Maximum Likelihood Estimation

Deadline: 20 September 2021

Assignment2

Q.1 Download the artificial dataset from your LMS Account and perform the following operations on this dataset:

- a) Assume the predefined parameters range according to the definition of pmf or pdf of respective distribution, accordingly.
- b) Estimate the Parameters using Maximum Likelihood Estimation in Theoretical perspective for various distribution.
 - i. Poisson distribution
 - ii. Exponential distribution
 - iii. Gamma distribution
 - iv. Uniform distribution
 - v. Binomial distribution
 - vi. Gaussian distribution
- c) Implement and estimate the parameters using Maximum Likelihood Estimation in the python code for various distribution on downloaded data.
 - i. Poisson distribution
 - ii. Exponential distribution
 - iii. Gamma distribution
 - iv. Uniform distribution
 - v. Binomial distribution
 - vi. Gaussian distribution
- d) Plot the point mass function graph for to throw a coin 10,000 times for head and tail.
- e) Draw the probability density function graph for 10,000 random samples using mentioned distribution as
 - i. Poisson distribution
 - ii. Exponential distribution
 - iii. Gamma distribution
 - iv. Uniform distribution
 - v. Binomial distribution
 - vi. Gaussian distribution

f) Implement and estimate the parameters using Maximum Likelihood Estimation in the python code

Suppose that X is a discrete random variable with the following probability mass function: where $0 \le \theta \le 1$ is a parameter. The following 10 independent observations

X	0	1	2	3
P(X)	$2\theta/3$	$\theta/3$	$2(1-\theta)/3$	$(1-\theta)/3$

were taken from such a distribution: (3,0,2,1,3,2,1,0,2,1). What is the maximum likelihood estimate of θ .