. Julio Rojas Mora

Departamento de Ingeniería Informática Facultad de Ingeniería Universidad Católica de Temuco

Agosto 10, 2022

1. Problemática.

Dado el tiempo de fallo de una muestra de nuevos discos duros en meses como la siguiente tabla:

$$x_1 = 170$$
 $x_2 = 186$ $x_3 = 178$ $x_4 = 172$ $x_5 = 165$ $x_6 = 180$ $x_7 = 175$ $x_8 = 174$ $x_9 = 167$ $x_{10} = 168$ $x_{11} = 168$ $x_{12} = 172$ $x_{13} = 174$ $x_{14} = 169$ $x_{15} = 182$ $x_{16} = 161$ $x_{17} = 173$ $x_{18} = 181$ $x_{19} = 183$ $x_{20} = 185$

Calcule el primer y el tercer cuartil.

2. Desarrollo

 Comenzamos entonces con ordenar los datos dentro de la muestra de la forma:

$$x_1 = 161$$
 $x_2 = 165$ $x_3 = 167$ $x_4 = 168$ $x_5 = 168$ $x_6 = 169$ $x_7 = 170$ $x_8 = 172$ $x_9 = 172$ $x_{10} = 173$ $x_{11} = 174$ $x_{12} = 174$ $x_{13} = 175$ $x_{14} = 178$ $x_{15} = 180$ $x_{16} = 181$ $x_{17} = 182$ $x_{18} = 183$ $x_{19} = 185$ $x_{20} = 186$

■ Utilizando $\frac{(i-1)\cdot 100}{n-1}$ asignaremos a cada dato su cuantil de la forma:

Utilizando

$$C_q = (1 - \Delta q) \cdot C_{qi} + \Delta q \cdot C_{qi+1} \tag{1}$$

$$\Delta q = \frac{q - q_i}{q_{i+1} - q_i} \tag{2}$$

calcularemos la interpolación requerida.

Conocida las fórmulas a utilizar se calcula el primer cuartil correspondiente al percentil 25 o cuantil 25 %:

$$\Delta q = \frac{25 - 21,05}{26,32 - 21,05} = 0,75 \tag{3}$$

Ahora utilizando (3) en (1)

$$C_q = (1 - 0.75) \cdot 168 + 0.75 \cdot 169 = 168.75$$
 (4)

Siendo entonces el primer cuartil: 168,75.

 Para calcular el tercer cuartil repetimos el proceso conociendo que el percentil 75 o cuantil 75 % representa este cuartil.:

$$\Delta q = \frac{75 - 73,68}{78,95 - 73,68} = 0,25 \tag{5}$$

Aplicando ahora (5) en (1)

$$C_q = (1 - 0.25) \cdot 180 + 0.25 \cdot 181 = 180.25$$
 (6)

Siendo entonces el tercer cuartil: 180,25