Descriptive_Statistics

Pandurang Patil Sindhe IIT Roorkee (Engineering) BITS Pilani (Data Science)

IIT Roorkee (Engineering)

by PATIL

Pandurang Patil Sindhe

Market cap: \$500B

"Nvidia stock is

extremely overvalued"

Business Problem

- Provide actionable insights through time series forecasting.
- Evaluate ARIMA's performance for financial forecasting.
- Predict NVIDIA stock prices for better investment decisions.

Setup

period

NVID Returns since 2	IA vs Bitcoin and Gold
800- 700-	N7/DIA 891.8%
600- 500- 400-	# Bitcoin 498.3%
300- 200-	Manus Maria
2020	Gold 35,4% 2021 2022 2023 2024

Aspect	Time Series Models	ML Models
Focus	Trend & seasonality	Complex, non-linear patterns
Data	Univariate, needs stationarity	Multivariate, flexible inputs
Interpretability	High, transparent	Low, often a black box
Seasonality/Trend	Built-in (e.g., SARIMA)	Needs manual feature engineering
Forecast Horizon	Best for short-term	Suits long-term, complex cases
Speed	Fast, simple tuning	Slower, more tuning needed

ARIMA / SARIMA Modeling

ARIMA (AutoRegressive Integrated Moving Average) is a statistical model used for forecasting time series data by combining:

- **AR (AutoRegression):** Uses past values to predic future ones.
- I (Integrated): Makes the data stationary by differencing.
- MA (Moving Average): Models the error of past predictions.

$$y_t' = c + \underbrace{\frac{\varphi_1 y_{t-1}' + \ldots + \varphi_p y_{t-p}'}_{\text{lagged values}}} + \underbrace{\frac{\theta_1 \varepsilon_{t-1} + \ldots + \theta_q \varepsilon_{t-q} + \varepsilon_t}_{\text{lagged errors}}}$$

Stationarity

Transformation

Modeling

Evaluation

Deployment

ARIMA / SARIMA Assumptions

Pandurang Patil Sindhe IIT Roorkee (Engineering) BITS Pilani (Data Science)

Stationarity: The time series should have a constant mean and variance over time (or can be made stationary through differencing).

Linearity: The relationship in the data is linear \rightarrow and can be captured with AR and MA terms.

No autocorrelated residuals: Residuals (errors) \rightarrow should behave like white noise.

Normality of residuals: Residuals should be \rightarrow normally distributed for reliable confidence intervals (especially in inference).

Ljung-Box Test

Setting up Environment

- **numpy** Fast numerical computations and array handling.
- pandas Data manipulation and time series handling.
- → matplotlib Basic plotting and visualizations.
- statsmodels Statistical modeling and ARIMA implementation.
- pmdarima Auto ARIMA and model selection made easy.
- → **yfinance** Fetch historical stock/financial data from Yahoo Finance.
- **seaborn** Enhanced statistical data visualizations.

STL - LOESS Decomposition

stl = STL(data['Price'], period=365, seasonal=13, trend=91, robust=True)

- period=365 Defines the seasonal cycle (yearly seasonality).
- seasonal=13 Controls the smoothing of the seasonal component.
- trend=91 Controls the smoothing of the trend component.
- robust=True Makes decomposition more resistant to outliers.

Deployment

Stationarity Test

Pandurang Patil Sindhe IIT Roorkee (Engineering) BITS Pilani (Data Science)

from statsmodels.tsa.stattools import adfuller

>> STL

»[

Transformation

Evaluation

Data Transformation

→ ADF Testing Second time : Check Stationarity Again

ACF / PACF Plots

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

- → ACF helps detect the MA (q) part shows how current value is related to past residuals.
- → PACF helps detect the AR (p) part shows direct relationship with past values.
- Helps in model selection by identifying significant lags.

Data

Auto.Arima (ARIMA / SARIMA)

```
from pmdarima import auto_arima
model1 = auto_arima(data['LogPrice'], start_p=1, start_q=1,
                             max p=5, max q=5, seasonal=False,
                             d=1, trace=True, error action='ignore',
                             suppress warnings=True, stepwise=True)
```

- start_p / start_q: Starting point for AR → (p) & MA (q) terms.
- max_p / max_q: Max values to search for optimal p & q.
- **d=1**: Degree of differencing to make data stationary.
- seasonal=False: Disables seasonal component.
 - **stepwise=True**: Fast model search using stepwise algorithm.
 - trace=True: Prints progress during model fitting.

Manual Fitting with for Loop (multiple ARIMAs)

- → **Model Comparison**: Lets you compare different (p,d,q) combinations for best accuracy.
- → **Fine-tuning**: Gives more control over model behavior for better forecasting.
- → **Insights**: Helps understand how different AR/MA terms affect the data fit.

Data

STL

Pandurang Patil Sindhe IIT Roorkee (Engineering)

Manual Fitting with for Loop (multiple ARIMAs)

AM I TESTING THE MODEL?

ACF/PACF (p, q parameters) OR IS THE MODEL TESTING ME

from statsmodels.graphics.tsaplots import plot_acf

Residual Significance (Ljung Box)

from statsmodels.stats.diagnostic import acorr ljungbox

Mean Square & Absolute errors

from sklearn.metrics import mean squared error, mean absolute error

Deployment

ML by PATIL

Prediction for NVIDIA Stock

\$500 **Millions**

+0.2%

\$1 M

10 lvy

STL

Model Deployment

- EC2 Run ARIMA stock prediction model
- **S3** Store data, models, outputs
- SageMaker Train/deploy ARIMA
- **Lambda** Serverless prediction function
- **API Gateway** Create REST API for model
- **CloudWatch** Monitor logs & metrics
- **IAM** Manage permissions securely

Evaluation

Pandurang Patil Sindhe IIT Roorkee (Engineering)

BITS Pilani (Data Science)

Comments

Topics

Feedback

IIT Roorkee (Engineering)

Pandurang Patil Sindhe

