Modelação e Simulação Inteligente Simulação Discreta Abordagem por Eventos Paulo Matos Paulo Matos Paulo Matos

1

Disclaimer

Materiais e Slides

• Materiais/slides são adaptados dos slides criados pela prof. Isabel Praça

2023/24

Resumo

- Desenvolvimento de estudos de simulação discreta
 - Por eventos
 - abordagem, que trata da mesma forma todos os acontecimentos, não distinguindo entre eventos de início e fim de atividades, ou quaisquer outros eventos
 - simplifica a representação do modelo na forma de rotinas
 - Escola de simulação com vários anos de trabalho
 - Mecanismo de avanço temporal para próximo evento

© DEI/ISEP

3

Simulação Discreta

- Avanço para Próximo Evento (Next Event)
 - O tempo da simulação avança de evento em evento
 - Técnica adaptativa que permite reduzir ao mínimo a quantidade de amostras recolhidas na simulação
 - Perfeito sincronismo do processo de avanço de tempo, ou seja, da sequência de amostragem, com a sequência das transições de estado

© DEI/ISEP

Simulação Discreta

- Etapas num Estudo de Simulação
 - Conhecer o sistema
 - Quer este exista, quer não, é necessário conhecer BEM o sistema
 - Objetivos bem identificados
 - Definir o modelo do sistema
 - Representar o modelo no software de simulação
 - ...

© DEI/ISE

5

Simulação Discreta por Eventos

- Componentes
 - Estado do Sistema
 - Conjunto das variáveis necessárias à caracterização do sistema
 - Relógio da Simulação
 - Variável que contém o valor atual do tempo simulado
 - Lista de Eventos
 - Lista que contém os eventos escalonados, e os respetivos instantes de ocorrência
 - Contadores Estatísticos
 - Variáveis utilizadas para registar informação estatística sobre a performance do sistema

DEI/ISEP

- Componentes
 - Rotina de Inicialização
 - Utilizada para inicializar o modelo da simulação, e colocar o relógio da simulação a zero
 - Rotina de Temporização
 - Retira o próximo evento a ocorrer da lista de eventos e avança o relógio da simulação para o seu instante de ocorrência
 - Rotinas de Eventos
 - Atualização do sistema mediante a ocorrência do respetivo evento
 - Bibliotecas de rotinas
 - Rotinas de apoio à geração de dados com base em distribuições de probabilidades adequadas às ocorrências do sistema em estudo

© DEI/ISEP

7

Simulação Discreta por Eventos

- Componentes
 - · Gerador de relatórios
 - Calcula, no final do estudo de simulação e com base nos contadores estatísticos recolhidos, informação sobre as medidas de desempenho seleccionadas
 - Programa Principal Executivo
 - Promove a dinâmica da simulação, invocando a rotina de temporização para avançar o relógio de simulação, e passando o controlo às rotinas de tratamento dos eventos à medida que estes vão ocorrendo
 - Verifica se estão reunidas as condições para terminar a simulação, invocando no final o gerador de relatórios

© DEI/ISEP

- Problema
 - Sistema baseado num servidor e numa única fila de espera (ex. balcão de informações, guiché de atendimento, barbeiro, etc.)
 - Características
 - <u>Tempos entre as chegadas (taxa de chegada) de clientes C₁, C₂, ..., variáveis independentes e identicamente distribuídas (seguem a mesma distribuição de probabilidade)</u>
 - Um cliente que chega e encontra o servidor disponível, começa a ser atendido de imediato
 - Tempos de serviço A₁, A_{2, ...}, variáveis independentes e identicamente distribuídas , independentes dos tempos de chegada
 - Um cliente que chega e encontra o servidor ocupado, coloca-se no final da fila de espera
 - Servidor ao terminar tarefa, atende cliente que se encontra no início da fila de espera

© DEI/ISEP

- Problema
 - Simulação começa a partir de estado "vazio"
 - Não há clientes
 - Servidor está livre
 - No instante t=0, inicia-se a espera pelo primeiro cliente
 - Chegada do primeiro cliente no instante C₁
 - Simular o sistema até que N clientes completem o seu processo de espera pelo atendimento
 - Simulação termina com a entrada em atendimento do N-ésimo cliente
 - Instante de finalização da simulação é variável aleatória

© DEI/ISEP

11

Simulação Discreta por Eventos

© DEI/ISEP

- Problema
 - Avaliação do desempenho do sistema
 - Tempo médio de espera por cliente d(n)
 - Número médio de clientes em espera q(n)
 - Taxa de utilização do servidor u(n)
 - Trata-se de facto, de obter estimativas para estes valores
 - Estimativa porque os valores obtidos numa "corrida" de simulação dependem dos tempos de chegada e de atendimento obtidos, variáveis em si aleatórias

© DEI/ISEP

13

Simulação Discreta por Eventos

- Tempo médio de espera por cliente
 - d(n) será o tempo médio de espera obtido para uma enorme quantidade (infinito...) de clientes
 - Para um estudo de simulação, com valores de atraso D₁, D₂, ..., D_n, uma estimativa será

$$d(n) = \frac{\sum_{i=1}^{n} D_i}{n}$$

- Clientes cujo tempo de atraso seja nulo também devem ser contabilizados
 - Não existência de tempos de espera significa que o serviço prestado é bom
- Estatística discreta, pois está associada a variáveis aleatórias indexadas de forma discreta no tempo
- Medida de desempenho do sistema na perspetiva do cliente

© DEI/ISEP

- Número médio de clientes em espera
 - Avaliar a quantidade de clientes que estão em fila de espera para serem atendidos
 - Para
 - Q(t) o número de clientes em fila de espera no instante t
 - T(n) o horizonte temporal para atendimento de n clientes
 - p_i a proporção de tempo em que o número de clientes na fila de espera é i

$$q(n) = \sum_{i=1}^{n} i p_i$$
• Sendo p_i = T_i / T(n), pode-se reescrever a expressão: $q(n) = \frac{\sum_{i=1}^{n} i T_i}{T(n)}$

• Medida de desempenho diferente da anterior uma vez que se trata de uma medida indexada de forma contínua no tempo

© DEI/ISEP

15

Simulação Discreta por Eventos

• Número médio de clientes em espera

© DEI/ISE

- Número médio de clientes em espera
 - $T_0 = (1,6-0) + (4,0-3,1) + (5,6-4,9) = 3,2$
 - $T_1 = (2,1-1,6) + (3,1-2,4) + (4,9-4,0) + (5,8-5,6) = 2,3$
 - $T_2 = (2,4-2,1) + (7,2-5,8) = 1,7$
 - $T_3 = (8,6-7,2) = 1,4$
 - T_i = 0 , para i>= 4 (fila nunca atinge 4 ou mais elementos)

$$\sum_{i=0}^{\infty} T_i = (0 \times 3,2) + (1 \times 2,3) + (2 \times 1,7) + (3 \times 1,4) = 9,9$$

$$q(6) = \frac{9,9}{8,6} = 1,15$$

• Na prática estamos a calcular a área abaixo da curva Q(t) no intervalo que dura a simulação, ou

 $\hat{q(n)} = \frac{\int_0^{T(n)} Q(t)dt}{T(n)}$

© DEI/ISEP

17

Simulação Discreta por Eventos

- Taxa de Utilização do Servidor
 - Percentagem de tempo durante o qual o servidor está ocupado (valor entre 0 e 1)
 - Considerar curva de ocupação do servidor

$$B(t) = \begin{cases} 1 \Rightarrow \text{servidor} = \text{OCUPADO} \\ 0 \Rightarrow \text{servidor} = \text{LIVRE} \end{cases}$$

• Corresponde a avaliar $u(n) = \frac{\int_0^{T(n)} B(t) dt}{T(n)}$

- Medida de desempenho indexada de forma contínua no tempo
- Útil na deteção de gargalos (elevada taxa de utilização associada a congestionamento da fila de espera) e capacidade excessiva (baixa taxa de utilização)

© DEI/ISEP

• Taxa de Utilização do Servidor

© DEI/ISE

19

Simulação Discreta por Eventos

• Taxa de Utilização do Servidor

$$B(t) = \begin{cases} 1 \Rightarrow \text{servidor} = \text{OCUPADO} \\ 0 \Rightarrow \text{servidor} = \text{LIVRE} \end{cases}$$

$$u(n) = \frac{\int_0^{T(n)} B(t)dt}{T(n)}$$

$$u(n) = \frac{(3,3-0,4) + (8,6-3,8)}{8,6} = \frac{7,7}{8,6} = 0,9$$

DEI/ISEP

- Determinar os Eventos Essenciais
 - Tarefa difícil na análise de sistemas complexos
 - Abordagem "atividades vivas" vs "atividades mortas"
 - Grafo de Eventos
 - Eventos são nós
 - No grafo, os arcos ligam os nós ilustrando assim a forma como os eventos podem ser escalonados
 - Proposto por Schruben, refinado por Sargent e mais tarde por Som e Sargent

© DEI/ISEP

Grafo de Eventos

- Arcos dirigidos em que o nó destino é escalonado a partir do nó origem do arco
- Arcos indicam eventos que devem ser escalonados de início
- Arcos mais "finos" indicam eventos que são escalonados de imediato

Eventos

- Chegada de Cliente
- Início Atendimento
- Fim de Atendimento -> Saída de Cliente

© DEI/ISE

23

Simulação Discreta por Eventos

Grafo de Eventos

- Várias regras para simplificar a estrutura de eventos do modelo
- Regra de simplificação
 - Eventos cujos arcos de entrada são todos finos e sem (são eventos escalonados apenas por outros eventos e de forma imediata) podendo ser eliminados do modelo, distribuindo-se as ações a ele associadas

- Evento de Chegada faz o escalonamento de si próprio, e pode escalonar um evento de Fim de Atendimento se o cliente que chega encontra o servidor livre
- Evento de Fim de Atendimento faz o escalonamento de si próprio, se sai um cliente e há outros em espera na fila

© DEI/ISEP

Eventos

- · Chegada de Cliente
- Fim de Atendimento -> Saída de Cliente

Variáveis de Estado

- · Estado do servidor
- Número de clientes em fila de espera
- Tempo de chegada de cada cliente à fila
- Instante de ocorrência do último evento
 - Necessário ao cálculo das curvas para estimar medidas de desempenho q(n) e u(n)

© DEI/ISEP

25

Simulação Discreta por Eventos

Representação da Evolução da Simulação

- Ilustrar as estruturas de dados e alterações sofridas ao desenvolver um estudo de simulação discreta por eventos
- Ideias fundamentais necessárias à compreensão de estudos de simulação mais complexos
- · Considerar os tempos entre as chegadas e os tempos de atendimento dos clientes
 - Taxa de Chegada
 - Tempo de serviço
- Tempos s\u00e3o normalmente gerados a partir distribui\u00f3\u00f3es de probabilidade que traduzem o comportamento do sistema

© DEI/ISEP

- Representação da Evolução da Simulação
 - Tempos entre as chegada e tempos de atendimento
 - C₁ = 0.4, C₂ = 1.2
 - A₁ = 2.0

© DEI/ISEP

29

Simulação Discreta por Eventos

- Representação da Evolução da Simulação
 - Tempos entre as chegada e tempos de atendimento
 - $C_1 = 0.4$, $C_2 = 1.2$, $C_3 = 0.5$
 - A₁ = 2.0

© DEI/ISEP

- Representação da Evolução da Simulação
 - Tempos entre as chegada e tempos de atendimento
 - C₁ = 0.4, C₂ = 1.2, C₃ = 0.5, C₄ = 1.7
 - A₁ = 2.0

© DEI/ISEP

31

Simulação Discreta por Eventos

- Representação da Evolução da Simulação
 - Tempos entre as chegada e tempos de atendimento
 - C₁ = 0.4, C₂ = 1.2, C₃ = 0.5, C₄ = 1.7
 - A₁ = 2.0, A₂ = 0.7

© DEI/ISEP

- Representação da Evolução da Simulação
 - Tempos entre as chegada e tempos de atendimento
 - C₁ = 0.4, C₂ = 1.2, C₃ = 0.5, C₄ = 1.7
 - $A_1 = 2.0$, $A_2 = 0.7$, $A_3 = 0.2$

© DEI/ISEP

33

Simulação Discreta por Eventos

- Representação da Evolução da Simulação
 - Tempos entre as chegada e tempos de atendimento
 - $C_1 = 0.4$, $C_2 = 1.2$, $C_3 = 0.5$, $C_4 = 1.7$, $C_5 = 0.2$
 - $A_1 = 2.0$, $A_2 = 0.7$, $A_3 = 0.2$

© DEI/ISEP

- Representação da Evolução da Simulação
 - Tempos entre as chegada e tempos de atendimento
 - $C_1 = 0.4$, $C_2 = 1.2$, $C_3 = 0.5$, $C_4 = 1.7$, $C_5 = 0.2$
 - A₁ = 2.0, A₂ = 0.7, A₃ = 0.2, A₄ = 1.1

© DEI/ISEP

35

Simulação Discreta por Eventos

- Representação da Evolução da Simulação
 - Tempos entre as chegada e tempos de atendimento
 - $C_1 = 0.4$, $C_2 = 1.2$, $C_3 = 0.5$, $C_4 = 1.7$, $C_5 = 0.2$, $C_6 = 1.6$
 - A₁ = 2.0, A₂ = 0.7, A₃ = 0.2, A₄ = 1.1

© DEI/ISEP

- Representação da Evolução da Simulação
 - Tempos entre as chegada e tempos de atendimento
 - $C_1 = 0.4$, $C_2 = 1.2$, $C_3 = 0.5$, $C_4 = 1.7$, $C_5 = 0.2$, $C_6 = 1.6$
 - $A_1 = 2.0$, $A_2 = 0.7$, $A_3 = 0.2$, $A_4 = 1.1$, $A_5 = 3.7$

37

Simulação Discreta por Eventos

- Representação da Evolução da Simulação
 - Tempos entre as chegada e tempos de atendimento
 - $C_1 = 0.4$, $C_2 = 1.2$, $C_3 = 0.5$, $C_4 = 1.7$, $C_5 = 0.2$, $C_6 = 1.6$, $C_7 = 0.2$
 - $A_1 = 2.0$, $A_2 = 0.7$, $A_3 = 0.2$, $A_4 = 1.1$, $A_5 = 3.7$

© DEI/ISEP

© DEI/ISEP

- Representação da Evolução da Simulação
 - Tempos entre as chegada e tempos de atendimento
 - $C_1 = 0.4$, $C_2 = 1.2$, $C_3 = 0.5$, $C_4 = 1.7$, $C_5 = 0.2$, $C_6 = 1.6$, $C_7 = 0.2$, $\textbf{C_8} = \textbf{1.4}$
 - $A_1 = 2.0$, $A_2 = 0.7$, $A_3 = 0.2$, $A_4 = 1.1$, $A_5 = 3.7$

© DEI/ISEP

39

Simulação Discreta por Eventos

- Representação da Evolução da Simulação
 - Tempos entre as chegada e tempos de atendimento
 - $C_1 = 0.4$, $C_2 = 1.2$, $C_3 = 0.5$, $C_4 = 1.7$, $C_5 = 0.2$, $C_6 = 1.6$, $C_7 = 0.2$, $C_8 = 1.4$, $C_9 = 1.9$, ...
 - $A_1 = 2.0$, $A_2 = 0.7$, $A_3 = 0.2$, $A_4 = 1.1$, $A_5 = 3.7$

© DEI/ISEP

- Representação da Evolução da Simulação
 - Tempos entre as chegada e tempos de atendimento
 - $C_1 = 0.4$, $C_2 = 1.2$, $C_3 = 0.5$, $C_4 = 1.7$, $C_5 = 0.2$, $C_6 = 1.6$, $C_7 = 0.2$, $C_8 = 1.4$, $C_9 = 1.9$, ...
 - $A_1 = 2.0$, $A_2 = 0.7$, $A_3 = 0.2$, $A_4 = 1.1$, $A_5 = 3.7$, $A_6 = 0.6$

© DEI/ISEP

41

Simulação Discreta por Eventos

- Considerações
 - Factor chave na dinâmica da simulação é a interacção entre o relógio da simulação e a lista de eventos
 - · Relógio avança analisando na lista de eventos qual o (menor) instante de ocorrência do próximo evento
 - Ao processar um evento o relógio da simulação fica "parado", contudo, as variáveis de estado e os contadores estatísticos serão actualizadas
 - Cuidado na sua ordem de actualização...
 - Actualização do número de clientes em espera não deve ser feita antes de actualizar Q(t) (calcular a área antes do efeito do evento actual)
 - É incorrecto actualizar o instante de ocorrência do último evento antes de actualizar a área dos acumuladores estatísticos
 - A actualização da fila de espera só deve ser feita depois de calculado o atraso do cliente que está a sair da fila (perde-se informação sobre o seu instante de chegada)

© DEI/ISEP

- Considerações
 - Cuidado com acontecimentos que possam parecer pouco frequentes
 - A saída de um cliente estando a fila de espera vazia, implica a passagem do estado do servidor de OCUPADO para LIVRE, e a eliminação da possibilidade de ocorrência de evento de "Fim de Atendimento"
 - Condições de paragem da simulação
 - Podem estar associadas com eventos de partida ou chegada
 - Critérios de análise de eventos que possam ocorrer no mesmo instante
 - Regra de decisão que afecta os resultados da simulação

© DEI/ISEP

43

Simulação Discreta por Eventos

- Desenvolvimento de simulações em linguagens de programação de uso genérico
 - Obriga a prestar atenção a todos os detalhes, e a perceber em profundidade todo o mecanismo subjacente à simulação, o que minimizará o aparecimento de erros conceptuais na mudança para uma linguagem de simulação
 - Apesar de haver várias linguagens muito boas e poderosas, continua a ser muitas vezes necessário detalhar partes do modelo em linguagem de programação de uso genérico, para obter representação fiel do sistema
 - · Disponibilidade das linguagens

© DEI/ISEP

45

Simulação Discreta por Eventos

• Programa Principal

```
Programa_Principal(){

1. Leitura de parâmetros de entrada da simulação

2. Chamada à rotina de inicialização

3. Executar a simulação enquanto for necessário
//while(num_cust_delayed < num_delays_required){

3.1 Invocar rotina de temporização

3.2 Invocar rotina associada ao tipo de evento em processamento
}

4. Invocar o gerador de relatórios

5. Disponibilizar resultados
}
```

© DEI/ISEP

• Rotina de Inicialização

Rotina_Inicialização(){

- 1. Incializar relógio da simulação a 0
- 2. Incializar variáveis de estado

//server_status = FREE // num_in_queue = 0 // time last event = 0

3. Inicializar contadores estatísticos

//num_custs_delayed = 0
// total_delay = 0
// area_num_in_q = 0
//area_server_status = 0

4. Inicializar Lista de Eventos

// eliminar ocorrência de evento de fim de atendimento // escalonar primeira chegada ao sistema Escalonar próximo Evento de Chegada (com base na taxa de chegada)

© DEI/ISEP

47

Simulação Discreta por Eventos

• Rotina de Temporização

Rotina_Temporização(){

- 1. Determinar tipo do próximo evento a ocorrer
- 2. Se Lista de Eventos vazia, terminar a simulação
- 3. Atualizar o instante de ocorrência do último evento
- 4. Avançar relógio para o tempo de ocorrência do evento

© DEI/ISEP

48

}

• Rotina do Evento de Chegada

```
Rotina_Evento_Chegada(){

1. Escalonar próximo Evento de Chegada (com base na taxa de chegada)

2. Se (server_status == BUSY)

//Se o servidor está ocupado cliente fica em fila de espera

2.1 Colocar cliente na fila de Espera

2.2 Registar o tempo de chegada desse cliente

2.3 Incrementar o número de clientes em fila de espera

3. Senão

//Se o servidor está livre começa o atendimento ao cliente

3.1 Atraso do cliente = 0

3.2 Incrementar número de clientes com atraso contabilizado

3.3 Escalonar Evento de Fim de Atendimento (com base tempo de atendimento)

}
```

© DEI/ISEP

49

Simulação Discreta por Eventos

• Rotina do Evento Fim de Atendimento

```
Rotina_Evento_Fim_Atnd(){

1. Se a Fila de Espera está vazia

// colocar o servidor livre e evitar ocorrências eventos de Fim_Atnd

1.1 server_status = FREE

2. Senão

2.1 Retirar cliente da fila de espera

2.2 Calcular o seu atraso e actualizar atraso_total

2.3 Incrementar número de clientes com atraso contabilizado

2.4 Escalonar Evento de Fim de Atendimento

}
```

© DEI/ISEP

• Gerador de Relatórios

```
Gerador_Relatórios(){
    1.average_delay_queue = total_of_delays / num_custs_delayed
    2.average_num_in_queue = área_num_in_q / time
    3.server_utilization = area_server_status / time
    4.time_simulation_ended = time
```

© DEI/ISEP

51

Simulação Discreta por Eventos

- Critérios de Paragem
 - Número de clientes processados
 - Tempo ao fim do qual a simulação termina é variável
 - Tempo de simulação fixo
 - Número de clientes "atrasados" é variável
 - Acrescentar evento "fictício" que sinaliza o fim da simulação
 - Escalonado na rotina de Inicialização
 - Alterar condição de paragem no Programa Principal
 - Informação a apresentar na Geração de Relatórios

© DEI/ISEP

Modelação e Simulação Inteligente

Simulação Discreta Abordagem por Eventos

Paulo Matos

© DEI/ISEP

53

Simulação Discreta por Eventos

- Geração de Variáveis Aleatórias
 - Distribuição exponencial
 - Adequada à modelação de tempos entre as chegadas

$$f(x) = \frac{1}{\beta} e^{-x/\beta}$$
, para $x \ge 0$

 Necessário conseguir gerar variáveis aleatórias com base nesta distribuição...

© DEI/ISEP

- Simular o modelo
 - Efectuar estudo "à mão"
 - Desenvolver simulador específico usando linguagem de programação de uso genérico
 - Transferir rotinas para uma linguagem de simulação
 - Configurar simulador comercial com base nas rotinas definidas

© DEI/ISEP