Simulation d'algorithmes d'équilibrage de charge dans un environnement distribué

Kevin Barreau Guillaume Marques Corentin Salingue

Explication du sujet

Environnement distribué

- Base de données répartie sur plusieurs machines physiques
- Réplication multi-maîtres

Algorithmes d'équilibrage de charge

- Créés par le client
- Basés sur la réplication des données

Simulation

- Comparaison de l'efficacité des différents algorithmes
- Objectif du projet ≠ mise en production

Requête d'écriture

université de BORDEAUX

Requête d'écriture

université de BORDEAUX

Requête d'écriture

Requête de lecture

Université BORDEAUX

Requête de lecture

université BORDEAUX

Requête de lecture

Université BORDEAUX

Université BORDEAUX

Université BORDEAUX

Axes de développement

- Base de données (Cassandra)
 - Gestion des requêtes
 - Gestion de la réplication
- Application cliente (Driver Java Cassandra)
- Visualisation (Graphite)

Base de données Cassandra

Originellement créée et développée par **Facebook** en 2008 (maintenant un projet de la **Fondation Apache**), elle possède comme caractéristique d'être :

- NoSQL, orientée colonnes
- Open-source (licence Apache 2)
- Écrite en Java
- Décentralisée

Le choix de Cassandra

- Open-source
- Développement actif
- Proche du projet à réaliser
- Connaissances dans l'équipe

Solutions alternatives : HBase, CouchBase, CouchDB, from scratch...

Gestion des requêtes : affectation

De base

- Envoi des requêtes de lecture pour certains noeuds
- Renvoi donnée complète pour une requête, digest pour les autres
- Suppression de requête de lecture impossible

Modifié

- Envoi des requêtes de lecture pour tous les noeuds
- Renvoi donnée complète pour toutes les requêtes
- ✓ Suppression de requête de lecture possible

Gestion des requêtes : réaffectation

De base

Système inexistant

Modifié

- ✓ Compteur de requêtes assignées
- Algorithmes d'assignation
- Assignation

Gestion de la réplication

De base

 Placement des copies d'un objet sur les noeuds suivant dans l'ordre du cercle

Modifié

 Placement des copies suivant différentes fonctions de hachages

Stratégie de réplication de base

Gestion de la popularité X

Paramètres

r = Nombre de requêtes total effectuées durant l'intervalle de temps T:

n =Nombre de noeuds dans le réseau ;

p = Popularité d'un objet;

k = Nombre de copies de l'objet.

- Augmenter le nombre de copies si $2 \times \frac{r}{n} \ge \frac{p}{k}$ vraie.
- Diminuer le nombre de copies si $\frac{r}{2n} \leq \frac{p}{k}$ vraie.

Architecture de Cassandra

Staged event-driven architecture (SEDA)

- Stage → emplacement pour réaliser des tâches
 - File d'attente → messages de tâches à traiter
 - Threads → exécuteurs de tâches

Architecture de Cassandra

Staged event-driven architecture (SEDA)

- Stage → emplacement pour réaliser des tâches
 - File d'attente → messages de tâches à traiter
 - Threads → exécuteurs de tâches

Stages présents dans Cassandra :

- RFAD
- READ_REMOVE
- MUTATION
- GOSSIP

Point technique : Réplication

Solution initiale		Solution implémentée	
Donnée nº 1	Donnée nº 2	Donnée nº 1	Donnée nº 2
$H_0(c1)$	$H_0(c2)$	$H_0(c1)$	$H_0(c2)$
1er réplica			
$H_1(c1)$	$H_1(c2)$	$H_1(H_0(c1))$	$H_1(H_0(c2))$
2nd réplica			
$H_2(c1)$	$H_2(c2)$	$H_2(H_0(c1))$	$H_2(H_0(c2))$

Application cliente

Technologies employées

- Développé en Java
- Utilisation d'un pilote informatique

Pilote utilisé

- DataStax Java Driver 2.0
- Développé par l'entreprise DataStax
- Communication avec la base de données Cassandra

Architecture du client

Fonctionnement du client

Initialisation

- Connexion à la base de données
- Choix du keyspace

Console

L'utilisateur saisie la commande qu'il souhaite exécuter, notamment :

- Changement de cluster
- Création de jeu de données
- Exécution d'un générateur de requêtes

Fonctionnement du client

```
[quillaume@t client]$ java -jar target/client-0.9.jar
Simulassandra Client
Please, enter the host address :127.0.0.1
Checking if 127.0.0.1 host is reachable.
Connected to clustersimul
Datacenter: datacenter1: Host: /127.0.0.1: Rack: rack1
Datacenter: datacenter1: Host: /127.0.0.3: Rack: rack1
Datacenter: datacenter1; Host: /127.0.0.2; Rack: rack1
Datacenter: datacenter1; Host: /127.0.0.5; Rack: rack1
Datacenter: datacenter1; Host: /127.0.0.4; Rack: rack1
Please, enter the keyspace name :test
You are now using keyspace test
> help
lists of commands available :
- help : show this list
- import <file> : execute cal queries written in the file
- switchks <ks> : switch to keyspace ks
- queries <qf> <s> <ns> <nq>: execute queries generated by the seed s on the current keyspace
with the queries factory <qf>. <ns> is the number of simulation. <ng> the number of queries in each simulation.
- showksdata : show current keyspace metadata
- 1stable : list tables available in the current keyspace
- showtabledata <t> : show table t metadata
- createdatafile <file> <nb tables> <nb rows> <data length>
Create or write in file <file> CQL queries to create <nb tables> with <nb rows>.
- quit : quitter le programme
> queries RandomFactory 333 5 10
Target column : key
Starting quering.
End (166ms).
```


Générateur de requêtes

RandomFactory

-target column: string

+RandomFactory(c:Connection,nb simulation:long nb queries:long) #askForConfiguration(): void

+queriesfactory(): bool

Personnalisable

- Possibilité d'ajouter des générateurs de requêtes
- Choix du générateur queries NomGenerateur <seed> <nb_simulations> <nb_requetes>

Tests Sur l'application cliente

Tests

- Tests unitaires
- Tests fonctionnels réalisés à la main

Améliorations souhaitées

- Tests fonctionnels automatisés avec Cassandra
- Tests unitaires

Tests Sur Cassandra

Environ nement

- Les tests de mesures de performances se déroulent dans un réseau d'Amazon EC2 de 10 noeuds (machines dans le cloud) louées par le client.
- La base de données est composée de 10 000 objets de taille unique.

Dénomination

- RF = nombre de copies + donnée originale
- petits objets = un texte généré aléatoirement de 10 Ko
- gros objets = un texte généré aléatoirement de 1 Mo

Tests Sur Cassandra modifiée

Temps d'exécution sur 10 000 objets de taille 10 Ko en fonction du nombre de requêtes

Gain: 2.4% avec 100~000 requêtes = pas exhaustif

Tests Sur Cassandra non modifiée

Temps d'exécution sur 10 000 objets de 10 Ko en fonction du nombre de requêtes

Gain: 0.77% avec 100~000 requêtes = pas exhaustif

Tests

Cassandra modifiée vs Cassandra non modifiée

Temps d'exécution sur 10 000 objets de 10 Ko en fonction du nombre de requêtes

Gain: 0.73% avec 100~000 requêtes = Trop petits objets?

Tests Sur Cassandra modifiée

Temps d'exécution sur 10 000 objets avec RF = 2 en fonction du nombre de requêtes

Écart : 187% avec 50 000 requêtes = Refaire les tests sur de gros objets

Perspectives

Cassandra

- Gestion des requêtes
 - Algorithmes de réaffectation SVLO et AverageDegree
- Gestion de la popularité
- Tests unitaires poussés

Application client

- Meilleure ergonomie
- Amélioration des tests

Visualisation

- Véritable logiciel de vue de performance
- Performance du réseau

Questions?