

Topic 1: Increasing and Decreasing Functions

Illustration: Show that $f(x) = e^x + x^3 + 1$ is always increasing

$$f'(x) = e^x + 3x^2$$

Since f'(x) > 0 for all $x \in \mathbb{R}$, f(x) is always increasing

1. Show that $f(x) = e^{-2x} + 2$ is decreasing $\forall x \in D_f$.

2. Show that $f(x) = \cos x$ is increasing in the fourth quadrant.

Answer:

Topic 1: Increasing and Decreasing Functions

Illustration: Given $f(x) = x^3 + 3x^2 + 9$. Determine the intervals in which the function f(x) is increasing and the intervals in which it is decreasing.

$$f'(x) = 3x^2 + 6x$$
 For stationary points $f'(x) = 0$

$$\therefore 3x^2 + 6x = 0 \implies x(x+2) = 0$$

 $\Rightarrow f(x)$ has stationary points at x = -2, 0

$f(x) = x^3 + 3x^2 + 9$				
x	$(-\infty, -2)$	(-2,0)	$(0,\infty)$	
f'(x)	> 0	< 0	> 0	
f(x)	increasing	decreasing	increasing	

1. Given $f(x) = 4x^3 - 3x^2 - 6x$. Determine the intervals in which f(x) is increasing and the intervals in which it is decreasing.

Answer:

2. Given $f(x) = 2x^3 + 9x^2 + 12x - 1$. Determine the intervals in which f(x) is increasing and the intervals in which it is decreasing.

(2, 17)

(3, 12)

Topic 2: Classification of Stationary points

Second Derivative Test:

- If f'(x) = 0 for some $x = x_0$, and $f''(x)|_{x=x_0} < 0$, then f has a maximum value at $x = x_0$.
- If f'(x) = 0 for some $x = x_0$, and $f''(x)|_{x=x_0} > 0$, then f has a minimum value at $x = x_0$.

Illustration: Find the stationary points for the function:

$$f(x) = 3x^4 - 20x^3 + 36x^2 - 15.$$

Use the second derivative test to classify the stationary points as points of maximum and minimum, and plot the curve of y = f(x)

$$f'(x) = 12x^3 - 60x^2 + 72x$$

For stationary points f'(x) = 0

$$12x^3 - 60x^2 + 72x = 0$$

$$\Rightarrow x(x-2)(x-3) = 0$$

 $\Rightarrow f(x)$ has stationary points at x = 0, 2, 3

$$f''(x) = 36x^2 - 120x + 72$$

$$f''(x)|_{x=0} = 72 > 0$$
 : $f(x)$ has a minimum value at $x=0$

Also
$$f(0) = -15$$

 $\therefore (0, -15)$ is a point of minimum value

$$f''(x)|_{x=2} = -24 < 0$$
 $\therefore f(x)$ has a maximum value at $x=2$

Also
$$f(2) = 17$$

 \therefore (2, 17) is a point of maximum value

$$f''(x)|_{x=3} = 36 > 0$$
 $\therefore f(x)$ has a minimum value at $x=3$

Also
$$f(3) = 12$$

 \therefore (3, 12) is a point of minimum value

For the following functions, find and classify the stationary point. Sketch the graph of y = f(x).

1. $f(x) = x^3 - 3x^2 - 9x + 10$

Answer:

 $2. \quad f(x) = 8x^3 - 9x^2 + 3x$

For the following functions, find and classify the stationary point. Sketch the graph of y = f(x).

3. $f(x) = 3x^4 - 10x^3 + 6x^2 + 5$

Answer:

4. $f(x) = x^4 + 4x^3 + 4x^2 + 1$

Topic 3: Optimisation Problems

Key Concepts:

- List the known and unknown functions
- Identify what is to be optimised
- It is useful to draw a diagram
- Assign symbols for all quantities (e.g. A for area, r for radius)
- Express the quantity to be optimised as a function of others e.g. $V = \pi r^2 h$ for the volume of a cylinder
- Reduce the expression to only one variable e.g. V = f(r)
- Apply the second derivative test

Illustration 1: We need to enclose a rectangular field with a fence. We have 500 feet of fencing material and a building is on one side of the field and so won't need any fencing. Determine the dimensions of the field that will enclose the largest area.

A = xy needs to be maximised

Condition: x + 2y = 500 ft

$$\therefore x = 500 - 27 \Rightarrow A(y) = (500 - 2y) \cdot y = -2y^2 + 500y$$

For maximum/minimum value A'(y) = 0

$$\Rightarrow A'(y) = -4y + 500 = 0 \Rightarrow y = 125$$

Now
$$A''(y) = -4 < 0$$

 \therefore A has a maximum point when y = 125

$$\therefore$$
 The largest area A = $(500 - 2 \cdot 125) \cdot 125 = 31250 \text{ ft}^2$

Topic 3: Optimisation Problems

Illustration 2: A cylindrical can must be made to hold 1 L of liquid. Find the dimensions that minimize the cost of metal used to make it.

$$1L = 1000 \text{ cm}^3$$

$$V = \pi r^2 h \Rightarrow 1000 = \pi r^2 h \tag{1}$$

To minimise cost of metal, the total surface area S must be minimised

$$S = 2\pi r h + 2\pi r^{2}$$
From (1) $h = \frac{1000}{\pi r^{2}}$ $\therefore S = f(r) = \frac{2000}{r} + 2\pi r^{2}$

For maximum/minimum value f'(r) = 0

$$\Rightarrow f'(r) = 4\pi r - \frac{2000}{r^2} = 0$$

$$\Rightarrow r^3 = \frac{500}{\pi} : r = \sqrt[3]{\frac{500}{\pi}}$$

Now
$$f''(r) = 4\pi + \frac{4000}{r^3} \Rightarrow f''(r)|_{r=\sqrt[3]{\frac{500}{\pi}}} = 12\pi > 0$$

$$\therefore f$$
 has minimum value at $r = \sqrt[3]{\frac{500}{\pi}}$

$$\therefore S$$
 is minimised when: $r = \sqrt[3]{\frac{500}{\pi}}$ cm

and
$$h = \frac{1000}{\pi r^2} = \frac{1000}{\pi} \cdot \left(\frac{\pi}{500}\right)^{\frac{2}{3}} \text{ cm} = \sqrt[3]{\frac{4000}{\pi}} \text{ cm}$$

1. An 80 cm piece of wire is cut into two pieces. One piece is bent into an equilateral triangle and th
other into a rectangle with one side 4 times the length of the other side. Determine where the wir
should be cut to minimise the area enclosed by both the triangle and the rectangle.

Answer:

2. An open tank is to be constructed with a square base and vertical sides so as to contain 500 m³ of water. Determine the dimension of the tank if the area of the metal sheet used in its construction is to be minimised.

Answer:

3. Find the point on the curve $y = x^2$ that is nearest to the point (18, 0). Hint: $d = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}$

Topic 4: Newton-Raphson Method

Key Formula:
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 $(n = 0, 1, 2, 3, \cdots)$

Illustration: Given $f(x) = x^4 - \sin x - 1$.

Use the Newton-Raphson formula to show that:

$$x_{n+1} = \frac{3x_n^4 - x_n \cos x_n + \sin x_n + 1}{4x_n^3 + \cos x_n}$$
 (1). Use Equation (1) above to approximate the root of $f(x) = 0$

correct to 5 d.p., take $x_0 = 1.5$.

$$f'(x) = 4x^3 - \cos x$$

$$x_{n+1} = x_n - \frac{x_n^4 - \sin x_n - 1}{4x_n^3 - \cos x_n}$$

$$x_{n+1} = \frac{3x_n^4 - x_n \cos x_n + \sin x_n + 1}{4x_n^3 - \cos x_n}$$

Step 1: Set calculator to RADIAN mode:

Shift Mode 4

Step 2: Fix calculator to 5 d. p.:

Shift Mode 6 5

Step 3: Set up Iterative formula on calculator

On calculator:

Start with: $x_0 = 1.5$

Enter 1.5 and press "="

Step 4: Enter the Newton-Raphson formula (replace x_n with ANS)

$$x_{n+1} = \frac{3x_n^4 - x_n \cos x_n + \sin x_n + 1}{4x_n^3 - \cos x_n}$$

On calculator:

$$\frac{(3(\mathtt{ANS})^4 - (\mathtt{ANS})\cos(\mathtt{ANS}) + \sin(\mathtt{ANS}) + 1)}{(4(\mathtt{ANS})^3 - \cos(\mathtt{ANS}))}$$

Topic 4: Newton-Raphson Method

Step 5: Write down succesive approximations

	n	x_n	
0		1.5	
1		1.27177	
2		1.18853	
3		1.17787	
	4	1.17770	
	5	1.17770	

Note: All approximations and the final result must be given with the required d.p.

Note: The desired root is obtained when succesive approximations are equal

 \therefore the desired root $x^* = 1.17770$

Use the Newton-Raphson formula in the following equation to approximate the root at the following points for f(x) = 0, give your answer correct to 5 d.p.

- 1. Point **A** take $x_0 = -2.6$. 2. Point **B** take $x_0 = -1.8$.
- $x_{n+1} = \frac{6x_n^4 + 16x_n^3 + 8x_n^2 + 1}{8x_n^3 + 24x_n^2 + 16x_n}$
- 3. Point **C** take $x_0 = -0.6$. 4. Point **D** take $x_0 = 0.1$.

1. $2\sin x - x = 0$, $x_0 = 2$.

2. $2\cos x - x^2 = 0$, $x_0 = 1$.

Answer:

Answer:

3. $x^4 - x^2 = 1$, $x_0 = -1.5$.

4. $x^3 - 2x - 5 = 0$, $x_0 = 2$.

Answer: