Graphs

Ch. 6

Regions in the brain

• Each region is associated with different functions.

Connections between regions

[Beaty et al., Scientific Reports 2015; 5: 10964]

Using graphs to represent the connections for visualization and further analysis.

[Leanne M Williams, Lancet Psychiatry 2016; 3: 472–80]

[Choi et al., NeuroImage 2020; 220: 117145]

Graphs

$$G = (V, E)$$

- V: Set of vertices
 - Vertices are also called nodes or points.
- E: Set of edges
 - Each edge connects two different vertices.
 - Edges are called arcs and lines.
 - In undirected graph, (u, v) and (v, u) represent the same edge.

$$U \longrightarrow V$$

$$(v, u) \text{ or } (u, v)$$

Edge without orientation

• In directed graph, <u, v> and <v, u> represent different edges.

$$U \xrightarrow{\langle u, v \rangle} V$$

Edge with orientation

Sample graphs

Undirected graph

G_{2}

Set representation:

Tree is a type of graph.

$$V(G_1) = \{0,1,2,3\}$$

 $E(G_1) = \{(0,1),(1,2),(2,3),(0,3),(0,2),(1,3)\}$

Directed graph (Digraph)

$$G_3$$

Set representation:

$$V(G_3) = \{0,1,2\}$$

 $E(G_3) = \{<0,1>,<1,0>,<1,2>\}$

Terminology: subgraph

• Subgraph of G: a graph is composed of a subset of vertices G and a subset of edges E.

Terminology: path

Path

Length of a path is the number of edges on it.

(0,1),(1,3),(3,2) or 0,1,3,2 is a path from 0 to 2 in G_1 . The length of path is 3.

<0,1>,<1,2> or 0,1,2 is a path from 0 to 2 in G_3 . The length of path is 2.

Terminology: simple path and cycle

Simple path: No repeating vertices (except for the case that

the 1st and the last are the same).

$$(0,1),(1,3),(3,2)$$
 or $0,1,3,2$.

Simple path

$$(0,1),(1,3),(3,1)$$
 or $0,\underline{1},3,\underline{1}$.

Not simple path

Repeated vertices

$$(0,1),(1,2),(2,0)$$
 or $0,1,2,0$.

Simple path

Cycle

Repeated vertices located at 1st and last positions

Cycle:

- Simple path
- 1st and the last vertices are the same.

 G_1

More applications of graphs

- Find connected components:
 - Two vertices *u* and *v* are connected iff there is a path from *u* to *v*.

• Connected component: a <u>maximum</u> subgraph that are connected to each other.

Strongly connected components

• In a directed graph, every pair of vertices *u* and *v* has a directed path from *u* to *v* and also from *v* to *u*.

More applications of graphs

• Plan the route from city b to city k.

```
Vertex = city

Edge = roads

Edge weight = distance or time
```


Complete graph

Having the maximum number of edges.

Property: Number of edges

n: number of vertices

• Number of edges in an <u>undirected</u> graph is $\leq n(n-1)/2$.

• Number of edges in a <u>directed</u> graph is $\leq n(n-1)$.

Property: Vertex degree

Number of edges incident to vertex.

Example:

degree(d) = 3, degree(f) = 3, degree(h) = 2, degree(q) = 1

Property: In-degree of a vertex

Number of incoming edges.

Example:

in-degree(d) = 3, in-degree(f) = 2, in-degree(h) = 1, in-degree(q) = 0

Property: Out-degree of a vertex

Number of outbound edges.

Example:

out-degree(d) = 0, out-degree(f) = 1, out-degree(h) = 1, out-degree(q) = 1

Sum of degree

• e: number of edges

Undirected graph

Sum of vertex degrees = 2 e

Digraph Each edge contributes 1 to inp degree of a vertex and 1 to out-degree of a vertex.

sum of in-degrees= sum of out-degrees

= e

- Q6: Write out the in-degree of vertices 0, 1, ..., 5 in G1.
- Q7: Write out the out-degree of vertices 0, 1, ..., 5 in G1.
- Q8: Is the directed graph G2 strongly connected? Why?

Tree

- Acyclic graph: a tree has no cycles.
- Connected graph:
 - all pairs of nodes are connected.
 - n vertices connected graph with n-1 edges.

Spanning tree

- A subgraph that includes all vertices of the original graph.
- A tree.

If the original graph has n vertices, the spanning tree has n vertices and n-1 edges.

Original graph

Three examples of spanning trees

Minimum cost spanning tree

- A spanning tree with least cost
 - Tree cost: sum of edge weights/costs.

• Application: Building communication links for all cities while the cost is minimized.

Example of spanning tree

• Spanning tree cost = 1 + 2 + 2 + 3 + 4 + 5 + 3 + 1 + 3 + 1 = 25

Example of spanning tree

• Spanning tree cost = 1 + 1 + 2 + 2 + 3 + 1 + 1 + 2 + 3 + 1 = 17

Graph representations

Adjacency matrix

- Adjacency lists
 - Linked adjacency lists
 - Array adjacency lists

Adjacency matrix

- Using 2D n-by-n matrix A
 - *n*: number of vertices
 - A[i][j] = 1: an edge between vertices i and j
 - Diagonal entries are zeros.

Undirected graph

	0	1	2	3
0	0	1	0	1
1	1	0	0	1
2	0	0	0	1
3	1	1	1	0

Adjacency matrix of an undirected graph is symmetric.

Digraph

	0	1	2	3
0	0	1	0	1
1	1	0	0	0
2	0	0	0	1
3	0	1	1	0

Adjacency matrix of a directed graph need **not** be symmetric.

Count number of edges in a graph

• Searching the matrix time complexity: $O(n^2)$

What if the graph is sparse?

	0	1	2	3
0	0	1	0	1
1	1	0	0	1
2	0	0	0	1
3	1	1	1	0

$$e << n^2$$

Most elements in the adjacency matrix are zeros.

Linked adjacency list

- Each adjacency list is a chain. One chain for each vertex.
 - Array length = n
 - In undirected graph, total number of chain nodes = 2 e
 - In directed graph, total number of chain nodes = e

e: number of edges

n: number of vertices

Array adjacency list

- Using an integer array node[] to store all adjacency lists.
 - array length = n + 2e + 1
 - *i*-th element in *node*[0, 1, ..., *n*-1]: starting point of the list for vertex *i*.

Exercise

- Write out the adjacency matrix.
- Write out the linked adjacency-list representation.

Weighted graphs

- Cost adjacency matrix: A[i][j] = cost of edge(i, j)
- Adjacency lists: Each list element is a pair (adjacent vertex, edge weight)
- A graph with weighted edges is called a network.

	0	1	2	3
0	0	1	0	2
1	1	0	0	3
2	0	0	0	5
3	2	3	5	0

Summary

- What is directed graph and indirected graph?
- Terminology of graph
 - graph, subgraph, path, simple path, cycle, connected components, degree
- Spanning tree
- Graph representation
 - Adjacency matrix
 - Adjacency lists