Pandas Libraries

```
import pandas as pd
```

Installing the dataset from url

```
# URL of the dataset
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
# Column names for the dataset (since the dataset does not include headers)
column_names = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'class']
# Read the dataset into a DataFrame
df = pd.read_csv(url, header=None, names=column_names)
# Save the DataFrame to a CSV file
df.to_csv('iris_dataset.csv', index=False)
print("Dataset saved as 'iris_dataset.csv'")
Dataset saved as 'iris_dataset.csv'
```

First 5 rows are display

df.head()

₹		sepal_length	sepal_width	petal_length	petal_width	class	=
	0	5.1	3.5	1.4	0.2	Iris-setosa	ılı
	1	4.9	3.0	1.4	0.2	Iris-setosa	
	2	4.7	3.2	1.3	0.2	Iris-setosa	
	3	4.6	3.1	1.5	0.2	Iris-setosa	
	4	5.0	3.6	1.4	0.2	Iris-setosa	

Next steps: Generate code with df View recommended plots

lasts 5 rows are display

df.tail()

→		sepal_length	sepal_width	petal_length	petal_width	class	
	145	6.7	3.0	5.2	2.3	Iris-virginica	ılı
	146	6.3	2.5	5.0	1.9	Iris-virginica	
	147	6.5	3.0	5.2	2.0	Iris-virginica	
	148	6.2	3.4	5.4	2.3	Iris-virginica	
	149	5.9	3.0	5.1	1.8	Iris-virginica	

This is information of dataset what are the datatypes and Non-null Count and Column names

df.info()

₹	Range	class 'pandas.core.frame.DataFrame'> angeIndex: 150 entries, 0 to 149 ata columns (total 5 columns):					
	#	Column	Non-Null Count	Dtype			
	0	sepal_length	150 non-null	float64			
	1	sepal_width	150 non-null	float64			
	2	petal_length	150 non-null	float64			
	3	petal_width	150 non-null	float64			

```
4 class 150 non-null object dtypes: float64(4), object(1) memory usage: 6.0+ KB
```

Libraries of seaborn and matplotlib

```
import seaborn as sns
import matplotlib.pyplot as plt
```

Double-click (or enter) to edit

Scatter Plot as a Graph it show the analysis of sepal_length and sepal_width

```
sns.scatterplot(data=df,x='sepal_length',y='sepal_width',hue='class')
plt.title("Sepal length vs Sepal Width")
plt.show()
```


Pair Plot

#pair plot all features
sns.pairplot(df,hue="class")

Box Plot

#Box plot of sepal length for class
sns.boxplot(data=df,x="sepal_length",y="sepal_width")
plt.title("Box plot of sepal length for class")

Text(0.5, 1.0, 'Box plot of sepal length for class')

#violin plot of each petal with each class
sns.violinplot(data=df,x='class',y='petal_width')
plt.title("violin plot of each petal with each class")

Text(0.5, 1.0, 'violin plot of each petal with each class')

Heatmap of correlation matrix

corr_matrix = df.drop(columns='class').corr()
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
plt.title('Correlation Matrix of Iris Features')
plt.show()

