XARXES (GEINF i GDDV) CURS 2018/19 Segon examen parcial de teoria i problemes (11 de gener de 2019)

Nom: _	
DNI:	
La duració de l'examen és de 2 horo	25

Test (5 punts)

Una resposta correcta suma 0.500 punts, una incorrecta resta 0.125 punts, i una no contestada suma zero. Fes servir la taula que tens a sota (les respostes que no estiguin a la taula no es comptaran).

Respostes				
1)	а	b	С	d
2)	а	b	С	d
3)	а	b	С	d
4)	а	b	С	d
5)	а	b	С	d
6)	а	b	С	d
7)	а	b	С	d
8)	а	b	С	d
9)	а	b	С	d
10)	а	b	С	d

- 1) Quant a les xarxes de commutació de circuits (XCC) basades en la FDM (*Frequency Division Multiplexing*), la WDM (*Wavelength* DM) o la TDM (*Time* DM) digital síncrona, quina és FALSA?
 - (a) A través d'una XCC no es poden transportar fluxos de paquets.

No es poden utilitzar apunts.

- b. En una XCC amb TDM digital síncrona, a cada enllaç hi viatja un senyal digital amb una seqüència de símbols digitals dividida en "trossos", i per transportar un flux se li assigna un d'aquests trossos a cada enllaç del camí.
- c. En una XCC amb FDM o amb l'equivalent WDM, l'amplada de banda de cada enllaç està dividida en "trossos", i per transportar un flux se li assigna un d'aquests trossos a cada enllaç del camí.
- d. Són exemples de XCC les "velles" xarxes de telefonia fixa (primer amb FDM i després amb TDM digital síncrona) i les "noves" xarxes òptiques (amb WDM).
- 2) La xarxa de la figura està formada per les estacions E1, E2... E6, el commutador *Ethernet* S1 i els Punts d'Accés Wi-Fi AP1 i AP2. Quina és CERTA?
 - a. Quan la taula d'S1 està completa conté (amb el format [destí, interfície]): [@MACAP1₀, S1₀] i [@MACAP2₀, S1₁].
 - b. La taula d'AP1 conté (amb el format [destí, interfície]): [@MAC E1/E2/E3, AP1₀] i [@MAC AP2₀, AP1₁].
 - C. Si E5 vol enviar a E6, E5 envia un paquet d'informació Wi-Fi que porta les @MAC d'E5, E6 i AP2₀, i l'AP2 el reenvia a través d'AP2₀.
 - d. Si E1 vol enviar a E5, E1 envia un paquet d'informació Wi-Fi que porta les @MAC d'E1, E5 i AP2₀, i l'AP1 el reenvia a través d'AP1₁.

- a. Per descobrir l'enllaç de sortida on reenviar, el node llegeix l'adreça de destí del paquet i consulta la taula d'encaminament.
- b. La capa IP d'Internet i l'*Ethernet* commutada en són exemples.
- c. Paquets consecutius d'un mateix flux poden seguir camins diferents si l'encaminament canvia.
- (d.)Els nodes mantenen una taula de circuits o connexions establertes.

- 4) En una xarxa de commutació de paquets amb circuit virtual (VC), quina és FALSA?
 - a. Abans d'enviar-se paquets d'informació d'un determinat flux, cal que les taules de VCs dels commutadors del camí que es seguirà, tinguin una entrada corresponent a aquest flux.
 - (b.)Durant la creació (l'establiment) d'un VC les taules d'encaminament no es consulten.
 - c. Per reenviar els paquets d'informació d'un flux, els commutadors no consulten les taules d'encaminament sinó les taules de VCs.
 - d. El camí seguit pels paquets d'un VC no canvia encara que la taula d'encaminament d'algun commutador del camí canviï.
- 5) En una xarxa hi ha 4 estacions, E1, E2, E3 i E4. Mentre E1 està enviant un paquet a E3, E2 vol enviar un paquet a E1 i E4 vol enviar un paquet a E3. Quina és CERTA?
 - a. Si és una xarxa *Ethernet* (antiga) de difusió, amb un repetidor de 4 ports i una estació a cada port, no hi haurà col·lisió dels enviaments d'E2 i E4.
 - b. Si és una xarxa *Ethernet* commutada, amb un commutador de 4 ports, una estació a cada port i *full-duplex*, hi haurà col·lisió dels enviaments d'E2 i E4.
 - c.) Si és una xarxa Wi-Fi, amb un Punt d'Accés al qual s'han associat les 4 estacions, és poc probable que hi hagi col·lisió dels enviaments d'E2 i E4.
 - d. Si és una xarxa *Ethernet*, amb E1 i E2 unides a un repetidor, E3 i E4 unides a un altre, i els repetidors units a un commutador (taula completa), hi haurà col·lisió dels enviaments d'E2 i E4.
- 6) Una organització disposa del prefix de xarxa IP amb adreça de xarxa 84.88.154.0 i *mask* (màscara) 255.255.254.0. Si es fa *subnetting*, aquesta xarxa es pot dividir en:
 - a. Dues xarxes, prefixos 84.88.154.0/23 i 84.88.155.0/23.
 - b. Dues xarxes, prefixos 84.88.154.0 i mask 255.255.255.0 i 84.88.154.1 i mask 255.255.255.0.
 - c. Dues xarxes, prefixos 84.88.154.0/24 i 84.88.154.128/24.
 - (d) Tres xarxes, prefixos 84.88.154.0/25, 84.88.154.128/25 i 84.88.155.0/24.
- 7) Quant als routers que fan NAT (Network Address Translation), quina és FALSA?
 - a. Un *router* NAT té una interfície a la xarxa interna i una altra a Internet, però des del punt de vista d'Internet és vist com una estació, no com un *router*.
 - b. Un *router* NAT manté una taula que relaciona adreces de *sockets* seus (@IP externa d'Internet, número de port TCP o UDP) amb adreces de *sockets* de les estacions internes.
 - c. La xarxa interna té un rang d'adreces privat (p.e., 192.168.0.0/16) i no forma part d'Internet.
 - (d) No és possible fer que un servidor a una estació interna sigui accessible des d'Internet.
- 8) Quant a l'aplicació DNS, quina és FALSA?
 - (a.) Totes les adreces IP d'Internet tenen associat un nom DNS.
 - b. Quan un usuari vol veure la pàgina web http://bcds.udg.edu/xc.html, el navegador primer pregunta al servidor DNS local de l'organització l'adreça IP del nom DNS bcds.udg.edu.
 - c. Els noms DNS estan organitzats de manera jeràrquica (arbre) i la informació (nom DNS, adreça IP) es troba dividida en "branques" (de l'arbre), cadascuna mantinguda en un servidor DNS.
 - d. Una estació fa preguntes DNS al servidor DNS local de la seva organització (la seva adreça IP forma part de la configuració de l'estació, el protocol és UDP i el número de port és 53) i aquest ho pregunta als servidors DNS d'Internet.
- 9) La longitud d'un prefix de xarxa IP de 25 bits s'escriu /25 o bé, en forma de màscara, així:
 - (a), 255.255.255.128
 - b. 255.255.255.1
 - c. 255,255,254,0
 - d. 255.255.255.0

- 10) L'estació E1 ha d'enviar un paquet IP a l'estació E2 (S1 i S2 són commutadors *Ethernet*; @IPE1 és l'adreça IP d'E1, @MACR1₁ és l'adreça MAC de la interfície 1 del *router* R1, etc.). Quina és CERTA?
 - a. Els principals camps d'aquest paquet IP seran: @origen = @IPE1, @destí = @IPR1₀, #protocol p.e. "UDP", info = paquet UDP.
- 0 router 1 0 switch S1 | 1 2 | E1 | E2 | E3
- b. Aquest paquet IP anirà dins *Ethernet* i els camps d'*Ethernet* seran:

 @origen = @MACE1, @destí = @MACE2, @protocol superior = "IP", info = paquet IP.
- c. Si a la taula ARP (*Address Resolution Protocol*) d'E1 no hi ha l'@MACE2, E1 ho preguntarà a tothom enviant un paquet ARP *request* dins *Ethernet*, amb @destí = FF...F, i el paquet arribarà a R1, E2 i E3; només E2 li respondrà, amb un paquet ARP *reply* que contindrà l'@MACE2.
- (d.) Si una poca estona abans d'enviar aquest paquet IP, resulta que E1 n'havia enviat un altre a E3, la taula ARP d'E1 conté l'@MAC d'R1₀, i per tant E1 no enviarà cap pregunta ARP request.

Exercici (5 punts)

La xarxa d'una organització (veieu la figura) està formada per les estacions E1, E2, ...E10, els commutadors *Ethernet* S1, S2, S3 i S4, els Punt d'Accés Wi-Fi AP1 i AP2, i els *routers* R1 i R2. Les adreces MAC de totes les interfícies es troben a la taula de sota.

El *router* R2 uneix la xarxa de l'organització a Internet (a través del seu *Internet Service Provider* o ISP) fent NAT (*Network Address Translation*). La seva interfície R2₁ és PON, té l'adreça IP 46.222.165.224, la màscara 255.255.255.192 i un únic "següent" *router* d'adreça IP 46.222.165.193. Com que es fa NAT, l'organització fa servir adreces IP dins els rangs "privats" recomanats per a xarxes internes NAT (és a dir, dins 10.0.0.0/8, 192.168.0.0/16 o 172.16.0.0/12), concretament el prefix de xarxa IP 192.168.0.0/16. A més fa *subnetting*, és a dir, divideix el seu rang d'adreces en diversos rangs més petits, els quals assigna a les xarxes internes. En aquest cas, la divisió es fa en rangs de 512 adreces.

interfície	@MAC
E1	00-13-D4-55-DF-E4
E2	00-13-94-A8-D4-15
E3	00-13-A9-3E-78-D1
E4	00-11-D8-62-E5-7E
E5	00-1D-AA-56-09-D1
E6	00-0A-41-19-79-00

interfície	@MAC
E7	00-16-3E-1C-B5-D1
E8	00-F4-E5-B1-23-B5
E9	00-1B-2A-0E-F3-00
E10	00-F6-A9-55-6B-3C
AP1 ₀	00-1D-60-EE-4F-5F
AP2 ₀	00-12-88-25-A4-63

interfície	@MAC
R1 ₀	00-16-B6-FA-F1-B9
R1 ₁	00-16-B6-F7-1D-51
R1 ₂	00-16-B6-F7-A1-E5
R1 ₃	00-16-B6-83-E4-51
R2 ₀	00-23-F4-62-F8-AA

Es demana el següent:

- a) Quantes xarxes IP hi ha a l'organització (anomeneu-les x1, x2, etc.)? Per cadascuna, qui en forma part (és a dir, els que tenen adreça IP) i quina tecnologia de xarxa hi ha?
- b) Escriviu el rang d'adreces IP de la xarxa de l'organització (anomeneu-la xorg).
- c) Feu el *subnetting* (de la manera descrita abans) i escriviu el prefix de xarxa IP de cadascuna de les xarxes i el rang d'adreces IP corresponent.
- d) Feu l'assignació de les adreces IP (feu servir la notació @IPE1, @IPR10, etc.).
- e) Escriviu les taules d'encaminament IP de l'estació E3 i del *router* R2, segons el criteri del camí més curt mesurat en nombre de salts. Feu servir el format [destí, següent, interfície], i indiqueu tant el nom (és a dir, x1, E1, R1₀, etc.) com l'adreça corresponent.
- f) Suposeu que les taules dels commutadors S1, S2, S3 i S4 estan totalment completes i que les estacions Wi-Fi estan associades al Punt d'Accés AP1 o AP2 (el més proper), i escriviu el contingut de les taules d'S3 i AP2. Feu servir el format [destí, interfície], i indiqueu tant el nom (és a dir, E1, R1₀, etc.) com l'adreça corresponent.
- g) Suposeu que els únics paquets IP que s'han enviat darrerament són els que l'estació E3 ha enviat a E5, E7 i E11 (que està a Internet i té l'adreça IP 88.88.212.7), i escriviu el contingut de la taula ARP d'E3 i R1. Feu servir el format [@IP, @MAC], i indiqueu tant el nom (és a dir, E1, R1₀, etc.) com l'adreça corresponent.
- h) En el supòsit dels apartats anteriors, expliqueu com es transporta un paquet IP des de l'estació E3 fins a l'E7, és a dir, expliqueu com actuen les estacions i dispositius de xarxa implicats (commutadors, Punts d'Accés i *routers*; consulta en taules; a quines estacions arriba un paquet, etc.), i dibuixeu els paquets IP i ARP que es generen (amb adreces, etc.; feu servir la notació @IPE1, @IPR10, @MACE1, @MACR10, @MACAP10 o BSSID1, etc.).

NOTA:

- Els commutadors S1, S2, S3 i S4 i els Punts d'Accés AP1 i AP2 no són dispositius de xarxa gestionables remotament.
- Feu servir la següent notació: @IPx1 per al prefix de la xarxa IP x1, @IPE1 per a l'adreça IP (@IP) de l'estació E1, @IPR1₀ per a l'@IP de la interfície 0 del *router* R1, @MACE1 per a l'adreça MAC (@MAC) de l'estació E1, @MACR1₀ per a l'@MAC de R1₀, @MACAP1₀ o BSSID1 (*Basic Service Set IDentification*) per a l'@MAC (de la interfície 0) del Punt d'Accés AP1, etc.
- El format "resumit" d'un paquet Ethernet (Ethernet II o IEEE 802.3 Ethernet + IEEE 802.2 LLC) és delim. | altres | @destí | @origen | @prot.sup | info. | CE |

on "@prot.sup." indica el protocol usuari i "info." és el paquet del protocol usuari (IP, ARP, etc.).

- El format "resumit" dels paquets Wi-Fi (IEEE 802.11 Wi-Fi + IEEE 802.2 LLC) és

delim. | altres | tipus | a/de l'AP | @1 | @2 | @3 | #seq. | @prot.sup | info. | CE |

delim. | altres | tipus | @destí | CE | en el cas de les confirmacions (BENs),

on "tipus" indica el significat del missatge (informació, BEN, beacon, associació, autenticació, etc.), "a/de l'AP" indica si l'envia una estació cap a l'AP ("a l'AP") o al revés ("de l'AP"), @1 és l'adreça de qui rep (l'estació o l'AP), @2 és l'adreça de qui envia (l'estació o l'AP) i @3 és l'adreça del tercer implicat (una estació), "#seq." és el número de seqüència del paquet, "@prot.sup" indica el protocol usuari i "info." és el paquet del protocol usuari (IP, ARP, etc.).

- El format "resumit" d'un paquet IP (IPv4) és

altres | @origen | @destí | #protocol | CE | info. | (CE no inclou "info."),

on "#protocol" indica el protocol usuari i "info." és el paquet del protocol usuari (TCP, UDP, etc.).

- El format "resumit" dels paquets ARP és

altres | tipus | @MACorigen | @IPorigen | @MACdestí | @IPdestí

on "tipus" indica el seu significat (petició o resposta).

Quines xarxes IP hi ha? (i)

Una xarxa IP és un conjunt d'interfícies (de nodes, és a dir, d'estacions o *routers*) que tenen un mateix prefix d'@IP

Quins "elements" tenen capa IP?

Estacions i *routers*, és a dir, les estacions Ex i els *routers* Rx. A sota d'IP, tots tenen una capa de xarxa *Ethernet* o Wi-Fi o PON. Recordeu que cada capa de xarxa té les seves pròpies adreces de xarxa, p.e., a *Ethernet* i Wi-Fi, les @MAC (IEEE 802 EUI-48).

Quins "elements" no tenen capa IP?

Els switchs Ethernet S1, S2, S3 i S4 i els Access Points AP1 i AP2. A més un switch no té @MAC; en canvi un Access Point sí té @MAC (o BSSID). Dit això, si un switch o un Access Point fos configurable remotament, llavors sí tindria @IP, capa IP, etc., i @MAC; es modelaria com una "nova" estació p.e. "E13" unida al switch S1.

Quines xarxes IP hi ha? (ii)

² Entre elles hi ha la xarxa IP on està R2₁, que és PON, la formen R2₁, potser altres estacions i la interfície d'un *router*

¹ Recordeu que l'espai d'adreces Ethernet/Wi-Fi és un de sol (IEEE 802 EUI-48), i que es poden unir xarxes Ethernet amb xarxes Wi-Fi via un AP o un pont (bridge)

Rang d'adreces IP de l'organització

L'organització té el prefix de xarxa IP 192.168.0.0/16:

Subnetting (i)

- L'organització fa subnetting de 192.168.0.0/16 (65536 @IP) en rangs de 512 @IP
 - 512 = 29, és a dir, cada rang resultant tindrà un sufix de 9 bits i un prefix de 23 bits
 - quants range de 512 @IP hi ha? 23-16 = 7 bits \rightarrow 2⁷ = 128 (65536/512 = 128)
 - cal 4 rangs de 512 @IP per les 4 xarxes IP, p.e., els 4 primers rangs:

Subnetting (ii)

- Per cada xarxa IP, el prefix de xarxa IP i el rang d'adreces IP són:
 - xarxa x1: prefix 192.168.0.0/23, rang 192.168.0.0 a 192.168.1.255 (512 @IP)
 - xarxa x2: prefix 192.168.2.0/23, rang 192.168.2.0 a 192.168.3.255 (512 @IP)
 - xarxa x3: prefix 192.168.4.0/23, rang 192.168.4.0 a 192.168.5.255 (512 @IP)
 - xarxa x4: prefix 192.168.6.0/23, rang 192.168.6.0 a 192.168.7.255 (512 @IP)

Assignació de les adreces IP (i)

- Quant a l'assignació de les adreces a interfícies d'estacions i routers, cal tenir en compte que a cada rang n'hi ha dues ja preassignades, la primera i l'última
 - la primera (prefix+0s) identifica la xarxa IP (p.e., 192.168.4.0 a la xarxa x3)
 - l'última (prefix +1s) indica broadcast a la xarxa IP (p.e., 192.168.5.255 és broadcast en x3)
 - la resta d'adreces es poden assignar a interfícies d'estacions i routers com es vulgui

Assignació de les adreces IP (ii)

- P.e., una possible assignació
 - x1: @IPE1 = 192.168.0.5, @IPE2 = 192.168.0.9, @IPR1₃ = 192.168.0.1
 - x2: @IPE3 = 192.168.2.3, @IPE4 = 192.168.2.7, @IPE5 = 192.168.2.8, @IPR1₀ = 192.168.2.1
 - x3: @IPE6 = 192.168.4.4, @IPE7 = 192.168.4.6, @IPE8 = 192.168.4.9, @IPR1₁ = 192.168.4.1
 - x4: @IPE9 = 192.168.6.5, @IPE10 = 192.168.6.9, @IPR1₂ = 192.168.6.1, @IPR2₀ = 192.168.6.2

(R2₁ no forma part de cap d'aquestes xarxes; ens diuen que té @IPR2₁ = 46.222.165.224)

Taules d'encaminament IP: E3 i R2

A Internet hi ha moltíssimes xarxes IP unides per routers. Entre elles hi ha la xarxa IP on està R2₁, que és PON, la formen R2₁, potser altres estacions i la interfície d'un router

Taules d'encaminament IP: E3

Ei! El switch Ethernet S2 de la xarxa x2 no en sap d'IP (no té capa IP, ni @IP, etc. ¹), sinó només sap Ethernet! Té una taula [destí, interfície] amb les 4 @MAC d'E3, E4, E5 i R1₀!

si el destí és algú de la meva xarxa, el lliurament és directe: següent = destí ("directe") Són E3, E4, E5 i R1₀, i també la resta d'@IPs "lliures" del rang de 512 @s d'x2 ²

si el destí és algú altre, el lliurament és indirecte via *router*:
següent = *router*_i (la interfície del *router* a la meva xarxa)

512 destins 2³² - 512

	estació E3		
	destí	següent	interfície
s	x2 (192.168.2.0/23)	directe	E3 (192.168.2.3)
2	↑ resta	R1 ₀ (192.168.2.1)	E3 (192.168.2.3)

¹ De fet, si fos un *switch* configurable remotament, llavors sí tindria una @IP, capa IP, etc., i també una @MAC; es modelaria com una "nova" estació, p.e. "E13", unida al *switch* S2

Taules d'encaminament IP: R2 (i)

La xarxa xz és PON, la formen R2₁, potser altres estacions i la interfície d'un *router* que p.e., en diem R3₀

@IPR2₁ = 46.222.165.224 mask 255.255.255.192 ⇒ xarxa xz: 46.222.165.192/26 Hi ha un únic "següent" *router* R3 amb @IPR3₀ = 46.222.165.193

	router R2	
destí	següent	interfície
x1 (192.168.0.0/23)	R1 ₂ (192.168.6.1)	R2 ₀ (192.168.6.2)
x2 (192.168.2.0/23)	R1 ₂ (192.168.6.1)	R2 ₀ (192.168.6.2)
x3 (192.168.4.0/23)	R1 ₂ (192.168.6.1)	R2 ₀ (192.168.6.2)
x4 (192.168.6.0/23)	directe	R2 ₀ (192.168.6.2)
xz (46.222.165.192/26)	directe	R2 ₁ (46.222.165.224)
resta	R3 ₀ (46.222.165.193)	R2 ₁ (46.222.165.224)

 ^{*} Aquestes 3 línies es podrien compactar en 1 única línia així:
 x1x2x3x4 (192.168.0.0/21), R1₂ (192.168.6.1), R2₀ (192.168.6.2),
 ja que en una taula IP, si donat un destí, dues o més línies són "vàlides", s'escull la del prefix més llarg

² Recordeu que les @IP "Iliures", cap altra xarxa IP les pot fer servir

Taules d'encaminament IP: R2 (ii)

router R2		
destí	següent	interfície
x1x2x3x4 (192.168.0.0/21)	R1 ₂ (192.168.6.1)	R2 ₀ (192.168.6.2)
x4 (192.168.6.0/23)	directe	R2 ₀ (192.168.6.2)
xz (46.222.165.192/26)	directe	R2 ₁ (46.222.165.224)
resta	R3 ₀ (46.222.165.193)	R2 ₁ (46.222.165.224)

Fixeu-vos que hem aconseguit una taula amb menys línies i que alhora, és clar, fa el mateix:

Donat un destí d'x4, dues línies serien "vàlides", la 1a i la 2a, però quan això passa cal escollir la de la xarxa més "petita" (la del prefix més llarg), és a dir, la 2a línia, tal com passava a la taula anterior

Taules d'encaminament IP: R2 (iii)

router R2		
destí	següent	interfície
x1x2x3x4 (192.168.0.0/21)	R1 ₂ (192.168.6.1)	R2 ₀ (192.168.6.2)
x4 (192.168.6.0/23)	directe	R2 ₀ (192.168.6.2)
xz (46.222.165.192/26)	directe	R2 ₁ (46.222.165.224)
resta	R3 ₀ (46.222.165.193)	R2 ₁ (46.222.165.224)

Solució? Afegir a la taula d'R2 una línia org (192.168.0.0/16), directe, interfície null:

La interfície *null* és una interfície virtual, que descarta tots els paquets que "s'envien" a través d'ella Als paquets destinats a @IP dins 192.168.0.0/16 però no dins x1, x2, x3 ni x4 (p.e., a 192.168.100.3), se'ls aplicarà aquesta línia (pels paquets destinats a x1 o x2 o x3 o x4, ara hi haurà dues línies "vàlides", però recordeu que quan passa això, s'escull la de la xarxa més "petita", és a dir, la del prefix més llarg)

Taules del switch S3 i de l'AP AP2 (i)

... quan les taules dels switchs S1, S2, S3 i S4 estan totalment completes i les estacions Wi-Fi estan associades al Punt d'Accés AP1 o AP2 (el més proper)

Taules del switch S3 i de l'AP AP2 (ii)

... quan les taules dels switchs S1, S2, S3 i S4 estan totalment completes i les estacions Wi-Fi estan associades al Punt d'Accés AP1 o AP2 (el més proper)

commutador S3		
destí	interfície	
E6 (00-0A-41-19-79-00)	S3 ₀	
E7 (00-16-3E-1C-B5-D1)	S3 ₀	
E8 (00-F4-E5-B1-23-B5)	S3 ₁	
R1 ₁ (00-16-B6-F7-1D-51)	S3 ₂	

Punt d'Accés AP2		
destí		interfície
E8 (00-F4-E5-B1-23-B5)		AP2 ₀

l'estació Wi-Fi associada a AP2

La taula local ARP d'E3 i R1

... si darrerament* només l'estació E3 ha enviat paquets IP a E5, E7 i E11

- El camí seguit per aquests paquets ve donat per les taules d'encaminament IP
 - E3 → E5: camí E3 E5; a E3 següent = "directe", és a dir E5
 - E3 → E7: camí E3 R1 E7; a E3 següent = R1₀, a R1 següent = "directe", és a dir, E7
 - E3 → E11 (que està a Internet): camí E3 R1 R2 R3 ... Rn E11; a E3 següent = R1₀, a R1 següent = R2₀, ..., i al final, a un router Rn següent = "directe", és a dir E11
- Per enviar-ho al "següent", E3 haurà fet servir les @MAC d'E5 i R1₀ i R1 l'@MAC d'E7 i R2₀, i per tant les seves taules ARP només contenen el següent:

	estació E3		
	@IP	@MAC	
E5	E5 (192.168.2.8)	E5 (00-1D-AA-56-09-D1)	
$R1_0$	R1 ₀ (192.168.2.1)	R1 ₀ (00-16-B6-FA-F1-B9)	

	router R1	
	@IP	@MAC
E7	E7 (192.168.4.6)	E7 (00-16-3E-1C-B5-D1)
R2 ₀	R2 ₀ (192.168.6.2)	R2 ₀ (00-23-F4-62-F8-AA)

^{*} Recordeu que les entrades de la taula tenen un temps de vida, passat el qual s'esborren

Transport d'un paquet IP d'E3 a E7 (i)

^{*} Recordeu que l'espai d'adreces *Ethernet*/Wi-Fi és un de sol (IEEE 802 EUI-48), i que es poden unir xarxes *Ethernet* amb xarxes Wi-Fi via un AP o un pont (*bridge*)

Transport d'un paquet IP d'E3 a E7 (ii)

- La capa superior "SUP" (p.e., TCP, UDP, etc.) usuària de la capa IP d'E3 vol enviar un paquet "paqSUP" a l'"@IPdestí" = @IPE7
 - la capa "SUP" crida IPenv(@IPE7, "paqSUP"); la capa IP construeix un paquet IP amb @origen=@IPE3, @destí=@IPE7, #prot="SUP", info="paqSUP", etc., i consulta la taula d'encaminament IP per saber "següent": per @IPE7 = 192.168.4.6 la 2a línia aplica ("resta"), i llavors següent = R1₀, amb @IPR1₀ = 192.168.2.1; ara la capa IP cridaria ETHenv(@MACR1₀, "paqIP") però no sap I'@MACR1₀
 - per descobrir-ho la capa IP crida a ARPresol(@MACR1₀?,@IPR1₀); la capa ARP ho busca primer a la seva taula local ARP, i si no hi fos es faria servir ARP. En aquest cas SÍ hi és:
 @IPR1₀ (192.168.2.1) ---- @MACR1₀ (00-16-B6-FA-F1-B9)
 - la capa IP crida ETHenv(@MACR1₀,"paqIP"); la capa Ethernet construeix un paquet amb @origen=@MACE3, @destí=@MACR1₀, prot="IP", info="paqIP", etc., i l'envia

el paquet arriba al switch S2 (per la interfície 0) d'x2, llegeix que l'@destí = @MACR1₀, consulta la seva taula, i el reenvia només a la interfície 3, cap a R1₀

Transport d'un paquet IP d'E3 a E7 (iii)

- El router R1 rep el paquet Ethernet (per la interfície 0), el desencapsula, i extrau el paquet IP. Ha de reenviar un paquet IP dirigit a l'"@IPdestí" = @IPE7
 - la capa IP consulta la taula d'encaminament IP per saber el "següent": per @IPE7 = 192.168.4.6 la 3a línia aplica ("xarxa x3"), i llavors següent = directe, és a dir, següent = destí (@IPE7 = 192.168.4.6), al destí E7 directament, via la interfície R1₁; ara la capa IP cridaria ETHenv(@MACE7,"paqIP") via R1₁ però no sap l'@MACE7
 - per descobrir-ho la capa IP crida a ARPresol(@MACE7?,@IPE7); la capa ARP ho busca primer a la seva taula local ARP, i si no hi fos es faria servir ARP. En aquest cas Sí hi és:
 @IPE7 (192.168.4.6) ---- @MACE7 (00-16-3E-1C-B5-D1)
 - la capa IP crida ETHenv(@MACE7,"paqIP") via R1₁; la capa Ethernet construeix un paquet amb @origen=@MACR1₁, @destí=@MACE7, prot="IP", info="paqIP", etc., i l'envia via R1₁

 el paquet arriba al switch S3 (per la interfície 2) d'x3, llegeix que l'@destí = @MACE7, consulta la seva taula, i el reenvia només a la interfície 1, cap a l'Access Point AP1

Transport d'un paquet IP d'E3 a E7 (iv)

- el paquet Ethernet arriba a l'Access Point AP1; AP1 llegeix que l'@destí = @MACE7, consulta la taula, veu que és una estació associada, i el reenvia a la interfície Wi-Fi AP1₀ cap a E6 i E7
- l'AP1 construeix un paquet Wi-Fi d'informació amb @origen=@MACR1, l'@ de l'AP1
 (@MACAP1, o BSSID1), @destí=@MACE7, prot="IP", info="paqIP", etc., i l'envia

recordeu que ara E7 respondria un BEN cap a AP1

el paquet arriba a totes les estacions Wi-Fi d'x3, és a dir, E6 i E7 (i potser a altres, com E8, depenent de la cobertura) de les quals, només E7 el pren i E6 el descarta
 (recordeu que ara E7 enviarà un paquet Wi-Fi de tipus "BEN" a l'AP1 per indicar-li que ha rebut bé el paquet; i que l'AP1 periòdicament envia paquets Wi-Fi de tipus "beacon", etc.)