Deerwalk Institute Of Technology

Sifal, Kathmandu

Simulation and Modeling Practical

Submitted By:	Submitted To:
Name:	Binod Sitaula
Roll No:	DWIT

Section:

Date:

Background Theory

Current is directly proportional to the voltage. We can write:

$$V \propto I$$

Where,
$$I = Current$$

 $V = Voltage$.

By removing the proportional sign, we get:

$$\rightarrow$$
 $V = I * R$

$$\rightarrow I = \frac{V}{R}$$

Where R is a constant called electrical resistance.

Program coding

```
#include <stdio.h>
int main()
{
     int V[] = \{1,2,3,4,5,6,7,8,9,10\};
                                          //Voltege
     int R = 3;
                                            //Resistance
     double current;
     int i;
     FILE *fp;
     fp = fopen("cur.xls","w+");
                                            //Open file to write
     fprintf(fp, "Volt\tCurrent");
     for(i=0;i<10;i++)
           current = (double)V[i]/R;
                                            //calculate current
           fprintf(fp,"\n%d,%lf",V[i],current);
     fclose(fp);
     printf("Simulation completed. See the xls file created");
     return 0;
}
```

Output:

Volt	Current
1	0.333333
2	0.666667
3	1
4	1.333333
5	1.666667
6	2
7	2.333333
8	2.666667
9	3
10	3.333333

Conclusion:

The theoretical concept of the relationship between voltage and current was simulated using C program and we found that there is a linear relationship between voltage and current if we vary voltage with constant resistance.