MP305 Practical 2020/2021 - Activity Networks

- The Python notebook Activity_Network that can be accessed via any web browser. See the MP305 Blackboard web page for details and instructions.
- Solutions to all questions with (*) have to be submitted as a pdf document through Blackboard. You must include some text commentary (in Python notebook Markdown cells) to explain your answers to the questions asked.
- This practical is worth 4% of your final grade.
- 1. Analyse the chemical production problem discussed in class as given in the Python notebook Activity_Network
- 2. (*) Find the critical path and the minimal completion time for the following assembly problem with 10 activities (A-J):
 - **Activity A** precedes activity J and the completion time is 7.
 - **Activity B** precedes activity J and the completion time is 7.
 - **Activity** C precedes activity J and the completion time is 7.
 - **Activity D** precedes activities C, E, F and J and the completion time is 2.
 - Activity E precedes activities C, H, I and J and the completion time is 3.
 - **Activity F** precedes activities G, H and I and the completion time is 2.
 - Activity G precedes activities H and I and the completion time is 2.
 - **Activity H** precedes Finish and the completion time is 8.
 - **Activity I** precedes Finish and the completion time is 8.
 - Activity J precedes Finish and the completion time is 18.

3. Investigate the scheduling of 2 or 3 workers to the example

discussed in class using the critical path and protection scheduling using the Python functions CritSchedule(G,T,Nw) and ProtSchedule(G,T,Nw). With the earliest and latest starting times found verify the scheduling found by hand.

4. (*) A large computer program consists of a number of modules (or subroutines) M_1 , M_2 , M_3 , M_4 , M_5 , M_6 , M_7 and M_8 . Each module M_i takes a time T_i (in seconds) to complete and their completion depend of some preceding modules as follows:

Module	M_1	M_2	M_3	M_4	M_5	M_6	M_7	M_8
T_i	2	2	3	2	2	6	3	4
Preceding	none	none	M_1	M_1, M_2	M_1, M_2	M_3, M_4, M_5	M_3, M_4, M_5	M_3, M_7

- (a) Construct the activity network for this system with standard labeling.
- (b) Find the critical path minimal completion time assuming that a sufficient number of parallel processors are available. What are the earliest and latest starting times for each module?
- (c) Find the minimal completion time assuming that only **two** parallel processors are available using the critical path or protection scheme scheduling strategies. What is the average computing time per processor?
- (d) A programmer realizes that part of **either** module M_3 **or** M_4 can placed in module M_6 at a saving of 1 minute in for T_3 **or** T_4 but at the expense of 1 minute further in T_6 . What would you recommend for maximum efficiency given that you have only two parallel processors?