ÉCONOMETRIE THEORIQUE

(M1 MBFA)

Corrigé QCM

Chapitre 2 : Propriétés en petits échantillons de l'estimateur des MCO

(La seule réponse correcte est surlignée en jaune!)

- 16. L'estimateur des moindres carrés ordinaire de β est :
 - a) un estimateur linéaire.
 - b) un estimateur quadratique.
 - c) une fonction convexe des erreurs.
 - d) la vraie valeur de β .
- 17. Sous les hypothèses H1 à H3, l'estimateur MCO est :
 - a) de variance minimale.
 - b) linéaire dans les variables explicatives.
 - c) indépendant de l'erreur.
 - d) sans biais.
- 18. L'estimateur des MCO $\hat{\beta}$ est sans biais
 - a) sous les hypothèses H1 et H2.
 - b) sous les hypothèses H1 à H3.
 - c) sous les hypothèses H1 à H4.
 - d) sous les hypothèses H1 à H5.
- 19. Sous les hypothèses H1 à H3, si on oublie une variable explicative pertinente dans une régression :
 - a) $\hat{\beta}$ reste sans biais.
 - b) $\hat{\beta}$ ne peut pas être estimé.
 - c) le paramètre de cette variable est nul.
 - d) $\hat{\mathbf{B}}$ devient biaisé.
- 20. Sous les hypothèses H1 à H4, la variance conditionnelle de l'estimateur des MCO est :
 - a) $V(\widehat{\boldsymbol{\beta}}|\boldsymbol{X}) = \sigma^2(\boldsymbol{X}'\boldsymbol{X})^{-1}$
 - b) $V(\widehat{\boldsymbol{\beta}}|\boldsymbol{X}) = \sigma^2(\boldsymbol{X}'\boldsymbol{X})$
 - c) $V(\widehat{\beta}|X) = \sigma^2(XX')$
 - d) $V(\widehat{\boldsymbol{\beta}}|X) = \sigma^2(XX')^{-1}$

- 21. Sous les hypothèses H1 à H5, l'estimateur des MCO de la variance conditionnelle de ε :
 - a) égal à σ^2 .
 - b) suit une loi normale.
 - c) suit une loi t de Student.
 - d) suit une loi du Khi-deux.
- 22. Sous les hypothèses H1 à H4, la variance conditionnelle d'un paramètre estimé par MCO est d'autant plus grande :
 - a) que la variance de l'erreur est faible.
 - b) ne dépend pas de la variance de l'erreur.
 - c) que le nombre d'observation est faible.
 - d) que les degrés de liberté de la régression sont grands.
- 23. Sous les hypothèses H1 à H5, l'estimateur des MCO de β :
 - a) suit une loi normale.
 - b) suit une loi t de Student.
 - c) suit une loi du Khi-deux.
 - d) suit une loi F de Fisher.
- 24. On a une erreur de type 1 ou de première espèce
 - a) si on accepte l'hypothèse nulle alors qu'elle est fausse.
 - b) si on rejette l'hypothèse nulle alors qu'elle est fausse.
 - c) si on accepte l'hypothèse nulle alors qu'elle est vraie.
 - d) si on rejette l'hypothèse nulle alors qu'elle est vraie.
- 25. On a une erreur de type 2 ou de seconde espèce
 - a) si on accepte l'hypothèse nulle alors qu'elle est fausse.
 - b) si on rejette l'hypothèse nulle alors qu'elle est fausse.
 - c) si on accepte l'hypothèse nulle alors qu'elle est vraie.
 - d) si on rejette l'hypothèse nulle alors qu'elle est vraie.
- 26. Le niveau d'un test:
 - a) mesure le nombre d'observations pour effectuer le test.
 - b) est la probabilité de rejeter H_0 alors que celle-ci est vraie
 - c) est la probabilité d'accepter H_0 alors que celle-ci est vraie.
 - d) est toujours égal à 5%.
- 27. La puissance d'un test:
 - a) est la probabilité de rejeter H_0 alors que celle-ci est fausse.
 - b) est la probabilité de rejeter H_0 alors que celle-ci est vraie.
 - c) est la probabilité de l'erreur de 2^{ème} espèce.
 - d) est toujours égal à 1 le niveau du test.
- 28. Si la contrainte est correcte, et sous les hypothèses de Gauss-Markov, l'estimateur des moindres carrés contraint :
 - a) est plus précis que l'estimateur des MCO.
 - b) est identique à l'estimateur des MCO.
 - c) a une variance plus grande que l'estimateur des MCO.
 - d) est plus petit que l'estimateur des MCO.

- 29. La statistique t est le ratio
 - a) du paramètre estimé à l'écart-type de la régression
 - b) du paramètre estimé à son écart-type estimé.
 - c) de l'écart-type estimé du paramètre à l'écart-type de la régression.
 - d) de l'écart-type estimé du paramètre au paramètre estimé.
- 30. La statistique t permet
 - a) de mesurer l'effet de la variable considérée.
 - b) de donner l'écart-type du paramètre estimé.
 - c) de tester la significativité de la variable considérée.
 - d) de tester la multicolinéarité.
- 31. La statistique t se compare à
 - a) une loi normale
 - b) une loi t de Student
 - c) une loi du Khi-deux
 - d) une loi F de Fisher
- 32. Un intervalle de confiance à 95% :
 - a) est plus grand qu'un intervalle de confiance à 90 %.
 - b) est plus grand qu'un intervalle de confiance à 99 %.
 - c) dépend de la valeur du vrai paramètre.
 - d) est toujours plus grand que le paramètre estimé.
- 33. Un intervalle de confiance d'un paramètre :
 - a) est centré sur le vrai paramètre.
 - b) est symétrique autour du paramètre estimé.
 - c) est normalement distribué.
 - d) est distribué selon une loi t de Student.
- 34. Un paramètre estimé est dit « significatif » :
 - a) si on accepte l'hypothèse nulle du test t.
 - b) si la probabilité critique du test t est supérieur au niveau de test.
 - c) si la statistique t de Student est inférieure au seuil critique.
 - d) si on rejette l'hypothèse nulle du test t.
- 35. Le test *F* de significativité conjointe :
 - a) est distribué selon une loi F(N-K, K-1).
 - b) dépend de la somme des carrés totaux de la variable dépendante.
 - c) teste tous les paramètres de la régression.
 - d) teste l'ensemble des paramètres de pente de la régression.

Corrigé VRAI / FAUX

Chapitre 2 : Propriétés en petits échantillons de l'estimateur des MCO

11. L'estimateur des moindres c	earrés ordinaire de $oldsymbol{eta}$ est toujours sans b	iais.
Vrai		Faux
12. L'hypothèse d'homoscédast	icité n'est pas nécessaire pour que $\widehat{m{eta}}$ so	oit sans biais
Vrai		Faux
13. L'hypothèse de stricte exoge	énéité est suffisante pour que $\widehat{m{eta}}$ soit san	ns biais
Vrai		Faux
14. L'omission d'une variable plais.	pertinente dans une régression entraîne	e toujours l'apparition d'un
Vrai		Faux
15. La variance inconditionnelle de $\widehat{\pmb{\beta}}$ est égale à sa variance conditionnelle :		
Vrai		Faux
 Si une variable explicative multicolinéarité parfaite. 	e est le produit de deux autres vari	iables explicatives, il y a
Vrai		Faux
17. Si la somme des variables multicolinéarité parfaite.	explicatives est égale à zéro pour tou	tes les observations, il y a
Vrai		Faux
18. On doit prendre le R^2 du mo	odèle pour calculer le VIF.	
Vrai		Faux
 Une très forte corrélation en biais de l'estimateur des MC 	tre deux variables explicatives affecte l	a propriété d'absence de
Vrai		Faux

20. L'hypothèse de normalité des erreurs est nécessaire pour que β soit « BLUE »			
Vrai	Faux		
21. L'hypothèse de normalité des erreurs implique la normalité de l'estimateur de la variance de l'erreur $\widehat{\sigma^2}$.			
Vrai	Faux		
22. La loi t de Student est identique à la loi normale si les degrés de liberté sont supérieurs à 30 :			
Vrai	Faux		
23. Plus la probabilité critique est grande, plus vraisemblable sera l'hypothèse nulle.			
<mark>Vrai</mark>	Faux		
24. On peut calculer la statistique F de significativité globale à partir du \mathbb{R}^2 de la régression.			
<mark>Vrai</mark>	Faux		
25. On peut calculer la statistique F de significativité globale à partir du $\overline{R^2}$ de la régression.			
V rai	Faux		
26. Plus le \mathbb{R}^2 de la régression est grand, plus la statistique \mathbb{F} de significativité globale est grande.			
Vrai	Faux		
27. La loi $F(1, N - K)$ est équivalente au carré d'une loi $t(N - K)$			
V rai	Faux		
28. La loi $F(J, N - K)$ est équivalente à la loi $F(N - K, J)$.			
Vrai	Faux		
29. Il suffit d'estimer le modèle contraint pour obtenir une statistique F pour tester les contraintes.			
V rai	Faux		
30. La statistique de test de Wald est identique à la statistique de test F lorsqu'il n'y a qu'une restriction à tester.			
V rai	Faux		