Análise de variância multivariada

Jhessica Letícia Kirch Universidade de São Paulo

Simpósio de Microbiologia Agrícola 11 de abril de 2023

RELEMBRANDO

- A Análise de Variância (ANOVA) permite comparar médias de várias populações independentes.
- •O teste F é utilizado para verificar diferenças entre médias de populações distintas.

- Hipótese da ANOVA de um fator:
 - Hipótese nula: a média de todas as populações são iguais, ou seja, o tratamento (fator) não tem efeito (nenhuma variação em média entre os grupos).

$$H_0: \mu_1 = \mu_2 = \dots = \mu_k$$

 Hipótese alternativa: Pelo menos uma média é diferente, isto é, existe efeito do tratamento (fator).

- O conjunto de dados Egyptian skulls apresenta medições feitas em crânios masculinos da área de Tebas no Egito.
- Há cinco amostras de 30 crânios cada uma dos períodos:
 - Pré-dinástico primitivo (cerca de 4000 a.C.);
 - Pré-dinástico antigo (cerca de 3300 a.C.);
 - 12^a e 13^a dinastias (cerca de 1850 a.C.);
 - Ptolemaico (cerca de 200 a.C.);
 - Romano (cerca de 150 d.C.).

 Quatro medidas são apresentadas para cada crânio.

- X1 = largura máxima;
- X2 = altura basibregmática;
- *X*3 = comprimento basialveolar;
- X4 = altura nasal.

Figura 1: Quatro medições feitas em crânios masculinos egípcios.

- Hipótese a ser testada
 - Hipótese nula: a média da largura máxima dos crânios de todos os períodos são iguais, ou seja, o período não tem efeito sobre a largura máxima do crânio
 - Hipótese alternativa: Pelo menos uma média é diferente, isto é, existe efeito de período.

Tabela 1. Quadro da ANOVA de um fator.

Causas de variação	Graus de liberdade	Soma de Quadrados	Quadrados médios	F
Fatores	k-1	SQ_{Trat}	QM_{Trat}	$F = \frac{QM_{Trat}}{QM_{Res}}$
Resíduo	k(r-1)	SQ_{Res}	QM_{Res}	QM_{Res}
Total	kr-1	SQ_{Total}		

•
$$SQ_{Total} = \sum y^2 - C$$

•
$$SQ_{Res} = SQ_{Total} - SQ_{Trat}$$

•
$$SQ_{Trat} = \frac{\sum T^2}{r} - C$$

•
$$C = \frac{(\sum y)^2}{n}$$

- •Os *QM*'s são obtidos dividindo as somas de quadrados pelos respectivos graus de liberdade.
- Para testar as hipóteses utiliza-se a estatística F com (k-1) graus de liberdade no numerador e k(r-1) graus de liberdade no denominador.
- Se $F_{calc} > F_{tab}$, rejeita-se H_0 . Neste caso dizemos que existem diferenças estatisticamente significativas entre as médias.

- Um procedimento de teste equivalente usa a probabilidade de significância (p-valor).
- •O p-valor representa a probabilidade de ser obtida uma observação da $F_{tab} \ge F_{cal}$.
- Se o p-valor for menor que α , rejeitamos H_0 .
- Exemplo no R.

- Quando há mais de uma variável resposta, o método geral de análise é a MANOVA, análise de variância multivariada, em que vetores de médias são comparados
- Ou seja: as variáveis resposta são analisadas simultaneamente
- Leva-se em consideração as relações existentes entre as variáveis.

Tabela 2. Quadro da MANOVA de um fator.

Fonte de Variação	SQPC	gl
Dentro de Amostras/grupos/tratamentos	W	m-1
Entre amostras ou Resíduo	В	n-m
Total	T	n-1

A hipótese a ser verificada é:

$$H_0 = \boldsymbol{\mu}_1 = \boldsymbol{\mu}_2 = \cdots = \boldsymbol{\mu}_I$$

- Ou seja, a hipótese é que não há diferenças entre os verdadeiros vetores de médias de tratamentos.
- A hipótese alternativa é de que ao menos um dos vetores de médias é diferente dos demais.

ESTATÍSTICAS DE TESTES

Tabela 3. Estatísticas de testes usadas para comparar vetores de médias amostrais com testes F aproximados na MANOVA

Teste	Estatística	F	gl_1	gl_2	Comentários
Lambda de Wilks	Λ	$\boxed{\frac{\left(1-\Lambda^{1/t}\right)}{\Lambda^{1/t}}(\frac{gl_2}{gl_1})}$	p(m-1)	$wt - \left(\frac{gl_1}{2}\right) + 1$	$w = n - 1\{(p+m)/2\}$ t $= [(gl_1^2 - 4)/\{p^2 + m - 1)2$ $- 5\}]1/2$ Se $gl_1 = 2$, faça $t = 1$
Maior raiz de Roy	λ_1	$\left(rac{gl_2}{gl_1} ight)\lambda_1$	D	n-m-d-1	O nível de significância obtido é um limite inferior $d = \max(p, m - 1)$
Traço de Pillai	$V = \sum_{i=1}^{p} \frac{\lambda_i}{1 + \lambda_i}$	$\frac{(n-m-p+s)V}{d(s-V)}$	sd	s(n-m-p+s)	$s = \min(p, m - 1)$ = n° de λ_i 's posit.
Traço de Lawley- Hotelling	$U = \sum_{i=1}^{p} \lambda_i$	$\frac{gl_2U}{s\ gl_1}$	s(2A+s+1)	2(sB + 1)	A = (m - p - 1)/2 $B = (n - m - p - 1)/2$

Nota: Assume-se que há p variáveis em m amostras, com a j-ésima de tamanho n_j e $n=\Sigma n_j$

- No caso multivariado, quatro estatísticas de teste são comumente utilizadas:
 - Lambda de Wilks
 - Maior raiz de Roy
 - Traço de Pillai
 - Traço de Hotelling-Lawley
- •É esperado que elas apresentem valores-p semelhantes, de modo que não há real necessidade de se escolher uma delas.

PRESSUPOSIÇÕES

- Normalidade multivariada;
- Igualdade de matrizes de variância e covariância.

Exemplo no R

