ShaRPy: Shape Reconstruction and Hand Pose Estimation from RGB-D with Uncertainty Supplementary Material

Vanessa Wirth*¹, Anna-Maria Liphardt^{1,2}, Birte Coppers^{1,2}, Johanna Bräunig¹, Simon Heinrich¹, Sigrid Leyendecker¹, Arnd Kleyer^{1,2}, Georg Schett^{1,2}, Martin Vossiek¹, Bernhard Egger¹, and Marc Stamminger¹

¹Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany ²University Hospital Erlangen, Germany

Figure 1: Overview of the operations used in our additional correspondence branch within the Yolact network.

^{*}vanessa.wirth@fau.de

Symbol	Description	Value	
		PsA Patient	H2O
$\overline{t_n}$	\mathcal{C}_{3d} pruning normal threshold	0.05	0.10
t_d	\mathcal{C}_{3d} pruning median depth threshold	0.15	0.15
t_{3d}	\mathcal{C}_{3d} pruning distance threshold	0.10	0.10
$\omega_{ m point}$	weight of point-to-point error	0.33	0.33
$\omega_{ m plane}$	weight of point-to-plane error	0.66	0.66
$\omega_{ m shape}$	weight of statistical shape regularizer	$1 \cdot 10^{-4}$	0.01
$\omega_{ m pose}$	weight of statistical pose regularizer	$1 \cdot 10^{-3}$	$1 \cdot 10^{-3}$
$\omega_{\mathrm{temp_pose}}$	weight of temporal pose regularizer	$1 \cdot 10^{-3}$	$1 \cdot 10^{-3}$
$\omega_{\text{temp_shape}}$	weight of temporal shape regularizer	0.01	0.01
ω_{3d}	weight of term E_{3d}	7.50	7.50
ω_{2d}	weight of term E_{2d}	0.70	0.10
ε_{2d}	error-prone pixel threshold	0.45	0.30
$arepsilon_{3d}$	error-prone vertex threshold	0.03	0.03
$ au_{2d}$	error-prone pixel fraction threshold	0.55	0.40
$ au_{3d}$	error-prone vertex fraction threshold	0.30	0.50
$ au_v$	visibility fraction threshold	0.08	0.08
$it_{\text{L-BFGS}}$	L-BFGS iterations	5	
it_{Adam}	Adam iterations	50	
$\delta_{ extsf{L-BFGS}}$	L-BFGS learning rate	1	
$\delta_{ m Adam}$	Adam learning rate	$0.01 \cdot 0.9^{\lfloor it/20 \rfloor}$ with $it = \{1,, it_{\text{Adam}}\}$	
δ	Yolact SGD learning rate	$1 \cdot 10^{-3}$	
λ	Yolact SGD weight decay	$5 \cdot 10^{-5}$	
μ	Yolact SGD momentum	0.85	

Table 1: Description and implementation of adaptable parameters in the ShaRPy pipeline.