LLaMA: Open and Efficient Foundation Language Models

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet Marie-Anne Lachaux, Timothee Lacroix, Baptiste Rozière, Naman Goyal Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin Edouard Grave, Guillaume Lample

Meta AI

LLaMA (Large Language Model Meta AI)

params	dimension	n heads	n layers	learning rate	batch size	n tokens
6.7B	4096	32	32	$3.0e^{-4}$	4M	1.0T
13.0B	5120	40	40	$3.0e^{-4}$	4M	1.0T
32.5B	6656	52	60	$1.5e^{-4}$	4M	1.4T
65.2B	8192	64	80	$1.5e^{-4}$	4M	1.4T

- 380 tokens/sec/GPU
- 2048 x A100-80GB
- 1.4T tokens —— 21 days

成本分析

 $cost \propto computation(FLOPs)$

$$\underset{\mathrm{FLOPs}}{\mathrm{computation}} \propto \underset{\mathrm{FLOPs/sec/GPU}}{\mathrm{GPU}} \times (\#\mathrm{GPU}) \times \mathrm{time}$$

$$m computation \propto (\#params) \times (\#tokens)$$
 $m FLOPs$ $m FLOPs/token$

- 训练成本:
 - 参数量 × 语料库大小
- 部署成本(推理成本):
 - 参数量 × 用户访问量

Meta: 降低部署成本 ⇒ 减少参数量,扩大训练语料库

• "the performance of a 7B model continues to improve even after 1T tokens."

一些大模型参数

Model	Size (# Parameters)	Training Tokens
LaMDA (Thoppilan et al., 2022)	137 Billion	168 Billion
GPT-3 (Brown et al., 2020)	175 Billion	300 Billion
Jurassic (Lieber et al., 2021)	178 Billion	300 Billion
Gopher (Rae et al., 2021)	280 Billion	300 Billion
MT-NLG 530B (Smith et al., 2022)	530 Billion	270 Billion
Chinchilla	70 Billion	1.4 Trillion

数据来自: Chinchilla (Training Compute-Optimal Large Language Models, 2022)

Evaluation

- Common Sense Reasoning:
 - BoolQ, PIQA, SIQA, HellaSwag, WinoGrande, ARC easy and challenge,
 OpenBookQA
- Closed-book Question Answering:
 - Natural Questions, TriviaQA
- Reading Comprehension:
 - RACE
- Mathematical reasoning:
 - o MATH, GSM8k
- Code generation:
 - HumanEval, MBPP
- Massive Multitask Language Understanding(MMLU)

Performance on TriviaQA(L) and NaturalQuestions(R)

		0-shot	1-shot	5-shot	64-shot
Gopher	280B	43.5	-	57.0	57.2
Chinchilla	70B	55.4	-	64.1	64.6
	7B	50.0	53.4	56.3	57.6
T T . N . T A	13B	56.6	60.5	63.1	64.0
LLaMA	33B	65.1	67.9	69.9	70.4
	65B	68.2	71.6	72.6	73.0

		0-shot	1-shot	5-shot	64-shot
GPT-3	175B	14.6	23.0	-	29.9
Gopher	280B	10.1	-	24.5	28.2
Chinchilla 70B		16.6	-	31.5	35.5
	8B	8.4	10.6	-	14.6
PaLM	62B	18.1	26.5	-	27.6
	540B	21.2	29.3	-	39.6
	7B	16.8	18.7	22.0	26.1
I I aMA	13B	20.1	23.4	28.1	31.9
LLaMA	33B	24.9	28.3	32.9	36.0
	65B	23.8	31.0	35.0	39.9
	·			·	

对比Chinchilla

数据集

Dataset	Sampling prop.	Epochs	Disk size
CommonCrawl	67.0%	1.10	3.3 TB
C4	15.0%	1.06	783 GB
Github	4.5%	0.64	328 GB
Wikipedia	4.5%	2.45	83 GB
Books	4.5%	2.23	85 GB
ArXiv	2.5%	1.06	92 GB
StackExchange	2.0%	1.03	78 GB

9

模型架构

transformer+:

- Pre-normalization (GPT3)
- SwiGLU activation function (PaLM)
- Rotary Embeddings (GPTNeo)

代码优化 (高效训练)

- 高效的"因果(causal)多头注意力"算子实现,降低内存用量和计算量
 - 不存储掩码覆盖的注意力权重,不计算掩码覆盖的 query/key 值
 - 开源: https://github.com/facebookresearch/xformers
- 手动实现 Transformer 层的反向传播,提升计算性能
 - model and sequence parallelism:通过增加 checkpoint,减少反向传播时的 activation 的重新计算
 - Megatron-LM
 - 尽量并行处理网络通信和 activation 的计算

总结

- 训练了 4 个模型 (训练目标为语言模型)
- 达到相同的性能,模型大小缩小 10 倍
- 开源模型和参数,数据集来自开源社区