Thinking about Games

ECON 420: Game Theory

Spring 2018

Reading

► This week: Chapters 1 and 2

► Next week: Chapter 3

Nim

- ► Today we'll play an alternative version of nim
- ► One row of 20 lines
- ► Each turn, the player must choose to remove 1, 2, or 3 lines
- ► The last person to remove a line wins

Decisions vs games

- ► Decisions are choices that can be made "without concern for reaction or response from others"
- ► Strategic games (or just games) are choices that occur among "mutually aware players"
 - ► Players in strategic games take into account the cross-effects of their actions and the actions of other players

Classifying games

- ► Games can be:
 - ► Sequential or simultaneous
 - ► Zero sum or non-zero sum
 - ➤ Single state or repeated

 ★ Infinite or finite repetition
 - ► Perfect or imperfect information
 - ► Fixed or manipulable rules

Sequential vs simultaneous games

- ► Sequential games
 - ► Players take turns (one after another)
 - ▶ Players look ahead at what might happen in the future to make choices
- ► Simultaneous games
 - ► Players make choices at the same time
 - ► Must predict what other players will do contemporaneously

Nim

- ► Sequential or simultaneous?
- ► sequential

Rock, paper, scissors

- ► Sequential or simultaneous?
- ► simultaneous

Chess

- ► Sequential or simultaneous?
- ► sequential

A single play in American football

- ► Sequential or simultaneous?
- ► simultaneous

A soccer penalty kick

- ► Sequential or simultaneous?
- ► simultaneous

Registering for classes

- ► Sequential or simultaneous?
- ▶ ?

Constant-sum vs non-constant-sum games

- ► Constant sum
 - ► The sum total payoffs are fixed
 - ► Playing the game only determines the allocation of payoffs, not the total amount
- ► Zero sum
 - ► A special case of constant sum where total payoffs are zero
 - ► Often used to refer to constant-sum games
- ► Non-constant sum
 - ► Total payoffs depend on choices of players

Nim

- ► Constant or non-constant sum?
- ► constant (zero)

Rock, paper, scissors

- ► Constant or non-constant sum?
- ► constant (zero)

Splitting the last piece of cake with someone

- ► Constant or non-constant sum?
- ► constant (not zero)

Chicken (stay straight or swerve)

- ► Constant or non-constant sum?
- ► non-constant

International trade

- ► Constant or non-constant sum?
- ► non-constant

Example

- ► All-pay auction
 - ► You will bid to receive a \$5 bill
 - ▶ You have to pay me your highest bid regardless if you win or lose the auction
 - ► Everyone who bids has to pay, but only one person will win the \$5

Constant-sum games

- ► Constant-sum games can be either:
 - ► Negative sum (war, household chores)
 - ► Zero sum (sports, games with a "winner" and "loser")
 - ► Positive sum (eating cake)
- ► Non-constant-sum games can be any of the above, too
 - ► Sometimes positive and negative sums are possible in the same game (all-pay auction)

Single-stage and repeated games

- ► Single-stage games are played (against some particular opponents) and never again
- ► Repeated games are played over and over
 - ► Can be finitely or infinitely repeated
 - ► Choices in one round (stage) might affect later rounds (and vice versa)

Golden Balls (split or steal)

- ► Single-stage or repeated?
- ► single-stage

"Battle of wits" (poison cups)

- ► Single-stage or repeated?
- ► single-stage

A baseball plate appearance (pitcher vs batter)

- ► Single-stage or repeated?
- ► repeated

OPEC oil production

- ► Single-stage or repeated?
- ► repeated

Perfect and imperfect information

- ► Perfect information
 - ► Players know exactly what choice are available to each player and what the payoffs will be (given choices)
- ► Imperfect information
 - ► Uncertainty over choices or payoffs (or both)
 - ► External uncertainty: "Nature" (the state of the world) changes choices or payoffs
 - ► Strategic uncertainty: Imperfect information about what other players are doing or have done in the past

Nim

- ► Perfect or imperfect information?
- ► perfect information

Chess

- ► Perfect or imperfect information?
- ► perfect information

Vacation planning

- ► Perfect of imperfect information?
- ► imperfect information (external uncertainty)

Applying for jobs

- ► Perfect of imperfect information?
- ► imperfect information (strategic uncertainty)

Poker

- ► Perfect of imperfect information?
- ► imperfect information (strategic uncertainty)

Fixed and manipulable rules

- ► Fixed rules can't be altered by players
- ▶ The choices available to each player are constant and known

Nim

- ► Fixed or manipulable rules?
- ► fixed

Political campaigns

- ► Fixed or manipulable rules?
- ► manipulable

Advertising

- ► Fixed or manipulable rules?
- ► manipulable

Defining a game

- ► A strategic game must contain three elements:
 - 1. Players
 - 2. Strategies
 - **3.** Payoffs
- ▶ We make various assumptions about these elements

Players

- ► The participants in the game who make choices
- ► Humans, firms, "nature", etc
- ► We assume players are *rational*
 - ► They can calculate outcomes from different strategies and will choose the optimum
- ▶ We assume players have common knowledge of the rules
 - ► Rules are fixed at some level
 - \bigstar Example: Releasing tax returns when running for president
 - ★ Example: Battle of wits
 - ▶ Whether or not to follow rules is *itself* part of a larger game

Example Who are the players in a game of poker?

· People playing · Nature - determines cards

Strategies

- ► The set of choices available to the player
- ► A complete strategy is a "map" (set of instructions) on how to play a game given any possible set of choices from the other players
- ► Strategies are collections of choices
- ► A strategy is complete if you could give your instructions to someone else (or a machine) to do

Payoffs

- ► The outcomes of the game
- ► Can be profits, utility, money, wins and losses, etc
- ▶ In this class we will assume that higher payoffs are more desirable
- ▶ We will often need to calculate *expected payoffs* if there is some randomness or uncertainty (imperfect information)
 - For any possible outcome i with payoff π_i , expected payoffs are $\sum_i p_i \pi_i$, where p_i is the probability of i occurring

Examples

► Heads: You get \$100

► Tails: You lose \$50

2. Suppose I flip 2 coins:

► Heads/heads: You get \$100

► Heads/tails: You get \$20

► Tails/tails: You lose \$40

Expected payoff

$$\frac{1}{2} \cdot 100 + \frac{1}{2} (-50)$$

$$\frac{1}{2} (100 - 50) = \frac{1}{2} (50)$$

$$= 25$$

$$\frac{2}{4}(100) + \frac{1}{2}(20) + \frac{1}{4}(-40)$$

$$\frac{1}{4}(100) + \frac{1}{2}(20) + \frac{1}{4}(-40)$$

$$= 100 + \frac{1}{4}(-40)$$

Equilibrium

- ► The outcome where nobody can do better by *unilaterally* changing their strategy
- ► At equilibrium, nobody can say "I wish I had done that differently"
- ▶ Equilibrium does *not* mean that the outcome is optimal
- ► We don't expect to always obtain an equilibrium
- ► There is at least one equilibrium in every game

Guess the average

- ► Everyone write down a number between 0 and 100
- ► The winning number is the average number guessed
- ► Trade papers after writing down your number