2x2 Binary Muliplier:

A 2x2 Binary Multiplier

3x3 Binary Multiplier:

Half Adder:

Truth Table:

A	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Full Adder:

TRUTH TABLE

	Inputs	Out	puts	
Α	В	C _{in}	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Half Subtractor:

Circuit Diagram:

Λ	В	Difference	Borrow
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Full Subtractor:

Minuend (A)	Subtrahend (B)	Borrow In (Bin)	Difference (D)	Borrow Out (B ₀)
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

one-bit comparator:

Function Table:

	Output	
3	Y	
	L	
4	Н	
	Н	
4	L	
	1	

H= Logic High, L= Logic Low

Connection Diagram:

74148 (8 x 3) Octal to Binary Priority Encoder:

Figure 3. 8to3 Priority Encoding

	Inputs									s
D ₀	D_1	D_2	D ₃	D_4	D ₅	D ₆	D ₇	Y ₂	Yı	Y ₀
1	0	0	0	0	0	0	0	0	0	0
×	1	0	0	0	0	0	0	0	0	1
×	×	1	0	0	0	0	0	0	1	0
×	×	×	1	0	0	0	0	0	1	1
×	×	×	×	1	0	0	0	1	0	0
×	×	×	×	×	1	0	0	1	0	1
×	×	×	×	×	×	1	0	1	1	0
×	×	×	×	×	×	×	1	1	1	1

Decimal to BCD Priority Encoder (74147):

Figure 5. Functional block diagram 74LS147

	Decimal Inputs								BCD O	utputs		
$\mathbf{D_1}$	D ₂	$\mathbf{D_3}$	\mathbf{D}_4	\mathbf{D}_{5}	\mathbf{D}_{6}	\mathbf{D}_7	D ₈	D ₉	\mathbf{Y}_3	Y ₂	Y ₁	$\mathbf{Y_0}$
1	1	1	1	1	1	1	1	1	1	1	1	1
×	×	×	×	×	×	×	×	0	0	1	1	0
×	×	×	×	×	×	×	0	1	0	1	1	1
×	×	×	×	×	×	0	1	1	1	0	0	0
×	×	×	×	×	0	1	1	1	1	0	0	1
×	×	×	×	0	1	1	1	1	1	0	1	0
×	×	×	0	1	1	1	1	1	1	0	1	1
×	×	0	1	1	1	1	1	1	1	1	0	0
×	0	1	1	1	1	1	1	1	1	1	0	1
0	1	1	1	1	1	1	1	1	1	1	1	0

16 bit Octal to Binary Priority Encoder using 74148 IC.:

Implementation of 3-8-line Decoder using IC 74LS138:

Fig 1. Pin Configuration

Fig 2. Logic Symbol

$A_0 - A_2$	Input Bits
G _{2A} ', G _{2B} '	Enable (Active LOW)
	Inputs
G ₁	Enable (Active
	HIGH) Inputs
Y ₀ ' - Y ₇ '	Active LOW Outputs

Implementation of BCD to Seven Segment Decoder using IC 74LS47:

Fig 4. Logic Symbol

A0 – A3	BCD Inputs
RBI'	Ripple Blanking Input (Active LOW)
LT'	Lamp Test Input (Active
	LOW)
BI'/RBO'	Blanking Input or Ripple
	Blanking Output (Active
	LOW)
a' – g'	Active LOW Outputs

Fig 1. Pin Configuration

Fig 2. Logic Symbol

PIN Description:

S0-S2 Select Inputs

E' Enable (Active LOW)
Input I0–I7 Multiplexer Inputs
Z Multiplexer Output

Z' Complementary Multiplexer Output

SR Latch Using NOR Gate:

Figure. IC 74LS02 Pin Configuration

Figure. SR Latch Logic Diagram

Function Table of SR Latch

Inp	Inputs		puts	
S	R	Q	Q'	Comments
0	0			
0	1	0	1	
1	0	1	0	
1	1	1	1	

D Latch:

Figure. D Latch Logic Diagram

Function Table of D Latch

	Inputs			Outputs		Comments
S	R	E	D	Q	Q'	
		0	0			
		0	1			
		1	0	0	1	
		1	1	1	0	

Edge Triggered D Flip-Flop:

Figure. IC 74LS74 Pin Configuration

Figure. Graphic symbol D flip-flop

Function Table of D Flip-Flop

	Inputs			Outputs		
D	CLK	Preset	Clear	Q	Q'	Comments

Figure. Graphic symbol JK Flip-Flop

Truth Table J K CLK Q 0 0 † Q₀(no change) 1 0 † 1 0 1 † 0 1 1 † \overline{Q}_0 (toggles)

Figure. JK Flip-Flop Truth Table

Dual JK Flip Flop 74LS73

Figure. IC 74LS73 Pin Configuration

CLR	CLK	J	K	Q	Q
L	X	X	X	L	H
Н	Ł	L	Н	L	Н
Н	Ł	Н	L	Н	L
Н	Ł	L	L	Retains previous state	
Н	Ł	Н	Н	Toggle	

Figure. Dual JK Flip-Flop Truth Table