

Best practices for jupyter notebooks + git + conda MEOM experience

Aurélie Albert, Ocean Next Julien LeSommer, MEOM@IGE

Main objective for any computational analysis

- ★ Reproducibility is essential
 - Publishing results
 - Future work with different dataset/different method or param
 - Sharing with the community
- ★ Jupyter notebooks allow us to do that!

10 simple rules

Summary of the workshop "Reproducible Research and Interactive Education – Application of Jupyter Notebooks" 2018:

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007007

★ Illustration with personnal and MEOM shared material

Rule 1: Tell a story for an audience

- ★ It starts with the title : when-who-what.ipynb
- ★ In a notebook, it is possible to
 - write text with markdown formatting
 - write equations
 - put links
 - import images, etc ...
 - Idem on github : README.md

Rule 1: Tell a story for an audience

Rule 2: Document the process, not just the results

Oceannexi Hydrosphere Data & numerics

- * it is tempting to erase the code that did not work ...
- development notebooks vs deliverable notebooks
- ★ even debug notebooks ...
- ★ add 'failed' in the title

Rule 3: Use cell divisions to make steps clear

- ★ Equilibrium between single-line block and 100-lines block
- ★ Text in mardown describing the following block
- ★ All the imports in one cell, the data imports etc ...

Rule 4: Modularize code

- ★ It is tempting to copy/paste block of code changing one parameter, best use functions
- ★ If functions are used in different notebooks, make a module/package/library

Rule 5 : Record dependencies

- ★ Crucial for reproducibility (sometimes years after ...)
- ★ Worst nightmare of any python user!
- ★ Explicitely print the version of the packages : watermark
- ★ Package manager : conda, pip
- ★ Conda on hpc not always possible : conda-pack

Rule 6: Use version control

- ★ For any code, git allows you to
 - back-up your work online
 - keep track of changes
 - deploy your code on different machines
 - work in collaboration

Git commands

- ★ Retrieve a repo
 - git clone https://github.com/auraoupa/repo.git
 - git pull to refresh
- ★ Create a depot from a local dir
 - git init
 - git remote add origin https://github.com/auraoupa/repo.git
- ★ Add content
 - git add f le/*/.
 - git commit -m 'comment'
 - git push

Git tips

- ★ .gitignore = list of f les not tracked (*nc, slurm*)
- ★ Always git pull f rst !!!!
- ★ When conf lct, vi the f le and look for <<<</p>
- ★ Participate on someone's code
 - git clone
 - git branch mycontrib
 - git checkout mycontrib
 - modify
 - git add, commit, push
 - on github, click on pull request

Rule 7: Build a pipeline/workf bw

- ★ When you're happy with your analysis, make a clean version
 - Verify it holds when restarting kernel and rerunning all
 - Key variable declaration at the beginning
 - Transform your notebook in a script with parameter : papermill
 - Test and continuous integration
 - From raw data to scientif c result

Rule 8: Share and explain your data

- ★ Ideally entire data is available alongside with notebook
- ★ Describe the upstream process to produce it
- Intermediate small dataset on hosting services (f gshare, zenodo)

Rule 9: Design your notebooks to be read, run and explored

- ★ To be read
 - renders on github (be careful on gitlab), html version, nbviewer
- ★ To be run
 - conf guration/dependencies f le
 - demo in a binder
 - deployment in a container, docker
- ★ To be explored
 - Simple change in the notebook
 - ipy-widget

Rule 10: Advocate for open research

- ★ What I'm doing now!
- ★ Be an example
- ★ Teach your students, convince your co-workers

MEOM experience

Julien LS's advice to his students, 3 types of notebooks:

- 'Lab' notebook: ~development, daily (messy), archived on github
- 'Synthesis' notebook: narration with material from lab notebooks, very illustrative (plots and equations), converted in html for exchanges
- 'Diffusion' notebook: alongside with article or report, reproduce plots or analysis, distributed on github with zenodo tag

Also in the team: teaching material by Emmanuel Cosme, demonstrations on https://github.com/meom-group/tutos

de votre attention ...

Mardi Café – Toolkit – 05/05/2020