

Qingmu Deng, Daniel Connolly, Will Fairman

What is Lifi?

Project Timeline

BPSK

4-QAM

Image Processing

Error Control Code

Blind RX Signal

Increasing Distance

BPSK

3.5 inches 20 kbits/s 0% Error

4-QAM Signal Structure

- 4-QAM QPSK
- Carrier Frequency of 150k
- Sample Rate of 2 Mbits/sec
- Root Raised Cosine Pulse
 - Pulse width of 50
 - o RRC F(f)
- 200,000 bits per packet
- 80 kbits/sec data rate

4-QAM

Packet Structure

- Sending black and white images
 - Including length and width metadata
- Hamming Correction Code (7,4)
 - Corrects 1 error in every 7-bits of data
 - Increases code size by ~7/4

Pilot Signal

- Allow us to precisely find the start sequence of our data
 - Cross Correlation of Rx data with with starting sequence to determine location
- Random composition to reduce chance of start sequence showing up in the data

$$egin{aligned} prob_{32} &= rac{1}{2^{32}} \ prob_{packet} &= prob_{32}*(len-32) \ &= 4.6e-5 \end{aligned}$$

Data Processing Flow Diagram

Find Start of Signal

Phase Offset Correction Method 1: FFT / y[k]⁴

Pros

- Simple Implementation
- Minimum Error Rate Achieved ~2%

Cons

- More edge cases
- Commonly resulted in RX Constellation clusters centered on axes during development

Correcting Phase and Clock Offset

Phase Offset Correction Method 2: Costas Loop

Pros

Consistently reasonable RX Constellations
 Cons

- Errors compounded too quickly
- Minimum Error Rate Achieved ~15-20%

Error Correction Code: Hamming (7,4)

Sequence: [P1 D1 P2 D2 P3 D3 D4]

Error Correction Code

Hamming Code

25 inches 5% Error

No Hamming Code

25 inches 10% Error

Best Results with Hamming

RX Image 2% Error reduced from 3% TX Image 25 inches
Known File and Image Size

Interesting Effects of Phase Offsets

Real World Application of LIFI

Conclusions

- Error due to distance of transmission increases rapidly with distance (1/d^4)
 - Inherent property of light
- Phase offsets remain a challenge for large data packets
 - Easy to perform perfect data reconstruction for packets containing <= 10k data points
 - Phase shifting affected error rate when data packets > 50,000 bits
 - Transmit data in smaller packets
- Adding a neural net to deduce whether the image was einstein or checkerboard would decrease our error rate to 0% but also decrease our data rate to 1bit/30mins

Questions?

