SIMD инструкции (продолжение)

Редукция

- Редукция вычисления скалярного значения по вектору значений
- Примеры: вычисление суммы, минимума, максимума, произведения, и т.п. элементов одномерного массива

Редукция

• Общий алгоритм редукции на SIMD архитектурах:

- 1. Разбить данные на части, для которых значение может быть вычислено независимо (вертикально)
 - количество частей = длина вектора,
 обрабатываемого SIMD инструкцией
 - вычислить вектор частичных значений

Редукция

- 2. Произвести редукцию полученного вектора. Варианты:
 - а) последовательно. Число шагов = длина
 - b) параллельно (горизонтальными инструкциями), за каждый шаг сокращая его длину в 2 раза. Число шагов = log_2 (длина)

Редукция – вертикальные вычисления

Редукция – горизонтальные вычисления

Пример

ullet Вычислить сумму a_i ...

```
xor xmm1, xmm1 ; sum = 0
fori:
    movaps xmm0, a[esi]
; вычисляем параллельно 4 суммы s3, s2, s1, s0
    addps xmm1, xmm0
    add esi, 16
   loop
```

Пример (продолжение)

```
; xmm1 = s3, s2, s1, s0
haddps xmm1, xmm1
     ; xmm1 = s3+s2, s1+s0, s3+s2, s1+s0
haddps xmm1, xmm1
     ; xmm1 = ..., ..., s3+s2+s1+s0
          result, xmm1
movss
```