《VLSI数字通信原理与设计》课程

主讲人 贺光辉

数字通信系统中的VLSI设计

数字通信系统模型

数字通信系统中的基本运算单元

乘法器在数字通信系统中无处不在 Baugh-Wooley乘法器、Booth乘法器等。

高效的并行排序单元 双调 (bitonic) 排序、奇偶排序。

三角函数、指数函数、对数函数等函数单元 CORDIC迭代算法、查找表实现。

乘法器输入格式

有符号数表示: 位宽w,补码表示 $A=a_{w-1}.a_{w-2}\cdots a_1a_0$,数值区间 $[-1,1-2^{-w+1}]$

$$A = -a_{w-1} + \sum_{i=1}^{w-1} a_{w-1-i} 2^{-i}$$

举例: 4比特有符号数 $A = a_3 \cdot a_2 a_1 a_0$

$$A = -a_3 + a_2 2^{-1} + a_1 2^{-2} + a_0 2^{-3}$$

符号扩展

$$A = -a_3 + a_2 2^{-1} + a_1 2^{-2} + a_0 2^{-3} = -a_3 2^1 + a_3 + a_2 2^{-1} + a_1 2^{-2} + a_0 2^{-3}$$

$$A = \underbrace{a_3. a_2 a_1 a_0}_{\text{符号位}} = \underbrace{a_3 a_3. a_2 a_1 a_0}_{\text{符号位}}$$

并行乘法器

$$A \times B = A \times \left(-b_3 + b_2 2^{-1} + b_1 2^{-2} + b_0 2^{-3}\right) = -Ab_3 + Ab_2 2^{-1} + Ab_1 2^{-2} + Ab_0 2^{-3}$$

部分积采用补码形式进行符号扩展; 舍去低位

位级阵列乘法

位级补码阵列乘法

并行乘法器VLSI架构

并行串行进位乘法器

每次加法传递进位, 限制了乘法器的速度

- → 广播信号 bout=bin; aout=ain
- → · 位全加器 2 Cout + Sout = ain*bin + Sin + Cin

红线割集处插入寄存器,缩短关键路径,提高速度

并行乘法器VLSI架构

并行进位保留 (carry-save) 乘法器

保留当前进位,与下一个操作数对齐后相加,保证同一行不同位上加法相互独立

- 类似于串行进位乘法器,仍可以插入流水线缩短关键路径
- 矢量合并加法器有多种实现

并行乘法器VLSI架构

矢量合并加法器的实现

根据是否保留进位进行分类,也可以两者混合

- · 进位保留(左): 硬件 开销较大,速度较快
- **串行进位(右上)**: 硬件开销较小,速度较慢
- 混合架构(右下):结 合进位保留与串行进位 的特点,取得硬件开销 与速度的折中

乘法器编码优化

- Baugh-Wooley**乘法器**:保证所有部分积为正
 - Booth乘法器:对输入进行编码,以减少部分积的个数

							y 7	y 6	y ₅	\mathbf{y}_4	y ₃	y ₂	y ₁	y ₀
							\mathbf{X}_7	\mathbf{x}_6	\mathbf{X}_5	\mathbf{X}_4	\mathbf{x}_3	\mathbf{X}_2	\mathbf{X}_1	\mathbf{x}_0
						1	$\overline{\mathbf{p}_{70}}$	p ₆₀	p ₅₀	p ₄₀	p ₃₀	p ₂₀	p_{10}	p ₀₀
						$\overline{p_{71}}$	p_{61}	p_{51}	$p_{41} \\$	p_{31}	$p_{21} \\$	$p_{11} \\$	$p_{01} \\$	
					$\overline{\mathbf{p}_{72}}$	p_{62}	p_{52}	p_{42}	p_{32}	p_{22}	$p_{12} \\$	p_{02}		
				$\overline{p_{73}}$	p_{63}	p_{53}	p_{43}	p_{33}	p_{23}	$p_{13} \\$	p_{03}			
			$\overline{p_{74}}$	p ₆₄	p_{54}	p_{44}	p_{34}	p_{24}	$p_{14} \\$	p_{04}				
		$\overline{p_{75}}$	p ₆₅	p ₅₅	p_{45}	p_{35}	p_{25}	p_{15}	p_{05}					
	$\overline{\mathbf{p}_{76}}$	p_{66}	p_{56}	p_{46}	p_{36}	p_{26}	p_{16}	p_{06}						
p ₇₇	$\overline{p_{67}}$	$\overline{p_{57}}$	$\overline{p_{47}}$	$\overline{p_{37}}$	$\overline{p_{27}}$	$\overline{p_{17}}$	$\overline{p_{07}}$							
S ₁₅ S ₁₄	S 13	S ₁₂	S ₁₁	S ₁₀	S 9	S 8	S ₇	S 6	S ₅	S ₄	S ₃	S ₂	S ₁	S ₀

Baugh-Wooley乘法

	Inputs	Partial Product			
x_{2i+1}	x_{2i}	x_{2i-1}	PP_i		
0	0	0	0		
0	0	1	Y		
0	1	0	Y		
0	1	1	2Y		
1	0	0	-2Y		
1	0	1	-Y		
1	1	0	-Y		
1	1	1	- 0 (= 0)		

Booth乘法的编码方法

通信算法中的排序

- 大规模天线系统中的V-BLAST算法
- 信道编码中LDPC码的Min-Sum算法

$$k_i = \underset{j}{\operatorname{argmin}} \left\| \left[g_{j1}^i \quad \cdots \quad g_{jn}^i \right] \right\|_2^2$$

$$L(r_{ji}) = \prod_{i' \in V_j \setminus i} \alpha_{i'j} \cdot \min_{i' \in V_j \setminus i} \beta_{i'j}.$$

LDPC Min-Sum解码器中校验节点单元 (CNU) 利用奇偶排序 实现对输入最小值与次小值的 查找

- 1. Z. Wang and Z. Cui, "A Memory Efficient Partially Parallel Decoder Architecture for Quasi-Cyclic LDPC Codes," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 15, no. 4, pp. 483-488, April 2007.
- 2. Cervantes-Lozano P, González-Pérez L F, García-García A D. A VLSI Architecture for the V-BLAST Algorithm in Spatial-Multiplexing MIMO Systems. Journal of Engineering, 2013.

高效的并行排序网络

奇偶排序网络的硬件开销略小于双调排序

奇偶排序网络

奇偶排序网络是一种高效的并行排序网络

输入为两个已排序的序列,按照下标将奇数下标与偶数下标的输入分别进行奇偶排序,输出再按照下标间隔为1的配对方法两两比较排序。

CORDIC VLSI架构举例

CORDIC是一种迭代算法,可以实现三角函数等复杂非线性函数

H. Mahdavi and S. Timarchi, "Improving Architectures of Binary Signed-Digit CORDIC With Generic/Specific Initial Angles," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 7, pp. 2297-2304, July 2020

除法器VLSI架构举例

基于PWL方法与Goldschmidt算法的单精度浮点除法器

F. Lyu, Y. Xia, Y. Chen, Y. Wang, Y. Luo and Y. Wang, "High-Throughput Low-Latency Pipelined Divider for Single-Precision Floating-Point Numbers," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, early access.

信源编码与解码

信源编码与解码

- 信源编码保证信息传输的有效性 对信源信息进行压缩,减少传输比特。
- 数字移动通信系统中的信源编码

第二代: 语音编码;

第三代: 语音编码、视频图像编码。

全典信源编码算法

B 00 C 010 D 100

011

Codeword table key value ! 101 A 11

Compressed bitstring

11000111101011100110001111101 ← 29 bits

A B R A C A D A B R A !

Huffman编码、Shannon-Fano-Elias编码、Lempel-Ziv编码、Run-Length编码。

视频编码器

H.265/HEVC编码器 (encoder) VLSI架构及芯片

S. -F. Tsai, C. -T. Li, H. -H. Chen, P. -K. Tsung, K. -Y. Chen and L. -G. Chen, "A 1062Mpixels/s 8192×4320p High Efficiency Video Coding (H.265) encoder chip," 2013 Symposium on VLSI Circuits, 2013, pp. C188-C189.

视频解码器

H.265/HEVC解码器 (decoder) VLSI架构及芯片

M. Tikekar, C. Huang, C. Juvekar, V. Sze and A. P. Chandrakasan, "A 249-Mpixel/s HEVC Video-Decoder Chip for 4K Ultra-HD Applications," in IEEE Journal of Solid-State Circuits, vol. 49, no. 1, pp. 61-72, Jan. 2014

加密解密

AES加解密器

可重构AES-128/192/256加解密器VLSI架构及其芯片

AES是是美国联邦政府发布于2002年的一种区块加密标准,至今仍被广泛使用

S. K. Mathew et al., "53 Gbps Native $GF(2^4)^2$ Composite-Field AES-Encrypt/Decrypt Accelerator for Content-Protection in 45 nm High-Performance Microprocessors," in IEEE Journal of Solid-State Circuits, vol. 46, no. 4, pp. 767-776, April 2011.

信道编码与解码

信道编码与解码

- 信道编码保证信息传输的正确性在信息中插入冗余,使其获得检错或者纠错的能力。
- 数字移动通信系统中的信道编码Turbo码(3/4G), LDPC码(5G数据信道), Polar码(5G控制信道)。
- 常见信道编码 Hamming码、BCH码、RS码、卷积码、 Turbo码、LDPC码、Polar码。

Reed-Solomon (RS)码编解码器

RS码是一种循环码,也称为代数码

常用于数字存储存储系统以及光网络通信中

RS编码器

RS解码器的key-equation solver (KES)模块

RS解码器中的VLSI设计

原始RS解码算法包含求逆操作,不利于硬件实现,限制了解码器速度

从VLSI架构设计的角度重定制(reformulate)算法,去掉求逆单元

Algorithm 2 Berlekamp-Massey Algorithm

input: S_i $(1 \le j \le 2t)$

initialization: r=0, $\Lambda^{(0)}(x)=1$, L=0, B(x)=x

begin:

1. $r \Leftarrow r + 1$:

Compute the discrepancy between S_r and the rth LFSR output

$$\delta^{(r)} = S_r + \sum_{i=1}^{L} \Lambda_i^{(r-1)} S_{r-i}$$

- 2. If $\delta^{(r)} = 0$, go to step 6
- 3. $\Lambda^{(r)}(x) = \Lambda^{(r-1)}(x) + \delta^{(r)}B(x)$
- 4. If $2L \geq r$, go to step 6
- 5. $L \leftarrow r L$; $B(x) = \Lambda^{(r-1)}(x)/\delta^{(r)}$
- 6. $B(x) \Leftarrow xB(x)$
- 7. If r < 2t, go to step 1 output: $\Lambda(x) = \Lambda^{(2t)}(x)$


```
Algorithm 3 riBM Algorithm
input: S_i (1 \le j \le 2t)
initialization: \Lambda^{(0)}(x) = B^{(0)}(x) = 1
                          k^{(0)} = 0, \ \gamma^{(0)} = 1
                           \hat{\Delta}^{(0)}(x) = \hat{\Theta}^{(0)}(x) = S_1 + S_2 x + \dots + S_{2t} x^{2t-1}
begin:
              for r = 0 to 2t - 1
                          \Lambda^{(r+1)}(x) = \gamma^{(r)}\Lambda^{(r)}(x) + \hat{\Delta}_0^{(r)}xB^{(r)}(x)
                          \hat{\Delta}^{(r+1)}(x) = \gamma^{(r)} \hat{\Delta}^{(r)}(x) / x + \hat{\Delta}_0^{(r)} \hat{\Theta}^{(r)}(x)
                           if \hat{\Delta}_0^{(r)} \neq 0 and k^{(r)} \geq 0
                                       B^{(r+1)}(x) = \Lambda^{(r)}(x)
                                       \hat{\Theta}^{(r+1)}(x) = \hat{\Delta}^{(r)}(x)/x
                                       \gamma^{(r+1)} = \hat{\Delta}_0^{(r)}
                                      k^{(r+1)} = -k^{(r)} = 1
                           else
                                       B^{(r+1)}(x) = xB^{(r)}(x)
                                       \hat{\Theta}^{(r+1)}(x) = \hat{\Theta}^{(r)}(x)
                                       \gamma^{(r+1)} = \gamma^{(r)}
                                       k^{(r+1)} = k^{(r)} + 1
```

output: $\Lambda(x) = \Lambda^{(2t)}(x)$; $\hat{\Omega}(x) = \hat{\Delta}^{(2t)}(x) \mod x^t$

没有求逆的riBM算法

首次提出riBM算法

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 5, OCTOBER 2001

两位作者现均为IEEE fellow

High-Speed Architectures for Reed-Solomon Decoders

Dilip V. Sarwate, Fellow, IEEE, and Naresh R. Shanbhag, Member, IEEE

Zhang X. VLSI architectures for modern error-correcting codes[M]. Boca Raton, FL, USA:: Crc Press, 2016.

低密度奇偶校验码 (LDPC码)

- 由信息论领域泰斗MIT教授Gallager在1960年提出限于当时的硬件水平被学术界忽视了很长一段时间,从1990年代开始重新被研究
- LDPC码目前仍然是性能最好的信道编码方案之一 已被包括5G、WiMAX、DVB-S2等多个无线通信标准采纳

图片来源: https://ethw.org/Robert_G._Gallager

LDPC解码算法及其VLSI设计

校验节点(CN)算法

原始算法

$$R_{cv} = \prod_{n \in N(c) \setminus v} \operatorname{sign}(L_{cn}) \times \Psi\{\sum_{n \in N(c) \setminus v} \Psi(|L_{cn}|)\},$$
$$\Psi(\beta) = \ln\left(\frac{e^{\beta} + 1}{e^{\beta} - 1}\right).$$

近似算法

$$R_{cv} = \alpha \times \prod_{n \in N(c) \setminus v} \operatorname{sgn}(L_{cn}) \times \min_{n \in N(c) \setminus v} |L_{cn}|,$$

VLSI设计

驱动

近似后将简化为简单排序网络

Z. Wang and Z. Cui, "Low-Complexity High-Speed Decoder Design for Quasi-Cyclic LDPC Codes," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 15, no. 1, pp. 104-114, Jan. 2007.

LDPC解码器芯片

JSSC 2014

JSSC 2012

JSSC 2011

JSSC 2010

- 1. Y. S. Park, D. Blaauw, D. Sylvester and Z. Zhang, "Low-Power High-Throughput LDPC Decoder Using Non-Refresh Embedded DRAM," in IEEE Journal of Solid-State Circuits, vol. 49, no. 3, pp. 783-794, March 2014.
- 2. S. Yen, S. Hung, C. Chen, H. Chang, S. Jou and C. Lee, "A 5.79-Gb/s Energy-Efficient Multirate LDPC Codec Chip for IEEE 802.15.3c Applications," in IEEE Journal of Solid-State Circuits, vol. 47, no. 9, pp. 2246-2257, Sept. 2012.
- 3. B. Xiang, D. Bao, S. Huang and X. Zeng, "An 847–955 Mb/s 342–397 mW Dual-Path Fully-Overlapped QC-LDPC Decoder for WiMAX System in 0.13 μ m CMOS," in IEEE Journal of Solid-State Circuits, vol. 46, no. 6, pp. 1416-1432, June 2011.
- 4. Z. Zhang, V. Anantharam, M. J. Wainwright and B. Nikolic, "An Efficient 10GBASE-T Ethernet LDPC Decoder Design With Low Error Floors," in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 843-855, April 2010.

极化码 (polar码)

- 由土耳其毕尔肯大学教授Arikan在2008年提出 Arikan是LDPC发明人Gallager在MIT的学生
- Polar码拥有和LDPC相比拟的译码性能已被包括5G采纳为控制信道编码方案

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 7, JULY 2009

Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels

Erdal Arıkan, Senior Member, IEEE

3051

https://www.zhihu.com/question/53874411/answer/137424658

部分并行polar码解码器

解码算法数据流图

部分并行解码器架构

C. Leroux, A. J. Raymond, G. Sarkis and W. J. Gross, "A Semi-Parallel Successive-Cancellation Decoder for Polar Codes," in IEEE Transactions on Signal Processing, vol. 61, no. 2, pp. 289-299, Jan. 15, 2013.

Polar码解码器中的VLSI设计

Successive Cancellation List (SCL) 算法中, List越大译码延迟越高

Channel N LLRs SCL N bits SCL SCL N bits N LLRs N bits N LLRs N

List大小可调,解码后的码字需要通过CRC校验

采用两个解码模块(SCL),一个拥有较大的list,另一个较小 较小list解码模块解码后的码字若未通过CRC校验,则输入另一个list较大的解码模

块继续解码

	\mathbf{D}_1	\mathbf{D}_4	\mathbf{D}_5	[22] ($(M_l=8)$	[24]†	[23]\$	
$K = \mathcal{A} $	512	512	512	512	512	528	512	Notes:
List size \mathcal{L}	32	32	8	32	8	8	8	† The synthesis results in [24] are based
Clock freq. (MHz)	465	465	595	417	556	520	289	on TSMC 65nm technology and are scaled
Throughput (Mbps)	2346	2801	3002	827	1103	862	732	to a 90nm technology.
Total area (mm ²)	22.00	21.27	7.67	19.58	4.54	7.64	7.22	♦ The synthesis results in [23] are based
Area efficiency (Mbps/mm ²)	106.63	131.69	391.40	42.34	242.95	112.83	101.36	on TSMC 90nm technology.

Xia, ChenYang, YouZhe Fan, and Chi-ying Tsui. "High throughput polar decoding using two-staged adaptive successive cancellation list decoding." arXiv preprint arXiv:1905.09120 (2019).

MIMO系统

多输入多输出(Multiple-Input-Multiple-Output, MIMO)系统

MIMO系统:在通信链路的发送端和接收端 配备多根天线,复用时频资源。

贝尔实验室率先搭建了一套频谱利用率可达

20bps/Hz 的室内MIMO实验系统

实现5G指标的关键技术: 大规模 MIMO系统

Foschini G J. Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas[J]. Bell Labs Technical Journal, 1996, 1(2):41–59.

MIMO-OFDM通信系统

MIMO模型:

$$y = Hs + n$$

 $y \in \mathbb{C}^B$ 为接收向量;

 $\mathbf{H} \in \mathbb{C}^{B \times U}$ 为信道矩阵;

 $s \in \mathbb{C}^U$ 为发射信号向量;

 $\mathbf{n} \in \mathbb{C}^B$ 为噪声向量。

MIMO-OFDM (正交频分复用) 系统流程图

MIMO-OFDM通信系统

MIMO系统的优势

信道容量:信道无差错传输的信息速率上界 (超过该上界,则误比特率必然大于0)

频谱效率:信道容量/带宽

- · 与单输入单输出(SISO)相比
 - · 提升信道容量/频谱效率 · 提高数据吞吐
 - 提高能效

· 提高天线增益/覆盖能力

MIMO-OFDM系统设计难点

- 接收机设计
 - ・同步
 - 信道估计

- · 均衡 (检测)
- 信道译码

实现近似容量传输的关键

· 信道容量对比(高斯白噪声信道)

- **SISO**: $C = B\log_2(1 + SNR)$
- MIMO: $C = B \log_2 det \left(1 + \frac{SNR}{B} HH^*\right)$ (H为Rayleigh信道矩阵)

经典MIMO检测方案——LMMSE Detector

线性最小均方误差(Linear Minimum Mean Squared Error)检测算法

1967年,贝尔实验室Shnidman教授提出了最早的多用户检测方案:MMSE接收机

LMMSE检测方案实现难点: Gram矩阵计算&Gram矩阵求逆

辅助矩阵求逆的QR分解电路

- D. A. Shnidman, "A generalized Nyquist criterion and an optimum linear receiver for a pulse modulation system," *Bell Syst. Tech. J.*, vol. 46, no. 9, pp. 2163–2177, Nov. 1967.
- H. S. Kim, W. Zhu, J. Bhatia, K. Mohammed, A. Shah, and B. Daneshrad, "A practical, hardware friendly MMSE detector for MIMO-OFDM-based systems," *EURASIP Journal on Advanced Sig. Proc.*, vol. 2008, no. 2, pp. 1–14, Jan. 2008.

经典MIMO检测方案——LMMSE Detector

- 精确矩阵求逆(包括矩阵分解辅助方案)复杂度为 $O(U^3)$,规模大时硬件实现不友好
- 近似求逆方法:纽曼级数展开—— $\mathbf{A}_w^{-1} = \sum_{n=0}^\infty (\mathbf{X}^{-1}(\mathbf{X} \mathbf{A}_w))^n \mathbf{X}^{-1}$,取前2项

Example 1: 高效的Gram矩阵计算& 近似求逆一体化方案: 脉动阵列+纽曼级数展开

Wu M, Yin B, Wang G, et al, "Large-scale MIMO detection for 3GPP LTE: Algorithms and FPGA implementations", in *IEEE Journal of Selected Topics in Signal Processing*, 2014, 8(5): 916-929.

经典MIMO检测方案——LMMSE Detector

近似求逆方法: 共轭梯度迭代法

Example 2: 利用共轭梯度法将矩阵求逆转化为 矩阵向量乘&向量乘加

Liu L, Peng G, Wang P, et al, "Energy-and area-efficient recursive-conjugate-gradient-based MMSE detector for massive MIMO systems", in *IEEE Transactions on Signal Processing*, 2020, 68: 573-588.

经典MIMO检测方案——Sphere Decoding

- 球译码算法最早由Pohst和Fincke提出,后被Schnorr和Euchner改进
- 算法优势 可实现最大似然/最大后验概率检测; 小规模系统中复杂度很低
- 算法缺陷 复杂度不固定,无固定吞吐; 采用深度优先的树搜索策略,难以并行实现;

复杂度分布呈规模的指数级别,大规模系统

中复杂度极高

基于Schnorr-Euchner策略的球译码VLSI实现

A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner and H. Bolcskei, "VLSI implementation of MIMO detection using the sphere decoding algorithm," in *IEEE Journal of Solid-State Circuits*, vol. 40, no. 7, pp. 1566-1577, July 2005.

经典MIMO检测方案——K-Best Sphere Decoding

K-Best算法:对原始球译码的搜索策略进行优化由深度优先搜索改为广度优先搜

索,每次选取K个最优的节点并

行前向搜索

算法优势

- 可实现近似最大似然检测的性能
- 复杂度固定,硬件实现友好
- 易并行实现,方便设计时序

K-Best算法的时序图

Zhan Guo and P. Nilsson, "Algorithm and implementation of the K-best sphere decoding for MIMO detection," in *IEEE Journal on Selected Areas in Communications*, vol. 24, no. 3, pp. 491-503, March 2006.

MIMO检测(译码)芯片

球译码 JSSC 2005 K-Best ISSCC 2009 MMSE JSSC 2011 MMSE+LDPC译码 ISSCC 2015

- [1] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner and H. Bolcskei, "VLSI implementation of MIMO detection using the sphere decoding algorithm," in *IEEE Journal of Solid-State Circuits*, vol. 40, no. 7, pp. 1566-1577, July 2005.
- [2] M. Shabany and P. G. Gulak, "A 0.13µm CMOS 655Mb/s 4×4 64-QAM K-Best MIMO detector," 2009 IEEE International Solid-State Circuits Conference Digest of Technical Papers, 2009, pp. 256-257,257a.
- [3] C. Studer, S. Fateh and D. Seethaler, "ASIC Implementation of Soft-Input Soft-Output MIMO Detection Using MMSE Parallel Interference Cancellation," in *IEEE Journal of Solid-State Circuits*, vol. 46, no. 7, pp. 1754-1765, July 2011.
- [4] C. -H. Chen, W. Tang and Z. Zhang, "18.7 A 2.4mm2 130mW MMSE-nonbinary-LDPC iterative detector-decoder for 4×4 256-QAM MIMO in 65nm CMOS," 2015 IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, 2015, pp. 1-3.

总结

- 折中的思想贯穿VLSI设计,算法和硬件性能的权衡是其核心问题 例如LDPC解码的Min-Sum算法旨在避免指对数运算,polar解码的SCL算法需要控制list的大小
- 优秀的VLSI设计能够以更快的速度、更低的功耗、更好性能等推动算法落地上世纪LDPC码限于当时的硬件水平,为学术界所埋没;如今硬件水平突飞猛进,LDPC成为5G数据信道长码的主要方案
- 算法的变型与优化也有力地催生出更好的VLSI设计架构 MIMO检测中,K-Best算法是球译码算法的一种变体,具有复杂度固定,方便设计时序,易并行等硬件实现优势

谢谢!

