



# Signal and Systems: discretetime signals

\_

# Traitement numérique du signal

Xidian University – March 2021

rl@xidian.edu.cn

# Rappels de traitement du signal

• Peigne de Dirac 
$$\delta_{T_e}$$
 
$$\delta_{T_e} = \sum_{k=-\infty}^{+\infty} \delta(t-kT_e)$$

Quelques transformées de Fourier

$$\mathcal{F}[rect] = sinc$$
  
 $\mathcal{F}[\delta] = 1$ 

$$\mathcal{F}[\delta] = 1$$

$$\mathcal{F}[\cos(2\pi f_0 t)] = \frac{\delta(f - f_0) + \delta(f + f_0)}{2}$$



### Rappels de traitement du signal

• Quelques propriétés importantes :

|                         | Fonction (représentation temporelle) | Transformée de Fourier<br>(représentation fréquentielle) |
|-------------------------|--------------------------------------|----------------------------------------------------------|
| Convolution             | x(t)y(t)                             | X(f) * Y(f)                                              |
| Convolution             | x(t) * y(t)                          | X(f)Y(f)                                                 |
| Linéarité               | ax(t) + by(t)                        | aX(f) + bY(f)                                            |
| Changement<br>d'échelle | x(at)                                | $\frac{1}{ a }X\left(\frac{f}{a}\right)$                 |
| Translation sur $t$     | x(t-	au)                             | $X(f)\exp(-j2\pi f\tau)$                                 |

#### Rappels de traitement du signal

- Quelques propriétés importantes :
  - on pourra retenir : « La transformée de Fourier d'une fonction périodique est un spectre de raies *et inversement »*
  - on pourra retenir : « Une fonction large en temps (représentation temporelle) est étroite en fréquence (représentation fréquentielle) et inversement »

#### Plan du cours

- I. Rappels de traitement du signal
- II. Signaux échantillonnés
  - 1. Pourquoi des signaux numériques ?
  - 2. Comment modéliser un signal échantillonné?
  - 3. TF d'un signal échantillonné
  - 4. Théorème de Shannon
  - 5. Reconstruction du signal continu
- III. Signaux numériques et transformée de Fourier Discrète
- IV. Conversion analogique numérique et bruit de quantification

#### Du temps continu au temps discret

- Pourquoi des signaux numériques ?
- Comment modéliser mathématiquement un signal discret ?
- Comment définit-on la transformée de Fourier d'un signal discret ? Quel est son lien avec celle du signal continu correspondant ?
- Comment échantillonner correctement un signal analogique ?
- Quelles sont les limites de cette représentation ?

### 1. Pourquoi des signaux numériques ?

- De plus en plus, ce sont des ordinateurs ou des calculateurs dédiés qui réalisent le traitement du signal
  - Avantages:
    - Immunité au bruit lors du traitement,
    - Facilité de régler/paramétrer l'unité de traitement → prototypage rapide,
    - Fiable dans le temps (pas de dérives).
  - Inconvénients:
    - La numérisation peut dégrader le signal (échantillonnage, quantification),
    - Temps de traitement

#### Domaines d'utilisation

#### Télécommunications

 Codage de la parole, TV numérique, cryptage et protection, compression et transmission d'images, téléphonie cellulaire...

#### Biomédical

Electrophysiologie (ECG, EEG...), échographie doppler

#### Automobile

• injection électronique, ABS

#### Musique

• Synthétiseurs, mélangeurs, enregistrements ...

#### Graphisme et imagerie

• Reconnaissance de forme, restauration d'images, animation...

### Comment obtient-on un signal numérique?

• Chaine de traitement classique:



- 1. Filtre anti-repliement
- 2. Echantillonneur bloqueur
- 3. Convertisseur analogique numérique (ADC)
- 4. Unité de traitement (CPU,DSP...)
- 5. Convertisseur numérique analogique (DAC)
- 6. Filtre de lissage (optionnel)



Reconstruction du signal analogique (CNA = DAC)



# Classification des signaux



#### 2. Comment modéliser un signal échantillonné?



• Un signal échantillonné est une suite de points  $\{x_k\}$  obtenus tous les  $T_s$ 

# Comment modéliser un signal échantillonné?



$$x_e = \sum_{k=-\infty}^{+\infty} x(kT_s)\delta(t - kT_s) = x.\,\delta_{T_s}$$

### 3. TF d'un signal échantillonné

$$\mathcal{F}(x_e) = \mathcal{F}(x.\delta_{T_s}) \Rightarrow X_e(f) = X(f) * \frac{1}{T_s} \delta_{\frac{1}{T_s}}(f)$$

$$X_e(f) = \frac{1}{T_s} \sum_{k=-\infty}^{+\infty} X\left(f - \frac{k}{T_s}\right)$$

Echantillonner en temps



Périodiser en fréquence

La TF d'un signal  $x_e(t)$  échantillonné à  $T_s$  est la TF du signal analogique x(t) périodisé, de période  $F_s = \frac{1}{T_s}$  et affecté d'un facteur  $\frac{1}{T_s}$ .

# TF d'un signal échantillonné

Exemple:



Spectre d'un échantillonneur idéal



Spectre du signal après échantillonnage (idéalisé)



# TF d'un signal échantillonné

• Remarque :  $X_e(f)$  peut aussi s'exprimer autrement

$$x_e(t) = \sum_{k=-\infty}^{+\infty} x(kT_S)\delta(t - kT_S) \Rightarrow X_e(f) = \sum_{k=-\infty}^{+\infty} x(kT_S)e^{-j2\pi kT_S f}$$

• A rapprocher de la TF de x(t)

$$X(f) = \int_{t=-\infty}^{+\infty} x(t)e^{-j2\pi ft}dt$$

#### Constatations expérimentales: sinusoïde

# Illustration 1 : Acquisition d'une sinusoïde à différentes fréquences d'échantillonnage

```
% acquisition d'un sinus de 1 Hz
f=1; % fréquence du sinus en Hz
duree=2; % duree d'acquisition (sec.)
%% echantillonnage à 50 Hz
fech=50;
k=0:1/fech:duree;
x1=\sin(2*pi*f*k);
figure; plot(k,x1,'-')
%% echantillonnage à 5 Hz
fech=5; k=0:1/fech:duree;
x2=\sin(2*pi*f*k);
hold on; plot(k,x2,'rd-.')
% echantillonnage à 0.95 Hz
fech=0.95; k=0:1/fech:duree;
x3=sin(2*pi*f*k);
hold on; plot(k, x3, 'k*')
```



### Constatations expérimentales

- Illustration 2 : Restitution audio d'un chirp linéaire
  - Soit un signal  $x(t) = A \cdot \cos(2\pi f_i(t)t + \varphi)$  de **fréquence instantanée**  $f_i(t)$ 
    - Note : pour un signal sinusoïdal de fréquence  $f_0$ , on a  $f_i(t) = f_0$ .
  - Si la fréquence dépend du temps, on dit que le signal est modulé en fréquence
  - Cas du chirp linéaire
    - $f_i(t) = f_0 + \lambda t$



### Constatations expérimentales: chirp linéaire

#### Visualisation sous Matlab

```
fs=50;
lambda=2;
f0=1;
T=2;
n=(0:T*fs)/fs;
theta=2*pi*f0*n+2*pi*lambda*(n.^2);
x=cos(theta);
plot(n,x)
```

#### Restitution audio et échantillonnage (Matlab)

```
% audio sans
lambda=1000;
fs=8000;
f0=1000;
T=2;
n=[0:T*fs]/fs;
theta=2*pi*f0*n+2*pi*lambda*(n.^2);
x=cos(theta);
soundsc(x,fs)
```



```
f_i(t) = f_0 + \lambda t
```

```
% audio avec repliement
lambda=3000;
fs=8000;
f0=1000;
T=2;
n=[0:T*fs]/fs;
theta=2*pi*f0*n+2*pi*lambda*(n.^2);
x=cos(theta);
soundsc(x,fs)
```

#### 4. Théorème de Shannon

- Condition pour qu'il n'y ait pas perte d'information
  - La fréquence d'échantillonnage  $F_{\!\scriptscriptstyle S}$  doit être **strictement supérieure** à  $2f_{max}$



#### Théorème de Shannon

• Cas 1:







• Cas 2:







• Pour le signal  $x(t) = \cos(2\pi f_0 t)$ 

$$T_{smax} = ?$$



• Pour le signal  $x(t) = \cos(2\pi f_0 t)$ , la fréquence d'échantillonnage minimale est de 2 échantillons par cycle

$$F_{smin} = 2f_{max} = 2f_0$$



- Si le théorème de Shannon n'est pas respecté, la fréquence d'échantillonnage est trop faible :  $F_s \leq 2f_{max}$
- Retour sur l'exemple précédent : exercice





- Dessiner le spectre du signal échantillonné à 0,95Hz de -2 à 2 Hz.
- A quelle fréquence est le signal reconstitué ?
- Quelle aurait dû être la fréquence d'échantillonnage minimale?

- Si le théorème de Shannon n'est pas respecté, la fréquence d'échantillonnage est trop faible :  $F_{\rm S} \le 2f_{max}$
- Retour sur l'exemple précédent : exercice



- Dessiner le spectre du signal échantillonné à 0,95Hz de -2 à 2 Hz.
- A quelle fréquence est le signal reconstitué ?
- Quelle aurait dû être la fréquence d'échantillonnage minimale?

#### Recouvrement de spectre

- Bilan : s'il y a recouvrement de spectre  $(f_{max} \ge \frac{F_s}{2})$ , des fréquences artificielles et indésirables apparaissent dans le signal reconstruit.
- Les fréquences f (plus grandes que  $\frac{F_S}{2}$ ) génèrent des fréquences  $f_{alias}$  telles que:

$$f_{alias} = |f - F_s|$$

#### Théorème de Shannon: exercices

- Exemples de reconstruction
  - Signal de fréquence 2 Hz (en pointillés)
  - Retrouver la fréquence du signal reconstruit
  - Quelle est la fréquence d'échantillonnage minimum ?





#### A retenir: Théorème de Shannon

• Un signal x(t) ayant un spectre s'étendant jusqu'à la fréquence maximale  $f_m$  est entièrement décrit par ses échantillons  $x(kT_s)$  prélevés avec une fréquence d'échantillonnage  $F_s$  telle que:

$$F_s > 2 \times f_m$$

### Filtre antirepliement

• Pour empêcher le repliement de spectre, on utilise en général un filtre antirepliement avant l'échantillonnage.

• Quel devrait être le type de ce filtre et quel est sa fréquence de coupure ?

### Filtre antirepliement

- Pour prévenir le repliement de spectre, on utilise en général un filtre antirepliement avant l'échantillonnage.
- Pré-filtrage du signal analogique avant échantillonnage pour supprimer tout risque de repliement de spectre (aliasing)



Ma

1 : filtre antirepliement (anti aliasing filter).

C'est un filtre passe-bas de fréquence de coupure  $\frac{F_S}{2}$ .

30

#### 5. Reconstruction du signal continu

- L'opération d'échantillonnage doit être réversible. La reconstruction du signal d'origine x(t) est noté  $x_r(t)$  et doit être aussi fidèle que possible. Cette reconstruction passe par une interpolation des échantillons de  $x_r(t)$ .
- Pour reconstruire le signal d'origine  $x_r(t)$ , on filtre le signal échantillonné  $x_e(t)$  par un filtre passe-bas-idéal (H) de fréquence de coupure  $f_c = \frac{F_s}{2}$ .
- Opération de filtrage :



### Interpolateur idéal

Utilisation d'un filtre passe-bas idéal



Spectre d'un échantillonneur idéal



Spectre du signal après échantillonnage (idéalisé)

$$X_e(f) = \frac{1}{T_s} \sum_{k=-\infty}^{+\infty} X\left(f - \frac{k}{T_s}\right)$$

$$X(f) = T_S \times X_e(f) \times rect(T_S f)$$

$$x(t) = \mathcal{F}^{-1}(X(f)) = T_S x_e(t) * \frac{1}{T_S} sinc\left(\frac{t}{T_S}\right)$$
$$x(t) = \sum_{k=-\infty}^{+\infty} x(kT_S) \delta(t - kT_S) * sinc\left(\frac{t}{T_S}\right)$$

$$x(t) = \sum_{k=-\infty}^{+\infty} x(kT_s) \times sinc\left(\frac{t - kT_s}{T_s}\right)$$

# Interpolateur idéal 理想插体

- Utilisation d'un filtre passe-bas idéal
  - Equivalent à convoluer par une fonction sinus cardinal



# Interpolateur d'ordre un 一所插位

- Relier les échantillons successifs par des droites
  - Equivalent à convoluer avec une fonction triangle



# Interpolateur d'ordre zéro 準所構体

- Ou bloqueur d'ordre zéro 索片四塞器
  - La fonction maintien est naturellement réalisée par un convertisseur numérique-analogique



#### Pour résumer : chaîne de traitement échantillonné

 Exemple de chaîne avec un bloqueur d'ordre zéro (cas le plus fréquent) associé à un filtre de lissage



 Remarque : le traitement échantillonné effectué peut être dans les domaines temporel ou fréquentiel