

# Deploying VPNs over Segment Routed Networks Made Easy

SDN Controller based approach

Krishnan Thirukonda, Principal Engineer
@KrishThirukonda
BRKMPL-2131

cisco live!

#CiscoLive

### Cisco Webex App

#### **Questions?**

Use Cisco Webex App to chat with the speaker after the session

#### How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until June 7, 2024.

https://ciscolive.ciscoevents.com/ ciscolivebot/#BRKMPL-2131







- Technology Review
- Automation Considerations
- Cisco Controller for Transport SDN
  - Demo
- Conclusion

# Technology Review



### Services provided to end customers

- L2 and L3 VPNs
  - Overlay services over common IP/MPLS core or IPv6
  - Provides private networks with separation
  - Examples: BGP L3VPNs, EVPN or legacy
- Internet access
- Multicast Transport Content Delivery, MVPN etc
- Private Line Emulation (PLE)

#### Reference

#### IP/VPN Technology Overview

Network Topology / Connection Model



- Sit at the Edge
- Exchange IP traffic with PE routers (and C routers)
- Exchange IP routes with PE routers using IP routing protocol
- Sit at the Edge of IP/MPLS Network
- Exchange IP traffic with CE routers
- Exchange MPLS traffic with P routers
- Distributes VPN routes using MP-BGP sessions to other PE routers

- Sit inside the network
- Exchange MPLS traffic Forward packets by looking at MPLS labels
- Share a common IGP with PE

Refer: BRKMPI -2102

#### Define VRF, RT & Policy

```
vrf vpn-101
address-family ipv4 unicast
 import route-target
 65000:101
 export route-policy SET COLORv4 VPN-101-
ROUTE-POLICY
 export route-target
 65000:101
```

#### PE-CE interface (& Qos)

```
interface HundredGigE0/0/0/1.101
description T-SDN Interface
vrf vpn-101
ipv4 address 30.1.1.1 255.255.255.0
encapsulation dot1q 101
```

#### PE-CE Routing

```
router bgp 65000
vrf vpn-101
 rd 65000:101
 address-family ipv4 unicast
  redistribute connected
 neighbor 30.1.1.2
  remote-as 65003
 address-family ipv4 unicast
  route-policy PASS_ALL in
  route-policy PASS ALL out
```



### Transport paths in network

- Best Effort service uses IGP routing
- Large scale networks have multiple IGP domains with BGP Labelled Unicast (BGP-LU) or BGP-SR.
- Traffic Engineering for granular SLAs or tactical traffic management
  - RSVP-TE (MPLS Core)
  - SR-TE (MPLS Core)
  - · SRv6 (IPv6 Core)

This focus in this session is on Segment Routing



### What is Segment Routing?

 Source Routing principle => packets carry the path information

 An ingress node steers a packet through an ordered list of instructions, called segments

 A segment is locally defined and executed at a specific location in the network

 A segment can represent ANY function, topological or service-based or user-defined





### One Architecture / Two Data-Plane instantiations



#### SR-MPLS

- Instantiation of SR on the MPLS data plane
- A segment is encoded with an MPLS label

### Segment Routing



#### SR<sub>V</sub>6

- Instantiation of SR on the IPv6 data plane
- One or more segments are encoded with an IPv6 address

Refer: BRKSPG-2510 for deep dive of segment routing



### Network Evolution with SR-MPLS

#### Service Protocols



#### Data-Plane

Label-based forwarding 
MPLS 
MPLS 
Label-based forwarding

**IGP** 

LDP: Label Distribution Protocol, MP-BGP: Multi-protocol BGP, BGP-LU: BGP Labeled-Unicast, PCE: Path Computation Element, RSVP-TE: Reservation Protocol Traffic Engineering



IP Routing

IP Routing

#### Reference

Network Evolution with SRv6 IPv6 Header Service Protocols L2 VPN services (EVPN) L2 VPN services LDP MP-BGP L3 VPN services L3 VPN services MP-BGP **Transport Protocols** Inter-Domain SLA Traffic Eng. **BGP-LU** Inter-Domain MPLS LSP Inter-Domain "LSP" via Summary Intra-Domain Traffic Engineering Intra-Domain Traffic Engineering **RSVP-TE ....** Fast Re-Route Fast Re-Route ISISv6 with Intra-Domain MPLS LSP LDP Intra-Domain "LSP" SR extensions IP Routing **IGP** IP Routing Data-Plane Label-based forwarding **MPLS** IPv6 IP forwarding

LDP: Label Distribution Protocol, MP-BGP: Multi-protocol BGP, BGP-LU: BGP Labeled-Unicast, RSVP-TE: Reservation Protocol Traffic Engineering



### Programmability enabled by Segment Routing

- Underlay paths can be "programmed" on SR Networks
- Paths are SID Lists and computed based on different intent criteria
- Intent Examples: Low Latency Path, disjoint path, encrypted links only paths, BW available paths
- Inter-domain path calculation uses external path computation element, routers delegate path calculation to external path calculation engines
  - External path calculation engines use BGP-Link State to learn topologies from all IGP domains
  - Bandwidth Awareness using Telemetry
- Enables Software Defined Networking for Transport Networks to provide fine grained control

SDN returns SID List=BR1 BR4 BR6





# SR Traffic Engineering

- Simple, Automated and Scalable
  - No core state: state in the packet header
  - No tunnel interface: "SR Policy"
  - uniquely identified by a tuple (head-end, color, end-point)
    - Resolved to a SID List
  - On-demand policy instantiation & automated steering
- Multi-Domain
  - SR PCE for compute
  - Binding-SID (BSID) for scale

segment-routing
traffic-eng
policy srte\_pcc\_node5\_node4
color 700 end-point ipv4 198.19.1.4
candidate-paths
preference 100
dynamic
pcep
!
metric
type te

pce
segment-routing
traffic-eng
peer ipv4 198.19.1.5
policy srte\_pce\_node5\_node4
color 701 end-point ipv4 198.19.1.4
candidate-paths
preference 100
dynamic mpls
metric
type te

PCE configured





Refer: BRKMPL-2102

#### SR-TE vs RSVP-TE

#### Source Routing

- Source chooses a path and encodes it in the packet header as an ordered list of segments
- The rest of the network nodes execute the SR encoded instructions

#### Stateless SR-TE Policy

- Policy label stack with Node-SID, or Adj-SID
- ➤ Each Policy assigned unique Binding-SID
- Node-SID ECMP Load-balance by IGP Nature
- SR-PCE controller-based Inter-domain SR policy path calculation available

#### Failure Protection - TiLFA

- Local reroute comparable to MPLS TE Link / Node without RSVP signaling
- > IGP algorithm, support Microloop avoidance

|                           | SR-TE | RSVP-TE |
|---------------------------|-------|---------|
| TE state only at head-end | Yes   | No      |
| ECMP-capability for TE    | Yes   | No      |
| Engineered for SDN        | Yes   | Yes/No  |



### Deploying Services with SR-TE

- L2VPN P2P with SR-TE static
- L2VPN EVPN with SR-TE with On-Demand Nexthop (ODN)
- L3VPN with On-Demand Nexthop SR-TE
- L3VPN or L2VPN with SRv6+FlexAlgo
- Internet E-PE
- Multicast with TREE-SID

- Signaling options:
  - NETCONF (PCC initiated)
  - PCEP (PCE initiated)
- Policy Path Options
  - · Explicit candidate Paths
  - Dynamic, locally calculated
  - Dynamic, PCE delegated
- Policy instantiation
  - · Static OR On demand
- Traffic Steering
  - Automated
  - Steering profile

- Dynamic Path Constraints
  - Metric minimization objective: latency, TE metric , hop count
  - · SR IGP Flex Algo
  - Max Segment Depth
  - Affinity
  - Disjoint
  - · Protected/unprotected
  - Bandwidth



## Service (VPN) To TE path binding & Steering

- SR-Policy: uniquely identified by a tuple (head-end, color, end-point), resolves to a SID-List to reach end-point w SLA
- Static Binding. Works well for p2p services
  - SR-Policy (headend => endpoint, color) is configured on PEs.
  - L2VPN with preferred-path <sr-policy name> in IOS-XR
- Route Policy to Color VPN Prefixes,
  - ODN templates to map colors to Service Level Objectives and Constraints.
- SRv6/FlexAlgo locators as next hop VPN configurations extended



#### Reference



- E1 maps color BLUE to the low-delay intent using a configured Template
- Upon receiving a service route via E2 with color BLUE, E1 automatically instantiates the SR Policy (E2, BLUE) which is resolved to a SID-List using path calculation.
  - This is called On-Demand Next-hop (ODN)
  - Each PE installs only the SR Policies that it needs
- E1 steers the traffic for prefix W/w onto SR Policy (E2, BLUE)



### Path Calculation Options

- Explicit Nail up paths specify a list of hops
- Dynamic Using CSPF\* find path for specified constraints
  - Headend Based/Local Headend router does path calculation using its TE DB
  - Centralized/Delegated Headend requests path from external PCE
    - TE DB is Traffic Engineering database learnt via TE extensions to ISIS and OSPF
    - External PCE has TE DB from many ISIS and OSPF domains, can support multi-domain path calculation
- Path Provisioning
  - Headend Configured/PCC initiated
    - Configured on headend routers, headend may delegate to PCE using PCEP
    - · Static Policy or On-Demand Nexthop Template
  - PCE Configured/PCE Initiated
    - · Configured on PCE via CLI or API, PCE programs Headend using PCEP Protocol
    - \*CSPF: Constrained Shortest Path First



# Automation Considerations



#### Different areas of automation

- Planning Mid/Long Term capacity planning, update traffic trends
- Day 0 Zero Touch Provisioning ZTP (<u>IETF RFC 8572</u>)
- Day 1 Config and Image Compliance, commissioning, integration
- Day 2 In Service operations
  - Service Life Cycle Create, Update & Delete
  - Monitor Service Health
  - Monitor Network Health, Fault and Performance, Maintenance, upgrades
  - · Optimization short term, avoid BW congestion, hot spots etc
- Fragmented solutions reduce efficiency, need integrated solution



### Automation with SDN Controller



### IP Domain SDN Controller South Interfaces



- 1. Netconf/Yang for configuration
- 2. gNMI (or SNMP) for Telemetry
- BGP Link State for Topology information
- 4. PCE Protocol (PCEP) for path request/report

#### IP Domain SDN Controller - North Bound Interface





### **SDN Standardization Efforts**



Figure 2: ACTN Base Architecture



Figure 1: MUST general Hierarchical SDN architecture

### Reference to IETF Standards/Drafts for models

- RFC 8466: <u>A YANG Data Model for Layer 2 Virtual Private Network</u> (<u>L2VPN</u>) <u>Service Delivery</u>
- RFC 9291: A YANG Network Data Model for Layer 2 VPNs
- RFC 8453 <u>Framework for Abstraction and Control of TE Networks</u>
   (ACTN)
- RFC 8299 YANG Data Model for L3VPN Service Delivery
- RFC 9182 <u>A YANG Network Data Model for Layer 3 VPNs</u>
- IETF Draft Network Slice Service YANG Model



Crosswork Network Controller

SDN Controller for Transport networks



### Crosswork Network Controller (CNC)

Automation solution for deploying and operating IP transport networks

Intent-based
Automated Provisioning

Service Provisioning (L2VPN, L3VPN)

Service-Oriented Transport Provisioning (SR-MPLS, SRv6, RSVP-TE)

Dynamic Traffic Engineering

Bandwidth-Aware Path Control

Flexible Algorithm

Local Congestion Mitigation

Closed Loop Automation

Integrated Service

Lifecycle Management

Real-time Network Optimization

Visualization

Path Calculation

Service Health Monitoring Network Health & Inventory



### Crosswork Network Controller - Architecture





### Crosswork Network Controller - Architecture





BRKMPL-2131

# Service Provisioning



### Provisioning components



# CNC uses NSO as provisioning engine internally

NSO is a broadly deployed, highly scalable and very flexible provisioning platform

#### Service Manager

- Concept of an end-to-end "service"
- Full lifecycle management
- Service Models
- Service intent
- Service create code

#### **Device Manager**

- Single network-wide API
- Device models
- Syncs a local copy of all device configs

#### **Configuration DB**

- YANG database
- Stores all device and service configs
- · In memory DB

#### Package Manager

 Services and Device models and translation code in packages.

#### TSDN Function Packs

Packages for CNC provisioning





### Models and Sync Tools in NSO



### Industry's Broadest Multivendor Support

Over 170 Supported NEDs – Customization Available





### Service Provisioning: NSO based Service



- 1. User requests VPN service with associated SR Policy
- 2. NSO creates device configurations for the VPN service and pushes it to the PF routers - IOS-XR and IOS-XF out of box.
- 3. Validation feedback is provided, visualization of paths

Service Provisioning UI loads and renders Service model YANG schema CNC ships with NSO FPs for the following:

IETF-L2NM based on RFC9291 and IETF-L3NM based on RFC 9182 SR Policy Core FP. RSVP-TE sample FP.

#### VPN NSO FPs

#### IETF L2NM L2 VPN\*

- T-LDP, EVPN VPWS, EVPN ELAN and ETREE
- SR-TE Policy or RSVT-TE or SRv6 locator
- ODN + I2vpn policy option for evpn
- L2VPN FVPN VPWS over SRV6

#### IETF L3NM VPN\*

- VPN, Interface, BGP Neighbor
- SR-TE, SRv6 via I3vpn policy & ODN
- Tree-SID Provisioning

\* function packs can be customized as needed for variations and non cisco devices #CiscoLive

BRKMPL-2131

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

### Extensibility & Flexibility



IETF Based VPN Model
Extend & implement NSO
Template and CNC UI



Pre-existing NSO VPN
Deployments
Integration with CNC



Multi-vendor support
NSO template and mapping
code



Extend as needed, starting from Cisco XR/XE out of box
Test and validation

#### Presentations on extensions and multivendor support:

Adapting VPN to CNC: https://community.cisco.com/t5/nso-developer-hub-documents/automationdevdays22-cnc-nso-service-customization-nbsp/ta-p/4614587 Multi Vendor support: https://community.cisco.com/t5/nso-developer-hub-documents/automationdevdays22-cnc-multi-vendor-non-cisco-device/ta-p/4614579



# Path Control & Optimization



### Traffic Engineering - Why do we need it?



Service-Level Objective (SLO)



Link Preferences



High Availability



Bandwidth Applications

BRKMPL-2131



Congestion Mitigation



SLO: Path
Optimization
Objective
Ex: Find paths with
lowest latency



Low Latency SLA traffic should go 1-4-5-3

Total Delay:28



Affinity to certain links Example: Encrypted links etc



Total IGP cost I:50 Total Delay :28

Traffic that requires property=red goes through 1-4-2-5-3



Highly Available Traffic using Disjoint paths

Send two copies with separated node/links/srlgs



Copy A via 1-2-3 Copy B via 1-4-5-3



# Bandwidth as Constraint



Link Utilization Tracked

Find and use Paths that have BW available for this traffic



# BW Optimization Congestion Mitigation



#### Link Utilization Tracked

At congestion points, create policies and bypass some traffic. Local vs Global Congestion Mitigation options.

Automation needed



# BW Optimization Congestion Mitigation



Local Congestion Mitigation migrates some of the Optimizable traffic away from the congested link and brings



### Path Calculation and Control Component View



- 1. Crosswork Optimization Engine
- 2.SR-PCE
- 3. Crosswork Data Gateway



### Optimization Engine (OE)

- Builds and maintains real-time network model that includes topology and traffic
- Run simulations against real-time network model
- Performs bandwidth book-keeping (Bandwidth use cases)





### Optimization Engine (OE)

- Crosswork collects topology and LSPs using SR-PCE via internal API
- Crosswork enriches topology with additional attributes via SNMP using CDG
- Crosswork collects interface and SR policy statistics via Telemetry (gNMI/openconfig) or SNMP using CDG





BRKMPL-2131

### Segment Routing PCE (SR-PCE) on IOS-XR

- SR-PCE: IOS XR multi-domain stateful Segment Routing Path Computation Element (PCE)
  - IOS XR: Available on any physical/virtual IOS XR device, typically IOS-XRv9000 are deployed
  - Multi-domain: Real-time feed via BGP-LS/IGP from multiple domains; computes inter-area/domain/AS paths
  - Stateful: takes control of SRTE Policies, updates them when required
  - SR PCE: native SR-optimized computation algorithms
  - Delegates to OE when Bandwidth constraint is requested using API





# Path computation - SR-PCE + Optimization engine



- 1. User requests VPN service & associated SLA from CNC.
- 2. NSO provisions Service, SR policy initialized at headend
- 3. Headend requests path from SR-PCE
- 4. If request includes bandwidth, SR-PCE gets path from OE
- 5. SR-PCE returns path to headend
- 6. If bandwidth path needs to change, OE pushes path to SR-PCE
- 7. SR-PCE updates headend via PCEP for path changes

| SR Policy Optimization |                                       |  |
|------------------------|---------------------------------------|--|
| Objective              | Latency/IGP/TE Metric Minimization    |  |
| Constraints            | Affinities, Disjoint Paths, Bandwidth |  |

cisco Life!

### Path Computation & Optimization scenarios

| Use case                          | Optimization objective / constraint | Single IGP domain | Multi-IGP domain |  |
|-----------------------------------|-------------------------------------|-------------------|------------------|--|
| Basic Reachability                | IGP Metric                          | PCC or PCE        | PCE              |  |
| Low Latency                       | TE Metric                           | PCC or PCE        | PCE              |  |
| Low Latency                       | Delay Metric                        | PCC or PCE        | PCE              |  |
| Disjointness                      | IGP/TE/Delay + Association<br>Group | PCC or PCE        | PCE              |  |
| Bandwidth on Demand (BWoD)        | Bandwidth                           | PCE + COE         | PCE + COE        |  |
| Circuit Style SR-TE<br>(CS SR-TE) | Bandwidth                           | PCE + COE         | PCE + COE        |  |
| Local Congestion Mitigation (LCM) | Bandwidth                           | PCE + COE         | PCE + COE        |  |



PCC: Path computation client aka Head End Router, PCE: Engine, COE, Crosswork Optimization Engine

### Crosswork Network Controller transport capabilities

- Segment Routing Traffic Engineering
- Segment Routing v6 Traffic Engineering (SRv6)
- TreeSID
- Bandwidth on Demand (BWoD)
- Circuit Style SR-TE (CS SR-TE)
- Local Congestion Mitigation (LCM)

Service Health



### **CNC Service Health Architecture**

Uses Service Assurance for Intent Network concepts – <a href="IETF RFC 9417">IETF RFC 9417</a>





### From Heuristic Package to Assurance Graph



## Demo



### Conclusion

- SDN Controllers moves the Automation and Assurance boundaries offering single API and assurance platform reducing the cost & work needed in building automation.
  - Extensible modules allow for flexibility in supporting variations.
  - API integration to integrate with business processes
  - Telemetry via controller supports collect once and consume many places
  - Visualization is a big operations benefit
- Segment Routing Networks are programmable and enable delivery of granular SLAs with simplification and scale with SDN controllers
- Innovation with SDN Controllers is faster w simplified networks



### Complete Your Session Evaluations



Complete a minimum of 4 session surveys and the Overall Event Survey to be entered in a drawing to win 1 of 5 full conference passes to Cisco Live 2025.



**Earn 100 points** per survey completed and compete on the Cisco Live Challenge leaderboard.



Level up and earn exclusive prizes!



Complete your surveys in the Cisco Live mobile app.



# Continue your education

- Visit the Cisco Showcase for related demos
- Book your one-on-one Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at www.CiscoLive.com/on-demand

Contact me at: cnc-request@cisco.com

### SR Learning Path

| Session ID  | Title                                                                | Session Type         | Speakers                       | Schedule and location                               |
|-------------|----------------------------------------------------------------------|----------------------|--------------------------------|-----------------------------------------------------|
| TECSPG-1000 | Segment Routing Masterclass                                          | Technical<br>Seminar | Jose Liste   Jakub<br>Horn     | Jun 2   9:00 am - 1:00 pm<br>L2, Breakers BH        |
| BRKMPL-2203 | Introduction to SRv6 uSID Technology                                 | Breakout             | Jakub Horn                     | Jun 3   10:30 am - 12:00<br>pm<br>L3, South Seas B  |
| BRKMPL-2135 | Preparing for a Successful Segment Routing<br>Deployment -           | Breakout             | Jose Liste                     | Jun 3  10:30 am - 12:00<br>pm<br>L2, Surf EF        |
| BRKENT-1520 | Segment Routing Innovations in IOS XE                                | Breakout             | Jason Yang  <br>Sumant Mali    | Jun 3   9:30 am - 10:30<br>am<br>L3, Palm D         |
| BRKMPL-2131 | Deploying VPNs over Segment Routed Networks<br>Made Easy             | Breakout             | Krishnan<br>Thirukonda         | Jun 3   01:00 PM / LL,<br>Tradewinds DEF            |
| BRKMPL-2177 | Empower Your Network with Segment Routing and MPLS Network Migration | Breakout             | Thomas Wang                    | Jun 3   9:30 am - 10:30<br>am<br>LL, Tradewinds DEF |
| BRKMPL-2043 | Simplify Your Journey to SR and SRv6 with Cisco Crosswork Automation | Rreakout             | Sujay Murthy   Eric<br>Ortheau | Jun 4   04:00 PM / LL,<br>Tradewinds ABC            |



## SR Learning Path

| Session ID                        | Title                                                                                       | Session Type          | Speakers                                             | Schedule and location                                  |
|-----------------------------------|---------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------|--------------------------------------------------------|
| BRKSPG-2474                       | Reduced Resolution Time with Svc-centric Approach to Troubleshooting                        | Breakout              | Paola Arosia                                         | Tuesday, Jun 410:30 am -<br>11:30 am PDT<br>L3, Palm A |
| 1 1 R > P(3 - 700h                | Explore the Power of SRv6: Unleashing the Potential of Next-Generation Networking -         | Instructor-led<br>Lab | Marius Stoica   Alex                                 | Jun 5   8:00 am - 12:00<br>pm<br>Luxor - L1, Lotus 3   |
| BRKMPL-2133                       | Circuit-Style Segment Routing and Service Emulation<br>-                                    | Breakout              | Thomas Wang                                          | Jun 5   4:00 pm - 5:00 pm<br>L2, Surf CD               |
| RRK SPIJE / /b s                  | Design, Deploy and Manage Transport Slices using SDN Controller and Assurance               | Breakout              | Sujay Murthy                                         | Jun 6   09:30 AM / LL,<br>Tradewinds ABC               |
| $BDK \setminus DI = 1 \times 111$ | Automate Transport Service Provisioning, Optimization, and Assurance with SDN Controller    | Breakout              | Deepak Bhargava                                      | Jun 6   01:00 PM / L3,<br>South Seas J                 |
| LABMPL-1201                       | SRv6 Basics                                                                                 | Walk-in Lab           | Luc De Ghein                                         | Walk in Lab area in WoS                                |
|                                   | Implementing Segment Routing v6 (SRv6) Transport on NCS 55xx/5xx and Cisco 8000: Advanced - |                       | Paban Sarma  <br>Gautam Renjen  <br>Alexey Babaytsev | Walk in Lab area in WoS                                |
|                                   | Configure and Implement BGP-EVPN with Segment Routing using NCS 55xx/5xx Platforms          | Walk-in Lab           | Tejas Lad   Paban<br>Sarma                           | Walk in Lab area in WoS                                |



# Thank you

