MATH 2135 Linear Algebra

Fields

Alyssa Motas

February 16, 2021

Contents

1	What is Abstract Algebra?					
2	Fields Elementary Properties of Fields					
3						
	3.1	Cancellation of addition	6			
	3.2	Cancellation of multiplication	6			
	3.3	$0a = 0 \dots \dots$	7			
	3.4	$ab = 0 \dots \dots$	8			
	3.5	$z + a = a \dots \dots$	8			
	3.6	Unique additive inverse	8			
	3.7	Unique multiplicative identity	9			
	3.8	Unique multiplicative inverse	10			
	3.9	Right Distributivity	10			
	3.10	Laws of Negative	10			
		3.10.1 Laws of subtraction	11			

1 What is Abstract Algebra?

In algebra, which is a broad division of mathematics, abstract algebra (occasionally called modern algebra) is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras. ¹

Arithmetic involves 2+3=5, and basic algebra involves using laws in 2+x=5. For abstract algebra, we use laws (x+y=y+x) without any arithmetic.

Example. Let $\mathbb{Z}_2 = \{0, 1\}$, the integers modulo 2. We can define the following addition and multiplication rules:

$$0+0=0$$
 $0\cdot 0=0$
 $0+1=1$ $0\cdot 1=0$
 $1+0=1$ $1\cdot 0=0$
 $1+1=0$ $1\cdot 1=1$.

Examples of laws. For all x, y, x + y = y + x

x	y	x+y	y+x
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	1

$$xy = yx \qquad (x+y) + z = x + (y+z)$$

... plus many additional laws.

¹Definition taken from Wikipedia.

2 Fields

Definition. A field is a set F, with distinct elements $0, 1 \in F$, and together with two binary operations

$$+: F \times F \to F \qquad : F \times F \to F,$$

called addition and multiplication, respectively, and satisfying the following nine axioms:

(A1) Commutativity of addition. For all $a, b \in F$, we have

$$a+b=b+a$$
.

(A2) Associativity of addition. For all $a, b, c \in F$, we have

$$(a+b) + c = a + (b+c).$$

(A3) Additive identity. For all $a \in F$, we have

$$0 + a = a$$
.

(A4) Additive inverse. For all $a \in F$, there exists $b \in F$ such that

$$a + b = 0$$
.

(FM1) Commutativity of multiplication. For all $a, b \in F$,

$$ab = ba$$
.

(FM2) Associativity of multiplication. For all $a, b, c \in F$,

$$(ab)c = a(bc).$$

(FM3) Multiplicative identity. For all $a \in F$,

$$1a = a$$
.

(FM4) Multiplicative inverse. For all $a \in F$, if $a \neq 0$, then there exists $b \in F$ such that

$$ab = 1$$
.

In \mathbb{R} , it would look like

$$b = \frac{1}{a}.$$

(D) Distributivity. For all $a, b, c \in F$, we have

$$a(b+c) = ab + ac.$$

Note. There are many additional laws of fields besides the above 9. But they are all consequences of the 9 axioms stated above.

Examples of fields.

- 1. The set \mathbb{R} of real numbers, with the "usual" addition and multiplication, is a field.
- 2. The set \mathbb{C} of complex numbers is a field.
- 3. The set \mathbb{Q} of rational numbers is a field.
- 4. The set \mathbb{Z} of integers is *not* a field. It only satisfies 8 of the 9 axioms and the one that fails is (FM4).
- 5. The set \mathbb{N} of natural numbers is *not* a field. It only satisfies 7 of the 9 axioms and the ones that fail are (A4) and (FM4).
- 6. The set \mathbb{Z}_2 of integers modulo 2 is a field (with the above addition and multiplication).
- 7. Let $n \geq 2$, and let \mathbb{Z}_n be the integers modulo n, with addition and multiplication taken modulo n. Then, there are two cases:
 - (a) If n is prime, then \mathbb{Z}_n is a field.
 - (b) If n is not prime, then \mathbb{Z}_n is not a field. The only failed axiom is (FM4).

3 Elementary Properties of Fields

3.1 Cancellation of addition

For all $x, y, a \in F$, if x + a = y + a, then x = y.

Proof. Take arbitrary² elements $x, y, a \in F$. Assume³ x + a = y + a and we need to show that x = y. By (A4), a has an additive inverse. So, let b be its additive inverse, a + b = 0.

$$x = 0 + x$$
 by (A3)
 $= x + 0$ by (A1)
 $= x + (a + b)$ because b is the additive inverse of a
 $= (x + a) + b$ by (A2)
 $= (y + a) + b$ by assumption
 $= y + (a + b)$ by (A2)
 $= y + 0$ because b is the additive inverse of a
 $= 0 + y$ by (A1)
 $= y$ by (A3).

Therefore, x = y, which is what we had to show.

3.2 Cancellation of multiplication

For all elements x, y, a of a field, if xa = ya and $x \neq 0$, then x = y.

Proof. Assume both xa = ya and $a \neq 0$ are true, and we need to show that x = y. Let b be the multiplicative inverse of a, where ab = 1. By (FM3),

²When we need to prove a "for all" statement, we do it by taking arbitrary elements and prove it.

³When we need to prove an "if-then" statement, we do it by assuming the if-part then proving the else-part.

we can rewrite x as

$$x = 1 \cdot x$$

$$= (ab)x$$

$$= \left(a \cdot \frac{1}{a}\right) x \qquad \text{since } b = \frac{1}{a}$$

$$= \frac{1}{a}(a \cdot x) \qquad \text{by (FM1)}$$

$$= \frac{1}{a}(xa)$$

$$= \frac{1}{a}(ya) \qquad \text{since } xa = ya$$

$$= \frac{1}{a}(a \cdot y)$$

$$= \left(\frac{1}{a} \cdot a\right) y$$

$$= (ab)y$$

$$= 1 \cdot y = y.$$

Therefore, $xa = ya \Leftrightarrow x = y$ if and only if $a \neq 0$, as shown above.

3.3 0a = 0

For all elements a of a field F, we have

$$0a = 0.$$

Proof. Consider an arbitrary element $a \in F$. We must show that 0a = 0.

$$0 + 0a = 0a$$
 by (A3)
 $= (0 + 0)a$ by (A3)
 $= a(0 + 0)$ by (FM1)
 $= a0 + a0$ by (D)
 $= 0a + 0a$ by (FM1)

Therefore, by cancellation of addition (Proposition 3.1), it follows that

$$0 = 0a$$
.

3.4 ab = 0

In any field F, for all $a, b \in F$, if ab = 0, then a = 0 or b = 0.4

Proof. Take arbitrary $a, b \in F$ and assume that ab = 0. We need to show that a = 0 or b = 0.

Case 1. When a = 0, then the conclusion holds.

Case 2. When $a \neq 0$, by (FM4), a has a multiplicative inverse. Let c be such an inverse, i.e. ac = 1. Then

b = 1b	by (FM3)
=(ac)b	by definition of c
=(ca)b	by (FM1)
=c(ab)	by (FM2)
= c0	by assumption
=0c	by (FM1)
=0	by Proposition 3.3

So b = 0 as desired.

3.5 z + a = a

In any field F, if $z \in F$ is an element that acts like a zero, i.e. such that for all $a \in F$, z + a = a, then z = 0.

Proof. Let $z \in F$ be such an element. Assume that z + a = a. Then we have

$$z = 0 + z$$
 by (A3)
 $= z + 0$ by (A1)
 $= 0$ by assumption.

3.6 Unique additive inverse

Let F be a field. For every $a \in F$, the element $b \in F$ in axiom (A4) is uniquely determined. In other words, if $b, c \in F$ are two additive inverses of a, then b = c.

⁴We use this all the time when solving equations such as $x^2 + 3x + 2 = 0 \Rightarrow x = -1, -2$.

Proof. Because b is an additive inverse of a, we have

$$a + b = 0. (1)$$

Similar to c, we also have

$$a + c = 0. (2)$$

From (1) and (2), we get

$$a+b=a+c$$
.

From (A1), we get

$$b + a = c + a.$$

By Proposition 3.1 (cancellation of addition), we get

$$b = c$$
.

Definition. Since the additive inverse of a is unique, we can introduce a notation for it. We write b = (-a) when b is the additive inverse of a.

From now on, we can write

$$a + (-a) = 0.$$

We define subtraction as a - b which is an abbreviation for a + (-b).

All of the "usual" laws of negative and subtraction follow from the field axioms.

3.7 Unique multiplicative identity

In a field, the element 1 is uniquely determined by axiom (FM3).

Proof. Suppose we represent b, c as multiplicative identities of a, where $a, b, c \in F$. By (FM3), we have

$$a \cdot b = a$$
 and $a \cdot c = a$.

Then we have

$$a \cdot b = a \cdot c$$

 $\Rightarrow b = c$ by Proposition 3.2

This implies that the multiplicative identity of a is unique and there can be no more than one of it.

3.8 Unique multiplicative inverse

For any element $a \neq 0$ of a field, the element b in axiom (FM4) is uniquely determined.

Proof. Suppose b, c are multiplicative inverses of a, where $a \neq 0$ and $a, b, c \in F$. By the definition of (FM4), we have

$$a \cdot b = 1$$
 and $a \cdot c = 1$.

It follows that, since both equations are equal to 1, we can use the axiom (FM3) to prove that b = c.

$$b = 1 \cdot b$$

$$= (c \cdot a)b$$

$$= c(a \cdot b)$$

$$= c \cdot 1$$

$$= c.$$

Hence, we get b=c, which implies that the multiplicative inverse of any element is unique.

3.9 Right Distributivity

Distributivity also holds on the right: (b+c)a = ba + ca.

Proof. This is a direct consequence of (D) and (FM1).

3.10 Laws of Negative

(a)
$$-(-a) = a$$

(b)
$$-(ab) = (-a)b = a(-b)$$

 $(-a)(-b) = ab$

(c)
$$-a = (-1)a$$

Proof. (a) By definition of (-a), we have a+(-a)=0. Also, by definition of -(-a) (and commutativity), we have (-(-a))+(-a)=0. By cancellation, it follows that a=-(-a).

(b) To show that -(ab) = (-a)b, we need to show that (-a)b is the negative of ab, in other words, that ab + (-a)b = 0. This follows from the axioms:

$$ab + (-a)b = (a + (-a))b$$
 by distributivity
= $0b$ by (A4)
= 0 by Proposition 3.3

The proof of -(ab) = a(-b) is similar.

(c) By (FM3) and (b), we have
$$-a = -(1a) = (-1)a$$
.

3.10.1 Laws of subtraction

1.
$$(a-b)(c-d) = ac - ad - bc + bd$$