Package 'tauBayesW'

September 8, 2025

Title Bayesian Weighted Quantile Regression with EM and MCMC Algorithm

Version 0.1.0

Description Implements Bayesian quantile regression approaches using the EM algorithm and several MCMC methods with observation weights for complex survey designs. Includes fast C++ implementations using 'Rcpp', 'RcppArmadillo', and 'RcppEigen'.

```
License MIT + file LICENSE
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2
LinkingTo Rcpp,
     RcppArmadillo,
     RcppEigen
Imports Rcpp,
     stats,
     graphics,
     methods,
     plotly,
     geometry,
     pracma,
     ggplot2,
     rlang
Suggests MASS,
     knitr,
     rmarkdown,
     grDevices,
     testthat (>= 3.0.0)
VignetteBuilder knitr
Config/testthat/edition 3
SystemRequirements BLAS, LAPACK
URL https://github.com/torodriguezt/tauBayesW
BugReports https://github.com/torodriguezt/tauBayesW/issues
```

2 as_bqr_prior

Contents

Index		29
	summary_bqr	28
	summary.mo.bqr.svy	27
	summary.bwqr_fit	26
	summary.bqr.svy	26
	simulate_mo_bqr_data	25
	simulate_bqr_data	24
	prior_default	23
	print.summary.mo_bqr.svy	23
	print.summary.bwqr_fit	22
	print.summary.bqr.svy	22
	print.mo_bqr_prior	21
	print.mo.bqr.svy	21
	print.bwqr_fit	20
	print.bqr.svy	20
	plot_quantile_with_points.bqr.svy	19
	plot_quantile.bqr.svy	
	plot.bqr.svy	17
	mo_prior_default	16
	mo.bqr.svy	14
	drawQuantileRegion_3D	12
	drawQuantileRegion	10
	drawQuantile1D	9
	convergence_check.mo.bqr.svy	9
	convergence_check.default	8
	convergence_check.bqr.svy	7
	convergence_check	6
	bqr.svy	4
	as_mo_bqr_prior	3
	as_bqr_prior	2

Description

Allows passing legacy list priors to bqr.svy. A valid list must contain at least b0 and B0. Scalars/vectors are expanded as in prior_default. Optional fields c0, C0 are relevant for method = "ald" and ignored otherwise.

Usage

```
as_bqr_prior(x, p, names = NULL, method = c("ald", "score", "approximate"))
```

Arguments

 ${\tt method}$

```
A bqr_prior or a list with components b0, B0, and optionally c0, C0.
                  Number of coefficients.
р
                  Optional coefficient names.
names
                  One of "ald", "score", "approximate".
```

as_mo_bqr_prior 3

Value

A bqr_prior object.

as_mo_bqr_prior Coerce to a mo_bqr_prior object

Description

This function ensures that the input is converted to a valid mo_bqr_prior object. It accepts an existing mo_bqr_prior, or a list with the necessary components, and performs validation and expansion of scalar or vector inputs.

Usage

```
as_mo_bqr_prior(x, p, names = NULL)
```

Arguments

names

x An object to coerce. Can be:

- A valid mo_bqr_prior object
- A list with components beta_mean, beta_cov, sigma_shape, and sigma_rate

p Integer. Number of regression coefficients (including intercept). Used to vali-

date and expand inputs.

Optional character vector of coefficient names. If provided, they are attached to beta_mean and beta_cov.

Value

A mo_bqr_prior object with fields:

- beta_mean: Numeric vector of prior means
- beta_cov: Prior covariance matrix
- sigma_shape: Shape parameter of inverse-gamma prior
- sigma_rate: Rate parameter of inverse-gamma prior

```
# From an existing mo_bqr_prior
prior1 <- mo_prior_default(p = 3)
as_mo_bqr_prior(prior1, p = 3)

# From a list
prior_list <- list(
   beta_mean = c(0, 0, 0),
   beta_cov = diag(1e6, 3),
   sigma_shape = 0.001,
   sigma_rate = 0.001
)
as_mo_bqr_prior(prior_list, p = 3, names = c("(Intercept)", "x1", "x2"))</pre>
```

4 bqr.svy

bqr.svy

Bayesian Weighted Quantile Regression (Survey Design)

Description

Fits a Bayesian quantile regression model with survey weights using one of three MCMC kernels implemented in C++:

- .MCMC_BWQR_AL Asymmetric Laplace Distribution
- .MCMC_BWQR_SL Score likelihood
- .MCMC_BWQR_AP Approximate likelihood

One or more quantiles can be estimated, depending on the input.

Usage

```
bqr.svy(
  formula,
  weights = NULL,
  data = NULL,
  quantile = 0.5,
  method = c("ald", "score", "approximate"),
  prior = NULL,
  niter = 50000,
  burnin = 10000,
  thin = 1,
  ...
)
```

formula	A formula specifying the model.
weights	Optional survey weights (numeric vector or one-sided formula). Weights are passed directly to the underlying C++ algorithms without any preprocessing like scaling.
data	Optional data. frame containing the variables used in the model.
quantile	Numeric scalar or vector in (0, 1): target quantile(s) τ . Duplicates are automatically removed.
method	One of "ald", "score", "approximate".
prior	Prior specification. Can be:
	 A bqr_prior object from prior_default
	 A list with components b0, B0, and optionally c0, C0
	• NULL (uses default vague priors)
	For "ald": uses b0, B0, c0, C0. For "score" and "approximate": uses b0, B0 only.
niter	Integer. Number of MCMC iterations.
burnin	Integer. Number of burn-in iterations.
thin	Integer. Thinning interval.
	Additional arguments passed to underlying functions (reserved for future use).

bqr.svy 5

Details

Survey weights are handled differently by each method:

- "ald" and "score": weights are normalized (divided by their mean).
- "approximate": weights are used as provided (raw weights).

Prior Specification:

The prior can be specified in several ways:

- 1. Using prior_default (recommended).
- 2. As a list with b0, B0, and optionally c0, C0.
- 3. As NULL, in which case vague priors are used.

Multiple quantiles can be fitted in a single call. The returned object adapts its class accordingly ("bwqr_fit" for one quantile, "bwqr_fit_multi" for several).

Value

An object of class "bqr.svy", containing:

beta Posterior mean estimates of regression coefficients.

draws Posterior draws from the MCMC sampler.

 $accept_rate$ Average acceptance rate (if available).

quantile The quantile(s) fitted.
prior Prior specification used.

formula, terms, model

Model specification details.

runtime Elapsed runtime in seconds.

```
sim <- simulate_bqr_data(n = 100, betas = c(2, 1.5, -0.8))
# Basic usage with default priors
fit1 <- bqr.svy(y ~ x1 + x2, data = sim$data, weights = sim$weights)</pre>
# With informative priors
prior <- prior_default(</pre>
  p = 3,
 b0 = c(2, 1.5, -0.8),
 B0 = diag(c(0.25, 0.25, 0.25)),
  c0 = 3, C0 = 2
fit2 <- bqr.svy(y \sim x1 + x2, data = sim\pmdata, weights = sim\pmweights,
                method = "ald", prior = prior)
# Compare methods
fit_score <- bqr.svy(y ~ x1 + x2, data = sim$data, weights = sim$weights,</pre>
                      method = "score")
fit_approx <- bqr.svy(y ~ x1 + x2, data = sim$data, weights = sim$weights,</pre>
                       method = "approximate")
```

6 convergence_check

convergence_check

Check convergence diagnostics for tauBayesW model objects

Description

This is a generic function that dispatches to specific methods depending on the class of the object (e.g., bqr.svy, mo.bqr.svy).

Usage

```
convergence_check(
  object,
  rhat_threshold = 1.1,
  ess_ratio_threshold = 0.1,
  verbose = TRUE,
  ...
)
```

Arguments

object An object of class "bqr.svy" or "mo.bqr.svy".

rhat_threshold Numeric scalar. The threshold for the Gelman-Rubin \hat{R} statistic above which a

parameter is considered not converged. Default is 1.1.

ess_ratio_threshold

Numeric scalar. The threshold for the ratio of Effective Sample Size (ESS) to total draws below which a parameter is considered to have low sampling

efficiency. Default is 0.1.

verbose Logical; if TRUE, prints a summary of convergence diagnostics to the console.

Default is TRUE.

... Additional arguments passed to specific methods.

Value

A list containing:

rhat Named numeric vector of \hat{R} values for each parameter (if available).

ess_ratio Named numeric vector of ESS ratios for each parameter (if available).

not_converged Character vector of parameter names failing \hat{R} threshold.

low_ess Character vector of parameter names failing ESS ratio threshold.

```
## Not run:
fit <- bqr.svy(y ~ x, data = mydata, quantile = 0.5, method = "ald")
convergence_check(fit)
## End(Not run)</pre>
```

```
convergence_check.bqr.svy
```

Convergence diagnostics for bqr.svy objects

Description

Computes the rank-normalized \hat{R} (Gelman Rubin) and Effective Sample Size (ESS) for parameters from MCMC output produced by bqr.svy. Works with both single-quantile fits (one τ) and multiquantile fits.

Usage

```
## S3 method for class 'bqr.svy'
convergence_check(
  object,
  rhat_threshold = 1.1,
  ess_ratio_threshold = 0.1,
  verbose = TRUE,
  ...
)
```

Arguments

object An object of class "bqr.svy" or "mo.bqr.svy".

rhat_threshold Numeric scalar. The threshold for the Gelman-Rubin \hat{R} statistic above which a parameter is considered not converged. Default is 1.1.

ess_ratio_threshold

Numeric scalar. The threshold for the ratio of Effective Sample Size (ESS) to total draws below which a parameter is considered to have low sampling

efficiency. Default is 0.1.

verbose Logical; if TRUE, prints a summary of convergence diagnostics to the console.

Default is TRUE.

... Additional arguments passed to specific methods.

Details

For single-quantile fits, object\$draws must be a numeric matrix or data frame with rows = iterations and columns = parameters. For multi-quantile fits, object\$draws must be a list of such matrices (one per τ). Diagnostics are computed via summarise_draws_custom following Vehtari et al. (2021).

Value

If a $single\ au$ is present: a list with components rhat, neff, ess_ratio, not_converged, low_ess, and converged. If $multiple\ au$ values are present: a named list where each element corresponds to a au and has the same structure as above.

Examples

```
## Not run:
set.seed(1)
dat <- data.frame(y = rnorm(50), x = rnorm(50))
fit1 <- bqr.svy(y ~ x, data = dat, quantile = 0.5, method = "ald")
convergence_check(fit1)

fitk <- bqr.svy(y ~ x, data = dat, quantile = c(0.25, 0.5, 0.75), method = "ald")
convergence_check(fitk)

## End(Not run)</pre>
```

convergence_check.default

Default convergence check

Description

Allows convergence_check() to work on generic matrices or data frames containing MCMC draws (each column = parameter, each row = draw).

Usage

```
## Default S3 method:
convergence_check(
  object,
  rhat_threshold = 1.01,
  ess_ratio_threshold = 0.1,
  ...
)
```

Arguments

```
object A numeric matrix or data frame of draws.

rhat_threshold Numeric, threshold for R-hat diagnostic (default 1.01).

ess_ratio_threshold

Numeric, threshold for effective sample size ratio (default 0.10).

... Not used.
```

Value

A list with components rhat, neff, and converged.

```
{\tt convergence\_check.mo.bqr.svy}
```

Convergence diagnostics for mo.bqr.svy objects

Description

Checks convergence for EM algorithm fits produced by mo.bqr.svy. Since EM is deterministic, this method reports the number of iterations and whether convergence was achieved for each quantile

Usage

```
## $3 method for class 'mo.bqr.svy'
convergence_check(
  object,
  rhat_threshold = 1.1,
  ess_ratio_threshold = 0.1,
  verbose = TRUE,
  ...
)
```

Arguments

object An object of class "bqr.svy" or "mo.bqr.svy".

rhat_threshold Numeric scalar. The threshold for the Gelman-Rubin \hat{R} statistic above which a

parameter is considered not converged. Default is 1.1.

ess_ratio_threshold

Numeric scalar. The threshold for the ratio of Effective Sample Size (ESS) to total draws below which a parameter is considered to have low sampling

efficiency. Default is 0.1.

verbose Logical; if TRUE, prints a summary of convergence diagnostics to the console.

Default is TRUE.

. . . Additional arguments passed to specific methods.

Details

For EM-based mo.bqr.svy fits, no MCMC draws are available, so this function reports iteration counts and convergence flags instead of R-hat/ESS statistics.

drawQuantile1D

Draw univariate quantile curves/bands for mo.bqr.svy (d = 1)

Description

Draw univariate quantile curves/bands for mo.bqr.svy (d = 1)

drawQuantileRegion

Usage

```
drawQuantile1D(
   fit,
   datafile = NULL,
   response = "Y",
   x_var = NULL,
   x_grid = NULL,
   xValue = NULL,
   paintedArea = TRUE,
   band_choice = c("minmax", "symmetric"),
   print_plot = TRUE,
   show_data = !is.null(datafile)
)
```

Arguments

fit	mo.bqr.svy object with response_dim = 1
datafile	optional data.frame to overlay observed points
response	name of Y column in datafile (character, length 1)
x_var	which predictor to map to the horizontal axis (character, length 1). If NULL, uses the first term label in fit\$terms.
x_grid	numeric vector of x values for x_var; if NULL, deduced from datafile or set to seq(-2,2,len=100)
xValue	data.frame or list with fixed values for other predictors (one or more rows). If multiple rows are provided, curves are colored by row (comparison).
paintedArea	if TRUE and there are at least 2 taus, fills ribbon between two taus (see band_choice)
band_choice	character: "minmax" (default) or "symmetric" "minmax": banda entre min(taus) y max(taus) - "symmetric": toma el mayor tau < 0.5 y el menor tau > 0.5 (si existen)
print_plot	if TRUE returns ggplot; if FALSE returns a data.frame with predictions
show_data	if TRUE and datafile/response/x_var available, shows observed points

Value

ggplot object or data.frame with columns: xid, x, tau, yhat

drawQuantileRegion Draw quantile regions (2D) for mo.bqr.svy using convex hulls

Description

This function visualizes bivariate quantile regions from a fitted mo.bqr.svy object. For each requested quantile level, a convex hull is computed from the directional points and drawn as a closed polygon. The function can overlay observed data, compare multiple predictor values, and facet the plot so each quantile level is displayed in its own panel.

drawQuantileRegion 11

Usage

```
drawQuantileRegion(
   fit,
   datafile = NULL,
   response = c("Y1", "Y2"),
   xValue = NULL,
   paintedArea = FALSE,
   comparison = FALSE,
   print_plot = TRUE,
   show_data = !is.null(datafile),
   facet_by_tau = TRUE,
   facet_nrow = 1,
   facet_ncol = NULL,
   facet_scales = "fixed",
   round_digits = 10
)
```

Arguments

fit	<pre>mo.bqr.svy object with response_dim = 2.</pre>
datafile	Optional data.frame with observed responses to overlay.
response	Character vector of length 2 naming the Y columns in datafile, e.g. $c("Y1","Y2")$.
xValue	Predictor values at which to evaluate the region. Can be:
	• NULL: uses the mean design vector (all zeros).
	 data.frame: one or more rows specifying predictor settings.
	• list of data.frames: each element is one row of predictors.
paintedArea	Logical; if TRUE, fills the polygon; if FALSE, only draws the outline.
comparison	Logical; if TRUE and multiple xValues are provided, colors polygons by each xValue.
print_plot	Logical; if TRUE returns a ggplot object; if FALSE returns a data.frame with polygon coordinates.
show_data	Logical; if TRUE and valid datafile/response are provided, overlays observed points.
facet_by_tau	Logical; if TRUE, facets the plot by quantile level, creating one panel per $ au$.
facet_nrow	Number of rows in the facet grid.
facet_ncol	Number of columns in the facet grid (if NULL, computed automatically).
facet_scales	Scales option passed to facet_wrap ("fixed", "free", etc.).
round_digits	Integer, number of digits to round projected points before computing convex hulls (helps remove duplicates).

Details

Internally, the function computes directional projections of the fitted model via .collect_points_for_tau, applies a convex hull with grDevices::chull, and then arranges the vertices to form closed polygons. This ensures smooth and convex quantile regions. Multiple quantiles can be visualized simultaneously using faceting.

Value

Either a **ggplot2** object (if print_plot = TRUE) showing the quantile regions, or a data. frame with polygon coordinates (if print_plot = FALSE).

Examples

drawQuantileRegion_3D Draw quantile regions (3D) for mo.bqr.svy using convex hulls

Description

This function visualizes trivariate quantile regions from a fitted mo.bqr.svy object using **plotly**. For each requested quantile level, a convex hull is computed from the directional points and plotted as a 3D mesh. When multiple quantiles are present, each one is displayed in its own subplot (grid of 3D panels).

Usage

```
drawQuantileRegion_3D(
   fit,
   xValue = NULL,
   opacity = 0.5,
   datafile = NULL,
   response = c("Y1", "Y2", "Y3"),
   show_points = FALSE,
   point_opacity = 0.25,
   point_size = 2,
   nrows = 1,
   ncols = NULL,
   show_titles = TRUE,
   round_digits = 10
)
```

Arguments

fit mo.bqr.svy object with response_dim = 3.

xValue Predictor values at which to evaluate the region. Can be:

• NULL: uses the mean design vector (all zeros).

• data.frame: one or more rows specifying predictor settings.

• list of data.frames: each element is one row of predictors.

Works in the same way as in drawQuantileRegion (2D).

opacity Opacity, between 0 and 1, of each quantile body.

datafile Optional data. frame with observed responses to overlay.

response Character vector of length 3 naming the Y columns in datafile, e.g. c("Y1", "Y2", "Y3").

show_points Logical; if TRUE and valid datafile/ response are provided, overlays observed

points as a 3D scatter.

point_opacity Opacity of observed points.

point_size Size of observed points.

nrows Number of rows in the grid of subplots (when multiple quantiles).

ncols Number of columns in the grid of subplots. If NULL, computed automatically

from the number of quantiles and nrows.

show_titles Logical; if TRUE, adds facet titles (e.g. tau = 0.5) above each subplot.

hulls (helps remove duplicates).

Details

Internally, the function computes directional projections of the fitted model via .collect_points_for_tau, applies a convex hull with geometry::convhulln, and then maps triangular faces to a mesh object. The resulting quantile bodies are plotted in interactive 3D. When multiple quantiles are present, they are arranged in a grid of subplots so each level can be inspected separately.

Value

A **plotly** object with one 3D scene per quantile, each containing a convex-hull mesh for every xValue, plus (optionally) the observed data points.

14 mo.bqr.svy

· •	tiple-Output Bayesian Quantile Regression for Complex Surveys ectional EM)
-----	--

Description

Fits Bayesian quantile regression models for multivariate responses using the EM algorithm and a directional approach. The method projects the response into random unit vectors (directions) and their orthogonal complements, and then fits univariate Bayesian quantile regression models along each projection. The collection of fitted directions defines the multivariate quantile region.

Usage

```
mo.bqr.svy(
  formula,
  weights = NULL,
  data,
  quantile = 0.5,
  algorithm = "em",
  prior = NULL,
  n_dir = 1,
  epsilon = 1e-06,
  max_iter = 1000,
  verbose = FALSE,
  gamma_prior_var = 1e+06,
  ...
)
```

Arguments

formula	A formula object specifying the model.	
weights	Optional vector of sampling weights. If NULL, equal weights are used.	
data	A data frame containing the variables in the model.	
quantile	Numeric vector of quantile levels (between 0 and 1, exclusive).	
algorithm	Character string specifying the algorithm. Currently only "em" is supported.	
prior	Prior specification. Can be:	
	 NULL: Default priors are used for all quantiles 	
	 A single mo_bqr_prior object: Recycled for all quantiles 	
	 A list of mo_bqr_prior objects: One prior per quantile 	
	• A function f(tau, p, names): Generates quantile-specific priors	
n_dir	Integer. Number of projection directions (if directions U are not supplied).	
epsilon	Convergence tolerance for the EM algorithm.	
max_iter	Maximum number of EM iterations.	
verbose	Logical indicating whether to print progress messages.	
gamma_prior_var		
	Numeric. Prior variance for the gamma coefficients associated with orthogonal	

complements.

mo.bqr.svy 15

... Additional arguments for direction specification:

U Optional user-specified matrix of directions ($d \times K$). If not provided, n_dir random unit vectors are generated automatically.

Details

The algorithm works by drawing or receiving as input a set of unit directions $u_k \in \mathbb{R}^d$. For each direction, an orthonormal basis of its orthogonal complement Γ_k is computed using pracma::nullspace. The response Y is then projected into the pair (u_k, Γ_k) , and a Bayesian quantile regression is fitted along that direction using the EM algorithm. Results across all directions can be combined to approximate the multivariate quantile region.

Prior distributions can be specified globally or quantile-specific. When a list of priors is provided, elements can be named using either "q0.1" format or "0.1" format to match specific quantiles. When a function is provided, it will be called with (tau, p, names) for each quantile level.

Value

An object of class "mo.bqr.svy" containing:

call The matched call formula The model formula terms The terms object

quantile Vector of fitted quantiles

algorithm Algorithm used

prior List of priors used for each quantile

fit List of fitted results for each quantile, each containing one sub-list per direction

coefficients Coefficients from the first quantile

n_dir Number of directions

U Matrix of projection directions $(d \times K)$

Gamma_list List of orthogonal complement bases, one per direction

n_obsNumber of observationsn_varsNumber of covariates

response_dim Dimension of the response d

16 mo_prior_default

mo_prior_default

Default prior for Multiple-Output BQR (EM)

Description

Creates a prior object (class "mo_bqr_prior") for mo.bqr.svy. The regression coefficients have a multivariate normal prior, and the noise variance has an inverse-gamma prior specified via shape/rate. This function can be used to create individual priors that can then be assigned to specific quantiles, allowing for quantile-specific prior distributions.

Usage

```
mo_prior_default(
  p,
  beta_mean = rep(0, p),
  beta_cov = diag(1e+06, p),
  sigma_shape = 0.001,
  sigma_rate = 0.001,
  names = NULL
)
```

Arguments

plot.bqr.svy 17

Details

When used with mo.bqr.svy, you can specify different priors for each quantile by providing a list of mo_bqr_prior objects, a function that takes (tau, p, names) as arguments, or use a single prior that will be recycled across all quantiles.

Value

An object of class "mo_bqr_prior" with fields beta_mean, beta_cov, sigma_shape, and sigma_rate.

Examples

```
# Create a single prior (will be recycled for all quantiles)
prior1 <- mo_prior_default(p = 3, beta_mean = c(0, 1, -0.5))

# Create quantile-specific priors using a list
priors_list <- list(
    q0.1 = mo_prior_default(p = 3, beta_mean = c(0, 0.8, -0.3)),
    q0.5 = mo_prior_default(p = 3, beta_mean = c(0, 1.0, -0.5)),
    q0.9 = mo_prior_default(p = 3, beta_mean = c(0, 1.2, -0.7))
)

# Create quantile-specific priors using a function
prior_fn <- function(tau, p, names) {
    # More informative priors for extreme quantiles
    variance <- ifelse(tau < 0.2 | tau > 0.8, 0.5, 1.0)
    mo_prior_default(p = p, beta_cov = diag(variance, p), names = names)
}
```

plot.bqr.svy

Plot method for bqr.svy objects

Description

Plot method for bqr. svy objects

Usage

```
## S3 method for class 'bqr.svy'
plot(x, type = c("trace", "intervals", "quantiles"), ...)
```

```
x An object of class bqr.svy.type Type of plot: "trace", "intervals", or "quantiles".... Additional plotting arguments.
```

plot_quantile.bqr.svy

plot_quantile.bqr.svy Plot predicted quantile regression curve for bqr.svy objects

Description

18

This function plots the predicted quantile regression curve from a fitted bqr.svy model. It can handle both numeric and categorical predictors and optionally overlays the curve on an existing plot.

Usage

```
plot_quantile.bqr.svy(
   object,
   data,
   predictor,
   grid_length = 100,
   fixed_values = NULL,
   add = FALSE,
   line_col = "red",
   line_lwd = 2,
   line_type = 1,
   point_pch = 19,
   point_cex = 1.2,
   prefer_predict = FALSE,
   main = NULL,
   ...
)
```

object	An object of class bqr.svy, typically the result of a call to bqr.svy.
data	A data frame containing the variables used in the model. Must include the predictor specified in predictor and any covariates in the fitted model.
predictor	A character string giving the name of the predictor variable to plot on the x-axis.
grid_length	Integer; number of grid points to generate for continuous predictors. Ignored for categorical predictors.
fixed_values	Optional named list giving fixed values for covariates other than predictor. If not supplied, numeric covariates are fixed at their median and factors at their most frequent level.
add	Logical; if TRUE, adds the curve to an existing plot instead of creating a new one.
line_col	Color for the regression line.
line_lwd	Line width for the regression line.
line_type	Line type for the regression line.
point_pch	Plotting symbol to use for points (categorical predictors).
point_cex	Size of the plotting symbols for points (categorical predictors).
<pre>prefer_predict</pre>	$Logical; if \ {\tt TRUE}, attempts \ to \ use \ the \ {\tt predict()} \ method \ for \ the \ fitted \ object \ first.$
main	Main title for the plot. If NULL, a default is constructed.
	Additional graphical parameters passed to plot, points, or lines.

Value

Invisibly returns a data. frame with:

predictor The sequence or factor levels of the predictor.

predicted The predicted quantile values.

quantile The tau value used.

Examples

```
## Not run:
fit <- bqr.svy(y ~ x, data = mydata, quantile = 0.5)
plot_quantile.bqr.svy(fit, data = mydata, predictor = "x")
## End(Not run)</pre>
```

```
plot_quantile_with_points.bqr.svy
```

Plot observed points and predicted quantile regression curve for bar.svv

Description

Plot observed points and predicted quantile regression curve for bqr.svy

Usage

```
plot_quantile_with_points.bqr.svy(object, data, predictor, main = NULL, ...)
```

Arguments

object An object of class bqr.svy.

data A data frame containing the variables used in the model.

predictor Character string with the name of the predictor variable.

main Main title for the plot.

... Additional arguments passed to plot_quantile.bqr.svy.

20 print.bwqr_fit

print.bqr.svy

Print method for bqr.svy objects

Description

Print method for bqr.svy objects

Usage

```
## S3 method for class 'bqr.svy'
print(x, digits = 3, ...)
```

Arguments

```
x An object of class "bqr.svy".digits Integer, number of significant digits to print.
```

... Additional arguments passed to print.

print.bwqr_fit

Print method for bwqr_fit objects

Description

Print method for bwqr_fit objects

Usage

```
## S3 method for class 'bwqr_fit'
print(x, digits = 3, ...)
```

```
x An object of class "bwqr_fit".digits Integer, number of significant digits to print.... Additional arguments passed to print.
```

print.mo.bqr.svy 21

print.mo.bqr.svy

Print method for mo.bqr.svy objects

Description

Displays the fitted call, quantiles, and estimated coefficients per direction.

Usage

```
## S3 method for class 'mo.bqr.svy'
print(x, ...)
```

Arguments

x An object of class "mo.bqr.svy".

... Additional arguments (not used). Print method for mo.bqr.svy objects

print.mo_bqr_prior

Print method for mo_bqr_prior objects

Description

This function defines the print() method for objects of class mo_bqr_prior. It displays a summary of the prior structure, including the length of beta_mean, the dimension of beta_cov, and the values of sigma_shape and sigma_rate.

Usage

```
## S3 method for class 'mo_bqr_prior'
print(x, ...)
```

Arguments

x An object of class mo_bqr_prior.

... Additional arguments passed to or from other methods (currently unused).

Value

The object x, invisibly.

```
prior <- mo_prior_default(p = 3)
print(prior)</pre>
```

```
print.summary.bqr.svy Print method for summary.bqr.svy objects
```

Description

Print method for summary.bqr.svy objects

Usage

```
## S3 method for class 'summary.bqr.svy' print(x, ...)
```

Arguments

```
x An object of class "summary.bqr.svy".... Additional arguments passed to print.
```

```
\label{eq:print.summary.bwqr_fit} Print\ method\ for\ summary.bwqr\_fit\ objects
```

Description

Print method for summary.bwqr_fit objects

Usage

```
## S3 method for class 'summary.bwqr_fit'
print(x, ...)
```

Arguments

```
x An object of class "summary.bwqr_fit".
```

... Additional arguments passed to print.

Description

Print method for summary.mo_bqr.svy objects

Usage

```
## S3 method for class 'summary.mo_bqr.svy'
print(x, ...)
```

Arguments

```
x An object of class "summary.mo_bqr.svy".
... Additional arguments (currently unused).
```

prior_default

Default Prior for Bayesian Weighted Quantile Regression

Description

Creates a unified prior object (class "bqr_prior") to be passed to bqr.svy (or mo.bqr.svy). It stores a multivariate normal prior on the regression coefficients and, for the "ald" kernel, optional Inverse-Gamma hyperparameters c0, C0 for σ^2 . Methods that do not use some fields simply ignore them.

Usage

```
prior_default(
   p,
   b0 = rep(0, p),
   B0 = diag(1e+06, p),
   c0 = 0.001,
   C0 = 0.001,
   names = NULL
)
```

p	Number of regression coefficients (including the intercept).
b0	Numeric vector of prior means (length p). If a scalar is supplied, it is expanded to length p.
В0	Prior covariance. May be a p x p matrix, a scalar (expanded to diag(scalar, p)), or a length-p vector (expanded to diag(vector)).
c0	Shape parameter of the Inverse-Gamma prior for σ^2 (ALD).
C0	Scale parameter of the Inverse-Gamma prior for σ^2 (ALD).
names	Optional coefficient names to attach to b0 and B0.

24 simulate_bqr_data

Value

An object of class "bqr_prior" with components b0, B0, and optionally c0, C0.

simulate_bqr_data

Simulate data for Bayesian Weighted Quantile Regression

Description

Generates synthetic data compatible with bqr.svy, allowing the user to specify true regression coefficients, error scale, and optional survey weights.

Usage

```
simulate_bqr_data(
  n = 100,
  betas = c(1, 2, -0.5),
  sigma = 1,
  weights = NULL,
  seed = NULL
)
```

Arguments

n Number of observations.

betas Numeric vector of true coefficients (first element is intercept).

sigma Standard deviation of the Gaussian error term.

weights Optional numeric vector of survey weights. If NULL, generated from Uniform(0.5,

2).

seed Optional integer seed for reproducibility.

Value

A list with components:

```
data data. frame with response y and predictors.
```

weights Numeric vector of survey weights.

true_betas The true coefficients used in data generation.

```
sim <- simulate_bqr_data(n = 50, betas = c(1, 2, -1), sigma = 0.5) head(sim$data)
```

simulate_mo_bqr_data 25

simulate_mo_bqr_data Simulate data for Multiple-Output Bayesian Quantile Regression

Description

Generates synthetic data suitable for testing and demonstrating mo.bqr.svy. The function simulates predictors X, a response y, random weights, and stores the true regression coefficients used for generation.

Usage

```
simulate_mo_bqr_data(n = 100, p = 2, beta_true = NULL, seed = NULL)
```

Arguments

n Integer. Number of observations to simulate.

p Integer. Number of predictors (excluding the intercept).

beta_true Numeric vector of length p + 1, giving the true regression coefficients (first ele-

ment is the intercept, followed by slopes). If NULL, defaults to c(1, 1, 2, ...,

p).

seed Optional integer for reproducibility.

Value

A list with the following elements:

```
data A data. frame with response y and predictors x1, ..., xp. weights A numeric vector of length n with random survey weights drawn from U(0.5,2). true_betas Matrix with the true regression coefficients used in the simulation (1 row, p+1 columns). quantiles Default quantile levels c(0.1, 0.5, 0.9).
```

26 summary.bwqr_fit

summary.bqr.svy	Summary method for bqr.svy objects	

Description

Summary method for bqr.svy objects

Usage

```
## S3 method for class 'bqr.svy' summary(object, probs = c(0.025, 0.975), digits = 3, ...)
```

Arguments

object	An object of class "bqr.svy".
probs	Numeric vector of probabilities for summary statistics.
digits	Integer, number of significant digits to display.
	Additional arguments passed to other methods.

summary.bwqr_fit

Summary method for bwqr_fit objects

Description

Summary method for bwqr_fit objects

Usage

```
## S3 method for class 'bwqr_fit'
summary(object, probs = c(0.025, 0.975), digits = 3, max_lag = 200, ...)
```

object	An object of class "bwqr_fit".
probs	Numeric vector of probabilities for summary statistics.
digits	Integer, number of significant digits to display.
max_lag	Integer, maximum lag for autocorrelation diagnostics.
	Additional arguments passed to other methods.

summary.mo.bqr.svy 27

summary.mo.bqr.svy

Summary method for Multiple-Output Bayesian Quantile Regression

Description

Provides a tabular summary of fitted Bayesian quantile regression models estimated with mo.bqr.svy. The output contains, for each quantile and direction, the estimated coefficients, scale parameter, iteration count, and convergence status. In addition, summary attributes at the quantile level (average iterations, global convergence) are stored for use by the print method.

Usage

```
## S3 method for class 'mo.bqr.svy'
summary(object, digits = 3, ...)
```

Arguments

object	An object of class "mo.bqr.svy", typically returned by mo.bqr.svy.
digits	Integer, number of decimal places to use for rounding numeric results. Defaults to 3.
	Additional arguments (currently unused).

Value

A summary.mo_bqr.svy object, which is a data frame containing:

- quantile: quantile level τ .
- direction: index of the direction used in the EM algorithm.
- coefficient columns: estimated regression parameters for each covariate.
- sigma: estimated scale parameter for that direction.
- iter: number of EM iterations taken for that direction.
- converged: logical indicating convergence for that direction.

Additionally, each block of rows corresponding to a quantile has two attributes:

- "conv_global": TRUE if all directions converged, FALSE otherwise.
- "iter_summary": average number of iterations across directions.

The object has class c("summary.mo_bqr.svy", "data.frame"), and its default print method displays both per-quantile summaries and per-direction details.

See Also

mo.bqr.svy, print.summary.mo_bqr.svy Summary method for Multiple-Output Bayesian Quantile Regression (doc igual que ya tienes)

28 summary_bqr

summary_bqr

Generic summary function for Bayesian Quantile Regression objects

Description

Generic summary function for Bayesian Quantile Regression objects

Usage

```
summary_bqr(object, ...)
```

Arguments

object An object containing model fit results.

... Additional arguments passed to other methods.

Index

```
as_bqr_prior, 2
as_mo_bqr_prior, 3
bqr.svy, 2, 4, 7, 18, 23, 24
convergence_check, 6
convergence_check.bqr.svy, 7
convergence_check.default, 8
convergence_check.mo.bqr.svy, 9
drawQuantile1D, 9
drawQuantileRegion, 10
drawQuantileRegion_3D, 12
formula, 4
lines, 18
mo.bqr.svy, 9, 14, 16, 17, 25, 27
mo_prior_default, 16
plot, 18
plot.bqr.svy, 17
plot_quantile.bqr.svy, 18
\verb|plot_quantile_with_points.bqr.svy|, \\ 19
points, 18
print, 20, 22
print.bqr.svy, 20
print.bwqr_fit, 20
print.mo.bqr.svy, 21
print.mo_bqr_prior, 21
print.summary.bqr.svy, 22
print.summary.bwqr_fit, 22
print.summary.mo_bqr.svy, 23, 27
prior_default, 2, 4, 5, 23
simulate_bqr_data, 24
simulate_mo_bqr_data, 25
summarise\_draws\_custom, 7
summary.bqr.svy, 26
summary.bwqr_fit, 26
summary.mo.bqr.svy, 27
summary_bqr, 28
```