Datum 15. 1. 2019	SPŠ CHOMUTOV	Třída A4-2
Číslo úlohy 14	Měření s elektronickou zátěží	Jméno PETŘÍK

Zadání

Vytvořte program v prostředí VEE který pomocí elektronické zátěže změří zatěžovací charakterisitku laboratorního zdroje AUL 310.

Schéma zapojení

Tabulka použitých přístrojů

Zařízení	Údaje	Evidenční číslo
Měřený zdroj	AUL 310	LE2 1029
Elektronická zatěž	LD400P	LE 5099

Otázky

Jaké jsou režimy EZ LD400 a jaký režim vybereme pro dané zadání?

- CC constant current
- CV constant voltage
- CP constant power
- CR constant resistance
- CG constant conductance

Co je to zatěžovací charakterisitka zdroje napětí?

$$U = f(I)$$

Naznačte způsob stanovení vnitřního odporu z naměřené zatěžovací charakteristiky. Jaký R_i má ideální zdroj napětí?

Ideální zdroj má $R_i = 0 \Omega$

$$R_i = \frac{\Delta U_2}{\Delta I_2}$$

Jak se bude chovat zdroj AUL 310 při překročení proudu nastaveného proudovou pojistkou?

Jako zdroj proudu.

Popis programu

- 1. Vnější smyčka, která je později přerušena blokem "Break"
- 2. Nastavení elektronické zátěže a změření napětí zdroje naprázdno
- 3. Vnitřní smyčka která inkrementuje proud
- 4. Zapíše do elektronické zátěže hodnotu proudu kterou má nastavit
- 5. Po skončení vnitřní smyčky se vypne vstup zátěže
- 6. Přečte proud, který zdroj dodává do zátěže
- 7. Vyskakovací okénko které se nás zeptá, zdali chceme změřit další charakteristiku. Pokud nechcene vyvolá blok "Break"
- 8. Zobrazení zatěžovacích charakteristik
- 9. Zobrazení průměrného vniřního odporu zdroje a vniřního odpru pro konkrétní napětí
- 10. Výpočet průměrného Ri
- 11. Zkonstruování dat pro zobrazení na alfanumericu

Závěr

Program se nám povedl a pracoval tak jak má. Elektronická zátěž je velice užitečné zařízení při měření výkonových prvků a zdrojů.