BAB IV

A. Hasil Uji Statistik Deskriptif

Pengukuran statistik deskriptif variabel ini perlu dilakukan untuk melihat gambaran data secara umum seperti nilai rata-rata (Mean), tertinggi (Max), terendah (Min), dan standar deviasi dari masing-masing Kelas yaitu Kelas 3A dan Kelas 3B. Mengenai hasil Uji Statistik Deskriptif penelitian dapat dilihat padat tabel 4.1 sebagai berikut:

tabel 4. 1 Hasil Uji Statistik Deskriptif

Descriptive Statistics								
N Minimum Maximum Mean Std. Deviation								
Kelas_3a	20	209.00	270.00	241.7500	21.13584			
Kelas_3b	20	204.00	274.00	240.5000	16.91309			
Valid N (listwise)	20							

Berdasarkan hasil perhitungan dari tabel 4.1 diatas dapat diketahui bahwa n atau jumlah siswa pada setiap kelas yaitu 20 siswa. Masing-masing Kelas akan dijabarkan sesuai dengan data pada tabel 4.1 sebagai berikut:

1. Kelas 3A

Pada tabel 4.1 diatas, kelas 3a mempunyai nilai mean 241,7500 dan standar deviasi (std devition) sebesar 21,13584. Hal ini berarti bahwa nilai mean lebih besar daripada standar deviasi, sehingga mengindikasikan bahwa hasil yang cukup baik. Hal tersebut dikarenakan standar deviasi adalah pencerminan penyimpanan yang sangat tinggi, sehingga penyebaran data menunjukkan hasil yang normal dan tidak menyebabkan bias. Nilai minimalnya sebesar 209 dan nilai maksimumnya sebesar 270.

2. Kelas 3B

Pada tabel 4.1 diatas, kelas 3b mempunyai nilai mean 240,5000 dan standar deviasi (std devition) sebesar 16,91309. Hal ini berarti bahwa nilai mean lebih besar daripada standar deviasi, sehingga mengindikasikan bahwa hasil yang cukup baik. Hal tersebut dikarenakan standar deviasi adalah pencerminan penyimpanan yang sangat tinggi, sehingga penyebaran data menunjukkan hasil yang normal dan tidak menyebabkan bias. Nilai minimalnya sebesar 204 da nilai maksimumnya sebesar 274.

B. Analisis data

1. Uji Validitas

Analisis ini digunakan untuk mengukut seberapa cermat suatu tes dapat melakukan fungsi ukurnya. Semakin tinggi validitas suatu alat maka semakin tepat pula alat pengukur tersebut mengenai sasarannya, dan sebaliknya semakin rendah suatu alat pengukur, maka semakin jauh pula alat pengukur tersebut mengenai sasarannya. Teknik yang digunakan memakai Pearson Correlation, dihitung menggunakan bantuan computer program spss versi 25. Hasil Uji validitas dapat ditunjukkan pada table berikut:

Tabel 4. 2 Hasil Uji Validitas

Pertanyaan	Rhitung	Rtabel	Keterangan
X1	0,291	0,312	Tidak Valid
X2	0,437	0,312	Valid
X3	0,038	0,312	Tidak Valid
X4	0,38	0,312	Valid
X5	0,05	0,312	Tidak Valid
X6	0,296	0,312	Tidak Valid
X7	0,149	0,312	Tidak Valid
X8	0,255	0,312	Tidak Valid
X9	0,097	0,312	Tidak Valid
X10	0,317	0,312	Valid
X11	0,202	0,312	Tidak Valid

Pertanyaan	Rhitung	Rtabel	Keterangan
X12	0,516	0,312	Valid
X13	0,011	0,312	Tidak Valid
X14	0,192	0,312	Tidak Valid
X15	0,394	0,312	Valid
X16	0,169	0,312	Tidak Valid
X17	0,252	0,312	Tidak Valid
X18	0,47	0,312	Valid
X19	0,135	0,312	Tidak Valid
X20	0,004	0,312	Tidak Valid
X21	0,536	0,312	Valid
X22	0,369	0,312	Valid
X23	0,3	0,312	Tidak Valid
X24	0,45	0,312	Valid
X25	0,178	0,312	Tidak Valid
X26	0,514	0,312	Valid
X27	0,479	0,312	Valid
X28	0,098	0,312	Tidak Valid
X29	0,446	0,312	Valid
X30	0,39	0,312	Valid
X31	0,329	0,312	Valid
X32	0,574	0,312	Valid
X33	0,492	0,312	Valid
X34	0,392	0,312	Valid
X35	0,468	0,312	Valid
X36	0,348	0,312	Valid
X37	0,4	0,312	Valid
X38	0,485	0,312	Valid
X39	0,486	0,312	Valid
X40	0,607	0,312	Valid
X41	0,467	0,312	Valid
X42	0,78	0,312	Valid
X43	0,535	0,312	Valid
X44	0,317	0,312	Valid
X45	0,414	0,312	Valid
X46	0,647	0,312	Valid
X47	0,562	0,312	Valid
X48	0,454	0,312	Valid
X49	0,425	0,312	Valid
X50	0,358	0,312	Valid
X51	0,569	0,312	Valid
X52	0,341	0,312	Valid
X53	0,418	0,312	Valid

Pertanyaan	Rhitung	Rtabel	Keterangan
X54	0,586	0,312	Valid
X55	0,543	0,312	Valid
X56	0,496	0,312	Valid
X57	0,686	0,312	Valid
X58	0,583	0,312	Valid
X59	0,568	0,312	Valid
X60	0,308	0,312	Tidak Valid
X61	0,303	0,312	Tidak Valid
X62	0,414	0,312	Valid
X63	0,503	0,312	Valid
X64	0,31	0,312	Tidak Valid
X65	0,079	0,312	Tidak Valid
X66	0,619	0,312	Valid
X67	0,342	0,312	Valid
X68	0,456	0,312	Valid
X69	0,558	0,312	Valid
X70	0,423	0,312	Valid
X71	0,591	0,312	Valid
X72	0,649	0,312	Valid
X73	0,452	0,312	Valid
X74	0,539	0,312	Valid

 $Test\ distribution\ is\ Valid.\ Sumber:\ Output\ SPSS\ 25.0,\ data\ sekunder\ yang\ diolah\ 2024$

Adapun kriteria yang digunakan dalam menemukan Kevalidan data pertanyaan yang digunakan dalam penelitian ini adalah sebagai berikut : jika data Rhitung > Rtabel maka dinyatakan valid sebaliknya jika Rhitung < Rtabel maka dinyatakan Tidak Valid. Nilai Rtabel 0,312 ini di dapatkan dari tabel nilai-nilai r Produk moment yang mana n nya itu 40 responden.

2. Uji Reabilitas

Pengujian reliabilitas dimaksudkan untuk mengetahui tingkat konsistensi jawaban kuesioner, sehingga mampu menunjukkan keandalan sebuah alat ukur. Dalam pengujian ini dilakukan dengan Uji Cronbach's Alpha. Nilai Cronbach's Alpha> 0,6, maka instrumen tersebut dapat dinyatakan reliabel. Hasil uji reliabilitas dapat ditunjukkan pada tabel 4.2 berikut:

tabel 4. 3 Hasil Uji Reabilitas

Variable	Alpha Cronbach's	Jumlah	Nilai Kritis	Keterangan
Kelas A & B	0,915	74	0,6	Reliable

a. Test distribution is Reability. Sumber: Output SPSS 25.0, data sekunder yang diolah 2024

Dari hasil uji reliabilitas diperoleh koefisien reliabilitas untuk seluruh variabel yang digunakan dalam penelitian ini lebih besar dari nilai kritisnya yaitu 0,6 sehingga dapat disimpulkan bahwa seluruh butir pertanyaan yang tertuang dalam kuesioner penelitian ini dapat dinyatakan handal / reliabel. Artinya kuesioner ini memiliki hasil yang konsisten jika dilakukan pengukuran dalam waktu dan model atau desain yang berbeda.

3. Uji Normalitas

Uji normalitas bertujuan untuk menguji apakah data kontinu berdistribusi normal atau tidak. Sehingga apabila data kontinu telah berdistribusi normal maka bisa dilanjutkan ke tahap berikutnya yakni uji validitas, uji-t, korelasi dan regresi dapat dilaksanakan dan apabila salah satu tidak normal maka akan dilanjutkan dengan uji mann whitney. Untuk menguji apakah data bersifat normal atau tidak sebagai berikut:

tabel 4. 4 Uji Normalisasi

Tests of Normality

		Kolm	ogorov-Smir	nov ^a	Shapiro-Wilk			
	Kelas	Statistic	df	Sig.	Statistic	df	Sig.	
Skor	Kelas 3a	.189	20	.059	.873	20	.013	
	Kelas 3b	.112	20	.200*	.979	20	.925	

^{*.} This is a lower bound of the true significance.

b. Test distribution is Normal. Sumber: Output SPSS 25.0, data sekunder yang diolah 2024

a. Lilliefors Significance Correction

Dari tabel 4.2 Uji normalisasi diperoleh angka probabilitas atau asymp Sig. Sehingga apabila dikaitkan dari penelitian diatas maka nilai pada kelas 3a sebesar 0,059 lebih besar dari 0,05 sehingga kelas 3a bersifat normal. Sedangkan untuk kelas 3b sebesar 0,2 lebih besar dari 0,05 maka kelas 3b bersifat normal.

4. Uji Homoginitas

Uji homogenitas adalah suatu metode statistika yang digunakan untuk mengetahui apakah dua atau lebih sampel dari populasi yang berbeda memiliki distribusi variansi atau karakteristik yang sama. Uji ini dilakukan sebagai prasyarat dalam analisis statistik seperti Independent Sample T Test dan Analisis Varian (Anova). Terdapat beberapa statistik yang digunakan untuk melakukan uji homogenitas. Hipotesis yang akan diuji tergantung pada jumlah sampel, dengan hipotesis nol yang menyatakan bahwa kedua populasi memiliki nilai distribusi yang sama dan hipotesis alternatif yang menunjukkan bahwa kedua populasi memiliki nilai distribusi yang berbeda.

tabel 4. 5 Uji Homogenitas

Test of Homogeneity of Variances

		Levene Statistic	df1	df2	Sig.
Skor	Based on Mean	.069	1	38	.794

Test Homginitas is homogen. Sumber: Output SPSS 25.0, data sekunder yang diolah 2024

Berdasarkan tabel output "Test of Homogeneity of Variances" di atas diketahui bahwa uji homogenitas varians menggunakan uji Levene pada data hasil kelas 3A dan kelas 3B, diperoleh nilai statistik Levene sebesar 0,069 dengan p-value sebesar 0.794. Karena p-value ini lebih besar dari tingkat signifikansi 0.05, peneliti menerima hipotesis nol dan

menyimpulkan bahwa varians kelas 3a dan 3b data tidak berbeda secara signifikan atau Homogen,

5. Uji T-test

Uji-t adalah alat analisis statistik yang umum digunakan untuk membandingkan ratarata antara dua kelompok yang bertujuan untuk menentukan apakah perbedaan antara kedua kelompok tersebut signifikan secara statistik atau hanya kebetulan. Uji-t memiliki beberapa syarat yang harus dipenuhi.

- 1. data dalam setiap kelompok harus terdistribusi secara normal.
- 2. varians dari kedua kelompok tersebut harus homogen, artinya sekitar sama.
- 3. observasi dalam setiap kelompok harus independen satu sama lain.

Jika asumsi-asumsi ini terpenuhi, maka hasil dari uji-t dapat diandalkan untuk menarik kesimpulan tentang perbedaan antara dua kelompok tersebut. Adapun hasil dari Uji-T independet akan dijelaskan sebagai berikut:

tabel 4. 6 Uji T-tes Independent

				Indepen	dent Sam	ples Test				
Levene's Test for Equality of Variances t-test for Equality of Means										
		_					Mean	Std. Error	95% Confidence Differe	ence
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
Skor	Equal variances assumed	.069	.794	1.726	38	.092	1.70000	.98502	29407	3.69407
	Equal variances not assumed			1.726	37.951	.093	1.70000	.98502	29415	3.69415

Berdasarkan hasil uji T-tes Independent yang dilakukan, terdapat dua kondisi yang dievaluasi: saat asumsi varian sama (equal variances assumed) dan saat asumsi varian tidak sama (equal variances not assumed). Dalam kedua kondisi tersebut, nilai p-value yang diperoleh (0.092 dan 0.093) lebih besar dari tingkat signifikansi yang umumnya digunakan (0.05). Oleh karena itu, tidak ada cukup bukti statistik untuk menolak hipotesis nol. ini mengindikasikan bahwa tidak ada perbedaan signifikan antara rata-rata dua kelompok yang

dibandingkan berdasarkan data yang tersedia dan analisis yang dilakukan. Dengan demikian, kesimpulan yang ditarik adalah bahwa tidak ada perbedaan yang signifikan antara rata-rata hasil pada kelas 3A dan kelas 3B.

C. Hasil Hipotesis

Hasil hipotesis dari pengujian diatas ini akan dirangkum sebagai berikut:

1. Uji Validitas

a. Hasil Hipotesis:

- Hipotesis Nol (H0): Tidak ada korelasi atau hubungan antara variabel yang diukur dalam instrumen dan variabel yang diukur dalam kriteria yang digunakan sebagai standar.
- Hipotesis Alternatif (H1): Ada korelasi atau hubungan antara variabel yang diukur dalam instrumen dan variabel yang diukur dalam kriteria yang digunakan sebagai standar.

b. Kesimpulan

Dari hasil uji validitas, terdapat beberapa pertanyaan yang dinyatakan valid dan beberapa lainnya tidak valid. Namun, secara keseluruhan, instrumen menunjukkan hubungan atau korelasi dengan kriteria yang digunakan sebagai standar.

2. Uji Reliabilitas

a. Hasil Hipotesis:

 Hipotesis Nol (H0): Tidak ada konsistensi dalam pengukuran yang dilakukan dengan instrumen yang sama. Hipotesis Alternatif (H1): Terdapat konsistensi dalam pengukuran yang dilakukan dengan instrumen yang sama.

b. Kesimpulan

Berdasarkan hasil uji reliabilitas menggunakan Cronbach's Alpha, diperoleh nilai yang lebih besar dari nilai kritis (0.6), menunjukkan bahwa instrumen yang digunakan dapat dianggap reliabel.

3. Uji Normalitas

- a. Hasil Hipotesis:
 - Hipotesis Nol (H0): Data berdistribusi normal.
 - Hipotesis Alternatif (H1): Data tidak berdistribusi normal.

b. Kesimpulan

Dari hasil uji normalitas, dapat disimpulkan bahwa data pada kelas 3a berdistribusi normal, sedangkan data pada kelas 3b tidak berdistribusi normal

4. Uji Homogenitas

- a. Hasil Hipotesis:
 - Hipotesis Nol (H0): Varians antar kelompok homogen.
 - Hipotesis Alternatif (H1): Varians antar kelompok tidak homogen.

b. Kesimpulan

Berdasarkan uji homogenitas varians menggunakan uji Levene, diperoleh hasil bahwa varians antar kelompok homogen.

5. Uji T tes

a. Hasil Hipotesis:

- Hipotesis Nol (H0): Rata-rata hasil pada kelas 3A dan kelas 3B yang dibandingkan itu sama
- Hipotesis Alternatif (H1): Rata-rata hasil pada kelas 3A dan kelas 3B yang dibandingkan itu tidak sama

b. Kesimpulan

Hasil Uji T-tes menunjukkan tidak ada perbedaan yang signifikan antara rata-rata hasil pada kelas 3A dan kelas 3B.

D. PEMBAHASAN

E. Keterbatasan Penelitian