4M24 Coursework 2022/2023

High-Dimensional MCMC

Computational Statistics & Machine Learning

Coursework 4M24: High-Dimensional MCMC

- 25% of overall grade
- ~10 hours
- Python 'Skeleton' code provided
- Deadline start of Lent term: Wednesday 18th January 2023
- Coursework sheet with questions
- Coursework files on Moodle

<u>Deliverables</u>

- Maximum 10 page report (including any figures & appendix)
- Answers to questions (a)-(f)
- No need to include code

Coursework Files

coursework.pdf

 Coursework description with questions (a)-(f)

functions.py

- Plotting functions provided
- MCMC algorithms with gaps fill in TODO

simulation.py

Questions (a)-(d)

spatial.py

Questions (e)-(f)

data.csv

 Bike theft count data, (x,y) locations and corresponding number of bike thefts

Part I: Simulation

We pick the subsample locations at random

$$G = \begin{bmatrix} 1 & 0 & \dots & 0 & \dots & 0 & \dots \\ 0 & 0 & \dots & 1 & \dots & 0 & \dots \\ 0 & 0 & \dots & 0 & \dots & 1 & \dots \\ \vdots & \vdots & & \vdots & & \vdots & & \vdots \end{bmatrix} \quad \epsilon \sim N(0, I)$$

Subsample & Observe $v = Gu + \epsilon$

$$\mathbf{v} = \mathbf{G}\mathbf{u} + \mathbf{e}$$

 $u(\mathbf{x}) \sim GP(0, \mathbf{k}(\mathbf{x}, \mathbf{x}'))$

Simulate from Gaussian Process

Part I: Simulation

Prior
$$p(u) = N(0, K)$$

Likelihood $p(v|u) = N(Gu, I)$
Posterior $p(u|v)$

Question (b)

- Now try to infer the original (high-dimensional) field $u(\mathbf{x})$ that generated the (lower-dimensional) observed data
- This is done by sampling from the posterior using both Metropolis-Hastings (GRW) and preconditioned Crank-Nicholson (pCN)

Part I: Simulation

Questions (c), (d) – Probit Classification

$$t_{true} = \begin{cases} 0 & u_i < 0 \\ 1 & u_i \ge 0 \end{cases}$$

$$t_i = \begin{cases} 0 & \mathbf{v_i} < 0 \\ 1 & \mathbf{v_i} \ge 0 \end{cases}$$

Threshold

Sample $p(\boldsymbol{u}|\boldsymbol{t}) \rightarrow \overline{\text{find } p(t^* = 1|\boldsymbol{t})}$

Subsample, Observe with Noise & Threshold

Part II: Spatial

Lewisham Borough

Bike Theft Counts

Part II: Spatial

Part II: Spatial

$$G = \begin{bmatrix} 1 & 0 & \dots & 0 & \dots & 0 & \dots \\ 0 & 0 & \dots & 1 & \dots & 0 & \dots \\ 0 & 0 & \dots & 0 & \dots & 1 & \dots \\ \vdots & \vdots & & \vdots & & \vdots & & \vdots \end{bmatrix}$$

Prior Mapping Likelihood Posterior

$$p(\mathbf{u}) = N(0, \mathbf{K})$$

$$\theta_i = e^{[Gu]_i}$$

$$p(\mathbf{c}|\boldsymbol{\theta}) = \prod_{i=1}^{M} f(c_i|\theta_i)$$

$$p(\mathbf{u}|\mathbf{c})$$

$$f(c_i|\theta_i) = \frac{e^{-\theta_i}\theta_i^{c_i}}{c_i!}$$

- Want to infer the bike theft counts, c^* , at all data locations, using posterior samples given subsampled data
- Transform posterior samples at location i, $\left\{u^{*(j)}\right\}_{j=1}^n$ to rate samples $\left\{\theta^{*(j)}\right\}_{j=1}^n$ ($\theta^*=e^{u^*}$)
- Use rate samples at each location to infer $\mathbb{E}[c^*]$, i.e. the expected/mean counts at each location
- Compare these counts to the true values

Problems?

- Ask on Moodle discussion page
- Check Jupyter Notebooks (Lecture_11.ipynb)
- Wikipedia/Online (Cholesky decomposition, log-likelihoods, pCN etc.)
 - https://makarandtapaswi.wordpress.com/2011/07/08/cholesky-decomposition-for-matrix-inversion/
 - https://en.wikipedia.org/wiki/Poisson_distribution
 - https://en.wikipedia.org/wiki/Preconditioned_Crank-Nicolson_algorithm
- Email me: ag933@cam.ac.uk

Good Luck!