Final Exam

13 января 2015 г.

Содержание

1	Слу	чайные события 3
	1.1	Случайный эксперимент
	1.2	Случайное событие
	1.3	Классическое определение вероятности
	1.4	Геометрическое определение вероятности
	1.5	Статистическое определение вероятности
	1.6	Сигма-алгебра событий
	1.7	Аксиоматическое определение вероятности
	1.8	Условная вероятность
	1.9	Независимые события
	1.10	Полная группа событий
	1.11	Схема Бернулли
2	Слу	чайные величины 16
	2.1	Одномерные случайные величины
		2.1.1 Определение случайной величины
	2.2	Дискретные случайные величины
	2.3	Непрерывные случайные величины
	2.4	Нормальное распределение (нормальная случайная величина) 19
	2.5	Случайные векторы
		2.5.1 Непрерывные случайные векторы
		2.5.2 Независимые случайные величины
	2.6	Условные характеристики случайных величин
	2.7	Функции случайных величин

Электронная версия

ИУ-7, семестр 5, 2014 год. Ответов на вопросы 2.8-2.17 нет. Возможно некоторые доказательства преподавателю могут показаться "сжатыми", поэтому рекомендуется заранее ознакомиться со всеми свойствами и. т. д., что бы быть готовым к вопросам из серии "Какими свойствами вы пользовались при доказательстве ..."

Исходники всегда можно найти

https://github.com/BBQTD/BMSTU-Probability-Theory-Final-Exam

Удачи вам в зубрёжке, скатывании освоении материала.

1 Случайные события

1.1 Случайный эксперимент

Определение 1.1. Элементарный исход (элементарное событие) случайного эксперимента— это такой исход, который в рамках конкретного эксперимента:

- мыслится неделимым;
- в результате эксперимента обязательно произойдёт один из элементарных исходов;
- никаких два и более элементарных исходов не могут произойти одновременно;

Определение 1.2. *Пространство элементарных исходов* — это множество всех элементарных исходов конкретного случайного эксперимента.

Замечание 1.2.1.

- ω элементарный исход;
- \bullet Ω пространство элементарных исходов.

Пример. Подбрасываем монету один раз. Возможно 2 элементарных исходов:

$$\omega_1$$
 — выпал герб, ω_1 — выпала решка

Тогда пространство элементарных исходов данного эксперимента выглядит следующим образом:

$$\Omega = \{\omega_1, \omega_2\}$$

Пример. Если монету подбрасывают дважды, то возможны следующие элементарные исходы:

 ω_1 — при первом и втором подбрасывании выпал герб;

 ω_2 — при первом и втором подбрасывании выпала решка;

 ω_3 — при первом подбрасывании выпал герб, а при втором решка;

 ω_4 — при первом подбрасывании выпаа решка, а при втором герб,

Тогда пространство элементарных исходов данного эксперимента выглядит следующим образом:

$$\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}$$

Так же можно рассмотреть такие популярные примеры как подбрасывание игральной кости, выстрел по мишени и т. д.

1.2 Случайное событие

Определение 1.3 (нестрогое). Случайное событие — это произвольное подмножество пространства элементарных исходов Ω случайного эксперимента.

Говорят, что *событие* A *произошло* если в результате конкретного случайного эксперимента произошёл элементарный $ucxod\ \omega \in A$. Также говорят, что элементы множества A *благоприятствуют* событию A.

Определение 1.4. Достоверное событие — это такое событие, которое обязательно произойдёт в конкретном случайном эксперименте. Это есть не что иное как событие, которое включает в себя все возможные элементарные исходы, конкретного случайного эксперимента и обозначается как Ω .

Определение 1.5. *Невозможное событие* — это событие, которое в конкретном случайном эксперименте **никогда не произойдёт**. Обозначается как \varnothing .

Определение 1.6 (следствие события). Событие A включено в событие B есть $A \subset B$ и означает, что появление события A влечёт за собой появление события B

Пример. В урне 3 белых и 2 чёрных шара. Из урны извлекают 1 шар. Невозможным событием для данного эксперимента может быть таким

$$A = \{$$
из урны извлечёй синий шар $\}$

А достоверным событием

$$B = \{$$
из урны извлечён белый или чёрный шар $\}$

Операции над событиями

- сложение событий: $A \cup B$;
- умножение событий: $A \cap B$;
- разность событий: $A \setminus B$
- противоположное событие: $\overline{A} = \Omega \setminus A$

Свойства операций над событиями

- 1. коммутативность: $A \cup B = B \cup A$, $A \cap B = B \cap A$;
- 2. ассоциативность: $(A \cup B) \cup C = A \cup (B \cup C)$, $(A \cap B) \cap C = A \cap (B \cap C)$;
- 3. дистрибутивность относительно сложения: $(A \cup B) \cap C = A \cap C \cup B \cap C$;
- 4. дистрибутивность относительно умножения: $A \cap B \cup C = (A \cup C) \cap (B \cup C)$;
- 5. $A \cup \emptyset = A$;

- 6. $A \cap \Omega = A$;
- 7. идемпотентность: $A \cup A = A$, $A \cap A = A$;
- 8. законы де Моргана: $\overline{A \cup B} = \overline{A} \cap \overline{B}, \overline{A \cap B} = \overline{A} \cup \overline{B};$
- 9. $A \subseteq B \Leftrightarrow A \cup B = B, A \cap B = A, \overline{A} \supset \overline{B}$

1.3 Классическое определение вероятности

Пусть в рамках конкретного случайного эксперимента выполняются следующие условия:

- пространство элементарных исходов конечно т. е. $|\Omega| = N < \infty$;
- все элементарные исходы равновозможны.

Определение 1.7. Вероятность осуществления события А есть число

$$\mathsf{P}(A) = rac{N_A}{N},$$
 где

ullet N — число элементарных исходов, благоприятствующих событию A

Основные свойства

1. $P(A) \ge 0$

$$\mathsf{P}(A) = \frac{N_A}{N}; \text{ т. к. } N_A \ge 0, N > 0 \Rightarrow \mathsf{P}(A) \ge 0$$

2. $P(\Omega) = 1$

$$\mathsf{P}(\Omega) = \frac{N_\Omega}{N} = \frac{N}{N} = 1$$

3. $P(A \cup B) = P(A) + P(B)$ при $A \cap B = \emptyset$

 \square т. к. по условию $A\cap B=\varnothing,$ то $|A\cup B|=|A|+|B|-\bot A \cap B|,$ тогда

$$P(A \cup B) = \frac{N_{A \cup B}}{N} = \frac{N_A + N_B}{N} = \frac{N_A}{N} + \frac{N_B}{N} = P(A) + P(B)$$

Недостатки классического определения

- 1. пространство элементарных исходов конечно;
- 2. поскольку все элементарные исходы равновозможны, то нельзя отдавать предпочтения некоторым элементарным исходам.

1.4 Геометрическое определение вероятности

Пусть в рамках конкретного случайного эксперимента выполняются следующие условия

- $\Omega \subseteq \mathbb{R}^n$
- мера множества $\mu(\Omega) < \infty$ при

 $n=1 \Rightarrow \mu$ — длина,

 $n=2 \Rightarrow \mu$ — площадь,

 $n=3\Rightarrow \mu$ — объём и т. д.

• возможность принадлежности исхода множеству $A \subseteq \Omega$ пропорциональна $\mu(A)$ и не зависит от расположения A внутри Ω , а так же и от формы A.

Определение 1.8. Вероятность осуществления события А есть число

$$\mathsf{P}(A) = \frac{\mu(A)}{\mu(\Omega)}$$

Преимущества и недостатки геометрического определения

- + из геометрического определения выводятся те же свойства, что и из классического определения;
- + обобщает классическое определение на случай, когда Ω бесконечное множество в \mathbb{R}^n ;
- невозможно отдавать предпочтение некоторым областям.

1.5 Статистическое определение вероятности

Пусть в рамках конкретного случайного эксперимента выполняются следующие условия

- \bullet эксперимент проведён n раз;
- \bullet событие A произошло n_A раз.

Определение 1.9. Вероятность осуществления события А есть число

$$\mathsf{P}(A) = \lim_{n o \infty} rac{n_a}{n}$$
 предел эмперический

Преимущества и недостатки статистического определения

- + из статистического определения выводятся те же свойства, что и из классического определения;
- эксперимент не может быть повторён бесконечное число раз;
- такое определение не даёт дальнейшего развития для математической теории.

1.6 Сигма-алгебра событий

Определение 1.10. σ -алгебра событий \mathfrak{B} — непустая система подмножеств пространства элементарных исходов Ω удовлетворяющая следующим условиям:

- $A \in \mathfrak{B} \Rightarrow \overline{A} \in \mathfrak{B}$:
- $A_1, A_2, \ldots, A_n, \cdots \in \mathfrak{B} \Rightarrow A_1 \cup A_2 \cup \cdots \cup A_n \cup \cdots \in \mathfrak{B}$.

Свойства сигма-алгебры событий

1. $\Omega \in \mathfrak{B}$

 $A \in \mathfrak{B} \Rightarrow \overline{A} \in \mathfrak{B} \Rightarrow A \cup \overline{A} \in \mathfrak{B} \Rightarrow \Omega \in \mathfrak{B}$

 $2. \varnothing \in \mathfrak{B}$

$$1. \Rightarrow \Omega \in \mathfrak{B} \Rightarrow \overline{\Omega} \in \mathfrak{B} \Rightarrow \emptyset \in \mathfrak{B}$$

3. $A_1, A_2, \dots, A_n, \dots \in \mathfrak{B} \Rightarrow A_1 \cap A_2 \cap \dots \cap A_n \cap \dots \in \mathfrak{B}$

$$A_1 \cup A_2 \cup \cdots \cup A_n \cup \cdots \in \mathfrak{B} \Rightarrow \overline{A_1} \cup \overline{A_2} \cup \cdots \cup \overline{A_n} \cup \cdots \in \mathfrak{B} \Rightarrow$$

$$\Rightarrow \overline{\overline{A_1} \cup \overline{A_2} \cup \cdots \cup \overline{A_n} \cup \cdots} \in \mathfrak{B} \Rightarrow A_1 \cap A_2 \cap \cdots \cap A_n \cap \cdots \in \mathfrak{B}$$

 $4. \ A,B \in \mathfrak{B} \Rightarrow A \setminus B \in \mathfrak{B}$

 $A \setminus B = A \cap \overline{B} \Rightarrow A \in \mathfrak{B}, \overline{B} \in \mathfrak{B}, A \cap \overline{B} \in \mathfrak{B} \Rightarrow A \setminus B \in \mathfrak{B}$

1.7 Аксиоматическое определение вероятности

Определение 1.11. Пусть задано Ω и \mathfrak{B} . Тогда *вероятность* есть отображение

$$\mathsf{P}\colon\mathfrak{B}\longrightarrow\mathbb{R}$$

обладающее следующими аксиомами:

- 1. аксиома неотрицательности: $P(A) \geq 0, A \in \mathfrak{B}$
- 2. аксиома нормированности: $P(\Omega) = 1$
- 3. **расширенная аксиома сложения:** $A_1, A_2, \dots, A_n, \dots \in \mathfrak{B}$ попарно несовместные события $\Rightarrow \mathsf{P}(A_1 \cup A_2 \cup \dots \cup A_n \cup \dots) = \mathsf{P}(A_1) + \mathsf{P}(A_2) + \dots + \mathsf{P}(A_n) + \dots$

Свойства вероятности из аксиоматического определения

1. вероятность противоположного события: $P(\overline{A}) = 1 - P(A)$

 $\mathsf{P}(\Omega) = \mathsf{P}(\underbrace{A \cup \overline{A}}_{A \cap \overline{A} = \varnothing}) = \mathsf{P}(A) + \mathsf{P}(\overline{A}) = 1 \Rightarrow \mathsf{P}(\overline{A}) = 1 - \mathsf{P}(A)$

2. вероятность невозможного события: $P(\varnothing)=0$

П

 $\varnothing = \overline{\Omega} \Rightarrow \mathsf{P}(\varnothing) = \mathsf{P}(\overline{\Omega}) = 1 - \mathsf{P}(\Omega) = 1 - 1 = 0$

3. большему событию соответствует большая вероятность: $A\subseteq B\Rightarrow \mathsf{P}(A)\le \mathsf{P}(B)$

 $\mathsf{P}(B) = \mathsf{P}(\underbrace{A \cup B \setminus A}_{A \cap (B \setminus A) = \varnothing}) = \mathsf{P}(A) + \mathsf{P}(B \setminus A) \ge \mathsf{P}(A)$

4. вероятность заключена между 0 и $1: 0 \le P(A) \le 1$

• $0 \le P(A)$ — по аксиоме неотрицательности; • $P(A) \le 1$ — по свойству 3. $A \subseteq \Omega \Rightarrow P(A) \le P(\Omega) = 1$

5. вероятность объединения двух событий: P(A) + P(B) = P(AB)

 $P(A \cup B) = P(A) + P(B) - P(AB)$

 $\mathsf{P}(A \cup B) = \mathsf{P}(\underbrace{A \cup B \setminus A}) = \mathsf{P}(A) + \mathsf{P}(B \setminus A)$ $\mathsf{P}(B) = \mathsf{P}(\underbrace{B \setminus A \cup AB}) = \mathsf{P}(B \setminus A) + \mathsf{P}(AB) \Rightarrow \mathsf{P}(B \setminus A) = \mathsf{P}(B) - \mathsf{P}(AB)$ $\mathsf{P}(A \cup B) = \mathsf{P}(A) + \mathsf{P}(B) - \mathsf{P}(AB)$

6. вероятность объединения любого конечного набора событий:

 $\mathsf{P}(A_1 \cup A_2 \cup \dots \cup A_n) = \sum_{i=1}^n \mathsf{P}(A_i) - \sum_{1 \le i < j \le n} \mathsf{P}(A_i \cap A_j) - \dots + (-1)^{n+1} \, \mathsf{P}(A_1 \cap A_2 \cap \dots \cap A_n)$

для трех событий:

П

$$\begin{split} \mathsf{P}(A_1 \cup A_2 \cup A_3) &= \mathsf{P}(A_1) + \mathsf{P}(A_2 \cup A_3) - \mathsf{P}\big(A_1(A_2 \cup A_3)\big) = \\ &= \mathsf{P}(A_1) + \mathsf{P}(A_2) + \mathsf{P}(A_3) - \mathsf{P}(A_2A_3) - \mathsf{P}(A_1A_2 \cup A_1A_3) = \\ &= \mathsf{P}(A_1) + \mathsf{P}(A_2) + \mathsf{P}(A_3) - \mathsf{P}(A_2A_3) - \big(\mathsf{P}(A_1A_2) + \mathsf{P}(A_1A_3) - \mathsf{P}(A_1A_2A_3)\big) = \\ &= \mathsf{P}(A_1) + \mathsf{P}(A_2) + \mathsf{P}(A_3) - \mathsf{P}(A_2A_3) - \mathsf{P}(A_1A_2) - \mathsf{P}(A_1A_3) + \mathsf{P}(A_1A_2A_3) \end{split}$$

для четырёх:

$$\begin{split} \mathsf{P}(A_1 \cup A_2 \cup A_3 \cup A_4) &= \mathsf{P}(A_1) + \mathsf{P}(A_2 \cup A_3 \cup A_4) - \mathsf{P}\big(A_1(A_2 \cup A_3 \cup A_4)\big) = \\ &= \mathsf{P}(A_1) + \mathsf{P}(A_2 \cup A_3 \cup A_4) - \mathsf{P}\big(A_1A_2 \cup A_1(A_3 \cup A_4)\big) = \\ &= \mathsf{P}(A_1) + \mathsf{P}(A_2 \cup A_3 \cup A_4) - \Big(\mathsf{P}(A_1A_2) + \mathsf{P}\big(A_1(A_3 \cup A_4)\big) - \mathsf{P}\big(A_1A_2(A_3 \cup A_4)\big)\Big) = \\ &= \mathsf{P}(A_1) + \Big[\mathsf{P}(A_2) + \mathsf{P}(A_3) + \mathsf{P}(A_4) - \mathsf{P}(A_2A_3) - \mathsf{P}(A_3A_4) - \mathsf{P}(A_2A_4) + \mathsf{P}(A_2A_3A_4)\Big] - \\ &- \Big[\mathsf{P}(A_1A_2) + \big\langle \mathsf{P}(A_1A_3) + \mathsf{P}(A_1A_4) - \mathsf{P}(A_1A_3A_4) \big\rangle - \\ &- \big\langle \mathsf{P}(A_1A_2A_3) + \mathsf{P}(A_1A_2A_4) - \mathsf{P}(A_1A_2A_3A_4) \big\rangle \Big] = \\ &= \mathsf{P}(A_1) + \mathsf{P}(A_2) + \mathsf{P}(A_3) + \mathsf{P}(A_4) - \\ &- \mathsf{P}(A_2A_3) - \mathsf{P}(A_3A_4) - \mathsf{P}(A_2A_4) - \mathsf{P}(A_1A_2) - \mathsf{P}(A_1A_3) - \mathsf{P}(A_1A_4) + \\ &+ \mathsf{P}(A_2A_3A_4) + \mathsf{P}(A_1A_3A_4) + \mathsf{P}(A_1A_2A_3) + \mathsf{P}(A_1A_2A_4) - \\ &- \mathsf{P}(A_1A_2A_3A_4) + \mathsf{P}(A_1A_2A_3A_4) + \mathsf{P}(A_1A_2A_3A_4) + \mathsf{P}(A_1A_2A_3A_4) + \\ &- \mathsf{P}(A_1A_2A_3A_4) + \mathsf{P}(A_1A_2A_3A_4) + \mathsf{P}(A_1A_2A_3A_4) + \mathsf{P}(A_1A_2A_3A_4) + \\ &- \mathsf{P}(A_1A_2A_3A_4) + \mathsf{P}(A_1A_2A_3A_4) + \mathsf{P}(A_1A_2A_3A_4) + \mathsf{P}(A_1A_2A_3A_4) + \\ &- \mathsf{P}(A_1A_2A_3A_4) + \mathsf{P}(A_1A_2A_3A_4) + \\ &- \mathsf{P}(A_1A_2A_3A_4) + \mathsf{P}(A_1A_2A_3A_4) + \\ &- \mathsf{P}(A_1A_2A_3A_4) + \\ &- \mathsf{P}(A_1A_2A_3A_4) + \mathsf{P}(A_1A_2A_3A_4) + \\ &- \mathsf{P}(A_1A_2A_3A_4) + \\$$

1.8 Условная вероятность

Определение 1.12. *Условная вероятность* осуществления события A при условии, что произошло событие B есть число

$$\mathsf{P}(A\mid B) = rac{N_{AB}}{N_B} = rac{N_{AB}/N}{N_B/N} = rac{\mathsf{P}(AB)}{\mathsf{P}(B)},$$
 где

• $P(B) \neq 0$

Условная вероятность обладает всеми свойствами безусловной вероятности:

1.
$$P(A \mid B) \ge 0$$

$$P(A \mid B) = \frac{P(AB)}{P(B)}, \ P(AB) \ge 0, \ P(B) > 0 \ \Rightarrow \ P(A \mid B) \ge 0$$

$$2. \ \mathsf{P}(\Omega \mid B) = 1$$

$$\mathsf{P}(\Omega \mid B) = \frac{\mathsf{P}(\Omega B)}{\mathsf{P}(B)} = \frac{\mathsf{P}(B)}{\mathsf{P}(B)} = 1$$

3. $P(A_1 \cup A_2 \cup \dots \cup A_n \cup \dots \mid B) = P(A_1 \mid B) + P(A_2 \mid B) + \dots + P(A_n \mid B) + \dots,$ где $A_1, A_2, \dots, A_n, \dots$ — попарно несовместные события

$$P(A_1 \cup A_2 \cup \dots \cup A_n \cup \dots \mid B) = \frac{P((A_1 \cup A_2 \cup \dots \cup A_n \cup \dots)B)}{P(B)} =$$

$$= \frac{P(A_1B) + P(A_2B) + \dots + P(A_nB) + \dots}{P(B)} =$$

$$= \frac{P(A_1B)}{P(B)} + \frac{P(A_2B)}{P(B)} + \dots + \frac{P(A_nB)}{P(B)} + \dots =$$

$$= P(A_1 \mid B) + P(A_2 \mid B) + \dots + P(A_n \mid B) + \dots$$

Смысл условной вероятности заключается в том, что условная вероятность представляет собой безусловную вероятность заданную на новом пространстве элементарных исходов, совпадающим с некоторым событием.

Формула умножения вероятностей

для 2х событий:

$$P(AB) = P(A) P(B \mid A)$$
, где

• P(A) > 0

$$P(B \mid A) = \frac{P(AB)}{P(A)} \implies P(AB) = P(A) P(B \mid A), P(A) > 0$$

для n событий

$$P(A_1 \cap A_2 \cap \dots \cap A_n) = P(A_1) P(A_2 \mid A_1) P(A_3 \mid A_1 A_2) \dots P(A_n \mid A_1 \cap A_2 \cap \dots \cap A_{n-1}),$$
 где

• $P(A_1 \cap A_2 \cap \dots \cap A_{n-1} > 0$

$$P(A_{1} \cap A_{2} \cap \dots \cap A_{n-1} \cap A_{n}) = P(A_{1} \cap A_{2} \cap \dots \cap A_{n-2} \cap A_{n-1}) P(A_{n} \mid A_{1} \cap A_{2} \cap \dots \cap A_{n-1}) =$$

$$= P(A_{1} \cap A_{2} \cap \dots \cap A_{n-3} \cap A_{n-2}) P(A_{n-1} \mid A_{1} \cap A_{2} \cap \dots \cap A_{n-2}) P(A_{n} \mid A_{1} \cap A_{2} \cap \dots \cap A_{n-1}) =$$

$$= \dots =$$

$$= P(A_{1}) P(A_{2} \mid A_{1}) P(A_{3} \mid A_{1} A_{2}) \dots P(A_{n} \mid A_{1} \cap A_{2} \cap \dots \cap A_{n-1})$$

Пример. В урне 7 карточек из которых можно составить слово "ШОКОЛАД". Карточки из урны извлекают последовательно и выкладывают из них слева направо слово "ШОК"

$$A_1 = \{1$$
 вытащенная карточка — $\coprod \}$

$$A_2 = \{2 \text{ вытащенная карточка} - O \}$$

$$A_3 = \{3 \text{ вытащенная карточка} - K \}$$

$$P(A_1 A_2 A_3) = P(A_1) P(A_2 \mid A_1) P(A_3 \mid A_1 A_2) = \frac{1}{7} \cdot \frac{2}{6} \cdot \frac{1}{5} = 0,0095$$

1.9 Независимые события

Определение 1.13. События *A* и *B* независимые если

$$P(A \mid B) = P(A)$$
 или $P(B \mid A) = P(B)$, где

- P(A) > 0;
- P(B) > 0.

иначе события A, B - **зависимые**.

Теорема 1.1 (критерий независимости двух событий). События A и B независимые тогда и только тогда, когда

$$P(AB) = P(A) P(B)$$
, где

- P(A) > 0;
- P(B) > 0.

П

 \Rightarrow Так как $\mathsf{P}(B\mid A)=\mathsf{P}(B)$ по определению, тогда из формулы умножения вероятностей

$$\mathsf{P}(AB) = \mathsf{P}(A)\,\mathsf{P}(B\mid A) = \mathsf{P}(A)\,\mathsf{P}(B)$$

 \Leftarrow Пусть $\mathsf{P}(AB) = \mathsf{P}(A)\,\mathsf{P}(B),$ тогда из определения условной вероятности

$$P(A \mid B) = \frac{P(AB)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)$$

или

$$\mathsf{P}(B \mid A) = \frac{\mathsf{P}(AB)}{\mathsf{P}(A)} = \frac{\mathsf{P}(A)\,\mathsf{P}(B)}{\mathsf{P}(A)} = \mathsf{P}(B)$$

Определение 1.14. События $A_1, A_2, \dots A_n$ попарно независимы тогда и только тогда, когда

$$P(A_i A_j) = P(A_i) P(A_j), \quad \forall i, j : i \neq j$$

Определение 1.15. События $A_1, A_2, \dots A_n$ независимы в совокупности, когда для любого набора $i_1 < \dots < i_k, k = \overline{1,n}$ справедливо

$$P(A_{i_1} \cap \cdots \cap A_{i_k}) = P(A_{i_1}) \cdot \ldots \cdot P(A_{i_k})$$

Замечание 1.15.1 (связъ).

 $Hезависимы в совокупности <math>\Rightarrow$ попарно независимы. Обратное неверно.

Обоснуем данную связь на следующем примере.

Пример. Тетраэдр. 4 грани — $\{1\}, \{2\}, \{3\}, \{1, 2, 3\}$. Введём события

$$A_i=\{$$
на грани $-i\},\quad i=\overline{1,3}$ $A_4=\{$ на грани $-1,2,3\}$

Безусловная вероятность $P(A_i) = \frac{2}{4} = 0.5, i = \overline{1,3}$

Условная вероятность $P(A_i \mid A_j) = \frac{P(A_i A_j)}{P(A_j)} = \frac{1/4}{2/4} = 0.5 = P(A_i); i \neq j; i, j = \overline{1,3}$ т. е. события попарно независимы, но

$$P(A_1 \mid A_2 A_3) = \frac{P(A_1 A_2 A_3)}{P(A_2 A_3)} = \frac{1/4}{1/4} = 1 \neq P(A_1)$$

⇒ зависимы в совокупности

Замечание 1.15.2 (связь между совместными и зависимыми событиями).

- события A и B несовместные и $P(A) \neq 0$, $P(B) \neq 0 \Rightarrow$ зависимые;
- события A и B совместные \Rightarrow либо зависимые либо независимые;
- \bullet события A и B зависимые \Rightarrow либо совместные либо несовместные.

1.10 Полная группа событий

Определение 1.16. События $H_1, \ldots, H_n \subseteq \Omega$ образуют полную группу событий если:

- $H_i \cap H_j = \emptyset; \ i, j = \overline{1, n}; \ i \neq j$ т.е. попарно несовместные события;
- $\bullet \bigcup_{i=1}^n H_i = \Omega.$

При этом *события* H_1, \ldots, H_n называют *гипотезами*.

Формула полной вероятности

Теорема 1.2.

$$\mathsf{P}(A) = \mathsf{P}(H_1) \cdot \mathsf{P}(A \mid H_1) + \dots + \mathsf{P}(H_n) \cdot \mathsf{P}(A \mid H_n),$$
 где

• H_1, \ldots, H_n — полная группа событий;

• $P(H_i) > 0, i = \overline{1, n};$

Рассмотрим событие A. Так как по условию H_1, \ldots, H_n — полная группа событий

$$A = A \cap \Omega = A \cap (H_1 \cup \cdots \cup H_n) = AH_1 \cup \cdots \cup AH_n$$

Поскольку $AH_1 \cup \cdots \cup AH_n$ попарно несовместные события, то $\mathsf{P}(A)$ примет следующий вид

$$P(A) = P(AH_1) + \ldots + P(AH_n)$$

Так как по условию $P(H_i) > 0$, $i = \overline{1, n}$, воспользуемся формулой умножения вероятностей для $P(AH_i)$, и тогда формула примет окончательный вид

$$P(A) = P(H_1) P(A \mid H_1) + ... + P(H_n) P(A \mid H_n)$$

Формула Байеса

Теорема 1.3.

$$P(H_i \mid A) = \frac{P(H_i) P(A \mid H_i)}{P(H_1) P(A \mid H_1) + \ldots + P(H_n) P(A \mid H_n)},$$
 где

• P(A) > 0

- H_1, \ldots, H_n полная группа событий;
- $P(H_i) > 0, j = \overline{1, n}$

Из определения условной вероятности известно

$$\mathsf{P}(H_i \mid A) = \frac{\mathsf{P}(H_i A)}{\mathsf{P}(A)}$$

В числители можно воспользоваться формулой умножения вероятностей, так как по условию $\mathsf{P}(H_i)>0$, а в знаменателе — формулой полной вероятностии, так как по условию H_1,\ldots,H_n — полная группа событий и вероятности всех гипотез определены $\mathsf{P}(H_j)>0,\ j=\overline{1,n}$. В таком случае, формула примет окончательный вид

$$P(H_i \mid A) = \frac{P(H_i) P(A \mid H_i)}{P(H_1) P(A \mid H_1) + \ldots + P(H_n) P(A \mid H_n)}$$

Замечание 1.16.1. Вероятности $P(H_1), \dots P(H_n)$ называют априорными, т. е. вероятностями полученными до опыта.

Замечание 1.16.2. Условные вероятности $P(H_1 \mid A), \ldots, P(H_n \mid A)$ называют апостериорными, т. е. вероятностями полученными после опыта.

1.11 Схема Бернулли

Определение 1.17. *Схемой испытаний Бернулли* называют последовательность испытаний где:

- в каждом эксперименте только **два исхода**: успех (событие A) или неудача (событие \overline{A});
- все *испытания не зависимы*, т. е. на результат некоторого k-го испытания не влияют предыдущие результаты;
- вероятность успеха во всех испытаниях постоянна и обозначают P(A) = p при этом неудача $P(\overline{A}) = 1 P(A) = 1 p = q$

Теорема 1.4 (k успехов в серии из n испытаний).

$$P_n(k) = C_n^k p^k q^{n-k}, \quad k \in \overline{0, n}$$

Рассмотрим некоторую последовательность результатов n испытаний в которой произошло ровно k успехов. Введём для этой последовательности событие A_k

$$A_k = \{ B \ n \ испытаниях произошло ровно k успехов \}, k \in \overline{0, n} \}$$

Учитывая, что все *испытания независимы* (т.е. *независимы в совокупностии*), воспользуемся формулой умножения вероятностей. В таком случае, для какой либо конкретной последовательности результатов, вероятность примет следующий вид

$$P(A_k) = p^k q^{n-k}, \quad k \in \overline{0, n}$$

Остаётся учесть всевозможные варианты перестановок элементарного исхода "ycnex" без повторений. Формула принимает окончательный вид

$$P_n(k) = C_n^k P(A_k) = C_n^k p^k q^{n-k}, \quad k \in \overline{0, n}$$

Следствие 1.4.1. Вероятность успеха в n испытаниях не менее k_1 раз и не более k_2 раз есть число

$$P_n(k_1 \le k \le k_2) = \sum_{k=k_1}^{k_2} C_n^k p^k q^{n-k}$$

Данная формула уместна, так как события $A_k, k = \overline{k_1, k_2}$ несовместны, т. е. ищут вероятность события $A = A_{k_1} \cup \cdots \cup A_{k_2}$.

Следствие 1.4.2. Вероятность хотя бы одного успеха из n испытаний есть число

$$P_n(k \ge 1) = 1 - q^n$$

Данный случай есть ни что иное как

$$P_n(k > 1) = 1 - P_n(0)$$

Так как $P_n(0) = C_n^0 p^0 q^{n-0} = q^n$, таким образом формула принимает окончательный вид

$$P_n(k > 1) = 1 - q^n$$

Следствие 1.4.3 (наивероятнейшее число успехов).

- ullet $n \, p q$ **целое** \Rightarrow **наивероятнейшее число успехов** $k = n \, p q;$
- np-q не целое \Rightarrow два наивероятнейших числа успехов:
 - ближайшее целое к np-q **слева**;
 - ближайшее целое к np-q **справа**.

П

Рассмотрим следующее выражение

$$\frac{P_n(k+1)}{P_n(k)} = \frac{n-k}{k+1} \cdot \frac{p}{q}$$

При возрастании $k, P_n(k)$ будет:

- возрастать если $\frac{P_n(k+1)}{P_n(k)} > 1 \implies k < n \, p q$
- ullet убывать если $rac{P_n(k+1)}{P_n(k)} < 1 \ \Rightarrow \ k > n \, p q$

На основании всего этого получаем данное следствие.

2 Случайные величины

2.1 Одномерные случайные величины

2.1.1 Определение случайной величины

Определение 2.1. Случайная величина — это скалярная функция $X(\omega)$ заданная на пространстве элементарных исходов, где для $\forall x \in \mathbb{R}$ множество исходов $\{\omega : X(\omega) < x\}$ есть событие.

Определение 2.2. Функцией распределения (вероятностей) случайной величины X есть функция F(X), где $\forall x \in \mathbb{R}$

$$F(x) = P\{\omega : X(\omega) < x\}$$
 или $F(x) = P\{X < x\}$

т.е. в x функция принимает значение вероятности события $\{X < x\}$, которое состоит из таких элементарных исходов $\{\omega : X(\omega) < x\}$.

Свойства функции распределения

1. $0 \le F(x) \le 1$

Так как F(x) — вероятность.

- 2. $F(x_1) \leq F(x_2)$, при $x_1 < x_2$ т. е. F(x) неубывающая функция

Так как $x_1 < x_2 \implies \{X < x_1\} \subseteq \{X < x_2\} \implies F(x_1) \le F(x_2)$ из свойств вероятности.

- 3. $P\{x_1 \le X < x_2\} = F(x_2) F(x_1)$

$$P\{X < x_2\} = \underbrace{P\{X < x_1\} + P\{x_1 \le X < x_2\}}_{\{X < x_1\}\{x_1 \le X < x_2\} = \varnothing} \Rightarrow$$

$$\Rightarrow F(x_2) = F(x_1) + P\{x_1 \le X < x_2\} \Rightarrow$$

$$\Rightarrow P\{x_1 < X < x_2\} = F(x_2) - F(x_1)$$

- 4. $\lim_{x \to -\infty} F(x) = \lim_{x \to -\infty} P\{X < x\} = 0; \lim_{x \to +\infty} F(x) = \lim_{x \to +\infty} P\{X < x\} = 1$

Рассмотрим возрастающую последовательность $x_1 < x_2 < \dots < x_n < \dots$, которая стремится к $+\infty$. Таким образом при $x \to +\infty$ получаем:

- $\{X < x_1\} \subseteq \{X < x_2\} \subseteq \dots \{X < x_n\} \subseteq \dots;$
- $\{X < x_1\} \cup \{X < x_2\} \cup \dots \{X < x_n\} \cup \dots$ есть достоверное событие.

Применяя аксиому непрерывности получаем

$$\lim_{x \to +\infty} F(x) = \lim_{x \to +\infty} \mathsf{P}\{X < x\} = 1$$

5. $\lim_{\substack{x \to x_0 - 0 \\ \text{ления непрерывна слева}} \mathsf{P}\{X < x\} = \mathsf{P}\{X < x_0\} = F(x_0), \text{ т. е. функция распределения}$

Рассмотрим любую возрастающую последовательность чисел x_1, \ldots, x_n, \ldots , которая стремится к x_0 (слева). Так как:

•
$$\{X < x_1\} \subseteq \{X < x_2\} \subseteq \dots \{X < x_n\} \subseteq \dots;$$

•
$$\{X < x_1\} \cup \{X < x_2\} \cup \dots \{X < x_n\} \cup \dots = \{X < x_0\}$$

Используя *аксиому непрерывности* приходим к выводу что

$$\lim_{x \to x_0 - 0} F(x) = F(x_0)$$

2.2 Дискретные случайные величины

Определение 2.3. *Случайную величину* X называют *дискретной* если множество её значений конечно или счётно.

2.3 Непрерывные случайные величины

Определение 2.4. Случайную величину X называют **непрерывной**, если функцию распределения можно представить в виде

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

При этом, функцию f(t) называют *плотностью распределения* (*вероятностей*) случайной величины X.

Свойства плотности распределения вероятностей непрерывной случайно величины

1. $f(x) \ge 0$;

Известно, что f(x)=F'(x). Так как F(x) не убывает \Rightarrow $F'(x)\geq 0$ \Rightarrow $f(x)\geq 0$

- 2. $P\{x_1 \le X < x_2\} = \int_{x_1}^{x_2} f(t) dt;$
 - □ Из свойств функции распределения известно

$$P\{x_1 \le X < x_2\} = F(x_2) - F(x_1)$$

Тогда используя определение *непрерывной случайной величины* и свойства свойства аддитивности сходящегося несобственного интеграла получаем

$$F(x_2) - F(x_1) = \int_{-\infty}^{x_2} f(t) dt - \int_{-\infty}^{x_1} f(t) dt = \int_{x_1}^{x_2} f(t) dt$$

 $3. \int_{-\infty}^{+\infty} f(t) dt = 1$

- $\int_{-\infty}^{+\infty} f(t) dt = \lim_{t \to +\infty} F(t) \lim_{t \to -\infty} F(t) = 1 0 = 1$
- 4. $P\{x_1 \leq X < x_2 + \Delta x\} \approx f(x) \, \Delta x$ в точках непрерывности плотности распределения;
 - $\mathsf{P}\{x_1 \le X < x_2 + \Delta x\} = F(x_2 + \Delta x) F(x_1)$ Так как функция плотности распределения непрерывна в окрестности точки

Так как функция плотности распределения непрерывна в окрестности точки x, то по теореме Лагранжа и учитывая, что Δx "мало"

$$F(x_2 + \Delta x) - F(x_1) = F'(\xi) \Delta x \approx f(x) \Delta x, \quad \xi \in (x, x + \Delta x)$$

Окончательный вид

$$P\{x_1 \le X < x_2 + \Delta x\} \approx f(x) \, \Delta x$$

- 5. Для любого наперёд заданного $x_0 \in \mathbb{R}, \ \mathsf{P}\{X = x_0\} = 0.$
 - □ Из свойства 4 известно

$$P\{x_1 \le X < x_2 + \Delta x\} \approx f(x) \, \Delta x$$

При $\Delta x \to 0$ получаем

$$\mathsf{P}\{X = x_0\} = 0$$

2.4 Нормальное распределение (нормальная случайная величина)

График с холмами. Чем меньше вершина холма тем больше σ .

Определение 2.5. Случайная величина распределена по *нормальному закону*, если её плотность

$$f_{m,\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}, \quad x \in \mathbb{R}$$

- m характеризует положение точки максимума графика f(x);
- σ характеризует разброс значений случайно величины относительно точки m
- \bullet обозначение $X \sim N(m,\sigma^2) X$ нормальная случайная величина с параметрами m и σ
- $X \sim N(0,1)$ стандартный нормальный закон распределения. Его функцию распределения обозначают как $\Phi(x)$, а плотность распределения $\varphi(x)$. Таким образом, так как m=0, а $\sigma=1$

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

Формула для вычисления вероятности попадания нормальной случайной величины в интервал

Если $X \sim N(m, \sigma)$; интервал (a, b), тогда

$$P\{a < X < b\} = \int_{a}^{b} f_{m,\sigma}(t) dt = \frac{1}{\sigma \sqrt{2\pi}} \int_{a}^{b} e^{-(t-m)^{2}/2\sigma^{2}} dt$$

Воспользуемся заменой $z = (t - m)/\sigma$, $dt = \sigma dz$

$$\frac{1}{\sigma\sqrt{2\pi}} \int_{a}^{b} e^{-(t-m)^{2}/2\sigma^{2}} dt = \frac{1}{\sqrt{2\pi}} \int_{(a-m)/\sigma}^{(b-m)/\sigma} e^{-z^{2}/2} dz$$

Таким образом окончательно получаем

$$\mathsf{P}\{a < X < b\} = \Phi\left(\frac{b-m}{\sigma}\right) - \Phi\left(\frac{a-m}{\sigma}\right)$$

Если $X \sim N(0,1)$; интервал (a,b), то имеем частный случай

$$\mathsf{P}\{a < X < b\} = \Phi(b) - \Phi(a)$$

2.5 Случайные векторы

Определение 2.6. n-ым случайным вектором называют совокупность случайных величин $X_1 = X_1(\omega), \ldots, X_n = X_n(\omega)$ заданных на одном и том же вероятностном пространстве $(\Omega, \mathfrak{B}, \mathsf{P})$ При этом случайные величины X_1, \ldots, X_n называют координатами случайного вектора

Определение 2.7. Функцией распределения веростностей случайного вектора $\vec{X}=(X_1,\ldots,X_n)$ называют отображение $F_{\vec{X_n}}\colon \mathbb{R}^n \to \mathbb{R}$ определённое правилом

$$F_{\vec{X}_n}(x_1, \dots, x_n) = P\{X_1 < x_1, \dots, X_n < x_n\}$$

Замечание 2.7.1. В определении под $\{X_1 < x_1, \dots, X_n < x_n\}$ понимают произведение событий $\{X_1 < x_1\} \cap \dots \cap \{X_n < x_n\}$.

Замечание 2.7.2. При n=2 величина $F(x_1,x_2)$ равна вероятности попадания левее точки x_1 и ниже точки x_2 .

Свойства функции распределения двумерного случайного векторора

1. $0 \le F(x_1, x_2) \le 1$;

Так как $F(x_1, x_2)$ есть вероятность события, то из свойств вероятности получаем данное неравенство.

2. при фиксированном $x_1 \Rightarrow F(x_1, x_2)$ является неубывающий от x_2 ; при фиксированном $x_2 \Rightarrow F(x_1, x_2)$ является неубывающий от x_1 ;

Зафиксируем x_1 , пусть $z_1 < z_2$, тогда

$$\{X < x_1, X < z_1\} \subseteq \{X < x_1, X < z_2\} \ \Rightarrow \ \mathsf{P}\{X < x_1, X < z_1\} \le \mathsf{P}\{X < x_1, X < z_2\}$$

На основании всего этого делаем заключение

$$F(x_1, z_1) \le F(x_1, z_2)$$

Аналогично и для случая когда фиксируется x_2

3. $\lim_{x_1 \to -\infty} F(x_1, x_2) = 0$; $\lim_{x_2 \to -\infty} F(x_1, x_2) = 0$;

Рассмотрим случай при $x_1 \to -\infty$

$$\lim_{x_1 \to -\infty} F(x_1, x_2) \implies \lim_{x_1 \to -\infty} P\{\{X < x_1\}, \{X < x_2\}\}$$

Событие $\{X < x_1\}$ невозможное, так как $x_1 \to -\infty$, а поскольку $\varnothing \cap \{X < x_2\} = \varnothing$ делаем окончательное заключение, что

$$\lim_{x_1 \to -\infty} F(x_1, x_2) = 0$$

Аналогично и для случая при $x_2 \to -\infty$.

4.
$$\lim_{x_1 \to +\infty, x_2 \to +\infty} F(x_1, x_2) = 1$$

Аналогично свойству 3, только в данном случае получаем пересечение достоверных событий. Из чего делаем вывод

$$\lim_{x_1 \to +\infty, x_2 \to +\infty} F(x_1, x_2) = 1$$

5.
$$P\{a_1 \le X < b_1, a_2 \le X < b_2\} = F(b_1, b_2) - F(b_1, a_2) - F(a_1, b_2) + F(a_1, a_2)$$

Данную вероятность можно получить следующим способом

$$P\{a_1 \le X < b_1, a_2 \le X < b_2\} = P\{X < b_1, a_2 \le X < b_2\} - P\{X < a_1, a_2 \le X < b_2\}$$

Рассмотрим $P\{X < a_1, a_2 \le X < b_2\}$. Что бы вычислить, достаточно

$$P\{X < a_1, a_2 \le X < b_2\} = P\{X < a_1, X < b_2\} - P\{X < a_1, X < a_2\}$$

Таким образом вероятность полуобласти вычисляется как

$$P\{X < a_1, a_2 \le X < b_2\} = F(a_1, b_2) - F(a_1, a_2)$$

Рассмотрим $P\{X < b_1, a_2 \le X < b_2\}$, получаем

$$\mathsf{P}\{X < b_1, a_2 \le X < b_2\} = \mathsf{P}\{X < b_1, X < b_2\} - \mathsf{P}\{X < b_1, X < a_2\}$$

Данная вероятность полуобласти вычисляется как

$$P\{X < b_1, a_2 \le X < b_2\} = F(b_1, b_2) - F(b_1, a_2)$$

Таким образом на основании всех рассуждений приходим к заключению

$$P\{a_1 \le X < b_1, a_2 \le X < b_2\} =$$

$$= F(b_1, b_2) - F(b_1, a_2) - (F(a_1, b_2) - F(a_1, a_2)) =$$

$$= F(b_1, b_2) - F(b_1, a_2) - F(a_1, b_2) + F(a_1, a_2)$$

6. при фиксированном $x_1 \Rightarrow F(x_1, x_2)$ непрерывна слева от x_2 при фиксированном $x_2 \Rightarrow F(x_1, x_2)$ непрерывна слева от x_1

Аналогично одномерному, только в данном случае фиксируем одну из переменных и делаем аналогичное заключения используя $a\kappa cuomy$ nentent memory <math>nentent memory nentent memory <math>nentent memory nentent memory <math>nentent memory memory <math>nentent memory memory memory <math>nentent memory memory memory memory <math>nentent memory memory memory memory memory <math>nentent memory memory memory memory memory memory <math>nentent memory m

21

7.
$$\lim_{x_2 \to +\infty} F_{X_1, X_2}(x_1, x_2) = F_{X_1}(x_1); \lim_{x_1 \to \infty} F_{X_1, X_2}(x_1, x_2) = F_{X_2}(x_2)$$

Рассмотрим случай, когда $x_2 \to \infty$. Известно, что

$$F_{X_1,X_2}(x_1,x_2) = P\{\{X_1 < x_1\}, \{X_2 < x_2\}\}$$

Так как $x_2 \to \infty$, то пересечение событий $\{X_1 < x_1\} \cap \{X_2 < x_2\} = \{X_1 < x_1\}$. Таким образом, делаем окончательное заключение, что

$$\lim_{x_2 \to +\infty} F_{X_1, X_2}(x_1, x_2) = P\{X_1 < x_1\} = F_{X_1}(x_1)$$

Аналогично и для случая $x_1 \to \infty$

2.5.1 Непрерывные случайные векторы

Определение 2.8. Случайный вектор (X_1, \ldots, X_n) называют **непрерывным** если существует функция $F(x_1, \ldots, x_n)$ такая, что

$$F(x_1, \dots, x_n) = \int_{-\infty}^{x_1} dt_1 \int_{-\infty}^{x_2} dt_2 \cdot \dots \cdot \int_{-\infty}^{x_n} f(t_1, \dots, t_n) dt_n,$$
 где

• $f(t_1, \ldots, t_n)$ — **функция плотности распределения** случайного вектора (X_1, \ldots, X_n) .

Замечание 2.8.1. Соответственно для двумерного случайного вектора (X_1, X_2)

$$F(x_1, x_2) = \int_{-\infty}^{x_1} dt_1 \int_{-\infty}^{x_2} f(x_1, x_2) dt_2$$

Свойства плотности распределения двумерного случайного вектора

- 1. $f(x_1, x_2) > 0$;
- 2. $P\{a_1 \le X_1 < b_1, a_2 \le X_2 < b_2\} = \int_{a_1}^{b_1} dx_1 \int_{a_2}^{b_2} f(x_1, x_2) dx_2;$
- 3. $\iint_{\mathbb{R}^2} f(x_1, x_2) \, dx_1 \, dx_2 = 1;$
- 4. $P\{a_1 \le X_1 < b_1 + \Delta x_1, a_2 \le X_2 < b_2 + \Delta x_2\} \approx f(x_1, x_2) \Delta x_1 \Delta x_2;$
- 5. Р $\{X_1 = x_1^o, X_2 = x_2^o, \} = 0$ для любого наперёд заданного значения (x_1^o, x_2^o) ;

 □ Свойства 1 5 доказываются аналогично одномерному случаю. ■
- 6. $P\{(X_1, X_2) \in D\} = \iint_D f(x_1, x_2) dx_1 dx_2$
 - □ Является обобщением свойства 2 на случай произвольной области. ■

7.
$$\int_{-\infty}^{+\infty} f(x_1, x_2) dx_2 = f_{X_1}(x_1)$$
 $\int_{-\infty}^{+\infty} f(x_1, x_2) dx_1 = f_{X_2}(x_2)$

Из свойств двумерной функции распределения

$$F_{X_1}(x_1) = \lim_{x_2 \to +\infty} F(x_1, x_2);$$

Из определения непрерывного случайного вектора

$$\lim_{x_2 \to +\infty} F(x_1, x_2) = \int_{-\infty}^{x_1} dt_1 \int_{-\infty}^{+\infty} f(t_1, t_2) dt_2$$

Зная, что f(x) = F'(X), дифференцируя интеграл по переменному верхнему пределу получаем

$$f_{X_1}(x_1) = \int_{-\infty}^{+\infty} f(x_1, x_2) dx_2$$

Аналогично и для второго случая.

2.5.2 Независимые случайные величины

Определение 2.9. Случайные величины X и Y называют **независимыми** если

$$F_{X,Y}(x,y) = F_X(x)F_Y(y)$$
, где

- $F_{X,Y}(x,y)$ совместная функция распределения
- $F_X(x), F_Y(y)$ маргинальные функции распределения

Свойства

- 1. Случайные величины X и Y независимы тогда и только тогда, когда $\forall x,y \in \mathbb{R}; \ \{X < x\}, \{Y < y\}$ независимы.
 - □ Есть ни что иное как следствие из определения 2.9.
- 2. Случайные величины X и Y независимы тогда и только тогда, когда $\forall x_1, x_2, y_1, y_2 \in \mathbb{R}; \ \{x_1 \leq X < x_2\}, \{y_1 \leq Y < y_2\}$ независимы.

 \Rightarrow Пусть случайные величины X и Y независимы, тогда

$$\begin{split} \mathsf{P}\{x_1 \leq X < x_2, y_1 \leq Y < y_2\} = \\ &= F(x_1, y_1) + F(x_2, y_2) - F(x_1, y_2) - F(x_2, y_1) = \\ &= F_X(x_1)F_Y(y_1) + F_X(x_2)F_Y(y_2) - F_X(x_1)F_Y(y_2) - F_X(x_2)F_Y(y_1) = \\ &= \left(F_X(x_2) - F_X(x_1)\right) \left(F_Y(y_2) - F_Y(y_1)\right) = \\ &= \mathsf{P}\{x_1 \leq X < x_2\} \, \mathsf{P}\{y_1 \leq Y < y_2\} \end{split}$$

 \Leftarrow Пусть $\forall x_1, x_2, y_1, y_2 \in \mathbb{R}; \{x_1 \leq X < x_2\}, \{y_1 \leq Y < y_2\}$ — независимы, тогда

$$\begin{split} F(x,y) &= \mathsf{P}\{X < x, Y < y\} = \mathsf{P}\{-\infty < X < x, -\infty < Y < y\} = \\ &= \mathsf{P}\{-\infty < X < x\}\,\mathsf{P}\{-\infty < Y < y\} = \\ &= F_X(x)\,F_Y(y) \end{split}$$

Таким образом X, Y — независимы

- 3. Случайные величины X и Y независимы тогда и только тогда, когда $\forall M_1, M_2; \ \{X \in M_1\}, \{Y \in M_2\}$ независимы. M_1, M_2 промежутки или объединения промежутков.
 - □ Является обобщением 1 и 2. ■
- 4. Дискретные случайные величины X и Y **независимы** тогда и только тогда, когда $\forall x_i, y_i$

$$p_{i,j} = P\{X = x_i, Y = y_j\} = P\{X = x_i\} P\{Y = y_i\} = p_{X_i} p_{Y_j}$$

 $^{\square} \Rightarrow$

$$F_X(x)F_Y(y) = P\{X < x\} P\{Y < y\} =$$

$$= P\{X \in (x_1, \dots, x_k)\} P\{Y \in (y_1, \dots, y_l)\} =$$

$$= \sum_{i=1}^k \sum_{j=1}^l P\{X = x_i\} P\{Y = y_j\} = \sum_{i=1}^k \sum_{j=1}^l P\{X = x_i, Y = y_j\}$$

 \Leftarrow

$$F(x,y) = P\{X \in (x_1, \dots, x_k), Y \in (y_1, \dots, x_l)\} =$$

$$= \sum_{i=1}^k \sum_{j=1}^l P\{X = x_i, Y = y_j\} = \sum_{i=1}^k \sum_{j=1}^l P\{X = x_i\} P\{Y = y_j\} =$$

$$= F_X(x)F_Y(y)$$

- 5. Непрерывные случайные величины X и Y независимы тогда и только тогда, когда $f(x,y) = f_X(x)f_Y(y)$
 - \Rightarrow Пусть X,Y независимы, тогда $F(x,y)=F_X(x)F_Y(y)$

$$f(x,y) = \frac{\delta^2 F(x,y)}{\delta x \, \delta y} = \frac{\delta^2}{\delta x \, \delta y} \left(F_X(x) F_Y(y) \right) = \frac{\delta F_X(x)}{\delta x} \cdot \frac{\delta F_Y(x)}{\delta y} = f_X(x) f_Y(y)$$

 \Leftarrow Пусть $f(x,y) = f_X(x)f_Y(y)$, тогда

$$F(x,y) = \int_{-\infty}^{x} dt_1 \int_{-\infty}^{y} f(t_1, t_2) dt_2 = \int_{-\infty}^{x} f_X(t_1) dt_1 \int_{-\infty}^{y} f_Y(t_2) dt_2 = F_X(x) F_Y(y)$$

Определение 2.10. Случайные величины X_1, \ldots, X_n , заданные на одном вероятностном пространстве, *попарно независимы* если $\forall i \neq j; \ X_i$ и X_j независимы.

Определение 2.11. Случайные величины X_1, \ldots, X_n , заданные на одном вероятностном пространстве, **независимы в совожупности** если

$$F(x_1, \dots, x_n) = F_{X_1}(x_1) \cdot \dots \cdot F_{X_n}(x_n),$$
 где

- $F(x_1, ..., x_n)$ совместная функция распределения;
- ullet $F_{X_1}(x_1),\ldots,F_{X_n}(x_n)$ маргинальные функции распределения.

2.6 Условные характеристики случайных величин

Определение 2.12. Для дискретного случайного вектора (X,Y) условная вероятность есть

$$\pi_{ij} = P\{X = x_i \mid Y = y_j\} = \frac{P\{X = x_i, Y = y_j\}}{P\{Y = y_j\}} = \frac{p_{ij}}{p_{Y_i}}, \quad i = \overline{1, n}; \ j = \overline{1, m}$$

Замечание 2.12.1. $\pi_{ij}, i = \overline{1,n}$ при условии $Y = y_j$ характеризует условное распределение дискретной случайной виличины X.

... Друг, надеюсь тебе вопросы из этой серии непапались!

2.7 Функции случайных величин