- 1. (Recursión primitiva) Sea $\Sigma = \{!,?\}$. a) Pruebe que la función $i_?: \Sigma^* \to \Sigma^*$, dada por $i_?(\alpha) := ?\alpha$, es Σ -p.r. (Puede usar que la función $\lambda\alpha\beta\left[\alpha\beta\right]$ es $\Sigma\text{-p.r.})$
- b) Dada una palabra $\alpha = a_1 \dots a_n \in \Sigma^*$ con $n \geq 1$ definimos la transpuesta de α como la palabra $\alpha^T := a_n \dots a_1$. Por ejemplo, ??!!!? $^T =$?!!!??. Definimos además $\varepsilon^T := \varepsilon$. Encuentre funciones Σ -p.r. f, $\mathcal{G}_!$ y $\mathcal{G}_?$ tales que $R(f,\mathcal{G})=\lambda\alpha[\alpha^T].$ 2. (División por casos) Sea $\Sigma=\{!,?\}$ y sea $f:\omega\times\Sigma^*\to\Sigma^*$ dada por

$$f(x,\alpha) := \begin{cases} ?^x & \text{si } |\alpha| \text{ es par} \\ \alpha^x & \text{si } |\alpha| \text{ es impar.} \end{cases}$$

Pruebe que f es Σ -p.r. (Puede usar que las funciones: $\lambda \alpha [|\alpha|]$, $\lambda x \alpha [\alpha^x]$ y $\lambda x [x \text{ es par}] \text{ son } \Sigma\text{-p.r.})$

3. (Cuantificación acotada) Sea $\Sigma = \{!, ?\}$. Pruebe que

$$\{(x+1,!^x,?):x\in\omega\ \mathrm{y}\ x\ \mathrm{es}\ \mathrm{par}\}$$

es Σ -p.r. (Puede usar que las funciones: $\lambda \alpha \beta [\alpha = \beta], \lambda xy [x = y], \lambda x\alpha [\alpha^x]$ y $\lambda x [x \text{ es par}] \text{ son } \Sigma\text{-p.r.})$