A Report on Seraphis

coinstudent2048

September 10, 2021

Abstract

This document contains a concise description of Seraphis [1], a novel privacy-preserving transaction protocol abstraction, and a security analysis for it.

1 Preliminaries

1.1 Public parameters and notations

Let \mathbb{G} be a cyclic group of prime order l > 3 in which the Discrete Logarithm assumption (DL) and the Decisional Diffie-Hellman assumption (DDH) holds, and let \mathbb{F} be its scalar field. Let G_0, G_1, H_0, H_1 be generators of \mathbb{G} with unknown DL relationship to each other. Note that these generators may be produced using public randomness. Let $\mathcal{H}: \{0,1\}^* \to \mathbb{F}$ be a cryptographic hash function. We add a subscript to \mathcal{H} , such as \mathcal{H}_1 , in lieu of domain-separating the hash function explicitly; any domain-separation method may be used in practice.

The notation \leftarrow_R will be used to denote for a randomly chosen element, and (1/x) for the modular inverse of $x \in \mathbb{F}$. Lastly, we use additive notation for group operations.

1.2 E-notes and e-note images

Definition 1.1. An **e-note** for scalars $k_a^o, k_b^o, a \in \mathbb{F}$ is a tuple (C, K^o, m) such that $C = xH_0 + aH_1$ for $x \leftarrow_R \mathbb{F}$, $K^o = k_b^o G_0 + k_a^o G_1$, and m is an arbitrary data.

C is called the **amount commitment** for the amount a with blinding factor x, K^o is called the **one-time address** for (one-time) private keys k_a^o and k_b^o (the o superscript indicates "one-time"), and m is the **memo field**. We say that someone owns an e-note if they know the corresponding scalars k_a^o , k_b^o , $a \in \mathbb{F}$.

Definition 1.2. An e-note image for an e-note (C, K^o, m) is a tuple (C', K'^o, \tilde{K}) such that

$$C' = t_c H_o + C$$

$$= (t_c + x)H_0 + aH_1$$

$$= v_c H_o + aH_1,$$

$$K'^o = t_k G_0 + K^o$$

$$= (t_k + k_b^o)G_0 + k_a^o G_1$$

$$= v_k G_0 + k_a^o G_1, and$$

$$\tilde{K} = (1/k_a^o)G_0$$

for $t_c, t_k \leftarrow_R \mathbb{F}$ and independent to each other.

C' is called the **masked amount commitment**, K'^o is called the **masked address**, and \tilde{K} is called the **linking tag**.

Definition 1.3. A receiver address is a tuple (K^{DH}, K^v, K^s) such that $K^{DH} \in \mathbb{G}$, $K^v = k^v K^{DH}$, and $K^s = k_b^s G_0 + k_a^s G_1$.

 K^{DH} is called the **Diffie-Hellman base public key**, the v superscript indicates "view", and the s superscript indicates "spend". The reason for the name of K^{DH} will be clear in the next section, while the reason for the names of superscripts is outside the scope of this document. We say that someone owns a receiver address if they know the corresponding scalars $k^v, k_a^s, k_b^s \in \mathbb{F}$.

1.3 Symmetric encryption scheme

We require the use of a symmetric encryption scheme. The Diffie-Hellman base public key enables shared secrets between the sender and the receiver. We denote the encryption and decryption of data x with key k as enc[k](x) and dec[k](x), respectively. We put overlines (e.g. \overline{x}) to indicate encrypted data.

2 A Seraphis transaction

The following is a simplified instance of Seraphis:

Suppose that Alice would send $a_t \in \mathbb{F}$ amount of funds to Bob. Alice owns a set of e-notes $\{(C_i, K_i^o, m_i)\}_{i=1}^n$ with the total amount of $(\sum_{i=1}^n a_i) \ge a_t$, all connected to a receiver address $(K_{ali}^{DH}, K_{ali}^v, K_{ali}^o)$. This "connection" will be elaborated later on. On the other hand, Bob owns a receiver address $(K_{bob}^{DH}, K_{bob}^v, K_{bob}^s)$. For Bob to receive the funds, he will now send his receiver address to Alice. Alice will actually send funds to two addresses: to Bob's and to herself (for the "change" $a_c = \sum_{i=1}^n a_i - a_t$). Hence, Alice must create 2 new e-notes. She starts the transaction by doing the following:

- 1. Generate $r_{ali}, r_{bob} \leftarrow_R \mathbb{F}$ and independent to each other.
- 2. Compute $R_{ali} = r_{ali}K_{ali}^{DH}$ and $R_{bob} = r_{bob}K_{bob}^{DH}$, then store R_{ali} and R_{bob} to new (empty) memos m_{ali} and m_{bob} , respectively. The name for K^{DH} should now be clear.
- 3. Compute the sender-receiver shared secrets $q_{ali} = \mathcal{H}_1(r_{ali}K^v_{ali})$ and $q_{bob} = \mathcal{H}_1(r_{bob}K^v_{bob})$.
- 4. Compute the one-time addresses $K_{ali}^o = \mathcal{H}_2(q_{ali})G_1 + K_{ali}^s$ and $K_{bob}^o = \mathcal{H}_2(q_{bob})G_1 + K_{bob}^s$. It is easy to see that $\mathcal{H}_2(q_{ali})$ and $\mathcal{H}_2(q_{ali})$ are uniformly randomly generated in the random oracle model.
- 5. Compute the amount commitments $C_{ali} = \mathcal{H}_3(q_{ali})H_0 + a_tH_1$ and $C_{bob} = \mathcal{H}_3(q_{bob})H_0 + a_tH_1$. It is easy to see that the blinding factors $\mathcal{H}_3(q_{ali})$ and $\mathcal{H}_3(q_{bob})$ are uniformly randomly generated in the random oracle model.
- 6. Encrypt the amounts: $\overline{a_c} = \text{enc}[q_{ali}](a_c)$ and $\overline{a_t} = \text{enc}[q_{ali}](a_t)$, and store $\overline{a_c}$ and $\overline{a_t}$ to memos m_{ali} and m_{bob} , respectively.

Alice now has two new e-notes $(C_{ali}, K_{ali}^o, m_{ali})$ and $(C_{bob}, K_{bob}^o, m_{bob})$. These will then be stored to their respective new (empty) whole transactions T_{ali} and T_{bob} . Other objects that will be stored to the whole transactions are from proving systems, which are discussed in the next subsections.

- 2.1 Membership proofs
- 2.2 Ownership and unspentness proofs
- 2.3 Amount balance proofs
- 2.4 Range proofs
- 2.5 Receipt
- 3 Security Analysis

References

[1] UkoeHB. Seraphis: Privacy-focused tx protocol. https://github.com/UkoeHB/Seraphis.