Unit 2 – Section 2C

Inference for Multiple Multinomial Variables

Variables

- Variable 2 = Response Variable
 - *J* > 2 categories
- Variable 1 = Grouping Variable
 - I groups (categories)

Contingency Table (3 x 3 example)

Response Variable

Explanatory Variable	Cat 1	Cat 2	Cat 3	Total
Group 1	<i>Y</i> ₁₁	<i>Y</i> ₁₂	<i>Y</i> ₁₃	n_1
Group 2	<i>Y</i> ₂₁	<i>Y</i> ₂₂	<i>Y</i> ₂₃	n_2
Group 3	<i>Y</i> ₃₁	<i>Y</i> ₃₂	<i>Y</i> ₃₃	n_3
Total	<i>Y</i> .1	<i>Y</i> .2	<i>Y</i> .3	n

Null and Alternative Hypothesis

- p_{ij} = Population proportion in category j in group i, i = 1, ..., I
- H_0 : $p_{i1}, p_{i2}, \dots, p_{iJ}$ is same for all $i = 1, \dots, I$
 - Distribution of response variable is same for each group
- H_a : at least one $p_{i1}, p_{i2}, \dots, p_{iJ}$ is different, $i = 1, \dots, I$
 - Distribution of response variable varies between groups

Model

If Null Hypothesis is true:

• Set
$$p_{11} = p_{21} = p_{31} = \dots = p_{I1} = p_{.1}$$

• Set
$$p_{12} = p_{22} = p_{32} = \dots = p_{I2} = p_{.2}$$

• Set
$$p_{1J} = p_{2J} = p_{3J} = \dots = p_{IJ} = p_{.J}$$

Model

Expected Values

$$E(Y_{ij}) = n_i p_{.j}$$

■ Each $p_{.j}$ is unknown.

Estimate of *p*

Example (3 x 3)

$$\hat{p}_{.j} = \frac{Y_{1j} + Y_{2j} + Y_{3j}}{n_1 + n_2 + n_3} = \frac{Y_{.j}}{n}$$

Explanatory Variable	Cat 1	Cat 2	Cat 3	Total
Group 1	<i>Y</i> ₁₁	<i>Y</i> ₁₂	<i>Y</i> ₁₃	n_1
Group 2	<i>Y</i> ₂₁	<i>Y</i> ₂₂	<i>Y</i> ₂₃	n_2
Group 3	<i>Y</i> ₃₁	<i>Y</i> ₃₂	<i>Y</i> ₃₃	n_3
Total	<i>Y</i> .1	<i>Y</i> .2	Y _{.3}	n

Estimate of Expected Values

• $E(Y_{ij})$ estimated with $n_i\left(\frac{Y_{.j}}{n}\right)$

$$\widehat{E(Y_{ij})} = \frac{n_i Y_{.j}}{n}$$

$$= \frac{\text{row } i \text{ total} * \text{column } j \text{ total}}{\text{table total}}$$

Test Statistic

- Compare Y_{ij} to $\widehat{E(Y_{ij})}$
 - If values are very different, evidence that some of the $p_{i1}, p_{i2}, \dots, p_{iJ}$ are different for some groups i.

$$X^{2} = \sum_{j=1}^{J} \sum_{i=1}^{I} \frac{(Y_{ij} - \widehat{E(Y_{ij})})^{2}}{\widehat{E(Y_{ij})}}$$

P-value

• As long as $\widehat{E(Y_{ij})} \ge 5$ for all i and j, distribution of X^2 is well-approximated by $\chi^2_{(I-1)(J-1)}$.

$$p$$
-value = $P(\chi^2_{(I-1)(J-1)} > X^2)$

Ex. Smoking and Sex

As a part of a survey of a given population, over 400 people indicated their smoking status (Non-Smoker, Past Smoker, Current Smoker) and their Sex (Female, Male).

Ex. Variables

- Variable 2 = Response Variable
 - Smoking Status
 - Categories = Non-Smoker, Past Smoker, Current Smoker
- Variable 1 = Grouping Variable
 - Sex
 - Categories = Female, Male

Ex. Data

Smoking Status	Sex
Nonsmoker	Male
Nonsmoker	Male
Nonsmoker	Male
:	•
:	•
Currentsmoker	Female
Currentsmoker	Female

Ex. Contingency Table

Smoking Status				
Sex	Non- smoker	Past Smoker	Current Smoker	Total
Female	148	24	37	209
Male	149	13	31	193
Total	297	37	68	402

Ex. Mosaic Plot

Females have slightly lower proportion of Non-Smokers, and slightly higher proportion of Pastsmokers and Current-Smokers than Males.

Ex. Null and Alternative Hypotheses

- Distribution of smoking status is same for each Sex.
 - H_0 : p_{i1}, p_{i2}, p_{i3} is the same for all i = 1, 2.
- Distribution of smoking status is different between Sexes.
 - H_a : at least one p_{i1} , p_{i2} , p_{i3} is different, i = 1, 2.

Ex. Expected Values

Smoking Status				
Sex	Non- smoker	Past Smoker	Current Smoker	Total
Female	154.4104	19.2363	35.3532	209
Male	142.5896	17.7637	32.6468	193
Total	297	37	68	402

Ex. Test Statistic

$$X^{2} = \frac{(148 - 154.4104)^{2}}{154.4104} + \frac{(24 - 19.2363)^{2}}{19.2363} +$$

$$\cdots + \frac{(31 - 32.6468)^2}{32.6468}$$

$$= 3.1713$$

Ex. P-value and Conclusion

- p-value = $P(\chi_2^2 > 3.1713) = 0.2048$
- Conclusion: We do not have evidence the smoking status of members of this population is different between Sexes.