ASIC Timing

Basics of Timing

Basics of Timing: Pin-2-Pin (Pass-through)

Simple path representation

- Consider a circuit
- Timing model of AND gate
- Build a graph:
 - Wires are Vertices 1 per gate output and 1 for each PI and PO
 - Gates are Edges input pin to output pin,1 edge per input with a delay for each edge
 - Add Source/Sink Nodes:
 - 0-weight edge to each PI and from each PO.
- All paths start and end at a single node
- Add interconnect delay if available

Node Oriented Timing Analysis

- Enumerate every path, number of paths get exponentially bigger
- Instead, use node-oriented timing analysis
 - For each node, find the worst delay to the node along any path
 - Define two important values:
 - Arrival Time at a node (AT): the longest path from the source to the node
 - Required Arrival Time at node (RAT): the latest time the signal is allowed to leave the node to make it to the sink in time
- Slack at node n is defined as:
- Slack(n) = RAT(n) AT(n)

Compute ATs and RATs

- Recursively
- Arrival Time at a node is just the maximum of the ATs at the predecessor nodes plus the delay from that node
- Required Arrival Time to a node is just the minimum of the RATs at the successor nodes minus the delay to that node

$$AT(n) = \begin{cases} 0 & n = SRC \\ \max_{p \in pred(n)} \left[AT(p) + \Delta(p, n) \right] & n \neq SRC \end{cases}$$

$$RAT(n) = \begin{cases} T & n = SNK \\ \max_{s \in succ(n)} \left[RAT(s) + \Delta(n, s) \right] & n \neq SNK \end{cases}$$

AT, RAT, and Slack

If the signal arrives too late, we get *negative slack*, which means there is a timing violation.

- Does it meet a cycle time of T=12?
- Fill in the RAT, AT, and SLACK of each node
 - Find out whether timing is met
 - Figure out what the worst path is

- Start by representing it as a directed acyclic graph (DAG)
- Compute ATs from SRC to SNK

- Start by representing it as a directed acyclic graph (DAG)
- Compute ATs from SRC to SNK

Add RAT to SNK from SRC

• Calculate the slack - find the critical path

