Machine Learning System Design

전 재 욱

Embedded System 연구실 성균관대학교

Outline

- Error Analysis
- Error metrics for skewed classes
- Data for machine learning

Outline

- Error Analysis
- Error metrics for skewed classes
- Data for machine learning

Recommended Approach

- Start with a simple algorithm that we can imp quickly.
 - Implement it and test it on our cross-validation data.
- Plot learning curves to decide if more data, more features, etc. are likely to help.
- Error analysis
 - Manually examine the examples (in cross validation set) that our algorithm made errors on.
 - See if we spot any systematic trend in what type of examples it is making errors on.

Outline

- Error Analysis
- Error metrics for skewed classes
- Data for machine learning

Machine learning system design

Error metrics for skewed classes

Error Metrics for Skewed Analysis

- Example of skewed classes
 - (Number of examples in one class)
 - << (Number of examples in the other)
 - → So standard error metrics are not so good

Cancer Classification Example

- Train logistic regression model $h_{\theta}(x)$
 - y = 1 if cancer, y = 0 otherwise)
- Find that you got 1% error on test set.
 - (99% correct diagnoses)
 - This looks pretty good.
- Only 0.5% of patients have cancer

- Now, 1% error looks very bad.
- When the number of examples in one class is very small
 - this is an example of skewed classes

Another Example

- Algorithm has 99.2% accuracy
 - Make a change, now get 99.5% accuracy
 - Does this really represent an improvement to the algorithm?
- Did we do something useful, or did we just create something which predicts y = 0 more often
 - Get very low error, but classifier is still not great

y = 1 in presence of rare class that we want to detect

		Actual Class	
		1	0
Predicted Class	1	True Positive	False Positive
	0	False Negative	True Negative

Precision

Of all patients where we predicted y = 1, what fraction actually has cancer?

$$\frac{\textit{True positives}}{\textit{\# of predicted positive}} = \frac{\textit{True positive}}{\textit{True pos+False Pos}}$$

Recall

Of all patients that actually have cancer, what fraction did we correctly detect as having cancer?

$$\frac{True\ positives}{\#\ of\ actual\ positive} = \frac{True\ positive}{True\ pos+False\ neg}$$

Precision

- How often does our algorithm cause a false alarm?
- Of all patients we predicted have cancer, what fraction of them actually have cancer?

$$\frac{\textit{True positives}}{\textit{\# of predicted positive}} = \frac{\textit{True positive}}{\textit{True pos+False Pos}}$$

- High precision is good (i.e. closer to 1)
 - We want a big number
 - \triangleright because we want $False \begin{picture}Positive\end{picture}$ to be as close to 0 as possible

Recall

- How sensitive is our algorithm?
- Of all patients in set that actually have cancer, what fraction did we correctly detect

$$\frac{True\ positives}{\#\ of\ actual\ positive} = \frac{True\ positive}{True\ pos+False\ neg}$$

- High recall is good (i.e. closer to 1)
 - We want a big number
 - \triangleright because we want False negative to be as close to 0 as possible

- By computing precision and recall get a better sense of how an algorithm is doing
 - Means we are much more sure that an algorithm is good
- Typically, the presence of a rare class is what we are trying to determine
 - e.g. positive (1) is the existence of the rare thing

- Logistic regression: $0 \le h_{\theta}(x) \le 1$
 - Predict 1 if $h_{\theta}(x) \geq 0.5$
 - Predict 0 if $h_{\theta}(x) < 0.5$
- Suppose we want to predict y = 1 (cancer) only if very confident.
 - Predict 1 if $h_{\theta}(x) \geq 0.8$
 - Higher precision, lower recall
 - Risk of false negatives
- Suppose we want to avoid missing too many cases of cancer (avoid false negatives).
 - Predict 1 if $h_{\theta}(x) \geq 0.3$
 - Higher recall, lower precision
 - Risk of false positives
- More generally:
 - Predict 1 if $h_{\theta}(x) \ge thresholed$

Precision =
$$\frac{True\ positives}{\#\ of\ predicted\ positive}$$

Recall =
$$\frac{True\ positives}{\#\ of\ actual\ positive}$$

Curve shape can be changed depending on classifier details

- How to compare precision/recall numbers?
 - Which algorithm is the best among the following three?

	Precision(P)	Recall(R)
Algo 1	0.5	0.4
Algo 2	0.7	0.1
Algo 3	0.02	1.0

- How to compare precision/recall numbers?
 - Average: $\frac{P+R}{2}$
 - **0.45**, 0.4, 0.51
 - > 0.51 is the best despite having a recall of 1 i.e. predict y=1 for everything
 - NOT good

	Precision(P)	Recall(R)	Average
Algo 1	0.5	0.4	0.45
Algo 2	0.7	0.1	0.4
Algo 3	0.02	1.0	0.51

- How to compare precision/recall numbers?
 - F₁ Score (F score): $2\frac{PR}{P+R}$ ($\leftarrow \frac{2}{\frac{1}{p}+\frac{1}{R}}$)
 - F₁ score is like taking the average of precision and recall giving a higher weight to the lower value

$$\rightarrow$$
 F₁ score = 0

$$\rightarrow$$
 F₁ score = 1

	Precision(P)	Recall(R)	F Score
Algo 1	0.5	0.4	0.2222
Algo 2	0.7	0.1	0.0875
Algo 3	0.02	1.0	0.0196

- How to compare precision/recall numbers?
 - F₁ Score (F score): $2\frac{PR}{P+R}$ ($\leftarrow \frac{2}{\frac{1}{p}+\frac{1}{R}}$)
- If we are trying to automatically set the threshold, one way is to try a range of threshold values and evaluate them on our cross validation set
 - Then pick the threshold which gives the best F₁ score.

Outline

- Error Analysis
- Error metrics for skewed classes
- Data for machine learning

Designing A High Accuracy Learning System

- Classify btw confusable words
 - {to, two, too}, {then, than}
 - For breakfast I ate _____ eggs.
- Algorithms
 - Perceptron (logistic regression)
 - Winnow
 - Like logistic regression
 - Used less now
 - Memory based
 - Used less now
 - Naive Bayes

Figure 1. Learning Curves for Confusion Set Disambiguation

Designing A High Accuracy Learning System

- What can we conclude
 - Algorithms give remarkably similar performance
 - As training set sizes increases, accuracy increases
 - Take an algorithm, give it more data, should beat a "better" one with less data
 - Shows that
 - Algorithm choice is pretty similar
 - More data helps

Figure 1. Learning Curves for Confusion Set Disambiguation

→ It's not who has the best algorithm that wins.
It's who has the most data.

Large Data Rationale

- Assume feature $x \in R^{n+1}$ has sufficient information to predict y accurately.
 - Then more data may help
 - Example:
 - > For breakfast I ate _____ eggs.
 - Counterexample:
 - Predict housing price from only size (feet²) and no other features.
- Useful test:
 - \blacksquare Given the input x, can a human expert confidently predict y?

Large Data Rationale

- Use a learning algorithm with <u>many parameters</u>
 - e.g. logistic regression/linear regression with many features
 - neural network with many hidden units
 - A powerful learning algorithm with many parameters which can fit complex functions
 - Low bias algorithm
 - Little systemic bias in their description flexible
 - $J_{train}(\theta)$ will be small
 - Use a very large training set
 - Unlikely to overfit

```
J_{train}(\theta) \approx J_{test}(\theta)
```

 $J_{test}(\theta)$ will be small

Large Data Rationale

- An algorithm with having both low bias and low variance
 - Use complex algorithm
 - For low bias
 - Use large training set
 - For low variance

References

- Andrew Ng, https://www.coursera.org/learn/machine-learning
- http://www.holehouse.org/mlclass/11_Machine_Learning_System_Design.html
- M. Banko and E. Brill, "Scaling to Very Very Large Corpora for Natural Language Disambiguation," 2001.