The top gun of non parametric regressors:

KERNEL REGRESSION

By Bessi Marco and Tanasa Dragos

```
def montecarlo1():
montecarslo simulation = 1000
error knn = []
error reg = []
#MONTECARLO SIMULATION
for i in tqdm (range (montecarslo simulation), desc="Loading..."):
   #generate data for every simulation
   X, Y = data generating process(dimensions = 600, feature = 1)
    #split data into train and test
                                                                                                          Generate data and split into train and test
   x train, x test, y train, y test = train test split(Y, X, test size = 0.2)
    x train = np.array(x train).reshape(-1,1)
    x test = np.array(x test).reshape(-1,1)
   #grid search for best parameters for both KNN and Kernel Regression
   knn = KNN()
    param grid knn = { "n neighbors": np.arange(1, 100) }
   knn gscv = GridSearchCV(knn, param grid knn, cv=5, scoring="neg mean squared error")
                                                                                                            The best hyperparameter is chosen using
   knn gscv.fit(x train, y train)
                                                                                                            grid search
   ker2 = KernelRegression()
   param grid = { "bandwidth": np.arange(0.02, 0.4, 0.02) }
   ker qscv = GridSearchCV(ker2, param grid, cv=5, scoring="neg mean squared error")
   ker qscv.fit(x train, y train)
   #get best estimator for both KNN and Kernel Regression
    knn best = knn gscv.best estimator
   ker best = ker gscv.best estimator
                                                                                                          Regressor are evaluated on test data, mean
    #predict values for both KNN and Kernel Regression
   knn pred = knn best.predict(x test)
                                                                                                          squared error is used.
   ker pred = ker best.predict(x test)
   error knn.append(mean squared error(y test, knn pred))
   error reg.append(mean squared error(y test, ker pred))
error knn = np.asarray(error knn)
error reg = np.asarrav(error reg)
np.savetxt("error knn 1000 600.csv", error knn, delimiter=",")
```

np.savetxt("error reg 1000 600.csv", error reg, delimiter=",")

KNN vs Regression

Result of the (really long) Montecarlo simulation are displayed as the histogram of the MSE.

As we can see Kernel Regression performs on average better than KNN regression

What about kernels?

Our code implements 5 different types of kernels:

Results of a montecarlo simulation.

Non uniform sample

```
def data_generating_process(dimensions = 100):
mu, sigma = 0, 2
mu2, sigma2 = 17, 2
X1 = np.random.normal(mu, sigma, int(dimensions/2))
X2 = np.random.normal(mu2, sigma2, int(dimensions/2))
X = np.concatenate([X1, X2])
X = np.sort(X)
Y = [(x ** 2)*np.cos(x) + np.random.normal(0, 40) for x in X]
return(Y, X)
```

When data is not uniformly sampled kernel regression struggles to estimate the real function.

What about heteroscedasticity?

Some empirical observation about what we removing homoscedasticity assumption in the data

```
def data_generating_process(dimensions = 100):
X = np.random.uniform(0, 20, dimensions)
X = np.sort(X)
Y = [(x ** 2)*np.cos(x) + np.random.normal(0, 20 + 5*x) for x in X]
return(Y, X)
```


Heteroscedasticity

vs Homoscedasticity

Reference:

- Nonparametric regression, Wikipedia.
- Kernel regression, Wikipedia.
- Notes from the course of Predictive Modelling of the University of Madrid

Code used:

https://github.com/DragosTana/ML_Homework