1 To graph of the second of th

		Ratios ov	Ratios over Rackground	but	Composicone	3003
Clone	Sections		o Backer		Compar	isons To the second
		E-1 28	E-1 ag IGESK IK	¥	IGFKIK IKIGFK	IKICFK
negran	YYYYXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	:	!!	!	!	-
R40-3-40B2-IR	IRDMHYVWVQDRDRYINGVRQWYISDRYNPGSAFYRWFID	40.3	9.0	2.0	4 5 0 2	0
R40-4-40B12-TB	PMGI OAT AUVDVASA TELEGRANDA LA CALLA TARA					3
VIT ZITOL LOLV	MANAGED PRINCIPAGE IF ESSESS VINCSES DE INMERLO	60.4	60.4 IZ.9	2.0	6.5	0.5
R40-4-40G11-IR	MPVSLFRRVWDYRDGEHETLESHYVVPQAALDRLFYSWFS	52.6	52.6 37.5	2.0	2.0 18.8	0.1

Figure 1A

		Katios ov	Katios over Background	pun	Comparisons	isons
Clone	Sequence	E-Tag	E-Tag IGFSR IR	<u>×</u>	IGFR/IR IR/IGFR	IR/IGFR
Design	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		;	;	;	:
R40-3-D5-IGFR	PLYGGGIHLYYPGTMGYVPGFPRQVKVLGDADKNFYDWFM	!	1	ţ	1	;
R40-3-A6-IGFR	YRGMLVLGRISDGAGKVASEPPARIGQKVFAVNFYDWFV	1	1	!	1	1
R40-X-R35-IGFR	SGCCRLLGLRWMFIVIVGWSGALVCQSAASAAGFYDWFV		1	1	;	;

Figure 11

		Ratios ove	Ratios over Background	pur	Comparisons	isons	
Clone	Sequence	E-Tag	IGFSR	R	IGFR/IR	IR/IGFR	
Design	XXXXXXXXXXXXXXXX	:	;	;	;	!	
R20a-3-20D3-IR	IGGQGQHQDGNFYDWFVEALA	46.3	36.2	7.0	5.2	0.2	
R20a-3-20F1-IR	VFWNCRSQQLDFYEWFEQAA	49.0	26.0	2.8	9.3	0.1	
R20a-3-20H1-IR	RVAGAISAPGLVSNKQDGLFYSWFRE	45.6	35.3	3.3	10.7	0.1	
R20a-3-20D1-IR	VLQARHGCDSVSDCFYEWFA	50.8	37.5	3.0	12.5	0.1	
R20β-4-B12-IR	GAFYRWFHEALVGSERVPDV	41.9	2.9	5.7	0.5	2.0	
R20ß-4-H3-IR	HEAFYDWFSALVDGGYELMG	13.9	5.8	2.4	2.4	0.4	
R20β-4-D10-2-IR	RIGGGWARSEGFYEWFVREL	21.5	7.3	2.9	2.5	0.4	
R20ß-4-C8-IR	LPAGGA?GFA?RGFYEWFES	44.9	31.1	9.6	3.2	0.3	
R20β-4-E7-IR	GHSWALVRHVDRLFYEWFDL	45.0	18.8	5.9	3.2	0.3	
R20ß-4-E7-2-IR	LGTSAGQGVGHRAFYQWFQS	45.0	18.8	5.9	3.2	0.3	
R20β-4-G3-IR	RGGGTFYEWFESALRKHGAG	38.6	7.5	2.0	3.8	0.3	
R20ß-4-H6-IR	NSSGQQVVGLTFYSWFASQV	14.8	7.6	2.0	3.8	0.3	
R20β-4-G11-IR	FYGWFSRQLSLTPRDDWGLP	39.4	7.5	1.9	3.9	0.3	
R20ß-4-G8-IR	RMFYEWFWSQMGAGPTEGSA	41.2	15.1	3.4	4.4	0.2	
R20ß-4-H9-IR	IGGQGQHQDGNFYDWFVEALA	43.1	8.8	2.0	4.4	0.2	
R20ß-4-H8-IR	RDKPTDQEEQNWSFYEWFRH	47.9	43.7	9.3	4.7	0.2	
R20β-4-B8-IR	WSALLSVMDTGFYAWFDDAV	44.0	40.1	8.4	4.8	0.2	
R20β-4-E2-IR	SRDQTNFTFNSAGFYGWFER	16.3	13.9	2.4	5.8	0.2	
R20β-4-F4-IR	GVGTLTMSSDAFYTWFV	15.3	5.9	1.0	5.9	0.2	
R20β-4-A8-IR	IGGSFVEFYGWFNDQV	43.3	36.0	6.0	6.0	0.2	
R20ß-4-C4-IR	DIGSDGHGRRWDSFYRWFEM	17.3	26.8	4.3	6.2	0.2	
R20β-4-D7-IR	VLQARHGCDSVSDCFYEWFA	44.8	36.2	5.6	6.5	0.2	
R20β-4-D2-IR	DPERMQSDVGFYEWFRAAVG	31.2	29.4	2.9	10.1	0.1	

Ratios over Background Comparisons	E-Tag IGFSR IR IGFR/IR IR/IGFR	:	40.1 16.6	39.2 13.9	36.7 8.0	40.2 4.1
	Sequence	XXXXXXXXXXXXXXXXX	DPERMQSDVGFYEWFRAAVG	DIGSDGHGRRWDSFYRWFEM	PFYQWFLDQSVGGSRGGCLR	AVAPLSVRGRDSGFYSWFSS
	Clone	Design	R20-4-B9-IGFR	R20-4-F8-IGFR	R20-4-G12-IGFR	R20-4-D10-IGFR

Figure 1D

;		Ratios over	Ratios over Background	pun	Comparisons	isons	
Clone	Sequence	E-Tag	IGFsR	K	IGFR/IR	IR/IGFR	
Design	XXXXXXXXXXNFYDWFVXXXX)	;	;	•	1	
A6S-3-E12-IR	GRVDWLQRNANFYDWFVAELG	26.2	1.3	8.0	0.2	6.2	
A6S-2-C1-IR	RMYFSTGAPQNFYDWFVQEWD	41.2	1.3	7.0	0.2	5.4	
A6S-1-A7-IR	HHTQGLQVQRNFYDWFVNELR	47.2	2.3	11.1	0.2	4.8	
A6S-2-C8-IR	MHRMQHDGTSNFYDWFVLQWA	44.9	1.5	5.5	0.3	3.7	
A6S-3-E10-IR	AMHVVAQGGPNFYDWFVRELR	46.9	1.6	5.0	0.3	3.1	
A6S-2-D5-IR	AIQMNGNLAFNFYDWFVRELT	31.9	1.2	3.7	0.3	3.1	
A6S-1-B2-IR	TDRKSVQEPRNFYDWFVWAAR	31.6	1.8	5.3	0.3	2.9	
A6S-1-A4-IR	PHGHRGFAQSNFYDWFVTQEE	43.3	3.6	9.5	0.4	2.6	
A6S-4-G3-IR	RLASASVPGQNFYDWFVDQLL	31.3	2.3	5.1	0.5	2.2	
A6S-4-H8-IR	RQSEFSTLNSNFYDWFVRELE	11.5	1.7	3.6	0.5	2.1	
A6S-3-E11-IR	GQAQLSIRDVNFYDWFVQQLV	26.3	2.3	4.4	0.5	1.9	
A6S-1-A1-IR	MSEPAVGVNGNFYDWFVAQLF	36.9	3.7	6.5	0.6	1.8	
A6S-2-C9-IR	VGTGRARLDRNFYDWFVGQYS	43.6	1.3	2.3	9.0	1.8	
A6S-2-C4-IR	SREAVQKRNANFYDWFVQQLS	34.5	5.6	9.6	9.0	1.7	
A6S-4-H10-IR	LAQFAGSRNQNFYDWFVEQLG	39.2	4.4	6.9	9.0	1.6	
A6S-4-G7-IR	GQEYFDQMGLNFYDWFVRELD	19.1	1.4	2.2	0.6	1.6	
A6S-4-H2-IR	RQPSQPPHGSNFYDWFVEAIN	25.5	5.6	3.9	•	1.5	
A6S-2-C3-IR	LMQSLGSGSTNFYDWFVQQMV	31.1	1.6	2.4	0.7	2.1	
A6S-2-C11-IR	DQQRSACDGTNFYDWFVCQLS	20.9	3.3	4.6	0.7	4.	
A6S-3-F3-IR	LDGTKACQRVNFYDWFVCQTE	37.1	3.0	4.2	0.7	1.4	
A6S-3-E5-IR	PEARRTVVHSNFYDWFVAQLS	31.6	2.5	3.5	0.7	1.4	
A6S-1-B7-IR	PWMLSVGIQDNFYDWFVGLDS	49.2	1.6	2.3	0.7	4.	
A6S-3-E7-IR	ASHQRGGSSDNFYDWFVAQMR	37.2	5.0	٠ د			
A6S-4-G6-IR	TLEREGEFSGNFYDWFVEQLH	16.8	3.1	4.0	0.0) (°	
A6S-2-C2-IR	DRQSIGSVHGDFYDWFVSALG	29.7	2.4	3.1	0.8	1.3	
A6S-3-F1-IR	DWDKLGSLSENFYDWFVDQLA	29.7	2.3	3	α .	٠, ١	
A6S-2-C5-IR	VRVVLNQSGRNFYDWFVIQLE	42.9	6.1	7.0	6.0) [
A6S-3-E4-IR	MASWQSRTPDNFYDWFVRELS	20.9	2.1	2.3	6.0	1.1	

Figure 1E

į		Ratios ov	Ratios over Background	pun	Comparisons	risons	
Clone	Sequence	E-Tag	IGFSR	~	IGFR/IR	IR/IGFR	
Design	XXXXXXXXXXNFYDWFVXXXX	;	;	;	:	1	
A6S-3-E9-IR	TTCHPRGEDCNFYDWFVLQLR	36.6	9.0	8.9	1.0	1.0	
A6S-3-E1-IR	VRGNDSVLRANFYDWFVDQLS	36.7	6.8	6.9	1.0	1.0	
A6S-4-H12-IR	TPRSQVRSDHNFYDWFVYQLA	46.3	6.1	5.8	1.1	1.0	
A6S-2-D3-IR	ESLTGSRPDRNFYDWFVQQTS	37.0	5.3	5.1	1.0	1.0	
A6S-3-E8-IR	PQSLTEVRTGNFYDWFVVQLH	42.7	5.2	5.1	1.0	1.0	
A6S-1-A12-IR	DVGMGRVKETNFYDWFVRQLI	39.7	2.1	2.1	1.0	1.0	
A6S-4-H3-IR	GADDIRSLNTNFYDWFVNQLS	18.6	3.1	2.9	1.1	6.0	
A6S-3-F7-IR	GVSIQAGYKTNFYDWFVEAVR	46.2	2.3	2.1	1.1	6.0	
A6S-2-D8-IR	VGEHRQMSVGNFYDWFVMQIA	31.2	2.0	1.7	1.2	6.0	
A6S-3-F10-IR	GSSLGRSGPGNFYDWFVDQLE	39.0	5.9	4.5	1.3	0.8	
A6S-4-G11-IR	HRQQDVVRQGNFYDWFVQALE	44.8	4.3	3.3	1.3	0.8	
A6S-2-D2-IR	QDTFLTAREGNFYDWFIRALE	33.5	3.6	2.7	1.3	%.0	
A6S-4-G8-IR	EAIMREEGQANFYDWFVRQLE	11.1	2.5	1.9	1.3	0.8	
A6S-4-H6-IR	VCDVSTGGGTNFYDWFVCQVG	22.4	2.4	1.9	1.3	0.8	
A6S-2-D10-IR	PQPRSASTPLNFYDWFVQATG	41.3	2.1	1.7	1.2	0.8	
A6S-3-F4-IR	GVSRGSGGDPNFYDWFVMQLR	37.0	13.5	o. 0.	1.4	0.7	
A6S-4-G9-IR	GPGRHDSSRGNFYDWFVEQLA	36.2	11.8	7.8	1.5	0.7	
A6S-3-F5-IR	ERFALEVQGSNFYDWFVRQVI	48.1	7.2	4.8	1.5	0.7	
A6S-4-H1-IR	NLKSSATVGGNFYDWFVEQL	18.3	3.6	2.6	1.4	0.7	
A6S-3-F6-IR	MEGPPAGGPLNFYDWFVAQVD	18.7	2.9	1.9	1.5	0.7	
A6S-3-F11-IR	RLDVAGHRGGNFYDWFVKQLH	33.8	2.0	1.4	1.4	0.7	
A6S-2-C6-IR	PWSDHEALNQNFYDWFVSQVL	46.7	19.2	12.1	1.6	9.0	
A6S-4-G4-IR	EDRLGNGESTNFYDWFVRQLA	36.9	18.2	10.7	1.7	9.0	
A6S-4-G12-IR	GKLVASTLDDNFYDWFVRQLS	32.8	12.8	7.9	1.6	9.0	•
A6S-2-D7-IR	SGPVVQTQNGNFYDWFVHQLR	33.2	12.0	7.1	1.7	9.0	
A6S-4-G10-IR	VDRAGPAGSDNFYDWFVAQLD	33.9	10.8	6.8	1.6	9.0	
A6S-3-F9-IR	SLGRNDRPDENFYDWFVSQVQ	44.3	9.6	5.7	1.7	9.0	
A6S-3-F2-IR	RVMATANAPMNFYDWFVVQLQ	23.2	4.3	2.5	1.7	9.0	

Figure 1E (Con't)

		Ratios ove	Ratios over Background	pun	Comparisons	isons
Clone	Sequence	E-Tag	IGFSR	R	IGFR/IR IR/IGFR	IR/IGFR
Design	XXXXXXXXXXNFYDWFVXXXX	1	1	;	1	:
A6S-4-G1-IR	NGVERAGTGDNFYDWFVAQLH	36.2	31.8	15.7	2.0	0.5
A6S-1-A3-IR	PFAGKGDKTGNFYDWFVSLTG	39.9	12.6	6.0	2.1	0.5
A6S-3-F12-IR	GMPQEYMDQVNFYDWFVAQVD	41.4	7.4	4.0	1.9	0.5
A6S-4-G2-IR	MGTPAVGDGANFYDWFVRQLG	26.7	7.0	3.5	2.0	0.5
A6S-1-B1-IR	SKCKAWYGANNFYDWFVWQVD	30.6	3.7	1.9	1.9	0.5
A6S-2-D11-IR	EAASLGSQDRNFYDWFVRQVV	48.4	37.4	13.5	2.8	0.4
A6S-2-D1-IR	VERSASSQDGNFYDWFVVQIR	37.8	30.6	12.0	5.6	0.4
A6S-3-E2-IR	TSEVQRRSQDNFYDWFVAQVA	33.1	24.7	9.8	2.5	0.4

Figure 1E (Con't)

		Ratios ov	Ratios over Background	pun	Comparisons	isons	
Clone	Sequence	E-Tag	IGFSR	R	IGFR/IR IR/IGFR	IR/IGFR	
Design	XXXXXXXXXXNFYDWFVXXXX	:	!	;	•	1	
A6S-4-E4-IGFR	ERSAAGFREGNFYDWFVAQVN	27	32	1	1	1 1	
A6S-2-D2-IGFR	RAERGSMRDSNFYDWFVQQLP	36	3.0	1	1	!	
A6S-2-F2-IGFR	LAMSVASRPANFYDWFVAQIV	35	30	,	-	1	
A6S-4-F3-IGFR	HNSSSPMRTGNFYDWFVQELR	97	3.0	1	1	1	
A6S-4-G4-IGFR	SALSGPVQPINFYDWFVTGM	26	30) I	1	1	
A6S-4-G3-IGFR	GAQAIREIHHNFYDWFVAQVT	21	5.9	:	!	1	
A6S-2-H2-IGFR	RGQRESDSGTNFYDWFVGAIR	4 0	28	;	1	1 1	
A6S-2-E3-IGFR	VQEGLSGMEGNFYDWFVDQLF	36	28	:	1	1	
A6S-4-C6-IGFR	RLDRSSTSGVNFYDWFVAQVG	25	28	:	1 1		
A6S-4-F5-IGFR	GSQHSGREPHNFYDWFVAQVG	24	28	:	1	1	
A6S-4-H3-IGFR	GRGDQRHETTNFYDWFVRELQ	20	28	1	;	t 1	
A6S-4-H4-IGFR	PRMVEKPSEDNFYDWFVTQLS	20	28		1	:	
A6S-2-H1-IGFR	RVGIQVDPHTNFYDWFVIQLT	42	27	1	1	1	
A6S-4-E6-IGFR	RSSGGLLSQGNFYDWFVSQLE	24	56	i	-	:	
A6S-4-B6-IGFR	SDARQAGLQENFYDWFVSQVR	23	56	;	1	!	
A6S-4-D2-IGFR	PPYRSSRLGENFYDWFVMQVR	19	26	;	1	1	
A6S-4-G5-IGFR	QEVTRTRDDKNFYDWFVSQI <i>F</i>	18	26	i I		:	
A6S-2-A3-IGFR	SRAPYGSTAGNFYDWFVQAVS	3.7	25	1		:	
A6S-4-E2-IGFR	?DGQSVSSKGNFYDWFVQQMT	25	25	1	1	;	
A6S-4-G6-IGFR	RLMGGIAEPQNFYDWFVREVA	20	25	1	1		
A6S-4-G2-IGFR	SAGHHMPRESNFYDWFVDQVV	25	24	:	ı	!	
A6S-4-D6-IGFR	LGAAETWDGINFYDWFVKQVS	22	24	;	1	!	
A6S-4-F4-IGFR	VGHSGVPPYPNFYDWFVMQVS	22	24	;	!		
A6S-4-C3-IGFR	VTMLDKGAQDNFYDWFVREVA	21	24	:	1	;	
A6S-4-H5-IGFR	HHSPGNEHGYNFYDWFVLQVA	19	24	:	i I		
A6S-4-H6-IGFR	GSIAQLIMRANFYDWFVEQTN	18	24	1	•	:	
A6S-4-F6-IGFR	LKGSSQPLSVNFYDWFVQQIK	1.7	24	1	•	:	
A6S-3-H1-IGFR	PASNKNSLAENFYDWFV <u>Q</u> QTR	30	23	1	1	1	

Figure 1F

Comparisons	E-Tag IGFSR IR IGFR/IR IR/IGFR	: : :	21 23	21 23	20 23	23 22	22 22	21 22	20 22	19 22	16 22		2	18 21		3 2	1 2	19 20	18 20	4	-					· 	30 8		30 8
	Sequence	AAAAAAAAANFIDWFVXXX	HVEHMAVGDGNFYDWFVVQLR	KGMTGMVGRGNFYDWFVGQLR	GLRSEQGNRLNFYDWFVAQIA	RVREKLPRPENFYDWFVNQIH	SNPSRQDASVNFYDWFVREVA	QSVDLSRPDSNFYDWFVEVLS	IGGQGQHQDGNFYDWFVEALA	VEVQRHIRKDNFYDWFVKQID	CWARPCGDAANFYDWFVQQAS	RHERGKEGPGNFYDWFVSQVV	ERSPRPALASNFYDWFVQQVV	IARMRETFOPNFYDWFVDQLA	GRGOGLKRPDNFYDWFVAAAK	YSIEVQDWNENFYDWFVSQLG	TWMWEERKQDNFYDWFVGQLK	VTFTSAVFHENFYDWFVRQVS	LAINDLVTHKNFYDWFVDQLR	GAVGLAEAGPNFYDWFVSQVQ	RYRGERHDGRNFYDWFVEQVN	<u>QGAEGRLSEGNFYDWFVQAVS</u>	PRLHMGSDMGDFYDWFVVQIA	IVAGARHSEVNFYDWFVIQVR	AELVGAGVRGNFYDWFVDQLV	DSSRLWLGERNFYDWFVAQIS	VGQVGRYVRSNFYDWFVQQAM	らりつ1.ソファウラ いっこうしゅうしゅう しゅうしゅう	アングン・コロロ こうごうこう できない アンハント
Ratios over Background			AO-IGFK	Abs-4-E3-IGFR	A6S-4-D3-1GFR	A6S-3-E10-IGFR	A6S-4-D1-IGFR	A6S-4-B2-IGFR	A6S-4-A2-IGFR	A6S-4-A5-IGFR	A6S-4-C1-IGFR	A6S-4-B1-IGFR	A6S-4-B4-IGFR	A6S-4-D4-IGFR	A6S-3-F8-IGFR	A6S-3-H9-IGFR	A6S-3-G2-IGFR	A6S-4-H2-IGFR	A6S-4-A3-IGFR	A6S-3-G10-IGFR	A6S-3-E5-IGFR	A6S-3-H2-IGFR	A6S-3-G3-IGFR	A6S-4-H1-IGFR	A6S-4-G1-IGFR	A6S-4-A1-IGFR	A6S-2-F1-IGFR	A6S-2-G1-IGFR	

Figure 1F (Con't)

Patios over Rackground		Comparisons	sons			
Clans	Sequence.	E-Tag	IGFSR	IR	IGFR/IR IR/IGFR	IR/IGFR
Cloud	State of the state	0				
Design	XXXXXXXXXXNFYDWFVXXXX	!	:	:	! !	1 I
A6S-1-D5-IGFR	RVGSGMEDLGNFYDWFVRQAQ	25	2	!	! !	1
A6S-1-A2-IGFR	KDPVTVSQGRNFYDWFVVQIQ	20	വ	i	! i	! !
A6S-3-E6-IGFR	DARDHGVWVMSNFYDWFVAQVS	20	വ	1	1	1
A6S-1-G3-IGFR	VATVHVGGGMNFYDWFVAQVG	19	D	1	!	1
A6S-3-G4-IGFR	CADPGACSSLNFYDWFVQMRG	21	4	1	! !	i 1
A6S-3-H8-IGFR	NPTSVQQYGVNFYDWFVNVLS	20	4	1	1	i t
A6S-3-E3-IGFR	RPSLPEVRPGNFYDWFVQSVR	19	4	1	1	i I
A6S-3-D9-IGFR	SLQGADFQQGNFYDWFVSELA	17	4	!	i i	1
A6S-2-A1-IGFR	LSSRGRVTMRNFYDWFVAQVV	31	m	l f	1	1
A6S-1-H4-IGFR	HKSWTTMSPLNFYDWFVAQVE	18	m	1	1	1
A6S-3-C1-IGFR	RPVIGGGGTRNFYDWFVAQMI	17	ю	1	1	1 1
A6S-3-B10-IGFR	YDQDPPYWGLNFYDWFVREVA	16	m	1	1	1

		Ratios ove	Ratios over Background	pun	Comparisons	risons	
Clone	Sequence	E-Tag	IGFSR	꼼	IGFR/IR	IRIGER	
Parental/Design	YRGMLVLGRISDGAGKVASEPPARIGOKVFAVNFYDWFV	19.0	.4.0	:	:	;	
A6L-3-D1-IR	QRGMLVRGRISHGAGKIAYEPPDCLGQKACAVNFYDWFV	22.6	19.8	26.5	0.7	1.3	
A6L-4-H7-IR	QRGMLLLGRISDDAGKVASEPSARRGQKVFAFNFYDWFV	37.5	3.5	4.2	0.8	1.2	
A6L-4-H4-IR	YRGILVLGRISEGAGKVASEPAARIGQKVFADFYDWFV	38.5	21.1	25.8	0.8	1.2	
A6L-4-E4-IR	QRGMLALGRISDGAGKVASEPPAGIGQKVFAFNFYDWFV	38.1	5.4	6.0	0.9	1.1	
A6L-4-G7-IR	FRGRLVLGHFSDGAGKVGSEPAARIGQKVFDVNFYDWFV	38.6	16.2	18.5	6.0	1.1	
A6L-3-C3-IR	YRGMLVLGRISDGAGKVASEPPARIGQEVFADNFYDWFV	34.7	21.8	23.1	0.9	1.1	
A6L-3-B6-IR	YRGMLVLGRISDGAGEVASEPPARIGQEVFALNFYDWFV	33.1	27.8	30.3	0.9	1.1	
A6L-4-G11-IR	VPWYAGSGSSSDGAGKVASEPPARIDQKVFAVNFYDWFV	27.6	2.0	2.0	1.0	1.0	
A6L-4-G12-IR	YRGQLVLGRISYGAGKVGCDPPARIGOKDWAVNFYDWFV	32.0	2.3	2.3	1.0	1.0	
A6L-3-A10-IR	<u>Q</u> RGLLVLGRFSDGAGNVASEPPAGIGQEVFPVNFYDWFV	21.1	2.4	2.4	1.0	1.0	
A6L-4-E12-IR	QRGMLVLGRISDGAGKVAAEPPDCLGQKVCAVNFYDWFV	3.1	2.4	2.4	1.0	1.0	
A6L-4-E10-IR	QRGMRVLGRISDGAGKVASELPPRIGQKDFAVNFYDWFV	30.1	3.8	3.8	1.0	1.0	
A6L-4-G8-IR	QRGMLVLGSISDGAGKVAYEAPARIGQTVFAVNFYDWFV	37.9	4.7	4.7	1.0	1.0	
A6L-3-C12-IR	QPWCAGSGRIYDGACKVASEPPAHIGQEVFAVNFYDWFV	29.5	5.7	5.7	1.0	1.0	
A6L-4-H11-IR	QRGMLVLDRISDGAGKVASGPPARIGQNVLAVNFYDWFV	35.4	9.6	9.6	1.0	1.0	
A6L-4-F10-IR	YRGMLVVGRISDGTGKVASQPPARIGQKVFAVNFYDWFV	31.6	10.5	10.5	1.0	1.0	
A6L-4-E9-IR	YRGMLVLGRISDGAGKVASVPPAHIGQKVFAFNFYDWFV	39.8	12.9	12.9	1.0	1.0	
A6L-4-H8-IR	QHGMLVLGRVSVGAGKVPSEPQARIGHKVFDVNFYDWFV	38.2	14.6	14.6	1.0	1.0	
A6L-3-A11-IR	YSGYAGSGSFSDGAGKVASEPPARISQEVLADNFYDWFV	29.0	17.5	17.5	1.0	1.0	
A6L-4-F9-IR	YRGMLVLGRISDGAGKVASEPPARIGQKVSAVNFYDWFV	35.7	18.4	18.4	1.0	1.0	
A6L-4-G2-IR	YHGKLDLGRISVGVGKVASEPPARIG <u>Q</u> KVFADNFYDWFV	29.5	21.4	20.7	1.0	1.0	
A6L-4-E8-IR	YRGQAGSGVGSLTVAGKVASDPPARIGQKVFADNFYDWFV	28.7	21.6	21.6	1.0	1.0	
A6L-4-H10-1K	HRGMLVLGRISEGAGNVDPEPPARIGONVFAGNFYDWFV	30.0	22.1	22.1	1.0	1.0	
A6L-4-G9-IK	QRGMPVLGRISDGAGKVGSEPPARIARKVFPVNFYDWFI	37.1	22.6	22.6	1.0	1.0	
A6L-4-F/-1K	QGGLLVTGRISDGAGKVASEPPGGIGQKVFAGNFYDWFV	28.6	23.6	24.4	1.0	1.0	
Abb-4-511-1K	YPWYGGSGTYLDGAGKVASEPPARIDQQVFAGNFYDWFV	38.4	26.5	26.5	1.0	1.0	

Figure 1G

į		Ratios ove	Ratios over Background	pun	Comparisons	risons	
Clone	Sequence	E-Tag	IGFSR	R	IGFRIR	IR/IGFR	
Parental/Design	YRGMLVLGRISDGAGKVASEPPARIGQKVFAVNFYDWFV	19.0	.4.0	;	!	1	
A6L-4-H9-IR	YRAMLVLRRISDVAGIVDSEPPTRIGOKVFAGNFYDWFV	37.5	27.3	27.3	1.0	1.0	
A6L-4-E1-IR	YRGMLVLGRISQGAGNVASEPSSRIGQKVFAGNFYDWFI	35.4	32.6	31.4	1.0	1.0	
A6L-3-A5-IR	YRGMLVLGRISDGAGKVDYEPPARIGQKVFAGNFYDWFV	38.3	34.6	35.5	1.0	1.0	
A6L-4-G4-IR	YRGMLGLGGISAGAGIVASEPPARVGQKVFAGNFYDWFV	30.4	17.7	15.2	1.2	6.0	
A6L-4-H2-IR	YRGILFQGRIPDGAGKVASEPPTRIGERVFAVNFYDWFV	36.1	4.2	3.6	1.1	6.0	
A6L-4-E6-IR	QGGMPVLGRISDGAGKVAFEPPARIGQKVFAGNFYDWFV	28.6	24.1	22.7	1.1	6.0	
A6L-4-H5-IR	YRGMLVLGRIQDGAGKVASEPPARIGQKVFTGNFYDWFV	37.2	24.6	23.1	1.1	6.0	
A6L-4-H3-IR	<u>Q</u> RGMLVLGGVSDGAGKVASDPPASIGQNVFAVNFYDWFV	37.1	9.1	7.2	1.3	8.0	
A6L-4-E5-IR	YPGMLILDRISDGASKVVSEPPASIGQKVFAVNFYDWFV	42.1	30.6	24.4	1.3	0.8	
A6L-3-C5-IR	YRGMLVLDRISDGAGKVASEQPARIGQEVYAVNFYDWFV	42.2	21.9	17.5	1.2	0.8	
A6L-4-G6-IR	YRGMLDLGRISGGVGKVASESPARIGQKVYAVNFYDWFV	29.8	4.3	2.8	1.5	0.7	
A6L-3-D4-IR	QRGMMVLGRISDGAGEVASEKVFAVNFYDWFV	39.9	12.4	8.4	1.5	0.7	
A6L-3-A7-IR	<u>Q</u> RGMLVLGRVSDGAGKVDSAPPARIGQKVFAGNFYDWFV	31.0	21.2	14.0	1.5	0.7	
A6L-3-A6-IR	<u>Q</u> RGMLVLGRMSDGAGKVAFEPPARIGQRGFAGNFYDWFV	25.5	12.3	8.8	1.4	0.7	
A6L-4-E7-IR	QRGTLVLGRISDGAGKAASEPPARIGQNVFAVNFYDWFV	38.4	12.5	7.1	1.7	9.0	
A6L-3-C6-IR	QRGMLVLDRISDGAGKVAAEPPARIGQKVFALNFYDWFI	28.8	10.9	6.7	1.6	9.0	
A6L-4-F5-IR	QRGMLVLGRISDGAGEVASEPPARIGEKVYAVNFYDWFV	33.8	6.3	4.1	1.5	9.0	
A6L-3-B7-IR	QRGILVRGRISDGAGKVGSEPPARSGEKVFAVNFYDWFI	27.6	9.4	5.0	1.9	0.5	
A6L-4-F4-IR	QLGMVVLGRISDGSGKAASEPAARISQKVFAVNFYDWFV	38.9	17.6	9.4	1.9	0.5	
A6L-4-E3-IR	QRGMLVLGRISDGDGKVASEPPARIGQRVFAVNFYDWFV	38.0	6.9	3.8	1.8	0.5	
A6L-0-E6-IR	YRGMLVLGRSSDGAGKVAFERPARIGQTVFAVNFYDWFV	31.0	31.0	1.8	17.0	0.1	
A6L-0-E4-IR	YRGMLVLGRISDGAG#VASEPPARIGRKVFAVNFYDWFV	26.0	16.0	1.3	13.0	0.1	
A6L-0-H3-IR	YRGMLVLGRISGGAGKAASERPARIGQKVSAVNFYDWFV	27.0	26.0	2.0	13.0	0.1	

Figure 1G (Con't)

Ratios over Background Comparisons	IGFSR IR IGFR/IR IR/IGFR	7	28	22	22	22	21	21	21	20	19	19	18	18	13	13	12	4 4	4	4	3 2	i i i i i i i i i i i i i i i i i i i	1 1 1 1 1 m	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3	2	2	2	2	
Ratio	E-Tag	19	26	39	23	19	38	34	1 24	20	20	19	38	18	15	14	13	17	16	15		23	23	19	σ	20	18	18	18	15
	Sequence	YRGMLVLGRISDGAGKVASEPPARIGOKVFAVNFYDWFV	YRGMMVOGRISDGAGKVASVSPVRIGQKVIAVNFYDWFV				YRGMRVLGRISDGAGKVASEPPTHIGQKVFPVNFYDWFV					YRGMRVRGRISDGAGKAASDPRARIGQTVLDVNFYDWFV	YRGMWVLGRISYGAGKVAYEPPARMGQKGFAVNFYDWFV	YRGMLVGGRIAGGAGIVASEPPARIGOKVFAVNFYDWFV	YRGLLGLGGISDGAGKVASEPPARNGQKVFAVNFYDWFV	YRGMLGLGRISAGAGKVASGAPARIGQEDFAVNFYDWFV		YRGMLVLGRISDGAGKVASEPPARIGQKVLAVNFYDWFV	YPGMLVPGRISDGAGEGATDPPPRIGQKVFAFNFYDWFV	YRGMLVPGRISDGAGKVAYEPPARIGQKIFAVNFYDWFV	YRGVLVLGRVSDGVGKVASEPPAHRGQRVFGVNFYDWFV	YRRMLVLGRISDGAANVASGPPDRIGQKVFAGNFYDWFV	YRRMLALGRFSDVTGDVASEPPAHIGQKVVAVNFYDWFV	YRGMVVRGRIFDGPGKVASEPRARIGQKVFAVNFYDWFV	YRGMLILGRISDGAGKVASEPPARVGQDVVAVNFYDWFV	YPGRLVGGRISDGVGKVASEPPGRIGQKVFAVNFYDWFV	QRGLLVLGRIFDGAGKVASDPPARIGQKDFADNFYDWFV	YRGMLVLGRISDGAGKVAFEPPARIGONVFAVNFYDWFV	YRCMPVLGRISDGAG#VASDRPARIGQKVFAVNFYDWFV	YRGRLVLGRISDGAGKVAAEPPASMDSKVFAGNFYDWFV
	Clone	Darental/Design	ACT - 4 - FR - TGFR	1101 01 F TOU	ACL-2 CO 1011	A61,-4-G10-IGFR	ACT - CTC TOTAL	A612-D6-TGFR	AGI,-3-H12-IGFR	A614-A7-TGFR	A61,-4-B8-IGFR	A61,-4-G7-IGFR	A61-2-D9-IGFR	A61,-4-F7-IGFR	A6L-4-E12-IGFR	A6L-4-H7-IGFR	A6L-4-H12-IGFR	A6L-2-A4-IGFR	A6L-3-D10-IGFR	A6L-2-F6-IGFR	A6L-2-B11-IGFR	A6L-1-B7-IGFR	A6L-1-D8-IGFR	A6L-0-A11-IGFR	A6L-3-B7-IGFR	A6L-1-G7-IGFR	A6L-1-B9-IGFR	A6L-1-C9-IGFR	A6L-0-G10-IGFR	A6L-1-G8-IGFR

Figure 1H

		Ratios over	Ratios over Background	pu	Comparisons	sons
į	Sequence	E-Tag	IGFsR	~ ·	IGFR/IR I	IR/IGFR
Clone Design	GEREGNEYDWEVAQVT	1 0	0	12.3	0.1	12.3
E4Dα-1-B8-IR	GFREGORWYWFVAQVT	39.68	2 .0	1.5	1.3	0.8
E4Dα-3-E5-IR	GFREGYFYDWFLAQVT	48.7	44.9	31.4	1.4	0.7
E4Da-1-A1-IR	GFREGDFYEWFVAQVT	22.9	3.3	2.4	1.4	0.7
E4Da-2-D9-IR	GFREGOFYEWFAAQVT	41.8	38.6	26.5	1.5	0.7
E4Da-1-B3-IR	ĠFREGTFYDWFVAQV'I	56.3	51.2	32.6	1.6	9.0
E4Dα-1-A6-IR	GFREGNFYDWFEAQV'I	48.9	42.2	26.5	1.6	9.0
E4Dα-1-A10-IR	GFREGAFYDWFEAQVT	46.9	41.5	26.2	1.6	9.0
E4Dα-1-A8-IR	GFREGAFYDWFVAQVT	44.1	31.1	19.7	1.6	9.0
E4Dα-1-B1-IR	GFREGKFYQWFEAQV'I	34.0	8.1	4.8	1.7	9.0
E4Dα-2-C9-IR	GFREGDFYDWFQAQV1	45.3	40.3	22.5	1.8	9.0
E4Dα-1-A3-IR		46.9	41.0	22.5	1.8	0.5
E4Dα-1-A9-IR			14.1	8.0	1.8	9.0
E4Dα-3-F3-IR		35.1	16.3	8.7	1.9	0.5
E4Dα-2-D3-IR	GFREGQFIDMFLAQVI	33.2	5.6	2.8	2.0	0.5
E4Dα-2-D6-IR		27.8	4.5	2.3	2.0	0.5
$E4D\alpha - 3 - F10 - IR$	GF KEGQF I DWF KAXV I	43.8	23.8	11.4	2.1	0.5
E4Dα-2-D5-IR	GFKEGIFIEWFKAKVI	25.9	7.6	3.7	2.1	0.5
E4Dα-3-F4-IR	GF KEGDF 1QWF EAQV 1	34.6	4.0	1.9	2.1	0.5
E4Dα-3-E3-IR	GFREGSFIGWFQAQV1	20.9	16.0	7.4	2.2	0.5
E4Dα-3-F8-IR	GFREGSF YAWFQAQV1		11.6	5.0	2.3	0.4
E4Da-2-C1-IR	GFREGOFYDWFVAQVI			5	2.3	0.4
E4Da-1-B4-IR	GFREGIFYEWFVAQVT	7 7	•	1	I	

		Ratios over	Ratios over Background	~	Comparisons IGFR/IR IR/I	isons IR/IGFR
:· 	Sequence	L-148	;	:	;	1
Clone	GFREGNFYDWFVAQVT		76	14.7	2.4	0.4
Design	TNOSOFYEWFOROVT	٠		•	D C	0.4
E4Da-4-H5-1K		47.6	33.4	13.8	r 7	
E4Da-1-B12-IR	GFREGNFY DWF AAQV 1	23.4	20.4	8.6	2.4	O 7.
E4 Da - 4 - G2 - IR	GFREGSFYDWFVAQVT	36.2	15.6	6.3	2.5	0.4
1475 - 2-F9-TR	GFREGDFYDWFVAQVT	7.96	4.9	2.0	2.5	0.4
E4DW-J 2 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	GFREGDFYQWFVAQVT		24.8	9.5	2.6	0.4
E4DU-4-00 II	GFREGGFYDWFVAQVT	•			2.6	0.4
E4D0-4-H9-IN	GFREGDFYGWFQAQVT	, (7.67	•	2.6	0.4
E4Da-z-cro z:	CERECYEVINEVACVT	39.4				۳ د
$E4D\alpha-1-B2-IR$		38.9	16.6	5.6	J. O	î. O
$E4D\alpha-3-F12-IR$	GFREGGFYEWFQAQVI	40.2	11.1	3.3	3.4	0.3
E4Da-2-D11-IR	GFREGSFYDWFQAQVI	37.8	33.9	8.2	4.1	0.5
E4Dα-4-H2-IR	GFREGNFYEWFQAQVT		8.3	28.7	0.3	3.5
E4DB-4-A12-IR	GFREGKFYDWFLAQV'I	, , , ,	1.2	2.4	0.5	2.0
E4DB-4-A10-IR	GFREGEFYEWFVAQVT	•		2.2	0.5	1.8
E4DB-4-E10-IR	GFREGRFYDWFVAQVT	, ,	•	96.96	0.6	1.8
E4DB-4-B11-IR	GFREGTFYDWFVAQVT		•	•		1.8
F4DB-4-C10-IR	GFREGEFYEWFAAQVT		C.C.		•	1 7
5475	GFREGDFYEWFEAQVT	28.7	16.7	7.87	•	
	GFREGHFYDWF?AQVT	30.9	14.7	24.7	9.0	· ·
E4Db-4-67-11	CERREYDWEVAOVT	35.5	22.5	32.9	0.7	1.5
E4Db-4-C8-IR		31.2	14.5	22.2	0.7	1.5
E4Dβ-4-A8-1K		35.8	9.0	13.1	0.7	1.5
E4Dβ-4-A9-IR		9 80	6.7	13.6	0.7	1.4
$E4D\beta-4-G11-IR$		•	9.1	12.5	0.7	1.4
E4DB-4-B9-IR					0.7	1.4
E4DB-4-F10-IR	GFREGSFYNWFQAQVT	•	0.70	36.1	0.8	1.3
E4Dβ-4-D12-IR	GFREGNFYDWFVAQVT	•			0.8	1.3
E4Dβ-4-B8-IR	GFREGDFYDWFVAQVT	1 a			0.8	1.3
E4Dβ-4-G10-IR	GFREGAFYDWFAAQVT		1)		
•	E: 21 (Con't)	_				

Figure 11 (Con't)

1.3

1.3
0.8 0.8 0.8 0.9 0.1 1.1
25.7 44.4 33.4 32.3 27.6 36.6 6.1 28.3
19.3 35.6 27.8 27.1 22.5 33.3 4.9 5.9 31.3
34.1 39.3 40.2 41.2 38.0 38.7 10.9 14.8 39.3
GFREGSFYDWFBAQVT GFREGSFYDWFBAQVT GFREGAFYDWFBAQVT GFREGOFYDWFBAQVT GFREGDFYDWFAAQVT GFREGSFYBWFBAQVT GFREGSFYBWFBAQVT GFREGSFYBWFBAQVT GFREGSFYBWFBAQVT
$E4D\beta - 4 - D9 - IR$ $E4D\beta - 4 - F8 - IR$ $E4D\beta - 4 - E12 - IR$ $E4D\beta - 4 - H12 - IR$ $E4D\beta - 4 - H9 - IR$ $E4D - 4 - H9 - IR$ $E4D\beta - 4 - F12 - IR$ $E4D\beta - 4 - F1 - IR$

Ratios over Background Comparisons E-Tag IGFSR IR IGFR/IR IR/IGFR		20.8 22.8	21.5 22.6	22.0 22.5	20.6 22.1	17.4 21.5	24.2 21.2	19.1 20.7	24.3 20.5	21.0 20.5	25.0 20.2	22.8 20.1	21.1 19.8 &	22.6 19.7	24.2 18.8	23.6 18.0	22.2 18.0	22.1 17.6	24.6 17.5	19.0 17.5	23.0 16.4	23.0 16.1	21.6 16.0	21.9 14.1	24.5 13.2	18.9 12.4	23.9 10.8	22.2 10.8	
Sequence	GFREGNFYDWFVAQVT	GFREGDFYDWFRAQVT	GFREGSFYDWFVAQVT	GFREGDFYGWFQAQVT	GFREGGFYDWFQAQVT	GFREGDFYDWFVAQVT	GFREGDFYDWFQAQVT	GFREGGFYDWFVAQVT	GFREGDFYDWFAAQVT	GFREGNFYDWFQAQVT	GFREGNFYDWFLAQVT	GFREGHFYDWFQAQVT	GFREGQFYEWFEAQVT	GFREGSFYEWFQAQVT	GFREGDFYDWFLAQVT	GFREGHFYDWFVAQVT	GFREGQFYEWFVAQVT	GFREGQFYDWFAAQVT	GFREGQFYDWFVAQVT	GFREGDFYQWFAAQVT	GFREGNFYDWFVAQVT	GFRDGSFYDWFVAQVT	GFREGHFYEWFQAQVT	GFREGDFYDWFSAQVT	GFREGHFYDWFDAQVT	GFREGYFYDWFKAQVT	GFREGHFYDWFEAQVT	GFREGDFYDWFEAQVT	
	Design	E4D-2-E7-IGFR	E4D-2-C11-IGFR	E4D-2-B1-IGFR	E4D-2-D10-IGFR	-A9-IGFR	E4D-2-E5-IGFR	E4D-2-H9-IGFR	E4D-1B-C4-IGFR	E4D-2-E10-IGFR	E4D-2-F4-IGFR	E4D-2-C10-IGFR	E4D-3-D8-IGFR	E4D-3-F9-IGFR	E4D-1B-E5-IGFR	E4D-2-F3-IGFR	E4D-3-D5-IGFR	E4D-3-G10-IGFR	E4D-2-F6-IGFR	E4D-2-F7-IGFR	E4D-3-B7-IGFR	E4D-1B-C12-IGFR	E4D-3-B1-IGFR	E4D-2-E2-IGFR	E4D-2-D1-IGFR	E4D-1-D4-IGFR	E4D-1B-A10-IGFR	E4D-1B-A3-IGFR	

Figure 1J

		Kallos ove	Katios over Background	pun	Comparisons	suosi	
Clone	Sequence	E-Tag	IGFSR	¥	-	IR/IGFR	
D sign	DWFVAQVT	1		;	1	!	
E4D-1B-B8-IGFR	GFREGDYYGWFEAQVT	23.8	10.7	:	1	1	
E4D-1-G7-IGFR	GFREGDFYAWFMAQVT	14.3	10.5	i	ı	1	
E4D-1B-A11-IGFR	GFREGNFYEWFLAQVT	24.0	10.0	;	1	1	
E4D-1-C3-IGFR	GFREGSFYDWFDAQVT	15.8	9.3	1	;	1	
E4D-2-H1-IGFR	GFREGNFYDQFVAQVT	19.6	4.9	1	;	:	
E4D-1-C2-IGFR	GFRECHFYEWFAAQVT	11.5	4.5	1	;	;	
E4D-1B-A12-IGFR	GFREGNFYEWFVAQVT	18.4	3.5	1	;	1	
E4D-1B-A1-IGFR	GFREGKFYDWFVAQVT	22.5	2.9	ı I	;	:	
E4D-2-A3-IGFR	GFREGMFDVQLLAQVT	22.7	2.1	1	;	i	

Figure 1J (Con't)

ari	E-Tag IGFsR IR IGFR/IR IR/IGFR	: : : :	29.8 17.5 16.3 1.1 0.9	37.7 2.2 18.1 0.1 8.2	•	36.1 13.4 25.7 0.5 1.9	35.6 12.1 22.0 0.5 1.8	0 21,1 3		39.8 25.0 35.6 0.7 1.4	M	6.1 1		. &	1 6.9 1		38.6 35.4 37.3 1.0 1.1	29.3 5.1 5.6 0.9 1.1	.2	29.2 28.6 32.2 0.9 1.1	32.4 29.1 31.6 0.9 1.1	36.1 34.4 36.4 0.9 1.1	34.2 35.5 37.7 0.9 1.1	37.0 36.0 40.0 0.9 1.1	37.5 36.7 39.5 0.9 1.1	37.7 37.6 39.9 0.9 1.1	18.7 3.6 3.5 1.0 1.0	26.5 21.4 21.5 1.0 1.0	32.9 22.9 22.4 1.0 1.0	26 6 27.7 28.5 1.0 1.0
	Securence	Styles	XXXXXX HENE I DNE VNEV SAMMAN	VIFISAV FRENE IDNE VAKAVE	TYKARFLHENFYDWFNKQVSQ1FGRV	ORLSLHEQFYDWFYGQVSFDGAGG	GGGKVNFHEDFrgGWFVQQF5GVG5DR		TGAEVSFHENFIDWFDRQISSWLDRD	OPHSSRuhesfildwedroven indian	SRALAAVHEQFIDMFVKQVSGLDWGI	OFFIGE LHENFIDWE VKV SSSSW VS	KGKLIQLHEDFIDWFDAQVOOS	OKGAPKSDENFIDWFVKQVAKFGEND	AAKTSLFHEDFIEWFDKVNQEGING	GISNASLABINE IDWE VAKLESOVKOSO VOTIVITI EUDNEVDMEVPOLABERESG	VSAVALE ABINE I DWE VN <u>KL</u> EBELO SO	GRQDSGLIGERFIDMFSNRVZGLVALG	SNUBRYF DE LE LEWE VIXVORDOMEN.	CI COEOFHENEVDWEARONSELEGVV	TODDOGIURNEYDWRVROVSPEEGS	TOKAOSI DEKEVDWEVROVSGGGITG	VSOLSDEHENFYGWFAROIAGOAEWT	NGT SOLHONEYDWEADOT SGSEPGP	VGOSVTFHGDFYDWFDROI,SGSOEFG	TIDHHDIHROFYDWFAROVSDLESLG	PNVGYAFHENFYDWFIROVSIEEKAG	A STATE OF THE SERVING THE SER	ODVACAVHERFYNDWFVROVSGSAGG	
*:	5	Clone	Design	Parental	H2CA-4-F11-IR	H2CA-4-E10-IR	H2CA-4-G3-IR	H2CA-3-A11-IR	H2CA-4-F8-IR	H2CA-4-G4-IR	H2CA-4-F4-IR	H2CA-4-H10-IR	H2CA-4-F1-IR	H2CA-3-D5-IR	H2CA-4-E11-IR	H2CA-3-B6-1R	H2CA-3-A9-IK	H2CA-4-H5-IK	H2CA-3-C9-1K	H2CA-3-A10-1K	H2CA-3-A3-IK	HZCA-4-G8-IK	HZCA-4-G9-IR	H2CA-4-G10-1N	H2CA-4-H/-IR	H2CA-4-F3-IN H2CA-4-F7-IR	U2CA-3-F/ IN	NZCA-3-DIO-IN	HZCA-3-DI-IN	M1-CA-C-ROZH

Figure 1K

S RHENEVDWEVROVSXXXXX
HENFYDWFVRQVFRDEQDT
HENFYDWFVRQVSETWRQD
HERFYDWFDRLVSSDSTGE
HENFYDWFIRQVSGVNVPA
HENFYDWFVRQVSNAVDGG
HDNFYDWFARQVSDGLGQF
HENFYDWFVRQVAENQVFS
HENFYDWFARQVSGDGAGT
HESFYDWFACQVTNLQSQG
HENFYDWFAREVSKEAGDG
LGGA I EGHGNFYDWFVRQVSLDVGGE
HENFYDWFGRQVSATPPGG
PENFYDWFAC <u>Q</u> VSELGGMN
HENFYDWFDRQLSLVGAGT
HESFYDWFVRQVSEF <u>Q</u> LGA
NENFYDWFDRQVSGQGSMP
HDKFYDWFARQVSQLESAG
HEQFYDWFDRQVSAAFKGD
HEQFYDWFARLVSLEGGSA
HENFYDWFDRQVSL <u>Q</u> GWSD
HENFYDWFVRQVSGDAPVQ
HENFYDWFARQVSGEDGGA
'DEQFYDWFDRQVSEAFRDG
H <u>Q</u> DFYDWFVRQVAAEDTDP
HENFYDWFARQVSGVEGLA
HENFYDWFVRQVSEADRVD
HEQFYDWFVRQVSAVAGTT
HKNFYDWFVRQVSGVGTSS

Figure 1K (Con't)

Clone	Sequence	Ratios ove	Ratios over Background	und IR	Comparisons IGFR/IR IR/IC	risons IR/IGFR
Design	XXXXXXXFHENFYDWFVRQVSXXXXX	:	;	:	:	:
H2CA-3-D12-IR	SEDVDSRHENFYDWFVRQVSGIGLQD	36.8	34.1	29.6	1.2	6.0
42CA-3-B5-IR	PAPADAFDHNFYDWFARQLSATTTIQ	38.8	35.2	30.5	1.2	6.0
12CA-4-E1-IR	MVQRISIHENFYDWFVRQISGSAVPP	29.8	12.5	11.3	1.1	6.0
H2CA-3-D3-IR	GNVRGQFHGQFYDWFARQVSGSEGDA	33.1	29.9	27.5	1.1	0.9
H2CA-4-E3-IR	PDAEKOFHETFYGWFVRQISEDSANS	33.3	32.3	30.2	1.1	0.9
H2CA-4-E12-IR	FGRGVHCDENFYDWFVCQVSGALLEG	36.0	32.4	29.4	1.1	6.0
12CA-3-A6-IR	ETPLTELHEQFYDWFVROVSGFPGGV	34.0	33.1	30.6	1.1	0.9
H2CA-4-E9-IR	OHRGPHFHED FYDWFVRQVSSAVPSD	38.8	33.7	29.7	1.1	6.0
H2CA-4-F3-IR	RODPGLFHDNFYDWFDRLVSAWDGQE	41.0	34.2	32.0	1.1	0.9
H2CA-4-H6-IR	QAAVGVCNKDFYAWFACQVREDFAKA	37.1	34.5	30.8	1.1	6.0
H2CA-4-H2-IR	RNWNLOFNENFYDWFDROVSALRGGG	41.8	35.3	32.8	1.1	6.0
H2CA-3-D4-IR	RSEQYEHENFYEWFDRQVSRMGLLG	38.7	35.5	32.3	1.1	0.9
H2CA-3-D1-IR	GAGGRDFDEDFYDWFVRQVSGQVTSG	34.5	35.5	31.3	1.1	0.9
H2CA-3-C1-IR	SPEGNLVHDQFYDWFVRQLSSTSAGT	39.9	36.1	32.9	1.1	0.9
H2CA-3-D8-IR	QGGLGDFDEDFYDWFARQVSRRDRAD	37.8	36.7	33.1	1.1	0.9
H2CA-4-H4-IR	LSQGVGFQENFYEWFERQVSGWDGRD	38.5	37.0	33.7	1.1	0.9
H2CA-4-F6-IR	VFERSRCHDNFYDWFFCQVSGQADGG	38.7	37.5	35.2	1.1	0.9
H2CA-4-E4-IR	LLASRAFHENFYDWFARQVSGTQPPG	38.6	38.0	34.7	1.1	0.9
H2CA-3-C11-IR	VPDAQIFHESFYDWFVRQASAGGPAD	40.3	38.3	36.1	1.1	0.9
H2CA-3-C4-IR	ANOMGRFHDNFYDWFDRQVSRYERGT	41.9	38.4	35.0	1.1	0.9
H2CA-4-E6-IR	PSEKDGLHOSFYDWFARQVQDMEGRA	39.3	38.8	35.8	1.1	0.9
H2CA-3-D7-IR	OAVTRRFHENFYDWFARQVSEEGGWS	42.5	39.5	35.5	1.1	6.0
42CA-3-A7-IR	GYAVGOYQANFYDWFVRQVDGMSNGG	35.3	15.2	11.6	1.3	0.8
H2CA-4-G12-IR	GHORDILHESFYDWFVROVSEAEGGG	37.6	19.4	15.1	1.3	0.8
12CA-3-D6-IR	DRESSFIHENFYEWFARQVSQSGSSG	39.4	36.2	27.6	1.3	0.8
H2CA-4-H12-IR	ERTAETLHEQFYDWFVRQVSAMDGES	40.0	38.4	29.3	1.3	0.8
H2CA-3-D11-IR	LISOLLSHEDFYDWFVROVSGVGGSG	38.1	32.9	27.2	1.2	0.8
	4					,

F.

		Ratios ove	Ratios over Background	pun	Comparisons	isons
Clone	Sequence	E-Tag	IGFsR	R		IR/IGFR
Design	×	1	:	:	1	:
H2CA-4-G7-IR		35.9	34.7	23.7	1.5	0.7
H2CA-3-C6-IR		38.7 37.6 28.2	37.6	28.5	1.3	1.3 0.7
H2CA-3-B8-IR	R <u>o</u> ghagfhdnfydwfvrqvsgstpqv	37.8	37.8 19.6	9.9	2.0	0.5

_
₻
Ħ
೮
$\overset{\mathbf{X}}{\sim}$
Ξ
e L
=
<u></u>
Cr.

		Ratios ove	Ratios over Background	pun	Comparisons	risons	
Clone	Sequence	E-Tag	IGFsR	띰	IGFR/IR	IR/IGFR	
Design	XXXXXXFHENFYDWFVRQVSXXXXXX	:			!	;	
Parental	VTFTSAVFHENFYDWFVRQVS	29.8	17.5	16.3	1.1	6.0	
H2CA-4-G9-IGFR	GIISQSCPESFYDWFAGQVSDPWWCW	8.6	9.5	9.0	16.0	0.1	
H2CA-4-H6-IGFR	VGRASGFPENFYDWFGRQLSLQSGEQ	4.9	10.5	0.7	14.6	0.1	
H2CA-4-F-IGFR5	VGYQGQGDENFYDWFIRQVSGRLGVQ	5.5	9.7	0.8	12.3	0.1	
H2CA-4-H8-IGFR	SACQFDCHENFYDWFARQVSGGAAYG	5.6	9.5	1.0	9.4	0.1	
H2CA-4-F11-IGFR	SAAQLFFQESFYDWFLRQVAESSQPN	3.5	6.8	1.0	6.7	0.1	
H2CA-4-F6-IGFR	AVRATRFDEAFYDWFVRQISDGQGNK	3.9	7.3	1.1	6.4	0.2	
H2CA-4-F10-IGFR	VNQSGSIHENFYDWFERQVSHQRGVR	4.9	5.7	1.0	5.9	0.2	
H2CA-1-A3-IGFR	APDPSDFQEIFYDWFVRQVSRMPGGG	7.7	3.8	0.8	5.1	0.2	
H2CA-3-C8-IGFR	SSCDGAGHESFYEWFVRQVSGCRSV	15.1	5.6	1.2	4.8	0.2	
H2CA-2-B9-IGFR	RAGSSDFHEDFYEWFVRQVSLSLKGK	9.3	7.0	1.7	4.2	0.2	
H2CA-4-H4-IGFR	QAVQPGFHEEFYDWFVRQVSTGVGGG	3.9	4.1	1.0	4.2	0.2	
H2CA-4-F7-IGFR	SSIGGGFHENFYDWFSRQLSQSPPLK	1.5	3.2	0.8	4.1	0.2	
H2CA-3-D6-IGFR	QSPVGSSHEDFYDWFFRQVAQSGAHQ	8.3	9.0	2.2	4.0	0.3	
H2CA-3-D8-IGFR	NYRRQVFNGNFYDWFDRQVFSLVTPG	10.9	7.2	1.8	4.0	0.3	
H2CA-4-G11-IGFR	TLDGGSFEEQFYDWFVRQLSYRTNPD	10.8	9.5	2.5	3.9	0.3	
H2CA-4-F1-IGFR	FYVQQWGHENFYDWFDRQVSQSGGAG	5.8	3.5	0.9	3.8	0.3	
H2CA-3-D7-IGFR	LRRQAPVEENFYDWFVRQVSGDRVGG	13.3	3.0	0.8	3.7	0.3	
H2CA-1-A7-IGFR	RCGRELYHSTFYDWFDRQVAGRTCPS	8.0	2.2	9.0	3.7	0.3	
H2CA-2-B4-IGFR	CCLLCRFQQNFYDWFVCQGISRLRPL	3.5	4.1	1.1	3.6	0.3	
H2CA-2-B3-IGFR	PPLASDLDVQFYGWFVQQVSPPGRGG	7.7	3.8	1.0	3.6	0.3	
H2CA-2-B2-IGFR	GAPVDQLHEDFYDWFVRQVSQAATG	4.1	3.4	1.0	3.5	0.3	
H2CA-3-D4-IGFR	RSASGSLPEQFYDWFVRQVSLSGTDK	17.6	13.8	4.1	3.4	0.3	
H2CA-4-F2-IGFR	SRVTTVFHENFYDWFVRQLSDSAISG	9.3	12.8	4.2	3.0	0.3	
H2CA-3-D11-IGFR	DERGGKFREDFYDWFVRQVSESRFGQ	12.2	6.9	2.3	3.0	0.3	
H2CA-4-H9-IGFR	RGAVAGFHDQFYDWFDRQVSRVHKFG	8.7	5.6	1.9	3.0	0.3	
H2CA-2-B11-IGFR	AICDAGFHEHFYDWFALQVSDCGRQS	11.9	4.6	1.6	3.0	0.3	
H2CA-3-E8-IGFR	LGYQEPFQQNFYDWFVRQVSGAENAG	13.2	6.3	2.2	2.9	0.3	

Figure 1L

		Ratios ove	Ratios over Background	pun	Comparisons	sons
Clone	Sequence	E-Tag	IGFSR	R	IGFR/IR IR/IGFR	R/IGFR
Design	XXXXXXFHENFYDWFVRQVSXXXXXX	1	1	:	!	;
H2CA-3-E6-IGFR	WRGHGTFHEDFYDWFVRQVSGSGSST	15.7	8.7	3.1	2.8	0.4
H2CA-4-F4-IGFR	GGRVGVLHENFYDWFDRQVSLRGADG	11.5	7.4	3.0	2.5	0.4
H2CA-3-D10-IGFR	CNLTAGFHEQFYHWFAIQVCGDAENA	9.4	6.8	5.9	2.3	0.4
H2CA-3-E1-IGFR	ERGEDMFHENFYDWFVRQISGRQGGG	12.5	6.4	2.8	2.3	0.4
H2CA-2-B6-IGFR	TNQGVGFYDSFYGWFVRQIQYGVDSG	18.0	6.2	2.7	2.3	0.4
H2CA-3-E11-IGFR	HLADGQFHEKFYDWFERQISSRCNDC	4.7	2.2	1.0	2.2	0.5
H2CA-4-H2-IGFR	QTFGKSLHENFYDWFVRQVSREEGGD	9.6	6.6	4.8	2.1	0.5
H2CA-3-C11-IGFR	FRTLAAQHDSFYDWFDRQVSGAAGER	9.3	3.3	1.6	2.1	0.5
H2CA-2-B8-IGFR	SASTHQFHENFYDWFVRQVSGAQKIL	14.6	7.9	3.9	2.0	0.5

Figure 1L (Con't)

		Ratios ove	Ratios over Background	pur	Comparisons	isons	
Clone	Sequence	E-Tag	IGFSR	≅	IGFR/IR	IR/IGFR	
Design Parental	XXXXXXFHXXFTXWFXXXXXX VTFTSAVFHENFYDWFVRQVS	29.8	17.5	16.3	1.1	0.9	
H2CBα-3-B12-IR	QSDSGTVHDRFYGWFRDT*A	26.0	1.3	20.4	0.1	16.0	
H2CBα-3-D2-IR		20.6	1.7	12.1	0.1	7.0	
H2CBα-3-D12-IR	VASGHVLHGQFYRWFVDQFAL	24.6	2.1	14.0	0.1	6.7	
H2CBα-3-H5-IR	QARVGNVHQQFYEWFREVMQG	16.7	2.4	15.1	0.2	6.3	
H2CBα-3-B6-IR	VGDFCVSHDCFYGWFLRESMQ	31.4	2.5	13.9	0.2	9.5	
H2CBα-3-G11-IR	SGSRPVFHEQFYEWFVDQLG	22.7	1.4	6.4	0.2	4.7	
H2CBα-3-A6-IR	QFSAGAFHGDFYGWFRALYNG	25.9	1.7	7.1	0.2	4.3	
H2CBα-3-B1-IR	SRFDERLHHQFYEWFRVLNEP	33.4	6.0	25.5	0.2	4.3	
H2CBα-3-F8-IR	DSVNSDLHRAFYGWFAEQWRA	23.0	4.8	19.8	0.2	4.1	
H2CBα-3-E11-IR	GSVDREIHGPFYSWFSEQLWG	14.0	2.2	8.5	0.3	4.0	
H2CBα-3-G4-IR	SAKTPVLHDGFYMWFEAQSES	24.9	2.2	6.9	0.3	3.2	
H2CBα-3-D3-IR	LVVGRRFHQSFYDWFVAAAGG	23.6	5.6	8.0	0.3	3.1	
H2CBα-3-C1-IR	IMWPCTFQDPFYCWFQTEQGR	27.0	9.9	16.4	0.3	2.9	
H2CBα-3-C3-IR	VVGPLDIHERFYGWFHQQGGA	23.3	1.1	3.1	0.4	2.8	
H2CBα-3-G3-IR	VVPKAGFHEAFYEWFRRQDRD	23.7	6.7	17.6	0.4	2.6	
H2CBα-3-E4-IR	QSFVTSVHTRFYAWFASALEM	28.8	8.3	21.9	0.4	2.6	
H2CBα-3-G5-IR	SRGLGLYHSGFYGWFERQFNQ	26.7	7.0	17.2	0.4	2.5	
H2CBα-3-B11-IR	GADTGAVHRRFYLWFEQLSGG	28.0	9.8	19.4	0.4	2.3	
H2CBα-3-A1-IR	PGNRPTFHAEFYRWFREAQGS	31.3	11.3	24.9	0.5	2.2	
H2CBα-3-H1-IR	VAVAWGLHESFYAWFENQFSD	27.2	10.6	23.9	0.4	2.2	
H2CBα-3-F12-IR	GFNTGTFHDQFYYWFWEAAGG	21.1	6.1	12.7	0.5	2.1	
H2CBα-3-H7-IR	GDGLTAFHQGFYEWFDIQMYG	21.0	7.6	19.1	0.5	2.0	
H2CBα-3-C12-IR	VGVNR <u>Q</u> FHTRFYAWFDEQLGG	26.0	12.7	24.7	0.5	1.9	

Figure 1M

		Ratios ove	Ratios over Background	pur	Comparisons	isons	
Clone	Sequence	E-Tag	IGFsR	IR	IGFR/IR	IR/IGFR	
Design	XXXXXXFHXXFYXWFXXXXXX	:	:	:	:	!	
H2CBα-3-D11-IR	GPRGQRLHDAFYSWFDALRVN	27.8	13.0	24.8	0.5	1.9	
H2CBα-3-H12-IR	LGTLAVFHELFYGWFERQLGG	27.4	7.2	12.4	9.0	1.7	
H2CBα-3-A10-IR	LGGYCGFNCQFYRWFDNLADR	27.1	13.2	22.3	9.0	1.7	
H2CBα-3-A5-IR	FSGWADYQSGFYQWFAEELAN	28.3	16.1	28.1	9.0	1.7	
H2CBα-3-C4-IR	WGPFSVFDESFYRWFAQASDD	30.7	17.2	29.5	9.0	1.7	
H2CBα-3-B8-IR	PRNEGLVHGLFYDWFQRALSG	25.6	11.3	18.6	9.0	1.6	
H2CBα-3-H11-IR	DEGGAPLDVMFYRWFEQAVRG	28.8	14.0	22.4	9.0	1.6	
H2CBα-3-E10-IR	QSGNRGSHGAFYSWFRDVLAN	27.7	14.3	23.0	9.0	1.6	
H2CBα-3-C2-IR	MRQRDGFNSSFYGWFAAALGE	28.4	17.0	26.7	9.0	1.6	
H2CBa-3-F6-IR	SEERKKVHSQFYSWFDRQLLG	27.3	14.5	21.8	0.7	1.5	
H2CBα-3-D4-IR	PSPNAPFHGGFYDWFDWVQGS	29.0	18.9	27.1	0.7	1.4	
H2CBα-3-A7-IR	FHRPGSFNTNFYQWFDDQMNQ	29.1	19.4	26.9	0.7	1.4	
H2CBα-3-H4-IR	SDDSSTLNGRFYTWFHMQLLD	27.2	20.1	27.9	0.7	1.4	
H2CBα-3-B7-IR	QRGGGGFHEGFYSWFRSQSLL	28.6	18.0	23.6	0.8	1.3	
H2CBα-3-F9-IR	SGSRPVFHEQFYEWFVDQLGL	26.1	19.1	24.3	0.8	1.3	
H2CBα-3-H6-IR	GGSSQAFHGAFYEWFSAQLRG	24.8	21.6	27.3	0.8	1.3	
H2CBα-3-F5-IR	AFVSERVNQRFYDWFRDQMRS	29.4	22.0	27.8	0.8	1.3	
H2CBα-3-A2-IR	VRHPTRFHDEFYRWFTEQLTT	30.7	22.5	29.1	0.8	1.3	
H2CBα-3-F3-IR	ARLLNI FDRGFYNWF <u>O</u> RQLDE	16.3	6.7	9.0	0.7	1.3	
H2CBα-3-G6-IR	PSLSSNLHESFYRWFDQLVST	24.9	21.0	24.4	0.9	1.2	
H2CBα-3-G7-IR	FAFGLGFHQGFYDWFAHQLEG	24.4	18.7	23.0	0.8	1.2	
H2CBα-3-C5-IR	VSATVMLHREFYDWFGLQLLD	26.4	21.2	25.4	0.8	1.2	
H2CBα-3-G1-IR	GGVSGVLHDRFYSWFERQLAG	26.9	21.5	26.3	0.8	1.2	
H2CBα-3-E3-IR	GLGIASFHEGFYSWFTAQLGA	24.2	17.2	19.3	6.0	1.1	

Figure 1M (Con't)

		Ratios ove	Ratios over Background	pun	Comparisons	isons	
Clone	Sequence	E-Tag	IGFSR	R	IGFR/IR	INICFR	
Design	XXXXXXFHXXFYXWFXXXXX	:	1	:	;	:	
H2CBα-3-A9-IR	RVDAAALNAGFYEWFRGVIQG	30.5	21.7	24.1	6.0	1.1	
H2CBα-3-C11-IR	GGAGRSFHDAFYEWFERQMAG	26.4	21.8	23.2	6.0	1.1	
H2CBa-3-B4-IR	EGARQGFHARFYSWFAQQLAL	30.9	22.0	24.3	0.9	1.1	
H2CBα-3-F11-IR	VLLPGVVHGGFYDWFSRQLSS	24.5	22.5	23.9	6.0	1.1	
H2CBa-3-G10-IR	GALSDRYNNVFYDWFREQLLG	28.3	23.6	27.1	6.0	1.1	
H2CBα-3-D7-IR	PDSFMSLHQRFYSWFQAQVGT	31.4	23.6	25.3	0.9	1.1	
H2CBα-3-E2-IR	RVYKANFHNEFYGWFREQLLG	26.8	24.0	25.7	6.0	1.1	
H2CBα-3-B5-IR	HSGMRDVHARFYSWFSEQLSG	28.7	25.0	26.4	6.0	1.1	
H2CBα-3-C7-IR	ARLLERFQDPFYEWFETLMGD	30.0	25.2	28.7	6.0	1.1	
H2CBa-3-G9-IR	RNSSGNFHDKFYNWFEAQLKG	27.8	25.2	26.7	6.0	1.1	
H2CBα-3-A12-IR	GSMSPVFNDQFYGWFRDLVDE	28.0	26.4	28.7	0.9	1.1	
H2CBα-3-C9-IR	SCTGRQFDGCFYAWFEDQLVG	32.1	28.7	31.9	6.0	1.1	
H2CBα-3-B10-IR	GIAVQSLHDSFYRWFDNALGS	33.5	30.8	33.2	6.0	1.1	
H2CBα-3-E1-IR	IGPPGSLHRGFYDWFAEQVEA	31.7	30.5	29.0	1.1	1.0	
H2CBα-3-G12-IR	GAAGISFHRGFYDWFAAQVRD	29.1	31.4	29.8	1.1	1.0	
H2CBa-3-F7-IR	GVDVTDFHKDFYSWFQRQLNG	23.2	20.7	20.3	1.0	1.0	
H2CBα-3-G8-IR	WAGRAGIHGGFYEWFNR <u>Q</u> LRG	22.8	20.9	20.4	1.0	1.0	
H2CBa-3-C6-IR	LGQLAAFHLGFYEWFSEAVAA	26.7	21.2	22.0	1.0	1.0	
H2CBa-3-H9-IR	VHSVSRLNVGFYQWFQDQLSG	23.4	22.5	22.0	1.0	1.0	
H2CBα-3-H8-IR	LGLMA I FDRGFYGWFEQQLSG	23.5	23.4	23.2	1.0	1.0	
H2CBα-3-F2-IR	VARGSSLHDDFYEWFASQLRT	25.5	24.3	25.2	1.0	1.0	
H2CBα-3-D5-IR	LGYIGALNTQFYSWFADLVGS	26.7	24.5	25.6	1.0	1.0	
$H2CB\alpha-3-D10-IR$	EDSRLRLHEGFYGWFRKQLGD	26.8	24.9	24.9	1.0	1.0	
H2CBα-3-F10-IR	GRDNMKFHSGFYDWFTQQLAG	25.7	25.6	26.1	1.0	1.0	

Figure 1M (Con't)

		Ratios ove	Ratios over Background	pur	Comparisons	isons
Clone	Sequence	E-Tag	IGFSR	꿈	IGFR/IR	IR/IGFR
Design	XXXXXXFHXXFYXWFXXXXX	:	;	:	:	1
H2CBα-3-D6-IR	AGVMGGFHQEFYLWFERALSN	27.9	26.0	25.8	1.0	1.0
H2CBα-3-H3-IR	AGHVGQVYDGFYGWFREQLGA	27.0	26.9	26.2	1.0	1.0
H2CBa-3-F4-IR	FVQNIGFDYDFYGWFVREVEK	31.2	27.2	27.7	1.0	1.0
H2CBα-3-E9-IR	PVGIGGLHRAFYQWFQSQVDA	31.6	27.7	28.2	1.0	1.0
H2CBα-3-H10-IR	GSRQEADHQAFYDWFNLVLGV	26.9	27.9	28.8	1.0	1.0
H2CBα-3-G2-IR	AGGRKPFHDDFYGWFRDQLAE	29.1	28.1	28.8	1.0	1.0
H2CBa-3-B2-IR	DLASHGFHDAFYNWFSVQLNS	29.4	28.1	28.2	1.0	1.0
H2CBα-3-E8-IR	GSNGGGVHGQFYAWFVEALSG	31.5	28.4	29.1	1.0	1.0
H2CBα-3-E5-IR	RGRASTFHDGFYGWFSQQLRF	33.0	28.7	28.9	1.0	1.0
H2CBα-3-E6-IR	SPARRVSHHDFYGWFAKQLES	29.6	29.0	28.1	1.0	1.0
H2CBα-3-E7-IR	SSDVGAFHSAFYDWFKAQLSG	30.4	30.2	30.2	1.0	1.0
H2CBa-3-C8-IR	PTVHRAFDDLFYGWFAKQVED	31.9	31.2	31.5	1.0	1.0
H2CBa-3-A4-IR	SSNTVGLDERFYAWFVDQLGA	32.2	31.9	32.6	1.0	1.0
H2CBα-3-D1-IR	PGAAEGFHSAFYDWFAQAVSG	32.9	32.5	31.5	1.0	1.0
H2CBα-3-B9-IR	MRSEASFHVEFYSWFEEQLRS	33.2	33.8	33.3	1.0	1.0
H2CBα-3-D8-IR	VSRYGGQQDGFYHWFSDLLKG	26.3	20.5	19.1	1.1	6.0
H2CBα-3-F1-IR	RPSSGGLHYGFYHWFRVQEEM	28.8	28.0	26.4	1.1	6.0
H2CBα-3-A11-IR	SNIEEHFHMQFYRWFSDALGN	20.5	21.5	17.7	1.2	8.0
H2CBα-3-A3-IR	ANDCLGLHAGFYGWFACQLGG	30.4	29.6	21.8	1.4	0.7

Figure 1M (Con't)

		Ratios ov	Ratios over Background	pun	Comparisons	risons
Clone	Sequence	E-Tag	IGFSR	R	IGFR/IR	IR/IGFR
Design	XXXXXXFHXXFYXWFXXXXXX	:	;	;	!	:
H2CB()-3-E8-IR	TGHRLGLDEQFYWWFRDALSG	15.9	1.9	11.8	0.2	6.1
H2CB }-4-F8-IR	VLTSNTLHQRFYSWFAAARRE	13.4	0.8	2.6	0.3	3.4
H2CBß-3-C4-IR	CVAQGGFQSSFYCWFAGLDID	21.1	1.3	4.0	0.3	3.1
H2CBβ-3-D5-IR	NGQSSRFHTAFYDWFAAQLSG	14.0	3.3	10.2	0.3	3.1
H2CB(3-3-E6-IR	SVPRGTVHDAFYQWFREVALG	5.7	0.7	2.1	0.3	3.1
H2CBβ-4-G12-IR	GARGSTFHDQFYEWFWVQLGD	6.8	1.8	5.4	0.3	3.1
H2CBβ-4-F4-IR	PPGMNGFHTSFYSWFVDQLGD	17.9	1.9	5.6		3.0
H2CBβ-4-F11-IR	AVGTLGYHSGFYRWFERQLGG	15.0	1.7	4.8		2.9
H2CBβ-3-E5-IR	ELQARGVHRNFYRWFEAQVSG	17.0	1.8	5.0	0.4	2.8
H2CBβ-4-F2-IR	HRVARAFHEQFYDWFEKAVSG	15.9	1.3	3.4	0.4	2.6
H2CBβ-4-G4-IR	GAMEPDYHRSFYQWFAAALGE	8.7	1.4	3.5	0.4	2.6
H2CBβ-3-C8-IR	CPDRQSVDDRFYNWFADALAS	4.9	1.4	3.2	0.4	2.3
H2CBβ-4-F10-IR	GGAQISFHERFYQWFLQEAAG	10.2	1.0	2.4	0.4	2.3
H2CBβ-4-H4-IR	HKRGIVQHGAFYAWFDSLLSG	20.8	4.2	9.5	0.4	2.3
H2CBβ-4-G6-IR	QASDNRSDGQFYLWFEKLLSS	14.5	5.6	8.5	0.7	1.5
H2CBβ-4-H1-IR	DRGRMGVDEGFYNWFAR <u>Q</u> M <u>Q</u> E	17.0	10.1	13.2	0.8	1.3

Figure 1M (Con't)

		Ratios ove	Ratios over Background	pun	Comparisons	isons
Clone	Sequence	E-Tag	IGFsR	R	IGFR/IR	IR/IGFR
Design	XXXXXXFHXXFYXWFXXXXXX	:	:	;	1 1	;
Parental	VTFTSAVFHENFYDWFVRQVS	29.8	17.5	16.3	1.1	6.0
H2CB-3-D2-IGFR	TASQECFDDGFYGWFRAWRCT	22.9	18.6	11.8	1.6	9.0
H2CB-3-C12-IGFR	SLDWRWSEEPFYRWFQRALAG	17.3	19.6	13.0	1.5	0.7
H2CB-3-B11-IGFR	CMSLSDCHRKFYGWFKSQGGE	24.6	17.1	11.9	1.4	0.7
H2CB-4-E2-IGFR	LALCRRSPGSFYGWFQAAVGC	22.4	21.0	16.5	1.3	0.8
H2CB-3-A5-IGFR	PRSATMSDGGFYWWFASQLGL	28.8	26.1	22.6	1.2	6.0
H2CB-4-G12-IGFR	LRRSSVFHDPFYE*ISRLVGG	23.7	23.8	19.4	1.2	0.8
H2CB-3-B2-IGFR	ARLQQQFHGGFYEWFRAQVSP	23.0	19.9	16.4	1.2	8.0
H2CB-3-D1-IGFR	AQLDNLCHEPFYSWFCAVTRE	21.5	19.5	15.7	1.2	0.8
H2CB-3-B6-IGFR	WICDTAFHQDFYQWFCDKLGV	16.3	4.5	3.7	1.2	0.8
H2CB-4-F7-IGFR	GKEGFGLDRDFYWWFREQLGP	22.0	19.0	18.0	1.1	6.0
H2CB-4-G8-IGFR	GRAPSSFDCDFYCWFRNOVQS	20.2	18.6	16.5	1.1	6.0
H2CB-3-D4-IGFR	DVEAETQHRLFYAWFLSQLGS	21.9	18.3	16.9	1.1	. 6.0
H2CB-3-D5-IGFR	ISVTAVFHDGFYGWFNEQVSK	21.4	17.9	16.4	1.1	6.0
H2CB-4-E6-IGFR	NSEHGRLDVDFYGWFARVIQQ	19.6	15.8	14.8	1.1	6.0
H2CB-3-C2-IGFR	GPLGDGCQDGFYGWFMCQVST	18.8	12.2	10.8	1.1	6.0
H2CB-3-A6-IGFR	KRSAYNFHDPFYDWFRMQLSG	26.8	29.0	28.1	1.0	1.0
H2CB-4-H12-IGFR	ASEPGGYLDPFYGWFREQLRA	23.9	28.3	28.1	1.0	1.0
H2CB-3-B10-IGFR	NRGDGGVHSGFYNWFRLQLSG	27.1	27.5	27.3	1.0	1.0
H2CB-4-F11-IGFR	ASKGSSLHNDFYGWFAQQLAR	25.5	25.5	24.6	1.0	1.0
H2CB-4-G11-IGFR	ANVSMWIQVGFYDWFDAQLRQ	25.3	25.4	25.3	1.0	1.0
H2CB-4-E12-IGFR	RTSPGSLHDPFYDWFQQQLGG	27.8	24.9	24.7	1.0	1.0
H2CB-4-G10-IGFR	PGVMSSFHGGFYSWFREQLNG	25.1	24.6	24.2	1.0	1.0
H2CB-3-B9-IGFR	CLANSEDHDSFYGWFCQALGG	25.6	23.3	23.7	1.0	1.0
H2CB-3-B7-IGFR	GGSMGGMHGSFYEWFALQLRS	24.0	23.2	23.5	1.0	1.0
H2CB-4-H4-IGFR	RPQGGSIHAGFYQWFRDAVAG	23.5	23.1	23.8	1.0	1.0

		Ratios ove	Ratios over Background	pun	Comparisons	isons	
Clone	Sequence	E-Tag	IGFsR	R	IGFR/IR IR/IGFR	RVIGFR	
D sign	XXXXXXFHXXFYXWFXXXXXX	;	;	:	!	; •	
H2CB-4-H10-IGFR	GALSSLFDAAFYDWFNRQLEG	21.9	22.4	23.3	1.0	1.0	
H2CB-4-H5-IGFR	KVDLRGFHDGFYGWFARQLAG	22.3	22.3	21.6	1.0	1.0	
H2CB-4-G7-IGFR	CSGLQRCHDSFYSWFESVVRE	23.1	21.6	20.6	1.0	1.0	
H2CB-4-F4-IGFR	DSLGISFHEGFYDWFRRQLDM	21.3	20.9	21.3	1.0	1.0	
H2CB-3-D8-IGFR	SGVFNGTFYDWFRIQLGE	20.0	20.5	21.6	1.0	1.0	
H2CB-4-E4-IGFR	GYREMRSDLGFYQWFRDQLGL	21.6	20.5	21.2	1.0	1.0	
H2CB-4-E5-IGFR	SVFMQHDHVGFYAWFRSLMEE	22.0	19.9	20.9	1.0	1.0	
H2CB-4-E8-IGFR	FRHITEVDRSFYGWFVEQLRG	21.1	19.7	20.7	1.0	1.1	
H2CB-3-D12-IGFR	WAGGSDVDGSFYDWFQRLLAS	26.6	17.3	16.8	1.0	1.0	
H2CB-4-G9-IGFR	GLONVSFHSGFYEWFAROVSO	21.6	14.5	15.2	1.0	1.1	
H2CB-3-C8-IGFR	SRVSDPYHVGFYQWFEEVVRG	20.8	13.4	13.9	1.0	1.0	
H2CB-3-A12-IGFR	MGGATFFHTGFYDWFAAQLQH	28.6	27.5	29.5	6.0	1.1	
H2CB-3-B12-IGFR	RPASRPFHSGFYQWFADQLSH	27.8	25.2	27.1	6.0	1.1	
H2CB-3-A9-IGFR	GLAPGNFHEDFYRWFQEQTLG	27.7	24.3	25.7	0.9	1.1	
H2CB-3-A3-IGFR	TAAISDFNSLFYGWFEQLLSS	26.9	24.1	26.5	6.0	1.1	
H2CB-3-B4-IGFR	LDEDLPQHAGFYGWFAEALGV	25.8	23.8	25.3	0.9	1.1	
H2CB-4-E7-IGFR	ASHKSAFDDNFYRWFSMQLRD	24.6	21.6	24.0	6.0	1.1	
H2CB-4-G6-IGFR	HTGAGDLHGAFYNWFLEQLGG	22.4	21.1	23.0	6.0	1.1	
H2CB-4-E9-IGFR	RRGRDGFHGGFYDWFAAQLSD	24.3	20.7	22.0	6.0	1.1	
H2CB-4-H2-IGFR	GNFREAFHADFYSWFERQLQS	21.6	20.2	21.9	6.0	1.1	
H2CB-3-A10-IGFR	RDTLPAFHQHFYQWFEKQVSA	24.3	19.9	21.5	6.0	1.1	
H2CB-3-C4-IGFR	ERETAAFGQAFYQWFRDQIAG	23.1	19.2	22.0	6.0	1.1	
H2CB-3-B5-IGFR	WGEGGGFYDWFYDQLGWEPSH	24.2	18.8	20.7	6.0	1.1	
H2CB-4-G4-IGFR	SLVAADLHEGFYGWFRSQLGG	21.7	18.7	21.2	6.0	1.1	
H2CB-3-D9-IGFR	TSEVGDFHAEFYSWFE1 <u>Q</u> LGR	24.4	18.6	20.0	6.0	1.1	
H2CB-3-C3-IGFR	TGADGLLHARFYAWFEEQLRE	20.3	18.4	21.1	6.0	1.1	
H2CB-3-D3-IGFR	RRSDSSLHRSFYDWFSVQLLN	22.5	18.3	21.3	6.0	1.2	
H2CB-4-F2-IGFR	SESKYLLHSGFYGWFEAQLRG	18.0	16.8	18.3	0.9	1.1	

Figure 1N (Con't)

		Ratios ove	Ratios over Background	pun	Comparisons	sons
Clone	Sequence	E-Tag	IGFSR	R	IGFR/IR II	IR/IGFR
Design	XXXXXXFHXXFYXWFXXXXXX	:	:	:	;	;
H2CB-4-H1-IGFR	HGVIRADHTGFYGWFSKQLSD	18.3	15.3	16.5	6.0	1.1
H2CB-4-F9-IGFR	LINA.VFRRGFYAWFEEQVSK	22.9	14.4	15.3	6.0	1.1
H2CB-4-E10-IGFR	LQRYIGFHDPFYDWFSRALSG	26.1	20.1	24.5	0.8	1.2
H2CB-4-F8-IGFR	MRTAELFHVGFYDWFDAQLMD	21.5	14.8	19.0	0.8	1.3
H2CB-3-A8-IGFR	WAPPDALHGQFYRWFQRQLDQ	20.7	14.7	18.2	0.8	1.2
H2CB-4-F1-IGFR	AVHAATFHDDFYRWFEQVVGS	22.2	14.6	18.8	0.8	1.3
H2CB-3-C6-IGFR	FDAVHGFDGGFYGWFKRELQR	15.7	7.8	10.2	0.8	1.3
H2CB-4-E11-IGFR	QAGGMEFHGAFYNWFLQQLSG	26.1	17.6	24.1	0.7	1.4
H2CB-3-D6-IGFR	GRSVSRMNAEFYQWFGHQLAA	21.6	13.0	18.8	0.7	1.5
H2CB-4-F3-IGFR	AAVNSLFHDEFYLWFQDQLDG	17.3	11.1	16.4	0.7	1.5
H2CB-3-A4-IGFR	QLGMDWFHADFYEWFLAQLPS	27.4	11.0	14.8	0.7	1.3
H2CB-3-B1-IGFR	RLAGSGIHEGFYGWFVDQLLA	20.0	11.0	15.2	0.7	1.4
H2CB-3-C5-IGFR	GREIGGVHDGFYDWFRQQSEQ	19.9	10.5	15.6	0.7	1.5
H2CB-4-F6-IGFR	VRSEQRFDSSFYQWFNDLLMS	18.6	10.1	14.6	0.7	1.4
H2CB-3-B8-IGFR	QSPYGFFHDGFYRWFLQQTGM	20.7	6.9	9.5	0.7	1.4
H2CB-3-C7-IGFR	FOCGAAFHVDFYRWFTCQEQF	16.2	1.8	2.5	0.7	1.4
H2CB-4-H7-IGFR	GAFGSEFHEQFYRWFEDALSF	21.8	14.1	22.7	9.0	1.6
H2CB-4-F5-IGFR	EHTSYQIHROFYEWFDRALGR	12.9	4.0	7.2	9.0	1.8
H2CB-4-G1-IGFR	SGTAADLHSRFYGWFALQARE	20.4	10.3	19.7	0.5	1.9
H2CB-3-D11-IGFR	EGFGVLFHGQFYRWFQLQLDG	24.1	8.8	18.6	0.5	2.1
H2CB-3-D7-IGFR	QOSAGHPHSSFYLWFSELLGA	22.1	6.5	13.6	0.5	2.1
H2CB-3-C10-IGFR	YLQRAGFHRSFYGWFDQALRD	21.7	5.1	10.4	0.5	2.0
H2CB-4-E3-IGFR	MWLWATLHSDFYSWFEQVVSG	20.3	4.6	8.9	0.5	1.9
H2CB-3-C1-IGFR	GANALGFKDRFYEWFAAQLWD	22.3	6.7	15.7	0.4	2.3
H2CB-4-G2-IGFR	GSGLYVFHWGFYDWFEQQMGG	19.9	3.3	10.7	0.3	3.3
H2CB-3-A11-IGFR	LDKGWGFDL <u>Q</u> FYRWFEAATRA	23.9	2.5	7.7	0.3	3.1
H2CB-4-G5-IGFR	QRSAVEFHADFYDWFLRLLTP	19.3	2.5	7.9	0.3	3.1
H2CB-4-F12-IGFR	D <u>O</u> RMGSFHGEFYRWFEETLLS	16.7	1.7	5.4	0.3	3.1

Figure 1N (Con't)

		Ratios ov	Ratios over Background	pun	Comparisons	isons	
Clone	Sequence	E-Tag	IGFSR	R	IGFR/1R	IR/IGFR	
Design	Xn-FyxWF-Xm	;	!	;	:	:	
20E2A-3-B11-IR	GRFYGWFQDAIDQLMPWGFDP	24.6	1.4	23.6	0.1	16.8	
20E2BB-3-E3-IR	IOGWEPFYGWFDDVVAQMFEE	23.0	6.0	15.3	0.1	16.3	
rB6-3-F6-IR	RYGRWGLAQQFYDWFDR	40.9	1.0	13.3	0.1	13.3	
rB6-4-F9-IR	RGRLGSLSTQFYNWFAE	34.1	1.0	12.6	0.1	12.6	
20E2Bα-3-A8-IR	ASAYTPFYQWFADVVSEYMQQ	35.4	7.4	34.4	0.5	4.6	
A6L-4-F6-IR	PYRMEGTEKWNFYDWFVAQLQ	28.9	4.1	18.1	0.2	4.4	
20E2Bα-4-H9-IR	SAVHFQFYKWFDNLLPVPLSA	37.8	9.4	26.7	0.4	2.9	
20E2Bα-3-B1-IR	VPVNKSFYRWFQLVLGGSDDW	41.8	12.9	36.8	0.4	2.9	
20E2Bβ-4-F9-IR	QSPRASFYGWFDDVLRAAGVV	25.9	4.2	10.1	0.4	2.4	
20E2Bβ-3-E9-IR	TGFYEWFYEQLHSRMLPNPLD	27.0	7.7	17.2	0.5	2.2	
20E2Bβ-3-E10-IR	RRGVGGFYGWFSQQLQGMGVA	22.2	2.6	5.5	0.5	2.1	
20E2Bα-3-C12-IR	SSQDRRFYRWFEQAIVGGRDG	39.0	6.7	12.0	9.0	1.8	
20E2Bβ-3-C12-IR	TRGQLGFYNWFQQALSTSGMG	20.2	2.2	3.8	9.0	1.8	
20E2Bß-3-E7-IR	CADLNAFYQWFCGVLDRGSDH	9.5	1.2	1.9	9.0	1.6	
20E2Bβ-3-E11-IR	TLIQDQFYWWFSDLLSAEPGD	20.7	1.3	2.1	9.0	1.6	
20E2Bα-3-B11-IR	IDQLDAFYRWFDGVMLGMGDP	36.0	20.7	32.8	9.0	1.6	
NNKH-4-G2-IR	RGGGTFYEWFESALRKHGAG	10.8	6.3	8.9	0.7	1.4	
20E2Bα-3-A7-IR	RGLDQDFYRWFQNLVGVEYDR	19.0	4.2	5.5	0.8	1.3	
20E2Ba-4-G12-IR	MQGHRGFYGWFARVLEQDRGW	37.0	22.3	29.5	0.8	1.3	
20E2Bα-3-C11-IR	ERLHLRFYEWFDTVIGQDGSD	37.3	26.8	34.8	0.8	1.3	
20E2Ba-3-C10-IR	MHVQSDFYHWFQSLLGQGGPD	37.7	24.8	30.5	0.8	1.2	

Figure 10

		Ratios ove	Ratios over Background	pur	Comparisons	isons	
Clone	Sequence	E-Tag	IGFSR	꼰	IGFR/IR	IR/IGFR	
Design	Xn-FyxWF-Xm	:	1	1		•	
20E2Bα-3-D7-IR	TMGTQGFYRWFQNVVKEHLSG	35.4	56.9	31.3	0.9	1.2	
20E2Bα-3-A12-IR	ITHNRGFYSWFLDVVQGGAGA	31.7	22.0	23.3	0.9	1.1	
20E2Bα-3-D10-IR	VRRDAGFYQWFADILTQLDFE	32.7	27.3	29.1	0.9	1.1	
20E2Bα-4-G7-IR	MQLQDEFYNWFRGIMLNDGQD	34.2	29.0	30.7	0.9	1.1	
20E2Bα-4-F5-IR	GIRSSGFYQWFDRVLAGVGDG	33.8	32.1	34.0	0.9	1.1	
20E2Bα-3-C9-IR	ANLNSQFYSWFASVTGEASPS	39.4	33.2	35.5	0.9	1.1	
20E2Bα-3-A4-IR	QSPRASFYGWFDDVLRAAGVV	38.2	31.6	35.9	0.9	1.1	
20E2Bα-4-E12-IR	MQRNQGFYSWFDDLVSSTVGV	36.0	30.8	29.7	1.0	1.0	
20E2Ba-4-E11-IR	ASGFDPFYAWFLEQLRVANGS	35.1	31.2	30.7	1.0	1.0	
20E2Bα-4-E8-IR	SGTPYGFYRWFQSALASATSG	36.1	30.5	30.7	1.0	1.0	
20E2Ba-4-H10-IR	QGVEGGFYEWFDRAMGDVRPW	38.9	30.6	30.7	1.0	1.0	
20E2Ba-4-F6-IR	DNMSGGFYRWFAQVVADSGGD	34.9	33.2	32.0	1.0	1.0	
20E2Ba-4-G4-IR	RGTDDTFYGWFDQLLQGWCDD	34.1	33.7	32.2	1.0	1.0	
20E2Ba-4-F8-IR	TVDHTQFYDWFSRVLGESGSA	37.7	32.0	32.7	1.0	1.0	
20E2Bα-4-G5-IR	GRQDREFYYWFELQAGGMDGD	34.9	33.9	33.4	1.0	1.0	
20E2Ba-3-B10-IR	RLLLGGFYEWFDQVLKETKEV	38.2	34.9	33.6	1.0	1.0	
20E2Ba-3-C7-IR	GVLSTGFYEWFALQLHGLAAG	37.6	34.2	34.8	1.0	1.0	
20E2Ba-3-C5-IR	PAVGQSFYGWFEAVLRGSKAG	40.4	36.0	35.6	1.0	1.0	
20E2Bα-3-B9-IR	SNGISGFYEWFAAQVQTSDFQ	39.6	35.8	37.1	1.0	1.0	
A6L-4-F11-IR	LLGLSQAAYANFYDWFVSQLA	33.1	4.6	4.6	1.0	1.0	
20E2Bα-3-C2-IR	VPNSWMFYNWFAEQIEGSEGE	44.1	40.0	38.1	1.0	1.0	
20E2Bα-3-B2-IR	ARRADGFYDWFREQVSGSAVQ	43.1	40.1	39.0	1.0	1.0	
20E2Bα-4-G2-IR	GVVEGTFYEWFDRLLGGVQGD	34.1	33.6	29.8	1.1	6.0	
20E2Bα-4-H6-IR	SHLTDPFYQWFVDQLRAGVRG	39.4	36.0	31.9	1.1	6.0	

Figure 10 (Con't)

for the part and the second the control of the part to the part to

. .

			Ratios ove	Ratios over Background		Comparisons	sons
Clone	Sequence		E-Tag	IGFsR	E E	IGFR/IR IR/IGFR	IR/IGFR
Design	$X_n - FyxWF - X_m$		-	;	:	1	!
20E2Ba-4-H5-IR	RSNDDAFYRWFSNILQVDGGG		38.7	35.1	32.3	1.1	6.0
∴ 20E2Bα-4-G3-IR	DSDGAQFYIWFEDQLRSAGWD		35.5	36.1	32.7	1.1	6.0
20E2Ba-4-H4-IR	PGLHRAFYQWFAEAVRSANKE		38.8	37.9	35.0	1.1	6.0
20E2Bα-3-C1-IR	SLGQGGFYDWFASQVGGADI		43.7	42.1	39.0	1.1	6.0
20E2Bα-4-E6-IR	CGQTQSFYQWFCEVMRVESGD		38.0	34.3	29.7	1.2	6.0
H5-3-D5-IR	IVVPGDTQGVNFYDWFVKQLQ	,	43.8	21.8	18.2	1.2	0.8
JBA5-3-D9-IR	RDVSMGSASTNFYDWFVQQLG		38.3	29.8	25.3	1.2	0.8
20E2Bβ-4-G6-IR	SQAGSAFYAWFDQVLRTVHSA		22.4	6.2	1.9	3.3	0.3
20E2Bβ-4-H10-IR	SNGISGFYEWFAAQVQTSDFQ		23.5	32.2	9.7	3.3	0.3
rB6-4-G8-IR	RRDRGGLDVFFYQWFMD		1	1	;	1	!

Figure 10 (Con't)

		Kalios ov	Latios over Background		Comparisons	SOUS	
Clone	Sequence	E-Tag	E-Tag IGFSR IR	IR	IGFR/IR	IGFRIR IRIGFR	
Design	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	!	:	:	1	:	
R40-3-40H4-IR	YVASPRWGHWRPGGSLGKQPT	31.9	1.4	2.1	0.7	1.5	

FIGURE 2A

		Ratios ov	Ratios over Background	pune	Comparisons	risons
Clone	Sequence	E-Tag	IGFsR	=	IGFR/IR IR/IGFR	IR/IGFR
Design	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1	:	;	ŀ	ı.
R40-3-B6-IGFR	AETPAQVGWNRLWSVWPGEHWNTVDPFYHKLSELLRESGA	;	;	;	:	!
R40-X-E5-IGFR	RHLTNAELGVQSPEVLSRLFPDGDIFYRALSHLVRGMGPP	:	;	,	1	1
R40-X-B5-IGFR	RGGMDRQWLDVGARHRLERRSVQDNTDDFYGGLRILVDGF	-	;	1	i i	:
R40-4-9-IGFR	GPPDSFDVTEKGDMAILNVRFDPHSLDFNDQTFYFLLDSL	1	;	;	:	!
R40-3-G6-IGFR	GGTYFRGQVAQSNESLLRVNFLQLLEALAASPPRT	1	;	!	:	;
R40-4-12-IGFR	APFDARLSAPRFQWSPRTWXQSLSYGEWSCGSFYDCLSSI	1	;	!	:	1
R40-3-A5-IGFR	MGSSQFQDTRPSSGQAYSHSLDSDGWGTANWIFLRALEGL	!	;	!	1	!
R40-X-C6-IGFR	SGAAHEGNQGRERSTHLAANINDHLPGDAGIWLGYSWLS	:	-	!	:	:

		Katios ove	er Backgroi	pun	Compar	Isons
Clone		E-Tag	IGFsR	ĸ	IGFR/IR	IR/IGFR
Design	XXXXXXXXXXXXXXXXXX	:	•	1	1	:
R20a-4-20C11-IR	DRAFYNGLRDLVGAVYGAWD	43.7	30.8	3.0	10.3	0.1
R20a-3-20E2-IR	FYDAIDQLVRGSARAGGTRD	46.3	46.3 39.9	3.1	12.9	46.3 39.9 3.1 12.9 0.1
R200-4-20A12-IR	RLFYCGIQALGANLGYSGCV	48.6	39.9	2.4	16.6	0.1
R20ß-4-C6-IR		18.5	28.9	4.3	6.7	0.1
R20β-4-A6-IR	RGQSDAFYSGLWALIGLSDG	9.3	9.3 25.9	1.5	1.5 17.3	

		Ratios ov	Ratios over Background	pun	Comparisons	risons	
Clone	Sequence	E-Tag	IGFSR	E E	IGFR/IR IR/IGFR	IR/IGFR	
Design	XXXXXXXXXXXXXXXX	1	1 1	1	!	:	
R20-4-F11-IGFR	GFYELLGALVGERVRGTGNS	39.0	19.2	!	1	1	
R20-4-C7-IGFR	ERTDPFYKALLSLLGGDGSG	33.4	17.5	!	1	1	
R20-3-F2-IGFR	DVQGNGSSGFYDGIFGLAWG	31.8	14.3	1	1	!	
R20-4-A11-IGFR	PFYVWIRDLLGPELPHTRGD	37.8	13.5	!	1	1	
R20-4-B12-IGFR	VLVVGGPLDPFYEGLHRLIS	37.2	10.0	!	1	1	
R20-4-B10-IGFR	GFYRLLNELVREGGALKVGA	37.0	9.5	;	1	1	
R20-4-E9-IGFR	GORGFYELLSELLGHEGGVF	34.2	9.4	!	1	!	
R20-3-H4-IGFR	DWVSGPFYRGIELLSGFQIE	30.3	7.8	:	1	1	
R20-3-G2-IGFR	GGSLFYEGLLRLVLGDSVVG	20.8	6.9	1	1		
R20-4-B8-IGFR	LNHFYAMLSDLSGVRNIFPG	32.8	6.5	;	1	i t	
R20-4-E7-IGFR	LSGFYEGLFRLARRDGSGWG	35.4	6.4	:	:	!	
R20-4-G9-IGFR	FYDVLSALVGVELGEQGDAS	25.0	6.4	1	1	1	
R20-4-D9-IGFR	GAGSFGREGGFYEALMQLAG	23.4	6.3	!	1	1	
R20-4-D11-IGFR	DDEFYSQILKLVDGSRGGRSGTQN	31.3	4.0	1	1	1	
R20-4-G10-IGFR	PFYMLLSRLVGGVEQEGGL	13.6	3.3	1	1	:	
R20-4-C8-IGFR	FYDAIDQLVRGSARAGGTRD	16.8	3.2	!	;	!	

		Katios ov	Katios over Background	pun	Comparisons	sons	
Clone	Sequence	E-Tag	IGFSR	IR	IGFR/IR IR/IGFR	R/IGFR	•
Design	XXXXCXXXXXXXXXXXXXXXXX	1	i t	1	1	!	
20C-3-G3-IGFR	TFYSCLASLLTGTPQPNRGPWERCR	33.1	32.3	1.2	27.0	<0.1	
20C-4-C7-IGFR	FFYDCLAALLQGVARYHDLCAVEIT	35.3	28.0	1.3	21.8	<0.1	
20C-3-F6-IGFR	DRDFCRFYERLTALVGGQVDGGWPC	33.5	26.1	1.9	14.1	0.1	
20C-3-A1-IGFR	SSYGCDGFYLMLFSLGLVASQELEC	26.5	20.8	1.5	13.7	0.1	
20C-3-A4-IGFR	QFYGCLLDLSLGVPSFGWRRRCITA	17.7	8.8	1.2	7.6	0.1	
20C-3-E4-IGFR	FFYRCLSRLLGGQLGSRLGLSCIGD	37.7	7.7	1.3	6.0	0.2	
20C-4-D11-IGFR	DLFYCMMMQLATAGVGGSLGGPVCG	33,3	17.2	6.1	2.8	0.4	
20C-4-F7-IGFR	CDFYCALSRLSGQPRDRMPNYPGTS	31.2	28.9	17.0	1.7	9.0	
20C-3-B2-IGFR	GSACDGFYACLHĀLVQGPGEW	37.7	35.2	30.9	1.1	6.0	

		Ratios ov	Ratios over Background	pun	Comparisons	risons
Clone	Sequence	E-Tag	IGFSR	R	IGFR/IR	IR/IGFR
Parental/Design	AETPAQUGWNRLWSVWPGEHWNTVDPFYHKLSELLRESGA	l 1	1	!	;	1
B6L-4-C8-IR	ANLRLR?VGNRL*SVWPGEQWNTVDP?YQKLYELVRESGA	40.5	6.1	40.8	0.2	6.7
B6L-4-B7-IR	AETPAQVGWNRLWSVWPGEHWNIVDPFYHKLSELLRESGD	19.6	4.0	23.5	0.2	5.9
B6L-3-H1-IR	AETPAHVC*TVGGLFGRVNTWNTVDPFYAKLSELLRESGA	20.6	2.8	2.7	0.9	1.1
B6L-4-E12-IR	GQNSGSAWDGISLWSVWPGDVWNPVDPFYHKLSELLRESGA	15.5	4.1	3.0	1.1	6.0
B6L-4-D8-IR	AEAPAQVGWNLLQPGEHWITVDPFYNKLSELLRESGA	36.0	9.4	8.5	1.1	6.0
B6L-4-F7-IR	AETPAQVGWNGLWSVWPGEH*NTVDPFYHKLSELLRESDG	37.8	24.6	20.6	1.2	6.0
B6L-4-B11-IR	AETPAQVGQNGLWSVWPGEHWNTVDPFYQKLFELLRESGA	5.5	2.0	1.6	1.3	0.8
B6L-4-B12-IR	AETPAQVGQNRLWSVWPGELWNTVDPFYHKLSELLRESGA	6.8	2.0	1.6	1.3	0.8
B6L-4-B8-IR	T*QGETPAQVSLWPGEHWNTVDPFYHRLSELLRESGA	36.4	18.7	14.2	1.3	0.8
B6L-4-E8-IR	QGETPAQIGWNPLWSGWPGEHWNTLDPFYRKLSELLRESGA	35.6	11.4	8.6	1.3	0.8
B6L-3-G6-IR	VDTPAQVGWNRLWSVGPGEHWYTDDPFYH*LSELLRESGA	7.6	2.5	1.8	1.4	0.7
B6L-3-G5-IR	AETSAQVGWQRLWSVWPGDHWSTLDPFYHKLSELLRESGA	11.5	2.0	1.4	1.4	0.7
B6L-4-E10-IR	*NSPRVGWNGLWSVWPGEHWNTWDPFYNKLSELLRESGV	14.8	3.2	2.2	1.5	0.7
B6L-4-F10-IR	AETPAQIGWNRLQSVWPGEYWNTVDPFYLKLSELLRESSP	26.2	11.5	7.2	1.6	9.0
B6L-3-F3-IR	ADTPAQVSGNRLQSVWRGDPWNTVDPFYHKLSELLRESGA	36.0	17.1	10.1	1.7	9.0
B6L-4-A7-IR	AGTPAQVG*NRLWSVWPGEHWNTVDPFYNKLSELLRESGA	11.6	3.4	1.9	1.8	9.0
B6L-4-G8-IR	D*QAWSVWPGQHWNTIDPFYHKLSELLRESGA	30.4	11.2	5.9	2.0	0.5
B6L-4-F8-IR	AETLARVGWNRMQSVWPGEHWNTVDPFYHKLSELLRESGA	35.6	12.8	7.2	2.0	0.5
B6L-4-G7-IR	AATRPQVGWNRVWSVQPGEHWNTVDPFYHKLSELLRESGS	33.5	12.9	6.4	2.3	0.4
B6L-3-F4-IR	LTTPAQVGWNRLQSVWPGEHWNSVDPFYHKLSELLGESGA	16.9	6.3	2.7	2.4	0.4
B6L-3-H4-IR	ADNPAQVGWNRLWSVWPVEH*NTVDPFYHKLSELLRESGA	20.6	4.9	2.0	2.5	0.4
B6L-3-A6-IR	AETPAQVGWNRLQSDWPGGHWNTLDPFYHKLSELLRESGA	22.4	6.3	3.2	3.2	0.3
B6L-4-D7-IR	AETSVQVGWIRLQSVWPGEHWNTVDPFYHKLSELLRGSGA	14.3	4.8	1.4	3.4	0.3
B6L-3-E2-IR	G*NSAHVGWNRLWSFWPGEHWNTVDPFYEKLSELLRVSGG	29.5	16.7	3.8	6.3	0.2

FIGURE 2F

		Ratios ov	Ratios over Background	pur	Comparisons	isons
Clone	Sequence	E-Tag	IGFsR	R	ICFR/IR	IR/IGFR
Design	AETPAQVGWNRLWSVWPGEHWNTVDPFYHKLSELLRESGA	!	!	-	1	:
B6L-4-G6-IGFR	AETPAQVGGDRLWSVWPGEHWNTVDPFYHKLS?LLRESGA	7.3	22.1	;	:	1
B6L-4-G10-IGFR	AE? PAQVGWNRLWSVWPGE?WNTVDPFYLKLSELL?ESGA	5.5	21.8	!	;	;
B6L-4-G3-IGFR	AET?AQVGWNG?WSVWPGEHWNTVDPFYYKLSELLRESGA	5.8	18.1	!	1	:
B6L-3-F10-IGFR	AETPAQVQWNRLWSVWPKDHWNTVDPFYHKLSELLRESGA	6.7	17.4	:	:	!
B6L-4-D2-IGFR	AETRAQVGSNRVWSVWPGEHWNTVDPFYHKLSELLRESGA	6.5	15.9	;	;	1
B6L-3-H10-IGFR	AETPAQVGWNRLWSVQPGSDWNTVDPFYHKLSELLRESGA	5.9	15.2	:	:	•
B6L-4-B12-IGFR	DETSAQVGWNRLWSDWPGEQWNTLDPFYHKLSELLRESGA	6.3	14.8	:	:	!
B6L-3-A9-IGFR	GETPAQVGWNRLWSVWPAEHWSTVDPFYHKLSELLRESGA	5.2	14.8	:	1	!
B6L-4-C4-IGFR	AETAAQVGWNRLQSVWPGEHWNSVDPFYHKLSELLRESGA	5.4	11.9	:	:	!
B6L-4-E3-IGFR	AEAPDQVGQNRLWSVWPGEHWNTVDPFYDKLSELLRESGA	4.4	11.1	;	:	-
B6L-4-A12-IGFR	PETPAQVGGNRLQSGWPGEHWNTVDPFYHKLSELLRESGA	3.0	10.4	;	:	:
B6L-4-D5-IGFR	AQTPAQVGWNYRLSSVWPGEHWNTVDPFYHKLSELLRESGA	4.7	10.3	1 4	•	1
B6L-3-A10-IGFR	AETPAQVGWNRLWSVQPGEHWNTVDPFYHKLSELLRQSDA	10.9	9.7	!	:	:
B6L-3-B9-IGFR	AETPAQVGWNRLWSVWPGEH*NTVDPFYHKLSELLRESGA	2.9	9.1	:	;	!
B6L-3-H9-IGFR	AETPAQVGWNSLQSVWPGEHWNT?DPFYHKLSELLRESGA	4.5	8.8	1	;	;
B6L-4-A5-IGFR	AESPAQVGSNRLQSVWSGEHWNTVDPFYHKLSELLRESGA	2.4	8.0	!	!	;
B6L-3-H11-IGFR	AETPAQVGQYRLSSVWPGEHGNTVDPFYHKLSELLRESGA	4.2	7.5	:	:	:
B6L-3-G10-IGFR	AETPAQVGWNRLWSVWPGEHWNTIDPFY*KLSELLRESGA	2.5	7.4	•	;	:
B6L-4-D4-IGFR	DETPAHVGWNRPQSAWPGERWNTVDPFYHKLSELLRESGA	2.4	6.8	!	;	:
B6L-4-F11-IGFR	AGTPAQVGWNRLRSVQPDEHWNTVDPFYHKLSELLRESGA	2.1	6.4	!	:	:
B6L-4-F12-IGFR	AETPAQVGWQRLWSVWPGEHWNP?DPFYRKLSELLRESGA	2.7	5.9	:	:	:
B6L-4-E12-IGFR	AETPAQVGWNRLQSVWPGEHWNTVDPFYHKLSELLRESGA	1.9	3.9	:	:	:
B6L-4-E10-IGFR	AETPAQVGWNRLWSVQPGEHWNTVDPFYHKLSELLRESGA	1.8	3.6	;	•	:
B6L-3-G9-IGFR	AETPAQVGWNRLWSVWPGEHWNTVDPFYHKLSELLRESGA	1.2	2.5	:	:	;

		Ratios ove	Ratios over Background	pun	Comparisons	isons
Clone	Sequence	E-Tag	IGFsR	R	IGFR/IR	IR/IGFR
Design	OOUTUTUTTJJDPFYHKLSELXXOO	!	;	;	;	:
B6Hα-3-F5-IR	GGAVAAAVVGSRADPFYHKLSELVQGS	42.7	9.6	17.9	0.5	1.9
B6Hα-2-D10-IR	SGGGQQRKAIATSDDPFYHKLSELLLGG	20.8	1.7	1.1	1.5	9.0
B6Ha-3-F1-IR	CSMAAVAEAGDDDDFYHKLSELCQGS	22.5	2.4	1.3	1.8	0.5
B6Hα-3-E6-IR	CGAKMTGTPNDPFYHKLSELLQRG	18.2	2.3	1.2	1.9	0.5
B6Hα-1-B8-IR	CCVEAEEAVGRRGDPFYHKLSELTGCC	44.6	5.2	2.1	2.5	0.4
B6Hα-2-D5-IR	SRVVTMVIKRGSPDPFYHKLSELVQGR	39.6	2.3	0.9	5.6	0.4
B6Ha-1-B3-IR	GCITAENGAGDPFYHKLSELGGCS	33.1	3.2	1.1	2.9	0.3
B6Ha-3-E5-IR	RCGDEEGWQENRRDDPFYHKLSELFGGC	28.8	5.9	1.0	2.9	0.3
B6Hα-4-H9-IR	GCEVIAAEGRRDDPFYHKLSELCQGG	17.4	6.4	2.1	3.0	0.3
B6Hα-2-D8-IR	SSETAKMVTGTRDDPFYHKLSELVQGS	19.3	3.0	1.0	3.0	0.3
B6Hα-3-E4-IR	WLCDGGWKQRRPPGDPFYHKLSELIDCG	43.1	8.7	2.8	3.1	0.3
B6Ha-3-F7-IR	SRVAATKEKRPSDDPFYHKLSELLQGS	41.5	3.1	1.0	3.1	0.3
B6Hα-1-A3-IR	SRAKVEAEMPDSGDPFYHKLSELLASG	37.4	2.6	0.8	3.3	0.3
B6Hα-4-H10-IR	GGAAKKTVVGSPDDPFYHKLSELLQGS	50.5	29.5	8.6	3.4	0.3
B6Ha-3-F6-IR	CGVGEQMEVTDDGDDPFYHKLSELLWSC	48.9	19.7	5.7	3.5	0.3
B6Hα-3-F3-IR	SGEQTATIEGPSNDPFYHKLSELIWGS	18.1	15.6	4.3	3.6	0.3
B6Hα-4-G8-IR	GGTKAVAKVGTRDDPFYHKLSELLQGS	32.3	6.1	1.7	3.6	0.3
B6Hα-2-D1-IR	GCEVIVEEGDSADPFYHKLSELCQGS	11.7	5.4	1.3	4.2	0.2
B6Hα-3-E7-IR	GCAVVEBAERSRGDPFYHKLSELIQGC	47.0	9.6	1.3	4.3	0.2
B6Hα-2-D6-IR	GRTMAVMAAGGPDDPFYHKLSELVQGG	33.5	4.4	1.0	4.4	0.2
B6Hα-3-F10-IR	GCVVEWQKWHGASDPFYHKLSELGGCS	47.2	8.8	1.9	4.6	0.2
B6Hα-3-E8-IR	RGKTAAVIVGRPADPFYHKLSELLQGG	47.6	5.3	1.1	4.8	0.2
B6Hα-2-C10-IR	SGAKVIVVTGDSGDPFYHKLSELLQGS	46.9	5.8	1.1	5.3	0.2
B6Ha-2-C7-IR	RGIVAMVEATEVGSDHDPFYHKLSELVQGS	45.1	6.7	1.0	6.7	0.1

Clone	Spannence	Ratios ove	Ratios over Background	und IR	Comparisons	isons IR/IGFR	•
Design	OOUUUUUJJJJDPFYHKLSELXXOO	: ;	;	: :	: :		
B6Hα-1-A6-IR	GCKMEETETGTSDDPFYHKLSELCSGG	49.7	34.5	4.0	9.6	0.1	
B6Hα-2-C5-IR	RGEVATMEVPAGGDPFYHKLSELLWGS	42.6	34.2	3.3	10.4	0.1	
B6Hα-2-C4-IR	RCGRW*AEMGAGDDPFYHKLSELVCG	20.7	6.6	6.0	11.0	0.1	
B6Hα-2-C9-IR	RCMVETIAVGSGDDPFYHKLSELCQGG	47.4	32.6	2.8	11.6	0.1	
B6Ha-4-H8-IR	WWQKKSGDGASASDPFYHKLSELIWGS	36.3	28.1	2.4	11.7	0.1	
B6Hα-3-F11-IR	RGMKEEVLVGGSTDPFYHKLSELLQGS	49.5	18.7	1.6	11.7	0.1	
B6Hα-3-E9-IR	RCEEKQAEVGPSSDPFYHKMSELLGCR	44.6	24.2	1.7	14.2	0.1	
B6Hα-1-A2-IR	RGCNDDGGKGWSDDPFYHKLSELICGG	22.3	14.6	1.0	14.6	0.1	
B6Ha-1-B5-IR	CCTTEMVVMDARDDPFYHKLSELVTGG	41.5	20.5	1.0	20.5	φ0.0	
B6Hβ-3-G4-IR	GCKKVEAKKGNDADPFYHKLSELLQGC	36.4	28.4	36.0	0.8	1.3	
B6Hβ-3-A10-IR	RSMMAKAIVGGPGDPFYHKLYEL <u>Q</u> FGSR	36.7	27.9	34.7	0.8	1.2	
В6Нβ-3-D9-IR	CGGAVPDGDDPFYHKLSELMQGC	34.9	32.1	35.6	6.0	1.1	
В6Нβ-3-А3-ІR	GCEEVEAETTGHRDPFYHKLSELLQGC	36.3	33.7	37.3	0.9	1.1	
B6Hβ-3-G1-IR	GCAEIEIAAGGGGDPFYHKLSELLQGC	34.7	33.7	35.9	0.9	1.1	
B6Hβ-3-B3-IR	GCAEVKAVKGAGDDPFYHKLSELLQGC	35.9	35.1	37.4	0.9	1.1	
B6Hß-3-G11-IR	GCAAVETTTNGRNDPFYHKLSELLQGCR	37.6	36.2	39.0	0.9	1.1	
B6Hβ-3-F5-IR	CGEVTGRAGDPFYHKLSELLQGC	39.2	37.2	41.0	0.9	1.1	
B6Hβ-3-A1-IR	GCAMVEATEGRRHDPFYHKLSEL1 <u>Q</u> GC	41.3	38.0	43.0	6.0	1.1	
в6нβ-3-Н3-ІR	GCTEVVGSGDDPFYHKLSELLQGC	39.0	38.3	40.7	0.9	1.1	
В6Нβ-3-D3-IR	G <u>Q</u> CAMEEI IRGANDPFYHKLSELCEGG	38.8	38.4	41.3	0.9	1.1	
B6Hβ-3-C9-IR	GCAEIVIEEGDDSDPFYHKLSELLQGC	36.7	39.5	41.5	0.9	1.1	
в6нβ-3-F1-IR	PQCSSIKAEGGSDDPFYHKLSELLVGC	41.5	40.0	42.2	0.9	1.1	
В6Нβ-3-С6-ІR	GCAAVVAEASGDDPFYHKLSELLQGC	39.9	40.3	42.7	6.0	1.1	

5

Clone	баливнов	Ratios ove E-Tao	Ratios over Background	nnd IR	Comparisons IGFR/IR IR/10	risons IR/IGFR
Design	OOUUUUUUUJJJJDPFYHKLSELXXOO	• • •	;	: ;	;	:
B6Hβ-3-D7-IR	RGVEMKAIVVGTPNDPFYHKLSELSSGS	39.5	27.1	26.3	1.0	1.0
B6Hβ-3-B2-IR	CSAVKMAEAGDPSDPFYHKLSELCQGS	34.3	34.4	35.4	1.0	1.0
B6Hß-3-G5-IR	RGGDGDPFYHKLFELMQSS	35.3	35.0	35.6	1.0	1.0
В6Нβ-3-Н1-ІК	WLCKROTHDPDPFYHKLSELAGCR	36.8	35.4	36.5	1.0	1.0
B6Hβ-3-A5-IR	SSKVVKATVGTPHDPFYHKLSELLQGS	34.9	35.5	35.9	1.0	1.0
В6Нβ-3-Н11-ІК	GCAAIAVATGNDNDPFYHKLSELLQGCR	37.7	36.4	37.6	1.0	1.0
в6нβ-3-С2-ІR	GCAAVVKETHDPPDPFYHKLSELLHGC	37.4	36.5	37.2	1.0	1.0
В6Нβ-3-С8-ІR	SCAAEKEVAGTARDPFYHKLSELMQSS	37.0	37.7	39.5	1.0	1.0
B6Hβ-3-A11-IR	CSVAVGDSGDPFYHKLSELLQGCR	40.4	38.2	39.1	1.0	1.0
B6Hβ-3-D8-IR	W <u>Q</u> RNKQQIIGTPDDPFYHKLSELLEGS	35.4	38.3	39.5	1.0	1.0
B6Hß-3-B7-IR	RSAAAKAVIGSPNDPFYHKLSELI <u>Q</u> GG	37.8	39.0	39.4	1.0	1.0
B6Hß-3-A12-IR	WLCDRDGRDEQPWDPFYHKLSELVSCGR	33.5	39.4	41.3	1.0	1.0
В6Нβ-3-В4-ІR	GSVAAAKKTGSSDDPFYHKLFELLQGS	39.0	39.8	41.1	1.0	1.0
B6Hβ-3-A4-IR	GCAVTTMTMRSPADPFYHKLSELCQGR	40.1	40.4	41.1	1.0	1.0
B6Hβ-3-E12-IR	GCKVDDE*ARSSDPFYHKLSELLKGCR	35.8	40.7	40.7	1.0	1.0
В6Нβ-3-В8-ІR	GCKAVVEVKDHGDDPFYHKLSELLQGC	40.8	40.7	39.5	1.0	1.0
в6нβ-3-С5-ІR	CSTVTVSGSDDPFYHKLSELLQGC	40.7	40.9	42.6	1.0	1.0
B6Hβ-3-A2-IR	RSVTAKVEVGSDRDPFYHKLSELLQGS	41.1	41.4	41.9	1.0	1.0
B6Hβ-3-A8-IR	GSRRQKIEVGTPNDPFYHKLSELLQGG	40.0	41.9	41.6	1.0	1.0
B6Hβ-3-C12-IR	LCDEKQRVTGGTNDPFYHKLSELTGGCR	39.8	42.0	41.3	1.0	1.0
B6Hβ-3-B11-IR	SCMVEGPNDDPFYHKLSELLQGCR	40.7	42.6	43.3	1.0	1.0
В6Нβ-3-С3-IR	GGAAVVVAMGGNDDPFYHKLFELMQGG	43.0	42.7	44.0	1.0	1.0
B6Hβ-3-B5-IR	GGVIKAMKAGGPDDPFYHKLSELL <u>O</u> GS	42.7	43.9	45.4	1.0	1.0
B6Hß-3-C4-IR	GCIIAEKVVGPPDDPFYHKLSELLDCG	41.1	42.3	36.6	1.2	6.0
В6Нβ-3-G7-IR	GCEKVVAVAGNAGDPFYHKLSELLQGC	4.1	2.4	2.1	1.1	6.0
В6Нβ-3-С11-ІR	GSVMTVTEMAGADDPFYHKLSELLQGGR	29.2	30.6	28.2	1.1	6.0

FIGURE 2H (Con't)

		Ratios ov	Ratios over Background	pun	Comparisons	risons
Clone	Sequence	E-Tag	IGFSR	꿈	IGFR/IR	IGFR/IR IR/IGFR
Design	OOUUUUUUJJJJDPFYHKLSELXXOO	:	:	ŀ	ì	:
В6Нβ-3-Н12-ІR	RGEAKEAKIGSAGDPFYHKLSELMQGSR	33.6	32.0	29.5	1.1	6.0
B6Hβ-3-G10-IR	GCEEVVVMANSSADPFYHKLSELCQGSR	30.1	34.3	30.5	1.1	6.0
B6Hβ-3-F10-IR	GCAAVVVTTGGDNDPFYHKLSELLQGCR	37.1	35.3	32.4	1.1	6.0
B6Hβ-3-D5-IR	SRTGERQVVGSHADPFYHKLSELLLSS	39.9	38.9	35.5	1.1	6.0
B6Hβ-3-B12-IR	GCKEVVVETAHADDPFYHKLSELLQGCR	39.5	40.0	37.1	1.1	6.0
В6Нβ-3-D2-IR	RRITIKVKAGDDDDPFYHKLSELLWGG	40.4	41.5	39.1	1.1	6.0
В6Нβ-3-D1-IR	WCDQKETVVSNSDDPFYHKLSELVGCS	41.1	44.6	36.6	1.2	0.8
В6Нβ-3-G6-ІR	RCEEITIGDGRAGDPFYHKLSELLQGC	34.3	36.4	24.1	1.5	0.7
B6Hβ-3-A7-IR	CSVVMTEEKNDRDDPFYHKLSELLQGC	38.1	30.9	18.4	1.7	9.0
B6Hβ-3-B10-IR	GGEARRRQQVGTANDPFYHKLSELAFGGR	32.3	36.5	22.8	1.6	9.0
В6Нβ-3-В9-ІR	GCAVTAITINGTSDPFYHKLSELCQGS	38.6	38.5	20.8	1.9	0.5
В6Нβ-3-D6-IR	GSKVKAMAVGTSDDPFYHKLSELVQGR	35.9	36.0	15.6	2.3	0.4
В6Нβ-3-С7-ІR	RCKGIKAHSDNDPFYHKLSELC <u>o</u> GG	38.3	38.0	9.9	5.8	0.2

		Ratios ov	Ratios over Background	pun	Comparisons	risons
Clone	Sequence	E-Tag	IGFsR	R	IGFR/IR IR/IGFR	IR/IGFR
Design	OOUUUUUUJJJJDPFYHKLSELXXOO) I I	;		;	
B6H-3-F1-IGFR	RRVAAVA?KDATGDPFYHKLSELLRSG	20.0	30.8	1	;	;
B6H-3-D4-IGFR	RSTMKEKIEGDGNDPFYHKLSELLKSG	19.0	27.6	1	;	;
B6H-3-G3-IGFR	GGAVIVTAARRGSDPFYHKLSELVGRG	14.2	25.2	;	!	t I
B6H-3-F2-IGFR	SREAVEVTMARGSDPFYHKLSELVWGS	12.5	24.8	;	1 4	;
B6H-3-D1-IGFR	RSTTMVKAVPPPRDPFYHKLSELL*GG	20.0	24.2	:	1	;
B6H-3-A3-IGFR	GRTEEVVVVGTRRDPFYHKLSELLASG	14.2	22.8	;	i t	:
B6H-3-A4-IGFR	RRMAGWQ*TSSSDPFYHKLSELVSGS	13.0	22.8	;	:	:
B6H-3-B4-IGFR	SRKEVTEMVGGPSDPFYHKLSELMGSG	10.2	22.8	;	;	:
B6H-4-D11-IGFR	RGTAKQRKSSDP*DPFYHKLSELIYGS	14.0	22.5	1	!	;
B6H-3-G2-IGFR	GGVVAVVAAGRRDDPFYHKLSELVSGR	15.2	22.5	;	1	:
B6H-3-B2-IGFR	SR.MAMVEVGNPGDPFYHKLSELLGS	14.5	21.9	-	;	;
B6H-3-E2-IGFR	RRVTAVI EVDGADDPFYHKL? ELLSGG	11.6	21.8	;	;	!
B6H-3-B1-IGFR	RSVIAN???G?NADPFYHKLSELISSG	15.9	21.7	!	;	;
B6H-4-G3-IGFR	RGVVIETTKDPGADPFYHKLSELLFGR	19.1	21.4	!	1	:
B6H-4-F9-IGFR	RRTTVMETVGGRDDPFYHKLSELLHRG	11.3	20.9	;	;	1
B6H-3-E3-IGFR	GRVVVAAAVRPDDDPFYHKLSELVAGR	14.2	20.8	1	!	!
B6H-3-E1-IGFR	RGVATVVVANHHSDPFYHKLSELVLRG	20.0	20.6	;	;	;
B6H-4-F3-IGFR	RRKMATEIMRSDADPFYHKLSELLGGS	12.5	20.3	;	:	!
B6H-3-D2-IGFR	GGKTAVEVTSPASDPFYHKLSELLLRG	12.1	19.3	;	1	1
B6H-4-A9-IGFR	RREKKVKVTTTDNDPFYHKLSELVFGG	14.1	19.2	;	;	1
B6H-4-E6-IGFR	SSAIIMVAADRADDPFYHKLSELLWGS	12.5	19.2	;	:	1
B6H-4-C3-IGFR	RREVAIVAAGAGGDPFYHKLSELLSRG	23.6	18.9	!	!	!
B6H-3-C2-IGFR	RRMVMEAAENHADDPFYHKLSELLWRD	16.2	18.5	;	1	!
B6H-3-C4-IGFR	GRKMEIVAIRGAHDPFYHKLSELL*GR	16.8	17.2	:	!	;
B6H-3-C3-IGFR	CCIAMVEMAAGGGDPFYHKLSELLSGR	14.6	17.1	;	1	:
B6H-3-B3-IGFR	RGAQSPDPFYHKLSELAFGS	9.0	16.8	;	1	
B6H-4-H3-IGFR	RKTAMVVIGDASDPFYHKLSELAFGS	10.1	16.6	;	!	:
B6H-3-H3-IGFR	GSVITKAMKADGDDPFYHKLSELL*GG	14.2	16.4	:	:	4 4

		Ratios ove	Ratios over Background	pun	Comparisons	risons
Clone	Sequence	E-Tag	IGFSR	=	IGFR/IR IR/IGFR	IR/IGFR
Design	OOUUUUUUJJJJDPFYHKLSELXXOO	;	1	;	;	
B6H-4-D8-IGFR	GGVKAAAAERDDSDPFYHKLSELLFGS	15.1	16.4	1	1,	:
B6H-4-D6-IGFR	CCEMVKTIEHGGNDPFYHKLSELVFGR	12.6	15.6	1	•	!
B6H-4-E10-IGFR	GGAKVAVVVDHGDDPFYHKLSELLRGS	10.2	15.1	:	:	•
B6H-4-F5-IGFR	RGKTKMAMAAGGNRDPFYHKLSELIFGN	12.3	14.8	;	1	:
B6H-4-B2-IGFR	GGMATKIVTAPGHDPFYHKLSELLFGG	9.9	11.8	ŗ	1	:
B6H-3-F3-IGFR	SGEGEMAMPGPDDPFYHKLSELIGSRA	8.2	11.6	;	•	1
B6H-3-A2-IGFR	GGMAEVVVVGPPRDPFYHKLSELVGGG	10.9	9.9	;	;	:
B6H-3-H2-IGFR	GGEVKVMVADGSTDPFYHKLSELLGRT	5.9	9.6	;	;	;
B6H-4-A1-IGFR	SCVMVETVAGRNRDPFYHKLSELVGGC	4.4	9.5	;	i	!
B6H-3-H1-IGFR	RRW*KVPGAADPFYHKLSELLGRSA	7.2	8.7	:	t 1	i i
B6H-4-C2-IGFR	GGVEATEVEHADGDPFYHKLSELVGRS	6.7	9.8	i	;	i
B6H-4-H9-IGFR	RGVEVAVITHGPPDPFYHKLSELLRGA	12.3	8.4	:	;	!
B6H-4-B7-IGFR	SGTVTVIAMSGTDDPFYHKLSELLSRS	6.4	8.2	;	;	!!
B6H-4-A7-IGFR	GRTAVVKEASPAHDPFYHKLSELLLRG	7.6	8.1	:	!	;
B6H-4-B3-IGFR	RGAIGNAAVGNRSDPFYHKLSELISRG	4.4	7.8	:	!	:
B6H-4-B4-IGFR	GGMIKTAMEHDTRDPFYHKLSELLRGG	5.2	7.4	i	!	: 1
B6H-4-E1-IGFR	GCAEVEEVAGAGHDPFYHKLSELCAGG	3.6	7.1	1	!	;
B6H-3-C1-IGFR	SSWWWEVVDARRDPFYHKLSELV?SG	5.7	4.6	!	1	;
B6H-4-A3-IGFR	GRKKAVATMTDGGDPFYHKLSELILRS	4.4	4.2	!	:	!
B6H-4-H10-IGFR	RGETEMAVADTDDDPFYHKLSELLGRG	4.4	3.2	!	:	1
B6H-3-G1-IGFR	GQRDPFYHKLSELMGRGA	2.4	2.9	1	:	!

Clone	Seminar	Ratios ov F.T.90	Ratios over Background	nnd 18	Comparisons	risons IR/ICER	
Deaton	EHWNTWD DEVHET SELT. DESC	9 ;		: :			
						•	
B6C-3-C7-IR	EHWNTVDPFYFTLFE*LRESG	31.7	2.1	20.0	0.1	9.4	
B6C-4-F2-IR	EHWNTVDPFYNQLWEWLRESG	8.2	1.8	4.3	0.4	2.4	
B6C-3-A2-IR	EHWNTVDPFYHQLSEWLRESG	34.9	18.1	36.0	0.5	2.0	
B6C-4-H11-IR	EHWNTVDPFYQQLYEWLRESG	37.1	28.2	38.6	0.7	1.4	
B6C-4-H4-IR	EHWNTVDPFYROLSEWLRESG	39.5	28.3	39.4	0.7	1.4	
B6C-3-A11-IR	EHWNTVDPFYHYFQELLRESG	25.4	25.9	34.2	0.8	1.3	
B6C-3-D9-IR	EHWNTVDPFYHOMYEWLRESG	35.7	30.3	37.2	0.8	1.2	
B6C-4-G4-IR	EHWNTVDPFYRQLYEWLRESG	35.3	31.0	38.4	0.8	1.2	
B6C-3-C6-IR	EHWNTVDLFYYGLQELLRESG	33.3	33.9	35.9	6.0	1.1	
B6C-3-D8-IR	EHWNTVDPFYH*ISELLRESG	34.5	34.7	37.1	6.0	1.1	
B6C-4-G7-IR	EHWNTVDPFYQFFAELLRESG	35.9	36.9	38.9	0.9	1.1	
B6C-3-C8-IR	EH*NTVDPFYEGLLELLRESG	35.6	37.2	39.6	6.0	1.1	
B6C-3-D6-IR	EH*NTVDPFYQGLFELLRESG	37.6	37.6	40.2	6.0	1.1	
B6C-3-C10-IR	EHWNTVDPFYQYFSELLRESG	35.3	36.4	40.6	6.0	1.1	
B6C-3-B3-IR	EHWNTVDPFYYGLQTLLRESG	38.3	38.7	40.8	0.9	1.1	
B6C-3-B1-IR	EHWNTVDPFYQALFELLRESG	37.8	38.9	41.2	0.9	1.1	
B6C-4-F6-IR	EHWNTVDPFYD*MRNLLRESG	35.8	36.8	38.7	1.0	1.1	
B6C-3-B11-IR	EHWNTVDPFYNLLQELLRESG	36.3	37.0	38.8	1.0	1.1	
B6C-3-B8-IR	EHWNTVDPFYDGLRQLLRESG	37.2	39.2	41.2	1.0	1.1	
B6C-3-C12-IR	EHWNTVDPFYGKLQELLRESG	28.3	28.7	28.9	1.0	1.0	
B6C-3-C2-IR	EHWNTVDPFYQQLFELLRESG	34.1	34.7	33.8	1.0	1.0	
B6C-3-D5-IR	EHWNTVDPFYLMLQQLLRESG	33.9	35.3	34.1	1.0	1.0	
B6C-4-F7-IR	EH*NTVDPFYHKLYELLRESG	34.9	34.7	34.2	1.0	1.0	
B6C-4-H2-IR	EHWNTVDPFYH*MSNLLRESG	35.4	35.8	35.8	1.0	1.0	
B6C-3-B12-IR	EHWNTVDPFYY*MSELLRESG	33.6	35.2	36.0	1.0	1.0	
B6C-3-A12-IR	EHWNTVDPFYQLLFELLRESG	33.1	37.0	36.2	1.0	1.0	
B6C-4-E9-IR	EHWNTVDPFYQRMFELLRESG	36.1	36.0	36.2	1.0	1.0	
B6C-4-E8-IR	EHWNTVDPFYQGLWELLRESG	34.2	35.0	36.6	1.0	1.0	

		Ratios ove	Ratios over Background	pun	Comparisons	isons	
Clone	Sequence	E-Tag	IGFSR	IR	IGFR/IR	IIVIGFR	
Design	EHWNTVDPFYHKLSELLRESG	;	i.	!	;	;	
B6C-3-C11-IR	EHWNTVDPFYD*ISELLRESG	33.4	35.0	36.7	1.0	1.0	
B6C-3-C4-IR	EHWNTVDPFYHLLQELLRESG	34.5	35.2	36.8	1.0	1.0	
B6C-3-B6-IR	EHWNTVDPFYHMLQELLRESG	34.2	36.1	36.9	1.0	1.0	
B6C-4-E5-IR	EHWNTVDPFYH*MSDLLRESG	35.5	35.8	36.9	1.0	1.0	
B6C-4-H12-IR	EHWNTVDPFYHYLQDLLRESG	37.0	36.2	37.1	1.0	1.0	
B6C-4-F9-IR	EHWNTVDSFYLGLQELLRESG	36.1	36.2	37.3	1.0	1.0	
B6C-3-A6-IR	EHWNTVDPFYQGLSELLRESG	35.8	38.0	37.4	1.0	1.0	
B6C-3-D1-IR	EHWNTVDPFYQALQQLLRESG	36.2	37.8	37.5	1.0	1.0	
B6C-3-D4-IR	EHWNTVDPFYLMLQELLRESG	35.9	36.4	37.5	1.0	1.0	
B6C-3-C1-IR	EHWNTVDPFYLKMQDLLRESG	36.8	36.6	37.9	1.0	1.0	
B6C-4-G5-IR	EHWNTVDPFYQKLQELLRESG	36.5	37.9	38.0	1.0	0 र व	
B6C-3-A8-IR	EHWNTIDPFYHQISELLRESG	34.4	37.0	38.1	1.0	1.0	
B6C-4-H1-IR	EHWNTVDPFYH*MTELLRESG	36.8	36.5	38.3	1.0	1.0	
B6C-3-D10-IR	EHWNTVDPFYHYMSQLLRESG	37.0	37.0	38.5	1.0	1.0	
B6C-3-D12-IR	EHWNTVDPFYQGLFELLRESG	36.2	37.0	38.7	1.0	1.0	
B6C-3-B9-IR	EHWNTVDPFYAKLQELLRESG	36.3	37.3	38.8	1.0	1.0	
B6C-4-H7-IR	EHWNTVDPFYH*MRELLRESG	37.5	38.0	39.1	1.0	1.0	
B6C-3-D11-IR	EHWNTVDPFYHGL*ELLRESG	36.1	37.5	39.2	1.0	1.0	
B6C-4-F10-IR	EHWNTVDPFYLGLQELLRESG	37.9	38.6	39.3	1.0	1.0	
B6C-4-G8-IR	EHWNTVDPFYD*IADLLRESG	35.9	38.0	39.7	1.0	1.0	
B6C-3-A9-IR	EH*NTVDPFYHGLYELLRESG	36.5	38.8	39.9	1.0	1.0	
B6C-3-A7-IR	EHWNTVDAFYHGLQELLRESG	38.1	39.4	40.2	1.0	1.0	
B6C-4-F12-IR	EHWNTVDPFYQGLIELLRESG	38.0	38.4	40.2	1.0	1.0	
B6C-4-G9-IR	EHWNTVDPFYN*MRELLRESG	37.5	39.4	40.5	1.0	1.0	
B6C-4-H8-IR	EHWNTVDPFYQGLLDLLRESG	38.5	40.0	40.8	1.0	1.0	
B6C-3-B10-IR	EHWNTVDPFYQKLQDLLRESG	39.3	40.3	40.9	1.0	1.0	
B6C-3-A10-IR	EHWNTVDPFYHGL <u>Q</u> ELLRESG	38.4	40.9	41.6	1.0	1.0	
B6C-3-A3-IR	EHWNTVDPFYH*MSELLRESG	39.5	40.0	41.7	1.0	1.0	
B6C-3-A5-IR	EHWNTVDPFYAGLQALLRESG	38.2	40.4	41.9	1.0	1.0	
B6C-3-C3-IR	EHWNTVDPFYHMLQKLLRESG	34.5	34.6	32.0	1.1	6.0	

		Ratios ove	Ratios over Background	. pun	Comparisons	isons
Clone	Sequence	E-Tag IGFSR IR I	IGFSR	띰	IGFR/IR IR/IGFR	IR/IGFR
Design	EHWNTVDPFYHKLSELLRESG	;	1	;	:	;
B6C-4-F4-IR		36.3 36.9	36.9	34.3	1.1	6.0
B6C-3-D2-IR		8.5	10.3	9.0	1.2	1.2 0.9
B6C-3-A1-IR	EHWNTVDPFYH*LNELLRESG	26.5	30.7	16.8	1.8	0.5
B6C-3-B5-IR		33.4	33.0	15.0	2.2	0.5
B6C-3-A4-IR	EHWNTVDPFYRRLQELLRESG	33.6	31.8	13.5	2.4	0.4

ons /IGFR	;	1 1	i I	;	;	! !	:		:	t 1	1 1		1	1	;	•	;	!	;	1 1	:	!	!	1	:	1	:	:	
Comparisons IGFR/IR/IR/IGFR	•		t 3	t s	i t	:	t t	:	!	:	;	1	1	1	!	;	:	;		:	:	;	;	;	;	!	;		1
und IR	; ;	;	;	:	;	1	:	ı	1	;	:	;	;	;	1	:	1	;	1	:	1	1	!	;	1	1		1	1
Ratios over Background E-Tag IGFsR 11	;	23.1	22.6	22.1	20.8	20.5	19.9	19.7	19.0	18.3	17.7	17.6	17.4	17.3	17.2	16.0	15.1	14.7	14.3	13.9	13.8	13.6	12.8	11.1	11.0	10.5	10.1	6.6	;
Ratios ov	6 : :	21.0	26.5	26.6	29.7	29.6	30.5	29.7	33.6	33.0	30.0	27.3	27.4	28.4	28.0	25.4	30.8	2.9	2.4	22.6	28.0	24.8	14.4	17.1	2.3	23.3	2.7	2.3	;
Sequence	EHWNTVDPFYHKLSELLRESGA	EHWNTVDPFYLKMTELLRESGA	EHWNTVDPFYHKLEELLRESGA	EHWNTVDPFYHKLYELLRESGA	EHWNTVDPFYQKLSELLRESGA	EHW?TVDPFYLKLSELL?ESGA	EHWNTVDPFYQRLFELLRESGA	EHWNTVDPFYHGLQELLRESGA		EHWNTVDPFYHNLYELLRESGA				EHWNTVDPFYARLSALLRESGA	EHWNTVDPFYHILAELLRESGA	EHWNTVEP*YHKLCGRLRESGA	EHWNTVDPFYDRLTELLRESGA	EHWNTVDPF*PKVSELLRESGA	EHWNTVEPFGA*LAEPLRESGA	ERWNTVDPFYHKLSELLRESGA	EHWNTVDQFYQALFELLRESGA	EHWNTVDPFYHKLAELLRESGA	EHWNTVDPFYDKLSDLLRESGA	EYWNTVDPFYHKLAELLRESGA	EHWNTVRPRYQ*LSELLRESGA	EHWNTVDPFYHKLQELLRESGA	EHWNTVATF*DKVTDLLRESGA	EHWNTVDPFLDKRS*LLRESGA	EHWNTVGAFQPTPEYLLRESGA
Clone	Design	B6C-3-C4-IGFR	B6C-3-F5-IGFR	16C-3-D4-IGFR	B6C-3-A3-IGFR	36C-3-C9-IGFR	36C-3-C8-IGFR	B6C-3-A8-IGFR	36C-3-A2-IGFR	36C-3-A9-IGFR	36C-3-C10-IGFR	36C-3-F7-IGFR	36C-3-F10-IGFR	36C-3-C12-IGFR	36C-3-E11-IGFR	36C-3-F8-IGFR	36C-3-F2-IGFR	36C-3-B6-IGFR	B6C-3-D5-IGFR	B6C-3-A4-IGFR	B6C-3-D3-IGFR	36C-3-F9-IGFR	B6C-3-A7-IGFR	86C-3-H10-IGFR	B6C-3-H11-IGFR	B6C-3-A1E-IGFR	36C-3-E12-IGFR	B6C-3-H12-IGFR	B6C-3-G1-IGFR

			Ratios ove	Ratios over Background	pun	Comparisons	isons
	Seguence		E-Tag	IGFsR	K	IGFR/IR	IK/IGFR
Clone			1	1 1	!	1	
Design			30.6	15.1	4.2	3.6	0.3
Parental			19.9	1.2	13.9	0.1	11.5
20E2A-4-F9-IR			13.9	1.3	9.7	0.1	7.6
20E2A-4-E2-IR		1	14.5	1.6	6.1	0.3	3.8
20E2A-3-B6-IR				4.2	15.2	0.3	3.6
20E2A-3-A7-IR			20.1	10.6	15.8	0.7	1.5
20E2A-4-F7-IR			24.4	16.4	23.8	0.7	1.4
20E2A-3-C9-IR			14.8	5.9	9.9	0.9	1.1
20E2A-3-C11-IR	LSPPRDFYDA1QQDVRDGGWG		17.2	8.3	8.9	0.9	1.1
20E2A-4-G7-IR	HGV PKTF I DAIDODAWGI BVG		25.4	26.9	25.6	1.1	1.0
20E2A-4-H11-IR	GGIDQLFIGALDQLVGGIWMA			2.1	2.1	1.0	1.0
20E2A-4-E9-IR	LSVAQSFIDAINELIFSGLEA		12.6	5.6	5.7	1.0	1.0
20E2A-4-F4-IK	SDAKDFF IDAMAZLVIGEBOO		21.0	11.9	12.1	1.0	1.0
20E2A-3-A3-IK	VASENSE LEALANDUL VASENSE VAN VASENSE VAN VASENSE VAN			16.0	16.1	1.0	1.0
20E2A-4-E4-1K	KAPCOIFIDCIDDOVIDADO		22.1	19.5	18.8	1.0	1.0
20E2A-4-G5-IK	LESKWIF IDALEKEVGGGADG		24.4	20.4	21.2	1.0	1.0
20E2A-4-H1-IK	AVEDETENTENTALVIOLEC		22.3	20.8	20.3	1.0	1.0
20E2A-3-D0-IA	APTPESEYDAIVOLVMOGDHE		23.2	21.0	20.4	1.0	1.0
2052A-1 111	OCNPRIEYEAIAOLVIGCDVS		23.4	22.3	22.5	1.0	1.0
20E2A-3-C2 IN	VSTSGSFYDAIOOLLEDSWGW		24.6	22.5	22.8	1.0	1.0
20E2A-3-B2-II 20E2A-3-B2-II	HHSAFSFYDAIAOLVGVPWEE		21.5	22.9	22.2	1.0	1.0
20E2A-4-010 20E2A-4-010	FTYVHSFYDAIEOLVRGEGGG		24.6	23.4	22.6	1.0	1.0
2052A-3-A3 III	OGNAONFYDAIDOLCFGCLGG		24.5	24.1	25.1	1.0	1.0
ZOEZE I III III OOEOOA - A - CA - TR	SSEGWTFYDAIDOLVGRERGW		25.2	24.4	24.7	1.0	1.0
2012E 3 01 11:	PDGCATFYHAIQOLVTGFPCV		18.5	15.7	13.6	1.2	o. 0
20E2A-4-E7-IR	RGPPMTFYDAIAQLVAQSADG		17.8	16.6	14.4	1.2	6.0

FIGURE 2L

Clone	Societies	Ratios ove	Ratios over Background	pun	Comparisons	risons IR/ICER	
Design	XXXXXXFYDAIDQLVXXXXXX	9 : :	;	: :	;	:	٠
20E2A-3-B3-IR	RSSCQSFYDAIERLVLGGTCG	22.4	18.6	15.9	1.2	6.0	
20E2A-4-H10-IR	VSRKFSFYDAIQQLVRGDAGV	24.8	24.5	21.2	1.2	6.0	
20E2A-4-F8-IR	FORTWSFYDAINOLVMEGSGD	4.3	2.2	2.1	1.1	6.0	
20E2A-4-H5-IR	RGSATTFYDAINQLVGQDGGW	21.3	18.3	16.5	1.1	6.0	
20E2A-4-G1-IR	AQPCVSFYDAIEQLVTGRSCM	21.4	18.3	16.0	1.1	6.0	
20E2A-4-F2-IR	GGDGDPFYDWIEQLVRAGSEA	20.1	20.5	18.2	1.1	6.0	
20E2A-4-H7-IR	LDLCASFYDAIEQLVGVKFCG	22.6	21.2	18.6	1.1	6.0	
20E2A-3-D5-IR	WLACOSFYDAIDOLINGGECN	22.7	21.3	18.9	1.1	6.0	
20E2A-3-A1-IR	EVNALSFYDAIDQLVRGGLGG	23.8	21.7	19.9	1.1	6.0	
20E2A-4-H9-IR	RLOPRTFYEAIDOLIGGVLEG	24.0	22.5	20.8	1.1	6.0	
20E2A-3-D7-IR	SGAHRTFYDAIQELVGMGGSK	24.1	23.5	21.0	1.1	6.0	
20E2A-4-E5-IR	NMQSLTFYDAIAQLVLGRSGG	24.1	23.5	20.9	1.1	6.0	
20E2A-4-E11-IR	RAVGATFYDQINQLVRKDDGY	22.5	14.6	11.7	1.3	8.0	
20E2A-3-A4-IR	SQCRGGFYDAIYQLVTGVNCI	20.2	17.5	13.4	1.3	0.8	
20E2A-4-G8-IR	DRLAFSFYDAIDQLVHCCGHG	21.7	18.0	13.8	1.3	0.8	
20E2A-3-B7-IR	GNRQRGFYDAIDQLVGGSWWR	21.1	21.4	16.9	1.3	8.0	
20E2A-4-G11-IR	GGSVLSFYDAIAQLVGGGQSI	22.9	23.1	17.7	1.3	0.8	
20E2A-3-C5-IR	RSGPMSFYDAIEQLVLGRLHP	24.2	24.3	19.0	1.3	0.8	
20E2A-4-E8-IR	VSGCRTFYDAIDQLVSGQACG	17.1	11.5	9.4	1.2	0.8	
20E2A-4-H2-IR	AQFPRTFYDAIEQLIHGKGMD	21.6	13.7	11.6	1.2	8.0	
20E2A-4-H4-IR	CAQPESFYDAIDRLVTGRCLV	21.3	19.6	16.3	1.2	8.0	
20E2A-3-D4-IR	PDECQSFYCAIDRLVTGKGGR	23.2	22.2	18.0	1.2	8.0	
20E2A-4-F5-IR	QRRARDFYEAIQQLVGGVAGL	12.2	5.7	3.8	1.5	0.7	
20E2A-3-B10-IR	PLVRGTFYDAIKQLVMGGSSD	14.9	5.9	3.9	1.5	7.0	
20E2A-3-B9-IR	VGIAWTFYDAIQQLVRGSPEG	15.5	11.0	7.2	1.5	0.7	
20E2A-3-D10-IR	PRGQASFYDMIEQLVGSADWN	22.2	19.1	12.8	1.5	0.7	
20E2A-3-D6-IR	DGRVWSFYDALEQLVGQFEGP	21.8	19.3	13.0	1.5	0.7	
20E2A-4-G9-IR	RFVVRSFYDAIEQLILAPNLG	21.3	19.9	13.3	1.5	0.7	
20E2A-4-E1-IR	KVGRGSFYDAIRELVGQGGHV	23.1	20.7	13.6	1.5	0.7	
20E2A-4-F12-IR	PAIGFTFYDAIRQLVWFQGAD	17.5	17.1	12.1	1.4	0.7	
20E2A-4-G3-IR	ALPGRSFYDAIAQLVGPDWGA	21.6	19.4	14.1	1.4	0.7	

FIGURE 2L (Con't)

		Ratios ove	Ratios over Background	pun	Comparisons	sons
Clone	Sequence	E-Tag	IGFSR	R	IGFR/IR	IR/IGFR
Design	XXXXXXFYDAIDQLVXXXXXX	1	;	;	!	;
20E2A-3-C2-IR	RPOGGTFYDMIKQLVLGSGWG	23.4	20.9	15.4	1.4	0.7
20E2A-3-B1-IR	WSAFADFYDAIQHLVAGEVGA	22.1	21.6	15.6	1.4	0.7
20E2A-3-A8-IR	SDGRDGFYDAIQQLVRSAFGD	12.3	4.8	2.7	1.8	9.0
20E2A-4-G2-IR	IRSVFSFYDAIDQLVGKGGWS	18.9	13.8	7.9	1.8	9.0
20E2A-3-A9-IR	GGVSLTFYEAIEQLVRGGFDA	23.3	20.3	11.3	1.8	9.0
20E2A-3-D3-IR	AAQAFSFYDLINQLVASKPSE	24.4	24.5	13.5	1.8	9.0
20E2A-3-A11-IR	QSGACGFYDAINQLVLGVSIC	13.5	4.6	2.7	1.7	9.0
20E2A-3-B4-IR	GGIVFSFYEAIDQLVRGNGAG	21.4	15.3	8.9	1.7	9.0
20E2A-4-E10-IR	IYTGQGFYDAIEQLVRGGSTP	22.3	19.0	11.3	1.7	9.0
20E2A-3-D2-IR	KSPALSFYDAIEQLVGSQGVR	22.5	19.0	11.2	1.7	9.0
20E2A-4-F1-IR	ISPPWTFYDAIDQLVGGSDGR	14.5	6.2	3.9	1.6	9.0
20E2A-3-D1-IR	GSRFRGFYDAIDQLVRQGGLE	16.5	9.9	4.0	1.6	9.0
20E2A-3-D11-IR	GVAGGTFYDAIEQLVRQFGGS	20.2	14.4	8.9	1.6	9.0
20E2A-3-C3-IR	RPLRWSFYDALDQLVGSAIGG	23.9	22.5	14.2	1.6	9.0
20E2A-3-C12-IR	MQGRGGFYDAIADLVGGHVRG	21.3	23.0	14.4	1.6	9.0
20E2A-3-A2-IR	TSQGLSFYDAINQLVAGGWGG	18.9	11.6	7.5	1.5	9.0
20E2A-3-C7-IR	SGGTVTFYDAINQLVQGRYNG	21.6	15.1	6.9	2.2	0.5
20E2A-3-C10-IR	GGALDPFYDAIYQLVIRGSSG	18.1	18.0	9.1	2.0	0.5
20E2A-3-D9-IR	KQRGVTFYDLLNQLVGGSARG	21.8	21.6	8.4	2.6	0.4
20E2A-3-B5-IR	PRAPRSFYDAIHQLVGRQGPG	24.3	18.1	7.4	2.5	0.4
20E2A-3-A6-IR	PCSDDQFYDALSQLVGIRVCP	17.8	19.1	7.6	2.5	0.4
20E2A-4-G12-IR	SYGYQSFYDAIEELVRGPPAR	9.0	9.3	2.6	3.6	0.3

		Ratios ov	Ratios over Background	pur	Comparisons	risons	
Clone	Sequence	E-Tag	IGFsR	¥	IGFIVIR	IR/IGFR	
D sign	XXXXXXFYDAIDQLVXXXXXX	:	1.	;	:	1	
Parental	FYDAIDQLVRGSARAGGTRD	30.6	15.1	4.2	3.6	0.3	
20E2A-4-F11-IGFR	QGGSASFYDAIDRLLRMRIGG	21.3	18.8	1.3	14.6	0.1	
20E2A-4-F12-IGFR	AQGSEGFYDALAQLVGQLVSG	23.3	23.9	3.1	7.8	0.1	
20E2A-3-B4-IGFR	GHPAVSFYDAIDQLLRRRGGG	21.8	16.6	2.4	6.9	0.1	
20E2A-4-F4-IGFR	YSDTYSFYDAIVQLVRRGASA	20.7	20.0	3.6	5.5	0.2	
20E2A-3-C7-IGFR	VGTVAGFYDAIAQLVARASRV	17.6	5.4	1.1	5.1	. 0.2	
20E2A-3-C10-IGFR	RFVWGSFYDAIDQLVQGRWRG	23.3	21.0	4.2	5.0	0.2	
20E2A-3-D6-IGFR	RAVGDSFYEAIQQLVRGGHGV	15.1	11.8	2.4	5.0	0.2	
20E2A-4-F6-IGFR	LRSQLSFYEAIDQLVQWKGGA	21.5	19.9	4.3	4.6	0,2	
20E2A-3-A8-IGFR	DKFFTSFYDAIDQLVQSVRGV	22.2	13.3	2.9	4.6	0.2	
20E2A-4-F9-IGFR	M <u>Q</u> SGFSFYDAIDRLVGRLGER	21.2	19.0	4.4	4.4	0.2	
20E2A-4-F3-IGFR	VGSSSFYEAIERLVQGLGRH	20.6	19.3	4.6	4.2	0.2	
20E2A-3-B2-IGFR	LSWAAGFYEAIDQLVRSGGHR	18.7	14.7	3.8	3.9	0.3	
20E2A-4-G8-IGFR	QQVHAGFYEALEELVGFGFLG	20.9	10.8	2.7	3.9	0.3	
20E2A-3-D10-IGFR	MMVVDGFYDALHQLVVAQSLG	20.6	6.9	1.8	3.9	0.3	
20E2A-3-A12-IGFR	LSVALSFYDALGQLVAGEGRW	16.1	4.3	1.1	3.9	0.3	
20E2A-3-A11-IGFR	SGSNLGFYDALRQLVGATDGS	17.8	9.7	2.6	3.7	0.3	
20E2A-4-H1-IGFR	PSGFLSFYEAIDQLVHGVRWF	20.8	14.5	4.1	3.5	0.3	
20E2A-4-F7-IGFR	AFTPTSFYDAIEQLVQQLSPR	19.5	17.9	5.3	3.4	0.3	
20E2A-3-D7-IGFR	VSSLRSFYDALDELVRRPFQQ	22.0	18.3	5.6	3.3	0.3	
20E2A-3-A9-IGFR	VSMPQSFYDALKQLVRGISEG	24.7	10.5	3.2	3.3	0.3	
20E2A-3-A10-IGFR	IGVSRGFYDAIDKLVRDRGSP	26.3	15.4	4.8	3.2	0.3	
20E2A-3-B11-IGFR	GRSLLSFYDLIDQLVQAGNGG	15.8	10.7	3.4	3.2	0.3	
20E2A-3-D12-IGFR	GQRAQSFYEALARLVCEGRCT	13.9	9.0	2.8	3.2	0.3	
20E2A-4-H11-IGFR	CRFQGSFYDAIDLLVLGVRTC	22.8	17.5	5.7	3.1	0.3	
20E2A-4-H5-IGFR	RWAFQSFYDAIDHLVNHREGH	20.1	. 16.6	5.5	3.0	0.3	
20E2A-4-E11-IGFR	LPPSSGFYNAIQQLVCGHRGC	21.0	12.6	4.2	3.0	0.3	

Ratios over Background Comparisons E-Tag IGFsR IR IGFR/IR IR/IGFR	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19.4 19.0 6.8 2.8 0.4	16.1 11.8 4.2 . 2.8 0.4	24.0 14.3 5.3 2.7 0.4	18.1 20.6 7.9 2.6 0.4	15.1 9.3 3.6 2.6 0.4	20.7 3.3 1.3 2.6 0.4	25.9 17.4 7.2 2.4 0.4	23.6 14.6 6.0 2.4 0.4	19.8 12.3 5.1 2.4 0.4	21.4 21.6 9.3 2.3 0.4	22.6 21.3 9.1 2.3 0.4	21.0 21.8 10.1 2.2 0.5	23.5 17.4 7.8 2.2 0.4	22.2 17.1 7.7 2.2 0.4	24.3 16.3 7.4 2.2 0.5	11.3 2.7 1.2 2.2 0.5	22.3 22.6 10.8 2.1 0.5	.6 19.9 9.4	23.0 16.6 7.9 2.1 0.5	.5 15.7	22.6 14.5 7.0 2.1 0.5	19.6 19.9 9.8 2.0 0.5	23.0 17.1 8.7 2.0 0.5	26.4 22.1 11.5 1.9 0.5	25.3 20.7 11.1 1.9 0.5	23.1 17.9 9.5 1.9 0.5	22.6 17.7 9.3 1.9 0.5	17.2 8.6 4.6 1.9 0.5	16.1 6.1 3.2 1.9 0.5	5.2 3.0 1.5 1.9 0.5	24.4 21.1 11.5 1.8 0.5
	XXXXXXFYDAIDQLVXXXXXX	TGVFNDFYDALQQLVGFRVRD	YGSFETFYDAIDQLVRRGSQP	RQLLDSFYEAIDQLVRSESRP	WPRGDPFYDAMEKLLSQGGGR	PGLIQSFYDAIDQLVRQGRGN	MNVFVSFYDAIDQLVCQRIGC	LDMIGGFYEAIDQLVSGSLAP	RRPCNSFYDAIQQLLVGGPCG	FGRRSTFYDLIDQLVGQGRGT	LRAPRSFYEAIYQLAQRPSVP	VQRFSSFYDALDQLVGHGVWK	PSARMGFYDLIDQLVGLVPGS	SLQPHDFYDAIHRLVFHGGRF	ERHGGSFYDAIAQLLQSDRSR	YOPPGSFYDWIRELVAGPRRE	FAHASSFYDAIDQLVAKCOSP	AQSSSGFYEALYQLVWGRGPG	TISGGSFYDAMYQLVWGDWRR	ARGTAGFYAELERLVRCODHG	PRHAINFYDAIHQLVFGPGRQ	QSAHWSFYDAIERLVNMDTMP	VGVVSSFYDAIDQLVGWDRGS	DTLIASFYDAIDQLVRLGRNQ	FQGTQGFYDAIERLMRRGERP	WADWGSFYDAIEQLVQRGGGV	EQLSCGFYDAIHQLVHGGGLG	CGQRCSFYDAIDQLVGWLPGA	MMRVDGFYEAI DRLVNEG <u>Q</u> AT	RGQATSFYEAIDQLMGGSGGV	GHYFGSFYDAIDQLVAGMLPG	PEGV <u>Q</u> GFYDALAHLVGGSLFG
Clone	Design	20E2A-4-F2-IGFR	20E2A-3-D4-IGFR	20E2A-3-B10-IGFR	20E2A-4-E5-IGFR	20E2A-3-D5-IGFR	20E2A-4-G11-IGFR	20E2A-3-C12-IGFR	20E2A-4-G5-IGFR	20E2A-3-D9-IGFR	20E2A-4-F10-IGFR	20E2A-4-E2-IGFR	20E2A-4-E3-IGFR	20E2A-3-C4-IGFR	20E2A-3-C5-IGFR	20E2A-4-G12-IGFR	20E2A-3-C3-IGFR	20E2A-3-B7-IGFR	20E2A-4-E10-IGFR	20E2A-4-E6-IGFR	20E2A-3-D3-IGFR	20E2A-4-G4-IGFR	20E2A-4-F1-IGFR	20E2A-4-H7-IGFR	20E2A-3-B9-IGFR	20E2A-4-E9-IGFR	20E2A-3-B1-IGFR	20E2A-4-G1-IGFR	20E2A-4-E7-IGFR	20E2A-3-D11-IGFR	20E2A-3-A3-IGFR	20E2A-4-G7-IGFR

FIGURE 2M (Con't)

		Ratios ove	Ratios over Background	pun	Comparisons	0118	
Clone	Sequence	E-Tag	IGFsR	R	IGFIVIR INIGE	VIGFR	
Design	XXXXXXFYDAIDQLVXXXXXX	!	1	:	:	1	
20E2A-4-G2-IGFR	IGVLGSFYDAIDQLVRQGGNR	22.3	17.5	9.9	1.8	9.0	
20E2A-4-G3-IGFR	RDVADGFYAAIEQLVRGQFGL	21.2	12.3	6.9	1.8	9.0	
20E2A-3-B5-IGFR	VRQAKSFYDAIDQLVRGĀLRG	24.0	22.7	13.3	1.7	9.0	
20E2A-4-H4-IGFR	QVFRGSFYDAIDALVRWGGRA	22.2	20.6	12.0	1.7	9.0	
20E2A-4-F8-IGFR	VGAAFSFYDAIDQLVGWSPGS	17.3	17.9	10.7	1.7	9.0	
20E2A-3-A6-IGFR	PSPVWSFYDAIQQLVRSGQRG	23.8	23.7	15.0	1.6	9.0	
20E2A-4-H12-IGFR	PVSATSFYDAINQLVRMGSRG	25.1	23.5	14.2	1.6	9.0	
20E2A-3-B12-IGFR	VMRRDRFYDAIEQLVGGRIGV	27.6	21.9	13.6	1.6	9.0	
20E2A-3-B8-IGFR	TTYVNSFYDALQQLLGGDADV	21.5	19.0	12.2	1.6	9.0	
20E2A-3-C8-IGFR	LSNMITFYDAINQLVGHVQSL	23.2	17.7	11.4	1.6	9.0	
20E2A-4-H10-IGFR	ASSRLSFYDAIEQLIKWSPGP	25.3	23.8	16.2	1.5	0.7	
20E2A-3-C9-IGFR	WDLVDSFYDAIDQLVGQRVPG	25.4	21.8	14.6	1.5	0.7	
20E2A-4-H2-IGFR	FAFVGSFYDALAQLVAQGPRS	21.8	20.1	13.0	1.5	9.0	
20E2A-3-B6-IGFR	EDQPNSFYDAIRQLVMGRLSP	20.3	18.1	11.8	1.5	0.7	
20E2A-4-G9-IGFR	SVGPRSFYDAIDQLVGGAWVG	26.0	16.1	10.8	1.5	0.7	
20E2A-4-H6-IGFR	KFRVYTFYDAIDQLVNQGRGR	21.9	19.6	13.9	1.4	0.7	
20E2A-4-H9-IGFR	GRGWGSFYEAIDQLVRGLGET	24.9	16.8	11.8	1.4	0.7	
20E2A-4-G10-IGFR	FTSFHTFYDAIEQLVGQGGDP	25.3	16.5	12.1	1.4	0.7	
20E2A-3-A4-IGFR	AGSVTSFYDAMEQLVATGTSA	16.8	2.5	1.8	1.4	0.7	
20E2A-3-A7-IGFR	PRESFSFYDAIHQLVTGRVRS	26.0	24.9	19.3	1.3	8.0	
20E2A-4-E12-IGFR	LGRADGFYDAIKQLVGADWGG	23.3	23.1	17.8	1.3	8.0	
20E2A-3-D1-IGFR	RSGTWTFYDALELLVQGSGSR	24.0	22.4	17.6	1.3	8.0	
20E2A-3-C6-IGFR	PVVLFSFYDAIDQLVRKGLGP	23.7	21.7	17.2	1.3	0.8	
20E2A-3-D2-IGFR	GRRAQTFYDALEQLVGGEALG	21.4	15.1	11.4	1.3	0.8	
20E2A-4-E8-IGFR	AGPDMSFYDAIDQLVHCCGPF	18.4	13.6	10.4	1.3	8.0	
20E2A-4-G6-IGFR	HGEKLSFYDAIAQLVGFDIGH	24.7	21.9	17.7	1.2	0.8	
20E2A-4-F5-IGFR	GYTPVDFYDAIRQLVTGGWPG	21.7	21.7	18.2	1.2	8.0	
20E2A-3-C2-IGFR	FGGFSSFYDALDQLARGRGSD	22.5,	19.6	15.8	1.2	8.0	
20E2A-4-H8-IGFR	VGIVRGFYEAIERLVGDTHGQ	24.4	18.5	15.1	1.2	0.8	
20E2A-3-A5-IGFR	TPGGFSFYDAIQQLVDVLSDS	22.7	15.6	12.6	1.2	8.0	
20E2A-3-C11-IGFR	TNAALTFYDAIEQLVRWG <u>Q</u> RD	25.8	24.3	21.2	1.1	6.0	

FIGURE 2M (Con't)

			Kallos OV	Ratios over Background	משם	Comparisons	LISOUS
Clone	Sequence		E-Tag	IGFSR	띰	IGFR/IR	IRJIGER
Design	XXXXXXFYDAIDQLVXXXXX		!	;	;	:	;
20E2A-3-C1-IGFR	GOSPLSFYDAIDQLVRAFPVG		23.4	23.4 22.4 20.5 1.1 0.9	20.5	1.1	0.9
20E2A-3-B3-IGFR	AGQLGGFYIAICQLVGYEYCT		21.0	17.0	14.8	1.1	0.9
20E2A-3-D8-IGFR		1	22.0	19.7	19.6	1.0	1.0

Clone	Sequence	Ratios ove	Ratios over Background E-Tag IGFsR 11	nud 18	Comparisons IGFR/IR IR/10	risons IR/IGFR
Design	XXXXXXFYXXhXXhhXXXXXX		:	;	;	:
Parental	FYDAIDQLVRGSARAGGTRD	30.6	15.1	4.2	3.6	0.3
20E2Bα-3-B3-IR	AGVNAGFYRYFSTLLDWWDQG	33.5	1.2	23.5	0.1	20.0
20E2Bα-4-F12-IR	SVKEVQFYRYFYDLLQSEESG	35.5	5.9	27.8	0.2	4.7
20E2Ba-3-B8-IR	IEVTQPFYDYFQQLLRLYGND	39.3	18.2	36.5	0.5	2.0
20E2Ba-3-D2-IR	VQCRADFYSYFACLVGRPGSR	42.6	19.7	26.7	0.7	1.4
20E2Ba-3-A5-IR	RNYPIGFYQFFHELVISSGGG	36.9	22.7	24.5	0.9	1.1
20E2Bα-3-A3-IR	DLGGNSFYYGLLRLVLQDAVG	39.9	33.5	35.5	6.0	1.1
20E2Bα-4-E9-IR	CKDQPDFYMGIKCLISGGGSV	32.8	29.6	28.6	1.0	1.0
20E2Bα-4-G8-IR	ACEGGSFYGCLQSLMSVESGN	37.5	30.5	30.9	1.0	1.0
20E2Bα-4-F9-IR	AVHEDGFYDMLRKLLSEGDSS	35.6	32.5	31.1	1.0	1.0
20E2Ba-4-E7-IR	LARNDEFYRYFEQLVFGDTEG	36.0	31.6	31.2	1.0	1.0
20E2Bα-3-D5-IR	ATCASSFYAQLNCLLSDFDVM	39.5	33.1	31.8	1.0	1.0
20E2Ba-4-F7-IR	VQACQNFYDCLNTLLLDLGG	36.6	32.9	32.5	1.0	1.0
20E2Ba-3-B12-IR	IRGADQFYQFFRELLEGSVGE	37.0	33.4	33.5	1.0	1.0
20E2Bα-3-A11-IR	RAGSRGFYEFFENLLRVGAGG	36.9	34.9	34.2	1.0	1.0
20E2Bα-3-B7-IR	AQRCADFYACIEELLAPGSWR	40.4	37.1	36.3	1.0	1.0
20E2Bα-3-B5-IR	PGGGEGFYQGLQRLILGADGG	41.6	36.4	34.5	1.1	1.0
20E2Ba-4-G1-IR	QKRSEAFYDWIADLLGOETSG	38.5	28.9	26.5	1.1	6.0
20E2Ba-4-G11-IR	WGLRDDFYRGIRCLVQWSEGC	33.2	30.1	27.8	1.1	6.0
20E2Ba-4-E10-IR	DSTVCGFYCRLAQLVAEGGSP	35.4	30.5	28.0	1.1	6.0
20E2Ba-4-F11-IR	QHSCRTFYDCIRVLMDDGQLG	32.5	29.5	28.0	1.1	6.0
20E2Ba-4-H11-IR	WSGNVDFYYMIRQLCGDVCGS	34.8	32.0	28.7	1.1	6.0
20E2Bα-4-H3-IR	QTVHRDFYAALQDLLINDLGF	38.7	34.9	30.5	1.1	6.0
20E2Bα-4-H7-IR	SSGCQDFYSCMIQLVTGGGGD	35.3	32.5	30.5	1.1	6.0

		Ratios over	Ratios over Background	pun	Comparisons	isons	
Clone	Sequence	E-Tag	IGFsR	≅	IGFR/IR	IR/IGFR	
Design	XXXXXXEYXXhXXhhXXXXXX	;	;	;	;	:	
20E2Bu-3-B6-IR	SGPMVGFYRGLFSLLSPEDLQ	39.7	34.9	31.5	1.1	6.0	
20E2Bα-3-D1-IR	LAEPDSFYNWIAQLLEEGFAG	41.6	35.1	31.7	1.1	6.0	
20E2Ba-3-A9-IR	FSGCDNFYSCIQSLWLGPGGV	37.3	35.1	32.4	1.1	6.0	
20E2Bα-3-C4-IR	QVFCDNFYHCIETLLGVGQTP	39.6	36.3	33.4	1.1	6.0	
20E2Bu-4-F3-IR	RGRDNQFYHGLWALLLGSGLE	37.5	36.6	33.6	1.1	6.0	
20E2Ba-4-F4-IR	VSGRGGFYDAIRDLIGPRDQG	37.2	36.9	33.7	1.1	6.0	
20E2Bα-3-D4-IR	PVVLDDFYVALCQLMVQGDCF	42.1	38.0	34.5	1.1	6.0	
20E2Ba-4-E4-IR	PDIADPFYAFFQGLLRADTPI	40.6	38.4	35.5	1.1	6.0	
20E2Ba-4-G10-IR	VAQCTDFYACIRSLVRSGSPG	32.9	31.3	27.1	1.2	6.0	
20E2Bα-3-D11-IR	CSQLVSFYLGMDCLLGRGGTQ	34.0	32.5	27.9	1.2	6.0	
20E2Ba-3-C8-IR	PLACADFYQCLSDLIRGGPAW	39.5	33:0	28.2	1.2	6.0	
20E2Ba-4-F2-IR	VVICTGFYDCIYQLVGSHEEM	38.7	37.6	32.3	1.2	6.0	
20E2Ba-4-H12-IR	CVDRRTFYEGLQCLLGGATGD	32.3	30.4	25.8	1.2	0.8	
20E2Ba-4-E1-IR	VNLRDPFYQWIEALMDSAGGE	39.2	40.2	32.3	1.2	0.8	
20E2Bα-4-H8-IR	LTSSTSFYDALFCLAGLQLCG	37.6	34.8	27.0	1.3	0.8	
20E2Bα-3-B4-IR	DFDSSPFYRGLRQLLESRSFP	39.9	34.9	25.9	1.3	0.7	
20E2Bα-4-E2-IR	HEAGWTFYDAIQCLVGGWCSK	38.8	36.3	23.5	1.5	9.0	
20E2Ba-4-H1-IR	CQQWRSFYHAVSCLLGPDDPD	40.8	33.6	20.2	1.7	9.0	
20E2Ba-3-A10-IR	MVDRDPFYQGLRDLIGRQEKG	32.8	32.6	18.5	1.8	9.0	
20E2Bα-3-D3-IR	LGRRGGFYRGLQDLIGTQWPR	41.9	29.5	5.6	5.3	0.2	

		Ratios ov	Ratios over Background	pun	Comparisons	isons
Clone	Sequence	E-Tag	IGFSR	<u>~</u>	IGFR/IR IR/IGFR	IR/IGFR
Design	XXXXXXFYXXhXXhXXXXXX	1	;	;	:	1
20E2B()-4-F7-IR	DALNLRFYSYFQHLMEDQVTD	26.8	3.0	24.2	0.1	8.0
20E2B[3-3-E12-IR	GNSGGSFYRYFQLLLDSDGMS	17.2	1.4	5.5	0.3	4.0
20E2Bβ-4-F3-IR	GDRVPGFYDWIRQLMVDPLEV	25.2	2.0	7.7	0.3	3.9
20E2B }-4-F6-IR	SEREDPFYRWIQAMVEGVSEG	25.7	3.8	11.0	0.4	2.9
20E2B[3-3-D11-IR	GSVACDFYCHMWSLVEQPAGT	14.8	3.6	4.2	6.0	1.2
20E2B()-3-E5-IR	VHPSAGFYKGLLALIGDSQLG	24.3	6.9	4.3	1.6	9.0
20E2Bβ-3-C9-IR	FCGGLSFYGCLQELLTWESPT	29.7	24.3	15.0	1.6	9.0
20E2Bβ-3-C7-IR	QSGSGDFYDWLSRLIRGNGDG	1.5	3.1	1.5	2.0	٥. بج
20E2Bβ-4-H8-IR	LPRQDGFYDALRRLISEGAGG	25.8	26.9	13.2	2.0	0.5
20E2B 3-4-G7-IR	L <u>o</u> pcsgfyecierligvklsg	19.9	25.2	1.6	15.8	0.1

		Ratios o	Ratios over Background	puno.	Comparisons	Suc	
Clone	Sequence	E-Tag	IGFR	R	IGFR/IR	IR/IGFR	
Design	XXXXXXFYXXhXXhhXXXXXX	1	:	;	1 1	ŀ	
20E2B-1-A6-IGFR	GVRAMSFYDALVSVLGLGPSG	18.6	18.1	1.1	16.8	0.1	
20E2B-3-C6-IGFR	VEGRGLFYDLLRQLLARRQNG	17.9	16.8	1.1	14.8	0.1	
20E2B-4-H3-IGFR	KLHNLMFYYGLQRLVWGAGLG	11.2	14.8	1.1	13.9	0.1	
20E2B-3-C2-IGFR	GNGDGMFYQLLSLLVGRDMHV	13.1	8.9	9.0	13.8	0.1	
20E2B-3-E3-IGFR	PDLHKGFYAQLAQLIRGQLLS	22.4	16.3	1.3	13.1	0.1	
20E2B-4-H12-IGFR	YSCGDGFYSLLSDLLGGQFRC	6.5	7.6	0.8	12.8	0.1	
20E2B-3-D2-IGFR	IQQELTFYDLLHRLVRSELGS	20.7	12.4	1.1	11.7	0.1	
20E2B-3-D8-IGFR	GGTEVDFYRALERLVRGQLGL	20.4	17.7	1.6	11.3	0.1	
20E2B-3-E8-IGFR	LRIANLFYQRLWDLAFGGG	15.7	16.7	1.5	11.1	0.1	
20E2B-4-F8-IGFR	PVGVQGFYEGLSRLVLGRGGW	12.3	7.3	8.0	9.7	0.1	
20E2B-1-A11-IGFR	RFSTDGFYQYLLALVGGGPVG	15.0	9.5	1.0	9.7	0.1	
20E2B-3-D4-IGFR	NSRDGGFYLQLERLLGFPVTG	8.1	7.9	0.8	9.6	0.1	
20E2B-2-B11-IGFR	VVTPVNFYRALEALVRGQRLG	13.9	10.6	1.1	9.4	0.1	
20E2B-3-C8-IGFR	QPAPDGFYSALMKLIGRGGVS	18.5	15.6	1.8	8.9	0.1	
20E2B-2-B2-IGFR	PGTDLGFYQALRCVVIQGACD	11.7	4.9	9.0	8.1	0.1	
20E2B-4-F10-IGFR	AQPCGGFYGLLEQLVGRSVCD	19.0	17.3	2.2	7.8	0.1	
20E2B-4-F9-IGFR	QPDHSYFYSLLQELVGSEERL	11.9	14.7	1.9	7.7	0.1	
20E2B-3-D11-IGFR	LGVTDGFYAALGYLIHGVGQF	14.3	12.2	1.6	7.6	0.1	
20E2B-3-C11-IGFR	CMMQDGFYAGLGCLLTAGEGR	15.3	15.4	2.1	7.5	0.1	
20E2B-2-B3-IGFR	ICTGQGFYQVLCGLLRGTSAR	9.1	5.3	0.7	7.4	0.1	
20E2B-3-D12-IGFR	QGNVLDFYGWIGRLLAKQGSD	10.3	6.2	6.0	7.3	0.1	
20E2B-3-E12-IGFR	VATSQGFYSGLSELLQGGGNV	13.9	6.0	0.8	7.3	0.1	
20E2B-2-B8-IGFR	IWATGDFYRLLSQLVMGRVGT	17.4	5.7	0.8	7.2	0.1	
20E2B-4-G11-IGFR	RQGTGSFYLMLEQLLVGARGP	8.9	4.5	9.0	7.0	0.1	
20E2B-3-D6-IGFR	DSVGDNFYQLLESLVGGHGVG	20.7	17.8	5.6	6.9	0.1	
20E2B-2-B7-IGFR	LSSDGQFYRALNLLLQGSAGR	18.0	6.1	6.0	6.7	0.1	
20E2B-3-C4-IGFR	ASSASGFYELL <u>o</u> rlaglglev	23.4	20.4	3.3	6.2	0.2	

		Ratios o	Ratios over Background	puno	Comparisons	SL
Clone	Sequence	E-Tag	IGFR	=	IGFIVIR IRVIGER	RIGFR
Design	XXXXXXFYXXhXXhhXXXXXX		:	;	:	;
20E2B-3-D3-IGFR	CGSRRDFYGGIICLLGQKGVV	21.0	16.1	2.6	6.2	0.2
20E2B-4-H8-IGFR	PAGPCGFYCGLGLLLHGDQSP	7.2	5.3	6.0	5.9	0.2
20E2B-3-E9-IGFR	QAAPQDFYQGLWLLIHRDPTM	14.7	16.2	2.8	5.8	0.2
20E2B-4-H9-IGFR	RCQGTGFYTCIQELIGFGDPD	4.5	5.2	0.9	5.6	0.2
20E2B-1-A8-IGFR	TLRSPTFYDWLEMVLTHGQGG	16.1	4.4	6.0	5.0	0.2
20E2B-4-H11-IGFR	STHSRAFYDAIAQLVGSVLGP	10.7	11.0	2.3	4.8	0.2
20E2B-3-C9-IGFR	RQGGGSFYELLCGLVGGEVCV	17.9	19.7	4.2	4.6	0.2
20E2B-3-E6-IGFR	RQQASGFYRALHDLMLRTQDY	24.5	21.6	4.7	4.6	0.2
20E2B-3-E11-IGFR	SRANNLFYMGLSQLLRDNRGL	16.5	7.7	1.9	4.1	0.2
20E2B-4-G8-IGFR	GRALDPFYDQLRDLVARSGGG	11.1	14.9	3.7	4.1	0.2
20E2B-4-H10-IGFR	EASCRTFYCGLMALIGGDDOR	2.2	2.5	0.8	3.1	0.3
20E2B-3-E7-IGFR	QNGCKDFYCLIDNLIRYGPGG	14.4	8.8	3.0	3.0	0.3
20E2B-3-C12-IGFR	QHSCRTFYDCIRVLMDDGQLG	6.2	6.4	2.2	2.9	0.3
20E2B-4-G12-IGFR	LDSRRGFYDWIKALIGDRDVQ	9.6	10.0	3.8	2.6	0.4
20E2B-4-G3-IGFR	CQQKGDFYAGLVCLLRERASQ	27.2	23.8	9.1	2.6	0.4
20E2B-3-E4-IGFR	GGSQQSFYDVMCMLLQLDPTC	24.9	22.3	8.9	2.5	0.4
20E2B-3-E2-IGFR	VESDVSFYEGLMRLVWWGQGG	18.6	20.2	8.7	2.3	0.4
20E2B-2-B4-IGFR	ERAGDLFYQWFERLVAGHGLE	5.8	2.3	1.0	2.2	0.5
20E2B-3-C5-IGFR	RMPSGSFYQGIYELVTRQGGF	6.3	2.0	6.0	2.2	0.5

		Ratios	Ratios over Background		Comparisons	15
Clone Design	Sequence XXXXXXFYRYFXXLLXXXXXX	E-Tag	IGFR	_ ≅ :	IGFR/IR 1	IR/IGFR
NNRP()-4-G6-IR	RWPNFYGYFESLLTHFS	10.1	1.9	20.1	0.1	10.6
NNRP()-4-F3-IR	HYNAFYEYFQVLLAETW	8.6	1.3	13.6	0.1	10.5
NNRPa-2-C1-IR	EGWDFYSYFSGLLASVT	19.7	2.0	10.9	0.2	5.3
NNRPa-4-E1-IR	LDRQFYRYFQDLLVGFM	11.5	6.5	21.2	0.3	3.2
NNRPα-3-H6-IR	WĞRSFYRYFETLLAQGI	19.1	2.1	6.0	0.3	2.9
NNRPβ-4-F7-IR	RREGFYHYFQSLLDEYG	0.7	6.0	2.3	0.4	2.7
NNRPα-2-D1-IR	GGGQFYRYFIDMLVLDI	18.4	1.5	3.7	0.4	2.5
NNRPα-1-A1-IR	PTGPFDRYFARRLVWRG	15.2	1.3	3.1	0.4	2.4
NNRPa-2-C10-IR	RGGAFYRYFEGLLSQHN	18.8	3.8	8.8	0.4	2.3
$NNRP\alpha-3-G1-IR$	WRDPFYRYFQDLLEGER	18.9	4.2	8.6	0.5	2.1
NNRPa-4-C3-IR	WGGEFYRYFVQLLSSED	17.9	12.9	25.7	0.5	2.0
NNRPα-4-D1-IR	GRESFYGYFLDLLQETV	16.2	12.7	23.2	0.5	1.8
NNRPβ-4-F4-IR	GHAEFYGYFQGLLDSYL	19.5	16.0	25.6	9.0	1.6
NNRPa-1-B2-IR	GGEAFYRYFWGLLTEWE	14.8	8.4	12.9	0.7	1.5
NNRPα-1-B4-IR	LSSGFYRYFTGLLSDGQ	19.1	6.3	9.5	0.7	1.5
NNRPα-4-D9-IR	DPGAFYRYFAQLMDTWN	7.6	16.9	25.7	0.7	1.5
NNRP 3-4-F2-IR	KHEQFYEYFRNLLGAMS	21.6	20.9	30.8	0.7	1.5
NNRPß-4-H12-IR	RDGAFYRYFEDLLIAVD	5.2	13.8	20.0	0.7	1.5
NNRPα-4-E7-IR	RGNRFYEYFEYLLRDYG	9.4	21.9	29.7	0.7	1.4
NNRPa-1-B5-IR	ELGDFYRYFQLLLADWH	14.1	5.4	7.1	0.8	1.3
NNRPa-4-C4-IR	AQDAFYSYFSVLLGEHL	17.6	17.6	22.3	0.8	1.3
NNRPa-4-C7-IR	IGVNFYRYFEKLLLDEF	4.5	11.2	14.9	0.8	1.3
$NNRP\alpha-4-D3-IR$	TDSQFYSYFESLLETFG	16.4	13.5	17.9	0.8	1.3

Clone	Sequence	Ratios o	Ratios over Background	ound 1R	Comparisons	INS IR/ICER
Design	XXXXXXEYRYEXXLLXXXXXX	4	<u> </u>	: :	1 ;	1101011
NNRPβ-4-G10-IR	SSREFYSYFSGLLTTAL	8.8	8.7	11.7	0.7	1.3
NNRPβ-4-H2-IR	TGRGFYRYFEGLLEDWM	4.9	19.9	25.3	0.8	1.3
NNRPa-4-C1-IR	SGSWFYRYFEELLLQSG	15.5	18.0	21.1	0.9	1.2
NNRPa-4-C5-IR	GRGGFYQYFLDLLQTEA	18.0	23.3	26.9	0.9	1.2
NNRPa-4-C6-IR	GONGFYRYFDTLLADWV	7.8	13.6	15.7	6.0	1.2
NNRPa-4-C12-IR	FAGSFYRYFEQLLLSEQ	12.3	16.7	19.9	0.8	1.2
NNRPα-4-D7-IR	DPNAFYRYFEGLLWREH	10.2	23.7	27.9	0.8	1.2
NNRPα-4-D11-IR	?GLNFYRYFVGLLTDTL	5.4	19.3	22.3	0.9	1.2
NNRP()-4-F1-IR	RHINFYGYFDDLLATWH	21.7	23.0	28.6	0.8	1.2
NNRP[}-4-F9-IR	FHRGFYRYFINLLSGDA	10.1	18.4	22.5	0.8	1.2
NNRP()-4-F12-IR	MGSSFYRYFETLLGQGL	4.5	13.5	16.6	0.8	1.2
NNRPy-4-A3-IR	GSLDFYSYFWERLGLGP	16.4	22.3	26.8	0.8	1.2
NNRPα-1-A7-IR	STVSFYRYFYALLQSPC	16.9	1.2	1.3	6.0	1.1
NNRPα-4-C11-IR	LGGYFYRYFEDLLNHQS	7.8	19.7	21.2	6.0	1.1
NNRPa-4-D8-IR	DHRGFYRYFLYQLAGNV	6.9	17.6	20.1	6.0	1.1
NNRPα-4-D10-IR	EYSGFYGYFNHLLGSLG	6.4	17.2	19.5	6.0	1.1
$NNRP\alpha-4-E5-IR$	TSNWFYQYFTDLLAGED	. 13.2	26.1	27.6	6.0	1.1
$NNRP\alpha-4-E8-IR$	SSGGFYRYFSQLLTEMN	8.7	22.9	24.2	0.9	1.1
NNRPα-4-E10-IR	VHGEFYRYFESLLRETF	3.5	12.4	13.2	6.0	1.1
NNRPβ-4-F8-IR	SDEGFYRYFAQLLYGVT	8.1	22.9	25.2	0.9	1.1
NNRPB-4-F10-IR	ETGGFYGYFQALLATYH	5.3	17.9	19.1	0.9	1.1
NNRPβ-4-G8-IR	GDRGFYRYFEWLLNDFG	10.6	27.2	28.9	0.9	1.1
NNRPβ-4-H3-IR	FGGAFYRYFEALLGEMG	3.9	24.2	25.7	6.0	1.1
NNRPß-4-H9-IR	DGGAFYRYFEALLGELD	4.1	26.5	29.3	0.9	.1.1
NNRPβ-4-H10-IR	WHSDFYRYFLSLLQEDG	3.4	22.3	24.6	0.9	1.1
NNRPy-4-A6-IR	EEEGFYGYFYRLLGVER	14.9	25.8	27.6	6.0	1.1
NNRPy-4-A8-IR	MDAGFYGYFSDLLANWG	9.8	22.8	24.7	0.9	1.1

FIGURE 2P (Con't)

Clone	Sequence	E-Tag	IGFR	Ħ	IGFR/IR IR/IGFR	IR/IGFR
NNRPy-4-A10-IR	SGFAFYOYFOELLAGHD	7.6	20.3	22.0	. c	: -
NNRPy-4-B6-IR	GDGGFYGYFASLLSGEG	12.2		24.2	0.9	1.1
$NNRP\gamma-4-B9-IR$	EANGFYRYFYDLLQDFG	6.7	22.9	25.9	6.0	1.1
NNRPa-4-C8-IR	AVNGFYRYFNRLLESVE	8.5	16.3	16.0	1.0	1.0
NNRPa-4-C9-IR	QQDGFYRYFLDLLDEVA	5.6	20.7	19.9	1.0	1.0
NNRPu-4-C10-IR	ISQGFYGYFSRLLQDTE	6.7	16.5	17.2	1.0	1.0
NNRPα-4-E11-IR	YSTGFYRYFLDLLDGMP	0.9	20.3	20.9	1.0	1.0
NNRP()-4-F11-IR	PNGDFYRYFLDLLGSVG	7.7	21.8	21.9	1.0	1.0
NNRPβ-4-G2-IR	RHQAFYSYFRDLPRECP	19.1	24.7	25.6	1.0	1.0
NNRPß-4-G9-IR	ETEGFYRYFEELLAQVA	7.8	27.3	26.4	1.0	1.0
NNRPβ-4-H7-IR	AGDRFYDYFDRLLADYD	5.6	26.6	27.9	1.0	1.0
NNRP(8-4-H8-IR	GGSGFYRYFWGLLAEQE	3.6	23.0	24.1	1.0	1.0
NNRPy-4-B1-IR	LLNRLYRYFAGAEGWFG	17.6	24.5	23.4	1.0	1.0
NNRPy-4-B10-IR	DGSGFYRYFEMLLGSGL	5.5	18.3	19.0	1.0	1.0
$NNRP\alpha-1-B3-IR$	RDMAFYRYFSHLLESFQ	16.4	13.4	12.7	1.1	6.0
NNRPα-2-C2-IR	GNAGFYRISRILWQGTE	22.5	24.4	21.3	1.1	6.0
NNRPa-2-C3-IR	GNAGFYRYFADLMAGYE	19.6	21.7	19.7	1.1	6.0
NNRPa-2-D10-IR	YQAAFYRYFATLLSTTD	17.8	6.3	5.4	1.2	6.0
$NNRP\alpha-3-E11-IR$	GGLGFYRYFQLLLGSSG	12.9	10.8	9.6	1.1	6.0
$NNRP\alpha-3-F5-IR$	DGSGFYGYFDFVLRQFE	25.1	18.3	17.0	1.1	6.0
NNRPa-3-F8-IR	VGSGFYRYFDQLLGMYG	22.2	15.7	13.9	1.1	6.0
$NNRP\alpha - 3 - F10 - IR$	YGTDFYLYFDQLLLQYG	20.5	14.6	13.1	1.1	6.0
$NNRP\alpha - 3 - G7 - IR$	FNSSFYLYFRDLLNTVG	21.0	18.3	15.6	1.2	6.0
NNRPα-4-C2-IR	RAAGFYRYFEDLLGARG	25.5	25.1	23.3	1.1	6.0
NNRPα-4-D12-IR	TGAGFYRYFIDLLGETG	14.7	19.7	18.5	1.1	6.0
NNRP \ -4-G3-IR	RDLEFYGYFQELLRLNF	14.6	27.8	25.7	1.1	6.0
NNRP[3-4-G4-IR	GMGPFYRYFIDLLRESD	20.0	28.6	24.9	1.1	6.0
NNRPy-4-A5-IR	HGDGFYQYFMEVLRLQN	17.0	29.0	27.3	1.1	6.0

FIGURE 2P (Con't)

Clone	Sequence	E-Tag	IGFR	IR	IGFR/IR IR/IGFR	R/IGFR
Design	XXXXXX FYRYFXXLLXXXXXX	!	;	;	1	1
NNRPy-4-A12-IR	AFYRYFRDLLFSGF	4.9	16.3	14.9	1.1	6.0
NNRPy-4-B8-IR	DDRGFYRYFESLLLGSS	6.1	21.3	19.9	1.1	6.0
NNRPa-1-A5-IR	LSTSFYQYLAGLLRGDR	2.3	1.4	1.1	1.2	9.0
NNRPa-1-B7-IR	GSSGFYRYFUMLMLSQT	19.2	15.7	12.4	1.3	0.8
NNRPa-2-C7-IR	GDRGFYRYFEGLLASVG	19.6	20.0	16.5	1.2	0.8
NNRPa-2-C11-IR	NSAAFYRYFEQLLEREV	20.1	20.0	16.3	1.2	8.0
NNRPa-2-C12-IR	LSDGFYRYFEQLMGARS	14.3	10.1	8.5	1.2	8.0
$NNRP\alpha-2-D12-IR$	RSTLFYRYFQNLLEEVG	11.5	11.4	9.3	1.2	0.8
NNRPa-3-G2-IR	TRGGFYRYFEDLLOVYS	20.8	20.7	16.1	1.3	8.0
$NNRP\alpha-3-G8-IR$	GVSGFYRYF <u>Q</u> SLLDSYG	14.7	11.0	9.5	1.2	8.
NNRPa-3-G10-IR	QNDAFYSYFNSLLQAYT	18.8	16.5	13.9	1.2	0.8
NNRPa-3-G11-IR	RQQDFYRYFRQLLLEEV	12.0	10.3	8.5	1.2	0.8
$NNRP\alpha-3-G12-IR$	EGSGFYRYFEKLLL <u>o</u> sp	11.7	11.8	9.3	1.3	0.8
NNRPy-4-B2-IR	RHKAFYRYFEELLQKNV	22.8	30.3	25.3	1.2	0.8
NNRPa-1-B8-IR	GRMTRLIVRSTVISRELLHYSL	16.1	10.1	6.9	1.5	0.7
NNRPa-2-C5-IR	QALSFYRYFERLLDEVS	18.1	19.2	13.7	1.4	0.7
$NNRP\alpha-2-C9-IR$	SKSAFYRYFDELLGNSG	22.9	21.7	16.1	1.3	0.7
$NNRP\alpha-2-D2-IR$	LGGAFYRYFAQLLNSHV	26.1	26.2	17.6	1.5	0.7
NNRPa-2-D5-IR	LNSGFYGYFV <u>Q</u> LLSGH <u>Q</u>	21.7	21.1	15.4	1.4	0.7
NNRPa-2-D11-IR	S <u>Q</u> SSFYRYFESLLEDNP	12.3	10.8	7.8	1.4	0.7
$NNRP\alpha-3-E2-IR$	ADGGFYGYFAALLGSVS	24.4	25.5	18.3	1.4	0.7
$NNRP\alpha-3-E4-IR$	QNGSFYRYFIALLGDSG	23.0	22.3	14.7	1.5	0.7
$NNRP\alpha - 3 - F4 - IR$	WDTGFYRYFIELLEDRD	24.9	25.1	17.6	1.4	0.7
NNRPα-3-G4-IR	HPRDFYRYFERLLNQVD	20.9	20.4	14.1	1.5	0.7
NNRPα-3-H4-IR	DGGAFYRYFMDLLGAHE	17.7	17.6	11.6	1.5	0.7
NNRPα-4-E12-IR	AGRGFYRYFEHLLAGRE	4.3	15.4	10.8	1.4	0.7
NNRPβ-4-G11-IR	SSRGFYRYFRELLADSW	9.9	18.4	13.1	1.4	0.7
NNRPβ-4-H6-IR	KYSGFYEYFNALLGRRE	2.2	16.1	11.7	1.4	0.7

FIGURE 2P (Con't)

Clone	Sequence	E-Tag	IGFR	IR	IGFR/IR IR/IGFR	R/IGFR
Design	XXXXXXEYRYFXXLLXXXXXX	ŀ	!	:	:	:
NNRPβ-4-H11-IR	DYTAFYGYFNNLLRTSG	2.3	12.4	9.0	1.4	0.7
NNRPQ-1-B1-IR	FQSSFYGYFESLLMSYK	18.8	18.7	11.5	1.6	9.0
NNRPa-2-D7-IR	DINAFYRYFEGLLWSEH	21.0	21.8	13.2	1.6	9.0
NNRPa-2-D8-IR	GGSSFYRYFEQLLAQWE	20.2	19.8	12.2	1.6	9.0
$NNRP\alpha-3-E1-IR$	SQGGFYRYFEKLLDEVT	20.0	20.5	12.9	1.6	9.0
NNRPa-3-E5-IR	RSGLFYRYFEELLQGAI	20.0	24.5	15.5	1.6	9.0
NNRPa-3-H3-IR	QGGGFYHYFLSLLEEVG	19.8	19.1	12.2	1.6	9.0
NNRPa-3-H5-IR	WRGAFYRYFQTLLSDEG	19.9	18.0	11.1	1.6	9.0
NNRPα-1-A3-IR	AAGFYGYFYSLLGD <u>Q</u> T	24.4	14.9	7.9	1.9	0.5
NNRPa-3-E6-IR	RNSGFYRYFQHLVSEWE	23.1	19.0	9.6	2.0	0.5
NNRPG-3-F9-IR	QHRLFYSYFAELLGRDT	21.1	18.8	9.6	1.9	0.5
NNRPa-3-G6-IR	QIDEFYRYFADQLRGFA	22.4	17.7	9.0	2.0	0.5
NNRPa-3-H9-IR	LGGGFYRYFNLLVMGSG	18.3	13.1	6.9	1.9	0.5
NNRPa-1-A8-IR	GDRAFYRYFQRQLEGWG	16.9	13.8	5.7	2.4	0.4
NNRPa-1-A9-IR	CEDAFYRYFVNLLGQGC	16.5	15.2	5.6	2.7	0.4
NNRPa-2-D6-IR	NYSQFYRYFEMLLEGDV	19.4	18.5	6.8	2.7	0.4
$NNRP\alpha-3-F6-IR$	VGDAFYRYFQGLLRQDQ	22.8	19.5	7.9	2.5	0.4
NNRPα-3-H2-IR	MHGSFYRYFQDLLQAPP	19.9	18.9	8.5	2.2	0.4
NNRPα-1-B6-IR	DVGDFYRYFGLLLTSDR	14.1	11.5	3.9	3.0	0.3
NNRPα-2-C6-IR	NSAAFYGYFSQLLAQIR	18.4	19.2	4.1	4.7	0.2
NNRPy-4-A1-IR	IIGGFYSYFNSVLRLGT	7.6	10.9	1.8	6.0	0.2
NNRPy-4-A7-IR	RFDPFYSYFVNLLGASA	2.5	6.3	1.3	4.9	0.2
NNRPy-4-A9-IR	EGSGFYGYFFSLLGLQG	3.0	10.0	1.4	7.1	0.1
NNRPy-4-B11-IR	LKDGFYDYFWQRLHLGS	4.1	18.7	1.2	15.5	0.1

		Ratios ov	Ratios over Background	pun	Comparisons	sons
Clone		E-Tag I	IGFsR	R	ICFR/IR IR/ICFR	R/IGFR
Design		1	:	:		:
R20-4-F9-IGFR	PLAELWAYFEHSEQGRSSAH	33.1	19.3	1.0	19.3	
R20-4-H4-IGFR	PVLSGLLRYFAGGPLGQPQS	24.1	5.6	3.2	1.8	
R20-4-F9-IGFR	GGYLDDLWHYFRDGQALQPW	2.5	2.4	1.4	1.7	9.0
R20-4-D6-IGFR	VDQRQGGWLLALENYFRSTV	6.1	2.9	1.9	1.5	0.7
R20-4-G2-IGFR	DVPAGGLLRQMWVYFRDSDP	6.3	2.2	2.0	1.1	6.0

Ratios over Background Comparisons	E-Tag IGFsR IR IGFR/IR IR/IGFR		35.5 32.8 17.9 1.8 0.5
	Sequence	XXXXCXXXXXXXXXXXXXXXXX	RRVACTQADGLLCESDPLKALLSYF
	Clone	Design	20C-3-F3-IGFR

		Katios ov	Katios over Background	nug	Comparisons	risons	
Clone	Sequence	E-Tag	IGFSR	R	IGFR/IR	IR/IGFR	
Design	XXXLXXLXXYFXXXXX	:	;	;	•	;	
rB6-4-E7-IR	LDPLDALLQYFWSVPGH	26.4	1.0	15.5	0.1	15.5	
rB6-4-A12-IR	LDALDRLMRYFEERPSL	34.9	1.0	12.0	0.1	12.0	
rB6-3-E6-IR	ADELEWLLDYFMHQPRP	9.0	1.0	4.8	0.2	4.8	
rB6-4-E11-IR	DOELGWLRGYFEWTARD	31.2	1.6	5.9	0.3	3.7	
rB6-4-F12-IR	DGVLEELFSYFSATVGP	30.4	1.0	3.4	0.3	3.4	
rB6-4-D11-IR	PMNLSELWDYFRLKPGR	41.9	15.7	30.2	0.5	1.9	
rB6-4-A8-IR	DSILRELRDYFAPYSHC	25.6	2.4	4.6	0.5	1.9	
rB6-4-E8-IR	DDALEWLLNYFQNGHVQ	33.0	9.7	15.9	9.0	1.6	
rB6-4-B9-IR	GDILDALLRYFEFGVDT	42.7	17.2	21.7	0.8	1.3	
rB6-3-A6-IR	GDQLAWLLAYFQSDGSD	32.3	2.9	2.8	1.0	1.0	
rB6-4-C7-IR	DGVLEGLLSYFTSTNSH	31.4	2.6	2.3	1.1	6.0	
rB6-4-H12-IR	ARPLDWLLDYFKQGARG	26.0	10.0	7.2	1.4	0.7	
rB6-3-C6-IR	DDMLRQLWLYFEASAGG	34.2	19.1	12.8	1.5	0.7	
rB6-4-G12-IR	DPWLAWLGRYFGETATG	37.7	6.1	3.1	2.0	0.5	
rB6-4-G12-IR	DPTLFGLLRYFQESGIA	33.3	7.6	3.5	2.2	0.5	
rB6-4-C11-IR	MDPLRGLLMYFSQGGLV	26.6	18.7	4.7	4.0	0.3	
rB6-4-G8-IR	DGLLWQLWDYFALSEHR	37.3	7.4	1.3	5.7	0.2	
rB6-4-B8-IR	DNWLSALMAYFMGSGES	31.1	28.6	1.0	28.6	<0.1	
rB6-4-D7-IR	DDVLNYLLGYFRQSDGL	24.1	29.4	1.0	29.4	<0.1	

		Ratios ov	Ratios over Background	pur	Comparisons	isons	
Clone Design	Sequence	2 - 1 - 2 - 1 - 2 - 2 - 1 - 2 - 2 - 1 - 2 - 2	iorsk :	:	ופראוא : :	ין ניין יין	
rB6-4-B10-IGFR	RPVLGWLFDYFVASDPM	33.1	26.9	1.0	26.9	<0.1	
rB6-3-E6-IGFR	RWPLSALMDYFRRSDGV	37.6	26.6	1.0	26.6	<0.1	
rB6-4-B9-IGFR	DGVLASLWRYFVSGGTL	39.2	26.3	1.0	26.3	<0.1	
rB6-3-F5-IGFR	DRQLGWLWDYFHLTDLP	33.2	15.6	1.0	15.6	0.1	
rB6-3-B6-IGFR	DGILGLLMAYFVES?RV	37.4	13.3	1.0	13.3	0.1	
rB6-3-D4-IGFR	QDLLGRLWLYFAETDTV	31.2	20.7	2.0	10.4	0.1	
rB6-4-D10-IGFR	SGVLADLFRYFQRHPWP	31.7	10.1	1.0	10.1	0.1	
rB6-3-D6-IGFR	DPPLGGLWTYFSRSDPG	33.9	6.6	1.0	6.6	0.1	
rB6-4-F9-IGFR	DSVLRSLYSYFASGDIA	34.3	28.3	3.0	9.4	0.1	
rB6-3-E1-IGFR	DGVLAALEAYFRHGPRD	30.5	9.3	1.0	9.3	0.1	
rB6-3-B2-IGFR	DEILGALYSYFSLSGGA	22.2	8.8	1.0	8.8	0.1	
rB6-3-D7-IGFR	QDVLGALQRYFASGEPW	31.2	7.6	1.0	7.6	0.1	
rB6-4-C11-IGFR	DSVLQYLLNHFGADSKQ	33.7	7.6	1.0	7.6	0.1	
rB6-4-F12-IGFR	NEVLEGLFSYFVY? ANG	38.1	7.3	1.0	7.3	0.1	
rB6-4-F7-IGFR	SGILGQLLRYFKGAGGG	38.6	7.3	1.0	7.3	0.1	
rB6-3-G6-IGFR	DELLDRLWQYFQVGGDL	34.0	7.1	1.0	7.1	0.1	
rB6-4-E8-IGFR	PGILLDLWRYFASAPDQ	37.6	6.9	1.0	6.9	0.1	
rB6-4-G10-IGFR	DSVLLDLYEYFSSGSSG	34.9	14.5	2.2	9.9	0.2	
rB6-4-B12-IGFR	DGMLSRLWEYFAGTNVP	36.3	28.9	4.5	6.4	0.2	
rB6-3-B5-IGFR	DVILGGLWDYFASGGGH	17.2	6.1	1.0	6.1	0.2	
rB6-3-C5-IGFR	GGVLAALERYFRVSAGD	38.7	15.8	2.9	5.4	0.2	
rB6-4-B8-IGFR	DEVLGRLWAYFAQESLG	31.9	22.0	4.1	5.4	0.2	
rB6-3-H2-IGFR	DGILQSLWDYFARSPVG	31.8	22.4	4.2	5.3	0.2	
rB6-3-E5-IGFR	VDILSELWDYFRRGEEG	37.0	20.5	4.0	5.1	0.2	
rB6-3-B3-IGFR	DKVLRLLGEYFATHSKG	31.7	4.8	1.0	4.8	0.2	
rB6-4-G7-IGFR	QGPLAWLRDYFASGTRS	37.4	10.0	2.1	4.8	0.2	
rB6-3-A3-IGFR.	QDVLRSLLSYFMGNGDV	27.2	4.7	1.0	4.7	0.2	
rB6-4-E9-IGFR	DGVLSKLWEYFKIQGND	37.3	20.1	4.8	4.2	0.5	

		Ratios ove	Ratios over Background	pun	Comparisons	sons
Clone	Sequence	E-Tag	IGFsR	띰	IGFR/IR IR/IGFR	R/IGFR
Design	XXXLXXLXXYFXXXXX	:	!		:	:
rB6-3-F1-IGFR	NTILGDLWRYFAGSGGM	26.5	5.8	1.4	4.1	0.2
rB6-4-B7-IGFR	?DVLKKL?VYFELSGGA	31.1	11.4	2.9	3.9	0.3
rB6-4-C10-IGFR	GGPLQGLYTYFKQSPVC	32.2	3.7	1.0	3.7	0.3
rB6-3-A1-IGFR	DRLLSGLWAYFAGNGGS	21.1	3.5	1.0	3.5	0.3
rB6-3-F6-IGFR	DLILQSLLDYFQGRPVG	25.1	3.5	1.0	3.5	0.3
rB6-3-H5-IGFR	LALLPMLWDYFVATDPQ	35.5	18.1	5.6	3.2	0.3
rB6-4-D8-IGFR	DSILRELRDYFARTHIA	36.2	22.5	7.5	3.0	0.3
rB6-4-A8-IGFR	DGVLGQLWQYFAQYPGS	41.1	30.6	10.6	2.9	0.3
rB6-4-H8-IGFR	PPLDALWEYFTGTARD	38.7	33.0	11.5	2.9	0.3
rB6-3-E2-IGFR	DNVLEGLWSYFALWSQL	20.9	2.2	1.0	2.2	0.5
rB6-3-C2-IGFR	SAVLEYLLAYFARTGAA	31.0	2.1	1.0	2.1	0.5
rB6-4-G8-IGFR	DRALGPLWRYFMVNNGQ	38.7	5.5	2.6	2.1	0.5
rB6-3-G5-IGFR	WRILDRLLAYFKESQGD	32.8	2.0	1.0	2.0	0.5
rB6-4-C9-IGFR	DDVLVTLFQYFRASTGV	37.6	30.2	15.1	2.0	0.5
rB6-4-D11-IGFR	FDVLTWLGRYF*MNTGK	36.6	5.5	3.0	1.8	0.5
rB6-4-B11-IGFR	RDVLDGLREYFRASVGG	25.2	4.2	2.4	1.8	9.0
rB6-4-E11-IGFR	IKTLNDLLAYFRGDLDV	38.1	29.8	22.2	1.3	0.7
rB6-3-G3-IGFR	DEALLWLMRYFRGSPSP	31.6	8.7	7.2	1.2	8.0
rB6-4-H12-IGFR	ESPLDALRAYFSGRRNW	40.1	2.8	2.5	1.1	6.0
rB6-4-G12-IGFR	IQSL*DLLQYFVSSPSV	36.7	32.5	31.4	1.0	1.0
rB6-3-C4-IGFR	GGILD?LQDYFRSTDVG	37.1	6.2	13.5	0.5	2.2

		Katios ove	Katios over Background	pun	Comparisons	isons
Clone	Sequence	E-Tag	E-Tag IGFsR IR	띰	IGFR/IR IR/IGFR	IR/IGFR
Design	XXXXXXXXXXXXXXXX	;	;	;	:	;
R20B-4-F8-IR	HLCVLEELFWGASLFGYCSG	39.1	1.8	27.7	39.1 1.8 27.7 0.1 15.4	15.4

		Ratios ove	Ratios over Background	pun	Comparisons	isons	
Clone	Sequence	E-Tag	IGFsR	R	IGFR/IR	IR/IGFR	
Design	HLCVLEELFWGASLFGYCSG	1	;	:	:	:	
F815-4-H9-IR	PLCVLEELFWSTPLFGQCSY	34.9	6.0	37.6	<0.1	40.8	-
F815-3-B1-IR	HLCVLEELFWGASLFAQCVG	31.7	6.0	35.8	<0.1	39.3	
F815-3-D1-IR	DLCVLEELFWGASRFGQCSG	30.4	6.0	33.5	<0.1	38.9	
F815-3-D4-IR	HLCVLEELFWGASLFGQCAG	31.5	6.0	33.6	<0.1	38.8	
F815-3-C5-IR	HLCVVEELFWGASLFGQCSG	31.1	0.8	31.2	<0.1	38.5	
F815-4-H3-IR	NLCDLEVLFWGASLFRQCSG	33.7	1.0	37.2	<0.1	38.4	
F815-3-A5-IR	PLCVLEEQFWGASLFGQCSG	37.4	1.1	40.9	<0.1	38.3	
F815-3-D7-IR	QLCVLEELFWGASEFGQCSG	33.6	6.0	34.3	<0.1	38.3	
F815-3-A1-IR	HLCELEELFWGASLFGOCSG	29.8	6.0	34.8	<0.1	38.0	
F815-4-H4-IR	PLCVLEELFWGESLFGQCSG	31.1	6.0	32.7	<0.1	38.0	
F815-3-A3-IR	HLCVLEELFWGASRFGQCSG	32.8	1.0	39.1	<0.1	37.9	
F815-3-B3-IR	KLCVLEELFWGASLFGQCSG	33.7	1.0	37.5	<0.1	37.5	
F815-3-A4-IR	YLCVLEELSWGASLFGQCSG	32.5	1.0	36.9	<0.1	37.5	
F815-3-D2-IR	HLCVLEELLWGASLFAQCSG	31.9	6.0	34.1	<0.1	37.4	
F815-3-C4-IR	QLCVLEQLFWGESLFGQCSG	31.6	0.8	31.8	<0.1	37.4	
F815-3-B4-IR	HLCVLEELFWGGNLFSQCSG	33.8	1.0	36.7	<0.1	37.3	
F815-3-C1-IR	HLCVLEELFWGASLYGQCSG	29.0	6.0	35.0	<0.1	37.3	
F815-4-G9-IR	SLCALEEQFWGAALFGYCSG	36.5	1.0	38.9	<0.1	37.1	
F815-4-G6-IR	HLCVLEEQFWGASLFDGCAG	34.9	1.0	36.4	<0.1	37.0	
F815-3-A8-IR	QLCVLEELFWGASLFGQCSG	34.7	1.1	39.3	<0.1	36.9	
F815-4-G5-IR	PLCVLEELFWGAALFGOCSG	26.5	1.0	35.1	<0.1	36.8	
F815-3-B5-IR	HLCVLEELFWGASLFGQCTG	33.2	6.0	34.1	<0.1	36.8	
F815-4-F4-IR	PLCVLEELFWGGSLFGQCSG	28.6	0.8	30.0	<0.1	36.7	
F815-3-A2-IR	QLCVLEELVWGASLFGQCSG	32.5	1.0	36.6	<0.1	36.6	
F815-3-B6-IR	HLCVVEELIWGASLFGQCSR	31.6	6.0	32.9	<0.1	36.5	
F815-4-H7-IR	DLCVLEELFWGASLFGQCAG	33.7	1.0	37.6	<0.1	36.4	
F815-4-H8-IR	QLCVLEERFWGASLFGQCSG	35.8	1.0	37.0	<0.1	36.4	
F815-4-G7-IR	NLCVLEELFWGAALFGQCSG	33.7	1.0	35.8	<0.1	36.3	

		Ratios ove	Ratios over Background	pun	Comparisons	isons	
Clone	Sequence	E-Tag	IGFSR	IR	IGFR/IR	IR/IGFR	
Design	HLCVLEELFWGASLFGYCSG	1	;	;	;	:	
F815-3-A6-IR	QLCVLEELFWGSSLFGQCSG	34.6	1.1	39.0	<0.1	36.2	
F815-3-D3-IR	DLCVVEELFWGKSLFGQCSG	33.8	1.0	36.2	<0.1	36.2	
F815-3-B12-IR	DLCVLEELFWGSSLFGQCSG	33.2	1.0	35.7	<0.1	36.2	
F815-4-G10-IR	YLCVLEEQFWGASLFRQCFG	35.4	1.0	37.2	<0.1	36.1	
F815-4-E3-IR	HLCVLEELLWGSSLFGQCSG	32.4	1.0	35.0	<0.1	36.1	
F815-4-E6-IR	PLCGLEELFWGASLFGQCSD	33.2	1.0	34.5	<0.1	36.1	
F815-4-F1-IR	HLCVLEELFWGSSLFAQCSG	29.4	6.0	32.5	<0.1	36.0	
F815-4-G8-IR	PLCAIEELFWGAALFGQCSG	36.8	1.1	38.2	<0.1	35.9	
F815-4-H12-IR	HLCVLEEQFWGASLFGDCSG	30.5	6.0	31.9	<0.1	35.9	
F815-4-G3-IR	PLCVLEELFWGAPLFGQCSD	31.4	1.0	35.7	<0.1	35.7	
F815-3-C2-IR	DLCGLEELFWGAALFGQCTS	32.3	1.0	36.1	<0.1	35.6	
F815-4-E10-IR	QLCVLEKQLWGASLFWQCSG	35.4	1.0	36.5	<0.1	35.4	
F815-3-A12-IR	HLCVLEELFWGASLYGQCPG	32.1	1.0	36.3	<0.1	35.3	
F815-3-B8-IR	HLCVLEELFWGASLFDQCSG	33.6	1.0	35.8	<0.1	35.3	
F815-3-B2-IR	HLCVLEELLWGASLFGQCSG	31.0	1.0	35.3	<0.1	35.3	
F815-3-C3-IR	PLCVLEELFWGVSLFGQCGG	30.1	1.0	35.3	<0.1	35.3	
F815-3-A7-IR	HLCVLEELFWGASQWGQCSG	33.1	1.0	35.8	<0.1	35.2	
F815-4-F9-IR	RLCVLEEQFWGGALFGQCSG	. 33.4	1.0	35.7	<0.1	35.2	
F815-3-B7-IR	QLCVLEELFWGVSLFAQCSG	32.0	1.0	33.5	<0.1	35.0	
F815-4-E4-IR	HLCVLEELFWGAALFGQCFG	28.0	1.0	33.4	<0.1	35.0	
F815-4-E12-IR	YLCVLEELFWGASQFGQCSG	28.0	6.0	30.2	<0.1	34.8	
F815-4-F8-IR	HLCVLEELYWGASLFGQCSG	33.8	1.0	35.2	<0.1	34.7	
F815-3-C7-IR	HLCVLEERFWGVSLFGQCSG	33.9	1.0	34.7	<0.1	34.7	
F815-4-F10-IR	PLCVLEELFWGASRFGQCSG	32.7	1.0	34.2	<0.1	34.7	
F815-3-D11-IR	HLCVLEDLFWGASLFDQCSG	35.4	1.1	37.3	<0.1	34.6	
F815-4-E7-IR	HLCDLEVLFWGASLFGQCSG	30.3	0.9	32.2	<0.1	34.6	
F815-3-A10-IR	QLCILEEQFWGTSLFGYCSG	34.0	1.1	36.4	<0.1	34.3	
F815-3-B11-IR	ALCVLEELFWGESLFGQCSG	33.7	1.1	36.3	<0.1	34.2	

		Ratios ove	Ratios over Background	pun	Comparisons	isons
Clone	Sequence	E-Tag	IGFsR	IR	IGFR/IR	IR/IGFR
Design	HLCVLEELFWGASLFGYCSG	;	1	;	;	:
F815-4-F11-IR	RLCVLEERFWGAALFGQCSG	31.8	1.0	33.7	<0.1	34.2
F815-3-A9-IR	PLCVLEELFWGASLFGQCSG	31.9	1.0	35.5	<0.1	34.1
F815-4-G11-IR	SLCVLEELFWGGSRFGQCSG	32.3	1.0	34.4	<0.1	33.9
F815-3-D8-IR	HLCLLEEQFWGASLFGYCFE	32.3	1.0	33.3	<0.1	33.7
F815-4-G4-IR	HLCVLEEQFWGASLFGQCSG	23.8	1.0	32.2	<0.1	33.7
F815-3-C8-IR	DLCLLEELLWGASRFGQCSG	33.9	1.0	35.1	<0.1	33.6
F815-4-G12-IR	YLCVLEERFWGASLFGQCSG	31.7	1.0	33.5	<0.1	33.5
F815-3-D12-IR	HLCVLEEQFWGASLFGSCSG	33.3	1.0	34.8	<0.1	33.4
F815-4-F7-IR	QLCVLEEQLWGASLFGQCSG	33.3	1.0	34.3	<0.1	33.4
F815-4-F2-IR	HLCVLEELF*GESLFGYCSG	26.1	1.0	33.8	<0.1	33.3
F815-3-B9-IR	HLCVLEELFWGASLFGQCSG	33.6	1.1	35.7	<0.1	33.2
F815-4-H2-IR	PLCVLEELFWGASHFGQCSG	36.1	1.2	38.4	<0.1	33.0
F815-4-E11-IR	HLCVLEELVWGASLFGQCAG	33.2	1.1	35.4	<0.1	33.0
F815-4-G1-IR	QLCVLEELIWGASLFGQCAG	27.9	1.0	31.5	<0.1	32.8
F815-3-A11-IR	HLCGLEELFWGASLFGQCSG	37.7	1.2	40.1	<0.1	32.7
F815-4-F6-IR	HLCVLEELVWGESLFGQCSG	32.3	1.1	34.6	<0.1	32.6
F815-3-D9-IR	RLCVLEELYWGASLFGQCSG	31.4	. 1.0	32.5	<0.1	32.5
F815-3-C11-IR	RLCILEELFWGASLFGQCSG	33.4	1.1	35.7	<0.1	31.9
F815-4-G2-IR	HLCVLEELFWGATLFDQCSG	30.2	1.1	34.3	<0.1	31.4
F815-3-C9-IR	HLCFLEELFWGASMFGQCSG	29.7	1.0	31.4	<0.1	31.0
F815-4-H10-IR	HLCIVEELFWAAPLFGQCSG	31.9	6.0	27.6	<0.1	29.4
F815-4-F3-IR	HLCVLEELWWGASLFAQCSA	19.4	1.0	28.0	<0.1	28.9
F815-4-F5-IR	NLCALEELFWGASQFRYCPG	12.3	6.0	24.8	<0.1	26.8
F815-4-H1-IR	RLCVLEELFWGASIFGQCSG	6.9	1.0	15.8	0.1	16.5
F815-4-E5-IR	PLCVLEELFWGASLFGQCPG	3.5	1.0	13.6	0.1	14.0
F815-4-H5-IR	NLCVLEELFWGASLFGQCSG	5.5	1.0	13.1	0.1	13.5
F815-3-C10-IR	QLCVLG#RFWGGSLCGYCSD	3.5	1.1	5.2	0.2	4.5

		Ratios ove	Ratios over Background	pun	Comparisons	sons
Clone	Sequence	E-Tag	IGFSR	≅	IGFR/IR IR/IGFR	R/IGFR
Parental/Design	HLCVLEELFWGASLFGYCSG	39.1	1.8	27.7	0.1	15.4
F815-4-F11-IGFR	PLCFLQELFGGASLGGYCSG	33.4	12.3	1.0	12.3	0.1
F815-4-E12-IGFR	FMCGLQELVGGAALLGHCSG	33.7	15.1	1.7	8.9	0.1
F815-4-H10-IGFR	PLCFLÕELFGGGSLSGYCSG	30.1	8.5	1.0	8.5	0.1
F815-4-B7-IGFR	FLCGLEELAWGVSRSGYCFG	35.2	23.9	4.8	5.0	0.2
F815-3-B5-IGFR	PLCFLAELFSGSALGGDCSR	33.9	4.8	1.0	4.8	0.2
F815-4-D12-IGFR	PLCVLQELFGGGSLGGYCSG	33.6	7.0	1.8	3.9	0.3
F815-4-C11-IGFR	QLCVLE#LFWGACLFGYCAG	13.9	4.6	1.8	5.6	0.4
F815-4-C7-IGFR	FLCGLQELSGVASLFGQCSG	16.8	2.0	1.0	2.0	0.5
F815-4-E7-IGFR	RVCVLEQLVWGASLFGA*SG	26.9	3.8	1.9	2.0	0.5
F815-4-G7-IGFR	FYCGLEELSWGAALFGYCSG	30.4	9.0	5.0	1.8	9.0
F815-4-A10-IGFR	FLCGLEELSQGAVLFGHCYG	30.8	3.7	2.2	1.7	9.0
F815-3-B3-IGFR	HLCVLVGLFWDASLFGQCSG	7.6	1.0	2.0	0.5	2.0
F815-3-G1-IGFR	QRCIRAALFWCATLLGGCAG	20.5	1.0	2.0	0.5	2.0
F815-4-G12-IGFR	HQCIPDGMSQGAALRGNCSD	7.6	1.0	2.5	0.4	2.5
F815-3-H1-IGFR	HLCVLEDELWGVSLFGYCSS	18.4	1.0	6.8	0.1	6.8

		Ratios ov	Ratios over Background	pun	Comparisons	isons
Clone	Sequence	E-Tag	IGFSR	≅	IGFR/IR	IR/IGFR
Parental/Design	HLCVLEELFWGASLFGYCSG	39.1	1.8	27.7	0.1	15.4
F820-4-B5-IR	HLCMLEEQFWGASLFSRCSG	28.1	0.9	17.9	<0.1	21.1
F820-4-A2-IR	TCAFWKNGSGVRRCSVTAVV	34.0	1.6	22.7	0.1	13.9
F820-4-E2-IR	PLCGLKN.SGVRLCSSPALV	21.3	0.7	9.0	0.1	13.4
F820-4-D10-IR	PLCLQEELFWGASLFGYCSG	34.1	1.0	12.1	0.1	12.1
F820-4-H7-IR	PLCDLEELFWGASLFGDCPG	14.2	9.0	6.5	0.1	11.6
F820-4-G6-IR	DLCVLEELFWDGSLFASCSG	14.0	0.5	6.1	0.1	11.5
F820-4-C2-IR	PLCVLEEQLWGTALFGSCTG	38.1	1.2	11.8	0.1	6.6
F820-4-B4-IR	PLCLVEELLWGASLFSQCTG	15.1	0.7	6.4	0.1	8.7
F820-4-C7-IR	PLCDLEELYWGAALFGSCSG	46.3	2.7	22.2	0.1	8.2
F820-4-F10-IR	GLCFLEEQFWGTSLFRDCPG	14.5	9.0	4.7	0.1	8.0
F820-4-G5-IR	PLCVVEELFWGASLYGQCSG	8.8	9.0	4.4	0.1	7.5
F820-4-F2-IR	RLCVLEELFWGASRFRGCSG	11.7	9.0	4.2	0.1	7.4
F820-4-H8-IR	PLCVLEELHWGAALFGYCSG	16.0	9.0	4.7	0.1	7.3
F820-4-D7-IR	NLCVVEELFWGASLFPNCSG	14.5	0.8	5.9	0.1	7.1
F820-4-B2-IR	QLCVLEELFWGASMFEDCSG	5.0	0.4	2.4	0.2	6.9
F820-4-C3-IR	HLCVLEEQFWGASLFGQCSG	37.5	1.1	7.5	0.5	9.9
F820-4-H4-IR	PLCVLEEIYWGAALFGDCYG	21.2	1.1	6.4	0.2	5.9
F820-4-B10-IR	PLCVLEELFWGLSLDKNCS	7.5	0.7	3.7	0.5	5.6
F820-4-A5-IR	QLCVLEELFWGASLFSGCSG	5.3	0.8	4.4	0.2	5.2
F820-4-F6-IR	PLCDLEALFWGESLFGGCSG	5.7	9.0	3.0	0.2	4.9
F820-4-F1-IR	HLCVLEEMFWGTSHFDGCSG	9.1	1.0	4.7	0.2	4.7
F820-4-A3-IR	DLCVLEELFWGAPLFGLCSG	5.9	0.8	3.5	0.2	4.5
F820-4-D1-IR	DLCVLEELFWGVALYGGCSG	25.7	2.3	10.5	0.5	4.5
F820-4-F5-IR	QLCVLEELYWGASLFGHCSG	3.7	9.0	2.7	0.2	4.2
F820-4-F12-IR	HLCVLEDRFWGASLFGPCSG	11.3	9.0	2.5	0.3	3.5
F820-4-A11-IR	HLCGMEEMFWGVALFRNCSG	7.6	0.8	2.7	0.3	3.5
F820-4-E8-IR	PLCVLEQLYWGESLFVYCSG	8.0	1.2	4.3	0.3	3.5
F820-4-H3-IR	HLCLLEELFWGEALWGYCSG	17.5	5.6	9.0	0.3	3.4

		Ratios ove	Ratios over Background	pur	Comparisons	sons
Clone	Sequence	E-Tag	IGFSR	≅	IGFR/IR IR/IGFR	RIGFR
Parental/Design	HLCVLEELFWGASLFGYCSG	:	;	;	!	;
F820-4-A8-IR	QLCVMEELFWGASRFGQCSG	6.4	0.7	2.4	0.3	3.4
F820-4-G1-IR	HLCVLEELFWGASMFGQCSG	3.9	9.0	1.9	0.3	3.4
F820-4-F3-IR	QLCVLEEMFWGGSRFVQCSA	9.6	1.3	3.6	0.4	2.9
F820-4-D6-IR	PLCILEELFWGEALFDQCGA	5.4	1.2	3.2	0.4	2.6
F820-4-A1-IR	YLCVQEELFWGASLFGYCSV	25.5	2.4	6.1	0.4	2.5
F820-4-H2-IR	HLCALEEAFFGPSLFNSCQG	15.9	1.6	4.1	0.4	2.5
F820-4-F4-IR	HLCVLEERFWGASLFGQCSG	6.8	1.9	4.7	0.4	2.5
F820-4-B6-IR	QLCDLEELFWGASLFGYCPG	4.1	0.8	1.9	0.4	2.4
F820-4-B11-IR	HLCVLEERFWGASIWGSCSG	22.2	3.1	7.0	0.4	2.3
F820-4-H6-IR	QLCVLEELFWGGSLWGQCSR	4.1	1.1	2.4	0.5	2.2
F820-4-H9-IR	PLCVLEELFWGAAQFGQCSG	3.1	6.0	1.9	0.5	2.1
F820-4-D3-IR	QLCDLEERFWGVSLFGLCSG	4.6	1.3	2.5	0.5	1.9
F820-4-C1-IR	QLCVLEEVFWGASLFGLCTG	13.0	1.1	2.1	0.5	1.9
F820-4-D12-IR	QL.DLNTWSGLCLCSVTVRV	10.4	1.2	2.0	9.0	1.7
F820-4-B8-IR	DLCVLEESLWGKALFGYCSD	7.2	2.2	3.4	9.0	1.5
F820-4-C6-IR	HLCVLEEVFWGSSMFGDCSG	13.9	2.5	2.8	6.0	1.1
F820-4-C10-IR	HLCDLEELFWGASLFGDCQG	5.3	5.6	2.9	6.0	1.1
F820-4-D4-IR	QLCVLDALMWGGCRLGHQCG	3.5	2.3	2.1	1.1	6.0
F820-4-E1-IR	OLCVLEEKFWGTSLFGDCMG	1.6	1.6	1.5	1.1	6.0
F820-4-B3-IR	HLCVLEEVFWGAAQFGSCSG	15.9	9.0	5.0	1.2	0.8
F820-4-D2-IR	QLCVLEELFWGPSMFGYCSG	7.8	3.2	2.5	1.3	8.0
F820-4-C5-IR	HLCDLEELFWGASGFAQCYG	21.5	4.0	2.3	1.8	9.0

		Ratios ov	Ratios over Background	pun	Comparisons	risons	Β.
Clone	Sednence	E-Tag	IGFsR	띰	IGFR/IR	IR/IGFR	
Design	HLCVLEELFWGASLFGYCSG	!	1 1	;	!	;	
A6L-3-C4-IR	DLCVLEERFWGASLFGQCSG	36.9	1.0	40.5	<0.1	42.5	
A6L-3-D7-IR	QLCVLEELHWGASLFGYCSG	38.6	1.0	40.1	<0.1	40.7	
A6L-3-A1-IR	PLCVLEEQFWGASLFGQCSG	39.6	1.1	44.8	<0.1	40.6	
A6L-3-C1-IR	YLCDLEERFWGASLFGQCSS	37.3	1.0	40.3	<0.1	40.3	
A6L-3-D5-IR	HLCLLEERFWGSSQFGFCSG	42.9	1.1	44.4	<0.1	40.2	
A6L-3-A4-IR	HLCVLEELFWGASQFGQCSG	26.7	1.1	42.2	<0.1	40.2	
A6L-3-D3-IR	HLCYLEERFWGASLFGQCSG	34.6	6.0	36.9	<0.1	39.8	
A6L-3-B1-IR	HLCVMEELFWGTSLFGQCTG	33.9	1.0	38.7	<0.1	39.3	
A6L-3-B5-IR	HLCVLEERFWGASLFGQCSG	3,5.3	1.1	42.4	<0.1	38.6	
A6L-3-B2-IR	HLCVLEERFWGASLFSQCSG	38.1	1.1	42.7	<0.1	37.7	
B6H-4-G12-IR	HLCVLEELFWGASLFGQCSG	31.6	1.1	39.6	<0.1	36.7	
B6C-4-H10-IR	QLCLLEELFWGAASFGQCSG	38.5	1.1	41.1	<0.1	36.5	
B6H-4-G8-IR	HLCVLEEMFWGASLFGQCSG	31.7	1.1	39.7	<0.1	36.2	
A6L-3-D6-IR	HLCDLEELFWGASLFSQCSR	35.5	1.0	37.2	<0.1	36.1	
B6C-4-F1-IR	QLCVLEELFWGASQFGYCSG	32.9	1.1	38.7	<0.1	35.8	
B6C-4-H3-IR	<u> </u>	37.4	1.2	40.5	<0.1	34.8	
B6H-4-E8-IR	QLCVLEELFWGASLFGYCSG	30.2	1.0	35.7	<0.1	34.3	
B6C-4-G1-IR	HLCVLEEWFWGDSLFGQCSR	34.9	1.2	40.2	<0.1	33.7	
B6H-4-E9-IR	HLCVLEERFWGASLFGQCSG	34.4	1.2	38.8	<0.1	33.2	
B6C-4-F5-IR	QLCELEEVFWGASLFDYCSG	34.7	1.2	39.6	<0.1	32.8	
B6C-4-F11-IR	HLCVLEELFWGASRFGQCSG	34.0	1.2	37.2	<0.1	31.7	
B6C-4-E6-IR	HLCVLEELFWGASLFGQCSA	32.3	1.2	37.4	<0.1	30.6	
B6C-4-E12-IR	HLCVLEELIWGASRFGQCSG	30.9	1.1	33.3	<0.1	30.2	
B6C-4-G10-IR	HLCVLEELFWGGSLFIQCSG	33.0	1.3	40.3	<0.1	30.1	
B6C-4-F8-IR	QLCVLEEQFWGASLFGNCSG	36.4	1.4	39.8	<0.1	29.3	
20C-3-B5-IR	HLCVLEERFWGAALFGQCSG	26.6	1.1	32.5	<0.1	29.5	
B6C-4-G3-IR	HLCILEEMFWGASLFGQCGG	34.0	1.4	38.8	<0.1	28.3	
20C-3-B7-IR	PLCVLEELVWGASLFVQCSG	29.5	1.2	32.9	<0.1	28.3	

		Ratios ove	Ratios over Background	pun	Comparisons	isons	
Clone	Sequence	E-Tag	IGFSR	路	IGFR/IR	IR/IGFR	
Design	HLCVLEELFWGASLFGYCSG		;	;	;	,	
20C-3-B4-IR	NLCVLEELFWGESLFGQCSG	28.9	1.1	31.1	<0.1	28.0	
20C-3-C11-IR	HLCVLEEQFWGGSLFGYCSR	30.2	1.1	31.0	<0.1	27.7	
B6C-4-G2-IR	HLCFLEEVFWGAALFAQCSG	29.4	1.3	35.3	<0.1	27.5	
20C-3-B8-IR	HLCDLEVLFWGSALFGQCSG	28.5	1:1	31.2	<0.1	27.4	
20C-3-C10-IR	HLCVMEELFWGASLFGQCSG	32.1	1.2	33.6	<0.1	27.1	
20C-3-B6-IR	HLCVLEERFWGASLFWQCSG	29.7	1.2	31.9	<0.1	26.7	
A6L-3-A3-IR	HLCVLEEQYWGESLFGYCSG	14.4	1.1	.28.3	<0.1	26.5	
A6L-3-B3-IR	PLCVLEEQFWGASLFAYCSS	38.7	1.7	43.4	<0.1	26.3	
20C-3-A5-IR	QLCVLEELFWGESLFAQCLG	22.9	1.1	27.6	<0.1	26.0	
20C-3-B11-IR	HLCVLEELFWGQSLFGHCSD	30.0	1.3	32.7	<0.1	25.8	
20C-3-B3-IR	HLCVLEELVWGASLFGFCSG	29.3	1.2	31.2	<0.1	25.7	
20C-3-C12-IR	LLCVLEEQFWGASLFGQCSG	29.6	1.3	31.8	<0.1	24.8	
20C-3-C3-IR	RLCVLEELFWGESLFGQCSG	30.1	1.2	30.1	<0.1	24.3	
20C-3-C2-IR	HLCVLEEMFWGASLFGNCSG	29.9	1.3	29.8	<0.1	23.8	
20C-3-A11-IR	ELCFLEELFWGASLFGQCSG	25.9	1.2	27.4	<0.1	23.0	
20C-3-A4-IR	HLCVLEELFWGASLYGQCSS	27.2	1.2	27.5	<0.1	22.9	
20C-3-A6-IR	HLCVLEELFWGASLFAQCPG	26.1	1.2	27.5	<0.1	22.8	
B6C-4-E4-IR	NLCVLEELFWGASEFGQCSG	34.5	1.7	39.1	<0.1	22.7	
20C-3-A9-IR	DLCVLEEQLWGASLFRYCSG	29.7	1.3	29.3	<0.1	22.7	
B6C-3-C5-IR	HLCVLEEGFWGVALFGNCSG	33.5	1.7	37.7	<0.1	22.5	
20C-3-B1-IR	HLCVLEVQIWGASLFGQCSG	30.2	1.2	26.7	<0.1	22.0	
20C-3-A10-IR	HLCVLEERFWGGALFGQCTA	29.0	1.3	28.5	<0.1	21.5	
20C-4-F1-IR	HLCDLEELFWGASLFGQCSG	29.1	1.4	29.5	<0.1	20.7	
20C-4-E1-IR	QLCVLEELFWGTSLFAGCSG	28.3	1.4	29.7	<0.1	20.6	
20C-3-B12-IR	QLCGLEELFWGASLFGYCSA	27.0	1.3	25.8	<0.1	20.2	
20C-3-A8-IR	HLCVLEELFWGASLFGQCSS	21.1	1.1	21.2	0.1	20.0	
20C-3-A7-IR	FLCVLEELYWGASQFGQCSG	21.9	1.3	23.0	0.1	18.3	
B6C-4-E10-IR	HLCVLEEQFWGASLFGYCSG	35.2	2.2	38.0	0.1	17.5	

Figure 4E (Con't)

		Ratios ove	Ratios over Background Comparisons	pur	Compa	isons	
Clone	Sequence	E-Tag	IGFsR	R	IGFR/IR IR/IGFR	IR/IGFR	
Design	HLCVLEELFWGASLFGYCSG	:	:	;		:	
20C-3-A1-IR	RLCALEELFWGASLFGQCSG	21.0	1.1	17.6	0.1	16.6	
20C-3-C1-IR	HLCVLEELFWGAALFHQCSG	30.6	1.4	21.9	0.1	16.1	
A6L-3-D2-IR	RLCVLEEQFWGASLFGQCSG	7.0	1.1	14.9	0.1	14.1	
B6C-4-G12-IR	QLCVLEELFWGSSRLGYCSG	31.1	2.5	33.5	0.1	13.6	
B6H-4-F9-IR	DLCVLEELFWGASLFGQCSG	39.3	3.6	43.1	0.1	12.1	
B6C-4-E3-IR	QLCLLEEQFWGGSLFGQCSG	34.6	5.3	40.0	0.1	7.6	
20C-3-B10-IR	HLCVLEELFWGTSLFGQCSG	29.9	16.9	31.7	0.5	1.9	
20C-3-A3-IR	RLCVLEELVWGASLFDQCSR	28.4	19.1	25.3	0.8	1.3	

		Ratios ove	Ratios over Background	pun	Comparisons	ons
Clone	Sequence	E-Tag	IGFSR	-	IGFR/IR IRVIGFR	VIGFR
Parental/Design	HLCVLEELFWGASLFGYCSG	39.1	1.8	27.7	0.1	15.4
F815-4-D10-IGFR	PLOALCEKFFGAWMFGYCSG	31.2	13.9	1.0	13.9	0.1
F815-4-H11-IGFR	HLQVLCELFGGVYLFGYCSG	27.2	19.2	1.7	11.3	0.1
F815-4-C8-IGFR	PLFDLCELFGGASLSGYCYG	35.4	17.4	1.6	10.9	0.1
F815-4-E8-IGFR	HL*ALCELFGGVWSFGYCVG	29.5	16.9	1.7	6.6	0.1
F815-4-E11-IGFR	QLGVLCEMFGGAFRLGYCQG	36.6	25.7	2.7	9.5	0.1
F815-4-A7-IGFR	HLQDLCELFGGAYLFGYCSG	29.6	16.0	3.8	4.2	0.2
F815-3-D3-IGFR	QLQVLCELFGGAVSLRLLLW	33.7	3.5	1.0	3.5	0.3
F815-4-F7-IGFR	PLGVLCEQFGGAFRFGYCSG	33.6	18.9	9.6	1.9	0.5
F815-4-A9-IGFR	PL*GLCELFGGASLFGYCSS	7.5	1.7	2.3	0.7	1.4
F815-4-B12-IGFR	DLRVLCELFGGAYVLGYCSE	35.1	3.7	12.6	0.3	3.4

		Ratios ov	Ratios over Background		Comparisons	isons	
Clone	Sequence	E-Tag	IGFSR	R	IGFR/IR I	RIGFR	
Design	XXXXXXXXXXXXXXXX	1		;	:	:	
R20a-3-20A4-IR	EIEAEWGRVRCLVYGRCVGG	50.2	50.2 1.6 23.1 0.1 14.4	23.1	0.1	14.4	
R20 3-4-A7-IR	EIEAEWGRVRCLVYGRCVGG	44.2	1.3	24.0	0.1	18.5	
R20[3-4-D8-IR	WLDQEWAWVQCEVYGRGCPS	44.8	1.4	24.2	0.1	17.3	

- Arithmen

		Ratios ove	Ratios over Background	pun	Comparisons	sons
Clone	Sequence	E-Tag	IGFsR	~	IGFR/IR I	IR/IGFR
Parental/Design	WLDQEWAWVQCEVYGRGCPS	44.8	1.4	24.2	<0.1	17.3
D815-4-A8-IR	WLDLEWAQVQCEVYGRGCPS	48.0	1.0	48.4	<0.1	48.4
D815-4-D10-IR	WLDQEWAQVQCEVFGRGCPS	49.2	1.0	48.2	<0.1	48.2
D815-4-D9-IR	WLDQEWQQVQCQVYGRGCTS	47.5	1.0	48.0	<0.1	48.0
D815-4-A11-IR	RLDEEWARVQCEVWGRGCRS	47.9	1.0	48.0	<0.1	48.0
D815-4-E12-IR	WLEQEWAWIQCEVYGRGCPS	49.0	1.0	47.6	<0.1	47.6
D815-4-B7-IR	WLEQEWAQVQCEVYGRGCPS	45.4	1.0	47.2	<0.1	47.2
D815-4-D11-IR	WLDEEWEWIQCKVYGRGCPA	49.5	1.0	47.0	<0.1	47.0
D815-4-D12-IR	WLEQEWAWVQCEVYGRGCQS	48.1	1.0	46.6	<0.1	46.6
D815-4-F8-IR	WLDQEWAWIQCEVYGRGCPA	47.8	1.0	46.4	<0.1	46.4
D815-4-A9-IR	SLDWEWAWLQCEVYGRGCPS	47.7	1.0	45.8	<0.1	45.8
D815-4-E9-IR	WLEQEWEQVRCLVYGRGCPP	47.8	1.0	45.8	<0.1	45.8
D815-4-B10-IR	WLDQEWAWVQCEVYGRGCPY	49.0	1.0	45.6	<0.1	45.6
D815-4-H8-IR	WLDQEWAGVLCEVYGRGCPS	49.0	1.0	45.6	<0.1	45.6
D815-4-E10-IR	SLDKEWEWVLCVVYGRGCPS	47.0	1.0	45.6	<0.1	45.6
D815-4-D7-IR	WLEQEWAQVQCEVYGRGCRS	44.5	1.0	45.4	<0.1	45.4
D815-4-G9-IR	WLEEEWAQVQCAVYGRGCSS	44.2	1.0	44.2	<0.1	44.2
D815-4-G12-IR	WLDQEWALVQCEVYGRGCPS	44.3	1.0	43.7	<0.1	43.7
D815-4-E11-IR	WLDQEWAWVQCEVYGRGCPS	45.5	1.0	43.0	<0.1	43.0
D815-4-H7-IR	WLEQEWAWVQCEVYGRGCAS	46.2	1.0	43.0	<0.1	43.0
D815-4-F12-IR	WLDQEWAWVECEVYGRRCPS	47.2	1.0	42.6	<0.1	42.6
D815-4-E8-IR	WLDQEWAWVECQVYGRGCPS	47.9	1.0	42.6	<0.1	42.6
D815-4-F9-IR	QLDQEWAWVLCKVYGRGCPS	46.4	1.0	41.8	<0.1	41.8
D815-4-A10-IR	WLDHE*AWVQCEVYGRGCPS	47.3	1.0	41.2	<0.1	41.2
D815-4-C7-IR	QLEQEWAWVRCEVYGRGCSS	37.7	1.0	40.0	<0.1	40.0
D815-4-H10-IR	WLDQEWAWVQCQVYGRGCLS	47.0	1.0	39.8	<0.1	39.8
D815-4-C9-IR	WLDQEWAWVRCEVYGLGCPS	44.2	1.0	39.8	<0.1	39.8
D815-4-F11-IR	WLDQEWAVMKCELYGRGCPS	40.4	1.0	39.5	<0.1	39.2
D815-4-H12-IR	WLEQEWAWVQCEVYGRGCLS	45.4	1.0	38.6	<0.1	38.6
D815-4-A7-IR	SLDQEWAWVQCEVYGRGCLS	37.3	1.0	37.3	<0.1	37.3
D815-4-H11-IR	WLDHEWAWVQCEVYGRGCTS	2.4	1.0	37.2	<0.1	37.2
D815-4-F7-IR	WLDVEWAWVQCEVYGRGCPS	32.4	1.0	34.7	<0.1	34.7

		Ratios over	Ratios over Background	pun	Comparisons	sons	
Clone	Sequence	E-Tag	IGFSR	2	IGFR/IR II	VIGFR	ď
Parental/Design	WLDQEWAWVQCEVYGRGCPS) !	1 1	:	;		_
D815-4-G8-IR	QLDQEWARVRCEVWGRGCSS	27.8	1.0	33.6	<0.1	33.6	
D815-4-G7-IR	WLDLEWAQVQCKVYGRGCPS	34.7	1.0	32.3			
D815-4-G11-IR	WLDEEWAWVQCQVYGRGCPS	30.7	1.0	28.6			
D815-4-E7-IR	WLDQEWAWVQCEVWGRGCAF	33.0	1.0	26.4			
D815-4-A12-IR	WLDREWAQVQCEVYGRGCLS	28.4	1.0	19.0			
D815-4-B11-IR	WLDAEWEWVQCEVYGRGCRP	22.1	1.0	18.8			
D815-4-D8-IR	SLDREWAYVQCQVYGRGCSS	20.8	1.0	14.6	0.1	14.6	

		Ratios over	Ratios over Background	pun	Comparisons	sons
Clone	Sequence	E-Tag	IGFsR	프	IGFR/IR I	IR/IGFR
Parental/Design	WLDQEWAWVQCEVYGRGCPS	44.8	1.4	24.2	0.1	17.2
D820-3-H2-IR	RLDLEWANIQCEVYGRGCPS	23.9	1.0	40.0	<0.1	40.0
D820-3-C4-IR	WLEQEWARVQCEVYGRGCSS	31.0	1.0	39.5	<0.1	39.5
D820-3-C3-IR	WLEQEWILVECEVYGRGCPT	35.2	1.0	39.4	<0.1	39.4
D820-3-G6-IR	WLEQEWAQVQCEVWGRGCPS	33.8	1.0	38.8	<0.1	38.8
D820-3-D2-IR	WLDQEWEWIQCEVYGRGCPL	35.6	1.0	37.8	<0.1	37.8
D820-3-D3-IR	LLDEEWAQIECEIYGRGCPS	34.8	1.0	37.7	<0.1	37.7
D820-3-B5-IR	ALEEEWAWVQCEVYGRGCHF	34.1	1.0	37.1	<0.1	37.1
D820-3-E2-IR	C?EQEWGLVQCEVYGRGCPS	34.4	1.0	37.0	<0.1	37.0
D820-3-B3-IR	WLEQEWAYVQCEVYGRGCPS	33.6	1.0	36.7	<0.1	36.7
D820-3-B6-IR	WLEHEWAQVQCEVWGRGCPY	31.2	1.0	36.6	<0.1	36.6
D820-3-D4-IR	WLEQEWAEVRCEVYGRGCPR	32.0	1.0	36.2	<0.1	36.2
D820-3-C2-IR	? LEQEWAWVQCEVYGRGCPS	33.7	1.0	35.6	<0.1	35.6
D820-3-F6-IR	WLEQEWAGIQCKVYGRGCPS	30.8	1.0	35.2	<0.1	35.2
D820-3-D5-IR	RLEQEWAQVQCEVWGRGCLP	30.5	1.0	34.8	<0.1	34.8
D820-3-F5-IR	QLDHEWAGIQCEVWGRGCPS	29.8	1.0	34.6	<0.1	34.6
D820-3-H3-IR	WLEQEWAQIQCEVYGAGCRS	30.2	1.0	33.8	<0.1	33.8
D820-3-G2-IR	SLEQEWAWVQCVVYGRGCPI	31.3	1.0	33.0	<0.1	33.0
D820-3-H6-IR	WLEQEWDQVLCEVYGRGCPY	30.3	1.0	32.2	<0.1	32.2
D820-3-F3-IR	WLEQEWAQV?CEVYGRGCA?	28.6	1.0	30.7	<0.1	30.7
D820-3-B4-IR	WMDQEWAWVQCEVYGRGCPS	33.1	1.0	30.5	<0.1	30.5
D820-3-C5-IR	QLDQEWAWIQCEVYGRNCRT	29.1	1.0	30.3	<0.1	30.3
D820-3-F4-IR	TLEQEWAQVICEVYGRGCLS	25.9	1.0	29.5	<0.1	29.5
D820-3-H5-IR	RLEQEWAQVQCEVWGRGCLS	26.3	1.0	28.6	<0.1	28.6
D820-3-A6-IR	WLDQEWALVQCEVYGRGCPA	24.8	1.0	26.0	<0.1	26.0
D820-3-A2-IR	WLDQEWAQIQCHVWGRGCPA	23.7	1.0	25.6	<0.1	25.6
D820-3-G5-IR	WLEQEWAWVQCEVYGRGCPS	22.6	1.0	25.0	<0.1	25.0
D820-3-G3-IR	RLEEEWAWVQCQVYGRGCPS	22.2	1.0	23.9	<0.1	23.9
D820-3-E3-IR	WLEQEWVRIQCEVYGRGCPS	20.6	1.0	22.7	<0.1	22.7

		Ratios over	Ratios over Background	pun	Comparisons	isons
Clone	Sequence	E-Tag	IGFSR	X	IGFR/IR	IGFR/IR IR/IGFR
Parental/Design	WLDQEWAWVQCEVYGRGCPS	44.8	1.4	24.2	0.1	17.2
D820-3-E5-IR	WLEQEWTWVQCEVYGCGCPS	25.9	1.0	22.6	<0.1	22.6
D820-3-D1-IR	WLEKEWAGVQCEIYGRGCPS	27.3	1.0	22.4	<0.1	22.4
D820-3-E1-IR	WLEEEWAWVRCEVYGRGCOS	22.4	1.0	21.9	<0.1	21.9
D820-3-F1-IR	WLEHEWAQIQCELYGRGCTY	22.0	1.0	21.0	<0.1	21.0
D820-3-B2-IR	ALEEEWAWVQCEVYGRGCPS	13.1	1.0	18.4	0.1	18.4
D820-3-A3-IR	WLEQEWAQVQCEVYGRGCPS	23.5	1.0	18.4	0.1	18.4
D820-3-H4-IR	WLDDEWAQIQCEIYGRGCQS	25.6	1.0	17.5	0.1	17.5
D820-3-G1-IR	QLEEEWAGVQCEVYGRECPS	14.5	1.0	16.3	0.1	16.3
D820-3-C1-IR	WLEQEWLLVQCGVYGRGCPS	27.8	1.0	13.9	0.1	13.9
D820-3-A1-IR	WLDQEWAWIQCEVYGRGCRS	14.7	1.0	12.8	0.1	12.8
D820-3-A5-IR	WLEQEWAQVQCEVSGRGCPS	6.4	1.0	6.3	0.2	6.3
D820-3-H1-IR	W?DQEWALIQCEVYGRGCPS	13.7	1.0	6.2	0.2	6.2
D820-3-A4-IR	SLDEEWAGVLCEVYGRGCPF	6.0	1.0	4.3	0.2	4.3
D820-4-E12-IR	SVDQELEWLMCHFQGRVCPS	34.9	9.0	10.9	0.8	1.2
D820-4-B12-IR	WLEQERAWIWCEIQGSGCRA	32.2	9.8	1.0	8.6	0.1

		Ratios ov	Ratios over Background	pur	Comparisons	sons	
Clone	Sequence	E-Tag	IGFsR		IGFR/IR	IR/IGFR	
Parental/Design	WLDQEWAWVQCEVYGRGCPS	44.8	1.4	24.2	0.1	17.3	
D820-3-D5-IGFR	WVNQALGGVQSDVQGRRCQS	29.6	3.8	1.0	3.8	0.3	
D820-3-E4-IGFR	LLDHEWPWVGCEVCGRGSLS	27.1	3.2	1.0	3.2	0.3	
D820-3-C5-IGFR	WLHQELAWVRGEGYPRGRRS	25.0	3.1	1.0	3.1	0.3	
D820-3-F4-IGFR	WLGHDWAWIOCEVYGLGCPC	3.9	2.7	1.0	2.7	0.4	
D820-3-F6-IGFR	WIDQEGVRVÕCEA*GRAFPS	26.7	5.6	1.0	5.6	0.4	
D820-3-G4-IGFR	WRDEEWAWVQGVVQGRGWPA	3.8	5.6	1.0	2.6	0.4	
D820-3-E2-IGFR	RLGVEWSWFQRKVYGRDSTS	15.3	5.6	1.0	5.6	4.0	
D820-3-G6-IGFR	WLAOGWAGVOCVVYGRGCRN	20.3	2.4	1.0	2.4	0.4	
D820-4-E11-IGFR	WLEEE*AGIQCQV?GRGCPS	12.6	1.0	3.0	0.3	3.0	
D820-4-H11-IGFR	WLDOEWEWVOCEVWGRGCLS	8.1	1.0	4.6	0.2	4.6	
D820-4-D11-IGFR	RLEÕEWALIQCEVYGRGCPS	4.5	1.0	5.3	0.2	5.3	
D820-4-A8-IGFR	WLEEEWAQVQCQVYGRGCAS	3.2	1.0	5.5	0.2	5.5	
D820-4-F9-IGFR	WLDLE*EWLQCEVYGRGCAT	9.4	1.0	5.8	0.2	5.8	
D820-4-C8-IGFR	WLEQEWVQVRCEVYGRGCPS	11.6	1.0	5.9	0.2	5.9	
D820-4-D9-IGFR	WLEEEWAQVQCEVYGRGCPS	10.1	1.0	8.9	0.1	8.9	
D820-4-D7-IGFR	WLDQEWARVQCEVWGRGCTY	34.1	3.5	33.4	0.1	9.5	
D820-4-H9-IGFR	YLD?EWAWVQCEVYGLGCQS	18.4	1.0	10.1	0.1	10.1	
D820-4-E10-IGFR	WLDVE*AWVQCEVWGRGCPS	26.7	5.6	27.0	0.1	10.4	
D820-4-E7-IGFR	WLEQEWER?QCEVYGRGCPP	31.9	3.0	32.2	0.1	10.7	
D820-4-H8-IGFR	WLEEEWAQVQCEVYGRGCLS	16.1	1.0	11.7	0.1	11.7	
D820-4-A11-IGFR	WLDQEWAWIQCEVYGRGCPS	8.0	1.0	12.5	0.1	12.5	
D820-4-C9-IGFR	?LEHEWAQIQCEV?GRGCQS	19.6	1.0	14.9	0.1	14.9	
D820-4-E9-IGFR	WL?QEWAWIQCEVYGRGCPF	19.3	1.0	17.3	0.1	17.3	
D820-4-B10-IGFR	WLD?EWAWVQCEVYGRGCPS	19.3	1.0	21.5	<0.1	21.5	
D820-4-F10-IGFR	GLEQGCPWVGLEVQCRGCPS	27.8	1.0	25.7	<0.1	25.7	
D820-4-B9-IGFR	WLEEEWAWVQCEVYGHGCPS	31.7	1.0	26.5	<0.1	26.5	
D820-4-G8-IGFR	WLDQEWAQIQCEVYGRGCSS	25.6	1.0	29.3	<0.1	29.3	

		Ratios ove	Ratios over Background	pun	Comparisons	isons
Clone	Sequence	E-Tag	IGFSR	꿈	IGFR/IR IR/IGFR	R/IGFR
Parental/Design	WLDQEWAWVQCEVYGRGCPS	44.8	1.4	24.2	0.1	17.3
D820-4-G9-IGFR	WLDQEWAQVQCEVWGRGCPS	36.8	1.0	29.6	<0.1	29.6
D820-4-C10-IGFR	WLDLEWEFVQCEVYGRGCPT	32.6	1.0	31.3	<0.1	31.3
D820-4-A9-IGFR	WLEQEWASVQCEVYGRGCPS	20.4	1.0	31.4	<0.1	31.4
D820-4-B8-IGFR	WLDLEWEQIKCKVYGRGCPF	31.1	1.0	32.7	<0.1	32.7
D820-4-F8-IGFR	WLEQEWAQIQCQIYGRGCPS	28.3	1.0	32.9	<0.1	32.9
D820-4-H7-IGFR	WLEQEWALVLCEVYGHGCPA	34.1	1.0	32.9	<0.1	32.9
D820-4-E8-IGFR	WLEQEWAQIQCEVWGRGCSS	26.6	1.0	33.2	<0.1	33.2
D820-4-G10-IGFR	WLE?EWEWVQCEVYGRGC?S	37.5	1.0	33.2	<0.1	33.2
D820-4-D10-IGFR	WLEQEWAQVQCDVYGRGCPS	36.6	1.0	33.5	<0.1	33.5
D820-4-D8-IGFR	WLEQE*ARVQCEVWGRGCPS	23.7	1.0	34.6	<0.1	34.6
D820-4-A10-IGFR	WL?QEWARVHCEVWGRP?QC	29.4	1.0	35.5	<0.1	35.5
D820-4-B7-IGFR	PLEHEWAWVQCVVYGRGCRS	35.4	1.0	36.9	<0.1	36.9
D820-4-E12-IGFR	SLE?EWAWVQCEV?GRGCP?	37.0	1.0	37.0	<0.1	37.0
D820-4-H10-IGFR	WLDQEWVRVQCEVWGRGCPS	36.8	1.0	37.1	<0.1	37.1
D820-4-F12-IGFR	SLDKEWAWVKCEVYGRGCPS	36.9	1.0	37.3	<0.1	37.3
D820-4-F7-IGFR	LGDQEWAWVEWEV#GRGWPS	34.4	1.0	37.5	<0.1	37.5
D820-4-G12-IGFR	WLEEEWAQIRCGVYGRGCPS	30.3	1.0	37.8	<0.1	37.8
D820-4-D12-IGFR	WLEEE*GWVQCEVWGRGCPP	37.2	1.0	38.6	<0.1	38.6
D820-4-A12-IGFR	CLDQEWA?VQCPVYGRGCPS	30.4	1.0	39.3	<0.1	39.3
D820-4-C12-IGFR	QLELEWARVQCEVWDRGCPS	37.1	1.0	39.6	<0.1	39.6
D820-4-A7-IGFR	RLEQEWAWIQCEVYGRGCRF	35.4	1.0	40.8	<0.1	40.8
D820-4-B12-IGFR	SLEHE*AWVQCKVYGRGC?S	36.2	1.0	41.4	<0.1	41.4

Ratios over Background Comparisons	E-Tag IGFsR IR IGFR/IR	GCPS 44.8 1.4 24.2 <0.1 17.3		
	Sequence IR/IGFR	WLDQEWAWVQCEVYGRGCPS	WLDQEWAWIQCEVYGF	WLDQEWAQVRCEVYGRGCPS
		Parental/Design	36-4-G12-IR	B6-3-A11-IR

	Sequence	HIR affinity mol/I
J228	HPPLEHLKAFLL-NH2	2.4*10-5
J229	APTFYAWFNQQT-NH₂	2.4*10 ⁻⁶
S122	HPTSKEIYAKLLK	9.3*10-6
S123	HPSTNQMLMKLFK	1.6*10 ⁻⁵
S124	HPPLSELKLFLIKK	2.3*10-5

Figure 7

J-nr	Sequence	HIR affinity mol/I
J101	ACVWPTYWNCG	5.0°10 ⁻⁶
J103	Ac-CVWPTYWNCG	3.0°10 ⁻⁵
J104	Bz-CVWPTYWNCG	3.2*10 ⁻⁵
J105	Ac-ACVWPTYWNCG	4.5*10 ⁻⁵
J109	ACVWPTYWACG	2.0*10-5
J110	ACVWPTYANCG	2.4*10-5
J111	ACVWPTAWNCG	3.1*10-5
J112	ACVWPAYWNCG	3.3*10-5
J113	ACVWATYWNCG	5.5*10 ⁻⁵
J115	ACAWPTYWNCG	2.7*10 ⁻⁶
J116	AAVWPTYWNAG	3.4*10 ⁻⁵
J117	ASVWPTYWNSG	2.9*10 ⁻⁵
J118	ACPYNWVTWCG	2.9*10 ⁻⁵
J119	ACVWPTYWnCG	3.2*10 ⁻⁵
J120	ACVWPTYwNCG	3.4*10 ⁻⁵
J121	ACVWPTyWNCG	1.8*10 ⁻⁵
J122	ACVWPtYWNCG	5.1*10 ⁻⁵
J123	ACVWpTYWNCG	2.5*10 ⁻⁵
J124	ACVWPTYWNCG	2.0*10 ⁻⁵
J125	ACvWPTYWNCG	1.8*10 ⁻⁵
J127	acvwptywncg	4.4*10 ⁻⁵
J128	gcnwytpwvca	5.3*10 ⁻⁵
J130	AEVWPTYWN(Dpr)G	1.9*10 ⁻⁵
J131	ACDWPTYWNCG	5.5*10 ⁻⁵
J132	AC(Leu)WPTYWNCG	4.5*10-6
J133	AC(dLeu)WPTYWNCG	2.8*10 ⁻⁵
J134	AC(IIe)WPTYWNCG	7.4*10 ⁻⁶
J135	AC(dlle)WPTYWNCG	2.9*10 ⁻⁵
J136	AC(Met)WPTYWNCG	7.5*10 ⁻⁶

FIGURE 8

Figure 8 (Con't)

J185	ACV D PTYWNCG	3.4*10 ⁻⁵
J186	AC D WPTYWNCG	3.5*10 ⁻⁵
J187	ACVWTYWNPCG	4.3*10 ⁻⁵
J188	ACVWTYWPNCG	3.0*10 ⁻⁵
J189	ACVWTYPWNCG	3.1°10 ⁻⁵
J190	ACVWTPYWNCG	2.6*10 ⁻⁵
J191	ACVPWTYWNCG	3.0*10-5
J192	ACPVWTYWNCG	4.2*10 ⁻⁵
J193	ACWPTYWNVCG	4.8*10 ⁻⁵
J194	ACPTYWNVWCG	4.2*10-5
J195	ACTYWNVWPCG	3.3*10 ⁻⁵
J196	ACYWNVWPTCG	2.4*10 ⁻⁵
J197	ACWNVWPTYCG	2.9*10 ⁻⁵
J198	ACNVWPTYWCG	4.2*10 ⁻⁵ -
J199	ACVWPCG	4.7*10 ⁻⁵
J200	CVWPTYWNCG	5.5*10 ⁻⁵
J201	ACWWPTYWNCG	6.8*10 ⁻⁶
J202	ACEWPTYWNCG	4.6*10 ⁻⁶
J203	ACRWPTYWNCG	5.8 * 10 ⁻⁶
J204	ACQWPTYWNCG	9.2*10 ⁻⁶
J205	ACGWPTYWNCG	4.4*10 ⁻⁶
J207	cyclo-Valeroyl-AWPTYWNCG	5.5*10 ⁻⁵
J208	cyclo-Toluyl- AWPTYWNCG	7.6*10 ⁻⁵
J209	cyclo-Acetyl- AWPTYWNCG	7.7*10 ⁻⁵
J210	(WPTYWNCG) ₂	5.3*10 ⁻⁵
J211	(AWPTYWNCG) ₂	7.9*10 ⁻⁶
J212	ACA(Bpa)PTYWNCGK(biotin	1.8*10 ⁻⁵
J213	ACAWPTY(Bpa)NCGK(biotin	1.8*10 ⁻⁵
J214	GCAWPTYWNCG	1.4*10 ⁻⁶
J215	NCAWPTYWNCG	9.0*10 ⁻⁶

Figure 8 (Con't)

J216	VCAWPTYWNCG	2.8*10-6
J227	SFYEAIHQLLGV-NH2	6.4*10-6
J228	HPPLEHLKAFLL-NH2	2.4*10-5
J229	APTFYAWFNQQT-NH ₂	2.4°10 ⁻⁶
S122	HPTSKEIYAKLLK	9.3*10-6
S123	HPSTNQMLMKLFK	1.6*10-5
S124	HPPLSELKLFLIKK	2.3*10-5

Figure 8 (Con't)

		Katios ove	Katios over Background	pur	Comparisons	isons	
Clone	Sequence	E-Tag	IGFSR	띰	IGFR/IR IR/IGFR	IR/IGFR	
H5 Parental	LCQSLGVTYPGWLAGWCA	1	1.2	;	;	;	
H5-3-JBA5-IGFR	LCQSWGVRIGWLAGLCP	31.9	16.3	;	:	:	
H5-3-E1A11-IGFR	VCOSLGITDLGLCAGWGA	21.3	8.0	;	;	;	
H5-3-E4B10-IGFR	LCQSLGLTHPGFEAWLCA	29.7	7.8	;	;	:	
H5-3-E4C10-IGFR	LCONFGVTDPGCFYGWFA	24.3	6.1	;	!	;	
H5-3-JBB6-IGFR	PCORLGDTHLCWLAGWFA	40.2	5.4	:	:	!	
H5-3-E4A9-IGFR	LCOSSGLSFLGCLGWWA	27.7	4.3	;	;	:	
H5-3-E2A12-IGFR	LCOSLGFTDLDWLACWFE	27.2	4.2	;	:	:	
H5-3-E4A12-IGFR	VCQGLGVECPGWFAGWWA	27.9	3.9	;	;	:	
H5-3-E1F9-IGFR	PCOSLGLTCSGWFEGWGA	18.6	3.5	:	;	;	
H5-3-E4F11-IGFR	LCOGWGIRIGWLVGRCM	28.4	3.3	;	;	:	
H5-3-E4A11-IGFR	LMQSVGIKYPGGLAGWLA	31.0	3.0	:	;	1	
H5-3-E4G7-IGFR	QWQSLGVTCPGSWAELCA	26.2	2.2	;			
H5-3-E1B9-IGFR	LCQSLGVTYWEGLAWLCA	20.0	2.1	;		;	

		Ratios ove	Ratios over Background	pun	Comparisons	sons
Clone	Sequence	E-Tag	IGFSR	R	IGFR/IR IR/IGFR	R/IGFR
JBA5 Parental	LCQSWGVRIGWLAGLCP	31.5	20.6	1.0	20.6	<0.1
JBA5-4-2C12-IGFR	LCQSWGVRIGWLAGLCP	46.8	41.5	1.0	41.5	<0.1
JBA5-2-1F9-IGFR	LCESWGVRIGWLAGLCP	48.1	39.5	1.0	39.5	<0.1
JBA5-2-1E10-IGFR	LCQSWGVRIGWLVGLCP	42.5	39.5	1.1	35.9	<0.1
JBA5-4-2A11-IGFR	LCOGWGVRIGWLAGLCP	44.1	40.2	1.2	33.5	<0.1
JBA5-3-2A3-IGFR	LCOSWGVRIGWLVGLCP	34.7	33.3	1.0	33.3	<0.1
JBA5-4-2A9-IGFR	LCQSWGVRIGWLTGLCP	34.6	33.1	1.0	33.1	<0.1
JBA5-1-1B6-IGFR	MCQSWDVRIGRLGGQCP	39.6	31.4	1.0	31.4	<0.1
JBA5-4-2B9-IGFR	LCQGWDVRIGQLAGLCP	39.6	22.3	1.0	22.3	<0.1
JBA5-1-1H7-IGFR	LCQGWGVRIGWLAGLCP	24.9	22.6	1.2	18.8	0.1
JBA5-3-2C3-IGFR	LCQSWDVRIGWVAGLCP	35.5	15.3	1.1	13.9	0.1
JBA5-1-1G7-IGFR	LCOSWDARIGWLAGLCP	26.2	14.8	1.5	9.9	0.1
JBA5-2-1E9-IGFR	LCLG*DVRIGLLAGLCP	39.4	4.5	1.0	4.5	0.5
JBA5-2-1D12-IGFR	L*KSWDVRSGLMAGLCP	42.2	2.2	1.0	2.2	0.5

		Ratios over	Ratios over Background Comparisons	pun	Compar	isons	
Clone	Sequence	E-Tag	IGFSR	R	IGFR/IR IR/IGFR	IR/IGFR	
Design	LCOSWGVRIGWLAGLCP	:		ŀ	;	;	
JBA5-4-G12-IR	LCQSWDACIQWLVGLSP	37.5	3.0	1.4	2.1	0.5	
JBA5-4-G3-IR	LCRSWEECIGWLVGPQP	4.5	2.5	1.1	2.3	0.4	
JBA5-4-G1-IR	LCQSWGECIDRLVGQGA	32.0	3.2	1.3	2.5	0.4	
JBA5-3-B1-IR	LCQGWGVRIGWLAGLCP	29.4	6.8	1.2	5.7	0.2	
JBA5-3-C1-IR	LCQGWAVHIGQLAGLCP	36.3	7.5	1.1	6.8	0.1	
JBA5-3-A6-IR	LCQGWGVHIGRLAGLCP	28.0	7.4	0.7	10.6	0.1	
JBA5-3-A2-IR	LCOSMGVRIGWLAGLCP	10.2	4.8	0.4	12.0.		
JBA5-3-B7-IR	LCQSWGVHIGRLAGLCP	39.2	15.2	1.2	12.7	0.1	

		Katios ov	Katios over Background	nnd	Comparisons	.isons	
Clone	Sequence	E-Tag	IGFSR	IR	IGFR/IR IR/IGFR	IR/IGFR	
Design	XXXXXXXXXXXXXXXXX	1	1 1	;	!	!	
20F-4-B7-IGFR	TPIPAGGINIASWGGYTWLS	10.9	3.7	0.5	7.3	0.1	
20F-4-E4-IGFR	HRGTVTGVWVARWPGYEWLS	8.9	4.7	0.7	6.3	0.2	
20F-4-E12-IGFR	SDVWAQPQRRNDWPGYHWLS	7.6	4.7	0.8	0.9	0.2	
20F-4-F4-IGFR	HRGTVTGVWVARWPGYEWLS	13.9	10.1	1.8	5.6	0.2	
20F-4-F7-IGFR	SDVWAQPQRRNDWPGYHWLS	13.7	3.9	0.8	5.1	0.2	
20F-4-E7-IGFR	RPHRINPQDDAVWPGYLWLG	7.2	2.5	0.5	4.7	0.2	
20F-4-F11-IGFR	HRGTVTGVWVARWPGYEWLS	17.6	16.2	3.5	4.6	0.2	
20F-4-D10-IGFR	FGRGYGGDGGGYWSGYEWLA	9.6	2.4	9.0	4.1	0.2	
20F-4-B3-IGFR	DGLVVKSGREWPGYGWLER.A	17.3	14.4	3.6	4.0	0.2	
20F-4-B12-IGFR	DGSIV.VSSSVGWPGYEWLM	10.1	9.9	2.4	4.0	0.2	
20F-3-A9-IGFR	WQQANLSNGGGRWGGYDWLM	9.9	2.7	0.7	4.0	0.2	
20F-4-G2-IGFR	FGRGYGGDGGGYWSGYEWLA	5.1	1.3	0.5	2.7	0.4	
20F-4-D11-IGFR	VNYEMDRVPPMPWGGYWWLS	5.0	1.0	0.5	2.3	0.4	
20F-4-G4-IGFR	MGGGLWVGVHIWPGYSWLSQ	3.9	6.0	0.5	1.8	9.0	
20F-4-G12-IGFR	SDVWAQPQRRNDWPGYHWLS	3.2	6.0	9.0	1.5	0.7	

ē	c	Ratios ov	er Backgr	puno	Ratios over Background Comparisons	Si
Clone	Sequence	E-1 ag	IGFSR	¥	E-Tag IGFSR IR IGFR/IR IR/IGFR	KIGFR
Design	AAAAAAAAAAAAAAAA	1	:	:	:	•
R20ß-4-A4-IR	WPGYLFFEEALQDWRGSTED	11.9	17.5	1.4	12.5	0.1
R20β-4-F2-IR	SMFVAGSDRWPGYGVLADWL	16.4	13.9	3.1	16.4 13.9 3.1 4.5 0.2	0.2
R20ß-4-E8-IR	VRGFQGGTVWPGYEWLRNAA	41.0	34.9	3.6	7.6	0.1

Ratios over Background Comparisons	E-Tag IGFsR IR IGFR/IR IR/IGFR		₹#	23.4 9.6 4.1 2.3 0.4
	Sequence	XXXXXXXXXXXXXXXX	LDLASGDSWLGYDVLRGWLS	IHSSDGIGAWGGYAWFRDVA
	Clone	Design	20F-4-H10-IR	20F-4-C10-IR

		Ratios ove	er Backgro	pun	Compar	isons
Clone		E-Tag	IGFSR	띰	IGFR/IR	IRVIGFR
Design	XXXXXXXXXXXXXXXXX	I I	;	1	:	:
R20\$-4-D10-IR	LGPLLRWGSEVCGVWPDLCE	21.5	1.0	8.0	0.1	8.0
R20 -4-D9b-IR	•	32.6	6.8	15.1	0.5	2.2
R20 -4-H4-IR		11.6	1.7	3.6	0.5	11.6 1.7 3.6 0.5 2.1
R20(3-4-A2-IR	GRVALWGPVWPRWWFMSRPV	17.1	2.6	5.2	0.5	2.0

		Ratios ov	Ratios over Background	pun	Comparisons	risons	
Clone	Sequence	E-Tag	E-Tag IGFSR IR I	R	IGFR/IR IR/IGFR	IR/IGFR	
Design	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	:	;	;	:	:	
R40-3-40A2-IR	RGTRTDRLWKSGGFAIVPRWPCFSYHCLVEWITKTGSPG	44.6	1.5 2.7 0.6 1.8	2.7	9.0	1.8	
R40-4-40F10-IR	GRTSMAFVPPRHLQPELAPRPVRNHAWLVGGG	46.4	46.4 1.9 2.1 0.9. 1.1	2.1	6.0	1.1	

		Katios ov	Katios over Background	pun	Comparisons	risons	
Clone	Sequence	E-Tag	IGFsR	=	IGFR/IR IR/IGFR	IR/IGFR	
Design	XXXXCXXXXXXXXXXXXXXXXXXXXX		:	;	;	;	
20C-3-H3-IGFR	DHRLCGTDEYLMQDLFVRGLCRLIW	28.5	26.6	1.0	26.6	<0.1	
20C-3-F4-IGFR	GLLFCKQLFTLAGLQPEAGCVSSSR	34.4	27.5	1.2	23.1	<0.1	
20C-4-C10-IGFR	IWIACLDELLRGQVWSSCRRRAPIG	35.5	24.4	1.3	19.2	0.1	
20C-3-G5-IGFR	DWLRCLGVILSGGLTELANTGCVQG	29.3	21.1	1.1	18.7	0.1	
20C-3-A2-IGFR	WFSFCLGGLLQAQEWSVWGRDVGCI	33.9	18.3	1.1	16.9	0.1	
20C-3-B4-IGFR	GYSWLRDVLMEKQAQLKREGSVGRQ	39.8	29.1	1.9	15.2	0.1	
20C-3-C6-IGFR	FLTRLLERLGLS*ERGEAGGPYAQA	34.8	20.9	1.4	14.9	0.1	
20C-3-E2-IGFR	FSGFCMGLERLSQVSLGYCGAGQGG	34.8	28.1	2.0	14.2	0.1	
20C-3-A3-IGFR	ISFRCQLFVLAGMHPCPVDVGGEGF	33.7	14.3	1.2	12.4	0.1	
20C-3-B1-IGFR	NTPNCSQDWGQESGFMALLLALTCK	30.2	9.8	0.9	11.2	0.1	
20C-3-F5-IGFR	LQGFCELLATVTGVTGLGCLDYQPI	35.5	31.9	3.9	8.2	0.1	
20C-4-A7-IGFR	GSSICNLLARAQIVELALCEMGVQE	33.3	19.3	2.8	6.9	0.1	
20C-4-F8-IGFR	LSFACLLSQLSGVVLPDCLLGED	30.5	27.7	5.3	5.2	0.2	
20C-4-G11-IGFR	GEHFCOLLMSLCGDDCGPVNCGGGS	24.7	13.3	2.8	4.7	0.2	
20C-3-E1-IGFR	GWFECLLASLVLQVPQGRSRASAVC	34.0	5.1	1.6	3.1	0.3	
20C-3-B6-IGFR	YROECACSVGAVGFLCGLACLARSG	37.3	32.8	13.7	2.4	0.4	

		Ratios ov	Ratios over Background	pun	Compar	Comparisons	•
Clone	Sequence	E-Tag	E-Tag IGFSR IR	R	IGFR/IR IR/IGFR	RIGFR	
Design	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	:	:	;	;		
40F-4-D1-IGFR	LSCLAYSRHGIWRPSTDLGLGRSVGEGSVSTRWRGYDWFE	4.9	4.6	0.3	13.1 0.1	0.1	
40F-4-B1-IGFR	GLDHSDAVGVHLGFAWPA. ARGRWEAGGLEDTWAGYDWL	4.1	3.0	0.2	13.1	0.1	
40F-4-D10-IGFR	W. GYAWLS	4.9	4.5	0.4	11.7	0.1	
40F-3-A3-IGFR	LSCLAYSRHGIWRPSTDLGLGRSVGEGSVSTRWRGYDWFE	2.6	2.0	0.3	7.9	0.1	
40F-4-C4-IGFR	EAMAVGLQCPARFVRAAAHGDGGSWGQDHV.AWGGYWWLG	3.8	2.0	0.5	0.5 4.1 0.2	0.2	

		Ratios ov	er Backgro	pun	Compari	Sons
Clone	Sequence	E-Tag	IGESR	≅	IGFR/IR I	RIGFR
Parental/Design	HLCVLEELFWGASLFGYCSG	39.1	1.8	27.7	0.1	15.4
F815-4-G11-IGFR	HFYVLVERLSGASLFGSGSA	34.6	7.9	1.0	7.9	0.1
F815-3-D1-IGFR	HRFVREGLLWGAYQFCYCSG	14.9	1.0	2.0	0.5	2.0
F815-4-C12-IGFR	FQSLLEELVWGAPLFRYGTG	35.2	35.2 1.0 2.0	2.0	0.5	2.0
F815-4-A11-IGFR	HLSVLEELSWGASLFGQWAG	5.4	1.0	2.1	2.1 0.5 2.1	2.1

		Ratios over	Ratios over Background	pun	Comparisons	isons	
Clone	Sequence	E-Tag	IGFSR	≅	IGFR/IR 1	IRVIGER	
Parental/Design	HLSVLEELSWGASLFGQWAG	5.4	1.0	2.1	0.5	2.1	
NNKH-4-A9-IR	NLCRLEELAWGASLFGQCAG	16.3	1.0	2.7	0.4	2.6	
NNKH-4-H4-IR	APVSTEELRWGALLFGQWAG	15.6	1.0	5.6	0.4	2.5	
NNKH-4-B3-IR	HLSVLEERWWRESLFGQWAG	13.6	2.8	6.7	0.4	2.3	
NNKH-4-E1-IR	HLSVLEERWWRAALFGQWAG	13.9	4.8	9.5	0.5	2.0	
NNKH-4-E7-IR	HLSILEEQWWRESLFGQWAG	16.9	1.3	2.3	9.0	1.8	
NNKH-4-G3-IR	HMSVEELSWWASLFGKQAG	11.3	1.3	2.3	9.0	1.7	
NNKH-4-B6-IR	HLSELEERWWRATLFGQWAG	13.2	1.3	2.1	9.0	1.7	
NNKH-4-A10-IR	HLSVLEELWWRESLFGQWAG	15.4	2.0	3.2	9.0	1.6	
NNKH-4-A5-IR	HLSLLEEQWWRESLFGQWAG	14.6	4.6	6.9	0.7	1.5	
NNKH-4-F11-IR	HLSVLEERWWRETLFGQWAG	14.0	3.1	3.9	0.8	1.3	
NNKH-4-C9-IR	HLSVLEEQWWRESLFGQWAG	14.3	2.3	2.9	0.8	1.3	
NNKH-4-D12-IR	HLSVLEEQWW.ESLFGQWAG	12.0	1.4	1.7	0.8	1.2	
NNKH-4-D10-IR	HLSVLEELWWREALFGQWAG	13.6	1.2	1.5	0.8	1.2	
NNKH-4-E5-IR	HLSVLEERWWRATLFGEWAG	14.5	1.4	1.6	6.0	1.1	
NNKH-2-A6-IR	HL.VLEELLWGVSLFRQWAG	8.4	1.4	1.5	1.0	1.1	
NNKH-4-F6-IR	HLSALEEQWWRATLFGQWAG	14.1	2.8	2.9	1.0	1.0	
NNKH-4-C7-IR	HLSVLEERWWRATLLESGQ	14.7	1.4	1.4	1.0	1.0	
NNKH-4-F7-IR	HLSALEELWWRETLFGQWAG	14.1	7.5	7.0	1.1	6.0	
NNKH-4-F8-IR	HLSVLEELWWRESLFGKWAG	13.6	11.0	8.6	1.3	0.8	
NNKH-4-E9-IR	HLSVLEEAWWRESLFGHWAG	15.5	7.9	6.0	1.3	0.8	
NNKH-4-E6-IR	HMSEQEELWWRATLFGQWAG	18.2	3.8	2.7	1.4	0.7	
NNKH-4-B7-IR	HLSVLEERWWRETLFGEWAG	16.5	12.9	8.2	1.7	9.0	
NNKH-2-B3-IR	HRSVLKQLSWGASLFGQWAG	11.5	5.3	0.7	7.4	0.1	

		Ratios o	Ratios over Background	pun	Comparisons	isons
Clone	Sequence	E-Tag	IGFSR	×	IGER/IR IR/IGER	RVIGER
Parental/Design	HLSVLEELSWGASLFGQWAG	5.4		2.1	0.5	2.1
NNKH-2-C5-IGFR	HL*VLEELSWGASLVGQWAV	7.3	0.9	0.7	1.3	0.8
NNKH-2-D9-IGFR	HLSVLEEL*LGASMFGLWAG	4.1	0.5	0.4	1.3	8.0
NNKH-2-H12-IGFR	HLSVLKELSW*ASLFGQWAG	5.0	1.3	1.1	1.2	0.8
NNKH-2-D10-IGFR	HLSALEELSWGASLFGQWAG	4.8	2.1	1.9		6.0
NNKH-2-G9-IGFR	HLSVLAELS*GALLFGQWAG	1.9	1.4	1.3		6.0
NNKH-2-C6-IGFR	RLSVLEQLSWGASLFGPWAG	18.2	1.0	6.0		6.0
NNKH-2-C7-IGFR	HL*VLVQPSWGASLFGQWAG	21.8	1.3	1.3		1.0
NNKH-2-F11-IGFR	HQSVLEELSR*ASLFGQWAG	6.7	1.3	1.4		
NNKH-2-H3-IGFR	DMSVLGGLSWGA*LFGQWSG	4.7	0.7	0.8		1.1
NNKH-2-B8-IGFR	HLSVREGOLWRASMFGRWAG	17.5	3.7	5.2		1.4
NNKH-2-B12-IGFR	QLSVLVEL*WGASLFGPWAA	1.2		2.9	_	2.9
NNKH-2-F9-IGFR	HLSVGEELSW*VALLGOWAR	3.7		2.1		

					Ţ			_		_	_			_		_	_			_										
Sequence	QHQDGNFYDWFVEALAKK (c-biotin)	KVLQARHGCDSVSDCFYEWFAKK (e-biotin)	KWSATT SVAADTOEV AWEDDANEW (2. Education)	KGHSWAT VEHVORI EVENIENT 122 / L. L. L.	KRDKPTDOFFONNVERVEWEDLAW (E-BIOUN)	KVFWNCRSOOLDFVFWWFFDAAKK (e-biotin)	KI ESHYVVPOAI DRI EVCWECK (c-biotic)	KEYGWESROI SI TPRODUGI PKK (c-kicin)	KSAPGLVSNKODGLFVSWFRFKK (r-biotin)	KRGGGTEVEWESAI RKHGAGKY (c-histin)	KDPFRMOSDVGFVFWFRAAVGKV (c-biotin)	DVV COULABOCODA AMERICANICO CONTROLLO CONTROLL	DIALCWARFCODAANFYDWFVQQASKK (E-bioun)		DYKDVTFTSAVFIENFYDWFVROVSKK (£-biotin)	SAKNFYDWFVKK (e-biotin)	ADKNFYDWFMAAKK (e-biotin)	DYKDLCOSWGVRIGWLAGLCPKK (e-biotin)	FIENFYDWFVRQVSKK(e-biotin)	DVK DEVDA IDOL VRGS A PACGTO DKW (c. biodia)	KDRAFYNGI RDI VGA VYGAWDKK (c-histin)		KVRGFQGGTVWPGYEWLRNAAKK (e-biotin)	KSMFVAGSDRWPGYGVLADWLKK (e-biotin)	KEIEAEWGRVRCLVYGRCVGGKK (e-biotin)	KWI DOFWAWVOCFVYGRGCPSKK (s-hiotin)		KHLCVLEELFWGASLFGYCSGKK (c-biotin)	DYKDERSAAGFRGNFYDWFVAOVNKK (£-biotin)	LGENFYDWFVMQVRKK
Ratio IGE/IR	25	6.2	20	3 7	43	6.4	8.8	8.3	3.3	1.7	5.2		0.0		7.2	>2.5	>2.5	8. 8.	8.6 8.5	5.2	2.9	0.8	5.9	6.7	>17	29	>15	200	20 ×	13
K, (µM) HIGFR	E =	7.4	2 2	>20	12	6.2	9.7	61	12	1.4	3.2	0.000	0.02		5.4	>20	>20	8.1	6.1	17	=	2.5	2.2	7.4	>20 >20	16	>20	8.2) 20 20	18
Activity							Antagonist	Antagonist	Antagonist	Antagonist	2	Neutral			Agonist	Neutral		Agonist	Agonist	Agonist	Agonist	,	Antagonist	Antagonist	Antagonist	Antagonist)			
Fat Cell Assay															~20 µM			>20 µM	~20 µM	~20 µM	~20 µM									
PO.							YES												YES	YES	YES									
K, (µM) HIR	0.51	1.2	0.74	22	2.8	0.97	1.1	2.3	3.6	0.84	0.62	0.49	0.19		0.75	8.1	8.1	4.4 cycli			0.25		0.37	1.1	1.2	0.55	1.3	0.04	2.6	1.4
Formula #	_	_	_	_		_	_	_	_	-	-	_			_	_		6		2	7		2	10	9	9		4	_	_
Clonal Name	20[)3	20D1	28	E7	818	20F1	40G11	3G11	20111	G3	D2	IGFR CI	A65-4-C1	IGFR 112	A65-4-1+2	IGFR A6	IGFR DS	IGFR JBA5	IGFR 112C	20E2	20C11		E8	F2	20A4 (A7)	D8		F8	IGFR EA	IGFR D2C
D Name	D101	D102	D103	DIG	D105	D106			7		III	D112						D116			D119			D121	. F .	D123		D124	D125	D126

Figure 11A

	>5 µM 5 nM <	>5 µM >5 µm <1 µm 24 µM >5 µM	>5 µM 5 nM S n	>5 µM 5 nM S n	>5 µM 5 nM S n	>5 µM 5 nM 5 nM 5 nM 5 nM 5 nM 5 nM 42 nM 5 µM 1 µM 1 µM 1 µM 1 µM 1 µM 5 nM 5	>5 µM 5 nM S nM < Jun	>5 µM 5 nM > s pM s p	>5 µM	>5 µM	>5 µM > 5 nM 5 nM 24 µM 42 nM 42 nM 1 µM 1 µM 1 µM 5 µM	>5 µM	>5 µM	>5 µM	>5 µM > 5 nM 5 nM 24 µM 42 nM 42 nM 1 µM 1 µM 5 µM	5 nM 4.2 nM 2.9 nM	5 nM 42 nM 2.9 nM	>5 µM > 5 nM	5 nM 42 nM 2.9 nM	5 nM 42 nM 2.9 nM	5 nM 4.2 nM 2.9 nM	5 nM 42 nM 2.9 nM 2.9 nM 3.9 n	5 nM 4.2 nM 2.9 nM
																>5 µM >5 µM >1 µM >10 µM >10 µM >10 µM >10 µM >10 µM >10 µM >10 µM >10 µM >10 µM	> 5 µM > 5 µM > 1 µM >		1 mm 24 mm 24 mm 24 mm 24 mm 24 mm 25 mm	1 mm 24 mm 24 mm 24 mm 24 mm 24 mm 24 mm 25 mm	1 mm 2 mm	1 mm 2 mm	1 mm 2 mm
40 nM 700 nM	700 nM	40 nM 700 nM	40 nM 700 nM	40 nM 700 nM	700 nM 700 nM	40 nM 700 nM	40 nM 700 nM	40 nM 700 nM	40 nM 700 nM	700 nM	Ma 000 nM	Ma C	Man	Man	<u> </u>						 		
			_										700		700 100	700 nM	700 nM	700 nM	700 nM	700 nM	700 nuM	700 nM 220 μM 1.2 μM	700 nM 200 µM 1.2 µM 1.2 µM 1.1 µM
RLYYEWFWGQLEACGRGGIS GLEGGCPWVGLEVQCRGCPS FYCGLEELSWGAALFGYCSG	RLYYEWFWGQLEAQGRGGLS GLEQGCPWVGLEVQCRGCPS FYCGLEELSWGAALFGYCSG GNGIXGMFYQLLSLLVGRDMH GIISQSCPESFYDWFAGOVSDPWWCW	RLYYEWFWGQLEAGGRGGLS GLEQGCPPWGLEVQCRGCPS FYCGLEELSWGAALFGYCSG GNGJGMFYQLLSLLYGRDMII GIISQSCPESFYDWFAGQVSDPWWCW VEGRGLFYDLLRQLLARRQNG	RI.YYEWFWGQLEAQGRGGIS GLEQGCPWVGLEVQCRGCPS FYCGLEELSWGAALFGYCSG GNGIXGMFYQLLSLLVGRDMII GIISQSCPESFYDWFAGQVSDPWWCW VEGRGLFYDLLRQLLARRQNG RAMSFYDALVSVLGLOPKK-Biotin	RILYTEWFWGQLEAGGRGGLS GLEQGCPWVGLEVQCRGCPS FYCGLEELSWGAALFGYCSG GNGDCMFYQLLSLLVGRDMH GIISQSCPESFYDWFAGQVSDPWWCW VEGRGLFYDILRQLLARRQNG RAMSFYDALVSVLGLGPKK-Biotin GSRIVYFHEQFYEWFVDQLGL RSEASFHVEYSWFFFOLRS	RLYYEWFWGQLEAQGRGIS GLEGGCPWVGLEVQCRGCPS FYCGLEELSWGAALFGYCSG GNGISGMFYQLLSLLVGRDMII GIISQSCPESFYDWFAGQVSDPWWCW VEGRGLFYDLLRQLLARRQNG RAMSFYDALVSVLGLGPKK-Biotin GSRPVFIEGFYEWFVDQLGL RSFASFIIVIEFYSWFEEQLRS GRFYGWFQDAIDQLMPWGFD	RILYYEWFWGQLEAGGRGGLS GLEGGCPWVGLEVQCRGCPS FYCGLEELSWGAALFGYCSG GNGINGMFYQLLSLLVGRDMH GIISQSCPESFYDWFAGQVSDPWWCW VEGRGLFYDLLRQLLARRQNG RAMSFYDALVSVLGLGPKK-Biotin GSRJVFHEQFYEWFVDQLGL RSFASFHVEFYSWFEEQLRS GRFYGWFQDAIDQLMPWGFD PPWGARFYDAIGLYFDNIL	RI.YYEWFWGQLEAGGRGGLS GI.EQGCPWVGLEYQCRGCPS FYCGLEELSWGAALFGYCSG GNGDGMFYQLLSLLVGRDMH GIISQSCPESFYDWFAGQVSDPWWCW VEGRGLFYDLLRQLLARRQNG RAMSFYDALVSVLGLGPKK-Biotin GSRIVFHEQFYEWFVDQLGL RSEASFHVEFYSWFEEQLRS GRFYGWFQDAIDQLMPWGFD PPWGARFYDAIEQLYFDNL AGVNAGFYRYFSTLLDWWDQGKK-Biotin	RI.YYEWFWGQLEAGGRGLS GI.EQGCPWVGLEAQGRGCIS GI.EQGCPWVGLEVQCRGCPS FYCGLEELSWGAALFGYCSG GNGINGMFYQLLSLLVGRDMH GIISQSCPESFYDWFAGQVSDPWWCW VEGRGLFYDLLRQLLARRQNG RAMSFYDALVSVLGLCPKK-Biotin GSRIVFHEQFYEWFVDQLGL RSEASFHVEFYSWFEEQLRS GRFYGWFQDAIDQLMPWGFD PPWGARFYDAIEQLYFDNL AGVNAGFYRYFSTLI.DWWDQGKK-Biotin TFYSCLASLLTGTPQPNRGPWERCRKK-Biotin	RI.YYEWFWGQIEAGGRGIS GI.EQGCPWVGIEAQGRGCIS GI.EQGCPWVGIEVQCRGCPS FYCGLEELSWGAALFGYCSG GNGIXGMFYQLLSLLVGRDMH GIISQSCPESFYDWFAGQVSDPWWCW VEGRGLFYDLLRQLLARRQNG RAMSFYDALVSVLGI.GPKK-Biotin GSRI'VFHEQFYEWFVDQLGL RSFASFIIVEFYSWFEEQLRS GRFYGWFQDAIDQLMPWGFD PPWGARFYDAIEQLYFDNI. AGVNAGFYRYFSTLI.DWWDQGKK-Biotin TFYSCLASLLTGTPQPNRGPWERCRKK-Biotin	RI.YYEWFWGQIEAGGRGGIS GI.EQGCPWYGIEAGGRGGIS GI.EQGCPWYGIEAGGRGCPS FYCGLEELSWGAALFGYCSG GNGISGSCPESFYDWFAGQVSDPWWCW VEGRGLFYDI.LRQLLARRQNG RAMSFYDAI.VSVLGI.GPKK-Biotin GSRJYFITEQFYEWFVDQI.GL RSFASFIIVIEFYSWFEEQLRS GRFYGWFQDAIDQLMPWGFD PPWGARFYDAIEQLYFDNI. AGVNAGFYRYFSTLI.DWWDQGKK-Biotin TFYSCLASLLTGTPQPNRGPWERCRKK- Biotin AAVITEQFYDWFADQYKK QSFYDYIEELI.GGEWKK	RI.YYEWFWGQIEAQGRGGIS GI.EQGCPWWGLEAQGRGGIS GI.EQGCPWWGLEYQCRGCPS FYCGLEELSWGAALFGYCSG GNGDGMFYQLLSLLVGRDMH GIISQSCPESFYDWFAGQVSDPWWCW VEGRGLFYDLLRQLLARRQNG RAMSFYDALVSVLGLGPKK-Biotin GSRIVFHEQFYEWFVDQLGL RSFASFHVEFYSWFEEQLRS GRFYGWFQDAIDQLMPWGFD PPWGARFYDALEQLYFDNL AGVNAGFYRYFSTLLDWWDQGKK-Biotin TFYSCLASLLTGTPQPNRGPWERCRKK-Biotin TFYSCLASLLGGEWKK QSFYDYHEELLGGEWKK GSFYDYHEELLGGEWKK GSFYDYHEELLGGEWEE	RILYYEWFWGGIEAGGRGIS GILEGCPWVGIEAGGRGIS GILEGCPWVGIEACGCPS FYCGIEELSWGAALFGYCSG GNGISGSCPESFYDWFAGQVSDPWWCW VEGRGLFYDILRQLLARRQNG RAMSFYDALVSVLGIGPKK-Biotin GSRJVFITEQFYEWFVDQIGL RSFASFIIVIEFYSWFEEQLRS GRFYGWFQDAIDQLMPWGFD PPWGARFYDAIEQLYFDNI. AGVNAGFYRYFSTLIDWWDQGKK-Biotin TFYSCLASLLTGTPQPNRGPWERCRKK-Biotin AAVITEQFYDWFADQYKK QSFYDYTEELLGGEWKK GSFYDYTEELLGGEWKK GSFYDYTEELLGGEWEE GSI.DIESFYDWFERQLGKK	RILYTEWFWGQIEAGGGGLS GILEGGCPWVGIEAGGRGGLS GILEGGCPWVGIEAGGCGCPS FYCGLEELSWGAALFGYCSG GNGINGMFYQILSLLVGRDMH GISQSCPESFYDWFAGQVSDPWWCW VEGRGLFYDLLRQLLARRQNG RAMSFYDAILVSVLGIGPKK-Biotin GSRJVFHEQFYEWFVDQLGL RSFASFHVEFYSWFEEQLRS GRFYGWFQDAIDQLMPWGFD PPWGARFYDAIEQLYFDNL AGVNAGFYRYFSTLLDWWDQGKK-Biotin TFYSCLASLLTGTPQPNRGPWERCRKK-Biotin AAVHIEQFYDWFADQYKK QSFYDYHEELLGGEWKK GSFYDYHEELLGGEWKK GSFYDYHERQLGKK GSFYDYHERQLGKK	RILYYEWFWGGILEAGGRGGIS GILEQCPWVGILEAGGRGGIS GILEQCPWVGILEAGGRGGIS FYCGILEGLSWGAALFGYCSG GNGISGSCPESFYDWFAGQVSDPWWCW VEGRGLFYDILRQLLARRQNG RAMSFYDALVSVLGIGPKK-Biotin GSRJVFITEQFYEWFVDQIGL RSFASFIIVIEFYSWFEEQLRS GRFYGWFQDAIDQLMPWGFD PPWGARFYDAIEQLYFDNI. AGVNAGFYRYFSTLIDWWDGKK-Biotin TFYSCLASILTGTPQPNRGPWERCRKK-Biotin TFYSCLASILTGTPQPNRGPWERCRKK-Biotin AAVITEQFYDWFADQYKK QSFYDYTEELLGGEWER GSFYDYTEELLGGEWER GSFYDYTEELLGGEWER GSFYDYTEELLGGEWER GSFYDYTEELLGGEWER GSFYDYTEELLGGEWER GSFYDWFAREWDKK DPFYQGIWEWIRESGKK ASGFPENFYDWFGRQISIKK	RI.YYEWFWGQI.EAGGRGGI.S GI.EQGCPWYGI.EAGGRGGI.S GI.EQGCPWYGI.EAUGCRGCPS FYCGI.EELSWGAALFGYCSG GNGINGMFYQI.LSLI.VGRDMII GIISQSCPESFYDWFAGQVSDPWWCW VEGRGLFYDLLRQLLARRQNG RAMSFYDAI.VSVLGI.GPKK-Biotin GSRJYFIEQFYEWFVDQI.GL RSFASFIIVIEFYSWFEEQLRS GRFYGWFQDAIDQLMPWGFD PPWGARFYDAIEQLYFDNI. AGVNAGFYRYFSTLI.DWWDQGKK-Biotin TFYSCLASLLTGTPQPNRGPWERCRKK-Biotin AAVIIEQFYDWFADQYKK QSFYDYIEELI.GGEWKK GSFYDYIEELI.GGEWKK GSFYDYIEELI.GGEWEK SACOFPCIIENFYDWFARQKK	RILYYEWFWGGIEAQGRGGIS GILEQGCPWVGIEAQGRGGIS GILEQGCPWVGIEAQGRGGIS FYCGLEELSWGAALFGYCSG GNGISGSCPESFYDWFAGQVSDPWWCW VEGRGLFYDILRQLLARRQNG RAMSFYDALVSVLGIGPKK-Biotin GSRJVFITEQFYEWFVDQLGL RSFASFIIVIEYSWFEEQLRS GRFYGWFQDAIDQLMPWGFD PPWGARFYDAIEQLVFDNI. AGVNAGFYRYFSTLIDWWDQGKK-Biotin TFYSCLASLLTGTPQPNRGPWEE GSFYDYIEELLGGEWKK QSFYDYIEELLGGEWKK QSFYDYIEELLGGEWEE GSLDESFYDWFERQLGKK GSFYTSALQRLVGGRKK AAVITEQFYDWFGRQLSIKK SACQFDCITENFYDWFGRQLSIKK SACQFDCITENFYDWFGRQLSIKK SACGFDCITENFYDWFARQKK SQAGSAFYAWFDQVLRTVKK VDARDNETH GE-YTH	RILYYEWFWGGIEAGGRGIS GILEGGCPWVGIEAGGRGGIS GILEGGCPWVGIEAGGRGCPS FYCGIEELSWGAALFGYCSG GNGINGMFYQLLSLLVGRDMH GISQSCPESFYDWFAGQVSDPWWCW VEGRGLFYDLLRQLLARRQNG RAMSFYDAILVSVLGIGPKK-Biotin GSRJVFHEQFYEWFVDQLGL RSFASFHVEFYSWFEEQLRS GRFYGWFQDAIDQLMPWGFD PPWGARFYDAIEQLYFDNI. AGVNAGFYRYFSTLIDWWDQGKK-Biotin TFYSCLASLLTGTPQPNRGPWERCRKK-Biotin TFYSCLASLLTGTPQPNRGPWERCRKK-Biotin AAVHEQFYDWFERQLGKK GSFYDYHEELLGGEWKK GSFYDYHEELLGGEWKK GSFYDYHEELLGGEWKK GSFYDYHEELLGGEWKK GSFYDYHEELLGGEWKK GSFYDYHEELLGGEWKK GSFYDYHEELLGGEWKK GSFYDYHEELLGGEWKK GSFYDYHEELLGGEWKK SACQFDCHENFYDWFARQKK SACGFDCHENFYDWFARQKK SACGFDCHENFYDWFARQKK SQAGSAFYAWFDQVLRTVKK V,DARDDJFUJL;SE,VTLL QSDAFYSGLWALIGLSDGKK	RILYYEWFWGGILAGGRGGLS GILEGGCPWVGILEAGGRGGLS GILEGGCPWVGILEACRGCPS FYCGLEELSWGAALFGYCSG GNGINGMFYQLLSLLVGRDMH GIRQSCPESFYDWFAGQVSDPWWCW VEGRGLFYDLLRQLLARRQNG RAMSFYDALVSVLGLGPKK-Biotin GSRUYFIEGFYEWFVDQLGL RSFASFIIVIEFYSWFEEQLRS GRFYGWFQDAIDQLMPWGFD PPWGARFYDAIEQLVFDNL AGVNAGFYRYFSTLIDWWDQGKK-Biotin TFYSCLASLLTGTPQPNRGPWERCRKK-Biotin TFYSCLASLLTGTPQPNRGPWERCRKK-Biotin AAVIIEQFYDWFERQLGKK QSFYDYIEELLGGEWEE GSLDESFYDWFERQLGKK GSFYDYIEELLGGEWEE GSLDESFYDWFERQLGKK GSFYTALLGGEWEE GSLDESFYDWFERQLGKK AAVIIEQFYDWFERQLGKK SACGFDCIIENFYDWFARQKK SACGFDCIIENFYDWFARQKK SACGFDCIIENFYDWFARQKK SACGFDCIIENFYDWFARQKK SACGFDCIIENFYDWFARQKK LQSPYSGLWEWILESGKK V.DARDDJFULSE;VTLL QSDAFYSGLWALIGLSDGKK LQPCSGFYECIERLIGVKK	RILYYEWFWGGIEAGGRGGIS GILEGGCPWVGIEAGGRGGIS GILEGGCPWVGIEAGGRGGIS FYCGLEELSWGAALFGYCSG GNGISGSCPESFYDWFAGQVSDPWWCW VEGRGLFYDILRQLLARRQNG RAMSFYDALVSVLGIGPKK-Biotin GSRJVFITEQFYEWFVDQIGL RSFASFIIVIEYSWFEEQLRS GRFYGWFQDAIDQLMPWGFD PPWGARFYDAIEQLYFDNI. AGVNAGFYRYFSTLIDWWDQKK-Biotin TFYSCLASILIGTPQPNRGPWEE GSFYDYTEELIGGEWEE GSFYDYTEELIGGEWEE GSFYDYTEELIGGEWEE GSFYTALQRLVGGWKK QSFYDYTEELIGGEWEE GSFYTALQRLVGGWKK AAVITEQFYDWFGRQISIKK SACQFDCITENFYDWFGRQISIKK SACQFDCITENFYDWFGRQISIKK SACGFDCITENFYDWFGRQISIKK SQAGSAFYAWFDQVLRTVKK V, DARDDJFUJI.SE, VTLL QSDAFYSGLWALJGLSDGKK LKDGFYDYFWQLHLGSKK LKDGFYDYFWQRLHLGSKK LKDGFYDYFWQRLHLGSKK LKDGFYDYFWQRLHLGSKK LKDGFYDYFWQRLHLGSKK LKDGFYDYFWQRLHLGSKK LKDGFYDYFWQRLHLGSKK LKDGFYDYFWQRLHLGSKK LKDGFYDYFWQRLHLGSKK LKDGFYDYFWQRLHLGSKK	RILYYEWFWGGILEAGGRGGIS GILEGGCPWVGILEAGGRGGIS GILEGGCPWVGILEAGGRGGIS FYCGILEELSWGAALFGYCSG GNGINGMFYQILISLLVGRDMII GIISQSCPESFYDWFAGQVSDPWWCW VEGRGLFYDLLRQLLARRQNG RAMSFYDAILVSVLGIGPKK-Biotin GSRJVFIEGFYEWFVDQLGL RSFASFIIVIEFYSWFEEQLRS GRFYGWFQDAIDQLMPWGFD PPWGARFYDAIEQLYFDNI. AGVNAGFYRYFSTLIDWWDQGKK-Biotin TFYSCLASLLTGTPQPNRGPWERCRKK-Biotin AAVIIEQFYDWFADQYKK QSFYDYIEELLGGEWKK GSFYDYIEELLGGEWKK GSFYDYIEELLGGEWKK GSFYDYIEELLGGEWKK GSFYDYIEELLGGEWKK GSFYDYIEELLGGEWKK AAVIIEQRYBWFRQLGKK GSFYDYIEELLGGEWKK GSFYDYIEELLGSGKK LQPSGFYGGIRIFYDWFARQKK LQPSGFYEGIENFYDWFARQKK LQPCSGFYEGIELLGVKK LLKDGFYDYFWQRILHLGSKK GSASFYDAIDRLLRAMRIKK WPGYI FFFAI ODWRGSTFD	RI.YYEWFWGQIEAQCRGIS GI.EQCCPWVGIEVQCRGCPS GI.EQCCPWVGIEVQCRGCPS FYCGI.EELSWGAALFGYCSG GNGISCMFYQI.LSLI.VGRDMII GIRSQSCPESFYDWFAGQVSDPWWCW VEGRGIFYDI.LRQLLARRQNG RAMSFYDAI.VSVLGI.GPKK-Biotin GSRIPVFITEQFYEWFVDQI.GL RSEASFIIVEFYSWFEEQLRS GRFYGWFQDAIDQLMPWGFD PPWGARFYDAIEQLYFDNI. AGVNAGFYRYFSTI.LDWWDQCKK-Biotin TFYSCLASLLTGTPQPNRGPWERCRKK-Biotin TFYSCLASLLTGTPQPNRGPWERCRKK QSFYDYIEELI.GGEWEE GSLDESFYDWFERQI.GKK GSFYDYIEELI.GGEWEE GSLDESFYDWFERQI.GKK AAVITEQFYDWFERQI.GKK GSFYFAI.QRLVGGEQCKK AAVITEQFYDWFREWDKK DPFYQGI.WEWJ.RESGKK ASGFPENFYDWFARQKK SQAGSAFYAWFDQVLRTVKK V.DARDDJFUIL,SE;VTLL QSDAFYSGLWALIGISDGKK LKDGFYDYFWQRLHLGSKK GSASFYDAIDRLLRMRIKK WPGYLFFEEALQDWRGSTED AFYDWFAKK	RI.YYEWFWGQIEAGCGIS GI.EQCPWVGIEVQCRGCPS GI.EQCPWVGIEVQCRGCPS GI.EQCPWVGIEVQCRGCPS FYCGI.EELSWGAALFGYCSG GNGICMFYQI.LSLI.VGRDMII GIRQSCPESFYDWFAGQVSDPWWCW VEGRGIFYDI.LRQLIARRQNG RAMSFYDAI.VSVLGI.CPKK-Biotin GSRU-YFIIEGFYEWFVDQI.GL RSEASFIIVEFYSWFEEQLRS GRFYGWFQDAIDQLMPWGFD PPWGARFYDAILGGLWFK GSRPYDAILGGLWFK QSFYDYIEELI.GGEWKK QSFYDYIEELI.GGEWKK GSFYDYIEELI.GGEWKK GSFYDYIEELI.GGEWKK GSFYDYIEELI.GGEWKK AAVIEQFYDWFARQLKK GSFYDYIEELI.GGEWKK GSFYDYIEELI.GGEWKK AAVIEQFYDWFARQLKK SACQFDCHENFYDWFARQKK SACQFDCHENFYDWFARQKK SACQFDCHENFYDWFARQKK LQPCSGFYECIERLIGVKK LQPCSGFYECIERLIGVKK LQPCSGFYECIERLIGVKK LQPCSGFYECIERLIGVKK LQPCSGFYECIERLIGVKK LQPCSGFYECIERLIGVKK LQPCSGFYECIERLIGVKK LQPCSGFYECIERLIGVKK LLKDGFYDYFWQRLHLGSKK GSASFYDAIDRLLRMRIKK WPGYLFFEEALQDWRGSTED AFYDWFAKK LDALDRI.MRYFEERPSL	RI.YYEWIFWGQILEAGGGGIS GILEGCCPWVGILEVQCRGCPS GILEGCCPWVGILEVQCRGCPS GILEGCCPWVGILEVQCRGCPS GRACEPUSTELLYGRDMIT GIRGQCPWVGILSLLVGRDMIT GIRGQCPWYGILALLVGRDMIT GIRGQCPWYGILARQULARRQNG RAMSFYDALVSVLGICPKK-Biotin GSRPYFITEQFYSWFEEQLRS GRFYGWFQDAIDQLWFDNI. AGVNAGFYRYFSTLI.DWWDQGKK-Biotin TFYSCLASLLTGTPQPNRGPWERCRKK-Biotin TFYSCLASLLTGTPQPNRGPWERCRKK-Biotin TFYSCLASLLTGGEWKK QSFYDYIEELLGGEWKK QSFYDYIEELLGGEWKK GSFYDYIEELLGGEWKK LIANGFYDWFARGKK LLACGEWGKK LACGEWGKK LLACGEWGKK LLACGEWGK LLACGEWGK LACGEWGK LA
Ç.		S.	S.	y.	9	9	C GLEGGG FYCGLE GNGING GIISQSC VEGRGI RAMSFY GSRPVF GSRPVF GSRPVF GRFYGV AGVNA	C-C GLEQCG EYCGLE GNGDG GIISQSC VEGRGI RAMSF GSRPVF GSRPVF GSRPVF GSRPVF GSRPVF GSRPVF AGVNA AGVNA AGVNA TFYSCL	C.C. GI.EQGG	FYCGLE FYCGLE GNGING GISQSC GISCOC GISQSC GISCOC G	FYCGLE FYCGLE GNGDG GN	FYCGLE FYCGLE GNGING GISQSC GISQSC GSRPVF GSRPVF GSRPVF GSRPVF GSFYDF AAVIEC GSFYDF GSFYF GSF	FYCGLE FYCGLE GNGDG GISQSC OISQSC OISQSC OISQSC OISQSC OISQSC OISQSC OISQSC OISC	FYCGLE FYCGLE GNGING GISQSC GISQSC GSRPVF RSEASF GSRPVF GSRPVF GSRPVF GSFYDF QSFYDF GSFYDF G	FYCGLE FYCGLE GNGDG GIISQSC GIISQSC ORFYGE RSEASF GSRPVF GSRPVF GSRPVF GSRPVF GSRPVF GSRPVF AGVNAA AGVNAAF GSFYDA	FYCGLE FYCGLE GNGING GINGNS CONTROL CONTROL	FYCGLE FYCGLE GNGDG GNGDG OREYOF CREASF CRE	FYCGLE FYCGLE FYCGLE GNGDG GIISQSC OIISQSC ORFYGV PPWGAF PWGAF PWG	FYCGLE FYCGLE GNGING GIRQSC GIRQSC GREYNF RSEASF GREYNF GSRPVF GSFYDF G	FYCGLE FYCGLE FYCGLE GNGDG GNGDG GNGPS GSRPVF GSRPVF GSRPVF GSRPVF GSRPVF GSRPVF GSRPVF GSRPVF GSRPVF GSPPF GSPFF	FYCGLE FYCGLE FYCGLE GNGDG GNGDG GNGDG GNGPOF GNEYGF GNAFF GNAGF GNAGF GNAGF GNAGF GNAGF GNAGF GNAGF GNAFF GNAGF GNA	FYCGLE FYCGLE FYCGLE GNGDG GIRSQSC OIRSQSC ORFYGV GSRPVF GSRPVF GSRPVF GSFYDV OSFYDV QSFYDV QSFYDV OSFYDV	FYCGLE FYCGLE FYCGLE GNGDG GNGDG GNGPOF GSRPVF GSRPVF GSRPVF GSRPVF GSRPVF GSRPVF GSRPVF GSRPVF GSRPVF GSPTE GSFTE GSFTE GSFTE GSFTE GSPTE
							FYCGLE GNGIXG GIISQSC VEGRGI RAMSEY GSRPVF GSRPVF GSFYGV GRFYGV AGVNA	FYCGLE GNGIXG GIISQSC VEGRGI RAMSFY GSRPVF GSRPVF GSRPVF GSRPVF GSRPVF GSRPVF GSRPVF ASFASF AGVNA AGVNA TFYSCL	FYCGLE GNGDG GIISQSC VEGRGI RAMSFY GSRPVF GSRPVF GSRPVF GSRPVF GSRPVF ASFASF AGVNAA AGVNAA AGVNAA AGVNAA AAVITEC	156 FYCGIE 156 GNGIXG 156 GIISQSC 156 GSRIVF 157 GSRIVF 156 AAVITEC 156 AAVITEC 156 GSRIVF 156 AAVITEC 156 GSRIVF 156 AAVITEC 156 GSRIVF	FYCGLE GNGIXG GIISQSC VEGRGI RAMSFY GSRPVF GSRPVF GRFYGV PWGAI TFYSCL AAVIEC GSFYDY GSFYDY GSFYDY GSFYDY	156 FYCGIE 156 GNGIXG 156 GIISQSC 156 RAMSF 156 GSRPVF 156 GSRPVF 156 GRFYG 156 GRFYG 156 GRFYG 156 AGVNA 156 AGVNA 156 AAVIIEC 156 AAVIIEC 156 GSFYD 156 GSFYD 157 GSFYD 156 GSFYD 156 GSFYD 156 GSFYD 157 GSFYD 156 GSFYD 157 GSFYD 15	156 FYCGIE 156 GNGIXG 156 GNGIXG 156 VEGRGIG 156 CSRPVF 156 GSRPVF 156 GSRPVF 156 GRFYG 156 GRFYG 156 AGVNA 156	166 FYCGIE 166 GNGIXG 166 GIISQSC 166 RAEASF 166 GRFYG 166 GRFYG 166 GRFYG 166 GRFYG 166 GRFYG 166 AGVNA 166 AGVNA 166 GSFYD 166 G	166 FYCGIE 166 GNGIXG 166 GNGIXG 166 GREVIN 166 GREYGI 167 GREYGI 168 GREYGI 169 GREYGI 160 GSEYDI 160	166 FYCGIE 166 GNGIXG 166 GNGIXG 166 VEGRGI 166 RAMSEN 166 GSRPVEN 166 GREYON 166 GREYON 166 AGVING 166 GSFYIN 166	166 FYCGIE 166 GNGIXG 166 GNGIXG 166 GNGIXG 166 GNGIXG 166 GNGIXG 164 GNGIXG 164 TFYSCL 164 GNGIXG 164 TFYSCL 166 QNGIXG 166	166 FYCGIE 166 GNGIXG 166 GNGIXG 166 GREPGI 166 GREPGI 164 GREPGI 164 GREPGI 164 GREPGI 164 GREPGI 164 GREPGI 164 GREPGI 166 GREPGI 166 GREPGI 166 GREPGI 166 GSEPTI 166	156 FYCGIE 156 GNGIXG 156	166 FYCGIE 166 GNGING 166 GIRSQSC 166 GSRIPVF 166 GSRIPVF 166 GSRIPVF 166 GSRIPVF 166 GSRIPVF 166 GSRIPVF 166 GSRIPPF 166 GSRIPP	166 FYCGIE 166 GNGIXG 166 GNGIXG 166 GREPGI 167 GREPGI 167 GREPGI 168 GSFYIN 169 GSFYIN 160 GSFYIN 160	166 FYCGIE 166 GNGIXG 166 GNGIXG 166 GREPAPI 166 GSEPTI 166 GSEPTI	166 FYCGIE 166 GNGING 166 GNGING 166 GNGING 166 GNGING 166 GNGING 166 GNEYON 164 TFYSCI 166 GNEYON 166
							GNGIXG GIISQSC VEGRGI RAMSF GSRPVF GSRPVF GRFYGVF GRFYGVA AGVNA	GNGING GIISQSC VEGRGI RAMSFI GSRPVF GSRPVF GRFYGV GRFYGV PPWGAI + TFYSCL	GNGING GIISQSC VEGRGI RAMSF GSRPVF GSRPVF GSRPVF GRFYGV PPWGAI AGVNAI	150 150	150 150	150 GNGDG A6 GIISQSC B6 VEGRGI B6 RAMSFY A6 GSRPVF A6 GSRPVF B6 PPWGAF B6 AGVNAF B6 AGVNAF B6 AAVHEC A6 AAVHEC A7 AAVHEC A6 AAVHEC A8 AAVHEC A9 ASFYDY B6 GSFYDY B6 GSFYDY B6 GSFYDY B6 GSFYDY B6 GSFYDY B7 ASFYDY B7 ASFYDY B7 ASFYDY B7 ASFYDY B7 ASFYDY B8 GSFYDY B8 GSFYDY B9 GSFYDY	B6 GNGING	150 150	150 CNCIDG	150 150	150 150	150 150	150 150	160 GNGING 160	166 GNGING A6 GIISQSC B6 RAMSF A6 GSRJVF A6 GRFYGI B6 PPWGAI B6 AGVNAI B6 QSFYDY B6 QSPSF B6 QSPSF B6 QSPSF B6 QSPSF B6 QSDAFY B6 GSASFY B7 GROUP 6 WPGYLI A6 GSASFY B7 GSASFY B6 GSASFY B7 GSASFY B7 GSASFY B6 GSASFY B7 GSASFY GSA	166 GNGING A6 GIISQSC B6 RAMSF A6 GSRIVVF A6 GSRIVVF A6 GRFYGN B6 PPWGAI B6 AGVNAN B6 AGVNAN B6 GSFYD B6 GSFSF B6 GSSFY B6 GSSFY B6 GSSFY GROUP 6 WPGYL A6 GSSFY GROUP 6 WFGYL A6 GSSFY GROUP 6 WFGYL A6 GSSFY B6 GSSFY GROUP 6 WFGYL A6 GSSFY B6 GSSFY B6 GSSFY B7 GROUP 6 WFGYL A6 GSSFY B7 GROUP 6 WFGYL A6 GSSFY B7 GROUP 6 WFGYL B8 GSSFY B9 GSSFY	160 GNGING 160

Figure 11B

Dors.				FA 01	2. 6	9		
name ' Motif Sequenc		Sequenc	•	74.VI	1K-1Cs	IK-IC's PE	Ž.	Fat Cell
95	l	FIWNT	EHWATVDPEYETI EEWI BESC		DIRCORE	3175		Assay
72	1	1000		7.7 mM				+
20		LIMNI	/DFF YOYF SELLRESG	130 M				,
A6		OSDSGT	OSGTVI IDREYGWERDTWAS	77-073				٥
ر را به	Į.	EOC! I E!	I WILL A DI CONCOTO	JAO IUM				‡
2.2	-1	ייייייייייייייייייייייייייייייייייייייי	TI A MONTEL RICIG					
C-C I:OOP	- 1	PI.CVI.EE	LFWGASLFGYCSG					
C-C 1.00P	ł	OFFEW	A GVOCE IV CDECTOR					
	1	2111	IO VOLUTIONELES					
Λο		COMEP	IWEPFYGWFDI)VVAOMFEF					
98		RWPNEV	SVEI:CI 1 TIEC					
ì	1		011 L31.L11L3					
200	130 HYNAFY	HYNAFY	EYFOVI.LAETW					
98 	B6 FGWDEN	FGWDEV	WINEVENERALLACITE					
	2000		STI SOLLADVI					

FIGURE 12

FIGURE 13

FIGURE 14

MBP-H2C homodimer s

FIGURE 17

Class I clones	# Clones	Compet-
B6 3x DYKDAETPAQVGWNRLWSVWPGEHWNTVDPFYHKLSELLRESGA E5 2x DYKDRHLTNAELGVOSPEVLSRLFPDGDIFYRALSHLVRGMGPP		1 C T O U
2x DYK	2 2	, pu
DYKD	Ţ	pu
G6 DYKDGGTYFRGQVAQSNESLLRVNFLQLLEALAASPPT	1	pu
12 DYKDAPLDARLSAPRFQWSPRTWRQSLSYGEWSCGSFYDCLSSI	r	pu
A5 DYKDMGSSQFQDTRPSSGQAYSHSLDSDGWGTANWIFLRALEGL	-	nd
C6 DYKDSGAAHEGNQGRERSTHLAANINDHLPGDAGIWLGYSWLS	F	+
Consensus (regular+frameshifters) d.FY.lLsaL		
ហ		
human IGF mature VCGDRG FY FNKPTGYGSSSR		
23 30 human IGF propeptide MSSSHL FY LALCLLTFTSSA		
-16 -9		
Class I frameshifting clones (all in +1 frame)		
F6 2x TTKTRG.IFGMLLGVLRFQILLWPFPKDCVQMKDIFYSLLASL	1 1	+
7 3x TTKTRIGCCS.LVWGWRGCRLADGFYAFLMALAG	ዮን	pu
8 TTKTRLRLLLLGGDEPFYGLLRMLIGRGS	7	, nd
G5 TTKTGWFAWVLAFSVQGVGVAFYSALAALLCAHSASLVCGA	3A 1	pu
Class II clones		
	1	pu
A6 DYKDYRGML <u>VLG</u> RISDGAGKVASEPPARIGQKVFAVNFYDWFV R35 DYKDSGCCRL IG LRWMFIVIVGWSGALVCQSAASAAGFYDWFV	1 1	pu

human IGF mature (1-70) GPETLCGAEL VDALQFVCGD RGFYFNKPTG YGSSSRRAPQ TGIVDECCFR SCDLRRLEMY CAPLKPAKSA

nd = no data

CACTACAJAC ACTICUCATI CAMITITICA TAICITICCI CACGIGCTTA COTTICOTAGE CONTICCTA AGGATICATA CAMITITITA ALICOTTOTT GCCACCICCA

DYKDSRINFRY VAGRAQUE SYANS GRAQOS SYANS. GICSDERYFLFY VGQFGGRA

TYKDSRINF FON TRG TFGHLGVLRFQILLWPFPKDCYQHKDIFYSLLASIAAA

TYKIRG TFGHLGVLFSVCCMACLGFRFCGRFFRTRIVFR.KIFFIRGWLAAA

CACTACAAAG ACCCCGTTCC CCTGCTGTTT GCTCCTTGGG GGTGATGGTCCCGTTGGTCGGGTTC GCGCCCGCA 1800

D Y K D A V A A A V A P H G . . A F L H A S P Y A D H S H V C G R

T T K T R I R I I I G G D F P F G I I R H I G R G S A A A

I Q R R G C G C C S I G V H S L F H G F S V C . I V V G L R P

CACTACAMG ACCCCGATIG GGTGTTGTAGCT TGGGGTTGAA GGGGATGTAA GGGGTTTATG CGTTTTATG CGTTTTGAT GGCGCGGCTG GGGCGGCCG CA
D Y K D P D W V L Q L 1 S L G L E G H Q 1 G . W V L C V F D G A G W G G R
T T K T R 1 G C C S . L V W G W R G C R L A D G F Y A F L H A L A G A A A
L Q R P G L G V V A D Q F G V G G D V D M L H G F H R F . W R M L G R P

FIGURE 20B

NTVDPFYHKLSELLREKK(biotin)
aa)
(18
5.1
Peptide

QMKDIFYSLLASLAAKK(biotin) MLLGVLRFQILLWPFPKDCVQMKDIFYSLLASL Peptide 5.2 (17 aa) Clone F6

ADKNEYDWEMAAKK (biotin) PLYGGGIHLYYPGTMGYVPGFPRQVKVLGDADK**NFYDWF**M Peptide 5.3 (14 aa) Clone D5

SAKNFYDWFVKK (biotin) YRGMLVLGRISDGAGKVASEPPARIGOKVFAVNFYDWEV Peptide 5.4 (12 aa) Clone A6

FIGURE 23

FIGURE 24A

FIGURE 24B

GACTACAAAGACGACGATGACAAGTACCGTGGTATGCTGGGTCGTATGTCTGACG
D Y K D D D K Y R G M L V L G R T S D

GTGCTGGTAAAGTTGCTTCTGAACCGCCGGCTCGTATCGGTCAGAAAGTTTTCGCTGTTAA

G A G K V A S E P P A R I G Q K V F A V N

CTTCTACGACTGGTTCGTTGCGGCCGCA 96 nt
F Y D W F V A A A A FIGURE 25A

CTACAAAGACGACGATGACAAGTACCGTGGTATGCTGGGTCGTATCTCTGACGGTGCT

GGTAAAGTTGCTTCTGAACCGCCGGCTCGTATCGGTCAGAAAGTTTTCGCTGTTAACTTCTACG

ACTGGTTCGTTGCGGCCGCAGTGTGA 154 nt

FIGURE 25B

GACI	CAC	AAA	GAC	NNK	AAC	TTC	TAC	GAC	TGG	TTCG									
D	Y	K	D	X	X	X	X	X	X	X	X	X	X	N	F	Y	D	W	F

TTNNKNNKNNKNNK V X X X X 21 aa

FIGURE 26A

CTACAAAGACNNKNNKNNKNNKNNKNNKNNKNNKNNKNNKAACTTCTACGACTGGTTCGTTNNK NNKNNKGCGGCCGCAGTGTGA

FIGURE 26B

```
H5 NH<sub>2</sub>-D-Y-K-D-L-C-Q-S-L-G-V-T-Y-P-G-W-L-A-G-W-C-A-K-K(Biotin)-COOH

H5 Control NH<sub>2</sub>-D-Y-K-D-W-C-L-T-L-Q-P-L-V-W-A-S-G-G-G-Y-C-A-K-K(Biotin)-COOH

H5-447 NH<sub>2</sub>-D-Y-K-D-L-C-Q-R-L-G-G-T-F-P-G-W-L-V-G-V-C-R-K-K(Biotin)-COOH

H5-432 NH<sub>2</sub>-D-Y-K-D-L-C-Q-S-L-G-V-T-W-P-G-W-L-A-G-W-C-A-K-K(Biotin)-COOH
```

Clone:			Bindin Target	g Ratios: E-Tag	
A6S-1-C5	DYKD	RIHNQTERSGNFYDWFVHqLV AAA	7	27	26
A6S-1-G3	DYKD	VATVHVGGGMNFYDWFVAQVG AAA	5	19	26
A6S-1-A2	DYKD	KDPVTVSQGRNFYDWFVVqIQ AAA	5	20	25
A6S-1-D5	DYKD	RVGSGMEDLGNFYDWFVRQAq AAA	5	25	20
A6S-1-H4	DYKD	HKSWTTMSPLNFYDWFVAQVE AAA	3	18	17
200-1-114	JINJ				
A6S-2-F2	DYKD	LAMSVASRPANFYDWFVAqIV AAA	30	35	86
A6S-2-D2	DYKD	RAERGSMRDSNFYDWFVqQLP AAA	30	36	83
A6S-2-E3	DYKD	VqEGLSGMEGNFYDWFVDQLF AAA	28	36	78
A6S-2-H2	DYKD	RGGRESDSGTNFYDWFVGAIR AAA	28	40	70
A6S-2-A3	DYKD	SRAPYGSTAGNFYDWFVqAVS AAA	25	37	68
A6S-2-H1	DYKD	RVGIqVDPHTNFYDWFVIQLT AAA	27	42	64
		-			
A6S-2-F1	DYKD	VGqVGRYVRSNFYDWFVQqAM AAA	8	30	27
A6S-2-G1	DYKD	RPqLVESGSKNFYDWFVqVVR AAA	8	30	27
A6S-2-B2	DYKD	EMYGDTSERVNFYDWFVSALq AAA	5	30	17
A6S-2-A1	DYKD	LSSRGRVTMRNFYDWFVAqVV AAA	3	31	10
			•		
A6S-3-E1(DYKD	RVREKLPRPENFYDWFVNqIH AAA	22	23	96
A6S-3-G2	DYKD	TWMWEERKqDNFYDWFVGQLK AAA	20	21	95
A6S-3-E5	DYKD	RYRGERHDGRNFYDWFVEqVN AAA	19	21	90
A6S-3-H2	DYKD	qGAEGRLSEGNFYDWFVQAVS AAA	19	21	90
A6S-3-H9-	DYKD	YSIEVQDWNENFYDWFVSQLG AAA	20	23	87
A6S-3-G3	DYKD	PRLHMGSDMGDFYDWFVVqIA AAA	18	21	86
A6S-3-F8	DYKD	GRGqGLKRPDNFYDWFVAAAK AAA	20	25	80
A6S-3-G1(DYKD	GAVGLAEAGPNFYDWFVSqVq AAA	19	24	79
A6S-3-H1	DYQD	PASNKNSLAE NFYDWFV qQTR AAA	23	30	77
A6S-3-E6	DYKD D	ARDHGVWVMS NFYDWFV AqVS AAA	5	20	25
A6S-3-D9	DYKD	SLQGADFqQGNFYDWFVSELA AAA	4	17	24
A6S-3-E3	DYKD	RPSLPEVRPGNFYDWFVqSVR AAA	4	19	21
A6S-3-H8	DYKD	NPTSVqQYGVNFYDWFVNVLS AAA	4	20	20
A6S-3-G4	DYKD	CADPGACSSLNFYDWFVqMRG AAA	4	21	19
A6S-3-B1(DYKD	YDqDPPYWGLNFYDWFVREVA AAA	3	16	19
A6S-3-C1	DYKD	RPVIGGGGTRNFYDWFVAqMI AAA	3	17	.18
A6S-4-G5	DYKD	QEVTRTRDDKNFYDWFVSqIF AAA	26	18	144
A6S-4-D2.	DYKD	PPYRSSRLGENFYDWFVMqVR AAA	26	19	143
A6S-4-F6	DYKD	LKGSSQPLSVNFYDWFVQQIK AAA	24	17	142
A6S-4-H4	DYKD	PRMVEKPSEDNFYDWFVTqLS AAA	28	20	141
A6S-4-C1.	DYKD	CWARPCGDAANFYDWFVqQAS AAA	22	16	141
A6S-4-G3	DYKD	GAQAIREIHHNFYDWFVAQVT AAA	29	21	139
A6S-4-H3.	DYKD	GRGDQRHETTNFYDWFVRELq AAA	28	20	137
		_ -			

FIGURE 28

Name	Sequence	#Found	Ratio	IGF Inh.	GHR*
អ5: 2C3:	LCQSLGVTYPGWLAGWCA VCQRLGGTFPGWLVGVCR	-	1.2	-	2.6
JBA5: E2A12: E1A11: E4B10: E4C10: E4A9: JBB6: E1F9 E4G7: E4A11: E1B9: E4A12:	LCQSWGVRI-GWLAGLCP LCQSLGFTDLDWLACWFE VCQSLGITDLGLCAGWGA LCQSLGLTHPGFEAWLCA LCQNFGVTDPGCFYGWFA LCQSSGLSFLGCL-GWWA PCQRLGDTHLCWLAGWFA PCQSLGLTCSGWFEGWGA QWQSLGVTCPGSWAELCA LWQSVGIKYPGGLAGWLA LCQSLGVTYWEGLAWLCA VCQGLGVECPGWFAGWWA LCQGWGIRI-GWLVGRCM	19 10 1 5 1 14 6 1 1 1 3 3	~24.0 ~17.5 16.4 ~11.7 9.9 ~8.5 ~8.3 6.0 5.8 5.5 ~5.3	~45% ~54 50 ~50 ~51 ~65 ~65 68 50 67 60 ~55	1.2 1.1 1.0 1.2 0.7 1.0 1.1 1.2 1.3 1.4 1.1
E4F11: E1D3:	LCQGWGTRT-GWLVGRCH LCQSLGVTYPGWLAGGCA	ĺ	2.0*	-	1.0

Genomic (Vab Library

FIGURE 30

VH Gene Sequences DP-1 DP-10 **DP-12 DP-14 DP-15** DP-2 DP-21 **DP-25** DP-29 **DP-30 DP-31 DP-32** DP-33 **DP-35** DP-38 DP-39 DP-40 **DP-42** DP-44 DP-45 **DP-46 DP-47** DP-5 **DP-50** DP-51 DP-52 **DP-53** DP-54 DP-59 DP-63 DP-66 **DP-67 DP-68** DP-69 DP-7 **DP-70** DP-71 **DP-73 DP-74** DP-8 hv1263

VHD26

Lambda and Kappa Gene Sequences

DPK11
DPK15
DPK18
DPK2/L14+
DPK3/L11+
DPK4
DPK6
DPK8/Vd+
DPL23
HK101
L22+
L23/L23a
LFVK431

VA++

FIGURE 32

177 P. 187 P. 18

```
6x-12x TrpGlyGluGlyThrLeuValThrValSerSerGlyGlyGlyGlySerGlyGlyGlyGlyGlySerGlyGlyGlyGlyGlyGlyGlySer
                                          NNB---NNBTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGGTGGAGGCGGTTCAGGCGGAGGTGCCTCTGGCGGTGCCGGATCC
                                                                    CTIBIV - - - BIVVACCCCGGTCCCTTGGGACCAGTGGCAGAGGAGTCCACCTCCGCCAAGTCCGCCTCCACGAGACCGCCACA
                                                                                                                                                                                      BOLD = IN DG! COLLECTION
G45 linker
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        / Not1 / PCR primer site
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     FIGURE 33
                                                                                                                                                                                                                                                                                                                                                                                           TGGACGTTCGGCCANGGGACCAAGGTGGAAATCAAAGCGGCCGCAGTGTGAGTCCAAAAAGATTTCG
                                                                                                                                                                                                                                  continued as for J4b gene and linker
                                                                                                                                                                                                                                                                                                                                                                                                                 GAACCTGCAAGCCGGTTCCCTGGTTCCACCTTTAGTTTCGCCGGCGTCACACTCAGGTTTTCTAAAGC
                                                                                                                                          continued as for J4b gene and linker
                                                                                                                                                                                                                                                                                                                                                     / Not1 / PCR primer site
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    LeuThrPheGlyGlyGlyThrLysValGlulleLys
CTCACTTTCGGCGGGGGGGCCAGGTGGAGTATCAAA continued as for JKl
GAGAGTGAAAGCCGCCTCCTGGTTCCACCTCGTTT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         PheThrPheGlyProGlyThrLysValAspIleLys
TTCACTTTCGGCCCTGGGACCAAAGTGGATATCAAA continued as for JKl
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               TACACTITIGGCCAGGGACCAAGCTGGAGATCAAA continued as for JK1
                                                                                                                                                                                    DP31, DP33, DP39, DP40, flp1, DP47 and DP49
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              continued as for JL2/3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       continued as for JL2/3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     continued as for JL2/3
  Jildb gene
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        / JL2/3 for DPL16+v3s1+v318
                                                                                                                                                                                                                                                                                                                                                                       TrpThrPheGlyGlnGlyThrLysValGluIleLys
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       TyrThrPheGlyGlnGlyThrLysLeuGluIleLys
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     GAATGTGAAAACCGGTCCCCTGGTTCGACCTCTAGTTT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   GAAAGTGAAAGCCGGGACCCTGGTTTCACCTATAGTTT
                                                                                                                                                                                                                                                                              3' end for 4 VH genes: DP2, DP3, DP5 and DP38
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          for DPL23+VL3.1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 for DPL2+DPL3
    / CDR H3 /
                                                                                                                                              NNK - - - NNK
                                                                                                                                                                                                                                    NNK - - - NNK
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               for DPL11
GTG---
                                                                                                                                                                  TTIVING - - - PINM
                                                                                                                                                                                                                                                          GTWNM---NNIM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         GTG---
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        GTCAC---
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CACAC---
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     JK3 gene
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    JK4 gene
                                                                                                                                                                                                                                                                                                                                                     JK1 gene
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   JK2 gene
                                                                                                                                                                                          3' end for 7 Vii genes:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          /DPL23 (=VL3.1)/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    DPL16 (=v3s1)+
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 G
S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  His
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        NNN-----CAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Ala
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        NNN-----GCA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         NNN-----CTC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       NNN-----GGT
    VII gene
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CCNNN-----G
                                                                                                                                                                                                                                      CCGGAATTCGGCCCAGCCGCCNNN----NCA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             CGNNN-----C
                                                                                                                                                CCCCAATTCGGCCCAGCCGGCCNNN-----UAA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CCNNN-----C
                                                    CCGGAATTCGGCCCAGCCGGCCNNN----NGA
                                                                                                  3' end for 40 VH genes
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CGNNN-----G
                                                                            GGCCTTAAGCCGGGTCGGCCGGBNB-----N
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           / DPL2+DPL3
                                                                                                                                                                  GGCC1TAAGCCGGGTCGGCCGGNNH-----N
                                                                                                                                                                                                                                                              GCCCTTAAGCCGGGTCGGCCGGNNN-----N
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          +v318
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             DPL11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Ser
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Cln
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Gln
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Ser
                                                                                                                                                                                                                                                                                                                                                                                                     NNN -----CCT
                                                                                                                                                                                                                                                                                                                                                         All kappa genes:
                                                                                                                                                                                                                                                                                                                                                                                                                                               (except VK L20)
                                                                                                                                                                                                                                                                                                                                                                                                                           CCNNN-----C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Lambda 1 genes:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Lambda 3 genes:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Lambda 3 gene:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Lambda 2 gene:
```

10 20	30		
1234567890 1234567890	1234567890	1234567890 1234567890 1234567890	
CATEGOCCA	GGTGCAGCTG	GIGGAGICIG GGGGAGGCIT GGIAAAGCCT	60
0	V O L	V E S G G G L V K P	
2	V Q D	,	
		**************************************	120
CCCCC TTAGACICTO	: CIGIGCAGCC	'ICTGRALTCA CTITCAGTAA COCCTOGATG	120
G G S L R L S	CAA	S G F T F S N A W M	
والمنافع المنافع المنا	AGGGAAGGG	CTGCAGTGGG TTGGCCGTAT TAAAAGCAAA	180
ACCOMICE GEORGE	CKG	LEWV GRI KSK	
SWVRQAP	GRG		
			240
ACTGATGGTG GGACAACAG	A CTACGCTGCA	CCCGTGAAAG GCAGATTCAC CATCTCAAGA	240
T D G G T T D	Y A A	PVKGRFTISR	
	ממיבווייתימיויי י	ATGAACAGCC TGAAAACCGA GGACACAGCC	300
GATGATTCAA AMAACACGC	. GIAICIGCA	M N C I V T E D T A	
D D S K N T L	Y L Q	M N S L K T E D T A	
GIGTATTACT GTACCACAG	TECGTIGICI	GCCGACCGIG GGATGIGGGG TCAAGGAACT	360
		ADRG MWG QGT	
V 1 1 C 1 1 V	2 2		
			420
CIGGICACCG TCTCCTCAG	TGGAGGCGGI	TCAGGGGGAG GTGGGTCTGG CGGTGGGGGA	420
L V T V S S G	G G G	S G G G G G G G	
תרובאתבויות: תקאתקאריות	GICTOCACTO	TOCCTOCCC TCACCCTTCG ACACCCGCCC	480
		S L P V T L G Q P A	
SDVVMIQ	2 F L		
			540
		GTATACAGIG ATGGAAACAC CTACTTGAAT	540
SISCRSS	Q S L	V Y S D G N T Y L N	
سحسستامت مرمضتاته	تكسسوهك و	AGGCCCTAA TITATAAGGT TICTAACCGG	600
W F Q Q R P G	QSP	R R L I Y K V S N R	
GACTOTOGGG TOCCAGACA	ATTCAGCGG	AGIGGGICAG GCACIGATIT CACACIGAAA	660
D S G V P D R	F S G	SGSGTDFTLK	
, m, , , , , , , , , , , , , , , , , ,	· ~~»	CHITTENETING CONTINUES ACT TO CACACACTO	720
		GITTATTACT GCATGCAAGG TACACACTGG	120
ISRVEAE	DVG	V Y Y C M Q G T H W	
CCTTACACTT TIGGCCAGG	GACCÁAGCTIC	GAGATCAAAG CCCCCCC	767
PYTF GQG			
FIIF GQG	IVD	E I K	

10 20	30 40 50	
1234567890 1234567890 12	<u>234567890 1234567890 1234567890</u>	1234567890
COTTAGNES CCATEGOCCA G	ATGCAGCIG GIGGAGICIG GGGGAGGCIT	GGTAAAGCCT 60
4 0	M Q L V E S G G G L	V K P
_		
GEOGRAFICOU TEACACTUTO CI	TGTGCACCC TCTCCATTCA CITTCACTAA	CCCTCCATG 120
GGSLRLS	C A A S G F T F S N	A W M
ACCIGGICC GCCAGGCICC AC	GCCAACCCC CTCCACTCCC TTCCCCCTAT	TAAAAGCAAA 180
SWVROAPO	G K G L E W V G R I	K S K
ACTICATICATIC CRACAACAGA CI	TACGCTGCA CCCGTGAAAG GCAGATTCAC	CATCTCAAGA 240
T D G G T T D	Y A A P V K G R F T	ISR
CATCATTCAA AAAACACCT GI	TATCTCCAA ATGAACAGCC TGAAAACCGA	GGACACAGCC 300
D D C V N T I	Y L Q M N S L K T E	DTA
مستسمسمم مسمرتم كالمستواد	GCCTCCGTC GACACGACA ACTACCCCAG	GTTTTGGGGT 360
GIGIATIALI GIALCALAIG G	G S V D T D N Y A R	F W G
V I I C I I W C		1 0
	TOCTCAGGT GGAGGGGGTT CAGGGGAGG	TESCHOTOGC 420
	S S G G G S G G G	
Q G T L V T V S		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	PATGACOCAG TOTOCATOCT COCTGTCTGC	ATCTCTACCA 480
	M T Q S P S S L S A	
G G G S D I Q I	MIQSFSSESA	5 V G
Cacacacaca Cermeromae C	CCCCCCACT CACCCCATTA CCAATTATTT	ACCURGITAT 540
	R A S Q G I S N Y L	
DRVTITC	RAS QGISNIL	AWI
CACACAAAC CACCAAACTI EY	CCTAAGCIC CIGATCIAIG CIGCATCCAC	TTTGCAATCA 600
QQKPGKVI	PKL LIYA AST	r o s
		CACCATCAGC 660
	GGCAGIGGA TCIGGGACAG ATTTCACICT	
GVPSRFS	G S G S G T D F T L	TIS
		720
	GCAACTTAT TACTGTCAAA AGTATAACAG	
SLQPEDV	ATY YCQK YNS	АРЬ
		363
ACTITICESCE CAGEGACCAA CO		761
TFGGGTK V	V E I K	

				40		<u> </u>		60	
10	20								
1234567890	1234567890 123456 CCATGGCCCA GATGCA	<u> </u>	T2343	71030	123430	7030 Ture	1524	201030 20000	60
CCCCAGCCGG (	CATCOCCA GATCA O M Q	علانيق	GIGGA	31616	CC	3-11 T	WIN.	r b	$\omega$
	Q M Q	L	V E	5 G	G	ע	<b>V</b> .	K P	
		·~·	<del></del>	لاحست	الاعلىلىك	ממידיב	m	عسدتجس	120
coccentration ,	TTAGACTOTO CTGTGC	AGCC	TCIG	ATTCA	CILICA	אני פרטיני	N I	M M	120
GGSL	R L S C A	A	S G	r T	r S	14	A	VV 1-1	
	OCCAGOCTOC AGGGAA	~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<del></del>	mm~~~	יוטעינדי	מ א אינדי	ת ת תריים	180
AGCTGGGTCC (	CCAGCUICU AGGGAA	مددد	CIGGA	77 77		TALE	I TUWU	o k	100
SWVR	Q A P G K	G	ם ע	w v	G K	_	K	5 K	
			~~~	-222	C T C NOTE	TC N C	CVTC	מרא ארא	240
ACTGATGGIG	GGACAACAGA CTACGC	الغنظ	CCCGN		GWAN	₩.	T	C P	240
TDGG	T T D Y A	A	PV	K G	K F	1	1	5 K	
				~~~	m-3333	~~~	~~~	2020	300
GATGATICAA	AAAACACGCT GIATCT	GLAA.	ALCAM	JER	I CHAMM		سيس	M N	300
D D S K	N T L Y L	Q	M N	SF	KT	Ł	ט	TA	
	_							~~~~	360
GTGTATTACT (	GTACCACACC GGGCTG	GIAT	GGGGG	CCACC	ATAAGI	نكك	TCAA	GGAACT.	360
V Y Y C	T T P G W	Y	G A	E D	K W	G	Q	G T	
					~~~~	~~~~	~~~	~~~~~	420
	TOTOCTCAGG TGGAGG								420
LVTV	S S G G G	G	SG	GG	GS	G	G	G G	
					a. mana			2020	480
TOCGACATOC .	AGATGACCCA GICTCC	ATCC	TOOT	GICIG	CAICIG	IAGG	ALAL	ALAKSIC	480
SDIQ	M T Q S P	S	SL	S A	SV	G	D	R V	
					m> 000m	~~~~	m-3.0	~>~>	540
	COCCECCIO DEDCESSOCO								540
TITC	R A S Q G	1	SN	ΥL	A W	Y	Q	QK	
					~~~~		.~~	~~~~	600
	TICCIAACCT CCICAI								600
PGKV	P K L L I	Y	A A	ST	гΩ	5	G	V P	
		~~~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~~~	~~~	~~~	~~~~~	660
	GTGGCAGTGG ATCTGG								990
SRFS	G S G S G	T	D F	ть	T I	5	5	ב ע	
					~~~~	~····	~~~		720
	TIGCAACITA TIACIG								120
P E D A	A T Y Y C	Q	K Y	N S	A P	r	T	r G	
~~~~~		~~~	~~						752
· ·	AAGTGGATAT CAAAGC	تكن	G.						132
PGTK	V D I K								

	10			20			30				40			50			60	
1234567	000	1234	567	8 <u>90</u>	123	456°	7890	12	345	578°	<u>90</u>	1234	567	<u>890</u>	123	<u>456</u>	7890	
GCCAGO	$\overline{x}$	CCAT	<u> </u>	CCA	GGIV	GCA	CIG	GIV	GGA(	$\mathfrak{IC}$	$\mathbf{IG}$	GGG		CIT	GGL	شكاه	المالك	60
				Q	V	Q	L	V	Ε	S	G	G	G	L	V	Q	P	
													~ ^ · ·	~~ »	~~~	m-3.	~>m~	120
GXXXXI)	CCC	TGAG	ACT	CIU	CIG	TCC	AGCC'	TC	IGG C	AT'I	CA.	CCTI	نكات	TAA	حلات	D TCZ	M	120
G G S	L	R	L	S	С	A	A	S	G	F	.1.	r	5	1/4	3	ט	rı	
AACTGGG			~~~		3~~	<b>7.7.7</b> .	~~~	CID.	الات	حلك	~	ראבי	نئن	יובאר	TAG	באניוו	TAÆ	180
N W V		AICA	لخافا م	ICC.	Au	r r	G	T.	E.	W	v	S	G	v	S	W	N	
N W V	н	Q	A	٢	G	Λ	G	ם	۰	••	٠		Ū	•		•		
GGCAGIA	حتت	تري	تربب	TT	AGA	CIC	TGIG	AΑ	GGG	225	ΑT	TCAT	CAT	CTC	CAG	AGA	CAAT	240
G S R	<del>УГ</del>	H	Σ <u>-</u> Υ	A	D	s	V	K	G	R	F	I	I	S	R	D	N	
TCCAGGA	ACA	CCCI	GIA	TCT	GCA	AAC	CAAT	AG	CCI	GAG	Œ	CCGA	GGA	CAC	$\alpha$	TGI	GTAT	300
S R N	Т	L	Y	L	Q	T	N	S	L	R	A	Ε	D	${f T}$	Α	V	Y	
																		2.50
TACIGIG	TGA	G7.7C	CGA	TGG	CC	GIG	GIAC	Œ	<b>660</b>	CIG	$\mathfrak{G}$	GICA	AGG	AAC	TCI	GI	CACC	360
Y C V	R	T	Ð	G	Ε	W	Y	G	A	W	G	Q	G	${f T}$	L	V	T	
								~~		~~~		~~~	<del>~~</del>	~~	3000	<b>~~~</b>	حدت لا حد	420
GICICCI	CAG	GIG	AGG	æ	TIC	AGG	CCGA	GG		CIC	16	فغلغا	ففالة	حغك	AIC	بالخار الا	CAIC.	420
v s s	G	G	G	G	S	G	Ġ	G	G	5	G	G	G	G	ے	Α	1	
CAGATGA	~~	* (***)	<del></del>	سائلا،	حبب	<del></del>	بلمالمات	~	יאיבי	ובת	ביבי	CZCZ	CAG	ىلت)ھ:	CAC	ĊΑΤ	CACI	480
Q M T		اعظم	.בככ	AIC	CIC	T.	SICI	A	S	V	G	D	R	v	T	I	${f T}$	
Q M I	Q	J.	-	٥		_	_	••	_			-	-					
TGCCGGG	CLA	GTC	GG	CAT	TAC	בבב	TGAT	TI	'AGG	CTG	GT	ATCA	SCA	GAA	ACC	AGG	Cryy	540
C R A	S	0	G	I	R	N	D	L	G	W	Y	Q	Q	K	P	G	K	
GCCCCIP	AGC	TCC	C-I	CIA	TGC	TC	ATCC	AC	TTT	:AC2	AA	GTGG	GGI	ccc	ATC	'AAC	GTTC	600
APK	L	R	I	Y	A	Α	S	S	L	Q	S	G	V	P	S	R	F	
									•					_				550
AGCCCC	GIC	CATO	TG	CAC	AGP	TT	CACT	CI	CAC	CAI	CA.	GCAC	ECI	.GCA	œ	ΠG	VACA'I	660
S G S	; G	S	G	Т	D	F	T	L	T	I	S	S	L	Q	Р	E	D	
TTTCCA	~~~		· ~ ~ ~ ·	****			Vittina C			~~	• <del>•••</del>	רריא <i>ר</i>	*****	~~~	~	באכב	רבא	720
F A																		. 120
r A l	. <u>Y</u>	. 1	C	יו	Q	ט	1	TA	I	F	ب	•	•	3	0	٥	•	
AAGGTG	<del>ب</del> ت حت	י ארי	کاتر ۲	ىئىل	ى رى													743
K V I						-												
· •	_	• • •																

10	20 30	40	50	60	
1234567890 12345678	890 1234567890	1234567890	1234567890 1	234567890	
GCCCAGCCGG CCATGGCC	CA GATGCAGCTG	GIGCAGICIG	GGGGAGGCTT (	SCIACAGCCT	ಐ
	QMQL	V Q S G	G G L	V Q P	
					*.* 6.
CERCUIT TONESCED	THE CHETTERAGE	ICTUGATICA	CCTTCAGIAG C	TAIGCTAIG	120
G G S L R L	S C A G	SGFT	FSS	Y A M	
CACTGGGTTC GCCAGGCT	~~ ×~~××××××	رس <i>ت</i> هرسب	תאתרא בידואתי ח	بلتحليب لابلتحيد	180
H W V R Q A	D C K C	I. F W V	S A I	G T G	
HWVRQA	PGRG	B	5 1		
GGTGGCACAT ACTATGCA	AGA CTCCGTGAAG	GGCCGATTCA	CCATCTCCAG A	AGACAATGCC	240
G G T Y Y A	DSVK	GRFT	ISR	D N A	
AAGAACTOOT TGIATOT	ICA AATGAACAGC	CTGAGAGCCG	AGGACATGGC T	GIGIATTAC	300
K N S L Y L	Q M N S	L R A E	D M A	V Y Y	
					260
TGTGCAAGAT GGGGGCAG	ar accide	GITGGGALG	TCTATIGGG T	CAACCAACT	360
C A R W G H	V G L W	VADV	Y W G	Q G T	
CTGGTCACCG TCTCCTC	محصومت المحمد	TENCHARIA	مانتيست		420
L V T V S S					
D V 1 V 3 5				- 1	
TOOGACATOC AGATGACO	CCA GICTCCATCC	TCCCIGICIG	CATCIGIAGG A	GACAGAGTC	480
S D I Q M T					
ACCATCACTT CCCGGCC					540
T I T C R A	S Q G I	SNYL	A W Y	QQK	
CCAGGGAAAG TICCTAA	شجشتسجينين شخ	ومستحسم	ت بلند لا تشتبت ا	لا بىلىنىدى. م	600
P G K V P K					000
			2 & 3	<u> </u>	
TCTCGGTTCA GTGGCAG	TGG ATCTGGGACA	GATTICACIC	TCACCATCAG (	CAGCCTGCAG	660
S R F S G S	G S G T	D F T L	TIS	S L Q	
CCTGAAGATG TTGCAAC					720
P E D V A T	Y Y C Q	K Y N S	APY	TFG	
0,0000,000,000	arm arra	~			752
CAGGGGACCA AGCTGGAC Q G T K L E		GC.			152
Q G I K L E	T V				

10 20 30 40 50 60	
1234567890 1234567890 1234567890 1234567890 1234567890	
CONTROLL CATEGORA GATGCAGCTG GTGCAGTCTG GGGGAGGCTT GGTACAGCCT	60
Q M Q L V Q S G G G L V Q P	Į.
-	
COSSESSION TEACACTOTO CTUTOCAGO TOTOGRATTOA COTTUAGRAG CTATUCIAIG	120
G G S L R L S C A G S G F T F S S Y A M	
CACTOGGTTC GCCAGGTCC AGGAAAAGGT CTGGAGTGGG TATCAGCTAT TGGTACTGGT	180
HWVRQAPGKGLEWVSAIGTG	
n w v k g n i o o -	
GGIGGCACAT ACTATGCAGA CTCCGIGAAG GGCCGATTCA CCATCTCCAG AGACAATGCC	240
GGTYYADSVKGRFTISRDNA	
AAGAACTOCT TGTATCTTCA AATGAACAGO CTGAGAGOOG AGGACATGGO TGTGTATTAC	300
KNSLYLQMNS LRAE DMA VYY	
K M S L L L Q II M S L L W W	
TGTGCAACAG AGGGCGAGCT CGGGGTGACC TCCTTCTGGG GTCAAGGAAC TCTGGTCACC	360
CAREGELGVTSFWGQGTLVT	
CAREGEBGVI 51 W 5 2	
GICICCICAG GIGGAGGGG TICAGGGGGA GGIGGCTCTG GCGGIGGGG ATCCCACATC	420
V S S G G G G S G G G G G G S D I	
V S S G G G G G G G G G G G G G G G G G	
CAGATGACCC AGTOTOCATO CTOCCTGTOT GCATOTGTAG GAGACAGAGT CACCATCACT	480
QMTQSPSSLSASVGDRVTIT	
Q M I Q S F S S B S A S V S S A V I I I	
TGCCGGGGGA GTCAGGGGAT TAGCAATTAT TTAGCCTGGT ATCAGCAGAA ACCAGGGAAA	540
CRASQGISNYLAWYQQKPGK	
CRASQGISNI IN TERM	
GTTCCTAAGC TCCTGATCTA TCCTGCATCC ACTTTGCAAT CAGGGGTCCC ATCTCGGTTC	600
V P K L L I Y A A S T L Q S G V P S R F	
VPRE EII RASIEQUO VI D WI	
AGIGGCAGIG GATCIGGGAC AGAITITCACT CTCACCATCA GCAGCCTGCA GCCTGAAGAT	660
S G S G S G T D F T L T I S S L Q P E D	
2 G 2 G 3 G 1 D F 1 D 1 1 3 5 D 2 Q 1 D 5	
GIIGCAACIT ATTACIGICA AAAGIATAAC AGIGCCCCIT GCACGIICGG CCAAGGGACC	720
VATYYCQKYNSAPWTFGQGT	
VAILICQ KIN SAFWII SQUI	
AAGGTGGAAA TCAAAGCGGC CGC -	743
K V E I K	-

FIGURE 40



FIGURE 41



FIGURE 42



FIGURE 43



FIGURE 44



FIGURE 45



Target	IR IGF	++++	++++	+++ +	+++++++++	++++	+++	++++ ++	+++	+++++++++++++++++++++++++++++++++++++++	+++ ++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++	+ + +	++	+	++++	++	++	÷ +	++++	÷ +	+
	Found	18	16	æ	S	4	ო	2	7	7	_	~	۲	7	7	-	-	-	-	-	~	m	2	٦
		TGGOGOHODGNEYDWEVEALA	VFWNCRSOOLDEYEWEEDAA	RGGGTEYEWEESALRKHGAG	RVAGATSAPGLVSNKODGLEYSWERE	VIOARHGCDSVSDCFYEWFA	DPERMOSDVGFYEWFRAAVG	WSALLSVMDTGEYAWEDDAV	DIGSDGHGRRWDSFYRWFEM	IGGSFVEFYGWFNDQV	CHSWALVRHVDRLFYEWEDL	LPAGGAOGFAVRGFYEWEES	ROKPTOGEONWSFYEWFRII	CONTRACTIONS	CALTURE TENENCE CONTRACTOR OF THE MEHENT NO SERVED V	RICCGWARSEGEYEWEVREL	RMEYEWEWSOMGAGPTEGSA	HEAFYDWFSALVDGGYELMG	FYGWESROLSLIPRODWGLP	CVCTLTMSSDAEYTWEV	SOME STATE OF THE	SENSON DESCRIPTION OF THE SENSON DESCRIPTION	CETLESHYVVI'Q	IRDMHYYWVQDRDRY INCVRÇWIISDRINGSSTATING RMGL <u>O</u> ALAHYRKSAGFIFLSSGSVIKGSBGDP <b>FYAWF</b> RLQ
		ormula 1 Motif																					ப	Irdmhyww Rmgloalahyrk
		Group 1: FC	20D3*	20l·1	3	20111	20151	D2 2.3	138,	<u>ئ</u> ر	78 1	E7 ,	S	118	E2	1312	D10-2	SS .	22	3611	F4	1.7-2	40G11	40B12 RMG

## FIGURE 47

Group 2: Formula 6 Motif 20A4* EIEAEWGRANGIA

RIENEWSRVRCI,VYGRCVGG WILD O EWAWVO CRUYGRGCPS

DYKDFYDAIDQLVRGSARAGGTRD DYKURLFYCGIQALGANLGYSGCV DYKDDRAFYNGLRDLVGAVYGAWD DYKDFYSALWGLCGVTGCG RGOSDAFYSGLWALIGLSDG Group 3: Formula 2 Motif 20E2 DYKDEYDAT 20C11 20A12

WWWGGRNRWWLERWGLGGER PFGFGGRWWGIPRMWYRNS Group 5: Miscellaneous Motif 10

WPGYLFFEEALQDWRGSTEU CRVALMGPVWPRWWFMSRPV SMFVAGSDRWPGYGVLADWL VRGFOGGT'VWPGYEWLRNAA Group 4 and 6: Miscellaneous Motif 10 LGPLLPWGSEVCGVWPDLCE ₹ 5 7 F2 F3

ACSSFFVKGPEGFLQCLGSI HICVLEFLEWGASLFGYCSG 40D6 FERGRGIATAMQIAMRAFADWHFPHSLFWGAPPPLSG Group 7: Formula 4 Motif

Group 8: Non-Aligning Miscellaneous Sednences

get	IGF	0	۲.		
Target	IR	+++	+++		
	Found	13	۲.		

0	IGF	++++	++++	++++	+++	+ + +
	¥	+	+	+	+	+
	Found	1	7	1	7	

IGF	++	+	
ĸ	++	+	
Found	1	-	
	1 IR	<b>≅</b> ‡	¥ + +

Target	IGF	0	<b>‡</b>	۲٠	+	÷	
	IR IGF	++	++	++	++	c	
	Found	m	1	1	-	_	

มาซูดเ	IGF	+	<b>+</b>	0
ביי	H.	+++	0	0
	Found	4	-	-

**FIGURE 48** 



FIGURE 49C

FIGURE 49D







FIGURE 53



FIGURE 54



FIGURE 55





	·
10 20 30 . 40 50	60
1234567890 1234567890 1234567890 1234567890 123	
GCCCATCCGG CCATGGCCGA GGTGCAGCTG TTGGAGTCTG GGGGAGGCTT GGT	
E V Q L L E S G G G L V	K P
GGGGGGTCCC TTAGACTCTC CTGTGCAGCC TCTGGATTCA CTTTCAGTAA CGC	· · · · · · · · · · · · · · · · · · ·
G G S L R L S C A A S G F I F S N A	W 12
ASCIGNATION COCASCION ASCENASES CIGNATICS TICOCOGTAT TAA	AAGCAAA 180
SWVRQAPGKGLEWVGRIK	
-	
ACTGATGGIG GGACAACAGA CTACGCIGCA CCCGIGAAAG GCAGATICAC CAT	CTCAAGA 240
T D G G T T D Y A A P V K G R F T I	S R
GATGATTCAA AAAACACGCT GTATCTGCAA ATGAACAGCC TGAAAACCGA GGA	
D D S K N T L Y L Q M N S L K T E D	T À
GIGTATTACT GTACCACATA CGATTAGTGG GGGGTCTTGG TGGTCTGGGG TCA	۸ <i>۸</i> ۲۲۲ عون
V Y Y C T T Y D . W G V L V V W G O	
	G 1
CTCGTC+COG TCTCCTC+CG TCC+CGCCGT TC+CGCCC+C GTCGCTCTCG CCC	IGGOGGA 420
L V T V S S G G G G S G G G G G G	G G
TOOGACATOO ASTIGACOCA GICTOCATOO TICCIGICIG CATCIGIASG AGA	
S D I Q L T Q S P S F L S A S V G D	R V
2021621000 022222210 0216222100 122622000 122622000 122622000	201111
ACCATCACTI GOOGGGCAG TOAGGCATT AGCAGTTATT TAGCCTGGTA TOAG T I T C R A S Q G I S S Y L A W Y Q	
	<u>ν</u>
CCHSCERRAG COCCUARGOT COTCATOTAT GOTGCATOCA CTTTGCAAAG TGGC	GGTCCC4. 600
PGHAPKLLIYAASTLQSG	
TCHASSITCA GOSSCASTOS ATCTORSACA GATTTCACTO TCACCATCAS CASC	
S R F S G S G S G T D F T L T I S S	Γ Ç
CONGRESANT TIGORECITE TIROTGICER CAROTTARIA GITACCOTTI CACI	
PEDF ATY YCQ QL HS YPF T	F G
COTOGRADOR ARGIGIRATA CHRAGOGOCO GORGOTOC -	758
P G T H V D I K	735

CLONES VHCDR3 %Inhibition Activity

?	118:	PFFV	FY <u>RG</u> ODT	54%				
	InsulB: 12H10:	FVNQH <u>LCG</u> SH <u>LVEAL</u> Y L <u>V</u> C VVYNYA	<u>/CGERGF</u> FYTPK <u>T</u> G RG T	42%				
Ang? ?	13-e-4:	VQAHDGL	G RES	52%				
	13h9:	GGL	G RRDWL	30%				
?	24:	GGRR	H RLG					
?	InsulinA lla8:		Gnze Gn	32%				
: !:/A		$\texttt{GDQE} \boldsymbol{L} \breve{\texttt{DN}} \boldsymbol{Y}$						





FIGURE 60











FIGURE 63



FIGURE 64



FIGURE 65



FIGURE 66



FIGURE 67



FIGURE 68



FIGURE 69







FIGURE 70C

D990126A







FIGURE 70F

D990205A









)







**FIGURE 70N** 



FIGURE 71C

FIGURE 71D



FIGURE 71F









FIGURE 71G

FIGURE 71H



FIGURE 71K

FIGURE 71L



FIGURE 710

FIGURE 71P



FIGURE 71S

FIGURE 71T





## FIGURE 71V







FIGURE 71W

FIGURE 71X



FIGURE 71A2

FIGURE 71B2



FIGURE 71E2

FIGURE 71F2

FIGURE 71G2







FIGURE 71H2

FIGURE 7112

.

## FIGURE 71J2







FIGURE 71K2

FIGURE 71L2



**FIGURE 7102** 

FIGURE 71P2





## FIGURE 71Q2



## FIGURE 71R2





FIGURE 71S2



FIGURE 71U2



FIGURE 71V2

FIGURE 71W2



FIGURE 71Z2

**FIGURE 71A3** 

S204 = Lig-GGGFHENFYDWFVRQVSKK

Linker 9 =

HIR binding =  $1.2*10^{-6}$ 



FIGURE 71B3





