SPAB aso 10

(a)

$$f(x) \cdot \beta \exp(-\beta x) \quad x \geq 0$$
A) method-of-moments estimator for B using mean

mean $\mu : \delta(\beta) : \frac{1}{\beta}, \quad \mu = \overline{x} = \frac{1}{\beta}, \sum_{i=1}^{n} X_i$

$$= \frac{1}{\lambda}$$
2) compute median, median-based estimator

median: $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$ (*c, cclit)

(a) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$ (*c, cclit)

(b) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$ (*c, cclit)

(c) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$ (*c, cclit)

(c) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$ (*c, cclit)

(c) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$

(b) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$

(c) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$

(c) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$

(c) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$

(c) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$

(c) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$

(c) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$

(c) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$

(c) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$

(c) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$

(c) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$

(c) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$

(c) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$

(d) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$

(e) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$

(f) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$

(g) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$

(g) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$

(g) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$

(g) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$

(g) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$

(g) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$

(g) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$

(g) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$

(g) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$

(g) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$

(g) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$

(g) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad F(x) : -\exp(-\beta x)$

(g) $0.5 \cdot \int_{-\infty}^{\pi} f(x) dx, \quad$