Generative Adversarial Networks

Dr. Priyank Thakkar
Associate Professor
CSE Department
Institute of Technology
Nirma University

Why Generative Models?

- We've only seen discriminative models so far
 - Given an image X, predict a label Y
 - Estimates P(Y|X)

- Discriminative models have several key limitations
 - They can not estimate joint probability distribution P(X, Y)
 - A generative model learns the joint probability distribution P(X, Y)

Celebrities [2]

Celebrities [2]

Pose Guided Person Image Generation [3]

Pose Guided Person Image Generation [3]

(c) Generating from a sequence of poses

CycleGAN [4]

Zebras C Horses

zebra \longrightarrow horse

horse \rightarrow zebra

Text to Image [5]

Image Inpainting [6]

DiscoGAN [7]

(b) Handbag images (input) & Generated shoe images (output)

Pix2Pix [8]

Face aging (Age-cGAN) [9]

GAN's Architecture [1, 10]

- **Z** is some random noise (Gaussian/Uniform).
- Z can be thought as the latent representation of the image.

Training Discriminator [1, 10]

- 1. Fix generator weights, draw samples from both real world and generated images
- 2. Train discriminator to distinguish between real world and generated images

Training Generator [1, 10]

- 1. Fix discriminator weights
- 2. Sample from generator
- 3. Backprop error through discriminator to update generator weights

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right] \\ \text{Discriminator output for for real data x}$$

- Discriminator (θ_d) wants to maximize objective such that D(x) is close to 1 (real) and D(G(z)) is close to 0 (fake)
- Generator (θ_g) wants to minimize objective such that D(G(z)) is close to 1 (discriminator is fooled into thinking generated G(z) is real)

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$
 x is sampled z is sampled

from real data

from N(0, 1)

Alternate between:

Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Gradient descent on generator

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

In practice, optimizing this generator objective does not work well!

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Alternate between:

Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

2. Instead: Gradient ascent on generator, different

objective

$$\max_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(D_{\theta_d}(G_{\theta_g}(z)))$$

2. Instead: Gradient ascent on generator, different objective

$$\max_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(D_{\theta_d}(G_{\theta_g}(z)))$$

Instead of minimizing likelihood of discriminator being correct, now maximize likelihood of discriminator being wrong.

Same objective of fooling discriminator, but now higher gradient signal for bad samples => works much better! Standard in practice.

Putting it together: GAN training algorithm

for number of training iterations do for k steps do

Some find k=1 more stable, others use k > 1, no best rule.

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D_{\theta_d}(x^{(i)}) + \log(1 - D_{\theta_d}(G_{\theta_g}(z^{(i)}))) \right]$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by ascending its stochastic gradient (improved objective):

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log(D_{\theta_d}(G_{\theta_g}(z^{(i)})))$$

end for

Generator network: try to fool the discriminator by generating real-looking images

Discriminator network: try to distinguish between real and fake images

DCGAN [12]

Generator is an upsampling network with fractionally-strided convolutions Discriminator is a convolutional network

Architecture guidelines for stable Deep Convolutional GANs

- Replace any pooling layers with strided convolutions (discriminator) and fractional-strided convolutions (generator).
- Use batchnorm in both the generator and the discriminator.
- Remove fully connected hidden layers for deeper architectures.
- Use ReLU activation in generator for all layers except for the output, which uses Tanh.
- Use LeakyReLU activation in the discriminator for all layers.

Radford et al, "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", ICLR 2016

DCGAN [12]

Samples from the model look amazing!

Radford et al, ICLR 2016

DCGAN - Interpretable Vector Math [12]

space

DCGAN - Interpretable Vector Math [12]

References

- Andrew Ng's Lecture on Sequence Models (https://www.coursera.org/learn/nlp-sequence-models)
- 2. Progressive Growing of GANs for Improved Quality, Stability, and Variation
- 3. Ma, Liqian, et al. "Pose guided person image generation." Advances in Neural Information Processing Systems. 2017.
- 4. https://github.com/junyanz/CycleGAN
- 5. https://github.com/hanzhanggit/StackGAN
- 6. https://github.com/pathak22/context-encoder
- 7. https://github.com/carpedm20/DiscoGAN-pytorch
- 8. https://github.com/phillipi/pix2pix

References

- 9. Antipov, Grigory, Moez Baccouche, and Jean-Luc Dugelay. "Face aging with conditional generative adversarial networks." Image Processing (ICIP), 2017 IEEE International Conference on IEEE, 2017.
- 10. https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016

11.

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture13.pdf

12. Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015).

References

13.

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture11.pdf

Disclaimer

These slides are not original and have been prepared from various sources for teaching purpose.