Trigonometry

1. For x, y, r and φ , as shown in the figure below, $tan\varphi$ is defined as the quotient:

2. The graph shown below is a plot of the function:

$$y = \sin x$$

$$y = \cos x$$

$$y = \tan x$$

$$y = \arctan x$$

Line equations

3. Which of the following is a parametric equation of a line:

$$y = ax + b$$

4. Which of the following expressions specifies the gradient of the line defined by the equation ax + by + c = 0

$$\Box$$
 c

Vector arithmetics

In the next 4 questions \mathbf{u} and \mathbf{v} denote 2D vectors: $\mathbf{u} = [\mathbf{u}_x \ \mathbf{u}_y]$

and a denotes a constant.

5.	The result of $a \cdot \mathbf{u}$	is
J.	The result of a u	10

$$\Box$$
 $a \cdot \mathbf{u}_x + \mathbf{u}_y$

6. The result of
$$\mathbf{u} \cdot \mathbf{v}$$
 (dot product) is:

$$[\mathbf{u}_{x} \ \mathbf{v}_{y}]$$

7. The result of
$$\mathbf{u} \times \mathbf{v}$$
 (cross-product) is:

$$\begin{bmatrix} \mathbf{u}_{x} & \mathbf{v}_{y} \end{bmatrix}$$

8. The dot product two non-zero vectors
$$\mathbf{u}$$
 and \mathbf{v} is zero, i.e. $\mathbf{u} \cdot \mathbf{v} = 0$ if:

$\overline{\mathbf{u}}$ vectors $\overline{\mathbf{u}}$ and $\overline{\mathbf{v}}$ are perpendicular

$$\overline{\mathbf{u}}$$
 vectors $\overline{\mathbf{u}}$ and $\overline{\mathbf{v}}$ are parallel

$$\overline{\mathbf{u}}$$
 vectors $\overline{\mathbf{u}}$ and $\overline{\mathbf{v}}$ are of the same length

Matrix arithmetics

In the next question \mathbf{u} denotes a vector: $\mathbf{u} = [3 \ 1]$

and **M** denotes a matrix: $\mathbf{M} = \begin{bmatrix} 1 & 2 \\ 4 & 0 \end{bmatrix}$

9. The result of multiplication of vector \mathbf{u} and matrix \mathbf{M} , \mathbf{u} · \mathbf{M} , is:

$$\Box \quad \begin{bmatrix} 3 & 2 \\ 12 & 0 \end{bmatrix}$$

$$\Box$$
 [7 6]

Trigonometry

1. For x, y, r and φ , as shown in the figure below, $tan\varphi$ is defined as the quotient:

2. The graph shown below is a plot of the function:

$$y = \sin x$$

$$y = \cos x$$

$$y = \tan x$$

Line equations

3. Which of the following is a parametric equation of a line:

$$y = ax + b$$

$$\mathbf{x} = \mathbf{x}_0 + \mathbf{k} \; (\mathbf{x}_1 - \mathbf{x}_0)$$

$$y = y_0 + k (y_1 - y_0)$$

$$x \cos \varphi + y \sin \varphi - p = 0$$

Which of the following expressions specifies the gradient of the line defined by the 4. equation ax + by + c = 0

Vector arithmetics

In the next 4 questions \mathbf{u} and \mathbf{v} denote vectors: $\mathbf{u} = [\mathbf{u}_{x} \ \mathbf{u}_{y}]$

$$\mathbf{\bar{u}} = [\mathbf{u}_{x} \ \mathbf{u}_{y}]$$

$$\mathbf{v} = [\mathbf{v}_{x} \ \mathbf{v}_{y}]$$

and a denotes a constant.

Solutions

5. The result of $a \cdot \mathbf{u}$ is:

- $[a \cdot \mathbf{u}_{x} \ a \cdot \mathbf{u}_{y}]$

- \Box $a \cdot \mathbf{u}_x + \mathbf{u}_y$

6. The result of $\mathbf{u} \cdot \mathbf{v}$ (dot product) is:

- $\begin{bmatrix} \mathbf{u}_{x} & \mathbf{v}_{y} \end{bmatrix}$
- $\mathbf{u}_{x} \cdot \mathbf{v}_{x} + \mathbf{u}_{y} \cdot \mathbf{v}_{y}$

7. The result of $\mathbf{u} \times \mathbf{v}$ (cross-product) is:

- $\begin{bmatrix} \mathbf{u}_{x} & \mathbf{v}_{y} \end{bmatrix}$
- $\mathbf{u}_{x} \cdot \mathbf{v}_{y} \mathbf{v}_{x} \cdot \mathbf{u}_{y}$

8. The dot product two non-zero vectors \mathbf{u} and \mathbf{v} is zero, i.e. $\mathbf{u} \cdot \mathbf{v} = 0$ if:

- vectors \mathbf{u} and \mathbf{v} are perpendicular
- \mathbf{u} vectors \mathbf{u} and \mathbf{v} are parallel
- vectors \mathbf{u} and \mathbf{v} are of the same length

Matrix arithmetics

In the next question \mathbf{u} denotes a vector: $\mathbf{u} = [3 \ 1]$

and **M** denotes a matrix: $\mathbf{M} = \begin{bmatrix} 1 & 2 \\ 4 & 0 \end{bmatrix}$

9. The result of multiplication of vector \mathbf{u} and matrix \mathbf{M} , \mathbf{u} · \mathbf{M} , is:

- [32]
- $\overline{\square}$ 11
- $\Box \quad \begin{bmatrix} 3 & 2 \\ 12 & 0 \end{bmatrix}$
- [7 6]