1 Shape Optimization of a Photo Gun

1.1 Geometry

- latest geometry in Figure 1
- corresponding electric field for $p=3,\;n_{\rm sub}=16,\;V_{\rm el}=-300\;{\rm kV}$ and $V_{\rm ar}=1\;{\rm kV}$
- (patches $32\dots 35$ are not entirely correct, missing the correct high voltage adapter)

Figure 1: Initial geometry and magnitude of electric field.

1.2 Optimization

- optimized geometry in Figure 2
- $\bullet \;$ cost function only takes into account electric field
- only the upper electrode shape is optimized (volume constraint could be kept as before at $625~\text{cm}^3$)
- corresponding electric field for $p=3,\,n_{\rm sub}=16,\,V_{\rm el}=-300$ kV and $V_{\rm ar}=1$ kV
- magnitude of E-field remains large in patch 14 (also around anode ring)

			$(V_{\rm el} - 625)/{\rm cm}^3$	$\max(\ \mathbf{E}\ _2)/\frac{MV}{m}$
•	results:	initial	2.445	9.295
		optimized	-12.872	8.49

Figure 2: Optimized geometry and electric field.

1.3 Tracking

- general settings: Q = 100 fC
- spatial distribution: Gaussian with $\sigma = 400~\mu\text{m}$, see Figure 3 for comparison with laser measurement (probe particles at 0.5σ , σ , 1.5σ in red)
- temporal distribution: Gaussian with $\sigma = 5$ ps, see Figure 4 for comparison with measurement/model from [1]

Figure 3: Spatial distribution (2^{10} particles) and laser measurement.

Figure 4: Temporal distribution (2^{10} particles) and measurement/model.

- convergence of time integrator: difference of normalized transverse emmitance ϵ w.r.t. finest time step is shown in Figure 5
- $H = 2^{-11}$ ns used later on

Figure 5: Normalized transverse emmitance and absolute error in l_{∞} -norm.

- convergence of field map: look at convergence with number of grid points in transverse (n_x, n_y) and longitudinal (n_z) direction individually
- Figure 6 looks at convergence of n_x, n_y for $n_z = 64$
- Figure 7 looks at convergence of n_z for $n_x = n_y = 16$
- $n_x = n_y = 16$ and $n_z = 64$ used later on

Figure 6: Normalized transverse emmitance and absolute error in l_{∞} -norm for $n_z=64$ and $n_x=n_y$ variable.

Figure 7: Normalized transverse emmitance and absolute error in l_{∞} -norm for n_z variable and $n_x = n_y = 16$.

- convergence of space charge: look at convergence with number of grid cells in radial (n_r) and longitudinal (n_l) direction and number of particles (n_l) separately
- Figure 8 looks at convergence of n_r, n_l for $n_I = 2^{10}$
- $n_r = n_l = 16$ used later on
- Figure 10 looks at convergence of n_I for $n_r=n_l=16\,$
- $n_I = 2^{10}$

Figure 8: Normalized transverse emmitance and absolute error in l_{∞} -norm for $n_I=2^{10}$ and n_l,n_r variable.

Figure 9: Normalized transverse emmitance and absolute error in l_{∞} -norm for n_I variable and $n_I = n_r = 16$.

Figure 10: Normalized transversal emmitance and absolute error in l_{∞} -norm for $n_I=2^{10}$ and $n_I=n_r=16$.

• tracking results: ϵ and $x_{\rm rms}$ computed with the determined settings are shown in Figure 11

Figure 11: Normalized transverse emmitance and rms beam size.

- remarks: the convergence studies also looked at x_{rms} and the behavior was very similar to that of ϵ
- to minimize the electric field on the entire electrode surface all curves could be taken into account
- this includes the anode ring shape, position and voltage
- also include tracking in optimization via $x_{\rm rms} \leq 1.5$ mm, also optimize or constrain $\epsilon \leq 1$ mrad mm?

References

[1] Markus Wagner. "Production and investigation of pulsed electron beams at the S-DALINAC". PhD thesis. Technische Universität Darmstadt, 2013.