

Задачи по теме «Вычисление площадей при помощи определённого интеграла» с подсказками:

№1.

Найти площадь фигуры, которая получится, если разделить плоскость осью Ox и параболой $y(x) = x^2 - 9x + 18$.

Подсказка: Применить формулу S = F(b) - F(a), предварительно найдя точки пересечения b и a. Подумать о том, какой должен быть знак.

$N^{\circ}2$.

Найти площадь плоской фигуры, которая ограничена координатными прямыми, прямой x=1, и функцией $y(x)=-e^x$.

Подсказка: Применить формулу S = F(b) - F(a), выяснив чему равны b и a. Подумать о том, какой должен быть знак у площади.

№3.

Найти площадь фигуры, ограниченной линиями y = x + 1, $y = \frac{2}{x}$, y = 0, x = 3 (сначала аккуратно нарисовать все графики на координатной плоскости).

Подсказка: Разбей площадь данной фигуры на две более простых площади.

*№*4*.

Найти площадь фигуры, ограниченной линиями $y_1(x) = -x$, $y_2(x) = 2x - x^2$ (сначала нарисовать на координатной плоскости параболу и прямую и понять, каковы пределы интегрирования).

Подсказка: Интегрироваться будет функция $f(x) = y_2(x) - y_1(x)$. Почему?

№5*.

Найти площадь фигуры, ограниченной линиями $y_1(x) = x^2 - 2$, $y_2(x) = 2x + 1$ (сначала нарисовать на координатной плоскости параболу и прямую и понять, каковы пределы интегрирования).

Подсказка: Площадь криволинейной трапеции, заключённой между функциями f(x) и g(x), может быть вычислена как $\int\limits_a^b (f(x)-g(x))\,dx$, если f>g на [a;b].

№6*.

Найти площадь фигуры, ограниченной линиями $y_1(x) = x^2 + x$, $y_2(x) = 1 - x^2$ (сначала нарисовать на координатной плоскости параболы и понять, каковы пределы интегрирования).

Подсказка: Площадь криволинейной трапеции, заключённой между функциями f(x) и g(x), может быть вычислена как $\int\limits_{a}^{b}(f(x)-g(x))\,dx$, если f>g на [a;b].

№7*.

Найти площадь фигуры, ограниченной линиями $x+y=4,\ xy=3$ (сначала нарисовать графики на координатной плоскости).

Подсказка: Площадь криволинейной трапеции, заключённой между функциями f(x) и g(x), может быть вычислена как $\int\limits_a^b (f(x)-g(x))\,dx$, если f>g на [a;b].

№8*.

Найти площадь фигуры, ограниченной линиями $y=x^3-x+1,\ y=-\frac{7}{8},\ x=\frac{1}{2}$ (сначала аккуратно нарисовать график на координатной плоскости).

Подсказка: Площадь криволинейной трапеции, заключённой между функциями f(x) и g(x), может быть вычислена как $\int\limits_a^b (f(x)-g(x))\,dx$, если f>g на [a;b].

№9*.

Интеграл $I(a)=\int_{a-1}^{a+1}\!\!f(x)\,dx$ равен площади под графиком функции f(x) на отрезке $[a\!-\!1;\,a\!+\!1]$. Найти, при каком вещественном a эта площадь будет наименьшей из всех возможных, если $f(x) = x^2 - 5x + 7$.

Подсказка: Вычисли определённый интеграл (он будет зависеть от a), а затем с помощью производной найди минимум этого выражения.

№10*.

Интеграл $\int_{b-1}^{b+1} e^{-|x|} dx$ равен площади под графиком функции $f(x)=e^{-|x|}$ на отрезке $[b-1;\,b+1]$. Нарисовать график этой функции и выяснить, при каком вещественном в эта площадь будет максимальна.

Подсказка: Вычисли определённый интеграл (он будет зависеть от b), а затем с помощью производной найди максимум этого выражения.

Для того, чтобы аккуратно избавиться от модуля, надо рассмотреть три случая: 1) $b-1 < b+1 \le 0$, 2) $0 \le b-1 < b+1$, 3) $b-1 \le 0 \le b+1$.

1)
$$b-1 < b+1 \le 0$$
,

2)
$$0 \le b-1 < b+1$$
,

3)
$$b-1 \le 0 \le b+1$$