

RULE EVALUATION

SYRACUSE UNIVERSITYSchool of Information Studies

LIMITATION OF CONFIDENCE MEASURE

100 transactions:

75 bought movies

60 bought games

40 bought both

Both seem to be strong rules.

{movies}->{games} support 40/100 = 0.4 confidence 40/75 = 0.53

{games}->{movies} support 40/100 = 0.4 confidence 40/60 = 0.67

HOWEVER ...

100 transactions:

75 bought movies

60 bought games

40 bought both

$$P(movies) = 75/100 = 0.75$$

$$P(games) = 60/100 = 0.6$$

P(movies and games) =
$$40/100 = 0.4$$

So people tend not to buy movies and games together!

Correlation(movies, games) = P(movies and games) $/[P(movies) \times P(games)] = 0.4/(0.75 \times 0.6) = 0.89$

The confidence measure is sometimes misleading.

Correlation <1 means negative correlation.

METRIC: LIFT (CORRELATION)

Measure of dependent or correlated events: Lift

Lift $(A => B) = support(\{A,B\})/(support(A) \times support(B))$

$$lift(A > B) = \frac{P(A \mid B)}{P(A)P(B)}$$

Association rules should have >1 lift to be meaningful.

THE LIFT (CORRELATION) MEASURE

	Game	Not Game	Total
Movie	40	35	75
Not movie	20	5	25
Total	60	40	100

```
P(buy game) = 0.6

P(not buy movie) = 0.25

P(buy game and not buy movie) = 0.20

Lift (buy game -> not buy movie) \leftarrow Strong rule

=0.20/(0.6 × 0.25) = 1.33 > 1
```

ALTERNATIVE MEASURES

Association rule algorithms tend to produce too many rules.

Many of them are uninteresting or redundant.

Uninteresting if it is known knowledge

Redundant if $\{A,B,C\} \rightarrow \{D\}$ and $\{A,B\} \rightarrow \{D\}$ have same support and confidence

INTERESTINGNESS VIA UNEXPECTEDNESS

Need to model expectation of users (domain knowledge)

- + Pattern expected to be frequent
- Pattern expected to be infrequent
- Pattern found to be frequent
- Pattern found to be infrequent
- + Expected Patterns
- Unexpected Patterns

Need to combine expectation of users with evidence from data (i.e., extracted patterns)

WEKA ASSOCIATION RULES

Implemented a variation of Apriori Algorithm that iteratively reduces the minimum support until it finds the required number of rules with the given minimum confidence

Allows mining of "class association rules": If the data have a class label attribute, the right hand side of a rule can be restricted to that label.

ASSOCIATION RULE MEASURES

In practice, what levels of support, confidence, and lift should we aim for?

Support:

Depends on data set and business problem

Common setting is 20–40% of the transactions

Confidence:

Strong confidence rules ≥ .9, but .6 to .8 range might be OK

Lift:

Should be above 1.0, the higher the better

Levels of 2 and above can occasionally be seen but more likely to see around 1.3 to 1.5