

UNIT-5 MCQ Practice Questions for DATA STRUCTURE AND ALGORITMS

Data Structures And Algorithms (SRM Institute of Science and Technology)

Scan to open on Studocu

1. A connected graph T without any cycles is called
A. free graph
B. no cycle graph
C. non cycle graph
D. circular graph
2. If every node u in G adjacent to every other node v in G, A graph is said to be
A. isolated
B. complete
C. finite
D. strongly connected
3. A graph is said to be if every node u in G is adjacent to every other node v in G.
A. Absolute
B. Entire
C. Inclusive
D. Complete
4. What will be the running-time of Dijkstra's single source shortest path algorithm, if the graph G(V,E) is stored in form of adjacency list and binary heap is used –
A - $O(V ^2)$
\mathbf{B} - $\mathrm{O}(\mathrm{V} \log \mathrm{V})$
\mathbf{C} - $\mathrm{O}(\mathrm{E} + \mathrm{V} \log \mathrm{V})$
D - None of these
Answer: C
Explanation
The runing time will be $O(E + V \log V)$ when we use adjacency list and binary heap.

Answer:d

Explanation: After removing either B or C, the graph becomes disconnected.

Answer:c

Explanation: After removing vertices B and C, the graph becomes disconnected.

7. What is the number of edges present in a complete graph having n vertices? a)(n*(n+1))/2

$$b)(n*(n-1))/2$$

c)n

d)Information given is insufficient

Answer:b

Explanation: Number of ways in which every vertex can be connected to each other is nC2.

8. The given Graph is regular.

a)True

b)False

View Answer

Answer:a

Explanation: In a regular graph, degrees of all the vertices are equal. In the given graph the degree of every vertex is 3.

9. The number of elements in the adjacency matrix of a graph having 7 vertices is

a)7

b)14

c)36

d)9

View Answer

Answer:d

Explanation: There are n*n elements in the adjacency matrix of a graph with n vertices.

10. The time complexity to calculate the number of edges in a graph whose information in stored in form of an adjacency matrix is

a)O(V)

Answer:c

Explanation: In an adjacency list for every vertex there is a linked list which have the values of the edges to which it is connected.

14. Which of the following graphs are isomorphic to each other?

Answer:d

Explanation: All three graphs are Complete graphs with 4 vertices.

15. Dijkstra's Algorithm will work for both negative and positive weights? a)True

b)False

Answer:b

Explanation: Dijkstra's Algorithm assumes all weights to be non-negative.

16. What is the maximum possible number of edges in a directed graph with no self loops having vertices?

a)28

b)64

c)256

d)56

View Answer

Answer:d

Explanation: If a graph has V vertices than every vertex can be connected to a possible of V-1 vertices.

17. What would be the DFS traversal of the given Graph?

a)ABCED

- b)AEDCB
- c)EDCBA
- d)ADECB

View Answer

Answer:a

Explanation: In this case two answers are possible including ADEBC.

- 18. The topological sorting of any DAG can be done in _____ time.
 - a)cubic
 - b)quadratic

c)linear

d)logarithmic

Answer:c

Explanation: Topological sorting can be done in O(V+E), here V and E represents number of vertices and number of edges respectively.

19. What sequence would the BFS traversal of the given graph yield?

 a)
 A
 F
 D
 B
 C
 E

 b)
 C
 B
 A
 F
 D

c) A B D C F

d)	F	D	С	B A
-			_	shbors of the current node
20. Depth Fi	irst Search is e	quivalent to wh	nich of the traver	sal in the Binary Trees'
a)Pre-ord	er			Traversa
b)Post-or	der			Traversa
c)Level-c	order			Traversa
d)In-orde	er			Traversa
	*		_	gressively to one path and order traversal of a Binary
Tree.		, 1	1	-
21. Time Co	omplexity of DF	S is? (V – nu	imber of vertices,	E – number of edges
a)O(V			+	Е
b)O(V)				
c)O(E)				
d)None		of	the	mentioned
		-	•	ce and every edge once (in
			ŕ	Breadth First Search is
a)Stack b)Queue				
c)Linked				Lis
d)None		of	the	mentioned
			1	ecursion. So, stack can be
23. A person	wants to visit s	ome places. He	starts from a verte	ex and then wants to visi
every ver	tex till it finishe	s from one verte	ex, backtracks and	then explore other vertex
from	same vert	ex. What	algorithm	he should use
a)Depth			First	Search
b)Breadtl	1		First	Search
c)Trim's				algorithn

	d)None		of			the			r	nentioned
	Answer:a Explanation: 'aggressively f							Explorii	ng a n	ode, then
24.	In Depth a)Once b)Twice	First	Search,	how	many	times	a	node	is	visited?
	c)Equivalent d)None	to	numb of	er	of	indegree the		of	the	node mentioned
	Answer:c Explanation:			_					is visi	ted or not
25	by it's ancesto		•						ъ.	т о
25.	Breadth First a)Pre-order	Search	is equivai	ent to	wnich (of the trav	ersai	in the	Bina	ry Trees? Traversal
	b)Post-order									Traversal
	c)Level-order									Traversal
	d)In-order									Traversal
	Answer:c Explanation:				_					e basis of
26	level. It takes			_						1 6
26.	Time Comple edges)	xity of B	readth Firs	st Searc	ch 18? (\	/ – number	01 V	ertices,	E-n	iumber of
	a)O(V				+					E)
	b)O(V)									2)
	c)O(E)									
	d)None		of			the			r	nentioned
	Answer:a Explanation: (in worst case				_	-	e onc	e and e	very e	edge once
27.	The Data str a)Stack		-		`	, , , , , , , , , , , , , , , , , , ,	f Bre	eadth F	irst S	earch is?
	b)Queue									
	c)Linked									List
	d)None		of			the			r	nentioned

Answer:b

Explanation: The Breadth First Search explores every node once and put that node in queue and then it takes out nodes from the queue and explores it's neighbors.

Search?	First	Breadth	of	lications	ne app	th	be	can	28. What
nodes	two	between	b	path	hortest	sł	ng	Findi	a)
graph	a	of		rtiteness	bipartiteness		inding	Fi	b)
system		gation	navig		S	GPS			c)
mentioned		the		of			All		d)

Answer:

Explanation: Breadth First Search can be applied to all of the mentioned problems. Bipartiteness of a graph means that a graph can be divided into two disjoint sets such that every edge connects a vertex in to one in.

29. Regarding implementation of Breadth First Search using queues, what is the maximum distance between two nodes present in the queue? (considering each edge length 1) a)Can be anything

b)0

c)At most 1

d)Insufficient Information

Answer:c

Explanation: In the queue, at a time, only those nodes will be there whose difference among levels is 1. Same as level order traversal of the tree.

- 30. Rather than build a subgraph one edge at a time builds a tree one vertex at a time.
 - A) kruskal's algorithm
 - B) prim's algorithm
 - C) dijkstra algorithm
 - D) bellman ford algorithm
- 31. The result of prim's algorithm is a total time bound of
 - A) O(logn)
 - B) O(m+n logn)
 - C) O(mn)
 - D) O(m logn)

32. What		is			а	hash		table?
a)	Α	structur	re e	that	maps	values	to	keys
b)	Α	structur	re e	that	maps	keys	to	values
c)		Α	structur	e	used	for		storage
d)	Α	structure	used	to	implement	stack	and	queue

Answer:b

Explanation: A hash table is used to implement associative arrays which has a key-value pair, so the has table maps keys to values.

33.	a)Diffus b)Repli	sion ication	nts are co	mpeting for	the sar	ne bucke	t in the	hash tab	le, what	is it called?
	c)Collis			of			the			mentioned
	Answe	r: c								
34.	What			is		dire	ect			addressing?
	a)Distir	nct	array	position	า	for	evei	У	possible	e key
	b)Fewe	er	arra	ау	ро	ositions		thar	า	keys
	c)Fewe	er	key	'S	tha	an		array		positions
	d)None)		of			the			mentioned
		ation: Dire		ssing is pos very possibl		only when	we ca	n afford	to alloca	ate an array
35.	What a)O(n) b)O(log c)O(nlog d)O(1)		the	search	con	nplexity	in	dire	ct	addressing?
	Answe Explan		ce every k	key has a ur	nique a	rray positi	ion, sea	arching ta	ikes a co	onstant time
36.	What		is		а		ha	ash		function?
	a)	Α	function	has	á	allocated	I	memory	to	keys
	b) A	function	that	computes	the	location	of	the ke	y in	the array
	c)	Α	fun	ction	that	t	create	es.	an	array
	d)		None		of		th	ne		mentioned
		ation: In a		le, there are to be comp						the position า.
37.	In	simple	chaini	ng, wh	at	data	struct	ure	is a	appropriate?
	a)Singl	ly				linked				lis
	b)Doub	oly				linked				lis
	c)Circu	ılar				linked				lis
	d)Binaı	ry								trees
	View A	nswer								

Answer:b

Explanation: Deletion becomes easier with doubly linked list, hence it is appropriate.

A hash function f defined as f (key) = key mod 13, with linear probing is used to insert keys 55, 58, 68, 91, 27, 145. What will be the location of 79?

A.	1
В.	2
C.	3
D.	5
<u>View/Hide Ans</u>	Correct Answer is D

- 38. Key value pairs is usually seen in
 - A. Hash tables
 - B. Heaps
 - C. Both a and b
 - D. Skip list

Answer: a