Context-free Grammars

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2017

Precedence in Arithmetic Expressions

```
bash$ python
Python 2.7.9 (default, Apr 2 2015, 15:33:21)
>>> 2+3*5
17
```


Grammars describe meaning

 $\mathsf{EXPR} o \mathsf{EXPR} + \mathsf{TERM}$ $\mathsf{EXPR} o \mathsf{TERM}$ $\mathsf{TERM} o \mathsf{TERM} * \mathsf{NUM}$ $\mathsf{TERM} o \mathsf{NUM}$

rules for valid (simple) arithmetic expressions

 $NUM \rightarrow 0-9$

Rules always yield the correct meaning

Grammar of English

$$\underbrace{ \text{a girl} \underbrace{ \text{likes the boy}}_{\text{NOUN-PHRASE}} \underbrace{ \text{Verb-Phrase}}_{\text{Verb-Phrase}}$$

NOUN-PHRASE
$$\rightarrow$$
 A-NOUN or \rightarrow A-NOUN PREP-PHRASE

Grammar of English

$$\mbox{NOUN-PHRASE} \rightarrow \mbox{A-NOUN}$$

$$\mbox{or} \rightarrow \mbox{A-NOUN PREP-PHRASE}$$

with a flower PREP NOUN-PHRASE

Grammar of English

Recursive structure

Grammar of (parts of) English

$SENTENCE \to NOUN\text{-}PHRASEVERB\text{-}PHRASE$	$ARTICLE \to a$
$NOUN\text{-}PHRASE \to A\text{-}NOUN$	$ARTICLE \to the$
Noun-phrase $ ightarrow$ a-noun prep-phrase	$NOUN \to boy$
$VERB\text{-}PHRASE \to CMPLX\text{-}VERB$	$NOUN \to girl$
$VERB\text{-}PHRASE \to CMPLX\text{-}VERBPREP\text{-}PHRASE$	$NOUN \to flower$
$PREP\text{-}PHRASE \to PREPA\text{-}NOUN$	$VERB \to likes$
A-NOUN $ ightarrow$ ARTICLE NOUN	$VERB \to touches$
$CMPLX\text{-}VERB \to VERBNOUN\text{-}PHRASE$	$VERB \to sees$
$CMPLX\text{-}VERB \to VERB$	$PREP \to with$

The meaning of sentences

The meaning of sentences

The meaning of sentences

Context-free grammar

$$A \to 0A1$$

$$A \to B$$

$$B \to \#$$

A,B are variables 0, 1 are terminals A o 0A1 is a production A is the start variable

Context-free grammar

$$A \to 0A1$$
$$A \to B$$
$$B \to \#$$

A,B are variables 0, 1 are terminals A o 0A1 is a production A is the start variable

 $A\Rightarrow 0A1\Rightarrow 00A11\Rightarrow 000A111\Rightarrow 000B111\Rightarrow 000#111$ derivation

Context-free grammar

A context-free grammar is given by (V, Σ, R, S) where

- ightharpoonup V is a finite set of variables or non-terminals
- \triangleright Σ is a finite set of terminals
- R is a set of productions or substitution rules of the form

$$A \to \alpha$$

A is a variable and lpha is a string of variables and terminals

 $ightharpoonup S \in V$ is a variable called the start variable

Notation and conventions

$$E o E + E$$
 $N o 0N$ Variables: E, N $E o (E)$ $N o 1N$ Terminals: $+, (,), 0, 1$ $E o N$ Start variable: E $N o 1$

shorthand:

$$\begin{split} E &\rightarrow E \text{+} E \mid (E) \mid N \\ N &\rightarrow \text{0} N \mid \text{1} N \mid \text{0} \mid \text{1} \end{split}$$

conventions:

variables in UPPERCASE start variable comes first

Derivation

derivation: a sequential application of productions

$$\begin{array}{c} E\Rightarrow E+E\\ \Rightarrow (E)+E\\ \Rightarrow (E)+N\\ \Rightarrow (E)+1\\ \Rightarrow (E+E)+1\\ \Rightarrow (N+E)+1\\ \Rightarrow (N+N)+1\\ \Rightarrow (N+1N)+1\\ \Rightarrow (N+10)+1\\ \Rightarrow (1+10)+1 \end{array} \qquad \begin{array}{c} E\rightarrow E+E\mid (E)\mid N\\ N\rightarrow 0N\mid 1N\mid 0\mid 1\\ \\ \alpha\Rightarrow\beta\\ \text{application of one}\\ \text{production} \end{array}$$

Derivation

derivation: a sequential application of productions

$$E\Rightarrow E+E$$

$$\Rightarrow (E)+E$$

$$\Rightarrow (E)+N$$

$$\Rightarrow (E)+1$$

$$\Rightarrow (E+E)+1$$

$$\Rightarrow (N+E)+1$$

$$\Rightarrow (N+N)+1$$

$$\Rightarrow (N+1N)+1$$

$$\Rightarrow (N+10)+1$$

$$\Rightarrow (1+10)+1$$

$$C \Rightarrow \beta$$
 application of one production
$$C \Rightarrow \beta$$
 derivation
$$C \Rightarrow \beta$$
 derivation

Context-free languages

The language of a CFG is the set of all strings at the end of a derivation

$$L(G) = \{ w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow} w \}$$

Questions we will ask:

I give you a CFG, what is the language?
I give you a language, write a CFG for it

$$\begin{array}{c} A \rightarrow \mathsf{0} A \mathsf{1} \mid B \\ B \rightarrow \# \end{array}$$

Can you derive:

00#11

#

00#111

00##11

$$\begin{array}{c} A \rightarrow \mathsf{0} A \mathsf{1} \mid B \\ B \rightarrow \# \end{array}$$

Can you derive:

00#11
$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00#11$$

#

00#111

00##11

$$\begin{array}{c} A \rightarrow \mathsf{0} A \mathsf{1} \mid B \\ B \rightarrow \mathsf{\#} \end{array}$$

Can you derive:

00#11
$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00#11$$

 $A \Rightarrow B \Rightarrow \#$

00#111

00##11

$$\begin{array}{c} A \rightarrow {\rm O}A{\rm 1} \mid B \\ B \rightarrow {\rm \#} \end{array}$$

$$L(G)=\{\mathbf{0}^n\mathbf{\#1}^n\mid n\geqslant 0\}$$

Can you derive:

00#11
$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00#11$$

 $A \Rightarrow B \Rightarrow \#$

00#111 No: uneven number of 0s and 1s

00##11 No: too many #

$$S \to SS \mid (S) \mid \varepsilon$$

Can you derive

(()())

$$S \Rightarrow (S)$$

()

$S \to SS \mid (S) \mid \varepsilon$

Can you derive

() (()())

$$S \Rightarrow (S)$$

$$\Rightarrow (1)$$

$$\Rightarrow (SS)$$

$$\Rightarrow ((SS))$$

$$\Rightarrow ((S)(S))$$

$$\Rightarrow ((S)(S))$$

$$\Rightarrow ((S)(S))$$

$$\Rightarrow ((S)(S))$$

$$\Rightarrow ((S)(S))$$

Parse trees

$$S \to SS \mid (S) \mid \varepsilon$$

A parse tree gives a more compact representation

$$S \Rightarrow (S)$$

$$\Rightarrow (SS)$$

$$\Rightarrow ((S)S)$$

$$\Rightarrow ((S)(S))$$

$$\Rightarrow (()(S))$$

$$\Rightarrow (()(S))$$

Parse trees

One parse tree can represent many derivations

$$S \to SS \mid (S) \mid \varepsilon$$

Can you derive

(()()

())(()

$$S \to SS \mid (S) \mid \varepsilon$$
 Can you derive
$$(()() \qquad \qquad \text{No: uneven number of (and)}$$

$$())(()$$

$$S \to SS \mid (S) \mid \varepsilon$$
 Can you derive
$$(()() \qquad \text{No: uneven number of (and)}$$

$$\underline{())}(() \qquad \text{No: some prefix has too many)}$$

$$S o SS \mid$$
 (S) $\mid \varepsilon$

$$S \to SS \mid (S) \mid \varepsilon$$

 $L(\mathit{G}) = \{w \mid w \text{ has the same number of (and)}$ no prefix of w has more) than ($\}$

Parsing rules:

Divide w into blocks with same number of (and)

Each block is in $L(\mathcal{G})$

Parse each block recursively

$$L = \{ \mathbf{0}^n \mathbf{1}^n \mid n \geqslant 0 \}$$

These strings have recursive structure

 $00001111 \\ 000111 \\ 0011 \\ 01 \\ \varepsilon$

$$L = \{\mathbf{0}^n \mathbf{1}^n \mid n \geqslant 0\}$$

These strings have recursive structure

00001111 000111 0011
$$\varepsilon$$

$$S \rightarrow \mathsf{O} S \mathsf{1} \mid \varepsilon$$

$$L = \{\mathbf{0}^n \mathbf{1}^n \mathbf{0}^m \mathbf{1}^m \mid n \geqslant 0, m \geqslant 0\}$$

$$L = \{\mathbf{0}^n \mathbf{1}^n \mathbf{0}^m \mathbf{1}^m \mid n \geqslant 0, m \geqslant 0\}$$

These strings have two parts:

$$L = L_1 L_2$$

$$L_1 = \{0^n 1^n \mid n \ge 0\}$$

$$L_2 = \{0^m 1^m \mid m \ge 0\}$$

$$S \to S_1 S_1$$

$$S_1 \to \mathbf{0} S_1 \mathbf{1} \mid \varepsilon$$

rules for $L_1:S_1
ightarrow {
m 0} S_1 {
m 1} \mid arepsilon$ L_2 is the same as L_1

$$L = \{\mathbf{0}^n \mathbf{1}^m \mathbf{0}^m \mathbf{1}^n \mid n \geqslant 0, m \geqslant 0\}$$

$$L = \{\mathbf{0}^n \mathbf{1}^m \mathbf{0}^m \mathbf{1}^n \mid n \geqslant 0, m \geqslant 0\}$$

These strings have a nested structure:

outer part:
$$0^n 1^n$$

inner part: $1^m 0^m$

$$S \rightarrow \mathsf{0} S \mathsf{1} \mid I$$

$$I \rightarrow \mathsf{1} I \mathsf{0} \mid \varepsilon$$

 $\begin{array}{cc} A \colon & \text{cannot end in 0} \\ C \colon & \text{cannot begin with 0} \end{array}$

$$\begin{split} S &\to ABC \\ A &\to \varepsilon \mid \, U\mathbf{1} \\ U &\to \mathbf{0}\, U \mid \mathbf{1}\, U \mid \varepsilon \\ C &\to \varepsilon \mid \mathbf{1}\, U \end{split}$$

 $A: \quad \varepsilon, \text{ or ends in 1} \\ C: \quad \varepsilon, \text{ or begins with 1}$

U: any string

$$\begin{split} S &\to ABC \\ A &\to \varepsilon \mid U1 \\ U &\to 0U \mid 1U \mid \varepsilon \\ C &\to \varepsilon \mid 1U \\ B &\to 0D0 \mid 0B0 \\ D &\to 1U1 \mid 1 \end{split}$$

A: ε , or ends in 1 C: ε , or begins with 1

U: any string

B has recursive structure

same number of 0s at least one 0

D: begins and ends in 1