Estimación en áreas pequeñas

Métodos indirectos basados en modelos: Método jerárquico Bayes y método basado en modelos generalizados lineales mixtos

Andrés Gutiérrez Comisión Económica para América Latina y el Caribe

2018

- Método jerárquico Bayes bajo el modelo BHF
- Métodos basados en modelos lineales generalizados mixtos

 Molina, Isabel. Estudio de los límites de desagregación de dates en encuestas de hogares para subgrupos de población y áreas geográficas y los requerimientos para superarlos: Fase II. CEPAL.

 Molina, Isabel. Estudio de los límites de desagregación de dates en encuestas de hogares para subgrupos de población y áreas geográficas y los requerimientos para superarlos: Fase II. CEPAL.

- ©018) Molina, Isabel. Estudio de los límites de desagregación de dates en encuestas de hogares para subgrupos de población y áreas geográficas y los requerimientos para superarlos: Fase II. CEPAL.
- (2015) Rao, J.N.K y Isabel Molina. Small Area Estimation. Second ed. Wiley Series in Survey Methodology.

Introducción

 De nuevo, estimadores para áreas basados en modelos se consideran modelos indirectos porque usan información de otras áreas

Introducción

- De nuevo, estimadores para áreas basados en modelos se consideran modelos indirectos porque usan información de otras áreas
- Estimadores basados en modelos incorporan la heterogeneidad que no puede ser explicada por las variables auxiliares coleccionadas

Introducción

- De nuevo, estimadores para áreas basados en modelos se consideran modelos indirectos porque usan información de otras áreas
- Estimadores basados en modelos incorporan la heterogeneidad que no puede ser explicada por las variables auxiliares coleccionadas
- Esto se realiza incorporando efectos aleatorios de las áreas en los modelos de interés

 Molina, Nandrum, y Rao (2014) propusieron el método jerárquico Bayes (hierarchical Bayes, HB), que no requiere el uso del bootstrap

- Molina, Nandrum, y Rao (2014) propusieron el método jerárquico Bayes (hierarchical Bayes, HB), que no requiere el uso del bootstrap
- El método reparametriza el modelo de errores anidados en términos del coeficiente de correlación intraclase $\rho = \sigma_u^2/(\sigma_u^2 + \sigma_e^2)$

- Molina, Nandrum, y Rao (2014) propusieron el método jerárquico Bayes (hierarchical Bayes, HB), que no requiere el uso del bootstrap
- El método reparametriza el modelo de errores anidados en términos del coeficiente de correlación intraclase $\rho = \sigma_u^2/(\sigma_u^2 + \sigma_e^2)$
- Considera distribuciones *a priori* para los parámetros $(oldsymbol{eta},
 ho,\sigma_e^2)$

El modelo HB viene dado por:

$$Y_{di}|u_d, \beta, \sigma_e^2 \stackrel{ind}{\sim} N(\mathbf{x}_{di}'\beta + u_d, \sigma_e^2 k_{di}^2), \quad i = 1, \dots, N_d,$$

El modelo HB viene dado por:

1)
$$Y_{di}|u_{d}, \beta, \sigma_{e}^{2} \stackrel{ind}{\sim} N(\mathbf{x}'_{di}\beta + u_{d}, \sigma_{e}^{2}k_{di}^{2}), \quad i = 1, \dots, N_{d},$$
2)
$$u_{d}|\rho, \sigma_{e}^{2} \stackrel{iid}{\sim} N\left(0, \frac{\rho}{1-\rho}\sigma_{e}^{2}\right), \quad d = 1, \dots, D,$$

El modelo HB viene dado por:

1)
$$Y_{di}|u_d, \beta, \sigma_e^2 \stackrel{ind}{\sim} N(\mathbf{x}'_{di}\beta + u_d, \sigma_e^2 k_{di}^2), \quad i = 1, \dots, N_d,$$

2)
$$u_d|\rho, \sigma_e^2 \stackrel{iid}{\sim} N\left(0, \frac{\rho}{1-\rho}\sigma_e^2\right), \quad d = 1, \dots, D,$$

3)
$$\pi(\boldsymbol{\beta}, \rho, \sigma_e^2) \propto \frac{1}{\sigma_e^2}, \quad \epsilon \leq \rho \leq 1 - \epsilon, \, \sigma_e^2 > 0, \boldsymbol{\beta} \in \mathbb{R}^p$$

donde $\epsilon > 0$ refleja la falta de información

 La distribución a priori de los parámetros del modelo se puede calcular en función de las distribuciones condicionadas usando la regla de cadena

- La distribución a priori de los parámetros del modelo se puede calcular en función de las distribuciones condicionadas usando la regla de cadena
- La densidad conjunta del parámetros $\theta = (\mathbf{u}', \beta', \sigma_e^2, \rho)'$ viene dada por

- La distribución a priori de los parámetros del modelo se puede calcular en función de las distribuciones condicionadas usando la regla de cadena
- La densidad conjunta del parámetros ${\pmb \theta}=({\bf u}',{\pmb \beta}',\sigma_{\rm e}^2,\rho)'$ viene dada por
- $\pi(\mathbf{u}, \boldsymbol{\beta}, \sigma_e^2, \rho | \mathbf{y}_s) = \pi_1(\mathbf{u} | \boldsymbol{\beta}, \sigma_e^2, \rho, \mathbf{y}_s) \pi_2(\boldsymbol{\beta} | \sigma_e^2, \rho, \mathbf{y}_s) \pi_3(\sigma_e^2 | \rho, \mathbf{y}_s) \pi_4(\rho | \mathbf{y}_s)$

- La distribución a priori de los parámetros del modelo se puede calcular en función de las distribuciones condicionadas usando la regla de cadena
- La densidad conjunta del parámetros $\theta=(\mathbf{u}', \beta', \sigma_{\rm e}^2, \rho)'$ viene dada por
- $\pi(\mathbf{u}, \boldsymbol{\beta}, \sigma_e^2, \rho | \mathbf{y}_s) = \pi_1(\mathbf{u} | \boldsymbol{\beta}, \sigma_e^2, \rho, \mathbf{y}_s) \pi_2(\boldsymbol{\beta} | \sigma_e^2, \rho, \mathbf{y}_s) \pi_3(\sigma_e^2 | \rho, \mathbf{y}_s) \pi_4(\rho | \mathbf{y}_s)$
- Todas las distribuciones tienen forma conocida excepto π_4 , y generamos esos valores usando un método de rejilla

• Así, se pueden generar muestras de $\theta = (\mathbf{u}', \beta', \sigma_e^2, \rho)'$ directamente de la distribución a posteriori

- Así, se pueden generar muestras de $\theta = (\mathbf{u}', \beta', \sigma_e^2, \rho)'$ directamente de la distribución a posteriori
- Dado θ , las variables Y_{di} para todos los individuos verifican

$$Y_{di}|\theta \stackrel{ind}{\sim} N(\mathbf{x}'_{di}\beta + u_d, \sigma_e^2 k_{di}^2), \quad i = 1, \dots, N_d, \ d = 1, \dots, D$$

- Así, se pueden generar muestras de $\theta = (\mathbf{u}', \beta', \sigma_e^2, \rho)'$ directamente de la distribución a posteriori
- ullet Dado $oldsymbol{ heta}$, las variables Y_{di} para todos los individuos verifican

$$Y_{di}|\theta \stackrel{ind}{\sim} N(\mathbf{x}'_{di}\beta + u_d, \sigma_e^2 k_{di}^2), \quad i = 1, \dots, N_d, \ d = 1, \dots, D$$

ullet La densidad predictiva de $oldsymbol{y}_d r$ viene dada por

$$f(\mathbf{y}_{dr}|\mathbf{y}_s) = \int \prod_{i \in r_d} f(Y_{di}|\theta) \pi(\theta|\mathbf{y}_s) d\theta,$$

• Finalmente, el estimador HB viene dado por

$$\hat{\delta}_d^{HB} = E_{\mathbf{y}_{dr}}(\delta_d|\mathbf{y}_s) = \int \delta_d(\mathbf{y}_d) f(\mathbf{y}_{dr}|\mathbf{y}_s) d\mathbf{y}_{dr}$$

lo que estimamos usando una simulación Monte Carlo

• Finalmente, el estimador HB viene dado por

$$\hat{\delta}_d^{HB} = E_{\mathbf{y}_{dr}}(\delta_d|\mathbf{y}_s) = \int \delta_d(\mathbf{y}_d) f(\mathbf{y}_{dr}|\mathbf{y}_s) d\mathbf{y}_{dr}$$

lo que estimamos usando una simulación Monte Carlo

ullet Generamos muestras de la distribución a posteriori $\pi(oldsymbol{ heta}|\mathbf{y}_s)$

Método jeráquico Bayes bajo el modelo BHF: proceso Monte Carlo

• Primero, generamos un valor $\rho^{(a)}$ de $\pi_4(\rho|\mathbf{y}_s)$ con un método de Rejilla

Método jeráquico Bayes bajo el modelo BHF: proceso Monte Carlo

- Primero, generamos un valor $\rho^{(a)}$ de $\pi_4(\rho|\mathbf{y}_s)$ con un método de Rejilla
- Después, generamos $\sigma_e^{2(a)}$ de $\pi_3(\sigma_e^2|\rho^{(a)}, \mathbf{y}_s)$, $\beta^{(a)}$ de $\pi_2(\beta|\sigma_e^{2(a)}, \rho^{(a)}, \mathbf{y}_s)$ y $\mathbf{u}^{(a)}$ de $\pi_1(\mathbf{u}|\beta^{(a)}, \sigma_e^{2(a)}, \rho^{(a)}, \mathbf{y}_s)$

Método jeráquico Bayes bajo el modelo BHF: proceso Monte Carlo

- Primero, generamos un valor $\rho^{(a)}$ de $\pi_4(\rho|\mathbf{y}_s)$ con un método de Rejilla
- Después, generamos $\sigma_e^{2(a)}$ de $\pi_3(\sigma_e^2|\rho^{(a)}, \mathbf{y}_s)$, $\beta^{(a)}$ de $\pi_2(\beta|\sigma_e^{2(a)}, \rho^{(a)}, \mathbf{y}_s)$ y $\mathbf{u}^{(a)}$ de $\pi_1(\mathbf{u}|\beta^{(a)}, \sigma_e^{2(a)}, \rho^{(a)}, \mathbf{y}_s)$
- Para cada de los A valores del vector θ , generamos los valores de los individuos afuera de la muestra $\mathbf{y}_{dr}^{(a)}$, y creamos el vector censal $\mathbf{y}_{d}^{(a)} = (\mathbf{y}_{ds}', (\mathbf{y}_{dr}^{(a)})')'$

• Para cada vector censal, producimos $\delta_d^{(a)} = \delta_d(\mathbf{y}_d^{(a)})$

- ullet Para cada vector censal, producimos $\delta_d^{(a)} = \delta_d(\mathbf{y}_d^{(a)})$
- Se aproxima El estimador HB por

$$\hat{\delta}_d^{HB} = E_{\mathbf{y}_{dr}}(\delta_d|\mathbf{y}_s) pprox rac{1}{A} \sum_{a=1}^A \delta_d^{(a)}$$

- Para cada vector censal, producimos $\delta_d^{(a)} = \delta_d(\mathbf{y}_d^{(a)})$
- Se aproxima El estimador HB por

$$\hat{\delta}_d^{HB} = E_{\mathbf{y}_{dr}}(\delta_d|\mathbf{y}_s) pprox rac{1}{A} \sum_{a=1}^A \delta_d^{(a)}$$

La varianza se aproxima por

$$V(\delta_d|\mathbf{y}_s) pprox rac{1}{A} \sum_{a=1}^A \left(\delta_d^{(a)} - \hat{\delta}_d^{HB}
ight)^2$$

- ullet Para cada vector censal, producimos $\delta_d^{(a)} = \delta_d(\mathbf{y}_d^{(a)})$
- Se aproxima El estimador HB por

$$\hat{\delta}_d^{HB} = E_{\mathbf{y}_{dr}}(\delta_d|\mathbf{y}_s) pprox rac{1}{A} \sum_{a=1}^A \delta_d^{(a)}$$

La varianza se aproxima por

$$V(\delta_d|\mathbf{y}_s) pprox rac{1}{A} \sum_{a=1}^A \left(\delta_d^{(a)} - \hat{\delta}_d^{HB}
ight)^2$$

 Para un indicador FGT, el estimador HB se aproxima en la forma:

$$\hat{F}_{\alpha d}^{HB} \approx \frac{1}{A} \sum_{a=1}^{A} F_{\alpha d}^{(a)}$$

• Indicadores objetivos: Parámetros generales

- Indicadores objetivos: Parámetros generales
- Requerimientos de datos:

- Indicadores objetivos: Parámetros generales
- Requerimientos de datos:
 - Microdatos de las p variables auxiliares de la misma de la variable de interés

- Indicadores objetivos: Parámetros generales
- Requerimientos de datos:
 - Microdatos de las p variables auxiliares de la misma de la variable de interés
 - Área de interés obtenida de la misma encuesta

- Indicadores objetivos: Parámetros generales
- Requerimientos de datos:
 - Microdatos de las p variables auxiliares de la misma de la variable de interés
 - Área de interés obtenida de la misma encuesta
 - Microdatos de las p covariables a partir de un censo o registro administrativo

Ventajas:

- Ventajas:
 - Basado en datos a nivel de individuo, lo que provee información más detallada

- Ventajas:
 - Basado en datos a nivel de individuo, lo que provee información más detallada
 - Se puede estimar cualquier indicador que es una función de la variable Y_{di}

- Ventajas:
 - Basado en datos a nivel de individuo, lo que provee información más detallada
 - Se puede estimar cualquier indicador que es una función de la variable Y_{di}
 - Es insesgado bajo el modelo si los parámetros son conocidos

- Ventajas:
 - Basado en datos a nivel de individuo, lo que provee información más detallada
 - Se puede estimar cualquier indicador que es una función de la variable Y_{di}
 - Es insesgado bajo el modelo si los parámetros son conocidos
 - Minimiza la varianza a posteriori

Ventajas:

- Ventajas:
 - Resulta prácticamente igual al estimador EB

- Ventajas:
 - Resulta prácticamente igual al estimador EB
 - Una vez se ajusta el modelo, se puede estimar en subáreas sin reajustar el modelo

- Ventajas:
 - Resulta prácticamente igual al estimador EB
 - Una vez se ajusta el modelo, se puede estimar en subáreas sin reajustar el modelo
 - Una vez se ajusta el modelo, se puede estimar cualquier indicador sin reajustar el modelo

Ventajas:

- Ventajas:
 - No se usa el procedimiento Markov Chain Monte Carlo, MCMC, al contrario de muchos procesos bayesianos

- Ventajas:
 - No se usa el procedimiento Markov Chain Monte Carlo, MCMC, al contrario de muchos procesos bayesianos
 - No requiere el uso de métodos bootstrap para estimar ECM, lo que disminuye el tiempo computacional

Ventajas:

- No se usa el procedimiento Markov Chain Monte Carlo, MCMC, al contrario de muchos procesos bayesianos
- No requiere el uso de métodos bootstrap para estimar ECM, lo que disminuye el tiempo computacional
- El cálculo de intervalos creíbles o cualquier otro resumen de la distribución es automático

Desventajas:

- Desventajas:
 - Es basado en un modelo, por tanto es necesario comprobar dicho modelo

- Desventajas:
 - Es basado en un modelo, por tanto es necesario comprobar dicho modelo
 - No tiene en cuenta el diseño muestral

- Desventajas:
 - Es basado en un modelo, por tanto es necesario comprobar dicho modelo
 - No tiene en cuenta el diseño muestral
 - Puede ser seriamente afectado por atípicos aislados

- Desventajas:
 - Es basado en un modelo, por tanto es necesario comprobar dicho modelo
 - No tiene en cuenta el diseño muestral
 - Puede ser seriamente afectado por atípicos aislados
 - El método no se puede extender a un modelo más complejos sin perder algunas ventajas mencionadas, como el evitar los métodos MCMC por ejemplo

• Los modelos mixtos hasta ahora no dan predicciones entre [0, 1]

- Los modelos mixtos hasta ahora no dan predicciones entre [0, 1]
- Para estimar proporciones, sería útil usar un modelo que proporciona valores en ese rango

- Los modelos mixtos hasta ahora no dan predicciones entre [0, 1]
- Para estimar proporciones, sería útil usar un modelo que proporciona valores en ese rango
- Esto incluye la incidencia de pobreza F_{0d} , pero no la brecha de pobreza, F_{1d}

- Los modelos mixtos hasta ahora no dan predicciones entre [0, 1]
- Para estimar proporciones, sería útil usar un modelo que proporciona valores en ese rango
- Esto incluye la incidencia de pobreza F_{0d} , pero no la brecha de pobreza, F_{1d}
- Para hacer eso, es habitual usar un modelo lineal generalizado mixto (generalized linear mixed models, GLMM)

Asumimos que

$$Y_{di}|v_d \sim \mathsf{Bern}(p_{di}), \ g(p_{di}) = \mathbf{x}'_{di}\alpha + v_d$$

$$v_d \stackrel{iid}{\sim} N(0, \sigma_v^2), \quad i = 1, \dots, N_d, \ d = 1, \dots, D$$

Asumimos que

$$Y_{di}|v_d \sim \mathsf{Bern}(p_{di}), \ g(p_{di}) = \mathbf{x}'_{di}\alpha + v_d$$

У

$$v_d \stackrel{iid}{\sim} N(0, \sigma_v^2), \quad i = 1, \dots, N_d, \ d = 1, \dots, D$$

• v_d es el efecto de área d y lpha es el vector de coeficientes de la regresión

Asumimos que

$$Y_{di}|v_d \sim \mathsf{Bern}(p_{di}), \ g(p_{di}) = \mathbf{x}'_{di}\alpha + v_d$$

$$v_d \stackrel{iid}{\sim} N(0, \sigma_v^2), \quad i = 1, \dots, N_d, \ d = 1, \dots, D$$

- v_d es el efecto de área d y lpha es el vector de coeficientes de la regresión
- $g:(0,1) \to \mathbb{R}$ es la función link (biyectiva, con derivada continua)

Asumimos que

$$Y_{di}|v_d \sim \mathsf{Bern}(p_{di}), \ g(p_{di}) = \mathbf{x}'_{di}\alpha + v_d$$

y
$$v_d \stackrel{iid}{\sim} N(0, \sigma_v^2), \quad i = 1, \dots, N_d, \ d = 1, \dots, D$$

- v_d es el efecto de área d y α es el vector de coeficientes de la regresión
- $g:(0,1) \to \mathbb{R}$ es la función link (biyectiva, con derivada continua)
- El link logístico, $g(p) = \log(p/(1-p))$, el más utilizado

 El mejor predictor, el que minimiza el ECM bajo el modelo, viene dado por

$$\tilde{P}_d^B(\theta) = E(P_d|\mathbf{y}_{ds};\theta) = \frac{1}{N_d} \left\{ \sum_{i \in s_d} Y_{di} + \sum_{i \in r_d} E(Y_{di}|\mathbf{y}_{ds};\theta) \right\}$$

• El mejor predictor, el que minimiza el ECM bajo el modelo, viene dado por

$$\tilde{P}_d^B(\theta) = E(P_d|\mathbf{y}_{ds};\theta) = \frac{1}{N_d} \left\{ \sum_{i \in s_d} Y_{di} + \sum_{i \in r_d} E(Y_{di}|\mathbf{y}_{ds};\theta) \right\}$$

ullet En la práctica, obtenemos el predictor EB reemplazando heta por estimaciones consistentes, es decir

$$\hat{P}_d^{EB} = \tilde{P}_d^B(\hat{\boldsymbol{\theta}})$$

donde $\hat{\theta}$ se encuentra ajustando el modelo GLMM a los datos muestrales $\mathbf{y}_s = (\mathbf{y}'_{1s}, \dots, \mathbf{y}'_{Ds})'$

• Una manera de estimar $E(Y_{di}|\mathbf{y}_{ds};\theta)$ sería utilizar el Teorema de Bayes y que las variables Y_{di} son independientes dado v_d

- Una manera de estimar $E(Y_{di}|\mathbf{y}_{ds};\theta)$ sería utilizar el Teorema de Bayes y que las variables Y_{di} son independientes dado v_d
- En este caso,

$$E(Y_{di}|\mathbf{y}_{ds};\hat{\boldsymbol{\theta}}) = \frac{E\{h(\mathbf{x}'_{di}\alpha + v_d)f(\mathbf{y}_{ds}|v_d);\hat{\boldsymbol{\theta}}\}}{E\{f(\mathbf{y}_{ds}|v_d);\hat{\boldsymbol{\theta}}\}}, \quad i \in r_d,$$

donde
$$h = g^{-1}$$
 es el link inverso $h(\mathbf{x}'_{di}\alpha + v_d) = \exp(\mathbf{x}'_{di}\alpha + v_d)/\left\{1 + \exp(\mathbf{x}'_{di}\alpha + v_d)\right\}$ y $f(\mathbf{y}_{ds}|v_d) = \prod_{i \in s_d} p_{di}^{Y_{di}} (1 - p_{di})^{(1 - Y_{di})}$

• Podemos usar un proceso Monte Carlo para generar $v_d^{(r)} \sim N(0, \hat{\sigma}_v^2), r = 1, \dots, R$

- Podemos usar un proceso Monte Carlo para generar $v_d^{(r)} \sim N(0, \hat{\sigma}_v^2)$, $r = 1, \dots, R$
- Después, calculamos

$$E(Y_{di}|\mathbf{y}_{ds};\hat{\boldsymbol{\theta}}) \approx \frac{R^{-1} \sum_{r=1}^{R} h(\mathbf{x}'_{di}\hat{\boldsymbol{\alpha}} + v_{d}^{(r)}) \hat{f}(\mathbf{y}_{ds}|v_{d}^{(r)})}{R^{-1} \sum_{r=1}^{R} \hat{f}(\mathbf{y}_{ds}|v_{d}^{(r)})}, \quad i \in r_{d},$$

donde \hat{f} es la distribución condicionada $f(\mathbf{y}_{ds}|v_d)$ en $\hat{oldsymbol{ heta}}$

 $\tilde{P}_d^B(\theta) = E(P_d|\mathbf{y}_{ds};\theta) = \frac{1}{N_d} \left\{ \sum_{i \in s_d} Y_{di} + \sum_{i \in r_d} E(Y_{di}|\mathbf{y}_{ds};\theta) \right\}$

tiene ECM mínimo y es insesgado bajo el modelo linear generalizado mixto

 $\tilde{P}_d^B(\theta) = E(P_d|\mathbf{y}_{ds};\theta) = \frac{1}{N_d} \left\{ \sum_{i \in s_d} Y_{di} + \sum_{i \in r_d} E(Y_{di}|\mathbf{y}_{ds};\theta) \right\}$

tiene ECM mínimo y es insesgado bajo el modelo linear generalizado mixto

 Sin embargo, el proceso que se ha descrito es computacionalmente intensivo debido a las réplicas Monte Carlo

 Existen estimadores que se obtienen directamente de la salida del software que estima el GLMM

- Existen estimadores que se obtienen directamente de la salida del software que estima el GLMM
- ullet Cuando se hace la regresión, el software estima \hat{lpha} y \hat{v}_d

- Existen estimadores que se obtienen directamente de la salida del software que estima el GLMM
- ullet Cuando se hace la regresión, el software estima \hat{lpha} y \hat{v}_d
- Se puede crear un estimador por el método de la analogía (plug-in estimator) que viene dado por:

$$\hat{P}_d^{PI} = \frac{1}{N_d} \left(\sum_{i \in s_d} Y_{di} + \sum_{i \in r_d} \hat{p}_{di} \right)$$

donde

$$\hat{p}_{di} = h(\mathbf{x}'_{di}\hat{\alpha} + \hat{v}_d)$$

- Existen estimadores que se obtienen directamente de la salida del software que estima el GLMM
- ullet Cuando se hace la regresión, el software estima \hat{lpha} y \hat{v}_d
- Se puede crear un estimador por el método de la analogía (plug-in estimator) que viene dado por:

$$\hat{P}_d^{PI} = \frac{1}{N_d} \left(\sum_{i \in s_d} Y_{di} + \sum_{i \in r_d} \hat{p}_{di} \right)$$

donde

$$\hat{p}_{di} = h(\mathbf{x}'_{di}\hat{\alpha} + \hat{v}_d)$$

 El estimador plug-in no es insesgado a menos que la función link es lineal

 Aunque es más fácil calcular, el estimador plug-in no es insesgado a menos que la función link es lineal

- Aunque es más fácil calcular, el estimador plug-in no es insesgado a menos que la función link es lineal
- Sin embargo, el link logístico g(p) = log(p/(1-p)) es aproximadamente lineal para $p \in (02,08)$

- Aunque es más fácil calcular, el estimador plug-in no es insesgado a menos que la función link es lineal
- Sin embargo, el link logístico g(p) = log(p/(1-p)) es aproximadamente lineal para $p \in (02,08)$
- Debido a esta propiedad, se puede comprobar que el EB y plug-in de la proporción $P_d = \overline{Y}_d$ se parecen al EBLUP, $\hat{P}_d^{EBLUP} = \hat{\bar{Y}}_d^{EBLUP}$, basado en el modelo con errores anidados (BHF)

El ECM del estimador EB o plug-in se puede estimar con un procedimiento bootstrap 1) Ajustar el modelo GLMM $Y_{di}|v_d\sim \mathrm{Bern}(p_{di}),\ g(p_{di})=\mathbf{x}'_{di}\alpha+v_d$ a los datos de la muestra para obtener los estimadores $\hat{\sigma}_v^2$ y $\hat{\alpha}$ 2) Generar efectos aleatorios bootstrap

$$v_d^{*(b)} \stackrel{iid}{\sim} N(0, \hat{\sigma}_v^2), \quad d = 1, \dots, D$$

3) Generar el censo bootstrap $\mathbf{y}_d^{*(b)} = (Y_{d1}, \dots, Y_{dN_d})'$ en la siguiente forma:

$$Y_{di}^{*(b)} \stackrel{ind}{\sim} \mathsf{Bern}(p_{di}^{*(b)}),$$

У

$$p_{di}^{*(b)} = h(\mathbf{x}'_{di}\hat{\alpha} + v_d^{*(b)}), \quad i = 1, \dots, N_d, \ d = 1, \dots, D,$$

Calcular los verdaderos valores de los indicadores para el censo $P_d^{*(b)} = \bar{Y}_d^{*(b)}$, $d = 1, \dots, D$.

3) Generar el censo bootstrap $\mathbf{y}_d^{*(b)} = (Y_{d1}, \dots, Y_{dN_d})'$ en la siguiente forma:

$$Y_{di}^{*(b)} \stackrel{ind}{\sim} \mathsf{Bern}(p_{di}^{*(b)}),$$

У

$$p_{di}^{*(b)} = h(\mathbf{x}'_{di}\hat{\alpha} + v_d^{*(b)}), \quad i = 1, \dots, N_d, \ d = 1, \dots, D,$$

Calcular los verdaderos valores de los indicadores para el censo $P_d^{*(b)} = \bar{Y}_d^{*(b)}$, d = 1, ..., D.

4) Para cada área, extraer del censo los elementos de la muestra Y_{di} , $i \in s_d^{*(b)}$ para construir el vector $\mathbf{y}_{ds}^{*(b)}$ y, después, $\mathbf{y}_s^{*(b)} = ((\mathbf{y}_{1s}^{*(b)})', \dots, (\mathbf{y}_{Ds}^{*(b)})')'$ el vector con los valores en la muestra de todas las áreas

5) Ajustar el modelo GLMM a los datos bootstrap $\mathbf{y}_s^{*(b)}$ y calcular $\hat{P}_d^{EB*(b)}$, $d=1,\ldots,D$

- 5) Ajustar el modelo GLMM a los datos bootstrap $\mathbf{y}_s^{*(b)}$ y calcular $\hat{P}_d^{EB*(b)}$, $d=1,\ldots,D$
- 6) Repetir pasos 2-5 B veces. El estimador bootstrap de ECM viene dado por

$$mse_B(\hat{P}_d^{EB}) = B^{-1} \sum_{b=1}^{B} (\hat{P}_d^{EB*(b)} - P_d^{*(b)})^2$$

 Indicadores objetivos: Proporciones o totales de una variable binaria (e.g.carencia o no de determinado bien o servicio)

- Indicadores objetivos: Proporciones o totales de una variable binaria (e.g.carencia o no de determinado bien o servicio)
- Requerimientos de datos:

- Indicadores objetivos: Proporciones o totales de una variable binaria (e.g.carencia o no de determinado bien o servicio)
- Requerimientos de datos:
 - Microdatos de las p covariables obtenidas de la misma encuesta de la variable de interés

- Indicadores objetivos: Proporciones o totales de una variable binaria (e.g.carencia o no de determinado bien o servicio)
- Requerimientos de datos:
 - Microdatos de las p covariables obtenidas de la misma encuesta de la variable de interés
 - Áreas de interés obtenidas de la misma encuesta

- Indicadores objetivos: Proporciones o totales de una variable binaria (e.g.carencia o no de determinado bien o servicio)
- Requerimientos de datos:
 - Microdatos de las p covariables obtenidas de la misma encuesta de la variable de interés
 - Áreas de interés obtenidas de la misma encuesta
 - Microdatos de las p covariables de un censo o registro. Esto es necesario para calcular la esperanza $E(Y_{di}|\mathbf{y}_{ds};\theta)$

- Ventajas:
 - El número de observaciones usadas es el tamaño muestral, mucho mayor que el número de áreas

- El número de observaciones usadas es el tamaño muestral, mucho mayor que el número de áreas
- El modelo GLMM incorpora heterogeneidad no explicada entre las áreas

- El número de observaciones usadas es el tamaño muestral, mucho mayor que el número de áreas
- El modelo GLMM incorpora heterogeneidad no explicada entre las áreas
- No se necesita conocer ninguna varianza, al contrario que para el modelo FH

- Ventajas:
 - El estimador del ECM bajo el modelo es un estimador estable y insesgado bajo el diseño (y bajo el diseño cuando el número de áreas es grande)

- El estimador del ECM bajo el modelo es un estimador estable y insesgado bajo el diseño (y bajo el diseño cuando el número de áreas es grande)
- Se puede estimar en cualquier subárea sin reajustar el modelo

- El estimador del ECM bajo el modelo es un estimador estable y insesgado bajo el diseño (y bajo el diseño cuando el número de áreas es grande)
- Se puede estimar en cualquier subárea sin reajustar el modelo
- Se puede estimar en áreas no muestreadas

- Desventajas:
 - Es basado en un modelo y por tanto es necesario analizar el modelo (a través de los residuos, por ejemplo)

- Desventajas:
 - Es basado en un modelo y por tanto es necesario analizar el modelo (a través de los residuos, por ejemplo)
 - No tiene en cuenta el diseño muestral y, por eso, no es insesgado bajo el diseño

- Es basado en un modelo y por tanto es necesario analizar el modelo (a través de los residuos, por ejemplo)
- No tiene en cuenta el diseño muestral y, por eso, no es insesgado bajo el diseño
- El uso de microdatos de un censo puede conllevar problemas de confidencialidad

- Es basado en un modelo y por tanto es necesario analizar el modelo (a través de los residuos, por ejemplo)
- No tiene en cuenta el diseño muestral y, por eso, no es insesgado bajo el diseño
- El uso de microdatos de un censo puede conllevar problemas de confidencialidad
- El estimador ECM bootstrap no es insesgado bajo el modelo para el ECM bajo el modelo para un área concreta

- Desventajas:
 - El predictor EB (no el plug-in) es computacionalmente intensivo

- Desventajas:
 - El predictor EB (no el plug-in) es computacionalmente intensivo
 - El ECM del estimador EB usando un proceso bootstrap es excesivamente intensivo, pero se puede cortar usando el plug-in

- Desventajas:
 - El predictor EB (no el plug-in) es computacionalmente intensivo
 - El ECM del estimador EB usando un proceso bootstrap es excesivamente intensivo, pero se puede cortar usando el plug-in
 - Requiere un reajuste para verificar la propiedad "benchmarking"